mT Universal (a) Codificação de mTs

Profa. Laís Salvador

Antes de mT Universal

Como codificar mTs?

Cadeias podem representar polinômios, grafos, gramáticas, autômatos...

Antes de mT Universal

Como codificar mTs?

Como uma cadeia sobre o alfabeto {0,1} pode representar uma mT?

Vamos ver a codificação proposta por Marcus Ramos

Ordenação de cadeias binárias

Seja $\Sigma = \{0, 1\}$. Então o conjunto Σ^* é enumerável.

- \blacktriangleright Basta considerar as cadeias $w \in \Sigma^*$ em ordem crescente de comprimento;
- Para cada comprimento, considerar as cadeias ordenadas lexicograficamente;
- ϵ , 0, 1, 00, 01, 10, 11, 000, 001, 010, ...
- ightharpoonup A *i*-ésima cadeia será denotada w_i ;
- $\mathbf{v}_1 = \epsilon, w_2 = 0, w_3 = 1, w_4 = 00, w_5 = 01, w_6 = 10, w_7 = 11, \dots$

Codificação de Máquinas de Turing

Convenções

Seja M com alfabeto de entrada $\Sigma=\{0,1\}$. Uma codificação de M sobre o próprio alfabeto Σ é a seguinte:

- $Q = \{q_1, q_2, ..., q_r\};$
- ▶ Suponha que o estado inicial é q_1 ;
- Suponha critério de aceitação "Entrada" (a máquina pára quando entra num estado final);
- ▶ Suponha que há um único estado final, e ele é q_2 ;
- $\Sigma = \{X_1, X_2, ..., X_s\};$
- ▶ Suponha $X_1 = 0, X_2 = 1, X_3 = B$. Os demais símbolos são auxiliares;
- Suponha que D_1 representa movimento para a esquerda, D_2 para a direita.

Linguagem L_d

Codificação de Máquinas de Turing

Convenções

Considere $\delta(q_i,X_j)=(q_k,X_l,D_m)$. Uma codificação para essa transição é: $0^i10^j10^k10^l10^m$

onde:

- ▶ 0^i representa o estado q_i ;
- ▶ 0^j representa o símbolo X_j ;
- ▶ 0^k representa o estado q_k ;
- ▶ 0^l representa o símbolo X_l ;
- ▶ 0^m representa o movimento D_m .

Como i,j,k,l,m são maiores que zero, a cadeia 11 não é subcadeia de $0^i10^j10^k10^l10^m$. 11 será usada para separar transições.

Linguagem L_d

Codificação de Máquinas de Turing

Convenções

Considere $|\delta|=n$. Uma codificação para δ (e consequentemente para a Máquina de Turing M) é:

$$C_1 11 C_2 11 ... C_{n-1} 11 C_n$$

onde C_i representa a codificação da transição i.

Como cada C_i começa e termina com pelo menos um símbolo 0, a cadeia 111 não é subcadeia de $C_111C_211...C_{n-1}11C_n$. 111 será usada para separar a MT de outros elementos, se for o caso.

Linguagem \mathcal{L}_d

Codificação de Máquinas de Turing Exemplo

Seja:

$$M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, \delta, q_1, B, \{q_2\})$$

com:

$$\delta(q_1, 1) = (q_3, 0, R) \qquad \underbrace{0}_{q_1} \underbrace{1}_{1} \underbrace{00}_{q_3} \underbrace{1}_{0} \underbrace{00}_{1} \underbrace{1}_{0} \underbrace{00}_{R}$$

$$\delta(q_3, 0) = (q_1, 1, R) \qquad 0001010100100$$

$$\delta(q_3, 1) = (q_2, 0, R) \qquad 0001001001010$$

$$\delta(q_3, B) = (q_3, 1, L) \qquad 0001000100110$$

Portanto, a cadeia que representa M é:

$$\underbrace{0100100010100}_{\delta(q_1,1)=(q_3,0,R)} 11 \underbrace{0001010100100}_{\delta(q_3,0)=(q_1,1,R)} 11 \underbrace{000100100100100}_{\delta(q_3,1)=(q_2,0,R)} 11 \underbrace{000100010001001001}_{\delta(q_3,1)=(q_3,1,L)}$$

◆□▶ ◆□▶ ◆臺▶ · 臺 · 少へ⊙

Linguagem L_d

Cadeias binárias e Máquinas de Turing

Com a ressalva abaixo, é possível considerar a i-ésima cadeia binária w_i como sendo a representação de uma Máquina de Turing, denotada M_i .

- Se w_i não respeita as regras de formação enunciadas anteriormente, então considerar M_i como a Máquina de Turing formada por um único estado (não-final), sem transições, e que pára para qualquer entrada; portanto, $L(M_i) = \{\};$
- ▶ Caso contrário, w_i denota a Máquina de Turing M_i codificada conforme as regras expostas.

Marcus Ramos (UNIVASF)

Decidibilidade

1 de julho de 2016

45 / 269

Já vimos que existe uma quantidade incontável de linguagens/problemas e somente uma quantidade contável de máquinas de Turing...

Uma quantidade incontável de problemas Uma quantidade contável de códigos numa LP

qual a consequência?

Uma pergunta:

Qual é o limite das mTs?

