Dictionary Learning & Compressed Sensing

Antonio Orvieto, Simon Meinhard (based on slides from Francesco Locatello)

May 16, 2019

Overview

- ► Review: Overcomplete dictionaries
- Matching pursuit (continuation)
- Dictionary learning
- Exercises

Review: Overcomplete dictionaries

Sparse coding with a complete dictionary:

$$\boxed{\mathbf{x}} = \boxed{\mathbf{U}} \cdot \boxed{\mathbf{z}}$$

Sparse coding with an overcomplete dictionary (L > D):

$$\begin{bmatrix} \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{U} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{z} \end{bmatrix}$$

Why overcomplete? 2D example

Figure: Original Image

Figure: Gabor Basis

Why overcomplete? 2D example

Figure: Original Image

Figure: Gabor Basis

Signal Reconstruction (General Dictionary)

 $\mathbf{U} \in \mathbb{R}^{D \times L}$ is overcomplete (L > D):

- Ill-posed problem: more unknowns than equations, encoding not unique!
- lacktriangle add constraint: find sparsest $\mathbf{z} \in \mathbb{R}^L$ such that $\mathbf{x} = \mathbf{U}\mathbf{z}$

Solve mathematical program

$$\mathbf{z}^{\star} \in \arg\min_{\mathbf{z}} \|\mathbf{z}\|_{0}$$

s.t. $\mathbf{x} = \mathbf{U}\mathbf{z}$

 $\|\mathbf{z}\|_0$ counts the number of non-zero elements in \mathbf{z} .

Roadmap to Solution

Original Problem is NP-Hard: How to Proceed?

1. Use a greedy approximation algorithm (Matching Pursuit)

Roadmap to Solution

Original Problem is NP-Hard: How to Proceed?

- 1. Use a greedy approximation algorithm (Matching Pursuit)
- 2. Relax the $\|\mathbf{z}\|_0$ "norm" so that it becomes a convex optimization problem

Roadmap to Solution

Original Problem is NP-Hard: How to Proceed?

- 1. Use a greedy approximation algorithm (Matching Pursuit)
- 2. Relax the $\|\mathbf{z}\|_0$ "norm" so that it becomes a convex optimization problem

MP Algorithm

- 1: $\mathbf{z} \leftarrow \mathbf{0}$, $\mathbf{r} \leftarrow \mathbf{x}$
- 2: while Approximation not satisfactory do
- 3: Select atom with maximum absolute correlation to residual:

$$d^* \leftarrow \operatorname*{argmax}_{d} |\langle \mathbf{u}_d, \mathbf{r} \rangle|$$

4: Update coefficient vector and residual:

$$z_{d^*} \leftarrow z_{d^*} + \langle \mathbf{u}_{d^*}, \mathbf{r} \rangle$$

$$\mathbf{r} \leftarrow \mathbf{r} - \langle \mathbf{u}_{d^*}, \mathbf{r} \rangle \mathbf{u}_{d^*}$$

5: end while

Bach et al. (2009)

$$\mathbf{z} = (0, 0, 0)^{\top}$$

Bach et al. (2009)

$$\mathbf{z} = (0,0,0)^\top$$

Bach et al. (2009)

$$\mathbf{z} = (0, 0, 0.75)^{\mathsf{T}}$$

Bach et al. (2009)

$$\mathbf{z} = (0, 0, 0.75)^{\mathsf{T}}$$

Bach et al. (2009)

$$\mathbf{z} = (0, 0, 0.75)^{\mathsf{T}}$$

Bach et al. (2009)

$$\mathbf{z} = (0, 0.24, 0.75)^{\top}$$

Bach et al. (2009)

$$\mathbf{z} = (0, 0.24, 0.75)^{\top}$$

Bach et al. (2009)

$$\mathbf{z} = (0, 0.24, 0.65)^{\top}$$

Institute for Machine Learning, ETHZ

Bach et al. (2009)

$$\mathbf{z} = (0, 0.24, 0.65)^{\top}$$

Matching Pursuit - Properties

Last week:

- Algorithm converges to x
- Convergence speed

This week:

- ► Algorithm is greedy, reduces residual energy as much as possible for every iteration
- Orthogonality between atoms and residual

Matching Pursuit - Minimizing the Residual

Matching pursuit greedily reduces the residual energy at every iteration.

