برقی آلات

خالد خان يوسفر. كي

جامعہ کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

ix		ديباچه
3	<i>ڡ</i> ؙ <i>ڹ</i>	1 بنیادی خ
3	ينياد ي اکائيال	1.1
3	غيرستى	1.2
4	سمتير	1.3
5		1.4
5	1.4.1 كارتيسى محدد ي نظام	
7	1.4.2 نىکى محددى نظام	
9	سمتيررقبر	1.5
11	رقبه عمودی تراش	1.6
12	ىر قى اور مقناطىيى مىدان	1.7
12	1.7.1 برتی میدان اور برتی میدان کی شدت	
13	1.7.2 متناطیسی میدان اور مقناطیسی میدان کی شدت	

iv

13	سطحیاور حجمی کثافت	1.8	
13	1.8.1 منطحی ثثافت		
14	محجى كثافت	1.9	
15	صليبي ضرب اور ضرب نقط	1.10	
15	1.10.1 صلیبی ضرب		
17	1.10.2 نقطى ضرب نقطى ضرب.		
20	تفرق اور جزوی تفرق	1.11	
20	خطی تکمل	1.12	
21	سطح تمل	1.13	
22	دوری سمتنی	1.14	
27) او وار	يمقناطيسي	2
2727)اد وار مزاحمت اور نتچکچاہٹ		2
		2.1	2
27	مزاحمت اور نتکچابث	2.1	2
27 28 30	مزاحمت اور نتیکچابٹ	2.1	2
27 28 30 32	مزاحمت اور نتیکچابث	2.1 2.2 2.3	2
27 28 30 32 34	مزاجمت اور نیکچاب میران کی شدت گافت برقی رواور برقی میدان کی شدت گافت برقی او دار میدان کی شدت برقی او دار میدان کی شدت متناطبیی دور حصه اول میناطبی کی دور حصه کی دور	2.1 2.2 2.3 2.4	2
27 28 30 32 34 36	مزاحمت اور نتیکچابث کثافت برتی رواور برتی میدان کی شدت برقی ادوار مقناطیسی دور حصه اول کثافت متناطیسی بهاواور متناطیسی میدان کی شدت	2.1 2.2 2.3 2.4 2.5	2
27 28 30 32 34 36	مزاجمت اور نیمکیاب گافت برقی رواور برقی میدان کی شدت برقی ادوار مقناطیسی دور حصه اول گافت مقناطیسی بهاواور مقناطیسی میدان کی شدت مقناطیسی دور حصه دوم	2.1 2.2 2.3 2.4 2.5 2.6	2

عـــنوان

57																																^	نسفار	ٹران	3
58						•			•																		ت	اہمیہ	کی	ار م	رانسفا	*	3	.1	
61																											مام	لحاقه	ر_	ار م	رانسفا	رُ	3	.2	
61																													باو	قىد	الی بر	ا	3	.3	
63											•							•						ياع	ىن	قالب	واور	قىرو	ربرا	انگيز	بجان	Ĩ	3	.4	
66	•		•			•			•	•											Ü	واح	کے خو	رو_	_ قی	له	تباد	واور	ادبا	برقی	بادله	تې	3	.5	
70											•												ژ	با)جان	رائح	كاابتا	وجھ	ب بو	جانسه	انوی.	ť	3	.6	
71						•																ب	طله	الار	نطوا	ير پر نق	ت	علام	کی	ار م	رانسفا	<i>*</i>	3	.7	
72											•							•										لہ .	نبادا	ك كا:	كاور	'n	3	.8	
77											•							•							بئر	يميد	ك-ا	ولر <u>.</u>	کاو	ار م	رانسفا	,	3	.9	
79											•							•					ار	ادو	باوك	رمر	بداور	امال	ر_	ار م	رانسفا	,	3.1	0	
79																نا	ہ کر	نده	عليح	امليه	امتعه	کی	.اگ	ن اور	حمت	مزا	ے کی	"	3	3.1	0.1	1			
81																										. ،	نامال	دِست	3	3.1	0.2	2			
82																			ن	ران	کےاث	_,	لب	ور قا	رواه	۔ تی	ی بر	ثانو	3	3.1	0.3	3			
83											•	•										باو	قى د	بابر	كالمالخ	يھے	ب ی -	ثانو	3	3.1	0.4	4			
83																ت	رار	اثر	2	مله	متعا	ور	تا	زاحمه	کی مز	ر گھے	ب ی	ثانو	3	3.1	0.5	5			
85																			وليه	. تبا	انب	ناج	نانو ک	ئىية	بتدا	16.	وٹ	رکا	3	3.1	0.6	5			
87																		ار	ادوا	وی	مسا	ين	ەتر	ساد	کے	. مر	سفار	ٹران	3	3.1	0.7	7			
88						•																		ائنه	ر مع	ردو	ركس	نداو	حا يَ	ورم	کھلے و	<u>-</u>	3.1	1	
89																									ئنہ	معا	دور	كطلا	3	3.1	1.1	1			
91											•														ئنه	معا	ردور	كم	3	3.1	1.2	2			
95																								•		٠.	رمر	نسفا)ٹرا	وري	نين و	;	3.1	2	
103				_															زر	کا گز	ارو	رق	ی ر	ه محر	ز باد	لمحد	تے	لو کر	حال	ار م	. انسفا	ٹر	3.1	3	

vi

ميكاني توانائي كا باجمي تبادله	بر قی اور	4
متناطبيسى نظام ميں قوت اور قوت مر وڑ	4.1	
تبادله توانا كي والاا يك لچچه كافظام	4.2	
توانائی اور جم - توانائی	4.3	
متعدد کچھول کامقناطیسی نظام	4.4	
مثین کے بنیاد ی اصول	گومتے'	5
قانون فيراؤك	5.1	
معاصر مثنین	5.2	
محرک برتی دباو	5.3	
تعليه لحجه اور سائن نما مقناطيسي و باو	5.4	
5.4.1 برلتارووالے مثین		
مقناطیسی د باو کی گھو متی امواج	5.5	
5.5.1 ایک دورکی لپٹی مثنین		
5.5.2 تين دورکي لپڻي مشين کا تحليلي تجربير		
5.5.3 تين دورکي کپڻي مشين کاتر سيمي تجربير		
محرک برتی دباو	5.6	
5.6.1 برلتاروبر قی جزیئر		
5.6.2 يک ست روبر تي جزيئر		
جموار قطب مثينوں ميں قوت مروڑ	5.7	
5.7.1 ميكاني قوت مر وڙبذريعه تركيب توانائي		
5.7.2 ميكاني قوت مروڙ بذريعه متناطيسي بهاو		

vii

6

رمثين 179	يكسال حال، بر قرار چالومعاص
ر مثين	6.1 متعدد دوری معاص
الد	6.2 معاصر مثين ڪا
المالہ	6.2.1 نخور
ر که اماله	÷ 6.2.2
صراباله	6.2.3 معا
اوي دوريارياضي نمونه	6.3 معاصر مشين كامس
لى	6.4 برقی طاقت کی منتقا
رچالومشین کے خصوصیات	6.5 يكسال حال، بر قراه
196	6.5.1 معا
197	6.5.2 معا
رموائد	6.6 کھلےدوراور کسرِ دو
ەدورمعائنە	6.6.1
دور معائنه	6.6.2 کېږ

211	امالی مشیرز	7
ساكن كمچھوں كى گھومتى مقناطىيى موج	7.1	
مشین کی سر کنے اور گھومتی موجول پر تبھرہ	7.2	
ساكن كيچمول مين امالي برقى دياو	7.3	
ساكن لچھوں كى مون كا گھومتے لچھوں كے ساتھوا ضافى رفتاراوران ميں پيداامالى برقى د باو	7.4	
گھومتے کچھوں کی گھومتی متناطبی دیاو کی موج	7.5	
گھومتے کچھوں کے مساوی فرضی ساکن کچھے ۔	7.6	
المالى موٹر كا مسادى برقى دور	7.7	
مىاوى برقى دورېرغور	7.8	
المالي موشر كامساوى تقونن دورياريا ضي نمونه	7.9	
چنجر انمالهلي موٹر	7.10	
بے پوچھ موٹراور جامد موٹر کے معائنہ	7.11	
7.11.1 بے پوچھ موثر کا معائنہ		
7.11.2 جامد موثر کا معائنہ		
رو ^{مش} ين 245	يك سمت	8
ميكاني ست كاركي بنيادى كاركردگى	8.1	
8.1.1 ميكاني ست كاركي تفصيل		
يک ست جزير کي بر قي د باو	8.2	
قوت مرورث	8.3	
بير وني بيجان اور خود بيجان يك سمت جزير	8.4	
يک سمت مشين کي کار کرد گي کے خط	8.5	
8.5.1 حاصل برتی د باو بالتقابل برتی بوجه		
8.5.2 رفتار بالقابل قوت مرور		
269	ئ	فرہناً

ديباجيه

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکتان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیقی کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

ہمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے تابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں کی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پھھ کرنے کی نیت رکھنے کے باوجود پھھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ کلفے کا جواز بنانے سے انکار کر دیا اور پول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں کھی گئی ہے۔کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال سکتیکی الفاظ میں استعال کئے جائیں۔جہاں ایسے الفاظ موجود نہ سے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی اصطلاحات کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا قوامی نظامِ اکائی استعال کی گئ ہے۔اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔یوں اردو میں لکھی اس کتاب اور انگریزی میں اسی مضمون پر لکھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گ۔

یہ کتاب Ubuntu استعال کرتے ہوئے XeLatex میں تشکیل دی گئی۔ یہ کتاب خطِ جمیل نوری نستعلق میں ککھی گئی ہے۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیز نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الیکٹریکل انجنیز نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری برقیاتی پنۃ

khalidyousafzai@comsats.edu.pk

پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

میں یہاں عائشہ فاروق اور ان کے والد فاروق اعظم کا شکریہ ادا کرنا چاہوں گا جنہوں نے اس کتاب کو بار بار پڑھا اور جھے مجبور کرتے رہے کہ میں اپنی اردو بہتر کروں۔ میں ڈاکٹر نعمان جعفری کا نہایت مشکور ہوں جنہوں نے کتاب کی تکنیکی اصطلاح کرنے میں مدد کی۔ حرا خان اور ان کی والدہ عزرا برلاس نے مل کے کتاب کو درست کرنے میں مدد کی۔ یہاں میں اپنے شاگرد فیصل خان کا بھی شکریہ ادا کرنا چاہوں گا جنہوں نے تکنیکی اصطلاحات چننے میں میری مدد کی۔

میں یہاں کامسیٹ یونیور سٹی اور ہائر ایجو کیشن کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے الیمی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر. ئي

2011 توبر 2011

ريباپ

باب1

بنيادي حقائق

اس کتاب میں مستعمل حقائق کو اس باب میں اکٹھے کرنے کی کوشش کی گئی ہے۔ توقع کی جاتی ہے کہ یوں کتاب پڑھتے وقت اصل مضمون پر توجہ رکھنا زیادہ آسان ہو گا۔

1.1 بنيادي اكائيال

اس كتاب ميں بين الاقوامي نظام اكائي استعال كيا گيا ہے جس ميں كميت 2 كى اكائى كلوگرام، لمبائى كى اكائى ميٹر اور وقت كى اكائى سيكنڈ ہے۔

1.2 غيرسمتي

وہ متغیر جس کی مقدار (مطلق قیمت) اس کو مکمل طور پر بیان کرتی ہو غیر سمتے c متغیر کہلاتا ہے۔ اس کتاب میں غیر سمتی متغیر کو سادہ طرز کی لکھائی میں انگریزی یا لاطینی زبان کے چھوٹے حروف یعنی a,b,α,\cdots یا بڑے حروف یعنی A,B,Ψ,\cdots یا بڑے حروف یعنی A,B,Ψ,\cdots

 $\begin{array}{c} {\rm International~System~Of~Units,~SI^1} \\ {\rm mass^2} \end{array}$

scalar3

4 بنيادي حسائق

شكل 1.1: كارتيسي محد د

1.3 سمتي

وہ متغیر جس کو مکمل طور پر بیان کرنے کے لئے اس کی مقدار (طول یا مطلق قیمت) اور سمت جاننا ضروری ہو، سمتیہ کہ المتات ہے۔ سمتیہ کو انگریزی یا لاطینی زبان کے چھوٹے یا بڑے حروف، جن کو موٹے طرز کی لکھائی میں لکھا گیا ہو، سے ظاہر کیا جائے گا، مثلاً قوت کو F سے ظاہر کیا جائے گا۔ یہاں شکل 1.1 سے رجوع کرنا بہتر ہو گا۔ وہ سمتیہ جس کا طول ایک کے برابر ہو، اکا کئے سمتیہ و گہلائے گا۔ اس کتاب میں اکا ئی سمتیہ کو انگریزی زبان کے پہلے حرف کو موٹے طرز کی لکھائی میں لکھا جائے گا، مثلاً اکائی سمتیہ و گہلائے گا۔ اس کتاب میں اکائی سمتیہ فلاء کی تین عمودی سمتیات کو ظاہر کرتے ہیں۔ اگر کھتے ہوئے، زیر نوشت میں x، اس بات کی نشاندہ کرتا ہے کہ یہ اکائی سمتیہ فلاء کی x سمت کو ظاہر کرتا ہے۔ اگر کسی سمتیہ کا طول اور اس کی سمت کو علیحدہ علیحدہ کھنا ہو تو اس کے طول کو ظاہر کرنے کے لئے سادہ طرز کی لکھائی میں سمتیہ کا طول اور اس کی سمت کو علیم کیا جائے گا۔ شکل میں سمتیہ کا طول F کی سمت میں ایک اکائی سمتیہ بنایا جائے گا۔ شکل سمتیہ اس سمتیہ کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے لین سمتیہ کو انگریزی کے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت میں ایک اکائی سمتیہ بنایا جائے گا۔ یہاں، زیر نوشت میں F، اس بات کی یاد دہائی کرتا ہے کہ یہ اکائی سمتیہ کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ شکل 1.1 میں قوت F کا رخ دائیں ہے الباز F میں کی سمت کو ظاہر کرتا ہے۔ شکل 1.1 میں قوت F کا رخ دائیں ہے الباز عرب کی یاد دہائی کراتا ہے کہ یہ اکائی سمتیہ کی سمت کو ظاہر کرتا ہے۔ شکل 1.1 میں قوت F کا رخ دائیں ہے الباز تر ہوں گے۔

vector⁴ unit vector⁵ 1.4 محسدد

شكل 1.2: دائين ہاتھ كانظام۔

1.4 محدد

الیا طریقہ جس کے ذریعہ کسی نقطہ کا مقام متعین کیا جاسکے محدد کہلاتا ہے۔

خلاء تین بعدی (تین طرفہ) 6 ہے المذاکسی ایک نقطہ کے مقام کو تین محدد کی مدد سے ظاہر کیا جا سکتا ہے۔اسی طرح خلاء میں سمتیہ کو تین عمودی اکائی سمتیوں کی مدد سے لکھا جا سکتا ہے۔اب ہم ایسے چند محدد کے نظام دیکھتے ہیں۔

1.4.1 كار تيسى محددى نظام

شکل 1.1 میں خلاء کی دو سمتوں کو اکائی سمتیات a_x اور a_y سے ظاہر کیا گیا ہے جو آپس میں عمودی ہیں، لیعنی، ان کے بچہ 90 زاویہ ہے۔خلاء تین بعدی ہے المذا اسے تین آپس میں عمودی اکائی سمتیاہے سے ظاہر کیا جاتا ہے۔ ان سمتوں کے رخ، طول (لمبائیوں) کو x,y,z سے ظاہر کیا جاتا ہے۔ آپ ان سے بخوبی واقف ہیں۔

وائیں ہاتھ کا انگوٹھا، شہادت کی انگلی اور بڑی انگلی کو ایک دوسرے کے ساتھ 90° زاویہ پر رکھتے ہوئے اگر شہادت کی انگلی $a_{\rm x}$ اور بڑی انگلی $a_{\rm y}$ کے رخ ہول تب انگوٹھا $a_{\rm z}$ کے رخ ہوگا (شکل 1.2)۔ اس کئے تین اکائی سمتیات کا یہ نظام دائیں ہاتھ کا نظام 8 کہلاتا ہے۔

 $\begin{array}{c} {\rm three\ dimensional^6} \\ {\rm orthonormal\ vectors^7} \\ {\rm right\ handed\ coordinate\ system^8} \end{array}$

اب ١ بنيادي حسائق

شكل 1.3: كارتيسي محد د نظام ميں ايك سمتيه۔

مبدا سے نقطہ P(x,y,z) تک سمتیہ A کو شکل 1.3 میں دکھایا گیا ہے جس کو کارتیہ وجمدو میں تین سمتیات کی مدو سے

$$(1.1) A = A_x + A_y + A_z$$

L

$$(1.2) A = xa_X + ya_Y + za_Z$$

لکھا جا سکتا ہے۔

1.3 کار تنیسی محددی نظام میں متغیر z صفر رکھتے ہوئے x,y تبدیل کرنے سے سطح xy ملتی ہے۔ یوں شکل xy میں محددی نظام میں متغیر xy کو زمین تصور کرتے ہوئے، ڈبے کی بالائی سطح xy جبکہ x کی قیمت صفر تا تین اور xy کی قیمت صفر تا جار ہو گی۔ اس طرح اس ڈبے کی بالائی سطح درج ذبل کھی جائے گی۔

متغیر z کو صفر اور تین کے درمیان ہر ممکن قیت پر رکھ کر x کو صفر اور دو جبکہ y کو صفر اور چار کے درمیان تبدیل کرنے سے شکل 1.3 میں دکھائے گئے ڈبے کا حجم حاصل ہو گا، للذا اس ڈبے کا حجم درج ذیل لکھا

 $cartesian coordinates^9$

1.4. محسدد

 $P(x, y, z) = P(\rho, \theta, z)$

$$\mathbf{A} = \boldsymbol{\rho} + \mathbf{A}_z$$
$$= \rho \boldsymbol{a}_\rho + z \boldsymbol{a}_z$$

شكل 4.1: نلكي محد دي نظام

حائے گا۔

1.4.2 نلكي محددي نظام

مبدا سے نقطہ P(x,y,z) تک سمتیہ $m{A}$ کو شکل 1.4 میں دکھایا گیا ہے جس کو دو سمتیات کی مدد سے

$$(1.5) A = \rho + A_z$$

يا

(1.6)
$$A = \rho a_{\rho} + z a_{Z}$$

$$2 \sum_{m} a_{\rho} = \frac{1.4}{2} \int 1.4 \int xy dy dy dy dy dy$$

$$x = \rho \cos \theta, \quad y = \rho \sin \theta$$

کھ کر نقطہ P(x,y,z) کو متغیرات x,y,z کے بجائے متغیرات ρ,θ,z کی مدد سے P(x,y,z) کھا جا سکتا ہے۔ یوں خلاء میں کسی بھی نقطہ کو اس کے تمین متغیرات ρ,θ,z سے ظاہر کیا جا سکتا ہے۔

وہ نظام جس میں متغیرات
$$\rho, \theta, z$$
 کی نقطہ کو متعین کرتے ہوں نلکھ محدد 10 کہلاتا ہے۔ یہاں شکل ρ, θ, z سے cylindrical coordinates

اب ابنيادي حتائق

شكل 1.5: نلكي نمامحد د كي تعريف

رجوع کریں۔ نکی محددی نظام کے تین آپس میں عمودی اکائی سمتیات $a_{
ho}, a_{ heta}, a_{
ho}$ ہیں۔ یہ نظام بھی دائیں ہاتھ کا نظام ہے لئیں آپس میں عمودی اکائی سمتیات $a_{
ho}, a_{ heta}, a_{
ho}$ ہوئے اگر نظام ہے لہذا دائیں ہاتھ کا انگو ٹھا، شہادت کی انگلی اور بڑی انگلی کو ایک دوسرے کے ساتھ $a_{
ho}$ پر رکھتے ہوئے اگر شہادت کی انگلی $a_{
ho}$ کے رخ ہوں تب انگو ٹھا $a_{
ho}$ کے رخ ہوگا۔

سطے xy میں مبدا پر، محدد x کے ساتھ θ زاویہ پر اکائی سمتیہ a_{ρ} ہو گا۔ سطے xy میں مبدا پر اکائی سمتیہ a_{θ} معودی، بڑھتے θ رخ، اکائی سمتیہ a_{θ} ہو گا۔ کارتیسی محدد کی نظام کا اکائی سمتیہ a_{Z} بی نگی محدد کا اکائی سمتیہ a_{Z} ہے۔

واضح رہے کہ نکی محدد کے نظام میں $a_{
ho}$ اور $a_{ heta}$ کی سمتیں ہر نقطہ پر مختلف ہیں جیسا کہ شکل 1.6 میں دکھایا گیا ہے۔

مستوی xy میں (یعن z=0 لیتے ہوئے) مبدا پر مستقل رداس $\rho=\rho_0$ کے سمتیہ کو صفر زاویہ پر رکھ کر زاویہ بتدر تک z=0 تک بڑھانے سے سمتیہ کی چونج مستوی z=0 میں ایک دائرہ پر چلتی ہے (شکل 1.7)۔ اب اس سمتیہ کے متغیر z=0 و تبدیل کرنے سے، مثلاً ہر z=0 پر z=0 و صفر تا تین کرنے سے، یہ سمتیہ ایک نکلی بنائے گا۔ اسی وجہ سے اس نظام کو نکلی محدد کہتے ہیں۔ سمتیہ کے تینوں متغیرہ تبدیل کرنے سے نکلی کا حجم ملے گا۔ اگلی تین

9 1.5 سمتيەرقس

شكل $a_{
ho}$: نكى محد دمين اكائى سمتيات $a_{
ho}$ اور $a_{
ho}$ بر نقطه پر مختلف ہيں۔

مساوات ان حقائق کو پیش کرتی ہیں۔

(1.7)
$$\delta \dot{\beta} = \begin{cases} \rho = \rho_0 \\ 0 < \theta < 2\pi \\ z = 0 \end{cases}$$

(1.8)
$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{$$

سطح پر کھڑا اکائی سمتیہ سطح کا رخ دیتا ہے (شکل 1.8)۔ چونکہ کسی بھی سطح کے دواطراف ہوتے ہیں للذا اس کے دو مخالف رخ بیان کیے جا سکتے ہیں۔عموماً مسلم کو مد نظر رکھتے ہوئے ان میں سے ایک رخ کو سطح کا رخ تصور کیا جاتا اب ١٠ بنيادي حت أق

شکل 1.7: نلکی محد د میں دائر ہاور نلکی

$$\mathbf{A}_1 = A_1 \mathbf{a}_{A1} = wl\mathbf{a}_z$$
$$\mathbf{A}_2 = A_2 \mathbf{a}_{A2} = wh\mathbf{a}_y$$

شكل 1.8: سمتيه رقبه كاتعارف

ہے۔ البتہ بند سطح، مثلاً گیند، کے بیرونی رخ کو ہی سطح کا رخ تصور کیا جاتا ہے۔ شکل 1.8 میں بالائی سطح A_1 کا رقبہ A_2 اور اس کا رخ a_2 ہے لہذا A_1 سمتیہ کا طول A_1 اور رخ a_2 ہو گا:

$$A_1 = wl$$
$$a_{A1} = a_{Z}$$

یوں بالائی سطح کا سمتی رقبہ درج ذیل ہو گا۔

$$\mathbf{A_1} = A_1 \mathbf{a_{A1}} = w l \mathbf{a_z}$$

اسی طرح دائیں سطح A_2 سمتیہ کا طول A_2 اور اس کا رخ a_{A2} ہے

$$A_2 = wh$$

$$a_{A2} = a_{y}$$

للذا درج ذيل هو گا۔

(1.11)
$$A_2 = A_2 a_{A1} = wha_y$$

1.1 رقب عب ودي تراسش

شكل 1.9: رقبه عمود ي تراش

یخلی سطح کا رقبہ $A_3=w$ اور اس کا رخ $a_{
m z}$ کے مخالف ہے لہذا درج ذیل ہو گا۔

(1.12)
$$A_3 = A_3 a_{A3} = wl(-a_z) = -wla_z$$

دھیان رہے کہ رقبہ کی مقدار ہر صورت مثبت ہو گی البتہ اس کا رخ مثبت یا منفی ہو سکتا ہے۔ یہ بات کسی بھی سمتیہ کے لئے درست ہے لہذا کسی بھی سمتیہ کا طول ہر صورت مثبت ہی ہو گا جبکہ اس کا رخ مثبت یا منفی ہو سکتا ہے۔

1.6 رقبه عمودي تراش

سلاخ کی لمبائی کے ساتھ زاویہ قائمہ پر کٹائی کو عمودی تراثی 11 کہتے ہیں اور عمودی تراش کے رقبہ کو رقبہ عمودی تراثی 12 کہتے ہیں۔ شکل 1.9 میں سلاخ کی لمبائی 12 رخ ہے اور رقبہ عمودی تراش 12 کی مقدار 12 ہے

$$(1.13) A = wh$$

لهذا رقبه عمودی تراش کا رخ $a_{
m v}$ ہو گا:

$$a_A = a_y$$

شکل 1.9 میں اکائی سمتیات a_y اور a_z د کھائے گئے ہیں جن کے ابتدائی نقاط پر گول دائرہ میں بند ایک نقطہ د کھایا گیا ہے۔ گول دائرہ میں بند نقطہ صنحہ کے عمودی (کتاب سے باہر) رخ a_x ظاہر کرتا ہے جس کے مخالف رخ (صنحہ کے عمودی اندر) کو گول دائرہ میں بند صلیب کی نشان سے ظاہر کیا جائے گا۔

 $^{{\}rm cross\ section^{11}} \\ {\rm cross\ sectional\ area^{12}} \\$

12 باب، بنيادي حت أتَّ

1.7 برقی اور مقناطیسی میدان

1.7.1 برقی میدان اور برقی میدان کی شدت

کولم کے قانونے 13 کے تحت برقی بار 14 سے لدے جسموں کے در میان قوت کشش 15 یا قوت دفع 16 ان اجسام پر بار 17 بار 17 کے حاصل ضرب کے راست متناسب اور باہمی فاصلہ کے مربع کے بالعکس متناسب ہوتی ہے۔ یوں بار 17 اور 18 جن کے در میان فاصلہ 18 ہو کے نیج قوت 17 درج ذیل ہو گا جہاں 18 جن کے در میان فاصلہ 18 ہو کے نیج قوت 18 درج ذیل ہو گا جہاں 18

(1.15)
$$F = \frac{q_1 q_2}{4\pi \epsilon r^2}$$

ایک برقی باد کے قریب دوسرا برقی باد لانے سے (پہلے اور) دوسرے برقی باد پر کشش یا دفع کی قوت عمل کرے گی جس کا تعین قانون کولمب سے ہوتا ہے۔ دوسرے برقی باد کو پہلے برقی باد سے آہستہ آہستہ دور کرنے سے قوت کشش یا دفع بتدر ج کم ہوتی ہے جو ایک خاص فاصلے کے بعد تقریباً صفر ہو جاتی ہے اور دوسرا بار پہلے باد کے حلقہ اثر سے باہر ہو جاتا ہے۔ یہ حلقہ برقی میدالض کہلاتا ہے۔ برقی میدان کسی ایک بادیا متعدد بادوں کی وجہ سے ہو سکتا ہے۔

تعریف: کسی بار کے برقی میدان سے مراد بار کے اِرد گرد وہ حلقہ ہے جس میں اس کا برقی اثر محسوس کیا جاتا ہے-

برتی میدان میں اکائی مثبت بار پر قوت اس مقام پر برقی میدان کی شدہ (E) کی مطلق قیمت) دیگا جبکہ اکائی بار پر قوت کا رخ برتی میدان کا رخ دیگا۔ برتی میدان کی شدت کی اکائی وولٹے فیے میٹر²⁰ ہے۔

Coulomb's law¹³

electric charge¹⁴

attractive force¹⁵

repulsive force¹⁶

 $[\]rm charge^{17}$

electric constant, electric permittivity 18

electric field intensity¹⁹

 V/m^{20}

1.8. سطحي اور حجي کثافت.

قانون کولمب (مساوات 1.15) سے Q بار کے برقی میدان کی شدت کی مطلق قی ت حاصل کرتے ہیں۔ بار Q اور اکائی بار (ایک کولمب بار) کے چھ قوتِ کشش یا قوتِ د فع

$$(1.16) F = \frac{Q \times 1}{4\pi\epsilon r^2} = \frac{Q}{4\pi\epsilon r^2}$$

نیوٹن ہو گ۔ یہی برقی میدان کی شدت کی مطلق قیمت ہو گی:

$$(1.17) E = \frac{Q}{4\pi\epsilon r^2}$$

دو باروں کے مابین قوت کشش یا قوت و فع کا رخ ان کے درمیان کھینچی گئی سیر ھی کلیر پر ہو گا۔

1.7.2 مقناطیسی میدان اور مقناطیسی میدان کی شدت

متناطیعی میدان اور مقناطیسی میدان کی شدھے 21 بالترتیب بالکل برقی میدان اور برقی میدان کی شدت کی طرح ہیں۔ تعریف : کسی مقناطیس کے مقناطیسی میدان سے مراد مقناطیس کے اِرد گرد وہ علقہ ہے جس میں اس کا مقناطیسی اثر محسوس کیا جاتا ہو۔

1.8 سطحی اور حجمی کثافت

1.8.1 سطحي كثافت

اکائی رقبہ کی سطح پر کسی چیز کی کل مقدار کو اس چیز کی سطح کثافت 22 کہتے ہیں۔ یوں رقبہ A پر کسی چیز کی کل مقدار ϕ ہونے کی صورت میں اس کی اوسط سطحی کثافت ϕ ہونے کی صورت میں اس کی اوسط سطحی کثافت ϕ

$$(1.18) B_{b-1} = \frac{\phi}{A}$$

 $\begin{array}{c} {\rm magnetic~field~intensity^{21}} \\ {\rm surface~density^{22}} \end{array}$

اب ١٠ بنيادي حسائق

اس مساوات سے

$$\phi = B_{\text{lead}} A$$

لکھا جا سکتا ہے جو کسی سطح پر ایک متغیرہ کی اوسط سطحی کثافت معلوم ہونے کی صورت میں سطح پر متغیرہ کی کل مقدار دیتی ہے۔

غیر بکسال متغیرہ کی صورت میں سطحی کثافت جگہ جگہ مختلف ہو گی۔ ایسی صورت میں اتنے چھوٹے رقبے پر، جس میں متغیرہ کو بکسال تصور کیا جا سکتا ہو، سطحی کثافت

$$(1.20) B = \frac{\Delta \phi}{\Delta A}$$

ہو گی جہاں ΔA چھوٹا رقبہ اور $\Delta \phi$ اس رقبے پر متغیرہ کی چھوٹی مقدار ہے۔ اس چھوٹے رقبہ کو نقطہ مانند کرنے سے نقطی کثافت

$$(1.21) B = \frac{\mathrm{d}\phi}{\mathrm{d}A}$$

حاصل ہو گی جس کو

$$d\phi = B \, dA$$

بھی لکھا جا سکتا ہے۔ یوں نقطی کثافت جانتے ہوئے ایک نقطہ کے چھوٹے رقبہ پر متغیرہ کی کل (چھوٹی) مقدار معلوم کی حاسکتی ہے۔

یوں ایک برتی تار جس کا رقبہ عمودی تراش A اور جس میں برتی روI کی اوسط کثافتِ برتی رو درج ذیل ہوگی۔ $\rho_{bul} = \frac{I}{A}$

1.9 محجمي كثافت

m اکائی حجم میں کسی چیز کی کل مقدار کو اس چیز کی حجم کافٹ کہتے ہیں۔ یوں اگر کسی چیز کا حجم H اور اس کی کمیت H ہو تب اس کی اوسط (کمیت) حجمی کثافت درج ذیل ہو گی۔

$$\rho_{\text{le-sl}} = \frac{m}{H}$$

غیر یکسال کمیت کی صورت میں جم میں مختلف مقامات پر کمیت مختلف ہو گا۔ ایک صورت میں اتنا جھوٹا جم لیتے ہوئے جس میں کمیت کو یکسال تصور کیا جا سکتا ہو، حجمی کثافت درج ذیل ہو گی۔

$$\rho = \frac{\Delta m}{\Delta H}$$

اس چھوٹے جم کو نقطہ مانند بنانے سے درج ذیل نقطی حجمی کثافت لکھی جا سکتی ہے۔

$$\rho = \frac{\mathrm{d}m}{\mathrm{d}H}$$

بول

$$dm = \rho \, dH$$

ہو گا للذا نقطی محجمی کثافت جانتے ہوئے ایک چھوٹے حجم کی (چھوٹی) کمیت حاصل کی جاستی ہے۔

1.10 صليبي ضرب اور ضرب نقطه

دو غیر سمتی متغیرات کا حاصل ضرب غیر سمتی متغیر ہوتا ہے جبکہ دو سمتیات کا حاصل ضرب سمتی یا غیر سمتی ہو سکتا ہے۔ان دواقسام کے ضرب پریہاں غور کیا جائے گا۔

1.10.1 صليبي ضرب

دو سمتی متغیرات کا ایسا ضرب جو سمتی متغیر دیتا ہو صلیبی ضربے 23 کہلاتا اور درج ذیل لکھا جاتا ہے۔

$$(1.28) C = A \times B$$

صلیبی ضرب میں ضرب کے نشان کو صلیب کی علامت سے ظاہر کیا جاتا ہے جس کی بنا اس کو صلیبی ضرب کہتے ہیں۔

 $[{]m cross\ product}^{23}$

اب ١٠ بنيادي حسائق

حاصل ضرب سمتیہ C کی مقدار

(1.29)
$$C = |\mathbf{C}| = |\mathbf{A}||\mathbf{B}|\sin\theta_{AB}$$
$$= AB\sin\theta_{AB}$$

ہے جہاں θ_{AB} ان کے مابین زاویہ ہے۔اس حاصل سمتیہ کی سمت دائیں ہاتھ کے قانون سے حاصل کی جاتی ہے۔ یوں دائیں ہاتھ کا انگوٹھا، شہادت کی انگلی اور بڑی انگلی کو ایک دوسرے کے ساتھ 90° زاویہ پر رکھتے ہوئے، شہادت کی انگلی کو سمتیہ A اور بڑی انگلی کو B کے رخ رکھنے سے انگوٹھا C کا رخ دیگا۔

مثال 1.1: درج ذیل ضرب صلیبی حاصل کریں۔

- $a_{ ext{X}} imes a_{ ext{Y}} \quad a_{ ext{Y}} imes a_{ ext{Z}} imes a_{ ext{Z}} imes a_{ ext{Z}} imes a_{ ext{X}} imes a_{ ext{Y}} i$
- $oldsymbol{a}_{ extsf{Z}} imes oldsymbol{a}_{ extsf{Y}} o oldsymbol{a}_{ extsf{Y}} imes oldsymbol{a}_{
 ho} imes oldsymbol{a}_{
 ho} imes oldsymbol{a}_{ heta} o oldsymbol{a}_{ extsf{Z}} imes oldsymbol{a}_{
 ho} i$

حل: اس مثال میں سب سمتیات اکائی ہیں۔اکائی سمتیہ کا طول ایک کے برابر ہوتا ہے للذا درج ذیل ہوں گے۔

- $\boldsymbol{a}_{\mathrm{X}} \times \boldsymbol{a}_{\mathrm{Y}} = (1)(1)\sin 90\boldsymbol{a}_{\mathrm{Z}} = \boldsymbol{a}_{\mathrm{Z}}$
- $\boldsymbol{a}_{\mathrm{Y}} \times \boldsymbol{a}_{\mathrm{Z}} = (1)(1)\sin 90\boldsymbol{a}_{\mathrm{X}} = \boldsymbol{a}_{\mathrm{X}}$
- $\boldsymbol{a}_{\mathrm{Z}} \times \boldsymbol{a}_{\mathrm{X}} = (1)(1)\sin 90 \boldsymbol{a}_{\mathrm{Y}} = \boldsymbol{a}_{\mathrm{Y}}$ •
- $\boldsymbol{a}_{\mathrm{X}} \times \boldsymbol{a}_{\mathrm{Z}} = (1)(1)\sin 90(-\boldsymbol{a}_{\mathrm{Y}}) = -\boldsymbol{a}_{\mathrm{Y}}$
- $\boldsymbol{a}_{\mathrm{Z}} \times \boldsymbol{a}_{\mathrm{Y}} = (1)(1)\sin 90(-\boldsymbol{a}_{\mathrm{X}}) = -\boldsymbol{a}_{\mathrm{X}}$
- چونکہ دونوں سمتیات کے رخ ایک جیسے ہیں لہذا ان کے مابین زاویہ صفر ہو گا۔ صفر زاویہ کا سائن بھی صفر ہوتا ہے، $\sin 0 = 0$ ہوتا ہے، $\sin 0 = 0$ ہوتا ہے، $a_{\rm y} \times a_{\rm y} = (1)(1)\sin 0 = 0$
 - $\boldsymbol{a}_{\rho} \times \boldsymbol{a}_{\theta} = (1)(1)\sin 90\boldsymbol{a}_{\mathrm{Z}} = \boldsymbol{a}_{\mathrm{Z}}$ •
 - $\boldsymbol{a}_{\mathrm{Z}} \times \boldsymbol{a}_{\rho} = (1)(1)\sin 90\boldsymbol{a}_{\theta} = \boldsymbol{a}_{\theta}$

مثال 1.12 شکل 1.10 میں چار نیوٹن کی قوت F محور سے تین میٹر کی سمتی فاصلہ L پر لاگو ہے جس کی مثال 1.2 شکل میں دی گئی ہے۔اس قوت کی قوت مروڑ حاصل کریں۔ حل: قوت مروڑ T کی تعریف درج ذیل ہے۔ $T = L \times F$

کار تیسی نظام میں بیہ سمتی فاصلہ

 $(1.31) L = L\sin\theta a_{X} - L\cos\theta a_{Y}$

ہو گا للذا

 $T = (L \sin \theta \mathbf{a}_{X} - L \cos \theta \mathbf{a}_{Y}) \times F \mathbf{a}_{Y}$ $= L \sin \theta \mathbf{a}_{X} \times F \mathbf{a}_{Y} - L \cos \theta \mathbf{a}_{Y} \times F \mathbf{a}_{Y}$ $= LF \sin \theta \mathbf{a}_{Z}$

ہو گا جہاں بچپلی مثال کی مدد سے $a_{
m x} imes a_{
m y} = 0$ اور $a_{
m y} imes a_{
m y} imes a_{
m z}$ اور $a_{
m y} imes a_{
m y} imes a_{
m z}$ اور $a_{
m y} imes a_{
m y} imes a_{
m z}$ اور $a_{
m y} imes a_{
m y} imes a_{
m z}$ اور $a_{
m y} imes a_{
m y} imes a_{
m z}$ اور $a_{
m y} imes a_{
m y} imes a_{
m z}$ اور $a_{
m y} imes a_{
m y} imes a_{
m z}$ اور $a_{
m y} imes a_{
m y} imes a_{
m z}$ اور $a_{
m y} imes a_{
m z} imes a_{
m z}$ اور $a_{
m y} imes a_{
m y} imes a_{
m y} imes a_{
m z}$

اس مثال میں $heta = \sin(180^\circ - \alpha)$ ہوتا ہے لہذا $lpha = \sin(180^\circ - \alpha)$ ہوتا ہے لہذا ہیں قوت مروڑ کو درج ذیل بھی لکھا جا سکتا ہے۔

 $T = LF \sin \theta \mathbf{a}_{\mathbf{Z}}$ $= LF \sin \theta_{LF} \mathbf{a}_{\mathbf{Z}}$

یمی جواب ضرب صلیبی کی تعریف یعنی مساوات 1.29 اور دائیں ہاتھ کے قانون کی مدد سے زیادہ آسانی سے حاصل ہوتا ہے۔

1.10.2 نقطی ضرب

رو سمتی متغیرات کا ایبا حاصل ضرب جو غیر سمتی متغیر ہو نقطی ضربے 24 کہلاتا ہے جو درج ذیل لکھا جاتا ہے۔ $C=A\cdot B$

 ${\rm dot\ product^{24}}$

اب ١. بنيادي حت أق

شكل 1.10: كارتيسى نظام ميں قوت مروڑ كاحل

نقطی ضرب میں ضرب کے نشان کو نقطہ کی علامت سے ظاہر کیا جاتا ہے جس کی بنا پر اس کا نام نقطی ضرب ہے۔

نقطی ضرب کی مقدار درج ذیل ہو گی

(1.33)
$$\begin{aligned} \boldsymbol{C} &= \boldsymbol{A} \cdot \boldsymbol{B} \\ &= |\boldsymbol{A}| |\boldsymbol{B}| \cos \theta_{AB} \\ &= AB \cos \theta_{AB} \end{aligned}$$

جہال θ_{AB} ان سمتیات کے نیج زاویہ ہے۔

مثال 1.3: مندرجه ذیل نقطی ضرب حاصل کریں۔

$$a_{\mathrm{X}} \cdot a_{\mathrm{X}} - a_{\mathrm{y}} \cdot a_{\mathrm{y}} - a_{\mathrm{z}} \cdot a_{\mathrm{z}} \bullet$$

$$oldsymbol{a}_{ extsf{X}} \cdot oldsymbol{a}_{ extsf{Y}} = oldsymbol{a}_{ extsf{Y}} \cdot oldsymbol{a}_{ extsf{Z}} = oldsymbol{a}_{
ho} \cdot oldsymbol{a}_{
ho} \cdot oldsymbol{a}_{
ho} = oldsymbol{a}_{
ho$$

حل: اس مثال میں سب سمتیات اکائی ہیں۔ اکائی سمتیہ کا طول ایک (1) کے برابر ہوتا ہے:

$$a_{X} \cdot a_{X} = (1)(1)\cos 0 = 1$$
 •

$$a_{y} \cdot a_{y} = (1)(1)\cos 0 = 1$$
 •

$$a_z \cdot a_z = (1)(1)\cos 0 = 1$$
 •

$$a_{X} \cdot a_{V} = (1)(1)\cos 90^{\circ} = 0$$
 •

$$\boldsymbol{a}_{\mathrm{y}} \cdot \boldsymbol{a}_{\mathrm{z}} = (1)(1)\cos 90^{\circ} = 0$$

$$\boldsymbol{a}_{\rho} \cdot \boldsymbol{a}_{\rho} = (1)(1)\cos 0 = 1 \bullet$$

شكل 1.11: كارتيسي نظام ميں كام

 $\boldsymbol{a}_{\rho} \cdot \boldsymbol{a}_{\theta} = (1)(1)\cos 90^{\circ} = 0$

مثال 1.4: شکل 1.11 میں قوت F ایک بوجھ کو دھکیل رہی ہے۔ سمتی فاصلہ L طے کرنے پر قوت کتنا کام کر پکی ہوگی۔

حل: کام W کی تعریف درج ذیل ہے۔

$$(1.34) W = \mathbf{F} \cdot \mathbf{L}$$

كار تيسى نظام مين سمتى فاصله

$$(1.35) L = L\cos\theta a_{X} + L\sin\theta a_{Y}$$

ہو گا۔ یوں درج ذیل ہو گا

(1.36)
$$W = (F\boldsymbol{a}_{X}) \cdot (L\cos\theta\boldsymbol{a}_{X} + L\sin\theta\boldsymbol{a}_{y})$$
$$= FL\cos\theta(\boldsymbol{a}_{X} \cdot \boldsymbol{a}_{X}) + FL\sin\theta(\boldsymbol{a}_{X} \cdot \boldsymbol{a}_{y})$$
$$= FL\cos\theta$$

جہاں پچھلی مثال کی مدد سے $a_{\rm X}\cdot a_{\rm X}=0$ اور $a_{\rm X}\cdot a_{\rm Y}=0$ گئے ہیں۔ یہی جواب نقطی ضرب کی تعریف مساوات 1.33ء سے با آسانی حاصل ہوتا ہے۔

اب ١ بنيادي حسائق

1.11 تفرق اور جزوی تفرق

مساوات 1.37 میں ایک تفاعل کا تفرق 25 دیا گیا ہے، جس میں B_0 ایک مستقل ہے، جبکہ مساوات 1.38 میں ایک تفاعل کا جرور تفرق 26 دیا گیا ہے۔

(1.37)
$$B(\theta) = B_0 \cos \theta$$

$$\frac{\mathrm{d}B}{\mathrm{d}\theta} = -B_0 \sin \theta$$

(1.38)
$$\partial W(x,\lambda) = \frac{\partial W}{\partial x} dx + \frac{\partial W}{\partial \lambda} d\lambda$$

1.12 خطى تكمل

ماوات 1.39 میں ایک تفاعل $B(\theta)$ دیا گیا ہے جے شکل 1.12 میں دکھایا گیا ہے۔ اس کا طول موج 2π ریڈیئن ہے۔

$$(1.39) B_0 \cos \theta$$

ہم $-\pi/2 < \theta < \pi/2$ پر اس تفاعل کی اوسط قیمت تلاش کرتے ہیں۔

(1.40)
$$B_{k',l} = \frac{B_0}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta \, d\theta = \frac{2B_0}{\pi}$$

اس طرح ہم B^2 کی اوسط تلاش کرتے ہیں۔ $-\pi/2 < \theta < \pi/2$ کی اوسط تلاش کرتے ہیں۔

(1.41)
$$B_{k,j}^{2} = \frac{B_{0}^{2}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2}\theta \,d\theta$$
$$= \frac{B_{0}^{2}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} \,d\theta$$
$$= \frac{B_{0}^{2}}{2}$$

 $[\]begin{array}{c} {\rm differentiation^{25}} \\ {\rm partial\ differentiation^{26}} \\ {\rm wavelength^{27}} \end{array}$

1.13. سطحي تكمل

شكل 1.12: كوسائن موج

تفاعل کے مربع کی اوسط کا جذر نہایت اہم قیمت ہے جو تفاعل کی موڑ ²⁸ قیمت کہلاتی ہے اور جسے م_{وڑ} B کھھا جاتا ہے۔

(1.42)
$$B_{\mu\nu} = \sqrt{B_{\mu\nu}^2} = \frac{B_0}{\sqrt{2}}$$

یہ ایک بہت اہم متیجہ ہے جو آپ کو زبانی یاد ہونا چاہئے۔ یہ مساوات ہر سائن نما تفاعل کے لئے درست ہے۔ کسی متغیرہ کے مربع کی اوسط کا جذر اس متغیرہ کی موڑ²⁹ قیت کہلاتی ہے۔

1.13 سطى تكمل

فرض کریں شکل 1.13 میں نکلی کے بیرونی سطح پر سطحی کثافت، B، کی قیمت مساوات 1.39 دیتی ہے۔ ہم آدھے بیرونی سطح، زاویہ $\pi/2$ تا $\pi/2$ ، کے نہوانس کی کل مقدار ϕ معلوم کرتے ہیں۔اس سطح میں نکلی کے سر شامل نہیں ہیں۔

ہم نکی کے بیرونی سطح پر خطہ abcd لیتے ہیں جس کی چوڑائی $\rho\Delta\theta$ ، کمبائی I اور رقبہ ΔA ہے۔ ΔA کو نہایت ΔB ماتھ تبدیل نہیں ہوتی ΔB ماتھ تبدیل نہیں ہوتی ΔB ماتھ تبدیل نہیں ہوتی ΔB اور کل ΔB ورج ذیل ہوگا۔

rms, root mean square²⁸ effective²⁹

22

شکل 1.13: نکلی کی بیرونی سطح پر متغیرہ کا تکمل کل مقدار دے گا۔

(1.43)
$$\phi = \int_{-\pi/2}^{\pi/2} d\phi = \int_{-\pi/2}^{\pi/2} (B_0 \cos \theta) (\rho l \, d\theta)$$
$$= B_0 l \rho \int_{-\pi/2}^{\pi/2} \cos \theta \, d\theta = 2B_0 l \rho$$

مساوات 1.43 میں نحیلا حد $(-\pi/2-lpha)$ اور بالائی کا حد $(\pi/2-lpha)$ کینے سے درج ذیل حاصل ہو گا۔

(1.44)
$$\phi(\alpha) = B_0 l \rho \int_{-\frac{\pi}{2} - \alpha}^{\frac{\pi}{2} - \alpha} \cos \theta \, d\theta = 2B_0 l \rho \cos \alpha$$

نگی کے بیرونی نصف سطح پر $\phi(\alpha)$ کی عمومی قیت مساوات 1.44 دیتی جو α پر منحصر ہے۔ یہ ایک بہت اہم مساوات ہے۔ مساوات ہے۔ مساوات 4.44 میں $\alpha=0$ پر کرنے سے مساوات 1.43 حاصل ہوتا ہے۔

1.14 دوری سمتیه

Euler's equation³⁰

1.14 دوري سمتي

شکل1.14: دوری سمتیه

کی مدد سے کوسائن موج درج ذیل لکھی جاسکتی ہے۔

(1.46)
$$A_0 \cos(\omega t + \phi) = \frac{A_0}{2} \left(e^{j(\omega t + \phi)} - e^{-j(\omega t + \phi)} \right)$$

اس سے ثابت ہوتا ہے کہ کوسائن موج دراصل دو مخلوط اعداد کا مجموعہ ہے۔ مساوات یولر ایک مخلوط عدد کو ظاہر کرتا ہے جس کے دو جزو ہیں۔ اس کا ایک جزو حقیقی عدد ہے اور اس کا دوسرا جزو فرضی عدد ہے۔اس کا حقیقی جزو کوسائن موج کو ظاہر کرتا ہے۔ لہذا ایک کوسائن موج $A_0e^{j(\omega t+\phi)}$ یا $A_0e^{-j(\omega t+\phi)}$ کا حقیقی جزو ہوتا ہے۔ رسمی طور پر سائن نما امواج کو $A_0e^{j(\omega t+\phi)}$ سے ظاہر کیا جاتا ہے جس کو مختصراً $A_0e^{j\phi}$ یا $A_0e^{j(\omega t+\phi)}$ کسا جو دور کی سمتیہ $A_0e^{j(\omega t+\phi)}$ اور افقی کمیر کے ساتھ زاویہ $A_0e^{j(\omega t+\phi)}$

دوری سمتیہ استعال کرتے وقت آپ کو یہ ذہن میں رکھنا ہو گا کہ یہ در حقیقت ایک کوسائن موج ہے جس کا حیطہ A_0 ، زاویائی فاصلہ ϕ اور زاویائی تعدد ω ہے۔

اس کتاب میں دوری سمتیات کو سادہ طرز لکھائی میں انگریزی کے بڑے حروف جن پر ٹوپی کا نشان ہو سے ظاہر کیا جائے گا۔ یوں برقی کیا جائے گا، یعنی Î, V وغیرہ اور ان کے طول کو بغیر ٹوپی کے نشان کے اسی حرف سے ظاہر کیا جائے گا۔ یوں برقی

 ${\rm phasor}^{31}$

اب ١ بنيادي حسائق

وباو $v=20\cos(\omega t+rac{\pi}{3})$ وباو $v=20\cos(\omega t)$

$$v = 20\cos\left(\omega t + \frac{\pi}{3}\right)$$

$$\hat{V} = 20e^{j\frac{\pi}{3}}$$

$$\hat{V} = 20/\frac{\pi}{3}$$

$$V = 20$$

اس مساوات میں پہلا جزو ایک عام کوسائن موج ہے جس کو دوسرے جزو میں دوری سمتیہ کی صورت میں لکھا گیا ہے۔ تیسرا اس دوری سمتیہ کا طول اور چوتھا اس کا زاویہ بتلا رہا ہے۔

دوری سمتیات کو عام سمتیات کی طرح ہی تصور کیا جاتا ہے۔ اس مساوات میں \hat{V} کا طول 20 اور افقی کیبر سے زاویہ $\frac{\pi}{3}$ ریڈ بیئن ہے۔زاویہ کو افقی کیبر سے گھڑی کے مخالف رخ ناپا جاتا ہے۔افقی کیبر سے گھڑی کے رخ منفی زاویہ ہوگا۔ شکل 1.14 میں اس \hat{V} کے علاوہ چند دوسرے دوری سمتیات بھی دکھائے گئے ہیں۔

برتی ادوار میں عموماً برتی دباو \hat{V} کی نسبت سے برتی رو \hat{I} کا زاویہ بیان کیا جاتا ہے۔ شکل 1.14 میں \hat{I}_1 میں درجہ برتی دباو سے آگے ہے جبکہ \hat{I}_2 بینتالیس درجہ برتی دباو کے پیچھے ہے۔ ہم کہتے ہیں \hat{I}_1 تیس درجہ پارٹی زاویہ \hat{I}_2 بینتالیس درجہ تاخیر روزوں اللہ ناویہ \hat{I}_3 بیل \hat{I}_4 رو جبکہ \hat{I}_4 بینتالیس درجہ تاخیر روزوں اللہ ناویہ \hat{I}_4 اور \hat{I}_4 اور \hat{I}_4 میں "75 زاویائی فرق فرق 45 کہتے ہیں للذا \hat{I}_4 اور \hat{I}_4 میں "75 زاویائی فرق بایا جاتا ہے۔ یہاں دھیان رہے کہ شکل \hat{I}_4 داویہ نایئے کے الٹ رخ ہے للذا یہ ایک منفی زاویہ ہے۔ \hat{I}_4 میں "45 میں "45 میں نامینے کے الٹ رخ ہے للذا یہ ایک منفی زاویہ ہے۔

آئیں دوری سمتیات استعال کرتے ہوئے ایک سادہ برقی دور حل کرتے ہیں۔ یوں دوری سمتیات سے وابستگی پیدا ہو گی اور ان کا استعال بھی سکھ لیں گے۔

leading angle³²

lagging angle³³

phase difference³⁴

power factor³⁵

power factor angle³⁶

lagging power factor³⁷ leading power factor³⁸

1.14 دوري سمتي

$$Z = R + jX$$

$$|Z| = \sqrt{R^2 + X^2}$$

$$\phi_Z = \tan^{-1} \frac{X}{R}$$

$$v(t) = V_0 \cos(\omega t + \alpha)$$

$$i(t) = \frac{V_0}{|Z|} \cos(\omega t + \alpha - \phi_Z)$$

$$= I_0 \cos(\omega t + \alpha - \phi_Z)$$

شکل 1.15 دوری سمتیات کی مدد سے RL دور کاحل

$$v(t)=V_0\cos(\omega t+\alpha)$$
 شکل 1.15 ایک سادہ $R-L$ یکے دور کی $v(t)=V_0\cos(\omega t+\alpha)$ $\hat{V}=V_0/\alpha$

دوری سمتیات کی استعال سے ہم برقی رو \hat{I} معلوم کرتے ہیں

(1.49)
$$\hat{I} = \frac{\hat{V}}{R + jX} = \frac{V_0 \underline{\alpha}}{|Z| \underline{\phi_Z}}$$

$$= \frac{V_0}{|Z|} \underline{\alpha - \phi_Z} = I_0 \underline{\alpha - \phi_Z}$$

جہال $rac{X}{R}$ رکاوٹ کا زاویہ اور $rac{V_0}{|Z|}$ ہیں۔یوں برتی رو درج ذیل ہو گا۔

$$i(t) = I_0 \cos(\omega t + \alpha - \phi_Z)$$

اس دور میں تاخیری زاویہ ϕ_Z کے برابر ہے۔

single phase³⁹

26 بابـــا. بنيادي حت أق

إب2

مقناطيسى ادوار

2.1 مزاحمت اور ہچکچاہٹ

شکل 2.1 میں ایک سلاخ و کھائی گئی ہے جس کی لمبائی کے رخ مزاحمہا

$$(2.1) R = \frac{l}{\sigma A}$$

 μ ررج و گل جہال σ موصلیتے 2 اور A=wh رقبہ عمودی تراش ہے۔ اس سلاخ کی بھیکھا ہے 3 ورج و بل ہے جہال م

شكل 2.1:مزاحمت اور جيكيا ٻڻ

resistance¹ conductivity²

يا___2. مقت طبيبي اووار

مقناطبیح متقل 4 کہلاتا ہے۔

$$\Re = \frac{l}{\mu A}$$

مقناطیسی مستقل μ کو عموماً خلاء کی مقناطیسی مستقل مستقل $\mu_0=4\pi\,10^{-7}\,rac{ ext{H}}{ ext{m}}$ متناطیسی مستقل مستقل الماء کی مقناطیسی مستقل مستقل مستقل الماء کی مستقل مس

$$\mu = \mu_r \mu_0$$

جہاں μ_r برومقناطیسے متقلے کہلاتا ہے۔ ہیکیاہٹ کی اکائی ایمپیر – چکر فی ویبر ہے جس کی وضاحت جلد کی جائے گی۔

 $\mu_r=10\,\mathrm{cm}$ مثال $\mu_r=2000$ مثال المراجع بين معاون

حل:

$$\begin{split} \Re &= \frac{l}{\mu_r \mu_0 A} \\ &= \frac{10 \times 10^{-2}}{2000 \times 4\pi \times 10^{-7} \times 2.5 \times 10^{-2} \times 3 \times 10^{-2}} \\ &= 53\,044\,\mathrm{A} \cdot \mathrm{turns/Wb} \end{split}$$

2.2 کثافت برقی رواور برقی میدان کی شدت

 5 گل 2.2 میں ایک موصل سلاخ کے سروں پر برتی دباو v لاگو کیا گیا ہے۔سلاخ میں برتی روi اوہم کے قانون 5 ہے حاصل ہو گی۔

$$(2.4) i = \frac{v}{R}$$

reluctance³ permeability, magnetic constant⁴

Ohm's law⁵

شكل 2.2: كثافت برقى رواور برقى د باوكى شدت

درج بالا مساوات كو مساوات 2.1 كى مدد سے

$$(2.5) i = v\left(\frac{\sigma A}{l}\right)$$

لعيني

$$\frac{i}{A} = \sigma\left(\frac{v}{l}\right)$$

يا

$$(2.7) J = \sigma E$$

کھا جا سکتا ہے جہاں J اور E کی تعریفات درج ذیل ہیں۔

$$(2.8) J = \frac{i}{A}$$

$$(2.9) E = \frac{v}{I}$$

شکل 2.2 میں سمتیہ J کی مطلق قیت J اور سمتیہ E کی مطلق قیت E کی مطلق قیمت و کے مساوات 2.7 کو درج ذیل کھا جا سکتا ہے

$$(2.10) J = \sigma E$$

جو قانون اوہم کی دوسری روپ ہے۔ J اور E دونوں کا رخ $a_{
m y}$ ہے۔

باب_2 مقت طبيسي ادوار

شکل 2.2 سے ظاہر ہے کہ برقی روi سلاخ کی رقبہ عمودی تراث A سے گزرتی ہے للذا مساوات 2.8 کے تحت I کا فیضے برقی روI ہو گی۔ ای طرح مساوات 2.9 سے واضح ہے کہ I برقی دباو نی اکائی لمبائی کو ظاہر کرتی ہے للذا I کو برقی میدان کی شدھے کہتے ہیں۔ I کو برقی میدان کی شدھے کہتے ہیں۔ I

بالکل اسی طرح کی مساواتیں مقناطیسی متغیرات کے لئے حصہ 2.5 میں لکھی جائیں گی۔

2.3 برقی ادوار

 $\sigma=5.9\times10^7\,rac{\mathrm{S}}{\mathrm{m}}$ رقی دور میں برقی دباوہ v^8 وجہ سے برقی رو v^8 اللہ پیدا ہوتی ہے۔ تانباکی موصلیت کی مقدار بہت بڑی ہونے کی بنا اس سے جو بہت بڑی مقدار ہے۔ موصلیت کی اکائی v^8 ہے۔ تانباکی موصلیت کی مقدار بہت بڑی ہونے کی بنا اس سے بنی تارکی مزاحمت v^8 عموماً قابل نظر انداز ہو گی۔ تار میں برقی رو v^8 گرزنے سے تارکے سروں کے نیج برقی دباو کے گھٹاو کی مزاحمت v^8 بیدا ہو گا جس کو v^8 کی بنا نظر انداز کیا جا سکتا ہے۔ یوں تانبے کی تار میں برقی دباو کے گھٹاو کو رد کیا جا سکتا ہے۔ یعنی ہم v^8 کی سکتے ہیں۔

شکل 2.3-الف میں ایک ایسا ہی برقی دور دکھایا گیا ہے جس میں تانبے کی تارکی مزاحمت کو اکٹھے کر کے ایک ہی جگہ _{تار}R دکھایا گیا ہے۔اس دور کے لئے درج ذیل کھا جا سکتا ہے۔

$$(2.11) v = \Delta v + v_L$$

تار میں برقی گھٹاو Δv نظرانداز کرتے ہوئے

$$(2.12) v = v_L$$

حاصل ہوتا ہے۔اس کا مطلب ہوا کہ تار میں برقی دباو کا گھٹاو قابل نظرانداز ہونے کی صورت میں لا گو برقی دباو کا توں مزاحمت R_L تک پنچتا ہے۔ برقی ادوار حل کرتے ہوئے یہی حقیقت بروئے کار لاتے ہوئے تار میں برقی دباو کے نظرانداز کیا جاتا ہے۔شکل 2.3-الف میں ایسا کرنے سے شکل 2.3-ب حاصل ہوتا ہے۔ یہاں یہ سمجھ لینا ضروری ہے کہ برقی تار کو اس غرض سے استعال کیا جاتا ہے کہ لا گو برقی دباو کو مقام استعال تک بغیر گھٹائے پہنچایا جائے۔

2.3. برتی ادوار

شکل 2.3: برتی ادوار میں برتی تار کی مزاحت کو نظرانداز کیاجاسکتاہے۔

شکل 2.4: کم مزاحمتی راه میں برقی رو کی مقدار زیادہ ہو گی۔

عا_2,مقت طبيسي ادوار

شکل 2.5: مقناطیسی دور

شکل 2.4 میں دوسری مثال دی گئی ہے۔ یہاں ہم دیکھتے ہیں کہ برقی رواس راہ زیادہ ہو گی جس کی مزاحمت کم $i_1>i_2$ مورت میں $i_1>i_2$ کی صورت میں جو۔ بول $i_1>i_2$ کی صورت میں جا ہو گا۔

2.4 مقناطيسي دور حصه اول

 $\tau = \phi \Re_a$

current density⁶

electric field intensity⁷

electric voltage 8

⁹ برقی د بادکی اکائی وولٹ ہے جواٹلی کے الیانڈر ووولٹاکے نام ہے جنہوں نے برقی بیٹری ایجاد کی۔

electric current¹

¹¹ بر تی روکی اکائی ایمپیئر ہے جو فرانس کے انڈر میر ایمپیئر کے نام ہے جن کا برتی و مقاطیسی میدان میں اہم کر دار ہے۔

copper 12

¹³ مزاحت کی اکائی اوہم ہے جو جر منی کے جارج سائن اوہم کے نام ہے جنہوں نے قانون اوہم دریافت کیا۔

magnetomotive force, mmf¹⁴

 $flux^{15}$

 $[\]rm reluctance^{16}$

2.4. مقت طیسی دور حصیه اول

جہاں \Re_c قابل نظرانداز ہو وہاں، سلسلہ وار مزاحمتوں کی طرح، دو سلسلہ وار جھکچاہٹوں کا مجموعی جھکچاہٹ \Re_s استعال کر کے برتی رو حاصل ہو گی۔

$$\Re_s = \Re_a + \Re_c$$

$$\tau = \phi \Re_s$$

برتی دور کی طرح، مقناطیسی دباو کو کم بچکچاہٹ کی راہ استعال کرتے ہوئے مقام ضرورت تک پہنچایا جاتا ہے۔ مساوات 2.2 کے تحت بچکچاہٹ کی قیمت مقناطیسی مستقل μ پر مخصر ہے ۔مقناطیسی مستقل کی اکائی ہمیزی فی میٹر μ_r اور μ_r کو عموماً μ_r کو عموماً μ_r کا کھا جاتا ہے جہال μ_r جہاں $\mu_0 = 4\pi \times 10^{-7}$ کھا جاتا ہے جہاں μ_r کو مقناطیسی مستقل μ_r کی قیمت 2000 اور جو مقناطیسی مستقل μ_r کی قیمت μ_r کی قیمت μ_r کی قیمت μ_r کی جو مقناطیسی دباو کو ایک جگہ سے دو سری جگہ منتقل کرنے کے لئے ان ہی مقناطیسی مواد کو استعال کیا جاتا ہے۔

بد قتمتی سے مقناطیسی مواد کے μ کی قیمت اتنی زیادہ نہیں ہوتی ہے کہ ان سے بنی سلاخ کی ہیکچاہٹ ہر موقع پر قابل نظرانداز ہو۔ مساوات 2.2 کے تحت ہیکچاہٹ کم سے کم کرنے کی خاطر رقبہ عمودی تراش کو زیادہ سے زیادہ اور لمبائی کو کم سے کم کرنا ہو گا۔ یول مقناطیسی دباو منتقل کرنے کے لئے باریک تار نہیں بلکہ خاصا زیادہ رقبہ عمودی تراش کا مقناطیسی راستہ درکار ہوتا ہے۔

مقناطیسی مثین، مثلاً موٹر اور ٹرانسفار مر، کا بیشتر حصہ مقناطیسی دباو منتقل کرنے والے ان مقناطیسی مواد پر مشمل ہوتا ہے۔ایسے مشینوں کے قلب میں عموماً یہی مقناطیسی مادہ پایا جاتا ہے للذا ایسا مواد مقناطیسی قالبہ 18 کہلاتا ہے (شکل 2.6)۔

برقی مثینوں میں مستعمل مقناطیسی قالب لوہے کی باریک چادر یا پتری 19 تہہ در تہہ رکھ کر بنائی جاتی ہے۔ مقناطیسی قالب کے بارے میں مزید معلومات حصہ 2.8 میں فراہم کی جائے گی۔

relative permeability, relative magnetic constant¹⁷
magnetic core¹⁸

laminations¹⁹

باب 2. مقت طبیمی اووار

شکل 2.6: کثافت مقناطیسی بهاواور مقناطیسی میدان کی شدت۔

2.5 كثافت مقناطيسي بهاواور مقناطيسي ميدان كي شدت

حصہ 2.2 میں برقی دور کی مثال دی گئے۔ یہاں شکل 2.6 میں دکھائے گئے مقناطیسی دور پر غور کرتے ہیں۔ مقناطیسی قالب کی $\mu_r = \infty$ تقالب کی ہی قالب کی ہی قالب کی ہی تابا ہوئے آگے بڑھتے ہیں۔ یوں قالب کی ہی قالب کی ہی قالب کی مقام کے مشال کرنے کے لئے استعال کی تارکی طرح یہاں مقناطیسی قالب کو مقناطیسی دباو τ ایک مقام سے دوسری مقام تک منتقل کرنے کے لئے استعال کیا گیا ہے۔ شکل 2.6 میں مقاطیسی دباو کو خلائی درزکی ہی چاہٹے m_a تک پہنچایا گیا ہے۔ یہاں m_c کو نظرانداز کرتے ہوئے کل ہی چکھاہٹ کو خلائی درزکی ہی جابر تصور کیا جا سکتا ہے:

$$\Re_a = \frac{l_a}{\mu_0 A_a}$$

خلائی درز کی لمبائی l_a قالب کے رقبہ عمودی تراش کے اضلاع b اور w ہے بہت کم ہونے کی صورت میں، لیخی $l_a \ll w$ اور $w \gg l_a \ll w$ خوری تراش $l_a \ll b$ کو قالب کے رقبہ عمودی تراش $l_a \ll w$ کے برابر تصور کیا جا سکتا ہے:

$$(2.17) A_a = A_c = wb$$

اں کتاب میں جہاں بتلایا نہ گیا ہو وہاں $l_a \ll b$ اور $w \gg l_a \ll b$ کاب میں جہاں بتلایا نہ گیا ہو وہاں

مقناطیسی دباو
$$au$$
 کی تعریف درج ذیل مساوات پیش کرتی ہے۔

یوں برقی تار کے چکر ضرب تار میں برقی رو کو مقناطیسی دباو کہتے ہیں۔ مقناطیسی دباو کی اکائی ایمپیئر-چکر²⁰ ہے۔ حصہ 2.2 کی طرح ہم مساوات 2.15 کو یوں لکھ سکتے ہیں۔

$$\phi_a = \frac{\tau}{\Re_a}$$

مقناطیسی بہاو کی اکائی 22 ور بھی ہے اور آپکیاہٹ کی اکائی ایمپیئر جگر فی ویبر 23 ہے۔ اس سلسلہ وار دور کے خلائی درز میں مقناطیسی بہاو ϕ_c ایک دوسرے کے برابر ہوں گے۔درج بالا مساوات کو مساوات کی مدد سے 02.2 کی مدد سے

$$\phi_a = \tau \left(\frac{\mu_0 A_a}{l_a} \right)$$

يا

$$\frac{\phi_a}{A_a} = \mu_0 \left(\frac{\tau}{l_a}\right)$$

کھ سکتے ہیں جہاں درز کی نشاندہی زیر نوشت میں a کھ کر کی گئی ہے۔ اس مساوات میں بائیں ہاتھ مقناطیسی بہاو فی اکائی رقبہ کو کثافتِ مقناطیسی بہاو²⁵ B_a اور دائیں ہاتھ مقناطیسی دباو فی اکائی لمبائی کو مقناطیسی میدالنے کی شدھے B_a کا کھا جا سکتا ہے:

$$(2.21) B_a = \frac{\phi_a}{A_a}$$

$$(2.22) H_a = \frac{\tau}{l_a}$$

کافت متناطیسی بہاوکی اکائی ویبرفی مرفع میٹر ہے جس کو ٹسلا²⁶ کا نام دیا گیا ہے۔مقناطیسی میدان کی شدت کی اکائی المبیئرفی میٹر²⁷ ہے۔ یوں مساوات 2.20 کو درج ذیل لکھا جا سکتا ہے۔

$$(2.23) B_a = \mu_0 H_a$$

جہاں متن سے واضح ہو کہ مقناطیسی میدان کی بات ہو رہی ہے وہاں مقناطیسی میدان کی شدت کو مختصراً میدانھے شدھے²⁸ کہا جاتا ہے۔

ampere-turn²⁰

Weber²¹

22 پیراکائی جرمنی کے ولیم اڈورڈ ویبر کے نام ہے جن کا برتی ومقناطیسی میدان میں اہم کر دار رہا ہے 23

ampere-turn per weber²³ magnetic flux density²⁴

magnetic flux density²⁵ magnetic field intensity²⁵

Tesla: ²⁶ یا الای سربیا کے بکولاٹسلا کے نام ہے جنہوں نے بدلتار وبر قی طاقت عام کرنے میں اہم کر دار اداکیا۔

ampere per meter²⁷

field intensity²⁸

باب_2.مقت طبيسي ادوار

 $B_a = 3$ گل 2.6 میں خلائی درز میں مقناطیسی بہاو کا رخ اکائی سمتیہ a_Z کا مخالف ہے لہذا کثافت ِ مقناطیسی بہاو ہے لہذا $-B_a a_Z$ کی خالف رخ دباو ڈال رہا ہے لہذا $-B_a a_Z$ مقناطیسی دباو کی شدت $H_a = -H_a a_Z$ جائے گی۔ اس طرح درج بالا مساوات کو درج ذیل سمتی روپ میں لکھا جا سکتا ہے۔

$$(2.24) B_a = \mu_0 H_a$$

خلاء کی جگہ کوئی دوسرا مادہ ہونے کی صورت میں یہ مساوات درج ذیل لکھی جائے گی۔

$$(2.25) B = \mu H$$

مثال 2.2: شکل 2.6 میں خلائی درز میں کثافتِ مقناطیسی بہاو 0.1 ٹسلا درکار ہے۔ قالب کی $\mu_r = \infty$ خلائی درز کی لمبائی 1 ملی میٹر اور قالب کے گرد برقی تار کے چکر 100 ہیں۔ درکار برقی رو i تلاش کریں۔

حل: مساوات 2.13 سے

$$\tau = \phi \Re$$

$$Ni = \phi \left(\frac{l}{\mu_0 A}\right)$$

$$\frac{\phi}{A} = B = \frac{Ni\mu_0}{l}$$

لکھ کر درج ذیل حاصل ہو گا۔

$$0.1 = \frac{100 \times i \times 4\pi 10^{-7}}{0.001}$$
$$i = \frac{0.1 \times 0.001}{100 \times 4\pi 10^{-7}} = 0.79567 \,\text{A}$$

یر تی رو خلائی درز میں $B=0.1\,\mathrm{T}$ کثافت مقناطیسی بہاوییدا کرے گا۔ $i=0.795\,67\,\mathrm{A}$

2.6 مقناطیسی دور حصه دوم

شکل 2.7 میں ایک سادہ مقناطیسی نظام دکھایا گیا ہے جس میں قالب کے مقناطیسی منتقل کو محدود تصور کرتے ہیں۔مقناطیسی دباو au=0 مقناطیسی قالب میں مقناطیسی بہاو au=0 پیر۔مقناطیسی دباو au=0 مقناطیسی قالب میں مقناطیسی بہاو م

2.6 مقن طيسي دور حصب دوم

شکل 2.7: ساده مقناطیسی دور به

مقام پر یکساں ہے اور قالب کی اوسط لمبائی l_c ہے۔ قالب میں مقناطیسی بہاو کا رخ فلیمنگ ادایار ہاتھ قانون و 29 کے دائیں ہاتھ کے قانون سے معلوم کیا جا سکتا ہے۔ اس قانون کو دو طریقوں سے بیان کیا جا سکتا ہے۔

- اگرایک کچھے کو دائیں ہاتھ سے یوں کپڑا جائے کہ ہاتھ کی چار انگلیاں کچھے میں برقی رو کے رخ لیٹی ہوں تب انگوٹھا اُس مقناطیسی بہاو کے رخ ہو گا جو اس برقی رو کی وجہ سے وجود میں آیا ہو۔
- اگر ایک تار جس میں برقی رو کا گزر ہو کو دائیں ہاتھ سے یوں پکڑا جائے کہ انگوٹھا برقی رو کے رخ ہو تب باقی چار انگلیاں اُس مقناطیسی بہاو کے رخ لیٹی ہوں گی جو اس برقی رو کی وجہ سے پیدا ہو گا۔

ان دو بیانات میں پہلا بیان کیچے میں مقناطیسی بہاو کا رخ معلوم کرنے کے لئے زیادہ آسان ثابت ہوتا ہے جبکہ سیر تھی تار کے گرد مقناطیسی بہاو کا رخ دوسرے بیان سے زیادہ آسانی سے معلوم کیا جا سکتا ہے۔

قالب میں مقناطیسی بہاو گھڑی کے رخ ہے۔ مقناطیسی بہاو ہ کو شکل 2.7 میں ملکی سیابی کے تیر دار کلیر سے ظاہر کیا گیا ہے۔ قالب کی بچکھاہٹ

$$\Re_c = \frac{l_c}{\mu_c A_c}$$

لکھتے ہوئے مقناطیسی بہاو

$$\phi_c = \frac{\tau}{\Re_c} = Ni \left(\frac{\mu_c A_c}{l_c} \right)$$

Fleming's right hand rule²⁹

عليسي ادوار المستعلق المستعلى المستعلق المستعلق المستعلق المستعلق المستعلق المستعلق المستعلق

شكل 2.8: خلائى درزاور قالب كے ہيكياہائ

ہو گا۔یوں تمام نا معلوم متغیرات حاصل ہو چکے۔

مثال 2.3: شکل 2.8 میں ایک مقناطیسی قالب دکھایا گیا ہے جس کی معلومات درج زیل ہیں۔

قالب اور خلائی درز کی ہیکھا ہٹیں تلاش کریں۔

عل:

$$\begin{split} b &= \frac{m-n}{2} = \frac{0.1-0.08}{2} = 0.01\,\mathrm{m} \\ A_a &= A_c = bw = 0.01\times0.02 = 0.0002\,\mathrm{m}^2 \\ l_c &= 2(h+n) - l_a = 2(0.2+0.08) - 0.001 = 0.559\,\mathrm{m} \end{split}$$

$$\Re_c = \frac{l_c}{\mu_r \mu_0 A_c} = \frac{0.559}{40000 \times 4\pi 10^{-7} \times 0.0002} = 55\,598\,\text{A} \cdot \text{t/Wb}$$

$$\Re_a = \frac{l_a}{\mu_0 A_a} = \frac{0.001}{4\pi 10^{-7} \times 0.0002} = 3\,978\,358\,\text{A} \cdot \text{t/Wb}$$

قالب کی لمبائی خلائی درز کی لمبائی سے 559 گنا زیادہ ہونے کے باوجود خلائی درز کی انچکچاہٹ قالب کی انچکچاہٹ سے $\Re_a\gg\Re_c$ ہو گا۔

