FORMULAS

$t_n = a + (n-1)d$	$S_n = [a + t_n](n/2)$
$t_n = a r^{n-1}$	$S_n = a \left \frac{r^n - 1}{r - 1} \right $
$1+1+1+\cdots n\ times=n$	$1 + 2 + 3 + \cdots n = (n/2)(n+1)$
$1^2 + 2^2 + 3^2 + \dots + n^2 = (n/6)(n+1)(2n+1)$	$1^3 + 2^3 + 3^3 + \dots + n^3 = [(n/2)(n+1)]^2$

$\sin^2\theta + \cos^2\theta = 1$	$\sec^2\theta - \tan^2\theta = 1$	$\csc^2\theta - \cot^2\theta = 1$
$\sin 2\theta = \frac{2\tan\theta}{1+\tan^2\theta}$	$\cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$	$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$
$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$	$\cos 3\theta = 4\cos^3\theta - 3\cos\theta$	$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$
$\sin^2\theta = \frac{1 - \cos 2\theta}{2}$	$\cos^2\theta = \frac{1 + \cos 2\theta}{2}$	$\tan^2\theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$

 $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$

$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$	$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
$\sin(\alpha + \beta)\sin(\alpha - \beta) = \sin^2\alpha - \sin^2\beta$	$\cos(\alpha + \beta)\cos(\alpha - \beta) = \cos^2\alpha - \sin^2\beta$
$\tan \alpha \pm \tan \beta$	$\cot \alpha \cot \beta \mp 1$
$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$	$\cot(\alpha \pm \beta) = \frac{\cot \beta \cot \alpha}{\cot \beta \pm \cot \alpha}$

$2\sin\alpha\cos\beta = \sin(\alpha + \beta) + \sin(\alpha - \beta)$	$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$
$2\cos\alpha\sin\beta = \sin(\alpha + \beta) - \sin(\alpha - \beta)$	$\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$
$2\cos\alpha\cos\beta = \cos(\alpha+\beta) + \cos(\alpha-\beta)$	$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$
$2\sin\alpha\sin\beta = -\cos(\alpha+\beta) + \cos(\alpha-\beta)$	$\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$

FUNCTION	DOMAIN	CO-DOMAIN	FUNCTION	DOMAIN	CO-DOMAIN
sin	R	[-1,1]	sin ^{−1}	[-1,1]	$[-\pi/2,\pi/2]$
cos	R	[-1,1]	cos ⁻¹	[-1,1]	$[0,\pi]$
tan	$R - \{(2K+1)\pi/2\}$	R	tan ⁻¹	R	$(-\pi/2,\pi/2)$
cot	$R-\{K\pi\}$	R	cot ⁻¹	R	$(0,\pi)$
sec	$R - \{(2K+1)\pi/2\}$	R - (-1,1)	sec ⁻¹	R - (-1,1)	$[0,\pi] - \{\pi/2\}$
cosec	$R - \{K\pi\}$	R - (-1,1)	cosec ^{−1}	R - (-1,1)	$[-\pi/2,\pi/2]-\{0\}$

FUNCTION	PERIOD	ROOTS	FUNCTION	PERIOD	ROOTS
sin	2π	$K\pi$	cosec	2π	Ø
cos	2π	$(2K+1)\pi/2$	sec	2π	Ø
tan	π	$K\pi$	cot	π	$(2K+1)\pi/2$

		1
$\sin^{-1} - x = -\sin^{-1} x$, $ x \le 1$	$\cos^{-1} - x = \pi - \cos^{-1} x$, $ x \le 1$	$\tan^{-1} - x = -\tan^{-1} x, x \in R$
$\csc^{-1} - x = -\csc^{-1} x, x \ge 1$	$\sec^{-1} - x = \pi - \sec^{-1} x$, $ x \ge 1$	$\cot^{-1} - x = \pi - \cot^{-1} x, x \in R$

$\sin^{-1} x = \csc^{-1}(1/x)$, Where $x \in [-1,1] - \{0\}$		$\csc^{-1} x = \sin^{-1}(1/x)$, Where $ x \ge 1$	
$\cos^{-1} x = \sec^{-1}(1/x)$, Where $x \in [-1, -1]$	$1] - \{0\}$	$sec^{-1} x =$	$\cos^{-1}(1/x)$, Where $ x \ge 1$
for x > 0	$tan^{-1} x$	$= \cot^{-1}(1/x)$	$\cot^{-1} x = \tan^{-1}(1/x)$
for x < 0	$\tan^{-1} x =$	$\cot^{-1}(1/x) - \pi$	$\cot^{-1} x = \tan^{-1}(1/x) + \pi$

