dipper-NIMBLE

Iraida Redondo & Ana Payo-Payo

17/12/2021

Dipper CMR in NIMBLE

Hi! This RMarkdown document contains the code to run CJS models on the famous dipper dataset in NIM-BLE (De Valpine et al. 2017). This code, as well as most of its comments, is founded on the scripts from the wonderful workshop titled "Bayesian capture-recapture inference with hidden Markov models" (https://oliviergimenez.github.io/bayesian-cr-workshop/) taught by O. Gimenez, C. R. Nater, S. Cubaynes, P. de Valpine, M. Queroue (which I highly recommend if you are interested in conducting capture-recapture analysis in the Bayesian framework). The dipper dataset can be found in https://oliviergimenez.github.io/bayesian-cr-workshop/ in the Live Demos tab on the upper right side of the website. Within this zip you can find the dipper dataset in form of a .csv.

This script contains a great variety of models. This has served me as insightful exercise to know how to specify different models and to check if I was doing it right for my own data analysis. I think most of its content is right but I am currently learning and the code is very long, so there may be errors! Please, don't doubt and contact me if you spot any!

MCMC configuration is free to be changed!

Libraries and setting wordking directory

```
library(nimble)
library(tidyverse)
library(MCMCvis)

setwd() # depends on the person running the script!
```

Loading dipper dataset.

```
dipper_d <- read_csv("dipper.csv") # data
sex <- ifelse(dipper_d$sex=="Male",1 , 2) # vector for sex: 1 = males, 2 = females

# Format data
y <- dipper_d %>%
    select(year_1981:year_1987) %>%
    as.matrix()
head(y)
```

Cormack-Jolly-Seber (CJS) models

PHI(.) ~ survival as constant.

```
##### phi(.)p(.)-----
hmm.phip <- nimbleCode({</pre>
  #Initial state prob.
  delta[1] <- 1
                         \# Pr(alive \ t = 1) = 1
  delta[2] <- 0
                         \# Pr(dead \ t = 1) = 0
  #Survival
  phi ~ dunif(0, 1) # prior survival
  #Survival matrix
  gamma[1,1] <- phi
                          # Pr(alive t -> alive t+1)
  gamma[1,2] \leftarrow 1 - phi \# Pr(alive t \rightarrow dead t+1)
  gamma[2,1] <- 0
                         # Pr(dead \ t \rightarrow alive \ t+1)
                         # Pr(dead \ t \rightarrow dead \ t+1)
  gamma[2,2] <- 1
  #Recapture
  p ~ dunif(0, 1) # prior detection
  #Recapture matrix
  omega[1,1] \leftarrow 1 - p
                        # Pr(alive t -> non-detected t)
  omega[1,2] <- p
                     # Pr(alive t -> detected t)
# Pr(dead t -> non-detected t)
  omega[2,1] <- 1
  omega[2,2] <- 0
                         \# Pr(dead \ t \rightarrow detected \ t)
  #Likelihood
  for (i in 1:N){
    z[i,first[i]] ~ dcat(delta[1:2])
    for (j in (first[i]+1):T){
      z[i,j] \sim dcat(gamma[z[i,j-1], 1:2])
      y[i,j] ~ dcat(omega[z[i,j], 1:2])
    }
  }
})
#Get the occasion of first capture for all individuals.
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
first
#A list with constants.
my.constants \leftarrow list(N = nrow(y),
                      T = ncol(y),
                      first = first)
my.constants
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
#you will just need to adjust the $\Omega$ and $\Gamma$ matrices in the model above.
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
```

```
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(phi = runif(1,0,1),</pre>
                                   p = runif(1,0,1),
                                   z = zinits)
initial.values()
#Some information that we now pass as initial value info
#(observations of alive) are actually known states, and could also be passed
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("phi", "p")</pre>
parameters.to.save
# MCMC details
n.iter <- 2500
n.burnin <- 1000
n.chains <- 2
#Let's run nimble.
mcmc.phip <- nimbleMCMC(code = hmm.phip,</pre>
                         constants = my.constants,
                         data = my.data,
                         inits = initial.values,
                         monitors = parameters.to.save,
                         niter = n.iter,
                         nburnin = n.burnin,
                         nchains = n.chains)
#Examine the results.
MCMCsummary(mcmc.phip, round = 2)
MCMCtrace(mcmc.phip, pdf = F)
```

Phi (survival) as constant. P (recapture) as constant.

```
##### phi(.)p(s)-----
hmm.phips <- nimbleCode({</pre>
  #Initial state prob.
                  # Pr(alive t = 1) = 1
# Pr(dead t = 1) = 0
  delta[1] <- 1
  delta[2] <- 0
  #Survival
  phi ~ dunif(0,1) # prior survival
  #Survival matrix
  gamma[1,1] <- phi
                         # Pr(alive t -> alive t+1)
  gamma[1,2] <- 1 - phi # Pr(alive t -> dead t+1)
  gamma[2,1] <- 0
                           \# Pr(dead \ t \rightarrow alive \ t+1)
  gamma[2,2] \leftarrow 1 \# Pr(dead t \rightarrow dead t+1)
  #Recapture depends on sex
```

```
for(i in 1:N){
  logit(p[i]) <- beta[sex[i]]</pre>
  #Observation matrix
  omega[1,1,i] \leftarrow 1 - p[i] # Pr(alive\ t \rightarrow non-detected\ t)
  omega[1,2,i] \leftarrow p[i] # Pr(alive\ t \rightarrow detected\ t)
                              # Pr(dead t -> non-detected t)
  omega[2,1,i] <- 1
                               \# Pr(dead \ t \rightarrow detected \ t)
  omega[2,2,i] <- 0
  }
  # Priors for beta (recapture changes with sex, so we need two betas;
  #beta[sex[i] -> beta[1] and beta[2]])
  beta[1] \sim dnorm(mean = 0, sd = 1.5)
  beta[2] \sim dnorm(mean = 0, sd = 1.5)
  # inverse logit for transforming p estimate
  p_male <- ilogit(beta[1])</pre>
  p_female <- ilogit(beta[2])</pre>
  #Likelihood
  for (i in 1:N){
    z[i,first[i]] ~ dcat(delta[1:2])
    for (j in (first[i]+1):T){
      z[i,j] \sim dcat(gamma[z[i,j-1], 1:2])
      y[i,j] ~ dcat(omega[z[i,j], 1:2, i])
  }
})
#Get the occasion of first capture for all individuals.
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
first
#A list with constants.
my.constants \leftarrow list(N = nrow(y),
                      T = ncol(y),
                      first = first,
                      sex = sex)
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
\#you will just need to adjust the \Omega = \ and \dim \ matrices in the model above.
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(beta = rnorm(2,0,1),</pre>
                                    phi = runif(1,0,1),
                                    z = zinits)
initial.values()
#Some information that we now pass as initial value info
```

```
#(observations of alive) are actually known states, and could also be passed
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("beta", "phi", "p_male", "p_female")</pre>
parameters.to.save
#MCMC details.
n.iter <- 2500
n.burnin <- 1000
n.chains <- 2
#At last, let's run nimble.
mcmc.phips <- nimbleMCMC(code = hmm.phips,</pre>
                          constants = my.constants,
                         data = my.data,
                         inits = initial.values,
                         monitors = parameters.to.save,
                         niter = n.iter,
                         nburnin = n.burnin,
                         nchains = n.chains)
#' Examine the results.
MCMCsummary(mcmc.phips, round = 2)
MCMCtrace(mcmc.phips, pdf=F)
```

