Estabilidade de Sistemas LIT

Prof. Marcelo G. Vanti

Introdução

 A resposta de um sistema linear pode ser decomposta em resposta de estado nulo (condições iniciais nulas, a resposta deve-se apenas à entrada) e resposta de entrada nula (a resposta deve-se ao estado inicial do sistema, representado pelas condições iniciais), como visto na equação (3.6):

$$\mathbf{y}(t) = \underbrace{\mathbf{C}e^{\mathbf{A}t}\mathbf{x}(0)}_{\text{entrada nula}} + \underbrace{\left[\mathbf{C}e^{\mathbf{A}t}\mathbf{B} + \mathbf{D}\boldsymbol{\delta}(t)\right] * \mathbf{u}(t)}_{\text{estado nulo}}$$

• Estabilidade **BIBO** (bounded-input bounded-output) refere-se à estabilidade da resposta de estado nulo e é aplicada a sistemas relaxados. Estabilidade interna refere-se à estabilidade da resposta devido ao estado inicial do sistema.

Introdução

Exemplo 4.1 Considere o sistema descrito pela equação diferencial abaixo

$$3y'(t) + 2y(t) = u(t)$$

com y(0) = 2, e a entrada u(t) é um degrau unitário. Escrevendo a transformada de Laplace,

$$3sY(s) - 3y(0) + 2Y(s) = \frac{1}{s}$$

$$(3s+2)Y(s) = 3y(0) + \frac{1}{s}$$

$$Y(s) = \frac{6}{3s+2} + \frac{1}{s(3s+2)} = \frac{2}{s+2/3} + \frac{1/3}{s(s+2/3)}$$

$$Y(s) = \frac{2}{s+2/3} + \frac{1/2}{s} - \frac{1/2}{s+2/3}$$
entrada nula
$$y(t) = 2e^{-2/3t}u(t) + \frac{1}{2}(1 - e^{-2/3t})u(t)$$

• Seja um sistema SISO, LIT, causal e relaxado em t=0.

$$y(t) = \int_0^t g(t - \tau)u(\tau)d\tau = \int_0^t g(\tau)u(t - \tau)d\tau$$

Se $|u(t)| \le U_m < \infty$, $\forall t \ge 0$, então a entrada é limitada.

 Um sistema é estável BIBO se, para toda entrada limitada a saída é limitada.

Teorema 4.1

Um sistema é estável BIBO se e somente se g(t) é absolutamente integrável em $[0, \infty)$, ou

$$\int_0^\infty |g(t)|dt \le M < \infty.$$

Demonstração.

$$|y(t)| = \left| \int_0^\infty g(\tau) u(t-\tau) d\tau \right| \le \int_0^\infty |g(\tau)| |u(t-\tau)| d\tau$$

$$\le U_m \underbrace{\int_0^\infty |g(\tau)| d\tau}_{< M} \le M U_m < \infty.$$

Por outro lado, se g(t) não é absolutamente integrável, então $\exists t_1$ tal que $\int_0^{t_1} |g(\tau)| d\tau = \infty \Rightarrow |y(t_1)| = \infty$ e a saída não é limitada.

Exemplo 4.2

$$g(t) = a\delta(t-1) + a^2\delta(t-2) + a^3\delta(t-3) + \dots = \sum_{i=1}^{\infty} a^i\delta(t-i),$$

$$|g(t)| = \sum_{i=1}^{\infty} |a^i| \delta(t-i).$$

Daí,

$$\int_0^\infty |g(t)| dt = \sum_{i=1}^\infty |a^i| \int_0^\infty \delta(t-i) dt = \sum_{i=1}^\infty |a^i| = \begin{cases} \infty \text{ se } |a| \ge 1\\ \frac{|a|}{1-|a|} \text{ se} |a| < 1 \end{cases}$$

 \Rightarrow O sistema é estável BIBO se |a| < 1.

Teorema 4.2

Se um sistema com resposta ao impulso g(t) é estável BIBO, então, quando $t \to \infty$

- **1** a resposta para uma entrada u(t) = a, $\forall t \ge 0$, tende à $\hat{g}(0)a^*$,
- ② a resposta para uma entrada $u(t) = \text{sen}(\omega_0 t), \ \forall t \geq 0$, tende à $|\hat{g}(j\omega_0)| \text{sen}(\omega_0 t + \theta)$, onde $\theta = \angle \hat{g}(j\omega_0)$

Demonstração.

• Se $u(t) = a \ \forall t \ge 0$, $y(t) = \int_0^t g(\tau)u(t-\tau)d\tau = a \int_0^t g(\tau)d\tau$, logo se $t \to \infty$, então, $y(t) \to a \int_0^\infty g(\tau)e^{-0\tau}d\tau = a\hat{g}(0)$

cont...

