AGE GROUP 7

Problem	Answer	Solution
1	16	$\underbrace{(-1) \times (-1)^3 \dots \times (-1)^{31} \times (-1)^{33}}_{x} = y.$
		$\Rightarrow x = 17, y = -1 \Rightarrow x + y = 16.$
2	1	x-3 + x-4 = -(x-3) + (x-4) = -1.
2	-1	x-3 + x-4 = -(x-3) + (x-4) = -1. 2.12! 2.12.11.10!
3	11	$\frac{2.12!}{10!.4!} = \frac{2.12.11.10!}{10!.24} = 11$
4	3	$2^{11-n} + 3^{11-n} + 4^{11-n} = m^2 \stackrel{n=10}{=} 2 + 3 + 4 = 9 \Longrightarrow m = 3$
	9	$a^2 + b^2 + 2c^2 - ab - bc - ca - 6c + 9 = 0 \Leftrightarrow$
_		$2a^{2} + 2b^{2} + 4c^{2} - 2ab - 2bc - 2ca - 12c + 18 = 0 \Leftrightarrow$
5		$\Leftrightarrow (a-b)^2 + (b-c)^2 + (c-a)^2 + 2(c-3)^2 = 0 \Leftrightarrow a = b = c = 3 \Rightarrow$
		$\Rightarrow a + b + c = 9$
		$(2^{17} - 2^{16}) - 2^{15} - \dots - 2^2 - 2^1 - 2^0 =$
6	1	$2^{16} - 2^{15} - \dots - 2^2 - 2^1 - 2^0 = 2^{15} - 2^{14} - \dots - 2^2 - 2^1 - 2^0 = \dots =$
		= 2 - 1 = 1
	8	Нека за определеност цената на стоката на борсата да е 100 лева.
		Първоначалната цена е била $100 + 20 \%$ от $100 = 120$.
7		След това обаче стоката е намалена и цената й вече е
		120-10~% от $120=108$. Тогава реализираната печалба е 8 лева при цена
		на стоката 100 лева – т.е печалбата е 8 %.
	188	Числата, които се делят и на 5, и на 3 - това са всички числа, които се
8		делят на 15 – броят им е 13.
		Неизтрите числа са $201 - 13 = 188$.
		<u>222 + 222 + ··· + 222</u> + 22 + 2= 2022 9 събираеми
9	10	
		Общо събираемите са 11, а използваните плюсове са 10.
10	6	$\frac{a}{21-a} \Rightarrow a = 1,2,3,4,5,6,7,8,9,10 \Rightarrow a = 1,2,4,5,8,10 \Rightarrow 6$
	8	$h_a: h_b: h_c = \frac{1}{2}: \frac{1}{3}: \frac{1}{4} \Longrightarrow h_a: h_b: h_c = 6: 4: 3 \Longrightarrow h_a = 6k; \ h_b = 4k; \ h_c = 3k$
		6ka + 4kb + 3kc
11		$\Rightarrow \frac{6ka}{2} = \frac{4kb}{2} = \frac{3kc}{2} \Rightarrow 6ka = 4kb = 3kc \Rightarrow 6a = 4b = 3c \Rightarrow a = \frac{3}{6}c,$
		$b = \frac{3}{4}c$
		$\Rightarrow a+b+c = \begin{cases} 18 \\ \frac{3}{6}c + \frac{3}{4}c + c = \frac{9}{4}c \Rightarrow c = 8 \end{cases}$

	I	TT 1/4 P 0 1/2 P 1 1/2 P 1
12	10	Hека $∢$ $MAD = 2x, ∢ MBA = 4x, ∢ MCD = 7x.$
		Тогава $\triangleleft MAB = 90^{\circ} - 2x = \triangleleft BMA \Rightarrow AB = MB = BC \Rightarrow$
		В триъгълник <i>BMC</i> ъглите са $90^{0} - 7x$, $90^{0} - 7x$, $90^{0} - 4x \Rightarrow x =$
		$5^0 \Rightarrow \not \prec BMC = 90^0 - 7 \times 5^0 = 55^0.$
13	4040	Ако основата е x -ъгълник, тогава върховете са $1 + x + x \Rightarrow$
		$1 + 2x = 2021 \Longrightarrow x = 1010$
		\Rightarrow ръбовете му са $4x = 4040$
14	28	Сборът от ъглите на 10-ъгълника е 1440°.
		Сборът от ъглите на тези х триъгълника, които ще получим при
		разрязването, е <i>x</i> . 180°.
		$\Rightarrow x. 180^{\circ} = 1440^{\circ} + 10.360^{\circ} \Rightarrow x = 28$
15	7	Възможностите са: (5; 5; 6), (6; 6; 4), (7; 7; 2). Търсената стойност е 7 <i>см</i> .
16	(z-y)	Подреждаме по степените на х:
	(x-z)	$(y-z)x^2 - (z^2 - y^2)x + yz(z-y) = (z-y)(x^2 - (z+y)x + yz)$
	(x-y)	= (z-y)(x-z)(x-y).
17	12	Числото трябва да се дели и на 9, и на 8. За да се дели на 8, то трябва да
		завършва на три нули, а броят на единиците трябва да е кратен на 9.
17		Търсим най-малкото такова число и то е 111111111000.
		То се записва с 12 цифри.
18	-20	$p = q \Longrightarrow p^2 = 64 \Longrightarrow p = \begin{cases} 8 \\ -8 \end{cases} \Longrightarrow p + q = \begin{cases} 16 \\ -16 \end{cases}$
		$q = 4p \Rightarrow p^2 = 16 \Rightarrow p = \begin{cases} 4 \Rightarrow q = 16 \\ -4 \Rightarrow q = -16 \end{cases} \Rightarrow p + q = \begin{cases} 20 \\ -20 \end{cases}$
		Най-малката стойност на $p+q$ е (-20).
19	32	Момичетата , които не могат да плуват са 10 и този брой е $\frac{5}{7}$ от всички
		момичета. Получаваме, че момичетата са 14. От тях само 4 плуват.
		$\frac{1}{9}$ от всички плувци са 4, тогава децата които умеят да плуват са 36. От
		тях $36 - 4 = 32$ са момчета.
20	0	45!, 46!, 47!, 48!, 49! завършват на точно 10 нули, а 50! завършва на 12
		нули.
		Няма такова число <i>n</i> .
		···