Embedded Systems

Prof. Sedighi

Amirkabir University of Technology (Tehran Polytechnic)

Department of Computer Engineering

Reza Adinepour ID: 402131055

Homework 8 Chapter 13 - Invariants and Temporal Logic June 1, 2024

Embedded Systems

Homework 8

Reza Adinepour ID: 402131055

Question 2

Consider the following state machine:

input: *x*: pure **output:** *y*: {0,1}

Figure 1: State machine of Q2

(Recall that the dashed line represents a default transition.) For each of the following LTL formulas, determine whether it is true or false, and if it is false, give a counterexample:

- (a) $x \implies \mathbf{Fb}$
- (b) $\mathbf{G}(x \implies \mathbf{F}(y=1))$
- (c) $(\mathbf{G}x) \implies \mathbf{F}(y=1)$
- (d) $(\mathbf{G}x) \implies \mathbf{GF}(y=1)$
- (e) $\mathbf{G}((b \wedge \neg x) \implies \mathbf{FG}c)$
- (f) $\mathbf{G}((b \land \neg x) \implies \mathbf{G}c)$
- (g) $(\mathbf{GF} \neg x) \implies \mathbf{FG}c$

Soloution

(Recall that the dashed line represents a default transition.) For each of the following LTL formulas, determine whether it is true or false, and if it is false, give a counterexample:

- (a) $x \Longrightarrow \mathbf{Fb}$ T
- (b) $\mathbf{G}(x \implies \mathbf{F}(y=1))$
- (c) $(\mathbf{G}x) \implies \mathbf{F}(y=1)$ F
- (d) $(\mathbf{G}x) \implies \mathbf{GF}(y=1)$ F
- (e) $\mathbf{G}((b \wedge \neg x) \implies \mathbf{FG}c)$ T
- (f) $\mathbf{G}((b \wedge \neg x) \implies \mathbf{G}c)$ F
- (g) $(\mathbf{GF} \neg x) \implies \mathbf{FG}c$

(a)

x/1 True $a \implies b \implies c$

(b)

x/1 True $a \implies b \implies c$

(c)

x/1 True $a \implies b \implies c$

(d)

x/1 True $a \implies b \implies c$

(e)

 $b \wedge \neg x / b \implies b \dots$

(f)

 $a \Longrightarrow a \dots$

Question 4

This problem is concerned with specifying in linear temporal logic tasks to be per formed by a robot. Suppose the robot must visit a set of n locations $l_1, l_2, ..., l_n$. Let p_i be an atomic formula that is true if and only if the robot visits location l_i .

Give LTL formulas specifying the following tasks:

- (a) The robot must eventually visit at least one of the n locations.
- (b) The robot must eventually visit all n locations, but in any order.
- (c) The robot must eventually visit all n locations, in the order $l_1, l_2, ..., l_n$.

Soloution

- (a) $\mathbf{F}p_1 \vee \mathbf{F}p_2 \vee \mathbf{F}p_3 \vee \ldots \vee \mathbf{F}p_n$
- 1. $\mathbf{F}p_1 \wedge \mathbf{F}p_2 \wedge \mathbf{F}p_3 \wedge \ldots \wedge \mathbf{F}p_n$
- 2. $\mathbf{F}(p_n \wedge \dots \mathbf{F}(p_3 \wedge \mathbf{F}(p_2 \wedge \mathbf{F}p_1)))$

End of Homework 8