

Optimización con metaheurísticas © Fernando Berzal, berzal@acm.org

Optimización con metaheurísticas

Metaheurísticas

Técnicas de búsqueda local

Ascensión de colinas

Optimización basada en modelos naturales

- Enfriamiento simulado
- Modelos evolutivos
 - Algoritmos genéticos
- Modelos de adaptación social ("swarm intelligence")
 - Colonias de hormigas[ACO: Ant Colony Optimization]
 - Nubes de partículas

[PSO: Particle Swarm Optimization]

Técnicas computacionales que resuelven iterativamente problemas de optimización, intentando mejorar una solución candidata con respecto a una medida de calidad dada @ http://en.wikipedia.org/wiki/Metaheuristic

- Las metaheurísticas no suelen realizar suposiciones acerca del problema de optimización y pueden explorar espacios de búsqueda muy grandes.
- Las metaheurísticas no garantizan que se encuentre una solución óptima.
- Muchas metaheurísticas implementan alguna forma de optimización estocástica.

Metaheurísticas

Problemas de optimización combinatoria

(las metaheurísticas como alternativa al uso de técnicas exhaustivas del estilo de branch&bound)

Problema de la mochila [knapsack problem], O(2ⁿ) http://en.wikipedia.org/wiki/Knapsack problem

Problemas de optimización combinatoria

(las metaheurísticas como alternativa al uso de técnicas exhaustivas del estilo de branch&bound)

Problema del viajante de comercio (TSP), O(n²2n) http://en.wikipedia.org/wiki/Traveling_salesman_problem

Metaheurísticas

Problemas de optimización combinatoria

(las metaheurísticas como alternativa al uso de técnicas exhaustivas del estilo de branch&bound)

Problema de la ruta de los vehículos (VRP), O(n!) http://en.wikipedia.org/wiki/Vehicle routing problem

Problemas de optimización combinatoria

(las metaheurísticas como alternativa al uso de técnicas exhaustivas del estilo de branch&bound)

Problema de la asignación cuadrática (QAP), O(n!)
 http://en.wikipedia.org/wiki/Quadratic assignment problem

Metaheurísticas

Problemas de optimización combinatoria

Programación entera [integer programming]
 http://en.wikipedia.org/wiki/Integer programming

ILP =
Caso discreto de la programación lineal.

Ejemplos

Espacios de búsqueda discretos (optimización combinatoria)

- Scatter search
 - Fred Glover: "Heuristics for Integer programming Using Surrogate Constraints". Decision Sciences 8 (1): 156–166, 1977.
- Búsqueda tabú [tabu search]
 Fred Glover and C. McMillan: "The general employee scheduling problem: an integration of MS and AI". Computers and Operations Research, 1986.
- GRASP = Greedy Randomized Adaptive Search Procedure T.A. Feo and M.G.C. Resende: "A probabilistic heuristic for a computationally difficult set covering problem". Operations Research Letters, 8:67–71,

Metaheurísticas

Ejemplos

Espacios de búsqueda discretos (optimización combinatoria)

- Enfriamiento simulado
 - Kirkpatrick, S.; Gelatt Jr., C.D.; Vecchi, M.P. (1983). "Optimization by Simulated Annealing". Science 220 (4598):671–680. DOI 10.1126/science.220.4598.671
- Algoritmos genéticos
 - John H. Holland: "Adaptation in Natural and Artificial Systems". University of Michigan Press, 1975
- Colonias de hormigas
 Marco Dorigo: "Optimization, Learning and Natural Algorithms"
 PhD thesis, Politecnico di Milano, 1992.

Ejemplos

Espacios de búsqueda continuos

- Nubes de partículas
 - J. Kennedy & R. Eberhart: "Particle Swarm Optimization".
 Proceedings of IEEE International Conference on Neural Networks, 1995.
- Evolución diferencial

R. Storn & K. Price: "Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces". Journal of Global Optimization 11 (4): 341–359, 1997.

Estrategias de evolución

I. Rechenberg: Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, PhD Thesis, 1971.

Ascensión de colinas

Ascensión de colinas simple

E: Estado activo

```
while (E no sea el objetivo
        y queden nodos por explorar a partir de E)
   Seleccionar operador R para aplicarlo a E
   Evaluar f(R(E))
   if (f(R(E))>f(E))
        E = R(E)
```


Ascensión de colinas simple

"Como subir al Everest con una niebla espesa y amnesia"

Ascensión de colinas

Ascensión de colinas por la máxima pendiente

E: Estado activo

```
while (queden nodos por explorar a partir de E) Para todos los operadores R_i, obtener E_i = R_i(E) Evaluar f(E_i) para todos los estados E_i = R_i(E) Seleccionar E_{max} tal que f(E_{max}) = max\{f(E_i)\} if (f(E_{max}) > f(E)) E = E_{max} else return E
```


Ascensión de colinas por la máxima pendiente

Ascensión de colinas

Ascensión de colinas por la máxima pendiente Observaciones

- Se realiza una búsqueda del mejor hijo del nodo actual E (para seleccionar el operador R más prometedor).
- Una vez elegido el operador R más prometedor, obtenemos el estado E'=R(E) y se repite el proceso a partir del estado E'
- En memoria sólo tenemos que almacenar E, el hijo de E que estemos considerando en cada momento y el mejor hijo que hayamos encontrado.

Ascensión de colinas por la máxima pendiente Observaciones

- El proceso se repite hasta que se encuentre una solución, hasta no podamos avanzar más o hasta que todos los hijos sean peores que el padre del que provienen.
- Este último criterio puede dar lugar a varios problemas debido a la existencia de máximos locales y mesetas en la función de evaluación heurística.

