

# A1. Structural descriptors of complex networks

Complex Networks (MAI)



# Universitat Rovira i Virgili

Avinguda dels Països Catalans, 26, 43007 Tarragona, Spain Master's degree in Artificial Intelligence Tarragona, 2021

# Contents

| A            | Abstract                                          | 1  |
|--------------|---------------------------------------------------|----|
| 1            | Methodology description                           | 1  |
| <b>2</b>     | Table of network descriptors - Part a             | 2  |
|              | 2.1 Results                                       | 2  |
|              | 2.2 Discussion                                    | 3  |
| 3            | Table of Airports nodes descriptors - Part b      | 4  |
|              | 3.1 Results                                       | 4  |
|              | 3.2 Discussion                                    | 4  |
| 4            | PDF and CCDF of the degree distributions - Part c | 4  |
|              | 4.1 Results                                       | 5  |
|              | 4.2 Discussion                                    | 9  |
| 5            | Conclusions                                       | 10 |
| R            | References                                        | 10 |
| $\mathbf{A}$ | Appendix A. Implementation details                | 11 |
|              |                                                   |    |

## Abstract

In this assignment, we studied the most fundamental properties of networks, such as the structural descriptors. These describe their overall structure as well as having an in-depth understanding of the structural analysis of complex networks. This was done by using the Pajek files provided in the "A1-Networks" folder. This folder contained three distinct types of complex networks, mainly: Toy, Model and Real. The first two can be thought of synthetic networks which can be generated programatically whilst the later is an example of a "real-life" complex network.

To perform this analysis, we used python as a programming language and taking advantage of its open-source community and packages, used the "igraph" module. This module is specifically designed to analyze networks (as it is adapted from the R-package). For the descriptors we used a OOP approach to generate classes to store the data in, we found this approach to me more modular. Finally, the summary files were written in the specified which contained the varied descriptors as well as the Histograms (PDF and CCDF) for the model and real networks.

Overall, the approach to analyze networks can vary between the different packages (iGraph, NetworkX) or even different languages. We found that experimentation and understanding of the basic network operations are essential in having a precise understanding of what type of network we are confronted as well as its basic analytics. All the implementation of this work can be consulted in:

https://github.com/EjbejaranosAI/Complex<sub>N</sub>etworks.git

Keywords: Complex networks, Descriptors, Networks structures, Real networks, Degree distribution.

## 1 Methodology description

For this project, the process was structured in the following parts:

- Problem Statement: In this step, it was necessary to understand the basic concepts in complex network structures, such as terminology and mathematical concepts, in order to develop some solutions. We took advantage of Jupyter Notebooks in order to prototype our solutions before pushing them to our final code base, this helped us understand the scope of the problem as well as rapidly sharing our results.
- **Decisions:** Consequentially, our design decisions were directed by the previous step. We found that quick prototyping was more important than optimized code as this could be implemented a posteriori. For this reason, we chose python and its complementary library "igraph" to resolve the task at hand. Following the standard OOP approaches, we created a set of classes in order to have an abstraction of methods, file-loading, and data separate from the main code base. For each of the points to resolve we generate a specific class.
- Software: Apart from using python as a programming language, we used a standard set of libraries: Numpy for vectorization of expressions and handling of matrices. Pandas, for generating DataFrames and writing to csv. Alongside iGraph, these were the most used libraries apart from some small operating system management ones and file wrangler such as: Glob, OS, and Zipfile.
- Analysis: For the analysis of the networks, we took advantage of methods already found in the library. The main descriptors that were needed are essential metrics that the majority of the network analysis libraries have (NetworkX, GraphTool iGraph). We took advantage of these to calculate the majority of the descriptors. For some of these, we had to use these methods in custom functions in order to extract the specified descriptor.
- Coordination: Within the scope of this project, the organization was well defined from the beginning. Thus, the other part would be the coordination between the team-members, such that we could divide and organize the tasks. This was done by dividing the tasks by either member and having a quality control or peer-review in order to approve of the code and methods used.

# 2 Table of network descriptors - Part a

In this section we will include the table shown below, Table 1, which is the summary of calculations for the descriptors in the A1-Network directory.