2.6 مقت طيسي دور حصب دوم

مثال 2.4: شکل 2.9 سے رجوع کریں۔خلائی درز 5 ملی میٹر لمباہے اور گھومتے حصہ پر 1000 چکر ہیں۔خلائی درز میں 3.4 کا میں۔ خلائی درز میں کا 0.95 کثافت برقی بہاو حاصل کرنے کی خاطر درکار برقی رو معلوم کریں۔

حل: اس شکل میں گھومتے مشین، مثلاً موٹر، کی ایک سادہ صورت دکھائی گئی ہے۔ ایسی مشینوں کا ہیرونی حصہ ساکن رہتا ہے للذا اس جھے کو مشین کا ساکھنے حصہ 30 کہتے ہیں۔ ساکن جھے کے اندر مشین کا گھومتا حصہ 31 کہتے ہیں۔ اس مثال میں ان دونوں حصوں (قالب) کا $m_r = \infty$ تصور کیا گیا ہے للذا ان کی بچکچاہٹ صفر ہو گی۔ مقاطیسی بہاو کو ہلکی سیابی کی لکیر سے ظاہر کیا گیا ہے۔ مقاطیسی بہاو کی ایک مکمل چکر کے دوران مقاطیسی بہاو دو خلائی درزوں سے گزرتا ہے۔ یہ دو خلائی درز ہر لحاظ سے ایک دوسرے جیسے ہیں للذا ان دونوں خلائی درزوں کی بچکچاہٹ سلسلہ وار ہو سائی درزوں خلائی درزوں کی بچکچاہٹ سلسلہ وار ہیں۔ شکل 2.9 میں مقاطیسی بہاو کو گھومتے حصہ، ساکن حصہ اور دو خلائی درزوں سے گزرتا ہوا دکھایا گیا ہے۔ خلائی درز کی لمبائی A_c میں مقاطیسی بہاو کو گھومتے حصہ، ساکن حصہ اور دو خلائی درزوں سے گزرتا ہوا دکھایا گیا ہے۔ خلائی درز کی لمبائی A_c ، قالب کے رقبہ تراش A_c کی اصلاع سے بہت کم ہے للذا خلائی درز کا عمودی رقبہ تراش میں ایک جابر تصور کیا جائے گا۔

يوں
$$A_a=A_c$$
 ليتے ہوئے ايک خلائی درز کی ہمچکچاہئ $A_a=A_c$ يوں $\Re_a=rac{l_a}{\mu_0A_a}=rac{l_a}{\mu_0A_c}$ يورز کی ملک ميک کل ميککچاہئ درزوں کی کل ميککچاہئ درج ذیل ہو گا۔ $\Re_s=\Re_a+\Re_a=rac{2l_a}{\mu_0A_c}$

stator³⁰ rotor³¹ باب_2.مقت طبيسي ادوار

خلائی درز میں مقناطیسی بہاہ ϕ_a اور کثافتِ مقناطیسی بہاہ B_a درج ذیل ہوں گے۔

$$\begin{split} \phi_a &= \frac{\tau}{\Re_s} = (Ni) \left(\frac{\mu_0 A_c}{2l_a} \right) \\ B_a &= \frac{\phi_a}{A_a} = \frac{\mu_0 Ni}{2l_a} \end{split}$$

دی گئی معلومات پر کرتے ہوئے درج ذیل حاصل ہو گا۔

$$0.95 = \frac{4\pi 10^{-7} \times 1000 \times i}{2 \times 0.005}$$
$$i = \frac{0.95 \times 2 \times 0.005}{4\pi 10^{-7} \times 1000} = 7.56 \,\text{A}$$

روایتی موٹروں اور جنریٹروں کی خلاء میں تقریباً ایک ٹسلا کثافت برقی بہاو ہوتی ہے۔

2.7 خوداماله، مشتركه اماله اور توانائي

مقناطیسی بہاو کی وقت کے ساتھ تبدیلی برقی دباو کو جنم دیتی ہے۔ للذا شکل 2.10-ا کے قالب میں مقناطیسی بہاو ϕ کی تبدیل کی بنا کچھ میں برقی دباو e پیدا ہو گا جو کچھ کے سروں پر نمودار ہو گا۔ اس طرح پیدا ہونے والی برقی دباو کو امالی برقی دباو ³² کہتے ہیں۔ قانون فیراڈے ³³ کے تحت ³⁴ درج ذیل ہو گا (جہاں دائیں ہاتھ منفی کی علامت نہیں کھی گئے ہے چونکہ ہمیں صرف دباو کی مطلق قیمت سے غرض ہے)۔

$$(2.27) e = N \frac{\partial \phi}{\partial t} = \frac{\partial \lambda}{\partial t}$$

امالی برقی د باو کو منبع برقی د باو تصور کریں۔

امالی برقی دباو کا رخ تعین کرنے کی خاطر کچھے کے سرول کو کسرِ دور³⁵ کریں۔ کچھے میں پیدا برقی رواُس رخ ہو گا جو مقناطیسی بہاو کی تبدیلی کو روکے۔

induced voltage³² Faraday's law³³ الآمان غيران الشياني سائنسدان تقيه جنهوں نے محرک برتی د باودريافت کی short circuit³⁵

شکل 2.10: قالب میں مقناطیسی بہاو کی تبدیلی کھیے میں برقی د ہاوپیدا کرتی ہے۔

فرض کریں شکل 2.10-ا میں بہاو ہ گھڑی کی سوئیوں کے گھومنے کے رخ ہے اور بہاو کی مقدار بڑھ رہی ہے۔ بہاو کی تبدیلی کا مخالف بہاو کہ پیدا کرنے کی خاطر کچھے کا بالائی سر مثبت ہو گا۔شکل 2.10-ب میں کچھے کے سروں کے نتی مزاحمت میں کے سروں کے نتی مزاحمت میں کے سروں کے نتی مزاحمت میں کہ مزاحمت میں اور کا رخ قالب میں گھڑی کے مخالف رخ بہاو کہ پیدا کرے گا۔

قالب میں مقناطیسی بہاو ϕ ، قالب پر لییٹے گئے لیچھ کے تمام چکروں N کے اندر سے گزرتا ہے۔ $N\phi$ کو لیچھ کا ارتباط بہاو λ کہتے ہیں جس کی اکائی ویبر۔ چکر λ 37 ہے۔

$$(2.28) \lambda = N\phi$$

جن مقناطیسی ادوار میں مقناطیسی مستقل μ کو اٹل مقدار تصور کیا جا سکے یا جن میں خلائی درز کی بچکچاہٹ قالب کی بچکچاہٹ سے بہت زیادہ ہو، $\Re_a\gg\Re_c$ ، ان میں کیھے کی امالہ L^{38} کی تعریف درج ذیل مساوات دیتی ہے۔

$$(2.29) L = \frac{\lambda}{i}$$

 $\lambda=N\phi$ امالہ کی اکائی و بیر - چکر فی ایمپیئر ہے جس کو ہینری H^{39} کا نام H^{39} دیا گیا ہے۔ مساوات $\phi=R_c$ میں $\phi=R_c$ ، $\phi=R_c$ اور $\phi=R_c$ بر کرتے ہوئے درج ذیل حاصل ہو گا

(2.30)
$$L = \frac{N\phi}{i} = \frac{NB_cA_c}{i} = \frac{N^2\mu_0A_a}{l_a}$$

flux linkage³⁶ weber-turn³⁷

inductance³⁸

 $\rm Henry^{39}$

40 امر کی سائنسدان جوزف بینری جنبوں نے مالکل فیراڈے سے علیحدہ طور پر محرک برقی د باودریافت کی

42 مقت طيسي ادوار

شكل 2.11: اماليه (مثال 2.5)

جہاں قالب کا رقبہ عمودی تراش A_c اور درز کا رقبہ عمودی تراش A_a ایک دوسرے کے برابر لیے گئے ہیں۔

مثال 2.5: شکل 2.11 میں $b = 5 \, \text{cm}, w = 4 \, \text{cm}, l_a = 3 \, \text{mm}$ مثال 2.15: شکل 2.11 میں اور قالب کی $l_c = 30 \, \text{cm}$ اوسط لمبائی $l_c = 30 \, \text{cm}$ کے بیان دو صور توں میں کیھے کی امالہ تلاش کریں۔

- $\mu_r=\infty$ قالب کا $\mu_r=0$
- $\mu_r = 500$ قالب کا •

حل: (1) قالب کے $\mu_r = \infty$ کی بنا قالب کی پیچکیاہٹ قابل نظرانداز ہو گی لہذا امالہ درج ذیل ہو گا۔

$$L = \frac{N^2 \mu_0 wb}{l_a}$$

$$= \frac{1000^2 \times 4\pi 10^{-7} \times 0.04 \times 0.05}{0.003}$$

$$= 0.838 \,\text{H}$$

(+) کی صورت میں قالب کی انجیجاہٹ قابل نظر انداز نہیں ہو گی۔خلاء اور قالب کی انجیجاہٹ $\mu_r=500$ دریافت کرتے ہیں۔

$$\Re_a = \frac{l_a}{\mu_0 w b} = \frac{0.003}{4\pi 10^{-7} \times 0.04 \times 0.05} = 1\,193\,507\,\mathrm{A\cdot t/Wb}$$

$$\Re_c = \frac{l_c}{\mu_r \mu_0 w b} = \frac{0.3}{500 \times 4\pi 10^{-7} \times 0.04 \times 0.05} = 238\,701\,\mathrm{A\cdot t/Wb}$$

یوں بہاو، ارتباط اور امالہ درج ذیل ہوں گے۔

$$\begin{split} \phi &= \frac{Ni}{\Re_a + \Re_c} \\ \lambda &= N\phi = \frac{N^2i}{\Re_a + \Re_c} \\ L &= \frac{\lambda}{i} = \frac{N^2}{\Re_a + \Re_c} = \frac{1000^2}{1\,193\,507 + 238\,701} = 0.698\,\mathrm{H} \end{split}$$

مثال 2.6: شكل 2.12 ميں ايك پيجپرار لچھا
41
 و كھايا گيا ہے جس كى جسامت ورج ذيل ہے۔ $N=11, r=0.49~\mathrm{m}, l=0.94~\mathrm{m}$

پیچیدار کیجے کے اندر مقناطیسی بہاو ϕ کا بیشتر حصہ محوری رخ ہوتا ہے۔ کیجے کے باریبی بہاو پوری کا نئات سے گزرتے ہوئے واپس کیجے میں داخل ہوتا ہے۔ چونکہ پوری کا نئات کا رقبہ عمودی تراش A لا متنابی ہے لہذا کیجے کے باہر کثافت مقناطیسی بہاو $B=\frac{\phi}{A}$ کی مقدار قابل نظرانداز ہو گی۔ کیجے کے اندر محوری رخ مقناطیسی شدت درج ذمل ہو گی۔ خوری کی مقدار قابل نظرانداز ہو گی۔ کی مقدار قابل نظرانداز ہو گی۔

$$H = \frac{Ni}{l}$$

اس کھیے کی خود امالہ حاصل کریں۔

باب 2. مقت طبیسی ادوار

عل:

$$B = \mu_0 H = \frac{\mu_0 Ni}{l}$$

$$\phi = B\pi r^2 = \frac{\mu_0 Ni\pi r^2}{l}$$

$$\lambda = N\phi = \frac{\mu_0 N^2 i\pi r^2}{l}$$

$$L = \frac{\lambda}{i} = \frac{\mu_0 N^2 \pi r^2}{l}$$

اور l کی قیمتیں پر کرتے ہوئے درج ذیل امالہ حاصل ہو گا 42 L

$$L = \frac{4\pi 10^{-7} \times 11^2 \times \pi \times 0.49^2}{0.94} = 122\,\mu\text{H}$$

 i_1 شکل 2.13 میں دو لیجھوں کا ایک مقناطیسی دور دکھایا گیا ہے۔ ایک لیجھے کے چکر N_1 اور اس میں برقی رو i_2 ہے، دوسرا لیجھا N_2 چکر کا ہے اور اس میں برقی رو i_2 ہے۔ دونوں کیجھوں میں مثبت برقی رو قالب میں ایک جیسے رخ مقناطیسی دباو پیدا کرتے ہیں۔ اگر قالب کا \Re_c قابل نظرانداز ہو تب مقناطیسی بہاو ϕ درج ذیل ہو گا۔

(2.31)
$$\phi = (N_1 i_1 + N_2 i_2) \frac{\mu_0 A_a}{l_a}$$

دونوں کیجھوں کا مجموعی مقناطیسی دیاو، $N_1 i_1 + N_2 i_2$ ، مقناطیسی بہاو ϕ پیدا کرتا ہے۔ اس مقناطیسی بہاو کا پہلے کیجھ

موٹائی
$$=b$$

$$A_a = A_c = bw$$

$$\lambda_1 = N_1 \phi$$

$$\lambda_2 = N_2 \phi$$

$$\phi = \frac{N_1 i_1 + N_2 i_2}{\Re_a + \Re_c}$$

شكل 2.13: دولچھے والا مقناطیسی دور۔

کے ساتھ ارتباط

(2.32)
$$\lambda_1 = N_1 \phi = N_1^2 \frac{\mu_0 A_a}{l_a} i_1 + N_1 N_2 \frac{\mu_0 A_a}{l_a} i_2$$

لعيني

$$(2.33) \lambda_1 = L_{11}i_1 + L_{12}i_2$$

ے جہاں L_{11} اور L_{12} ہے۔

$$(2.34) L_{11} = N_1^2 \frac{\mu_0 A_a}{l_a}$$

$$(2.35) L_{12} = N_1 N_2 \frac{\mu_0 A_a}{l_a}$$

$$\lambda_2 = N_2 \phi = N_2 N_1 \frac{\mu_0 A_a}{l_a} i_1 + N_2^2 \frac{\mu_0 A_a}{l_a} i_2$$
 (2.36)
$$= L_{21} i_1 + L_{22} i_2$$

جہال L_{22} اور L_{21} سے مراد درج ذیل ہے۔

$$(2.37) L_{22} = N_2^2 \frac{\mu_0 A_a}{I}$$

(2.38)
$$L_{21} = L_{12} = N_2 N_1 \frac{\mu_0 A_a}{l_a}$$

لیے اور کا نود امالہ اور $L_{21}=L_{12}$ دونوں کی مشتر کہ امالہ ہے۔امالہ کا تصور اس وقت کار آمد ہوتا ہے L_{22} جب مقناطیسی مستقل μ کو اٹل تصور کرنا ممکن ہو۔

self inductance⁴³ self flux linkage⁴⁴

mutual inductance⁴⁵

mutual flux linkage⁴⁶

باب 2. مقت طبيسي ادوار

مساوات 2.29 کو مساوات 2.27 میں پر کرتے ہیں۔

(2.39)
$$e = \frac{\partial \lambda}{\partial t} = \frac{\partial (Li)}{\partial t}$$

اگر امالہ کی قیمت اٹل ہو، جیسا کہ ساکن مشینوں میں ہوتا ہے، تب ہمیں امالہ کی جانی پیچانی مساوات

$$(2.40) e = L \frac{\partial i}{\partial t}$$

ملتی ہے۔ اگر امالہ بھی تبدیل ہو، جیسا کہ موٹروں اور جزیٹروں میں ہوتا ہے، تب درج ذیل ہو گا۔

$$(2.41) e = L \frac{\partial i}{\partial t} + i \frac{\partial L}{\partial t}$$

قوانا کھے 47 کی اکائی جاول 49 49 ہے اور طاقتے 50 کی اکائی 51 جاول فی سینڈ ہے جس کو واہے 52 W کا نام دیا گیا ہے۔

اس کتاب میں توانائی یا کام کو W سے ظاہر کیا جائے گا اگرچہ طاقت کی اکائی واٹ W کے لئے بھی یہی علامت استعال ہوتی ہے۔امید کی جاتی ہے کہ متن سے اصل مطلب جاننا ممکن ہو گا۔

وقت t کے ساتھ توانائی W کی تبدیلی کی شرح کو طاقہp کہتے ہیں۔یوں درج ذیل لکھا جا سکتا ہے۔

$$(2.42) p = \frac{\mathrm{d}W}{\mathrm{d}t} = ie = i\frac{\mathrm{d}\lambda}{\mathrm{d}t}$$

مقناطیسی دور میں لمحہ t_1 تا t_2 مقناطیسی توانائی کی تبدیلی کو تکمل کے ذریعہ حاصل کیا جا سکتا ہے:

(2.43)
$$\Delta W = \int_{t_1}^{t_2} p \, \mathrm{d}t = \int_{\lambda_1}^{\lambda_2} i \, \mathrm{d}\lambda$$

ایک کیچے کا مقناطیسی دور، جس میں امالہ کی قیت اٹل ہو، کے لئے درج ذیل لکھا جا سکتا ہے۔

(2.44)
$$\Delta W = \int_{\lambda_1}^{\lambda_2} i \, \mathrm{d}\lambda = \int_{\lambda_1}^{\lambda_2} \frac{\lambda}{L} \, \mathrm{d}\lambda = \frac{1}{2L} \left(\lambda_2^2 - \lambda_1^2 \right)$$

energy⁴⁷

 $Watt^{52}$

Joule⁴⁸

⁴⁹ جیس پریسقوٹ جاول انگلتانی سائنسدان جنہوں نے حرارت اور میکانی کام کارشتہ دریافت کیا 50 سے میں میں

power³⁰

⁵¹ کاللینڈ کے جیمزواٹ جنہوں نے بخارات پر چلنے والے انجن پر کام کیا 52 میں تربیع

2.8. مقت طیسی مادہ کے خواص

شکلB-H:2.14 خطوط یامقناطیسی جال کے دائرے۔

یوں
$$t_1$$
 پر t_2 تصور کرتے ہوئے کسی مجھی λ پر مقناطیسی توانائی درج ذیل ہو گی۔
$$\Delta W = \frac{\lambda^2}{2L} = \frac{Li^2}{2}$$

2.8 مقناطیسی مادہ کے خواص

قالب کے استعال سے دو فوائد حاصل ہوتے ہیں۔ قالب کے استعال سے کم مقناطیسی دباو، زیادہ مقناطیسی بہاو پیدا کرتا ہے اور مقناطیسی بہاو کو پیند کی راہ پر رہنے کا پابند بنایا جا سکتا ہے۔ یک دوری ٹرانسفار مروں میں قالب کے استعال سے مقناطیسی بہاو کو اس طرح پابند کیا جاتا ہے کہ تمام کچھوں میں کیساں بہاو پایا جاتا ہو۔ موٹروں میں قالب کے استعال سے مقناطیسی بہاو کو یوں پابند کیا جاتا ہے کہ زیادہ سے زیادہ قوت پیدا ہو جبکہ جزیئروں میں زیادہ سے زیادہ تو جاتا ہے کہ زیادہ ہو جبکہ جزیئروں میں زیادہ سے زیادہ تو دباو کو ایس کرنے کی نیت سے بہاو کو پابند کیا جاتا ہے۔

B-H مقناطیسی مواد کی B اور H کا تعلق ترسیم کی صورت میں پیش کیا جاتا ہے۔ لوہا نما مقناطیسی مادے کی A مقناطیسی مواد کی B اور B کا نقط B ترسیم شکل B۔ ایک لوہا نما مقناطیسی مادہ جس میں مقناطیسی اثر نہیں پایا جاتا ہو کو نقط B سے ظاہر کیا گیا ہے۔ اس نقط پر درج ذیل ہوں گے۔

$$H_a = 0$$

$$B_a = 0$$

48 باب2.مقناطيسي ادوار

اس مادہ کو کچھے میں رکھ کر اس پر مقناطیسی دباو لا گو کیا جا سکتا ہے۔ مقناطیسی میدان کی شدت H لا گو کرنے سے لوہا نما مقناطیسی مادے میں کثافت مقناطیسی بہاو B پیدا ہو گی۔میدانی شدت بڑھانے سے کثافت مقناطیسی بہاو b بھی بڑھے گی۔اس عمل کو نقطہ a سے ابتدا کرتے ہوئے ایک تیردار قوس سے دکھایا گیا ہے۔میدانی شدت کو نقطہ b تک بڑھایا گیا ہے جہاں d اور d ہوں گے۔

نقطہ b تک پہنچنے کے بعد میدانی شدت کم کرتے ہوئے دیکھا گیا ہے کہ واپی قوس ایک مختلف راستہ اختیار کرتا ہے۔ یوں نقطہ b سے میدانی شدت کم کرتے ہوئے صفر کرنے سے لوہا نما مادہ کی کثافتِ مقناطیسی بہاہ کم ہو کر نقطہ c پر آن پہنچتی ہے۔ نقطہ d سے نقطہ d تیر دار قوس اس عمل کو ظاہر کرتا ہے۔ نقطہ d پر بیرونی میدانی شدت صفر ہے لیکن لوہا نما مادے کی کثافتِ مقناطیسی بہاہ صفر نہیں ہے۔ یہ مادہ ایک مقناطیس بن گیا ہے جس کی کثافتِ مقناطیسی بہاہ مقاطیسی بہاہ جس کی مقاطیس اس طرح بنایا جاتا ہے۔

نقطہ c سے میدانی شدت منفی رخ بڑھانے سے B کم ہوتے ہوتے آخر کار ایک مرتبہ دوبارہ صفر ہو جائے گی۔اس نقطہ کو d سے ظاہر کیا گیا ہے۔مقاطیسیت ختم کرنے کے لئے درکار میدانی شدت کی مقدار $|H_d|$ کو مقاطیسیت ختم کرنے والی شدت یا مختصراً غاتم شدھے 54 کہتے ہیں۔

منفی رخ میدانی شدت مزید بڑھانے سے نقطہ e حاصل ہو گا۔ اس کے بعد منفی رخ کی میدانی شدت کی مطلق قیت کم کرنے سے نقطہ f حاصل ہو گا جہاں میدانی شدت صفر ہونے کے باوجود کثافتِ مقناطیسی بہاو صفر نہیں ہے۔اس نقطہ پر لوہا نما مادہ اُلٹ رخ مقناطیس بن چکا ہے اور B_f بقایا کثافتِ مقناطیسی بہاو ہے۔اسی طرح اس رخ مقناطیسیت ختم کرنے کی شدت $|H_g|$ ہے۔میدانی شدت بڑھاتے ہوئے نقطہ b کی بجائے جاتا ہے۔

برتی شدت کو متواتر اسی طرح پہلے ایک رخ اور پھر مخالف (دوسری) رخ ایک خاص حد تک پہنچانے سے آخر کار گار کا سے متحنی کا ایک بند دائرہ حاصل ہو گا جے شکل 2.14-ب میں دکھایا گیا ہے۔اس دائرہ پر گھڑی کے مخالف رخ سفر ہو گا۔شکل 2.14-ب کو مقناطیسی چالے کا دائرہ 55 کہتے ہیں۔

مختلف H کے لئے شکل 2.14-ب حاصل کر کے ایک ہی کاغذ پر کھینچنے کے بعد ان تمام کے b نقطے جوڑنے B سے شکل 2.15 میں دکھائی گئ B - H ترسیم حاصل ہو گی۔ ٹرانسفار مروں میں استعال ہونے والی 0.3048 میں موجود مواد جدول 2.1 موٹی B قالبی پتری کی B - H ترسیم شکل 2.15 میں دکھائی گئی ہے۔ اس ترسیم میں موجود مواد جدول 2.1

magnetic flux!residual⁵³ coercivity⁵⁴

hysteresis loop⁵⁵

2.8 مقت طیسی مادہ کے خواص

شکل 5:2.15 نولاد کی 0.3048 ملی میٹر موٹی پتری کی ترسیم۔میدانی شدت کا پیانہ لاگ ہے۔

میں بھی دیا گیا ہے۔ عموماً مقناطیسی مسائل حل کرتے ہوئے شکل 2.14 کی جگہ شکل 2.15 طرز کی ترسیم استعال کی جاتی ہے۔ کی جاتی ہے۔دھیان رہے کہ اس ترسیم میں H کا پیانہ لاگے⁵⁶ ہے۔

لوہا نما مقناطیسی مادے پر لاگو مقناطیسی شدت بڑھانے سے کثافتِ مقناطیسی بہاو بڑھنے کی شرح بندر تا جم ہوتی جاتی ہے حتی کہ آخر کاریہ شرح خلاء کی شرح μ_0 کے برابر ہو جاتی ہے :

$$\frac{\Delta B}{\Delta H} = \mu_0$$

اس اثر کو سیرابیدے 57 کہتے ہیں جو شکل 2.15 میں واضح ہے۔

شکل 2.14 سے واضح ہے کہ H کی کسی بھی قیمت پر B کے دو مکنہ قیمتیں ہوں گی۔ بڑھتے مقناطیسی بہاو کی صورت میں ترسیم میں نیچے سے اُوپر جانے والی منحیٰ B اور H کا تعلق پیش کرے گی جبکہ گھٹے ہوئے مقناطیسی بہاو کی صورت میں اوپر سے نیچے جانے والی منحیٰ اس تعلق کو پیش کرے گی۔ چو نکہ $B/H=\mu$ ہے لہٰذا B کی مقدار تبدیل ہونے سے μ کی قیمت بھی تبدیل ہو گی۔ باوجود اس کے ہم مقناطیسی ادوار میں μ کو ایک مستقل تصور کرتے ہیں۔ ایسا کرنے سے عمواً نتائج پر زیادہ اثر انداز نہیں ہوتا۔

مثال 2.7: شکل 2.15 یا اس کے مساوی جدول 2.1 میں دی گئی مواد استعال کرتے ہوئے شکل 2.6 کی خلاء میں ایک ٹسلا اور دو ٹسلا کثافت متناطیسی بہاو حاصل کرنے کے لئے درکار برقی رو معلوم کریں۔درج ذیل معلومات استعال کریں۔ قالب اور خلاء کا رقبہ عمودی تراش ایک دوسرے جتنا لیں۔

$$b=5\,{\rm cm}, w=4\,{\rm cm}, l_a=3\,{\rm mm}, l_c=30\,{\rm cm}, N=1000$$

 $[\]log^{56}$ saturation 57

با___2.مقن طیسی ادوار 50

حل: ایک ٹسلا کے لئے۔ جدول 2.1 کے تحت قالب میں 1 ٹسلا کے لئے قالب کو 11.22 ایمپیئر-چکر فی میٹر قیمت کی شدت H در کار ہو گی۔ بوں 30 سم لمے قالب کو $3.366 = 11.22 \times 0.3$ ایمپیئر چکر درکار ہوں گے۔

خلاء کو درج ذیل ایمییئر - چکر فی میٹر شدت درکار ہے۔

$$H = \frac{B}{\mu_0} = \frac{1}{4\pi 10^{-7}} = 795\,671$$

یوں 3 ملی میٹر خلاء کو 2387 = 2387×0.003 ایمپیئر چکر در کار ہوں گے۔اس طرح کل دایمپیئر - چکر +3.366 2390.366 بين جن سے درج ذيل حاصل کيا حاسکتا ہے۔

$$i = \frac{2390.366}{1000} = 2.39 \,\mathrm{A}$$

حل: دو ٹسلا کے لئے۔

حدول 2.1 کے تحت قالب میں 2 ٹسلا کثافت کے لئے قالب کو 10000 ایمییئر-چکر فی میٹر H درکار ہو گی۔ بول 30 سم قالب کو 3000 $= 0.3 \times 1000$ ایمپیئر چکر درکار ہوں گے۔ خلاء کو

$$H = \frac{B}{\mu_0} = \frac{2}{4\pi 10^{-7}} = 1591342$$

ايمبيئر - چکر في ميٹر درکار بين لهذا 3 ملي ميٹر لمبي خلاء کو 4774 = 1591342 × 0.003 ايمبيئر چکر درکار ہوں گے۔ یوں کل ایمپیئر- چکر 7774 = 4774 + 3000 ہیں جن سے درج ذیل حاصل کیا جا سکتا ہے۔

$$i = \frac{7774}{1000} = 7.774 \,\mathrm{A}$$

اس مثال میں مقناطیسی سیر ابت واضح ہے۔

2.9. بيجبان شده لچھ ا

B	H	B	H	B	H	B	H	B	H	B	H
0.000	0	0.700	9	1.480	30	1.720	200	1.852	1000	1.998	9000
0.040	2	0.835	10	1.540	40	1.752	300	1.900	2000	2.000	10000
0.095	3	1.000	11.22	1.580	50	1.780	400	1.936	3000	2.020	20000
0.160	4	1.100	12.59	1.601	60	1.800	500	1.952	4000	2.040	30000
0.240	5	1.200	14.96	1.626	70	1.810	600	1.968	5000	2.048	40000
0.330	6	1.300	17.78	1.640	80	1.824	700	1.975	6000	2.060	50000
0.440	7	1.340	20	1.655	90	1.835	800	1.980	7000	2.070	60000
0.560	8	1.400	23.77	1.662	100	1.846	900	1.985	8000	2.080	70000

جدول 2.1: مقناطيسي بهاو بالمقابل شدت

2.9 ميجان شده لجها

بدلتا رو بیلی میں برتی دباو اور مقناطیسی بہاو عموماً سائن نما ہوتے ہیں جن کا وقت کے ساتھ تعلق sin wt یا sin میل ہو گا۔ اس حصہ میں بدلتا رو سے کچھا بیجان کرنا اور اس سے نمودار ہونے والی برتی توانائی کے ضیاع پر تذکرہ کیا جائے گا۔ قالب میں کثافت مقناطیسی بہاو

$$(2.48) B = B_0 \sin \omega t$$

کی صورت میں قالب میں درج ذیل براتا مقناطیسی بہاو ، پیدا ہو گا۔

(2.49)
$$\varphi = A_c B = A_c B_0 \sin \omega t = \phi_0 \sin \omega t$$

اس مساوات میں مقناطیسی بہاو کا حیطہ ϕ_{\mp} ، کثافت مقناطیسی بہاو کا حیطہ $\pm B_0$ ، قالب کا رقبہ عمودی تراش A_c (جو ہر مقام پر کیساں ہے)، زاویائی تعدد $0=2\pi$ اور تعدد $0=2\pi$ اور تعدد کا جب

فیراڈے کے قانون (ماوات 2.27) کے تحت یہ مقاطبی بہاو کیھے میں e(t) امالیے برقی دباو 58 پیدا کرے گا

(2.50)
$$e(t) = \frac{\partial \lambda}{\partial t}$$

$$= \omega N \phi_0 \cos \omega t$$

$$= \omega N A_c B_0 \cos \omega t$$

$$= E_0 \cos \omega t$$

induced voltage 58

52 باب2. مقت طبیسی ادوار

شكل 2.16: ساده مقناطيسي دور (مثال 2.8) ـ

جس کا حیطہ درج ذیل ہو گا۔

$$(2.51) E_0 = \omega N \phi_0 = 2\pi f N A_c B_0$$

ہم بدلتے رو مقداروں کے مربع کی اوسط کے جذر میں دلچیں رکھتے ہیں جو ان مقداروں کی موثر 59 قیت ہوتی ہے۔ جیسا صفحہ 21 پر مساوات 1.42 میں دیکھا گیا، سائن نما موج کی موثر قیت موج کے حیطہ کی $1/\sqrt{2}$ گنا ہو گی لہذا امالی برتی دباو کی موثر قیت E_{rms} درج ذیل ہوگی۔

(2.52)
$$E_{rms} = \frac{E_0}{\sqrt{2}} = \frac{2\pi f N A_c B_0}{\sqrt{2}} = 4.44 f N A_c B_0$$

یہ مساوات بہت اہم ہے جس کو ہم بار بار استعال کریں گے۔بدلتے برقی دباو یا بدلتے برقی رو کی قیمت سے مراد ان کی موثر قیمت ہوگی۔ پاکستان میں گھر بلو برقی دباو کی موثر قیمت 220 وولٹ ہے۔اس سائن نما برقی دباو کی چوٹی $\sqrt{2} \times 220 = 311$

مثال 2.8: شکل 2.16 میں کچھے کے 27 چکر ہیں۔ قالب کی لمبائی 30 سم جبکہ اس کا رقبہ عمودی تراش 2.8 مثال 2.8: شکل 2.16 میں کچھے کے 27 چکر ہیں۔ قالب کی لمبائی 30 سم جبکہ اس کا رقبہ عمودی تراش 229.253 مربع سم ہے۔ کچھے کو گھر میلو 220 وولٹ موثر برقی دباوید محرک برقی رو معلوم کریں اور اس کا خط کھیجنیں۔

(2.53)
$$v = \sqrt{2} \times 220 \cos(2\pi 50t)$$

مساوات 2.52 کی مدد سے ہم کثافتِ مقناطیسی بہاو کی چوٹی حاصل کرتے ہیں۔

(2.54)
$$B_0 = \frac{220}{4.44 \times 50 \times 27 \times 0.0229253} = 1.601 \,\mathrm{T}$$

root mean square, $\rm rms^{59}$

2.9. بيجبان شده لچھ

ωt	B	H	0.3H	$i_{\varphi} = \frac{0.3H}{27}$	ωt	B	H	0.3H	$i_{\varphi} = \frac{0.3H}{27}$
0.675	1.000	11.22	3.366	0.125	0.000	0.000	0	0.000	0.000
0.757	1.100	12.59	3.777	0.140	0.025	0.040	2	0.600	0.022
0.847	1.200	14.96	4.488	0.166	0.059	0.095	3	0.900	0.033
0.948	1.300	17.78	5.334	0.198	0.100	0.160	4	1.200	0.044
0.992	1.340	20	6.000	0.222	0.150	0.240	5	1.500	0.056
1.064	1.400	23.77	7.131	0.264	0.208	0.330	6	1.800	0.067
1.180	1.480	30	9.000	0.333	0.278	0.440	7	2.100	0.078
1.294	1.540	40	12.000	0.444	0.357	0.560	8	2.400	0.089
1.409	1.580	50	15.000	0.556	0.453	0.700	9	2.700	0.100
1.571	1.601	60	18.000	0.667	0.549	0.835	10	3.000	0.111

جدول2.2: محرک برقی رو

شكل 5:2.17 يترى كے قالب ميں 6.1 أسلاتك بيجان بيداكرنے كے لئے در كار بيجان انگيز برقى رويہ

یوں قالب میں کثافتِ مقناطیسی بہاو کا حیطہ 1.601 ہو گا اور قالب میں کثافتِ مقناطیسی بہاو کی مساوات درج ذیل ہوگی۔

$$(2.55) B = 1.601 \sin \omega t$$

ہم جدول کی مدد سے 0 اور 1.601 ٹسلا کے 3 مختلف قیمتوں پر درکار محرک برقی رو i_{ϕ} معلوم کرنا چاہتے ہیں۔ ہم مختلف B پر جدول 2.1 سے قالب کی H حاصل کریں گے جو ایک میٹر لمبی قالب کے لئے درکار ایمپیئر-چکر ہوں گے۔ اس سے 30 سم لمبی قالب کے لئے درکار ایمپیئر-چکر کر معلوم کر کے برقی رو حاصل کریں گے۔

جدول 2.2 مخلف کثافتِ مقناطیسی بہاو کے لئے درکار محرک برقی رو دیتی ہے۔جدول میں ہر B کی قیمت پر ωt مساوات 2.55 کی مدد سے حاصل کی گئی ہے۔ ωt بالمقابل محرک برقی رو کا خط شکل Δt میں دیا گیا ہے۔ ωt

باب2. مقت طبيسي ادوار

شكل 2.18: ہيجان انگيز برقى رو۔

برتی کچھے میں برقی دباو سے ہیجان پیدا کیا جاتا ہے۔ ہیجان شدہ کچھا میں گزرتے برقی رو i_{φ} کی بنا قالب میں مقناطیسی بہاو پیدا ہو گا۔ اس برتی رو i_{φ} کو ہیجارہے انگیز برقیے رو i_{φ} کو ہیجارہے انگیز برقی رو i_{φ} کی بنا قالب میں معناطیسی بہاد پیدا ہو گا۔ اس برتی رو i_{φ} کو ہیجارہے انگیز برقی رو i_{φ}

مثال 2.8 میں بیجان انگیز برتی رو معلوم کی گئی جے شکل 2.17 میں دکھایا گیا۔اسے حاصل کرتے وقت مقناطیسے پالے 61 کو نظر انداز کیا گیا۔شکل 2.18 میں بیجان انگیز برتی رو $_{\phi}i$ دکھائی گئی ہے جو مقناطیسی چال کو مدِ نظر رکھ کر حاصل کی گئی ہے۔ اس کو سمجھنا ضروری ہے۔

شکل 2.18-الف میں مقناطیسی چال کا دائرہ و کھایا گیا ہے۔درج ذیل تعلقات کی بنا مقناطیسی چال کے خط کو $arphi-i_{arphi}$ کا خط کھا جا سکتا ہے۔

(2.56)
$$Hl = Ni$$

$$\varphi = BA_c$$

قالب میں سائن نما مقناطیسی بہاو φ کو شکل 2.18-ب میں دکھایا گیا ہے۔سائن نما مقناطیسی بہاو وقت کے ساتھ تبدیل ہوتا ہے۔ لحمہ t_1 پر اس کی قیمت p_1 ہو گی۔ مقناطیسی بہاو p_1 حاصل کرنے کے لئے درکار بیجان انگیز برقی رو p_1 شکل-الف سے حاصل کی جاسکتی ہے۔ اسی بیجان انگیز برقی رو کو شکل-ب میں لمحہ p_1 پر دکھایا گیا ہے۔ p_2

دھیان رہے کہ لحہ t_1 پر مقناطیسی بہاو بڑھ رہا ہے للذا مقناطیسی چال کے خط کا درست حصہ استعال کرنا ضروری ہے۔ شکل 2.18-الف میں arphi - arphi = arphi خط میں گھڑی کی سو یکوں کے مخالف رخ گھومتے ہوئے یوں نیچے سے اوپر

excitation current⁶⁰ hysteresis⁶¹

2.9. بيجبان شده لچھ ا

شکل 2.19: بیچاس ہر ٹزیر 0.3 ملی میٹر موٹی پتری کے لئے در کار موثر وولٹ - اپنیئر فی کلو گرام قالب

جاتا ہوا حصہ استعال کیا گیا ہے۔شکل 2.14-ب میں تیر کے نشان مقناطیسی بہاو بڑھنے (ینچے سے اوپر) اور گھنے (اوپر سے ینچے) والے حصوں کی نشاندہی کرتے ہیں۔

لمحہ t_2 پر مقناطیسی بہاو گھٹ رہا ہے۔اس لمحہ پر مقناطیسی بہاو φ_2 ہے اور اسے حاصل کرنے کے لئے درکار بیجان انگیز برقی رو i_2 ہے۔

اسی طرح مختلف کمحات پر درکار ہیجان انگیز برتی رو حاصل کرنے سے شکل 2.18-ب کا i_{arphi} خط ملتا ہے جو غیر سائن نما ہے۔

 $e=N\frac{\mathrm{d}\varphi}{\mathrm{d}t}=N\phi_0\omega\cos\omega t$ کی صورت میں برقی دباو $\varphi=\phi_0\sin\omega t$ ہو گا۔ شکل $\varphi=\phi_0\sin\omega t$ ہیں کہ برقی دباو سے مقناطیسی بہاو $\varphi=0$ تاخیر سے $\varphi=0$ میں اس برقی دباو کو بھی دکھایا گیا ہے۔آپ دکھ سکتے ہیں کہ برقی دباو سے مقناطیسی بہاو $\varphi=0$ تاخیر سے $\varphi=0$ میں اس برقی دباو کو بھی دکھایا گیا ہے۔آپ دکھ سکتے ہیں کہ برقی دباو سے مقناطیسی بہاو $\varphi=0$ تاخیر سے $\varphi=0$ میں اس برقی دباو کو بھی دکھایا گیا ہے۔آپ دکھ سکتے ہیں کہ برقی دباو سے مقناطیسی بہاو $\varphi=0$ تاخیر سے $\varphi=0$ میں اس برقی دباو کی جمعتاطیسی بہاو $\varphi=0$ تاخیر سے $\varphi=0$ میں اس برقی دباو کی جمعتاطیسی بہاو $\varphi=0$ تاخیر سے مقابل کی جمعتاطیسی بہاو $\varphi=0$ تاخیر سے مقابل کی جمعتاطیسی بہاو $\varphi=0$ تاخیر سے مقابل کی جمعتاطیسی بہاو $\varphi=0$ تاخیر سے خور نے کہا تاخیر کے کہا تاخیر کے کہا تاخیر کے خور نے کہا تاخیر کے کہا تاخیر ک

 $H_{c,rms}$ قالب میں $B=B_0\sin\omega t$ کی صورت میں B اور i_{arphi} غیر سائن نما ہوں گے جن کی موثر قیمتوں $B=B_0\sin\omega t$ اور $i_{arphi,rms}$ کا تعلق درج ذیل ہو گا۔

$$(2.57) Ni_{\varphi,rms} = l_c H_{c,rms}$$

مساوات 2.52 اور مساوات 2.57 سے درج ذیل حاصل ہو گا

$$(2.58) E_{rms}i_{\varphi,rms} = \sqrt{2}\pi f B_0 H_{c,rms} A_c l_c$$

باب 2. مقت طبيسي ادوار

جہاں $A_c l_c$ قالب کا مجم ہے۔ یوں $A_c l_c$ مجم کے قالب کو B_0 کثافت مقناطیسی بہاو تک بیجان کرنے کے لئے درکار $E_{rms}i_{\varphi,rms}$ مساوات $E_{rms}i_{\varphi,rms}$ مساوات $E_{rms}i_{\varphi,rms}$ مساوات کا گرام قالب کے لئے مساوات $E_{rms}i_{\varphi,rms}$ کو درج ذیل روپ میں لکھا جا سکتا ہے۔ $E_{rms}i_{\varphi,rms}$

$$(2.59) P_a = \frac{E_{rms}i_{\varphi,rms}}{m_c} = \frac{\sqrt{2}\pi f}{\rho_c} B_0 H_{c,rms}$$

دیکھا جائے تو کسی ایک تعدد f پر g کی قیت صرف قالب اور اس میں g یعنی چونی تعدد g پر منحصر ہے، چونکہ g پیدا کرنے کے خود g پر منحصر ہے۔ بہی وجہ ہے کہ قالب بنانے والے اکائی کمیت کے قالب میں مختلف چونی g پیدا کرنے کے لئے ایک g درکار g بالمقابل g بالمقابل g ترسیم مہیا کرتے ہیں۔ قالب کی g میٹر موٹی پتری کے لئے ایک ترسیم شکل 2.19 میں دکھایا گیا ہے۔

باب3

ٹرانسفار مر

ٹرانسفار مر وہ آلہ ہے جو بدلتا برقی دباو کو تبدیل کرتا ہے۔ یہ دویا دوسے زیادہ کچھوں پر مشمل ہوتا ہے جو مقناطیسی قالب اپر لیلئے ہوتے ہیں۔ یہ کچھے عموماً آپس میں جڑے ہوئے نہیں ہوتے۔ شکل 3.1-الف میں ٹرانسفار مرکی علامت د کھائی گئی ہے۔ دو کچھوں کے در میان متوازی ککیریں مقناطیسی قالب کو ظاہر کرتی ہیں۔

دستیاب برقی د باو² پر ٹرانسفار مر کے ایک کچھے کو برقی طاقت فراہم کی جاتی ہے اور باقی کچھوں سے مختلف برقی د باو پر یہی برقی طاقت حاصل کی جاتی ہے۔ جس کچھے پر برقی د باو لا گو کیا جائے اسے ابتدائیے کچھا³ کہتے ہیں اور ٹرانسفار مرکی اس جانب کو ابتدائی جانب⁴ کہتے ہیں۔اس طرح جس کچھے (کچھوں) سے برقی طاقت حاصل کی جاتی ہے اسے (انہیں) اگونوںے کچھا³ (کچھے) کہتے ہیں اور اس جانب کو اگونوںے جانب⁶ کہتے ہیں۔اییا شکل 3.1-ب میں دکھایا گیا ہے۔ٹرانسفار مرکی علامت میں ابتدائی جانب کو ہائیں طرف اور ٹانوی جانب کو دائیں طرف دکھایا جاتا ہے۔

بڑے ٹرانسفار مر عموماً صرف دو کچھوں پر مشمثل ہوتے ہیں۔اس کتاب میں مقناطیسی قالب پر لیٹے ہوئے دو کچھوں کے قوی ٹرانسفار مر پر تبحرہ کیا جائے گا۔

magnetic core¹

² بدلتا برقی دیاو کی علامت میں مثبت اور منفی نشان وقت صفر پر برقی دیاو کی مثبت اور منفی سرے ظاہر کرتے ہیں۔

primary coil³

primary side⁴

secondary coil⁵

secondary side⁶

58 باب. 3. ٹرانسفار مسم

شكل 3.1: ٹرانسفار مركى علامت۔

ٹرانسفار مرکے کم برقی دباو کے کچھے کو کم برقی دباو کا کچھا⁷ کہتے ہیں اور ٹرانسفار مرکی اس جانب کو کم برقی دباو والی جانب کہتے ہیں جبکہ ٹرانسفار مرکے زیادہ برقی دباو کے کچھے کو زیادہ برقی دباو کا کچھا⁸ کہتے ہیں اور ٹرانسفار مرکی اس جانب کو زیادہ برقی دباو والی جانب کہتے ہیں۔

یوں اگر ٹرانسفار مرکے کم برقی دباو جانب برقی دباو لا گو کیا جائے اور زیادہ برقی دباو جانب سے برقی دباو حاصل کیا جائے تو ٹرانسفار مرکی کم برقی دباو جانب کو ابتدائی جانب کہیں گے اور اس کی زیادہ برقی دباو جانب کو ثانوی جانب کہیں گے۔ کہیں گے۔

3.1 ٹرانسفار مرکی اہمیت

برلتے رو کی برقی طاقت ایک مقام سے دوسرے مقام با آسانی اور نہایت کم برقی طاقت کی ضیاع سے منتقل کی جا سکتی ہے۔ یہی اس کی مقبولیت کا راز ہے۔ ٹرانسفار مر کے تبادلہ برقی دباو⁹ کی خصوصیت ایسا کرنے میں کلیدی کردہر ادا کرتی ہے جسے درج ذیل مثال کی مدد سے سمجھتے ہیں۔

مثال 3.1: شکل 3.2 سے رجوع کریں۔ برتی دباو اور برتی روکی حاصل ضرب برتی طاقت ہوتی ہے:

 $p = v_1 i_1 = v_2 i_2$

تصور کریں کہ تربیلا ڈیم سے 500 MW برقی طاقت لاہور 10 شہر کے گھریلو صارفین کو 220 وولٹ پر مہیا کرنی

low voltage coil⁷ high voltage coil⁸

voltage transformation property⁹

¹⁰ صْلِع صوابي میں بھی لاہورایک تحصیل ہے لیکن اس شہر کواتنی طاقت نہیں در کار

3.1. ٹرانسفار مسر کی اہمیت

شكل 3.2: برقى طاقت كى منتقلي_

ہے۔اگر ہم اس طاقت کو 220 وولٹ پر ہی منتقل کرنا چاہیں تب برقی رو

$$i = \frac{p}{v} = \frac{500\,000\,000}{220} = 2\,272\,727\,\mathrm{A}$$

ہو گی۔ برقی تار میں کثافتِ برقی رو J_{au} تقریباً 5 ایمپیئر فی مربع ملی میٹر $\frac{A}{mm^2}$ کی مربع ملی میٹر $J_{au}=5$ ممکن ہوتی ہے۔ یہ ایک محفوظ کثافتِ برقی رو ہے۔ اگر برقی تار میں اس سے زیادہ برقی رو گزاری جائے تو اس کی مزاحمت میں برقی طاقت کے ضیاع سے یہ گرم ہو کر پھل سکتی ہے۔ اس طرح صفحہ 14 پر مساوات 1.23 سے برقی تار کا رقبہ عمودی تراش

$$A = \frac{i}{J_{au}} = \frac{2272727}{5} = 454545 \,\text{mm}^2$$

ہو گا۔ گول تار تصور کرس تو اس کا رداس درج ذیل ہو گا۔

$$r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{454545}{\pi}} = 380 \,\mathrm{mm} = 0.38 \,\mathrm{m}$$

ا تنی موٹی برقی تار کہیں نہیں پائی جاتی ہے $ho_v = 2700 \, rac{
m kg}{
m m^3}$ کی بنی ہو جس کی کثافت $ho_v = 2700 \,
ho_v$ ہوتی ہے تب ایک میٹر کمبی تار کی کمیت

$$m = 2700 \times \pi \times 0.38^2 \times 1 = 1224 \,\mathrm{kg}$$

یعنی 1.2 ٹن ہو گی۔المو ٹیم اتنی مہنگی ہے کہ اس صورت میں اتنی برقی طاقت کو لاہور پہنچانا ممکن نہیں ہو گا¹²۔

¹¹ آپ مانیں بانیہ مانیں، آپ نے بھی اتنی موٹی بر قی تاریکھی نہیں دیکھی ہوگی۔ 12 آج کل لاہور میں بکلی کی معطلی اس وجہ سے نہیں ہے۔

60 باب. 3. ٹرانسفار مسر

آئیں اب ٹرانسفار مر استعال کر کے دیکھتے ہیں۔ ڈیم پر ایک ٹرانسفار مر نسب کر کے برقی دباو کو بڑھا کر 000 132 وولٹ یعنی 132 کلو وولٹ کیا جاتا ہے۔ یوں برقی رو درج ذیل ہو گا

$$i = \frac{p}{v} = \frac{500\,000\,000}{132\,000} = 3788\,\mathrm{A}$$

جس کے لئے درکار برقی تار

$$A = \frac{i}{J_{au}} = \frac{3788}{5} = 758 \,\text{mm}^2$$
$$r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{1667}{\pi}} = 15.5 \,\text{mm}$$

صرف 15.5 ملی میٹر رداس کی ہو گی۔

اس مثال میں اگر تربیلا ڈیم میں نسب جزیٹر 11000 وولٹ برقی دباو پیدا کر رہا ہو تو تربیلا ڈیم پر نسب ٹرانسفار مر برقی دباو کو 11000 وولٹ سے بڑھا کر 132 کلو وولٹ کرے گا جبکہ لاہور شہر میں نسب ٹرانسفار مر 132 کلو وولٹ کو واپس 11000 وولٹ کرے گا۔

اسی مثال کو بڑھاتے ہیں۔شہر میں 220 وولٹ کی بجائے 11000 وولٹ صارف کے قریب پہنچا کر محلہ میں نسب بڑانسفار مر کی مدد سے 11000 وولٹ کو مزید گھٹا کر 220 وولٹ کیا جائے گا جو صارف کو فراہم کیے جائیں گ

شکل 3.2 میں ڈیم سے شہر تک کا نظام دکھایا گیا ہے جہاں ڈیم پر نسب ٹرانسفار مر کو برقی دباو بڑھا ٹرانسفار مر¹³ اور لاہور میں نسب ٹرانسفار مر کو برقی دباو گھٹا ٹرانسفار مر¹⁴ کہا گیا ہے۔

برتی طاقت عموماً 11 کلو وولٹ اور 25 کلو وولٹ کے مابین پیدا کی جاتی ہے۔اس کی منتقلی 110 کلو وولٹ اور 1000 کلو وولٹ سے کم پر کیا جاتا ہے۔ 1000 کلو وولٹ کے چیج کی جاتی ہے جبکہ اس کا استعال 1000 وولٹ سے کم پر کیا جاتا ہے۔

step up $transformer^{13}$ step down $transformer^{14}$

3.2. ٹرانسفار مسرکے اقسام

3.2 ٹرانسفار مرکے اقسام

گھروں اور کارخانوں کو برقی طاقت فراہم کرنے والے ٹرانسفار مر مقناطیسی قالب پر کپیٹے جاتے ہیں۔ یہ عموماً تیریخ دوری 15 ہوتے ہیں جنہیں لوہے کے قالب والے تیریخ مرملہ قوبی ٹرانسفار م¹⁶ کہتے ہیں۔

نہایت جھوٹے ٹرانسفار مر عموماً لوہے کے قالب پر بنائے جاتے ہیں اور یکے دوری 17 ہوتے ہیں۔ یہ گھر ملو استعال کے برقی مثین، مثلاً موبائل چار جر، وغیرہ میں نب ہوتے ہیں اور 220 وولٹ سے برقی دباو مزید گھٹاتے ہیں۔

برقی دباوکی پیائش کے لئے مستعمل ٹرانسفار مر، جو دباو کے ٹرانسفارم ¹⁸ کہلاتے ہیں، کے ثانوی اور ابتدائی برقی دباو کی تناسب پر خاص توجہ دی جاتی ہے۔اسی طرح برقی روکی پیائش کے لئے مستعمل ٹرانسفار مر، جو روکے ٹرانسفارم ¹⁹ کہلاتے ہیں، کے ثانوی اور ابتدائی روکی تناسب پر خاص توجہ دی جاتی ہے۔ ویسے تو ہر ٹرانسفار مرکسی تناسب سے برقی دباویا برقی روکم یا زیادہ کرتا ہے لیکن جیسا پہلے ذکر کیا گیا، ان دو اقسام کے ٹرانسفار مروں میں کم اور زیادہ کرنے کی تناسب پر خاص توجہ دی جاتی ہے۔ان دو اقسام کے ٹرانسفار مروں کی برقی سکت²⁰ نہایت کم ²¹ ہوتی ہے۔

ٹرانسفار مر کے کچھوں کے مابین مشتر کہ مقناطیسی بہاو خلاء کے ذریعہ بھی ممکن ہے۔انہیں ظلائھ قالب ٹرانسفار مروں کہتے ہیں۔ ایسے ٹرانسفار مر ذرائع اہلاغ ²³ کے ادوار، یعنی ریڈیو، ٹی وی وغیرہ میں پائے جاتے ہیں۔ان ٹرانسفار مروں کی علامت شکل 3.3 میں دکھائی گئی ہے جس میں قالب ظاہر کرنے والی متوازی لکیریں نہیں پائی جاتی ہیں۔

3.3 امالى برتى دباو

اس جھے کا بنیادی مقصد بیرونی برقی دباو v اور اندرونی امالی برقی دباو e میں فرق واضح کرنا اور ان سے متعلق سمتیکی اصطلاحات کا تعارف ہے۔

three $phase^{15}$

iron core, three phase power $transformer^{16}$

single phase¹⁷

potential transformer 18

current transformer 19

electrical rating 20

²¹ يم عموماً تقريباً يجيس وولث -ايمبيئر سكت ركھتے ہيں۔

air core transformer²²

 $communication\ transformer^{23}$

62 باب. 3. ٹرانسفار مسر

شکل 3.4 میں بے بوجھ 24 ٹرانسفار مر دکھایا گیا ہے، یعنی اس کا ثانوی کچھا کھلے دور رکھا گیا ہے۔ ابتدائی کچھے کی مزاحمت R_1 ہے جس کو بیرونی جزو دکھایا گیا ہے۔ابتدائی کچھے پر v_1 برتی دباو لا گو کرنے سے ابتدائی کچھے میں بیجان انگیز 25 برتی رو ہی گذرے گا۔اس بیجان انگیز برتی رو سے پیدا مقناطیسی دباو ہی تالب میں مقناطیسی بہاو م پیدا کے گا۔ یہ بداتا مقناطیسی بہاو ابتدائی کچھے میں امالی برتی دباو e_1 پیدا کرتا ہے جسے درج ذیل مساوات پیش کرتی ہے۔

(3.1)
$$e_1 = -\frac{\mathrm{d}\lambda}{\mathrm{d}t} = -N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t}$$

اس مساوات میں

- λ ابتدائی کیجے کی مقناطیسی بہاو کے ساتھ ارتباط بہاو ہے،
- φ مقناطیسی قالب میں مقناطیسی بہاو جو دونوں کیھوں میں سے گزرتی ہے،
 - ابتدائی کچھے کے چکر ہیں۔ N_1

ابتدائی کچھے کی مزاحمت R_1 صفر نہ ہونے کی صورت میں کرخوف کے قانون برائے برقی دباو کے تحت درج ذیل ہو گا۔

$$(3.2) v_1 = i_{\varphi} R_1 + e_1$$

 $\begin{array}{c} unloaded^{24} \\ excitation \ current^{25} \end{array}$

شکل 3.4 میں اس مزاحمت کو بطور بیرونی جزو، ٹرانسفار مر کے باہر، دکھایا گیا ہے۔اس کچھے کی رستا متعاملہ بھی ہو گی جے نظرانداز کیا گیا ہے۔عموماً طاقت کے ٹرانسفار مرول اور موٹرول میں $i_{\varphi}R_1$ کی قیمتوں سے بہت کم ہوتی ہے لہٰذا اسے نظرانداز کیا جا سکتا ہے۔ایبا کرتے ہوئے درج ذیل لکھا جا سکتا ہے۔

$$(3.3) v_1 = e_1 = -N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t}$$

مساوات 3.2 سے ثابت ہوتا ہے کہ بیرونی لا گو برقی دباو v_1 اور اندرونی امالی برقی دباو e_1 ہوتا ہے کہ بیرونی لا گو برقی دباو v_1 اور v_1 کی مطلق قیمتیں (تقریباً) ایک ہیں۔ یہ بات سمجھ لینا بہت ضروری ہے۔مساوات 3.3 کے تحت v_1 اور v_1 کی مطلق قیمتیں (تقریباً) ایک دوسرے کے برابر ہوتی ہیں v_2 مساوات 3.3 میں دائیں ہاتھ منفی کی علامت پائی جاتی ہے۔ (ہمیں عموماً برقی دباو کی مطلق قیمت درکار ہوتی ہے ناکہ اس کی علامت للذا اس کتاب میں مساوات 3.3 طرز کی مساواتوں میں دائیں ہاتھ منفی کی علامت عموماً نہیں کھی گئی ہے۔)

لچھا ہیجارے ²⁷ کرنے سے مراد اس پر بیرونی برقی دباو لا گو کرنا ہے جبکہ کچھے پر لا گو بیرونی برقی دباو کو ہیجارے انگیز برقی دباو²⁸ کہتے ہیں۔کچھے کو ہیجارج شدہ کچھا²⁹ جبکہ اس میں رواں برقی رو کو ہیجارے انگیزبرقی رو³⁰ کہتے ہیں۔

لیچھ میں گزرتی مقناطیسی بہاو کی تبدیلی سے برقی دباو حاصل کیا جا سکتا ہے۔ ٹرانسفار مروں میں ساکن کچھا سے برقی دباو کو المالی برقی دباو ³¹ کہتے ہیں۔ برقی دباو کا حصول مقناطیسی میدان میں کچھے کی حرکت سے بھی ممکن ہے۔ ایسے برقی دباو کو محرکے برقی دباو³² کہتے ہیں۔ یاد رہے ان برقی دباو میں مسلم کا فرق نہیں ہوتا۔ انہیں مختلف نام صرف بچپان کی خاطر دئے جاتے ہیں۔

3.4 هیجان انگیز برقی رواور قالبی ضیاع

جہال مقناطیسی قالب میں براتا مقناطیسی بہاو ٹانوی لیجھوں میں فائدہ مند برقی دباو پیدا کرتا ہے وہاں یہ مقناطیسی قالب میں نقصان دہ برقی دباو کو بھی جنم دیتا ہے جس سے مقناطیسی قالب میں بھورنا برقی رو³³ پیدا ہوتا ہے۔ بھنور نما برقی

²⁶جس سے طلبہ کی ذہن میں بیے غلط فہمی پیداہوتی ہے کہ بیدا یک ہی برق دباوے دومختلف نام ہیں۔ excit.e²⁷

excitation voltage 28 excited coil 29

excitation current³⁰

induced voltage³¹

electromotive force, emf^{32} eddy currents³³

64 پاپ. 3. ٹرانسفار مے

شکل 5. 3: قالبی پتری کے اشکال اور ان کو تہہ در تہہ رکھنے کاطریقہ۔

رو مقناطیسی قالب میں برقی طاقت کے ضیاع کا سبب بنتا ہے جے بھور نما برقی رو کا ضیاع 36 یا مخضراً قالبی ضیاع 35 کہتے ہیں۔ قالبی ضیاع کو کم سے کم کرنے کے لئے مقناطیسی قالب کو باریک لوہے کی پیزیان 36 تہہ در تہہ رکھ کر بنایا جاتا ہے۔ان پتریوں پر غیر موصل روغن 37 کی تہہ لگائی جاتی ہے تا کہ بھنور نما برتی روکو روکا جا سکے۔آپ ویکھیں گے کہ برتی مشین کا قالب عموماً اسی طرح بنایا جاتا ہے۔شکل 2.15 اور جدول 2.1 میں 3048 میں میٹر موٹی کا کہ برتی موٹ کا 37 کے مواد دیا گیا ہے۔

شکل 5.5-الف میں قالبی پتریوں کے دو اشکال دکھائے گئے ہیں۔ان کی صورت کی وجہ سے انہیں ایک اور اور علی علی عربی ایک اور اور علی پتریوں اور تین پتریوں کو دو طرح آپس میں رکھا گیا ہے۔ان دو طریقوں سے انہیں تہہ در تہہ رکھا جاتا ہے۔الذا اگر پہلی تہہ میں ایک دائیں جانب اور تین بائیں جانب رکھا جائے تو اس کے اوپر دوسری تہہ میں ایک کو بائیں جانب اور تین کو دائیں جانب رکھا جائے گا۔ تیسری تہہ میں ایک کو بائیں جانب اور تین کو دائیں جوڑ کر شکل 3.5۔پ میں دکھایا گیا قالب حاصل دائیں اور تین کو بائیں جانب رکھا جائے گا، وغیرہ۔اسی طرح انہیں جوڑ کر شکل 3.5۔پ میں دکھایا گیا قالب حاصل کیا جاتا ہے۔

جیجان انگیز برقی رو بے بوجھ اور بوجھ بردار ٹرانسفار مر میں یکسال ہوتا ہے ۔جیسا کہ پہلے بھی ذکر کیا گیا ہے، قوی ٹرانسفار مر اور موٹروں میں برقی دباو اور مقناطیسی بہاو سائن نما ہوتے ہیں جبکہ ان میں بیجان انگیز برقی رو غیر سائن نما ہوتا ہے۔ بول اگر

(3.4)
$$\varphi = \phi_0 \sin \omega t = \phi_0 \cos (\omega t - 90^\circ)$$
$$\hat{\varphi} = \phi_0 / -90^\circ$$

eddy current loss³⁴

core loss³⁵

 $laminations^{36} \\$

 $enamel^{37}$

 $[\]mathrm{E.I}^{38}$

شکل 3.6: مختلف دوری سمتیوں کے زاویے۔

ہو تب

(3.5)
$$e_1 = N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \omega N_1 \phi_0 \cos \omega t$$

$$\hat{E_1} = \omega N_1 \phi_0 / 0$$

 π^{0} ہو π^{0} گا۔ یہاں π^{0} مقناطیسی بہاو کے حیطہ کو ظاہر کرتی ہے اور π^{0} ناویائی تعداد ارتعاش لیعنی π^{0} کو ظاہر کرتی ہے π^{0} ہوں π^{0} تعداد ارتعاش ہے جسے ہرٹر π^{0} ہیں نایا جاتا ہے۔ جیسا شکل π^{0} ہیں دکھایا گیا ہے π^{0} اور π^{0} کا زاوبیہ ہو گا۔ π^{0} ہوگ موثر قیت π^{0}

(3.6)
$$E_{rms} = \frac{\omega N_1 \phi_0}{\sqrt{2}} = 4.44 f N_1 \phi_0$$

ہے جس سے درج ذیل لکھا جا سکتا ہے۔

(3.7)
$$\phi_0 = \frac{E_{rms}}{4.44f N_1 \phi_0}$$

یہاں رکھ کر دوبارہ نظر ثانی کرتے ہیں۔ اگر ایک کچھ پر E_{rms} موثر برتی دباو لا گو کیا جائے تو یہ کچھا اتنا ہیجان انگیز برتی رو i_{arphi} گزرنے دیتا ہے جس سے نمودار ہونے والا مقناطیسی بہاو مساوات i_{arphi} میں دیے گئے مقناطیسی بہاو i_{arphi} کے برابر ہو۔ یہ حقیقت نہ صرف ٹرانسفار مر بلکہ کسی بھی مقناطیسی دور کے لئے درست اور لازم ہے۔ i_{arphi}

نیر سائن نما ہیجان انگیز برتی رو i_{φ} کو فوریئر تسلسل 40 سے درج ذیل لکھا جا سکتا ہے۔ $i_{\varphi} = \sum_{n} \left(a_{n} \cos n\omega t + b_{n} \sin n\omega t \right)$ (3.8)

³⁹ن مساوات میں اوران کے بعد پوری کتاب میں امالی برتی دیاد کے ساتھ منفی علامت نہیں لگائی گئی ہے۔ Fourier series ⁴⁰

اس تسلسل میں $(a_1\cos\omega t + b_1\sin\omega t)$ کو بنیادی جربو⁴⁴ جبکہ باقی حصہ کو موسیقائی جرو⁴² کہتے ہیں۔ بنیادی جرنو میں اس تسلسل میں $(a_1\cos\omega t + b_1\sin\omega t)$ کو بنیادی جرنو میں آنے والے امالی برقی و باو، $(a_1\cos\omega t + b_1\sin\omega t)$ کے ہم قدم ہے اور دونوں ایک ساتھ بڑھتے اور گھٹے ہیں جبکہ $(a_1\cos\omega t + b_1\sin\omega t)$ کو $(a_1\cos\omega t + b_1\sin\omega t)$ کو خاط سے $(a_1\cos\omega t + b_1\sin\omega t)$ کو بروقالمی صابع میں مختلف وجوہات کی بنا برقی طاقت کی ضائع، کو $(a_1\cos\omega t + b_1\sin\omega t)$ کے اس جرزو کو جروقالمی صناع جملے میں مختلف وجوہات کی بنا برقی طاقت کی ضائع، کو مقاطیس بنانے والا برقی رو یا مقناطیسے برقی رو⁴⁴ حاصل کہتے ہیں۔ بیجان انگیز برقی رو ہا میں سے زیادہ اہم ہے۔ قوی ٹرانسفار مروں میں تیسرا موسیقائی جرو عموماً کل ہون انگیز برقی رو کا 40 فی صد ہوتا ہے۔

ماسوائے جب بیجان انگیز برتی رو کے اثرات پر غور کیا جا رہا ہو، ہم بیجان انگیز برتی رو کے غیر سائن نما ہونے کو نظرانداز کرتے ہیں۔ قوی ٹرانسفار مرکا بیجان انگیز برتی رو اس کے کل برتی رو 45 کا تقریباً 5 فی صد ہوتا ہے للذا اس کا اثر بہت کم ہوتا ہے۔ یوں ہم بیجان انگیز برتی رو کو سائن نما تصور کر کے اس کے اثرات پر غور کرتے ہیں۔ ایسا کرنے سے مسئلہ پر غور کرنا آسان ہو جاتا ہے۔ اس فرضی سائن نما بیجان انگیز برتی رو 46 کی موثر قیمت کے برابر رکھی جاتی ہے جبکہ اس کا زاویہ 6 یوں رکھا جاتا ہے کہ اس سے ماصل برتی ضیاع اصل برتی ضیاع کے برابر ہو۔ شکل 6 کی مدد سے رہا بت سیحفی زیادہ آسان ہے۔ قالبی ضیاع مورت میں 6 کی قیمت یوں منتخب کی جائے گی کہ درج ذیل مساوات درست ہو۔

 $(3.9) p_c = E_{rms} I_{\varphi,rms} \cos \theta_c$

ر باو \hat{I}_{arphi} د باو \hat{E}_{1} سے \hat{I}_{arphi} تاخیر کی ہو گا۔

3.5 تبادله برقی د باواور تبادله برقی روکے خواص

 N_2 ہم شکل 3.7 کی مدد سے ٹرانسفار مرکا مطالعہ کرتے ہیں۔ ہم فرض کرتے ہیں کہ ابتدائی کچھا N_1 اور ثانوی کچھا وکر کا ہے اور دونوں کچھوں کی مزاحمتیں صفر ہیں۔ ہم مزید فرض کرتے ہیں کہ پورا مقناطیسی بہاو قالب میں رہتا اور

fundamental component⁴¹

harmonic components⁴²

core loss component⁴³

magnetizing current⁴⁴

⁴⁵کل بر تی روے مرادوہ بر تی روہ جو کل بر تی پو جھ لادنے سے حاصل ہوتا ہے۔ ⁴⁶ یعنی بدلتا برتی رو_ن ہی کواپ دوری سمتہ کی مد دسے <u>، آ</u>کھتے ہیں

شكل 3.7: كامل بوجھ بردارٹرانسفار مر۔

دونوں کچھوں سے گزرتا ہے، قالب میں برقی توانائی ضائع نہیں ہوتی اور قالب کا مقناطیسی مستقل اتنا بڑا ہے کہ بیجان انگیز برقی رو قابل نظر انداز ہے۔ برقی رو i_1 اور i_2 کے رخ یوں رکھے گئے ہیں کہ ان سے پیدا مقناطیسی بہاو ایک دوسرے کے مخالف رخ ہیں۔ اصل ٹرانسفار مر ان باتوں پر تقریباً پورا اترتا ہے۔ ایسے ٹرانسفار مر کو کامل ٹرانسفار مر t_1 کہتے ہیں۔

کامل ٹرانسفار مر کے ابتدائی کچھے پر بدلتا برتی دباو v_1 لا گو کرنے سے قالب میں بدلتا مقناطیسی بہاو φ_m پیدا ہو گا جو ابتدائی کچھے میں ، لا گو برتی دباو v_1 براب، امالی برتی دباو v_1 پیدا کرتا ہے۔

$$(3.10) v_1 = e_1 = N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

یمی مقناطیسی بہاو دوسرے کیجے سے بھی گزرے گا اور اس میں e_2 امالی برقی دباو پیدا کرے گا جو ثانوی سروں پر برقی دباو پیدا کرے گا جو ثانوی سروں پر برقی دباو پیدا کرے گا جو ثانوی سروں پر برقی دباو v_2 کی صورت میں نمودار ہو گا۔

$$(3.11) v_2 = e_2 = N_2 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

مساوات 3.10 کو مساوات 3.11 سے تقسیم کرتے ہوئے درج ذیل رشتہ حاصل ہوتا ہے

$$\frac{v_1}{v_2} = \frac{N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}}{N_2 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}} = \frac{N_1}{N_2}$$

جس کے تحت کامل ٹرانسفار مر دونوں لچھوں کے چکروں کی نسبت سے تبادلد برقی دباو⁴⁸ کرتا ہے۔

کامل ٹرانسفار مر میں طاقت کا ضیاع نہیں ہوتا ہے لہذا اس کو ابتدائی جانب جنتی برقی طاقت فراہم کی جائے وہ اتنی برقی طاقت ثانوی جانب دے گا:

$$(3.13) p = v_1 i_1 = v_2 i_2$$

 $ideal\ transformer^{47}$ voltage transformation⁴⁸

68 پاپ 3. ٹرانسفار مسر

درج بالا مساوات سے

$$\frac{v_1}{v_2} = \frac{i_2}{i_1}$$

کھا جا سکتا ہے جس کو مساوات 3.12 کے ساتھ ملا کر درج ذیل حاصل ہوتا ہے۔

$$\frac{v_1}{v_2} = \frac{i_2}{i_1} = \frac{N_1}{N_2}$$

مساوات 3.15 ٹرانسفار مر کی تبادلہ برقی دباو اور تبادلہ برقی رو⁴⁹ کی خاصیت پیش کرتی ہے جسے عموماً دو حصوں میں یوں لکھا جاتا ہے:

$$(3.16)$$
 $rac{v_1}{v_2}=rac{N_1}{N_2}$ تبادلہ برتی دیاہ $rac{i_1}{i_2}=rac{N_2}{N_1}$ تبادلہ برتی رو

اس مساوات کا پہلی جزو کہتا ہے کہ ٹرانسفار مر کی دونوں جانب برقی دباو دونوں اطراف چکروں کا راست متناسب ہو گا جبکہ مساوات کا دوسری جزو کہتا ہے کہ ٹرانسفار مر کے دونوں اطراف برقی رو چکروں کا بالعکس متناسب ہو گا۔

مثال 3.2: شكل 3.7 مين درج ذيل ليتے ہوئے ٹرانسفار مركى دونوں جانب برقى دباو اور برقى رو معلوم كريں۔

$$\hat{V}_1 = 220/0$$
 $N_1 : N_2 = 220 : 22$
 $Z = R = 10 \Omega$

حل: اہتدائی جانب برقی دباو 220 وولٹ دیا گیا ہے۔ ہم ثانوی جانب برقی دباو کو مساوات 3.16 کے پہلی جزو کی مدد سے حاصل کرتے ہیں۔

$$\hat{V}_2 = \frac{N_2}{N_1} \hat{V}_1 = \frac{22}{220} \times 220 / 0 = 22 / 0$$

ثانوی دباو 22 وولٹ ہے جو ابتدائی دباو کے ہم قدم ہے۔ ثانوی برقی دباو 10 اوہم کی مزاحمت میں برقی رو پیدا کرے گا جے اوہم کے قانون سے حاصل کرتے ہیں:

$$\hat{I}_2 = \frac{22/0}{10} = 2.2/0$$

 $current\ transformation^{49}$

ثانوی رو 2.2 ایمپیئر ہے۔ ابتدائی رو مساوات 3.16 کے دوسری جزو سے حاصل کرتے ہیں۔

$$\hat{I}_1 = \frac{N_2}{N_1} \hat{I}_2 = \frac{22}{220} \times 2.2 / 0 = 0.22 / 0$$

اس مثال کے نتائج ایک جگہ لکھ کر ان پر غور کرتے ہیں۔

$$\hat{V}_1 = 220/0$$
, $\hat{V}_2 = 22/0$, $\hat{I}_1 = 0.22/0$, $\hat{I}_2 = 2.2/0$

ابتدائی دباو ثانوی دباو کے دس گنا ہے جبکہ برقی رو میں قصہ الٹ ہے۔ ثانوی رو ابتدائی رو کے دس گنا ہے۔ طاقت دونوں اطراف برابر ہے۔ یہاں رک کر اس بات کو اچھی طرح سمجھ لیں کہ جس جانب برقی دباو زیادہ ہوتا ہے اس جانب برقی رو کم ہو گا۔ یوں زیادہ دباو لچھا کے چکر زیادہ ہوں گے اور اس کچھے میں نسبتاً باریک برقی تار استعال ہو گی جبکہ کم دباو لچھا کم چکر کا ہو گا اور اس میں نسبتاً موٹی برقی تار استعال ہو گی۔ موٹی تار زیادہ رو گزارنے کی سکت رکھتی ہے۔

مثال 3.3: صفحہ 74 پر شکل 3.10-الف میں رکاوٹ Z_2 کو بدلتے برقی دباو \hat{V}_1 کے ساتھ ایک ٹرانسفار مرکے ذریعہ جوڑا گیا ہے۔درج ذیل معلومات کی روشن میں رکاوٹ میں برقی رو اور طاقت کا ضیاع دریافت کریں۔

$$\hat{V}_1 = 110 / 0, \quad Z_2 = R + jX = 3 + j2, \quad N_1 : N_2 = 220 : 22$$

حل: ٹرانسفار مرکی تبادلہ برقی دباوکی خاصیت کے تحت ابتدائی 110 وولٹ دباو ٹانوی جانب درج ذیل دباو \hat{V}_s دے گا۔

$$\hat{V_s} = \frac{N_2}{N_1} \hat{V_1} = \frac{22}{220} \times 110 / 0 = 11 / 0$$

یوں ثانوی رو

$$\hat{I}_2 = \frac{\hat{V}_s}{Z} = \frac{11/0}{3+j2} = 3.05/-33.69^{\circ}$$

اور رکاوٹ میں برقی طاقت کا ضیاع p_z درج ذیل ہو گا۔

$$p_z = I_2^2 R = 3.05^2 \times 3 = 27.9 \,\mathrm{W}$$

3.6 ثانوى جانب بوجھ كاابتدائي جانب اثر

شکل 3.8 میں ابتدائی کچھے کی تارکی مزاحمت کو R سے ظاہر کیا گیا ہے جبکہ ثانوی جانب بوجھ Z ہے۔ فرض کریں ہم Z آثار کر ٹرانسفار مرکے ثانوی سرے کھلے دور کرتے ہیں۔ بے بوجھ ٹرانسفار مرکی ابتدائی جانب بدلتا برقی دباو v_1 قالب میں گھڑی کے رخ بی دباو v_1 قالب میں گھڑی کے رخ مقاطیسی دباو v_2 بیدا کرے گا۔ بہاو v_3 ابتدائی کچھے میں v_4 امالی برقی دباو پیدا کرتا ہے۔

$$(3.17) e_1 = N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

ابتدائی رو، فراہم کردہ دباو اور ابتدا امالی دباو کا تعلق قانون اہم سے لکھا جا سکتا ہے۔

$$(3.18) i_{\varphi} = \frac{v_1 - e_1}{R}$$

اب ہم ثانوی جانب برتی ہو جھ Z لادتے ہیں۔ ہو جھ بردار ٹرانسفار مر i_1 کے ثانوی جانب برتی رو i_2 رواں ہو گا جس کی وجہ سے N_2i_2 مقناطیسی دباو وجود میں آئے گا۔ یہ مقناطیسی دباو قالب میں گھڑی کے مخالف رخ مقناطیسی بہاو جہ یہاو جہ سے وہ سے ایندائی کے میں اور ابتدائی کھے میں امالی دباو گھٹ کر $\varphi_m - \varphi_0 = i_2$ اور ابتدائی کھے میں امالی دباو گھٹ کی وجہ سے ابتدائی رو بڑھے گا۔

