

QSG106: Getting Started with EmberZNet PRO

This quick start guide provides basic information on configuring, building, and installing applications for the EM35x and Mighty Gecko (EFR32MG) family of SoCs using the EmberZNet PRO stack v. 5.7 and higher and Simplicity Studio.

This guide is designed for developers who are new to EmberZNet PRO and the Silicon Labs development hardware. It provides instructions to get started using the example applications provided with the EmberZNet PRO stack.

KEY FEATURES

- Product overview
- Setting up your development environment
- Discovering your SDK
- Working with example applications.

1 Product Overview

Before following the procedures in this guide you must have

- Purchased your development hardware:
 - EFR32MG Wireless Starter Kit (WSTK)

O

- EM35x Development Kit
- Registered your kit on the Silicon Labs website. This gives you access to a portal from which you can download the EmberZNet PRO stack and other Silicon Labs software, and obtain support.
- Downloaded the required software components. A card included in your development hardware kit contains a link to a Getting Started page, which will direct you to links for the Silicon Labs software products.

1.1 Software Components

See the stack release notes for version restrictions and compatibility constraints for the stack and these component. To develop EmberZNet PRO applications, you will need the following:

- The Simplicity Studio development environment, which incorporates AppBuilder. AppBuilder is an interactive GUI tool that allows you
 to configure a body of Silicon Labs-supplied code to implement applications. Online help for AppBuilder and other Simplicity Studio
 modules is provided.
 - Simplicity Studio operates on top of an application framework, a working software design that you can modify to meet your needs.
 It provides common basic services and, when combined with device-specific code, provide you with most of the over-the-air behavior for your device. Some common usage case examples based on the relevant application framework are provided along with a pre-built application, Node Test, for functional testing of RF modules.
 - The hardware abstraction layer (HAL) acts as a conduit between the network stack and the node processor and radio. Separating
 network stack functionality from the specific hardware implementation enables easy portability. HAL code is provided as a combination of pre-built libraries for complex, stack-critical functionality and C source code that you can alter in order to customize,
 extend, or reduce device functionality across various hardware platforms. The HAL API is documented in the online API reference.
- The EmberZNet PRO stack, an advanced implementation of a ZigBee PRO stack. The stack API is documented in online API reference as well as in other documents installed with the stack installer, or available through the development environment. The stack is delivered as a collection of libraries that you can link to your applications. A description of each library is provided in the development environment. The release notes contain details on the folders installed along with their contents.
- IAR Embedded Workbench for ARM 7.30 or later, used as a compiler in the Simplicity Studio development environment. Download
 the supported version from the Silicon Labs Support Portal. Refer to the "QuickStart Installation Information" section of the IAR installer
 for additional information about the installation process and how to configure your license.

Although you will not need them for the tasks in this Getting Started guide, you may wish to become familiar with the manufacturing utilities available for your environment. The utilities are hardware-dependent.

- For the EM35x Development Kit, the ISA3 utilities, downloaded from the support portal. The installer modifies your PATH environment variable so that the command line utilities can be easily executed from a Windows Command Prompt. See UG107, EM3x Utilities Guide: For the EM3x Platform, for detailed information on the EM3x utilities.
- For the Mighty Gecko WSTK, Simplicity Commander, installed from along with Simplicity Studio in a subfolder of the install folder. See UG162, Simplicity Commander Reference Guide, for more information.

Finally, if you are working with an EM35x development kit and you want to use the USB interface of the breakout board for UART connectivity a driver for the FTDI USB <-> Serial converter, downloaded from http://www.ftdichip.com/Drivers/VCP.htm

1.2 Support

Users can access the Silicon Labs support portal at https://www.silabs.com/support. Use the support portal to contact Customer Support for any questions you might have during the development process.

1.3 Documentation

The stack installer provides a documentation index (in documentation/index.htm and also linked from a Start Menu entry) that contains links to documentation locations and brief descriptions of each document's purpose. Simplicity Studio provides links to hardware documentation and other application notes. See the release notes for details on other documentation available.

2 Setting Up Your Development Environment

2.1 Install Third-Party Tools

Install third-party tools, such as IAR Embedded Workbench for ARM (see section 1.1 for the list).

