

Programación Hardware Reconfigurable

PROYECTO FINAL DE LA ASIGNATURA

Sistema de Seguridad Disuasoria Temprana para el Hogar SSDTH

Nombre del equipo: PHR23-M07

Espacio de trabajo (sharepoint) del grupo.

Miembros del equipo:

Lider	Alumno
X	Pavón Jiménez, Adolfo
	Pérez Sanz, Enrique
	Herrero Gordaliza Óscar
	Hermoso Jiménez, Guillermo

ÍNDICE

ÍNDICE	1
ÍNDICE DE FIGURAS	2
ÍNDICE DE TABLAS	3
OBJETIVO	5
1. MODIFICACION OBJETIVO	
INTRODUCCIÓN	7
DEFINICIÓN DEL PROBLEMA	9
DISEÑO DE LA SOLUCIÓN PROPUESTA	11
1. Punto primero de este apartado	11
2. Punto segundo de este apartado	
HARDWARE EMPLEADO	13
1. Punto primero de este apartado	13
2. Punto segundo de este apartado	13
HERRRAMIENTAS SOFTWARE EMPLEADAS	15
1. Punto primero de este apartado	15
2. Punto segundo de este apartado	15
DESARROLLO SOFTWARE REALIZADO	17
PRUEBAS Y TESTS	19
PLANIFICACIÓN Y COSTES	21
ASPECTOS SOCIALES, AMBIENTALES, ÉTICOS Y LEGALES	23
CONCLUSIONES	25
LÍNEAS FUTURAS	27
REFERENCIAS	29
ANEXOS	31
Anexo I. Material entregado en Sharepoint	31
Anexo II. Material entregado en Sharepoint	31

ÍNDICE DE FIGURAS

Figura 1: Esquema básico de la resolución del problema (Fuente propia).	8
Figura 2: Esquema de la solución del problema (Fuente propia).	10
Figura 3: Parte delantera del sensor de movimiento (Fuente propia).	11
Figura 4: Parte trasera del sensor de movimiento (Fuente propia).	11
Figura 5: Parte delantera del sensor infrarrojo (Fuente propia).	12
Figura 6: Parte trasera del sensor infrarrojo (Fuente propia).	12
Figura 7: Módulo P-MOD ESP-32 (Fuente propia).	13
Figura 8: Sensor de puertas y ventanas (Fuente propia).	13
Figura 9: Resistencias (Fuente propia).	14
Figura 10: Buzzer (Fuente propia).	14
Figura 11: Led RGB (Fuente propia).	15
Figura 12: Protoboard y cables (Fuente propia).	15
Figura 13: Adaptador USB a UART (Fuente propia).	16
Figura 14: Logo de Vivado (Xilinx, 2022).	17
Figura 15: Logo de Arduino (Arduino, 2020).	17
Figura 16: Referencia de la intensidad del sonido	24
Figura 17: Montaje final del proyecto (Fuente propia).	25

ÍNDICE DE TABLAS

Tabla 1: Pruebas y test realizados.	20
Tabla 2: Costes materiales del prototipo desarrollado.	21
Tabla 3: Tabla de hitos y recursos humanos	21
Tabla 4: Coste total del prototipo	22
Tabla 5: Costes materiales esperados	22
Tabla 6: Diagrama de Gantt del prototipo desarrollado	23
Tabla 7: Diagrama de Gantt esperado	23

OBJETIVO

El objetivo es implementar un sistema de alarma con distintos sensores conectados a la FPGA y que al detectar movimiento emita un sonido a modo de alarma. Además, este sistema se podrá activar desde una página web de forma que se pueda iniciar desde un navegador para facilitar el acceso a los usuarios.

