Проверка гипотез.

- **1** Пусть X_1, \ldots, X_n выборка из распределения $Cauchy(\theta)$. Построить оценку параметра θ методом моментов.
- **2** Пусть X_1, \ldots, X_n выборка из распределения $N(\theta, 1)$. Существует ли равномерно наиболее мощный критерий для проверки гипотезы $H_0: \theta = 0$ против альтернативы $H_1: \theta \neq 0$?
- **3** Пусть X_1, \ldots, X_n выборка из распределения $\Gamma(\alpha, \theta)$, где α, θ неизвестные параметры. Предложить критерий для проверки гипотезы $H_0: \alpha = 1$ против альтернативы $H_1: \alpha > 1$.
- 4 Выдана выборка X_1, \ldots, X_n . Рассмотрим основную гипотезу $H_0: X \sim Bin(m,p)$ против альтернативы $H_1: X \sim Pois(\lambda)$, где m можно полагать известным. На основе байесовского критерия построить критерии различения H_0 и H_1 уровней значимости $0.01,\ 0.05,\ 0.1$ для $n=100,\ 250,\ 500$ с помощью моделирования.
- 5 Выдана выборка $X=(X_1,\ldots,X_n)$ из распределения с плотностью $f_0(x;a,b)$ или $f_1(x;a,b)$, где $a\in\mathbb{R}$ параметр сдвига, а b>0 параметр масштаба. Рассмотрим задачу различения гипотез $H_0:X\sim f_0(x;a,b)$ против альтернативы $H_1:X\sim f_1(x;a,b)$. Известно (см. Antle, Bain, 1969), что при такой постановке задачи статистика критерия отношения максимальных правдоподобий (RML-test)

$$RML = \frac{\max_{a,b} f_1(X; a, b)}{\max_{a,b} f_0(X; a, b)}$$

не зависит от параметров a,b. Представляя критерий в виде $\{(RML)^{1/n} > u_{\alpha}\}$, найти при $n=50,\ 100,\ 200$ и при уровнях значимости $\alpha=0.1,\ 0.05,\ 0.01$ критические значения u_{α} , а также мощность критерия.

6 Выдана выборка $X = (X_1, \dots, X_n)$ из неизвестного распределения Q. Рассмотрим гипотезу $H_0: Q \in \mathcal{P} = \{P_\theta, \ \theta \in \Theta\}$, где \mathcal{P} – некое (заданное семинаристом) семейство распределений. С помощью разделения (возможно, многократного) выборки на 2 части и построения по первой части оценки параметра θ проверить гипотезу H_0 и объяснить, почему критерий работает. Критерий должен правильно работать на достаточно большом количестве распределений.

Примечание. Использовать критерии согласия и известные критерии проверки принадлежности данному в задаче семейству распределений нельзя.