GRADO EN INGENIERÍA INFORMÁTICA - TECNOLOGÍAS INFORMÁTICAS

CIRCUITOS ELECTRÓNICOS DIGITALES BOLETÍN DE PROBLEMAS 1

- P1.-Dibuje el cronograma y una tabla de datos para t=[0s, 20s] de las siguientes señales:
 - a) V(t) = 5 V.
 - b) $X(t) = 5 \cdot t + 7 \text{ mA}.$
- P2.-Dibuje un cronograma que contenga las tres señales siguientes: $v_1 = 2.5$ V, $v_2 = 5$ ·sen $(2\pi 10^5 t)$ V y $v_3 = 5$ ·sen $(2\pi 10^5 t) + 2.5$ V. Escriba también una tabla de datos de las tres señales. En el caso de que las señales sean periódicas, determine su periodo.
- P3.-Para la señal eléctrica dibujada en el diagrama de la figura, obtenga la señal binaria con pendiente que corresponda.

Nota: Averiguar en una señal como ésta cuándo 'sale de' o cuándo 'llega a' uno de los niveles alto o bajo no está claro. Un convenio usual es tomar el paso de la señal por el 10% o por el 90% de su salto.

- P4.-Si la tensión umbral es 2,5 V, dibuje la señal binaria correspondiente al problema anterior e indique el valor del periodo y de la duración del 1 y del 0 en cada periodo.
- P5.-Repita el problema anterior si el nivel umbral es 1 V. Vuelva a resolverlo si ahora el umbral es 4 V.
- P6.-Una señal eléctrica funciona, v₁, básicamente entre 0 y 5 V; otra señal, v₂, opera entre -1V y 1V; otra señal, v₃, opera entre 1 y 20 V; otra señal, v₄, opera entre -4 y -1V; y otra señal, i₁, funciona con intensidad de corriente entre -1 y +1 mA. Discuta si cada una de estas señales puede funcionar o no como señal binaria.

- P7.-Sea el Byte A = 1100 1011. Escriba A usando la notación L/H para los bits. Repítalo usando la notación F/T. Considere ahora las palabras C = HH LHLL, N = 11 0100, P = 11 1011 y Q = 00 1011. Razone si C puede o no ser representada por N, P o Q.
- P8.-Considere la palabra $A_1 = 11100010$. Represéntela agrupada en *nibbles*. Ahora considere $A_2 = 10011100001111101$. Represéntela agrupada en *nibbles*. Represente A_2 en Bytes. Identifique el valor del MSB en cada caso; identifique el valor de LSB.
- P9.-Represente los 16 *nibbles* que existen, ordenándolos de menor a mayor. (¿Qué criterio usar para saber si un *nibble* es mayor que otro?)
- P10.-Identifique el MSB y el LSB de las siguientes palabras:
 - o 1) A_{11} : $A_0 = 0101 \ 1100 \ 0111$
 - \circ 2) A_0 : $A_{11} = 0101 \ 1100 \ 0111$
 - o 3) A_1 : $A_{12} = 0101 \ 1100 \ 0111$