

# PALM INTRANET

Day: Friday
Date: 1/5/2007
Time: 15:58:56

## **Inventor Name Search Result**

Your Search was:

Last Name = KERWIN First Name = SEAN

|                 |                |        | <u> </u>   |                                                                                                                                                                          |                    |
|-----------------|----------------|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Application#    | Patent#        | Status | Date Filed | Title                                                                                                                                                                    | Inventor Name      |
| 08773398        | Not-<br>Issued | 163    | 12/24/1996 | RICIN INHIBITORS AND<br>METHODS FOR USE THEREOF                                                                                                                          | KERWIN, SEAN       |
| 09118535        | 6177280        | 150    | 1          | RICIN INHIBITORS AND<br>METHODS FOR USE THEREOF                                                                                                                          | KERWIN, SEAN       |
| 09230208        | Not<br>Issued  | 161    | 01/01/0001 | METHODS AND COMPOSTIONS FOR STIMULATING OSTEOBLAST PROLIFERATION AND METHODS FOR SELECTING OSTEBLAST PROLIFERATON STIMULANTS                                             | KERWIN, SEAN       |
| 09535460        | 6562969        | 150    | 03/24/2000 | RICIN INHIBITORS AND<br>METHODS FOR USE THEREOF                                                                                                                          | KERWIN, SEAN       |
| 60016088        | Not<br>Issued  | 159    | 06/20/1996 | COMPOUNDS AND METHODS<br>FOR PROVIDING<br>PHARMACOLOGICALLY<br>ACTIVE PREPARATIONS AND<br>USES THEREOF                                                                   | KERWIN, SEAN       |
| 09730893        | 6689887        | 150    | 12/05/2000 | INHIBITION OF HUMAN<br>TELOMERASE BY A G-<br>QUADRUPLEX-INTERACTION<br>COMPOUND                                                                                          | KERWIN, SEAN<br>M. |
| <u>09771016</u> | Not<br>Issued  | 167    | 01/25/2001 | METAL BINDING DNA<br>INTERACTIVE COMPOUNDS                                                                                                                               | KERWIN, SEAN<br>M. |
| 09940173        | 6623930        | 150    | 08/27/2001 | INHIBITION OF HUMAN<br>TELOMERASE BY A G-<br>QUADRUPLEX-INTERACTION<br>COMPOUND                                                                                          | KERWIN, SEAN<br>M. |
| <u>10108606</u> | 6720344        | 150    | 03/27/2002 | METHODS AND COMPOSITIONS FOR STIMULATING OSTEOBLAST PROLIFERATION OR TREATING MALIGNANT CELL PROLIFERATION AND METHODS FOR SELECTING OSTEOBLAST PROLIFERATION STIMULANTS | KERWIN, SEAN<br>M. |
| 10720991        | Not            | 30     | 11/24/2003 | UK-1 analogues: methods of                                                                                                                                               | KERWIN, SEAN       |