$\sin^{-1} x + \cos^{-1} x = \pi/2$, $ x \le 1$ $ \csc^{-1} x + \sec^{-1} x = \pi/2$	$ x = \pi/2, x \ge 1$ $\tan^{-1} x + \cot^{-1} x, x \in R$
$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right), xy < 1$	$\tan^{-1} x + \tan^{-1} y = \pi + \tan^{-1} \left(\frac{x+y}{1-xy} \right), xy > 1$
$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right)$	$\tan^{-1} x + \tan^{-1} y = \frac{\pi}{2}, x = y$

0 < x < 1	$\sin^{-1} x = \cos^{-1} \sqrt{1 - x^2} = \tan^{-1} \left(x / \sqrt{1 - x^2} \right)$
0 < x < 1	$\cos^{-1} x = \sin^{-1} \sqrt{1 - x^2} = \tan^{-1} \left(\sqrt{1 - x^2} / x \right)$
x > 0	$\tan^{-1} x = \cos^{-1} \left(1/\sqrt{1+x^2} \right) = \sin^{-1} \left(x/\sqrt{1+x^2} \right)$

$Sin Rule: \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$	$\cos A = \frac{b^2 + c^2 - a^2}{2bc} \cos B = 0$	$\frac{a^2 + c^2 - b^2}{2ac} \left \cos C = \frac{a^2 + b^2 - c^2}{2ab} \right $
$a = b\cos C + c\cos B$	$b = a\cos C + c\cos A$	$c = a\cos B + b\cos A$
$\Delta = 0.5 bc \sin A$	$\Delta = 0.5 \ ac \sin B$	Δ = 0.5 $ab \sin C$

$$\frac{d}{dx}(a^x) = a^x \ln a$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(\log_a x) = \frac{1}{x(\ln a)}$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

$\frac{d}{dx}(\sin x) = \cos x$	$\frac{d}{dx}(\cos x) = -\sin x$
$\frac{d}{dx}(\tan x) = \sec^2 x$	$\frac{d}{dx}(\cot x) = -\csc^2 x$
$\frac{d}{dx}(\sec x) = \tan x \sec x$	$\frac{d}{dx}(\csc x) = -\csc x \cot x$
$\frac{d}{dx}(\sinh x) = \cosh x$	$\frac{d}{dx}(\cosh x) = \sinh x$
$\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$	$\frac{d}{dx}(\coth x) = -\operatorname{cosech}^2 x$
$\frac{d}{dx}(\operatorname{sech} x) = -\tanh x \operatorname{sech} x$	$\frac{d}{dx}(\operatorname{cosech} x) = -\operatorname{cosech} x \operatorname{coth} x$

$$\frac{d}{dx}\sin^{-1}(x) = -\frac{d}{dx}\cos^{-1}(x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\sec^{-1}(x) = -\frac{d}{dx}\csc^{-1}(x) = \frac{1}{|x|\sqrt{x^2-1}}$$
$$\frac{d}{dx}\tan^{-1}x = -\frac{d}{dx}\cot^{-1}x = \frac{1}{x^2+1}$$

$\frac{d}{dx}\sinh^{-1}(x) = \frac{1}{\sqrt{1+x^2}}$	$\frac{d}{dx}\cosh^{-1}(x) = \frac{\pm 1}{\sqrt{x^2 - 1}}$
$\frac{d}{dx}\tanh^{-1}x = \frac{\pm 1}{1 - x^2}$	$\frac{d}{dx}\coth^{-1}(x) = \frac{1}{1 - x^2}$
$\frac{d}{dx}\operatorname{sech}^{-1}(x) = -\frac{\pm 1}{ x \sqrt{1-x^2}}$	$\frac{d}{dx}\operatorname{cosec}^{-1}(x) = -\frac{1}{ x \sqrt{1+x^2}}$

