

Document Title

1M x 16 bit Single Transistor RAM

Revision History

Revision No.	History		Draft Date	Remark
0.0	Initial Draft		Jul. 11, 2005	Preliminary
0.1	1'st Revision	DNU pin location changed from E3 to H6. Added Pb-free&Green part.	Nov. 24 , 2005	Preliminary
0.2	2'nd Revision	Change tRC/tWC maximum from 40us to 10us.	Feb. 15, 2006	Preliminary

Emerging Memory & Logic Solutions Inc.

4F Korea Construction Financial Cooperative B/D, 301-1 Yeon-Dong, Jeju-Si, Jeju-Do, Rep.of Korea Zip Code : 690-717 Tel : +82-64-740-1700 Fax : +82-64-740-1749~1750 / Homepage : www.emlsi.com

The attached datasheets are provided by EMLSI reserve the right to change the specifications and products. EMLSI will answer to your questions about device. If you have any questions, please contact the EMLSI office.

EM7164SU16 Series 1Mx16 Single Transistor RAM

1M x16 bit Single Transistor RAM

GENERAL DESCRIPTION

The EM7164SU16 is 16,777,216 bits of Single Transistor RAM which uses DRAM type memory cells, but this device has refresh-free operation and extreme low power consumption technology. Furthermore the interface is compatible to a low power Asynchronous type SRAM. The EM7164SU16 is organized as 1,048,576 Words x 16 bit.

FEATURES

- Organization :1M x16
- Power Supply Voltage: 2.7 ~ 3.3V
- Separated I/O power(VccQ) & Core power(Vcc)
- Three state outputs
- Byte read/write control by UB/LB
- Support Direct Deep Power Down control by ZZ and Auto TCSR for power saving
- Package type: 48-FPBGA 6.0x7.0

PRODUCT FAMILY

			Spood	Power Dissipation		
Part Number	Operating Temp.	Power Supply	Speed (t _{RC})	Standby (I _{SB1} , Max.)	Operating (I _{CC2} , Max.)	
EM7164SU16	EM7164SU16 -25°C to 85°C		70ns	80uA	25mA	

FUNCTION BLOCK DIAGRAM

EM7164SU16 Series 1Mx16 Single Transistor RAM

PIN DESCRIPTION (48-FBGA-6.00x7.00)

	1	2	3	4	5	6
Α	LB	(OE)	(A0)	A1	A2	$\overline{\overline{z}}$
В	DQ8	UB	(A3)	(A4)	CS	DQ0
С	DQ9	DQ10	A5	(A6)	DQ1	DQ2
D	VSSQ	DQ11	(A17)	(A7)	DQ3	VCC
E	vccq	DQ12	NC	A16	DQ4	VSS
F	DQ14	DQ13	A14	A15	DQ5	DQ6
G	DQ15	A19	A12	A13	WE	DQ7
Н	A18	(A8)	(A9)	A10	A11	DNU

TOP VIEW (Ball Down)

Name	Function	Name	Function
/CS	Chip select inputs	/LB	Lower byte (DQ _{0~7})
/OE	Output enable input	/UB	Upper byte (DQ _{8~15})
/WE	Write enable input	VCC	Power supply
IZZ	Low Power Control	VCCQ	I/O Power supply
DQ ₀₋₁₅	Data In-out	VSS(Q)	Ground
A ₀₋₁₉	Address inputs	NC	No connection
DNU	Do Not Use		

ABSOLUTE MAXIMUM RATINGS 1)

Parameter	Symbol	Ratings	Unit
Voltage on Any Pin Relative to Vss	V_{IN}, V_{OUT}	-0.2 to V _{CCQ} +0.3V	V
Voltage on Vcc supply relative to Vss	V _{CC} , V _{CCQ}	-0.2 ²⁾ to 3.6V	V
Power Dissipation	P _D	1.0	W
Storage Temperature	T _{STG}	-65 to 150	°C
Operating Temperature	T _A	-25 to 85	°C

^{1.} Stresses greater than those listed above "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