Phi (survival) as constant. P (recapture) depends on sex.

```
##### phi(.)p(t)-----
hmm.phipt <- nimbleCode({</pre>
  #Initial state prob.
  delta[2] <- 0
                        \# Pr(dead \ t = 1) = 0
  #Survival
  phi ~ dunif(0, 1) # Prior for survival
  #Survival matrix
  gamma[1,1] <- phi
                        # Pr(alive t -> alive t+1)
  gamma[1,2] \leftarrow 1 - phi # Pr(alive\ t \rightarrow dead\ t+1)
  gamma[2,1] \leftarrow 0 \qquad \qquad \# Pr(dead \ t \rightarrow alive \ t+1)
                        # Pr(dead t \rightarrow dead t+1)
  gamma[2,2] <- 1
  #Recapture
  for(t in 1:(T-1)){
  p[t] \sim dunif(0,1) \# Prior for p.
  \#Recapture\ matrix
  omega[1,1,t] <- 1 - p[t]
                               # Pr(alive t -> non-detected t)
  omega[1,2,t] \leftarrow p[t] # Pr(alive t \rightarrow detected t)
  omega[2,1,t] <- 1
                             # Pr(dead t -> non-detected t)
  omega[2,2,t] <- 0
                             # Pr(dead \ t \rightarrow detected \ t)
```

```
}
  #Likelihood
  for (i in 1:N){
    z[i,first[i]] ~ dcat(delta[1:2])
    for (j in (first[i]+1):T){
      z[i,j] \sim dcat(gamma[z[i,j-1], 1:2])
      y[i,j] ~ dcat(omega[z[i,j], 1:2, j-1])
  }
})
#Get the occasion of first capture for all individuals.
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
first
#A list with constants.
my.constants \leftarrow list(N = nrow(y),
                      T = ncol(y),
                      first = first)
my.constants
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
#you will just need to adjust the \Omega and \Omega and \Omega matrices in the model above.
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(phi = runif(1,0,1),</pre>
                                   p = runif(my.constants$T-1,0,1),
                                   z = zinits)
initial.values()
#Some information that we now pass as initial value info
#(observations of alive) are actually known states, and could also be passed
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("phi", "p")</pre>
parameters.to.save
#MCMC details.
n.iter <- 8000
n.burnin <- 1000
n.chains <- 2
#At last, let's run nimble.
mcmc.phipt <- nimbleMCMC(code = hmm.phipt,</pre>
```

```
constants = my.constants,
    data = my.data,
    inits = initial.values,
    monitors = parameters.to.save,
    niter = n.iter,
    nburnin = n.burnin,
    nchains = n.chains)
#' Examine the results.

MCMCsummary(mcmc.phipt, round = 2)
MCMCtrace(mcmc.phipt, pdf=F)
```

Phi (survival) as constant. P (recapture) depends on time (time as fixed effect)

```
##### phi(.)p(s*t)-----
hmm.phipst <- nimbleCode({</pre>
  #Initial state prob.
  delta[1] \leftarrow 1 # Pr(alive t = 1) = 1
  delta[2] <- 0
                             \# Pr(dead \ t = 1) = 0
   #Survival
  phi ~ dunif(0,1) # prior survival
   #Survival matrix
  gamma[1,1] \leftarrow phi # Pr(alive\ t \rightarrow alive\ t+1)
  gamma[1,2] \leftarrow 1 - phi \# Pr(alive t \rightarrow dead t+1)
  \operatorname{gamma}[2,1] \leftarrow 0 \qquad \qquad \# \operatorname{Pr}(\operatorname{dead} \ t \ \text{$->$} \ \operatorname{alive} \ t+1)
                             # Pr(dead t \rightarrow dead t+1)
  gamma[2,2] <- 1
  # Recapture
  for(i in 1:N){
  for(t in 1:(T-1)){
  logit(p[i,t]) <- beta[sex[i]]+ lambda[t] + kappa[sex[i],t] #interaction sex * time</pre>
   #Recapture matrix
  omega[1,1,i,t] \leftarrow 1 - p[i,t] # Pr(alive t \rightarrow non-detected t)
  omega[1,2,i,t] \leftarrow p[i,t] # Pr(alive t \rightarrow detected t)
omega[2,1,i,t] \leftarrow 1 # Pr(dead t \rightarrow non-detected t)
  omega[2,2,i,t] <- 0
                                        # Pr(dead t -> detected t)
     }
  }
   #Priors for beta
  beta[1] \sim dnorm(mean = 0, sd = 1.5)
  beta[2] \sim dnorm(mean = 0, sd = 1.5)
  #Time fixed effect.
  for(t in 1:(T-1)){
     lambda[t] \sim dnorm(0, sd = 1.5)
   #Time as random effect in the interaction
  lambda.sigma ~ dunif(0, 10)
```

```
for(i in 1:2){
    for (t in 1:(T-1)){
      kappa[i,t] ~ dnorm(0, sd = lambda.sigma)
    }
  }
  # ilogit for p.
  for (t in 1:(T-1)){
    p_male[t] <- ilogit(beta[1] + lambda[t] + kappa[1,t])</pre>
    p_female[t] <- ilogit(beta[2] + lambda[t] + kappa[2,t])</pre>
  #Likelihood
  for (i in 1:N){
    z[i,first[i]] ~ dcat(delta[1:2])
    for (j in (first[i]+1):T){
      z[i,j] \sim dcat(gamma[z[i,j-1], 1:2])
      y[i,j] \sim dcat(omega[z[i,j], 1:2, i, j-1])
    }
  }
})
#Get the occasion of first capture for all individuals.
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
first
#A list with constants.
my.constants \leftarrow list(N = nrow(y),
                     T = ncol(y),
                     first = first,
                      sex = sex)
my.constants
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
#you will just need to adjust the $\Omega$ and $\Gamma$ matrices in the model above.
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(beta = rnorm(2,0,1),</pre>
                                   phi = runif(1,0,1),
                                   lambda = rnorm(my.constants$T-1, 0, 1),
                                   lambda.sigma = runif(1,0,1),
                                   kappa = matrix(rnorm(12, 0, 1), 2, 6),
                                   z = zinits)
initial.values()
#Some information that we now pass as initial value info
#(observations of alive) are actually known states, and could also be passed
```

```
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("phi", "p_male", "p_female")</pre>
parameters.to.save
#MCMC details.
n.iter <- 15000
n.burnin <- 5000
n.chains <- 2
#At last, let's run nimble.
mcmc.phipst <- nimbleMCMC(code = hmm.phipst,</pre>
                           constants = my.constants,
                           data = my.data,
                           inits = initial.values,
                          monitors = parameters.to.save,
                           niter = n.iter,
                           nburnin = n.burnin,
                           nchains = n.chains)
#Examine the results.
MCMCsummary(mcmc.phipst, round = 2)
MCMCtrace(mcmc.phipst,pdf=F)
```

Phi (survival) as constant. P (recapture) with interaction between sex and time.