### 2.1 Results

Table 1 – Calculated descriptors of all networks A1-NETWORKS

| File_Name                                                                                                                                                                                                                                                                        | Folder                                           | Edges                                                                                           | Nodes                                       | Avg. Path Length                                                              | Assortativity                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|
| rb25.net                                                                                                                                                                                                                                                                         | toy                                              | 66                                                                                              | 25                                          | 2.0333                                                                        | -0.1635                                            |
| wheel.net                                                                                                                                                                                                                                                                        | toy                                              | 16                                                                                              | 9                                           | 1.5556                                                                        | -0.3333                                            |
| graph3+1+3.net                                                                                                                                                                                                                                                                   | toy                                              | 8                                                                                               | 7                                           | 2.1905                                                                        | -0.6                                               |
| 20x2+5x2.net                                                                                                                                                                                                                                                                     | toy                                              | 404                                                                                             | 50                                          | 2.3878                                                                        | 0.9186                                             |
| graph4+4.net                                                                                                                                                                                                                                                                     | toy                                              | 13                                                                                              | 8                                           | 1.8571                                                                        | -0.0833                                            |
| grid-p-6x6.net                                                                                                                                                                                                                                                                   | toy                                              | 72                                                                                              | 36                                          | 3.0857                                                                        |                                                    |
| star.net                                                                                                                                                                                                                                                                         | toy                                              | 8                                                                                               | 9                                           | 1.7778                                                                        | -1                                                 |
| circle 9.net                                                                                                                                                                                                                                                                     | toy                                              | 9                                                                                               | 9                                           | 2.5                                                                           |                                                    |
| $zachary\_unwh.net$                                                                                                                                                                                                                                                              | real                                             | 78                                                                                              | 34                                          | 2.4082                                                                        | -0.4756                                            |
| dolphins.net                                                                                                                                                                                                                                                                     | real                                             | 159                                                                                             | 62                                          | 3.357                                                                         | -0.0436                                            |
| $airports\_UW.net$                                                                                                                                                                                                                                                               | real                                             | 14142                                                                                           | 3618                                        | 4.4396                                                                        | 0.0462                                             |
| PGP.net                                                                                                                                                                                                                                                                          | real                                             | 24340                                                                                           | 10680                                       | 7.4855                                                                        | 0.2395                                             |
| $SF_{-}1000_{-}g2.5.net$                                                                                                                                                                                                                                                         | model                                            | 1905                                                                                            | 1000                                        | 4.6149                                                                        | 0.02                                               |
| SF_1000_g2.7.net                                                                                                                                                                                                                                                                 | model                                            | 1668                                                                                            | 1000                                        | 5.4688                                                                        | -0.002                                             |
| homorand_N1000_K6_0.net                                                                                                                                                                                                                                                          | model                                            | 2994                                                                                            | 1000                                        | 4.1913                                                                        | 0.1919                                             |
| homorand_N1000_K4_0.net                                                                                                                                                                                                                                                          | model                                            | 2000                                                                                            | 1000                                        | 5.64                                                                          |                                                    |
| ER1000k8.net                                                                                                                                                                                                                                                                     | model                                            | 3956                                                                                            | 1000                                        | 3.5698                                                                        | -0.0168                                            |
