Homework 5

自硕 21 崔晏菲 2021210976

注:因为我不会 R 语言,所以代码都是用 Python 写的。代码文件见 homework5-code.ipynb

7.1

解:

a.

b.

$$P(X,\delta) = \prod_{i=1}^{n} \left(\delta \frac{1}{0.5\sqrt{2\pi}} e^{-\frac{1(x_i - 7)^2}{20.5^2}} + (1 - \delta) \frac{1}{0.5\sqrt{2\pi}} e^{-\frac{1(x_i - 10)^2}{20.5^2}} \right)$$

c.

d.

$$U = \ln \frac{\delta}{1 - \delta}, \delta = \frac{1}{(e^{-U} + 1)}$$

在 U 空间进行 $\epsilon \sim U(-b,b)$ 的随机游走,则

$$g(U^{t}|U^{*}) = g(U^{*}|U^{t}) = \frac{1}{2b}$$
$$|Jacob(U)| = \frac{e^{-U}}{(e^{-U} + 1)^{2}} = e^{-U}\delta^{2}$$

e.

可见,当随机游走步数为U(-1,1)时,在 δ 空间的随机游走和独立链的结果是等价的。当随机游走的步长越小,收敛速度越慢。在U空间中的随机游走不论是方差还是收敛速度都要弱于在delta空间的随机游走。这是因为非线性变换造成的步长扭曲。

7.5

解:

a.

b.

$$\begin{split} &P(\theta|\tau) \\ &= \frac{\theta^a \tau^b e^{(-c\theta - d\theta \tau)}}{\int_0^{+\infty} \theta^a \tau^b e^{(-c\theta - d\theta \tau)} d\theta} \\ &= \frac{\theta^a e^{(-c\theta - d\theta \tau)}}{(d\tau + c)^{-a - 1} \Gamma(a + 1)} \\ &\sim \Gamma(a + 1, d\tau + c) \\ &P(\tau|\theta) \\ &= \frac{\theta^a \tau^b e^{(-c\theta - d\theta \tau)}}{\int_0^{+\infty} \theta^a \tau^b e^{(-c\theta - d\theta \tau)} d\tau} \\ &= \frac{\tau^b e^{-d\theta \tau}}{(d\theta)^{-b - 1} \Gamma(b + 1)} \\ &\sim \Gamma(b + 1, d\theta) \end{split}$$

c. 采样结果为:

Using Burn-in and Run Length method, get R_theta = 1.000192, R_tau = 1.000344 可见, 拟合得相当好。

d.

	marginal mean	std	95% interval LB	95% interval UB
theta	0.034032	0.023688	0.004239	0.094301
tau	0.916754	1.523507	0.052322	4.537479

e. τ的先验分布为

$$f(\tau)$$

$$\propto \int_0^{+\infty} \theta^a \tau^b e^{(-c\theta - d\theta \tau)} d\theta$$

$$= (d\tau + c)^{-a-1} \Gamma(a+1) \tau^b$$

归一化后,得

$$f(\tau) = \frac{c^{a-b}d^{b+1}\Gamma(a+1)}{\Gamma(a-b)\Gamma(b+1)}(d\tau+c)^{-a-1}\tau^b$$

f. τ 是一个比例系数, τ < 1时才意味着该激素对病人有效。而根据吉布斯采样得到的均值和置信区间,我们倾向于认为该激素对病人无效。

g.

The statics of origin hyperparemeters:

	marginal mean	std	95% interval LB	95% interval UB
theta	0.034032	0.023688	0.004239	0.094301
tau	0.916754	1.523507	0.052322	4.537479

The statics of origin hyperparemeters divide by 2:

	marginal mean	std	95% interval LB	95% interval UB
theta	0.033225	0.033424	0.000729	0.122396
tau	5.244312	33.200553	0.046139	32.349776

The statics of origin hyperparemeters times 2:

	marginal mean	std	95% interval LB	95% interval UB
theta	0.033540	0.016717	0.008956	0.073503
tau	0.496958	0.478717	0.067289	1.824140

