112-1 SoC Design Laboratory Lab3

Name:楊正宇

Student ID:111063575

Instructor:賴瑾

Date:2023/10/24

Block Diagram

Operation

Tap write:

當 awvaild 拉起會拉起 write 指標並拉起 awready 開始從 wdata 收值並在 wvalid && wready 時將 wdata 寫給 tap bram。

Tap read:

不是在寫值時 tap we 都是 0000, 根據只要 tap_Address <= 28 都會從 tap_Do 取 值給 coefficient reg。

Data BRAM:

State 在 compute 時,會將 ss_tdata 給 data_Di ,同時在 ss_tready=1 時 data_we 會 設為 1111 以寫入 data。而 ss_tready=0 時會從 data BRAM 取值出來進行運算。

FIR calculation:

使用 counter 去指我們現在該讀哪一個值。 counter 從 0

依序加到 10,每次讀值根據 counter 當 address 去從 bram 將資料讀出並只要抓到當下對的值進行乘法及累加即可。

這邊用的是 tap_counter 晚兩個 clk 會將當時的 Xn 及 coefficient 的乘積累加至 Yn,此時 sm_tvaild 就會拉起告知 Yn 已有值。

Resource usage

Reg and LUT

+	+	+	+	+	++
Site Type	Used	Fixed	Prohibited	Available	Util%
Slice LUTs*	+ 262	+ 0	0	+ 53200	++ 0.49
LUT as Logic	262	0	0	53200	0.49
LUT as Memory	0	0	0	17400	0.00
Slice Registers	299	0	0	106400	0.28
Register as Flip Flop	299	0	0	106400	0.28
Register as Latch	0	0	0	106400	0.00
F7 Muxes	0	0	0	26600	0.00
F8 Muxes	9	0	. 0	13300	0.00
	+	+	+	+	+

Memory:

2. Memory					
+	+	++		++	
Site Type	Used	Fixed	Prohibited	Available Util%	
+	+	++		++	
Block RAM Tile	0	0	0	140 0.00	
RAMB36/FIFO*	0	0	0	140 0.00	
RAMB18	0	0	0	280 0.00	
+	+	++		++	

DSP:

Timing Report

Clk cycle:8ns

Critical path:

Simulation Waveform

Tap BRAM write

Coefficient 由 AXI lite 輸入, fir 接收後寫入 Tap BRAM。從波形可以看到,每當 wready& wvaild =1 時,下個 cycle 就會有一筆 coefficient 寫入 Tap BRAM。

Tap BRAM read

AXI lite 從 Tap BRAM 中將 Coefficient 讀出,當 rvaild = 1 時, coefficient 已在 rdata 上準備被讀取,且在 rready & rvaild=1 當下就會被讀出。

=

Data stream in & Data BRAM write

Input Data 是由 AXI stream slave 接收並寫入 Data BRAM,當 ss_tready=1 時,代表已準備好接收下一筆 data,ss_tdata 就會有值,下一個 cycle 就會把值給 data_Di 來寫入 data BRAM。

Data stream out

FIR 計算完後的 output data 由 AXI stream master 輸出,當 sm_tvaild=1 時代表已 交運算結果放在 sm_tdata, testbench 就會讀取並與 out_gold 做比對。

RAM access control

Tap_ram:

Write

Read

FSM

IDLE(0)—>collect Tap(1)

collect Tap(1)—> Compute(2)

Compute(2) —>Done(3)

https://github.com/y232578y/112-1-SoC-Design/tree/main