^{*} Teorema do valor final

Demonstração.

 $u(t) = \operatorname{sen}(\omega_0 t)$, então,

$$y(t) = \int_0^t g(\tau) sen(\omega_0(t - \tau)) d\tau$$

$$= \int_0^t g(\tau) \left\{ sen(\omega_0 t) \cos(\omega_0 \tau) - sen(\omega_0 \tau) \cos(\omega_0 t) \right\} d\tau$$

$$= sen(\omega_0 t) \int_0^t g(\tau) \cos(\omega_0 \tau) d\tau - \cos(\omega_0 t) \int_0^t g(\tau) \sin(\omega_0 \tau) d\tau$$

cont...

Demonstração.

para $t \to \infty$,

$$y(t) \to \operatorname{sen}(\omega_0 t) \int_0^\infty g(\tau) \cos(\omega_0 \tau) d\tau - \cos(\omega_0 t) \int_0^\infty g(\tau) \operatorname{sen}(\omega_0 \tau) d\tau$$

Por outro lado, para g(t) absolutamente integrável, com $s=j\omega$, pode-se escrever

$$\hat{g}(j\omega) = \int_0^\infty g(\tau)e^{-j\omega\tau}d\tau, \text{ ou}$$

$$\hat{g}(j\omega_0) = \int_0^\infty g(\tau)\left(\cos(\omega_0\tau) - j\sin(\omega_0\tau)\right)d\tau.$$

cont...

Demonstração.

Como g(t) é real,

$$\mathbb{R}e\{\hat{g}(j\omega_0)\} = a = \int_0^\infty g(\tau)\cos(\omega_0\tau)d\tau$$
$$\mathbb{I}m\{\hat{g}(j\omega_0)\} = b = -\int_0^\infty g(\tau)\sin(\omega_0\tau)d\tau.$$

Portanto, $y(t) \rightarrow a \operatorname{sen}(\omega_0 t) + b \cos(\omega_0 t)$, e fazendo $a = A \cos \theta$, $b = A \operatorname{sen} \theta$,

$$y(t) \to A \cos \theta \sec(\omega_0 t) + A \sec \theta \cos(\omega_0 t)$$

= $A \sec(\omega_0 t + \theta)$,

onde
$$A = \sqrt{\mathbb{R}e\{\hat{g}(j\omega_0)\}^2 + \mathbb{I}m\{\hat{g}(j\omega_0)\}^2} = |\hat{g}(j\omega_0)|$$

 $e \theta = \tan^{-1}(\frac{b}{a}) = \angle \hat{g}(j\omega_0).$

- No teorema 4.2, a condição de estabilidade BIBO é essencial. Por exemplo, seja $g(t) = 4e^{2t}$, $t \ge 0$. g(t) não é absolutamente integrável. logo, o sistema não é estável BIBO e o teorema 4.2 não se aplica. Além disso, $\hat{g}(s) = \frac{4}{s-2}$. Para uma entrada degrau com amplitude 1, a saída cresce indefinidamente, sem se aproximar de $\hat{g}(0) = \frac{4}{-2} = -2$.
- Se o sistema é estável BIBO, para uma entrada degrau de amplitude a a saída tende para um degrau de amplitude $a\hat{g}(0)$. Se a entrada é sinusoidal, a saída tende para uma sinusoide com a mesma frequência da entrada, sendo a amplitude e a fase definidas por $\hat{g}(j\omega_0)$.
- Em um sistema com função de transferência $\hat{g}(s)$, $\hat{g}(j\omega)$ é a resposta em frequência do sistema, com amplitude $|\hat{g}(j\omega)|$ e fase $\angle \hat{g}(j\omega)$.

Teorema 4.3

Um sistema SISO com função de transferência $\hat{g}(s)$ racional e própria é estável BIBO se e somente se todo polo de $\hat{g}(s)$ tiver sua parte real negativa, ou equivalentemente, está no semiplano complexo s esquerdo.

Demonstração.

se os polos p_i de $\hat{g}(s)$ tem multiplicidade n_i , a expansão em frações parciais de $\hat{g}(s)$ contem os termos $\frac{1}{s-p_i}$, $\frac{1}{(s-p_i)^2}$, ..., $\frac{1}{(s-p_i)^n}$. Daí, a transformada inversa conterá os termos e^{p_it} , te^{p_it} , ..., $t^{(n_i-1)}e^{p_it}$, e cada termo será absolutamente integrável se e somente se a parte real de p_i for negativa. Observe que para $\mathbb{R}e\{p_i\}=0$, e^{p_it} tem amplitude constante e não é absolutamente integrável.