PHI(t)~ survival dependent on time

```
omega[2,2] <- 0
                   # Pr(dead \ t \rightarrow detected \ t)
  #Likelihood
  for (i in 1:N){
    z[i,first[i]] ~ dcat(delta[1:2])
    for (j in (first[i]+1):T){
      z[i,j] \sim dcat(gamma[z[i,j-1], 1:2, j-1])
      y[i,j] ~ dcat(omega[z[i,j], 1:2])
  }
})
#Get the occasion of first capture for all individuals.
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
first
#A list with constants.
my.constants \leftarrow list(N = nrow(y),
                      T = ncol(y),
                      first = first)
my.constants
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
#you will just need to adjust the \Omega and \Omega and \Omega matrices in the model above.
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(phi = runif(my.constants$T-1,0,1),</pre>
                                   p = runif(1,0,1),
                                   z = zinits)
initial.values()
#Some information that we now pass as initial value info
#(observations of alive) are actually known states, and could also be passed
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("phi", "p")</pre>
parameters.to.save
#MCMC details.
n.iter < -2500
n.burnin <- 1000
n.chains <- 2
#At last, let's run nimble.
```

Phi (survival) dependent on time. P (recapture) as constant.

```
##### phi(t)p(s)-----
hmm.phitps <- nimbleCode({</pre>
  #Initial state prob.
  delta[1] \leftarrow 1 # Pr(alive t = 1) = 1
  delta[2] <- 0
                        \# Pr(dead t = 1) = 0
  #Survival
  for(t in 1:(T-1)){
    phi[t] ~ dunif(0,1) # prior for phi
    #Survival matrix
                               # Pr(alive t -> alive t+1)
    gamma[1,1,t] <- phi[t]
    gamma[1,2,t] \leftarrow 1 - phi[t] \# Pr(alive t \rightarrow dead t+1)
    gamma[2,1,t] \leftarrow 0
                         # Pr(dead \ t \rightarrow alive \ t+1)
    gamma[2,2,t] \leftarrow 1 \# Pr(dead t \rightarrow dead t+1)
  }
  #Recapture
   for(i in 1:N){
   logit(p[i]) <- beta[sex[i]]</pre>
    #Observation matrix
    omega[1,1,i] \leftarrow 1 - p[i] # Pr(alive\ t \rightarrow non-detected\ t)
    # Pr(dead \ t \rightarrow detected \ t)
    omega[2,2,i] \leftarrow 0
  #Priors for beta
  beta[1] \sim dnorm(mean = 0, sd = 1.5)
  beta[2] \sim dnorm(mean = 0, sd = 1.5)
  # ilogit for p
  p_male <- ilogit(beta[1])</pre>
  p_female <- ilogit(beta[2])</pre>
  # Likelihood
  for (i in 1:N){
```

```
z[i,first[i]] ~ dcat(delta[1:2])
    for (j in (first[i]+1):T){
      z[i,j] \sim dcat(gamma[z[i,j-1], 1:2, j-1])
      y[i,j] ~ dcat(omega[z[i,j], 1:2, i])
    }
  }
})
#Get the occasion of first capture for all individuals.
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
first
#A list with constants.
my.constants \leftarrow list(N = nrow(y),
                     T = ncol(y),
                     first = first,
                     sex = sex)
my.constants
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
#you will just need to adjust the $\Omega$ and $\Gamma$ matrices in the model above.
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(phi = runif(my.constants$T-1,0,1),</pre>
                                   beta = rnorm(2,0,1),
                                   z = zinits)
initial.values()
#Some information that we now pass as initial value info
#(observations of alive) are actually known states, and could also be passed
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("phi", "p_male", "p_female", "beta")</pre>
parameters.to.save
#MCMC details.
n.iter <- 2500
n.burnin <- 1000
n.chains <- 2
#At last, let's run nimble.
mcmc.phitps <- nimbleMCMC(code = hmm.phitps,</pre>
                           constants = my.constants,
                           data = my.data,
                           inits = initial.values,
```

Phi (survival) dependent on time. P (recapture) dependent on sex

```
##### phi(t)p(t)-----
hmm.phitpt <- nimbleCode({</pre>
  #Initial state prob
  delta[1] <- 1
                         \# Pr(alive \ t = 1) = 1
  delta[2] <- 0
                     \# Pr(dead \ t = 1) = 0
  #Survival
  for(t in 1:(T-1)){
   phi[t] ~ dunif(0,1) # prior for phi
   #Survival matrix
   gamma[1,1,t] <- phi[t]
                               # Pr(alive t -> alive t+1)
   gamma[1,2,t] \leftarrow 1 - phi[t] \# Pr(alive t \rightarrow dead t+1)
                                # Pr(dead \ t \rightarrow alive \ t+1)
   gamma[2,1,t] \leftarrow 0
   gamma[2,2,t] <- 1
                           # Pr(dead \ t \rightarrow dead \ t+1)
  #Recapture
  for(t in 1:(T-1)){
    p[t] ~ dunif(0,1) # prior for p
    # Recapture matrix
    omega[1,1,t] \leftarrow 1 - p[t] # Pr(alive t \rightarrow non-detected t)
    omega[1,2,t] \leftarrow p[t] # Pr(alive t \rightarrow detected t)
    omega[2,1,t] <- 1
                                 # Pr(dead t -> non-detected t)
    omega[2,2,t] <- 0
                                 # Pr(dead \ t \rightarrow detected \ t)
  }
#Likelihood
  for (i in 1:N){
    z[i,first[i]] ~ dcat(delta[1:2])
    for (j in (first[i]+1):T){
      z[i,j] \sim dcat(gamma[z[i,j-1], 1:2, j-1])
      y[i,j] \sim dcat(omega[z[i,j], 1:2, j-1])
    }
  }
})
 \textit{\#Get the occasion of first capture for all individuals}. \\
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
first
```

```
#A list with constants.
my.constants \leftarrow list(N = nrow(y),
                     T = ncol(y),
                     first = first)
my.constants
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
#you will just need to adjust the $\Omega$ and $\Gamma$ matrices in the model above.
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(phi = runif(my.constants$T-1,0,1),</pre>
                                   p = runif(my.constants T-1,0,1),
                                   z = zinits)
initial.values()
#Some information that we now pass as initial value info
#(observations of alive) are actually known states, and could also be passed
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("phi", "p")</pre>
parameters.to.save
#MCMC details.
n.iter < -2500
n.burnin <- 1000
n.chains \leftarrow 2
#At last, let's run nimble.
mcmc.phitpt <- nimbleMCMC(code = hmm.phitpt,</pre>
                          constants = my.constants,
                          data = my.data,
                          inits = initial.values,
                          monitors = parameters.to.save,
                          niter = n.iter,
                          nburnin = n.burnin,
                          nchains = n.chains)
#Examine the results.
MCMCsummary(mcmc.phitpt, round = 2)
MCMCtrace(mcmc.phipt, params = "all",pdf=F)
```

