

YEAR 12 MATHEMATICS SPECIALIST SEMESTER ONE 2016

TOTAL AREAD	PRACTICE TEST 1: Complex Numbers				
WESLEY COLLEGE By daring & by doing					

Time: 60 minutes /55 Mark

Mostly calculator free – scientific OK.

- [7 marks] 1.
- Complete the table: a)

	Rectangular form	Polar form		
Z	6 + 6 <i>i</i>			
W		$2cisigg(rac{\pi}{6}igg)$		

[2]

b) Determine:

$$\frac{iz}{z}$$

w(i)

(ii)
$$w^3$$

(iii) $\overline{z} + w$

2. [7 marks]

Given that $8 \operatorname{cis} \left(-\frac{5\pi}{6} \right)$ is one of the cube roots of a complex number z, determine:

a) |z|

[1]

b) $\operatorname{Arg}(z)$ such that $-\pi < \operatorname{Arg}(z) \leq \pi$

[2]

c) The other two cube roots of z

[2]

d) A solution for *w* in the equation $w^9 = z$

[2]

3. [12 marks]

For $f(z) = z^4 - 4z^3 + 9z^2 - 16z + 20$, determine:

b) the remainder when
$$f(z)$$
 is divided by $(x-1)$

$$f(z) = k$$
 [1]

[1]

c)
$$q(z)$$
 if $\frac{f(z)}{z-1} = q(z) + \frac{k}{z-1}$ [1]

d)
$$f(2i)$$
 [1]

e) two solutions to
$$f(z) = 0$$
 [2]

f) all solutions to
$$f(z) = 0$$
 [4]

g)
$$f(z)$$
 in a fully factored form (as a product of 4 linear terms) [2]

- 4. [14 marks]
 - a) Convert both $1 + \sqrt{3} i$ and 1 + i into polar form.

[2]

b) Hence express $z = \frac{1 + \sqrt{3} i}{1 + i}$ in the form $r \operatorname{cis} \theta$.

[2]

c) Determine the smallest positive integer n for which z^n is purely imaginary and state the value of z^n for this particular n value.

d) Solve for w given that $2w^4 = 1 + \sqrt{3}i$ and plot your solutions on the Argand diagram below.

e) If w_n represents the n^{th} solution to the equation in d) moving anticlockwise around the Argand diagram, explain the geometric meaning of $|w_n - w_{n-1}|$ and determine its value.

[4]

5. [8 marks]

a) Sketch neatly the locus of z where |z-2i|=|z+4|, then determine the Cartesian equation of the resulting sketch.

b) Write an inequality that describes the locus of *z* shown below.

c) For the locus shown in b) determine the minimum value of |z|.

[3]

[3]

6. [7 marks]

a) Sketch the region in the Argand diagram below that simultaneously satisfies the inequalities:

$$\operatorname{Im}(z+i) \ge 2 \quad \cap \quad |z| \le \operatorname{arg}(z), \quad 0 \le \operatorname{arg}(z) \le 2\pi$$

b) For z = a + bi, prove that $\frac{1}{z} = \frac{\overline{z}}{|z^2|}$