Lecture 20

March 13, 2019

Anders Sundheim asundheim@wisc.edu

Change of variables for double integrals

Example

Recall one example for single variable integral

$$\int_0^{\frac{\pi}{2}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{2}} \sin^2 \theta \sin \theta d\theta \to \text{change of variable } \begin{cases} u = \cos \theta & \theta : 0 \to \frac{\pi}{2} \\ du = u' d\theta = -\sin \theta d\theta & \theta : 1 \to 0 \end{cases}$$
$$= \int_1^0 (1 - u^2)(-du) = \int_0^1 (1 - u^2) du = u - \frac{u^3}{3} \Big]_0^1 = \boxed{\frac{2}{3}}$$

Given variables $(x, y) \in S$

$$\iint_{S} f(x, y) dx dy$$
$$(u, v) \mapsto (x, y)$$

New variables $(u, v) \in T$

Here,
$$\begin{cases} x = \overline{X}(u, v) \\ y = \overline{Y}(u, v) \end{cases}$$

Theorem

Change of variables:

Assume
$$(\overline{X}, \overline{Y}): T \to S$$

$$(u,v) \mapsto (\overline{X}(u,v), \overline{Y}(u,v) = (x,y)$$
 the map is one-to-one
$$\frac{d\overline{X}}{du}, \frac{d\overline{X}}{dv}, \frac{d\overline{Y}}{du}, \frac{d\overline{Y}}{dv} \text{ are continuous}$$

$$\text{Jacobian determinant} = \det J(u,v) = \begin{vmatrix} \frac{d\overline{X}}{du} & \frac{d\overline{Y}}{du} \\ \frac{d\overline{X}}{dv} & \frac{d\overline{Y}}{dv} \end{vmatrix} \neq 0 \text{ always}$$
 Then,
$$\iint_{\mathcal{S}} f(x,y) \, dx \, dy = \iint_{\mathcal{T}} f(\overline{X}(u,v), \overline{Y}(u,v)) |J(u,v)| \, du \, dv$$

Theorem

Let $S \subset \mathbb{R}^2$ be an open set such that it's boundary, c, is a piecewise C^1 Jordan curve,

and c encloses exactly S. Let $P,Q:S\to\mathbb{R}$ be C^1 real-valued functions such that $\frac{dP}{dy}(x,y)=\frac{dQ}{dx}(x,y)$ for all $(x,y)\in S$.

Then f(x,y) = (P(x,y), Q(x,y)) is a gradient vector field(that is, $f = \nabla \Psi$, for some potential function $\Psi: S \to \mathbb{R}$)

Rmk.: (1) c encloses exactly S is very important

(2) Key point again: if $f = \nabla \Psi$, then $\int f \cdot d\alpha = \Psi(\alpha(b)) - \Psi(\alpha(a))$

Proof. Fix $z \in S$

For any $x \in S$, we can connect z to x by line segments parallel to the axes Take any such path α , connects $z \to x$: $(\alpha(a) = z, \alpha(b) = x)$

Define
$$\Psi(x) = \int f \cdot d\alpha = \int_{\alpha} P \, dx + Q \, dy$$

(1) Is φ well-defined? \Rightarrow we need to show that $\varphi(x)$ does not depend on path

Call γ boundary of A: $\oint_{\gamma} f \cdot d\alpha = 0 \Rightarrow \int f \cdot d\alpha = \int f dB$ $\Rightarrow \varphi$ is well-defined

(2) We need to check $\nabla \varphi = (P, Q) \rightarrow$ we have checked this before.