CS 534: Computer Vision Stereo Imaging

Spring 2004
Ahmed Elgammal
Dept of Computer Science
Rutgers University

CS 534 - Stereo Imaging -

Outlines

- Depth Cues
- Simple Stereo Geometry
- Epipolar Geometry
- Stereo correspondence problem
- Algorithms

Recovering the World From Images

We know:

- 2D Images are projections of 3D world.
- A given image point is the projection of any world point on the *line of sight*
- So how can we recover depth information

CS 534 - Stereo Imaging -

Why to recover depth?

- Recover 3D structure, reconstruct 3D scene model, many computer graphics applications
- · Visual Robot Navigation
- · Aerial reconnaissance
- · Medical applications

The Stanford Cart, H. Moravec, 1979.

The INRIA Mobile Robot, 1990.

Depth Cues

- Monocular Cues
 - Occlusion Interposition
 - Relative height
 - Familiar size
 - Texture Gradient
 - Shadows
 - Perspective
- Motion Parallax (also Monocular)
- Binocular Cues

CS 534 - Stereo Imaging - 5

• Given multiple views we can recover scene point - Triangulation

Stereo vision involves two processes:

- *Fusion* of features observed by two or more cameras: which point corresponds to which point?
- Reconstruction of 3D preimage: how to intersect the rays.

• 3D coordinate system is a **cyclopean** system centered between the cameras

CS 534 - Stereo Imaging - I

Stereo imaging

- (X,Y,Z) are the coordinates of P in the Cyclopean coordinate system.
- The coordinates of P in the left camera coordinate system are $(X_L, Y_L Z_L) = (X-b/2, Y, Z)$
- The coordinates of P in the right camera coordinate system are $(X_R, Y_R, Z_R) = (X+b/2, Y, Z)$
- So, the x image coordinates of the projection of P are
 - $x_L = (X+b/2)f/Z$
 - $x_R = (X-b/2)f/Z$
- Subtracting the second equation from the first, and solving for Z we obtain:
 - $Z = bf/(x_L x_R)$
- We can also solve for X and Y:
 - $X = b(x_L + x_R)/2(x_L x_R)$
 - $Y = by/(x_I x_R)$

Stereo imaging

- Depth is inversely proportional to |disparity|
 - disparity of 0 corresponds to points that are infinitely far away from the cameras
 - in digital systems, disparity can take on only integer values (ignoring the possibility of identifying point locations to better than a pixel resolution)
 - so, a disparity measurement in the image just constrains distance to lie in a given range
- Disparity is directly proportional to b
 - the larger b, the further we can accurately range
 - but as b increases, the images decrease in common field of view

Stereo imaging

- Definition: A scene point, P, visible in both cameras gives rise to a pair of image points called a **conjugate pair**.
 - the conjugate of a point in the left (right) image must lie on the same image row (line) in the right (left) image because the two have the same y coordinate
 - this line is called the **conjugate line**.
 - so, for our simple image geometry, all conjugate lines are parallel to the x axis

A more practical stereo image model

- · Difficult, practically, to
 - have the optical axes parallel
 - have the baseline perpendicular to the optical axes
- Also, we might want to tilt the cameras towards one another to have more overlap in the images
- Calibration problem finding the transformation between the two cameras
 - it is a rigid body motion and can be decomposed into a rotation, R, and a translation, T.

Epipolar Constraint

- Potential matches for p have to lie on the corresponding epipolar line l'.
- Potential matches for p have to lie on the corresponding epipolar line l.

CS 534 - Stereo Imaging - 1

Epipolar Constraint

- First scene point possibly corresponding to *p* is *O*: (any point closer to the left image than O would be between the lens and the image plane, and could not be seen.)
- So, first possible corresponding point in the right image is e'

Epipolar Constraint

- Last scene point possibly corresponding to *p* is point at infinity along *p* line of sight
- but its image is the vanishing point of the ray *Op* in the right camera
- so we know two points on the epipolar line, any corresponding point p' is between e' and this vanishing point

CS 534 - Stereo Imaging - 2

Epipolar Constraint

epipole e'

- this is image of the left lens center in the right image
- this point O lies on the line of sight for every point in the left image
- All epipolar lines for all points in the left image must pass through e'
- might not be in the finite field of view

Special case: image planes parallel to the baseline (standard stereo sitting):

- epipolar lines are scan lines
- epipoles at infinity

Stereo correspondence problem

- Given a point,p, in the left image, find its conjugate point in the right image
 - called the stereo correspondence problem
 - Different approaches
- What constraints simplify this problem?
 - Epipolar constraint need only search for the conjugate point on the epipolar line
 - Negative disparity constraint need only search the epipolar line to the "right" of the vanishing point in the right image of the ray through p in the left coordinate system
 - Continuity constraint if we are looking at a continuous surface, images of points along a given epipolar line will be ordered the same way

CS 534 - Stereo Imaging - 2

Stereo correspondence problem

- Similarity of correspondence functions along adjacent epipolar lines
- Disparity gradient constraint disparity changes slowly over most of the image.
 - Exceptions occur at and near occluding boundaries where we have either discontinuities in disparity or large disparity gradients as the surface recedes away from sight.

Why is the correspondence problem hard

- Occlusion
 - Even for a smooth surface, there might be points visible in one image and not the other
 - Consider aerial photo pair of urban area vertical walls of buildings might be visible in one image and not the other
 - scene with depth discontinuities (lurking objects) violate continuity constraint and introduces occlusion

Why is the correspondence problem hard?