Proof for first iteration:

ightharpoonup Project ${f r}^0={f x}$ on atom ${f u}_d$, to get

$$\mathbf{x} = \langle \mathbf{x}, \mathbf{u}_d \rangle \, \mathbf{u}_d + \mathbf{r}^1$$

▶ (Seen last week): Since \mathbf{r}^1 is orthogonal to \mathbf{u}_d , and $\|\mathbf{u}_d\|_2 = 1$,

$$\|\mathbf{x}\|_2^2 = |\langle \mathbf{x}, \mathbf{u}_d \rangle|^2 + \|\mathbf{r}^1\|_2^2$$

▶ Therefore, $\|\mathbf{r}^1\|_2^2$ is minimized by maximizing $|\langle \mathbf{r}^0, \mathbf{u}_d \rangle|^2$.

$$d^*(t) := \underset{d}{\operatorname{argmax}} \left| \left\langle \mathbf{r}^t, \mathbf{u}_d \right\rangle \right|$$

$$d^*(t) := \underset{d}{\operatorname{argmax}} \left| \left\langle \mathbf{r}^t, \mathbf{u}_d \right\rangle \right|$$

From the algorithm, we have the following:

$$\mathbf{x} = \langle \mathbf{x}, \mathbf{u}_{d^*(1)} \rangle \mathbf{u}_{d^*(1)} + \mathbf{r}^1$$

 ${f r}^1$ is orthogonal to ${f u}_{d^*(1)}$

$$d^*(t) := \underset{d}{\operatorname{argmax}} \left| \left\langle \mathbf{r}^t, \mathbf{u}_d \right\rangle \right|$$

From the algorithm, we have the following:

$$\mathbf{x} = \left\langle \mathbf{x}, \mathbf{u}_{d^*(1)} \right\rangle \mathbf{u}_{d^*(1)} + \mathbf{r}^1$$

 ${f r}^1$ is orthogonal to ${f u}_{d^*(1)}$

For the next step we have

$$\mathbf{r}^1 = \left\langle \mathbf{r}^1, \mathbf{u}_{d^*(2)} \right\rangle \mathbf{u}_{d^*(2)} + \mathbf{r}^2$$

 ${f r}^2$ is orthogonal to ${f u}_{d^*(2)}$

$$d^*(t) := \underset{d}{\operatorname{argmax}} \left| \left\langle \mathbf{r}^t, \mathbf{u}_d \right\rangle \right|$$

From the algorithm, we have the following:

$$\mathbf{x} = \langle \mathbf{x}, \mathbf{u}_{d^*(1)} \rangle \mathbf{u}_{d^*(1)} + \mathbf{r}^1$$

 ${f r}^1$ is orthogonal to ${f u}_{d^*(1)}$

For the next step we have

$$\mathbf{r}^1 = \left\langle \mathbf{r}^1, \mathbf{u}_{d^*(2)} \right\rangle \mathbf{u}_{d^*(2)} + \mathbf{r}^2$$

 ${f r}^2$ is orthogonal to ${f u}_{d^*(2)}$

Question: Is ${\bf r}^2$ orthogonal to ${\bf u}_{d^*(1)}$? When is it true?

$$d^*(t) := \underset{d}{\operatorname{argmax}} \left| \left\langle \mathbf{r}^t, \mathbf{u}_d \right\rangle \right|$$

From the algorithm, we have the following:

$$\mathbf{x} = \left\langle \mathbf{x}, \mathbf{u}_{d^*(1)} \right\rangle \mathbf{u}_{d^*(1)} + \mathbf{r}^1$$

 ${f r}^1$ is orthogonal to ${f u}_{d^*(1)}$

For the next step we have

$$\mathbf{r}^1 = \left\langle \mathbf{r}^1, \mathbf{u}_{d^*(2)} \right\rangle \mathbf{u}_{d^*(2)} + \mathbf{r}^2$$

 ${f r}^2$ is orthogonal to ${f u}_{d^*(2)}$

Question: Is \mathbf{r}^2 orthogonal to $\mathbf{u}_{d^*(1)}$? When is it true? **Solution:**

$$\langle \mathbf{r}^2, \mathbf{u}_{d(1)} \rangle = -\langle \mathbf{r}^1, \mathbf{u}_{d(2)} \rangle \langle \mathbf{u}_{d(2)}, \mathbf{u}_{d(1)} \rangle$$

$$d^*(t) := \underset{d}{\operatorname{argmax}} \left| \left\langle \mathbf{r}^t, \mathbf{u}_d \right\rangle \right|$$

