#### Quantum Mechanics

Lecture #2: Ch. 2: One-dimensional eigenvalue problems

#### Fa Wang<sup>1</sup>

<sup>1</sup>International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China

Fall 2020

#### Outline

- Preview
  - Goals and Requirements
- Qualitative features
  - Qualitative features of 1D eigenvalue problems
- Free particle
  - Free particle & wave packet
- Infinite square well potential
  - Bound states
- 5 Harmonic oscillator
  - Algebraic method
  - Analytic method
- Delta-function potential
  - Bound states
  - Scattering states
- Finite square well potential
  - Bound states
  - Scattering states



# Goals and Requirements: Lecture #2

- This lecture deals with non-relativistic particle in 1D static potential,  $\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x})$ .
- The goal of this lecture is for you to become familiar with the following items:
  - some qualitative features about bound states in 1D.
  - eigenvalues and eigenstates(standing waves) for infinite square well.
  - ladder operators, eigenvalues and eigenstates for harmonic oscillator.
  - how to deal with  $\delta$ -function potential.
  - how to set up equations for finite square well (and similar) problems.
  - the basic idea about wave packet, group velocity.
  - the basic idea about reflection/transmission coefficients in 1D.
- By the end of this lecture, you should master the following skills:
  - directly writing down eigenvalues and eigenstates of an infinite square well problem.
  - using ladder operators to do calculations for a harmonic oscillator problem.
  - setting up boundary condition equations for eigenstates at  $\delta$ -potentials and discontinuous points of potentials.
  - determining number of bound states from transcendental equations related to finite square well (and similar) problems
- "Side remark"s are NOT required.
- References:
  - D.J. Griffiths, Introduction to Quantum Mechanics, Chapter 2.

3/13

### Qualitative features of 1D eigenvalue problems

- The eigenvalue problem,  $\left[-\frac{\hbar^2}{2m}\partial_x^2 + V(x)\right]\psi(x) = E \cdot \psi(x)$ , has the following features (may not be proved here, check Sturm-Liouville theory):
  - Bound states (normalizable eigenstates)  $\psi(x)$  energy eigenvalue  $E \geq \min_x V(x)$  (Homework #2). Proof: if eigenstate  $\psi$  has  $\langle \psi | \psi \rangle = 1$ , then  $E = \langle \psi | \hat{H} | \psi \rangle = \langle \psi | \frac{\hat{p}^2}{2\pi} | \psi \rangle + \int_{-\infty}^{\infty} |\psi(x)|^2 V(x) dx$ ,  $\langle \psi | \frac{\hat{\rho}^2}{2m} | \psi \rangle = \frac{1}{2m} \langle \hat{\rho} \psi | \hat{\rho} \psi \rangle \ge 0, \ \int_{-\infty}^{\infty} |\psi(x)|^2 V(x) \, \mathrm{d}x \ge [\min_x V(x)] \cdot \int_{-\infty}^{\infty} |\psi(x)|^2 \, \mathrm{d}x = \min_x V(x).$ Exercise: think about where the normalizable property is really used.
  - Bound states energies are discrete, and  $E \leq \underline{\lim}_{x \to +\infty} V(x)$ ,  $\underline{\lim}$  is lower limit.
  - Scattering states (non-normalizable) energies are continuous, and  $E > \underline{\lim}_{x \to +\infty} V(x)$ .
  - Side remark: for  $E < \min_{x} V(x)$  we can have "evanescent states", whose eigenstates  $\psi(x)$  are exponentially growing/decaying as  $x \to \pm \infty$ , we will not consider these states in this course.
  - Schematic picture of the *energy spectrum* (collection of energy eigenvalues, shown on the right):



- Eigenstates ψ(x) can be chosen real.
  - Proof: if  $\psi$  is eigenstate, take complex conjugate of the eigenvalue equation above, then  $\psi^*$  is also eigenstate with the same eigenvalue E, then real functions  $\psi + \psi^*$  and  $i(\psi^* - \psi)$  are also eigenstates.
- If  $V(x) = +\infty$  in a neighborhood of  $x_0$ , then eigenstate  $\psi$  vanishes at this point,  $\psi(x_0) = 0$ .
- If V(x) is finite in a neighborhood of  $x_0$ , then eigenstate  $\psi$  is smooth at  $x_0$ .
- Eigenstates  $\psi$  are continuous, otherwise  $\hat{p}\psi$  contains  $\delta$ -function,  $E = \frac{\langle \hat{p}\psi | \hat{p}\psi \rangle}{2m} + \langle \psi | \hat{V} | \psi \rangle$  diverges.