|                 | Issued        |     |            | preparation and use                                                                                                        | M.                 |
|-----------------|---------------|-----|------------|----------------------------------------------------------------------------------------------------------------------------|--------------------|
| 10775818        | Not<br>Issued | 161 | 02/10/2004 | Inhibition of human telomerase by a G-quadruplex-interaction compound                                                      |                    |
| 60428379        | Not<br>Issued | 159 | 11/22/2002 | UK-1 analogues: methods of preparation and use                                                                             | KERWIN, SEAN<br>M. |
| 08675119        | 6054442       | 150 | 07/03/1996 | METHODS AND COMPOSITIONS FOR MODULATION AND INHIBITION OF TELOMERASE IN VITRO                                              | KERWIN, SEAN<br>M. |
| 08808742        | 5922753       | 150 | 02/28/1997 | METHODS FOR TREATING<br>BONE DEFICIT CONDITIONS<br>WITH BENZOTHIAZOLE                                                      | KERWIN, SEAN<br>M. |
| 08879457        | 6004939       | 150 | 06/20/1997 |                                                                                                                            | KERWIN, SEAN<br>M. |
| <u>09244675</u> | 6156763       | 150 | 02/04/1999 | INHIBITION OF HUMAN<br>TELOMERASE BY A G-<br>QUADRUPLEX-INTERACTION<br>COMPOUND                                            | KERWIN, SEAN<br>M. |
| <u>09245019</u> | 6528517       | 150 | 02/04/1999 | SYNTHESIS OF QUINOBENZOXAZINE ANALOGUES WITH TOPOISOMERASE II AND QUADRUPLEX INTERACTIONS FOR USE AS ANTINEOPLASTIC AGENTS | KERWIN, SEAN<br>M. |
| <u>09297188</u> | 6649631       | 150 |            | COMPOSITIONS AND<br>METHODS FOR TREATING<br>BONE DEFICIT CONDITIONS                                                        | KERWIN, SEAN<br>M. |
| 09356303        | 6908948       | 150 | 07/16/1999 | NOVEL DNA-CLEAVING<br>ANTITUMOR AGENTS                                                                                     | KERWIN, SEAN<br>M. |
| 09467932        | 6593306       | 150 | 12/21/1999 | METHODS FOR MODULATION<br>AND INHIBITION OF<br>TELOMERASE                                                                  | KERWIN, SEAN<br>M. |
| 60005830        | Not<br>Issued | 159 | 10/23/1995 |                                                                                                                            | KERWIN, SEAN<br>M. |
| 60073629        | Not<br>Issued | 159 | 02/04/1998 | INHIBITION OF HUMAN<br>TELOMERASE BY A G-<br>QUARDRUPLEX-INTERACTION<br>COMOUND                                            | KERWIN, SEAN<br>M. |
| 60073658        | Not<br>Issued | 159 | 02/04/1998 | SOLID PHASE PARALLEL SYNTHESIS OF QUINOBENZOXAZINE ANALOGS FOR USE AS ANTI- NEOPLASTIC AGENTS                              | KERWIN, SEAN<br>M. |

| 60093112 | Not<br>Issued | 159 |            | NOVEL DNA-CLEAVING<br>ANTITUMOR AGENTS     | KERWIN, SEAN<br>M.      |
|----------|---------------|-----|------------|--------------------------------------------|-------------------------|
| 60178082 | Not<br>Issued | 159 |            | METAL BINDING DNA<br>INTERACTIVE COMPOUNDS | KERWIN, SEAN<br>M.      |
| 09533723 | 6297284       | 150 | 03/23/2000 |                                            | KERWIN, SEAN<br>MICHAEL |
| 09967133 | 6686345       | 150 | 1          | DNA-CLEAVING ANTITUMOR<br>AGENTS           | KERWIN, SEAN<br>MICHAEL |

Inventor Search Completed: No Records to Display.

| Search Another: | Last Name | First Name |       |
|-----------------|-----------|------------|-------|
|                 | Inventor  | sean       | earch |

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

#### L2 ANSWER 1 OF 14 CASREACT COPYRIGHT 2007 ACS on STN

#### RX(3) OF 26

REF: U.S. Pat. Appl. Publ., 2005004188, 06 Jan 2005

NOTE: thermal, neat; vacuum applied every 20 min. to remove water

vapor

CON: 2 hours, 230 deg C

#### L2 ANSWER 2 OF 14 CASREACT COPYRIGHT 2007 ACS on STN

RX(2) OF 5

$$CF_3$$
 $CF_3$ 
 $CF_3$ 
 $CF_3$ 
 $CF_3$ 
 $CF_3$ 
 $CF_3$ 
 $CF_3$ 
 $CF_3$ 
 $CF_3$ 

# 1. C:282713-83-1,> Butyrolactone

$$\begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$$

100%

REF: Chemistry Letters, 33(10), 1342-1343; 2004 NOTE: stage 2 - no solvent, solid-state, thermal

CON: STAGE(1) 1 hour, room temperature; 5 minutes, 120 deg C

STAGE(2) 10 minutes, 250 deg C

## L2 ANSWER 3 OF 14 CASREACT COPYRIGHT 2007 ACS on STN

RX(43) OF 273

1. Pyridinium chloride

2. HCl, Water

Journal of Medicinal Chemistry, 47(21), 5021-5040; 2004

NOTE: thermal

STAGE(1) 1 hour, 200 deg C; 200 deg C -> room temperature STAGE(2) room temperature CON:

L2ANSWER 4 OF 14 CASREACT COPYRIGHT 2007 ACS on STN

RX(22) OF 268

REF: Bioorganic & Medicinal Chemistry Letters, 14(14), 3799-3802;

