Appunti di Matematica

Nicola Ferru

Indice

Ι	Matematica analisi 1					
	0.1	Simbo	li	7		
1 Studio di funzione						
	1.1	Cenni	di teoria degli insiemi	Ć		
			Operazioni tra gli insiemi			
	1.2	Limiti		Ć		
		1.2.1	Forme indeterminate	Ć		
		1.2.2	Infinitesimi e infiniti	Ć		
		1.2.3	Funzioni continue	11		

4 INDICE

Parte I Matematica analisi 1

0.1. SIMBOLI 7

0.1 Simboli

 $\in \mathsf{Appartiene}$ $\Rightarrow \mathrm{Implica}$ β beta $\not\in$ Non appartiene \Longleftrightarrow Se e solo se γ gamma \exists Esiste \neq Diverso Γ Gamma $\exists !$ Esiste unico \forall Per ogni δ, Δ delta \subset Contenuto strettamente \ni : Tale che ϵ epsilon $\subseteq Contenuto$ \leq Minore o uguale σ, Σ sigma \supset Contenuto strettamente \geq Maggiore o uguale ρ rho $\supseteq {\rm Contiene}$ α alfa

Capitolo 1

Studio di funzione

1.1 Cenni di teoria degli insiemi

Per rappresentare un insieme abbiamo tre possibilità:

- 1. Rappresentazione estensive A = [0, 1, 2, 3, 4]
- 2. Rappresentazione intensiva $A = [x | x \in Nex < 5]$
- 3. Rappresentazione con diagrammi di Eulero Venn

1.1.1 Operazioni tra gli insiemi

Un insieme può essere contenuto in un altro:

1.2 Limiti

1.2.1 Forme indeterminate

$$+\infty-\infty$$
 $\frac{\infty}{\infty}$ $\frac{0}{0}$ 1^{∞} $e^{+\infty*0}$

1.2.2 Infinitesimi e infiniti

Definizione Una funzione f(x) su dice <u>infinitesima</u> per $x \to x_0$ (per $x \to \infty$), x_0 punto di accumulazione per il dominio di f(x), se: $\lim_{x\to x_0} f(x) = 0$ (oppure $\lim_{x\to \infty} f(x) = 0$).

Esempi

- $\bullet \ y = e^x$ è un infinitesimo per $x \to -\infty$
- $y = \ln x$ è un infinitesimo per $x \to 1$
- $y = \sin x$ è un infinitesimo per $x \to 0$ (ma anche per $x \to \pi, 2\pi,$ etc.)
- $y = \ln 1 + x$ è un infinitesimo per $x \to 1$

Ordine di infinitesimo

Siano f(x) e g(x) infinitesimi per $x \to x_0$ (o per $x \to \infty$), con $g(x) \neq 0$. Se $\exists \alpha R +$ e $l \in R$, $l \neq 0$ tale che $\lim_{x \to x_0} = \frac{f(x)}{[g(x)]^{\alpha}} = l$ (oppure $\lim_{x \to \infty} = \frac{f(x)}{[g(x)]^{\alpha}} = l$)
Allora, si dice che per $x \to x_0$ (o per $x \to \infty$), f(x) è un infinitesimo di ordine α rispetto all'infinitesimo

Allora, si dice che per $x \to x_0$ (o per $x \to \infty$), f(x) è un infinitesimo di ordine α rispetto all'infinitesimo campione g(x).

Esempi

- $y = \sin x$ è un infinitesimo per $x \to 0$ di ordine 1 rispetto all'infinitesimo campione g(x) = x, infatti, $\lim_{x \to 0} = \frac{\sin x}{x^{\alpha}} = 1$ solo se $\alpha = 1$
- $y = \tan^2 x$ è un infinitesimo di ordine 2 rispetto ad x, per $x \to 0$
- $ord(l \cos x) = 2$ rispetto ad x per $x \to 0$

Confronto tra infinitesimi

Siano f(x) e g(x) infinitesime per $x \to x_0$,

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \begin{cases} l \neq 0 & ord(f) = ord(g) \\ \pm \infty & ord(f) < ord(g) \\ 0 & ord(f) > ord(g) \\ nonesiste, & fegnonconfrontabi \end{cases}$$

Stesso risultato se f(x) e g(x) sono infinitesime per $x \to \infty$. Utilizzando il confronto tra infinitesimi nel calcolo dei limiti del tipo $\lim_{x\to x_0} \frac{f_1+f_2}{g_1+g_2}$, dove f_1, f_2, g_1, g_2 sono funzioni infinitesime per $x \to x_0$, si possono trascurare gli infinitesimi di ordine maggiore (analogo discorso per funzioni infinitesime $x \to \infty$).

esempio
$$\lim_{x\to 0} \frac{x^2 + x^3 + 2\tan x}{(e^x - 1)^2 + \sin x} = \lim_{x\to 0} \frac{2\tan x}{\sin x} = 2$$

