Complex Analysis HW 2

Ryan Chen

February 13, 2023

Note. Let f_x denote $\frac{\partial f}{\partial x}$.

P31.3. Pf. Write f = u + iv.

$$\overline{f_x} = \overline{u_x + iv_x} = u_x - iv_x = \overline{f}_x$$

and similarly $\overline{f_y} = \overline{f}_y$. Using these facts,

$$\overline{\partial f} = \overline{\frac{1}{2}(f_x - if_y)} = \frac{1}{2}(\overline{f_x} + i\overline{f_y}) = \frac{1}{2}(\overline{f_x} + i\overline{f_y}) = \overline{\partial} \ \overline{f}$$

P33.1. Pf. Fix a point z_0 and fix r > 0. To show f is holomorphic at z_0 , we fix $z = x + iy \in D(z_0, r)$ and aim to show f'(z) exists. The CR equations let us set

$$A := u_x(x, y) = v_y(x, y), \quad B := v_x(x, y) = -u_y(x, y)$$

Since u has continuous first partials, u is differentiable at (x,y), so that as $(h,k) \to (0,0)$,

 $u(x+h,y+k) = u(x,y) + hu_x(x,y) + ku_y(x,y) + o(\|(h,k)\|) \implies u(x+h,y+k) - u(x,y) = hA - kB + o(\|(h,k)\|)$ and by similar arguments,

 $v(x+h,y+k) = v(x,y) + hv_x(x,y) + kv_y(x,y) + o(\|(h,k)\|) \implies v(x+h,y+k) - v(x,y) = hB + kA + o(\|(h,k)\|)$ Using these expressions,

$$\frac{f(x+iy+h+ik) - f(x+iy)}{h+ik} = \frac{1}{h+ik} \left[u(x+h,y+k) - u(x,y) + iv(x+h,y+k) - iv(x,y) \right]$$

$$= \frac{1}{h+ik} \left[hA - kB + ihB + ikA + o(\|(h,k)\|) \right] = \frac{1}{h+ik} \left[hA - kB + ihB + ikA \right] + \frac{o\|(h,k)\|}{h+ik}$$

The second term vanishes as $(h, k) \rightarrow (0, 0)$ since

$$\frac{o\|(h,k)\|}{h+ik} \le \left| \frac{o\|(h,k)\|}{h+ik} \right| = \frac{|o\|(h,k)\|}{\|(h,k)\|} \xrightarrow{(h,k)\to(0,0)} 0$$

The first term becomes

$$\frac{h - ik}{h^2 + k^2} \left[hA - kB + ihB + ikA \right] = \frac{1}{h^2 + k^2} \left[h^2 A + ih^2 B - hkB + ihkA - ihkA + hkB + ik^2 B + k^2 A \right]$$
$$= \frac{1}{h^2 + k^2} \left[A(h^2 + k^2) + i(h^2 + k^2) B \right] = A + iB$$

From our calculations, we finally get

$$f'(z) = \lim_{w \to 0} \frac{f(z+w) - f(z)}{w} = \lim_{(h,k) \to (0,0)} \frac{f(x+iy+h+ik) - f(x+iy)}{h+ik} = A + iB$$

P36.3. Pf. Write $f = \frac{P}{Q}$ for polynomials P and Q with no common roots. Let w_1, \ldots, w_n be the roots of P and u_1, \ldots, u_m be the roots of Q. With a_n the lead coefficient of P,

$$P(z) = a_n \prod_{k=1}^{n} (z - w_k) \implies P'(z) = a_n \sum_{k=1}^{n} \prod_{\substack{j=1 \ j \neq k}}^{n} (z - w_j) = a_n \sum_{k=1}^{n} \frac{(z - w_1)(z - w_n)}{z - w_k} \implies \frac{P'(z)}{P(z)} = \sum_{k=1}^{n} \frac{1}{z - w_k}$$

For all $t \in \mathbb{R}$, set z = it, then since $\operatorname{Re} w_k < 0$,

$$\operatorname{Re} \frac{P'(z)}{P(z)} = \sum_{k=1}^{n} \operatorname{Re} \frac{1}{z - w_k} = \sum_{k=1}^{n} \operatorname{Re} \frac{\overline{z - w_k}}{|z - w_k|^2} = \sum_{k=1}^{n} \frac{\operatorname{Re}(z - w_k)}{|z - w_k|^2} > 0$$

and by similar arguments and the fact $\operatorname{Re} u_k > 0$,

$$\frac{Q'(z)}{Q(z)} = \sum_{k=1}^{m} \frac{1}{z - u_k} \implies \operatorname{Re} \frac{Q'(z)}{Q(z)} = \sum_{k=1}^{m} \frac{\operatorname{Re}(z - u_k)}{|z - u_k|^2} < 0$$

