Graph-based Knowledge Distillation by Multi-head Attention Network

*Seunghyun Lee lsh910703@gmail.com

Byung Cheol Song bcsong@inha.ac.kr

Inha University, Incheon, Republic of Korea

Contents

• Background

• Problem Statement

• Multi-head Graph Distillation

• Experimental Results

• Conclusion

Background (1/5)

- Light-weighting of network
 - CNN is useful for many tasks, but its cost of computing and memory is still massive.
 - A lot of techniques for light-weighting CNNs have been proposed.
 ex) Pruning, quantization, knowledge distillation, etc.
- Knowledge distillation (KD)
 - Achieve optimal performance from a small student network (SN) by distilling the knowledge of a large teacher network (TN) and transferring the distilled knowledge to the small SN.
 - Distilled knowledge can be applied for other purposes such as semi-supervised learning and transfer learning.

Background (2/5)

- Knowledge distillation procedure
 - Consists of three important components.
 - → Selecting TN's knowledge to distill,
 - → Distilling TN's knowledge,
 - → Transferring knowledge to SN.

Background (3/5)

- Selecting TN's knowledge to distill
 - Extract the TN's feature, or just determine the way for distillation.

^[3] Yim et al. CVPR2017

^[5] Romeo et al. ICLR2015

^[9] Park et al. CVPR2019

Background (4/5)

- Distilling TN's knowledge
 - Soften the teacher's knowledge, or Construct the feature which represents the selected knowledge.

Background (5/5)

- Transferring the distilled knowledge to SN
 - Initialize or regularize the SN using the TN's knowledge.

Problem Statement (1/4)

- Knowledge distillation procedure
 - Consists of three important components.
 - → Selecting TN's knowledge to distill,
 - → Distilling TN's knowledge,
 - → Transferring knowledge to SN.

Problem Statement (2/4)

- Selecting TN's knowledge to distill
 - Extract the TN's feature, or just determine the way for distillation.

Problem Statement (3/4)

- Limitations of the previous approaches
 - Most of the previous methods focus on **How** to distill knowledge, not **What** to distill.
 - All type of knowledge is not still acceptable as a neural network's knowledge.
 - Neural response & Multi-connection: Too naive
 - Shared-representation : Cannot find inter-data relation
 - Inter-data relation knowledge: Only focus on the last embedded space

• Problem definition

• Find the knowledge which coincides with neural network's purpose.

Problem Statement (4/4)

- Neural network's purpose
 - Embed high-dimensional data to low-dimension for easier analysis.
 - A good teacher teaches not only answer but **how to solve**.
 - → Embedding procedure is the real knowledge of the neural network.

Multi-head Graph Distillation (1/5)

- Distill **embedding procedure knowledge,** i.e., the core information of neural network.
- Apply **SVD** and **attention network** to extract the feature map's relation, which is hard to apprehend.
- Transfer the knowledge via **multi-task learning** to supply TN's knowledge continuously.

Multi-head Graph Distillation (2/5)

- Compressing feature maps by SVD
 - Feature map's dimension is too high to compute relation between them.
 - \rightarrow So, compress feature maps by SVD.
 - Apply post-processing to make them able to transfer. [1]

Multi-head Graph Distillation (3/5)

- Multi-head attention network
 - Estimator which estimates back-end singular vector (\mathbf{V}^B) using front-end singular vector (\mathbf{V}^F) .
 - Attention head which enhances the estimator's feature vector to make it easy to estimate V^B .

Multi-head Graph Distillation (4/5)

- Attention map as **Graph-based Knowledge**
 - Attention heads extract the relation between \mathbf{V}^F and \mathbf{V}^B to enhance \mathbf{V}^F to estimate \mathbf{V}^B easily.
 - \rightarrow Give more attention to the \mathbf{V}^F which is embedded into similar points.
 - → Embedding procedure is expressed by graph-form

Multi-head Graph Distillation (5/5)

- Transfer of graph-based knowledge
 - Adaptive constraint multi-task learning via gradient clipping [1].
 - Transfer the TN's knowledge as much as possible without over-regularization.

