Neural Networks [RN2] Sec 20.5 [RN3] Sec 18.7

CS 486/686
University of Waterloo
Lecture 17: June 26, 2017

Outline

- Neural networks
 - Perceptron
 - Supervised learning algorithms for neural networks

Brain

- · Seat of human intelligence
- · Where memory/knowledge resides
- Responsible for thoughts and decisions
- · Can learn
- Consists of nerve cells called neurons

Neuron

Artificial Neural Networks

- Idea: mimic the brain to do computation
- · Artificial neural network:
 - Nodes (a.k.a. units) correspond to neurons
 - Links correspond to synapses
- · Computation:
 - Numerical signal transmitted between nodes corresponds to chemical signals between neurons
 - Nodes modifying numerical signal correspond to neurons firing rate

ANN Unit

- For each unit i:
- Weights: W_{ji}
 - Strength of the link from unit j to unit i
 - Input signals a_j weighted by W_{ji} and linearly combined: $in_i = \Sigma_j \ W_{ji} \ a_j$
- Activation function: g
 - Numerical signal produced: $a_i = g(in_i)$

ANN Unit

Activation Function

- Should be nonlinear
 - Otherwise network is just a linear function
- · Often chosen to mimic firing in neurons
 - Unit should be "active" (output near 1) when fed with the "right" inputs
 - Unit should be "inactive" (output near 0)
 when fed with the "wrong" inputs

Common Activation Functions

Threshold

Sigmoid

$$g(x) = 1/(1+e^{-x})$$

Logic Gates

- McCulloch and Pitts (1943)
 - Design ANNs to represent Boolean fns
- What should be the weights of the following units to code AND, OR, NOT?

Network Structures

- Feed-forward network
 - Directed acyclic graph
 - No internal state
 - Simply computes outputs from inputs
- Recurrent network
 - Directed cyclic graph
 - Dynamical system with internal states
 - Can memorize information

Feed-forward network

 Simple network with two inputs, one hidden layer of two units, one output unit

$$a_5 = g(W_{3,5}a_3 + W_{4,5}a_4)$$

$$= g(W_{3,5}g(W_{1,3}a_1 + W_{2,3}a_2) + W_{4,5}g(W_{1,4}a_1 + W_{2,4}a_2))$$

$$(CS486/686 Lecture Slides (c) 2017 P. Poupart)$$

Perceptron

· Single layer feed-forward network

Threshold Perceptron Hypothesis Space

- Hypothesis space h_W:
 - All binary classifications with parameters W s.t.

$$a \bullet W \ge 0 \rightarrow 1$$

 $a \bullet W < 0 \rightarrow 0$

 Since a W is linear in W, perceptron is called a linear separator

Threshold Perceptron Hypothesis Space

· Are all Boolean gates linearly separable?

Sigmoid Perceptron

· Represent "soft" linear separators

Sigmoid Perceptron Learning

- Formulate learning as an optimization search in weight space
 - Since g differentiable, use gradient descent
- · Minimize squared error:

$$E = 0.5 Err^2 = 0.5 (y - h_W(x))^2$$

- · x: input
- · y: target output
- · hw(x): computed output

Perceptron Error Gradient

• E = 0.5 Err² = 0.5 $(y - h_W(x))^2$

•
$$\partial E/\partial W_{j} = \operatorname{Err} \partial \operatorname{Err}/\partial W_{j}$$

= $\operatorname{Err} \partial (y - g(\Sigma_{j} W_{j}x_{j}))/\partial W_{j}$
= $-\operatorname{Err} g'(\Sigma_{j} W_{j}x_{j}) x_{j}$

• When g is sigmoid fn, then g' = g(1-g)

Perceptron Learning Algorithm

- Perceptron-Learning(examples,network)
 - Repeat
 - For each e in examples do

```
in \leftarrow \Sigma_{j} W_{j} x_{j}[e]

Err \leftarrow y[e] - g(in)

W_{j} \leftarrow W_{j} + \alpha \text{ Err } g'(in) x_{j}[e]
```

- Until some stopping criteria satisfied
- Return learnt network
- N.B. α is a learning rate corresponding to the step size in gradient descent

Multilayer Feed-forward Neural Networks

- Perceptron can only represent (soft) linear separators
 - Because single layer
- With multiple layers, what fns can be represented?
 - Virtually any function!

$$a_i = g(\sum_j W_{ji}g(\sum_k W_{kj}a_k))$$

 Adding two sigmoid units with parallel but opposite "cliffs" produces a ridge

 Adding two intersecting ridges (and thresholding) produces a bump

Network output

- By tiling bumps of various heights together, we can approximate any function
- Theorem: Neural networks with at least one hidden layer of sufficiently many sigmoid units can approximate any function arbitrarily closely.

