Statistica per la ricerca sperimentale e tecnologica

Corso di Laurea in Informatica, Università di Roma "Tor Vergata"

Anno accademico: 2006-2007 Titolare del corso: Claudio Macci Esame del 18 Settembre 2007

Esercizio 1. Un'urna contiene 4 palline con i numeri 1, 2, 3 e 4. Si estraggono 2 palline in blocco a caso. Sia X la variabile aleatoria che conta il numero di palline estratte con un numero pari, e sia Y variabile aleatoria che indica la somma dei due numeri estratti.

- D1) Trovare la densità discreta di X.
- D2) Trovare la densità discreta di Y.

Esercizio 2. Un'urna contiene 1 pallina bianca e 1 nera. Si lancia una moneta equa: se esce testa si mettono nell'urna 9 palline bianche; se esce croce si mettono nell'urna 9 palline nere. Poi si estrae una pallina a caso dall'urna.

- D3) Calcolare la probabilità di estrarre una pallina bianca.
- D4) Calcolare la probabilità di aver ottenuto testa sapendo di aver estratto una pallina bianca.

Esercizio 3. Consideriamo una variabile aleatoria (X,Y) con la seguente densità congiunta: $p_{(X,Y)}(0,0) = p_{(X,Y)}(1,0) = p_{(X,Y)}(0,1) = p_{(X,Y)}(2,3) = \frac{1}{4}$.

- D5) Trovare le densità marginali di X e Y.
- D6) Trovare la densità di $Z = X \cdot Y$.

Esercizio 4. Sia X una variabile aleatoria con densità continua $f(t) = 3t^2$ per 0 < t < 1 e f(t) = 0 altrimenti.

D7) Calcolare P(1/3 < X < 2/3).

Sia Y una variabile aleatoria con densità continua f(t)=ct per 2 < t < 3 (dove c > 0 è una costante) e f(t)=0 altrimenti.

D8) Trovare il valore di c.

Esercizio 5. Sia X una variabile aleatoria con distribuzione uniforme su [5,6].

- D9) Calcolare $\mathbb{E}[X]$.
- D10) Calcolare Var[X].

Esercizio 6. Sia X una variabile aleatoria normale standard.

- D11) Calcolare P(1 < X < 2).
- D12) Calcolare P(|X| < 2).

Cenno alle soluzioni (Ogni segnalazione di errori o sviste (sempre possibili) è gradita)

Esercizio 1.

D1) La variabile aleatoria X ha distribuzione ipergeometrica e si ha $p_X(k) = \frac{\binom{2}{k}\binom{2}{2-k}}{\binom{4}{2}}$ per $k \in$ $\{0,1,2\}$. Quindi $p_X(0) = p_X(2) = \frac{1}{6} e p_X(1) = \frac{4}{6}$.

D2) Abbiamo l'insieme $\Omega = \{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$ e ciascuno dei $\binom{4}{2} = 6$ punti di Ω ha probabilità $\frac{1}{6}$. Quindi $p_Y(3) = P(\{\{1,2\}\}) = \frac{1}{6}, p_Y(4) = P(\{\{1,3\}\}) = \frac{1}{6}, p_Y(5) = P(\{\{2,3\},\{1,4\}\}) = \frac{1+1}{6} = \frac{2}{6}, p_Y(6) = P(\{\{2,4\}\}) = \frac{1}{6} = p_Y(7) = P(\{\{3,4\}\}) = \frac{1}{6}.$

Esercizio 2. Sia B l'evento "estratta bianca" e T l'evento "esce testa".

D3) Per la formula delle probabilità totali si ha $P(B) = P(B|T)P(T) + P(B|T^c)P(T^c) = \frac{10}{11}\frac{1}{2} + \frac{1}{11}\frac{1}{2} =$ $\left(\frac{10}{11} + \frac{1}{11}\right)\frac{1}{2} = \frac{1}{2}.$

D4) Per la formula di Bayes e per il valore di P(B) calcolato prima, si ha $P(T|B) = \frac{P(B|T)P(T)}{P(B)} =$ $\frac{\frac{10}{11}\frac{1}{2}}{\frac{1}{2}} = \frac{10}{11}.$

Esercizio 3.

D5) La densità marginale di $X \in p_X(0) = p_{(X,Y)}(0,0) + p_{(X,Y)}(0,1) = \frac{1+1}{4} = \frac{2}{4}, p_X(1) = p_{(X,Y)}(1,0) = \frac{1+1}{4} = \frac{2}{4}$ $\begin{array}{l} \frac{1}{4} \in p_X(2) = p_{(X,Y)}(2,3) = \frac{1}{4}. \text{ La densit\`a marginale di } Y \stackrel{.}{\text{e}} p_Y(0) = p_{(X,Y)}(0,0) + p_{(X,Y)}(1,0) = \\ \frac{1+1}{4} = \frac{2}{4}, \ p_Y(1) = p_{(X,Y)}(0,1) = \frac{1}{4} \in p_Y(3) = p_{(X,Y)}(2,3) = \frac{1}{4}. \\ \text{D6) Si ha } p_Z(0) = p_{(X,Y)}(0,0) + p_{(X,Y)}(1,0) + p_{(X,Y)}(0,1) = \frac{1+1+1}{4} = \frac{3}{4} \in p_Z(6) = p_{(X,Y)}(2,3) = \frac{1}{4}. \end{array}$

Esercizio 4.

D7) Si ha $P(1/3 < X < 2/3) = \int_{1/3}^{2/3} 3t^2 dt = [t^3]_{t=1/3}^{t=2/3} = (2/3)^3 - (1/3)^3 = \frac{8-1}{27} = \frac{7}{27}$.

D8) Il valore c richiesto è tale che $1 = c \int_2^3 t dt = c[t^2/2]_{t=2}^{t=3} = c \frac{3^2-2^2}{2} = c \frac{9-4}{2} = c \frac{5}{2}$; quindi $c = \frac{2}{5}$.

Esercizio 5.

D9) Si ha $\mathbb{E}[X] = \frac{5+6}{2} = \frac{11}{2}$. D10) Si ha $\operatorname{Var}[X] = \frac{(6-5)^2}{12} = \frac{1}{12}$.

Esercizio 6.

D11) Si ha $P(1 < X < 2) = \Phi(2) - \Phi(1) = 0.97725 - 0.84134 = 0.13591.$

D12) Si ha $P(|X| < 2) = P(-2 < X < 2) = \Phi(2) - \Phi(-2) = \Phi(2) - (1 - \Phi(2)) = 2\Phi(2) - 1 = \Phi(2)$ $2 \cdot 0.97725 - 1 = 0.9545.$

Commenti.

D1) Si ha $p_X(0) + p_X(1) + p_X(2) = \frac{1+4+1}{6} = 1$ in accordo con la teoria. D2) Si ha $p_Y(3) + p_Y(4) + p_Y(5) + p_Y(6) + p_Y(7) = \frac{1+1+2+1+1}{6} = 1$ in accordo con la teoria. D5) Si ha $p_X(0) + p_X(1) + p_X(2) = \frac{2+1+1}{4} = 1$ e $p_Y(0) + p_Y(1) + p_Y(3) = \frac{2+1+1}{4} = 1$ in accordo con la teoria.

D6) Si ha $p_Z(0)+p_Z(6)=\frac{3+1}{4}=1$ in accordo con la teoria.