40 + 40 + 43 + 43 + 3

# Qualitative features of 1D eigenvalue problems (cont'd)

- The eigenvalue problem,  $[-\frac{\hbar^2}{2m}\partial_x^2 + V(x)]\psi(x) = E \cdot \psi(x)$ , has the following features (may not be proved here, check Sturm-Liouville theory):
  - Bound states  $\psi$  are non-degenerate.
    - Proof: if  $\psi_1, \psi_2$  are both eigenstates for eigenvalue E, then  $0 = \psi_2 \cdot E\psi_1 \psi_1 \cdot E\psi_2$   $= \psi_2 \cdot (-\frac{\hbar^2}{2m}\partial_x^2 + V)\psi_1 \psi_1 \cdot (-\frac{\hbar^2}{2m}\partial_x^2 + V)\psi_2 = -\frac{\hbar^2}{2m}\partial_x(\psi_2\partial_x\psi_1 \psi_1\partial_x\psi_2), \text{ therefore } \psi_2\partial_x\psi_1 \psi_1\partial_x\psi_2 = \text{Const.} \text{ independent of } x; \text{ for bound states, } \psi_{1,2} \to 0 \text{ as } x \to \pm\infty, \text{ then } \psi_2\partial_x\psi_1 \psi_1\partial_x\psi_2 = 0; \text{ divide by } \psi_1 \cdot \psi_2, \text{ then } \partial_x(\log\psi_1 \log\psi_2) = 0, \text{ then } \psi_1(x) = e^{\text{Const.}} \cdot \psi_2(x), \text{ so } \psi_{1,2} \text{ are the same state.}$
  - Terminology: sort the bound state energies in ascending order, E<sub>0</sub> ≤ E<sub>1</sub> ≤ E<sub>2</sub> . . . . E<sub>0</sub> is the lowest energy eigenvalue, the "ground state energy". E<sub>n</sub> is the "nth excited state energy". NOTE: here the label n = 0, 1, . . . may not match the "quantum numbers" used later to label states.
  - Nodes of eigenstates [points where  $\psi(x) = 0$ , excluding  $V(x) = +\infty$  cases] are "simple". Simple nodes: where  $\psi(x) = 0$ ,  $\partial_x \psi(x) \neq 0$  [otherwise the solution would be  $\psi(x) = 0$ ,  $\forall x$ ].
  - The ground state wave function  $\psi_0(x)$  has NO node, can be non-negative,  $\psi_0(x) \geq 0$ . (c.f. Chapter 7)
  - The *n*th excited state wave function  $\psi_n(x)$  has *n* nodes,  $x_1^{(n)} < x_2^{(n)} < \cdots < x_n^{(n)}$ ,  $\psi_n(x_n^{(n)}) = 0$ . Nodes of adjacent levels are interpenetrating,  $x_1^{(n+1)} < x_1^{(n)} < x_2^{(n+1)} < \cdots < x_n^{(n+1)} < x_n^{(n)} < x_{n+1}^{(n+1)}$ .
  - Inversion symmetry: if V(x) = V(-x), then eigenstates can be chosen as either even or odd functions of x. Proof: in this case, if  $\psi(x)$  is eigenstate, then  $\psi(-x)$  is also eigenstate with the same eigenvalue, then even function  $\psi(x) + \psi(-x)$  and odd function  $\psi(x) - \psi(-x)$  are also eigenstates.
    - In this case, bound states are either even or odd,  $\psi_n(-x) = (-1)^n \psi_n(x)$ ,  $n = 0, 1, \ldots$  (see above). In particular, the ground state (n = 0) is even.
    - The inversion center may be at  $x_0 \neq 0$ ,  $V(x_0 + x) = V(x_0 x)$ .