Common Activation Functions

- Threshold: $h(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$
- Sigmoid: $h(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$
- Gaussian: $h(x) = e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$
- Hyperbolic tangent: $h(x) = \tanh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$
- Identity: h(x) = x

Weight Training

- Parameters: $< W^{(1)}, W^{(2)}, ... >$
- · Objectives:
 - Error minimization
 - Backpropagation (aka "backprop")
 - Maximum likelihood
 - Maximum a posteriori
 - Bayesian learning

Least squared error

Error function

$$E(\mathbf{W}) = \frac{1}{2} \sum_{n} E_{n}(\mathbf{W})^{2} = \frac{1}{2} \sum_{n} ||f(\mathbf{x}_{n}, \mathbf{W}) - y_{n}||_{2}^{2}$$

where x_n is the input of the n^{th} example y_n is the label of the n^{th} example $f(x_n, W)$ is the output of the neural net

Sequential Gradient Descent

• For each example (x_n, y_n) adjust the weights as follows:

$$W_{ji} \leftarrow W_{ji} - \alpha \frac{\partial E_n}{\partial W_{ji}}$$

- · How can we compute the gradient efficiently given an arbitrary network structure?
- · Answer: backpropagation algorithm

Backpropagation

- Back-Prop-Learning(examples,network)
 - Repeat
 - For each example e do
 - Compute output a of each node in **forward** pass
 - » Input nodes: a_i ← $x_i[e]$
 - » Other nodes: $in_i \leftarrow \sum_i W_{ii} a_i$ and $a_i \leftarrow g(in_i)$
 - Compute modified error Δ of each node in **backward** pass (l = L to 1)
 - » Output nodes: Δ_i ← $g'(in_i)$ ($y_i[e] a_i$)
 - » For each node j in layer $l: \Delta_j \leftarrow g'(in_j) \sum_i W_{ji} \Delta_i$
 - » For each node *i* in layer l + 1: W_{ji} ← $W_{ji} + \alpha a_j \Delta_i$
 - Until some stopping criteria satisfied
 - Return learnt network

Forward phase

- Propagate inputs forward to compute the output of each unit
- Output a_i at unit i:

$$a_i = g(in_i)$$
 where $in_i = \sum_j W_{ji} a_j$

Backward phase

- Use chain rule to recursively compute gradient
 - For each weight W_{ji} : $\frac{\partial E_n}{\partial W_{ji}} = \frac{\partial E_n}{\partial i n_i} \frac{\partial i n_i}{\partial W_{ji}} = \Delta_i a_j$
 - Let $\Delta_i \equiv \frac{\partial E_n}{\partial i n_i}$ then

$$\Delta_i = \begin{cases} g'(in_i)(y_i - a_i) & \text{base case: } i \text{ is an output unit} \\ g'(in_i) \sum_j W_{ji} \Delta_j & \text{recursion: } i \text{ is a hidden unit} \end{cases}$$

- Since
$$in_i = \sum_j W_{ji} a_j$$
 then $\frac{\partial in_i}{\partial W_{ji}} = a_j$

Simple Example

- · Consider a network with two layers:
 - Hidden nodes: $g(x) = \tanh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$
 - Tip: $tanh'(x) = 1 tanh^2(x)$
 - Output node: g(x) = x
- · Objective: squared error

Simple Example

Forward propagation:

- Hidden units: $in_j = \sum_k W_{kj} a_k$ $a_j = \tanh(in_j)$
- Output units: $in_i = \sum_j W_{ji} a_j$ $a_i = \tanh(in_i)$

Backward propagation:

- Output units: $\Delta_i = a_i y_i$
- Hidden units: $\Delta_j = (1 \tanh^2(in_j)) \sum_i W_{ji} \Delta_i$

· Gradients:

- Hidden layers: $\frac{\partial E_n}{\partial W_{kj}} = a_k \Delta_j = a_k (1 \tanh^2(in_j)) \sum_i W_{ji} \Delta_i$
- Output layer: $\frac{\partial E_n}{\partial W_{ji}} = a_j \Delta_i = a_j (a_i y_i)$

Non-linear regression examples

- Two layer network:
 - 3 tanh hidden units and 1 identity output unit

$$y = x^2$$

$$y = \int_{-\infty}^{x} \delta(t)dt$$

Analysis

- Efficiency:
 - Fast gradient computation: linear in number of weights
- Convergence:
 - Slow convergence (linear rate)
 - May get trapped in local optima
- · Prone to overfitting
 - Solutions: early stopping, regularization (add $||w||_2^2$ penalty term to objective)

Neural Net Applications

- Neural nets can approximate any function, hence 1000's of applications
 - Speech recognition
 - Character recognition
 - Paint-quality inspection
 - Vision-based autonomous driving
 - Etc.