From the algorithm, we have the following:

$$\mathbf{x} = \langle \mathbf{x}, \mathbf{u}_{d^*(1)} \rangle \mathbf{u}_{d^*(1)} + \mathbf{r}^1$$

 ${f r}^1$ is orthogonal to ${f u}_{d^*(1)}$

For the next step we have

$$\mathbf{r}^1 = \left\langle \mathbf{r}^1, \mathbf{u}_{d^*(2)} \right\rangle \mathbf{u}_{d^*(2)} + \mathbf{r}^2$$

 ${f r}^2$ is orthogonal to ${f u}_{d^*(2)}$

Question: Is \mathbf{r}^2 orthogonal to $\mathbf{u}_{d^*(1)}$? When is it true? **Solution:**

$$\langle \mathbf{r}^2, \mathbf{u}_{d(1)} \rangle = -\langle \mathbf{r}^1, \mathbf{u}_{d(2)} \rangle \langle \mathbf{u}_{d(2)}, \mathbf{u}_{d(1)} \rangle$$

What happens if we have an orthonormal dictionary?

Sparse Coding, Learning the Dictionary

Previously, we had the overcomplete dictionary ${\bf U}$ fixed and we want to compute sparse representation ${\bf z}$ of a single vector ${\bf x}$:

$$egin{bmatrix} \mathbf{x} &= egin{bmatrix} \mathbf{U} & & \\ & & \mathbf{z} \\ & & \end{pmatrix}$$

Now, we have several vectors $\mathbf{x}_1, \dots, \mathbf{x}_N$ for which we want to find a suitable overcomplete dictionary and sparse representations $\mathbf{z}_1, \dots, \mathbf{z}_N$:

Sparse Coding, Learning the Dictionary

we have several vectors $\mathbf{x}_1, \cdots, \mathbf{x}_N$ for which we want to find a suitable overcomplete dictionary and sparse representations $\mathbf{z}_1, \cdots, \mathbf{z}_N$:

For data matrix $\mathbf{X} \in \mathbb{R}^{D \times N}$ consisting of N vectors in \mathbb{R}^D , want to find:

- $lackbox{ Overcomplete dictionary } \mathbf{U}^* \in \mathbb{R}^{D imes L} \ ext{with } L \ ext{unit normed}$ atoms
- Sparse representations $\mathbf{Z}^* \in \mathbb{R}^{L \times N}$ of vectors in data matrix \mathbf{X}

such that $\|\mathbf{X} - \mathbf{U}^* \mathbf{Z}^*\|_F^2$ is minimized.

Find

$$(\mathbf{U}^{\star}, \mathbf{Z}^{\star}) \in \underset{\mathbf{U}, \mathbf{Z}}{\operatorname{argmin}} \|\mathbf{X} - \mathbf{U} \cdot \mathbf{Z}\|_F^2$$

over all suitable dictionaries and sparse representations.

Find

$$(\mathbf{U}^{\star}, \mathbf{Z}^{\star}) \in \underset{\mathbf{U}, \mathbf{Z}}{\operatorname{argmin}} \|\mathbf{X} - \mathbf{U} \cdot \mathbf{Z}\|_F^2$$

over all suitable dictionaries and sparse representations.

▶ Objective function not convex! :-(

Find

$$(\mathbf{U}^{\star}, \mathbf{Z}^{\star}) \in \operatorname*{argmin}_{\mathbf{U}, \mathbf{Z}} \|\mathbf{X} - \mathbf{U} \cdot \mathbf{Z}\|_{F}^{2}$$

over all suitable dictionaries and sparse representations.

▶ Objective function not convex! :-(

Iterative greedy minimization

repeat:

Find

$$(\mathbf{U}^{\star}, \mathbf{Z}^{\star}) \in \operatorname*{argmin}_{\mathbf{U}, \mathbf{Z}} \|\mathbf{X} - \mathbf{U} \cdot \mathbf{Z}\|_F^2$$

over all suitable dictionaries and sparse representations.

