This is a companion notebook for the book <u>Deep Learning with Python, Second Edition</u>. For readability, it only contains runnable code blocks and section titles, and omits everything else in the book: text paragraphs, figures, and pseudocode.

If you want to be able to follow what's going on, I recommend reading the notebook side by side with your copy of the book.

This notebook was generated for TensorFlow 2.6.

- Getting started with neural networks: Classification and regression
- Classifying movie reviews: A binary classification example
- The IMDB dataset

#### Loading the IMDB dataset

256,

```
from tensorflow.keras.datasets import imdb
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(
    num_words=10000)
train_data[0]
<del>→</del> [1,
      14,
      22,
      16,
      43,
      530,
      973,
      1622,
      1385,
      65,
      458,
      4468,
      66,
      3941,
      4,
      173,
      36,
```

```
25,
      100,
      43,
      838,
      112,
      50,
      670,
      2,
      9,
      35,
      480,
      284,
      5,
      150,
      4,
      172,
      112,
      167,
      2,
      336,
      385,
      39,
      4,
      172,
      4536,
      1111,
      17,
      546,
      38,
      13,
      447,
      4,
      192,
      50,
      16,
      6,
      147,
      2025,
      19.
train_labels[0]
→ 1
max([max(sequence) for sequence in train_data])
```

#### **Decoding reviews back to text**

9999

```
word_index = imdb.get_word_index()
reverse_word_index = dict(
```

```
[(value, key) for (key, value) in word_index.items()])
decoded_review = " ".join(
   [reverse_word_index.get(i - 3, "?") for i in train_data[0]])
```

## Preparing the data

#### **Encoding the integer sequences via multi-hot encoding**

```
import numpy as np
def vectorize_sequences(sequences, dimension=10000):
    results = np.zeros((len(sequences), dimension))
    for i, sequence in enumerate(sequences):
        for j in sequence:
            results[i, j] = 1.
    return results

x_train = vectorize_sequences(train_data)

x_test = vectorize_sequences(test_data)

x_train[0]

y_train = np.asarray(train_labels).astype("float32")

y_test = np.asarray(test_labels).astype("float32")
```

### Building your model

#### Model definition

```
from tensorflow import keras
from tensorflow.keras import layers

model = keras.Sequential([
    layers.Dense(16, activation="relu"),
    layers.Dense(16, activation="relu"),
    layers.Dense(1, activation="sigmoid")
])
```

#### Compiling the model

## Validating your approach

#### Setting aside a validation set

```
x_val = x_train[:10000]
partial_x_train = x_train[10000:]
y_val = y_train[:10000]
partial_y_train = y_train[10000:]
```

#### Training your model

```
history_dict = history.history
history_dict.keys()

→ dict_keys(['accuracy', 'loss', 'val_accuracy', 'val_loss'])
```

#### Plotting the training and validation loss

```
import matplotlib.pyplot as plt
history_dict = history.history
loss_values = history_dict["loss"]
val_loss_values = history_dict["val_loss"]
epochs = range(1, len(loss_values) + 1)
plt.plot(epochs, loss_values, "bo", label="Training loss")
plt.plot(epochs, val_loss_values, "b", label="Validation loss")
plt.title("Training and validation loss")
```

```
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.show()
```





#### Plotting the training and validation accuracy

```
plt.clf()
acc = history_dict["accuracy"]
val_acc = history_dict["val_accuracy"]
plt.plot(epochs, acc, "bo", label="Training acc")
plt.plot(epochs, val_acc, "b", label="Validation acc")
plt.title("Training and validation accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.legend()
plt.show()
```





#### **Training Results:**

#### **Test Results**

results

```
#creating a results table

results_history = {}
results_history["base_model"] = {
    "loss": results[0],
    "accuracy": results[1],
    "history": history.history
}
```

The training and test results from the base model are relatively close, at an accuracy of .86, and a loss of .32. For this 'baseline' model, I kept the 4 epochs as accuracy seemed to peak there and

taper off after 4. In the next few iterations, I will use the suggestions from the assignment to see which changes affect the model for the better.

