TD 06 : ORIENTATION, SOUS-VARIÉTÉS À BORD, THÉORIE DU DEGRÉ, THÉORIE DE MORSE I ET CHAMPS DE VECTEURS I

► Cette feuille de TDo6 nous occupera deux semaines.

Première semaine

Exercices fondamentaux

1. Un critère d'orientabilité et préimages de submersions

- (a) Soient $n \geqslant 1$ un entier et V une sous-variété de dimension n-1 de \mathbf{R}^n . On suppose qu'il existe une application de Gauß, à savoir une application lisse $N: V \to \mathbf{R}^n$ telle que pour tout $x \in V$, ||N(x)|| = 1 et $N(x) \perp T_x V$. Montrer que V est orientable.
- **(b)** Soient $n \geqslant 1$ un entier et $f: \mathbf{R}^n \to \mathbf{R}$ une submersion telle que 0 soit dans l'image de f. Montrer que $f^{-1}(0)$ est une sous-variété orientable de \mathbf{R}^n .

2. DEGRÉ ET POINTS FIXES

Montrer que toute application \mathcal{C}^{∞} de \mathbf{S}^n dans elle-même de degré différent de $(-1)^{n+1}$ admet un point fixe.

3. BORSUK-ULAM

Le théorème de Borsuk-Ulam est le suivant.

Théorème 1.

Soit $n \ge 1$. Soit $f \in \mathcal{C}(\mathbf{S}_n, \mathbf{R}^n)$. Alors il existe $x \in \mathbf{S}_n$ tel que f(x) = f(-x).

Par exemple, pour n=2, ce théorème affirme que l'on peut trouver deux points antipodaux sur la Terre en lesquels la température et la pression sont identiques.

(a) Démontrer le théorème de Borsuk-Ulam pour n=1.

On se donne dans la suite une application $f \in \mathcal{C}^1(\mathbf{S}_n, \mathbf{R}^n)$ et supposons que $f(x) \neq f(-x)$ pour tout $x \in \mathbf{S}_n$.

(b) Construire une application $g \in \mathcal{C}^1(\mathbf{S}_n, \mathbf{S}_{n-1})$ telle que g(x) = -g(-x) pour tout $x \in \mathbf{S}_n$.

Nous allons démontrer par récurrence que le degré d'une application impaire d'une sphère sur elle-même est impair.

- (c) Soit $g: \mathbf{S}_1 o \mathbf{S}_1$ une application impaire. Montrer que $\deg(g)$ est impair.
- (d) Soit $n \geqslant 2$. Soit $g \in \mathcal{C}^1(\mathbf{S}_n, \mathbf{S}_n)$ une application impaire. Montrer que, quitte à composer g avec une rotation, on peut supposer que les pôles Nord et Sud sont des points réguliers de g, et ne sont pas dans $g(\mathbf{S}_{n-1} \times \{0\})$.
- (e) Soit π la projection orthogonale sur le plan $\{x_{n+1}=0\}$. Montrer que $\deg(g)$ est congru modulo 2 au nombre de préimages de 0 par $\pi\circ g_{|\{x_{n+1}>0\}}$.
- (f) Montrer que $\pi\circ g_{|\{x_{n+1}=0\}}$ est de degré impair. En déduire que $\deg(g)$ est impair.
- (g) Montrer que $g_{|\mathbf{S}_{n-1} \times \{0\}}$ est de degré impair.
- **(h)** Montrer que $g_{|\mathbf{S}_{n-1} \times \{0\}}$ est homotope à une application constante. Conclure.

Exercices complémentaires

4. REVÊTEMENT D'ORIENTATION

- (a) Soit G un groupe discret agissant par \mathcal{C}^{∞} -difféomorphismes, librement et proprement sur une sous-variété différentielle X de classe \mathcal{C}^{∞} . Montrer que l'espace topologique quotient $G\setminus X$ admet une unique structure de variété différentielle de classe \mathcal{C}^{∞} telle que la projection canonique $\pi:X\to G\setminus X$ soit un \mathcal{C}^{∞} -difféomorphisme local.
- (b) Montrer que toute sous-variété de classe \mathcal{C}^{∞} admet un revêtement double $\pi: \tilde{M} \to M$ qui est orientable. Si M est connexe non orientable, montrer que ce revêtement est connexe et unique à isomorphisme de revêtements près et qu'il existe une action libre de $G = \mathbf{Z}/2\mathbf{Z}$ sur \tilde{M} telle que la variété quotient $G \setminus \tilde{M}$ soit \mathcal{C}^{∞} -difféomorphe à M.

