

Low Power Wide Area Networks for the Internet of Things

Framework, Performance Evaluation, and Challenges of LoRaWAN and NB-IoT

Samer Lahoud Melhem El Helou

ESIB, Saint Joseph University of Beirut, Lebanon

ICT 2018, Saint-Malo, France

- S N

Tutorial Outcomes

- How do LPWAN complement traditional cellular and short-range wireless technologies?
- What are the fundamental mechanisms that enable to meet the LPWAN requirements?
- What are the major design choices made in the LoRaWAN and NB-IoT specifications?
- How do we evaluate the performance of a LoRaWAN and NB-IoT deployment in terms of coverage and capacity?
- What are the recent research directions for radio resource management in LoRaWAN and NB-IoT?

Feedback and Material

- Feedback form
- Presentation slides are available

Outline

1 Performance Evaluation

Link Budget

Enhanced Network Capacity

- LoRa employs orthogonal spreading factors which enables multiple spread signals to be transmitted at the same time and on the same channel
- Modulated signals at different spreading factors appear as noise to the target receiver
- The equivalent capacity of a single 125 kHz LoRa channel is:

$$SF12 + SF11 + SF10 + SF9 + SF8 + SF7 + SF6$$

$$= 293 + 537 + 976 + 1757 + 3125 + 5468 + 9375$$

$$= 21531 \text{ b/s} = 21.321 \text{ kb/s}$$

F S C

Link Budget

- The link budget is a measure of all the gains and losses from the transmitter, through the propagation channel, to the target receiver
- The link budget of a network wireless link can be expressed as:

$$P_{Rx} = P_{Tx} + G_{System} - L_{System} - L_{Channel} - M$$

where:

 P_{Rx} = the expected received power

 P_{Tx} = the transmitted power

 G_{System} = system gains such as antenna gains

 L_{System} = system losses such as feed-line losses

 $L_{Channel}$ = losses due to the propagation channel

M = fading margin and protection margin

Coverage of LoRaWAN

Evaluation Scenario

Area

■ Surface: square of 8 Km × 8 Km

■ Number of end-devices: 1000

Distribution of end-devices: uniform

■ Single gateway

■ Environment type: urban

Radio link

■ Bandwidth: 125 kHz

■ Transmit power: 14 dBm

■ Gateway height: 30 m

■ End-device height: 1.5 m

■ Antenna gains: 3 dBi

■ Noise floor: -153 dBm

■ Pathloss: Okumura-Hata

lacksquare Shadow fading: lognormal $\mathcal{N}(0,8)$

Pathloss Model

■ Using the Okumura-Hata urban model, the pathloss between device i and the gateway is proportional to the logarithm of the distance d(i, g) in Km:

$$L_{Channel}(i) = A + B \log_{10}(d(i,g))$$

■ The two parameters A and B depend on the antenna heights ($h_b = 30$ m for the gateway and $h_d = 1.5$ m for the end-device) and the central frequency $f_c = 868$ MHz

$$A = 69.55 + 26.16 \log_{10}(f_c) - 13.82 \log_{10}(h_b) - 3.2(\log 10(11.75h_d))^2 + 4.97$$

$$B = 44.9 - 6.55 \log_{10}(h_b)$$

L S C

Link Budget

- We consider the following parameters:
 - Transmit power: $P_{Tx} = 14 \text{ dBm}$
 - Sum of antenna gains: $G_{System} = 6 \text{ dBi}$
 - Fading and protection margin: M = 10 dB
 - Noise floor: N = -153 dBm
- We can now compute the received power $P_{RX}(i)$ and SNR(i) for end-device i:

$$P_{Rx}(i) = P_{Tx} + G_{System} - L_{Channel}(i) - M$$

 $SNR(i) = P_{Rx}(i) - N$

Spreading Factor Selection

■ The spreading factor for each end-device is selected using the following matching table:

SNR Interval (dB)	Spreading Factor
$[-7.5, +\infty[$	7
[-10, -7.5[8
[-12.5, -10[9
[-15, -12.5[10
[-17.5, -15[11
[-20, -17.5[12

■ Note that for SNR values lower that -20 dB, the end-device is considered out of coverage of the gateway

Spreading Factor	7	8	9	10	11	12
Cumulative coverage (%)	40.50	51.60	61.60	70.40	77.70	86.10

Spreading Factor	7	8	9	10	11	12
Cumulative coverage (%)	40.50	51.60	61.60	70.40	77.70	86.10

Spreading Factor	7	8	9	10	11	12
Cumulative coverage (%)	40.50	51.60	61.60	70.40	77.70	86.10

Spreading Factor	7	8	9	10	11	12
Cumulative coverage (%)	40.50	51.60	61.60	70.40	77.70	86.10

Spreading Factor	7	8	9	10	11	12
Cumulative coverage (%)	40.50	51.60	61.60	70.40	77.70	86.10

