CRISPR Library Screen to Identify Driver Mutations of Tumor Growth and Metastasis

Oncology & Immunology Unit

Yong Cang, PhD Webinar, April 23, 2020

TOPICS

- 1. CRISPR library screen to discover novel oncology and oncoimmunology targets
- 2. Technical considerations for successful CRISPR screens in vitro and in vivo

Somatic mutations overcome cell-intrinsic and environmental restraints on tumor development

Tumor intrinsic:

Enabling self proliferation

Tumor extrinsic:

Escaping environmental constraint

Identification of Essential Genes in Cancer Cell Lines by Project Achilles

"Project Achilles is a systematic effort aimed at identifying and cataloging gene essentiality across hundreds of genomically characterized cancer cell lines."

Identification of Essential Genes under Different Growth Conditions by CRISPR Knockout Library Screen

Article

CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities

Han, et al. Nature 2020

LETTER

https://doi.org/10.1038/s41586-018-0291-z

CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions

Zimmermann, et al. Nature 2018

CANCER

A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing

Pan, et al. Science 2018

ARTICLE

doi:10.1038/nature23270

In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target

Manguso, et al. Nature 2017

Interrogation of drug resistant mechanism by in vitro CRISPR Knockout Screen

Synthetic lethal screen with a cell cycle checkpoint inhibitor P Null Annited

Workflow to identify sensitizing mutations

Synthetic lethal screen with a cell cycle checkpoint inhibitor ** WUXI ADD Tec

Hits include regulators of cell cycle progression and heme biosynthesis

selection parameters:

- Fold change .1.5
- FDR<0.05 each guide
- At least 3 guides each gene

Cancer Immunoediting

Elimination, equilibrium, escape

Dunn, et al, Nature Immunology 2002

What mutations enable cancer evasion from immune restraint?

Customized CRISPR library targeting cancer drivers

- 1978 sgRNAs (including 100 nontarget sgRNAs)
- 313 genes highly mutated in human cancers (6 sgRNAs each gene)

Comprehensive Characterization of Cancer Driver Genes and Mutations

CRISPR library screen in syngeneic tumor models

Workflow with MC38-Ova in C57B6 host

CRISPR library screen in syngeneic tumor models

Tumor growth, dosing schedule, sample collection

- △ Dosing time
- ▲ Tumor collection time

Mutations sensitizing or antagonizing PD-1 blocker in vivo

B6-IgG vs B6-anti-PD-1

Genes with enriched sgRNAs

PBAF mutations sensitize to T cell killing and anti-PD1 immunotherapy

Pan, et al. Science 2018

Private and Confidential 15

KMT2D and KDM6A are frequently mutated in cancer and Kabuki Syndromes

KMT2D/MLL2

- A major H3K4 mono-methyltransferase
- Enhancer activation and cell type-specific gene expression.
- Mutations associated with developmental diseases and various cancers.

Validation of KMT2D by in vivo competition assays

Working Hypothesis:

