#### RDD and diff-in-diff

Silje Synnøve Lyder Hermansen

08-12-2020

Regression discontinuity design (RDD)

Regression discontinuity design (RDD)

#### Basic assumption

RDD assumes a running variable (x) with a cut point (c) beyond which treatment is assigned (D).

$$D_i = \begin{cases} 1 & \text{if} \quad x_i \geqslant c \\ 0 & \text{if} \quad x_i < c \end{cases} \tag{1}$$

#### Distinction

## It has a flavor of logit or propensity scores, but there are some differences:

- logit: x (not y) is not latent and we know the cutpoint: Both are observed and included as a predictors.
- ► matching: we have no control/treatment group. However, we assume that units on either side of the treatment are increasingly similar as their x is similar.
- ⇒ Supposes clear rules with little administrative discretion.

#### Examples

**Administrative data are perfect:** You have some rule that kicks in at a specific threshold for otherwise almost identical observations.

- school test scores on school admission, restrictions on class size
- legal drinking age on alcohol related deaths
- election of candidates in close races

Individuals close to the threshold are interchangeable

- Individuals close to the threshold are interchangeable
- $\rightarrow$  in a small window, you have a treatment and a control group.

- Individuals close to the threshold are interchangeable
- $\rightarrow$  in a small window, you have a treatment and a control group.
  - ➤ x is a bottleneck: the relationship between D and Y is confounded by x, but all other confounders only influence Y through x.

- Individuals close to the threshold are interchangeable
- $\rightarrow$  in a small window, you have a treatment and a control group.
  - ➤ x is a bottleneck: the relationship between D and Y is confounded by x, but all other confounders only influence Y through x.
- $\rightarrow$  conditioning on x is sufficient to isolate the causal effect.

- Individuals close to the threshold are interchangeable
- $\rightarrow$  in a small window, you have a treatment and a control group.
  - ➤ x is a bottleneck: the relationship between D and Y is confounded by x, but all other confounders only influence Y through x.
- $\rightarrow$  conditioning on x is sufficient to isolate the causal effect.

X is a confounder ...so we only control for X



#### Two designs

We distinguish between two designs depending on how probable the treatment is:

- **sharp** RD: assignment is *deterministic*
- fuzzy RD: assignment is probabilistic

#### A visual representation



Regression discontinuity design (RDD)

The basic model

The basic model

We assume the relationship between x and y is linear and the treatment is deterministic

We assume the relationship between x and y is linear and the treatment is deterministic

$$y_i = \alpha + \rho \times D_i + \gamma \times x_1 + e_i \tag{2}$$

We assume the relationship between x and y is linear and the treatment is deterministic

$$y_i = \alpha + \rho \times D_i + \gamma \times x_1 + e_i \tag{2}$$

 $\Rightarrow$  The treatment is reported by  $\rho$ 

We assume the relationship between x and y is linear and the treatment is deterministic

$$y_i = \alpha + \rho \times D_i + \gamma \times x_1 + e_i \tag{2}$$

 $\Rightarrow$  The treatment is reported by  $\rho$ 

#### Do it in R

# Check out alcohol related deaths (y) as a function of legal drinking age (D)

#### Is that all?

This is true on two conditions

#### Is that all?

#### This is true on two conditions

1. **the continuity assumption**: x must have a continuous effect on y

#### Is that all?

#### This is true on two conditions

- 1. **the continuity assumption**: x must have a continuous effect on y
- 2. **no omited variable bias**:x must capture all influence on D.

The continuity assumption

## The continuity assumption

Sometimes we may pick up a smooth non-linear change by dummy coding

## The continuity assumption

# Sometimes we may pick up a smooth non-linear change by dummy coding

... that's not a regression discontinuity.

We can obtain a linear effect in two ways:

#### We can obtain a linear effect in two ways:

recode the x

#### We can obtain a linear effect in two ways:

ightharpoonup recode the  $x \to \text{compare}$  with the recoding of y in GLMs.

