Data Structures Single Source Shortest Path

CS 225 Brad Solomon November 4, 2024

Exam 4 (11/13 — 11/15)

Autograded MC and one coding question

Manually graded short answer prompt

Practice exam will be on PL

Topics covered can be found on website

Registration started October 31

https://courses.engr.illinois.edu/cs225/fa2024/exams/

Learning Objectives

Compare Kruskal and Prim MST Algorithms

Introduce Single-Source Shortest Path Problem

Discuss Dijkstra's Algorithm

Extend to All-Paths Shortest Path (if time)

Kruskal's Algorithm

|V| = n, |E| = m

Priority Queue:	
	Total Running Time
Heap	O(n) + O(m) + O(m log n)
Sorted Array	$O(n) + O(m \log n) + O(m)$

```
KruskalMST(G):
     DisjointSets forest
     foreach (Vertex v : G.vertices()):
       forest.makeSet(v)
     PriorityQueue Q // min edge weight
     Q.buildFromGraph(G.edges())
     Graph T = (V, \{\})
10
     while |T.edges()| < n-1:
11
       Vertex (u, v) = Q.removeMin()
12
       if forest.find(u) != forest.find(v):
13
           T.addEdge(u, v)
14
           forest.union( forest.find(u),
15
                         forest.find(v) )
16
17
18
     return T
19
```

Prim's Algorithm

Sparse Graph: m ~ n

Adj List Heap best

Dense Graph: m ~ n²

Unsorted Array best

```
PrimMST(G, s):
     foreach (Vertex v : G.vertices()):
       d[v] = +inf
       p[v] = NULL
10
     d[s] = 0
11
12
     PriorityQueue Q/// min distance, defined by d[v]
13
     D.buildHeap(G.vertices())
14
     Graph T
                      // "labeled set"
15
16
     repeat n times:
       Vertex m = Q.removeMin()
18
       T.add(m)
       foreach (Vertex v : neighbors of m not in T);
19
20
          if cost(v, m) < d[v].
21
            d[v] = cost(v, m)
22
                                     UNZQXKO
           p[v] = m
23
```


MST Algorithm Runtime:

Kruskal's Algorithm:

Prim's Algorithm: $O(n \log(n) + m \log(n))$

Sparse Graph: m ~ n

Dense Graph: m ~ n²

MST Algorithm Runtime:

Kruskal's Algorithm: O(n + m log (n))

Sparse Graph: m ~ n

Dense Graph: m ~ n²

Suppose I have a new heap:

	। ९ ८० <i>ऽ</i> Binary Heap	1 9803 Fibonacci Heap
Remove Min	O(lg(n))	O(lg(n))
Decrease Key	O(lg(n))	O(1)*

What's the updated running time?

Prim = O(nlogn+m)

Cook back @ Friday

Now heap

Norels to

Change

D, M 1

```
PrimMST(G, s):
     foreach (Vertex v : G.vertices()):
       d[v] = +inf
       p[v] = NULL
     d[s] = 0
10
11
     PriorityQueue Q // min distance, defined by d[v]
12
     Q.buildHeap(G.vertices())
13
     Graph T
                      // "labeled set"
14
15
     repeat n times:
16
       Vertex m = Q.removeMin()
17
       T.add(m)
18
       foreach (Vertex v : neighbors of m not in T):
19
          if cost(v, m) < d[v]:
20
            d[v] = cost(v, m)
21
```



```
DijkstraSSSP(G, s):
     foreach (Vertex v : G.vertices()):
        d[v] = +inf
       p[v] = NULL
                    determines next vortex
     d[s] = 0
10
     PriorityQueue Q // min distance, defined by d[v]
11
     Q.buildHeap(G.vertices())
12
13
     Graph T
                      // "labeled set"
                                    is next vertex
14
15
     repeat n times:
        Vertex u = Q.removeMin()
16
17
        T.add(u)
        foreach (Vertex v : neighbors of u not in T):
18
          if costly, v) +dist (b) < d[v]: > Trail distance
19
            d[v] = (os+(v_1v) + b)s+ [v_1]
20
21
            p[v] = u
```

	А	В	С	D	E	F	G	Н
Pre	:d	A	BE	B	K G	A	F	(
D	St 0	\$10	\$ V/ 16	15	A 1210	90 7	P 8	A 20


```
DijkstraSSSP(G, s):
     foreach (Vertex v : G.vertices()):
       d[v] = +inf
       p[v] = NULL
     d[s] = 0
10
11
     PriorityQueue Q // min distance, defined by d[v]
12
     Q.buildHeap(G.vertices())
     Graph T // "labeled set"
13
14
15
     repeat n times:
16
       Vertex u = Q.removeMin()
17
       T.add(u)
18
       foreach (Vertex v : neighbors of u not in T):
19
         if cost(u, v) + d[u] < d[v]:
20
           d[v] = cost(u, v) + d[u]
21
           p[v] = u
```

Α	В	С	D	E	F	G	Н
	Α	E	В	G	Α	F	С
0	10	16	15	10	7	8	20

Assume heap

What is the running time of Dijkstra's Algorithm?

