Creación mecanismo

```
syms L;
L = 3
```

L = 3

```
%Offset signigica la posición de Home
%Links = ([theta d a alpha sigma (tipo de articulación) mHD Offset])
L1 = Link ('revolute', 'd', 0, 'a', 0, 'alpha', pi/2 , 'offset', 0); %Eslabón 1
L2 = Link ('revolute', 'd', 0, 'a', L, 'alpha', 0 , 'offset', 0); %Eslabón 1
L3 = Link ('revolute', 'd', 0, 'a', L, 'alpha', 0, 'offset', 0);
Ejercicio1 = SerialLink([L1 L2 L3]', 'name', 'Ejercicio1')
```

Ejercicio1 =

Ejercicio1:: 3 axis, RRR, stdDH, slowRNE

j	theta	d	a	alpha	offset
1 2 3	q1 q2 q3	0 0 0	0 3 3	1.5708 0 0	0 0 0

```
Ejercicio1.base = [0 0 1 0 ; 0 -1 0 0; 1 0 0 0; 0 0 0 1];
Ejercicio1.plot([0 0 0])

xlim([-8 8])
ylim([-8 8])
zlim([-8 8])
```


Configuración del plot

```
set(gca, 'ZDir', 'reverse'); % Invertir el eje Z
xlim([-8 8])
ylim([-8 8])
zlim([0 8])
view([3.72 6.06]);
```

Posiciones

Pierna Flexionada:

```
%Pierna flexionada
Ejercicio1.plot([0 pi/4 -pi/2])
```

Ejercicio1

Caminar

%CAMINAR
%Hacia atrás
Ejercicio1.plot([0 deg2rad(60) deg2rad(-75)])

%Hacia adelante
Ejercicio1.plot([0 deg2rad(40) deg2rad(-90)])

%Agachado

Ejercicio1.plot([0 deg2rad(75) deg2rad(-150)])

Ejercicio1

