برقی آلات

خالد خان يوسفر. كي

جامعہ کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

ix		ديباچه
3	<i>ڡ</i> ؙ <i>ڹ</i>	1 بنیادی خ
3	ينياد ي اکائيال	1.1
3	غيرستى	1.2
4	سمتير	1.3
5		1.4
5	1.4.1 كارتيسى محدد ي نظام	
7	1.4.2 نىکى محددى نظام	
9	سمتيررقبر	1.5
11	رقبه عمودی تراش	1.6
12	ىر قى اور مقناطىيى مىدان	1.7
12	1.7.1 برتی میدان اور برتی میدان کی شدت	
13	1.7.2 متناطیسی میدان اور مقناطیسی میدان کی شدت	

iv

13	سطحی اور محجمی کثافت	1.8	
13	1.8.1 سطى كثافت		
14	حجى كثافت	1.9	
15	صليبي ضرب اور ضرب نقطه	1.10	
15	1.10.1 صلیبی ضرب		
17	1.10.2 نقطی ضرب		
20	تفرق اور جزوی تفرق	1.11	
20	خطی تکمل	1.12	
21	سطى تكمل	1.13	
22	مر حلی سمتیه	1.14	
27	ادوار	2 مقناطیسی	2
2727	اد دار مزاحمت اور نچکچا ہٹ		2
		2.1	2
27	مزاحمت اور پچکچا بٹ	2.1	2
2728	مزاحمت اور نچکچاہٹ	2.1 2.2 2.3	2
27283032	مزاحمت اور نچکپا به شد	2.1 2.2 2.3 2.4	2
2728303234	مزاحمت اور انگیاپت گافت برقی رواور برقی میدان کی شدت برقی ادوار مقناطیسی دور حصه اول گافت ِمقناطیسی بهاواور مقناطیسی میدان کی شدت	2.1 2.2 2.3 2.4	2
27 28 30 32 34 36	مزاحمت اور نچکپا به شد کثافت برقی رواور برقی میدان کی شدت برقی اد وار متناطیسی دور حصد اول کثافت ِ مقناطیسی بهاو اور مقناطیسی میدان کی شدت متناطیسی دور حصد دوم	2.1 2.2 2.3 2.4 2.5 2.6	2
27 28 30 32 34 36 40	مزاحمت اور نیکچا په ت کثافت برقی رواور برقی میدان کی شدت برقی اد وار متناطیسی دور حصه اول کثافت ِمتناطیسی بهاوادر متناطیسی میدان کی شدت متناطیسی دور حصه دوم	2.1 2.2 2.3 2.4 2.5 2.6	2

عـــنوان

57		ٹرانسفارمر	3
58	رانسفار مرکی اہمیت	3.1	
61	رانسفار م کے اقسام	ž 3.2	
61	الى برقى د ياد	3.3	
63	جان انگیز برقی رواور قالبی ضیاع	3.4	
66	بادلە برقى دېاواور تبادلە برقى روكے خواص	3.5	
70	نوی جانب بو جھ کاابتدائی جانب اثر	÷ 3.6	
71	رانسفار مرکی علامت پر نقطوں کامطلب	3.7	
72	كاوث كاتبادله	3.8	
77	رانسفار مر کاوولٹ -ایمپییئر	3.9	
79	رانسفار مر کے امالہ اور مساوی ادوار	3.10	
79	3.10.1 کچھے کی مزاحمت اوراس کی متعاملہ علیحدہ کرنا	1	
81	3.10.2 رِستالاله	2	
82	3.10.3 ثانوی برقی رواور قالب کے اثرات	3	
83	3.10.4 ثانوی کیچیے کاامالی برقی دباو	4	
83	3.10.5 ثانوی کچھے کی مزاحمت اور متعاملہ کے اثرات	5	
85	. 3.10 ركاوك كاابتدائى ياثانوى جانب تبادله	6	
87	3.10.7 ٹرانسفار مرکے سادہ ترین مساوی ادوار	7	
88	لطح د ورمعا ئند	3.11	
89	3.11.1 كىلادورمعائنە	1	
91	3.11.2 كىر دور معائنە	2	
95	نین مر حله ٹرانسفار مر	3.12	
103	رانسفار م جالو کرتے لحیه زیادہ محر کی برتی رو کا گزر	3.13	

vi

ميكانى توانائى كا بابمى تبادله	بر قی اور	4
مقناطيسي نظام ميں قوت اور قوت مروڑ	4.1	
تبادلية توانائي والاايك لچھے كانظام	4.2	
توانا كي اور ۽ مه توانا كي	4.3	
متعدد کیجھوں کامقناطیسی نظام	4.4	
شین کے بنیاد کی اصول 129	گھو <u>متے</u> م	5
تانون فیراڈے	5.1	
معاصر مشين	5.2	
محرک برقی دیاو	5.3	
ت ي لي كچيے اور سائن نمامقناطيسي دياو	5.4	
5.4.1 بدلتي رووالے مشين		
مقناطیسی د باو کی گھومتی موجیں	5.5	
5.5.1 يك مرحله كي ليني مشين		
5.5.2 تين مرحله کي لپڻي مشين کا تحليلي تجزيه		
5.5.3 تين مر حله کي کپڻي مشين کاتر سيمي تجربيه		
محرک بر تی د باد	5.6	
5.6.1 بدلتی روبر تی جزیئر		
5.6.2 کیک سمتی روبر تی جزیئر		
ہموار قطب مثینوں میں قوت مروڑ	5.7	
5.7.1 توانائی کے طریقے سے میکانی قوت مر وڑ کا حماب		
5.7.2 متناطبی بهاوی میکانی قوت مر وژکاحیاب		

vii

ر مشين 179	ال حال، بر قرار چالو معاص	6 كيسا
ىرمشين	6 متعدد مرحله معاص	.1
امالہ	6 معاصر مشین کے ا	.2
الله	6.2.1 نود	
تر که الله	6.2.2 شخ	
صراماله	6.2.3 معا	
ماوى دوريارياضى نمونه	6 معاصر مثين كامسا	.3
لى	6 برقی طاقت کی منتقا	.4
ر چالو مثین کے خصوصیات	6 کیساں حال، بر قرار	.5
196	6.5.1 معا	
197	6.5.2 معا	
رمعائنه	6 کھلے دوراور کسرِ دو	.6
يەدور معائنە	6.6.1	
ر دور موائد	6.6.2 کبر	

211	امالی مشیر	7
ساكن كېھوں كى گھومتى مقناطىيى موخ	7.1	
مشین کی سر کنے اور گھومتی موجول پر تبعرہ	7.2	
ساكن كېھول مين امالي بر قي د باو	7.3	
ساکن کچھوں کی موج کا گھومتے کچھوں کے ساتھ اضافی رفتار اور ان میں پیدا امالی برقی دباو	7.4	
گھومتے کچھوں کی گھومتی متناطبیبی دباو کی موج بی میں باوی موج بیان کے مصلے کے مصلے کے مصلے کے مصلے کے مصلے کی مصلے کے مصلے کی مصلے کے مصلے کی مصلے کے مصلے کی مصلے کی مصلے کے مصلے کی مصلے کی مصلے کے مصلے کی مصلے کے مصلے کی مصلے کے مصلے کی مصلے کی مصلے کے مصلے کی مصلے کی مصلے کے مصلے کی مصلے کی مصلے کی مصلے کی مصلے کے مصلے کی مصلے کے مصلے کی م	7.5	
گھومتے کچھوں کے مساوی فرضی ساکن کچھے ۔	7.6	
المالي موشر كامساوى برقى دور	7.7	
مىاوى برقى دورېرغور	7.8	
المالى موٹر كامساوى تقونن دوريارياضى نمونىد	7.9	
پنجرانماامالي موٹر	7.10	
بے بوچھ موٹراور جامد موٹر کے معائنہ	7.11	
7.11.1 بے بو چھ موٹر کا معائنہ		
7.11.2 جامد موٹر کا معائنہ		
رومشين	يك سمتى	8
ميكاني ست كاركي بنيادى كاركروگى	8.1	
8.1.1 ميكاني ست كاركي تفصيل		
يك ستى جزيرً كى برقى د باو	8.2	
قوت مرور الله الله الله الله الله الله الله الل	8.3	
يروني بيجان اور خود بيجان يك سمتى جزير	8.4	
يک سمتی مشين کی کار کرو گی کے خط	8.5	
8.5.1 حاصل برتی د باو بالقابل برتی بوجھ		
8.5.2 رفتار بالمقابل قوت مرور مرور 8.5.2		
269	لً	فرہنًا

ديباجيه

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکتان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیقی کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

ہمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے تابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں کی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پھھ کرنے کی نیت رکھنے کے باوجود پھھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ کلفے کا جواز بنانے سے انکار کر دیا اور پول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں کھی گئی ہے۔کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال سکتیکی الفاظ میں استعال کئے جائیں۔جہاں ایسے الفاظ موجود نہ سے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی اصطلاحات کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا قوامی نظامِ اکائی استعال کی گئ ہے۔اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔یوں اردو میں لکھی اس کتاب اور انگریزی میں اسی مضمون پر لکھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گ۔

یہ کتاب Ubuntu استعال کرتے ہوئے XeLatex میں تشکیل دی گئی۔ یہ کتاب خطِ جمیل نوری نستعلق میں ککھی گئی ہے۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیز نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الیکٹریکل انجنیز نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری برقیاتی پنہ

khalidyousafzai@comsats.edu.pk

پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

میں یہاں عائشہ فاروق اور ان کے والد فاروق اعظم کا شکریہ ادا کرنا چاہوں گا جنہوں نے اس کتاب کو بار بار پڑھا اور جھے مجبور کرتے رہے کہ میں اپنی اردو بہتر کروں۔ میں ڈاکٹر نعمان جعفری کا نہایت مشکور ہوں جنہوں نے کتاب کی تکنیکی اصطلاح کرنے میں مدد کی۔ حرا خان اور ان کی والدہ عزرا برلاس نے مل کے کتاب کو درست کرنے میں مدد کی۔ یہاں میں اپنے شاگرد فیصل خان کا بھی شکریہ ادا کرنا چاہوں گا جنہوں نے تکنیکی اصطلاحات چننے میں میری مدد کی۔

میں یہاں کامسیٹ یونیور سٹی اور ہائر ایجو کیشن کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے الیمی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر. ئي

2011 توبر 2011

ريباپ

باب1

بنيادي حقائق

اس کتاب میں مستعمل حقائق کو اس باب میں اکٹھے کرنے کی کوشش کی گئی ہے۔ توقع کی جاتی ہے کہ یوں کتاب پڑھتے وقت اصل مضمون پر توجہ رکھنا زیادہ آسان ہو گا۔

1.1 بنيادي اكائيال

اس كتاب ميں بين الاقوامي نظام اكائي استعال كيا گيا ہے جس ميں كميت 2 كى اكائى كلوگرام، لمبائى كى اكائى ميٹر اور وقت كى اكائى سيكنڈ ہے۔

1.2 غيرسمتي

وہ متغیر جس کی مقدار (مطلق قیمت) اس کو مکمل طور پر بیان کرتی ہو غیر سمتے c متغیر کہلاتا ہے۔ اس کتاب میں غیر سمتی متغیر کو سادہ طرز کی لکھائی میں انگریزی یا لاطینی زبان کے چھوٹے حروف یعنی a,b,α,\cdots یا بڑے حروف یعنی A,B,Ψ,\cdots یا بڑے حروف یعنی A,B,Ψ,\cdots

 $\begin{array}{c} {\rm International~System~Of~Units,~SI^1} \\ {\rm mass^2} \end{array}$

scalar3

4 بنيادي حسائق

شکل 1.1: کار تیسی محد د

1.3 سمتي

وہ متغیر جس کو مکمل طور پر بیان کرنے کے لئے اس کی مقدار (طول یا مطلق قیمت) اور سمت جاننا ضروری ہو، سمتیہ کہ المتات ہے۔ سمتیہ کو انگریزی یا لاطینی زبان کے چھوٹے یا بڑے حروف، جن کو موٹے طرز کی لکھائی میں لکھا گیا ہو، سے ظاہر کیا جائے گا، مثلاً قوت کو F سے ظاہر کیا جائے گا۔ یہاں شکل 1.1 سے رجوع کرنا بہتر ہو گا۔ وہ سمتیہ جس کا طول ایک کے برابر ہو، اکا کئے سمتیہ و گہلائے گا۔ اس کتاب میں اکا ئی سمتیہ کو انگریزی زبان کے پہلے حرف کو موٹے طرز کی لکھائی میں لکھا جائے گا، مثلاً اکائی سمتیہ و گہلائے گا۔ اس کتاب میں اکائی سمتیہ فلاء کی تین عمودی سمتیات کو ظاہر کرتے ہیں۔ اگر کھتے ہوئے، زیر نوشت میں x، اس بات کی نشاندہ کرتا ہے کہ یہ اکائی سمتیہ فلاء کی x سمت کو ظاہر کرتا ہے۔ اگر کسی سمتیہ کا طول اور اس کی سمت کو علیحدہ علیحدہ کھنا ہو تو اس کے طول کو ظاہر کرنے کے لئے سادہ طرز کی لکھائی میں سمتیہ کا طول اور اس کی سمت کو علیم کیا جائے گا۔ شکل میں سمتیہ کا طول F کی سمت میں ایک اکائی سمتیہ بنایا جائے گا۔ شکل سمتیہ اس سمتیہ کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے لین سمتیہ کو انگریزی کے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت میں ایک اکائی سمتیہ بنایا جائے گا۔ یہاں، زیر نوشت میں F، اس بات کی یاد دہائی کرتا ہے کہ یہ اکائی سمتیہ کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ شکل 1.1 میں قوت F کا رخ دائیں ہے الباز F میں کی سمت کو ظاہر کرتا ہے۔ شکل 1.1 میں قوت F کا رخ دائیں ہے الباز عرب کی یاد دہائی کراتا ہے کہ یہ اکائی سمتیہ کی سمت کو ظاہر کرتا ہے۔ شکل 1.1 میں قوت F کا رخ دائیں ہے الباز تر ہوں گے۔

vector⁴ unit vector⁵ 1.4 محسدد

شكل 1.2: دائين ہاتھ كانظام۔

1.4 محدد

الیا طریقہ جس کے ذریعہ کسی نقطہ کا مقام متعین کیا جاسکے محدد کہلاتا ہے۔

خلاء تین بعدی (تین طرفہ) 6 ہے المذاکسی ایک نقطہ کے مقام کو تین محدد کی مدد سے ظاہر کیا جا سکتا ہے۔اسی طرح خلاء میں سمتیہ کو تین عمودی اکائی سمتیوں کی مدد سے لکھا جا سکتا ہے۔اب ہم ایسے چند محدد کے نظام دیکھتے ہیں۔

1.4.1 كار تيسى محددى نظام

شکل 1.1 میں خلاء کی دو سمتوں کو اکائی سمتیات a_x اور a_y سے ظاہر کیا گیا ہے جو آپس میں عمودی ہیں، لیعنی، ان کے بچہ 90 زاویہ ہے۔خلاء تین بعدی ہے المذا اسے تین آپس میں عمودی اکائی سمتیاہے سے ظاہر کیا جاتا ہے۔ ان سمتوں کے رخ، طول (لمبائیوں) کو x,y,z سے ظاہر کیا جاتا ہے۔ آپ ان سے بخوبی واقف ہیں۔

وائیں ہاتھ کا انگوٹھا، شہادت کی انگلی اور بڑی انگلی کو ایک دوسرے کے ساتھ 90° زاویہ پر رکھتے ہوئے اگر شہادت کی انگلی $a_{\rm x}$ اور بڑی انگلی $a_{\rm y}$ کے رخ ہول تب انگوٹھا $a_{\rm z}$ کے رخ ہوگا (شکل 1.2)۔ اس کئے تین اکائی سمتیات کا یہ نظام دائیں ہاتھ کا نظام 8 کہلاتا ہے۔

 $\begin{array}{c} {\rm three\ dimensional^6} \\ {\rm orthonormal\ vectors^7} \\ {\rm right\ handed\ coordinate\ system^8} \end{array}$

اب ١ بنيادي حسائق

شكل 1.3: كارتيسي محد د نظام ميں ايك سمتيه۔

مبدا سے نقطہ P(x,y,z) تک سمتیہ A کو شکل 1.3 میں دکھایا گیا ہے جس کو کارتیہ وجمدو میں تین سمتیات کی مدو سے

$$(1.1) A = A_x + A_y + A_z$$

L

$$(1.2) A = xa_X + ya_Y + za_Z$$

لکھا جا سکتا ہے۔

1.3 کار تنیسی محددی نظام میں متغیر z صفر رکھتے ہوئے x,y تبدیل کرنے سے سطح xy ملتی ہے۔ یوں شکل xy میں محددی نظام میں متغیر xy کو زمین تصور کرتے ہوئے، ڈبے کی بالائی سطح xy جبکہ x کی قیمت صفر تا تین اور xy کی قیمت صفر تا جار ہو گی۔ اس طرح اس ڈبے کی بالائی سطح درج ذبل کھی جائے گی۔

متغیر z کو صفر اور تین کے درمیان ہر ممکن قیت پر رکھ کر x کو صفر اور دو جبکہ y کو صفر اور چار کے درمیان تبدیل کرنے سے شکل 1.3 میں دکھائے گئے ڈبے کا حجم حاصل ہو گا، للذا اس ڈبے کا حجم درج ذیل لکھا

 $cartesian coordinates^9$

1.4. محسدد

 $P(x, y, z) = P(\rho, \theta, z)$

$$\mathbf{A} = \boldsymbol{\rho} + \mathbf{A}_z$$
$$= \rho \boldsymbol{a}_\rho + z \boldsymbol{a}_z$$

شكل 4.1: نلكي محد دي نظام

حائے گا۔

1.4.2 نلكي محددي نظام

مبدا سے نقطہ P(x,y,z) تک سمتیہ $m{A}$ کو شکل 1.4 میں دکھایا گیا ہے جس کو دو سمتیات کی مدد سے

$$(1.5) A = \rho + A_z$$

يا

(1.6)
$$A = \rho a_{\rho} + z a_{Z}$$

$$2 \sum_{m} a_{\rho} = \frac{1.4}{2} \int 1.4 \int xy dy dy dy dy dy$$

$$x = \rho \cos \theta, \quad y = \rho \sin \theta$$

کھ کر نقطہ P(x,y,z) کو متغیرات P(x,y,z) کے بجائے متغیرات P(x,y,z) کی مدد سے P(x,y,z) کھا جا سکتا ہے۔ یوں خلاء میں کسی بھی نقطہ کو اس کے تمین متغیرات P(x,y,z) نقطہ کو اس کے تمین متغیرات کے بھی اللہ کیا جا سکتا ہے۔

وہ نظام جس میں متغیرات
$$\rho, \theta, z$$
 کی نقطہ کو متعین کرتے ہوں نلکھ محدد 10 کہلاتا ہے۔ یہاں شکل ρ, θ, z سے cylindrical coordinates

اب ابنيادي حسائق

شكل 1.5: نلكي نمامحد د كي تعريف

رجوع کریں۔ نکی محددی نظام کے تین آپس میں عمودی اکائی سمتیات $a_{
ho}, a_{ heta}, a_{
ho}$ ہیں۔ یہ نظام بھی دائیں ہاتھ کا نظام ہے لئیں آپس میں عمودی اکائی سمتیات $a_{
ho}, a_{ heta}, a_{
ho}$ ہوئے اگر نظام ہے لہذا دائیں ہاتھ کا انگو ٹھا، شہادت کی انگلی اور بڑی انگلی کو ایک دوسرے کے ساتھ $a_{
ho}$ پر رکھتے ہوئے اگر شہادت کی انگلی $a_{
ho}$ کے رخ ہوں تب انگو ٹھا $a_{
ho}$ کے رخ ہوگا۔

سطے xy میں مبدا پر، محدد x کے ساتھ θ زاویہ پر اکائی سمتیہ a_{ρ} ہو گا۔ سطے xy میں مبدا پر اکائی سمتیہ a_{θ} معودی، بڑھتے θ رخ، اکائی سمتیہ a_{θ} ہو گا۔ کارتیسی محدد کی نظام کا اکائی سمتیہ a_{Z} ہی نگلی محدد کا اکائی سمتیہ a_{Z} ہے۔

واضح رہے کہ نکی محدد کے نظام میں $a_{
ho}$ اور $a_{ heta}$ کی سمتیں ہر نقطہ پر مختلف ہیں جیسا کہ شکل 1.6 میں دکھایا گیا ہے۔

مستوی xy میں (یعن z=0 لیتے ہوئے) مبدا پر مستقل رداس $\rho=\rho_0$ کے سمتیہ کو صفر زاویہ پر رکھ کر زاویہ بتدر تک z=0 تک بڑھانے سے سمتیہ کی چونج مستوی z=0 میں ایک دائرہ پر چلتی ہے (شکل 1.7)۔ اب اس سمتیہ کے متغیر z=0 و تبدیل کرنے سے، مثلاً ہر z=0 پر z=0 و صفر تا تین کرنے سے، یہ سمتیہ ایک نکلی بنائے گا۔ اسی وجہ سے اس نظام کو نکلی محدد کہتے ہیں۔ سمتیہ کے تینوں متغیرہ تبدیل کرنے سے نکلی کا حجم ملے گا۔ اگلی تین

9 1.5 سمتيەرقس

شكل $a_{
ho}$: نكى محد دمين اكائى سمتيات $a_{
ho}$ اور $a_{
ho}$ بر نقطه پر مختلف ہيں۔

مساوات ان حقائق کو پیش کرتی ہیں۔

(1.7)
$$\delta \dot{\beta} = \begin{cases} \rho = \rho_0 \\ 0 < \theta < 2\pi \\ z = 0 \end{cases}$$

(1.8)
$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{$$

سطح پر کھڑا اکائی سمتیہ سطح کا رخ دیتا ہے (شکل 1.8)۔ چونکہ کسی بھی سطح کے دواطراف ہوتے ہیں لہذا اس کے دو مخالف رخ بیان کیے جا سکتے ہیں۔عموماً مسلم کو مد نظر رکھتے ہوئے ان میں سے ایک رخ کو سطح کا رخ تصور کیا جاتا اب ١٠ بنيادي حت أق

شکل 1.7: نلکی محد د میں دائر ہاور نلکی

$$\mathbf{A}_1 = A_1 \mathbf{a}_{A1} = wl\mathbf{a}_z$$
$$\mathbf{A}_2 = A_2 \mathbf{a}_{A2} = wh\mathbf{a}_y$$

شكل 1.8: سمتيه رقبه كاتعارف

ہے۔ البتہ بند سطح، مثلاً گیند، کے بیرونی رخ کو ہی سطح کا رخ تصور کیا جاتا ہے۔ شکل 1.8 میں بالائی سطح A_1 کا رقبہ A_2 اور اس کا رخ a_2 ہے لہذا A_1 سمتیہ کا طول A_1 اور رخ a_2 ہو گا:

$$A_1 = wl$$
$$a_{A1} = a_{Z}$$

یوں بالائی سطح کا سمتی رقبہ درج ذیل ہو گا۔

$$\mathbf{A_1} = A_1 \mathbf{a_{A1}} = w l \mathbf{a_z}$$

اسی طرح دائیں سطح A_2 سمتیہ کا طول A_2 اور اس کا رخ a_{A2} ہے

$$A_2 = wh$$

$$a_{A2} = a_{y}$$

للذا درج ذيل هو گا۔

(1.11)
$$A_2 = A_2 a_{A1} = wha_y$$

1.1 رقب عب ودي تراسش

شكل 1.9: رقبه عمود ي تراش

یخلی سطح کا رقبہ $A_3=w$ اور اس کا رخ $a_{
m z}$ کے مخالف ہے لہذا درج ذیل ہو گا۔

(1.12)
$$A_3 = A_3 a_{A3} = wl(-a_z) = -wla_z$$

دھیان رہے کہ رقبہ کی مقدار ہر صورت مثبت ہو گی البتہ اس کا رخ مثبت یا منفی ہو سکتا ہے۔ یہ بات کسی بھی سمتیہ کے لئے درست ہے لہذا کسی بھی سمتیہ کا طول ہر صورت مثبت ہی ہو گا جبکہ اس کا رخ مثبت یا منفی ہو سکتا ہے۔

1.6 رقبه عمودي تراش

سلاخ کی لمبائی کے ساتھ زاویہ قائمہ پر کٹائی کو عمودی تراثی 11 کہتے ہیں اور عمودی تراش کے رقبہ کو رقبہ عمودی تراثی 12 کہتے ہیں۔ شکل 1.9 میں سلاخ کی لمبائی 12 رخ ہے اور رقبہ عمودی تراش 12 کی مقدار 12 ہے

$$(1.13) A = wh$$

لهذا رقبه عمودی تراش کا رخ $a_{
m v}$ ہو گا:

$$a_A = a_y$$

شکل 1.9 میں اکائی سمتیات a_y اور a_z د کھائے گئے ہیں جن کے ابتدائی نقاط پر گول دائرہ میں بند ایک نقطہ د کھایا گیا ہے۔ گول دائرہ میں بند نقطہ صنحہ کے عمودی (کتاب سے باہر) رخ a_x ظاہر کرتا ہے جس کے مخالف رخ (صنحہ کے عمودی اندر) کو گول دائرہ میں بند صلیب کی نشان سے ظاہر کیا جائے گا۔

 $^{{\}rm cross\ section^{11}} \\ {\rm cross\ sectional\ area^{12}} \\$

12 باب، بنيادي حت أتَّ

1.7 برقی اور مقناطیسی میدان

1.7.1 برقی میدان اور برقی میدان کی شدت

کولم کے قانونے 13 کے تحت برقی بار 14 سے لدے جسموں کے در میان قوت کشش 15 یا قوت دفع 16 ان اجسام پر بار 17 بار 17 کے حاصل ضرب کے راست متناسب اور باہمی فاصلہ کے مربع کے بالعکس متناسب ہوتی ہے۔ یوں بار 17 اور 18 جن کے در میان فاصلہ 18 ہو کے پی قوت 18 درج ذیل ہو گا جہاں 18 برقی متنقل ہے۔

(1.15)
$$F = \frac{q_1 q_2}{4\pi \epsilon r^2}$$

ایک برقی باد کے قریب دوسرا برقی باد لانے سے (پہلے اور) دوسرے برقی باد پر کشش یا دفع کی قوت عمل کرے گی جس کا تعین قانون کولمب سے ہوتا ہے۔ دوسرے برقی باد کو پہلے برقی باد سے آہستہ آہستہ دور کرنے سے قوت کشش یا دفع بتدر ج کم ہوتی ہے جو ایک خاص فاصلے کے بعد تقریباً صفر ہو جاتی ہے اور دوسرا بار پہلے باد کے حلقہ اثر سے باہر ہو جاتا ہے۔ یہ حلقہ برقی میدالض کہلاتا ہے۔ برقی میدان کسی ایک بادیا متعدد بادوں کی وجہ سے ہو سکتا ہے۔

تعریف: کسی بار کے برقی میدان سے مراد بار کے اِرد گرد وہ حلقہ ہے جس میں اس کا برقی اثر محسوس کیا جاتا ہے-

برتی میدان میں اکائی مثبت بار پر قوت اس مقام پر برقی میدان کی شدہ (E) کی مطلق قیمت) دیگا جبکہ اکائی بار پر قوت کا رخ برتی میدان کا رخ دیگا۔ برتی میدان کی شدت کی اکائی وولٹے فیے میٹر²⁰ ہے۔

Coulomb's law¹³

electric charge¹⁴

attractive force¹⁵

repulsive force¹⁶

 $^{{\}rm charge}^{17}$

electric constant, electric permittivity 18

electric field intensity¹⁹

 V/m^{20}

1.8. سطحي اور حجي کثافت.

قانون کولمب (مساوات 1.15) سے Q بار کے برقی میدان کی شدت کی مطلق قی ت حاصل کرتے ہیں۔ بار Q اور اکائی بار (ایک کولمب بار) کے چھ قوتِ کشش یا قوتِ د فع

$$(1.16) F = \frac{Q \times 1}{4\pi\epsilon r^2} = \frac{Q}{4\pi\epsilon r^2}$$

نیوٹن ہو گ۔ یہی برقی میدان کی شدت کی مطلق قیمت ہو گی:

$$(1.17) E = \frac{Q}{4\pi\epsilon r^2}$$

دو باروں کے مابین قوت کشش یا قوت و فع کا رخ ان کے درمیان کھینچی گئی سیر ھی کلیر پر ہو گا۔

1.7.2 مقناطیسی میدان اور مقناطیسی میدان کی شدت

متناطیعی میدان اور مقناطیسی میدان کی شدھے 21 بالترتیب بالکل برقی میدان اور برقی میدان کی شدت کی طرح ہیں۔ تعریف : کسی مقناطیس کے مقناطیسی میدان سے مراد مقناطیس کے اِرد گرد وہ علقہ ہے جس میں اس کا مقناطیسی اثر محسوس کیا جاتا ہو۔

1.8 سطحی اور حجمی کثافت

1.8.1 سطى كثافت

اکائی رقبہ کی سطح پر کسی چیز کی کل مقدار کو اس چیز کی سطح کثافت 22 کہتے ہیں۔ یوں رقبہ A پر کسی چیز کی کل مقدار ϕ ہونے کی صورت میں اس کی اوسط سطحی کثافت ϕ ہونے کی صورت میں اس کی اوسط سطحی کثافت ϕ

$$(1.18) B_{b-1} = \frac{\phi}{A}$$

 $\begin{array}{c} {\rm magnetic~field~intensity^{21}} \\ {\rm surface~density^{22}} \end{array}$

اب ١٠ بنيادي حسائق

اس مساوات سے

$$\phi = B_{\text{lead}} A$$

لکھا جا سکتا ہے جو کسی سطح پر ایک متغیرہ کی اوسط سطحی کثافت معلوم ہونے کی صورت میں سطح پر متغیرہ کی کل مقدار دیتی ہے۔

غیر بکسال متغیرہ کی صورت میں سطحی کثافت جگہ جگہ مختلف ہو گی۔ ایسی صورت میں اتنے چھوٹے رقبے پر، جس میں متغیرہ کو بکسال تصور کیا جا سکتا ہو، سطحی کثافت

$$(1.20) B = \frac{\Delta \phi}{\Delta A}$$

ہو گی جہاں ΔA چھوٹا رقبہ اور $\Delta \phi$ اس رقبے پر متغیرہ کی چھوٹی مقدار ہے۔ اس چھوٹے رقبہ کو نقطہ مانند کرنے سے نقطی کثافت

$$(1.21) B = \frac{\mathrm{d}\phi}{\mathrm{d}A}$$

حاصل ہو گی جس کو

$$d\phi = B \, dA$$

بھی لکھا جا سکتا ہے۔ یوں نقطی کثافت جانتے ہوئے ایک نقطہ کے چھوٹے رقبہ پر متغیرہ کی کل (چھوٹی) مقدار معلوم کی حاسکتی ہے۔

یوں ایک برتی تار جس کا رقبہ عمودی تراش A اور جس میں برتی روI کی اوسط کثافتِ برتی رو درج ذیل ہوگی۔ $\rho_{bul} = \frac{I}{A}$

1.9 محجمي كثافت

m اکائی حجم میں کسی چیز کی کل مقدار کو اس چیز کی حجم کافٹ کہتے ہیں۔ یوں اگر کسی چیز کا حجم H اور اس کی کمیت H ہو تب اس کی اوسط (کمیت) حجمی کثافت درج ذیل ہو گی۔

$$\rho_{\text{le-sl}} = \frac{m}{H}$$

غیر یکسال کمیت کی صورت میں جم میں مختلف مقامات پر کمیت مختلف ہو گا۔ ایک صورت میں اتنا جھوٹا جم لیتے ہوئے جس میں کمیت کو یکسال تصور کیا جا سکتا ہو، حجمی کثافت درج ذیل ہو گی۔

$$\rho = \frac{\Delta m}{\Delta H}$$

اس چھوٹے جم کو نقطہ مانند بنانے سے درج ذیل نقطی حجمی کثافت لکھی جا سکتی ہے۔

$$\rho = \frac{\mathrm{d}m}{\mathrm{d}H}$$

بول

$$dm = \rho \, dH$$

ہو گا للذا نقطی محجمی کثافت جانتے ہوئے ایک چھوٹے حجم کی (چھوٹی) کمیت حاصل کی جاستی ہے۔

1.10 صليبي ضرب اور ضرب نقطه

دو غیر سمتی متغیرات کا حاصل ضرب غیر سمتی متغیر ہوتا ہے جبکہ دو سمتیات کا حاصل ضرب سمتی یا غیر سمتی ہو سکتا ہے۔ان دواقسام کے ضرب پریہاں غور کیا جائے گا۔

1.10.1 صليبي ضرب

دو سمتی متغیرات کا ایسا ضرب جو سمتی متغیر دیتا ہو صلیبی ضربے 23 کہلاتا اور درج ذیل لکھا جاتا ہے۔

$$(1.28) C = A \times B$$

صلیبی ضرب میں ضرب کے نشان کو صلیب کی علامت سے ظاہر کیا جاتا ہے جس کی بنا اس کو صلیبی ضرب کہتے ہیں۔

 $[{]m cross\ product}^{23}$

اب ١٠ بنيادي حسائق

حاصل ضرب سمتیہ C کی مقدار

(1.29)
$$C = |\mathbf{C}| = |\mathbf{A}||\mathbf{B}|\sin\theta_{AB}$$
$$= AB\sin\theta_{AB}$$

ہے جہاں θ_{AB} ان کے مابین زاویہ ہے۔اس حاصل سمتیہ کی سمت دائیں ہاتھ کے قانون سے حاصل کی جاتی ہے۔ یوں دائیں ہاتھ کا انگوٹھا، شہادت کی انگلی اور بڑی انگلی کو ایک دوسرے کے ساتھ 90° زاویہ پر رکھتے ہوئے، شہادت کی انگلی کو سمتیہ A اور بڑی انگلی کو B کے رخ رکھنے سے انگوٹھا C کا رخ دیگا۔

مثال 1.1: درج ذیل ضرب صلیبی حاصل کریں۔

- $a_{ ext{X}} imes a_{ ext{Y}} \quad a_{ ext{Y}} imes a_{ ext{Z}} imes a_{ ext{Z}} imes a_{ ext{Z}} imes a_{ ext{X}} imes a_{ ext{Y}} i$
- $oldsymbol{a}_{ extsf{Z}} imes oldsymbol{a}_{ extsf{Y}} o oldsymbol{a}_{ extsf{Y}} imes oldsymbol{a}_{
 ho} imes oldsymbol{a}_{
 ho} imes oldsymbol{a}_{ heta} o oldsymbol{a}_{ extsf{Z}} imes oldsymbol{a}_{
 ho} i$

حل: اس مثال میں سب سمتیات اکائی ہیں۔اکائی سمتیہ کا طول ایک کے برابر ہوتا ہے للذا درج ذیل ہوں گے۔

- $\boldsymbol{a}_{\mathrm{X}} \times \boldsymbol{a}_{\mathrm{Y}} = (1)(1)\sin 90\boldsymbol{a}_{\mathrm{Z}} = \boldsymbol{a}_{\mathrm{Z}}$
- $\boldsymbol{a}_{\mathrm{Y}} \times \boldsymbol{a}_{\mathrm{Z}} = (1)(1)\sin 90\boldsymbol{a}_{\mathrm{X}} = \boldsymbol{a}_{\mathrm{X}}$
- $\boldsymbol{a}_{\mathrm{Z}} \times \boldsymbol{a}_{\mathrm{X}} = (1)(1)\sin 90 \boldsymbol{a}_{\mathrm{Y}} = \boldsymbol{a}_{\mathrm{Y}}$ •
- $\boldsymbol{a}_{\mathrm{X}} \times \boldsymbol{a}_{\mathrm{Z}} = (1)(1)\sin 90(-\boldsymbol{a}_{\mathrm{Y}}) = -\boldsymbol{a}_{\mathrm{Y}}$
- $\boldsymbol{a}_{\mathrm{Z}} \times \boldsymbol{a}_{\mathrm{Y}} = (1)(1)\sin 90(-\boldsymbol{a}_{\mathrm{X}}) = -\boldsymbol{a}_{\mathrm{X}}$
- چونکہ دونوں سمتیات کے رخ ایک جیسے ہیں لہذا ان کے مابین زاویہ صفر ہو گا۔ صفر زاویہ کا سائن بھی صفر ہوتا ہے، $\sin 0 = 0$ ہوتا ہے، $\sin 0 = 0$ ہوتا ہے، $a_{\rm y} \times a_{\rm y} = (1)(1)\sin 0 = 0$
 - $\boldsymbol{a}_{\rho} \times \boldsymbol{a}_{\theta} = (1)(1)\sin 90\boldsymbol{a}_{\mathrm{Z}} = \boldsymbol{a}_{\mathrm{Z}}$ •
 - $\boldsymbol{a}_{\mathrm{Z}} \times \boldsymbol{a}_{\rho} = (1)(1)\sin 90\boldsymbol{a}_{\theta} = \boldsymbol{a}_{\theta}$

مثال 1.12 شکل 1.10 میں چار نیوٹن کی قوت F محور سے تین میٹر کی سمتی فاصلہ L پر لاگو ہے جس کی مثال 1.2 شکل میں دی گئی ہے۔اس قوت کی قوت مروڑ حاصل کریں۔ حل: قوت مروڑ T کی تعریف درج ذیل ہے۔ $T = L \times F$

کار تیسی نظام میں بیہ سمتی فاصلہ

 $(1.31) L = L\sin\theta a_{X} - L\cos\theta a_{Y}$

ہو گا للذا

 $T = (L \sin \theta \mathbf{a}_{X} - L \cos \theta \mathbf{a}_{Y}) \times F \mathbf{a}_{Y}$ $= L \sin \theta \mathbf{a}_{X} \times F \mathbf{a}_{Y} - L \cos \theta \mathbf{a}_{Y} \times F \mathbf{a}_{Y}$ $= LF \sin \theta \mathbf{a}_{Z}$

ہو گا جہاں بچپلی مثال کی مدد سے $a_{
m x} imes a_{
m y} = 0$ اور $a_{
m y} imes a_{
m y} imes a_{
m z}$ اور $a_{
m y} imes a_{
m y} imes a_{
m z}$ اور $a_{
m y} imes a_{
m y} imes a_{
m z}$ اور $a_{
m y} imes a_{
m y} imes a_{
m z}$ اور $a_{
m y} imes a_{
m y} imes a_{
m z}$ اور $a_{
m y} imes a_{
m y} imes a_{
m z}$ اور $a_{
m y} imes a_{
m y} imes a_{
m z}$ اور $a_{
m y} imes a_{
m y} imes a_{
m z}$ اور $a_{
m y} imes a_{
m z} imes a_{
m z}$ اور $a_{
m y} imes a_{
m y} imes a_{
m y} imes a_{
m z}$

اس مثال میں $heta = \sin(180^\circ - \alpha)$ ہوتا ہے لہذا $lpha = \sin(180^\circ - \alpha)$ ہوتا ہے لہذا ہیں ورج ذبل بھی کھا جا سکتا ہے۔

 $T = LF \sin \theta \mathbf{a}_{\mathbf{Z}}$ $= LF \sin \theta_{LF} \mathbf{a}_{\mathbf{Z}}$

یمی جواب ضرب صلیبی کی تعریف یعنی مساوات 1.29 اور دائیں ہاتھ کے قانون کی مدد سے زیادہ آسانی سے حاصل ہوتا ہے۔

1.10.2 نقطی ضرب

رو سمتی متغیرات کا ایبا حاصل ضرب جو غیر سمتی متغیر ہو نقطی ضربے 24 کہلاتا ہے جو درج ذیل لکھا جاتا ہے۔ $C=A\cdot B$

 ${\rm dot\ product^{24}}$

اب ١. بنيادي حت أق

شكل 1.10: كارتيسى نظام ميں قوت مروڑ كاحل

نقطی ضرب میں ضرب کے نشان کو نقطہ کی علامت سے ظاہر کیا جاتا ہے جس کی بنا پر اس کا نام نقطی ضرب ہے۔

نقطی ضرب کی مقدار درج ذیل ہو گی

(1.33)
$$\begin{aligned} \boldsymbol{C} &= \boldsymbol{A} \cdot \boldsymbol{B} \\ &= |\boldsymbol{A}| |\boldsymbol{B}| \cos \theta_{AB} \\ &= AB \cos \theta_{AB} \end{aligned}$$

جہال θ_{AB} ان سمتیات کے نیج زاویہ ہے۔

مثال 1.3: مندرجه ذیل نقطی ضرب حاصل کریں۔

$$a_{\mathrm{X}} \cdot a_{\mathrm{X}} - a_{\mathrm{y}} \cdot a_{\mathrm{y}} - a_{\mathrm{z}} \cdot a_{\mathrm{z}} \bullet$$

$$oldsymbol{a}_{ extsf{X}} \cdot oldsymbol{a}_{ extsf{Y}} = oldsymbol{a}_{ extsf{Y}} \cdot oldsymbol{a}_{ extsf{Z}} = oldsymbol{a}_{
ho} \cdot oldsymbol{a}_{
ho} \cdot oldsymbol{a}_{
ho} = oldsymbol{a}_{
ho$$

حل: اس مثال میں سب سمتیات اکائی ہیں۔ اکائی سمتیہ کا طول ایک (1) کے برابر ہوتا ہے:

$$a_{X} \cdot a_{X} = (1)(1)\cos 0 = 1$$
 •

$$a_{y} \cdot a_{y} = (1)(1)\cos 0 = 1$$
 •

$$a_z \cdot a_z = (1)(1)\cos 0 = 1$$
 •

$$a_{X} \cdot a_{V} = (1)(1)\cos 90^{\circ} = 0$$
 •

$$\boldsymbol{a}_{\mathrm{y}} \cdot \boldsymbol{a}_{\mathrm{z}} = (1)(1)\cos 90^{\circ} = 0$$

$$\boldsymbol{a}_{\rho} \cdot \boldsymbol{a}_{\rho} = (1)(1)\cos 0 = 1 \bullet$$

شكل 1.11: كارتيسي نظام ميں كام

 $\boldsymbol{a}_{\rho} \cdot \boldsymbol{a}_{\theta} = (1)(1)\cos 90^{\circ} = 0$

مثال 1.4: شکل 1.11 میں قوت F ایک بوجھ کو دھکیل رہی ہے۔ سمتی فاصلہ L طے کرنے پر قوت کتنا کام کر پکی ہوگی۔

حل: کام W کی تعریف درج ذیل ہے۔

$$(1.34) W = \mathbf{F} \cdot \mathbf{L}$$

كار تيسى نظام مين سمتى فاصله

$$(1.35) L = L\cos\theta a_{X} + L\sin\theta a_{Y}$$

ہو گا۔ یوں درج ذیل ہو گا

(1.36)
$$W = (F\boldsymbol{a}_{X}) \cdot (L\cos\theta\boldsymbol{a}_{X} + L\sin\theta\boldsymbol{a}_{y})$$
$$= FL\cos\theta(\boldsymbol{a}_{X} \cdot \boldsymbol{a}_{X}) + FL\sin\theta(\boldsymbol{a}_{X} \cdot \boldsymbol{a}_{y})$$
$$= FL\cos\theta$$

جہاں پچھلی مثال کی مدد سے $a_{\rm X}\cdot a_{\rm X}=0$ اور $a_{\rm X}\cdot a_{\rm Y}=0$ گئے ہیں۔ یہی جواب نقطی ضرب کی تعریف مساوات 1.33ء سے با آسانی حاصل ہوتا ہے۔

اب ١ بنيادي حسائق

1.11 تفرق اور جزوی تفرق

مساوات 1.37 میں ایک تفاعل کا تفرق 25 دیا گیا ہے، جس میں B_0 ایک مستقل ہے، جبکہ مساوات 1.38 میں ایک تفاعل کا جرور تفرق 26 دیا گیا ہے۔

(1.37)
$$B(\theta) = B_0 \cos \theta$$

$$\frac{\mathrm{d}B}{\mathrm{d}\theta} = -B_0 \sin \theta$$

(1.38)
$$\partial W(x,\lambda) = \frac{\partial W}{\partial x} dx + \frac{\partial W}{\partial \lambda} d\lambda$$

1.12 خطى تكمل

ماوات 1.39 میں ایک تفاعل $B(\theta)$ دیا گیا ہے جے شکل 1.12 میں دکھایا گیا ہے۔ اس کا طول موج 2π ریڈیئن ہے۔

$$(1.39) B_0 \cos \theta$$

ہم $-\pi/2 < \theta < \pi/2$ پر اس تفاعل کی اوسط قیمت تلاش کرتے ہیں۔

(1.40)
$$B_{k',l} = \frac{B_0}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta \, d\theta = \frac{2B_0}{\pi}$$

اس طرح ہم B^2 کی اوسط تلاش کرتے ہیں۔ $-\pi/2 < \theta < \pi/2$ کی اوسط تلاش کرتے ہیں۔

(1.41)
$$B_{k,j}^{2} = \frac{B_{0}^{2}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2}\theta \,d\theta$$
$$= \frac{B_{0}^{2}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} \,d\theta$$
$$= \frac{B_{0}^{2}}{2}$$

 $[\]begin{array}{c} {\rm differentiation^{25}} \\ {\rm partial\ differentiation^{26}} \\ {\rm wavelength^{27}} \end{array}$

1.13. سطحي تكمل

شكل 1.12: كوسائن موج

تفاعل کے مربع کی اوسط کا جذر نہایت اہم قیمت ہے جو تفاعل کی موڑ ²⁸ قیمت کہلاتی ہے اور جسے م_{وڑ} B کھھا جاتا ہے۔

(1.42)
$$B_{\mu\nu} = \sqrt{B_{\mu\nu}^2} = \frac{B_0}{\sqrt{2}}$$

یہ ایک بہت اہم متیجہ ہے جو آپ کو زبانی یاد ہونا چاہئے۔ یہ مساوات ہر سائن نما تفاعل کے لئے درست ہے۔ کسی متغیرہ کے مربع کی اوسط کا جذر اس متغیرہ کی موڑ²⁹ قیت کہلاتی ہے۔

1.13 سطى تكمل

فرض کریں شکل 1.13 میں نکلی کے بیرونی سطح پر سطحی کثافت، B، کی قیمت مساوات 1.39 دیتی ہے۔ ہم آدھے بیرونی سطح، زاویہ $\pi/2$ تا $\pi/2$ ، کے نہوانس کی کل مقدار ϕ معلوم کرتے ہیں۔اس سطح میں نکلی کے سر شامل نہیں ہیں۔

ہم نکی کے بیرونی سطح پر خطہ abcd لیتے ہیں جس کی چوڑائی $\rho\Delta\theta$ ، کمبائی I اور رقبہ ΔA ہے۔ ΔA کو نہایت ΔB ماتھ تبدیل نہیں ہوتی ΔB ماتھ تبدیل نہیں ہوتی ΔB ماتھ تبدیل نہیں ہوتی ΔB اور کل ΔB ورج ذیل ہوگا۔

rms, root mean square²⁸ effective²⁹

22

شکل 1.13: نکلی کی بیرونی سطح پر متغیرہ کا تکمل کل مقدار دے گا۔

(1.43)
$$\phi = \int_{-\pi/2}^{\pi/2} d\phi = \int_{-\pi/2}^{\pi/2} (B_0 \cos \theta) (\rho l \, d\theta)$$
$$= B_0 l \rho \int_{-\pi/2}^{\pi/2} \cos \theta \, d\theta = 2B_0 l \rho$$

مساوات 1.43 میں نچلا حد $(-\pi/2-lpha)$ اور بالائی کا حد $(\pi/2-lpha)$ کینے سے درج ذیل حاصل ہو گا۔

(1.44)
$$\phi(\alpha) = B_0 l \rho \int_{-\frac{\pi}{2} - \alpha}^{\frac{\pi}{2} - \alpha} \cos \theta \, d\theta = 2B_0 l \rho \cos \alpha$$

نگی کے بیرونی نصف سطح پر $\phi(\alpha)$ کی عمومی قیت مساوات 1.44 دیتی جو α پر منحصر ہے۔ یہ ایک بہت اہم مساوات ہے۔ مساوات ہے۔

1.14 مرحلی سمتیه

ر ان نما امواج جن کی تعدد معین ہو کو مرحلی سمتیہ سے ظاہر کرنا مفید ثابت ہوتا ہے۔ مساوات بولر $A_0e^{\mp j(\omega t + \phi)} = A_0\cos(\omega t + \phi) \mp j\sin(\omega t + \phi)$

Euler's equation³⁰

1.1.1 مسرحتان سمتيه

شكل 1.14: مرحلي سمتيه

کی مدد سے کوسائن موج درج ذیل لکھی جاسکتی ہے۔

(1.46)
$$A_0 \cos(\omega t + \phi) = \frac{A_0}{2} \left(e^{j(\omega t + \phi)} - e^{-j(\omega t + \phi)} \right)$$

اس سے ثابت ہوتا ہے کہ کوسائن موج دراصل دو مخلوط اعداد کا مجموعہ ہے۔ مساوات یولر ایک مخلوط عدد کو ظاہر کرتا ہے جس کے دو جزو ہیں۔ اس کا ایک جزو حقیقی عدد ہے اور اس کا دوسرا جزو فرضی عدد ہے۔ اس کا حقیقی جزو کوسائن موج کو ظاہر کرتا ہے۔ لہٰذا ایک کوسائن موج کو ظاہر کرتا ہے۔ لہٰذا ایک کوسائن موج $A_0e^{j(\omega t+\phi)}$ یا $A_0e^{-j(\omega t+\phi)}$ کا حقیقی جزو ہوتا ہے۔ رسمی طور پر سائن نما امواج کو $A_0e^{j(\omega t+\phi)}$ سے ظاہر کیا جاتا ہے جس کو مخصراً موقت کا $A_0e^{j(\omega t+\phi)}$ کیاتا ہے۔ مرحلی سمتیہ کا طول A_0 اور افقی کئیر کے ساتھ زاویہ ϕ ہے۔

مرحلی سمتیہ استعال کرتے وقت آپ کو یہ ذہن میں رکھنا ہو گا کہ یہ در حقیقت ایک کوسائن موج ہے جس کا حیطہ A_0 ، مرحلی زاویہ ϕ اور زاویائی تعدد ω ہے۔

اس کتاب میں مرحلی سمتیات کو سادہ طرز لکھائی میں انگریزی کے بڑے حروف جن پر ٹوپی کا نشان ہو سے ظاہر کیا جائے گا۔ یوں برتی کیا جائے گا، یعنی Î, ऐ وغیرہ اور ان کے طول کو بغیر ٹوپی کے نشان کے اسی حرف سے ظاہر کیا جائے گا۔ یوں برتی

 ${\rm phasor}^{31}$

اب ١ بنيادي حسائق

وباو $v=20\cos(\omega t+rac{\pi}{3})$ وباو $v=20\cos(\omega t)$

$$v = 20\cos\left(\omega t + \frac{\pi}{3}\right)$$

$$\hat{V} = 20e^{j\frac{\pi}{3}}$$

$$\hat{V} = 20/\frac{\pi}{3}$$

$$V = 20$$

اس مساوات میں پہلا جزو ایک عام کوسائن موج ہے جس کو دوسرے جزو میں مرحلی سمتیہ کی صورت میں لکھا گیا ہے۔ تیسرا اس مرحلی سمتیہ کا طول اور چوتھا اس کا زاویہ بتلا رہا ہے۔

