Коллоквиум №1 (20.11.2019)

GROUPS №19137,№19144

2019

- 1. Множество: способы задания, операции над множествами Не существует явного определения множества. Пусть А некоторое мн-во, тогда существует 2 способа задания мн-ва

 - (a) $A = \{1,2,3,4,5\}$ явное задание эл-тов мн-ва
 - (b) Пусть $\Phi(x)$ некоторое условие, тогда $A = \{x \mid \Phi(x)\}$ - Задание множествами с помощью некоторого условия $\Phi(x)$

Пусть А, В- некоторые множества

Обозначение (Подмножетсво). А - подмножетсво B, если $A \subseteq B = \{x \mid x \in A \Rightarrow x \in B\}$

Обозначение (Собстевенное подмножетсво). А - собстевенное подмножетсво B, если $A \subset B$, если $A \subseteq B$ и $A \neq B$

Обозначение (Пустое множество). ∅ - множество, не содержащее элтов ("Пустое множество")

Обозначение (Множество всех подмножетсв множества A). $P(A) = \{ C \mid C \subseteq A \}$

Обозначение (Универсум). Универсум (условное множество все множеств) U

Операции над множествами:

- Объединение множеств: $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Пересечение множеств: $A \cap B = \{x \mid x \in A \land x \in B\}$
- Разность множеств: $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- Дополнение множества: $\neg A = \{ x \mid x \in U \land x \notin A \}$
- Симметрическая разность множеств: $A \Delta B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (B \cup A)$

Пусть S - семейство множеств:

- Объединение семейства множеств $\bigcup S = \{ x \mid \exists A_i \in S : x \in A_i \}$
- Пересечение семейства множеств $\bigcap S = \{ x \mid \forall A_i \in S : x \in A_i \}$
- 2. Упорядоченный набор (кортеж), предложение о равенстве п-ок, декартово произведение, декартова степень.

Определение (Упорядоченный набор (кортеж)). Упорядоченный набор (кортеж) длинны n определяется по индукции

$$<>=\emptyset$$

$$< a >= a$$

$$\langle a, b \rangle = \{\{a\}, \{a, b\}\}$$

$$\langle a_1, a_2, ..., a_{n-1}, a_n \rangle = \langle \langle a_1, a_2, ..., a_{n-1} \rangle \rangle, a_n \rangle$$

Определение (пара). Набор < a, b > длинны 2 называют *парой*

Предложение (о равенстве n-ок). Если

$$\langle a_1, ..., a_n \rangle = \langle b_1, ..., b_n \rangle \Leftrightarrow a_1 = b_1, ..., a_n = b_n$$

n=2:

$$\langle a_1, a_2 \rangle = \langle b_1, b_2 \rangle \Leftrightarrow \{\{a_1\}, \{a_1, a_2\}\} = \{\{b_1\}, \{b_1, b_2\}\}$$

$$< a_1, a_2 > = < b_1, b_2 > \Leftrightarrow \{\{a_1\}, \{a_1, a_2\}\} = \{\{b_1\}, \{b_1, b_2\}\}$$
 Пусть $a_1 = a_2 \Rightarrow \begin{bmatrix} \{a_1\} = \{b_1, b_2\} \\ \{a_1, a_2\} = \{b_1, b_2\} \end{bmatrix} \Rightarrow a_1 = a_2 = b_1 = b_2$

для $b_1 = b_2$ аналогично.

Расмотрим $a_1 \neq a_2, b_1 \neq b_2$

$$\Rightarrow \begin{bmatrix} \{a_1\} = \{b_1\} \\ \{a_1\} = \{b_1, b_2\} \end{bmatrix} \Rightarrow \{a_1\} = \{b_1\} \Rightarrow a_1 = b_1$$

По аналогии для $\{a_1, a_2\} = \{b_1, b_2\}$

Т.к справледливо для n=2, а определение n-ок индуктивно следовательно верно для п

Определение (Декартово произведение). Пусть даны множества $A_1, ..., A_n$, тогда их декартовым произведением называют

$$A_1 \times A_2 \times ... \times A_n = \{ \langle a_1, ..., a_n \rangle \mid \forall i \in \{1, ..., n\} \ a_i \in A_i \}$$

Определение (Декартова степень). В случае, если $A_1 = A_2 = ... = A_n$, тогда $A_1 \times A_2 \times ... \times A_n$ называют декартовой степенью и обозначают, как $A^n = A_1 \times A_2 \times ... \times A_n$

3. Бинарные отношения, обратное отношение, произведение отношений, лемма о бинарных отношениях.

