

Sujet Bacc PC série D avec corrigé - Session 2021

1. Chimie organique

 L'hydratation d'un alcène linéaire A de masse molaire M(A) = 56gmol-1 donne deux produits B et C dont B est le produit majoritaire.

Quelle est la formule brute et la formule semi-développée de A. Nommer les produits B et C.

2. L'oxydation ménagée du butan-1-ol avec une solution de permanganate de potassium (K+, MnO4-) en milieu acide, donne un produit D qui ne réagit pas avec le 2,4-DNPH.

Écrire l'équation bilan de la réaction d'oxydoréduction après avoir identifié le composé D.

3. On fait réagir l'acide éthanoïque avec le butan-2-ol.

Écrire l'équation bilan de la réaction puis donner le nom du produit obtenu.

On donne : $M(H) = 1 \text{gmol}^{-1}$; $M(C) = 12 \text{g.mol}^{-1}$; $M(O) = 16 \text{g.mol}^{-1}$

$$E^{\circ}(MnO_4^{-}/Mn^{2+}) > E^{\circ}(D/C_4H_{10}O)$$

1. FB et FSD de A

$$M = 14n = 56g.mol.L^{-1} \rightarrow n = 4$$
 FB : C_4H_8

FSD de A :
$$H_3C-CH_2-CH=CH_2$$

FSD et nom de B :
$$CH_3 - CH_2 - CHOH - CH_3$$
 butan-2-ol

2. Identification de D

D est un acide carboxylique : CH₃ – CH₂ – COOH acide butanoique

Équation bilan de la réaction :

$$C_4H_{10}O + H_2O \longrightarrow C_4H_8O_2 + 4H^+ + 4e^-$$

$$\underline{MnO_4^- + 8H^+ + 5e^-} \longrightarrow \underline{Mn^{2+} + 4H_2O}$$
 $5C_4H_{10}O + 4MnO_4^- + 12H^+ \longrightarrow 5C_4H_8O_2 + 4Mn^{2+} + 11H_2O$

3. Équation bilan estérification

$$H_3C-C \nearrow O + CH_3-CHOH-CH_3 \Rightarrow H_3C-C \nearrow O -HC-CH_2-CH_3 H_2O$$

Éthanoate de 1-méthyl propyle

2. Chimie générale

Date de version : 20/08/2021

A 25°C, une solution d'acide méthanoïque a un pH = 2,4. Le pKa du couple (HCOOH/HCOO⁻) est égal à 3,8.

1. Calculer les concentrations molaires des différentes espèces chimiques présentes autre que l'eau.

- 2. On ajoute un volume V_B d'une solution d'hydroxyde de sodium de concentration molaire $C_B = 0,1 \text{molL}^{-1}$ dans un volume $V_A = 10 \text{cm}^3$ d'une solution d'acide méthanoique de concentration molaire $C_A = 0,1 \text{mol.L}^{-1}$.
 - a- Écrire l'équation bilan de la réaction qui se produit.
- b- Calculer le volume V_B de la solution d'hydroxyde de sodium qu'il faut ajouter pour que le pH du mélange soit égal au p K_A du couple (HCOOH/HCOO $^-$)
 - c- Donner la nature et la caractéristique de cette solution.

1.

Espèces chimiques présentes : HCOOH, H₃O⁺, HCOO⁻, OH⁻

$$[H_3O^+] = 10^{-pH} = 3,98.10^{-3} \text{mol.L}^{-1}$$

$$[OH^{-}] = \frac{10^{-pH}}{[H_{3}O^{+}]} = 2,5.10^{-12} \text{mol.L}^{-1}$$

électroneutralité : $[HCOO^{-}] + [OH^{-}] = [H_3O^{+}]$

$$[OH^{-}] < < [H_3O^{+}]$$

$$[HCOO^{-}] = [H_3O^{+}] = 3,98.10^{-3} \text{mol.L}^{-1}$$

$$pH = pK_A + \log \frac{[HCOO^{-}]}{[HCOOH]} \rightarrow [HCOOH] = \frac{[HCOO^{-}]}{10^{pH - pK_A}} = 0,1 \, mol. L^{-1}$$

2. a- Équation bilan de la réaction

b- Volume de la solution d'hydroxyde de sodium

pH = pKA demi-équivalence

$$n_B = \frac{1}{2}n_A$$
 \rightarrow $C_B V_B = \frac{1}{2}C_A V_A$ \rightarrow $V_B = \frac{1}{2}\frac{C_A V_A}{C_B} = 5 cm^3$

c- Nature et caractéristique de cette solution : solution tampon

caractéristique : dilution modérée, ajout modéré d'un acide ou d'une base ne change pas son pH

3. Optique géométrique

Une lentille mince L_1 de centre optique O a pour distance focale f $^{\prime}_1$ = 4cm.

