

Primer Trabajo Práctico

14 de Abril de 2010

Algoritmos y Estructuras de Datos III

Integrante	LU	Correo electrónico
Bianchi, Mariano	92/08	bianchi-mariano@hotmail.com
Brusco, Pablo	527/08	pablo.brusco@gmail.com
Di Pietro, Carlos Augusto Lyon	126/08	cdipietro@dc.uba.ar

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (54 11) 4576-3359

http://www.fcen.uba.ar

${\rm \acute{I}ndice}$

1.	Ejei	ccicio 2
	1.1.	Introducción
	1.2.	Explicación
	1.3.	Anexo: Demostraciones
2.	Ejei	rcicio 3
	2.1.	Introducción
	2.2.	Explicación
	2.3.	Análisis de la complejidad del algoritmo
	2.4.	Detalles de implementación
	2.5.	Resultados
	2.6.	Debate
	2.7.	Conclusiones

1. Ejercicio 2

1.1. Introducción

1.2. Explicación

Primero, algunas definiciones:

\mathbf{Def}_1 :

Un grafo G es fuertemente orientable si existe una asignación de direcciones a los ejes del conjunto de ejes del grafo G tal que el digrafo resultante es fuertemente conexo.

\mathbf{Def}_2 :

un puente, **arista de corte** o istmo es una arista que al eliminarse de un grafo incrementa el número de componentes conexos de éste. Equivalentemente, una arista es un puente si y sólo si no está contenido en ningún ciclo.

Teorema [Robbins, 1939]:

Un grafo conexo G es fuertemente orientable si y solo si G no tiene puentes (Demostración en el anexo).

Con esté teorema podemos ver que si encontramos al menos 1 puente en nuestro grafo, significa que no podremos orientarlo como queremos, y de lo contrario, si encontramos que no hay ningun puente, podremos orientarlo. Por lo tanto, el algoritmo utilizado realiza exactamente esa comprobación. Veamos como trabaja:

comprobación(Grafo G)

```
1 Complejidad: O(n^3)

2 var eje: int \leftarrow 0

3 var n: int \leftarrow cantNodos(G)

4 while eje \leq m do

5 | k \leftarrow RecorridoSinEje(eje,G)

6 | if k \neq n then return no se puede

7 | eje \leftarrow eje + 1

8 end

9 return fuertemente conexo
```

RecorridoSinEje(eje,G) es una funcion que recorre el grafo G (con BFS o DFS) sin utilizar la arista eje y retorna la cantidad de nodos visitados, k. Como la forma de recorrer utilizada, solo recorre nodos conectados a la raiz (es decir, al nodo donde comienza el recorrido), quiere decir que el resultado k va a ser n (la cantidad total de nodos de G) si G es conexo. De lo

contrario, si k es menor que n, estamos en presencia de 2 componentes conexas (o más en el caso de eje = 0). Por lo tanto, el eje sacado, era un puente.

Aclaración:

Cuando eje = 0, representa, recorrer a G completo con todos sus nodos. En este punto podria pasar que G no sea conexo y esta función devolvería el resultado correspondiente.

1.3. Anexo: Demostraciones

Teorema [Robbins, 1939]:

Un grafo conexo G es fuertemente orientable si y solo si G no tiene puentes.

$Demostración: \rightarrow)$

Utilizando el contrareciproco, supongamos que el grafo G tiene una arista de corte e que une a los vertices u y v. Entonces el unico camino entre u y v o v y u en el grafo G es e (ver figura). Por lo tanto para cualquier asignacion de direcciones, el nodo cola(e) nunca va a poder ser alcanzada por el nodo cabeza(e) (ver cuadro 1).

Cuadro 1:

Demostración: \leftarrow)

Supongamos que G es un nodo conexo sin aristas de corte. Por esto toda arista en G cae en un circuito de G. Para hacer que G sea fuertemente orientable, empezaremos con cualquier circuito (D_0) de G y dirigiremos sus ejes en una dirección (obteniendo un circuito dirigido). Si el ciclo D_0 contiene todos los nodos de G, entonces la orientación esta completa (ya que D_0 es fuertemente conexo). De lo contrario, hay que elegir cualquier eje e uniendo a un vertice u en D_0 y a un vertice v en $V_G - V_{D_0}$ (ese eje existe ya que G es conexo). Sea $C = \langle u, e, v, ..., u \rangle$ un ciclo que contiene al eje e, y sea w el primer vertice luego de v en C que cae en el ciclo D_0 (ver cuadro 2).