Putting the inequalities together,

$$\implies \operatorname{Re} \frac{P'(z)}{P(z)} \neq \operatorname{Re} \frac{Q'(z)}{Q(z)} \implies \frac{P'(z)}{P(z)} \neq \frac{Q'(z)}{Q(z)} \implies P'(z)Q(z) - P(z)Q'(z) \neq 0 \quad (36.3.1)$$

By the quotient rule,

$$f' = \frac{P'Q - PQ'}{Q^2}$$

which along with (1) means $f'(it) \neq 0$ for all $t \in \mathbb{R}$.

P40.2. Pf. Using the power series for |z-w| < |w|,

$$\text{Log } z = \sum_{k \ge 1} \frac{(-1)^{k+1}}{kw^k} (z - w)^k$$

set z = 2 and w = 1. Since Arg 2 = 0, we have Log $2 = \ln 2$.

$$\ln 2 = \sum_{k \ge 1} \frac{(-1)^{k+1}}{k \cdot 1^k} 1^k = \sum_{k \ge 1} \frac{(-1)^{k+1}}{k}$$

P41.6. Pf. Let $P := (x_1, x_2, x_3)$ and $Q := (y_1, y_2, y_3)$ be the points on the Riemann sphere whose stereographic projections are z and w, respectively, i.e.

$$z = \frac{x_1 + ix_2}{1 - x_3}, \quad w = \frac{y_1 + iy_2}{1 - y_3}$$

 (\Longrightarrow) If P and Q are diametrically opposite then $y_j=-x_j$ for j=1,2,3, so

$$z\overline{w} = \frac{(x_1 + ix_2)(y_1 - iy_2)}{(1 - x_3)(1 - y_3)} = \frac{(x_1 + ix_2)(-x_1 + iy_2)}{(1 - x_3)(1 + x_3)} = -\frac{x_1^2 + x_2^2}{1 - x_3^2} = -\frac{1 - x_3^2}{1 - x_3^2} = -1$$

 (\Leftarrow) We first find

$$\overline{w}w = |w|^2 = \frac{y_1^2 + y_2^2}{(1 - y_3)^2} = \frac{1 - y_3^2}{(1 - y_3)^2} = \frac{1 + y_3}{1 - y_3} \implies \frac{\overline{w}w}{w} = \frac{(1 + y_3)(1 - y_3)}{(1 - y_3)(y_1 + iy_2)} = \frac{1 + y_3}{y_1 + iy_2}$$

Under the assumption $z\overline{w} = -1$,

$$-1 = z\overline{w} = \frac{z\overline{w}w}{w} = \frac{(x_1 + ix_2)(1 + y_3)}{(1 - x_3)(y_1 + iy_2)} \implies (x_1 + ix_2)(1 + y_3) = -(1 - x_3)(y_1 + iy_2)$$

Equating real and imaginary parts,

$$x_1(1+y_3) = -(1-x_3)y_1, \ x_2(1+y_3) = -(1-x_3)y_2 \implies \frac{x_1}{y_1} = \frac{x_2}{y_2} = \frac{x_3-1}{y_3+1}$$

For convenience later, set $c := \frac{x_1}{y_1}$, so that

$$x_1 = cy_1, \ x_2 = cy_2, \ x_3 - 1 = c(y_3 + 1)$$

Now consider the chord from (0,0,1) to P. It has a direction vector $a := (x_1, x_2, x_3 - 1)$. Similarly the chord from (0,0,1) to Q has a direction vector $b := (y_1, y_2, y_3 - 1)$. We find

$$a \cdot b = x_1 y_1 + x_2 y_2 + (x_3 - 1)(y_3 - 1) = c(y_1^2 + y_2^2 + y_3^2 - 1) = c \cdot 0 = 0$$

Using the fact $|a \cdot b| = ||a|| ||b|| \cos \theta$, where θ is the angle between the aforementioned chords, gives $\cos \theta = 0$ hence $\theta = \frac{\pi}{2}$. From Euclidean geometry, the angle that P and Q subtend at the origin is $2\theta = \pi$, i.e. P and Q are diametrically opposite.