

IIT Madras ONLINE DEGREE

Functions

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Mathematics for Data Science 1 Week 1

Functions

- A rule to map inputs to outputs
- Convert x to x^2
 - The rule: $x \mapsto x^2$
 - Give it a name: $sq(x) = x^2$
 - Input is a parameter
- Need to specify the input and output sets
 - Domain: Input set
 - lacksquare domain(sq) = \mathbb{R}
 - Codomain: Output set of possible values
 - lacksquare codomain(sq) = \mathbb{R}
 - Range: Actual values that the output can take
- $f: X \to Y$, domain of f is X, codomain is Y

Functions and relations

- Associate a relation R_f with each function f
- $R_{sq} = \{(x, y) \mid x, y \in \mathbb{R}, y = x^2\}$
 - Additional notation: $y = x^2$
- $R_f \subset domain(f) \times range(f)$
- \blacksquare Properties of R_f
 - Defined on the entire domain
 - For each $x \in domain(f)$, there is a pair $(x, y) \in R_f$
 - Single-valued
 - For each $x \in domain(f)$, there is exactly one $y \in codomain(f)$ such that $(x, y) \in R_f$
- Drawing f as a graph is plotting R_f

Lines

$$f(x) = 3.5x + 5.7$$

- 3.5 is the slope
- 5.7 is intercept where the line crosses the y=axis, whe x = 0
- Changing the slope and intercept produce different lines

$$f(x) = 3.5x - 1.2$$

$$f(x) = 2x + 5.7$$

$$f(x) = -4.5x + 2.5$$

- In all these cases
 - Domain $= \mathbb{R}$
 - $lue{}$ Codomain = Range = \mathbb{R}

More functions

$$\mathbf{x}\mapsto\sqrt{x}$$

Is this a function?

$$5^2 = (-5)^2 = 25$$

- $\sqrt{25}$ gives two options
- By convention, take positive square root
- What is the domain?
 - Depends on codomain
 - Negative numbers do not have real square roots
 - If codomain is \mathbb{R} , domain is $\mathbb{R}_{\geq 0}$
 - If codomain is the set $\mathbb C$ of complex numbers, domain is $\mathbb R$

Types of functions

- Injective: Different inputs produces different outputs — one-to-one
 - If $x_1 \neq x_2$, $f(x_1) \neq f(x_2)$
 - f(x) = 3x + 5 is injective
 - $f(x) = 7x^2$ is not: for any a, f(a) = f(-a)

Types of functions

- Injective: Different inputs produces different outputs — one-to-one
 - If $x_1 \neq x_2$, $f(x_1) \neq f(x_2)$
 - f(x) = 3x + 5 is injective
 - $f(x) = 7x^2$ is not: for any a, f(a) = f(-a)
- Surjective: Range is the codomain onto
 - For every $y \in codomain(f)$, there is an $x \in domain(f)$ such that f(x) = y
 - f(x) = -7x + 10 is surjective
 - $f(x) = 5x^2 + 3$ is not surjective for codomain \mathbb{R}
 - $f(x) = 7\sqrt{x}$ is not surjective for codomain \mathbb{R}

Properties of functions . . .

- Bijective: 1-1 correspondence between domain and codomain
 - Every $x \in domain(f)$ maps to a distinct $y \in codomain(f)$
 - Every $v \in codomain(f)$ has a unique pre-image $x \in domain(f)$ such that v = f(x)

Theorem

A function is bijective if and only if it is injective and surjective

- From the definition, if a function is bijective it is injective and suriective
- Suppose a function f is injective and surjective
 - Injectivity guarantees that f satisfies the first condition of a bijection.
 - Surjectivity says every $y \in codomain(f)$ has a pre-image. Injectivity guarantees this pre-image is unique.

Bijections and cardinality

- For finite sets we can count the items
- What if we have two large sacks filled with marbles?
 - Do we need to count the marbles in each sack?
 - Pull out marbles in pairs, one from each sack
 - Do both sacks become empty simultaneously?
 - Bijection between the marbles in the sacks
- For infinite sets
 - Number of lines is the same as $\mathbb{R} \times \mathbb{R}$
 - Every line y = mx + c is determined uniquely by (m, c) and vice versa

Bijections and cardinality . . .

- For every pair of points (x_1, y_1) and $(x_2.y_2)$, there is a unique line passing through both points
- Number of lines is same as cardinality of $\mathbb{R} \times \mathbb{R}$
- Does this show that $(\mathbb{R} \times \mathbb{R}) \times (\mathbb{R} \times \mathbb{R}) = \mathbb{R}^2 \times \mathbb{R}^2$ has the same cardinality as $\mathbb{R} \times \mathbb{R}$?
- The correspondence is not a bijection many pairs of points describe the same line
- Be careful to establish that a function is a bijection

Summary

- A function is given by a rule mapping inputs to outputs
- Define the domain, codomain and range
- Associate a relation R_f with each function f
- Properties of functions: injective (one-to-one), surjective (onto)
- Bijections: injective and surjective (one-to-one and onto)
- A bijection establishes that domain and codomain have same cardinality

