- 7.8. Let $\{\mathcal{N}_t\}$ be a right-continuous family of σ -algebras of subsets of Ω , containing all sets of measure zero.
 - a) Let τ_1, τ_2 be stopping times (w.r.t. \mathcal{N}_t). Prove that $\tau_1 \wedge \tau_2$ and $\tau_1 \vee \tau_2$ are stopping times.

•
$$T_1 \wedge T_2 \leqslant + \begin{cases} = \\ \\ = \\ \end{cases} \omega : T_1(\omega) \leqslant + \text{ or } T_2(\omega) \leqslant + \end{cases}$$

= $S_1 \omega : T_1(\omega) \leqslant + \begin{cases} \\ \\ \\ \end{cases} \omega : T_2(\omega) \leqslant + \end{cases}$

= $S_2 \omega : T_3(\omega) \leqslant + \begin{cases} \\ \\ \end{cases} \omega : T_2(\omega) \leqslant + \end{cases}$

• $S_3 \omega : T_3(\omega) \leqslant + \end{cases} \omega : T_2(\omega) \leqslant + \end{cases}$

• $S_3 \omega : T_3(\omega) \leqslant + \end{cases} \omega : T_3(\omega) \leqslant + \end{cases}$

= $S_3 \omega : T_3(\omega) \leqslant + \end{cases} \omega : T_3(\omega) \leqslant + \end{cases}$

= $S_3 \omega : T_3(\omega) \leqslant + \end{cases} \omega : T_3(\omega) \leqslant + \end{cases}$

= $S_3 \omega : T_3(\omega) \leqslant + \end{cases} \omega : T_3(\omega) \leqslant + \end{cases}$

= $S_3 \omega : T_3(\omega) \leqslant + \end{cases} \omega : T_3(\omega) \leqslant + \end{cases}$

b) If $\{\tau_n\}$ is a decreasing family of stopping times prove that $\tau := \lim_n \tau_n$ is a stopping time.

We need to show that 3 T < 1 (ENT. In fact, since) In 13 decreasing

Since I In < + (= Nf implies that I In < + (=) In> + (E Nf.

c) If X_t is an Itô diffusion in \mathbf{R}^n and $F \subset \mathbf{R}^n$ is closed, prove that τ_F is a stopping time w.r.t. \mathcal{M}_t . (Hint: Consider open sets decreasing to F).

Let JFn be a family of open sets decreasing to F. Now we define JTFn as the family of stopping times given by JTFn = Inf +>0: X+EFn {

Since each Fn is open, by the Example 7.2.2, each In is a stopping time w.r.t. Mt. By the previous Hem, its limit IF is a stopping time w.r.t. Mt.