PATENT ABSTRACTS OF JAPAN

(11)Publication number:

61-210050

(43) Date of publication of application: 18.09.1986

(51)Int.Cl.

CO7C 57/30 A61K 31/165 A61K 31/19 CO7C 61/39 CO7C 63/04 CO7C103/60 CO7C103/68 CO7C103/737 CO7C103/76

C07C103/78

(21)Application number: 60-050544

(22)Date of filing:

15.03.1985

(71)Applicant : EISAI CO LTD

(72)Inventor: NAKAMOTO KOJI

SUZUKI TAKESHI
ABE SHINYA
HAYASHI KENJI
KAJIWARA SHOJI
YAMATSU ISAO
OTSUKA KAZUMASA
SHIOJIRI HIROYUKI

(54) POLYPRENYL COMPOUND

(57)Abstract:

NEW MATERIAL: The polyprenyl compound of formula I [all of A, B, Y and Z are H, or A and B or Y and Z together form a single bond; n is 0W2; X is group of formula II (both K and L are H or K and L together form a single bond), CH2 or (CH2)2; m is 0 or 1; R is OH, group of formula III (R1 and R2 are H or lower alkyl; p is 1 or 2), NH-(CH2)q-OH (q is 1 or 2), etc.] and its salt. EXAMPLE: 4-(2',6',10'-Trimethylundecyl)phenylacetic acid.

USE: It has excellent hypocholesteric action, and is useful as an hypocholesteric agent and remedy for arteriosclerosis.

PREPARATION: A compound of formula I wherein m is 0 and R is OH can be produced, e.g. by reacting the compound of formula IV with the compound of formula V (n is 0W2) in the presence of a catalyst, is a solvent at room temperature W100° C, and hydrolyzing the reaction product.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

⑲ 日本国特許庁(JP)

⑩特許出願公開

⑫公開特許公報(A)

昭61-210050

@Int_Cl_4	識別記号	庁内整理番号	❸公開	昭和61年(198	86)9月18日
C 07 C 57/30 A 61 K 31/165 31/19 C 07 C 61/39 63/04	ADN	· 6464-4H 7330-4C 7330-4C 8318-4H 7419-4H※審査請求	未請求	発明の数 3	(全21頁)

69発明の名称

ポリプレニル系化合物

②特 顋 昭60-50544

❷出 願 昭60(1985)3月15日

⑫発	明	者	中	本	浩	司	土浦市中貫板谷町712-91
仞発	明	者	鈴	木		赳	茨城県稲敷郡牛久町栄町1-56-107
砂発	明	者	阿	部	信	也	茨城県稲敷郡茎崎町城山40-2
⑫発	明	者	林		濫	可	茨城県筑波郡谷田部町二の宮3-7-1
砂発	明	者	梶	原	彰	治	茨城県筑波郡谷田部町二の宮3-25-25
09発	明	者	山	津		功	茨城県稲敷郡牛久町柏田3605-669
砂発	明	者	大	塚	_	E	茨城県新治郡桜村下広岡702-77
⑫発	明	者	塩	尻	博	之	茨城県筑波郡谷田部町小白硲672-176
⑪出	願	人	I.	ーザイ	株式会	社	東京都文京区小石川4丁目6番10号
最終	頂	こ続く					

明 細 書

1. 発明の名称

ポリプレニル系化合物

- 2. 特許請求の範囲
- (1) 一般式

【式中A, B, Y, Zはともに水素原子であるか, 若しくはAとB, YとZが一緒になって、単結合 を形成する。 れは0~2の整数を食味する。

であるか、若しくはKとしが一緒になって単結合を形成する。)で示される甚、式 ーCH2ーで示される甚、式 中CH2ーで示される甚を意味し、mは0または1の整数を意味する。Rは、水

酸基,式 $-NH(CH_2)_p$ -CON R^2 (式中 R^1 および R^2

は、同一または相異なる水素、低級アルキル基を 意味し、pは1または2の整数を意味する。)で 示される基、式 $-NH-(CH_2)_Q-OH($ 式中qは1ま たは2の整数を意味する)で示される基、または 式 $-NH-CH_2-CH-CH_2OH$ で示される基を意味す る。)

で扱わされるポリプレニル系化合物およびその薬 理的に許容される塩**。**

- (2) R=OH である特許請求の範囲第1項記載の化合物。
- CH。 (3) X=-CH- (式中KおよびLは前記の意 し、し、 K L

味を有する)、および R=OHである特許請求の範囲第1項記載の化合物。

CH, | (4) X=--CH- (式中KおよびLは前記の意 | | K L

特開昭61-210050(2)

味を有する), $R=-NH(CH_z)_{\overline{p}}-CON < R^1$ (式中 p, R^1 (式中 p, R^1 に対象の意味を有する)である特許請求の範囲第1項記載の化合物。

味を有する)、R=-NH-(CH₂)_q-OH (式中 q は前 記の意味を有する)である特許請求の範囲第1項 記載の化合物。

殊を有する), R=_NH_CH_CH_CH_CH_OH である OH

特許請求の範囲第1項記載の化合物。

(7) 一般式

CH, CH, CH, H-(CH₂-C-CH-CH₃)_{$$\overline{n}$$} CH₂-C-CH-CH _{\overline{n}} CH₂-C-CH-CH _{\overline{n}} COR

〔式中A、B.Y.Zはともに水素原子であるか、若

【式中A、B、Y、Zはともに水素原子であるか若しくはAとB、YとZが一緒になって、単結合 (れは0~2の軽数に取りする。)

ともに水素原子であるか、若しくはKとしか一緒になって単結合を形成する。)で示される基、式ー CH_{**} 」で示される基。または式ー $(CH_{*})_{**}$ ーで示される基を意味し、mは0または1の整数を意味する。Rは、水酸基、式ー $NH(CH_{*})_{p}$ -CON $<math>R^{1}$ (式中 R^{1} および R^{2} は、同一または相異なる水素。低級アルキル基を意味し、pは1または2の整数を意味する。)で示される基、式ーNH- $(CH_{*})_{q}$ -OH(式中 q は1または2の整数を意味する)で示される基。または、式-NH- CH_{**} -CH- CH_{**} - CH_{**} -

る基を意味する。〕

しくはAとB、YとZが一緒になって、単結合を (九は0~2の軽数を取けする。

形成する。 Xは式 - C - CH- (式中K, Lはとも K L

に水素原子であるか、若しくはKとLが一緒になって単結合を形成する。)で示される基、式一CH₂ーで示される基、または式一(CH₂)₂ーで示される基を意味し、mは 0 または 1 の整数を意味する。 Rは、水酸基、式 -NH(CH₂) $_{\mathbf{p}}$ -CON $\stackrel{\mathbf{R}^1}{\mathbf{R}^2}$ (式中 \mathbf{R}^1 および \mathbf{R}^2 は、同一または相異なる水素、低級アルキル基を意味し、pは 1 または 2 の整数を意味する。)で示される基、式 -NH-(CH₂) $_{\mathbf{q}}$ -OH(式中 \mathbf{q} は 1 または 2 の整数を意味する。)で示される基、式 -NH-CH₂-CH-CH $_2$ OH で示

