CS 174A – Fall 2019 Introduction to Computer Graphics

Dr. Asish Law

TAs: Jonathan Mitchell, Yunqi Guo

Instructor & TAs

Name	Asish Law	Jonathan Mitchell	Yunqi Guo
Role	Instructor	TA	TA
Email	alaw@cs.ucla.edu	jcmitchell@ucla.edu	guoyunqi@gmail.com
Phone	626.379.3377	None	None
Class Location	Kinsey Pavilion 1220B	Royce 362	Dodd 161
Class Hours	TR 4:00 - 5:50 PM	F 10:00 - 11:50 AM	F Noon - 1:50 PM
Office Location	BH 3531A	BH 9432	E-VI 396
Office Hours	TR 3:30 - 4:00 PM	R 10 AM - Noon	T 9 - 11 AM
	TR 6:00 - 6:30 PM		

Contact Protocol

- We expect you to use the course forum (Piazza)
- Good for questions and answers
 - Dissemination of information, assignments, etc.
- Try to keep email for class related personal matters
 - If you ask about assignments, etc. we will likely redirect you to forum

Sign up at the class site on Piazza:

http://piazza.com/ucla/fall2019/cs174a

Let us know your Github account name:

https://forms.gle/6H2Gef41QJ7ykwyM9

Purpose of Class

- Learn basic computer graphics and interaction
- Opportunity to use all of your CS skills
- · Help each other, learn how to work in a team
- HAVE FUN!
- More detail in syllabus

Textbook (Optional)

Interactive Computer Graphics - A Top-Down Approach with WebGL E-Text only 8th Edition, Angel & Shreiner

ISBN-13: 978-0135258262

Textbook

- Textbooks are expensive
 - Ask on Piazza
- · Only loosely going to follow this book
 - Our methodology will diverge quickly
- Otherwise this class will mostly follow the usual progression
 - Many lecture slides have stood the test of time
 - Some we'll skip to make room for hands-on demos

Course Administration

Five project assignments

- Last one is an open ended group project
- Others are to build skills for that one

Grading breakdown (1000 pts):

- 4 projects (0+50+50+50): 150 pts
- Team project: 600 pts
- Midterm: 100 pts
- Final: 150 pts

Course Administration (contd.)

More Points

- Class participation (50 pts)
- Interaction with classmates on Piazza (50 pts)
- Super impressive final project (50 pts)
- Bonus questions on midterm and final exams (50 pts)

Course Administration (contd.)

- Curving final grades up or down is not ruled out, if needed to move the distribution so that grades are not too uniform or too low
- Besides that, final grades will be awarded as follows:
- D-: 500+, D: 550+, D+: 600+, C-: 650+, C: 700+, C+: 750+,
- B-: 800+, B: 850+, B+: 900+, A-: 950+, A: 1000+, A+: 1100+

Programming Assignments

- JavaScript, HTML/CSS, Git are used in this class
- · If you don't know these, you will by the end
- You'll even see TAs use them on the screen
- Learn to use debuggers (we will not debug for you)

Programming Assignments

- Production software off limits let's make our own
- Libraries only our small helper code is permitted for most assignments
- For team project, outside code won't count towards grade or impressiveness

Team Project (600 points)

- Team sizes 3-4
- Expectations scale with size
- Instructor grading: 200 pts
- · TA grading: 200 pts
- · Team grading: 100 pts
- · Class grading: 100 pts

Team Project

- You get to make something!
- Show it to your mom
- Be proud of it
- · Put it on your resume
 - But it was a team effort?
 - So far that's been the effective part!
- Link to examples from earlier quarters

Individual Project Examples

- Done by one person
- Done using only:
 - Plain JavaScript
 - Low level math
 - Pixel operations
 - Some 2D image files
 - An understanding of 3D techniques

TA Sections

- Primarily to discuss JavaScript, Github, project, etc.
- Occasionally for more detail (linear algebra)
- Deeper dives into specific topics from class
- · Q&A, homework help

Mathematics of Computer Graphics

- Linear (vector/matrix) algebra
- Coordinate systems
- Geometry
 - Points, lines, planes
- Affine transformations
- Projection transformations
- More geometry
 - Curves, surfaces

Typical Comments From Prior 174A Course Offerings

- Lots of math!
- A lot of material
- Fast pace
- A lot of programming
- Challenging final exam

Remember:

- Come to class
- Manage your course load
- Do individual work
- Start assignments early
- Get help early (on Piazza and in TA sessions)

Remember

- If you:
 - Do the Assignments
 - Take the Exams
 - Complete the Term Project
 - ...you should be able to do just fine

- Extra stuff is for those of you who
 - Want to challenge yourself (or show off)
 - Have some extra fun
 - Something cool to show during interviews...

