From Stochastic Grammar to Bayes Network: Probabilistic Parsing of Complex Activity

Nam Vo & Aaron Bobick (CVPR2014)

Data

Proposed dataset:

<u>Toy dataset</u> [+<u>Human+Robot</u> video]

Weizmann dataset

10 simple actions (concatenated) Run, walk, skip, jump, ...

GTech Egocentric Activities dataset

7 activities, 4 humans Making sandwiches, coffee, ... All kitchen activities

Overview

Goals:

<u>Recognize</u> and <u>predict</u> actions (start, stop, type) in a complex activity.

Approach:

- Temporal Hierarchy w/ (Context Free Grammar)
- Generate Bayes Net
- Black box features

Contributions:

- Inference on And/Or Graph
- Start/End times are random variables
- Code+data: http://www.cc.gatech.edu/~nvo9/sin/

Overview

Aside: Context Free Grammar

G = (N, T, R, S) N is a non-terminal R is a Rule

T is a terminal S is the starting symbol

Example:

V=A, B, C T = x, y, z Rules: S -> AB | C A -> AA | xy

A -> AA | XY B -> yz | Cz C -> z

For stochastic/prob/weighted grammar add weights to rules

CFG -> Bayes Net

Three rules:

- 1. Rules must be "And" or "Or" and probabilistic
- 2. Symbols can only appear once on RHS of rule
- 3. Symbols cannot be of arbitrary length (e.g. S -> SA | A not allowed)

CFG And-Or Graph

Bayes Net

Bayes Net

Node types: (**Primitive**: v, **And**: A->MN, **Or**: A->M | N)

And: Ns = Me

Bayes Net

Node types: (**Primitive**: v, **And**: A->MN, **Or**: A->M | N)

Conditional probability: P(ve | vs) = N(ve-vs; mu, sigma)

<u>Likelihood</u>: P(Zv | vs, ve) = hv * Fv[vs, ve] Blackbox (e.g. probabilistic output of SVM) They use hand position, indicators from environment

Inference

Inputs:

```
P(v_e | v_s) \forall v

P(Z^v | v_s, v_e) \forall v

P(S_s | S); P(Z^e | S_e, S)
```

- 1. Forward Step
- 2. Backward Step
- 3. Compute posteriors
- 4. Compute happening probability

Complexity: O(KT²)

Inference (forward)

 $P(A_s, Z^{pre(A)} | \exists A)$ and $P(A_e, Z^{pre(A), A} | \exists A)$ for every A.

1. For **primitives** v. Given $P(v_s, Z^{pre(v)} | \exists v)$:

 $P(\text{start}, \text{end}, \text{actions}_{\text{prev}} \mid v) = P(\text{start}, \text{actions}_{\text{prev}} \mid v) P(\text{duration}) P(\text{Likelihood})$

$$P(v_s, v_e, Z^{pre(v),v} | \exists v) = P(v_s, Z^{pre(v)} | \exists v) P(v_e | v_s) P(Z^v | v_s, v_e)$$

Marginalize over starting positions

$$P(v_e, Z^{pre(v),v} \mid \exists v) = \sum_{t=1}^{I} P(v_s = t, v_e, Z^{pre(v),v} \mid \exists v)$$

2. For **Ands** A->MN

$$P(M_{s} = t, Z^{pre(M)} | \exists M) = P(A_{s} = t, Z^{pre(A)} | \exists A)$$

$$P(N_{s} = t, Z^{pre(N)} | \exists N) = P(M_{e} = t, Z^{pre(M)}, M | \exists M)$$

$$P(A_{e} = t, Z^{pre(A), A} | \exists A) = P(N_{e} = t, Z^{pre(N), N} | \exists N)$$

3. For **ORs** A-> M | N
$$P(M_s = t, Z^{pre(M)} | \exists M) = P(A_s = t, Z^{pre(A)} | \exists A) = P(N_s = t, Z^{pre(N)} | \exists N) = P(A_s = t, Z^{pre(A)} | \exists A)$$

 $P(N_e, Z^{pre(N),N} \mid \exists N)$, then:

$$P(A_e = t, Z^{A,pre(A)} \mid \exists A) = P(\exists M \mid \exists A)P(Z^N \mid !N)P(M_e = t, Z^{M,pre(M)} \mid \exists M)$$
$$P(\exists N \mid \exists A)P(Z^M \mid !M)P(N_e = t, Z^{N,pre(N)} \mid \exists N)$$

Toy Plane Dataset

Toy Plane Dataset

wing a3 start (Bin 4)

100

200

300

400

Figure 7. Result on our toy assembly dataset: (a) accuracy of model classification, (b) average localization error and (c) entropy of all actions' start

Weizmann Dataset

Concatenate random videos together

10x: Walk, Run, Jump, Gallop sideways, Bend Jumping Jack, Skip, One-hand wave, Two-hands wave, Jump in place

Method	Segmentation Accuracy
[14]	69.7%
[6]	87.7%
Ours	93.6%

 $A \rightarrow walk \mid run \mid jump \mid side \mid bend \mid \\ wave1 \mid wave2 \mid jump \mid jumpjack \mid skip \mid \emptyset$

GTech Egocentric Activities

Long activities

Cheese sandwich, sweet tea coffee, coffee with honey, hotdog peanut butter sandwich peanut butter and jelly

 $S \rightarrow Activity1 \mid Activity2 \mid ...$ $Activity1 \rightarrow Sequence1 \mid Sequence2 \mid ...$ $Sequence1 \rightarrow p_action1 \ p_action2 \ p_action3...$

•••

Takeaways

Good

- Removes typical Markov assumption
- Streaming method available (also doable with other PGM methods)

Bad

- Rules must be defined per task
- Restrictions on CFG's grammar