| $SF\_1000\_g3.0.net$                                                                                                                                                                                                                                                             | model                                            | 1517                                                                                            | 1000                                        | 5.9651                                                                        | -0.0085                                            |
| ws 2000.net                                                                                                                                                                                                                                                                      | model                                            | 6000                                                                                            | 2000                                        | 4.5111                                                                        | -0.0762                                            |
| BA1000.net                                                                                                                                                                                                                                                                       | model                                            | 3990                                                                                            | 1000                                        | 3.1833                                                                        | -0.0542                                            |
| 256_4_4_4_13_18_p.net                                                                                                                                                                                                                                                            | model                                            | 4598                                                                                            | 256                                         | 2.6511                                                                        | 0.0007                                             |
| ER5000k8.net                                                                                                                                                                                                                                                                     | model                                            | 19980                                                                                           | 5000                                        | 4.3797                                                                        | -0.0555                                            |
| SF_500_g2.7.net                                                                                                                                                                                                                                                                  | model                                            | 859                                                                                             | 500                                         | 4.8759                                                                        | -0.0256                                            |
| 256_4_4_2_15_18_p.net                                                                                                                                                                                                                                                            | model                                            | 4548                                                                                            | 256                                         | -2.7821                                                                       | 0.0286                                             |
| rb125.net                                                                                                                                                                                                                                                                        | model                                            | 426                                                                                             | 125                                         | 2.3032                                                                        | -0.1837                                            |
| ws1000.net                                                                                                                                                                                                                                                                       | model                                            | 3000                                                                                            | 1000                                        | 4.0913                                                                        | -0.0999                                            |
| File_Name                                                                                                                                                                                                                                                                        | Diameter                                         | Transitivity                                                                                    | Min. Degree                                 | Avg. Degree                                                                   | Max. Degree                                        |
| rb25.net                                                                                                                                                                                                                                                                         | 4                                                | 0.9023                                                                                          | -4                                          | 5.28                                                                          | 20                                                 |
| wheel.net                                                                                                                                                                                                                                                                        | 2                                                | 0.6243                                                                                          | 3                                           | 3.5556                                                                        | 8                                                  |
| graph3+1+3.net                                                                                                                                                                                                                                                                   | 4                                                | 0.6667                                                                                          | 2                                           | 2.2857                                                                        | 3                                                  |
| 20x2+5x2.net                                                                                                                                                                                                                                                                     | 4                                                | 0.9716                                                                                          | 4                                           | 16.16                                                                         | 22                                                 |
| graph 4+4.net                                                                                                                                                                                                                                                                    | 3                                                | 0.875                                                                                           | 3                                           | 3.25                                                                          | 4                                                  |
| grid-p-6x6.net                                                                                                                                                                                                                                                                   | 6                                                | 0                                                                                               | 4                                           | 4                                                                             | 4                                                  |
| star.net                                                                                                                                                                                                                                                                         | 2                                                | 0                                                                                               | 1                                           | 1.7778                                                                        | 8                                                  |
| circle 9.net                                                                                                                                                                                                                                                                     | 4                                                | 0                                                                                               | 2                                           | 2                                                                             | 2                                                  |