Question 1: Add a hidden layer to the model to see effects on test and training accuracy.

```
model = keras.Sequential([
    layers.Dense(16, activation="relu"),
    layers.Dense(16, activation="relu"),
    layers.Dense(16, activation="relu"), # added hidden layer
    layers.Dense(1, activation="sigmoid")
])
model.compile(optimizer="rmsprop",
              loss="binary_crossentropy",
              metrics=["accuracy"])
x_val = x_train[:10000]
partial_x_train = x_train[10000:]
y_val = y_train[:10000]
partial_y_train = y_train[10000:]
history = model.fit(partial_x_train,
                     partial_y_train,
                     epochs=4,
                     batch size=512,
                     validation_data=(x_val, y_val))
history_dict = history.history
history_dict.keys()
\rightarrow \overline{\phantom{a}} Epoch 1/4
                               - 4s 83ms/step - accuracy: 0.6827 - loss: 0.6214 - val_accuracy
     30/30 -
     Epoch 2/4
                                - 1s 36ms/step - accuracy: 0.8912 - loss: 0.3391 - val_accuracy
     30/30 -
     Epoch 3/4
                                - 1s 38ms/step - accuracy: 0.9198 - loss: 0.2353 - val_accuracy
     30/30 -
     Epoch 4/4
                              -- 1s 36ms/step - accuracy: 0.9459 - loss: 0.1759 - val_accuracy
     dict keys(['accuracy', 'loss', 'val accuracy', 'val loss'])
                                                                                                Þ
```

**Training Results:** 

By adding a hidden layer, the model gets marginally better, at .87 for accuracy, and .31 loss for the training data set, and .3 for the test data set. I don't know that adding the extra layer, time, and computational capacity is worth it for these slightly better results. Next, I'll change the number of hidden units in each layer.

## Question 2: More or fewer hidden units per layer.

```
model = keras.Sequential([
    layers.Dense(8, activation="relu"),
    layers.Dense(8, activation="relu"),
    layers.Dense(1, activation="sigmoid")
])
model.compile(optimizer="rmsprop",
              loss="binary crossentropy",
              metrics=["accuracy"])
x_val = x_train[:10000]
partial_x_train = x_train[10000:]
y_val = y_train[:10000]
partial_y_train = y_train[10000:]
history = model.fit(partial_x_train,
                    partial_y_train,
                    epochs=4,
                    batch size=512,
                    validation_data=(x_val, y_val))
history_dict = history.history
history_dict.keys()
```

```
\rightarrow Epoch 1/4
                             4s 82ms/step - accuracy: 0.6769 - loss: 0.6307 - val_accuracy
     30/30 -
     Epoch 2/4
     30/30 -
                               - 1s 34ms/step - accuracy: 0.8871 - loss: 0.4084 - val_accuracy
     Epoch 3/4
     30/30 -
                               - 1s 32ms/step - accuracy: 0.9169 - loss: 0.3047 - val_accuracy
     Epoch 4/4
                              - 1s 34ms/step - accuracy: 0.9329 - loss: 0.2362 - val_accuracy
     30/30 -
     dict_keys(['accuracy', 'loss', 'val_accuracy', 'val_loss'])
results = model.evaluate(x_test, y_test)
                               — 2s 2ms/step - accuracy: 0.8831 - loss: 0.2998
results
results_history["model_with_changed_hidden_units"] = {
    "loss": results[0],
    "accuracy": results[1],
    "history": history.history
}
```

I landed on 8 hidden units per layer, because the results had the best balance of high accuracy and lower loss function vs 32, 64, or 128.

# Question 3: Using the MSE Loss function instead of binary\_crossentropy

```
history = model.fit(partial_x_train,
                     partial_y_train,
                     epochs=4,
                     batch_size=512,
                     validation_data=(x_val, y_val))
history dict = history.history
history_dict.keys()
\rightarrow \overline{\phantom{a}} Epoch 1/4
     30/30 -
                             —— 4s 78ms/step - accuracy: 0.6856 - loss: 0.2189 - val_accuracy
     Epoch 2/4
                            ---- 1s 36ms/step - accuracy: 0.8762 - loss: 0.1213 - val_accuracy
     30/30 ---
     Epoch 3/4
     30/30 -
                             --- 1s 37ms/step - accuracy: 0.9096 - loss: 0.0848 - val_accuracy
     Epoch 4/4
                             --- 1s 36ms/step - accuracy: 0.9223 - loss: 0.0700 - val_accuracy
     30/30 -
     dict_keys(['accuracy', 'loss', 'val_accuracy', 'val_loss'])
                                                                                                Þ
results = model.evaluate(x_test, y_test)
                               --- 2s 2ms/step - accuracy: 0.8832 - loss: 0.0909
results
results_history["model_with_mse"] = {
    "loss": results[0],
    "accuracy": results[1],
    "history": history.history
}
```