2.2 Install your Silicon Labs Stack or Software Development Kit

Install your Silicon Labs software (see section 1.1 for more information).

2.3 Connect your Hardware

Connect your development hardware to the PC on which you will install Simplicity Studio. By having it connected when Simplicity Studio installs, Simplicity Studio will automatically obtain the relevant additional resources it needs.

2.3.1 EFR32 WSTK

Connect your WSTK, with radio board mounted, to your PC using a USB cable.

Note: For best performance in Simplicity Studio, be sure that the power switch on your WSTK is in the Advanced Energy Monitoring or "AEM" position (Figure 1).

Figure 1. EFR32MG on a WSTK

2.3.2 EM35x Development Kit

Follow the instructions on the Quick Start Guide included in the development kit to set up a development environment connected to your computer.

2.4 Install Simplicity Studio

During installation, Simplicity Studio obtains updates and additional packages specific to your connected hardware.

1. As soon as Simplicity Studio launches, it searches for updates. This operation can take several minutes.

Figure 2. Checking for Software Updates

Once software update is complete, Simplicity Studio checks for connected hardware. If you have not connected your WSTK, you are
prompted to do so (Figure 3). Connect your hardware and, when the screen changes to show that the hardware has been found, click
[Finish].

Figure 3. Connect a Kit Before and After Connection

 Simplicity Studio then installs software packages related to your connected hardware (Figure 4). This procedure can take some time, during which the green progress indicator may appear stationary. However, the update steps above the progress indicator are continuously refreshed.

Figure 4. Installation Update

- 4. After update is complete, restart Simplicity Studio.
- 5. Once restart is complete, a menu of setup tasks is displayed (Figure 5). Select Initial Setup and then click [Launch setup].

Figure 5. Setup Tasks

6. A kit selection dialog is displayed (Figure 6). Your connected kit should be selected. Click [Next >].

Figure 6. Kit Selection Dialog

7. A part selection dialog is displayed (Figure 7). Your connected part should be selected. Click [Next >].

Figure 7. Part Selection Dialog

8. A Build Environment dialog is displayed that shows detected items (Figure 8). If a Toolchain or SDK is not shown, you can click Add... to configure it now, or configure it later from the Settings control. Adding the EmberZNet PRO stack SDK is described in section 3, Discovering the EmberZNet PRO Stack. Click [Finish]. The Simplicity perspective, described in the next section, is displayed.

Figure 8. Build Environment Configuration

- 9. If you plan to work with NCP software communicating with a host MCU/PC, you should upgrade your WSTK board controller firmware to build 435 or later. Click the Kit Manager tile in the Simplicity perspective (Figure 9) and click [Yes] in the confirmation dialog.
- 10. Your firmware is automatically updated to the latest version and displayed in the Kit Manager window once download is complete (Figure 10). Click [Close] to return to the Simplicity perspective.

Figure 9. Kit Manager Tile

Figure 10. Kit Manager with Latest Board Controller Firmware

2.5 Navigation in Simplicity Studio

Simplicity Studio is built on the Eclipse platform. As such, it is broken up into different "perspectives," each of which allows access to a specific set of functionality. Simplicity Studio starts up in the "Simplicity perspective," sometimes referred to as the "Home Screen" (Figure 11).

Figure 11. Simplicity Studio's Simplicity Perspective

From the Simplicity perspective, you can discover devices, configure Simplicity Studio, or navigate to another perspective for application development.

The Simplicity perspective shows large tile icons that represent the various sets of functionality within Simplicity Studio. Clicking a tile opens a different perspective. When you are in a different perspective, you can always return to the Simplicity perspective or any other perspective at any time by clicking on one of the tile icons in the top right-hand corner of your screen (Figure 12).

Figure 12. Navigation Tile Icons

Your detected hardware is shown in the **Detected Hardware** panel in the lower left of the Simplicity perspective. If you change connected hardware and it does not auto-detect, click [Refresh Detected Hardware].

Three controls in the upper right (Figure 13) allow you to maintain part-specific packages, install updates to the core Simplicity Studio software, and change configuration settings.

