CS 3.307: Intro to Stochastic Processes

Tejas Bodas

Assistant Professor, IIIT Hyderabad

Recap

Recap

Stochastic process $\{X(t), t \in T\}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a collection of random variables defined such that for every $t \in T$ we have $X(t) : \Omega \to \mathcal{S}$.

- Stochastic process $\{X(t), t \in T\}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a collection of random variables defined such that for every $t \in T$ we have $X(t) : \Omega \to \mathcal{S}$.
- ightharpoonup T is the parameter space (often resembles time) and $\mathcal S$ is the state space.

- Stochastic process $\{X(t), t \in T\}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a collection of random variables defined such that for every $t \in T$ we have $X(t) : \Omega \to \mathcal{S}$.
- ightharpoonup T is the parameter space (often resembles time) and $\mathcal S$ is the state space.
- ▶ Random variable X(t) is often denoted by $X(\omega, t)$.

- Stochastic process $\{X(t), t \in T\}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a collection of random variables defined such that for every $t \in T$ we have $X(t) : \Omega \to \mathcal{S}$.
- ightharpoonup T is the parameter space (often resembles time) and $\mathcal S$ is the state space.
- ▶ Random variable X(t) is often denoted by $X(\omega, t)$.
- When t is fixed and ω is the only variable, we have a random variable $X(\cdot,t)$. When ω is fixed and t is the variable, we have a $X(\omega,\cdot)$ as a function of time. This is also called as a realization or sampe path of a stochastic process.

 \triangleright When T is countable, we have a discrete time process.

 \triangleright When T is countable, we have a discrete time process.

▶ If *T* is a subset of real line, we have a continuous time process.

- \triangleright When T is countable, we have a discrete time process.
- ▶ If *T* is a subset of real line, we have a continuous time process.
- State space could be integers or real numbers

- \triangleright When T is countable, we have a discrete time process.
- ▶ If *T* is a subset of real line, we have a continuous time process.
- State space could be integers or real numbers
- ightharpoonup State space could be \mathbb{R}^n or \mathbb{Z}^n valued

► The process of rolling a dice 6 times.

► The process of rolling a dice 6 times.

► You bank balance over a week.

- ► The process of rolling a dice 6 times.
- You bank balance over a week.
- ► Temperature fluctuations in a 1hr window.

- ► The process of rolling a dice 6 times.
- You bank balance over a week.
- ► Temperature fluctuations in a 1hr window.
- Number of customers in IKEA every day.

A c.t.s.p. is called an *independent increment process* if for any choice of parameters $t_0 < t_1 < \ldots < t_n$, the *n* increment random variables $X(t_1) - X(t_0), X(t_2) - X(t_1), \ldots, X(t_n) - X(t_{n-1})$ are independent.

A c.t.s.p. is called an *independent increment process* if for any choice of parameters $t_0 < t_1 < \ldots < t_n$, the *n* increment random variables $X(t_1) - X(t_0), X(t_2) - X(t_1), \ldots, X(t_n) - X(t_{n-1})$ are independent.

The c.t.m.p. is said to have stationary increments if in addition $X(t_2 + s) - X(t_1 + s)$ has the same distribution as $X(t_2) - X(t_1)$ for all $t_1, t_2 \in T$ and any s > 0.

► Sequence of i.i.d random variables.

- Sequence of i.i.d random variables.
- ▶ General random walk: If $X_1, X_2, ...$ is a sequence i.i.d of random variables, then $S_n = \sum_{i=1}^n X_i$ is a random walk.

- Sequence of i.i.d random variables.
- ▶ General random walk: If $X_1, X_2, ...$ is a sequence i.i.d of random variables, then $S_n = \sum_{i=1}^n X_i$ is a random walk.
- ▶ Weiner process: $\{X(t), t \ge 0\}$ is a Weiner process if
 - 1. X(0) = 0
 - 2. $\{X(t), t \ge 0\}$ has stationary and independent increments
 - 3. for every t > 0, X(t) is normally distributed with mean 0 and variance t.

