EC708 Discussion 1 Linear Models and Asymptotic Theory

Yan Liu

Department of Economics
Boston University

January 21, 2022

Outline

- Linear Models
- 2 Convergence
- Consistency & Laws of Large Numbers
- Asymptotic Normality & Central Limit Theory

Contents are mainly based on *Asymptotic Theory for Econometricians* (White, 2002).

Yan Liu Asymptotics January 21, 2022 2/29

Table of Contents

Linear Models

- 2 Convergence
- Consistency
- Asymptotic Normality

Data Generating Processes

$$y_t = x_t' \beta + u_t, \quad t = 1, \dots, T$$

where

- we have T observations on y_t and $x_t = (x_{t1}, \dots, x_{tk})'$;
- y_t is the outcome variable (or dependent variable);
- x_t is a $k \times 1$ vector of independent variables (or covariates, regressors);
- u_t is unobserved;
- $\beta \in \mathbb{R}^k$ is an unknown parameter we are interested in.

n Liu Asymptotics January 21, 2022

Exogeneity

We need to make assumptions on u_t to learn about β from $\{(y_t, x_t)\}_{t=1}^T$:

• Strong exogeneity: E[u|X] = 0, where

$$u = (u_1, \dots, u_T)', X = (x_1, \dots, x_T)'.$$

- leads to unbiasedness of the OLS estimator;
- too strong to be justified in many applications especially in time series context. E.g. it rules out lagged dependent variables:

- Weak exogeneity: $E[u_t x_t] = 0$.
 - Under $E[u_t] = 0$, u_t and x_t are uncorrelated.

Estimation

Weak exogeneity provides identification of β :

$$E[x_t(y_t - x_t'\beta)] = 0 \implies \beta = (E[x_t x_t'])^{-1} E[x_t y_t].$$

A natural estimator is to use sample analogues:

$$\hat{\beta} = \left(\frac{1}{T} \sum_{t=1}^{T} x_t x_t'\right)^{-1} \frac{1}{T} \sum_{t=1}^{T} x_t y_t.$$

Estimation

We can always interpret β as the least squares or projection parameter in the population:

$$\beta = \arg\min_{b \in \mathbb{R}^k} E[(y_t - x_t'b)^2]$$

and \hat{eta} as the least squares or projection parameter in the sample:

$$\hat{\beta} = \operatorname*{arg\ min}_{b \in \mathbb{R}^k} \frac{1}{T} \sum_{t=1}^T (y_t - x_t' b)^2 \ \Rightarrow \ \text{OLS\ estimator}.$$

Estimation

By FOC, we obtain the decomposition identity

$$y_t = x_t' \beta + \varepsilon_t, \quad E[\varepsilon_t x_t] = 0.$$

However, without the linearity assumption on the true DGP, β is not necessarily a parameter of a structural or causal economic model.

Estimation

Frisch-Waugh-Lovell (FWL):

We can partition $x_t = (d_t', w_t')'$. E.g. in wage gender gap analysis, $1 \times k_1 + 1 \times k_2$

$$y_t = d_t' eta_1 + w_t' eta_2 + u_t.$$
wage gender controls indicator

For a random variable v_t , define the partialling-out operator w.r.t. w_t :

$$\check{v}_t = v_t - w_t' \hat{\gamma}_{vw}, \quad \hat{\gamma}_{vw} = \operatorname*{arg\ min}_{b \in \mathbb{R}^{k_2}} \sum_{t=1}^T (v_t - w_t' b)^2.$$

Then,

$$\hat{\beta}_1 = \arg\min_{b} \sum_{t=1}^{T} (\check{y}_t - \check{d}_t' b)^2 = \left(\frac{1}{T} \sum_{t=1}^{T} \check{d}_t \check{d}_t'\right)^{-1} \frac{1}{T} \sum_{t=1}^{T} \check{d}_t \check{y}_t.$$

Yan Liu Asymptotics January 21, 2022 8/29

• In finite samples, we care about (when β is scalar)

$$\begin{array}{l} P(\hat{\beta} > \beta + c) \text{("overshooting")} \\ P(\hat{\beta} < \beta - c) \text{("undershooting")} \end{array} \approx 1 - F(\sqrt{T}c) \end{array}$$

where F is the CDF of N(0, V).

- We use asymptotic approximations: $\sqrt{T}(\hat{\beta} \beta) \stackrel{d}{\to} N(0, V)$.
- Assumptions on sampling: $\{(y_t, x_t)\}_{t=1}^T$ satisfies regularity conditions on heterogeneity and dependence, e.g. i.i.d. (independent & identically distributed).