آپ نے دیکھا کہ ثانوی جانب کا رو قالب میں مقناطیسی بہاو تبدیل کر کے ابتدائی کچھے کو بوچھ کے بارے میں خبر دار کرتا ہے۔

ار کے پہاں φ_m کو بہاں ہو کہا گیا ہے۔ loaded transformer 51

آئیں R کی قیمت کو نظرانداز کرتے ہوئے ہے بار ٹرانسفار مرسے شروع کر کے اس عمل کو زیادہ باریکی سے دیکھیں۔ٹرانسفار مرکو v_1 فراہم کرنے سے ابتدائی کچھے میں بیجان انگیز رو i_{φ} پیدا ہوگا جو قالب پر e_1 فالب پر e_1 مقناطیسی دباو مسلط کر کے اس میں گھڑی کے رخ بہاو φ_m پیدا کرتا میں گھڑی کے رخ بہاو φ_m پیدا کرتا v_1 وگا لہذا مساوات v_1 درج ذیل صورت اختیار کرتی ہوئے کی مزاحمت نظرانداز کرتے ہوئے $v_1=e_1$ ہوگا لہذا مساوات $v_1=v_2$ درج ذیل صورت اختیار کرتی ہے۔

$$(3.19) v_1 = e_1 = N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

اب ٹرانسفار مر پر Z ہوجھ ڈالتے ہیں۔ اس ہوجھ کی بنا ثانوی کچھے میں i_2 رو پیدا ہو گا جو قالب پر گھڑی کے مخالف رخ مقناطیسی دباو N_2i_2 مسلط کر کے اس میں گھڑی کے مخالف رخ بہاو φ_2 پیدا کرے گا۔ اگر φ_2 مسلط کر کے اس میں گھڑی کے مخالف رخ بہاو ہو جائے گا اور ابتدائی کچھے میں امالی دباو گھٹ نہ کیا جائے تب قالب میں کل مقناطیسی بہاو گھٹ کر $\varphi_m - \varphi_2$ ہو جائے گا۔ مساوات v_1 کے تحت یہ ایک ناممکن صورت حال ہے چونکہ v_1 کو جم صورت v_1 کے برابر مونا ہو گا (یاد رہ ہ کی قیت جوں کی توں ہے)۔ لہذا φ_2 کے اثر کو ختم کرنے کے لئے ابتدائی کچھے میں برقی رو نامورار ہو گا جس سے پیدا مقناطیسی دباو v_1 مقناطیسی دباو v_1 مقناطیسی دباو صفر ہو گا۔ اور v_1 کا مجموعی مقناطیسی دباو صفر ہو گا۔

$$(3.20) N_1 i_1 - N_2 i_2 = 0$$

درج بالا مساوات میں دونوں دباو ایک دوسرے کے مخالف رخ ہیں للذا ان کا مجموعہ در حقیقت ان کے فرق کے برابر ہوگا۔ مقناطیسی دباو N_1i_1 اور N_2i_2 قالب میں ایک دوسرے کے مخالف رخ ہیں للذا یہ ایک دوسرے کے اثر کو مکمل طور پر ختم کرتے ہیں۔ یوں بے بوجھ اور بوجھ بردار ٹرانسفار مر دونوں میں مقناطیسی بہاو φ_m کے برابر ہوگا۔ مساوات 3.20 سے تنادلہ رو کا کلیہ اخذ کیا جا سکتا ہے:

$$\frac{i_1}{i_2} = \frac{N_2}{N_1}$$

3.7 ٹرانسفار مرکی علامت پر نقطوں کا مطلب

شکل 3.9 میں جس لمحہ پر ابتدائی کچھے کا بالائی سر مثبت برقی دباو پر ہو، اس لمحہ پر ثانوی کچھے کا بالائی سر مثبت دباو پر ہے۔ اس حقیقت کو کچھوں پر نقطوں سے ظاہر کیا گیا ہے۔ یول نقطی سروں پر دباو ہم قدم ہوں گے۔

شكل 9. 3: ٹرانسفار مركى علامت ميں نقطوں كامفہوم۔

مزید ابتدائی کیچے کے نقطی سرسے مثبت برتی رو کیچے میں داخل جبکہ ثانوی کیچے کے نقطی سرسے مثبت برتی رو کیچے سے خارج ہو گی۔

3.8 ركاوك كاتبادله

اس حصہ میں کامل ٹرانسفار مر میں رکاوٹ کے تبادلہ پر غور کیا جائے گا۔ شکل 3.10-الف میں ایک ٹرانسفار مر دکھایا گیا ہے جس کی ابتدائی جانب سائن نما برتی دباو $V_1 = V_1 / \theta$ لاگو کیا گیا ہے۔ یبہاں دوری سمتیہ استعمال کئے جائیں گے۔ ٹرانسفار مر پر نقطے ہم قدم سروں کی نشاندہی کرتے ہیں۔

جیسے اوپر ذکر ہوا، برقی دباو \hat{V}_1 اور \hat{V}_2 آپس میں ہم قدم ہیں اور اسی طرح برقی رو \hat{I}_1 اور \hat{I}_2 آپس میں ہم قدم ہیں۔ سیاوات 3.12 اور مساوات 3.21 کو دوری سمتیہ کی مدد سے لکھتے ہیں۔

$$(3.22) \qquad \hat{V_1} = \left(\frac{N_1}{N_2}\right) \hat{V_2}$$

$$\hat{I_1} = \left(\frac{N_2}{N_1}\right) \hat{I_2}$$

خارجی د باو، رو اور رکاوٹ کا تعلق قانون اہم سے لکھتے ہیں۔

$$(3.23) Z_2 = \frac{\hat{V_2}}{\hat{I_2}} = |Z_2| \underline{/\theta_z}$$

مساوات 3.22 سے درج ذیل لکھا جا سکتا ہے جہاں آخری قدم پر رکاوٹ کی قیمت پر کی گئی ہے۔

(3.24)
$$\frac{\hat{V_1}}{\hat{I_1}} = \left(\frac{N_1}{N_2}\right)^2 \frac{\hat{V_2}}{\hat{I_2}} = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

3.8 رکاوٹ کات دلہ

یوں داخلی رو درج ذیل ہو گا۔

$$\hat{I}_1 = \frac{\hat{V}_1}{(N_1/N_2)^2 Z_2}$$

 Z_2' کو فراہم کیا گیا ہے۔ \hat{V}_1 ورج ذیل قیت کے رکاوٹ Z_2' کو فراہم کیا گیا ہے۔

(3.26)
$$Z_2' = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

آپ تىلى كركيس كە اس دور ميں جھى \hat{V}_1 كا برقى رو مساوات 3.25 ديتى ہے۔

ماوات 3.25 سے نببت $\frac{\hat{V_1}}{\hat{I}}$ کھتے ہیں جو شکل 3.10-ب کے تحت Z_2' کے برابر ہے۔

(3.27)
$$\frac{\hat{V_1}}{\hat{I_1}} = Z_2' = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

دونوں ادوار سے $\hat{V_1}$ کی طاقت درج ذیل حاصل ہوتی ہے۔

(3.28)
$$p = \hat{V_1} \cdot \hat{I_1} = \frac{V_1^2 \cos \theta_z}{\left(\frac{N_1}{N_2}\right)^2 |Z_2|}$$

یوں حساب کرنے کے نقطہ نظر سے ہم $\hat{V_1}$ کو مساوات 3.26 میں دی گئی قیمت کے رکاوٹ Z_2' پر لا گو کرتے ہوئے $\hat{V_1}$ کا برتی رو اور طاقت جان سکتے ہیں۔

 Z_2 منبع \hat{V}_1 کو شکل Z_2 -الف اور ب میں کوئی فرق نظر نہیں آتا ہے۔اس کے ساتھ ٹرانسفار مرکے ذریعہ جوڑنا یا بغیر ٹرانسفار مر Z_2 جوڑنا ایک برابر ہے۔ ٹرانسفار مر Z_2 کو یوں تبدیل کرتا ہے کہ \hat{V}_1 کو رکاوٹ Z_2' نظر آتا ہے۔ ٹرانسفار مرکی اس خاصیت کو تبادلہ رکاوہے Z_2' کی خاصیت کہتے ہیں جس کو درج ذیل مساوات بیان کرتی ہے۔ ٹرانسفار مرکی اس خاصیت کو تبادلہ رکاوہے Z_2'

(3.29)
$$Z_2' = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

ہم حماب کرنے کی خاطر رکاوٹ کوٹرانسفار مرکی ایک جانب سے دوسری جانب منتقل کر سکتے ہیں۔

شكل 3.11: برقى طاقت كى منتقلى ـ

3.8 رکاوٹ کاتب دلہ

شكل3.12: ٹرانسفار مرقدم باقدم حل كرنے كاطريقه۔

مثال 3.4: شکل 3.11-الف میں رکاوٹ Z_B کا برتی بوجھ ایک جزیٹر پر لدا ہے۔بوجھ تک برتی طاقت دو برتی تاروں کے ذریعہ منتقل کیا گیا ہے۔ان تاروں کا مجموعہ رکاوٹ Z_t ہے۔

شکل-ب میں جزیٹر کے قریب نسب برقی دباو بڑھانے والا ٹرانسفار مر برقی دباو کو دس گنا بڑھاتا ہے اور برقی بوجھ کے قریب نسب برقی دباو گھٹانے والا ٹرانسفار مر برقی دباو کو دس گنا گھٹاتا ہے۔دونوں ٹرانسفار مروں کے بچ تاروں کا مجموعہ رکاوٹ Z_t ہے جبکہ باقی مستعمل تاروں کی رکاوٹ قابل نظر انداز ہے۔دونوں اشکال میں

$$Z_B = 2 + j4$$
, $Z_t = 0.1 + j0.15$, $\hat{V} = 415/0$

لیتے ہوئے

- برقی بوجھ پر برقی دباو معلوم کریں،
- برقی تارول میں برقی طاقت کا ضیاع معلوم کریں۔

impedance transformation 52

حل الف:

$$\begin{split} \hat{I}_t &= \frac{\hat{V}}{Z_t + Z_B} = \frac{415/0}{0.1 + j0.15 + 2 + j4} \\ &= \frac{415/0}{2.1 + j4.15} = 89.23 / -63.159^{\circ} \\ &= 40.3 - j79.6 \end{split}$$

يوں رکاوٹ پر برقی د باو

$$\hat{V}_B = \hat{I}_B Z_B = (40.3 - j79.6) (2 + j4)$$

= 399 + j2 = 399/0.287°

اور برقی تارول میں برقی طاقت کا ضیاع درج ذیل ہو گا۔

$$p_t = I_t^2 R_t = 89.23^2 \times 0.1 = 796 \,\mathrm{W}$$

حل ب: شکل 3.11 اور شکل 3.12 سے رجوع کریں۔ شکل 3.11 میں ٹرانسفار مر T_2 کے ثانوی رکاوٹ کو مساوات 3.26 کی مدد سے ابتدائی جانب منتقل کرتے ہیں۔

$$Z_B' = \left(\frac{N_3}{N_4}\right)^2 Z_B = \left(\frac{10}{1}\right)^2 (2+j4) = 200 + j400$$

یوں شکل 3.12-الف حاصل ہوتا ہے جس میں برقی تار کا رکاوٹ اور تبادلہ شدہ رکاوٹ سلسلہ وار جڑے ہیں۔ان کے مجموعہ کو Z

$$Z' = Z_t + Z_B' = 0.1 + j0.15 + 200 + j400 = 200.1 + j400.15$$

لکھتے ہوئے شکل 3.12-ب حاصل ہوتا ہے۔ایک مرتبہ دوبارہ مساوات 3.26 استعال کرتے ہوئے کا کو گرانسفار مرکے ابتدائی جانب منتقل کرتے ہوئے

$$Z'' = \left(\frac{N_1}{N_2}\right)^2 Z' = \left(\frac{1}{10}\right)^2 (200.1 + j400.15) = 2.001 + j4.0015$$

شکل 3.12-پ حاصل ہو گا جس سے جزیر کا برتی رو درج زیل ہو گا۔

$$\hat{I}_G = \frac{\hat{V}}{Z''} = \frac{415/0}{2.001 + i4.0015} = 92.76/-63.432^{\circ}$$

شکل 3.12ب میں جزیٹر کا برتی رو جانتے ہوئے تبادلہ برتی رو سے \hat{I}_t حاصل کرتے ہیں۔ $\hat{I}_t = \left(\frac{N_1}{N_2}\right)\hat{I}_G = \left(\frac{1}{10}\right)92.76/(-63.432)^\circ = 9.276/(-63.432)^\circ$

یوں برقی تار میں طاقت کا ضیاع درج ذیل ہو گا۔

 $p_t = I_t^2 R_t = 9.276^2 \times 0.1 = 8.6 \,\mathrm{W}$

اسی طرح شکل 3.11 میں \hat{I}_t جانتے ہوئے تبادلہ برقی روسے

 $\hat{I}_B = \left(\frac{N_3}{N_4}\right) \hat{I}_t = \left(\frac{10}{1}\right) 9.276 / -63.432^{\circ}$ $= 92.76 / -63.432^{\circ} = 41.5 - j82.9$

حاصل کیا جا سکتا ہے۔رکاوٹ پر برقی دباو درج ذیل ہو گا۔

$$\hat{V}_B = \hat{I}_B Z_B = (41.5 - j82.9)(2 + j4) = 414 + j0.2$$

بغیر ٹرانسفار مر استعال کیے برقی تاروں میں طاقت کا ضیاع 796 واٹ جبکہ ٹرانسفار مر استعال کرتے ہوئے صرف 8.6 ا واٹ یعنی 92 گنا کم ہے۔اسی میں ٹرانسفار مر کی مقبولیت کا راز ہے۔

3.9 ٹرانسفار مر کاوولٹ-ایمپیئر

ٹرانسفار مرکی دونوں جانب برقی دباو کچھوں کے چکروں پر منحصر ہوتا ہے۔ٹرانسفار مر ایک مخصوص برقی دباو اور برقی رو کے لئے بنایا جاتا ہے۔ٹرانسفار مر بناوٹی برقی دباو پر بھی استعال کیا جا سکتا ہے اگرچہ عموماً اسے بناوٹی برقی دباو پر بھی جا ہوتا ہے۔ اس طرح ٹرانسفار مر بناوٹی برقی رویا $I_1:I_2$ سے کم برقی رو پر بھی استعال کیا جا سکتا ہے۔ تھی استعال میں ٹرانسفار مرکا برقی روعموماً بناوٹی قیت سے کم ہوتا ہے۔

ٹرانسفار مرکی ایک جانب کے برقی دباو اور برقی رو کا حاصل ضرب دوسری جانب کے برقی دباو اور برقی رو کا حاصل ضرب کا برابر ہوتا ہے۔

$$(3.30) V_1 I_1 = V_2 I_2$$

برتی دباہ اور برتی رو کے حاصل ضرب، V_1I_1 یا V_2I_2 ، کوٹرانسفار مرکا وولٹ ضرب ایمپیئر یا مختصراً وولھے۔ایمپیئر V_2I_2 بہتے ہیں V_2I_3 جوٹرانسفار مر کے برقی سکت کا ناپ ہے۔ٹرانسفار مر اور دیگر برقی مشین، مثلاً موٹر اور جزیئر جوٹرانسفار مرکے بین ، پر نسب معلوماتی شختی پر ان کا سکت، بناوٹی برقی دباہ اور بناوٹی تعداد لکھا جاتا ہے۔ یوں ٹرانسفار مرکا وولٹ۔ایمپیئر درج ذیل ہوگا۔

$$(3.31) V_1 I_1 = V_2 I_2$$

مثال 3.5: ایک 25000 وولٹ-ایمپیئر اور 220 : 11000 وولٹ برقی سکت کے ٹرانسفار مر کے زیادہ برقی رہاو کی جانب 11000 وولٹ لاگو ہیں۔

- اس کی ثانوی جانب زیادہ سے زیادہ کتنا برقی بوجھ ڈالا جا سکتا ہے؟
- زیادہ سے زیادہ برقی بوجھ پر ٹرانسفار مر کا ابتدائی برقی رو حاصل کریں۔

حل: اس ٹرانسفار مرکی معلومات درج ذیل ہیں۔

 $25 \,\mathrm{kV} \,\mathrm{A}$, $11000 : 220 \,\mathrm{V}$

تبادله برقی دباوکی مساوات سے ثانوی برقی دباو 220 وولٹ حاصل ہوتا ہے۔ ثانوی لیعنی کم برقی دباو جانب زیادہ سے زیادہ سرقی رو مساوات 3.31 سے حاصل ہو گا۔

$$I_2 = \frac{25000}{220} = 113.636 \,\mathrm{A}$$

اسی طرح ابتدائی جانب زیادہ سے زیادہ برقی رو اسی مساوات سے حاصل ہو گا۔

$$I_1 = \frac{25000}{11000} = 2.27 \,\mathrm{A}$$

П

ٹرانسفار مرکی دونوں جانب کچھوں میں استعال برقی تارکی موٹائی یوں رکھی جاتی ہے کہ ان میں کثافتِ برقی رو 55 کیساں ہو۔ کچھوں کی مزاحمت میں برقی رو گزرنے سے برقی طاقت کا ضیاع ہوتا ہے جس سے تار گرم ہوتی

volt-ampere, VA⁵³

^{44 -} بىلىيىر كو عموا گلودوك - ايمپيير يعنى 4 kV مين بيان كياجاتاب-

¹⁰⁰⁰ kV A⁵⁵ مانسفارم کی کیھوں میں کثافت برتی روتقریباً A/min² کی جاتی ہے

ہے۔ٹرانسفار مر کے برقی رو کی حد کچھوں کی گرمائش پر منحصر ہوتی ہے۔تار کی زیادہ سے زیادہ درجہ حرارت کو محفوظ حد کے اندر رکھا جاتا ہے۔زیادہ درجہ حرارت سے تار پر لگا روغن خراب ہو گا اور تار کا ایک چکر دوسرے چکر کے ساتھ کسر دور ہو گا۔ایہا ہونے سے ٹرانسفار مر جل کر خراب ہو جاتا ہے۔

ٹرانسفار مرتیل گرم ہو کر پھیلتا ہے جس کی بنا اس کی کثافت کم ہوتی ہے۔ یوں ٹیکی میں گرم تیل اوپر اور ٹھنڈا تیل نیچ مسلسل منتقل ہو گا۔ گرم تیل کو ٹھنڈا کرنے کے لئے ٹینکی کے ساتھ بہت سارے پائپ منسلک کئے جاتے 57 جن میں گرم تیل اوپر سے داخل ہوتا ہے۔ پائپ کا سطحی رقبہ زیادہ ہونے کی بنا ہوا اسے جلد ٹھنڈا کرتی ہے، اس میں تیل کا درجہ حرارت گھنتا اور کثافت بڑھتی ہے۔ ٹھنڈا تیل پائپ میں نیچے حرکت کرتے ہوئے دوبارہ ٹینکی میں داخل ہوتا ہے۔

3.10 ٹرانسفار مرکے امالہ اور مساوی ادوار

3.10.1 لحصے کی مزاحمت اوراس کی متعاملہ علیحدہ کرنا

ٹرانسفار مر کے ابتدائی کچھے کی مزاحمت R₁ پر حصہ 3.3، مساوات 3.2 میں بات کی گئی جہاں مزاحمت کو کچھے سے باہر سلسلہ وار جڑا دکھایا گیا تھا۔ آئیں دیکھیں ہم حساب کی خاطر کیسے مزاحمت کو کچھے سے علیحدہ کر سکتے ہیں۔

شکل 3.13-الف میں ایک کچھے پر بدلتا برقی دباو لاگو کیا گیا ہے۔اگر کچھے کی برقی تار کو چھوٹے ککڑوں میں تقسیم کیا جائے تب ہر ککڑے کی ایک چھوٹی مزاحمت ΔR اور ایک چھوٹا متعاملہ $j\Delta X$ ہو گا۔تار کا ایسا ایک

شكل 3.13: لجھے كى مزاحت اور متعاملہ۔

نگڑا شکل-ب میں دکھایا گیا ہے۔ چونکہ کچھا ان سب نکڑوں کے سلسلہ وار جڑنے سے بنتا ہے للذا شکل-الف کو ہم شکل-پ کی طرح بنا سکتے ہیں جہال کچھے کے n نکڑے کیے گئے ہیں۔

اس دور کی مساوات

$$\hat{V}_1 = \hat{I}_1 \left(\Delta R_1 + j \Delta X_1 + \Delta R_2 + j \Delta X_2 + \dots \Delta R_n + j \Delta X_n \right)$$

= $\hat{I}_1 \left(\Delta R_1 + \Delta R_2 + \dots \Delta R_n \right) + \hat{I}_1 \left(j \Delta X_1 + j \Delta X_2 + \dots j \Delta X_n \right)$

ہے جس میں

$$R = \Delta R_1 + \Delta R_2 + \cdots \Delta R_n$$
$$X = \Delta X_1 + \Delta X_2 + \cdots \Delta X_n$$

لکھ کر درج ذیل حاصل ہوتا ہے۔

(3.32)
$$\hat{V}_1 = \hat{I}_1 (R + jX)$$

شکل 3.14 سے بھی مساوات 3.32 لکھی جا سکتی ہے۔ یوں حساب کی خاطر کچھے کی مزاحمت اور متعاملہ علیحدہ کیے جا سکتے ہیں۔

 ${\rm transformer~oil^{56}}$

⁵⁷ وایڈا کے ٹرانسفار مر کابیر ونی حصدانہیں بائیوں پر مشتمل ہوتاہے۔

شكل 3.14: کچھے كى مزاحمت اور متعاملہ كى عليجد گا۔

3.10.2 رستااماله

یہاں تک ہم کامل ٹرانسفار مر پر بحث کرتے رہے ہیں۔ اب ہم ٹرانسفار مر میں ان عناصر کا ذکر کرتے ہیں جن کی وجہ سے ٹرانسفار مر غیر کامل ہوتا ہے۔ بہت سی جگہول پر ٹرانسفار مر استعال کرتے وقت ان عناصر کو مدِ نظر رکھنا ضرور ی ہوتا ہے۔ ان عناصر کے اثرات کو شامل کرنے کے لئے ہم ٹرانسفار مر کا مساوی دور بناتے ہیں۔

ابتدائی کچھے کے مقناطیسی بہاو کو دو حصول میں تقسیم کیا جا سکتا ہے۔ پہلا حصہ وہ جو قالب سے گزر کر ابتدائی اور ثانوی کچھے کے مقناطیسی بہاو ہے۔ دوسرا حصہ وہ جو صرف ابتدائی کچھے سے گزرتا ہے اور ثانوی کچھے دونوں کے اندر سے گزرتا ہے۔ یہ مشتر کہ مقناطیسی بہاو ہے۔ دوسرا حصہ وہ جو صرف ابتدائی کچھے سے گزرتا ہے اور زیادہ تر قالب کے باہر خلاء میں رہتا ہے۔ اس کو رستا مقناطیسی بہاو اقتدائی کچھے کے برقی رو کا راست مستقل μ_0 اٹل ہے للذا یہاں بچکچاہٹ بھی اٹل ہو گی۔ یوں رستا مقناطیسی بہاو ابتدائی کچھے کے برقی رو کا راست متناسب ہو گا۔

 $X_1=2\pi f L_1$ و بالکل کچھے کی مزاحمت کی طرح کچھے سے باہر رستا امالہ 59 یا رستا متعاملہ کے اثر کو بالکل کچھے کی مزاحمت کی طرح کچھے سے باہر رستا امالہ 59 یا رستا متعاملہ 60 کیا جاتا ہے۔

ٹرانسفار مر کے ابتدائی کیچے میں برتی رو \hat{I}_1 گزرنے سے رستا متعاملہ میں $\hat{V}_{X1}=j\hat{I}_1X_1$ برتی دباو اور کیچے کے تار کی مزاحمت میں $\hat{V}_{R1}=\hat{I}_1R_1$ برتی دباو گھٹتا ہے۔

جبیہا شکل 3.15 میں دکھایا گیا ہے، ابتدائی کچھے پر لا گو دباہ \hat{V}_1 ، مزاحمت R_1 اور متعاملہ X_1 میں گھٹاہ اور ابتدائی امالی دباہ \hat{E}_1 کا مجموعہ ہو گا۔

leakage magnetic flux 58 leakage inductance 59

leakage reactance⁶⁰

3.10.3 ثانوى برقى رواور قالب كے اثرات

قالب میں دونوں کچھوں کا مشتر کہ مقناطیسی بہاو ان کے مجموعی مقناطیسی دباو کی وجہ سے وجود میں آتا ہے۔ اس حقیقت کو ایک مختلف اور بہتر انداز میں بیان کیا جا سکتا ہے۔ ہم کہتے ہیں کہ ابتدائی برتی رو کو دو شرائط مطمئن کرنے ہوں گے۔ اول اسے قالب میں بیجانی مقناطیسی بہاو وجود میں لانا ہو گا اور دوم اسے ثانوی کچھے کے پیدا کردہ مقناطیسی بہاو کو ختم کرنا ہو گا۔ لہذا ابتدائی برتی رو کو ہم دو حصوں میں تقسیم کر سکتے ہیں۔ ایک حصہ $_{_{6}}$ ، جو بیجانی مقناطیسی بہاو کی پیدا کرتا ہے۔ اور دوم را $_{_{1}}$ ورج ذیل ہو گا۔

$$\hat{I}_2' = \frac{N_2}{N_1} \hat{I}_2$$

ثانوی کھھے کے مقاطیسی بہاو کے اثر کو ختم کرنے پر حصہ 3.6 میں غور کیا گیا ہے۔

اگرچہ برقی رو i_{arphi} فیر سائن نما ہوتا ہے ہم اسے سائن نما \hat{I}_{arphi} تصور کر کے دو حصول، \hat{I}_{c} اور \hat{I}_{m} ، میں تقسیم کرتے ہیں۔

$$\hat{I}_{\varphi} = \hat{I}_c + \hat{I}_m$$

نہ کورہ بالا مساوات میں برقی رو کو دوری سمتیات کی صورت میں لکھا گیا ہے۔ان میں \hat{I}_c ابتدائی کچھے کے امالی برقی دباو بور کا ہم قدم ہے اور قالب میں برقی توانائی کے ضیاع کو ظاہر کرتا ہے جبکہ \hat{I}_m وہ حصہ ہے جو \hat{E}_1 سے نوے درجہ تاخیری \hat{E}_1 زاویہ پر رہتا اور کچھے میں مقناطیسی بہاو پیدا کرتا ہے۔

شکل 3.16 میں R_c اور I_c بالترتیب برقی رو I_c اور I_c اور I_c کے لئے استعال I_c برابر کے کے لئے استعال علی مقدار اتنی رکھی جاتی ہے کہ اس میں برقی طاقت کا ضیاع اصل قالبی ضیاع کے برابر I_c

 $lagging^{61}$

شکل3.16:ٹرانسفار مر مساوی دور، حصه دوم۔

ہو لینی jX_m کی مقدار اتنی رکھی جاتی ہے $R_c=E_{1,rms}^2/p_c$ کی مقدار اتنی رکھی جاتی ہے که بین دیاو اور تعدد پر حاصل کئے جاتے ہیں۔ R_c اور jX_m اور jX_m اور jX_m کے مقدار اصل برقی دیاو اور تعدد پر حاصل کئے جاتے ہیں۔

3.10.4 ثانوي لجھے کالمالی برقی دیاو

قالب میں مشتر کہ مقاطیسی بہاو ثانوی کھیے میں امالی برتی دباو \hat{E}_2 پیدا کرے گا۔ چونکہ یہی مقاطیسی بہاو ابتدائی کیھے میں \hat{E}_1 امالی پیدا کرتا ہے للذا درج ذیل لکھا جا سکتا ہے۔

$$\frac{\hat{E}_1}{\hat{E}_2} = \frac{N_1}{N_2}$$

مباوات 3.34 اور مباوات 3.35 کو ایک کامل ٹرانسفار مرسے ظاہر کیا جا سکتا ہے جے شکل 3.17 میں و کھایا گیا

3.10.5 ثانوی کھے کی مزاحت اور متعاملہ کے اثرات

ثانوی کیھے میں امالی دباو \hat{E}_2 پیدا ہو گا۔ابتدائی کیھے کی طرح، ثانوی کیھے کی مزاحمت R_2 اور متعاملہ jX_2 ہوں گ جن میں ثانوی برتی رو \hat{V}_2 کی بنا برتی دباو گھٹے گا۔ یوں ثانوی کیھے کے سروں پر برتی دباو \hat{V}_2 تدرِ کم ہو گا:

$$\hat{V}_2 = \hat{E}_2 - \hat{I}_2 R_2 - j \hat{I}_2 X_2$$

یوں حاصل ٹرانسفار مر کا مکمل مساوی دور یا ریاضی نمونہ 62 شکل 3.18 میں دکھایا گیا ہے۔

 $^{{\}rm mathematical\ model}^{62}$

3.10.6 ركاوك كاابتدائي ياثانوي جانب تبادله

شکل 3.18 میں تمام اجزاء کا تبادلہ ابتدائی یا ثانوی جانب کیا جا سکتا ہے۔ ایبا کرتے ہوئے کامل ٹرانسفار مر کو مساوی دور کی بائیں یا دائیں جانب رکھا جا سکتا ہے۔شکل 3.19 میں ثانوی رکاوٹ کو ابتدائی جانب منتقل کیا گیا ہے جبکہ شکل 3.20 میں ابتدائی رکاوٹوں کا تبادلہ ثانوی جانب کیا گیا ہے۔جیسا شکل 3.20 میں دکھایا گیا ہے، ایسے مساوی ادوار میں کامل ٹرانسفار مرعموماً دکھایا نہیں جاتا ہے۔

تبادلہ شدہ رکاوٹ Z کو Z سے ظاہر کیا جاتا ہے۔ یوں تبادلہ شدہ R_2 کو R_2 سے ظاہر کیا گیا ہے۔ ایسا دور استعال کرتے وقت یاد رکھنا ہو گا کہ مساوی دور میں اجزاء کس جانب منتقل کیے گئے ہیں۔

مثال 3.6: ایک 50 کلو وولٹ-ایمپیئر اور 220: 220 وولٹ برقی سکت کے ٹرانسفار مرکی زیادہ برقی دباو جانب رستا رکاوٹ $Z_1=0.0089+j0.011$ اوہم کم برقی دباو جانب رستا رکاوٹ $Z_1=0.099+j0.011$

والے ہونے والے $R_c=6.4\,\mathrm{k}\Omega$ اور $X_m=47\,\mathrm{k}\Omega$ اور $X_m=47\,\mathrm{k}\Omega$ ہونے والے این معلوم کریں۔

حل الف: معلومات:

 $50 \,\mathrm{kV} \,\mathrm{A}, \quad 50 \,\mathrm{Hz}, \quad 2200 : 220 \,\mathrm{V}$

ٹرانسفار مر کے برقی دباوے کچھوں کے چکر کا تناسب حاصل کرتے ہیں۔ $\frac{N_1}{N_2} = \frac{2200}{220} = \frac{10}{1}$

زیادہ برقی دباو جانب تبادلہ شدہ اجزاء درج ذیل ہوں گے۔

$$R'_{2} + jX'_{2} = \left(\frac{N_{1}}{N_{2}}\right)^{2} (R_{2} + jX_{2})$$

$$= \left(\frac{10}{1}\right)^{2} (0.0089 + j0.011)$$

$$= 0.89 + j1.1$$

مساوی دور میں باقی رکاوٹ پہلے سے زیادہ برقی دباو جانب ہیں للذا یہ تبدیل نہیں ہوں گے۔یوں شکل 3.19 کے جزو حاصل ہوئے۔

حل ب: مساوی دور کے اجزاء کا تبادلہ کم دباو جانب کرتے ہیں۔

$$R'_1 + jX'_1 = \left(\frac{N_2}{N_1}\right)^2 (R_1 + jX_1)$$
$$= \left(\frac{1}{10}\right)^2 (0.9 + j1.2)$$
$$= 0.009 + j0.012$$

اسی طرح درج ذیل حاصل ہوں گے

$$R'_c = \left(\frac{N_2}{N_1}\right)^2 R_c = 64$$

$$X'_m = \left(\frac{N_2}{N_1}\right)^2 X_m = 470$$

П

جبہ Z_2 یہلے سے کم برقی دباہ جانب ہے للذااس کی قیت تبدیل نہیں ہو گا۔

3.10.7 ٹرانسفار مرکے سادہ ترین مساوی ادوار

ایک انجنیئر ٹرانسفار مر استعال وقت حساب کی خاطر شکل 3.19 یا شکل 3.20 کے ادوار استعال کر سکتا ہے۔ یہ ادوار حقیق ٹرانسفار مر کی بہت اچھی عکاسی کرتے ہیں۔ البتہ جہاں بہت صحیح جوابات مطلوب نہ ہوں وہاں ان ادوار کی سادہ اشکال بھی استعال کی جا سکتی ہیں۔ اس حصہ میں ہم ایسے سادہ مساوی ادوار حاصل کرتے ہیں۔

 $R_2' + j X_2'$ اور X_m اور X_m کو X_m کو باکیں منتقل کرنے سے شکل 3.21 اور X_m اور X_m کا ورکیں منتقل کرنے سے شکل 3.22 حاصل ہوتے ہیں۔ چونکہ پ \hat{I}_{φ} کی مقدار نہایت کم \hat{I}_{φ} ہوتی ہے للذا ایبا کرنے سے نتائج پر خاص فرق نہیں پڑتا ہے۔

 X_2' اور شکل 3.22 اور شکل 3.22 میں سلسلہ وار جڑے R_1 اور R_2' کو R_{ms} جبکہ سلسلہ وار جڑے R_1 اور R_2' کو R_1 کو کا میں سلسلہ وار شکل 3.20 سے بھی حاصل ہوتے ہیں۔

ٹرانسفار مرکے کل برقی بوجھ کا صرف دوسے چھ فی صد ہوتا ہے۔ $\hat{I}_{arphi}{}^{63}$

شکل 3.23:ٹرانسفار مر کے سادہ مساوی ادوار۔

شکل R_1 میں R_c اور X_m رکاوٹ R_1+jX_1 اور R_1+jX_2 اور R_2+jX_2 اور R_1+jX_1 اور R_2 اور شکل R_2 میں یہ اجزاء باقی دور کے بائیں یا دائیں ہاتھ ہیں اور ایسے ادوار کا حل نسبتاً ڈیادہ آسان ہوتا ہے۔

 R_c مزید سادہ دور حاصل کرنے کی خاطر \hat{I}_{φ} کو صفر تصور کر کے نظر انداز کیا جا سکتا ہے۔ یوں مساوی دور میں دور اور میں دور اور کیا ہے۔ اس دور jX_m کو کھلے دور تصور کرتے ہوئے دور سے ہٹایا جا سکتا ہے۔ شکل 3.23-الف میں ایبا کیا گیا ہے۔ اس دور میں قالب کے اثرات کو مکمل طور پر نظر انداز کیا گیا ہے۔

بیشتر وقت اس سے بھی کم درنگی کے نتائج مطلوب ہوتے ہے۔ یوں $X_{ms}\gg R_{ms}$ کی بنا R_{ms} کو نظرانداز کرتے ہوئے شکل $X_{ms}\gg X_{ms}$ کرتے ہوئے شکل X_{ms} کو بھی نظرانداز کرنے سے کامل ٹرانسفار مرحاصل ہوگا جو $\frac{V_1}{V_2}=\frac{I_2}{I_1}=\frac{N_1}{N_2}$ پر یورا اثرتا ہے۔

3.11 كطلے دور معائنه اور كسر دور معائنه

گزشتہ حصہ میں ٹرانسفار مر کے مساوی ادوار پر بات کی گئی۔ان مساوی ادوار کے اجزاء ٹرانسفار مر کے دو معائنوں سے حاصل کئے جا سکتے ہیں جنہیں کھلا دور معائنہ اور کسر دور معائنہ کہتے ہیں۔اس حصہ میں ان معائنوں پر غور کیا گیا ہے۔

3.11.1 كطلاد ورمعائنه

کھلا دور معائنہ 64 ، جیبا کہ نام سے واضح ہے، ٹرانسفار مرکی ایک جانب کچھے کے سروں کو آزاد رکھ کر کیا جاتا ہے۔ بیہ معائنہ ٹرانسفار مرکی بناوٹی 65 برقی دباو اور تعدد یا ان کے قریب قیمتوں پر کیا جاتا ہے۔ اگرچہ ٹرانسفار مرکے کسی بھی جانب کچھے پر کھلے دور معائنہ سرانجام دیا جا سکتا ہے، حقیقت میں ایسا کم برقی دباو کچھے پر کرنا زیادہ آسان اور کم خطرناک ہوتا ہے۔ یہ بات ایک مثال سے بہتر سمجھ آئے گی۔

مثال کے طور پر ہم A 25 kV A، 220 V : 50 Hz ،11000 نیک دوری ٹرانسفار مرکا معائنہ کرنا چاہتے ہیں۔
یہ معائنہ گیارہ ہزار کچھ پر کرتے ہوئے گیارہ ہزار وولٹ کے لگ بھگ برقی دباو استعال ہو گا جبکہ دو سو بیس برقی
دباو کچھ پر معائنہ کرنے سے دو سو بیس وولٹ کے لگ بھگ برقی دباو استعال کرنا ہو گا۔ دونوں صورتوں میں تعدد
50 Hz بر محائنہ کم برقی دباو کچھ پر کیا جاتا ہے۔
کھلا دور معائنہ کم برقی دباو کچھ پر کیا جاتا ہے۔

 p_t کھلے دور معائنہ میں کم برقی دباو کچھے پر بناوٹی برقی دباویا اس کا قریب دباو V_t لاگو کر کے کھلا دور برقی طاقت p_t اور کھلا دور برقی رو برقی را ناپا جاتا ہے۔بناوٹی برقی دباو کے قریب دباو پر معائنہ کرنے سے بہتر نتائج حاصل ہوں گے۔ ٹرانسفار مرکی دوسری جانب کچھے کے سرے چونکہ آزاد رکھے جاتے ہیں المذا اس میں برقی رو صفر ہو گا۔ اس طرح ناپا گیا برقی رو صرف ہیجان انگیز برقی رو گا۔ بیجان انگیز برقی رو ٹرانسفار مرکے بناوٹی روکا دو سے چھ فی صد ہوتا ہے۔

یاد رہے $\hat{V}_t = V_t / \frac{\phi_v}{\psi_v}$ اور $\hat{I}_t = I_t / \frac{\phi_i}{\psi_v}$ اور $\hat{V}_t = V_t / \frac{\phi_v}{\psi_v}$ مطلق قیمتوں، V_t اور V_t ، V_t ، V_t ، V_t ، V_t ،

شکل 3.19 میں بائیں ہاتھ کو کم برتی دباو والا جانب تصور کریں۔ یوں V_t مقام V_t پر فراہم کیا جائے گا جبکہ پیائٹی رو غیر سمتی 66 رو I_1 ہو گا۔ خارجی کچھا کھلا دور ہونے کی بنا I_2' صفر ہو گا لہذا I_1 در حقیقت \hat{I}_c کی مطلق قیمت I_2 کے برابر ہو گا۔

 $I_t = I_1 = I_{\varphi}$

open circuit $ext{test}^{64}$ $ext{design}^{65}$ $ext{scalar}^{66}$

اتنی کم برقی رو سے کچھے کے رکاوٹ میں بہت کم برقی دباو گھٹتا ہے للذا اسے نظر انداز کیا جاتا ہے:

$$V_{R1} = I_t R_1 = I_{\varphi} R_1 \approx 0$$

$$V_{X1} = I_1 X_1 = I_{\varphi} X_1 \approx 0$$

یوں جیسا شکل 3.19 سے ظاہر ہے R_c اور X_m پر تقریباً V_t برتی دیاہ چائے گا۔ ان حقائق کو مد نظر رکھتے ہوئے شکل 3.24 صول زیادہ آسان ہے۔

برتی طاقت کا ضیاع صرف مزاحمت میں ممکن ہے لہذا p_t صرف R_c میں ضائع ہو گا۔ یوں درج ذیل ہو گا۔

$$p_t = \frac{V_t^2}{R_c}$$

اس سے ٹرانسفار مر کے مساوی دور کا جزو R_c حاصل ہوتا ہے۔

$$(3.37) R_c = \frac{V_t^2}{p_t}$$

درج ذیل کی بنا

$$Z_t=rac{\hat{V}_t}{\hat{I}_t}=rac{V_t/\phi_v}{I_t/\phi_i}=rac{V_t}{I_t}/\phi_v-\phi_i$$
 خرابهم کرده دیاه اور پیما کُثی رو کا تناسب درج ذیل ہو گا۔ $|Z_t|=rac{V_t}{I_t}$

اب شکل 3.24 سے درج ذیل واضح ہے

$$\frac{1}{Z_t} = \frac{1}{R_c} + \frac{1}{jX_m}$$

للذا

$$Z_t = \frac{jR_c X_m}{R_c + jX_m}$$
$$|Z_t| = \frac{R_c X_m}{\sqrt{R_c^2 + X_m^2}}$$

ہو گا۔یوں ٹرانسفار مر کے مساوی دور کا جزو X_m حاصل ہوتا ہے۔

(3.38)
$$X_{m} = \frac{R_{c}|Z_{t}|}{\sqrt{R_{c}^{2} - |Z_{t}|^{2}}}$$

ماوات R_c سے ماصل ہوتی ہیں۔ X_m ماوات R_c ماوات R_c ماوات کا بیں۔

یاد رہے حاصل کردہ R_c اور X_m ٹرانسفار مرکے پیائش جانب کے لئے درست ہوں گے۔ تبادلہ رکاوٹ سے دوسری جانب کی قیمتیں حاصل کی جاسکتی ہیں۔

3.11.2 كسردورمعائنه

کسر دور معائنہ بھی کھلے دور معائنہ کی طرح ٹرانسفار مر کے کسی بھی طرف ممکن ہے لیکن حقیقت میں اسے زیادہ برقی دباو کچھے پر کرنا آسان ہوتا ہے۔ یہ معائنہ ٹرانسفار مر کے بناوٹی برقی رویااس کے قریب رو پر کیا جاتا ہے۔

کلے دور معائنہ میں مستعمل ٹرانسفار مرکی بات آگے بڑھاتے ہوئے زیادہ برتی دباو کچھے کا بناوٹی رو A 2.2727 مور کی دباو کچھے کا بناوٹی رو A 113.63 جبکہ زیادہ اور کم دباو کچھے کا بناوٹی رو A 113.63 جبکہ زیادہ برتی دباو کچھے پر کرتے ہوئے A 2.2727 موائنہ زیادہ آسان ہو گا۔

اس معائنہ میں کم برقی دباو کچھے کے سروں کو آپس میں جوڑ کر کسر دور کیا جاتا ہے جبکہ زیادہ برقی دباو کچھے پر کچھے کے بناوٹی دباو کا دو سے بارہ فی صد دباو V_t لاگو کر کے اس کچھے کا برقی رو I_t اور فراہم کردہ طاقت p_t ناپا جاتا

شكل 3.25: كسر دور معائنه به

ہے جنہیں بالترتیب کسر دور رو اور کسر دور طاقت کہتے ہیں۔ کسر دور کچھے میں گزرتے برقی رو کا عکس دوسری جانب موجود ہو گا۔ یہ برقی روٹرانسفار مر کے بناوٹی برقی رو کے لگ بھگ ہوتا ہے۔

چونکہ یہ معائنہ بہت کم برتی دباو پر سرانجام دیا جاتا ہے للذا بیجان انگیز برتی رو کو مکمل طور پر نظرانداز کیا جا سکتا ہے۔ اس معائنہ کا دور شکل 3.25 میں دکھایا گیا ہے جہاں بیجان انگیز رو کو نظرانداز کرتے ہوئے R_c اور V_t کو کھلے دور کیا گیا ہے۔ کسر دور معائنہ میں شکل 3.20 کے بائیں ہاتھ کو کم برتی دباو جانب تصور کرتے ہوئے V_t کو کیا۔ کا جگہ لاگو کرنا ہو گا۔

برتی طاقت صرف مزاحمت میں ضائع ہو سکتا ہے للذا شکل 3.25 سے درج ذیل لکھا جا سکتا ہے
$$p_t = I_t^2 R_{ms}$$
 $p_t = I_t^2 R_{ms}$ یوں ٹرانسفار مر کے مساوی دور کا جزو R_{ms} حاصل ہوتا ہے۔ $R_{ms} = \frac{p_t}{I_c^2}$

کسر دور برقی رو اور کسر برقی دباو سے

$$|Z_t| = \frac{V_t}{I_t}$$

جبه شکل 3.25 سے درج زیل لکھا جا سکتا ہے۔

$$Z_t = R_{ms} + jX_{ms}$$
$$|Z_t| = \sqrt{R_{ms}^2 + X_{ms}^2}$$

یوں X_{ms} کی قیمت مساوات 3.39 سے جانتے ہوئے R_{ms} حاصل ہوتا ہے۔

$$(3.40) X_{ms} = \sqrt{|Z_t|^2 - R_{ms}^2}$$

مساوات 3.39 کل مزاحمت دیتا ہے البتہ اس سے R_1 یا R_2 حاصل نہیں کیا جا سکتا۔ اس طرح مساوات 3.40 سے X_1 اور X_2 علیحدہ نہیں کئے جا سکتے۔ کسر دور معائنہ سے اتنی ہی معلومات حاصل کرنا ممکن ہے جو حقیقت میں کافی ثابت ہوتا ہے۔ جہاں ان اجزاء کی علیحدہ قیمتیں درکار ہوں وہاں درج ذیل تصور کیا جا سکتا ہے

$$R'_1 = R_2 = \frac{R_{ms}}{2}$$

 $X'_1 = X_2 = \frac{X_{ms}}{2}$

ٹرانسفار مر معائنے اسی مقام پر کیے جاتے ہیں جہال ٹرانسفار مر نسب ہو۔ یوں وہی برتی دباو استعمال کرنا ہو گا جو وہاں موجود ہو۔ ہاں ضروری ہے کہ کسر دور معائنہ میں ٹرانسفار مر کو ڈیزائن برتی دباو کا دو سے بارہ فی صد دیا جائے۔ مثلاً $000 \times \frac{12}{100} = 1320 \, \text{V}$ میں استعمال کریں گے۔ اسی طرح دستیاب $000 \times \frac{12}{100} = 1320 \, \text{V}$ میں استعمال کریں گے۔ اسی طرح دستیاب $000 \times \frac{12}{100} = 1320 \, \text{V}$ میں استعمال کریں گے۔ اسی طرح دستیاب $000 \times \frac{12}{100} = 1320 \, \text{V}$

یاد رہے کہ ٹرانسفار مرکی ایک جانب کچھے کے سرے آپس میں جوڑ کر، یعنی کسر دور کر کے، دوسری جانب کچھے پر کسی بھی صورت اس جانب کی پوری برقی دباو لاگو نہیں کیجھے گا۔ ایسا کرنا شدید خطرناک اور جان لیوا ثابت ہو سکتا ہے۔

یاد رہے کہ ان معائنوں سے حاصل مساوی دور کے اجزاء اسی جانب کے لئے درست ہوں گے جس جانب انہیں حاصل کیا گیا ہو۔ان کی قیشیں دوسری جانب تبادلہ رکاوٹ سے حاصل کی جاسکتی ہیں۔

مثال 3.7: ایک 25 کلو وولٹ-ایمپیئر، 220 : 11000 وولٹ اور 50 ہرٹز پر چلنے والے ٹرانسفار مر کے کھلے دور اور کسر دور معائنے کیے جاتے ہیں جن کے نتائج درج ذیل ہیں۔ ٹرانسفار مر مساوی دور کے اجزاء تلاش کریں۔

• کھلا دور معائنہ میں کم برقی دباو جانب V 220 لا گو کیا جاتا ہے۔اسی جانب برقی رو A 39.64 اور طاقت کا ضیاع W 600 ناپے جاتے ہیں۔

• کسر دور معائنه میں زیادہ برتی دباو جانب V 440 لا گو کیا جاتا ہے۔اسی جانب برتی رو A 2.27 اور طاقت کا ضیاع W 560 ناپے جاتے ہیں۔

حل کھلا دور:

$$\begin{split} |Z_t| &= \frac{220}{39.64} = 5.55\,\Omega \\ R_c &= \frac{220^2}{600} = 80.67\,\Omega \\ X_m &= \frac{80.67\times5.55}{\sqrt{80.67^2-5.55^2}} = 5.56\,\Omega \end{split}$$

حل کسر دور:

$$Z_t = \frac{440}{2.27} = 193.83 \,\Omega$$

$$R_{ms} = \frac{560}{2 \times 2.27^2} = 108.68 \,\Omega$$

$$X_{ms} = \sqrt{193.83^2 - 108.68^2} = 160 \,\Omega$$

ور
$$X_{ms}$$
 اور X_{ms} کو کم برقی د باو جانب منتقل کرتے ہوئے R_{ms} $\left(\frac{220}{11000}\right)^2 imes 108.68 = 43.47\,\mathrm{m}\Omega$ $\left(\frac{220}{11000}\right)^2 imes 160 = 64\,\mathrm{m}\Omega$

لعيني

$$R_1 = R'_2 = \frac{43.47 \,\text{m}\Omega}{2} = 21.7 \,\text{m}\Omega$$

 $X_1 = X'_2 = \frac{64 \,\text{m}\Omega}{2} = 32 \,\text{m}\Omega$

حاصل ہو گا۔ان نتائج سے حاصل کم برقی دباو جانب مساوی دور شکل 3.26 میں دکھایا گیا ہے۔

3.12. تين دوري ٹرانسفار مسر

شکل 3.26: کھلے دوراور کسرِ دور معائنہ سے کم برقی دباوجانب مساوی دور۔

شكل3.27: ايك ہى قالب پر تين ٹرانسفار مر۔

3.12 تین دوری ٹرانسفار مر

اب تک ہم یکے دورہے 67 ٹرانسفار مر پر غور کرتے رہے ہیں۔ حقیقت میں برقی طاقت کی منتقلی میں عموماً تیہ ورورہے 68 ٹرانسفار مر استعال ہوتے ہیں۔ تین دوری ٹرانسفار مر کیساں تین عدد یک دوری ٹرانسفار مر انتقال ہوتے ہیں۔ تین دوری ٹرانسفار مر خراب ہونے کی صورت میں اس کو ہٹا کر شمیک کرنے کے دوران باقی دو ٹرانسفار مر استعال کئے جا سکتے ہیں۔ تین دوری ٹرانسفار مر بنانے کا اس سے بہتر طریقہ شکل 3.27 میں دکھایا گیا ہے جہاں ایک ہی مقناطیسی قالب پر تینوں ٹرانسفار مر کے لیچھے لیٹے گئے ہیں۔ اس شکل میں \hat{V}_{i1} پہلے ٹرانسفار مر کا ابتدائی لچھا اور \hat{V}_{s1} اس کا خانوی لچھا ہے۔ اس طرح کے تین دوری ٹرانسفار مر سے، میک اور چھوٹے ہونے کی وجہ سے عام ہو گئے ہیں اور آپ کو روز مرہ زندگی میں یہی نظر آئیں گے۔ ان میں برتی ضیاع بھی نسبتاً کم ہوتا ہے۔

شکل 3.28-الف میں تین ٹرانسفار مر د کھائے گئے ہیں۔ان ٹرانسفار مروں کے ابتدائی کیجیے آپس میں دو طریقوں

 $[\]begin{array}{c} \text{single phase}^{67} \\ \text{three phase}^{68} \end{array}$

سے جوڑے جا سکتے ہیں۔ایک کو ستارہ نما جوڑ Y^{69} اور دوسرے کو تکونی جوڑ 70 کہتے ہیں۔ای طرح ان ٹرانسفار مروں کے ثانوی کچھے بھی انہیں دو طریقوں سے جوڑے جا سکتے ہیں۔یول انہیں درج ذیل چار مختلف طریقوں سے جوڑا جا سکتا ہے۔

- $Y:\Delta$ ستاره: تکونی •
- Y:Y ساره: ساره •
- $\Delta: \Delta$ $\exists \lambda$
- $\Delta: Y$ تکونی: ستاره \bullet

شکل 3.28 میں $\Delta: Y$ ٹرانسفار مر دکھایا گیا ہے جس میں بایاں ہاتھ Y اور دایاں ہاتھ $\Delta: Y$ ٹرانسفار مر $\Delta: Y$ کھتے ہوئے X: Y کو بائیں اور X: Y کو دائیں کھا جاتا ہے۔جیسا پہلے ذکر ہو چکا ہے ہم اشکال میں ٹرانسفار مر کا ابتدائی طرف بائیں جانب رکھتے ہیں للذا X: Y: Y ابتدائی اور X: Y: X ثانوی طرف ہے۔ روائگی سے پڑھتے ہوئے ابتدائی کو پہلے اور ثانوی کو بعد میں پڑھا جاتا ہے للذا اس کو X: Y: X ککھ کر ستارہ۔ تکونی پڑھیں گے۔

شکل 3.28-الف میں تین ٹرانسفار مرول کے ابتدائی کیھوں کو ستارہ نما جوڑا گیا ہے جبکہ ان کی ٹانوی کیھوں کو سارہ نما جوڑا گیا ہے۔اسی طرح ٹانوی کیھوں کو تکونی جوڑا گیا ہے۔شکل-ب میں تینوں ٹرانسفار مر کے ابتدائی کیھوں کو ستارہ نما دکھایا گیا ہے۔اس طرح ٹانوی کیھوں کو شکونی دکھایا گیا ہے۔ان اشکال کی وجہ سے اس طرز کے جوڑ کو ستارہ نما جوڑ اور تکونی جوڑ کہتے ہیں۔

اییا شکل بناتے ہوئے ہر ٹرانسفار مر کے ابتدائی اور ثانوی کچھے کو ایک ہی زاویہ پر دکھایا جاتا ہے۔۔یوں شکل 3.28-ب میں 3.28-الف میں بالائی ٹرانسفار مر، جس کے ابتدائی سرے an اور ثانوی سرے a'n' ہیں، کو شکل 3.28-ب میں صفر زاویہ پر دکھایا گیا ہے۔ تین مرحلہ ٹرانسفار مروں کو اس طرح کی علامتوں سے ظاہر کیا جاتا ہے اور ان میں قالب نہیں دکھایا جاتا۔

ٹرانسفار مر کے جوڑ بیان کرتے وقت بائیں جوڑ کو پہلے اور دائیں جوڑ کو بعد میں پکارتے ہیں۔یوں شکل 3.28-ب میں ٹرانسفار مر کو ستارہ- تکونی جڑا ٹرانسفار مر یا مخضراً ستارہ- تکونی ٹرانسفار مر کہیں گے۔اسی طرح ابتدائی جانب کو بائیں اور ثانوی جانب کو دائیں ہاتھ بنایا جاتا ہے۔یوں اس شکل میں ابتدائی جانب ستارہ نما ہے جبکہ ثانوی جانب تکونی ہے۔

> star connected⁶⁹ delta connected⁷⁰

3.12. تين دوري ٹرانسفار مسسر

شكل 3.28: تين دوري ستاره- تكوني ٹرانسفار مر

ستارہ نما سے چار برقی تاریں نکلتی ہیں۔ ان میں مشترک تار n کو عموماً ٹرانسفار مر کے نزدیک زمین میں گہرائی تک دھنسا جاتا ہے۔ اس تار کو زمینی تار 73 یا صرف زمین 72 کہتے ہیں۔ عام فہم میں اسے ٹھنڈی تار 73 کہتے ہیں۔ باقی تین تارین a,b,c کہلاتے ہیں۔

ٹرانسفار مر کے کچھے پر برقی دباو کو یکے دور ہے برقی دباو_{کہ مل}⁷⁵ کہتے ہیں اور کچھے میں برقی رو کو یکے دور ہے برقی رو کر ہے ہیں اور کچھے میں برقی رو کو یکے دور ہے برقی رو کرم تاروں کے بھی برقی دباو کو تار کا برقی دباو ہار⁷⁷ کہتے ہیں۔ رمینی تاریس برقی رو کو زمینی برقی رو کو تارکا برقی رو برآ⁷⁸ کہتے ہیں۔ زمینی تاریس برقی رو کو زمینی برقی رو کو تارکا برقی رو برآ⁷⁹ کہتے ہیں۔ زمینی تاریس برقی رو کو زمینی برقی رو کو تارکا برقی رو برآ⁷⁹ کہتے ہیں۔

 ground^{71}

ground, earth, neutral⁷²

neutral⁷³

live wires⁷⁴

phase voltage⁷⁵

phase current⁷⁶

line to line voltage⁷⁷

line current⁷⁸

 $^{{\}rm ground}\ {\rm current}^{79}$

سارہ Y جانب یک دوری مقداروں اور تار کے مقداروں کا تعلق درج ذیل ہو گا۔

(3.41)
$$V_{Jt} = \sqrt{3}V_{\text{pl}}$$

$$I_{Jt} = I_{\text{pl}}$$

کونی ∆ جانب یک دوری اور تار کی مقداروں کا تعلق درج ہے۔

$$V_{jl} = V_{jl}$$
 (3.42) $I_{jl} = \sqrt{3}I_{jl}$

مساوات 3.41 اور مساوات 3.42 دوری سمتیہ کے رشتے نہیں بلکہ غیر سمتی مطلق قیمتوں کے رشتے دیتی ہیں۔ان رشتوں کو شکل 3.29 میں دکھایا گیا ہے۔مساوات 3.41 اور مساوات 3.42 سے درج ذیل حاصل ہوتا ہے۔

$$(3.43) V_{J\tau}I_{J\tau} = \sqrt{3}V_{z_1}I_{z_2}I_{z_3}$$

یک دوری ٹرانسفار مر کے وولٹ-ایمپیئر کیر ملہ V ہوتے ہیں اور ایسے تین ٹرانسفار مر مل کر ایک عدد تین دوری ٹرانسفار مر بناتے ہیں لہذا تین مرحلہ ٹرانسفار مر کے وولٹ-ایمپیئر تین گنّا ذیل ہوں گے۔

(3.44)
$$3V_{\rm JL}I_{\rm JL} = 3 \times \frac{V_{\rm JL}I_{\rm JL}}{\sqrt{3}} = \sqrt{3}V_{\rm JL}I_{\rm JL}$$

بہ مساوات تاہینے دور کھے ادوار میں کثرت سے استعال ہوتی ہے۔

ٹرانسفار مرجس طرح بھی جوڑے جائیں وہ اپنی بنیادی کار کردگی تبدیل نہیں کرتے ہیں للذا انہیں سارہ نما یا تکوئی جوڑنے کے بعد بھی ان میں ہر ایک ٹرانسفار مر انفرادی طور پر صفحہ 68 پر دے مساوات 3.16 اور صفحہ 7 پر دے مساوات 3.26 پر پورا اترے گا۔ انہیں استعال کر کے شکل 3.29 میں دیے گئے ٹرانسفار مروں کے ابتدائی اور ثانوی مساوات کی یک دوری اور تارکی مقداروں کے رشتے حاصل کئے جا سکتے ہیں۔ اس شکل میں N_1/N_2 ہے جہاں جہاں کی یک دوری ٹرانسفار مرکے چکر کا تناسب ہے۔ تین دوری ٹرانسفار مرپر لگی شختی پر دونوں جانب تارکے برقی دباوکا تناسب کھا جاتا ہے۔

شكل 3.29 مين ستاره- تكونى شرانسفار مركى تارير برقى دباو كا تناسب

(3.45)
$$\frac{V_{\acute{\mathcal{S}}^{|\mathcal{F}|}}}{V_{\mathcal{S}^{|\mathcal{F}|}}} = \sqrt{3}a = \sqrt{3}\left(\frac{N_1}{N_2}\right)$$

3.12. تين دوري ٹرانسفار مسر

شکل 3.29: ابتدائی اور ثانوی جانب تار اوریک دوری مقداروں کے رشتے۔

جبکه ستاره-ستاره کا

(3.46)
$$\frac{V_{\mathring{\mathcal{S}}|\mathcal{F}|}}{V_{\mathcal{S}|\mathfrak{F}}} = a = \left(\frac{N_1}{N_2}\right)$$

تکونی-ستاره کا

$$\frac{V_{\acute{\mathcal{G}}, \breve{\mathcal{G}}}}{V_{\acute{\mathcal{G}}, \breve{\mathcal{G}}}} = \frac{a}{\sqrt{3}} = \frac{1}{\sqrt{3}} \left(\frac{N_1}{N_2}\right)$$

اور تکونی- تکونی کا درج ذیل ہو گا۔

$$\frac{V_{\acute{\mathcal{G}}|\vec{x};!}}{V_{\acute{\mathcal{G}};\flat}} = a = \left(\frac{N_1}{N_2}\right)$$

مثال 3.8: کی دوری تین کیسال ٹرانسفار مروں کو ستارہ-تکونی کے $Y:\Delta$ جوڑ کر تین دوری ٹرانسفار مر بنایا گیا ہے۔ یک دوری ٹرانسفار مر کی برقی سکھے 80 درج ذیل ہے:

 $50\,\mathrm{kV\,A}, \quad 6350:440\,\mathrm{V}, \quad 50\,\mathrm{Hz}$

ستارہ- تکونی ٹرانسفار مر کی اہتدائی جانب 11000 وولٹ تین دوری دباو تار لا گو کیا گیا۔اس تین دوری ٹرانسفار مر کی ثانوی جانب دباو تار معلوم کریں۔

 $rating^{80}$

100 باب. 3. ٹرانسفار مسر

حل: حل کرتے وقت ہم ایک عدد یک دوری ٹرانسفار مریر نظر رکھیں گے۔ یک دوری ٹرانسفار مر کے چکر کا تناسب درج ذیل ہو گا۔

$$\frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{6350}{440}$$

مساوات 3.41 سے دباو تار درج ذیل حاصل ہوتا ہے۔

$$V_{\rm span}(\xi_{\rm i}) = \sqrt{3} \times 6350 \approx 11\,000\,{
m V}$$

یک دوری ٹرانسفار مرکی ثانوی جانب ط40 V ہوں گے جس کو مساوات 3.16 کی مدد سے بھی حاصل کیا جا سکتا ہے۔

$$V_{\mathcal{G}_{\mathcal{F}}} = \frac{N_2}{N_1} V_{\mathcal{G}_{\mathcal{F}}} = \frac{440}{6350} \times 6350 = 440 \,\mathrm{V}$$

ثانوی جانب تین یک دوری ٹرانسفار مروں کو تکونی جوڑا گیا ہے۔ یوں مساوات 3.42 کی مدد سے ثانوی دباو تاریبی ہو گا۔ تین دوری ٹرانسفار مر کے دباو تار کا تناسب درج ذیل ہو گا۔

$$\frac{V_{\text{ji,i,j,i,j}}}{V_{\text{ji,i,j}}} = \frac{11000}{440}$$

یک دوری ٹرانسفار مر 50 کلو وولٹ-ایمپیئر کا ہے للذا تین دوری ٹرانسفار مر 150 کلو وولٹ-ایمپیئر کا ہو گا۔یوں تین دوری ٹرانسفار مرکی سکت 81 درج ذیل ہو گی۔

 $150 \,\mathrm{kV} \,\mathrm{A}$, $11000 : 440 \,\mathrm{V}$, $50 \,\mathrm{Hz}$

ٹرانسفار مر شختی ⁸² پر ٹرانسفار مر کی سکت بیان ہوتی ہے۔ اس شختی پر تین دوری ٹرانسفار مر کے دونوں جانب دباو تار ککھا جاتا ہے نہ کہ کچھوں کے چکر۔

ستارہ-ستارہ ٹرانسفار مر میں تین دوری برقی دباو کے بنیادی اجزاء آپس میں °120 زاویائی فاصلے پر جبکہ تیسرے موسیقائی اجزاء آپس میں ہم قدم ہوتے ہیں۔ قالب کی غیر تدریجی خاصیت کی بنا ٹرانسفار مر میں ہر صورت تیسری موسیقائی اجزاء پائے جاتے ہیں۔ تیسری موسیقائی اجزاء ہم قدم ہونے کی وجہ سے جمع ہو کر برقی دباوکا ایک بڑا موج

rating⁸¹ name plate⁸²

3.12. تين دوري ٹرانسفار مــــر

شکل3.30 :ٹرانسفار مر تکونی متوازن بوجھ کوطاقت فراہم کررہاہے۔

پیدا کرتے ہیں جو تبھی کھار برقی دباو کے بنیادی جزو سے بھی زیادہ بڑھا ہوتا ہے۔اس وجہ سے ستارہ-ستارہ ٹرانسفار مر عام طور استعال نہیں ہوتا ہے۔

باقی تین قسم جڑے ٹرانسفار مروں میں تکونی جوڑ پایا جاتا ہے جس میں تیسری موسیقائی اجزاء کی موج گرد ثی رو پیدا کرتی ہے۔ یہ گرد ثی رو تیسری موسیقائی اجزاء کی موج کے اثر کو ختم کرتا ہے۔

تین دوری ٹرانسفار مر کے متوازن دور حل کرتے وقت ہم تصور کرتے ہیں کہ ٹرانسفار مرستارہ جڑا ہے۔یوں ی دوری برقی رو، تار کا برقی رو ہو گا اور یک دوری لاگو برقی دباو، یک دوری برقی دباو ہو گا۔اس طرح ہم اس پر لدے برقی بوجھ کو بھی ستارہ جڑا تصور کرتے ہے۔یوں تین دوری دور کی بجائے ہم نسبتاً آسان یک دوری دور حل کرتے ہیں۔ ایسا کرنے سے مسلہ پر غور کرنا آسان ہو جاتا ہے۔آئیں ایک مثال سے اس عمل کو سمجھیں۔

مثال 3.9: شکل 3.30 میں تین دوری $\Delta: Y: 000$ کلو وولٹ-ایمپیئر، 600: 11000 وولٹ اور 50 ہر ٹز γ مثال 3.90 مثال گرانسفار مرتین دوری متوازن تکونی ہو جھ کو طاقت مہیا کر رہا ہے۔ بو جھ کا ہر حصہ $\gamma=0.504+j0.1917$ کے برابر ہے۔

- اس شکل میں تمام برقی رو معلوم کریں۔
- برقی بوجه 83 کو در کار طاقت معلوم کریں۔

حل: پہلے تکونی بوجھ کو سارہ بوجھ میں تبدیل کرتے ہیں:

$$Z_Y = \frac{Z_\Delta}{3} = \frac{0.504 + j0.1917}{3} = 0.168 + j0.0639$$

electrical load 83

102 باب. 3. ٹرانسفار مسر

شكل 3.31: تكونى بوجھ كومساوى ستارە بوجھ ميں تبديل كيا گياہے۔

ستارہ بوجھ کو شکل 3.31 میں دکھایا گیا ہے جہال ایک برقی تار جسے نقطہ دار لکیر سے ظاہر کیا گیا ہے کو ٹرانسفار مرک زمینی نقطہ سے بوجھ کے مشتر کہ سرے کے در میان جڑا دکھایا گیا ہے۔ متوازن دور میں اس تار میں برقی رو صفر ہو گا۔ حل کرنے کی نیت سے ہم اس متوازن دور سے یک دوری حصہ لے کر حل کرتے ہیں۔

مساوی ستاره بوجه میں برقی رو

$$I = \frac{346.41}{0.168 + j0.0639} = 1927.262 / -20.825^{\circ}$$

اور یک دوری طاقت درج ذیل ہو گی۔

$$p = 346.41 \times 1927.262 \times \cos(-20.825^{\circ}) = 624\,007\,\mathrm{W}$$

كل طاقت تين گنا ہو گی ليعنی ¥ 1872 k جس بوجھ كا جزو طاقت 84 ورج ذيل ہو گا۔

$$\cos(-20.825^{\circ}) = 0.93467$$

تکونی بوجھ میں برتی رو 1112.7 $=rac{1927.262}{\sqrt{3}}$ ایمپیئر ہو گا۔ ٹرانسفار مرکی ابتدائی جانب برتی تاروں میں برتی رو درج ذیل ہو گا۔

$$\left(\frac{600}{11000}\right)\times1927.262=105.12\,\mathrm{A}$$

 ${\rm power\ factor}^{84}$

اس مثال میں جزو طاقت 0.93467 ہے۔اس کتاب کے لکھتے وقت پاکستان میں اگر صنعتی کارخانوں کی برقی بوجھ کی جزو طاقت 0.9 سے کم ہو جائے تو برقی طاقت فراہم کرنے والا ادارہ (واپڈا) جرمانہ نافذ کرتا ہے۔

3.13 ٹرانسفار مرچالو کرتے لمحہ زیادہ محرکی برقی روکا گزر

ہم دیکھ کچے ہیں کہ اگر ٹرانسفار مرکے قالب میں کثافتِ مقناطیسی بہاو سائن نما ہو لیعنی $B=B_0\sin\omega t$ تو اس کے لئے ہم لکھ سکتے ہیں

$$v = e = N \frac{\partial \varphi}{\partial t} = N A_c \frac{\partial B}{\partial t}$$
$$= \omega N A_c B_0 \cos \omega t$$
$$= V_0 \cos \omega t$$

لعيني

$$(3.49) B_0 = \frac{V_0}{\omega N A_c}$$

یہ مساوات برقرار چالو85 ٹرانسفار مر کے لئے درست ہے۔

تصور کریں کہ ایک ٹرانسفار مر کو چالو کیا جا رہا ہے۔ چالو ہونے سے پہلے قالب میں مقناطیسی بہاو صفر ہے اور جس لمحہ اسے چالو کیا جائے اس لمحہ بھی یہ صفر ہی رہتا ہے۔

جس لمحه ٹرانسفار مر کو چالو کیا جائے اس لمحہ لا گو برقی دباو

$$v = V_0 \cos(\omega t + \theta)$$

ہے۔اگر $\pi/2$ یہ لمحہ ہو تو آدھے دوری عرصہ 86 کے بعد قالب میں کثافتِ مقناطیسی بہاو heta

$$B = \frac{1}{NA_c} \int_0^{\pi/\omega} V_0 \cos(\omega t + \pi/2) dt$$
$$= \frac{V_0}{\omega NA_c} \sin(\omega t + \pi/2)_0^{\pi/\omega}$$
$$= -\left(\frac{2V_0}{\omega NA_c}\right)$$

steady state 85 time period 86

اب. 3. ٹرانسفار مسر

یعنی کثافتِ مقناطیسی بہاو کا طول معمول سے دگنا ہو گا۔ اگر یہی حساب $\theta=0$ لحمہ کے لئے کیا جائے تو زیادہ سے زیادہ کثافتِ مقناطیسی بہاو بالکل مساوات 3.49 کے عین مطابق ہو گا۔ ان دو زاویوں کے مابین زیادہ سے زیادہ کثافتِ مقناطیسی بہاو ان دو حدوں کے در میان رہتا ہے۔

قالب کی B-H خط غیر بندر تک بڑھتا ہے۔ لہذا B دگنا کرنے کی خاطر H کو کئی گنا بڑھانا ہو گا جو کچھے میں محرک برتی رو بڑھانے سے ہوتا ہے 88 یہاں صفحہ 53 پر دکھائے شکل 2.17 سے رجوع کریں۔ قومی ٹرانسفار مروں میں بیجانی کثافتِ مقناطیسی بہاو کی چوٹی 1.3 0.1 0.1 0.1 ہوتی ہے۔ ٹرانسفار مر چالو کرتے لمحہ یوں کثافتِ مقناطیسی بہاو کے سے 0.1 ٹیلز برتی رو نہایت زیادہ ہو گی۔

2000⁸⁷ کلوووك- ايمپيئر ٹرانسفار مرسے چالو کرتے وقت تھر تھراہٹ کی آواز آتی ہے

باب4

برقی اور میکانی توانائی کا باہمی تبادلہ

برقی رو یا مقناطیسی بہاو کی مدد سے برقی توانائی کو میکانی توانائی یا میکانی توانائی کو برقی توانائی میں مختلف مشین تبدیل کرتے ہیں۔ پیائش آلات، لاؤڈ سیکیر، ماکروفون، وغیرہ نہایت کم طاقت کا تبادلہ کرتے ہیں جبکہ ریلے 1، برقی مقناطیس، وغیرہ، قوت پیدا کرتے ہیں۔ کئی مشین، جن میں برقی موٹر اور جزیٹر شامل ہیں، ایک قسم کی توانائی کو لگاتار دوسری قسم کی توانائی میں تبدیل کرتے ہیں۔

اس باب میں مقناطیسی بہاو کی مدد سے توانائی کے تبادلہ پر غور کیا جائے گا۔ برقی رو کی مدد سے بھی توانائی کا تبادلہ سمجھا جا سکتا ہے جس کا تذکرہ اس کتاب میں نہیں کیا جائے گا۔

اس باب میں ہم وہ اہم تراکیب سکھیں گے جو انجنیئری مسائل حل کرنے میں مددگار ثابت ہوں گے۔

4.1 مقناطیسی نظام میں قوت اور قوت مروڑ

برقی میدان E میں برقی بار q پر درج ذیل قوت اثر انداز ہوگ۔

$$\mathbf{F} = q\mathbf{E}$$

 $relay^1$

a کارخ دیگا۔ a کارخ دیگا۔ b اگردائیں ہاتھ کی شہادت کی انگلی b اور بڑی انگلی b کے رخ ہوں تب انگوٹھا مثبت باریر

مثبت برقی بار پر قوت برقی شدت E کے رخ ہو گی جبکہ منفی بار پر قوت E کے مخالف رخ ہو گی۔

مقناطیسی میدان میں متحرک بار q ، جس کی سمتی رفتارv ہو، پر درج ذیل قوت اثر انداز ہو گی۔ $F = q(v \times B)$

شبت برتی بار پر قوت کا رخ دائیں ہاتھ کے قانون 5 دیگا۔دائیں ہاتھ کا انگوٹھا، شہادت کی انگلی اور بڑی انگلی کو ایک دوسرے کے ساتھ 90 زاویہ پر رکھتے ہوئے اگر شہادت کی انگلی v اور بڑی انگلی B کے رخ ہوں تب انگوٹھا F کے رخ ہوگا (شکل A)۔ منفی بار پر قوت مخالف رخ ہوگی۔ یہاں سمتی رفتار P اور P کے بھے۔

برتی اور متناطیسی (دونوں) میدان میں حرکت پذیر بار پر قوت مساوات 4.1 اور مساوات 4.2 کے مجموعہ سے حاصل ہو گی جس کو مساوات لوریزہ کہتے ہیں۔

(4.3)
$$F = q(E + v \times B)$$
 مساوات لورینز

مساوات 4.2 میں $v=\mathrm{d}L/\mathrm{d}t$ کھے کر درج ذیل حاصل ہو گا جہاں آخری قدم پر $v=\mathrm{d}L/\mathrm{d}t$ کھا گیا -

(4.4)
$$\begin{aligned} \boldsymbol{F} &= q \left(\frac{\mathrm{d} \boldsymbol{L}}{\mathrm{d} t} \times \boldsymbol{B} \right) \\ &= \frac{q}{\mathrm{d} t} \left(\mathrm{d} \boldsymbol{L} \times \boldsymbol{B} \right) \\ &= i \left(\mathrm{d} \boldsymbol{L} \times \boldsymbol{B} \right) \end{aligned}$$

velocity² right hand rule³ Lorenz equation⁴

شكل4.2: ايك چكرك لچھے پر قوت اور قوت مروڑ

مثال 4.1: شکل 4.2 میں ایک لچھا مقناطیسی میدان میں دکھایا گیا ہے۔ لچھے کا رداس 15 سم، محوری لمبائی 50 سم اور اس میں برقی رو 5 ایمیسئر ہے۔ کثافت مقناطیسی بہاو کو نقطہ دار نو کیلی لکیروں سے شالی قطب سے جنوبی قطب کے رخ دکھایا گیا ہے۔ اگر کثافت مقناطیسی بہاو 0.55 ٹسلا ہو تب

- کھیے کے اطراف پر قوت دریافت کریں اور
 - کھے یر قوت مروڑ τ دریافت کریں۔

حل: شکل-الف اور ب میں کار تیسی اکائی سمتیات دکھائے گئے ہیں۔ برقی تار کے سروں کو نظر انداز کرتے ہوئے اسے ایک بند مستطیل تصور کرتے ہیں۔ یوں شکل-الف میں برقی رو کے رخ تار کے اطراف کی لمبائیاں ورج ذیل ہوں گی جبکہ $B = B_0 a_{\rm X}$ ہوں گی جبکہ وگا۔

$$egin{aligned} oldsymbol{L}_{bc} &= loldsymbol{a}_{
m y} \ oldsymbol{L}_{cd} &= -2roldsymbol{a}_{
m x} \ oldsymbol{L}_{de} &= -loldsymbol{a}_{
m y} \ oldsymbol{L}_{eb} &= 2roldsymbol{a}_{
m x} \end{aligned}$$

