TAKSONOMI	TUMBUH	AN TINGGI

Halaman Sengaja Dikosongkan

NUR DIANA.SP.,MP.

TAKSONOMI TUMBUHAN TINGGI

Taksonomi Tumbuhan Tinggi

© Sanabil 2020

Penulis: Nurdiana, SP., MP.

Editor : Ramdhani Sucilestari, S.Si., M.Pd. Layout: Ramdhani Sucilestari, S.Si., M.Pd.

Desain Cover: Sepma Pulthinka Nur Hanip, MA

All rights reserved

Hak Cipta dilindungi Undang Undang Dilarang memperbanyak dan menyebarkan sebagian atau keseluruhan isi buku dengan media cetak, digital atau elektronik untuk tujuan komersil tanpa izin tertulis dari penulis dan penerbit.

ISBN: **978-623-317-179-3** Cetakan 1: Oktober 2021

Penerbit:

Sanabil

Jl. Kerajinan 1 Blok C/13 Mataram Telp. 0370- 7505946, Mobile: 081-805311362

Email: sanabilpublishing@gmail.com

www.sanabil.web.id

DAFTAR ISI

Cover	i
Daftar l	Isiv
Daftar '	Гabelviii
Daftar	Gambarix
Daftar l	Indekxiii
Kata Pe	engantar Dekanxv
Prakata	Penulisxviii
BAB I	SEJARAH TAKSONOMI TUMBUHAN TINGGI1
А. В.	Pengertian dan Sejarah Taksonomi Tumbuhan Tinggi
C.	Taksonomi Tumbuhan Tinggi VS Taksonomi Tumbuhan Rendah
BAB I	RUANG LINGKUP TAKSONOMI TUMBUHAN
TING	GI16
	Taksonomi Tumbuhan
В. С.	Klasifikasi Tumbuhan
BAB I	I SPERMATOPHYTA37
Α.	Tumbuhan Spermatophyta
В.	Karakteristik Spermatophyta
C.	Klasifikasi Spermatophyta
D.	Gymnospermae
E	Angiospermae 49

F.	Monokotil dan Dikotil	51
	Habitat Tumbuhan Spermatophyta	
	Reproduksi	
I.	Kandungan dan Manfaat Tumbuhan	
BAB I	V ANGIOSPERMAE	.77
Α.	Latar Belakang	77
В.	Angiospermae	78
C.	Pengelompokkan	88
D.	Habitat	90
E.	Kandungan dan Manfaat	114
BAB V	GYMNOSPERMAE	.119
Α.	Latar Belakang	119
В.	Gymnospermae	120
C.	Interaksi Al-Quran	122
D.	Pengelompokkan Gymnospermae	124
Е.	Karakteristik Gymnospermae	130
BAB V	I PENGELOMPOKAN TUMBUHAN	
ANGI	OSPERMAE	.132
Α.	Pendahuluan	132
В.	Integrasi Al-Quran	134
C.	Angiospermae	135
D.	Karakteristik Angiospermae	136
E.	Pengelompokkan Angiospermae	137
BAB V	II PTEREDOPHYTA	.162
Α.	Latar Belakang	162
В.	Pteredophyta	163
C.	Ciri-Ciri Pteredophyta	165

D. Integrasi Religi Pteredophyta	165
E. Habitat, Kandungan dan Maanfaat Pteredophyta	167
BAB VIII KLASIFIKASI TUMBUHAN/KEG LAPANGAN	172
A. Latar Belakang	172
B. Spermatophyta	173
C. Klasifikasi Gymnospermae	175
D. Anthophyta	179
E. Herbarium	182

DAFTAR PUSTAKA
DAFTAR ISTILAH (Glosarium)
SURAT PERNYATAAN
CV PENULIS
BIODATA PENULIS

DAFTAR TABEL

Tabel 3. 1 Karakter Tumbuhan Berbiji (spermatophyta)......40

DAFTAR GAMBAR

Gambar 1. 1 Tumbuhan Tingkat Tinggi	2
Gambar 1. 2 Dunia Tumbuhan Tingkat Tinggi	4
Gambar 1. 3 Tumbuhan Berbiji	8
Gambar 1. 4 Klasifikasi Tumbuhan	14
Gambar 2. 1 Taksonomi Tumbuhan	16
Gambar 2. 2 Zea mays	18
Gambar 2. 3 Tumbuhan Belah	26
Gambar 2. 4 Tumbuhan Talus	27
Gambar 2. 5 Tumbuhan Lumut	28
Gambar 2. 6 Tumbuhan Paku	29
Gambar 2. 7 Spora Tumbuhan Paku	30
Gambar 2. 8 Contoh Tumbuhan Biji	31
Gambar 2. 9 Contoh Biji Genetum	31
Gambar 2. 10 Tumbuhan Tingkat Tinggi dengan Bagiannya .	34
Gambar 3. 1 Contoh Spermatophyta	
Gambar 3. 2 Tanaman Kacang Mete & Biji Belinjo	42
Gambar 3. 3 Gymnospermae	
Gambar 3. 4 Kelas Cycadophyta	44
Gambar 3. 5 Kelas Gnetophyta	45
Gambar 3. 6 Kelas Coniferiphyta	46
Gambar 3. 7 Kelas Gyngophyta	47
Gambar 3. 8 Angiospermae	49
Gambar 3. 9 Oryza sativa	51
Gambar 3. 10 Tumbuhan Berkeping satu	
Gambar 3. 11 Suku Graminae	54
Gambar 3. 12 Suku Palmae	54
Gambar 3. 13 Suku Musaseae	55
Gambar 3. 14 Suku Orcidaceae	55
Gambar 3. 15 Jahe	56
Gambar 3. 16 Dycotiledonae	57
Gambar 3. 17 Ubi Kayu	
Gambar 3. 18 Kacang Tanah	
Gambar 3. 19 Terong	
Gambar 3. 20 Jambu	

Gambar 3. 21 Bunga Matahari60
Gambar 3. 22 Akar Dycotil62
Gambar 3. 23 Contoh Penampang Batang63
Gambar 3. 24 Ilustrasi Daun64
Gambar 3. 25 Contoh Habitat Tumbuhan65
Gambar 3. 26 Siklus Reproduksi Tumbuhan66
Gambar 3. 27 Jarak Pagar70
Gambar 3. 28 Bunga Tanaman
Gambar 3. 29 Jati
Gambar 3. 30 Mawar
Gambar 3. 31 Kemiri
Gambar 3. 32 Kedelai
Gambar 3. 33 Bambu
Gambar 3. 34 Mahkota Dewa
Gambar 3. 35 Padi
Gambar 3. 36 Tumbuhan dengan Kandungan Tanin76
Gambar 4. 1 Angiosperma Spesies
Gambar 4. 2 Siklus Angiospermae
Gambar 4. 3 Buah Angiospermae
Gambar 4. 4Spesies Berbunga80
Gambar 4. 5 Akar Mangga81
Gambar 4. 6 Siklus Pembuahan Ganda
Gambar 4. 7 Buah
Gambar 4. 8 Struktur Tubuh
Gambar 4. 9 Tulang daun85
Gambar 4. 10 Jeruk
Gambar 4. 11 Batang
Gambar 4. 12 Jagung90
Gambar 4. 13 Rumput Teki92
Gambar 4. 14 Anggrek
Gambar 4. 15 Kelapa
Gambar 4. 16 Lidah Buaya96
Gambar 4. 17 Jahe98
Gambar 4. 18 Pisang
Gambar 4. 19 Putri Malu
Gambar 4. 20 Jeruk/Limau

Gambar 4.	21 Manihot utilissima104	1
Gambar 4.	22 Kembang Merak106	5
Gambar 4.	23 Kapas108	3
Gambar 4.	24 Solanum tuberosum)
Gambar 4.	25 Bunga Matahari111	L
Gambar 4.	26 Kacang-kacangan112	<u>)</u>
	27 Jambu Biji	
Gambar 5.	1 Gymnospermae Spesies	3
Gambar 6.	1Caladium bicolor13938	3
Gambar 6.	2 Seychellaria madagascariensis14039)
Gambar 6.	3 Wittockia cyathiformis14140)
Gambar 6.	4 Crinum asiaticum	L
Gambar 6.	5 Fimbristylis drizae14342	<u>)</u>
Gambar 6.	6 Gigantochloa robusta	3
Gambar 6.	7 Zingiber purpureum Roxb14544	1
Gambar 6.	8Coelogyne verucosa14645	5
Gambar 6.	9 Acorus calamus	5
Gambar 6.	10 Pandanus tectorius14847	7
Gambar 6.	11 Casuarina cunninghamiana14948	3
Gambar 6.	12 Castanopsis dongnaiensis)
Gambar 6.	13Myrica esculenta)
Gambar 6.	14 Juglans nigra15150)
Gambar 6.	15 Salix alba	L
Gambar 6.	16 Piper nigrum L15251	L
Gambar 6.	17 Ficus septica	<u>)</u>
Gambar 6.	18 Banksia solandri	3
Gambar 6.	19Lorantus spinosus	3
Gambar 6.	20Koenigia nepalensis15554	1
Gambar 6.	21 <i>Tinospora crispa</i> 15655	5
Gambar 6.	22Raflesia arnoldi15756	5
Gambar 6.	23 Rosa hybrida15756	5
	24 Plumbago auriculata15857	
	25 Primula vulgaris	
	26 Diospyros phengklaii	
Gambar 7.	1 Tumbuhan paku	i

Gambar 7. 2 Tumbuhan Paku	16364
Gambar 7. 3 Dunia Tumbuhan Paku	16667
Gambar 7, 4Tumbuhan Perintis	16768

DAFTAR INDEK

Anotheledone as 11	formalia 24 197
Acotyledoneae, 11	formalin, 24, 187
alkohol, 24, 195, 196	gamopetal, 6
anatomi, 2	generatif, 13, 28, 67, 68,
annual, 5	133, 163
anteridium, 29	Gentera, 11
apetalae, 11	genus, 3, 18, 19, 20, 21, 84,
arkegonium, 29	98, 126, 127, 128, 175
artifisial, 6	geografi, 21
aseksual, 28	habitus, 2
Bakteri, 28	herba, 2
bakteriologi, 33	herbalis, 7
Binomial, 18	Historia, 4
biologi, 16	Hortus, 8
Bryophyta, 15, 29, 163	ikhtisar, 18
centrifugal, 6	infraspesifik, 20
class, 3	kingdom, 3
classis, 20, 21, 23	klasifikasi, 10
Compositae, 60, 110, 117	klorofil-a, 29
de Tournefort, 8	kolateral, 62, 63, 89, 121,
dichinae, 11	136
Dicotiledoneae, 60	kompilasi, 7
Dicotyledoneae, 11, 12, 13, 60,	kotiledon, 11
134, 178, 205	likenologi, 33
dikotomis, 19	majemuk, 6
distribusi, 21, 191	makrofil, 31, 119
divisio, 20, 21, 163, 177,	metode, 18
178	mikologi, 33
ekologi, 21, 181	Mirtaceae, 59
Euhorbiaceae, 57	Monocotyledoneae, 11, 12, 13,
familia, 20, 21	60, 134, 178, 207
filogenentik, 3	monofiletik, 22
filogenetik, 3, 12, 13, 31,	monopetalae, 11
134	morfologi. See
floem, 41, 46, 62, 63, 70,	natural, 10
71, 89, 121, 128, 136	naturalistic, 18
forma, 20, 21	Nomenclature, 18
	Nurdiana, SP.,MP ~ xiii

nomos, 1 Spermatophyta, 31, 37, 38, Nomos, 16 39, 70, 91, 93, 94, 96, numerik, 7 99, 102, 104, 106, 108, ordo, 3, 19, 20, 21, 22, 23, 109, 112, 113, 163, 172 125, 127 spesies, 3 Papilionaceae, 58 Spesimen, 24, 25, 188, 193, perennial, 5 194, 198 petalae, 11 spora, 30, 131, 163, 164, phylum, 3 173, 176, 193 Plantarum, 4, 8, 11 sporangium, 164, 174 plastida, 29 sporofil, 30, 130, 133, 134, 137, 175 polipetal, 6 Sporofil, 31, 119, 131 polypetalae, 11 populasi, 20, 21, 25, 33, subforma, 20 186 subspecies, 20 Pteridophyta, 30, 133, 163, subvarietas, 20 168 takson, 1, 3 regnum, 20, 21, 23 taksonomi, 1 Schizophyta, 27, 163, 164 *Taxis*,, 16 seksual, 8, 28, 40 Taxon, 16 sel, 14, 27, 29, 40, 46, 53, Thallophyta, 14, 28, 29, 67, 68, 69, 71, 116, 121, 163 128, 131, 132, 136, 163, variasi, 21, 85 207 varietas, 20 Sexsuale, 8 vegetatif, 28, 44, 48, 133 simpetal, 6 xylem, 41, 62, 63, 121 Sistema Naturae, 8 Zea mays, vii, 18, 19, 53, 90, sistematik, 16 91, 208 Solanaceae, 59, 110

KATA PENGANTAR DEKAN

Bismillahirrahmanirrahim

Buku referensi yang ada dihadapan pembaca ini adalah salah satu usaha bersifat substantif. Buku ini berisi materi kuliah "Taksonomi Tumbuhan Tinggi" yang berlandaskan pada paradigma keilmuan baru integratif dan interkonektif. Artinya pengkajian masing-masing materi tidak secara sains murni, tetapi juga diintegrasikan dengan disiplin ilmu keilmuan lainnya. Dalam konteks ini adalah ilmu keislaman sebagai ciri dan karakter yang melekat pada perguruan tinggi yang bernuansa islam (Islamic Studies) seperti UIN Mataram. Pendekatan integrasi di perguruan tinggi sekarang perlu diadakan. Hal ini tidak lain juga berangkat dari respon masyarakat dan kritik mereka bahwa ada ketimpangan yang terjadi ketika sains dan agama tidak bersimbiosis.

Dalam bahasa yang lebih praktis antara ilmu, iman, dan amal harus dipadukan. Karena ketiganya menjadi satu rangkaian sistemik dan struktur kehidupan manusia sehingga manusia menjadi makhluk yang bermanfaat. Lebih mementingkan satu dari yang lain, melahirkan kehidupan yang timpang. Karena itu, dalam konteks pengembangan pendidikan Islam, iman, ilmu, dan amal harus dijadikan domain kognitif, efektif, normatif dan psikomotorik dari taxonomi bloom yang sudah demikian terkenal. Subsatansi pendidikan Islam yang selama ini terseret dalam alam pikiran modern dan sekuler, telah terbelah antara pendidikan keimanan akhlak (etika). Dampaknya terjadi kemunduran umat Islam yang dalam perspektif Al-Qur'an, Allah tidak akan mengangkat derajat mereka.

Pendidikan modern memang mengembangkan disiplin ilmu dengan spesialisasi secara ketat, sehingga keterpaduan ketiganya menjadi hilang, dan melahirkan dikotomi kelompok ilmu-ilmu agama di satu pihak dan kelompok sains di pihak lain. Dikotomi itu berimplikasi pada terbentuknya perbedaan sikap dikalangan umat Islam secara tajam terhadap kedua kelompok ilmu-ilmu agama disikapi dan diperlukan sebagai ilmu Allah SWT yang bersifat sakral dan wajib untuk dipelajari. Sebaliknya kelompok ilmu-ilmu sains (kealaman dan sosial) disikapi dan diperlakukan sebagai ilmu manusia yang bersifat profane dan tidak wajib untuk dipelajari. Akibatnya, terjadi reduksi ilmu agama dan dalam waktu yang sama juga terjadi pendangkalan ilmu pengetahuan.

Situasi seperti ini membawa dampak pada ilmuilmu agama menjadi tidak menarik karena terlepas dari kehidupan nyata, sementara sains berkembang tanpa sentuhan etika dan spritualitas agama, sehingga di samping kehilangan makna juga bersifat destruktif. Pendidikan tinggi perlu mengembangkan pendidikan yang bersifat Qur'ani, yakni pendidikan yang utuh menyentuh seluruh domain yang disebut Allah SWT dalam kitab suci tersebut secara akademik yang dikembangkan melalui konsep iman, ilmu dan amal dalam satu tarikan nafas dengan tujuan atau anyaman yang berhubungan antara yang satu dan yang lainnya secara integratif. Kami menyambut baik buku referensi "Taksonomi Tumbuhan Tinggi" karya Ibu Nurdiana, S.P., M.P. pengampu mata kuliah Taksonomi Tumbuhan Tinggi di UIN Mataram ini, mudah-mudahan dapat diikuti oleh dosen-dosen yang lain sebagai usaha membangun tradisi ilmiah di kampus kita ini. Semoga karya ini dapat bermanfaat bagi yang ingin mendalami fenomena kealaman perspektif sains dan agama.

PRAKATA PENULIS

Dengan nama Allah yang Maha Pengasih dan Maha Penyayang. Alhamdulilah puji syukur kehadirat perkenan-Nya, Allah SWT. atas segala sehingga penyusunan buku "Taksonomi Tumbuhan Tinggi" ini dapat terselesaikan dengan baik. Sebagi bahan ajar, karya ini boleh dikatakan simple dan sangat sederhana, akan tetapi paling tidak karya ini dapat memberikan gambaran mengenai konsepsi-konsepsi dasar tentang fenomena tumbuhan dalam perspektif sains dan agama (Islam). Penulisan karya ini didasari oleh obsesi penulis untuk menjelaskan fenomena-fenomena tumbuhan dilihat dari sains dan agama. Sebagaimana kita ketahui bahwa setelah melewati periode pandangan pesimistik dari perspektifpersperktif sains dan agama dilingkaran akademik pada paruh pertama abad ke-20, dewasa ini, utamanya dalam dekade mutakhir, beberapa kecenderungankecenderungan religius mulai menampak pada sejumlah ahli fisika dan biologi. Maka, berlangsunglah diskusidiskusi yang bermutu dikalangan mereka, disatu pihak dan dikalangan filosof dan teolog di pihak lain, yang mewujud dalam bentuk karya-karya ilmiah.

Hubungan antara sains dan agama kini menjadi pertimbangan penting dikalangan pemikir, pembentukan kuliah-kuliah akademik tentang "sains dan agama" merupakan petunjuk kuat tentang hal itu. Karya ini adalah salah satu bentuk apresiasi terhadap trend baru studi keilmuan di lingkungan perguruan tinggi sekarang ini yaitu tema-tema kealaman yang terkait dengan silabus mata kuliah Taksonomi Tumbuhan Tinggi diintegrasikan dengan perspektif Qur'ani. Inilah titik beda karya ini lain yang dengan karya-karya membahas Taksonomi Tinggi. Tumbuhan Spirit integrasi interkoneksi antara sains dan agama yang menjadi pendekatan karya ini menambah nuansa tersendiri bagi para pengkaji fenomena kosmos ini.

Karva ini diharapkan menjadi referensi dan pegangan wajib mahasiswa dalam perkuliahan materi Taksonomi Tumbuhan Tinggi, mereka dapat terbantu serta mudah mempelajari dan memahami materi-materi inti yang terdapat dalam bahasan Taksonomi Tumbuhan Tinggi. Lebih dari target akademik, diharapkan akan terpancar mahasiswa sebagai output lembaga menjadi sosok alumni dan manusia beragama Islam yang terampil menganalisis dan menangani isu-isu tumbuhan diera pasca modern ini secara integratif. Hal ini implikasi dari penguasaan mereka terhadap berbagai pendekatan baru yang diberikan oleh ilmu-ilmu kealaman, serta ilmuilmu kontemporer, selain itu di balik semua yang ditempuh dan dilakukannya selalu dilandasi etika moral keagamaan yang obyektif dan kokoh, karena keberadaan al-Qur'an dan as-Sunnah yang dimaknai secara baru yang selal menjadi landasan pijak dan pandangan hidup keagamaan manusia yang menyatu dalam atmosfir keilmuan dan keagamaannya.

Semua tindakannya didasarkan ilmu, iman dan amal. Semua tindakan ini didedikasikan keseiahteraan manusia secara bersama tanpa memandang latar belakang etnis, agama, ras maupun golongan. Kami menyadari bahwa dalam proses penyusunan karya ini tidak terlepas dari bantuan berbagai pihak yang telah memberikan kontribusi pemikiran sehingga penyusunan karya ini selesai. Untuk itu penyusun mengucapkan banyak terima kasih kepada semua pihak, terutama Ayahanda K.H. Ahmad Usman, yang telah dengan tekun naskah awal buku ini dan memberikan sumbangan pemikiran, Terima kasih pula penulis sampaikan kepada Dr. H. Mutawalli, M.Ag., Rektor UIN Mataram; Dr. Hj. Lubna, M. Pd., Dekan Fakultas Ilmu Tarbiyah dan Keguruan, dan segenap civitas akademika UIN Mataram. Semoga Allah SWT, berkenan membalas dengan pahala yang setimpal Aamiin. Akhirnya, semoga karya ini bermanfaat bagi mahasiswa dan masyarakat umum. Tidak lupa kami mengharapkan kritik dan saran konstruktif untuk penyempurnaan karya ini.

Mataram, September 2021

Nurdiana, S.P.,MP

BAB I

SEJARAH

TAKSONOMI TUMBUHAN TINGGI

A. PENGERTIAN DAN SEJARAH TAKSONOMI TUMBUHAN TINGKAT TINGGI

Istilah taksonomi diciptakan oleh A.P. de Candolle, seorang ahli tumbuhan bangsa Swiss di herbarium Genewa, yang artinya teori tentang klasifikasi tumbuhan (Rideng, 1989). Secara etimologi taksonomi berasal dari bahasa Yunani: takson artinya unit atau kelompok, dan nomos artinya hukum; jadi hukum atau aturan yang digunakan untuk menempatkan suatu makhluk hidup pada takson tertentu.

Berdasarkan tingkat peradabannya, manusia yang pertama melakukan kegiatan di bidang taksonomi tumbuhan khususnya klasifikasi pasti memilah dan mengelompokkan tumbuhan berdasarkan atas kesaman ciri-ciri yang berkaitan langsung dengan kehidupan manusia. Misalnya dihasilkan kelompok tumbuhan penghasil bahan pangan, penghasil bahan sandang, penghasil bahan obat dan lain-lain. Selain itu juga dapat

berdasarkan ciri-ciri yang mudah dilihat dengan mata telanjang seperti perawakan tumbuhan. Berdasarkan perawakan tumbuhan (habitus), tumbuhan dikelompokkan menjadi empat yaitu, pohon (arbor), yang tumbuh tinggi dan besar serta berumur panjang, perdu, semak, dan terna (herba).

Gambar 1. 1 Tumbuhan Tingkat Tinggi

Sumber: Wikipedia, 2021

Seiring dengan kemajuan teknologi dan peradaban ciri-ciri tumbuhan yang pada mulanya tidak dapat diamati dapat dipertimbangkan untuk dijadikan dasar dalam pengklasifikasian. Karena teknologi yang lebih maju telah dapat mengamati bagian tersebut misalnya ciri-ciri anatomi, kandungan zat-zat kimia dan lain-lain.

Perkembangan pada taksonomi terus terjadi hingga sekarang, tingkatan taksonomi dibagi menjadi beberapa bagian berdasarkan kriteria-kriteria tertentu. Tingkatan yang dimaksud seperti, kingdom, phylum, class, ordo, genus, spesies dan tingkatan takson lainnya.

B. SISTEM KLASIFIKASI

Sejarah Sistem Klasifikasi makhluk hidup dimulai Setelah lahirnya teori evolusi muncul sistem filogenentik yang mencita-citakan tercerminnya jauh dekatnya hubungan kekerabatan antara golongan tumbuhan yang satu dengan golongan tumbuhan yang lain serta urutannya dalam sejarah perkembangan filogenetik tumbuhan, dalam garis besarnya, perkembangan sistem klasifikasi dari masa ke masa adalah sebagai berikut:

1. Periode sistem habitus (perawakan)

Periode sistem habitus (Perawakan) secara formal belum dikenal adanya sistem klasifikasi yang diakui (sejak ada kegiatan dalam taksonomi sampai kira-kira abad ke-4 sebelum masehi). Zaman prasejarah orang telah mengenal tumbuh-tumbuhan penghasil bahan pangan yang penting seperti yang kita kenal sampai saat ini.

Jenis-jenis tumbuhan ini diperkirakan telah diperkenal sejak 7 sampai 10 ribu tahun yang telah lalu,

telah dibudidayakan oleh bangsa Mesir, China, Asiria dan Tigris Di Timur Tengah serta bangsa-bangsa Indian di Amerika Utara dan Selatan, sejak beberapa ribu tahun yang lalu telah dikenal berbagai jenis tumbuhan yang merupakan penghasil bahan pangan, sandang, dan bahan obat yang berarti bahwa sebenarnya merekapun telah menerapkan suatu sistem klasifikasi.

Dalam hal ini suatu sistem klasifikasi yang didasarkan atas manfaat tumbuhan, sehingga tidak dapat dianggap sebagai system buatan yang tertua. Contoh dari sistem klasifikasi ini yaitu Theophrastus murid Aristoteles (370-285 SM). Taksonomi tumbuhan sebagai ilmu pengetahuanh baru di anggap pada abad ke-4 sebelum Masehi oleh orang- orang Yunani yang dipelopori oleh Theophrastes (370-285 SM) murid seorang filsuf Yunani bernama Aristoteles.

Sistem klasifikasi yang diusulkan bangsa Yunani dengan Theophrastes sebagai pelopornya juga diikuti oleh kaum herbalis serta ahli-ahli botani dan nama itu terus dipakai sampai selama lebih 10 abad. Theophrastes sendiri yang dianggap sebagai bapaknya ilmu tumbuhan, dalam karyanya yang berjudul Historia Plantarum telah memperkenalkandan memberikan

deskripsinya untuk sekitar 480 jenis tumbuhan. Theophrastes membuat suatu suatu system klasifikasi tumbuhan berdasarkan bentuk dan tekstur. Selain golongan-golongan pohon, perdu, semak seperti yang disebut di atas, ia juga mengadakan pengelompokan menurut umur dan membedakan tumbuhan berumur pendek (annual), tumbuhan berumur 2 tahun (biennial), serta tumbuhan berumur panjang (perennial).

Gambar 1. 2 Dunia Tumbuhan Tingkat Tinggi Sumber: Ensiklopedia Bebas, 2021

Theophrastes juga telah dapat membedakan bunga majemuk yang berbatas (centrifugal) dan yang tidak berbatas (centripetal), juga telah membedakan bunga dengan daun mahkota yang bebas dialipetal) (polipetal atau dan yang berlekatan (gamopetal atau simpetal) bahkan ia telah dapat mengenali perbedaan letak bakal daun yang tenggelam dan yang menumpang. Adapun yang telah dilakukan oleh theoprastes hasil klasifikasi tumbuhan yang telah diciptakan masih dianggap nyata-nyata merupakan suatu sistem artifisial. Selain dari Theophrastus, terdapat pula beberapa tokoh yang mencetus setiap perkembangan taksonomi dalam periode habitus, yaitu:

- a. Discorides. Tokoh ini adalah seorang berkebangsaan romawi dan hidup dalam zaman pemerintahan kaisar nero dalam abad pertama sebelum masehi.
- b. Plinius. Menjelang abad ke-16, bangkit lagi perhatian terhadap ilmu tumbuhan yang akan membawa perkembangan taksonomi kearah yang lain. Gambar-gambar tumbuhan yang dibuat semakin bermutu, lebih lengkap namun masih bercampur dengan data-data mengenai penggunaannya.

