Kaldi ASR Team Sprint 05 Demo

Adam G., Milan H., Tabitha O., David S., Tahmina T.

Introduction

- Develop acoustic ASR model capable of transcribing live ATC transmissions in real-time using the Kaldi ASR Toolkit and the ATC02 corpus.
 - Integration with RTube web application in the future
 - Training tool for student pilots.
 - Designed to make learning ATC phraseology easier.

Design Constraints

- Minimum storage size of 12.5 GB
- Minimum video memory (VRAM) of 12 GB
 - NVidia GeForce RTX 4080
- All inputs as WAV files
 - Convert non-WAV files using FFMPEG
- General American English
 - "Color" vs. "Colour"
- No punctuation or grammatical marks
 - Commas, colons, etc.
- Federal Aviation Administration (FAA)

Assumptions and Dependencies

- Clear and direct communication
- Low interference and background noise
- General American English
- Sufficiently large data set
- Sufficient storage
- Sufficient video memory
- Operating system
 - o Linux (e.g., Ubuntu, Debian, etc.)
 - Windows Subsystem for Linux (WSL)
 - Virtual machine for MacOS

System Architecture (Preprocessing)

- ATC0 Corpus:
 - Linguistic Data Consortium (LDC)
 - Contains 30-hour ATC dataset with audio files and text transcriptions
- ATCO2 Corpus:
 - Repository for ASR and NLP research
 - Provides preprocessing script
 written in Bash designed for Kaldi
 ASR Toolkit

```
| Comparison of the Comparison
```

System Architecture (Preparation)

- Setting up audio for decoding
- Fast Fourier Transform (FFT)
- Discrete Cosine Transform (DCT)
- Mel-Frequency Cepstrum (MFC)
 - Mel-Frequency Cepstral Coefficients (MFCCs)
- Gaussian Mixture Model (GMM)
- Hidden Markov Model (HMM)

System Architecture (Decoding)

- Finding sequence of events
- Viterbi decoder

System Architecture (Output)

- Converting to sentences
- Weighted Finite State Transducers (WFSTs)
 - o HMM
 - Context Dependence
 - Lexicon
 - Language Model

Sub-System Design

- Data Preparation Phase
 - Mel-Frequency Cepstrum Coefficients (MFCC)
 - Gaussian Mixture Model (GMM)
 - Hidden Markov Model (HMM)
 - MFCC is the culmination of a dozen steps as shown
 - Aside from Data Preparation there are also the Decoding and Output Phases

Project Timeline

- Sprint 05:
 - System Requirements Specification
 - System Design Document
 - System Research & Test Plan
 - Use case diagram
 - Audio preprocessing script
 - User Manual Guide
- Sprint 06 Plans:
 - Integration of preprocessing script with Mini-LibriSpeech
 - Creation of script to run Mini-LibriSpeech
 - MacOS installation

Lessons Learned

- Importance of establishing guidelines with product owner.
- Importance of establishing product timeline with product owner and course instructor.
- Laborious installation processes
 - Mini-LibriSpeech
 - o ATCO2 corpus
 - MacOS and Oracle VirtualBox
 - MacOS through Embry-Riddle Cisco VPN

Q&A