で表わされる,ポリプレニル系化合物およびその 薬理的に許容される塩を有効成分とする抗コレス テロール作用に基づく医薬。

(8) 一般式

で表わされる, ポリプレニル系化合物およびその 薬理的に許容される塩を有効成分とする抗動脈硬 化剤。

3. 発明の詳細な説明

される基を意味する。〕

本発明は,優れた医薬作用を有するポリプレニ ル系化合物に関する。

更に詳しく述べれば,一般式(1)

【式中A、B、Y、Zはともに水素原子である丸若しくはAとB、YとZが一緒になって、単結合 (水は0~2の整数を多味が)。

もに水業原子であるか、若しくはKとしが一緒になって単結合を形成する。)で示される基。式 一CH、で示される基。または式一(CH.)。で示される基を意味し、私は0または1の整数を意味す

特開昭61-210050(3)

る。Rは、水酸基、式 -NH(CH₂)_p-CON(R²) (式中R¹ およびR² は、同一または相異なる水素、低級アルキル基を意味し、haは1または2の整数を意味する。)で示される基、式 -NH-(CH₂)_Q-OH (式中 q は 1 または 2 の整数を意味する)で示される基、または、式 -NH-CH₂-CH-CH₂OH で示される基を意味する。)

で表わされる, ポリプレニル系化合物およびその 薬理的に許容される塩;およびその製造方法;な らびにそれを含有する医薬に関する。

上記の一般式(I)において、R¹ およびR² の定義中にみられる低級アルキル基とは、炭素数1~6の直鎖若しくは分枝状のアルキル基、例えば、メチル、エチル、nープロピル、nーブチル、イソブチル、1ーメチルプロピル、tertーブチル、nーペンチル、1ーエチルプロピル、イソアミル、nーヘキシルなどを意味する。

また,本発明化合物は,種々の立体異性体が存在しうるが,本発明においてはそれらの異性体のいずれをも含むものである。

見い出し、本発明を完成したものである。

本発明化合物(I)は、種々の方法によって製造することができるが、その中で通常用いられる代表的な方法示せば以下のとおりである。

製造方法 1

式(I)において m = 10, R=OH である場合。すな かち、 CH, CH, CH, CH, CH-(CH,-C-CH-CH₂) CH(I')

の場合は次の方法による。

$$C_2H_3O = P - CH_2 - COOCH_3$$
 (II)

$$CH_{3}$$
 $H-(CH_{2}-C=CH-CH_{2})_{\overline{n}}-CH_{2}-C-CH_{3}$ (III)

(式中nは0~2の整数を意味する)

本発明において、薬理的に許容される塩とは、 具体的には、式(I)において、Rが水酸基である安 息香酸誘導体である場合には、例えばナトリウム 塩、カリウム塩、カルシウム塩、アルミニウム塩 などの金属塩、アンモニウム塩、トリエチルアミ ン塩、ヒドラジン塩、グアニジン塩、ジシクロへ キシルアミン塩、キニーネ塩、シンコニン塩など の塩基との塩などをあげることができる。

本発明によって提供されるポリプレニル系化合物は、いずれも文献未収載の新規化合物であり、 優れたコレステロール低下作用を有し、したがって、抗コレステロール剤として有用であり、動脈 硬化用剤などとして使用されうるものである。

本発明によって提供される如きポリプレニル系 化合物にはこの種の抗コレステロール作用, 抗動 脈硬化作用を有する化合物は従来知られておらず 本発明者等は, 種々のポリプレニル系化合物につ いて長年鋭意研究を重ねてきた結果, 意外にも本 発明によって提供されるポリプレニル系化合物が 優れた抗コレステロール作用を有していることを

$$CH_3$$
 CH_3 CH_4 CH_4 CH_4 CH_4 CH_4 CH_5 CH_5 CH_7 CH_8 CH_8

すなわち、(II)で表わされるジェチル(4ーメトキシカルボニルフェニル)メチルリン酸 { Diethyl (4-methoxycarbonylphenyl) methyl phosphonate } に、(III) で表わされるケトン化合物を反応せしめて (wittig 反応)、次いで加水分解し、目的物質の一つである(I')を得ることがで きる。wittig 反応をおこなう際の触媒としては、例えばナトリウムメチラート(MeONa)、ナトリウムエチラート(EtONa)、t-BuOK、NaH などを あげることができる。この際溶媒としては例えば テトラヒドロフラン(THF)、ジメチルホルムア

特開昭61-210050(4)

ミド(DMP), エーテル, ニトロメタン, ジメチルスルホキシド(DMSO) などをあげることができる。また反応温度は窒温から 100℃ 程度が好ましい結果を与える。

製造方法 2

の場合は、次の方法による。

[第1工程]

$$(C_0H_0)_3P^+-CH_2- Br^- (IV)$$

CH, H—(CH₂—C=CH-CH₂) $\frac{1}{n}$ CH₂-C-CH, (III)

う。

第2工程のホルミル化は,常法によるが,具体的 には次のような3つの方法がある。

(1) 試築: HCN + HCℓ

触媒: Al Cla または ZnCla

溶媒: CHCe, または CH,Ce,

条件: 氷冷下で反応をおこなう。

その後希アルカリで加水分解する。

(2) 試棄: CO + HC&

触媒: CuCe + AeCe,

溶煤: ペンゼン

条件: 室 温

(3) 試塞: DMF + POCe,

浓雄: DMF

条件: 氷冷下

第3工程は、酸化工程であるが、試薬としては例えば過マンガン酸カリウム(KMnO4)、三酸化クロムを用い、溶媒としては、水、酢酸などを用い

 CH_3 CH_3 CH_3 CH_4 CH_4 CH_5 CH_5 COOH COOH

第1工程の反応は、ナトリウムメチラート、ナトリウムエチラート、t-BuOK、MeLi、n-BuLi、C.H.Liなどの塩基の存在下で、溶媒としては、エタノール、メタノール、テトラヒドロフラン(THF)、エーテル、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)などを用い、好ましい反応温度は、窒温~100°Cで反応をおこな

る。また反応温度は,室温~100 ℃ 程度でおとな うてとが好ましい結果を与える。

製造方法 3 C

式(I)において、R=OHでかつ、Xが -C=CH-であり、n=1である場合、

$$H-(CH_{2}-C-CH-CH_{2})_{R}CH_{2}-C-CH-COOH_{2})_{R}CH_{2}-C-CH-COOH_{2}$$

すなわち、(Ⅵ)で表わされる化合物に、(Ⅶ)で表わされる化合物を、ナトリウムメチラート、ナトリウムメチラート、ナトリウムエチラート、にBuOK、NaH などの塩基の存在下に、溶媒としては、テトラヒドロフラン、エーテル、DMF、ベンゼン、ヘキサンなどを用い、温度0~80℃で反応をおこない、化合物IX)で表わされるエステル体を得、次いでこれを常法により加水分解または還元をおこない、本発明の目的物質の一つである(I**)を得る。この際出発物質として用いる(Ⅶ)は例えば次のような方法で製造できる。図式を示す。

AlCl₁, SnCl₄, ZnCl₂, などを、溶媒としては、 例えば CCl₄, CH₂Cl₂, ベンゼンなどを用い、氷冷 ~80℃の温度でおこなう。

(方法3)

