# A

#### Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

| ФАКУЛЬТЕТ Радиоэлектроника и лазерная техника (РЛ) |
|----------------------------------------------------|
| КАФЕДРА Технология приборостроения (РЛ6)           |

# РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

# К КУРСОВОЙ РАБОТЕ

# *HA TEMУ: Система управления термостатом*

| Студент    | РЛ6-79              |                 | Лобанов Д.Д.   |  |  |
|------------|---------------------|-----------------|----------------|--|--|
|            | (Группа)            | (Подпись, дата) | (Ф.И.О.)       |  |  |
|            |                     |                 |                |  |  |
| Руководите | ель курсовой работы |                 | Семеренко Д.А. |  |  |
| •          |                     | (Подпись, дата) | (Й.О.Фамилия)  |  |  |

### Оглавление

| Введение                                                               | 3   |
|------------------------------------------------------------------------|-----|
| Глава 1. Обзор существующих решений                                    | 4   |
| Глава 2. Функциональная и принципиальная электрическая схем устройства | 6   |
| Глава 3. Алгоритм работы микроконтроллера и основные узлы устройства   | 8   |
| Глава 4. Результаты исследований                                       | .14 |
| Сравнение датчиков температуры                                         | .14 |
| Релейный регулятор                                                     | .15 |
| ПИД-регулятор                                                          | .15 |
| Вывод                                                                  | .16 |
| Заключение                                                             | .17 |
| Литература                                                             | .18 |
| Приложение А                                                           | .19 |
| Приложение Б                                                           | .21 |

#### Введение

В работе авторы [1] привели следующую классификация термостатов:

- по способу реализации: механические, электронные, электронные программируемые;
- по диапазону температур: высокотемпературные; среднетемпературные, низкотемпературные;
- по точности поддержания температуры уставки: с большим отклонением, с средним отклонением, высокоточные.
- по количеству контуров: одноконтурные, многоконтурные.

Отмечают ряд проблем реализации термостатов, связанных с: инерционностью датчика температуры, реализацией нагревания за определенный промежуток времени, ступенчатого нагревания, взаимодействием с пользователем.

В работе необходимо выполнить:

- 1. сравнение различных датчиков температуры (аналоговых, цифровых);
- 2. сравнение алгоритмов стабилизации температуры: ПИД-регулятор, релейный;
- 3. реализация алгоритмов для нагрева за определённый промежуток времени, ступенчатого нагрева;
  - 4. реализация программы для ПК.

#### Глава 1. Обзор существующих решений

Все термостаты имеют схожую структуру и состоят из следующих частей: орган управления, датчики измерения температуры, регулирующий элемент, объект управления, устройство ввода, индикаторы, преобразователи интерфейсов.



Рисунок 1 – Структурная схема термостата

Основными параметры термостата являются: температурный диапазон работы, точность измерения температуры, точность поддержания температуры, способ регулирования.

На рисунке 2 представлена схема ПИД-регулятора:



Рисунок 2 – Схема ПИД-регулятора

Автор в [2] приводит следующую характеристику элементов ПИД-регулятора:

- Пропорциональное звено мгновенно реагирует на текущую ошибку  $e = t_{\text{уставки}} t_{\text{текущая}};$ 
  - интегральное звено накапливает предыдущие ошибки;
  - дифференциальное влияет на скорость нагрева/охлаждения.

Звено задержки в сигнале обратной связи необходимо для компенсации временных задержек между изменением управляющего воздействия и реакцией системы на это воздействие.

Управляющее воздействие вычисляется по формуле:

$$I = K_p e + K_I \int e dt - K_d \frac{de}{dt}$$

Основной задачей при разработке ПИД-регулятора является подбор коэффициентов  $K_p, K_l, K_d$ .

Глава 2. Функциональная и принципиальная электрическая схем устройства

На рисунке 2 представлена функциональная схема устройства:



Рисунок 3 – Функциональная схема устройства

Основными элементами функциональной схемы являются:

- 1. Температурные датчики, подключенные к микроконтроллеру по разным интерфейсам и предназначенные для оценки точности измерения температуры представлены в таблице 1;
- 2. элемент Пельтье, подключенный через управляющий элемент (электромеханическое реле или ключ на полевом транзисторе);
- 3. графический индикатор TFT с контроллером ILI9341, подключенный по интерфейсу SPI и предназначенный для вывода текущей и целевой температур или графика;
- 4. преобразователь USB-UART на основе микросхемы FT232RL предназначен для передачи данных на ПК.

