KENDRIYA VIDYALAYA SANGATHAN, LUCKNOW REGION

SESSION: 2023-24

CLASS: XII

Pre-Board Examination

XM-TI

SUBJECT: PHYSICS (THEORY)

Maximum Marks: 70

3 hours

12/02/24

Time Allowed:

General Instructions:

1) There are 33 questions in all. All questions are compulsory.

2) This question paper has five sections: Section A, Section B, Section C, Section D and Section E.

3) All the sections are compulsory.

4) Section A contains sixteen questions, twelve MCQ and four Assertion Reasoning based of 1 mark each, Section B contains five questions of two marks each, Section C contains seven questions of three marks each, Section D contains two case study based questions of four marks each and Section E contains three long answer questions of five marks each.

5) There is no overall choice. However, an internal choice has been provided in one question in Section B, one question in Section C, one question in each CBQ in Section D and all three questions in Section E. You have to attempt only one of the choices in such questions.

6) Use of calculators is not allowed.

7) You may use the following values of physical constants where ever necessary.

i. $c = 3 \times 10^8 \text{ m/s}$

ii. $m_e = 9.1 \times 10^{-31} \text{ kg}$

iii. $e = 1.6 \times 10^{-19} \text{ C}$

iv. $\mu_0 = 4\pi \times 10^{-7} \text{ Tm} A^{-1}$

v. $h = 6.63 \times 10^{-34} \text{ J s}$

vi. $\varepsilon_0 = 8.854 \times 10^{-12} \ C^2 N^{-1} m^{-2}$

vii. Avogadro's number = 6.023 X 10²³ per gram mole

SECTION-A

Q.	Question	Marks
No.		
1	If the direction of the electric field line due to two unlike point charges is	1
	from left to right then:	
	(a) Positive charge is at left and negative charge is at right	
	(b) Negative charge is at left and positive charge is at right	1
	(c) Both charges are at left	
	(d) Both charges are at right	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100
2	If 1µA current flows through a conductor when potential difference of 2 V is	p 1
-	applied across its ends, then the resistance of the conductor is	1
-	100 100 100 100 100 100 100 100 100 100	
	(a) $2 \times 10^{-6} \Omega$ (b) $2 \times 10^{6} \Omega$	

	10.0	
	$\Omega = 0.2 \times 10^5 \Omega$ (d) $2 \times 10^3 \Omega$	
3	Three capacitors each of capacity C are connected in series. The resultant capacity will be	1
	(a) 3C (b) 3/C (c) C/3 (d) 1/3C	
4	Magnetic dipole moment is a vector quantity directed from (a) West to East direction (b) North to South Pole (c) East to West direction (d) South to North Pole	1
5	Which of the following is an example for diamagnetic substances?	1
	(a) Copper (b) nickel (c) aluminium (d) iron	14.
6	If a wire of length 2 m is moving with a velocity of 1 m/s perpendicular to a magnetic field of 0.5 T, then E.M.F. induced in the wire will be	1
	(a) 0.2 V (b) 1.0 V (c) 0.5 V (d) 2 V	
7	A hot-wire ammeter reads 10 A in an AC circuit. The peak value of the current is	. 1
,	(a) $5\pi A$ (b) $10\sqrt{2} A$ (c) $10/\sqrt{2} A$ (d) $1/\sqrt{2} A$	1
8	In photoelectric effect the maximum kinetic energy of emitted electron depends on	1
9	(a) wavelength (b) work function (c) intensity (d) frequency The total energy of an electron in the first excited state of hydrogen atom is	1
	about -3.4 eV. Its kinetic energy in this state is (a) 3.4 eV (b) -3.4 eV (c) -6.8 eV (d) 6.8 eV	, 1
10	An electromagnetic wave is produced by oscillating electric and magnetic fields E and B. Choose the only incorrect statement from the following.	1
	 (a) E is perpendicular to B. (b) E is parallel to B. (c) E is perpendicular to the direction of propagation of the wave. (d) B is perpendicular to the direction of propagation of the wave. 	•
11 ,	A uniform magnetic field gets modifies as shown in Figure below, when two specimens A and B are placed in it.	1.
\	A B	
	 (a) A is Paramagnetic, B is diamagnetic (b) A is ferromagnetic, B is paramagnetic (c) A is diamagnetic, B is ferromagnetic (d) A is diamagnetic, B is paramagnetic 	

		1	^
12	Two spherical nuclei have mass number 216 and 64 with their radii R1 and R2 respectively. The ratio R1/R2 is equal to	1	and the second s
1	(a) 1:3 (b) 2:3 (c) 3:1 (d) 3:2	d s	
	For Questions 13 to 16, two statements are given one labelled Assertion (A) and other labelled Reason (R). Select the correct answer to these questions from the options as given below.		i i
	(a) If both Assertion and Reason are true and Reason is correct explanation of Assertion.		
-	(b) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.(c) If Assertion is true but Reason is false.(d) If both Assertion and Reason are false.	10.00 10.00	
13	Assertion (A): the focal length of a lens for red light is more than that of blue	1	
(light $(f_r > f_b)$, Reason(R): the refractive index of material is depend on wave length of light i.e. $(\mu_b > \mu_r)$	Ju	= ===
14	Assertion (A): To increase the range of an ammeter, we must connect a suitable high resistance in series with it.	1	700
15	Reason(R): The ammeter with increased range should have high resistance Assertion (A): In the process of photoelectric emission, all emitted electrons do not have same kinetic energy.	1	ر المر > الم
0	Reason(R): the energy of emitted electrons depends on the intensity of incident radiation.		
16	Assertion (A): V-I characteristic of p-n junction diode is same as that of any other conductor. Reason(R): p-n junction diode obeys Ohm's law.	J =	(1-1)