(第1工程)

(XVI)

(第2工程)

(第3工程)

(方法1)

(式中A, B, Y, Zは前記の意味を有する)で 示される基を意味する。

(方法2)

$$Y - \langle XV \rangle + CH_3COC\ell - (VI)$$

本反応をおてなう際は、触媒としては例えば

(第4工程)

$$(XX) + (XX) \qquad (XXX)$$

(第5工程)

なお、第4工程は、例えばナトリウムメチラート、ナトリウムエチラート、t-BuOK、MeLi、n-BuLi、 C_0H_0 Liなどの塩基の存在下で、エタノール、メタノール、テトラヒドロフラン (THF)、エーテル、DMF、DMSOなどの溶媒を用いて反応をおこなう。この際、反応温度は室温~100 $^{\circ}$ 程度が好ましい結果を与える。

製造方法 4

式(I)において、R=OHでかつ、Xが $-CH_e-CH_e-$ であり、m=1である場合。

第1工程である(XXIV)で表わされる化合物を 製造する際は、例えばナトリウムメデラート。ナ

ノール,プロパノール,エチレングリコール,プロピレングリコールなどを用い,温度は,室温程度で反応をおこなう。

本反応の出発物質として用いる(XXIII)は例えば次の方法によって製造される。反応式によって 示す。

トリウムエチラート, t-BuOK, NaH などの塩基の存在下に、溶媒としては、例えばテトラヒドロフラン(THF)、エーテル、DMF、ペンゼン、ヘキサンなどを用い、反応温度としては0~80℃の範囲で反応をおこなう。

目的物質の一つである(I''')を得るには、更に、得られた(XXIV)で表わされる化合物を常法により選元。加水分解する。選元の際の触媒としては、ラネーニッケル、Pd-C、PtO₂、Pt-Cなどを用いて、反応をおこなう。この際溶媒としては、例えばエタノール、メタノール、酢酸エチル、ツォキサン、酢酸などを用い、常圧~150 kg/cd、室温~100℃程度の反応条件でおこなう。また、必要により少量の酢酸、塩酸、過塩素酸などを補触媒として添加する。この補触媒の添加により反応が促進されるか、またはより温和な条件で反応させることができる。

また加水分解は、KOH、NaOHなどの塩基また は塩酸、硫酸などの酸などにより常法によりおこ なう。この際、溶媒としては、メタノール、エタ

製造方法 5

一式(I)において、R=OHでかつ、Xが $-CH_1$ -であり、m=1である場合、

(方法1)

本反応は、例えば KOHまたは NaOH の存在下で化合物 (XXVI) を加水分解せしめ、カルボン酸として、目的物質の一つである (I****)を常法により得るものである。この際、溶媒としては、例えばプロピレングリコール、エチレングリコールなどを用い、80~150℃の反応温度で反応をおこなう

ことにより好ましい結果が得られる。

本方法において出発物質として用いる化合物 (XXVI)は例えば次の方法によって得ることができる。下記に反応式を示す。

(XXVI)

製造方法 6

式(I)において、Rが水酸蒸でない場合、すなわち、Rが式 $-NH(CH_2)_p$ -CON< R^1 (式中、p、 R^1) (式中、p、 R^2) (式中、p、 R^2) は前記の意味を有する)で示される基、式 $-NH-(CH_2)_q$ -OH(式中 q は前記の意味を有する)で示される基、または式 $-NH-CH_2$ - $CH-CH_2$ OHOHOH

で示される基である場合は、例えば前述の方法に より製造されたカルボン酸化合物を、酸ハロゲン 化物の如き反応性酸誘導体とせしめ、これを対応 するアミン化合物と反応させ、アミド化合物とす る。

(方法2)

すなわち、式(XXIX)で扱わされる化合物に常 法により二酸化炭素を反応せしめ(Gvignard reaetion)、カルポン酸とし、目的物質を得る。この 際反応温度は一70℃~室温である。

本方法において、出発物質として用いる化合物 (XXIX)は、例えば次の方法によって得ることが できる。下記に反応式を示す。

(方法1)

(式中, n, m, A, B, Y, Zは前記の意味を 有する)

(XXXI)

(式中,Hal はハロゲン原子を意味する)

(式中Rは前記の意味を有する)

特開昭61-210050(8)

第1工程は、カルボン酸化合物を常法により酸ハロゲン化物とする工程で、好ましい具体例としては、例えば、SOCL。SO.CL。POCL。PCL。PCL。
PCL。オキサリルクロリドなどを用いて、酸クロライド体とする方法があげられる。この工程は、無溶媒でもよいし、例えばベンゼン、トルエンなどを用いて、遷流してもよい。

第2工程は,第1工程で得られた酸ハロゲン化物を常法により対応するアミンRHと反応させ,目的物質である酸アミド化合物(XXXIII)とする。 RHとは具体的には

$$H_2N-(CH_2)_0-CON < \frac{R^3}{R^3}$$

(XXXIV)

$$\dot{H}_2N-(CH_2)_q-OH$$

(XXXV)

(XXXVI)

(式中ヮ, R', R', qは前記の意味を有する) で表わされるアミン化合物を示す。

ての反応は、溶媒としては、例えばテトラヒド ロフラン、エーテル、ペンゼン、クロロホルム、

(XXXIII)

第1工程は、カルボン酸化合物を、化合物(XXXXII)または化合物(XXXXII)と縮合せしめて、化合物(XXXXIX)または化合物(XXXXX)を製造する工程である。この反応をおこなう際は、テトラヒドロフラン、エーテル、ベンゼン、グロロホルムなどから選ばれた溶媒を用い、通常はトリエチルアミン、ピリジンなどの塩基の存在下に反応をおこなう。また反応温度は、一50℃~室温が好ましい結果を与える。

第2工程は、第1工程によって得られた化合物 (XXXIX)または化合物(XXXXX)に、対応する アミン化合物[(XXXIV),(XXXV)または トルエンなどを用い、通常は、ピリジン、トリエチルアミン、炭酸カリウムなどの塩基の存在下に行なう。

(方法2)

(XXXI)

または

(XXXVI))を常法により反応せしめて、目的物質であるアミド化合物(XXXXIII)とする。

この反応も, 通常トリエチルアミン, ピリツン の如き塩基性物質の存在下に反応をおこなう。

次に本発明化合物の効果を詳述するために, 動物による薬理実験の結果を示す。

<u> 奥</u> 、 験 例

抗コレステロール作用

奥毅方法

3日間高コレステロール食を、SD系雄性ラット(4週令)に与えた後、普通食に戻し、下記に示す被酸化合物を1日2回、2日間経口投与した。普通食に戻してから2日目に全採血し、血清総コレステロールを定量した。対照薬としては、クロフィブレート(Clofibrate)を選択した。対照群では平均130 mg/duのコレステロール値を示した。表1に、被験化合物のコレステロール低下率を掲げる。

なお, 被験化合物は, 1 %ツィーン80 (tween

沿開昭61-210050(9)

- 80)により乳化し、また投与量は体重1㎏あたり
- 50 xg/kgとした。

被験化合物

- - 化合物 D: COOH
 - 化合物 E: COOH
 - 化合物 F: COOH
 - 化合物G: COOH
 - 化合物H: COOH
 - 化合物 R: CONH OH

 - 化合物 T: C₂ H₄

 - 化合物 V: COOH

- (tella):
- 化合物 K: COOH
- 化合物L: COOH
- 化合物M: COOH
- 化合物N: CONH OH
- 化合物O: CONH CONH,
- 化合物Q: 人

表 1.