|     |          | Диапазон   | Точность   | Интерфейс   | Частота    |
|-----|----------|------------|------------|-------------|------------|
| No॒ | Название | измерения, | измерения, | подключен   | измерения, |
|     |          | °C         | °C         | ия          | Гц         |
| 1   | AHT20    | -55125     | 0,5/1 °C   | I2C         | 80         |
| 2   | DS18B20  | -4085      | 0,3/1 °C   | 1-Wire      | 750        |
| 3   | NTC 10k  | -60300     | 0,2/1 °C   | Через АЦП   | С частотой |
|     | TITOTOR  | 00500      | 0,2/1 0    | терез тіціт | АШП        |

Таблица 1 – Характеристики датчиков температуры

По функциональной схеме разработана электрическая принципиальная схема, представленная на рисунке 4:



Рисунок 4 – Принципиальная электрическая схема устройства

# Глава 3. Алгоритм работы микроконтроллера и основные узлы устройства

При подключении устройства к питанию выполняется инициализация микроконтроллера, в процессе которой происходит:

- Инициализация тактовой частоты микроконтроллера 40 МГц;
- Инициализация периферии для датчиков температуры: GPIO, таймер для интерфейса 1-Wire, ADC с DMA для датчика NTC 10k, I2C для датчика AHT20;
- инициализация периферии для ТFT дисплея: GPIO, SPI с DMA каналами, проверка работы дисплея с помощью команд;
- инициализация USART с прерываниями по DMA каналу для получения команды с ПК;
- инициализация GPIO и таймеров для релейного регулирования;
- инициализация GPIO, таймера для формирования ШИМ ПИД-регулятора; На рисунке 5 представлена блок-схема main файла программы:



Рисунок 5 – Маіп файл программы

В блоке проверки команды UART происходит сравнение полученной и имеющейся в памяти микроконтроллера команд. Данные передаются в следующем формате:

Проверочный Стартовый Количество Команда Данные байт байт передаваемых данных Количество данных таблица 3 0x090xABДанные в байтах От 0 до 1 байт 1 байт 1 байт 1 байт 1 байт 960 байт

Таблица 2 – Формат передачи данных

Размер данных меняется от 0 до 960 байт из-за необходимости протестировать графический дисплей для построения графиков. График размером 320х240 передаётся в чёрно-белом формате (в 1 байт записывается 8 пикселей), в результате чего полный объём данных составляет 9600 байт. Их передача осуществляется за 10 циклов с задержкой между итерациями по причинам ограниченности максимального объёма данных, принимаемых по DMA каналу и разгрузки микроконтроллера для выполнения других задач.

Список используемых команд и их структура представлены в таблицах A1 и A2.

В блоке измерения температуры происходит опрос датчиков, которые были выбраны пользователем в приложении в качестве активных.

В блоке изображения данных производится:

- вывод температуры либо графика изменения температуры на TFT дисплей в зависимости от выбора пользователя в приложении;
- отправка результатов опроса датчиков на ПК;

В блоке регулирования температуры выполняется текущая задача, заданная пользователем в приложении, а именно:

- Свободное управление: устройство в ожидании ввода температуры уставки, возможно выполнить команду установки максимального тока в течении времени (от 0 до 60 секунд);
- релейное регулирование. Электромеханическое реле имеет ограниченное количество циклов переключения, что накладывает ограничения его использования. Используя личный опыт, минимальное время открывания реле ограничено 1 секундой.

После ряда измерений в качестве среднего нагрева за 1 секунду была принята величина 0,65 °C. Были добавлены дополнительные коэффициенты

регулирования, которые будут учитывать разность текущей температуры уставки и комнатной температуры.

Время нагрева до температуры уставки:

$$au_{
m нагрева} = rac{\left(t_{
m уставки}\,-t\,
ight)}{0.65-\left(t_{
m уставки}\,-t\,
ight)\cdot0.006}$$

Время поддержания температуры:

$$au_{ ext{поддержания}} = 1 + (t_{ ext{уставки}} - t) \cdot 0.03$$

Алгоритм релейного регулирования представлен на рисунке 6:



Рисунок 6 – Алгоритм релейного регулирования

Если за вычисленное время нагревания не была достигнута температура уставки, то в прерывании таймера, отсчитывающего время нагрева, вновь устанавливается статус регулирования «Нагревание» и алгоритм выполняет новый цикл.

#### • ПИД-регулирование.

Осуществляется вычисление заполненности ШИМ сигнала частотой 1 кГц, подаваемого на затвор полевого транзистора. Новое значение присваивается соответствующему регистру таймера и включается звено задержки для ожидания реакции системы на новое воздействие.

