

知识抽取:命名实体识别

(Knowledge Extraction: Named Entity Recognition)

Mind or Machines
Cognitive Science Changing
Artificial Intelligence

汪 鹏

pwang@seu.edu.cn

东南大学 KGCODE实验室

东南大学 计算机科学与工程学院/人工智能学院

提纲

- 一、实体识别基本概念
- 二、基于规则和词典的方法
- 三、基于机器学习的方法
- 四、基于深度学习的方法
- 五、基于半监督学习的方法
- 六、基于迁移学习的方法
- 七、基于预训练的方法

语言理解是人工 智能领域皇冠上 的明珠。

比尔盖茨

如果我有10果我元会专然的果无之建门语言,一究是正研言目

Michael Jordan

下一个五年最值 得关注的领域是 如何理解视频和 文字(2014)

Geoff Hinton

Yann Lecun

命名实体识别问题

实体识别的任务是识别出文本中三大类命名实体(实体类、时间类和数字类),具体如下所示:

北京时间3月23日0时50分许,美国总统特朗普在白宫正式签署对华贸易备忘录。特朗普当场宣布,将有可能对

式签署对华贸易备忘录。特朗普当场宣布,将有可能对600亿美元的中国出口商品征收关税。

命名实体识别标注

序列标注体系:

Token	Ю	ВЮ	BIOES	вмежо	
特	I-PER	B-PER	B-PER	B-PER	
朗	I-PER	I-PER	I-PER	M-PER	
普	I-PER	I-PER	E-PER	E-PER	
在	0	0	0	0	
白	I-LOC	B-LOC	B-LOC	B-LOC	
宫	I-LOC	I-LOC	E-LOC	E-LOC	
签	0	0	0	0	
署	0	0	0	0	

基于规则和词典的实体识别

基于规则和词典的命名实体识别流程:

- 预处理
 - ▶ 划分句子
 - 分词+词性标注
 - > 构建词典
- 识别实体边界
 - 初始化边界:词典匹配、拼写规则、特殊字符、特征词和标点符号等
- 命名实体分类
 - 使用分类规则
 - > 基于词典的分类

基于规则和词典的实体识别

词典主要在三个地方使用:

- 在分词时辅助分词
- 实体抽取时根据词典匹配实体
- 基于词典对实体分类

基于规则和词典的实体识别

词典的构建

基于统计分析得到候选词典,然后使用人工做筛选,同时人工提取领域中重要的术语和复用领域现有词典。现有的综合中文语义词库包括: CSC、hownet和Chinese Open Wordnet。

词典构建统计分析方法:

- 去停用词后统计词频,选取一定范围的名词
- 关键词抽取:TF-IDF、TextRank
- 借助维基百科页面的分类系统
- 特征词分词: 词共现、特定模式
- 词性分析: 从标记为人名(nh)、组织(ni)、日期(nt)等词中抽取
- 依存句法分析

基于机器学习的实体识别

基于机器学习的方法主要包括:

- 隐马尔科夫模型(Hidden Markov Model, HMM)
- 最大熵马尔科夫模型(Maximum Entropy Markov Model, MEMM)
- 条件随机场(Conditional Random Fields, CRF)
- 支持向量机(Support Vector Machine, SVM)

基于机器学习的实体识别

- 隐马尔可夫模型
 - _ 有向图模型
 - _ 生成模型
 - 特征分布独立假设

基于机器学习的实体识别

- 条件随机场模型
 - 无向图模型
 - 判别式模型
 - 无特征分布独立假设

NN/CNN + CRF模型表现

System	F1
Ando and Zhang (2005)	89.31%
Florian et al. (2003)	88.76%
Kudo and Matsumoto (2001)	88.31%

English NER Benchmark model (CoNLL-2003 test set).

Task		Benchmark	SENNA
Part of Speech (POS)	(Accuracy)	97.24 %	97.29 %
Chunking (CHUNK)	(F1)	94.29 %	94.32 %
Named Entity Recognition (NER)	(F1)	89.31 %	89.59 %
Parse Tree level 0 (PT0)	(F1)	91.94 %	92.25 %
Semantic Role Labeling (SRL)	(F1)	77.92 %	75.49 %

English NER results (CoNLL-2003 test set).

