

11413696

Data Mining

Assignment Four

10 points

estion 1 (6 points). Consider the training examples shown in the Table below for a binary classification

Instance	A1	A2	A3	Class
1	T	T	1.0	Yes
2	T	T	6.0	Yes
3	T	F	4.0	No
4	F	T	7.0	Yes
5	F	T	8.0	Yes
6	F	T	5.0	No
7	F	F	3.0	No
8	F	F	7.0	No
9	F	T	8.0	No

(a) What is the entropy of this collection of training examples with respect to the class attribute? (b) What are the information gains of A1 and A2 relative to these training examples? (c) For A3, which is a continuous attribute, compute the information gain for every possible split. (d) What is the best split (among A1, A2, and A3) according to the information gain? (e) What is the best split (between A1 and A2) according to the misclassification error rate? (f) What is the best split (between A1 and A2) according to the misclassification error rate?

Question 2 (4 points). Consider splitting a parent node P into two child nodes, C1 and C2, using some attribute test condition. The composition of labeled training instances at every node is summarized in the Table below.

	P	C1	C2
Class 0	7	3	4
Class 1	3	0	3

(a) Calculate the Gini Index and misclassification error rate of the parent node P.

(b) Calculate the weighted Gini Index of the child nodes. Would you consider this attribute test condition if Gini is used as the impurity measure?

(c) Calculate the weighted misclassification rate of the child nodes. Would you consider this attribute test condition if misclassification rate is used as the impurity measure?

Good luck!

Entropy at a given node t $Entropy = -\sum_{i=0}^{c-1} p_i(t)log_2p_i(t)$

ncy of class £ at node £, and c is the total number

3 Info

1

$$Galn_{sphile} = Entropy(p) - \sum_{i=1}^k \frac{n_i}{\pi} Entropy(i)$$

Parent Node, p is split into k partitions (children) n_i is number of records in child node i

Choose the split that achieves most reduction (maximizes GAIN)

Measure of Impurity: Classification Error

11

Classification error at a node t

$$Error(t) = 1 - \max_{i}[p_i(t)]$$

- Maximum of 1-1/c when records are equally distributed among all classes, implying the least interesting situation Minimum of 0 when all records belong to one class, implying the most interesting situation

Misclassification Error vs Gini Index

N1 N2 C1 3 4 C2 1 2 Gini=0.416

9

Gini Index =
$$1 - \sum_{i=0}^{c-1} p_i(t)^2$$

For 2-class problem (p, 1 – p): • GINI = 1 – p² – (1 – p)² = 2p (1-p)

Binary Attributes: Computing GINI Index

- Splits into two partitions (child nodes)

2

C1	0	P(C1) = 66 = 0 P(C2) = 64 = 1
C2	6	Entropy = - 0 log 0 - 1 log 1 = -0 - 0 = 0
CI		P(C1) = 1/6 P(C2) = 5/6
C2	5	Entropy = - (116) log ₂ (116) - (516) log ₂ (116) = 0.65
CI	2	P(C1) = 2/5 P(C2) = 4/5
CZ	4	Entropy = - (210) log ₂ (210) - (410) log ₂ (410) = 0.92

Problem with large number of partitions

Computing Error of a Single Node

 $Error(t) = 1 - \max[p_i(t)]$

C1 2 P(C1) = 2/6 P(C2) = 4/6 C2 4 Error = 1 - max (2/6, 4/6) = 1 - 4/6 = 1/3

Gini Index for a given node t

Ginl Index =
$$1-\sum_{t=0}^{c-1}p_t(t)^2$$

Where $p_t(t)$ is the frequency of class t at node t , and c is the total number of classes

- Maximum of 1-1/c when records are equally distributed among all classes, implying the least beneficial situation for classification
- Minimum of 0 when all records belong to one class, implying the most beneficial situation for classification

Computing Gini Index of a Single Node

- Effect of Weighing partitions:

						Paren	ıt
	_ <	B?			C	7	
γ	s /		_	No	C	2 5	
No.			_		Gli	ni = 0.486	6
Gini(N1)	le N1		Nod	eN2	-		_
Gini(N1) = 1 - (5/6) ² - (1/6) ²	M NI	N1	Nod N2			Dini of N1 h	
Gini(N1) = 1 - (5/6) ² - (1/6) ²	C1	N1 5		w		Sini of N1 N	
Gini(N1)			N2	w	eighted (78 +	