SECTION-B

17	A conductor of length 'l' is connected to a dc source of potential 'V'. If the	2	
	length of the conductor is tripled by gradually stretching it, keeping 'V'		
	constant, how will		
	(i) drift speed of electrons and Vol3	1	
_	(ii) resistance of the conductor be affected? Justify your answer. $R = 9 \cdot R$	• •	
18	(a) Arrange the following electromagnetic waves in the descending order of	2	
	their wavelengths.		
7	Microwaves, γ-rays, Ultraviolet radiation, Visible light		
2 7	Microwaves, y-rays, Onraviolet radiation, Visible >UV	ردو	Mays.
	(b) Write one use of above waves having lowest and highest wavelength.	4	71,7
19	The refractive index of a material of a concave lens is μ_1 . It is immersed in a medium of refractive index μ_2 . A parallel beam of light is incident on the lens.	2	
	Trace the path of emergent rays when	7	1
			J 🧓

20	i) $\mu_2 > \mu_1$ (and ii) $\mu_2 < \mu_1$ day .	
21	Draw suitable graphs to show the variation of photoelectric current(Ip) with collector plate potential (V) for i) a fixed frequency but different intensities I ₁ > I ₂ > I ₃ . ii) a fixed intensity but different frequencies V ₁ > V ₂ > V ₃ .	2
21	Explain, with the help of a suitable diagram, how (i) depletion layer and (ii) potential barrier is formed in a p-n junction diode.	2
	OR	ř
	Draw a circuit diagram of a full wave rectifier. Draw the input and output waveforms indicating clearly the functions of the two diodes used.	

SECTION-C

SECTION-D

Case Study Based Questions

29	A compound microscope consists of two lenses. A lens of short aperture and short focal length facing the object is called the object lens and another lens of short focal length but large aperture is called the eye lens. Magnifying power is defined as the ratio of angle subtended by the final image at the eye to the angle subtended by the object is seen directly, when both are placed at least distance of distinct vision.	
(i) _	An objective lens consists of (a) Short aperture and short focal length (b) Large aperture and large focal length (c) Short aperture and large focal length length	1
(ii)	An eyepiece consists of (a) Short aperture and short focal length (b) Large aperture and short focal length	1

	(c) Short aperture and large focal length (d) Large aperture and large focal length	
iii)	Formula of magnifying power (a) M= 1+ (alpha/beta) (b) M= (alpha/beta) (c) M= (beta/alpha) (d) M=1+ (beta/alpha)	1
(i.v)		1
(iv)	A compound microscope with an objective of 1.0 cm, focal length and eyepiece 2.0 cm. Focal length of a tube is 20 cm. Calculate the magnifying power of the microscope, if final image is formed at least distance of distinct vision) <u> </u>
	(a) 170 (b) 27 (c) 140 (d) 270 f_{e}	- 2
	A compound microscope has magnification of 30. The focal length of	1 :
	eyepiece is 5 cm. assuming the final image is to be formed at least distance of distinct vision (25 cm), calculate the magnification produced by objective.	,
	(a) 10 (b) 15 (c) 13 (d) 5	
30	A pure semiconductor germanium or silicon, free of every impurity is called intrinsic semiconductor. At room temperature, a pure semiconductor has very small number of current carriers (electrons and holes). Hence its conductivity is low. When the impurity atoms of valance five or three are doped in a pure semiconductor, we get respectively n-type or p type extrinsic semiconductor. In case of doped semiconductor $n_e n_h = n_i^2$. Where n_e and n_h are the number density of electron and hole charge carriers in a pure semiconductor. The conductivity of extrinsic semiconductor is much higher than that of intrinsic semiconductor.	
(i)	Which of the following statements is not true? (a) The majority charge carriers in n- type semiconductors are holes. (b) Doping pure Si with trivalent impurities gives p- type semiconductors. (c) The resistance of intrinsic semiconductor decreases with increase of temperature. All of the above.	, 1
ii)	The impurity atoms with which pure Ge should be doped to make a p-type semiconductor is	1
	(a) Phosphorus (b) Boron (c) Arsenic (d) Antimony	
ii)	Si at absolute zero temperature acts as (a) Semiconductor (b) Metal (c) Insulator (d) None of these	1
iv)	Electrons are majority charge carriers in (a) Intrinsic semiconductors (b) p-type semiconductor (c) metals OR	1
	Electrons & holes are charge carriers in pairs (a) Extrinsic semiconductors (b) n - type semiconductors (c) p - type semiconductors (d) Intrinsic semiconductors	

(b) An electric dipole of length 2 cm is placed with its axis making an a	ingle
of 60° with respect to uniform electric field of 10° N/C. If it experies	ices a
torque of 8√3 Nm, calculate the magnitude of the	5 4
torque of $8\sqrt{3}$ Nm, calculate the magnitude of the (i) electric dipole moment, $\sqrt{6}$ × $\sqrt{6}$	4
(ii) charge and Smc	
(iii) Potential energy.	
(a) Draw ray diagram to show the refraction of light through a glass prism	n.
Hence obtain relation for angle of deviation in terms of the angle of	
incidence, angle of emergence, and angle of prism. Write any two fac	ctors 5
on which angle of deviation depend.	
(b) Calculate the angle of minimum deviation for an equilateral prism of	1 1
refractive index √3.(o /	1 1
OR	
	1 1
State Huygens's principle. With the help of a diagram, show how a pl	ane
wave is reflected from a surface. Hence verify the law of reflection.	
(8) A concave mirror of focal length 12 cm forms a three times magnifie	ed
virtual image of an object. Find the distance of object from the mirror	.
and the distance of object from the inition	.

***X**