Los subobjetivos observados serán llevar a cabo la implementación de una forma de conectar la placa a una red y levantar en ella el servidor web al que se accederá desde el navegador. Además, la FPGA también deberá poder recibir información del sensor de movimiento, de tal manera que puede responder a los estímulos que reciba de los distintos sensores, para ello deberá contener la lógica necesaria para activar las respuestas en caso de que los sensores informen de la presencia de alguien.

Con esta solución lo que se intenta conseguir es una forma de protección del hogar fácil de usar y que no resulte muy caro para el usuario, de esta forma damos respuesta al creciente aumento de la demanda de estos dispositivos.

INTRODUCCIÓN

El ámbito en el cual se engloba es el de la seguridad.

Respecto al estado de la técnica, las soluciones clásicas utilizan una central, compuestas de un procesador, memorias y varios módulos que se encargan de controlar y monitorizar los distintos sensores que se encuentran conectados. Sumado a esto para que el usuario pueda interactuar con el sistema suelen contar con un teclado. Nuestra propuesta mejoraría los sistemas actuales permitiendo la conexión de la alarma desde cualquier lugar sin necesidad de tener acceso a la central y utilizamos mejores sensores para la detección de una intrusión. En cuanto a los trabajos que hemos encontrado más relacionados con la implementación de un sistema de alarma mediante una FPGA son, por ejemplo, este trabajo de la Politécnica de Valencia

(Pablo Jarque Zafra <<SISTEMA DE ALARMA DE PRESENCIA CON PLACA DIGILENT ZYBO Z7>>) que implementan un sistema de alarma basado en un teclado numérico y un sensor infrarrojo. La principal virtud del mismo es que el sistema es bastante robusto y sencillo de utilizar, está perfectamente definido como armar y desarmar la alarma además de los tiempos que dispone el usuario para su uso. Puede ser un sistema de seguridad perfectamente útil y funcional para vigilar un pasillo o una puerta. La principal carencia y que también expone el autor del proyecto es el alto costo del hardware en contraposición con reducida utilidad del dispositivo final y la falta de escalabilidad del mismo que el autor atribuye a que se trata de un proyecto académico. El sistema podría ser mucho más escalable si el autor hubiera optado por utilizar sensores conectados de forma inalámbrica y no por conexión cableada, o al menos una conexión cableada más extensa. Esta es la principal aproximación al problema por lo que hemos podido observar en otros trabajos como este de la Universidad autónoma de Bucaramanga (Germán Darío Barón Chacón<<DISEÑO Y CONSTRUCCIÓN DE UN SISTEMA DE SEGURIDAD PARA UN RECINTO CERRADO IMPLEMENTANDO FPGA>>) o este de la universidad de Castilla - La Mancha

(J. Vázquez, A. Parreno Torres, J. López Alcolea, E. J. Molina Martínez, P. Roncero-Sánchez <<Implementación sobre FPGA de un prototipo de alarma doméstica sensorizada>>) muy parecidos al primero.

DEFINICIÓN DEL PROBLEMA

El problema a resolver es el de hacer accesible los sistemas de seguridad para todo el mundo implementando un sistema de alarma autónomo, utilizando nuevas tecnologías, haciendo que no sea muy complejo de usar e instalar y permita a cualquier persona proteger en cierta medida su hogar de forma modular. Que sea autónomo debe poder actuar únicamente con el input de los sensores y para que además sea lo más sencillo y accesible se debe poder encender y apagar de forma remota. Además deberá poseer unos actuadores que produzcan señales auditivas y visuales que sean lo suficientemente molestas para disuadir al intruso.

Un esquema básico de la solución del problema es el siguiente:

Figura 1: Esquema básico de la resolución del problema (fuente propia).

DISEÑO DE LA SOLUCIÓN PROPUESTA

Respecto a los requisitos y especificaciones, los sensores utilizados en el proyecto serán un sensor de movimiento, un sensor infrarrojo y por último un sensor de apertura de puertas y ventanas. Los actuadores serán un zumbador y un diodo led RGB.Para dotar al sistema de una señal de activación, se introduce un punto de activación al sistema usando el protocolo HTTP mediante un módulo "p-mod ESP32" de conexión wifi.