Experimental Results (1/6)

- Experiment setup
 - Network architectures
 - WResNet, VGG, ResNet, MobileNet
 - Datasets
 - CIFAR100, TinyImageNet
 - Previous methods

Method	Knowledge	Transfer method
Soft-logits [2]	Neural response	Multi-task learning
FSP [3]	Shared representation	Initialization
$AB^{[4]}$	Multi-connection	Initialization
KD-SVD [1]	Shared representation	Multi-task learning
MHGD	Embedding procedure	Multi-task learning

[2] Hinton et al. NIPS 2014 Deep Learning Workshop

[3] Yim et al. CVPR2017

[4] Heo et al. AAAI2019

Experimental Results (2/6)

- Experiment setup
 - Sensing feature map from bold arrow of each architecture
 - For TinyImageNet, we added pooling layer that is marked redbox.

Experimental Results (3/6)

Small network enhancement

• KD-SVDF: Transfer singular vector **as is (multiple connection)**.

• KD-SVD: Transfer singular vector's **shared representation**.

• MHGD : Transfer singular vector's **embedding procedure**.

	Network	FLOPS (M)	Params (M)
VGG	TN (VGG16)	143.7	11.83
VGG	SN (VGG7)	17.6 (12.2%)	17.6 (18.5%)
WResNet	TN (WResNet22-4)	374.2	0.417
w Kesnet	SN (WResNet10-4)	93.2 (24.9 %)	0.1404 (33.7 %)

Performance comparison of several KD methods for CIFAR100.

Method	Teacher	Student	Soft-logits	FSP	AB	KD-SVD	KD-SVDF	MHGD
VGG	67.99	59.97	60.95	61.87	64.56	64.25	64.38	67.02
WResNet	77.22	71.62	71.88	71.57	72.23	71.83	71.82	72.79

Performance comparison of several KD methods in **TinyImageNet**.

Method	Teacher	Student	Soft-logits	FSP	AB	KD-SVD	KD-SVDF	MHGD
VGG	56.30	52.40	53.78	54.85	54.99	55.33	55.35	56.35
WResNet	61.31	55.91	56.00	56.04	56.53	55.72	55.95	56.90

Experimental Results (4/6)

- Knowledge transfer according to architecture
 - Even though transferring knowledge to SN that is different from TN's architecture, the proposed method outperforms the others.
 - In case of ResNet, most of distillation methods is failed to improve student network, but proposed method successes.

Performance comparison of various KD methods with **WResNet as the TN**.

Method	Student	Soft-logits	FSP	AB	KD-SVD	MHGD
VGG	69.76	70.51	69.44	71.24	70.31	71.52
MobileNet	66.18	67.35	60.35	67.84	67.03	68.32
ResNet	71.57	71.81	70.40	71.55	71.55	72.74

Experimental Results (5/6)

- Each attention heads extract different embedding information.
 - More attention heads tend to produce much knowledge.
 - However, too many attention heads may cause over-constraint.

The performance change according to the number of attention heads.

num_head	0 (Student)	1	2	4	8	16
Accuray	59.97	65.71	66.41	67.01	67.02	66.70

Experimental Results (6/6)

• Comparison with the state-of-the art methods

Method	Student	Teacher	Soft-logits ^[2]	FitNet ^[5]	$AT^{[6]}$	FSP ^[3]
Accuracy	71.76	78.96	71.79	72.74	72.31	72.65
Method	DML ^[7]	KD-SVD ^[1]	$\mathrm{FT}^{[8]}$	$AB^{[4]}$	RKD ^[9]	MHGD
Accuracy	73.27	73.68	73.35	73.08	73.40	73.98

- [1] Lee et al. ECCV2018
- [2] Hinton et al. NIPS 2014
- [3] Yim et al. CVPR2017
- [4] Heo et al. AAAI2019
- [5] Romeo et al. ICLR2015
- [6] Sergey et al. ICLR2017
- [7] Zhang et al. CVPR2018
- [8] Kim et al. NeurIPS2018
- [9] Park et al. CVPR2019

Conclusion

- Analyze previous knowledge distillation methods and point out their fundamental issue.
 - → No knowledge about embedding procedure that is the purpose of neural networks yet.
- Propose a novel algorithm to extract embedding procedure knowledge via attention networks.

Thank you

Questions?

https://github.com/sseung0703/KD_methods_with_TF

Visit poster 141.