یوں مساوات 4.2 کے تحت ان اطراف پر قوت (نیوٹن) درج ذیل ہو گا۔

$$egin{aligned} m{F}_{bc} &= i \left(m{L}_{bc} imes B_0 m{a}_{ ext{X}}
ight) \\ &= 5 \left(0.5 m{a}_{ ext{Y}} imes 0.55 m{a}_{ ext{X}}
ight) \\ &= -1.375 m{a}_{ ext{Z}} \\ m{F}_{cd} &= 5 \left(-0.3 m{a}_{ ext{X}} imes 0.55 m{a}_{ ext{X}}
ight) \\ &= 0 \\ m{F}_{de} &= 5 \left(-0.5 m{a}_{ ext{Y}} imes 0.55 m{a}_{ ext{X}}
ight) \\ &= 1.375 m{a}_{ ext{Z}} \\ m{F}_{ea} &= 0 \end{aligned}$$

ہم دیکھتے ہیں کہ صرف محوری اطراف پر قوتیں پائی جاتی ہیں جنہیں شکل 4.2-ب میں دکھایا گیا ہے۔ محوری اطراف پر اثر انداز قوت، مروڑ پیدا کرتی ہیں جس کا رخ دائیں ہاتھ کے قانون سے حاصل ہو گا۔ متنظیل تاریر قوت مروڑ (نیوٹن میٹر) درج ذیل ہو گا۔

$$\tau = -1.375 \times 2 \times 0.15 \times \sin \theta \mathbf{a}_{y}$$
$$= -0.4125 \sin \theta \mathbf{a}_{y}$$

مساوات 4.1 تا مساوات 4.3 كا استعال صرف سادہ ترين صورتوں ميں ممكن ہوتا ہے۔ حقیقی مشینوں میں ان مساوات سے قوت لغین كرنا مشكل ثابت ہوتا ہے۔ آئيں ايك ايك تركيب سيكھتے ہیں جس سے ہم مختلف مشینوں میں پائی جانی والی قوتیں لغین كر سكيں ۔ اس تركیب ہم-توانائی كا طريقه كہتے ہیں جو توانائی كے الل ہونے پر مبنی ہے۔

گھومتی برقی مشین عموماً دو کچھوں پر مشتمل ہوتی ہیں۔ ان میں ایک کچھا مشین کے ساکن حصہ پر لپٹا ہوتا ہے جس کی بنا بیہ ساکن رہتا ہے اور ساکر کچھا⁵ کہلاتا ہے ۔ دوسرا کچھا مشین کے گھومنے حصہ پر لپٹا ہوتا ہے اور مشین گھومنے سے یہ بھی گھومتا ہے۔ اس کو گھومتا کچھا⁶ کہتے ہیں۔ان کچھوں کو دو عدد مقناطیس تصور کرتے ہوئے الیی مشینوں کی کارکردگی باآسانی سمجھی جا سکتی ہے۔

جس طرح دو مقناطیس اگر قریب لائے جائیں تو یہ کوشش کرتے ہیں کہ ایک کا شال N دوسرے کے جنوب S کی سمت ہو۔

stator coil⁵ rotor coil⁶

شکل 4.3: برتی توانائی سے میکانی توانائی کے تبادلہ کا نظام۔

موٹر کے دو کچھے مقناطیس پیدا کرتے ہیں۔ہم جانتے ہیں کہ ایک مقناطیس کے شال N اور دوسرے کے جنوب S کے نیج قوت کشش پائی جاتی ہے۔ ساکن کچھے کا مقناطیسی بہاو گھومتے کچھے کے مقناطیسی بہاو سے کچھے آگے رہ کر اسے کھینچ کر کام کرتا ہے۔ جزیٹر میں اس کے بر عکس گھومتا کچھا، ساکن کچھے پر کام کرتے ہوئے اس میں برقی دباو پیدا کرتا ہے۔

توانائی کے طریقے کو شکل 4.3 کی مدد سے سمجھا جا سکتا ہے۔ یہاں مقناطیسی نظام کو ایک ڈبہ مانند دکھایا گیا ہے۔ اس نظام کو برقی توانائی مہیا کی جاتی ہے جس کو یہ میکانی توانائی میں تبدیل کرتا ہے۔ یہاں برقی توانائی کے متغیرات فاصلہ x اور میدانی قوت F_m ہیں۔ اس شکل میں بائیں یعنی ابتدائی یا اولین جانب i کا رُخ باہر سے اندر ہے جبکہ دائیں یعنی ثانوی جانب F_m کا رُخ اندر سے باہر رخ ہے۔ یہ ٹرانسفار مر دور کے شکل 3.7 کی مانند ہے۔

جہاں نظام میں توانائی کے ضیاع کو ذخیرہ توانائی سے علیحدہ کرنا ممکن ہو وہاں توانائی کے ضیاع کو بیرونی رکن تصور کیا جاتا ہے۔ شکل 4.4 میں ایک ایسا ہی نظام دکھایا گیا ہے جس میں کچھا برتی نظام اور حرکی حصہ میکانی نظام کو ظاہر کرتے ہیں اور کچھے میں توانائی کے ضیاع کو بیرونی مزاحمت R سے ظاہر کیا گیا ہے۔

توانائی کا بنیادی اصول کہتا ہے کہ توانائی نا تو پیدا کی جاسکتی ہے اور نا ہی اسے تباہ کیا جا سکتا ہے۔ اس کو صرف ایک قشم سے دوسرے قشم کی توانائی میں تبدیل کیا جا سکتا ہے۔ یوں نظام کو فراہم برتی توانائی بن ∂W_{ij} کا ایک حصہ میکانی توانائی می_{کا}نی توانائی میکانی توانائی میکانی توانائی میکانی توانائی میکانی توانائی میکانی توانائی میکانی ہو گا جبہ اس کا دوسرا حصہ میلائی کا مناظیسی میدان میں ذخیرہ ہو گا اور باتی حصہ میلائی مختلف طریقوں سے ضائع ہو گیا جو ہمارے کسی کام نہ آسکے گا:

$$\partial W_{\mathbf{j}} = \partial W_{\mathbf{j}} + \partial W_{\mathbf{n}} + \partial W_{\mathbf{n}} + \partial W_{\mathbf{n}} + \partial W_{\mathbf{n}}$$

میدانی قوت F_m میں چھوٹی ککھائی میں mلفظ میدانی کو ظاہر کر رہاہے۔

شكل 4.4: قوت يبدا كرنے والا آلا۔

برقی توانائی کے ضیاع کو نظرانداز کرتے ہوئے $\partial W_{ij} = \partial W_{ij} + \partial W_{ij}$ (4.6) $\partial W_{ij} = \partial W_{ij} + \partial W_{ij}$ کھا جا سکتا ہے جس کو ∂t ہے تقسیم کر کے

(4.7)
$$\frac{\partial W_{\ddot{\mathbf{J}}_{2}}}{\partial t} = \frac{\partial W_{\dot{\mathbf{J}}_{2}}}{\partial t} + \frac{\partial W_{\dot{\mathbf{J}}_{2}}}{\partial t}$$

کھا جا سکتا ہے جو توانائی کی بجائے طاقت کی بات کرتی ہے۔ اس مساوات کے بائیں ہاتھ برقی طاقت کو ei اور دائیں ہاتھ میکانی حصہ میں $\partial W_{\dot{0}} = F_m \partial x$ لکھ کر

(4.8)
$$ei = F_m \frac{\partial x}{\partial t} + \frac{\partial W_m}{\partial t}$$

حاصل ہو گا جہاں W_m کو W_m کو W_m کھا گیا ہے۔مساوات 2.27 استعال کرتے ہوئے اس کو

$$i\frac{\partial \lambda}{\partial t} = F_m \frac{\partial x}{\partial t} + \frac{\partial W_m}{\partial t}$$

کھا جا سکتا ہے۔ دونوں اطراف کو ∂t سے ضرب دے کر ترتیب نو کرتے ہوئے درج ذیل حاصل ہو گا۔ $\partial W_m = i\partial \lambda - F_m \partial x$

مساوات 4.10 توانائی کے طریقہ کی بنیاد ہے۔ اس مساوات کو استعال کرتے وقت یاد رہے کہ قوت بنیادی طور پر لوریز کے قانون e ہے ہی پیدا ہوتی ہے۔مساوات 4.10 میں برقی متغیرات i اور e کی بجائے i اور k ہیں۔ لہذا شکل 4.3 کو شکل 4.5 کی طرح بھی بنایا جا سکتا ہے۔

کسی بھی تفاعل z(x,y) کا کل تفرق درج ذیل ہو گا جہاں $\frac{\partial z}{\partial x}$ لیتے ہوئے y کو مستقل تصور کیا جاتا ہے

Lorenz equation⁸ function⁹

شکل 4.5: توانائی کی قشم تبدیل کرنے والاایک نظام۔

اور $rac{\partial z}{\partial y}$ لیتے ہوئے x کو مستقل تصور کیا جاتا ہے۔

(4.11)
$$\partial z(x,y) = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

اسی طرح $W_m(x,\lambda)$ کا کل تفرق

(4.12)
$$\partial W_m(x,\lambda) = \frac{\partial W_m}{\partial x} dx + \frac{\partial W_m}{\partial \lambda} d\lambda$$

ہو گا جس کا موازنہ مساوات 4.10 کے ساتھ کر کے درج ذیل اخذ کیا جا سکتا ہے جہاں ایک متغیر کے ساتھ جزوی تفرق لیتے وقت دوسرے متغیر کو صریحاً مستقل ظاہر کیا گیا ہے۔

(4.13)
$$F_m(x,\lambda) = -\left. \frac{\partial W_m(x,\lambda)}{\partial x} \right|_{\lambda_0}$$

(4.14)
$$i(x,\lambda) = \left. \frac{\partial W_m(x,\lambda)}{\partial \lambda} \right|_{x_0}$$

مقناطیسی میدان میں مقناطیسی توانائی $W_m(x,\lambda)$ دریافت کر کے مساوات 4.13 کی استعال سے قوت دریافت کی جاسکتی ہے۔ اگلے حصد میں مقناطیسی توانائی کا حصول سکھایا جائے گا۔

4.2 تبادله توانائی والاایک کچھے کا نظام

شکل 4.4 میں ایک کچھے کا سادہ نظام و کھایا گیا ہے۔ کچھے میں برتی ضیاع کو بیرونی مزاحمت سے ظاہر کیا گیا ہے جبکہ میکانی نظام میں حرکی حصہ کی کمیت کو نظرانداز کیا گیا ہے۔ جہاں اس کمیت کا اثر جاننا ضروری ہو وہاں اس کو ایک بیرونی کمیت تصور کیا جا سکتا ہے۔ اس طرح تبادلہ توانائی کے نظام پر غور کرنا آسان ہوتا ہے۔ قوت پیدا کرنے والی مشین میں حرکت نا گزیر ہے۔ عموماً حرکت تب ممکن ہوگی جب مقناطیسی قالب میں قابل تبدیل خلاء موجود ہو۔ قالب میں خلاء کی موجود گی کی بنا عام طور پر $\Re_a\gg\Re_a\gg\Re_c$ ہوگا اور ایبا مقناطیسی دور حل کرتے ہوئے \Re_c کو نظرانداز کیا جائے گا۔ یوں، جیبا مساوات 2.19 میں دیا گیا ہے، مقناطیسی دباو τ اور مقناطیسی بہاو ϕ براہ راست متناسب ہوں گے۔ ایسی صورت میں مساوات 2.29 میں امالہ M شکل M میں خلاء کی لمبائی M پر منحصر ہوگی لہذا اس مساوات کو درج ذیل کھتے ہیں۔

$$(4.15) \lambda = L(x)i$$

شکل 4.4 میں قوت F_m کے رخ طے ہونے والا فاصلہ x ہے۔ یوں میکانی کام مل ہوگا جبکہ ہوگا جبکہ فراہم برتی توانائی $\partial W_{ij} = i\,\mathrm{d}\lambda$ ہوگا $\partial W_{ij} = i\,\mathrm{d}\lambda$ فراہم برتی توانائی $\partial W_{ij} = i\,\mathrm{d}\lambda$ کو مساوات 4.10 کا تکمل $\partial W_{ij} = i\,\mathrm{d}\lambda$ کا تحمل کرتے ہیں۔

(4.16)
$$\int \partial W_m(x,\lambda) = \int i(x,\lambda) \, d\lambda - \int F_m(x,\lambda) \, dx$$

اس تکمل کا حصول شکل 4.6 سے واضح ہو گا۔ابتدائی نقطے پر مقناطیسی نظام کو کوئی برتی توانائی فراہم نہیں کی گئی ہے۔ یوں نظام میں برقی رو صفر ہو گی جس کی بنا مقناطیسی بہاو اور ارتباط بہاو بھی صفر ہوں گے النذا مقناطیسی میدان میں مقناطیسی توانائی بھی صفر ہو گی۔ کسی بھی مقناطیس کی قوت کشش اس کی مقناطیسی بہاو پر منحصر ہوتی ہے للذا صفر مقناطیسی بہاو کی بنا اس نظام میں قوت کشش صفر ہو گا اور یوں اس میں حرکت بھی صفر ہو گا۔اس طرح ابتدائی نقطہ پر درج ذیل ہوں گے۔

$$i = \phi = \lambda = W_m = F_m = x = 0$$

ابتدائی نقطہ شکل 4.6 میں دکھایا گیا ہے۔ اب کچھے کو برتی توانائی فراہم کی جاتی ہے۔ کچھے میں برتی رو کی بنا قوت اور حرکت پیدا ہو گی۔ آخر کار نظام اختتای نقطہ پر پنچے گا۔اختتای نقطہ بھی شکل میں دکھایا گیا ہے۔ اس نقطہ پر $x=x_0$ اور $x=x_0$ اور $x=x_0$ بیں اور مقناطیسی میدان میں توانائی ($x=x_0$) سہالیہ ہے۔ابتدائی نقطہ سے اختتای نقطہ تک $x=x_0$ کی توانائی کو یوں بڑھایا جاتا ہے کہ $x=x_0$ میں موٹی کیر (اصل راستے) پر رہیں۔ آخری نقطہ پر مقناطیسی میدان میں مقناطیسی توانائی $x=x_0$ جائے ہم متبادل راستہ اختیار کرتے ہیں۔ حاصل کرنا ہو گا جو ایک مشکل کام ہے۔اس راہ پر تکمل کی بجائے ہم متبادل راستہ اختیار کرتے ہیں۔

 $integral^{10}$

شكل 4.6: مقناطيسي ميدان ميں توانائي۔

ہم اس حقیقت سے فائدہ اٹھاتے ہیں کہ مقناطیسی میدان ایک قدامتے پہند میدالین اللہ جس کا مطلب ہے کہ مقاطیسی میدان میں مقاطیسی قوانائی صرف اور صرف اختتامی نقطہ کے x_0 من پہند راستہ اختیار کرتے ہیں ۔ہم میں ابادائی نقطہ سے پہلی راہ چل کر فاصلہ x_0 سے کر کے دوسری راہ اختیار کر کے اختتامی نقطہ x_0 کی سے میں ابتدائی نقطہ سے پہلی راہ چل کر فاصلہ x_0 سے کر کے دوسری راہ اختیار کر کے اختتامی نقطہ (x_0, λ_0) تک بہنچتے ہیں۔ یوں مساوات x_0 کو دو تکملات کا مجموعہ کھا جائے گا۔ایک تکمل نقطہ x_0 کی اور دوسرا یہاں سے نقطہ x_0 کی لیا جائے گا:

(4.17)
$$\int_{\partial U_m(x,\lambda)} \partial W_m(x,\lambda) = \int_{\partial U_m(x,\lambda)} \partial W_m(x,\lambda) + \int_{\partial U_m(x,\lambda)} \partial W_m(x,\lambda)$$

اس مساوات کے دائیں ہاتھ کھلات کو باری باری دیکھتے ہیں۔ پہلی راہ کھل کو مساوات 4.16 کی مدد سے لکھتے ہیں۔

(4.18)
$$\int_{0}^{\infty} \partial W_m(x,\lambda) = \int_0^0 i(x,0) \,\mathrm{d}\lambda - \int_0^{x_0} F_m(x,0) \,\mathrm{d}x$$

جیبیا شکل 4.6 میں دکھایا گیا ہے، پہلی راہ پر $0=\lambda$ ہے۔ مساوات 4.18 میں اس بات کو برتی رو i(x,0) اور قوت f_0^0 i(x,0) $\mathrm{d}\lambda=0$ کیا گیا ہے۔ چونکہ ابتدائی اور اختتامی نقطوں پر λ صفر ہے للمذا δ δ ہوگا۔ ایسے تکمل کی قیمت صفر ہوتی ہے جس کا ابتدائی اور اختتامی نقطے ایک دوسرے کے برابر ہوں۔

conservative field¹¹

 m_{p} وگ۔ توان مجی قدامت پند میدان ہے۔ ای لئے اگر کیت mکو کسی مجی رائے میدان میں قدامت پند میدان ہو تانائی m_{p}

پہلی راہ پر $0=\lambda$ ہونے کی بنا اس راہ پر مقناطیسی بہاو بھی صفر ہو گا لہذا اس راہ پر مقناطیسی اثر نہیں پایا جائے گا اور قوت F_m صفر ہو گا۔ ہم جانتے ہیں کہ صفر کا تکمل صفر ہوتا ہے لہذا $0=F_m$ صفر ہو گا۔ یوں کہ میں راہ پر کا تکمل (میاوات 4.18) صفر ہو گا:

(4.19)
$$\int_{y \neq y} \partial W_m(x,0) = \int_0^0 i(x,0) \, d\lambda - \int_0^{x_0} F_m(x,0) \, dx = 0$$

مساوات 4.17 میں دوسری راہ کا تکمل

(4.20)
$$\int_{\partial L \mathcal{G}(x_0)} \partial W_m(x_0, \lambda) = \int_0^{\lambda_0} i(x_0, \lambda) \, \mathrm{d}\lambda - \int_{x_0}^{x_0} F_m(x_0, \lambda) \, \mathrm{d}x$$

ہو گا۔ دوسری راہ پر $x=x_0$ ہے لہذا مساوات 4.20 میں دائیں ہاتھ دوسرے تکمل کا ابتدائی نقطہ x_0 اور اختتامی نقطہ بھی x_0 ہو گا جس کی بنا قوت کا تکمل صفر ہو گا:

(4.21)
$$\int_{x_0}^{x_0} F_m(x_0, \lambda) \, \mathrm{d}x = 0$$

آخر میں مساوات 4.20 کے دائیں ہاتھ، برتی رو کا تکمل حل کرنا باقی ہے۔ مساوات 4.15 استعال کرتے ہوئے اسے حل کرتے ہیں۔

(4.22)
$$\int_0^{\lambda_0} i(x_0, \lambda) \, \mathrm{d}\lambda = \frac{1}{L(x_0)} \int_0^{\lambda_0} \lambda \, \mathrm{d}\lambda = \frac{\lambda_0^2}{2L(x_0)}$$

مباوات 4.20، مباوات 4.21 اور مباوات 4.22 کے نتائج استعال کرتے ہوئے مباوات 4.17 میں دیے تکمل کا حل کھتے ہیں:

$$W(x_0, \lambda_0) = \frac{\lambda_0^2}{2L(x_0)}$$

اس میاوات میں اختتامی نقطہ کو عمومی نقطہ (x,λ) لیتے ہوئے درج ذیل حاصل ہو گا جو مقناطیسی میدان میں توانائی کی میاوات ہے۔

$$(4.23) W(x,\lambda) = \frac{\lambda^2}{2L(x)}$$

شكل 4.7: حركت اور توانائي _

مساوات 4.23 کی مدد سے مساوات 4.13 کے ذریعہ قوت $F_m(x,\lambda)$ اور مساوات 4.14 کے ذریعہ برقی رو $i(x,\lambda)$ کا حساب اب ممکن ہے۔

مثال 4.2: شکل 4.7 میں حرکت کرنے والا ایک مقناطیسی نظام دکھایا گیا ہے۔ حرکی اور ساکن حصوں کے نظم مثال 4.2: شکل 4.7 میں حرکت کرنے والا ایک مقناطیسی نظام دکھایا گیا ہے۔ حرکی اور ساکن حصوں کے نظم خلائی درز g موجود ہے۔ اگر i=30 A میں i=30 A موبود ہے۔ اگر i=30 A موبود ہے۔ اگر i=30 A کیا ہوگی ورز میں توانائی i=30 کیا ہوگی ؟

(4.24)
$$W_m(x,i) = \frac{1}{2} \frac{N^2 \mu_0 w(b-x)}{2g} i^2$$

ہو گا جس میں دی گئی معلومات پر کرنے سے درج ذیل توانائی حاصل ہو گی (جس کی اکائی جاول ہے)۔

$$W_m(x,i) = \frac{1}{2} \times \frac{500^2 \times 4\pi 10^{-7} \times 0.4(0.2 - x)}{2 \times 0.001} \times 30^2$$
$$= 28278(0.2 - x)$$

مثال 4.3: شکل 4.7 میں توانائی کے طریقہ سے قوت F_m دریافت کریں۔

 λ اور λ اور $K_m=-rac{\partial W_m(x,\lambda)}{\partial x}\Big|_{\lambda_0}$ علی متغیرات λ اور λ

مثال 4.2 میں مساوات 4.24 حاصل کی جو توانائی کا کلیہ ہے۔اییا کرتے ہوئے λ کی جگہ میں عبول λ جانے ہوئے λ اور λ ہیں۔ قوت کے حصول گیا جس کی بنا مساوات 4.24 میں λ بیل کے متغیرات λ اور λ کا بجائے λ اور λ ہیں۔ قوت کے حصول کے تاکہ توانائی کے درست متغیرات درکار ہوں گے تاکہ توانائی کے کئے مساوات 4.24 استعال نہیں کیا جا سکتا ہے۔ ہمیں توانائی کے درست متغیرات درکار ہوں گے تاکہ توانائی درست فوت حاصل نہیں ہوتا ہے)۔ درست طریقہ درج ذیل ہے۔

(4.25)
$$W_m(x,\lambda) = \frac{\lambda^2}{2L} = \frac{\lambda^2}{2\left(\frac{N^2\mu_0 A_g}{2g}\right)} = \frac{g\lambda^2}{N^2\mu_0 w(b-x)}$$

مساوات 4.25 اور مساوات 4.13 مل كر درج ذيل ديتي هين-

$$F_m = -\frac{\partial W_m(x,\lambda)}{\partial x}$$
$$= -\frac{g\lambda^2}{N^2 \mu_0 w (b-x)^2}$$

تفرق لینے کے بعد λ کی جگہ Li پر کیا جا سکتا ہے۔یوں قوت

$$F_m = -\frac{gL^2i^2}{N^2\mu_0w(b-x)^2}$$
$$= -\frac{N^2\mu_0wi^2}{4g}$$
$$= -28278$$

نیوٹن حاصل ہوتی ہے۔ قوت کی علامت منفی ہے جس کے تحت قوت گھٹت x رخ ہو گی۔ یوں حرکی حصہ بائیں رخ کھینچا جائے گا۔

4.3. توانائی اور ہم – توانائی

شكل 4.8: ہم- توانائي كي تعريف_

4.3 توانائی اور ہم-توانائی

شکل 4.8 میں λ اور i کے مابین ترسیم و کھایا گیا ہے۔اس کیبر کے نیچے رقبہ ہم-توانائی W_m تصور کریں۔ اس ترسیم پر کوئی ایک نقطہ (λ,i) لے کر ایک کیبر نیچے اور دوسری بائیں کھینچ کر ایک مستطیل مکمل کیا گیا ہے جس کا رقبہ λ ہے۔ مستطیل کے رقبہ سے توانائی W_m منفی کرنے سے حاصل رقبہ ہم-توانائی W_m^{-13} کہلاتا ہے۔

$$(4.26) W_m' = \lambda i - W_m$$

ہم-توانائی کے جزوی فرق

$$\partial W'_m = \partial(\lambda i) - \partial W_m$$
$$= \lambda \partial i + i \partial \lambda - \partial W_m$$

میں مساوات 4.10 کا استعال

$$\partial W_m' = \lambda \partial i + i \partial \lambda - (i \partial \lambda - F_m \partial x)$$

لعيني

$$\partial W_m' = \lambda \partial i + F_m \partial x$$

د يگا۔

 $co-energy^{13}$

یبان بھی مساوات 4.11 تا مساوات 4.14 کی طرح کسی بھی تفاعل z(x,y) کا جزوی فرق

$$\partial z(x,y) = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

ہو گا لہٰذا ہم-توانائی $W_m'(x,i)$ کا جزوی فرق درج ذیل ہو گا۔

(4.28)
$$\partial W'_m(x,i) = \frac{\partial W'_m}{\partial x} dx + \frac{\partial W'_m}{\partial i} di$$

مساوات 4.28 کا مساوات 4.27 کے ساتھ موازنہ کرنے سے درج زیل حاصل ہو گا۔

$$\lambda = \left. \frac{\partial W_m'}{\partial i} \right|_{x_0}$$

اور

$$(4.30) F_m = \frac{\partial W_m'}{\partial x} \Big|_{i_0}$$

مساوات 4.30 توت دریافت کرنے کا دوسرا کلیہ دیتی ہے۔ مساوات 4.30 میں ہم-توانائی جبکہ مساوات 4.13 میں توانائی کے ذریعہ قوت حاصل کی گئی۔

توانائی کے طریقہ کی طرح مساوات 4.29 سے درج ذیل کلمل لکھا جا سکتا ہے۔

(4.31)
$$W'_m(i_0, x_0) = \int_0^{i_0} \lambda(i, x_0) \, \mathrm{d}i$$

جن نظام میں λ اور i کا تعلق تغیر راست ہو، جس کو مساوات 2.29 بیان کرتی ہو، ان کے لئے درج بالا تکمل کا حل درج ذیل ہو گا جہال x_0 کی بجائے عمومی متغیرات i اور x کھھے گئے ہیں۔

(4.32)
$$W'_m(i,x) = \int_0^i L(x)i \, \mathrm{d}i = \frac{L(x)i^2}{2}$$

بعض مسائل میں توانائی اور بعض میں ہم-توانائی کا استعال زیادہ آسان ثابت ہوتا ہے۔

مثال 4.4: شکل 4.9 میں ایک پیچپرار کچھا دکھایا گیا ہے جس کی محوری لمبائی I، رداس r اور چکر I ہیں۔ پیچپرار کچھ کے مقاطیسی بہاو کا بیشتر حصہ محوری رخ کچھے کے اندر رہتا ہے۔ کچھے کے باہر مقناطیسی بہاو کو نظر انداز کرتے ہوئے کے مناطیسی بہاو کو نظر انداز کرتے ہوئے کے اندر محوری لمبائی رخ میدانی شدت I ہو گا۔

4.3. توانائی اور جم – توانائی

موصل دھات کو امالی برقی توانائی سے بگھلانے کے لئے پیچپرار کچھا استعال کیا جاتا ہے۔ میں 100 تا 1500 کلو واٹ برقی طاقت کی امالی برقی بھٹیارے 14 بناتا رہا جو بالترتیب 500 تا 1200 ہرٹز پر کام کرتی اور 100 سے 3000 کلو گرام لوہا بگھلاتی ہیں۔

امالی بھٹی کے پیچپرار کچھے کے اندر غیر موصل پیالے میں دھات کے ٹکڑے ڈال کر کچھے میں بدلتا رو گزاری جاتی ہے جو دھات میں بھنور نما امالی برقی رو پیدا کرتی ہے۔ بھنور نما رو دھات کو گرم کر کے پکھلاتی ہے۔امالی برقی بھٹی میں لوہے کو 1650 ڈگری ٹکسئرچ ¹⁵ تک گرم کیا جاتا ہے۔

یچپرار کچھ میں برقی رو I_0 کی بنا کچھ پر روائی رخ میکانی دباہ یعنی قوت فی مربع رقبہ پیدا ہو گا۔میری 3000 کلو گرام لوہا پھسلانے کی بھٹی کے پیچپرار کچھ کی تفصیل درج ذیل ہے۔

$$N = 11$$
, $I_0 = 10\,000\,\mathrm{A}$, $l = 0.94\,\mathrm{m}$, $r = 0.49\,\mathrm{m}$

اس پر رداسی رخ میکانی دباو (نیوٹن فی مربع میٹر) حاصل کریں۔

حل: ہم-توانائی کا طریقہ استعال کرتے ہیں۔

$$\begin{split} L &= \frac{\mu_0 N^2 \pi r^2}{l} \\ W_m'(r,i) &= \frac{Li^2}{2} = \frac{\mu_0 N^2 \pi r^2 I_0^2}{2l} \\ F &= \frac{\partial W_m'}{\partial r} = \frac{\mu_0 N^2 \pi r I_0^2}{l} \end{split}$$

high frequency, induction furnaces¹⁴ Celsius, Centigrade¹⁵

شكل4.10: برقى مقناطيس ـ

اس قوت کی علامت مثبت ہے لہٰذا یہ رداسی رخ باہر جانب ہو گا۔ کچھے کو نکلی تصور کریں جس کی گول سطح کا رقبہ $A=2\pi rl$

$$\frac{F}{A} = \frac{\mu_0 N^2 \pi r I_0^2}{2\pi r l^2} = \frac{\mu_0 N^2 I_0^2}{2l^2}$$

دی گئی معلومات پر کرتے ہوئے درج ذیل حاصل ہو گا۔

$$\frac{F}{A} = \frac{4\pi 10^{-7} \times 11^2 \times 10000^2}{2 \times 0.94^2} = 8605 \, \frac{\text{N}}{\text{m}^2}$$

مثال 4.5: 2700 کلوواٹ امالی بھٹی یومیہ 70 ٹن 16 لوہا پھطاتی 17 ہے۔اتنے وزن کی منتقل کے لئے برقی مقناطیس استعال کیا جاتا ہے۔شکل 1.7 میں ایک ایسا برقی مقناطیس دکھایا گیا ہے جس کی تفصیل درج ذیل ہے۔

$$N = 300, \quad A = 0.8 \,\mathrm{m}^2, \quad I = 30 \,\mathrm{A}$$

برقی مقناطیس اور لوہے کے ﷺ اوسط فاصلہ 2.5 سنٹی میٹر لیں۔ یہ برقی مقناطیس کتنی کمیت کا لوہا اٹھا سکتا ہے؟ حل:

$$\begin{split} L &= \frac{\mu_0 N^2 A}{2l} \\ W_m'(l,i) &= \frac{Li^2}{2} = \frac{\mu_0 N^2 Ai^2}{4l} \\ F &= \frac{\partial W_m}{\partial l} = -\frac{\mu_0 N^2 Ai^2}{4l^2} = -\frac{4\pi 10^{-7} \times 300^2 \times 0.8 \times 30^2}{4 \times 0.0254^2} = -31\,558\,\mathrm{N} \end{split}$$

¹⁶ہزار کلو گرام ایک ٹن کے برابر ہوتے ہیں۔ ¹⁷ یہ میں اپنے تجربے کی بنیاد پر کہدرہاہوں۔

شكل 4.11: دولچھوں كانظام۔

قوت کی علامت منفی ہے۔یوں میہ مقناطیس اور لوہے کے ﷺ فاصلہ کم کرنے کی کوشش کرتی ہے۔ یہ مقناطیس $\frac{31558}{9.8} = 3220\,\mathrm{kg}$

مثال 4.6: مثال 4.3 کو ہم-توانائی کے طریقہ سے حل کریں۔

حل: مساوات 4.32 سے

$$W_m' = \frac{L(x)i^2}{2} = \frac{N^2 \mu_0 w (b-x)i^2}{4g}$$

لکھ کر مساوات 4.30 سے درج ذیل قوت حاصل ہوتی ہے۔

$$F_m = \frac{\partial W'_m}{\partial x} = -\frac{N^2 \mu_0 w i^2}{4g} = -28278 \,\mathrm{N}$$

4.4 متعدد ليجصون كامقناطيسي نظام

اب تک ایک کچھے کے نظام پر غور کیا گیا۔ اس حصہ میں ایک سے زیادہ کچھوں کے نظام پر غور کیا جائے گا۔ متعدد کچھوں کا نظام بھی ایک کچھے کا برقی رو i_1 اور دوسرے کچھوں کا نظام بھی ایک کچھے کا برقی رو i_1 اور دوسرے

کھے کا برتی رو i_2 ہے۔ اس نظام کے لئے درج ذیل لکھنا ممکن ہے جہاں W_m ذخیرہ توانائی کو ظاہر کرتی ہے۔

$$\partial W_{\mathbf{i}} = i_1 \, \mathrm{d}\lambda_1 + i_2 \, \mathrm{d}\lambda_2$$

$$\partial W_{\mathbf{j}} = \partial W_{\mathbf{j}} + \partial W_{m}$$

 $\partial W_{\dot{b}|_{L}} = F_m \, \mathrm{d} x$ میں پُر کرتے ہوئے درج ذیل مساوات حاصل ہوتی ہے جس میں پُر کرتے ہوئے درج ذیل مساوات کا کھوا گیا ہے۔

$$(4.35) i_1 d\lambda_1 + i_2 d\lambda_2 = F_m dx + \partial W_m$$

اس کی ترتیب نو درج ذیل دیگی۔

$$\partial W_m(\lambda_1, \lambda_2, x) = i_1 d\lambda_1 + i_2 d\lambda_2 - F_m dx$$

اب بالكل مساوات 4.12 كى طرح درج ذيل لكها جا سكتا ہے۔

(4.37)
$$\partial W_m(\lambda_1, \lambda_2, x) = \frac{\partial W_m}{\partial \lambda_1} d\lambda_1 + \frac{\partial W_m}{\partial \lambda_2} d\lambda_2 + \frac{\partial W_m}{\partial x} dx$$

مساوات 4.36 اور 4.37 کے موازنہ سے درج ذیل تعلقات اخذ ہوتے ہیں۔

(4.38)
$$i_1 = \left. \frac{\partial W_m(\lambda_1, \lambda_2, x)}{\partial \lambda_1} \right|_{\lambda_2, x}$$

(4.39)
$$i_2 = \frac{\partial W_m(\lambda_1, \lambda_2, x)}{\partial \lambda_2} \bigg|_{\lambda_1, x}$$

(4.40)
$$F_m = \left. \frac{\partial W_m(\lambda_1, \lambda_2, x)}{\partial x} \right|_{\lambda_1, \lambda_2}$$

ان مساوات کا استعال تب ممکن ہو گا جب ہمیں توانائی W_m معلوم ہو للذا ہم پہلے توانائی دریافت کرتے ہیں۔

شکل 4.11 میں کچھوں کو یوں طاقت دی جاتی ہے کہ λ_1 اور λ_2 صفر سے بالترتیب λ_{1_0} اور λ_{2_0} تک چہنچے ہیں اور ساتھ ہی x صفر سے تبدیل ہو کر x_0 ہوتا ہے۔ اس عمل کو شکل x_0 میں موٹی کیبر سے بطور "اصل راہ" دکھایا گیا ہے۔ مساوات x_0 کی طرح ذخیرہ توانائی کے تکمل کے لئے درج ذیل کھا جا سکتا ہے۔

$$\int_{\partial U_m} \partial W_m = \int_{\partial U_m} \partial W_m + \int_{\partial U_m} \partial W_m + \int_{\partial U_m} \partial W_m + \int_{\partial U_m} \partial W_m$$

شکل 4.12: دولچھوں کے نظام میں مقناطیسی میدان میں توانائی۔

ہم دائیں ہاتھ کھملات کو باری باری حل کرتے ہیں۔

پہلی راہ پر λ_1 اور λ_2 صفر رہتے ہیں جبکہ x کی ابتدائی قیت 0 اور اختتامی قیمت λ_2 ہے۔یوں پہلی راہ پر تکمل درج ذیل ہو گا۔

(4.42)
$$\int_{0}^{\infty} \partial W_m = \int_0^0 i_1 \, d\lambda_1 + \int_0^0 i_2 \, d\lambda_2 - \int_0^{x_0} F_m \, dx$$

سی بھی تکمل کا ابتدائی اور اختتامی نقطہ ایک دوسرے جیسا ہونے کی صورت میں تکمل کی قیت صفر ہوتی ہے للذا درج بالا میں دائیں ہاتھ، پہلے دو تکملات صفر ہوں گے:

(4.43)
$$\int_0^0 i_1 \, \mathrm{d}\lambda_1 = \int_0^0 i_2 \, \mathrm{d}\lambda_2 = 0$$

پہلی راہ پر λ_1 اور λ_2 صفر ہیں، یعنی، دونوں کچھوں میں برقی رو صفر ہے، للذا مقناطیسی بہاد اور قوت F_m صفر ہوں گے۔ یوں مساوات 4.42 میں قوت کا تکمل صفر ہو گا۔

$$\int_{0}^{x_{0}} F_{m} \, \mathrm{d}x = \int_{0}^{x_{0}} 0 \, \mathrm{d}x = 0 \qquad (4.44)$$

ماوات 4.43 اور ماوات 4.44 کے نتائج کے تحت پہلی راہ پر تکمل صفر ہو گا۔

$$\int_{\mathbf{y}} \partial W_m = 0$$

دوسری راہ پر λ_1 کی ابتدائی قیمت 0 اور اختتامی قیمت λ_2 ہے، λ_2 صفر رہتا ہے جبکہ x کی قیمت x رہتی ہے۔ یوں دوسری راہ پر تکمل درج ذیل ہو گا۔ x

(4.46)
$$\int_{\mathbf{y} \cup \mathcal{G}_{f,y}} \partial W_{m} = \int_{0}^{\lambda_{1_{0}}} i_{1} d\lambda_{1} + \int_{0}^{0} i_{2} d\lambda_{2} - \int_{x_{0}}^{x_{0}} F_{m} dx$$

تمل کا ابتدائی اور اختامی نقطہ ایک جیبا ہونے کی صورت میں تمل کی صفر ہوتی ہے للذا درج ذیل ہو گا۔

$$\int_0^0 i_2 \, \mathrm{d}\lambda_2 = \int_{x_0}^{x_0} F_m \, \mathrm{d}x = 0$$

یوں مساوات 4.46 درج ذیل صورت اختیار کرتی ہے۔

$$\int_{\mathfrak{gl}(\mathcal{G}_{\mathcal{F}})} \partial W_m = \int_0^{\lambda_{1_0}} i_1 \, \mathrm{d}\lambda_1$$

يهال مساوات 2.33 ، 2.36 اور 2.38 كي ضرورت پيش آئے گي للذا جنهيں دوبارہ پيش كرتے ہيں۔

$$\lambda_1 = L_{11}i_1 + L_{12}i_2$$

$$\lambda_2 = L_{21}i_1 + L_{22}i_2$$

$$(4.50) L_{12} = L_{21}$$

ماوات 4.48 اور ماوات 4.48 کو i_2 اور i_2 کے حل کے

$$(4.51) i_1 = \frac{L_{22}\lambda_1 - L_{12}\lambda_2}{D}$$

$$(4.52) i_2 = \frac{L_{11}\lambda_2 - L_{21}\lambda_1}{D}$$

حاصل ہو گا جہاں D درج ذیل ہے۔

$$D = L_{11}L_{22} - L_{12}L_{21}$$

مساوات 4.47 میں مساوات 4.51 پر کر کے، دوسری راہ پر λ_2 صفر لے کر درج ذیل حاصل ہو گا۔

$$\int_0^{\lambda_{1_0}} \left(\frac{L_{22}\lambda_1 - L_{12}\lambda_2}{D} \right) \mathrm{d}\lambda_1 = \frac{L_{22}}{D} \int_0^{\lambda_{1_0}} \lambda_1 \, \mathrm{d}\lambda_1 = \frac{L_{22}\lambda_{1_0}^2}{2D}$$

یوں دوسری راہ پر تکمل کی قیمت درج ذیل ہو گی۔

$$\int_{\theta \cup \mathcal{G}_{f}, y} \partial W_{m} = \frac{L_{22} \lambda_{1_{0}}^{2}}{2D}$$

تیسری راہ پر λ_1 کی قیمت λ_1 اور x کی قیمت x_0 پر بر قرار رہتی ہے جبکہ λ_2 کی ابتدائی قیمت λ_1 اختتامی قیمت λ_2 ہے۔ یوں تیسری راہ پر تکمل درج ذیل ہو گا۔

(4.54)
$$\int_{\partial U_m} \partial W_m = \int_{\lambda_{1_0}}^{\lambda_{1_0}} i_1 \, d\lambda_1 + \int_0^{\lambda_{2_0}} i_2 \, d\lambda_2 - \int_{x_0}^{x_0} F_m \, dx$$

تکمل کا ابتدائی اور اختتامی نقطہ ایک جیسا ہونے کی صورت میں تکمل کی قیمت صفر ہوتی ہے للذا درج بالا میں دائیں ہاتھ پہلا اور تیسرا تکمل صفر ہو گا:

(4.55)
$$\int_{\lambda_{1_0}}^{\lambda_{1_0}} i_1 \, \mathrm{d}\lambda_1 = \int_{x_0}^{x_0} F_m \, \mathrm{d}x = 0$$

مساوات 4.52 کی استعال سے مساوات 4.54 کا باقی حصہ حل کرتے ہیں۔

(4.56)
$$\int_0^{\lambda_{2_0}} i_2 \, d\lambda_2 = \int_0^{\lambda_{2_0}} \left(\frac{L_{11}\lambda_2 - L_{21}\lambda_1}{D} \right) d\lambda_2$$
$$= \frac{L_{11}\lambda_{2_0}}{2D} - \frac{L_{21}\lambda_{10}\lambda_{20}}{D}$$

مساوات 4.55 اور مساوات 4.56 کی نتائج سے تیسری راہ کا تکمل درج ذیل حاصل ہو گا۔

(4.57)
$$\int_{\text{obs} \mathcal{S}, \mathcal{S}} \partial W_m = \frac{L_{11} \lambda_{2_0}^2}{2D} - \frac{L_{21} \lambda_{1_0} \lambda_{2_0}}{D}$$

 λ_{10} مساوات 4.45، 4.45 اور 4.57 کو جمع کر کے مساوات 4.44 کا درج ذیل حل حاصل ہو گا جہاں x ، λ_2 مساوات x ، λ_2 متغیرات x ، λ_2 ، λ_3 بیں۔

(4.58)
$$W_m(x,\lambda_1,\lambda_2) = \frac{L_{22}\lambda_1^2}{2D} + \frac{L_{11}\lambda_2^2}{2D} - \frac{L_{21}\lambda_1\lambda_2}{D}$$

(4.59)
$$\partial W'_m(x, i_1, i_2) = \lambda_1 \, \mathrm{d}i_1 + \lambda_2 \, \mathrm{d}i_2 + F_m \, \mathrm{d}x$$

جبه λ_2 ، ورج ذیل ہوں گی۔ F_m اور λ_2 ، λ_1

(4.60)
$$\lambda_1 = \left. \frac{\partial W'_m(x, i_1, i_2)}{\partial i_1} \right|_{x, i_2}$$

(4.61)
$$\lambda_2 = \frac{\partial W'_m(x, i_1, i_2)}{\partial i_2} \bigg|_{x, i_1}$$

(4.62)
$$F_m = \left. \frac{\partial W'_m(x, i_1, i_2)}{\partial x} \right|_{i_1, i_2}$$

مساوات 4.58 کی مقابل ہم-توانائی کی مساوات درج ذیل ہو گی۔

(4.63)
$$W'_m(x, i_1, i_2) = \frac{1}{2}L_{11}(x)i_1^2 + \frac{1}{2}L_{22}(x)i_2^2 + L_{12}(x)i_1i_2$$

ہم-توانائی سے قوت کا حصول درج ذیل مساوات سے ہو گا۔

(4.64)
$$F_m = \frac{i_1^2}{2} \frac{\mathrm{d}L_{11}(x)}{\mathrm{d}x} + \frac{i_2^2}{2} \frac{\mathrm{d}L_{22}(x)}{\mathrm{d}x} + i_1 i_2 \frac{\mathrm{d}L_{12}(x)}{\mathrm{d}x}$$

مثال 4.7: شکل 4.11 میں میکانی کام کو $heta = T_m \, \mathrm{d} \theta$ کو $\partial W_{\dot{b}} = T_m \, \mathrm{d} \theta$ کریں۔

حل: توانائی کی مساوات

$$\partial W_{\ddot{\mathcal{J}}_{\mathcal{L}}} = \partial W_{\dot{\mathcal{J}}_{\mathcal{L}}} + \partial W_m$$

میں

$$\partial W_{\mathbf{\ddot{5}}\ell} = i_1 \,\mathrm{d}\lambda_1 + i_2 \,\mathrm{d}\lambda_2$$

اور $\partial W_{i,j}=T_m\,\mathrm{d} heta$ پر کر کے ترتیب نوسے درج ذیل حاصل ہو گا۔

$$\partial W_m = i_1 \, \mathrm{d}\lambda_1 + i_2 \, \mathrm{d}\lambda_2 - T_m \, \mathrm{d}\theta$$

ے جزوی فرق W_m

$$\partial W_m(\lambda_1, \lambda_2, \theta) = \frac{\partial W_m}{\partial \lambda_1} d\lambda_1 + \frac{\partial W_m}{\partial \lambda_2} d\lambda_2 + \frac{\partial W_m}{\partial \theta} d\theta$$

كا مساوات 4.65 ك ساتھ موازنه كرنے سے درج ذيل اخذ كيا جا سكتا ہے۔

(4.66)
$$i_1 = \left. \frac{\partial W_m(\lambda_1, \lambda_2, \theta)}{\partial \lambda_1} \right|_{\lambda_2, \theta}$$

(4.67)
$$i_2 = \left. \frac{\partial W_m(\lambda_1, \lambda_2, \theta)}{\partial \lambda_2} \right|_{\lambda_1, \theta}$$

(4.68)
$$T_{m} = -\left. \frac{\partial W_{m}(\lambda_{1}, \lambda_{2}, \theta)}{\partial \theta} \right|_{\lambda_{1}, \lambda_{2}}$$

مساوات 4.65 عین مساوات 4.36 کی مانند ہے۔ مساوات 4.65 حل کرنے کا ایک ایک قدم مساوات 4.36 مساوات $\lambda_1, \lambda_2, \theta$ حل کرنے کی طرح ہے، بس فاصلہ x کی جگہ زاویہ θ آئے گا۔ یوں جواب میں میدانی توانائی کے متغیرات x مساوات 4.36 میں میدانی توانائی کے متغیرات x مساوات کے دول گے:

(4.69)
$$W_m(\lambda_1, \lambda_2, \theta) = \frac{L_{22}\lambda_1^2}{2D} + \frac{L_{11}\lambda_2^2}{2D} - \frac{L_{21}\lambda_1\lambda_2}{D}$$

اسی طرح ہم-توانائی کے لئے درج ذیل ہوں گے۔

$$\partial W'_m(i_1, i_2, \theta) = \lambda_1 \operatorname{d} i_1 + \lambda_2 \operatorname{d} i_2 + T_m \operatorname{d} \theta$$

(4.71)
$$\lambda_{1} = \frac{\partial W'_{m}(i_{1}, i_{2}, \theta)}{\partial i_{1}} \Big|_{i_{2}, \theta}$$

$$\lambda_{2} = \frac{\partial W'_{m}(i_{1}, i_{2}, \theta)}{\partial i_{2}} \Big|_{i_{1}, \theta}$$

$$T_{m} = \frac{\partial W'_{m}(i_{1}, i_{2}, \theta)}{\partial \theta} \Big|_{i_{1}, i_{2}}$$

ہم-توانائی کی مساوات درج ذیل ہو گی۔

(4.72)
$$W'_m(i_1, i_2, \theta) = \frac{1}{2} L_{11} i_1^2 + \frac{1}{2} L_{22} i_2^2 + L_{12} i_1 i_2$$

شکل 4.13: دولچھوں کے نظام میں قوت مروڑ۔

مثال 4.8: شکل 4.13 میں دو کیچھوں کا نظام دکھایا گیا ہے۔اس نظام کا ایک حصہ ساکن رہتا ہے اور دوسرا گھوم سکتا ہے۔افقی کیبر سے گھڑی کی سوئیوں کے مخالف رخ گھومتے ہوئے زاوید 6 ناپا جاتا ہے۔ کیچھوں کی خود امالہ اور مشتر کہ امالہ مندرجہ ذیل ہیں۔

$$L_{11} = 20 + 30\cos 2\theta$$

$$L_{22} = (20 + 30\cos 2\theta) \times 10^{-3}$$

$$L_{12} = 0.15\cos \theta$$

برتی رو T_m معلوم کریں۔ $i_1=0.02\,\mathrm{A}, i_2=5\,\mathrm{A}$ معلوم کریں۔

حل: مساوات 4.72 ہم-توانائی دیتی ہے۔

$$W_m' = \frac{1}{2}(20 + 30\cos 2\theta)i_1^2 + \frac{1}{2}(20 + 30\cos 2\theta)(10^{-3})i_2^2 + (0.15\cos \theta)i_1i_2$$

مساوات 4.71 کا آخری جزو قوت مروڑ دیتی ہے۔

$$T_m = \frac{\partial W'_m}{\partial \theta} = -30i_1^2 \sin 2\theta - 30 \times 10^{-3}i_2^2 \sin 2\theta - 0.15i_1i_2 \sin \theta$$
$$= -0.012 \sin 2\theta - 0.75 \sin 2\theta - 0.015 \sin \theta$$
$$= -0.762 \sin 2\theta - 0.015 \sin \theta$$

قوت مروڑ کی علامت منفی ہے للذا یہ زاویہ میں تبدیلی کی مخالفت کرے گا۔ یوں اگر آپ زاویہ بڑھائیں (مثبت θ) تو یہ نظام زاویہ کم کرنے کے رخ قوت مروڑ (منفی T_m) پیدا کرے گا اور اگر آپ زاویہ کم (منفی θ) کرنے کی کوشش کریں تو یہ نظام زاویہ بڑھانے کے رخ قوت مروڑ (شبت T_m) پیدا کرے گا۔ سادہ زبان میں گھومتا حصہ اُفقی کئیر پر رہنے کی کوشش کرے گا۔

باب5

گھومتے مشین کے بنیادی اصول

اس باب میں مختلف گھومتے مشینوں کے بنیادی اصولوں پر غور کیا جائے گا۔ظاہری طور پر مختلف مشین ایک ہی قشم کے اصولوں پر کام کرتے ہیں جنہیں اس باب میں اکٹھا کیا گیا ہے۔

5.1 قانون فيراد ك

قانور فیراڈے 1 کے تحت جب بھی کسی کچھے کا ارتباط بہاو λ وقت کے ساتھ تبدیل ہو، اس کچھے میں برقی دباو پیدا ہو گا:

$$(5.1) e = \frac{\partial \lambda}{\partial t} = N \frac{\partial \phi}{\partial t}$$

چونکہ ہمیں برقی دباو کی قیمت ناکہ اس کے ہے ہے ولچین ہے لہذا اس مساوات میں منفی کی علامت کو نظر انداز کیا گیا ہے۔

گھومتے مشین میں ارتباط بہاو کی تبدیلی مختلف طریقوں سے پیدا کی جا سکتی ہے۔مثلاً کچھے کو ساکن مقناطیسی بہاو میں گھما کر یا ساکن کچھے میں مقناطیس گھما کر، وغیرہ وغیرہ۔

Faraday's law¹

ان برقی مثینوں میں کچھے مقناطیسی قالب² پر لییٹے جاتے ہیں۔ اس طرح کم سے کم مقناطیسی دباو سے زیادہ سے زیادہ سے زیادہ مقناطیسی بہاو ماصل کیا جاتا ہے اور کچھوں کے مابین مشتر کہ مقناطیسی بہاو بڑھایا جاتا ہے۔ مزید قالب کی شکل تبدیل کر کہ مقناطیسی بہاو کو ضرورت کے مقام پر پہنچایا جاتا ہے۔

ان مشینوں کے قالب میں مقناطیسی بہاو وقت کے ساتھ تبدیل ہوتا ہے للذا قالب میں بھنور نما برقی رو³ پیدا ہوتا ہے۔ان بھنور نما برقی رو کو کم سے کم کرنے کی خاطر باریک لوہے کی پتری⁴ تہہ در تہہ رکھ قالب بنایا جاتا ہے۔ ۔ آپ کو یاد ہو گا، ٹرانسفار مرکا قالب بھی اس طرح بنایا جاتا ہے۔

5.2 معاصر مشين

شکل 5.1 میں معاصر برقی جزیئر کا ایک بنیادی شکل دکھایا گیا ہے۔ اس کے قالب میں ایک مقناطیس ہے جو کہ گھوم سکتا ہے۔ مقناطیس کا مقام اس کے میکانی زاویہ θ_m سے بتلائی جاتی ہے۔ افتی کیبر سے گھڑی کے مخالف زاویہ θ_m ناپا جاتا ہے۔

یہاں کچھ باتیں وضاحت طلب ہیں۔ اگر مقناطیں ایک مقررہ رفتار ہے، فی سینڈ n مکمل چکر کائنا ہو تب ہم کہتے ہیں کہ اس مقناطیں کے گھومنے کا تعدد n ہرٹر آئی ہے۔ اس بات کو یوں بھی بیان کیا جاتا ہے کہ مقناطیں 60n فی منٹ 6 کی رفتار سے گھوم رہا ہے۔ آپ جانتے ہیں کہ ایک چکر 360 زاویہ یا 2π ریڈ بیک 7 پر مشتمل ہوتا ہے للذا گھومنے کی اس رفتار کو 2π ریڈ بیک فی سیکٹہ بھی کہہ سکتے ہیں۔ یوں اگر مقناطیس f ہرٹز کی رفتار سے گھوم رہا ہو تب ہے 2π میں خوام کی جاتا ہے۔

$$(5.2) \omega = 2\pi f$$

اس كتاب مين كهومنے كى رفتار كو عموماً ريدينن في سينٹر مين بيان كيا جائے گا۔

شکل 5.1 میں مثین کے دو مقاطیسی قطب ہیں، اس لئے اس کو دو قطبی مثین کہتے ہیں۔ ساکن قالب میں، اندر کی جانب دو شگاف ہیں، جن میں N چکر کا کچھا موجود ہے۔ کچھے کو a اور a سے ظاہر کیا گیا ہے۔اس کچھے کی بنا

magnetic core²
eddy currents³
laminations⁴
Hertz⁵

nertz-

rounds per minute, rpm⁶ radians⁷

5.2 معاصر مشين

شکل 5.1: دوقطب، یک دوری معاصر جنریٹر۔

اس مشین کو ایک کچھے کا مشین بھی کہتے ہیں۔ چونکہ یہ کچھا جزیٹر کے ساکن حصہ پر پایا جاتا ہے للذا یہ کچھا بھی ساکن ہو گا جس کی بنا اسے ساکھے کچھا⁸ کہتے ہیں۔

مقناطیس کا مقناطیسی بہاو شالی قطب 9 N سے خارج ہو کر خلائی درز میں سے ہوتا ہوا، باہر گول قالب میں سے گزر کر، دوسرے خلائی درز میں سے ہوتا ہوا، مقناطیس کے جنوبی قطب 10 S میں داخل ہو گا۔ اس مقناطیسی بہاو کو ہلکی سیابی کے کمیروں سے دکھایا گیا ہے۔ یہ مقناطیسی بہاو، سارا کا سارا، ساکن کچھے میں سے بھی گزرتا ہے۔ شکل 5.1 میں مقناطیس سیدھی سلاخ کی مانند دکھایا گیا ہے۔

شکل 5.2 میں مقناطیس تقریباً گول ہے اور اس کے محور کا زاویہ θ_m صفر کے برابر ہے۔ مقناطیس اور ساکن قالب کے پچ صفر زاویہ، $0 = \theta$ ، پر خلائی درز کی لمبائی کم سے کم اور نوے زاویہ، $0 = |\theta|$ ، پر زیادہ سے زیادہ سے کم خلائی درز پر پچکچاہٹ کم ہو گی جبکہ زیادہ خلائی درز پر پچکچاہٹ زیادہ ہو گی للذا $0 = \theta$ پر خلائی درز سے زیادہ مقناطیسی بہاو گزرے گا۔خلائی درز کی لمبائی یوں تبدیل کی جاتی ہے کہ خلائی درز میں سائن نما مقناطیسی بہاو پیدا ہو۔ مقناطیسی بہاو مقناطیس سے قالب میں عمودی زاویہ پر داخل ہوتا ہے۔ اگر خلائی درز میں 0 = 0 سائن نما ہو

$$(5.3) B = B_0 \cos \theta_p$$

تب کثافت مقناطیسی بہاو B صفر زاویہ $\theta_p=0^\circ$ ، پر زیادہ سے زیادہ اور نوے زاویہ، $\theta_p=90^\circ$ ، پر صفر ہو گل اور خلائی درز میں مقناطیسی بہاو $\theta_p=0$ کے ساتھ تبدیل ہو گا۔ $\theta_p=0$ کو مقناطیس کے شالی قطب سے گھڑی کے مخالف

stator coil⁸ north pole⁹ south pole¹⁰

شكل 5.2: كثافت مقناطيسي بهاواور زاويه كاتبديلي_

رخ ناپا جاتا ہے۔ شکل 5.2 میں ساکن جے کے باہر نو کیلی لکیروں کی لمبائی سے کثافت مقناطیسی بہاو کی مطلق قیمت اور کلیروں کے رخ سے بہاو کا رخ دکھایا گیا ہے۔ اس شکل میں ہاکی سیابی سے $^{\circ}0$ - $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ باتی آ دھے میں مخالف کے مخالف ہے۔ یوں شکل 5.2 میں آ دھے خلائی درز میں کثافت مقناطیسی بہاو کا ترسیم سائن نما ہو گا۔ شکل 5.3 میں مقناطیس دوسرے زاویہ پر دکھایا گیا ہے۔ یاد رہے کثافت مقناطیسی بہاو کی مطلق قیمت مقناطیس کے شائی قطب پر زیادہ سے زیادہ ہو گا۔ ور شائی قطب پر کثافت مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رہ وگا۔ شکل قطب پر کثافت مقناطیسی بہاو رداسی درج ذیل کھا جا سکتا ہے۔

(5.4)
$$B = B_0 \cos \theta_p$$
$$\theta_p = \theta - \theta_m$$

يوں درج ذيل ہو گا۔

$$(5.5) B = B_0 \cos(\theta - \theta_m)$$

شکل 5.3 میں مقناطیس اور اس کا سائن نما مقناطیسی دباو پیش کیا گیا ہے۔ جیسا شکل 5.4 میں دکھایا گیا ہے، ایسے مقناطیسی دباو کو عموماً ایک سمتیہ سے ظاہر کیا جاتا ہے جہاں سمتیہ کا طول مقناطیسی دباو کا حیطہ اور سمتیہ کا رخ مقناطیس کے شال کو ظاہر کرتا ہے۔ 5.2. معاصر مشين

شکل 5.5: چار قطب یک دوری معاصر جنریٹر۔

شکل 5.3 میں مقناطیس کو لمحہ t_1 ، زاویہ $\theta_m(t_1)$ پر دکھایا گیا ہے جہاں ساکن کچھے کا ارتباط بہاو $\theta_m(t_1)$ مقناطیس گھڑی کے مخالف رخ ایک مقررہ رفتار ω_0 سے گھوم رہا ہو تب ساکن کچھے میں اس لمحہ پر برقی دباو e(t) پیدا ہو گا:

(5.6)
$$e(t) = \frac{\mathrm{d}\lambda_{\theta}}{\mathrm{d}t}$$

آوھے چکر، π ریڈیئن گھومنے کے، بعد مقناطیسی قطبین آپس میں جگہیں تبدیل کرتے ہیں، کچھے میں مقناطیسی بہاو کا رخ الٹ ہو گا، کچھے میں ارتباط بہاو θ_0 اور اس میں امالی برقی دباو e(t) ہو گا۔ ایک مکمل چکر بعد مقناطیس دوبارہ ای مقام پر ہو گا جو شکل 5.3 میں دکھایا گیا ہے، ساکن کچھے کا ارتباط بہاو دوبارہ θ_0 اور اس میں امالی برقی دباو کی دباو کو گا۔ یوں جب بھی مقناطیس $\theta_m = 2\pi$ میکانی زاویہ طے کرے، امالی برقی دباو کے برقی زاویہ میں $\theta_m = 2\pi$ میکانی زاویہ طے کرے، امالی برقی دباو کے برقی زاویہ میں دو سرے کے برابر تبدیلی رونما ہوگی لہذا دو قطب، ایک کچھے کی مثنین میں میکانی زاویہ θ_m اور برقی زاویہ θ_0 ایک دو سرے کے برابر ہوں گ

$$\theta_e = \theta_m$$

اس مشین میں میکانی زاویہ θ_m اور برقی زاویہ θ_e وقت کے ساتھ تبدیل ہونے کے باوجود آپس میں ایک تناسب رکھتے ہیں لہٰذا ایسے مشین کو معاصر مشین 0 کہتے ہیں۔ یہاں یہ تناسب ایک کے برابر ہے۔

frequency¹¹

Hertz¹²

synchronous machine¹³

5.2 معاصر مشين

شکل 5.5 میں چار قطب، یک دوری معاصر جزیٹر دکھایا گیا ہے۔ چھوٹے مثینوں میں عموماً مقناطیس جبکہ بڑے مثینوں میں برقی مقناطیس جبکہ بڑے مثینوں میں برقی مقناطیس 14 استعال ہوتے ہیں۔ اس شکل میں برتی مقناطیس استعال کیے گئے ہیں۔ دو سے زائد قطبین والے مثینوں میں کسی ایک شالی قطب کو حوالہ قطب تصور کیا جاتا ہے۔ شکل میں اس حوالہ قطب کو θ_m پر دکھایا گیا ہے اور یوں دوسرا شالی قطب کو θ_m زاویہ پر ہے۔

حییا کہ نام سے واضح ہے، اس مشین میں مقناطیس کے چار قطبین ہیں۔ ہر ایک ثالی قطب کے بعد ایک جنوبی قطب آتا ہے۔ یک دوری آلات میں مقناطیسی قطبین کے جوڑوں کی تعداد اور ساکن کچھوں کی تعداد ایک دوسرے قطب آتا ہے۔ یک دوری آلات میں مثنا سے قطبین قطبین ہیں، للذا اس مشین کے ساکن حصہ پر کے برابر ہوتی ہے۔ شکل 5.5 میں مشین کے چار قطب یعنی دو جوڑی قطبین ہیں، للذا اس مشین کے ساکن حصہ پر دو ساکن کچھے ہوں ہیں۔ ایک کچھے کو واشح کیا گیا ہے اور دوسرے کو ہے ہے۔ کچھے کو قالب میں موجود دوشگان اور a_1 میں رکھا گیا ہے۔ ان وونوں کچھوں دوشگان اور a_2 میں رکھا گیا ہے۔ ان دونوں کچھوں میں یکسال برقی دباو پیدا ہوتا ہے۔ دونوں کچھوں کو سلسلہ وار 15 جوڑا جاتا ہے۔ اس طرح جزیڑ سے حاصل برقی دباو ایک کچھے میں پیدا برقی دباو کا دگنا ہو گا۔ یک دوری آلات میں قالب کو مقناطیس کے قطبین کی تعداد کے برابر حصوں میں تقسیم کرنے سے مشین کا ہر ساکن کچھا ایک حصہ گھرتا ہے۔ شکل 5.5 میں چار قطبین ہیں للذا اس کا ایک کچھا میں تقسیم کرنے سے مشین کا ہر ساکن کچھا ایک حصہ گھرتا ہے۔ شکل 5.5 میں چار قطبین ہیں للذا اس کا ایک کچھا نوے مکانی زاویہ کے اطاطے کو گھیرتا ہے۔

ساکن اور حرکی کیجھوں کی کار کردگی ایک دوسرے سے مختلف ہوتی ہے۔اس کی وضاحت کرتے ہیں۔

حیسا پہلے بھی ذکر کیا گیا چھوٹی گھومتی مشینوں میں مقناطیسی میدان ایک مقناطیس فراہم کرتا ہے جبکہ بڑی مشینوں میں برقی مقناطیس کو گھومتا حصہ دکھایا گیا ہے، حقیقت میں برقی مقناطیس کی مشین میں گھومتا اور کسی میں ساکن ہو گا۔ میدان فراہم کرنے والا لچھا مشین کے کل برقی طاقت میں مقناطیس کسی مشین میں گھومتا اور کسی میں ساکن ہو گا۔ میدان فراہم کرنے والے اس لچھ کو میدانی لچھا¹⁶ کہتے ہیں۔اس کے چند فی صد برابر برقی طاقت استعال کرتا ہے۔میدان فراہم کرنے والے اس لچھ کو میدانی لچھا ہے بیں۔اس کے برعکس مشین میں موجود دو سری نوعیت کے لچھے کو قومی لچھا¹⁷ کہتے ہیں۔برقی جزیڑ کے قوی لچھے سے برقی طاقت کے میاوہ تمام برقی طاقت واصل کی جاتی ہے۔برقی موٹروں میں میدانی لچھے میں چند فی صد برقی طاقت کے ضیاع کے علاوہ تمام برقی طاقت

شکل 5.6 میں گھومتے اور ساکن حصہ کے بی خلائی درز میں شالی قطب سے مقناطیسی بہاو باہر نکل کر قالب میں داخل ہوتا ہے۔ شکل 5.6 میں داخل ہوتا ہے۔ شکل 5.6 میں

electromagnet¹⁴

series connected 15

field coil¹⁶

armature coil¹⁷

شكل 6.5: چار قطب، دولچھے مثین میں مقناطیسی بہاو۔

اس مقناطیسی بہاو کی کثافت کو دکھایا گیا ہے۔ یوں اگر ہم اس خلائی درز میں ایک گول چکر کا ٹیس تو مقناطیسی بہاو کا رخ دو مرتبہ باہر کی جانب اور دو مرتبہ اندر کی جانب ہو گا۔ ان مشینوں میں کوشش کی جاتی ہے کہ خلائی درز میں B سائن نما ہو۔ یہ کیسے کیا جاتا ہے، اس پر آگے خور کیا جائے گا۔ اگر تصور کر لیا جائے کہ B سائن نما ہے تب خلائی درز میں B کی مطلق قیت شکل 5.7 کی طرح ہو گی جہاں θ برتی زاویہ ہے۔

P قطبی مقناطیس کے معاصر مثین کے لئے لکھ درج ذیل ہو گا۔

$$\theta_e = \frac{P}{2}\theta_m$$

$$(5.8) f_e = \frac{P}{2} f_m$$

یہاں برقی اور میکانی تعدد کا تناسب 2 ہے۔

مثال 5.1: پاکستان میں گھریلو اور صنعتی صارفین کو $_{\rm Hz}$ کی برتی طاقت فراہم کی جاتی ہے۔یوں ہمارے ہاں $_{\rm fe}=50$

- اگر برقی طاقت دو قطبی جزیٹر سے حاصل کی جائے تب جزیٹر کی رفتار کتنی ہو گی؟۔
 - اگر جزیر کے بیں قطب ہوں تب جزیر کی رفار کتنی ہو گی؟

حل:

5.2 معاصر شين

شکل 5.8: دو قطب، تین دوری معاصر مثین ـ

- مساوات 5.8 تحت وو قطبی، P=2، جنریٹر کا میکانی رفتار 50=6 تحت وو قطبی، P=9، جنریٹر کا میکانی رفتار 5.8 تحت وی سیکنڈ لیمنی 18 ہو گا۔
- بیں قطبی، P=20، جزیٹر کا میکانی رفتار $f_m=rac{2}{20}(50)=5$ چکر فی سینٹر لیعنی P=20، جزیٹر کا میکانی رفتار P=20

اب یہ فیصلہ کس طرح کیا جائے کہ جزیر کے قطب کتنے رکھے جائیں۔ در حقیقت پانی سے چلنے والے جزیر سست رفتار جبکہ ٹربائن سے چلنے والے جزیر تیزر فلار ہوتے ہیں، للذا پانی سے چلنے والے جزیر نریادہ قطب رکھتے ہیں جبکہ ٹربائن سے چلنے والے جزیر عموماً دو قطب کے ہوتے ہیں۔

a شکل 5.8 میں دو قطب تین دوری معاصر مشین دکھایا گیا ہے۔اس میں تین ساکن کچھے ہیں۔ان میں ایک کچھا a جو قالب میں شکاف a اور a میں رکھا گیا ہے۔ اگر اس شکل میں باقی دو کچھے نہ ہوتے تب یہ بالکل شکل a میں دیا گیا مشین ہی تھا۔البتہ دیے گئے شکل میں ایک کی بجائے تین ساکن کچھے ہیں۔

لچھے کا رخ درج ذیل طریقہ سے تعین کیا جاتا ہے۔

rpm, rounds per minute¹⁸

شكل 5.9: دوقطب تين دوري مشين ـ

• دائیں ہاتھ کی چار انگلیوں کو دونوں شافوں میں برتی رو کے رخ کیپیٹیں۔ دائیں ہاتھ کا انگوٹھا کچھے کا رخ دے گا۔ گا۔

شکل 5.8 میں کچھا a کا برقی رو شگاف a میں، کتاب کے صفحہ کو عمودی، باہر رخ جبکہ a' میں اس کے مخالف اندر رخ تصور کرتے ہوئے کچھا a کا رخ تیر دار لکیر سے دکھایا گیا ہے۔ اس رخ کو ہم صفر زاویہ تصور کرتے ہیں۔ یوں کچھا a صفر زاویہ پر لپیٹا گیا ہے، لیعنی a a ہے۔ باقی کچھوں کے زاویات کچھا a کے رخ سے، گھڑی کے مخالف رُخ نابے جاتے ہیں۔

شکل 5.8 میں کچھا b کو شگاف b اور b' میں رکھا گیا ہے اور کچھا c کو شگاف c اور c' میں رکھا گیا ہے۔ مزید کچھا d کو d و شگاف d کو d و d

شکل 5.9 میں اگر لمحہ t_1 پر لچھا a کا ارتباط بہاو (t_1) ہو تب لمحہ t_2 بر، جب مقناطیس °120 زاویہ طے کر لے، لچھا d کا ارتباط بہاو (t_1) ہو گا۔ لمحہ t_2 بر مقناطیس اور لچھا d ایک دوسرے کے لحاظ سے بالکل ای طرح نظر آتے ہیں جیسے t_1 پر مقناطیس اور لچھا a ایک دوسرے کے لحاظ سے نظر آتے تھے۔ یوں لمحہ t_2 پر لچھا کا ارتباط بہاو تھا:

$$\lambda_b(t_2) = \lambda_a(t_1)$$

اسی طرح کھے t_3 پر، جب مقناطیس مزید °120 زاویہ طے کر لے، کچھا c کا ارتباط بہاو ($\lambda_c(t_3)$ ہو گا جو $\lambda_c(t_1)$ کے برابر ہو گا۔یوں درج ذیل لکھا جا سکتا ہے۔

$$\lambda_c(t_3) = \lambda_b(t_2) = \lambda_a(t_1)$$

.5. معاصر مثين

شكل5.10: چار قطب، تين دوري معاصر مشين ـ

ان کمحات پر کچھوں کے امالی برقی دباو

(5.11)
$$e_a(t_1) = \frac{\mathrm{d}\lambda_a(t_1)}{\mathrm{d}t}$$

(5.12)
$$e_b(t_2) = \frac{\mathrm{d}\lambda_b(t_2)}{\mathrm{d}t}$$

$$(5.13) e_c(t_3) = \frac{\mathrm{d}\lambda_c(t_3)}{\mathrm{d}t}$$

ہوں گے۔ مساوات 5.10 کی روشنی میں درج ذیل ہو گا۔

(5.14)
$$e_a(t_1) = e_b(t_2) = e_c(t_3)$$

اگر شکل 5.9 میں صرف کچھا a پایا جاتا تب یہ بالکل شکل 5.1 کی طرح ہوتا اور اگر ایسی صورت میں مقناطیس گھڑی کے مخالف رخ ایک مقررہ رفتار a سے گھمایا جاتا تب، جیسے پہلے تذکرہ کیا گیا ہے، کچھا a میں سائن نما برقی دباو پیدا ہوتا۔ شکل 5.9 میں کسی ایک کچھے کو کسی دوسرے کچھے پر کوئی برتری حاصل نہیں ہے۔ یوں اگر شکل 5.9 میں مقناطیس اسی طرح گھمایا جائے تب تینوں ساکن کچھوں میں سائن نما برقی دباو پیدا ہوگا البتہ مساوات 5.14 کے تحت یہ برقی دباو آپس میں a میں a دوسر گھری کے۔

شکل 5.10 میں چار قطب ، تین دوری معاصر مثین دکھایا گیا ہے۔ گھومتے تھے پر شالی اور جنوبی قطبین باری باری باری بائے جاتے ہیں اور °180 میکانی زاویہ میں شال اور قریبی جنوب قطب کی ایک جوڑی بائی جاتی ہے۔ یہی میکانی زاویہ میں شال اور قریبی جنوب قطب کی ایک جوڑی بائی جاتی ہے۔ یہی میکانی زاویہ کے مارہ ہوگا۔ شکل 5.8 میں ساکن حصہ کے °360 برقی زاویہ کے اعاطہ میں تین دوری کچھوں نسب ہیں جن کی اطراف کی ترتیب، گھڑی کے مخالف رخ چلتے ہوئے، ہم، ناہ دوری کچھوں کے اطراف دو قطبین کے اعاطہ ، °100 میکانی زاویہ (یا °360 برتی زاویہ)، میں بالکل اسی طرح تین دوری کچھوں کے اطراف کی ترتیب ہوئے، میں بالکل اسی طرح آپ کو چھوں کے اطراف کی ترتیب ہوئے دوری کچھوں کے اطراف کی ترتیب ہوئے دوری کے میں جھی بالکل اسی طرح آپ کو گھوں کے دوری دوری کی ترتیب کو گئیں گئی دوری ہوئے دوری برتی دوری کی گیا ہے۔ شکل 5.10 میں انہیں متوازی جوڑ کر دکھایا گیا ہے جہاں می کچھے کو صفر زاویہ پر تصور کیا گیا ہے۔

5.3 محرك برتى دباو

قانون لورینز 19 کے تحت مقناطیسی میدان $m{B}$ میں سمتی رفتار $m{v}$ سے حرکت پذیر برقی بار q^{20} درج ذیل قوت $m{F}$ محسوس کرے گا۔

$$(5.15) F = q(\boldsymbol{v} \times \boldsymbol{B})$$

یہاں سمتی رفتار سے مراد برقی میدان کے لحاظ سے برقی بار کی سمتی رفتار ہے للذا F کو ساکن مقاطیسی میدان میں برقی بار کی سمتی رفتار تصور کیا جا سکتا ہے۔اس قوت کا رخ دائیں ہاتھ کے قانون سے معلوم کیا جاتا ہے۔

مقناطیسی میدان میں ابتدائی نقطہ سے اختامی نقطہ تک، جن کے ﷺ ہٹاو l ہے، برتی بار q نتقل کرنے کے لئے درکار کام W ہو گا:

$$(5.16) W = \mathbf{F} \cdot \mathbf{l} = q(\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

اکائی مثبت برتی بار کو ایک نقطہ سے دوسرے نقطہ منتقل کرنے کے لئے درکار کام کو ان دو نقطوں کے پیج برقی دباو²¹ کہتے ہیں جس کی اکائی وولئے۔ V²² ہے۔ یوں اس مساوات سے ان دو نقطوں کے پیچ درج ذیل برتی دباو ہو گا۔

(5.17)
$$e = \frac{W}{q} = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

5.3. محسر كب بر قي دباو

شكل 5.11: ابك چيكر كالجھامقناطيسي ميدان ميں گھوم رہاہے۔

حرکت کی مدد سے یوں حاصل برقی دباو کو محرکے برقی دباو²³ کہتے ہیں۔ روایتی طور پر کسی بھی طریقہ سے حاصل برقی دباو کو محرک برقی دباو کہتے ہیں۔ یوں کیمیائی برقی سیل وغیرہ کا برقی دباو بھی محرک برقی دباو کہلائے گا۔

شکل 5.11 میں گھڑی کے مخالف رخ گھومتے حصہ پر ایک چکر کا کچھا نسب ہے۔بائیں خلاء میں کچھا کی تارکے قطع پر غور کریں۔ مساوات 5.15 کے تحت بایاں قطع میں موجود مثبت برتی بار پر صفحہ کے عمودی باہر رخ قوت پیدا ہو گی۔مساوات 5.17 کے تحت اس قطع کا بالائی سرا مثبت اور نجلا سرا منفی برتی دباو پر ہو گا۔