Un esquema de la solución del problema se presenta a continuación:

Figura 2: Esquema del proyecto (fuente propia).

El funcionamiento de la imagen anterior constaría de la transmisión de señales que son interpretadas por cada uno de los sensores a la FPGA, donde serán guardadas en un registro y posteriormente serán enviadas a los actuadores para que en caso de recibir un '1' realicen su función correspondiente, y en caso de recibir un '0' no activarse. Para que el sistema funcione tiene que encenderse previamente por un dispositivo que tenga acceso al mismo mediante la configuración del servidor.

Para el proyecto se han tomado como referencia distintos proyectos encontrados en distintas webs. Por ejemplo:

El PFG de un alumno de la facultad informática de la universidad del País Vasco. (Diseño e implementación de un sistema de seguridad para el hogar con interfaz en Android). Dicho proyecto trata de un sistema de seguridad para el hogar, contando con un sistema de movimiento y de apertura de puertas y ventanas, este trabajo proporcionó una idea de los sensores que se han usado en el sistema.

Otro proyecto que se ha tenido en cuenta ha sido un caso de estudio (Desarrollo de un sistema de alarma domiciliaria con reconocimiento facial y alerta temprana - Open Journal System), que contaba con un sistema de aviso al propietario de la vivienda que notifica cuando detecta algún sujeto no reconocible para el sistema, y cabe destacar que la activación y desactivación del sistema se lleva a cabo mediante una conexión desde una aplicación android, esta sugerencia dio pie a la utilización de un servidor web para encender y apagar el sistema.

HARDWARE EMPLEADO

1. Sensor de movimiento en banda X

Sensor de movimiento de 4 pines (enable, ground, vcc y salida). Funciona mediante banda X a una frecuencia de 10.525 GHz, siendo capaz de detectar movimiento hasta 9m a través de paredes y ventanas. La distancia de detección se puede regular con el potenciómetro que se encuentra en la parta trasera.

En las siguientes imágenes se puede observar el sensor en cuestión:

Figura 3: Parte delantera del sensor de movimiento (fuente propia).

Figura 4: Parte trasera del sensor de movimiento (fuente propia).

2. Sensor infrarrojo PIR PARALLAX

Sensor infrarrojo de 4 pines (enable, ground, vcc y salida) con sensibilidad regulable. Tiene una distancia de detección de 9 metros, con un ángulo de 180°. Dispone de un modo nocturno para las condiciones de baja luminosidad y un potenciómetro para la distancia de detección.

En las siguientes imágenes se puede observar el sensor en cuestión:

Figura 5: Parte delantera del sensor infrarrojo (fuente propia).

Figura 6: Parte trasera del sensor infrarrojo (fuente propia).

3. P-MOD ESP-32

Módulo de comunicación Wi-Fi, Bluetooth LE y Bluetooth dispone de una antena cuya potencia de salida es de 20.5 dBm.

En la siguiente imágen se puede observar el sensor en cuestión:

Figura 7: Módulo P-MOD ESP-32 (fuente propia).

4. Detector de puertas y ventanas

Detector de apertura para una puerta o una ventana, cuenta con dos electroimanes que al separarse envían un cero lógico.

En la siguiente imágen se puede observar el sensor en cuestión:

Figura 8: Sensor de puertas y ventanas (fuente propia).

5. Resistencias

Dos resistencias de 100 ohm y 10k ohm, originalmente no estaban presupuestadas y cuyo precio aproximado es de 20 céntimos cada una.

En la siguiente imágen se pueden observar las resistencias utilizadas:

Figura 9: Resistencias (fuente propia).

6. Buzzer

Buzzer que emite un sonido

En la siguiente imágen se pueden observar el buzzer utilizado:

Figura 10: Buzzer (fuente propia).

