Yu Xiang

288 106th Ave NE, Bellevue, WA 98004

EDUCATION

Doctor of Philosophy in Physics, Rensselaer Polytechnic Institute

Aug. 2014 - Dec. 2019

GPA: 3.88 of 4.00 | Relevant Courses: Quantum Mechanics, Statistical Mechanics

Sep. 2010 - Jun. 2014

GPA: 3.43 of 4.00 | Relevant Courses: Advanced Mathematics, Linear Algebra, Probability

Wuhan, China

Troy, NY

SKILLS

Programming: Python, SQL, C/C++, Perl

Bachelor of Science in Physics, Wuhan University

Packages: Scikit-learn, TensorFlow, Pandas, XGBoost, Qt, CUDA, NumPy, SciPy, Matplotlib

Tools: AWS, Git, Docker, UNIX utilities

Modeling: Machine Learning (SVM, Regression, Decision Trees, Clustering), Time Series (ARIMA, HMM, LSTM), Deep

Learning (CNN, GCN, RNN, Transformer), Natural Language Processing (word2vec, seq2seq)

EXPERIENCE

Data Scientist, Amazon | Bellevue, WA

May 2021 - Present

- Held meetings with the customers to understand the business scope, establish project timeline, present the updates, and reach agreement on the final deliveries.
- Performed exploratory data analysis and feature engineering to remove outliers, impute missing data and characterize the stationarity/correlation of the raw data.
- Build the multivariate encoder-decoder attention model with two-head outputs that overcomes the conventional methods' limitations in long-term forecasting and sparse inputs.
- Deployed the models on native Amazon web service (NAWS) and provided launch support to the customers.

Seismic Imager, CGG | Houston, TX

Jan. 2020 -Feb. 2021

- Provided optimal quality control for the input seismic raw data by analyzing the statistics from billions of seismic records using SQL and mapping out key metrics using Hadoop/Spark big-data tools.
- Processed petabytes of seismic data by detecting anomalies using sparse transformation, removing seismic echoes using adaptive subtraction, and imputing missing features with compressed sensing techniques.
- Helped the client save at least \$30M per production well by providing unbiased interpretation of the geological features using machine learning techniques including SVM and boosted trees.

PROJECTS

Open-Source Software Development for Electron Diffraction Image Processing

Jul. 2018 – Dec. 2019

- Designed the object-oriented architecture, implemented the software with Python (Github repository: PyRHEED), and provided technical support to users from several research groups across the world.
- Improved the average computational efficiency of the back-end processing module by about 100 times through NumPy vectorization and CUDA parallel computing.
- Built the data pipeline from raw reflection high energy electron diffraction (RHEED) images to processing-ready datasets through autonomous labeling, noise reduction, standardization and featurization.

RHEED Data Analysis Using Machine Learning

May 2016 - Dec. 2019

- Extracted the three-dimensional probability density distribution of the diffracted electron waves from the preprocessed RHEED datasets by learning the parameters of a Gaussian mixture model.
- Simulated thousands of crystal domains based on the Voronoi tessellation using Monte Carlo methods, in order to be combined with the experimentally extracted features for model parameter estimation.
- Estimated the unknown statistics such as the lattice constant, grain size, and preferred orientations from the RHEED images with a Bayesian regression approach.

AWARDS

The Karen & Lester Gerhardt Prize in Science and Engineering at Rensselaer Polytechnic Institute	May 2020
Paul S. Ho '65 Prize in Physics at Rensselaer Polytechnic Institute	May 2019
Hillard B. Huntington Award (1976) at Rensselaer Polytechnic Institute	May 2017
Presidential Graduate Research Fellowship Award at Rensselaer Polytechnic Institute	Oct. 2015