Определение. Бинарным отношением между элементами множеств A и B называется произвольное подмножество $C \subseteq A \times B$

Определение. Обратным бинарным отношением называется $R^{-1} = \{ < y; x > | < x; y > \in R \}$

Определение. Произведением бинарных отношений называется $R_1 \times R_2 = \{ \langle x; z \rangle | \exists z | \langle x; y \rangle \in R_1 \land \langle y; z \rangle \in R_2 \}$

Лемма (Лемма о бинарных отношениях). Для любых бинарных отношений R_1, R_2, R_3 :

(a)
$$R_1 \cdot (R_2 \cdot R_3) = (R_1 \cdot R_2) \cdot R_3$$

(b)
$$(R_1 \cdot R_2)^{-1} = R_2^{-1} \cdot R_1^{-1}$$

Доказательство. (a) Покажем, что $R_1\cdot (R_2\cdot R_3)\subseteq (R_1\cdot R_2)\cdot R_3$. Пусть $< x; t>\in R_1\cdot (R_2\cdot R_3)$, тогда существует y такое, что $< x; y>\in R_1$ и $< y; t>\in R_2\cdot R_3$. Далее существует z такое, что $< y; z>\in R_2$ и $< z; t>\in R_3$. Получаем, что $< x; z>\in R_1\cdot R_3$. Обратное включение доказывается аналогично

(b) Покажем, что $(R_1\cdot R_2)^{-1}\subseteq R_2^{-1}\cdot R_1^{-1}$. Пусть $< z;x>\in (R_1\cdot R_2)^{-1}$, тогда существует y такое, что $< x;y>\in R_1$ и $< y;z>\in R_2$. Тогда $< y;x>\in R_1^{-1}$ и $< z;y>\in R_2^{-1}$. Получаем, что $< z;x>\in R_2^{-1}\cdot R_1^{-1}$. Обратное включение доказывается аналогично.

4. Область определения отношения, множество значений отношения, образ и прообраз множества относительно отношений, функция, замечание о равенстве функций, тождественная функция.

Определение (Функция). Бинарное отношени f называется функцией, если выполняется: $< x, y_1 >, < x, y_2 > \in f \Rightarrow y_1 = y_2$

Определение (Область определния). $dom(f) = \{x | \exists y : < x, y > \in f\}$

Определение (Область значений). $ran(f) = \{y | \exists x : < x, y > \in f \}$

Обозначение. f - функция из A в B, если f - функция, dom(f) = A и $ran(f) \subseteq B$

Тогда функцию обозначают $f:A \to B$

Замечание. Если $f: A \to B$ и $x \in A$, то существует единственный y такой, что $\langle x, y \rangle \in f$. Этот y лежит в B, называется *значение* функции f в точке x и обозначается f(x).

Замечание (о равенстве функций). Если f,g - функции, то $f=g\Leftrightarrow dom(f)=dom(g)$ и $\forall x\in dom(f)$ f(x)=g(x)

Определение (Тождественная функция). Для любого множества $A \; \exists f = \{ < x, x > | x \in A \} = id_A. \;$ Ясно, что $id_A : A \to B$ и $\forall x \in A \; id_A(x) = x$

5. Композиция функций, лемма о композиции функций:

Определение (Композиция функций). Если f и g - функции, то их композиция $g \circ f$ определяется, как произведение бинарных отношений $f \cdot g$ (В обратном порядке)

Лемма (о композиции функций). $Ecnu\ f:A\to B, g:B\to C,\ mo\ ux$ композицией $g\circ f:A\to C\ u\ [g\circ f](x)=g(f(x))\ npu\ x\in A$

6. Сюръекция, инъекция, биекция, обратная функция, лемма о свойствах биекций

Пусть $f: A \to B$

Определение (Сюръекция). f - функция из A на B (сюръективная функция, сюръекция), если $\forall y \in B \ \exists x \in A \mid f(x) = y$

Обозначение (Сюръекция). $f: A \xrightarrow[na]{} B$.

Определение (Инъекция). f - инъективная функция (1 - 1 функция, инъекция), если $\forall x_1, x_2 \in A$ из $f(x_1) = f(x_2)$ следует $x_1 = x_2$

Обозначение (Инъекция). $f:A \xrightarrow{1-1} B$

Определение (Биекция). f - $\delta uekция$ из A на B, если f одновременно и инъекция, и сюръекция.