Phi (survival) dependent on time. P (recapture) also varies with time (time as fixed effect)

```
##### phi(t)p(s*t)-----
hmm.phitpst <- nimbleCode({</pre>
  #Initial state prob
  delta[1] <- 1
                         \# Pr(alive \ t = 1) = 1
                         # Pr(dead\ t = 1) = 0
  delta[2] <- 0
  #Survival
  for(t in 1:(T-1)){
    phi[t] ~ dunif(0,1) # prior for phi
    #Survival matrix
    gamma[1,1,t] <- phi[t]
                                 # Pr(alive t -> alive t+1)
    gamma[1,2,t] <- 1 - phi[t] # Pr(alive t -> dead t+1)
    gamma[2,1,t] \leftarrow 0 # Pr(dead t \rightarrow alive t+1)
    gamma[2,2,t] \leftarrow 1 \# Pr(dead t \rightarrow dead t+1)
  #Recapture
  for(i in 1:N){
    for(t in 1:(T-1)){
      logit(p[i,t]) <- beta[sex[i]] + lambda[t] + kappa[sex[i],t]</pre>
      #Recapture matrix
      omega[1,1,i,t] \leftarrow 1 - p[i,t] # Pr(alive\ t \rightarrow non-detected\ t)
      omega[1,2,i,t] \leftarrow p[i,t] # Pr(alive t \rightarrow detected t)
      omega[2,1,i,t] <- 1
                                      # Pr(dead t -> non-detected t)
                                       # Pr(dead t -> detected t)
      omega[2,2,i,t] \leftarrow 0
    }
  #Priors for beta
  beta[1] \sim dnorm(mean = 0, sd = 1.5)
  beta[2] \sim dnorm(mean = 0, sd = 1.5)
  # Time fixed effect.
  for(t in 1:(T-1)){
    lambda[t] \sim dnorm(0, sd = 1.5)
  # Time as random effect in the interaction
  lambda.sigma ~ dunif(0, 10)
  for(i in 1:2){
    for (t in 1:(T-1)){
      kappa[i,t] ~ dnorm(0, sd = lambda.sigma)
  }
  # ilogit for p.
  for (t in 1:(T-1)){
    p_male[t] <- ilogit(beta[1] + lambda[t] + kappa[1,t])</pre>
    p_female[t] <- ilogit(beta[2] + lambda[t] + kappa[2,t])</pre>
  }
  #Likelihood
  for (i in 1:N){
    z[i,first[i]] ~ dcat(delta[1:2])
```

```
for (j in (first[i]+1):T){
      z[i,j] \sim dcat(gamma[z[i,j-1], 1:2, j-1])
      y[i,j] \sim dcat(omega[z[i,j], 1:2, i, j-1])
  }
})
#Get the occasion of first capture for all individuals.
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
first
#A list with constants.
my.constants \leftarrow list(N = nrow(y),
                     T = ncol(y),
                     first = first,
                      sex = sex)
my.constants
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
#you will just need to adjust the $\Omega$ and $\Gamma$ matrices in the model above.
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(beta = rnorm(2,0,1),</pre>
                                   phi = runif(my.constants$T-1,0,1),
                                   lambda = rnorm(my.constants$T-1, 0, 1),
                                   t.sigma = runif(1,0,1),
                                   kappa = matrix(rnorm(12, 0, 1), 2, 6),
                                   z = zinits)
initial.values()
#Some information that we now pass as initial value info
#(observations of alive) are actually known states, and could also be passed
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("phi", "p_male", "p_female")</pre>
parameters.to.save
#MCMC details.
n.iter <- 8000
n.burnin <- 1000
n.chains <- 2
#At last, let's run nimble.
mcmc.phitpst <- nimbleMCMC(code = hmm.phitpst,</pre>
                            constants = my.constants,
```

```
data = my.data,
    inits = initial.values,
    monitors = parameters.to.save,
    niter = n.iter,
    nburnin = n.burnin,
    nchains = n.chains)

#Examine the results.
MCMCsummary(mcmc.phitpst, round = 2)
MCMCtrace(mcmc.phitpst, params = "p_female", pdf=F)
```

Phi (survival) dependent on time. P (recapture) with interaction between sex and time

PHI(s)~ survival dependent on sex

```
## PHI(s) -----
##### phi(s)p(.)-----
hmm.phisp <- nimbleCode({</pre>
  # Initial state prob.
 #Survival
 for(i in 1:N){
   logit(phi[i])<- beta[sex[i]]</pre>
   #Survivañ matrix
   gamma[1,1,i] <- phi[i] # Pr(alive t -> alive t+1)
   \mathtt{gamma[1,2,i]} \leftarrow \mathtt{1-phi[i]} \quad \# \ \mathit{Pr(alive} \ t \ \ \texttt{->} \ \mathit{dead} \ \ t\texttt{+1)}
   # Priors for b1
 beta[1] \sim dnorm(mean = 0, sd = 1.5)
 beta[2] \sim dnorm(mean = 0, sd = 1.5)
  # ilogit for phi
 phi_male <- ilogit(beta[1])</pre>
 phi_female <- ilogit(beta[2])</pre>
  #Recapture
 p ~ dunif(0,1) # prior for p
  # Recapture matrix
  omega[1,1] \leftarrow 1 - p # Pr(alive\ t \rightarrow non-detected\ t)
 #Likelihood
 for (i in 1:N){
   z[i,first[i]] ~ dcat(delta[1:2])
```

```
for (j in (first[i]+1):T){
      z[i,j] \sim dcat(gamma[z[i,j-1], 1:2, i])
      y[i,j] ~ dcat(omega[z[i,j], 1:2])
  }
})
#' Get the occasion of first capture for all individuals.
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
first
#' A list with constants.
my.constants \leftarrow list(N = nrow(y),
                     T = ncol(y),
                     first = first,
                      sex = sex)
my.constants
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
#you will just need to adjust the $\Omega$ and $\Gamma$ matrices in the model above.
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(beta = rnorm(2,0,1),</pre>
                                   p = runif(1,0,1),
                                   z = zinits)
initial.values()
#Some information that we now pass as initial value info
#(observations of alive) are actually known states, and could also be passed
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("beta", "phi_male", "phi_female", "p")
parameters.to.save
#' MCMC details.
n.iter <- 2500
n.burnin <- 1000
n.chains <- 2
#' At last, let's run nimble.
mcmc.phisp <- nimbleMCMC(code = hmm.phisp,</pre>
                          constants = my.constants,
                          data = my.data,
                          inits = initial.values,
                          monitors = parameters.to.save,
```

Phi (survival) dependent on sex. P (recapture) as constant.

```
##### phi(s)p(s)-----
hmm.phisps <- nimbleCode({</pre>
  # Initial state prob
  delta[1] <- 1
                           # Pr(alive t = 1) = 1
                       \# Pr(dead \ t = 1) = 0
  delta[2] <- 0
  #Survival
  for(i in 1:N){
    logit(phi[i])<- beta[sex[i]]</pre>
    #Survival matrix
    gamma[1,1,i] <- phi[i]
                                    # Pr(alive t -> alive t+1)
    gamma[1,2,i] \leftarrow 1 - phi[i] \# Pr(alive t \rightarrow dead t+1)
    gamma[2,1,i] \leftarrow 0 		 # Pr(dead t \rightarrow alive t+1)
    gamma[2,2,i] \leftarrow 1 \# Pr(dead t \rightarrow dead t+1)
  }
  # Prior for b1 and
  beta[1] \sim dnorm(mean = 0, sd = 1.5)
  beta[2] \sim dnorm(mean = 0, sd = 1.5)
  #ilogit for phi
  phi_male <- ilogit(beta[1])</pre>
  phi_female <- ilogit(beta[2])</pre>
  #Recapture
  for(i in 1:N){
    logit(p[i]) <- beta2[sex[i]]</pre>
     #Recapture matrix
    omega[1,1,i] \leftarrow 1 - p[i] # Pr(alive\ t \rightarrow non-detected\ t)
    omega[1,2,i] \leftarrow p[i] # Pr(alive\ t \rightarrow detected\ t)

omega[2,1,i] \leftarrow 1 # Pr(dead\ t \rightarrow non-detected\ t)
                                   # Pr(dead t \rightarrow detected t)
    omega[2,2,i] \leftarrow 0
  # Priors for b3 and b4
  beta2[1] \sim dnorm(mean = 0, sd = 1.5)
  beta2[2] \sim dnorm(mean = 0, sd = 1.5)
  #ilogit for p
  p_male <- ilogit(beta2[1])</pre>
  p_female <- ilogit(beta2[2])</pre>
```

```
# Likelihood
  for (i in 1:N){
    z[i,first[i]] ~ dcat(delta[1:2])
    for (j in (first[i]+1):T){
      z[i,j] \sim dcat(gamma[z[i,j-1], 1:2, i])
      y[i,j] ~ dcat(omega[z[i,j], 1:2, i])
  }
})
#' Get the occasion of first capture for all individuals.
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
first
#' A list with constants.
my.constants \leftarrow list(N = nrow(y),
                      T = ncol(y),
                     first = first,
                      sex = sex)
my.constants
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
#you will just need to adjust the \Omega0mega and G0mma and G0mma matrices in the model above.
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(beta = rnorm(2,0,1),</pre>
                                   beta2 = rnorm(2,0,1),
                                   z = zinits)
initial.values()
#Some information that we now pass as initial value info
#(observations of alive) are actually known states, and could also be passed
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("beta", "phi_male", "phi_female", "p_male", "p_female")</pre>
parameters.to.save
#' MCMC details.
n.iter <- 2500
n.burnin <- 1000
n.chains <- 2
#' At last, let's run nimble.
mcmc.phisps <- nimbleMCMC(code = hmm.phisps,</pre>
                           constants = my.constants,
```

```
data = my.data,
    inits = initial.values,
    monitors = parameters.to.save,
    niter = n.iter,
    nburnin = n.burnin,
    nchains = n.chains)

#' Examine the results.

MCMCsummary(mcmc.phisps, round = 2)
MCMCtrace(mcmc.phisps, params = "all", pdf=F)
```