可见, τ对超参数非常敏感。建议先对超参数进行更准确的估计。

7.7

解:

a. 证明:

$$\begin{split} &\mu^{(t+1)}|\left(\alpha^{(t)},\beta^{(t)},y\right) \\ &= E\left[y_{ij} - \alpha_i^{(t)} - \beta_{ij}^{(t)} - \epsilon_{ij}\right] \\ &= \frac{1}{n} \sum_{i=1}^{I} \sum_{j=1}^{J_i} \left(y_{ij} - \alpha_i^{(t)} - \beta_{ij}^{(t)} - \epsilon_{ij}\right) \\ &= \frac{1}{n} y_{ij} - \frac{1}{n} \sum_{i=1}^{I} J_i \alpha_i^{(t)} - \frac{1}{n} \sum_{i=1}^{I} \sum_{j=1}^{J_i} \beta_{ij}^{(t)} - \frac{1}{n} \sum_{i=1}^{I} \sum_{j=1}^{J_i} \epsilon_{ij} \end{split}$$

而 y_{ij} , $\alpha_{ij}^{(t)}$, $\beta_{ij}^{(t)}$ 都是已知量,且 $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$,故

$$\mu^{(t+1)}|(\alpha^{(t)}, \beta^{(t)}, y) \sim N\left(y_{\cdot \cdot} - \frac{1}{n} \sum_{i} J_{i} \alpha_{i}^{(t)} - \frac{1}{n} \sum_{j(i)} \beta_{j(i)}^{(t)}, \frac{\sigma_{\epsilon}^{2}}{n}\right)$$

$$P\left(\alpha_{i}^{(t+1)}|(\mu^{(t+1)}, \beta^{(t)}, y)\right)$$

$$\propto P\left(\alpha_{i}^{(t+1)}\right) \prod_{j=1}^{J_{i}} P\left(\epsilon_{ij} = y_{i} - \alpha_{i}^{(t+1)} - \mu^{(t+1)} - \beta_{ij}^{(t)}\right)$$

$$\propto e^{-\frac{1\alpha_{i}^{(t+1)^{2}}}{2} \prod_{j=1}^{J_{i}} e^{-\frac{1}{2} \sum_{j=1}^{J_{i}} \frac{\left(y_{i} - \alpha_{i}^{(t+1)} - \mu^{(t+1)} - \beta_{ij}^{(t)}\right)^{2}}{\sigma_{\epsilon}^{2}}$$

$$\propto e^{-\frac{1}{2} \left(\frac{\alpha_{i}^{(t+1)^{2}}}{\sigma_{\alpha}^{2}} + \sum_{j=1}^{J_{i}} \frac{\alpha_{i}^{(t+1)^{2}} - 2\alpha_{i}^{(t+1)} y_{ij} + 2\alpha_{i}^{(t+1)} \mu^{(t+1)} + 2\alpha_{i}^{(t+1)} \beta_{ij}^{(t)}}{\sigma_{\epsilon}^{2}} \right) }$$

$$= e^{-\frac{1}{2} \left(\frac{\alpha_{i}^{(t+1)^{2}} \left(\frac{\sigma_{\epsilon}^{2}}{J_{i}} + \sigma_{\alpha}^{2} \right) - \alpha_{i}^{(t+1)} \frac{1}{J_{i}} \sum_{j=1}^{J_{i}} \left(y_{ij} - \mu^{(t+1)} - \beta_{ij}^{(t)} \right)}{\frac{\sigma_{\alpha}^{2} \sigma_{\epsilon}^{2}}{J_{i}}} \right) }$$

$$\propto \exp \left(-\frac{1}{2} \frac{\left(\alpha_{i}^{(t+1)} - \frac{1}{\left(\frac{\sigma_{\epsilon}^{2}}{J_{i}} + \sigma_{\alpha}^{2} \right) J_{i}} \sum_{j=1}^{J_{i}} \left(y_{ij} - \mu^{(t+1)} - \beta_{ij}^{(t)} \right) \right)^{2}}{\frac{\sigma_{\alpha}^{2} \sigma_{\epsilon}^{2}}{J_{i}} \cdot \frac{1}{\left(\frac{\sigma_{\epsilon}^{2}}{J_{i}} + \sigma_{\alpha}^{2} \right)}} \right)$$