Обозначение (Биекция). $f: A \xrightarrow{1-1}_{na} B$

Определение (Обратная функция). Запись f^{-1} означает обратное бинарное отношение к f. Если f^{-1} при этом является функцией, то она называется обратной функцией к f.

Лемма (о свойствах биекций).

- (a) Ecau $f: A \xrightarrow[na]{1-1} B$, mo $f^{-1}: B \xrightarrow[na]{1-1} A$, $f^{-1}(f(x)) = x \ \forall x \in A \ u$ $f(f^{-1}(y)) = y \ \forall y \in B$.
- $(b) \ \ \textit{Ecnu} \ f: A \xrightarrow[na]{1-1} B, \ g: B \xrightarrow[na]{1-1} C, \ \textit{mo} \ f \circ g: A \xrightarrow[na]{1-1} C.$

Доказательство. (а) Покажем, что f^{-1} - функция.

Пусть $< y, x_1 >, < y, x_2 > \in f^{-1}$. Тогда $< x_1, y >, < x_2, y > \in f$ и $f(x_1) = f(x_2) = y$. Поскольку f инъективна, $x_1 = x_2$. Ясно, что $dom(f^{-1}) = ran(f)$ и $ran(f^{-1}) = dom(f)$. Поскольку f сюръективна, $ran(f) = B = dom(f^{-1})$. Поскольку $ran(f^{-1}) = A, f^{-1}$ сюръективна. Инъективность f^{-1} легко проверяется. Тем самым $f^{-1}: B \xrightarrow{1-1} A$.

самым $f^{-1}: B \xrightarrow[na]{1-1} A$. Покажем, что $f^{-1}(f(x)) = x$ при $x \in A$. Пусть $x \in A$ и y = f(x). Тогда $< x, y > \in f$ и $< y, x > \in f^{-1}$. Получаем, что $f^{-1}(y) = x$.

- (b) выше доказано, что $g \circ f: A \to C$ и $[g \circ f](x) = g(f(x))$. Инъективность: если $g(f(x_1)) = g(f(x_2))$, то $f(x_1) = f(x_2)$ и отсюда $x_1 = x_2$. Сюръективность доказывается похожим способом.
- 7. Полный порядок, в.у.м., лемма о начальных сегментах в.у.м.

Определение (Вполне упорядоченное множество). Вполне упорядоченное множество (в.у.м) - это пара (A, \leq) , где \leq - линейный фундированный порядок на A. Иногда такой порядок называют *полным*.

Лемма (о начальных сегментах в.у.м.). Любой начальный сегмент в.у.м. (A, \leq) либо равен A, либо является начальным отрезком.

Доказательство. Пусть S - начальный сегмент в A и $S \neq A$. Тогда $A \setminus S \neq \emptyset$. Пусть x - минимальный элемент в $A \setminus S$. Покажем, что $S = A_x$. Если $y \in S$, то либо y < x, либо $x \leq y$. Второй случай невозможен, так как тогда $x \in S$.

8. Парадокс Рассела, аксиоматика ZFC.

Парадокс (Парадокс Рассела). Рассмотрим совокупность: $M_R = \{A \mid A \text{ - множество и } A \notin A\}.$

Предположим, что само M_R является множеством. Возможны два варианта:

- (a) $M_R \notin M_R$. Тогда $A M_R$ подходит под определние, и $M_R \notin M_R$. Противоречие.
- (b) $M_R \in M_R$. Вновь полагая, $A = M_R$, получаем, что по определению $M_R \notin M_R$. Противоречие.

Это рассуждение показывает, что совокупность M_R нельзя считать множеством.

Аксиоматика ZFC.

Можно с собой на листочке!!!

9. Лемма о порядке на мощностях.

Лемма (Лемма о порядке на мощностях). Для всяких непустых множеств $A\ u\ B$ следующие условия эквиваленты:

- (a) $|A| \le |B|$
- (b) Существует функция $g:B \xrightarrow{HA} A$
- (с) А равномощно некоторому подмножеству В

Доказательство.