Figure 13. Maintenance Tools

3 Discovering the EmberZNet PRO Stack

If you are discovering from the initial setup process Add ... step (Figure 8), go to step 4. If you are discovering the SDK after initial setup, begin with step 1.

1. Click the Settings icon (Figure 14) on the top right-hand corner of the Simplicity perspective to open the Preferences window.

Figure 14. Settings Icon

2. In the Preferences window's left frame, click Simplicity Studio > SDKs to open the configuration dialog (Figure 15).

Figure 15. Silicon Labs SDK Configuration

- 3. Click [Add].
- 4. Browse to the folder where you have installed the stack.
- 5. Click **[OK]**. The folder is scanned for required information.

6. Verify the software has detected the EmberZNet PRO SDK (Figure 16) and click [OK].

Figure 16. Add SDKs

- 7. Click **[OK]** to return to the starting configuration page.
- 8. Click [Finish] (from initial configuration) or [OK] (from the settings icon).

4 Working with Example Applications

When working with example applications in Simplicity Studio, you will execute the following steps:

- 1. Select an example application. To demonstrate the connectivity features of a network, you may need to build two or more different example applications, such as a client and a server application or the Home Automation example scenario involving a gateway, a light, and a switch.
- 2. Generate application files.
- 3. Compile and flash the application to the radio board.
- 4. Interact with the application.

These steps are described in detail in the following sections.

4.1 Selecting an Example Application

1. In the Simplicity perspective, click the Software Examples tile (Figure 17).

Figure 17. Software Examples Tile

2. In the New Example dialog (Figure 18), enter the kit, part, and SDK. Kit and part will be filled by Simplicity Studio if the hardware was detected and displayed in the Simplicity perspective (Figure 17).

Figure 18. New Example Project Dialog

- 3. Click [Next].
- 4. Select an example from the list (Figure 19). For the purposes of this guide, select HASampleLight. Click [Next >].

Figure 19. Example Project List

5. Change the name of the project if you want, and click **[Finish]** (Figure 20). AppBuilder creates an example project and opens with the project in the AppBuilder General Tab (Figure 23).

Figure 20. Project Configuration

- 6. (Optional) If you would like to interact with your application through the serial console as instructed in section 5, do the following two steps:
 - 1. On the HAL configuration tab, change **Debug Level** from Off to Normal (Figure 21).

Figure 21. HAL Configuration Tab

2. On the Plugins tab, check Debug Basic Library (Figure 22). Use the field above the plugins list to filter the list.

Figure 22. Plugins Tab

4.2 Generating the Application Source Files

1. When you finish creating your example project, an AppBuilder General tab opens (Figure 23). Click [Generate].

Figure 23. AppBuilder General Tab

2. Once generation is complete, a dialog reporting results is displayed (Figure 24). Click [OK].

Figure 24 Generation Confirmation Dialog

4.3 Compiling and Flashing the Application

1. AppBuilder automatically compiles and flashes the application to your connected development hardware. After you click **[OK]** on the Generation Confirmation dialog, the AppBuilder General tab returns. Click **[Debug]**

Figure 25. AppBuilder Debug Control

2. Progress is displayed (Figure 26). Wait until flashing has completed and a debug window is displayed.

Figure 26. Compile Progress

3. In the Debug window, click [Resume] to start the application running on the WSTK (Figure 27).

Figure 27. Debug Window

Next to the Resume control are Suspend, Disconnect, Reconnect, and stepping controls. Click [Disconnect] () when you are ready to exit Debug mode.

5 Interacting with your Example Application

Depending on the example application, you may be able to interact with it through your development environment's Console interface using a CLI (command line interpreter). The console interface allows you to form a network and send data.

To launch the Console interface, click the Device Console tile in the Simplicity perspective. Alternatively, in the Network Analyzer perspective right-click on your device in the Adapters View. Choose [Connect] (if you are not already connected) and then [Launch Console] (Figure 28). To get a prompt on the Console Serial 1 tab, press Enter.

Figure 28. Launch Console

Products www.silabs.com/products

Quality www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labss®, Bergy Micro, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA