Traducción automática: NMT-Keras

Marcos Esteve Casdemunt

Enero 2020

Contents

1	Intr	oducción	ı																2
2	NM	T-Keras																	2
	2.1	Ejercicio	1																2
	2.2	Ejercicio	2																2
	2.3	Ejercicio	3																3
	2.4	Ejercicio	4																3

1 Introducción

El objetivo principal de esta práctica consiste en evaluar dos *toolkits* sobre un corpus paralelo. En primer lugar se tratará de construir un traductor estadístico utilizando el *toolkit* Moses. Posteriormente se construirá un traductor basado en redes neuronales utilizando el *toolkit* NMT-Keras.

2 NMT-Keras

NMT-Keras es un *toolkit* de traducción automática neuronal preparado para utilizar arquitecturas basadas en modelos de atención + redes recurrentes o bien modelos basados en Transformers. El toolkit proporcionará un modelo de traducción neuronal de textos de un idioma origen a un idioma destino.

Para realizar esta práctica se ha utilizado una tarjeta gráfica NVIDIA GTX 1660 para aprovechar de esta manera el paralelismo que aporta este tipo de hardware y reducir el tiempo de entrenamiento del modelo.

2.1 Ejercicio 1

Para el primer ejercicio se han explorado distintos tamaños de embedding para la capa de embeddings de entrada del encoder así como los embeddings del decoder.

Table 1: Evolución del BLEU al modificar el tamaño de los embeddings (5 epochs)

Input Embedding	Target Embedding	BLEU
32	32	90.45
64	64	94.9
128	128	98.2
256	256	98.51
512	512	97.36

A la vista de los resultados expuestos en la tabla 1 los mejores resultados se obtienen con un tamaño de embedding de 256. Además se observa una disminución del BLEU con un tamaño de Embedding de 512, lo que puede deberse a que con el reducido tamaño del conjunto de entrenamiento no se pueden entrenar unos embeddings que capten con una buena calidad las relaciones sintácticas y semánticas entre los distintos términos.

2.2 Ejercicio 2

Una vez fijados los tamaños de embedding input y output a 256 se ha realizado una exploración por distintos tamaños para el modelo de LSTM.

Table 2: Evolución del BLEU al modificar el tamaño de las capas LSTM (5 epochs)

Input LSTM	Target LSTM	BLEU
32	32	96.47
64	64	98.51
128	128	95.31

A la vista de los resultados en la tabla 2 se observa que el mejor valor se obtiene con 64 unidades LSTM. Un incremento en el número de unidades supone una disminución en el BLEU probablemente debido a que no existen suficientes datos como para realizar una buena estimación de los parámetros y no caer en un sobreajuste.

Una vez obtenidos los mejores parámetros para el modelo (tamaño embedding 256+64 unidades LSTM) se ha realizado un entrenamiento hasta la convergencia, esto es, hasta que el BLEU en entrenamiento es de 100%. Tras 27 epochs el algoritmo ha convergido y al realizar una evaluación sobre el conjunto de test se ha obtenido un BLEU de 99.87

2.3 Ejercicio 3

Para la realización de este ejercicio se han probado otros metodos de aprendizaje como Adagrad o Adadelt, ambos evaluados con 5 epochs. La convergencia de ambos algoritmos es mucho más lenta que la convergencia obtenida por ADAM y por tanto los BLEU obtenidos en ambos casos son reducidos **12.82** y **1** respectivamente.

2.4 Ejercicio 4

Para la utilización del modelo basado Transformer es necesario que el tamaño del modelo y los tamaños de los embeddings coincidan. A continuación se muestra el estudio de tamaños realizado para este tipo de arquitectura.

Table 3: Evolución del BLEU al variar el tamaño del modelo Transformer (5 epochs)

Tamaño del modelo	BLEU
32	64.22
64	87.21
128	92.59
256	88.22

A la vista de los resultados expuestos en la tabla 3 se observa que el modelo basado en transformer y con un tamaño de 128 obtiene el mejor resultado. Cabe destacar que los resultados obtenidos por el transformer son inferiores, para esta tarea, al mejor modelo de redes neuronales y basado en la arquitectura encoderdecoder con modelo de atención.