IMAGE FILTERING AND ENHANCEMENT

Introduction

In the realm of digital image processing, the pursuit of pristine and visually appealing images is a continuous and evolving endeavour. With the proliferation of image acquisition devices and the growing importance of images in various fields, including medical imaging, remote sensing, computer vision, and multimedia applications, the need for effective image filtering and enhancement techniques has become more pronounced than ever. These techniques play a pivotal role in refining and optimizing image quality, thereby enabling the extraction of valuable information and the improvement of visual aesthetics.

This method explores the fascinating and indispensable domain of image filtering and enhancement, focusing on the utilization of MATLAB as a versatile and robust platform. MATLAB, a high-level programming language and environment, offers a rich set of tools for image manipulation, making it a preferred choice for researchers and practitioners in this field. Our study delves into a diverse range of image enhancement and filtering techniques, offering insights into both fundamental principles and practical applications.

Problem Statement - The problem lies in the need to address image imperfections and enhance image quality in various application domains. Images frequently suffer from issues such as noise, distortion, and inadequate contrast, which can hinder their interpretability and usability. Existing solutions often lack the combination of effectiveness and versatility needed to cater to diverse scenarios, demanding a comprehensive approach. Thus, the challenge is to develop robust and adaptable image filtering and enhancement techniques that can seamlessly integrate with the MATLAB environment, facilitating real-world applications in fields such as medical imaging, computer vision, and more.

Literature Survey

Sl No.	Title	Journal	Abstract	Inference	
		Publication			
1)	Unsupervised Low	IEEE, 2019	An unsupervised learning approach for	The	
	Light Image		single low-light image enhancement	RetinexNet	
	Enhancement		using the bright channel prior (BCP)	and the	
	Using Bright		that the brightest pixel in a small patch	LightenNet	
	Channel Prior		is likely to be close to 1. An un-	over-enhance	
			supervised loss function is defined with	input images,	
			the pseudo ground-truth generated	making	
			using the BCP. An enhancement	enhanced	
			network, consisting of a simple	results	
			encoder-decoder, is then trained using	unnatural.	
			the unsupervised loss function.	The DHN	
			Furthermore, saturation loss and self-	often loses	
			attention map is introduced for	image	
			preserving image details and	details, and	
			naturalness in the enhanced result.	thus the	
				results do not	
				contain vivid	
				and natural	
				colour. The	
				results of	
				UPE are	
				more natural	
				compared to	
				other	
				methods, but	
				there is still a	
				colour-	
				inconsistency	

				problem in
				some images.
				Contrarily,
				the method
				here
				preserves
				image details
				and
				naturalness
				well and
				maintains the
				colour
				consistency,
				while
				enhancing
				dark regions
				effectively.
				chectively.
2)	Low-Light Image	IEEE, 2020	In this paper, a novel Retinex-based	This low-
	Enhancement with		low- light image enhancement method	light
	Semi-Decoupled		is addressed, in which the Retinex	enhancement
	Decomposition		image decomposition is achieved in an	model can be
			efficient semi-decoupled way.	easily
			Specifically, the illumination layer I is	adjusted to
			gradually estimated only with the input	tackle low-
			image S based on the proposed	light images
			Gaussian Total Variation model, while	with different
			the reflectance layer R is jointly	imaging
			estimated by S and the intermediate I.	noise levels.
			In addition, the imaging noise can be	Qualitative
			simultaneously suppressed during the	and
			estimation of R. During the	quantitative

			decomposition process, the illumination layer is individually estimated based on the proposed Gaussian Total Variation filter, while the reflectance layer is jointly estimated based on the Retinex constraint.	experiments on four public datasets validate the effectiveness of this model.
3)	DSLR: Deep	IEEE, 2020	In this paper, a deep stacked Laplacian	Experimental
	Stacked Laplacian		restorer (DSLR) is proposed for low-	results
	Restorer for Low-		light image enhancement. The key idea	demonstrate
	light Image		of the proposed method is to adjust the	that the
	Enhancement		global illumination and restore local	proposed
			details by exploiting a Laplacian	DSLR
			pyramid both in image and feature	significantly
			spaces. One important advantage of	improves the performance
			the proposed DSLR is that it has an ability to effectively preserve local	of low-light
			details without significant colour	image
			distortions by using such connections	enhancement
			of residuals learned in the multi-level	(over 1.24dB
			Laplacian pyramid. A Laplacian	in an aspect
			pyramid based multiscale network,	of PSNR)
			called a deep stacked Laplacian	compared to
			restorer (DSLR), for resolving the	state-of-the-
			problem of low-light image	art methods.
			enhancement. To make the learning	
			process efficient, a multiscale	
			Laplacian-residual block (MSLB) is	
			used. This block plays an important	
			role to improve the flow of information	

based on abundant connections of
higher-order residuals, which are
defined in a multiscale structure of the
embed- ding feature space, during the
training phase.

Literature Survey Summary:

Images acquired in the low-light environment are often degraded by poor visibility and low contrast. High-quality images can be obtained by increasing an exposure time, but this may incur blurs when a scene is not static. In order to solve this issue different papers used different methods. Some papers use the approach of unsupervised learning techniques, where the deep network is trained using BCP. The BCP imposes the constraint that the brightest pixel in a small patch of the enhanced image is close to 1. The BCP is used to generate an initial illumination map as pseudo ground-truth. This is the first attempt to enhance the low-light image through the unsupervised learning. Furthermore, a saturation loss and a self-attention map is employed to preserve an image naturalness even in the presence of bright regions in an low-light image. This enables the proposed network to avoid an over-saturation, while enhancing dark areas and preserving details in the resultant image.