被験化合物	コレステロール	被験化合物	コレステロール
被责化合物	低下平98	DOCUMENT OF THE PERSON OF THE	低下率 (96)
化合物A	19	化合物M	25
化合物B	21	化合物N	18
化合物C	28	化合物〇	18
化合物D	20	化合物P	17
化合物E	21	化合物Q	32
化合物P	25	化合物R	25
化合物G	28	化合物S	26
化合物H	29	化合物工	24
化合物I	28	化合物U	20
化合物了	27	化合物V	21
化合物K	18	clofibrate	18
化合物L	26		

1.11

特開昭61-210050(10)。

上記楽理実験の結果から明らかな如く, 本発明 化合物は、優れた抗コレステロール作用を有して いる。したがって, 抗コレステロール作用に基づ く医薬として有用であり, 具体的には抗コレステロール利, 抗動脈硬化剤などをあげることができる。

更に本発明化合物は、毒性が極めて低く、安全性が高い化合物であり、抗コレステロール剤は、その適応する疾患の性質上、長期間連用を余儀なくされるので、本発明はこの意味でも極めて価値の高いものである。本発明化合物の毒性については、SD系ラット(体重約 200 g)について、本発明の前配の代表的化合物(化合物A~化合物 V)を 1,000 m/kg を経口投与したが、死亡例、副作用は何ら観察されなかった。

本発明化合物を、抗コレステロール剤、抗動脈 硬化剤として患者に投与する際の投与量は、患者 の種類、症状の程度、化合物の種類、患者の年令 などにより大きく異なり特に限定されないが、成 人1日あたり約10 町~1,000 町、好ましくは約30町

ウム, クエン酸カルシウム, デキストリン, ベクチン等が、情沢剤としては例えば、ステアリン酸マグネシウム, タルク、ポリエチレングリコール,シリカ, 硬化植物油等が、着色剤としては医薬品に添加することが許可されているものが、矮味環奥剤としては、ココア末, ハッカ脇, 芳香酸, ハッカ油, 電脳, 往皮末等が用いられる。これらの錠剤、顆粒剤には糖衣、ゼラチン衣、その他必要により適宜コーティングすることはもちろんさしつかえない。

注射剤を調製する場合には、主薬に必要により pH調整剤, 級衝剤, 安定化剤, 可溶化剤などを添加し, 常法により皮下, 筋肉内, 静脈内用注射剤 とする。

次に、本発明化合物の代表的化合物の一つであるN-[4-(2',6'-ジメチルへプチル]-N',N'-ジェチルグリシンアミド(以下主义と称する)を有効成分とした製剤例を示す。

~300 m を経口若しくは非経口的に、1日2~4回にわけて投与する。投与利型としては、例えば 放剤、細粒剤、顆粒剤、錠剤、カプセル剤、注射 利などがあげられる。製剤化の際は、通常の製剤 担体を用い、常法により製造する。

すなわち、経口用固形製剤を調製する場合は主 薬に賦形剤、更に必要に応じて結合剤、崩壊剤、 滑沢剤、着色剤、緩味燥臭剤などを加えた後、常 法により錠剤、被覆錠剤、顆粒剤、散剤、カブセ ル剤などとする。

賦形薬としては、例えば乳糖、コーンスターチ、白糖、ブドウ糖、ソルビット、結晶セルロース、二酸化ケイ素などが、結合剤としては例えば、ポリビニルアルコール、ポリビニールエーテル、エチルセルロース、メチルセルロース、アラビアコム、トラガント、ゼラチン、シェラック、ヒドロキシブロビルセルロース、ヒドロキシブロビルスターチ、ポリビニルピロリドンなどが、崩壊剤としては例えば、デンプン、寒天、ゼラチン末、結晶セルロース、炭酸カルシウム、炭酸水素ナトリ

契利例 (錠剤)

主薬	1,0 <i>9</i>
無水ケイ酸	50 <i>8</i>
結晶セルロース	70 8
コーンスターチ	36 <i>9</i>
ヒドロキシプロピルセルロース	10 8
ステアリン酸マグネシウム	4 9

上記の処方で常法により錠剤(1錠 180 m) と した。

次に、本説明の実施例を具体的に掲げるが、本 発明がそれらに限定されることがないことはいう までもない。

奥施例 1

4一(1′ーイソプテニル)安息香酸

(1) メチル 4ープロモメチルペンゾエートの合

成

トルイル酸メチル158, N一ブロモコハク酸イミド17.88, および過酸化ベンゾイル0.58を 四塩化炭素50㎡に撹拌懸濁しながら,30分間加熱 還流する。反応終了後,反応液を水洗後,濃縮, 減圧蒸留して摂風化合物18.58(収率81%)を 得た。

(2) ジェチル(4ーメトキシカルボニルフェニル) メチルホスフォネート

(1)で得られたメチル 4 — プロモメチルベンゾ エート 2 2.9 8 と亜リン酸トリエチル 1 6.6 8 を 120 ℃で 2 時間反応させる。反応終了後反応液を 減圧蒸留して,標題化合物 2 3.2 8 (収率82%)

(3) 4-(1'-イソプテニル)安息香酸

を得た。

水素化ナトリウム 2.8 gをDMF50mlに懸濁し、Diethyl (4-methoxycarbonylphenyl) methylphosphate 37 gを満下する。ことにアセトン20mlを加え、50℃で2時間反応する。反応液を水中にあけ、ヘキサンで抽出後、水洗、濃縮する。残盗をエタノールに溶解し、水酸化カリウム15 gを加えて溶解し、

4 — (1'— Isobutenyl) benzoic acid 17.6 g をエタノールに溶解し、ラネーニッケル触媒存在下接触還元する。

触媒をろ別後、濃縮し、ヘキサンより再結晶して、目的化合物(白色結晶)16.9 g (収率95%)を得た。

。元素分析値: C₁₁H₁₄O₂として

C H

理論值(96) 74.13 7.92

実測値(分 74.30 8.01

• Mass $(^{m}/_{z})$: 178 (M^{+})

• 'H-NMR-(DMSO-da):

8 0.89 (6H, d, J=8)

1.7-2.1 (1H)

2.52 (2H, d, J=8)

7.20 (2H, d, J=9)

7.97 (2H, d, J=9)

1時間加熱湿流する。

反応被を希塩酸で中和後エーテルで抽出し、水洗、 過縮する。 残盗をペンゼンより再結晶して、目的化合物(白色結晶) 7.9 8 (収率42%)を得た。

。元素分析値 : C₁₁H₁₂O₂ として

C H

理論値段 74.97 6.86

実測値(分 75.15 7.04

o Mass (m/,): 176(M+)

• 'H-NMR (DMSO-d_a):