2004

CON: reflux

L2 ANSWER 5 OF 14 CASREACT COPYRIGHT 2007 ACS on STN

## RX(1) OF 41

Bioorganic & Medicinal Chemistry Letters, 14(12), 3221-3226; REF:

2004 NOTE: thermal CON: 230 deg C

#### L2 ANSWER 6 OF 14 CASREACT COPYRIGHT 2007 ACS on STN

#### RX(3) OF 32

91%

REF: Bioorganic & Medicinal Chemistry, 10(12), 3997-4004; 2002 NOTE: thermal, no solvent, low pressure CON: 2 hours, 230 deg C

#### L2ANSWER 7 OF 14 CASREACT COPYRIGHT 2007 ACS on STN

RX(22) OF 78

$$\begin{array}{c|c} \text{Me} & \text{CH}_2 & \text{Me} \\ \hline \\ \text{Ph-C-NH} & \text{Ph-C-NH} \\ \hline \\ \text{O} & \text{O} \end{array}$$

Me 
$$CH_2$$
  $CH_2$   $CH_2$   $Ph$ 

85%

REF: European Journal of Organic Chemistry, (12), 1996-2006; 2002 NOTE: alternative reaction conditions gave lower yield, thermal

## L2 ANSWER 8 OF 14 CASREACT COPYRIGHT 2007 ACS on STN

RX(6) OF 29

80%

REF: Bioorganic & Medicinal Chemistry Letters, 11(12), 1545-1548; 2001

## L2 ANSWER 9 OF 14 CASREACT COPYRIGHT 2007 ACS on STN

Me Me Me 
$$CH_2$$
  $CH_2$   $CH_2$ 

REF: Tetrahedron Letters, 41(42), 8111-8116; 2000 NOTE: thermal key step (180.degree., 24 h); neat

## L2 ANSWER 10 OF 14 CASREACT COPYRIGHT 2007 ACS on STN

#### RX(2) OF 7

66%

REF: Tetrahedron Letters, 38(2), 199-202; 1997 NOTE: 230.degree.C, 1 h

L2 ANSWER 11 OF 14 CASREACT COPYRIGHT 2007 ACS on STN

RX(30) OF 74

REF: Eur. Pat. Appl., 92136, 26 Oct 1983

L2 ANSWER 12 OF 14 CASREACT COPYRIGHT 2007 ACS on STN

RX(8) OF 14

REF: Zhurnal Organicheskoi Khimii, 18(5), 1075-9; 1982

L2 ANSWER 13 OF 14 CASREACT COPYRIGHT 2007 ACS on STN

RX(3) OF 36

REF: Journal of Medicinal Chemistry, 20(6), 797-801; 1977

L2 ANSWER 14 OF 14 CASREACT COPYRIGHT 2007 ACS on STN

RX(6) OF 30

REF: Journal of Medicinal Chemistry, 18(1), 53-8; 1975

=>

#### ANSWER 1 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

#### RX(3) OF 26

REF: U.S. Pat. Appl. Publ., 2005004188, 06 Jan 2005

NOTE: thermal, neat; vacuum applied every 20 min. to remove water

vapor

. CON: 2 hours, 230 deg C

#### L2 ANSWER 2 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

# RX(2) OF 5 CF<sub>3</sub> (step 1)

1. C:282713-83-1,

Butyrolactone

100%

REF: Chemistry Letters, 33(10), 1342-1343; 2004 NOTE: stage 2 - no solvent, solid-state, thermal CON: STAGE(1) 1 hour, room temperature; 5 minutes, 120 deg C STAGE(2) 10 minutes, 250 deg C

#### L2ANSWER 3 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

RX(22) OF 268

Bioorganic & Medicinal Chemistry Letters, 14(14), 3799-3802; REF:

2004 CON: reflux

#### L2 ANSWER 4 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

RX(1) OF 41

. 89%

REF: Bioorganic & Medicinal Chemistry Letters, 14(12), 3221-3226;

2004

NOTE: thermal CON: 230 deg C

#### ANSWER 5 OF 24 CASREACT COPYRIGHT 2007 ACS on STN L2

RX(4) OF 31

REF: Journal of Heterocyclic Chemistry, 41(2), 247-251; 2004

CON:

STAGE(1) reflux STAGE(2) 24 hours, reflux

#### L2ANSWER 6 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

#### RX(2) OF 40

REF: Bioorganic & Medicinal Chemistry, 12(1), 17-21; 2004

CON: overnight, reflux

#### L2 ANSWER 7 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

#### RX(3) OF 32

91%

REF: Bioorganic & Medicinal Chemistry, 10(12), 3997-4004; 2002.

