

Data Analysis and Excel

Today's Learning Objectives

After this class, students will be able to:

- Define accuracy, precision, and resolution.
- Define systematic variation and random variation.
- Define the terms mean, median, mode, central tendency, and standard deviation.
- Analyze data using mean, median, and standard deviation.

- "Clicker activity"
- When measuring the length of an object, do accuracy and precision mean the same thing?
 - 1. Yes
 - 2. No

- What is accuracy?
 - The degree of closeness between a measured value and the correct value. (implies there is a correct value!)
- Precision is based on repeatability and resolution

- What is repeatability?
 - The degree of closeness between repeated measurements of the same feature.
- What is resolution?
 - The smallest measurable increment on a measurement device.

"Clicker activity"

Is this:

- 1. Repeatable and accurate?
- 2. Accurate, but not repeatable?
- 3. Repeatable, but not accurate
- 4. Neither accurate nor repeatable

"Clicker activity"

Is this:

- 1. Repeatable and accurate?
- 2. Accurate, but not repeatable?
- 3. Repeatable, but not accurate
- 4. Neither accurate nor repeatable

What is an example of a Systematic Error?

What is an example of a Random Error?

Example: Collecting and Analyzing Data

 The next few slides will walk through an example regarding collecting data and then analyzing the data.

Sample Data

8 sample measurements were collected using two different instruments

Sample Data

8 sample measurements were collected using two different

instruments

The expected value is 1.020 inches

- Which instrument has a higher resolution?
- Which measurement offer good accuracy?
- Which measurements offer good repeatability?
 - 1. Scale
 - 2. Caliper

Sample Diameter Measurements, Shampoo Bottle A					
Trial	Scale	Caliper			
1	1.2	1.011			
2	1.1	1.039			
3	1.0	1.005			
4	1.1	1.015			
5	1.0	1.024			
6	1.1	1.029			
7	1.1	1.031			
8	1.2	1.024			

Sample Data

- Notice how the measurements fall above and below the specified value of 1.02"
- Which measurement tool provided more accurate values?
 - 1. Scale
 - 2. Caliper

Outliers

- Outliers are values that differ greatly from the specified value.
- Do we have any outliers here?
- Outliers can occur from systematic or random variation, or they can be a misrepresented value.
 - The important thing is to figure out why the values are so different.

Propagation of Error

- The errors from inaccurate measurements can be magnified when the erroneous value is used in an equation.
- What seems like a small error in the initial measurement can propagate to a large overall error in the calculation of an equation.

Example: Propagation of Error

- To calculate the moment of inertia of a cantilever beam, we must measure thickness and width of the beam.
- Moment of inertia is calculated by:

$$I = \frac{1}{12} wt^3$$

- What if there is an error measuring w?
- What about an error measuring t?

Example

W

Base Case: $I=1/12wt^3$ w=3.421 in t=2.129 in

I₁=2.751 in⁴

Assume 9.5% error in w

w=3.096 in

 $I=1/12(3.096)(2.129)^3$

I₂=2.490 in⁴

(difference of 0.261 in⁴)

→ 9.5% error

Assume 9.5% error in t

t=1.927 in

 $I=1/12(3.421)(1.927)^3$

 $I_3 = 2.040 \text{ in}^4$

(difference of 0.711 in⁴)

→ 25.8% error

Analyzing Measurement Data

- When collecting data, there will always be variation.
 We can use statistical tools to help us determine:
 - Is the variation (or error) systematic or random?
 - What is the cause of the variation?
 - Is the variation in an acceptable range?
 - What is an acceptable range of variation for this data?

Example: Slingshot Experiment!

- An engineer is performing a data collection experiment using a slingshot and a softball.
 - She predicted that if the slingshot is pulled back by 1 meter before launching the ball, the softball would land 17 meters downrange.
- Data is collected from 20 trials. Let's analyze the data and see how the experiment went...

Example: The Data

- Most of this data falls in the range of 14-20 meters.
- Do you see any data that appears much outside this range?
 - These rogue data points are called outliers.

