Logika Cyfrowa

Jakub Gałaszewski

March 11, 2024

Za pomocą przekształceń algebry Boole'a znajdź najmniejsze wyrażenie w dysjunkcyjnej postaci normalnej równoważne $x\bar{y}\bar{z}+xyw+x\bar{y}z\bar{w}$.

dysjunkcyjna postać normalna inaczej DNF to alternatywa koniukcji literałów

$$x\bar{y}\bar{z} + xyw + x\bar{y}z\bar{w} = x\bar{y}(\bar{z} + z\bar{w}) + xyw = x\bar{y}(\bar{z} + \bar{w}) + xyw = x\bar{y}\bar{z} + x\bar{y}\bar{w} + xyw$$

$$X + \bar{X}Y = X(1+Y) + \bar{X}Y = X + Y(X+\bar{X}) = X + Y$$

2 a pomocą przekształceń algebry Boole'a znajdź najmniejsze wyrażenie w koniunkcyjnej postaci normalnej równoważne $(x+z+w)(x+\bar{y}+z)(x+\bar{y}+\bar{z}+w)$.

koniunkcyjna postać normalna inaczej CNF to koniukcja alternatyw literałów.

$$(x+z+w)(x+\bar{y}+z)(x+\bar{y}+\bar{z}+w) = x+(z+w)(\bar{y}+z)(\bar{y}+\bar{z}+w) = x+(z+w)(\bar{y}+z(\bar{z}+w)) = x+(z+w)(\bar{y}+z)(\bar{y}+z)(\bar{y}+w) = (x+z+w)(x+\bar{y}+z)(x+\bar{y}+w)$$

3 zaprojektuj najprostszy obwód typu suma iloczynów implementujący funkcję $f(x,y,z)=\sum m(1,3,4,6,7)$

skorzystam z tabeli Karnaugh'a w celu określenia minimalnej sumy iloczynów:

n	x	y	z	ϕ		
0	0	0	0	0		
1	0	0	1	1		
2	0	1	0	0	x \yz	00
3	0	1	1	1	0	0
4	1	0	0	1	1	1
5	1	0	1	0		
6	1	1	0	1		
7	1	1	1	1		

4 Zaprojektuj najprostszy obwód typu iloczyn sum implementujący funkcję $f(x,y,z) = \prod M(0,2,5)$.

można prościej: $\phi = (x+z)(\bar{x}+y+\bar{z})$

Zaprojektuj najprostszy obwód o trzech wejściach i jednym wyjściu, który produkuje wyjście 1 wtedy i tylko wtedy, gdy dokładnie jedno lub dwa wejścia mają wartość 1, w przeciwnym wypadku produkuje wyjście 0.

6 Zaimplementuj funkcję opisaną poniższą tabelką logiczną używając wyłącznie bramek NAND

x	y	z	Φ	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

$$\Phi = (x+y+z)(x+\bar{y}+\bar{z})(\bar{x}+y+\bar{z})(x+\bar{y}+\bar{z}) = \neg(\bar{x}\bar{y}\bar{z})\neg(\bar{x}yz)\neg(\bar{x$$

można zbić o jedną negację na wyjściu

7 Napisz najmniejsze wyrażenie odpowiadające poniższej tabelce logicznej. Pamiętaj o wykorzystaniu wartości don't care.

x	y	z	w	Φ					
0	0	0	0	x					
0	0	0	1	X					
0	0	1	0	x					
0	0	1	1	0					
0	1	0	0	0					
0	1	0	1	X	$xy \setminus zw$	00	01	11	10
0	1	1	0	0	00	X	X	0	X
0	1	1	1	х	01	0	X	X	0
1	0	0	0	1	11	1	1	$1\backslash 1$	$\mathbf{x} \setminus 1$
1	0	0	1	0	10	1	0	X	$\mathbf{x} \setminus \mathbf{x}$
1	0	1	0	х					
1	0	1	1	1					
1	1	0	0	1					
1	1	0	1	1					
1	1	1	0	х					
1	1	1	1	1					
$\Phi = yw + x\bar{w} + xz$									

8 Czy w układzie odpowiadającym wyrażeniu z poprzedniego zadania może wystąpić glitch? Jeśli nie, wyjaśnij dlaczego. Jeśli tak, pokaż, jak zmodyfikować układ, aby wyeliminować glitch

glitch polega na zmianie wartości zmiennej które zmienia choć nie powinno wyniku (albo odwrotnie) mój układ nie jest odporny na to, wystarczy równocześnie zapalić w i x.

można w inny sposób odczytać to wszystko, aby się zabezpieczyć przed glitchem:

xy \zw	00	01	11	10			
00	X	$\mathbf{x} \setminus \mathbf{x}$	0	X			
01	0	X	X	0			
11	1	1	1	X			
10	1	0	1	X			
$\Phi = r(\gamma + u + \bar{w})$							

warto wiedzieć, że glitche występują na "granicach" bloków o ile nie są połączone.