Workshop - Regularization

In this workshop, we are going to:

- 1. Tune an elastic-net regression
- 2. Compare the following models:
 - A. The null model
 - B. The tuned elastic-net model
 - C. The trimmed non-regularized model with standardized features
 - D. The trimmed non-regularized model with non-standardized features

Preliminaries

- Load any necessary packages and/or functions
- · Load in and prepare the class data
- Create x and y with a label of pct_d_rgdp
- Create x_train, x_test, y_train, y_test with
 - training size of two-thirds
 - random state of 490
- · Standardize the features
- Add constants

```
In [24]: import numpy as np
import pandas as pd
import statsmodels.api as sm
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn import linear_model as lm

In [17]: df = pd.read_pickle('/Users/liaohaitao/Desktop/ECON 490/class data/class_data.pkl')
df.columns
```

```
Out[17]: Index(['GeoName', 'pct d rgdp', 'urate bin', 'pos net jobs', 'emp estabs',
                'estabs_entry_rate', 'estabs_exit_rate', 'pop', 'pop_pct black',
                'pop pct hisp', 'lfpr', 'density', 'year'],
               dtype='object')
         df = pd.read csv('/Users/liaohaitao/Desktop/ECON 490/class data/class data.csv')
In [25]:
          df.set index(['fips', 'year', 'GeoName'], inplace = True)
          df
          df['year'] = df.index.get level values('year')
In [261:
         df prepped = df.drop(columns = ['urate bin', 'year']).join([
             pd.get dummies(df['urate bin'], drop first = True),
             pd.get dummies(df.year, drop first = True)
         ])
         y = df prepped['pct d rgdp']
In [30]:
         x = df prepped.drop(columns = 'pct d rgdp')
          x train, x test, y train, y test = train test split(x, y, train size = 2/3, random state = 490)
          x train std = x train.apply(lambda x: (x - np.mean(x))/np.std(x), axis = 0)
          x test std = x test.apply(lambda x: (x - np.mean(x))/np.std(x), axis = 0)
         x train std = sm.add constant(x train std)
         x test std = sm.add constant(x test std)
          x train
                     = sm.add constant(x train)
                     = sm.add constant(x test)
          x test
         regr = lm.ElasticNet(random state=0)
In [47]:
          regr.fit(x train, y train)
          lm.ElasticNet(random state=0)
          print(regr.coef )
          print(regr.intercept )
         -1.22301753e-01 -3.91512002e-07 -2.17803760e-03 2.22947887e-02
           6.64307477e-02 -9.70663666e-06 0.00000000e+00 -0.00000000e+00
           0.000000000e+00 \quad 0.00000000e+00 \quad 0.00000000e+00 \quad 0.00000000e+00
          -0.00000000e+00 \quad -0.00000000e+00 \quad -0.00000000e+00 \quad 0.00000000e+00
           0.000000000e+00 -0.00000000e+00 0.00000000e+00 -0.00000000e+00
          -0.00000000e+00 -0.00000000e+00 -0.00000000e+00 0.00000000e+00]
         -4.927378834478454
```

```
fit ridge = sm.OLS(y train, x train).fit regularized(alpha = 10, L1 wt = 0)
In [43]:
          fit ridge.params
0 \pm [43]: array([-5.14962948e-03, 3.50074274e-02, -4.23729499e-02, 1.41694710e-01,
                -9.01252418e-02, -8.95294801e-08, -1.76898570e-02, 2.08023912e-02,
                 2.69659720e-02, 8.02492341e-06, 1.65741497e-02, -3.95625994e-03,
                 4.94056214e-03, 3.35189075e-03, 3.03008429e-03, 1.37542255e-02,
                -3.79052979e-03, -6.20923071e-03, -1.45032855e-02, 5.13035704e-03,
                 5.43325760e-04, -5.75092238e-03, 3.98155190e-03, -3.53246120e-03,
                 -1.21612077e-03, -1.01214271e-02, -2.19542860e-03, 2.33046282e-03])
          fit lasso = sm.OLS(y train, x train).fit regularized(alpha = 1, L1 wt = 1)
In [45]:
          fit lasso params
Out[45]: const
                               0.000000e+00
         pos net jobs
                               0.000000e+00
         emp estabs
                               0.000000e+00
         estabs entry rate
                               1.913649e-01
         estabs exit rate
                              -9.842778e-02
                              -2.365903e-07
         pop
         pop pct black
                              -2.046507e-02
         pop pct hisp
                               1.434198e-02
         lfpr
                               1.614383e-02
         density
                               0.000000e+00
         lower
                               0.000000e+00
         similar
                               0.000000e+00
         2003
                               0.000000e+00
         2004
                               0.000000e+00
         2005
                               0.000000e+00
         2006
                               0.000000e+00
         2007
                               0.000000e+00
         2008
                               0.000000e+00
         2009
                               0.000000e+00
         2010
                               0.000000e+00
         2011
                               0.000000e+00
         2012
                               0.000000e+00
         2013
                               0.000000e+00
         2014
                               0.000000e+00
         2015
                               0.000000e+00
         2016
                               0.000000e+00
         2017
                               0.000000e+00
         2018
                               0.000000e+00
         dtype: float64
```