مر حلی سمتیات کو عام سمتیات کی طرح ہی تصور کیا جاتا ہے۔ اس مساوات میں \hat{V} کا طول 20 اور افقی کلیر سے زاویہ $\frac{\pi}{3}$ ریڈیئن ہے۔ زاویہ کو افقی کلیر سے گھڑی کے مخالف رخ ناپا جاتا ہے۔ افقی کلیر سے گھڑی کے رخ منفی زاویہ ہو گا۔ $\frac{\pi}{3}$ میں اس \hat{V} کے علاوہ چند دوسرے مرحلی سمتیات بھی دکھائے گئے ہیں۔

برتی ادوار میں عموماً برتی دباو \hat{V} کی نسبت سے برتی رو \hat{I} کا زاویہ بیان کیا جاتا ہے۔ شکل 1.14 میں \hat{I}_1 تیں درجہ برتی دباو سے آگے ہے جبکہ \hat{I}_2 بینتالیس درجہ برتی دباو کے پیچے ہے۔ ہم کہتے ہیں \hat{I}_1 تیں درجہ پیش زاویہ \hat{I}_2 جبکہ \hat{I}_2 بینتالیس درجہ تاخیری زاویہ \hat{I}_3 بینتالیس درجہ تاخیری زاویہ \hat{I}_3 بین \hat{I}_4 بین \hat{I}_4 بینتالیس درجہ تاخیری زاویہ \hat{I}_4 اور \hat{I}_4 میں \hat{I}_5 مرحلی فرق کیا جاتا ہے۔ یہاں دھیان رہے کہ شکل 1.14 میں \hat{I}_4 میں \hat{I}_5 مرحلی فرق بیا جاتا ہے۔ یہاں دھیان رہے کہ شکل 45° میں میں 45° میں میں 45° میں گئی زاویہ ہے۔

اگر V_0 اور V_0 اور

آئیں مرحلی سمتیات استعال کرتے ہوئے ایک سادہ برقی دور حل کرتے ہیں۔ یوں مرحلی سمتیات سے وابشگی پیدا ہو گی اور ان کا استعال بھی سکھے لیں گے۔

leading angle³²

lagging angle³³

phase difference³⁴

power factor³⁵

power factor angle³⁶

lagging power factor³⁷

leading power factor³⁸

1.1.4 مسرحسلي سمتير

$$Z = R + jX$$

$$|Z| = \sqrt{R^2 + X^2}$$

$$\phi_Z = \tan^{-1} \frac{X}{R}$$

$$v(t) = V_0 \cos(\omega t + \alpha)$$

$$i(t) = \frac{V_0}{|Z|} \cos(\omega t + \alpha - \phi_Z)$$

$$= I_0 \cos(\omega t + \alpha - \phi_Z)$$

شکل 1.15:مر حلی سمتیات کی مدد سے RL دور کاحل ۔

ر 1.15 ایک سادہ
$$R-L$$
 یک مرطہ 39 برتی دور ہے جس پر درج ذیل دباو لا گو کیا جاتا ہے۔ $v(t)=V_0\cos(\omega t+\alpha)$ $\hat{V}=V_0/\alpha$

مرحلی سمتیات کی استعال سے ہم برقی رو \hat{I} معلوم کرتے ہیں

(1.49)
$$\hat{I} = \frac{\hat{V}}{R + jX} = \frac{V_0 \underline{\alpha}}{|Z| \underline{\phi_Z}}$$

$$= \frac{V_0}{|Z|} \underline{\alpha - \phi_Z} = I_0 \underline{\alpha - \phi_Z}$$

جہال $rac{X}{R}$ رکاوٹ کا زاویہ اور $rac{V_0}{|Z|}$ ہیں۔یوں برقی رو درج ذیل ہو گا۔

(1.50)
$$i(t) = I_0 \cos(\omega t + \alpha - \phi_Z)$$

اس دور میں تاخیر کے زاویہ ϕ_Z کے برابر ہے۔

single phase³⁹

26 بابـــا. بنيادي حت أق

إب2

مقناطيسى ادوار

2.1 مزاحمت اور ہچکچاہٹ

شکل 2.1 میں ایک سلاخ و کھائی گئی ہے جس کی لمبائی کے رخ مزاحمہا

$$(2.1) R = \frac{l}{\sigma A}$$

 μ ررج و گل جہال σ موصلیتے 2 اور A=wh رقبہ عمودی تراش ہے۔ اس سلاخ کی بھیکھا ہے 3 ورج و بل ہے جہال م

شكل 2.1:مزاحمت اور جيكيا ٻڻ

resistance¹ conductivity²

يا___2. مقت طبيبي اووار

مقناطبیح متقل 4 کہلاتا ہے۔

$$\Re = \frac{l}{\mu A}$$

مقناطیسی مستقل μ کو عموماً خلاء کی مقناطیسی مستقل مستقل $\mu_0=4\pi\,10^{-7}\,rac{ ext{H}}{ ext{m}}$ متناطیسی مستقل مستقل الماء کی مقناطیسی مستقل مستقل مستقل الماء کی مستقل مس

$$\mu = \mu_r \mu_0$$

جہاں μ_r برومقناطیسے متقلے کہلاتا ہے۔ ہیکیاہٹ کی اکائی ایمپیر – چکر فی ویبر ہے جس کی وضاحت جلد کی جائے گی۔

 $\mu_r=10\,\mathrm{cm}$ مثال $\mu_r=2000$ مثال المراجع بين معاون

حل:

$$\begin{split} \Re &= \frac{l}{\mu_r \mu_0 A} \\ &= \frac{10 \times 10^{-2}}{2000 \times 4\pi \times 10^{-7} \times 2.5 \times 10^{-2} \times 3 \times 10^{-2}} \\ &= 53\,044\,\mathrm{A} \cdot \mathrm{turns/Wb} \end{split}$$

2.2 کثافت برقی رواور برقی میدان کی شدت

 5 گل 2.2 میں ایک موصل سلاخ کے سروں پر برتی دباو v لاگو کیا گیا ہے۔سلاخ میں برتی روi اوہم کے قانون 5 ہے حاصل ہو گی۔

$$(2.4) i = \frac{v}{R}$$

reluctance³ permeability, magnetic constant⁴

Ohm's law⁵

شكل 2.2: كثافت برقى رواور برقى د باوكى شدت

درج بالا مساوات كو مساوات 2.1 كى مدد سے

$$(2.5) i = v\left(\frac{\sigma A}{l}\right)$$

لعيني

$$\frac{i}{A} = \sigma\left(\frac{v}{l}\right)$$

يا

$$(2.7) J = \sigma E$$

کھا جا سکتا ہے جہاں J اور E کی تعریفات درج ذیل ہیں۔

$$(2.8) J = \frac{i}{A}$$

$$(2.9) E = \frac{v}{I}$$

شکل 2.2 میں سمتیہ J کی مطلق قیت J اور سمتیہ E کی مطلق قیت E لیتے ہوئے مساوات 2.7 کو درج ذیل کھا جا سکتا ہے

$$(2.10) J = \sigma E$$

جو قانون اوہم کی دوسری روپ ہے۔ J اور E دونوں کا رخ $a_{
m y}$ ہے۔

باب_2 مقت طبيسي ادوار

شکل 2.2 سے ظاہر ہے کہ برقی روi سلاخ کی رقبہ عمودی تراث A سے گزرتی ہے للذا مساوات 2.8 کے تحت I کا فیضے برقی روI ہو گی۔ ای طرح مساوات 2.9 سے واضح ہے کہ I برقی دباو نی اکائی لمبائی کو ظاہر کرتی ہے للذا I کو برقی میدان کی شدھے کہتے ہیں۔ I کو برقی میدان کی شدھے کہتے ہیں۔ I

بالکل اسی طرح کی مساواتیں مقناطیسی متغیرات کے لئے حصہ 2.5 میں لکھی جائیں گی۔

2.3 برقی ادوار

 $\sigma=5.9\times10^7\,rac{\mathrm{S}}{\mathrm{m}}$ رقی دور میں برقی دباوہ v^8 وجہ سے برقی رو v^8 اللہ پیدا ہوتی ہے۔ تانباکی موصلیت کی مقدار بہت بڑی ہونے کی بنا اس سے جو بہت بڑی مقدار ہے۔ موصلیت کی اکائی v^8 ہے۔ تانباکی موصلیت کی مقدار بہت بڑی ہونے کی بنا اس سے بنی تارکی مزاحمت v^8 عموماً قابل نظر انداز ہو گی۔ تار میں برقی رو v^8 گرزنے سے تارکے سروں کے نیج برقی دباو کے گھٹاو کی مزاحمت v^8 بیدا ہو گا جس کو v^8 کی بنا نظر انداز کیا جا سکتا ہے۔ یوں تانبے کی تار میں برقی دباو کے گھٹاو کو رد کیا جا سکتا ہے۔ یعنی ہم v^8 کی سکتے ہیں۔

شکل 2.3-الف میں ایک ایسا ہی برقی دور دکھایا گیا ہے جس میں تانبے کی تارکی مزاحمت کو اکٹھے کر کے ایک ہی جگہ _{تار}R دکھایا گیا ہے۔اس دور کے لئے درج ذیل کھا جا سکتا ہے۔

$$(2.11) v = \Delta v + v_L$$

تار میں برقی گھٹاو Δv نظرانداز کرتے ہوئے

$$(2.12) v = v_L$$

حاصل ہوتا ہے۔اس کا مطلب ہوا کہ تار میں برقی دباو کا گھٹاو قابل نظرانداز ہونے کی صورت میں لا گو برقی دباو کا توں مزاحمت R_L تک پنچتا ہے۔ برقی ادوار حل کرتے ہوئے یہی حقیقت بروئے کار لاتے ہوئے تار میں برقی دباو کے نظرانداز کیا جاتا ہے۔شکل 2.3-الف میں ایسا کرنے سے شکل 2.3-ب حاصل ہوتا ہے۔ یہاں یہ سمجھ لینا ضروری ہے کہ برقی تار کو اس غرض سے استعال کیا جاتا ہے کہ لا گو برقی دباو کو مقام استعال تک بغیر گھٹائے پہنچایا جائے۔

2.3. برتی ادوار

شکل 2.3: برتی ادوار میں برتی تار کی مزاحت کو نظرانداز کیاجاسکتاہے۔

شکل 2.4: کم مزاحمتی راه میں برقی رو کی مقدار زیادہ ہو گی۔

عا_2,مقت طبيسي ادوار

شکل 2.5: مقناطیسی دور

شکل 2.4 میں دوسری مثال دی گئی ہے۔ یہاں ہم دیکھتے ہیں کہ برقی رواس راہ زیادہ ہو گی جس کی مزاحمت کم $i_1>i_2$ مورت میں $i_1>i_2$ کی صورت میں جو۔ بول $i_1>i_2$ کی صورت میں جا ہو گا۔

2.4 مقناطيسي دور حصه اول

 $\tau = \phi \Re_a$

current density⁶

electric field intensity⁷

electric voltage 8

⁹ برقی د بادکی اکائی وولٹ ہے جواٹلی کے الیانڈر ووولٹاکے نام ہے جنہوں نے برقی بیٹری ایجادی۔

electric current¹

¹¹ برتی رو کی اکائی ایمپیئر ہے جو فرانس کے انڈر میر ایمپیئر کے نام ہے جن کا برتی و مقاطیسی میدان میں اہم کر دار ہے۔

copper 12

¹³ مزاحت کی اکائی اوہم ہے جو جر منی کے جارج سائن اوہم کے نام ہے جنہوں نے قانون اوہم دریافت کیا۔

magnetomotive force, mmf¹⁴

 $flux^{15}$

 $[\]rm reluctance^{16}$

2.4. مقت طیسی دور حصیه اول

جہاں \Re_c قابل نظرانداز ہو وہاں، سلسلہ وار مزاحمتوں کی طرح، دو سلسلہ وار جھکچاہٹوں کا مجموعی جھکچاہٹ \Re_s استعال کر کے برتی رو حاصل ہو گی۔

$$\Re_s = \Re_a + \Re_c$$

$$\tau = \phi \Re_s$$

برتی دور کی طرح، مقناطیسی دباو کو کم بچکچاہٹ کی راہ استعال کرتے ہوئے مقام ضرورت تک پہنچایا جاتا ہے۔ مساوات 2.2 کے تحت بچکچاہٹ کی قیمت مقناطیسی مستقل μ پر مخصر ہے ۔مقناطیسی مستقل کی اکائی ہمیزی فی میٹر μ_r اور μ_r کو عموماً μ_r کو عموماً μ_r کا کھا جاتا ہے جہال μ_r جہاں $\mu_0 = 4\pi \times 10^{-7}$ کھا جاتا ہے جہاں μ_r کو مقناطیسی مستقل μ_r کی قیمت 2000 اور جو مقناطیسی مستقل μ_r کی قیمت μ_r کی قیمت μ_r کی قیمت μ_r کی جو مقناطیسی دباو کو ایک جگہ سے دو سری جگہ منتقل کرنے کے لئے ان ہی مقناطیسی مواد کو استعال کیا جاتا ہے۔

بد قتمتی سے مقناطیسی مواد کے μ کی قیمت اتنی زیادہ نہیں ہوتی ہے کہ ان سے بنی سلاخ کی ہیکچاہٹ ہر موقع پر قابل نظرانداز ہو۔ مساوات 2.2 کے تحت ہیکچاہٹ کم سے کم کرنے کی خاطر رقبہ عمودی تراش کو زیادہ سے زیادہ اور لمبائی کو کم سے کم کرنا ہو گا۔ یول مقناطیسی دباو منتقل کرنے کے لئے باریک تار نہیں بلکہ خاصا زیادہ رقبہ عمودی تراش کا مقناطیسی راستہ درکار ہوتا ہے۔

مقناطیسی مثین، مثلاً موٹر اور ٹرانسفار مر، کا بیشتر حصہ مقناطیسی دباو منتقل کرنے والے ان مقناطیسی مواد پر مشمل ہوتا ہے۔ایسے مشینوں کے قلب میں عموماً یہی مقناطیسی مادہ پایا جاتا ہے للذا ایسا مواد مقناطیسی قالبہ 18 کہلاتا ہے (شکل 2.6)۔

برقی مثینوں میں مستعمل مقناطیسی قالب لوہے کی باریک چادر یا پتری 19 تہہ در تہہ رکھ کر بنائی جاتی ہے۔ مقناطیسی قالب کے بارے میں مزید معلومات حصہ 2.8 میں فراہم کی جائے گی۔

relative permeability, relative magnetic constant¹⁷
magnetic core¹⁸

laminations¹⁹

باب 2. مقت طبیمی اووار

شکل 2.6: کثافت مقناطیسی بهاواور مقناطیسی میدان کی شدت۔

2.5 كثافت مقناطيسي بهاواور مقناطيسي ميدان كي شدت

حصہ 2.2 میں برقی دور کی مثال دی گئے۔ یہاں شکل 2.6 میں دکھائے گئے مقناطیسی دور پر غور کرتے ہیں۔ مقناطیسی قالب کی $\mu_r = \infty$ تقالب کی ہی قالب کی ہی قالب کی ہی تابا ہوئے آگے بڑھتے ہیں۔ یوں قالب کی ہی قالب کی ہی قالب کی مقام کے مشال کرنے کے لئے استعال کی تارکی طرح یہاں مقناطیسی قالب کو مقناطیسی دباو τ ایک مقام سے دوسری مقام تک منتقل کرنے کے لئے استعال کیا گیا ہے۔ شکل 2.6 میں مقاطیسی دباو کو خلائی درزکی ہی چاہٹے m_a تک پہنچایا گیا ہے۔ یہاں m_c کو نظرانداز کرتے ہوئے کل ہی چکھاہٹ کو خلائی درزکی ہی جابر تصور کیا جا سکتا ہے:

$$\Re_a = \frac{l_a}{\mu_0 A_a}$$

خلائی درز کی لمبائی l_a قالب کے رقبہ عمودی تراش کے اضلاع b اور w ہے بہت کم ہونے کی صورت میں، لیخی $l_a \ll w$ اور $w \gg l_a \ll w$ خوری تراش $l_a \ll b$ کو قالب کے رقبہ عمودی تراش $l_a \ll w$ کے برابر تصور کیا جا سکتا ہے:

$$(2.17) A_a = A_c = wb$$

اں کتاب میں جہاں بتلایا نہ گیا ہو وہاں $l_a \ll b$ اور $w \gg l_a \ll b$ کاب میں جہاں بتلایا نہ گیا ہو وہاں

مقناطیسی دباو
$$au$$
 کی تعریف درج ذیل مساوات پیش کرتی ہے۔

یوں برقی تار کے چکر ضرب تار میں برقی رو کو مقناطیسی دباو کہتے ہیں۔ مقناطیسی دباو کی اکائی ایمپیئر-چکر²⁰ ہے۔ حصہ 2.2 کی طرح ہم مساوات 2.15 کو یوں لکھ سکتے ہیں۔

$$\phi_a = \frac{\tau}{\Re_a}$$

مقناطیسی بہاو کی اکائی 22 ویر 22 اور ہیکیاہٹ کی اکائی ایمپیئر-چگر فیے ویبر 23 ہے۔ اس سلسلہ وار دور کے خلائی درز میں مقناطیسی بہاو ϕ_c ایک دوسرے کے برابر ہوں گے۔درج بالا مساوات کو مساوات کی مدد سے 0 کی مدد سے

$$\phi_a = \tau \left(\frac{\mu_0 A_a}{l_a} \right)$$

١

$$\frac{\phi_a}{A_a} = \mu_0 \left(\frac{\tau}{l_a}\right)$$

کھ سکتے ہیں جہاں درز کی نشاندہی زیر نوشت میں a کھ کر کی گئی ہے۔ اس مساوات میں بائیں ہاتھ مقناطیسی بہاو فی اکائی رقبہ کو کٹافیسے میال کے شدھے a اور دائیں ہاتھ مقناطیسی دباو فی اکائی لمبائی کو مقناطیسے میدال کے شدھے a اور دائیں ہاتھ مقناطیسی دباو فی اکائی لمبائی کو مقناطیسے میدال کے شدھے a کھا جا سکتا ہے:

$$(2.21) B_a = \frac{\phi_a}{A_a}$$

$$(2.22) H_a = \frac{\tau}{l_a}$$

کافتِ مقناطیسی بہاوکی اکائی ویبرفی مرفع میٹر ہے جس کو ٹسلا²⁶ کا نام دیا گیا ہے۔مقناطیسی میدان کی شدت کی اکائی ا امیپیرفی میٹر²⁷ ہے۔ یوں مساوات 2.20 کو درج ذیل لکھا جا سکتا ہے۔

$$(2.23) B_a = \mu_0 H_a$$

جہاں متن سے واضح ہو کہ مقناطیسی میدان کی بات ہو رہی ہے وہاں مقناطیسی میدان کی شدت کو مختصراً میدانھے شدھے²⁸ کہا جاتا ہے۔

ampere-turn²⁰

²² یہ اکائی جر منی کے ولیم اڈورڈو میر کے نام ہے جن کا برقی ومتناطبی میدان میں اہم کر دار رہاہے ampere-turn per weber²³

magnetic flux density²⁴

magnetic field intensity²⁵

Tesla: ²⁶ یا تعام کرنے میں اہم کر دار اداکیا۔

 $[\]begin{array}{c} {\rm ampere\ per\ meter^{27}} \\ {\rm field\ intensity^{28}} \end{array}$

باب_2.مقت طبيسي ادوار

 $B_a = 3$ گل 2.6 میں خلائی درز میں مقناطیسی بہاو کا رخ اکائی سمتیہ a_Z کا مخالف ہے لہذا کثافت ِ مقناطیسی بہاو ہے لہذا $-B_a a_Z$ کی خالف رخ دباو ڈال رہا ہے لہذا $-B_a a_Z$ مقناطیسی دباو کی شدت $H_a = -H_a a_Z$ جائے گی۔ اس طرح درج بالا مساوات کو درج ذیل سمتی روپ میں لکھا جا سکتا ہے۔

$$(2.24) B_a = \mu_0 H_a$$

خلاء کی جگہ کوئی دوسرا مادہ ہونے کی صورت میں یہ مساوات درج ذیل لکھی جائے گی۔

$$(2.25) B = \mu H$$

مثال 2.2: شکل 2.6 میں خلائی درز میں کثافتِ مقناطیسی بہاو 0.1 ٹسلا درکار ہے۔ قالب کی $\mu_r = \infty$ خلائی درز کی لمبائی 1 ملی میٹر اور قالب کے گرد برقی تار کے چکر 100 ہیں۔ درکار برقی رو i تلاش کریں۔

حل: مساوات 2.13 سے

$$\tau = \phi \Re$$

$$Ni = \phi \left(\frac{l}{\mu_0 A}\right)$$

$$\frac{\phi}{A} = B = \frac{Ni\mu_0}{l}$$

لکھ کر درج ذیل حاصل ہو گا۔

$$0.1 = \frac{100 \times i \times 4\pi 10^{-7}}{0.001}$$
$$i = \frac{0.1 \times 0.001}{100 \times 4\pi 10^{-7}} = 0.79567 \,\text{A}$$

یر تی رو خلائی درز میں $B=0.1\,\mathrm{T}$ کثافت مقناطیسی بہاوییدا کرے گا۔ $i=0.795\,67\,\mathrm{A}$

2.6 مقناطیسی دور حصه دوم

شکل 2.7 میں ایک سادہ مقناطیسی نظام دکھایا گیا ہے جس میں قالب کے مقناطیسی منتقل کو محدود تصور کرتے ہیں۔مقناطیسی دباو au=0 مقناطیسی قالب میں مقناطیسی بہاو au=0 پیر۔مقناطیسی دباو au=0 مقناطیسی قالب میں مقناطیسی بہاو م

2.6. مقن طيسي دور حصب دوم

شکل 2.7: ساده مقناطیسی دور به

مقام پر یکساں ہے اور قالب کی اوسط لمبائی l_c ہے۔ قالب میں مقناطیسی بہاو کا رخ فلیمنگ ادایار ہاتھ قانون و 29 کے دائیں ہاتھ کے قانون سے معلوم کیا جا سکتا ہے۔ اس قانون کو دو طریقوں سے بیان کیا جا سکتا ہے۔

- اگرایک کچھے کو دائیں ہاتھ سے یوں کپڑا جائے کہ ہاتھ کی چار انگلیاں کچھے میں برقی رو کے رخ لیٹی ہوں تب انگوٹھا اُس مقناطیسی بہاو کے رخ ہو گا جو اس برقی رو کی وجہ سے وجود میں آیا ہو۔
- اگر ایک تار جس میں برقی رو کا گزر ہو کو دائیں ہاتھ سے یوں پکڑا جائے کہ انگوٹھا برقی رو کے رخ ہو تب باقی چار انگلیاں اُس مقناطیسی بہاو کے رخ لیٹی ہوں گی جو اس برقی رو کی وجہ سے پیدا ہو گا۔

ان دو بیانات میں پہلا بیان کیھے میں مقناطیسی بہاو کا رخ معلوم کرنے کے لئے زیادہ آسان ثابت ہوتا ہے جبکہ سیر تھی تار کے گرد مقناطیسی بہاو کا رخ دوسرے بیان سے زیادہ آسانی سے معلوم کیا جا سکتا ہے۔

قالب میں مقناطیسی بہاو گھڑی کے رخ ہے۔ مقناطیسی بہاو ہ کو شکل 2.7 میں ملکی سیابی کے تیر دار کلیر سے ظاہر کیا گیا ہے۔ قالب کی بچکھاہٹ

$$\Re_c = \frac{l_c}{\mu_c A_c}$$

لکھتے ہوئے مقناطیسی بہاو

$$\phi_c = \frac{\tau}{\Re_c} = Ni \left(\frac{\mu_c A_c}{l_c} \right)$$

Fleming's right hand rule²⁹

عليسي ادوار المستعلق المستعلى المستعلق المستعلق المستعلق المستعلق المستعلق المستعلق المستعلق

شكل 2.8: خلائى درزاور قالب كے ہيكياہائ

ہو گا۔یوں تمام نا معلوم متغیرات حاصل ہو چکے۔

مثال 2.3: شکل 2.8 میں ایک مقناطیسی قالب دکھایا گیا ہے جس کی معلومات درج زیل ہیں۔

قالب اور خلائی درز کی ہیکھاہٹیں تلاش کریں۔

عل:

$$\begin{split} b &= \frac{m-n}{2} = \frac{0.1-0.08}{2} = 0.01\,\mathrm{m} \\ A_a &= A_c = bw = 0.01\times0.02 = 0.0002\,\mathrm{m}^2 \\ l_c &= 2(h+n) - l_a = 2(0.2+0.08) - 0.001 = 0.559\,\mathrm{m} \end{split}$$

$$\Re_c = \frac{l_c}{\mu_r \mu_0 A_c} = \frac{0.559}{40000 \times 4\pi 10^{-7} \times 0.0002} = 55\,598\,\text{A} \cdot \text{t/Wb}$$

$$\Re_a = \frac{l_a}{\mu_0 A_a} = \frac{0.001}{4\pi 10^{-7} \times 0.0002} = 3\,978\,358\,\text{A} \cdot \text{t/Wb}$$

قالب کی لمبائی خلائی درز کی لمبائی سے 559 گنا زیادہ ہونے کے باوجود خلائی درز کی انچکچاہٹ قالب کی انچکچاہٹ سے $\Re_a\gg\Re_c$ ہو گا۔

2.6 مقت طيسي دور حصب دوم

مثال 2.4: شکل 2.9 سے رجوع کریں۔خلائی درز 5 ملی میٹر لمباہے اور گھومتے حصہ پر 1000 چکر ہیں۔خلائی درز میں 3.4 کی فاطر درکار برقی رو معلوم کریں۔

حل: اس شکل میں گھومتے مشین، مثلاً موٹر، کی ایک سادہ صورت دکھائی گئی ہے۔ ایسی مشینوں کا ہیرونی حصہ ساکن رہتا ہے للذا اس جھے کو مشین کا ساکھنے حصہ 30 کہتے ہیں۔ ساکن جھے کے اندر مشین کا گھومتا حصہ 31 کہتے ہیں۔ اس مثال میں ان دونوں حصوں (قالب) کا $m_r = \infty$ تصور کیا گیا ہے للذا ان کی بچکچاہٹ صفر ہو گی۔ مقاطیسی بہاو کو ہلکی سیابی کی لکیر سے ظاہر کیا گیا ہے۔ مقاطیسی بہاو کی ایک مکمل چکر کے دوران مقاطیسی بہاو دو خلائی درزوں سے گزرتا ہے۔ یہ دو خلائی درز ہر لحاظ سے ایک دوسرے جیسے ہیں للذا ان دونوں خلائی درزوں کی بچکچاہٹ سلسلہ وار ہوں خلائی درزوں کی بچکچاہٹ سلسلہ وار ہیں۔ شکل 2.9 میں مقاطیسی بہاو کو گھومتے حصہ، ساکن حصہ اور دو خلائی درزوں سے گزرتا ہوا دکھایا گیا ہے۔ خلائی درز کی لمبائی A_c میں مقاطیسی بہاو کو گھومتے حصہ، ساکن حصہ اور دو خلائی درزوں سے گزرتا ہوا دکھایا گیا ہے۔ خلائی درز کی لمبائی A_c ، قالب کے رقبہ تراش میں بہاو کو گھومتے حصہ، ساکن حصہ اور دو خلائی درز کا عمودی رقبہ تراش ہوا کہا گھومتے حصہ کے رقبہ تراش کے برابر تصور کیا جائے گا۔

يوں
$$A_a=A_c$$
 ليتے ہوئے ايک خلائی درز کی ہمچکچاہئ $A_a=A_c$ يوں $\Re_a=rac{l_a}{\mu_0A_a}=rac{l_a}{\mu_0A_c}$ يورز کی ملک ميک کل ميککچاہئ درزوں کی کل ميککچاہئ درج ذیل ہو گا۔ $\Re_s=\Re_a+\Re_a=rac{2l_a}{\mu_0A_c}$

stator³⁰ rotor³¹ باب_2.مقت طبيسي ادوار

خلائی درز میں مقناطیسی بہاہ ϕ_a اور کثافتِ مقناطیسی بہاہ B_a درج ذیل ہوں گے۔

$$\begin{split} \phi_a &= \frac{\tau}{\Re_s} = (Ni) \left(\frac{\mu_0 A_c}{2l_a} \right) \\ B_a &= \frac{\phi_a}{A_a} = \frac{\mu_0 Ni}{2l_a} \end{split}$$

دی گئی معلومات پر کرتے ہوئے درج ذیل حاصل ہو گا۔

$$0.95 = \frac{4\pi 10^{-7} \times 1000 \times i}{2 \times 0.005}$$
$$i = \frac{0.95 \times 2 \times 0.005}{4\pi 10^{-7} \times 1000} = 7.56 \,\text{A}$$

روایتی موٹروں اور جنریٹروں کی خلاء میں تقریباً ایک ٹسلا کثافت برقی بہاو ہوتی ہے۔

2.7 خوداماله، مشتركه اماله اور توانائي

مقناطیسی بہاو کی وقت کے ساتھ تبدیلی برقی دباو کو جنم دیتی ہے۔ للذا شکل 2.10-ا کے قالب میں مقناطیسی بہاو ϕ کی تبدیل کی بنا کچھ میں برقی دباو e پیدا ہو گا جو کچھ کے سروں پر نمودار ہو گا۔ اس طرح پیدا ہونے والی برقی دباو کو امالی برقی دباو ³² کہتے ہیں۔ قانون فیراڈے ³³ کے تحت ³⁴ درج ذیل ہو گا (جہاں دائیں ہاتھ منفی کی علامت نہیں کھی گئے ہے چونکہ ہمیں صرف دباو کی مطلق قیمت سے غرض ہے)۔

$$(2.27) e = N \frac{\partial \phi}{\partial t} = \frac{\partial \lambda}{\partial t}$$

امالی برقی د باو کو منبع برقی د باو تصور کریں۔

امالی برقی دباو کا رخ تعین کرنے کی خاطر کچھے کے سرول کو کسرِ دور³⁵ کریں۔ کچھے میں پیدا برقی رواُس رخ ہو گا جو مقناطیسی بہاو کی تبدیلی کو روکے۔

induced voltage³² Faraday's law³³ الآمان غيران الشياني سائنسدان تقيه جنهوں نے محرک برتی د باودريافت کی short circuit³⁵

شکل 2.10: قالب میں مقناطیسی بہاو کی تبدیلی کھیے میں برقی د ہاوپیدا کرتی ہے۔

فرض کریں شکل 2.10-ا میں بہاو ہ گھڑی کی سوئیوں کے گھومنے کے رخ ہے اور بہاو کی مقدار بڑھ رہی ہے۔ بہاو کی تبدیلی کا مخالف بہاو کہ پیدا کرنے کی خاطر کچھے کا بالائی سر مثبت ہو گا۔شکل 2.10-ب میں کچھے کے سروں کے نتی مزاحمت میں کے سروں کے نتی مزاحمت میں کے سروں کے نتی مزاحمت میں کہ مزاحمت میں اور کا رخ قالب میں گھڑی کے مخالف رخ بہاو کہ پیدا کرے گا۔

قالب میں مقناطیسی بہاو ϕ ، قالب پر لییٹے گئے لیچھ کے تمام چکروں N کے اندر سے گزرتا ہے۔ $N\phi$ کو لیچھ کا ارتباط بہاو λ کہتے ہیں جس کی اکائی ویبر۔ چکر λ 37 ہے۔

$$(2.28) \lambda = N\phi$$

جن مقناطیسی ادوار میں مقناطیسی مستقل μ کو اٹل مقدار تصور کیا جا سکے یا جن میں خلائی درز کی بچکچاہٹ قالب کی بچکچاہٹ سے بہت زیادہ ہو، $\Re_a\gg\Re_c$ ، ان میں کیھے کی امالہ L^{38} کی تعریف درج ذیل مساوات دیتی ہے۔

$$(2.29) L = \frac{\lambda}{i}$$

 $\lambda=N\phi$ امالہ کی اکائی و بیر - چکر فی ایمپیئر ہے جس کو ہینری H^{39} کا نام H^{39} دیا گیا ہے۔ مساوات $\phi=R_c$ میں $\phi=R_c$ ، $\phi=R_c$ اور $\phi=R_c$ بر کرتے ہوئے درج ذیل حاصل ہو گا

(2.30)
$$L = \frac{N\phi}{i} = \frac{NB_cA_c}{i} = \frac{N^2\mu_0A_a}{l_a}$$

flux linkage³⁶ weber-turn³⁷

inductance³⁸

 $\rm Henry^{39}$

40 امر کی سائنسدان جوزف بینری جنبوں نے مالکل فیراڈے سے علیحدہ طور پر محرک برقی د باودریافت کی

42 مقت طيسي ادوار

شكل 2.11: اماليه (مثال 2.5)

جہاں قالب کا رقبہ عمودی تراش A_c اور درز کا رقبہ عمودی تراش A_a ایک دوسرے کے برابر لیے گئے ہیں۔

مثال 2.5: شکل 2.11 میں $b = 5 \, \text{cm}, w = 4 \, \text{cm}, l_a = 3 \, \text{mm}$ مثال 2.15: شکل 2.11 میں اور قالب کی $l_c = 30 \, \text{cm}$ اوسط لمبائی $l_c = 30 \, \text{cm}$ کے بیان دو صور توں میں کیھے کی امالہ تلاش کریں۔

- $\mu_r=\infty$ قالب کا $\mu_r=0$
- $\mu_r = 500$ قالب کا •

حل: (1) قالب کے $\mu_r = \infty$ کی بنا قالب کی پیچکیاہٹ قابل نظرانداز ہو گی لہذا امالہ درج ذیل ہو گا۔

$$L = \frac{N^2 \mu_0 wb}{l_a}$$

$$= \frac{1000^2 \times 4\pi 10^{-7} \times 0.04 \times 0.05}{0.003}$$

$$= 0.838 \,\text{H}$$

(+) کی صورت میں قالب کی انجیجاہٹ قابل نظر انداز نہیں ہو گی۔خلاء اور قالب کی انجیجاہٹ $\mu_r=500$ دریافت کرتے ہیں۔

$$\Re_a = \frac{l_a}{\mu_0 w b} = \frac{0.003}{4\pi 10^{-7} \times 0.04 \times 0.05} = 1\,193\,507\,\mathrm{A\cdot t/Wb}$$

$$\Re_c = \frac{l_c}{\mu_r \mu_0 w b} = \frac{0.3}{500 \times 4\pi 10^{-7} \times 0.04 \times 0.05} = 238\,701\,\mathrm{A\cdot t/Wb}$$

یوں بہاو، ارتباط اور امالہ درج ذیل ہوں گے۔

$$\begin{split} \phi &= \frac{Ni}{\Re_a + \Re_c} \\ \lambda &= N\phi = \frac{N^2i}{\Re_a + \Re_c} \\ L &= \frac{\lambda}{i} = \frac{N^2}{\Re_a + \Re_c} = \frac{1000^2}{1\,193\,507 + 238\,701} = 0.698\,\mathrm{H} \end{split}$$

مثال 2.6: شكل 2.12 ميں ايك پيجپرار لچھا
41
 و كھايا گيا ہے جس كى جسامت ورج ذيل ہے۔ $N=11, r=0.49~\mathrm{m}, l=0.94~\mathrm{m}$

پیچیدار کیجے کے اندر مقناطیسی بہاو ϕ کا بیشتر حصہ محوری رخ ہوتا ہے۔ کیجے کے باریبی بہاو پوری کا نئات سے گزرتے ہوئے واپس کیجے میں داخل ہوتا ہے۔ چونکہ پوری کا نئات کا رقبہ عمودی تراش A لا متنابی ہے لہذا کیجے کے باہر کثافت مقناطیسی بہاو $B=\frac{\phi}{A}$ کی مقدار قابل نظرانداز ہو گی۔ کیجے کے اندر محوری رخ مقناطیسی شدت درج ذمل ہو گی۔ خوری کی مقدار قابل نظرانداز ہو گی۔ کی مقدار قابل نظرانداز ہو گی۔

$$H = \frac{Ni}{l}$$

اس کھیے کی خود امالہ حاصل کریں۔

باب 2. مقت طبیسی ادوار

عل:

$$B = \mu_0 H = \frac{\mu_0 Ni}{l}$$

$$\phi = B\pi r^2 = \frac{\mu_0 Ni\pi r^2}{l}$$

$$\lambda = N\phi = \frac{\mu_0 N^2 i\pi r^2}{l}$$

$$L = \frac{\lambda}{i} = \frac{\mu_0 N^2 \pi r^2}{l}$$

اور l کی قیمتیں پر کرتے ہوئے درج ذیل امالہ حاصل ہو گا 42 L

$$L = \frac{4\pi 10^{-7} \times 11^2 \times \pi \times 0.49^2}{0.94} = 122\,\mu\text{H}$$

 i_1 شکل 2.13 میں دو لیجھوں کا ایک مقناطیسی دور دکھایا گیا ہے۔ ایک لیجھے کے چکر N_1 اور اس میں برقی رو i_2 ہے، دوسرا لیجھا N_2 چکر کا ہے اور اس میں برقی رو i_2 ہے۔ دونوں کیجھوں میں مثبت برقی رو قالب میں ایک جیسے رخ مقناطیسی دباو پیدا کرتے ہیں۔ اگر قالب کا \Re_c قابل نظرانداز ہو تب مقناطیسی بہاو ϕ درج ذیل ہو گا۔

(2.31)
$$\phi = (N_1 i_1 + N_2 i_2) \frac{\mu_0 A_a}{l_a}$$

دونوں کیجھوں کا مجموعی مقناطیسی دیاو، $N_1 i_1 + N_2 i_2$ ، مقناطیسی بہاو ϕ پیدا کرتا ہے۔ اس مقناطیسی بہاو کا پہلے کیجھ

موٹائی
$$=b$$

$$A_a = A_c = bw$$

$$\lambda_1 = N_1 \phi$$

$$\lambda_2 = N_2 \phi$$

$$\phi = \frac{N_1 i_1 + N_2 i_2}{\Re_a + \Re_c}$$

شكل 2.13: دولچھے والا مقناطیسی دور۔

کے ساتھ ارتباط

(2.32)
$$\lambda_1 = N_1 \phi = N_1^2 \frac{\mu_0 A_a}{l_a} i_1 + N_1 N_2 \frac{\mu_0 A_a}{l_a} i_2$$

لعيني

$$\lambda_1 = L_{11}i_1 + L_{12}i_2$$

ے جہاں L_{11} اور L_{12} ہے۔

$$(2.34) L_{11} = N_1^2 \frac{\mu_0 A_a}{l_a}$$

$$(2.35) L_{12} = N_1 N_2 \frac{\mu_0 A_a}{l_a}$$

 L_{11} کہا کہ کہ کا نود امالہ 43 ہے اور $L_{11}i_1$ اس کہلے کے اپنے برتی رو i_1 سے پیدا متناطیسی بہاو کے ساتھ ارتباط بہاو $L_{12}i_2$ بن دونوں کہوں کا مشترکہ امالہ $L_{12}i_2$ اور $L_{12}i_2$ کہا ۔ $L_{12}i_2$ باتھ $L_{12}i_2$ بیدا بہاو کے ساتھ ارتباط بہاو ہے جے مشترکہ ارتباط بہاو $L_{12}i_2$ ہیں ۔ بالکل اسی طرح ہم دوسرے کہنے کے لئے درج ذیل لکھ سکتے ہیں۔ نیل لکھ سکتے ہیں ۔

$$\lambda_2 = N_2 \phi = N_2 N_1 \frac{\mu_0 A_a}{l_a} i_1 + N_2^2 \frac{\mu_0 A_a}{l_a} i_2$$
 (2.36)
$$= L_{21} i_1 + L_{22} i_2$$

جہال L_{22} اور L_{21} سے مراد درج ذیل ہے۔

$$(2.37) L_{22} = N_2^2 \frac{\mu_0 A_a}{I}$$

(2.38)
$$L_{21} = L_{12} = N_2 N_1 \frac{\mu_0 A_a}{l_a}$$

لیے اور کا نود امالہ اور $L_{21}=L_{12}$ دونوں کی مشتر کہ امالہ ہے۔امالہ کا تصور اس وقت کار آمد ہوتا ہے L_{22} جب مقناطیسی مستقل μ کو اٹل تصور کرنا ممکن ہو۔

self inductance⁴³ self flux linkage⁴⁴

mutual inductance⁴⁵

mutual flux linkage⁴⁶

باب 2. مقت طبيسي ادوار

مساوات 2.29 کو مساوات 2.27 میں پر کرتے ہیں۔

(2.39)
$$e = \frac{\partial \lambda}{\partial t} = \frac{\partial (Li)}{\partial t}$$

اگر امالہ کی قیمت اٹل ہو، جیسا کہ ساکن مشینوں میں ہوتا ہے، تب ہمیں امالہ کی جانی بیچانی مساوات

$$(2.40) e = L \frac{\partial i}{\partial t}$$

ملتی ہے۔ اگر امالہ بھی تبدیل ہو، جیسا کہ موٹروں اور جزیٹروں میں ہوتا ہے، تب درج ذیل ہو گا۔

$$(2.41) e = L \frac{\partial i}{\partial t} + i \frac{\partial L}{\partial t}$$

قوانا کھے 47 کی اکائی جاول 49 49 ہے اور طاقتے 50 کی اکائی 51 جاول فی سینڈ ہے جس کو واہے 52 W کا نام دیا گیا ہے۔

اس کتاب میں توانائی یا کام کو W سے ظاہر کیا جائے گا اگرچہ طاقت کی اکائی واٹ W کے لئے بھی یہی علامت استعال ہوتی ہے۔امید کی جاتی ہے کہ متن سے اصل مطلب جاننا ممکن ہو گا۔

وقت t کے ساتھ توانائی W کی تبدیلی کی شرح کو طاقہp کہتے ہیں۔یوں درج ذیل لکھا جا سکتا ہے۔

$$(2.42) p = \frac{\mathrm{d}W}{\mathrm{d}t} = ie = i\frac{\mathrm{d}\lambda}{\mathrm{d}t}$$

مقناطیسی دور میں لمحہ t_1 تا t_2 مقناطیسی توانائی کی تبدیلی کو تکمل کے ذریعہ حاصل کیا جا سکتا ہے:

(2.43)
$$\Delta W = \int_{t_1}^{t_2} p \, \mathrm{d}t = \int_{\lambda_1}^{\lambda_2} i \, \mathrm{d}\lambda$$

ایک کیچے کا مقناطیسی دور، جس میں امالہ کی قیت اٹل ہو، کے لئے درج ذیل لکھا جا سکتا ہے۔

(2.44)
$$\Delta W = \int_{\lambda_1}^{\lambda_2} i \, \mathrm{d}\lambda = \int_{\lambda_1}^{\lambda_2} \frac{\lambda}{L} \, \mathrm{d}\lambda = \frac{1}{2L} \left(\lambda_2^2 - \lambda_1^2 \right)$$

energy⁴⁷

 $Watt^{52}$

Joule⁴⁸

⁴⁹ جیس پریسقوٹ جاول انگلتانی سائنسدان جنہوں نے حرارت اور میکانی کام کارشتہ دریافت کیا 50 سے میں میں

power³⁰

⁵¹ کاللینڈ کے جیمزواٹ جنہوں نے بخارات پر چلنے والے انجن پر کام کیا 52 میں تربیع

2.8. مقت طیسی مادہ کے خواص

شکلB-H:2.14 خطوط یامقناطیسی جال کے دائرے۔

یوں
$$t_1$$
 پر t_2 تصور کرتے ہوئے کسی بھی λ پر مقناطیسی توانائی درج ذیل ہو گا۔
$$\Delta W = \frac{\lambda^2}{2L} = \frac{Li^2}{2}$$

2.8 مقناطیسی مادہ کے خواص

قالب کے استعال سے دو فوائد حاصل ہوتے ہیں۔ قالب کے استعال سے کم مقناطیسی دباو، زیادہ مقناطیسی بہاو پیدا کرتا ہے اور مقناطیسی بہاو کو پند کی راہ پر رہنے کا پابند بنایا جا سکتا ہے۔ یک مرحلہ ٹرانسفار مروں میں قالب کے استعال سے مقناطیسی بہاو کو اس طرح پابند کیا جاتا ہے کہ تمام کچھوں میں کیساں بہاو پایا جاتا ہو۔ موٹروں میں قالب کے استعال سے مقناطیسی بہاو کو یوں پابند کیا جاتا ہے کہ زیادہ سے زیادہ قوت پیدا ہو جبکہ جزیئروں میں زیادہ سے زیادہ تو دیاو حاصل کرنے کی نیت سے بہاو کو یابند کیا جاتا ہے۔

B-H مقناطیسی مواد کی B اور H کا تعلق ترسیم کی صورت میں پیش کیا جاتا ہے۔ لوہا نما مقناطیسی مادے کی A مقناطیسی مواد کی B اور B کا نقط B ترسیم شکل B۔ ایک لوہا نما مقناطیسی مادہ جس میں مقناطیسی اثر نہیں پایا جاتا ہو کو نقط B سے ظاہر کیا گیا ہے۔ اس نقط پر درج ذیل ہوں گے۔

$$H_a = 0$$

$$B_a = 0$$

48 باب2.مقناطيسي ادوار

اس مادہ کو کچھے میں رکھ کر اس پر مقناطیسی دباو لا گو کیا جا سکتا ہے۔ مقناطیسی میدان کی شدت H لا گو کرنے سے لوہا نما مقناطیسی مادے میں کثافت مقناطیسی بہاو B پیدا ہو گی۔میدانی شدت بڑھانے سے کثافت مقناطیسی بہاو b بھی بڑھے گی۔اس عمل کو نقطہ a سے ابتدا کرتے ہوئے ایک تیردار قوس سے دکھایا گیا ہے۔میدانی شدت کو نقطہ b تک بڑھایا گیا ہے جہاں d اور d ہوں گے۔

نقطہ b تک پہنچنے کے بعد میدانی شدت کم کرتے ہوئے دیکھا گیا ہے کہ واپی قوس ایک مختلف راستہ اختیار کرتا ہے۔ یوں نقطہ b سے میدانی شدت کم کرتے ہوئے صفر کرنے سے لوہا نما مادہ کی کثافتِ مقناطیسی بہاہ کم ہو کر نقطہ c پر آن پہنچتی ہے۔ نقطہ d سے نقطہ d تیر دار قوس اس عمل کو ظاہر کرتا ہے۔ نقطہ d پر بیرونی میدانی شدت صفر ہے لیکن لوہا نما مادے کی کثافتِ مقناطیسی بہاہ صفر نہیں ہے۔ یہ مادہ ایک مقناطیس بن گیا ہے جس کی کثافتِ مقناطیسی بہاہ مقاطیسی بہاہ جس کی مقاطیس اس طرح بنایا جاتا ہے۔

نقطہ c سے میدانی شدت منفی رخ بڑھانے سے B کم ہوتے ہوتے آخر کار ایک مرتبہ دوبارہ صفر ہو جائے گی۔اس نقطہ کو d سے ظاہر کیا گیا ہے۔مقاطیسیت ختم کرنے کے لئے درکار میدانی شدت کی مقدار $|H_d|$ کو مقاطیسیت ختم کرنے والی شدت یا مختصراً غاتم شدھے 54 کہتے ہیں۔

منفی رخ میدانی شدت مزید بڑھانے سے نقطہ e حاصل ہو گا۔ اس کے بعد منفی رخ کی میدانی شدت کی مطلق قیت کم کرنے سے نقطہ f حاصل ہو گا جہاں میدانی شدت صفر ہونے کے باوجود کثافتِ مقناطیسی بہاو صفر نہیں ہے۔اس نقطہ پر لوہا نما مادہ اُلٹ رخ مقناطیس بن چکا ہے اور B_f بقایا کثافتِ مقناطیسی بہاو ہے۔اسی طرح اس رخ مقناطیسیت ختم کرنے کی شدت $|H_g|$ ہے۔میدانی شدت بڑھاتے ہوئے نقطہ b کی بجائے جاتا ہے۔

برتی شدت کو متواتر اسی طرح پہلے ایک رخ اور پھر مخالف (دوسری) رخ ایک خاص حد تک پہنچانے سے آخر کار گار کا سے متحنی کا ایک بند دائرہ حاصل ہو گا جے شکل 2.14-ب میں دکھایا گیا ہے۔اس دائرہ پر گھڑی کے مخالف رخ سفر ہو گا۔شکل 2.14-ب کو مقناطیسی چالے کا دائرہ 55 کہتے ہیں۔

مختلف H کے لئے شکل 2.14-ب حاصل کر کے ایک ہی کاغذ پر کھینچنے کے بعد ان تمام کے b نقطے جوڑنے B سے شکل 2.15 میں دکھائی گئ B - H ترسیم حاصل ہو گی۔ ٹرانسفار مروں میں استعال ہونے والی 0.3048 میں موجود مواد جدول 2.1 موٹی B قالبی پتری کی B - H ترسیم شکل 2.15 میں دکھائی گئی ہے۔ اس ترسیم میں موجود مواد جدول 2.1

magnetic flux!residual⁵³ coercivity⁵⁴

hysteresis loop⁵⁵

2.8 مقت طیسی مادہ کے خواص

شکل 5:2.15 نولاد کی 0.3048 ملی میٹر موٹی پتری کی ترسیم۔میدانی شدت کا پیانہ لاگ ہے۔

میں بھی دیا گیا ہے۔ عموماً مقناطیسی مسائل حل کرتے ہوئے شکل 2.14 کی جگہ شکل 2.15 طرز کی ترسیم استعال کی جاتی ہے۔ کی جاتی ہے۔دھیان رہے کہ اس ترسیم میں H کا پیانہ لاگے⁵⁶ ہے۔

لوہا نما مقناطیسی مادے پر لاگو مقناطیسی شدت بڑھانے سے کثافتِ مقناطیسی بہاو بڑھنے کی شرح بندر تا جم ہوتی جاتی ہے حتی کہ آخر کاریہ شرح خلاء کی شرح μ_0 کے برابر ہو جاتی ہے :

$$\frac{\Delta B}{\Delta H} = \mu_0$$

اس اثر کو سیرابیدے 57 کہتے ہیں جو شکل 2.15 میں واضح ہے۔

شکل 2.14 سے واضح ہے کہ H کی کسی بھی قیمت پر B کے دو مکنہ قیمتیں ہوں گی۔ بڑھتے مقناطیسی بہاو کی صورت میں ترسیم میں نیچے سے اُوپر جانے والی منحیٰ B اور H کا تعلق پیش کرے گی جبکہ گھٹے ہوئے مقناطیسی بہاو کی صورت میں اوپر سے نیچے جانے والی منحیٰ اس تعلق کو پیش کرے گی۔ چو نکہ $B/H=\mu$ ہے لہٰذا B کی مقدار تبدیل ہونے سے μ کی قیمت بھی تبدیل ہو گی۔ باوجود اس کے ہم مقناطیسی ادوار میں μ کو ایک مستقل تصور کرتے ہیں۔ ایسا کرنے سے عمواً نتائج پر زیادہ اثر انداز نہیں ہوتا۔

