

Distilling Blackbox to Interpretable models for Efficient **Transfer Learning**

Shantanu Ghosh¹, Ke Yu², Kayhan Batmanghelich¹

¹Dept. Of Electrical and Computer Engineering, Boston University ²Intelligent Systems Program (ISP), University of Pittsburgh

TLDR: Extracting a mixture of interpretable models from a BlackBox to provide concept-based explanations for efficient transfer learning.

Motivation

- Neural Networks fail to generalize due to scanner types, disease subtypes, patient subpopulation.
- Fine-tuning a Blackbox to a new domain can solve this issue.
- This is data and computationally expensive.
- Whole process is not interpretable.
- Radiologists search for patterns of anatomical changes and apply generalizable logical rules for disease diagnosis.

Assumptions \mathcal{X} right upper lobe left lower lobe Consolidation heart size

Carve out interpretable models from Black box

Each g is E-LEN [Barberio et al.], constructing FOL

*SelectiveNet [Geifman et al.] optimization

*Continue till at least 90% samples covered

*The experts are trained sequentially.

Data efficient Transfer Learning

- Apply source black box on the target domain.
- Use concepts from matching patients

- Propagate the concepts and update the concept extractor
- Update the selectors and the experts for 5 epochs on the target domain.

Extract concepts from MIMIC-CXR using Radgraph NLP pipeline

Ke Yu et al., MICCAI, 2022

Report:

Right upper lobe **consolidation** with adjacent. While this may be infectious in nature, a CT scan is recommended for further clarification.

log(Flops) (T)

 10^{-2}

% of training samples

Expert3 Pneumothorax \leftrightarrow left_apical_lung

Not compromising the accuracy in MIMIC-CXR

Transferring the first 3 experts of MIMIC-CXR to Stanford-CXR

2.5

% of training samples