Corolário 4.3

Um sistema SISO com função racional própria $\hat{g}(s)$ é estável BIBO se e somente se $g(t) \to 0$ quando $t \to \infty$.

- Condições para estabilidade BIBO para sistemas MIMO:
 - **①** $\mathbf{G}(t) = \{g_{ij}(t)\}$ ⇒ $g_{ij}(t)$ é absolutamente integrável para todos i,j em $[0,\infty)$.
 - ② $\hat{\mathbf{G}}(s) = \{\hat{g}_{ij}(s)\} \Rightarrow \hat{g}_{ij}(s)$ tem seus polos com parte real negativa.
- Estabilidade BIBO de equações dinâmicas. Para um sistema de equações de estado,

$$\hat{\mathbf{G}}(s) = \mathbf{C} (s\mathbf{I} - \mathbf{A})^{-1} \mathbf{B} + \mathbf{D}$$

A resposta de estado nulo é estável BIBO se e somente se cada polo de $\hat{\mathbf{G}}(s)$ tem parte real negativa.

como

$$\hat{\mathbf{G}}(s) = \frac{1}{|s\mathbf{I} - \mathbf{A}|} \mathbf{C} \left[\text{Adj} \left(s\mathbf{I} - \mathbf{A} \right) \right] \mathbf{B} + \mathbf{D},$$

cada polo de $\hat{\mathbf{G}}(s)$ é um autovalor de \mathbf{A} . Portanto, se todos autovalores de \mathbf{A} tiverem parte real negativa o sistema é estável BIBO.

Obervação: nem todo autovalor é um polo, e por isso, a matriz **A** pode possuir autovalores com parte real positiva e ainda assim o sistema ser estável BIBO.

Exemplo 4.3

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} \mathbf{x}(t).$$

$$\begin{split} \hat{g}(s) &= \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} s-1 & 0 \\ -1 & s+1 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{s+1}{(s+1)(s-1)} & 0 \\ 1 & \frac{s-1}{(s+1)(s-1)} \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ \hat{g}(s) &= \begin{bmatrix} \frac{1}{s-1} + 1 & \frac{1}{s+1} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{s+1} \end{split}$$

Os autovalores de $\bf A$ são 1 e -1, mas apenas -1 é um polo e o sistema é estável BIBO.

Exemplo 4.4

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} -2 & 5 \\ 0 & 3 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 4 \\ 0 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 7 & 8 \end{bmatrix} \mathbf{x}(t) + 1.5u(t)$$

Os autovalores de A são -2 e 3.

$$(s\mathbf{I} - \mathbf{A})^{-1} = \begin{bmatrix} s+2 & -5 \\ 0 & s-3 \end{bmatrix}^{-1} = \frac{1}{(s+2)(s-3)} \begin{bmatrix} s-3 & 5 \\ 0 & s+2 \end{bmatrix} = \begin{bmatrix} \frac{1}{s+2} & \frac{5}{(s+2)(s-3)} \\ 0 & \frac{1}{s-3} \end{bmatrix}$$

$$\hat{g}(s) = \begin{bmatrix} 7 & 8 \end{bmatrix} \begin{bmatrix} \frac{1}{s+2} & \frac{5}{(s+2)(s-3)} \\ 0 & \frac{1}{s-3} \end{bmatrix} \begin{bmatrix} 4 \\ 0 \end{bmatrix} + 1.5$$

$$\hat{g}(s) = \begin{bmatrix} \frac{7}{s+2} & \frac{35}{(s+2)(s-3)} + \frac{8}{s-3} \end{bmatrix} \begin{bmatrix} 4 \\ 0 \end{bmatrix} + 1.5 = \frac{28}{s+2} + 1.5 = \frac{1.5s + 31}{s+2}$$

O sistema é estável BIBO.

A estabilidade interna é definida para respostas de entrada nula (u(t) = 0). neste caso, as equações de estado são reduzidas a forma seguinte:

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) \tag{1}$$

$$y(t) = \mathbf{C}\mathbf{x}(t). \tag{2}$$

É evidente que a solução de (1) é

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0 \tag{3}$$

onde \mathbf{x}_0 é o vetor de condições iniciais o sistema.

A resposta (3) é definida como marginalmente estável ou estável no sentido de Lyapunov se todo estado finito \mathbf{x}_0 excita uma reposta limitada. É assintóticamente estável se a resposta é limitada e tende à 0 quando $t \to \infty$.

teorema 4.4

- A equação $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$ é marginalmente estável se e somente se todos autovalores de \mathbf{A} tem parte real nula ou negativa, e aqueles com parte real nula são raízes simples do polinômio mínimo de \mathbf{A} .
- ② A equação $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$ é assintoticamente estável se e somente se todos autovalores de A tem parte real negativa.

