ENGINEERING MATHEMATICS IV (FEG 404)

Dr. Charles Okpala

TOPICS

FURTHER NUMERICAL METHODS:

- FIRST ORDER DIFERENTIAL EQUATIONS
 - ✓ EULER'S EQUATION
- SECOND ORDER DIFFERENTIAL EQUATIONS
 - ✓ RUNGE- KUTTA METHOD

EULER'S EQUATION

Euler's method is the easiest approach of the Numerical Methods for solving First Order Differential Equations.

Euler's Equation is given as:
$$f(a + h) = f(a) + hf'(a) \dots (1)$$

Equation (1) can also be written as:
$$y_1 = y_0 + h(y')_0 \dots (2)$$

Example

Given that $\frac{dy}{dx} = 2(1+x) - y$ with the initial condition that at x = 2, y=5. Find an appropriate value of y at x = 2.2

Solution

$$x_0 = 2, \quad y_0 = 5$$

$$\frac{dy}{dx} = y' = 2(1+x) - y$$

$$at (y')_0, \quad x_0 = 2, \quad y_0 = 5$$

$$substituting, (y')_0 = 2(1+2) - 5 = 1$$

therefore,
$$x_0 = 2$$
, $y_0 = 5$, $(y')_0 = 1$, $x_1 = 2.2 (given)$

$$h = x_1 - x_0 = 2.2 - 2 = 0.2$$

from $h = x_1 - x_0$, it implies that $x_1 = h + x_0$, so $x_{n+1} = h + x_n$

from Euler's equation (2): $y_1 = y_0 + h(y')_0$

$$y_1 = 5 + 0.2(1) = 5.2$$

$$(y')_1 = 2(1+x_1) - y_1 = 2(1+2.2) - 5.2 = 1.2$$

$$y_2 = y_1 + h(y')_1 = 5.2 + 0.2(1.2) = 5.44$$

$$(y')_2 = 2(1+x_2) - y_2 = 2(1+2.4) - 5.44 = 1.36$$

$$y_3 = y_2 + h(y')_2 = 5.44 + 0.2(1.36) = 5.712$$

$$(y')_3 = 2(1+x_3) - y_3 = 2(1+2.6) - 5.712 = 1.488$$

$$y_4 = y_3 + h(y')_3 = 5.712 + 0.2(1.488) = 6.0096$$

$$(y')_4 = 2(1+x_4) - y_4 = 2(1+2.8) - 6.0096 = 1.5904$$

$$y_5 = y_4 + h(y')_4 = 6.0096 + 0.2(1.5904) = 6.32768$$

$$(y')_5 = 2(1+x_5) - y_5 = 2(1+3.0) - 6.32768 = 1.67232$$

Present the results in a tabular form

N	x_n	y_n	$(y')_n$
0	2.0	5.0	1.0
1	2.2	5.2	1.2
2	2.4	5.44	1.36
3	2.6	5.712	1.488
4	2.8	6.0096	1.5904
5	3.0	6.32768	1.67232

Example 2

Obtain a numerical solution of the equation $\frac{dy}{dx} = 1 + x - y$ with initial condition that y = 2, x = 1, for the range x = 1.0(0.2)2.0

Solution

The range
$$x=1.0(0.2)2.0$$
 means from $x=1.0$ to
$$=2 \ at \ constant \ intervals \ (h)=0.2)$$
 here $x_0=1,y_0=2,$ and $h=0.2,$ substitute to get $(y')_0$, and later y_1 up to y_5 and $(y')_5$

Then, tabulate as shown below:

N	x_0	y_n	$(y')_n$
0	1.0	2.0	0
1	1.2	2.0	0.2
2	1.4	2.04	0.36
3	1.6	2.112	0.488
4	1.8	2.2096	0.5904
5	2.0	2.32768	0.67232

SECOND ORDER DIFFERENTIAL EQUATIONS

The two formulae for solving the second order differential equations are:

$$y_1 = y_0 + h(y')_0 + \frac{h^2}{2!}(y')_0 \dots (1)$$
$$(y')_1 = (y')_0 + h(y'')_0 \dots (2)$$

Example

Solve the equation

$$\frac{d^2y}{dx^2} = \frac{xdy}{dx} + y \quad for \ x = \mathbf{0}(\mathbf{0}.\mathbf{2})\mathbf{1}. \ \mathbf{0}, given \ that \ at \ x = \mathbf{0}, y = \mathbf{1}, and \ \frac{dy}{dx} = \mathbf{0}$$