| $zachary\_unwh.net$                                                                                                                                                                                                                                                              | 5                                                | 0.5879                                                                                          | 1                                           | 4.5882                                                                        | 17                                                 |
| dolphins.net                                                                                                                                                                                                                                                                     | 8                                                | 0.3029                                                                                          | 1                                           | 5.129                                                                         | 12                                                 |
| $airports\_UW.net$                                                                                                                                                                                                                                                               | 17                                               | 0.6228                                                                                          | 1                                           | 7.8176                                                                        | 250                                                |
| PGP.net                                                                                                                                                                                                                                                                          | 24                                               | 0.4403                                                                                          | 1                                           | 4.5581                                                                        | 206                                                |
| SF_1000_g2.5.net                                                                                                                                                                                                                                                                 | 10                                               | 0.0096                                                                                          | 2                                           | 3.81                                                                          | 30                                                 |
| SF_1000_g2.7.net                                                                                                                                                                                                                                                                 | 12                                               | 0.0067                                                                                          | 2                                           | 3.336                                                                         | 24                                                 |
| I homorand N1000 K6 O not                                                                                                                                                                                                                                                        |                                                  |                                                                                                 | _                                           | × 000                                                                         | _                                                  |
| homorand_N1000_K6_0.net                                                                                                                                                                                                                                                          | 6                                                | 0.0038                                                                                          | 5                                           | 5.988                                                                         | 6                                                  |
| homorand_N1000_K4_0.net                                                                                                                                                                                                                                                          | 6<br>9                                           | $0.0038 \\ 0.002$                                                                               | 4                                           | 4                                                                             | 4                                                  |
| homorand_N1000_K4_0.net<br>ER1000k8.net                                                                                                                                                                                                                                          | 6<br>9<br>6                                      | 0.0038 $0.002$ $0.0081$                                                                         | $\frac{4}{1}$                               | $4\\7.912$                                                                    | 4<br>17                                            |
| homorand_N1000_K4_0.net<br>ER1000k8.net<br>SF_1000_g3.0.net                                                                                                                                                                                                                      | 6<br>9<br>6<br>13                                | 0.0038 $0.002$ $0.0081$ $0.0052$                                                                | $\begin{array}{c} 4 \\ 1 \\ 2 \end{array}$  | $   \begin{array}{c}     4 \\     7.912 \\     3.034   \end{array} $          | 4<br>17<br>26                                      |
| homorand_N1000_K4_0.net ER1000k8.net SF_1000_g3.0.net ws2000.net                                                                                                                                                                                                                 | 6<br>9<br>6<br>13<br>7                           | 0.0038<br>0.002<br>0.0081<br>0.0052<br>0.0033                                                   | 4<br>1<br>2<br>3                            | $   \begin{array}{r}     4 \\     7.912 \\     3.034 \\     6   \end{array} $ | 4<br>17<br>26<br>13                                |
| homorand_N1000_K4_0.net ER1000k8.net SF_1000_g3.0.net ws2000.net BA1000.net                                                                                                                                                                                                      | 6<br>9<br>6<br>13<br>7<br>5                      | 0.0038<br>0.002<br>0.0081<br>0.0052<br>0.0033<br>0.0354                                         | 4<br>1<br>2<br>3<br>4                       | 4 7.912 3.034 6 7.98                                                          | 4<br>17<br>26<br>13<br>115                         |
| homorand_N1000_K4_0.net ER1000k8.net SF_1000_g3.0.net ws2000.net BA1000.net 256_4_4_4_13_18_p.net                                                                                                                                                                                | 6<br>9<br>6<br>13<br>7<br>5<br>4                 | 0.0038<br>0.002<br>0.0081<br>0.0052<br>0.0033<br>0.0354<br>0.5113                               | 4<br>1<br>2<br>3<br>4<br>20                 | 4 7.912 3.034 6 7.98 35.9219                                                  | 4<br>17<br>26<br>13<br>115<br>50                   |
|                                                                                                                                                                                                                                                                                  | 6<br>9<br>6<br>13<br>7<br>5<br>4<br>6            | 0.0038<br>0.002<br>0.0081<br>0.0052<br>0.0033<br>0.0354<br>0.5113<br>0.0014                     | 4<br>1<br>2<br>3<br>4<br>20<br>4            | 4 7.912 3.034 6 7.98 35.9219 7.992                                            | 4<br>17<br>26<br>13<br>115<br>50                   |
| $\begin{array}{c} homorand\_N1000\_K4\_0.net \\ \hline ER1000k8.net \\ \hline SF\_1000\_g3.0.net \\ \hline ws2000.net \\ \hline BA1000.net \\ \hline 256\_4\_4\_13\_18\_p.net \\ \hline ER5000k8.net \\ \hline SF\_500\_g2.7.net \\ \end{array}$                                 | 6<br>9<br>6<br>13<br>7<br>5<br>4<br>6            | 0.0038<br>0.002<br>0.0081<br>0.0052<br>0.0033<br>0.0354<br>0.5113<br>0.0014<br>0.0078           | 4<br>1<br>2<br>3<br>4<br>20<br>4<br>2       | $4 \\ 7.912 \\ 3.034 \\ 6 \\ 7.98 \\ 35.9219 \\ 7.992 \\ 3.436$               | 4<br>17<br>26<br>13<br>115<br>50<br>17<br>22       |
| $\begin{array}{c} homorand\_N1000\_K4\_0.net\\ \hline ER1000k8.net\\ \hline SF\_1000\_g3.0.net\\ \hline ws2000.net\\ \hline BA1000.net\\ \hline 256\_4\_4\_4\_13\_18\_p.net\\ \hline ER5000k8.net\\ \hline SF\_500\_g2.7.net\\ \hline 256\_4\_4\_2\_15\_18\_p.net\\ \end{array}$ | 6<br>9<br>6<br>13<br>7<br>5<br>4<br>6<br>12<br>5 | 0.0038<br>0.002<br>0.0081<br>0.0052<br>0.0033<br>0.0354<br>0.5113<br>0.0014<br>0.0078<br>0.7331 | 4<br>1<br>2<br>3<br>4<br>20<br>4<br>2<br>30 | $4 \\ 7.912 \\ 3.034 \\ 6 \\ 7.98 \\ 35.9219 \\ 7.992 \\ 3.436 \\ 35.5312$    | 4<br>17<br>26<br>13<br>115<br>50<br>17<br>22<br>46 |
| $\begin{array}{c} homorand\_N1000\_K4\_0.net \\ \hline ER1000k8.net \\ \hline SF\_1000\_g3.0.net \\ \hline ws2000.net \\ \hline BA1000.net \\ \hline 256\_4\_4\_13\_18\_p.net \\ \hline ER5000k8.net \\ \hline SF\_500\_g2.7.net \\ \end{array}$                                 | 6<br>9<br>6<br>13<br>7<br>5<br>4<br>6            | 0.0038<br>0.002<br>0.0081<br>0.0052<br>0.0033<br>0.0354<br>0.5113<br>0.0014<br>0.0078           | 4<br>1<br>2<br>3<br>4<br>20<br>4<br>2       | $4 \\ 7.912 \\ 3.034 \\ 6 \\ 7.98 \\ 35.9219 \\ 7.992 \\ 3.436$               | 4<br>17<br>26<br>13<br>115<br>50<br>17<br>22       |