ہم گھومتے حصہ کی محور پر نگی محدد قائم کرتے ہیں۔ یوں جنوبی قطب کے سامنے خلاء میں B رداسی رخ جبکہ شالی قطب کے سامنے خلاء میں B رداس کے مخالف رخ ہو گا۔ جنوبی قطب کے سامنے شگاف میں برقی تار B کے ہم درج ذیل لکھ سکتے ہیں۔

$$egin{aligned} oldsymbol{v}_S &= v oldsymbol{a}_{ heta} = \omega r oldsymbol{a}_{ heta} \ oldsymbol{B}_S &= B oldsymbol{a}_{ extsf{T}} \ oldsymbol{l}_S &= l oldsymbol{a}_{ extsf{Z}} \end{aligned}$$

یوں جنوبی قطب کے سامنے تار کے قطع میں درج ذیل محرک برقی دباو پیدا ہو گا۔

(5.19)
$$e = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

$$= \omega r B l(\mathbf{a}_{\theta} \times \mathbf{a}_{r}) \cdot \mathbf{a}_{z}$$

$$= \omega r B l(-\mathbf{a}_{z}) \cdot \mathbf{a}_{z}$$

$$= -\omega r B l$$

Lorentz law¹⁹ charge²⁰

potential difference, voltage²¹

volt²²

electromotive force, emf^{23}

جنوبی مقناطیسی قطب کے سامنے شگاف میں برتی تارکی لمبائی کا رخ a_z لیا گیا۔اس مساوات میں برتی دباو منفی ہونے کا مطلب ہے کہ برتی تارکا مثبت سراتار پر $-a_z$ رخ ہے لیعنی تارکا نجلا سرا مثبت اور بالائی سرا منفی ہے۔ اگر اس تار میں رو گزر سکے تو اس رو کا رخ $-a_z$ لینی صفحہ کو عمودی اندر رخ ہو گا جے شکل 5.11 میں شگاف میں دائرہ کے اندر صلیبی نشان سے ظاہر کیا گیا ہے۔

ای طرح شالی مقناطیسی قطب کے سامنے شگاف میں موجود برقی تار کے لئے ہم درج ذیل لکھ سکتے ہیں۔

(5.20)
$$egin{aligned} oldsymbol{v}_N &= v oldsymbol{a}_{ heta} &= \omega r oldsymbol{a}_{ heta} \ oldsymbol{B}_N &= -B oldsymbol{a}_{ ext{r}} \ oldsymbol{l}_N &= l oldsymbol{a}_{ ext{z}} \end{aligned}$$

یوں اس قطع میں درج ذیل دباو ہو گا۔

(5.21)
$$e_{N} = (\mathbf{v}_{N} \times \mathbf{B}_{N}) \cdot \mathbf{l}_{N} \\ = -\omega r B l(\mathbf{a}_{\theta} \times \mathbf{a}_{r}) \cdot \mathbf{a}_{z} \\ = -\omega r B l(-\mathbf{a}_{z}) \cdot \mathbf{a}_{z} \\ = \omega r B l$$

شالی مقناطیسی قطب کے سامنے شگاف میں برتی تارکی لمبائی کا رخ a_z لیا گیا ہے۔اس مساوات میں برتی دباو مثبت ہونے کا مطلب ہے کہ برتی تارکا مثبت سراتار پر a_z رخ ہو گا لیمن تارکا بالائی سرا مثبت اور نجلا سرا منفی ہو گا۔اگر اس تار میں رو گزر سکے تو اس کا رخ a_z لیمن صفحہ کو عمودی باہر رخ ہو گا جے شکل 5.11 میں شگاف میں دائرہ کے اندر نقطہ کے نشان سے دکھایا گیا ہے۔

یہ دونوں تار مل کر ایک چکر کا لچھا بناتے ہیں۔ ان تاروں کے نچلے سر ایک دوسرے کے ساتھ سلسلہ وار جڑے ہیں جس کو شکل میں نہیں دکھایا گیا۔یوں اس کچھے کے بالائی، نظر آنے والے، سروں پر کل برقی دباو e ان دو برقی تاروں میں پیدا برقی دباو کا مجموعہ ہو گا:

(5.22)
$$e = 2rlB\omega$$
$$= AB\omega$$

یہاں کچھے کا رقبہ A=2rl ہے۔اگر ایک چکر سے اتنا برقی دباو حاصل ہو تب N چکر کے کچھے سے درج ذیل دباو حاصل ہو گا جہاں $\phi=AB$ مقناطیسی بہاو ہے۔

(5.23)
$$e = \omega NAB$$
$$= 2\pi f NAB$$
$$= 2\pi f N\phi$$

گومتی مشینوں کی خلائی درز میں B اور v ہر لمحہ ایک دوسرے کے عمودی ہوتے ہیں۔ مساوات 5.17 کت مستقل زاویائی رفتار اور محوری لمبائی کی صورت میں پیدا کردہ برقی دباو ہر لمحہ B کا براہ راست متناسب ہو گا۔ خلائی درز میں زاویہ کے ساتھ تبدیل ہوتے ہوئے B کی صورت میں گھومتے کچھے میں پیدا برقی دباو بھی زاویہ کے ساتھ تبدیل ہو گا۔ یوں جس شکل کا برقی دباو درکار ہو اسی شکل کی کثافت مقناطیسی دباو خلائی درز میں پیدا کرنی ہو گی۔ سائن نما برقی دباو پیدا کرنے کے لئے خلائی درز میں سائن نما کثافت مقناطیسی بہاو درکار ہو گی۔

اگلے جھے میں خلائی درز میں ضرورت کے تحت B پیدا کرنے کی ترکیب بتلائی جائے گا۔

5.4 کھیے اور سائن نمامقناطیسی دیاو

ہم نے اب تک جتنے مشین دیکھے ان سب میں گیھ ²⁴ کچھ دکھائے گئے۔ مزید ان مشینوں میں گھومتے تھے پر موجود مقاطیس کے ابھرے قطب ²⁵ تھے۔ عموماً حقیقی مشینوں کے ہموار قطب ²⁶ اور پھیلے کچھ ²⁷ ہوتے ہیں جن کی بنا ساکن اور گھومتے حصوں کے بچ خلائی درز میں سائن نما مقناطیسی دباو اور سائن نما کثافت مقناطیسی بہاو پیدا کرنا ممکن ہوتا ہے۔

شکل 5.12 میں ایک گیجھ کچھا دکھایا گیا ہے جہاں مثین کے گھومتے جھے کا عمودی تراش گول صورت کا ہے۔ متحرک اور ساکن قالب کا $\infty + \mu_r \to \infty$ کا مقناطیسی دباو π کہ متعاطیسی بہاو π بیدا کرتا ہو کہ بیدا کرتا ہو ہلکی سیابی کی لکیروں سے ظاہر کیا گیا ہے۔ مقناطیسی بہاو خلائی درز میں سے دو مرتبہ گزرتا ہوا کچھے کے گرد ایک چکر کا شاہدا درج ذیل ہو گا۔

یوں ساکن کچھے کے مقناطیسی دباو کا آدھا حصہ ایک خلائی درز اور آدھا حصہ دوسرے خلائی درز میں مقناطیسی بہاو پیدا کرتا ہے۔ مزید آدھے خلائی درز میں مقناطیسی دباو (اور مقناطیسی بہاو) رداسی رخ اور باقی خلائی درز میں رداس کے

non-distributed coils²⁴ salient poles²⁵

non-salient poles²⁶

distributed winding²⁷

 $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ (اور مقاطیسی دباو (اور مقاطیسی بہاو (اور مقاطیسی دباو) رداس کے در میان رداسی رخ ہے لہذا اسے مثبت تصور کیا جائے گا جبکہ باقی حصہ پر مقاطیسی دباو (اور مقاطیسی بہاو) رداس کے در میان ردا ہی رخ ہے لہذا اسے منفی تصور کیا جائے گا۔ شکل 5.13 میں خلائی در زمیں مقاطیسی دباو کو زاویہ کے ساتھ ترسیم کیا گیا ہے۔ وقفہ $\frac{\pi}{2} > \theta < \frac{\pi}{2}$ خلائی در زمیں مقاطیسی دباو کے آدھا ہو اور اس کا رخ مثبت ہے جبکہ وقفہ $\frac{\pi}{2} > \theta < \frac{3\pi}{2}$ کے خلائی در زمیں مقاطیسی دباو کچھے کے مقاطیسی دباو کا آدھا اور منفی رخ ہے حوالہ سے نعین کیا جاتا ہے۔

5.4.1 بدلتار ووالے مثین

برلتارو (اے سی) مشین بناتے وقت کوشش کی جاتی ہے کہ خلائی درز میں مقناطیسی دباوسائن نما ہو۔سائن نما مقناطیسی دباو دباو کے حصول کی خاطر لیچھوں کو ایک سے زیادہ شگافوں میں تقسیم کیا جاتا ہے۔ ایسا کرنے سے سائن نما مقناطیسی دباو کیسے حاصل ہوتا ہے، اس بات کی یہاں وضاحت کی جائے گی۔

 $f(heta_p)^{-29}$ فوریئر تسلسل 28 کے تحت ہم کسی بھی تفاعل 29 $f(heta_p)^{-29}$ کو درج ذیل صورت میں لکھ سکتے ہیں۔

(5.25)
$$f(\theta_p) = \sum_{n=0}^{\infty} (a_n \cos n\theta_p + b_n \sin n\theta_p)$$

تفاعل کا دوری عرصہ T^{30} ہونے کی صورت میں فوریئر تسلسل کے عددی سر درج ذیل ہوں گے۔

(5.26)
$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(\theta_p) d\theta_p$$
$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(\theta_p) \cos n\theta_p d\theta_p$$
$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(\theta_p) \sin n\theta_p d\theta_p$$

مثال 5.2: شکل 5.13 میں دیے گئے مقناطیسی دباو کا

Fourier series²⁸ function²⁹ time period³⁰

- فوريئر تسلسل حاصل كريي،
- تيسري موسيقائي جزو³¹ اور بنيادي جزو³² كا تناسب معلوم كرين-

حل:

• مساوات 5.26 کی مدد سے

$$a_0 = \frac{1}{2\pi} \left[\int_{-\pi}^{-\pi/2} \left(-\frac{Ni}{2} \right) d\theta_p + \int_{-\pi/2}^{\pi/2} \left(\frac{Ni}{2} \right) d\theta_p + \int_{\pi/2}^{\pi} \left(-\frac{Ni}{2} \right) d\theta_p \right]$$

$$= \frac{1}{2\pi} \left[\left(-\frac{Ni}{2} \right) \left(-\frac{\pi}{2} + \pi \right) + \left(\frac{Ni}{2} \right) \left(\frac{\pi}{2} + \frac{\pi}{2} \right) + \left(-\frac{Ni}{2} \right) \left(\pi - \frac{\pi}{2} \right) \right]$$

$$= 0$$

اور درج ذیل حاصل ہوں گے۔

$$a_n = \frac{2}{2\pi} \frac{Ni}{2} \left[\int_{-\pi}^{-\pi/2} -\cos n\theta_p \, d\theta_p + \int_{-\pi/2}^{\pi/2} \cos n\theta_p \, d\theta_p + \int_{\pi/2}^{\pi} -\cos n\theta_p \, d\theta_p \right]$$

$$= \frac{Ni}{2\pi} \left[-\frac{\sin n\theta_p}{n} \Big|_{-\pi}^{-\pi/2} + \frac{\sin n\theta_p}{n} \Big|_{-\pi/2}^{\pi/2} - \frac{\sin n\theta_p}{n} \Big|_{\pi/2}^{\pi} \right]$$

$$= \frac{Ni}{2n\pi} \left[\sin \frac{n\pi}{2} + 2\sin \frac{n\pi}{2} + \sin \frac{n\pi}{2} \right]$$

$$= \left(\frac{4}{n\pi} \right) \left(\frac{Ni}{2} \right) \sin \frac{n\pi}{2}$$

اس مساوات میں n کی قیمت ایک، دو، تین لیتے ہوئے درج ذیل حاصل ہوتا ہے۔

$$a_1 = \left(\frac{4}{\pi}\right) \left(\frac{Ni}{2}\right), \quad a_3 = -\left(\frac{4}{3\pi}\right) \left(\frac{Ni}{2}\right), \quad a_5 = \left(\frac{4}{5\pi}\right) \left(\frac{Ni}{2}\right)$$

$$a_2 = a_4 = a_6 = 0$$

third harmonic component³¹ fundamental component³²

اسی طرح درج ذیل ہو گا۔

$$b_n = \frac{2}{2\pi} \frac{Ni}{2} \left[\int_{-\pi}^{-\pi/2} -\sin n\theta_p \, d\theta_p + \int_{-\pi/2}^{\pi/2} \sin n\theta_p \, d\theta_p + \int_{\pi/2}^{\pi} -\sin n\theta_p \, d\theta_p \right]$$

$$= \frac{Ni}{2\pi} \left[\frac{\cos n\theta_p}{n} \Big|_{-\pi}^{-\pi/2} - \frac{\cos n\theta_p}{n} \Big|_{-\pi/2}^{\pi/2} + \frac{\cos n\theta_p}{n} \Big|_{\pi/2}^{\pi} \right]$$

$$= 0$$

• ان نتائج کا یکجا کرتے ہیں:

$$\left| \frac{a_3}{a_1} \right| = \frac{\left(\frac{4}{3\pi}\right) \left(\frac{Ni}{2}\right)}{\left(\frac{4}{\pi}\right) \left(\frac{Ni}{2}\right)} = \frac{1}{3}$$

يوں تيسرا موسيقائي جزو بنيادي جزو کا تيسرا حصه ليني 33.33 في صد ہو گا۔

مثال 5.2 میں حاصل کردہ a_1, a_2, \cdots استعال کرتے ہوئے ہم خلائی درز میں مقناطیسی دباو τ کا فوریئر تسلسل کھتے ہیں۔

(5.27)
$$\tau_a = \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p - \frac{4}{3\pi} \frac{Ni}{2} \cos 3\theta_p + \frac{4}{5\pi} \frac{Ni}{2} \cos 5\theta_p + \cdots$$

(5.28)
$$\tau_a = \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p = \tau_0 \cos \theta_p$$

 au_0 درج ذیل ہے۔ au_0 درج ذیل ہے۔

(5.29)
$$\tau_0 = \frac{4}{\pi} \frac{Ni}{2}$$

شكل 5.14: تين دور لچھے۔

خلائی درج میں τ ، H اور B ایک دوسرے کے برائے راست متناسب ہوتے ہیں۔ یوں مساوات 5.28 کے تحت شکل 5.12 کا کچھے اور شکل 5.2 میں صفر زاویہ پر سلاخ نما مقناطیس کیساں τ (اور B) دیں گ۔ اس طرح اگر شکل 5.12 کا کچھا زاویہ θ_{m} پر ہوتا تب ہمیں شکل 5.3 میں موجود مقناطیس کے نتائج حاصل ہوتے۔

شکل 5.14 میں تین کچھے آپس میں °120 زاویہ پر دکھائے گئے ہیں۔ ہم مساوات 5.64 کی طرح اس شکل میں کچھا a کے لئے درج ذیل کھ سکتے ہیں۔

(5.30)
$$\begin{aligned} \tau_a &= \tau_0 \cos \theta_{p_a} \\ \theta_{p_a} &= \theta - \theta_{m_a} = \theta - 0^{\circ} \\ \tau_a &= \tau_0 \cos(\theta - \theta_m) = \tau_0 \cos \theta \end{aligned}$$

اسی طرح کچھا b اور c جو بالترتیب $\theta_{m_b}=120^\circ$ اور $\theta_{m_b}=120^\circ$ زویہ پر ہیں کے لئے درج ذیل ہو گا۔

(5.31)
$$\begin{aligned} \tau_b &= \tau_0 \cos \theta_{p_b} \\ \theta_{p_b} &= \theta - \theta_{m_b} = \theta - 120^{\circ} \\ \tau_b &= \tau_0 \cos(\theta - \theta_{m_b}) = \tau_0 \cos(\theta - 120^{\circ}) \end{aligned}$$

$$\begin{aligned} \tau_c &= \tau_0 \cos \theta_{p_c} \\ (5.32) \qquad \theta_{p_c} &= \theta - \theta_{m_c} = \theta - 240^\circ \\ \tau_c &= \tau_0 \cos(\theta - \theta_{m_c}) = \tau_0 \cos(\theta - 240^\circ) = \tau_0 \cos(\theta + 120^\circ) \end{aligned}$$

ا گرچہ ظاہری طور پر خلائی درز میں مقناطیسی دباو سائن نما ہر گز نہیں لگتا لیکن مساوات 5.27 ہمیں بتلاتی ہے کہ یہ محض نظر کا دھوکا ہے۔ اس مقناطیسی دباو کا بیشتر حصہ سائن نما ہی ہے۔ اگر ہم کسی طرح مساوات 5.27 میں پہلے رکن کے علاوہ باتی تمام ارکان کو صفر کر سکیں تب ہمیں سائن نما مقناطیسی دباو حاصل ہو گا۔

شكل 5.15: كيسيلا لجهابه

شکل 5.12 کے N چکر کچھے کو تین چھوٹے کیساں کچھوں میں تقسیم کرتے ہوئے شکل 5.15 حاصل کیا گیا ہے جہاں ہر چھوٹا کچھا کچھا کہ چکر کا ہے۔ ایسے چھوٹے کچھوں کو سلسلہ وار جوڑا 33 جاتا ہے لہذا ان میں ایک جیسا برتی روز 3 گزرے گا۔ ان تین کچھوں کو تین مختلف شگافوں میں رکھا گیا ہے۔ پہلے کچھے کو شگاف 3 و شگاف 3 میں رکھا گیا ہے۔ دوسرے کچھے کو شگاف 3 و میں رکھا گیا ہے۔ دوسرے کچھے کو شگاف 3 و میں رکھا گیا ہے۔

شگافوں کے ایک جوڑا کو ایک ہی طرح کے نام دیے گئے ہیں، البتہ ایک شگاف کو a اور دوسرے کو a نام دیا گیا ہے۔ یوں شگافوں کا پہلے جوڑا a_{45} اور a_{45} ہے۔ شگاف کا نام شگاف کے زاویہ کے لحاظ سے رکھا گیا ہے۔ یوں شگاف a_{45} در حقیقت a_{50} زاویہ پر ہے، شگاف a_{90} نوے درجہ زاویہ پر اور شگاف a_{135} ایک سو پینیس درجہ زاویہ پر ہے۔ اس طرح a_{45} شگاف a_{45} کا جوڑا ہے۔

متمام کچھے کا جیل اور تمام کچھوں میں برقی روi ایک دوسرے جیبا ہے۔ شکل 5.15 کے تھیلے کچھے کا مقاطیسی دباو بالمقابل زاویہ کا ترسیم شکل 5.16 میں موٹی لکیر سے دکھایا گیا ہے۔ سب سے اوپر لچھا کہ مقاطیسی دباو کی ترسیم ہو شکل 5.13 کی ترسیم کی طرح لیکن صفر زاویہ سے -45 ہٹ کر ہے۔ دوسری ترسیم لچھا a_{90} کی ہے جو ہو بہو شکل 5.13 کی طرح ہے جبکہ تیسری ترسیم کچھا a_{135} کی ہے جو صفر زاویہ سے +45 کی طرح ہے جبکہ تیسری ترسیم کچھا موری ہے ہو صفر زاویہ سے +45 ہٹ کر ہے۔ ان تینوں ترسیمات کا انفرادی طول $-\frac{N_i}{N_i}$ ہے۔

ترسیمات au_{a45} ، اور au_{a135} ی سے کل مقناطیسی دباو کی ترسیم au_{a45} ، حاصل کرنا سیکھتے ہیں۔ شکل au_{a45} میں عمود کی نقطہ دار کلیریں لگائی گئی ہیں۔ سب سے بائیں کہلی کلیر کی بائیں طرف خطہ کو "ا" کہا گیا ہے۔اس

series connected 33

شكل 5.16: تھيلے لچھے كاكل مقناطيسى د باو۔

خطه میں ترسیمات τ_{a45} ، τ_{a45} ، اور τ_{a135} کی انفرادی قیمتیں τ_{a45} ہیں لہذا ان کا مجموعہ τ_{a45} ، τ_{a45} ، وگلہ یا ان میں کل مقناطیسی دباو τ کی ترسیم کی قیمت τ_{a45} ہو گل۔ اس طرح خطہ "ب" میں کل مقناطیسی دباو τ کی ترسیم کی قیمت τ_{a45} ہو گل۔ اس کا مجموعہ τ_{a45} اور τ_{a45} ہو کی مقناطیسی دباو ہو گا۔ نظم بالائی تینوں ترسیمات کی قیمتیں بالترتیب τ_{a45} ، τ_{a45} ، اور τ_{a45} ہیں جن کا مجموعہ τ_{a45} ہیں۔ مقناطیسی دباو ہو گا۔ اس طرح آپ پوری ترسیم تھنچ سکتے ہیں۔

 $^{\circ}$ شکل $^{\circ}$ کی $^{\circ}$ کو شکل $^{\circ}$ کی میں دوبارہ پیش گیا ہے۔ شکل $^{\circ}$ کی لیجے اور شکل $^{\circ}$ کھے کچھ کچھ

شكل 5.17: تھلے لچھے كامقناطيسى دباو۔

شكل 5.18: يهيلے لچھے كاجزو پھيلاو۔

کے دباو کی ترسیمات ہیں۔ شکل 5.13 کے لحاظ سے شکل 5.17 کی صورت سائن نما کے زیادہ قریب ہے۔ فوریئر سلسل حل کرنے سے بھی یہی نتیجہ حاصل ہوتا ہے۔ شگافوں کے مقامات اور ان میں کچھوں کے چکر یول رکھے جا سکتے ہیں کہ ان کے پیدا کردہ مقناطیسی دباوکی ترسیم کی صورت سائن نماکی زیادہ سے زیادہ قریب ہو۔

کے مختلف مے ایک ہی زاویہ پر مقناطیسی دباو نہیں بناتے للذا ان سے حاصل کل مقناطیسی دباو کا حیطہ استے ہی چکر کے) ایک پچھ کچھ کے حیطہ سے کم ہوتا ہے۔ مساوات 5.29 میں اس اثر کو شامل کرنے کے لئے جزو k_w متعارف کیا جاتا ہے

(5.33)
$$\tau_0 = k_w \frac{4}{\pi} \frac{Ni}{2}$$

$$\tau_a = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$-\xi \sqrt{2} \sin^2 \theta = \frac{1}{2} \sin^2 \theta + \frac{1}{2} \sin^2 \theta = \frac{1}{2} \sin^2 \theta + \frac{1}{2} \sin^2 \theta = \frac{1}{2} \sin^2 \theta$$

مثال 5.3: شکل 5.15 کے تھیلے کچھے کا k_w تلاش کریں۔

 $au_n=rac{4}{\pi}rac{ni}{2}$ حل: شکل 5.18 سے رجوع کریں۔ شکل 5.15 کے تین چھوٹے کچھے ایک جیبیا مقناطیسی دباو پیدا کرتے ہیں البتہ ان کے رخ مختلف ہیں۔ یہاں ایک کچھا $rac{N}{3}$ چکر کا ہے للذا $rac{N}{3}$ ہو گا۔ ہم تینوں مقناطیسی دباو کے دوری سمتیات کا مجموعہ لے کر مقناطیسی دباو au معلوم کرتے ہیں۔

$$\tau_a = \tau_n \cos 45^\circ + \tau_n + \tau_n \cos 45^\circ$$
$$= 2.4142\tau_n$$

winding factor³⁴

يوں درج ذيل ہو گا

$$\tau_a = 2.4142 \frac{4}{\pi} \frac{ni}{2} = \frac{2.4142}{3} \frac{4}{\pi} \frac{Ni}{2} = 0.8047 \frac{4}{\pi} \frac{Ni}{2}$$

للذا $k_w = 0.8047$ کے برابر ہے۔

مثال 5.4: تین دوری، 50 ہر ٹز، ستارہ جڑے جزیٹر کو 3000 چکر فی منٹ کی رفتار سے چلایا جاتا ہے۔ تیس چکر کے میدانی کچھے کا جزو پھیلاو 0.833 ہے۔ مثین کا میدانی کچھے کا جزو پھیلاو 0.833 ہے۔ مثین کا رواس 0.7495 میٹر اور لمبائی 2.828 $l_k=0.04$ میرانی کچھے میں $l_k=0.04$ میرانی کچھے میں $l_k=0.04$ میرانی کچھے میں $l_k=0.04$ میرانی میں درج ذیل تلاش کریں۔

- میدانی مقناطیسی دباو کی زیادہ سے زیادہ قیمت۔
 - خلائی درز میں کثافت مقناطیسی بہاو۔
 - ایک قطب پر مقناطیسی بہاو۔
 - متحرك تارير برقى د باو_

حل:

$$\tau_0 = k_{w,m} \frac{4}{\pi} \frac{N_m i_m}{2} = 0.9 \times \frac{4}{\pi} \times \frac{30 \times 1000}{2} = 17\,186\,\text{A} \cdot \text{turns/m}$$

$$B_0 = \mu_0 H_0 = \mu_0 \frac{\tau_0}{l_k} = 4\pi 10^{-7} \times \frac{17186}{0.04} = 0.54 \,\mathrm{T}$$

$$\phi_0 = 2B_0 lr = 2\times 0.54\times 2.828\times 0.7495 = 2.289\,15\,\mathrm{Wb}~\bullet$$

$$\begin{split} E_{rms} &= 4.44 f k_{w,q} N_q \phi_0 \\ &= 4.44 \times 50 \times 0.833 \times 15 \times 2.28915 \\ &= 6349.85 \, \mathrm{V} \end{split}$$

یوں ستارہ جڑی جزیئر کی تار کا برقی دباو درج ذیل ہو گا۔

 $\sqrt{3} \times 6349.85 \approx 11000 \,\text{V}$

ہم سائن نما مقناطیسی دباو حاصل کرنا چاہتے ہیں۔ چھوٹے کچھوں کے چکر اور شگافوں کے مقامات یوں چنے جاتے ہیں کہ یہ مقصد پورا ہو۔ شکل 5.17 میں صفر زاویہ کے دونوں اطراف مقناطیسی دباو کی ترسیم ایک جیسے گھٹتی یا بڑھتی ہے۔ مثلاً جمع اور منفی پینتالیس زاویہ پر مقناطیسی دباو $\frac{N_i}{3}$ گھٹتا ہے۔ اس طرح جمع اور منفی نوے زاویہ پر دباو مزید $\frac{N_i}{3}$ گھٹتا ہے، وغیرہ وغیرہ یہ ایک بنیادی اصول ہے جس کا خیال رکھنا ضروری ہے۔

چھوٹے لیجھوں کے چکر اور شگافوں کے مقامات کا فیصلہ فور بیئر تسلسل کی مدد سے کیا جاتا ہے۔فور بیئر تسلسل میں موسیقائی جزو کم سے کم اور بنیادی جزو زیادہ سے زیادہ رکھا جاتا ہے۔

ساکن کچھوں کی طرح متحرک کچھوں کو بھی ایک سے زیادہ چھوٹے کچھوں میں تقسیم کیا جاتا ہے تا کہ سائن نما مقناطیسی دباو حاصل ہو۔

5.5 مقناطيسي د باو کي گھومتي امواج

گھومتے مشین کے لیجھوں کو برقی دباو فراہم کیا جاتا ہے جس سے اس کا گھومنے والا حصہ حرکت میں آتا ہے۔ یہاں ہم اس بات کا مطالعہ کرتے ہیں کہ گھومنے کی حرکت کیسے پیدا ہوتی ہے۔

5.5.1 ایک دورکی لپٹی مشین

مساوات 5.33 مين ايك لحصي كا مقناطيسي دباو

$$\tau_a = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta$$

دیا گیا ہے جو سائن نما برقی رو

$$(5.36) i_a = I_0 \cos \omega t$$

کی صورت میں

(5.37)
$$\tau_a = k_w \frac{4}{\pi} \frac{NI_0}{2} \cos \theta \cos \omega t = \tau_0 \cos \theta \cos \omega t$$

مقناطیسی رباو دے گا جہاں au_0 درج ذیل ہے اور کچھا کے برقی رو کو au_a کہا گیا ہے۔

(5.38)
$$\tau_0 = k_w \frac{4}{\pi} \frac{NI_0}{2}$$

مساوات 5.37 کہتی ہے کہ مقناطیسی دباو زاویہ <math> heta اور کھہ t کے ساتھ تبدیل ہوتا ہے۔ مساوات 5.37 کو کلیہ

(5.39)
$$\cos \alpha \cos \beta = \frac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{2}$$

کی مدد سے دو ٹکڑوں

(5.40)
$$\tau_a = \tau_0 \left[\frac{\cos(\theta + \omega t) + \cos(\theta - \omega t)}{2} \right] = \tau_a^- + \tau_a^+$$

میں تقسیم کیا جا سکتا ہے جہاں au_a^+ اور au_a^+ درج ذیل ہوں گے۔

(5.41)
$$\tau_a^- = \frac{\tau_0}{2}\cos(\theta + \omega t)$$

$$\tau_a^+ = \frac{\tau_0}{2}\cos(\theta - \omega t)$$

مساوات 5.40 کہتی ہے کہ مقناطیسی دباو دو آپس میں مخالف رخ گھومتے مقناطیسی دباو کی موجوں کا مجموعہ ہے۔ اس کا یہلا جزو τ_a^+ زاویہ θ گھٹے کے رخ، لینی گھڑی کے رخ، گھومتا ہے جبکہ اس کا دوسرا جزو τ_a^+ گھڑی کے مخالف رخ، زاویہ بڑھنے کے رخ، گھومتا ہے۔

ایک دور کی لیٹی مثینوں میں گھومتے مقناطیسی دباو کی امواج میں سے کسی ایک کو بالکل ختم یا کم سے کم کرنے کی کوشش کی جاتی ہے۔ اس طرح ایک ہی رخ مقناطیس کی مانند ہوگا۔ تین دوری مثینوں میں ایسا کر نا نہایت آسان ہوتا ہے للذا انہیں پہلے سمجھ لینا زیادہ بہتر ہوگا۔

شكل 5.19: تين دوركي لپڻي مشين ـ

5.5.2 تين دور کي لپڻي مشين کا تحليلي تجربيه

شکل 5.19 میں تین دور کی لیٹی مشین دکھائی گئی ہے۔ مساوات 5.30 ، 5.31 اور 5.32 میں ایسے تین کچھوں k_x فور میر تسلسل کے بنیادی اجزاء دیے گئے ہیں جن میں جزو کچھلاو k_x شامل کر کے دوبارہ پیش کرتے ہیں۔

(5.43)
$$\tau_a = k_w \frac{4}{\pi} \frac{N_a i_a}{2} \cos \theta$$
$$\tau_b = k_w \frac{4}{\pi} \frac{N_b i_b}{2} \cos(\theta - 120^\circ)$$
$$\tau_c = k_w \frac{4}{\pi} \frac{N_c i_c}{2} \cos(\theta + 120^\circ)$$

ان لچھوں میں بالترتیب تین دوری برقی رو

(5.44)
$$i_a = I_0 \cos(\omega t + \alpha)$$
$$i_b = I_0 \cos(\omega t + \alpha - 120^\circ)$$
$$i_c = I_0 \cos(\omega t + \alpha + 120^\circ)$$

لینے سے مساوات 5.43 ورج ذیل صورت اختیار کرتی ہیں۔

(5.45)
$$\tau_{a} = k_{w} \frac{4}{\pi} \frac{N_{a} I_{0}}{2} \cos \theta \cos(\omega t + \alpha)$$

$$\tau_{b} = k_{w} \frac{4}{\pi} \frac{N_{b} I_{0}}{2} \cos(\theta - 120^{\circ}) \cos(\omega t + \alpha - 120^{\circ})$$

$$\tau_{c} = k_{w} \frac{4}{\pi} \frac{N_{c} I_{0}}{2} \cos(\theta + 120^{\circ}) \cos(\omega t + \alpha + 120^{\circ})$$

$$N_a = N_b = N_c = N$$

لیتے ہوئے مساوات 5.39 کی استعال سے

(5.46)
$$\tau_{a} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha) + \cos(\theta - \omega t - \alpha) \right]$$

$$\tau_{b} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha - 240^{\circ}) + \cos(\theta - \omega t - \alpha) \right]$$

$$\tau_{c} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha + 240^{\circ}) + \cos(\theta - \omega t - \alpha) \right]$$

 au_0 درج ذیل ہے۔ au_0 درج ذیل ہے۔

(5.47)
$$\tau_0 = k_w \frac{4}{\pi} \frac{NI_0}{2}$$

کل مقناطیسی دباو 7 ان سب کا مجموعہ ہو گا۔ انہیں جمع کرنے سے پہلے ہم درج ذیل ثابت کرتے ہیں۔

$$\cos\gamma + \cos(\gamma - 240^{\circ}) + \cos(\gamma + 240^{\circ}) = 0$$

ہم کلیات

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

میں
$$\alpha = \gamma$$
 اور $\alpha = 240^{\circ}$ کے کر

$$\cos(\gamma + 240^{\circ}) = \cos\gamma\cos 240^{\circ} - \sin\gamma\sin 240^{\circ}$$
$$\cos(\gamma - 240^{\circ}) = \cos\gamma\cos 240^{\circ} + \sin\gamma\sin 240^{\circ}$$

حاصل کرتے ہیں جن میں جن میں حاصل مو گا۔ $\cos 240^\circ = -\frac{\sqrt{3}}{2}$ ماصل کرتے ہیں جن میں جن میں اور $\cos 240^\circ = -\frac{1}{2}$

$$\cos(\gamma + 240^{\circ}) = -\frac{1}{2}\cos\gamma + \frac{\sqrt{3}}{2}\sin\gamma$$

$$\cos(\gamma-240^{\circ})=-\frac{1}{2}\cos\gamma-\frac{\sqrt{3}}{2}\sin\gamma$$

ان مساوات کو $\gamma \cos \gamma$ کے ساتھ جمع کرنے سے صفر حاصل ہو گا۔

$$\cos \gamma + \cos(\gamma + 240^{\circ}) + \cos(\gamma - 240^{\circ}) = 0$$

ے کئے اس مساوات کو ورج ذیل کھھا جا سکتا ہے۔ $\gamma=\theta+\omega t+\alpha$

$$(5.48) \quad \cos(\theta+\omega t+\alpha)+\cos(\theta+\omega t+\alpha+240^\circ)+\cos(\theta+\omega t+\alpha-240^\circ)=0$$

اب مساوات 5.46 میں دیے au_b ، au_c اور au_c کو جمع کر کے مساوات 5.48 کا استعمال کرتے ہوئے ورج ذیل حاصل ہو گا۔

(5.49)
$$\tau^{+} = \tau_a + \tau_b + \tau_c = \frac{3\tau_0}{2}\cos(\theta - \omega t - \alpha)$$

مساوات 5.49 کہتی ہے کہ کل مقناطیسی دباو کا حیطہ کسی ایک کچھے کے مقناطیسی دباو کے حیطہ کا $\frac{8}{2}$ گنا ہو گا۔ مزید مقناطیسی دباو کی موج گھڑی کے مخالف رخ گھوے گی۔ یول تین کچھوں کو °120 زاویہ پر رکھنے اور انہیں تین دوری برقی رو، جو آپس میں °120 پر ہوں، سے بیجان کرنے سے مقناطیسی دباو کی واحد ایک موج وجود میں آتی ہے۔ یہاں اس بات کا ذکر کرنا ضروری ہے کہ کسی دو برقی رو کو آپس میں تبدیل کرنے سے مقناطیسی موج کا رخ تبدیل ہوتا ہے۔

مساوات 5.49 ایک گھو متے موج کو ظاہر کرتی ہے جس میں ہم برتی رو کا تعدد 5.49 اور اپنی آسانی کے لئے 0.49 مساوات 5.49 ایک آسانی کے لئے میں موج کی چوٹی کا تعین تفاعل 0.49 تعین تفاعل 0.49 کو صفر لیتے ہیں۔ یوں اس موج کی چوٹی کا تعین تفاعل 0.49 تعین تفاعل 0.49 کے خوالی کا کی ہے جو 0.49 کے بیلی جاتی ہے۔

ابتدائی کھے t=0 پر وہ t=0 کی چوٹی $\cos(\theta-\omega t)$ پر ہوگی جس کو t=0 کے گئے حل کرتے وہیں۔

$$\theta - \omega t = 0$$
$$\theta - \omega \times 0 = 0$$
$$\theta = 0$$

یوں موج کی چوٹی صفر برتی زاویہ پر ہو گی جسے شکل 5.20 میں نقطہ دار لکیر سے ظاہر کیا گیا ہے۔ہم کچھ وقفہ، مثلاً t=0.001

$$\theta - \omega t = 0$$

$$\theta - 0.001\omega = 0$$

$$\theta = 0.001\omega$$

$$= 0.001 \times 2 \times \pi \times 50$$

$$= 0.3142 \,\text{rad}$$

شكل5.20: حركت كرتى موج ـ

اب یہ چوٹی 0.3142 یا $\frac{\pi}{10}$ برتی ریڈیئن لیخی 18° برتی زاویہ پر ہے جے شکل 5.20 میں باریک ٹھوس کیبر سے ظاہر کیا گیا ہے۔ آپ دیکھ سکتے ہیں کہ مقناطیسی وہاو کی مون گھڑی کے مخالف رخ، لیخی زاویہ بڑھنے کے رخ، گھوم گئ $\theta - \omega t' = 0$ برچوٹی کا مقام $0 = \omega t' = 0$ ہے۔ اس طرح لحمد 0 = 0 برچوٹی کا مقام $0 = \omega t'$ ہے درج ذیل حاصل ہو گا جے موٹی ٹھوس کیبر سے ظاہر کیا گیا ہے۔

$$(5.50) \theta = \omega t'$$

مساوات 5.50 کہتی ہے کہ چوٹی کا مقام تعین کرنے والا زاویہ وقت کے ساتھ بندر نج بڑھتا ہے۔اس مساوات 2 برقی زاویہ چکر کا دورانیہ T حاصل کرتے ہیں۔

$$(5.51) T = \frac{\theta}{\omega} = \frac{2\pi}{2\pi f} = \frac{1}{f}$$

یاد رہے f برقی رو کی تعدد ہے۔ یوں 50 ہرٹز برقی رو کی صورت میں مقناطیسی دباو کی موج ہر $\frac{1}{50}=0.02$ سینٹر میں ایک مکمل برقی چکر للذا ایک سینٹر میں 50 برقی چکر مکمل کرے گی۔

دو قطبی مشینول میں مساوات 5.7

$$\theta_e = \frac{P}{2}\theta_m$$

ے تحت برقی زاویہ θ_e اور میکانی زاویہ θ_m ایک دوسرے کے برابر ہوں گے۔ یوں دو قطبی مشینوں کی بات کرتے ہوئے مساوات 05.51 کے تحت ایک سینڈ میں مقناطیسی دباو کی موج f برقی یا میکانی چکر کمل کرے گی جہاں f

برقی رو کی تعدد ہے۔ P قطبی مثینوں کے مقناطیسی دباو کی موج ایک سینٹہ میں f مقناطیسی چکر یعنی $\frac{2}{P}$ میکانی شکر کمل کرے گی۔

برتی رو کی تعدد کو f_e ، مقناطیسی دباو کی موج کی چوٹی کے برتی زاویہ کو θ_e ، میکانی زاویہ کو θ_m اور مقناطیسی دباو کی موج کی زاویائی رفتار کو ω_e یا ω_e سے ظاہر کرتے ہوئے درج ذیل ہوں گے۔

$$\omega_m = rac{2}{P}\omega_e \quad \mathrm{rad/s}$$
 (5.53)
$$f_m = rac{2}{P}f_e \quad \mathrm{Hz}$$
 $g = rac{120f_e}{P}$ چيکر في تيکنگر اين تيکنگر

مقناطیسی موج کی برتی معاصر زاویائی رفتار ω_e برقی زاویه فی سینڈ اور میکائی معاصر زاویائی رفتار ω_m میکائی زاویه فی سینڈ ہو گی۔ اس طرح موج کی برتی معاصر رفتار f_e برتی ہرٹز اور میکائی معاصر رفتار f_m میکائی ہرٹز ہوگی۔ برتی معاصر رفتار f_e میکائی ہرٹز ہونے ہے مراد ہے کہ ایک سینڈ میں موج f_e برتی چکر کا فاصلہ طے کرتی ہے جو دو قطب کا لیعن ω_e ریڈ بیئن کا میکائی زاویہ ہے۔ اس طرح میکائی معاصر رفتار ω_e ہرٹز ہونے کا مطلب ہے کہ موج ایک سینڈ میں میکائی چکر کا فاصلہ طے کرے گی۔ ایک میکائی چکر کو ہی گہتے ہیں۔ اس مساوات میکائی چکر کو ہی گہتے ہیں۔ اس مساوات میکائی چکر کو ہی گھتے ہیں۔ اس مساوات میکائی چکر کی جادی کو ظاہر کرتی ہے۔ مساوات 5.53 معاصر رفتار کی مساوات ہے۔

یہاں اس بات کا ذکر کرنا ضروری ہے کہ q دور کی لپٹی مثین جس کے لیچھ $\frac{2\pi}{q}$ برتی زاویہ پر رکھے گئے ہوں اور جن میں برتی رو q دوری ہو میں، تین دوری مثین کی طرح، ایک ہی رخ گھومتے مقناطیسی دباو کی موج پیدا ہو گی۔ مزید، اس موج کا حیطہ کسی ایک لیچھے کے مقناطیسی دباو کے حیطہ کا $\frac{q}{2}$ گنا ہو گا اور اس کی زاویائی رفتار d و گردی برتی ریڈیئن فی سینڈ ہو گی۔ برتی ریڈیئن فی سینڈ ہو گی۔

5.5.3 تين دور کي لپڻي مشين کاتر سيمي تجربيه

شکل 5.21 میں تین دور کی لپٹی مشین دکھائی گئی ہے جس میں مثبت برقی رو کے رخ دکھائے گئے ہیں۔یوں a شکاف میں برقی رو کا رخ صفحہ سے عمودی باہر کو ہے جسے نقطہ سے ظاہر کیا گیا ہے۔ اسی طرح 'a شکاف میں برقی رو کا رخ

_

synchronous speed 35 rpm, rounds per minute 36

شكل 5.21: تين دوركي لپڻي مثين ميں مثبت برقى رواوران سے حاصل مقناطيسي دباوكے رخ۔

صفحہ میں عمودی اندر کو ہے اور جسے صلیب کے نثان سے ظاہر کیا گیا ہے۔ یوں شگاف a اور a میں مثبت برقی روکا متناطیسی دباو کا رخ ہے۔ لیچے میں برقی رو سے پیدا متناطیسی دباو کا رخ دائیں ہتھ کے قانون سے معلوم کیا جا سکتا ہے۔

a اب اگر کچھا a میں برتی رو منفی ہو تب برتی رو شبت رخ کے مخالف ہو گا، یعنی اب برتی رو کا رخ شگاف a میں صفحہ کے عمودی باہر ہو گا۔ یوں منفی برقی رو سے پیدا مقناطیسی دباو بھی لیس صفحہ کے عمودی اندر اور شگاف a میں صفحہ کے عمودی باہر ہو گا۔ آپ نے دیکھا کہ برتی رو منفی ہونے سے مقناطیسی دباو کا رخ الٹ ہو جاتا ہے۔ شکل کیس کچھوں کے برتی رو اور مقناطیسی دباو درج ذیل ہیں جبکہ ان کے مثبت رخ شکل میں دیے گئے ہیں۔ a

$$i_a = I_0 \cos \omega t$$

$$i_b = I_0 \cos(\omega t - 120^\circ)$$

$$i_c = I_0 \cos(\omega t + 120^\circ)$$

(5.55)
$$\tau_{a} = k_{w} \frac{4}{\pi} \frac{Ni_{a}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos \omega t = \tau_{0} \cos \omega t$$

$$\tau_{b} = k_{w} \frac{4}{\pi} \frac{Ni_{b}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos(\omega t - 120^{\circ}) = \tau_{0} \cos(\omega t - 120^{\circ})$$

$$\tau_{c} = k_{w} \frac{4}{\pi} \frac{Ni_{c}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos(\omega t + 120^{\circ}) = \tau_{0} \cos(\omega t + 120^{\circ})$$

ہم مختلف کمحات پر ان کی قیمتوں تلاش کرتے ہیں اور ان کا مجموعی مقناطیسی دباو حاصل کرتے ہیں۔

شكل5.22: لمحه
$$t_0=0$$
 يربر قى رواور مقناطيسى د باوـ $t_0=0$

لحہ t=0 یر ان درج بالا مساوات سے درج ذیل حاصل ہو گا۔

(5.56)
$$i_a = I_0 \cos 0 = I_0$$

$$i_b = I_0 \cos(0 - 120^\circ) = -0.5I_0$$

$$i_c = I_0 \cos(0 + 120^\circ) = -0.5I_0$$

(5.57)
$$\begin{aligned} \tau_a &= \tau_0 \cos 0 = \tau_0 \\ \tau_b &= \tau_0 \cos (0 - 120^\circ) = -0.5\tau_0 \\ \tau_c &= \tau_0 \cos (0 + 120^\circ) = -0.5\tau_0 \end{aligned}$$

یہاں رکھ کر ذرا غور کریں۔ لمحہ t=0 پر ہٹبت جبکہ i_b اور i_c منفی ہیں۔ یوں i_a کا رخ وہی ہو گا جے شکل جباں رکھ کر ذرا غور کریں۔ لمحہ t_a ور خال ہیں جبکہ i_b اور i_c کی i_c میں نقطے اور صلیب سے دکھایا گیا ہیں جبکہ i_b اور i_c کی رخ کے کے رخ کے کئے رخ کے خالف ہوں گے۔ لمحہ t=0 پر تینوں برتی رو کے درست رخ اور تینوں مقناطیسی دباو شکل 5.22 میں دکھائے ہیں۔

کل مقناطیسی دباو با آسانی بذریعہ ترسیم (شکل 5.22)، مجموعہ سمتیات سے یا الجبرا کے ذریعہ حاصل کیا جا سکتا ہے۔

(5.58)
$$\begin{aligned} \boldsymbol{\tau}_{a} &= \tau_{0} \boldsymbol{a}_{\mathbf{X}} \\ \boldsymbol{\tau}_{b} &= 0.5 \tau_{0} \left[\cos(60^{\circ}) \boldsymbol{a}_{\mathbf{X}} - \sin(60^{\circ}) \boldsymbol{a}_{\mathbf{Y}} \right] \\ \boldsymbol{\tau}_{c} &= 0.5 \tau_{0} \left[\cos(60^{\circ}) \boldsymbol{a}_{\mathbf{X}} + \sin(60^{\circ}) \boldsymbol{a}_{\mathbf{Y}} \right] \end{aligned}$$

شكل 5.23: لمحه $t_1=30^\circ$ لمحه $t_1=30^\circ$ باوـ

ان کا مجموعہ درج ذیل ہو گا۔

(5.59)
$$\boldsymbol{\tau} = \boldsymbol{\tau}_a + \boldsymbol{\tau}_b + \boldsymbol{\tau}_c = \frac{3}{2}\tau_0 \boldsymbol{a}_{\mathrm{X}}$$

لمحہ t=0 پر کل مقناطیسی دباو ایک کیجھے کے مقناطیسی دباو کا ڈیڑھ گنا اور صفر زاویہ پر ہے۔

5.54 اب ہم گھڑی کو چلنے دیتے ہیں اور کچھ وقفہ بعد لمحہ t_1 پر دوبارہ مقناطیسی دباو تلاش کرتے ہیں۔ مساوات 5.55 میں متغیر t کی بجائے t کا استعال زیادہ آسان ہے للذا ہم لمحہ t_1 یوں متخب کرتے ہیں کہ ωt ہوں میا گیا ہے۔ ωt عصل ہو گا جنہیں شکل 5.23 میں دکھایا گیا ہے۔

(5.60)
$$i_a = I_0 \cos 30^\circ = \frac{\sqrt{3}}{2} I_0$$
$$i_b = I_0 \cos(30^\circ - 120^\circ) = 0$$
$$i_c = I_0 \cos(30^\circ + 120^\circ) = -\frac{\sqrt{3}}{2} I_0$$

(5.61)
$$\tau_a = \tau_0 \cos 30^\circ = \frac{\sqrt{3}}{2} \tau_0$$

$$\tau_b = \tau_0 \cos(30^\circ - 120^\circ) = 0$$

$$\tau_c = \tau_0 \cos(30^\circ + 120^\circ) = -\frac{\sqrt{3}}{2} \tau_0$$

کل مقناطیسی د باو کا طول au اور زاویه تکون سے حاصل کرتے ہیں۔ $au = \sqrt{\tau_a^2 + \tau_c^2 - 2\tau_a \tau_c \cos 120^\circ} = \frac{3}{2}\tau_0$ (5.62)

5.6. محسر ك_بر قي دباو

تکون کے دو اطراف کی لمبائیاں ایک دوسرے کے برابر اور ان کے ﷺ زاویہ ہوں ہے للذا مقناطیسی دباو کا زاویہ افتی کیبر سے 30° ہو گا۔

کل مقناطیسی دباو جو پہلے صفر زاوبیہ پر تھا اب گھڑی کے مخالف رخ گھوم کر 30° زاوبیہ پر ہے۔ اسی طرح کھہ $\omega t = \theta^\circ$ پر حل کرنے سے زاوبیہ 45° پر کل مقناطیسی دباو $\frac{3}{2}\tau_0$ حاصل ہو گا۔ عمومی کھے $\omega t = 40^\circ$ ہو، زاوبیہ θ° پر کل مقناطیسی دباو $\frac{3}{2}\tau_0$ پیدا کرتا ہے۔

5.6 محرك برقى د باو

یہاں محرک برقی دباو³⁷ کو ایک دوسرے نقطہ نظر سے پیش کرتے ہیں۔

5.6.1 بدلتاروبر قی جزیٹر

شکل 5.24 میں ایک بنیادی بدلتارو جنریر 38 دکھایا گیا ہے۔اس کا گھومتا برقی مقناطیس، خلائی درز میں سائن نما مقناطیسی دباو پیدا کرتا ہے جس سے درز میں سائن نما کثافت مقناطیسی بہاو B پیدا ہوتا ہے:

$$(5.63) B = B_0 \cos \theta_p$$

یہ مقناطیس ω زاویاتی رفتار سے گھوم رہا ہے۔ابتدائی لمحہ t=0 پر اس مقناطیس کو کچھا a کے رخ، یعنی ہلکی سیاہی کی افقی کلیر پر تصور کریں۔ یوں لمحہ t پر بیہ گھوم کر زاویہ $\theta_m=\omega t$ پر ہو گا۔اس طرح درج بالا مساوات درج ذیل کھی جا سکتی ہے۔

(5.64)
$$B = B_0 \cos(\theta - \theta_m)$$
$$= B_0 \cos(\theta - \omega t)$$

شکل 5.25 میں B کو زاویہ θ اور θ_p کے ساتھ ترسیم کیا گیا ہے اور ساتھ ہی لچھا a دکھایا گیا ہے۔ لمحہ t=0 جب گھومتے برتی مقناطیس کا محور اور لچھا a کا محور ایک رخ ہیں، نقطہ دار لکیر سے B دکھایا گیا ہے جبکہ عمومی لمحہ

^{7&}lt;sup>3</sup> ہتداہ میں حرکت سے پیدا برتی دیاو کو محرک برتی دیاو کہتے تھے۔اب روا بی طور پر کسی بھی طرح پیدا کر دو برتی دیاو کو محرک برتی دیاو کہتے ہیں۔ 38 مدم معرور موروں

5.6. محسر ك برقى دباد

t پر B کو ٹھوس کیبر سے دکھایا گیا ہے۔ چونکہ B کی چوٹی ہر صورت $\theta_p=0^\circ$ پر ہوگی لہذا ترسیم میں محور θ_p پر دکھائے گئے زاویات 0° واللہ 0° عمومی لمحہ t کے لئے درست ہیں ناکہ t والے کے لئے۔ لمحہ t بر دکھائے گئے زاویات t والے t والے محور کہ جمومی لمحہ t بر برتی مقناطیس کے محور اور کچھے کے محور کے t ور اور کچھے کے محور کے t ور اور پہنے مخاص میں اور اور پہنے کے محور کے t ور اور پہنے کے مخاص میں کے اللہ مخصر ہوگا۔

$$(5.65) \theta = \omega t$$

کوہ t=0 پر کچھا a میں مقناطیسی بہاو زیادہ سے زیادہ ہو گا۔ خلائی درز باریک ہونے کی بنا درز کا اندرونی اور بیرونی رداس تقریباً ایک دوسرے جیسا ہوں گے۔ برتی مقناطیس کے گھومنے کے محور سے خلائی درز تک کا اوسط رداسی فاصلہ ρ اور برتی مقناطیس کی محوری لمبائی ρ ہونے کی صورت میں کچھے میں مقناطیسی بہاو وہی ہو گا جو خلائی درز میں ρ اور برتی مقناطیس کی محوری لمبائی ρ بر کچھا ρ سے گزرتا بہاو تلاش کرتے ہیں۔

$$\phi_a(0) = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} (B_0 \cos \theta_p) (l\rho d\theta_p)$$

$$= B_0 l\rho \sin \theta_p \Big|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= 2B_0 l\rho$$

$$= \phi_0$$

آخری قدم پر $\phi_a(0)$ کو $\phi_a(0)$ کہا گیا ہے۔ یہی حساب لمحہ t پر درج ذیل ہو گا جہاں آخری قدم پر $\phi_a(0)$ کہا گیا ہے۔

(5.67)
$$\phi_{a}(t) = \int_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta} (B_{0} \cos \theta_{p}) (l\rho d\theta_{p})$$

$$= B_{0} l\rho \sin \theta_{p} \Big|_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta}$$

$$= 2B_{0} l\rho \cos \vartheta$$

$$= 2B_{0} l\rho \cos \omega t$$

axial length³⁹

اس بہاو کو درج ذیل طریقہ سے بھی حاصل کیا جا سکتا ہے۔

$$\phi_{a}(t) = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} (B_{0} \cos(\theta - \omega t)) (l\rho d\theta)$$

$$= B_{0}l\rho \sin(\theta - \omega t) \Big|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= B_{0}l\rho \left[\sin\left(\frac{\pi}{2} - \omega t\right) - \sin\left(-\frac{\pi}{2} - \omega t\right) \right]$$

$$= 2B_{0}l\rho \cos \omega t$$

اس مرتبہ کمل زاویہ θ کے ساتھ کیا گیا ہے۔ مساوات 0.66 کی مدو سے $\phi_a(t)$ کو درج ذیل کھا جا سکتا ہے۔ $\phi_a(t) = 2B_0 l \rho \cos \omega t = \phi_0 \cos \omega t$ (5.69)

مساوات 5.68 کی طرح d اور c کیچھوں کے مقناطیسی بہاو کی مساواتیں بھی حاصل کی جا سکتی ہیں۔ شکل 5.24 میں زاویہ $\frac{\pi}{2}$ نامی خوات کی مساوات کی مساوات کی مقناطیسی بہاو کچھا a میں گزرتا ہے۔ اس لئے $\phi_a(t)$ معلوم کرنے کے لئے مساوات خواجہ $\frac{\pi}{6}$ کی میں کمل کے حد یہی رکھے گئے تھے۔ یوں کچھا d کے حکمل کے حد $\frac{\pi}{6}$ اور $\frac{\pi}{6}$ جبکہ c کے حد $\frac{5\pi}{6}$ اور $\frac{\pi}{6}$ ہوں گے۔ تمام زاویات ریڈیئن میں ویے گئے ہیں۔ یوں درج ذبل ہو گا۔

$$\phi_b(t) = \int_{\frac{\pi}{6}}^{\frac{7\pi}{6}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{\frac{\pi}{6}}^{\frac{7\pi}{6}} (B_0 \cos(\theta - \omega t)) (l\rho d\theta)$$

$$= B_0 l\rho \sin(\theta - \omega t) \Big|_{\frac{\pi}{6}}^{\frac{7\pi}{6}}$$

$$= B_0 l\rho \left[\sin\left(\frac{7\pi}{6} - \omega t\right) - \sin\left(\frac{\pi}{6} - \omega t\right) \right]$$

$$= 2B_0 l\rho \cos\left(\omega t - \frac{2\pi}{3}\right)$$

5.6. محسر کے برقی دباو

191

$$\phi_c(t) = \int_{\frac{5\pi}{6}}^{\frac{11\pi}{6}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{\frac{5\pi}{6}}^{\frac{11\pi}{6}} (B_0 \cos(\theta - \omega t)) (l\rho d\theta)$$

$$= B_0 l\rho \sin(\theta - \omega t) \Big|_{\frac{5\pi}{6}}^{\frac{11\pi}{6}}$$

$$= B_0 l\rho \left[\sin\left(\frac{11\pi}{6} - \omega t\right) - \sin\left(\frac{5\pi}{6} - \omega t\right) \right]$$

$$= 2B_0 l\rho \cos\left(\omega t + \frac{2\pi}{3}\right)$$

ا کے لچھا کے N چکر تصور کرتے ہوئے تینوں کچھوں میں پیدا برقی دباہ معلوم کرتے ہیں۔ کچھوں میں ارتباط بہاہ درج ذمل ہو گا۔

(5.72)
$$\lambda_a = N\phi_a(t) = N\phi_0 \cos \omega t$$

$$\lambda_b = N\phi_b(t) = N\phi_0 \cos(\omega t - 120^\circ)$$

$$\lambda_c = N\phi_c(t) = N\phi_0 \cos(\omega t + 120^\circ)$$

ان مساوات میں $\frac{2\pi}{3}$ ریڈیئن کو °120 کھھا گیا ہے۔ کچھوں میں پیدا امالی برقی دباو درج ذیل ہو گا۔

(5.73)
$$e_a(t) = -\frac{\mathrm{d}\lambda_a}{\mathrm{d}t} = \omega N \phi_0 \sin \omega t$$
$$e_b(t) = -\frac{\mathrm{d}\lambda_b}{\mathrm{d}t} = \omega N \phi_0 \sin(\omega t - 120^\circ)$$
$$e_c(t) = -\frac{\mathrm{d}\lambda_c}{\mathrm{d}t} = \omega N \phi_0 \sin(\omega t + 120^\circ)$$

ان مساوات کو

$$e_a(t) = \omega N \phi_0 \cos(\omega t - 90^\circ)$$

$$e_b(t) = \omega N \phi_0 \cos(\omega t + 150^\circ)$$

$$e_c(t) = \omega N \phi_0 \cos(\omega t + 30^\circ)$$

کھا جا سکتا ہے جو آپس میں °120 زاویہ پر تین دوری محرک برقی دباو کو ظاہر کرتی ہیں۔ ان سب کے حیطے E_0 ایک دوسرے جتنے ہیں

$$(5.75) E_0 = \omega N \phi_0$$

للذا تينول برقى دباو كى موثر قيمت ⁴⁰ درج ذيل هو گي۔

(5.76)
$$E_{\dot{j}_{r}} = \frac{E_0}{\sqrt{2}} = \frac{2\pi f N \phi_0}{\sqrt{2}} = 4.44 f N \phi_0$$

چونکہ $\phi=BA$ ہوتا ہے لہذا مساوات 5.76 صفحہ 52 پر دی گئی مساوات $\phi=BA$ کی طرح ہے۔

مساوات 5.74 سائن نما برقی دباو کو ظاہر کرتی ہے۔ اگرچہ اسے یہ تصور کر کے حاصل کیا گیا کہ خلائی درز میں مقناطیسی بہاو صرف برقی مقناطیسی کی وجہ سے ہے تاہم برقی دباو کا اس سے کوئی تعلق نہیں کہ خلائی درز میں مقناطیسی بہاو کہا کہ حرح وجود میں آیا اور یہ مساوات ان حالات کے لئے بھی درست ہے جہاں خلائی درز میں مقناطیسی بہاو جزیئر کے ساکن حصہ میں پیدا ہوئی ہویا ساکن اور حرکت پذیر دونوں حصوں میں پیدا ہوئی ہویا

مساوات 5.76 ہمیں ایک گچھ لچھ میں پیدا برتی دباو دیتی ہے۔ اگر لچھا تقسیم شدہ ہو تب اس کے مختلف شگافول میں موجود اس لچھے کے حصول میں برتی دباو ہم قدم نہیں ہول گے للذا ان سب کا مجموعی برتی دباو ان سب کا حاصل جمع نہیں ہوگا بلکہ اس سے کچھے کم ہوگا۔ یول سچیلے لیھے کے لئے ہیہ مساوات درج ذبل صورت اختیار کرتی ہے۔

$$(5.77) E_{\dot{\tau}} = 4.44 k_w f N \phi_0$$

تین دوری برتی جزیٹر وں کے k_w کی قیمت 0.85 تا 0.95 ہوتی ہے۔ یہ مساوات جمیں یک دوری برتی دباو دیتی ہے۔ تین دوری برتی جزیٹر وں میں ایسے تین کچھوں کے جوڑے ہوتے ہیں اور ان کو Y یعنی شارہ یا Δ یعنی شکونی جوڑا جاتا ہے۔

5.6.2 يك سمت روبر قي جزير

ہر گھومنے والا برقی جزیٹر بنیادی طور پر بدلتا رو جزیٹر ہوتا ہے۔ البتہ جہاں یک سمت برقی دباو⁴¹ کی ضرورت ہو وہاں مختلف طریقوں سے بدلتا برقی دباو کو یک سمت برقی دباو میں تبدیل کیا جاتا ہے۔ جزیٹر کے باہر برقیاتی سمنے کار⁴² یا جزیٹر کے اندر میکانی سمنے کار⁴³ نسب کر کے بدلتا دباو سے یک سمت دباو حاصل کیا جا سکتا ہے۔ مساوات 5.73 جزیٹر کے اندر میکانی سمت برقی دباو میں تبدیل کرنے سے شکل 5.26 حاصل ہو گا۔

 $[\]rm rms^{40}$

DC voltage⁴¹

rectifier⁴²

 $commutator^{43}$

شكل 5.26: يك دوري يك سمت برقى دباو ـ

مثال 5.5: شكل 5.26 مين يك ست برقى دباو دكھايا گيا ہے۔اس يك ست برقى دباوكى اوسط قيمت حاصل كريں۔

عل:

$$E_{\mathbf{k},\mathbf{d}} = rac{1}{\pi} \int_0^\pi \omega N \phi_0 \sin \omega t \, \mathrm{d}(\omega t) = rac{2\omega N \phi_0}{\pi}$$

یک سمت جزیٹر پر باب 8 میں غور کیا جائے گا۔

5.7 مهوار قطب مشينول مين قوت مرورا

اس حصہ میں کامل مشین میں قوضے مرور ⁴⁴ کے حصول کے دو تراکیب پر غور کیا جائے گا۔ ایک ترکیب میں مشین کو دو مقاطیس تصور کر کے ان مقاطیسوں کے نیج قوت کشش، قوت دفع اور قوت مروڑ حاصل کیے جائیں گے جبکہ دوسری ترکیب میں مشین کے ساکن اور ہم-توانائی سے ان کا حساب لگایا جائے گا۔ پہلے توانائی کی ترکیب پر غور کرتے ہیں۔

شكل 5.27: ساكن اماليه اور گھومتااماليه۔

5.7.1 ميكاني قوت مرور بذريعه تركيب تواناكي

یہاں یک دوری مثین پر غور کیا جائے گا جس سے حاصل نتائج با آسانی زیادہ دور کی مثینوں پر لا گو کیے جا سکتے ہیں۔ شکل 5.27 میں یک دوری کامل مثین دکھائی گئی ہے۔ کسی بھی لمحہ اس مثین کے دو کچھوں کے آج کوئی زاویہ ہو گا جے θ سے ظاہر کیا گیا ہے۔ خلائی درز ہر مقام پر کیساں ہے لہذا ابھرے قطب کے اثرات کو نظر انداز کیا جاتا ہے۔ مزید قالب کا جزو مقناطیس مستقل لا متناہی $(\infty \to \mu_r)$ تصور کیا گیا ہے لہذا کچھوں کا امالہ صرف خلائی درز کے مقناطیسی مستقل کی مخصر ہو گا۔

 $L_{ar}(\theta)$ اس طرح ساکن کچھے کا امالہ L_{aa} اور گھوے کچھے کا امالہ L_{rr} مستقل ہوں گے جبکہ ان کا مشتر کہ امالہ ورسے لکھے نے زاویہ θ پر منحصر ہو گا۔ جس لمحہ $\theta=0$ یا $\theta=\pm 2\pi$ یا $\theta=0$ ہو اس لمحہ ایک کچھے کا سارا مقناطیسی بہاو دوسرے لکھے سے بھی گزرتا ہے اور ان کا مشتر کہ امالہ زیادہ سے زیادہ ہو گا جسے L_{ar0} سے ظاہر کیا جائے گا۔ جس لمحہ ہوتا ہو اس لمحہ دوبارہ ایک کچھے کا سارا مقناطیسی بہاو دوسرے کچھے سے بھی گزرتا ہے لیکن اس بار اس کا رخ الٹ ہوتا ہو اس لمحہ دوبارہ ایک کا مشتر کہ امالہ منفی ہو گا، $-L_{ar0}$ جبکہ $\theta=\pm 9$ پر ان کا مشتر کہ امالہ صفر ہو گا۔ خلائی درز میں مقناطیسی بہاو سائن نما

$$(5.78) L_{ar} = L_{ar0}\cos\theta$$

تصور کرتے ہوئے ساکن اور گھومتے کیچھوں کے ارتباط بہاو درج ذیل ہوں گے۔

(5.79)
$$\lambda_{a} = L_{aa}i_{a} + L_{ar}(\theta)i_{r} = L_{aa}i_{a} + L_{ar0}\cos(\theta)i_{r}$$
$$\lambda_{r} = L_{ar}(\theta)i_{a} + L_{rr}i_{r} = L_{ar0}\cos(\theta)i_{a} + L_{rr}i_{r}$$

magnetic constant, permeability⁴⁵

ساکن کچھے کی مزاحمت R_a اور گھومتے کچھے کی مزاحمت R_r لیتے ہوئے ان کچھوں کے سروں پر قانون کرخوف سے برقی دباو درج ذیل ہوں گے۔

$$(5.80) v_a = i_a R_a + \frac{\mathrm{d}\lambda_a}{\mathrm{d}t} = i_a R_a + L_{aa} \frac{\mathrm{d}i_a}{\mathrm{d}t} + L_{ar0} \cos\theta \frac{\mathrm{d}i_r}{\mathrm{d}t} - L_{ar0}i_r \sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t}$$

$$v_r = i_r R_r + \frac{\mathrm{d}\lambda_r}{\mathrm{d}t} = i_r R_r + L_{ar0} \cos\theta \frac{\mathrm{d}i_a}{\mathrm{d}t} - L_{ar0}i_a \sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t} + L_{rr} \frac{\mathrm{d}i_r}{\mathrm{d}t}$$

یہاں θ برقی زاویہ ہے جس کی وقت کے ساتھ تبدیلی، ω دے گی۔

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega$$

میکانی قوت مروڑ بذریعہ ہم-توانائی حاصل کی جا سکتی ہے۔ ہم-توانائی صفحہ 127 پر مساوات 4.72 سے حاصل ہو گ۔ یہ مساوات موجودہ استعال کے لئے درج زیل صورت اختیار کرتی ہے۔

(5.82)
$$W'_{m} = \frac{1}{2}L_{aa}i_{a}^{2} + \frac{1}{2}L_{rr}i_{r}^{2} + L_{ar0}i_{a}i_{r}\cos\theta$$

اس سے میکانی قوت مروڑ T_m حاصل کرتے ہیں۔

(5.83)
$$T_{m} = \frac{\partial W'_{m}(\theta_{m}, i_{a}, i_{r})}{\partial \theta_{m}} = \frac{\partial W'_{m}(\theta, i_{a}, i_{r})}{\partial \theta} \frac{\partial \theta}{\partial \theta_{m}}$$

چونکہ P قطب مشینوں کے لئے درج ذیل ہوتا ہے

$$\theta = \frac{P}{2}\theta_m$$

للذا جمين مساوات 5.83 سے درج ذيل حاصل ہو گا۔

$$(5.85) T_m = -\frac{P}{2} L_{ar0} i_a i_r \sin\left(\frac{P}{2}\theta_m\right)$$

اس مساوات میں قوت مروڑ T_m کی علامت منفی ہے۔ یوں جس لمحہ پر ساکن اور گھومتے کچھوں کے مقناطیسی بہاو کو ایک نی زاویہ مثبت ہو، اس لمحہ پر ان کچھوں کے نی قوت مروڑ منفی ہو گا۔ قوت مروڑ دونوں مقناطیسی بہاو کو ایک رخ میں رکھنے کی کوشش کرتا ہے۔

شکل5.28: کیھوں کے قطبین۔

5.7.2 مكانى قوت مروڙ بذريعه مقناطيسي بهاو

شکل 5.28-ا میں دو قطبی یک دوری مثین کے صرف گھومتے کچھے میں برقی رو پایا جاتا ہے۔ مثین کا گھومتا حصہ ایک مقناطیس کی مانند ہے جس کے شالی اور جنوبی قطبین دکھائے گئے ہیں۔ اس کچھے کا مقناطیسی بہاو تیر کے نشان سے دکھایا گیا ہے لہذا تیر اس مقناطیس کے محور کو ظاہر کرتا ہے۔

شکل 5.28-ب میں صرف ساکن کچھے میں برتی رو پایا جاتا ہے۔ ساکن حصہ سے مقناطیسی بہاو خارج ہو کر خلائی درز سے ہوتا ہوا گھومتے حصہ میں داخل ہوتا ہے لہذا یہی اس کا شالی قطب ہو گا۔ یہاں ساکن حصہ ایک مقناطیس مانند ہے جس کا محور تیر سے ظاہر کیا گیا ہے۔

اگرچہ شکل 5.28 میں گچھ لچھے دکھائے گئے ہیں، در حقیقت دونوں کچھوں کے مقناطیسی دباو سائن-نما ہیں اور تیر کے نشان ان مقناطیسی دباوکی امواج کی چوٹیوں کو ظاہر کرتے ہیں۔

شکل 5.29 میں دونوں لیجھوں کو برتی رو فراہم کی گئی ہے۔ دونوں لیجھوں کے مخالف قطبین کے آج قوت کشش پایا جائے گا جس کی بنا دونوں لیجھے ایک ہی رخ ہونے کی کوشش کریں گے۔

واضح رہے کہ دونوں کیجے (مقناطیں) کوشش کریں گے کہ θ_{ar} صفر کے برابر ہو لینی ان کا میکانی قوت مروڑ θ_{ar} کے مخالف رخ ہو گا۔ یہی مساوات 5.85 کہتی ہے ۔

شكل 5.29: خلا كي در زمين مجموعي مقناطيسي دباو_

لچھوں کے مقناطیسی دباو کو مقناطیسی محور کے رخ τ_a اور τ_r سے ظاہر کیا گیا ہے جہاں τ_a اور τ_r سائن نما مقناطیسی دباو کی چوٹیوں کے برابر ہیں۔ خلائی درز میں کل مقناطیسی دباو τ_{ar} ان کا مجموعہ ہو گا جس کا طول τ_{ar} کلیہ کوسائن τ_{ar} کا سے حاصل ہو گا:

(5.86)
$$\begin{aligned} \tau_{ar}^2 &= \tau_a^2 + \tau_r^2 - 2\tau_a \tau_r \cos(180^\circ - \theta_{ar}) \\ &= \tau_a^2 + \tau_r^2 + 2\tau_a \tau_r \cos \theta_{ar} \end{aligned}$$

خلائی درز میں کل مقناطیسی دباو au_{ar} درج ذیل مقناطیسی شدت H_{ar} پیدا کرے گا جہاں کا کی درز کی لمبائی au_{ar}

$$\tau_{ar} = H_{ar}l_g$$

مقناطیسی شدت کی چوٹی کو ظاہر کرتا ہے۔ خلاء میں جس مقام پر مقناطیسی شدت H ہو وہاں مقناطیسی H_{ar} ہم۔ توانائی کی کثافت H^2 ہوتی ہے۔ خلائی درز میں اوسط ہم۔ توانائی کی کثافت، درز میں H^2 کی اوسط کو H^2 ہے

 $cosine \ law^{46}$

 H^2 خرب کر کے حاصل ہو گا۔ کسی بھی سائن نما موج $H^2 = H = H_0 \cos \theta$ کا اوسط H^2 حاصل کرتے ہیں:

(5.88)
$$H_{\text{ls},\text{sl}}^{2} = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} H^{2} \, d\theta$$

$$= \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} H_{0}^{2} \cos^{2} \theta \, d\theta$$

$$= \frac{H_{0}^{2}}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} \, d\theta$$

$$= \frac{H_{0}^{2}}{\pi} \left. \frac{\theta + \frac{\sin 2\theta}{2}}{2} \right|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= \frac{H_{0}^{2}}{2}$$

یوں خلائی درز میں اوسط ہم-توانائی کی کثافت $\frac{\mu_0}{2} \frac{H_{ar}^2}{2}$ ہو گی۔ خلائی درز میں اوسط ہم-توانائی کو خلاء کے حجم سے ضرب کر کے درز میں کل ہم-توانائی W_m' حاصل ہو گی:

(5.89)
$$W'_{m} = \frac{\mu_0}{2} \frac{H_{ar}^2}{2} 2\pi r l_g l = \frac{\mu_0 \pi r l}{2 l_g} \tau_{ar}^2$$

اس مساوات میں خلائی درز کی رداسی لمبائی l_g اور دھرے 47 کے رخ محوری لمبائی 48 ہے۔ محور سے خلائی درز کا اوسط رداسی فاصلہ $r \gg l_g$ مزید $r \gg l_g$ تصور کیا گیا ہے جس کی بنا درز میں رداسی رخ، کثافت مقناطیسی بہاو کی تبدیلی نظر انداز کی جا سکتی ہے۔ اس مساوات کو ہم مساوات کی حدد سے درج ذیل لکھ سکتے ہیں۔

(5.90)
$$W'_{m} = \frac{\mu_{0}\pi r l}{2l_{g}} \left(\tau_{a}^{2} + \tau_{r}^{2} + 2\tau_{a}\tau_{r}\cos\theta_{ar} \right)$$

یوں میکانی قوت مروڑ درج ذیل ہو گا۔

(5.91)
$$T_m = \frac{\partial W'_m}{\partial \theta_{ar}} = -\frac{\mu_0 \pi r l}{l_a} \tau_a \tau_r \sin \theta_{ar}$$

مساوات 5.91 میں قوت مروڑ دو قطبی مشین کے لئے حاصل کی گئ۔P قطبی مشین کے لئے یہ مساوات ہر جوڑی قطب کی میکانی قوت مروڑ دیتی ہے لہذا P قطبی مشین کی قوت مروڑ $\frac{P}{2}$ گنا ہو گی:

$$(5.92) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_a \tau_r \sin \theta_{ar}$$

 axis^{47} axial length⁴⁸

مساوات 5.92 ایک اہم مساوات ہے جس کے مطابق مثین کی میکانی قوت مروڑ، ساکن اور گھومتے لیجھوں کے مقاطیسی دباو کی چوٹیوں اور دونوں کے نیچ برتی زاویہ θ_{ar} کے سائن کی راست متناسب ہو گی۔ منفی میکانی قوت مروڑ کی مطلب ہے کہ یہ زاویہ θ_{ar} کا مطلب ہے کہ یہ زاویہ θ_{ar} کا مطلب ہے کہ یہ زاویہ تصول پر ایک دوسرے کے برابر لیکن مخالف رخ میکانی قوت مروڑ ہو گی البتہ ساکن گی۔ مثین کے ساکن اور گھومتے حصوں پر ایک دوسرے کے برابر لیکن مخالف رخ میکانی قوت مروڑ ہو گی البتہ ساکن حصہ کی قوت مروڑ مشین کے وجود کے ذریعہ زمین تک منتقل ہو گی جبکہ گھومتے حصے کی میکانی قوت مروڑ اس حصہ کو متحرک کرتی ہے۔

چونکہ مقناطیسی دباو کچھے کے برقی رو کا راست متناسب ہوں گے ہونکہ مقناطیسی دباو کچھے کے برقی رو کا راست متناسب ہوں گے۔ بیل ظاہر ہوتا ہے کہ مساوات 5.85 اور 5.92 ایک دوسرے جبکہ ہیں۔ در حقیقت یہ ثابت کیا جا سکتا ہے کہ یہ دونوں بالکل ایک جیسے ہیں۔

 ΔAEC کیں دوبارہ ساکن اور گھومتے کیجھوں کے مقناطیسی دباو دکھائے گئے ہیں۔ شکل-اکی تکون ΔAEC اور ΔBEC میں ΔCE مشترک ہے جو درج ذیل ہو گا۔