#### We can obtain a linear effect in two ways:

- recode the  $x \to \text{compare with the recoding of } y \text{ in GLMs.}$
- consider a sufficiently small window

#### Recode the x

We can create a curvilinear effect of x using polynomials (e.g.:)

#### Recode the x

We can create a curvilinear effect of x using polynomials (e.g.:)

$$y_i = \alpha + \rho D_i + \gamma_1 x_i + \gamma_2 x_i^2 \tag{3}$$

#### Recode the x

#### We can create a curvilinear effect of x using polynomials (e.g.:)

$$y_i = \alpha + \rho D_i + \gamma_1 x_i + \gamma_2 x_i^2 \tag{3}$$

### Recode the x: symmetric effect

#### We can create a curvilinear effect of x using polynomials (e.g.:)

$$y_i = \alpha + \rho D_i + \gamma_1 x_i + \gamma_2 x_i^2 \tag{4}$$

 $\Rightarrow$  Here, x has a symmetrical effect on both sides of the treatment.

## Recode the x: assymetric effect

We can assume x has different effects on each side of the treatment

$$y_i = \alpha + \rho D_i + \gamma x_i + \delta x_i D_i \tag{5}$$

## Recode the x: assymetric effect

#### We can assume x has different effects on each side of the treatment

$$y_i = \alpha + \rho D_i + \gamma x_i + \delta x_i D_i \tag{5}$$

 $\Rightarrow$  we center the x on the cutpoint  $(x_i-c)\to \rho$  still reports the change at the cutpoint.

#### Do it in R



# Extrapolation

We do this to estimate the effect at the cutpoint  $(\rho)$ 

# Extrapolation

#### We do this to estimate the effect at the cutpoint $(\rho)$

but we can also extrapolate y beyond the cutpoint with x:  $\rho + \delta(x - c)$ 

#### Recode the x

recoding the x is a **the parametric approach**.

#### Recode the x

- recoding the x is a **the parametric approach**.
- subsetting the data to tweak the window around the cutpoint is a non-parametric approach.

## Bandwidth: the idea

If the span of  $\boldsymbol{x}$  around  $\boldsymbol{c}$  is sufficiently small, there is no problem with non-linearity

#### Bandwidth: the idea

# If the span of $\boldsymbol{x}$ around $\boldsymbol{c}$ is sufficiently small, there is no problem with non-linearity

► There's a tradeoff between linearity and statistical power (we need sufficient N).

We try out different bandwidths

#### We try out different bandwidths

► We can do it by hand

#### We try out different bandwidths

▶ We can do it by hand

#### We try out different bandwidths

► We can do it by hand

⇒ When you narrow down, do you get a weaker or stronger effect?

#### We try out different bandwidths

► We can do it by hand

#### We try out different bandwidths

- We can do it by hand
- ...or we can make an algorithm do it:
  - run a local weighted regression line
  - bandwidth is estimated accordingly
- ⇒ the point is to show robustness, not p-hack!

#### We want to make certain that

▶ D has an effect on y :

- D has an effect on y :
- $\rightarrow$  is there really a cutpoint? Try out placebos!

- D has an effect on y:
- $\rightarrow$  is there really a cutpoint? Try out placebos!
  - treatment was indeed assigned at the cutpoint:

- D has an effect on y :
- $\rightarrow$  is there really a cutpoint? Try out placebos!
  - treatment was indeed assigned at the cutpoint:
- $\rightarrow$  is there unnatural clustering around one side?

- D has an effect on y :
- $\rightarrow$  is there really a cutpoint? Try out placebos!
  - treatment was indeed assigned at the cutpoint:
- $\rightarrow$  is there unnatural clustering around one side?
  - treatment has impact on outcome but not other pre-treatment covariates

- D has an effect on y :
- $\rightarrow$  is there really a cutpoint? Try out placebos!
  - treatment was indeed assigned at the cutpoint:
- $\rightarrow$  is there unnatural clustering around one side?
  - treatment has impact on outcome but not other pre-treatment covariates
- $\rightarrow$  check for balance/is there a similar "bump" for covariates? (bad news)

- D has an effect on y :
- $\rightarrow$  is there really a cutpoint? Try out placebos!
  - treatment was indeed assigned at the cutpoint:
- $\rightarrow$  is there unnatural clustering around one side?
  - treatment has impact on outcome but not other pre-treatment covariates
- $\rightarrow$  check for balance/is there a similar "bump" for covariates? (bad news)

Fuzzy RD

Fuzzy RD

# Fuzzy RD

# Often the *D* increases the probability of a treatment, but we don't know!

⇒ This is a Instrumental Variable approach (more on Thursday)

x has a unique effect on D. I'm interested in the effect of  $\bar{x}$  on y, but x is completely endogeneous:

x has a unique effect on D. I'm interested in the effect of  $\bar{x}$  on y, but x is completely endogeneous:

x has a unique effect on D. I'm interested in the effect of  $\bar{x}$  on y, but x is completely endogeneous:

I use treatment as an instrument. We do this in two steps

x has a unique effect on D. I'm interested in the effect of  $\bar{x}$  on y, but x is completely endogeneous:

$$\mathbf{v} = \alpha + \beta_1 \bar{\mathbf{x}} + \beta_2 \mathbf{x} + \mathbf{e}$$

I use treatment as an instrument. We do this in two steps

• step 1: 
$$\bar{x} = \alpha_1 + \phi D + \beta_1 x + e_1$$

x has a unique effect on D. I'm interested in the effect of  $\bar{x}$  on y, but x is completely endogeneous:

I use treatment as an instrument. We do this in two steps

- ► step 1:  $\bar{x} = \alpha_1 + \phi D + \beta_1 x + e_1$
- $\Rightarrow \text{ step 2: } \mathbf{v} = \alpha_2 + \gamma \tilde{\mathbf{x}} + \beta_2 \mathbf{x} + \mathbf{e}_2$

x has a unique effect on D. I'm interested in the effect of  $\bar{x}$  on y, but x is completely endogeneous:

$$\mathbf{v} = \alpha + \beta_1 \bar{\mathbf{x}} + \beta_2 \mathbf{x} + \mathbf{e}$$

I use treatment as an instrument. We do this in two steps

- step 1:  $\bar{x} = \alpha_1 + \phi D + \beta_1 x + e_1$
- $> step 2: y = \alpha_2 + \gamma \tilde{x} + \beta_2 x + e_2$

 $\Rightarrow \gamma$  is the causal effect of D in a fuzzy design.

Differences-in-differences

# Differences-in-differences

Definition: Comparing two differences

### Definition: Differences-in-differences

Treatment and control groups may differ in many ways (they are not randomly assigned)

### Definition: Differences-in-differences

# Treatment and control groups may differ in many ways (they are not randomly assigned)

Pre-treatment: They move in parallel

# Treatment and control groups may differ in many ways (they are not randomly assigned)

- ▶ Pre-treatment: They move in parallel
- Post-treatment: They diverge

## Definition: Differences-in-differences

# Treatment and control groups may differ in many ways (they are not randomly assigned)

- ▶ Pre-treatment: They move in parallel
- ► Post-treatment: They diverge
- ⇒ Treatment effect is that difference

## What differences?

#### Diff-in-diff is based on two comparisons

## What differences?

#### Diff-in-diff is based on two comparisons

▶ the difference pre- and post treatement within each unit

#### What differences?

#### Diff-in-diff is based on two comparisons

- ▶ the difference pre- and post treatement within each unit
- ▶ the difference *between* the treatment and control groups

### What differences?

#### Diff-in-diff is based on two comparisons

- the difference pre- and post treatement within each unit
- the difference between the treatment and control groups
- $\Rightarrow$  based on panel data (units are observed several times).

Take the differences between number of banks in two districts in Missisippi

### Take the differences between number of banks in two districts in Missisippi

Treatment: District 6 provided money to banks, while district 8 did not.

### Take the differences between number of banks in two districts in Missisippi

- Treatment: District 6 provided money to banks, while district 8 did not.
- After a year district 6 had 121 banks, while district 8 had 132

### Take the differences between number of banks in two districts in Missisippi

- Treatment: District 6 provided money to banks, while district 8 did not.
- After a year district 6 had 121 banks, while district 8 had 132
- $\Rightarrow$  What was the treatment effect?

The two districts started out differently

#### The two districts started out differently

within-unit difference: Number of banks before and after the crisis in each district.

District 6: 121 - 135 = -14; District 8: 132 - 165 = -33

#### The two districts started out differently

within-unit difference: Number of banks before and after the crisis in each district.

District 6: 
$$135 = -14$$
; District 8:  $132 - 165 = -33$ 

between-unit differences: take the difference between the two.

$$-14 - (-33) = 19$$

#### The two districts started out differently

within-unit difference: Number of banks before and after the crisis in each district

District 6: 
$$135 = -14$$
; District 8:  $132 - 165 = -33$ 

between-unit differences: take the difference between the two.

$$-14 - (-33) = 19$$

 $\Rightarrow$  Basically a 2-by-2 table

How to do it?

How to do it?