▶ Objective function not convex! :-(

Iterative greedy minimization

repeat:

1. Coding step Improve sparse representations \mathbf{Z} , i.e. $\mathbf{Z}^{t+1} \in \arg\min_{\mathbf{Z}} \|\mathbf{X} - \mathbf{U}^t \mathbf{Z}\|_F^2$ while keeping \mathbf{Z} sparse and \mathbf{U} fixed.

Find

$$(\mathbf{U}^{\star}, \mathbf{Z}^{\star}) \in \operatorname*{argmin}_{\mathbf{U}, \mathbf{Z}} \|\mathbf{X} - \mathbf{U} \cdot \mathbf{Z}\|_F^2$$

over all suitable dictionaries and sparse representations.

▶ Objective function not convex! :-(

Iterative greedy minimization

repeat:

- 1. Coding step Improve sparse representations \mathbf{Z} , i.e. $\mathbf{Z}^{t+1} \in \arg\min_{\mathbf{Z}} \|\mathbf{X} \mathbf{U}^t \mathbf{Z}\|_F^2$ while keeping \mathbf{Z} sparse and \mathbf{U} fixed.
- 2. Dictionary update step: Improve dictionary \mathbf{U} , i.e. $\mathbf{U}^{t+1} \in \arg\min_{\mathbf{U}} \|\mathbf{X} \mathbf{U}\mathbf{Z}^{t+1}\|_F^2$ while maintaining the normalization of the atoms and \mathbf{Z} "fixed".

Coding Step

Improve sparse representations

$$\mathbf{Z}^{t+1} \in \operatorname*{argmin}_{\mathbf{Z}} \left\| \mathbf{X} - \mathbf{U}^t \mathbf{Z} \right\|_F^2$$

- Not convex, why?
- ▶ Intuitively: \mathbf{x}_i depends only on \mathbf{z}_i (and no other \mathbf{z}_j) and \mathbf{U} .
- ightharpoonup Squared Frobenius norm \implies independently find best sparse representation for every vector in \mathbf{X} .

Dictionary Update I

Improve dictionary

$$\mathbf{U}^{t+1} \in \operatorname*{argmin}_{\mathbf{U}} \left\| \mathbf{X} - \mathbf{U} \mathbf{Z}^{t+1} \right\|_{F}^{2}$$

- ► Residual not separable in atoms (columns of U)
- ▶ Approximation: update one atom at a time (loop over all atoms \mathbf{u}_l)
 - 1. Set $\mathbf{U} = [\mathbf{u}_1^t \cdots \mathbf{u}_l \cdots \mathbf{u}_L^t]$, i.e. fix all atoms except \mathbf{u}_l .
 - 2. Isolate \mathbf{R}_{l}^{t} , the residual that is due to atom \mathbf{u}_{l} .
 - 3. Find \mathbf{u}_l^* that minimizes \mathbf{R}_l^t , subject to $\|\mathbf{u}_l^*\|_2 = 1$.

Dictionary Update II

▶ Isolate \mathbf{R}_l^t : residual due to atom \mathbf{u}_l

$$\begin{aligned} & \left\| \mathbf{X} - \left[\mathbf{u}_{1}^{t} \cdots \mathbf{u}_{l} \cdots \mathbf{u}_{L}^{t} \right] \cdot \mathbf{Z}^{t+1} \right\|_{F}^{2} \\ &= \left\| \mathbf{X} - \left(\sum_{e \neq l} \mathbf{u}_{e}^{t} \left(\mathbf{z}_{e}^{t+1} \right)^{\top} + \mathbf{u}_{l} \left(\mathbf{z}_{l}^{t+1} \right)^{\top} \right) \right\|_{F}^{2} \\ &= \left\| \mathbf{R}_{l}^{t} - \mathbf{u}_{l} \left(\mathbf{z}_{l}^{t+1} \right)^{\top} \right\|_{F}^{2} \end{aligned}$$

Dictionary Update II

▶ Isolate \mathbf{R}_l^t : residual due to atom \mathbf{u}_l

$$\begin{aligned} & \left\| \mathbf{X} - \left[\mathbf{u}_{1}^{t} \cdots \mathbf{u}_{l} \cdots \mathbf{u}_{L}^{t} \right] \cdot \mathbf{Z}^{t+1} \right\|_{F}^{2} \\ &= \left\| \mathbf{X} - \left(\sum_{e \neq l} \mathbf{u}_{e}^{t} \left(\mathbf{z}_{e}^{t+1} \right)^{\top} + \mathbf{u}_{l} \left(\mathbf{z}_{l}^{t+1} \right)^{\top} \right) \right\|_{F}^{2} \\ &= \left\| \mathbf{R}_{l}^{t} - \mathbf{u}_{l} \left(\mathbf{z}_{l}^{t+1} \right)^{\top} \right\|_{F}^{2} \end{aligned}$$

where \mathbf{z}_{l}^{\top} is the l-th row of matrix \mathbf{Z} .

lacktriangle Changing $(\mathbf{z}_l^{t+1})^ op$ while changing \mathbf{u}_l improves the result!