$$\begin{split} & \underbrace{Part Az}_{Entropy(t)} = -\mathcal{E}\left[P(t) * log2(P(t))\right] = -\left[\binom{4}{3} * log2\left(\frac{4}{3}\right) + \binom{5}{3} * log2\left(\frac{5}{3}\right)\right] = 0.99107605983 \\ & \underbrace{Part Bz}_{Tex} : closs lobels \\ & \underbrace{Entropy(A1)}_{Entropy(A2)} = -\mathcal{E}\left[P(t) * log2(P(t))\right] = -\left[\binom{2}{3} * log2\left(\frac{5}{3}\right) + \binom{2}{3} * log2\left(\frac{5}{3}\right)\right] = 1 \\ & \underbrace{Entropy(A2)}_{Entropy(A2)} = -\mathcal{E}\left[P(t) * log2(P(t))\right] = -\left[\binom{4}{3} * log2\left(\frac{5}{3}\right) + 0\right] = 0 \end{split}$$

"No" class labels

 $\frac{No \cdot cost \cdot siness}{Entropy(A1)} = -\Sigma \left[P(t) * log2(P(t)) \right] = -\left[\left(\frac{1}{5} \right) * log2\left(\frac{1}{5} \right) + \left(\frac{4}{5} \right) * log2\left(\frac{4}{5} \right) \right] = 0.72192809488 \\ Entropy(A2) = -\Sigma \left[P(t) * log2(P(t)) \right] = -\left[\left(\frac{2}{5} \right) * log2\left(\frac{2}{5} \right) + \left(\frac{3}{5} \right) * log2\left(\frac{3}{5} \right) = 0.97095059445$

 $Gainsplit(A1) = Entropy(T) - \Sigma \left(\frac{T_i}{T}\right) * Entropy(i) = 0.99107605983 - \left[\left(\frac{4}{9}\right) * (1) + \left(\frac{5}{9}\right) * (0.72192809488)\right] = 0.14556045156$ $Gainsplit(A2) = Entropy(T) - \Sigma \left(\frac{T_i}{T}\right) * Entropy(i) = 0.99107605983 - \left[\left(\frac{4}{9}\right) * (0) + \left(\frac{5}{9}\right) * (0.97095059445)\right] = 0.45165906291$

Part C:T	Part CType equation here.								
Sorted Values	1	3	4	5	6	7	8		
Split Positions	0.5	2	3.5	4.5	5.5	6.5	7.5	8.5	
	<= >	<= >	<= >	<= >	<= >	<= >	<= >	<= >	
Yes	0 4	1 3	1 3	1 3	1 3	2 2	3 1	4 0	
No	0 5	0 5	1 4	2 3	3 2	3 2	4 1	5 0	
Gain	$\left(\frac{s}{q}\right) * log 2 \left(\frac{s}{q}\right) = 0.99107605983$ $Gainsplit(t) = 0$	$\begin{split} &: Entropy(t) = -\Sigma \left[P(t) * log2 \left(P(t) \right) \right] = - \left[\left[\frac{1}{4} \right) * log2 \left(\frac{1}{4} \right) + log2 \left(\frac{1}{6} \right)$		$log2(P(t)) = -\left[\left(\frac{1}{5} \right) * log2 \left(\frac{1}{5} \right) + \left[log2 \left(\frac{1}{5} \right) * log2 \left(\frac{1}{5} \right) \right] = 0.91829583405$ >: Entropy(t) = $-\Sigma \left[P(t) * log2 \left(\frac{1}{6} \right) * log2 \left(\frac{2}{6} \right) + \left[\frac{2}{6} \right) * log2 \left(\frac{2}{6} \right) \right] = 1$ Weighted Average: $\left[\left(\frac{2}{9} \right) * log2 \left(\frac{2}{6} \right) * \right]$	$\begin{split} \log & 2 \big(P(t) \big) \big = - \left[\frac{1}{4} \right]^4 \log 2 \left(\frac{1}{4} \right) \\ & \left(\frac{2}{3} \right)^4 \log 2 \left(\frac{2}{3} \right) \big = 0.81127812445 \\ >: & Entropy(t) = - \mathcal{E} \left[P(t) + \log 2 \left(\frac{2}{5} \right) = 0.97095059445 \end{split}$		$\begin{aligned} log 2(P(t))] &= -\left[\binom{3}{7} * log 2\left(\frac{3}{7}\right) + log 2\left(\frac{3}{7}\right) + log 2\left(\frac{4}{7}\right)\right] = 0.98522813603 \\ &>: Entropy(t) = -\Sigma \left[P(t) * log 2(P(t))\right] = -\left[\left(\frac{1}{2}\right) * log 2\left(\frac{1}{2}\right) + log 2\left(\frac{1}{2}$	$\begin{split} &: Entropy(t) = -\Sigma \left[P(t) * log2 \left(\frac{c}{2} \right) + log2 \left(\frac{c}{2} \right) = 0.99107605983 \\ &>: Entropy(t) \\ &= -\Sigma \left[P(t) * log2 \left(P(t) \right) \right] = 0 \end{split} \\ &Weighted Average: \begin{bmatrix} \frac{c}{2} \\ \frac{c}{2} \end{bmatrix} * (0.99107605983) + l0 = 0.99107605983 \\ &Gainsplit(t) = 0.99107605983 - (0.99107605983) = 0 \end{split}$	