- c. O. Brunfels. Yang tergolong dalam kaum herbalis, telah menghasilkan karya tentang terna yang dihiasi gambar, yang sebagian besar merupakan bahanbahan kompilasi dari karya-karya theoprastes, dioscorides, dan plinius.
- d. J. Bock (hieronymus tragus). Adalah seorang herbalis yang pernah menjadi guru, pendeta dan kemudian dokter yang mempunyai hobi ilmu tumbuhan.
- e. L. Fuchs. Kelahiran bavaria (jerman barat), adalah seorang guru besar dalam ilmu kedokteran di tubingen jerman barat.
- f. R. Dodoneus. Seorang dokter kelahiran mechelen, belgia. Dia pernahmenjelajahi prancis, jerman dan italia serta menjadi dokter di kota kelahirannya. Dia adalah penulis het cruyde boek yang pada masanya sangat mashur.
- g. M. De l'obel. Berkebangsaan inggris dan pernah mengadakan mengadakan perjalanan di denmark dan rusia. Dia memiliki sebuah kebun botani di london dan penulis sebuah karya besar tentang ilmu tumbuhan.

2. Periode sistem numerik

Periode ini terjadi pada permulaan abad ke 18,

yang ditandai dengan sifat sistem yang murni artifisial, yang sengaja dibuat sebagai sarana pembantu dalam identifikas tumbuhan. Dalam periode ini tokoh yang paling menonjol adalah Karl Linne (Carolus Linneaus). Di bawah bimbingan Dr. Rudbeck ia menerbitkan karyanya yang pertama kali mengenai seksualitas tumbuhan. Setelah menjadi dosen ia menerbitkan karyanya yang berjudul *Hortus Uplandikus* yang memuat nama-nama semua tumbuhan vang terdapat dikebunraya di Upsala, yang susunannya mengikuti sistem de Tournefort. karena jumlah tumbuhan dikebun raya tadi makin besr jumlahnya maka linneaus menerbitkaan Hortus Uplandikus edisi baru yang disusun menurut ciptaannya sendiri yang dikenal sebagai Sistema Sexsuale atau sistem seksual. Doktor Gronovius seorang dokter dan naturalis, begitu oleh Linneaus, dan Lawson menawarkan kepada Linneaus untuk membiayai penerbitan naskahnya yaitu Sistema Naturae yang memuat dasar-dasar pengklasifikasian tumbuhan hewan dan mineral.

Selama tahun 1737 sewaktu dinegeri Belanda karya Linneaus yang diterbitkan berjudul *Genera Plantarum* dan *Flora Lavonica* sambil menunggu pencetakan naskah-naskah itu Linneaus diberi

kesempatan oleh Clifford untuk berkunjung ke Inggris, dan sekembalinya dari Inggris selama sembilan bulan ia menyiapkan naskah *Hortus Cliffortianus* yang berisi jenisjenis tumbuhan yang dipelihara dalam kebunnya Clifford selama tiga tahun di Belanda dari tahun 1737 sampai 1739 merupakan masa yang paling produktif bagi Linneaus. Kurang lebih ada 14 judul tulisannya terbit waktu itu, yang sebagian besar telah dipersiapkan ketika ia masih di Swedia

Gambar 1. 3 Tumbuhan Berbiji Sumber: Wikipedia, 2021

Setelah kembali lagi ke Swedia tidak lagi terbit karyanya yang berarti dari linneaus selain spesies plantarum yang terbit 1 mei 1753. Pada tahun 1775 ia mengundurkan diri sebagai guru besar dan tiga tahun kemudian meninggal dunia setelah menderita sakit selama kurang lebih 2 tahun (10 januari 1778).

Menjelang berakhirnya abad ke-18 terjadi perubahanperubahan yang revolusioner dalam pengklasifikasiaan tumbuhan. Sistem klasifikasi yang baru ini disebut "sistem alam" yaitu golongan yang terbentuk merupakan unit-unit yang wajar (natural) bila terdiri dari anggota-anggota itu,dan dengan demikian dapat tercermin pengertian manusia mengenai yang disebut yang dikehendaki oleh alam. Secara harfiah istilah "system alam" untuk aliran baru dalam klasifikasi ini tidak begitu tepat karena pada hakekatnya semua sistem klasifikasi adalah sistem buatan. Untuk sitem klasifikasi yang digunakan dalam periode ini, digunakan nama "sistem alam" (natural system) dengan maksud untuk memenuhi keinginan manusia akan adanya penataan yang tepat yang lebih baik dari sistem-sistem sebelumnya. Dalam periode ini tokoh-tokoh yang dikemukakan dalam periode ini adalah

- a. M.Adanson. Yaitu seorang ahli tumbuhan berkebangsaan Perancis dan seorang anggota akademi ilmu pengetahuan di Universitasa Sorbonne,Paris.
- b. G.C. Oeders (1728- 1791). Seorang ahi tumbuhan berkebangsaan denmark yang antara lain telah menulis flora Sleeswijk Holstein dan Denmark.

- c. J.R. de Lamarck (1744-1829). Seorang ahli ilmu hayat berkebangsaan Perancis,yang bagi para ahli taksonomi tumbuhan dikenal sebagai penulis *flora francoise* yang ditulis berupa kunci untuk pengidentifiasian tumbuh-tumbuhan diperncis, dan Lamarck juga dikenal sebgai penulis *fhilosophie zoologique dan echele animale* dan dianggap sebagai slaha seorang perintis lahirnya teori evolusi.
- d. Joseph (1709-1779). Yang termuda dari ketiga De jussieu bersaudara ini tinggal bertahun-tahun di Amerika Selatan untuk studi dan pembuatan koleksi.

3. Periode sistem alami

Periode ini sistem klasifikasi alami didasarkan atas persamaan bentuk tumbuhan. Contoh klasifikasi ini adalah:

- a. De Jussieu, membagi tumbuhan berdasarkan ada tidaknya kotiledon menjadi Acotyledoneae, Monocotyledoneae dan Dicotyledoneae. Dicotyledoneae dibagi dalam 5 golongan dan mahkota bunga menjadi apetalae, petalae, monopetalae, polypetalae, dichinae.
- Bentham dan Hooker, hasil sistem klasifikasinya dipublikasikan bersama dalam 3 volume dengan judul Gentera Plantarum.

4. Periode sistem filogenetik

Periode sistem klasifikasi ini ditekankan klasifikasi tumbuhan dari yang sederhára sampai yang kompleks, dan sistem ini berusaha menyatakan hubungan kekerabatan genetik dan hubungan dengan nenek moyangnya. Klasifikasi ini didasarkan atas filogeni yaitu dengan mengikutsertakanteori evolusi. Contoh klasifikasi sistem filogenetik adalah:

- a. August Wilhelm Eichler (1834-1887). Eichler mengusulkan sistem yang berdasarkan pendekatan kekeraanoi batan genetik antartumbuhan tetapi belum sempurna. Eichler menerima konsep evolusi, tetapi dalam pengertian modern belum merupakan sistem filogenetik. Eichler membagi tumbuhan dalam 2 kelompok yaitu Cryptogamae dan Phanerogamae.
- (1844-1930). b. Adolph Engler Sistem Engler materinya lebih detail dalam penerapan tatanama kategori takson besar. Tumbuhan berbiji yang disebut Embryophyta Siphonogamae dibagi menjadi Angiosriedud Gymnospermae dan permae. dibagi dalam dua kelas Angiospermae Monocotyledoneae dan Dicotyledoneae. Dicotyledoneae dibagi dalam anak sunau kelas

Archichlamideae (Choripetalae dan Apetalae) dan Metachlamideae (CorollaGamopetalus).

- 5. Sistem kontemporer lain
- a. Alfred Barton Rendle (1865-1934). Sistem Rendle didasarkan pada sistem Engler dan Prantl, ini merupakan salah satu sistem filogenetik modern yang cukup baik dan berarti. Rendle memperlakukan Dicotyledoneae lebih primitif dibanding kan Monocotyledoneae
- b. Karl Christian Mez (1866-1944). Karya profesor botani dari Jerman pada tahun 1926 menganalisa reaksi protein untuk melihat hubungan kekerabatan tumbuhan secara generatif

C. TAKSONOMI TUMBUHAN TINGGI VS TAKSONOMI TUMBUHAN RENDAH

Tumbuhan tingkat tinggi merupakan tumbuhan biji. Tumbuhan tingkat tinggi dikatakan sebagai tumbuhan biji sebab jenis tumbuhan ini merupakan jenis tumbuhan yang mempunyai akar, daun sejati, dan juga memiliki batang disertai dengan organ tambahan yang meliputi buah dan juga daun. Tumbuhan biji juga sering dikenal dengan tumbuhan berbunga. Bunga yang terdapat pada tumbuhan merupakan alat reproduksi

atau juga sering disebut dengan alat perkawinan bagi tumbuhan. Tumbuhan berbiji di bagi menjadi dua golongan yaitu tumbuhan yang berbiji terbuka atau yang sering disebut dengan gymnospermae dan juga ada pula tumbuhan biji tertutup atau yang sering disebut dengan istilah angiospermae. Contoh tumbuhan tingkat tinggi diantaranya adalah tumbuhan paku pakuan dan juga tumbuhan bunga bungaan.

Tumbuhan tingkat rendah yaitu salah sattu jenis tumbuhan yang tidak pernah menghasilkan bunga. Tumbuhan tingkat rendah sering disebut dengan Tumbuhan Thallophyta karena pada tumbuhan tingkat rendah memiliki thallus pada setiap daunnya. Berbeda dengan tanaman tingkat tingii, tanaman tingkat rendah belum memiliki jaringan pengangkut yang sempurna. Sehingga, materi atau nutrisi yang dihasilkan atau didapatkan oleh tumbuhan disalurkan ke seluruh tumbuh-tumbuhan dengan cara difusi antar sel.

Gambar 1. 4 Klasifikasi Tumbuhan

Sumber: Wikipedia, 2021

Tumbuhan tingkat rendah juga disebut dengan Cormophyta karena termasuk tumbuhan berkormus. Walau belum memiliki pembuluh angkut, namun organ pokok pada tumbuhan tingkat rendah sudah dapat dibedakan, yaitu akar, batang dan daun pada tumbuhan tumbuhan tingkat tinggi juga tidak akan memiliki bunga pada setiap tahapan kehidupannya. Berikut tumbuhan yang termasuk Tumbuhan tingkat Rendah, yaitu; Tumbuhan Lumut (Bryophyta) dan tumbuhan paku.

BABII

RUANG LINGKUP

TAKSONOMI TUMBUHAN TINGGI

A. TAKSONOMI TUMBUHAN

Kata taksonomi berasal dari bahasa Yunani Taxis, yaitu susunan, penyusunan, penataan atau Taxon, yaitu setiap unit yang digunakan dalam klasifikasi obyek biologi dan Nomos, yaitu hukum. Istilah taksonomi diperkenalkan pertama kali oleh seorang ahli taksonomi tumbuhan Perancis tahun 1813, untuk teori klasifikasi tumbuhan sehingga tidak mengherankan bila ada sementara ahli biologi yang memberikan interpretasi taksonomi sebagai teori dan praktek tentang pengklasifikasian makhluk hidup. Sistematik berasal dari kata Latin systema yang berarti cara penyusunan atau cara penataan. Dari uraian di atas wajarlah kiranya bila ada sementara ahli berpendapat bila taksonomi di beri makna yang sama dengan sistematik dan dalam penerapannya taksonomi lalu dijadikan sinonim dengan sistematik.

Namun demikian, ada di antara para ahli ilmu biologi yang berpendapat bahwa taksonomi tidak sepenuhnya sama dengan sistematik. Kedua istilah itu tidak identiksatu sama lain. Sistematik adalah ilmu keanekaragaman makhluk hidup. Pendapat ini menganggap sistematik mempunyai cakupan

yang lebih luas dari pada taksonomi.

Gambar 2. 1 Taksonomi Tumbuhan

Sumber: Ensiklopedia Bebas, 2021

Wettstein mengemukakan, bahwa tugas taksonomi tumbuhan adalah : Pengenalan (identifikasi) tumbuhan, baik yang sekarang ada maupun yang hidup dalam perkembangan silam bumi dalam masa yang dan upaya untuk menggolongkan (mengklasifikasi) dalam suatu sistem, yang di satu pihak sesuai dengan kemajuan ilmu pengetahuan, yaitu memberikan gambaran hubungan kekerabatan dalam sejarah perkembangan antara tumbuhan yang satu dengan yang lain, dan di lain pihak memenuhi kebutuhan yang praktis yang berupa ikhtisar ringkas dunia tumbuhan

B. KLASIFIKASI TUMBUHAN

Klasifikasi adalah suatu cara yang sistematis dalam mempelajari suatu obyek yang memperlihatkan persamaan dan perbedaan suatu ciri dan sifat yang tampak. Dalam klasifikasi diperlukan metode penamaan, yaitu Binomial Nomenclature yaitu pemberian nama makhluk hidup dengan dua kata yang dikenalkan olehCarolus Linnaeus.

Syarat pemberian nama ilmiah yaitu dengan:

- a. Terdiri atas dua kata dalam bahasa Latin atau yang dilatinkan.
- b. Kata pertama merupakan nama genus, huruf pertama harus huruf kapital
- c. Kata kedua merupakan petunjuk spesies yang ditulis dengan huruf kecil.
- d. Penulisan spesies digaris bawahi atau dicetak miring.Contoh: Zea mays atau Zea mays.

Kaidah-kaidah klasifikasi yang telah dirintis oleh C. Linnaeus sebagai bapakklasifikasi taksonomik antara lain :

- a. Klasifikasi berdasar ciri-ciri yang ada pada obyek (naturalistic).
- b. Klasifikasi dilakukan menurut kesamaan dan perbedaan ciri yang ada padaobyek.
- c. Klasifikasi taksonomik dijabarkan dalam 7 takson

(tataran/hierakhis), meliputi species- genus- famili-ordokelas- divisi- kingdom.

Gambar 2. 2 Zea mays

Sumber: Ensiklopedi Bebas, 2021

- d. Nomenklatur untuk takson jenis (species) secara binomial.
- e. Menggunakan bahasa Latin dan cara klasifikasi adalah dikotomis.
- Takson, Kategori dan Konsep-Konsep Lain dalam Taksonomi Tumbuhan
- a) Takson dan Kategori

Dalam Kode Internasional Tatanama Tumbuhan, bahwa yang dimaksud dengan istilah Takson adalah setiap golongan (unit) taksonomi tingkat yang manapun. Ada 7 takson yang utama yang berturut-turut dari bawah ke atas disebut dengan istilah: jenis (species), marga (genus), suku (familia), bangsa (ordo), kelas (classis), divisi (divisio), dan dunia (regnum). Istilah tersebut merupaka istilah untuk menunujukkan takson menurut tingkatnya, yang dalam taksonomi disebut pula dengan istilah kategori.

b) Takson (unit) dalam Taksonomi Tumbuhan

Takson jenis (*species*) adalah merupakan unit dasar dalam sistem taksonomi tumbuhan. Suatu jenis adalah kelompok populasi alami yang dapat saling mengawini dan secara produktif terasing dari kelompok serupa yang lain.

c) Tingkat-tingkat takson (kategori) di bawah jenis

Dalam suatu jenis dapat dibedakan beberapa kategori yang berturut-turut disebut dengan istilah: anak jenis (*subspecies*), varietas (*varietas*), anak varietas (*subvarietas*), forma (*forma*) dan anak forma (*subforma*).

Pada dasarnya setiap kategori infraspesifik (di bawah tingkat jenis) adalah suatuvarian jenis, dalam arti merupakan suatu kelompok dalam populasi jenis yang mempunyai ciriciri karena itu dapat dipilah menjadi kelompok yang terpisahkan dari populasi jenis itu.

Dalam kepustakaan mengenai taksonomi tumbuhan untuk konsep anak jenis terdapat beberapa batasan yang menunjukkan adanya beda mengenai pangkal tolak yang dijadikan dasar pemikiran untuk menentukan yang

dimaksud didapat dianggap sebagai jenis ukuran kecil yang terpisahkan oleh ciri-ciri yang digunakan untuk menentukan lain-lain jenis dalam marga yang sama, bahwa anak jenis itu merupakan variasi morfologi suatu jenis yang mempunyai daerah distribusi di dalamnya termasuk unsur-unsur dengan ciri-ciri morfologi, geografi dan ekologi tertentu yang memberikan pembenaran untuk dipisahkan dari sisa populasi dalam suatu jenis.

Varietas merupakan varian morfologi suatu jenis tanpa mengaitkan dengan masalah distribusinya, mempunyai daerah distribusi tertentu dan menempati daerah distribusi yang sama.

Istilah forma digunakan untuk menempatkan variasi dalam jenis yang tak begitu penting. Variasi yang dimaksud menyangkut misalnya warna mahkota bunga, warna buah, tanggapan terhadap habitat tertentu. Sementara ahli ilmu tumbuhan berpendapat, bahwa ke dalam suatu forma dapat dimasukkan setiap varian yang kadangkala terjadi dalam populasi suatu jenis tanpa memperhatikan besarnya derajat penyimpangan dan konsistensinya.

d) Tingkat-tingkat takson di atas jenis

Tingkatan takson di atas jenis adalah marga (genus), suku (familia), bangsa (ordo), kelas (classis), divisi (divisio), dan dunia (regnum). Suatu marga terdiri atas jenis-jenis yang satu sama lain menunjukkan kesamaan yang lebih banyak dari pada jenis-jenis yang menjadi komponen marga lain dalam suku yang sama.

Pada umumnya suku terdiri atas anggota-anggota yang berasal dari nenek moyang yang sama, jadi mempunyai warga yang bersifat monofiletik. Suku merupakan suatu kategori yang ukurannya sangat kecil hanya terdiri atas satu marga dan beberapa jenis saja, ada yang sangat besar terdiri atas satu marga dan ratusan jenis atau bahkan lebih besar lagi.

Familia yang berkerabat dekat membentuk Ordo (bangsa), dan Ordo-ordo yang berkerabat dekat dikelompokkan ke dalan Classis (kelas).

Kelas- kelas yang berkerabat dikelompokkan ke dalam Phylum (Filum) untuk hewan, pada tumbuhan disebut Divisio atau Divisi.

Semua Filum dan atau Divisi yang berkerabat membentuk Kingdom atau kerajaan. Dengan cara demikian makaterbentuklah tingkatan klasifikasi atau tingkatan takson. Semakin tinggi kedudukan suatu takson maka semakin sedikit persamaan ciri tetapi semakin banyak jumlah anggotanya. Sebaliknya, semakin rendah kedudukan takson, semakin banyak persamaan ciri, tetapi jumlah anggotanya sedikit.

Satu suku atau lebih dapat memebntuk suatu kategori yang lebih tinggi yaitu bangsa (ordo). Sebagai unit yang lebih besar dari pada suku, suatu bangsa merupakan kategori yang semakin sukar untuk dikenali sebagai unit yang bersifat natural, namun unit klasifikasi tetap memperlihatkan keseragaman dalam sifat-sifattertentu yang sering kali sangat karakteristik untuk seluruh warga bangsa itu, sehingga bangsa itu kerap kali diberi nama sesuai dengan ciri khas yang dimiliki seluruh warganya.

Kategori yang lebih tinggi daripada bangsa adalah kelas (classis). Suatu kelas terdiri atas sejumlah bangsa, dan karena merupakan takson yang besar lebih sukar lagi untuk dilihat sebagai suatu unit yang bersifat natural. Setingkat lebih tinggi lagi adalah devisi (devisio) yang terdiri atas sejumlah kelas dan seluruh warganya menunjukkan ciri morfologi atau organ yang sama atau mempunyai cara reproduksiyang sama.

Konsep dunia (regnum) digunakan untuk menunjukkan keseluruhan tumbuhan atau keseluruhan hewan yang masing-masing disebut sebagai dunia tumbuhan (regnum plantarum) dan dunia hewan (regnum animale).

2. Identifikasi dan Sistem Identifikasi

Selain mengadakan penggolongan atau klasifikasi,

tugas utama taksonomi lainnya yang penting ialah pengenalan atau identifikasi.

Melakukan identifikasi tumbuhan berarti mengungkapkan atau menetapkan identitas suatu tumbuhan, atau menentukan namanya yang benar dan tempatnya yang tepat dalam sistem klasifikasi. Untuk istilah identifikasi sering juga digunakan istilah determinasi atau penentuan.

Setiap orang yang akan mengidentifikasi suatu tumbuhan selalu menghadapi dua kemungkinan :

- a) Tumbuhan yang akan diidentifikasi itu belum dikenal oleh dunia ilmu pengetahuan, jadi belum ada nama ilmiahnya, juga belum ditentukan tumbuhan tersebut berturut-turut dimasukkan dalam kategori yang mana.
- b) Tumbuhan yang akan diidentifikasi itu sudah dikenal oleh dunia ilmu pengetahuan, sudah ditentukan nama dan tempatnya yang tepat dalam sistem klasifikasi.
- (1) Identifikasi Tumbuhan yang Belum Dikenal oleh Dunia Ilmu Pengetahuan Identifikasi tumbuhan selalu didasarkan atas spesimen (bahan) yang riil, baik

Spesimen yang masih hidup maupun yang telah diawetkan, biasanya dengan cara dikeringkan atau dalam tempat yang berisi cairan pengawet, misalnya alkohol atau formalin.

Spesimen yang belum dikenal melaui stud yang seksama kemudian dibuatkan deskripsinya disamping gambar-gambar yang terperinci mengenai bagian-bagian tumbuhan yang memuat ciri-ciri diagnostiknya, yang atas dasar hasil studi kemudian ditetapkan spesimen itu merupakan anggota populasi jenis apa, dan dimasukkan dalam kategori yang mana (marga, suku, bangsa, kelas dan divisi).

- (2) Identifikasi Tumbuhan yang Telah Dikenal oleh Dunia Ilmu Pengetahuan Untuk identifikasi tumbuhan yang tidak kita kenal, tetapi telah dikenal oleh ilmu pengetahuan, beberapa hal yang perlu dilakukan, yaitu:
- a. Menanyakan identitas tumbuhan yang tidak kita kenal kepada seseorang yangdiaggap ahli.
- b. Mencocokkan dengan spesimen herbarium yang telah diidentifikasi.
- c. Mencocokkan dengan deskripsi dan gambar-gambar yang ada dalam buku-bukuflora atau monografi.
- d. Penggunaan kunci identifikasi dalam identifikasi tumbuhan.
- e. Penggunaan lembar identifikasi jenis.
- 3. Tata Nama Tumbuhan

Pada mulanya tentu nama yang diberikan kepada tumbuhan itu adalah nama bahasa induk orang yang memberi nama.

Dengan demikian satu jenis tumbuhan dapat memepunyai nama yang berbeda-beda sesuai dengan bahasa oang yang memberikannya, dalam taksonomitumbuhan disebut nama biasa.

Dengan semakin berkembangnya ilmu taksonomi tumbuhan kemudian dikenal nama ilmiah. Lahirnya nama ilmiah disebabkan oleh beberapa faktor, yaitu:

- a) Beranekaragamnya nama biasa, berarti tidak adanya kemungkinan nama itu diberlakukan secara umum untuk dunia internasional, mengingat adanya perbedaan dalam setiap bahasa yang digunakan sehingga tidak mungkin dimengerti oleh semua bangsa.
- b) Beranekaragamnya nama dalam arti ada yang pendek, ada yang panjangbahkan ada yang panjang sekali. Namanama itu diberikan kepada tumbuhan tanpa adanya indikasi nama-nama tadi dimaksud sebagai nama jenis, nama marga, atau nama kategori takson yang lain.
- c) Banyaknya sinonim (dua nama atau lebih) untuk satu macam tumbuhan dan homonim untuk beberapa macam tumbuhan.
- d) Sukarnya untuk diterima oleh dunia internasional, bila salah satu bahasa yang sekarang masih dipakai seharihari dipilih sebagai bahasa untuk nama-nama ilmiah. Sampai

sekarang Kode Internasional Tatanama Tumbuhan masih mensyaratkan agar dalam publikasi asli untuk memperkenalkan takson baru bukan hanya nama takson baru yang pertama kali diperkenalkan itu ditulis dalam bahasa Latin tetapi juga deskripsi atau sekurang-kurangnya takson yang bersangkutan pun harus ditulis dalam bahasa Latin.

4. Sistematika Tumbuhan

Tumbuhan dibagi menjadi 5 divisi, yaitu:

1) Tumbuhan Belah (Schizophyta)

Schizophyta berasal dari bahas latin *Schizein* (membelah) dan *Phyton* (tumbuhan). Kelompok ini mempunyai ciri khas, seluruh warganya adalah berkembang biak dengan membelah diri, tubuh hanya terdiri atas sebuah sel saja, protoplas belum teridentifikasi dengan jelas, sehingga tampak nyata.

Gambar 2. 3 Tumbuhan Belah Sumber: Ensiklopedia Bebas, 2021

Tumbuhan belah dibagi dalam 2 kelas, yaitu:

1) Bakteri (bacteria atau Schizomycetes)

Ganggang biru, ganggang belah atau ganggang lendir (Cyaopyceae, Schizophyceae, atau Myxophyceae)

2) Tumbuhan Talus (Thallophyta)

Divisi ini meliputi tumbuhan dengan cri utama tubuh yang berbentuk talus. Yang disebut talus ialah tubuh tumbuhan yang belum dapat dibedakan dalam 3 bagian utamanya, yaitu akar, batang dan daun. Perkembangbiakkan terjadi dengancara vegetatif atau aseksual dan generatif atau seksual.

Gambar 2. 4 Tumbuhan Talus Sumber: Ensiklopedia Bebas, 2021

3) Tumbuhan lumut (Bryophyta)

Semua tumbuhan yang tingkat perkembangannya lebih tinggi dari pada Thallophyta pada umumnya mempunyai warna yang benar-benar hijau, karena mempunyai sel-sel dengan plastida yang mengandung klorofil-a dan b.

Pada bryophyta alat-alat kelamin yang berupa anteridium dan arkegonium, demikian pula sporangiumnya, selalu terdiri atas banyak sel. Pada semua tumbuhan yang tergolong dalam Bryophyta terdapat kesamaan bentuk dan susunan gametangiumnya.

Gambar 2. 5 Tumbuhan Lumut Sumber: Ensiklopedia Bebas, 2021

4) Tumbuhan Paku (Pteridophyta)

Tumbuhan paku merupakan suatu divisi yang warganya telah jelas mempunya kormus, artinya tubuhnya dengan nyata dapat dibedakan dalam tiga bagian pokoknya, yaitu, akar, batang dan daun. Bunga belum ada, sporofil kadang-kadang terangkai pada ujung-ujung batang dan cabang. Namun demikian, pada umbuhan paku belum dihasilkan biji. Alat perkembangbiakkan tumbuhan paku yang utama adalah spora.

Gambar 2. 6 Tumbuhan Paku

Sumber: Ensiklopedia Bebas, 2021

Gambar 2. 7 Spora Tumbuhan Paku Sumber: Ensiklopedi Bebas, 2021

5) Tumbuhan Biji (Spermatophyta)

Tumbuhan biji merupakan golongan tumbuhan dengan tingkat perkembangan filogenetik tertinggi, yang sebagai ciri khasnya ialah adanya suatu organ yang berupa biji. Tubuhnya jelas dapat dibedakan dalam akar, batang dan daun. Daun tergolong dalam tipe makrofil dengan bentuk dan susunan tulang-tulang yang beranekaragam. Akar tumbuha dari kutub akar. Sporofil terangkai sebagai

strobilusatau bunga.

Gambar 2. 8 Contoh Tumbuhan Biji Sumber: Ensiklopedi Bebas, 2021

Gambar 2. 9 Contoh Biji *Genetum* Sumber: Ensiklopedia Bebas, 2021

5. Tujuan dan Manfaat Klasifikasi

Klasifikasi bertujuan untuk mempermudah mengenal objek yang beranekaragam dengan cara mencari persamaan dan perbedaan ciri serta sifat pada objek tersebut. Klasifikasi berguna untuk menunjukan hubungan kekerabatan diantara makhluk hidup. Keuntungan mengklasifikasikan makhluk hidup adalah mempermudah dalam mencari keterangan tentang makhluk hidup yang akan kita pelajari. Selain itu klasifikasi juga memudahkan dalam memberi nama ilmiah kepada individu atau populasi individu.

