Logic - Problem Sheet 2

Dom Hutchinson

February 15, 2020

Question - 1.

Let $\mathcal{L} = \{P, R, f, g, c_0, c_1\}$ where P is a unary predicate, R is a binary prediate and f & g are binary function symbols. Let \mathfrak{M} be an \mathcal{L} -Structure such that $|\mathfrak{M}| = \mathbb{R}$, $P^{\mathfrak{M}} = \mathbb{N}$, $R^{\mathfrak{M}}$ is the usual greater-than (>) relation on R, $f^{\mathfrak{M}}$ is the usual addition on \mathbb{R} , $g^{\mathfrak{M}}$ is the usual multiplication on \mathbb{R} , $c_0^{\mathfrak{M}} = 0$ and $c_1^{\mathfrak{M}} = 1$. Finally, let s be a variable assignment over \mathfrak{M} with s(x) = 5 and s(y) = 3 where x and y are distinct variables.

Question 1 b) - Determine the semantic value of the following \mathcal{L} -term in \mathfrak{M} under s

$$f(g(x,y),g(x,c_1))$$

Answer 1 b)

$$\begin{array}{c}
\bar{s}(f(g(x,y),g(x,c_1))) \\
\iff f^{\mathfrak{M}}(\bar{s}(g(x,y)),\bar{s}(g(x,c_1))) \\
\iff f^{\mathfrak{M}}(g^{\mathfrak{M}}(\bar{s}(x),\bar{s}(y)),g^{\mathfrak{M}}(\bar{s}(x),\bar{s}(c_1))) \\
\iff f^{\mathfrak{M}}(\cdot^{\mathfrak{M}}(s(x),s(y)),\cdot^{\mathfrak{M}}(s(x),c_1^{\mathfrak{M}})) \\
\iff +(\cdot(5,3),\cdot(5,1)) \\
\iff +(15,5) \\
\iff 20
\end{array}$$

Question 1 c) - Answer whether or not the \mathcal{L} -formula below is satisfied in \mathfrak{M} under s

$$\forall x \forall y (R(x, c_0) \rightarrow \exists z (P(z) \land R(g(z, x), y)))$$

Answer 1 c)

```
 \mathfrak{M}, s \vDash \forall x \forall y (R(x,c_0) \to \exists z (P(z) \land R(g(z,x),y))) 
 \Leftrightarrow \text{ for all } d_0, d_1 \in |\mathfrak{M}|, \ \mathfrak{M}, s \frac{d_0}{x} \frac{d_1}{y} \vDash (R(x,c_0) \to \exists z (P(z) \land R(g(z,x),y))) 
 \Leftrightarrow \text{ for all } d_0, d_1 \in \mathbb{R} \text{ if } \mathfrak{M}, s \frac{d_0}{x} \frac{d_1}{y} \vDash R(x,c_0) \text{ then } \mathfrak{M}, s \frac{d_0}{x} \frac{d_1}{y} \vDash \exists z (P(z) \land R(g(z,x),y)) 
 \Leftrightarrow \text{ for all } d_0, d_1 \in \mathbb{R} \text{ if } d_0 > 0 \text{ then exists } d_2 \in |\mathfrak{M}| \text{ st } \mathfrak{M}, s \frac{d_0}{x} \frac{d_1}{y} \frac{d_2}{z} \vDash (P(z) \land R(g(z,x),y)) 
 \Leftrightarrow \text{ for all } d_0, d_1 \in \mathbb{R} \text{ if } d_0 > 0 \text{ then exists } d_2 \in \mathbb{R} \text{ st } \mathfrak{M}, s \frac{d_0}{x} \frac{d_1}{y} \frac{d_2}{z} \vDash P(z) \text{ and } \mathfrak{M}, s \frac{d_0}{x} \frac{d_1}{y} \frac{d_2}{z} \vDash R(g(z,x),y) 
 \Leftrightarrow \text{ for all } d_0, d_1 \in \mathbb{R} \text{ if } d_0 > 0 \text{ then exists } d_2 \in \mathbb{R} \text{ st } d_2 \in \mathbb{N} \text{ and } \mathfrak{M}, s \frac{d_0}{x} \frac{d_1}{y} \frac{d_2}{z} \vDash g(z,x) > y 
 \Leftrightarrow \text{ for all } d_0, d_1 \in \mathbb{R} \text{ if } d_0 > 0 \text{ then exists } d_2 \in \mathbb{N} \text{ st } d_2 \cdot d_0 > d_1 
 \Leftrightarrow \text{ true}
```

Question - 2.

