EECS 376: Foundations of Computer Science

Chris Peikert 8 March 2023

Today's Agenda

- 1) Recap: NP (efficiently verifiable languages)
- 2) Satisfiability Problem: SAT
- 3) Cook-Levin Theorem:
 - SAT is "as hard as" any problem in NP

Verifiable Problems

- * Example 1: Given a maze, is there a route through the maze from the start to finish?
- * Answer (from wizard): Yes; see the route below.
- * Response: We follow the route and are convinced.

Efficiently Verifiable Problems

- * Example 2: TSP (decision version):
 Given 4 cities and pair-wise distances between them, is there a cycle of length at most 100 through all the cities?
- * Answer (from wizard): Yes; $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$.
- * Response: We check that this visits all the cities in a cycle, compute the cost 20+30+12+35 = 97 < 100, and are convinced.

The Class NP

- * Definition: A decision problem L is efficiently verifiable if there exists an algorithm V(x,c), called a verifier, satisfying:
- 1. V(x,c) is *efficient* with respect to x, i.e., polynomial time in |x|.
- 2. For every $x \in L$, there <u>exists</u> some c such that V(x, c) accepts.
- 3. For every $x \notin L$, V(x, c) rejects for <u>all</u> c.

Given 1, conditions 2+3 are equivalent to:

$$x \in L \iff \exists c \text{ s.t. } V(x,c) \text{ accepts.}$$

Definition: the class **NP** = the set of all efficiently verifiable languages.

I.e.: $L \in \mathbb{NP}$ if L is efficiently verifiable.

Practice with Verifiers

```
L_{Comp}= {n : n is composite (not prime)}
```

 L_{HAM} = {G : G has a Hamiltonian cycle}

```
L_{Primes} = {n : n is prime } (complement of L_{Comp})
```

Not obvious. But there is a clever verifier and cert! [Pratt 1975]

 $L_{non-HAM}$ = {G : G has <u>no</u> Hamiltonian cycle} We **do not expect** the problem to have an efficient verifier! (Would have very surprising consequences.)

P vs NP

- * $L \in \mathbf{P}$ if there is a polynomial-time (in |x|) algorithm M where: * $x \in L \Longrightarrow M(x)$ accepts * $x \notin L \Longrightarrow M(x)$ rejects $x \in L \iff M(x)$ accepts
- * $L \in \mathbf{NP}$ if there is a polynomial-time (in |x|) algorithm V where:
 - * $x \in L \Longrightarrow V(x,c)$ accepts for some c* $x \notin L \Longrightarrow V(x,c)$ rejects for every $c < x \in L \iff \exists c : V(x,c)$ accepts
- * Observe: $P \subseteq NP$ (V(x, c) can ignore c and just run M(x).)
- * \$1,000,000 question: Is P = NP?
 Is every efficiently <u>verifiable</u> problem
 also efficiently <u>solvable</u>?
 Seems unlikely... but we don't know for sure!

What P vs NP is "About"

<u>Intuitively</u>: Verifying a correct solution seems much "easier" than finding one (or even determining if there is one).

Examples: TSP, Ham-Cycle, Subset-Sum, **Sudoku**, **376 Homework**, ... All these problems are in NP — but we don't know if they are in P!

Major open question (P vs NP): Does P = NP? Is every efficiently verifiable problem also efficiently solvable?

P vs NP

- * ... Let p(n) be the number of steps to find a proof of length n. The question is, how rapidly does p(n) grow for an optimal machine? It is possible to show that p(n) > Kn. If there really were a machine with p(n) ~ Kn (or even just ~ Kn^2) then that would have consequences of the greatest significance. Namely, this would clearly mean that the thinking of a mathematician in the case of yes-or-no questions could be completely replaced by machine ...
 - Kurt Godel's letter to von Neumann in 1956 (<u>15 years before</u> P vs NP was formalized!)

- * "If P = NP, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in 'creative leaps', no fundamental gap between solving a problem and recognizing the solution once it's found."
 - Scott Aaronson

Pictorially

Believed: $P \neq NP$

NP

EASY TO CHECK HARD TO SOLVE

Р

EASY TO SOLVE

If P = NP

P = NP

EASY TO CHECK EASY TO SOLVE

Pictorially

Problems beyond NP (won't study here)

Believed: $P \neq NP$

TSP NP Sudoku

EASY TO CHECK
HARD TO SOLVE
Subset-Sum Ham-cycle

LIS P
Sorting
EASY TO SOLVE
GCD

If P = NP

Two Amazing Works (Given Turing Awards)

Cook-Levin (1971): SAT is "NP-hard." In particular: If SAT is in P, then all of NP is in P, i.e., P=NP. (Easy: if SAT is not in P, then $P \neq NP$.)

So, to resolve P vs. NP, we "just" need to determine the status of SAT!

Karp (1972): TSP, Ham-Cycle, Subset Sum, ... all of these are "equivalent" to SAT.

Either all of them are in P (so P=NP), or none are (so P \neq NP).