Fib

```
GThis is Prim!
                                       DijkstraSSSP(G, s):
                                         foreach (Vertex v : G):
                                           d[v] = +inf
                                        p[v] = NULL
                                        d[s] = 0
                                        PriorityQueue Q // min distance, defined by d[v]
                                         Q.buildHeap(G.vertices())
                                         Graph T // "labeled set"
                                        repeat n times: () × () Vertex u = Q.removeMin()
                                           T.add(u)
                                        foreach (Vertex v : neighbors of u not in T):
                                          if cost(u, v) + d[u] < d[v]: 
                                               d[v] = cost(u, v) + d[u]
                                    20
                                    21
                                              p[v] = m
                                    22
                                    23
                                         return T
```

When we will visit B in the following graph?

Claimi. Using alg we will always usit a node through its shortest

When we will visit H in the following graph?

How does Dijkstra's algorithm handle undirected graphs?

How does Dijkstras handle a negative weight cycle?

Infinite loop to -20

How does Dijkstras handle a negative weight cycle?

Shortest Path (A \rightarrow E): A \rightarrow F \rightarrow E \rightarrow (C \rightarrow H \rightarrow G \rightarrow E)*

Length: 12

Length: -5 (repeatable)

How does Dijkstras handle a negative weight edge without a cycle?

られ	Joesn+!
----	---------

We assume that item pulled out of priority queue is the next smallest item

Negative weights break this assumption!

Recalculating all distances is possible, but algorithm runtime is very bad!

Dijkstras Algorithm works only on non-negative weights

Optimal implementation:

Fibonacci Heap

If dense, unsorted list ties

Optimal runtime:

Sparse: $O(m + n \log n)$

Dense: O(n²)

```
DijkstraSSSP(G, s):
                                (Basially Pring)
     foreach (Vertex v : G):
       d[v] = +inf
       p[v] = NULL
     d[s] = 0
10
     PriorityQueue Q // min distance, defined by d[v]
11
12
     Q.buildHeap(G.vertices())
     Graph T // "labeled set"
13
14
15
     repeat n times:
16
       Vertex u = Q.removeMin()
17
       T.add(u)
       foreach (Vertex v : neighbors of u not in T):
18
         if cost(u, v) + d[u] < d[v]:
19
           d[v] = cost(u, v) + d[u]
20
21
           p[v] = m
22
23
     return T
```

Landmark Path Problem

Source Dest

What if I wanted to get the shortest path from A to G but stopping at

Lalong the way?

Floyd-Warshall's Algorithm is an alternative to Dijkstra in the presence of negative-weight edges (not negative weight cycles).

```
1 FloydWarshall(G):
2   Let d be a adj. matrix initialized to +inf
3   foreach (Vertex v : G):
4    d[v][v] = 0
5   foreach (Edge (u, v) : G):
6    d[u][v] = cost(u, v)
7
8   foreach (Vertex u : G):
9   foreach (Vertex v : G):
10    foreach (Vertex w : G):
11    if (d[u, v] > d[u, w] + d[w, v])
12    d[u, v] = d[u, w] + d[w, v]
```

```
1 FloydWarshall(G):
2  Let d be a adj. matrix initialized to +inf
3  foreach (Vertex v : G):
4  d[v][v] = 0
5  foreach (Edge (u, v) : G):
6  d[u][v] = cost(u, v)
```

	Α	В	С	D
A				
В				
С				
D				


```
8    foreach (Vertex w : G):
9    foreach (Vertex u : G):
10        foreach (Vertex v : G):
11        if (d[u, v] > d[u, w] + d[w, v])
12        d[u, v] = d[u, w] + d[w, v]
```

Let us consider comparisons where w = A:

	Α	В	С	D
A	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	∞	∞	0


```
8   foreach (Vertex w : G):
9   foreach (Vertex u : G):
10   foreach (Vertex v : G):
11   if (d[u, v] > d[u, w] + d[w, v])
12   d[u, v] = d[u, w] + d[w, v]
```

Let us consider comparisons where w = A:

0

u=A, v=B

VS

Don't waste time if u=w or v=w!

Let **w** be midpoint Let **u** be start point Let **v** be end point

Is our distance shorter now?