7. LED RGB

LED RGB tiene varios pines para personalizar el color que emite

En la siguiente imágen se pueden observar el led utilizado utilizado:

Figura 11: Led RGB (fuente propia).

8. Protoboard y cables

Protoboard + cables macho / hembra

En la siguiente imágen se pueden observar la protoboard y los cables utilizados utilizadas:

En la siguiente imágen se pueden observar la protoboard junto a los cables utilizados:

Figura 12: Protoboard y cables (fuente propia).

9. Adaptador USB a UART: CH340G

Adaptador para programar el dispositivo PMOD en Arduino

En la siguiente imágen se pueden observar el adaptador de USB a UART utilizado:

Figura 13: Adaptador USB a UART (fuente propia).

HERAMIENTAS SOFTWARE EMPLEADAS

Para el desarrollo lógico del sistema y la comunicación de los distintos sensores con el actuador se han usado herramientas de desarrollo software como:

1. Vivado

Hemos usado el entorno de desarrollo de AMD para la programación lógica de la placa "Basys 3" empleada para el control de flujo de datos que transmiten los sensores al actuador y proporcionada por la asignatura mediante un proyecto en lenguaje VHDL.

2. Arduino IDE

Se ha empleado Arduino IDE para la programación del "p-mod: ESP 32", usado para crear un servidor web con el que encender y apagar el sistema de seguridad. Usando este lenguaje como alternativa a los comandos AT sugeridos en clase por su simplicidad y rentabilidad en programación. También cabe destacar que se han usado las bibliotecas: "WiFi.h" para acceder a una red proporcionada por un punto de acceso, y "WebServer.h" para desarrollar una interfaz web con HTML, junto al envío y recepción de mensajes mediante protocolo HTTP.

A continuación se muestran los interfaces que hemos utilizado:

Figura 14: Logo de Vivado

Figura 15: Logo de Arduino

DESARROLLO SOFTWARE REALIZADO

Comenzamos con la codificación de cada uno de los sensores por separado, que mandaba directamente la señal recopilada por cada sensor al buzzer para comprobar su funcionamiento. Durante la configuración en el sistema de los sensores, nos percatamos sobre el desvanecimiento instantáneo de la señal del sensor de movimiento, ya que el sonido del zumbador duraba solo un instante, por lo que se decidió añadirle un registro con una entrada en serie y salida en paralelo sumando cada una de las salidas para aumentar la duración de la señal emitida al zumbador.

Para realizar la suma de los valores del registro se realizó un "process" donde una variable temporal almacena si alguno de los registros tiene un "1" y se envía como señal al buzzer y led tras sumar la señal al resto de sensores y hacer una "and" con el enable del dispositivo para activar o desactivar los distintos sensores.

PRUEBAS Y TESTS

Lo suyo sería DISEÑAR un completo plan de pruebas, desde las unitarias, de cada una de las "cosa" usadas/realizadas", ..., hasta las de "sistema" donde se demuestra el completo funcionamiento del sistema. Hay que indicar prueba realizada, qué elementos se van a probar, indicar cuál es el resultado esperado, cual se obtiene y, se acaba, indicando si prueba superada o no.

Prueba a realizar	Elementos a probar	Resultado esperado	Resultado obtenido	Prueba superada
Emisión de sonido	Buzzer	El buzzer emita sonido El buzzer no emitió ningún sonido		No
Emisión de sonido	Buzzer	El buzzer emita sonido	El buzzer emitió sonido	Si
Detección de movimiento	Sensor de movimiento	Se muestre por un led de la enciende y el buzzer emite sonido cuando se pasa por delante del sensor de movimiento detecta movimiento		Si
Detección de apertura de una puerta o una ventana	Sensor de puertas y ventanas	Se muestre por un led de la FPGA y que el buzzer emita sonido si se separan las dos partes que conforman el sensor de movimiento	n led de la separa las dos partes del sensor el led no se activa y el buzzer no emite sonido onforman el ensor de	
Detección de apertura de una puerta o una ventana	Sensor de puertas y ventanas	Se muestre por un led de la FPGA y que el buzzer emita sonido si se separan las dos partes que conforman el sensor de	Cuando se separa las dos partes del sensor el led se activa,pero el buzzer no emite sonido	No