5. NOMBRE D'ENLACEMENT

Soient M et N deux sous-variétés compactes, connexes, orientées (à bord vide) de \mathbf{R}^{k+1} avec $\dim(M)=m$, $\dim(N)=n$ et m+n=k. On suppose de plus que $M\cap N=\varnothing$. Le nombre d'enlacement, noté $\operatorname{Enl}(M,N)$ est alors défini comme le degré de l'application

$$\begin{array}{ccc} M \times N & \longrightarrow & \mathbf{S}_k \\ (x,y) & \longmapsto & \frac{x-y}{||x-y||}. \end{array}$$

- (a) Montrer que $Enl(M, N) = (-1)^{(m-1)(n-1)} Enl(N, M)$.
- **(b)** Préciser la dépendance de $\operatorname{Enl}(N,M)$ par rapport au choix des orientations de M et de N.
- (c) Montrer que s'il existe une sous-variété W de \mathbf{R}^{k+1} telle que M soit le bord de W, et telle que $W\cap N=\varnothing$, alors $\operatorname{Enl}(N,M)=0$
- (d) Montrer que s'il existe un hyperplan affine séparant M de N, alors $\operatorname{Enl}(N,M)=0$.
- (e) On se place plus spécifiquement ici dans le cas k=2 et m=n=1. Soient f et g deux plongements de classe \mathcal{C}^2 de \mathbf{S}_1 dans \mathbf{R}^3 dont on suppose que leurs images sont disjointes. On appelle un tel couple (ou par abus le couple d'images) un entrelac. On rappelle que π_X est la projection orthogonale parallèlement à la droite $\mathbf{R}X$. On montre comme dans l'exercice complémentaire 1 du TD 5 qu'il existe un ouvert dense $U \subset \mathbf{S}_2$ tel que, pour tout $X \in U$, les courbes $\pi_X \circ f$ et $\pi_X \circ g$ soient des immersions transverses, et que si $z=\pi_X \circ f(x)=\pi_X \circ g(y)$, alors $(\pi_X \circ f)^{-1}(\{z\})$ et $(\pi_X \circ g)^{-1}(\{z\})$ soient des singletons.

On choisit un vecteur X vérifiant les propriétés ci-dessus. On dessine $\pi_X \circ f$ et $\pi_X \circ g$, en marquant à chaque croisement quelle courbe passe au-dessus de l'autre. On obtient des diagrammes comme celui qui suit :

FIGURE 1 - Un entrelac celtique.

Comment peut-on lire le degré de φ sur un tel diagramme?

(f) On dit que deux entrelacs (f_0,g_0) et (f_1,g_1) sont isotopes s'il existe deux homotopies $f: \mathbf{S}_1 \times [0,1] \to \mathbf{R}^3$ et $g: \mathbf{S}_1 \times [0,1] \to \mathbf{R}^3$ respectivement entre f_0 et f_1 et entre g_0 et g_1 telles que pour tout $t \in [0,1]$, $f(\cdot,t)$ et $g(\cdot,t)$ soient des plongements \mathcal{C}^{∞} d'images disjointes. Montrer que

$$\operatorname{Enl}(f_0(\mathbf{S}_1), g_0(\mathbf{S}_1)) = \operatorname{Enl}(f_1(\mathbf{S}_1), g_1(\mathbf{S}_1)).$$

- (g) En déduire que l'entrelac dont le diagramme est donné ci-dessus n'est pas isotope, dans \mathbf{R}^3 , à (C_1,C_2) , où $C_1=\{x^2+y^2=1,\ z=0\}$ et $C_2=\{x^2+y^2=1,\ z=1\}$.
- (h) De même, montrer que $\{x^2 + y^2 = 1, z = 0\} \cup \{(x-1)^2 + z^2 = 1, y = 0\}$ n'est pas isotope, dans \mathbb{R}^3 , à (C_1, C_2) .

Seconde semaine

Exercices fondamentaux

1. EXEMPLES DE FONCTIONS DE MORSE

Soit $m \geqslant 1$ un entier. Dans chacun des cas suivants, démontrer que la fonction f est une fonction de Morse, trouver ses points critiques et leurs indices.