FUNCTIONAL DESCRIPTION

cs	ZZ	ŌĒ	WE	LB	UB	DQ _{0~7}	DQ _{8~15}	Mode	Power
Н	Н	Х	Х	Х	Х	High-Z	High-Z	Deselected	Stand by
Х	L	Х	Х	Х	Χ	High-Z	High-Z	Deselected	Deep Power Down
Х	Н	Х	Х	Н	Н	High-Z	High-Z	Deselected	Stand by
L	Н	Н	Н	L	Х	High-Z	High-Z	Output Disabled	Active
L	Н	Н	Н	Х	L	High-Z	High-Z	Output Disabled	Active
L	Н	L	Н	L	Н	Data Out	High-Z	Lower Byte Read	Active
L	Н	L	Н	Н	L	High-Z	Data Out	Upper Byte Read	Active
L	Н	L	Н	L	L	Data Out	Data Out	Word Read	Active
L	Н	Х	L	L	Н	Data In	High-Z	Lower Byte Write	Active
L	Н	Х	L	Н	L	High-Z	Data In	Upper Byte Write	Active
L	Н	Χ	L	L	L	Data In	Data In	Word Write	Active

Note: X means don't care. (Must be low or high state)

^{2.} Undershoot at power-off: -1.0V in case of pulse width ≤ 20ns

RECOMMENDED DC OPERATING CONDITIONS 1)

Parameter	Symbol	Min	Тур	Max	Unit
Cupply voltage	V _{CC}	2.7	3.0	3.3	V
Supply voltage	V _{CCQ}	2.7	3.0	3.3	V
Ground	V_{SS}, V_{SSQ}	0	0	0	V
Input high voltage	V _{IH}	0.8 * V _{CCQ}	-	$V_{CCQ} + 0.2^{2)}$	V
Input low voltage	V _{IL}	-0.2 ³⁾	-	0.2 * V _{CCQ}	V

- 1. T_A = -25 to 85 $^{\rm o}$ C, otherwise specified
- 2. Overshoot: Vcc +1.0 V in case of pulse width ≤ 20ns
- 3. Undershoot: -1.0 V in case of pulse width ≤ 20ns
- 4. Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾ (f=1MHz, T_A =25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	C _{IN}	V _{IN} =0V	-	8	pF
Input/Ouput capacitance	C _{IO}	V _{IO} =0V	-	8	pF

^{1.} Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

Parameter	Symbol	Test Conditions	Test Conditions		Тур	Max	Unit
Input leakage current	I _{LI}	$V_{\text{IN}} = V_{\text{SS}}$ to V_{CCQ} , $V_{\text{CC}} = V_{\text{CCmax}}$	V_{IN} = V_{SS} to V_{CCQ} , V_{CC} = V_{CCmax}		-	1	uA
Output leakage current	I _{LO}	$\overline{\text{CS}} = \text{V}_{\text{IH}}$, $/\text{ZZ} = \text{V}_{\text{IH}}$, $\overline{\text{OE}} = \text{V}_{\text{IH}}$ or $\overline{\text{WE}} = \text{V}_{\text{IL}}$, $\text{V}_{\text{IO}} = \text{V}_{\text{SS}}$ to V_{CCQ} , $\text{V}_{\text{CC}} = \text{V}_{\text{CCmax}}$		-1	-	1	uA
Avanca anaratina avancat	I _{CC1}	Cycle time=1 μ s, 100% duty, I _{IO} =0mA, $\overline{\text{CS}} \leq 0.2\text{V}$, $\overline{\text{ZZ}} = \text{V}_{\text{IH}}$, $\text{V}_{\text{IN}} \leq 0.2\text{V}$ or $\text{V}_{\text{IN}} \geq \text{V}_{\text{CCQ}} = 0.2\text{V}$	V	-	-	3	mA
Average operating current	I _{CC2}	$\frac{\text{Cycle time = Min, I}_{IO}\text{=}0\text{mA, }100\% \text{ duty,}}{\overline{\text{CS}}\text{=}\text{V}_{IL}, \overline{\text{ZZ}}\text{=}\text{V}_{IH}, \text{V}_{IN}\text{=}\text{V}_{IL} \text{ or }\text{V}_{IH}}$		-	-	25	mA
Output low voltage	V _{OL}	I _{OL} = 0.5mA, V _{CC=} V _{CCmin}		-	-	0.2*V _{CCQ}	V
Output high voltage	V _{OH}	I _{OH} = -0.5mA, V _{CC=} V _{CCmin}		0.8*V _{CCQ}	-	-	V
Standby Current (CMOS)	I _{SB1}	$\overline{\text{CS}},\overline{\text{ZZ}} \succeq \text{V}_{\text{CCQ}}$ -0.2V, Other inputs = 0 ~ V_{CCQ} (Typ. condition : V_{CC} =3.0V @ 25 $^{\text{O}}$ C) (Max. condition : V_{CC} =3.3V @ 85 $^{\text{O}}$ C)	LL	-	-	80	uA