NOTE: thermal, no solvent, low pressure

CON: 2 hours, 230 deg C

#### L2 ANSWER 8 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

#### RX(18) OF 78

81%

REF: European Journal of Organic Chemistry, (12), 1996-2006; 2002 NOTE: alternative reaction conditions gave lower yield, thermal

#### L2 ANSWER 9 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

RX(6) OF 29

## Pyridinium tosylate, Xylene

REF: Bioorganic & Medicinal Chemistry Letters, 11(12), 1545-1548; 2001

L2 ANSWER 10 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

RX(6) OF 17

$$\begin{array}{c|c}
CH_2 \\
C-CH_2-C-CH_2-C-CH_2-C-CH_2
\end{array}$$

$$\begin{array}{c|c}
NH-C-Ph & Ph-C-NH
\end{array}$$

Ph-C-NH 
$$CH_2$$
 +  $CH_2$   $CH_2$ 

REF: Tetrahedron Letters, 41(42), 8111-8116; 2000 NOTE: thermal key step (180.degree., 24 h); neat

L2 ANSWER 11 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

#### RX(1) OF 4

REF: Tetrahedron, 53(2), 457-464; 1997

#### L2 ANSWER 12 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

#### RX(2) OF 7

66%

REF: Tetrahedron Letters, 38(2), 199-202; 1997

NOTE: 230.degree.C, 1 h

#### L2 ANSWER 13 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

#### RX(1) OF 2

REF: Journal of the Chemical Society, Perkin Transactions 2: Physical

Organic Chemistry, (7), 1497-501; 1995

NOTE: thermal

#### L2 ANSWER 14 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

## RX(1) OF 2

$$\begin{array}{c|c}
 & O \\
 & O \\
 & OH
\end{array}$$
O2
$$\begin{array}{c}
 & N \\
 & O \\$$

REF: Journal of the Serbian Chemical Society, 58(9), 629-39; 1993

NOTE: thermal

#### L2 ANSWER 15 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

RX(2) OF 3

REF: Eur. Pat. Appl., 332988, 20 Sep 1989

L2 ANSWER 16 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

RX(16) OF 54

REF: Chemica Scripta, 27(3), 411-16; 1987

L2 ANSWER 17 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

RX(30) OF 74

REF: Eur. Pat. Appl., 92136, 26 Oct 1983

L2 ANSWER 18 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

RX(2) OF 14

$$\begin{array}{ccc}
& & & & \\
& & & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

REF: Zhurnal Organicheskoi Khimii, 18(5), 1075-9; 1982

#### RX(2) OF 47

REF: Pharmazie, 35(5-6), 285-8; 1980

#### L2 ANSWER 20 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

RX(3) OF 36

REF: Journal of Medicinal Chemistry, 20(6), 797-801; 1977

#### L2 ANSWER 21 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

RX(2) OF 12

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

REF: Trudy Instituta - Moskovskii Khimiko-Tekhnologicheskii Institut imeni D. I. Mendeleeva, 86,, 152-4; 1975

#### L2 ANSWER 22 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

RX(1) OF 6

$$O_2N$$
 $O_2N$ 
 $O_2N$ 
 $O_3N$ 
 $O_2N$ 
 $O_3N$ 
 $O_2N$ 
 $O_3N$ 
 $O_2N$ 
 $O_3N$ 
 $O_2N$ 
 $O_3N$ 
 $O_3N$ 

REF: Indian Journal of Chemistry, 13(7), 652-4; 1975

#### L2 ANSWER 23 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

RX(6) OF 30

REF: Journal of Medicinal Chemistry, 18(1), 53-8; 1975

L2 ANSWER 24 OF 24 CASREACT COPYRIGHT 2007 ACS on STN

RX(15) OF 98

$$\bigcap_{OH} \bigcap_{NH-C} \bigcap_{NO_2} \bigcap_{$$

REF: Indian Journal of Chemistry, 12(3), 263-9; 1974