(a) Pour
$$R > 1$$
,

$$f: \left\{ \begin{array}{ccc} \left(\mathbf{S}_{1}\right)^{m} & \longrightarrow & \mathbf{R} \\ \left(e^{i\theta_{1}}, \dots, e^{i\theta_{m}}\right) & \longmapsto & \left(R + \cos(\theta_{1})\right) \times \dots \times \left(R + \cos(\theta_{m})\right). \end{array} \right.$$

$$f: \left\{ \begin{array}{ccc} \mathbf{S}_m & \longrightarrow & \mathbf{R} \\ (x_1, \dots, x_{m+1}) & \longmapsto & x_{m+1}. \end{array} \right.$$

(c) Pour
$$a_1 < \cdots < a_{m+1}$$
,

$$f: \left\{ \begin{array}{ccc} \mathbf{P}_m(\mathbf{R}) & \longrightarrow & \mathbf{R} \\ [x_1 : \cdots : x_{m+1}] & \longmapsto & \frac{a_1 x_1^2 + \cdots + a_{m+1} x_{m+1}^2}{x_1^2 + \cdots + x_{m+1}^2}. \end{array} \right.$$

2. CHAMPS DE VECTEURS

(a) Définir un champ de vecteurs continu sur \mathbf{T}^2 , vue comme surface plongée dans \mathbf{R}^3 par $(\theta, \varphi) \mapsto ((2 + \cos(\varphi))\cos(\theta), (2 + \cos(\varphi))\sin(\theta), \sin(\varphi))$, qui ne s'annule pas.

Soient U un ouvert de \mathbf{R}^n avec $n\geqslant 2$ et X un champ de vecteurs \mathcal{C}^∞ sur U. Soit x un zéro isolé de X. On définit *l'indice* de X en x comme le degré de l'application

$$\mathbf{S}_{n-1} \longrightarrow \mathbf{S}_{n-1}$$
 $v \longmapsto \frac{X(x+\varepsilon v)}{||X(x+\varepsilon v)||}$

pour $\varepsilon > 0$ suffisamment petit.

Soient M une sous-variété de classe \mathcal{C}^{∞} , Y un champ de vecteurs sur M et $f:U\to M$ un \mathcal{C}^{∞} -difféomorphisme local avec U un ouvert de \mathbf{R}^n . On définit alors le champ de vecteurs $tir\acute{e}$ en arrière de Y sur U par $x\in U\mapsto (T_xf)^{-1}(Y(f(x)))\in \mathbf{R}^n$. On note ce champ de vecteurs f^*Y .

- (b) Justifier que la définition de l'indice d'un champ de vecteurs sur un ouvert de ${f R}^n$ ne dépend pas du choix de arepsilon.
- (c) Soient M une sous-variété de classe \mathcal{C}^∞ , X un champ de vecteurs sur M et $x\in M$ un zéro isolé de X. On définit l'indice en $\varphi(x)$ de X en x comme l'indice du champ de vecteurs sur $\varphi(U)$ donné par $(\varphi^{-1})^*X_{|_U}$ si (U,φ) est une carte locale de M en x. Montrer que cette définition ne dépend pas du choix de la carte.
- (d) Étant donnés les champs de vecteurs suivants sur S_2 , dessiner leurs courbes intégrales, trouver les points où les champs s'annulent, et calculer leur indice en ces points :

$$X(x,y,z) := \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}; \qquad Y(x,y,z) := \begin{pmatrix} xz \\ yz \\ z^2 - 1 \end{pmatrix}; \qquad Z(x,y,z) := \begin{pmatrix} 1 - z - x^2 \\ -xy \\ x(1 - z) \end{pmatrix}.$$

(e) Soit $n \ge 2$ un entier. Dessiner les courbes intégrales du champs de vecteur $\nabla(\text{Re}(z^n))$ sur C. Quel en est l'indice en 0?

3. RECOLLEMENT DE BOULES

Soit $m \geqslant 1$ un entier.

- (a) Soit $arphi:\mathbf{S}_m o\mathbf{S}_m$ un homéomorphisme. Montrer que $\mathbf{B}_{m+1}igcup_{arphi}\mathbf{B}_{m+1}$ est homéomorphe à \mathbf{S}_{m+1} .
- **(b)** Soit M une variété compacte de dimension m telle qu'il existe une fonction de Morse $f:M\to \mathbf{R}$ avec exactement deux points critiques. Montrer que M est homéomorphe à \mathbf{S}_m . Retrouver que $\mathrm{SU}(2)$ est homéomorphe à \mathbf{S}_3 .