Detailed Class Schedule

Week#	Date	Topics	Projects (due on Sundays)
Week 1	09/26/19	Class / project overview, state of graphics field, graphics history, graphics program anatomy	
Week 2	10/01/19	Linear Algebra Review, Vector math	
	10/03/19	Vertex Arrays, Indexing, Polygons, Interpolation	A1: Set up and use Chrome Developer Tools (due 10/6)
Week 3	10/08/19	Flat vs Smooth Shading	· · · · · · · · · · · · · · · · · · ·
	10/10/19	Matrix transformations, Hierarchies, Viewing	
Week 4	10/15/19	Matrix transformation order	
		Projections, View Volumes, Smooth Motion in	
	10/17/19	Scenes	A2: Tilting Boxes (due 10/20)
		Shaders, Interpolation, Lighting	

Computer Graphics

The Art and Science of creating imagery by computer

Applications of CG

Entertainment

- Films
- Computer games
- Virtual reality

Visualization

- Scientific visualization
- Medical visualization
- Flight simulation
- Architecture
- Education, etc.

Motivation/local history

· UCLA has not historically been considere "graphics school"

A little local history.

- . UCLA Architecture and Art
 - Now home of 'Processing' and offshoots
 - Robert Abel (one of the first customers of SC . You are all probably too young to remember 50
 - . But many of you know nVidia and Google, etc.
 - CAD Pioneers . Later started the Media Lab at MIT

 - Early, early developers of VR technology . This is my third round of "VR", lot

Will we be doing any of this? A little motivation... A little motivation.

- · No reason why you couldn't
- · But

UCLA

- Usually, you crawl before your walk before
- So
 - We will start with the basics which you would need to do any of the previous slides
- We will get into several more advanced.

A little local history...

UCLA

- · City-Scape led directly to the founding of the Urban Simulation Team at UCLA
- . In the early days (20+ years ago) we used big, expensive SGI computers.
- . There were more than 40 people who have been part of the Team (lab)
- . The lab, unfortunately, is no more ⊗

A little local history.

- · Anyway, how early?
- · NASA Apollo Lunar Docking Sir
 - . Built by General Electric in the late 60
 - . Rendered 40 polygons per second in a
 - · In color no less!
 - . Later evolved into the Compu-Scene
 - First device to support texture mapping i - Most successful fight simulator over
 - Of course every one of us has one in these days

History

- 2000 B.C.
 - orthographic projection
- 1400s
 - Perspective: Italian Renaissance
- 1600s
 - coordinate systems: Descartes
 - optics: Huygens
 - optics, calculus, physics: Newton

History

- 1897 oscilloscope: Braun
- 1950-1970
 - computers with vector displays
- 1966
 - first true raster display
- 1993
 - 1200x1200, 500k triangles/sec, 36-bit color, stereo, texture mapping... all at 60Hz
- 1995
 - feature-length CG films
- Today...still rapidly evolving

Genesis of Computer Graphics and Interactive Techniques

- A PhD project at MIT in the early 1960s
- Ivan E. Sutherland, 1963
 - "Sketchpad, a man-machine graphical communication system"

Trivia

https://design.osu.edu/carlson/history/timeline.html

When was the term "Computer Graphics" first stated?

William Fetter of Boeing coins the term "computer graphics" for his human factors cockpit drawings 1960

- 1. When was the Graphical User Interface developed?

 GUI developed by Xerox (Alan Kay) 1969
- 2. When was Tron released?

Disney contracts Abel, III, MAGI and DE to create computer graphics for the movie Tron released in 1981

Trivia

- 4. Which is the first **animated** movie to employ CG?

 "The Great Mouse Detective" (1986) was the first animated film to be aided by CG
- 5. When was the game "Doom" released?1993
- 6. Which is the best selling game of all time?

```
http://en.wikipedia.org/wiki/List_of_best-selling_video_games

Tetris (170M copies)

Minecraft (154M copies)

Grand Theft Auto V (100M copies)
```

Trivia

- 7. Which is the newest CG animated movie? *Abominable*
- 8. Which is bigger in terms of gross revenue, the game industry or the (Hollywood) movie industry?

 The game industry
- Which is your favorite animated movie?
 Tangled, Moana, Frozen, Incredibles

The First Computer Game?

The First "Computer" Game – 1958 !!

"Tennis for Two"

Metal Gear Solid 4

Games

Focus on interactivity

Movies

To reality and beyond!