8 1.90 (3H, d, J=4)

1.92 (3H, d, J=4)

6.28 (1H, br.s)

7.27 (2H, d, J=9)

7.97 (2H, d, J=9)

奥施例 2

4 一イソブチル安息香酸

奥施例 3

4-(2',6'-ジメチル-1',5'-ヘプタジェニル) 安息省酸

ナトリウムメチラート 6.5 gをDMF50mlに溶解し、これにジエチル(4-メトキシカルポニルフェニル)メチルホスホネート37 gを滴下する。

次いで、これに6-メチルー5-ヘプテンー2-オン 12.6 8 を加え、50 C C C C 時間反応させる。その後実施例 1 と同様に処理し、目的化合物(白色結晶) 15.3 8 (収率 63 %) を得た。

。元素分析値 : C₁eH₂oO, として

C F

理論值的 78.65 :: 8.25

実測値(24) 78.89 8.46

• Mass (m/,) : 244 (M⁺)

• 'H-NMR (CDCe,)

8 1.5-1.8 (6H)

1.8-1.9 (3H)

1.9-2.3 (4H)

4.9-5.3 (1H)

6.3 (1H, br. s)

7.15-7.4(2H, m)

7.98 (2H, d, J=9)

実施例 4

4-(2, 6'-ジメチルへブチル)安息香酸

実施例3で得られた4―(2′, 6′―ジメチル― 1′, 5′ ーヘプタジエニル) 安息香酸 24.4 8 を実施 例2と同様に処理し、目的化合物(白色結晶) 20.6 8 (収率83%)を得た。

。元素分析値 : C₁₆H₂₄O₂ として

C

77.37 9.74 理論值的

77.39 9.88 実測値(84)

リカゲルカラムクロマトにより精製して、目的化 合物 (wax 状固体) 26.7 g (収率 84%)を得た。

。元素分析値 : CziHsuOz として

С

10.76 79.19 理論値切

10.89 寒酒值 (8) 79.25

318 (M⁺) o Mass (m/z):

o'H-NMR (CDCe,):

0 0.84 (3H, d, J=7)

0.86 (9H, d, J=7)

1.0-1.9 (15H)

2.2-2.9 (2H, m)

7.20 (2H, d, J=9)

7.98 (2H, d,:J=9)

実施例 6

3-[4-(1-イソプテニル)フェニル]-2

 \circ Mass ($^{\text{m}}/_{x}$): 248 ($^{\text{m}}$)

o'H-NMR (CDCe1)

8 0.84 (3H, d, J=7)

0.86 (6H, d, J=7)

1.0-1.9 (8H)

2.2-2.9 (2H, m)

7.20 (2H, d, J=9)

7.97 (2H, d, J=9)

実施例 5

4 — (2′, 6′, 10′ —トリメチルウンデシル)安息香

ナトリウムエチラート 8.2 g をDMF50mlに容 解し、Diethyl (4-methoxycarbonylphenyl) methylphosphonate 378を満下する。ここに Geranylacetone 19.48 を加え、50℃で2時間反応する。

その後,実施例1および2と同様に処理し,シ

1,4 Mーメチルリチウムエーテル溶液 500 m 中 に、4-(1'-Isobutenyl) benzoic acid 8.8 9 をエ ーテルに溶解して滴下する。反応液を氷中にあけ 水洗、濃縮する。

水素化ナトリウム 1.2 g をTHF30mに懸濁し Diethylethoxycarbonylmethylphosphonate 12.0 8 を満 下する。ことに濃縮残盗を滴下し、50℃で2時間 反応する。反応液を水洗、濃縮後エタノールに溶 解し、水酸化カリウム78を加えて溶解する。

これを希塩酸中にそそぎ, エーテルで抽出, 水 洗,濃縮する。残渣をヘキサンより再結晶して、 目的化合物(白色結晶) 3.0 8 (収率28%)を得

。元素分析値: C₁₄H₁₀O₂ として

С

H·

7.46 77.75 理验值(93)

77.83 実配値(%) 7.66

• Mass (m/z): 216 (M^+)

o¹H-NMR(CDCℓ₁):

。1.1. \$P\$\$P\$\$P\$ 1.5. \$P\$\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$\$P\$ (1.5. \$P\$\$P\$4.6.) (1.5. \$P\$ 1.5. \$P\$

8 1.89 (3H, d, J=4)

特開昭61-210050(13)

1.91 (3H, d, J=4) 2.5-2.6 (3H)

6.1-6.2 (1H)

6.2-6.3 (1H. br.s)

7.1-7.6 (4H, m)

実施例 7

4 — Isobutylbenzoyl chloride 19.7 g をエーテルに 答解し、-40℃で 3 M — Methylmagnesium iodide エ ーテル溶液33 ml を滴下する。水を加えて分解した 後、水洗、濃縮する。

ナトリウムメチラート 6.5 8 をTHF 50 ml に懸 濁し、Diethylethoxycarbonylmethylphosphonate 30 8 を滴下する。ここに濃縮残盗を滴下し、50℃で 2 時間反応する。反応液を水洗、濃縮後エタノール に溶解し、水酸化カリウム178 を加えて溶解する。

3 — (4'—Isobutylphenyl) — 2 — butenoic acid 21.8 g を実施例 2 と同様に処理し、目的化合物 (白色結晶) 18.3 g (収率83%)を得た。

。元素分析値: C₁₄H₂₀O₂ として

С

Н

理論值份 76.32 9.15

突那值 93 76.54 9.39

• Mass (m/z): 220 (M⁺)

∘ 'H-NMR (CDCℓ.):

8 0.89 (6H, d, J=8)

1.28 (3H, d, J=8)

1.7-2.1 (1H)

2.51 (2H, d, J=8)

2.5-2.7 (2H)

3.0-3.1 (1H)

7.0-7.2 (4H)

これを希塩酸中にモモぎ,エーテルで抽出,水洗,濃縮する。残渣をヘキサンより再結晶して,目的化合物(白色結晶)10.2 g (収率47%)を得た。

。元素分析値 : C₁₄H₁₈O₂ として

C H

理論値(名) 77.03 8.31

実測値(%) 77.17 8.48

• Mass (" 218 (M)

o'H-NMR (CDCl1):

8 0.90 (6H, d, J=8)

1.7-2.1 (1H)

2.51 (2H, d, J=8)

2.55-2.6 (3H)

6.1-6.2 (1H)

7.16 (2H, d, J=9)

7.42 (2H, d, J=9)

実施例 8

3一(4′―イソブチルフェニル)一酪酸

奥施例 9

3-[4'-(2",6"-ジメチルー1",5"-ヘナタ

ジエニル)フェニル] — 2 —ブテン酸

4 - (2',6'-Dimethyl-1',5'-heptadienyl)benzoyl chloride 26.3 g を実施例7と同様に処理し, 目的化合物(白色結晶)14.7 g (収率52%)を得た。

。元素分析値 : C₁₂H₂₄O₂ として

C H

理論値(36) 80.24 8.51

実測値 (3) 80.31 8.67

o Mass (m/z): 284 (M+)

o 'H-NMR (CDCℓ,) :