مثال 2.7: شکل 2.15 یا اس کے مساوی جدول 2.1 میں دی گئی مواد استعال کرتے ہوئے شکل 2.6 کی خلاء میں ایک ٹسلا اور دو ٹسلا کثافت متناطیسی بہاو حاصل کرنے کے لئے درکار برقی رو معلوم کریں۔درج ذیل معلومات استعال کریں۔ قالب اور خلاء کا رقبہ عمودی تراش ایک دوسرے جتنا لیں۔

$$b=5\,{\rm cm}, w=4\,{\rm cm}, l_a=3\,{\rm mm}, l_c=30\,{\rm cm}, N=1000$$

 $[\]log^{56}$ saturation 57

با___2.مقن طیسی ادوار 50

حل: ایک ٹسلا کے لئے۔ جدول 2.1 کے تحت قالب میں 1 ٹسلا کے لئے قالب کو 11.22 ایمپیئر-چکر فی میٹر قیمت کی شدت H در کار ہو گی۔ بوں 30 سم لمے قالب کو $3.366 = 11.22 \times 0.3 \times 1$ ایمبیئر چکر درکار ہوں گے۔

خلاء کو درج ذیل ایمییئر - چکر فی میٹر شدت درکار ہے۔

$$H = \frac{B}{\mu_0} = \frac{1}{4\pi 10^{-7}} = 795\,671$$

یوں 3 ملی میٹر خلاء کو 2387 = 2387×0.003 ایمپیئر چکر در کار ہوں گے۔اس طرح کل دایمپیئر - چکر +3.366 2390.366 بين جن سے درج ذيل حاصل کيا حاسکتا ہے۔

$$i = \frac{2390.366}{1000} = 2.39 \,\mathrm{A}$$

حل: دو ٹسلا کے لئے۔

حدول 2.1 کے تحت قالب میں 2 ٹسلا کثافت کے لئے قالب کو 10000 ایمییئر-چکر فی میٹر H درکار ہو گی۔ بول 30 سم قالب کو 3000 $= 0.3 \times 1000$ ایمپیئر چکر درکار ہوں گے۔ خلاء کو

$$H = \frac{B}{\mu_0} = \frac{2}{4\pi 10^{-7}} = 1591342$$

ايمبيئر - چکر في ميٹر درکار بين لهذا 3 ملي ميٹر لمبي خلاء کو 4774 = 1591342 × 0.003 ايمبيئر چکر درکار ہوں گے۔ یوں کل ایمپیئر- چکر 7774 = 4774 + 3000 ہیں جن سے درج ذیل حاصل کیا جا سکتا ہے۔

$$i = \frac{7774}{1000} = 7.774 \,\mathrm{A}$$

اس مثال میں مقناطیسی سیر ابت واضح ہے۔

2.9. بيجبان شده لچھ ا

B	H	B	H	B	H	B	H	B	H	B	H
0.000	0	0.700	9	1.480	30	1.720	200	1.852	1000	1.998	9000
0.040	2	0.835	10	1.540	40	1.752	300	1.900	2000	2.000	10000
0.095	3	1.000	11.22	1.580	50	1.780	400	1.936	3000	2.020	20000
0.160	4	1.100	12.59	1.601	60	1.800	500	1.952	4000	2.040	30000
0.240	5	1.200	14.96	1.626	70	1.810	600	1.968	5000	2.048	40000
0.330	6	1.300	17.78	1.640	80	1.824	700	1.975	6000	2.060	50000
0.440	7	1.340	20	1.655	90	1.835	800	1.980	7000	2.070	60000
0.560	8	1.400	23.77	1.662	100	1.846	900	1.985	8000	2.080	70000

جدول 2.1: مقناطيسي بهاو بالمقابل شدت

2.9 سيجان شده لجها

بدلتی رو بجلی میں برقی دباو اور مقناطیسی بہاو عموماً سائن نما ہوتے ہیں جن کا وقت کے ساتھ تعلق sin wt یا cos wt ہو گا۔ اس حصہ میں بدلتی رو سے کچھا بیجان کرنا اور اس سے نمودار ہونے والی برقی توانائی کے ضیاع پر تذکرہ کیا جائے گا۔ قالب میں کثافت مقناطیسی بہاو

$$(2.48) B = B_0 \sin \omega t$$

کی صورت میں قالب میں درج ذیل بدلتا مقناطیسی بہاو $\,arphi$ پیدا ہو گا۔

(2.49)
$$\varphi = A_c B = A_c B_0 \sin \omega t = \phi_0 \sin \omega t$$

اس مساوات میں مقناطیسی بہاو کا حیطہ ϕ_0 ، کثافت متناطیسی بہاو کا حیطہ ϕ_0 ، قالب کا رقبہ عمود کی تراش A_c (جو π مقام پر کیسال ہے)، زاویائی تعدد π عدد π و اور تعدد π ہے۔

فیراڈے کے قانون (ماوات 2.27) کے تحت یہ مقاطبی بہاو کیھے میں e(t) امالیے برقی دباو 58 پیدا کرے گا

(2.50)
$$e(t) = \frac{\partial \lambda}{\partial t}$$

$$= \omega N \phi_0 \cos \omega t$$

$$= \omega N A_c B_0 \cos \omega t$$

$$= E_0 \cos \omega t$$

induced voltage⁵⁸

52 باب2. مقت طبیسی ادوار

شكل 2.16: ساده مقناطيسي دور (مثال 2.8) ـ

جس کا حیطہ درج ذیل ہو گا۔

$$(2.51) E_0 = \omega N \phi_0 = 2\pi f N A_c B_0$$

ہم بدلتے رو مقداروں کے مربع کی اوسط کے جذر میں دلچیں رکھتے ہیں جو ان مقداروں کی موثر 59 قیت ہوتی ہے۔ جیسا صفحہ 21 پر مساوات 1.42 میں دیکھا گیا، سائن نما موج کی موثر قیت موج کے حیطہ کی $1/\sqrt{2}$ گنا ہو گی لہذا امالی برتی دباو کی موثر قیت E_{rms} درج ذیل ہوگی۔

(2.52)
$$E_{rms} = \frac{E_0}{\sqrt{2}} = \frac{2\pi f N A_c B_0}{\sqrt{2}} = 4.44 f N A_c B_0$$

یہ مساوات بہت اہم ہے جس کو ہم بار بار استعال کریں گے۔بدلتے برقی دباو یا بدلتے برقی رو کی قیمت سے مراد ان کی موثر قیمت ہوگی۔ پاکستان میں گھر بلو برقی دباو کی موثر قیمت 220 وولٹ ہے۔اس سائن نما برقی دباو کی چوٹی $\sqrt{2} \times 220 = 311$

مثال 2.8: شکل 2.16 میں کچھے کے 27 چکر ہیں۔ قالب کی لمبائی 30 سم جبکہ اس کا رقبہ عمودی تراش 2.8 مثال 2.8: شکل 2.16 میں کچھے کے 27 چکر ہیں۔ قالب کی لمبائی 30 سم جبکہ اس کا رقبہ عمودی تراش 229.253 مربع سم ہے۔ کچھے کو گھر میلو 220 وولٹ موثر برقی دباوید محرک برقی رو معلوم کریں اور اس کا خط کھیجنیں۔

(2.53)
$$v = \sqrt{2} \times 220 \cos(2\pi 50t)$$

مساوات 2.52 کی مدد سے ہم کثافتِ مقناطیسی بہاو کی چوٹی حاصل کرتے ہیں۔

(2.54)
$$B_0 = \frac{220}{4.44 \times 50 \times 27 \times 0.0229253} = 1.601 \,\mathrm{T}$$

root mean square, $\rm rms^{59}$

2.9. بيجبان شده لچھ

ωt	B	H	0.3H	$i_{\varphi} = \frac{0.3H}{27}$	ωt	B	H	0.3H	$i_{\varphi} = \frac{0.3H}{27}$
0.675	1.000	11.22	3.366	0.125	0.000	0.000	0	0.000	0.000
0.757	1.100	12.59	3.777	0.140	0.025	0.040	2	0.600	0.022
0.847	1.200	14.96	4.488	0.166	0.059	0.095	3	0.900	0.033
0.948	1.300	17.78	5.334	0.198	0.100	0.160	4	1.200	0.044
0.992	1.340	20	6.000	0.222	0.150	0.240	5	1.500	0.056
1.064	1.400	23.77	7.131	0.264	0.208	0.330	6	1.800	0.067
1.180	1.480	30	9.000	0.333	0.278	0.440	7	2.100	0.078
1.294	1.540	40	12.000	0.444	0.357	0.560	8	2.400	0.089
1.409	1.580	50	15.000	0.556	0.453	0.700	9	2.700	0.100
1.571	1.601	60	18.000	0.667	0.549	0.835	10	3.000	0.111

جدول2.2: محرک برقی رو

شكل 5:2.17 يترى كے قالب ميں 6.1 أسلاتك يجان بيداكرنے كے لئے در كار بيجان انگيز برقى رويہ

یوں قالب میں کثافتِ مقناطیسی بہاو کا حیطہ 1.601 ہو گا اور قالب میں کثافتِ مقناطیسی بہاو کی مساوات درج ذیل ہوگی۔

$$(2.55) B = 1.601 \sin \omega t$$

ہم جدول کی مدد سے 0 اور 1.601 ٹسلا کے 3 مختلف قیمتوں پر درکار محرک برقی رو i_{ϕ} معلوم کرنا چاہتے ہیں۔ ہم مختلف B پر جدول 2.1 سے قالب کی H حاصل کریں گے جو ایک میٹر لمبی قالب کے لئے درکار ایمپیئر-چکر ہوں گے۔ اس سے 30 سم لمبی قالب کے لئے درکار ایمپیئر-چکر کر معلوم کر کے برقی رو حاصل کریں گے۔

جدول 2.2 مخلف کثافتِ مقناطیسی بہاو کے لئے درکار محرک برقی رو دیتی ہے۔جدول میں ہر B کی قیمت پر ωt مساوات 2.55 کی مدد سے حاصل کی گئی ہے۔ ωt بالمقابل محرک برقی رو کا خط شکل Δt میں دیا گیا ہے۔ ωt

باب2. مقت طبيسي ادوار

شكل 2.18: ہيجان انگيز برقى رو۔

برتی کچھے میں برقی دباو سے ہیجان پیدا کیا جاتا ہے۔ ہیجان شدہ کچھا میں گزرتے برقی رو i_{φ} کی بنا قالب میں مقناطیسی بہاو پیدا ہو گا۔ اس برتی رو i_{φ} کو ہیجارہے انگیز برقیے رو i_{φ} کو ہیجارہے انگیز برقی رو i_{φ} کی بنا قالب میں معناطیسی بہاد پیدا ہو گا۔ اس برتی رو i_{φ} کو ہیجارہے انگیز برقی رو i_{φ}

مثال 2.8 میں بیجان انگیز برتی رو معلوم کی گئی جے شکل 2.17 میں دکھایا گیا۔اسے حاصل کرتے وقت مقناطیسے پالے 61 کو نظر انداز کیا گیا۔شکل 2.18 میں بیجان انگیز برتی رو $_{\phi}i$ دکھائی گئی ہے جو مقناطیسی چال کو مدِ نظر رکھ کر حاصل کی گئی ہے۔ اس کو سمجھنا ضروری ہے۔

شکل 2.18-الف میں مقناطیسی چال کا دائرہ و کھایا گیا ہے۔درج ذیل تعلقات کی بنا مقناطیسی چال کے خط کو $arphi-i_{arphi}$ کا خط کھا جا سکتا ہے۔

(2.56)
$$Hl = Ni$$

$$\varphi = BA_c$$

قالب میں سائن نما مقناطیسی بہاو φ کو شکل 2.18-ب میں دکھایا گیا ہے۔سائن نما مقناطیسی بہاو وقت کے ساتھ تبدیل ہوتا ہے۔ لحمہ t_1 پر اس کی قیمت p_1 ہو گی۔ مقناطیسی بہاو p_1 حاصل کرنے کے لئے درکار بیجان انگیز برقی رو p_1 شکل-الف سے حاصل کی جاسکتی ہے۔ اسی بیجان انگیز برقی رو کو شکل-ب میں لمحہ p_1 پر دکھایا گیا ہے۔ p_2

دھیان رہے کہ لحہ t_1 پر مقناطیسی بہاو بڑھ رہا ہے للذا مقناطیسی چال کے خط کا درست حصہ استعال کرنا ضروری ہے۔ شکل 2.18-الف میں arphi - arphi = arphi خط میں گھڑی کی سو یکوں کے مخالف رخ گھومتے ہوئے یوں نیچے سے اوپر

excitation current⁶⁰ hysteresis⁶¹

2.9. بيجبان شده لچھ ا

شکل 2.19: بیچاس ہر ٹزیر 0.3 ملی میٹر موٹی پتری کے لئے در کار موثر وولٹ - اپنیئر فی کلو گرام قالب

جاتا ہوا حصہ استعال کیا گیا ہے۔شکل 2.14-ب میں تیر کے نشان مقناطیسی بہاو بڑھنے (ینچے سے اوپر) اور گھنے (اوپر سے ینچے) والے حصوں کی نشاندہی کرتے ہیں۔

لمحہ t_2 پر مقناطیسی بہاو گھٹ رہا ہے۔اس لمحہ پر مقناطیسی بہاو φ_2 ہے اور اسے حاصل کرنے کے لئے درکار بیجان انگیز برقی رو i_2 ہے۔

اسی طرح مختلف کمحات پر درکار ہیجان انگیز برتی رو حاصل کرنے سے شکل 2.18-ب کا i_{arphi} خط ملتا ہے جو غیر سائن نما ہے۔

 $e=N\frac{\mathrm{d}\varphi}{\mathrm{d}t}=N\phi_0\omega\cos\omega t$ کی صورت میں برقی دباو $\varphi=\phi_0\sin\omega t$ ہو گا۔ شکل $\varphi=\phi_0\sin\omega t$ ہیں کہ برقی دباو سے مقناطیسی بہاو $\varphi=0$ تاخیر سے $\varphi=0$ میں اس برقی دباو کو بھی دکھایا گیا ہے۔آپ دکھ سکتے ہیں کہ برقی دباو سے مقناطیسی بہاو $\varphi=0$ تاخیر سے $\varphi=0$ میں اس برقی دباو کو بھی دکھایا گیا ہے۔آپ دکھ سکتے ہیں کہ برقی دباو سے مقناطیسی بہاو $\varphi=0$ تاخیر سے $\varphi=0$ میں اس برقی دباو کو بھی دکھایا گیا ہے۔آپ دکھ سکتے ہیں کہ برقی دباو سے مقناطیسی بہاو $\varphi=0$ تاخیر سے $\varphi=0$ میں اس برقی دباو کی جمعتاطیسی بہاو $\varphi=0$ تاخیر سے $\varphi=0$ میں اس برقی دباو کی جمعتاطیسی بہاو $\varphi=0$ تاخیر سے مقابل کی جمعتاطیسی بہاو $\varphi=0$ تاخیر سے مقابل کی جمعتاطیسی بہاو $\varphi=0$ تاخیر سے مقابل کی جمعتاطیسی بہاو $\varphi=0$ تاخیر سے خور نے مقابل کی دباو کے خور نے کہا تاخیر سے خور نے کہا تاخیر کے خور نے کہا تاخیر کے

 $H_{c,rms}$ قالب میں $B=B_0\sin\omega t$ کی صورت میں B اور i_{arphi} غیر سائن نما ہوں گے جن کی موثر قیمتوں $B=B_0\sin\omega t$ اور $i_{arphi,rms}$ کا تعلق درج ذیل ہو گا۔

$$(2.57) Ni_{\varphi,rms} = l_c H_{c,rms}$$

مساوات 2.52 اور مساوات 2.57 سے درج ذیل حاصل ہو گا

$$(2.58) E_{rms}i_{\varphi,rms} = \sqrt{2}\pi f B_0 H_{c,rms} A_c l_c$$

باب 2. مقت طبيسي ادوار

جہاں $A_c l_c$ قالب کا مجم ہے۔ یوں $A_c l_c$ مجم کے قالب کو B_0 کثافت مقناطیسی بہاو تک بیجان کرنے کے لئے درکار $E_{rms}i_{\varphi,rms}$ مساوات $E_{rms}i_{\varphi,rms}$ مساوات $E_{rms}i_{\varphi,rms}$ مساوات کا گرام قالب کے لئے مساوات $E_{rms}i_{\varphi,rms}$ کو درج ذیل روپ میں لکھا جا سکتا ہے۔ $E_{rms}i_{\varphi,rms}$

$$(2.59) P_a = \frac{E_{rms}i_{\varphi,rms}}{m_c} = \frac{\sqrt{2}\pi f}{\rho_c} B_0 H_{c,rms}$$

دیکھا جائے تو کسی ایک تعدد f پر g کی قیت صرف قالب اور اس میں g یعنی چونی تعدد g پر منحصر ہے، چونکہ g پیدا کرنے کے خود g پر منحصر ہے۔ بہی وجہ ہے کہ قالب بنانے والے اکائی کمیت کے قالب میں مختلف چونی g پیدا کرنے کے لئے ایک g درکار g بالمقابل g بالمقابل g ترسیم مہیا کرتے ہیں۔ قالب کی g میٹر موٹی پتری کے لئے ایک ترسیم شکل 2.19 میں دکھایا گیا ہے۔

باب3

ٹرانسفار مر

ٹرانسفار مر وہ آلہ ہے جو بدلتا برقی دباو کو تبدیل کرتا ہے۔ یہ دویا دوسے زیادہ کچھوں پر مشمل ہوتا ہے جو مقناطیسی قالب اپر لیلئے ہوتے ہیں۔ یہ کچھے عموماً آپس میں جڑے ہوئے نہیں ہوتے۔ شکل 3.1-الف میں ٹرانسفار مرکی علامت د کھائی گئی ہے۔ دو کچھوں کے در میان متوازی ککیریں مقناطیسی قالب کو ظاہر کرتی ہیں۔

دستیاب برقی د باو² پر ٹرانسفار مر کے ایک کچھے کو برقی طاقت فراہم کی جاتی ہے اور باقی کچھوں سے مختلف برقی د باو پر یہی برقی طاقت حاصل کی جاتی ہے۔ جس کچھے پر برقی د باو لا گو کیا جائے اسے ابتدائیے کچھا³ کہتے ہیں اور ٹرانسفار مرکی اس جانب کو ابتدائی جانب⁴ کہتے ہیں۔اس طرح جس کچھے (کچھوں) سے برقی طاقت حاصل کی جاتی ہے اسے (انہیں) اگونوںے کچھا³ (کچھے) کہتے ہیں اور اس جانب کو اگونوںے جانب⁶ کہتے ہیں۔اییا شکل 3.1-ب میں دکھایا گیا ہے۔ٹرانسفار مرکی علامت میں ابتدائی جانب کو ہائیں طرف اور ٹانوی جانب کو دائیں طرف دکھایا جاتا ہے۔

بڑے ٹرانسفار مر عموماً صرف دو لچھوں پر مشمثل ہوتے ہیں۔اس کتاب میں مقناطیسی قالب پر لیٹے ہوئے دو لچھوں کے قوی ٹرانسفار مریر تبصرہ کیا جائے گا۔

magnetic core¹

² بدلتی برقی د باوکی علامت میں مثبت اور منفی نشان وقت صفر پر برقی د باوکی مثبت اور منفی سرے ظاہر کرتے ہیں۔

primary coil³

primary side⁴

secondary coil⁵

secondary side⁶

58 باب. 3. ٹرانسفار مسم

شكل 3.1: ٹرانسفار مركى علامت۔

ٹرانسفار مرکے کم برقی دباو کے کچھے کو کم برقی دباو کا کچھا⁷ کہتے ہیں اور ٹرانسفار مرکی اس جانب کو کم برقی دباو والی جانب کہتے ہیں جبکہ ٹرانسفار مرکے زیادہ برقی دباو کے کچھے کو زیادہ برقی دباو کا کچھا⁸ کہتے ہیں اور ٹرانسفار مرکی اس جانب کو زیادہ برقی دباو والی جانب کہتے ہیں۔

یوں اگر ٹرانسفار مرکے کم برقی دباو جانب برقی دباو لا گو کیا جائے اور زیادہ برقی دباو جانب سے برقی دباو حاصل کیا جائے تو ٹرانسفار مرکی کم برقی دباو جانب کو ابتدائی جانب کہیں گے اور اس کی زیادہ برقی دباو جانب کو ثانوی جانب کہیں گے۔ کہیں گے۔

3.1 ٹرانسفار مرکی اہمیت

برلتے رو کی برقی طاقت ایک مقام سے دوسرے مقام با آسانی اور نہایت کم برقی طاقت کی ضیاع سے منتقل کی جا سکتی ہے۔ یہی اس کی مقبولیت کا راز ہے۔ ٹرانسفار مر کے تبادلہ برقی دباو⁹ کی خصوصیت ایسا کرنے میں کلیدی کردہر ادا کرتی ہے جسے درج ذیل مثال کی مدد سے سمجھتے ہیں۔

مثال 3.1: شکل 3.2 سے رجوع کریں۔ برتی دباو اور برتی روکی حاصل ضرب برتی طاقت ہوتی ہے:

 $p = v_1 i_1 = v_2 i_2$

تصور کریں کہ تربیلا ڈیم سے 500 MW برقی طاقت لاہور 10 شہر کے گھریلو صارفین کو 220 وولٹ پر مہیا کرنی

low voltage coil⁷ high voltage coil⁸

voltage transformation property⁹

¹⁰ صْلِع صوابي میں بھی لاہورایک تحصیل ہے لیکن اس شہر کواتنی طاقت نہیں در کار

3.1. ٹرانسفار مسر کی اہمیت

شكل 3.2: برقى طاقت كى منتقلى_

ہے۔اگر ہم اس طاقت کو 220 وولٹ پر ہی منتقل کرنا چاہیں تب برقی رو

$$i = \frac{p}{v} = \frac{500\,000\,000}{220} = 2\,272\,727\,\mathrm{A}$$

ہو گی۔ برقی تار میں کثافتِ برقی رو J_{au} تقریباً 5 ایمپیئر فی مربع ملی میٹر $\frac{A}{mm^2}$ کی مربع ملی میٹر $J_{au}=5$ ممکن ہوتی ہے۔ یہ ایک محفوظ کثافتِ برقی رو ہے۔ اگر برقی تار میں اس سے زیادہ برقی رو گزاری جائے تو اس کی مزاحمت میں برقی طاقت کے ضیاع سے یہ گرم ہو کر پھل سکتی ہے۔ اس طرح صفحہ 14 پر مساوات 1.23 سے برقی تار کا رقبہ عمودی تراش

$$A = \frac{i}{J_{au}} = \frac{2272727}{5} = 454545 \,\text{mm}^2$$

ہو گا۔ گول تار تصور کرس تو اس کا رداس درج ذیل ہو گا۔

$$r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{454545}{\pi}} = 380 \,\mathrm{mm} = 0.38 \,\mathrm{m}$$

ا تنی موٹی برقی تار کہیں نہیں پائی جاتی ہے $ho_v = 2700 \, rac{
m kg}{
m m^3}$ کی بنی ہو جس کی کثافت $ho_v = 2700 \,
ho_v$ ہوتی ہے تب ایک میٹر کمبی تار کی کمیت

$$m = 2700 \times \pi \times 0.38^2 \times 1 = 1224 \,\mathrm{kg}$$

یعنی 1.2 ٹن ہو گی۔المو ٹیم اتنی مہنگی ہے کہ اس صورت میں اتنی برقی طاقت کو لاہور پہنچانا ممکن نہیں ہو گا¹²۔

¹¹ آپ مانیں بانیہ مانیں، آپ نے بھی اتنی موٹی بر قی تاریکھی نہیں دیکھی ہوگی۔ 12 آج کل لاہور میں بکلی کی معطلی اس وجہ سے نہیں ہے۔

60 باب. 3. ٹرانسفار مسر

آئیں اب ٹرانسفار مر استعال کر کے دیکھتے ہیں۔ ڈیم پر ایک ٹرانسفار مر نسب کر کے برقی دباو کو بڑھا کر 000 132 وولٹ یعنی 132 کلو وولٹ کیا جاتا ہے۔ یوں برقی رو درج ذیل ہو گا

$$i = \frac{p}{v} = \frac{500\,000\,000}{132\,000} = 3788\,\mathrm{A}$$

جس کے لئے درکار برقی تار

$$A = \frac{i}{J_{au}} = \frac{3788}{5} = 758 \,\text{mm}^2$$
$$r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{1667}{\pi}} = 15.5 \,\text{mm}$$

صرف 15.5 ملی میٹر رداس کی ہو گی۔

اس مثال میں اگر تربیلا ڈیم میں نسب جزیٹر 11000 وولٹ برقی دباو پیدا کر رہا ہو تو تربیلا ڈیم پر نسب ٹرانسفار مر برقی دباو کو 11000 وولٹ سے بڑھا کر 132 کلو وولٹ کرے گا جبکہ لاہور شہر میں نسب ٹرانسفار مر 132 کلو وولٹ کو واپس 11000 وولٹ کرے گا۔

اسی مثال کو بڑھاتے ہیں۔شہر میں 220 وولٹ کی بجائے 11000 وولٹ صارف کے قریب پہنچا کر محلہ میں نسب بڑانسفار مر کی مدد سے 11000 وولٹ کو مزید گھٹا کر 220 وولٹ کیا جائے گا جو صارف کو فراہم کیے جائیں گ

شکل 3.2 میں ڈیم سے شہر تک کا نظام دکھایا گیا ہے جہاں ڈیم پر نسب ٹرانسفار مر کو برقی دباو بڑھا ٹرانسفار مر¹³ اور لاہور میں نسب ٹرانسفار مر کو برقی دباو گھٹا ٹرانسفار مر¹⁴ کہا گیا ہے۔

برتی طاقت عموماً 11 کلو وولٹ اور 25 کلو وولٹ کے مابین پیدا کی جاتی ہے۔اس کی منتقلی 110 کلو وولٹ اور 1000 کلو وولٹ سے کم پر کیا جاتا ہے۔ 1000 کلو وولٹ کے چیج کی جاتی ہے جبکہ اس کا استعال 1000 وولٹ سے کم پر کیا جاتا ہے۔

step up $transformer^{13}$ step down $transformer^{14}$

3.2. ٹرانسفار مسرکے اقسام

3.2 ٹرانسفار مرکے اقسام

گھروں اور کارخانوں کو برقی طاقت فراہم کرنے والے ٹرانسفار مر مقناطیسی قالب پر پیٹے جاتے ہیں۔ یہ عموماً تیرین مرحلہ 15 ہوتے ہیں۔ ہوتے ہیں جنہیں لوہے کے قالب والے تاہین مرحلہ قومی ٹرانسفار م¹⁶ کہتے ہیں۔

نہایت جھوٹے ٹرانسفار مر عموماً لوہے کے قالب پر بنائے جاتے ہیں اور یک مرحلہ 17 ہوتے ہیں۔ یہ گھر یلو استعال کے برقی مشین، مثلاً موبائل چارجر، وغیرہ میں نب ہوتے ہیں اور 220 وولٹ سے برقی دباو مزید گھٹاتے ہیں۔

برتی دباوکی پیائش کے لئے مستعمل ٹرانسفار مر، جو دباو کے ٹرانسفار مر¹⁸ کہلاتے ہیں، کے ثانوی اور ابتدائی برتی دباو کی تناسب پر خاص توجہ دی جاتی ہے۔ای طرح برتی روکی پیائش کے لئے مستعمل ٹرانسفار مر، جو روکے ٹرانسفار مر¹⁹ کہلاتے ہیں، کے ثانوی اور ابتدائی روکی تناسب پر خاص توجہ دی جاتی ہے۔ ویسے تو ہر ٹرانسفار مرکسی تناسب سے برقی دباویا برقی روکم یا زیادہ کرتا ہے لیکن جیسا پہلے ذکر کیا گیا، ان دو اقسام کے ٹرانسفار مروں میں کم اور زیادہ کرنے کی تناسب پر خاص توجہ دی جاتی ہے۔ان دو اقسام کے ٹرانسفار مروں کی برقی سکت²⁰ نہایت کم ²¹ ہوتی ہے۔

ٹرانسفار مر کے کچھوں کے مابین مشتر کہ مقناطیسی بہاو خلاء کے ذریعہ بھی ممکن ہے۔انہیں ظلائمے قالب ٹرانسفار مروں کہتے ہیں۔ ایسے ٹرانسفار مر ذرائع ابلاغ ²³ کے ادوار، لیعنی ریڈیو، ٹی وی وغیرہ میں پائے جاتے ہیں۔ان ٹرانسفار مروں کی علامت شکل 3.3 میں دکھائی گئی ہے جس میں قالب ظاہر کرنے والی متوازی کلیریں نہیں پائی جاتی ہیں۔

3.3 امالى برتى دباو

اس جھے کا بنیادی مقصد بیرونی برقی دباو v اور اندرونی امالی برقی دباو e میں فرق واضح کرنا اور ان سے متعلق سمتیکی اصطلاحات کا تعارف ہے۔

three $phase^{15}$

iron core, three phase power $transformer^{16}$

single phase¹⁷

 $potential\ transformer^{18}$

current transformer 19

electrical rating 20

²¹ يم عموماً تقريباً بجيس وولث -ايمپيئر سكت ركھتے ہيں۔

air core transformer²²

communication transformer²³

62 باب. 3. ٹرانسفار مسر

شکل 3.4 میں بے بوجھ 24 ٹرانسفار مر دکھایا گیا ہے، یعنی اس کا ثانوی کچھا کھلے دور رکھا گیا ہے۔ ابتدائی کچھے کی مزاحمت R_1 ہے جس کو بیرونی جزو دکھایا گیا ہے۔ابتدائی کچھے پر v_1 برتی دباو لا گو کرنے سے ابتدائی کچھے میں بیجان انگیز 25 برتی رو ہی گذرے گا۔اس بیجان انگیز برتی رو سے پیدا مقناطیسی دباو ہی تالب میں مقناطیسی بہاو م پیدا کے گا۔ یہ بداتا مقناطیسی بہاو ابتدائی کچھے میں امالی برتی دباو e_1 پیدا کرتا ہے جسے درج ذیل مساوات پیش کرتی ہے۔

(3.1)
$$e_1 = -\frac{\mathrm{d}\lambda}{\mathrm{d}t} = -N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t}$$

اس مساوات میں

- λ ابتدائی کیجے کی مقناطیسی بہاو کے ساتھ ارتباط بہاو ہے،
- φ مقناطیسی قالب میں مقناطیسی بہاو جو دونوں کیھوں میں سے گزرتی ہے،
 - ابتدائی کچھے کے چکر ہیں۔ N_1

ابتدائی کچھے کی مزاحمت R_1 صفر نہ ہونے کی صورت میں کرخوف کے قانون برائے برقی دباو کے تحت درج ذیل ہو گا۔

$$(3.2) v_1 = i_{\varphi} R_1 + e_1$$

 $\begin{array}{c} unloaded^{24} \\ excitation \ current^{25} \end{array}$

شکل 3.4 میں اس مزاحمت کو بطور بیرونی جزو، ٹرانسفار مر کے باہر، دکھایا گیا ہے۔اس کچھے کی رستا متعاملہ بھی ہو گی جے نظرانداز کیا گیا ہے۔عموماً طاقت کے ٹرانسفار مرول اور موٹرول میں $i_{\varphi}R_1$ کی قیمتوں سے بہت کم ہوتی ہے لہٰذا اسے نظرانداز کیا جا سکتا ہے۔ایبا کرتے ہوئے درج ذیل لکھا جا سکتا ہے۔

$$(3.3) v_1 = e_1 = -N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t}$$

مساوات 3.2 سے ثابت ہوتا ہے کہ بیرونی لا گو برقی دباو v_1 اور اندرونی امالی برقی دباو e_1 ہوتا ہے کہ بیرونی لا گو برقی دباو v_1 اور v_1 کی مطلق قیمتیں (تقریباً) ایک ہیں۔ یہ بات سمجھ لینا بہت ضروری ہے۔مساوات 3.3 کے تحت v_1 اور v_1 کی مطلق قیمتیں (تقریباً) ایک دوسرے کے برابر ہوتی ہیں v_2 مساوات 3.3 میں دائیں ہاتھ منفی کی علامت پائی جاتی ہے۔ (ہمیں عموماً برقی دباو کی مطلق قیمت درکار ہوتی ہے ناکہ اس کی علامت للذا اس کتاب میں مساوات 3.3 طرز کی مساواتوں میں دائیں ہاتھ منفی کی علامت عموماً نہیں کھی گئی ہے۔)

لچھا ہیجارے ²⁷ کرنے سے مراد اس پر بیرونی برقی دباو لا گو کرنا ہے جبکہ کچھے پر لا گو بیرونی برقی دباو کو ہیجارے انگیز برقی دباو²⁸ کہتے ہیں۔کچھے کو ہیجارج شدہ کچھا²⁹ جبکہ اس میں رواں برقی رو کو ہیجارے انگیزبرقی رو³⁰ کہتے ہیں۔

لیچھ میں گزرتی مقناطیسی بہاو کی تبدیلی سے برقی دباو حاصل کیا جا سکتا ہے۔ ٹرانسفار مروں میں ساکن کچھا سے برقی دباو کو المالی برقی دباو ³¹ کہتے ہیں۔ برقی دباو کا حصول مقناطیسی میدان میں کچھے کی حرکت سے بھی ممکن ہے۔ ایسے برقی دباو کو محرکے برقی دباو³² کہتے ہیں۔ یاد رہے ان برقی دباو میں مسلم کا فرق نہیں ہوتا۔ انہیں مختلف نام صرف بچپان کی خاطر دئے جاتے ہیں۔

3.4 هیجان انگیز برقی رواور قالبی ضیاع

جہال مقناطیسی قالب میں براتا مقناطیسی بہاو ٹانوی لیجھوں میں فائدہ مند برقی دباو پیدا کرتا ہے وہاں یہ مقناطیسی قالب میں نقصان دہ برقی دباو کو بھی جنم دیتا ہے جس سے مقناطیسی قالب میں بھورنا برقی رو³³ پیدا ہوتا ہے۔ بھنور نما برقی

²⁶جس سے طلبہ کی ذہن میں پیے غلط فہمی پیداہوتی ہے کہ بیدا یک ہی برق دباوے دومختلف نام ہیں۔ excit.e²⁷

excitation voltage 28 excited coil 29

excitation current³⁰

induced voltage³¹

electromotive force, emf^{32} eddy currents³³

64 پاپ. 3. ٹرانسفار مے

شکل 5. 3: قالبی پتری کے اشکال اور ان کو تہہ در تہہ رکھنے کاطریقہ۔

رو مقناطیسی قالب میں برقی طاقت کے ضیاع کا سبب بنتا ہے جے بھور نما برقی رو کا ضیاع 36 یا مخضراً قالبی ضیاع 35 کہتے ہیں۔ قالبی ضیاع کو کم سے کم کرنے کے لئے مقناطیسی قالب کو باریک لوہے کی پیزیان 36 تہہ در تہہ رکھ کر بنایا جاتا ہے۔ان پتریوں پر غیر موصل روغن 37 کی تہہ لگائی جاتی ہے تا کہ بھنور نما برتی روکو روکا جا سکے۔آپ ویکھیں گے کہ برتی مشین کا قالب عموماً اسی طرح بنایا جاتا ہے۔شکل 2.15 اور جدول 2.1 میں 3048 میں میٹر موٹی کا کہ برتی موٹ کا 37 کے مواد دیا گیا ہے۔

شکل 5.5-الف میں قالبی پتریوں کے دو اشکال دکھائے گئے ہیں۔ان کی صورت کی وجہ سے انہیں ایک اور اور علی علی عربی ایک اور اور علی پتریوں اور تین پتریوں کو دو طرح آپس میں رکھا گیا ہے۔ان دو طریقوں سے انہیں تہہ در تہہ رکھا جاتا ہے۔الذا اگر پہلی تہہ میں ایک دائیں جانب اور تین بائیں جانب رکھا جائے تو اس کے اوپر دوسری تہہ میں ایک کو بائیں جانب اور تین کو دائیں جانب رکھا جائے گا۔ تیسری تہہ میں ایک کو بائیں جانب اور تین کو دائیں جوڑ کر شکل 3.5۔پ میں دکھایا گیا قالب حاصل دائیں اور تین کو بائیں جانب رکھا جائے گا، وغیرہ۔اسی طرح انہیں جوڑ کر شکل 3.5۔پ میں دکھایا گیا قالب حاصل کیا جاتا ہے۔

جیجان انگیز برقی رو بے بوجھ اور بوجھ بردار ٹرانسفار مر میں یکسال ہوتا ہے ۔جیسا کہ پہلے بھی ذکر کیا گیا ہے، قوی ٹرانسفار مر اور موٹروں میں برقی دباو اور مقناطیسی بہاو سائن نما ہوتے ہیں جبکہ ان میں بیجان انگیز برقی رو غیر سائن نما ہوتا ہے۔ بول اگر

(3.4)
$$\varphi = \phi_0 \sin \omega t = \phi_0 \cos (\omega t - 90^\circ)$$
$$\hat{\varphi} = \phi_0 / -90^\circ$$

eddy current loss³⁴

core loss³⁵

 $laminations^{36} \\$

 $enamel^{37}$

 $[\]mathrm{E.I}^{38}$

شکل3.6: مختلف مرحلی سمتیوں کے زاویے۔

ہو تب

(3.5)
$$e_1 = N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \omega N_1 \phi_0 \cos \omega t$$
$$\hat{E_1} = \omega N_1 \phi_0 / 0$$

ہو 39 گا۔ یہاں ϕ_0 مقناطیسی بہاو کے حیطہ کو ظاہر کرتی ہے اور ω زاویائی تعداد ارتعاش یعنی $2\pi f$ کو ظاہر کرتی ہے ϕ_0 اور ϕ_0 گا ϕ_0 بہال ϕ_0 تعداد ارتعاش ہے جسے ہر ٹر Hz میں ناپا جاتا ہے۔ جیسا شکل 3.6 میں دکھایا گیا ہے ϕ_0 اور ϕ_0 کے بھی ϕ_0 کا زادیہ ہو گا۔ ϕ_0 برتی دباو کی موثر قیت ϕ_0

(3.6)
$$E_{rms} = \frac{\omega N_1 \phi_0}{\sqrt{2}} = 4.44 f N_1 \phi_0$$

ہے جس سے درج ذیل لکھا جا سکتا ہے۔

(3.7)
$$\phi_0 = \frac{E_{rms}}{4.44f N_1 \phi_0}$$

یہاں رکھ کر دوبارہ نظر ثانی کرتے ہیں۔ اگر ایک کچھ پر E_{rms} موثر برقی دباو لا گو کیا جائے تو یہ کچھا اتنا ہجان انگیز برقی رو i_{φ} گزرنے دیتا ہے جس سے نمودار ہونے والا مقناطیسی بہاو مساوات 3.7 میں دیے گئے مقناطیسی بہاو ϕ_0 کے برابر ہو۔ یہ حقیقت نہ صرف ٹرانسفار مر بلکہ کسی بھی مقناطیسی دور کے لئے درست اور لازم ہے۔ ϕ_0

نیر سائن نما ہیجان انگیز برتی رو i_{φ} کو فوریئر تسلسل 40 سے درج ذیل لکھا جا سکتا ہے۔ $i_{\varphi} = \sum_{n} (a_{n} \cos n\omega t + b_{n} \sin n\omega t)$ (3.8)

³⁹ن مساوات میں اوران کے بعد پوری کتاب میں امالی برتی دیاد کے ساتھ منفی علامت نہیں لگائی گئی ہے۔ Fourier series ⁴⁰

اس تسلسل میں $(a_1\cos\omega t + b_1\sin\omega t)$ کو بنیادی جزو⁴⁴ جبکہ باقی حصہ کو موسیقائی جزو⁴⁴ کہتے ہیں۔ بنیادی جزو میں $(a_1\cos\omega t + b_1\sin\omega t)$ کہ مقدم ہے اور دونوں $(a_1\cos\omega t + b_1\sin\omega t)$ کہ مقاطیسی بہاو سے وجود میں آنے والے امالی برقی دباو، $(a_1\cos\omega t + b_1\sin\omega t)$ ہے ہم قدم ہے اور دونوں ایک ساتھ بڑھتے اور گھتے ہیں جبکہ $(a_1\cos\omega t + b_1\sin\omega t)$ نے اس جزو کو جزوقالبی ضیاع $(a_1\cos\omega t + a_1\cos\omega t)$ بنا برقی طاقت کی ضائع، کو $(a_1\cos\omega t + a_1\cos\omega t)$ فی سے اس جزو کو جزوقالبی ضیاع $(a_1\cos\omega t + a_1\cos\omega t)$ کے اس جزو کو جزوقالبی ضیاع $(a_1\cos\omega t + a_1\cos\omega t)$ کہ تیسر کی رو یا مقناطیسی برقی رو $(a_1\cos\omega t + a_1\cos\omega t)$ کے تیسر کی تیسر کی موسیقائی جزو سب سے زیادہ اہم ہے۔ قوی ٹرانسفار مروں میں تیسر اموسیقائی جزو عموماً کل بیجان انگیز برقی رو کا 40 فی صد ہوتا ہے۔

ماسوائے جب بیجان انگیز برتی رو کے اثرات پر غور کیا جا رہا ہو، ہم بیجان انگیز برتی رو کے غیر سائن نما ہونے کو نظرانداز کرتے ہیں۔ قوی ٹرانسفار مرکا بیجان انگیز برتی رو اس کے کل برقی رو 45 کا تقریباً 5 فی صد ہوتا ہے لمذا اس کا اثر بہت کم ہوتا ہے۔ یوں ہم بیجان انگیز برتی رو کو سائن نما تصور کر کے اس کے اثرات پر غور کرتے ہیں۔ایسا کرنے سے مسئلہ پر غور کر نا آسان ہو جاتا ہے۔ اس فرضی سائن نما بیجان انگیز برتی رو 6 کی موثر قیمت کے برابر رکھی جاتی ہے جبکہ اس کا زاویہ 6 یوں رکھا جاتا ہے کہ اس سے ماصل برتی ضیاع اصل برتی ضیاع کے برابر ہو۔ شکل 6 کی مدد سے یہ بات سیحفی زیادہ آسان ہے۔ قالبی ضیاع ہو ہونے کی صورت میں 6 کی قیمت یوں منتخب کی جائے گی کہ درج ذیل مساوات درست ہو۔

 $(3.9) p_c = E_{rms} I_{\varphi,rms} \cos \theta_c$

و باو \hat{I}_{arphi} و باو \hat{I}_{arphi} و باو \hat{I}_{arphi}

3.5 تبادله برقی د باواور تبادله برقی روکے خواص

 N_2 اور ثانوی کچھا N_1 اور ثانوی کچھا N_2 ہم شکل N_3 کی مدد سے ٹرانسفار مرکا مطالعہ کرتے ہیں۔ ہم فرض کرتے ہیں کہ ابتدائی کچھا N_1 اور ثانوی کچھا ورہتا اور چکر کا ہے اور دونوں کچھوں کی مزاحمتیں صفر ہیں۔ ہم مزید فرض کرتے ہیں کہ یورا مقناطیسی بہاو قالب میں رہتا اور

 $fundamental\ component^{41}$

harmonic components⁴²

 $core loss component^{43}$

 $^{{\}rm magnetizing}\ {\rm current}^{44}$

⁴⁵کل بر تی روے مرادوہ بر تی روہ جو کل بر تی بو جھ لادنے سے حاصل ہو تا ہے۔ ⁴⁶یعنی بدلتی بر تی رو_ن نو کواب مرحلی سمتیہ کی مدد سے می آگھتے ہیں

شكل 3.7: كامل بوجھ بردارٹرانسفار مر۔

دونوں کچھوں سے گزرتا ہے، قالب میں برقی توانائی ضائع نہیں ہوتی اور قالب کا مقناطیسی مستقل اتنا بڑا ہے کہ بیجان انگیز برقی رو قابل نظر انداز ہے۔ برقی رو i_1 اور i_2 کے رخ یوں رکھے گئے ہیں کہ ان سے پیدا مقناطیسی بہاو ایک دوسرے کے مخالف رخ ہیں۔ اصل ٹرانسفار مر ان باتوں پر تقریباً پورا اترتا ہے۔ ایسے ٹرانسفار مر کو کامل ٹرانسفار مر t_1 کہتے ہیں۔

کامل ٹرانسفار مر کے ابتدائی کچھے پر بدلتا برتی دباو v_1 لا گو کرنے سے قالب میں بدلتا مقناطیسی بہاو φ_m پیدا ہو گا جو ابتدائی کچھے میں ، لا گو برتی دباو v_1 براب، امالی برتی دباو v_1 پیدا کرتا ہے۔

$$(3.10) v_1 = e_1 = N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

یمی مقناطیسی بہاو دوسرے کیجے سے بھی گزرے گا اور اس میں e_2 امالی برقی دباو پیدا کرے گا جو ثانوی سروں پر برقی دباو پیدا کرے گا جو ثانوی سروں پر برقی دباو پیدا کرے گا جو ثانوی سروں پر برقی دباو v_2 کی صورت میں نمودار ہو گا۔

$$(3.11) v_2 = e_2 = N_2 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

مساوات 3.10 کو مساوات 3.11 سے تقسیم کرتے ہوئے درج ذیل رشتہ حاصل ہوتا ہے

$$\frac{v_1}{v_2} = \frac{N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}}{N_2 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}} = \frac{N_1}{N_2}$$

جس کے تحت کامل ٹرانسفار مر دونوں لچھوں کے چکروں کی نسبت سے تبادلد برقی دباو⁴⁸ کرتا ہے۔

کامل ٹرانسفار مر میں طاقت کا ضیاع نہیں ہوتا ہے لہذا اس کو ابتدائی جانب جنتی برقی طاقت فراہم کی جائے وہ اتنی برقی طاقت ثانوی جانب دے گا:

$$(3.13) p = v_1 i_1 = v_2 i_2$$

 $ideal\ transformer^{47}$ voltage transformation⁴⁸

68 پاپ 3. ٹرانسفار مسر

درج بالا مساوات سے

$$\frac{v_1}{v_2} = \frac{i_2}{i_1}$$

کھا جا سکتا ہے جس کو مساوات 3.12 کے ساتھ ملا کر درج ذیل حاصل ہوتا ہے۔

$$\frac{v_1}{v_2} = \frac{i_2}{i_1} = \frac{N_1}{N_2}$$

مساوات 3.15 ٹرانسفار مر کی تبادلہ برقی دباو اور تبادلہ برقی رو⁴⁹ کی خاصیت پیش کرتی ہے جسے عموماً دو حصوں میں پوں لکھا جاتا ہے:

$$(3.16)$$
 $rac{v_1}{v_2}=rac{N_1}{N_2}$ تبادلہ برتی دیاہ $rac{i_1}{i_2}=rac{N_2}{N_1}$ تبادلہ برتی رو

اس مساوات کا پہلی جزو کہتا ہے کہ ٹرانسفار مر کی دونوں جانب برقی دباو دونوں اطراف چکروں کا راست متناسب ہو گا جبکہ مساوات کا دوسری جزو کہتا ہے کہ ٹرانسفار مر کے دونوں اطراف برقی رو چکروں کا بالعکس متناسب ہو گا۔

مثال 3.2: شکل 3.7 میں درج ذیل لیتے ہوئے ٹرانسفار مرکی دونوں جانب برقی دباو اور برقی رو معلوم کریں۔

$$\hat{V}_1 = 220/0$$
 $N_1 : N_2 = 220 : 22$
 $Z = R = 10 \Omega$

حل: اہتدائی جانب برقی دباو 220 وولٹ دیا گیا ہے۔ ہم ثانوی جانب برقی دباو کو مساوات 3.16 کے پہلی جزو کی مدد سے حاصل کرتے ہیں۔

$$\hat{V}_2 = \frac{N_2}{N_1} \hat{V}_1 = \frac{22}{220} \times 220 / 0 = 22 / 0$$

ثانوی دباو 22 وولٹ ہے جو ابتدائی دباو کے ہم قدم ہے۔ ثانوی برقی دباو 10 اوہم کی مزاحمت میں برقی رو پیدا کرے گا جے اوہم کے قانون سے حاصل کرتے ہیں:

$$\hat{I}_2 = \frac{22/0}{10} = 2.2/0$$

 $current\ transformation^{49}$

ثانوی رو 2.2 ایمپیئر ہے۔ ابتدائی رو مساوات 3.16 کے دوسری جزو سے حاصل کرتے ہیں۔

$$\hat{I}_1 = \frac{N_2}{N_1} \hat{I}_2 = \frac{22}{220} \times 2.2 / 0 = 0.22 / 0$$

اس مثال کے نتائج ایک جگہ لکھ کر ان پر غور کرتے ہیں۔

$$\hat{V}_1 = 220/0$$
, $\hat{V}_2 = 22/0$, $\hat{I}_1 = 0.22/0$, $\hat{I}_2 = 2.2/0$

ابتدائی دباو ثانوی دباو کے دس گنا ہے جبکہ برقی رو میں قصہ الٹ ہے۔ ثانوی رو ابتدائی رو کے دس گنا ہے۔ طاقت دونوں اطراف برابر ہے۔ یہاں رک کر اس بات کو اچھی طرح سمجھ لیں کہ جس جانب برقی دباو زیادہ ہوتا ہے اس جانب برقی رو کم ہو گا۔ یوں زیادہ دباو لچھا کے چکر زیادہ ہوں گے اور اس کچھے میں نسبتاً باریک برقی تار استعال ہو گی جبکہ کم دباو لچھا کم چکر کا ہو گا اور اس میں نسبتاً موٹی برقی تار استعال ہو گی۔ موٹی تار زیادہ رو گزارنے کی سکت رکھتی ہے۔

مثال 3.3: صفحہ 74 پر شکل 3.10-الف میں رکاوٹ Z_2 کو بدلتے برقی دباو \hat{V}_1 کے ساتھ ایک ٹرانسفار مرکے ذریعہ جوڑا گیا ہے۔درج ذیل معلومات کی روشن میں رکاوٹ میں برقی رو اور طاقت کا ضیاع دریافت کریں۔

$$\hat{V}_1 = 110 / 0, \quad Z_2 = R + jX = 3 + j2, \quad N_1 : N_2 = 220 : 22$$

حل: ٹرانسفار مرکی تبادلہ برقی دباوکی خاصیت کے تحت ابتدائی 110 وولٹ دباو ٹانوی جانب درج ذیل دباو \hat{V}_s دے گا۔

$$\hat{V_s} = \frac{N_2}{N_1} \hat{V_1} = \frac{22}{220} \times 110 / 0 = 11 / 0$$

یوں ثانوی رو

$$\hat{I}_2 = \frac{\hat{V}_s}{Z} = \frac{11/0}{3+j2} = 3.05/-33.69^{\circ}$$

اور رکاوٹ میں برقی طاقت کا ضیاع p_z درج ذیل ہو گا۔

$$p_z = I_2^2 R = 3.05^2 \times 3 = 27.9 \,\mathrm{W}$$

3.6 ثانوى جانب بوجھ كاابتدائي جانب اثر

شکل 3.8 میں ابتدائی کچھے کی تارکی مزاحمت کو R سے ظاہر کیا گیا ہے جبکہ ثانوی جانب بوجھ Z ہے۔ فرض کریں ہم Z آثار کر ٹرانسفار مرکے ثانوی سرے کھلے دور کرتے ہیں۔ بے بوجھ ٹرانسفار مرکی ابتدائی جانب بدلتا برقی دباو v_1 قالب میں گھڑی کے رخ بی دباو v_1 قالب میں گھڑی کے رخ مقاطیسی دباو v_2 بیدا کرے گا۔ بہاو v_3 ابتدائی کچھے میں v_4 امالی برقی دباو پیدا کرتا ہے۔

$$(3.17) e_1 = N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

ابتدائی رو، فراہم کردہ دباو اور ابتدا امالی دباو کا تعلق قانون اہم سے لکھا جا سکتا ہے۔

$$(3.18) i_{\varphi} = \frac{v_1 - e_1}{R}$$

اب ہم ثانوی جانب برتی ہو جھ Z لادتے ہیں۔ ہو جھ بردار ٹرانسفار مر i_1 کے ثانوی جانب برتی رو i_2 رواں ہو گا جس کی وجہ سے N_2i_2 مقناطیسی دباو وجود میں آئے گا۔ یہ مقناطیسی دباو قالب میں گھڑی کے مخالف رخ مقناطیسی بہاو جہ یہاو جہ سے وہ سے ایندائی کے میں اور ابتدائی کھے میں امالی دباو گھٹ کر $\varphi_m - \varphi_0 = i_2$ اور ابتدائی کھے میں امالی دباو گھٹ کی وجہ سے ابتدائی رو بڑھے گا۔