Part D:

According to the information gain. A2 is the best solit between A1. A2, and A3. We prefer to have an information gain value t hat is close to 1. It is hard to tell with A3 because of the large number of partitions. Sure, the nodes are pure but they are small measures.

Part E:

According to the misclassification error rate, Misclassification Error(t) = 1 — max(p_i(t)), A2 is the best split between A1 and A2 since it has a lower classification error when compared to its counterpart. The lower the classification error, the more accurate of a sample set.

Misclassification Error(A1) = $1 - \max(p_i(t)) = 1 - \max\left[\frac{3}{9}, \binom{6}{9}\right] = 1 - \binom{6}{9} = 0.3333$ Misclassification Error(A2) = $1 - \max(p_i(t)) = 1 - \max\left[\binom{3}{9}, \binom{6}{9}\right] = 1 - \binom{6}{9} = 0.2222$

Part E According to the gini index, $Gini(t) = 1 - \sum p_i(t)^2$, $\Delta 2$ is the best split between A1 and A2 since it has a lower gini index when compared to its counterpart. The lower the gini index, the closer a node is to purity.

$$Ginl(A1) = 1 - \sum p_i(t)^2 = 1 - \left[\left(\frac{3}{9} \right)^2 + \left(\frac{6}{9} \right)^2 \right] = 0.4444444444$$

$$Ginl(A2) = 1 - \sum p_i(t)^2 = 1 - \left[\left(\frac{2}{9} \right)^2 + \left(\frac{7}{9} \right)^2 \right] = 0.34567901234$$

Question 2

Part A:

$$\frac{1}{Gini(t)} = 1 - \sum p_i(t)^2, \ Gini(P) = 1 - \sum p_i(t)^2 = 1 - \left[\left(\frac{7}{10}\right)^2 + \left(\frac{3}{10}\right)^2 \right] = 0.42$$

 $Misclassification\ Error\ Rate(t) = 1 - \max\left(p_i(t)\right),\ Misclassification\ Error\ Rate(P) = 1 - \max\left(p_i(t)\right) = 1 - \max\left[\frac{7}{10}\right], \\ \left(\frac{3}{10}\right) = 1 - \left(\frac{7}{10}\right) = 0.30$

$$F(ini(t)) = 1 - \sum p_i(t)^2$$
, $F(ini(C1)) = 1 - \sum p_i(t)^2 = 1 - \left[\left(\frac{3}{3} \right)^2 + \left(\frac{0}{3} \right)^2 \right] = 0$

$$\begin{aligned} & \text{Farts:} \\ & \textit{Gini}(t) = 1 - \sum p_i(t)^2, \; \textit{Gini}(C1) = 1 - \sum p_i(t)^2 = 1 - \left[\frac{n}{3}\right]^2 + \left(\frac{9}{3}\right]^2 = 0 \\ & \textit{Gini}(t) = 1 - \sum p_i(t)^2, \; \textit{Gini}(C2) = 1 - \sum p_i(t)^2 = 1 - \left[\frac{n}{2}\right]^2 + \left(\frac{9}{3}\right]^2 = 0.48979591836 \end{aligned}$$

 $\begin{array}{ll} & & & & \\ & & & \\ & & & \\ &$

Part C. Misclassification Error Rate(t) = $1 - \max(p_t(t))$, Misclassification Error Rate(C1) = $1 - \max(p_t(t)) = 1 - \max\left[\binom{n}{2}, \binom{n}{2}\right] = 1 - \binom{n}{2} = 0$ Misclassification Error Rate(t) = $1 - \max(p_t(t))$, Misclassification Error Rate(C2) = $1 - \max(p_t(t)) = 1 - \max\left[\binom{n}{2}, \binom{n}{2}\right] = 1 - \binom{n}{2} = 0.42857142857$

Weighted Misclassification Error Rate: $\binom{3}{(10)} * (0) + \binom{3}{(10)} * (0) + \binom{3}{(10)}$