Cuadro 2:

A continuación, direccionamos los ejes de este camino entre v a w, obteniendo el camino dirigido v-w que llamaremos P. Luego direccionamos el eje e desde u hasta v y consideramos el digrafo D_1 que se forma agregando el eje dirigido e a D_0 y todos los vertices y ejes dirigidos del camino P. Como D_0 es fuertemente conexo, entonces hay un camino dirigido de w a u Q en D_0 (ver cuadro 3). La concatenación de P con Q y el eje dirigido e forman un circuito simple direccionado que contiene u y los nuevos vertices de D_1 . (si los vertices u y w son el mismo, entonces P satiface ser un circuito simple dirigido)

Por lo tanto, el vertice u y todos estos nuevos vetices son mutuamente alcanzables en D_1 y además u y cada vectice del digrafo D_0 tambien son mutuamente alcanzables, y, por lo tanto , el digrafo D_1 es fuertemente conexo. Este proceso puede continuar hasta que el digrafo D_1 para algun $l \geq 1$, contenga todos los vertices de G. En este punto, cualquier asignacion de direcciones hacia las aristas sin direccion restantes completaran la orientación de G, puesto que contendrá el digrafo fuertemente conexo D_l como subdigrafo.

Cuadro 3:

2. Ejercicio 3

2.1. Introducción

El tercer y último ejercicio de este trabajo práctico, consistía en dado un modelo de una prisión decidir si una persona condenada podía escapar o no de la misma. Este modelo fue dado de tal manera que se pudiera representar utilizando un grafo. La idea general del modelo de esta prisión, fue que en la misma haya habitaciones y pasillos. Cada pasillo conectaba dos habitaciones y no había más de un pasillo conectando dos habitaciones. Además, cada habitación podía estar vacía, tener una puerta o tener una llave. Para pasar por una habitación que tuviera una puerta había que tener su respectiva llave.

Como requerimiento para este problema, se especificó que su solución debía tener una complejidad estrictamente menor que $O(n^3)$, con n igual a la cantidad de habitaciones.

2.2. Explicación

En primer instancia, se pensó en alguna forma de recorrer el grafo de manera que la misma sirviera para solucionar el problema planteado. Inmediatamente, surgió la idea de utilizar el método BFS para dicho fin.

Seguidamente, se realizaron algunos ejemplos en papel, para ver de que forma se iba a comportar el método elegido para este modelo en cuestión, ya que se no podía utilizar un BFS normal por las restricciones con las que se contaba. Luego de observar este comportamiento, se encontró una forma de resolver el problema utilizando BFS, la cuál se explica a continuación.

La idea utilizada para este ejercicio resultó bastante simple. La misma consiste en los siguientes pasos:

- Se comienza a realizar BFS desde la primer habitación.
- Cada vez que se encuentra una habitación con una llave, ésta se guarda en un conjunto de llaves.
- Cada vez que se encuentra una habitación con puerta pueden suceder 2 cosas:
 - Si ya se había encontrado su llave, se la recorre como si no tuviese puerta.
 - Si no se había encontrado su llave, se la ingresa a una cola donde se alojaran las habitaciones con estas características, sin aplicar BFS en ella.
- Cuando el recorrido BFS termina, puede darse por dos motivos:
 - Que se hayan recorrido todas las habitaciones.
 - Que queden habitaciones sin recorrer en la cola de aquellas que tienen puerta y no se encontró su llave.

Una vez terminado el primer BFS, se verifica si ya se recorrieron todas las habitaciones o, caso contrario, si quedan habitaciones que se puedan visitar¹. Si sucede lo segundo, entonces se repiten todos los pasos antes mencionados tomando como primer habitación para recorrer con BFS alguna de las que se habían encolado por no tener la llave necesaria para abrirla. Si sucede que se recorrieron todas las habitaciones o que no hay ninguna llave disponible que abra las habitaciones encoladas, entonces se sale de la recursión y se verifica si se visitó o no la última habitación (o habitación de salida). Si se visitó entonces significa que hay forma de salir de la prisión y sino, significa lo contrario.

A continuación se adjunta, a modo de pseudocódigo, los algoritmos utilizados para resolver el problema descrito anteriormente:

 \mathbf{bool} resolver(const carcel& c)

