重庆理工大学考试试卷

2014~ 2015 学年第二学期

		学 <u></u>	生答题不得	超过此线				
	题号 -	- =	三	四	总分	总分人		
	分数							
评卷人								
一、判断题((本大题共5小	题,每小题 2	2 分,共 10)分) (请a	生正确说法/	后面括号内画 √	,错误说法后面	面括号内画×)
方程 $ydx = (x + y^2)dy$ 是一	一阶线性微分	方程。					()
若 $\overrightarrow{a} = (1,1,1)$,则 $(\sqrt{3},\sqrt{3})$	√3,√3) 为平行	下一向量 \vec{a} 的	9单位向量	型 。			()
$\lim_{(x,y)\to(0,0)}\frac{x^2}{3x^2+y^2}=1/3 .$							()
$\oint_{L} (x^2 + y^2) ds = \pi r^2, 其口$		$+y^2=r^2.$					()
设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $x=$	2加收斂.则	该级数在 x	=1 外绝》	计收敛。			()
	(本大题共 10 $\vec{i}-2\vec{j}+\lambda\vec{k}$,				$\overset{ ightarrow}{b}$ 垂直。			
设向量 $\vec{a} = \vec{i} - \vec{j} + \vec{k}$, $\vec{b} = \vec{k}$	$\overrightarrow{i} - 2\overrightarrow{j} + \lambda \overrightarrow{k}$,	则当 λ =		寸, \overrightarrow{a} 与				
设向量 $\overrightarrow{a} = \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{b} = \overrightarrow{k}$ xoz 坐标面上的直线 $x = z$	$\overrightarrow{i}-2\overrightarrow{j}+\lambda \overrightarrow{k}$,绕 ox 轴旋转 \overrightarrow{i}	则当 λ = 而成的圆锥	 面的方程	寸, [→] 与 是		°		
设向量 $\overrightarrow{a} = \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{b} = xoz$ 坐标面上的直线 $x = z$ 直线 L: $x = 1 - t$, $y = -2 + z$	$\overrightarrow{i}-2\overrightarrow{j}+\lambda\overrightarrow{k}$,绕 ox 轴旋转 i	则当λ= 而成的圆锥 面π: -2x+	 面的方程 -4y+2z=	寸, [→] 与 :是 :3的关系		o		
设向量 $\vec{a} = \vec{i} - \vec{j} + \vec{k}$, $\vec{b} = \vec{k}$ xoz 坐标面上的直线 $x = z直线 L: x = 1 - t, y = -2 + z设 f(x - y, x + y) = y^2 - x^2,$	$\overrightarrow{i}-2\overrightarrow{j}+\lambda \overrightarrow{k}$,绕 ox 轴旋转 i 2 $t,z=t$ 与平面,则 $f(x,y)=$	则当λ= 而成的圆锥 面π: -2x+	 面的方程 - 4 <i>y</i> + 2 <i>z</i> =	寸, [→] 与 是 3的关系。	。 是		•	
设向量 $\vec{a} = \vec{i} - \vec{j} + \vec{k}$, $\vec{b} = \vec{k}$ xoz 坐标面上的直线 $x = z直线 L: x = 1 - t, y = -2 + z设 f(x - y, x + y) = y^2 - x^2,$	$\vec{i} - 2\vec{j} + \lambda \vec{k}$, 绕 ox 轴旋转 2t, z = t 与平面 ,则 $f(x, y) =$ $os y + arc sin \frac{1}{3}$	则当λ= 而成的圆锥 面π: -2x+	画的方程 - 4 <i>y</i> + 2 <i>z</i> = 混合偏导数	时, \vec{a} 与 是	· 是。 (x,y)=(1,0)	=		
二、填空题 设向量 $\vec{a} = \vec{i} - \vec{j} + \vec{k}$, $\vec{b} = xoz$ 坐标面上的直线 $x = z$ 直线 L: $x = 1 - t$, $y = -2 + z$ 设 $f(x - y, x + y) = y^2 - x^2$, 设 $z = 2x^3y^5 - 3x^2y^3 - x$ co 函数 $z = x^3 + \arctan y$ 在点 微分方程 $y'' - 6y' + 9y = e$	$\vec{i} - 2\vec{j} + \lambda \vec{k}$, 绕 ox 轴旋转 2t, z = t 与平面 ,则 $f(x, y) =$ $os y + arc \sin \frac{1}{3}$ $\vec{k}(1, \sqrt{3})$ 处沿 \vec{l}	则当 $\lambda = _{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	面的方程 - 4 <i>y</i> + 2 <i>z</i> = 混合偏导数	时, \overrightarrow{a} 与是 $=3$ 的关系。 $\frac{\partial^2 z}{\partial x \partial y}$ 。	· 是。 (x,y)=(1,0)	=		
设向量 $\vec{a} = \vec{i} - \vec{j} + \vec{k}$, $\vec{b} = \vec{k}$ xoz 坐标面上的直线 $x = z直线 L: x = 1 - t, y = -2 + z设 f(x - y, x + y) = y^2 - x^2,设 z = 2x^3y^5 - 3x^2y^3 - x co函数 z = x^3 + \arctan y 在点$	$\vec{i} - 2\vec{j} + \lambda \vec{k}$, 绕 ox 轴旋转 2t, z = t 与平面 $y = 0$ 以 $f(x, y) = 0$ 的 $y + arc \sin \frac{1}{3}$ $(1, \sqrt{3})$ 处沿 \vec{l}	则当 λ = 而成的圆锥 面 π : -2x + ,则二阶 ^指 = (3,4)方 丁设为	面的方程 - 4y + 2z = 配合偏导数	时, \overrightarrow{a} 与是 $=$ 3的关系。 $\frac{\partial^2 z}{\partial x \partial y}$ 。	· (x,y)=(1,0)	=		