1. Calculer la vergence C₁ de la lentille

Date de version : 20/08/2021

- 2. Déterminer par calcul les caractéristiques (nature,position,sens et grandeur) de l'image A'B' d'un objet AB de hauteur 1cm placé à 8cm devant L₁.
- 3. On accole la lentille L_1 à une autre lentille mince L_2 de distance focale f L_2 . Le système accolé obtenu a pour vergence L_2 0 = 5 L_2 1.

Déterminer la distance focale f '2 de la lentille L2 et en déduire sa nature.

1.
$$C_1 = \frac{1}{f'_1} = 25 \delta$$

2. Caractéristiques de l'image A'B'

$$\overline{OA'} = \frac{f'_1 \overline{OA}}{f'_1 + \overline{OA}} = 8 cm$$

 $\overline{OA'} = \frac{f'_1 \overline{OA}}{f'_1 + \overline{OA}} = 8 cm$ A'B' image réelle qui se situe à 8cm derrière L₁.

Sens et grandeur :
$$\gamma = \frac{\overline{OA'}}{\overline{OA}} = -1$$

A'B' image renversée

$$\overline{A'B'} = -\overline{AB} = -1cm$$
 même taille que l'objet

3. Distance focale f '2 et nature de L2.

$$C = C_1 + C_2$$

$$\rightarrow$$

$$\frac{1}{f'_{2}} = C - \frac{1}{f'_{1}}$$

$$\rightarrow$$

$$C = C_1 + C_2$$
 $\rightarrow \frac{1}{f'_2} = C - \frac{1}{f'_1}$ $\rightarrow f'_2 = \frac{f'_1}{f'_1 C - 1} = -5.10^{-2} m$

L₂ est une lentille divergente.

4. Physique nucléaire

Le Bismuth $\frac{210}{83}$ Bi est radioactif β- de période T = 10jrs.

- 1. Écrire l'équation traduisant cette désintégration et préciser les lois utilisées.
- 2. Un échantillon contient une masse m0 = 8mg de Bismuth à la date t = 0.
 - a- Déterminer la masse m_1 de l'échantillon restant à la date t_1 = 30jrs.
 - b- Au bout de combien de temps exprimé en jours, 90% de ces noyaux seront désintégrés?

On donne: masse molaire atomique du Bismuth M(Bi) = 210gmol⁻¹

$$ln2 = 0.70$$

$$ln10 = 2,30$$

Symbole	Pb	Bi	Po	At
Numéro atomique	82	83	84	85

1. Équation de désintégration

Lois utilisées : conservation de nombre de masse et de nombre de charge

$$^{210}_{83}Bi \rightarrow ^{210}_{84}Po + ^{0}_{-1}e$$

2. a- Masse restant m_1 à t_1 = 30jrs

$$n = \frac{t_1}{T} = \frac{30}{10} = 3$$

$$\rightarrow$$

$$n = \frac{t_1}{T} = \frac{30}{10} = 3$$
 \rightarrow $m_1 = \frac{m_0}{2^3} = 1 \, mg$

b- Durée de 90% de noyaux désintégrés

$$N = N_0 e^{-\lambda t} = 0.1 N_0$$

$$N = N_0 e^{-\lambda t} = 0.1 N_0$$
 $t = \frac{-1}{\lambda} \ln 0.1 = \frac{-Tx \ln 0.1}{\ln 2} = 32.85 \ jrs$

2eme méthode : $N_0 = N_0 (1 - e^{-\lambda t}) = 0.9N_0$ \rightarrow $t = \frac{-T}{\ln 2} \ln 0.1$

5. Électromagnétisme

Partie A

Un électron de masse m = $9,1.10^{-31}$ kg et de charge q = -e = -1,6. 10^{-19} C est accéléré entre deux plaques A et B . Il part de l'électrode A en O_1 sans vitesse initiale et passe en O_2 avec une vitesse $\vec{v_0}$ d'intensité v_0 = $1,5.10^6$ m.s⁻¹. Il entre ensuite dans la région où règne un champ magnétique \vec{B} d'intensité B = 0,2T avec la vitesse $\vec{v_0}$ précédente. (voir figure). Le poids de l'électron est négligeable devant les autres forces.