		movimiento		
Detección de apertura de una puerta o una ventana	Sensor de puertas y ventanas	Se muestre por un led de la FPGA y que el buzzer emita sonido si se separan las dos partes que conforman el sensor de	Cuando se separa las dos partes del sensor el led se activa y el buzzer emite sonido	Si
Led se encienda cuando algún sensor detecte algo	Led RGB	Cuando uno de los sensores detecte algo el led se debe encender	Al pasar por delante del sensor de movimiento el led RGB se enciende, apagándose cuando el sensor deja de detectar movimiento	Si
Detección mediante el sensor infrarrojo	Sensor PIR parallax	Se encienda un led y el buzzer emita sonido cuando el sensor infrarrojo detecte algo	Cuando el sensor infrarrojo detecta algo el led se enciende y el buzzer emite sonido	Si
Prueba del sistema al completo	Todos los elementos que conforman el sistema	Cuando uno de los sensores detecte algo, tanto el led RGB como el buzzer deben activarse	Cuando uno de los sensores ha detectado algo el led RGB se activa y el buzzer también se activa emitiendo sonido	Si

Tabla 1: Pruebas y test realizados.

PLANIFICACIÓN Y COSTES

Componente	Precio Unidad	Cantidad	Total		
Kit de desarrollo, Communication Module para usar con ESP32 WIFI and Bluetooth	29,06 €	1	29,06 €		
Parallax X-Band Motion Detector	43,70€	1	43,70€		
<u>Módulo sensor PIR Parallax Inc - 28032</u>	14,51€	1	14,51€		
<u>Interruptor para puertas y ventanas RS PRO</u>	3,49€	1	3,49€		
<u>Chanzon 100 piezas 1/2W (0.5W) 100 Ω ohm</u>	5,59€	1	5,59€		
Resistencia de 10k Ohm	0,39€	1	0,39€		
Electronic Buzzer Alarma Sounder Sonido Continuo	4,49€	1	3,49€		
LED Bivar Orca R, RGB, 80	5,11€	1	5,11€		
Modulo Board Experimental 830 Contactos	4,77€	1	4,77€		
1. Adaptador USB a UART: CH340G	7,49€	1	7,49€		
2. <u>Basys 3 Artix-7 FPGA</u>	161,30€	1	161,30€		
3. Total Presupuesto Proyecto:					

Tabla 2: Costes materiales del prototipo desarrollado.

Personal	Hito	Rol	
Oscar	Programación del servidor web y pruebas del mismo		
Oscar y Guillermo	Programación de la lógica del sistema	Programador	
Guillermo	Implementación de conexiones hardware	Técnico de Hardware	
Adolfo y Enrique	Programación de la lógica de los sensores y buffer de biestables de la alarma	Programador	
Adolfo y Enrique	Conexiones de los sensores y pruebas de funcionamiento	Técnico de Hardware	
Adolfo,Enrique,Oscar y Guillermo	Ayuda en otras áreas que no eran de su ocupación principal	Varios	

Tabla 3: Tabla de hitos y recursos humanos

Costes	Unidades	Precio	Total
componentes	11	anteriormente calculado	259,34€
personal	4 0€		0€
	259,34€		

