Decoding Strategies

Deterministic Decoding

Learning goals

- Get to know deterministic decoding strategies
- Learn how text is generated with greedy search and beam search
- Understand how beam search tries to fix the drawbacks of greedy search

GREEDY SEARCH (1)

- Core idea: Greedy search selects the word with the highest probability at each timestep, iteratively building the output sequence
- Exploration of search space: It explores a single path through the output space, favoring the most probable word at each step without considering future consequences
- Candidate Sequence: Only keeps track of the most likely sequence at each step, discarding other possibilities
- Decision Making: It makes local decisions based solely on the highest probability at the current step without considering potential longer-term outcomes

GREEDY SEARCH (2)

- The model accepts an input sequence of tokens $x_1, x_2, ..., x_N$, which we also call prompt
- The model then generates a token at each timestep t until T:
 y₁, y₂, ..., y_T
- In greedy search we choose the token with the highest conditional probability from the vocabulary V
- $y_t = argmax_{y \in V} P(y|y_1, y_2, ..., y_{t-1}, \mathbf{x})$
- With y_t being the chosen token at timestep t and $\mathbf{x} = (x_1, x_2, ..., x_N)$ being the initial prompt

GREEDY SEARCH: EXAMPLE

▶ d2l book

Suppose our vocabulary only has four tokens: A, B, C and <eos>

Time step	1	2	3	4
Α	0.5	0.1	0.2	0.0
В	0.2	0.4	0.2	0.2
С	0.2	0.3	0.4	0.2
<eos></eos>	0.1	0.2	0.2	0.6

- At each timestep greedy search chooses the token with the highest conditional probability
- The model thus predicts A, B, C, <eos>
- Its probability is $0.5 \cdot 0.4 \cdot 0.4 \cdot 0.6 = 0.048$

DRAWBACKS OF GREEDY SEARCH (1)

Now we select token C at timestep 2 instead of B

Time step	1	2	3	4
Α	0.5	0.1	0.1	0.1
В	0.2	0.4	0.6	0.2
С	0.2	0.3	0.2	0.1
<eos></eos>	0.1	0.2	0.1	0.6

- At the timesteps 3 and 4 the conditional probabilities change since the context is no longer A, B but A, C
- The final token sequence is A, C, B, <eos>
- Its probability is $0.5 \cdot 0.3 \cdot 0.6 \cdot 0.6 = 0.054$
- Even though C at t=2 has a lower probability, the final sequence has a higher probability

DRAWBACKS OF GREEDY SEARCH (2)

- Suboptimal Global Solutions: It makes decisions based only on the highest probability token at each step, often missing globally optimal solutions
- Lack of Diversity: It generates repetitive and predictable text, leading to bland outputs
- Incoherence in Long Sequences: It may produce incoherent text over longer sequences due to losing track of the overall context
- Repetitiveness: The lack of diversity leads to repetitive phrases, especially in longer texts
- Overemphasis on Common Phrases: It favors common words and phrases, resulting in overly generic outputs

BEAM SEARCH

- Core idea: Beam search extends the exploration to multiple possible sequences instead of just the most probable one
- Exploration of search space: It explores multiple paths (or "beams") simultaneously, maintaining a set of promising candidate sequences
- Candidate Sequence: Keeps a fixed number of most probable sequences (determined by the beam width parameter k) at each step
- Decision Making: At each step, it considers multiple candidate sequences and selects the most probable ones based on their cumulative probabilities up to that point

BEAM SEARCH: EXAMPLE (1)

→ d2l book

• Suppose $V = \{A, B, C, D, E\}$ and beam width k = 2

BEAM SEARCH: EXAMPLE (2)

- At each timestep beam search chooses the k tokens with the highest joint probability
- Suppose at t = 1 A and B have the highest conditional probabilities $P(y_1|\mathbf{x})$
- At t = 2 for all $y_2 \in V$ we compute:

$$P(A, y_2|\mathbf{x}) = P(A|\mathbf{x}) \cdot P(y_2|A, \mathbf{x})$$

$$P(C, y_2|\mathbf{x}) = P(C|\mathbf{x}) \cdot P(y_2|C, \mathbf{x})$$

- And we again pick the k sequences with the highest probabilities (AB and CE)
- At t = 3 again for all $y_3 \in V$ we compute:

$$P(A, B, y_2|\mathbf{x}) = P(A, B|\mathbf{x}) \cdot P(y_2|A, B, \mathbf{x})$$

$$P(C, E, y_2|\mathbf{x}) = P(C, E|\mathbf{x}) \cdot P(y_2|C, E, \mathbf{x})$$

 We repeat this process unitl the maximum length is reached or unitl the <EOS> token gets generated

BEAM WIDTH: PROS AND CONS

Advantages:

- Better Quality: More likely to find a globally optimal sequence, producing higher quality and more coherent text
- Balance Between Exploration and Exploitation: Avoids the pitfalls of greedy search
- Flexibility: Beam width can be adjusted to trade off between computational complexity and output quality

Drawbacks:

- Computational Complexity: More computationally intensive than greedy search
- Limited Diversity: May still produce similar sequences if the beam width is not large enough
- Hyperparameter Tuning: Additionally requires to tune the hyperparameter k