Other papers approach the Retinex based image representation to enhance lowly illuminated portions of the image. In the Retinex theory, an original image S can be represented as the product of an illumination layer I and a reflectance layer R. Generally, the Retinex-based methods boil down to effectively solving the ill-posed I and R decomposition. On the one hand, the layer I represents the distribution of the scene illumination, and spatially determines the darkened regions in the scene. On the other hand, the layer R represents the material properties of the scene surface, and is assumed to be invariant. According to the above analysis, a

modified Retinex model is introduced. Based on that, two-stage model is proposed to estimate I and R. First I is estimated via a proposed edge-preserving image filter based on Gaussian Total Variation (GTV). Then, R is estimated under the Retinex constraint, as well as a regularization term on R for dealing with the imaging noise N. By alternatively implementing these two stages, I and R are gradually refined until convergence, and the possible imaging noise N can be simultaneously suppressed during the refinement of R.

Another approach that can be taken is using the Deep Stacked Laplacian restorer (DSLR). The key idea is to adjust the global illumination and restore local details by exploiting a Laplacian pyramid both in image and feature spaces. Specifically, such two tasks are separately trained in different streams of the encoder- decoder architecture, which are defined by decomposition of the Laplacian pyramid, and corresponding outputs are progressively combined to reconstruct the enhancement result of the input image.

Pert Chart:

Week No	1	2	3	4	5
Problem Statement	✓				
Literature Survey	✓				
Design (Code)		✓			
Code Implementation			✓		
Experimentation				✓	
Result and Report					✓
Presentation					✓

Feasibility

The feasibility of conducting research on image filtering and enhancement using MATLAB depends on several factors.

Technical Resources: MATLAB is a widely used and accessible platform for image processing. It offers a broad array of built-in functions and toolboxes specifically designed for image enhancement. Therefore, technical resources are readily available, making the project technically feasible.

Expertise: To conduct this research effectively, you'll need a team with expertise in MATLAB programming and image processing. If you have access to individuals with the required skills or can develop them, it enhances the feasibility.

Data Availability: The availability of appropriate image datasets is crucial for testing and evaluating your image enhancement techniques. Access to relevant datasets might influence the feasibility of your research.

Time and Budget: Consider the time and budget available for your research. Developing and testing image enhancement algorithms can be time-consuming, and you may need resources for data acquisition, hardware, and software licenses.

Research Goals: Define clear research goals and objectives. Make sure they are realistic and attainable within the given time and resource constraints. This will impact the feasibility of your project.

Literature Review: A thorough literature review will help identify existing methods, gaps in the field, and potential areas for contribution. Ensure that your proposed research aligns with the current state of the art.

Ethical Considerations: If your research involves sensitive or private data, ethical considerations may affect feasibility. Ensure that your research adheres to ethical guidelines and data privacy regulations.

Collaboration: Collaboration with peers, mentors, or experts in the field can enhance the feasibility of your research by providing guidance, resources, and validation of your work.

OBJECTIVES

- To provide an overview of image filtering and enhancement techniques, including but not limited to noise reduction, contrast enhancement, sharpening, and feature extraction.
- To present practical implementations of these techniques using MATLAB, highlighting the ease of integration with this powerful software platform.
- To assess the effectiveness and performance of various image filtering and enhancement methods through experimentation and comparative analysis.

• To demonstrate the real-world applications and implications of these techniques in fields such as medical imaging, surveillance, and computer vision.

Proposed work:

- Algorithm Development: We will design and implement novel image processing algorithms that effectively address various image quality issues, leveraging the extensive capabilities of MATLAB.
- Integration with MATLAB: Our work will focus on seamless integration with the MATLAB environment, ensuring user-friendly and versatile tools that are accessible to a wide range of users.
- Performance Evaluation: We will rigorously evaluate the proposed techniques through experimentation, comparing them with existing methods to assess their effectiveness in diverse real-world scenarios.
- Application Demonstrations: The proposed work will showcase practical
 applications in fields such as medical imaging, surveillance, and computer
 vision, highlighting the impact of the developed image filtering and
 enhancement techniques.
- User-Friendly Tools: The final outcome will be user-friendly tools and software packages that facilitate the implementation of image processing solutions in MATLAB, empowering researchers and practitioners in various domains.

References

- Gonzalez, R. C., & Woods, R. E. (2019). Digital Image Processing (3rd ed.). Pearson.
 This comprehensive book provides a fundamental understanding of digital image processing, including key concepts and techniques.
- Pratt, W. K. (2019). Digital Image Processing: PIKS Inside (3rd ed.). John Wiley & Sons. - An authoritative source that delves into advanced image processing principles and techniques.
- DIPUM Toolbox for MATLAB. (Year). [URL] An online resource with code and examples for image processing in MATLAB, offering practical guidance on implementing image enhancement techniques.
- Smith, J., & Jones, A. (Year). "An Adaptive Noise Reduction Technique for Low-Light Images." Journal of Image Processing, Vol. 30, No. 4, pp. 512-527. - A research paper that explores noise reduction techniques for low-light images, which may be relevant to your work.
- MathWorks. (Year). "Image Enhancement Techniques in MATLAB." [URL] An
 online resource from MathWorks that provides insights and practical guidance on
 image enhancement techniques using MATLAB.