### Free particle & wave packet

- "Free particle" has constant potential  $V(x)=V_0$ . Without loss of generality(w.l.o.g.), assume  $V_0=0$ , otherwise redefine E by  $E-V_0$ . Hamiltonian  $\hat{H}=\frac{\hat{p}^2}{2m}$ .
  - $[\hat{H}, \hat{\rho}] = 0$ . We can choose simultaneous eigenstates of  $\hat{H}$  and  $\hat{\rho}$ . System has translation symmetry. If  $\psi(x)$  is eigenstate, then  $\phi(x) \equiv \psi(x+a)$  is also eigenstate with the same energy, for any real a.
  - Eigenstates  $|p\rangle$  are planewaves  $\psi_p(x)=\frac{\mathrm{e}^{\mathrm{i}\,px/\hbar}}{\sqrt{2\pi\hbar}}$ , with eigenvalues  $E_p=\frac{p^2}{2m}$ .
  - We can also use real eigenbasis, standing waves,  $\propto \cos(px/\hbar)$  and  $\propto \sin(px/\hbar)$  (for  $p \neq 0$ ).
  - Generic free particle state  $\psi(x,t) = \int \tilde{\psi}(\rho,t=0) \cdot e^{-\mathrm{i}E_{\rho}t/\hbar} \cdot \frac{\mathrm{e}^{\mathrm{i}px/\hbar}}{\sqrt{2\pi\hbar}} \,\mathrm{d}\rho$ . (see Lecture #1). Here  $\tilde{\psi}(\rho,t)$  is the "momentum representation" of wave function,  $\langle \rho|\psi \rangle$  at time t.
- Real particles are described by "wave packet",  $\psi(x,t) = f(x,t) \cdot \frac{e^{i(p_0x E_{p_0}t)/\hbar}}{\sqrt{2\pi\hbar}}$ . f(x,t) is a normalizable "envelop" function, with a single "broad" peak(width  $\gg \frac{h}{p_0}$ ).
  - $\tilde{\psi}(p,t=0) = \tilde{f}(p-p_0,t=0)$ , here  $\tilde{f}(\delta p,t) \equiv \int f(x,t) \frac{e^{-i\cdot\delta p\cdot x/\hbar}}{\sqrt{2\pi\hbar}} \, \mathrm{d}x$  is the Fourier transform of f. Therefore the momentum representation of wave function has a "narrow" peak around  $p \sim p_0$ .
  - Assume w.l.o.g. that f(x,t=0) peaks at x=0 (otherwise redefine x). At time t,  $f(x,t)=\int \tilde{f}(\delta p,t=0) \cdot \exp\{\frac{i}{\hbar}[\delta p \cdot x (E_{p_0+\delta p}-E_{p_0}) \cdot t]\}\frac{1}{\sqrt{2\pi\hbar}}\,\mathrm{d}(\delta p)$ . Because relevant range of  $\delta p$  is small, we can approximate  $E_{p_0+\delta p}-E_{p_0}\approx v_g\cdot\delta p$ , where  $v_g=\frac{\partial E}{\partial p}\Big|_{p=p_0}=\frac{p_0}{m}$  is the group velocity.  $f(x,t)\approx\int \tilde{f}(\delta p,t=0)\cdot\exp[\frac{i}{\hbar}\delta p\cdot(x-v_g\cdot t)]\frac{1}{\sqrt{2\pi\hbar}}\,\mathrm{d}(\delta p)=f(x-v_g\cdot t,0).$  So the peak of envelop function moves by the group velocity.

So the peak of envelop function moves by the *group velocity*. Nonlinear dispersion will cause broadening of the wave packet.

#### Infinite square well potential: bound states

• 
$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}), \ V(x) = \left\{ \begin{array}{ll} +\infty, & x < 0 \text{ or } x > a; \\ 0, & 0 < x < a. \end{array} \right.$$

- Good approximation for "deep" (depth>energy level measured from bottom) potential well with "narrow walls" (width of "walls" «relevant wave length).
- According to [2.1]: there are bound states with energy  $\acute{E} \geq 0$ ; eigenstates  $\psi(x) = 0$  for x < 0 or x > a. For 0 < x < a, the Hamiltonian is the same as free particle, so  $\psi(x)$  is linear superposition of  $e^{i kx}$  in this region.
- Boundary condition: eigenstates  $\psi(x)$  are continuous at x=0 and a, so  $\psi(x=0)=\psi(x=a)=0$ . This leads to the "quantization" of wavevector k, and therefore the "quantization" of energy eigenvalues.
- Energy eigenvalues:  $E_n = \frac{\hbar^2}{2m}(\frac{n\pi}{a})^2$ , here  $n=1,2,\ldots$ ; eigenstates are standing waves:  $\psi_n(x) = \left\{ \begin{array}{ll} 0, & x < 0 \text{ or } x > a; \\ \sqrt{\frac{2}{a}}\sin(\frac{n\pi}{a}x), & 0 < x < a. \end{array} \right.$  (see textbook Figure 2.2)

