Лабораторная работа № 1.3.3 Измерение вязкости воздуха по течению в тонких трубках.

Никита Москвитин, Б04-204

2023

1 Аннотация

В данной работе исследовалось ламинарное и тубрлентное течение в газе. Проверялась применимость формулы Пуазаейля, при ламинарном течнии. Была произведенна оценка числа Рейнольдса. Найден коэффицент вязкости.

2 Введение

Рассмотрим движение вязкой жидкости или газа по трубке круглого сечения. При малых скоростях потока движение оказывается ламинарным (слоистым), скорости частиц меняются по радиусу и направлены вдоль оси трубки. С увеличением скорости потока движение становится турбулентным, а слои перемешиваются. При турбулентном движении скорость в каждой точке быстро меняет величину и направление, сохраняется только средняя величина скорости.

Характер движения газа (или жидкости) в трубке определяется безразмерным числом Рейнольдса:

$$Re = \frac{vr\rho}{\eta} \tag{1}$$

где v – средняя скорость потока, r – радиус трубки, ρ – плотность движущейся среды, η – её вязкость. В гладких трубах круглого сечения переход от ламининарного движения к турбулентному происходит при $Re \approx 1000$.

При ламинарном течении объем газа объемный расход определяется формулой Пуазейля:

$$Q = \frac{\pi r^4}{8l\eta} \Delta P \tag{2}$$

Отметим условия, при которых справедлива формула (2) . Прежде всего необходимо, чтобы с достаточным запасом выполнялось неравенство Re < 1000. Необходимо также, чтобы при течении не происходило существенного изменения удельного объёма газа (при выводе формулы удельный объём считался постоянным). Для жидкости это предположение выполняется практически всегда, а для газа — лишь в тех случаях, когда перепад давлений вдоль трубки мал по сравнению с самим давлением. В нашем случае давление газа равно атмосферному (10^3 см вод. ст.), а перепад давлений составляет не более 10 см вод. ст., т. е. менее 1% от атмосферного. Формула (2) выводится для участков трубки, на которых закон распределения скоростей газа по сечению не меняется при двидении вдоль потока.

При втекании газа в трубку из большого резервуара скорости слоёв вначале постоянны по всему направлению. По мере продвижения газа по трубке картина распределения скоростей меняется, так как сила трения о стенку тормозит прилежащие к ней оси. Характерное для ламинарного течения параболическое распределение скоростей устанавливается на некотором расстоянии a от входа в трубку, которое зависит от радиуса трубки r и числа Рейнольдса по формуле

$$a \approx 0, 2rRe$$
 (3)

Градиент давления на участке формирования потока оказывается больше, чем на участке с установившимся ламинарным течением, что позволяет разделить эти участки экспериментально. Формула (3) даёт возможность оценить дину участка формирования.

Коэффицент вязкости для газа не зависит от плотности и определяется формулой:

$$\eta \sim \frac{1}{3}\rho v\lambda$$
(4)

Где σ – длина свободного пробега, v – средняя скорость потока, ρ – плотность газа.

Причем при турбулентном движении можно оценить объемный расход:

$$Q \sim r^{\frac{5}{2}} \sqrt{\frac{\Delta P}{\rho l}} \tag{5}$$

3 Экспериментальная установка

Схема экспериментальной установки изображена на Рис. 1. Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками.

Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя. При превышении максимального избыточного давления на входе счётчика (~ 30 см вод. ст.) вода выплёскивается из трубки в защитный баллон Б, создавая шум и привлекая к себе внимание экспериментатора.

Рис. 1: Схема установки

4 Измерения

Измерим расход Q от разности давлений P, данные приведенны в Таблице 1. Где $Q=q*10^{-4}\frac{\pi}{c},\,P=p*1,96131\Pi$ а. Диаметры трубок и длины: $d_1=4,10\pm0,05$ мм и $l_1=50\pm1$ см, $d_2=5,20\pm0,05$ мм и $l_2=50\pm1$ см, $d_3=3,00\pm0,05$ мм и $l_3=30\pm1$ см.

Измерим теперь зависимость перепада давления от длины в трубке с $d_1=4,10\pm0,05$ мм и $l_1=50\pm1$ см, данные в таблице 2.

