Clasificarea Vidurilor – Forme Recunoscute și Caracteristici

Compilat și comentat de M. Belega

Introducere

În cadrul teoriei moderne a fizicii, conceptul de "vid" nu mai este o simplă absență de materie, ci o stare complexă a câmpurilor cuantice, a energiei, a simetriei sau a potențialului de interacțiune. Mai jos sunt enumerate 14 forme distincte de vid, recunoscute în literatura de specialitate, fiecare cu formule caracteristice, interpretări și exemple de aplicabilitate.

Clasificare și Descriere

1. Vidul clasic (einsteinian)

Presiune P \rightarrow 0, $\rho \rightarrow$ 0. Spațiu complet gol fără câmpuri.

2. Vidul cuantic

Fluctuații de vid: $<0|\varphi(x)\varphi(y)|0> \neq 0$. Nu există particule, dar există câmpuri.

3. Vidul Higgs

 $\langle \phi \rangle \neq 0$. Câmp scalar cu valoare medie nenulă în vid.

4. Vidul perturbativ

Calculat prin dezvoltare în serii de perturbații. Se aplică în QED/QCD.

5. Vidul fals

Minim local de potențial, dar nu absolut. Instabil față de tranziții cuantice.

6. Vidul adevărat

Minimul absolut al potențialului $V(\varphi)$. Stare fundamentală stabilă.

7. Vidul gravitațional

gμν ≠ ημν. Spaţiu-timp curbat chiar şi în absenţa materiei (ex. unde gravitaţionale).

8. Vidul termic

T > 0. Populat cu fluctuații termice, chiar dacă densitatea de particule este zero.

9. Vidul de Rindler

Vid perceput de un observator accelerat. Asociat cu radiația Unruh.

10. Vidul de Casimir

 $\Delta E = -\pi^2 \hbar c A / 720 d^3$. Diferență de energie între două plăci apropiate.

11. Vidul topologic

Există structuri topologice (ex: defecte, monopoli) în vid.

12. Vidul supersimetric

 $\langle 0|Q|0\rangle$ = 0. Energia vidului este exact zero dacă SUSY este nespontan ruptă.

13. Vidul inflaționar

Vid cu presiune negativă: $P \approx -\rho$. Responsabil de expansiunea accelerată.

14. Vidul aparent

Stare cu densitate scăzută, dar cu interacțiuni de fond invizibile (ex: materie întunecată).

Concluzie

Conceptul de vid a evoluat de la o simplă absență a materiei la un spațiu plin de potențialitate: câmpuri, fluctuații, energii reziduale, simetrii și rupturi de simetrii. Nicio formă de vid nu este cu adevărat 'goală'. Această clasificare oferă un cadru de analiză fundamental pentru înțelegerea interacțiunilor din univers.

Comparații, Formule și Tranziții între Tipurile de Vid

Formule Caracteristice, Exemple și Tranziții între Tipurile de Vid

Vid Einsteinian

- Formula caracteristică: $E = mc^2$ (valabil doar în acest vid, cu c = constanta universală)
- Exemplu reprezentativ: Spațiul intergalactic în absența gravitației locale

Vid Cuantic

- Formula caracteristică: $\langle 0|T\{\phi(x)\phi(y)\}|0\rangle \neq 0$ (corelații de vid în QFT)
- Exemplu reprezentativ: Fluctuațiile vidului în electrodinamica cuantică

Vid Aparent

- Formula caracteristică: $\rho \approx 0$; $p \approx 0$ (densitate și presiune aproape nule)
- Exemplu reprezentativ: Interstiții între moleculele unui gaz perfect

Vid Gravitațional

- Formula caracteristică: $R_{\mu\nu}$ $\frac{1}{2}g_{\mu\nu}R = 0$ (ech. Einstein în vid)
- Exemplu reprezentativ: Zonele din jurul unei găuri negre departe de masă

Vid Termodinamic

- Formula caracteristică: $S \rightarrow 0$; $T \rightarrow 0$; dQ = TdS = 0
- Exemplu reprezentativ: Vid criogenic extrem

Vid Electromagnetic

- Formula caracteristică: $\nabla \cdot \mathbf{E} = 0$; $\nabla \times \mathbf{B} = 0$; fără sarcini/liberi
- Exemplu reprezentativ: Cavități rezonante perfect ecranate

Vid Casimir

- Formula caracteristică: $F = -\pi^2 \hbar c / (240a^4)$ (forța Casimir)
- Exemplu reprezentativ: Două plăci paralele în vid cuantic

Vid Lagrangian

- Formula caracteristică: L = T V; δ S = 0; S = \int L dt
- Exemplu reprezentativ: Câmpuri cu potențial de energie minimă locală

Vid Supersimetric

- Formula caracteristică: $Q|0\rangle = 0$ (operatorul supersimetric pe vid)
- Exemplu reprezentativ: Modele SUSY nedetectate experimental

Vid Higgs

- Formula caracteristică: $\langle \phi \rangle \neq 0$; m = g $\langle \phi \rangle$ (generare masă)
- Exemplu reprezentativ: Câmp Higgs după simetria spartă

Vid Fals

- Formula caracteristică: φ în minimum local dar nu global
- Exemplu reprezentativ: Vidul înainte de tranziția Higgs

Vid Topologic

- Formula caracteristică: $\pi_1(M) \neq 0$ sau $\pi_2(M) \neq 0$ (grupuri de omotopie nule)
- Exemplu reprezentativ: Sarcini topologice: solitoni, vortexuri

Vid Dirac

- Formula caracteristică: $E = -\sqrt{(p^2 + m^2)}$ (stări negative umplute)
- Exemplu reprezentativ: Vidul marilor energii în modelul Dirac

Vid Inflatonic

- Formula caracteristică: $V(\phi) \approx constant$; $p \approx -\rho$
- Exemplu reprezentativ: Etapa inflaționară din Big Bang

Tranziții conceptuale între tipuri de vid