C. INTEGRASI KEILMUAN DENGAN AL-QURAN

Seperti yang kita ketahui Botani adalah suatu cabang ilmu yang mempelajari tentang tumbuhan dan pertumbuhan bagi kehidupan, klasifikasi dan tata nama tumbuhan. Ruang lingkup botani tidak hanya dalam tumbuhan saja tetapi mempelajari jamur (mikologi), bakteri (bakteriologi), lumut kerak (likenologi), dan lain sebagainya.

Dalam Al-Quran Allah menjelaskan:

Artinya " Dan kami telah meniupkan angin untuk mengawinkan tumbuh-tumbuhan dan kami turunkan hujan dari langit, lalu kami beri minum dari air itu, dan sekali-kali bukanlah kamu yang menyimpannya. (Al-Hijr: 22)

Tumbuhan merupakan bagian yang sangat mendasar bagi kehidupan di bumi, karena tumbuhan yang menghasilkan oksigen, makanan, serat, bahan bakar, dan obat-obatan yang diperlukan oleh manusia maupun yang lainnya. Melalui fotosintesis, tumbuhan menyerap karbon dioksida, sebuah gas rumah kaca yang dalam jumlah besar dapat mempengaruhi iklim global. Dalam al-quran yang berbunyi:

وَمَثَلُ ٱلَّذِينَ يُنفِقُونَ أَمُولَهُمُ ٱبْتِغَاءَ مَرْضَاتِ ٱللَّهِ وَتَنْبِيتًا مِنْ أَنفُسِهِمْ كَمَثُلِ جَنَّةِ بِرَبْوَةٍ أَصَابَهَا وَابِلُّ فَعَالَتَ أُكُلَهَا ضِعْفَيْنِ فَإِن لَمْ يُصِبْهَا وَابِلُ فَطَلُّ ۗ وَٱللَّهُ بِمَاتَعْمَلُونَ بَصِيرُ اللَّهُ اللَّهُ اللَّهُ مُصِبْهَا وَابِلُ فَطَلُّ ۗ وَٱللَّهُ بِمَاتَعْمَلُونَ بَصِيرُ اللَّهُ اللَّهُ

Artinya 'Dan perumpamaan orang-orang yang membelanjakan hartanya karena mencari keridhaan Allah dan untuk keteguhan jiwa mereka, seperti sebuah kebun yang terletak di dataran tinggi yang disiram oleh hujan lebat, maka kebun itu menghasilkan buahnya dua kali lipat. Jika hujan lebat tidak menyiraminya, maka hujan gerimis (pun memadai). Dan Allah Maha Melihat apa yang kamu perbuat." (Qs. Al-Baqarah : 265)

Dataran tinggi yang terdapat dalam ayat diatas memiliki hikmah yang penting, karena tumbuhan yang ditanam di atas tanah yang lebih tinggi dari air tanah, maka pepohonannya lebih banyak tumbuh dan akarnya tumbuh lebih dalam dan panjang ke dalam tanah. Oleh sebab itu, berlipat ganda jumlah pembuluh kapiler yang menghisap ke dalam tanah, maka semakin banyak mineral yang dihisapnya untuk menyuburkan batang dan daun-daunnya secara umum.

Gambar 2. 10 Tumbuhan Tingkat Tinggi dengan Bagiannya Sumber: Ensiklopedia Bebas, 2021

Tumbuhan yang ditanam di tanah yang sejajar dengan air tanah, maka ia tidak akan mendapat peredaran udara yang mencukupi dilahan pertanian. Hal tersebut dapat menyebabkan banyak akarnya yang mati sehingga melemahkan pepohonan dan tidak mampu menyebar dengan bebas di dalam tanah.

Telah terbukti ketika air tanah meninggi, maka penyakit-penyakit akan timbul pada tumbuhan. Kemudian daun-daunnya menjadi kekuning-kuningan, dan kadang-kadang tumbuhan tersebut mati secara tiba-tiba. Jika air tanah lebih tinggi dari permukaan bumi, atau dekat darinya, maka tumbuhan tersebut akan mati dalam waktu dua bulan.

BAB III SPERMATOPHYTA

A. TUMBUHAN SPERMATHOPHYTA

Tumbuhan berbiji atau sering disebut dengan spermatophyta merupakan tumbuhan yang paling banyak di kenal oleh masyarakat umum. Karena kebanyakan tumbuhan yang termasuk ke dalam kelompok tumbuhan spermatophyta ini, sangat bersentuhan langsung dengan kepentingan hidup manusia. Banyak tanaman yang dibudidayakan termasuk kelompok spermatophyta.

Gambar 3. 1 Contoh Spermatophyta Sumber: Ensiklopedi Bebas, 2021

Spermatophyta berasal dari kata sperma yang berarti biji dan phyton yang berarti tumuhan. Biji adalah tumbuhan yang berfungsi sebagai alat reproduksi. Oleh karena perkembangbiakannya dengan menggunakan biji, maka secara sederhana tumbuhan yang demikian dimasukan kedalam tumbuhan berbiji. Kadang-kadang biji dari tumbuhan kelompok ini dapat dimanfaatkan sebagai sumber pangan. Jadi di samping sebagai alat reproduksi juga sebagai sumber pangan.

Tumbuhan yang termasuk kedalam kelompok spermatophyta ini secara morfologi, sudah dapat dibedakan antara akar, batang, daun, sesuai dengan pengertian sehari-hari. Artinya bahwa masyarakat secara umum, yang dimaksud dengan akar, batang, dan daun adalah akar, batang dan daun yang ada dan nampak dimiliki oleh tumbuhan berbiji. Karena memiliki akar, batang dan daun serta menghasilkan biji maka golongan tumbuhan ini disebut juga dengan cormophyta berbiji. Nama lain untuk sebutan dari tumbuhan berbiji ini adalah Anthophyta (tumbuhan berbunga), Phanerogamae (tumbuhan yang perkawinannya terlihat), Embriophyta sifonogama (tumbuhan yang berlembaga dan perkawinannya melalui pembuluh).

Materi Spermatophyta merupakan materi yang bahan pelajarannya adadi alam sekitar. Sebagaimana dijelaskan dalam Al-Qur'an surah Thaha ayat 53 yang berbunyi:

Artinya: "Yang telah menjadikan bagimu bumi sebagai hamparan dan yang telah menjadikan bagimu di bumi itu jalan-jalan, dan menurunkan dari langit air hujan. Maka Kami tumbuhkan dengan air hujan itu berjenis-jenis dari tumbuhtumbuhan yang bermacam-macam". (Q.S.Thaha/20:53) (Ath Thabari, 2009:849).

Allah SWT menurunkan hujan dari langit, ini merupakan pemberitahuan dari Allah atas nikmat-Nya, yaitu menurunkan hujan dari langit. Lalu Allah tumbuhakan tumbuh-tumbuhan yang bermacam-macam yaitu berlainan warna, rupa dan rasa. (Ath Thabari, 2009 : 849) Hal ini bahwa yang Allah ciptakan di bumi khususnya lingkungan sekitar dapat dimanfaatkan untuk dipelajari.

B. KARAKTERISTIK SPERMATOPHYTA

Menurut Nyoman Wijana (2014;129), ciri-ciri dari spermatophyta adalah sebagai berikut :

- a. Struktur perkembangbiakan yang khas adalah biji yang dihasilkan bunga atau pun runjung. Setiap biji mengandung bakal tumbuhan, yaitu embrio yang terbentuk oleh suatu prores reproduksi seksual. Sesudah bertunas embrio ini tumbuh menjadi tumbuhan dewasa.
- b. Sperma atau sel kelamin jantan menuju ke sel telur atau sel kelamin betina melalui tabung serbuk sari hanya terdapat pada tumbuhan berbiji.
- c. Tumbuhan biji mempunyai jaringan pembuluh yang rumit. Jaringan ini merupakan saluran menghantar untuk mengangkut air, mineral, makanan dan bahanbahan lain.
- d. Pada hakikatnya tumbuhan berbiji memiiki pigmen hijau (klorofil) yang penting untuk fotosintesis yaitu suatu proses dasar pembuatan makanan pada tumbuhan.

Menurut Nyoman Wijana (2014;128-129), karakter dari tumbuhan biji dilihat dari akar, batang, dan daun dapat diringkas seperti pada tabel di bawah ini.

Tabel 3. 1 Karakter Tumbuhan Berbiji (spermatophyta)

No.	Organ	Ciri
		Morfologi: akar serabut, akar tunggang
		Anatomi: lapisan luar (epidermis) ,kulit dalam
1.	Akar	(kortex),

1 1		ollindon associ (etalo) (esslera de a alsle era)
		silinder pusat (stele) (xylem dan phloem)
		Fungsi : alat untuk menyerap air dan mineral dari
		dalam tanah serta untuk menancapkan diri ketanah.
		Bentuk tubuh: tegak, condong, berbaring dan
		merayap.
2.	Batang	Anatomi: epidermis, korteks, stele (xylem dan
		floem)
		Fungsi : penghubung akar dan daun sehingga
		batang
		dapat memtransportasikan air dan garam
		mineral dariakar ke daun atau sebaliknya.
		Morfologi tulang daun yang bervariasi (palminervis,
		peninervis, rektinervis, curvinervis).
		Anatomi : epidermis mesofil (jaringan tiang dan
3.	Daun	jaringan bunga karang), bunga karang ada
		ylem danfloem.
		Fungsi: tempat berlangsungnya fotosintesis.
		Morfologi: alat kelamin jantan (benang sari)
4.	Bunga	penghasilsperma, dan alat kelamin betina (putik)
		penghasil
		ovum.

Sumber: Ensiklopedia Bebas, 2021

C. KLASIFIKASI SPERMATOPHYTA

Tumbuhan berbiji (spermatophyta) biasanya dibedakan menjadi dua kelompok yaitu tumbuhan berbiji terbuka (gymnosperma) dan tumbuhan berbiji tertutup (angiosperma) (Moertolo dkk, 1999;78-79).

Gambar 3. 2 Tanaman Kacang Mete & Biji Belinjo Sumber: Ensiklopedia Bebas, 2021

D.GYMNOSPERMAE

Istilah "tumbuhan berbiji terbuka" merupakan terjemahan dari"gimnosperma" yang berarti "biji telanjang. Gymnosperma mempunyai bakal biji yang terbuka bebas tanpa pelindung baik sebelum maupun sesudah pembuahan

(fertilisasi).

Gambar 3. 3 Gymnospermae Sumber: Ensiklopedia Bebas, 2021

Bakal biji merupakan salah satu bukti bahwa gimnosperma lebih berkembang dari pada tumbuhan paku, akan tetapi belum semaju angiosperma yang bakal bijinya terlindung dan terbungkus.

Kelompok tumbuhan ini mempunyai habitat yang

terbatas. Demikian juga kemampuan mereka untuk berkembangbiak secara vegetatif sangat berkurang atau terbatas. Kelompok tumbuhan ini dikenal pula mengalami pertumbuhan yang sangat lambat.

Gambar 3. 4 Kelas *Cycadophyta* Sumber: Ensiklopedia Bebas, 2021

Kelas Cycadophyta Jenis tumbuhan ini memiliki susunan daun majemuk dan bentuk batang menyerupai pohon palem dan batangnya tidak bercabang. Tumbuhan dari kelas ini bersifat dioecious (rumah dua), artinya memiliki strobilus jantan saja atau strobilus betina saja.

Contoh: Zamia furfuracea, Cycas revoluta, dan Cycas rumphii (pakis haji).

Gambar 3. 5 Kelas *Gnetophyta* Sumber: Ensiklopedia Bebas, 2021

Kelas Gnetophyta adalah Anggota kelompok berupa perdu, liana (tumbuhan pemanjat) dan pohon. Daun berbentuk oval atau lonjong dan duduk daun berhadapan dengan bentuk urat daun menyirip. Pada xilem terdapat trakea dan floem tidak memiliki sel pengiring. Strobilus tidak berbentuk kerucut, tapi sudah dapatdisebut bunga.

Ciri khas tumbuhan ini adalah memiliki batang lurus, bercabang-cabang atau tidak. Bunga berkelamintuggal, yaitu strobilus jantan dan betina terdapat dalam satu pohon. Bunga tersusun majemuk. Contoh terkenal dari kelompok ini adalah *Gnetum gnemon* (melinjo).

Gambar 3. 6 Kelas Coniferiphyta

Sumber: Ensiklopedia Bebas, 2021

Kelas Coniferophyta berarti tumbuhan pembawa kerucut, karena alat perkembang biakan jantan dan betina berupa stribilus berbentuk kerucut. Tumbuhan yang termasuk kelompok ini memimiliki ciri selalu hijau sepanjang tahun (evergreen).

Tumbuhan biji terbuka ini juga memiliki peran yang pentig bagi kehidupan penindustrian untuk industri kertas dan korek api digunakan tumbuhan pinus dan dammar. Pinus dan dammar juga digunakan sebagai bahan cat dan pernis. Di samping itu juga digunakan unutuk tanaman hias seperti Araucaria, Thuja, dan Cupressus (Wijana, 2014;132). Contohnya seperti Damar.

Gambar 3. 7 Kelas Gyngophyta

Sumber: Ensiklopedia Bebas, 2021

Kelas Gyngophyta merupakan tumbuhan asli dari daratan Cina. Tinggi pohon dapat mencapai 30 meter, daun berbentuk kipasdan mudah gugur. Serbuk sari dan bakal biji dihasilkan oleh individu yang berlainan. Anggota kelompok ini hanya ada satu spesies yaitu Ginkgo biloba.

Kelompok tumbuhan ini mempunyai habitat yang terbatas. Demikian juga kemampuan mereka untuk berkembangbiak secara vegetatif sangat berkurang atau terbatas. Kelompok tumbuhan ini dikenal pula mengalami pertumbuhan yang sangat lambat (Wijana, 2014;132).

Susuna tubuh tanaman Gymnospermae adalah Pada dasarnya perakaran gymnosperma ialah perakaran tunggang. Kadang-kadang pada akar didapatkan mikoriza (pinus) atau bintil-bintil (cycas).

Umumnya tumbuhan ini mempunyai batang yang tegak menjulang ke udara. Jenis –jenis tertentu mempunyai batang berbaring (juniperus horizontalis) atau batangnya menjadi umbi di dalam tanah (zamia). Batangnya umumnya bercabang (pinus, cedrus), tetapi ada pula yang tanpa cabang (cycas, bowenia) (Moertolo dkk, 1999;78-79).

Beberapa jenis (ginkgo, pinus) mempunyai percabangan yang berbeda. Sebagian tumbuhan berbiji terbuka mempunyai mikrofil, sebagian lain mempunyai megafil (Ginkgo, Gnetum). Beberapa jenis tumbuhan mempunyai daun letak berhadapan atau bersilang (Gnetum, Ephedra, welwitschia) (Moertolo dkk, 1999;78-79).

E. Angiospermae

Tumbuhan berbiji tertutup (*Angiospermae*) berasal dari kata angio = bunga dan spermae = tumbuhan berbiji.

Tumbuhan ini memiliki bunga yang sesungguhnya yang terdiri dari mahkota, kelopak bunga, putik, dan benang dari. *Angiospermae* adalah tumbuhan yang bijinya terdapat di dalambakal buah.

Gambar 3. 8 Angiospermae

Sumber: Ensiklopedia Bebas, 2021

Perawakan mereka bervariasi. Ada yang berupa tumbuhan basah (herba), semak, atau pohon dengan pertumbuhan sekunder yang kuat. Bila pada gimnosperma umumnya hanya dikenal dua bentuk pohon (bentuk palem

atau bentuk cemara dengan mahkota daun berbentuk kerucut), pada angiosperma arsitekturnya sangat bervariasi, walaupun dasar percabangannya hanya dua macam, yaitu monopodial atau simpodial (model: kelapa, kamboja, bamboo, ketapang, dll) (Moertolodkk, 1999;88).

Banyak diantara jenis tumbuhan ini yang berbunga dan berbuah berulang kali, polikarpa. Beberapa jenis tumbuhan hanya dapat berbunga dan berbuah sekali, monokarpa. Sepanjang hidupnya, walaupun panjang hidupnya berbeda-beda, yaitu dapat semusim atau setahun (jagung, kedelai), dua tahun (bit), beberapa tahun (sagu) (Moertolo dkk, 1999;88).

Menurut Nyoman Wijana (2014;133), Ciri-ciri tumbuhan Angiospermae adalah sebagai berikut :

- a. Mempunyai bunga yang sesungguhnya.
- b. Daun yang pipih, lebar dengan susunan tulang yang beranekaragam.
- c. Bakal biji atau biji tidak tampak karena terbungkus dalamsuatu badan yang berasal dari daun buah, yaitu putik.
- d. Selisih waktu yang relatif pendek antara penyerbukan danpembuahan.
- e. Mengalami pembuahan ganda.

Gambar 3. 9 Oryza sativa

Sumber: Ensiklopedia Bebas, 2021

F. MONOKOTIL DAN DIKOTIL

a) Tumbuhan berkeping biji satu (Monocotyledonae)

Umumnya monokotil memiliki biji dengan satu kotiledon (daun biji), daun-daun foliagennya sempit, dengan pembuluh- pembuluh parallel, komponen-komponen bunga berbentuk kelipatan tiga, sepal (kelopak) dan petal (mahkota) tidak dapat dibedakan sehingga dikenal sebagai tepal.

Gambar 3. 10 Tumbuhan Berkeping satu Sumber: Ensiklopedia Bebas, 2021

Jaringan-jaringan vaskular (pengangkut) bertebaran dalam berkas acak di sepanjang batang, dan karena tidak

memiliki kambium batang (sel-sel penyekat aktif yang menghasilkan kayu) maka sebagian besar monokotil bersifat herba/menema.

Tumbuhan berkeping biji satu (Monocotyledonae) denganciri khas antara lain:

- a) Mempunyai biji berkeping satu,
- b) Berakar serabut,
- c) Batangnya dari pangkal sampai ujung hampir sama besarnya,
- d) Tidak bercabang
- e) Akar dan batang tidak berkambium. Sebagai contoh misalnya: *Oryza sativa* (padi), *Zea mays* (jagung), *Musa paradisiaca* (pisang), *Coco nucifera* (kelapa).

Tumbuhan *Monocotyledonae* terdiri atas beberapa suku (Famili), antara lain Gramineae, Palmae, Musaceae, Orchidaceae, dan Zingiberaceae. (Tjitrosoepomo, 2010).

1) Suku rumput-rumputan (*Graminae*), misalnya : padi, jagung, bambu, rumput, tebu, gandum.

Gambar 3. 11 Suku *Graminae* Sumber: Ensiklopedia Bebas, 2021

2) Suku pinang-pinangan (*Palmae*), misalnya : kelapa, rotan, kelapa sawit, aren salak.

Gambar 3. 12 Suku *Palmae* Sumber: Ensiklopedia Bebas, 2021

3) Suku pisang-pisangan (*Musaseae*), misalnya: pisang ambon, pisang kipas, pisang hias.

Gambar 3. 13 Suku Musaseae

Sumber: Ensiklopedia Bebas, 2021

4) Suku anggrek-anggrekan (*Orcidaceae*), misalnya: anggrek bulan, anggrek macan, anggrek yang tumbuh di hutan Irian Jaya.

Gambar 3. 14 Suku Orcidaceae

5) Suku jahe-jahean (*Zingiberaceae*), misalnya : kunyit, jahe, lengkuas

Gambar 3. 15 Jahe

Sumber: Ensiklopedia Bebas, 2021

b) Tumbuhan berkeping biji dua (Dicotyledonae)

Tumbuhan berkeping biji dua (*Dicotyledonae*) dengan cirikhas antara lain : (Tjitrosoepomo, 2001)

- a) Mempunyai biji jumlah kepingannya dua
- b) Berakar tunggang
- c) Batang dari pangkal besar makin keatas makin kecil
- d) Batang bercabang
- e) Akar dan batang berkambium. Sebagai contoh misalnya: *Casia siamea* (johar), *Arachis hypogea* (kacang tanah), *Psidium guajava* (jambu biji), *Ficis elastica* (karet).

Tumbuahn *Dicotyledonae* terdiri atas beberapa suku (family), antara lain suku getah-getahan, kacang-kacangan, terung-terungan, jambu-jambuan, dan sembungsembungan. (Tjitrisoepomo, 2010).

Gambar 3. 16 Dycotiledonae Sumber: Ensiklopedia Bebas, 2021

1) Suku getah-getahan (*Euhorbiaceae*), misalnya: singkong, jarak, karet, puring.

Gambar 3. 17 Ubi Kayu Sumber: Ensiklopedia Bebas, 2021

2) Suku kacang-kacangan (*Papilionaceae*), misalnya: putri malu, petai, Flamboyan, kedelai, kacang tanah.

Gambar 3. 18 Kacang Tanah Sumber: Ensiklopedia Bebas, 2021

3) Suku terung-terungan (*Solanaceae*), misalnya : kentang, terong, tomat, cabai, kecubung

Gambar 3. 19 Terong

Sumber: Ensiklopedia Bebas, 2021

4) Suku jambu-jambuan (*Mirtaceae*), misalnya : cengking, jambu biji, jambu air, jambu monyet, jamblang.

Gambar 3. 20 Jambu

5) Suku sembung-sembungan (*Compositae*), misalnya :bunga matahari, bungan dahlia, bunga krisan.

Gambar 3. 21 Bunga Matahari Sumber: Ensiklopedia Bebas, 2021

Tumbuhan biji berkeping lembaga satu (Monocotyledoneae) dan tumbuhan biji berkeping lembaga dua (Dicotiledoneae) memiliki perbedaan sebagai berikut; perbedaan tumbuhan Monocotyledoneae dan Dicotyledoneae

Keping Biji	Tulang Daun	Batang	Bunga	Akar
Monocotyledoneae		College Colleg	L.0	
			*	785
Satu kotiledon	Tulang daun sejajar atau melengkung	Berkas pengangkut tersebar	Bagian perhiasan bunga hanya terdiri dari 3 atau kelipatannya	Sistem akar serabut
Dicotyledoneae			PA-	The
	No.	(A)		1
Dua kotiledon	Tulang daun menyirip atau menjari	Berkas pengangkut tersusun dalam suatu lingkaran	Bagian perhiasan bunga terdiri dari 2, 4, 5, atau kelipatannya	Sistem akar tunggang

Susunan tubuh dari segi perakaran yaitu pada tumbuhan berbiji tertutup, akar primer, yang merupakan hasil perkembangan dari akar lembaga, dapat berhenti berkembang tetapi diikuti dengan pembentukan beberapa akar yang lain pada pangkal batang tumbuhan dikotil pada dasarnya mempunyai perakaran tunggang, walaupun banyak juga yang mempunyai perakaran serabut terutama pada tumbuhan dikotil yang tidak berasal dari biji (Moertolo dkk, 1999;88).

Akar pada dasarnya berfungsi menyerap air beserta mineral terlarut dan memperkuat tegaknya batang, karena tumbuhan angiosperma sangat bervariasi, dapat pula mengubah atau mengembangkan fungsinya (penyimpanan makanan: singkong, wortel; akar nafas: bakau, haustorium, benalu; akar reproduksi: sukun, dsb). Penambahan fungsi tersebut menyebabkan perubahan bentuk dan susunannya (Moertolo dkk, 1999;88).

Gambar 3. 22 Akar Dycotil

Sumber: Ensiklopedia Bebas, 2021

Pada bagian batang utama ialah mendukung bagian-bagian tumbuhan di atas tanah terutama daun, dan sebagai penghubung antara akar dan daun. Batang, terutama batang muda atau batang lunak, mempunyai jaringan pengangkut (xylem, floem) terhimpun dalam berkas-berkas yang tersusun kolateral (Moertolo dkk, 1999;89).

Gambar 3. 23 Contoh Penampang Batang

Sumber: Ensiklopedia Bebas, 2021

Pada tumbuhan dikotil, di dalam berkas pengangkut di antara xylem dan floem terdapat jaringan, meristem yaitu kambium. Disebut berkas pengangkut kolateral terbuka. Pada monokotil kambium tidak ditemukan (atau bila ada, misalnya pada beberapa jenis Liliaceae, tidak terdapat di dalam berkas pengangkut), sehingga di dalam berkas pengangkut xylem berbatasan langsung dengan floem, disebut berkas pengangkut

kolateral tertutup (Moertolo dkk, 1999;89).

Daun pada angiosperma dikenal empat macam susunan tulang daun yaitu menyirip, menjari, sejajar, dan melengkung. Susunan tulang daun pada dikotil umumnya ialah menyirip atau menjari, sedangkan tulang daun melengkung dan sejajar umumnya didapatkan pada monokotil, walaupun banyak juga monokotil yang mempunyai tulang daun menyirip atau menjari (Moertolo dkk, 1999;90).

Gambar 3. 24 Ilustrasi Daun

Sumber: Ensiklopedia Bebas, 2021

G. HABITAT TUMBUHAN SPERMATOPHYTA

Habitat tumbuhan berbiji terbuka atau *Gymnosperma*e ini hidup di mana-mana hampir di seluruh permukaan bumi

ini. Mulai dari daerah tropis hingga daerah kutub dan dari daerah yang cukup air hingga daerah kering.

Gambar 3. 25 Contoh Habitat Tumbuhan Sumber: Ensiklopedia Bebas, 2021

Habitat tumbuhan berbiji tertutup atau angiosperma, terdapat di lingkungan yang luas, mereka dapat ditemukan sebagai tumbuhan yang hidup di tanah yang lembab maupun kering. Tumbuhan ini dapat ditemukan pula sebagai tumbuhan air, bahkan di daerah pasang surut, mereka dapat berupa tumbuhan epifit bahkan parasit (Moertolo dkk, 1999;88).

H. REPRODUKSI

Reproduksi Gymnospermae untuk Serbuk sari terdapat pada badan yang di sebut strobilus. Ada dua macam strobilus yaitu strobilus jantan dan strobilus betina. Strobilus jantan menghasilkan spermatozoid, dan strobilus betina menghasilkan ovum. Apabila strobilus jantan dan betina terdapat pada satu pohon di sebut dengan tumbuhan berbunga satu (Wijana, 2014;130).

Siklus Hidup Angiospermae kecambah ovul di dim kantung ovary sporofit dewasa polen Sel yg akan embrio Tahap diploid berkembang endosperma jadi megaspora Meiosis Meiosis Pembuahan ganda butir polen berkembang mikrospora menjadi tabung polen tabung polen butir polen sperma Tahap haploid mitosis sel tempat endosperma terbentuk tabung polen masuk ke ovul irisan ovu Waktu antara penyerbukan & pembuahan relatif sinakat

Gambar 3. 26 Siklus Reproduksi Tumbuhan

Contoh tumbuhan melinjo (*Gnetum gnemon*). Apabila strobilus jantan dan betina terdapat pada pohon yang berbeda di sebut dengan tumbuhan berumah dua. Contoh pakis haji (*Cicas rumphii*) dan cemara gunung (*Phinus merkusii*). Pembuahan pada tumbuhan Gymnospermae merupakan fertilisasi tunggal dengan selang waktu antara penyerbukan dan pembuahan umumnya berlangsung cukup lama (Wijana, 2014;130).

Reproduksi Angiospermae dapat berkembangbiak secara generatif dan vigetatif. Perkembangbiakan secraa generatif pada angiospermae disebut dengan pembuahan ganda. Pembuahan ganda artinya bahwa terjadi dua kali proses pembuahan yaitu antara sperma 1 dengan ovum menghasilkan zigot (2n) dan sperma 2 dengan inti kandung lembaga sekunder membentuk endosperma (3n). Untuk menjelaskan pembuhan ganda ini dapat dilakukan secara bertahap yakni pada serbuk sari dan pada putik (Wijana, 2014;133).

Perkembangan serbuk sari yang jatuh di kepala putik terdiri atas satu sel dengan dua dinding pembungkus yaitu eksin (selaput luar) dan intin (selaput dalam). Eksin pecah kemudian intinya tumbuh memanjang membentuk buluh serbuk sari. Buluh serbuk sari tumbuh ke ruang bakal biji (Wijana, 2014; 134). Bersamaan dengan ini intisel serbuk sari membelah menjadi 2 yang besar dengan posisi di depan disebut dengan inti vegetative yang berfungsi sebagai

penunjuk jalan, dan yang kecil di posisi di belakang disebut dengan inti generatif. Inti generatif membelah lagi menjadi dua inti generatif atau spermatozoid, yaitu inti generatif 1 (sperma 1) dan inti generatif 2 (sperma 2) (Wijana, 2014;134).

