

Plano de ensino

Curso CST em Análise e Desenvolvimento de Sistemas

Unidade curricular Programação Orientada a Objetos

Semestre 2025-01 Carga horária 80 horas

Professor Emerson Ribeiro de Mello

1 Ementa

Introdução ao paradigma da programação orientada a objetos; Introdução à linguagem de programação Java; Bibliotecas da linguagem e de terceiros; Ferramentas para desenvolvimento e automatização de projetos; Empacotamento e distribuição de aplicações Java para desktop; Linguagem de modelagem unificada (UML) e ferramentas para confecção de diagramas de classe.

2 Objetivos

- Usar de forma efetiva ferramentas como ambiente integrado de desenvolvimento e sistema de controle de versão para trabalhar de forma colaborativa
- Desenvolver software de média complexidade na linguagem Java e de acordo com o paradigma da programação orientada a objetos
- Criar diagramas de classes usando a linguagem de modelagem unificada (UML), para fins de modelagem e documentação de software

3 Metodologia de abordagem

Essa unidade curricular será ministrada com aulas expositivas-dialogadas e práticas em laboratório sob a supervisão do professor. As atividades empregarão a metodologia de aprendizado baseado em projetos, em que desafios são lançados e o docente orienta os estudantes em suas soluções com base nos conceitos sendo estudados. As atividades práticas serão conduzidas em computadores com o sistema operacional Linux e com os softwares aplicativos para automatização de projetos e o kit de desenvolvimento Java, além de aplicações para desenvolvimento de diagramas UML. As aulas práticas serão conduzidas nos laboratórios de informática do campus.

O discente será avaliado por meio dos instrumentos apresentados na Tabela 1.

Tabela 1: Instrumentos de avaliação

Atividade	Quantidade	Sigla	Peso na média
Laboratórios	n	а	20%
Listas de exercícios	5	е	80%

O aproveitamento do discente na disciplina será avaliado de forma contínua e cumulativa, por meio da participação nas aulas no desenvolvimento dos laboratórios práticos e na resolução de listas

IFSC – CAMPUS SÃO JOSÉ Página 1

de exercícios. Para a aprovação o discente deverá possuir no mínimo 75% de presença e Conceito Final ≥ 6 , sendo este calculado por meio da Equação 1. As listas de exercícios possuem pesos diferentes, sendo estes: $W = \{w_1, w_2, w_3, w_4, w_5\} = \{1, 1, 2, 3, 3\}$.

$$CF = \left\lfloor \left(\frac{\sum_{i=1}^{n} a_i}{n} \right) \times 0.2 + \left(\frac{\sum_{i=1}^{5} e_i \times w_i}{\sum_{i=1}^{5} w_i} \right) \times 0.8 \right\rceil, \quad CF \in \mathbb{N}.$$
 (1)

Sobre a **recuperação de estudos**: os laboratórios serão apresentados como forma de avaliação contínua e cumulativa, assim, não haverá recuperação para os mesmos. As listas de exercícios poderão ser recuperadas¹. Notas de listas não entregues não poderão ser recuperadas. Assim, no final do semestre será proposta uma atividade de recuperação, a qual substituirá a nota do instrumento "Listas de exercícios", para os discentes que não atingiram a média mínima para aprovação.

4 Conteúdo programático

- 1. Fundamentos e ferramentas (14h)
 - (a) Sistema de controle de versão
 - i. Excluindo arquivos do controle de versão por meio do .gitignore
 - ii. Trabalhando com ramos
 - A. Fluxos de trabalho com ramos em projetos colaborativos
 - B. Resolvendo conflitos em uma mesclagem (merge conflict)
 - C. Comandos git: branch, checkout, merge e rebase
 - iii. Trabalhando com repositórios remotos no GitHub
 - A. Clonando repositório remoto e sincronizando repositório local com o remoto
 - B. Trabalhando de forma colaborativa
 - C. Comandos git: remote, clone, push e pull
 - (b) Ferramentas de desenvolvimento
 - i. Kit de Desenvolvimento Java (JDK)
 - ii. Ferramenta de construção de projetos (Gradle)
 - iii. Ambiente integrado de desenvolvimento (IDE)
 - (c) Revisão sobre a linguagem Java
 - i. Estruturas de decisão e repetição, vetores uni e multidimensionais
 - ii. Leitura de dados do dispositivo de entrada padrão com classe Scanner
 - iii. Uso das classes String e StringBuilder
 - iv. Argumentos de linha de comando
 - v. Redirecionamento de entrada e saída
- 2. Introdução ao paradigma da orientação a objetos (12h)
 - (a) Paradigmas de programação
 - (b) Processos de abstração e representação
 - (c) Classes, objetos e membros de classe (atributos e métodos)

IFSC - Campus São José Página 2

¹Salvo os casos previstos no artigo 162 do Regulamento Didático-Pedagógico (RDP) do IFSC, no RDP não está previsto a segunda chamada, situação que ocorre quando o discente não faz a atividade avaliativa na data estabelecida.

- (d) Encapsulamento de dados
- (e) Modelagem de classes
- (f) Linguagem Java: Métodos construtores
- (g) Linguagem Java: Sobrecarga de métodos
- (h) Linguagem Java: Membros estáticos e constantes
- (i) Linguagem Java: Modificadores de acesso e palavras reservadas
- 3. APIs Java: Coleções (6h)
 - (a) Listas
 - (b) Tabelas de dispersão
 - (c) Streams
- 4. Associação entre classes (12h)
 - (a) Diagrama de classes UML
 - (b) Dependência, agregação e composição
 - (c) Implementação de associação em Java
- 5. Herança e polimorfismo (12h)
 - (a) Conceitos sobre herança e herança múltipla
 - (b) Linguagem Java: Sobrescrita de métodos
 - (c) Linguagem Java: Classe abstrata e interface
 - (d) Conceitos sobre polimorfismo
 - (e) Implementação de herança e polimorfismo em Java
 - (f) Diagrama de classes UML com herança e polimorfismo
- 6. APIs Java (22h)
 - (a) Enum e tipos genéricos
 - (b) Tratamento de exceções
 - (c) Trabalhando com arquivos texto e binário
 - (d) Documentação com JavaDOC
- 7. Empacotamento e distribuição de aplicações Java (2h)

Bibliografia básica

BEZERRA, Eduardo. Princípios de análise e projeto de sistemas com UML. Campus, 2002.

HORSTMANN, Cay S.; CORNELL, Gary. **Core Java – Volume I – Fundamentos**. 8. ed.: Pearson, 2010.

IFSC - Campus São José Página 3

Bibliografia complementar

DEITEL, H.M.; DEITEL, P.J. Java Como Programar. 8. ed.: Prentice Hall, 2010.

LARMAN, Craig. **Utilizando UML e padrões**. Bookman, 2007. https://app.minhabiblioteca.com.br/books/9788577800476/.

SCHILDT, Herbert. **Java para iniciantes: crie, compile e execute programas Java rapidamente**. Bookman, 2015. ISBN 9788582603376. Disponível em: https://app.minhabiblioteca.com.br/#/books/9788582603376. Acesso em: 7 dez. 2023.

IFSC - Campus São José Página 4