

System High-Level Design Document

System High-Level Design Document

Analysis & Design

Common Platform

Doc No: AD6000-D4B-SHD-V1.0EN

Version: V1.0

Release date: 2016-08-28

Classification: Internal

© 2016 - - 2009 MediaTek Inc.

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Specifications are subject to change without notice.

Keywords

System High-Level Design Document Keypad

MediaTek Inc.

Postal address

No. 1, Dusing 1st Rd. , Hsinchu Science Park, Hsinchu City, Taiwan 30078

MTK support office address

No. 1, Dusing 1st Rd. , Hsinchu Science Park, Hsinchu City, Taiwan 30078

Internet

http://www.mediatek.com/

This document contains information that is proprietary to Media Tek Inc. Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited

WEDIATEK

Document Revision History

Revision	Date	Author	Description	
V1.0	2016-12-20	Perry Hsu	Initial Release.	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Table of Contents

Docur	nent R	evision History	3
		itents	
		es	
		res	
		duction	
1			
	1.1	Purpose	7
	1.2	Scope	
	1.3	Who Should Read This Document	
	1.4	How to Use This Manual	7
		1.4.1 Terms and Conventions	
2	Refer	ences	9
3	Defini	itions	.10
4	Abbre	eviations	.11
5		riew	
	5.1	Phyiscal Architecture	
		5.1.1 Single Key Detection	13
		5.1.2 Double Key Detection	
	5.2	Hardware Key Codes	15
		5.2.1 Single Key	15
		5.2.2 Double Key	15
6	Regist	ter Definition	.16
	6.1	List of Registers	16
	6.2	Register Tables	16
	6.3	Register Table Definitions	26

This document contains information that is proprietary to Media Tek Inc. Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited

Classification:Internal

Lists of Tables

MEDIATEK

Table 1-1. Reference Information beyond Scope	7
Table 1-2. Chapter Overview	, 7
Table 1-3. Conventions	8
Table 3-1. Single Key and Double Key Comparison	10
Table 4-1. Abbreviations	11
Table 5-1. Hardware Key Codes: 3*3 Single Key	15
Table 5-2. Hardware Key Codes: 2*2 Doule Key	15
Table 6-1. List of Registers	16
Table 10-2. Keypad Status Register: KP_STA	16
Table 10-3. Keypad Scanning Output Register: KP_MEM1	17
Table 10-4. Keypad Scanning Output Register: KP_MEM2	18
Table 10-5. Keypad Scanning Output Register: KP_MEM3	19
Table 10-6. Keypad Scanning Output Register: KP_MEM4	20
Table 10-7. Keypad Scanning Output Register: KP_MEM5	21
Table 10-8. De-bounce Period Setting: KP_DEBOUNCE	22
Table 10-9. Keypad Scan Timing Adjustment Register: KP_SCAN_TIMING	23
Table 10-10. Keypad Selection Register: KP_SEL	24
Table 10-11. Keypad Enable Register: KP_EN	25

Lists of Figures

MEDIATEK

Figure 5-1. 8*8 single key matrix		12
Figure 5-2. 3*3 double key matrix	A V. A 9	13
Figure 5-3. One key pressed with de-bounce mechanism denoted		14
Figure 5-4. (a) Two keys pressed case 1: (b) Two keys pressed case 2		1/

This document contains information that is proprietary to MediaTek Inc

of this information in whole or in part is strictly prohibited

1 Introduction

@ [Random filler text. Not intended for actual reading.] Must keep the chapter even it have empty content.

1.1 Purpose

This document provides the high/low level design description for the keypad and associated modules. This manual also elaborates the mechanism required to use the keypad.

1.2 Scope

Table 1-1 presents the reference information of the modules which are used but beyond the scope.

Table 1-1. Reference Information beyond Scope

Modules	Reference information	
Keypad driver	The Keypad driver.	

