

Colloque SCOR & Institut des Actuaires, 2022

Arthur Charpentier

Université du Québec à Montréal

freakonometrics & freakonometrics.hypotheses.org

Modélisation prédictive, Science actuarielle, Économie mathématique, Risque, Inégalités, Économétrie, statistiques, apprentissage automatique Modélisation du climat. Extrêmes. Équité

Risk Transfert

"Insurance is the contribution of the many to the misfortune of the few"

Risk Transfert

Risk Aversion

Following Hardy et al. (1929, 1934), and Marshall and Olkin (1979)

Def Consider two sorted vectors \mathbf{x} and \mathbf{y} $(x_1 \ge x_2 \ge \cdots \ge x_n \text{ and } y_1 \ge y_2 \ge \cdots \ge y_n)$

such that
$$\sum_{i=1}^n x_i \leq \sum_{i=1}^n y_i$$
, then $\mathbf{x} \leq \mathbf{y}$ (majorization order) if $\sum_{i=1}^k x_i \leq \sum_{i=1}^k y_i$, $\forall k$.

For example.

$$\left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}, \frac{1}{n}\right) \prec_M \left(\frac{1}{n-1}, \frac{1}{n} - 1, \dots, \frac{1}{n-1}, 0\right) \prec_M (1, 0, \dots, 0, 0).$$

$$\iff \sum_{i=1}^n h(x_i) \leq \sum_{i=1}^n h(y_i)$$
 for any convex function

$$\iff$$
 $\mathbf{x} = D\mathbf{y}$ for some doubly stochastic matrix D , i.e. $\sum_{k=1}^{n} D_{i,k} = \sum_{k=1}^{n} D_{k,j} = 1, \ \forall i,j$

$$\iff$$
 $\mathbf{x} = P_1 \cdots P_k \mathbf{y}$ for finitely some Pigou-Dalton transfert matrices P_j

Risk Aversion and Risk Sharing

Def Consider two random variables X and Y, $X \leq_{CX} Y$ if $\mathbb{E}[h(X)] \leq \mathbb{E}[h(Y)]$ for any convex function h

- \iff Y is a mean-preserving spread of X, i.e. $Y \stackrel{\mathcal{L}}{=} X + Z$, where $\mathbb{E}[Z|X] = 0$.
- $\iff \mathbb{E}[(X-s)_+] \leq \mathbb{E}[(Y-s)_+] \text{ for all } s \in \mathbb{R}.$
- $\implies \mathbb{E}[X] = \mathbb{E}[Y] \text{ and } Var[X] \prec Var[Y].$
- ⇔ Pigou-Dalton transfert, majorization order, etc

Following Denuit and Dhaene (2012) and Carlier et al. (2012),

Def Consider two random vectors $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)$ and $\boldsymbol{X} = (X_1, \dots, X_n)$ on \mathbb{R}^n . $\boldsymbol{\xi}$ is a risk-sharing scheme of \boldsymbol{X} if $X_1 + \cdots + X_n = \xi_1 + \cdots + \xi_n$ almost surely.

Def Consider two random vectors $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)$ and $\boldsymbol{X} = (X_1, \dots, X_n)$ on \mathbb{R}^n_{\perp} . $\boldsymbol{\xi} \prec_{CCX} \boldsymbol{X}$ if $\xi_i \prec_{CX} X_i$.

Peer-to-peer insurance is a risk sharing network where a group of individuals pool their premiums together to insure against a risk. Peer-to-Peer Insurance mitigates the conflict that inherently arises between a traditional insurer and a policyholder when an insurer keeps the premiums that it doesn't pay out in claims

- التكافل Takaful ▶
- ◄ كَالَة Wakalah
- مشاركة Musharakah
- ► Xiang Hu Bao 相互保
- Parimutuel

Let
$$\xi_j = \frac{1}{n} \sum_{i=1}^n X_i, \ \forall j$$

Risk sharing

$$\xi_1 + \dots + \xi_n = X_1 + \dots + X_n$$

Componentwise convex-order

$$\xi_j \preceq_{CX} X_j, \ \forall j$$

More generally, consider some linear risk sharing $\boldsymbol{\xi} = M\boldsymbol{X}$, for some $n \times n$ matrix

$$M = \begin{bmatrix} \mathbf{M}_1 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_2 & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{M}_k \end{bmatrix}, \ \mathbf{M}_k = \frac{1}{n_k} \mathbf{1}_k$$

where $\mathbf{1}_k$ is the $n_k \times n_k$ matrix full of 1's.

Regular graph vs. star shaped graph (low variance vs. large variance on D)

Pigou-Dalton transferts (Dalton (1920)) see also Atkinson (2015).

$$\mathbf{y}^{(2)} \preceq_{M} \mathbf{y}^{(1)} \longleftarrow \begin{cases} y_{i}^{(2)} = y_{i}^{(1)}, \ \forall i \neq j, k \\ y_{j}^{(2)} = y_{j}^{(1)} + h, \\ y_{k}^{(2)} = y_{k}^{(1)} - h, \ y_{j}^{(2)} > y_{j}^{(1)} \end{cases}$$

see martingale property of mean-preserving spread. $Y^{(1)} \stackrel{\mathcal{L}}{=} Y^{(2)} + Z$. where $\mathbb{E}[Z|Y^{(1)}] = 0$ (convex order is a dispersion order)

Looks like a linear risk sharing mechanism,

$$\boldsymbol{\xi} = B\boldsymbol{X}$$
 a.s., where $B_{i,j} = A_{i,j}/d_i$,

A being the adjacency matrix of the network Here. B is a doubly stochastic matrix.

