Einfürung in die Algebra Hausaufgaben Blatt Nr. 8

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: January 10, 2024)

Problem 1. (a) Beweisen Sie, dass alle Gruppen der Ordnung 15 zyklisch sind.

(b) Funktioniert die Schlussweise aus Aufgabenteil (a) auch bei Gruppen der Ordnung 45?

Proof. (a) $15 = 3 \times 5$, zwei Primzahlen, also die Teiler von 15 sind 1,3,5 und 15. Da 3 teilt 15, $3^2 = 9$ aber nicht, gibt es mindestens eine 3-Sylowgruppe G_3 . Für die Zahl der 3-Sylowgruppen n_3 gilt:

$$n_3 \equiv 1 \pmod{3}$$

$$n_3|[G:G_3]=5$$

Aus den ersten Gleichung folgt: n_3 ist 1 oder 4. Da $4 \nmid 5$, ist $n_3 = 1$, also es gibt genau eine Gruppe der Ordnung 3. Ähnlich gibt es genau eine Gruppe der Ordnung 5. Es gibt genau eine Gruppe der Ordnung 1, die triviale Gruppe und genau eine Gruppe der Ordnung 15, die ganze Gruppe.

Da es für jeder Teiler t von 15 genau eine Untergruppe der Ordnung t gibt, sind alle solche Gruppen zyklisch.

(b) Nein. Es kann mehr als eine Gruppe der Ordnung 5 geben, weil für die Zahl der 5-Sylowgruppen n_5 gilt:

$$n_5 \equiv 1 \pmod{5}$$
$$n_5 \mid 9$$

Eine Möglichkeit ist $n_5 = 6$, also wir dürfen den Fall, in dem mehr als eine Untergruppe der Ordnung 5 gibt, nicht ausschließen.

 $^{^{}st}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

- **Problem 2.** (a) Seien p eine Primzahl, G eine Gruppe, P eine p-Sylowgruppe von G und n_p die Anzahl der p-Sylowgruppen von G. Zeigen Sie, dass $P \subseteq G$ genau dann gilt, wenn $n_p = 1$ ist.
 - (b) Zeigen Sie, dass eine Gruppe der Ordnung 12 nicht einfach ist.
- *Proof.* (a) Sei $n_p \neq 1$, also $n_p > 1$. Dann gibt es eine andere p-Sylowgruppe U. Weil alle Sylowgruppen konjugiert sind, gibt es $x \in G$, so dass $x^{-1}Px = U \neq P$, also $x^{-1}Px \neq P$ für alle $x \in G$, und P ist kein Normalteiler.

Sei umgekehrt P kein Normalteiler. Es gibt dann $x \in G$, so dass $x^{-1}Px = U \neq P$, Weil die Abbildung $p \to x^{-1}px$ injektiv ist, ist U auch eine p-Sylowgruppe, also $n_p > 1$.

(b) $12 = 2^2 \times 3$. Wir betrachten die Zahl der 3-Sylowgruppen n_3 . Es gilt

$$n_3 \equiv 1 \pmod{3}$$
$$n_3 \mid 4$$

Die eindeutige Lösung ist $n_3 = 1$, also die 3-Sylowgruppe ist ein Normalteiler und die Gruppe der Ordnung 12 ist nicht einfach.

Problem 3. Sei G eine Gruppe der Ordnung 392 = $2^3 \cdot 7^2$. Zeigen Sie, dass G nicht einfach ist.

Proof. Es gibt Sylow-Untergruppen der Ordnung 7^2 und 2^3 . Für die Zahl solche Untergruppen n_7 und n_2 gilt:

$$n_2 \equiv 1 \pmod{2}$$

$$n_2 \mid 7$$

$$n_7 \equiv 1 \pmod{7}$$

$$n_7 \mid 8$$

Problem 4. (a) Sei G eine endliche Gruppe mit zyklischer Z entrumsfaktorgruppe Z/Z(G). Zeigen Sie, dass dann G = Z(G) gilt.

- (b) Zeigen Sie: Sind $p \in \mathbb{P}$ eine Primzahl und G ein Gruppe der Ordnung p^2 , so ist G abelsch.
- (c) Sind auch Gruppen der Ordnung p^3 (mit primem $p \in \mathbb{P}$) stets abelsch?
- *Proof.* (a) Die Zentrumsfaktorgruppe ist zyklisch genau dann, wenn es ein Element $x \in G$ gibt, so dass die Potenzen $x^n Z(G)$ alle Elemente erreichen können. Das heißt, dass für jedes $y \in G$ ein $p \in Z(G)$ und ein $n \in \mathbb{N}$ gibt, so dass $y = x^n p$. Sei $y' \in G$ beliebig. Ähnlich gibt es $p' \in Z(G)$ und $n' \in \mathbb{N}$, so dass $y' = x^{n'} p'$. Wir betrachten die Menge

$$\{p, x^n, p', x^{n'}\}.$$

Da $p \in Z(G)$ ist, kommutiert p mit alle Elemente aus G, insbesondere x und daher x^n und $x^{n'}$. Das gilt auch für p'. Weil x^n und $x^{n'}$ Potenzen von x sind, kommutiert die miteinander. Also alle Elemente sind paarweise kommutativ und

$$yy' = x^n p x^{n'} p' = x^{n'} p' x^n p = y' y.$$

Da y und y' beliebig waren, kommutiert jedes beliebiges $y \in G$ mit alle andere Elemente $y' \in G$, also G = Z(G).

- (b) Das Zentrum ist eine Untergruppe. Weil Z(G) nicht trivial ist (Korollar 2.78), ist Z(G) entweder p oder p^2 . Falls $|Z(G)| = p^2$, wäre G = Z(G) und wir sind dann fertig.
 - Falls |Z(G)| = p, hat die Faktorgruppe G/Z(G) Ordnung p. Nach der Satz von Cauchy gibt es ein Element der Ordnung p in G/Z(G), also das Element ist ein Erzeuger von G/Z(G), und G/Z(G) ist zyklisch. Daraus folgt: G = Z(G), und G ist abelsch.
- (c) Nein. $2^3 = 8$ und es gibt eine Diedergruppe D_4 der Ordnung 8. Die Diedergruppe ist aber nicht abelsch.