loss of KMT2D enables PD-1-dependent immune escape

Immune Control of Metastatic Seeding and Colonization

Immune elimination step

Adapted from Massague & Obenauf, Nature 2016

Syngeneic liver cancer model for T cell-controlled pulmonary dissemination

Failed CRISPR screen with whole-genome library

Identification of a novel gene controlling T cell killing

A much smaller focused library to increase coverage

Validation of the hit

Technical considerations for a successful CRISPR screen

Overview of CRISPR Library Screen Workflow

For in vitro and in vivo screens

Library Design

In-house pipeline for customized library design

Validated Lentivirus Vector Efficiency

Two vector system v.s. all-in-one system

In vitro Screens Performed at Wuxi

In-house validated screen-friendly human cell lines, growing

Cell Line Name	Cancer Type	Approx. Doubling Time	Infections efficiency	Screen Validated
A2780	Human Ovarian cancer	<=24h	Good	Yes
A549	Human Lung (carcinoma; non-small cell lung cancer)	24-36h	OK	Yes
Caki-1	Human Kidney, Clear Cell Carcinoma	36-48h	Good	Yes
ES-2	Human Ovarian cancer	<=24h	Good	Yes
HCC1187	Human Breast cancer	>=48h	Good	Yes
HCC1395	Human Breast cancer	>=48h	Good	Yes
HCC1599	Human Breast cancer	>=48h	Good	Yes
HCC1937	Human Breast cancer	36-48h	Good	Yes
HCT116	Human Colorectal cancer	<=24h	Good	Yes
HK-2	Human Kidney epithelial, transformed normal PTC	>=48h	Good	Yes
HT-29	Human Colorectal cancer	<=24h	Good	Yes
KURAMOCHI	Human Ovarian Carcinoma	36-48h	Good	Yes
MCF-10A	Human Breast epithlial, spontaneously immortilized	>=48h	Good	Yes
MCF-7	Human Breast cancer	36-48h	Good	Yes
MDA-MB-157	Human Breast cancer	>=48h	Good	Yes
MDA-MB-436	Human Breast cancer	>=48h	Good	Yes
MDA-MB-468	Human Breast cancer	>=48h	Good	Yes
MM.1S	Human Hematopoietic (multiple myeloma)	>>48h	Good	Yes
NCI-H1299	Human Lung (carcinoma; non-small cell lung cancer)	<=24	Good	Yes
NCI-H1563	Human Lung (adenocarcinoma; non-small cell lung cancer)	>=48h	Good	Yes
NCI-H1975	Human Lung (adenocarcinoma; non-small cell lung cancer)	36-48h	Good	Yes
NCI-H2172	Human Lung (non-small cell lung cancer)	36-48h	Good	Yes
NCI-H23	Human Lung (adenocarcinoma; non-small cell lung cancer)	36-48h	Good	Yes
NCI-H441	Human Lung (papillary adenocarcinoma)	36-48h	Good	Yes
NCI-H460	Human Lung (carcinoma; large cell lung cancer)	<=24h	Good	Yes
OV-90	Human Ovarian Carcinoma	36-48h	Good	Yes
OVCAR.3	Human Ovarian cancer	>=48h	Good	Yes
OVMANA	Human Ovarian Carcinoma	36-48h	Good	Yes
PEO1	Human Ovarian Carcinoma	>=48h	Good	Yes
PEO4	Human Ovarian Carcinoma	>=48h	Good	Yes
RWPE-1	Human Prostate epithelial	>=48h	Good	Yes
SW480	Human Colorectal cancer	24-36h	Good	Yes

Distribution and representation coverage

Distribution Pattern is similar within treatment group. Gini index revealed limited unbalance in read count distribution. No distribution or representation bias of non-targeting control sgRNAs was observed in D0 samples (in vivo tumor baseline).

GROUP	SAMPLE	Zero Count(%)
Baseline	baseline	0
	B6D0-16642	0.05%
	B6D0-16647	0.1%
B6-D0	B6D0-16680	0.05%
	B6D0-16681	0
	B6D0-16682	0.05%
	B6-IgG-16649	0.61%
	B6-IgG-16654	0.51%
IgG	B6-IgG-16683	0.61%
	B6-IgG-16684	0.61%
	B6-IgG-16699	0.46%
	B6-PD1-16651	0.71%
	B6-PD1-16655	0.81%
Anti-PD-1	B6-PD1-16685	0.3%
	B6-PD1-16696	0.76%
	B6-PD1-16698	0.91%

Read count is used to calculate correlation value (Pearson) between repeats within each group. Proportion of zero count shows good representation of sgRNA within each sample

Bioinformatics Workflow for CRISPR Screen Data Analysis

From library design to data feedback

Target Identification and Validation Platform at WX

Combining genome-wide screen and gene editing

Acknowledgements

WuXi AppTec

Ji Qunsheng, PhD Zhao Haixin, PhD Zhou Wenrong, PhD Su Hexiu, PhD Peng Zhenggang, PhD Yue Yangbo, PhD Huang Dawei, PhD Xie Xiaoxiao

ShanghaiTech Univ

Long Min
Song Tianyu, PhD
Peng Bo, PhD
Geng Chenlu
Zhang Liye, PhD
Chen Ziyu
Ni Siyuan
Li Dong
Fan Hongjie
Ma Yanyan

Zhongshan Hospital

Fan Jia, MD, PhD Sun Yunfan, MD, PhD Zhou Kaiqian, MD

For business requests, please contact:

Declan Ryan, PhD

declan.ryan@wuxiapptec.com

Mobile App