Unsupervised Machine Learning for NLP

K – means clustering for topic classification

E-commerce Search Insights

Customer Intent?

See More by Nantucket Sinks

Search Term Insights

Keywords Clusters

Kitchen sink – stainless steel – single – double - undermount - farmhouse – apron - drop

Cabinets – X – hardware - drawer – knobs – medicine – shaker - unfinished

Countertop – quartz – granite – marble – island

Backsplash – glass - mosaic – stick - peel

Python Demo

Dataset:

https://www.kaggle.com/zynicide/wine-reviews

NLP Techniques

- Text data pre-processing
 - Regular Expression

https://www.w3schools.com/python/python_regex.asp

Data Cleansing

Punctuation

Special characters

Extra white space

Lower case

More advanced

Stop words

Stemming

Tokenizer

Vectorizer

Stemming

Stemming is the process of reducing inflection in words to their root forms such as mapping a group of words to the same stem even if the stem itself is not a valid word in the Language.

Using above mapping a sentence could be normalized as follows:

the boy's cars are different colors — the boy car be differ color

Tokenization

Tokenization is a way of separating a piece of text into smaller units called tokens. Here, tokens can be either words, characters, or sub words. Hence, tokenization can be broadly classified into 3 types – word, character, and sub word (n-gram characters) tokenization.

```
Text

"The cat sat on the mat."

Tokens

"the", "cat", "sat", "on", "the", "mat", "."
```

Vectorization

- Vectorization is transforming text into a meaningful vector (or array) of numbers.
- o word2vec
- **OTF-IDF**

TF-IDF stands for Term Frequency-Inverse Document Frequency which basically tells importance of the word in the corpus or dataset. TF-IDF contain two concept Term Frequency(TF) and Inverse Document Frequency(IDF)

$$TF = \frac{\textit{No of time word appear in the document}}{\textit{Total no of word in the document}}$$

$$IDF = log_{10} rac{Number\ of\ Document}{Number\ of\ document\ in\ which\ word\ appear}$$

	The	TFIDF	Vectorization	Process	Is	Beautiful	Concept
Documen1	0	0.9704	0.33	0.096	0	0	0
Document2	0	0.97	0	0	0	0	0.698
Document3	0	0.698	0	0	0	0	0
Document4	0	0.66	0.397	0	0	0	0
Document5	0	0.21	0	0	0	0	0

T-SNE

- t-distributed stochastic neighbor embedding is a nonlinear dimensionality reduction technique well-suited for embedding high-dimensional data for **visualization** in a low-dimensional space of two or three dimensions.
- How to use t-SNE effectively

https://distill.pub/2016/misread-tsne/