故,
$$\alpha_i^{(t+1)} \sim N\left(\frac{J_i V_1}{\sigma_\epsilon^2} \left(y_i - \mu^{(t+1)} - \frac{1}{J_i} \beta_{j(i)}^{(t)} \right), V_1 \right)$$
,其中, $V_1 = \left(\frac{J_i}{\sigma_\epsilon^2} + \frac{1}{\sigma_\alpha^2} \right)^{-1}$ 同理, $\beta_{j(i)}^{(t)} \sim N\left(\frac{V_2}{\sigma_\epsilon^2} \left(y_{ij} - \mu^{(t+1)} - \alpha_i^{(t+1)} \right), V_2 \right)$,其中 $V_2 = \left(\frac{1}{\sigma_\epsilon^2} + \frac{1}{\sigma_\beta^2} \right)^{-1}$

证毕.

b. 证明:

$$P\left(\mu^{(t+1)}|(\gamma^{(t)},\eta^{(t)},y)\right)$$

$$= \prod_{i=1}^{I} P\left(\alpha_{i} = \gamma_{i}^{(t)} - \mu^{(t+1)}\right)$$

$$\propto e^{-\frac{1}{2}\left(\sum_{i=1}^{I} \frac{\left(\gamma_{i}^{(t)} - \mu^{(t+1)}\right)^{2}}{\sigma_{\alpha}^{2}}\right)}$$

$$\propto e^{-\frac{1}{2}\left(\frac{I\mu^{(t+1)^{2}} - 2\mu^{(t+1)}\sum_{i=1}^{I} \gamma_{i}^{(t)}}{\sigma_{\alpha}^{2}}\right)}$$

$$\propto \exp\left(-\frac{1}{2} \frac{\left(\mu^{(t+1)} - \frac{1}{I}\sum_{i=1}^{I} \gamma_{i}^{(t)}\right)^{2}}{\frac{\sigma_{\alpha}^{2}}{I}}\right)$$

故 $\mu^{(t+1)}|(\gamma^{(t)},\eta^{(t)},y)\sim N\left(\frac{1}{l}\sum_{i=1}^{l}\gamma_i^{(t)},\frac{\sigma_{\alpha}^2}{l}\right)$ 同理,

$$\begin{split} & P\left(\gamma_{i}^{(t+1)} | \left(\mu^{(t+1)}, \eta^{(t)}, y\right)\right) \\ & = P\left(\alpha_{i} = \gamma_{i}^{(t+1)} - \mu^{(t+1)}\right) \cdot \prod_{j=1}^{J_{i}} P\left(\beta_{ij} = \eta_{ij}^{(t)} - \gamma_{i}^{(t+1)}\right) \end{split}$$

$$\propto e^{-\frac{1}{2} \left(\frac{\gamma_i^{(t)} - \mu^{(t+1)}}{\sigma_\alpha^2} \right)^2} \cdot e^{-\frac{1}{2} \left(\sum_{j=1}^{l_i} \frac{\left(\eta_{ij}^{(t)} - \gamma_i^{(t+1)} \right)^2}{\sigma_\beta^2} \right)}$$

$$- \frac{1}{2} \left(\frac{\gamma_i^{(t)^2} - 2\mu^{(t+1)} \gamma_i^{(t)}}{\sigma_\alpha^2} + \frac{1}{l_i} \sum_{j=1}^{l_i} \gamma_i^{(t+1)^2}}{\frac{\sigma_\beta^2}{l_i}} - 2^{\frac{\gamma_i^{(t+1)} \sum_{j=1}^{l_i} \eta_{ij}^{(t)}}{\sigma_\beta^2}} \right)$$