Let $\mathcal{L} = \{P, f\}$ where P is a unary predicate and f is a binary function symbol. For each of the following \mathcal{L} -formulae find an \mathcal{L} -structure \mathfrak{M}_0 and a variable assignment s_0 over \mathfrak{M}_0 in which the formula is true, and find an \mathcal{L} -structure \mathfrak{M}_1 and a variable assignment s_1 over \mathfrak{M}_1 in which the formula is false:

Question 2 b) - $\exists v_2 \forall v_1 f(v_2, v_1) \equiv v_2$.

Answer 2 b)

$$\mathfrak{M}_0 = (\mathbb{R}, \cdot), \ \bar{s}_0(v_2) = 0.$$

 $\mathfrak{M}_1 = (\mathbb{R}, \cdot), \ \bar{s}_1(v_2) = 1.$

Question 2 c) - $\exists v_2(P(v_2) \land \forall v_1 P(f(v_2, v_1))).$

Answer 2 c)

$$\mathfrak{M}_0 = (\mathbb{R}, \equiv 0, \cdot), \ \bar{s}_0(v_2) = 0.$$

$$\mathfrak{M}_1 = (\mathbb{R}, \equiv 0, \cdot), \ \bar{s}_1(v_2) = 1.$$

Question - 5.

Show the following

Question 5 a) - $\vDash (\phi \to \forall x \phi)$ if $x \notin FV(\phi)$.

Answer 5 a)

We have that

$$\vDash (\phi \to \forall x \phi) \text{ if } x \notin FV(\phi) \iff \text{if } \vDash \phi \text{ then } \vDash \forall x \phi \text{ if } x \notin FV(\phi)$$

Whether ϕ is satisfied depends on its free variables.

Since $x \notin FV(\phi)$, whether ϕ is satisfied is independent of the value of x.

Under the condition that ϕ is logically valid, it holds that $\forall x \phi$ is logically valid for $x \notin FV(\phi)$. Thus the statement holds.

Question 5 b) - $\vDash \forall x(\phi \to \psi) \to (\forall x\phi \to \forall x\psi)$.

Answer 5 b)

Question 5 c) - if $\Gamma \vDash \phi$ and $x \not\in FV(\Gamma) := \bigcup_{\chi \in \Gamma} FV(\chi)$ then $\Gamma \vDash \forall x \phi$ where $\Gamma \subset \operatorname{Fml}_{\mathcal{L}}$.

Answer 5 c)

Assume that $\Gamma \vDash \phi$.

Then, for all models \mathfrak{M}, s of $\Gamma, \mathfrak{M}, s \vDash \phi$.

Thus, for all models \mathfrak{M}, s where $\mathfrak{M}, s \models \gamma$ for all $\gamma \in \Gamma$, $\mathfrak{M}, s \models \phi$.

Thus, if $\mathfrak{M}, s \vDash \gamma$ for all $\gamma \in \Gamma$ then $\mathfrak{M}, s \vDash \phi$.

Let $x \notin FV(\Gamma)$.

Then, if $\mathfrak{M}, s \vDash \gamma$ then $\mathfrak{M}, s \vDash \forall x \gamma$ by Question 5 a).

Thus, if $\mathfrak{M}, s \vDash \gamma$ for all $\gamma \in \Gamma$ then $\mathfrak{M}, s \vDash (\phi \land \forall x \gamma)$ for all $\gamma \in \Gamma$.

Thus, if $\mathfrak{M}, s \vDash \gamma$ for all $\gamma \in \Gamma$ then for all $x \not\in FV(\Gamma)$, $\mathfrak{M}, s \vDash (\phi \land \gamma)$ for all $\gamma \in \Gamma$. Thus, if $\mathfrak{M}, s \vDash \gamma$ for all $\gamma \in \Gamma$ then for all $x \not\in FV(\Gamma)$, $\mathfrak{M}, s \vDash (\phi)$. Thus, if $\mathfrak{M}, s \vDash \gamma$ for all $\gamma \in \Gamma$ then $\mathfrak{M}, s \vDash (\forall x \phi)$ with $x \not\in FV(\Gamma)$.