Dictionary Update II

▶ Isolate \mathbf{R}_l^t : residual due to atom \mathbf{u}_l

$$\begin{aligned} & \left\| \mathbf{X} - \left[\mathbf{u}_{1}^{t} \cdots \mathbf{u}_{l} \cdots \mathbf{u}_{L}^{t} \right] \cdot \mathbf{Z}^{t+1} \right\|_{F}^{2} \\ &= \left\| \mathbf{X} - \left(\sum_{e \neq l} \mathbf{u}_{e}^{t} \left(\mathbf{z}_{e}^{t+1} \right)^{\top} + \mathbf{u}_{l} \left(\mathbf{z}_{l}^{t+1} \right)^{\top} \right) \right\|_{F}^{2} \\ &= \left\| \mathbf{R}_{l}^{t} - \mathbf{u}_{l} \left(\mathbf{z}_{l}^{t+1} \right)^{\top} \right\|_{F}^{2} \end{aligned}$$

- lacktriangle Changing $(\mathbf{z}_l^{t+1})^ op$ while changing \mathbf{u}_l improves the result!
- ▶ How to keep sparseness of representations?

Dictionary Update III

$$\left\|\mathbf{R}_{l}^{t}-\mathbf{u}_{l}\left(\mathbf{z}_{l}^{t+1}
ight)^{ op}
ight\|_{F}^{2}$$

- ▶ Changing $(\mathbf{z}_l^{t+1})^{\top}$ while changing \mathbf{u}_l improves the result!
- ▶ How to keep sparseness of representations?

Dictionary Update III

$$\left\|\mathbf{R}_{l}^{t}-\mathbf{u}_{l}\left(\mathbf{z}_{l}^{t+1}
ight)^{ op}
ight\|_{F}^{2}$$

- lacktriangle Changing $(\mathbf{z}_l^{t+1})^ op$ while changing \mathbf{u}_l improves the result!
- ▶ How to keep sparseness of representations?
- ▶ Ignore data for which the atom \mathbf{u}_l has coefficient 0, i.e. remove corresponding columns from \mathbf{R}_l^t and entries from $\left(\mathbf{z}_l^{t+1}\right)^{\top}$.

Dictionary Update III

$$\left\|\mathbf{R}_{l}^{t}-\mathbf{u}_{l}\left(\mathbf{z}_{l}^{t+1}
ight)^{ op}
ight\|_{F}^{2}$$

- lacktriangle Changing $(\mathbf{z}_l^{t+1})^{ op}$ while changing \mathbf{u}_l improves the result!
- ▶ How to keep sparseness of representations?
- ▶ Ignore data for which the atom \mathbf{u}_l has coefficient 0, i.e. remove corresponding columns from \mathbf{R}_l^t and entries from $(\mathbf{z}_l^{t+1})^{\top}$.
- Obtain new equation:

$$\left\|\mathbf{R}_{l}^{'t}-\mathbf{u}_{l}\left(\mathbf{z}_{l}^{'t+1}
ight)^{ op}
ight\|_{F}^{2}$$

Dictionary Update IV

Finding \mathbf{u}_l^* :

- $lackbox{f u}_l \left({f z}_l^{'t+1}
 ight)^ op$ is an outer product, i.e. a matrix
- ► Minimize residual

$$\left\|\mathbf{R}_{l}^{'t}-\mathbf{u}_{l}\left(\mathbf{z}_{l}^{'t+1}
ight)^{ op}
ight\|_{F}^{2}$$

by approximating $\mathbf{R}_l^{'t}$ with rank-1 matrix $\mathbf{u}_l\left(\mathbf{z}_l^{'t+1}\right)^{\! op}$

▶ "Approximately" (Eckart-Young theorem) achieved by SVD of $\mathbf{R}_{t}^{'t}$:

$$\mathbf{R}_l^{'t} = \tilde{\mathbf{U}} \mathbf{\Sigma} \tilde{\mathbf{V}}^\top = \sum_i \sigma_i \tilde{\mathbf{u}}_i \tilde{\mathbf{v}}_i^\top$$

- $\mathbf{u}_l^* = ilde{\mathbf{u}}_1$ is first left-singular vector.
- $\|\mathbf{u}_l^*\|_2 = 1$ naturally satisfied.