Table 1. Results of 20 trial launches with slingshot spring pulled back 1 m						
Trials 1-5:	17.5	45.2	16.4	19.3	16.6	
Trials 6-10:	16.0	17.4	16.7	18.1	17.5	
Trials 11-15:	15.1	14.2	17.4	15.7	17.8	
Trials 16-20:	19.3	18.5	15.7	17.9	17.0	

Outliers: Deal With It.

- Outliers will happen even in good data sets.
 Engineers know how to deal with them!
- Engineers must determine whether an outlier is a valid data point, or if it is an error and thus invalid.
- Invalid data points can be the result of measurement errors or of incorrectly recording the data.

Characterizing The Data

- Statistics allows us to characterize the data numerically as well as graphically.
- We characterize data numerically in two ways:
 - Central Tendency
 - Variation

Central Tendency

- This is a single value that best represents the data. This value could be determined by:
 - Mean
 - Median
 - Mode
- For many engineering applications, the mean and median are most relevant.

Calculate Mean in Excel

Calculate Median in Excel

Calculate Mode in Excel

Central Tendency: Comparison

Which value is a better representation of the slingshot

data?

— Mean = 18.47 m —

Median = 17.4 m

Characterizing the Data

- We can select a value of central tendency to represent the data, but is just one number enough?
- No! It is also important to know how much variation is present in the data.
- Variation describes how the data is distributed around the central tendency value.

Representing Variation

- As with central tendency, there are multiple ways to represent variation in a set of data:
 - ± ("Plus/Minus") gives the range of values
 - Standard Deviation provides a more sophisticated look at how the data is distributed around the central value.

Standard Variation

Definition:
 How closely the values cluster around the mean; how much variation there is in the data.

Equation:

Mean = Average in Excel

$$\sigma = \sqrt{\sum \frac{(each\ value - mean)^2}{(number\ of\ values - 1)}} = \sqrt{\sum \frac{(x - x)^2}{(n - 1)}} \quad \overset{\mathsf{OR}}{=} \sqrt{\frac{\sum (x - \bar{x})^2}{(\mathsf{N} - 1)}}$$

Calculating Standard Deviation

x (each value)	x - mean	(x-mean)^2/(n-1)
14.2	-4.3	0.97
15.1	-3.4	0.61
15.7	-2.8	0.41
15.7	-2.8	0.41
16.0	-2.5	0.33
16.4	-2.1	0.23
16.6	-1.9	0.19
16.7	-1.8	0.17
17.0	-1.5	0.12
17.4	-1.1	0.06
17.4	-1.1	0.06
17.5	-1.0	0.05
17.5	-1.0	0.05
17.8	-0.7	0.03
17.9	-0.6	0.02
18.1	-0.4	0.01
18.5	0.0	0.00
19.3	0.8	0.03
19.3	0.8	0.03
45.2	26.7	37.52
18.5		41.32

$$\sigma = \sqrt{\frac{(each \ value - mean)^2}{(number \ of \ values - 1)}}$$

$$\sigma = \sqrt{41.32}$$

$$\sigma = 6.4281$$

Calculating Standard Deviation in Excel

- Put the cursor where you want the standard deviation
- Click on the Function Wizard (fx) button
- Type in the function name (use stdev or stdev.s in this class)

Interpreting Standard Deviation

Curve A has a small σ.
 Data points are clustered close to the mean.

Curve B has a large σ.
 Data points are far from the mean.

What do YOU think?

 Say these curves describe the distribution of grades from an exam, with an average score of 83%...

 What would be the benefit if you were in class with Curve A?

What about Curve B?

Normal Distribution

 Data that is normally distributed occurs with greatest frequency around the mean.

 Normal distributions are also known as Gaussian Distributions or Bell Curves

Normal Distribution

- Mean = Median = Mode
 - 68% of values within 1 σ
 - 95% of values within 2 σ
 - 99.99966% of values are within 6 σ

Other Distributions

Skewed Distribution

Bimodal Distribution

Referencing Other Worksheets

- For a no-bake peanut butter oat squares recipe, ingredients are stored in one worksheet, titled "Ingredients".
 Amounts of each ingredient needed are listed in a different worksheet, titled "Amount (cups)".
- How could we calculate the total volume of ingredients needed in a third worksheet?

Referencing Other Worksheets

='Amount (cups)'!A1 + 'Amount (cups)'!A2 + 'Amount

(cups)'!A3