Ascensión de colinas

Ascensión de colinas por la máxima pendiente Limitaciones

Ascensión de colinas por la máxima pendiente Limitaciones

1	2	3
8		4
7	6	5

objetivo

3	2	1
8		4
7	6	5

Emáximo local

	1	Máximo local	
		Todos los movimientos	
Ī	5	empeoran el valor de la	

1	2	3
6	7	4
	8	5

Meseta

Todos los movimientos dejan igual el valor de la función heurística.

función heurística.

Ascensión de colinas

Ascensión de colinas por la máxima pendiente **Posibles soluciones**

- Continuar la exploración de más niveles del árbol (no estaríamos ante una estrategia de búsqueda "local").
- Probar con distintos puntos de partida.
- "Dar saltos", aunque sólo sea de vez en cuando.
 - vg. enfriamiento simulado [simulated annealing] algoritmos genéticos

Enfriamiento simulado

- Proceso de recocido del acero y cerámicas que consiste en calentar y luego enfriar lentamente el material para variar sus propiedades físicas.
- El calor causa que los átomos aumenten su energía y que puedan así desplazarse de sus posiciones iniciales (un mínimo local de energía).
- El enfriamiento lento les da mayores probabilidades de recristalizar en configuraciones con menor energía que la inicial (mínimo global).

Enfriamiento simulado

IDEA

Escapar de los máximos locales permitiendo movimientos malos. Gradualmente, tales movimientos decrecen en tamaño y frecuencia.

MECANISMO: Temperatura T(i)

- Empieza siendo alta y decrece hasta aproximarse a 0.
- A una temperatura T(i), la probabilidad de cada estado se puede calcular usando la distribución de Boltzmann:

$$p(x) = \alpha e^{\frac{E(x)}{kT}}$$

Enfriamiento simulado

Simulated Annealing

Enfriamiento simulado

Algoritmo

```
s \leftarrow s0; e \leftarrow E(s)
                                      // Estado y energía inicial
best ← s; ebest ← e
                                      // Mejor solución actual
k ← 0
                                      // Número de iteración
while (k<kmax) and (e>emin)
  T ← temperature(k/kmax)
                                      // Temperatura actual
  snew ← neighbour(s)
                                      // Vecino aleatorio
  enew ← E(snew)
                                      // Energía asociada al vecino
  if P(e, enew, T) > random()
     s ← snew; e ← enew
                                      // Salto aleatorio al vecino
  if enew < ebest then
    sbest ← snew; ebest ← enew
                                     // Mejor solución encontrada
  k \leftarrow k + 1
                                      // Resultado final
return sbest
```

Algoritmos genéticos

- Se hace evolucionar una población de individuos (cada uno de los cuales representa una posible solución).
- La población se somete a acciones aleatorias semejantes a las de la evolución biológica (mutaciones y recombinaciones genéticas).
- Los individuos se seleccionan de acuerdo con una función de adaptación en función del cual se decide qué individuos sobreviven (los más adaptados) y cuáles son descartados (los menos aptos).

Algoritmos genéticos

Fases

- Inicialización
- Evaluación

Repetición...

- Selección
- Cruce
- Mutación
- Evaluación
- Reemplazo

Algoritmos genéticos

Algoritmo

```
t ← 0

población(t) ← poblaciónInicial

EVALUAR(población(t))

while not (condición de terminación)

t ← t + 1

población(t) ← SELECCIONAR(población(t-1))

población(t) ← CRUZAR(población(t))

población(t) ← MUTAR(población(t))

EVALUAR(población(t))

return población(t)
```


Algoritmos genéticos

Selección, cruce & mutación

Algoritmos genéticos

Ejemplo: El problema de las N reinas

- Función de evaluación:
 Número de parejas de reinas que no se atacan.
- Operador de cruce:

Colonias de hormigas

- Inicialmente, las hormigas se mueven aleatoriamente.
- Cuando encuentran comida, al volver a su colonia, van dejando un rastro de feromonas.
- Cuando otras hormigas encuentran feromonas, tienden a seguir el rastro dejado por sus predecesoras.

Colonias de hormigas

Cuando encuentran comida, las hormigas vuelven de forma más o menos directa a la colonia (dejando un rastro de feromonas).

Como las feromonas se evaporan, el camino más corto acabará resultando más atractivo para otras hormigas y el más largo acabará desapareciendo.

Colonias de hormigas

Aplicación original: TSP

- La probabilidad de visitar una ciudad depende de su distancia (una ciudad lejana es menos visible).
- Cuanto mayor sea el nivel de feromonas asociado a un camino, mayor es la probabilidad de que se siga ese camino.
- Al completar un circuito, una hormiga deposita más feromonas en cada arista recorrida cuanto más corto es el camino que ha encontrado.
- Al final de cada iteración, las feromonas se evaporan.

Colonias de hormigas

Aplicación original: TSP

Nubes de partículas

- Se mantiene una población ["enjambre" o nube] de soluciones candidatas ["partículas"].
- La posición de cada partícula se actualiza iterativamente de acuerdo a una fórmula definida sobre su posición y velocidad.

Nubes de partículas

Aplicación: Filtro de partículas

[Método secuencial de Monte Carlo]

http://www.cs.washington.edu/robotics/mcl/

Bibliografía

- Stuart Russell & Peter Norvig:
 Artificial Intelligence:
 A Modern Approach
 Prentice-Hall, 3rd edition, 2009
 ISBN 0136042597
- Nils J. Nilsson
 The Quest for Artificial Intelligence
 Cambridge University Press, 2009
 ISBN 0521122937