آپ نے دیکھا کہ ثانوی جانب کا رو قالب میں مقناطیسی بہاو تبدیل کر کے ابتدائی کچھے کو بوچھ کے بارے میں خبر دار کرتا ہے۔

ار کے پہاں φ_m کو بہاں ہو کہا گیا ہے۔ loaded transformer 51

آئیں R کی قیمت کو نظرانداز کرتے ہوئے ہے بار ٹرانسفار مرسے شروع کر کے اس عمل کو زیادہ باریکی سے دیکھیں۔ٹرانسفار مرکو v_1 فراہم کرنے سے ابتدائی کچھے میں بیجان انگیز رو i_{φ} پیدا ہوگا جو قالب پر e_1 فالب پر e_1 مقناطیسی دباو مسلط کر کے اس میں گھڑی کے رخ بہاو φ_m پیدا کرتا میں گھڑی کے رخ بہاو φ_m پیدا کرتا v_1 وگا لہذا مساوات v_1 درج ذیل صورت اختیار کرتی ہوئے کی مزاحمت نظرانداز کرتے ہوئے $v_1=e_1$ ہوگا لہذا مساوات $v_1=v_2$ درج ذیل صورت اختیار کرتی ہے۔

$$(3.19) v_1 = e_1 = N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

اب ٹرانسفار مر پر Z ہوجھ ڈالتے ہیں۔ اس ہوجھ کی بنا ثانوی کچھے میں i_2 رو پیدا ہو گا جو قالب پر گھڑی کے مخالف رخ مقناطیسی دباو N_2i_2 مسلط کر کے اس میں گھڑی کے مخالف رخ بہاو φ_2 پیدا کرے گا۔ اگر φ_2 مسلط کر کے اس میں گھڑی کے مخالف رخ بہاو ہو جائے گا اور ابتدائی کچھے میں امالی دباو گھٹ نہ کیا جائے تب قالب میں کل مقناطیسی بہاو گھٹ کر $\varphi_m - \varphi_2$ ہو جائے گا۔ مساوات v_1 کے تحت یہ ایک ناممکن صورت حال ہے چونکہ v_1 کو جم صورت v_1 کے برابر مونا ہو گا (یاد رہ ہ کی قیت جوں کی توں ہے)۔ لہذا φ_2 کے اثر کو ختم کرنے کے لئے ابتدائی کچھے میں برقی رو نامورار ہو گا جس سے پیدا مقناطیسی دباو v_1 مقناطیسی دباو v_1 مقناطیسی دباو صفر ہو گا۔ اور v_1 کا مجموعی مقناطیسی دباو صفر ہو گا۔

$$(3.20) N_1 i_1 - N_2 i_2 = 0$$

درج بالا مساوات میں دونوں دباو ایک دوسرے کے مخالف رخ ہیں للذا ان کا مجموعہ در حقیقت ان کے فرق کے برابر ہوگا۔ مقناطیسی دباو N_1i_1 اور N_2i_2 قالب میں ایک دوسرے کے مخالف رخ ہیں للذا یہ ایک دوسرے کے اثر کو مکمل طور پر ختم کرتے ہیں۔ یوں بے بوجھ اور بوجھ بردار ٹرانسفار مر دونوں میں مقناطیسی بہاو φ_m کے برابر ہوگا۔ مساوات 3.20 سے تنادلہ رو کا کلیہ اخذ کیا جا سکتا ہے:

$$\frac{i_1}{i_2} = \frac{N_2}{N_1}$$

3.7 ٹرانسفار مرکی علامت پر نقطوں کا مطلب

شکل 3.9 میں جس لمحہ پر ابتدائی کچھے کا بالائی سر مثبت برقی دباو پر ہو، اس لمحہ پر ثانوی کچھے کا بالائی سر مثبت دباو پر ہے۔ اس حقیقت کو کچھوں پر نقطوں سے ظاہر کیا گیا ہے۔ یول نقطی سروں پر دباو ہم قدم ہوں گے۔

شكل 9. 3: ٹرانسفار مركى علامت ميں نقطوں كامفہوم۔

مزید ابتدائی کیچے کے نقطی سرسے مثبت برتی رو کیچے میں داخل جبکہ ثانوی کیچے کے نقطی سرسے مثبت برتی رو کیچے سے خارج ہو گی۔

3.8 ركاوك كاتبادله

اس حصہ میں کامل ٹرانسفار مر میں رکاوٹ کے تبادلہ پر غور کیا جائے گا۔ شکل 3.10-الف میں ایک ٹرانسفار مر دکھایا گیا ہے جس کی ابتدائی جانب سائن نما برتی دباو $V_1 = V_1 / \theta$ لاگو کیا گیا ہے۔ یہاں مرحلی سمتیہ استعال کئے جائیں گے۔ ٹرانسفار مر پر نقطے ہم قدم سروں کی نشاندہی کرتے ہیں۔

جیسے اوپر ذکر ہوا، برتی دباو \hat{V}_1 اور \hat{V}_2 آپس میں ہم قدم ہیں اور اسی طرح برتی رو \hat{I}_1 اور \hat{I}_2 آپس میں ہم قدم ہیں۔ میاوات 3.12 اور میاوات 3.21 کو مرحلی سمتیر کی مدد سے لکھتے ہیں۔

$$\hat{V_1} = \left(\frac{N_1}{N_2}\right)\hat{V_2}$$

$$\hat{I_1} = \left(\frac{N_2}{N_1}\right)\hat{I_2}$$

خارجی د باو، رو اور رکاوٹ کا تعلق قانون اہم سے لکھتے ہیں۔

(3.23)
$$Z_2 = \frac{\hat{V_2}}{\hat{I_2}} = |Z_2| / \theta_z$$

مساوات 3.22 سے درج ذیل لکھا جا سکتا ہے جہاں آخری قدم پر رکاوٹ کی قیمت پر کی گئی ہے۔

(3.24)
$$\frac{\hat{V_1}}{\hat{I_1}} = \left(\frac{N_1}{N_2}\right)^2 \frac{\hat{V_2}}{\hat{I_2}} = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

3.8 رکاوٹ کات دلہ

یوں داخلی رو درج ذیل ہو گا۔

$$\hat{I}_1 = \frac{\hat{V}_1}{(N_1/N_2)^2 Z_2}$$

 Z_2' کو فراہم کیا گیا ہے۔ \hat{V}_1 ورج ذیل قیت کے رکاوٹ Z_2' کو فراہم کیا گیا ہے۔

(3.26)
$$Z_2' = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

آپ تىلى كركيس كە اس دور ميں جھى \hat{V}_1 كا برقى رو مساوات 3.25 ديتى ہے۔

ماوات 3.25 سے نببت $\frac{\hat{V_1}}{\hat{I_1}}$ کھتے ہیں جو شکل 3.10-ب کے تحت Z_2' کے برابر ہے۔

(3.27)
$$\frac{\hat{V_1}}{\hat{I_1}} = Z_2' = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

دونوں ادوار سے $\hat{V_1}$ کی طاقت درج ذیل حاصل ہوتی ہے۔

(3.28)
$$p = \hat{V_1} \cdot \hat{I_1} = \frac{V_1^2 \cos \theta_z}{\left(\frac{N_1}{N_2}\right)^2 |Z_2|}$$

یوں حساب کرنے کے نقطہ نظر سے ہم $\hat{V_1}$ کو مساوات 3.26 میں دی گئی قیمت کے رکاوٹ Z_2' پر لا گو کرتے ہوئے $\hat{V_1}$ کا برتی رو اور طاقت جان سکتے ہیں۔

 Z_2 منبع \hat{V}_1 کو شکل Z_2 -الف اور ب میں کوئی فرق نظر نہیں آتا ہے۔اس کے ساتھ ٹرانسفار مرکے ذریعہ جوڑنا یا بغیر ٹرانسفار مر Z_2 جوڑنا ایک برابر ہے۔ ٹرانسفار مر Z_2 کو یوں تبدیل کرتا ہے کہ \hat{V}_1 کو رکاوٹ Z_2' نظر آتا ہے۔ ٹرانسفار مرکی اس خاصیت کو تبادلہ رکاوہے Z_2' کی خاصیت کہتے ہیں جس کو درج ذیل مساوات بیان کرتی ہے۔ ٹرانسفار مرکی اس خاصیت کو تبادلہ رکاوہے Z_2'

(3.29)
$$Z_2' = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

ہم حماب کرنے کی خاطر رکاوٹ کوٹرانسفار مرکی ایک جانب سے دوسری جانب منتقل کر سکتے ہیں۔

شكل 3.11: برقى طاقت كى منتقلى ـ

3.8 رکاوٹ کاتب دلہ

شكل3.12: ٹرانسفار مرقدم باقدم حل كرنے كاطريقه۔

مثال 3.4: شکل 3.11-الف میں رکاوٹ Z_B کا برتی بوجھ ایک جزیٹر پر لدا ہے۔بوجھ تک برتی طاقت دو برتی تاروں کے ذریعہ منتقل کیا گیا ہے۔ان تاروں کا مجموعہ رکاوٹ Z_t ہے۔

شکل-ب میں جزیٹر کے قریب نسب برقی دباو بڑھانے والا ٹرانسفار مر برقی دباو کو دس گنا بڑھاتا ہے اور برقی بوجھ کے قریب نسب برقی دباو گھٹانے والا ٹرانسفار مر برقی دباو کو دس گنا گھٹاتا ہے۔دونوں ٹرانسفار مروں کے بچ تاروں کا مجموعہ رکاوٹ Z_t ہے جبکہ باقی مستعمل تاروں کی رکاوٹ قابل نظر انداز ہے۔دونوں اشکال میں

$$Z_B = 2 + j4$$
, $Z_t = 0.1 + j0.15$, $\hat{V} = 415/0$

لیتے ہوئے

- برقی بوجھ پر برقی دباو معلوم کریں،
- برقی تارول میں برقی طاقت کا ضیاع معلوم کریں۔

impedance transformation 52

حل الف:

$$\begin{split} \hat{I}_t &= \frac{\hat{V}}{Z_t + Z_B} = \frac{415/0}{0.1 + j0.15 + 2 + j4} \\ &= \frac{415/0}{2.1 + j4.15} = 89.23 / -63.159^{\circ} \\ &= 40.3 - j79.6 \end{split}$$

يوں رکاوٹ پر برقی د باو

$$\hat{V}_B = \hat{I}_B Z_B = (40.3 - j79.6) (2 + j4)$$

= 399 + j2 = 399/0.287°

اور برقی تارول میں برقی طاقت کا ضیاع درج ذیل ہو گا۔

$$p_t = I_t^2 R_t = 89.23^2 \times 0.1 = 796 \,\mathrm{W}$$

حل ب: شکل 3.11 اور شکل 3.12 سے رجوع کریں۔ شکل 3.11 میں ٹرانسفار مر T_2 کے ثانوی رکاوٹ کو مساوات 3.26 کی مدد سے ابتدائی جانب منتقل کرتے ہیں۔

$$Z_B' = \left(\frac{N_3}{N_4}\right)^2 Z_B = \left(\frac{10}{1}\right)^2 (2+j4) = 200 + j400$$

یوں شکل 3.12-الف حاصل ہوتا ہے جس میں برقی تار کا رکاوٹ اور تبادلہ شدہ رکاوٹ سلسلہ وار جڑے ہیں۔ان کے مجموعہ کو 'Z

$$Z' = Z_t + Z'_B = 0.1 + j0.15 + 200 + j400 = 200.1 + j400.15$$

لکھتے ہوئے شکل 3.12-ب حاصل ہوتا ہے۔ایک مرتبہ دوبارہ مساوات 3.26 استعال کرتے ہوئے کا کو گرانسفار مرکے ابتدائی جانب منتقل کرتے ہوئے

$$Z'' = \left(\frac{N_1}{N_2}\right)^2 Z' = \left(\frac{1}{10}\right)^2 (200.1 + j400.15) = 2.001 + j4.0015$$

شکل 3.12-پ حاصل ہو گا جس سے جزیر کا برتی رو درج زیل ہو گا۔

$$\hat{I}_G = \frac{\hat{V}}{Z''} = \frac{415/0}{2.001 + i4.0015} = 92.76/-63.432^{\circ}$$

شکل 3.12ب میں جزیٹر کا برتی رو جانتے ہوئے تبادلہ برتی رو سے \hat{I}_t حاصل کرتے ہیں۔ $\hat{I}_t = \left(\frac{N_1}{N_2}\right)\hat{I}_G = \left(\frac{1}{10}\right)92.76/(-63.432)^\circ = 9.276/(-63.432)^\circ$

یوں برقی تار میں طاقت کا ضیاع درج ذیل ہو گا۔

 $p_t = I_t^2 R_t = 9.276^2 \times 0.1 = 8.6 \,\mathrm{W}$

اسی طرح شکل 3.11 میں \hat{I}_t جانتے ہوئے تبادلہ برقی روسے

 $\hat{I}_B = \left(\frac{N_3}{N_4}\right) \hat{I}_t = \left(\frac{10}{1}\right) 9.276 / -63.432^{\circ}$ $= 92.76 / -63.432^{\circ} = 41.5 - j82.9$

حاصل کیا جا سکتا ہے۔رکاوٹ پر برقی دباو درج ذیل ہو گا۔

$$\hat{V}_B = \hat{I}_B Z_B = (41.5 - j82.9)(2 + j4) = 414 + j0.2$$

بغیر ٹرانسفار مر استعال کیے برقی تاروں میں طاقت کا ضیاع 796 واٹ جبکہ ٹرانسفار مر استعال کرتے ہوئے صرف 8.6 ا واٹ یعنی 92 گنا کم ہے۔اسی میں ٹرانسفار مر کی مقبولیت کا راز ہے۔

3.9 ٹرانسفار مر کاوولٹ-ایمپیئر

ٹرانسفار مرکی دونوں جانب برقی دباو کچھوں کے چکروں پر منحصر ہوتا ہے۔ٹرانسفار مر ایک مخصوص برقی دباو اور برقی رو کے لئے بنایا جاتا ہے۔ٹرانسفار مر بناوٹی برقی دباو پر بھی استعال کیا جا سکتا ہے اگرچہ عموماً اسے بناوٹی برقی دباو پر بھی جا ہوتا ہے۔ اس طرح ٹرانسفار مر بناوٹی برقی رویا $I_1:I_2$ سے کم برقی رو پر بھی استعال کیا جا سکتا ہے۔ تھی استعال میں ٹرانسفار مرکا برقی روعموماً بناوٹی قیت سے کم ہوتا ہے۔

ٹرانسفار مرکی ایک جانب کے برقی دباو اور برقی رو کا حاصل ضرب دوسری جانب کے برقی دباو اور برقی رو کا حاصل ضرب کا برابر ہوتا ہے۔

$$(3.30) V_1 I_1 = V_2 I_2$$

برتی دباہ اور برتی رو کے حاصل ضرب، V_1I_1 یا V_2I_2 ، کوٹرانسفار مرکا وولٹ ضرب ایمپیئر یا مختصراً وولھے۔ایمپیئر V_2I_2 بہتے ہیں V_2I_3 جوٹرانسفار مر کے برقی سکت کا ناپ ہے۔ٹرانسفار مر اور دیگر برقی مشین، مثلاً موٹر اور جزیئر جوٹرانسفار مرکے بین ، پر نسب معلوماتی شختی پر ان کا سکت، بناوٹی برقی دباہ اور بناوٹی تعداد لکھا جاتا ہے۔ یوں ٹرانسفار مرکا وولٹ۔ایمپیئر درج ذیل ہوگا۔

$$(3.31) V_1 I_1 = V_2 I_2$$

مثال 3.5: ایک 25000 وولٹ-ایمپیئر اور 220 : 11000 وولٹ برقی سکت کے ٹرانسفار مر کے زیادہ برقی رہاو کی جانب 11000 وولٹ لاگو ہیں۔

- اس کی ثانوی جانب زیادہ سے زیادہ کتنا برقی بوجھ ڈالا جا سکتا ہے؟
- زیادہ سے زیادہ برقی بوجھ پر ٹرانسفار مر کا ابتدائی برقی رو حاصل کریں۔

حل: اس ٹرانسفار مرکی معلومات درج ذیل ہیں۔

 $25 \,\mathrm{kV} \,\mathrm{A}$, $11000 : 220 \,\mathrm{V}$

تبادله برقی دباوکی مساوات سے ثانوی برقی دباو 220 وولٹ حاصل ہوتا ہے۔ ثانوی لیعنی کم برقی دباو جانب زیادہ سے زیادہ سرقی رو مساوات 3.31 سے حاصل ہو گا۔

$$I_2 = \frac{25000}{220} = 113.636 \,\mathrm{A}$$

اسی طرح ابتدائی جانب زیادہ سے زیادہ برقی رو اسی مساوات سے حاصل ہو گا۔

$$I_1 = \frac{25000}{11000} = 2.27 \,\mathrm{A}$$

П

ٹرانسفار مرکی دونوں جانب کچھوں میں استعال برقی تارکی موٹائی یوں رکھی جاتی ہے کہ ان میں کثافتِ برقی رو 55 کیساں ہو۔ کچھوں کی مزاحمت میں برقی رو گزرنے سے برقی طاقت کا ضیاع ہوتا ہے جس سے تار گرم ہوتی

volt-ampere, VA⁵³

^{44 -} بىلىيىر كو عموا گلودوك - ايمپيير يعنى 4 kV مين بيان كياجاتاب-

¹⁰⁰⁰ kV A⁵⁵ مانسفارم کی کیھوں میں کثافت برتی روتقریباً A/min² کی جاتی ہے

ہے۔ٹرانسفار مر کے برقی رو کی حد کچھوں کی گرمائش پر منحصر ہوتی ہے۔تار کی زیادہ سے زیادہ درجہ حرارت کو محفوظ حد کے اندر رکھا جاتا ہے۔زیادہ درجہ حرارت سے تار پر لگا روغن خراب ہو گا اور تار کا ایک چکر دوسرے چکر کے ساتھ کسر دور ہو گا۔ایہا ہونے سے ٹرانسفار مر جل کر خراب ہو جاتا ہے۔

ٹرانسفار مرتیل گرم ہو کر پھیلتا ہے جس کی بنا اس کی کثافت کم ہوتی ہے۔ یوں ٹیکی میں گرم تیل اوپر اور ٹھنڈا تیل نیچ مسلسل منتقل ہو گا۔ گرم تیل کو ٹھنڈا کرنے کے لئے ٹینکی کے ساتھ بہت سارے پائپ منسلک کئے جاتے 57 جن میں گرم تیل اوپر سے داخل ہوتا ہے۔ پائپ کا سطحی رقبہ زیادہ ہونے کی بنا ہوا اسے جلد ٹھنڈا کرتی ہے، اس میں تیل کا درجہ حرارت گھنتا اور کثافت بڑھتی ہے۔ ٹھنڈا تیل پائپ میں نیچے حرکت کرتے ہوئے دوبارہ ٹینکی میں داخل ہوتا ہے۔

3.10 ٹرانسفار مرکے امالہ اور مساوی ادوار

3.10.1 لحصے کی مزاحمت اور اس کی متعاملہ علیحدہ کرنا

ٹرانسفار مر کے ابتدائی کچھے کی مزاحمت R₁ پر حصہ 3.3، مساوات 3.2 میں بات کی گئی جہاں مزاحمت کو کچھے سے باہر سلسلہ وار جڑا دکھایا گیا تھا۔ آئیں دیکھیں ہم حساب کی خاطر کیسے مزاحمت کو کچھے سے علیحدہ کر سکتے ہیں۔

شکل 3.13-الف میں ایک کچھے پر بدلتا برقی دباو لاگو کیا گیا ہے۔اگر کچھے کی برقی تار کو چھوٹے ککڑوں میں تقسیم کیا جائے تب ہر ککڑے کی ایک چھوٹی مزاحمت ΔR اور ایک چھوٹا متعاملہ $j\Delta X$ ہو گا۔تار کا ایسا ایک

شكل 3.13: لجھے كى مزاحت اور متعاملہ۔

نگڑا شکل-ب میں دکھایا گیا ہے۔ چونکہ کچھا ان سب نکڑوں کے سلسلہ وار جڑنے سے بنتا ہے للذا شکل-الف کو ہم شکل-پ کی طرح بنا سکتے ہیں جہال کچھے کے n نکڑے کیے گئے ہیں۔

اس دور کی مساوات

$$\hat{V}_1 = \hat{I}_1 \left(\Delta R_1 + j \Delta X_1 + \Delta R_2 + j \Delta X_2 + \dots \Delta R_n + j \Delta X_n \right)$$

= $\hat{I}_1 \left(\Delta R_1 + \Delta R_2 + \dots \Delta R_n \right) + \hat{I}_1 \left(j \Delta X_1 + j \Delta X_2 + \dots j \Delta X_n \right)$

ہے جس میں

$$R = \Delta R_1 + \Delta R_2 + \cdots \Delta R_n$$
$$X = \Delta X_1 + \Delta X_2 + \cdots \Delta X_n$$

لکھ کر درج ذیل حاصل ہوتا ہے۔

(3.32)
$$\hat{V}_1 = \hat{I}_1 (R + jX)$$

شکل 3.14 سے بھی مساوات 3.32 لکھی جا سکتی ہے۔ یوں حساب کی خاطر کچھے کی مزاحمت اور متعاملہ علیحدہ کیے جا سکتے ہیں۔

 ${\rm transformer~oil^{56}}$

⁵⁷ وایڈا کے ٹرانسفار مر کابیر ونی حصدانہیں بائیوں پر مشتمل ہوتاہے۔

شكل 3.14: لحصے كى مزاحمت اور متعامله كى عليجد گا۔

3.10.2 رستااماله

یہاں تک ہم کامل ٹرانسفار مر پر بحث کرتے رہے ہیں۔ اب ہم ٹرانسفار مر میں ان عناصر کا ذکر کرتے ہیں جن کی وجہ سے ٹرانسفار مر غیر کامل ہوتا ہے۔ بہت سی جگہول پر ٹرانسفار مر استعال کرتے وقت ان عناصر کو مدِ نظر رکھنا ضرور ی ہوتا ہے۔ ان عناصر کے اثرات کو شامل کرنے کے لئے ہم ٹرانسفار مر کا مساوی دور بناتے ہیں۔

ابتدائی کچھے کے مقناطیسی بہاو کو دو حصول میں تقسیم کیا جا سکتا ہے۔ پہلا حصہ وہ جو قالب سے گزر کر ابتدائی اور ثانوی کچھے کے مقناطیسی بہاو ہے۔ دوسرا حصہ وہ جو صرف ابتدائی کچھے سے گزرتا ہے اور ثانوی کچھے دونوں کے اندر سے گزرتا ہے۔ یہ مشتر کہ مقناطیسی بہاو ہے۔ دوسرا حصہ وہ جو صرف ابتدائی کچھے سے گزرتا ہے اور زیادہ تر قالب کے باہر خلاء میں رہتا ہے۔ اس کو رستا مقناطیسی بہاو اقتدائی کچھے کے برقی رو کا راست مستقل μ_0 اٹل ہے للذا یہاں بچکچاہٹ بھی اٹل ہو گی۔ یوں رستا مقناطیسی بہاو ابتدائی کچھے کے برقی رو کا راست متناسب ہو گا۔

 $X_1=2\pi f L_1$ و بالکل کچھے کی مزاحمت کی طرح کچھے سے باہر رستا امالہ 59 یا رستا متعاملہ کے اثر کو بالکل کچھے کی مزاحمت کی طرح کچھے سے باہر رستا امالہ 59 یا رستا متعاملہ 60 کیا جاتا ہے۔

ٹرانسفار مر کے ابتدائی کیچے میں برتی رو \hat{I}_1 گزرنے سے رستا متعاملہ میں $\hat{V}_{X1}=j\hat{I}_1X_1$ برتی دباو اور کیچے کے تار کی مزاحمت میں $\hat{V}_{R1}=\hat{I}_1R_1$ برتی دباو گھٹتا ہے۔

جبیہا شکل 3.15 میں دکھایا گیا ہے، ابتدائی کچھے پر لا گو دباہ \hat{V}_1 ، مزاحمت R_1 اور متعاملہ X_1 میں گھٹاہ اور ابتدائی امالی دباہ \hat{E}_1 کا مجموعہ ہو گا۔

leakage magnetic flux 58 leakage inductance 59

leakage reactance⁶⁰

3.10.3 ثانوى برقى رواور قالب كے اثرات

قالب میں دونوں کچھوں کا مشتر کہ مقناطیسی بہاو ان کے مجموعی مقناطیسی دباو کی وجہ سے وجود میں آتا ہے۔ اس حقیقت کو ایک مختلف اور بہتر انداز میں بیان کیا جا سکتا ہے۔ ہم کہتے ہیں کہ ابتدائی برتی رو کو دو شرائط مطمئن کرنے ہوں گے۔ اول اسے قالب میں بیجانی مقناطیسی بہاو وجود میں لانا ہو گا اور دوم اسے ثانوی کچھے کے پیدا کردہ مقناطیسی بہاو کو ختم کرنا ہو گا۔ لہذا ابتدائی برتی رو کو ہم دو حصوں میں تقسیم کر سکتے ہیں۔ ایک حصہ α_i جو بیجانی مقناطیسی بہاو کی بیدا کرتا ہے۔ اور دوم را \hat{I}_2 کرتا ہے گانوی کچھے کے مقناطیسی دباو کا اثر ختم کرتا ہے۔ یوں \hat{I}_2 درج ذیل ہو گا۔

$$\hat{I}_2' = \frac{N_2}{N_1} \hat{I}_2$$

ثانوی کھے کے مقاطیسی بہاو کے اثر کو ختم کرنے پر حصہ 3.6 میں غور کیا گیا ہے۔

اگرچہ برتی رو \hat{l}_{arphi} فیر سائن نما ہوتا ہے ہم اسے سائن نما \hat{l}_{arphi} تصور کر کے دو حصول، \hat{l}_{arphi} اور \hat{l}_{m} ، میں تقسیم کرتے ہیں۔

$$\hat{I}_{\varphi} = \hat{I}_c + \hat{I}_m$$

مذکورہ بالا مساوات میں برقی رو کو مرحلی سمتیات کی صورت میں لکھا گیا ہے۔ان میں \hat{I}_c ابتدائی کچھے کے امالی برقی و بود و بالا مساوات میں برقی توانائی کے ضیاع کو ظاہر کرتا ہے جبکہ \hat{I}_m وہ حصہ ہے جو \hat{E}_1 سے نوے درجہ زاویہ سیجھے \hat{I}_m رہتا اور کچھے میں مقناطیسی بہاو پیدا کرتا ہے۔

اور \hat{I}_c یال \hat{I}_c میں \hat{I}_c اور \hat{I}_c بالترتیب برقی رو \hat{I}_c اور \hat{I}_c کے اشتعال \hat{I}_c بابر مراجمت \hat{I}_c کی مقدار اتنی رکھی جاتی ہے کہ اس میں برقی طاقت کا ضیاع اصل قالبی ضیاع کے برابر \hat{I}_c مقدار اتنی رکھی جاتی ہے کہ اس میں برقی طاقت کا ضیاع اصل قالبی ضیاع کے برابر lagging \hat{I}_c

شکل3.16:ٹرانسفار مر مساوی دور، حصه دوم۔

ہو لینی jX_m کی مقدار اتنی رکھی جاتی ہے $R_c=E_{1,rms}^2/p_c$ کی مقدار اتنی رکھی جاتی ہے که بین دیاو اور تعدد پر حاصل کئے جاتے ہیں۔ R_c اور jX_m اور jX_m اور jX_m کے مقدار اصل برقی دیاو اور تعدد پر حاصل کئے جاتے ہیں۔

3.10.4 ثانوي لجھے کالمالی برقی دیاو

قالب میں مشتر کہ مقاطیسی بہاو ثانوی کھیے میں امالی برتی دباو \hat{E}_2 پیدا کرے گا۔ چونکہ یہی مقاطیسی بہاو ابتدائی کیھے میں \hat{E}_1 امالی پیدا کرتا ہے للذا درج ذیل لکھا جا سکتا ہے۔

$$\frac{\hat{E}_1}{\hat{E}_2} = \frac{N_1}{N_2}$$

مباوات 3.34 اور مباوات 3.35 کو ایک کامل ٹرانسفار مرسے ظاہر کیا جا سکتا ہے جے شکل 3.17 میں و کھایا گیا

3.10.5 ثانوی کھے کی مزاحت اور متعاملہ کے اثرات

ثانوی کیھے میں امالی دباو \hat{E}_2 پیدا ہو گا۔ابتدائی کیھے کی طرح، ثانوی کیھے کی مزاحمت R_2 اور متعاملہ jX_2 ہوں گ جن میں ثانوی برتی رو \hat{V}_2 کی بنا برتی دباو گھٹے گا۔ یوں ثانوی کیھے کے سروں پر برتی دباو \hat{V}_2 تدرِ کم ہو گا:

$$\hat{V}_2 = \hat{E}_2 - \hat{I}_2 R_2 - j \hat{I}_2 X_2$$

یوں حاصل ٹرانسفار مر کا مکمل مساوی دور یا ریاضی نمونہ 62 شکل 3.18 میں دکھایا گیا ہے۔

 $^{{\}rm mathematical\ model}^{62}$

3.10.6 ركاوك كاابتدائي ياثانوي جانب تبادله

شکل 3.18 میں تمام اجزاء کا تبادلہ ابتدائی یا ثانوی جانب کیا جا سکتا ہے۔ ایبا کرتے ہوئے کامل ٹرانسفار مر کو مساوی دور کی بائیں یا دائیں جانب رکھا جا سکتا ہے۔شکل 3.19 میں ثانوی رکاوٹ کو ابتدائی جانب منتقل کیا گیا ہے جبکہ شکل 3.20 میں ابتدائی رکاوٹوں کا تبادلہ ثانوی جانب کیا گیا ہے۔جیسا شکل 3.20 میں دکھایا گیا ہے، ایسے مساوی ادوار میں کامل ٹرانسفار مرعموماً دکھایا نہیں جاتا ہے۔

تبادلہ شدہ رکاوٹ Z کو Z سے ظاہر کیا جاتا ہے۔ یوں تبادلہ شدہ R_2 کو R_2 سے ظاہر کیا گیا ہے۔ ایسا دور استعال کرتے وقت یاد رکھنا ہو گا کہ مساوی دور میں اجزاء کس جانب منتقل کیے گئے ہیں۔

مثال 3.6: ایک 50 کلو وولٹ-ایمپیئر اور 220: 220 وولٹ برقی سکت کے ٹرانسفار مرکی زیادہ برقی دباو جانب رستا رکاوٹ $Z_1=0.0089+j0.011$ اوہم کم برقی دباو جانب رستا رکاوٹ $Z_1=0.099+j0.011$

والے ہونے والے $R_c=6.4\,\mathrm{k}\Omega$ اور $X_m=47\,\mathrm{k}\Omega$ اور $X_m=47\,\mathrm{k}\Omega$ ہونے والے این معلوم کریں۔

حل الف: معلومات:

 $50 \,\mathrm{kV} \,\mathrm{A}, \quad 50 \,\mathrm{Hz}, \quad 2200 : 220 \,\mathrm{V}$

ٹرانسفار مر کے برقی دباوے کچھوں کے چکر کا تناسب حاصل کرتے ہیں۔ $\frac{N_1}{N_2} = \frac{2200}{220} = \frac{10}{1}$

زیادہ برقی دباو جانب تبادلہ شدہ اجزاء درج ذیل ہوں گے۔

$$R'_{2} + jX'_{2} = \left(\frac{N_{1}}{N_{2}}\right)^{2} (R_{2} + jX_{2})$$

$$= \left(\frac{10}{1}\right)^{2} (0.0089 + j0.011)$$

$$= 0.89 + j1.1$$

مساوی دور میں باقی رکاوٹ پہلے سے زیادہ برقی دباو جانب ہیں للذا یہ تبدیل نہیں ہوں گے۔یوں شکل 3.19 کے جزو حاصل ہوئے۔

حل ب: مساوی دور کے اجزاء کا تبادلہ کم دباو جانب کرتے ہیں۔

$$R'_1 + jX'_1 = \left(\frac{N_2}{N_1}\right)^2 (R_1 + jX_1)$$
$$= \left(\frac{1}{10}\right)^2 (0.9 + j1.2)$$
$$= 0.009 + j0.012$$

اسی طرح درج ذیل حاصل ہوں گے

$$R'_c = \left(\frac{N_2}{N_1}\right)^2 R_c = 64$$

$$X'_m = \left(\frac{N_2}{N_1}\right)^2 X_m = 470$$

П

جبہ Z_2 یہلے سے کم برقی دباہ جانب ہے للذااس کی قیت تبدیل نہیں ہو گا۔

3.10.7 ٹرانسفار مرکے سادہ ترین مساوی ادوار

ایک انجنیئر ٹرانسفار مر استعال وقت حساب کی خاطر شکل 3.19 یا شکل 3.20 کے ادوار استعال کر سکتا ہے۔ یہ ادوار حقیق ٹرانسفار مر کی بہت اچھی عکاسی کرتے ہیں۔ البتہ جہاں بہت صحیح جوابات مطلوب نہ ہوں وہاں ان ادوار کی سادہ اشکال بھی استعال کی جا سکتی ہیں۔ اس حصہ میں ہم ایسے سادہ مساوی ادوار حاصل کرتے ہیں۔

 $R_2' + j X_2'$ اور X_m اور X_m کو X_m کو باکیں منتقل کرنے سے شکل 3.21 اور X_m اور X_m کا ورکیں منتقل کرنے سے شکل 3.22 حاصل ہوتے ہیں۔ چونکہ پ \hat{I}_{φ} کی مقدار نہایت کم \hat{I}_{φ} ہوتی ہے للذا ایبا کرنے سے نتائج پر خاص فرق نہیں پڑتا ہے۔

 X_2' اور شکل 3.22 اور شکل 3.22 میں سلسلہ وار جڑے R_1 اور R_2' کو R_{ms} جبکہ سلسلہ وار جڑے R_1 اور R_2' کو R_1 کو کا میں سلسلہ وار شکل 3.20 سے بھی حاصل ہوتے ہیں۔

ٹرانسفار مرکے کل برقی بوجھ کا صرف دوسے چھ فی صد ہوتا ہے۔ $\hat{I}_{arphi}{}^{63}$

شکل 3.23:ٹرانسفار مر کے سادہ مساوی ادوار۔

شکل R_1 میں R_c اور X_m رکاوٹ R_1+jX_1 اور R_1+jX_2 اور R_2+jX_2 اور R_1+jX_1 اور R_2 اور شکل R_2 میں یہ اجزاء باقی دور کے بائیں یا دائیں ہاتھ ہیں اور ایسے ادوار کا حل نسبتاً ڈیادہ آسان ہوتا ہے۔

 R_c مزید سادہ دور حاصل کرنے کی خاطر \hat{I}_{φ} کو صفر تصور کر کے نظر انداز کیا جا سکتا ہے۔ یوں مساوی دور میں دور اور میں دور اور کیا ہے۔ اس دور jX_m کو کھلے دور تصور کرتے ہوئے دور سے ہٹایا جا سکتا ہے۔ شکل 3.23-الف میں ایبا کیا گیا ہے۔ اس دور میں قالب کے اثرات کو مکمل طور پر نظر انداز کیا گیا ہے۔

بیشتر وقت اس سے بھی کم درنگی کے نتائج مطلوب ہوتے ہے۔ یوں $X_{ms}\gg R_{ms}$ کی بنا R_{ms} کو نظرانداز کرتے ہوئے شکل $X_{ms}\gg X_{ms}$ کرتے ہوئے شکل X_{ms} کو بھی نظرانداز کرنے سے کامل ٹرانسفار مرحاصل ہوگا جو $\frac{V_1}{V_2}=\frac{I_2}{I_1}=\frac{N_1}{N_2}$ پر یورا اثرتا ہے۔

3.11 كطلے دور معائنه اور كسر دور معائنه

گزشتہ حصہ میں ٹرانسفار مر کے مساوی ادوار پر بات کی گئی۔ان مساوی ادوار کے اجزاء ٹرانسفار مر کے دو معائنوں سے حاصل کئے جا سکتے ہیں جنہیں کھلا دور معائنہ اور کسر دور معائنہ کہتے ہیں۔اس حصہ میں ان معائنوں پر غور کیا گیا ہے۔

3.11.1 كطلاد ورمعائنه

کھلا دور معائنہ 64، جیسا کہ نام سے واضح ہے، ٹرانسفار مرکی ایک جانب کچھے کے سروں کو آزاد رکھ کر کیا جاتا ہے۔ یہ معائنہ ٹرانسفار مرکی بناوٹی 65 برقی دباو اور تعدد یا ان کے قریب قیمتوں پر کیا جاتا ہے۔ اگرچہ ٹرانسفار مرکے کسی بھی جانب کچھے پر کھلے دور معائنہ سرانجام دیا جا سکتا ہے، حقیقت میں ایسا کم برقی دباو کچھے پر کرنا زیادہ آسان اور کم خطرناک ہوتا ہے۔یہ بات ایک مثال سے بہتر سمجھ آئے گی۔

مثال کے طور پر ہم A 25، V 25 ، 11000 : 50 Hz مرحلہ ٹرانسفار مرکا معائنہ کرنا چاہتے ہیں۔
یہ معائنہ گیارہ ہزار کچھ پر کرتے ہوئے گیارہ ہزار وولٹ کے لگ بھگ برقی دباو استعال ہو گا جبکہ دو سو بیس برقی
دباو کچھ پر معائنہ کرنے سے دو سو بیس وولٹ کے لگ بھگ برقی دباو استعال کرنا ہو گا۔ دونوں صور توں میں تعدد
50 Hz برقی دباو کچھ پر کیا جاتا ہے۔
کھلا دور معائنہ کم برقی دباو کچھ پر کیا جاتا ہے۔

 p_t کھلے دور معائنہ میں کم برقی دباو کچھے پر بناوٹی برقی دباویا اس کا قریب دباو V_t لاگو کر کے کھلا دور برقی طاقت p_t اور کھلا دور برقی رو برقی را ناپا جاتا ہے۔بناوٹی برقی دباو کے قریب دباو پر معائنہ کرنے سے بہتر نتائج حاصل ہوں گے۔ ٹرانسفار مرکی دوسری جانب کچھے کے سرے چونکہ آزاد رکھے جاتے ہیں المذا اس میں برقی رو صفر ہو گا۔ اس طرح ناپا گیا برقی رو صرف ہیجان انگیز برقی رو گا۔ ہیجان انگیز برقی رو ٹرانسفار مرکے بناوٹی روکا دو سے چھ فی صد ہوتا ہے۔

یاد رہے $\hat{V}_t = V_t / \frac{\phi_v}{\psi_v}$ اور $\hat{I}_t = I_t / \frac{\phi_i}{\psi_v}$ اور $\hat{V}_t = V_t / \frac{\phi_v}{\psi_v}$ مطلق قیمتوں، V_t اور V_t ، V_t ، V_t ، V_t ، V_t ،

شکل 3.19 میں بائیں ہاتھ کو کم برتی دباو والا جانب تصور کریں۔ یوں V_t مقام V_t پر فراہم کیا جائے گا جبکہ پیائٹی رو غیر سمتی 66 رو I_1 ہو گا۔ خارجی کچھا کھلا دور ہونے کی بنا I_2' صفر ہو گا لہذا I_1 در حقیقت \hat{I}_c کی مطلق قیمت I_2 کے برابر ہو گا۔

 $I_t = I_1 = I_{\varphi}$

open circuit $ext{test}^{64}$ $ext{design}^{65}$ $ext{scalar}^{66}$

اتنی کم برقی رو سے کچھے کے رکاوٹ میں بہت کم برقی دباو گھٹتا ہے للذا اسے نظر انداز کیا جاتا ہے:

$$V_{R1} = I_t R_1 = I_{\varphi} R_1 \approx 0$$

$$V_{X1} = I_1 X_1 = I_{\varphi} X_1 \approx 0$$

یوں جیسا شکل 3.19 سے ظاہر ہے R_c اور X_m پر تقریباً V_t برتی دیاہ چائے گا۔ ان حقائق کو مد نظر رکھتے ہوئے شکل 3.24 صول زیادہ آسان ہے۔

برتی طاقت کا ضیاع صرف مزاحمت میں ممکن ہے لہذا p_t صرف R_c میں ضائع ہو گا۔ یوں درج ذیل ہو گا۔

$$p_t = \frac{V_t^2}{R_c}$$

اس سے ٹرانسفار مر کے مساوی دور کا جزو R_c حاصل ہوتا ہے۔

$$(3.37) R_c = \frac{V_t^2}{p_t}$$

درج ذیل کی بنا

$$Z_t=rac{\hat{V}_t}{\hat{I}_t}=rac{V_t/\phi_v}{I_t/\phi_i}=rac{V_t}{I_t}/\phi_v-\phi_i$$
 خرابهم کرده دیاه اور پیما کُثی رو کا تناسب درج ذیل ہو گا۔ $|Z_t|=rac{V_t}{I_t}$

اب شکل 3.24 سے درج ذیل واضح ہے

$$\frac{1}{Z_t} = \frac{1}{R_c} + \frac{1}{jX_m}$$

للذا

$$Z_t = \frac{jR_c X_m}{R_c + jX_m}$$
$$|Z_t| = \frac{R_c X_m}{\sqrt{R_c^2 + X_m^2}}$$

ہو گا۔یوں ٹرانسفار مر کے مساوی دور کا جزو X_m حاصل ہوتا ہے۔

(3.38)
$$X_{m} = \frac{R_{c}|Z_{t}|}{\sqrt{R_{c}^{2} - |Z_{t}|^{2}}}$$

ماوات R_c سے ماصل ہوتی ہیں۔ X_m ماوات R_c ماوات R_c ماوات کا بیں۔

یاد رہے حاصل کردہ R_c اور X_m ٹرانسفار مرکے پیائش جانب کے لئے درست ہوں گے۔ تبادلہ رکاوٹ سے دوسری جانب کی قیمتیں حاصل کی جاسکتی ہیں۔

3.11.2 كسردورمعائنه

کسر دور معائنہ بھی کھلے دور معائنہ کی طرح ٹرانسفار مر کے کسی بھی طرف ممکن ہے لیکن حقیقت میں اسے زیادہ برقی دباو کچھے پر کرنا آسان ہوتا ہے۔ یہ معائنہ ٹرانسفار مر کے بناوٹی برقی رویااس کے قریب رو پر کیا جاتا ہے۔

کلے دور معائنہ میں مستعمل ٹرانسفار مرکی بات آگے بڑھاتے ہوئے زیادہ برتی دباو کچھے کا بناوٹی رو A 2.2727 مور کی دباو کچھے کا بناوٹی رو A 113.63 جبکہ زیادہ اور کم دباو کچھے کا بناوٹی رو A 113.63 جبکہ زیادہ برتی دباو کچھے پر کرتے ہوئے A 2.2727 موائنہ زیادہ آسان ہو گا۔

اس معائنہ میں کم برقی دباو کچھے کے سروں کو آپس میں جوڑ کر کسر دور کیا جاتا ہے جبکہ زیادہ برقی دباو کچھے پر کچھے کے بناوٹی دباو کا دو سے بارہ فی صد دباو V_t لاگو کر کے اس کچھے کا برقی رو I_t اور فراہم کردہ طاقت p_t ناپا جاتا

شكل 3.25: كسر دور معائنه به

ہے جنہیں بالترتیب کسر دور رو اور کسر دور طاقت کہتے ہیں۔ کسر دور کچھے میں گزرتے برقی رو کا عکس دوسری جانب موجود ہو گا۔ یہ برقی روٹرانسفار مر کے بناوٹی برقی رو کے لگ بھگ ہوتا ہے۔

چونکہ یہ معائنہ بہت کم برتی دباو پر سرانجام دیا جاتا ہے للذا بیجان انگیز برتی رو کو مکمل طور پر نظرانداز کیا جا سکتا ہے۔ اس معائنہ کا دور شکل 3.25 میں دکھایا گیا ہے جہاں بیجان انگیز رو کو نظرانداز کرتے ہوئے R_c اور V_t کو کھلے دور کیا گیا ہے۔ کسر دور معائنہ میں شکل 3.20 کے بائیں ہاتھ کو کم برتی دباو جانب تصور کرتے ہوئے V_t کو کیا۔ کا جگہ لاگو کرنا ہو گا۔

برتی طاقت صرف مزاحمت میں ضائع ہو سکتا ہے للذا شکل 3.25 سے درج ذیل لکھا جا سکتا ہے
$$p_t = I_t^2 R_{ms}$$
 $p_t = I_t^2 R_{ms}$ یوں ٹرانسفار مر کے مساوی دور کا جزو R_{ms} حاصل ہوتا ہے۔ $R_{ms} = \frac{p_t}{I_c^2}$

کسر دور برقی رو اور کسر برقی دباو سے

$$|Z_t| = \frac{V_t}{I_t}$$

جبه شکل 3.25 سے درج زیل لکھا جا سکتا ہے۔

$$Z_t = R_{ms} + jX_{ms}$$
$$|Z_t| = \sqrt{R_{ms}^2 + X_{ms}^2}$$

یوں X_{ms} کی قیمت مساوات 3.39 سے جانتے ہوئے R_{ms} حاصل ہوتا ہے۔

$$(3.40) X_{ms} = \sqrt{|Z_t|^2 - R_{ms}^2}$$

مساوات 3.39 کل مزاحمت دیتا ہے البتہ اس سے R_1 یا R_2 حاصل نہیں کیا جا سکتا۔ اس طرح مساوات 3.40 سے X_1 اور X_2 علیحدہ نہیں کئے جا سکتے۔ کسر دور معائنہ سے اتنی ہی معلومات حاصل کرنا ممکن ہے جو حقیقت میں کافی ثابت ہوتا ہے۔ جہاں ان اجزاء کی علیحدہ قیمتیں درکار ہوں وہاں درج ذیل تصور کیا جا سکتا ہے

$$R'_1 = R_2 = \frac{R_{ms}}{2}$$

 $X'_1 = X_2 = \frac{X_{ms}}{2}$

ٹرانسفار مر معائنے اسی مقام پر کیے جاتے ہیں جہال ٹرانسفار مر نسب ہو۔ یوں وہی برتی دباو استعمال کرنا ہو گا جو وہاں موجود ہو۔ ہاں ضروری ہے کہ کسر دور معائنہ میں ٹرانسفار مر کو ڈیزائن برتی دباو کا دو سے بارہ فی صد دیا جائے۔ مثلاً $000 \times \frac{12}{100} = 1320 \, \text{V}$ میں استعمال کریں گے۔ اسی طرح دستیاب $000 \times \frac{12}{100} = 1320 \, \text{V}$ میں استعمال کریں گے۔ اسی طرح دستیاب $000 \times \frac{12}{100} = 1320 \, \text{V}$ میں استعمال کریں گے۔ اسی طرح دستیاب $000 \times \frac{12}{100} = 1320 \, \text{V}$

یاد رہے کہ ٹرانسفار مرکی ایک جانب کچھے کے سرے آپس میں جوڑ کر، یعنی کسر دور کر کے، دوسری جانب کچھے پر کسی بھی صورت اس جانب کی پوری برقی دباو لاگو نہیں کیجھے گا۔ ایسا کرنا شدید خطرناک اور جان لیوا ثابت ہو سکتا ہے۔

یاد رہے کہ ان معائنوں سے حاصل مساوی دور کے اجزاء اسی جانب کے لئے درست ہوں گے جس جانب انہیں حاصل کیا گیا ہو۔ان کی قیشیں دوسری جانب تبادلہ رکاوٹ سے حاصل کی جاسکتی ہیں۔

مثال 3.7: ایک 25 کلو وولٹ-ایمپیئر، 220 : 11000 وولٹ اور 50 ہرٹز پر چلنے والے ٹرانسفار مر کے کھلے دور اور کسر دور معائنے کیے جاتے ہیں جن کے نتائج درج ذیل ہیں۔ ٹرانسفار مر مساوی دور کے اجزاء تلاش کریں۔

• کھلا دور معائنہ میں کم برقی دباو جانب V 220 لاگو کیا جاتا ہے۔اسی جانب برقی رو A 39.64 اور طاقت کا ضیاع W 600 ناپے جاتے ہیں۔

• کسر دور معائنه میں زیادہ برتی دباو جانب V 440 لا گو کیا جاتا ہے۔اسی جانب برتی رو A 2.27 اور طاقت کا ضیاع W 560 ناپے جاتے ہیں۔

حل کھلا دور:

$$\begin{split} |Z_t| &= \frac{220}{39.64} = 5.55\,\Omega \\ R_c &= \frac{220^2}{600} = 80.67\,\Omega \\ X_m &= \frac{80.67\times5.55}{\sqrt{80.67^2-5.55^2}} = 5.56\,\Omega \end{split}$$

حل کسر دور:

$$Z_t = \frac{440}{2.27} = 193.83 \,\Omega$$

$$R_{ms} = \frac{560}{2 \times 2.27^2} = 108.68 \,\Omega$$

$$X_{ms} = \sqrt{193.83^2 - 108.68^2} = 160 \,\Omega$$

ور
$$X_{ms}$$
 اور X_{ms} کو کم برقی د باو جانب منتقل کرتے ہوئے R_{ms} $\left(\frac{220}{11000}\right)^2 imes 108.68 = 43.47\,\mathrm{m}\Omega$ $\left(\frac{220}{11000}\right)^2 imes 160 = 64\,\mathrm{m}\Omega$

لعيني

$$R_1 = R'_2 = \frac{43.47 \,\text{m}\Omega}{2} = 21.7 \,\text{m}\Omega$$

 $X_1 = X'_2 = \frac{64 \,\text{m}\Omega}{2} = 32 \,\text{m}\Omega$

حاصل ہو گا۔ان نتائج سے حاصل کم برقی دباو جانب مساوی دور شکل 3.26 میں دکھایا گیا ہے۔