A "Hard" Language for NP

Cook-Levin Theorem:

Any poly-time algorithm for SAT

would yield, via efficient reduction,

a poly-time algorithm for *any* language in NP (i.e., any efficiently verifiable language)

Satisfiability

- * Boolean *variables* x,y,z ... taking values true or false (1 or 0)
- * A Boolean *literal* is a variable or its negation z, ¬z
- * A Boolean *operator* is AND, OR (\land,\lor)
- * A Boolean *formula* is a formula involving Boolean literals and operators, e.g., $\phi = (\neg x \land y) \lor (x \land \neg z)$
- * A *satisfying assignment* for ϕ is a true/false assignment to the variables such that ϕ evaluates to true.
- * \$\phi\$ is **satisfiable** if it has a satisfying assignment
- * **SAT** = $\{\phi : \phi \text{ is a satisfiable Boolean formula}\}$

Satisfiability

- * **Ex 1:** $\phi(x,y) = \neg x \wedge y$
- * Question: What is $\phi(T,F)$ and $\phi(F,F)$?
- * Ex 2: $\phi(x,y,z) = (\neg x \lor y) \land (\neg x \lor z) \land (y \lor z) \land (x \lor \neg z)$
- * Question: Are these φ satisfiable?
- * Question: Is SAT ∈ NP?

I.e., is SAT efficiently verifiable? Can the satisfiability of a given ϕ be efficiently verified?

Cook-Levin Outline

- * Theorem [Cook-Levin]: If SAT \in P, then NP \subseteq P.
- * Let D_{SAT} be an efficient decider for SAT.
- * Let $L \in NP$, so L has an efficient verifier V.
- * Goal: L \in P via efficient decider D_L that uses D_{SAT} & V.
- * $D_L(x)$:
 - * Cleverly construct a poly-sized Boolean formula $\phi_{V,x}$ so that:
 - * $x \in L \iff \phi_{V,x}$ is satisfiable.
 - * Output $D_{\mathsf{SAT}}(\phi_{\mathsf{V},\mathsf{x}})$.

Initial Observations

- * V(.,.) is an efficient verifier (i.e., a TM) for $L \in NP$.
- * For every input x and certificate c:
 - * V runs for at most $|x|^k$ steps, for some constant k.
 - \Rightarrow V can read/affect only the first $|x|^k$ tape cells
- * Goal: Given some x, design a Boolean formula $\phi_{V,x}$ that is satisfiable iff some c causes V(x,c) to accept in at most $|x|^k$ steps.
- * Solution: Turing machine inspection!
- * **Definition:** A **configuration** of V represents V's tape contents, state, head location.
- * Example: 011q₅0001 means:
 - * V's tape has 0110001⊥⊥⊥...
 - * V is in state q₅; V's head points to the 4th cell

A Configuration Tableau

- * A *tableau* is an array of symbols:
 - * Rows represent configurations (flanked by #s)
 - * Symbols can be from $S = \{0,1\} \cup Q \cup \{\#, \$, \bot\}$
 - Successive rows correspond to configurations after each step of V

Initial configuration
After 1 step

Proof Overview

- * Given an input x, construct a Boolean formula $\phi_{V,x}$ that represents an accepting V-tableau with input x (and unspecified c):
- * V(x,c) accepts for some $c\iff \phi_{V,x}$ is satisfiable.
- * Variables: t_{i,j,s} denotes whether tableau cell (i,j) has symbol s.
- * $\phi_{V,x} = \phi_{start} \wedge \phi_{cell} \wedge \phi_{accept} \wedge \phi_{step}$
 - 1. ϕ_{start} enforces the starting config on input x (w/ unspecified c)
 - 2. ϕ_{cell} ensures that every cell contains exactly one symbol
 - 3. ϕ_{accept} ensures that V reaches an accepting configuration
 - 4. ϕ_{step} ensures that each configuration follows from the previous one according to the code of V

The Starting Configuration

 ϕ_{start} enforces the starting configuration:

#	q_0	x	\$ С	上	上	#

- Initial state q₀
- * Input x, |x| = n; certificate c, $|c| = n^k$
- * \$ a special symbol ("comma") that separates x and c
- * Certificate c is unspecified, so we leave a "placeholder"

$$\phi_{start} = t_{1,1,\#} \wedge t_{1,2,q0} \wedge t_{1,3,x1} \wedge t_{1,4,x2} \wedge ... \wedge t_{1,n+2,xn} \wedge t_{1,n+3,\$} \wedge$$
This fixes the first n+3 symbols

$$(t_{1,n+4,1} \lor t_{1,n+4,0} \lor t_{1,n+4,\perp}) \land (t_{1,n+5,1} \lor t_{1,n+5,0} \lor t_{1,n+5,\perp}) \land ...$$
 $(c_1 \text{ can be either 1 or 0 or } \bot)$

Cell Consistency

* ϕ_{cell} ensures that every cell contains **exactly** one symbol:

Accepting Configurations

 ϕ_{accept} ensures that V reaches an accepting configuration:

Computational Steps

 ϕ_{step} ensures that each configuration follows from the previous configuration according to V's transition function:

Definition: A 2x3 "window" is valid if it could appear in a valid tableau

Theorem: The whole tableau is valid if and only if every 2x3 window is valid.

Can write a small formula for window validity: e.g., $q01 \rightarrow 1q'1$ if there is a $q \rightarrow q'$ transition (0->1, R).

Conclusion

- * Conclusion: P = NP <u>iff</u> there is an efficient algorithm for SAT (determining satisfiability of Boolean formulae)
- * Common Belief: There is no efficient algorithm for determining satisfiability, so P ≠ NP.