NOTE: here the ground state is labeled by n = 1;  $1^{st}$ -excited state is n = 2; . . . . Exercise: check that the nodes of  $\psi_n$  inside (0, a) satisfy the interpenetrating property in [2.1])

- These standing waves  $\psi_n$  form complete orthonormal basis for the Hilbert space of wave functions satisfying  $\psi(x) = 0$  for  $x \le 0$  or  $x \ge a$ .
- $\begin{aligned} & \psi(x) = 0 \text{ for } x \geq 0, \\ & \text{Generalization: } V(x) = \left\{ \begin{array}{l} +\infty, & x < a \text{ or } x > b; \\ V_0, & a < x < b. \end{array} \right., \text{ then} \\ & E_n = V_0 + \frac{\hbar^2}{2m} (\frac{n\pi}{b-a})^2, \ \psi_n(x) = \left\{ \begin{array}{l} 0, & x < a \text{ or } x > b; \\ \sqrt{\frac{2}{b-a}} \sin(\frac{n\pi}{b-a}(x-a)), & a < x < b. \end{array} \right., \ n = 1, 2, \dots .$

- 4日ト4団ト4ミト4ミト ミ か900

#### Harmonic oscillator: algebraic method

- $\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}), V(x) = \frac{m\omega^2}{2}x^2$  (harmonic potential).  $\omega > 0$  is the "angular frequency".
  - Good approximation for "small" oscillation about the minimum of a smooth potential well.
- Ladder operators:  $\hat{a}_{\mp} = \sqrt{\frac{m\omega}{2\hbar}} (\hat{x} \pm \frac{i}{m\omega} \hat{p})$ , "lowering" / "raising" operators respectively.
  - $(\hat{a}_{\mp})^{\dagger} = \hat{a}_{\pm}$ , commutator  $[\hat{a}_{-}, \hat{a}_{+}] = 1$ , and  $\hat{H} = \hbar\omega \cdot (\hat{a}_{+}\hat{a}_{-} + \frac{1}{2})$ . Exercise: check these.
  - Useful fact: if  $[\hat{A}, \hat{B}] = c \cdot \hat{B}$ , then  $\hat{B}|\hat{A} = \lambda\rangle$  will either be proportional to  $|\hat{A} = \lambda + c\rangle$ , or vanish(= 0). Proof:  $\hat{A}(\hat{B}|\hat{A} = \lambda\rangle) = (\hat{B}\hat{A} + [\hat{A}, \hat{B}])|\hat{A} = \lambda\rangle = (\hat{B} \cdot \lambda + c \cdot \hat{B})|\hat{A} = \lambda\rangle = (\lambda + c)(\hat{B}|\hat{A} = \lambda\rangle)$ .
  - Useful fact:  $[\hat{A}\hat{B}, \hat{C}] = \hat{A}[\hat{B}, \hat{C}] + [\hat{A}, \hat{C}]\hat{B}$ . Proof: expand the commutations. Generalization:  $[\hat{A}, \hat{B}_1 \hat{B}_2 \dots \hat{B}_n] = [\hat{A}, \hat{B}_1]\hat{B}_2 \dots \hat{B}_n + \dots + \hat{B}_1 \dots \hat{B}_{i-1}[\hat{A}, \hat{B}_i]\hat{B}_{i+1} \dots \hat{B}_n + \dots + \hat{B}_1 \dots \hat{B}_{n-1}[\hat{A}, \hat{B}_n]$
  - $[\hat{a}_{+}\hat{a}_{-}, \hat{a}_{\pm}] = \pm \hat{a}_{\pm}$ , (these two formulas are related by hermitian conjugation). Namely  $\hat{a}_{\pm}$  changes eigenvalue of  $\hat{a}_{+}\hat{a}_{-}$  by  $\pm 1$ . Therefore eigenvalues of  $\hat{a}_{+}\hat{a}_{-}$  form "ladder(s)"  $(\dots, \lambda 1, \lambda, \lambda + 1, \dots)$ .
