Bayesian Hierarchical Temporal Modeling and Targeted Learning with Application to Reproductive Health

Candidate: Herb Susmann

Committee: Leontine Alkema (Chair), Laura Balzer, Antoine Chambaz

June 27, 2022

UMassAmherst

Background

- The international community has set ambitious goals for improvement in global health.
- Where is improvement needed?
 - Chapters 1 and 2: contributions related to statistical estimation and projection of global health indicators, with a focus on family planning.
- What interventions are effective in improving health outcomes?
 - Chapter 3: methods for estimating the effect of interventions on family planning outcomes.

Outline

- **1** Chapter 1: Temporal models for demographic and global health outcomes in multiple populations
- 2 Chapter 2: Flexible Modeling of Transition Processes with B-Splines
- 3 Chapter 3: Automatic Bayesian Targeted Likelihood Estimation of Marginal Structural Models

Outline

1 Chapter 1: Temporal models for demographic and global health outcomes in multiple populations

- 2 Chapter 2: Flexible Modeling of Transition Processes with B-Splines
- 3 Chapter 3: Automatic Bayesian Targeted Likelihood Estimation of Marginal Structural Models

Background

- There is interest in modeling demographic and health indicators in order to measure progress towards international goals.
 - Example: Under-5 Mortality Rate
- Data availability and quality are varied.
 - Some countries have high quality U5MR data from vital registration systems, in other countries data may only come from surveys.
- Many statistical models have been created to provide estimates and projections.
- · Comparing across models can be difficult.
- This chapter: an overarching model class called *Temporal Models* for *Multiple Populations* (TMMPs).

Background

- Published in International Statistical Review:
 - Susmann, Herbert, Monica Alexander, and Leontine Alkema.
 "Temporal Models for Demographic and Global Health Outcomes in Multiple Populations: Introducing a New Framework to Review and Standardise Documentation of Model Assumptions and Facilitate Model Comparison." International Statistical Review (2022).

Under-5 Mortality Rate (U5MR) Models

Modeling Framework

- Let $\eta_{c,t}$ be the true value of the indicator in country c at time t (c = 1, ..., C, t = 1, ..., T).
- Observed data y_i , i = 1, ..., n with associated properties c[i], t[i], ...
- Process model describes evolution of $\eta_{c,t}$.
 - Covariates
 - Systematic trends
- Data model describes relationship between y_i and $\eta_{c[i],t[i]}$.

Modeling Framework

Data Model Examples

Examples of data models:

• Normal:

$$y_i | \eta_{c[i],t[i]}, \sigma_i^2 \sim N(\eta_{c[i],t[i]}, \sigma_i^2)$$

where $y_i \in \mathbb{R}$ and σ_i^2 is the sampling variance.

• Binomial:

$$y_i | \eta_{c[i],t[i]} \sim \operatorname{Binom}(n_i, \eta_{c[i],t[i]})$$

where y_i , n_i are integers.

Process Model

$$g_1(\eta_{c,t}) = \underbrace{g_2(X_{c,t},\beta_c)}_{\text{covariate}} + \underbrace{g_3(t,\eta_{c,s\neq t},\alpha_c)}_{\text{systematic}} + \underbrace{a_{c,t}}_{\text{offset}} + \underbrace{\epsilon_{c,t}}_{\text{smoothing}}$$

Chapter 1 (7/13)

Covariate component

$$g_1(\eta_{c,t}) = \underbrace{g_2(X_{c,t},\beta_c)}_{\text{covariate}} + \underbrace{g_3(t,\eta_{c,s\neq t},\alpha_c)}_{\text{systematic}} + \underbrace{a_{c,t}}_{\text{offset}} + \underbrace{\epsilon_{c,t}}_{\text{smoothing}}$$

- Regression function for incorporating covariates.
- Example: IHME U5MR

$$g_2(X_{c,t}, \beta_c) = \exp\left[\beta_{c,1} \cdot \log(X_{c,t}^{LDI}) + \beta_{2,c} \cdot X_{c,t}^{EDU} + \beta_{3,c}\right] + \beta_{4,c} X_{c,t}^{HIV}$$