- Sequence of i.i.d random variables.
- ▶ General random walk: If $X_1, X_2, ...$ is a sequence i.i.d of random variables, then $S_n = \sum_{i=1}^n X_i$ is a random walk.
- ▶ Weiner process: $\{X(t), t \ge 0\}$ is a Weiner process if
 - 1. X(0) = 0
 - 2. $\{X(t), t \ge 0\}$ has stationary and independent increments
 - 3. for every t > 0, X(t) is normally distributed with mean 0 and variance t.
- ▶ $\{X(t), t \ge 0\}$ is a Markov process if for $t_1 < t_2 < \dots t_n < t$ we have

$$P(X(t) \le x | X(t_1) = x_1, \dots, X(t_n) = x_n) = P(X(t) \le x | X(t_n) = x_n)$$

- Sequence of i.i.d random variables.
- ▶ General random walk: If $X_1, X_2, ...$ is a sequence i.i.d of random variables, then $S_n = \sum_{i=1}^n X_i$ is a random walk.
- ightharpoonup Weiner process: $\{X(t), t \geq 0\}$ is a Weiner process if
 - 1. X(0) = 0
 - 2. $\{X(t), t \ge 0\}$ has stationary and independent increments
 - 3. for every t > 0, X(t) is normally distributed with mean 0 and variance t.
- ▶ $\{X(t), t \ge 0\}$ is a Markov process if for $t_1 < t_2 < \dots t_n < t$ we have

$$P(X(t) \le x | X(t_1) = x_1, \dots, X(t_n) = x_n) = P(X(t) \le x | X(t_n) = x_n)$$

Random walk and Weiner process are examples of Markov processes.

► Bernoulli(p) random variable

- Bernoulli(p) random variable
- Bernoulli process is a sequence of independent r.v.'s $\{X_i, i = 1, 2, ...\}$ where each X_i is a Bernoulli(p) random variable.

- Bernoulli(p) random variable
- Bernoulli process is a sequence of independent r.v.'s $\{X_i, i = 1, 2, ...\}$ where each X_i is a Bernoulli(p) random variable.
- ▶ Binomial random variable S_n counts the sum of n independent Bernoulli(p) variables

- Bernoulli(p) random variable
- Pernoulli process is a sequence of independent r.v.'s $\{X_i, i = 1, 2, ...\}$ where each X_i is a Bernoulli(p) random variable.
- ▶ Binomial random variable S_n counts the sum of n independent Bernoulli(p) variables
- let X_i denote the associated Bernoulli variable for toss i, $i=1,\ldots,n$. Then $S_n=\sum_{i=1}^n X_i$ denotes the number of heads/event and $P(S_n=k)=\binom{n}{k}p^k(1-p)^{n-k}$.

- Bernoulli(p) random variable
- Pernoulli process is a sequence of independent r.v.'s $\{X_i, i = 1, 2, ...\}$ where each X_i is a Bernoulli(p) random variable.
- ▶ Binomial random variable S_n counts the sum of n independent Bernoulli(p) variables
- let X_i denote the associated Bernoulli variable for toss i, $i=1,\ldots,n$. Then $S_n=\sum_{i=1}^n X_i$ denotes the number of heads/event and $P(S_n=k)=\binom{n}{k}p^k(1-p)^{n-k}$.
- $ightharpoonup E[S_n]$? $Var(S_n)$?

▶ ${S_n = \sum_{i=1}^n X_i, n = 1, 2, ...}$ is called as a Binomial process.

- ▶ ${S_n = \sum_{i=1}^n X_i, n = 1, 2, ...}$ is called as a Binomial process.
- ▶ Let $T := \{\text{smallest } n : S_n > 0.\}.$

- ▶ ${S_n = \sum_{i=1}^n X_i, n = 1, 2, ...}$ is called as a Binomial process.
- ▶ Let $T := \{\text{smallest } n : S_n > 0.\}.$
- T is a geometric random variable with parameter p, i.e., $P(T = n_1) = p(1-p)^{(n_1-1)}$.

- ▶ ${S_n = \sum_{i=1}^n X_i, n = 1, 2, ...}$ is called as a Binomial process.
- ▶ Let $T := \{ \text{smallest } n : S_n > 0. \}.$
- T is a geometric random variable with parameter p, i.e., $P(T = n_1) = p(1 p)^{(n_1 1)}$.
- ► Memoryless property: P(T > m + n/T > n) = P(T > m).