8 1.64 (3H, s)

i.71 (3H, s)

1.9-2.0 (3H)

2.1-2.3 (4H)

2.5-2.6 (3H)

5.0-5.3 (1H)

6.1-6.2 (1H)

6.2-6.3 (1H)

7.1-7.6 (4H)

実施例 10

3-{4'-(2",6"-ジメチルヘプチル)フェニ

ル]ー2ープテン酸

4 — (2', 6'— Dimethylheptyl) benzoic acid 12.49 を実施例6と同様に処理し、クロマト精製して目 的化合物(wax)6.08,(収率42%)を得た。

o 元素分析値: C₁eH₂eO₂ として

Ç

Н

理論値段 79.12 9.79

実調値(分 79.03 9.84

• Mass (m/2) : 288 (M+)

シリカゲルカラムクロマトにより精製して、目的 化合物(無色オイル)25.2 g (収率87%)を得た。

o 元素分析値 : C₁₀H₂₀O₂ として

н

理論値段 78.57 10.41

実測値(%) 78.71 10.57

• Mass (m/z): 290 (M⁺)

• 'H-NMR (CDC(1)

8 0.84 (3H, d, J=7)

0.86 (6H, d, J=7)

0.9-1.9 (8H)

1.28 (3H, d, J=8)

2.1-2.8 (4H, m)

3.0-3.4(1H, m)

7.0-7.2 (4H)

(製法2)

4ーメチルアセトフェノン 13.48 をペンセン
100 ml に溶解し、エチレングリコール20mlとpートルエンスルホン酸を触媒量加えて数時間共沸脱

• 'H-NMR (CDCe,) :

8 0.84 (3H, d; J=7)

0.87(6H, d, J=7)

0.9-1.9(8H)

2.2-2.8 (5H)

6.1-6.2 (1H)

7.16 (2H, d, J=9)

7.42 (2H, d, J=9)

実施例 11

3-(4-(2",6"-ジメチルヘプチル)フェ

ニル〕酢酸

本物質は次の3つの製造方法によって得ること ができる。

(製法1)

3 — [4'— ('2", 6"—Dimethylheptyl) phenyl] — 2 —butenoic acid 28.8 g を実施例 2 と同様に処理し

水する。冷却後、重ソウ水中にあけ洗浄する。水 洗、乾燥する。

N-プロモコハク酸イミド17.88と過酸化ペンソイル0.28を加えて加熱還流する。冷却後,水洗, 濃縮する。

トリフェニルホズフィン28.89と濃縮残盗をベンゼン200㎡に溶解し、加熱透流する。冷却後、 沈殿をろ遇、洗浄、乾燥する。

得られた粉末を、DMF 200 mlに懸濁し、ナトリウムエチラート 6.8 gのDMF溶液を満下する。その後、6 - Methyl - 5 - hepten - 2 - one 12.0gを満下し、50℃で2時間反応する。反応液を水中にあけ、ヘキサンで抽出、水洗、濃縮する。

残盗をメタノールに溶解し、塩酸を加えて、50 ℃で1時間反応する。反応液を水中にあけ、重ソ ゥ水で中和した後、ヘキサンで抽出、水洗、濃縮 する。

水素化ナトリウム 1.2 g をTHF50 m に懸濁し、 Diethylethoxycarbonylmethylphosphonate 12.0 g を滴 下する。ここに濃縮残盗を滴下し、50℃で2時間

(大学)とは1985年、日本学研究開発であった子学学等等人の報告を報告を必要した。ため、日本学科学学の、これにより、アメリカルで

持開昭61-210050(15)

反応する。反応液を水中にあけ、ヘキザンで抽出, 水洗, 過縮する。

残盗をエタノールに溶解し、ラネーニッケル触 媒存在下接触還元する。触媒をろ別後、水酸化カ リウム78を加えて溶解する。これを希塩酸中に そそぎ、エーテルで抽出、水洗、濃縮し、カラム クロマトにより精製して、目的化合物 3.3 8 (11 米)を得た。

(製法3)

ベンジルトリフェニルホスホニウムクロライド 3 8.9 8 を DMF 200 mlに懸濁し、ナトリウムエチラート 6.8 8 の DMF 溶液を滴下する。 ここに 6 — Methyl — 5 — hepten — 2 — one 12.0 8 を滴下 し50 ℃で 2 時間反応する。 これを水中にあけ、ヘキサンで抽出、水洗、濃縮する。

残盗をエタノールに溶解し, ラネーニッケル触 媒存在下, 接触還元する。触媒をろ別し, 濃縮する。

無水塩化アルミニウム粉末 20.0 8 を四塩化炭素

4 — (2',6',10'—Trimethylundecyl) benzoic acid 15.9 g を実施例 6 と同様に処理し、シリカゲルカ ラムクロマトにより精製して、目的化合物(wax) 9.8 g (収率55%)を得た。

。元素分析値: C₂₄H₃₈O₂ として

C H

理論値(名) 80.39 10.68

実測値(分) 80.55 10.73

• Mass ($\frac{m}{2}$) : 358 (M^{+})

o¹H−NMR (CDCℓ₂):

8 0.84 (3H, d, J=7)

0.87 (9H, d, J=7)

0.9-1.9 (15H)

2.2-2.8 (5H)

6.1-6.2 (1H)

7.15 (2H, d, J=9)

7.42 (2H, d, J=9)

100 ml に懸濁し、冷却しながら塩化アセチル11.8 8 を加える。ここに濃縮残渣を氷冷下滴下する。 そのまま1時間反応する。反応液を氷水中にそそ き、希塩酸、重ソウ水、水で有機層を洗い濃縮す る。

水素化ナトリウム 1.2 8 をTHF50 W に懸濁し、 Diethyl ethoxycarbonylmethylphosphonate 12.0 8 を施 下する。ここに濃縮残盗を施下し、50℃で2時間 反応する。反応液を水中にあけ、ヘキサンで抽出、 水洗、濃縮する。

残盗をエタノールに溶解し、ラネーニッケル触媒存在下、接触通元する。触媒をろ別後、水酸化カリウム 7 8 を加えて溶解する。これを希塩酸中にそそぎ、エーテルで抽出、水洗、濃縮し、カラムクロマトにより精製して、目的化合物 9.9 8 (34%)を得た。

奥施例 12

3-(4'-(2'',6'',10''-1) リメチルウンデシル)フェニル] -2-ブテン酸

寒施例 13

3 -- (4'- (2,6,10-トリメチルウンデシル)

フェニル〕一酪酸

3 — [4'— (2', 6', 10'— Trimethylundecyl) phenyl) — 2 — butenoic acid 35.8 g を実施例 2 と同様に処理し、シリカゲルカラムクロマトにより精製して、目的化合物(無色オイル)32.4 g (収率91%)を得た。

元素分析値: C₂₄H₂₀O₂として

С Н

理論値(%) 79.94 11.18

奥測值 (96) 80.10 11.23

• Mass ("/z): 360 (M⁺)

∘ 'H-NMR (CDCℓ₃):

8 0.84 (3H, d, J=7)

0.87 (9H, d, J=7)

0.9-1.9 (15H)

特開昭61-210050(16)

1.29 (3H, d, J=8)

2.1-2.8 (4H, m)

3.0-3.4(1H, m)

7.0-7.2 (4H)

実施例 14

3-(4-イソブチルフェニル)プロピオン酸

4ーイソプチル安息香酸 17.8 8 を水素化アルミニウムリチウムで還元した後,塩化メチレン中二酸化マンガンとともに提择する。24時間後,ロ過, 腹船する。

一方、水素化ナトリウム 2.4 8 をヘキサン30 配に懸濁し、これにジェチルエトキシカルボニルホスフォネート248 を滴下する。ここに前記の濃縮残渣を滴下し、50℃で 2 時間反応させる。反応終了後、反応液を水洗、濃縮後、エタノールに溶解し、ラネーニッケル触媒存在下、接触還元する。

4 -- (2',6'-- ジメチルヘプチル)安息香酸24.8 8 を出発物質として、実施例14と同様の処理をお こない、目的化合物(白色粉末)14.9 8 (収率54 ※)を得た。

。元素分析値: C₁,H₂₄O₂ として

С

.]