1.3 Who Should Read This Document

This document is primarily intended for:

- Engineers with technical knowledge of the keypad
- Customers who integrate the keypad with user-defined applications

1.4 How to Use This Manual

This segment explains how information is distributed in this document, and presents some cues and examples to simplify finding and understanding information in this document. Table 1-2 presents an overview of the chapters and appendices in this document.

Table 1-2. Chapter Overview

#	Chapter	Contents	
1	Introduction	Describes the scope and layout of this document.	
2	References	References of this document	
3	Definitions	The definitions of terms in this document	
4	Abbreviations	The abbreviations of terms in this document	
5	Overview	Gives a brief description of the modules of the system	
6	Register Definition	Definition of keypad registers.	

1.4.1 **Terms and Conventions**

This document uses special terms and typographical conventions to help you easily identify various information types in this document. These cues are designed to simply finding and understanding the information this document contains.

Table 1-3. Conventions

Convention	Usage	Example		
N/A	N/A	N/A		
			/: . Y	

This document contains information that is proprietary to Media Tek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- [1] MTK Company Profile, http://brandclips.mediatek.inc/uploads/Company-profile-1H-2016 0418-Lite-final.pptx
- [2] Keypad Driver document, http://dms.mediatek.inc/

© 2016 - 2019 MediaTek Inc

3 **Definitions**

MEDIATEK

For the purposes of the present document, the following terms and definitions apply:

Single Key: Each (row, column) entry can detect one key in the key matrix.

Double Key: Each(row, column) is a group that can detect two keys in the key matrix, that redcues pin couts, but introduces more limitations.

Table 3-1. Single Key and Double Key Comparison

	Single Key	Double Key
Features	Able to detect 1 or 2 key-pressed simultaneously with any combination.	Minimize the pin counts for low cost phones
Key Scan	Row Sacn	Row Scan + Column Scan
Limiation	Simultaneously pressing more than 2 keys may not function correctly, if they are located on the same row/column.	Simultaneously pressing more than 2 keys may not function correctly, if they are located on the same row/column. Cannot detect 2 keys pressed simultaneously when the 2 keys are in the same group

Smartphones generally have few necessary keys: power key, volume up, and volume down. Single key is adopted in most schematic design.

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited

4 Abbreviations

Please note the abbreviations and their explanations provided in Table 4-1. They are used in many fundamental definitions and explanations in this document and are specific to the information that this document contains.

Table 4-1. Abbreviations

Abbreviations	Explanation
MTK	MediaTek, Asia's largest fabless IC design company.
ASIC	Application-specific integrated circuit
KP	Keypad
COL	Column of Keypad Matrix
ROW	Row of Keypad Matrix
EN	Enable
SEL	Select

F [Random filler text. Not intended for actual reading.] Must keep the chapter even it have empty content.

2016 - 2019 MediaTek Inc

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited

5 Overview

5.1 Phyiscal Architecture

The keypad supports two types of keypads: 3*3 single keys and 2*2 configurable double keys.

The keypad can be divided into two parts:

- 1. The keypad interface. (see Figure 5-1, and Figure 5-2)
- 2. The key detection block provides key pressed, key released and de-bounce mechanisms.

Note: The keypad was cost downed from legacy 8*8 single keys and 3*3 double key design. The interace of MT6763 only supports 3*3 single or 2*2 double, but internal ASIC still detect keys in the manner of 8*8 single, and 3*3 double. The registers and key codes still follows the legacy naming.

Figure 5-1. 8*8 single key matrix

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited

This document contains information that is proprietary to MediaTek Inc

Figure 5-2. 3*3 double key matrix

Each time the key is pressed or released, i.e. something different in the key matrix, the key detection block senses the change and recognizes if a key has been pressed or released. Whenever the key status changes and is stable, a KEYPAD IRQ will be issued. The MCU can then read the key(s) pressed directly in the KP_MEM1, KP_MEM2, KP_MEM3, KP_MEM4 and KP_MEM5 registers. To ensure the key pressed information is not missed, the status register in keypad will not be read-cleared by the APB read command. The status register can only be changed by the key-pressed detection FSM.