¹esto es equivalente a ver si de todas las habitaciones que quedaron encoladas por tener una puerta a la cuál no se tenía acceso, ahora hay alguna de las que sí se tenga llave ahora

```
1 Complejidad: O(n^2)
2 vector < bool > habitacionesYaVisitadas(c.cantHabitaciones);
                                                                                // O(n)
3 queue < int > habitacionesLimites;
 4 vector < bool > llavesEncontradas(c.cantHabitaciones);
                                                                                // O(n)
5 int proximaHabitacion;
                                                                                // O(1)
 6 bool puedoSeguir = true;
 7 int contador;
\mathbf{8} bool termine = false;
                                                                                // O(1)
9 proximaHabitacion = 0;
                                                                                // O(1)
10 while (puedoSeguir \land \neg termine) do
      recorrerPorBFS(proximaHabitacion, habitacionesLimites,
11
      habitaciones Ya Visitadas, llaves Encontradas, c);
                                                                               // O(n^2)
      termine = habitacionesLimites.empty();
                                                                                // O(1)
12
      if (\neg termine);
                                                                                // O(1)
13
      then
14
                                                                                // O(1)
          contador = habitacionesLimites.size();
15
          while (puedoSequir \&\& (\neg llavesEncontradas[habitacionesLimites.front()]));
16
          // O(n)
          do
17
             habitacionesLimites.push(habitacionesLimites.front());
                                                                                // O(1)
18
                                                                                // O(1)
             habitacionesLimites.pop();
19
                                                                                // O(1)
              contador-;
20
             if (contador == 0);
                                                                                // O(1)
\mathbf{21}
             then
22
                 puedoSeguir = false;
                                                                                // O(1)
23
\mathbf{24}
             end
          end
25
          proximaHabitacion = habitacionesLimites.front();
                                                                                // O(1)
26
          habitacionesLimites.pop();
                                                                                // O(1)
27
28
      end
29 end
30 if (habitaciones Ya Visitadas [c. cant Habitaciones-1]);
                                                                                // O(1)
31 then
      return true
33 else
      return false
34
35 end
```

void recorrer PorBFS(int proxima
Habitacion, queue < int > & habitaciones Limites, vector
< bool > & habitaciones YaVisitadas, vector
< bool > & llaves Encontradas, carcel&c)

```
1 Complejidad: O(n^2)
 2 queue < int > habitacionesProximas
3 habitacionesProximas.push(proximaHabitacion)
                                                                                 // O(1)
 4 habitacionesYaVisitadas[proximaHabitacion] = true;
 5 int actual
  while (!habitacionesProximas.empty());
                                                                                // O(n)
  do
 7
      actual = habitacionesProximas.front();
                                                                                 // O(1)
 8
                                                                                 // O(1)
      habitacionesProximas.pop();
9
      if (c.tieneLlave(actual));
                                                                                 // O(1)
10
      then
11
          llavesEncontradas[c.dameLlave(actual)] = true;
                                                                                // O(1)
12
13
      end
      for (int i = 0; i < c.cantHabitaciones; <math>i++);
                                                                                // O(n)
14
      do
15
          if (c.sonAdyacentes(actual,i) \land \neg habitacionesYaVisitadas[i]);
                                                                                // O(1)
16
          then
17
              if (c.tienePuerta(i) \land \neg llavesEncontradas[i]);
                                                                                // O(1)
18
              then
19
                 habitacionesLimites.push(i);
                                                                                // O(1)
20
\mathbf{21}
              else
                                                                                // O(1)
                 habitacionesProximas.push(i);
22
              end
23
                                                                                // O(1)
             habitaciones Ya Visitadas [i] = true;
24
          end
25
26
      end
27 end
```

2.3. Análisis de la complejidad del algoritmo

Para el análisis de complejidad de los algoritmos que resuelven el problema dado, vamos a remitirnos a los pseudocódigos propuestos en la sección [2.2]. Como aclaración, cabe decir que en los siguientes párrafos vamos a referirnos a n como la cantidad de habitaciones en la prisión (cantidad de nodos del grafo).

En primer instancia vamos a analizar el pseudocódigo del algoritmo recorrerPorBFS. La complejidad del mismo está dada por un flujo for anidado dentro de otro flujo while. Es claramente visible que el flujo for tiene una complejidad $\Theta(n)$ ya que todas las operaciones dentro suyo son de complejidad O(1) y el mismo se ejecuta n veces. Quizás no sea tan claro por qué el flujo while tiene complejidad igual a O(n). Esto se debe a la naturaleza del algoritmo BFS. En BFS se recorre cada nodo una única vez, y si vemos cuándo es que termina de ejecutarse dicho flujo, veremos que lo hace cuando se vacía la cola proximasHabitaciones. Esta cola puede tener un largo de hasta n habitaciones (por lo dicho previamente sobre el método BFS) por lo que este flujo se ejecutará como máximo tantas veces como habitaciones haya.