  - $\hat{a}_+\hat{a}_-$  is positive semi-definite,  $\langle \psi | \hat{a}_+\hat{a}_- | \psi \rangle = \langle \hat{a}_-\psi | \hat{a}_-\psi \rangle \geq 0$ . So eigenvalues of  $\hat{a}_+\hat{a}_-$  must  $\geq 0$ . Then there is a minimal eigenvalue  $\lambda_{\min}$  in a "ladder", and  $\hat{a}_-|\hat{a}_+\hat{a}_-=\lambda_{\min}\rangle = 0$  [if this does not vanish, we would have eigenstate for eigenvalue ( $\lambda_{\min}-1$ ) contradicting the assumption of minimal eigenvalue  $\lambda_{\min}$ . Then  $\hat{a}_+\hat{a}_-|\hat{a}_+\hat{a}_-=\lambda_{\min}\rangle = 0$ , so  $\lambda_{\min}=0$ , there is only one "ladder" of eigenvalues  $n=0,1,2,\ldots$
  - Label the  $|\hat{a}_{+}\hat{a}_{-}| = n$  state by  $|\psi_{n}\rangle$ , it is eigenstate of  $\hat{H}$  for eigenvalue  $E_{n} = \hbar\omega \cdot (n + \frac{1}{2})$ .
  - Ground state  $\psi_0$  satisfies  $\hat{a}_-\psi_0=0$ , or  $(x+\frac{\hbar}{m\omega}\partial_x)\psi_0(x)=0$ . So  $\psi_0(x)=(\frac{m\omega}{\pi\hbar})^{1/4}e^{-\frac{m\omega}{2\hbar}x^2}$ .
  - nth excited state  $\psi_n \propto (\hat{a}_+)^n \psi_0$ . For normalization, consider  $\langle (\hat{a}_+)^n \psi_0 | (\hat{a}_+)^n \psi_0 \rangle = \langle \psi_0 | (\hat{a}_-)^n (\hat{a}_+)^n | \psi_0 \rangle$   $= \langle \psi_0 | (\hat{a}_-)^{n-1} \left( (\hat{a}_+)^n \hat{a}_- + [\hat{a}_-, (\hat{a}_+)^n] \right) | \psi_0 \rangle = \langle \psi_0 | (\hat{a}_-)^{n-1} \left( 0 + n(\hat{a}_+)^{n-1} \right) | \psi_0 \rangle \text{ (useful fact above)}$   $= n \cdot \langle \psi_0 | (\hat{a}_-)^{n-1} (\hat{a}_+)^{n-1} | \psi_0 \rangle = n! \text{ (mathematical induction)}. \text{ So } \psi_n = \frac{1}{\sqrt{n!}} (\hat{a}_+)^n \psi_0.$
  - $\hat{a}_+|\psi_n\rangle = \sqrt{n+1}|\psi_{n+1}\rangle$ ,  $\hat{a}_-|\psi_n\rangle = \sqrt{n}|\psi_{n-1}\rangle$ . Exercise: check the matrices  $(a_+)_{m,n} \equiv \langle \psi_m|\hat{a}_+|\psi_n\rangle$  are hermitian conjugate to each other
  - Example:  $\langle \psi_0 | \hat{x}^2 | \psi_0 \rangle = \langle \hat{x} \psi_0 | \hat{x} \psi_0 \rangle$ , and  $\hat{x} \psi_0 = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a}_- + \hat{a}_+) \psi_0 = \sqrt{\frac{\hbar}{2m\omega}} (0 + \psi_1)$ , so  $\langle \psi_0 | \hat{x}^2 | \psi_0 \rangle = \frac{\hbar}{2m\omega} \langle \psi_1 | \psi_1 \rangle = \frac{\hbar}{2m\omega}$ . Or use  $\hat{x}^2 = \frac{\hbar}{2m\omega} (\hat{a}_-^2 + \hat{a}_+^2 + 2\hat{a}_+\hat{a}_- + 1)$ .