In a regression, these differences are represented by an interaction term between two dummies

In a regression, these differences are represented by an interaction term between two dummies

$$y_i = \alpha + \beta_1 T_i + \beta_2 P + \beta_3 T_i P_i \tag{6}$$

In a regression, these differences are represented by an interaction term between two dummies

$$y_i = \alpha + \beta_1 T_i + \beta_2 P + \beta_3 T_i P_i \tag{6}$$

P represents post-treatment effect: differences within units

In a regression, these differences are represented by an interaction term between two dummies

$$y_i = \alpha + \beta_1 T_i + \beta_2 P + \beta_3 T_i P_i \tag{6}$$

- P represents post-treatment effect: differences within units
- T represents the treatment group: differences between units

In a regression, these differences are represented by an interaction term between two dummies

$$y_i = \alpha + \beta_1 T_i + \beta_2 P + \beta_3 T_i P_i \tag{6}$$

- P represents post-treatment effect: differences within units
- T represents the treatment group: differences between units
- $\triangleright$   $\beta_3$  is the causal effect

### Data requirements

► Requires panel data

#### Data

#### Data requirements

- ightharpoonup Requires panel data ightharpoonup which means correcting the standard errors.
- Common panel types: state-year/administrative unit-time period; people over time . . .
- ⇒ we want to know the trend before and after the break

Another example: drinking age and death

## Another example: drinking age and death

### Does the legal drinking age has an effect on death rates among the young?

- y is number of deaths per 100 000
- P is post-treatment dummy
- T is dummies for states.
- trend is year dummies

### Another example: step $1 \rightarrow$ calculate differences

The authors have two tricks:

- ► Hardcode the interaction effect (dummy before/after treatment)
- ▶ They remove the intercept to retain all dummies

```
load("df2.Rda")
##with intercept
mod <- lm(mrate ~ legal +
            state +
            year fct,
          df)
##without intercept; with all dummies
mod <- lm(mrate ~ 0 +
            legal +
            state +
            year_fct,
          df)
```

### Another example: step $2 \rightarrow$ calculate errors

type = "CR2") robust <- coef\_test(mod, vcov = vcov)\$SE

Calculate robust standard errors:

```
library(clubSandwich)
## Warning: package 'clubSandwich' was built under R version 4
  Registered S3 method overwritten by 'clubSandwich':
##
     method
               from
## bread.mlm sandwich
vcov <- vcovCR(mod, cluster = df[["state"]],</pre>
```

### Another example: step $3 \rightarrow$ interpretation

#### Display the results and interpret:

## Another example: step $3 \rightarrow$ interpretation

Table 1: Death rates among young as a function of legal drinking age

|                                    | Dependent variable:         |
|------------------------------------|-----------------------------|
|                                    | mrate                       |
| Legal drinking age (causal effect) | 10.804**                    |
| ,                                  | (4.479)                     |
| Observations                       | 714                         |
| $R^2$                              | 0.986                       |
| Adjusted R <sup>2</sup>            | 0.985                       |
| Residual Std. Error                | 17.339 (df = 649)           |
| F Statistic                        | 726.005*** (df = 65; 649)   |
| Note:                              | *p<0.1; **p<0.05; ***p<0.01 |

 $\Rightarrow$  What did we find?

The parallel trends assumption

## Main assumption

Units can be different, but - absent treatment - they must follow the same trend (hence the panel data).

## Main assumption

Units can be different, but – absent treatment – they must follow the same trend (hence the panel data).

The regression assumes a counterfactual

# Main assumption

Units can be different, but – absent treatment – they must follow the same trend (hence the panel data).

▶ The regression assumes a counterfactual  $\rightarrow$  remember the extrapolation.

When we have several treated and control units they can follow .

individual trend lines...

- individual trend lines...
- that are modelled as deviations from one unique trend

- individual trend lines...
- that are modelled as deviations from one unique trend

- individual trend lines...
- that are modelled as deviations from one unique trend
- ⇒ We do that with an interaction effect!

```
mod <- lm(mrate ~ 0 +
            legal +
             state *
            year_fct,
          df)
```

### Last fix

If our units are in fact several units (say, populations in states)

### Last fix

If our units are in fact several units (say, populations in states)

we can use weights

#### Last fix

### If our units are in fact several units (say, populations in states)

- we can use weights
- ⇒ There's a tradeoff: treatment is at the unit level, statistical power at the subunit level.