5.1.1 Single Key Detection

MEDIATEK

This keypad detects one or two keys pressed simultaneously with any combination. Figure 5-3 shows the one key pressed condition. Figure 5-4 illustrate the cases of two keys pressed. Since the key pressed detection depends on the HIGH or LOW level of the external keypad interface, if the keys are pressed at the same time, and there exists a key that is on the same column and the same row with other keys, the pressed key cannot be correctly decoded. For example, if there are three key pressed: key1 = (x1, y1), key2 = (x2, y2), and key3 = (x1, y2), both key3 and key4 = (x2, y1) will be detected, and therefore they cannot be distinguished correctly. Hence, the keypad detects only one or two keys pressed simultaneously in any combination. More than two keys pressed simultaneously in a specific pattern will retrieve the wrong information.

Classification:Internal

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited

Figure 5-3. One key pressed with de-bounce mechanism denoted

Figure 5-4. (a) Two keys pressed, case 1; (b) Two keys pressed, case 2

5.1.2 **Double Key Detection**

MEDIATEK

The 2*2 keypad supports a 2*2*2 = 8 keys matrix. The 8 keys are divided into 4 sub groups, and each group consists of 2 keys and a 20 ohm resistor. Besides the limitation of the single keypad, 2*2 keypad has another limitation, which is it cannot detect two keys pressed simultaneously when the two keys are in one group. For example in Figure 5-2, the double keypad cannot detect key 0 and key 1 pressed simultaneously or key 13 and key 14 pressed simultaneously.

This document contains information that is proprietary to Media Tek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited

5.2 Hardware Key Codes

5.2.1 Single Key

Table 5-1. Hardware Key Codes: 3*3 Single Key

HW Key Code	Col0	Col1	Col2
ROW0	0	1	2
ROW1	9	10	11
ROW2	18	19	20

5.2.2 Double Key

Table 5-2. Hardware Key Codes: 2*2 Doule Key

HW Key Code	Col0	Col1
ROW0	0/1	2/3
ROW1	13/14	15/16

© 2016 - 2019 MediaTek Inc.

6 **Register Definition**

6.1 **List of Registers**

The registers are listed in Table 6-1.

Table 6-1. List of Registers

Address	Name	Width	Register Function	
10010000	KP_STA	16	Keypad Status	
10010004	KP_MEM1	16	Keypad Scanning Output Register	
10010008	KP_MEM2	16	Keypad Scanning Output Register	
1001000c	KP_MEM3	16	Keypad Scanning Output Register	
10010010	KP_MEM4	16	Keypad Scanning Output Register	
10010014	KP_MEM5	16	Keypad Scanning Output Register	
10010018	KP_DEBOUNCE	16	De-bounce Period Setting	
1001001C	KP_SCAN_TIMING	16	Keypad Scan Timing Adjustment Register	
10010020	KP_SEL	16	Keypad Selection Register	
10010024	KP_EN	16	Keypad Enable Register	

6.2 **Register Tables**

Table 6-2. Keypad Status Register: KP_STA

(Address 1001000	•	(Short KP_ST/	Name) A		(Full Na Keypad				Y					(Reset \ 000000	-	
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					1											
Туре						1										
Reset						7										
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																STA
Туре					Y											RO
Reset			<		,											0

Bit Field	Name		Description
		J.	Indicates keypad status This register will not be cleared by the read operation.
0	STA		0: No key pressed
			1: Key pressed

This document contains information that is proprietary to MediaTek Inc. Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited

Table 6-3. Keypad Scanning Output Register: KP_MEM1

(Addres	•	(Short Name) KP_MEM1			(Full Na Keypad	ime) Scannin	(Reset Value) 0000FFFF									
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	KEY15	KEY14	KEY13	KEY12	KEY11	KEY10	KEY9	KEY8	KEY7	KEY6	KEY5	KEY4	KEY3	KEY2	KEY1	KEY0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit Field	Name	Description
15	KEY15	0: Key pressed 1: Key released
14	KEY14	0: Key pressed 1: Key released
13	KEY13	0: Key pressed 1: Key released
12	KEY12	0: Key pressed 1: Key released
11	KEY11	0: Key pressed 1: Key released
10	KEY10	0: Key pressed 1: Key released
9	KEY9	0: Key presséd 1: Key released
8	KEY8	0: Key pressed 1: Key released
7	KEY7	0: Key pressed 1: Key released
6	KEY6	0: Key pressed 1: Key released
5	KEY5	0: Key pressed 1: Key released
4	KEY4	0: Key pressed 1: Key released
3	KEY3	0: Key pressed 1: Key released
2	KEY2	0: Key pressed 1: Key released
1	KEY1	0: Key pressed 1: Key released
0	KEYO	0: Key pressed 1: Key released

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Table 6-4. Keypad Scanning Output Register: KP_MEM2

(Addres 1001000	•	(Short I KP_ME			(Full Na Keypad	,	ıg Outpu	t Registe	er					(Reset '0000FF		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	KEY31	KEY30	KEY29	KEY28	KEY27	KEY26	KEY25	KEY24	KEY23	KEY22	KEY21	KEY20	KEY19	KEY18	KEY17	KEY1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Name	Description
KEY31	0: Key pressed 1: Key released
KEY30	0: Key pressed 1: Key released
KEY29	0: Key pressed 1: Key released
KEY28	0: Key pressed 1: Key released
KEY27	0: Key pressed 1: Key released
KEY26	0: Key pressed 1: Key released
KEY25	0: Key pressed 1: Key released
KEY24	0: Key pressed 1: Key released
KEY23	0: Key pressed 1: Key released
KEY22	0: Key pressed 1: Key released
KEY21	0: Key pressed 1: Key released
KEY20	0: Key pressed 1: Key released
KEY19	0: Key pressed 1: Key released
KEY18	0: Key pressed 1: Key released
KEY17	0: Key pressed 1: Key released
KEY16	0: Key pressed 1: Key released
	KEY31 KEY30 KEY29 KEY28 KEY27 KEY26 KEY25 KEY24 KEY23 KEY21 KEY21 KEY20 KEY19 KEY18 KEY17

This document contains information that is proprietary to MediaTek Inc. Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited

Table 6-5. Keypad Scanning Output Register: KP_MEM3

(Addres	,	(Short I KP_ME			(Full Na Keypad	-	g Outpu	t Registe	er					(Reset 0000FF		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	KEY47	KEY46	KEY45	KEY44	KEY43	KEY42	KEY41	KEY40	KEY39	KEY38	KEY37	KEY36	KEY35	KEY34	KEY33	KEY32
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit Field	Name	Description
15	KEY47	0: Key pressed 1: Key released
14	KEY46	0: Key pressed 1: Key released
13	KEY45	0: Key pressed 1: Key released
12	KEY44	0: Key pressed 1: Key released
11	KEY43	0: Key pressed 1: Key released
10	KEY42	0: Key pressed 1: Key released
9	KEY41	0: Key pressed 1: Key released
8	KEY40	0: Key pressed 1: Key released
7	KEY39	0: Key pressed 1: Key released
6	KEY38	0: Key pressed 1: Key released
5	KEY37	0: Key pressed 1: Key released
4	KEY36	0: Key pressed 1: Key released
3	KEY35	0: Key pressed 1: Key released
2	KEY34	0: Key pressed 1: Key released
1	KEY33	0: Key pressed 1: Key released
0	KEY32	0: Key pressed 1: Key released

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Table 6-6. Keypad Scanning Output Register: KP_MEM4