## Question 4: Use tanh activation instead of relu.

```
x_val = x_train[:10000]
partial_x_train = x_train[10000:]
y_val = y_train[:10000]
partial_y_train = y_train[10000:]
history = model.fit(partial_x_train,
                     partial_y_train,
                     epochs=4,
                     batch size=512,
                     validation_data=(x_val, y_val))
history_dict = history.history
history_dict.keys()
\rightarrow \overline{\phantom{a}} Epoch 1/4
                              — 4s 93ms/step - accuracy: 0.7017 - loss: 0.5772 - val_accuracy
     30/30
     Epoch 2/4
                                - 3s 37ms/step - accuracy: 0.8998 - loss: 0.3152 - val_accuracy
     30/30 -
     Epoch 3/4
     30/30 -
                                - 1s 33ms/step - accuracy: 0.9254 - loss: 0.2255 - val_accuracy
     Epoch 4/4
     30/30 -----
                               -- 1s 36ms/step - accuracy: 0.9442 - loss: 0.1724 - val_accuracy
     dict_keys(['accuracy', 'loss', 'val_accuracy', 'val_loss'])
results = model.evaluate(x_test, y_test)
    782/782 ----
                               --- 2s 3ms/step - accuracy: 0.8656 - loss: 0.3309
results
```

Using the tahn function instead of relu slightly improved accuracy and loss, but still had issues with overfitting to the training data.

Question 5: Adding someting we learned in class. (I'm adding Dropout to reduce overfitting)

results\_history["model\_with\_tanh"] = {

"loss": results[0],
"accuracy": results[1],
"history": history.history

}

```
from tensorflow.keras.layers import Dense, Dropout
model = keras.Sequential([
    layers.Dense(16, activation="relu"),
    Dropout(0.3),
    layers.Dense(16, activation="relu"),
    Dropout(0.3),
    layers.Dense(1, activation="sigmoid")
1)
model.compile(optimizer="rmsprop",
              loss="binary_crossentropy",
              metrics=["accuracy"])
x_val = x_train[:10000]
partial_x_train = x_train[10000:]
y_val = y_train[:10000]
partial_y_train = y_train[10000:]
history = model.fit(partial_x_train,
                     partial_y_train,
                     epochs=4,
                     batch size=512,
                     validation_data=(x_val, y_val))
history_dict = history.history
history_dict.keys()
\rightarrow \overline{\phantom{a}} Epoch 1/4
                             --- 3s 66ms/step - accuracy: 0.6444 - loss: 0.6284 - val_accuracy
     30/30 ---
     Epoch 2/4
                            2s 37ms/step - accuracy: 0.8429 - loss: 0.4137 - val_accuracy
     30/30 ---
     Epoch 3/4
                           ---- 1s 37ms/step - accuracy: 0.8822 - loss: 0.3229 - val_accuracy
     30/30 ---
     Epoch 4/4
                        ----- 1s 38ms/step - accuracy: 0.9066 - loss: 0.2671 - val_accuracy
     dict_keys(['accuracy', 'loss', 'val_accuracy', 'val_loss'])
                                                                                               •
results = model.evaluate(x_test, y_test)
                              --- 2s 3ms/step - accuracy: 0.8828 - loss: 0.2886
    782/782 -
results
results_history["model_with_dropout"] = {
    "loss": results[0],
    "accuracy": results[1],
```

```
"history": history.history
}
```

Adding the dropout didn't quite work how I expected. Although it did improve overfitting from previous versions of the model, it didn't improve the overall accuracy or loss function of the model.