Phi (survival) dependent on sex. P (recapture) also dependent on sex

```
##### phi(s)p(t)-----
hmm.phispt <- nimbleCode({</pre>
  #Initial state prob.
                      # Pr(alive \ t = 1) = 1
# Pr(dead \ t = 1) = 0
  delta[1] <- 1
  delta[2] <- 0
  #Survival
  for(i in 1:N){
    logit(phi[i])<- beta[sex[i]]</pre>
    # Survival matrix
    gamma[1,1,i] \leftarrow phi[i] # Pr(alive\ t \rightarrow alive\ t+1)
    \operatorname{gamma}[1,2,i] \leftarrow 1 - \operatorname{phi}[i] \quad \# \operatorname{Pr(alive} t \rightarrow \operatorname{dead} t+1)
    gamma[2,1,i] \leftarrow 0 # Pr(dead t \rightarrow alive t+1)
    gamma[2,2,i] \leftarrow 1 \# Pr(dead t \rightarrow dead t+1)
  # Prior for b1
  beta[1] \sim dnorm(mean = 0, sd = 1.5)
  beta[2] \sim dnorm(mean = 0, sd = 1.5)
  #ilogit for phi
  phi_male <- ilogit(beta[1])</pre>
  phi_female <- ilogit(beta[2])</pre>
  #Recapture
  for(t in 1:(T-1)){
    p[t] ~ dunif(0,1)
    #Recapture matrix
    omega[1,1,t] \leftarrow 1 - p[t] # Pr(alive t \rightarrow non-detected t)
    omega[2,2,t] <- 0
                                  # Pr(dead t -> detected t)
  }
  # Likelihood
  for (i in 1:N){
    z[i,first[i]] ~ dcat(delta[1:2])
    for (j in (first[i]+1):T){
```

```
z[i,j] \sim dcat(gamma[z[i,j-1], 1:2, i])
      y[i,j] ~ dcat(omega[z[i,j], 1:2, j-1])
    }
  }
})
#' Get the occasion of first capture for all individuals.
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
first
#' A list with constants.
my.constants \leftarrow list(N = nrow(y),
                     T = ncol(y),
                     first = first,
                      sex = sex)
my.constants
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
#you will just need to adjust the \Omega mega$ and \Omega matrices in the model above. .
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(beta = rnorm(2,0,1),</pre>
                                   p = runif(my.constants$T-1,0,1),
                                   z = zinits)
initial.values()
#Some information that we now pass as initial value info
#(observations of alive) are actually known states, and could also be passed
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("beta", "phi_male", "phi_female", "p")</pre>
parameters.to.save
#' MCMC details.
n.iter <- 2500
n.burnin <- 1000
n.chains <- 2
#' At last, let's run nimble.
mcmc.phispt <- nimbleMCMC(code = hmm.phispt,</pre>
                          constants = my.constants,
                          data = my.data,
                          inits = initial.values,
                          monitors = parameters.to.save,
                          niter = n.iter,
```

Phi (survival) dependent on sex. P (recapture) dependent on time (time as fixed effect)

```
##### phi(s)p(s*t)-----
hmm.phispst <- nimbleCode({</pre>
  # Initial state prob.
  delta[1] \leftarrow 1 # Pr(alive t = 1) = 1
  delta[2] <- 0
                        \# Pr(dead t = 1) = 0
  #Survival
  for(i in 1:N){
    logit(phi[i])<- beta[sex[i]]</pre>
    #Survival matrix
    gamma[1,1,i] <- phi[i]
                                 # Pr(alive t -> alive t+1)
    gamma[1,2,i] \leftarrow 1 - phi[i] \# Pr(alive t \rightarrow dead t+1)
    gamma[2,1,i] \leftarrow 0 		 # Pr(dead t \rightarrow alive t+1)
    gamma[2,2,i] \leftarrow 1 \# Pr(dead t \rightarrow dead t+1)
  }
  # Priors for b1
  beta[1] \sim dnorm(mean = 0, sd = 1.5)
  beta[2] \sim dnorm(mean = 0, sd = 1.5)
  # ilogit for phi
  phi_male <- ilogit(beta[1])</pre>
  phi_female <- ilogit(beta[2])</pre>
  #Recapture
  for(i in 1:N){
  for(t in 1:(T-1)){
    logit(p[i,t]) <- beta2[sex[i]] + lambda[t] + kappa[sex[i],t]</pre>
    #Recapture matrix
    omega[1,1,i,t] \leftarrow 1 - p[i,t] # Pr(alive\ t \rightarrow non-detected\ t)
    omega[1,2,i,t] <- p[i,t] # Pr(alive t -> detected t)
                                     # Pr(dead t -> non-detected t)
    omega[2,1,i,t] <- 1
    omega[2,2,i,t] <- 0
                                      # Pr(dead \ t \rightarrow detected \ t)
  }
  }
  # Priors for b3 and b4
  beta2[1] \sim dnorm(mean = 0, sd = 1.5)
  beta2[2] \sim dnorm(mean = 0, sd = 1.5)
```

```
# Time fixed effect
  for(t in 1:(T-1)){
    lambda[t] ~ dnorm(0, 1.5)
  # Time as random effect for the interaction
  t.sigma ~ dunif(0, 10)
  for(i in 1:2){
    for(t in 1:(T-1)){
    kappa[i,t] ~ dnorm(0, sd = t.sigma)
    }
  }
  # Recapture probability.
  for(t in 1:(T-1)){
    p_male[t] <- ilogit(beta2[1] + lambda[t] + kappa[1,t])</pre>
   p_female[t] <- ilogit(beta2[2] + lambda[t] + kappa[2,t])</pre>
  ## Likelihood
  for (i in 1:N){
    z[i,first[i]] ~ dcat(delta[1:2])
    for (j in (first[i]+1):T){
      z[i,j] \sim dcat(gamma[z[i,j-1], 1:2, i])
      y[i,j] \sim dcat(omega[z[i,j], 1:2, i, j-1])
 }
})
#' Get the occasion of first capture for all individuals.
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
first
#' A list with constants.
my.constants \leftarrow list(N = nrow(y),
                     T = ncol(y),
                     first = first,
                      sex = sex)
my.constants
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
#you will just need to adjust the $\Omega$ and $\Gamma$ matrices in the model above.
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(beta = rnorm(2,0,1),</pre>
                                   beta2 = rnorm(2,0,1),
                                   lambda = rnorm(6, 0, 1)), #lambda[1] is set to zero.
```

```
t.sigma = runif(1,0,1),
                                   kappa = matrix(rnorm(12, 0, 1), 2, 6),
                                   z = zinits)
initial.values()
#Some information that we now pass as initial value info
#(observations of alive) are actually known states, and could also be passed
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("beta", "lambda", "beta3", "phi_male", "phi_female", "p_male", "p_female")
parameters.to.save
#' MCMC details.
n.iter <- 10000
n.burnin <- 1000
n.chains <- 2
#' At last, let's run nimble.
mcmc.phispst <- nimbleMCMC(code = hmm.phispst,</pre>
                          constants = my.constants,
                          data = my.data,
                          inits = initial.values,
                          monitors = parameters.to.save,
                          niter = n.iter,
                          nburnin = n.burnin,
                          nchains = n.chains)
#' Examine the results.
MCMCsummary(mcmc.phispst, round = 2)
MCMCtrace(mcmc.phispst, params = "p", pdf=F)
```