Considere uma transformação de equivalência $\bar{\bf A}={\bf PAP}^{-1}$, onde $\bar{\bf x}(t)={\bf Px}(t)$. Se ${\bf x}(t)$ é limitado, então $\bar{\bf x}(t)$ é limitado. Se ${\bf x}(t)\to 0$, $\bar{\bf x}(t)\to 0$. Portanto, a estabilidade de $\dot{\bf x}(t)={\bf Ax}(t)$ é invariante sob esta transformação de equivalência (lembre-se que ${\bf A}$ e $\bar{\bf A}$ compartilham o mesmo conjunto de autovalores). Com esta transformação, de (1) tem-se $\dot{\bar{\bf x}}(t)={\bf A\bar{x}}(t)$ e daí $\bar{\bf x}(t)=e^{\bar{\bf A}t}\bar{\bf x}_0$.

Se $\bar{\mathbf{A}}$ está na forma de Jordan, então, $e^{\bar{\mathbf{A}}t}$ será da forma exemplificada como

$$e^{\bar{\mathbf{A}}t} = \begin{bmatrix} e^{\lambda_1 t} & te^{\lambda_1 t} & \frac{t^2}{2}e^{\lambda_1 t} & 0 & 0 & \cdots & 0\\ 0 & e^{\lambda_1 t} & te^{\lambda_1 t} & 0 & 0 & \cdots & 0\\ 0 & 0 & e^{\lambda_1 t} & 0 & 0 & \cdots & 0\\ 0 & 0 & 0 & e^{\lambda_2 t} & 0 & \cdots & 0\\ 0 & 0 & 0 & 0 & e^{\lambda_3 t} & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & 0 & 0 & \cdots & e^{\lambda_n t} \end{bmatrix}.$$

Portanto, se o autovalor λ_i tem parte real negativa, $e^{\lambda_i t} \to 0$ e $t^n e^{\lambda_i t} \to 0 \, \forall n$. Se λ_i tem parte real nula e nenhum bloco de Jordan de ordem ≥ 2 , o termo correspondente $(e^{\lambda_i t})$ na matriz $e^{\bar{A}t}$ é constante ou sinusoidal com amplitude constante, e portanto, limitado.

Se $\bar{\bf A}$ possui um ou mais autovalores com parte real positiva, todos termos de $e^{\bar{\bf A}t}$ relativos à este autovalor crescem de forma ilimitada.

Se $\bar{\mathbf{A}}$ possui autovalores λ_i com parte real nula e seu bloco de Jordan com ordem $n_i \geq 2$, então todos os termos $t^{n_i-1}e^{\lambda_i t}$ crescem ilimitadamente.

Finalmente, para ser assintoticamente estável, todos termos de $e^{\bar{\mathbf{A}}t}$ tem que tender a 0 quando $t \to \infty$. Portanto, nenhum autovalor com parte real nula ou positiva é permitido.

Exemplo 4.5

$$\dot{\bar{\mathbf{x}}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \bar{\mathbf{x}}$$

$$\Delta(\lambda) = \lambda^2(\lambda+1)$$

$$\psi(\lambda) = \lambda(\lambda+1)$$

 $\lambda=0$ é raiz simples do polinômio mínimo e portanto seu bloco de Jordan tem ordem 1.

Exemplo 4.6

$$\dot{\bar{\mathbf{x}}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \bar{\mathbf{x}}$$
$$\Delta(\lambda) = \lambda^2(\lambda + 1)$$

 $\psi(\lambda) = \lambda^2(\lambda + 1)$

 $\lambda = 0 \, n\tilde{a}o$ é raiz simples do polinômio mínimo e portanto seu bloco de Jordan tem ordem 2. Este sistema não é marginalmente estável.

Finalmente, como todo polo de $\hat{\mathbf{G}}(s)$ é um autovalor de \mathbf{A} , a estabilidade assintótica implica estabilidade BIBO, enquanto estabilidade BIBO não implica em geral estabilidade assintótica, devido ao cancelamento de fatores no numerador e denominador de $\hat{\mathbf{G}}(s)$.

Referências

Chi-Tsong Chen. *Linear System Theory and Design*. Oxford University Press, Fourth Edition, 2013.

B.P.Lathi. Sinais e Sistemas Lineares. Bookman, Segunda Edição, 2004.

Chi-Tsong Chen. *Signals and Systems: A Fresh Look*. Stony Brook University, 2009.

http://www.ctchen.me/