Partition of Large Combinational Circuits

Rule: To reduce test generation costs and/or test application time

邏輯冗余

Logic Redundancy

Rule: Avoid or eliminate redundancy ckt.

- Design errors
- Undetectable faults
- Invalidation of some tests有些 test是无效?
- Bias fault coverage fault coverage 会变低

Global Feedback Paths

Rule: break global feedback

Scan System

Pass mode

Original design

Scan System

Original design

Modified circuit

Scan System

- Long test time 空學縣
- Large test data
- Too much overhead
- How to test DFT circuit itself

Scan System Performance

- How to calculate the test cycle:
 - L: Length of scan chain, Npattern: Number of test patterns

- Example: Apply 5000 test patterns to a CUT with 10000 SFF
 - Total cycles = 50015000 cycles (5000+1)x10000 shift cycles + 5000 capture cycles

m SCAN 电路

Example

load		capture		unload	
CK=PPPP	:7%洋兒灣	り記され PECK=P ASTICION	为对思想果讀	CK=PPPP	
SE=1111	SE $1 \rightarrow 0^3$	SE=0	>	SE=1111	
SI=X011	→ 为署判fi	nults		SO=HIXX	到 high,就是
PI=1	PO=L ₀ _W	= 0			

在第5个clock

PO及SO有限考慮正常新光

Scan DFT Overhead

- Performance Degradation
- Design overhead
- Hardware overhead
- Yield loss
- Power overhead

Example-Normal Mode

?有問題的地方

Example-Test Mode

Full Serial Integrated Scan

Isolated Serial Scan (Scan/set)

Full Isolated Scan (Structured)

Random-Access Scan (Non serial-structured)

不用删順序存data

- High area overhead
- Faster test application: only bit change
- Concept of crosscheck

Random-Access Scan (Non serial-structured)

Scan Cell Design

- Static / Dynamic
- Single / Double stages
- Latch / Flip-flop (Clocking Scheme)

Usually Two Operation Modes

- Functional mode
- Shift mode

IBM LSSD Scan Cell

IBM LSSD Scan Cell

Advantages

- It allows us to insert scan into a latchbased design.
- LSSD is guaranteed to be race free, which not case for the Muxed-D and Clocked-scan design.

Disadvantages

 It requires routing for the additional clocks, which increases routing complexity.

IBM LSSD Scan Cell (Cont.)

Switch / Inverter level

Clocking Scheme of LSSD Double-Latch

non-overlapping: avoid skew

LSSD <u>Single-Latch</u> Design latch 鱼薛琦到output, 讓愛科州達送出

Example

Scan Design Costs

- Area overhead
- Possible performance degradation
- Extra pins
- High test time
- Extra clock control

More Area OverHead

Advanced Scan Concepts

- Partial scan (P.S.):有些变 scan register.有些不用
- Multiple test session (M.T.S.): 「scan chain 治成多段
- Multiple scan chains (M.S.C.) 多例 input
- Broadcast scan chains (B.S.C)

Method	P.S.	M.T.S.	M.S.C.	B.S.C.
Area overhead	*	same	same or	same
Performance Degradation	*	same	same	same
Extra pins	same	same	same or	—
Extra clock control	same	same	same	same
Test application time	V or ∱	Y	*	\

Partial Scan: Only a subset of all flip-flops are scanned

- Trade-off between
 - -Area overhead
 - -Test generation complexity

Partial Scan and Full Scan

- Full scan
 - -- Every flip-flop is scanable
 - -- More hardware overhead
 - -- Higher fault coverage
 - -- Longer test time:所有电路都事美
 - -- Shorter ATPG time required 答题則
- Partial scan
 - -- Not every flip-flop is scanable
 - -- Less hardware overhead
 - -- Less fault coverage
 - -- Shorter test time
 - -- Longer ATPG time required

Scan Design Flow

Scan Register Selection

Clock Skew Between Two Clock Domains

Lock-up Latch