Solution

From the given equation y'' = xy' + y, $x_o = 0$, $y_0 = 1$, $y'_0 = 0$, h = 0.2

Therefore
$$(y'')_0 = x_0 y'_0 + y_0 = 0(0) + 1 = 1$$

From (1),
$$y_1 = y_0 + h(y')_0 + \frac{h^2}{2!}(y'')_0 = 1 + 0.2(0) + \frac{(0.2)^2}{2*1}(1) = 1 + 0.02 = 1.02$$

From (2),
$$(y')_1 = (y')_0 + h(y'')_0 = 0 + 0.2(1) = 0.2$$

$$x_1 = 0.2$$

$$(y'')_1 = x_1 y'_1 + y_1 = 0.2 * 0.2 + 1.02 = 1.06$$

$$y_2 = y_1 + h(y')_1 + \frac{h^2}{2!}(y'')_1 = 1.02 + 0.2(0.2) + \frac{(0.2)^2}{2*1} * 1.06$$

$$= 1.0812$$

$$(y')_2 = (y')_1 + h(y'')_1 = 0.2 + 0.2(1.06) = 0.412$$

$$x_2 = 0.4$$

$$(y'')_2 = x_2 y'_2 + y_2 = 0.4 * 0.412 + 1.0812 = 1.246$$

$$y_3 = y_2 + h(y')_2 + \frac{h^2}{2!}(y'')_2$$

$$= 1.0812 + 0.2(0.412) + \frac{(0.2)^2}{2*1}(1.246) = 1.18852$$

$$(y')_3 = (y')_2 + h(y'')_2 = 0.412 + 0.2(1.246) = 0.6612$$

$$x_3 = 0.6$$

$$(y'')_3 = x_3y'_3 + y_3 = 0.6 * 0.6612 + 1.18852 = 1.58524$$

$$y_4 = y_3 + h(y')_3 + \frac{h^2}{2!}(y'')_3$$

$$= 1.18852 + 0.2 * 0.6612 + \frac{(0.2)^2}{2 * 1}(1.58524)$$

$$= 1.3524648$$

$$(y')_4 = (y')_3 + h(y'')_3 = 0.6612 + 0.2(1.58524) = 0.978248$$

$$x_4 = 0.8$$

$$(y'')_4 = x_4 y'_4 + y_4 = 0.8 * 0.978248 + 1.3524648 = 2.135063$$

$$y_5 = y_4 + h(y')_4 + \frac{h^2}{2!}(y'')_4$$

$$= 1.3524648 + 0.2(0.978248) + \frac{(0.2)^2}{2*1}(2.135063)$$

$$= 1.590816$$

$$(y')_5 = (y')_4 + h(y'')_4 = 0.978248 + 0.2 * 2.135063$$

= 1.405261

$$x_5 = 1.0$$
 $(y'')_5 = x_5 y'_5 + y_5 = 1.0 * 1.405261 + 1.590816 = 2.996077$

Tabulate the Answers as shown below:

n	$\boldsymbol{x_n}$	y_n	y'_n	y''_n
0	0	1.0	0	1.0
1	0.2	1.02	0.2	1.06
2	0.4	1.0812	0.412	1.246
3	0.6	1.18852	0.6612	1.58524
4	0.8	1.352465	0.978248	2.135063
5	1.0	1.590816	1.405261	2.996077

Runge-Kutta Method for Second Order Differential Equations

Starting with the given equation y'' = f(x, y, y') and initial conditions that at

 $x = x_0$, $y = y_0$, $y' = (y')_0$, we obtain the value of y_1 at $x = x_0 + h$ as follows:

(a) We evaluate

$$k_{1} = \frac{1}{2}h^{2}(y'')_{0}$$

$$k_{2} = \frac{1}{2}h^{2}\left\{\left(x_{0} + \frac{1}{2}h\right)\left(y'_{0} + \frac{k_{1}}{h}\right) + \left(y_{0} + \frac{1}{2}hy'_{0} + \frac{1}{4}k_{1}\right)\right\}$$

$$k_{3} = \frac{1}{2}h^{2}\left\{\left(x_{0} + \frac{1}{2}h\right)\left(y'_{0} + \frac{k_{2}}{h}\right) + \left(y_{0} + \frac{1}{2}hy'_{0} + \frac{1}{4}k_{1}\right)\right\}$$

$$k_4 = \frac{1}{2}h^2\{(x_0 + h)\left(y'_0 + \frac{2k_3}{h}\right) + \left(y_0 + hy'_0 + k_3\right)\}$$

(b)
$$P = \frac{1}{3}(k_1 + k_2 + k_3)$$

 $Q = \frac{1}{3}(k_1 + 2k_2 + 2k_3 + k_4)$

(c)
$$x_1 = x_0 + h$$

$$y_1 = y_0 + h y'_0 + P$$

$$(y')_1 = (y')_0 + \frac{Q}{h}$$

Example

If y'' = xy' + y for x = 0(0.2)1.0, given that when x = 0, y = 1, and $\frac{dy}{dx} = 0$. Solve the equation using Runge – Kutta Method.

