Question 1 (3 pts)

Given a circuit as in the figure 1.

Write the system of equations for the given circuit by the nodal voltage method? Express branch currents in terms of chosen node voltage?

Question 2 (3 pts)

Given a circuit as in the figure 2, where: $R_1 = 20\Omega$,

$$R_2 = 80\Omega$$
, $L_2 = 0.5H$, $R_3 = 40\Omega$, $V_5 = 60V$ (DC).

Using the Laplace transformation, find the step response $i_t(t)$ when the switch S is opened at the time t = 0? (Note that, for t < 0, the given circuit was being in steady state)

Question 3 (3 pts)

Given a circuit as in the figure 3, where:

$$\dot{E}_3 = 20 \angle 0^{\circ} V$$
; $\dot{E}_7 = 10 \angle 30^{\circ} V$ (all in RMS);

$$Z_3 = 10 + j5\Omega$$
; $Z_4 = 20\Omega$; $Z_5 = 15 + j10\Omega$;

$$Z_6 = 10\Omega$$
; $Z_7 = 5 + j5\Omega$; two-port network with

the admittance parameters
$$Y = \begin{bmatrix} 0.05 & -0.04 \\ 0.04 & -0.05 \end{bmatrix} S$$
.

Calculate the currents through Z_3 and Z_7 (using the nodal voltage method)?

Figure 3

Note: Good presentation: 1 pt