Systematic component

$$g_1(\eta_{c,t}) = \underbrace{g_2(X_{c,t},\beta_c)}_{\text{covariate}} + \underbrace{g_3(t,\eta_{c,s\neq t},\alpha_c)}_{\text{systematic}} + \underbrace{a_{c,t}}_{\text{offset}} + \underbrace{\epsilon_{c,t}}_{\text{smoothing}}$$

- Parametric function for modeling systematic temporal trends.
- Example: The Family Planning Estimation Model (FPEM) models the rate of change in Modern Contraceptive Prevalence Rate as following logistic growth (Cahill et al., 2018).

Offset

$$g_1(\eta_{c,t}) = \underbrace{g_2(X_{c,t},\beta_c)}_{\text{covariate}} + \underbrace{g_3(t,\eta_{c,s\neq t},\alpha_c)}_{\text{systematic}} + \underbrace{a_{c,t}}_{\text{offset}} + \underbrace{\epsilon_{c,t}}_{\text{smoothing}}$$

- The offset term incorporates external information, for example from a separate modeling step.
- Example: IHME U5MR model uses an offset derived from the smoothed residuals of a separate mixed-effects model.

Smoothing Component

$$g_1(\eta_{c,t}) = \underbrace{g_2(X_{c,t},\beta_c)}_{\text{covariate}} + \underbrace{g_3(t,\eta_{c,s\neq t},\alpha_c)}_{\text{systematic}} + \underbrace{a_{c,t}}_{\text{offset}} + \underbrace{\epsilon_{c,t}}_{\text{smoothing}}$$

- The smoothing component allows data-driven deviations from the other components, while still enforcing smoothness.
- Many choices B-splines, Gaussian processes, AR(p), RW(p), spatio-temporal smoothing, ...

Hierarchical Modeling

- Each component introduces many country specific parameters that need to be estimated.
- Hierarchical modeling is a way to share information between countries.
- Example: hierarchical model with one level of hierarchy for a country-specific parameter θ_c :

$$\theta_c \mid \theta_w, \sigma_\theta \sim N(\theta_w, \sigma_\theta^2)$$

Contributions

- A model class, Temporal Models for Multiple Populations (TMMPs), that encompasses many existing demographic and health models.
 - Model class makes a clear distinction between the process model and the data model.
 - Process model is split into building blocks: covariates, systematic trends, offsets, and smoothing components.
- Detailed description of six existing models using TMMP notation, and templates provided for documenting additional models as TMMPs.

Outline

① Chapter 1: Temporal models for demographic and global health outcomes in multiple populations

- 2 Chapter 2: Flexible Modeling of Transition Processes with B-Splines
- 3 Chapter 3: Automatic Bayesian Targeted Likelihood Estimation of Marginal Structural Models

Background

- Some indicators have been observed to evolve similarly across populations.
 - They tend to follow a transition between stable states.
- Classic example: demographic transition.
 - Transition from high total fertility rate and high under-5 mortality to low fertility, low mortality.
- Existing statistical models for estimating and projecting trends in these indicators draw on these patterns.
- This chapter: We propose a new type of model, called B-Spline Transition Models, for flexibly estimating indicators that follow transitions.

Case Study

- Modern Contraceptive Prevalence Rate (mCPR) for married or in-union women: proportion of married or in-union women of reproductive age using (or with partner using) a modern contraceptive method.
- Transition: low to high mCPR.
- Existing model: Family Planning Estimation Model (FPEM, Cahill et al. 2018).
- Goal: estimate and project mCPR in countries from 1970-2030.
- Dataset aggregated by United Nations Population Division (UNPD) from surveys conducted by governments or international organizations.