شکل 3.26: کھلے دوراور کسرِ دور معائنہ سے کم برقی دباوجانب مساوی دور۔

شكل3.27: ايك ہى قالب پرتين ٹرانسفار مر۔

3.12 تين مرحله ٹرانسفار مر

اب تک ہم یکے مرحلہ 67 ٹرانسفار مر پر غور کرتے رہے ہیں۔ حقیقت میں برقی طاقت کی منتقلی میں عموماً تیہ خے مرحلہ 68 ٹرانسفار مر استعال ہوتے ہیں۔ تین مرحلہ ٹرانسفار مر کیساں تین عدد یک مرحلہ ٹرانسفار مر استعال ہوتے ہیں۔ تین مرحلہ ٹرانسفار مر خراب ہونے کی صورت میں اس کو ہٹا کر ٹھیک کرنے کے دوران باقی دو ٹرانسفار مر استعال کئے جا سکتے ہیں۔ تین مرحلہ ٹرانسفار مر بنانے کا اس سے بہتر طریقہ شکل 3.27 میں دکھایا گیا ہے جہاں ایک ہی مقاطیسی قالب پر تینوں ٹرانسفار مر کے لیچھے گیے ہیں۔ اس شکل میں \hat{V}_{i1} پہلے ٹرانسفار مر کا ابتدائی کچھا اور \hat{V}_{s1} اس کا خانوی کچھا ہے۔ اس طرح کے تین مرحلہ ٹرانسفار مرستے، میلکے اور چھوٹے ہونے کی وجہ سے عام ہو گئے ہیں اور آپ کو روز مرہ زندگی میں یہی نظر آئیں گے۔ ان میں برقی ضیاع بھی نسبتاً کم ہوتا ہے۔

شکل 3.28-الف میں تین ٹرانسفار مر د کھائے گئے ہیں۔ان ٹرانسفار مروں کے ابتدائی کیجے آپی میں دو طریقوں

 $[\]begin{array}{c} \text{single phase}^{67} \\ \text{three phase}^{68} \end{array}$

سے جوڑے جا سکتے ہیں۔ایک کو ستارہ نما جوڑ Y^{69} اور دوسرے کو تکونی جوڑ 70 کہتے ہیں۔ای طرح ان ٹرانسفار مروں کے ثانوی کچھے بھی انہیں دو طریقوں سے جوڑے جا سکتے ہیں۔یول انہیں درج ذیل چار مختلف طریقوں سے جوڑا جا سکتا ہے۔

- $Y:\Delta$ ستاره: تکونی •
- Y:Y ساره: ساره •
- $\Delta: \Delta$ $\exists \lambda$
- $\Delta: Y$ تکونی: ستاره \bullet

شکل 3.28 میں $\Delta: Y$ ٹرانسفار مر دکھایا گیا ہے جس میں بایاں ہاتھ Y اور دایاں ہاتھ $\Delta: Y$ ٹرانسفار مر $\Delta: Y$ کھتے ہوئے X: Y کو بائیں اور X: Y کو دائیں کھا جاتا ہے۔جیسا پہلے ذکر ہو چکا ہے ہم اشکال میں ٹرانسفار مر کا ابتدائی طرف بائیں جانب رکھتے ہیں للذا X: Y: Y ابتدائی اور X: Y: X ثانوی طرف ہے۔ روائگی سے پڑھتے ہوئے ابتدائی کو پہلے اور ثانوی کو بعد میں پڑھا جاتا ہے للذا اس کو X: Y: X ککھ کر ستارہ۔ تکونی پڑھیں گے۔

شکل 3.28-الف میں تین ٹرانسفار مرول کے ابتدائی کیھوں کو ستارہ نما جوڑا گیا ہے جبکہ ان کی ٹانوی کیھوں کو سارہ نما جوڑا گیا ہے۔اسی طرح ٹانوی کیھوں کو تکونی جوڑا گیا ہے۔شکل-ب میں تینوں ٹرانسفار مر کے ابتدائی کیھوں کو ستارہ نما دکھایا گیا ہے۔اس طرح ٹانوی کیھوں کو شکونی دکھایا گیا ہے۔ان اشکال کی وجہ سے اس طرز کے جوڑ کو ستارہ نما جوڑ اور تکونی جوڑ کہتے ہیں۔

اییا شکل بناتے ہوئے ہر ٹرانسفار مر کے ابتدائی اور ثانوی کچھے کو ایک ہی زاویہ پر دکھایا جاتا ہے۔۔یوں شکل 3.28-ب میں 3.28-الف میں بالائی ٹرانسفار مر، جس کے ابتدائی سرے an اور ثانوی سرے a'n' ہیں، کو شکل 3.28-ب میں صفر زاویہ پر دکھایا گیا ہے۔ تین مرحلہ ٹرانسفار مروں کو اس طرح کی علامتوں سے ظاہر کیا جاتا ہے اور ان میں قالب نہیں دکھایا جاتا۔

ٹرانسفار مر کے جوڑ بیان کرتے وقت بائیں جوڑ کو پہلے اور دائیں جوڑ کو بعد میں پکارتے ہیں۔یوں شکل 3.28-ب میں ٹرانسفار مر کو ستارہ- تکونی جڑا ٹرانسفار مر یا مخضراً ستارہ- تکونی ٹرانسفار مر کہیں گے۔اسی طرح ابتدائی جانب کو بائیں اور ثانوی جانب کو دائیں ہاتھ بنایا جاتا ہے۔یوں اس شکل میں ابتدائی جانب ستارہ نما ہے جبکہ ثانوی جانب تکونی ہے۔

> star connected⁶⁹ delta connected⁷⁰

شكل3.28: تين مر حله ستاره- تكونی ٹرانسفار مر

ستارہ نما سے چار برقی تاریں نکلتی ہیں۔ ان میں مشترک تار n کو عموماً ٹرانسفار مر کے نزدیک زمین میں گہرائی تک دھنسا جاتا ہے۔ اس تار کو زمینی تار 73 یا صرف زمین 72 کہتے ہیں۔ عام فہم میں اسے ٹھنڈی تار 73 کہتے ہیں۔ باقی تین تارین a,b,c کہلاتے ہیں۔

ٹرانسفار مر کے کچھے پر برتی دباو کو یک مرملہ برقی دباو _{نکر ط}ر⁷⁵ کہتے ہیں اور کچھے میں برتی رو کو یک مرملہ برقی رو _{کرمط} ⁷⁵ کہتے ہیں۔ جبکہ ٹرانسفار مر سے باہر نکلتی کسی دو گرم تاروں کے ﷺ برتی دباو کو تار کا برقی دباو ہ⁷⁷ کہتے ہیں۔ زمینی تار میں برتی رو کو زمینی برقی رو کو آرکا برقی رو ہرآ⁷⁸ کہتے ہیں۔ زمینی تار میں برتی رو کو زمینی برقی رو کو آرکا برقی رو ہرآ⁷⁸ کہتے ہیں۔

ground⁷¹

ground, earth,neutral⁷²

 $neutral^{73}$

live wires⁷⁴

phase voltage⁷⁵

phase current⁷⁶

line to line $voltage^{77}$

line current⁷⁸

 $^{{\}rm ground}\ {\rm current}^{79}$

ستارہ Y جانب یک مرحلہ مقداروں اور مار کے مقداروں کا تعلق درج ذیل ہو گا۔

(3.41)
$$V_{J\tau} = \sqrt{3}V_{\chi_{\tau}}$$

$$I_{J\tau} = I_{\chi_{\tau}}$$

 Δ کونی Δ جانب یک مرحلہ اور تار کی مقداروں کا تعلق درج ہے۔

$$V_{\text{jt}} = V_{\text{jt}}$$
 (3.42)
$$I_{\text{jt}} = \sqrt{3}I_{\text{jt}}$$

مساوات 3.41 اور مساوات 3.42 مرحلی سمتیہ کے رشتے نہیں بلکہ غیر سمتی مطلق قیمتوں کے رشتے دیتی ہیں۔ان رشتوں کو شکل 3.29 میں دکھایا گیا ہے۔مساوات 3.41 اور مساوات 3.42 سے درج ذیل حاصل ہوتا ہے۔

$$V_{J\tau}I_{J\tau} = \sqrt{3}V_{z_{\zeta}}I_{z_{\zeta}}$$

یک مرحلہ ٹرانسفار مرکے وولٹ -ایمپیئر سرحلہ $V_{3,2}$ ہوتے ہیں اور ایسے تین ٹرانسفار مر مل کر ایک عدد تین مرحلہ ٹرانسفار مر بناتے ہیں لہذا تین مرحلہ ٹرانسفار مر کے وولٹ -ایمپیئر تین گنّا ذیل ہوں گے۔

یہ مساوات تاہن مرحلہ ادوار میں کثرت سے استعال ہوتی ہے۔

ٹرانسفار مرجس طرح بھی جوڑے جائیں وہ اپنی بنیادی کار کردگی تبدیل نہیں کرتے ہیں للذا انہیں سارہ نما یا تکوئی جوڑنے کے بعد بھی ان میں ہر ایک ٹرانسفار مر انفرادی طور پر صفحہ 68 پر دے مساوات 3.16 اور صفحہ 7 پر دے مساوات 3.26 پر پورا اترے گا۔ انہیں استعال کر کے شکل 3.29 میں دیے گئے ٹرانسفار مروں کے ابتدائی اور ثانوی مساوات کی یک مرحلہ اور تارکی مقداروں کے رشتے حاصل کئے جا سکتے ہیں۔ اس شکل میں N_1/N_2 ہے جہاں جانب کی یک مرحلہ ٹرانسفار مرکے چکر کا تناسب ہے۔ تین مرحلہ ٹرانسفار مرپر لگی شختی پر دونوں جانب تارکے برقی دباوکا تناسب کھا جاتا ہے۔

شکل 3.29 میں ستارہ- تکونی ٹرانسفار مر کی تار پر برقی د باو کا تناسب

(3.45)
$$\frac{V_{\acute{\mathcal{S}}^{|\mathcal{F}|}}}{V_{\mathcal{S}^{|\mathcal{F}|}}} = \sqrt{3}a = \sqrt{3}\left(\frac{N_1}{N_2}\right)$$

شکل 29. 3: اہتدائی اور ثانوی جانب تاراور یک مرحله مقداروں کے رشتے۔

جبکه ستاره-ستاره کا

$$\frac{V_{\acute{\mathcal{S}}|\mathcal{F}|}}{V_{\acute{\mathcal{S}}|\acute{\mathcal{Y}}}} = a = \left(\frac{N_1}{N_2}\right)$$

تکونی-ستاره کا

(3.47)
$$\frac{V_{\hat{\mathcal{G}},\mathcal{Z}}}{V_{\hat{\mathcal{G}},\hat{\mathcal{F}}}} = \frac{a}{\sqrt{3}} = \frac{1}{\sqrt{3}} \left(\frac{N_1}{N_2}\right)$$

اور تکونی- تکونی کا درج ذیل ہو گا۔

$$\frac{V_{\dot{\mathcal{G}}|\mathcal{F}|}}{V_{\mathcal{G}\dot{\mathcal{F}}}} = a = \left(\frac{N_1}{N_2}\right)$$

مثال 3.8: کی مرحله تین کیسال ٹرانسفار مروں کو ستارہ- تکونی کے $Y: \Delta$ جوڑ کر تین مرحله ٹرانسفار مر بنایا گیا ہے۔ یک مرحله ٹرانسفار مرکی برقی سکھے 80 ورج ذیل ہے:

 $50\,\mathrm{kV}\,\mathrm{A}, \quad 6350:440\,\mathrm{V}, \quad 50\,\mathrm{Hz}$

ستارہ- تکونی ٹرانسفار مرکی اہتدائی جانب 11000 وولٹ تین مرحلہ دباو تار لا گو کیا گیا۔اس تین مرحلہ ٹرانسفار مرکی ثانوی جانب دباو تار معلوم کریں۔

rating⁸⁰

100 باب. 3. ٹرانسفار مسر

حل: حل کرتے وقت ہم ایک عدد یک مرحلہ ٹرانسفار مرپر نظر رکھیں گے۔ یک مرحلہ ٹرانسفار مرکے چکر کا تناسب درج ذیل ہو گا۔

$$\frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{6350}{440}$$

مساوات 3.41 سے دباو تار درج ذیل حاصل ہوتا ہے۔

$$V_{\rm span}(\xi_{\rm i}) = \sqrt{3} \times 6350 \approx 11\,000\,{
m V}$$

یک مرحلہ ٹرانسفار مرکی ثانوی جانب 440 V ہوں گے جس کو مساوات 3.16 کی مدد سے بھی حاصل کیا جا سکتا ہے۔

$$V_{\mathcal{G}_{\mathcal{F}}} = \frac{N_2}{N_1} V_{\mathcal{G}_{\mathcal{F}}} = \frac{440}{6350} \times 6350 = 440 \,\mathrm{V}$$

ثانوی جانب تین یک مرحلہ ٹرانسفار مروں کو تکونی جوڑا گیا ہے۔یوں مساوات 3.42 کی مدد سے ثانوی دباو تاریبی ہو گا۔ نین مرحلہ ٹرانسفار مرکے دباو تار کا تناسب درج ذیل ہو گا۔

$$rac{V_{i,\vec{\mathbf{z}},i\hat{\mathbf{z}},i}}{V_{i,\vec{\mathbf{z}},i\hat{\mathbf{z}},i}} = rac{11000}{440}$$

یک مرحلہ ٹرانسفار مر 50 کلو وولٹ-ایمپیئر کا ہے للذا تین مرحلہ ٹرانسفار مر 150 کلو وولٹ-ایمپیئر کا ہو گا۔ یوں تین مرحلہ ٹرانسفار مرکی سکت 81 ورج ذیل ہو گی۔

 $150 \,\mathrm{kV} \,\mathrm{A}, \quad 11000 : 440 \,\mathrm{V}, \quad 50 \,\mathrm{Hz}$

ٹرانسفار مر مختی ⁸² پر ٹرانسفار مر کی سکت بیان ہوتی ہے۔ اس مختی پر تین مرحلہ ٹرانسفار مر کے دونوں جانب دباو تار لکھا جاتا ہے نہ کہ کچھوں کے چکر۔

ستارہ-ستارہ ٹرانسفار مر میں تین مرحلہ برتی دباو کے بنیادی اجزاء آپس میں °120 زاویائی فاصلے پر جبکہ تیسرے موسیقائی اجزاء آپس میں ہم قدم ہوتے ہیں۔ قالب کی غیر تدریجی خاصیت کی بنا ٹرانسفار مر میں ہر صورت تیسری موسیقائی اجزاء پائے جاتے ہیں۔ تیسری موسیقائی اجزاء ہم قدم ہونے کی وجہ سے جمع ہو کر برتی دباوکا ایک بڑا موج

 $[\]begin{array}{c} {\rm rating^{81}} \\ {\rm name~plate^{82}} \end{array}$

شكل3.30 :ٹرانسفار مرتكونی متوازن بوجھ كوطاقت فراہم كررہاہے۔

پیدا کرتے ہیں جو تبھی کھار برقی دباو کے بنیادی جزو سے بھی زیادہ بڑھا ہوتا ہے۔اس وجہ سے ستارہ-ستارہ ٹرانسفار مر عام طور استعال نہیں ہوتا ہے۔

باتی تین قتم جڑے ٹرانسفار مروں میں تکونی جوڑ پایا جاتا ہے جس میں تیسری موسیقائی اجزاء کی موج گرد ثی رو پیدا کرتی ہے۔ یہ گرد ثی رو تیسری موسیقائی اجزاء کی موج کے اثر کو ختم کرتا ہے۔

تین مرحلہ ٹرانسفار مر کے متوازن دور حل کرتے وقت ہم تصور کرتے ہیں کہ ٹرانسفار مرستارہ جڑا ہے۔ یوں ایک مرحلے میں برقی رو، تار کا برقی رو ہو گا اور ایک مرحلے پر لاگو برقی دباو، یک مرحلہ برقی دباو ہو گا۔اس طرح ہم اس پر لدے برقی بوجھ کو بھی ستارہ جڑا تصور کرتے ہے۔ یوں تین مرحلہ دور کی بجائے ہم نسبتاً آسان یک مرحلہ دور کل بجائے ہم نسبتاً آسان یک مرحلہ دور کل کرتے ہیں۔ ایسا کرنے سے مسئلہ پر غور کرنا آسان ہو جاتا ہے۔آئیں ایک مثال سے اس عمل کو سمجھیں۔

مثال 3.9: شکل 3.30 میں تین مرحلہ $\Delta: Y: 0000$ کلو وولٹ-ایمپیئر، 600: 11000 وولٹ اور 50 ہر ٹز 0.504+j0.1917 وولٹ اور 5000+j0.504+j0.1917 مثال کامل ٹرانسفار مرتین مرحلہ متوازن بکونی بوجھ کو طاقت مہیا کر رہا ہے۔ بوجھ کا ہر حصہ 5000+j0.1917 کے برابر ہے۔

- اس شکل میں تمام برقی رو معلوم کریں۔
- برقی بوجه⁸³ کو در کار طاقت معلوم کریں۔

حل: پہلے مکونی بوجھ کو ستارہ بوجھ میں تبدیل کرتے ہیں:

$$Z_Y = \frac{Z_\Delta}{3} = \frac{0.504 + j0.1917}{3} = 0.168 + j0.0639$$

electrical load 83

102 باب 3. ٹرانسفار مسر

شكل 3.31: تكونى بوجھ كومساوى ستاره بوجھ ميں تبديل كيا گياہے۔

ستارہ بوجھ کو شکل 3.31 میں دکھایا گیا ہے جہال ایک برقی تار جسے نقطہ دار لکیر سے ظاہر کیا گیا ہے کو ٹرانسفار مرک زمینی نقطہ سے بوجھ کے مشتر کہ سرے کے در میان جڑا دکھایا گیا ہے۔ متوازن دور میں اس تار میں برقی رو صفر ہو گا۔ حل کرنے کی نیت سے ہم اس متوازن دور سے یک مرحلہ حصہ لے کر حل کرتے ہیں۔

مساوی ستاره بوجه میں برقی رو

$$I = \frac{346.41}{0.168 + i0.0639} = 1927.262 / -20.825^{\circ}$$

اور یک مرحله طاقت درج ذبل ہو گی۔

$$p = 346.41 \times 1927.262 \times \cos(-20.825^\circ) = 624\,007\,\mathrm{W}$$

کل طاقت تین گنا ہو گی لیعنی 1872 kW جس بوجھ کا جزو طاقت ⁸⁴ درج ذیل ہو گا۔

$$\cos(-20.825^{\circ}) = 0.93467$$

تکونی بوجھ میں برتی رو 1112.7 $=rac{1927.262}{\sqrt{3}}$ ایمپیئر ہو گا۔ ٹرانسفار مرکی ابتدائی جانب برتی تاروں میں برتی رو درج ذیل ہو گا۔

$$\left(\frac{600}{11000}\right)\times1927.262=105.12\,\mathrm{A}$$

 ${\rm power\ factor}^{84}$

اس مثال میں جزو طاقت 0.93467 ہے۔اس کتاب کے لکھتے وقت پاکستان میں اگر صنعتی کارخانوں کی برقی بوجھ کی جزو طاقت 0.9 سے کم ہو جائے تو برقی طاقت فراہم کرنے والا ادارہ (واپڈا) جرمانہ نافذ کرتا ہے۔

3.13 ٹرانسفار مرچالو کرتے لمحہ زیادہ محرکی برقی روکا گزر

ہم دیکھ کچے ہیں کہ اگر ٹرانسفار مرکے قالب میں کثافتِ مقناطیسی بہاو سائن نما ہو لیعنی $B=B_0\sin\omega t$ تو اس کے لئے ہم لکھ سکتے ہیں

$$v = e = N \frac{\partial \varphi}{\partial t} = N A_c \frac{\partial B}{\partial t}$$
$$= \omega N A_c B_0 \cos \omega t$$
$$= V_0 \cos \omega t$$

لعيني

$$(3.49) B_0 = \frac{V_0}{\omega N A_c}$$

یہ مساوات برقرار چالو85 ٹرانسفار مر کے لئے درست ہے۔

تصور کریں کہ ایک ٹرانسفار مر کو چالو کیا جا رہا ہے۔ چالو ہونے سے پہلے قالب میں مقناطیسی بہاو صفر ہے اور جس لمحہ اسے چالو کیا جائے اس لمحہ بھی یہ صفر ہی رہتا ہے۔

جس لمحه ٹرانسفار مر کو چالو کیا جائے اس لمحہ لا گو برقی دباو

$$v = V_0 \cos(\omega t + \theta)$$

ہے۔اگر $\pi/2$ یہ لمحہ ہو تو آدھے دوری عرصہ 86 کے بعد قالب میں کثافتِ مقناطیسی بہاو heta

$$B = \frac{1}{NA_c} \int_0^{\pi/\omega} V_0 \cos(\omega t + \pi/2) dt$$
$$= \frac{V_0}{\omega NA_c} \sin(\omega t + \pi/2)_0^{\pi/\omega}$$
$$= -\left(\frac{2V_0}{\omega NA_c}\right)$$

steady state 85 time period 86

اب. 3. ٹرانسفار مسر

یعنی کثافتِ مقناطیسی بہاو کا طول معمول سے دگنا ہو گا۔ اگر یہی حساب $\theta=0$ لحمہ کے لئے کیا جائے تو زیادہ سے زیادہ کثافتِ مقناطیسی بہاو بالکل مساوات 3.49 کے عین مطابق ہو گا۔ ان دو زاویوں کے مابین زیادہ سے زیادہ کثافتِ مقناطیسی بہاو ان دو حدوں کے در میان رہتا ہے۔

قالب کی B-H خط غیر بندر تک بڑھتا ہے۔ لہذا B دگنا کرنے کی خاطر H کو کئی گنا بڑھانا ہو گا جو کچھے میں محرک برتی رو بڑھانے سے ہوتا ہے 88 یہاں صفحہ 53 پر دکھائے شکل 2.17 سے رجوع کریں۔ قومی ٹرانسفار مروں میں بیجانی کثافتِ مقناطیسی بہاو کی چوٹی 1.3 0.1 0.1 0.1 ہوتی ہے۔ ٹرانسفار مر چالو کرتے لمحہ یوں کثافتِ مقناطیسی بہاو کے سے 0.1 ٹیلز برتی رو نہایت زیادہ ہو گی۔

2000⁸⁷ کلوووك- ايمپيئر ٹرانسفار مرسے چالو کرتے وقت تھر تھراہٹ کی آواز آتی ہے

باب4

برقی اور میکانی توانائی کا باہمی تبادلہ

برقی رو یا مقناطیسی بہاو کی مدد سے برقی توانائی کو میکانی توانائی یا میکانی توانائی کو برقی توانائی میں مختلف مشین تبدیل کرتے ہیں۔ پیائش آلات، لاؤڈ سیکیر، ماکروفون، وغیرہ نہایت کم طاقت کا تبادلہ کرتے ہیں جبکہ ریلے 1، برقی مقناطیس، وغیرہ، قوت پیدا کرتے ہیں۔ کئی مشین، جن میں برقی موٹر اور جزیٹر شامل ہیں، ایک قسم کی توانائی کو لگاتار دوسری قسم کی توانائی میں تبدیل کرتے ہیں۔

اس باب میں مقناطیسی بہاو کی مدد سے توانائی کے تبادلہ پر غور کیا جائے گا۔ برقی رو کی مدد سے بھی توانائی کا تبادلہ سمجھا جا سکتا ہے جس کا تذکرہ اس کتاب میں نہیں کیا جائے گا۔

اس باب میں ہم وہ اہم تراکیب سکھیں گے جو انجنیئری مسائل حل کرنے میں مددگار ثابت ہوں گے۔

4.1 مقناطیسی نظام میں قوت اور قوت مروڑ

برقی میدان E میں برقی بار q پر درج ذیل قوت اثر انداز ہوگ۔

$$\mathbf{F} = q\mathbf{E}$$

 $relay^1$

a کارخ دیگا۔ a کارخ دیگا۔ b اگردائیں ہاتھ کی شہادت کی انگلی b اور بڑی انگلی b کے رخ ہوں تب انگوٹھا مثبت باریر

مثبت برقی بار پر قوت برقی شدت E کے رخ ہو گی جبکہ منفی بار پر قوت E کے مخالف رخ ہو گی۔

مقناطیسی میدان میں متحرک بار q ، جس کی سمتی رفتارv ہو، پر درج ذیل قوت اثر انداز ہو گی۔ $F = q(v \times B)$

شبت برتی بار پر قوت کا رخ دائیں ہاتھ کے قانون 5 دیگا۔دائیں ہاتھ کا انگوٹھا، شہادت کی انگلی اور بڑی انگلی کو ایک دوسرے کے ساتھ 90 زاویہ پر رکھتے ہوئے اگر شہادت کی انگلی v اور بڑی انگلی B کے رخ ہوں تب انگوٹھا F کے رخ ہوگا (شکل A)۔ منفی بار پر قوت مخالف رخ ہوگی۔ یہاں سمتی رفتار P اور P کے بھے۔

برتی اور متناطیسی (دونوں) میدان میں حرکت پذیر بار پر قوت مساوات 4.1 اور مساوات 4.2 کے مجموعہ سے حاصل ہو گی جس کو مساوات لوریزہ کہتے ہیں۔

(4.3)
$$F = q(E + v \times B)$$
 مساوات لورینز

مساوات 4.2 میں $v=\mathrm{d}L/\mathrm{d}t$ کھے کر درج ذیل حاصل ہو گا جہاں آخری قدم پر $v=\mathrm{d}L/\mathrm{d}t$ کھا گیا -

(4.4)
$$\begin{aligned} \boldsymbol{F} &= q \left(\frac{\mathrm{d} \boldsymbol{L}}{\mathrm{d} t} \times \boldsymbol{B} \right) \\ &= \frac{q}{\mathrm{d} t} \left(\mathrm{d} \boldsymbol{L} \times \boldsymbol{B} \right) \\ &= i \left(\mathrm{d} \boldsymbol{L} \times \boldsymbol{B} \right) \end{aligned}$$

velocity² right hand rule³ Lorenz equation⁴

شكل4.2: ايك چكرك لچھے پر قوت اور قوت مروڑ

مثال 4.1: شکل 4.2 میں ایک لچھا مقناطیسی میدان میں دکھایا گیا ہے۔ لچھے کا رداس 15 سم، محوری لمبائی 50 سم اور اس میں برقی رو 5 ایمیسئر ہے۔ کثافت مقناطیسی بہاو کو نقطہ دار نو کیلی لکیروں سے شالی قطب سے جنوبی قطب کے رخ دکھایا گیا ہے۔ اگر کثافت مقناطیسی بہاو 0.55 ٹسلا ہو تب

- کھیے کے اطراف پر قوت دریافت کریں اور
 - کھے یر قوت مروڑ τ دریافت کریں۔

حل: شکل-الف اور ب میں کار تیسی اکائی سمتیات دکھائے گئے ہیں۔ برقی تار کے سروں کو نظر انداز کرتے ہوئے اسے ایک بند مستطیل تصور کرتے ہیں۔ یوں شکل-الف میں برقی رو کے رخ تار کے اطراف کی لمبائیاں ورج ذیل ہوں گی جبکہ $B = B_0 a_{\rm X}$ ہوں گی جبکہ وگا۔

$$egin{aligned} oldsymbol{L}_{bc} &= loldsymbol{a}_{
m y} \ oldsymbol{L}_{cd} &= -2roldsymbol{a}_{
m x} \ oldsymbol{L}_{de} &= -loldsymbol{a}_{
m y} \ oldsymbol{L}_{eb} &= 2roldsymbol{a}_{
m x} \end{aligned}$$

یوں مساوات 4.2 کے تحت ان اطراف پر قوت (نیوٹن) درج ذیل ہو گا۔

$$\begin{aligned}
F_{bc} &= i \left(\mathbf{L}_{bc} \times B_0 \mathbf{a}_{X} \right) \\
&= 5 \left(0.5 \mathbf{a}_{Y} \times 0.55 \mathbf{a}_{X} \right) \\
&= -1.375 \mathbf{a}_{Z} \\
F_{cd} &= 5 \left(-0.3 \mathbf{a}_{X} \times 0.55 \mathbf{a}_{X} \right) \\
&= 0 \\
F_{de} &= 5 \left(-0.5 \mathbf{a}_{Y} \times 0.55 \mathbf{a}_{X} \right) \\
&= 1.375 \mathbf{a}_{Z} \\
F_{ea} &= 0
\end{aligned}$$

ہم دیکھتے ہیں کہ صرف محوری اطراف پر قوتیں پائی جاتی ہیں جنہیں شکل 4.2-ب میں دکھایا گیا ہے۔ محوری اطراف پر اثر انداز قوت، مروڑ پیدا کرتی ہیں جس کا رخ دائیں ہاتھ کے قانون سے حاصل ہو گا۔ متطیل تار پر قوت مروڑ (نیوٹن میٹر) درج ذیل ہو گا۔

$$\tau = -1.375 \times 2 \times 0.15 \times \sin \theta \mathbf{a}_{y}$$
$$= -0.4125 \sin \theta \mathbf{a}_{y}$$

مساوات 4.1 تا مساوات 4.3 كا استعال صرف سادہ ترين صورتوں ميں ممكن ہوتا ہے۔ حقیقی مشینوں میں ان مساوات سے قوت نتین كرنا مشكل ثابت ہوتا ہے۔ آئيں ايك اليى تركيب سيكھتے ہیں جس سے ہم مختلف مشینوں میں پائی جانی والی قوتیں نتین كر سكیں ۔ اس تركیب كو توانائی كا طریقہ كہتے ہیں جو توانائی كے الل ہونے پر مبنی ہے۔

گھومتی برقی مثین عموماً دو لچھوں پر مشمل ہوتی ہیں۔ ان میں ایک لچھا مثین کے ساکن حصہ پر لپٹا ہوتا ہے جس کی بنا میہ ساکن رہتا ہے اور ساکن لچھا⁵ کہلاتا ہے۔ دوسرا لچھا مثین کے گھومنے حصہ پر لپٹا ہوتا ہے اور مثین گھومنے سے میہ بھی گھومتا ہے۔ اس کو گھومتا کچھا⁶ کہتے ہیں۔ان کچھوں کو دو عدد مقناطیس تصور کرتے ہوئے ایسی مشینوں کی کارکردگی باآسانی سمجھی جا سکتی ہے۔

جس طرح دو مقناطیس اگر قریب لائے جائیں تو یہ کوشش کرتے ہیں کہ ایک کا شال N دوسرے کے جنوب S کی سمت ہو۔

stator coil⁵ rotor coil⁶

شکل 4.3: برتی توانائی سے میکانی توانائی کے تبادلہ کا نظام۔

موٹر کے دو کچھے مقناطیس پیدا کرتے ہیں۔ہم جانتے ہیں کہ ایک مقناطیس کے شال N اور دوسرے کے جنوب S کے نیج قوت کشش پائی جاتی ہے۔ ساکن کچھے کا مقناطیسی بہاو گھومتے کچھے کے مقناطیسی بہاو سے کچھے آگے رہ کر اسے کھینچ کر کام کرتا ہے۔ جزیٹر میں اس کے بر عکس گھومتا کچھا، ساکن کچھے پر کام کرتے ہوئے اس میں برقی دباو پیدا کرتا ہے۔

توانائی کے طریقے کو شکل 4.3 کی مدد سے سمجھا جا سکتا ہے۔ یہاں مقناطیسی نظام کو ایک ڈبہ مانند دکھایا گیا ہے۔ اس نظام کو برقی توانائی مہیا کی جاتی ہے جس کو یہ میکانی توانائی میں تبدیل کرتا ہے۔ یہاں برقی توانائی کے متغیرات فاصلہ x اور میدانی قوت F_m ہیں۔ اس شکل میں بائیں یعنی ابتدائی یا اولین جانب i کا رُخ باہر سے اندر ہے جبکہ دائیں یعنی ثانوی جانب F_m کا رُخ اندر سے باہر رخ ہے۔ یہ ٹرانسفار مر دور کے شکل 3.7 کی مانند ہے۔

جہاں نظام میں توانائی کے ضیاع کو ذخیرہ توانائی سے علیحدہ کرنا ممکن ہو وہاں توانائی کے ضیاع کو بیرونی رکن تصور کیا جاتا ہے۔ شکل 4.4 میں ایک ایسا ہی نظام دکھایا گیا ہے جس میں کچھا برتی نظام اور حرکی حصہ میکانی نظام کو ظاہر کرتے ہیں اور کچھے میں توانائی کے ضیاع کو بیرونی مزاحمت R سے ظاہر کیا گیا ہے۔

توانائی کا بنیادی اصول کہتا ہے کہ توانائی نا تو پیدا کی جاسکتی ہے اور نا ہی اسے تباہ کیا جا سکتا ہے۔ اس کو صرف ایک قشم سے دوسرے قشم کی توانائی میں تبدیل کیا جا سکتا ہے۔ یوں نظام کو فراہم برتی توانائی بن ∂W_{ij} کا ایک حصہ میکانی توانائی می_{کا}نی توانائی میکانی توانائی میکانی توانائی میکانی توانائی میکانی توانائی میکانی توانائی میکانی و گا اور باتی حصہ مینائی میکانی خاف طریقوں سے ضائع ہو گیا جو ہمارے کسی کام نہ آسکے گا:

$$\partial W_{\mathbf{j}} = \partial W_{\mathbf{j}} + \partial W_{\mathbf{n}} + \partial W_{\mathbf{n}} + \partial W_{\mathbf{n}} + \partial W_{\mathbf{n}}$$

میدانی قوت F_m میں چھوٹی ککھائی میں mلفظ میدانی کو ظاہر کر رہاہے۔

شكل 4.4: قوت يبدا كرنے والا آلا۔

برقی توانائی کے ضیاع کو نظرانداز کرتے ہوئے $\partial W_{ij} = \partial W_{ij} + \partial W_{ij}$ (4.6) $\partial W_{ij} = \partial W_{ij} + \partial W_{ij}$ کھا جا سکتا ہے جس کو ∂t ہے تقسیم کر کے

(4.7)
$$\frac{\partial W_{\ddot{\mathbf{J}}_{2}}}{\partial t} = \frac{\partial W_{\dot{\mathbf{J}}_{2}}}{\partial t} + \frac{\partial W_{\dot{\mathbf{J}}_{2}}}{\partial t}$$

کھا جا سکتا ہے جو توانائی کی بجائے طاقت کی بات کرتی ہے۔ اس مساوات کے بائیں ہاتھ برقی طاقت کو ei اور دائیں ہاتھ میکانی حصہ میں $\partial W_{\dot{0}} = F_m \partial x$ لکھ کر

(4.8)
$$ei = F_m \frac{\partial x}{\partial t} + \frac{\partial W_m}{\partial t}$$

حاصل ہو گا جہاں W_m کو W_m کو W_m کھا گیا ہے۔مساوات 2.27 استعال کرتے ہوئے اس کو

$$i\frac{\partial \lambda}{\partial t} = F_m \frac{\partial x}{\partial t} + \frac{\partial W_m}{\partial t}$$

کھا جا سکتا ہے۔ دونوں اطراف کو ∂t سے ضرب دے کر ترتیب نو کرتے ہوئے درج ذیل حاصل ہو گا۔ $\partial W_m = i\partial \lambda - F_m \partial x$

مساوات 4.10 توانائی کے طریقہ کی بنیاد ہے۔ اس مساوات کو استعال کرتے وقت یاد رہے کہ قوت بنیادی طور پر لوریز کے قانون e ہے ہی پیدا ہوتی ہے۔مساوات 4.10 میں برقی متغیرات i اور e کی بجائے i اور k ہیں۔ لہذا شکل 4.3 کو شکل 4.5 کی طرح بھی بنایا جا سکتا ہے۔

کسی بھی تفاعل z(x,y) کا کل تفرق درج ذیل ہو گا جہاں $\frac{\partial z}{\partial x}$ لیتے ہوئے y کو مستقل تصور کیا جاتا ہے

Lorenz equation⁸ function⁹

شکل 4.5: توانائی کی قشم تبدیل کرنے والاایک نظام۔

اور $rac{\partial z}{\partial y}$ لیتے ہوئے x کو مستقل تصور کیا جاتا ہے۔

(4.11)
$$\partial z(x,y) = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

اسی طرح $W_m(x,\lambda)$ کا کل تفرق

(4.12)
$$\partial W_m(x,\lambda) = \frac{\partial W_m}{\partial x} dx + \frac{\partial W_m}{\partial \lambda} d\lambda$$

ہو گا جس کا موازنہ مساوات 4.10 کے ساتھ کر کے درج ذیل اخذ کیا جا سکتا ہے جہاں ایک متغیر کے ساتھ جزوی تفرق لیتے وقت دوسرے متغیر کو صریحاً مستقل ظاہر کیا گیا ہے۔

(4.13)
$$F_m(x,\lambda) = -\left. \frac{\partial W_m(x,\lambda)}{\partial x} \right|_{\lambda_0}$$

(4.14)
$$i(x,\lambda) = \left. \frac{\partial W_m(x,\lambda)}{\partial \lambda} \right|_{x_0}$$

مقناطیسی میدان میں مقناطیسی توانائی $W_m(x,\lambda)$ دریافت کر کے مساوات 4.13 کی استعال سے قوت دریافت کی جاسکتی ہے۔ اگلے حصد میں مقناطیسی توانائی کا حصول سکھایا جائے گا۔

4.2 تبادله توانائی والاایک کچھے کا نظام

شکل 4.4 میں ایک کچھے کا سادہ نظام و کھایا گیا ہے۔ کچھے میں برتی ضیاع کو بیرونی مزاحمت سے ظاہر کیا گیا ہے جبکہ میکانی نظام میں حرکی حصہ کی کمیت کو نظرانداز کیا گیا ہے۔ جہاں اس کمیت کا اثر جاننا ضروری ہو وہاں اس کو ایک بیرونی کمیت تصور کیا جا سکتا ہے۔ اس طرح تبادلہ توانائی کے نظام پر غور کرنا آسان ہوتا ہے۔ قوت پیدا کرنے والی مشین میں حرکت نا گزیر ہے۔ عموماً حرکت تب ممکن ہوگی جب مقناطیسی قالب میں قابل تبدیل خلاء موجود ہو۔ قالب میں خلاء کی موجود گی کی بنا عام طور پر $\Re_a\gg\Re_a\gg\Re_c$ ہوگا اور ایبا مقناطیسی دور حل کرتے ہوئے \Re_c کو نظرانداز کیا جائے گا۔ یوں، جیبا مساوات 2.19 میں دیا گیا ہے، مقناطیسی دباو τ اور مقناطیسی بہاو ϕ براہ راست متناسب ہوں گے۔ ایسی صورت میں مساوات 2.29 میں امالہ M شکل M میں خلاء کی لمبائی M پر منحصر ہوگی لہذا اس مساوات کو درج ذیل کھتے ہیں۔

$$(4.15) \lambda = L(x)i$$

شکل 4.4 میں قوت F_m کے رخ طے ہونے والا فاصلہ x ہے۔ یوں میکانی کام مل ہوگا جبکہ ہوگا جبکہ فراہم برتی توانائی $\partial W_{ij} = i\,\mathrm{d}\lambda$ ہوگا $\partial W_{ij} = i\,\mathrm{d}\lambda$ فراہم برتی توانائی $\partial W_{ij} = i\,\mathrm{d}\lambda$ کو مساوات 4.10 کا تکمل $\partial W_{ij} = i\,\mathrm{d}\lambda$ کا تحمل کرتے ہیں۔

(4.16)
$$\int \partial W_m(x,\lambda) = \int i(x,\lambda) \, d\lambda - \int F_m(x,\lambda) \, dx$$

اس تکمل کا حصول شکل 4.6 سے واضح ہو گا۔ابتدائی نقطے پر مقناطیسی نظام کو کوئی برتی توانائی فراہم نہیں کی گئی ہے۔ یوں نظام میں برقی رو صفر ہو گی جس کی بنا مقناطیسی بہاو اور ارتباط بہاو بھی صفر ہوں گے النذا مقناطیسی میدان میں مقناطیسی توانائی بھی صفر ہو گی۔ کسی بھی مقناطیس کی قوت کشش اس کی مقناطیسی بہاو پر منحصر ہوتی ہے للذا صفر مقناطیسی بہاو کی بنا اس نظام میں قوت کشش صفر ہو گا اور یوں اس میں حرکت بھی صفر ہو گا۔اس طرح ابتدائی نقطہ پر درج ذیل ہوں گے۔

$$i = \phi = \lambda = W_m = F_m = x = 0$$

ابتدائی نقطہ شکل 4.6 میں دکھایا گیا ہے۔ اب کچھے کو برتی توانائی فراہم کی جاتی ہے۔ کچھے میں برتی رو کی بنا قوت اور حرکت پیدا ہو گی۔ آخر کار نظام اختتای نقطہ پر پنچے گا۔اختتای نقطہ بھی شکل میں دکھایا گیا ہے۔ اس نقطہ پر $x=x_0$ اور $x=x_0$ اور $x=x_0$ بیں اور مقناطیسی میدان میں توانائی ($x=x_0$) سہالیہ ہے۔ابتدائی نقطہ سے اختتای نقطہ تک $x=x_0$ کی توانائی کو یوں بڑھایا جاتا ہے کہ $x=x_0$ میں موٹی کیر (اصل راستے) پر رہیں۔ آخری نقطہ پر مقناطیسی میدان میں مقناطیسی توانائی $x=x_0$ جائے ہم متبادل راستہ اختیار کرتے ہیں۔ حاصل کرنا ہو گا جو ایک مشکل کام ہے۔اس راہ پر تکمل کی بجائے ہم متبادل راستہ اختیار کرتے ہیں۔

 $integral^{10}$

شكل4.6: مقناطيسي ميدان ميں توانائي۔

ہم اس حقیقت سے فائدہ اٹھاتے ہیں کہ مقناطیسی میدان ایک قدامتے پہند میدالین اللہ جس کا مطلب ہے کہ مقاطیسی میدان میں مقاطیسی قوانائی صرف اور صرف اختتامی نقطہ کے x_0 من پہند راستہ اختیار کرتے ہیں ۔ہم میں ابادائی نقطہ سے پہلی راہ چل کر فاصلہ x_0 سے کر کے دوسری راہ اختیار کر کے اختتامی نقطہ x_0 کی سے میں ابتدائی نقطہ سے پہلی راہ چل کر فاصلہ x_0 سے کر کے دوسری راہ اختیار کر کے اختتامی نقطہ (x_0, λ_0) تک بہنچتے ہیں۔ یوں مساوات x_0 کو دو تکملات کا مجموعہ کھا جائے گا۔ایک تکمل نقطہ x_0 کی اور دوسرا یہاں سے نقطہ x_0 کی لیا جائے گا:

(4.17)
$$\int_{\partial U_m(x,\lambda)} \partial W_m(x,\lambda) = \int_{\partial U_m(x,\lambda)} \partial W_m(x,\lambda) + \int_{\partial U_m(x,\lambda)} \partial W_m(x,\lambda)$$

اس مساوات کے دائیں ہاتھ کملات کو باری باری دیکھتے ہیں۔ پہلی راہ کمل کو مساوات 4.16 کی مدد سے لکھتے ہیں۔

(4.18)
$$\int_{0}^{\infty} \partial W_m(x,\lambda) = \int_0^0 i(x,0) \,\mathrm{d}\lambda - \int_0^{x_0} F_m(x,0) \,\mathrm{d}x$$

جیبیا شکل 4.6 میں دکھایا گیا ہے، پہلی راہ پر $0=\lambda$ ہے۔ مساوات 4.18 میں اس بات کو برتی رو i(x,0) اور قوت f_0^0 i(x,0) $\mathrm{d}\lambda=0$ کیا گیا ہے۔ چونکہ ابتدائی اور اختتامی نقطوں پر λ صفر ہے للمذا δ δ ہوگا۔ ایسے تکمل کی قیمت صفر ہوتی ہے جس کا ابتدائی اور اختتامی نقطے ایک دوسرے کے برابر ہوں۔

conservative field¹¹

 m_{p} وگ۔ توان مجی قدامت پند میدان ہے۔ ای لئے اگر کیت mکو کسی مجی رائے میدان میں قدامت پند میدان ہو تانائی m_{p}

پہلی راہ پر $0=\lambda$ ہونے کی بنا اس راہ پر مقناطیسی بہاو بھی صفر ہو گا لہذا اس راہ پر مقناطیسی اثر نہیں پایا جائے گا اور قوت F_m صفر ہو گا۔ ہم جانتے ہیں کہ صفر کا تکمل صفر ہوتا ہے لہذا $0=F_m$ صفر ہو گا۔ یوں کہ میں راہ پر کا تکمل (میاوات 4.18) صفر ہو گا:

(4.19)
$$\int_{y \neq y} \partial W_m(x,0) = \int_0^0 i(x,0) \, d\lambda - \int_0^{x_0} F_m(x,0) \, dx = 0$$

مساوات 4.17 میں دوسری راہ کا تکمل

(4.20)
$$\int_{\partial L \mathcal{G}(x_0)} \partial W_m(x_0, \lambda) = \int_0^{\lambda_0} i(x_0, \lambda) \, \mathrm{d}\lambda - \int_{x_0}^{x_0} F_m(x_0, \lambda) \, \mathrm{d}x$$

ہو گا۔ دوسری راہ پر $x=x_0$ ہے لہذا مساوات 4.20 میں دائیں ہاتھ دوسرے تکمل کا ابتدائی نقطہ x_0 اور اختتامی نقطہ بھی x_0 ہو گا جس کی بنا قوت کا تکمل صفر ہو گا:

(4.21)
$$\int_{x_0}^{x_0} F_m(x_0, \lambda) \, \mathrm{d}x = 0$$

آخر میں مساوات 4.20 کے دائیں ہاتھ، برتی رو کا تکمل حل کرنا باقی ہے۔ مساوات 4.15 استعال کرتے ہوئے اسے حل کرتے ہیں۔

(4.22)
$$\int_0^{\lambda_0} i(x_0, \lambda) \, \mathrm{d}\lambda = \frac{1}{L(x_0)} \int_0^{\lambda_0} \lambda \, \mathrm{d}\lambda = \frac{\lambda_0^2}{2L(x_0)}$$

مباوات 4.20، مباوات 4.21 اور مباوات 4.22 کے نتائج استعال کرتے ہوئے مباوات 4.17 میں دیے تکمل کا حل کھتے ہیں:

$$W(x_0, \lambda_0) = \frac{\lambda_0^2}{2L(x_0)}$$

اس میاوات میں اختتامی نقطہ کو عمومی نقطہ (x,λ) لیتے ہوئے درج ذیل حاصل ہو گا جو مقناطیسی میدان میں توانائی کی میاوات ہے۔

$$(4.23) W(x,\lambda) = \frac{\lambda^2}{2L(x)}$$

شكل 4.7: حركت اور توانائي _

مساوات 4.23 کی مدد سے مساوات 4.13 کے ذریعہ قوت $F_m(x,\lambda)$ اور مساوات 4.14 کے ذریعہ برقی رو $i(x,\lambda)$ کا حساب اب ممکن ہے۔

مثال 4.2: شکل 4.7 میں حرکت کرنے والا ایک مقناطیسی نظام دکھایا گیا ہے۔ حرکی اور ساکن حصوں کے نظم مثال 4.2: شکل 4.7 میں حرکت کرنے والا ایک مقناطیسی نظام دکھایا گیا ہے۔ حرکی اور ساکن حصوں کے نظم خلائی درز g موجود ہے۔ اگر i=30 A میں i=30 A موبود ہے۔ اگر i=30 A موبود ہے۔ اگر i=30 A کیا ہوگی ورز میں توانائی i=30 کیا ہوگی ؟

(4.24)
$$W_m(x,i) = \frac{1}{2} \frac{N^2 \mu_0 w(b-x)}{2g} i^2$$

ہو گا جس میں دی گئی معلومات پر کرنے سے درج ذیل توانائی حاصل ہو گی (جس کی اکائی جاول ہے)۔

$$W_m(x,i) = \frac{1}{2} \times \frac{500^2 \times 4\pi 10^{-7} \times 0.4(0.2 - x)}{2 \times 0.001} \times 30^2$$
$$= 28278(0.2 - x)$$

مثال 4.3 شکل 4.7 میں توانائی کے طریقہ سے قوت F_m دریافت کریں۔

 λ اور λ اور $K_m=-rac{\partial W_m(x,\lambda)}{\partial x}\Big|_{\lambda_0}$ مساوات λ مساوات λ اور λ مساوات λ اور λ

مثال 4.2 میں مساوات 4.24 حاصل کی جو توانائی کا کلیہ ہے۔اییا کرتے ہوئے λ کی جگہ میں عبول λ جانے ہوئے λ اور λ ہیں۔ قوت کے حصول گیا جس کی بنا مساوات 4.24 میں λ بیل کے متغیرات λ اور λ کا بجائے λ اور λ ہیں۔ قوت کے حصول کے تاکہ توانائی کے درست متغیرات درکار ہوں گے تاکہ توانائی کے کئے مساوات 4.24 استعال نہیں کیا جا سکتا ہے۔ ہمیں توانائی کے درست متغیرات درکار ہوں گے تاکہ توانائی درست فوت حاصل نہیں ہوتا ہے)۔ درست طریقہ درج ذیل ہے۔

(4.25)
$$W_m(x,\lambda) = \frac{\lambda^2}{2L} = \frac{\lambda^2}{2\left(\frac{N^2\mu_0 A_g}{2g}\right)} = \frac{g\lambda^2}{N^2\mu_0 w(b-x)}$$

مساوات 4.25 اور مساوات 4.13 مل كر درج ذيل ديتي هين-

$$F_m = -\frac{\partial W_m(x,\lambda)}{\partial x}$$
$$= -\frac{g\lambda^2}{N^2 \mu_0 w (b-x)^2}$$

تفرق لینے کے بعد λ کی جگہ Li پر کیا جا سکتا ہے۔یوں قوت

$$F_m = -\frac{gL^2i^2}{N^2\mu_0w(b-x)^2}$$
$$= -\frac{N^2\mu_0wi^2}{4g}$$
$$= -28278$$

نیوٹن حاصل ہوتی ہے۔ قوت کی علامت منفی ہے جس کے تحت قوت گھٹت x رخ ہو گی۔ یوں حرکی حصہ بائیں رخ کھینچا جائے گا۔

4.3. توانائی اور ہے توانائی

شكل 4.8: ہمہ توانائی كی تعریف۔

4.3 توانائی اور ہمہ توانائی

شکل 4.8 میں λ اور i کے مابین ترسیم و کھایا گیا ہے۔ اس لکیر کے نیچ رقبہ کو توانائی W_m نصور کریں۔ اس ترسیم λi کی رقبہ کی ایک نقطہ (λ,i) کے کر ایک لکیر نیچ اور دوسری بائیں کھینج کر ایک مستطیل مکمل کیا گیا ہے جس کا رقبہ W_m کا رقبہ ہمہ توانائی W_m کہلاتا ہے۔ مستطیل کے رقبہ سے توانائی W_m منٹی کرنے سے حاصل رقبہ ہمہ توانائی W_m کہلاتا ہے۔

$$(4.26) W_m' = \lambda i - W_m$$

ہمہ توانائی کے جزوی فرق

$$\partial W'_m = \partial(\lambda i) - \partial W_m$$
$$= \lambda \partial i + i \partial \lambda - \partial W_m$$

میں مساوات 4.10 کا استعال

$$\partial W'_m = \lambda \partial i + i \partial \lambda - (i \partial \lambda - F_m \partial x)$$

لعيني

$$\partial W'_{m} = \lambda \partial i + F_{m} \partial x$$

د لگا۔

یہاں بھی مساوات 4.11 تا مساوات 4.14 کی طرح کسی بھی تفاعل z(x,y) کا جزوی فرق

$$\partial z(x,y) = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

 ${\rm co\text{-}energy^{13}}$

ہو گا لہذا ہمہ توانائی $W_m'(x,i)$ کا جزوی فرق درج ذیل ہو گا۔

(4.28)
$$\partial W'_m(x,i) = \frac{\partial W'_m}{\partial x} dx + \frac{\partial W'_m}{\partial i} di$$