Table of Contents

Linear Models

- Convergence
- 3 Consistency
- Asymptotic Normality

Modes of Convergence

Let $\{Z_t : t = 1, 2, ...\}$ be a sequence of random variables.

• $Z_T \stackrel{a.s.}{\to} c : Z_T$ converges almost surely to c if

$$P\{\omega : \lim_{T \to \infty} Z_T(\omega) = c\} = 1.$$

• $Z_T \stackrel{p}{\to} c: Z_T$ converges in probability to c if for any $\varepsilon > 0$,

$$P\{\omega: |Z_T(\omega)-c|>\varepsilon\}\to 0 \text{ as } T\to\infty.$$

• $Z_T \stackrel{d}{\to} Z: Z_T$ converges in distribution to Z if

$$F_{Z_T}(z) \to F_Z(z)$$
 for every continuity point z of F_Z .

/an Liu Asymptotics January 21, 2022 10 / 29

Useful Tools

Continuous mapping theorem:

Let $\{Z_T\}$ be a sequence of random variables such that $Z_T \stackrel{p}{\to} (\text{ or } \stackrel{a.s.}{\to})c$. Let g be a function continuous at point c. Then $g(Z_T) \stackrel{p}{\to} (\text{ or } \stackrel{a.s.}{\to})g(c)$.

Slutsky's theorem:

Let $Z_T \stackrel{d}{\to} Z$ and $Y_T \stackrel{p}{\to} c$. Then

- $Z_T + Y_T \stackrel{d}{\rightarrow} Z + c$;
- $Z_T Y_T \stackrel{d}{\to} cZ$;
- $Y_T^{-1}Z_T \stackrel{d}{\to} c^{-1}Z$ provided Y_T^{-1} and c^{-1} exist.

Both theorems hold when Z_T , Y_T , and g are scalar or vectorial.

Big O and little o notation

- $Z_T = O_{a.s.}(T^{\lambda})$ means for some $\Delta < \infty$ and $T^* < \infty$, $P(|T^{-\lambda}Z_T| < \Delta \text{ for all } T > T^*) = 1.$
- $Z_T = O_p(T^{\lambda})$ means for every $\varepsilon > 0$, there exist finite $\Delta_{\varepsilon} > 0$ and $T_{\varepsilon} \in \mathbb{N}$ such that $P(|T^{-\lambda}Z_T| < \Delta_{\varepsilon}) > 1 \varepsilon$ for all $T > T_{\varepsilon}$.
- $Z_T = o_{a.s.}(T^{\lambda})$ means $T^{-\lambda}Z_T \stackrel{a.s.}{\to} 0$.
- $Z_T = o_p(T^{\lambda})$ means $T^{-\lambda}Z_T \stackrel{p}{\to} 0$.

Big O and little o notation

In particular,

- $Z_T = O_n(1)$: Z_T is bounded with probability approaching 1.
 - If $Z_T \stackrel{d}{\to} Z$, then $Z_T = O_n(1)$.
- $Z_T = o_n(1) \iff Z_T \stackrel{p}{\to} 0.$

Product rule:

If $A_T = O_p(1)$ and $b_T = o_p(1)$ (component wise), then $k \ge 1$

$$A_T b_T = o_p(1).$$

Table of Contents

Linear Models

- 2 Convergence
- Consistency
- Asymptotic Normality

Consistency

Overview

In the linear model, under

- weak exogeneity,
- no perfect multicollinearity,
- ullet restrictions on dependence, heterogeneity & moments of $\{(y_t,x_t)\}_{t=1}^T,$

$$\hat{\beta} = \left(\frac{1}{T} \sum_{t=1}^{T} x_t x_t'\right)^{-1} \frac{1}{T} \sum_{t=1}^{T} x_t y_t \stackrel{a.s.}{\to} \beta.$$

General Form

Given restrictions on the dependence, heterogeneity & moments of a sequence of random variables $\{Z_t\}$,

$$\bar{Z}_T - \bar{\mu}_T \stackrel{a.s.}{\rightarrow} 0,$$

where $\bar{Z}_T = \frac{1}{T} \sum_{t=1}^T Z_t$ and $\bar{\mu}_T = E(\bar{Z}_T)$.