Case Study

Chapter 2 (3/17)

Transition Models

- First, we define a model class for indicators that follow a transition.
- Core assumption: the rate of change of the indicator is a function of its level.
- Transition Models are have a process model given by

$$g_1(\eta_{c,t}) = \underbrace{g_3(t,\eta_{c,s
eq t},lpha_c)}_{ ext{systematic}} + \underbrace{\epsilon_{c,t}}_{ ext{smoothing}} \,.$$

The systematic component has the following form:

$$\mathbf{g_3(t, \eta_{c,s\neq t}, \alpha_c)} = \begin{cases} \Omega_c, & t = t_c^*, \\ \mathbf{g_1(\eta_{c,t-1})} + f(\eta_{c,t-1}, \tilde{P}_c, \beta_c), & t > t_c^*, \\ \mathbf{g_1(\eta_{c,t+1})} - f(\eta_{c,t+1}, \tilde{P}_c, \beta_c), & t < t_c^*, \end{cases}$$

where
$$\alpha_c = \{\Omega_c, \tilde{P}_c, \beta_c\}$$
.

• The function f is called the *transition function*.

Chapter 2 (4/17) 22 / 73

FPEM Example

- FPEM is an example of a Transition Model.
- Because $\eta_{c,t} \in (0,1)$, FPEM process model uses a logit transform:

$$\operatorname{logit}(\eta_{c,t}) = g_3(t, \eta_{c,s\neq t}, \alpha_c) + \epsilon_{c,t}.$$

 The FPEM transition function was chosen such that mCPR follows a logistic growth curve:

$$f(\eta_{c,t-1}, \tilde{P}_c, \omega_c) = \begin{cases} \frac{(\eta_{c,t-1} - \tilde{P}_c)\omega_c}{\tilde{P}_c(\eta_{c,t-1} - 1)}, & \eta_{c,t-1} < \tilde{P}_c, \\ 0, & \text{otherwise.} \end{cases}$$

with

- ω_c : rate parameter,
- \tilde{P}_c : asymptote parameter.

Chapter 2 (5/17)

FPEM Example

B-Spline Transition Model

- Core idea: estimate the transition function f while making weaker functional form assumptions.
- Approach: estimate f using B-splines.
- Define a transition function f_b as:

$$f_b(\eta_{c,t}, \tilde{P}_c, \beta_c) = \sum_{j=1}^J \underbrace{h_j(\beta_{c,j})}_{\text{coefficient}} \cdot \underbrace{B_j(\eta_{c,t}/\tilde{P}_c)}_{\text{basis function}},$$

where \tilde{P}_c is an asymptote parameter.

 Flexibility of f_b can be tuned through the spline degree and number and positioning of knots.

B-Spline Transition Model for mCPR

- Next, we tailor the B-Spline Transition Model for use in estimating mCPR in countries.
- Process model:

$$\operatorname{logit}(\eta_{c,t}) = g_3(t, \eta_{c,s\neq t}, \alpha_c) + \epsilon_{c,t}.$$

Systematic component:

$$\mathbf{g_3}(t, \boldsymbol{\eta}_{c,s\neq t}, \boldsymbol{\alpha}_c) = \begin{cases} \Omega_c, & t = t_c^*, \\ \operatorname{logit}(\eta_{c,t-1}) + f_b(\eta_{c,t-1}, \tilde{P}_c, \beta_c), & t > t_c^*, \\ \operatorname{logit}(\eta_{c,t+1}) - f_b(\eta_{c,t+1}, \tilde{P}_c, \beta_c), & t < t_c^*. \end{cases}$$

• Smoothing model: autoregressive (AR(1)) process.

B-Spline Transition Model for mCPR

Process model:

$$\operatorname{logit}(\eta_{c,t}) = g_3(t, \eta_{c,s\neq t}, \alpha_c) + \epsilon_{c,t}.$$

• B-spline transition function:

$$f_b(\eta_{c,t}, \tilde{P}_c, \beta_c) = \sum_{i=1}^J h_k(\beta_{c,i}) B_j(\eta_{c,t}/\tilde{P}_c).$$

- B-Spline basis functions of order d. K knots including J = K + d 1 basis functions.
- Constraints set up such that mCPR follows an S-shaped transition.
- AR(1) smoothing model.

