数学习题集模版

Johnny Tang DEEP Team

更新: 2023年2月11日

Chapter 1

章节标题测试

本章介绍了如何使用该习题集模版.

1.1 小节标题测试

命题 1.1 (1)

$$a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)$$

(2)

$$(a+b)(b+c)(c+a) = a^2b + b^2c + c^2a + ab^2 + bc^2 + ca^2 + 2abc$$

(3)

$$(a+b+c)(ab+bc+ca) = a^2b + b^2c + c^2a + ab^2 + bc^2 + ca^2 + 3abc$$

(4)

$$(a-b)(b-c)(c-a) = -(a^2b + b^2c + c^2a) + (ab^2 + bc^2 + ca^2)$$

(5)

$$(a+b-c)(b+c-a)(c+a-b) = a^2b + b^2c + c^2a + ab^2 + bc^2 + ca^2 - a^3 - b^3 - c^3 - 2abc$$

(6)

$$(a+b+c)(a+b-c)(b+c-a)(c+a-b) = 2a^2b^2 + 2b^2c^2 + 2c^2a^2 - a^4 - b^4 - c^4$$

引理1.1 引理测试.

定理 1.1 设实数 a, b, c, t 满足 $a, b, c \ge 0$,则

$$a^{t}(a-b)(a-c) + b^{t}(b-c)(b-a) + c^{t}(c-a)(c-b) \ge 0$$

当且仅当 a,b,c 中有两个相等、另一个为 0 或 a=b=c 时取等.

证明 不妨设 $a \ge b \ge c$, 注意到 a - c = (a - b) + (b - c), 所以

$$LHS = a^{t}(a-b)^{2} + a^{t}(a-b)(b-c) - b^{t}(b-c)(a-b) + c^{t}(b-c)^{2} + c^{t}(a-b)(b-c)$$
$$= a^{t}(a-b)^{2} + c^{t}(b-c)^{2} + (a^{t}-b^{t}+c^{t})(a-b)(b-c) \ge 0$$

推论 1.1 当 t = 1 时,有

$$a(a-b)(a-c) + b(b-c)(b-a) + c(c-a)(c-b) \ge 0$$

即

$$a^{3} + b^{3} + c^{3} + 3abc \ge a^{2}b + b^{2}c + c^{2}a + ab^{2} + bc^{2} + ca^{2}$$

注 这个不等式意义在于: $\sum ab(a+b)$ 放在较小的一侧, 这是 Cauchy/均值不等式等无法做到的.

问题 1.1 设 2n 个实数 a_1, a_2, \cdots, a_{2n} 满足条件

$$\sum_{i=1}^{2n-1} (a_{i+1} - a_i)^2 = 1$$

求

$$(a_{n+1} + a_{n+2} + \dots + a_{2n}) - (a_1 + a_2 + \dots + a_n)$$

的最大值.

解 解答测试

证明 证明测试

注 注记测试