Exercices complémentaires

4. CROCHET DE LIE

Soit U un ouvert de \mathbf{R}^d . Soient X et Y deux champs de vecteurs \mathcal{C}^{∞} sur U. On note $\varphi_{X,t}$ le flot associé au temps t, là où il est défini. Pour $x \in U$, on note :

$$g_{X,Y}(t) := \varphi_{X,t} \circ \varphi_{Y,t} \circ \varphi_{X,-t} \circ \varphi_{Y,-t}(x),$$
$$[X,Y](x) := \frac{g_{X,Y}''(0)}{2}.$$

- (a) Faire un développement limité à l'ordre 2 de $t\mapsto \varphi_{X,t}(y)$, pour $y\in U$. Calculer $g''_{X,Y}(0)$.
- **(b)** Montrer que $(X,Y)\mapsto [X,Y]$ est bilinéaire et antisymétrique.

5. Une fonction de Morse sur un produit de variétés

Soient M et N deux variétés compactes ainsi que $f:M\to {\bf R}$ et $g:N\to {\bf R}$ deux fonctions de Morse ${\mathcal C}^\infty$. Pour a,b>0, on définit

$$F_{a,b}: \left\{ \begin{array}{ccc} M\times N & \longrightarrow & \mathbf{R} \\ (m,n) & \longmapsto & (a+f(m))(b+g(n)). \end{array} \right.$$

Montrer que pour a et b suffisamment grands, la fonction $F_{a,b}$ est de Morse et dans ce cas, trouver ses points critiques et leurs indices (en fonction des mêmes données pour f et g).

6. APPLICATION DE GAUSS: SUITE

Soit $n\geqslant 1$. On munit \mathbf{R}^{n+1} du produit scalaire canonique $\langle\cdot,\cdot\rangle$ de norme associée $||\cdot||$. Soit M une sous-variété de \mathbf{R}^{n+1} de dimension n compacte, connexe et orientée. On note $NM=\left\{(x,v)\in M\times\mathbf{R}^{n+1}: \forall h\in T_xM,\ \langle h,v\rangle=0\right\}$ le fibré normal de M. Pour tout $x\in M$, il existe un unique $\hat{x}\in\mathbf{S}_n$ orthogonal à T_xM tel que si (v_1,\ldots,v_n) est une base directe de T_xM , alors (v_1,\ldots,v_n,\hat{x}) est une base directe de T_xM . On pose alors l'application \mathcal{C}^∞

$$\mathcal{G}_M: \left\{ \begin{array}{ccc} M & \longrightarrow & \mathbf{S}_n \\ x & \longmapsto & \hat{x}. \end{array} \right.$$

- (a) Montrer que le fibré normal NM est une sous-variété de $\mathbf{R}^{n+1} \times \mathbf{R}^{n+1}$ de classe \mathcal{C}^{∞} dont on précisera la dimension.
- **(b)** Pour $v \in \mathbf{S}_n$ et $x \in M$, on note $X_v(x)$ la projection orthogonale de v sur T_xM . Montrer que X_v est un champs de vecteurs \mathcal{C}^{∞} sur M.
- (c) Montrer qu'il existe $\Omega \subseteq \mathbf{S}_n$ de mesure pleine tel que pour tout $v \in \Omega$, la fonction $\varphi_v : x \in M \mapsto ||x-v||^2$ est de Morse. En déduire un résultat similaire pour $x \in M \mapsto \langle x,v \rangle$.

 Indication : On pourra montrer que x est un point critique de φ_v si et seulement si (x,v) est un point critique de l'application $e:(x,v)\in NM\mapsto x+v$.
- **(d)** En déduire que pour $v\in\Omega$ un ensemble de mesure pleine, les zéros de X_v sont isolés.
- **(e)** On note i l'application antipodale. Exprimer le degré de $i \circ \mathcal{G}_M$ en fonction de celui de \mathcal{G}_M et en déduire que si n est pair alors

$$\deg(\mathcal{G}_M) = rac{1}{2} \sum_{X(x)=0} \operatorname{Ind}(X_v, x)$$

pour tout $v \in \Omega$.