理論値(94) 78.21 1

10.21

実測値(93) 78.31

10.29

• Mass () : 276 (M +)

• 'H-NMR (CDC/,):

∂ 0.84 (3H, d, J=7)

0.87 (6H, d, J=7)

1.0-1.9 (8H)

2.2-3.2 (6H)

7.0-7.2 (4H)

触媒を口別後、水酸化カリウム108を溶解する。

次いでこれを希塩酸中に注ぎ、エーテルで抽出。 水洗、濃縮する。残盗をシリカゲルクロマトにより精製して目的化合物(白色粉末)11.7g(収率57%)を得た。

。元素分析値: C_{ts}H_{ts}O₂として

C F

理論值 96 75.69 8.80

実閥値(96) 75.84 8.89

• Mass ("/z) : 206 (M+)

• 'H-NMR (CDCe,):

0.89 (6H, d, J=8)

1.7-2.1 (1H)

2.4-3.2 (4H)

2.51 (2H, d, J=8)

7.0-7.2 (4H)

実施例 15

<u>3ー【4'ー(2', 6'ージメチルへプチル)フェ</u> ニル】プロピオン酸

夹施例 16

3-[4'-(2', 6', 10'-トリメチルウンデシ

ル)フェニル〕プロピオン酸

4 — (2',6',10'ートリメチルウンデシル) 安息 香酸 31.8 g を出発物質として実施例14と同様の処理をおこない,目的化合物(ワックス状)17.6 g (収率51%)を得た。

。元素分析値 : C₂H₂₄O₂ として

C : H

理論值段 79.7.1 11.05

奥测值(24) 79.95 11.23

• Mass () : 346 (M +)

• 'H-NMR (CDC/,):

8 0.80 (3H, d, J=7)

0.84 (9H, d, J=7)

1.0-1.9 (15H, br.)

2.2-3.2 (6H, m)

7.12 (4H, s)

実施例 17

3-[4-(2,6-ジメチルヘプチル)ベンゾ

イル] アミノー 1, 2ープロパンジオール

4-(2', 8'-ジメチルヘプチル)ベンゾイル クロライド 26.7 8を3-アミノー1, 2-プロバン ジオール 13.7 8, トリエチルアミン15 8, および N,N-ジメチルホルムアミド 100 ml の溶液中に氷 冷下滴下する。反応終了後, 反応液を水中に注ぎ 希塩酸で中和する。次いでクロロホルムで抽出し、 水洗, 濃縮後, シリカゲルクロマトグラフィーに より精製して, 目的化合物(ワックス状)20.2 8 (収率63光)を得た。

。元素分析値 : C₁₀H₃₁NO₃として

グリシンアミド 塩酸塩 13.2 g をトリエチルアミン15g, およびテトラヒドロフラン 100 m 中に 歴濁し, これに、4 — (2',6'—ジメチルヘブチル)ベンゾイル クロライド 26.7 g を氷冷下滴下する。 反応液を水中に注ぎ、希塩酸で中和する。 次いでエーテルで抽出し、水洗、濃縮後、酢酸エチルにより再結晶して、目的化合物(白色結晶)26.1 g (収率86%)を得た。

。元素分析値 : C₁aH₂aN₂O₂として

С

н

理論値段 71.01 9.27

実測値(%) 71.20 9.32

• Mass ("/z) : 304 (M⁺)

• 'H-NMR (CDC(1):

8 0.84 (3H, d, J=7)

0.86 (6H, d, J=7)

1.0-1.9 (8H)

49開昭61-210050(17)

H

理論値段 70.99 9.72

実測値段 80.25 9.95

• Mass (321 (M +)

o 'H-NMR (CDCls)

8 0.84 (3H, d, J=7)

0.86 (6H, d, J=7)

1.0-1.9 (8H)

2.2-2.8 (2H)

3.2-3.7 (5H)

3.7-4.0 (2H)

6.9-7.1 (1H)

7.19 (2H, d, J=9)

7.96 (2H, d, J=9)

実施例18

N-[4-(2',6'-ジメチルヘプチル)ベンソ イル]グリシンTミド

2.2-2.8 (2H)

4.17 (2H, d, J=4)

5.75-5.96 (1H)

6.65-6.90 (1H)

7.18 (2H, d, J=9)

7.1-7.4 (1H)

7.76 (2H, d, J=9)

奥施例 19

N-[4-(2',6'-ジメチルヘプチル)ベンゾ イル]-N',N'-ジェチルグリシンアミド

4 — (2',6'— ジメチルへブチル) 安息香酸24.8 8 とトリエチルアミン13.18 をテトラヒドロフラン 100 ㎡ に溶解し、氷冷下クロル炭酸エチル13.0 8 を滴下する。

エチルグリシン 塩酸塩 20.9 8 を,トリエチルア

特開昭61-210050(18)

ミン 20.0 8 とテトラヒドロフラン 100 毗中に懸濁 しておき、ことに先の反応液を加える。

反応液を水中にあけ、希塩酸で中和後。エーテ ルで抽出する。水洗、濃縮後、エタノールに溶解 し、水酸化カリウム168を加えて溶解する。

反応波を水中にあけ、希塩酸で中和後、エーテ ルで抽出する。水洗、濃縮後、トリエチルアミン 158とテトラヒドロフラン 100叫に溶解し、クロ ル炭酸エチル 13.0 8 を滴下する。ここにジエチル アミン208を加える。

反応液を水中にあけ、希塩酸で中和後、エーテ ルで抽出。水洗。濃縮し、シリカゲルカラムクロ マトにより精製して目的化合物(無色オイル) 11.5 g (収率32%)を得た。

。元素分析値: CttHstNtOt として

н

理論值 (3) 73.29 10.07

10.21 実頑値 83 73.38

• Mass (m/z) : 360 (M⁺)

o'H-NMR (CDC%):

反応終了後この反応液を、エタノールアミン 9.0 8のテトラヒドロフラン 100 毗密放中に0℃ 以下で加える。

反応液を水中にそそぎ,希塩酸で中和する。エ ーテル抽出し、水洗、桑棉後、シリカゲルカラム クロマトにより精製して、目的化合物(無色オイ ル) 29.18 (収率 87.4%)を得た。

。元素分析值 : C₂₁H₃₅NO₂ として

С Η .