## Plotting the results in graphs as well as a table

```
# Plot accuracy and loss for all the different models
def plot model results(model name, history):
    history_dict = history
    loss values = history dict["loss"]
    val_loss_values = history_dict["val_loss"]
    epochs = range(1, len(loss_values) + 1)
    plt.figure(figsize=(12, 4))
    plt.subplot(1, 2, 1)
    plt.plot(epochs, loss_values, "bo", label="Training loss")
    plt.plot(epochs, val_loss_values, "b", label="Validation loss")
    plt.title(f"{model name} - Training and Validation Loss")
    plt.xlabel("Epochs")
    plt.ylabel("Loss")
    plt.legend()
    plt.subplot(1, 2, 2)
    acc = history dict["accuracy"]
    val_acc = history_dict["val_accuracy"]
    plt.plot(epochs, acc, "bo", label="Training acc")
    plt.plot(epochs, val_acc, "b", label="Validation acc")
    plt.title(f"{model name} - Training and Validation Accuracy")
    plt.xlabel("Epochs")
    plt.ylabel("Accuracy")
    plt.legend()
    plt.tight_layout()
    plt.show()
# Plot results for each model
for model_name, results in results_history.items():
    plot_model_results(model_name, results['history'])
```







import pandas as pd

In conclusion, the model I would pick overall would be the model with MSE instead of binary\_crossentropy as the loss function. This model improved accuracy over all other models, and had a much lower loss function in both the training and validation sets.

# Outputting a table of all results together

```
# Convert the dictionary to a DataFrame
results_df = pd.DataFrame.from_dict(results_history, orient="index")
# Print the DataFrame as a table
print(results df)
from tabulate import tabulate
# Print the results using tabulate
print(tabulate(results_df, headers='keys', tablefmt='pretty'))
# Extract accuracy and loss for each model from the results_history
accuracy = []
loss = []
models = list(results_history.keys())
for model name, results in results history.items():
   history dict = results['history']
   accuracy.append(history_dict['accuracy'][-1]) # Use the last accuracy value
   loss.append(history_dict['loss'][-1]) # Use the last loss value
\rightarrow
                                       loss accuracy \
    base_model
                                   0.294816 0.87980
    model with added layer
                                   0.297208 0.88068
    model_with_changed_hidden_units 0.298604 0.88480
    model with mse
                                   0.090495
                                             0.88300
    model with tanh
                                   0.326985
                                             0.86728
    model with dropout
                                   0.287226
                                             0.88420
                                                                           history
    base_model
                                   {'accuracy': [0.7720666527748108, 0.8892666697...
    model with added layer
                                   {'accuracy': [0.76746666431427, 0.891866683959...
    model_with_changed_hidden_units {'accuracy': [0.7624666690826416, 0.8868666887...
    model_with_mse
                                   {'accuracy': [0.7630666494369507, 0.8801333308...
    model with tanh
                                   {'accuracy': [0.787933349609375, 0.90113335847...
    model with dropout
                                   {'accuracy': [0.72079998254776, 0.850933313369...
                                             loss
                                                               accuracy
```

```
0.29481571912765503 | 0.879800021648407
          base model
                                                                              { 'accura
    model_with_added_layer
                                0.2972082197666168 | 0.8806800246238708
                                                                                 {'acc
model_with_changed_hidden_units | 0.29860374331474304 | 0.8848000168800354
                                                                              { 'accura
        model with mse
                                0.09049452841281891 | 0.8830000162124634
                                                                             {'accurac
        model_with_tanh
                                0.32698461413383484 | 0.8672800064086914 |
                                                                                {'accı
      model with dropout
                                0.28722602128982544 | 0.8841999769210815 |
                                                                                 {'acc
```

In conclusion, the model I would pick overall would be the model with MSE instead of binary\_crossentropy as the loss function. This model improved accuracy over all other models, and had a much lower loss function in both the training and validation sets.

## Plotting all results in charts to visually compare

```
# Plot accuracy comparison
plt.figure(figsize=(10, 5))
plt.bar(models, accuracy, color="green", label="Accuracy")
plt.ylabel("Accuracy")
plt.title("Model Accuracy Comparison")
plt.legend()
plt.xticks(rotation=45, ha="right") # Rotate model names for better readability
plt.show()
# Plot loss comparison
plt.figure(figsize=(10, 5))
plt.bar(models, loss, color="red", label="Loss")
plt.ylabel("Loss")
plt.title("Model Loss Comparison")
plt.legend()
plt.xticks(rotation=45, ha="right") # Rotate model names for better readability
plt.show()
```