Алгоритм ПИД-регулирования представлен на рисунке 7:



Рисунок 7 – Алгоритм ПИД-регулирования

#### • Ступенчатое нагревание.

Значение температуры уставки, шага нагрева и времени поддержания промежуточной температуры задаётся пользователем в приложении. В микроконтроллере используется таймер, считающий по событиям прерывания другого односекундного таймера, в результате чего максимальное время поддержания промежуточной температуры теоретически ограничено  $2^{16}$  секундами.

При старте работы алгоритма происходит вычисление первой промежуточной температуры по формуле:

$$t_{
m промежуточная} = t_{
m текущая} + t_{
m шаг}$$

Далее осуществляется ПИД-регулирование промежуточной температуры до тех пор, пока остаток деления счётчика таймера на время пользователя не станет равным нулю: происходит новый цикл вычисления промежуточной температуры.

На рисунке 8 представлен алгоритм ступенчатого нагрева:



Рисунок 8 – Алгоритм ступенчатого нагрева

Температурная зависимость ступенчатого нагрева для  $t_{\rm начальная} = 29,5$ °C,  $t_{\rm шаг} = 3$ °C,  $t_{\rm конечная} = 37$ °C,  $t_{\rm поддержания} = 2$  мин. представлена на рисунке Б1.

• Нагревание за определённый промежуток времени.

Значение температуры уставки, времени нагрева и нагрева за 1 секунду в °С задаётся пользователем в приложении. По полученным данным вычисляется необходимый средний нагрев за 1 секунду:

$$t_{1 \; {
m cek} \; {
m Heof}} = rac{t_{
m ycтabku} - t_{
m Tekyщag}}{ au_{
m HarpeBa}}$$

Начальное значение заполненности ШИМ сигнала определяется из пропорции:

$$\frac{1 \text{ сек} - \Delta t_{1 \text{ сек}}}{x \text{ сек} - \Delta t_{1 \text{ сек необ}}} \Rightarrow x = \frac{\Delta t_{1 \text{ сек необ}}}{\Delta t_{1 \text{ сек}}} \Rightarrow Duty = x \cdot 1000$$

В цикле каждую секунду производится проверка, насколько изменилась температура за 1 секунду: если  $t_{1\,{\rm сек}\,{\rm необx}}$  не была достигнута, то заполненность увеличивается, иначе, если нагрев был перевыполнен, заполненность уменьшается.

На рисунке 9 представлен алгоритм нагрева за определённый промежуток времени:



Рисунок 9 – Алгоритм нагрева за определённый промежуток времени

Температурная зависимость нагрева за время для  $t_{\rm начальная}=28,5\,^{\circ}{\rm C},$   $t_{\rm конечная}=37\,^{\circ}{\rm C},$   $\tau_{\rm нагревва}=5$  мин. представлена на рисунке Б2.

#### Глава 4. Результаты исследований Сравнение датчиков температуры

Выбор датчика температуры осуществляется из показателей его точности и инерционности. Результат пропускания через элемент Пельтье максимального тока в течении 15 секунд (промежуток обозначен первыми двумя пунктирными линиями) и реакция датчиков на изменение температуры представлена на рисунке 10:



Рисунок 10 – Сравнение инерционности датчиков температуры

Наилучший показатель инерционности имеет DS18B20, обеспечивая задержку между воздействие и его результатом в 4 секунды.

Термистор имеет большую инерционность, поэтому не рекомендуется для использования в регуляторе температуры.

АНТ20 даёт точные показатели при медленном изменение температуры, но при повышении скорости изменения температуры показания сильно отличаются от действительных, что может быть вызвано дефектом датчика.

#### Релейный регулятор

Температурная зависимость релейного регулятора при  $t_{\text{уставки}} = 35^{\circ}\text{C}$ :



Рисунок 11 – Релейное регулирование

Алгоритм осуществил нагрев до температуры уставки за 25 секунд и поддержание температуры в пределах  $\pm 0.5$ °C.

#### ПИД-регулятор

Настройка ПИД регулятора проведена путём последовательного подбора каждого из коэффициентов.

Температурная зависимость ПИД-регулятор при  $t_{\rm уставки} = 35$ °C приведена на рисунке 12:



Рисунок 12 – ПИД-регулирование

ПИД-регулятор осуществил нагрев до температуры уставки за 15 секунд и поддержание в пределах  $\pm 0.06$  °C, то есть с максимально возможным разрешением DS18B20.

#### Вывод

В результате исследования двух типов регуляторов выявлены их достоинства и недостатки, которые представлены в таблицах 3 и 4.