- 1. Donner la direction et le sens du vecteur champ électrique \vec{E} , puis calculer son intensité si la distance entre les deux plaques est égale à 10cm.
- 2. a- Reproduire le schéma et représenter la force de Lorentz \vec{F} et le sens du champ magnétique \vec{B} pour que l'électron sorte en C ,
 - b- Le mouvement de l'électron dans le champ magnétique \vec{B} est circulaire uniforme.

Montrer que le rayon de sa trajectoire est $R = \frac{mv_0}{eB}$

1. Caractéristiques de \vec{E}

⟨-direction perpendiculaire aux deux électrodes⟩ -sens de B vers A

Intensité du champ \vec{E} TEC : EC₂ – EC₁ = W_{O102}(\vec{F}_e)

$$\frac{1}{2}mv_0^2 = -e(V_A - V_B) = e(V_B - V_A) = eU_{AB}$$
 U_{AB} = Ed

$$\frac{1}{2}mv_0^2 = eEd \rightarrow E = \frac{mv_0^2}{2ed} = 63.98 V/m$$

2. a- Schéma représentative du champ \vec{B} et la force de Lorentz \vec{F}

$$\vec{F}_m = m\vec{a}$$

b- TCI
$$\vec{F}_m = m\vec{a}$$
 $\vec{F} \begin{pmatrix} F_t = 0 \\ F_n = F_m \end{pmatrix}$ $\vec{a} \begin{pmatrix} a_t \\ a_n \end{pmatrix}$

$$\vec{a} \begin{pmatrix} a_t \\ a_n \end{pmatrix}$$

$$0 = ma_t$$

$$\rightarrow$$
 $a_t = \frac{dv}{dt} = 0$ \rightarrow v = cte

$$\rightarrow$$
 v = cte

$$F_m = ma_n$$

$$evB = \frac{mv^2}{R}$$

projection suivant n'n
$$F_m = ma_n \rightarrow evB = \frac{mv^2}{R} \rightarrow R = \frac{mv}{eB} = 4,26.10^{-5} m$$

MU

Partie B

Un dipôle AB comprend en série un conducteur ohmique de résistance R = 200Ω , une bobine de résistance interne négligeable, d'inductance L = 0,5H et un condensateur de capacité C = 0,5µF. On applique aux bornes de ce dipôle une tension sinusoïdale de valeur efficace U = 50V, de fréquence N variable.

- 1. Faire le schéma du circuit en précisant les sens du courant d'intensité instantanée i(t) et de la tension instantanée u(t) aux bornes du dipôle AB.
- 2. Pour une valeur N₀ de la fréquence à la résonance d'intensité, déterminer :
 - a- l'impédance Z de ce circuit et l'intensité efficace I₀.
 - b- les valeurs des tensions efficaces UR, UL et UC aux bornes de chaque composant.
- 1. Schéma du circuit

2. a- Impédance Z et intensité efficace I₀

à la résonance $Z = R = 200\Omega$

$$Z = R = 200\Omega$$

$$I_0 = \frac{U}{Z} = 0,25 A$$

b- Tension efficace aux bornes de chaque composant

$$U_{R} = U = 50V$$

$$U_L = L\omega_0 I_0$$
 avec

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$U_L = L\omega_0 I_0$$
 avec $\omega_0 = \frac{1}{\sqrt{LC}}$ \rightarrow $U_L = U_C = \frac{U}{R} \sqrt{\frac{L}{C}} = 250 V$

6. Mécanique

Partie A

Un solide (S) de masse m = 50g de dimension négligeable peut glisser sur une piste ABCD située dans un plan vertical.

- AB est une des plus grande pente d'un plan incliné formant un angle $\alpha = 30^{\circ}$ par rapport à l'horizontale, de longueur AB = 1,6m.

- BCD est une portion de cercle de centre I et de rayon r = 0,9m. C'est situé sur la verticale passant par I.

Le solide (S) part du point A sans vitesse initiale.