### 2.2 Discussion

As we can observe in Table 2, it is observed that it is not necessary to have more edges and nodes to have better transitivity, for example 20x2+5x2.net and rb25.net in Toy networks.

Table 2 – Table with the maximum values of each descriptor for each type of network

| Toy networks        |                              |         |  |  |  |
|---------------------|------------------------------|---------|--|--|--|
|                     | Network name                 | Value   |  |  |  |
| Max number of Edges | 20x2+5x2.net                 | 404     |  |  |  |
| Max number of nodes | 20x2+5x2.net                 | 50      |  |  |  |
| Max Avg.Path length | grid-p-6x6.net               | 3.0857  |  |  |  |
| Max Assortativity   | 20x2+5x2.net                 | 0.9186  |  |  |  |
| Max Diameter        | grid-p-6x6.net               | 6       |  |  |  |
| Max Transitivity    | ${ m rb25.net}$              | 0.9023  |  |  |  |
| Max avg degree      | 20x2+5x2.net                 | 16.16   |  |  |  |
| J                   | Real networks                |         |  |  |  |
| 665                 | Network name                 | Value   |  |  |  |
| Max number of Edges | PGP.net                      | 24340   |  |  |  |
| Max number of nodes | PGP.net                      | 10680   |  |  |  |
| Max Avg.Path length | PGP.net                      | 7.4855  |  |  |  |
| Max Assortativity   | PGP.net                      | 0.2395  |  |  |  |
| Max Diameter        | PGP.net                      | 24      |  |  |  |
| Max Transitivity    | $airports_UW.net$            | 0.6228  |  |  |  |
| Max avg degree      | airports_UW.net              | 7.8176  |  |  |  |
| IV.                 | Iodel networks               |         |  |  |  |
|                     | Network name                 | Value   |  |  |  |
| Max number of Edges | ER5000k8.net                 | 19980   |  |  |  |
| Max number of nodes | ER5000k8.net                 | 5000    |  |  |  |
| Max Avg.Path length | $SF_1000_g3.0.net$           | 5.9651  |  |  |  |
| Max Assortativity   | $homorand\_N1000\_K6\_0.net$ | 0.1919  |  |  |  |
| Max Diameter        | $SF_1000_g3.0.net$           | 13      |  |  |  |
| Max Transitivity    | rb125.net                    | 0.8373  |  |  |  |
| Max avg degree      | 256_4_4_4_13_18_p.net        | 35.9219 |  |  |  |

Another relevant aspect of the results of the descriptors is that the model networks have more transitivity than the real networks. In addition, Real networks present networks with greater diameter and assortativity and, consequently, greater average path length.

## 3 Table of Airports nodes descriptors - Part b

In Table 3, shown below, we can see the descriptors which were derived for the Airports network. Since, this is an example of a real network, we can clearly see the connections between countries and their respective airports. For example, main hubs like London Heathrow, shown as LON, have a very large degree, which reflects its importance in the international travel. Without more information, such as economical or logistics, we can only assume that this can also represent an important point for international trade.

