Interrogation écrite n°05

NOM: Prénom: Note:

- 1. Décomposer $P = X^4 + X^2 + 1$ en un produit de facteurs irréductibles de $\mathbb{R}[X]$.

 On remarque que $P = (X^2 + 1)^2 X^2 = (X^2 + X + 1)(X^2 X + 1)$. Les deux facteurs sont de degré 2 et de discriminant strictement négatif donc irréductibles dans $\mathbb{R}[X]$.
- 2. Résoudre dans \mathbb{Z} le système (S) : $\begin{cases} 2x \equiv 3[7] \\ 4x \equiv 1[11] \end{cases}$

L'inverse de 2 modulo 7 est 4 tandis que l'inverse de 4 modulo 11 est 3. Ainsi

$$\mathcal{S} \iff \begin{cases} x \equiv 8[7] \\ x \equiv 3[11] \end{cases} \iff \begin{cases} x \equiv 36[7] \\ x \equiv 36[11] \end{cases}$$

Ainsi x est solution de (S) si et seulement si 7 et 11 divisent x-36, c'est-à-dire 77 divise x-36 car $7 \land 11=1$. L'ensemble des solutions de (S) est $36+77\mathbb{Z}$.

3. Calculer $\varphi(360)$ où φ désigne l'indicatrice d'Euler.

On décompose en facteurs premiers $360 = 2^3 \times 3^2 \times 5$. Ainsi

$$\varphi(360) = 360 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{5}\right) = 360 \times \frac{1}{2} \times \frac{2}{3} \times \frac{4}{5} = 96$$

4. Soit $u: P \in \mathbb{K}_n[X] \mapsto XP'$. Montrer que u est un endomorphisme de $\mathbb{R}_n[X]$. Est-il diagonalisable? Calculer sa trace et son déterminant.

u est clairement linéaire. Pour tout $k \in [0,n]$, $u(X^k) = kX^k \in \mathbb{R}_n[X]$. Comme $(X^k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$, $\mathbb{R}_n[X]$ est stable par u. De plus cette base est formée de vecteurs propres de u donc u est diagonalisable.

Puisque la matrice de u dans la base canonique de $\mathbb{R}_n[X]$ est diag $(0,1,\ldots,n)$, $\det(u)=\prod_{k=0}^n k=0$ et $\operatorname{tr}(u)=\sum_{k=0}^n k=\frac{n(n+1)}{2}$.

5. Donner la liste des éléments inversibles de $\mathbb{Z}/15\mathbb{Z}$.

Il s'agit des \overline{k} où $k \in [0, 14]$ et $k \wedge 15 = 1$, à savoir

$$\bar{1}, \bar{2}, \bar{4}, \bar{7}, \bar{8}, \bar{1}1, \bar{1}3, \bar{1}4$$

Ceci est cohérent puisque $\varphi(15) = \varphi(3)\varphi(5) = (3-1)(5-1) = 8$.