Counting process

Counting process

Stochastic process $\{N(t), t \geq 0\}$ is a counting process if it represents the total number of events upto time t.

Counting process

Stochastic process $\{N(t), t \geq 0\}$ is a counting process if it represents the total number of events upto time t.

It satisfies the following

Stochastic process $\{N(t), t \geq 0\}$ is a counting process if it represents the total number of events upto time t.

It satisfies the following

 $ightharpoonup N(t) \ge 0$ and is integer valued

Stochastic process $\{N(t), t \geq 0\}$ is a counting process if it represents the total number of events upto time t.

It satisfies the following

- $ightharpoonup N(t) \ge 0$ and is integer valued
- For $s \le t$, we have $N(s) \le N(t)$. N(t) N(s) denotes the number of events in the interval (t, s)

Stochastic process $\{N(t), t \geq 0\}$ is a counting process if it represents the total number of events upto time t.

It satisfies the following

- $ightharpoonup N(t) \geq 0$ and is integer valued
- For $s \le t$, we have $N(s) \le N(t)$. N(t) N(s) denotes the number of events in the interval (t, s)
- \triangleright N(t) can have independent increments

Stochastic process $\{N(t), t \geq 0\}$ is a counting process if it represents the total number of events upto time t.

It satisfies the following

- $ightharpoonup N(t) \geq 0$ and is integer valued
- For $s \le t$, we have $N(s) \le N(t)$. N(t) N(s) denotes the number of events in the interval (t, s)
- \triangleright N(t) can have independent increments
- \triangleright N(t) can have stationary increments

A Poisson process with rate $\lambda, \lambda \geq 0$ is a counting process $\{N(t), t \geq 0\}$ with the following properties

ightharpoonup N(0) = 0

- ightharpoonup N(0) = 0
- \triangleright N(t) has independent and stationary increments

- ightharpoonup N(0) = 0
- \triangleright N(t) has independent and stationary increments
- Number of events in an interval of length t is a Poisson distribution with mean λt . (Hence stationary increments)

- N(0) = 0
- \triangleright N(t) has independent and stationary increments
- Number of events in an interval of length t is a Poisson distribution with mean λt . (Hence stationary increments)
- $ightharpoonup E[N(t+s)-N(t)]=\lambda s$

A Poisson process with rate $\lambda, \lambda \geq 0$ is a counting process $\{N(t), t \geq 0\}$ with the following properties

- N(0) = 0
- \triangleright N(t) has independent and stationary increments
- Number of events in an interval of length t is a Poisson distribution with mean λt . (Hence stationary increments)
- $ightharpoonup E[N(t+s)-N(t)]=\lambda s$

Condition 3 is difficult to verify! Hence ...

Poisson process – Alternative definition

A function f is said to be o(h) if $\lim_{h\to 0} \frac{f(h)}{h} = 0$.

Poisson process – Alternative definition

A function f is said to be o(h) if $\lim_{h\to 0} \frac{f(h)}{h} = 0$.

Poisson process - Alternative definition

A function f is said to be o(h) if $\lim_{h\to 0} \frac{f(h)}{h} = 0$.

$$ightharpoonup N(0) = 0$$

Poisson process - Alternative definition

A function f is said to be o(h) if $\lim_{h\to 0} \frac{f(h)}{h} = 0$.

- ightharpoonup N(0) = 0
- \triangleright N(t) has independent and stationary increments

Poisson process - Alternative definition

A function f is said to be o(h) if $\lim_{h\to 0} \frac{f(h)}{h} = 0$.

- ightharpoonup N(0) = 0
- \triangleright N(t) has independent and stationary increments
- ► $P{N(h) = 1} = \lambda h + o(h)$
- ▶ $P{N(h) \ge 2} = o(h)$

Lemma

Definition $1 \implies Definition 2$

Proof on board.

Lemma

Definition $1 \implies Definition 2$

Proof on board.

Lemma

Definition $2 \implies Definition 1$

Lemma

Definition $1 \implies Definition 2$

Proof on board.

Lemma

Definition $2 \implies Definition 1$

Self Study: Refer Sheldon Ross, Stochastic processes, Theorem 2.1.1