75.63 10.58 理验值 93

75.78 10.64 実測値(24)

• Mass () : 333 (M)

"H-NMR (CDC4):

8 0.84 (3H, d, J=7)

0.86 (6H, d, J=7)

0.9-1.9 (8H)

1.28 (3H, d, J=8)

 $2.1-2.8(4H, \dot{m})$

3.0-3.4 (3H)

3.4-3.6 (2H)

a 0.84 (3H, d, J=7)

0.86 (6H, d, J=7)

0.9-1.9 (14H)

2.2-2.8 (2H, m)

3.1-3.6(4H, m)

4.23 (2H, d, J=4)

7.1-7.5 (3H)

7.76 (2H, d, J=9)

実施例 20

N-{3-[4'-(2',6'-ジメチルヘプチル)

 $3-[4'-(2',6''-9)+h\wedge7+h)7=$ ニル] 酪酸 29.0 8 をテトラヒドロフラン10叫に溶 解し、トリエチルアミン 25.3 8 を加え、氷冷下ク ロル炭酸エチル 13.08 を滴下する。

6.6-6.9 (1H)

7.0-7.2 (4H)

実施例 21

3-{3'-{4'-(2",6"-ジメチルヘプチ ル)フェニル】プテリイル】アミノー 1,2 一プロ **パンクオール**

3-[4-(2:6-ジメチルヘプチル)フェ ニル)酪酸 29.0 8 を出発物質として実施例17と同 模に処理して、目的化合物(ワックス状)24.3 8 (収率67%)を得た。

。元素分析値: C₂₂H₃₇NO₃ として

C H

理論值的 72.68 10.26

72.81 10.49 寒潮值 🕅

• Mass ("/") : 363 (M")

• 'H-NMR (CDC/,):

持開昭61-210050(19)

8 0.84 (3H, d, J=7)

0.87 (6H, d, J=7)

0.9-1.9 (8H)

1.27 (3H, d, J=8)

2.1-2.8 (4H, m)

3.0-3.7 (6H)

3.7-4.0 (2H)

6.9-7.2 (3H)

実施例 22

N-13-[4'-(2",6"-ジメチルヘプチル)

フェニル〕ブタノイルーグリシンアミド

3-[4'-(2',6'-ジメチルヘプテル)フェニル] ブチリルクロライド 30.9 8 を出発物質として、実施例18と同様の処理をし、シリカゲルクロマトにより精製して、目的化合物(白色粉末) 31.8 8 (収率92%)を得た。

シンTミド

3 - [4'-(2',6'-ジメチルヘプチル)フェニル] 酪酸 29.0 8 を出発物質として実施例19と同様の処理をおこない目的化合物(無色オイル) 17.2 8 (収率42%)を得た。

。元素分析値: C₂₅H₂₂N₂O₂ として

С

Н

理論値段 74.58 10.52

実測値59 74.74 10.66

• Mass (1 2) : 402 (M +)

• 'H-NMR (CDC(1):

8 0.84 (3H, d, J=7)

0.87 (6H, d, J=7)

0.9-1.9 (14H)

1.29 (3H, d, J=8)

2.1-2.8 (4H, m)

3.0-3.6 (5H, m)

。元素分析値 : C₂₁H₃₄N₂O₂ として

C H

理論値 (36) 72.79 9.89

実測値56 72.84 9.97

• Mass (346 (M +)

• 'H-NMR (CDCes):

8 0.84 (3H, d, J=7)

0.86(6H, d, J=7)

0.9-1.9 (8H)

1.28 (3H, d, J=8)

2.1-2.8 (4H, m)

3.0-3.4 (1H, m)

4.18 (2H, d, J=4)

5.75-5.95 (1H)

6.65-6.90 (1H)

7.0-7.4 (5H)

実施例 23

 $N-[3-[4'-(2',6'-3)+n^2+n^2+n^2]$ $7x=n]7811n]-N',N'-3x+n^3$

> 4.22 (.2H, d, J=4) 7.0-7.5 (5H)

実施例 24

4―イソブチルフェニル酢酸

4-イソプチル安息香酸 17.8 8 を水素化アルミニウムリチウムで還元した後、濃縮残液をピリジン30㎡に溶解し、氷冷下ロートルエンスルホン酸クロライド 22.0 8 を加える。反応液を氷水中にそそぎ、エーテルで抽出、水洗、濃縮(30℃)する。

育酸カリ 10.0 g を DMSO 150 ml に懸濁しておき。 120℃で凝縮残液を加える。数時間反応後, 冷却し、 反応液を氷水中にあけ、エーテルで抽出、水洗、 凝縮する。

残盗をプロピレングリコール 100 ml に溶解し、水酸化カリウム17 g を加えて、120℃で数時間撹拌する。冷却後氷水中にそそぎ、希塩酸で中和す

特開昭61-210050(20)

る。エーテルで抽出,水洗,漁縮し,ヘキサンから再結晶して,目的化合物(白色結晶) 5.4 g (収率28%) を得た。

。元素分析値 : C₁₂H₁₀O₂ として

C 1

理論值 84 74.97 8.39

奥湖值(94) 75.11 8.57

• Mass (m/) : 192 (M+)

• 'H-NMR (CDC(1):

8 0.90 (6H, d, J=8)

1.7-2.1 (1H)

2.52 (2H, d, J=8)

3.53 (2H, s)

7.0-7.2 (4H)

実施例 25

<u>4 一(2′, 6′ ージメチルヘプチル)フェニル酢</u>

酸

4 - (2',6',10'-トリメチルウンデシル)安 息香酸 31.8 8 を出発物質として実施例24と同様の 処理をした後。クロマト精製し、目的化合物(ワックス状)11.6 8 (収率35%)を得た。

。元素分析値: C_{zz}H_wO_z として

C 1

理論值的 79.46 10.91

実測値 99 79.66 11.08

• Mass ($\frac{m}{z}$): 332(M^+)

o 'H-NMR (CDCla):

8 0.81 (3H, d, J=7)

0.85 (9H, d, J=7)

1.0-1.9 (15H)

2.2-2.9 (2H, m)

3.53 (2H, s)

7.0-7.2 (4H)

4-(2',6'-ジメチルへプチル)安息香酸 24.8 8 を出発物質として、実施例24と同様の処理 をして、目的化合物(白色結晶)5.8 8 (収率22 %)を得た。

。元素分析値 : C₁₁H₂nO₂として

С

理論值分 77.82 9.99

実湖值(96) 78.01 10.05

• Mass ("/z) : 262 (M⁺)

o 'H-NMR (CDCe,):

8 0.85 (3H, d, J=7)

0.87 (6H, d, J=7)

1.0-1.9 (8H)

2.2-2.9 (2H, m)

3.51 (2H, s)

7.0-7.2 (4H)

奥施例 26

<u>4-(2',6',10'-トリメチルウンデシル)フェニル酢酸</u>

- 特開昭61-210050(21)

第1頁の続き・

別記号 厅内整理番号
7419—4H
7419—4H
7419—4H
. 7419—4H
7419—4H