$$\propto e^{-\frac{1}{2} \left(\left(\frac{J_i}{\sigma_\beta^2} + \frac{1}{\sigma_\alpha^2} \right) \gamma_i^{(t+1)^2} - 2 \left(\frac{1}{\sigma_\beta^2} \sum_{j=1}^{l_i} \eta_{ij}^{(t)} + \frac{\mu^{(t+1)}}{\sigma_\alpha^2} \right) \gamma_i^{(t+1)} \right) }$$

$$= e^{-\frac{1}{2} \left(\left(\frac{J_i}{\sigma_\beta^2} + \frac{1}{\sigma_\alpha^2} \right) \gamma_i^{(t+1)^2} - 2 \left(\frac{1}{\sigma_\beta^2} \sum_{j=1}^{l_i} \eta_{ij}^{(t)} + \frac{\mu^{(t+1)}}{\sigma_\alpha^2} \right) \gamma_i^{(t+1)} \right) }$$

$$\propto \exp \left(-\frac{1}{2} \frac{\left(\gamma_i^{(t+1)} - \left(\frac{J_i}{\sigma_\beta^2} + \frac{1}{\sigma_\alpha^2} \right)^{-1} \left(\frac{1}{\sigma_\beta^2} \sum_{j=1}^{l_i} \eta_{ij}^{(t)} + \frac{\mu^{(t+1)}}{\sigma_\alpha^2} \right) \right)^2}{\left(\frac{J_i}{\sigma_\beta^2} + \frac{1}{\sigma_\alpha^2} \right)^{-1}} \right)$$

$$\Rightarrow \psi \left(V_3 \left(\frac{1}{\sigma_\beta^2} \sum_{j=1}^{l_i} \eta_{ij}^{(t)} + \frac{\mu^{(t+1)}}{\sigma_\alpha^2} \right), V_3 \right), \quad \not \exists \ \forall \ V_3 = \left(\frac{J_i}{\sigma_\beta^2} + \frac{1}{\sigma_\alpha^2} \right)^{-1}$$

$$\Rightarrow \eta_{ij}^{(t+1)} | \left(\mu^{(t+1)}, \gamma^{(t)}, \gamma \right) \sim N \left(V_2 \left(\frac{\gamma_{ij}}{\sigma_\epsilon^2} + \frac{\gamma_i^{(t+1)}}{\sigma_\beta^2} \right), V_2 \right)$$

$$\Rightarrow \psi \left(V_3 \left(\frac{1}{\sigma_\beta^2} \sum_{j=1}^{l_i} \eta_{ij}^{(t)} + \frac{\mu^{(t+1)}}{\sigma_\alpha^2} \right), V_3 \right), \quad \not \exists \ \forall \ V_3 = \left(\frac{J_i}{\sigma_\beta^2} + \frac{1}{\sigma_\alpha^2} \right)^{-1}$$

$$\Rightarrow \psi \left(V_3 \left(\frac{1}{\sigma_\beta^2} \sum_{j=1}^{l_i} \eta_{ij}^{(t)} + \frac{\mu^{(t+1)}}{\sigma_\alpha^2} \right), V_3 \right), \quad \not \exists \ \forall \ V_3 = \left(\frac{J_i}{\sigma_\beta^2} + \frac{1}{\sigma_\alpha^2} \right)^{-1}$$

$$\Rightarrow \psi \left(V_3 \left(\frac{1}{\sigma_\beta^2} \sum_{j=1}^{l_i} \eta_{ij}^{(t)} + \frac{\mu^{(t+1)}}{\sigma_\alpha^2} \right), V_3 \right), \quad \not \exists \ \forall \ V_3 = \left(\frac{J_i}{\sigma_\beta^2} + \frac{J_i}{\sigma_\beta^2} \right)^{-1}$$

$$\Rightarrow \psi \left(V_3 \left(\frac{J_i}{\sigma_\beta^2} + \frac{J_i}{\sigma_\alpha^2} \right)^{-1} \right)$$

 $\left(\frac{1}{\sigma_{\alpha}^{2}}\right)^{-1}$