Example B-Spline Transition Function

Sharing information on shape of transition function

Model Validation

• Validation exercise 1: hold out 20% of all observations at random.

			95% UI			Error	
	n		% Below	% Included	% Above	ME	MAE
All	126	B-spline	1.6%	95.2%	3.2%	0.0053	0.032
		Logistic	1.6%	94.4%	4.0%	0.0055	0.030
High	36	B-Spline	0%	94.4%	5.6%	0.027	0.039
		Logistic	0%	94.6%	5.4%	0.024	0.041
Middle	48	B-Spline	0%	100%	0%	-0.0044	0.034
		Logistic	0%	97.8%	2.2%	-0.0027	0.033
Low	42	B-Spline	4.8%	90.5%	4.8%	0.00022	0.027
		Logistic	4.7%	90.7%	4.7%	0.0011	0.027

95% UI: 95% uncertainty interval. ME: median error. MAE: median absolute error.

Model Validation (11/17)

 Validation exercises 2: hold out all observations after a cutoff year L = 2010.

$L \equiv 2010.$									
			95% UI			Error			
	n		% Below	% Included	% Above	ME	MAE		
Model Check 2 (<i>L</i> = 2010)									
All	143	B-spline	6.99%	90.9%	2.1%	-0.0480	0.0646		
		Logistic	5.59%	93%	1.4%	-0.0477	0.0586		
High	34	B-Spline	2.94%	94.1%	2.94%	0.0107	0.0304		
		Logistic	0%	97%	3.03%	0.0115	0.0350		
Middle	46	B-Spline	2.17%	93.5%	4.35%	-0.0524	0.0723		
		Logistic	2.13%	95.7%	2.13%	-0.0575	0.0631		
Low	63	B-Spline	12.7%	87.3%	0%	-0.0812	0.0812		
		Logistic	11.1%	88.9%	0%	-0.0658	0.0729		

95% UI: 95% uncertainty interval. ME: median error. MAE: median absolute error.

Measures calculated using the last keldeout (observation within each area.

Illustrative Fits from B-spline Model

Data Source

- DHS
- MICS
- National survey
- + Other
- PMA

Transition Functions

Smoothing component

Modern Contraceptive Prevalence Rate

Trends can be seen in regional and subregional transition functions

Chapter 2 (13/17)

Contributions

- Subclass of Transition Models for indicators that follow transitions.
- B-spline Transition Model: flexible modelling approach based on B-splines.
- Generated estimations and projections of mCPR in countries from 1970-2030.
- Model implementation in R and Stan.

Outline

- ① Chapter 1: Temporal models for demographic and global health outcomes in multiple populations
- 2 Chapter 2: Flexible Modeling of Transition Processes with B-Splines
- 3 Chapter 3: Automatic Bayesian Targeted Likelihood Estimation of Marginal Structural Models

Background

- What interventions are effective in improving health outcomes?
- Marginal Structural Models are a way to summarize how the effect of an intervention on an outcome changes within subgroups.
- **This Chapter**: We introduce a novel targeted Bayesian estimator for the parameter of a Marginal Structural Model in a general setting.

Motivating Example

- Randomized field experiment conducted in Lilongwe, Malawi to investigate effect of broad-based family planning intervention on contraceptive use. (Karra et al., 2020, 2022)
- Intervention:
- Outcome:

Motivating Example

- For each participant, we have:
 - X: set of 11 covariates measured at baseline, including number of children X_c;
 - A: indicator of randomization into intervention group;
 - Y: indicator of contraceptive use at endline.
- Let O_1, \ldots, O_n be n i.i.d. draws of the generic variable O = (X, A, Y) from a law P_0 .

Motivating Example

 Scientific question: does the treatment effect differ depending on number of children at baseline?