مساوات 4.28 کا مساوات 4.27 کے ساتھ موازنہ کرنے سے درج زیل حاصل ہو گا۔

$$\lambda = \frac{\partial W_m'}{\partial i} \bigg|_{x_0}$$

اور

$$(4.30) F_m = \frac{\partial W_m'}{\partial x} \bigg|_{i_0}$$

مساوات 4.30 قوت دریافت کرنے کا دوسرا کلیہ دیتی ہے۔ مساوات 4.30 میں ہمہ توانائی جبکہ مساوات 4.13 میں توانائی کے ذریعہ قوت حاصل کی گئی۔

توانائی کے طریقہ کی طرح مساوات 4.29 سے درج ذیل تکمل لکھا جا سکتا ہے۔

(4.31)
$$W'_m(i_0, x_0) = \int_0^{i_0} \lambda(i, x_0) \, \mathrm{d}i$$

جن نظام میں λ اور i کا تعلق تغیر راست ہو، جس کو مساوات 2.29 بیان کرتی ہو، ان کے لئے درج بالا تکمل کا حل درج ذیل ہو گا جہال x_0 کی بجائے عمومی متغیرات i اور x کھھے گئے ہیں۔

(4.32)
$$W'_m(i,x) = \int_0^i L(x)i \, \mathrm{d}i = \frac{L(x)i^2}{2}$$

بعض مسائل میں توانائی اور بعض میں ہمہ توانائی کا استعال زیادہ آسان ثابت ہوتا ہے۔

مثال 4.4: شکل 4.9 میں ایک پیچیدار کچھا دکھایا گیا ہے جس کی محوری لمبائی I، رداس r اور چکر N ہیں۔ پیچیدار کچھے کے مقناطیسی بہاو کا بیشتر حصہ محوری رخ کچھے کے اندر رہتا ہے۔ کچھے کے باہر مقناطیسی بہاو کو نظر انداز کرتے ہوئے کے خاندر محوری لمبائی رخ میدانی شدت $H \approx NI/l$ ہو گی۔

موصل دھات کو امالی برقی توانائی سے بگھلانے کے لئے پیچپرار کچھا استعال کیا جاتا ہے۔ میں 100 تا 1500 کلو واٹ برقی طاقت کیا مالمے برقمی بھٹیارے ¹⁴ بناتا رہا جو بالتر تیب 500 تا 1200 ہر ٹزیر کام کرتی اور 100 سے 3000 کلو گرام لوہا پگھلاتی ہیں۔

high frequency, induction furnaces¹⁴

4.3. توانائی اور ہے۔ توانائی

امالی بھٹی کے پیچدار کچھے کے اندر غیر موصل پیالے میں دھات کے گلڑے ڈال کر کچھے میں بدلتی رو گزاری جاتی ہے جو دھات میں بھنور نما امالی برقی رو پیدا کرتی ہے۔ بھنور نما رو دھات کو گرم کر کے پکھلاتی ہے۔ امالی برقی بھٹی میں لوہے کو 1650 ڈگری ٹکسئرے 15 تک گرم کیا جاتا ہے۔

یچپرار کچھ میں برقی رو I_0 کی بنا کچھ پر رداسی رخ میکانی دباو لیعنی قوت فی مربع رقبہ پیدا ہو گا۔میری 3000 کلو گرام لوہا پھلانے کی بھٹی کے پیچیرار کچھ کی تفصیل درج ذیل ہے۔

$$N = 11$$
, $I_0 = 10\,000\,\mathrm{A}$, $l = 0.94\,\mathrm{m}$, $r = 0.49\,\mathrm{m}$

اس پر رداسی رخ میکانی دباو (نیوش فی مربع میش) حاصل کریں۔

حل: ہم ہمہ توانائی کا طریقہ استعال کرتے ہیں۔

$$L = \frac{\mu_0 N^2 \pi r^2}{l}$$

$$W'_m(r, i) = \frac{Li^2}{2} = \frac{\mu_0 N^2 \pi r^2 I_0^2}{2l}$$

$$F = \frac{\partial W'_m}{\partial r} = \frac{\mu_0 N^2 \pi r I_0^2}{l}$$

اں قوت کی علامت مثبت ہے للذا یہ رداسی رخ باہر جانب ہو گا۔ کچھے کو نکلی تصور کریں جس کی گول سطح کا رقبہ $A=2\pi rl$

$$\frac{F}{A} = \frac{\mu_0 N^2 \pi r I_0^2}{2\pi r l^2} = \frac{\mu_0 N^2 I_0^2}{2l^2}$$

Celsius, Centigrade¹⁵

شكل4.10: برقى مقناطيس ـ

دی گئی معلومات پر کرتے ہوئے درج ذیل حاصل ہو گا۔

$$\frac{F}{A} = \frac{4\pi 10^{-7} \times 11^2 \times 10000^2}{2 \times 0.94^2} = 8605 \,\frac{\text{N}}{\text{m}^2}$$

مثال 4.5: 2700 کلوواٹ امالی بھٹی یومیہ 70 ٹن 16 لوہا پھطائی 1⁷⁷ ہے۔اتنے وزن کی منتقل کے لئے برقی مقناطیس استعال کیا جاتا ہے۔شکل 4.10 میں ایک ایسا برقی مقناطیس دکھایا گیا ہے جس کی تفصیل درج ذیل ہے۔

$$N = 300$$
, $A = 0.8 \,\mathrm{m}^2$, $I = 30 \,\mathrm{A}$

برقی مقناطیس اور لوہے کے ﷺ اوسط فاصلہ 2.5 سنٹی میٹر لیں۔ یہ برقی مقناطیس کتنی کمیت کا لوہا اٹھا سکتا ہے؟ حل:

$$\begin{split} L &= \frac{\mu_0 N^2 A}{2l} \\ W_m'(l,i) &= \frac{Li^2}{2} = \frac{\mu_0 N^2 Ai^2}{4l} \\ F &= \frac{\partial W_m}{\partial l} = -\frac{\mu_0 N^2 Ai^2}{4l^2} = -\frac{4\pi 10^{-7} \times 300^2 \times 0.8 \times 30^2}{4 \times 0.0254^2} = -31\,558\,\mathrm{N} \end{split}$$

قوت کی علامت منفی ہے۔یوں سے مقناطیس اور لوہے کے نے فاصلہ کم کرنے کی کوشش کرتی ہے۔ یہ مقناطیس \square

مثال 4.6: مثال 4.3 كو جمه توانائي كے طريقه سے حل كريں۔

¹⁶ہزار کلو گرام ایک ٹن کے برابر ہوتے ہیں۔ ¹⁷ بیر میں اپنے تجربے کی بنیاد پر کہدر ہاہوں۔

شكل 4.11: دولچھوں كانظام۔

$$W_m'=rac{L(x)i^2}{2}=rac{N^2\mu_0w(b-x)i^2}{4g}$$
 $W_m'=rac{L(x)i^2}{2}=rac{N^2\mu_0w(b-x)i^2}{4g}$ $W_m'=rac{\partial W_m'}{\partial x}=-rac{N^2\mu_0wi^2}{4g}=-28\,278\,\mathrm{N}$

4.4 متعدد لچھوں کا مقناطیسی نظام

اب تک ایک کچھے کے نظام پر غور کیا گیا۔ اس حصہ میں ایک سے زیادہ کچھوں کے نظام پر غور کیا جائے گا۔ متعدد کچھوں کا نظام بھی ایک کچھے کا برتی رو i_1 اور دوسرے کچھوں کا نظام بھی ایک کچھے کے نظام کی طرح حل ہوتے ہیں۔ شکل 4.11 میں ایک کچھے کا برتی رو i_2 ہے۔ اس نظام کے لئے درج ذیل لکھنا ممکن ہے جہاں w_m ذخیرہ توانائی کو ظاہر کرتی ہے۔

$$\partial W_{\vec{3}} = i_1 \, \mathrm{d}\lambda_1 + i_2 \, \mathrm{d}\lambda_2$$

$$\partial W_{\vec{\mathbf{J}}, \underline{\mathbf{J}}} = \partial W_{\dot{\mathbf{J}}, \underline{\mathbf{J}}} + \partial W_m$$

 $\partial W_{\dot{b}|_{\Sigma}} = F_m \, \mathrm{d} x$ میں پُر کرتے ہوئے درج ذیل مساوات حاصل ہوتی ہے جس میں پُر کرتے ہوئے درج ذیل مساوات کا کھوا گیا ہے۔

$$(4.35) i_1 d\lambda_1 + i_2 d\lambda_2 = F_m dx + \partial W_m$$

شکل 4.12: دولچھوں کے نظام میں مقناطیسی میدان میں توانائی۔

اس کی ترتیب نو درج ذیل دیگی۔

$$\partial W_m(\lambda_1, \lambda_2, x) = i_1 \, \mathrm{d}\lambda_1 + i_2 \, \mathrm{d}\lambda_2 - F_m \, \mathrm{d}x$$

اب بالكل مساوات 4.12 كى طرح درج ذيل لكھا جا سكتا ہے۔

(4.37)
$$\partial W_m(\lambda_1, \lambda_2, x) = \frac{\partial W_m}{\partial \lambda_1} d\lambda_1 + \frac{\partial W_m}{\partial \lambda_2} d\lambda_2 + \frac{\partial W_m}{\partial x} dx$$

ماوات 4.36 اور 4.37 کے موازنہ سے درج ذیل تعلقات اخذ ہوتے ہیں۔

(4.38)
$$i_1 = \left. \frac{\partial W_m(\lambda_1, \lambda_2, x)}{\partial \lambda_1} \right|_{\lambda_2, x}$$

(4.39)
$$i_2 = \left. \frac{\partial W_m(\lambda_1, \lambda_2, x)}{\partial \lambda_2} \right|_{\lambda_1, x}$$

(4.40)
$$F_m = \left. \frac{\partial W_m(\lambda_1, \lambda_2, x)}{\partial x} \right|_{\lambda_1, \lambda_2}$$

ان مساوات کا استعال تب ممکن ہو گا جب ہمیں توانائی W_m معلوم ہو للذا ہم پہلے توانائی دریافت کرتے ہیں۔

شکل 4.11 میں کچھوں کو یوں طاقت دی جاتی ہے کہ λ_1 اور λ_2 صفر سے بالترتیب λ_{1_0} اور λ_{2_0} تک پہنچتے ہیں اور ساتھ ہی x صفر سے تبدیل ہو کر x_0 ہوتا ہے۔ اس عمل کو شکل x_0 میں موٹی کیبر سے بطور "اصل راہ" دکھایا گیا ہے۔ مساوات x_0 کی طرح ذخیرہ توانائی کے تکمل کے لئے درج ذیل کھا جا سکتا ہے۔

$$\int_{\partial U_m} \partial W_m = \int_{\partial U_m} \partial W_m + \int_{\partial U_m} \partial W_m + \int_{\partial U_m} \partial W_m + \int_{\partial U_m} \partial W_m$$

ہم دائیں ہاتھ تکملات کو باری باری حل کرتے ہیں۔

پہلی راہ پر λ_1 اور λ_2 صفر رہتے ہیں جبکہ x کی ابتدائی قیت 0 اور اختتامی قیت λ_2 ہے۔یوں پہلی راہ پر تکمل درج ذیل ہو گا۔

(4.42)
$$\int_{0}^{\infty} \partial W_m = \int_0^0 i_1 \, d\lambda_1 + \int_0^0 i_2 \, d\lambda_2 - \int_0^{x_0} F_m \, dx$$

کسی بھی تکمل کا ابتدائی اور اختتامی نقطہ ایک دوسرے جیسا ہونے کی صورت میں تکمل کی قیت صفر ہوتی ہے للذا درج بالا میں دائیں ہاتھ، پہلے دو تکملات صفر ہول گے:

(4.43)
$$\int_0^0 i_1 \, \mathrm{d}\lambda_1 = \int_0^0 i_2 \, \mathrm{d}\lambda_2 = 0$$

پہلی راہ پر λ_1 اور λ_2 صفر ہیں، یعنی، دونوں کچھوں میں برقی رو صفر ہے، للذا مقناطیسی بہاو اور قوت F_m صفر ہول گے۔ یوں مساوات λ_1 میں قوت کا تکمل صفر ہو گا۔

$$\int_{0}^{x_{0}} F_{m} \, \mathrm{d}x = \int_{0}^{x_{0}} 0 \, \mathrm{d}x = 0 \qquad (جنا تجمل صفر ہوتا ہے)$$

ماوات 4.43 اور ماوات 4.44 کے نتائج کے تحت پہلی راہ پر تکمل صفر ہو گا۔

$$\int_{\mathcal{A}_{0}} \partial W_{m} = 0$$

دوسری راہ پر λ_1 کی ابتدائی قیمت 0 اور اختتامی قیمت λ_2 ہے، λ_2 صفر رہتا ہے جبکہ x کی قیمت x رہتی ہے۔ یوں دوسری راہ پر تکمل درج ذیل ہو گا۔ x

(4.46)
$$\int_{0}^{\infty} \partial W_{m} = \int_{0}^{\lambda_{1_{0}}} i_{1} d\lambda_{1} + \int_{0}^{0} i_{2} d\lambda_{2} - \int_{x_{0}}^{x_{0}} F_{m} dx$$

تکمل کا ابتدائی اور اختتامی نقطہ ایک جیسا ہونے کی صورت میں تکمل کی صفر ہوتی ہے لہذا درج ذیل ہو گا۔

$$\int_0^0 i_2 \, \mathrm{d}\lambda_2 = \int_{x_0}^{x_0} F_m \, \mathrm{d}x = 0$$

یوں مساوات 4.46 درج ذیل صورت اختیار کرتی ہے۔

$$\int_{0}^{\lambda_{1}} \partial W_{m} = \int_{0}^{\lambda_{1_{0}}} i_{1} \, \mathrm{d}\lambda_{1}$$

يبال مساوات 2.33 ، 2.36 اور 2.38 كى ضرورت بيش آئ كى للذا جنهين دوباره بيش كرتے ہيں۔

$$\lambda_1 = L_{11}i_1 + L_{12}i_2$$

$$\lambda_2 = L_{21}i_1 + L_{22}i_2$$

$$(4.50) L_{12} = L_{21}$$

مساوات 4.48 اور مساوات 4.48 کو i_{1} اور i_{2} کے حل کے

$$(4.51) i_1 = \frac{L_{22}\lambda_1 - L_{12}\lambda_2}{D}$$

(4.52)
$$i_2 = \frac{L_{11}\lambda_2 - L_{21}\lambda_1}{D}$$

حاصل ہو گا جہاں D درج ذیل ہے۔

$$D = L_{11}L_{22} - L_{12}L_{21}$$

مساوات 4.47 میں مساوات 4.51 پر کر کے، دوسری راہ پر λ_2 صفر لے کر درج ذیل حاصل ہو گا۔

$$\int_0^{\lambda_{1_0}} \left(\frac{L_{22}\lambda_1 - L_{12}\lambda_2}{D} \right) \mathrm{d}\lambda_1 = \frac{L_{22}}{D} \int_0^{\lambda_{1_0}} \lambda_1 \, \mathrm{d}\lambda_1 = \frac{L_{22}\lambda_{1_0}^2}{2D}$$

یوں دوسری راہ پر تکمل کی قیت درج ذیل ہو گا۔

$$\int\limits_{M(\zeta t)} \partial W_m = \frac{L_{22} \lambda_{1_0}^2}{2D}$$

یسری راہ پر λ_1 کی قیت λ_1 اور x کی قیمت x_0 پر بر قرار رہتی ہے جبکہ λ_2 کی ابتدائی قیمت λ_1 اختتامی قیمت λ_2 ہے۔ یوں تیسری راہ پر تکمل درج ذیل ہو گا۔

(4.54)
$$\int_{\partial J_{2}} \partial W_{m} = \int_{\lambda_{1_{0}}}^{\lambda_{1_{0}}} i_{1} d\lambda_{1} + \int_{0}^{\lambda_{2_{0}}} i_{2} d\lambda_{2} - \int_{x_{0}}^{x_{0}} F_{m} dx$$

کمل کا ابتدائی اور اختتامی نقطہ ایک جیسا ہونے کی صورت میں کمل کی قیمت صفر ہوتی ہے للذا درج بالا میں دائیں ہاتھ پہلا اور تیسر احمل صفر ہوگا:

(4.55)
$$\int_{\lambda_{1_0}}^{\lambda_{1_0}} i_1 \, \mathrm{d}\lambda_1 = \int_{x_0}^{x_0} F_m \, \mathrm{d}x = 0$$

مساوات 4.52 کی استعال سے مساوات 4.54 کا باقی حصہ حل کرتے ہیں۔

(4.56)
$$\int_0^{\lambda_{2_0}} i_2 \, d\lambda_2 = \int_0^{\lambda_{2_0}} \left(\frac{L_{11}\lambda_2 - L_{21}\lambda_1}{D} \right) d\lambda_2$$
$$= \frac{L_{11}\lambda_{2_0}}{2D} - \frac{L_{21}\lambda_{10}\lambda_{20}}{D}$$

مساوات 4.55 اور مساوات 4.56 کی نتائج سے تیسری راہ کا تکمل درج ذیل حاصل ہو گا۔

(4.57)
$$\int_{\text{obs} \mathcal{S}, \mathcal{S}} \partial W_m = \frac{L_{11} \lambda_{20}^2}{2D} - \frac{L_{21} \lambda_{10} \lambda_{20}}{D}$$

 λ_{10} مساوات 4.45، 4.45 اور 4.57 کو جمع کر کے مساوات 4.44 کا درج ذیل عل حاصل ہو گا جہال x ، λ_2 مساوات x ، λ_2 متغیرات x ، λ_2 ، λ_3 بیں۔

(4.58)
$$W_m(x,\lambda_1,\lambda_2) = \frac{L_{22}\lambda_1^2}{2D} + \frac{L_{11}\lambda_2^2}{2D} - \frac{L_{21}\lambda_1\lambda_2}{D}$$

ہمہ توانائی سے حل کرتے ہوئے جزوی فرق

(4.59)
$$\partial W'_m(x, i_1, i_2) = \lambda_1 di_1 + \lambda_2 di_2 + F_m dx$$

جبکہ λ_1 ، اور F_m کی مساواتیں درج ذیل ہوں گی۔

(4.60)
$$\lambda_1 = \frac{\partial W'_m(x, i_1, i_2)}{\partial i_1} \bigg|_{x, i_2}$$

(4.61)
$$\lambda_2 = \left. \frac{\partial W_m'(x, i_1, i_2)}{\partial i_2} \right|_{x, i_1}$$

(4.62)
$$F_{m} = \frac{\partial W'_{m}(x, i_{1}, i_{2})}{\partial x} \bigg|_{i_{1}, i_{2}}$$

مساوات 4.58 کی مقابل ہمہ توانائی کی مساوات درج ذیل ہو گی۔

(4.63)
$$W'_m(x, i_1, i_2) = \frac{1}{2}L_{11}(x)i_1^2 + \frac{1}{2}L_{22}(x)i_2^2 + L_{12}(x)i_1i_2$$

ہمہ توانائی سے قوت کا حصول درج ذیل مساوات سے ہو گا۔

(4.64)
$$F_m = \frac{i_1^2}{2} \frac{dL_{11}(x)}{dx} + \frac{i_2^2}{2} \frac{dL_{22}(x)}{dx} + i_1 i_2 \frac{dL_{12}(x)}{dx}$$

مثال 4.7: شکل 4.11 میں میکانی کام کو $\theta \theta$ کام کو $\partial W_{\dot{b}} = T_m \, \mathrm{d}\theta$ کریں۔

حل: توانائی کی مساوات

$$\partial W_{\ddot{\mathbf{J}}_{\checkmark}} = \partial W_{\dot{\mathbf{J}}_{\checkmark}} + \partial W_m$$

میں

$$\partial W_{\mathbf{\vec{\beta}}_{\mathcal{L}}} = i_1 \, \mathrm{d}\lambda_1 + i_2 \, \mathrm{d}\lambda_2$$

اور $d\theta$ اور $\partial W_{\dot{0}\dot{0}}=T_m\,\mathrm{d}\theta$ پر کر کے ترتیب نوسے درج ذیل حاصل ہو گا۔

$$\partial W_m = i_1 \, \mathrm{d}\lambda_1 + i_2 \, \mathrm{d}\lambda_2 - T_m \, \mathrm{d}\theta$$

ے جزوی فرق W_m

$$\partial W_m(\lambda_1, \lambda_2, \theta) = \frac{\partial W_m}{\partial \lambda_1} d\lambda_1 + \frac{\partial W_m}{\partial \lambda_2} d\lambda_2 + \frac{\partial W_m}{\partial \theta} d\theta$$

كا مساوات 4.65 ك ساتھ موازنه كرنے سے درج ذيل اخذ كيا جا سكتا ہے۔

(4.66)
$$i_1 = \left. \frac{\partial W_m(\lambda_1, \lambda_2, \theta)}{\partial \lambda_1} \right|_{\lambda_2, \theta}$$

(4.67)
$$i_2 = \left. \frac{\partial W_m(\lambda_1, \lambda_2, \theta)}{\partial \lambda_2} \right|_{\lambda_1, \theta}$$

(4.68)
$$T_{m} = -\left. \frac{\partial W_{m}(\lambda_{1}, \lambda_{2}, \theta)}{\partial \theta} \right|_{\lambda_{1}, \lambda_{2}}$$

مساوات 4.65 عین مساوات 4.36 کی مانند ہے۔ مساوات 4.65 حل کرنے کا ایک ایک قدم مساوات 4.36 میں مساوات $\lambda_1, \lambda_2, \theta$ مانند ہے گا۔ یوں جواب میں میدانی توانائی کے متغیرات $\lambda_1, \lambda_2, \theta$ ہوں گے:

(4.69)
$$W_m(\lambda_1, \lambda_2, \theta) = \frac{L_{22}\lambda_1^2}{2D} + \frac{L_{11}\lambda_2^2}{2D} - \frac{L_{21}\lambda_1\lambda_2}{D}$$

اس طرح ہمہ توانائی کے لئے درج ذیل ہوں گے۔

$$\partial W'_m(i_1, i_2, \theta) = \lambda_1 \operatorname{d} i_1 + \lambda_2 \operatorname{d} i_2 + T_m \operatorname{d} \theta$$

(4.71)
$$\lambda_{1} = \frac{\partial W'_{m}(i_{1}, i_{2}, \theta)}{\partial i_{1}} \bigg|_{i_{2}, \theta}$$

$$\lambda_{2} = \frac{\partial W'_{m}(i_{1}, i_{2}, \theta)}{\partial i_{2}} \bigg|_{i_{1}, \theta}$$

$$T_{m} = \frac{\partial W'_{m}(i_{1}, i_{2}, \theta)}{\partial \theta} \bigg|_{i_{1}, i_{2}}$$

ہمہ توانائی کی مساوات درج ذیل ہو گی۔

(4.72)
$$W'_m(i_1, i_2, \theta) = \frac{1}{2} L_{11} i_1^2 + \frac{1}{2} L_{22} i_2^2 + L_{12} i_1 i_2$$

مثال 4.8: شکل 4.13 میں دو کچھوں کا نظام دکھایا گیا ہے۔اس نظام کا ایک حصہ ساکن رہتا ہے اور دوسرا گھوم سکتا ہے۔افتی کیبر سے گھڑی کی سوئیوں کے مخالف رخ گھومتے ہوئے زاویہ 6 ناپا جاتا ہے۔ کچھوں کی خود امالہ اور مشتر کہ امالہ مندرجہ ذیل ہیں۔

$$L_{11} = 20 + 30\cos 2\theta$$

$$L_{22} = (20 + 30\cos 2\theta) \times 10^{-3}$$

$$L_{12} = 0.15\cos \theta$$

برقی رو T_m معلوم کریں۔ $i_1=0.02\,\mathrm{A}, i_2=5\,\mathrm{A}$ معلوم کریں۔

شکل 4.13: دولچھوں کے نظام میں قوت مروڑ۔

$$W'_{m} = \frac{1}{2}(20 + 30\cos 2\theta)i_{1}^{2} + \frac{1}{2}(20 + 30\cos 2\theta)(10^{-3})i_{2}^{2} + (0.15\cos \theta)i_{1}i_{2}$$

مساوات 4.71 کا آخری جزو قوت مروڑ دیتی ہے۔

$$T_m = \frac{\partial W'_m}{\partial \theta} = -30i_1^2 \sin 2\theta - 30 \times 10^{-3} i_2^2 \sin 2\theta - 0.15i_1 i_2 \sin \theta$$
$$= -0.012 \sin 2\theta - 0.75 \sin 2\theta - 0.015 \sin \theta$$
$$= -0.762 \sin 2\theta - 0.015 \sin \theta$$

 θ قوت مروڑ کی علامت منفی ہے للذا یہ زاویہ میں تبدیلی کی مخالفت کرے گا۔یوں اگر آپ زاویہ بڑھائیں (مثبت θ) تو یہ نظام زاویہ کم کرنے کے رخ قوت مروڑ (منفی T_m) پیدا کرے گا اور اگر آپ زاویہ کم (منفی θ) کرنے کی کوشش کریں تو یہ نظام زاویہ بڑھانے کے رخ قوت مروڑ (مثبت T_m) پیدا کرے گا۔سادہ زبان میں گھومتا حصہ اُفقی کئیر پر رہنے کی کوشش کرے گا۔

باب5

گھومتے مشین کے بنیادی اصول

اس باب میں مختلف گھومتے مشینوں کے بنیادی اصولوں پر غور کیا جائے گا۔ظاہری طور پر مختلف مشین ایک ہی قشم کے اصولوں پر کام کرتے ہیں جنہیں اس باب میں اکٹھا کیا گیا ہے۔

5.1 قانون فيراد ك

قانور فیراڈے 1 کے تحت جب بھی کسی کچھے کا ارتباط بہاو λ وقت کے ساتھ تبدیل ہو، اس کچھے میں برقی دباو پیدا ہو گا:

$$(5.1) e = \frac{\partial \lambda}{\partial t} = N \frac{\partial \phi}{\partial t}$$

چونکہ ہمیں برقی دباو کی قیمت ناکہ اس کے ہے ہے ولچین ہے لہذا اس مساوات میں منفی کی علامت کو نظر انداز کیا گیا ہے۔

گھومتے مشین میں ارتباط بہاو کی تبدیلی مختلف طریقوں سے پیدا کی جا سکتی ہے۔مثلاً کچھے کو ساکن مقناطیسی بہاو میں گھما کر یا ساکن کچھے میں مقناطیس گھما کر، وغیرہ وغیرہ۔

Faraday's law¹

ان برقی مشینوں میں کھیے مقناطیسی قالب2 پر لیکٹے جاتے ہیں۔ اس طرح کم سے کم مقناطیسی دباو سے زبادہ سے زیادہ مقناطیسی بہاو حاصل کیا جاتا ہے اور کچھوں کے مابین مشتر کہ مقناطیسی بہاو بڑھایا جاتا ہے۔ مزید قالب کی شکل تبدیل کر کہ مقناطیسی بہاو کو ضرورت کے مقام پر پہنچایا جاتا ہے۔

ان مشینوں کے قالب میں مقناطیسی بہاو وقت کے ساتھ تبدیل ہوتا ہے للذا قالب میں بھنور نما برقی رو3 پیدا ہوتا ہے۔ان بھنور نما برقی رو کو کم سے کم کرنے کی خاطر باریک لوہے کی پتری⁴ تہہ در تہہ رکھ قالب بنایا جاتا ہے ۔ ۔ آپ کو باد ہو گا، ٹرانسفار مر کا قالب بھی اسی طرح بنایا جاتا ہے۔

5.2 معاصر مثين

شکل 5.1 میں معاصر برقی جزیٹر کا ایک بنیادی شکل د کھایا گیا ہے۔ اس کے قالب میں ایک مقناطیس ہے جو کہ گھوم سکتا ہے۔ مقناطیس کا مقام اس کے میکانی زاور ہی $heta_m$ سے بتلائی جاتی ہے۔ افقی کلیر سے گھڑی کے الٹ سمت زاور ہی

یماں کچھ یا تیں وضاحت طلب ہیں۔ اگر مقناطیس ایک مقررہ رفتار سے، فی سیکنڈ n مکمل چیر کاٹیا ہو تب ہم کہتے ۔ ہیں کہ اس مقناطیس کے گھومنے کا تعدد n ہر ٹز 5 ہے۔اسی بات کو یوں بھی بیان کیا جاتا ہے کہ مقناطیس 60n چکر فی منٹ⁶ کی رفتار سے گھوم رہا ہے۔ آپ حانتے ہیں کہ ایک چکر °360 زاویہ یا 2π ریڈیٹن ⁷ پر مشتمل ہوتا ہے للذا گومنے کی اس رفتار کو $2\pi n$ ریڈیئن فی سیکنڈ بھی کہہ سکتے ہیں۔ یوں اگر مقناطیس f ہرٹز کی رفتار سے گھوم رہا ہو تب مہ $2\pi f$ ریڈیئن فی سینڈ کی رفتار سے گھومے گا جس کو ω سے ظاہر کیا جاتا ہے۔

$$(5.2) \omega = 2\pi f$$

اس کتاب میں گھومنے کی رفتار کو عموماً ریڈیئن فی سکنڈ میں بیان کیا جائے گا۔

شکل 5.1 میں مثین کے دو مقناطیسی قطب ہیں، اس لئے اس کو دو قطبی مثین کہتے ہیں۔ ساکن قالب میں، اندر کی جانب دو شگاف ہیں، جن میں N چکر کا کچھا موجود ہے۔ کچھے کو a اور a' سے ظاہر کیا گیا ہے۔اس کچھے کی بنا

> magnetic core² eddy currents³ laminations⁴

rounds per minute, rpm⁶ radians⁷ 5.2 معاصر مشين

شكل 5.1: دوقطب، يك مرحله معاصر جزيير به

اس مشین کو ایک کچھے کا مشین بھی کہتے ہیں۔ چونکہ یہ کچھا جزیٹر کے ساکن حصہ پر پایا جاتا ہے لہذا یہ کچھا بھی ساکن ہو گا جس کی بنا اسے ساکھنے کچھا⁸ کہتے ہیں۔

مقناطیس کا مقناطیس بہاو شالی قطب N^9 سے خارج ہو کر خلائی درز میں سے ہوتا ہوا، باہر گول قالب میں سے گزر کر، دوسرے خلائی درز میں سے ہوتا ہوا، مقناطیس کے جنوبی قطب N^{-10} میں داخل ہو گا۔ اس مقناطیسی بہاو کو ہلکی سیابی کے کلیروں سے دکھایا گیا ہے۔ یہ مقناطیسی بہاو، سارا کا سارا، ساکن کچھے میں سے بھی گزرتا ہے۔ شکل N^{-10} میں مقناطیس سید ھی سلاخ کی مانند دکھایا گیا ہے۔

شکل 5.2 میں مقناطیس تقریباً گول ہے اور اس کے محور کا زاویہ θ_m صفر کے برابر ہے۔ مقناطیس اور ساکن قالب کے پی صفر زاویہ $0 = \theta$ ، پر خلائی درز کی لمبائی کم سے کم اور نوے زاویہ $0 = \theta$ ، پر خلائی درز سے خلائی درز پر بھی چاہٹ نریدہ ہو گی للذا $0 = \theta$ پر خلائی درز سے ہے۔ کم خلائی درز پر بھی چاہٹ کم ہو گی جبکہ زیادہ خلائی درز پر بھی چاہٹ زیادہ مقناطیسی بہاو گزرے گا جبکہ $0 = \theta$ پر کم بہاو گزرے گا۔خلائی درز کی لمبائی یوں تبدیل کی جاتی ہے کہ خلائی درز میں سائن نما مقناطیسی بہاو پیدا ہو۔ مقناطیسی بہاو مقناطیس سے قالب میں عمودی زاویہ پہ داخل ہوتا ہے۔ اگر خلائی درز میں 0 = 0 سائن نما ہو

$$(5.3) B = B_0 \cos \theta_p$$

تب کثافت مقناطیسی بہاو B صفر زاویہ $\theta_p=0^\circ$ پر زیادہ سے زیادہ اور نوے زاویہ، $\theta_p=90^\circ$ ، پر صفر ہو گی اور خلائی درز میں مقناطیسی بہاو $\theta_p=0$ کے ساتھ تبدیل ہو گا۔ $\theta_p=0$ کو مقناطیس کے شالی قطب سے گھڑی کے مخالف

stator coil⁸ north pole⁹ south pole¹⁰

شكل 5.2: كثافت مقناطيسي بهاواور زاويه كاتبديلي_

رخ ناپا جاتا ہے۔ شکل 5.2 میں ساکن جے کے باہر نو کیلی لکیروں کی لمبائی سے کثافت مقناطیسی بہاو کی مطلق قیمت اور کلیروں کے رخ سے بہاو کا رخ دکھایا گیا ہے۔ اس شکل میں ہاکی سیابی سے $^{\circ}0$ - $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ باتی آ دھے میں مخالف کے مخالف ہے۔ یوں شکل 5.2 میں آ دھے خلائی درز میں کثافت مقناطیسی بہاو کا ترسیم سائن نما ہو گا۔ شکل 5.3 میں مقناطیس دوسرے زاویہ پر دکھایا گیا ہے۔ یاد رہے کثافت مقناطیسی بہاو کی مطلق قیمت مقناطیس کے شائی قطب پر زیادہ سے زیادہ ہو گا۔ ور شائی قطب پر کثافت مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رہ وگا۔ شکل قطب پر کثافت مقناطیسی بہاو رداسی درج ذیل کھا جا سکتا ہے۔

(5.4)
$$B = B_0 \cos \theta_p$$
$$\theta_p = \theta - \theta_m$$

يوں درج ذيل ہو گا۔

$$(5.5) B = B_0 \cos(\theta - \theta_m)$$

شکل 5.3 میں مقناطیس اور اس کا سائن نما مقناطیسی دباو پیش کیا گیا ہے۔ جیسا شکل 5.4 میں دکھایا گیا ہے، ایسے مقناطیسی دباو کو عموماً ایک سمتیہ سے ظاہر کیا جاتا ہے جہاں سمتیہ کا طول مقناطیسی دباو کا حیطہ اور سمتیہ کا رخ مقناطیس کے شال کو ظاہر کرتا ہے۔ 5.2 معاصر مشين

شكل 5.5: چار قطب يك مرحله معاصر جزيير ـ

شکل 5.3 میں مقناطیس کو لمحہ t_1 ، زاویہ $\theta_m(t_1)$ پر دکھایا گیا ہے جہاں ساکن کچھے کا ارتباط بہاو $\theta_m(t_1)$ مقناطیس گھڑی کے مخالف رخ ایک مقررہ رفتار ω_0 سے گھوم رہا ہو تب ساکن کچھے میں اس لمحہ پر برقی دباو e(t) پیدا ہو گا:

$$(5.6) e(t) = \frac{\mathrm{d}\lambda_{\theta}}{\mathrm{d}t}$$

آوھے چکر، π ریڈیئن گھومنے کے، بعد مقناطیسی قطبین آپس میں جگہیں تبدیل کرتے ہیں، کچھے میں مقناطیسی بہاو کا رخ الٹ ہو گا، کچھے میں ارتباط بہاو θ_0 اور اس میں امالی برقی دباو e(t) ہو گا۔ ایک مکمل چکر بعد مقناطیس دوبارہ ای مقام پر ہو گا جو شکل 5.3 میں دکھایا گیا ہے، ساکن کچھے کا ارتباط بہاو دوبارہ θ_0 اور اس میں امالی برقی دباو کی دباو کو گا۔ یوں جب بھی مقناطیس $\theta_m = 2\pi$ میکانی زاویہ طے کرے، امالی برقی دباو کے برقی زاویہ میں $\theta_m = 2\pi$ میکانی زاویہ طے کرے، امالی برقی دباو کے برقی زاویہ میں دو سرے کے برابر تبدیلی رونما ہوگی لہذا دو قطب، ایک کچھے کی مثنین میں میکانی زاویہ θ_m اور برقی زاویہ θ_0 ایک دو سرے کے برابر ہوں گ

$$\theta_e = \theta_m$$

اس مشین میں میکانی زاویہ θ_m اور برقی زاویہ θ_e وقت کے ساتھ تبدیل ہونے کے باوجود آپس میں ایک تناسب رکھتے ہیں للذا ایسے مشین کو معاصر مشین 13 کہتے ہیں۔ یہاں یہ تناسب ایک کے برابر ہے۔

frequency¹¹

Hertz¹²

synchronous machine¹³

5.2 معاصر مشين

شکل 5.5 میں چار قطب، یک مرحلہ معاصر جنریٹر دکھایا گیا ہے۔ چھوٹے مشینوں میں عموماً مقناطیس جبکہ بڑے مشینوں میں برقی مقناطیس 14 استعال ہوتے ہیں۔ اس شکل میں برقی مقناطیس استعال کیے گئے ہیں۔ دو سے زائد قطبین والے مشینوں میں کسی ایک شالی قطب کو حوالہ قطب تصور کیا جاتا ہے۔ شکل میں اس حوالہ قطب کو θ_m پر دکھایا گیا ہے اور یوں دوسرا شالی قطب کو θ_m) زاویہ پر ہے۔

جیسا کہ نام سے واضح ہے، اس مشین میں مقناطیس کے چار قطبین ہیں۔ ہر ایک شالی قطب کے بعد ایک جنوبی قطب آتا ہے۔ یک مرحلی آلات میں مقناطیسی قطبین کے جوڑوں کی تعداد اور ساکن کچھوں کی تعداد ایک دوسرے کے برابر ہوتی ہے۔ شکل 5.5 میں مشین کے چار قطب یعنی دو جوڑی قطبین ہیں، للذا اس مشین کے ساکن حصہ پر دو ساکن کچھے ہوں ہیں۔ ایک کچھے کو a_1 سے واضح کیا گیا ہے اور دوسرے کو a_2 سے۔ کچھے او قالب میں موجود دو شگاف a_2 مار میں لیٹا گیا ہے۔ ای طرح a_2 کیا گیا ہے اور دوشرا میں موجود میں لیٹا گیا ہے۔ ای طرح a_2 کے جوڑا جاتا ہے۔ اس طرح جزیڑ سے حاصل برتی میں کیساں برتی دباو پیدا ہوتا ہے۔ دونوں کچھوں کو سلسلہ وار 15 جوڑا جاتا ہے۔ اس طرح جزیڑ سے حاصل برتی دباو ایک کچھے میں پیدا برتی دباو کا دگنا ہو گا۔ ایک مرحلی آلات میں قالب کو مقناطیس کے قطبین کی تعداد کے برابر حصول میں تقسیم کرنے سے مشین کا ہر ساکن کچھا ایک حصہ گھیرتا ہے۔ شکل 5.5 میں چار قطبین ہیں للذا اس کا لیک کچھا نوے مکانی زاورہ کے احاطے کو گھیرتا ہے۔

ساکن اور حرکی کیجھوں کی کار کردگی ایک دوسرے سے مختلف ہوتی ہے۔اس کی وضاحت کرتے ہیں۔

حییا پہلے بھی ذکر کیا گیا چھوٹی گھومتی مشینوں میں مقناطیسی میدان ایک مقناطیس فراہم کرتا ہے جبکہ بڑی مشینوں میں برقی مقناطیس میدان فراہم کرتا ہے۔ اگرچہ اب تک کی اشکال میں مقناطیس کو گھومتا حصہ و کھایا گیا ہے، حقیقت میں مقناطیس کسی مشین میں گھومتا اور کسی میں ساکن ہو گا۔ میدان فراہم کرنے والا لچھا مشین کے کل برقی طاقت کے چند فی صد برابر برقی طاقت استعال کرتا ہے۔میدان فراہم کرنے والے اس کچھے کو میدانی کچھا ہے ہیں۔ اس کے چند فی صد برابر برقی طاقت سے برقی طاقت کے برعکس مشین میں موجود دو سری نوعیت کے کچھ کو قور کھیا گا⁷⁷ کہتے ہیں۔ برقی جزیٹر کے قوی کچھے سے برقی طاقت عاصل کی جاتی ہے۔ برقی موٹروں میں میدانی کچھے میں چند فی صد برقی طاقت کے ضیاع کے علاوہ تمام برقی طاقت وی کچھے کو فراہم کی جاتی ہے۔

شکل 5.6 میں اگر ہم گھومتے اور ساکن حصہ کے در میان، خلائی درز میں B کو دیکھیں تو شالی قطب سے مقناطیسی بہاو باہر کی جانب نکل کر جانبی میں داخل ہوتا ہے جبکہ جنوبی قطب میں مقناطیسی بہاو قالب سے نکل کر جنوبی قطب

electromagnet¹⁴

series connected 15

field coil¹⁶

armature coil^{17}

شكل 5.6: حيار قطب، دولچھے مشین میں مقناطیسی بہاو۔

شكل 5.7: سائن نما كثافت مقناطيسي بهاو_

میں اندر کی جانب داخل ہوتا ہے۔ یہ شکل 5.6 میں دکھایا گیا ہے۔ یوں اگر ہم اس خلائی درز میں ایک گول چکر کاٹیں تو مقناطیسی بہاو کی سمت دو مرتبہ باہر کی جانب اور دو مرتبہ اندر کی جانب ہو گی۔ مزید یہ کہ آلوں میں کوشش کی جاتی ہے کہ خلائی درز میں B سائن نما ہو۔ یہ کیسے کیا جاتا ہے، اس کو ہم آگے پڑھیں گے۔ للذا اگر یہ تصور کر لیا جائے کہ B سائن نما ہی ہے تب خلائی درز میں B کی مقدار، شکل 5.7 کی طرح ہو گی۔ اس شکل میں برتی زاویہ θ_e استعال کیا گیا ہے۔

یوں ہم ایک ایس معاصر مشین جس میں P قطب مقناطیس پایا جاتا ہو کے لئے لکھ سکتے ہیں

$$\theta_e = \frac{P}{2}\theta_m$$

$$(5.8) f_e = \frac{P}{2} f_m$$

اس صورت میں میکانی اور برقی تعدد ایک مرتبه پھر آپس میں ایک نسبت رکتے ہیں۔

مثال 5.1: پاکستان میں گھروں اور کارخانوں میں Hz کی برقی طاقت فراہم کی جاتی ہے لیعنی ہمارے ہاں $f_e=50$

5.2 معاصر شين

شكل 5.8: دوقطب، تين مرحله معاصر مثين ـ

- اگرید برقی طاقت دو قطب کے جزیئر سے حاصل کی جائے تو یہ جزیئر کس رفتار سے تھمایا جائے گا۔
 - اگر جزیٹر کے بیں قطب ہوں تب یہ جزیٹر کس رفتار سے گھمایا جائے گا۔

حل:

- مساوات 8.5 سے ہم دیکھتے ہیں کہ اگر یہ برقی طاقت دو قطب، P=2، والے جزیڑ سے حاصل کی جائے تو اس جزیڑ کو $f_m=50$ چکر فی سینڈ لیعنی $g_m=50$ چکر فی منٹ $g_m=50$ جن بیٹر کو وال جن بیٹر کو بیٹر کے منٹ والس جن بیٹر کو بیٹر کے منٹ والس جن بیٹر کو منٹ والس جن بیٹر کو منٹ والس جن بیٹر کے منٹ والس جن بیٹر کے منٹ والس جن بیٹر کے منٹ والس کے منٹ کے منٹر کے منٹر
- $f_m=5$ و اگر یہی برقی طاقت ہیں قطب، P=20، والے جزیڑ سے حاصل کی جائے تو پھر اس جزیڑ کو P=5 و آلے جزیڑ سے حاصل کی جائے تو پھر اس جزیڑ کو تار سے گھمانا ہو گا۔

اب یہ فیصلہ کس طرح کیا جائے کہ جزیئر کے قطب کتنے رکھے جائیں۔ در حقیقت پانی سے چلنے والے جزیئر ست رفتار جبکہ ٹربائن سے چلنے والے جزیئر تیز رفتار ہوتے ہیں، للذا پانی سے چلنے والے جزیئر زیادہ قطب رکھتے ہیں جبکہ ٹربائن سے چلنے والے جزیئر آپ کو دو قطب کے ہی ملیں گے۔

rpm, rounds per minute¹⁸

شكل 5.9: دوقطب تين مرحله مثين ـ

شکل 5.8 میں دو قطب نین مرحلہ معاصر مشین دکھایا گیا ہے۔اس میں نین ساکن کچھے ہیں۔ان میں ایک کچھا 2۔ ہے جو قالب میں شکاف a اور 'a میں رکھا گیا ہے۔ اگر اس شکل میں باقی دو کچھے نہ ہوتے تو یہ بالکل شکل شکل 2.1 میں دیا گیا مشین ہی تھا۔البتہ دیئے گئے شکل میں ایک کی بجائے تین ساکن کچھے ہیں۔

اگر a کچھا میں برتی رویوں ہو کہ شگاف a میں برتی رو، کتاب کے صفحہ سے عمودی رُخ میں باہر کی جانب ہو اور 'a میں برقی رو کا رخ اس کے بالکل الٹ سمت میں ہو تو ہم کچھے کی سمت کا تعین دائیں ہاتھ کے ذریعہ یوں کرتے ہیں۔

• اگر ہم دائیں ہاتھ کی چار انگلیوں کو دونوں شگافوں میں برقی رو کی جانب لیٹیں تو اس ہاتھ کا انگوٹھا کچھے کی سمت متعین کرتا ہے۔

شکل 5.8 میں کچھا a کی سمت تیر والی لکیر سے دکھائی گئی ہے۔ اس سمت کو ہم صفر زاویہ تصور کرتے ہیں۔ للذا شکل میں a کچھا صفر زاویہ پر لپٹا گیا ہے، لینی a کی سمت سے، گھڑی کی اُرخ، ناپے جاتے ہیں۔ اُلٹی رُخ، ناپے جاتے ہیں۔

شكل 5.9 ميں دكھائے گئے لمحہ t_1 پر اگر لمجھے a كا ارتباط بہاو $\lambda_a(t_1)$ ہو تو جب مقناطیس $\lambda_a(t_1)$ كا زاویہ طے كر لمان لمحہ $\lambda_b(t_2)$ كا ارتباط بہاو $\lambda_b(t_2)$ ہو گا۔ ہم ديكھتے ہيں كہ لمحہ $\lambda_b(t_2)$ بالكل المان لمحہ $\lambda_b(t_2)$ كا ارتباط بہاو $\lambda_b(t_2)$ ہو گا۔ ہم ديكھتے ہيں كہ لمحہ $\lambda_b(t_2)$ مقناطيس اور لمجھا كا ارتباط بہاو رہے ہو گا۔ ہم ديكھتے ہيں كہ لمحہ $\lambda_b(t_2)$

5.2 معاصر مشين

 t_1 اسی طرح سے ہیں جیسے t_1 پر مقناطیس اور کچھا a تھے۔ لہذا کھہ t_2 پر کچھا b کا ارتباط بہاو بالکل اتنا ہی ہو گا جتنا کھہ t_2 پر t_3 کچھا کا تھا۔ یعنی

$$\lambda_b(t_2) = \lambda_a(t_1)$$

ای طرح اگر مقناطیس مزید °120 زاویہ طے کرے تو اس لمحہ t_3 پر لچھا c کا ارتباط بہاو (t_3) ہو گا اور مزید یہ کہ یہ لیم طرح اگر مقناطیس مزید ہوگا۔ پیرا $\lambda_c(t_3)$

$$\lambda_c(t_3) = \lambda_b(t_2) = \lambda_a(t_1)$$

ہیں۔ان کمات پر ان کچھوں میں

(5.11)
$$e_a(t_1) = \frac{\mathrm{d}\lambda_a(t_1)}{\mathrm{d}t}$$

$$(5.12) e_b(t_2) = \frac{\mathrm{d}\lambda_b(t_2)}{\mathrm{d}t}$$

$$(5.13) e_c(t_3) = \frac{\mathrm{d}\lambda_c(t_3)}{\mathrm{d}t}$$

ہوں گے۔مساوات 5.10 کی روشنی میں

(5.14)
$$e_a(t_1) = e_b(t_2) = e_c(t_3)$$

اگر شکل 5.9 میں صرف کچھ a پایا جاتا تو یہ بالکل شکل 5.1 کی طرح ہوتا اور اب اگر اس میں مقناطیس کو گھڑی کی اُلٹی سمت ایک مقررہ رفتار a سے گھمایا جاتا تو، جیسے پہلے تذکرہ کیا گیا ہے، کچھے a میں سائن نما برتی دباو پیدا ہوتی۔ شکل 5.9 میں کسی ایک کچھے کو کسی دو سرے کچھے پر کوئی برتری حاصل نہیں۔ لہذا اب شکل 5.9 میں اگر مقناطیس اسی طرح گھمایا جائے تو اس میں موجود تینوں سائن کچھوں میں سائن نما برتی دباو پیدا ہوگی البتہ مساوات a کے تحت یہ برتی دباو آپس میں a 120 کے زاویہ پر ہوں گے۔

شکل 5.10 میں چار قطب، تین مرحلہ معاصر مشین و کھایا گیا ہے۔ گھومتے تھے پر شال اور جنوبی قطب باری باری باری باری باری باری نال اور جنوبی قطب کی ایک جوڑی 180° میکانی زاویہ طے کرتے ہیں۔ یہی 360° برقی زاویہ بنتا ہے۔ جیسا شکل 5.8 سے ظاہر ہے کہ ساکن تھے کے 360° برقی زاویہ پر تین مرحلہ کچھے نسب کئے جاتے ہیں۔ شکل 5.10 میں شکل 8.5 میں گھری کی الٹی سمت میں ہ، 'ن و د نوان کا ای ترتیب سے بائے جاتے ہیں۔ شکل 5.10 میں گھری کی الٹی سمت میں آپ کو بالکل اسی طرح تین مرحلہ کے احاطے بین 180° نواز میں دو قطبین کے احاطے بین 180° میکانی زاویہ میں تبھی بالکل اسی طرح آپ کو 20° نو2° نو2° دو کے 100° دو کو دو کے 100° دو کو کی اور کا کا دو کی دو کی دو کی دو کو کی دو کر کی دو کی کی دو کی

شكل5.10: چار قطب، تين مرحله معاصر مثين ـ

نظر آتے ہیں۔ کسی بھی لمحہ a1 اور a2 کچھوں میں بالکل کیساں برقی دباو پیدا ہو گی۔ تین مرحلہ کے دو کیساں کچھوں کو سلسلہ وار یا متوازی جوڑ کر تین مرحلہ کی برقی دباو حاصل کی جاتی ہے۔ شکل میں انہیں متوازی جوڑ کر دکھایا گیا ہے جہاں a کچھے کو صفر زاویہ پر تصور کیا گیا ہے۔

5.3 محرک برقی د باو

قانونِ لوریز 19 کے تحت اگر برقیے بار 20 مقناطیسی میدان B میں سمتی رفتار v سے حرکت کر رہا ہو تو اس پر قوت F اثر کرے گی جہاں

$$(5.15) F = q(\mathbf{v} \times \mathbf{B})$$

کے برابر ہے۔

یہاں سمتی رفتار سے مراد برقی بارکی سمتی رفتار ہے للذا مقناطیسی میدان کو ساکن تصور کر کے اس میں برقی بار کی سمتی رفتار o ہوگی۔

 $\begin{array}{c} {\rm Lorentz~law^{19}} \\ {\rm charge^{20}} \end{array}$

5.3. محسر ك_بر قي دباو

شكل 5.11: ابك چكر كالجھامقناطيسي ميدان ميں گھوم رہاہے۔

اس قوت کی سمت دائیں ہاتھ کے قانون سے معلوم کی جاتی ہے۔اگریہ برقی بار شروع کے نقطہ سے آخری نقطہ تک سمتی فاصلہ 1 طے کرے قواس پر W کام ہو گا جہاں

$$(5.16) W = \mathbf{F} \cdot \mathbf{l} = q(\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