Take a look at lm.ElasticNet? and

```
fit = sm.OLS(y_train, x_train)
fit.fit_regularized?
```

Determine which coefficients are the same, but named differently. Specifically, α and the weight on the different constraints (i.e. $||\beta||_2$ and $||\beta||_1$).

```
fit = sm.OLS(y train, x train)
In [61]:
          fit.fit regularized(alpha=1.0).params
Out[61]: const
                               0.000000e+00
         pos net jobs
                               0.000000e+00
         emp estabs
                               0.000000e+00
         estabs entry rate
                               1.913649e-01
         estabs exit rate
                               -9.842778e-02
                               -2.365903e-07
         pop
         pop pct black
                               -2.046507e-02
         pop pct hisp
                               1.434198e-02
         lfpr
                               1.614383e-02
         density
                               0.000000e+00
         lower
                               0.000000e+00
         similar
                               0.000000e+00
         2003
                               0.000000e+00
         2004
                               0.000000e+00
         2005
                               0.00000e+00
         2006
                               0.000000e+00
         2007
                               0.000000e+00
         2008
                               0.00000e+00
         2009
                               0.000000e+00
         2010
                               0.000000e+00
         2011
                               0.000000e+00
         2012
                               0.000000e+00
         2013
                               0.000000e+00
         2014
                               0.000000e+00
         2015
                               0.000000e+00
         2016
                               0.000000e+00
         2017
                               0.000000e+00
         2018
                               0.000000e+00
         dtype: float64
In [ ]:
```

Perform a 5-fold cross-validation grid search with a random state of 490. Identify the optimally tuned hyperparameters. Use this grid:

You will get a warning message about convergence. We will discuss it after the workshop. Think about why it occurring.

```
In [63]:
          param grid = {'alpha': 10.**np.arange(-5, -1, 1),}
                        'll ratio': np.arange(0, 1, 0.1)}
          cv = lm.ElasticNet(fit intercept = False, normalize = False,
                              random state = 490)
          grid search = GridSearchCV(cv, param grid, cv = 5,
                                   scoring = 'neg root mean squared error')
          grid search.fit(x train std, y train)
          print(grid search best params )
          best = grid search.best params ['alpha']
          best
         /opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Object
         tive did not converge. You might want to increase the number of iterations. Duality gap: 1162767.3929822594, tolerance
         e: 253.23442781744671
           model = cd fast.enet coordinate descent(
         /opt/anaconda3/lib/pvthon3.8/site-packages/sklearn/linear model/ coordinate descent.pv:529: ConvergenceWarning: Object
         tive did not converge. You might want to increase the number of iterations. Duality gap: 1130609.4852849508, tolerance
         e: 246.96229539243055
           model = cd fast.enet coordinate descent(
         /opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Object
         tive did not converge. You might want to increase the number of iterations. Duality gap: 1140144.2131046676, tolerance
         e: 248.68990538784342
           model = cd fast.enet coordinate descent(
         /opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Object
         tive did not converge. You might want to increase the number of iterations. Duality gap: 1196542.6978201736, tolerance
         e: 260.29355400963703
           model = cd fast.enet coordinate descent(
         /opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Object
         tive did not converge. You might want to increase the number of iterations. Duality gap: 1161936.264629494, tolerance
         e: 252.92220066402044
           model = cd fast.enet coordinate descent(
         /opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Objection
         tive did not converge. You might want to increase the number of iterations. Duality gap: 1162777.3637906245, tolerance
         e: 253.23442781744671
           model = cd fast.enet coordinate descent(
```

```
/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Objec
tive did not converge. You might want to increase the number of iterations. Duality gap: 1130619.7805362656, tolerance
e: 246.96229539243055
  model = cd fast.enet coordinate descent(
/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Object
tive did not converge. You might want to increase the number of iterations. Duality gap: 1140154.4984219028, tolerance
e: 248.68990538784342
  model = cd fast.enet coordinate descent(
/opt/anaconda3/lib/pvthon3.8/site-packages/sklearn/linear model/ coordinate descent.pv:529: ConvergenceWarning: Object
tive did not converge. You might want to increase the number of iterations. Duality gap: 1196552.982331442, tolerance
e: 260.29355400963703
  model = cd fast.enet coordinate descent(
/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Object
tive did not converge. You might want to increase the number of iterations. Duality gap: 1161945.7997337482, tolerance
e: 252.92220066402044
  model = cd fast.enet coordinate descent(
/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Objection
tive did not converge. You might want to increase the number of iterations. Duality gap: 1162876.791867304, tolerance
e: 253.23442781744671
  model = cd fast.enet coordinate descent(
/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Object
tive did not converge. You might want to increase the number of iterations. Duality gap: 1130722.4397446283, tolerance
e: 246.96229539243055
  model = cd fast.enet coordinate descent(
/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Object
tive did not converge. You might want to increase the number of iterations. Duality gap: 1140257.0040295958, tolerance
e: 248.68990538784342
  model = cd fast.enet coordinate descent(
/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Object
tive did not converge. You might want to increase the number of iterations. Duality gap: 1196655.5038959691, tolerance
e: 260.29355400963703
  model = cd fast.enet coordinate descent(
/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Objec
tive did not converge. You might want to increase the number of iterations. Duality gap: 1162040.9328701212, tolerance
e: 252.92220066402044
  model = cd fast.enet coordinate descent(
/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Object
tive did not converge. You might want to increase the number of iterations. Duality gap: 1163845.8859214336, tolerance
e: 253.23442781744671
  model = cd fast.enet coordinate descent(
/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Object
tive did not converge. You might want to increase the number of iterations. Duality gap: 1131722.599566463, tolerance
e: 246.96229539243055
  model = cd fast.enet coordinate descent(
/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Object
```

```
tive did not converge. You might want to increase the number of iterations. Duality gap: 1141251.1692901086, tolerance
         e: 248.68990538784342
           model = cd fast.enet coordinate descent(
         /opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Object
         tive did not converge. You might want to increase the number of iterations. Duality gap: 1197651.8882325457, tolerance
         e: 260.29355400963703
           model = cd fast.enet coordinate descent(
         /opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Object
         tive did not converge. You might want to increase the number of iterations. Duality gap: 1162972.3791399472, tolerance
         e: 252.92220066402044
           model = cd fast.enet coordinate descent(
         {'alpha': 0.01, 'll ratio': 0.0}
         /opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:529: ConvergenceWarning: Object
         tive did not converge. You might want to increase the number of iterations. Duality gap: 1449757.3812360957, tolerance
         e: 315.5255958178446
           model = cd fast.enet coordinate descent(
Out[63]: 0.01
```

Question

How many models did we just fit?

```
x train std.shape
In [65]:
          y train.shape
Out[65]: (33889,)
         Using the tuned hyperparameters, fit your elastic net model with statsmodels
          fit lasso tuned = sm.OLS(y train, x train std).fit regularized(alpha = best)
In [68]:
          fit lasso tuned params
Out[68]: const
                               1.973286
                               0.546067
         pos net jobs
         emp estabs
                              -0.164027
         estabs entry rate
                               0.894423
```

```
estabs exit rate
                     -0.508984
                     -0.097182
pop_pct black
                      0.000000
pop pct hisp
                      0.294657
                      0.487393
lfpr
density
                     -0.000401
lower
                      0.585185
similar
                      0.237165
2003
                      0.031446
2004
                      0.000000
2005
                      0.096228
2006
                      0.469200
2007
                     -0.273997
2008
                     -0.306477
2009
                     -0.498656
2010
                      0.204014
                      0.000000
2011
2012
                     -0.333238
2013
                      0.065622
2014
                     -0.258129
2015
                     -0.180687
2016
                     -0.529981
2017
                     -0.161577
2018
                      0.000000
dtype: float64
```

Using the selected features refit

- the non-regularized model with standardized features
- the non-regularized model with non-standardized features

Out[76]:	Model:	OLS		Adj. R-squared:		0.041	
	Dependent Variable:	р	ct_d_rgdp	AIC:		246977.1044	
	Date:	2021-02	2-26 17:02	BIC:		247179.4447	
	No. Observations:	33889		Log-Likelihood:		-1.2346	e+05
	Df Model:	23		F-statistic:		(63.22
	Df Residuals:		33865	Prob (F-statistic): Scale:		4.536	e-287
	R-squared:		0.041			85.562	
		Coef.	Std.Err.	t	P> t	[0.025	0.975]
	const	1.9833	0.0502	39.4707	0.0000	1.8848	2.0818
	pos_net_jobs	0.5514	0.0541	10.1890	0.0000	0.4453	0.6575
	emp_estabs	-0.1734	0.0537	-3.2316	0.0012	-0.2786	-0.0682
	estabs_entry_rate	0.9019	0.0594	15.1881	0.0000	0.7855	1.0183
	estabs_exit_rate	-0.5252	0.0578	-9.0859	0.0000	-0.6385	-0.4119
	рор	-0.1052	0.0567	-1.8574	0.0633	-0.2163	0.0058
	pop_pct_hisp	0.3075	0.0517	5.9454	0.0000	0.2061	0.4088
	lfpr	0.4852	0.0586	8.2835	0.0000	0.3704	0.6000
	density	-0.0071	0.0538	-0.1328	0.8944	-0.1126	0.0983
	lower	0.6102	0.0682	8.9510	0.0000	0.4766	0.7439
	similar	0.2625	0.0588	4.4641	0.0000	0.1473	0.3778
	2003	0.0335	0.0548	0.6121	0.5405	-0.0739	0.1410
	2005	0.1067	0.0585	1.8256	0.0679	-0.0079	0.2213
	2006	0.4801	0.0596	8.0545	0.0000	0.3633	0.5970
	2007	-0.2909	0.0549	-5.2972	0.0000	-0.3985	-0.1832
	2008	-0.3212	0.0547	-5.8678	0.0000	-0.4285	-0.2139
	2009	-0.5106	0.0562	-9.0929	0.0000	-0.6206	-0.4005
	2010	0.2088	0.0552	3.7855	0.0002	0.1007	0.3169

```
2012 -0.3495
                            0.0548
                                    -6.3744 0.0000 -0.4570 -0.2420
                   0.0681
                            0.0548
                                    1.2422 0.2142 -0.0393
                                                              0.1754
            2014 -0.2758
                            0.0551
                                    -5.0056 0.0000 -0.3838
                                                             -0.1678
            2015 -0.1986
                            0.0549
                                    -3.6176 0.0003 -0.3061
                                                             -0.0910
            2016 -0.5485
                            0.0550
                                    -9.9755 0.0000
                                                    -0.6562
                                                             -0.4407
            2017 -0.1792
                            0.0550
                                    -3.2615 0.0011 -0.2869 -0.0715
     Omnibus: 34597.339
                             Durbin-Watson:
                                                   1.994
Prob(Omnibus):
                    0.000
                          Jarque-Bera (JB): 10663135.814
        Skew:
                    4.482
                                  Prob(JB):
                                                   0.000
      Kurtosis:
                   89.436
                              Condition No.:
                                                       3
```