Phi (survival) dependent on sex. P (recapture) with interaction of sex and time

 $_$ _PHI(s*t) $_$ _ ~ survival with interaction of sex and time

```
gamma[2,2,i,t] \leftarrow 1 \# Pr(dead t \rightarrow dead t+1)
  }
  #Recapture
  p \sim dunif(0, 1)
                      # prior recapture
  #Recapture matrix
  omega[1,1] \leftarrow 1 - p
                          # Pr(alive t -> non-detected t)
  omega[1,2] \leftarrow p
                           # Pr(alive t -> detected t)
  omega[2,1] <- 1
                                 # Pr(dead t -> non-detected t)
  omega[2,2] \leftarrow 0
                                 # Pr(dead \ t \rightarrow detected \ t)
  ## Priors for beta
  beta[1] \sim dnorm(mean = 0, sd = 1.5)
  beta[2] \sim dnorm(mean = 0, sd = 1.5)
  #Time fixed effect
  for(t in 1:(T-1)){
    lambda[t] \sim dnorm(mean = 0, sd = 1.5)
  # Time as random for the interaction
  t.sigma ~ dunif(0, 10)
  for(i in 1:2){
    for(t in 1:(T-1)){
      kappa[i,t] ~ dnorm(mean = 0, sd = t.sigma)
    }
  }
  # ilogit for phi
  for (t in 1:(T-1)){
    phi_male[t] <- ilogit(beta[1] + lambda[t] + kappa[1,t])</pre>
    phi_female[t] <- ilogit(beta[2] + lambda[t] + kappa[2,t])</pre>
  }
  # Likelihood
  for (i in 1:N){
    z[i,first[i]] ~ dcat(delta[1:2])
    for (j in (first[i]+1):T){
      z[i,j] \sim dcat(gamma[z[i,j-1], 1:2,i, j-1])
      y[i,j] ~ dcat(omega[z[i,j], 1:2])
    }
  }
})
#' Get the occasion of first capture for all individuals.
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
first
#' A list with constants.
my.constants \leftarrow list(N = nrow(y),
                       T = ncol(y),
                       first = first,
                       sex = sex)
```

```
my.constants
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
#you will just need to adjust the $\Omega$ and $\Gamma$ matrices in the model above.
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(beta = rnorm(2,0,1),</pre>
                                   p = runif(1,0,1),
                                   lambda = rnorm(6, 0, 1),
                                   t.sigma = runif(1,0,1),
                                   kappa = matrix(rnorm(12, 0, 1), 2, 6),
                                   z = zinits)
initial.values()
#Some information that we now pass as initial value info
#(observations of alive) are actually known states, and could also be passed
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("phi_male", "phi_female", "p")</pre>
parameters.to.save
#' MCMC details.
n.iter < -10000
n.burnin <- 1000
n.chains <- 2
#' At last, let's run nimble.
mcmc.hmm.phistps <- nimbleMCMC(code = hmm.phistps,</pre>
                            constants = my.constants,
                            data = my.data,
                            inits = initial.values,
                            monitors = parameters.to.save,
                            niter = n.iter,
                             nburnin = n.burnin,
                            nchains = n.chains)
#' Examine the results.
MCMCsummary(mcmc.hmm.phistps, round = 2)
MCMCtrace(mcmc.hmm.phistps, params = "all", pdf=F)
```

Phi (survival) with interaction of sex and time P (recapture) as constant.

```
##### phi(s*t)p(s)------
hmm.phistps <- nimbleCode({
```

```
#Initial state prob
delta[1] <- 1
                      # Pr(alive t = 1) = 1
delta[2] \leftarrow 0 # Pr(dead \ t = 1) = 0
#Survival
for(i in 1:N){
  for(t in 1:(T-1)){
    logit(phi[i,t]) <- beta[sex[i]] + lambda[t] + kappa[sex[i],t]</pre>
    #Survival matrix
    gamma[1,1,i,t] <- phi[i,t]
                                   # Pr(alive t -> alive t+1)
    gamma[1,2,i,t] \leftarrow 1 - phi[i,t] # Pr(alive t \rightarrow dead t+1)
    gamma[2,1,i,t] <- 0
                                    # Pr(dead \ t \rightarrow alive \ t+1)
    gamma[2,2,i,t] <- 1
                                \#Pr(dead\ t \rightarrow dead\ t+1)
  }
}
#Recapture
for(i in 1:N){
  for(t in 1:(T-1)){
    logit(p[i]) <- beta2[sex[i]]</pre>
    #Recapture matrix
                                    # Pr(alive t -> non-detected t)
    omega[1,1,i] \leftarrow 1 - p[i]
    omega[1,2,i] <- p[i]
                                  # Pr(alive t -> detected t)
    omega[2,1,i] <- 1
                                  # Pr(dead t -> non-detected t)
    omega[2,2,i] \leftarrow 0
                                   \# Pr(dead \ t \rightarrow detected \ t)
 }
## Priors for b1 b2
beta[1] \sim dnorm(mean = 0, sd = 1.5)
beta[2] \sim dnorm(mean = 0, sd = 1.5)
beta2[1] \sim dnorm(mean = 0, sd = 1.5)
beta2[2] \sim dnorm(mean = 0, sd = 1.5)
#Time fixed effect
for(t in 1:(T-1)){
  lambda[t] \sim dnorm(mean = 0, sd = 1.5)
# Time as random for the interaction
t.sigma ~ dunif(0, 10)
for(i in 1:2){
  for(t in 1:(T-1)){
    kappa[i,t] ~ dnorm(mean = 0, sd = t.sigma)
  }
}
# ilogit for phi
for (t in 1:(T-1)){
  phi_male[t] <- ilogit(beta[1]+ lambda[t] + kappa[1,t])</pre>
 phi_female[t] <- ilogit(beta[2] + lambda[t] + kappa[2,t])</pre>
#ilogit for p
p_male <- ilogit(beta2[1])</pre>
```

```
p_female <- ilogit(beta2[2])</pre>
  #Likelihood
  for (i in 1:N){
    z[i,first[i]] ~ dcat(delta[1:2])
    for (j in (first[i]+1):T){
      z[i,j] \sim dcat(gamma[z[i,j-1], 1:2,i, j-1])
      y[i,j] ~ dcat(omega[z[i,j], 1:2, i])
  }
})
#' Get the occasion of first capture for all individuals.
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
first
#' A list with constants.
my.constants \leftarrow list(N = nrow(y),
                      T = ncol(y),
                      first = first,
                      sex = sex)
my.constants
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
#you will just need to adjust the \Omega and \Omega and \Omega matrices in the model above.
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(beta = rnorm(2,0,1),</pre>
                                   beta2 = rnorm(2,0,1),
                                   lambda = rnorm(6, 0, 1),
                                   t.sigma = runif(1,0,1),
                                   kappa = matrix(rnorm(12, 0, 1), 2, 6),
                                   z = zinits)
initial.values()
#Some information that we now pass as initial value info
#(observations of alive) are actually known states, and could also be passed
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("phi_male", "phi_female", "p")</pre>
parameters.to.save
#' MCMC details.
n.iter <- 10000
n.burnin <- 1000
n.chains <- 2
```

