MA 106 Tutorial 4 Solutions

D1 T5

GYANDEV GUPTA

March 31, 2021

IIT BOMBAY

QUESTION 4.3 QUESTION 4.6

QUESTION 4.4 QUESTION 4.7

QUESTION 4.5 QUESTION 4.8

Part(i)

We have the basis set
$$E = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$$
 of $\mathbb{R}^{3 \times 1}$ and $F = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4)$ of $\mathbb{R}^{4 \times 1}$, $T(\mathbf{e}_1) = \begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix}_T^T = 1\mathbf{e}_1 + 0\mathbf{e}_2 + 1\mathbf{e}_3 + 1\mathbf{e}_4$

T(
$$\mathbf{e}_2$$
) = $\begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}^T$ = $1\mathbf{e}_1 + 1\mathbf{e}_2 + 0\mathbf{e}_3 + 1\mathbf{e}_4$
T(\mathbf{e}_3) = $\begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}^T$ = $0\mathbf{e}_1 + 1\mathbf{e}_2 + 1\mathbf{e}_3 + 1\mathbf{e}_4$

$$T(e_3) = \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}' = 0e_1 + 1e_2 + 1e_3 + 1e_4$$

$$\mathbf{M}_{F}^{E}(T) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Part(ii). Try whether the set E' and set F' forms a basis set? Indeed yes they form

$$T(\mathbf{e}_{1} + \mathbf{e}_{2}) = \begin{bmatrix} 2 & 1 & 1 & 2 \end{bmatrix}^{T} = 0(\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}) + 0(\mathbf{e}_{2} + \mathbf{e}_{3} + \mathbf{e}_{4}) + 1(\mathbf{e}_{3} + \mathbf{e}_{4} + \mathbf{e}_{1}) + 1(\mathbf{e}_{4} + \mathbf{e}_{1} + \mathbf{e}_{2})$$

$$T(\mathbf{e}_{2} + \mathbf{e}_{3}) = \begin{bmatrix} 1 & 2 & 1 & 2 \end{bmatrix}^{T} = 0(\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}) + 1(\mathbf{e}_{2} + \mathbf{e}_{3} + \mathbf{e}_{4}) + 0(\mathbf{e}_{3} + \mathbf{e}_{4} + \mathbf{e}_{1}) + 1(\mathbf{e}_{4} + \mathbf{e}_{1} + \mathbf{e}_{2})$$

$$T(\mathbf{e}_{3} + \mathbf{e}_{1}) = \begin{bmatrix} 1 & 1 & 2 & 2 \end{bmatrix}^{T} = 0(\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}) + 1(\mathbf{e}_{2} + \mathbf{e}_{3} + \mathbf{e}_{4}) + 1(\mathbf{e}_{3} + \mathbf{e}_{4} + \mathbf{e}_{1}) + 0(\mathbf{e}_{4} + \mathbf{e}_{1} + \mathbf{e}_{2})$$

$$M_{F'}^{E'}(T) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Proposition

Let \mathbf{A} , $\mathbf{B} \in \mathbb{K}^{n \times n}$. Then $\mathbf{A} \sim \mathbf{B}$ if and only if there is an ordered basis E for $\mathbb{K}^{n \times 1}$ such that \mathbf{B} is the matrix of the linear transformation $T_{\mathbf{A}} : \mathbb{K}^{n \times 1} \to \mathbb{K}^{n \times 1}$ with respect to E.

In fact, $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ if and only if the columns of \mathbf{P} form an ordered basis, say E, for $\mathbb{K}^{n\times 1}$ and $\mathbf{B} = \mathbf{M}_{E}^{E}(T_{\mathbf{A}})$.