(Addres	•	(Short N KP_MEI			(Full Na Keypad	•	g Outpu	t Registe	r					(Reset \ 0000FF		>
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset												1				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	KEY63	KEY62	KEY61	KEY60	KEY59	KEY58	KEY57	KEY56	KEY55	KEY54	KEY53	KEY52	KEY51	KEY50	KEY49	KEY48
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit Field	Name	Description
15	KEY63	0: Key pressed 1: Key released
14	KEY62	0: Key pressed 1: Key released
13	KEY61	0: Key pressed 1: Key released
12	KEY60	0: Key pressed 1: Key released
11	KEY59	0: Key pressed 1: Key released
10	KEY58	0: Key pressed 1: Key released
9	KEY57	0: Key pressed 1: Key released
8	KEY56	0: Key pressed 1: Key released
7	KEY55	0: Key pressed 1: Key released
6	KEY54	0: Key pressed 1: Key released
5	KEY53	0: Key pressed 1: Key released
4	KEY52	0: Key pressed 1: Key released
3	KEY51	0: Key pressed 1: Key released
2	KEY50	0: Key pressed 1: Key released
1	KEY49	0: Key pressed 1: Key released
0	KEY48	0: Key pressed 1: Key released

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited This document contains information that is proprietary to Media Tek Inc.

Table 6-7. Keypad Scanning Output Register: KP_MEM5

(Addres	,	(Short I KP_ME	•		(Full Na Keypad	,	g Outpu	it Registe	er					(Reset 0000FF		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset												7				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	DUMN	/Y1[1:0]	KEY77	KEY76	KEY75	KEY74	KEY73	KEY72	KEY71	KEY70	KEY69	KEY68	KEY67	KEY66	KEY65	KEY64
Туре	RO		RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit Field	Name	Description
15:14	DUMMY1[1:0]	
13	KEY77	0: Key pressed 1: Key released
12	KEY76	0: Key pressed 1: Key released
11	KEY75	0: Key pressed 1: Key released
10	KEY74	0: Key pressed 1: Key released
9	KEY73	0: Key pressed 1: Key released
8	KEY72	0: Key pressed 1: Key released
7	KEY71	0: Key pressed 1: Key released
6	KEY70	0: Key pressed 1: Key released
5	KEY69	0: Key pressed 1: Key released
4	KEY68	0: Key pressed 1: Key released
3	KEY67	0: Key pressed 1: Key released
2	KEY66	0: Key pressed 1: Key released
1	KEY65	0: Key pressed 1: Key released
0	KEY64	0: Key pressed 1: Key released

Table 6-8. De-bounce Period Setting: KP_DEBOUNCE

(Address 1001001	•	(Short N KP_DEB	Name) SOUNCE		(Full Na De-bou	me) nce Peri	od Settin	g						(Reset) 000004		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре															7	
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			DEBOU	BOUNCE[13:0]												
Туре			R/W	/W												
Reset			0	0	0	1	0	0	0	0	0	0	0	0	0	0

Bit Field	Name	Description
13:0	DEROUNCELIZOU	De-bounce time = KP_DEBOUNCE/32 ms Reset Default is 0x400, 1024/32 = 32ms.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited This document contains information that is proprietary to MediaTek Inc.

Table 6-9. Keypad Scan Timing Adjustment Register: KP_SCAN_TIMING

(Address 1001001	•	(Short N KP_SCA	•	NG	(Full Na Keypad	•	ning Adj	ustment	Register	•				(Reset \ 000000	_ /	
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name												X		1		
Туре																
Reset												7				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	COL_HI	GH_PUL	SE[3:0]		ROW_H	IGH_PU	LSE[3:0]		COL_SCAN_DIV[3:0] ROW_S					SCAN_DIV[3:0]		
Туре	R/W				R/W				R/W							
Reset	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1