^{1.} Maximum Icc specifications are tested with $V_{CC} = V_{CCmax}$.

EM7164SU16 Series 1Mx16 Single Transistor RAM

AC OPERATING CONDITIONS

Test Conditions (Test Load and Test Input/Output Reference)

Input Pulse Level : 0.2V to $V_{\mbox{\footnotesize CCQ}}\mbox{-}0.2\mbox{V}$

Input Rise and Fall Time: 5ns

Input and Output reference Voltage : $V_{\text{CCQ}}/2$

Output Load (See right): CL1) = 30pF

1. Including scope and Jig capacitance

AC CHARACTERISTICS (V_{cc} = 2.7 to 3.3V, Gnd = 0V, T_A = -25C to +85°C)

	Domain stant int	Symbol	Sp	peed	11
	Parameter List	Symbol	Min	Max	Unit
	Read Cycle Time	t _{RC}	70	10k	ns
	Address access time	t _{AA}	-	70	ns
	Chip enable to data output	t _{CO}	-	70	ns
	Output enable to valid output	t _{OE}	-	25	ns
	UB, LB enable to data output	t _{BA}	-	70	ns
David	Chip enable to low-Z output	t _{LZ}	10	-	ns
Read	UB, LB enable to low-Z output	t _{BLZ}	10	-	ns
	Output enable to low-Z output	t _{OLZ}	5	-	ns
	Chip disable to high-Z output	t _{HZ}	0	15	ns
	UB, LB disable to high-Z output	t _{BHZ}	0	15	ns
	Output disable to high-Z output	t _{OHZ}	0	15	ns
	Output hold from Address change	t _{OH}	5	-	ns
	Write Cycle Time	t _{WC}	70	10k	ns
	Chip enable to end of write	t _{CW}	60	-	ns
	Address setup time	t _{AS}	0	-	ns
	Address valid to end of write	t _{AW}	60	-	ns
	UB, LB valid to end of write	t _{BW}	60	-	ns
Write	Write pulse width	t _{WP}	50	-	ns
	Write recovery time	t _{WR}	0	-	ns
	Write to output high-Z	t _{WHZ}	0	15	ns
	Data to write time overlap	t _{DW}	20	-	ns
	Data hold from write time	t _{DH}	0	-	ns
	End write to output low-Z	t _{OW}	5	-	ns

TIMING DIAGRAMS

READ CYCLE (1) (Address controlled, $\overline{CS} = \overline{OE} = VIL$, $\overline{ZZ} = \overline{WE} = VIH$, \overline{UB} or/and $\overline{LB} = VIL$)

READ CYCLE (2) (ZZ=WE=VIH)

NOTES (READ CYCLE)

- 1. t_{HZ} , t_{BHZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. Do not Access device with cycle timing shorter than t_{RC} for continuous periods > 40us.