Tabla 4: Coste total del prototipo

Componente	Precio Unidad	Cantidad	Total
Kit de desarrollo, Communication Module para usar con ESP32 WIFI and Bluetooth	29,06 €	1	29,06 €
Módulo sensor PIR Parallax Inc - 28032	17,56 €	1	17,56 €
Interruptor para puertas y ventanas RS PRO	7,10 €	3	21,3 €
Clase A-B, Clase D Amplificador de audio LM386N- 3/NOPB	1,765 €	1	1,76€
Conector jack estéreo de 3.5 mm Ángulo de 90° Hembra RS PRO	2,48 €	1	2,48 €
Basys 3 Artix-7 FPGA	151,31 €	1	151,31 €
LED Bivar Orca R, RGB, 80	8,21 €	1	8,21 €
TOTAL PRESUPUESTO PROYECTO:			231,68 €

Tabla 5: Costes materiales esperados.

Para este proyecto ha sufrido cambios de presupuesto debido a la petición de sensores que se han requerido: como el sensor de movimiento, el buzzer, dos resistencias, un adaptador USB UART y un Módulo Board.

PFA Pág. 20 PHR

Tareas	semana 9	semana 10	semana 11	semana 12	semana 13	semana 14	semana 15	semana 16	Encargados
Anteproyecto									Todos
Lógica Sistema									Guillermo Hermoso/Óscar Herrero Gordaliza
Servidor Web									Óscar Herrero Gordaliza
Sensores/Actuadores									Adolfo Pavón Jiménez/Enrique Pérez Sanz
Memoria									Todos

Tabla 6: Diagrama de Gantt del prototipo desarrollado.

Tareas	semana9	semana10	semana11	semana12	semana 13	semana14	semana15	semana16	Encargado
Anteproyecto									Todos
FPGA									Guillermo Hermoso Jiménez
Servidor web									Óscar Herrero Gordaliza
Sensores y actuadores									Adolfo Pavón Jiménez/Enrique Pérez Sanz
Memoria									Todos

Tabla 7: Diagrama de Gantt esperado

ASPECTOS SOCIALES, AMBIENTALES, ÉTICOS Y LEGALES

Los únicos dos aspectos ambientales donde este proyecto podría causar malestar sería en el consumo energético que dado el bajo voltaje que usa y que la alarma se puede apagar sería mínimo y el de la contaminación acústica donde el límite para las alarmas es de 80 db y el buzzer según las especificaciones del fabricante produce 78 db por lo que cumplimos la normativa.

Nivel de intensidad del sonido.						
200 dB	Bomba atómica similar a Hiroshima y Nagasaki					
180 dB	Explosión del Volcán Krakatoa (a 160 km de distancia). Cohete en despegue					
142.2 dB	Récord Guiness de ruido en un estadio					
140 dB	Umbral del dolor. Auto de Fórmula 1					
130 dB	Avión en despegue					
120 dB	Motor de avión en marcha					
110 dB	Concierto / acto cívico					
100 dB	Perforadora eléctrica					
90 dB	Tráfico / Pelea de dos personas					
80 dB	Tren					
70 dB	Aspiradora					
50/60 dB	Aglomeración de gente / Lavaplatos					
40 dB	Conversación					
20 dB	Biblioteca					
10 dB	Respiración tranquila					
0 dB	Umbral de audición					

Figura 16: Referencia de la intensidad del sonido

CONCLUSIONES

El proyecto se ha finalizado de forma exitosa sin retrasos , comenzamos con muchos problemas debido a que no sabíamos cómo funcionaban los sensores pero rápidamente solventamos todos los problemas y conseguimos implementar la alarma con todas las funcionalidades previstas y en los plazos especificados. Específicamente hacer funcionar el sensor de puertas y ventanas fue un reto ya que tuvimos que hacer varias mediciones y analizarlas para llegar a descubrir que el circuito se quedaba abierto y que necesitábamos una resistencia pull-down. También nos supuso un inconveniente tener que descubrir que necesitábamos usar los puertos XADC ya que los puertos normales de la FPGA no suministraban suficiente voltaje a los sensores.

