FMI, Info, Anul I

Logică matematică și computațională

Seminar 8

(S8.1) Demonstrați că următoarele afirmații sunt echivalente:

- (V1) Pentru orice $\Gamma \subseteq Form$, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.
- (V2) Pentru orice $\Gamma \subseteq Form$, Γ este nesatisfiabilă ddacă Γ nu este finit satisfiabilă.
- (V3) Pentru orice $\Gamma \subseteq Form$, $\varphi \in Form$, $\Gamma \vDash \varphi$ dacă și numai dacă $\Gamma \vDash_{fin} \varphi$.

Demonstraţie:

Echivalenţa între (V1) şi (V2) este evidentă.

Demonstrăm că $(V2) \Rightarrow (V3)$:

$$\Gamma \vDash \varphi \iff \Gamma \cup \{\neg \varphi\} \text{ este nesatisfiabilă (conform Propoziției 1.33.(i))} \\ \iff \Gamma \cup \{\neg \varphi\} \text{ nu este finit satisfiabilă (conform (V2) pentru } \Gamma \cup \{\neg \varphi\}) \\ \iff \Gamma \vDash_{fin} \varphi \text{ (conform (S7.4))}.$$

Demonstrăm că (V3) \Rightarrow (V2):

$$\begin{array}{lll} \Gamma \text{ este nesatisfiabilă} &\iff & \Gamma \vDash \bot \text{ (conform Propoziției 1.32)} \\ &\iff & \Gamma \vDash_{fin} \bot \text{ (conform (V3) pentru } \Gamma \text{ și } \bot \text{)} \\ &\iff & \text{există o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.î. } \Delta \vDash \bot \\ &\iff & \text{există o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.î.} \\ &\searrow & \text{există o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.î.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.i.} \\ &\searrow & \text{exista o submulțime finită } \Delta$$

(S8.2) (Metoda reducerii la absurd)

Să se arate că pentru orice mulțime de formule Γ și orice formule φ, ψ ,

$$\Gamma \cup \{\neg \psi\} \vdash \neg(\varphi \to \varphi) \Rightarrow \Gamma \vdash \psi.$$

Demonstraţie:

1

Avem

(4)

(1)
$$\Gamma \cup \{\neg \psi\} \vdash \neg(\varphi \rightarrow \varphi)$$
 Ipoteză

(2)
$$\Gamma \vdash \neg \psi \rightarrow \neg (\varphi \rightarrow \varphi)$$
 Teorema deducției

(3)
$$\Gamma \vdash (\neg \psi \to \neg (\varphi \to \varphi)) \to ((\varphi \to \varphi) \to \psi)$$
(4)
$$\Gamma \vdash (\varphi \to \varphi) \to \psi$$

$$\neg(\varphi \to \varphi)) \to ((\varphi \to \varphi) \to \psi) \quad \text{(A3) şi Propoziţia 1.40.(i)} \\ \to \psi \quad \text{(MP): (2), (3)}$$

$$(5) \qquad \Gamma \vdash \varphi \to \varphi$$

(6)
$$\Gamma \vdash \psi$$

(MP): (4), (5).

(S8.3) Să se arate că pentru orice formule φ, ψ ,

(i)
$$\{\psi, \neg\psi\} \vdash \varphi$$
;

(ii)
$$\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi)$$
;

(iii)
$$\vdash \neg \neg \varphi \rightarrow \varphi$$
;

(iv)
$$\vdash \varphi \rightarrow \neg \neg \varphi$$
.

Demonstrație: Demonstrăm (i):

$$(1) \qquad \vdash \neg \psi \to (\neg \varphi \to \neg \psi) \tag{A1}$$

(2)
$$\{\neg\psi\} \vdash \neg\varphi \rightarrow \neg\psi$$
 Teorema deducției

$$(4) \qquad \{\neg\psi\} \quad \vdash \psi \to \varphi \qquad \qquad (MP): (2), (3)$$

(5)
$$\{\psi, \neg \psi\} \vdash \varphi$$
 Teorema deducţiei.

Punctul (ii) se obține din (i) aplicând de două ori Teorema deducției:

(1)
$$\{\psi, \neg \psi\} \vdash \varphi$$
 (S8.3).(i)

(2)
$$\{\neg\psi\}$$
 $\vdash \psi \rightarrow \varphi$ Teorema deducției

$$\begin{array}{lll} (1) & \{\psi,\neg\psi\} & \vdash \varphi & (\text{S8.3}).(\textbf{i}) \\ (2) & \{\neg\psi\} & \vdash \psi \to \varphi & \text{Teorema deducţiei} \\ (3) & \vdash \neg\psi \to (\psi \to \chi) & \text{Teorema deducţiei}. \end{array}$$

Demonstrăm în continuare (iii).

(1)
$$\{\neg \varphi, \neg \neg \varphi\} \vdash \neg(\varphi \to \varphi)$$
 (i)

(2)
$$\{\neg\neg\varphi\} \vdash \varphi$$
 (1) şi (S8.2)

Demonstrăm (iv):

(1)
$$\vdash \neg \neg \neg \varphi \rightarrow \neg \varphi$$
 (iii) cu $\varphi := \neg \varphi$

$$(2) \vdash (\neg \neg \neg \varphi \to \neg \varphi) \to (\varphi \to \neg \neg \varphi) \quad (A3)$$

$$(3) \vdash \varphi \to \neg \neg \varphi \qquad (MP): (1), (2).$$

2

(S8.4) ("Reciproca" axiomei 3)

Să se arate că pentru orice formule φ, ψ ,

$$\vdash (\varphi \to \psi) \to (\neg \psi \to \neg \varphi).$$

Demonstraţie:

(1)	$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\}$	$\vdash \varphi \to \psi$	Propoziția 1.40.(ii)
(2)	$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\}$	$\vdash \neg \psi$	Propoziția 1.40.(ii)
(3)	$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\}$	$\vdash \neg \neg \varphi$	Propoziția 1.40.(ii)
(4)	$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\}$	$\vdash \neg \neg \varphi \rightarrow \varphi$	(S8.3).(iii) și Propoziția 1.42.(ii)
(5)	$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\}$	$\vdash \varphi$	(MP): (3), (4)
(6)	$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\}$	$\vdash \psi$	(MP): (1), (5)
(7)	$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\}$	$\vdash \neg \psi \to (\psi \to \neg(\varphi \to \varphi))$	(S8.3).(ii) și Propoziția 1.42.(ii)
(8)	$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\}$	$\vdash \psi \to \neg(\varphi \to \varphi)$	(MP): (2), (7)
(9)	$\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\}$	$\vdash \neg(\varphi \to \varphi)$	(MP): (6), (8)
(10)	$\{\varphi \to \psi, \neg \psi\}$	$\vdash \neg \varphi$	(9) şi (S8.2)
(11)	$\{\varphi \to \psi\}$	$\vdash \neg \psi \rightarrow \neg \varphi$	Teorema deducției
(12)		$\vdash (\varphi \to \psi) \to (\neg \psi \to \neg \varphi)$	Teorema deducției.

3