Collobert et al.[2011]

Bi-LSTM+CRF

Lample et al.[2016]

Bi-LSTM+CRF模型表现

Model	$\mathbf{F_1}$
Collobert et al. (2011)*	89.59
Lin and Wu (2009)	83.78
Lin and Wu (2009)*	90.90
Huang et al. (2015)*	90.10
Passos et al. (2014)	90.05
Passos et al. (2014)*	90.90
Luo et al. (2015)* + gaz	89.9
Luo et al. (2015) * + gaz + linking	91.2
Chiu and Nichols (2015)	90.69
Chiu and Nichols (2015)*	90.77
LSTM-CRF (no char)	90.20
LSTM-CRF	90.94

English NER results (CoNLL-2003 test set).

Lample et al.[2016]

(a) Bi-LSTM-CNN-CRF

Bi-LSTM-CNN-CRF

(b) CNN获得字符级别表示

Ma and Hovy.[2016]

Bi-LSTM-CNN-CRF 模型表现

Model	F1
Chieu and Ng (2002)	88.31
Florian et al. (2003)	88.76
Ando and Zhang (2005)	89.31
Collobert et al. (2011) [‡]	89.59
Huang et al. (2015) [‡]	90.10
Chiu and Nichols (2015) [‡]	90.77
Ratinov and Roth (2009)	90.80
Lin and Wu (2009)	90.90
Passos et al. (2014)	90.90
Lample et al. (2016) [‡]	90.94
Luo et al. (2015)	91.20
This paper	91.21

English NER results (CoNLL-2003 test set).

Ma and Hovy.[2016]

基于半监督学习的实体识别

TagLM模型主要流程

Language Model Augmented Sequence Taggers(TagLM)

- a. 使用海量无标注语料训练Bi-LSTM
- b. 获取LM embedding和Word embedding
- c. 将词的向量和语言模型向量 混合输入到序列标注模型中 进行预测

Peters et al.[2017]

基于半监督学习的实体识别

TagLM模型结构

Peters et al.[2017]

基于半监督学习的实体识别

TagLM 模型表现

Model	$F_1 \pm$ std
Chiu and Nichols (2016)	90.91 ± 0.20
Lample et al. (2016)	90.94
Ma and Hovy (2016)	91.37
Our baseline without LM	90.87 ± 0.13
TagLM	91.93 ± 0.19

English NER results (CoNLL-2003 test set).

在教育和心里学上,迁移学习是基于人类已有的经验来研究人类的行为、学习或表现。探讨人类如何从一个环境中迁移到具有相似特性的另一个环境中。任何一种学习都要受到学习者已有知识经验、技能和态度的影响。只要有学习,就有迁移。

迁移学习的核心在于找到新问题和原问题之间的相似性。迁 移学习属于机器学习的一个种类,但在如下几个方面又有别于 传统的机器学习。

比较项目	传统机器学习	迁移学习
数据分布	训练和测试数据服从相同的分布	训练和测试数据服从不同的分布
数据标注	需要足够的数据标注来训练模型	不需要足够的数据标注
模型	每个任务分别建模	模型可以在不同任务之间迁移

迁移学习的三种模式: 跨域、跨应用、跨语言

(a) Base model: both of Char NN and Word NN can be implemented as CNNs or RNNs.

(b) Transfer model T-A: used for cross-domain transfer where label mapping is possible.

Yang et al.[2017]

(c) Transfer model T-B: used for cross-domain transfer with disparate label sets, and cross-application transfer.

(d) Transfer model T-C: used for cross-lingual transfer.