(5.93)
$$CE = \tau_r \sin \theta_{ar} = \tau_{ar} \sin \theta_a$$

اس مساوات کی مدد سے مساوات 5.92 کو درج ذیل لکھا جا سکتا ہے۔

$$(5.94) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_a \tau_{ar} \sin \theta_a$$

اسی طرح شکل WQ ہے جو درج ذیل ہو گا۔ ΔSWQ اور تکون ΔSWQ میں ΔSWQ مشترک ہے جو درج ذیل ہو گا۔

$$(5.95) WQ = \tau_a \sin \theta_{ar} = \tau_{ar} \sin \theta_r$$

اس مساوات کی مدد سے مساوات 5.92 کو درج ذیل لکھا جا سکتا ہے۔

$$(5.96) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_r \tau_{ar} \sin \theta_r$$

مهاوات 5.92، مهاوات 5.94 اور مهاوات 5.96 كو ايك ساتھ لكھتے ہيں۔

(5.97)
$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{a} \tau_{r} \sin \theta_{ar}$$

$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{a} \tau_{ar} \sin \theta_{a}$$

$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{r} \tau_{ar} \sin \theta_{r}$$

شکل5.30: مقناطیسی بہاواوران کے زاویے۔

ان مساوات سے واضح ہے کہ میکانی قوت مروڑ کو دونوں کچھوں کے مقناطیسی دباو اور ان کے نیج زاویہ کی صورت میں، یا کسی ایک کی کے نیج زاویہ کی صورت میں کھا جا سکتا ہے۔

اس بات کو یوں بیان کیا جا سکتا ہے کہ میکانی قوت مروڑ دو مقناطیسی دباو کی آپس میں ردعمل کی وجہ سے پیدا اور مقناطیسی دباو کی چوٹیوں اور ان کے چے زاویہ پر منحصر ہوتا ہے۔

مقناطیسی دباو، مقناطیسی شدت، کثافت مقناطیسی بهاو اور مقناطیسی بهاو آپس میں تعلق رکھتے ہیں جنہیں مختلف طریقوں سے لکھا جا سکتا ہے۔ مثلاً خلائی درز میں کل مقناطیسی دباو au_{ar} اور درز میں کثافت مقناطیسی بهاو au_{ar} کا تعلق

$$(5.98) B_{ar} = \frac{\mu_0 \tau_{ar}}{l_q}$$

استعال کر کے مساوات 5.97 کے آخری جزو کو درج زیل لکھا جا سکتا ہے۔

$$(5.99) T_m = -\frac{P}{2}\pi r l \tau_r B_{ar} \sin \theta_r$$

مقناطیسی مشینوں کی قالبی مقناطیسی مستقل μ کی محدود قیمت کی بنا قالب میں کثافت مقناطیسی بہاو تقریباً ایک ٹسلا تک ہی بڑھائی جا سکتی ہے۔ مشین کی بناوٹ کے وقت اس حد کو مد نظر رکھنا ہو گا۔ اسی طرح گھومتے کچھے کا مقناطیسی دباو اس کچھے میں برقی رو پر مخصر ہوتا ہے۔ اس برقی رو سے کچھے کی مزاحمت میں برقی توانائی ضائع ہوتی ہے جس سے کچھا گرم ہوتا ہے۔ برقی رو کو اس حد تک بڑھایا جا سکتا ہے جہاں تک کچھے کو ٹھنڈا رکھنا ممکن ہو۔ یوں مقناطیسی

دباو کو ایک حد سے نیچے رکھنا ہو گا۔ مساوات 5.99 میں B_{ar} اور au_r دونوں صریحاً موجود ہیں للذا مشین کی بناوٹ کے نقطہ نظر سے یہ ایک اہم مساوات ہے۔

مساوات 5.99 کی دوسری اہم صورت دیکھتے ہیں۔ قطب پر اوسط کثافت مقناطیسی بہاو اوسطB اور قطب کے رقبہ A_P

(5.100)
$$B_{\text{begl}} = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} B_0 \cos \theta \, \mathrm{d}\theta = \frac{2B_0}{\pi}$$

$$(5.101) A_P = \frac{2\pi rl}{P}$$

کا حاصل ضرب قطب پر مقناطیسی بہاو ϕ_P ہوتا ہے للذا

$$\phi_P = \frac{2B_0}{\pi} \frac{2\pi rl}{P}$$

اور

(5.103)
$$T_m = -\frac{\pi}{2} \left(\frac{P}{2}\right)^2 \phi_{ar} \tau_r \sin \theta_r$$

ہوں گے۔ مساوات 5.103 معاصر مشینوں کے لئے بہت کار آمد ہے۔

باب6

يكسال حال، بر قرار جالو معاصر مشين

معاصر مشین وہ گھومنے والی مشین ہے جو ایک مقررہ رفتار سے گھومتی ہے۔ یہ رفتار فراہم کردہ برقی دباو کے تعدد پر منصر ہوتی ہے۔

کسی جزیٹر پر بوجھ تبدیل کرنے یا اسے میکانی طاقت فراہم کرنے والے کی رفتار تبدیل کرنے کے چند ہی کھات میں جزیٹر نئی صورتِ حال کے مطابق دوبارہ بر قرار صورت اختیار کر لیتا ہے۔اس بر قرار چالو حال میں اس کی رفتار، برقی دوباد، برقی رو، درجہ حرارت وغیرہ تبدیل نہیں ہوتے ہیں۔اس طرح موٹر پر بوجھ تبدیل کرنے سے موٹر کی درکار طاقت اور برقی رو تبدیل ہوں گے۔بوجھ تبدیل ہونے سے قبل موٹر ایک مستقل برقی رو حاصل کرتی اور ایک مستقل درجہ حرارت پر رہتی ہے۔بوجھ تبدیل ہونے کے چند ہی کھات میں موٹر دوبارہ ایک نئی بر قرار چالو صورت اختیار کرتی ہے جہاں اس کا برقی رو ایک نئی قیت پر برقرار رہتا ہے اور اس کا درجہ حرارت بھی ایک نئی قیت اختیار کرتا ہے۔دو مختلف برقرار چالو، کیساں صور توں کے در میان چند کھات کے لئے مشین عارضے حالے اس میں ہوتی ہے۔اس بیس ہوتی ہے۔اس بیس بوتی ہے۔اس بیس بوتی ہے۔اس بیس میں پر تبعرہ کیا جائے گا۔

معاصر مشین کے قوی کچھے عموماً ساکن جبکہ میدانی کچھے معاصر رفتار سے گھومتے ہیں۔ قوی کچھوں کا رو میدانی کچھوں کو کچھوں کے روکی نسبت بہت زیادہ ہوتا ہے اور اسے سرک چھلوں کے ذریعہ گزارنا مشکل ہوتا ہے للذا قوی کچھوں کو ساکن رکھا جاتا ہے جبکہ میدانی کچھوں کو گھمایا جاتا ہے۔

> transient state¹ steady state²

ہم دیکھ چکے ہیں کہ تین دوری ساکن لچھوں میں متوازن تین دوری برقی رو ایک گھومتے مقناطیسی دباوکی موج پیدا کرتے ہیں۔اس گھومتے موج کی رفتار کو معاصر رفتار 3 کہتے ہیں۔ معاصر مثنین کا گھومتا حصہ اسی رفتار سے گھومتا ہے۔

معاصر مشین کے میدانی کچھے کو یک سمت برقی رو درکار ہوتا ہے جو سرک چھلوں کے ذریعہ اس تک باہر سے پہنچایا جاتا ہے یا مشین کے دھرے پر نسب ایک چھوٹے یک سمت جزیٹر سے اسے فراہم کیا جاتا ہے۔

میدانی لچھا ایک میدانی مقناطیسی دباو پیدا کرتا ہے جو اس کچھے کے ساتھ ساتھ معاصر رفتار سے گھومتا ہے۔ یول معاصر مثین کے گھومتے کچھوں کے مقناطیسی دباو اور ساکن کچھوں کے مقناطیسی دباو معاصر رفتار سے گھومتے ہیں۔ اس لئے انہیں معاصر مثین کہتے ہیں۔

6.1 متعدد دوری معاصر مشین

معاصر مشین عموماً تین دوری ہوتے ہیں۔ تین دوری ساکن قوی کچھے خلائی درز میں 120° برقی زاویہ پر نسب ہوتے ہیں جبکہ میدانی کچھے گھومتے حصے پر نسب ہوتے ہیں اور ان میں یک سمت برقی رو ہوتا ہے۔

اگر مشین کے گھومتے جھے کو بیرونی میکانی طاقت سے گھمایا جائے تو یہ مشین ایک معاصر جزیٹر کے طور پر کام کرتی ہے اور اس کے تین دوری ساکن قوی کچھوں میں تین دوری برقی دباو پیدا ہوتا ہے جس کا برقی تعدد گھومنے کی رفتار پر منحصر ہوتا ہے۔ اس کے برعکس اگر مشین کے تین دوری ساکن قوی کچھوں کو تین دوری برقی طاقت مہیا کی جائے تو یہ مشین ایک معاصر موٹر کے طور پر کام کرتی ہے جو معاصر رفتار سے گھومتی ہے۔ مشین کی کل برقی قوت کے چند فی صد برابر برقی قوت میدان کچھے کو درکار ہوتی ہے۔

گھومتے کچھے تک برقی دہاو مختلف طریقوں سے پہنچایا جاتا ہے۔شکل 6.1 میں گھومتے کچھے تک موصل سرکھ پھلے 4 کی مدد سے یک سمت برقی رو پہنچانے کا طریقہ دکھایا گیا ہے۔ یہ سرک چھلے اسی دھرے پر نسب ہوتے ہیں جس پر گھومتا کچھا نسب ہوتا ہے اور دونوں کچھے کے ساتھ ساتھ ایک ہی رفتار سے گھومتے ہیں۔

synchronous speed³ slip rings⁴

6.1 متعبد د دوری معب صرمت بین

شكل 6.1: كاربن كُبْن اور سرك چھلوں سے گھومتے لچھے تك برقى روينجايا يا گياہے۔

کار بن کے ساکن بش، اسپر نگ کی مدد ہے، سرک چھلوں کے بیر ونی سطح کے ساتھ دباکر رکھے جاتے ہیں۔ جب مشین چلتی ہے، کار بن بش ان سرک چھلوں پر سرکتے ہیں۔ اسپر نگ کا دباو ان کا برقی جوڑ مضبوط رکھتا ہے تا کہ ان کے بچھوں کے بچھ چنگاریاں نہ نگلیں۔ کار بن بش کے ساتھ برقی تاریکی ہے۔ یک سمت برقی رو I_r ، کار بن بش ⁵ اور سرک چھلوں سے ہوتا ہوا، گھومتے کچھے تک پہنچتا ہے۔

بڑی معاصر مشینوں میں میدانی یک سمت رو عموماً بدلتا رو چھوٹے جنریٹر سے حاصل کیا جاتا ہے جو معاصر مشین کے دھرے پر نسب ہوتا ہے اور دھرے کے ساتھ گھومتا ہے چھوٹے جنریٹر کے برتی دباو کو دھرے پر نسب برقیاتی سمت کارکی مدد سے یک سمت برقی دباو میں تبدیل کیا جاتا ہے۔ یوں سرک چھلے کی ضرورت پیش نہیں آتی ہے۔ سرک چھلے بوجہ رگڑ خراب ہوتے ہیں جس کی وجہ سے معاصر مشین کی مرمت درکار ہوتی ہے جو ایک مہنگا کام ہے۔

اُبھرے قطب⁶ مشین، پانی سے چلنے والے ست رفتار جزیٹر اور عام استعال کی موٹروں کے لئے موزوں ہیں۔ جبکہ ہموار قطب⁷ مشین، تیز رفتار دو یا چار قطبی ٹربائن جزیٹروں کے لئے موزوں ہیں۔

ایک (بڑے) مملکت کو درکار برقی توانائی کسی ایک جزیٹر سے دینا ممکن نہیں ہوتا ہے بلکہ چند در جن سے لیکر کئی سو جزیٹر بیک وقت یہ فرنضہ سر انجام دیتے ہیں۔ ایک سے زیادہ جزیٹر استعال کرنا فائدہ مند ثابت ہوتا ہے۔ اوّل، برقی توانائی کی ضرورت کے مطابق جزیٹر چالو کئے جا سکتے ہیں۔ دوم، جزیٹر وں کو ان مقامات کے قریب نسب کیا جا سکتا ہے جہاں جہاں برقی توانائی درکار ہو۔ کسی بھی اس طرح کے بڑے نظام میں ایک جزیٹر کی حیثیت بہت کم ہو

carbon bush⁵ salient poles⁶

non-salient poles⁷

جاتی ہے۔ ایک جزیر چالو یا بند کرنے سے پورے نظام پر کوئی خاص فرق نہیں پڑتا۔ اس صورت میں ہم اس نظام کو ایک مقررہ برقی دباو اور ایک مقررہ برقی تعدد کا نظام تصور کر سکتے ہیں۔ معاصر جزیر کے کئی اہم پہلو با آسانی سمجھے جا سکتے ہیں اگر یہ تصور کر لیا جائے کہ یہ ایک ایسے نظام سے جوڑا گیا ہے۔

مساوات 5.103 معاصر مشین کی قوت مروڑ دیتی ہے۔ اس مساوات کے مطابق برقی قوت مروڑ، مشین میں موجود عمل کرنے والے مقناطیسی دباو کو ایک دوسرے کی سیدھ میں لانے کی کوشش کرتی ہے۔ برقرار چالو مشین کی برق قوت مروڑ اور اس کے دھرے پر لا گو میکانی قوت مروڑ ایک دوسرے کے برابر ہوتے ہیں۔ جب مشین ایک جزیر کی حیثیت سے استعال ہو تب میکانی طاقت دھرے کو گھماتا ہے اور گھومتے کچھے کا مقناطیسی دباو کل مقناطیسی دباو سے گھومنے کے رخ آگے ہوتا ہے۔ مساوات 5.103 سے حاصل قوت مروڑ ایسی صورت میں گھومنے کو روکنے کی کوشش کرتا ہے۔ میکانی طاقت چلتے پانی، ایندھن سے چلتے انجی، وغیرہ سے حاصل ہو سکتا ہے۔ اسی طرح اگر مشین ایک موٹر کی حیثیت سے استعال ہو، تب صورت اس کے بالکل اُلٹ ہو گی۔

کل مقناطیسی بہاو ϕ_{ar} اور گھومتے لچھے کا مقناطیسی دباو τ_r تبدیل نہ ہونے کی صورت میں مساوات δ کی مطابق مثین کی قوت مر وڑ ہی صاتھ تبدیل ہو گی۔ اگر زاویہ θ_r صفر ہو تب قوت مر وڑ بھی صفر ہو گ۔ استعال ہو رہی ہے۔ جیسے جیسے موٹر پر لدا میکانی بوجھ بڑھایا جاتا اب تصور کریں کہ یہی مثین ایک موٹر کے طور پر استعال ہو رہی ہے۔ جیسے جیسے موٹر پر لدا میکانی بوجھ بڑھایا جاتا ہے ویسے ویسے اس کے دھرے پر میکانی قوت مر وڑ بڑھے گی۔ موٹر کو برابر کی برقی قوت مر وڑ پیدا کرنے کے لئے، موٹر کو برابر کی برقی قوت مر وڑ پیدا کرنے کے لئے، موٹر کو بید زاویہ کو بڑھانا ہو گا۔ یہاں یہ سمجھنا ضروری ہے کہ موٹر ہر وقت معاصر رفتار سے گھومتا ہے ماسوانے ایک لحم کے لئے جس کے دوران موٹر آہتہ ہو کر زاویہ کو ضرورت کے مطابق درست کرتی ہے۔ یعنی موٹر کا زاویہ ہو وقت میکانی قوت مروڑ کا تعقب 8 کرتا ہے۔

موٹر پر لدا میکانی بوجھ بندر تئے بڑھانے سے ایک لمحہ آئے گا جب زاویہ θ_r نوے درجہ، $\frac{\pi}{2}$ ریڈیئن، تک پہنچتا ہے۔ اس لمحہ موٹر اپنی انتہائی قوت مروڑ پیدا کرے گی۔ موٹر کسی بھی صورت میں اس سے زیادہ قوت مروڑ پیدا نہیں کر سکتی ہے لہذا بوجھ مزید بڑھانے سے موٹر رکھ جائے گی۔ ہم کہتے ہیں کہ موٹر نے غیر معاصر 10 صورت اختیار کر لی ہے۔ مساوات 5.103 سے ظاہر ہے کہ کل مقاطیسی بہاو یا گھومتے کچھے کا مقاطیسی دباو بڑھا کر موٹر کی انتہائی قوت مروڑ بڑھائی جا سکتی ہے۔

hunting⁸ pull out torque⁹ lost synchronism¹⁰

6.2. معاصر مشين كے اماله

یہی صورت اگر مشین برقی جزیٹر کے طور پر استعال کی جائے سامنے آتی ہے۔ جب بھی مشین غیر معاصر صورت اختیار کرے، اسے جلد خود کار دور شکر ہے ¹¹ کی مدد سے برقی بھم رسانی سے الگ کر دیا جاتا ہے۔

ہم نے دیکھا کہ ایک معاصر موٹر صرف اور صرف معاصر رفتار سے ہی گھوم سکتی ہے اور صرف اسی رفتار پر گھوم کر قوت مروڑ پیدا کر علی ہے لہذا ساکن معاصر موٹر کو چالو کرنے کی کوشش ناکام ہو گی۔ معاصر موٹر کو پہلے کسی دوسرے طریقے سے معاصر رفتار تک لایا جاتا ہے اور اس کے بعد اسے چالو کیا جاتا ہے۔ ایسا عموماً ایک چھوٹی امالھے موٹر کو چالو کیا جاتا ہے۔ چس کے بعد معاصر موٹر کو چالو کیا جاتا ہے۔ ایک امالہ موٹر عموماً معاصر موٹر کو دھرے پر نسب ہوتی ہے۔

6.2 معاصر مثين كے اماليہ

ہم تصور کرتے ہیں کہ مشین دو قطب اور تین دوری ہے اور اس کے کچھے ستارہ نما جڑے ہیں۔اس طرح کچھوں میں برقی رو، تار برقی رو¹³ ہی ہو گا اور ان پر لا گو برقی دباو، یک دوری برقی دباو ہو گا۔ایسا کرنے سے مسئلے پر غور کرنا آسان اور نتیجہ کسی بھی موڑ کے لئے درست ہوتا ہے۔

شکل 6.2 میں ایک ایس تین دوری دو قطبی معاصر مثین دکھائی گئی ہے۔ اس کا گھومتا حصہ نکلی نما ہے۔اس کو دو قطبی مثین یا P قطبی مثین کے دو قطب کا حصہ سمجھا جا سکتا ہے۔

اگرچہ یہاں پچھ لچھے دکھائے گئے ہیں، حقیقت میں پھلے لچھے استعال ہوں گے للذا انہیں پھلے لچھے تصور کریں۔
اس طرح ہر لچھا سائن نما برقی دباو پیدا کرتا ہے جس کی چوٹی لچھے کی مقناطیسی محور کے رخ ہو گا۔ چونکہ معاصر مثین کے گھومتے لچھے میں یک سمت رو ہوتا ہے لہذا، جیسا شکل 6.2 میں دکھایا گیا ہے، اس کچھے کا مقناطیسی دباو ہر لمحہ کے مقاطیسی محور کے رخ ہو گا۔ گھومتے لچھے کا مقناطیسی دباو گھومتے حصہ کے ساتھ ساتھ معاصر رفتار سے گھومے گا۔

فرض کریں کہ یہ مثین معاصر رفتار ω سے گھوم رہی ہے۔ یوں اگر لمحہ t=0 پر دور a اور گھومتے کچھے کی مقاطیسی محور کے رخ ایک دوسرے جیسے ہوں تب کسی بھی لمحہ t پر ان کے پھی زاویہ $\theta=\omega t$ ہو گا۔ امالہ کا حساب

circuit breaker¹¹

 $[\]begin{array}{c} \text{induction motor}^{12} \\ \text{line current}^{13} \end{array}$

شکل 6.2: تین دوری، دو قطبی معاصر مثین ـ

 l_g کرنے کے لئے شکل 6.2 سے رجوع کریں جہاں محیط پر خلائی ورز یکساں ہے۔ رداسی رخ خلائی ورز کی لمبائی ρ ہے۔ ساکن جصے میں شگافوں کے اثر کو نظرانداز کریں۔ محور سے خلائی درز تک کا اوسط رداسی فاصلہ ρ ہے اور مشین کی محوری لمبائی (دھرے کے رخ) ρ ہے۔

کسی بھی کچھے کے خود امالہ کا حساب کرتے وقت باقی تمام کچھوں کو نظرانداز کریں۔یوں باقی تمام کچھوں میں برقی رو صفر تصور کریں، یعنی ان کچھوں کے سرے آزاد رکھیں۔کسی ایک کچھے کے خود امالہ کو پیما سے ناپتے وقت بھی باقی تمام کچھوں کے سرے آزاد رکھیں جائیں گے۔

6.2.1 خوداماليه

au گھو متے یا ساکن کچھے کا خود امالہ L زاویہ au پر منحصر نہیں ہوتا ہے۔ ان میں سے کسی بھی کچھے کی مقناطیسی دباو L

(6.1)
$$\tau = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p$$

سے خلائی درز میں درج ذیل کثافت مقناطیسی بہاو B پیدا ہو گا۔

(6.2)
$$B = \mu_0 H = \mu_0 \frac{\tau}{l_g} = \mu_0 k_w \frac{4}{\pi} \frac{Ni}{2l_g} \cos \theta_p$$

6.2. معاصر مشین کے امالہ

یہ مساوات زاویہ θ_p کے ساتھ کثافت مقناطیسی دباو B کا تعلق پیش کرتی ہے۔ لچھا کے ایک قطب پر کل مقناطیسی بہاو ϕ اس مساوات کا سطح کمل 14 دے گا۔

(6.3)
$$\phi = \int \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} Bl\rho \, d\theta_p$$

$$= \mu_0 k_w \frac{4}{\pi} \frac{Ni}{2l_g} l\rho \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \cos \theta_p \, d\theta_p$$

$$= \frac{4\mu_0 k_w Nil\rho}{\pi l_q}$$

ایک کیھے کا خود امالہ L، مساوات 2.29 میں جزو کھیلاو k_w کا اثر شامل کرتے ہوئے حاصل کرتے ہیں۔

$$(6.4) L = \frac{\lambda}{i} = \frac{k_w N \phi}{i} = \frac{4\mu_0 k_w^2 N^2 l \rho}{\pi l_q}$$

يه مساوات شكل 6.2 مين تينول توى لچھوں كا خود اماليه

(6.5)
$$L_{aa0} = L_{bb0} = L_{cc0} = \frac{4\mu_0 k_{wa}^2 N_a^2 l\rho}{\pi l_g}$$

اور میدانی کھیے کا خود امالہ دیتی ہے۔

(6.6)
$$L_{mm0} = \frac{4\mu_0 k_{wm}^2 N_m^2 l \rho}{\pi l_g}$$

6.2.2 مشتركه اماله

اب ہم دو کچھوں کا مشتر کہ امالہ حاصل کرتے ہیں۔تصور کریں صرف گھومتا کچھا مقناطیسی بہاو پیدا کر رہا ہے۔ ہم بہاو کے اس حصہ سے، جو a کچھا سے گزرتا ہے، گھومتے کچھا اور a کچھا کا مشتر کہ امالہ حاصل کرتے ہیں ۔شکل 6.2

surface integral¹⁴

میں گھومتے اور a کچھا کے نی زاویہ θ ہے۔الی صورت میں صورت میں گھومتے اور a کچھا کے نی زاویہ a بہاو، a بہاو، a بہاو کا حساب مساوات a میں حکمل کے حد تبدیل کر کے حاصل کرتے ہیں۔

(6.7)
$$\phi_{am} = \int \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2} - \theta}^{+\frac{\pi}{2} - \theta} B l \rho \, d\theta_{p}$$

$$= \mu_{0} k_{wm} \frac{4}{\pi} \frac{N_{m} i_{m}}{2 l_{g}} l \rho \int_{-\frac{\pi}{2} - \theta}^{+\frac{\pi}{2} - \theta} \cos \theta_{p} \, d\theta_{p}$$

$$= \frac{4 \mu_{0} k_{wm} N_{m} i_{m} l \rho}{\pi l_{g}} \cos \theta$$

یوں گھومتے کچھا اور کچھا کا مشتر کہ امالہ

(6.8)
$$L_{am} = \frac{\lambda_{am}}{i_m} = \frac{k_{wa}N_a\phi_{am}}{i_m} = \frac{4\mu_0k_{wa}k_{wm}N_aN_ml\rho}{\pi l_g}\cos\theta$$

يا

$$(6.9) L_{am} = L_{am0}\cos\theta$$

ہو گا جہاں

$$(6.10) L_{am0} = \frac{4\mu_0 k_{wa} k_{wm} N_a N_m l \rho}{\pi l_a}$$

ہے اور $\omega t = \omega t$ گومنے کی رفتار پر منحصر ہو گا۔ اگرچہ مساوات 6.9 ایک گھومتے اور ایک ساکن کچھے کے لئے حاصل کی گئی ہے، در حقیقت یہ شکل 6.2 میں کسی بھی دو کچھوں کے لئے درست ہے۔ دونوں ساکن کچھے ساکن یا دونوں متحرک لینے سے بھی یہی نتیجہ حاصل ہوتا ہے۔ یوں دو ساکن یکسال کچھے، مثلاً α اور α جن کے آج 120° زاویہ ہے، کا مشتر کہ امالہ کا مشتر کہ امالہ

(6.11)
$$L_{ab} = \frac{4\mu_0 k_{wa} k_{wb} N_a N_b l \rho}{\pi l_g} \cos 120^\circ = -\frac{2\mu_0 k_{wa}^2 N_a^2 l \rho}{\pi l_g}$$

ہو گا جہاں یکسانیت کی بدولت $k_{wb}=k_{wa}$ اور $N_b=N_a$ اور $N_b=N_b$ اور $N_b=k_{wa}$ بالکل یکسال ہوں تب درج بالا مساوات اور مساوات 6.5 کی مدد سے درج ذیل لکھا جا سکتا ہے۔

(6.12)
$$L_{ab} = L_{bc} = L_{ca} = -\frac{L_{aa0}}{2}$$

6.2. معیاصر مثین کے امالہ

6.2.3 معاصراماله

مشین پر لا گو برقی دباو کو مشین کے کچھوں کا خود امالہ، مشتر کہ امالہ اور کچھوں کے برقی رو کی مدد سے لکھا جا سکتا ہے۔ یہ کرنے کے لئے ہم پہلے کچھوں کی ارتباط بہاو 🖍 کو ان کے امالہ اور ان کے برقی رو کی مدد سے لکھتے ہیں۔

(6.13)
$$\lambda_{a} = L_{aa}i_{a} + L_{ab}i_{b} + L_{ac}i_{c} + L_{am}I_{m}$$

$$\lambda_{b} = L_{ba}i_{a} + L_{bb}i_{b} + L_{bc}i_{c} + L_{bm}I_{m}$$

$$\lambda_{c} = L_{ca}i_{a} + L_{cb}i_{b} + L_{cc}i_{c} + L_{cm}I_{m}$$

$$\lambda_{m} = L_{ma}i_{a} + L_{mb}i_{b} + L_{mc}i_{c} + L_{mm}I_{m}$$

ان مساوات میں ساکن کچھوں کا بدلتا رو جھوٹے حروف i_a,i_b,i_c جبکہ گھومتے میدانی کچھے کا یک سمت رو بڑے حرف I_m حرف I_m

ان چار مساوات میں سے ہم کسی ایک کو حل کرتے ہیں۔ چونکہ چاروں مساوات ایک طرح کی ہیں للذا باقی بھی اسی طرح حل ہوں گی۔ ہم ان میں پہلی مساوات منتخب کرتے ہیں:

$$\lambda_a = L_{aa}i_a + L_{ab}i_b + L_{ac}i_c + L_{am}I_m$$

مساوات 6.5 لچھا a کا خود امالہ دیتی ہے اور اس کو حاصل کرتے ہوئے تصور کیا گیا کہ لچھے کا پورا مقناطیسی بہاہ خلائی درز سے گزر تا ہے۔ حقیقت میں ایسا نہیں ہوتا اور مقناطیسی بہاہ کا کچھ حصہ خلائی درز سے گزر کر دوسری جانب نہیں پہنچ پاتا۔ مقناطیسی بہاہ کا یہ حصہ رستا امالہ L_{al} اللہ L_{al} پیدا کرتا ہے جو ٹرانسفار مرکے رستا امالہ کی طرح ہوتا ہے۔ یوں لچھے کا کل خود امالہ میں دو حصوں پر مشتمل ہوگا:

$$(6.15) L_{aa} = L_{aa0} + L_{al}$$

ہم مساوات 6.5، مساوات 6.9، مساوات 6.12 اور مساوات 6.15 کی مدد سے مساوات 6.14 کو درج ذیل صورت میں لکھتے ہیں۔

(6.16)
$$\lambda_{a} = (L_{aa0} + L_{al}) i_{a} - \frac{L_{aa0}}{2} i_{b} - \frac{L_{aa0}}{2} i_{c} + L_{am0} I_{m} \cos \omega t$$
$$= (L_{aa0} + L_{al}) i_{a} - \frac{L_{aa0}}{2} (i_{b} + i_{c}) + L_{am0} I_{m} \cos \omega t$$

leakage inductance¹⁵

اب تین دوری برقی رو کا مجموعہ صفر ہوتا ہے

$$(6.17) i_a + i_b + i_c = 0$$

للذا مساوات 6.16 میں اس کو استعال کرتے ہوئے

(6.18)
$$\lambda_a = (L_{aa0} + L_{al}) i_a - \frac{L_{aa0}}{2} (-i_a) + L_{am0} I_m \cos \omega t$$
$$= \left(\frac{3}{2} L_{aa0} + L_{al}\right) i_a + L_{am0} I_m \cos \omega t$$
$$= L_s i_a + L_{am0} I_m \cos \omega t$$

حاصل ہو گا جہاں

$$(6.19) L_s = \frac{3}{2}L_{aa0} + L_{al}$$

کو معاصراماله ¹⁶ کہتے ہیں۔

مساوات 6.19 اور مساوات 5.49 پر ایک مرتبہ دوبارہ غور کریں۔ یہ دونوں ایک دوسرے جیسے ہیں۔ وہاں کل گھومتا مقاطیسی دباو ایک کچھے کے امالہ کا $\frac{3}{2}$ گنا تھا اور یہاں معاصر امالہ ایک کچھے کے امالہ کا $\frac{3}{2}$ گنا ہے۔ یہ دو مساوات ایک ہی حقیقت کے دو پہلو ہیں۔

معاصر امالہ تین حصوں پر مشتمل ہے۔ پہلا حصہ L_{aa0} ہے جو a کچھے کا خود امالہ ہے۔ دوسرا حصہ $\frac{L_{aa0}}{2}$ ، کچھا کا باقی دو کچھوں کے ساتھ اس صورت مشتر کہ امالہ ہے جب مشین میں تین دوری متوازن برقی رو ہو۔ تیسرا حصہ a کا باقی دو کچھا کا رستا امالہ ہے۔ یوں متوازن برقی روکی صورت میں معاصر امالہ، مشین کے ایک کچھے کا ظاہری امالہ ہوتا ہے۔

مثال 6.1: ایک معاصر جزیٹر کی یک دوری کل خود امالہ 2.2 mH اور رستا امالہ 0.2 mH ہیں۔اس مشین کے دو مرحلوں کا آپس میں مشتر کہ امالہ اور مشین کا معاصر امالہ حاصل کریں۔

 $L_{ab} = -1\,\mathrm{mH}$ عل: چونکه $L_{aa} = L_{aa0} + L_{ab}$ لیزا $L_{aa} = L_{aa0} + L_{ab}$ کی مدد سے $L_{aa0} = 2\,\mathrm{mH}$ اور میادات $L_{aa} = 3.2\,\mathrm{mH}$ کی مدد سے $L_{s} = 3.2\,\mathrm{mH}$ اور میادات

 $synchronous\ inductance^{16}$

6.3 معاصر مشین کامساوی دوریاریاضی نمونه

کے ہوتی دباو کے برابر ہو گا، لیتی R_a میں برتی دباو کے گھنے اور λ_a کے برتی دباو کے برابر ہو گا، لیتی R_a

$$(6.20) v_a = i_a R_a + \frac{\mathrm{d}\lambda_a}{\mathrm{d}t}$$

$$= i_a R_a + L_s \frac{\mathrm{d}i_a}{\mathrm{d}t} - \omega L_{am0} I_m \sin \omega t$$

$$= i_a R_a + L_s \frac{\mathrm{d}i_a}{\mathrm{d}t} + e_{am}$$

يہاں

(6.21)
$$e_{am} = -\omega L_{am0} I_m \sin \omega t$$
$$= \omega L_{am0} I_m \cos \left(\omega t + \frac{\pi}{2}\right)$$

کو پیجانی برقی دباو یا اندرونی پیدا برقی دباو کہتے ہیں جو گھومتے کچھے سے پیدا مقناطیسی بہاو کی وجہ سے وجود میں آتی ہے۔ اس کے موثر قیت $E_{am,rms}$ مساوات 1.42 کی مدد سے حاصل ہوتا ہے۔

(6.22)
$$E_{am,rms} = \frac{\omega L_{am0} I_m}{\sqrt{2}} = 4.44 f L_{am0} I_m$$

مساوات 6.20 کو ایک برتی دور سے ظاہر کیا جا سکتا ہے جے شکل 6.3 میں دکھایا گیا ہے۔ کسی بھی برتی آلہ پر جب برتی دباو لا گو کیا جائے تو برتی روکی مثبت سمت لا گو برتی دباو کے مثبت سرے سے باہر کی جانب کو ہوتی ہے۔ المذا اس شکل میں برتی رو i_a لا گو برتی دباو v_a کی مثبت سرے سے باہر کی جانب کو ہے۔ یہ شکل ایک موٹر کو ظاہر کرتی ہے جہاں موٹر کے مثبت سرے پر برتی رو اندر کی جانب کو ہوتا ہے۔ اگر موٹر کی بجائے ایک معاصر جزیئر کی بات

شکل 6.4: معاصر جزیٹر کامساوی دوریاریاضی نمونہ۔

شکل 6.5: معاصر جنریٹر کے مساوی ادوار۔

ہوتی تو یہ جزیر برقی دباو پیدا کرتا اور برقی رو اس جزیر کی مثبت سرے سے باہر کی جانب کو ہوتی۔ اس صورت میں ہمیں شکل 6.3 کی جگه شکل 6.4 ملے گا۔اس شکل کی مساوات اسی شکل سے یوں حاصل ہوتی ہے۔

$$(6.23) e_{am} = i_a R_a + L_s \frac{\mathrm{d}i_a}{\mathrm{d}t} + v_a$$

یہاں میہ دھیان رہے کہ جزیٹر کے مساوی دور میں برقی رو کی مثبت سمت موٹر کے مساوی دور میں برقی رو کی مثبت سمت کے اُلٹ ہے۔اس کا دوری سمتیہ مساوات یوں لکھا جائے گا۔

(6.24)
$$\hat{E}_{am} = \hat{I}_a R_a + j \hat{I}_a X_s + \hat{V}_a$$

اس دوری سمتیہ کے مساوات کو شکل 6.5-الف میں دکھایا گیا ہے۔عام حالات میں X_s کی مقدار R_a سے سو سے دو سو گنا زیادہ ہوتی ہے۔

مثال 6.2: دو قطب 50 ہر ٹرز کا ایک معاصر جزیٹر 40 ایمپیئر میدانی برقی رو پر 2100 وولٹ یک دوری موثر برقی دباو پیدا کرتی ہے۔اس مشین کی قوی اور میدانی کچھول کے مابین مشتر کہ امالہ حاصل کریں۔ 6.4. برقى طب قىية كى منتقلى

حل: مساوات 6.22 سے

(6.25)
$$L_{am} = \frac{\sqrt{2}E_{am}}{\omega I_m} = \frac{\sqrt{2} \times 2100}{2 \times \pi \times 50 \times 40} = 0.2363 \,\text{H}$$

 \Box

6.4 برقی طاقت کی منتقلی

شکل 3.23 ٹرانسفار مر کا مساوی دور (ریاضی نمونہ) اور شکل 6.5 معاصر جزیٹر کا مساوی دور (ریاضی نمونہ) ہے۔ دونوں بالکل ایک طرح کے ہیں، للذا مندرجہ ذیل بیان دونوں کے لئے درست ہوگا، اگرچہ یہاں ہمیں صرف معاصر آلوں سے دلچیسی ہے۔

معاصر آلوں میں معاصر متعاملہ کچھے کی مزاحمت سے بہت زیادہ ہوتا ہے للذا اس کے مزاحمت کو نظرانداز کیا جا سکتا۔ ایبا ہی شکل کے حصہ بامیں کیا گیا ہے۔

شکل 6.5ب کو اگر ہم ایک کھے کے لئے ایک سادہ برقی دور سمجھیں جس کے بائیں جانب \hat{E}_{am} اور دائیں جانب \hat{V}_a جانب \hat{V}_a برقی دباو ہے جن کے مابین ایک متعاملہ $\hat{J}X_s$ جڑا ہے۔ اس برقی دور میں برقی طاقت کے منتقلی کا حساب یوں ممکن ہے۔

شکل 6.5-ب کی دوری سمتیہ شکل 6.6 میں دی گئی ہے۔ شکل 6.6-الف میں برتی رو \hat{I}_a برتی دباو \hat{V}_a سے ϕ زاویہ پیچھے ہے اور شکل 6.6-ب میں برتی رو ϕ زاویہ برتی دباو سے آگے ہے۔ چونکہ زاویہ اُفقی سمت سے گھڑی کی اُلٹی سمت ناپا جاتا ہے لہذا شکل-الف میں ϕ منفی زاویہ ہے اور σ مثبت زاویہ ہے جبکہ شکل-ب میں دونوں زاویے مثبت ہیں۔

دائیں جانب طاقت p_v منتقل ہو رہی ہے جہاں

$$(6.26) p_v = V_a I_a \cos \phi$$

شکل6.6: معاصر جنریٹر کادوری سمتیہ۔

ك برابر ہے۔ شكل 6.6-الف سے

(6.27)
$$\hat{I}_{a} = I_{a} \underline{/\phi_{a}} = \frac{\hat{E}_{am} - \hat{V}_{a}}{jX_{s}}$$

$$= \frac{E_{am}\underline{/\sigma} - V_{a}\underline{/0}}{X_{s}\underline{/\frac{\pi}{2}}}$$

$$= \frac{E_{am}\underline{/\sigma} - \pi/2 - V_{a}\underline{/-\pi/2}}{X_{s}}$$

کھا جا سکتا ہے۔ایک دوری سمتیہ کے دو جزو ہوتے ہیں۔ اس کا حقیقی جزو اُفقی سمت میں بنایا جاتا ہے اور اس کا فرضی جزو حقیقی جزو ک \hat{V}_a عمود میں بنایا جاتا ہے۔شکل 6.6 سے واضح ہے کہ اس مساوات کا حقیقی جزو کے ہم قدم ہے لہٰذا

(6.28)
$$I_a \cos \phi_a = \frac{E_{am}}{X_s} \cos \left(\sigma - \frac{\pi}{2}\right) - \frac{V_a}{X_s} \cos \left(-\frac{\pi}{2}\right)$$
$$= \frac{E_{am}}{X_s} \sin \sigma$$

اس مساوات اور مساوات 6.26 سے حاصل ہوتا ہے

$$(6.29) p_v = \frac{V_a E_{am}}{X_s} \sin \sigma$$

تین دوری معاصر مشین کے لئے اس مساوات کو تین سے ضرب دیں یعنی

$$(6.30) p_v = \frac{3V_a E_{am}}{X_s} \sin \sigma$$

 E_{am} یہ طاقت بالمقابل زاویہ 17 کا قانون ہے۔اگر V_a معین ہو تو جزیٹر E_{am} یا σ بڑھا کر طاقت بڑھا سکتا ہے۔اگر معین ہو تو جزیٹر کرنا ممکن ہے۔ کچھے کی مزاحمت میں برقی توانائی گھومتے کچھے میں برقی رو بڑھا کر بڑھائی جاتی ہے۔البتہ یہ ایک حد تک کرنا ممکن ہے۔ کچھے کی مزاحمت میں برقی توانائی

power-angle law¹⁷

6.4. برقى طب قت كى منتقلى

ضائع ہونے سے یہ گرم ہوتا ہے اور اس کی حرارت کو خطر ناک حد تک پہنچنے نہیں دیا جا سکتا۔ دوسری جانب σ کو نوے زاویہ تک بڑھایا جا سکتا ہے اور اس صورت میں جزیٹر زیادہ سے زیادہ طاقت مہیا کرے گا۔

$$p_{v, ; z_i} = \frac{3V_a E_{am}}{X_s}$$

حقیقت میں جزیٹر کو اس طرح بنایا جاتا ہے کہ اس کی زیادہ سے زیادہ قابل استعال طاقت نوے درجے سے کافی کم زاویہ پر ہو۔ نوے درجے پر جزیٹر کو قابور کھنا مشکل ہو جاتا ہے۔

مثال 6.3: ایک 50 قطب ستارہ جڑی تین دوری 50 ہرٹز 2300 وولٹ تار کی برقی دباو پر چلنے والی 1800 کلو وولٹ-ایمپیئر کی معاصر مشین کی یک دوری معاصر امالہ 2.1 اوہم ہے۔

- مثین کے برتی سروں پر 2300 وولٹ تارکی برتی دباو مہیا کرتے ہوئے اگر اس کی میدانی برتی رواتنی رکھی جائے کہ پورے بوجھ پر مثین کا جزو طاقت ایک کے برابر ہو تو اس سے زیادہ سے زیادہ کتنی قوت مروڑ حاصل کی جائے ہے۔
- اگر اسے 2 قطب 3000 چکر فی منٹ تین دوری سارہ جڑی 2300 وولٹ تارکی برقی دباو پیدا کرنے والی 2200 کلو وولٹ ایم بییئر کی معاصر جزیئر سے چلایا جائے جس کی یک دوری معاصر امالہ 2.3 اوہم ہو۔ موٹر پر اس کا پورا برقی بوجھ لادکر جزیئر کو معاصر رفتار پر چلاتے ہوئے دونوں مشینوں کی میدانی برقی رو تبدیل کی جاتی ہے حتی کہ موٹر ایک جزو طاقت پر چلنے گئے۔ دونوں مشینوں کی میدانی برقی رو یہاں بر قرار رکھ کر موٹر پر بوجھ آہتہ آہتہ بڑھائی جاتی ہے۔ اس صورت میں موٹر سے زیادہ سے زیادہ کتنی قوت مروڑ حاصل کی جا سکتی ہے اور اس کی سروں پر تارکی برقی دباو کتنی ہوگی۔

حل:

• شكل 6.7-الف اور 6.7-ب سے رجوع كريں۔ يك دوري برقى دباو اور كل برقى رويہ ہيں

$$\frac{2300}{\sqrt{3}} = 1327.9 \,\mathrm{V}$$
$$\frac{18000000}{\sqrt{3} \times 2300} = 451.84 \,\mathrm{A}$$

6.4. بر قى طاقىت كى منتقلى

للذا

$$\begin{split} \hat{E}_{am,m} &= \hat{V}_a - j\hat{I}_a X_{s,m} \\ &= 1327.9 / 0^\circ - j451.84 / 0^\circ \times 2.1 \\ &= 1327.9 - j948.864 \\ &= 1632 / -35.548^\circ \end{split}$$
 يك دورى زياده سے زياده برتی طاقت $p_{ij} = \frac{1327.9 \times 1632}{2.1} = 1\,031\,968\,\mathrm{W}$

ہے ۔یوں تین دوری زیادہ سے زیادہ طاقت 904 095 واٹ ہو گی۔50 ہر ٹز اور 50 قطب سے مشین کی معاصر میکانی رفتار مساوات 5.53 کی مدد سے دو چکر فی سینٹر حاصل ہوتی ہے لینی $f_m=2$ یوں مشین سے زیادہ سے زیادہ قوت مروڑ

$$T_{|\vec{\varphi}|} = \frac{p_{|\vec{\varphi}|}}{2\pi f_m} = \frac{3095904}{2 \times \pi \times 2} = 246\,364\,\mathrm{N}\,\mathrm{m}$$

حاصل ہو گی۔

• شکل 6.7-پ سے رجوع کریں۔ پہلی جزو کی طرح یہاں بھی موٹر کی برقی سروں پر تار کی برقی دباو 2300 وولٹ اور اس کی محرک برقی دباو 1632 وولٹ ہے۔ جزیئر کی محرک برقی دباو

$$\begin{split} \hat{E}_{am,g} &= \hat{V}_a + j\hat{I}_a X_{s,g} \\ &= 1327.9 / 0^{\circ} + j451.84 / 0^{\circ} \times 2.3 \\ &= 1327.9 + j1039.233 \\ &= 1686 / 38.047^{\circ} \end{split}$$

ہے۔ یہ صورت شکل 6.7-ت میں دکھائی گئی ہے۔

معاصر موٹر اس وقت زیادہ سے زیادہ طاقت پیدا کرے گی جب $\hat{E}_{am,m}$ اور $\hat{E}_{am,m}$ آپس میں $\hat{E}_{am,m}$ زاویہ پر ہوں۔ ایسا شکل $\hat{E}_{am,m}$ میں وکھایا گیا ہے ۔

اب مساوات 6.31 میں ایک معاصر امالہ کی جگہ سلسلہ وار جڑی موٹر اور جزیئر کی امالہ ہیں اور دو برقی دباو اب موٹر اور جزیئر کی محرک برقی دباو ہیں۔یوں موٹر کی یک دوری زیادہ سے زیادہ طاقت

$$p_{\xi i} = \frac{1686 \times 1632}{2.3 + 2.1} = 625352 \,\mathrm{W}$$

حاصل ہوں گے۔ یوں تنین دوری $1\,876\,056$ واٹ حاصل ہوں گے اور زیادہ سے زیادہ قوت مروڑ $T_{|\tau|}=rac{1876056}{2 imes\pi imes2}=149\,291\,\mathrm{N}\,\mathrm{m}$

ہو گی۔

6.5 کیسال حال، بر قرار چالومشین کے خصوصیات

معاصر جنریٹر: برقی بوجھ بالمقابل I_m کے خطوط 6.5.1

شکل 6.5-ب کے لئے دوری سمتیوں کا مساوات یہ ہے

$$\hat{E}_{am} = \hat{V}_a + j\hat{I}_a X_s$$

اسے بوں لکھ سکتے ہیں

(6.33)
$$E_{am/\underline{\sigma}} = V_a/\underline{0} + I_a X_s / \frac{\pi}{2} + \phi$$

اس مساوات کو مخلوط عدد 18 کے طور پر یوں لکھ سکتے ہیں۔

 $E_{am}\cos\sigma + jE_{am}\sin\sigma = V_a\cos0 + jV_a\sin0 + I_aX_s\cos\left(\frac{\pi}{2} + \phi\right) + jI_aX_s\sin\left(\frac{\pi}{2} + \phi\right)$ $= E_{am,x} + jE_{am,y}$

اس مساوات سے $\left|\hat{E}_{am}
ight|$ یعنی $\left|\hat{E}_{am}
ight|$ کی مقدار یوں حاصل ہوتی ہے۔

(6.34)
$$\begin{aligned} \left| \hat{E}_{am} \right| &= E_{am} = \sqrt{E_{am,x}^2 + E_{am,y}^2} \\ &= \sqrt{V_a^2 + (I_a X_s)^2 + 2V_a I_a X_s \sin \phi} \end{aligned}$$

جزیڑ کے سروں پر معین V_a رکھتے ہوئے مختلف ϕ کے لئے E_{am} بالقابل I_a خط شکل I_a میں دکھائے گئے ہیں۔ چونکہ I_a اور I_m براہِ راست متناسب ہیں اور اسی طرح کسی ایک مخصوص جزو طاقت اور معین V_a کئے جزیڑ کا طاقت I_a کے براہِ راست متناسب ہوتا ہے الہذا یہی ترسیم I_m بالقابل جزیڑ کے طاقت کو بھی ظاہر کرتا ہے۔

 ${\rm complex}\ {\rm number}^{18}$

 I_a بر تی باریا قوی کچھے کی بر تی رو

شکل 6.8: جزیٹر: برقی بوجھ بالمقابل I_m کے خط

معاصر موٹر: I_a بالمقابل معاصر موٹر: I_a

معاصر موٹر کا مساوی دور (ریاضی نمونہ) شکل 6.3 میں دکھایا گیا ہے اور اس کا دوری سمتیہ شکل 6.9 میں دکھایا گیا ہے۔ ہے۔ اس میں مزاحمت نظرانداز کرنے سے اس کی مساوات یوں ہو گی۔

(6.35)
$$\begin{split} \hat{V}_{a} &= \hat{E}_{am} + j\hat{I}_{a}X_{s} \\ V_{a}\underline{/0} &= E_{am}\underline{/\sigma} + jI_{a}\underline{/\phi}X_{s} \\ &= E_{am}\underline{/\sigma} + I_{a}X_{s}\underline{/\frac{\pi}{2} + \phi} \end{split}$$

اس مساوات میں زاویے موٹر پر لاگو برقی دباو \hat{V}_a کے حوالہ سے ہیں، لیعنی \hat{V}_a کا زاویہ صفر لیا گیا ہے۔یاد رہے کہ زاویہ ناپنے کی مثبت سبت افقی کیر سے گھڑی کی اُلٹی سبت ہے الہذا پیچ زاویہ 19 مثبت اور ماخیری زاویہ 20 مثنی ہیں۔ اس مساوات سے امالی دباو E_{am} کی مقدار یوں حاصل ہو گی۔

$$\begin{split} E_{am/\underline{\sigma}} &= V_a/\underline{0} - I_a X_s / \frac{\pi}{2} + \phi \\ &= V_a - I_a X_s \cos\left(\frac{\pi}{2} + \phi\right) - j I_a X_s \sin\left(\frac{\pi}{2} + \phi\right) \\ &= V_a + I_a X_s \sin\phi - j I_a X_s \cos\phi \end{split}$$

leading angle¹⁹ lagging angle²⁰

شکل 6.9: موٹر کادوری سمتیہ۔ ح

للذا

(6.36)
$$|E_{am}| = \sqrt{(V_a + I_a X_s \sin \phi)^2 + (I_a X_s \cos \phi)^2}$$
$$= \sqrt{V_a^2 + I_a^2 X_s^2 + 2V_a I_a X_s \sin \phi}$$

موٹر پر لاگو برقی و باو اور اس پر میکانی بوجھ کو 0%، 25% اور 75% پر رکھ کر اس مساوات کو شکل 6.10 میں ترسیم کیا گیا ہے۔ یہ موٹر کے E_{am} بالمقابل I_a بالمقابل I_a بالمقابل میں سے ہر خط ایک معین میکانی بوجھ I_a کے لئے ہے جہاں I_a

$$(6.37) p = V_a I_a \cos \phi$$

اس مساوات سے واضح ہے کہ اگر q اور V_a معین ہوں تو جزو طاقت تبدیل کر کے I_a تبدیل کیا جا سکتا ہے۔ لہذا مساوت 6.36 کو مساوات 6.36 کی مدو سے ترسیم کیا جاتا ہے۔ یہ کچھ یوں کیا جاتا ہے۔ معین V_a اور V_a کا فرو سے مختلف I_a کی مساوات 0.36 میں استعال کر کے 0.36 کا میں استعال کر کے 0.36 میں استعال کر کے 0.36 کا میں اور 0.36 بالمقابل 0.36 ترسیم کریں۔

موٹر کی ان خطوط سے واضح ہے کہ I_m کو تبدیل کر کے موٹر کی جزو طاقت تبدیل کی جاسکتی ہے۔ للذا موٹر کو پیٹر زاویہ یا آخیری زاویہ پر چلایا جا سکتا ہے۔ اگر اسے پیٹر زاویہ پر رکھا جائے تو یہ ایک کپیسٹر 21 کے طور پر استعال ہو سکتا ہے اگرچہ ایسا کیا نہیں جاتا چونکہ کپیسٹر از خود زیادہ ستا ہوتا ہے۔

 $ec{\epsilon}$ ى ئىچى كىرىن دە I_a

 I_m میدانی کچھے کی بر تی رو

شکل I_a : موٹر: I_m بالمقابل I_a خط

6.6 کھلے دوراور کسرِ دور معائنہ

معاصر مشین کے مساوی دور بنانے کے لئے اس کے جزو معلوم کرنا لازم ہے۔ یہ دو قشم کے معائنوں سے کیا جاتا ہے۔ انہیں کھلے دور معائنہ اور کسرِ دور معائنہ کہتے ہیں۔ان معائنوں سے قالب کے سیر اب ہونے کے اثرات بھی سامنے آتے ہیں۔ ہم نے ٹرانسفار مر کے لئے بھی اسی قشم کے معائنے کیے تھے۔ وہاں ہم نے دیکھا تھا کہ کھلے دور معائنہ اس برقی دباو پر کیا جاتا ہے معائنہ اس برقی دو پر کیا جاتا ہے جاتا ہے مثین بنائی گئی ہو جبکہ کسرِ دور معائنہ اس برقی رو پر کیا جاتا ہے جاتے گئے مثین بنائی گئی ہو جبکہ کسرِ دور معائنہ اس برقی رو پر کیا جاتا ہے جاتے گا۔

6.6.1 گطے دور معائنہ

معاصر مثین کے برقی سرے گھلے رکھ کر اور اسے معاصر رفتار پر گھماتے ہوئے مختلف I_m پر مثین کے سرول پر پیدا برقی دباو V_a ناپی جاتی ہے ۔ ان دو کا ترسیم شکل 6.11-الف میں دکھایا گیا ہے۔ یہ خط مثین کے گھلے دور خاصیت ظاہر کرتا ہے۔ یہی خط مثین بنانے والے بھی مہیا کر سکتے ہیں۔

design²²

شكل 6.11: گھلے دور خطاور قالبی ضیاع۔

اس کتاب کے حصہ 2.8 میں بتلایا گیا تھا کہ قالب پر لاگو مقناطیسی دباوا گر بڑھایا جائے تو اس میں مقناطیسی بہاو بڑھتی ہے البتہ جلد ہی قالب سیر اب ہونے لگتا ہے۔اس کا اثر شکل-الف میں خط کے جھکنے سے واضح ہے۔اگر قالب سیر اب نہ ہوتا تو یہ خط شکل میں دیئے سیدھی ککیر کی پیروی کرتا۔شکل میں مشین کا پورا برقی دباو اور اس پر درکار برقی رو I_{m0} دکھلایا گیا ہے۔

یہ معائد کرتے وقت اگر دھرے پر میکانی طاقت p_1 ناپی جائے تو یہ بے بوجھ مشین کی طاقت کے ضیاع کے برابر ہو گی۔ اس کا بیشتر حصہ رگڑ کی وجہ سے ، کچھ حصہ قالب میں ضیاع کی وجہ سے اور کچھ گھومتے لچھے میں ضیاع کی وجہ سے ہو گا۔ یاد رہے کہ عموماً گھومتے لچھے کو یک سمت جزیئر سے برقی توانائی دی جاتی ہے اور یہ جزیئر بھی مشین کی وجہ سے ہو تا ہے لہذا اسے طاقت محرک 23 سے ہی ملتی ہے۔ بے بوجھ مثین اور بوجھ بردار مثین دونوں کا رگڑ سے طاقت کے ضیاع کو کیساں سمجھا جاتا ہے چونکہ رگڑ سے طاقت کے ضیاع کا مثین پر لدے بوجھ سے کوئی خاص تعلق نہیں۔ اب اگر یہی معائد دوبارہ کیا جائے لیکن اس مرتبہ I_m بھی صفر رکھا جائے تو اس مرتبہ ناپا گیا طاقت کے ضیاع اور گھومتے لچھے میں برتی ضیاع بہت کم ہوتا قالب میں طاقت کے ضیاع اور گھومتے لچھے میں برتی ضیاع بہت کم ہوتا قالب میں طاقت کے ضیاع کا حصہ ہی تصور کیا جاتا ہے۔ اس طرح ناپے گئے قالبی ضیاع کا ایک خط شکل ہے اور اس کو عموماً قالب کے ضیاع کا حصہ ہی تصور کیا جاتا ہے۔ اس طرح ناپے گئے قالبی ضیاع کا ایک خط شکل ہے۔ اور اس کو عموماً قالب کے ضیاع کا حصہ ہی تصور کیا جاتا ہے۔ اس طرح ناپے گئے قالبی ضیاع کا ایک خط شکل

6.6.2 كسرٍ دور معائنه

 I_m معاصر مثین کو معاصر رفتار پر جزیئر کے طور چلاتے ہوئے اس کے ساکن کچھے کے سرے کسرِ دور کر کے مختلف I_m پر کسرِ دور برقی رو I_a بنائی جاتی ہے۔ ان دو کا ترسیم شکل I_a -الف میں دکھایا گیا ہے۔ یہ خط کسرِ دور مشین کی I_a -الف میں دکھایا گیا ہے۔ یہ خط کسرِ دور مشین کی I_a -دور مشین کی I_a -دور مشین کی I_a -دور مشین کی کھوچ کھے کو تانائی کہ ست جزیئر ہے آئی ہے اور اس جزیئر کو جرے آئی ہے۔

شكل 6.12: كسر دور خطاور كھلے دور خط۔

خاصیت و کھلاتا ہے۔ یہ معائنہ کرتے وقت یہ دھیان رکھنا بہت اہم ہے کہ I_a کی مقدار کہیں خطرناک حد تک نہ بڑھ جائے للذا اسے جزیئر کے پورے برقی بوجھ 24 پر I_a کی مقدار یا اس کی دگنی مقدار سے کم رکھنا ضروری ہے ورنہ مثین گرم ہو کر تباہ ہو سکتی ہے۔ کسرِ دور مثین میں، ڈیزائن کردہ برقی دباو کے، صرف دس سے پندرہ فی صد برقی دباو پر ہی اس میں سو فی صد برقی رو شروع ہو جاتی ہے۔ اتنا کم برقی دباو حاصل کرنے کے لئے خلائی درز میں اس تناسب سے کم مقناطیسی بہاو درکار ہوتا ہے۔

شکل 6.5 میں جزیٹر کے مساوی برتی دور دکھائے گئے ہیں۔ اسے شکل 6.13 میں کسرِ دور کر کے دکھایا گیا ہے۔ یہاں سے واضح ہے کہ

$$\hat{E}_{am} = \hat{I}_a R_a + j \hat{I}_a X_s$$

کو نظر انداز کر کے اس مساوات سے معاصر امالہ یوں حاصل کیا جا سکتا ہے۔ R_a

(6.39)
$$X_s = \frac{\left|\hat{E}_{am}\right|}{\left|\hat{I}_a\right|} = \frac{E_{am}}{I_a}$$

اس مساوات میں \hat{I}_a کسرِ دور مشین کی برقی رو اور \hat{E}_{am} اس کی اسی حال میں ایک دور کی امالہ برقی دباو ہے۔ کھلے دور مشین میں \hat{I}_a صفر ہو تو \hat{E}_{am} اور مشین میں \hat{I}_a صفر ہوتا ہے ۔مساوات \hat{E}_{am} ہول گے۔ لہذا ہم کسی معین \hat{I}_a پر شکل \hat{I}_a -الف سے \hat{I}_a اور شکل \hat{I}_a -ب سے \hat{I}_a معلوم کرتے ہیں اور ان سے \hat{I}_a کا حساب لگاتے ہیں، یعنی \hat{I}_a

$$(6.40) X_s = \frac{V_{a0}}{I_{a0}}$$

 $full\ load^{24}$

$$\begin{split} \hat{E}_{am} &= \hat{I}_a R_a + j \hat{I}_a X_s \\ &\approx j \hat{I}_a X_s \qquad X_s \gg R_a \\ X_s &= \frac{|\hat{E}_{am}|}{|\hat{I}_a|} \end{split}$$

شكل 6.13: معاصراماليه

معاصر امالہ عموماً مشین کے بورے برقی دباو پر معلوم کی جاتی ہے تاکہ قالب سیر اب ہونے کے اثر کو بھی شامل کیا جائے۔شکل میں ایسا ہی کیا گیا ہے۔

معاصر امالہ مشین کو ستارہ نما تصور کر کے اس کا یک دوری X_s حاصل کیا جاتا ہے۔المذا اگر معائنہ کرتے وقت مشین کی تار برتی د ہاو 25 ناپے گئے ہوں تو انہیں $\sqrt{3}$ سے تقسیم کر کے مشین کے یک دوری برتی د ہاو حاصل کر کے مساوات میں استعال کریں، لینی

$$V_{\zeta_{0},\zeta_{0}} = \frac{V_{\lambda^{*}}}{\sqrt{3}}$$

مثال 6.4: ایک 75 کلو وولٹ-ایمپیئر ستارہ جڑی 415 وولٹ پر چلنے والی تین دوری معاصر مشین کے کھلے دور اور کسرِ دور معائنے کئے گئے۔حاصل نتائج یہ ہیں۔

- کھلے دور معائنہ: $I_m = 3.2\,\mathrm{A}$ اور $I_m = 3.2\,\mathrm{A}$ بیں۔
- کسر دور معائنه: جب قوی کچھے کی برتی رو A 104 تھی تب میدانی کچھے کی برتی رو A 2.48 تھی اور جب قوی کچھے کی برتی رو A 126 تھی تب میدانی کچھے کی برتی رو A 3.2 تھی۔

اس مشین کی معاصر امالہ حاصل کریں۔

حل: یک دوری برقی دباو

$$V_{\zeta,z,\zeta} = \frac{V_{x}}{\sqrt{3}} = \frac{415}{\sqrt{3}} = 239.6 \,\mathrm{V}$$

line voltage 25

شكل 6.14: كسر دور معاصر مشين ميں طاقت كاضياع۔

ہے۔ یہ کھلے دور برقی دباو 3.2 ایمپیئر میدانی برقی رو پر حاصل ہوتی ہے۔ اتنی میدانی برقی رو پر کسرِ دور برقی رو 126 ایمپیئر ہیں للذا یک دوری معاصر امالہ

$$X_s = \frac{239.6}{126} = 1.901\,\Omega$$

ہو گی۔

 V_{n} کر دور معائنہ کرتے وقت اگر دھرے پر لاگو میکانی طاقت p_{3} ناپی جائے تو یہ کر دور مثین کی کل ضیاع ہو گی۔ p_{3} ناپ لیس۔ اس کا کچھ حصہ قالب کی برتی ضیاع، کچھ دونوں کچھوں میں برتی ضیاع اور کچھ رگڑ سے میکانی ضیاع سے بہلے معائنہ میں ناپی گئی رگڑ کی ضیاع p_{2} منفی کی جائے تو ہمیں کچھوں کی ضیاع اور قالب کی ضیاع مات ہے۔ جیسا اُوپر عرض کیا گیا کہ کر دور مثین میں پورا برتی رو، جات ہورے برتی دباوے و مرف دس تا ہیں فی صدیر حاصل ہو جاتا ہے اور اتنا کم برتی دباو حاصل کرنے کے لئے در کار مقاطیعی بہاو اتنا ہی کم ہوتا ہے۔ اس طرح کسی مقاطیعی بہاو پر قالب میں ضیاع کو نظر انداز کیا جا سکتا ہے۔ اس طرح کسی مجسی خوم کی خوم کے گئے در کار کسی خوم کی خوم کے گئے در کار کسی خوم کی خوم کی کھومتے کچھے میں برتی ضیاع کو نظر انداز کیا جا سکتا ہے۔ اس طرح کسی مجسی کم ہوتا ہے اور اسے بھی نظر انداز کیا جا سکتا ہے۔ لہذا $(p_{3}-p_{2})$ کو ساکن کچھے میں برتی ضیاع کے برابر لیا جاتا ہے۔ شکل 6.14 میں بھی نظر انداز کیا جا سکتا ہے۔ لہذا

$$p_3 - p_2 = I_{a,3}^2 R_a$$

اس مساوات سے معاصر مشین کی مساوی مزاحت بوں حاصل ہوتی ہے۔

(6.42)
$$R_a = \frac{p_3 - p_2}{I_{a.3}^2}$$

مثال 6.5: ایک 75 کلو وولٹ-ایمپیئر 415 وولٹ پر چلنے والی تین دوری معاصر مشین کے پورے برقی رو پر کل رو پر کل کل کر ہے۔ اس مشین کی یک دوری موثر مزاحمت حاصل کریں۔

$$\sqrt{300} = 733.33 \,\mathrm{W}$$
 کی دوری ضیاع $\sqrt{3000} = 733.33 \,\mathrm{W}$ کے بوری برتی رو $\sqrt{3000} = 104.34 \,\mathrm{A}$

ہے۔للذا

$$R_a = \frac{733.33}{104.34^2} = 0.067\,\Omega$$

مثال 6.6: شکل 6.15 میں 500 وولٹ، 50 ہر ٹز، 4 قطب ستارہ جڑی معاصر جزیٹر کا کھلے دور خط دکھایا گیا ہے۔ اس جزیٹر کا معاصر امالہ 0.1 اوہم اور قوی کچھے کی مزاحمت 0.01 اوہم ہے۔ پورے برقی بوجھ پر جزیٹر 0.92 تاخیری جزو طاقت²⁶ پر 1000 ایمپیئر فراہم کرتا ہے۔ پورے بوجھ پر رگڑ کے ضیاع اور کچھے کی مزاحمت میں ضیاع کا مجموعہ 30 کلو واٹ جبکہ قالب کی ضیاع 25 کلو واٹ ہے۔

- جزیٹر کی رفتار معلوم کریں۔
- بے بوجھ جزیٹر کی سرول پر 500 وولٹ برقی دباو کتنی میدانی برقی رو پر حاصل ہو گا۔
- اگر جزیٹر پر 9.92 تاخیر ی جزو طاقت، 1000 ایمپیئر کا برقی بوجھ لادا جائے تو جزیٹر کے برقی سروں پر 500 وولٹ برقرار رکھنے کے لئے کتنی میدانی برقی رو در کار ہو گی۔
- جزیٹر پورے بوجھ پر کتنی طاقت فراہم کر رہا ہے جبکہ اس کو محرک کتنی میکانی طاقت فراہم کر رہا ہے۔ان دو سے جزیٹر کی فی صد کارگزار کھے 27 حاصل کریں۔
 - اگر جزیٹر سے یک دم برقی بوجھ ہٹایا جائے تواس لحہ اس کے برقی سروں پر کتنا برقی دباو ہو گا۔
- اگر جزیٹر پر 1000 ایمپیئر 0.92 پیش جزو طاقت والا بوجھ لادا جائے تو جزیٹر کے برقی سروں پر 500 وولٹ برقرار رکھنے کے لئے کتنی میدانی برقی رو درکار ہو گی۔

lagging power factor²⁶ efficiency²⁷

شكل 6.15: كطير دور خطيه

• ان دو 1000 ایمبیئر تاخیری جزو طاقت اور پیش جزو طاقت بوجھوں میں کونمی بوجھ زیادہ میدانی برقی رو پر حاصل ہوتی ہے۔جزیٹر کس بوجھ سے زیادہ گرم ہو گا۔

حل:

- $f_{e}=rac{2}{2}$ بی کنٹر یا $f_{m}=rac{2}{4} imes 50=25$ منٹ ہے۔ $f_{e}=rac{P}{2}f_{m}$
 - شكل 6.15 سے 500 وولٹ كے لئے دركار ميداني برقى رو تقريباً 2.86 ايمييئر ہے۔
- ستارہ برقی دباو کے تعلق $V_{JR} = \sqrt{3}V_{JR} = 289$ سے $V_{JR} = \sqrt{3}V_{JR}$ وولٹ حاصل ہوتا ہے۔ ستارہ جوڑ میں یک دوری برقی رو اور تار برقی رو برابر ہوتے ہیں۔ جزو طاقت ستارہ یک دوری برقی دباو کے نسبت سے بیان کیا جاتا ہے۔ چو نکہ $\cos^{-1}0.92 = 23.07$ کھا جائے سے بیان کیا جاتا ہے۔ چو نکہ $\cos^{-1}0.92 = 23.07$ کھی جائے گی۔ یول شکل 6.4 یا مساوات 6.24 سے اندرونی تو تاخیری دوری برقی رو $\frac{6.24}{300}$ میں دوری برقی دباو

$$\begin{split} \hat{E}_a &= \hat{V}_a + \hat{I}_a \left(R_a + j X_s \right) \\ &= 289 \underline{/0^\circ} + 1000 \underline{/-23.07^\circ} (0.01 + j0.1) \\ &= 349 \underline{/14.6^\circ} \end{split}$$

ہو گا جس سے اندرونی پیدا تار برتی دباو $604=604 imes\sqrt{3} imes04$ وولٹ حاصل ہوتا ہے۔ شکل 6.15 سے اتن دباو کے لئے $4.1\,\mathrm{A}$ میدانی برتی رو درکار ہے۔

• جزیٹر اس صورت میں

$$\begin{aligned} p &= \sqrt{3} \hat{V}_a \cdot \hat{I}_a \\ &= \sqrt{3} \times 500 \times 1000 \times 0.92 \\ &= 796743 \, \mathrm{W} \end{aligned}$$

فراہم کر رہاہے جبکہ محرک

$$p_m = 796.743 + 30 + 25 = 851.74 \,\text{kW}$$

$$\eta=rac{796.743}{851.74} imes100=93.54\%$$
 فراہم کر رہا ہے للذا اس جزیٹر کی کار گزاری

• اگر جزیٹر سے یک دم برتی بوجھ ہٹایا جائے تو اس لحہ اس کے برتی سرول پر 604 وولٹ برتی دباو ہو گا۔

• پیش جزو طاقت کی صورت میں

$$\hat{E}_a = \hat{V}_a + \hat{I}_a (R_a + jX_s)$$

$$= 289/0^{\circ} + 1000/23.07^{\circ} (0.01 + j0.1)$$

$$= 276/20.32^{\circ}$$

در کار ہو گی جس سے اندرونی پیدا تار برتی دباو $478=76\times\sqrt{3}$ وولٹ حاصل ہوتا ہے۔ شکل 6.15 سے اتنی دباو کے لئے $2.7\,\mathrm{A}$ میدانی برتی رو در کار ہے۔

• تاخیری جزو طاقت کے بوجھ پر جزیٹر کو زیادہ میدانی برقی رو درکار ہے۔میدانی کچھے کی مزاحمت میں اس کی وجہ سے زیادہ برقی طاقت ضائع ہوگی اور جزیئر یوں زیادہ گرم ہوگا۔

П

مثال 6.7: ایک 415 دولٹ، 40 کلو دولٹ-ایمپیئر ستارہ جڑی 0.8 جزو طاقت، 50 ہرٹز پر چلنی والی معاصر موٹر کا معاصر اللہ 2.2 اوہم ہے جبکہ اس کی مزاحمت قابل نظرانداز ہے۔اس کی رگڑ اور کچھوں کی مزاحمت میں طاقت کا ضیاع ایک کلو واٹ جبکہ قالبی ضیاع 800 واٹ ہے۔ یہ موٹر 12.2 کلوواٹ میکانی بوجھ سے لدی ہے اور یہ 0.8 پیش جزو طاقت پر چل رہی ہے۔یاد رہے کہ معاصر امالہ مشین کو ستارہ نما تصور کرتے ہوئے حاصل کی جاتی ہے۔

اس کی دوری سمتیہ بنائیں۔تار کی برتی رو \hat{I}_t اور قوی کیجھے کی برتی رو \hat{I}_a حاصل کریں۔موٹر کی اندرونی ہیجانی برقی دباو \hat{E}_a حاصل کریں۔

- میدانی برقی رو کو بغیر تبدیل کئے میکانی بوجھ آہتہ آہتہ بڑھا کر دگنی کی جاتی ہے۔اس صورت میں موٹر کی رو عمل دوری سمتیہ سے واضح کریں۔
- اس دگنی میکانی بوجھ پر قوی کچھے کی برتی رو، تارکی برقی رواور موٹر کی اندرونی پیجانی برقی دباو حاصل کریں۔موٹر کی جزو طاقت بھی حاصل کریں۔

حل:

• سارہ جڑی موٹر کے سروں پر یک دوری برتی دباو $239.6\,\mathrm{V}$ ہوگا جسے صفر زاویہ پر تصور کرتے ہوئے برتی رو کا زاویہ بیان کیا جاتا ہے۔ یوں $0.8.6\,\mathrm{V}$ کھا جائے گا۔ جزو طاقت $0.8\,\mathrm{C}$ زاویہ $0.8\,\mathrm{C}$ کھا جائے گا۔ جزو طاقت $0.8\,\mathrm{C}$ زاویہ $0.8\,\mathrm{C}$ کھا جائے گا۔ جزو طاقت $0.8\,\mathrm{C}$ ناویہ کہی ہو گا۔ موٹر کو مہیا برتی طاقت اس کی میکانی طاقت اور طاقت کے ضیاع کے برابر ہو گی لیمنی

12200 W + 1000 W + 800 W = 14000 W

جس کے لئے در کار تار کی برقی رو

$$I_t = \frac{p}{\sqrt{3}V_t\cos\theta}$$
$$= \frac{14\,000}{\sqrt{3}\times415\times0.8}$$
$$= 24.346\,\mathrm{A}$$

ہو گی۔ستارہ جڑی موٹر کے قوی کچھے کی برقی رو تار کے برقی رو کے برابر ہو گی۔یوں برقی رو کا زاویہ شامل کرتے ہوئے اسے

$$\hat{I}_a = \hat{I}_t = 24.346/36.87^{\circ}$$

لکھا جا سکتا ہے۔

موٹر کا اندرونی یک دوری ہیجانی برتی دباو موٹر کی مساوی دور شکل 6.3 کی مدد سے

$$\begin{split} \hat{E}_a &= \hat{V}_{a,s} - jX_s\hat{I}_a \\ &= 239.6\underline{/0^{\circ}} - j2.2 \times 24.346\underline{/36.87^{\circ}} \\ &= 276\underline{/-8.96^{\circ}} \end{split}$$

ہو گی۔یہ تمام صورت حال شکل 6.16 میں دوری سمتیات کی مدد سے دکھایا گیا ہے۔

شکل6.16: بوجھ بر دار معاصر موٹر۔

شكل 6.17: بوجھ بڑھنے كااثر۔

میکانی بوجھ بڑھنے سے موٹر کو زیادہ برقی طاقت درکار ہوگی۔ یہ اس صورت ممکن ہوگا جب موٹر کے قوی لیجھ کی برقی رو بڑھ سکے۔ میدانی برقی رو معین ہونے کی وجہ سے موٹر کی اندرونی پیجانی برقی دباو \hat{E}_a کی مقدار تبدیل نہیں ہو سکتی البتہ اس کا زاویہ تبدیل ہو سکتا ہے۔ موٹر \hat{E}_a کی مقدار تبدیل کئے بغیر برقی سروں پر لاگو برقی دباو \hat{V}_a کا مقدار تبدیل بین زاویہ بڑھا کہ قوی کچھے کی برقی رو اور یوں حاصل برقی طاقت بڑھا کے گا۔ایسا شکل \hat{E}_a میں دکھایا گیا ہے۔ شکل میں \hat{E}_a میں دکھایا گیا ہے۔ شکل میں ہوتا۔ زاویہ بڑھنے سے \hat{E}_a کی برقی رو بڑھ گئی ہے۔ زاویہ بڑھنے سے \hat{E}_a کی برقی رو بڑھ گئی ہے۔ زیادہ بوجھ کے متغیرات کو بلکی سیابی میں دکھایا گیا ہے۔

• وگنی میکانی بوجھ پر موٹر کو کل 26200 = 26200 + 800 + 1000 واٹ یا 26.2 کلو واٹ برتی طاقت در کار ہے۔مساوات 6.29 کی مدر سے

$$\sigma = \sin^{-1}\left(\frac{pX_s}{3V_aE_a}\right) = \sin^{-1}\left(\frac{26200 \times 2.2}{3 \times 239.6 \times 276}\right) = 16.89^{\circ}$$

یوں موٹر کی اندرونی ہیجانی برتی دباو <u>°16.89 – 27</u>6 ہو گی اور قوی کچھے کی برتی رو

$$\begin{split} \hat{I}_{a} &= \frac{\hat{V}_{a} - \hat{E}_{a}}{jX_{s}} \\ &= \frac{239\underline{/0^{\circ}} - 276\underline{/-16.89^{\circ}}}{j2.2} \\ &= 38\underline{/17.4^{\circ}} \end{split}$$

ہو گی۔ ستارہ جوڑ کی وجہ سے \hat{I}_t بھی اتنا ہی ہو گا۔ پیش جزو طاقت $\cos 17.4^\circ = 0.954$ ہے۔

