

Theoretical Mechanics, Lab 3: KIN PLANE2

Plane motion

Questions from the class

"Нах..я мы это делаем, все это? Если бы сказал, что повторяем физику - нет проблем. Но ты не объяснил" (с)

Task 1 (yours): solution in subfolder

The shaft 1 has radius r=0.1. It rotates around O axis by law $\varphi=\varphi(t)=2t$. Step roller 2 with radii R=0.2, r=0.1 associated with the shaft, wrapped in an unbreakable rope and rolling without sliding over horizontal plane.

Determine the velocities of points A, B, C, D, K and angular velocity of ω_2 .

Task 1

Example

The cylinder rolls without slipping betn the two moving plates.

Determine the location of IC and calculate the angular velocity of the cylinder and velocity of its center *C*.

The algorithm for determining IC

- 1. Check whether the body rolls over a fixed surface. If it rolls, then the point of contact of the body with the surface is IC.
- 2. Otherwise, it is necessary to draw the lines of action of the velocities of two points belonging to the body, then construct the perpendiculars to the action lines. There are three possible cases.
- 2.1. Perpendiculars intersect. The point of intersection is IC.
- 2.2. The perpendiculars are parallel. IC is in infinity.
- 2.3. The perpendiculars coincide. In this case, it is required:
- to find the values of the velocities of this two points.
- · to show the velocity vectors in the figure in scale, and
- to draw a line connecting the end points of the vectors.

The point of intersection of this line with the perpendiculars is IC.

26

Task 2 (yours): solution

Instantaneous Center of Zero Velocity

Example: Solution:

$$v_B = \omega x;$$
 $0.4 \text{ m/s} = \omega x$

$$v_A = \omega(0.25 \text{ m} - x);$$
 $0.25 \text{ m/s} = \omega(0.25 \text{ m} - x)$

Dividing one eqn by other to eliminate ω :

$$0.4(0.25 - x) = 0.25x$$

$$x = \frac{0.1}{0.65} = 0.1538 \,\mathrm{m}$$

$$\omega = \frac{v_B}{x} = \frac{0.4 \text{ m/s}}{0.1538 \text{ m}} = 2.60 \text{ rad/s}$$

$$v_C = \omega r_{C/IC} = 2.60 \text{ rad/s } (0.1538 \text{ m} - 0.125 \text{ m})$$

= 0.0750 m/s \leftrightarrow

ME101 - Division III

Kaustubh Dasgupta

22

Task 3 (mine)

The goal is to find velocities and accelerations (both direction and magnitude) of A, B, C if you know all dimensions of the mechanism, $\omega_{OA}=2$, $\omega_1=1.2$, $\varepsilon_{OA}=0$.

Task 3