Yang et al.[2017]

迁移学习模型表现

Source	Target	Model	Setting	Transfer	No Transfer	Delta
PTB	Twitter/0.1	T-A	dom	83.65	74.80	8.85
CoNLL03	Twitter/0.1	T-A	dom	43.24	34.65	8.59
PTB	CoNLL03/0.01	T-B	app	74.92	68.64	6.28
PTB	CoNLL00/0.01	T-B	app	86.73	83.49	3.24
CoNLL03	PTB/0.001	T-B	app	87.47	84.16	3.31
Spanish	CoNLL03/0.01	T-C	ling	72.61	68.64	3.97
CoNLL03	Spanish/0.01	T-C	ling	60.43	59.84	0.59
PTB	Genia/0.001	T-A	dom	92.62	83.26	9.36
CoNLL03	Genia/0.001	T-B	dom&app	87.47	83.26	4.21
Spanish	Genia/0.001	T-C	dom&app&ling	84.39	83.26	1.13
PTB	Genia/0.001	T-B	dom	89.77	83.26	6.51
PTB	Genia/0.001	T-C	dom	84.65	83.26	1.39

Yang et al.[2017]

基于预训练的实体识别

Devlin et al.[2018]

基于预训练的实体识别

BERT模型重新设计了语言模型预训练阶段的目标任务, 提出了遮挡语言模型(Masked LM)和下一个句子预测(NSP)。

Masked LM是在输入的词序列中,随机选15%的词进行 [MASK],然后在这15%的词中,有80%的词被真正打上 [MASK]标签,有10%的词被随机替换成任意词汇,10%的词不做任何处理。模型的任务是去正确预测带有[MASK]标签的词。相比于传统的语言模型,Masked LM可以从前后两个方向预测这些带有[MASK]标签的词。

NSP实质上是一个二分类任务,以50%的概率输入一个句子和下一个句子的拼接,标签属于正例;另外50%的概率输入一个句子和非下一个随机句子的拼接,对应标签为负例。

基于预训练的实体识别

BERT模型表现

System	Dev F1	Test F1
ELMo+BiLSTM+CRF	95.7	92.2
CVT+Multi (Clark et al., 2018)	-	92.6
BERT _{BASE}	96.4	92.4
BERT _{LARGE}	96.6	92.8

English NER results (CoNLL-2003).

Devlin et al.[2018]

实体识别的应用示例

东大理解实体识别优化测试结果										
			优化前(KnowledgeGraph-V1.0)				KnowledgeGraph-V1.1优化结果(红色:下降、绿色:提升)			
实体类型		测试实体数量	识别成功数量	实体识别正确率	综合	测试实体数量	识别成功数量	实体识别正确率	综合	
	两字姓名_常见姓氏		2136	1949	91.25%	90. 59%	2128	1973	92. 72%	94.32%
	两字姓名_罕见姓氏		618	528	85. 44%		585	539	92.14%	
姓名NAME	三字姓名_常见姓氏		2129	2055	96. 52%		2122	2054	96.80%	
	三字姓名_罕见姓氏		571	530	92. 82%		604	579	95. 86%	
	复姓姓名		606	428	70.63%		621	571	91.95%	
机构COMPANY	机构全称(机构后线	羅有一定规则的)	4077	3923	96. 22%	88. 24%	4029	3653	90.67%	81.01%
THAT THE CHILD IN T	机构简称		983	542	55.14%	00.24%	1031	446	43.26%	01. VI»
	nplace籍贯地址		1484	1196	80.59%		1434	1393	97.14%	
地址ADDR	hplace(用户户口地址包) 包含固定格式内容的地址		1408	945	67.12%	68. 42%	1435	1043	72. 68%	80. 23%
	无固定格式内容的其他地址		1868	1116	59. 74%		1891	1383	73.14%	
		Tel	1440 1440 10		100.	00%	1438	1438	100.	.00%
		enail	1400	1400	100.		1397	1397	100.	00%
	强规则账号	idcard	1280	1280	100.		1276	1276	100.	00%
账号ACCOUNT		vxid开头的微信	599	599	100.	00%	578	578	100.	00%
		车牌号			1		11	10	90.	91%
	非强规则账号	qq	1480	1479	99.	93%	在1.0版本的基础上新增了: QQ群、微信群、微博、京东、淘宝			
	(需指明账号类型) 非wxid开头的微信		601	601	100.	00%	、支付宝、抖音共7种非强规则账号识别,测试情况见下表			况见下表

Spanish

English

Obrigado

Brazilian Portuguese

Grazie Italian

Danke German

> Merci French

Tamil

ありがとうございました

감사합니다

Korean