- $\{Z_t\}$ is IID (independent & identically distributed)
- $\{Z_t\}$ is INID (independent & not identically distributed)
- $\{Z_t\}$ is dependent & identically distributed

IID Data

Kolmogrov's LLN (IID data)

Let $\{Z_t\}$ be a sequence of i.i.d. random variables. Then $\bar{Z}_T \stackrel{a.s.}{\to} \mu$ if and only if $E|Z_t| < \infty$ and $E(Z_t) = \mu$.

INID Data

Markov's LLN (INID data)

Let $\{Z_t\}$ be a sequence of independent random variables such that $E|Z_t|^{1+\delta} < M < \infty$ for some $\delta > 0$ and all t > 0. Then $\bar{Z}_T - \bar{\mu}_T \stackrel{a.s.}{\to} 0$.

• Remark: $E|Z_t|^{1+\delta} < M < \infty$ implies Markov's condition

$$\sum_{t=1}^{\infty} E|Z_t - \mu_t|^{1+\delta}/t^{1+\delta} < \infty \text{ where } \mu_t = E(Z_t).$$

Dependent & Identically Distributed Data

Stationarity (time-series counterpart of identical distribution):

- $\{Z_t\}$ is stationary if the joint distribution of $(Z_{t_1}, Z_{t_2}, \dots, Z_{t_m})$ is the same as that of $(Z_{t_1+s}, Z_{t_2+s}, \dots, Z_{t_m+s})$ for any (t_1, \dots, t_m) and s.
- Stationarity means that the distribution is constant over time.

Dependent & Identically Distributed Data

Ergodicity (time-series counterpart of independence):

- Stationarity alone is not sufficient for the LLN. E.g. $Z_t = Z$ for some random variable Z, then \bar{Z}_T will be inconsistent for $E[Z_t]$.
- $\{Z_t\}$ is ergodic if $\{Z_t\}$ is stationary and for every set A, B of real sequences,

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} P\{(Z_1, Z_2, \dots) \in A \text{ and } (Z_{t+1}, Z_{t+2}, \dots) \in B\}$$
$$= P\{(Z_1, Z_2, \dots) \in A\} P\{(Z_1, Z_2, \dots) \in B\}.$$

i.e. (Z_1,Z_2,\dots) and (Z_{t+1},Z_{t+2},\dots) are asymptotically independent on average.

Yan Liu Asymptotics January 21, 2022

Dependent & Identically Distributed Data

Ergodic theorem

Let $\{Z_t\}$ be a stationary ergodic scalar sequence with $E|Z_t|<\infty$. Then $\bar{Z}_T\stackrel{a.s.}{\to}\mu=E(Z_t)$.

• If Z_t is stationary ergodic and $X_t = \phi(Z_t, Z_{t-1}, Z_{t-2}, \dots)$ is a random vector, then X_t is stationary ergodic.

an Liu Asymptotics January 21, 2022 20 / 29

Table of Contents

Linear Models

- 2 Convergence
- Consistency
- 4 Asymptotic Normality

Asymptotic Normality

Overview

In the linear model, under

- weak exogeneity,
- no perfect multicollinearity,
- \bullet restrictions on dependence, heterogeneity & moments of $\{(y_t,x_t)\}_{t=1}^T,$

$$V_T^{-1/2}\sqrt{T}(\hat{\beta}-\beta) \stackrel{d}{\to} N(0,I)$$

where

$$V_T = Q_T^{-1} \Sigma_T Q_T^{-1}, \quad Q_T = E\left(\frac{1}{T} \sum_{t=1}^T x_t x_t'\right), \quad \Sigma_T = \operatorname{Var}\left(\frac{1}{\sqrt{T}} \sum_{t=1}^T x_t u_t\right).$$

Yan Liu Asymptotics January 21, 2022

General Form

Given restrictions on the dependence, heterogeneity & moments of a random scalar sequence $\{Z_t\}$,

$$\sqrt{T}(\bar{Z}_T - \bar{\mu}_T)/\bar{\sigma}_T \stackrel{d}{\to} N(0,1),$$

where
$$\bar{Z}_T = \frac{1}{T} \sum_{t=1}^T Z_t$$
, $\bar{\mu}_T = E(\bar{Z}_T)$, and $\bar{\sigma}_T^2 = \text{Var}(\sqrt{T}\bar{Z}_T)$.

However, we usually need the asymptotic normality of random vectors such as $\frac{1}{\sqrt{T}} \sum_{t=1}^{T} x_t u_t$. \Rightarrow Cramér-Wold device

/an Liu Asymptotics January 21, 2022 22 / 29

Cramér-Wold device

Let $\{Z_t\}$ be a sequence of $k \times 1$ random vectors. Suppose that for any $b \in \mathbb{R}^k$ such that $\|b\| = b'b = 1$,

$$b'Z_T \stackrel{d}{\to} b'Z$$
,

where Z is a $k \times 1$ random vector with distribution function F. Then,

$$Z_T \stackrel{d}{\to} Z$$
.