Putik pada tanaman tersebut seiring dengan perkembangan serbuk sari dalam buluh serbuk sari, di dalam bakal biii sel induk ruang megaspora (megasporosit/makrosporosit) membelah secara meiosis menjadi 4 sel. Tiga di antaranya mati dan yang satu tumbuh menjadi satu sel megaspora/makrospora (inti kandung lembagarimer) (Wijana, 2014;134).

Inti sel megaspora ini selanjutnya membelah secara mitosis sebanyak tiga kali, sehingga terbentuk 8 inti. Ke-8 inti tersebut masing-masing terbungkus membran sehingga menjadi sel yang terpisah. Karena itu sel-sel di dalam bakal biji disebut multigamet (Wijana, 2014;134).

Langkah berikutnya, 8 sel tersebut membentuk formasi di dalam bakal biji. Tiga sel menempatkan diri di bagian atas bakal biji disebut antipoda. Yang dibagian bawah dekat mikrofil, 3 sel menempatkan diri berdekatan. Yang tengah adalah ovum sedang yang mengapitnya kiri dan kanan adalah sinergid. Dua sel yang tersisa bergerak ke tengah bakal biji dan bersatu membentuk inti kandung lembaga sekunder sehingga menjadi sel yang diploid (2n) (Wijana, 2014;134).

Apabila terjadi pembuahan inti generatif 1 (sperma 1)

membuahi ovum membentuk zigot, sedangkan inti generatif 2 (sperma 2) membuahi inti kandung lembaga sekunder menghasilkan endosperma (3n). endosperma ini selanjutnya berperan sebgai cadangan makanan untuk zigot. Inilah yang dinamakan pembuahan ganda. Sementara itu inti vegatatif akan mati setelah sampai di bakal biji (Wijana, 2014;134).

Ovul dan produksi sel telur. Walaupun segelintir spesies tumbuhan tak berbiji bersifat heterosfor, tumbuhan berbiji bersifat unik karena mempertahankan megasporangium megaspora di dalam sporofit induk. Selapis jaringan sporofit yang disebut integument membungkus dan melindungi megasporangium. Megasporangia gimnosperma dikelilingi oleh satu integumen, sementara megasporangia angiosperma biasanya memiliki dua integumen.

Struktur keseluruhan-megasporangium, megaspore, dan integumennya disebut ovul (ovule•). Di dalam setiap ovul (dari kata Latin ovulum, telur kecil), gametofit betina berkembang dari megaspora dan menghasilkan satu sel telur atau lebih.

Polen dan produksi sperma yaitu Mikrospora berkembang menjadi serbuk polen (pollen grain), atau serbuk sari) yang terdiri dari sebuah gametofit jantan yang diselubungi oleh dinding polen. Dinding polen yang tangguh, yang mengandung polimer sporopolenin, melindungi serbuk polen ketika ditranspor dari tumbuhan induk melalui angin.

Transfer polen ke bagian tumbuhan berbiji yang mengandung ovul disebut polinasi (pollination). Jika serbuk polen bergeminasi (mulai tumbuh) atau berkecambah, tabung polen akan muncul dan melepaskan sperma ke dalam gametofit betina di dalam ovul.

I. KANDUNGAN DAN MANFAAT TANAMAN

Spermatophyta mengandung jaringan pembuluh angkut yang disebut xilem dan floem. Jika xilem terakumulasi dalam jumlah besar, hasilnya dikenal sebagai kayu, yang khas pada pohon dan semat.

Gambar 3. 27 Jarak Pagar

Peridemis adalah lapisan yang menutupi floem sekunder dan terdiri dari sel-sel yang terintegrasi di bawah lapisan luar tanah. Peridermis ini bersama dengan floesm membentuk korteks.

Benih spermatophyta sendiri terdiri dari 3 lapisan dasar yaitu embrio, yang muncul sebagai akibat dari penyatuan serbuk sari dan ovula dan yang sesuai dengan sporofit muda, jaringan bergizi yang menyediakan makanan bagi embrio melalui daun ynag disebut kotiledon, dan penutup, saat mendeteksi kondisi air dan cahaya yang memadai, jaringan ini dapat memicu perkecambahan tanaman, serbuk sari spermatopyta disebabkan oleh angina atau banyak binatang yang memfasilitasi perbanyakan tanaman dan keanekaragaman genetiknya.

Manfaat spermatophyta, tiga perempat dari tumbuhan adalah tumbuhan berbunga atau angiospermae, dan menyediakan makanan bagi manusia juga banyak organisme hidup lainnya. Gymnospermae, juga menyediakan oksigen yang dilepaskan sebagai hasil fotosintetis. Hampir setiap bagian dari spermatophyta dapat dimanfaatkan manusia untuk kebutuhan sehari-hari, contohnya pada:

a. Berbagai jenis bunga digunakan untuk dekorasi, ucapan adat danagama, serta bahan pembuatan kosmetik.

Gambar 3. 28 Bunga Tanaman

Sumber: Ensiklopedia Bebas, 2021

 Kumis kucing, jati, mahoni, dan pinus sebagai peneduh, penyimpanan air, penyerapan karbondioksida, dan sumberoksigen.

Gambar 3. 29 Jati

- c. Sebagai bahan dasar pakaian, contohnya pada rami dan kapas. Untuk bahan bangunan yaitu jati, meranti, dan sana keling.
- d. Sebagai tanaman hias yaitu cempaka, mawar, kembang sepatu, kaktus, bunga matahari, bunga sedap malam, bunga gladiol, anggrek, dan yang lainnya.

Gambar 3. 30 Mawar

Sumber: Ensiklopedia, Bebas

e. Sebagai bahan bumbu dapur yaitu kemiri, buah-buahan, seperti pisang, mangga, jambu, anggur, jeruk, nangka, rambutan, pepaya dan lainya.

Gambar 3. 31 Kemiri Sumber: Ensiklopedia Bebas, 2021

f. Sumber protein yang berasal dari tumbuhan, seperti kacang kedelai, kacang tanah, kacang merah.

Gambar 3. 32 Kedelai Sumber: Ensiklopedia Bebas, 2021

g. Sebagai bahan baku industry fumiture atau alat-alat rumah tangga, misalnya bamboo, rotan, kayu jati, kelapa, kayu meranti,dan lain-lain.

Gambar 3. 33 Bambu

Sumber: Ensiklopedia Bebas, 2021

 h. Bahan untuk obat, seperti mahkota dewa, buah merah, jambu biji, daun jarak, mengkudu, sambiloto, kumis kucing dan lain- lain.

Gambar 3. 34 Mahkota Dewa

 Sumber karbohidrat, misalnya padi, gandum, singkong, ubi jalar, kentang, dan lain-lain.

Gambar 3. 35 Padi

Sumber: Ensiklopedia Bebas, 2021

j. Ribuan zat-zat kimia industri berasal dari tumbuhan, seperti terpentin dan tanin.

Gambar 3. 36 Tumbuhan dengan Kandungan Tanin

BAB IV

ANGIOSPERMAE

A. LATAR BELAKANG

Di dunia ini terdapat lebih dari 280.000 spesies tumbuhan, belum termasuk sekitar 100.000 spesies jamur, yang kesemuanya telah di identifikasi dan telah diberi nama sesuai dengan peraturan yang berlaku.

ke dalam Ada pendapat yang mengelompokan tumbuhan karena kemiripannya dan ada juga vang tersendiri iamur mengelompokkannya karena tidak berklorofil. Dari keseluruhan tumbuhan yang tersebar dimuka bumi, sekitar 10 % diantaranya berada di Indonesia. Tumbuhan yangtingkat perkembangannya lebih tinggi, yaitu tumbuhan tingkat tinggi (Phanerogamae), dimasukkan dalam satu division spermatophyta yang terbagi atas Gymnospermae dan Angiospermae.

Angiospermae terbagi lagi atas *Monocotyledonea* dan *Dicotyledone*. Manusia telah memanfaatkan tumbuhan sebagai tanaman sumber bahan makanan (tanama pangan, tanaman perkebunan, tanaman sayuran, dan tanaman buah-buahan), sumber bahan obat, sumber bahan rempah/bumbu, sumber tanaman hias, sumber bahan kerajinan/industry, sumber bahan sandang, dan sumber bahan papan.

Gambar 4. 1 Angiosperma Spesies Sumber: Ensiklopedia Bebas, 2021

Agar spesies tumbuhan tersebut dapat dikenali karena kaitannya dengan perannya dalam bidang produksi tanaman secara efektif dan produktif, maka perlu dikaji pengetahuan tentangg klasifikasi tumbuhan, sehinga semua tumbuhan dapat dikelompokkan secara taksonomi berdasarkan ciri-ciri yang spesifik. Angiospermae lebih spesifiknya mengenai habitat, kandungan dan manfaat tumbuhan angiospermae.

B. ANGIOSPERMAE

Angiospermae berasal dari dua kata yaitu angios yang mempunyai arti tertutup sedangkan sepermae yang mempunyai arti biji. Sehingga dapat kita simpulkan bahwa angiospermae merupakan golongan tumbuhan yang dapat menghasilkan biji. Serta dilindungi dengan karpel atau daun buahnya serta pembuahannya ganda. Memiliki alat perkawinan yang berupa bunga atau disebut juga Anthophyta. Angiosperma juga mempunyai nama lain yaitu Magnoliophyta.

Gambar 4. 2 Siklus Angiospermae Sumber: Ensiklopedia Bebas, 2021

Sedang ciri utama yang dimiliki angiospermae adalah bakal biji yang berada di dalam megasporofil yang kemudian termodifikasi menjadi daun buah, sehingga membuat serbuk sari harus menembus jaringan dari daun buah supaya dapat mencapai bakal biji dan juga membuahi ovum. Secara umum daun buah mempunyai daging tebal, seperti mangga, semangka dan jeruk. Sedangkan pada kacang-kacangan antara lain kacang panjang, kapri, buncis, yang daun buahnya berupa kulit polng yang tipis.

Daun buahnya berfungsi sebagai pelindung dari biji supaya tidak kekeringan disaat mengalami dormansi. Sedang tubuh dari angiospermae mempunyai bentuk serta ukuran yangbervariasi.

Gambar 4. 3 Buah Angiospermae Sumber: Ensiklopedia Bebas, 2021

Ada yang berupa tumbuhan dengan bunga kecil yang hanya berdiameter 2 mm. Juga ada pohon raksasa yang mempunyai ketinggian lebih dari 100 m, dan tubuhnya mempunyai bagian diantaranya akar, batang, daun, serta bunga. Akar dari angiospermae mempunyai bentuk serabut ataupun tunggang. Sedangkan batangnya ada juga yang memiliki kambium dan ada pula yang tidak berkambium.

Nymphaea alba

Gambar 4. 4Spesies Berbunga

Hampir semua tumbuhan angiospermae memiliki bunga. Jika dibandingkan dengan yang lainnya tumbuhan angiospermae memiliki jenis spesies paling banyak yaitu lebih kurang sekitar 300.000 spesies.

Tumbuhan angiospermae sangat penting bagi makhluk hidup baik manusia maupun hewan karena tumbuhan ini kerap dijadikan sebagai sumber makanan. Berikut ini beberapa ciri-ciri angiospermae:

a. Mempunyai akar tunggang dan serabut, Contoh tumbuhan angiospermae yang berakar tunggang adalah pohon mangga, sedangkan tumbuhan berakar serabut yang termasuk angiospermae ialah anggrek.

Gambar 4. 5 Akar Mangga

b. Angiospermae merupakan tumbuhan berbiji yang mengalami pembuahan ganda. Setelah mengalami pembuahan bakal biji akan berubah menjadi bakal biji yang sesungguhnya. Kemudian biji akan berubah menjadi bakal buah, yang kemudian menjadi buah. Buah kemudian mulai berkembang saat terjadi penyerbukan Grameds.

Gambar 4. 6 Siklus Pembuahan Ganda

c. Angiospermae mempunyai buah berdaging tebal. Daun buah yaitu karpelum atau kerpela merupakan alat penyusun kelamin betina (putik) pada bunga yang dimiliki tumbuhan angiospermae. Setangkai putik dapat tersusun dari satu daun buah atau beberapa daun buah yang melekat satu sama lain.

Gambar 4. 7 Buah

Sumber: Ensiklopedia Bebas, 2021

d. Angiospermae memiliki struktur tubuh yang lengkap, yaitu terdiri dari akar, batang, daun, dan bunga. Ukuran batangnya sendiri berbeda-beda, ada yang berukuran sangat kecil seperti Wolfia (genus tanaman berbunga terkecil di dunia), dan ada yang berukuran sangat besar seperti pada pohon gom yang biasanya dimanfaatkan getahnya.

Gambar 4. 8 Struktur Tubuh Sumber: Ensiklopedia Bebas, 2021

e. Bentuk tulang daunnya bervariasi, Ada berbagai macam variasi bentuk tulang daun dalam tumbuhan angiospermae yaitu bentuk menyirip, lurus, dan menjari. Contoh tumbuhan yang mempunyai bentuk tulang daun menyirip yaitu daun jambu biji, daun mangga, daun jambu air, dan daun ketapang. Contoh tumbuhan yang mempunyai bentuk tulang daun lurus yaitu tebu, daun kelapa, dan daun nanas. Dan tumbuhan yang mempunyai bentuk tulang daun menjari yaitu daun pepaya, daun melon, dan daun singkong.

Gambar 4. 9 Tulang daun

Sumber: Ensiklopedia Bebas, 2021

f. Pembuahan ganda adalah proses yang terjadi pada pembentukan biji tumbuhan angiospermae (berbiji tertutup). Sebagai contoh pohon mangga, jeruk, dan semangka. Mengapa disebut pembuahan ganda? Karena terjadi dua pembuahan pada proses pembentukan biji. Pembuahan pertama menghasilkan zigot dan pembuahan kedua menghasilkan endosperma (cadangan makanan).

Gambar 4. 10 Jeruk Sumber: Ensiklopedia Bebas, 2021

g. Mempunyai batang berkambium dan tidak berkambium: Contoh tumbuhan angiospermae dengan kambium yaitu pohon mangga, pohon jambu, dan pohon mahoni. Contoh tumbuhan angiospermae yang tidak berkambium yaitu pohon jagung, pepaya, dan pohon tebu

Sumber: Ensiklopedia Bebas, 2021

C. PENGELOMPOKKAN

Berdasarkan pembagiannya angiospermae di bagi menjadi 2 yaitu dikotil danmonokotil.

a. Dikotil

Dikotil merupakan tumbuhan berkeping dua atau berbiji belah. Dikotil juga memiliki sepasang daun lembaga yang sudah terbentuk sejak tanaman dalam proses perkecambahan. Dikotil biasah dikenali dengan ciri sebagai berikut:

a) Bentuk akar tunggang.

- b) Jumlah keping bijinya dua.
- c) Tidak memiliki tudung akar.
- d) Jumlah kelopak bunganya dua, empat, lima, atau kelipatannya.
- e) Memiliki 2 keping lembaga/kotiledon
- f) Pada batang dan akar, terdapat kambium dan dapat tumbuh serta berkembang menjadibesar.
- g) Batangnya bercabang-cabang.
- h) Tipe berkas pengangkut kolateral terbuka.
- i) Pembuluh pengangkutnya teratur dalam cincin (lingkaran).
- j) Pola tulang daun dan bentuk sumsumnya menjari atau menyirip.

b. Monokotil.

Monokotil merupakan tumbuhan berkeping satu. Monokotil juga tumbuhan berbunga yang bijinya tidak membelah karena hanya memiliki satu daun lembaga. Ciri—Ciri Tumbuhan monokotil sebagai berikut:

- a) Mempunyai biji tunggal (berkeping satu)
- b) Memiliki berkas vaskuler atau pembuluh angkut (xilem dan floem)
- c) Umumnya tidak memiliki kambium, hanya beberapa saja yang berkambium.

- d) Memiliki batang yang biasanya tidak bercabang, berambut halus, dan memiliki ruas-ruas batang yang tampak dengan jelas.
- e) Memiliki akar serabut.
- f) Ujung akar dilindungi oleh koleoriza dan ujung batang dilindungi oleh koleoptil.
- g) Kebanyakan memiliki daun tunggal, urat daunnya sejajar dan terdapat pelepah daun.
- h) Memiliki bunga yang terdiri dari kelopak bunga, mahkota bunga, dan benang sari yang berjumlah tiga atau berkelipatan tiga

D.HABITAT

Pada tumbuhan angiospermae ini di bagi menjadi 2 yaitu dikotil dan monokotil. Tumbuhan dikotil dan mokotil memiliki suku-suku, pada bagian ini akan dijelaskan habitat dari monokotil dan dikotil dari masing-masing suku.

- 1. Suku Tumbuhan monokotil
- a. Suku Poaceae, contohnya jagung (Zea mays).

Jagung adalah salah satu tanaman pangan penghasil karbohidrat yang terpenting di dunia, selain gandum dan padi. Bagi penduduk Amerika Tengah dan Selatan, bulir jagung adalah pangan pokok, sebagaimana bagi sebagian penduduk Afrika dan beberapa daerah di

Indonesia.

Klasifikasi:

Kingdom : Plantae

Divisio : Spermatophyta Subdivisi : Angiospermae

Kelas : Monocotiledon

Ordo : Poales

Famili : Poaceae

Genus : Zea

Spesies : Zea mays L.

Gambar 4. 12 Jagung

Sumber: Ensiklopedia Bebas, 2021

Ciri-ciri tananaman jagung antara lain akar serabut, tulang daun berbentuk sejajar memanjang dan biji berkeping satu. Ciri lain seperti batang tegak dan beruasruas. Memiliki tongkol yang terdapat di batang dan pelepah daun. Dalam satu tanaman terdapat bunga jantan (di pucuk) dan betina yang terpisah.

Habitat Tanaman Jagung: Pertumbuhan dan produksi tanaman dapat ditentukan oleh proses fisiologi yang berlangsung di dalamnya, proses fisiologi tersebut bisa dipengaruhi oleh faktor-faktor iklim seperti suhu, air (hujan), radiasi surya, serta kelembaban, dengan demikian maka hasil dari produksi tanaman mutlak merupakan konversi energi radiasi surya, air dan Kara didalam tanah ke dalam produk akhir (biomasa) yang bernilai ekonomi, di daerah tropis dan subtropis, kecuali pada elevasi tinggi.

b. Suku Cyperaceae, contohnya rumput teki (Cyperus rotundus).

Teki ladang atau Cyperus rotundus adalah gulma pertanian yang biasa dijumpai di lahan terbuka. Apabila orang menyebut "teki", biasanya yang dimaksud adalah jenis ini, walaupun ada banyak jenis Cyperus lainnya yang berpenampilan mirip. Teki sangat adaptif dan karena itu menjadi gulma yang sangat sulit dikendalikan.

Klasifikasi:

Kingdom : Plantae

Subkingdom: Tracheobionta

Super Divisi : Spermatophyta

Divisi : Magnoliophyta

Kelas : Liliopsida

Sub Kelas : Commelinidae

Ordo : Cyperales

Famili : Cyperaceae

Genus : Cyperus

Spesies : Cyperus rotundus L.

Gambar 4. 13 Rumput Teki

Sumber: Ensiklopedia Bebas, 2021

Habita rumput teki: Rumput teki merupakan salah

satu jenis rumput yang biasa ditemukan di tanah lapang, pinggir jalan bahkan di rawa-rawa. Anda mungkin sering menjumpai rumput teki tumbuh liar di lapangan, di sawah atau di pinggir jalan.

c. Suku Orchidaceae, contohnya anggrek merpati (Dendrobium crumenatum).

Anggrek merpati (Dendrobium crumenatum). termasuk dalam anggrek golongan monopodial dengan bentuk bulb membengkak pada bagian bawah dan pipih pada bagian atas. Akarnya bulat pipih berwarna putih memanjang. Anggrek ini termasuk anggrek yang rajin menghasilkan keiki.

Klasifikasi:

Kingdom : Plantae

Subkingdom : Tracheobionta

Super Divisi : Spermatophyta

Divisi : Magnoliophyta

Kelas : Liliopsida

Sub Kelas : Liliidae

Ordo : Orchidales

Famili : Orchidaceae

Genus : Dendrobium

Spesies : Dendrobium

Gambar 4. 14 Anggrek

Sumber: Ensiklopedia Bebas, 2021

Habitat anggrek merpati: Anggrek merpati memiliki habitat hidup yang luas, mulai dari Indonesia, Singapura, Thailand, hingga ke Filipina dan Papua, sehingga mudah ditemui bahkan pada cabang-cabang pohon di pinggir jalan sekalipun. Anggrek ini juga dapat bertahan hidup hampir di mana pun, baik itu daerah dataran tinggi maupun dataran rendah.

d. Suku Palmae, contohnya kelapa (Cocos nucifera).

Kelapa (Cocos nucifera) adalah anggota tunggal dalam marga Cocos dari suku aren-arenan atau Arecaceae. Arti kata kelapa (atau coconut, dalam bahasa Inggris) dapat merujuk pada keseluruhan pohon kelapa, biji, atau buah, yang secara botani adalah pohon berbuah, bukan pohon kacang-kacangan.

Gambar 4. 15 Kelapa

Sumber: Ensiklopedia Bebas, 2021

Klasifikasi:

Kingdom : Plantae

Subkingdom: Tracheobionta

Super Divisi : Spermatophyta

Divisi : Magnoliophyta

Kelas : Liliopsida

Sub Kelas : Arecidae

Ordo : Arecales

Famili : Arecaceae

Genus : Cocos

Spesies : Cocos nucifera

Habitat kelapa: Kelapa adalah tanaman daerah tropis yang lembab. Kelapa tumbuh subur pada berbagai tanah, bila drainase dan aerasinya cukup

e. Suku Liliaceae, contohnya lidah buaya (Aloe vera)

Aloe vera adalah sejenis tumbuhan yang sudah dikenal sejak ribuan tahun silam dan digunakan sebagai penyubur rambut, penyembuh luka, dan untuk perawatan kulit. Aloe vera dapat ditemukan di pekarangan rumah dengan mudah dan di kawasan kering di Afrika.

Gambar 4. 16 Lidah Buaya

Sumber: Ensiklopedia Bebas, 2021

Seiring dengan kemajuan ilmu pengetahuan dan teknologi, pemanfaatan aloe vera berkembang sebagai bahan baku industri farmasi dan kosmetika, serta sebagai bahan makanan dan minuman kesehatan.

Klasifikasi

Kingdom : Plantae

Divisi : Magnoliophyta

Kelas : Lilieropsida

Ordo : Asparagales

Famili : Asphodelaceae

Genus : Aloe

Spesies : Aloe vera.

Habitat aloe vera: Lidah buaya (Aloe vera) adalah spesies tumbuhan dengan daun berdaging tebal dari genus Aloe. Tumbuhan ini bersifat menahun, berasal dari Jazirah Arab, dan tanaman liarnya telah menyebar ke kawasan beriklim tropis, semi-tropis, dan kering di berbagai belahan dunia.

f. Suku Zingiberaceae, contohnya jahe (Zingiber officinale)
Jahe merupakan tanaman yang termasuk rempah
rempah dengan nama latin Zingiber Officinale. Jahe
sangat bermanfaat bagi kehidupan sehari-hari,
terutama dibidang kesehatan.

Gambar 4. 17 Jahe

Sumber: Ensiklopedia Bebas, 2021

Klasifikasi

Kingdom : Plantae

Sub Kingdom : Viridiplantae

Divisi : Tracheophyta

Sub Divisi : Spermatophyta

Kelas : Magnoliopsida

Ordo : Zingiberales

Famili : Zingiberaceae

Genus : Zingiber Mill

Spesies : Zingiber officinale Roscoe

Habitat jahe: Jahe tumbuh subur di ketinggian 0 hingga 1500 meter di atas permukaan laut, kecuali jenis jahe gajah di ketinggian 500 hingga 950 meter. Untuk bisa berproduksi optimal, dibutuhkan curah hujan 2500 hingga 3000 mm per tahun, kelembapan 80% dan tanah lembap dengan pH 5,5 hingga 7,0 dan unsur hara tinggi.

g. Suku Musaceae, contohnya pisang (Musa paradisiaca).

Pisang adalah nama umum yang diberikan pada tumbuhan terna raksasa berdaun besar memanjang dari suku Musaceae. Beberapa jenisnya menghasilkan buah konsumsi yang dinamakan sama. Buah ini tersusun dalam tandan dengan kelompok-kelompok tersusun menjari yang disebut sisir.

Klasifikasi:

Kingdom : Plantae

Divisi : Magnoliophyta

Kelas : Liliopsida

Ordo : Musales

Famili : Musaceae

Genus : Musa

Spesies : Musa paradisiaca

Habitat tumbuh tanaman pisang tidak harus pada lahan khusus, karena flora ini dapat beradaptasi di wilayah dataran tinggi ataupun dataran rendah. Selamakondisi tanah baik dan cukup cahaya matahari, maka pohon pisang dapat tumbuh dengan baik.

Gambar 4. 18 Pisang

Sumber: Ensiklopedia Bebas, 2021

2. Suku Tumbuhan Dikotil

a. Suku petai-petaian (Mimosaceae) Contohnya Putri malu (Mimosa pudica)

Putri malu atau *Mimosa pudica* adalah perdu pendek anggota suku polong-polongan yang mudah dikenal karena daun-daunnya yang dapat secara cepat menutup/layu dengan sendirinya saat disentuh. Walaupun sejumlah anggota polong-polongan dapat melakukan hal yang sama, putri malu bereaksi lebih cepat daripada jenis lainnya.

Klasifikasi:

Kingdom: Plantae

Divisio : Spermatophyta

Kelas : Angiospermae

Ordo : Rosales

Famili : Mimosaceae

Genus : Mimosa

Spesies : Mimosa pudica

Gambar 4. 19 Putri Malu

Sumber: Ensiklopedia Bebas, 2021

Habitat putri malu: Tumbuhan putri malu (*Mimosa* pudica Linn) membutuhkan kondisi lingkungan yang sesuai untuk dapat tumbuh dengan baik. Tanaman ini dapat tumbuh di daerah yang beriklim tropis seperti Indonesia

dengan ketinggian 1 – 1200 m di atas permukaan laut.

b. Suku Jeruk-jerukan (Rutaceae) Contoh Rutaceae: limau (Citrus amblycarpa)

Limau (Citrus linum) Jeruk sambal disebut juga jeruk limau adalah jeruk yang termasuk bahan bumbu masakan. Minuman yang diberikan jeruk limau akan menambah harum aroma masakan tersebut. Jeruk sambal merupakan anggota marga citrus atau marga jeruk.

Gambar 4. 20 Jeruk/Limau

Sumber: Ensiklopedia Bebas, 2021

Klasifikasi:

Kingdom: Plantae

Subkingdom: Tracheobionta

Superdivisi : Spermatophyta

Divisi : Magnoliophyta

Kelas : Dicotyledonae

Subkelas : Rosidae

Ordo : Sapindales

Famili : Rutaceae

Genus : Citrus

Spesies : Citrus amblycarpa

Habitat jeruk limau: Jeruk limo merupakan tanaman buah jeruk yang rajin dan mudah berbuah, tanaman ini adaptif dan mudah tumbuh hampir semua wilayah Indonesia, tetapi daerah yang paling cocok untuk menanam tanaman jeruk ini adalah pada dataran tinggi.

c. Suku getah-getahan (Euphorbiaceae) Contoh Euphorbiaceae: Ubi kayu (Manihotutilissima)

Ubi kayu (Manihot utilissima) yang juga dikenal sebagai ketela pohon atau singkong adalah pohonan tahunan tropika dan subtropika dari keluarga Euphorbiaceae. Umbinya dikenal luas sebagai makanan pokok penghasil karbohidratdan daunnya sebagai sayuran.