Таблица 3 - Достоинства релейного и ПИД-регуляторов

| Релейный регулятор                 | ПИД-регулятор                            |
|------------------------------------|------------------------------------------|
| Простота конструкции               | Высокая точность поддержания температуры |
| Простота программной<br>реализации | Быстрый выход на температуру<br>уставки  |

Таблица 3 - Недостатки релейного и ПИД-регуляторов

| Релейный регулятор                         | ПИД-регулятор                                                                                                 |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Низкая точность поддержания<br>температуры | Сложность настройки                                                                                           |
| Долгий выход на температуру<br>уставки     | Чувствительность к изменениям в системе, вследствие чего необходимость перенастройки при изменениях в системе |

#### Заключение

В результате исследований были выявлены достоинства и недостатки основных способ, используемых в термостатах для поддержания температуры. Релейное регулирование может использоваться для решения простых, не требующих большой точности поддержания температуры, и малозатратных задач. ПИД-регулирование является более сложным способом и требует настройки перед использованием, но обеспечивает высокую точность поддержания и минимизацию статистических ошибок.

Результатами работы являются:

- Сравнение различных датчиков температуры;
- исследование и сравнение двух способов регулирования: релейного и ПИД;
- реализация алгоритмов нагрева за время и ступенчатого нагрева;
- приложение для взаимодействия с термостатом.

#### Литература

- 1. Варма Т.Л., Бхатнагар Р. Устройство управления электронного цифрового термостата и электронное устройство многопозиционного регулирования температуры//Патент № 98118143.1998 Рос. Федерация: МПК7 G 05 D 23/00.
- 2. Поляков К.Ю. Основы теории автоматического управления: учеб. пособие. СПб.: Изд-во СПбГУ, 2012. 234 с.

# Приложение А

Таблица 1 – Команды

| Команда                                                   | Код  | Команда                                      | Код  |
|-----------------------------------------------------------|------|----------------------------------------------|------|
| Включить/выключить термостат                              | 0x10 | Установка коэффициентов релейного регулятора | 0x40 |
| Запись температуры уставки                                | 0x25 | Установка коэффициентов ПИД- регулятор       | 0x41 |
| Выбор алгоритма<br>регулирования                          | 0x26 | Запись графика в<br>память                   | 0x43 |
| Установка максимального тока в течение промежутка времени | 0x31 | Отображение данных<br>на дисплее             | 0x44 |
| Выбор датчиков<br>температуры                             | 0x32 |                                              |      |

Таблица 2 – Структура команд

| Стартовый<br>байт | Команда | Количество передаваемых данных | Данные                                                                                                                                                              | Проверочный<br>байт |
|-------------------|---------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 0xAB              | 0x10    | 1 байт                         | 0x00 – выключить<br>0x01 – включить                                                                                                                                 | 0x09                |
| 0xAB              | 0x25    | 1 байт                         | От 0 до 255                                                                                                                                                         | 0x09                |
| 0xAB              | 0x26    | 1 или 3 байта                  | 1 байт принимает значение:  0x00 — свободное управление  0x01 — релейное регулирование  0x02 — ПИД-регулирование  0x03 — ступенчатый нагрев  0x04 — нагрев за время | 0x09                |

|      |      |          | 2 байт принимает значение температуры уставки 3 байт принимает значение шага в °С или время нагрева                                             |      |
|------|------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 0xAB | 0x31 | 1 байт   | От 0 до 60                                                                                                                                      | 0x09 |
|      |      |          | 1 байт – датчик,<br>относительно<br>которого идёт<br>регулирование:<br>0x01 – DS18B20,<br>0x02 – NTC,                                           |      |
|      |      |          | 0x03 – AHT20,                                                                                                                                   |      |
| 0xAB | 0x32 | 4 байта  | 2 — 4 байты — принимают значение 0х00 или 0х01 в зависимости от того, включен ли соответствующий датчик в качестве дополнительного в приложении | 0x09 |
| 0xAB | 0x40 | 20 байт  | 5 коэффициентов в формате float                                                                                                                 | 0x09 |
| 0xAB | 0x41 | 6 байт   | $3$ коэффициента в формате uint_16t: $K_p, K_I, K_D$                                                                                            | 0x09 |
| 0xAB | 0x43 | 960 байт | Запись значений пикселей в память микроконтроллера                                                                                              | 0x09 |
| 0xAB | 0x44 | 1 байт   | 0x01 — отображать<br>температуру<br>0x02 — отображать<br>график                                                                                 | 0x09 |

# Приложение Б



Рисунок 1 – Ступенчатый нагрев



Рисунок 2 – Нагрев за время