$\int x^n dx = \frac{x^{n+1}}{n+1}$	$n \in R - \{-1\}$
$\int \frac{1}{x} dx = \ln x $	$x \in R - \{0\}$
$\int \cos x dx = \sin x$	$\forall x \in R$
$\int \sin x dx = -\cos x$	$\forall x \in R$
$\int \sec^2 x dx = \tan x$	$x \neq (2K-1)\frac{\pi}{2}$
$\int \csc^2 x dx = -\cot x$	$x \neq K\pi$
$\int \sec x \tan x dx = \sec x$	$x \neq (2K-1)\frac{\pi}{2}$
$\int \csc x \cot x dx = -\csc x$	$x \neq K\pi$

$\int e^x dx = e^x$	
$\int a^x dx = \frac{a^x}{\ln a}$	$a \in R^+ - \{1\}$
$\int \frac{1}{x^2 + x^2} dx = -\tan^{-1} \left(\frac{x}{x}\right)$	$a \in R - \{0\}$
$\int \frac{1}{x^2 + a^2} dx = \frac{-1}{a} \cot^{-1} \left(\frac{x}{a}\right)$	$a \in R - \{0\}$
$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} ln \left(\frac{x - a}{x + a} \right)$	$a \in R - \{0\} \& except (-a, a)$
$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} ln \left(\frac{x + a}{x - a} \right)$	$a \in R - \{0\} \& except (-a, a)$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) = -\cos^{-1} \left(\frac{x}{a}\right)$	$x \in (-a, a), a > 0$
$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \cot^{-1} \left(\frac{x}{a}\right)$ $\int \frac{1}{x^2 + a^2} dx = \frac{1}{2a} \ln \left(\frac{x - a}{x + a}\right)$ $\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left(\frac{x + a}{x - a}\right)$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) = -\cos^{-1} \left(\frac{x}{a}\right)$ $\int \frac{1}{ x \sqrt{x^2 - a^2}} dx = \frac{1}{a} \sec^{-1} \left(\frac{x}{a}\right) = -\frac{1}{a} \csc^{-1} \left(\frac{x}{a}\right)$	x > a > 0
$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln\left x + \sqrt{x^2 \pm a^2}\right $	$\forall x \in R$
$\int \tan x dx = \ln \sec x $	
$\int \cot x dx = \ln \sin x $	
$\int \csc x dx = \ln \csc x - \cot x = \ln\left \tan\frac{x}{2}\right $	
$\int \sec x dx = \ln \sec x + \tan x = \ln\left \tan\left(\frac{\pi}{2} + \frac{x}{2}\right)\right $	

$\int e^x [f(x) + f'(x)] dx = e^x f(x)$	$\int f(ax+b) dx = \frac{1}{a} F(ax+b)$
$\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1}$	$\int \frac{f'(x)}{f(x)} dx = \ln f(x) $

$$\int \sqrt{x^2 \pm a^2} \, dx = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{x^2 \pm a^2} \right| \qquad \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a}$$

$$\int e^{ax} \sin(bx+k) dx = \frac{e^{ax}}{a^2 + b^2} [a \sin(bx+k) + b \cos(bx+k)]$$

$$\int e^{ax} \cos(bx+k) dx = \frac{e^{ax}}{a^2 + b^2} [a \cos(bx+k) + b \sin(bx+k)]$$

$$\int uv \ dx = uv_1 - u'v_2 + u''v_3 - u'''v_4 + \dots \qquad d(uv) = udv + vdu \qquad d\left(\frac{u}{v}\right) = \frac{v \ du - u \ dv}{v^2}$$

INTEGRAL	LETS
$\sqrt{x^2 + a^2}$	$x = a \tan \theta \ or \ x = a \cot \theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta \ or \ x = a \ \csc \theta$
$\sqrt{a^2-x^2}$	$x = a \sin \theta \ or \ x = a \cos \theta$
$\sqrt{\frac{a-x}{a+x}}$	$x = a \cos 2\theta$
$\sqrt{2ax - x^2} = \sqrt{a^2 - (x - a)^2}$	$x = 2a \sin^2 \theta \text{ or}$ $x - a = a \sin \theta \text{ or } x - a = a \cos \theta$
$\begin{array}{ c c c c c c }\hline 1 & 1 & 1 \\ \hline a+b\sin x & a+b\cos x & a+b\sin x+c\cos x \\ \hline \end{array}$	$t = \tan\frac{x}{2}$