A continuación la imagen que se muestra es el montaje final del proyecto:

Figura 17: Montaje final del proyecto (fuente propia)

LÍNEAS FUTURAS

En un futuro este proyecto se podría mejorar implementando en el display de la FPGA un indicador para informar al usuario si los sensores y actuadores están encendidos o apagados. Además se nos ocurrió un modo de funcionamiento adicional en el que la alarma tiene un temporizador para definir el tiempo que debe sonar una vez que ha detectado algo, quizás sería un añadido interesante para el futuro.

REFERENCIAS

Pablo Jarque Zafra < SISTEMA DE ALARMA DE PRESENCIA CON PLACA DIGILENT ZYBO Z7>>

https://m.riunet.upv.es/bitstream/handle/10251/170205/Jarque%20-%20Sistema%20de%20alarma%20de%20presencia%20con%20placa%20Digilent%20 Zybo%20Z7.pdf?sequence=1&isAllowed=y

Germán Darío Barón Chacón<<DISEÑO Y CONSTRUCCIÓN DE UN SISTEMA DE SEGURIDAD PARA UN RECINTO CERRADO IMPLEMENTANDO FPGA>> https://repository.unab.edu.co/bitstream/handle/20.500.12749/1586/2006 Tesis Baron Chacon German Dario.pdf?sequence=1

J. Vázquez, A. Parreno Torres, J. López Alcolea, E. J. Molina Martínez, P. Roncero-Sánchez<<Implementación sobre FPGA de un prototipo de alarma domestica sensorizada>>

https://dialnet.unirioja.es/servlet/articulo?codigo=8649072

Normativa acústica de la Comunidad de Madrid

https://www.madrid.es/portales/munimadrid/es/Inicio/Medio-ambiente/Alarmas-contaminacion-

 $\frac{a custica/?vgnextfmt=default\&vgnextoid=3375b3dac3c8b010VgnVCM1000000b205a0a}{RCRD\&vgnextchannel=3edd31d3b28fe410VgnVCM1000000b205a0aRCRD}$

Xilinx. (20 de 08 de 2019). Obtenido de

https://www.xilinx.com/products/design-tools/vivado.html#resources

Wikipedia. (29 de 03 de 2023). Obtenido de

https://es.wikipedia.org/wiki/Arduino

<<Diseño e implementación de un sistema de seguridad para el hogar con interfaz en Android >> Universidad del País Vasco

https://addi.ehu.es/bitstream/handle/10810/13331/PFC.pdf?sequence=2

<<Prototipo de un sistema monitoreo de video para la seguridad de viviendas, con comunicación a dispositivos de tecnología celular y alimentados por paneles solares >> Escuela superior politécnica de chimborazo facultad de informática y electrónica carrera de ingeniería en electrónica, telecomunicaciones y redes

http://dspace.espoch.edu.ec/bitstream/123456789/13498/1/98T00265.pdf

<<Desarrollo de un sistema de alarma domiciliaria con reconocimiento facial y alerta temprana>>

Caso de estudio: vivienda del Barrio Corazón de María, Cantón Cuenca, Provincia del Azuay

https://polodelconocimiento.com/ojs/index.php/es/article/view/2900/6258#

PFA Pág. 26 PHR

ANEXOS

4. Anexo I. Material entregado en Sharepoint

En la carpeta PFA se encuentran todos los ficheros relativos al proyecto. Dentro de esta carpeta encontramos cuatro carpetas más, en la carpeta Memoria encontramos el archivo PDF y DOCX de la memoria del proyecto fin de asignatura. En la carpeta Código encontramos una carpeta que incluye los archivos vhd con el código, el proyecto de Vivado y otra carpeta que contiene el código del servidor web. La penúltima carpeta que encontramos en PFA tiene el nombre de Video, aquí encontramos un video de demostración del funcionamiento del proyecto. Por último, en la carpeta Presentación encontramos un PowerPoint donde se encuentra la presentación del proyecto.