Phi (survival) with interaction of sex and time P (recapture) dependent on sex

```
##### phi(s*t)p(t)-----
hmm.phistpt <- nimbleCode({</pre>
  #Initial state prob
  delta[1] <- 1
                           # Pr(alive t = 1) = 1
                         \# Pr(dead \ t = 1) = 0
  delta[2] <- 0
  #Survival
  for(i in 1:N){
    for(t in 1:(T-1)){
       logit(phi[i,t]) <- beta[sex[i]] + lambda[t] + kappa[sex[i],t]</pre>
       #Survival matrix
       gamma[1,1,i,t] <- phi[i,t]
                                         # Pr(alive t -> alive t+1)
       gamma[1,2,i,t] \leftarrow 1 - phi[i,t] # Pr(alive t \rightarrow dead t+1)
      gamma[2,1,i,t] \leftarrow 0 # Pr(dead t \rightarrow alive t+1)

gamma[2,2,i,t] \leftarrow 1 # Pr(dead t \rightarrow dead t+1)
                                      # Pr(dead \ t \rightarrow dead \ t+1)
  }
  #Recapture
    for(t in 1:(T-1)){
     p[t] ~ dunif(0, 1) # prior for p
       #Recapture matrix
       omega[1,1,i] \leftarrow 1 - p[i] # Pr(alive t \rightarrow non-detected t)
      omega[1,2,i] \leftarrow p[i] # Pr(alive\ t \rightarrow detected\ t)
                                     # Pr(dead t -> non-detected t)
      omega[2,1,i] <- 1
      omega[2,2,i] \leftarrow 0
                                       \# Pr(dead \ t \rightarrow detected \ t)
    }
  ## Priors for beta
  beta[1] \sim dnorm(mean = 0, sd = 1.5)
  beta[2] \sim dnorm(mean = 0, sd = 1.5)
  #Time fixed effect
  for(t in 1:(T-1)){
    lambda[t] \sim dnorm(mean = 0, sd = 1.5)
```

```
}
  # Time as random for the interaction
  t.sigma ~ dunif(0, 10)
  for(i in 1:2){
    for(t in 1:(T-1)){
      kappa[i,t] ~ dnorm(mean = 0, sd = t.sigma)
    }
  }
  # ilogit for phi
  for (t in 1:(T-1)){
    phi_male[t] <- ilogit(beta[1]+ lambda[t] + kappa[1,t])</pre>
    phi_female[t] <- ilogit(beta[2] + lambda[t] + kappa[2,t])</pre>
  }
  #Likelihood
  for (i in 1:N){
    z[i,first[i]] ~ dcat(delta[1:2])
    for (j in (first[i]+1):T){
      z[i,j] \sim dcat(gamma[z[i,j-1], 1:2,i, j-1])
      y[i,j] ~ dcat(omega[z[i,j], 1:2, i])
    }
  }
})
#' Get the occasion of first capture for all individuals.
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
first
#' A list with constants.
my.constants \leftarrow list(N = nrow(y),
                     T = ncol(y),
                      first = first,
                      sex = sex)
my.constants
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
#you will just need to adjust the $\Omega$ and $\Gamma$ matrices in the model above.
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(beta = rnorm(2,0,1),</pre>
                                   p = runif(my.constants$T-1, 0, 1),
                                   lambda = rnorm(6, 0, 1),
                                   t.sigma = runif(1,0,1),
                                   kappa = matrix(rnorm(12, 0, 1), 2, 6),
                                   z = zinits)
```

```
initial.values()
#Some information that we now pass as initial value info
#(observations of alive) are actually known states, and could also be passed
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("phi_male", "phi_female", "p")</pre>
parameters.to.save
#' MCMC details.
n.iter <- 10000
n.burnin <- 1000
n.chains <- 2
#' At last, let's run nimble.
mcmc.hmm.phistpt <- nimbleMCMC(code = hmm.phistpt,</pre>
                            constants = my.constants,
                            data = my.data,
                            inits = initial.values,
                            monitors = parameters.to.save,
                            niter = n.iter,
                            nburnin = n.burnin,
                            nchains = n.chains)
#' Examine the results.
MCMCsummary(mcmc.hmm.phistpt, round = 2)
MCMCtrace(mcmc.hmm.phistpt, params = "all", pdf=F)
```