Compare the percent improvement from the null model RMSE to the elastic-net and OLS model.

```
x train trim = x train.loc[:, ~x train.columns.isin(beta.index[beta == 0])]
In [77]:
           x test trim = x test.loc[:, ~x test.columns.isin(beta.index[beta == 0])]
           fit final = sm.OLS(y train, x train trim).fit()
In [78]:
            fit final.summary2()
Out[78]:
                                        OLS
                                               Adj. R-squared:
                                                                   0.041
                      Model:
           Dependent Variable:
                                                        AIC: 246977.1044
                                   pct_d_rgdp
                       Date:
                             2021-02-26 17:03
                                                        BIC: 247179.4447
             No. Observations:
                                       33889
                                               Log-Likelihood:
                                                             -1.2346e+05
                    Df Model:
                                          23
                                                                   63.22
                                                   F-statistic:
                 Df Residuals:
                                       33865
                                             Prob (F-statistic):
                                                                4.53e-287
                  R-squared:
                                       0.041
                                                      Scale:
                                                                  85.562
                              Coef. Std.Err.
                                                             [0.025
                                                       P>|t|
                                                                     0.975]
                      const -2.7552
                                     0.5018
                                            -5.4904 0.0000 -3.7388 -1.7716
```

pos_net_jobs	1.1110	0.1090	10.1890	0.0000	0.8973	1.3247	
emp_estabs	-0.0363	0.0112	-3.2316	0.0012	-0.0584	-0.0143	
estabs_entry_rate	0.2979	0.0196	15.1881	0.0000	0.2595	0.3364	
estabs_exit_rate	-0.2053	0.0226	-9.0859	0.0000	-0.2495	-0.1610	
рор	-0.0000	0.0000	-1.8574	0.0633	-0.0000	0.0000	
pop_pct_hisp	0.0234	0.0039	5.9454	0.0000	0.0157	0.0312	
lfpr	0.0435	0.0053	8.2835	0.0000	0.0332	0.0538	
density	-0.0000	0.0000	-0.1328	0.8944	-0.0001	0.0001	
lower	1.2576	0.1405	8.9510	0.0000	0.9823	1.5330	
similar	0.6784	0.1520	4.4641	0.0000	0.3806	0.9763	
2003	0.1420	0.2320	0.6121	0.5405	-0.3128	0.5968	
2005	0.4516	0.2473	1.8256	0.0679	-0.0332	0.9363	
2006	2.0237	0.2513	8.0545	0.0000	1.5313	2.5162	
2007	-1.2268	0.2316	-5.2972	0.0000	-1.6808	-0.7729	
2008	-1.3693	0.2334	-5.8678	0.0000	-1.8267	-0.9119	
2009	-2.1596	0.2375	-9.0929	0.0000	-2.6251	-1.6941	
2010	0.8825	0.2331	3.7855	0.0002	0.4256	1.3394	
2012	-1.4919	0.2340	-6.3744	0.0000	-1.9506	-1.0332	
2013	0.2899	0.2333	1.2422	0.2142	-0.1675	0.7472	
2014	-1.1585	0.2314	-5.0056	0.0000	-1.6121	-0.7049	
2015	-0.8580	0.2372	-3.6176	0.0003	-1.3229	-0.3931	
2016	-2.3362	0.2342	-9.9755	0.0000	-2.7952	-1.8772	
2017	-0.7632	0.2340	-3.2615	0.0011	-1.2219	-0.3046	
Omnibus: 34	597.339	Durbin-Watson:			1.994		
Prob(Omnibus):	0.000	Jarque-Bera (JB):		10663135.814			
Skew:	4.482	Prob(JB):		0.000			

```
Kurtosis:
                        89.436
                                 Condition No.:
                                                3468030
          rmse null = np.sqrt(np.mean( (y test - np.mean(y train))**2 ))
In [79]:
          rmse null
Out[79]: 9.40322930944683
          rmse lasso = np.sqrt(np.mean( (y test - fit lasso tuned.predict(x test std))**2 ))
In [80]:
          print(rmse lasso)
          round((rmse lasso - rmse null)/rmse null*100, 2)
         9.217124732339427
Out[80]: -1.98
          rmse std final = np.sqrt(np.mean( (y test - fit std final.predict(x test std trim))**2 ))
In [81]:
          print(rmse std final)
          round((rmse_std_final - rmse_null)/rmse_null*100, 2)
         9.216854907402741
Out[81]: -1.98
          rmse final = np.sqrt(np.mean( (y test - fit final.predict(x test trim))**2 ))
In [82]:
          print(rmse final)
          round((rmse final - rmse null)/rmse null*100, 2)
         9.216827559489085
Out[82]: -1.98
In [ ]:
```