ياب7

امالی مشدن

گزشتہ برسوں میں قوی الیکڑائکس 1 کی میدان میں بہت ترقی ہوئی۔اس کا ایک نتیجہ یہ نکلا کہ امالی موٹروں کی رفتار پر قابو رکھنا ممکن ہوا اور یوں ان موٹروں نے کارخانوں میں یک سمت رو موٹروں کی جگہ لینی شروع کی۔ یہاں یہ بتلاتا چلوں کہ اس سے پہلے جہاں بھی موٹر کی رفتار اہمیت رکھتی وہاں یک سمت رو موٹر ہی استعال ہوتی جن کی رفتار پر قابو رکھنا نہایت آسان ہوتا ہے۔ پچاس سال پہلے ترقی یافتہ ممالک میں یک سمت سے امالی آلوں کی جانب تبدیلی شروع تھی۔ آج میں یہی تبدیلی پاکستان میں دکھے رہا ہوں۔ امالی موٹروں کی مضبوطی اور دیریا کام کرنے کی صلاحیت شروع تھی۔ آج میں کیک تبدیلی پاکستان میں دکھے رہا ہوں۔ امالی موٹروں کی مضبوطی اور دیریا کام کرنے کی صلاحیت مثالی ہے۔ قوی الیکٹرائکس نے ان کی بے قابو رفتار کو قابو کر کے انہیں بلا مقابلہ بنا دیا۔

امالی موٹر ٹرانسفار مرکی ایک اور شکل ہے یا یوں کہنا بہتر ہو گاکہ یہ ایک ایسا ٹرانسفار مر ہے جس میں ثانوی لچھا حرکت بھی کرتا ہے۔یوں امالی موٹر کے ساکن کچھے ٹرانسفار مر کے ابتدائی کچھے اور موٹر کے گھومتے کچھے ٹرانسفار مر ک ثانوی کچھوں کی جگہ ہوتے ہیں۔موٹر کے ساکن کچھوں کو بیرونی برقی طاقت دی جاتی ہے جبکہ اس کے گھومتے کچھوں میں خلاء میں گھومتے مقناطیسی موج سے پیدا امالی برقی دباو ہی کام آتی ہے۔اسی سے اس کا نام امالی موٹر نکلا ہے۔

اس باب کا مقصد امالی موٹر کی مساوی دور لیعنی ریاضی نمونہ ² بنا کر اس کی خصوصیات پر غور کرنا ہے۔ہم دیکھیں گے کہ ان کا مساوی دور ٹرانسفار مر کے مساوی دور کی طرح کا ہے۔

 $\begin{array}{c} power \ electronics^1 \\ mathematical \ model^2 \end{array}$

یہاں بھی ہم تصور کرتے ہیں کہ موٹر دو قطب اور تین دوری ہے اور اس کے کیھے ستارہ نما بڑے ہیں۔اس طرح یک دوری کچھوں میں برقی رو، تارکی برقی رو ہی ہوگی اور ان پر لاگو برقی دباو، یک دوری برقی دباو ہوگی۔اییا کرنے سے مسئلہ پر غور کرنا آسان ہو جاتا ہے جبکہ نتیجہ کسی بھی موٹر کے لئے درست ہوتا ہے۔

7.1 ساكن لچھوں كى گھومتى مقناطيسى موج

امالی مشین کے ساکن کچھے بالکل معاصر مشین کے ساکن کچھوں کی طرح ہوتے ہیں۔ مزید یہ کہ اس کے گھومتے جھے کے اتنے ہی قطب ہوتے ہیں جتنے اس کے ساکن کچھوں کے ہوتے ہیں۔ اگر ان ساکن کچھوں کو متوازن تین دوری برقی روسے ہیجان کیا جائے تو یہ ایک گھومتے مقناطیسی دباو کی موج کو جنم دیں گے جے مساوات 5.49 میں دکھایا گیا ہے۔ مساوات ہماں یاد دھیانی کے لئے دوبارہ دیے گیا ہے۔ مساوات ہماں یاد دھیانی کے لئے دوبارہ دیے جاتے ہیں۔ یہاں ساکن کچھوں میں برتی روکی تعدد ω تعدد ω گئی ہے اور ω کو صفر لیا گیا ہے۔

(7.1)
$$\tau_s^+(\theta, t) = \frac{3\tau_0}{2}\cos(\theta - \omega_t)$$
$$f_m = \frac{2}{P}f_e$$

7.2 مشین کی سر کنے اور گھومتی موجوں پر تبسرہ

ہم دو قطب کے مشین پر غور کر رہے ہیں۔P قطب کا تذکرہ بھی بالکل اسی طرح ہے۔ساکن کچھوں میں نین دوری برقی رو کی تعدد f_e ہے۔مساوات f_e کہتا ہے کہ دو قطب کی مشین میں موج کی معاصر رفتار بھی f_e چکر فی سکنڈ ہے۔ اب نصور کریں کہ مشین کا گھومتا حصہ f_e میکانی چکر فی سکنڈ سے موج کی سمت میں گھوم رہا ہے جہاں f_e ہے۔ اس صورت میں ہر سکنڈ گھومتا حصہ مقناطیسی بہاو کی موج سے پیچھے سرک جائے گا۔اس سر کنے کو موج کی معاصر رفتار کی نسبت سے یوں لکھا جاتا ہے۔

$$(7.2) s = \frac{f_s - f}{f_s} = \frac{f_e - f}{f_e}$$

یہاں s مشین کے سرک 2 کی ناپ ہے۔اس مساوات سے حاصل ہوتا ہے۔

(7.3)
$$f = f_s(1-s) = f_e(1-s) \omega = \omega_s(1-s) = \omega_e(1-s)$$

یہاں غور کریں۔ مقناطیسی بہاو کی موت f_e تعدد سے گھوم رہی ہے جبکہ گھومتے کچھے کی تعدد f ہے۔ گھومتے کچھے کے حوالہ سے مقناطیسی بہاو کی موت (f_e-f) رفتار سے گھوم رہی ہے۔ یعنی اگر گھومتے کچھے کو ساکن تصور کیا جائے تو گھومتے مقناطیسی بہاو کی موج (f_e-f) اضافی رفتار سے گھوم رہی ہو گی۔ یوں گھومتے کچھے میں امالی برقی دباو کی تعدد کچی (f_e-f) ہو گی۔مساوات 7.3 کی مدد سے اس امالی برقی دباو کی تعدد f_r کو یوں کھھا جاسکتا ہے۔

(7.4)
$$f_r = f_e - f = f_e - f_e(1 - s) = sf_e$$

اگر مشین کو ایک امالی موٹر کے طور پر استعال کیا جا رہا ہو تو اس کے گھومتے کچھے کسر دور رکھے جاتے ہیں۔یوں ان کچھوں میں برقی رو کی تعدد sf_e اور ان کی مقدار کچھوں میں پیدا امالی برقی دباو اور کچھوں کی رکاوٹ پر منحصر ہوتی ہے۔ کچھوں کی رکاوٹ برقی رو کی تعدد پر منحصر ہوتی ہے۔

ساکن موٹر جب چالو کی جائے تو اس کے سرک s کی قیمت ایک ہوتی ہے لین s=1 اور یوں اس کے گومت کچھوں میں برتی رو ایک گومتی مقناطیسی دباو کی موج کو جہم دے گی جو معاصر رفار سے گھوے گی۔ یہ بالکل اس طرح ہے جیسے ساکن کچھوں میں برتی رو سے گھومتا مقناطیسی دباو کا موج وجود میں آتا ہے۔ للذا ساکن اور گھومتے لچھے دونوں کے گھومتے مقناطیسی دباو کی موج ایک ہی رفار سے گھومتے ہیں۔ یہ دو مقناطیسی دباو کی موجیں دو گھومتے مقناطیسوں کی طرح ہیں جو کوشش کریں گے کہ ان کے ماہین زاویہ صفر ہو۔ یوں موٹر وقتے مروڑ کہ پیدا ہوتا ہے جس کا حساب مساوات 5.92 سے لگایا جا سکتا ہے۔ اگر موٹر کے دھرے پر لدے ہو جھ کو مشین کا پیدا کردہ قوت مروڑ گھما سکے تو مشین گھومے گی۔ اس کی رفار پر اس کے گھومت دیر لدے ہو جھ کو مشین کا پیدا کردہ قوت مروڑ گھما سکے تو مشین گھومے گی۔ اس کی رفار پر اس کے گھومت کی خوص کی نبیس پہنچ سکتی چو نکہ اس رفار پر اس کے گھومت کچھوں کی نبیت سے ساکن کچھوں میں کوئی امالی برتی دباویدا نہیں ہوگا۔

جب موٹر چل پڑتی ہے تو اس کے گھومتے کچھوں میں برتی رو کی تعدد sf_e ہوتی ہے۔ ان برتی رو سے پیدا مقناطیسی دباو کی موج گھومتے کچھے کے حوالہ سے sf_e رفتار سے گھومے گی چونکہ معاصر رفتار برقی رو کی تعدد کے

 $slip^3$ $torque^4$

 $(f+sf_e)$ برابر ہی ہوتی ہے۔اب گھومتا کچھا از خود f رفتار سے گھوم رہا ہوتا ہے لہذا یہ موج در حقیقت خلاء میں رفتار سے گھومتی ہے۔مساوات f. کسے

$$(7.5) f + sf_e = f + f_e - f = f_e$$

یہ ایک بہت اہم منتیجہ ہے۔ یہ مساوات کہتا ہے کہ موٹر کسی بھی رفتار سے گھوم رہی ہو، گھومتے کچھول سے پیدا مقناطیسی دباو کی موج ساکن کچھول سے پیدا مقناطیسی دباو کی موج کی رفتار سے ہی گھومتی ہے۔

مثال 7.1: ایک چار قطب کی ستارہ جڑی 50 ہر ٹرن 415 وولٹ پر چلنے والی امالی موٹر 15 کلو واٹ کی اپنی پوری بوجھ پر پانچ فی صد سرک پر چلتی ہے۔

- اس موٹر کی معاصر رفتار کیا ہے۔
- بورے بوجھ پر اس کی کیا رفتار ہے۔
- يورے بوجھ پر گھومتے لچھے ميں برقی تعداد ارتعاش كيا ہے۔
- پورے بوجھ سے لدے موٹر کی دھرے پر قوت مروڑ حاصل کریں۔

حل:

- مساوات 7.1 کی مدو سے معاصر رفتار $f_m = \frac{2}{4} \times 50 = 25$ کیکر نی سیکنڈ یا 7.1 کی مدو سے معاصر رفتار منٹ ہے۔
- پورے بوجھ سے لدا موٹر پانچ فی صد سرک پر چلتا ہے لہذا اس کی رفتار معاصر رفتار سے قدرِ کم ہو گی۔موٹر کی رفتار مساوات 7.3 کی مدد سے 23.75 = 25(1-0.05) = 25 کی رفتار مساوات 7.3 کی مدد سے 23.75 گیا۔ گیا۔
 - $f_r = 0.05 imes 50 = 2.5$ ہر ٹر ہے۔
 - اس کے وحرے پر قوت مروڑ $T_m=rac{p}{\omega_m}=rac{15000}{2 imes\pi imes2.75}=100.5\,\mathrm{N}\,\mathrm{m}$ ہوگی۔

7.3 ساكن لچھوں ميں امالى برقى دباو

مساوات 7.1 کا پہلا جزو ساکن کچھوں کی پیدا کردہ مقناطیسی دباو کی موج کو ظاہر کرتی ہے۔ یہ مقناطیسی دباو مشین کی خلائی درز میں مقناطیس شدت $H^+(\theta)$ پیدا ہو گا۔ اگر خلائی درز میں مقناطیس بہاو $H^+(\theta)$ پیدا ہو گا۔ اگر اس خلائی درز کی رداس کی سمت میں لمبائی $H^+(\theta)$ ہو تو

(7.6)
$$B^{+}(\theta) = \mu_0 H^{+}(\theta) = \mu_0 \frac{\tau^{+}(\theta)}{l_g}$$
$$= \frac{3\mu_0 \tau_0}{2l_g} \cos(\theta - \omega_e t)$$
$$= B_0 \cos(\theta - \omega_e t)$$

یہ مساوات بالکل مساوات $B^+(\theta)$ کی طرح ہے۔ یوں مساوات 5.74 اس مقناطیسی موج $B^+(\theta)$ کی ساکن کچھوں میں پیدا کردہ امالی برقی دباو کو ظاہر کرے گی ۔ یہ مساوات یہاں دوبارہ دیا جا رہا ہے۔

(7.7)
$$e_{as}(t) = \omega_e N_s \phi_0 \cos(\omega_t - 90^\circ) = E_s \cos(\omega_t - 90^\circ)$$
$$e_{bs}(t) = \omega_e N_s \phi_0 \cos(\omega_t + 150^\circ) = E_s \cos(\omega_t + 150^\circ)$$
$$e_{cs}(t) = \omega_e N_s \phi_0 \cos(\omega_t + 30^\circ) = E_s \cos(\omega_t + 30^\circ)$$

جہال N_s ساکن کھھے کے چکر ہیں اور

$$(7.8) E_s = \omega_e N_s \phi_0$$

a یہاں a کھتے ہوئے زیر نوشت میں a ، دور a کو ظاہر کرتا ہے اور a ساکن a کھتے ہوئے زیر نوشت میں a ، دور a کو ظاہر کرتا ہے اور a ساکن a کہتے میں اللے برقی دباو ہے۔ امالی موٹر کے a دور کی بات ہی آگے کرتے ہیں۔ گھومتی مقناطیسی دباو کی موج اس کچھے میں امالی برقی دباو a پیدا کرتی ہے۔

7.4 ساکن کچھوں کی موج کا گھومتے کچھوں کے ساتھ اضافی رفتار اور ان میں پیداامالی برقی دباو

مساوات 7.1 کا پہلا بُڑن ساکن کچھوں کی پیدا کردہ، گھومتے مقناطیسی دباو کی موج کو ظاہر کرتا ہے۔اس موج کی چوٹی 7.1 اس مقام پر ہوتی ہے جہال $(\theta-\omega_e t)$ صفر کے برابر ہو۔ یوں لمحہ صفر پر اس کی چوٹی صفر زاویہ پر ہو گی اور لمحہ t پر

انظ ساکن میں حرف س کے آواز کوsے ظاہر کیا گیاہے۔ $ext{peak}^6$

شکل 7.1: امالی موٹراوراس کے گھومتے مقناطیسی دباو کی موجیں۔

اس موج کی چوٹی زاویہ $\omega_e t$ پر ہو گی۔ ساکن کچھوں کی مقناطیسی دباو کی موج کا زاویہ کسی بھی نقطہ کے حوالے سے کیا جا سکتا ہے۔ اس کتاب میں صفر زاویہ ساکن کچھا a کو لیا جاتا ہے۔ اس طرح یہ زاویہ نقطہ دار اُفقی لکیر سے ناپا جاتا ہے۔ اس طرح یہ زاویہ نقطہ دار اُفقی لکیر سے ناپا جاتا ہے۔ شکل 7.1 میں ایسا ہی دکھایا گیا ہے۔ اس شکل میں ایک امالی موٹر دکھائی گئی ہے جس کے تین دوری ساکن کچھے ہیں۔ ہیں۔

f کھومتے کچھے بھی بالکل اسی طرح ہوتے ہیں اگرچہ شکل میں صرف ایک ہی گھومتا کچھا دکھایا گیا ہے۔ مشین t=0 زاویائی رفتار سے گھوم رہی ہے۔ تصور کریں کہ لمحہ صفر یعنی t=0 پر گھومتے حصہ کا a کچھا صفر زاویہ پر ہے، یعنی یہ نقطہ دار اُفقی کلیر پر ہے مزید یہ کہ اس لمحہ ساکن کچھوں کی گھومتی مقناطیسی دباو کی موج بھی اسی اُفقی کلیر پر ہے۔ اب نقطہ دار اُفقی کلیر پر ہے موج زاویہ کھو نے اور یہ بھو گی۔ اتنی دیر میں گھومتا حصہ گھوم کر زاویہ موج ناویہ پہنچ جائے گا جہاں a میں دکھایا گیا ہے۔ لہذا لمحہ a پر موج اور گھومتے کچھے جہاں کے در میان زاویہ چa ہو گا

$$\theta_z = \omega_e t - \omega t$$

 $(\omega_e t - \omega t)$ اگرچہ مقناطیسی موج نے $\omega_e t$ زاویہ طے کیا لیکن گھومتے کچھے کے حوالے سے اس نے صرف زاویہ $\omega_e t = \omega_e$ کیا۔اسی طرح گھومتے کچھے کے حوالے سے اس موج کی اضافی σ زاویائی رفتار ω_e سے ہوگی۔

(7.10)
$$\omega_z = \frac{\mathrm{d}\theta_z}{\mathrm{d}t} = \omega_e - \omega$$

یں لکھے ہوئے زیر نوشت میں 2، لفظ اضافی کے حرف ض کی آواز کو ظاہر کرتا ہے۔ relative angular speed 8

اس کو مساوات 7.4 کی مدد سے یوں لکھ سکتے ہیں۔

(7.11)
$$\omega_z = 2\pi (f_e - f) = 2\pi s f_e = s\omega_e$$

یہ مساوات کہتا ہے کہ گھومتے کچھے کے حوالے سے مقناطیسی موج کی رفتار سرک s پر منحصر ہے۔اس موج کا حیطہ البتہ تبدیل نہیں ہوا۔ اس طرح گھومتے کچھے کے حوالے سے مقناطیسی موج کی مساوات جو کہ مساوات 7.4 میں دی گئ ہے تبدیل ہو کر یہ بن جائے گی۔

(7.12)
$$B_{s,rz}^{+}(\theta,t) = B_0 \cos(\theta - \omega_z t) = B_0 \cos(\theta - s\omega_e t)$$

یں + کا نشان گھڑی کی اُلٹی سمت گھومتی موج کو ظاہر کرتا ہے جبکہ زیر نوشت میں 9 8 اس بات کی یاد دھیانی کرتا ہے کہ یہ موج ساکن کچھوں کی وجہ سے وجود میں آیا اور اسے گھومتے یعنی رواں کچھوں کے حوالے سے دیکھا جا رہا ہے۔مزید ہیں کہ اس مساوات کی تعدد اضافی تعدد 8 کے برابر ہے۔

یوں گھومتے کچھوں میں امالی برقی دباو مساوات 7.7 کی طرح ہی ہو گی مگر ان کی تعدد $\omega_z=s\omega_e t$ ہو گی $\omega_z=s\omega_e t$ ہو گی

(7.13)
$$e_{arz}(t) = s\omega_e N_r \phi_0 \cos(s\omega_e t - 90^\circ) = sE_r \cos(s\omega_e t - 90^\circ)$$
$$e_{brz}(t) = s\omega_e N_r \phi_0 \cos(s\omega_e t + 150^\circ) = sE_r \cos(s\omega_e t + 150^\circ)$$
$$e_{crz}(t) = s\omega_e N_r \phi_0 \cos(s\omega_e t + 30^\circ) = sE_r \cos(s\omega_e t + 30^\circ)$$

ان مساوات میں N_r گھومتے کچھے کے چکر ہیں اور

$$(7.14) E_r = \omega_e N_r \phi_0$$

 $^{11}i_{arz}$ اب تصور کریں کہ گھومتے کچھوں کو کسرِ دور کر دیا کیا گیا ہے۔ یہ امالی برقی د باد گھومتے کچھوں میں برقی رو $^{12}i_{arz}$ اور اس کی وغیرہ پیدا کرے گی جس کی تعدد $^{12}R_r$ اور اس کی امالی سماکن کچھے کی طرح، گھومتے کچھے کی مزاحمت $^{12}R_r$ اور اس کی امالیت $^{12}R_r$ میں متعامیت $^{12}R_r$ ہو گی جس کی متعامیت $^{13}S_r$ ہو گی۔ ایسے ہم یوں لکھ سکتے ہیں۔

$$(7.15) js\omega_e L_r = jsX_r$$

جہاں jX_r کو $j\omega_e L_r$ کے برابر لیا گیا ہے، لینی jX_r اس کچھے کی ساکن حالت میں متعاملیت ہے جب سرک ایک کے برابر ہو۔ گھومتے کچھوں میں برتی رو i_{arz} شکل 7.2 کی مدد سے حاصل کی جا عتی ہے جہاں گھومتے کچھے میں امالی برتی دباو $e_{arz}(t)$ مساوات 7.13 میں دیا گیا ہے۔

 s^9 لفظ ساکن کے س کو ظاہر کرتا ہے ،r لفظ روال کے رکو ظاہر کرتا ہے اور پر لفظ اضافی کے مُس کو ظاہر کرتا ہے۔ e_{axz}^{-10} میں دورaے کے گومت نجیح کو rادراضافی کو پر ظاہر کرتا ہے۔

¹¹ یبان 7 گلومتے کچھے کو ظاہر کرتاہے اور چراس بات کی یاد دھیائی کرتاہے کد اس بر قی رو کی تعدد ،اضافی تعدد ہے۔ 12 ٹرانسفار مرکی اصطلاح میں ٹانو کی کچھے کو زیر نوشت میں 2 ہے ظاہر کرتے ہیں۔ یہاں اے 2 ہے ظاہر کیا جاتا ہے۔

$$Z_r = R_r + jsX_r$$

$$+$$

$$e_{arz}$$

$$-$$

$$\hat{I}_{arz} = \frac{\hat{E}_{arz}}{Z_r}$$

$$i_{arz}(t) = \frac{sE_r}{|Z|} \cos(s\omega_e t - 90^\circ - \phi_z)$$
$$= I_{0r} \cos(s\omega_e t - 90^\circ - \phi_z)$$

شكل 7.2: گھومتے لیچھے کی مساوی دوراوراس میں اضافی تعدد کی رو۔

یہ شکل بالکل شکل 1.15 کی طرح ہے المذا مساوات 1.50 اس میں برتی رو دے گی یعنی

(7.16)
$$i_{arz}(t) = \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}} \cos(s\omega_e t - 90^\circ - \phi_z) = I_{0r} \cos(s\omega_e t + \theta_0)$$

$$i_{brz}(t) = \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}} \cos(s\omega_e t + 150^\circ - \phi_z) = I_{0r} \cos(s\omega_e t - 120^\circ + \theta_0)$$

$$i_{crz}(t) = \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}} \cos(s\omega_e t + 30^\circ - \phi_z) = I_{0r} \cos(s\omega_e t + 120^\circ + \theta_0)$$

یہ تین دوری برقی رو ہیں جو آپس میں °120 کا زاویہ رکھتے ہیں۔ یہاں پ ϕ رکاوٹ کا زاویہ 13 ہے۔امید کی جاتی ہے کہ اسے آپ مقناطیسی بہاو نہیں سمجھیں گے۔ یہاں

(7.17)
$$\theta_0 = -90 - \phi_z$$

$$I_{0r} = \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}}$$

شکل 7.2 سے واضح ہے کہ ایک گھومتے کچھے کی مزاحمت میں

$$(7.18) p_r = I_{or}^2 R_r$$

برقی طاقت کا ضیاع ہو گا۔ یہ طاقت حرارت میں تبدیل ہو کر اس مزاحمت کو گرم کرے گ۔

 ϕ استعال ہوتا ہے۔ یہاں یمی کیا گیا ہے۔ ϕ استعال ہوتا ہے۔ یہاں یمی کیا گیا ہے۔

7.5 گھومتے کیچھوں کی گھومتی مقناطیسی دیاو کی موج

ہم جانتے ہیں کہ ساکن تین دوری کچھوں میں f_e تعدد کی برقی رو گھومتے متناطیسی دباو کی موج کو جنم دیتی ہے جو sf_e میں ساکن کچھے کے حوالے سے f_e معاصر زاویائی رفتار سے گھومتی ہے۔ اسی طرح گھومتے تین دوری کچھوں میں sf_e تعدد کی برقی روایک گھومتی مقناطیسی دباو کی موج t_{rz}^+ کو جنم دیتی ہے جو اس گھومتے کچھے کے حوالے سے sf_e زاویائی رفتار سے گھومتی ہے۔

(7.19)
$$\tau_{rz}^{+}(\theta, t) = k_w \frac{4}{\pi} \frac{N_r I_{0r}}{2} \cos(\theta - s\omega_e t - \theta_0)$$

یہاں I_{0r} اور θ_0 مساوات 7.17 میں دیئے گئے ہیں۔اب چونکہ گھومتا کچھا از خود f زاویائی رفتار سے گھوم رہا ہے لہذا اس کی پیدا کردہ مقاطیسی دباو کی موج خلاء میں $(f+sf_e)$ زاویائی رفتار سے گھومتی ہے۔ اس رفتار کو مساوات 7.3 کی مدد سے یوں لکھ سکتے ہیں۔

$$(7.20) f + sf_e = f_e(1-s) + sf_e = f_e$$

للذا گھومتے کچھوں کی مقناطیسی دباو کی موج کو ساکن کچھوں کے حوالے سے یوں لکھا جا سکتا ہے۔

(7.21)
$$\tau_{r,s}^{+}(\theta,t) = k_w \frac{4}{\pi} \frac{N_r I_{0r}}{2} \cos(\theta - \omega_e t - \theta_0)$$

 $au_{r,s}$ میں + کا نشان گھڑی کی اُلٹی ست گھومتی موج کو ظاہر کرتا ہے جبکہ زیر نوشت میں r,s اس بات کی وضاحت کرتا ہے کہ بیہ موج گھومتے یعنی رواں کچھوں کی وجہ سے وجود میں آیا ہے گر اسے ساکن کچھوں کے حوالے سے دیکھا جا رہا ہے۔

یہاں وقفہ لے کر ذرا غور کرتے ہیں۔ مساوات 7.21 کے مطابق گومتا لچھا خود کسی بھی رفتار سے گوم رہا ہو،
اس کی پیدا کردہ گھومتی مقناطیسی دباو کی موج ساکن لچھے کے پیدا کردہ موج کی رفتار سے ہی گھومے گی۔للذا مشین میں دو گھومتی مقناطیسی دباو کی موجیں ہیں جو ایک ہی معاصر رفتار سے گھوم رہی ہیں۔ مساوات 5.91 میں کہا گیا ہے کہ دو مقناطیسی دباو کی موجود گی پیدا کرتی ہیں جو ان کے مابین زاویہ پر منحصر ہے۔للذا امالی مشین میں موجود دو مقناطیسی موجیس پیدا کرتی ہیں اور اس کی مقدار ان دو موجوں کے مابین زاویہ پر منحصر ہوتی ہے۔امالی موٹر اس پر لدے بوجھ کے مطابق ان دو موجوں کے مابین زاویہ رکھتی ہے اور یوں درکار پیدا کرتی ہے۔

با___7. امالي مشين 220

$$Z_{fs} = \frac{R_r}{s} + jX_r$$

$$+ e_{fs}(t)$$

$$- e_{fs}(t)$$

$$= \tan^{-1} \frac{sX_r}{R_r}$$

شکل 7.3: گھومتے کیچھوں کی جبگہ فرضی ساکن کیچھے کادور۔

7.6 گھومتے کچھوں کے مساوی فرضی ساکن کچھے

اب دوبارہ اصل موضوع پر آتے ہیں۔اگر گھومتے کچھوں کی جگہ ، N_r چکر کے تین دوری فرضی ساکن کچھے ہوں تو مباوات 7.7 کی طرح ان میں امالی برقی دیاو پیدا ہو گی یعنی 14

(7.22)
$$e_{afs}(t) = \omega_e N_r \phi_0 \cos(\omega_e t - 90^\circ) = E_r \cos(\omega_e t - 90^\circ)$$
$$e_{bfs}(t) = \omega_e N_r \phi_0 \cos(\omega_e t + 150^\circ) = E_r \cos(\omega_e t + 150^\circ)$$
$$e_{cfs}(t) = \omega_e N_r \phi_0 \cos(\omega_e t + 30^\circ) = E_r \cos(\omega_e t + 30^\circ)$$

وزید فرض کریں کہ ان فرضی ساکن کمچھوں کی مزاحمت
$$\frac{R_r}{s}$$
 اور متعاملیت jX_r ہیں لیعنی (7.23)
$$Z_{fs}=\frac{R_r}{s}+jX_r$$

اگران پر مساوات 7.22 میں دیئے گئے برقی دباو لا گو کی جائے جیسے شکل 7.3 میں دکھایا گیا ہے تو ان میں برقی رو

¹⁴ان میاوات میں زیر نوشت میں f لفظ فرضی کے ف کو ظاہر کرتاہے۔

بیہ ہو گی۔

$$(7.24) i_{afs}(t) = \frac{E_r}{\sqrt{\left(\frac{R_r}{s}\right)^2 + X_r^2}} \cos(\omega_e t - 90^\circ - \phi_Z) = I_{or} \cos(\omega_e t + \theta_0)$$

$$i_{bfs}(t) = \frac{E_r}{\sqrt{\left(\frac{R_r}{s}\right)^2 + X_r^2}} \cos(\omega_e t + 150^\circ - \phi_Z) = I_{or} \cos(\omega_e t - 120^\circ + \theta_0)$$

$$i_{cfs}(t) = \frac{E_r}{\sqrt{\left(\frac{R_r}{s}\right)^2 + X_r^2}} \cos(\omega_e t + 300^\circ - \phi_Z) = I_{or} \cos(\omega_e t + 120^\circ + \theta_0)$$

یہاں مساوات 7.17 استعال کی گئی ہے۔اس مساوات میں دھیان رہے کہ رکاوٹ کا زاویہ ϕ_Z وہی ہے جو گھومتے لیھے کا تھا یعنی

(7.25)
$$\phi_{fZ} = \tan^{-1} \frac{X}{\left(\frac{R}{s}\right)} = \tan^{-1} \frac{sX}{R} = \phi_Z$$

ان برقی رو کی تعدد ω_e ہے اور ان کا پیدا کردہ گھومتا مقناطیسی موج میہ ہو گا۔

(7.26)
$$\tau_{fs,s}^{+}(\theta,t) = k_w \frac{4}{\pi} \frac{N_r I_{0r}}{2} \cos(\theta - \omega_e t - \theta_0)$$

یہ مقناطیسی موج ہو بہو گھومتے لچھے کی موج $au_{r,s}^+(heta,t)$ ہے۔

7.7 امالي موٹر كامساوي برقى دور

ہم ٹرانسفار مرکی ابتدائی جانب کچھے کی برقی دور پہلے بنا چکے ہیں جہاں کچھے کی مزاحمت R_1 اور اس کی رستا متعاملیت E_1 متعاملیت کی بہاو اس کچھے میں امالی برقی د باو E_1 پیدا کرتی۔ پی

$$\hat{V}_1 = \hat{I}_1 (R_1 + jX_1) + \hat{E}_1$$

شکل7.4:امالی موٹر کے ساکن کچھوں کامساوی برقی دور۔

کھا جا سکتا ہے جہاں اُن ابتدائی کچھے پر لا گو بیرونی برقی دباو ہے۔ہم دیکھیں گے کہ امالی موٹر کے ساکن کچھے کے لئے بھی میں مساوات حاصل ہو گی۔

تصور کریں کہ مثین کے گھومتے کچھے کھلے دور ہیں اور اس کے ساکن کچھوں پر تین دوری برقی دباو لا گو ہے۔ اس صورت میں ساکن کچھوں میں رواں برقی روایک گھومتے مقناطیسی دباو کی موج $au_s^+(heta,t)$ پیدا کرے گی جو مساوات au_s^+ میں دی گئی ہے۔

باب کے اس حصہ میں ہم مشین کے ایک دور کو مدِ نظر رکھیں گے، مثلاً دور a _ یہاں شکل 7.4 سے رجوع $v_s(t)$ ہو اور اس پر لا گو بیرونی برقی دباو $v_s(t)$ ہو تو کر نوف jX_s ہو اور اس پر لا گو بیرونی برقی دباو $v_s(t)$ ہو تو کر نوف کے برقی دباو کے قانون کے تحت

$$(7.28) v_s(t) = i_s R_s + L_s \frac{\mathrm{d}i_s}{\mathrm{d}t} + e_s(t)$$

مساوات 7.7 میں دی گئی اس موج کی ساکن کیھے میں پیدا امالی برقی دباو ہے ۔اسی کو دوری سمتیہ کے طور پر $e_s(t)$ یول ککھ سکتے ہیں۔

(7.29)
$$\hat{V}_{s} = \hat{I}_{s} (R_{s} + jX_{s}) + \hat{E}_{s}$$

ٹرانسفار مر کی مثال آگے بڑھاتے ہیں۔اگر موٹر کا گھومتا لچھا کھلے دور 17 رکھا جائے تو قالب میں ایک ہی گھومتی مقاطیسی دباو کی موج au_s ہو گی۔ساکن لچھے میں صرف برقی رو \hat{I}_{arphi} ہو گا جو قالب میں مقاطیسی بہاو φ_s کو

leakage reactance¹⁵

Kirchoff's voltage law¹⁶

open circuited¹⁷

7.7. امالي موٹر کامپ وي رقي وور

جنم دے گی۔ یہ برتی رو \hat{I}_{φ} غیر سائن نما ہوتی ہے۔ فورئیر تسلس 18 سے اس کے بنیادی جزو اور ہار مونی جزو معلوم کئے جا سکتے ہیں۔ اس کے بنیادی جزو کے دو ھے ہوتے ہیں۔ ایک حصہ \hat{I}_c الا گو ہیرونی برتی دباو \hat{V}_s کہ ہم قدم ہوتا ہے اور یہ قالب میں طاقت کے ضیاع کو ظاہر کرتا ہے اور دو سرا حصہ \hat{V}_s سے نوے درجہ تاخیری زاویہ پر رہتا ہے۔ \hat{I}_c سے نام کرتے ہیں۔ یوں مقناطیسی جزو کہتے ہیں اسے \hat{I}_m سے ظاہر کرتے ہیں۔ یوں مقناطیسی جزو کہتے ہیں اسے \hat{I}_m سے فاہر کرتے ہیں۔ یوں مقناطیسی بہاو \hat{V}_s پیدا جزو کے مجموعے پر مشمل ہوتا ہے اور یہ قالب میں مقناطیسی بہاو \hat{V}_s پیدا کرتا ہے۔ \hat{V}_s سے اور باقی سارے ہار مونی جزو کے مجموعے پر مشمل ہوتا ہے اور یہ قالب میں مقناطیسی بہاو \hat{V}_s سے کرتا ہے۔

$$\hat{I}_{\varphi} = \hat{I}_c + \hat{I}_m$$

امالی موٹر کے مساوی دور میں \hat{I}_c کو مزاحمت R_c سے اور \hat{I}_m کو \hat{I}_c سے ظاہر کیا جاتا ہے۔ ان دونوں کا حساب چلتے موٹر میں متوقع برقی تعدد اور امالی برقی دباو \hat{E}_s پر کیا جاتا ہے یعنی

(7.31)
$$R_c = \frac{\hat{E}_s}{\hat{I}_c} = \frac{E_s}{I_c}$$

$$X_{\varphi} = \frac{\left|\hat{E}_s\right|}{\left|\hat{I}_m\right|} = \frac{E_s}{I_m}$$

مقناطیسی دباوکی موج $\tau_s^+(\theta,t)$ گھومتے کچھ میں بھی امالی برقی دباو پیدا کرے گی۔ مساوات 7.29 میں اگر رکاوٹ میں برقی دباو اور کچھے کی اندرونی امالی برقی دباو ہر حالت میں برقی دباو کے گھٹے کو نظر انداز کیا جائے تو لا گو بیرونی برقی دباو اور کچھے کی اندرونی امالی برقی دو گزرنے لگے گا برابر بہوں گے۔ اب تصور کریں کہ گھومتے کچھے کسر دور کر دیے جائیں۔ ایسا کرتے ہی ان میں برقی رو گزرنے لگے گا جو مقناطیسی دباوکی موج ہے مساوات 7.21 میں دی گئی ہے کو جنم دے گی۔ اس موج سے ساکن کچھے میں امالی برقی دباو کی موج شیا کی اور یوں سے لا گو برقی دباو کے برابر نہیں رہے گی۔ بیر ایک نا مکنہ صورتِ حال ہے۔

ساکن کیجے میں امالی برقی دباو، لاگو برقی دباو کے برابر تب رہے گی کہ قالب میں مقناطیسی دباو تبدیل نہ ہو۔ مثین کے قالب میں مقناطیسی دباو برقرار یوں رہتی ہے کہ ساکن کیجے مقناطیسی دباو $au_{r,s}(heta,t)$ کی متضاد مقناطیسی دباو کی ایک موج پیدا کرتی ہے جو اس کے اثر کو مکمل طور پر ختم کر دیتی ہے۔ یہ موج پیدا کرنے کے لئے ساکن دباو کی ایک موج پیدا کرنے کے لئے ساکن

Fourier series¹⁸

ياب. امالي شين

کچھوں میں برقی رو \hat{I}_{arphi} سے بڑھ کر $(\hat{I}_{arphi}+\hat{I}'_{r})$ ہو جاتی ہے جہاں یہ اضافی برقی رو یہ ہیں۔

(7.32)
$$i'_{ar}(t) = I'_{or}\cos(\omega_e t + \theta_0) i'_{br}(t) = I'_{or}\cos(\omega_e t - 120^\circ + \theta_0) i'_{cr}(t) = I'_{or}\cos(\omega_e t + 120^\circ + \theta_0)$$

ان اضافی برتی رو کی متضاد مقناطیسی دباو کی موج یہ ہے

(7.33)
$$\tau_{(r)}^{+}(\theta, t) = k_w \frac{4}{\pi} \frac{N_s I'_{0r}}{2} \cos(\theta - \omega_e t - \theta_0)$$

ساکن کچھوں میں اضافی برقی رونے ہر لمحہ گھومتے کچھوں کی برقی رو کے اثر کو ختم کرنا ہے لہذا یہ دونوں برقی رو ہم قدم ¹⁹ ہی ہوں گے۔چونکہ یہ مساوات اور مساوات 7.21 برابر ہیں

$$(7.34) N_s I'_{0r} = N_r I_{0r}$$

للذا ان سے حاصل ہوتا ہے۔

(7.35)
$$I'_{0r} = \left(\frac{N_r}{N_s}\right) I_{0r} = \left(\frac{N_r}{N_s}\right) \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}}$$

آپ نے دیکھا کہ گھومتے کچھے مقناطیسی دباو کی موج پیدا کرتے ہیں جن کے ذریعہ ساکن کچھوں کو معلوم ہوتا ہے کہ موٹر پر بوجھ لدا ہے اور وہ اس کے مطابق لا گو برقی دباوسے برقی رو لیتی ہیں۔ یہاں تک امالی موٹر کی مساوی برقی دور شکل 7.5 میں دکھائی گئی ہے۔

یہاں ذرہ شکل 7.6 سے رجوع کریں۔ اس شکل میں

(7.36)
$$R'_r = \left(\frac{N_s}{N_r}\right)^2 R_r$$
$$X'_r = \left(\frac{N_s}{N_r}\right)^2 X_r$$

پر ساکن کچھوں کی امالی برقی د باو \hat{E}_s لا گوہے لہذا ان میں برقی رویہ ہوں گی۔

(7.37)
$$i'_{a}(t) = \frac{sE_{s}}{\sqrt{R'_{r}^{2} + s^{2}X'_{r}^{2}}} \cos(\omega_{e}t - 90^{\circ} - \phi_{Z})$$

$$i'_{b}(t) = \frac{sE_{s}}{\sqrt{R'_{r}^{2} + s^{2}X'_{r}^{2}}} \cos(\omega_{e}t + 150^{\circ} - \phi_{Z})$$

$$i'_{c}(t) = \frac{sE_{s}}{\sqrt{R'_{r}^{2} + s^{2}X'_{r}^{2}}} \cos(\omega_{e}t + 30^{\circ} - \phi_{Z})$$

 $in-phase^{19}$

7.7. امالي موٹر کاسباوي بر تي دور

$$i_a'(t)=rac{sE_s}{\sqrt{R_r'^2+s^2X_r'^2}}\cos(s\omega_e t- heta_0-\phi_z)$$
 شکل 7.6.گومت کچھے کاایک اور مساوی دور۔

ان سب مساوات کا حیطہ برابر ہے۔اس حیطے کو یوں لکھا جا سکتا ہے۔

$$(7.38) \qquad \frac{sE_s}{\sqrt{R_r'^2 + s^2 X_r'^2}} = \frac{s\omega_e N_s \phi_0}{\sqrt{\left(\frac{N_s}{N_r}\right)^2 \left(R_r^2 + s^2 X_r^2\right)}} = \left(\frac{N_r}{N_s}\right) I_{0r} = I_{0r}'$$

للذا مساوات 7.37 اس طرح لکھا حاسکتا ہے۔

(7.39)
$$i'_{a}(t) = I'_{0r}\cos(\omega_{e}t - 90^{\circ} - \phi_{Z})$$
$$i'_{b}(t) = I'_{0r}\cos(\omega_{e}t + 150^{\circ} - \phi_{Z})$$
$$i'_{c}(t) = I'_{0r}\cos(\omega_{e}t + 30^{\circ} - \phi_{Z})$$

یہ مساوات بالکل مساوات 7.32 کی طرح ہے۔ للذا اگر شکل 7.5 میں ساکن کچھوں کی امالی برقی دباو \hat{E}_s کے متوازی شکل 7.6 جوڑا جائے تو ایبا کرنے سے ساکن لچھوں میں اُتنا ہی اضافی برقی رو رواں ہو گا جو اصل موٹر میں گھومتے کچھوں کی وجہ سے ہوتا ہے۔ شکل 7.7 میں ایبا ہی کیا گیا ہے للذا شکل میں دیا برقی دور، امالی موٹر کی صحیح عکاسی کرتی ہے۔ یہی امالی موٹر کی مساوی برقی دور ہے۔

7.8 مساوي برقی دورير غور

مساوات 7.18 ایک گھومتے کیچے میں برقی طاقت کے ضیاع کو ظاہر کرتا ہے۔مساوات 7.36 اور 7.38 کی مدد سے اسے بوں لکھا جا سکتا ہے۔

$$(7.40) p_{\text{ij}} = I_{0r}^2 R_r = \left(\frac{N_s^2}{N_r^2} I_{0r}'^2\right) \left(\frac{N_r^2}{N_s^2} R_r'\right) = I_{0r}'^2 R_r'$$

7.8 مساوي پر قور پر غور

شكل 7.7 سے ظاہر ہے كہ ايك گھومتے لچھے كو كل

$$(7.41) p_r = I_{0r}^{\prime 2} \frac{R_r^{\prime}}{s}$$

برقی طاقت دی جاتی ہے جس میں سے خوام گھومتے کچھے کی مزاحمت میں ضائع ہو جاتی ہے اور بقایا بطور میکانی طاقت مثین کے دھرے پر یائی جاتی ہے لینی

$$(7.42) p = I_{0r}^{\prime 2} \frac{R_r^{\prime}}{s} - I_{0r}^{\prime 2} R_r^{\prime} = I_{0r}^{\prime 2} \frac{R_r^{\prime}}{s} (1 - s) = p_r (1 - s)$$

ایوں تین دوری مشین جس میں تین لچھے ہوتے ہیں اس کے تین گنا میکانی طاقت فراہم کر سکتی ہے یعنی

(7.43)
$$p_{j,j} = 3I_{0r}^{\prime 2} \frac{R_r^{\prime}}{s} (1-s) = 3p_r (1-s)$$

اس مساوات سے واضح ہے کہ اگر سرک ایک کے برابر ہو تو موٹر کوئی میکانی طاقت فراہم نہیں کرے گی اور گھومتے حصے کو جتنی برتی توانائی مل رہی ہو وہ ساری کی ساری اس میں ضائع ہو کر اسے گرم کرے گی۔ یوں موٹر کے گرم ہو کر جل جانے کا امکان ہوتا ہے۔ آپ اس مساوات سے دیکھ سکتے ہیں کہ امالی موٹر کی سرک صفر کے قریب رہنی چاہئے ورنہ یہ نا قابل قبول حد تک برقی توانائی ضائع کرے گا۔ ہم امالی موٹر کی مساوی برقی دور کو شکل 8.7 کی طرح بھی بنا سکتے ہیں۔ اس شکل میں شکل 7.8 میں دیئے مزاحمت $\frac{R'_r}{r}$ کو دو حصوں میں کھا گیا ہے لیعنی

$$\frac{R_r'}{s} = R_r' + R_r' \left(\frac{1-s}{s}\right)$$

 $R'_r\left(\frac{1-s}{s}\right)$ یوں شکل 7.7 میں مزاحمت R'_r میں برقی طاقت کی ضیاع $I'^2_{0r}R'_r$ گھومتے کچھے کی ضیاع ہے جبکہ مزاحمت منظ برقی طاقت کی ضیاع $I'^2_{0r}R'_r\left(\frac{1-s}{s}\right)$ دراصل میکانی طاقت ہے۔یاد رہے کہ تین دوری مشین کے لئے یہاں سے حاصل نتائج کو تین سے ضرب دینا ہو گا۔

میکانی طاقت، قوت مروڑ ضربِ میکانی زاویائی رفتار ہوتی ہے۔ امالی موٹر کی میکانی زاویائی رفتار مساوات 7.3 میں دی گئی ہے۔ یوں دی گئی ہے۔ یوں

(7.44)
$$p = T_m \omega = T_m \times 2\pi f = T_m \times 2\pi (1 - s) f_s = T_m (1 - s) \omega_{sm}$$

للذا

(7.45)
$$T_m = \frac{p}{(1-s)\omega_{sm}} = \frac{3I_{0r}^{\prime 2}}{\omega_{sm}} \frac{R_r^{\prime}}{s}$$

باب. ٦- امالي مشين

شکل 7.9: امالی موٹر کاسادہ دور۔ قالبی ضیاع کو نظر انداز کیا گیاہے۔

اصل موٹر میں رگڑ، قالبی ضیاع، لیھوں میں ضیاع اور دیگر وجوہات کی بنا پر دھرے پر طاقت یا قوت مروڑ اس سے قدرِ کم ہو گی۔

ٹرانسفار مر کے سادہ ترین مساوی دور بناتے وقت R_c اور K_m کو نظرانداز کیا گیا تھا۔ امالی موٹر میں ایسا کرنا ممکن نہیں ہوتا چونکہ موٹروں میں خلائی درز ہوتی ہے جس میں مقناطیسی بہاو پیدا کرنے کے لئے بہت زیادہ مقناطیسی دباو درکار ہوتی ہے۔ حقیقت میں بے بوجھ امالی موٹر کو اپنے بورے برقی رو کے تیس سے بچاس فی صد برقی رو قالب کو بھان کرنے کے لئے درکار ہوتی ہے۔ مزید رہے کہ خلائی درز کی وجہ سے اس کی رِستا امالہ بھی زیادہ ہوتی ہے اور اسے نظر انداز کرنا ممکن نہیں ہوتا۔ البتہ مساوی دور میں R_c نظر انداز کرنا ممکن نہیں ہوتا۔ البتہ مساوی دور میں کہ کو نظر انداز کیا جا سکتا ہے جیسے شکل 7.9 میں دکھایا گیا ہے۔ اس شکل میں نقطہ دار لکیر کی بائیں جانب کا مساوی تھونن دور بنایا جا سکتا ہے۔ایسا کرنے سے امالی موٹر پر غور کرنا نہا ہوتا ہے۔ اب ہم ایسا ہی کرتے ہیں۔

7.8 مساوي پر تي دورپر غور

مثال 7.2: ستارہ جڑی چیر قطب بچپاس ہر ٹز اور 415 وولٹ پر چلنے والی 15 کلو واٹ امالی موٹر کے مساوی دور کے اجزاء میر ہیں

$$R_s = 0.5 \,\Omega, \quad R'_r = 0.31 \,\Omega, \quad X_s = 0.9 \,\Omega, \quad X'_r = 0.34 \,\Omega, \quad X_m = 0.22 \,\Omega$$

موٹر میں رگڑ سے طاقت کا ضیاع 600 واٹ ہے۔ قالبی ضیاع کو اس کا حصہ تصور کیا گیا ہے۔ اس کو اٹل تصور کیا جائے۔ یہ موٹر درکار وولٹ اور تعداد ارتعاش پر دو فی صد سرک پر چل رہی ہے۔اس حالت میں موٹر کی رفتار، اس کے دھرے پر پیدا قوت مروڑ اور طاقت، اس کے ساکن کچھے کی برقی رو اور اس کی فی صد کار گزاری حاصل کریں۔

حل: موٹر کی معاصر رفتار $6.66 \times 60 = 1000$ چکر فی سکینڈ یا $16.66 \times 60 = 16.66$ چکر فی منٹ دو فی صد سرک پر موٹر کی رفتار $6.33 \times 60 = 979.8$ چکر فی سکینڈ یا $6.33 \times 60 = 979.8$ پکر فی منٹ ہے۔

شكل 7.9 مين دائين جانب

$$jX'_r + R'_r + R'_r \frac{1-s}{s} = jX'_r + \frac{R'_r}{s} = j0.34 + \frac{0.31}{0.02} = j0.34 + 15.5$$

اور jX_m متوازی جڑے ہیں۔ان کی مساوی رکاوٹ یہ ہے

$$\frac{1}{Z} = \frac{1}{15.5 + j0.34} + \frac{1}{j22}$$
$$Z = 10.147 + j7.375 = R + jX$$

موٹر پر لا گو یک دوری برقی دباہ $\frac{415}{\sqrt{3}} = 239.6$ وولٹ ہے۔ یوں ساکن کچھے کی برقی رو

$$\hat{I}_s = \frac{\hat{V}_s}{R_s + jX_s + Z}$$

$$= \frac{239.6}{0.5 + j0.99 + 10.147 + j7.375}$$

$$= 17.6956/-38.155^{\circ}$$

ہے۔اس موٹر کے گھومتے حصہ کو وہی طاقت منتقل ہو رہی ہے جو رکاوٹ Z کو منتقل ہو رہی ہے۔ یعنی مساوات 7.41 کو ہم یول بھی لکھ سکتے ہیں۔

$$p = I_{or}^{\prime 2} \frac{R_r^{\prime}}{s} = I_s^2 R = 17.6956^2 \times 10.147 = 3177.37 \,\text{W}$$

تین مراحل کے لئے یہ مقدار 9532 = 3177.37 × 3 واٹ ہو گی۔مساوات 7.43 موٹر کی اندرونی میکانی طاقت دیتی ہے یعنی

$$p_{\rm isc} = 9532 \times (1 - 0.02) = 9341 \,\rm W$$

اس سے طاقت کا ضیاع منفی کر کے 8741 = 600 – 9341 واٹ رہ جاتا ہے۔ یہ موٹر کے دھرے پر میکانی طاقت ہوگی جس سے دھرے پر قوت مروڑ

$$T = \frac{8741}{2 \times \pi \times 16.33} = 85.1 \,\mathrm{Nm}$$

ہو گی۔

واٹ ہے۔ ایوں موٹر کو کل مہیا برقی طاقت $\sqrt{3} \times 415 \times 17.6956 \times \cos(-38.155) = 10001.97$ واٹ ہے۔ ایوں موٹر کی کار گزار کی $\sqrt{3} \times 415 \times 10001.97 \times 100 = 87.39$ گ

7.9 امالي موٹر كامساوي تھونن دوريارياضي نمونه

مسئلہ تھونونے ²⁰ کے مطابق کسی بھی سادہ خطی برتی دور ²¹ کو اس کے دو برتی سرول کے مابین ایک رکاوٹ اور ایک برقی دباو کی مساوی دور سے ظاہر کیا جا سکتا ہے۔اس مساوی دور کو مساوی تھوِنن دور کہتے ہیں جبکہ اس مساوی تھوِنن دور کی رکاوٹ کو تھوِنن رکاوٹ اور برتی دباو کو تھوِنن برتی دباو کہتے ہیں۔

برتی دور کے دو برتی سروں کے مابین تھونن رکاوٹ حاصل کرنے کے لئے اس برتی دور کے اندرونی برتی دباو کسرِ دور کر کے ان دو برتی سروں کے مابین رکاوٹ معلوم کی جاتی ہے۔ یہی رکاوٹ، تھونن رکاوٹ ہے۔ انہیں برتی سروں پر تھونن برتی دباو برقرار رکھ کر ان دو سروں سروں پر تھونن برتی دباو برقرار رکھ کر ان دو سروں پر برتی دباو معلوم کی جاتی ہے۔ یہی برتی دباو در حقیقت تھونن برتی دباو ہے۔ بعض او قات ہم ایک برتی دور کے ایک خاص جھے کا مساوی تھونن دور بنانا چاہتے ہیں۔ایسا کرتے وقت بقایا برتی دور کو اس جھے سے مکمل طور پر منقطع کیا جاتا ہے۔ یوں شکل 2.10 سے واضح ہے کہ دو سروں الف اور باکے مابین مساوی تھونن رکاوٹ اور تھونن برتی

The venin theorem 20 linear circuit 21

شکل 7.10: تھوِنن رکاوٹ اور تھوِنن برتی د باوحاصل کرنے کے دور۔

شکل 7.11 تھونن دوراستعال کرنے کے بعدامالی موٹر کامساوی دور۔

رباو پیر ہیں۔

(7.46)
$$Z_t = \frac{(R_s + jX_s)jX_m}{R_s + jX_s + jX_m} = R_t + jX_t$$

$$\hat{V}_t = \frac{jX_m\hat{V}_s}{R_s + jX_s + jX_m} = V_t/\underline{\theta_t}$$

کسی بھی مخلوط عدد 22 کی طرح Z_t کو ایک حقیقی عدد R_t اور ایک فرضی عدد j کا مجموعہ لکھا جا سکتا ہے۔ یہی اس مساوات میں کیا گیا ہے۔

ہم یوں امالی موٹر کی مساوی برقی دور کو شکل 7.11 کی طرح بنا سکتے ہیں جہاں سے دوری سمتیہ کی استعال سے

 ${\rm complex}\ {\rm number}^{22}$

مندرجہ ذیل برقی رو \hat{I}'_r عاصل ہوتی ہے۔

(7.47)
$$\hat{I}'_r = \frac{\hat{V}_t}{R_t + jX_t + \frac{R'_r}{s} + jX'_r} \\ \left|\hat{I}'_r\right| = I'_r = \frac{V_t}{\sqrt{\left(R_t + \frac{R'_r}{s}\right)^2 + \left(X_t + X'_r\right)^2}}$$

چونکہ \hat{V}_t کی قیت پر \hat{V}_t کے زاویے کا کوئی اثر نہیں لہذا مساوی تھونن دور میں \hat{V}_t کی جگہ V_t استعمال کیا جا سکتا ہے۔ بقایا کتاب میں ایسا ہی کیا جائے گا۔

مساوات 7.45 سے بول تین دوری مشین کی قوت مروڑ یہ ہو گی

(7.48)
$$T = \frac{1}{\omega_{sm}} \frac{3V_t^2 \left(\frac{R_r'}{s}\right)}{\left(R_t + \frac{R_r'}{s}\right)^2 + \left(X_t + X_r'\right)^2}$$
$$= \frac{1}{\omega_{sm}} \frac{3V_t^2 \left(\frac{R_r'}{s}\right)}{\frac{R_r'^2}{s^2} + 2R_t \frac{R_r'}{s} + R_t^2 + \left(X_t + X_r'\right)^2}$$

اس مساوات کو شکل 7.12 میں دکھایا گیا ہے۔ اس شکل میں موٹر کی رفتار کو معاصر رفتار کی نسبت سے دکھایا گیا ہے۔ موٹر ازخود گھومتے مقناطیسی موج کی ست میں گھومتی ہے اور اس کی رفتار معاصر رفتار سے قدرِ کم رہتی ہے۔ نیادہ سرک پر موٹر کی کار گزاری نہایت خراب ہو جاتی ہے۔ اس لئے لگاتار استعال کے وقت اسے تقریباً پانچ فی صد سے کم سرک پر چلایا جاتا ہے بلکہ ان کی تخلیق یوں کی جاتی ہے کہ امالی موٹر اپنی پوری طاقت تقریباً پانچ فی صد سے کم سرک پر حاصل کرتی ہے۔

اگر موٹر کو زبردستی ساکن کچھوں کی گھومتے مقناطیسی موج کی سمت میں معاصر رفتار سے زیادہ رفتار پر گھمایا جائے تو یہ ایک جزیئر کے طور پر کام کرنے شروع ہو جائے گی۔اییا کرنے کے لئے بیرونی میکانی طاقت درکار ہو گی ۔اگرچہ امالی مشین عام طور پر جزیئر کے طور پر استعال نہیں ہوتے البتہ ہوا سے برقی طاقت پیدا کرنے میں یہ جزیئر کے طور پر کار آمد ثابت ہوتے ہیں۔

شکل 7.12 میں منفی رفتار بھی دکھائی گئی ہے جہاں سرک ایک سے زیادہ ہے۔ ایباتب ہوتا ہے جب موٹر کو ساکن کچھوں کی گھومتی مقناطیسی دباو کی موج کی اُلٹ سمت میں گھمایا جائے۔موٹر کو جلد ساکن حالت میں لانے کے

شکل7.12: امالی موٹر کی قوت مروڑ بالمقابل سرک۔

لئے یوں کیا جاتا ہے۔ تین دوری موٹر پر لاگو برقی دباو کی کسی دو برقی دباو کو آپس میں اُلٹا دیا جاتا ہے۔ اس طرح موٹر کی ساکن کچھوں کی گھومتی مقناطیسی موج کیدم اُلٹ سمت میں گھومنے نثر وع ہو جاتی ہے جبکہ موٹر ابھی پہلی سمت میں ہی گھوم رہی ہوتی ہے۔ اس طرح موٹر جلد آہتہ ہوتی ہے اور جیسے ہی موٹر رکھ کر دوسری جانب گھومنا چاہتی ہے اس پر لاگو برقی دباو منقطع کر دی جاتی ہے۔ امالی موٹر یوں ریل گاڑی میں عموماً بطور بریک 23 استعمال کی جاتی ہے۔

یوں امالی مشین s<0 کی صورت میں بطور جزیڑ، s<0 کی صورت میں بطور موٹر اور s>0 کی صورت میں بطور بریک کام کرتا ہے۔

امالی موٹر کی زیادہ سے زیادہ قوت مروڑ مساوات 7.48 سے یوں حاصل کی جاسکتی ہے۔ قوت مروڑ اُسی لمحہ زیادہ سے زیادہ ہو گی جب گلومتے مصے کو زیادہ سے زیادہ طاقت میسر ہو۔ زیادہ سے زیادہ طاقت منتقل کرنے کے مسئلہ $\frac{24}{2}$ مسئلہ $\frac{R'_{r}}{2}$ میں طاقت کا ضیاع اس وقت زیادہ سے زیادہ ہو گا جب

(7.49)
$$\frac{R'_r}{s} = |R_t + jX_t + jX'_r| = \sqrt{R_t^2 + (X_t + X'_r)^2}$$

ہو۔اس مساوات سے زیادہ سے زیادہ طاقت پر سرک s_z کو بوں لکھ سکتے ہیں۔

(7.50)
$$s_z = \frac{R'_r}{\sqrt{R_t^2 + (X_t + X'_r)^2}}$$

 ${\rm brake^{23}}$ maximum power theorem 24

شکل 7.13: بیر ونی مزاحمت لگانے کے قوت مر وڑ بالقابل سرک کے خطوط پراثرات۔

مساوات 7.48 میں کسر کے نچلے جصے میں $R_t^2 + (X_t + X_r')^2$ کی جگہ مساوات 7.49 کا مربع استعال کرتے ہوئے زیادہ سے زیادہ قوت مروڑ یوں حاصل کی جا سکتی ہے

(7.51)
$$T_{z} = \frac{1}{\omega_{sm}} \frac{3V_{t}^{2} \left(\frac{R_{r}'}{s}\right)}{\frac{R_{r}'^{2}}{s^{2}} + 2R_{t} \frac{R_{r}'}{s} + \frac{R_{r}'^{2}}{s^{2}}}$$

$$= \frac{1}{\omega_{sm}} \frac{3V_{t}^{2}}{2\left(R_{t} + \frac{R_{r}'}{s}\right)}$$

$$= \frac{1}{\omega_{sm}} \frac{3V_{t}^{2}}{2\left(R_{t} + \sqrt{R_{t}^{2} + (X_{t} + X_{r}')^{2}}\right)}$$

جہاں آخری قدم پر مساوات کا استعال دوبارہ کیا گیا۔

اس مساوات کے مطابق امالی موٹر کی زیادہ سے زیادہ قوت مروڑ اس کے گھومتے کچھوں کی مزاحت پر منحصر نہیں۔ یہ ایک اہم معلومات ہے جسے استعال کر کے امالی موٹر کی زیادہ سے زیادہ قوت مروڑ درکار رفتار پر حاصل کی جاستی ہے۔آئیں دیکھیں کہ یہ کیسا کیا جاتا ہے۔

امالی موٹر کے گھومتے کچھوں کے برقی سروں کو سرکے پھلوں 25 فرریعہ باہر نکالا جاتا ہے 26 جہاں ان کے ساتھ سلسلہ وار بیرونی مزاحمت جوڑی جاتی ہے۔ اس طرح گھومتے کچھوں کی کل مزاحمت بڑھ کر بیرونی ہم زاویائی رفار پر ہے۔ ایسا کرنے سے مساوات 7.49 کے مطابق زیادہ سے زیادہ قوت مروڑ نسبتاً زیادہ سرک یعنی کم زاویائی رفار پر حاصل کی جا سکتی ہے۔ شکل 7.13 میں مزاحمت پہر کے ساتھ ساکن موٹر کو چالو کرتے وقت زیادہ سے زیادہ توجھ اٹھانے کے قابل ہوتا ہے۔ قوت مروڑ حاصل ہو سکتی ہے۔ اس طرح بوجھ بردار موٹر ساکن حالت سے ہی زیادہ بوجھ اٹھانے کے قابل ہوتا ہے۔ چوکہ زیادہ سرک پر موٹر کی کار گزاری خراب ہوتی ہے لہذا اس طرح موٹر کو زیادہ دیر نہیں چلایا جاتا اور جیسے ہی اس کی رفار بڑھ جاتی ہے، اس سے بُڑے بیرونی مزاحمتیں منقطع کر کے گھومتے کچھوں کے برقی سرے کسرِ دور کر دیے جاتے ہیں۔

مثال 7.3: صفحہ 229 پر مثال 7.2 میں دی گئی امالی موٹر اس مثال میں استعمال کریں۔رگڑ سے طاقت کی ضیاع کو نظر انداز کریں۔

- اگر موٹر در کار وولٹ اور تعداد ارتعاش پر تین فی صد سرک پر چل رہی ہو تو ساکن کیچے میں گھومتے کیچھ کے حصہ کی برقی رو 'ا اور مشین کی اندرونی میکانی طاقت اور قوت مروڑ حاصل کریں۔
 - موٹر کی زیادہ سے زیادہ اندرونی پیدا قوت مروڑ اور اس قوت مروڑ پر موٹر کی رفتار حاصل کریں۔
 - موٹر کی جالو ہونے کے لحمہ یر قوت مروڑ اور اس لحمہ اس کی I_r' حاصل کریں۔

حل:

$$Z_t = \frac{(0.5+j0.99)\ j22}{0.5+j0.99+j22} = 0.4576+j0.9573$$
 $\hat{V}_t = \frac{j22\times239.6/0^\circ}{0.5+j0.99+j22} = 229.2/1.246^\circ$ مراوات 7.47 میں تین فی صدیر کے پر $\frac{R'_r}{s} = 10.3333$ میں تین فی صدیر کے پر $\frac{229.2/1.246^\circ}{0.4576+j0.9573+10.3333+j0.34} = 21.1/-5.6^\circ$

 $I_r' = \left| \hat{I}_r' \right| = 21.1 \,\mathrm{A}$

slip rings²⁵ 26شکل کے نمونے پر۔

یہاں رک کر تسلی کر لیں کہ مندرجہ بالا مساوات میں <u>°229.2/1.246</u> کی جگہ <u>°229.2/0°</u> استعال کرنے سے I'_r کی یہی قیت حاصل ہوتی۔ مساوات 7.43 اور 7.44 کی مدد سے

$$p_m = \frac{3 \times 21.1^2 \times 0.31}{0.03} \times (1 - 0.03) = 13387.46 \,\text{W}$$
$$T = \frac{13387.46}{(1 - 0.03) \times 2 \times \pi \times 16.66} = 131.83 \,\text{N m}$$

• مساوات 7.50 سے زیادہ سے زیادہ طاقت پر سرک

$$s_z = \frac{0.31}{\sqrt{0.4576^2 + (0.9573 + 0.34)^2}} = 0.1638$$

اور اس پر موٹر کی رفمار 836.2 = 836.2 اور اس پر موٹر کی رفمار 836.2 = 836.2 اور اس پر موٹر کی رفمار ہوگا۔

و پالو کرتے لمحہ پر سرک ایک ہو گی النذا $\frac{R'_r}{s} = 0.31$ ہو گا اور یوں

$$\hat{I}'_r = \frac{229.2 / 1.246^\circ}{0.4576 + j0.9573 + 0.31 + j0.34} = 152.07 / -58.14^\circ$$

$$I'_r = 152 \,\text{A}$$

اس لمحه قوت مرورٌ

$$T = \frac{3 \times 152.07^2 \times 0.31}{2 \times \pi \times 16.66} = 205 \,\mathrm{N\,m}$$

П

مثال 7.4: دو قطب ستارہ جڑا بچاس ہر ٹز پر چلنے والا تین دوری امالی موٹر 2975 چکر فی منٹ کی رفتار پر بارہ کلوواٹ کے میکانی بوجھ سے لدا ہے۔موٹر کی سرک اور دھرے پر قوت مروڑ حاصل کریں۔

 $\sqrt{2}$ منٹ ہے۔ یوں سرک جاس: معاصر رفتار $\sqrt{2}$ وہ $\sqrt{2}$ وہ ہور فی سینٹہ یا $\sqrt{2}$ وہ منٹ ہے۔ یوں سرک جاس: معاصر رفتار $\sqrt{2}$ وہ ہور نی منٹ ہے۔ یوں سرک وہ معاصر رفتار $\sqrt{2}$ وہ ہور کی رفتار $\sqrt{2}$ وہ ہور کی رفتار $\sqrt{2}$ وہ ہور کی سینٹہ ہے المذا وہ ہور کی رفتار وہ ہور کی ہوگے۔ مور کی دھرے پر قوت مروڑ $\sqrt{2}$ وہ ہوگے۔

7.10. پنجب رانب المالي موٹر

7.10 پنجرانماامالي موٹر

گومتے لچھوں کی ساخت پر ذرا غور کرتے ہیں۔ گومتے لچھوں کے N_r چکر ہوتے ہیں جہاں N_r کوئی بھی عدد ہو سکتا ہے۔ سادہ ترین صورت میں N_r ایک کے برابر ہو سکتا ہے بینی ایک ہی چکر کا گومتا لچھا۔ اب بجائے اس کے کہ قالب میں لچھوں کے لئے شگاف بنائے جائیں اور ہر شگاف میں تانبے کی تار کا ایک چکر لپٹا جائے ہم یوں بھی کر سکتے ہیں کہ ہر شگاف میں سیدھا تانبے کا ایک سلاخ رکھ دیں اور اس طرح کے سب سلاخوں کی ایک جانب کے سروں کو تانبے کی ایک دائرہ نما سلاخ سے کسر دور کر دیں اور اس طرح دوسری جانب کے سب سروں کو بھی ایک تانبے کی دائرہ نما سلاخ سے کسر دور کر دیں۔ اس طرح تانبے کی سلاخوں کا پنجرا بن جاتا ہے۔ اس لئے ایسے امالی موٹروں کو پنجرا نما امالی موٹر کہتے ہیں۔

حقیقت میں شگافوں میں پگھلا تانبا یا سلور 27 ڈالا جاتا ہے جو ٹھنڈا ہو کر ٹھوس ہو جاتا ہے اور قالب کو جھکڑ لیٹا ہے۔دونوں اطراف کے دائرہ نما کسرِ دور کرنے والے چھلے بھی اِسی طرح اور اِسی وقت بنائے جاتے ہیں۔ اس طرح یہ ایک مضبوط گھومتا حصہ بن جاتا ہے۔ اسی مضبوطی کی وجہ سے پنجرا نما امالی موٹر نہایت مقبول ہوا ہے۔ ایسے موٹر سالوں تک بغیر دیکھ بال کے کام کرتے ہیں اور عام زندگی میں ہر جگہ پائے جاتے ہیں۔گھروں میں پانی کے بہپ اور پیکھے اِنہیں سے چلتے ہیں۔گھروں میں بانی کے بہپ اور پیکھے اِنہیں سے چلتے ہیں۔

7.11 بي بوجھ موٹراور جامد موٹر كے معائنہ

امالی موٹر کی کارکردگی دو معائنوں سے معلوم کی جاتی ہے۔ انہی سے اس کے مساوی برقی دور کے جزو بھی حاصل کئے جاتے ہیں۔ہم تین دوری امالی موٹر کی مثال سے ان معائنوں کا تذکرہ کرتے ہیں۔

7.11.1 بي بوجھ موٹر کامعائنہ

یہ معائنہ بالکل ٹرانسفار مر کے بے بوجھ معائنہ کی طرح ہے۔اس میں موٹر کی ہیجان انگیز برقی رو اور بے بوجھ موٹر میں طاقت کے ضیاع کی معلومات حاصل ہوتی ہیں۔

copper, aluminium²⁷

اس میں بے بوجھ امالی موٹر پر تین دوری مساوی برتی دباو 28 لاگو کر کے بے بوجھ موٹر کی برتی طاقت کا ضیاع p_{bb} اور اس کے ساکن کچھے کی بیجان انگیز برقی رو $I_{s,bb}$ نائی جاتی ہے۔یہ معائنہ امالی موٹر کی پورے برقی دباو اور برقی تعدد پر کیا جاتا ہے۔

ہو۔ اتنی کم قوت مروٹ اتنی قوت مروڑ پیدا کرتی ہے جتنی رگڑ اور دیگر طاقت کے ضیاع کی وجہ سے درکار I'_r ہو۔ اتنی کم قوت مروڈ بہت کم سرک پر حاصل ہو جاتی ہے۔ مساوات 7.47 سے ظاہر ہے کہ بہت کم سرک پر I'_r بھی نہایت کم ہو گی اور اس سے گھوٹ کچھوں میں برقی طاقت کے ضیاع کو نظر انداز کیا جا سکتا ہے۔ اسی بات کو صفحہ کو پر شکل 7.7 کی مدد سے بھی سمجھا جا سکتا ہے جہاں یہ واضح ہے کہ بہت کم سرک پر مزاحمت $\frac{R'_r}{s}$ کی قیمت بہت زیادہ ہو جاتی ہے اور اس کو گھلے دور سمجھا جا سکتا ہے۔ ایسا کرنے سے شکل 7.14 -الف ماتا ہے۔

شکل 7.14-الف میں R_c اور jX_m کے متوازی دور کا مساوی سلسلہ وار دور شکل 7.14-ب میں دکھایا گیا Z_m کی قیمت اس کی Z_m کی قیمت سے بہت زیادہ ہوتی ہے۔ متوازی دور کی رکاوٹ Z_m کے مساوی سلسلہ وار رکاوٹ Z_m یوں حال ہوتی ہے۔ سے مساوی سلسلہ وار رکاوٹ Z_m یوں حال ہوتی ہے۔

$$Z_{m} = \frac{R_{c}jX_{m}}{R_{c} + jX_{m}}$$

$$= \frac{R_{c}jX_{m}}{R_{c} + jX_{m}} \frac{R_{c} - jX_{m}}{R_{c} - jX_{m}}$$

$$= \frac{jR_{c}^{2}X_{m} + R_{c}X_{m}^{2}}{R_{c}^{2} + X_{m}^{2}}$$

$$\approx \frac{jR_{c}^{2}X_{m} + R_{c}X_{m}^{2}}{R_{c}^{2}} \qquad \text{if } x_{c} \gg X_{m}$$

$$= jX_{m} + \frac{X_{m}^{2}}{R_{c}} = jX_{m} + R_{c}^{*} = Z_{s}$$

بے بوجھ ٹرانسفار مروں میں ابتدائی کچھوں کے برقی طاقت کے ضیاع کو بھی نظر انداز کیا جاتا ہے۔ بے بوجھ امالی موٹروں کی بیجان انگیز برقی روکافی زیادہ ہوتی ہے المذا ان کے ساکن کچھوں کی برقی طاقت کے ضیاع کو نظر انداز نہیں کیا جا سکتا۔ بے بوجھ امالی موٹر کی 1₀₆ سے اگر تین ساکن کچھوں کی برقی ضیاع منفی کی جائے تو اس میں میکافی طاقت کے ضیاع کا حساب لگایا جا سکتا ہے یعنی

(7.53)
$$p_{t_{a}b} = p_{bb} - 3I_{s,bb}^{2}R_{s}$$

$$a_{b} = p_{bb} - 3I_{s,bb}^{2}R_{s}$$

$$a_{b} = p_{bb} - 3I_{s,bb}^{2}R_{s}$$

کھتے ہوئے لفظ بے بوجھ کے پہلے حروف باور ب کو زیر نوشت میں bb سے ظاہر کیا گیا ہے۔ V_{bb}^{28}

شكل 7.14: بي بوجهدامالي موٹر كامعائنه۔

(7.54)
$$R_{bb} = \frac{p_{bb}}{3I_{s,bb}^2}$$

$$Z_{bb} = \frac{V_{bb}}{I_{s,bb}}$$

$$X_{bb} = \sqrt{|Z_{bb}|^2 - R_{bb}^2}$$

$$X_{bb} = X_s + X_m$$

 X_s یوں اس معائنہ سے موٹر کی بے بوجھ متعاملیت X_{bb} حاصل ہوتی ہے۔اگر کسی طرح ساکن کچھے کی متعاملیت معلوم ہو تب اس مساوات سے X_m حاصل کی جاسکتی ہے۔اگلے معائنہ میں ہم X_s کا اندازہ لگا سکیں گے۔

7.11.2 جامد موٹر کامعائنہ

یہ معائنہ ٹرانسفار مر کے کسرِ دور معائنہ کی طرح ہے۔ اس میں مثین کے رِستا امالوں کی معلومات حاصل ہوتی ہے۔ البتہ امالی موٹر کا مسّلہ ذرا زیادہ پیچیدہ ہے۔ امالی موٹر کی رِستا امالہ گھومتے کچھوں میں برقی تعدد اور قالب کے سیر اب ہونے پر مخصر ہوتے ہیں۔

اس معائنہ میں امالی موٹر کے گھومتے جھے کو حرکت کرنے سے زبردستی روک دیا جاتا ہے جبکہ ساکن کچھوں پر بیرونی برقی دباو V_{rk} لاگو کر کے برقی طاقت p_{rk} اور ساکن کچھوں کی برقی رو $I_{s,rk}$ ناپی جاتی ہیں۔ اصولی طور پر بیہ معائنہ اُن حالات کو مدِ نظر رکھ کر کیا جاتا ہے جن پر موٹر کی معلومات درکار ہوں۔

شکل7.15:رکےامالی موٹر کامعا ئنہ۔

جس لمحہ ایک موٹر کو ساکن حالت سے چالو کیا جائے اس لمحہ موٹر کی سرک ایک کے برابر ہوتی ہے اور اس کے گھومتے کچھوں میں عام تعدد f_e کی برتی رو 29 ہوتی ہے، لہذا اگر اس لمحہ کے نتائ درکار ہوں تو موٹر کے ساکن کچھوں پر عام تعدد یعنی f_e کی اتنی برتی دباو لا گو کی جائے گی جتنی سے اس کے گھومتے کچھوں میں برتی رو f_e علی وباد لا گو کی جائے گی جتنی سے اس کے گھومتے کچھوں میں برتی وادر اس کے گھومتے ہو۔ اس طرح اگر عام چالو حالت میں بوجھ بردار موٹر کے نتائے درکار ہوں جب موٹر کی سرک f_e اور اس کے گھومتے کچھوں میں برتی رو وجود میں آئے۔ تقریباً کی جائے گی اور اس کی مقدار اتن رکھی جائے گی جتنی سے گھومتے کچھوں میں f_e برتی رو وجود میں آئے۔ تقریباً f_e کی دباویر ہی کیا جاتا ہے۔ میں برتی تعدد کے اثرات قابل نظر انداز ہوتے ہیں لہذا ان کا معائد f_e تعدد کی برقی دباویر ہی کیا جاتا ہے۔

یہاں صفحہ 226 پر دکھائے شکل 7.7 کو رکے موٹر کے معائنہ کی نقطہ نظر سے دوبارہ بناتے ہیں۔رکے موٹر کی سرک ایک کے برابر ہوتی ہے۔مزید ہے کہ اس معائنہ میں لاگو برقی دباو عام چالو موٹر پر لاگو برقی دباو سے خاصی کم ہوتی ہے۔اتی کم لاگو برقی دباو پر قالبی ضیاع کو نظرانداز کیا جا سکتا ہے۔شکل میں R_c کو کھے دور کرنا قالبی ضیاع کو نظرانداز کرنے کے مترادف ہے۔ایسا کرنے سے شکل 7.15-الف ملتا ہے۔چونکہ s=1 ہمذا اس شکل میں R_r' کو R_r' کو R_r' کو R_r' کی ایس کی سے۔