Bit Field	Name	Description
15:12	COL_HIGH_PULSE [3:0]	Sets up the COL SCAN high pulse, i.e. cycles of the scan high pulse Default 0 means the high scan pulse needs 1 cycle.
11:8	ROW_HIGH_PULSE [3:0]	Sets up the ROW SCAN high pulse, i.e. cycles of the scan high pulse Default 0 means the high scan pulse needs 1 cycle.
7:4	COL_SCAN_DIV[3:0]	Sets up the COL SCAN cycle which includes COL_INTERVAL_DIV and the high pulse period Default 1 means there are 2 cycles for each scan, including 1 cycle high pulse and 1 cycle interval.
3:0	ROW_SCAN_DIV[3:0]	Sets up the ROW SCAN cycle which includes ROW_INTERVAL_DIV and the high pulse period Default 1 means there are 2 cycles for each scan, including 1 cycle high pulse and 1 cycle interval.

© 2016 - 2019 MediaTek Inc.

MEDIATEK

Table 6-10. Keypad Selection Register: KP_SEL

(Address 1001002	-	(Short KP_SEL			(Full Na Keypad	ime) Selectio	n Regist	er						(Reset \ 00001C)
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name														1		
Туре																
Reset												7				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	KP1_CC	DL_SEL[5	:0]				KP1_RO	W_SEL[5:0]				KP_SEL			
Туре	R/W						R/W									D/C
Reset	0	0	0	1	1	1	0	0	0	1	1	1				0

Bit Field	Name	Description	
15:0	KP1_COL_SEL[5:0]	Selects which cols are used when double keypad is used MT6763 supports maximum 2*2 double key. Only row1 and row0 can be used. 0: Disable corresponding column 1: Enable corresponding column	
9:4	KP1_ROW_SEL[5:0]	Selects which rows are used when double keypad is used MT6763 supports maximum 2*2 double key. Only row1 and row0 can be used. 0: Disable corresponding row 1: Enable corresponding row	
0	KP_SEL	Selects to use single keypad or double keypad 0: Use single keypad 1: Use double keypad	

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited

Table 6-11. Keypad Enable Register: KP_EN

(Addres	•	(Short KP_EN	Name)		(Full N Keypa	lame) d Enable	e Registo	er						(Reset 000000		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name												7	75/		A'	
Туре													9	1		
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																KP_EN
Туре														7		RW
Reset												-				1

Bit Field	Name	Description
0	KP FN	0: Disable keypad (Both single and double keypad will not work.) 1: Enable keypad (Either single or double keypad will work.)

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited

6.3 Register Table Definitions

The following abbreviations are defined for register types:

- R/W: Read Write. The field can be accessed both in write and read mode.
- RO: Read Only. The field can be accessed in read mode only. A write with one or zero has no effect.
- WO: Write Only. The field can be accessed in write mode only. A read has no effect and return zero.
- RC: Read Clear. The field can be accessed in read mode only. A read clears the bit if set. A write with one or zero has no effect.
- **RS**: The field can be accessed in read mode only. A read sets the bit if not set. A write with one or zero has no effect.
- WS: Write Set.
- WC: Write Clear.
- I/O: Input and Output

It should be noted that the abbreviations shall be clearly defined in the documents for clarification.

The following abbreviations are defined for reference register types:

- **R/W1S**: Read and write 1 set. The field can be accessed in both read and write mode. Setting this bit provokes certain functions in the circuit. A write with zero has no effect.
- **R/W0C**: Read and write 0 clear. The field can be accessed in both read and write mode. A write with zero clears the bit if set. A write with one has no effect.
- **R/W1C**: Read and write 1 clear. The field can be accessed in both read and write mode. A write with one clears the bit if set. A write with zero has no effect.
- R/WaC: Read and write with auto clear. The field can be accessed in both read and write mode. Setting this field provokes certain functions in the circuit. It is automatically cleared when the function is completed.