#### 3.1 Results

Table 3 – Results for the Airports nodes descriptors - Part b

| ID Node                                                                                    | Airport                                             | Degree                                                                                 | Strength                                                                                                                                                                 | Cluster Coefficient                                                                                                                                                                                                   | Average Length                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33                                                                                         | ADA                                                 | 7                                                                                      | 7                                                                                                                                                                        | 0.71428571                                                                                                                                                                                                            | 5.34221848                                                                                                                                                                         |
| 62                                                                                         | AGU                                                 | 7                                                                                      | 7                                                                                                                                                                        | 0.76190476                                                                                                                                                                                                            | 5.17638879                                                                                                                                                                         |
| 115                                                                                        | AMS                                                 | 192                                                                                    | 192                                                                                                                                                                      | 0.14283377                                                                                                                                                                                                            | 4.2099746                                                                                                                                                                          |
| 173                                                                                        | ATL                                                 | 172                                                                                    | 172                                                                                                                                                                      | 0.1378349                                                                                                                                                                                                             | 4.52885451                                                                                                                                                                         |
| 239                                                                                        | BCN                                                 | 80                                                                                     | 80                                                                                                                                                                       | 0.32848101                                                                                                                                                                                                            | 5.29630424                                                                                                                                                                         |
| 526                                                                                        | CHC                                                 | 20                                                                                     | 20                                                                                                                                                                       | 0.25263158                                                                                                                                                                                                            | 5.22628257                                                                                                                                                                         |
| 725                                                                                        | DJE                                                 | 20                                                                                     | 20                                                                                                                                                                       | 0.7                                                                                                                                                                                                                   | 5.3745885                                                                                                                                                                          |
| 925                                                                                        | FRA                                                 | 237                                                                                    | 237                                                                                                                                                                      | 0.11696346                                                                                                                                                                                                            | 4.35164967                                                                                                                                                                         |
| 1712                                                                                       | LON                                                 | 242                                                                                    | 242                                                                                                                                                                      | 0.11234183                                                                                                                                                                                                            | 4.19376168                                                                                                                                                                         |
| 1953                                                                                       | MOW                                                 | 186                                                                                    | 186                                                                                                                                                                      | 0.09584423                                                                                                                                                                                                            | 4.40847869                                                                                                                                                                         |
| 2160                                                                                       | NYC                                                 | 179                                                                                    | 179                                                                                                                                                                      | 0.15755445                                                                                                                                                                                                            | 4.59452185                                                                                                                                                                         |
| 2268                                                                                       | PAR                                                 | 250                                                                                    | 250                                                                                                                                                                      | 0.08915663                                                                                                                                                                                                            | 4.28330769                                                                                                                                                                         |
| 2876                                                                                       | TBO                                                 | 2                                                                                      | 2                                                                                                                                                                        | 1                                                                                                                                                                                                                     | 6.18249901                                                                                                                                                                         |
| 3233                                                                                       | WAW                                                 | 55                                                                                     | - 55                                                                                                                                                                     | 0.45858586                                                                                                                                                                                                            | 5.27124608                                                                                                                                                                         |
| 3613                                                                                       | ZVA                                                 | 1                                                                                      | 1                                                                                                                                                                        | 7                                                                                                                                                                                                                     | 9.1875381                                                                                                                                                                          |