	Α	В	С	D
A	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	∞	∞	0


```
8    foreach (Vertex w : G):
9     foreach (Vertex u : G):
10         foreach (Vertex v : G):
11         if (d[u, v] > d[u, w] + d[w, v])
12         d[u, v] = d[u, w] + d[w, v]
```

Let us consider w = A (and u != w and v != w):

Let **w** be midpoint Let **u** be start point Let **v** be end point

Is our distance shorter now?

	Α	В	С	D
A	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	∞	∞	0


```
8   foreach (Vertex w : G):
9   foreach (Vertex u : G):
10   foreach (Vertex v : G):
11   if (d[u, v] > d[u, w] + d[w, v])
12   d[u, v] = d[u, w] + d[w, v]
```

Let us consider w = A (and u != w and v != w):

Let **w** be midpoint
Let **u** be start point
Let **v** be end point

Is our distance shorter now?

	Α	В	С	D
A	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	1	∞	0


```
8    foreach (Vertex w : G):
9    foreach (Vertex u : G):
10        foreach (Vertex v : G):
11        if (d[u, v] > d[u, w] + d[w, v])
12        d[u, v] = d[u, w] + d[w, v]
```

Let us consider w = B (and u != w and v != w):

	Α	В	С	D
A	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	1	∞	0


```
8   foreach (Vertex w : G):
9   foreach (Vertex u : G):
10   foreach (Vertex v : G):
11   if (d[u, v] > d[u, w] + d[w, v])
12   d[u, v] = d[u, w] + d[w, v]
```

Let us consider w = C (and u != w and v != w):

$$A \longrightarrow B$$
 -1 vs. $A \longrightarrow C \longrightarrow B$ + ∞ $A \longrightarrow D$ 2 vs. $A \longrightarrow C \longrightarrow D$

$$(B) \longrightarrow (D)$$
 3 vs. $(B) \longrightarrow (C) \longrightarrow (D)$

$$D \longrightarrow A$$
 2 vs. $D \longrightarrow C \longrightarrow A$ + \propto

$$D \longrightarrow B$$
 1 VS. $D \longrightarrow C \longrightarrow B$ + ∞

	Α	В	С	D
A	0	-1	3	2
В	∞	0	4	3
С	∞	∞	0	-2
D	2	1	5	0


```
1  FloydWarshall(G):
2    Let d be a adj. matrix initialized to +inf
3    foreach (Vertex v : G):
4    d[v][v] = 0
5    foreach (Edge (u, v) : G):
6    d[u][v] = cost(u, v)
7
8    foreach (Vertex u : G):
9    foreach (Vertex v : G):
10        foreach (Vertex w : G):
11         if (d[u, v] > d[u, w] + d[w, v])
12         d[u, v] = d[u, w] + d[w, v]
```

	Α	В	С	D
A	0	-1	3	1
В	5	0	4	2
С	0	-1	0	-2
D	2	1	5	0

Running time?

```
FloydWarshall(G):
     Let d be a adj. matrix initialized to +inf
     foreach (Vertex v : G):
       d[v][v] = 0
     foreach (Edge (u, v) : G):
10
       d[u][v] = cost(u, v)
11
12
     foreach (Vertex u : G):
13
       foreach (Vertex v : G):
14
         foreach (Vertex w : G):
15
           if d[u, v] > d[u, w] + d[w, v]:
16
             d[u, v] = d[u, w] + d[w, v]
```

We aren't storing path information! Can we fix this?

```
FloydWarshall(G):
     Let d be a adj. matrix initialized to +inf
     foreach (Vertex v : G):
       d[v][v] = 0
     foreach (Edge (u, v) : G):
10
       d[u][v] = cost(u, v)
11
12
     foreach (Vertex w : G):
13
       foreach (Vertex u : G):
14
         foreach (Vertex v : G):
           if (d[u, v] > d[u, w] + d[w, v])
15
16
              d[u, v] = d[u, w] + d[w, v]
```

```
FloydWarshall(G):
     Let d be a adj. matrix initialized to +inf
     foreach (Vertex v : G):
       d[v][v] = 0
       s[v][v] = 0
10
     foreach (Edge (u, v) : G):
11
       d[u][v] = cost(u, v)
12
       s[u][v] = v
13
14
     foreach (Vertex w : G):
15
        foreach (Vertex u : G):
16
         foreach (Vertex v : G):
17
            if (d[u, v] > d[u, w] + d[w, v])
18
             d[u, v] = d[u, w] + d[w, v]
19
             s[u, v] = s[u, w]
```


	Α	В	С	D
A	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	∞	∞	0

	Α	В	С	D
A		В		
В			С	D
С				D
D	Α			