Intro: Simulations

- Point-like
- CTA IRF background
- 40h
- 40mCrab
- 50 TeV cutoff
- 1.6deg diameter FoV
- 0.5deg offset
- -2 index
- Edisp: on

Comparison of fitted flux and fitted model

Intro: Fitting

 \times dN/dE (erg cm⁻²

 E^2

- 10 bins / energy decade
- 0.02 deg spatial resolution
- Fit by ctools' "ctlike"

Counts: observed and fitted model

Intro: Fitting ct'd

- 10 bins / energy decade
- 0.02 deg spatial resolution
- Fit by ctools' "ctlike"

Bracketing IRFs

- PSF is not bracketed
- Only scaling, no resolution changes
- AEff 5% scaling
- EDisp 6% scaling
- The counts, spectra, models come out different
- Original IRF →

Scaling functions

• - and + for each

Table 3a: Energy-dependent error functions for CTA North

Modification type	Function, B	Graphics	Applicability
Constant	1	10 0.5 0.0 10 0.0 -0.5 -1.0	. $A_{\rm eff}$, N: flux normalization . $\sigma_{\rm e}$: small extension . $E_{\rm scale}$: spectral cut-off . $\sigma_{\rm E}$: search for lines
Gradient	[In(E/E _{min})+In(E/E _{max})]/In(E _{max} /E _{min})	10 0.5 -0.5 -1.0 10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	. A_{eff} , N : spectral index, spectral cut-off . E_{scale} : spectral curvature
Step	tanh[In(E/E,)/(1.31 σ(E,)/E,)]	10 0.5 0.0 -0.6 -1.0 16° 10° 10° 10° 10° 10° 10° 10° 10° 10° 10	. A_{eff} , N : spectral index, spectral cut-off . E_{scale} : spectral curvature

Step scaling: 5% Aeff, 6% EDisp. Break at 0.15TeV (5TeV break will be added later)

Results

Source 1 parameters Observation parameters Binning parameters 40mCrab prefactor -2 index 50TeV cutoff 40h duration 0.5deg offset 1.6deg FoV 0.02deg spatial resolution 10 bins per energy decade

(a) Input parameters: observation data.

Bracketing	Prefactor (mCrab)	Index	Cutoff (TeV)	Goodness of Fit
None	40.76 ± 0.79	-1.97 ± 0.02	32.89 ± 4.84	
Constant				
\oplus	38.53 ± 0.71	-1.99 ± 0.02	73.80 ± 18.95	
\ominus	40.39 ± 0.82	-1.97 ± 0.02	48.84 ± 10.93	
Gradient				
0	40.09 ± 0.75	-2.00 ± 0.02	52.63 ± 9.87	
\ominus	40.90 ± 0.83	-1.97 ± 0.02	29.95 ± 4.53	
Step				
\oplus	40.80 ± 0.82	-1.96 ± 0.02	32.53 ± 5.58	
\ominus	39.33 ± 0.80	-1.97 ± 0.02	46.4 ± 9.9	

(b) Output parameters: spectral fit. The parameters that do not match the source are highlighted.

Table 1: Parameters for the fitting of observations of *Source 1* with differently bracketed IRFs.

Background problem

- Currently use CTA IRF background
- Should I simulate my own background, close to the IRF's?
- Or keep IRF?
- Or should I switch to On/Off observation?

Counts: observed and fitted model

Similarity problem

- Why are the simulations/fitt ings so similar?
- Leads:
 separating
 bracketing /
 exaggerating
 bracketing /
 code error ?

Flux spectrum fitted from observation counts

Residuals of observed and fitted counts comparison

What's next

- New simulations: 20,60,80 mCrab (current 40)
- Separate AEff and EDisp bracketing
- Background change
- Add South breakpoint at 5TeV
- If results+errors aren't too similar, run 100 simulations per set
- Plot flux of each set with instrument sensitivity
- Find out how ctools errors are calculated
- Goodness of fit calculation

- Later: same work with new cutoff
- Possibly: implement resolution bracketing in levgen's function
- Presentation to Working Group 17/07
- End of internship 26/07