|                                                                                            |                                                     |                                                                                        |                                                                                                                                                                          |                                                                                                                                                                                                                       |                                                                                                                                                                                    |
| ID Node                                                                                    | Airport                                             | Max Length                                                                             | Eigen Vector Centrality                                                                                                                                                  | Betweenness                                                                                                                                                                                                           | PageRank                                                                                                                                                                           |
| 33                                                                                         | ADA                                                 | 12                                                                                     | 0.05336155                                                                                                                                                               | Betweenness<br>86.13209062                                                                                                                                                                                            | 0.00018651                                                                                                                                                                         |
|                                                                                            |                                                     |                                                                                        |                                                                                                                                                                          |                                                                                                                                                                                                                       |                                                                                                                                                                                    |
| 33                                                                                         | ADA<br>AGU<br>AMS                                   | 12                                                                                     | 0.05336155                                                                                                                                                               | 86.13209062                                                                                                                                                                                                           | 0.00018651<br>0.00019367<br>0.00401098                                                                                                                                             |
| 33<br>62                                                                                   | ADA AGU AMS ATL                                     | 12<br>12                                                                               | 0.05336155<br>0.02559141                                                                                                                                                 | 86.13209062<br>37.68371295                                                                                                                                                                                            | 0.00018651<br>0.00019367                                                                                                                                                           |
| 33<br>62<br>115                                                                            | ADA<br>AGU<br>AMS                                   | 12<br>12<br>11                                                                         | 0.05336155<br>0.02559141<br>0.85577995                                                                                                                                   | 86.13209062<br>-37.68371295<br>- 264799.7485435                                                                                                                                                                       | 0.00018651<br>0.00019367<br>0.00401098                                                                                                                                             |
| 33<br>62<br>115<br>173                                                                     | ADA AGU AMS ATL BCN CHC                             | 12<br>12<br>11<br>11<br>12<br>12<br>11                                                 | 0.05336155<br>0.02559141<br>0.85577995<br>0.60864673                                                                                                                     | 86.1320 <mark>9062</mark><br>37.68371295<br>264799.7485435<br>162809.45400881                                                                                                                                         | 0.00018651<br>0.00019367<br>0.00401098<br>0.00381899                                                                                                                               |
| 33<br>62<br>115<br>173<br>239<br>526<br>725                                                | ADA AGU AMS ATL BCN CHC DJE                         | 12<br>12<br>11<br>11<br>12<br>12                                                       | 0.05336155<br>0.02559141<br>0.85577995<br>0.60864673<br>0.44507124                                                                                                       | 86.13209062<br>37.68371295<br>264799.7485435<br>162809.45400881<br>12636.35135909                                                                                                                                     | 0.00018651<br>0.00019367<br>0.00401098<br>0.00381899<br>0.00160535                                                                                                                 |
| 33<br>62<br>115<br>173<br>239<br>526                                                       | ADA AGU AMS ATL BCN CHC                             | 12<br>12<br>11<br>11<br>12<br>12<br>11                                                 | 0.05336155<br>0.02559141<br>0.85577995<br>0.60864673<br>0.44507124<br>0.02089875                                                                                         | 86.13209062<br>37.68371295<br>264799.7485435<br>162809.45400881<br>12636.35135909<br>22021.5322141                                                                                                                    | 0.00018651<br>0.00019367<br>0.00401098<br>0.00381899<br>0.00160535<br>0.00084125                                                                                                   |
| 33<br>62<br>115<br>173<br>239<br>526<br>725<br>925<br>1712                                 | ADA AGU AMS ATL BCN CHC DJE FRA LON                 | 12<br>12<br>11<br>11<br>12<br>12<br>11<br>11<br>12                                     | 0.05336155<br>0.02559141<br>0.85577995<br>0.60864673<br>0.44507124<br>0.02089875<br>0.15892481<br>0.97602259                                                             | 86.13209062<br>37.68371295<br>264799.7485435<br>162809.45400881<br>12636.35135909<br>22021.5322141<br>953.83921258                                                                                                    | 0.00018651<br>0.00019367<br>0.00401098<br>0.00381899<br>0.00160535<br>0.00084125<br>0.00041071                                                                                     |
| 33<br>62<br>115<br>173<br>239<br>526<br>725<br>925<br>1712<br>1953                         | ADA AGU AMS ATL BCN CHC DJE FRA LON MOW             | 12<br>12<br>11<br>12<br>12<br>12<br>11<br>11<br>12<br>11<br>11<br>11                   | 0.05336155<br>0.02559141<br>0.85577995<br>0.60864673<br>0.44507124<br>0.02089875<br>0.15892481<br>0.97602259<br>1<br>0.5823272                                           | 86.13209062<br>37.68371295<br>264799.7485435<br>162809.45400881<br>12636.35135909<br>22021.5322141<br>953.83921258<br>428847.8032452<br>555788.52171987<br>341434.48646073                                            | 0.00018651<br>0.00019367<br>0.00401098<br>0.00381899<br>0.00160535<br>0.00084125<br>0.00041071<br>0.00496923<br>0.00526564<br>0.00511005                                           |
| 33<br>62<br>115<br>173<br>239<br>526<br>725<br>925<br>1712<br>1953<br>2160                 | ADA AGU AMS ATL BCN CHC DJE FRA LON MOW NYC         | 12<br>12<br>11<br>12<br>12<br>12<br>11<br>11<br>12<br>11<br>11                         | 0.05336155<br>0.02559141<br>0.85577995<br>0.60864673<br>0.44507124<br>0.02089875<br>0.15892481<br>0.97602259<br>1<br>0.5823272<br>0.80100266                             | 86.13209062<br>37.68371295<br>264799.7485435<br>162809.45400881<br>12636.35135909<br>22021.5322141<br>953.83921258<br>428847.8032452<br>555788.52171987                                                               | 0.00018651<br>0.00019367<br>0.00401098<br>0.00381899<br>0.00160535<br>0.00084125<br>0.00041071<br>0.00496923<br>0.00526564<br>0.00511005<br>0.00389207                             |
| 33<br>62<br>115<br>173<br>239<br>526<br>725<br>925<br>1712<br>1953                         | ADA AGU AMS ATL BCN CHC DJE FRA LON MOW             | 12<br>12<br>11<br>12<br>12<br>12<br>11<br>11<br>12<br>11<br>11<br>11                   | 0.05336155<br>0.02559141<br>0.85577995<br>0.60864673<br>0.44507124<br>0.02089875<br>0.15892481<br>0.97602259<br>1<br>0.5823272                                           | 86.13209062<br>37.68371295<br>264799.7485435<br>162809.45400881<br>12636.35135909<br>22021.5322141<br>953.83921258<br>428847.8032452<br>555788.52171987<br>341434.48646073                                            | 0.00018651<br>0.00019367<br>0.00401098<br>0.00381899<br>0.00160535<br>0.00084125<br>0.00041071<br>0.00496923<br>0.00526564<br>0.00511005                                           |
| 33<br>62<br>115<br>173<br>239<br>526<br>725<br>925<br>1712<br>1953<br>2160<br>2268<br>2876 | ADA AGU AMS ATL BCN CHC DJE FRA LON MOW NYC PAR TBO | 12<br>12<br>11<br>12<br>12<br>12<br>11<br>12<br>11<br>11<br>11<br>11<br>12<br>11<br>11 | 0.05336155<br>0.02559141<br>0.85577995<br>0.60864673<br>0.44507124<br>0.02089875<br>0.15892481<br>0.97602259<br>1<br>0.5823272<br>0.80100266<br>0.89986318<br>0.00061431 | 86.13209062<br>37.68371295<br>264799.7485435<br>162809.45400881<br>12636.35135909<br>22021.5322141<br>953.83921258<br>428847.8032452<br>555788.52171987<br>341434.48646073<br>453081.88267624<br>610925.94208172<br>0 | 0.00018651<br>0.00019367<br>0.00401098<br>0.00381899<br>0.00160535<br>0.00084125<br>0.00041071<br>0.00496923<br>0.00526564<br>0.00511005<br>0.00389207<br>0.00614411<br>0.00012092 |
| 33<br>62<br>115<br>173<br>239<br>526<br>725<br>925<br>1712<br>1953<br>2160<br>2268         | ADA AGU AMS ATL BCN CHC DJE FRA LON MOW NYC PAR     | 12<br>12<br>11<br>12<br>12<br>12<br>11<br>12<br>11<br>11<br>11<br>11<br>12<br>11       | 0.05336155<br>0.02559141<br>0.85577995<br>0.60864673<br>0.44507124<br>0.02089875<br>0.15892481<br>0.97602259<br>1<br>0.5823272<br>0.80100266<br>0.89986318               | 86.13209062<br>37.68371295<br>264799.7485435<br>162809.45400881<br>12636.35135909<br>22021.5322141<br>953.83921258<br>428847.8032452<br>555788.52171987<br>341434.48646073<br>453081.88267624<br>610925.94208172      | 0.00018651<br>0.00019367<br>0.00401098<br>0.00381899<br>0.00160535<br>0.00084125<br>0.00041071<br>0.00496923<br>0.00526564<br>0.00511005<br>0.00389207<br>0.00614411               |