Una vez realizado el análisis del algoritmo recorrerPorBFS sólo nos queda verificar qué complejidad cumple el algoritmo resolver. Si se observa con atención, puede notarse que la complejidad del mismo está dada por el llamado a la función recorrerPorBFS. Pero no sólo basta con decir esto. También hay un flujo while más adelante, el cuál solo tiene complejidad O(n). Esto se debe a que dicho flujo se va a ejecutar a lo sumo tantas veces como elementos haya en la cola habitacionesLimites. Para saber cuántos elementos hay a lo sumo en esta cola debemos remitirnos a la función recorrerPorBFS y ver que aquí sólo se alojaran aquellas habitaciones en las cuales haya una puerta de la que no se tenga la llave correspondiente. Por esto podemos ver que claramente en esta cola habrá a lo sumo n habitaciones.

Sólo basta una aclaración para que la complejidad de este algoritmo quede completa y ésta hace referencia al flujo while que engloba a los flujos antes descritos. En un primer acercamiento, uno podría decir que este ciclo se ejecuta a lo sumo n veces, arrojando una complejidad de O(n), haciendo que la complejidad total sea $O(n^3)$ si recordamos que este engloba a una llamada a recorrerPorBFS cuya complejidad había resultado ser $O(n^2)$. Pero en realidad, si se mira más detalladamente se puede observar que este flujo va a ejecutarse tantas veces como haga falta para que recorrerPorBFS pase por todos las habitaciones (o nodos), es decir, si por ejemplo en el primer llamado a la función recorrerPorBFS se pasa por todos los nodos, entonces el ciclo en cuestión va a ejecutarse una única vez. Este análisis entonces nos permite ver que en este algoritmo, la complejidad esta dada por la de la función antes mencionada.

2.4. Detalles de implementación

Para compilar el programa sólo hace falta ejecutar el comando make en consola.

Modo de Uso En consola, utilizar el comando: ./3_ej [entrada] [salida].

Los parámetros "entrada" y "salida" son opcionales. Si no se los utiliza, el programa toma por default los archivos "Tp2Ej3.in" como entrada y "Tp2Ej3NUESTRO.out" como salida. En el caso que se los utilice, se le deben pasar 2 nombres de archivos de entrada y salida respectivamente. El archivo de entrada debe existir y debe tener un formato válido, es decir, debe tener el formato descrito en el enunciado de este trabajo práctico. El archivo de salida puede existir o no. En caso de existir, este será completamente sobreescrito.

2.5. Resultados

Para poder analizar el comportamiento del algoritmo propuesto como solución al problema dado fue necesario encontrar una forma de generar de manera automática grafos que lo modelen. Esto resulta de una gran dificultad y se torna mucho más complicado si se quieren generar grafos lo modelen y que además cumplan con ciertas características. Por lo tanto, para generar los casos de prueba se recurrió a un método que utilice números aleatorios. Esto no nos permite elegir alguna característica particular para el modelo final, pero facilita mucho la construcción del generador automático.

Luego de realizar un análisis sobre el comportamiento de los algoritmos resolver y recorrerPorBFS notamos que en general siempre se van a obtener resultados similares. Para ello se realizaron distintas pruebas:

- Se generaron casos en los que la primer habitación estuviese conectada con la última.
 Esta se realiza debido a que ambos algoritmos dejan de iterar si, entre otras condiciones, ya se visitó la última habitación.
- Para otros casos, se puso la restricción que ninguna habitación podía estar conectada con la última. Esto significa que no había solución posible.
- Por último, se generaron casos completamente azarosos, con la única precaución que la primer y última habitación no estuviesen unidas entre sí (de otra forma, esto sería igual al primer item).

Finalmente, del análisis antes realizado podemos decir que se desprenden algunas hipótesis, las cuales enunciaremos a continuación:

- 1. Para los casos en los cuales no exista una comunicación directa entre la habitación 1 y la n-ésima, el algoritmo va a presentar una complejidad cuadrática.
- 2. En los casos en que exista un pasillo que comunique directamente la primer habitación con la última, el algoritmo debería arrojar una complejidad lineal.
- 3. En aquellos casos azarosos, la complejidad debería ser cuadrática pero en promedio será posible acotarla por una función lineal.

A continuación presentamos los gráficos provenientes de las pruebas realizadas:

2.6. Debate

2.7. Conclusiones

Cuadro 4: Muestran el comportamiento de la cantidad de habitaciones contra la cantidad de operaciones y contra el tiempo respectivamente. Las entradas fueron creadas de modo que no exista un resultado posible, es decir, que ninguna habitación este conectada con la última.

Cuadro 5: Muestran el comportamiento de la cantidad de habitaciones contra la cantidad de operaciones y contra el tiempo respectivamente. Las entradas fueron creadas de modo que haya un resultado trivial, es decir, que la primer habitación este conectada con la última.

Cuadro 6: Muestran el comportamiento de la cantidad de habitaciones contra la cantidad de operaciones y contra el tiempo respectivamente. Las entradas fueron creadas al azar pero sin que exista un resultado trivial.