Phi (survival) with interaction of sex and time P (recapture) dependent on time (time as fixed effect)

```
## PHI(s*t) -----
##### phi(s*t)p(s*t)-----
hmm.phistpst <- nimbleCode({</pre>
  #Initial state prob
  #Survival.
  for(i in 1:N){
  for(t in 1:(T-1)){
    logit(phi[i,t]) <- beta[sex[i]] + lambda[t] + kappa[sex[i],t]</pre>
     #Survival matrix
    gamma[1,1,i,t] \leftarrow phi[i,t] # Pr(alive\ t \rightarrow alive\ t+1)
    \operatorname{gamma}[1,2,i,t] \leftarrow 1 - \operatorname{phi}[i,t] \# \operatorname{Pr}(\operatorname{alive} t \rightarrow \operatorname{dead} t + 1)
    gamma[2,1,i,t] \leftarrow 0 # Pr(dead t \rightarrow alive t+1)
    gamma[2,2,i,t] \leftarrow 1 \# Pr(dead t \rightarrow dead t+1)
  }
  }
```

```
#Recapture
  for(i in 1:N){
    for(t in 1:(T-1)){
      logit(p[i,t]) <- beta2[sex[i]] + lambda2[t] + kappa2[sex[i],t]</pre>
      #Recapture matrix
      omega[1,1,i,t] \leftarrow 1 - p[i,t]
                                        # Pr(alive t -> non-detected t)
                                         # Pr(alive t -> detected t)
      omega[1,2,i,t] \leftarrow p[i,t]
      omega[2,1,i,t] <- 1
                                         # Pr(dead t -> non-detected t)
      omega[2,2,i,t] \leftarrow 0
                                         # Pr(dead t -> detected t)
  }
  ## Priors for betas
  beta[1] \sim dnorm(mean = 0, sd = 1.5)
  beta[2] \sim dnorm(mean = 0, sd = 1.5)
  beta2[1] \sim dnorm(mean = 0, sd = 1.5)
  beta2[2] \sim dnorm(mean = 0, sd = 1.5)
  #Time fixed effect
  for(t in 1:(T-1)){
    lambda[t] \sim dnorm(mean = 0, sd = 1.5)
    lambda2[t] \sim dnorm(mean = 0, sd = 1.5)
  }
  # Time as random for the interaction
  t.sigma1 ~ dunif(0, 10)
  t.sigma2 ~ dunif(0, 10)
  for(i in 1:2){
    for(t in 1:(T-1)){
      kappa[i,t] ~ dnorm(mean = 0, sd = t.sigma1)
      kappa2[i,t] ~ dnorm(mean = 0, sd = t.sigma2)
  }
  # ilogit for phi and p
  for (t in 1:(T-1)){
    phi_male[t] <- ilogit(beta[1]+ lambda[t] + kappa[1,t])</pre>
    phi_female[t] <- ilogit(beta[2] + lambda[t] + kappa[2,t])</pre>
    p_male[t] <- ilogit(beta2[1] + lambda2[t] + kappa2[2,t])</pre>
    p_female[t] <- ilogit(beta2[2] + lambda2[t] + kappa2[2,t])</pre>
  # Likelihood
  for (i in 1:N){
    z[i,first[i]] ~ dcat(delta[1:2])
    for (j in (first[i]+1):T){
      z[i,j] \sim dcat(gamma[z[i,j-1], 1:2,i, j-1])
      y[i,j] \sim dcat(omega[z[i,j], 1:2, i, j-1])
    }
  }
})
#' Get the occasion of first capture for all individuals.
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
```

```
first
#' A list with constants.
my.constants \leftarrow list(N = nrow(y),
                     T = ncol(y),
                     first = first,
                     sex = sex)
my.constants
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
#you will just need to adjust the $\Omega$ and $\Gamma$ matrices in the model above.
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(beta = rnorm(2,0,1),</pre>
                                   beta2 = rnorm(2,0,1),
                                   lambda = rnorm(6, 0, 1),
                                   lambda2 = rnorm(6, 0, 1),
                                   t.sigma1 = runif(1,0,1),
                                   t.sigma2 = runif(1,0,1),
                                   kappa = matrix(rnorm(12, 0, 1), 2, 6),
                                   kappa2 = matrix(rnorm(12, 0, 1), 2, 6),
                                   z = zinits)
initial.values()
#Some information that we now pass as initial value info
#(observations of alive) are actually known states, and could also be passed
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("phi_male", "phi_female", "p_male", "p_female")</pre>
parameters.to.save
#' MCMC details.
n.iter <- 10000
n.burnin <- 1000
n.chains <- 2
#' At last, let's run nimble.
mcmc.phistpst <- nimbleMCMC(code = hmm.phistpst,</pre>
                            constants = my.constants,
                            data = my.data,
                            inits = initial.values,
                           monitors = parameters.to.save,
                           niter = n.iter,
                            nburnin = n.burnin,
                            nchains = n.chains)
```

```
#' Examine the results.
MCMCsummary(mcmc.phistpst, round = 2)
MCMCtrace(mcmc.phistpst, params = "all", pdf=F)
### PHI(t+s) P(t+s)
#### Example for additive effect of time and sex (no interaction) for both phi (survival) and p (recapture
## PHI(s+t) -----
##### phi(s+t)p(s+t)-----
hmm.phistpst <- nimbleCode({</pre>
  #Initial state prob
  delta[1] <- 1
                           # Pr(alive t = 1) = 1
  delta[2] <- 0
                           \# Pr(dead \ t = 1) = 0
  #Survival
  for(i in 1:N){
    for(t in 1:(T-1)){
      logit(phi[i,t]) <- beta[sex[i]] + lambda[t]</pre>
       #Survival matrix
       gamma[1,1,i,t] \leftarrow phi[i,t] \qquad \# Pr(alive t \rightarrow alive t+1)
      \mathtt{gamma[1,2,i,t]} \leftarrow \mathtt{1-phi[i,t]} \ \# \ \textit{Pr(alive $t$ $->$ $ $dead$ $t+1)$}
                                # Pr(dead t \rightarrow alive t+1)
      gamma[2,1,i,t] \leftarrow 0
      gamma[2,2,i,t] <- 1
                                        \# Pr(dead \ t \rightarrow dead \ t+1)
    }
  }
  #Recapture
  for(i in 1:N){
    for(t in 1:(T-1)){
      logit(p[i,t]) \leftarrow beta2[sex[i]] + lambda2[t]
       #Recapture matrix
       omega[1,1,i,t] \leftarrow 1 - p[i,t] # Pr(alive\ t \rightarrow non-detected\ t)
      omega[1,2,i,t] \leftarrow p[i,t] \qquad \qquad \textit{\# Pr(alive $t$ $->$ $detected $t$)}
      omega[2,1,i,t] <- 1
                                         # Pr(dead \ t \rightarrow non-detected \ t)
      omega[2,2,i,t] \leftarrow 0
                                          # Pr(dead \ t \rightarrow detected \ t)
  }
}
    ## Priors for b1 b2
    beta[1] \sim dnorm(mean = 0, sd = 1.5)
    beta[2] \sim dnorm(mean = 0, sd = 1.5)
    beta2[1] \sim dnorm(mean = 0, sd = 1.5)
    beta2[2] \sim dnorm(mean = 0, sd = 1.5)
    #Time fixed effect
    for (t in 1:(T-1)){
     lambda[t] \sim dnorm(mean = 0, sd = 1.5)
     lambda2[t] \sim dnorm(mean = 0, sd = 1.5)
   }
    #ilogit for phi and p
  for(t in 1:(T-1)){
    phi_male[t] <- ilogit(beta[1]+ lambda[t])</pre>
```

```
phi_female[t] <- ilogit(beta[2] + lambda[t])</pre>
       p_male[t] <- ilogit(beta2[1] + lambda2[t])</pre>
        p_female[t] <- ilogit(beta2[2] + lambda2[t])</pre>
    #Likelihood
       for (i in 1:N){
        z[i,first[i]] ~ dcat(delta[1:2])
        for (j in (first[i]+1):T){
            z[i,j] \sim dcat(gamma[z[i,j-1], 1:2, i, j-1])
            y[i,j] \sim dcat(omega[z[i,j], 1:2, i, j-1])
        }
    }
})
#' Get the occasion of first capture for all individuals.
first <- apply(y, 1, function(x) min(which(x !=0)))</pre>
first
#' A list with constants.
my.constants \leftarrow list(N = nrow(y),
                                           T = ncol(y),
                                           first = first,
                                           sex = sex)
my.constants
#Now the data in a list. Note that we add 1 to the data to have 1 for
#non-detections and 2 for detections. You may use the coding you prefer of course,
#you will just need to adjust the \Omega0mega ad G0mma ad G0mma ad G0mma ad G1mma ad G2mma ad G3mma ad G3mma
my.data \leftarrow list(y = y + 1)
#Specify initial values. For the latent states, we go for the easy way,
#and say that all individuals are alive through the study period.
zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(beta = rnorm(2,0,1),</pre>
                                                                       beta2 = rnorm(2,0,1),
                                                                       lambda = rnorm(6,0,1),
                                                                       lambda2 = rnorm(6,0,1),
                                                                       z = zinits)
initial.values()
#Some information that we now pass as initial value info
#(observations of alive) are actually known states, and could also be passed
#as data in which case the initial values have to be 0.
#Specify the parameters we wish to monitor.
parameters.to.save <- c("phi_male", "phi_female", "p_male", "p_female")</pre>
parameters.to.save
#' MCMC details.
n.iter <- 10000
```

Phi (survival) with interaction of sex and time P (recapture) with interaction of sex and time.

Reference and acknowledgements

- We would like to thank Oliver Gimenez for giving us total permission to share this code.
- de Valpine P, Turek D, Paciorek C, Anderson-Bergman C, Temple Lang D, Bodik R (2017). Programming with models: writing statistical algorithms for general model structures with NIMBLE. Journal of Computational and Graphical Statistics, 26, 403-413. doi: 10.1080/10618600.2016.1172487