Klasifikasi:

Kingdom : Plantae

Divisi : Magnoliophyta

Kelas : Magnoliopsida

Ordo : Euphorbiales

Familia : Euphorbiaceae

Genus : Manihot

Spesies : Manihot utilissima

Gambar 4. 21 Manihot utilissima

Sumber: Ensiklopedia Bebas, 2021

Habitat ubi kayu: Ketela pohon atau singkong merupakan tanaman pangan berupa perdu dengan nama lain ubi kayu, singkong atau kasape. Ketela pohon berasal dari benua Amerika, tepatnya dari negara Brazil. Penyebarannya hampir ke seluruh dunia, antara lain: Afrika, Madagaskar, India, Tiongkok

d. Suku Johar-joharan (Caesalpiniaceae) Contohnya: Kembang Merak (Caesalpiniapulcherrima)

Kembang merak (Caesalpinia pulcherrima) adalah tanaman asli dari Asia danAfrika. Selain indah, tanaman ini juga mempunyai khasiat yang banyak, misalnya sebagai obat untuk menstruasi yang tidak lancar, mata merah, diare, sariawan, perut kembung dan kejang panas pada anak.

Klasifikasi:

Kingdom : Plantae

Sub Kingdom: Tracheobionta

Divisi : Magnoliophyta

Super Divisi : Spermatophyta

Kelas : Magnoliopsida

Sub Kelas : Rosidae

Ordo : Fabales

Famili : Caesalpiniaceae

Genus : Caesapinia

Spesies : Caesalpinia Pulcherrima

Gambar 4. 22 Kembang Merak Sumber: Ensiklopedia Bebas, 2021

Habitat kembang merak: Kembang merak (Caesalpinia pulcherrima) adalah tanaman asli dari Asia dan Afrika. Kembang merak bisa mempercantik pekarangan sebagai tanaman hias, tanaman kembang merak juga berkhasiat sebagai obat.

e. Suku Kapas-kapasan (Malvaceae) Contoh Kapas (Gossypium sp)

Kapas adalah serat halus yang menyelubungi biji beberapa jenis Gossypium, tumbuhan semak yang berasal dari daerah tropika dan subtropika. Serat kapas menjadi bahan penting dalam industri tekstil. Serat itu dapat dipintal menjadi benang dan ditenun menjadi kain.

Klasifikasi

Kingdom : plantae

Divisi : Spermatophyta

Subdivisi : Angiospermae

Kelas : Dicotyledonae

Ordo : Malvales

Famili : Malvaceae

Genus : Gossypium

Spesies : Gossypium sp.

Gambar 4. 23 Kapas

Sumber: Ensiklopedia Bebas, 2021

Habitat dari tanaman kapas adalah daerah dengan temperatur udara rendah. Dua contoh wilayah yang sesuai adalah dataran tinggi dan pegunungan. Adapun tanaman kapas merupakan penghasil serat kapas.

f. Suku Terung-terungan (Solaneceae) Contohnya: Kentang (Solanum tuberosum) Biasanya berupa semaksemak, tumbuhan perdu atau bias juga pohon.

Berdaun tunggal/majemuk. Tepi daun berlakuk. Bunganya berbentuk trompet.

Gambar 4. 24 Solanum tuberosum

Sumber: Ensiklopedia Bebas, 2021

Klasifikasi:

Kingdom : Plantae

Divisio : Spermatophyta

Subdivisi : Angiospermae

Kelas : Dicotyledonae

Ordo : Solanales

Famili : Solanaceae

Genus : Solanum

Spesies : Solanum tuberosum Linn

Habitat kentang: Tanaman kentang asalnya dari Amerika Selatan dan telah dibudidayakan oleh penduduk di sana sejak ribuan tahun silam. Tanaman ini merupakan herba (tanaman pendek tidak berkayu) semusim dan menyukai iklim yang sejuk. Di daerah tropis cocok ditanam di dataran tinggi.

g. Suku Komposite (Compositae) Contoh Compositae: Bunga matahari (Helianthusannuus)

Bunga matahari (Helianthus annuus) adalah tumbuhan semusim dari suku kenikir-kenikiran yang populer, baik sebagai tanaman hias maupun tanaman penghasil minyak. Bunga tumbuhan ini sangat khas: besar, biasanya berwarna kuningterang, dengan kepala bunga yang besar.

Klasifikasi:

Kingdom : Plantae

Divisi : Magnolipyta

Kelas : Magnoliopsida

Ordo : Asterales

Famili : Astereceae

Genus : Helianthus

Spesies : Helinathus Annuus L

Gambar 4. 25 Bunga Matahari Sumber: Ensiklopedia Bebas, 2021

Habitat bunga matahari: Bunga matahari menyukai tanah yang subur dan hangat. Tumbuhan ini menyukai suasana yang cerah. Mengingat asalnya, tumbuhan ini cocok tumbuh pada tempat dengan iklim subtropik.

h. Suku kacang-kacangan (Papillionaceae) Contoh Papillionaceae: Semua kacang-kacangan

Kacang panjang adalah salah satu jenis sayuran yang

sudah sangat populer di kalangan masyarakat Indonesia maupun dunia. Tanaman kacang panjang (Vigna sinensis L.) bukan tanaman asli Indonesia. Plasma nutfah tanaman kacang panjang berasal dari India dan Cina, tetapi ada juga yang menduga berasal dari kawasan Afrika.

Gambar 4. 26 Kacang-kacangan

Sumber: Ensiklopedia Bebas, 2021

Klasifikasi

Kingdom : Plantae

Divisi : Spermatophyta

Kelas : Angiospermae

Subkleas : Dicotyledonae

Ordo : Rosales

Famili : Laguminocecae

Genus : Vigna

Spesies

: Vigna sinensis

Habitat kacang panjang: Kacang panjang dapat tumbuh subur pada ketinggian kurang dari 800 m diatas permukaan laut.

i. Suku jambu-jambuan (Myrtaceae) Contoh Myrtaceae:
 Jambu biji (Psidium guajava)

Jambu biji (Psidium guajava) atau sering juga disebut jambu batu, jambu siki dan jambu klutuk adalah tanaman tropis yang berasal dari Brasil, disebarkan ke Indonesia melalui Thailand. Jambu batu memiliki buah yang berwarna hijau dengan daging buah berwarna putih atau merah dan berasa asam-manis.

Klasifikasi:

Kingdom : Plantae

Sub Kingdom: Tracheobionta

Divisi : Magnoliophyta

Sub Divisi : Spermatophyta

Kelas : Magnoliopsida

Sub Kelas : Rosidae

Ordo : Myrtales

Famili : Myrtaceae

Genus : Psidium

Spesies : Psidium Guava L

Habitat jambu biji: Jambu biji tersebar meluas sampai ke

Asia Tenggara, termasuk Indonesia, sampai Asia Selatan, India dan Sri Lanka. Tanaman ini dapat tumbuh subur di daerah dataran rendah sampai pada ketinggian 1200 m dpl.

Gambar 4. 27 Jambu Biji

Sumber: Ensiklopedia Bebas, 2021

E. KANDUNGAN DAN MANFAAT

Kandungan dan manfaat

a. Orchidae (suku Anggrek-anggrekan)

Anggrek merupakan bunga dengan jenis yang beraanggrekgam dengan nama latin Orchidacae. Biasanya bunga ini tumbuh di lingkungan tropis, jadi tidak heran jika di Indonesia sendiri banyak sekali berbagai macam jenis dari bunga anggrek. Anggrek merupakan salah satu tumbuhan yang hidup di lingkungan lembab, hal tersebut dikarenakan anggrek memiliki ketahanan terhadap lingkungan yang lembab.

b. Arecaceae (suku pinang-pinangan)

Kelapa atau *Cocos nucifera*, hampir semua bagian tubuhnya dapat dimanfaatkan oleh manusia, Air kelapa memiliki kandungan yang sangat baik bagi kesehatan sebab dapat digunakan sebagai sebagai obat alergi, buahnya juga kerap digunakan sebagai bahan masakan, bahkan di Maluku kelapa digunakan untuk membuat sagu dimana sagu merupakan makanan pokok mereka. Selain itu buahnya juga dapat dimanfaatkan sebagai bahan pembuatan santan, dan dibuat minyak kelapa. Daun kelapa dapat dijadikan sebagaianyaman Grameds.

c. Zingiberaceae(Suku jahe-jahean)

Rempah-rempah khas Indonesia seperti jahe, kencur, kunyit, laos, temu hitam,dan temu lawak merupakan beberapa contoh dari suku jahe-jahean (*Zingiberaceae*) yang biasanya dimanfaatkan sebagai obat atau bumbu masak. Di daerah pegunungan biasanya keluarga monokotil jahe dimanfaatkan untuk menghangatkan tubuh, sekarang

banyakjuga minuman berbahan dasar jahe.

Dijelaskan dalam Al-Quran yang artinya "Dan di sana mereka diberi segelas minuman bercampur jahe (17). (Yang didatangkan dari) sebuah mata air (di surga) yang dinamakan Salsabil (18). Dan mereka dikelilingi oleh para pemuda-pemuda yang tetap muda. Apabila kamu melihatnya, akan kamu kira mereka, mutiara yang bertaburan (19)."

Tanaman ini memiliki senyawa keton yang kuat sehingga dapat menciptakan rasa pedas apabila dikonsumisi. Di lingkungan kita sendiri jahe terbagi atas 3 macam, yaitu: Jahe merah Jahe putih dan Jahe gajah.

Adapun manfaat yang dapat diperoleh dari jahe adalah mengatasi perut kembung, sebagai obat untuk mengatasi batuk ,mencegah perut buncit, dan kanker, mengobati sakit gigi hingga sebagai obat antioksidan.

Jahe atau *Zingiberacea* memiliki ciri-ciri dimana pelepah daun yang memeluk batang tumbuh dari dari dalam tanah (rimpang), bunganya mengandung sel kelamin jantan dan sel kelamin betina serta kelopak dengan bentuk seperti tabung.

d. Musacea (Suku pisang-pisangan)

Pisang yang memiliki nama latin *Musa sp* merupakan tanaman yang dapat ditemukan di lingkungan sekitar kita. Banyak orang yang membudidayakan tanaman ini, hal ini disebabkan karena pisang memiliki kandungan dan manfaat yang beragam.

Manfaat yang dapat diambil dari mengkonsumsi buah pisang adalah menjaga kesehatan jantung, buah yang bagus untuk diet, dapat digunakan sebagai masker wajah untuk mengatasi kulit kusam dan mengatasi penyakit anemia serta memperlancar sistem pencernaan pada manusia.

e. Poaceae (Suku padi-padian)

Padi sebagai makanan pokok bagi orang Indonesia masuk dalam famili poacea atau graminae, selain padi juga terdapat Jagung (*Zay mays*), serta Gandum (*Tritinium sativum*), Tebu (*Saccharum officinarum*) yang umumnya dijadikan bahan dalam membuat gula. Terdapat juga (*Andropagon nordus*) yang dijadikan bahan baku tali, dan bambu betung (*Dendrocalamus asper*) yang umumnya digunakan untuk membuat bahan perabotan rumah serta bangunan.

Poaceae atau Graminae ini memiliki ciri berbentuk pita, tulang daun sejajar serta melekat di batang, berakar serabut, bagian batangnya agak berongga, mudah terbang pada saat ditiup angin, bunganya berbentuk bulit, dan penyeberbukannya yang dibantu oleh angin.

f. Compositae

Bunga matahari (*Helianthus annus*) memiliki manfaat yaitu kaya akan asam linoleat. Asam lemak tak jenuh yang baik untuk kesehatan. Bijinya mengandung lemak manosaturated, yang dapat membantu kolestrol total atau kolestrol LDL, sekaligus meningkatkan kolestrol HDL, kaya akan vitamin E

yang baik untuk mencegah penyakit kardiovasikular, sumber protein yang baik untuk tubuh, vitamin B1 yang baik untuk melindungi saraf, sebagai tanaman hias.

BAB V GYMNOSPERMAE

A. LATAR BELAKANG

Tumbuhan merupakan pemandangan alam yang dapat kita jumpai hampir di seluruh penjuru bumi; di hutan ,pegunungan, dataran rendah, laut, dan sungai. Tumbuhan adalah organisme yang memiliki akar, batang, dan daun, merupakan organ hasil diferensiasi jaringan. Spermatopyta adalah tumbuhan yang tubuhnya dapat di bedakan dalam akar, batang,dan daun. Daun tergolong dalam tipe makrofil dengan bentuk dan susunan tulang- tulang yang beraneka ragam. Akar tumbuh dari kutub akar. Sporofil terangkai sebagai strobilus atau bunga.

Gambar 5. 1 Gymnospermae Spesies

Sumber: Ensiklopedia Bebas, 2021

Gymnospermae termasuk ke dalam tumbuhan spermatopyta karena tumbuhan ini bisa berkembangbiak dengan menggunakan biji. Tumbuhan biji yang sekarang ada di bumi kita ini meliputi kurang lebih 170.000 jenis tumbuhan, jadi lebih dari separoh kekayaan flora dunia yang ditaksir seluruhnya meliputi lebih kurang 300.000 jenis tumbuhan. Pada saat sekarang ini golongan tumbuhan bijilah yang bersifat dominan di bumi kita sehingga zaman kita sekarang ini boleh pula disebut sebagai "zaman tumbuhan biji".

Gymnoospermae itu sendiri adalah tumbuhan yang memiliki biji terbuka, karena bijinya tidak di tutupi oleh daging buah, Gymnospermae berbeda dengan Angiospermae,jika angiospermae bijinya di tutupi oleh daging buah, pada Gymnospermae tidak. Tumbuhan ini tersebar luas di hutan-hutan dan pegunungan, berupa pohon berkayu yang tingginya dapat mencapai lebih dari 30m.

B. GYMNOSPERMAE

Istilah gymnospermae berasal dari bahasa yunani yang terdiri dari dua kata yaitu Gymnos " telanjang", dan Sperma "Biji". Jadi gymnospermae adalah tumbuhan yang tidak memiliki pembungkus biji sehingga bijinya tampak dari luar atau berada pada permukaan daun buah.

Secara harfiah *Gymnospermae* berarti *Gym*=telanjang, dan *spermae*=tumbuhan yang menghasilkan biji. Tumbuhan yang termasuk golongan ini melulu terdiri atas tumbuhantumbuhan yang berkayu dengan bermacam-macam habitus. Bagian kayunya berasal dari berkas-berkas pembuluh pengangkutan kolateral terbuka yang pada penampang melintang batang tersusun dalam suatu lingkaran, dan karena adanya kambium memperlihatkan tumbuhan menebal skunder. Dalam bagian *xylem* tidak terdapat pembuluhpembuluh kayu melainkan hanya *trakeida* saja dan di dalam bagian *floem* berlainan juga dengan tumbuhan biji tertutup (*Angiospermae*) tidak terdapat sel-sel pengiring. Selain dari itu umumnya dalam batang tumbuhan biji terbuka tidak terdapat *fleoterma*.

Gymnospermae adalah tumbuhan yang memiliki biji terbuka. Gymnospermae berasal dari bahasa Yunani, yaitu gymnos yang berarti telanjang dan sperma yang berarti biji, sehingga gymnospermae dapat diartikan sebagai tumbuhan berbiji terbuka. Pada Gymnospermae, biji nampak (terekspos) langsung atau terletak di antara daun-daun penyusun strobilusatau runjung, bijinya tidak terlindung dalam bakal buah (ovarium). Gymnospermae telah hidup di bumi sejak periode Devon (410-360 juta tahun yang lalu), sebelum era dinosaurus.

Pada saat itu, Gymnospermae banyak diwakili oleh

kelompok yang sekarang sudah punah dan kini menjadi batu bara, seperti *Pteridospermophyta* (paku biji), *Bennettophyta*, dan *Cordaitophyta*. Anggota-anggotanya yang lain dapat melanjutkan keturunannya hingga sekarang. Angiospermae yang ditemui sekarang dianggap sebagai penerus dari salah satu kelompok Gymnospermae purba yang telah punah (paku biji).

Gymnospermae memiliki karakteristik yang unik, yaitu daur hidup yangsama seperti tumbuhan paku heterospora.

C. INTEGRASI AL-QURAN

Dalam Al-Quran Surah Al-An'am Ayat 95

yang artinya "Sungguh, Allah yang menumbuhkan butir (padipadian) dan biji(kurma). Dia mengeluarkan yang hidup dari yang mati dan mengeluarkan yang mati dari yang hidup. Itulah (kekuasaan) Allah, maka mengapa kamu masih berpaling?"

Tafsir Ringkas Kemenag RI

Setelah menguraikan aneka argumentasi keesaan Allah dalam ayat sebelumnya, ayat berikut ini menjelaskan kembali bukti keesaan Allah melalui argumen yang berbeda. Sungguh, Allah yang menumbuhkan butir tumbuhtumbuhan, padi-padian, dan biji kurma serta buah-buahan

lainnya. Dia mengeluarkan yang hidup dari yang mati dan mengeluarkan yang mati dari yang hidup. Itulah bukti kekuasaan Allah, maka mengapa kamu masih berpaling?

Dalam surah Al-Baqarah ayat 162

yang artinya "Perumpamaan orang yang menginfakkan hartanya di jalan Allah seperti sebutir biji yang menumbuhkan tujuh tangkai, pada setiap tangkai ada seratus biji. Allah melipatgandakan bagi siapa yang Dia kehendaki, dan Allah Mahaluas, Maha Mengetahui".

Tafsir Ringkas Kemenag RI

Setelah menjelaskan kekuasaan-Nya menghidupkan makhluk yang telah mati, Allah beralih menjelaskan permisalan terkait balasan yang berlipat ganda bagi orang yang berinfak di jalan Allah.

Perumpamaan keadaan yang sangat mengagumkan dari orang yang menginfakkan hartanya di jalan Allah dengan tulus untuk ketaatan dan kebaikan, seperti keadaan seorang petani yang menabur benih.

Sebutir biji yang ditanam di tanah yang subur menumbuhkan tujuh tangkai, pada setiap tangkai ada seratus biji sehingga jumlah keseluruhannya menjadi tujuh ratus. Bahkan Allah terus melipatgandakan pahala kebaikan sampai tujuh ratus kali lipat atau lebih bagisiapa yang Dia kehendaki sesuai tingkat keimanan dan keikhlasan hati yang berinfak.

Dan jangan menduga Allah tidak mampu memberi sebanyak mungkin, sebab Allah Mahaluas karunia-Nya.

Dan jangan menduga Dia tidak tahu siapa yang berinfak di jalan-Nya dengan tulus, sebab Dia Maha Mengetahui siapa yang berhak menerima karunia tersebut, dan Maha Mengetahui atas segala niat hamba-Nya.

D. PENGELOMPOKKAN GYMNOSPERMAE

Gymnospermae terdiri dari beberapa divisi baik yang sudah punah maupun yang masih ada sampai sekarang, yaitu mencakup 3 divisi yang telah punah dan 4 divisi yang masih bertahan.

Tumbuhan Gymnospermae yang sudah punah adalah:

- 1. Bennetophyta
- 2. Cordaitophyta
- 3. Pteridospermophyta, sudah punah namun dianggap sebagai moyang Angiospermae.

Divisi Cycadophyta, yang mempunyai daun menyerupai palem, agak menyerupai tumbuhan Cycas yang sekarang. Kelompok ini (Bennetitales) juga mengikuti garis evolusi yang sama seperti tumbuhan berbiji yang ada sampai sekarang.

Namun terdapat perbedaan, yaitu sifat biseksualisme pada strobilusnya dan aspek lainnya. Kelompok yang menyerupai Cycas ini hidup pada jaman Jura dan Creta. Empat divisi Gymnospermae yang masih bertahan adalah:

1. Ginkgophyta, Hanya satu jenis yang masih bertahan: Ginkgo biloba Tumbuhan ini merupakan tumbuhan asli dari daratan Cina. Tinggi pohon dapat mencapai 30 meter, daun berbentuk kipas mudah gugur. dan berumah dua. Berdasarkan bukti fosil ginkgo diperkirakan telah hidup sejak jaman jura (181 juta tahun yang lalu). Serbuk sari dan bakal biji dihasilkan oleh individu yang berlainan. Anggota kelompok ini hanya ada satu species yaitu *Ginkgo biloba*. Spesies ini tercatat sebagai spesies pohon tertua di dunia. Selama 80 tahun spesies ini belum pernah berubah.

Klasifikasi Ginkgo biloba

Kingdom :Plantae

Divisi :Ginkgophyta

Class : Ginkgoopsida

Ordo : Ginkgoales

Family : Ginkgoaceae

Genus : Ginkgo

Spesies : Ginkgo biloba

2. Cycadophyta, Di bagi menjadi dua famili, yaitu Cycadaceae dan Zamiaceae.

Ordo Cycadales Divisi Cycadophyta, ordo ini

dicirikan dengan bentuk dan susunan daun yang mirip dengan pohon palem. Batang tidak bercabang, akar serabut, dan ujung daun mudanya menggulung seperti daun tumbuhan paku muda, termasuk dalam tumbuhan berumah dua.

Alat kelamin jantan dan alat kelamin betina terdapat pada pohon yang berbeda. Pohon jantan mempunyai tongkol dengan kotak-kotak berisi serbuk sari. Pohon betina membentuk daun buah yang pipih yang pada lekukan tepi daun buah terdapat bakal biji.

Ordo ini beranggotakan sembilan genus yang masih hidup sampai sekarang dan meliputi sekitar 100 spesies. Meskipun tumbuhan ini tidak ditemukan dalam fosil diduga sudah muncul pada zaman trias sampai kapur awal. Tanda-tanda khas golongan ini adalah batang tidak bercabang, daun majemuk tersusun sebagai tajuk di pucak pohon. Cycadales baik ditemukan baik di wilayah tropic maupun subtropik, misalnya Zamia dan Cycas rumphii (pakis haji).

Klasifikasi Pakis Haji

Kingdom : Plantae (tumbuhan)

Divisio : Cycadophyta (sikas)

Kelas : Cycadopsida

Ordo : Cycadales

Familia : Cycadaceae

Genus : Cycas

Spesies : Cycas rumphii

Pakis haji berbentuk seperti kelapa sawit dan sering digunakan untuk tanaman hias. Jenis ini dapat ditemukan di daerah tropis dan subtropis. Pakis haji (aji) atau populer juga dengan nama sikas adalah sekelompok tumbuhan berbiji terbuka yang tergabung dalam marga pakis haji atau *Cycas* dan juga merupakan satu-satunya genus dalam suku Cycadaceae

 Coniferophyta atau dapat disebut Pinophyta, Merupakan tumbuhan runjung.

Coniferales artinya tumbuhan pembawa kerucut, karena alat reproduksi jantan atau betina berupa strobilus. Ada dua strobilus, yaitu strobilus biji atau strobilus betina dan strobilus jantan strobilus serbuk sari. Seperti halnya tumbuhan gymnospermae yang lain. Meskipun Coniferales banyak ditemukan pada zaman sekarang, sebenarnya merupakan tumbuhan purba yang pernah hidup dominant pada zaman karbon atas (345 juta tahun lalu). Anggota Coniferales merupakan tumbuhan 'evergreen' (selalu hijau).

Adapun ciri umum ordo Coniferales adalah

1. Tanaman berupa pohon, daun berbentuk jarum, serta

- ada yang berumah satu dan berumah dua.
- 2. Pohon pinus dan cemara banyak hidup di Eropa bagian pegunungan. Di Eropa tanaman pinus dan cemara disebut evergreen, artinya daunnya tetap hijau sepanjang masa.
- 4. Gnetophyta, Dengan anggota hanya 3 genus: Gnetum(melinjo dan kerabatnya), Welwitschia, dan Ephendra.

Anggota kelompok ini berupa perdu, liana (tumbuhan pemanjat) dan pohon. Daun berbentuk oval/lonjong dan duduk daun berhadapan dengan bentuk urat daun menyirip. Pada xilem terdapat trakea dan floem tidak memiliki sel pengiring. Strobilus tidak berbentuk kerucut. Ordo ini dicirikan dengan

- 1. Batang pohon yang lurus kira-kira 20 meter dan bercabang.
- 2. Akarnya tunggang.
- 3. Tulang daun menyirip, tipis dan melebar.
- 4. Berumah dua karena strobilus jantan dan betina terletak pada pohon yang berbeda. Namun ada pula yang berumah satu, strobilus jantan dan betina terdapat dalam 1 pohon.

Strobilus uniseksual atau biseksual tidak sempurna, memanjang dan ber-buku-buku. Bunga jantan

berkelompok aksilaris, berkarang, tiap bunga dengan brakteola bersatu. Bunga betina berkelompok aksilaris, berkarang, tiap bunga memiliki tiga (3) lapisan pelindung. Biji dilindungi perianth yang berdaging. Memiliki ovulum yang lebihtertutup, tetapi mikropilnya tetap terbuka.

- 1. Liana berkayu, beberapa tegak.
- 2. Percabangan bersendi dan menebal
- 3. Daun sederhana, berhadapan, menyirip

Contoh yang terkenal dari kelompok ini adalah *Gnetum gnemon* (melinjo), yang daun dan bijinya dapat dimakan, sedangkan kayunya dapat dimanfaatkan sebagai bahan baku kertas, serat tali, dan perabot rumah tangga. Melinjo banyak digunakan oleh orang Indonesia untuk sayur – sayuran dan emping.

Klasifikasi ilmiah Gnetum gnemon (Melinjo)

Kerajaan : Plantae

Divisi : Gnetophyta

Kelas : Gnetopsida

Ordo : Gnetales

Famili : Gnetaceae

Genus : Gnetum

Spesies : Gnetum gnemon.

E. KARAKTERISTIK GYMNOSPERMAE

Gymnospermae merupakan bagian dari tumbuhan berbiji (spermatophyta), dimana spermatophyta terbagi atas dua yaitu Gymonospermae dan angiospermae yang pada kali ini kita akan membahas mengenai ciri-ciri gymnospermae.

Istilah Gymnospermae berasal dari kata Yunani, gymnos yang berarti terbuka, sedangkan sperma berarti biji yang banyak dikenal yaitu tumbuhan konifer atau pinus yang memiliki konus (strobilus atau runjung). Istilah dari konifer berasal dari dari struktur reproduktif pada masa tumbuhan tersebut yang merupakan kumpulan sporofil yang berbentuk sisik.

Ciri-Ciri Gymnospermae Tumbuhan biji terbuka (Gymnospermae) memiliki ciri utama antara lain sebagai berikut.

- 1. Gymonospermae berakar tunggang
- 2. Mempunyai akar, batang, dan daun sejati.
- 3. Daun sempit, tebal dan kaku
- 4. Tulang daun tidak beraneka ragam/tidak bervariasi
- 5. Bakal biji tidak dilindungi oleh daun buah
- 6. Bakal tumbuh dan terletak di luar megasporofil (ovarium)
- 7. Megasporofil berupa sisik pendukung bakal biji

- yang terkumpul dalam bentuk strobilus (runjung) berkayu (kecuali pada Cycas)
- 8. Sporofil jantan dan betina terpisah
- 9. Tidak mempunyai bunga sejati
- 10. Tidak memiliki mahkota bunga
- 11. Bunga berupa strobilus yang mampu menghasilkan sekret berupa tetes getah yang berisi sel kelamin jantan pada strobilus jantan dan sel telur pada strobilus betina
- 12. Bakal biji berada diluar sehingga tidak dapat dilindungi daun buah
- 13. Tumbuhan heterospora yaitu dapat menghasilkan dua jenis spora
- 14. Spora yang satu berupa megaspora yang membentuk gamet, sedangkan spora yang kedua berupa mikrospora menghasilkan serbuk sari
- 15. Pada reproduksi terjadi pembuahan tunggal

BAB VI

PENGELOMPOKAN & CONTOH TUMBUHAN ANGIOSPERMAE

A. PENDAHULUAN

Tumbuhan adalah organisme yang memiliki akar, batang, dan daun sejati. Akar, batang dan daun merupakan organ hasil diferensiasi jaringan. Tumbuhan memiliki sel eukariotik dan mempunyai kloroplas. Didalam kloroplas terdapat pigmen klorofil. Pada umunya tumbuhan memiliki klorofil a, klorofil b dan ada juga yang mengandung karoten. Sel-sel tumbuhan memikili dinding sel yang mengandung selulosa, mengakibatkan tubuhnya kaku. Dalam klasifikasi dengan system 5 kingdom diantaranya tumbuhan biji namun ditekankan pada Phanerogamae dan lebih kepada Angiospermae.

