

Lab 3: Epileptic Seizure Detection

Winter School 25/01/2022

Epilepsy Detection	3
Dataset	7
Recurrent approach	13
Convolutional approach	23
Conclusions	29
Resources	31

Epilepsy Detection

Introduction

- Epilepsy
 - Neurological disorder characterized by recurrent seizures
 - Episodes of involuntary movement
 - Around 50 million people diagnosed in the world
- Electroencephalogram (EEG)
 - Recording the electrical activity of the brain
 - Electrodes located on the scalp
 - Continuous signal composed of different channels

Epilepsy Detection

Brain stages

Interictal

Normal activity.

Pre-ictal

Strange brain activity, usually before an actual seizure.

Ictal

Period while a patient is suffering a seizure.

Post-Ictal

The patient is recovering from a seizure.

Epilepsy Detection

Brain Stages

General cycle of stages

Automatic seizure detection task (not prediction few minutes before seizures)

- High variability between subjects
 - Patient-Dependent classifiers

- CHB-MIT Scalp EEG Database from Physionet
- EEG recordings from 24 pediatric subjects
- Data in EDF (European Data Format)
- Sessions are between 24 and 48 hours long, split in several files
- Most files are 1 hour long, others are longer (up to four hours)
- Electrodes located on the scalp (10-20 system standard)
- **23 channels**, related to pairs of electrodes
- Acquired at 256 Hz
- Manual Labelling: Starting and Ending times of seizures

Data preparation, cleaning and selection

- Preparation preprocess (Data cleaning process done by Winter-School team):
 - 1. Read signals from EDF format
 - 2. Homogenize signals to have each channel in the same position
 - 3. Store the data in a Python dictionary (containing signals and seizure information)
 - 4. Serialize the object in Pickle to save it (.pbz2 files)
- We provide a subset of the original dataset already cleaned

Splits not in chronological order

A whole session of 48 hours

Class imbalance

Seizures normally last few seconds, so there is a high class imbalance.

Patient id	# files without seizures	# files with seizures	# interictal hours	# ictal hours
chb01	35	7	40,43	0,12
chb03	31	7	37,89	0,11
chb05	5 34 5		38,85	0,16
chbo8	15	5	19,75	0,26
chb12	11	10	20,41	0,28
chb14	19	7	25,95	0,05
chb15	25	14	38,46	0,55
chb24	10	12	21,15	0,14
Total	180	67	242,89	1,67

Introduction

- Recurrent Neural Networks
 - LSTM / GRU layers
- Data Loader
- Post inference process
- Metrics
 - Neural Network Metrics
 - Post inference Metrics
- Results

RNN topologies based on LSTM and GRU layers

In the first example provided we are using **19** timesteps of one-second-long sliding windows, that is why the input shape is **(19, 256)**. Because each one of the 23 channels is processed independently.

Data Loader

- Data Loader Sequence Parameters
 - window_length (in seconds)
 - shift (in seconds)
 - timesteps

DEEPHEALTH

Data Loader - Example

- Example of sequence generation
 - window_length = 1 second
 - shift = 0.5 seconds
 - timesteps = 19

10 seconds

Data Loader - Example

Training Mode

(19, 256) x 23

We independently pass each channel through the net

Inference Mode

Post inference process

- Post inference function to act as a detector
 - Analyses the consecutive outputs
 - Raises alarms when it detects a seizure

Detection threshold

Ground Truth

Prediction

If the proportion of ones inside the post-inference window while being in the **Interictal** state is greater than **alpha_pos**, it makes the transition from Interictal to Ictal: T.0.1

If the proportion of ones inside the post-inference window while being in the **Ictal** state is lower than **alpha_neg**, it makes the transition from Ictal to Interctal: T.1.0

Metrics

Classifier Metrics

- Accuracy
- Macro F1-score
- Balanced Accuracy
- Metrics at two levels
 - Channel independent
 - Ensemble: all 23 channels combined

Post Inference process Metrics

- Post-inference window accuracy
- Percentage of detected seizures
- Average Latency (in seconds)
- False Alarms per hour

Results

Experiment configuration

Window Length (s)	Shift (s)	Timesteps	Timesteps Model		Initial LR	Epochs
1	0,5	19	GRU	Adam	0,0001	10

Post-Inference Parameters

Post-Inference Window Length (in timesteps)	Alpha_pos	Alpha_neg	Detection Threshold (s)	
20	0,4	0,4	20	

6,28

0,16

	Test							Post-Infer	ence Proce	ss with Te	st subset	
	Channel Independent		Coi	Combined channels		A = =	#	Detected	Latency	False		
Patient	Acc	F1-Score	Balanced Acc	Acc	F1-score	Balanced Acc	Acc	Seizures	seizures	(s)	Alarms per Hour	Hours
chb01	99.75%	0,8828	86,34%	99,93%	0,9667	94,45%	99,90%	2	100,00%	11,75	0,00	9,62
chb03	99,62%	0,6117	57,53%	99,64%	0,4991	50,00%	99,64%	2	0,00%	-	0,00	8,97
chb05	99.75%	0,8553	87,35%	99,90%	0,9335	88,46%	99,87%	1	0,00%	-	0,13	7,98
chbo8	97,60%	0,7215	83,11%	99,49%	0,9054	87,71%	99,49%	1	100,00%	18,00	0,80	4.99
chb12	95,26%	0,5774	63,09%	97,63%	0,6018	58,85%	97,53%	11	54,55%	13,92	2,67	5,98
chb14	99,76%	0,5856	58,21%	99,85%	0,5252	51,32%	99,85%	2	0,00%	-	0,00	6,98
chb15	96,70%	0,6383	67,83%	97,86%	0,6363	61,32%	97,71%	7	28,57%	11,75	1,89	8,98

67,56%

99,44%

100,00%

11,50

chb24

99,34%

0,7385

69,23%

0,7586

99,49%

Introduction

- Time Delay Convolutional Neural Networks
- Post Inference Process
- Metrics
 - Neural Network Metrics
 - Post inference Metrics
- Results

Time Delay Convolutional Neural Networks

Kernel_size = (128, 23), strides = (64, 1) --> 500 ms long window shifted every 250 ms

- Models available in the pipeline
 - "conv1"

- Post Inference Process
- Metrics
 - Neural Network Metrics
 - Post inference Metrics

The same as in the recurrent approach

Results

Experiment configuration

Window Length (s)	Shift (s)	Model	Optimizer	Initial LR	Epochs
10	0,25	Conv1	Adam	0,00001	10

Post-Inference Parameters

Post-Inference Window Length (in timesteps)	Alpha_pos	Alpha_neg	Detection Threshold (s)	
20	0,4	0,4	20	

		Test			Post	-Inference Pro	cess with Te	est subset	
Patient	Acc	F1-score	Balanced Acc	Acc	# Seizures	Detected seizures	Latency (s)	False Alarms per Hour	Hours
chb01	99,72%	0,8940	96,15%	99,69%	2	100,00%	9,00	0.73	9,62
chbo3	99,62%	0,8086	91,86%	99,56%	2	100,00%	2,88	1,78	8,98
chbo5	99,66%	0,8330	92,07%	99,59%	1	0,00%	-	1,76	7,98
chbo8	99,2%	0,8477	81,74%	99,19%	1	100,00%	16,75	1,80	4,99
chb12	96,73%	0,5530	55,63%	96,51%	11	45,45%	15,90	7,52	5,98
chb14	98,83%	0,4971	49,49%	98,71%	2	0,00%	-	4,01	6,98
chb15	97,63%	0,7848	94,28%	97.52%	7	57,14%	10,44	3,01	8,98
chb24	99,22%	0,6435	60,05%	99,23%	4	75,00%	9,25	0,96	6,28

Conclusions

Conclusions of the results

- We did not find an **ideal model** that works well with every patient
- In general, **slightly better accuracy** with the convolutional approach
- In some cases, the **recurrent approach** has more latency but less false alarms, and the **convolutional approach** has lower latency but more false alarms per hour.

Resources

Original Dataset

CHB-MIT Scalp EEG Database

Prepared Dataset

clean_signals.zip (7.6 GB) Option 1 Option 2

Pipeline Repository

UC13_pipeline

