Types

Gaseous

Gas Gas→Mixture of Oz and Nz Liquid Gas→Chloroform with Nz Solid Gas→Camphor in Nz

Liquid

Gas Liquid→O≥ dissolved in water

Liquid Liquid → Ethanol dissolved in water

Solid Liquid → Glucose dissolved in water

Solid

Gas Solid → Oz in Pd

Liquid Solid → Amalgam of Hg with Na

Solid Solid → Cu dissolved in gold

Solubility

Solid in liquid

Effect of Temperature

Endothermic Δ_{sol} H> O, Solubility Increases Exothermic Δ_{sol} H< O, Solubility Decreases

Effect of Pressure

Not significant

Gas in Liquid

Effect of Temperature

Increases with decrease in temperature

Effect of Pressure

Increases with increase in pressure

Henry's Law

Partial pressure of gas in vapour phase is proportional to the mole fraction of gas in the solution.

р = Кнх

Rapult's Law

For any solution, the partial vapour pressure of each volatile component is directly proportional to its mole fraction.

Obey

Do not obey

Ideal solution

Non-Ideal solution

(n-hexane and n-heptane)

(Mixture of chloroform

and acetone)

Positive deviation

∆Vmix = positive

Maximum boiling Azeotrope

△Hmix = positive

Negative deviation

 $\Delta Vmix = negative$

Maximum boiling Azeotrope

 Δ Hmix = negative

Colligative Properties

Osmotic pressure \longrightarrow π =CRT

Depression in freezing point \longrightarrow $\Delta T_{fz} \frac{K_f \times W_2 \times 1000}{M_2 \times W_1}$

Elevation of boiling point \longrightarrow $\Delta T_{bz} \frac{K_b \times W_2 \times 1000}{M_2 \times W_1}$

Realtive lowering of vapour pressure $\longrightarrow \frac{W_2 \times M_1}{M_2 \times W_1} = \frac{P^0_1 \times P^0_1}{P^0_1}$

Abnormal Molecular Mass

Molecular mass differnet form expected value

Van't Hoff Factor = Normal molar mass

Abnormal molar mass

Concentration of Solutions

Mass by volume percentage (w/v)

Mass of Solute ×100

Volume percentage (v/v)

Volume of Component
Total volume of Solution x100

Mass percentage (w/w)

Mass of Component in Solution ×100

Parts per million: for trace quantities

No. of parts of Component ×106

Total no. parts of
components of Solution

Molarity: Number of gram equivalents of the solute dissolved in one litre of solution

Molality: Number of moles of solute per kilogram of the solvent

Normality: Number of gram equivalents of the solute dissolved in one litre of solution Mole Fraction

No. of Moles of Component
Total no. moles of all components

No. of moles of Solute Volume of Solution ×100

No. of moles of Solute
Mass of Solution x100

No. of grams equivalent of Solute Volume of Solution

Gram equivalent of Solute

Mass of solute
Equivalent weight

Equivalent weight= Molecular mass Valency