Angiospermae merupakan tumbuhan biji tertutup. Hampir semua tumbuhan yang ada di daratan merupakan angiospermae. Angiospermae dibedakan atas dua kelas yakni dikotil dan monokotil. Klasifikasi angiospermae menjadi dikotiledon dan monokotiledon didasarkan

sejumlah perbedaan, yaitu perbedaan struktur vegetatif (batang, daun, akar) dan struktur generatif (bunga dan biji).

Angiospermae adalah suatu rangkaian sporofil sederhana dengan satu sumbu. Benang sari dan daun buah seperti juga pada Gymnospermae berturut- turut homolog dengan mikro dan makrosporofil Pteridophyta yang heterospor.

Jika kita membandingkan alat-alat yang menyerupai hiasan bunga pada daun- daun peralihan atas pada Gymnospermae, selanjutnya melihat duduk daunnya yang mengikuti gari spiral, bertambah kecilnya kantong sari pada benang sari, daun-daun buah Cycas dengan bakal biji di tepinya dan bunga banci pada Bennettitinae, yang pada sumbunya terutama terbentuk benang-benang sari dan daundaun buah, maka terjadinya bunga banci pada Angiospermae, dapat digambarkan secara stematis.

Tidak hanya bunga Gymnospermae yang umumnya berkelamin tunggal saja, tetapi juga bunga Angiospermae purba yang berkelamin tunggal pula itu, demikian pula bunga-bunga yang karangan- karangan hiasan bunganya terdiri atas dua atau tiga helaian, tentang terjadinya dapat

juga diterapkan menurut teori ini.

Benang sari yang tidak dapat dibedakan dalam tangkai sari dan hubungan ruang sari, demikian pula daundaun buah yang apokarp dengan bakal biji pada tepinya, jadi alat-alat yang mudah dibandingkan dengan sporofil, dan lain sifat asli masih terdapat pada Dialypetalae, yaitu dalam bangsa Polycarpicae, yang oleh pengikut teori euantium dianggap merupakan golongan Angiospermae yang orisinil dan golongan itulah yang dalam perkembangan filogenetik selanjutnya menghasilkan Dicotyledoneae dan Monocotyledoneae.

B. INTEGRASI AL-QURAN

Allah SWT. berfirman dalam QS. Al-An'am: 95

Artinya:

Sesungguhnya Allah menumbuhkan butir (padi-padian) dan biji (kurma). Dia mengeluarkan yang hidup dari yang mati dan mengeluarkan yang mati dari yang hidup. (Yang memiliki sifat-sifat) demikian ialah Allah, maka mengapa kamu masih berpaling?

Pada ayat tersebut, Allah telah menyebutkan bahwa dia mampu mengeluarkan yang hidup dari yang mati, maksudnya adalah, dari sebuah biji yang tidak hidup, mampu tumbuh individu baru yang hidup, dengan cara menumbuhkan bulir-bulir dan biji buah-buahan tersebut. Dan kita tahu bahwa bulir adalah kata untuk padi dan jagung yang notabennya adalah tumbuhan angiospermae.

C. ANGIOSPERMAE

Tumbuhan berbiji tertutup (Angiospermae) berasal dari kata "angio" yang berarti bunga dan "spermae" yang berarti tumbuhan berbiji. Angiospermae dikatakan tumbuhan berbiji tertutup karena bijinya selalu diselubungi oleh suatu badan yang berasal dari daun-daun buah yang disebut dengan bakal buah, kemudian bakal buah beserta bagian-bagian lain dari bunga akan tumbuh menjadi buah dan bakal biji yang telah menjadi biji tetap terdapat di dalamnya.

Pada akhir era Mesozoik angiospermae menjadi tumbuhan dominan yang ada di alam, kira-kira 250.000 spesies angiospermae yang hidup pada masa tersebut, sisanya sampai saat ini hanya mencakup sekitar 34.000 spesies yang hidup. Angiospermae hampir ditemukan di setiap habitat di Indonesia.

D. KARAKTERISTIK ANGIOSPERMAE

Ciri tumbuhan angiospermae antara lain: bakal biji selalu diselubungi bakal buah yang tumbuh menjadi buah, mempunyai organ buga yang sesungguhnya, habitusnya herba, semak, perdu atau pohon. Sistem perakaran tunggang dan serabut, penyerbukannya terjadi secara autogami, anemogami, hidrogami, zoidiogami, dll. Batang bercabang atau tidak, kebanyakan berdaun lebar, tunggal dan majemuk dengan komposisi yang beranekaragam, demikian juga dengan pertulangannya, anatomi akar ada yang berkambium dan ada yang tidak. Berkas pegangkut bermacam-macam ada kolateral terbuka, kolateral tertutup dan bikolateral, dan xilem terdiri dari trakhea dan trakheida, floem dengan sel pengiring.

Berikut ciri-ciri dari Angiospermae:

- 1. Umumnya tumbuhan angiospermae berupa pohon, perdu, semak, liana dan herba.
- 2. Angiospermae memiliki bakal biji atau biji yang tertutup oleh daun buah.
- 3. Mempunyai bunga sejati, tumbuhan ini memiliki bunga yang sesungguhnya yang terdiri dari mahkota bunga, kelopak bunga, putik, dan benang sari, tetapi ada pula

bagian-bagian bunga pada golongan ini ada yang bunga lengkap dan bunga tidak lengkap. Bunga tersusun dari sporofil ditambah bagian-bagian lain misal perluasan bunga.

- 4. Pada daun kebanyakan berdaun lebar, tunggal atau majemuk dengan komposisi yang beraneka ragam.
- 5. Jenis batang pada tumbuhan berbiji tertutup ini sangat bervariasi yaitu ada yang bercabang-cabang ada pula yang tidak bercabang.
- 6. Sistem perakaran pada tumbuhan jenis ini ada yang berakar serabut ada juga yang berakar tunggang.
- 7. Sistem reproduksi terjadi dengan pembuahan ganda.

E. PENGELOMPOKKAN ANGIOSPERMAE

Angiospermae dibagi menjadi dua subkelas, dikotil dan monokotil. Dikotil merupakan subkelas yang lebih besar dan lebih tua di antara dua kelompok tersebut dengan kira-kira 200.000 spesies yang dikenal, misalnya kenanga, anyelir, kol, mawar, tomat. Beberapa contoh tersebut merupakan spesies dari 250 famili dalam dikotil. Sekitar 50.000 spesies monokotil yang dikenal misalnya anggrek, tulip, bawang, jagung, gandum, padi dan lain-lain yang merupakan bahan makanan yang penting bagi

kehidupan manusia. Angiospermae selain terdiri atas tumbuhan berkayu juga terdiri atas tumbuhan yang berbatang basah.

1. Kelas Liliopsida (Monokotil)

Kelas liliopsida secara umum berupa tumbuhan herba dan hanya sedikit yang berkayu, tidak mempunyai kambium sehingga tidak ada pertumbuhan sekunder. Ikatan pembuluh terbuka dan tersebar. Sistem perakarannya adalah perakaran adventif (serabut). Pertulangan daun pada umumnya dengan pertulangan daun sejajar, kecuali pada Areceae sebagian tumbuhan dengan pertulangan menjala. Helaian daun sering dijumpai dengan berukuran kecil dengan tangkai yang pendek dan terdapat pelepah. Bagianbagian bunga pada umumnya kelipatan 3, jarang kelipatan 2 atau kelipatan 4. Embrio biji mempunyai satu kotiledon. Tumbuhan monokotil dapat dibedakan dalam beberapa bangsa yaitu:

1) Bangsa Helobiae (Alismatales)

Bangsa Helobiae habitusnya berupa terna yang kebanyakan tumbuhan air atau rawa dengan daun-daun tunggal yang mempunya sisik dalam ketiaknya. Bangsa ini mencakup suku Aponogetonaceae, Potamogetonaceae, Najadaceae, Scheuchzeritaceae (alismaceae), Butomaceae, dan suku Hydrocharitaceae.

Gambar 6. 1 Caladium bicolor

Sumber: Gembong, 2002

2) Bangsa Triuridales

Tumbuhan dari bangsa Triuridales berbentuk kecil berwarna kekuningkuningan atau kemerah-merahan, biasanya hidup saprofik dengan daunnya seperti sisik dengan bunga-bunga kecil bertangkai panjang, banci atau berkelamin tunggal. Bangsa ini hanya mencakup 1 suku saja, yaitu suku Triuridaceae

Gambar 6. 2 Seychellaria madagascariensis

Sumber: Occurrence/1453050983, 2020

3) Bangsa Farinosae (Bromeliaceae)

Bangsa ini kebanyakan berupa terna, jarang mempunyai batang yang kuat, dan kadang mirip seperti rumput. Bangsa ini mencakup beberapa suku, diantaranya suku Bromeliaceae, Flagellariaceae, Restionaceae, dan suku Mayacaceae.

Gambar 6. 3 Wittockia cyathiformis Sumber: Dorling, 2004

4) Bangsa Liliales

Bangsa ini habitusnya kebanyakan berupa terna yang mempunyai rimpang atau umbi lapis, kadang-kadang juga ada yang berhabitus perdu atau pohon atau tumbuhan yang memanjat. Bangsa ini mencakup beberapa suku, diantaranya suku Liliaceae, suku Dioscoreaceae, dan suku Iridaceae.

Gambar 6. 4 *Crinum asiaticum*Sumber: Ida Duma Riris, 2018

5) Bangsa Cyperales

Bangsa ini umumnya berupa terna parenial yang menyukai habitatyang lembab, berpaya-paya atau berair, jarang berupa terna annual, seringkali berumpun. Bangsa hanya terdiri dari atas 1 suku yaitu suku Cyperaceae.

Gambar 6. 5 *Fimbristylis drizae* Sumber: Jonghwan, 2015

6) Bangsa Foales

Bangsa ini kebanyakan berupa terna annual atau perennial, kadang berupa semak atau pohon. Batang ada yang tegak lurus, ada yang tumbuh serong ke atas, ada yang berbaring atau merayap, bentuk batang kebanyakan seperti silinder panjang, jelas berbuku-buku dan beruas-ruas, daun kebanyakan bangun pita, dan bunga umumnya banci, kadang berkelamin tunggal, kecil, dan tidak menarik. Bangsa ini hanya terdiri atas 1 suku saja, yaitu suku Poaceae.

Gambar 6. 6 Gigantochloa robusta

Sumber: Ariefa, 2012

7) Bangsa Zingiberales

Bangsa ini kebanyakan berupa terna yang besar, perennial, mempunyai rimpang atau batang dalam tanah, daunnya lebar, jelas dan dapat dibedakan dalam tiga bagian, yaitu helaian, tangkai, dan upih. Helaian daunnya simetris dengan pertulang daunnya menyirip dan bunganya besar dengan warna menarik. Bangsa ini mencakup beberapa suku, diantaranya suku Zingiberaceae, suku Musaceae, suku Cannaceae, dan suku Marantaceae.

Gambar 6. 7 Zingiber purpureum Roxb Sumber: Lukas, 2008

8) Bangsa Orchidales

Bangsa ini kebanyakan terdiri atas terna dan hidup sebagai epifit, kadang saprofit, atau terrestrial. Daunnya berbentuk beraneka ragam, biasanya tersusun dalam 2 baris dan sering agak tebal berdaging. Bangsa ini mencakup 2 suku, yaitu suku Orchidaceae, dan suku Apostasiaceae.

Gambar 6. 8*Coelogyne verucosa* Sumber: Sarinah, 2018

9) Bangsa Arecales

Bangsa ini terdiri dari terna atau pohon yang besar dengan daun yang besar juga, seringkali bangun perisai atau berbagi, dengan susunan tulang daun yang menyirip atau menjari. Bangsa ini mencakup beberapa suku, diantaranya suku Araceae, suku Aracaceae (palmae), suku Cyclanthaceae dan suku Lemnaceae.

Gambar 6. 9 Acorus calamus

Sumber: Saxena Mamta, 2012

10) Bangsa Pandales

Bangsa ini terdiri atas terna, perdu atau pohon dengan daun pipih, bangun garis atau pita. Bunga berkelamin tunggal, buah menyerupai buah keras dan bijinya mempunyai endosperm. Bangsa ini mencakup beberapa suku, diantaranya suku Pandanaceae, suku Sparganiaceae, dan suku Typhaceae.

Gambar 6. 10 Pandanus tectorius

Sumber: Mulyani Rahayu, 2008

2. Kelas Magnoliopsida (Dikotil)

Tumbuhan yang tergolong kelas ini terdiri dari terna, semak atau pohon yang mempunyai sistem akar serabut, batang berkayu atau tidak, buku-buku atau ruasruas kebanyakan tanpak jelas. Daun kebanyakan tunggal, jarang majemuk, berulang sejajar atau bertulang melekung, duduknya berseling (membentuk rozet). Bunga berbilang tiga, kelopak kadang-kadang tidak dapat dibedakan dan merupakan tenda bunga dan buah dengan biji yang mempunyai endosperm.

Tumbuhan dari kelas *magnoliopsida* dibedakan ke dalam 3 anak kelas, yaitu Monochlamydaee (Apetala), Dyalypetalae, dan Sympetalae.

1) Monochlamydeae

Tumbuhan Monochlamydeae (Apetalae) kebanyakan berupa pohon, batangnya berkayu, bunga berkelamin tunggal, hiasan bunga tidak terdapat, jika ada hanya tunggal, oleh karena itu disebut Monochlamydeae, kata mono yang berarti satu atau tunggal dan chlamdos yang berarti mantel atau selubung. Hiasan bunga berupa kelopak dan jarang menyerupai mahkota, sehingga dinamakan juga Apetalae yang terdiri dari kata a yang berarti tidak atau tanpa dan petala yang berarti daun mahkota. Tumbuhan Monochlamydeae terdiri dari beberapa bangsa yaitu:

a) Bangsa Casuarinales

Bangsa Casuarinales hanya memiliki 1 suku, yaitu Casuarinaceacea, yang memiliki ciri umum batangnya berkayu (pohon) dengan cabang-cabang yang muda berwarna hijau dan habitusnya menyerupai Coniferinae.

Gambar 6. 11 Casuarina cunninghamiana

Sumber: Luke J, 2014

b) Bangsa Fagales

Bangsa Fagales meliputi tumbuhan-tumbuhan yang berbatang kayu, berumah satu dengan daun tunggal serta daun penumpu yang lekas runtuh. Bangsa ini terdiri dari dua suku, yaitu Betulaceae dan Fagaceae.

Gambar 6. 12 Castanopsis dongnaiensis

Sumber: Thanh son H, 2018

c) Bangsa Myricales

Bangsa myricales hanya terdiri dari 1 suku, yaitu Myricaceae yang meliputi tumbuhan semak atau pohon-pohon kecil dengan daun tunggal yang tersebar.

Gambar 6. 13Myrica esculenta

Sumber: Atul Kabra, 2019

d) Bangsa Juglandales

Bangsa ini hanya terdiri dari 1 suku, yaitu suku Juglandaceae dengan ciri berupa pohon-pohon dengan daun majemuk menyirip gasal yang tersebar atau berhadapan tanpa daun penumpu.

Gambar 6. 14 Juglans nigra

Sumber: John E. -

e) Bangsa Salicales

Bangsa hanya terdiri dari 1 suku, yaitu suku Salicaceae, yang merupakan tumbuhan yang berbatang kayu dengan daun-daun tunggal yang tersebar, dan mempunyai daun-daun penumpu

Gambar 6. 15 *Salix alba* Sumber: Mattew (2009)

f) Bangsa Piperales

Bangsa Piperales hanya terdiri dari 1 suku, yaitu suku Piperaceae yang merupakan tumbuhan berbatang basah atau perdu, seringkali memanjat dengan daun tunggal yang duduk daunnya tersebar atau berkerang.

Gambar 6. 16 *Piper nigrum L* Sumber: Winkanda, 2019.

g) Bangsa Urticales

Bangsa Urticales terdiri dari 3 suku, yaitu suku Moraceae yang terdiri dari pohon-pohon yang bergetah, dengan daun tunggal yang duduknya tersebar. Suku Ulmaceae yang merupakan pohon atau perdu yang tidak bergetah dengan daun tunggal, dan suku Cannabinaceae yang berupa tema yang berbau aromatis, tidak menghasil getah dengan daun tersebar atau berhadapan.

Gambar 6. 17 Ficus septica

Sumber: Winkarda, 2019

h) Bangsa Proteales

Bangsa ini hanya terdiri dari 1 suku, yaitu suku Proteaceae yang umumnya terdiri atas pohon-pohon atau perdu, jarang berupa terna dengan daun tunggal yang duduknya tersebar atau berhadapan.

Gambar 6. 18 Banksia solandri

Sumber: Dorlingk K, 2004

i) Bangsa Santalales

Bangsa Santalales terdiri atas tumbuh-tumbuhan berkayu atau terna yang sering dijumpai bersifat parasite dengan daun-daun tunggal yang tersebar atau berhadapan. Bangsa Santalales terdiri dari suku Santalaceae dan Loranthaceae.

Gambar 6. 19Lorantus spinosus

Sumber: Winkanda satria P, 2015

j) Bangsa Polygonales

Bangsa Polygonales hanya terdiri dari 1 suku, yaitu suku Polygonaceae yang berpa terna, perdu atau pohon dengan daun- daun yang tersebar dan memluk batang

Gambar 6. 20 Koenigia nepalensis0

Sumber: R.K. Choudhary, 212

2) Dyalypetalae

Dialypetalae meliputi terna, semak, dan pohonpohon yang ciri utamanya mempunyai bunga dan pada umumnya menunjukkan hiasan bunga ganda, jadi jelas dapat dibedakan dalam kelopak dan mahkota, sedangkan daun-daun mahkota bebas satu dari yang lain. Dyalypetalae terdiri dari berbagai bangsa, yaitu:

a) Bangsa Polycarpical

Bangsa ini sebagian besar terdiri atas tumbuhan dengan batang berkayu, dan sebagian kecil berupa terna. Ciri utama bangsa ini ialah terdapatnya daun buah yang bebas pada bunganya, sehingga dari satu bunga dapat terbentuk banyak buah. Bangsa

Polycarpical termasuk dalam sejumlah suku, diantaranya ialah suku Ranunculaeae atau Ranaceae, suku Lardizabalaceae, suku Berberiaceae, suku Menispermaceae, suku Magnoliaceae, suku Myristicaceae, dan suku Monimiaceae.

Gambar 6. 21 Tinospora crispa

Sumber: Winkanda Satria, ..

b) Bangsa Aristolochiales

Bangsa ini meliputi terna dengan daun-daun tunggal tanpa daun penumpu yang duduknya tersebar dan sebagian berupa parasit. Bangsa ini mempunyai beberapa suku, diantaranya suku Aristolochiaceae, suku Rafflesiaceae, dan suku Hydnoraceae

Gambar 6. 22Raflesia arnoldi

Sumber: Lily Turangan, 2004

c) Bangsa Rosales

Bangsa ini terdiri atas terna, semak, atau pohon dengan daun- daun tunggal atau majemuk yang duduknya tersebar atau berhadapan dengan atau tanpa daun penumpu. Bangsa ini terdiri dari beberapa suku, diantaranya suku Crassulaceae, suku Mimosaceae, suku Cephalotaceae, suku Pittosporaceae, suku Cunoniaceae, suku Fabaceae,dan suku Rosaceae.

Gambar 6. 23 Rosa hybrida

Sumber: Gembong, 1996

3) Sympetalae

Tumbuhan yang termasuk Sympetalae mempunyai ciri utama adanya bunga dengan hiasan bunga yang lengkap, terdiri atas kelopak dan mahkota dengan hiasan bunga lengkap, terdiri atas kelopak dan mahkota dengan daun mahkota yang berlekatan menjadi satu. Sympetalae terbagi dalam beberaoa bangsa, yaitu Plumbaginales, Primulales, Ebenales, Ericales, Ligustrales, Contortae, Tubiflorae, Rubiales, Cucurbitales, dan Campanulatae.

a) Bangsa Plumbaginales

Bangsa Plumbaginales berhabitus semak atau terna, kadang- kadang merupakan tumbuhan memanjat, dengan daun tunggal yang duduknya tersebar, tidak mempunyai daun penumpu. Bangsa ini hanya mencakup 1 suku saja, yaitu suku Plumbaginaceae

Gambar 6. 24 Plumbago auriculata

Sumber: Nidal Amin dkk, 2016

b) Bangsa Primulales

Bangsa Primulales habitusnya berupa terna, semak atau perdu dengan daun-daun tunggal tidak mempunyai daun penumpu. Bangsa ini mencakup beberapa suku, diantaranya suku Primulaceae dan suku Myrsinaceae.

Gambar 6. 25 Primula vulgaris

Sumber: Gembong Tjitrosoepomo, 1996

c) Bangsa Enebales

Bangsa ini terdiri atas tumbuhan berbatang berkayu, biasanya berupa pohon, daun tunggal yang duduknya tersebar. Bangsa ini mencakup beberapa suku, diantaranya suku Sapotaceae, suku Ebenaceae, suku Styracaceae, dan suku Symplocaceae.

Gambar 6. 26 Diospyros phengklaii

Sumber: Sutee Duangjai: 2018

BAB VII PTEREDOPHYTA

A. LATAR BELAKANG

paku Tumbuhan merupakan kelompok tumbuhan yang termasuk dalam divisi Pteriodophyta dan merupakan kelompok tumbuhan yang menempel pada pohon, kayumati, kayu lapuk,sersah, tanah, dan batuan.Di dalam kehidupannya, tumbuhan paku dipengaruhi oleh faktor lingkungan.Setiap jenistumbuhan paku memerlukan kondisi lingkungan abiotik untuk dapat hidup. Tumbuhan ini hidupsubur dan banyak dijumpai pada lingkungan yang lembab dan beriklim tropis.

Gambar 7. 1 Tumbuhan paku

Sumber: Wikipedia, 2021

Menurut Mitchell (1989: 56) mengatakan jenis tumbuhan yang dapat hidup sebagai epifitmencapai 30.000 jenis yang merupakan sekitar10% dari seluruh jenis tumbuhan berpembuluh dimuka bumi yang terbagi dalam 850 margadan 65 suku. Jumlah terbanyak dari suku Orchidaceaeyang mencakup 25 000 jenis, dari kelompok paku-pakuan terdapat 3000 jenis,dan kelas Dikotiledonae sekitar 3000 jenis,dan banyak lagi dari suku termasuk Gymnospermae.

Menurut Syamsiah (2009 : 34), identifikasi jenis paku-pakuan epifit pada berbagai jenispohon, tingkat pertumbuhan dan bagian-bagian pohon yang menjadi inang karenaketergantungannya pada kondisi iklim mikro tegakan hutan, menyebabkan keberadaan sejumlahkoloni paku-pakuan epifit hanya dapat dijumpai pada jenis pohon tertentu

B. PTEREDOPHYTA

Dunia tumbuhan secara umum dibagi mejadi 5 kelompok besar dalam divisio. Kelimadivisio tersebut dari yang paling sederhana keyang paling komplek yaitu Divisio Schyzophyta yaitu tumbuhan belah yangmenjadi anggota Schizophyta adalah semuatumbuhan yang cara reproduksinya denganmembelah diri, inti sel belum berdinding dansecara umum bersifat uniseluler. Contoh dari Diviso Schizophyta adalah bakteri dan alga biru. Divisio berikutnya adalah Divisio Thallophyta, yaitu kelompok tumbuhan yang dapat multiseluler ataupun uniseluler namun sudahmemiliki inti yang sesungguhnya. Contoh dari divisi Thallophyta adalah alga dan jamur.

Meningkat pada kelompok tumbuhan lain yang struktur akar dan batangnya belum ada, namunsel telah mengalami diferensiasi dan spesialisasi adalah kelompok Bryophyta. Pteridophyta adalah divisio yang semua anggotanya telah memiliki akar, batang dan daun yang sudah jelas.Perkembangbiakan secara generatif dilakukan dengan menggunakan spora.

Divisio tertinggi dalam dunia tumbuhan, adalah Divisio Spermatophyta. Divisio ini telahmemiliki biji untuk perkembangan biakan generatifnya. Divisi ada juga yang membaginyamenjadi 4 saja dikarenakan Divisio Schizophyta yaitu tumbuhan belah; karena memiliki ciri intisel belum berdinding maka dikelompokkan pada kelompok tersendiri di luar kelompoktumbuhan yaitu Kingdom Monera. Pada beberapa jenis paku yang hidup di tanah, batang tumbuhan paku sejajar dengan tanahKarena tumbuhnya menyerupai akar maka batang tersebut dinamakan rizoma. Batang iniseringtertutup oleh rambut atau sisik berfungsi sebagai pelindungnya.

Dari rizoma ini pula tumbuhakar-akar yangl embut. Daun paku ada yang berbentuk tunggal, majemuk ataupun menyiripganda. Helaian daun secara menyeluruh disebut ental, terkadang tumbuh dua macam ental, yaituyang subur dan mandul.

Pada ental yang subur tumbuh sporangia pada permukaan daun bagian bawah.Kumpulan dari sporangia disebut sorus sedangkan sekumpulan sorus itu sendiri disebutdengan sori. Spora terletak pada kotak spora (sporangium) dan tidak jarang sorus tersebutdilindungi oleh suatu lapisan penutup yang disebut indusium yang umumnya berbentuk ginjal.

C. CIRI-CIRI PTEREDOPHYTA

Gambar 7. 2 Tumbuhan Paku

Sumber: https://www.sridianti.com/ciri-ciri-tumbuhan-paku-pteridophyta.htmnl&tbnid

D.INTEGRASI RELIGI PTEREDOPHYTA

Al-Quran Surat Thoha ayat 53 yang berbunyi:

"Yang telah menjadikan bagimu bumi sebagai hamparan dan yang telahmenjadikan bagimu di bumi itu jalan-jalan, dan menurunkan dari langit air hujan. Maka Kami tumbuhkan dengan air hujan itu berjenis - jenis dari tumbuh-tumbuhan yangbermacam-macam." (Q.S Thoha 53:20)

Ayat tentang tumbuh-tumbuhan ini menjelaskan bahwa: Bahwa Allah telah menjadikan bagi kamu seluruh manusia sebagian besar bumi sebagai hamparan dan menjadikan sebagiankecil lainnya gunung-gunung untuk menjaga kestabilan bumi, dan Allah yang telahmenjadikan bagi kamu di bumi itu jalan-jalan yang mudah kamu tempuh, dan menurunkandari langit air hujan sehingga tercipta sungai-sungai dan danau, maka Kami tumbuhkan dengannya yakni dengan perantara hujan itu berjenis-jenis tumbuh-tumbuhan yang bermacam-macam Janis, bentuk, rasa, warna, dan manfaatnya.

Maksud dari Firman Allah SWT diatas adalah bentuk hidayah-Nya kepada manusia dan binatang guna memanfaatkan buah-buahan dan tumbuh-tumbuhan itu untuk kelanjutanhidupnya, sebagaimana Dia memberi hidayah kepada langit guna menurunkan hujan, untuktumbuh-tumbuhan agar tumbuh dan berkembang. Penumbuhan aneka tumbuhan dengan bermacam-macam jenis bentuk dan rasanya merupakan hal yang sungguh menakjubkan, danmembuktikan betapa agung Pencipta-Nya.