- · Variations in intensity between images due to
 - noise
 - specularities
 - shape-from-shading differences
- Coincidence of edge and epipolar line orientation
 - consider problem of matching horizontal edges in an ideal left right stereo pair
 - will obtain good match all along the edge
 - so, edge based stereo algorithms only match edges that cross the epipolar lines

Approaches to Find Correspondences

- Intensity Correlation-based approaches
- Edge / feature matching approaches
- Dynamic programming
- Energy minimization / Graph cuts
- · Probabilistic approaches

CS 534 - Stereo Imaging - 31

Your basic stereo algorithm

For each epipolar line

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

This should look familar...

Dynamic Programming (Baker and Binford, 1981)

- Assume a set of feature points have been found.
- Match the intervals separating those points along the intensity profiles
- Keep the order: the order of the feature points must be the same

Approaches to Find Correspondences

- Intensity Correlation-based approaches
 - (+) dense disparity (disparity at each pixel)
 - (-) foreshortening
 - · Solution: warp windows?
- Edge / feature matching approaches
 - (+) solve the foreshortening problem
 - (-) sparse disparity
 - · Solution: interpolate intermediate disparities.
 - (-) requires feature detection
- · Dynamic programming
 - (+) use both features and intensities
- Energy minimization / Graph cuts
- · Probabilistic approaches

CS 534 - Stereo Imaging - 45

Stereo results

- Data from University of Tsukuba
- Similar results on other images without ground truth

Scene

Ground truth

From Slides by S. Seitz - University of Washington

Stereo as energy minimization

- · Matching Cost Formulated as Energy
 - "data" term penalizing bad matches

$$D(x, y, d) = |\mathbf{I}(x, y) - \mathbf{J}(x + d, y)|$$

- "neighborhood term" encouraging spatial smoothness

$$V(d_1, d_2) = \cos t$$
 of adjacent pixels with labels d1 and d2
= $|d_1 - d_2|$ (or something similar)

$$E = \sum_{(x,y)} D(x, y, d_{x,y}) + \sum_{neighbors \ (x1,y1), (x2,y2)} V(d_{x1,y1}, d_{x2,y2})$$

From Slides by S. Seitz - University of Washington

Stereo matching by graph cuts

- · Graph Cut
 - Delete enough edges so that
 - each pixel is (transitively) connected to exactly one label node
 - Cost of a cut: sum of deleted edge weights
 - Finding min cost cut equivalent to finding global minimum of the energy function

From Slides by S. Seitz - University of Washington

CS 534 - Stereo Imaging - 53

Computing a multiway cut

- With two labels: classical min-cut problem
 - Solvable by standard network flow algorithms
 - polynomial time in theory, nearly linear in practice
- More than 2 labels: NP-hard [Dahlhaus et al., STOC '92]
 - But efficient approximation algorithms exist
 - · Within a factor of 2 of optimal
 - · Computes local minimum in a strong sense
 - even very large moves will not improve the energy
 - Yuri Boykov, Olga Veksler and Ramin Zabih, Fast Approximate Energy Minimization via Graph Cuts, International Conference on Computer Vision, September 1999.
 - Basic idea
 - reduce to a series of 2-way-cut sub-problems, using one of:
 - swap move: pixels with label 11 can change to 12, and vice-versa
 - expansion move: any pixel can change it's label to 11

From Slides by S. Seitz - University of Washington

Stereo reconstruction pipeline

- Steps
 - Calibrate cameras
 - Rectify images
 - Compute disparity
 - Estimate depth
- What will cause errors?
 - Camera calibration errors
 - Poor image resolution
 - Occlusions
 - Violations of brightness constancy (specular reflections)
 - Large motions
 - Low-contrast image regions

From Slides by S. Seitz - University of Washington

Stereo matching • Features vs. Pixels? - Do we extract features prior to matching? Julesz-style Random Dot Stereogram From Slides by S. Seitz - University of Washington

Fundamental matrix

• Let p be a point in left image, p' in right image

- Epipolar relation
 - -p maps to epipolar line l
 - -p' maps to epipolar line l
- Epipolar mapping described by a 3x3 matrix F

$$l' = Fp$$

$$l = p'F$$

It follows that

$$p'Fp = 0$$

From Slides by S. Seitz - University of Washington

CS 534 - Stereo Imaging - 63

Fundamental matrix

- This matrix F is called
 - the "Essential Matrix"
 - · when image intrinsic parameters are known
 - the "Fundamental Matrix"
 - · more generally (uncalibrated case)
- Can solve for F from point correspondences
 - Each (p, p') pair gives one linear equation in entries of F

$$p'Fp = 0$$

- 8 points give enough to solve for F (8-point algorithm)
- see readings (Forsyth chapter 10.1) for more on this

From Slides by S. Seitz - University of Washington

Sources

- Forsyth and Ponce, Computer Vision a Modern approach: chapters 10,11.
- Slides by J. Ponce @ UIUC
- Slides by L.S. Davis @ UMD
- Slides by S. Seitz University of Washington
- Y. Boykov et al., "Markov Random Fields with Efficient Approximations" – CVPR 98
- Y. Boykov et al., "Fast Approximate Energy Minimization via Graph Cuts" ICCV 99