COMP 3311: Database Management Systems

Tutorial 10 Transactions and Concurrency Control

Exercise 1: For the following schedule, state whether it is serializable, recoverable and cascadeless. Justify your answers.

<i>T</i> ₁	<i>T</i> ₂	<i>T</i> ₃	
		read(Y)	$\overline{T_1}$
		read(Z)	(1)
read(X)			
	read(Y)		(T_3) (T_2)
read(Y)			Dragodonae graph
	read(Z)		Precedence graph
write(Y)			
		write(Z)	
write(X)			
Serializable:	es 🗆 No Justificat	tion?	
_			
Recoverable: ☐ Ye	es 🗆 No Justificat	tion?	
Cascadeless: Ye	es 🗆 No Justificat	tion?	
Cascaueless. L. Te	s LINO JUSTITICA	uon:	

Exercise 2: Show that the following schedule is conflict serializable and give the timestamp-ordering, serializable schedule (i.e., assign timestamps to T_1 , T_2 and T_3 so that the schedule is serializable).

<i>T</i> ₁ [TS=]	<i>T</i> ₂ [TS=]	<i>T</i> ₃ [TS=]	
				read(Y)		$\overline{T_1}$
				read(Z)		
read(X)						
write(X)						T_3 T_2
				write(Y)		
				write(Z)		Precedence graph
		read(Z)				
read(Y)						
write(Y)						
		read(Y)				
		write(Y)				
		read(X)				
		write(X)				

Name:	Student#:	Date:

COMP 3311: Database Management Systems

Tutorial 10 Transactions and Concurrency Control

Exercise 3: Is the following schedule conflict serializable? If yes, give the equivalent serial schedule. If no, show, using 2PL, how and where the schedule fails.

<i>T</i> ₁	T ₂	<i>T</i> ₃	
	read(Z)		T_1
	read(Y)		
	write(Y)		T_3 T_2
		read(Y)	Precedence graph
		read(Z)	Tresedence graph
read(X)			
write(X)			
		write(Y)	(τ_1)
		write(Z)	T_3 T_2
	read(X)		
read(Y)			Wait-for graph
write(Y)			
	write(X)		

COMP 3311: Database Management Systems

Tutorial 10 Transactions and Concurrency Control

Exercise 4: Consider the following schedule consisting of transactions T_1 , T_2 , T_3 and T_4 (note: r_1 means T_1 read, r_2 means r_3 write and so on):

	Schedule: $r_1(X)$, $w_1(X)$, $r_2(X)$, $r_3(Y)$, $w_3(Y)$, $w_2(X)$, $r_4(Y)$, $w_1(Y)$
a)	Show that the schedule is conflict serializable by constructing the precedence graph.
	T_1
	T_3 T_2
	T_4
b)	What is the equivalent serial schedule?
c)	Can the schedule be rewritten so it becomes recoverable, but not cascadeless by adding commit operations in the appropriate locations in the schedule? Explain.
d)	Can the schedule be rewritten so it becomes both recoverable, and cascadeless by adding commit operations in the appropriate locations in the schedule? Explain.