اکائی مثبت برقی بار کو ایک نقطہ سے دوسرے نقطہ منتقل کرنے کے لئے درکار کام کو ان دو نقطوں کے مابین برقی دباو²¹ کہتے ہیں اور اس کی اکائی وولئے 2² ک ہے۔ یوں اس مساوات سے ان دو نقطوں کے مابین حاصل برقی دباو

(5.17)
$$e = \frac{W}{q} = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

وولٹ ہو گی۔

اس طرح حرکت کی مدد سے حاصل برتی دباو کو محرکے برقے دباو²³ کہتے ہیں۔ روایتی طور پر کسی بھی طریقہ سے حاصل برتی دباو کو محرک برتی دباو کہاتی ہے۔ حاصل برتی دباو کو محرک برتی دباو کہاتی ہے۔

اس مساوات کو شکل 5.11 میں استعال کرتے ہیں۔ گھومتے حصہ پر ایک چکر کا لچھا نسب ہے۔ بائیں جانب خلاء میں لچھے کی برقی تار پر غور کریں۔ مساوات 5.15 کے تحت اس تار میں موجود مثبت برقی بار پر صفحہ کی عمود کی سمت میں باہر کی جانب قوت اثر انداز ہوگی اور اس میں موجود منفی برقی بار پر اس کی اُلٹ سمت قوت عمل کرے گی۔اس طرح مساوات 5.17 کے تحت صفحہ سے باہر جانب برقی تار کا سرا برقی دباو e کا مثبت سرا ہوگا اور صفحہ کی اندر جانب برقی تار کا سرا برقی دباو e کا مثبت سرا ہوگا و صفحہ کی اندر جانب برقی تار کا سرا برقی دباو e کا مثبت سرا ہوگا۔

اگر گھومتے حصہ کی محور پر نکلی محدد قائم کی جائے تو جنوبی مقناطیسی قطب کے سامنے خلاء میں B رداس کی سمت میں ہے جبکہ شالی مقناطیسی قطب کے سامنے خلاء میں B رداس کی اُلٹ سمت میں ہے۔یوں جنوبی قطب کے سامنے

potential difference, voltage²¹

electromotive force, emf^{23}

شگاف میں برقی تار l_S کے لئے ہم لکھ سکتے ہیں

(5.18)
$$\begin{aligned} \boldsymbol{v}_S &= v\boldsymbol{a}_\theta = \omega r\boldsymbol{a}_\theta \\ \boldsymbol{B}_S &= B\boldsymbol{a}_{\mathrm{T}} \\ \boldsymbol{l}_S &= l\boldsymbol{a}_{\mathrm{Z}} \end{aligned}$$

للذا اس جانب لحجهے کی ایک تار میں پیدا محرک برقی دباو

(5.19)
$$e = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

$$= \omega r B l (\mathbf{a}_{\theta} \times \mathbf{a}_{r}) \cdot \mathbf{a}_{z}$$

$$= \omega r B l (-\mathbf{a}_{z}) \cdot \mathbf{a}_{z}$$

$$= -\omega r B l$$

ہو گی۔

جنوبی مقناطیسی قطب کے سامنے شگاف میں برقی تارکی لمبائی کی سمت a_z کی گئی ہے۔اس مساوات میں برقی دباو کے منفی ہونے کا مطلب ہے کہ برقی تارکا مثبت سرا a_z کی سمت میں ہے لینی اس کا نجلا سرا مثبت اور اوپر والا سرا منفی ہے۔ یوں اگر اس برقی تارمیں برقی روگزر سکے تو اس کی سمت a_z لینی صفحہ کی عمودی سمت میں اندرکی جانب ہوگی جے شگاف میں دائرہ کے اندر صلیبی نشان سے ظاہر کیا گیا ہے۔

اسی طرح شالی مقناطیسی قطب کے سامنے شگاف میں موجود برقی تار کے لئے ہم لکھ سکتے ہیں

$$egin{aligned} oldsymbol{v}_N &= v oldsymbol{a}_{ heta} &= \omega r oldsymbol{a}_{ heta} \ oldsymbol{B}_N &= -B oldsymbol{a}_{ ext{T}} \ oldsymbol{l}_N &= l oldsymbol{a}_{ ext{Z}} \end{aligned}$$

اور يول

(5.21)
$$e_{N} = (\mathbf{v}_{N} \times \mathbf{B}_{N}) \cdot \mathbf{l}_{N}$$
$$= -\omega r B l(\mathbf{a}_{\theta} \times \mathbf{a}_{r}) \cdot \mathbf{a}_{z}$$
$$= -\omega r B l(-\mathbf{a}_{z}) \cdot \mathbf{a}_{z}$$
$$= \omega r B l$$

شالی مقناطیسی قطب کے سامنے شگاف میں برقی تارکی لمبائی کی سمت a_z لی گئی ہے۔اس مساوات میں برقی دباو کے مثبت ہونے کا مطلب ہے کہ برقی تار کا مثبت سرا a_z کی سمت میں ہے لینی اس کا اوپر والا سرا مثبت اور نجلا سرا

منفی ہے۔ یوں اگر اس برقی تار میں برقی رو گزر سکے تو اس کی سمت $a_{\rm Z}$ یعنی صفحہ کی عمودی سمت میں باہر کی جانب ہوگی جسے شگاف میں دائرہ کے اندر نقطہ کے نشان سے دکھایا گیا ہے۔

یہ دو برقی تار مل کر ایک چکر کا لچھا بناتے ہیں۔ ان دونوں کے نچلے سرے سلسلہ وار جڑے ہیں جو شکل میں نہیں دکھایا گیا۔ یوں اس کچھے کے اوپر نظر آنے والے سروں پر کل برتی دباو e ان دو برقی تاروں میں پیدا برقی دباو کا مجموعہ ہو گا یعنی

(5.22)
$$e = 2rlB\omega$$
$$= AB\omega$$

یہاں کچھے کا رقبہ A=2rl ہے۔ اگر ایک چکر سے اتنی برقی دباہ حاصل ہوتی ہے تو N چکر کے کچھے سے

(5.23)
$$e = \omega NAB$$
$$= 2\pi f NAB$$
$$= 2\pi f N\phi$$

حاصل ہو گا۔

گومتی آلوں میں خلائی درز میں B اور v ہر لمحہ عمودی ہوتے ہیں۔ مساوات 5.17 سے ظاہر ہے کہ اگر گھومنے کی رفتار اور محوری لمبائی معین ہوں تو پیدا کردہ برقی دباو ہر لمحہ B کے براہِ راست متناسب ہو گا۔لہٰذا اگر خلائی درز میں زاویہ کے ساتھ تبدیل ہو گا۔یوں جس شکل میں زاویہ کے ساتھ تبدیل ہو گا۔یوں جس شکل کی برقی دباو خلائی درز میں پیدا کرنی ہو گی۔اگر سائن نما برقی دباو پیدا کرنی مقصد ہو تو خلائی درز میں محیط پر سائن نما کثافتِ مقناطیسی بہاو ضروری ہے۔

ا گلے جھے میں خلائی درز میں ضرورت کے تحت B پیدا کرنے کی ترکیب بتلائی جائے گی۔

5.4 کھیلے کچھے اور سائن نمامقناطیسی دباو

ہم نے اب تک جینے مثین دیکھے ان سب میں پھھ²⁴ کچھے دکھائے گئے۔ مزید یہ کہ ان آلوں میں گھومتے جھے پہ موجود مقناطیس کے اُبھرے قطبے²⁵ تھے۔ در حقیقت آلوں کے عموماً ہموار قطبے²⁶ ہوتے ہیں اور ان میں پھیلے کچھے²⁷

non-distributed coils²⁴

salient poles²⁵

non-salient poles²⁶

distributed winding²⁷

شکل 5.12: ساکن لچھا کچھ کی شکل میں ہے۔

پائے جاتے ہیں۔ ایسا کرنے سے ہم ساکن اور گھومتے حصوں کے در میان خلائی درز میں سائن نما مقناطیسی دباو اور سائن نما کثافت مقناطیسی بہاو پیدا کر سکتے ہیں۔

شکل 5.12 میں ایک لچھا گچھ کی شکل کا دکھایا گیا ہے۔اس کے گھومنے والا حصہ گول شکل کا ہے اور اس کا مقاطیسی $\mu_r \to \infty$ کے سے ساکن حصے کا بھی $\mu_r \to \infty$ ہے۔ لچھے کا مقناطیسی دباو $\mu_r \to \infty$ ہماو ϕ کو جنم دیتا ہے جس کو ہلکی سیاہی کی کلیروں سے ظاہر کیا گیا ہے۔ مقناطیسی بہاو کو لچھے کے گرد ایک چکر کا شخط خلائی درز میں سے دو مرتبہ گزرنا پڑتا ہے۔ لہذا

یوں ساکن کچھے کا آدھا مقناطیسی دباو ایک خلائی درز اور آدھا دوسرے خلائی درز میں مقناطیسی بہاو پیدا کرتا ہے۔ مزید ہے کہ خلائی درز میں کہیں پہ مقناطیسی دباو (اور مقناطیسی بہاو)، رداس 28 کی سمت میں ہیں اور کہیں پہ خلائی درز میں مقناطیسی دباو (اور مقناطیسی دباو)، رداس کی اُلٹی سمت میں ہیں۔ اگر ہم رداس کی سمت کو مثبت لیں تو مقناطیسی بہاو (اور مقناطیسی دباو) $\frac{\pi}{2} > \theta > \frac{\pi}{2} = 2$ در میان رداس ہی کی سمت میں ہیں لہذا یہاں ہے مثنی ہیں۔ ایسا ہی شکل 5.13 بیق جگہ مقناطیسی دباو (اور مقناطیسی بہاو) رداس کی اُلٹ سمت میں ہیں لہذا یہاں ہے منفی ہیں۔ ایسا ہی شکل $\frac{\pi}{2} = \frac{\pi}{2} < \theta < \frac{\pi}{2} = 1$ میں دکھایا گیا ہے۔ اس شکل میں خلائی درز میں مقناطیسی دباو کو زاویہ کے ساتھ ترسیم کیا گیا ہے۔ $\frac{\pi}{2} < \theta < \frac{\pi}{2} = 1$

 ${\rm radius}^{28}$

ے در میان خلائی درز میں مقناطیسی دباو au_a کیھے کے مقناطیسی دباو au کا آدھا ہے اور اس کی سمت مثبت ہے جبکہ $rac{\pi}{2}$ کی در میان خلائی درز میں مقناطیسی دباو کچھ کے مقناطیسی دباو کے آدھا ہے اور اس کی سمت منفی ہے۔ یاد رہے کہ مقناطیسی دباو کی سمت کا تعین رداس کی سمت سے کیا جاتا ہے۔

5.4.1 بدلتی رووالے مشین

برلتی رو (اے سی) مشین بناتے وقت یہ کوشش کی جاتی ہے کہ خلائی درز میں مقناطیسی دباو سائن نما ہو۔اییا کرنے کی خاطر کچھوں کو ایک سے زیادہ شکافوں میں تقتیم کیا جاتا ہے۔ اس سے سائن نما مقناطیسی دباو کیسے حاصل ہوتی ہے، اس بات کی یہاں وضاحت کی جائے گی۔

$$f(\theta_p) = \sum_{n=0}^{\infty} (a_n \cos n\theta_p + b_n \sin n\theta_p)$$
 (5.25)

Fourier series²⁹ function³⁰

اگر اس تفاعل کا دوری عرصه T^{31} ہو تب

(5.26)
$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(\theta_p) d\theta_p$$
$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(\theta_p) \cos n\theta_p d\theta_p$$
$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(\theta_p) \sin n\theta_p d\theta_p$$

کے برابر ہوں گے۔

مثال 5.2: شكل 5.13 مين ديئ كئ مقناطيسي دباوكا

- فوريئر تسلسل حاصل كريں۔
- تیسری موسیقائی جز ³² اور بنیادی جز ³³ کی نسبت معلوم کریں۔

حل:

• مساوات 5.26 کی مدد سے

$$a_0 = \frac{1}{2\pi} \left[\int_{-\pi}^{-\pi/2} \left(-\frac{Ni}{2} \right) d\theta_p + \int_{-\pi/2}^{\pi/2} \left(\frac{Ni}{2} \right) d\theta_p + \int_{\pi/2}^{\pi} \left(-\frac{Ni}{2} \right) d\theta_p \right]$$

$$= \frac{1}{2\pi} \left[\left(-\frac{Ni}{2} \right) \left(-\frac{\pi}{2} + \pi \right) + \left(\frac{Ni}{2} \right) \left(\frac{\pi}{2} + \frac{\pi}{2} \right) + \left(-\frac{Ni}{2} \right) \left(\pi - \frac{\pi}{2} \right) \right]$$

$$= 0$$

fundamental component³³

time period 31 third harmonic component 32

اسی طرح

$$a_n = \frac{2}{2\pi} \frac{Ni}{2} \left[\int_{-\pi}^{-\pi/2} -\cos n\theta_p \, d\theta_p + \int_{-\pi/2}^{\pi/2} \cos n\theta_p \, d\theta_p + \int_{\pi/2}^{\pi} -\cos n\theta_p \, d\theta_p \right]$$

$$= \frac{Ni}{2\pi} \left[-\frac{\sin n\theta_p}{n} \Big|_{-\pi}^{-\pi/2} + \frac{\sin n\theta_p}{n} \Big|_{-\pi/2}^{\pi/2} - \frac{\sin n\theta_p}{n} \Big|_{\pi/2}^{\pi} \right]$$

$$= \frac{Ni}{2n\pi} \left[\sin \frac{n\pi}{2} + 2\sin \frac{n\pi}{2} + \sin \frac{n\pi}{2} \right]$$

$$= \left(\frac{4}{n\pi} \right) \left(\frac{Ni}{2} \right) \sin \frac{n\pi}{2}$$

اس مساوات میں n کی قیمت ایک، دو، تین وغیرہ کے لئے ماتا ہے

$$a_1 = \left(\frac{4}{\pi}\right) \left(\frac{Ni}{2}\right), \quad a_3 = -\left(\frac{4}{3\pi}\right) \left(\frac{Ni}{2}\right), \quad a_5 = \left(\frac{4}{5\pi}\right) \left(\frac{Ni}{2}\right)$$

$$a_2 = a_4 = a_6 = 0$$

اسی طرح

$$b_n = \frac{2}{2\pi} \frac{Ni}{2} \left[\int_{-\pi}^{-\pi/2} -\sin n\theta_p \, d\theta_p + \int_{-\pi/2}^{\pi/2} \sin n\theta_p \, d\theta_p + \int_{\pi/2}^{\pi} -\sin n\theta_p \, d\theta_p \right]$$

$$= \frac{Ni}{2\pi} \left[\frac{\cos n\theta_p}{n} \Big|_{-\pi}^{-\pi/2} - \frac{\cos n\theta_p}{n} \Big|_{-\pi/2}^{\pi/2} + \frac{\cos n\theta_p}{n} \Big|_{\pi/2}^{\pi} \right]$$

$$= 0$$

• ان جوابات سے

$$\left|\frac{a_3}{a_1}\right| = \frac{\left(\frac{4}{3\pi}\right)\left(\frac{Ni}{2}\right)}{\left(\frac{4}{\pi}\right)\left(\frac{Ni}{2}\right)} = \frac{1}{3}$$

حاصل ہوتا ہے۔للذا تیسری موسیقائی جزو بنیادی جزو کے تیسرے جھے یعنی 33.33 فی صد کے برابر ہے۔

مثال 5.2 میں حاصل کئے گئے a_1, a_2, \cdots استعال کرتے ہوئے ہم خلائی درز میں مقناطیسی دباوau فوریئر شلسل یوں کھھ سکتے ہیں۔

(5.27)
$$\tau_a = \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p - \frac{4}{3\pi} \frac{Ni}{2} \cos 3\theta_p + \frac{4}{5\pi} \frac{Ni}{2} \cos 5\theta_p + \cdots$$

مثال 5.2 سے ظاہر ہے کہ مقناطیسی دباو کے موسیقائی اجزاء کی قیمتیں اتنی کم نہیں کہ انہیں رد کیا جا سکے۔ جیسا آپ اس باب میں آگے دیکھیں گے کہ حقیقت میں استعال ہونے والے مقناطیسی دباو میں موسیقائی اجزاء قابل نظر انداز ہوں گے اور ہمیں صرف بنیادی جزو سے غرض ہو گا۔اسی حقیقت کو مد نظر رکھتے ہوئے ہم تسلسل کے موسیقائی اجزاء کو نظر انداز کرتے ہوئے اسی مساوات کو یوں لکھتے ہیں۔

(5.28)
$$\tau_a = \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p = \tau_0 \cos \theta_p$$

جہاں

$$\tau_0 = \frac{4}{\pi} \frac{Ni}{2}$$

 \sum برابر ہے۔ اس مساوات سے ہم و کھتے ہیں کہ شکل 5.12 میں کچھ سے حاصل مقناطیسی دباو بالکل اس طرح ہے جیسے شکل 5.2 میں سلاخ نما مقناطیس صفر زاویہ پر رکھے حالت میں دیتا۔ اگر یہاں یہ لچھا کسی ایسے زاویہ پر رکھا گیا ہوتا کہ اس سے حاصل مقناطیسی دباو زاویہ θ_m پر زیادہ سے زیادہ ہوتا تو یہ بالکل شکل 5.3 میں موجود مقناطیس کی طرح کا ہوتا۔ شکل ملی ایک ایک ہی مثال ہے۔ ہم بالکل مساوات 5.62 کی طرح اس شکل میں لچھا a کے لئے لکھ سکتے ہیں۔

(5.30)
$$\begin{aligned} \tau_a &= \tau_0 \cos \theta_{p_a} \\ \theta_{p_a} &= \theta - \theta_{m_a} = \theta - 0^{\circ} \\ \tau_a &= \tau_0 \cos(\theta - \theta_m) = \tau_0 \cos \theta \end{aligned}$$

اس طرح کیجھا b اور c کیے چو نکہ $\theta_{m_b}=120^\circ$ اور $\theta_{m_b}=120^\circ$ لہذا ان کے لئے ہم ککھ سکتے ہیں۔

(5.31)
$$\tau_b = \tau_0 \cos \theta_{p_b}$$

$$\theta_{p_b} = \theta - \theta_{m_b} = \theta - 120^{\circ}$$

$$\tau_b = \tau_0 \cos(\theta - \theta_{m_b}) = \tau_0 \cos(\theta - 120^{\circ})$$

(5.32)
$$\begin{aligned} \tau_c &= \tau_0 \cos \theta_{p_c} \\ \theta_{p_c} &= \theta - \theta_{m_c} = \theta - 240^{\circ} \\ \tau_c &= \tau_0 \cos(\theta - \theta_{m_c}) = \tau_0 \cos(\theta - 240^{\circ}) \end{aligned}$$

ا گرچہ ظاہری طور پر خلائی درز میں مقناطیسی دباو سائن نما ہر گر نہیں لگتا لیکن مساوات 5.27 ہمیں بتلاتی ہے کہ یہ محض آئکھوں کا دھوکہ ہے۔ اس مقناطیسی دباو کا بیشتر حصہ سائن نما ہی ہے۔ اب اگر ہم کسی طرح مساوات کہ یہ محض آئکھوں کا دھوکہ ہے۔ اس مقناطیسی دباو صاصل کر سکتے ہیں۔ 5.27 میں پہلے رکن کے علاوہ باقی سب رکن کو صفر کر سکیں تو ہم بالکل سائن نما مقناطیسی دباو حاصل کر سکتے ہیں۔

شكل 5.14: كيسيلا ليجهابه

شکل 5.14 میں تقسیم شدہ کچھا دکھایا گیا ہے۔ یہاں شکل 5.12 میں دکھائے گئے N چکر کے کچھے کو تین چھوٹے کیساں کچھوں میں تقسیم کیا گیا ہے۔لہذا ان میں ہر چھوٹا کچھا کچھ کی ہے۔ ایسے چھوٹے کچھوں کو سلسلہ وار جوڑا 34 جاتا ہے اور یوں ان میں کیساں برقی رو i گزرے گی۔ ان تین کچھوں کو تین مختلف شکافوں میں رکھا گیا ہے۔ دوسرے کچھے کو شکاف a_{90} اور a_{90}' میں اور تیسرے کچھے کو شکاف a_{135} اور a_{135}' میں رکھا گیا ہے۔

شگافوں کے ایک جوڑے کو ایک ہی طرح کے نام دیے گئے ہیں، البتہ ایک شگاف کو a اور دوسرے کو a نام دیا گیا ہے۔ یوں شگافوں کا پہلے جوڑا a_{45} اور a_{45} اور a_{45} ہوں گیا ہے۔ یوں شگافوں کا پہلے جوڑا a_{45} اور a_{45} اور a_{90} نوے درجہ زاویہ پر اور شگاف a_{135} ایک سو پینیس درجہ زاویہ پر ہے۔ درجہ زاویہ پر ہے۔

چونکہ ہر کچھا $\frac{N}{8}$ چکر کا ہے اور ان سب میں کیساں برتی روi ہے، لہذا شکل 5.14 میں دیئے گئے پھیلے کچھے سے حاصل مقناطیسی دباو کا زاویہ کے ساتھ ترسیم شکل 5.15 کے نچلے ترسیم کی طرح ہو گا۔اس شکل میں سب سے اُوپر کچھا کچھا کہ مقناطیسی دباو کا ترسیم ہے۔ یہ بالکل شکل 5.15 میں دیئے ترسیم کی طرح ہے البتہ یہ صفر زاویہ سے -45 ہٹ کر ہے۔اُوپر سے دو سرا ترسیم کچھا a_{135} کیا ہے جو ہو بہو شکل کی طرح ہے جبکہ اس سے نیچے کچھا a_{135} کیا ترسیم ہے جو صفر زاویہ سے -45 ہٹ کر ہے۔ان تینوں ترسیمات میں طول $-\frac{Ni}{6}$ ہے۔

ان تینوں ترسیمات سے کل مقناطیسی دباو کا ترسیم یوں حاصل ہوتا ہے۔اس شکل میں عمودی نقطہ دار کلیریں لگائی گئ ہیں۔ بائیں جانب پہلی کلیرکی بائیں طرف علاقے کو الف کہا گیا ہے۔اس علاقے میں پہلے تینوں ترسیمات کی مقدار

series connected 34

شكل 5.15: تصليح لحصے كاكل مقناطيسي دباو۔

 $\frac{Ni}{6}$ ہے لہذا ان کا مجموعہ $\frac{Ni}{2}$ ہو گا۔ یہی سب سے نچلے کل مقناطیسی دباو کی ترسیم میں دکھایا گیا ہے۔ اس طرح علاقہ ب میں پہلے ترسیم کی مقدار $\frac{Ni}{6}$ ، دوسری ترسیم کی $\frac{Ni}{6}$ اور تیسری کی بھی $\frac{Ni}{6}$ ہے۔ ان کا مجموعہ $\frac{Ni}{6}$ ہنتا ہے جو کل مقناطیسی دباو ہے۔ علاقہ ج میں $\frac{Ni}{6}$ ہیں $\frac{Ni}{6}$ ہور $\frac{Ni}{6}$ ہیں جن کا مخموعہ $\frac{Ni}{6}$ ہیں کل مقناطیسی دباو ہے جو سب سے نچلے ترسیم میں دکھایا گیا ہے۔ اس طرح آپ پورا ترسیم تھینج سکتے ہیں۔

شكل 5.15 كے نيلے ترسيم كو شكل 5.16 ميں دوبارہ و كھايا گيا ہے۔

شکل 5.16 کا اگر شکل 5.15 کے ساتھ نقابل کیا جائے تو محض دیکھنے سے بھی یہ ظاہر ہے کہ شکل 5.16 زیادہ سائن نما موج کے نوعیت کا ہے۔ ہمیں فوریئر تسلسل حل کرنے سے بھی یہی نتیجہ ملتا ہے۔ہم دیکھ سکتے ہیں کہ شکافوں کی جگہ اور ان میں کچھوں کے چکر کو یوں رکھا جا سکتا ہے کہ ان سے پیدا کردہ مقناطیسی دباو سائن نما کے زیادہ قریب ہو۔

چونکہ کھیے گجھ کے مختلف مصے ایک ہی زاویہ پہ مقناطیسی دباو نہیں بناتے للذا ان سے حاصل کل مقناطیسی دباو کا حیطہ ایک کچھ کچھ کے حیطہ سے قدرِ کم ہوتا ہے۔اس اثر کو مساوات 5.29 میں جزو k_w کے ذریعہ یوں ظاہر کیا

شكل 5.16: تھلے لیھے كامقناطیسی د باو۔

شكل5.17: ئىليالچىچ كاجزو ئىمىلاو_

جاتا ہے۔

(5.33)
$$\tau_0 = k_w \frac{4}{\pi} \frac{Ni}{2}$$
$$\tau_a = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

اں مساوات میں
$$k_w$$
 کو جزو پھیلاو³⁵ کہتے ہیں۔ یہ اکائی سے قدرِ کم ہوتا ہے لیعنی $0 < k_w < 1$

مثال 5.3: شكل 5.14 مين ديئ گئے تھيلے لچھے كے لئے k_w معلوم كريں۔

حل: شکل 5.17 سے رجوع کریں۔ یہ تین چھوٹے کچھے برابر مقناطیسی دباو $au_n=rac{4}{\pi}rac{ni}{2}$ پیدا کرتے ہیں، البتہ ان کی سمتیں مختلف ہیں۔ یہاں چونکہ ایک کچھا $rac{N}{3}$ چکر کا ہے لہذا $rac{N}{3}$ سہتے ہم ان سمتیوں کو جمع کر کے ان کا $rac{N}{3}$

winding factor³⁵

П

مجموعی مقناطیسی دباو $_{ au}$ معلوم کرتے ہیں۔

$$\tau_a = \tau_n \cos 45^\circ + \tau_n + \tau_n \cos 45^\circ$$
$$= 2.4142\tau_n$$

لعني

$$\tau_a = 2.4142 \frac{4}{\pi} \frac{ni}{2} = \frac{2.4142}{3} \frac{4}{\pi} \frac{Ni}{2} = 0.8047 \frac{4}{\pi} \frac{Ni}{2}$$

لنذا 0.8047 کے برابر ہے۔

مثال 5.4: تین مرحلہ 50 ہرٹز پر چلنے والا شارہ نما جڑے جزیٹر کو 3000 چکر فی منٹ کی رفتار سے چلایا جا رہا $k_{w,q}=0.833$ ہیں چکر کے میدانی کچھے کا جزو کچسلاہ و 0.9 $k_{w,m}=0.9$ جبکہ پندرہ چکر تو کی کچھے کا جزو کچسلاہ و 0.833 ہیں۔ مثین کا رداس 0.7495 میٹر اور اس کی لمبائی $l_k=0.04$ میٹر ہیں۔خلائی درز $l_k=0.04$ میٹر ہے۔اگر اس کے میدانی کچھے میں 1000 ایمیسئر برقی رو ہے تو معلوم کریں

- میدانی مقناطیسی دباو کی زیادہ سے زیادہ مقدار۔
 - خلائی درز میں کثافتِ مقناطیسی بہاو۔
 - ایک قطب پر مقناطیسی بهاو۔
 - محرک تاریر برقی دباو۔

حل:

$$\tau_0 = k_{w,m} \frac{4}{\pi} \frac{N_m i_m}{2} = 0.9 \times \frac{4}{\pi} \times \frac{30 \times 1000}{2} = 17\,186\,\text{A} \cdot \text{turns/m}$$

 $B_0 = \mu_0 H_0 = \mu_0 \frac{\tau_0}{l_k} = 4\pi 10^{-7} \times \frac{17186}{0.04} = 0.54 \,\mathrm{T}$

 $\phi_0 = 2B_0 lr = 2 \times 0.54 \times 2.828 \times 0.7495 = 2.28915 \text{ Wb}$

$$\begin{split} E_{rms} &= 4.44 f k_{w,q} N_q \phi_0 \\ &= 4.44 \times 50 \times 0.833 \times 15 \times 2.28915 \\ &= 6349.85 \, \mathrm{V} \end{split}$$

للذا ستاره جڑی جزیٹر کی تار کی برقی دباو

 $\sqrt{3} \times 6349.85 \approx 11000 \,\text{V}$

٦ - ا

جیسا پہلے ذکر ہوا ہم چاہتے ہیں کہ سائن نما مقناطیسی دباو حاصل کر سکیں۔ چھوٹے کچھوں کے چکر اور شگافوں کی جگہ یوں چنے جاتے ہیں کہ یہ بنیادی مقصد پورا ہو۔ شکل 5.16 میں ہم دیکھتے ہیں کہ صفر زاویہ کی دونوں جانب مقناطیسی دباو کی موج کیساں طور پر گھٹی یا بڑھتی ہے۔ لیمی جمع اور منفی پینتالیس زاویہ پر مقناطیسی دباو $\frac{N}{3}$ گھٹ جاتی ہے۔ اس طرح جمع اور منفی نوے زاویہ پر یہ کیسال طور پر مزید گھٹی ہے، وغیرہ وغیرہ۔ یہ ایک بنیادی اصول ہے جس کا خیال رکھنا ضروری ہے۔

جھوٹے لیجھوں کے چکر اور شگافوں کی جگہوں کا فیصلہ فوریئر تسلسل کی مدد سے کیا جاتا ہے۔فوریئر تسلسل میں موسیقائی جزو کم سے کم اور اس میں بنیادی جزو زیادہ سے زیادہ رکھے جاتے ہیں۔

ساکن کچھوں کی طرح حرکت کرتے کچھوں کو بھی ایک سے زیادہ حچھوٹے کچھوں میں تقسیم کیا جاتا ہے تا کہ سائن نما مقناطیسی دباو حاصل ہو۔

5.5 مقناطیسی د باو کی گھومتی موجیں

گھومتے آلوں میں کچھوں کو برقی دباو دیا جاتا ہے جس سے اس کا گھومنے والا حصہ حرکت میں آتا ہے۔ یہاں ہم اس بات کا مطالعہ کرتے ہیں کہ یہ گھومنے کی حرکت کیسے پیدا ہوتی ہے۔

5.5.1 يك مرحله كي لپڻي مشين

مساوات 5.33 میں ایک لیھے کی مقناطیسی دباویوں دی گئی ہے۔

$$\tau_a = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta$$

اگر اس کچھے میں مقناطیسی بہاو بھی سائن نما ہو یعنی

$$(5.36) i_a = I_0 \cos \omega t$$

تو

(5.37)
$$\tau_a = k_w \frac{4}{\pi} \frac{NI_0}{2} \cos \theta \cos \omega t = \tau_0 \cos \theta \cos \omega t$$

ہو گا جہاں

(5.38)
$$\tau_0 = k_w \frac{4}{\pi} \frac{NI_0}{2}$$

ے برابر ہے۔ مساوات 5.37 کہتا ہے کہ یہ مقناطیسی دباو زاویہ θ اور کھہ t کے ساتھ تبدیل ہوتا ہے۔ اس مساوات کو ہم مندرجہ ذیل قلیہ سے دو گلڑوں میں توڑ سکتے ہیں۔

$$\cos \alpha \cos \beta = \frac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{2}$$

للذا

(5.39)
$$\tau_a = \tau_0 \left[\frac{\cos(\theta + \omega t) + \cos(\theta - \omega t)}{2} \right] = \tau_a^- + \tau_a^+$$

لکھا جا سکتا ہے۔ یوں

$$\tau_a^- = \frac{\tau_0}{2}\cos(\theta + \omega t)$$

(5.41)
$$\tau_a^+ = \frac{\tau_0}{2}\cos(\theta - \omega t)$$

ہیں۔اس مساوات سے بیہ بات سامنے آتی ہے کہ در حقیقت بیہ مقناطیسی دباو دو اُلٹ سمتوں میں گھومنے والے مقناطیسی دباو کی موجیں ہیں۔ اس کا پہلا جزو τ_a زاویہ θ گھنے کی جانب گھومتا ہے لین گھڑی کی سمت میں اور اس کا دوسرا جزو τ_a گھڑی کی اُلٹی سمت گھومتا ہے۔ τ_a

شكل 5.18: تين مرحله كى لپڻي مشين۔

یک مرحلہ لپٹی آلوں میں یہ کوشش کی جاتی ہے کہ ان دو گھومتے مقناطیسی دباو میں سے ایک کو بالکل ختم یا کم سے کم کیا جائے۔ اس طرح کرنے سے ایک ہے سمت میں کل مقناطیسی دباو گھومتا ملتا ہے جو بالکل اس طرح کا ہوتا ہے جیسے ایک مقناطیس گھمایا جا رہا ہو۔ تین مرحلہ آلوں میں یہ کرنا نہایت آسان ہوتا ہے لہذا انہیں پہلے سمجھ لینا زیادہ بہتر ہوگا۔

5.5.2 تين مرحله كي ليڻي مثين کا تحليلي تجزيه

شکل 5.18 میں تین مرحلہ کی لیٹی مشین د کھائی گئی ہے۔مساوات 5.30 ، 5.31 اور 5.32 میں ایسے تین کیھوں کی فور بیئر تسلسل کی بنیادی جزو دیئے گئے ہیں جو کے بیہ ہیں۔

(5.42)
$$\tau_a = k_w \frac{4}{\pi} \frac{N_a i_a}{2} \cos \theta$$
$$\tau_b = k_w \frac{4}{\pi} \frac{N_b i_b}{2} \cos(\theta - 120^\circ)$$
$$\tau_c = k_w \frac{4}{\pi} \frac{N_c i_c}{2} \cos(\theta + 120^\circ)$$

ا گران تین کچھول میں تین مرحله برقی رو ہو یعنی

(5.43)
$$i_a = I_0 \cos(\omega t + \alpha)$$
$$i_b = I_0 \cos(\omega t + \alpha - 120^\circ)$$
$$i_c = I_0 \cos(\omega t + \alpha + 120^\circ)$$

تو بالكل مساوات 5.47 كى طرح بهم مساوات 5.43 كى مدد سے مساوات 5.42 كو يوں لكھ سكتے ہيں۔

(5.44)
$$\tau_{a} = k_{w} \frac{4}{\pi} \frac{N_{a} I_{0}}{2} \cos \theta \cos(\omega t + \alpha)$$

$$\tau_{b} = k_{w} \frac{4}{\pi} \frac{N_{b} I_{0}}{2} \cos(\theta - 120^{\circ}) \cos(\omega t + \alpha - 120^{\circ})$$

$$\tau_{c} = k_{w} \frac{4}{\pi} \frac{N_{c} I_{0}}{2} \cos(\theta + 120^{\circ}) \cos(\omega t + \alpha + 120^{\circ})$$

اگر

$$N_a = N_b = N_c = N$$

ہو تو انہیں

(5.45)
$$\tau_{a} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha) + \cos(\theta - \omega t - \alpha) \right]$$
$$\tau_{b} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha - 240^{\circ}) + \cos(\theta - \omega t - \alpha) \right]$$
$$\tau_{c} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha + 240^{\circ}) + \cos(\theta - \omega t - \alpha) \right]$$

لکھ سکتے ہیں جہاں

(5.46)
$$\tau_0 = k_w \frac{4}{\pi} \frac{NI_0}{2}$$

ہے۔ کل مقناطیسی دباو 7 ان سب کا مجموعہ ہو گا۔ انہیں جمع کرنے سے پہلے ہم ثابت کرتے ہیں کہ

$$\cos\gamma + \cos(\gamma - 240^{\circ}) + \cos(\gamma + 240^{\circ}) = 0$$

کے برابر ہے۔ ہمیں معلوم ہے کہ

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

اگر ہم
$$lpha=\gamma$$
 اور $eta=240^\circ$ کیں تو

$$\cos(\gamma + 240^{\circ}) = \cos\gamma\cos 240^{\circ} - \sin\gamma\sin 240^{\circ}$$
$$\cos(\gamma - 240^{\circ}) = \cos\gamma\cos 240^{\circ} + \sin\gamma\sin 240^{\circ}$$

يونكه $\sin 240^\circ = -rac{\sqrt{3}}{2}$ الدا $\cos 240^\circ = -rac{1}{2}$ المذا

$$\begin{aligned} \cos(\gamma + 240^\circ) &= -\frac{1}{2}\cos\gamma + \frac{\sqrt{3}}{2}\sin\gamma \\ \cos(\gamma - 240^\circ) &= -\frac{1}{2}\cos\gamma - \frac{\sqrt{3}}{2}\sin\gamma \end{aligned}$$

اب اس مساوات کو اگر ہم ہر دردہ کے ساتھ جمع کریں تو جواب صفر ملتا ہے، یعنی

$$\cos \gamma + \cos(\gamma + 240^{\circ}) + \cos(\gamma - 240^{\circ}) = 0$$

ے لئے اس مساوات کو یوں لکھ سکتے ہیں۔ $\gamma = \theta + \omega t + \alpha$

(5.47)
$$\cos(\theta + \omega t + \alpha) + \cos(\theta + \omega t + \alpha + 240^{\circ}) + \cos(\theta + \omega t + \alpha - 240^{\circ}) = 0$$

اب ہم اگر مساوات 5.45 میں دیے au_b ، au_c اور au_c کو جمع کریں اور ان میں مساوات 5.45 کا استعال کریں تو ملتا ہے

(5.48)
$$\tau^{+} = \tau_{a} + \tau_{b} + \tau_{c} = \frac{3\tau_{0}}{2}\cos(\theta - \omega t - \alpha)$$

مساوات 5.48 کہتا ہے کہ کل مقناطیسی دباو کا حیطہ کسی ایک کچھے کے مقناطیسی دباو کے حیطہ کے $\frac{3}{2}$ گنا ہے۔ مزید بیہ کہ بیہ مقناطیسی دباو کی موج گھڑی کی اُلٹی سمت گھوم رہی ہے۔ المذا تین کچھوں کو °120 زاویہ پر رکھنے اور انہیں تین مرحلہ کی برقی رو، جو آپس میں °120 پر ہوں، سے بیجان کرنے سے ایک ہی گھومتی مقناطیسی دباو کی موج وجود میں آتی ہے۔ یہاں اس بات کا ذکر کرنا ضروری ہے کہ اگر کوئی دو برقی رو آپس میں تبدیل کئے جائیں تو مقناطیسی موج کے گھومنے کی سمت تبدیل ہو جاتی ہے۔ یہ مثال میں واضح کیا گیا ہے۔

اب ہم دیکھتے ہیں کہ مساوات 5.48 ایک گھومتے موج کو ظاہر کرتی ہے۔ یہ کرنے کے لئے ہمیں اس موج کی چوٹی کو دیکھنا ہو گا۔ ہم اپنی آسانی کے لئے α کو صفر لیتے ہیں۔ اس مثال میں ہم برتی رو کی تعدد $50\,\mathrm{Hz}$ لیتے ہیں۔ اس مثال میں ہم برتی رو کی تعدد $50\,\mathrm{Hz}$ لیتے ہیں۔ اس موج کی چوٹی ور حقیقت $\cos(\theta-\omega t)$ کی چوٹی ہی ہے لہذا ہم اس کی چوٹی کو مد نظر رکھتے ہیں۔ ہمیں معلوم ہے کہ $\cos\alpha$ کی زیادہ سے زیادہ مقدار ایک کے برابر ہے لیتی اس کی چوٹی ایک کے برابر ہے اور یہ اس مقام پر پائی جاتی ہے جہاں α صفر کے برابر ہو لیتی جباں α صفر کے برابر ہو گا۔ اس طرح $\cos(\theta-\omega t)$ کی چوٹی وہیں ہو گی جہاں $\cos(\theta-\omega t)$ صفر کے برابر ہو گا۔ اس طرح $\cos(\theta-\omega t)$ کی چوٹی وہیں ہو گی جہاں $\cos(\theta-\omega t)$ صفر کے برابر ہو لیتی ورش ہو گی جہاں رہ سے کے برابر ہو گا۔ اس طرح $\cos(\theta-\omega t)$

اب ابتذائی کچه لیخنی t=0 پر و گل کرتے ہیں۔ $\theta-\omega t=0$ $\theta-\omega t=0$ $\theta-\omega t=0$ $\theta-\omega t=0$ $\theta-\omega t=0$

ہم دکھتے ہیں کہ موج کی چوٹی صفر برتی زاویہ پر ہے۔اسے شکل 5.19 میں ہلکی سیاہی میں نقطہ داو لکیر سے دکھایا گیا ہے۔ہم اس چوٹی کو کچھ وقفے کے بعد دوبارہ دکھتے ہیں مثلاً t=0.001 سینڈ کے بعد۔

$$\theta - \omega t = 0$$

$$\theta - \omega \times 0.001 = 0$$

$$\theta = 0.001\omega = 0.001 \times 2 \times \pi \times 50 = 0.3142 \,\text{rad}$$

اب یہ چوٹی 0.3142 یا $\frac{\pi}{10}$ برقی ریڈیئن لیعن 18° کے برقی زاویہ پر ہے۔اسے شکل میں ہلکی سابی کے شوس لکیر سے دکھایا گیا ہے۔ یہ بات واضح ہے کہ مقناطیسی دباوکی موج گھڑی کی اُلٹی سمت بینی زاویہ بڑھنے کی سمت میں گھوم گئ ہے۔ اسی طرح 0.002 بریہ چوٹی 0.36 برقی زاویہ پر نظر آئے گی۔ کسی بھی لمحہ t پر بالکل اسی طرح چوٹی کا مقام معلوم کیا جا سکتا ہے جسے شکل میں تیز سابی کے ٹھوس لکیر سے دکھایا گیا ہے۔

$$\theta - \omega t' = 0$$
$$\theta = \omega t'$$

اس مساوات سے یہ واضح ہے کہ چوٹی کا مقام متعین کرنے والا زاویہ بتدر تکح بڑھتا رہتا ہے۔اس مساوات سے ہم ایک مکمل 2π برقی زاویہ کے چکر کا وقت T حاصل کر سکتے ہیں یعنی

(5.49)
$$t = \frac{\theta}{\omega}$$

$$T = \frac{2\pi}{2\pi f} = \frac{1}{f}$$

اگر برتی روکی تعدد 50 ہو تو یہ مقناطیسی دباوکی موج ہر $0.02=rac{1}{50}$ سینڈ میں ایک مکمل برتی چکر کا ٹتی ہے یعنی یہ ایک سینڈ میں 50 برتی چکر کا ٹتی ہے۔

اس مثال میں برقی زاویہ کی بات ہوتی رہی۔ دو قطب کی آلوں میں برقی زاویہ θ_e اور میکانی زاویہ θ_m برابر ہوتے ہیں۔ للذا اگر دو قطب کی آلوں کی بات کی جائے تو مساوات 5.49 کے تحت ایک سینڈ میں مقناطیسی دباو کی موج f برقی یا میکانی چکر کاٹے گی جہال f برقی رو کی تعدد ہے اور اگر P قطب رکھنے والی آلوں کی بات کی جائے تو چونکہ

$$\theta_e = \frac{P}{2}\theta_m$$

للذا ایسے آلوں میں یہ مقناطیسی دباو کی موج ایک سینڈ میں f مقناطیسی چکر یعنی $\frac{2}{P}$ میکانی شکر کائے گ۔

اگر ہم برقی رو کی تعدد کو f_e سے ظاہر کریں، مقناطیسی دباو کی موج کی چوٹی کے برقی زاویہ کو θ_e اور اس کے میکانی زاویہ کو θ_m سے ظاہر کریں اور اس طرح اس مقناطیسی دباو کی موج کے گھومنے کی رفتار کو θ_m یا θ_m سے ظاہر کریں تو

(5.51)
$$\omega_{m} = \frac{2}{P}\omega_{e} \quad \text{rad/s}$$

$$f_{m} = \frac{2}{P}f_{e} \quad \text{Hz}$$

$$n = \frac{120f_{e}}{P} \quad \text{rpm}$$

 ω_e اس موج کی معاصر رفتار برقی زاویہ فی سینڈ میں ہے جبکہ ω_m یہی معاصر رفتار میکانی زاویہ فی سینڈ میں ہے۔ای طرح ω_e اس موج کی برقی معاصر رفتار برقی ہرٹز میں اور ω_e اس کی میکانی معاصر رفتار ω_e میکانی ہرٹز میں ہے۔برقی معاصر رفتار ω_e ہرٹز ہونے کا مطلب یہ ہے کہ ایک سینڈ میں یہ موج ω_e برقی چکر کا فاصلہ طے کرے گی جہاں ایک برقی چکر دو قطب کا فاصلہ لیعن ω_e ریڈ بیکن کا زاویہ ہے۔ای طرح میکانی معاصر رفتار ω_e ہرٹز ہونے کا مطلب ہے کہ یہ موج ایک سینڈ میں ایک چکر کا فاصلہ طے کرے گی۔ایک میکانی چکر عام زندگی میں ایک چکر کو ہی کہتے کہ یہ موج ایک سیادات معاصر رفتار کی مساوات ہے۔

یہاں اس بات کا ذکر کرنا ضروری ہے کہ ہم q مرحلہ کی لیٹی مشین جس کے لیجھے $\frac{2\pi}{q}$ برقی زاویہ پر رکھے گئے ہوں اور جن میں q مرحلہ کی برقی رو ہو، ایک ہی سمت میں گھومتی مقناطیسی دباو کی موج کو جنم دیتی ہے جیسے ہم نے

synchronous speed³⁶ rpm, rounds per minute³⁷

تین مرحلہ کی مثین کے لئے دیکھا۔ مزید یہ کہ اس موج کا چیطہ کسی ایک کچھے سے پیدا مقناطیسی دباو کے چیطہ کے $\omega_e=2\pi f$ گنا ہو گا اور اس کے گھومنے کی رفتار $\omega_e=2\pi f$ برقی ریڈیئن فی سینڈ ہو گی۔

5.5.3 تين مرحله کې لپڻي مشين کاتر سيمي تجزيه

شکل 5.18 میں تین مرحلہ کی لیٹی مشین دکھائی گئی ہے۔ اس میں مثبت برقی روکی سمتیں بھی دکھائی گئی ہیں، مثلاً a شکل برقی روضخہ سے عمودی سمت میں باہر جانب کو ہے اور بیہ بات نقطہ سے واضح کی گئی ہے۔ اس طرح کو شگاف میں برقی دباو صفحہ سے عمودی سمت میں اندر کی جانب کو ہے اور بیہ بات صلیب کے نشان سے واضح کی گئی ہے۔ اگر برقی رو مثبت ہو تو اس کی یہی سمت ہو گی اور اس سے پیدا مقناطیسی دباو ہے صفر زاویہ کی جانب ہو گا جیسے شکل میں دکھایا گیا ہے۔ لیچھے میں برقی روسے پیدا مقناطیسی دباو کی سمت دائیں ہاتھ کے قانون سے معلوم کی جاسکتی ہے۔ اب اگر اس کی چھے میں برقی رو منفی ہو تو اس کا مطلب ہے کہ برقی رو اُلٹ سمت میں ہے۔ لیجنی اب برقی رو منفی ہو تو اس کا مطلب ہے کہ برقی رو اُلٹ سمت میں ہے۔ لیجنی اب برقی رو منفی کو ہے۔ لیدا اس برقی رو سے پیدا مقناطیسی دباو بھی پہلے سے اور 'ہ شگاف میں یہ صفحہ کے عمودی سمت میں باہر کی جانب کو ہے۔ لیدا اس برقی روسے پیدا مقناطیسی دباو بھی پہلے سے آلٹ سمت میں ہو گی یعنی یہ شکل میں دیے گئے ہے کہ برقی رو کے منفی بالکل اُلٹ سمت میں ہو گی۔ اس تذکرہ کا بنیادی مقصد سے قما کہ آپ پر بیہ بات واضح ہو جائے کہ برتی رو کے منفی بالکل اُلٹ سمت میں ہو گی۔ اس تذکرہ کا بنیادی مقصد سے قما کہ آپ پر بیہ بات واضح ہو جائے کہ برتی رو کے منفی بونے سے اس سے پیدا مقناطیسی دباو کی سمت اُلٹ ہو جاتی ہے۔

اس شکل میں کچھوں میں برقی رو اور مقناطیسی دباویہ ہیں

$$i_a = I_0 \cos \omega t$$

$$i_b = I_0 \cos(\omega t - 120^\circ)$$

$$i_c = I_0 \cos(\omega t + 120^\circ)$$

(5.53)
$$\tau_{a} = k_{w} \frac{4}{\pi} \frac{Ni_{a}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos \omega t = \tau_{0} \cos \omega t$$

$$\tau_{b} = k_{w} \frac{4}{\pi} \frac{Ni_{b}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos(\omega t - 120^{\circ}) = \tau_{0} \cos(\omega t - 120^{\circ})$$

$$\tau_{c} = k_{w} \frac{4}{\pi} \frac{Ni_{c}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos(\omega t + 120^{\circ}) = \tau_{0} \cos(\omega t + 120^{\circ})$$

جبکہ ان کے مثبت سمتیں شکل میں دیئے گئے ہیں۔ اب ہم مختلف او قات پر ان مقداروں کا حساب لگاتے ہیں اور ان کا کل مجموعی مقناطیسی دباو حل کرتے ہیں۔

شكل5.20: لمحه $t_0=0$ يربر قى رواور مقناطيسى د باوـ $t_0=0$

t=0 پر ان مساوات سے ملتا ہے۔

(5.54)
$$i_a = I_0 \cos 0 = I_0$$

$$i_b = I_0 \cos(0 - 120^\circ) = -0.5I_0$$

$$i_c = I_0 \cos(0 + 120^\circ) = -0.5I_0$$

(5.55)
$$\begin{aligned} \tau_a &= \tau_0 \cos 0 = \tau_0 \\ \tau_b &= \tau_0 \cos (0 - 120^\circ) = -0.5\tau_0 \\ \tau_c &= \tau_0 \cos (0 + 120^\circ) = -0.5\tau_0 \end{aligned}$$

5.18 یہاں رکھ کر ذرا غور کریں۔اس لمحہ پر i_a مثبت ہے جبکہ i_b اور i_c منفی ہیں۔ للذا i_a ای سمت میں ہے جو شکل i_c میں i_b میں ویے گئے سمتوں کے اُلٹ میں i_c میں i_c میں اور i_c شکل میں ویے گئے سمتوں کے اُلٹ میں ان تینوں برقی روکی اس لمحہ پر درست سمتیں شکل 5.20 میں وکھائی گئی ہیں۔اس شکل میں تینوں مقاطیسی وباو مجھی و کھائے گئے ہیں۔

کل مقناطیسی دباو با آسانی بذریعہ ترسیم، مجموعہ سمتیات سے معلوم کیا جا سکتا ہے یا پھر الجبرا کے ذریعہ ایسا کیا جا سکتا ہے۔

(5.56)
$$\begin{aligned} \boldsymbol{\tau}_a &= \tau_0 \boldsymbol{a}_{\mathrm{X}} \\ \boldsymbol{\tau}_b &= 0.5\tau_0 \left[\cos(60^\circ) \boldsymbol{a}_{\mathrm{X}} - \sin(60^\circ) \boldsymbol{a}_{\mathrm{Y}} \right] \\ \boldsymbol{\tau}_c &= 0.5\tau_0 \left[\cos(60^\circ) \boldsymbol{a}_{\mathrm{X}} + \sin(60^\circ) \boldsymbol{a}_{\mathrm{Y}} \right] \end{aligned}$$