Hence, it is only necessary to study CLT for sequences of scalars.

/an Liu Asymptotics January 21, 2022

Delta Method

If $\sqrt{T}(Z_T-c)\stackrel{d}{\to} N(0,\Sigma)$ and g is continuously differentiable at c, then

$$\sqrt{T}(g(Z_T) - g(c)) \xrightarrow{d} N\left(0, \frac{\partial g(c)}{\partial c'} \Sigma\left(\frac{\partial g(c)}{\partial c'}\right)'\right).$$

Follows from a stochastic Taylor expansion and Slutsky's theorem:

$$\sqrt{T}(g(Z_T) - g(c)) = \frac{\partial g(Z_T)}{\partial c'} \sqrt{T}(Z_T - c)$$

where \tilde{Z}_T lies between Z_T and c so that $\tilde{Z}_T \stackrel{p}{\to} c$.

• If $c \in \mathbb{R}^k$ and $g : \mathbb{R}^k \to \mathbb{R}^r$, then

$$\frac{\partial g}{\partial c'} = \begin{pmatrix} \frac{\partial g_1}{\partial c_1} & \dots & \frac{\partial g_1}{\partial c_k} \\ \dots & \dots & \dots \\ \frac{\partial g_r}{\partial c_1} & \dots & \frac{\partial g_r}{\partial c_k} \end{pmatrix} \text{ is a } r \times k \text{ matrix.}$$

IID Data

Lindeberg-Lévy (IID data)

Let $\{Z_t\}$ be a sequence of i.i.d. random scalars with $\mu=E(Z_t)$ and $\sigma^2={\rm Var}(Z_t)<\infty.$ If $\sigma^2\neq 0$, then

$$\sqrt{T}(\bar{Z}_T - \mu)/\sigma \xrightarrow{d} N(0,1).$$

INID Data

Liapounov's CLT (INID data)

Let $\{Z_t\}$ be a sequence of independent random scalars with $E|Z_t-E(Z_t)|^{2+\delta}<\Delta<\infty$ for some $\delta>0$ and all t>0. If $\bar{\sigma}_T^2>\delta'>0$ for all T sufficiently large, then

$$\sqrt{T}(\bar{Z}_T - \bar{\mu}_T)/\bar{\sigma}_T \stackrel{d}{\to} N(0,1).$$

Remark: We can obtain CLT by imposing a uniform bound on $E|Z_t|^{2+\delta}$.

n Liu Asymptotics January 21, 2022

Dependent & Identically Distributed Data

Martingale difference sequence:

• $E[u_t x_t] = 0$ can be justified by the theory of rational expectations:

$$E[u_t|X_t,X_{t-1},\ldots;u_{t-1},u_{t-2},\ldots]=0$$
 (unforecastability)

- We call Z_t a martingale difference sequence (MDS) if $E[Z_t|Z_{t-1},Z_{t-2},\dots]=0$.
- More rigorously, we can write the conditional expectation as $E[Z_t|\mathcal{F}_{t-1}]=0$ where \mathcal{F}_{t-1} is a σ -algebra (information set) generated by the infinite history (Z_{t-1},Z_{t-2},\dots) .
 - $\mathcal{F}_{t-1} \subset \mathcal{F}_t$: information accumulates over time.
 - \mathcal{F}_t can contain variables other than Z_t .

Dependent & Identically Distributed Data

MDS CLT:

Let Z_t be a strictly stationary and ergodic martingale difference sequence such that $\sigma^2 = \text{Var}(Z_t) < \infty$. Then

$$\sqrt{T}\bar{Z}_T/\sigma \stackrel{d}{\to} N(0,1).$$

Dependent & Identically Distributed Data

Example: Estimation of autoregressive models Let y_t be a stationary and ergodic AR(p) process

$$y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \dots + \beta_p y_{t-p} + u_t,$$

where u_t is a MDS. Let $x_t = (1, y_{t-1}, \dots, y_{t-p})'$. Since x_t is part of \mathcal{F}_{t-1} , $E[x_t u_t | \mathcal{F}_{t-1}] = x_t E[u_t | \mathcal{F}_{t-1}] = 0$, i.e. $x_t u_t$ is a MDS.

Yan Liu Asymptotics January 21, 2022 29 / 29