- 1. Déterminer la vitesse du solide (S) en B puis en D.
- 2. Calculer l'intensité de la réaction \vec{R} exercée par la piste sur (S) en D.
- 3. On néglige la résistance de l'air et on prend v₀ = 3m.s⁻¹.

A partir du point D, le solide (S) tombe dans le vide avec une vitesse $\vec{v_0}$. Le point C est situé à la hauteur h = 1,55m par rapport au sol horizontal.

Établir l'équation cartésienne de la trajectoire du mouvement de (S) à partir du point D dans le repère (xOy).

1. Vitesse du solide (S) au point B

TEC:
$$\frac{1}{2}mv_B^2 - \frac{1}{2}mv_A^2 = W_{AB}(\vec{P}) + W_{AB}(\vec{R}) \rightarrow \frac{1}{2}mv_B^2 = mgABsin\alpha \rightarrow v_B = \sqrt{\frac{1}{2}qABsin\alpha} = 4m.s^{-1}$$

2. Intensité de la réaction \vec{R}

TCI:
$$\vec{R} + \vec{P} = m\vec{a}$$
 projection sur n'n : R – mg sin α = ma_N

R = m[gsin
$$\alpha$$
 + a_N] \rightarrow $R=m[gsin\alpha + \frac{v_0^2}{r}]=0.75N$

3. Équation cartésienne

$$\vec{a} = \vec{g} = c\vec{t}e \qquad \vec{a} \begin{pmatrix} a_x = 0 \\ a_y = -g \end{pmatrix} \qquad \vec{v_D} \begin{pmatrix} v_D \sin \alpha = \frac{3}{2} \\ v_D \cos \alpha = \frac{\sqrt{3}}{2} \end{pmatrix} \qquad \overrightarrow{OM_0} \begin{pmatrix} x_D = 0 \\ y_D = h + r(1 - \sin \alpha) = 2 \end{pmatrix}$$

$$\vec{OM} \begin{pmatrix} x = \frac{3}{2}t \\ y = -5t^2 + \frac{\sqrt{3}}{2}t + 2 \end{pmatrix} \qquad t = \frac{2x}{3} \qquad y = -2,22x^2 + 0,58x + 2$$

Partie B

Un système (S) est constitué par un cerceau de centre O , de masse M et de rayon r et d'une tige homogène de masse $m=\frac{M}{2}$, de longueur I = 2r , soudée diamétralement à l'intérieur du cerceau.Le système est suspendu en O par l'intermédiaire d'un fil de torsion C = 1,75N.m.rad⁻¹ (voir figure).

- 1. Vérifier que le moment d'inertie du système { cerceau + tige } par rapport à l'axe (Δ) passant par O est $J_{\Delta} = \frac{7}{6} M r^2$
- 2. On écarte le système { cerceau. + tige } d'un angle petit $\theta 0 = 0,1$ rad par rapport à la position d'équilibre et on l'abandonne sans vitesse initiale à l'instant t = 0s.
 - a- Établir l'équation différentielle du mouvement de ce système (S)
 - b- Écrire l'équation horaire du mouvement.

On donne: M = 300g; r = 5cm

1. Moment d'inertie { cerceau + tige }

$$J_{\Delta} = J_{C} + J_{T} = Mr^{2} + \frac{1}{12} \frac{M}{2} (2r)^{2} \qquad \rightarrow \qquad J_{\Delta} = \frac{7}{6} Mr^{2} \quad \text{cqfd}$$

2. a- Équation différentielle

TAA:
$$\mu_{\Delta}(\vec{P}) + \mu_{\Delta}(\vec{R}) + \mu_{C} = J_{\Delta}\ddot{\theta} \rightarrow \ddot{\theta} + \frac{C}{J_{\Delta}}\theta = 0 \rightarrow \ddot{\theta} + \frac{6C}{7Mr^{2}}\theta = 0$$

$$\omega = \sqrt{\frac{6C}{7Mr^{2}}} = 44,72 \, rad. \, s^{-1}$$

b- à t = 0
$$\theta = \theta_0 = 0,1 \text{ rad}$$
 $\dot{\theta_0} = 0$ $\rightarrow \phi = \frac{\pi}{2}$

$$\theta = 0,1 \sin\left(44,72t + \frac{\pi}{2}\right)$$