Al-Quran Surah Al-Hajj Ayat 5 yang berbunyi:

يَنَأَيُّهَا النَّاسُ إِن كُنتُمْ فِي رَبِّ مِنَ ٱلْبَعْثِ فَإِنَّا خَلَقَنْ كُمْ مِن تُرابِ ثُمَّ مِن نُطْفَةِ ثُمَّ مِنْ عَلَقَةِ فَكُمْ وَنُقِرُ فِي الْأَرْحَامِ مَانَشَآءُ إِلَىٰ أَجَلِ مُسَمَّى ثُمَّ تَغْرِجُكُمْ طِفْلًا ثُمَّ إِنَّ أَجُلِ مُسَمَّى فَيُونِ فَي مِنْ مُن يُنَوَقَ وَمِنْ مُمَّمَّ مَن يُرَوَقَ وَمِنْ مُمَّمَّ مِنْ يُرَوُنُ وَمِنْ مُكَمَّ طِفْلًا ثُمَّ إِنَّ الْفَرْمِ اللَّهُ مَن يُنَوَقَ وَمِنْ مَا مَن يُنَوَقَ وَمِنْ مُن مُن يُونُونَ وَمِنْ مَن يُنَوَقَ وَمِنْ مَا مِنْ اللَّهُ مُن يُونُ وَمِنْ مَا مِنْ المَّامِنَ مِنْ المَّامِ مِنْ المَّامِنَ مَن مُن يُنَوَقِ مَن مُن اللَّهُ مُن اللَّهُ مَن اللَّهُ مَن اللَّهُ مَن اللَّهُ مَا مَا مُن اللَّهُ مُنْ اللَّهُ مُن اللَّهُ مُنْ اللَّهُ مُن اللَّهُ مُن اللَّهُ مُن اللَّهُ مُن اللَّهُ مُن اللَّهُ مُنْ اللَّهُ مُن اللَّهُ مُنْ مُن اللَّهُ مُن اللَّهُ مُنْ اللَّهُ مُن اللَّهُ مُن اللَّهُ مُن اللَّهُ مُنْ اللَّهُ مُنْ اللَّهُ مُن اللَّهُ مُن اللَّهُ مُن اللَّهُ مُن اللَّهُ مُنْ اللَّهُ مُنْ مُنْ اللَّهُ مُنْ اللَّهُ مُنْ اللَّهُ مُن اللَّهُ مُن اللَّهُ مُنْ اللَّهُ مُن اللَّهُ مُن اللَّهُ مُن اللَّهُ مُن اللَّهُ مُنْ اللَّهُ مِنْ اللَّهُ مُنْ اللَّهُ مُن اللَّهُ مُنْ اللَّهُ مُن اللَّهُ اللَّهُ مُنْ اللَّهُ مُن اللَّهُ مُنْ اللَّهُ اللَّهُ مُن اللَّهُ مُن اللَّهُ مُن اللَّهُ مُنْ اللَّهُ مُنْ اللَّهُ مُنْ اللَّهُ مُنْ اللَّهُ مُن اللَّهُ مُن اللَّهُ مُن اللَّهُ مُن اللَّهُ مُن اللَّهُ مُنْ اللَّهُ مُن اللَّهُ مُنْ اللَّهُ

Atinya: Wahai manusia! Jika kamu meragukan (hari) kebangkitan, maka sesungguhnya Kami telah menjadikan kamu dari tanah, kemudian dari setetes mani, kemudian dari segumpal darah, kemudian dari segumpal daging yang sempurna kejadiannya dan yang tidak sempurna, agar Kami jelaskan kepada kamu; dan Kami tetapkan dalam rahim menurut kehendak Kami sampai waktu yang sudah ditentukan, kemudian Kami keluarkan kamu sebagai bayi, kemudian (dengan berangsur-angsur) kamu sampai kepada usia dewasa, dan di antara kamu ada yang diwafatkan dan (ada pula) di antara kamu yang dikembalikan sampai usia sangat tua (pikun), sehingga dia tidak mengetahui lagi sesuatu yang telah diketahuinya. Dan kamu lihat bumi ini kering, kemudian apabila telah Kami turunkan air (hujan) di atasnya, hiduplah bumi itu dan menjadi subur dan menumbuhkan berbagai jenis pasangan (tetumbuhan) yang indah (QS. Al- Hajj:5).

E. HABITAT, KANDUNGAN DAN MANFAAT PTEREDOPHYTA

1. HABITAT

Habitat tumbuhan paku adalah lingkungan yang

memiliki tingkat kelembaban tinggi. Wilayah dengan kondisi lingkungan seperti itu banyak ditemukan di hutan dataran rendah, lereng gunung, serta tepi pantai pada ketinggian kurang lebih 350 meter di atas permukaan laut.

Gambar 7. 3 Dunia Tumbuhan Paku

Sumber: Inseklopedia Bebas, 2021

Tumbuhan yang juga disebut Pteridophyta ini umumnya hidup secara sporofit, tetapi juga ada yang hidup secara epifit atau menempel pada bagian tubuh tumbuhan lain. Selain itu, meski menyukai lingkungan lembab tetapi kebanyakan tumbuhan paku bersifat terestrial atau mampu hidup di darat selama lingkungannya memadai.

Gambar 7. 4Tumbuhan Perintis

Sumber: Wikipedia, 2021

Bahkan ada beberapa spesies yang hidup di permukaan batu dan menempel di kulit batang pohon yang tidak begitu lembab. Tidak hanya itu, tanaman fotoautotrof ini juga ada yang memiliki kemampuan hidup terapung di permukaan air seperti spesies *Marsilea crenata* dan *Azolla pinnata*.

Menariknya, beberapa spesies paku juga sanggup bertahan hidup di lingkungan ekstrem dengan kondisi cuaca panas dan kering seperti di kawasan gurun pasir. Kemampuan ini bergantung pada tingkat ketahanan gametofit alami yang dimiliki oleh tumbuhan paku itu sendiri. Persebaran tumbuhan paku sangatlah luas dan hampir dapat dijumpai di seluruh belahan dunia, kecuali

wilayah yang memiliki salju abadi dan juga di laut lepas. Jadi meski dikenal sebagai tanaman sub-tropik dan tropik, pada dasarnya tumbuhan paku mempunyai kemampuan adaptasi yang sangat baik sehingga dapat hidup di berbagai kondisi

2. KANDUNGAN DAN MANFAAT

- a. Sebagai material bangunan: Selain kayu mahoni, kayu ulin, dan kayu jati, ternyata tumbuhan paku juga bisa digunakan untuk bahan bangunan. Jenis tanaman yang dipakai adalah pakis haji yang terkenal kuat dan memiliki struktur yang kokoh. Pakis haji dapat tumbuh hingga sepanjang 15m dan berbentuk bulat, tanpa cabang, kasar, serta berserabut.
- b. Sebagai obat-obatan: Ada beberapa jenis tumbuhan paku yang dapat dijadikan obat-obatan. Contohnya pakis haji yang dapat digunakan untuk membantu meringankan diare dan paku kawat untuk membantu mengobati penyakit kulit. Ada juga paku ekor kuda untuk membantu memperlancar buang air dan paku rane untuk membantu menyembuhkan luka karena terdapat kandungan antibiotik yang tinggi.
- c. Sebagai tanaman hias: Tentu saja tanaman paku cantik dijadikan tanaman hias. Untuk tanaman gantung di dalam dan di luar ruangan, Anda bisa memilih paku suplir yang memiliki daun berukuran kecil dan tumbuh pada tulang daun panjang. Tak hanya itu, paku tanduk rusa juga populer untuk dijadikan tanaman hias. Sesuai namanya, tanaman ini memiliki bentuk daun yang menjulur ke bawah menyerupai tanduk rusa. Biasanya paku tanduk rusa tumbuh menempel pada pohon lain

BAB VIII KLASIFIKASI TUMBUHAN (KEGIATAN LAPANGAN)

A. LATAR BELAKANG

Di dalam Al-aqur'an Surat Al-an'am ayat 99 Allah SWT berfirman:

وَهُوَ الَّذِى أَنزَلَ مِنَ السَّمَاءِ مَآءَ فَأَخْرَجْنَا بِهِ عَبَاتَ كُلِّ شَيْءٍ فَأَخْرَجْنَا بِهِ عَبَا مُن كُلِّ شَيْءٍ فَأَخْرَجْنَا مِنْ مُخَوْبِ الْمَنْ النَّخْلِ فَأَخْرَجْنَا مِنْ مُخَوْبِ الْمَنْ النَّخْلِ مِن طَلْعِهَا قِنْوَانُ دَانِيَةٌ وَجَنَّنتِ مِنْ أَعْنَابٍ وَالزَّيْتُونَ وَالرُّمَّانَ مُسْتَبِهًا وَغَيْرَ مُتَشَنِيةٍ الظُرُوا إِلَى ثَمَرِهِ إِذَا أَثْمَرَ وَيَنْعِهِ إِنَّ فِي فَرَائِكُمْ لَآيَا اللَّهُ مَرَهِ إِذَا أَثَمَرَ وَيَنْعِهِ إِنَّ فِي ذَلِكُمْ لَآيَاتِ لِقَوْمِ يُؤْمِنُونَ اللَّ

"Dan Dialah yang menurunkan air hujan dari langit, lalu kami tumbuhkan dengan air itu segala macam tumbuh-tumbuhan, maka Kami keluarkan dari tumbuh-tumbuhan itu tanaman yang menghijau, Kami keluarkan dari tanaman yang menghijau itu butir yang banyak; dan dari mayang kurma mengurai tangkai-tangkai yang menjulai, dan kebun-kebun anggur, dan (Kami keluarkan pula) zaitun dan delima yang serupa dan yang tidak serupa. Perhatikanlah buahnya di waktu pohonnya berbuah, dan (perhatikan pulalah) kematangannya. Sesungguhnya pada yang demikian itu ada tanda-tanda (kekuasaan

Allah) bagi orang-orang yang beriman."(Al-An'am 6: Ayat ke 99)

Dalam ayat tersebut Allah Menciptakan "Buahbuahan" yang beraneka ragam, mulai dari anggur, kurma, zaitu delima dan sebagainya. Dalam ayat tersebut Allah SWT menciptakan kebun-kebun anggur serta Allah memerintahkan kita untuk memperhatikan perbedaan Buah delima, anggur maupun zaitun, serta memerintahkan kita untuk berfikir bagaimana tingkat maupun perbedaan kematangan dari beraneka macam buah tersebut. Hal tersebut berarti terdapat perbedaan jenis/terdapat klas-klas yang berbeda diantara tumbuhan-tumbuhan tersebut.

Berkaitan dengan firman Allah tersebut maka pada praktikum Taksonomi Tumbuhan Tinggi ini, kita akan mengamati/mempelajari serta mengklasifikasikan Tumbuhan Biji serta kelompok tumbuhan lainnya.

Tumbuhan berbiji atau Spermatophyta (Yunani, sperma=biji, phyton=tumbuhan) merupakan kelompok tumbuhan yang memiliki ciri khas, yaitu adanya suatu organ yang berupa biji.

B. SPERMATOPHYTA

Biji merupakan bagian yang berasal dari bakal biji dan di dalamnya mengandung calon individu baru, yaitu lembaga. Lembaga akan terjadi setelah terjadi penyer bukan atau persarian yang diikuti oleh pembuahan.

Ciri tumbuhan berbiji meliputi ukuran, bentuk, struktur, dan fungsih tubuh.Ukuran dan bentuk tubuh Tumbuhan berbiji berukuran makroskopik dengan ketinggian yang sangat bervariasi.

Tumbuhan biji tertinggi berupa pohon dengan tinggi melebihi 100 m. masalnya pohon konifer Sequoiadendron giganteum d taman Nasional Yosemite California, dengan tinggi sekitar 115 m dan diameter batang sekitar 14 m. Habitus atau perawakan tumbuhan berbiji sangat bervariasi, yaitu Pohon, misalnya jati, duku, kelapa, beringin, cemara; Perduk, misalnya mawar, kembang merak, kembang sepatu; semak, misalnya arbei; dan Herba, misalnya sayur-sayuran, bunga lili, serta bunga krokot.

Tumbuhan berbiji merupakan heterospora. Tumbuhan berbiji membetuk struktur megasporangia dan mikrosporangia yang berkumpul pada suatu sumbuh pendek. Misalnya struktur seperti konus atau strobilus pada konifer dan bunga pada tumbuhan berbunga. Seperti halnya pada tumbuhan lain, spora pada tumbuhan berbiji dihasilkan melalui meiosis di dalam sporangia. Akan tetapi, pada tumbuhan berbiji, megaspora tidak dilepaskan melainkan dipertahankan.

Megasporangia mendukung perkembangan gametofit betina dan menyediakan makanan serta air. Gametofit betina akan tetap berada dalam sporangium, menjadi matang dan memlihara generasi sporofit berikutnya setelah terjadi pembuahan.

Pada mikrosporangium, produk meiosis berupa mikrospora. Mikrospora yang mencapai sporofit akan berkecambah membentuk serbuk sari yang tumbuh menuju kearah bakal biji untuk membuahi gametofit betina. Pada tumbuhan berbiji, istilah mikrospora merupakan serbuk sari, mikrosporangium merupakan kantung serbuk sari, dan mikrosporofil merupakan benagsari. Istilah megaspora merupakan kandung lembaga (kantung embrio), megasporangium merupakan bakal biji, dan megasporofil merupaka daun buah (karpela).

Tumbuhan berbiji kebanyakan hidup di darat. Namun, tumbuhan berbiji ada yang hidup mengapung di air, misalnya teratai. Tumbuhan berbiji merupakan tumbuhan fotoautotrof.

C. KLASIFIKASI GYMNOSPERMAE

Gymnospermae berasal dari bahasa Yunani yaitu, Gymno =terbuka atau telanjang dan sperma=biji. Anggota Gymnospermae memiliki ciri utama berupa bakal biji yang tumbuh pada permukaan megasporafil (daun buah). Tumbuhan ini memiliki habitus semak, perdu, atau pohon. Akarnya merupakan akar tunggang, batang tumbuhan tegak lurus dan bercabang-cabang.

Gymnospermae tidak memiliki bunga yang sesungguhnya, sporofil terpisah-pisah atau membentuk stabilus jantan dan strobilus betina. Umumnya berkelamin tunggal namun ada juga yang berkelamin dua. Penyerbukan pada gymnospermae hampir selalu dengan cara anemogami (bantuan angin).

Waktu penyerbukan sampai pembuahan relatif panjang. Gymnospermae dibagi menjadi empat klad, ada yang menjadikannya sebagai kelas, namun sekarang dianggap sebagai divisi tersendiri, yaitu:

1. Cycadophyta (sebagai kelas berakhiran -psida, sehingga menjadi Cycadopsida) Pakis haji (aji) atau populer dengan nama sikas adalah juga sekelompok tumbuhan berbiji terbuka yang tergabung dalam marga pakishaji atau Cwas dan juga merupakan satu-satunya genus dalam suku pakishajipakishajian (Cycadaceae). Masyarakat awam di Indonesia mengenal pakis haji dari beberapa spesies yang biasa ditanam di taman-taman menyerupaipalem, yaitu C. rumphii, C. javana, serta C.

revoluta (sikas Pakis jepang). haii berhabitus mirip palem, namun sebenarnya sangat jauh kekerabatannya. Kemiripan ini berasal dari susunan anak daunnya yang tersusun berpasangan. Semua pakis haji berumah dua (dioecious) sehingga terdapat tumbuhan jantan dan betina. Serbuk sari dihasilkan oleh tumbuhan jantan dari runjung besar yang tumbuh dari ujung batang. Alat betina mirip daun dengan biji-biji tumbuh dari samping. Alat betina tumbuh dari sela-sela ketiak daun. Walaupun ia disebut "pakis", dan daun mudanya juga mlungker sebagaimanapakis sejati, pakis haji sama sekali bukan anggota tumbuhan berspora tersebut. Akar beberapa jenis pakis haji dapat diinfeksi oleh sejenis Cyanobacteria, Anabaena cycadeae, yang pada gilirannya menguntungkan kedua pihak (simbiosis mutualistis). Akar yang terinfeksi akan membentuk semacam bintil-bintil yang berisi jasad renik tersebut. Beberapa pakis haji yang besar dapat bagian dimakan teras batangnya, karena mengandungpati dalam jumlah yang lumayan.

2. Pinophyta (Pinopsida) Tetumbuhan runjung atau Pinophyta, atau lebih dikenal dengan nama konifer (Coniferae), merupakan sekelompok tumbuhan

berbiji terbuka(Gymnospermae) dengan ciri yang paling jelas vaitu memiliki runjung("cone") sebagai pembawa biji. Kelompok ini dulu dalam klasifikasi berada pada takson"kelas" namun sekarang menjadi divisio tersendiri setelah diketahui bahwa pemisahan Gymnospermae dan Angiospermae secara kladistik adalah polifiletik. Kurang lebih ada 550 spesies anggota divisio ini, berbentuk berupa semak, perdu atau pohon. Kebanyakan anggotanya memiliki tajuk berbentuk kerucut dan memiliki daun memanjang (lanset) atau berbentuk jarum (sehingga dikenal juga sebagai tumbuhan berdaun jarum). Bentuk daun semacam ini dianggap sebagai adaptasi terhadap habitat hampir semua anggotanya yang banyak dijumpai di wilayah bersuhu relatif sejuk, seperti sekeliling kutub (circumpolar) atau di dataran tinggi.

3. Gnetophyta (Gnetopsida) Melinjo (*Gnetum gnemon* Linn.) atau dalam bahasa Sunda disebut Tangkil adalah suatu spesies tanaman berbiji terbuka (Gymnospermae) berbentuk pohon yang berasal dari Asiatropik, melanesia, dan Pasifik Barat. Melinjo dikenal pula dengan nama *belinjo*, *mlinjo*(bahasa Jawa), *tangkil* (bahasa Sunda) atau *bago* (bahasa Melayu dan

bahasa Tagalog), Khalet (Bahasa Kamboja). Melinjo banyak ditanam di pekarangan sebagai peneduh atau pembatas pekarangan dan terutama dimanfaatkan buah dan daunnya. Berbeda dengan anggota *Gnetum* lainnya yang biasanya merupakan liana, melinjo berbentuk pohon.

4. Ginkgophyta (Ginkgopsida)

Ginkgo (Gingko Biloba) merupakan spesies tunggal dari salah satu divisio anggota tumbuhan berbiji terbuka yang pernah tersebar luas di dunia. Pada masa kini tumbuhan ini diketahui hanya tumbuh liar di Asia Timur Laut, namun telah tersebar luas di berbagai tempat beriklim sedang lainnya sebagai pohon penghias taman atau pekarangan. Bentuk tumbuhan modern ini tidak banyak berubah dari fosil-fosilnya yang ditemukan.

D. ANTOPHYTA

Penyebutan kelompok ini sekarang lebih disukai menggunakan tumbuhan berbunga daripada tumbuhan berbiji tertutup. Pengelompokan klasik menjadi Dicotyledoneae (tumbuhan berkeping biji dua) dan Monocotyledoneae (tumbuhan berkeping biji tunggal) berdasarkan filogeni molekuler sekarang dianggap tidak valid karena kelompok yang pertama tidak holofiletik. Ke dalam

Anthophyta sekarang terdapat delapan kelompok besar yang perinciannya masih terus dikaji.

Ada beberapa cara mengklasifikasikan tumbuhan, berdasarkan:

a) Manfaat

Mengelompokkan nama-nama tumbuhan berdasarkan manfaatnya

- Tanaman Pangan, contohnya: Padi (Oriza sativa), Gandum (Dioscorea hispida), Ketela Pohon (Manihot uttilissima), Vanili (Vanilla planiflora Andr), Tebu (Saccharum officinarum L), Pandan (Pandanus tectorius), Kentang (Solanum tuberrosum)
- 2. Tanaman obat, contoh: jahe (Zingiber officinale), Kunyit (Curcuma domestica), Kencur, cengkeh
- 3. Tanaman Sandang, contoh: Kapas (Gossypium sp.), Kina
- 4. Tanaman Hias, contoh: Anggrek bulan (*Phalaenopsis ambilis Bl.*), Palem (*Palmae sp.*), Bugenvile (*Bougenvillea spectabilis*), rotan (*Calamus caesius Bl.*), Melati (*Jasminum sambac Ait.*), Pinang (*Areca catechu L.*)

b) Habitat

Klasifikasi tumbuhan berdasarkan habitatnya dibedakan menjadi beberapa kelompok:

- 1. Tumbuhan air, contoh: teratai (Nelumblum nelumbo Druce), eceng gondok (Kalanchoe pinnata Pers.), Hidrila (Hydrilla sp.)
- 2. Tumbuhan darat kering (Xerofit), contoh: kaktus (*Cactace Sp.*), Kurma
- 3. Tumbuhan menempel
 - a) Tumbuhan menempel pada tumbuhan lain tanpa merugikan tumbuhan yang ditumpanginya (epifit), contohnya: Anggrek, vanilli, tumbuhan paku.
 - b) Tumbuhan menempel pada tumbuhan lain dan menyerap zat makanan pada tumbuhan yang ditumpanginya (parasit), contoh: benalu, tali putri

Berdasarkan penampakannya, tumbuhan dibedakan menjadi:

- 1. Perdu : tumbuhan kayu yang tidak tinggi dan bercabang di atas permukaan tanah
- Pohon : tumbuhan kayu yang berukuran tinggi
- 3. Semak : perdu/pohon tumbuhan yang lebih rendah
- 4. Herba : tumbuhan yang tingginya dibawah 3 meter dan memiliki batang berair

5. Rerumputan : tumbuhan yang menutupi permukaan tanah

E. HERBARIUM

Herbarium berasal dari kata "hortus dan botanicus", artinya kebun botani yang dikeringkan. Secara sederhana yang dimaksud herbarium adalah koleksi spesimen yang telah dikeringkan, biasanya disusun berdasarkan sistim klasifikasi. Fungsi herbarium secara umum antara lain:

- Sebagai pusat referensi; merupakan sumber utama untuk identifikasi tumbuhan bagi para ahli taksonomi, ekologi, petugas yang menangani jenis tumbuhan langka, pecinta alam, para petugas yang bergerak dalam konservasi alam.
- 2. Sebagai lembaga dokumentasi; merupakan koleksi yang mempunyai nilai sejarah, seperti tipe dari taksa baru, contoh penemuan baru, tumbuhan yang mempunyai nilai ekonomi dan lainlain.
- 3. Sebagai pusat penyimpanan data; ahli kimia memanfaatkannya untuk mempelajari alkaloid, ahli farmasi menggunakan untuk mencari bahan ramuan untuk obat kanker, dan sebagainya.

Herbarium juga merupakan kumpulan tumbuhan kering yang dipres dan ditempelkan pada lembaran kertas, biasanya kertas manila yang menghasilkan suatu label dan data yang rinci serta disipan dalam rak-rak atau lemari besi dalam urutan menurut aturan dimana herbarium itu disimpan.

Herbarium sangat penting untuk digunakan dalam pekerjaan taksonomi. Herbarium terdiri dari koleksi kering dan koleksi basah. Koleksi basah tidak dipres dan merupakan specimen-spesimen hidup yang dipelihara specimen digunakan dengan baik. Tiap-tiap untuk specimen-spesimen baru mengidentifikasi vang tidak diketahui namanya. Prosesnya dengan cara membandingkan antara tanaman yang ingin diketahui namanya dengan specimen yang suda diketahui namanya yang ada pada penyimpanan herbarium untuk tempat-tempat atau mempelajari morfologi paku (serbuk sari).

Indonesia memiliki banyak kebun-kebun botani seperti yang ada di kebun raya Bogor, kebun Cibodas, Kebun Raya Purwodadi, kebun raya, dan Kebun Raya Bali maupun yang ada di Riau,Nusa Tenggara dan Kalimantan. akhir-kahir ini kebun raya mengarah ke penelitian-penelitian yang cenderung berhubungan dengan material hidup. Untuk alasan ini kebun-kebun botani (kebun raya) bahkan lebih berguna daripada herbarium. Tetapi manfaat herbarium ini dapat dipertimbangkan pula.

Kebun botani memiliki empat kegunaan utama yaitu:

- 1. Proyek riset taksonomi
- 2. Tempat pendidikan
- 3. Persediaan material
- 4. Perlindungan

Sebuah herbarium dapat memberikan empat layanan utama yaitu:

- 1. Mengidentifikasi bahan percobaan
- 2. Dasar untuk penelitian dan persiapan flora, monogafi dan revisi
- 3. Pengajaran
- 4. Pengamatan bahan bukti percobaan Kegiatan botani sistematika pada awalnya meneliti tumbuhantumbuhan yang termasuk herba.

Herba merupakan tumbuhan yang berbatang rendah dekat dengan permukaan tanah, lunak, berair, dan jaringan kayunya sangat sedikit. Kegiatan ini bertujuan untuk pengobatan.

Istilah herbarium dipakai oleh Linnaeus sedang sebelumnya dipakai oleh Hortus Siccus, Hortus Mortus dan istilah-istilah yang lain. Pengaruh Linnaeus ini mempunyai arti sebagaimana yang dipergunakan orang sampai saat ini. Dengan ditemukan cara pengepresan, pengeringan, dan pengawetan specimen tumbuhan, sehingga memungkinkan untuk disimpan dalam waktu yang lamaHerbarium tidak

hanya sekedar specimen tumbuhan yang diawetkan, namun dapat digunakan sebagai kegioatan botani lainnya seperti sebagi sumber dasar untuk ahli taksonomi dan ilmu lain yang memerlukan informasi dasar. Herbarium adalah suatu museum sehingga dapat digunakan sebagai pusat penelitian, pengajaran dan pusat infornasi untuk masyarakat umum. Specimen-spesimen herbarium ini dapat emmberikan macam-macam informasi, namun tergantung kelengkapan data dan asal usul materialnya.

Peralatan Dan Bahan Yang Digunakan Untuk Pembuatan Herbarium

- 1. Gunting untuk tanaman
- 2. Pisau
- 3. Garpu tanah atau cetok
- 4. Kantung plastic bermacam ukuran
- 5. Buku kecil untuk catatan lapangan
- 6. Label
- 7. Etiket gantung
- 8. Pensil hitam
- 9. Spidol
- 10. Kaca pembesar
- 11. Altimeter
- 12. Kertas herbarium ukuran 29cmx 43cm
- 13. Pengepres (sasah)

- 14. Kertas Koran
- 15. Formaldehid 4%
- 16. Etil alcohol 70%
- 17. Sublimat
- 18. Asam cuka
- 19. Kupri sulfat
- 20. Akuades

Cara Mengoleksi

Cara koleksi tumbuhan-tumbuhan yang memiliki perawakan kecil seperti herba atau semak dapat dikoleksi secara menyeluh. Sedangkan cara mengoleksi pohon-pohon yang tinggi, liana dan epifit yakni dengan mengumpulkan apa saja yang dimiliki oleh tanaman tersebut yang diseleksi tanpa merusak tanaman tersebut. Pada pengoleksian idealnya harus berisi semua bagian tanaman seperti akar, batang, daun, buah, biji dan sebagainya.

Dalam pengumpulan tumbuhan dilapangan harus memperhatikan hal-hal berikut:

a. Tumbuhan yang dibuat herbarim diusahakan selengkap mungkin dan terutama tumbuhan yang sedang berbunga atau yang sedang berbuah. Kumpulkan tanaman dari lapangan kedalan vaskulum atau masukkan diantara kertas koran.

- Tumbuhan diberi etiket gantung dan diberi nomor urut, nama singkatan kolektor, tanggal pengambilan.
- c. Pada buku koleksi dibuat catatan yang datanya tidak terbawapada specimen yag diambil : tempat tumbuh, tinggi tempat, keadaan lingkungan, warna, bau, bagian-bagian dalam tumbuhan (besar populasi), dan lain-lain.