Elas resolvem todos os problemas computacionais?

Uma limitação das mTs discutidas até momento: elas são "hardwired"

elas executam apenas um programa

Computadores reais são re-programáveis

Solução: Máquina de Turing Universal

Atributos:

Reprogramável

Simula qualquer outra mT

- Máquina de Turing capaz de simular qualquer outra máquina de Turing.
 - → capacidade de autoreferência
- A máquina deve conter na fita:
 - O conjunto de instruções sobre o comportamento da máquina a ser simulada;
 - O conteúdo da fita da máquina a ser simulada.

Possibilita questões sobre o comportamento de outras máquinas de Turing.

- Muitas dessas questões são indecidíveis, ou seja, a função em questão não pode ser calculada por nenhuma máquina de Turing.
- Ex: Problema de determinar se uma máquina de Turing em particular vai parar para uma entrada dada (ou para qualquer entrada) é indecidível

Vamos ver com mais detalhes a mT Universal no slides de Marcus Ramos

Máquina de Turing Universal

Conceito

- Máquinas de Turing incorporam os programas que elas executam na sua definição;
- Como transformar uma Máquina de Turing em dados para outra Máquina de Turing processar?
- ightharpoonup Resposta: Máquina de Turing Universal (U);
- Aceita como entrada a descrição de uma outra Máquina de Turing e a entrada que essa outra máquina deve processar;
- Simula a máquina descrita e produz como resultado o mesmo resultado que a máquina simulada produziria;
- É universal pois é capaz de executar qualquer algoritmo.

Convenções

U possui quatro fitas:

- A primeira fita contém a descrição da máquina a ser simulada ($\langle M \rangle$) e a sua correspondente entrada (w);
- A segunda fita é usada para simular a fita da máquina a ser simulada (M); símbolos X_i , $i \ge 1$, são denotados 0^i e são separados na fita pelo símbolo 1; 0 representa 0, 00 representa 1 e 000 representa B;
- A terceira fita é usada para representar o estado de M; estados $q_i, i \geq 1$, são denotados 0^i ;
- A quarta fita é usada para rascunho.

Convenções

Suponha $\langle M \rangle = C_1 11 C_2 11...11 C_{n-1} 11 C_n$ e w=01011... Então:

Inicialização

- 1) U verifica se $\langle M \rangle$ corresponde à descrição de uma Máquina de Turing válida; em caso negativo, U pára e rejeita a entrada (descrições inválidas representam máquinas que aceitam a linguagem vazia, portanto toda entrada deve ser rejeitada);
- 2) U copia a cadeia w da primeira para a segunda fita, codificando os seus símbolos da maneira apropriada (seqüências de 0 separadas pelo símbolo 1);
- 3) U posiciona a cabeça de leitura no primeiro símbolo da segunda fita;
- 4) Como, por convenção, o estado inicial de M é q_1 , U grava o símbolo $0^1=0$ na terceira fita.

Operação

- 5) Se o símbolo gravado na posição corrente da segunda fita é 0^j (símbolo corrente de M) e a cadeia contida na terceira fita é 0^i (estado corrente de M), então U procura, na primeira fita, pela cadeia $0^i10^j10^k10^l10^m$, a qual representa a transição que seria executada por M nessa configuração (lembre-se que M é determinístico);
- 6) Caso não exista tal transição, então M pára e portanto U deve parar também:
- 7) Caso exista tal transição, então U:
 - ▶ Modifica o símbolo corrente de M na segunda fita (de 0^j para 0^l)
 - ▶ Modifica o estado corrente de M na terceira fita (de 0^i para 0^k);
 - ▶ Desloca a cabeça de leitura na segunda fita para o próximo símbolo da esquerda (se m=1) ou da direita (se m=2); lembre-se que os símbolos são cadeias de 0 separadas por 1;
 - Se o novo estado for 00 (que representa q_2 , o estado final de M), então U pára e aceita a entrada.

Conclusão

- ightharpoonup U simula M com a entrada w;
- U pára e aceita $\langle M \rangle w \Leftrightarrow M$ pára e aceita w;
- U pára e rejeita $\langle M \rangle w \Leftrightarrow M$ pára e rejeita w;
- ▶ U entra em loop infinito com $\langle M \rangle w \Leftrightarrow M$ entra em loop infinito com w;

Conceito

Suponha que $\langle M \rangle$ representa uma codificação de uma MT M sobre o alfabeto $\{0,1\}$. Suponha que w é uma cadeia sobre esse mesmo alfabeto. A "linguagem universal":

$$L_u = \{\langle M \rangle w | M \text{ \'e uma MT que aceita } w\}$$

 $\acute{\mathrm{e}}$ aceita por U .

- lacktriangle O problema de determinar se uma Máquina de Turing M aceita a cadeia w pode ser traduzido...
- ▶ Pelo problema de determinar se $\langle M \rangle w \in L_u$...
- ▶ Ou seja, determinar se $\langle M \rangle w \in L(U)$;
- ▶ $L_u = L(U)$ é recursiva, RE não-recursiva ou não-RE?

Linguagem L_u

Teorema 4

 L_u é RE não-recursiva

L_u é RE:

lacktriangle U é uma Máquina de Turing que aceita L_u .