PS7 Yuming Liu

```
In [1]: import numpy as np
    import pandas as pd
    import statsmodels.api as sm
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split, LeaveOneOut, KFold
    from sklearn.metrics import classification_report
    import matplotlib.pyplot as plt
    from scipy.interpolate import LSQUnivariateSpline

import warnings
warnings.filterwarnings("ignore")
```

Problem 1(a)

```
In [2]: | df = pd.read_csv('data/strongdrink.txt')
        X = df[['alco','malic','tot_phen','color_int']]
        y = df['cultivar']
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, ra
        ndom_state=20)
        result = LogisticRegression(solver='lbfgs',multi class='multinomial').fit(X tr
        ain, y_train)
        Results = pd.DataFrame({"j = 1":np.append(result.intercept_[0],result.coef_[0]
        ]),
                       "j = 2":np.append(result.intercept_[1],result.coef_[1])},
                        index=["beta_0","beta_1",'beta_2','beta_3','beta_4'])
        print(Results)
        y_pred = result.predict(X_test)
        print(classification_report(y_test, y_pred))
                                j = 2
                     j = 1
        beta_0 -24.027617 22.780733
        beta_1
                1.701734 -1.466297
        beta_2 -0.265788 -0.332951
        beta_3
                 1.224101
                             0.663556
        beta 4
                 0.022507 -0.922682
                      precision
                                    recall f1-score
                                                       support
                    1
                           0.87
                                      1.00
                                                0.93
                                                            13
                    2
                           1.00
                                      0.90
                                                0.95
                                                            21
                    3
                            1.00
                                      1.00
                                                1.00
                                                            10
                                                            44
                                                0.95
            accuracy
```

From the report, the error rates for the above groups are 13%, 0%, and 0%. Based on the f1-score, we have that i = 3 is the best model for prediction.

0.97

0.95

```
In [3]: MSE = (y_test != y_pred).mean()
print('The MSE from the test set is ', MSE)
```

0.96

0.96

44

44

The MSE from the test set is 0.045454545454545456

0.96

0.96

macro avg
weighted avg

Problem 1(b)

```
In [4]: | X = df[["alco", "malic", "tot_phen", "color_int"]].values
        y = df["cultivar"].values
        N loo = X.shape[0]
        loo = LeaveOneOut()
        loo.get_n_splits(X)
        MSE_vec = np.zeros(N_loo)
        ypred = np.zeros(X.shape[0])
        for train_index, test_index in loo.split(X):
            X_train, X_test = X[train_index], X[test_index]
            y_train, y_test = y[train_index], y[test_index]
            LogReg = LogisticRegression(solver='lbfgs',multi_class='multinomial')
            LogReg.fit(X_train, y_train)
            y_pred = LogReg.predict(X_test)
            ypred[test_index] = y_pred
            if y_test == y_pred:
                MSE_vec[test_index] = 0
                MSE_vec[test_index] = 1
```

```
In [5]: print(classification_report(y, ypred))
    MSE_loo = MSE_vec.mean()
    print('The estimate MSE loocv of the test =', MSE_loo)
```

	precision	recall	f1-score	support
1 2 3	0.90 0.91 0.96	0.93 0.90 0.93	0.92 0.91 0.95	59 71 46
3	0.96	0.93		
accuracy			0.92	176
macro avg	0.92	0.92	0.92	176
weighted avg	0.92	0.92	0.92	176

The estimate MSE loocv of the test = 0.07954545454545454

From the report, the error rates for the above groups are 10%, 9%, and 4%. The rates are higher than those from (a). Based on the f1-score, we have that j = 3 is the best model for prediction.

Problem 1(c)

```
In [6]: kf = KFold(n_splits=4, shuffle=True, random_state=10)
    kf.get_n_splits(X)

MSE_vec_kf = np.zeros(4)

k_ind = int(0)
    ypred = np.zeros(X.shape[0])

for train_index, test_index in kf.split(X):
        X_train, X_test = X[train_index], X[test_index]
        y_train, y_test = y[train_index], y[test_index]
        LogReg = LogisticRegression()
        LogReg.fit(X_train, y_train)
        y_pred = LogReg.predict(X_test)
        ypred[test_index] = y_pred
        MSE_vec_kf[k_ind] = ((y_test - y_pred) ** 2).mean()
        k_ind += 1
```

```
In [7]: MSE_kf = MSE_vec_kf.mean()
    print(classification_report(y, ypred))
    print('The estimate MSE loocv of the test =', MSE_kf)
```

	precision	recall	f1-score	support
1 2	0.87 0.91	0.93 0.87	0.90 0.89	59 71
3	0.96	0.93	0.95	46
accuracy			0.91	176
macro avg	0.91	0.91	0.91	176
weighted avg	0.91	0.91	0.91	176

The estimate MSE loocv of the test = 0.10795454545454546

From the report, the error rates for the above groups are 13%, 9%, and 4%. The rates of 2 and 3 are higher than those from (a). The rate of 1 is higher than which from (b). The rates of 2 and 3 are possiblely the same from (b). Based on the f1-score, we have that j=3 is the best model for prediction.

