Assignment 2

CS9.312 Introduction to Quantum Information and Computation

Due date of submission: 20/01/2023

- 1. Consider the Pauli spin matrices $\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Using the properties of Pauli matrices check if the matrix $\begin{pmatrix} \sigma_0 & \sigma_1 \\ -i\sigma_2 & \sigma_3 \end{pmatrix}$ is unitary.
- 2. Show that opposite points on the Bloch sphere are orthogonal to each other.
- 3. Consider the operator (4 x 4 matrix) in the Hilbert space \mathbb{C}^4

$$\rho = \frac{1}{4}(1 - \epsilon)I_4 + \epsilon(|0\rangle \otimes |0\rangle)(\langle 0| \otimes \langle 0|)$$

where ϵ is a real parameter with $\epsilon \in [0, 1]$ and $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Does ρ define a density matrix?

4. Consider the states $|0\rangle \coloneqq \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $|1\rangle \coloneqq \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ in the Hilbert space \mathbb{C}^2 and the state

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle \otimes |1\rangle - |1\rangle \otimes |0\rangle)$$

in the Hilbert space \mathbb{C}^4 . Let $(\phi,\theta\in\mathbb{R})$ and

$$|\alpha\rangle = \cos\phi |0\rangle + \sin\phi |1\rangle$$

$$|\beta\rangle = \cos\theta |0\rangle + \sin\theta |1\rangle$$

Find the probability $p(\phi, \theta) := |(\langle \alpha | \otimes \langle \beta |) | \psi \rangle|^2$ Discuss p as a function of ϕ and θ .