Spreading Factor	7	8	9	10	11	12
Cumulative coverage (%)	40.50	51.60	61.60	70.40	77.70	86.10

Spreading Factor	7	8	9	10	11	12
Cumulative coverage (%)	40.50	51.60	61.60	70.40	77.70	86.10

Spreading Factor and Time on Air

- The Time on Air is defined as the time required to transmit a packet in a sub-band
- The selection of the spreading factor impacts the Time on Air and consequently determines the duty cycle limitation

Spreading Factor and Energy Consumption

Source: Lluís Casals et al., Modeling the Energy Performance of LoRaWAN, Sensors, 2017

- DR0 to DR5 correspond to spreading factors 12 to 7 with a bandwidth of 125
 kHz. DR6 correspond to spreading factor 7 and a bandwidth of 250 kHz
- For an end-device sending packets every 100 minutes, changing the spreading factor from 12 to 7 increases its lifetime by almost 1.5 years

Enhancing the Coverage with Multiple Gateways

Spreading Factor	7	8	9	10	11	12
Cumulative coverage (%)	88.70	94.50	97.60	99.20	99.60	100.00

Capacity of LoRaWAN

I S O

Pure ALOHA Model

 \blacksquare The start times of the packets in an ALOHA channel is modeled as a Poisson point process with parameter λ packets/second

■ If each packet in the channel lasts T_a seconds, the normalized channel traffic can be defined as

$$G = \lambda T_a$$

■ The normalized throughput of the ALOHA random access channel is given by

$$S = G \exp(-2G)$$

ALOHA Model for LoRaWAN

- We consider the case where only one spreading factor and one sub-channel are available
- The general case of multiple sub-channels and spreading factors can be easily inferred
 - Multiple spreading factors are orthogonal
 - Packets are uniformly transmitted on available sub-channels
- The time to transmit a packet of l bytes (size of MAC payload) on spreading factor s is denoted $T_a(l,s)$
- Given a duty cycle limitation of d=1%, the packet generation rate for each end-device operating on spreading factor s must verify:

$$\lambda(s) \le \frac{d}{T_a(l,s)}$$

■ The normalized channel traffic for N end-devices is obtained as follows:

$$G = N.\lambda(s).T_a(s)$$

Capacity Formulas for LoRaWAN

- We consider a LoRaWAN network with N end-devices and one gateway
 - One spreading factor s and one sub-channel are available
 - Transmit attempts are done according to a Poisson distribution
 - \blacksquare All end-devices have the same packet generation rate $\lambda(s)$
 - All packets have the same length of *l* bytes
- The normalized throughput of the LoRaWAN network is given by:

$$S = G \exp(-2G) = N\lambda(s)T_a(l, s) \exp(-2N\lambda(s)T_a(l, s))$$

■ The total number of successfully received packets per second is obtained by:

$$\frac{1}{T_a(l,s)} \times S$$

L S C

Received Packets per Hour

■ The number of received packets per hour decreases after 50 end-devices

l=50 bytes, SF=7,
$$\lambda(\mathrm{s})=rac{\mathrm{d}}{\mathrm{T_a(l,s)}}$$

Received Packets per End-Device per Hour

■ For 100 end-devices generating 289 packets per hour, the average number of received packets per end-device equals 40 per hour

l=50 bytes, SF=7,
$$\lambda(s)=rac{d}{T_a(l,s)}$$

L n C

Packet Arrival Rate

- For small number of end-devices, the throughput is limited by the duty cycle
- For large number of end-devices, the throughput is limited by collisions

l=50 bytes, SF=7

Comparison for Different Spreading Factors

$$l$$
=50 bytes, $\lambda(s)=rac{d}{T_a(l,s)}$

■ For 50 end-devices, the average number of received packets per end-device per hour increases from 6 to 106 when SF decreases from 12 to 7

Use Case Conclusion

■ Conclude for use case

Multiple Gateways and Capture Effect

■ The total number of received packets starts decreasing after 50 end-devices

- 8 U

Old remove

ALOHA with duty cycle

$$\frac{\delta}{\tau} N \exp(-2N\frac{\delta}{\tau})$$

ALOHA with multiple receivers and perfect packet capture

$$\frac{\delta}{\tau} N \exp(-2N\frac{\delta}{\tau}) (1 + \sum_{n=2}^{N} \frac{(2N\frac{\delta}{\tau})^n}{n!} (1 - (1 - \frac{1}{n})^r))$$

ALOHA with multiple receivers and realistic packet capture

$$\frac{\delta}{\tau} N \exp(-2N\frac{\delta}{\tau}) \left(1 + \sum_{n=2}^{N} \frac{(2N\frac{\delta}{\tau})^n}{n!} \left(1 - \left(1 - \frac{K^{n-1}}{n}\right)^r\right)\right)$$

with

$$K = \frac{1}{2} 10^{-\frac{\Delta}{10\alpha}}$$