HAR Final Assessment

Practical Machine Learning Project

Mathias Barat

1 - SYNOPSIS

Context

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively.

These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks.

Problem

One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it.

Goal of the project

Use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways.

More information is available from the website here: http://groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).

Dataset information

Velloso, E.; Bulling, A.; Gellersen, H.; Ugulino, W.; Fuks, H. Qualitative Activity Recognition of Weight Lifting Exercises. Proceedings of 4th International Conference in Cooperation with SIGCHI (Augmented Human '13). Stuttgart, Germany: ACM SIGCHI, 2013.

Read more: http://groupware.les.inf.puc-rio.br/har#ixzz6ZuaJcLo0

2 - DATASETS

Downloading file:

```
train_url <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
test_url <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"
if (!file.exists("data/training.csv") | !file.exists("data/testing.csv")){</pre>
```

```
download.file(train_url, destfile = "data/training.csv")
  download.file(test_url, destfile = "data/testing.csv")
}
training <- read.csv("data/training.csv", na.strings=c("NA","#DIV/0!", ""))
testing <- read.csv("data/testing.csv",na.strings=c("NA","#DIV/0!", ""))</pre>
```

Exploratory Data Analysis

```
summary(training$classe)

## Length Class Mode
## 19622 character character

unique(training$classe)

## [1] "A" "B" "C" "D" "E"

training$classe <- factor(training$classe)</pre>
```

Cleaning

Suppress all NA in the dataset

```
training <- training[,colSums(is.na(training)) == 0]
testing <- testing[,colSums(is.na(training)) == 0]</pre>
```

Suppress useless columns

```
# X, user_name, timestamps, windows
training <- training[,-c(1:7)]
testing <- testing[,-c(1:7)]</pre>
```

testing, training and quizz datasets

To avoid errors I rename the datasets and create my own training, testing dataset

```
library(caret)

## Loading required package: lattice
```

```
## Loading required package: ggplot2
```

```
test_quizz <- testing
inTrain <- createDataPartition(training$classe, p = 0.8, list = FALSE)
temp <- training
training <- temp[inTrain,]
testing <- temp[-inTrain,]
rm(temp)</pre>
```

final dataset

```
# Training dataset:
dim(training)

## [1] 15699 53

# Testing dataset:
dim(testing)

## [1] 3923 53

# Testing dataset
dim(test_quizz)

## [1] 20 153
```

Histogram of Y

```
library(ggplot2)
ggplot(training, aes(x=classe)) + geom_histogram(stat = "count", fill="red")+ labs(title="Classe count")
```

Warning: Ignoring unknown parameters: binwidth, bins, pad

Classe count for the training dataset

3 - Recursive Partition modeling

```
library(ggplot2); library(caret); library(randomForest); library(rpart)

## randomForest 4.6-14

## Type rfNews() to see new features/changes/bug fixes.

## ## Attaching package: 'randomForest'

## The following object is masked from 'package:ggplot2':

## ## margin

modfit_rpart <- rpart(classe ~ ., data=training, method="class")

predict_rpart <- predict(modfit_rpart, testing, type = "class")

library(rattle)</pre>
```

Warning: labs do not fit even at cex 0.15, there may be some overplotting

Rattle 2020-oct.-04 22:44:08 BuZarD

confusionMatrix(predict_rpart, testing\$classe)

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
```

```
##
           A 971 113 25 35 14
##
              46 482 62 67
                               66
##
              31
                  78 540 100
                               94
##
           D
              48 52 40 396 36
##
           Ε
              20
                  34
                      17 45 511
##
## Overall Statistics
##
                  Accuracy : 0.7392
##
##
                    95% CI: (0.7252, 0.7529)
##
      No Information Rate: 0.2845
      P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.6698
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
##
                        Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                         0.8701
                                  0.6350
                                           0.7895
                                                     0.6159
                                                              0.7087
## Specificity
                         0.9334
                                  0.9238
                                            0.9065
                                                     0.9463
                                                              0.9638
## Pos Pred Value
                                 0.6667
                                           0.6406
                                                     0.6923
                                                              0.8150
                         0.8385
## Neg Pred Value
                         0.9476
                                 0.9134
                                           0.9532
                                                     0.9263
                                                              0.9363
## Prevalence
                         0.2845 0.1935
                                           0.1744
                                                     0.1639
                                                              0.1838
## Detection Rate
                         0.2475 0.1229
                                           0.1376
                                                     0.1009
                                                              0.1303
## Detection Prevalence
                         0.2952 0.1843
                                           0.2149
                                                     0.1458
                                                              0.1598
## Balanced Accuracy
                         0.9017
                                           0.8480
                                                              0.8363
                                  0.7794
                                                     0.7811
```

4 - Random Forest Modeling

```
library(randomForest)
modfit_rforest <- randomForest(classe ~ .,data=training, method = "class", keep.inbag = TRUE)</pre>
predict_rforest <- predict(modfit_rforest, testing, type = "class")</pre>
modfit_rforest
##
## Call:
   randomForest(formula = classe ~ ., data = training, method = "class",
                                                                                  keep.inbag = TRUE)
##
                  Type of random forest: classification
                         Number of trees: 500
## No. of variables tried at each split: 7
##
##
           OOB estimate of error rate: 0.43%
## Confusion matrix:
##
             В
                  С
                       D
                            E class.error
        Α
## A 4461
             3
                  0
                       0
                             0 0.000672043
## B
     13 3020
                  5
                       0
                             0 0.005924951
```

```
## C  0  15  2721   2   0  0.006208912
## D   0   0  21  2551   1  0.008550330
## E   0   0   2   5  2879  0.002425502

varImpPlot(modfit_rforest, cex = 0.8 )
```

modfit_rforest

confusionMatrix(predict_rforest, testing\$classe)

```
## Confusion Matrix and Statistics
##
##
              Reference
## Prediction
                       В
                             С
                                  D
                                        Ε
##
             A 1116
                        2
                             0
                                  0
                                        0
             В
                     757
                             2
##
                  0
                                  0
                                        0
             С
                  0
                        0
                           681
                                  7
                                        0
##
##
             D
                  0
                        0
                                635
                                        2
                             1
             Ε
##
                  0
                        0
                             0
                                     719
                                  1
##
##
  Overall Statistics
##
##
                   Accuracy : 0.9962
##
                     95% CI: (0.9937, 0.9979)
##
       No Information Rate: 0.2845
##
       P-Value [Acc > NIR] : < 2.2e-16
##
```

```
Kappa : 0.9952
##
##
   Mcnemar's Test P-Value : NA
##
##
## Statistics by Class:
##
##
                        Class: A Class: B Class: C Class: D Class: E
                                   0.9974
                                            0.9956
                                                      0.9876
                                                               0.9972
## Sensitivity
                          1.0000
## Specificity
                          0.9993
                                   0.9994
                                            0.9978
                                                      0.9991
                                                               0.9997
## Pos Pred Value
                          0.9982
                                   0.9974
                                            0.9898
                                                      0.9953
                                                               0.9986
## Neg Pred Value
                          1.0000
                                   0.9994
                                            0.9991
                                                      0.9976
                                                               0.9994
## Prevalence
                          0.2845
                                   0.1935
                                            0.1744
                                                      0.1639
                                                               0.1838
## Detection Rate
                                                               0.1833
                          0.2845
                                   0.1930
                                            0.1736
                                                     0.1619
## Detection Prevalence
                          0.2850
                                   0.1935
                                            0.1754
                                                      0.1626
                                                               0.1835
## Balanced Accuracy
                          0.9996
                                   0.9984
                                            0.9967
                                                      0.9933
                                                               0.9985
```

5 - Conclusion

Model choice

The Random forest gets an accuracy of 0.9949 versus a 0.7353. Without any doubt the Random forest is seriously the best for our case.

Quizz prediction with the test set

```
predict_quizz <- predict(modfit_rforest, test_quizz, type = "class")
predict_quizz</pre>
```

```
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ## B A B A A E D B A A B C B A E E A B B B ## Levels: A B C D E
```