Таблица 1: Измерения расхода от разницы давлений для трех трубок

V_1 , л	t_1 , c	q_1	Δq_1	p	V_2 , л	t_2 , c	q_2	Δq_2	p	V_3 , л	t_3 , c	q_3	Δq_3	p
1	65,75	152	8	11	3	60,12	499	9	9	1	60,35	166	9	10
2	70,34	284	8	20	8	71,14	1125	8	20	2	56,36	355	9	20
3	70,89	423	8	29	5	60,79	823	9	15	3	54,13	554	10	31
4	67,81	590	8	42	9	63,25	1423	10	27	5	71,49	699	8	40
5	68,57	729	8	52	10	62,49	1600	10	38	6	71,83	835	8	51
6	67,56	888	8	65	9	58,89	15288	10	34	6	67,71	886	8	60
7	72,66	963	8	76	10	59,1	1692	11	45	6	62,83	955	9	71
8	80,64	992	7	82	10	56,4	1773	11	52	6	58,83	1020	10	81
9	85,92	1048	7	92	11	58,67	1875	11	58	7	65,41	1070	9	90
9	83,18	1082	7	100	12	59,22	2026	11	68	7	62,11	1127	9	100
8	71,67	1117	8	110	13	58	2241	12	82	8	67,9	1178	9	110
9	77,56	1160	8	122	14	58,82	2380	12	91	8	64,85	1234	9	121
9	74,54	1207	8	133	15	59,78	2509	12	101	8	62,03	1290	10	131
9	72,27	1245	8	144	17	$64,\!87$	2621	12	110	8	60,6	1320	10	140
9	68,44	1315	9	158	19	69,03	2753	11	119	9	64,64	1392	9	153
9	66,87	1346	9	169	20	69,92	2860	11	129	9	61,18	1471	10	169
10	70,5	1418	9	186	20	66,81	2994	12	141	9	58,97	1526	10	182
10	68,11	1468	9	198	12	56,16	2137	12	76	10	62,21	1607	10	201
10	64,79	1543	10	218	_	-	-	-	i	_	_	-	-	_
11	67,91	1620	9	238	-	-	-	-	-	-	-	_	-	-
12	$70,\!26$	1708	9	260	_	-	-	-	-	_	_	-	-	_
12	67,65	1774	10	283	-	-	-	-	-	-	-	-	-	_

Таблица 2: Измерения перепада давлений от длины трубки

p	Δp	L, cm	ΔL , cm
30	1	50	1
55	1	90	1
76	1	120	1
94	1	130,5	1

5 Обработка результатов

Построим графики зависимостей q(p) для трех труб. Рис.2 - 1 труба, Рис.3 - 2 труба, Рис.4 - 3 труба.

Посичтаем коэффиценты наклона графиков, граничные числа Рейнольдса и коэффиценты взякости для трех труб. Результаты представленны в таблице 3.

Формула для расчета вязкости:

$$\eta = \frac{\pi d^4}{128lk} \tag{6}$$

Таблица 3: Итоговые значения

k	η , $\Pi a * c$	Re
$13,64 \pm 0,18$	20 ± 2	1000 ± 200
$52, 3 \pm 0, 8$	14 ± 2	1300 ± 300
$17,8 \pm 0,4$	$7,3 \pm 1,0$	1100 ± 300

Как мы видим результаты давольно сильно отличаются. Я считаю, что следует откинуть из расчетов точку полученную на 3 трубе. Тогда итоговая вязкость вязкость $\eta = (17 \pm 3)\Pi a^*c$. Тогда число Рейнольдса равно $Re = 1150 \pm 300$.

Теперь построим p(L), график представлен на Рис.5, а значения в Таблице 4.

Таблица 4: Квадраты коэффицента кореляции

N	R^2
2	0,9999
3	0,9995
4	0,9723

Оценим длину установления через график $a_g = 40, 5$ см. Через формулу (3) $a_t = 46, 5$ см. Что как мы видим соответствует полученным значениям. Причем это нам гвоорит о невозможности использования 3 трубы для расчетов. Так как на ней не установилось течение. А 2 другие использовать можно!

Рис. 2: график для 1 трубы

Так же построим график и нормированных велечин Рис.6.

6 Вывод

Мы проверили выполнимсть формулы Пуазейля при ламинарном движении. Получили коэффицент вязкости воздуха $\eta=(17\pm3)\Pi a^*c$, что довольно близко к табличному $\eta_{table}=18,1\Pi a^*c$ (при T=298K, источник: https://ru.wikipedia.org). Число Рейнольдса при переходе тоже близко к табличному $Re=1150\pm300$ ($Re_{table}=1000$). Длина установления прмирно равна $a\approx50$ см. Также с помощью графика нормированных велечин хорошо определяется невозможность использованяи 3 трубки в измерениях, так как на ней не установилось равновесие.

Рис. 3: график для 2 трубы

Рис. 4: график для 3 трубы

Рис. 5: график изменения давления от длины для 1 трубы

Рис. 6: Графики нормированных велечин