

a) Eind entremu of J(n, y) = xy construined by ellipse $x^2 + y^2 = 1$.

So J(n,y) = ny $g(ng,y) = \frac{n^2}{8} + \frac{y^2}{2} - 1$

By Lagrange's multiplier,

df = $\lambda d\eta$, $df = \lambda dg$ dn dy dy

 \Rightarrow $y = \lambda \frac{n}{4} - 0$, $n = \lambda y - 0$

So, $n = \pm 2y$ and $y = \pm 2x$ det $y = \pm 1$, $n = \pm 2$. $\int (-2, -1) = ny = 2$ $\int (2, -1) = -2$ $\int (-2, 1) = -2$ Juinimum monimum $\int (2, 1) = 2.$ (3, 4, 12) subjected to sphere $n^2 + y^2 + z^2 = 4$. 0) Eind point on the plane n+2y+3z=13 closest to point (1,1,1). Q) find the farthest distance from point (1,1,1) connected to the sphere x2+ y2+ z2=4.

Il use spherical coordinate to evalute $\frac{1}{1} \int_{-1}^{2} \frac{\sqrt{4-n^{2}-y^{2}}}{\sqrt{4-n^{2}-y^{2}}} \int_{-1}^{2} \frac{\sqrt{4-n^{2}-y^{2}}}{\sqrt{4-n^{2}-y^{2}}} \int_{-1}^{2} \frac{\sqrt{4-n^{2}-y^{2}}}{\sqrt{4-n^{2}-y$ gives function $F(x,y,z)=Z^2\sqrt{n^2+y^2+z^2}$ is bounded by 7=0 and 2= 54-42-92 So, using spherical coordinates, =) P sos d = \ 4- f2 Sin2 d cos2 0 - P2 con sin2 d su

=)
$$P\cos\phi = \sqrt{4 - P^2 \sin^2\phi}$$

=) $P^2 \cos^2\phi + P^2 \sin^2\phi = 4$
 $P^2 = 4$
 $P = 4 - 2$, 2
 -2 is neglected so, $P = 2$.

$$\frac{32}{9} \frac{d\theta}{d\theta} \int_{0}^{2} d\theta = \frac{32}{9} \frac{\theta}{0} \int_{0}^{2\pi} \frac{1}{9} \frac{1}{$$

Using triple integrals in aglindrial coordinates to find Yol of region or bounded by hemisphere $z = \sqrt{25 - n^2 - y^2}$ below by xy pure and laterally by cylinder $y^2 + y^2 = 9$ 2= \sqrt{25-x2-y2} put z=0 in Jupper $\theta 25 - \sqrt{2} \cos^2 \theta - r^2 \sin^2 \theta = 0$ r = -5, 5 Given cylinder, $n^2 + y^2 = 9$. $r^2 = 9$ r = -3, 3. y=rsin0

Now z bounds is . z=0 and

Using bety
$$\int_{0}^{1} (1-u) du = \int_{0}^{1} u \cdot (1-u)^{1} du$$

So can be written or

$$\beta(1,2) = \frac{\Gamma(1)\Gamma(2)}{\Gamma(1+2)}$$

So. | xy dy dn

Q) Using Betu-Gunny Junction.

If vay and dy bounded by the lines
$$n=0$$
, $y=0$, $n+y=1$

	Vector diffrentiation of a Junction J(n, y)
	$\int (\eta, y)''$
	is $\mathcal{O}_{\mathcal{O}} \mathcal{J}(n, y) = \mathcal{O}_{\mathcal{J}}(n, y) \times \mathcal{O}_{\mathcal{O}}$
	where $3 - \overline{3}$
Q)	Eind DD of Symption 2 my + 22 at (1,-1,3) in the direction of i + 2j + 2k.
Q)	Eind DD of nyz2+nz ut (1,1,1) in direction of normal to surface 3 ny2 + y= z at (0,1,1).
	V () (0,1,1)
·	1105/