Exercise 1 (blackboard)

Given a signal $\mathbf{x}=(3,1,-2)\in\mathbb{R}^3$ and an overcomplete dictionary $\mathbf{U}=[\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3,\mathbf{u}_4]\in\mathbb{R}^{3\times 4}$,

$$\mathbf{U} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix},$$

find the sparse representation \mathbf{z} of the signal \mathbf{x} with $\|\mathbf{z}\|_0 \leq 2$.

a. Find the atom $\mathbf{u}^{(1)}$ that minimize the reconstruction error $\|\mathbf{x} - \hat{\mathbf{x}}^{(0)}\|_2^2$ where $\hat{\mathbf{x}}^{(0)} = z^{(1)}\mathbf{u}^{(1)}$, and compute the residual $\mathbf{r}^{(1)} = \mathbf{x} - \hat{\mathbf{x}}^{(0)}$.

Exercise 1 (blackboard)

Given a signal $\mathbf{x}=(3,1,-2)\in\mathbb{R}^3$ and an overcomplete dictionary $\mathbf{U}=[\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3,\mathbf{u}_4]\in\mathbb{R}^{3\times 4}$,

$$\mathbf{U} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix},$$

find the sparse representation \mathbf{z} of the signal \mathbf{x} with $\|\mathbf{z}\|_0 \leq 2$.

- **a.** Find the atom $\mathbf{u}^{(1)}$ that minimize the reconstruction error $\|\mathbf{x} \hat{\mathbf{x}}^{(0)}\|_2^2$ where $\hat{\mathbf{x}}^{(0)} = z^{(1)}\mathbf{u}^{(1)}$, and compute the residual $\mathbf{r}^{(1)} = \mathbf{x} \hat{\mathbf{x}}^{(0)}$.
- **b.** Find the atom $\mathbf{u}^{(2)}$ that minimize the reconstruction error $\|\mathbf{r}^{(1)} \hat{\mathbf{x}}^{(1)}\|_2^2$ where $\hat{\mathbf{x}}^{(1)} = z^{(2)}\mathbf{u}^{(2)}$.

Exercise 1 (blackboard)

Given a signal $\mathbf{x}=(3,1,-2)\in\mathbb{R}^3$ and an overcomplete dictionary $\mathbf{U}=[\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3,\mathbf{u}_4]\in\mathbb{R}^{3\times 4}$,

$$\mathbf{U} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix},$$

find the sparse representation z of the signal x with $||z||_0 \le 2$.

- **a.** Find the atom $\mathbf{u}^{(1)}$ that minimize the reconstruction error $\|\mathbf{x} \hat{\mathbf{x}}^{(0)}\|_2^2$ where $\hat{\mathbf{x}}^{(0)} = z^{(1)}\mathbf{u}^{(1)}$, and compute the residual $\mathbf{r}^{(1)} = \mathbf{x} \hat{\mathbf{x}}^{(0)}$.
- **b.** Find the atom $\mathbf{u}^{(2)}$ that minimize the reconstruction error $\|\mathbf{r}^{(1)} \hat{\mathbf{x}}^{(1)}\|_2^2$ where $\hat{\mathbf{x}}^{(1)} = z^{(2)}\mathbf{u}^{(2)}$.
- ${f c.}$ Write down the sparse representation ${f z}$ of signal ${f x.}$

Exercise 4 (blackboard)

- **a.** Find an overcomplete dictionary and a vector \mathbf{x} such that the approximation $\hat{\mathbf{x}}$ resulting from the matching pursuit algorithm will never exactly equal \mathbf{x} no matter the number of iterations. Note that this implies that at least one atom will be selected multiple times.
- **b.** Find an instance where the sparse representation returned by matching pursuit (assuming that after some number of iterations, the approximation is perfect) is not optimal, i.e. there is a different representation for which the 0-norm is strictly smaller.