

PID Controllers

BY LUKE MCGILL

Table of Contents

- Introduction
- History
- Theory
- Utilization
- Conclusion
- Questions

Introduction

- A control system is a set of mechanical or electronic devices that regulates other devices or systems by way of control loops.
- Control systems are used to enhance production, efficiency and safety
- PID is type of closed loop controller

History

- 9 1922
 - Nicolas Minorsky
 - Theoretical analysis and first proposed application
- 9 1933
 - Taylor Instrument Company
 - First pneumatic controller with a fully tunable proportional component
- 940
 - Taylor Instrument Company
 - Developed the first PID pneumatic controller with a derivative action
- 942
 - Ziegler and Nichols tuning rules were introduced so that engineers were able to find and set the appropriate parameters of PID controllers

History cont.

- 950s
 - Automatic PID controllers were widely adopted for industrial use

Theory

Open loop control system

Theory cont.

Closed loop control system

Theory cont.

- The PID compares desired output with measured output
- e(t) is called the error signal

Theory cont.

- PID has three terms
 - Proportional
 - Integral
 - Derivative

- Proportional term K_p
 - Proportional to magnitude of the error signal

$$K_p \times e(t)$$

- Proportional term K_p
 - Proportional to magnitude of the error signal

$$K_p \times e(t)$$

Integral term K_i

$$K_i \int_0^t e(\tau) d\tau$$

Integral term K_i

$$K_i \int_0^t e(\tau) d\tau$$

Derivative K_d

$$K_d \frac{de(t)}{dt}$$

Tuning

- Adjust constants K_p, K_i, K_d
- PID term tuning can differ vastly between processes and applications
- Can be tuned by trial and error, observing output response
 - Can be time consuming and impractical
- Some modern PID controllers have autotuning functionality
 - Sometimes additional tweaking required

Why choose a PID controller?

Typical PID Controller Response

Variations

- PID not always necessary
 - P controller
 - PI controller
- Why make a simpler controller?
 - Easy to implement
 - Easy to test and troubleshoot
 - Easy to understand
 - Can save time and money

Utilization

- Widely used in industry, automation, and manufacturing
- Usually digital
- Typically integrated in a PLC or DCS
 - Can still be stand alone devices

Using PID in Capstone

Using PID in Capstone

Using PID in Capstone

P Controller PI Controller

Conclusion

- PID controllers are widely used control method
- Three terms P, I, D
- Can be simple or more sophisticated depending on application
- Used heavily in industry, automation, and manufacturing

Works Cited

[1] "Pid Controller," Wikipedia, 17-Mar-2023. [Online]. Available: https://en.wikipedia.org/wiki/PID_controller#:~:text=A%20proportional%E2%80%93integral%E2%80%93derivative%20controller,continuously%20calculates%20an%20error%20value. [Accessed: 19-Mar-2023].

[2] T. T. Contributor, "What is control system?: Definition from TechTarget," WhatIs.com, 31-Dec-2017. [Online]. Available: https://www.techtarget.com/whatis/definition/control-system#:~:text=A%20control%20system%20is%20a,of%20industry%20and%20of%20auto mation. [Accessed: 19-Mar-2023].

[3] O. Engineering, "What is a PID controller?," https://www.omega.com/en-us/, 28-Sep-2022. [Online]. Available: https://www.omega.com/en-us/resources/pid-controllers. [Accessed: 19-Mar-2023].

[4] E. Staff, "On-off Controller Principle," Inst Tools, 27-Nov-2018. [Online]. Available: https://instrumentationtools.com/onoff-control-principle/. [Accessed: 19-Mar-2023].

[5] T. Mortenson, "PID controller explained," The Easiest Way to Learn Industrial Automation, 08-Oct-2022. [Online]. Available: https://realpars.com/pid-controller/. [Accessed: 19-Mar-2023].

[6] Kumar, Vivek & Patra, Ashis. (2016). Analysis of Power Transformer using fuzzy expert and neural network system. [Online] System Response of P,PI& PID Controller tuned with Process Reaction... | Download Scientific Diagram (researchgate.net) [Accessed: 19-Mar-2023].

Questions?

