1

Let $\varepsilon > 0$. We show that $|b_n| < \varepsilon$. Since $a_n \to 0$, there exists N such that for any n > N, $|a_n| < \varepsilon$. If we let n > N, then $|b_n| \le a_n = |a_n| < |a_N| < \varepsilon$, and so $b_n \to 0$.

2

Let $A_n = a_1 + \cdots + a_n$, $B_n = b_1 + \cdots + b_n$. Then $A_n \to \alpha$ and $B_n \to \beta$. We know that the limit of the sum of two convergent sequences is the sum of their limits, so $A_n + B_n \to \alpha + \beta$.

Similarly, we know that the limit of the product of two convergent sequences is the product of their limits, so also $A_n B_n \to \alpha \beta$.

3

 (\Longrightarrow) : We prove the contrapositive. Let a=1, and let $s_n=1+\cdots+\frac{1}{n}$ be the partial sums of the series.

 $s_n = 1 + \dots + \frac{1}{n}$ $\geq 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \dots + \frac{1}{2^k} \qquad \text{Where the terms are grouped by powers of 2}$ $\geq \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} \qquad \text{the constant sequence of } \frac{1}{2}$

As $n \to \infty$, the above sequence of $\frac{1}{2}$ converges to ∞ , so by the comparison test, $s_n \to \infty$. Clearly if a < 1, then $\frac{1}{n^a} \le \frac{1}{n}$, so again by the comparison test $s_n = 1 + \dots + \frac{1}{n^a} \to \infty$.

(\Leftarrow): Let $\varepsilon > 0$, and let s_n be the sequence of partial sums for the series. Pick N

such that $\frac{2}{2^N} < \varepsilon$, and let $2^N < m < n < 2^L$.

$$|s_n - s_m| = \left| \frac{1}{(m+1)^a} + \dots + \frac{1}{n^a} \right|$$

$$< \left| \frac{1}{(2^N)^a} + \frac{1}{(2^N+1)^a} + \dots + \frac{1}{(2^L)^a} \right|$$

$$= \left| \left(\frac{1}{(2^N)^a} + \dots + \frac{1}{(2^{N+1}-1)^a} \right) + \dots + \left(\frac{1}{(2^{L-1})^a} + \dots + \frac{1}{(2^L-1)^a} \right) \right|$$

$$< \left| \frac{1}{2^N} + \frac{1}{2^{N+1}} + \dots + \frac{1}{2^{L-1}} \right|$$

$$= \frac{2}{2^N} - \frac{1}{2^L}$$

$$< \frac{2}{2^N}$$

$$< \varepsilon$$

So by the Cauchy criterion for convergence, s_n converges to a real number, as desired.

4

 (\Longrightarrow) : We prove the contrapositive. Let a=1. For $n\geq 3$, $\log n>1$, so it's clear to see that $\frac{1}{n\log n}\geq \frac{1}{n}$. $\sum_{n=3}^{\infty}\frac{1}{n}=\infty$, so by the comparison test, $\sum_{n=3}^{\infty}\frac{1}{n\log n}=\infty$. When a<1, $\sum_{n=3}^{\infty}\frac{1}{n(\log n)^a}\geq \sum_{n=3}^{\infty}\frac{1}{n\log n}$, so again by the comparison test, $\sum_{n=3}^{\infty}\frac{1}{n(\log n)^a}=\infty$.

(\Leftarrow): Let a > 1, and s_n be the sequence of partial sums for $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^a}$. Let $2^N < m < n < 2^L$. Then there exists some c such that $cN \leq \log m < \log n \leq cL$.

So

$$|s_n - s_m| = \left| \frac{1}{(m+1)(\log(m+1))^a} + \dots + \frac{1}{n(\log n)^a} \right|$$

$$< \left| \left(\frac{1}{2^N (\log 2^N)^a} + \dots + \frac{1}{(2^{N+1} - 1)(\log(2^{N+1} - 1))^a} \right) + \dots \right|$$

$$+ \left(\frac{1}{2^{L-1}(\log 2^{L-1})^a} + \dots + \frac{1}{(2^L - 1)(\log(2^L - 1))^a} \right) \right|$$

$$< k \left| \left(\frac{1}{2^N (2^{N+1})^a} + \dots + \frac{1}{(2^{N+1} - 1)(2^{N+1})^a} \right) + \dots \right|$$

$$+ \left(\frac{1}{2^{L-1}(2^L)^a} + \dots + \frac{1}{(2^L - 1)(2^L)^a} \right) \right| \quad \text{where } k \text{ is a constant depending on } \varepsilon$$

$$< k \left| \frac{1}{(2^{N+1})^a} + \dots + \frac{1}{(2^{L-1})^a} \right|$$

$$< k \left| \frac{1}{2^{N+1}} + \dots + \frac{1}{2^{L-1}} \right|$$

$$= k \left(\frac{2}{2^{N+1}} - \frac{1}{2^L} \right)$$

$$< \frac{k}{2^N}$$

$$= \frac{k}{2^{\log_2 \frac{k}{\varepsilon}}}$$

$$= \varepsilon$$

So s_n is Cauchy and thus convergent to a real, so $\sum_{n=2} \frac{1}{n(\log n)^a}$ converges to a real.

5

 (\Longrightarrow) : Let a=1. When n>321, $\log n \log \log n \geq 1$, so by the same argument as above, $\sum_{n=3}^{\infty} \frac{1}{n \log n \log \log n}$ converges, and so does $\sum_{n=3}^{\infty} \frac{1}{n \log n (\log \log n)^a}$ when a<1. (\Leftarrow) :

6

Let s_n be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$. We s_n converges, say $\lim_{n\to\infty} s_n = \alpha$. Then

$$\sum_{n=k}^{\infty} a_n = \left(\lim_{n \to \infty} s_n\right) - s_{k-1}$$
$$= \alpha - s_{k-1}$$

and so

$$b_k = \lim_{k \to \infty} \sum_{n=k}^{\infty} a_n$$
$$= \lim_{k \to \infty} (\alpha - s_{k-1})$$
$$= \alpha - \alpha$$
$$= 0$$

7

Let $x_0 \in \mathbb{R}$. Let $\varepsilon > 0$, and let $\delta = \varepsilon$. Then if $|x - x_0| < \delta$, $|x - x_0| < \varepsilon$. It's clear to see from the definition of g(x) that $|g(x) - g(x_0)|$ can be no greater than $|x - x_0|$, so we have

$$|g(x) - g(x_0)| \le |x - x_0| < \varepsilon$$

, and so g(x) is continuous.

8

8.a

We first show by induction that $\prod_{i=1}^{m} (1 - a_i) \ge 1 - \sum_{i=1}^{m} a_i$: When m = 1, equality holds. Assume the inequality holds for some N.

$$\prod_{i=1}^{N+1} (1 - a_i) = (1 - a_{N+1}) \prod_{i=1}^{N} (1 - a_i)$$

$$\geq (1 - a_{N+1}) \left(1 - \sum_{i=1}^{N} a_i \right)$$
 By the hypothesis
$$= 1 - a_{N+1} - \sum_{i=1}^{N} a_i + a_{N+1} \sum_{i=1}^{N} a_i$$

$$\geq 1 - \sum_{i=1}^{N+1} a_i$$

So by induction, the inequality holds.

Now,

$$\lim_{n \to \infty} \prod_{i=1}^{n} (1 - a_i) \ge \lim_{n \to \infty} \left(1 - \sum_{i=1}^{n} a_i \right)$$
$$= 1 - \lim_{n \to \infty} \sum_{i=1}^{n} a_i,$$

so $\prod_{i=1}^{\infty} (1-a_i) \ge 1 - \sum_{i=1}^{\infty} a_i$, as desired.

8.b

Let a_i be non-negative. Then $1-a_i^2 \leq 1$. Dividing both sides by $1-a_i$, we get $1+a_i \leq \frac{1}{1-a_i}$. We know, since $\sum_{i=1}^{\infty} a_i < \infty$, that $\sum_{i=k}^{\infty} a_i \to 0$. Consider $\prod_{i=k}^{\infty} (1+a_i) \leq \prod_{i=k}^{\infty} \frac{1}{1-a_i}$. $a_n \leq a_k$ for all n > k, so $\prod_{i=k}^{\infty} \frac{1}{1-a_i} \leq \left(\frac{1}{1-a_k}\right) \left(\frac{1}{1-a_k}\right) \cdots$. As $k \to \infty$, $1-a_k \to 1$, so $\left(\frac{1}{1-a_k}\right) \left(\frac{1}{1-a_k}\right) \cdots \to 1$. $\prod_{i=1}^k$ is finite, so $\prod_{i=1}^{\infty} \frac{1}{1-a_i}$ is too, and so $\prod_{i=1}^{\infty} (1+a_i)$ exists and is finite.

8.c

Each of a_1, a_2, \ldots appears as a term in the expansion of $(1 + a_1)(1 + a_2) \cdots$, so $\sum_{i=1}^{\infty} a_i \leq \prod_{i=1}^{\infty} (1 + a_i)$. Thus by the comparison test, since $\prod_{i=1}^{\infty} (1 + a_i)$ converges, so does $\sum_{i=1}^{\infty} a_i$.