

GEOMETRÍA Capítulo 23

2st SECONDARY

Paralelepípedos y cubo

MOTIVATING | STRATEGY

Muchos objetos que conocemos tienen forma de prismas y cilindros, de allí la importancia de conocer sus propiedades que presentan así como las fórmulas para calcular las áreas de las superficies lateral y total como la del volumen, con lo cual podremos encontrar luego sus

aplicaciones prácticas e

Prismas rectos.- Es el prisma cuyas aristas laterales son perpendiculares a sus bases y sus caras laterales son regiones rectangulares.

1. Área de la superficie lateral

2. Área de la superficie total

3. Volumen del cilindro

PRISMA REGULAR: Es un prisma recto cuyas bases son regiones

poligonales regulares. PRISMA REGULAR

PRISMA REGULAR TRIANGULAR

ABC: triángulo

PRISMA REGULAR HEXAGONAL

PARALELEPÍPEDO REGULAR O RECTOEDRO

$$d^2 = a^2 + b^2 + c^2$$

$$V = a.b.c$$

CUBO O HEXAEDRO REGULAR

 Las dimensiones de un paralelepípedo rectangular son de 2 m, 3 m y 6m. Halle la longitud de su diagonal.

Resolución

Piden: La longitud de la diagonal

$$d^2 = a^2 + b^2 + c^2$$

$$d^2 = 2^2 + 6^2 + 3^2$$

$$d^2 = 4 + 36 + 9$$

$$d^2 = 49$$

$$d = 7m$$

2. Calcule el área de la superficie total del siguiente paralelepípedo rectangular.

Resolución

Piden: El área de la superficie total

$$AT = 2(ab + bc + ac)$$

$$AT = 2 (2.6 + 6.4 + 2.4)$$

$$AT = 2 (12 + 24 + 8)$$

$$AT = 2 (44)$$

$$AT = 88 u^2$$

3. El volumen de un paralelepípedo rectangular es 60m³. Si el ancho y el alto miden 2m y 3m, respectivamente, halle la longitud del largo.

4. Calcule su volumen del siguiente cubo.

Resolución

Piden: El volumen del cubo

$$V = 3^3$$

$$V = 27 u^3$$

 $A_{T} = 6a^{2}$

5. Calcule el área de la superficie total del siguiente cubo.

Resolución

Piden: El área de la superficie total del cubo

$$A_T = 6 (16)$$

 $AT = 96 u^2$

6. Halle la longitud de una diagonal de un cubo si la longitud de la

diagonal de una cara es $\sqrt{6}$ m.

<u>Resolución</u>

Piden: La diagonal del cubo

a
$$\sqrt{2} = \sqrt{6}$$

$$a = \sqrt{3}$$

d = a
$$\sqrt{3}$$

$$d = \sqrt{3} . \sqrt{3}$$

$$d = 3 m$$

7. Calcule el área de la superficie total del cubo mostrado si el volumen es 27 m.

Resolución

Piden: El área de la superficie total cubo a

$$V = a^{3}$$

$$27 = a^3$$

$$3m = a$$

$$A_{T} = 6a^{2}$$

$$A_T = 6 (3)^2$$

$$AT = 54 \text{ m}^2$$

8. En la figura se muestra una pecera que contiene de agua los 2/3 del total. Halle la distancia del nivel de agua al borde superior de la pecera.

<u>Resolución</u>

Piden: El valor de x

Dato:

$$V_{AGUA} = \frac{2}{3} \cdot V_{TOTAL}$$

$$20.40.(30-x) = \frac{2}{3}/20/40/30$$

$$30 - x = 20$$

$$x = 10 cm$$