EM7164SU16 Series 1Mx16 Single Transistor RAM

WRITE CYCLE (1) (WE controlled, ZZ=OE=VIH)

WRITE CYCLE (2) (CS controlled, ZZ=OE=VIH)

EM7164SU16 Series 1Mx16 Single Transistor RAM

WRITE CYCLE (3) (UB, LB controlled, ZZ=OE=VIH)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap(t_{WP}) of low \overline{CS} , low \overline{WE} and low \overline{UB} or \overline{LB} . A write begins at the last transition among low \overline{CS} and low \overline{WE} with asserting \overline{UB} or \overline{LB} low for single byte operation or simultaneously asserting \overline{UB} and \overline{LB} low for word operation. A write ends at the earliest transition among high \overline{CS} and high \overline{WE} . The t_{WP} is measured from the beginning of write to the end of write.
- 2. t_{CW} is measured from \overline{CS} going low to end od write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the end of write to the address change. t_{WR} applied in case a write ends as \overline{CS} or \overline{WE} going high.
- 5. Do not Access device with cycle timing shorter than t_{WC} for continuous periods > 40us.

LOW POWER MODES

Deep Power Down Mode Entry/Exit

NOTES (DEEP POWER DOWN)

During Deep Power Down mode, all referesh related activity are disabled.

Parameter	Description	Min.	Max.	Units
t _{zzcs}	ZZ low to CS low	0	-	ns
t _{cszz}	CS high to ZZ high	0	-	ns
t _R	Operation Recovery Time	200	-	us
t _{ZZP}	ZZ pulse width	20	1	ns

Low Power Mode Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Deep Power Down Current		$\overline{ZZ} \le 0.2V$, Other inputs = $0 \sim V_{CCQ}$ (Max. condition : V_{CC} =3.3V @ 85° C)	-	-	10	uA

TIMING WAVEFORM OF POWER UP

NOTE . (POWER UP)

1. After Vcc reaches Vcc(Min.) , wait 200us with $\overline{\text{CS}}$ high. Then you get into the normal operation.

EM7164SU16 Series 1Mx16 Single Transistor RAM

Unit: millimeters

PACKAGE DIMENSION

48 Ball Fine Pitch BGA (0.75mm ball pitch)

	Min	Тур	Max
Α	-	0.75	-
В	5.93	6.00	6.03
B1	-	3.75	-
С	6.93	7.00	7.03
C1	-	5.25	-
D	0.30	0.35	0.40
Е	1.00	1.04	1.10
E1	-	0.79	-
E2	-	0.25	-
Y	-	-	0.08

NOTES.

1. Bump counts : 48(8row x 6column)

2. Bump pitch : (x,y)=(0.75x0.75) (typ.)

3. All tolerence are +/-0.050 unless otherwise specified.

4. Typ: Typical

5. Y is coplanarity: 0.08(Max)

EM7164SU16 Series 1Mx16 Single Transistor RAM

MEMORY FUNCTION GUIDE

EM X XX X X X X X	$\frac{X}{X} \times \frac{X}{Y} - \frac{XX}{X} \times \frac{XX}{Y}$
1. EMLSI Memory	11. Power_
2. Device Type	10. Speed
3. Density	
4. Option	9. Packages
5. Technology	8. Version
6. Operating Voltage	7. Organization
1. Memory Component	7. Organization 8 x8 bit
2. Device Type	16 x16 bit
6 Low Power SRAM 7 STRAM	32 x32 bit
. . "	8. Version
3. Density 1 1M	Blank Mother die A First version
2 2M	B Second version
4 4M	C Third version
8 8M	D Fourth version
16 16M	E Fifth version
32 32M	
64 64M	9. Package
	Blank Package
4. Function	W Wafer
0 Dual CS	40.0
1 Single CS	10. Speed 45 45ns
2 Multiplexed 3 Single CS with /ZZ	55 55ns
4 Single CS with /ZZ & Direct DPD	70 70ns
5 Multiplexed with Sync. mode	85 85ns
	90 90ns
5. Technology	10 100ns
Blank CMOS	12 120ns
F Full CMOS	
S Single Transistor	11. Power
C. Ou a watin a Walta wa	LLLow Low Power
6. Operating Voltage Blank 5V	LFLow Low Power(Pb-Free&Green)
V 3.3V	L Low Power S Standard Power
U 3.0V	G Standard Fower
S 2.5V	
R 2.0V	
B 1.8V	