#### 3.2 Discussion

# 4 PDF and CCDF of the degree distributions - Part c

In this section, we will show the graphs for the 5 different models (3 from the toy and 2 from the real Dataset), with their respective PDF and CCDF, as well as showing in which graph the log-log scale is used and preferred.

For the following graphs the log-log scale would be prefered: ER5000k8, and ws1000. We chose to use this scaling here since there can be a skewness towards larger values, and changing to the log-log scale gives a better representation of the data.

The remaining graphs, were used in a normal scale, i.e. linear scaling.

### 4.1 Results

## $\bullet$ model/ER5000k8.net



Figure 1 – Histograms of the degree distribution (PDF) for ER5000k8.net



Figure 2 - CFDF plot for ER5000k8.net

 $\bullet$  model/SF\_1000\_g2.7.net



Figure 3 – Histograms of the degree distribution (PDF) for model/SF\_1000\_g2.7.net



Figure 4 – CFDF plot for model/SF\_1000\_g2.7.net

 $\bullet$  model/ws1000.net



Figure 5 – Histograms of the degree distribution (PDF) for model/ws1000.net



Figure 6 – CFDF plot for model/ws1000.net

 $\bullet$  real/airports\_UW.net



Figure 7 – Histograms of the degree distribution (PDF) for model airports\_UW.net



Figure 8 – CFDF plot for for model airports\_UW.net

 $\bullet$  real/PGP.net



Figure 9 – Histograms of the degree distribution (PDF) for forreal/PGP.net



Figure 10 - CFDF plot for forreal/PGP.net model

### 4.2 Discussion

During the design, implementation and resolution of this assignment we faced a variety of challenges stemming from the existing methodologies, lack of experience with networks, as well as assumptions of the nature and structure of the graphs. One of the challenges that we faced in the beginning was choosing the appropriate tool for the job. Because, there can be a variety of approaches to this problem,

one can built the methods and functions in order to solve this by implementing different graph traversal algorithms such as DFS or BFS. Or one can also choose a specific library, or software in order to solve this. We experimented with NetworkX as well as GraphTool for python, but ultimately decided to stick with igraph, since we found it more comfortable to be working with. On the other hand, once that the tool was identified, there needed to be a sound decision on which methods to use, for example, iGraph has about 3-4 different methods to calculate transitivity, this required us to look at the literature as well as match the problem statements from the assignment in order to understand which method is the appropriate not only for the task at hand but also for the type of network. Another issue that was encountered, was for Figure 7 and 8 respectively, that the log-log graph did not show any data, this was tried out with different methods of plotting the log-log scale and it did not seem to change the result. We suppose that there was an error in our methodology, yet were unable to identify the bug.

Lastly, it is important to note that there were a number of assumptions that were done on these graphs, such as that they are all undirected graphs, as well as being unweighted (except for the calculation of the strength descriptor). We have seen in our experimentation that changing the these assumption also change the final result for the descriptor.

#### 5 Conclusions

In conclusion the analysis of Complex Networks needs to be done with a a foundation of their descriptors. In this assignment we faced three different types of models: Toy, Model, Real. These were with increasing complexity and computational cost. During this we have seen that there are "standard" descriptors of networks which need to be taken into consideration, as we have seen in parts (a) and (b) of the assignment. Moreover, we also used a graphical approach here, not by plotting the graph, but by calculating the PDF and CCDF for 5 different models (3 from the Model Dataset, and 2 from the Real Dataset).

#### References

- [1] Garnham, Alan. "Introduction". Artificial intelligence: an introduction. (Routledge Kegan Paul. 1988): 01–24, 24–44.
- [2] Newman, Mark. 'Networks'. Second Editon: chapter 1 to 8. (Newman, Mark. 2018): 13-262.
- [3] Haykin, Simon. "Introduction". Neural networks and learning machines. (Prentice Hall/Pearson): 11–17. (2009)
- [4] Documentation igraph-Python- for version 0.9.9 https://igraph.org/python/

# Appendix A. Implementation details

• Airport network graphs



Figure 11 – Airports network graph