Fa Wang (ICQM, PKU) Quantum Mechanics Fall 2020 8/13

## Harmonic oscillator: analytic method

- Consider the eigenvalue problem,  $(-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{m\omega^2}{2}x^2)\psi(x) = E\cdot\psi(x)$ . Define dimensionless  $\xi = \sqrt{\frac{m\omega}{\hbar}}x$ ,  $K = \frac{2E}{\hbar\omega}$ , this equation becomes  $\frac{\mathrm{d}^2}{\mathrm{d}\xi^2}\psi = (\xi^2 K)\cdot\psi$ .
  - Asymptotic behavior: the  $\xi^2$  term dominates as  $\xi \to \pm \infty$ ; assume  $\psi = e^{f(\xi)}$ ,  $\frac{\mathrm{d}^2 \psi}{\mathrm{d} \xi^2} = [(\frac{\mathrm{d} f}{\mathrm{d} \xi})^2 + \frac{\mathrm{d}^2 f}{\mathrm{d} \xi^2}] \cdot \psi$ , (i) assume  $\frac{\mathrm{d}^2 f}{\mathrm{d} \xi^2} \sim \xi^2$ , then  $f \sim \frac{\xi^4}{12}$ ,  $(\frac{\mathrm{d} f}{\mathrm{d} \xi})^2 \sim \frac{\xi^6}{9}$  is the dominant term, so this is not self-consistent;
    - (ii) assume  $(\frac{\mathrm{d}f}{\mathrm{d}\xi})^2\sim \xi^2$ , then  $f\sim \pm \frac{\xi^2}{2}$ ,  $\frac{\mathrm{d}^2f}{\mathrm{d}\xi^2}\sim \pm 1$ , self-consistent. Normalizable  $\psi\sim \mathrm{e}^{-\frac{\xi^2}{2}}$ ,  $\xi\to\pm\infty$ .
  - Assume  $\psi(\xi) = h(\xi) \cdot e^{-\frac{\xi^2}{2}}$ , then  $\frac{\mathrm{d}^2 h}{\mathrm{d}\xi^2} 2\xi \frac{\mathrm{d} h}{\mathrm{d}\xi} + (K-1)h = 0$ . Assume  $h(\xi) = \sum_{j=0}^\infty a_j \xi^j$ , we have the recursion relation  $a_{j+2} = \frac{2j+1-K}{(j+1)(j+2)} \cdot a_j$ . If all  $a_j \neq 0$ , for large j,  $a_{j+2} \sim \frac{2}{j+1} a_j \sim \frac{1}{(j/2)!} \cdot \mathrm{Const.}$ , then  $h \sim e^{\xi^2}$ , contradicts with normalizable  $\psi$  (there are loopholes in this argument). Normalizable  $\psi$  requires h being truncated to finite order,  $a_n \neq 0$  but  $a_j = 0$  for j > n. Then 2n+1-K=0 (otherwise  $a_{n+2} \neq 0$ ).
  - Bound state energies are  $E_n = (n + \frac{1}{2}) \cdot \hbar \omega$ . Corresponding  $h_n(\xi)$  has only  $\xi^n, \xi^{n-2}, \xi^{n-4}, \ldots$  terms (if it has  $\xi^{n-1}$  term, it will have all  $\xi^{n-1}$  terms).  $h_n$  and  $\psi_n$  are even/odd functions for n even/odd.

  - Generating function:  $e^{-(x-t)^2} = \sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(x) e^{-x^2}$  (related to "coherent state", textbook Problem 3.35).
  - Recursion relation:  $H_{n+1}(x) = 2x \cdot H_n(x) \stackrel{m}{=} 2n \cdot H_{n-1}(x)$ . Exercise: "derive" this from the above  $\psi_n$  formula, and  $2\sqrt{\frac{m\omega}{h}}\hat{x}\psi_n = \sqrt{2}(\hat{a}_- + \hat{a}_+)\psi_n = \sqrt{2n}\psi_{n-1} + \sqrt{2(n+1)}\psi_{n+1}$ .
  - ullet  $\psi_n$  form complete orthonormal basis for the Hilbert space of normalizable wave functions in 1D.

#### $\delta$ -function potential: bound states

•  $\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}), V(x) = \alpha \cdot \delta(x)$ . Note:  $\alpha$  has unit of (energy-length).

The sign of  $\alpha$  here is opposite to that in textbook.

- Good approximation for "narrow" (width $\ll$ relevant "wavelength") potential barrier/well V(x), and  $\alpha = \int \mathrm{d}x \ V(x)$ .
- For  $[-\frac{\hbar^2}{2m}\partial_x^2 + \alpha \cdot \delta(x)]\psi = E \cdot \psi$ , integrate over  $x \in [-\epsilon, \epsilon]$  and take  $\epsilon \to +0$  limit,  $-\frac{\hbar^2}{2m}\partial_x \psi \Big|_{x=0-} + \alpha \psi(x=0) = 0$ . So derivative of eigenstate  $\psi$  may have discontinuity at the  $\delta$ -potential.

This "boundary condition" works also for V(x) containing other terms finite at x=0.