Solution

$$y^{\prime\prime}=xy^{\prime}+y$$

From the initial conditions $y''_0 = x_0 y'_0 + y_0$

But
$$x_0 = 0$$
, $y_0 = 1$, $y'_0 = 1$, and $h = x_1 - x_0 = 0.2$

Therefore $(y'')_0 = 0 * 0 + 1 = 1$

Step 1

Calculate k_1 to k_4

$$k_1 = \frac{1}{2}h^2(y'')_0 = \frac{1}{2}(0.2)^2(1) = 0.02$$

$$k_{2} = \frac{1}{2}h^{2}\left\{\left(x_{0} + \frac{1}{2}h\right)\left(y'_{0} + \frac{k_{1}}{h}\right) + \left(y_{0} + \frac{1}{2}hy'_{0} + \frac{1}{4}k_{1}\right)\right\} = \frac{1}{2}(0.2)^{2}\left\{\left(0 + \frac{1}{2}*0.2\right)\left(0 + \frac{0.02}{0.2}\right) + \left(1 + \frac{1}{2}*0.2*0 + \frac{1}{4}*0.02\right)\right\} = 0.0203$$

$$k_{3} = \frac{1}{2}h^{2}\left\{\left(x_{0} + \frac{1}{2}h\right)\left(y'_{0} + \frac{k_{2}}{h}\right) + \left(y_{0} + \frac{1}{2}hy'_{0} + \frac{1}{4}k_{1}\right)\right\}$$

$$= \frac{1}{2}(0.2)^{2}\left\{\left(0 + \frac{1}{2}*0.2\right)\left(0 + \frac{0.0203}{0.2}\right) + \left(1 + \frac{1}{2}*0.2*0 + \frac{1}{4}*0.02\right)\right\} = 0.020303$$

$$k_4 = \frac{1}{2}h^2\left\{(x_0 + h)\left(y'_0 + \frac{2k_3}{h}\right) + \left(y_0 + hy'_0 + k_3\right)\right\}$$
$$= \frac{1}{2}(0.2)^2\left\{(0 + 0.2)\left(0 + \frac{2*0.020303}{0.2}\right) + (1 + 0 + 0.020303)\right\} = 0.021218$$

$$P = \frac{1}{3}(k_1 + k_2 + k_3) = \frac{1}{3}(0.02 + 0.0203 + 0.020303)$$

$$= 0.020201$$

$$Q = \frac{1}{3}(k_1 + 2k_2 + 2k_3 + k_4) =$$

$$\frac{1}{3}(0.02 + 2 * 0.0203 + 2 * 0.020303) + 0.021218 =$$

$$0.040808$$

$$recall\ that \quad x_1 = x_0 + h = 0. + 0.2 = 0.2$$

$$y_1 = y_0 + h{y'}_0 + P = 1 + 0.2(0) + 0.020201 = 1.020201$$

$$(y')_1 = (y')_0 + \frac{Q}{h} = 0 + \frac{0.040808}{0.2} = 0.20404$$

Therefore from the given equation y'' = xy' + y

$$(y'')_1 = x_1 y'_1 + y_1 = 0.2 * 0.20404 + 1.020201 = 1.061009$$

Second Step

Here

$$h = 0.2$$
, $x_0 = 0.2$, $y_0 = 1.020201$, $(y')_0 = 0.20404$, $(y'')_0 = 1.061009$

Calculate k_1 to k_4

Next, evaluate P and Q.

Also, calculate for x_1 , y_1 , and $(y')_1$

Then, find $(y'')_1$ from the equation $(y'')_1 = x_1y'_1 + y_1$

Other Steps

Repeat the process for

x = 0.4, 0.6,

$0.\,8.\,and\,1.\,0$ and then tabulate your values as shown.

x	y	y'	y''
0	1.0	0	1.0
0.2	1.020201	0.204040	1.061009
0.4	1.083284	0.433316	1.256610
0.6	1.197208	0.718333	1.628208
0.8	1.377107	1.101706	2.258472
1.0	1.648677	1.648721	3.297398

Questions?

Thanks a lot for listening.