Using the theorem we get $E = \{P_1, P_2, P_3, P_4\}$

For $|\mathbf{A} - \mu \mathbf{I}| = 0 = (\mu - \lambda)^3$ its true for all vector $\mathbf{x} = (x_1, x_2, x_3)$ and hence eigen space is \mathbb{R}^3

For $|\mathbf{B} - \mu \mathbf{I}| = 0 = (\mu - \lambda)^3$ and for corresponding eigen vector $\mathbf{x} = (x_1, x_2, x_3)$

Solve $(\mathbf{B} - \lambda \mathbf{I})\mathbf{x} = 0 \implies x_2 = 0$ and hence eigen space is \mathbb{R}^2

For $|\mathbf{C} - \mu \mathbf{I}| = 0 = (\mu - \lambda)^3$ and for corresponding eigen vector $\mathbf{x} = (x_1, x_2, x_3)$

Solve $(\mathbf{B} - \lambda \mathbf{I})\mathbf{x} = 0 \implies x_2 = 0$, $x_3 = 0$ and hence eigen space is \mathbb{R}

Check
$$|\mathbf{A} - 3\mathbf{I}| = 0$$
, we get det $\begin{bmatrix} 0 & 0 & 0 \\ -2 & 1 & 2 \\ -2 & 1 & 2 \end{bmatrix} = 0$

$$Ax = 3x$$

$$\begin{bmatrix} 3 & 0 & 0 \\ -2 & 4 & 2 \\ -2 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 3 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

We get $-2x_1 + x_2 + 2x_3 = 0$. So all eigen vectors of form $\mathbf{x} = x_1(1, 2, 0) + x_3(0, -2, 1)$ where $x_3, x_1 \in \mathbb{R}$

To prove $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$ is an eigenvector of **A**

$$\begin{bmatrix} 3 & 0 & 0 \\ -2 & 4 & 2 \\ -2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ 6 \end{bmatrix} = 6 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

We get the eigen value to be 6.

For
$$|\mathbf{A} - \mu \mathbf{I}| = 0$$
,
$$\det \left(\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} - \mu \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) = 0$$

$$\det \left(\begin{bmatrix} \cos \theta - \mu & -\sin \theta \\ \sin \theta & \cos \theta - \mu \end{bmatrix} \right) = 0$$

$$\mu^2 - 2\mu \cos \theta + 1 = 0 \implies \mu = \cos \theta \pm i \sin \theta$$
 Let $\mathbf{x} = (x_1, x_2)$ where $x_1, x_2 \in \mathbb{C}$
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mu \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

We get
$$\cos \theta x_1 - \sin \theta x_2 = (\cos \theta - i \sin \theta) x_1 \implies x_2 = i x_1$$

We get $\mathbf{x} = x_1(1, i)$ where $x_1 \in \mathbb{C}$
For other eigen value $\cos \theta x_1 + \sin \theta x_2 = (\cos \theta + i \sin \theta) x_1 \implies x_2 = -i x_1$
We get $\mathbf{x} = x_1(1, -i)$ where $x_1 \in \mathbb{C}$
 $\mathbf{P} := \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$ and Check it $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} \cos \theta - i \sin \theta & 0 \\ 0 & \cos + i \sin \theta \end{bmatrix}$

$$Rank\mathbf{A}=1$$
 and $Nullity\mathbf{A}=n-1$ Eigen vector = $\begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}^T$ for eigen value=n To find $|\mathbf{A}-\mu\mathbf{I}|=0$, Swap all rows inititially $(R_i\iff R_{n+1-i}\ \forall\ i=1\ to\ n\)$ and perform $R_1\mapsto \sum_{i=1}^n R_i$ and take $(n-\mu)$ common and then $R_k\mapsto R_k-R_1\forall\ k=2\ to\ n$ and then expand via last column we get $\mu^{n-1}(\mu-n)=0\implies \mu=0$ GM is n-1, $\mu=n$ GM is 1 Now find eigen vectors corresponding to all eigen values $(\mathbf{A}-\mu\mathbf{I})\mathbf{x}=0$ we get For $\mu=0$, $\mathbf{v}=\{\ \mathbf{x}: \sum_{i=1}^n x_i=0\}$

For $\mu = n$ we get $\mathbf{v} = x_1(1, 1, 1, 1, ...)^T \forall x_1 \in \mathbb{R}$

Perform $P^{-1}AP$ to get to a diagonal matrix $(0, 0, 0, ..., n)^T$

QUESTIONS?

Contact me via 190100051@iitb.ac.in THANK YOU