- (a) $a\Rightarrow c$ Пусть $|A|\leq |B|$. Тогда существует $f:A\xrightarrow{1-1}B$. Тогда $ran(f)\subseteq B$ и $f:A\xrightarrow{1-1}na$ ran(f).
- (b) $c\Rightarrow b$ Пусть $h:B_1\xrightarrow[\text{на}]{1-1}A$, где $B_1\subseteq B$. Выберем произвольное $a_0\in A$ и построим $g:B\xrightarrow[\text{нa}]{}A$ так: $g(y)=\begin{cases}h(y),\ \text{если}y\in B_1\\a_0,\ \text{если}y\in B\backslash B_1\end{cases}$
- (c) $b\Rightarrow a$ Пусть $g:B \xrightarrow{\text{на}} A$. Построим $f:B\to A$. Рассмотрим $x\in A$ Множество $\{y\in B|\ g(y)=x\}$ непусто. Выберем в качестве f(x) некоторый элемент из этого множества. Проверим, что f инъективна. Пусть $f(x_1)=f(x_2)$ Тогда $g(f(x_1))=g(f(x_2))$, а по построению $g(f(x_i))=x_i$ при i=1,2.

Лемма о сохранении мощностей, теорема о мощности объединения (без доказательства).

Лемма (Лемма о сохранении мощностей).

- (a) $Ecnu(A) = |A_1|u(B) = |B_1|, mo(A \times B) = |A_1 \times B_1|$
- (b) Если при этом $A \cap B = A_1 \cap B_1 = \emptyset$, то $|A \cup B| = |A_1 \cup B_1|$

Доказательство.

- (a) Пусть даны биекции $f:A \xrightarrow[\text{на}]{1-1} A_1 \text{ и } g:B \xrightarrow[\text{на}]{1-1} B_1.$ Построим $h:A \times B \xrightarrow[\text{на}]{1-1} A_1 \times B_1$ так: $h_1(< x;y>) = < f(x), g(y)>$. Легко проверить, что h_1 нужная биекция.
- (b) Построим $h_2:A\cup B\xrightarrow[\text{Ha}]{1-1}A_1\cup B_1$ так: $h_2(x)=\begin{cases}f(x),\ \text{если}x\in A\\g(x),\ \text{если}x\in B\end{cases}$ Условие $A\cap B=\emptyset$ гарантирует, что определение корректно. Вновь нетрудно доказать, что h_2 биекция. Проверим в качестве примера, что h_2 инъективна. Пусть $h_2(x)=h_2(y)$. Если $x,y\in A$, то получаем f(x)=f(y) и x=y. Если $x,y\in B$, рассуждения аналогичны. Если же $x\in A,y\in B$ (или наоборот), то $h_2(x)\in A_1$ и $h_2(y)\in B_1$, что невозможно в силу $A_1\cap B_2=\emptyset$.

Лемма (о мощности объединения). Если хотя бы одно из множеств A,B бесконечно, то $|A\cup B|=\max\{|A|\,,|B|\}.$

11. Континуум-гипотеза, теорема Гёделя-Коэна (без доказательства), обобщенная континуумгипотеза.

 ${\bf \Gamma}$ ипотеза (Континуум-гипотеза). Не существует множества A такого, что

$$|\mathbb{N}| < |A| < |\mathbb{R}|$$

Теорема (Теорема Гёделя-Коэна). Если теория множеств ZFC непротиворечива, то континуум-гипотезу нельзя ни доказать, ни опровергнуть в рамках ZFC.

Гипотеза (Обобщенная континуумгипотеза). Если множество B - бесконечно, то не существует множества A такого, что |B|<|A|<|P(B)|

12. Ординалы, лемма об элементах ординала

Определение (Ординал). Ординалом называется транзитивное множество все элементы которого сравнимы относительно включения.

Определение (Транзитивное множество). Множество α называется транзитивным, если из $x \in \alpha$ и $y \in x$ следует, что $x \in \alpha$.

Лемма (Лемма об элементах ординала). *Если* α - *ординал* u $\beta \in \alpha$, mo β - opdunan.

Доказательство. Пусть $x,y\in\beta$. Тогда $x,y\in\alpha$. Следовательно, x и y равны или сравнимы относительно \in . Докажем, что β транзитивно. Пусть $y\in x\in\beta$. Тогда $x\in\alpha$ и $y\in\alpha$. Возможны три случая:

- (a) $\beta \in y$ Тогда получаем, что $\beta \in y \in x \in \beta$ противоречие.
- (b) $\beta=y$ Получаем, что $\beta\in x\in\beta$ противоречие.
- (c) $y \in \beta$. Следовательно, β ординал.