-7.15الف میں jX_m اور $(R'_r+jX'_r)$ متوازی جڑے ہیں۔ ان کا مساوی سلسلہ وار دور شکل jX_m

t=0ں لور کے برقی رو کو چیو ڈی ککھائی میں وقت صغر سے مسلک کیا گیا ہے کینی t=0 29 30 ر نوشت میں t=0 نو برا کی جار مواد کیا گیا ہے ہے۔t=0 کا برائی میں کے برائی میں کا برائی ہے کہ موٹر کا بی دیرے بیالا ہے ہوئی کی ہے۔

_

ب میں دکھایا گیا ہے۔اس متوازی دور کی مزاحمت Z_m سے سلسلہ وار مزاحمت Z_s یوں حاصل ہوتی ہے۔

$$Z_{m} = \frac{jX_{m}(R'_{r} + jX'_{r})}{R'_{r} + j(X_{m} + X'_{r})}$$

$$= \left(\frac{jX_{m}R'_{r} - X_{m}X'_{r}}{R'_{r} + j(X_{m} + X'_{r})}\right) \left(\frac{R'_{r} - j(X_{m} + X'_{r})}{R'_{r} - j(X_{m} + X'_{r})}\right)$$

$$= \frac{jX_{m}R'^{2} + X_{m}R'_{r}(X_{m} + X'_{r}) - X_{m}X'_{r}R'_{r} + jX_{m}X'_{r}(X_{m} + X'_{r})}{R'^{2} + (X_{m} + X'_{r})^{2}}$$

$$= \frac{X_{m}^{2}R'_{r}}{R'^{2} + (X_{m} + X'_{r})^{2}} + \frac{j(X_{m}R'^{2} + X_{m}^{2}X'_{r} + X_{m}X'^{2})}{R'^{2} + (X_{m} + X'_{r})^{2}}$$

$$= R_{s}^{*} + jX_{s}^{*} = Z_{s}$$

اگر ان مساوات میں $X_m\gg X_r'$ اور $X_m\gg X_r'$ لیا جائے تو حاصل ہوتا ہے۔

$$(7.56) R_s^* \approx R_r' \left(\frac{X_m}{X_m + X_r'}\right)^2$$

(7.57)
$$X_s^* = \approx \frac{X_m R_r'^2}{X_m^2} + \frac{X_m^2 X_r'}{X_m^2} + \frac{X_m X_r'^2}{X_m^2} \approx X_r'$$

اس معائنه میں نایے مقداروں اور شکل 7.15-ب سے

(7.58)
$$Z_{rk} = \frac{V_{rk}}{I_{s,rk}}$$

$$R_{rk} = \frac{p_{rk}}{3I_{s,rk}^2}$$

$$X_{rk} = \sqrt{|Z_{rk}|^2 - R_{rk}^2}$$

حاصل ہوتے ہیں۔ اس مساوات کے پہلے جزو میں ناپے برقی دباو اور برقی روسے رکاوٹ حاصل کی گئی ہے، اس کے دوسرے جزو سے مزاحمت اور تیسرے میں متعاملیت۔

اب شکل 7.15-ب سے واضح ہے کہ

$$(7.59) X_{rk} = X_s + X_r'$$

امالی مشین مختلف خصوصیات کو مد نظر رکھ کر بنائے جاتے ہیں۔عام آدمی کے آسانی کے لئے ایسے مشینوں کی درجہ بندی کی جاتی ہے۔جدول 7.1 میں پنجرا نما امالی موٹر کے مختلف اقسام A, B, C, D اور ایسی مشین جن کا گھتا حصہ

X'_r	X_s	خاصيت	گھومتاحصہ
$0.5X_{rk}$	$0.5X_{rk}$	کار کر دگی گھومتے ھے کی مزاحمت پر منحصر	ليثاهوا
$0.5X_{rk}$	$0.5X_{rk}$	عام ابتدائی قوت مر وڑ،عام ابتدائی رو	A بناو Δ
$0.6X_{rk}$	$0.4X_{rk}$	عام ٰابتدا کی قوت مر وڑ ، کم ابتدا کی رو	Bبناوك
$0.7X_{rk}$	$0.3X_{rk}$	زیادهابتدائی قوت مروژ ، کم ابتدائی رو	Cبناوك
$0.5X_{rk}$	$0.5X_{rk}$	زیادها بتدائی قوت مر وژ،زیاده سرک	D بناو Δ

جدول 7.1: متعامليت كي ساكن اور گھومتے حصوں ميں تقسيم۔

کھے پر مشتمل ہو، کے رِستا متعاملیت X_{rk} کو ساکن اور گھومتے کچھوں میں تقسیم کرنا دکھایا گیا ہے۔اس جدول کے مطابق، گھومتے کچھے والی مشین میں ساکن اور گھومتے متعاملیت برابر ہوتے ہیں۔ ای طرح شکل 7.15-ب سے واضح ہے کہ جہے کہ مزاحمت R_s براہِ راست مزاحمت ناپنے کے آلہ یعنی اوہم میڑ $R_{rk}=R^*+R_s$ میڑ تو سے نابی جائے تو

$$(7.60) R^* = R_{rk} - R_s$$

ہو گا اور اب R'_r کو مساوات 7.56 سے حاصل کیا جا سکتا ہے جہاں X_m بوجھ امالی موٹر کے معائنہ میں حاصل کی جاتی ہے۔

اوہم میٹر کی مدد سے ساکن کچھے کی مزاحمت ناپتے وقت میہ جاننا ضروری ہے کہ موٹر ستارہ یا تکونی جڑی ہے۔ شکل 7.16 میں کچھے کو دونوں طرح جڑا دکھایا گیا ہے۔ اگر یک دوری مزاحمت R_s ہو تو ستارہ جڑی موٹر میں اوہم میٹر $2R_s$ مزاحمت دے گی۔ حکوفی جڑی موٹر کے لئے یہ $2R_s$ مزاحمت دے گی۔

مثال 7.5: ستارہ جڑی چار قطب پچاس ہر ٹز اور 415 وولٹ پر چلنے والی موٹر کے معائنہ کئے جاتے ہیں۔ موٹر کی بناوٹ ورجہ بندی A کے مطابق ہے۔ اوہم میٹر کسی بھی دو برتی سروں کے مابین 0.55 اوہم جواب دیتا ہے۔ بے بوجھ معائنہ Hz اور طاقت کا ضیاع W 906 ناپے جاتے ہیں۔ جامد موٹر معائنہ Hz اور کا 50 اور کا 50 ہوئے برتی رو A 1.9 اور طاقت کا ضیاع W 850 ناپے جاتے ہیں۔ اس موٹر معائنہ Hz اور کا وی برتی دو برنائیں اور یائج فی صد سرک پر اس کی اندرونی میکانی طاقت عاصل کریں۔

 ${\rm Ohm}\ {\rm meter}^{31}$

شکل 7.16: شارہ اور تکونی جڑی موٹروں کی ساکن کیجھوں کی مزاحمت کااوہم میٹر کی مددسے حصول۔

$$R_s=rac{0.55}{2}=0.275\,\Omega$$
 حاصل او جم میٹر کے جواب سے ستارہ جڑی موٹر کے ساکن کچھے کی مزاحمت $R_s=rac{0.55}{2}=0.275\,\Omega$ حاصل ہوتی ہے۔ بے بوجھ معائنہ میں یک دوری برقی دباو $R_b=rac{415}{\sqrt{3}}=239.6\,\mathrm{V}$ مارکن کے جس سے $R_{bb}=rac{906}{3 imes4\,1^2}=17.965\,\Omega$

$$R_{bb} = \frac{17.965 \,\Omega}{3 \times 4.1^2} = 17.965 \,\Omega$$

$$|Z_B| = \frac{239.6}{4.1} = 58.439 \,\Omega$$

$$X_{bb} = \sqrt{58.439^2 - 17.965^2} = 55.609 \,\Omega = X_s + X_m$$

للذاركے موٹر معائنہ كے نتائج سے X_s حاصل كرنے كے بعد X_m حاصل ہو جائے گا۔

ساکن کچھے کی مزاحمت میں اس برقی رو پر کل

$$3I_{bb}^2R_s = 3 \times 4.1^2 \times 0.275 = 13.87 \,\mathrm{W}$$

برتی طاقت کا ضیاع ہو گا لہذا رگڑ اور دیگر طاقت کا ضیاع 892=30.80-900 واٹ ہو گا۔

رکے موٹر کے معائنہ میں یک دوری برقی دباو $\frac{50}{\sqrt{3}}=28.9$ وولٹ ہیں یوں اس معائنہ سے

$$R_{rk} = \frac{850}{3 \times 13.91^2} = 1.464 \,\Omega$$
$$|Z_{rk}| = \frac{28.9}{13.91} = 2.07 \,\Omega$$
$$X_{rk.15} = \sqrt{2.07^2 - 1.464^2} = 1.46 \,\Omega$$

باب.7. امالي مشين

حاصل ہوتے ہیں۔ اس معائنہ میں برقی تعدد 15 ہرٹز تھی للذا 50 ہرٹز پر متعاملیت $X_{rk,50}=rac{50}{15} imes X_{rk,15}pprox 4.9\,\Omega$

ہوتی ہے لہذا A کی امالی موٹر کے لئے یہ متعاملت ساکن اور گھومتے کچھے میں بکساں تقسیم ہوتی ہے لہذا $X_s=X_r'=rac{4.9}{2}=2.45\,\Omega$

بول

$$X_m = X_{bb} - X_s = 55.609 - 2.45 = 53\,\Omega$$

چونکہ $R_s=0.275$ اوہم ہے لہذا

$$R'_r = R_{rk} - R_s = 1.464 - 0.275 = 1.189 \,\Omega$$

ہو گا۔ یہ مساوی برتی دور شکل 7.17 میں دکھایا گیا ہے۔

پانچ فی صد سرک پر اندرونی میکانی طاقت کی خاطر بائیں جانب کا تھوِنن مساوی دور استعال کرتے ہوئے

$$\begin{split} V_t &= 229 / 0.2833^{\circ} \\ Z_t &= 0.251 + j2.343 \\ \left| \hat{I}'_r \right| &= 11.8 \, \mathrm{A} \\ p_m &= \frac{3 \times 11.8^2 \times 0.974 \times (1 - 0.05)}{0.05} = 7730 \, \mathrm{W} \end{split}$$

باب8

یک سمت رومشین

کے سمت رومشین یا تو یک سمت روا برقی طاقت پیدا کرتے ہیں یا پھر یہ یک سمت رو برقی طاقت سے چلتے ہیں۔ یک سمت رو موٹروں کی اہمیت بتدری کم ہوتی جا رہی ہے اور ان کی جگه امالی موٹر استعال ہونے گے ہیں جو جدید طرز کے قور الیکڑانکس 2 سے قابو کئے جاتے ہیں۔موجودہ دور میں گاڑیوں میں گل یک سمت جزیڑ بھی دراصل سادہ بدلتا رو جزیر ہوتے ہیں جن کے اندر نسب ڈالوڈ ان کی بدلتا محرک برقی دباو کو یک سمت محرک برقی دباو میں تبدیل کر دیتی ہے۔

اس باب میں دو قطب کے یک سمت آلوں کا مطالعہ کیا جائے گا۔میکانی سمت کار رکھنے والے یک سمت آلوں میں میدانی کچھا ساکن ہوتا ہے جبکہ قوی کچھا گھومتا ہے۔

8.1 میکانی سمت کارکی بنیادی کار کردگی

جزیر بنیادی طور پر بداتا رو برقی دباو ہی پیدا کرتا ہے۔ یک ست جزیر کے اندر نسب سمھ کار4 میکانی طریقہ سے اس بداتا رو کو یک سمت برقی دباو حاصل ہوتا ہے۔ اس بداتا رو کو یک سمت رو میں تبدیل کرتا ہے اور یوں جزیر کی برقی سروں سے یک سمت برقی دباو حاصل ہوتا ہے۔

dc, direct current¹ power electronics² diode³

 $commutator^4$

شكل 8.1: ميكاني ست كار

سمت کار کو شکل 8.1 میں دکھایا گیا ہے۔ اس شکل میں جزیڑ کے قوی کچھے کو ایک چکر کا دکھایا گیا ہے اگرچہ حقیقت میں ایسا نہیں ہوتا۔ قوی کچھے کے برقی سرول کو د اور ڈسے ظاہر کیا گیا ہے جو سمت کار کے د اور ڈسھوں کے ساتھ جُڑے ہیں۔ قوی کچھا اور سمت کار ایک ہی دھرے پر نسب ہوتے ہیں اور یوں یہ ایک ساتھ حرکت کرتے ہیں۔ تصور کریں کہ یہ دونوں گھڑی کی اُلٹی سمت مقناطیسی میدان میں گھوم رہے ہیں۔ مقناطیسی میدان اُفقی سطح میں S کی جانب ہے جے نوکدار لکیروں سے دکھایا گیا ہے۔ سمت کار کے ساتھ کار بن کے ساکن اُبٹن، اسپر نگ کی مدد سے دبا کر رکھے جاتے ہیں۔ ان کاربن کے اُبٹوں سے برقی دباو بیرونِ جزیر موصل برقی تاروں کے ذریعہ منتقل کی جاتی ہیں۔ ان اُبٹوں کو مثبت نشان لیخن – سے ظاہر کیا گیا ہے۔

د کھائے گئے لمحہ پر لچھے میں پیدا برتی دباو e کی وجہ سے لحجھے کا برتی سراد مثبت اور اس کا برتی سرا ڈ منفی ہے۔ یوں سست کار کا حصہ د مثبت اور اس کا حصہ ڈ منفی ہے جس سے کاربن کے + نشان والا بُش مثبت اور – نشان والا بُش منفی ہے۔ آدھے چکر بعد خلاء میں لحجھے کی د اور ڈ اطراف آپس میں جگہیں تبدیل کر لیں گی۔ یہ شکل 8.2 میں د کھایا گیا ہے۔ لحجھ پر برتی گیا ہے۔ لحجھ کے د اور ڈ اطراف اب بھی سمت کار کے د اور ڈ حصول کے ساتھ جُڑے ہیں۔ اس لمحہ پر لحجھ پر برتی دباو اُلٹ ہو گی اور اب اس کا د طرف منفی اور ڈ طرف مثبت ہو گا جیسے شکل میں دکھایا گیا ہے۔ یہاں سمت کارکی کارکردگی سامنے آتی ہے اور ہم دیکھتے ہیں کہ کاربن کا + نشان والا بُش اب بھی مثبت اور – نشان والا بُش اب بھی منفی ہے۔ یوں جزیئر کے بیرونی برقی سرول پر اب بھی برقی دباو پہلے کی سمت میں ہی ہے۔ سمت کاری کے دانتوں کے مابین برقی دباو ہوتا ہے لہذا ان کو غیر موصل شہ کی مدد ایک دونوں سے اور دھرے سے دور رکھا جاتا ہے۔

گھومتے وقت ایک ایسالمحہ آتا ہے جب سمت کار کے دونوں دانت کاربن کے دونوں بُثوں کے ساتھ جُڑے ہوتے ہیں لیعنی اس لمحہ کاربن کے بُش لیجھے کو کسرِ دور کرتے ہیں۔ کاربن کے بُش محیط پر اس طرح رکھے جاتے ہیں کہ جس

شکل 8.2: آدھے چکر کے بعد بھی بالائی بُش مثبت ہی ہے۔

لمحہ کچھے میں برقی دباو مثبت سے منفی یا منفی سے مثبت ہونے لگے اس لمحہ کاربن کے کبُش کچھے کو کسرِ دور کرے۔چونکہ اس لمحہ کچھے کے پیدا کردہ برقی دباو صفر ہوتی ہے للذا اسے کسرِ دور کرنے سے کوئی نقصان نہیں ہوتا۔اس طرح حاصل برقی دباو شکل 8.3 میں دکھایا گیا ہے۔

یہاں دو دندوں والا سمت کار اور دو مقناطیسی قطب کے درمیان گھومتا ایک ہی قوی کچھا دکھایا گیا ہے۔ حقیقت میں جزیئر کے بہت سارے قطب ہوں گے۔ مزید سے میں جزیئر کے بہت سارے قطب ہوں گے۔ مزید سے کہ نہایت چھوٹی آلوں میں مقناطیسی میدان مقناطیس ہی فراہم کرتا ہے جبکہ بڑی آلوں میں مقناطیسی میدان ساکن میدانی کچھے فراہم کرتے ہیں۔ مثین کے دونوں قتم کے کچھے تقسیم شدہ ہوتے ہیں۔

اب ہم زیادہ دندول کے ایک سمت کار کو دیکھتے ہیں۔

8.1.1 ميكاني سمت كاركي تفصيل

پچھلے حصہ میں سمت کار کی بنیادی کار کردگی سمجھائی گئی۔ اس حصہ میں اس پر تفصیلاً غور کیا جائے گا۔ یہاں شکل 8.4 سے رجوع کریں۔اس شکل میں اندر کی جانب دکھائے گئے سمت کار کے دندوں کو ہندسوں سے ظاہر کیا گیا ہے۔سمت

شکل 4.8: کاربن بُش سمتکار کے دندوں کو کسرِ دور نہیں کررہا۔

کار کی اندر جانب کاربن بُش دکھائے گئے ہیں جبکہ بیرونِ جزیٹر برقی رو کو ظاہر کرتی ہے۔ شگافوں کو بھی ہندسوں سے ظاہر کیا گیا ہے۔اس جزیٹر کے دو قطب ہیں جبکہ اس میں کل آٹھ شگاف ہیں۔اس طرح اگر ایک شگاف ایک قطب کے سامنے ہو تو تین شگاف چوڑ کر موجود شگاف دوسرے قطب کے سامنے ہو گا۔ہم کہتے ہیں کہ ایسے دو شگاف ایک قطب فاصلے پر ہیں۔

شگافوں میں موجود کچھوں میں برتی رو کی سمتیں نقطہ اور صلیب سے ظاہر کئے گئے ہیں۔ نقطہ صفحہ سے عمودی طور پر باہر جانب کی سمت کو ظاہر کرتی ہے جبکہ صلیب کے نشان اس کی اُلٹ سمت کو ظاہر کرتی ہے۔یوں پہلی شگاف میں برتی رو کی سمت عمودی طور پر صفحہ کی اندر جانب کو ہے۔

ہر شگاف میں دو لچھے و کھائے گئے ہیں۔ پہلی شگاف کی اندر جانب موجود لچھا، ست کار کی پہلی دانت سے بُڑا ہے۔ یہ جوڑ موٹی لکیر سے ظاہر کی گئی ہے۔ شگاف کے نچلے سرے سے نکل کر یہ لچھا پائج نمبر شگاف کے نچلے سرے میں باہر جانب کو داخل ہوتا ہے۔ اس بات کو نقطہ دار لکیر سے دکھایا گیا ہے۔ اس طرح دو لچھے دوسرے اور چٹے شگافوں میں ہیں۔ ان میں ایک لچھا دوسرے شگاف میں اندر کی جانب اور چٹے شگاف میں باہر کی جانب ہے جبکہ دوسرا لچھا دوسرے شگاف میں اندر کی جانب ہے۔ نقطہ دار لکیریں صرف پہلی اور پانچویں لچھا دوسرے شگاف میں باہر کی جانب اور چٹے شگاف میں اندر کی جانب ہے۔ نقطہ دار لکیریں صرف پہلی اور پانچویں شگاف میں اندر جانب اور اس کی دوسری طرف شگاف میں باہر جانب کو ہوتی ہے۔ سمت کار کا یہی پہلا اندر جانب اور اس کی دوسری طرف ایک قطب دور موجود شگاف میں باہر جانب کو ہوتی ہے۔ سمت کار کا یہی پہلا

شكل 8.5: سمت كارسے جڑے لچھے۔

دانت چوشے شگاف کی باہر جانب موجود کچھے سے بھی جُڑا ہے۔آپ یہاں رکھ کر شکل 8.5 کی مدد سے مشین میں برقی رو کی سمتیں سمجھیں اور تیلی کر لیں کہ بید درست دکھائے گئے ہیں۔اس شکل میں کچھوں کو الف، ب، پ وغیرہ نام دیئے گئے ہیں جبکہ سمت کار کے دندوں کو ہندسوں سے ظاہر کیا گیا ہے۔کاربن کے کُش پہلے اور پانچویں دانت سے جڑے دکھائے گئے ہیں۔

اس شکل میں کاربن بُش سے برقی رو سمت کارکی پہلے دانت سے ہوتے ہوئے دو برابر مقداروں میں تقسیم ہو کر دو کیساں متوازی راستوں گزرے گی۔ایک راستہ سلسلہ وار جڑے الف، ب، پ اور ت کچھوں سے بنتا ہے جبکہ دوسرا راستہ سلسلہ وار جڑے ہے، ث، ج اور چ کچھوں سے بنتا ہے۔یہ دو سلسلہ وار راستے آپس میں متوازی جڑے ہیں۔برقی روکی سمت نقطہ دار چونچ والی لکیر سے ظاہر کی گئی ہے۔دو متوازی راستوں سے گزرتا برقی روایک مرتبہ دوبارہ مل کر ایک ہو جاتا ہے اور سمت کار کے پانچویں دانت سے جڑے کاربن بُش کے ذریعہ مشین سے باہر نکل جاتا ہے۔ آپ دیکھ سکتے ہیں کہ گھومتے جھے کی شکافوں میں موجود کچھوں میں برقی رو مقناطیسی دباو کو جنم دے گی جو ساکن مقناطیسی دباو کی عمودی سمت میں ہو گی جیسا شکل 8.4 میں دکھایا گیا ہے۔یہ دو مقناطیسی دباو دھرے پر گھڑی کی سمت میں قوت مروڑ پیدا کریں گے۔یوں اگر مثین موٹر کے طور پر استعال کی جا رہی ہو تو یہ گھڑی کی سمت میں موجود کے اس صورت میں کاربن بُش پر بیرونی یک سمت برقی دباو اس سمت میں لاگو کی جائے گی کہ اس میں برقی دودکھائی گئی سمت میں ہو۔

اب یہ تصور کریں کہ مشین ایک جزیٹر کے طور پر استعال کی جارہی ہو اور اسے گھڑی کی اُلٹی سمت بیرونی میکانی طاقت سے گھمایا جا رہا ہو۔یوں سمت کار کے آدھے دانت برابر حرکت کرنے کے بعد یہ شکل 8.6 میں دکھلائے

شكل 8.6 : كاربن كبش سمت كاركے دندوں كو كسرِ دور كررہاہے۔

حالت اختیار کرلے گی۔اس شکل میں دائیاں کاربن بُش سمت کار کے پہلے اور دوسرے دانت کے ساتھ جبکہ بائیاں کاربن بُش اس کے پانچویں شکافوں میں موجود کچھے کسرِ دور کاربن بُش اس کے پانچویں اور چھٹے دانت کے ساتھ جُڑ گئے ہیں۔یوں پہلے اور پانچویں شکافوں میں موجود کچھوں میں حسبِ معمول برقی رو ہو گا جن سے مقاطیسی دباو اب بھی پہلے کی طرح ساکن مقاطیسی کی دباو کی عمودی سمت میں ہو گا۔اس لمحہ کی صورت شکل 8.7 میں زیادہ واضح ہے۔

مشین جب سمت کار کے ایک دانت برابر حرکت کر لے تو کاربن کے کُش دوسرے اور چھٹے دانت سے جُڑ جائیں گے۔ پہلے اور پانچویں شگافوں میں برقی رو کی سمت پہلی سے اُلٹ ہو جائے گی جبکہ باقی شگافوں میں برقی رو کی سمتیں برقرار رہیں گی۔ گھوشتے کچھوں کا برقی دباواب بھی اُسی سمت میں ہو گا۔

جتنے کہے کے لئے کاربن کے کُش دو کچھوں کو کسرِ دور کرتے ہیں اپنے وقت میں ان کچھوں میں برقی روکی سمت اُلٹ ہو جاتی ہے۔ کو شش کی جاتی ہے کہ اس دوران برقی رو وقت کے ساتھ بتدر تے تبدیل ہو۔ایسا نہ ہونے سے کاربن کے کُش سے چنگاریاں نکلتی ہیں جن سے یہ کُش جلد ناکارہ ہو جاتے ہیں۔ جزیٹر کے کسر دور کچھوں میں پیدا کرتی دباو انہیں کچھوں میں گھومتی برقی رو پیدا کرتی ہے جو ہمارے کسی کام کی نہیں۔ کچھے اور کاربن بش کے برقی مزاحمت اس برقی رو کی قیمت کا تعین کرتے ہیں۔

حقیقت میں یک سمت جزیر میں در جن دانت فی قطب والا سمت کار استعال ہو گا اور اگر مشین نہایت مچھوٹی نہ ہو تو اس میں دوسے زیادہ قطب ہول گے۔

شکل 8.7: کاربن بش دودندوں کو کسر دور کررہے ہیں۔

8.2 يك سمت جزيٹر كى برقى دباو

گزشتہ حصہ میں شکل 8.5 کے الف، ب، پ اور ت کچھے سلسلہ وار جڑے ہیں۔ اس طرح ٹ، ث، ج اور چ کچھے سلسلہ وار جڑے ہیں۔حصہ 5.3 میں مساوات 5.23 ایک کچھے کی یک سمت جزیئر کی محرک برقی دباو e_1 و بتی ہے۔ اس یاد دھیانی کی خاطر دوبارہ دیا جاتا ہے۔

$$(8.1) e_1 = \omega N \phi_m = \omega N A B_m$$

8.4 اگر خلائی درز میں B_m کی مقدار ہر جگہ کیساں ہو تو سب کچھوں میں برابر محرک برقی دباہ پیدا ہو گا۔یوں شکل B_m میں دکھائے کھے پر جنریٹر کی کل کر محرک برقی دباہ و B ایک کچھے کی محرک برقی دباہ کی چار گنا ہو گی لیعنی

(8.2)
$$e = e_{\downarrow\downarrow} + e_{\downarrow} + e_{\downarrow} + e_{\downarrow}$$

$$= e_{\downarrow} + e_{\downarrow} + e_{\downarrow} + e_{\downarrow}$$

$$= 4\omega NAB_{m}$$

جبه شکل 8.6 میں و کھائے لمحہ پر صرف تین لچھوں کی محرکی برقی دباو زیر استعال آتی ہے لینی

(8.3)
$$e = e_{\downarrow} + e_{\downarrow} + e_{\circlearrowright}$$

$$= e_{\dot{\downarrow}} + e_{\dot{\zeta}} + e_{\dot{\zeta}}$$

$$= 3\omega NAB_m$$

باب. 8 يك سمت رومشين

شکل8.8: آٹھ دندوں کی میکانی سمت کارسے حاصل برقی دباو۔

شکل 8.8 میں اس آٹھ دندوں والے میکانی سمت کار سے حاصل برقی دباو دکھائی گئی ہے۔اس شکل میں یک سمت برقی دباو پر سوار غیر مطلوبہ لہریں نظر آ رہی ہیں۔اگر جزیٹر میں ایک جوڑی قطب پر کل n کچھے ہوں تو شکل 8.5 کی طرح ہد دو $\frac{n}{2}$ سلسلہ وار کچھوں جتنی محرکی برقی دباو پیدا کرے گی۔

(8.4)
$$e = \frac{n}{2}\omega N\phi_m = \frac{n}{2}\omega NAB_m$$

اس صورت میں یہ غیر مطلوبہ لہریں کل یک سمت برقی دباو کی تقریباً

$$\frac{\omega N \phi_m}{\frac{n}{2} \omega N \phi_m} \times 100 = \frac{2}{n} \times 100$$

فی صد ہو گی۔آپ دیکھ سکتے ہیں کہ اگر فی قطب دندوں کی تعداد بڑھائی جائے تو حاصل برتی دباو زیادہ ہموار ہو گی اور یہ غیر مطلوبہ لہریں قابل نظر انداز ہوں گے۔

اب تصور کریں کہ شکل 8.4 میں دیئے مشین کی خلائی درز میں B_m کی مقدار ہر جگہ کیساں نہیں ہے۔اس صورت میں کچھوں میں محرک برقی دباو مساوات 8.1 کے تحت مختلف زاویوں پر مختلف ہو گی۔اس طرح مشین سے حاصل کل برقی دباو چار سلسلہ وار کچھوں کی مختلف محرک برقی دباو کے مجموعہ کے برابر ہوگی لیخی

$$(8.6) e = e_1 + e_2 + e_3 + e_4$$

جہاں e_1, e_2, \cdots مختلف کچھوں کی محرک برقی دباو کو ظاہر کرتے ہیں۔

اب شکل 8.4 پر غور کریں۔اگر گھومتا حصہ صرف ایک دندے برابر حرکت کرے تو اس شکل کی حالت دوبارہ حاصل ہوتی ہے اور اس سے حاصل برتی دباو بھی دوبارہ وہی ملتی ہے۔اگر میکانی سمت کارکی فی قطب دندوں کی تعداد زیادہ کر دی جائے تو یہ حرکت قابل نظر انداز ہو جاتی ہے۔ اب اگر خلائی درز میں کثافتِ متناطیسی بہاو ہمواری کے ساتھ تبدیل ہو تو آتی کم حرکت کے احاطے میں B_m کی مقدار میں کوئی خاص تبدیلی نہیں آئے گی اور اس احاطے

8.3. قوت مسرور الله 8.3

شكل8.9: آرى دندون نما كثافت مقناطيسي دباو ـ

میں اسے یکساں تصور کیا جا سکتا ہے۔ یوں اگر لچھا اس احاطے میں حرکت کرے تو اس میں محرک برقی دباو تبدیل نہیں ہو گی۔ یعنی جس لچھے کی محرکی برقی دباو e_1 ہے اُس کی اس احاطے میں محرکی برقی دباو یہی رہے گی۔ یوں اگرچہ نہیں ہو گی۔ یعنی جس محلف ہو سکتے ہیں مگر ان کی مقدار قطعی ہے، لہذا اس صورت میں مساوات e_1, e_2, \dots گئی محرکی برقی دباوکی مقدار مجمی قطعی ہو گی۔

ہم نے دیکھا کہ اگر خلائی درز میں B_m ہمواری کے ساتھ تبدیل ہو تو جزیٹر سے معیاری یک سمت محرک برقی دباو حاصل ہوتی ہے۔بدلتا رو جزیٹر وں میں B_m سائن نمار کھنی ضروری ہوتی ہے۔نہایت چھوٹی یک سمت آلوں میں خلائی درز میں B_m یکساں رکھا جاتا ہے جبکہ بڑی آلوں میں اسے ہمواری کے ساتھ تبدیل کیا جاتا ہے۔جیسا اوپر ذکر ہوا عملاً میکانی سمت کار کے دندوں تک لیچھوں کے سروں کی رسائی ممکن تب ہوتی ہے جب ہر شگاف میں دو لیچھ رکھے جائیں۔ اس طرح رکھے لیچھوں کی خلائی درز میں مقناطیسی دباو آری کے دندوں کی مانند ہوتا ہے۔یہ شکل 8.9 میں دکھایا گیا ہے۔

زیادہ قطب کے مشین میں شالی اور جنوبی قطب کے ایک جوڑے کی پیدا یک ست برقی دباو مساوات 8.4 سے حاصل ہو گی جہال n ایک قطبین کے جوڑے پر میکانی ست کار کے دندول کی تعداد ہو گی۔یوں زیادہ قطبین کے جوڑیوں سے حاصل یک سمت برقی دباو کو سلسلہ وار یا متوازی جوڑا جا سکتا ہے۔

8.3 قوت مروڑ

یک سمت آلول کی امالی برقی د باو اور قوت مروڑ خلائی درز میں مقناطیسی د باو کی شکل پر منحصر نہیں۔ اپنی سہولت کے لئے ہم ان کی خلائی درز میں مقناطیسی د باو سائن نما تصور کرتے ہیں۔ شکل 8.9 میں دکھائے گئے قوی کچھے کی مقناطیسی

باب.8. يك سمت رومشين

د باو کی بنیادی فور *یئر جز*و⁵

$$\tau_q = \frac{8}{\pi^2} \frac{NI}{2}$$

ہے۔ یوں چونکہ یک سمت مثین میں ساکن اور گھومتے کچھوں کی مقناطیسی دباو عمودی ہیں لہذا ان میں قوت مروڑ مساوات 5.103 کی طرح

(8.8)
$$T = -\frac{\pi}{2} \left(\frac{P}{2}\right)^2 \phi_m \tau_q$$

ہو گی۔

مثال 8.1: دو قطب بارہ دندوں کے میکانی سمت کار کے یک سمت جزیٹر میں ہر قوی کچھا بیں چکر کا ہے۔ایک کھیے سے گزرتی مقناطیسی بہاو 0.0442 ویبر ہے۔جزیئر 3600 چکر فی منٹ کی رفتار سے گھوم رہا ہے۔

- اس کی پیدایک ست برقی دباو میں غیر مطلوبہ لہریں کل برقی دباو کے کتنے فی صد ہیں۔
 - یک سمت برقی دباو حاصل کریں۔

حل:

• مساوات
$$8.5$$
 سے غیر مطلوبہ لہریں $\frac{2}{n} \times 100 = \frac{2}{12} \times 100 = 16.66$

• جزیٹر کی رفتار
$$60=rac{3600}{60}$$
 ہر ٹز ہے یوں مساوات 8.4 کی مدد سے حاصل یک سمت برقی دباو

$$e = \frac{12}{2} \times 2 \times \pi \times 60 \times 20 \times 0.0442 = 1999.82 \,\mathrm{V}$$

-4

شكل8.10: بيروني بيجان اورخود بيجان يك ست جزيرً بـ

بیر ونی ہیجان اور خود ہیجان یک سمت جنریٹر

بروز ہیجارے 6 یک ست جزیٹر کے میدانی کچھے کو بیرونی یک سمت برتی دباو مہیا کی جاتی ہے جبکہ خود ہیجارہ⁷ یک سمت جزیٹر کے میدانی کیچھے کو اس جزیٹر کی اپنی پیدا کردہ محرک برقی دباو ہی مہیا کی جاتی ہے۔ یک سمت جزیٹر کی کارکرد گی اس کو ہیجان کرنے کے طریقے پر منحصر ہے۔

شکل 8.10-الف میں قوی کچھے 8 اور میدانی کچھے 9 کو آپس میں عمودی بنایا گیا ہے۔ یہ ایک سادہ طریقہ ہے جس سے یہ یاد رہتا ہے کہ ان کچھوں کی پیدا کردہ مقناطیسی دباو عمودی ہیں۔ یہاں قوی کیچھے کی شکل میکانی سمت کار کی طرح بنائی گئی ہے۔

چونکہ میدانی اور قوی کچھوں کی مقناطیسی دباو عمودی ہیں ہم اس سے یہ اغذ کرتے ہیں کہ ایک کچھے کی برقی دباو دوسرے کیجھے کی برقی دباویر اثر انداز نہیں ہوتی۔اس کا مطلب ہے کہ مقناطیسی قالب کی کسی ایک سمت میں سیرابیت اس ست کی عمودی ست میں سیر ابیت یر اثر انداز نہیں ہوتی۔

شکل 8.10-الف میں بیرونی بیجان مشین کی میدانی کھیے کو بیرونی یک ست برقی طاقت مہیا کی گئی ہے۔ یوں میدانی کھھے کی برقی رو تیدیل کر کے اس کی میدانی مقناطیسی دیاو au_m ، میدانی مقناطیسی بہاو au_m اور کثافت مقناطیسی

> separately excited⁶ self excited⁷

armature coil⁸

field coil⁹

شکل 8.11: میدانی برتی روسے محرکی برتی دباو قابو کی جاتی ہے۔

بہاو B_m تبدیل کی جا سکتی ہے۔یوں جزیٹر کی محرک برقی دباو مساوات 8.1 کے تحت تبدیل کی جا سکتی ہے یا پھر موڑ کی قوت مروڑ مساوات 8.8 کے تحت تبدیل کی جا سکتی ہے۔

برتی رو بڑھانے سے قالب کا سیر اب ہونا شکل 8.11 میں واضح ہے۔ یوں برتی رو بڑھاتے ہوئے شروع میں محرک برتی دباو اور میدانی کچھے کی برتی رو براہِ راست متناسب ہو گی جبکہ زیادہ برتی رو پر ایسا نہیں۔ شکل میں خط ب مشین کے کھلے سرے معائنہ سے حاصل کی جاستی ہے۔ اس شکل میں محرکی برتی دباو کو e_{q0} کی بجائے e_{q0} کھ کر اس بات کی یاد دھیانی کرائی گئ ہے کہ یہ محرکی دباو قوی کچھے سے حاصل کی گئ ہے اور یہ ایک معین رفتار ω_0 برق دباو e_q ماصل کرتی ہو تو مساوات 8.4 کی مدد سے کی گئ ہے۔ اگر کسی اور رفتار س پر اس خط سے محرکی برتی دباو e_q حاصل کرنی ہو تو مساوات 8.4 کی مدد سے

(8.9)
$$\frac{e_q}{e_{q0}} = \frac{\frac{n}{2}\omega NAB_m}{\frac{n}{2}\omega_0 NAB_m} = \frac{\omega}{\omega_0}$$

لعيني

$$(8.10) e_q = \frac{rpm}{rpm_0} e_{q0}$$

جہال رفتار کو چکر فی منٹ ¹⁰ میں بھی لیا گیا ہے۔یاد رہے کہ یہ مساوات صرف اُس صورت میں درست ہے جب مقناطیسی میدان تبدیل نہ ہو۔

مقناطیسی قالب اگر مقناطیس بنائی جائے تو اس میں بقایا مقناطیسی بہاو رہتی ہے۔یہ شکل کے حصہ الف میں دکھائی گئ ہے۔یوں اگر میدانی کچھے کو بیجان نہ بھی کیا جائے تو جزیئر کچھ محرکی برقی دباو پیدا کرے گی ا۔ یہ بقایا محرکی برقی دباو شکل ب میں صفر میدانی برقی رو پر دکھائی گئی ہے۔

rpm, rounds per minute¹⁰

¹¹ آپ ٹھیک سوچ رہے ہیں۔ جزیر بنانے والے کار خانے میں قالب کو پہلی مرتبہ مقناطیس بنانایر تاہے

شكل 8.12: سلسله واراور مر كب جڑى خود بيجان جنريٹر۔

اگر خود بیجان جنریٹر کو ساکن حال سے چالو کیا جائے تو بقایا محرکی برقی دباو پیدا ہو گی۔اس محرک برقی دباو سے میدانی کچھے میں برقی رو روال ہو گا اور ایول مقناطیسی میدان پیدا ہو گا جس سے مشین ذرا زیادہ بیجان ہو جائے گا اور ایول اس کی محرکی برقی دباو بھی کچھ بڑھ جائے گا۔اس طرح کرتے کرتے مشین جلد پوری محرک برقی دباو پیدا کرنے شروع ہوتا ہے۔ بیہ سب اسی اثنا میں ہوتا ہے جب مشین کی رفتار بڑھ رہی ہوتی ہے۔

شکل 8.10-ب میں خود بیجان مشین دکھائی گئی ہے جس کے میدانی اور قوی کچھے متوازی بُوئے ہیں۔ اس طرح بڑی جزیر کو خود بیجان متوازی جزئی کہتے ہیں۔اس شکل میں میدانی کچھ کے ساتھ ایک مزاحمت سلسلہ وار برٹی ہے۔اس مزاحمت کو تبدیل کر کے میدانی برقی رو تبدیل کی جاتی ہے جس سے بالکل بیرونی بیجان مشین کی طرح جزیر کی محرکی برقی دباویا موٹر کی قوت مروڑ تبدیل کی جاتی ہے۔

شکل 8.12 میں خود بیجان جزیر کی دو اور قسمیں دکھائی گئ ہیں۔ ایک خود بیجائے سلملہ وار بڑئ جزیر اور دوسری خود بیجائے سلملہ وار بڑئ جی۔ سلملہ وار بڑئ جی جزیر اور دوسری خود بیجائے مرکب جنریر میں میدانی اور قوی کچھ سلمہ وار بجڑے ہوتے ہیں۔ مرکب جنریر میں میدانی کچھ کے متوازی اور دوسرا اس کے سلملہ وار بجڑے ہوتے ہیں۔ مزید یہ کہ متوازی بجڑا حصہ قوی کچھ کے قریب ہو سکتا ہے یا پھر یہ سلملہ وار کچھ کے دوسری جانب یعنی دور بین مورت میں اسے قریب بڑئے مرکب جزیر اور دوسری صورت میں دور بڑئی مرکب جزیر کہیں گئے ہیں۔ مشکل 8.13 میں مرکب جزیر کے دونوں اشکال دکھائے گئے ہیں۔

یک سمت موٹر بھی اسی طرح پکارے جاتے ہیں۔ یعنی شکل 8.10 کی طرح جڑی دو موٹروں کو بیرونی بیجان موٹر اور خود بیجان متوازی جڑی موٹر کہیں گے۔موٹر میں قوی کیچھے کی برقی رو کی سمت جزیئر کے برقی رو کی سمت کے اُلٹ ہوتی ہے۔ اُلٹ ہوتی ہے۔

parallel connected 12

باب.8 یک سمت رومشین

شکل 8.13: مر کب قریب جڑی اور مر کب دور جڑی خو دہیجان جزیٹر

ہر طرح جڑی یک سمت جزیٹر کی میدانی مقناطیسی دباواس کے میدانی کچھے کے چکر ضرب برقی رو کے برابر ہوتی سے یعنی

شکل 8.10 میں خود بیجان متوازی بڑی جزیٹر کی میدانی کیھے میں برتی رو اس کیھے اور اس کے ساتھ بڑی مزاحمت $R=R_m+R_m'$ مخصر ہوگی یعنی $I_m=rac{V}{R}$ یوں خود بیجان متوازی بڑی جزیٹر کے لئے اس مساوات کو یوں کھیا جائے گا۔

$$\tau_{m,m} = \frac{I_m V}{R_m + R'_m}$$

سلسلہ وار جڑی جزیٹر میں میدانی برتی رو جزیٹر کے قوی کچھے کی برتی رو کے برابر ہوتی ہے للذا اس صورت میں اس مساوات کو بوں لکھا جا سکتا ہے۔

$$\tau_{m,s} = N_m I_q$$

شکل 8.13 میں مرکب جزیر میں میدانی مقناطیسی دباو کے دو جصے ہیں۔اس میں N_{mm} چکر کے متوازی جڑے میدانی کچھے میں برقی رو I_{ms} اور N_{ms} چکر کے سلسلہ وار جڑے میدانی کچھے میں برقی رو N_{ms} ہے لہذا

(8.14)
$$\tau_{m,mk} = N_{ms}I_{ms} + N_{mm}I_{mm}$$

شکل 8.14: یک ست جزیٹر کی محرک برقی دباو بمقابلہ برقی بوجھ کے خطہ

8.5 کی ست مشین کی کار کر د گی کے خط

8.5.1 حاصل برقى دياو بالمقابل برقى بوجھ

مختلف طریقوں سے بُڑے یک ست جزیرُ وں سے حاصل برتی دباو بمقابلہ ان پر لدے برتی بوجھ کے خط شکل 8.14 میں دکھائے گئے۔ گھومتی رفتار معین تصور کی گئی ہے۔ دھرے پر لاگو بیرونی میکانی طاقت جزیرُ کی قوت مروڑ کے خلاف اسے گھمائے گی۔

ان خط کو سیجھنے کی خاطر پہلے ہیرونی بیجان جزیٹر پر غور کرتے ہیں جس کی مساوی برقی دور شکل 8.15-الف میں دی گئی ہے۔ ہیرونی بیجان جزیٹر پر برقی بوجھ لادنے سے اس کے قوی کچھے کی مزاحت R_q^{13} میں برقی رو I_q گزرنے سے اس میں برقی دباو گھٹی ہے۔ لہذا جزیٹر سے حاصل برقی دباو V، جزیٹر کی اندرونی محرک برقی دباو E_q سے قدرِ کم ہوتی ہے بیعنی

$$(8.15) V = E_q - I_q R_q$$

برقی بوجھ I_q بڑھانے سے جنریٹر سے حاصل برقی دباو کم ہو گی۔شکل میں بیرونی بیجان جنریٹر کی خط ایبا ہی رجمان ظاہر I_q کرتی ہے۔ حقیقت میں کچھ اور وجوہات بھی کار آمد ہوتے ہیں جن سے یہ خط سید تھی نہیں بلکہ جھکی ہوتی ہے۔

متوازی جڑی جزیٹر کے خط کا یہی رجمان ہے۔ متوازی جڑی جزیٹر پر بھی برتی بوجھ لادنے سے قوی کچھے کی مزاحمت میں برتی دباو گھٹی ہے ۔یوں اس کے میدانی کچھے پر لاگو برتی دباو کم ہو جاتی ہے جس سے میدانی کچھے میں برتی رو

شکل 8.15: بیرونی ہیجان اور متوازی جڑی جزیٹر کی مساوی برتی دور۔

شكل 8.16: سلسله واراور مركب جزييرك مساوى برقى دور

بھی گھٹق ہے۔ اس سے محرک برقی دباو مزید کم ہوتی ہے۔اس طرح ان جزیٹر سے حاصل برقی دباو بمقابلہ برقی بوجھ کے خط کی ڈھلان بیرونی بیجان جزیٹر کی خط سے زیادہ ہوتی ہے۔

شکل 8.16 میں سلسلہ وار اور مرکب جزیئر کی مساوی برقی داو دکھائے گئے ہیں۔سلسلہ وار جڑی جزیئر کے میدانی کچھے میں لدے بوجھ کی برقی رو ہی گزرتی ہے۔اس طرح بوجھ بڑھانے سے میدانی مقناطیس وباو بھی بڑھتی ہے۔اس طرح بڑس سے محرک برقی دباو بڑھتی ہے۔اس کا خط یہی دکھا رہا ہے۔اس طرح بڑٹے جزیئر عموماً استعال نہیں ہوتے چونکہ ان سے حاصل برقی دباو، بوجھ کے ساتھ بہت زیادہ تبدیل ہوتی ہے۔

مرکب جڑی جزیر کی کارکردگی سلسلہ وار اور متوازی جڑی جزیر ول کے مابین ہے۔ مرکب جزیر میں بوجھ بڑھانے سے قوی کچھے کی وجہ سے حاصل برقی دباو میں کمی کو میدانی کچھے کی بڑھتی مقناطیسی دباو پورا کرتی ہے۔ یوں مرکب جزیر سے حاصل برقی دباواس پر لدے بوجھ کے ساتھ بہت کم تبدیل ہوتی ہے۔

بیرونی بیجان، متوازی اور مرکب جڑی جزیر ول سے حاصل برقی دباو کو متوازی جڑی کچھے میں برقی روکی مدد سے وسیع حد تک تبدیل کیا جا سکتا ہے۔

قوی لچھا چونکہ برتی بوجھ کو درکار برتی رو فراہم کرتی ہے لہذا ہے موٹی موصل تارکی بنی ہوتی ہے اور اس کے عموماً کم چکر ہوتے ہیں۔سلسلہ وار جزیٹر کے میدانی کچھے سے چونکہ مشین کا پوری برتی رو ہی گزرتا ہے للذا یہ بھی موٹی موصل تارکی بنی ہوتی ہے۔باقی آلوں میں میدانی کچھے میں پورے برقی بوجھ کے چند ہی فی صد برقی رو گزرتی ہے للذا یہ بادیک موصل تارکی بنائی جاتی ہے اور اس کے عموماً زیادہ چکر ہوتے ہیں۔

8.5.2 رفتار بالمقابل قوت م وڑ

یہاں بھی شکل 8.15 اور شکل 8.16 سے رجوع کریں البتہ شکل میں برتی رو کی سمتیں اُلٹ کر دیں۔ یک سمت موٹر بھی جزیٹروں کی طرح مختلف طریقوں سے بُڑے جاتے ہیں۔موٹر کو معین بیرونی برتی دباو دی جاتی ہے جہاں سے یہ برتی روعاصل کرتی ہے۔برتی رو باہر سے قوی کیچے کی جانب چلتی ہے لہذا موٹر کے لئے لکھا جائے گا

$$V = E_q + I_q R_q$$

$$I = \frac{V - E_q}{R_q}$$

13 علامتRq کے زیر نوشت میں q لفظ قوی کے پہلی حرف ق کو ظاہر کرتی ہے۔

شکل 8.17: یک سمت موٹر کی میکانی بوچھ بمقابلہ رفتار کے خطہ

بیرونی بیجان اور متوازی جڑی موٹروں میں میدانی کیچھ کو برقرار معین بیرونی برقی دباو فراہم کی جاتی ہے للذا میدانی متناطیسی بہاو پر میکانی بوجھ کا کوئی اثر نہیں۔ بڑھتی میکانی بوجھ اٹھانے کی خاطر مساوات 8.8 کے تحت قوی کیچھ کی متناطیسی بہاو بڑھنی ہو گی۔ یہ تب ممکن ہو گا کہ اس میں برقی رو بڑھے۔ مساوات سے ہم دیکھتے ہیں کہ قوی کیچھ کی محرکی برقی دباو E_q گئے سے ہی ایبا ممکن ہے۔ E_q موٹر کی رفتار پر منحصر ہے للذا موٹر کی رفتار کم ہو جائے گی۔ یوں میکانی بوجھ بڑھانے سے موٹر کی رفتار کم ہو جائے گی۔ یوں میکانی بوجھ بڑھانے سے موٹر کی رفتار کم ہوتی ہے۔ شکل 8.17 میں یہ دکھایا گیا ہے۔

متوازی جڑی یا بیرونی بیجان موٹر تقریباً معین رفتار ہی برقرار رکھتی ہے۔اس کی رفتار بے بوجھ حالت سے پوری طرح بوجھ بردار حالت تک تقریباً صرف پانچ فی صد کھنتی ہے۔ان موٹروں کی رفتار نہایت آسانی سے میدانی کچھے کی برقی رو تبدیل کر کے تبدیل کی جاتی ہے۔اییا میدانی کچھے کے ساتھ سلسلہ وار جڑی مزاحمت کی تبدیلی سے کیا جاتا ہے۔ان کی رفتار یوں وسیع حدوں کے مابین تبدیل کرنا ممکن ہوتا ہے۔موٹر پر لاگو بیرونی برقی دباو تبدیل کر کے بھی رفتار قابو کی جاسکتی ہے۔اییا عموماً قوی الیکٹرائنس کی مدد سے کیا جاتا ہے۔

ان موٹر کی ساکن حال سے چالو کرتے کھے کی قوت مروڑ اور ان کی زیادہ سے زیادہ قوت مروڑ قوی کچھے تک برقی رو پہنچانے کی صلاحت پر منحصر ہے یعنی یہ میکانی سمت کار پر منحصر ہے۔

سلسلہ وار جڑی موٹر پر لدی میکانی بوجھ بڑھانے سے اس کے قوی اور میدانی کچھوں میں برقی رو بڑھے گا۔ میدانی مقناطیسی بہاو بڑھے گی اور مساوات 8.16 کے تحت E_q کم ہو گی جو موٹر کی رفتار کم ہونے سے ہوتی ہے۔ بوجھ بڑھانے سے ان موٹر کی رفتار کافی زیادہ کم ہوتی ہے۔ایسے موٹر ان جگہوں بہتر ثابت ہوتے ہیں جہاں زیادہ قوت مروڑ درکار ہو۔بڑھی قوت مروڑ کے ساتھ ان کی رفتار کم ہونے سے ان کو درکار برقی طاقت قوت مروڑ کے ساتھ زیادہ تبدیل نہیں ہوتا۔

یہاں اس بات کا ذکر ضروری ہے کہ بے بوجھ سلسلہ وار بڑی موٹر کی رفتار خطرناک حد تک بڑھ سکتی ہے۔ایسے موٹر کو استعال کرتے وقت اس بات کا خاص خیال رکھنا ضروری ہے کہ موٹر ہر لمحہ بوجھ بردار رہے۔

ساکن حالت سے موٹر چالو کرتے وقت I_q کی قیت زیادہ ہوتی ہے جس سے زیادہ مقناطیسی بہاو پیدا ہوتا ہے۔ یوں چالو کرتے وقت موٹر کی قوت مروڑ خاصی زیادہ ہوتی ہے۔ یہ ایک اچھی خوبی ہے جس سے بوجھ بردار ساکن موٹر کو چالو کرنا آسان ہوتا ہے۔

مر کب موٹروں میں ان دو قسموں کی موٹروں کے خصوصیات پائے جاتے ہیں۔جہاں بوجھ بردار موٹر چالو کرنا ضروری ہو لیکن رفتار میں سلسلہ وار موٹر جتنی تبدیلی منظور نہ ہو وہاں مر کب موٹر کارآمد ثابت ہوتے ہیں۔

مثال 8.2: ایک 75 کلو واٹ 415 وولٹ اور 1200 چکر فی منٹ کی رفتار سے چلنے والے متوازی بڑی یک سمت موٹر کے قوی کچھے کی مزاحمت 83.2 اوہم ہے۔موٹر جس بوجھ سے موٹر کے قوی کچھے کی مزاحمت 83.2 اوہم ہے۔موٹر جس بوجھ سے لدا ہے اس پر موٹر 1123 چکر فی منٹ کی رفتار سے چلتے ہوئے 112 ایمپیئر لے رہی ہے۔

- میدانی برقی رو اور توی کیھے کی برقی رو حاصل کریں۔
 - موٹر کی اندرونی پیدا کردہ برقی دباو حاصل کریں۔
- اگر میدانی کچھے کی مزاحمت 100.2 اوہم کر دی جائے مگر قوی کچھے کی برقی رو تبدیل نہ ہو تو موٹر کی رفتار حاصل کریں۔ قالب کی سیراییت کو نظرانداز کریں۔

حل:

• شكل 8.18 سے رجوع كريں-415 وولٹ پر ميدانی لچھے كى برقى رو

$$I_m = \frac{V}{R_m + R'_m} = \frac{415}{83.2} = 4.988 \,\mathrm{A}$$

 $I_q = I_b - I_m = 112 - 4.988 = 107.012 \, \mathrm{A}$ ہو گی۔ یوں قوی کچھے کی برقی رو

• يول يك ست موٹر كى اندرونى پيدا كردہ برقى دباو

$$E_q = V - I_q R_q = 415 - 107.012 \times 0.072 = 407.295 \text{ V}$$

• اگر میدانی کیچے کی مزاحمت 100.2 اوہم کر دی جائے تب

$$I_m = \frac{V}{R_m + R_m'} = \frac{415}{100.2} = 4.1417\,\mathrm{A}$$

ہو گی ۔

• اگر قوی کچھے کی برقی رو 107.012 ایمپیئر ہی رکھی جائے تب

$$E_q = V - I_q R_q = 415 - 107.012 \times 0.072 = 407.295 \text{ V}$$

ہی رہے گی۔

• مساوات 8.4 کی مدد سے چونکہ اندرونی پیدا کردہ برقی دباو تبدیل نہیں ہوئی گر مقناطیسی بہاو تبدیل ہوا ہے للذا موٹر کی رفتار تبدیل ہو گی۔ان دو مقناطیسی بہاو اور رفتاروں پر اس مساوات کی نسبت

$$\frac{E_{q1}}{E_{q2}} = \frac{\frac{n}{2}\omega_1 N\phi_{m1}}{\frac{n}{2}\omega_2 N\phi_{m2}}$$

میں چونکہ $E_{q1}=E_{q2}$ للذا $E_{q1}=\omega_2\phi_{m1}=\omega_2\phi_{m2}$ ہو گا۔ قالبی سیر ابیت کو نظر انداز کرتے ہوئے چونکہ مقاطیسی بہاد میدانی دباو پر منحصر ہے جو از خود میدانی برقی رو پر منحصر ہے۔ للذا اس آخری مساوات کو یوں کمچھ سے ہیں۔

$$\frac{\omega_1}{\omega_2} = \frac{rpm_1}{rpm_2} = \frac{\phi_{m2}}{\phi_{m1}} = \frac{I_{m2}}{I_{m1}}$$

جس سے نئی رفتار

$$rpm_2 = \frac{I_{m1}}{I_{m2}} \times rpm_1 = \frac{4.988}{4.1417} \times 1123 = 1352.47$$

چکر فی منٹ حاصل ہوتی ہے۔اس مثال میں ہم دیکھتے ہیں کہ میدانی برقی رو کم کرنے سے موٹر کی رفتار بڑھتی ہے۔

مثال 8.3: ایک 60 کلو واٹ، 415 وولٹ، 1000 چکر نی منٹ متوازی جڑی یک ست موٹر کی قوی کچھے کی مثال 8.3: ایک 60 کلو واٹ، 415 وولٹ، 1000 چکر نی منٹ ہے۔میدانی کچھا 1000 مزاحمت 1000 چکر فی منٹ ہے۔میدانی کچھا 1000 چکر کا ہے۔

- جب یه موٹر ایمبیئر لے رہی ہو اس وقت اس کی رفتار معلوم کریں۔
 - 140 ایمپیئر پر اس کی رفتار معلوم کرین۔
 - 210 ایمپیئر پر اس کی رفتار معلوم کرین۔
 - اس موٹر کی رفتار بالقابل قوت مروڑ ترسیم کریں۔

حل:

شكل8.20: ر فتار بالمقابل قوت م وڑ ـ

• شکل 8.19 میں یہ موٹر دکھائی گئی ہے۔ متوازی میدانی کچھے کی برقی رو پر بوجھ لادنے سے کوئی فرق نہیں پڑتا۔ لہذا میدانی مقناطیسی بہاو بے بوجھ اور بوجھ بردار موٹر میں یکساں ہے۔ بے باریک سمت موٹر کی قوی کچھے کی برقی رو 1₄ قابل نظر انداز ہوتی ہے۔ اس طرح مساوات 8.16 اور مساوات 8.10 سے

$$E_q = V - I_q R_q = 415 - 0 \times R_q = 415 \,\mathrm{V}$$

$$I_m = \frac{V}{R_m} = \frac{415}{60} = 6.916 \,\mathrm{A}$$

یعن 415 وولٹ محرکی برقی دباو پر رفتار 1000 چکر فی منٹ یا 16.66 چکر فی سیکنڈ ہے۔70 ایمپیئر برقی بوجھ پر بھی $I_m = 6.916$ می ہے جبکہ

$$I_q = I_b - I_m = 70 - 6.916 = 63.086 \,\mathrm{A}$$

للذا مساوات 8.16 سے اس صورت میں

$$E_q = V - I_q R_q = 415 - 63.086 \times 0.05 = 411.8458 \text{ V}$$

اور مساوات 8.10 سے رفار (چکر فی منٹ) یوں حاصل ہوتا ہے

$$rpm = \frac{e_q}{e_{q0}} rpm_0 = \frac{411.8458}{415} \times 1000 = 991.95$$

 $- _{2}$ یکی کچھ دوبارہ کرتے ہیں۔ یہاں $I_{b} = 140\,\mathrm{A}$ ہے۔

$$I_q = I_b - I_m = 140 - 6.916 = 133.084 \text{ A}$$

$$E_q = 415 - 133.084 \times 0.05 = 408.3458 \text{ V}$$

$$rpm = \frac{408.3458}{415} \times 1000 = 983.96$$

 $_{-}$ یہاں $I_b = 210 \,\mathrm{A}$

$$I_q = I_b - I_m = 210 - 6.916 = 203.084 \text{ A}$$

$$E_q = 415 - 203.084 \times 0.05 = 404.8458 \text{ V}$$

$$rpm = \frac{404.8458}{415} \times 1000 = 975.83$$

• موٹر میں طاقت کے ضیاع کو نظر انداز کرتے ہیں۔ یوں اس کی میکانی طاقت اسے فراہم کی گئی برقی طاقت کے برابر ہو گی یعنی

$$(8.17) e_q I_q = T\omega$$

 $T_0 = 0\,\mathrm{N}\,\mathrm{m}$ یوں پچھلے جزوسے حاصل جوابات کی مدد سے بے بوجھ موٹر کی قوت مروڑ صفر ہو گی لینی عنی جبکہ 70 ایمپیئر پر قوت مروڑ کی قیت

$$T_{70} = \frac{e_q I_q}{\omega} = \frac{411.8458 \times 63.086}{2 \times \pi \times 16.5325} = 250 \,\mathrm{N}\,\mathrm{m}$$

ہو گی۔ یہاں 991.95 چکر فی منٹ کی رفتار کو 16.5325 ہرٹز لکھا گیا ہے۔ اس طرح

$$\begin{split} T_{140} &= \frac{e_q I_q}{\omega} = \frac{408.3458 \times 133.084}{2 \times \pi \times 16.399} = 527 \, \text{N m} \\ T_{210} &= \frac{e_q I_q}{\omega} = \frac{404.8458 \times 203.084}{2 \times \pi \times 16.26} = 805 \, \text{N m} \end{split}$$

يه نتائج شكل 8.20 ميں ترسيم كئے گئے ہيں۔

 \Box

فرہنگ

earth, 97	ampere-turn, 35
eddy current loss, 64	armature coil, 135, 255
eddy currents, 63, 130	
electric field	carbon bush, 181
intensity, 12	cartesian system, 6
electrical rating, 61	charge, 12, 140
electromagnet, 135	circuit breaker, 183
electromotive force, 63, 141	coercivity, 48
emf, 141	coil
enamel, 64	high voltage, 58
energy, 46	low voltage, 58
co, 117	primary, 57
Euler, 22	secondary, 57
excitation current, 54, 62, 63	commutator, 168, 245
excitation voltage, 63	conductivity, 27
excite, 63	conservative field, 113
excited coil, 63	core, 57, 130
	core loss, 64
Faraday's law, 40, 129	core loss component, 66
field coil, 135, 255	Coulomb's law, 12
flux, 32	cross product, 15
Fourier series, 65, 145	cross section, 11
frequency, 134	current
fundamental, 146	transformation, 68
fundamental component, 66	cylindrical coordinates, 7
generator	delta connected, 96
ac, 163	design, 199
ground current, 97	differentiation, 20
ground wire, 97	dot product, 17
S	r,
harmonic, 146	E,I, 64

ئىرىتاك 270

parallel connected, 257	harmonic components, 66
permeability, 28	Henry, 41
relative, 28	hunting, 182
phase current, 97	hysteresis loop, 48
phase difference, 24	
phase voltage, 97	impedance transformation, 73
phasor, 23	induced voltage, 40, 51, 63
pole	inductance, 41
non-salient, 143	leakage, 187
salient, 143	I 1 40
power, 46	Joule, 46
power factor, 24	lagging, 24
lagging, 24	laminations, 33, 64, 130
leading, 24	leading, 24
power factor angle, 24	leakage inductance, 81
power-angle law, 192	leakage reactance, 81
primary	line current, 97
side, 57	line voltage, 97
	linear circuit, 230
rating, 99, 100	load, 101
rectifier, 168	Lorentz law, 140
relative permeability, 28	Lorenz equation, 106
relay, 105	Eorenz equation, 100
reluctance, 27	magnetic constant, 28
residual magnetic flux, 48	magnetic core, 33
resistance, 27	magnetic field
rms, 21, 52, 168	intensity, 13, 35
rotor, 39	magnetic flux
rotor coil, 108	density, 35
rpm, 159	leakage, 81
40	magnetizing current, 66
saturation, 49	mmf, 32
scalar, 3	model, 83, 211
self excited, 255	mutual flux linkage, 45
self flux linkage, 45	mutual inductance, 45
self inductance, 45	
separately excited, 255	name plate, 100
side	non-salient poles, 181
secondary, 57	01 1 1 20
single phase, 25, 61	Ohm's law, 28
slip, 213	open circuit test, 89
slip rings, 180, 235	orthonormal, 5

ف رہنگ

unit vector, 4	star connected, 96
	stator, 39
VA, 78	stator coil, 108, 131
vector, 4	steady state, 179
volt, 140	step down transformer, 60
volt-ampere, 78	step up transformer, 60
voltage, 140	surface density, 13
DC, 168	synchronous, 134
transformation, 67	synchronous inductance, 188
	synchronous speed, 159, 180
Watt, 46	symmonous speed, 100, 100
Weber, 35	Tesla, 35
winding	theorem
distributed, 143	maximum power transfer, 233
winding factor, 151	Thevenin theorem, 230
-	three phase, 61, 95
	time period, 103, 145
	torque, 169, 213
	pull out, 182
	transformer
	air core, 61
	communication, 61
	ideal, 67
	oil, 79
	transient state, 179

پترى،33،33	ابتدائي
پتريال،64	جانب،57
يورابوجھ، 201	گيھا، 57
پنیش زاویه ،24	ار تباط بهباو، 41
•	اضافي
تاخيري،82	زاویائی رفتار، 216
تاخير ي زاويه، 24	اکائی سمتیه،4
تار کا برقی د باو، 97	الماليم، 41
تار کا بر قی رو، 97	رىتا،187
تانبا،30	امالي
تبادليه	يه برقي د باد، 51
ر کاوٹ، 73	امالى برقى د باو، 40، 63
شختی،100	اوہم میٹر،242
تعدد،134	ایک، تین پتریاں،64
تعقب،182	ايمپيئر - چکر، 35
تفرق،20	
جزوی،20	بر، 140
تکونی جوڙ،96	برقرار چالو، 103،109
توانائی،46	برتی بد، 140،12 م
<i>بمہ</i> ،117	برتی د باد،30،40
تین دوری، 61، 95	تبادله، 58، 67
ٹرانسفار مر	محرک،141
ىرانسقار تىر برقى د باووالا، 61	ىيجانى،189
بری د بادوالا، 70 بو جھ بردار، 70	يك سمت،168
يو هر دار ۲۰۰۰ تيل، 79	برقىرو،30
ينې ر خلائی قالب، 61	بھنور نما،130
د باو بره ها تا، 60	تبادله، 68
ر باو گھٹاتا،60	پيجان انگيز،54
دِّرانُع ابلاغ، 61	برقي سکت،61
رووالاء61	برقی میدان،12
كامل،67	شدت،30،12
ٹسلا،35	بش،181
ھنڈی تار ،97	بناوٹ،89
	بنيادي جزوه 146،666
ثانوی جانب،57	بو چھ، 101
,	بهیلی، 119
جاول،46	<i>ب</i> ھنورنما ت
9%	برتي رو، 63
کچیلاو، 151	فياع،64
جزوطاقت،24	بھنور نمابر قی رو،130
پی <i>ش</i> ،24	62 · هَرَ بِعَ الْحِيْرِ فِي الْحِيْرِ فِي الْحِيْرِ فِي الْحِيْرِ فِي الْحِيْرِ فِي الْحِيْرِ فِي الْحِيْرِ ا

<u>ــــرہگ</u>ـــــ

جزير براكاره، 163 ما كان هي الم 163 م كان هي الم 163 م كان هي الم 163 م كان م 152 كان م كان م 154 كان م	زيىنى تار، 97	تاخيري،24
جور المرادة		جزيثر
عرب المرابية عربي المرابية المرابي	,= ,	
213، المن المن المن المن المن المن المن المن		<i>جو</i> ڙ م ۾ م
235،180، كَانُ مِنْ مُرْنُ مِنْ مُرْنُ مِنْ مُرْنُ مِنْ مُرِنَّ مِنْ مُرْنُ مِنْ مُرْنُ مِنْ مُرْنُ مِنْ مُرْنَ مُرْنُ مِنْ مُرْنُ مُرِنُ مُرِنُ مُرِنُ مُرْنُ مُرِنُ مُرِنُ مُرْنُ مُرْنُ مُرِنُ مُرَانُ مُرِنُ مُ مُرْنُ مُرِنُ مُرِنُ مُ مُرْنُ مُرِنُ مُرِنُ مُ مُرْنُ مُرِنُ مُرِنُ مُرِنُ مُ مُرْنُ مُرِنُ مُ مُرْنُ مُ مُرْنُ مُرِنُ مُ مُرْنُ مُ مُرْنُ مُرِنُ مُ مُرْنُ مُرِنُ مُرِنُ مُرِنُ مُرِنُ مُ مُرْنُ مُ مُرِنُ مُ مُرْنُ مُرِ مُرِ مُرْنُ مُرِنُ مُرِنُ مُرِ مُرِنُ مُرِ م		•
المن المن المن المن المن المن المن المن		شاره نما، 96
ال المنافق ا		چکر فی منے ہے، 130
ال 100.99 حاله المراقب المراق		
المار وارد المراقع المارور المراقع المارور المراقع المارور المراقع المارور المراقع المارور المراقع المارور المراقع ا		· ·
عدار من المراكب المر		حال
الم ال		-
خطی میانی، و دور اکانی که دور اکتاب که دور اکان که دو		كيسال،179
عرق دور کالوگی از مرد کالوگی کل مرد کرد کرد کرد کرد کرد کرد کرد کرد کرد ک		hż
خودرار تباط بهاو، که شود را تباط بهاو را تباط به که شود را تباط به که که شود را تباط به که که خود را تباط به که	- -	•
106. 100 متى رفتار 149. 149. 150 متى رفتار 150 متى رفتار 150 متى المناب		- •
ردافعان يجاب المسلم وار، 127 من المست، والمائية يجاب المسلم وار، 257 من المست، والمائية يجاب المسلم وار، 257 من المستمنية وي المستمن		
المسلد وار ، 257 مرب الخطاء وار ، 257 مورب الغلام وار ، 257 مورب الغلام وار ، 257 مورب الغلام وار مرب الغرام و ورج من مركب ، 257 مورج من مركب ، 257 مار خاص من		وداه که، ک
المسلد وار ، 257 مرب الخطاء وار ، 257 مورب الغلام وار ، 257 مورب الغلام وار ، 257 مورب الغلام وار مرب الغرام و ورج من مركب ، 257 مورج من مركب ، 257 مار خاص من		داخلي بيجان
الموارق المركب مركب مركب مركب 257 مركب مركب 257 مركب مركب مركب 257 مركب 257 مركب 257 مركب 257 مركب 257 مركب 257 مردر شكن مركب 192 مردر شكن مركب 190 مردر شكن مركب 190 مردر كار من مركب 190 مردى مردى مردى مرداش المردى مردى مردى مردى مردى مردى مردى مردى	ضرب	
رور جڑی مرکب، 187 دور مثلن مرکب، 183 دور کی مرکب تین 190،23 دور کی عرصہ، 190،23 دور کی عرصہ، 145،103 دور کی عرصہ، 145،103 رستا امالہ، 181 در معاصر، 182 در معاصر، 183 در		متوازی،257
رورشكن، 183 طاقت بالقابل زاويه، 192 رورشكن، 193 طول موج، 190 ورى سمتية، 190،23 طول موج، 190،23 ورى سمتية، 190،23 طول موج، 190،23 طول موج، 190،23 المائة بالمائة بالما	صرب یبی،13	
دور محلن 183، 190، 20، 20، 20، 190، 23، 20، 20، 20، 20، 20، 20، 20، 20، 20، 20	طاقت،46	
دور کی سمتیه، 190،23 دور ک عرصه، 130،203 المانه 131 المانه 131 متعامله 182 متعامله 182 متعامله 182 متعامله 182 متعامله 182 متعامله 182 متعامله 182 متعامله 183 متعامله 183 مت		
11، 11 الد، 18 الله، 18 الله، 18 متعامله، 18 متعامله، 18 متعامله، 18 متعامله، 18 متعامله، 18 متعامله، 182 متعامله، 182 متعامله، 182 متعامله، 185 متعامله، 145، 145 متعامله، 145، 145 متعامله، 145، 145 متعامله، 145، 145 متعامله، 145، 150 متعامله، 150، 150 متعامله، 150، 150 متعامله، 150 متعامل		•
رستا الد، 18 العالد، 31 فير سمق، 3 متعامله، 31 فير سمق، 3 متعامله، 31 فير سمق، 3 المناه، 31 فير سمق، 3 المناه، 40 المناه، 3 المناه، 40 المن		دوری عرصه، 145،103
الماله، الله الله الله الله الله الله الله		(**
متعاملية	رتبہ،11	
رستامتعالميت، 221 رفتار اضافی زاويا کی، 216 اصافی نرويیک 316 روغن، 64 روغن، 64 رايش نمونه، 211،83 رايش نمونه، 211،83 رايا کی فرق، 40 زاويا کی فرق، 24 زاويا کی فرق، 64 زاويا کی فرق، 24	غه سمتار 3	
ر فآر اضافی زاویا کی 216 اصافی زاویا کی 216 روغن 64، ریاضی نمونه، 211،83 ریاضی نمونه، 211،83 ریالی نیز، 21 راویا کی فرق 42 زاویا کی فرق 43 رفتان شاع 44، مناب 24،		
روغن،64 فوريئر تسلسل،65،65 روغن،64 فوريئر تسلسل،65،65 روغن،68 نوريئر تسلسل،129،40 فيراد لي غيراد لي المياء 129،40 تالين، 130 تالين في 130 تالين فيل 64،64 تالين فيل 64،64 تالين فيل 66،66 تالين فيل 66،66 تالين فيل 66،66 تالين فيل 66،05 تالين فيل 64،05 تالين فيل 66،05 تالين فيل 66،05 تالين فيل 64،05 تال	1024) 🗸),,	
رياضي نمونه، 211،83 ريائي نمونه، 211،83 راويا کي فرق، 24 زاويا کي فرق، 24 زاوي جزوطاقت، 24 زير، 97		اضا فی زاویا کی، 216
ر کیے ، 105 زاویا کی فرق، 24 زاویا کی فرق، 24 زاویه بر وطاقت، 24 زمین، 97	فوريئر تسلسل، 145،65	روغن،64
زاویا کی فرق،24 زاویه بر وطاقت،24 زمین،97 جزورہ66	فیراڈے	
زاویہ جزوطاقت،24 زمین،97 جنوب66	تانون،40،129	ريلي،105
زاویہ جزوطاقت،24 زمین،97 جنوب66	تاك،130	زاه اکَارَق قام کا
زمين ، 97		
	••	

منربنگ

تكي،7	اوټم،28
محرك برقى د باو، 63	كولمپ،12
محوري	لورينز،140
لىبائى،165	قدامت پيندميدان، 113
مخلوط عدد ،196	قریب جڑی مر گب،257
مر کب جزیٹر،257	قطب
مزاحمت،27	ابحرے،181،143
مساوات لورينز،106	بموار، 181، 143
مسكله	قوت مر ورژ، <u>2</u> 13،169
تھونن،230	انتِبَاكَى، 182
زياده سے زياده طاقت کی منتقلي ، 233	قوى اليكثر انكس، 245،211
مشتر كه ارتباط اماله ، 45	قوى <u>گھ</u> ے،255
مشتر كه اماليه، 45	
معاصر،134	كارېن بش، 181
مشين،180	کار گزاری، 204
معاصراماليه، 188	لپيىر، 198 پەھ
معاصر ر فتار ،159 ،180	َ ثَافَت
معائنہ کھلاد ور ، 89 طد	بر تی رو، 30
لهلاد ور ، 89 ط	کثافت مقناطیسی بهاو
مقناطيس	بقايا 48
گلاد ور ،89 مقناطیس بر تی ،135 چال کادائر ه ،48	کسر دور، 40
چا <u>ل</u> کادائرہ، 48	گرم تار، 97
غات <i>م شد</i> ت، 48	
مقناطیسی برقی رو،66	گومتاحسه، 39 گستال ۱۹۵
مقناطیسی بهاو،32	گھو متالچھاء 108
رتا،81	لجها
ڭافت،35	پھ ابتدائی،57
مقناطیسی چال،54	ابدای، ر پیلے، 143
مقناطيسي د باو،32	چے، ۱43 پیچیرار ، 43
رخ،145	ئىنچىرى ئانوى،57
مقناطيسي قالب،57،33	رخ،137
مقناطيسي مستقل، 170،28	رى برق زيادە برقى د باو، 58
33,28,9%	ساكن،108
مقناطيسي ميدان	قى، 135
شدت، 35،13	گم برقی د باو، 58
موژ، 52،21	گومتا، 108 گومتا، 108
موثر قيت،168	ر 135،00 میدانی، 135
موسيقًا كي جزو،66،646	· •
موصلیت،27	محدو
ميداني <u>لچ</u> ے،255	محد د کار تیسی،6
•	

ف رہنگ

بيجان انكيز	واٹ،46
بر تی د باوء 63	وولث،140
برتی رو، 63	وولٺ-ايمپيئر،78
۾ ڇان انگيز بر قي رو، 62	ويبر، 35
يجانى برقى د باو، 189	ديبر- چکر، 41
يك دورى، 61،25	^ې چکياې ^ٿ ،32،27
يك دورى برقي د باو، 97	۾يجانن، 63
يك دورى بر قى رو، 97	بيروني، 255
یک سمت رو	خود، 255
مشين،245	لچھا، 63
يولر مساوات، 22	