Movies

Toy Story 1 (1995)

Toy Story 4 (2019)

Movies

Special effects

Movies

Digital Compositing

Digital Compositing

Cartoons

Computer-Aided Design

Precision modeling Engineering

Computer-Aided Design

- It's not just about visualization
 - Simulation is also useful

Visualization: Scientific

Visualization: Architectural

http://www.diamondschmitt.com/

Visualization: Info

sex erotica

Smith and Fiore

Graphical User Interfaces

Steven Schkolne

Art

Steven Schkolne

Digital Art

Genetically evolved

Digital Art

By Jason Salavon

Basic Elements

Modeling

Animation

Rendering

Interaction

Basic Elements

Modeling

- How do we model (mathematically represent) objects?
- How do we construct models of specific objects?

Animation

- How do we represent the motions of objects?
- How do we give animators control of this motion?

Rendering

- How do we simulate the real-world behavior of light?
- How do we simulate the formation of images?

Interaction

- How do we enable humans and computers to interact?
- How do we design human-computer interfaces?

Primitives

- 3D points
- 3D lines and curves
- Surfaces (BREPs): polygons, patches
- Volumetric representations
- Image-based representations

Attributes

Color, texture maps

Rendering

Visibility Simulating light propagation

- Reflection
- Asborption
- Scattering
- Emission

Animation

Keyframe animation Motion capture Procedural animation

- Physics-based animation
- Behavioral animation
- Emotion-based animation

Representing objects geometrically on a computer

curves

Altering geometric models

Ying, Kristjansson, Biermann, Zorin

Scanning Shapes

Digital Michaelangelo Project

Plant Modeling

Plant Modeling

Rendering

Key elements

Camera Model

Rendering

Draw visible surfaces onto display Camera (view direction) height -Clipping Scan Image Ax + By + CPlane $Ax+By+C_2$

Reflectance Modeling

Complex Reflectance

Subsurface Scattering

Translucency and varied levels of light penetration can be created using subsurface scattering effects

Texture

Multilevel texture synthesis

Non-Photorealistic Rendering

Aaron Hertzmann

Rendering: Information

Keyframe animation

Pixar: "Luxo Jr." (1986)

A baby lamp finds a ball to play with and it's all fun and games until the ball bursts. Just when the elder Luxo thinks his kid will settle down for a bit, Luxo Jr. finds another ball—ten times larger.

Luxo Jr. has a great dad in the larger lamp. Even though he is a bit unpredictable, the elder Luxo gives him room to grow and explore. And the tiny light has no problem with that.

When John Lasseter was learning how to make models, he chose the nearest, easiest subject: an architect's lamp sitting on his desk. He started moving it around in the animation system like it was alive and it eventually became another short film by Pixar that was nominated for an Academy Award®.

Motion capture

Animating Golem in LOTR

The Animatrix -

"Final Flight of the Osiris"

Cloth Simulation

Physics-based animation

Fluid Simulation

Modeling

- Incompressibility
- Viscocity

Navier-Stokes Equations

Level Sets

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial \mathbf{u}}{\partial t} = v \nabla \cdot (\nabla \mathbf{u}) - (\mathbf{u} \cdot \nabla) \mathbf{u} - \frac{1}{\rho} \nabla p + \mathbf{g}$$

u: fluid velocity field

g: gravity

p: pressure

v: viscosity

 ρ : density

Smoke Simulation

Assumptions

No viscosity

Rendering

- Photon maps
- Multiple scattering

$$\nabla \cdot \mathbf{u} = 0$$

$$\partial \mathbf{u} = (\mathbf{v} \cdot \nabla) \mathbf{v} = 1$$

$$\frac{\partial \mathbf{u}}{\partial t} = (\mathbf{u} \cdot \nabla)\mathbf{u} - \frac{1}{\rho}\nabla p + \mathbf{f}$$

u: smoke velocity field

f: external forces

p: pressure

 ρ : density

Behavioral animation

Reality is *Very* Complex

Reality is *Very* Complex

Reality is *Very* Complex

Modeling Transformations

Assembly

Viewing

Orthographic

Perspective

Clipping

Remove what is not visible

Visibility

Resolve occlusions (efficiently)

Illumination

Compute normals and color at vertices

Shading

Rasterization

Convert to colored pixels

Texture Mapping

Other Issues

Shadows

Participating media

Subsurface scattering

Motion blur

Camera models

Etc.

A Final Result

What is Academic about all this?

- The full collection of techniques and "hacks" known to the industry? No
- The history of the techniques? No
- The skill of getting code working? No

- Well-understood math concepts that separate graphics from other programming? That's better
- Tying into graphics research sometimes

TA Session This Week

Following topics are on TA Session agenda:

- Walkthrough of Piazza and how the class intends to use it
- Walkthrough of Github
- Discuss first project assignment <u>https://classroom.github.com/a/PiJBdIUg</u>
- Introduction to JavaScript and WebGL
- Grading criteria for projects
- Intro to linear algebra and matrices