But it suffers some drawbacks...

- need an upper bound
- ightharpoonup unfairness ($B_{i,i} = 0, \forall i$)

(no longer "linear" risk sharing mechanism)

- \triangleright Y_i loss of insured i, $Z_i = \mathbf{1}(Y_i > 0)$
- $\triangleright V_i$ is the set of friends of insured i, $d_i = \text{Card}(V_i)$
- s deductible of insurance contracts
- \triangleright γ is the maximum amount shared between i and j (reciprocal contracts)

$$E_{j} = Z_{i} \cdot \min\{s, Y_{i}\} + \sum_{j \in \mathcal{V}_{i}} Z_{j} \min\left\{\gamma, \frac{\min\{s, Y_{j}\} - \delta}{d_{j}}\right\} - Z_{i} \cdot \min\{d_{i}\gamma, \min\{s, Y_{i}\} - \delta\}$$

$$Standard Deviation of the degrees$$

Optimization* of the Risk Sharing Mechanism

$$egin{cases} \max \left\{ \sum_{(i,j) \in \mathcal{E}} \gamma_{(i,j)}
ight\} \ ext{s.t.} \ \gamma_{(i,j)} \in [0,\gamma], \ orall (i,j) \in \mathcal{E} \ \sum_{j \in \mathcal{V}_i} \gamma_{(i,j)} \leq s, \ orall i \in \mathcal{V} \end{cases}$$

Given losses
$$\mathbf{X} = (X_1, \dots, X_n)$$
, define contributions $C_{i \to j}^{\star} = \min \Big\{ \frac{\gamma(i,j)}{\sum_{i \in \mathcal{V}_j} \gamma_{(i,j)}^{\star}} \cdot X_j, \gamma_{(i,j)}^{\star} \Big\}$,

and $\xi_i^{\star} = X_i + \sum_{i=1}^{\infty} [Z_i C_{i \to i}^{\star} - Z_i C_{i \to i}^{\star}]$ is a risk sharing, called optimal risk sharing.

* from a welfare (social planner) perspective

Sharing Risks with Friends, and Friends of Friends

We can also consider friends of friends

$$\begin{cases} \gamma_1^{\star} = \operatorname{argmax} \left\{ \sum_{(i,j) \in \mathcal{E}^{(1)}} \gamma_{(i,j)} \right\} \\ \operatorname{s.t.} \ \gamma_{(i,j)} \in [0,\gamma_1], \ \forall (i,j) \in \mathcal{E}^{(1)} \\ \sum_{j \in \mathcal{V}_i^{(1)}} \gamma_{(i,j)} \leq s, \ \forall i \end{cases}$$

$$\begin{cases} \gamma_2^{\star} = \operatorname{argmax} \left\{ \sum_{(i,j) \in \mathcal{E}^{(2)}} \gamma_{(i,j)} \right\} \\ \operatorname{s.t.} \ \ \gamma_{(i,j)} \in [0,\gamma_2], \ \ \forall (i,j) \in \mathcal{E}_{\gamma_1^{\star}}^{(2)} \\ \sum_{j \in \mathcal{V}_i^{(1)}} \gamma_{1:(i,j)}^{\star} + \sum_{j \in \mathcal{V}_i^{(2)}} \gamma_{(i,j)} \leq s, \ \ \forall i \end{cases}$$

Take-away

- ▶ Back to the roots of insurance with risk sharing,
- Important to better model interactions
- Nice mathematical properties of linear risk sharing (connexions with convex ordering)
- More complex to derive a more realistic insurance product (with lower and upper limits)
- ... ongoing work

Collaborative insurance sustainability and network structure Lariosse Kouakou, Matthias Löwe, Philipp Ratz & Franck Vermet

References

- Atkinson, A. B. (2015). Inequality. In *Inequality*. Harvard University Press.
- Barabási, A. and Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439):509-512.
- Carlier, G., Dana, R.-A., and Galichon, A. (2012). Pareto efficiency for the concave order and multivariate comonotonicity. Journal of Economic Theory, 147(1):207–229.
- Charpentier, A., Kouakou, L., Löwe, M., Ratz, P., and Vermet, F. (2021). Collaborative insurance sustainability and network structure. arXiv, 2107.02764.
- Dalton, H. (1920). The measurement of the inequality of incomes. The Economic Journal, 30(119):348-361.
- Denuit, M. and Dhaene, J. (2012). Convex order and comonotonic conditional mean risk sharing. Insurance: Mathematics and Economics, 51(2):265–270.
- Hardy, G., Littlewood, J., and G. Polya, (1929). Some simple inequalities satisfied by convex functions. British Mathematics Journal. 38:145-152.
- Hardy, G., Littlewood, J., and Polya, G. (1934). Inequalities. Cambridge University Press.
- Marshall, A. W. and Olkin, I. (1979). Inequalities: Theory of Majorization and its Applications, volume 143. Academic Press.
- Watts, D. and Strogatz, S. (1998). Collective dynamics of 'small-world' networks. Nature, 398:440-442.