Conditional Average Treatment Effect

• Conditional Average Treatment Effect (CATE):

$$\Psi_P^{\text{CATE}}(x) = \bar{Q}_P^{(1)}(x) - \bar{Q}_P^{(0)}(x) = \mathbb{E}_P[Y \mid A = 1, X = x] - \mathbb{E}_P[Y \mid A = 0, X = x].$$

 Causally identifiable under "standard causal assumptions" (consistency, positivity, no unmeasured confounders).

- Approach: summarize the relationship between treatment effect modifiers and conditional treatment effects using a user-supplied working model.
- Treatment effect modifier: number of children at baseline X_c .
- For instance, let $B(P) \in \mathbb{R}^2$ be the solution to the following optimisation problem:

$$B(P) = \operatorname*{arg\ min}_{\boldsymbol{\beta} \in \mathbb{R}^2} \mathbb{E}_P \left[\left(\Psi_P^{\text{CATE}}(\boldsymbol{X}) - (1, X_c) \boldsymbol{\beta} \right)^2 \right].$$

$$B(P) = \underset{\beta \in \mathbb{R}^2}{\text{arg min }} \mathbb{E}_P \left[\left(\underbrace{\Psi_P^{\text{CATE}}(X)} - (1, X_c) \beta \right)^2 \right]$$
conditional average treatment effect

Chapter 3 (2/13)

$$B(P) = \underset{\beta \in \mathbb{R}^2}{\arg \min} \, \mathbb{E}_P \left[\left(\Psi_P^{\text{CATE}}(X) - \underbrace{(1, X_c)\beta} \right)^2 \right]$$
 linear working model

$$B(P) = \underset{\beta \in \mathbb{R}^2}{\text{arg min}} \mathbb{E}_P \left[\left(\Psi_P^{\text{CATE}}(X) - (1, X_c) \beta \right)^2 \right]$$
squared-error risk

$$B(P) = \underset{\beta \in \mathbb{R}^2}{\text{arg min }} \mathbb{E}_P \left[\left(\Psi_P^{\text{CATE}}(X) - (1, X_c) \beta \right)^2 \right]$$
defined in terms of P

What a plot of the results will look like

General Setting for MSMs

- Observed data: O_1, \ldots, O_n i.i.d. copies of a generic variable $O \sim P_0$.
- Assume that P_0 is in a non-parametric statistical model \mathcal{M} .
 - The more we know about the law P_0 , the smaller the model \mathcal{M} .
- Assume that O = (Z, X) for variables $Z \in \mathcal{Z}$, $X \in \mathcal{X}$.
- For all $P \in \mathcal{M}$, let $\Psi_P : \mathcal{X} \to \mathbb{R}$ be a functional summary of P with argument X.
- For the motivating example:
 - O = (Y, A, X), Z = (Y, A), X = X.
 - $\Psi_P(X) = \mathbb{E}_P[Y \mid A = 1, X] \mathbb{E}_P[Y \mid A = 0, X]$, the CATE.

Marginal Structural Models

- Idea: approximate Ψ_P using a user-supplied working model.
- Working model: set $\{m_{\beta}: \beta \in \mathcal{B}\}$ of functions $m_{\beta}: \mathcal{X} \to \mathbb{R}$ with \mathcal{B} a parameter of dimension p.
- Loss function: $L_m(\Psi_P(X), \beta)(X)$.
- Define the parameter of interest *B* as the solution to the optimization problem:

$$B(P) = \underset{\beta \in \mathcal{B}}{\operatorname{arg min}} \mathbb{E}_P \left[L_m(\Psi_P(X), \beta)(X) \right].$$

- The combination of working model and loss function is called a Marginal Structural Model (Robins et al., 2000; Van der Laan and Rose, 2011).
- Causally identifiable under same assumptions as Ψ_P .

Marginal Structural Models

Danger! Infinite dimensional space visualized in two dimensions!

