Artificial Intelligence Project: Hierarchy Deep Q-Learning

Zhihao Jiang, Yiheng Lin

Introduction

Meta Controller:

(Higher Hierarchy)
Interact with External Environment (extrinsic reward), set goals for Controller;

Controller:

(Lower Hierarchy)

Try to achieve goals, receive intrinsic reward from Meta Controller.

Problem Setting

Reward: if s6 is visited, reward = 1; else, reward = 0.01

Actions: 1: move to left with probability 1;

2: move to right with probability 0.5; otherwise, move to left;

Difficulties

Hidden State: What if we have an additional state to indicate whether s6 is visited?

Search Efficiency: Can epsilon greedy agent keep taking action 2 for enough times?

```
3: for i = 1, num\_episodes do
        Initialize game and get start state description s
 4:
        5:
        while s is not terminal do
 6:
           F \leftarrow 0
            s_0 \leftarrow s
            while not (s is terminal or goal g reached) do
 9:
                                                                        Controller chooses an action
                a \leftarrow \text{EPSGREEDY}(\{s, g\}, \mathcal{A}, \epsilon_{1,g}, Q_1)
10:
                Execute a and obtain next state s' and extrinsic reward f from environment
11:
                Obtain intrinsic reward r(s, a, s') from internal critic
12:
                                                                                               Controller's reward
                Store transition (\{s,g\},a,r,\{s',g\}) in \mathcal{D}_1
13:
                UPDATEPARAMS(\mathcal{L}_1(\theta_{1,i}), \mathcal{D}_1)
14:
                UPDATEPARAMS(\mathcal{L}_2(\theta_{2,i}), \mathcal{D}_2)
15:
               F \leftarrow F + f
16:
                s \leftarrow s'
17:
            end while
18:
            Store transition (s_0, g, F, s') in \mathcal{D}_2
19:
            if s is not terminal then
20:
                g \leftarrow \text{EPSGREEDY}(s, \mathcal{G}, \epsilon_2, Q_2)
21:
            end if
22:
        end while
23:
```


Authors' Result:

Ref: Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

Our result:

epoch	s1	s2	s3	s 4	s5	s6
1	1	1.596	0.903	0.421	0.172	0.058
2	1	1.571	0.859	0.435	0.21	0.063
3	1	1.654	0.928	0.415	0.211	0.07
4	1	1.661	0.978	0.484	0.237	0.07
5	1	1.592	0.9	0.499	0.298	0.107
6	1	1.635	1.003	0.601	0.36	0.127
7	1	1.576	0.942	0.574	0.306	0.098

Ref: https://github.com/EthanMacdonald/h-DQN

Interesting Phenomena:

When goal is sited to s2, the controller often takes action 2...

Then it can visit s6...

Meta-Controller receives a big reward...

Meta-Controller tends to set s2 as the goal...

But, is this stable?

Maybe the experience of Controller is too volatile to train Meta Controller?

Quality input guarantees quality output...