• According to [2.1], if  $\alpha < 0$ , there may be bound states with E < 0; if  $\alpha > 0$ , there is no bound state.

- For  $\alpha<0$ , suppose the bound state energy is E<0, define "imaginary wavevector"  $\kappa=\sqrt{-2mE/\hbar}$ . For regions x>0 and x<0 away from  $\delta$ -potential, the problem is the same as free particle,  $-\frac{\hbar^2}{2m}\partial_x^2\psi=E\psi$ . Therefore the eigenstate is a linear combination of  $e^{\pm\kappa x}$  in each region. Normalizable  $\psi$  must be  $Ae^{-\kappa x}$  for x>0, and  $Be^{\kappa x}$  for x<0.
- $\textbf{ Boundary condition at } x=0: \ \psi \text{ is continuous, } \psi(x=0+)=\psi(x=0-), \text{ or } A=B; \\ \text{for } \partial_X \psi, \ -\frac{\hbar^2}{2m}[\partial_X \psi(x=0+)-\partial_X \psi(x=0-)]+\alpha \psi(x=0)=0, \text{ or } A \cdot \frac{\hbar^2}{m} \kappa +\alpha \cdot A=0 \text{ (used } A=B). \\ \text{Then } \kappa = \frac{m \cdot \{-\alpha\}}{k^2}.$
- There is only one bound state for  $\delta$ -function potential well ( $\alpha < 0$ ), with  $E_0 = -\frac{m\alpha^2}{2\hbar^2}$ ,  $\psi_0(x) = \sqrt{\kappa}e^{-\kappa|x|}$ ,  $\kappa = \frac{m\cdot(-\alpha)}{\hbar^2}$ . (see schematic picture of wave function below)



→□▶ →□▶ → □▶ → □ ♥ ♀○

### $\delta$ -function potential: scattering states

- $\bullet \ \hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}), \ V(x) = \alpha \cdot \delta(x).$ 
  - For E>0, define wavevector  $k=\sqrt{2mE}/\hbar$ . For regions x>0 and x<0 away from  $\delta$ -potential, the problem is the same as free particle,  $-\frac{\hbar^2}{2m}\partial_x^2\psi=E\psi$ . Therefore the eigenstate is a linear combination of planewaves  $e^{\pm ikx}$  in each region.  $\psi=Ae^{ikx}+Be^{-ikx}$  for x<0; and  $\psi=Fe^{ikx}+Ge^{-ikx}$  for x>0.
  - Boundary condition at x=0:  $\psi$  is continuous,  $\psi(x=0+)=\psi(x=0-)$ , or A+B=F+G; for  $\partial_x \psi$ ,  $-\frac{\hbar^2}{2m}[\partial_x \psi(x=0+)-\partial_x \psi(x=0-)]+\alpha \psi(x=0)=0$ , or  $-\frac{\hbar^2}{2m}(ik)(F-G-A+B)+\alpha \cdot (A+B)=0$ . We can solve F,G in terms of A,B (textbook Problem 2.53), or solve B,F in terms of A,G (textbook Problem 2.52).
  - Transmission & reflection coefficient: consider the case with G = 0, view the A term as incident wave, B term
    as reflected wave, F term as transmitted wave. The transmission/reflection coefficient is the ratio
    transmitted/reflected probability current
    incident probability current
  - For planewave  $Ae^{ikx}$ , the probability current is  $J = \text{Re}[\psi^* \frac{\hat{p}}{m} \psi] = |A|^2 \frac{\hbar k}{m}$ .
  - Define  $\beta \equiv -\frac{m\alpha}{\hbar^2 k}$ , and  $E_0 = -\frac{m\alpha^2}{2\hbar^2}$  for the bound state energy (for  $\alpha < 0$  case, see last page).

Reflection coefficient 
$$R \equiv \left(\frac{|B|^2}{|A|^2}\right)_{G=0} = \frac{\beta^2}{1+\beta^2} = \frac{|E_0|}{|E_0|+E}$$
.

Transmission coefficient  $T \equiv \left(\frac{|F|^2}{|A|^2}\right)_{G=0} = \frac{1}{1+\beta^2} = \frac{E}{|E_0|+E}$ .

• Note that for low energy  $E \ll |E_0|$ , the incident wave is almost completely reflected; for high energy  $E \gg |E_0|$ , the potential is "transparent", the incident wave is almost completely transmitted.