Definizione di funzioni asintotiche Si dice che due funzioni f,g sono asintotiche per $x \to x_0$ se $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$ e si scrive $f \sim g$ per $x \to x_0$

esempi

- $\sin x \sim x \text{ per } x \to 0$
- $\ln(1+x) \sim x \text{ per } x \to 0$
- $e^x 1 \sim x \text{ per } x \to 0$

Definizione di funzioni infinite Una funzione f(x) si dice infinita per $x \to x_0$ (o per $x \to \infty$), x_0 punto di accumulazione per il dominio di f(x), (o per $x \to \infty$) se:

$$\lim_{x\to x_0} f(x) = \infty$$
 (oppure $\lim_{x\to\infty} f(x) = \infty$)

Esempi

- $y = e^x$ è un infinito per $x \to +\infty$
- $y = \ln x$ è un infinito per $x \to 0^+$
- $y = x^2 + x$ è un infinito per $x \to \infty$

1.2. LIMITI 11

Regole aritmetiche Siano $f(x) = o(x^{\alpha})$ (si legge «o piccolo di») e $g(x) = o(x^{\beta})$ due funzioni infinitesime rispettivamente di ordine α e β per $x \to 0$ Allora si ha

- $cf(x))o(x^{\alpha}), \forall c \in R$
- $x^{\lambda} f(x) = o(x^{\lambda + \alpha})$
- $f(x)g(x) = o(x^{\alpha+\beta})$
- $f(x) + q(x) = o(x^y), \ \gamma = min(\alpha, \beta)$

Ordine di infinito Siamo f(x) e g(x) infiniti per $x \to x_0$ (o per x), con $g \ne 0$. Se $\exists \alpha \in R + e \ l \in R$, $l \neq 0$ tale che

$$\lim_{x \to x_0} \frac{f(x)}{[g(x)]^2} = l$$
 (o $\lim_{x \to \infty} \frac{f(x)}{[g(x)]^{\alpha}} = l$)

 $\lim_{x\to x_0} \frac{f(x)}{[g(x)]^2} = l \text{ (o } \lim_{x\to\infty} \frac{f(x)}{[g(x)]^\alpha} = l)$ Allora, per $x\to x_0$ (o per $x\to\infty$), f(x) è un infinito di ordine α rispetto all'infinito compione g(x).

Esempi

- $ord(\sqrt{x}) = \frac{1}{2}$ rispetto ad x per $x \to +\infty$
- $ord(\frac{1}{\sin x}) = 1$ rispetto ad $\frac{1}{x}$ per $x \to 0$

Cofronto tra infiniti Siamo f(x) e g(x) infiniti per $x \to x_0$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \begin{cases} l \neq 0 & ord(f) = ord(g) \\ \pm \infty & ord(f) > ord(g) \\ 0 & ord(f) < ord(g) \\ nonesiste, & feanonconfrontabile \end{cases}$$

Stesso risultato se f(x) e g(x) sono infinite per $x \to \infty$. Utilizzando il confronto tra infiniti nel calcolo dei limiti del tipo $\lim_{x\to x_0} \frac{f_1+f_2}{g_1+g_2}$, deve f_1,f_2,g_1,g_2 sono funzioni infinite per $x\to x_0$, si possono trascurare gli <u>infiniti</u> di ordine minore (analogo discorso per funzione infinito $x \to \infty$).

Esempio
$$\lim_{x \to +\infty} \frac{x^2 + x^3 + 3\sqrt{x}}{x^2(2x-1) + \sqrt{3x}} = \lim_{x \to +\infty} \frac{x^3}{2x^3} = \frac{1}{2}.$$

Gerarchia degli infiniti Per $x \to +\infty$ si ha $(\log_{\alpha} x)^{\alpha} << x^{\beta} << b^{x}$, con $\alpha, \beta > 0, a, b > 1$ Non sempre è possibile calcolare l'ordine di infinito (o di infinitesimo) rispetto alla funzione campione usuale.

Esempio
$$\lim_{x\to+\infty}\frac{a^x}{r^a}=+\infty, \forall \alpha>0, a>1, \lim_{x\to+\infty}\frac{(\log_a x)^\beta}{r^a}=+\infty, \forall \alpha,\beta>0, a>1$$

Regole aritmetiche Siano f(x) e g(x) due funzioni infinite di ordine rispettivamente $\alpha \in \beta$. Allora si ha

- $ord(f(x) + g(x)) = \max \alpha, \beta$
- $ord(f(x) * q(x)) = \alpha + \beta$
- $ord((f(x))^{\gamma}) = \alpha \gamma$

1.2.3 Funzioni continue

Una funzione continua è una funzione che, intuitivamente, fa corrispondere ad elementi sufficientemente vicini del dominio elementi arbitrariamente vicini del codominio

Definizione Una funzione
$$f(x)$$
 è continua in x_0 , se: $l_1 = \lim_{x \to x_0^+} = \lim_{x \to x_0} f(x) = l_2 = \lim_{x \to x_0} f(x) = f(x_0)$ ossia $\forall \in > 0 \exists \delta_{\mathcal{E}} > 0$: $|f(x) - f(x_0)| < \mathcal{E} \ \forall_x \in I(x_0, \delta_{\mathcal{E}}) \ (l = f(x_0))$