Semi-parametric inference

- Goal: estimate $\beta_0 := B(P_0)$.
- What is the semi-parametric efficiency bound for estimating β_0 ?
- We can write any regular estimator of β_0 as:

$$\hat{\beta}_n = \beta_0 + \frac{1}{n} \sum_{i=1}^n IC_{P_0}(O_i) + o_p(n^{-1/2}),$$

where IC_{P_0} is called an *influence function* of the parameter β_0 .

- The influence function with the smallest variance is called the efficient influence function (EIF), which we denote D*.
- The semi-parametric efficiency bound for estimating β_0 is given by $\operatorname{var}_{P_0}(D^*(P_0)(O))$

Efficient Influence Function of B(P)

Theorem (Efficient Influence Function)

(Simplified) The target functional $P \mapsto B(P)$ is pathwise differentiable at every $P \in \mathcal{M}$, with an efficient influence function $D^*(P)$ given by

$$D^*(P)(O) = M^{-1} \left[D_1^*(P)(O) + D_2^*(P)(X) \right],$$

where $D_1^*(P), D_2^*(P) \in L_0^2(P)$ are given by

$$D_1^*(P)(O) = \nabla \dot{L}(\Psi_P(X), B(P))(X) \times \Delta^*(P)(O), D_2^*(P)(X) = \dot{L}(\Psi_P(X), B(P))(X),$$

and the normalizing matrix M is given by

$$M = -\mathbb{E}_P\left[\ddot{L}_m(\Psi_P(X), B(P))(X)\right].$$

Efficient Influence Function of B(P)

Theorem

(Simplified) The target functional $P \mapsto B(P)$ is pathwise differentiable at every $P \in \mathcal{M}$, with an efficient influence function $D^*(P)$ given by

$$D^*(P)(X,A,Y) = M^{-1} \{ D_1^*(P)(X,A,Y) + D_2^*(P)(X) \},$$

where

$$D_1^*(P)(X,A,Y) = \left\{ \frac{\mathbb{I}(A=1)}{P[A=1|X]} - \frac{\mathbb{I}(A=0)}{P[A=0|X]} \right\} (Y - \bar{Q}_P^{(A)}(X))(1,X)^\top,$$

$$D_2^*(P)(X) = (\Psi_P(X) - B(P)^\top (1,X)^\top)(1,X)^\top,$$

and the normalizing matrix M is given by

$$M = -\mathbb{E}_P\left[(1,X)^\top(1,X)\right].$$

Targeted Minimum Loss-Based Estimation

- It turns out we can construct an estimator that achieves this efficiency bound!
 - Targeted Minimum Loss-Based Estimation (TMLE) (Van der Laan and Rose, 2011; van der Laan and Rose, 2018)
- Suppose we have an initial estimator P_n^0 of the pieces of P_0 relevant to β .
- We can then form a plugin estimator

$$\hat{\beta}^{\text{plugin}} = B(P_n^0). \tag{1}$$

The plugin estimator will be biased!

Plug-in estimator may be biased

Targeted Minimum Loss-Based Estimation

 Targeted Minimum Loss-Based Estimation (TMLE): plug-in estimator of the form

$$\hat{oldsymbol{eta}}^{TMLE} = B(P_n^{\circ}(\epsilon_n^*))$$

where $\{P_n^{\circ}(\epsilon): \epsilon \in \mathbb{R}^p\}$ is a *fluctuation* of an initial estimator P_n° of the pieces of P_0 relevant to β , and ϵ_n^* is chosen by minimising the empirical risk of a loss function \mathcal{L} .

TMLE: update initial estimate in direction of truth

A glimpse at how TMLE works

 The fluctuation and loss function are chosen to satisfy (among other things) a key property:

$$D^*(P_n^\circ) \in \operatorname{Span}\left(\frac{\partial}{\partial \epsilon} \mathcal{L}\left(P_n^\circ(\epsilon)\right)\Big|_{\epsilon=0}\right).$$

Importantly, the TMLE solves the EIF of the target parameter:

$$\mathbb{E}_{P_n}[D^*(P_n^{\circ}(\epsilon_n^*))(O)]=0.$$

• Under certain conditions, $\hat{\beta}^{TMLE}$ is asymptotically normal and efficient.