Pengeringan dan Pengawetan

a. Pengerigan Pengeringan dan pengawetan bertujuan untuk mencegah kerusakan yang disebabkan oleh serangga. Pengeringan dan pengawetan specimen dapat dilakukan dengan beberapa cara : oven, pengarangan lampu, diberi bahan kimia atau pengeringan dengan sinar matahari.

b. Pengawetan

1. Dilapangan

- a. Menggunakan formaldehid (8%)
 - Ambil botol plastic polietena yang mempunyai ukuran 2,5l .
 - Timbang 250 gr paraformaldehid, tambah 2 sdt heksamin masukkan dalam botol plastic.

- 3) Tambah air mendidih sampai botol penuh.
- 4) Biarkan larutan itu selama semalam hingga menjadi formaldehid 8%.

b. Etil alcohol 75%

- 2. Di tempat penyimpanan Insektisida yang digunakan selama penyimpanan:
 - Kontak: gas sianida,
 paradichlorobenzena (PBD), dan
 karbon sulfide.
 - b. Digestive: garam merkuri dan merkuri klorida.
- 3. Pengawetan herbarium kering Bahan yang sudah dikeringkan dicelup pada campuran 1000cc alcohol dan 40gr sublimat hingga basah seluruhnya. Kemudian keringkan lagi hingga kering betul.
- 4. Pengawetan herbarium basah Tumbuhan dicuci hungga bersih dan masukkan dalam bahan yang terdiri atas campuran 1000cc air suling, 25cc formalin, 1cc asam cuka, dan 15cc merkuri sulfat.

c. Label

Buku catatan di lapangan digunakan untuk mengisi label yang digunakan pada specimen herbarium meliputi :

- 1. Nomor koleksi
- 2. Nomor specimen
- 3. Suku
- 4. Lokasi
- 5. Ketinggian
- 6. Tanggal
- 7. Habitat : meliputi topografi, tanah, air, dan tipe vegetasi.
- 8. Nama daerah

Spesimen

Specimen herbarium ditempatkan pada tempat penyimpanan specimen berupa almari atau rak herbarium dari besi. Penempatan specimen harus sesuai dengan abjad suku dan menurut klasifikasi yang ada. Klasifikasi itu diantaranya menurut Bessey, Bentham, Hooker atau ahli lain.

Koleksi Khusus

Selain koleksi umum herbarium juga mempunyai koleksi khusus yaitu seperti koleksi tipe, koleksi sinoptik untuk pengajaran edentifikasi, koleksi sejarah dan koleksi hadiah atau koleksi pInjaman.

Cara Koleksi Tumbuhan Palmae

- 1. Kesulitan yang dihadapi dalam mengoleksi tumbuhan palmae
 - a. Ukurannya besar Palmae memiliki ukuran yang besar sehingga tidak dapat dikoleksi secara utuh. Hanya jenis-jenis palmae ukuran kecil yang dapat dikoleksi secara utuh.
 - b. Memerlukan jangka waktu yang lamaKolek si tanaman palmae memerlukan waktu yang lama, sebab umbuhan ini perkembangan alat reproduksinya lama, sehingga dalam mengambil tahap-tahap reproduksinya memerlukan waktu yang lama.
 - c. Sebagian berumah dua Sebagian palmae berumah dua sehingga kia memerlukan dua individu yaitu tumbuhan jantan dan tumbuhan betina.
 - d. Kadang memerlukan perijinan Kadangkadang palem liar yang akan kita koleksi mempunyai nilai ekonomi bagi penduduk, sehingga perlu ijin atau perlu pembayaran.
 - e. Perlu pemotretan Karena keterbatasan waktu untuk mengambil koleksi, sehingga perlu pemotretan-pemotretan.

Hal-hal yang perlu diperhatikan dalam pemotretan :

- 1. Soliter atau kluster
- 2. Bunga tegak atau menggantung
- 3. Bersihkan vegetasi sekitar (kalau perlu)
- 4. Untuk tumbuhan yang berumah dua perlu diambil tumbuhan jantan dan betina.
- Perlu gambar-gambar dengan lensa close up (mahkot kecil, permukaan batang, dan lainlain.

2. Bagian-bagian yang akan dijadika herbarium

- Daun menyirip : ujung daun, rakhis, dan jarak rakhis (dicatat).
- b. Daun palma atau Costopalma keseluruhan daun yang berbentuk kipas:
 - 1) Kecil (seluruhnya)
 - 2) Besar (separuh dapat dibuang)
 - Sebagian yang menghubungkan helaian daun dan tangkai daun dibuat beberapa daun

c. Batang

 Palem yang tidak terlalu besar (separuh batang tua) Besar (buat potongan melintang) perhatikan ada tidaknya duri, bekasbekas melekatnya daun dan lainnya.

d. Rangkaian bunga

Hal-hal yang perlu diperhatikan adalah:

- 1) Aksis rangkaian bunga msih utuh
- Bunga masih utuh dengan cabang lateral
- 3) Rangkaian bunga
- e. Braktea Braktea perlu dikoleksi secara utuh
- f. Bunga Karena bunga jantan mudah luruh maka perlu dimasukkan ke amplop. Perlu juga dicatat mengenai distribusi bunga secara keseluruhan, possisi rachis terhadap keseluruhan bunga. Bunga yang masih melekat perlu diawetkan.
- g. Buah dan biji Sebagian diawetkan basah sebagian diawetkan kering
- h. Kecambah Koleksi satu seri stadium perkembangan

Cara Koleksi Tanaman Pisang

Beberapa hal yang perlu diperhatikan:

 Catat data-data lingkungan (tempat dan lainlain)

- 2. Batang semu: warna, lapisan lilin, tinggi, dan diameter
- Daun: tegak/menyebar, panjang/lebar, warna, lapisan lilin pada tangkai daun, dan tepi tangkai daun.
- 4. Tandan buah: tegak/menggantung, jarak sisir yang satu dengan yang lain, dan jumlah.
- 5. Buah: melengkung ke atas atau melengkung ke bawah, panjang, diameter, warna sebelum dan sesudah masak.
- 6. Rakhis: batang dari tandan buah di bagian terminal memanjang sesudah buah-buah terbentuk.
- 7. Jantung pisang: bentuk dan warna
- 8. Braktea: posisi, warna permukaan
- 9. Bunga
- 10. Foto tumbuhan keseluruhan

Cara Koleksi Tumbuhan Paku

- 1. Ambil tumbuhan fertile
- 2. Bila ukuran kecil ambil seluruhnya
- 3. Bila besar:
 - a. Tangkai bagian basal tumbuhan termasuk batang, tempat melekatnya dan bagian ujung
 - b. Lamina (bika besar ambil bawah, tengah, ujung)

- c. Sisik dari tangkai ental yang mudah lepas perlu dijaga.
- 4. Apabila sori hanya muncul pada satu bagian daun ental sebaiknya seluruhnya diambil
- Apabila spora dihasilkan oleh ental berbeda, ental fertile dan steril diambil.
 Yang umum diperhatikan adalah :
 - a. Batang/rimpang : ukuran, bentuk, permukaan, susunan berkas pengangkut
 - b. Tangkai : susunan berkas pengangkut, permukaan
 - c. Ental : bentuk seluruhnya, tepi dan vena, sori, letak, bentuk, susunan

Cara Membuat Herbarim Tanaman Air

- 1. Diapungkam dalam air
- Tempelkan kertas karton manila putih yang dialasi lempeng aluminium berlubang.
- Diatur dari air dan dibiarkan air mengalir pelanpelan
- 4. Angkat dari air, tiriskan agar air berkurang
- 5. Tutup dengan kain belacu putih dengan ukuran sama

Penggunaan Spesimen

Yang perlu diperhatikan dalam penggunaan specimen:

- 1. Selalu dalam keadaan rata atau datar.
- 2. Pada saat mengambil herbarium dengan kedua tangan dan diberi alas karton.
- Pada saat mengambil specimen jangan terlalu banyak
- 4. Penyimpanan khusus di rak atau lemari
- 5. Jangan ditindih dengan barang yang lain
- Apabila ada bagian specimen yang lepas, masukkan dalam amplop dan tempatkan pada specimen semula.
- 7. Apabila ada specimen yang rusak sebaiknya disendirikan untuk diperbaiki
- 8. Tidak diperbolehkan mencoret-coret herbarium Cara Mengkoleksi Tumbuhan

Persiapan koleksi yang baik di lapangan merupakan aspek penting dalam praktek pembuatan herbarium. Spesimen herbarium yang baik harus memberikan informasi terbaik mengenai tumbuhan tersebut kepada para peneliti. Dengan kata lain, suatu koleksi tumbuhan harus mempunyai seluruh bagian tumbuhan dan harus ada keterangan yang memberikan seluruh informasi yang tidak nampak pada spesimen herbarium. Hal-hal yang perlu

diperhatikan dalam mengkoleksi tumbuhan antara lain:

a) Perlengkapan Beberapa perlengkapan yang diperlukan untuk mengkoleksi tumbuhan di lapangan antara lain: gunting tanaman, buku catatan, label, pensil, lensa tangan, Koran bekas, penekan/penghimpit, tali pengikat, vasculum, kantong plastik, alkohol, kantong kertas (untuk cryptogamae, buah dan biji), peta, kamera dan sebagainya.

b) Apa yang dikoleksi:

- 1. Tumbuhan kecil harus dikoleksi seluruh organnya
- 2. Tumbuhan besar atau pohon, dikoleksi sebagian cabangnya dengan panjang 30-40 cm yang mempunyai organ lengkap: daun (minimal punya 3 daun untuk melihat phylotaksis), bunga dan buah, diambil dari satu tumbuhan. Untuk pohon yang sangat tinggi, pengambilan organ generatifnya bisa dilakukan dengan galah, ketapel atau menggunakan hewan, misalnya beruk.

- 3. Untuk pohon atau perdu kadang-kadang penting untuk mengkoleksi kuncup (daun baru) karena kadang-kadang stipulanya mudah gugur dan brakhtea sering ditemukan hanya pada bagian-bagian yang muda.
- Tumbuhan herba dikoleksi seluruh organnya kecuali untuk herba besar seperti Araceae.
- Koleksi tumbuhan hidup; dianjurkan untuk ditanam di kebun botani dan rumah kaca.
- c) Catatan lapangan; Catatan lapangan segera dibuat setelah mengkoleksi tumbuhan, berisi keterangan-keterangan tentang ciri-ciri tumbuhan tersebut yang tidak terlihat setelah spesimen kering. Beberapa keterangan yang harus dicantumkan antara lain: lokasi, habitat, habit, warna (bunga, buah), bau, pemanfaatan secara lokal, nama daerah dan sebagainya.
- d) Pengeringan specimen: Setelah dilabel (etiket gantung) koleksi dimasukkan ke dalam lipatan kertas Koran kemudian dimasukkan ke kantong plastik disiram dengan alkohol 70 % hingga basah

kemudian dikeringkan. Pengeringan dapat dilakukan dengan beberapa cara yaitu: panas matahari, menggunakan kayu bakar, arang dan dengan listrik.

e) Proses pengeringan:

- 1. 5-10 spesimen diapit dengan penekan atau sasak ukuran 45 x 35 cm. Untuk specimen yang banyak, bisa digunakan karton atau aluminium berombak/beralur untuk mengapit specimen sehingga tidak perlu mengganti-ganti kertas Koran, diletakkan vertikal.
- Buah-buah besar dipisah, dimasukkan ke dalam kantong, beri label dan keringkan terpisah.
- 3. Tumbuhan yang sangat lunak dimasukkan ke dalam air mendidih beberapa menit untuk membunuh jaringan dan mempercepat pengeringan.
- 4. Dibalik-balik secara teratur, kertas diganti beberapa kali terutama hari pertama, kalau specimen sudah kaku lebih ditekan lagi 1,5-2 hari specimen akan kering

f) Pembuatan herbarium

- Mounting Spesimen yang sudah kering dijahit atau dilem di atas kertas karton
 - a. Gunakan kertas yang kuat atau tidak cepat rusak dan kaku, ukuran 29 x 43 cm
 - b. Untuk tumbuhan Palmae atau tumbuhan lain yang organnya besar, 1 spesimen dimounting pada beberapa lembar kertas.

2. Labeling

- a. Label yang berisi keteranganketerangan tentang tumbuhan tersebut diletakkan di sudut kiri bawah atau sudut kanan bawah
- Spesimen dipisahkan sesuai dengan kelompoknya kemudian diidentifikasi
- c. Dianjurkan membuat lembar label kosong untuk kemungkinan perubahan nama.
- Pengasapan dan peracunan (Fumigasi),
 Sebelum memasukkan spesimen ke herbarium terlebih dahulu harus diasap

dengan carbon bisulfida dalam ruangan tertentu. Metode lain dapat dilakukan dengan menambahkan kristal paradiklorobenzen. Umumnya herbarium-herbarium melakukan fumigasi dengan interval 1, 2, 3 tahun. Umumnya spesimen disusun ke dalam kotak atau lemari khusus berdasarkan alphabet

A. Tujuan Praktikum

- Mengenal dan mempelajari jenis tumbuhan yang ada disekitar kita baik Angiospermae maupun gymnospermae
- Mengetahui bagian-bagian dari klasifikasi tumbuhan tersebut dengan membuat skema herbarium

B. Alat dan Bahan

- Tumbuhan Tingkat tinggi baik angiospermae maupun gymnospermae
- 2) Air untuk mencuci tanaman
- 3) Bamboo untuk membuat sasak
- 4) Kertas Koran sebagai alas dan pembatas tanaman yang akan dikeringkan
- 5) Tali raffia untuk mengikat sasak

- 6) Benang kasur untuk menggantung label atau etiket
- 7) Plester bening
- 8) Kertas manila A3 atau gabus sebagai tempat menempelkan tanaman yang sudah kering
- 9) Plastic bening sebagai penutup tanaman

C. Cara kerja

- Buatlah sasak terlebih dahulu dengan bahan bamboo yang disisik tipis
- Buatlah etiket gantung dari kertas manila dan buatlah lubang di sudut kiri atas dari etiket, tulislah nomor koleksi, nama spesies, dan tanggal pengambilan tanaman tersebut
- Pilihlah tanaman yang masih bagus dan mempunyai bagian tanaman yang lengkap misalnya akar, batang, daun, bungan, biji atau yang paling tidak ada akar, batang, daun dan bunga
- 4. Cabutlah tanaman tersebut dengan berhatihati agar bagian tanaman tersebut khususnya akarnya tidak rusak
- Cucilah tanaman tersebut sampai bersih selanjutnya tanaman dikeringkan beberapa saat

- 6. Berilah etiket gantung pada setiap tanaman dengan bantuan benang kasur
- 7. Tatalah tanaman tersebut di atas sasak dengan dilapisi Koran sebagai pembatas antara tanaman yang stau dengan tanaman yang lainnya.
- Setelah tanaman ditata dengan rapi utuplah dengan sasak yang satunya kemudian ikatlah dengan tali raffia
- Jemurlah sasak yang berisi tanaman-tanaman tersebut ditempat yang tidak terkena sinar matahari langsung hingga kering
- 10. Setelah tanaman kering, tempellah tanaman tersebut dikertas manila dengan bantuan plester bening (Selotip)

Setelah tanaman ditempel, isilah *field book* dalam bentuk kolom.

DAFTAR PUSTAKA

- AL- Qur'an Surah ar-Ra'd (13): 3
- Al-Qur'an Surah Al-Zumar [39] ayat 21.
- Cambell, Neil A. 2008. *Biologi Edisi 8 Jilid 2*. Jakarta: Erlangga. Hlm.186. Campbell, Neil. A.& Jane B. Reece. 2008. Biologi. Jakarta: Erlangga
- Diah Aryulita, 2004. *Intisari Biologi*. Jakarta: PT. Gelora Aksara Pratama
- Falahuddin,Irham.dkk.2014.BiologiDasar.Palembang:Excellent Publishing Palembang
- Gembong Tjitrosoepomo. 2002. *Taksonomi Tumbuhan* Spermatophyta). Yogyakarta: Gadjah Mada Universitas Press.
- Hasanuddin,2006. *Taksonomi Tumbuhan Tinggi*, Banda Aceh: Universitas Syiah Kuala.
- Hisan Thalbah. 2008. Ensiklopedia Mukjizat Al-Qur'an dan Hadist mukjizatan Penciptaan Tumbuhan. Bekasi: P.T Sapta Sentosa

http://www.wikipedia.com/ https://aslam02.wordpress.com/materi/kelas-x-2/kingdom-plantae/tumbuhan-berbiji- spermatophyta/

Iin Hasim S, 2009. Tanaman Hias Indonesia. Jakarta:

- Penebar Swadaya.
- Keanekaragaman Jenis Tumbuhan Angiospermae di Kebun Biologi Desa Seungko Mulat, *Jurnal Bioma*, Vol. 2, No. 1
- Kindersley, A Dorling. 2007. Ensiklopedia Sains dan Teknologi. Jakarta: Lentera Abadi. hlm.25.
- Moertolo, Ali *dkk.* 1999. *Keanekaragaman Tumbuhan*. Malang: Universitas NegeriMalang Press. hlm.78
- Musa yunnanensis. Novon: Jurnal *Untuk Nomenklatur Botani* St. Louis, Mo. 17: 441-442, f. 1 & 2. 2007
- Nurmy, *Gymnospermae*. Diakses pada tanggal 25 November 2015 dari situs:http://nurmy.staff.fkip.uns.ac.id/tag/gymno spermae/.
- Polunin N. 1980. Pengantar Geografi Tumbuhan dan Ilmu Serumpun. Yogyakarta: Gadjah Mada Universitas Press
- Rikky Firmansyah, Agus Mawardi, M. Umar Riandi. 2001. *Mudah dan Aktif Belajar Biologi*, Jakarta: PT. Setia Purna.
- Setiawan Dalimartha. 2008. *Atlas Tumbuhan Obat Indonesia*. Jakarta: Pustaka Bunda
- Steals, Bayu.2011. Makalah: Pengenalan Tumbuhan Angiospermae (online)

- Syamsuri, Istamar *Dkk*. 2006. *Biologi Jilid 1b*. Jakarta: Erlangga. hlm.47-48.
- Tjitrosoepomo Gembong.2013. *TaksonomiTumbuhan* (Spermatophyte). Yogyakarta: Gadjah Mada University Press. hlm.1
- Tjitrosomo, Siti Sutarmi. 1983. *Botani Umum 1*. Bandung: Angkasa. hlm.1
- Wijana, Nyoman. 2014. *Biologi Dan Lingkungan*. Yogyakarta: Plantaxia. hlm.128

DAFTAR ISTILAH (Glosarium)

No.	Terminologi & Nama Latin	Keterangan
1.	Alium cepa	Bawang Merah
2.	Alium sativum	Bawang Putih
3.	Allamanda cathartica	Bunga Alamanda
4.	Alpinia galanga	Laos
5.	Amaranthus spinosus	Bayam Duri
6.	Amorphpophallus titanium	Bunga Bangkai
7.	Ananas comosus	Buah Nanas
8.	Angiospermae	Biji Tertutup
9.	Annona squamosa	Buah Srikaya
10.	Anthophyta	Tumbuhan Berbunga
11.	Averrho bilimbi	Belimbing Wuluh atau Bulok
12.	Averrhoa carambola	Buah Belimbing
13.	Caesalpinia pulcherrima	Bunga Merak
14.	Carpela	Daun Buah
15.	Casuarina equisetifolia	Pohon Cemara
16.	Celosia Argentae	Bunga Jengger Ayam
17.	Citrus aurantiifolia	Jeruk Nipis
18.	Cocos nucifera	Pohon Kelapa
19.	Cone	Runjung
20.	Curcuma longa	Kunyit
21.	Cymbopogon citratus	Serai
22.	Dicotyledoneae	Tumbuhan Berkeping Biji Dua
23.	Dioecius	Berumah Dua

24.	Epifit	Tumbuhan Menempel
25.	Ficus benjamin	Pohon Beringin
26.	Filogeni	Hubungan antar
		kelompok organisme yang
		didasarkan atas proses
		evolusi yang
		mendasarinya.
27.	Fosil	Sisa, jejak, atau bekas
		binatang maupun
		tumbuhan masa
		lalu yang terawetkan di
		dalam Bumi.
28.	Fotoautotrof	Organisme yang dapat
		menggunakan sumber
		energi cahaya untuk
		membuat makanannya
		sendiri.
29.	Gamet	Sel Kelamin
30.	Gametofit	Fase tumbuhan
30.		menghasilkan gamet
31.	Genetum genemon	Buah Melinjo
32.	Gingko biloba	Ginkgo
33.	Gymnospermae	Biji Terbuka
34.	Hibiscus Rosasinensis	Bunga Sepatu
35.	Higrofit	Tumbuhan Air
36.	Hydrilla sp.	Hidrila
37.	Imperata cylindrica	Ilalang
38.	Jasminum sambic	Melati Putih
39.	Kalanchoe pinnuta	Cocor Bebek
40.	Klasifikasi	Pengelompokan
41.	Lansium domesticum	Buah Duku

42.	Megasporangium	Tempat pembentukan sel
		kelamin betina
		(megaspore)
43.	Meosis	Pembelahan Sel Kelamin
44.	Michelia alba	Cempaka Putih
45.	Mikrosporangium	Tempat pembentukan sel
		kelamin jantan
		(mikrospora)
46.	Mimosa pudica	Putri Malu
47.	Monocotyledoneae	Tumbuhan Berkeping Biji
47.		Satu
48.	Monoiseus	Berumah Satu
49.	Monstera deliciosa	Monstera
50.	Morus indica L.	Buah Arbei
51.	Muntingia calabura	Kersen
52.	Nelumblum nelumbo	Teratai
53.	Oleh europaea	Buah Zaitun
54.	Oryza sativa	Padi
55.	Pennisetum purpureum	Rumput Gajah
56.	Peperomia pellucida	Sirih Cina
57.	Phoenix dactylifera L.	Buah Kurma
58.	Phyllanthus acidus	Ceremai
59.	Phyllanthus urinaria	Meniran
60.	Piper betle	Daun Sirih
61.	Portulaca grandiflora	Bunga Krokot
62.	Psidium guajava	Jambu Biji
63.	Punica granatum	Buah Delima
64.	Rosa canina	Bunga Mawar
65.	Saccharum officinarum	Tebu
66.	Sidaguri rhombifolia	Sidaguri
67.	Spodias dulcis	Buah Kedondong

68.	Spora	Agen reproduksi
		vegetative pada
		tumbuhan.
69.	Strobilus atau Konus	Organ reproduksi pada
		tumbuhan gymnospermae
		berisi sporangia
70.	Swietenia mahagoni	Pohon Mahoni
71.	Tectona grandis	Pohon Jati
72.	Theobroma cacao	Buah Coklat
73.	Virus vinifera	Buah Anggur
74.	Xerofit	Tumbuhan Darat Kering
75.	Zea mays	Jagung
76.	Zingiber officinale	Jahe

SURAT PERNYATAAN (KOMPETISI PENULISAN BUKU REFERENSI)

Yang bertanda tangan di bawah ini,

Nama : Nurdiana.SP.,MP.

NIP/NIDN : 196505302005012001

Pangkat Gol/Ruang : Penata TK 1 (III/d)

Jabatan Fungsional : Lektor

Alamat : Jln. Anyelir No. 18 Kota Mataram

HP/Email : 082236848810/nurdiana@uinmataram.ac.id

Menyatakan bahwa,

Buku yang berjudul: Taksonomi Tumbuhan Tinggi
Belum pernah diterbitkan dan bebas dari plagiat, serta apabila pernyataan ini terbukti benar
maka saya bersedia menerima sanksi sesuai ketentuan yang berlaku.

2. Saya bersedia menuntaskan naskah buku sesuai jadwal panitia.

Demikian surat pernyataan ini saya buat untuk dipergunakan sebagaimana mestinya.

Mengetahui

196812311993032008

Mataram, 10 Juni 2021 Yang membuat pernyataan, Penulis

Nurdiana, SP., MP

NIP. 196505302005012001

CV (BIODATA DIRI) PENULIS KOMPETISI BUKU REFERENSI FTK UIN MATARAM TAHUN 2021

Nama	:	Nurdiana.SP.,MP.
NIP/NIDN	:	196505302005012001
Tempat/Tanggal Lahir	:	Mataram 30 Mei 1969
Gol/Ruang	:	IIId
Jabatan Fungsional	:	Lektor
Alamat	:	Jin. Anyelir No. 18 Kota Mataram
No. HP	:	052236845510
Email		nurdiana@uinmataram.ac.id
	:	
Pendidikan Terakhir		S-2 Agronomi UGM Yogyakarta

Mataram, 10 Juni 2021 Penulis

Nurdiana, SP.,MP

NIP. 196505302005012001

BIODATA PENULIS

Nurdiana.SP..MP. Putri dari Avahanda K.H. Achmad Usman dan Ibunda Hj. RR. Nurvaktien. terlahir Mataram, 30 Mei 1969. adalah Dosen tetap IPA Biologi FTK UIN Mataram. Mantan Sekretaris Jurusan Tadris IPA Biologi juga Senat UIN Mataram. Pendidikan Sariana pernah kuliah di FKIP MIPA

Teknologi Produksi Yogyakarta dan Pasca Mataram, Sariana, Agronomi Universitas Gadiah Mada (UGM) Yogyakarta (2002). Penghargaan selama kuliah pernah menjadi mahasiswa teladan, juga sebagai ketua Agronomi Mahasiswa Pasca Sarjana (S2) UGM Yogyakarta (2000-2002). Selain giat di dalam aktivitas penelitian dan pengabdian masyarakat, aktif sebagai penulis buku, artikel, jurnal nasional dan interasional serta pedoman Praktikum (2005-2020).Pernah berkecimpung di dalam berbagai organisasi antara lain sebagai sekretaris umum DPW UIN Mataram. Sekretaris Medtex/Kesehatan (2003-sekarang). Sekum PWM Muslimat NTB (2011-2016), YKM NTB(2018-2023).Ketua tim relawan ADI NTB (2018-2019),HPW ADI(2016-2021), Ketua penyelenggara Publick Speaking DIY Academy Yogyakarta (2020) dan sebagai pengusaha muda sampai sekarang. Selain itu juga aktif mengikuti Nasional Internasional baik dan pemateri/peserta seperti (Agronomi-UGM Yogyakarta), Matematika Islam, Nutrition Expo Persagi Prov. NTB dengan Gizi Politeknik Kesehatan Mataram, Jaringan PTAI Penelitian se-Indonesi. dan berbagai aktivitas lainnya.Disamping itu pula ikut sebagai pembina praktikum IPA Biologi (2004-sekarang), Tim Penyusun Kurikulum (2007), Buku Bahan Ajar (2006/2007), Pengelola KF (2007), dan sebagai anggota TIM Akreditasi dan Sertifikasi Fak Tarbiyah UIN Mataram, Konferensi TAP MPR RI di Mataram (2011), temu wicara MK (Mahkamah Konstitusi) di Jakarta (2011), Kongres Muslimat di Lampung (2011), Tim Penyusun Kurikulum (2007-2011), Tim Penyusun Soal SPMB (2007-2016), Tim Penulis Buku PAUD dan Jurnal Mitra BPPNFI (2010-2011), Tantangan Pendidikan Islam di Era MEA, Jakarta (2016), launching karya baru Jakarta (2016), bedah buku dan integrasi SAINS dengan Al-Quran (2016), global educations supplies and solution (2016), IAD (HKI-2019), Jurnal International (2020), Artikel "Coastal Community Perpeption of Environmental Conservation (Case Study of Fisherment's Village in Nipah Hamlet, Malaka Village, North Lombok, NTB) (HKI-2020). Aktif dalam penyususnan buku bahan ajar (2006-2021), Sebagai partisipant di kegiatan Internasional Seminar on the Future of Palestine (2021), Sebagai Partisipant di keg Imun Online Conference 57.20 (2021), Sebagai Peneliti dalam artikel bereputasi tentang the Effectiveness of Guided Inquiry Learning Tools in Increasing Student Activities and Creatif Thingking Skill (2021) Beralamat Rumah di jalan Anyelir No. 18 Mataram, HP 082236848810 dan berkantor di UIN Mataram Kampus II Jl. Gadjah Mada NO 100 Jempong Telp. (0370) 621298.