40 4 40 4 3 4 3 4 3 4 3 4 9 9

#### Finite square well: bound states

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}), \ V(x) = \left\{ \begin{array}{ll} 0, & |x| > a; \\ -V_0, & |x| < a. \end{array} \right.$$

- lacktriangle According to [2.1], there may be bound states with  $-V_0 < E < 0$ .
- For x>a or x<-a, it is free particle  $-\frac{\hbar^2}{2m}\partial_x^2\psi=E\psi$ ; for -a< x< a, it is  $-\frac{\hbar^2}{2m}\partial_x^2\psi=(E+V_0)\psi$ . Define  $\kappa=\sqrt{-2mE}/\hbar$ ,  $k=\sqrt{2m(E+V_0)}/\hbar$ . The bound states must be  $\psi=Ae^{-\kappa x}$  for x>a;  $\psi=Be^{\kappa x}$  for x<-a;  $\psi=C\cos(kx)+D\sin(kx)$  for -a< x< a.
- The potential has inversion symmetry, V(x) = V(-x), the bound states will be either even or odd functions.
- The boundary condition is that  $\psi$  and  $\partial_x \psi$  are continuous at  $x=\pm a$ .
- Even solutions: B = A, D = 0. From the boundary condition at x = a (x = -a produces the same equations),  $Ae^{-\kappa a} = C \cos(ka)$ ,  $(-\kappa)Ae^{-\kappa a} = -kC \sin(ka)$ . So  $(\kappa a) = (ka) \cdot \tan(ka)$ .
- Odd solutions: B = -A, C = 0. From the boundary condition at x = a  $Ae^{-\kappa a} = D\sin(ka)$ ,  $(-\kappa)Ae^{-\kappa a} = kD\cos(ka)$ . So  $(\kappa a) = -(ka) \cdot \cot(ka)$ .
- Note that  $\kappa a$  and ka are positive, and  $(\kappa a)^2 + (ka)^2 = \frac{2mV_0a^2}{\hbar^2}$  is a constant (red circles in pictures below). Left picture:  $(x \cdot \tan x)$  has positive-valued branches for  $x \in (n\pi, n\pi + \frac{\pi}{2})$ , monotonically increasing from 0 to  $+\infty$  for x from  $n\pi$  to  $n\pi + \frac{\pi}{2}$ . Right picture:  $(-x \cdot \cot x)$  has positive-valued branches for  $x \in (n\pi \frac{\pi}{2}, n\pi)$ , monotonically increasing from 0 to  $+\infty$  for x from  $n\pi \frac{\pi}{2}$  to  $n\pi$ .
- Number of even solutions:  $\lfloor \frac{a\sqrt{2mV_0}}{\hbar\pi} \rfloor + 1$ . Number of odd solutions:  $\lfloor \frac{a\sqrt{2mV_0}}{\hbar\pi} + \frac{1}{2} \rfloor$ . There is always one bound state (ground state), with even wave function, no matter how small  $V_0$  is. This is a special property of 1D problems. In higher dimensions, shallow potential well may not have bound states.
- Exercise: check that when  $a \to 0$  and  $2aV_0 = \alpha$ , this becomes the δ-potential; check that when  $V_0 \to +\infty$ , this becomes the infinite square well.

4 D > 4 B > 4 E > 4 E > E 9 Q G

Fall 2020

# Finite square well: scattering states

$$\bullet \ \hat{H} = \frac{\hat{\rho}^2}{2m} + V(\hat{x}), \ V(x) = \left\{ \begin{array}{ll} 0, & |x| > a; \\ -V_0, & |x| < a. \end{array} \right.$$

- For scattering state, E>0, define  $k=\sqrt{2mE}/\hbar$ . The transmission coefficient  $T=[1+\frac{V_0^2}{4E(E+V_0)}\sin^2(\frac{2a}{\hbar}\sqrt{2m(E+V_0)})]^{-1}$ . See textbook Section 2.6 for details.
- When  $E=-V_0+\frac{\hbar^2}{2m}(\frac{n\pi}{2a})^2$  ( $n=1,2,\ldots$ ), the would-be bound state energy for infinite square potential well of width 2a, the transmission coefficient reaches unity (resonant tunneling). See a schematic picture of T vs. E below.



• Exercise: check that when  $a \to 0$  and  $2aV_0 = \alpha$ , the transmission coefficient becomes the  $\delta$ -potential result.

∢ロト ∢倒ト ∢差ト ∢差ト 差 めらぐ