Stat 111 Week 3: Joint and Conditional Distributions

1. Joint, Marginal and Conditional Densities (Rice 3.1-3.5, Blitzstein 7.1)

- a) Review the concept of a joint pdf and describe the corresponding joint cdf. Review how you find marginal and conditional distributions from a joint distribution.
- b) As an example, suppose X and Y have joint pdf $f_{xy}(x,y) = \lambda^2 e^{-\lambda y} I_{(0 < x < y)}$. Show that the marginal distributions are $X \sim \text{Exponential}(\lambda)$ and $Y \sim \text{Gamma}(2,\lambda)$.
- c) Show that Y|X = x is a translated Exponential, and X|Y = y is Uniform.
- d) Review the factorization theorem for independence. Show that X and Y are not independent, but that X and Y X are independent.
- e) A bivariate differential argument approximates $P(X \in [x, x+dx), Y \in [y, y+dy))$ by $f_{xy}(x, y)dxdy$. Use this approach to show that this is the joint pdf for the time of the first event (x) and the time of the second event (y) for a Poisson process with rate λ events per unit time. Show this agrees with what you find setting $X = X_1$ and $Y = X_1 + X_2$, for $X_1, X_2 \stackrel{\text{i.i.d.}}{\sim}$ Exponential (λ) .

2. Covariance and Correlation (Rice Section 4.3, Blitzstein 7.3)

- a) Define the covariance σ_{xy} and the correlation ρ_{xy} for random variables X and Y and derive the computation formula Cov(X,Y) = E(XY) E(X)E(Y). Compare to formulas for Var(X).
- b) As an example, consider a fat coin that has some probability of landing on its edge. Suppose the probability of it landing heads is p and the probability of it landing tails is also p (0). If you flip the coin <math>n = 2 times and let X be the number of heads and Y the number of tails, find the covariance and correlation of X and Y as a function of p, and give the values when p = 0.4.
- c) Derive the formulas for Var(X + Y) and Var(X Y). Use the fact that Var(X + Y) and Var(X Y) are both non-negative to prove that $-1 \le \rho_{xy} \le 1$ (proving either the upper or lower bound will be sufficient for the presentation).
- d) Show that independent implies uncorrelated, and explain why uncorrelated does not always imply independent. As an example, consider X and Y uniformly distributed over the triangular region 0 < |Y| < X < 1.

3. Vector Random Variables (Rice 14.4.1, Blitzstein 7.5)

- a) Introduce the concept of an n-dimensional random vector \mathbf{X} , and the generalizations of the mean and variance to the $n \times 1$ mean vector $\boldsymbol{\mu}$ and $n \times n$ covariance matrix \mathbf{V} (Rice, 14.4.1). Show how the usual definition of $\text{Cov}(X_i, X_j)$ arises as the expectation of the i, jth element (and the j, ith element) of the random $n \times n$ matrix $(\mathbf{X} \boldsymbol{\mu})(\mathbf{X} \boldsymbol{\mu})^T$. Give $\boldsymbol{\mu}$ and \mathbf{V} for an $n \times 1$ vector of independent random variables with means $\boldsymbol{\mu}_i$ and variances σ_i^2 , for $i = 1, \ldots, n$.
- b) Suppose **X** is $n \times 1$ with mean vector $\boldsymbol{\mu}$ and covariance matrix **V**. Explain the formulas for the mean vector and covariance matrix for linear transformations:

$$E(\mathbf{AX} + \mathbf{C}) = \mathbf{A}E(\mathbf{X}) + \mathbf{C}, \quad Var(\mathbf{AX} + \mathbf{C}) = \mathbf{AXA}^{T}$$

where $\mathbf{Y} = \mathbf{AX} + \mathbf{C}$, for \mathbf{A} an $m \times n$ and \mathbf{C} an $m \times 1$ matrix of constants.

c) Show that

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \left(\sum_{i=1}^{n} \operatorname{Var}(X_{i})\right) + 2\left(\sum_{i < j} \operatorname{Cov}(X_{i}, X_{j})\right).$$

which is the sum of all of the elements in the covariance matrix V.

- d) Show that Cov(aX + b, c + dY) = adCov(X, Y) and Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)
- e) For X_1, \ldots, X_n iid random variables, show that \bar{X} is uncorrelated with $X_i \bar{X}$, for any $i = 1, \ldots, n$. Use the vector matrix formulation, and also show a scalar argument.

4. Multivariate Normal Variables (Blitzstein 7.5)

Definition: A random vector $(X_1, ..., X_n)$ follows a *Multivariate Normal* (MVN) distribution if $t_1X_1 + ... + t_nX_n$ follows a Normal distribution for any choice of constants $t_1, ..., t_n$.

- a) Explain why this implies that any sample of *n independent* Normal random variables follows an dimensional MVN distribution.
- b) Explain why, if X_i is part of a MVN vector, then X_i is Normal. Also give an example of variables X and Y that have marginal Normal distributions, but that are not part of a multivariate Normal vector.
- c) The *n*-dimensional multivariate Normal density with $n \times 1$ mean vector $\boldsymbol{\mu}$ and $n \times n$ covariance matrix \mathbf{V} has a proper joint pdf if and only if \mathbf{V} is positive definite, and hence invertible. We write $\mathbf{X} \sim N_n(\boldsymbol{\mu}, \mathbf{V})$, and the joint pdf is

$$f(\mathbf{x}) = (2\pi)^{-n/2} |\mathbf{V}|^{-1/2} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{V}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

Show that this is a generalization of the univariate Normal density (n=1) and that the vector of $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ has a joint pdf of this form (what are μ and \mathbf{V} ?).

d) Let $X_1, \ldots, X_n, Y_1, \ldots, Y_m$ represent a multivariate Normal vector of dimension m + n, and suppose $Cov(X_i, Y_j) = 0$ for all $i = 1, \ldots, n$ and $j = 1, \ldots, m$. Show that the joint density of the X's and Y's factors into a joint pdf for X_i 's and a joint pdf for the Y_j 's, meaning these are independent random vectors. State the general result about correlation and independence for elements of a multivariate Normal vector.

5. Bivariate Normal Variables

- a) Write out the multivariate Normal density in the n=2 case, in terms of the scalar elements (don't try this for dimensions over 2). Show the two elements are independent if and only if $\rho=0$.
- b) Let Z_1 and Z_2 be independent N(0,1) variables. For some value $\rho \in (-1,1)$, set $X = Z_1$ and $Y = \rho Z_1 + \sqrt{1 \rho^2} Z_2$. Verify that the vector (X,Y) is bivariate Normal with correlation ρ .
- c) Let $Z \sim N(0,1)$ be independent of $S=\pm 1$ with probability 1/2. Let X=Z and Y=SZ. Show that X and Y are uncorrelated standard Normal variables, but are not independent. Argue that, to be a bivariate Normal vector, X and Y must be non-trivial linear combinations of $Z_1, Z_2 \stackrel{\text{i.i.d.}}{\sim} N(0,1)$, meaning both Z_1 and Z_2 get some weight with either X or Y
- d) For X and Y bivariate Normal, identify the conditional distribution of Y|X=x. Give the more general result when X and Y have arbitrary means and standard deviations, and note the connections with simple linear regression.