Problem 2(a)

```
In [8]: df2 = pd.read_csv("data/CoolIndex.txt",names=["Age","Cool"])

plt.scatter(x =df2['Age'], y =df2['Cool'], alpha=0.3, label="Points")
plt.title('Coolness Index data by age')
plt.legend()
plt.xlabel('Age')
plt.ylabel('Coolness Index')
plt.show()
```


Problem 2(b)

In [11]: print(res.summary())

OLS Regression Results								
=								
Dep. Variable	: :		Cool	R-sqı	uared:		0.42	
Model: 7			OLS	Adj.	R-squared:		0.42	
Method:		Least Sq	uares	F-sta	atistic:		178.	
7 Date:		Tue, 25 Feb	2020	Prob	(F-statistic)	:	3.73e-11	
4 Time:		15:	25:31	Log-I	Likelihood:		-3214.	
5 No. Observati	.ons:		956	AIC:			643	
9. Df Residuals:			951	BIC:			646	
3. Df Model:			4	510.			0.10	
Covariance Ty	pe:	nonr						
=	:=====:	=======	=====	=====		======	=======	
	coe-	f std err		t	P> t	[0.025	0.97	
5]								
-								
bin1 6	20.102	0.562	3	5.746	0.000	18.999	21.20	
bin2 1	34.475	0.431	8	0.006	0.000	33.630	35.32	
bin3	37.635	L 0.424	8	8.814	0.000	36.804	38.46	
7 bin4	35.225	1 0.485	7	2.560	0.000	34.273	36.17	
8 bin5	27.296	1 0.936	2	9.175	0.000	25.460	29.13	
2								
=								
Omnibus: 6		8	0.102	Durb	in-Watson:		1.23	
Prob(Omnibus)	:		0.000	Jarqı	ue-Bera (JB):		101.71	
8 Skew:			0.714	Prob	(JB):		8.17e-2	
3 Kurtosis:			3.719	Cond	. No.		2.2	
1	:=====:		=====	=====	=========	=======	=======	
=								

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [12]: plt.scatter(df2['Age'], df2['Cool'], alpha=0.3, label='Points')
    plt.plot(df2['Age'], res.predict(), 'r', label='OLS Step')
    plt.legend()
    plt.xlabel('Age')
    plt.ylabel('Coolness Index')
    plt.title('Coolness Index data by age')
    plt.show()
```



```
In [13]: print('The predicted coolness of a 73-year old from the step function is', res
    .params[3])
```

The predicted coolness of a 73-year old from the step function is 35.22540004 024275

Problem 2(c)

```
In [14]: df3 = df2.groupby('Age').mean()
    df3['Age']=df3.index

In [15]: lsq = LSQUnivariateSpline(np.array(df3['Age']), np.array(df3['Cool']), t = [22
    ,40,59,77], k = 1)
```

```
In [16]: plt.scatter(df2['Age'], df2['Cool'], alpha=0.3, label='Points')
    plt.plot(df2['Age'], res.predict(), 'r', label='OLS Step')
    plt.plot(df3['Age'], lsq(df3['Age']), 'yellow', label='LSQ')
    plt.legend()
    plt.xlabel('Age')
    plt.ylabel('Coolness Index')
    plt.title('Coolness Index data by age')
    plt.show()
```


The predicted coolness of a 73-year old from the step function is 32.86784862 349653

Problem 2(d)

```
In [19]: plt.scatter(df2['Age'], df2['Cool'], alpha=0.3, label='Points')
    plt.plot(df2['Age'], res.predict(), 'r', label='OLS Step')
    plt.plot(df3['Age'], lsq(df3['Age']), 'yellow', label='LS')
    plt.plot(df3['Age'], lsq_new(df3['Age']), 'green', label='Cubic Spline')
    plt.legend()
    plt.xlabel('Age')
    plt.ylabel('Coolness Index')
    plt.title('Coolness Index data by age')
    plt.show()
```


In [20]: print('The predicted coolness of a 73-year old from the step function is', lsq
_new(73))

The predicted coolness of a 73-year old from the step function is 32.64230106 6279764