重庆理工大学考试试卷

2014~ 2015 学年第二学期

班级	学号	姓名	考试科目_	高等数学[(a2)机电]	<u>A 卷</u> 闭卷	共 <u>3</u> 页
•••••	• • • • • • • • • • • • • • • • • • • •	· · · 密 · · · · · · · · · · · · · · · ·	•••• 封 •••••	·····线···	• • • • • • • • • • • • • • • • • • • •	•••••
		学生答	题不得超过此线			

得分 评卷人

三、求解下列各题(本大题共8小题,每小题6分,共48分)。

- (16) 求解微分方程 $y'' 3y' 4y = 0, y|_{x=0} = 0, y'|_{x=0} = -5$ 。
- (17) 求空间曲线 $x = \sqrt{t}$, $y = \frac{1+2t}{t}$, $z = 2t^2$ 在点(1, 3, 2)处的切线方程与法平面方程。
- (18) 设 $u = f(x^2 y^2, \sin(xy))$, 求全微分 du。
- (19) 计算 $I = \iint_D (x+y) dx dy$, 其中 D 是由 $z = x^2 + y^2$ 和 z = 1 围成的空间区域在 xoy 坐标面上投影区域 $y \ge 0$ 的部分。
- (20) 计算 $\int \int (x^2 \sin 2y + \ln^2 y) dy (x \cos 2y + 3y) dx$, 其中 $L: x^2 2x + y^2 = 0$,取顺时针方向。
- (21) 计算 $\iint_{\Sigma} z \sin y dx dy + (2-x) \sin y dy dz + 3y dz dx$,其中 Σ 是界于z = 1和z = 3之间的圆拄体 $x^2 + y^2 \le 1$ 的整个表面的外侧。
- (22) 级数 $\sum_{n=1}^{\infty} \frac{(-1)^n 5^n n!}{n^n}$ 是否收敛? 如果收敛,是绝对收敛还是条件收敛?
- (23) 将函数 $y = \frac{1}{3+x}$ 展开为 x-1 的幂级数。

重庆理工大学考试试卷

2014~ 2015 学年第 二 学期

	学号		考试和	科目 <u>。高等</u>	等数学[(a2)机电] <u>A卷</u>	<u>闭卷</u> 共 <u>3</u>	页
• • • • • • • • •	•••••	·····································	•••••• 封 ••••• 生答题不得超过此约		•••••线•••	•••••	• • • • • • • • • • •	••••
得分	评卷人	四、 应用题和 证明题 (共 22 ½	分)					
(24) 现用证	面积为 24 平方:	米的铁皮做长方形铁箱,问	如何选取长、宽、	、高才能付	使其容积最大。	(8分)		
(25)设空	医间闭区域由曲	面 $x^2 + y^2 - z^2 = 0$ 和球面 x^2	$+y^2+z^2=2$ 的下	下半部分所	所围成,求该团	区域的体积	l。(7分)	
(26) 证明	$\exists : \int_0^2 dx \int_{\frac{x}{2}}^1 \frac{\sin x}{v}$	$\frac{y}{dy} dy = 2(1 - \cos 1) \circ (7 \ \%)$						
	2 9							