Blueprint for fluctuation model

How do we choose the form of the fluctuation model $P_n^{\circ}(\epsilon)$? We propose a blueprint:

TMLE Blueprint. The following choice of loss functions and fluctuation model satisfy the conditions (L1), (L2), and (M1).

$$\begin{split} \bar{Q}_{P,\epsilon}^{(1)}(O) &= \bar{Q}_P^{(1)}(O) + H_1(O)\epsilon^\top \nabla \dot{L}(\psi_P(X), B(P))(X), \\ & \vdots \\ \bar{Q}_{P,\epsilon}^{(J)}(O) &= \bar{Q}_P^{(J)}(O) + H_J(O)\epsilon^\top \nabla \dot{L}(\psi_P(X), B(P))(X), \\ Q_{P,\epsilon}(X) &= C \exp\left(\epsilon^\top \dot{L}(\psi_P(X), B(P))(X)\right) Q_P(X). \end{split}$$

• Choose \mathcal{L}_j and H_j for j = 1, ..., J such that

$$\sum_{j=1}^{J} \dot{\mathcal{L}}_{j}(\bar{Q}_{P}^{(j)}(O), O)H_{j}(O) = \Delta^{*}(P)(O).$$

Bayesian TMLE

- Can we make this procedure Bayesian?
- Core idea: some choices of TMLE loss function can be interpreted as defining a likelihood for the data O conditional on the parameter ϵ under the fluctuation submodel.
- We can then use Bayesian inference to estimate ϵ ! (Diaz et al., 2011; Díaz et al., 2020)
- ullet Basic application of Bayes rule: posterior distribution of ϵ is given by

$$\Pi_{\epsilon}(\epsilon \mid O_1, \ldots, O_n) \propto \pi_{\epsilon}(\epsilon) \prod_{i=1}^n p_n^{\circ}(O_i \mid \epsilon)$$

where π_{ϵ} is a prior distribution for ϵ and $p_n^{\circ}(O \mid \epsilon)$ is the likelihood of O under $P_n^{\circ}(\epsilon)$.

• Once we have a posterior distribution for ϵ we can map it to a posterior distribution for β .

Bayesian TMLE

Bernstein von-Mises

- Desired result: the posterior distribution for β converges to a normal distribution centered on the frequentist TMLE with variance given by the variance of the efficient influence function.
- We prove an *oracular* version that provides conditions under which the posterior distribution based on fluctuation of P_0 will converge to the optimal distribution.

Bayesian TMLE

Bernstein von-Mises

- Let $p_n^0(O \mid \epsilon)$ be the likelihood of the submodel fluctuating P_0 .
- Key conditions:
 - The gradient satisfies

$$\frac{\partial}{\partial \epsilon} \log p_n^0(O|\epsilon) \bigg|_{\epsilon=0} = D^*(P_0)(O).$$

The Hessian satisfies

$$P_0\left[\left.\frac{\partial^2}{\partial \epsilon^2}\log p_n^0(O|\epsilon)\right|_{\epsilon=0}\right] = P_0[D^*(P_0)D^*(P_0)^\top].$$

Bernstein von-Mises

Theorem (Oracular Bernstein von-Mises)

(Simplified) Let $N(\mu, \Sigma)$ denote the multivariate normal distribution with mean vector μ and covariance matrix Σ . Then, under certain assumptions,

$$\|\Pi_{\mathcal{B}}^{0}\left(\cdot\mid O_{1},\ldots,O_{n}\right)-N\left(\Delta_{n}^{0},P_{0}[D^{*}(P_{0})D^{*}(P_{0})^{\top}]\right)\|_{1}=o_{P}(1)$$

where

$$\Delta_n^0 = \frac{1}{\sqrt{n}} \sum_{i=1}^n P_0[\lambda^*(P_0)]^{-1} D^*(P_0)(O_i). \tag{2}$$

Universal Algorithm

- In practice, users may want to try several working models and loss functions.
- We could choose several working models and loss functions and hand-code the required derivatives. But what if a user wants to use something we haven't implemented?
- An alternative is to use automatic differentiation to compute the required derivatives automatically.
- We implemented a universal algorithm in Julia that uses auto-differentiation to automatically adapt the fluctuation model and efficient influence function to arbitrary well-chosen working models and loss functions.

Motivating Example: Results

Posterior density (red) and a normal density (blue) centered on the frequentist MLE with variance given by the estimated variance of the efficient influence function.

Motivating Example: Results

Contributions

- Definition of MSMs in a general setting.
- Derivation of efficient influence function for general MSM parameters.
- Framework for TMLE for general MSMs.
- Novel Bayesian TMLE for MSMs.
- Universal algorithm implemented in Julia using autodifferentiation.
- Application to estimate relationship between effect of intervention on contraceptive use with number of children as an effect modifier in a randomized field experiment.

Summary

Where is improvement needed?

- Chapter 1: Temporal Models for Multiple Populations
- Chapter 2: B-Spline Transition Model

What interventions are effective in improving health outcomes?

• Chapter 3: Bayesian targeted learning for Marginal Structural Models

Acknowledgements

References I

- N. Cahill, E. Sonneveldt, J. Stover, M. Weinberger, J. Williamson, C. Wei, W. Brown, and L. Alkema. Modern contraceptive use, unmet need, and demand satisfied among women of reproductive age who are married or in a union in the focus countries of the Family Planning 2020 initiative: a systematic analysis using the Family Planning Estimation Tool. *The Lancet*, 391(10123):870–882, Mar. 2018. ISSN 0140-6736. doi: 10.1016/S0140-6736(17)33104-5. URL http://www.sciencedirect.com/science/article/pii/S0140673617331045.
- Diaz, A. E. Hubbard, and M. J. van der Laan. Targeted bayesian learning. In *Targeted Learning*, pages 475–493. Springer, 2011.
- Díaz, O. Savenkov, and H. Kamel. Nonparametric targeted bayesian estimation of class proportions in unlabeled data. *Biostatistics*, 2020.
- A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian data analysis (3rd ed). Chapman and Hall/CRC, 2013.
- A. Gelman, A. Vehtari, D. Simpson, C. C. Margossian, B. Carpenter, Y. Yao, L. Kennedy, J. Gabry, P.-C. Bürkner, and M. Modrák. Bayesian workflow. arXiv preprint arXiv:2011.01808, 2020.
- M. Karra, D. Canning, et al. The effect of improved access to family planning on postpartum women: protocol for a randomized controlled trial. *JMIR research protocols*, 9(8):e16697, 2020.

References II

M. Karra, D. Maggio, M. Guo, B. Ngwira, and D. Canning. The causal effect of a family planning intervention on women $\#\times2019$; s contraceptive use and birth spacing. *Proceedings of the National Academy of Sciences*, 119(22):e2200279119, 2022. doi: $10.1073/\mathrm{pnas}.2200279119$. URL

https://www.pnas.org/doi/abs/10.1073/pnas.2200279119.

- J. M. Robins, M. A. Hernan, and B. Brumback. Marginal structural models and causal inference in epidemiology, 2000.
- H. Susmann, M. Alexander, and L. Alkema. Temporal models for demographic and global health outcomes in multiple populations: Introducing a new framework to review and standardize documentation of model assumptions and facilitate model comparison, 2021.
- M. J. Van der Laan and S. Rose. *Targeted learning: causal inference for observational and experimental data*. Springer Science & Business Media, 2011.
- M. J. van der Laan and S. Rose. *Targeted learning in data science: causal inference for complex longitudinal studies.* Springer, 2018.