شكل 5.21: لحمه $t_1=30^\circ$ لحم $t_1=30^\circ$ لحم في الم

(5.57)
$$\boldsymbol{\tau} = \boldsymbol{\tau}_a + \boldsymbol{\tau}_b + \boldsymbol{\tau}_c = \frac{3}{2} \tau_0 \boldsymbol{a}_{\mathbf{X}}$$

کل مقناطیسی دباو ایک کچھ کے مقناطیسی دباو کے ڈیڑھ گنا ہے اور یہ صفر زاویہ پر ہے۔ اب ہم گھڑی کو چلنے دیتے ہیں اور کچھ کمیے بعد t_1 پر دوبارہ بہی سب حساب لگاتے ہیں۔ چونکہ مساوات 5.52 اور مساوات 5.53 میں متغیرہ کے بجائے سے استعال زیادہ آسان ہے لہذا ہم کھہ t_1 کو یوں چنتے ہیں کہ $\omega t_1 = 30^\circ$ کے برابر ہو۔ ایسا کرنے سے ہمیں یہ دو مساواتوں سے حاصل ہوتا ہے۔

(5.58)
$$i_a = I_0 \cos 30^\circ = \frac{\sqrt{3}}{2} I_0$$
$$i_b = I_0 \cos(30^\circ - 120^\circ) = 0$$
$$i_c = I_0 \cos(30^\circ + 120^\circ) = -\frac{\sqrt{3}}{2} I_0$$

(5.59)
$$\tau_a = \tau_0 \cos 30^\circ = \frac{\sqrt{3}}{2} \tau_0$$
$$\tau_b = \tau_0 \cos(30^\circ - 120^\circ) = 0$$
$$\tau_c = \tau_0 \cos(30^\circ + 120^\circ) = -\frac{\sqrt{3}}{2} \tau_0$$

یہ شکل 5.21 میں دکھایا گیا ہے۔کل مقناطیسی دباو کا طول ⊤ کو تکون کے ذریعہ یوں حل کیا جا سکتا ہے۔ اسی طرح اس کا زاویہ بھی اسی سے حاصل ہوتا ہے۔ یعنی

(5.60)
$$\tau = \sqrt{\tau_a^2 + \tau_c^2 - 2\tau_a \tau_c \cos 120^\circ} = \frac{3}{2}\tau_0$$

5.6. محسر ك_بر قي دباو

اور چونکہ اس تکون کے دو اطراف برابر ہیں لہذا اس کے باقی دو زاویہ بھی برابر اور °30 ہیں۔

5.6 محرك برقى دباو

یہاں محرک برقی دباو³⁸ کو ایک اور زاویہ سے پیش کیا جاتا ہے۔

5.6.1 بدلتی روبر قی جزیٹر

شکل 5.22 میں ایک بنیادی بدلتی روجنہ پڑ³⁹ د کھایا گیا ہے۔اس کا گھومتا برقی مقناطیس، خلائی درز میں سائن نما مقناطیسی دباو پیدا کرتا ہے جس سے درز میں سائن نما کثافت مقناطیسی بہاو B پیدا ہوتی ہے، یعنی

$$(5.61) B = B_0 \cos \theta_p$$

یہ مقناطیس ω زاویاتی رفتار سے گھوم رہا ہے۔یوں اگر ابتدائی لمحہ t=0 پریہ a کیجھے کی سمت یعنی ہلکی سیاہی کی افقی کلیر کی سمت میں ہو تو لمحہ t پریہ گھوم کر زاویہ $\theta_m=\omega t$ پر ہو گا۔اس طرح یہی مساوات یوں بھی کلھا جا سکتا ہے۔

(5.62)
$$B = B_0 \cos(\theta - \theta_m)$$
$$= B_0 \cos(\theta - \omega t)$$

شکل 5.23 میں B کو زاویہ θ اور θ_p کے ساتھ ترسیم کیا گیا ہے۔ اسی ترسیم میں کچھا کہ بھی دکھایا گیا ہے۔اس شکل 3.23 میں B میں مبکی سیابی سے کمور اور اس کچھے کا محور ایک ہی سمت میں مبکی سیابی سے کمور ایک ہی سمت سیابی سے کمور ایک ہی سمت میں مبکی سیابی سے کمور ایک ہی کو کمور ایک ہی سیابی سے کمور ایک ہی سیابی سیابی سے کمور ایک ہی سیابی سیاب

³⁸ بتداء میں حرکت سے پیدا ہونے والی بر تی دیاد کو محرک بر تی دیاد کتھ تھے۔اب روایتی طور پر کسی مجی طرع پیدا کردہ بر تی دیاو کو محرک بر تی دیاو کتھ ہیں۔ ac generator³⁹

$$B = B_0 \cos \theta_p$$

$$= B_0 \cos(\theta - \theta_m)$$

$$= B_0 \cos(\theta - \omega t)$$

$$B = B_0 \cos(\theta - \omega t)$$

شكل5.22: بنيادى بدلتى روجزيٹر۔

5.6. محسر ك برقى دباو

میں ہوتے ہیں جبکہ کالی سیابی میں اس B کو کسی بھی کھہ t پر دکھایا گیا ہے۔اس کھہ پر برقی مقناطیس کے محور اور کچھے کے محور کے مابین θ زاویہ ہے۔ یہ زاویہ برقی مقناطیس کے گھومنے کی رفتار ω پر منحصر ہے لیعنی

$$(5.63) \theta = \omega t$$

لحہ t=0 پر کچھے میں سے زیادہ سے زیادہ مقناطیسی بہاو گزر رہی ہے۔ اگر خلائی درز بہت باریک ہو، تو اس کے اندر اور باہر جانب کے رداس تقریباً یکساں ہوں گے۔ برتی مقناطیس کے محور سے اس خلائی درز تک کا اوسط رداسی فاصلہ اگر م ہو اور برقی مقناطیس کا دھرے 40 کی سمت میں محوری لمبائی 41 ہو تو اس کچھے میں وہی مقناطیسی بہاو ہو گا جو اس خلائی درز میں $\frac{\pi}{2} > \theta < \frac{\pi}{2}$ کا بین ہے۔ لحہ 0 = t پر اسے یوں معلوم کیا جا سکتا ہے

(5.64)
$$\phi_a(0) = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} (B_0 \cos \theta_p) (l\rho d\theta_p)$$

$$= B_0 l\rho \sin \theta_p \Big|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= 2B_0 l\rho$$

$$= \phi_0$$

جہاں آخر میں $\phi_a(0)$ کو $\phi_a(0)$ کہا گیا ہے۔ یہی حساب اگر لمحہ t پر کی جائے تو کچھ یوں ہو گا۔

(5.65)
$$\phi_{a}(t) = \int_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta} (B_{0} \cos \theta_{p}) (l\rho d\theta_{p})$$

$$= B_{0} l\rho \sin \theta_{p} \Big|_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta}$$

$$= 2B_{0} l\rho \cos \vartheta$$

$$= 2B_{0} l\rho \cos \omega t$$

 $\begin{array}{c} & \text{axle}^{40} \\ & \text{axial length}^{41} \end{array}$

جہاں $\theta=\omega t$ لیا گیا ہے۔اسی مساوات کو یوں بھی حل کیا جا سکتا ہے

$$\phi_{a}(t) = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} (B_{0} \cos(\theta - \omega t))(l\rho d\theta)$$

$$= B_{0}l\rho \sin(\theta - \omega t)|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= B_{0}l\rho \left[\sin\left(\frac{\pi}{2} - \omega t\right) - \sin\left(-\frac{\pi}{2} - \omega t\right) \right]$$

$$= 2B_{0}l\rho \cos \omega t$$

اس مرتبہ تکمل زاویہ 6 کے ساتھ کیا گیا ہے۔ انہیں مساوات 5.64 کی مدد سے یوں کھا جا سکتا ہے۔

$$\phi_a(t) = 2B_0 l \rho \cos \omega t = \phi_0 \cos \omega t$$

بالکل مساوات 5.66 کی طرح ہم b اور c کچھوں کے لئے بھی مقناطیسی بہاو کی مساواتیں حل کر سکتے ہیں۔ شکل مساوات 5.22 میں d کچھے میں زاویہ d ناویہ d کے سے d کے حک کا مقناطیسی بہاو گزرتا ہے۔ اس لئے d معلوم کرنے کے لئے مساوات 5.20 میں مکمل کے حدود یہی رکھے گئے تھے۔ اسی شکل سے واضح ہے کہ d کچھے کے حکمل کے حدود d کو میں میں رکھے گئے تھے۔ اسی شکل سے واضح ہے کہ d کچھے کے حکمل کے حدود d اور d بیں۔ یہ زاویے ریڈیٹن میں دیئے گئے ہیں۔ یوں

$$\phi_b(t) = \int_{\frac{\pi}{6}}^{\frac{7\pi}{6}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{\frac{\pi}{6}}^{\frac{7\pi}{6}} (B_0 \cos(\theta - \omega t)) (l\rho d\theta)$$

$$= B_0 l\rho \sin(\theta - \omega t) \Big|_{\frac{\pi}{6}}^{\frac{7\pi}{6}}$$

$$= B_0 l\rho \left[\sin\left(\frac{7\pi}{6} - \omega t\right) - \sin\left(\frac{\pi}{6} - \omega t\right) \right]$$

$$= 2B_0 l\rho \cos(\omega t - \frac{2\pi}{3})$$

5.6. محسر ك_بر قي دباو

اور

$$\phi_{c}(t) = \int_{\frac{5\pi}{6}}^{\frac{11\pi}{6}} B \cdot dS$$

$$= \int_{\frac{5\pi}{6}}^{\frac{11\pi}{6}} (B_{0} \cos(\theta - \omega t))(l\rho d\theta)$$

$$= B_{0}l\rho \sin(\theta - \omega t) \Big|_{\frac{5\pi}{6}}^{\frac{11\pi}{6}}$$

$$= B_{0}l\rho \left[\sin\left(\frac{11\pi}{6} - \omega t\right) - \sin\left(\frac{5\pi}{6} - \omega t\right) \right]$$

$$= 2B_{0}l\rho \cos(\omega t + \frac{2\pi}{3})$$

$$= 2B_{0}l\rho \cos(\omega t + \frac{2\pi}{3})$$

$$- 2B_$$

ان مساوات میں $\frac{2\pi}{3}$ ریڈیٹن کو 120° لکھا گیا ہے۔ان سے کچھوں میں پیدا امالی برقی دباو کا حساب یوں لگایا جا سکتا ہے۔

(5.71)
$$e_a(t) = -\frac{\mathrm{d}\lambda_a}{\mathrm{d}t} = \omega N \phi_0 \sin \omega t$$
$$e_b(t) = -\frac{\mathrm{d}\lambda_b}{\mathrm{d}t} = \omega N \phi_0 \sin(\omega t - 120^\circ)$$
$$e_c(t) = -\frac{\mathrm{d}\lambda_c}{\mathrm{d}t} = \omega N \phi_0 \sin(\omega t + 120^\circ)$$

ان مساوات کو یوں بھی لکھ سکتے ہیں

(5.72)
$$\begin{aligned} e_a(t) &= \omega N \phi_0 \cos(\omega t - 90^\circ) \\ e_b(t) &= \omega N \phi_0 \cos(\omega t + 150^\circ) \\ e_c(t) &= \omega N \phi_0 \cos(\omega t + 30^\circ) \end{aligned}$$

یہ مساوات تین مرحلہ محرک برقی دباو کو ظاہر کرتے ہیں جو آپس میں °120 زاویہ پر ہیں۔ان سب کا حیطہ E_0 کیسال ہے جہال

$$(5.73) E_0 = \omega N \phi_0$$

اور ان برقی دباو کی موثر قیمت⁴²

(5.74)
$$E_{\dot{\tau}, \tau} = \frac{E_0}{\sqrt{2}} = \frac{2\pi f N \phi_0}{\sqrt{2}} = 4.44 f N \phi_0$$

ہو گی۔ چونکہ $\phi = BA$ ہوتا ہے لہذا ہیہ مساوات بالکل صفحہ 52 پر دئے مساوات 2.52 کی طرح ہے۔

مساوات 5.72 سائن نما برقی دباو کو ظاہر کرتا ہے۔ اگرچہ اسے یہ سوچ کر حاصل کیا گیا کہ خلائی درز میں مقناطیسی بہاو صرف برقی مقناطیس کی وجہ سے ہے تاہم برقی دباو کا اس سے کوئی تعلق نہیں کہ خلائی درز میں مقناطیسی بہاو جزیئر کے بہاو کس طرح وجود میں آئی اور یہ مساوات ان حالات کے لئے بھی درست ہے جہاں یہ مقناطیسی بہاو جزیئر کے ساکن حصے میں پیدا ہوئی ہو۔

مساوات 5.74 ہمیں ایک گیھ لیچے میں پیدا برقی دباو دیتی ہے۔ اگر لیھا تقسیم شدہ ہو تو اس کے مختلف شگافوں میں موجود اس کیچے کے حصوں میں برقی دباو ہم قدم نہیں ہوں گے للذا ان سب کا مجموعی برقی دباو ان سب کا حاصل جمع نہیں ہوگا بلکہ اس سے قدرِ کم ہوگا۔ اس مساوات کو ہم ایک تھیلے کیھے کے لئے یوں لکھ سکتے ہیں۔

$$(5.75) E_{\dot{\tau}} = 4.44k_w f N \phi_0$$

تین مرحلہ برقی جزیٹروں کے k_w کی قیمت 0.85 تا 0.95 ہوتی ہے۔ یہ مساوات ہمیں یک مرحلہ برقی دباو دیتی ہے۔ تین مرحلہ برقی جزیٹروں میں ایسے تین کچھوں کے جوڑے ہوتے ہیں اور ان کو Y یعنی شارہ نما یا Δ یعنی تکونی جوڑا جاتا ہے۔

5.6.2 يك سمتى روبر قى جزيٹر

ہر گھومنے والا برقی جزیٹر بنیادی طور پر بدلتی رو جزیٹر ہی ہوتا ہے۔ البتہ جہاں یک سمتی برقی دباو⁴³ کی ضرورت ہو وہاں مختلف طریقوں سے بدلتی برقی دباو کو یک سمتی برقی دباو میں تبدیل کیا جاتا ہے۔ ایباالیکٹرائنس کے ذریعہ جزیٹر کے باہر برقیاتی سمتے کار⁴⁴ کی مدد سے کیا جا سکتا ہے یا پھر میکانی طریقے سے میکانی سمتے کار⁴⁵ کی مدد سے جزیٹر کے اندر ہی کیا جا سکتا ہے۔ مساوات 5.71 میں دیئے گئے برقی دباو کو یک سمتی برقی دباو میں تبدیل کیا جائے تو یہ شکل 5.24 کی طرح ہو گا۔

 $[\]rm rms^{42}$

DC voltage⁴³

rectifier⁴⁴

 $commutator^{45}$

مثال 5.5: شکل 5.24 میں یک سمتی برقی دباو دکھائی گئی ہے۔اس یک سمتی برقی دباو کی اوسط قیمت حاصل کریں۔

ىل:

$$E_{\mathbf{k},\mathbf{j}} = \frac{1}{\pi} \int_0^{\pi} \omega N \phi_0 \sin \omega t \, \mathrm{d}(\omega t) = \frac{2\omega N \phi_0}{\pi}$$

ک سمتی برقی جزیٹر پر ہا قاعدہ تبصرہ کتاب کے باب میں کیا جائے گا۔

5.7 مهوار قطب مشينول مين قوت مرورً

اس جھے ہیں ہم ایک کامل مشین ہیں قوتے مرور 46 کا حساب لگائیں گے۔ ایسا دو طریقوں سے کیا جا سکتا ہے۔ ہم مشین کو دو مقناطیس سمجھ کر ان کے مابین قوتِ کشش، قوتِ دفع اور قوت مروڑ کا حساب لگا سکتے ہیں یا پھر اس میں ساکن اور گوشتے کچھوں کو امالہ سمجھ کر باب چار کی طرح توانائی اور کو توانائی کے استعمال سے اس کا حساب لگائیں۔ پہلے توانائی کا طریقہ استعمال کرتے ہیں۔

 $\rm torque^{46}$

شكل 5.25: ساكن اماليه اور گھومتااماليه۔

5.7.1 توانائی کے طریقے سے مکانی قوت مروڑ کا حساب

یہاں ہم ایک مرحلہ کی مشین کی بات کریں گے۔ اس سے حاصل جوابات کو با آسانی زیادہ مرحلہ کی آلوں پر لا گو کیا جا سکتا ہے۔ شکل 5.25 میں یک مرحلہ کامل مشین دکھائی گئی ہے۔ کسی بھی لمحہ اس کی دو کچھوں میں پچھ زاویہ ہو گا جے θ سے ظاہر کیا گیا ہے۔ خلائی درز ہر جگہ کیساں ہے لہذا یہاں اُبھرے قطب کے اثرات کو نظر انداز کیا جائے گا۔ مزید یہ کہ قالب کی 0 ستقل 0 تصور کی گئی ہے لہذا کچھوں کی امالہ صرف خلائی درز کی مقاطیسی مستقل 0 بیم مخصر ہے۔ پر مخصر ہے۔

 $L_{ar}(\theta)$ ال مشتر کہ امالہ $L_{ar}(\theta)$ اور گھوے کچھے کی امالہ L_{rr} مقررہ ہیں جبکہ ان کا مشتر کہ امالہ $L_{ar}(\theta)$ زاویہ θ پر منحصر ہو گا۔ جب $\theta=0$ یا $\theta=\pm 2\pi$ یا $\theta=0$ یا $\theta=\pm 180$ نراز ہو تو ایک لیجھے کا سارا مقناطیسی بہاو دوسرے کچھے سے بھی گزرتا ہے۔ ایسے حالت میں ان کا مشتر کہ امالہ زیادہ سے زیادہ ہو گا جسے بھی گزرتا ہے البتہ اس کھے اس کی سمت ہو اس کھے ایک مرتبہ پھر ایک کچھے کا سارا مقناطیسی بہاو دوسرے کچھے سے بھی گزرتا ہے البتہ اس کھے اس کی سمت اُلٹ ہوتی ہے لہذا اب ان کا مشتر کہ منفی ہو گا یعنی $-L_{ar0}$ اور جب $-L_{ar0}$ ہو تب ان کا مشتر کہ اللہ صفر ہو گا۔ اگر ہم یہ ذہن میں رکھیں کہ خلائی درز میں مقناطیسی بہاو سائن نما ہے تب

$$(5.76) L_{ar} = L_{ar0}\cos\theta$$

ہو گا۔ ہم ساکن اور گھومتے کچھوں کی ارتباط بہاو کو یوں لکھ سکتے ہیں

(5.77)
$$\lambda_a = L_{aa}i_a + L_{ar}(\theta)i_r = L_{aa}i_a + L_{ar0}\cos(\theta)i_r$$
$$\lambda_r = L_{ar}(\theta)i_a + L_{rr}i_r = L_{ar0}\cos(\theta)i_a + L_{rr}i_r$$

magnetic constant, permeability⁴⁷

ا گر ساکن کچھے کی مزاحمت R_a اور گھومتے کچھے کی مزاحمت R_r ہو تو ہم ان کچھوں کے سروں پر دیئے گئے برقی دباو کو یوں لکھ سکتے ہیں۔

$$(5.78) v_a = i_a R_a + \frac{\mathrm{d}\lambda_a}{\mathrm{d}t} = i_a R_a + L_{aa} \frac{\mathrm{d}i_a}{\mathrm{d}t} + L_{ar0} \cos\theta \frac{\mathrm{d}i_r}{\mathrm{d}t} - L_{ar0}i_r \sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t}$$
$$v_r = i_r R_r + \frac{\mathrm{d}\lambda_r}{\mathrm{d}t} = i_r R_r + L_{ar0} \cos\theta \frac{\mathrm{d}i_a}{\mathrm{d}t} - L_{ar0}i_a \sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t} + L_{rr} \frac{\mathrm{d}i_r}{\mathrm{d}t}$$

یہاں θ برقی زاویہ ہے اور وقت کے ساتھ اس کی تبدیلی رفتار ω کو ظاہر کرتی ہے یعنی

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega$$

میکانی قوت مروڑ بذریعہ کو توانائی حاصل کی جا سکتی ہے۔ کو توانائی صفحہ 127 پر مساوات 4.72 سے حاصل ہوتی ہے۔ یہ مساوات موجودہ استعال کے لئے یوں لکھا جا سکتا ہے۔

(5.80)
$$W'_{m} = \frac{1}{2} L_{aa} i_{a}^{2} + \frac{1}{2} L_{rr} i_{r}^{2} + L_{ar0} i_{a} i_{r} \cos \theta$$

اس سے میکانی قوت مروڑ T_m یوں حاصل ہوتا ہے۔

(5.81)
$$T_{m} = \frac{\partial W'_{m}(\theta_{m}, i_{a}, i_{r})}{\partial \theta_{m}} = \frac{\partial W'_{m}(\theta, i_{a}, i_{r})}{\partial \theta} \frac{\partial \theta}{\partial \theta_{m}}$$

چونکہ P قطب مشینوں کے لئے

$$\theta = \frac{P}{2}\theta_m$$

للذا ہمیں مساوات 5.81 سے ملتا ہے

(5.83)
$$T_m = -\frac{P}{2}L_{ar0}i_ai_r\sin\left(\frac{P}{2}\theta_m\right)$$

اس مساوات میں قوت مروڑ T_m منتی ہے۔ اس کا مطلب ہے کہ اگر کسی لمحہ پر ساکن اور گھومتے کچھوں کے مقناطیسی بہاو کو ایک بہاو کے در میان زاویہ مثبت ہو تو ان کے مابین قوت مروڑ منتی ہو گا یعنی قوت مروڑ ان دونوں مقناطیسی بہاو کو ایک سمت میں رکھنے کی کوشش کرے گا۔

شکل5.26: کچھوں کے قطبین۔

5.7.2 مقناطيسي بهاوسے ميكاني قوت مر وڑ كاحساب

شکل 5.26 میں دو قطب والی یک مرحلہ مشین دکھائی گئی ہے۔ اس شکل میں بائیں جانب صرف گھومتے کچھے میں برقی رو ہے۔ اس ٹکل میں بائیں جانب صرف گھومتے کچھے میں برقی رو ہے۔ اس کچھے کا مقناطیسی بہاو تیر کے نشان سے دکھایا گیا ہے، لیغنی تیر اس مقناطیس کے محور کو ظاہر کرتا ہے۔ یہاں اگر صرف گھومتے جھے پر توجہ دی جائے تو یہ واضح ہے کہ گھومتا حصہ ایک مقناطیس کی مانند ہے جس کے شالی اور جنوبی قطبین شکل میں دیئے گئے ہیں۔ اس طرح شکل میں دائیں جانب صرف ساکن کچھے میں برقی رو ہے۔ اگر اس مرتبہ صرف ساکن حھے پر توجہ دی جائے تو اس کے بائیں جانب سے مقناطیسی بہاو نکل کر خلائی درز میں داخل ہوتی ہے، لہٰذا یہی اس کا شالی قطب ہے اور اس مقناطیس کا محور بھی اسی تیر کی سمت میں ہے۔

یبال بیہ واضح رہے کہ اگرچہ کچھ لیچھ دکھائے گئے ہیں لیکن در حقیقت دونوں کچھوں کے مقناطیسی دباو سائن-نما ہی ہیں اور تیر کے نشان ان مقناطیسی دباوکی موج کے چوٹی کو ظاہر کرتے ہیں۔

شکل 5.27 میں اب دونوں کچھوں میں برقی رو ہے۔ یہ واضح ہے کہ یہ بالکل دو مقناطیسوں کی طرح ہے اور ان کے اُلٹ قطبین کے مابین قوتِ کشش ہو گا، یعنی یہ دونوں کچھے ایک ہی سمت میں ہونے کی کوشش کریں گے۔

یبال بیه زیادہ واضح ہے کہ بیہ دو مقناطیس کوشش کریں گے کہ θ_{ar} صفر کے برابر ہو یعنی ان کا میکانی قوت مروڑ θ_{ar} کے اُلٹ سمت میں ہو گا۔ یہی کچھ مساوات 5.83 کہتا ہے۔

ان برقی مقناطیسوں کے مقناطیسی دباو کو اگر ان کے مقناطیسی محور کی سمت میں au_a اور au_r سے ظاہر کیا جائے جہاں ہوں تو خلاء میں کل مقناطیسی دباو au_a ان کا جمع سمتیات ہو گا جیسے جہاں au_a

شكل 5.27: خلائي در زمين مجموعي مقناطيسي دياو په

(5.84)
$$au_{ar} = au_a^2 + au_r^2 - 2 au_a au_r \cos(180^\circ - heta_{ar})$$
 $au_a^2 = au_a^2 + au_r^2 - 2 au_a au_r \cos(180^\circ - heta_{ar})$ $au_a^2 + au_r^2 + 2 au_a au_r \cos heta_{ar}$

خلائی ورز میں یہ کل مقناطیسی و باو، مقناطیسی شدت H_{ar} کو جنم دے گا جو اس قلیہ سے حاصل ہوتا ہے۔ $au_{ar} = H_{ar} l_g$ (5.85)

مقناطیسی شدت کی چوٹی کو ظاہر کرتا ہے۔ اب جہاں خلاء میں مقناطیسی شدت H ہو وہاں مقناطیسی ہمہ توانائی کی کثافت H_{ar} کی کثافت H^2 ہوتی ہے۔ خلائی درز میں اوسط ہمہ توانائی کی کثافت اس خلائی درز میں H^2 کی اوسط ضربِ H^2 کی کثافت اس خلائی درز میں اوسط ضربِ H^2 کی اوسط H^2 کی اوسط نے H^2 کی اوسط کیا جاتا ہے۔ ہوگی۔ کسی بھی سائن نما موج H^2 کی اوسط H^2 کا اوسط H^2 کی اوسط کیا جاتا ہے۔

(5.86)
$$H_{\text{br,s}}^{2} = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} H^{2} d\theta$$

$$= \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} H_{0}^{2} \cos^{2} \theta d\theta$$

$$= \frac{H_{0}^{2}}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} d\theta$$

$$= \frac{H_{0}^{2}}{\pi} \frac{\theta + \frac{\sin 2\theta}{2}}{2} \Big|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= \frac{H_{0}^{2}}{2}$$

cosine law⁴⁸

للذا خلائی درز میں اوسط ہمہ توانائی کی کثافت $\frac{\mu_0}{2} \frac{H_{ar}^2}{2}$ ہو گی اور اس خلاء میں کل ہمہ توانائی اس اوسط ہمہ توانائی ضربِ خلاء کی حجم کے برابر ہو گا یعنی

(5.87)
$$W'_{m} = \frac{\mu_0}{2} \frac{H_{ar}^2}{2} 2\pi r l_g l = \frac{\mu_0 \pi r l}{2l_g} \tau_{ar}^2$$

اس مساوات میں خلائی درز کی رداسی لمبائی $_{g}l_{p}$ ہور اس کی دھرے 49 کی سمت میں محوری لمبائی 50 ہے۔ محور سے خلاء کی اوسط رداسی فاصلہ $_{r}$ ہے۔ مزید بیہ کہ $_{g}l_{g}$ ہے۔ اس طرح خلاء میں رداسی سمت میں کثافت مقناطیسی بہاو کی تبدیلی کو نظر انداز کیا جا سکتا ہے۔ اس مساوات کو ہم مساوات کی مدد سے یوں لکھ سکتے ہیں۔

(5.88)
$$W'_{m} = \frac{\mu_{0}\pi r l}{2l_{q}} \left(\tau_{a}^{2} + \tau_{r}^{2} + 2\tau_{a}\tau_{r}\cos\theta_{ar} \right)$$

اس سے میکانی قوت مروڑ یوں حاصل کیا جا سکتا ہے

(5.89)
$$T_m = \frac{\partial W'_m}{\partial \theta_{ar}} = -\frac{\mu_0 \pi r l}{l_g} \tau_a \tau_r \sin \theta_{ar}$$

یہ حساب دو قطب والی مشین کے لئے لگایا گیا ہے۔ P قطب والے مشین کے لئے یہ مساوات ہر جوڑی قطب کا میکانی توت مروڑ دیتا ہے للذا ایسے مشین کے لئے ہم لکھ سکتے ہیں

$$(5.90) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_a} \tau_a \tau_r \sin \theta_{ar}$$

یہ ایک بہت اہم مساوات ہے۔ اس کے مطابق مشین کا میکانی قوت مروڑ اس کے ساکن اور گھومتے لیجھوں کے مقاطیسی دباو کے چوٹی کے براہ راست متناسب ہے۔ اس طرح یہ ان دونوں کے درمیان برقی زاویہ θ_{ar} کے سائن کے بھی براہ راست متناسب ہے۔ منفی میکانی قوت مروڑ کا مطلب ہے کہ یہ زاویہ θ_{ar} کے الٹ جانب ہے لیعنی یہ میکانی قوت مروڑ اس زاویہ کو کم کرنے کی جانب کو ہے۔ مشین کے ساکن اور گھومتے حصوں پر ایک برابر گر الٹ ستوں میں میکانی قوت مروڑ ہوتا ہے البتہ ساکن جے کا قوت مروڑ مشین کے وجود کے ذریعہ زمین تک منتقل ہو جاتا ہے جبکہ گھومتے جے کا میکانی قوت مروڑ اس جے کو گھماتا ہے۔

چونکہ مقناطیسی وباو برقی رو کے براہ راست متناسب ہے للذا au_a اور i_a آپس میں براہ راست متناسب ہیں جبکہ اور au_r اور i_r آپس میں براہ راست متناسب ہیں۔ اس سے یہ ظاہر ہوتا ہے کہ مساوات 5.83 اور 5.90 ایک جیسے au_r اور حقیقت یہ ثابت کیا جا سکتا ہے کہ یہ دونوں بالکل برابر ہیں۔

 $axis^{49}$

axial length⁵⁰

شکل 5.28: مقناطیسی بہاواوران کے زاویے۔

شکل 5.28 میں ایک مرتبہ پھر ساکن اور گھومتے کچھوں کے مقناطیسی دباو دکھائے گئے ہیں۔ شکل میں بائیں جانب تکون ΔAEC اور ΔBEC میں CE مشتر کہ ہے اور ان دو تکونوں سے واضح ہے کہ

$$(5.91) CE = \tau_r \sin \theta_{ar} = \tau_{ar} \sin \theta_a$$

اس مساوات کی مدد سے مساوات 5.90 یوں لکھا جا سکتا ہے۔

$$(5.92) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_a \tau_{ar} \sin \theta_a$$

$$(5.93) WQ = \tau_a \sin \theta_{ar} = \tau_{ar} \sin \theta_r$$

اب اس مساوات کی مدد سے مساوات 5.90 یوں لکھا جا سکتا ہے۔

$$(5.94) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_r \tau_{ar} \sin \theta_r$$

مهاوات 5.90 مهاوات 5.92 اور مهاوات 5.94 كو ايك جبكه لكھتے ہيں۔

(5.95)
$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{a} \tau_{r} \sin \theta_{ar}$$

$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{a} \tau_{ar} \sin \theta_{a}$$

$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{r} \tau_{ar} \sin \theta_{r}$$

ان مساوات سے یہ واضح ہے کہ میکانی قوت مروڑ کو دونوں کچھوں کے مقناطیسی دباو اور ان کے مابین زاویہ کی شکل میں لکھا میں لکھا جا سکتا ہے یا پھر ایک کچھے کی مقناطیسی دباو اور کل مقناطیسی دباو اور ان دو کے مابین زاویہ کی شکل میں لکھا جا سکتا ہے۔

اس بات کو یول بیان کیا جاسکتا ہے کہ میکانی قوت مروڑ دو مقناطیسی دباو کے آپس میں رد عمل کی وجہ سے وجود میں آتا ہے اور یہ ان مقناطیسی دباو کی چوٹی اور ان کے مابین زاویہ پر منحصر ہوتا ہے۔

مقناطیسی دباو، مقناطیسی شدت، کثافت مقناطیسی بہاو اور مقناطیسی بہاو سب کا آپس میں تعلق رکھتے ہیں للذا ان مساوات کو کئی مختلف طریقوں سے لکھا جا سکتا ہے۔ مثلاً خلائی درز میں کل مقناطیسی دباو au_{ar} اور وہاں کثافت مقناطیسی بہاو B_{ar} کا تعلق

$$(5.96) B_{ar} = \frac{\mu_0 \tau_{ar}}{l_q}$$

استعال کر کے مساوات 5.95 کے آخری جزو کو یوں لکھا جا سکتا ہے

$$(5.97) T_m = -\frac{P}{2}\pi r l \tau_r B_{ar} \sin \theta_r$$

مقناطیسی آلوں میں مقناطیسی قالب کی مقناطیسی مستقل μ کی محدود صلاحیت کی وجہ سے قالب میں کثافت مقناطیسی بہاو تقریباً ایک ٹسلا تک ہی بڑھائی جا سکتی ہے۔ لہذا مثین بناتے وقت اس حد کو مد نظر رکھنا پڑتا ہے۔ اس طرح گھومتے کچھے کا مقناطیسی دباو اس کچھے میں برتی رو پر مخصر ہوتا ہے۔ اس برتی رو سے کچھے کی مزاحمت میں برتی توانائی ضائع ہوتی ہے جس سے یہ لچھا گرم ہوتا ہے۔ برتی رو کو اس حد تک بڑھایا جا سکتا ہے جہاں تک اس کچھے کو ٹھنڈا کرنا ممکن ہو۔ لہذا مقناطیسی دباو کو اس حد کے اندر رکھنا پڑتا ہے۔ چونکہ اس مساوات میں یہ دو بہت ضروری حدیں واضح طور پر سامنے ہیں اس لئے یہ مساوات مثین بنانے کی غرض سے بہت اہم ہے۔

اس مساوات کی ایک اور بہت اہم شکل اب دیکھتے ہیں۔ ایک قطب پر مقناطیسی بہاو ϕ_P ایک قطب پر اوسط کا رقبہ A_P ہوتا ہے۔ جہاں کثافت مقناطیسی بہاو اوسطB ضرب ایک قطب کا رقبہ A_P ہوتا ہے۔ جہاں

(5.98)
$$B_{\nu,l} = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} B_0 \cos \theta \, d\theta = \frac{2B_0}{\pi}$$

$$(5.99) A_P = \frac{2\pi rl}{P}$$

للذا

$$\phi_P = \frac{2B_0}{\pi} \frac{2\pi rl}{P}$$

أور

(5.101)
$$T_m = -\frac{\pi}{2} \left(\frac{P}{2}\right)^2 \phi_{ar} \tau_r \sin \theta_r$$

باب6

يكسال حال، بر قرار جالو معاصر مشين

جیسا کہ نام سے واضح ہے یہ وہ گھومنے والی مثین ہے جو ایک ہی رفتار سے گھومتی ہے اور یہ رفتار اس کو دیئے گئے برقی دباو کے تعدد پر منحصر ہوتی ہے۔

جب کسی جزیٹر پر بوجھ تبدیل کیا جائے یا اسے فراہم میکانی طاقت فراہم کرنے والے کی رفتار تبدیل کی جائے تو جزیٹر نئی صورتِ حال کے مطابق چند ہی کھات میں دوبارہ برقرار صورت اختیار کر لیتا ہے۔اس برقرار چالو صورت میں اس کی رفتار، برقی دباو، برقی رو، درجہ حرارت وغیرہ مقررہ رہتے ہیں۔اسی طرح اگر موٹر پر بوجھ تبدیل ہو تو اسے درکار طاقت اور برقی رو تبدیل ہول گے۔بوجھ تبدیل ہونے سے پہلے موٹر برقرار مقررہ برقی رو حاصل کرتا رہتا ہے اور اس کا درجہ حرارت ایک مقررہ قیت پر رہتا ہے۔اس طرح بوجھ تبدیل ہونے کے چند ہی کھات میں یہ دوبارہ ایک نئی قیمت پر برقرار رہتی ہے اور اس کا درجہ حرارت بھی قیمت اختیار کر لیتا ہے۔دو مختلف برقرار چالو، یکسال صور تول کے در میان چند کھات کے درجہ حرارت میں ہوتا ہے۔اس باب میں یکسال حال، برقرار چالو² مشین پر تبرہ کیا جائے گا۔

معاصر آلوں میں عموماً قوی لچھا ساکن رہتا ہے جبکہ میدانی لچھا معاصر رفتار سے گھومتا ہے۔ قوی لچھوں کی برقی رو میدانی لچھوں کی برقی رو کی نسبت بہت زیادہ ہوتی ہے اور اسے سرک چھلوں کے ذریعہ گزارنا نہایت مشکل ہوتا ہے لہذا قوی لچھوں کو ساکن رکھا جاتا ہے جبکہ میدانی لچھوں کو گھمایا جاتا ہے۔

> transient state¹ steady state²

ہم یہ دیکھ چکے ہیں کہ تین مرحلہ لیٹے ساکن لچھوں میں اگر متوازن تین مرحلہ برقی رو ہو تو یہ ایک گھومتے مقاطیسی دباوکی موج کو جنم دیتی ہے۔اس گھومتا موج کی رفتار کو معاصر رفتار ³ کہتے ہیں۔ معاصر مثین کا گھومتا حصہ اسی رفتار سے گھومتا ہے۔

معاصر مشین کے میدانی کچھے کو یک سمتی برقی رو درکار ہوتی ہے جو یا تو سرک چھلوں کے ذریعہ اس تک باہر سے پہنچائی جاتی ہے یا پھر مشین کے دھرے پر ہی نسب ایک چھوٹی یک سمتی جزیٹر سے اسے فراہم کی جاتی ہے۔

میدانی لچھا ایک میدانی مقناطیسی دباو کو جنم دیتی ہے جو اس کچھے کے ساتھ ساتھ معاصر رفتار سے گھومتی ہے۔ لہذا معاصر مشین کے گھومتے اور ساکن کچھوں کے مقناطیسی دباو معاصر رفتار سے ہی گھومتے ہیں۔ اسی وجہ سے انہیں معاصر مشین کہتے ہیں۔

6.1 متعدد مرحله معاصر مثين

معاصر مشین عموماً تین مرحلہ ہوتے ہیں۔ان کے تین مرحلہ ساکن قوی کچھے خلاء میں °120 برقی زاویہ پر نسب ہوتے ہیں جبکہ اس کے میدانی کچھے گھومتے جھے پر نسب ہوتے ہیں اور ان میں یک سمتی برقی رو ہوتی ہے۔

اگر مشین کے گومتے جھے کو بیرونی میکانی طاقت سے گھمایا جائے تو یہ مشین ایک معاصر جزیٹر کے طور پر کام کرتی ہے اور اس کے تین مرحلہ ساکن قوی کیچھوں میں تین مرحلہ برتی دباو پیدا ہوتی ہے جس کا برتی تعدد گومنے کے رفتار پر مخصر ہوتا ہے۔ اس کے برعکس اگر مشین کے تین مرحلہ ساکن قوی کیچھوں کو تین مرحلہ برقی طاقت مہیا کیا جائے تو یہ ایک معاصر موٹر کے طور کام کرتی ہے جو معاصر رفتار سے گھومتی ہے۔ مشین کی کل برتی قوت کے چند فی صد برابر برتی قوت اس کے میدان کیچھ کو درکار ہوتی ہے۔ گھومتے کیچھ تک برتی دباو مختلف طریقوں سے کینچائی جاتی ہے۔ شکل 6.1 میں گھومتے کیچھ تک موصل سرکے چھلے 4 کی مدد سے یک سمتی برتی رو پہنچانے کا طریقہ دکھایا گیا ہے۔ یہ سرک چھلے اُسی دھرے پر نسب ہوتے ہیں جس پر گھومتا کچھا نسب ہوتا ہے اور یہ اس کیچھ کے ساتھ کیساں طور پر گھومتے ہیں۔ سرک چھلوں کے بیرونی سطح پر کاربن کے ساکن گُنُ، اسپر نگ کی مدد سے ان کے ساتھ دباک رکھومتے ہیں۔ اسپر نگ کی مدد سے ان کے ساتھ دباکر رکھے جاتے ہیں۔ اسپر نگ کی مدد سے ان کے ساتھ دباکر رکھے جاتے ہیں۔ اسپر نگ کی مدد سے ان کے ساتھ دباکر رکھے جاتے ہیں۔ اسپر نگ کی مدد سے ان کے ساتھ دباک رکھوں پر سرکتے ہیں۔ اسپر نگ کی دباو ان کا دباو ان کا

synchronous speed³ slip rings⁴

شکل 6.1: کارین کُش اور سرک چھلوں سے کچھے تک برقی روپینچایا گیاہے۔

برقی جوڑ مضبوط رکھتا ہے اور ان کے مابین چنگاریال نہیں نکلتی۔ کاربن کُش کے ساتھ برقی تار لگی ہے۔ اس طرح یک سمتی برقی رو ،I ، کاربن کُش 5 سے سرک چھلول اور یہال سے گھومتے کچھے تک پہنچتی ہے۔

بڑے معاصر مثین میں میدانی یک سمتی برتی رو عموماً ایک بدلتی رو برتی جزیٹر سے حاصل کی جاتی ہے جو معاصر مثین کے دھرے پر ہی نسب ہوتی ہے اور اس کے ساتھ کیسال طور پر گھومتی ہے۔اس چھوٹے جزیٹر کی برتی دباو کو دھرے پر ہی نسب الیکٹرائنس کی مدد سے یک سمتی برتی دباو میں تبدیل کیا جاتا ہے۔ یوں سرک چھلے کی ضرورت نہیں رہتی۔سرک چھلے رگڑ کی وجہ سے خراب ہوتے ہیں جس کی وجہ سے معاصر مثین کو مرمت کی خاطر بند کرنا پڑتا ہے جو بہت مہنگا پڑتا ہے۔

اُبھرے قطب⁶ مشین پانی سے چلنے والے ست رفتار جزیٹر اور عام استعال کے موٹروں کے لئے موزوں ہوتے ہیں جبکہ ہموار قطب⁷ مشین تیز رفتار دو یا چار قطب والے ٹربائن جزیٹروں کے لئے موزوں ہوتے ہیں۔

کسی بھی مملکت کو درکار برقی توانائی ایک برقی جزیٹر سے دینا ممکن نہیں، المذا حقیقت میں کچھ در جنوں سے لیکر کئی سو برقی جزیٹر بیک وقت بید فرئضہ سر انجام دے رہے ہوتے ہیں۔ ایک سے زیادہ جزیٹر استعال کرنا فائدہ مند ثابت ہوتا ہے۔ اوّل تو برقی توانائی کی ضرورت کے مطابق جزیٹر چالو کئے جا سکتے ہیں اور پھر ان جزیٹر وں کو ضرورت کی حیثیت کی جگہ کے ممکنہ طور پر قریب نسب کیا جا سکتا ہے۔ کسی بھی اس طرح کے بڑے نظام میں ایک جزیٹر کی حیثیت بہت کم ہو جاتی ہے۔ ایک جزیٹر چالو یا بند کرنے سے پورے نظام پر کوئی خاص فرق نہیں پڑتا۔ اس صورت میں ہم

carbon bush⁵ salient poles⁶

non-salient poles⁷

اس نظام کو ایک مقررہ برقی دباو اور ایک مقررہ برقی تعدد رکھنے والا نظام تصور کر سکتے ہیں۔ معاصر جزیٹرول کے کئی اہم پہلو با آسانی سمجھے جا سکتے ہیں اگر یہ تصور کر لیا جائے کہ یہ ایک ایسے ہی نظام سے جوڑا گیا ہے۔

مساوات 5.101 ایک معاصر مثین کا قوت مروڑ بتلاتا ہے۔اس مساوات کے مطابق برتی مقناطیسی قوت مروڑ کی کوشش ہوتی ہے کہ وہ مثین میں موجود عمل کرنے والے مقناطیسی دباو کو سیدھ میں لائے۔ برقرار چالو مثین کا برقی مقناطیسی قوت مروڑ برابر ہوتے ہیں۔ جب مثین ایک جزیڑ کی حیثیت سے استعال ہو تب میکانی طاقت دھرے کو گھماتا ہے اور گھومتے کچھے کا مقناطیسی دباو کل مقناطیسی دباو سے گھومتے کی سمت میں آگے ہوتا ہے۔ مساوات 5.101 سے حاصل قوت مروڑ اس صورت میں گھومتے کو روکنے کی کوشش کرتا ہے۔میکانی طاقت چلتے پانی، ایندھن سے چلتے انجن وغیرہ سے حاصل ہو سکتا ہے۔ اس طرح اگر مثین ایک موٹر کی حیثیت سے استعال ہو رہا ہو، تب صورت اس کے بالکل اُلٹ ہو گی۔

اگر کل مقناطیسی بہاو ϕ_{ar} اور گھو متے لیچھے کا مقناطیسی دباو τ_{r} تبدیل نہ ہو تب اس مساوات کے مطابق مثین کا قوت مروڑ ہی صفر ہو گا۔ اب تصور کریں قوت مروڑ ہی صفر ہو گا۔ اب تصور کریں کہ یہی مثین ایک موٹر کے طور پر استعال ہو رہی ہو۔ جیسے جیسے موٹر پر لدا میکانی بوجھ بڑھایا جائے ویسے اس کے دھرے پر میکانی قوت مروڑ بڑھے گی۔ موٹر کو برابر کا برقی مقناطیسی قوت مروڑ پیدا کرنا ہو گا جو یہ زاویہ بڑھا کر کرتا ہے۔ یہاں یہ سجھنا ضروری ہے کہ موٹر ہر وقت معاصر رفتار سے ہی گھومتا ہے اور وہ یہ زاویہ پل بھر کے لئے آہتہ ہو کر ضرورت کے مطابق درست کرتا ہے۔ یعنی موٹر کا زاویہ ہو ہو قت میکانی قوت مروڑ کا تعقب 8 کرتی ہے۔

اگر موٹر پر لدا میکانی بوجھ بندر تک بڑھایا جائے تو ایک لمحہ آئے گا جب زاویہ θ_r نوے درجہ لیمن $\frac{\pi}{2}$ ریڈ بیکن تک پہنچ جائے گا۔ اس لمحہ موٹر اپنی انتہائی قوت مروڑ ⁹ پیدا کر رہی ہو گی۔ اگر بوجھ مزید بڑھایا جائے تو موٹر کسی بھی صورت میں اس کے مقابلے کا قوت مروڑ نہیں پیدا کر سکتی اور یہ موٹر رکھ جائے گی۔ ہم کہتے ہیں کہ موٹر نے غیر معاصر 10 صورت اختیار کر لی ہے۔ مساوات سے یہ ظاہر ہے کہ کل مقناطیسی بہاو یا گھومتے کچھے کا مقناطیسی دباو بڑھا کر اس انتہائی قوت مروڑ کی مقدار بڑھائی جا۔

یمی صورت اگر مشین برقی جزیر کے طور پر استعال کی جائے سامنے آتی ہے۔ جب بھی مشین غیر معاصر صورت اختیار کرے اسے جلد خود کار دور شکن 11 کی مدد سے برقی بھم رسانی سے الگ کر دیا جاتا ہے۔

hunting⁸

pull out torque⁹ lost synchronism¹⁰

circuit breaker¹¹

6.2. معاصر مشين کے امالہ

ہم نے دیکھا کہ ایک معاصر موٹر صرف اور صرف معاصر رفتار سے ہی گھوم سکتی ہے اور صرف اسی رفتار پر گھومتی صورت میں قوت مروڑ پیدا کر سکتی ہے للذا اگر اسے ساکن حالت سے چالو کرنے کی کوشش کی جائے تو بیہ کوشش ناکام رہے گی۔ ایسے موٹر کو پہلے کسے اور طریقے سے معاصر رفتار تک لایا جاتا ہے اور پھر اسے چالو کیا جاتا ہے۔ ایسا عموماً ایک چھوٹی املالے موٹر ¹² کی مدد سے کیا جاتا ہے جو بے بوجھ معاصر موٹر کو، اس کے معاصر رفتار تک لے آتا ہے اور پھر اس معاصر موٹر کو چالو کیا جاتا ہے۔ ایک امالہ موٹر معاصر موٹر کے دھرے پر ہی نسب ہوتی ہے۔

6.2 معاصر مشين كے اماليہ

ہم تصور کرتے ہیں کہ مثین دو قطب اور تین مرحلہ ہے اور اس کے کیھے سارہ نما جڑے ہیں۔اس طرح کیھوں میں برقی رو، تار برقی رو 13 ہی ہو گی اور ان پر لاگو برقی دباو، یک مرحلہ برقی دباو ہو گی۔ایسا کرنے سے مسئلہ پر غور کرنا آسان ہو جاتا ہے جبکہ نتیجہ کسی بھی موٹر کے لئے درست ہوتا ہے۔

شکل 6.2 میں ایک ایبا تین مرحلہ دو قطب معاصر مشین دکھایا گیا ہے۔ اس کا گھومتا حصہ نکلی نما ہے۔اس کو دو قطب کا مشین یا پھر P قطب کے مشین کا دو قطب کا حصہ سمجھا جا سکتا ہے۔

یہاں پچھ کچھ دکھائے گئے ہیں لیکن حقیقت میں پھیلے کچھے ہی استعال ہوتے ہیں اور انہیں در حقیقت پھیلے کچھے ہی سمجھا جائے۔ اس طرح ہر کچھا سائن نما برتی دباو پیدا کرتا ہے جس کی چوٹی کچھے کی مقناطیسی محور کی سمت میں ہوتی ہے۔ چونکہ معاصر مشین میں گھومتے کچھے میں یک سمتی رو ہی ہوتا ہے للذا اس کا مقناطیسی دباو ہر لمحہ گھومتے جھے کی مقناطیسی محور کی سمت میں ہی رہتا ہے۔ یہ شکل میں دکھایا گیا ہے۔ اس طرح گھومتے کچھے کا مقناطیسی دباو گھومتے جھے کے ساتھ ساتھ معاصر رفتار سے گھومتا ہے۔

 a^{-14} ہم فرض کرتے ہیں کہ مثین معاصر رفتار ω سے گھوم رہی ہے۔ اس طرح اگر لمحہ t=0 پر مرحلہ a^{-14} اور گھومتے کچھ کے مقناطیسی محور ایک ہی سمت میں ہوں تب کسی بھی لمحہ پر ان کے مابین زاویہ $\theta=\omega t$ ہو گا۔ امالہ کے حساب لگانے کے لئے شکل 0.0 سے رجوع کریں۔ شکل میں محیط پر خلائی درزیکساں ہے اور اس کی ردائی سمت

line current¹³

 $phase^{14}$

شكل 6.2: تين مرحله ، دوقطب معاصر مثين ـ

میں لمبائی l_g ہے۔ساکن جصے میں شگافوں کے اثر کو نظرانداز کیا گیا ہے۔محور سے خلائی درز تک کا اوسط رداسی فاصلہ ho ہے اور مثین کی دھرے کی ست میں محوری لمبائی l_g ہے۔

کسی بھی لچھے کے خود امالہ کا حساب کرتے وقت باقی سب لچھوں کو نظرانداز کریں۔ اس کا مطلب ہے کہ آپ تصور کریں کہ باقی سب لچھوں میں برقی رو صفر ہے یعنی ان لچھوں کے سرے آزاد رکھے گئے ہیں۔ حقیقت میں اگر آپ کبھی لچھوں کے خود امالہ کو مشین کی مدد سے ناپنا چاہیں تو آپ باقی سب لچھوں کے سرے آزاد ہی رکھیں گے۔

6.2.1 خوداماله

au گھو متے یا ساکن کچھے کی خود امالہ L زاویہ θ پر منحصر نہیں۔ ان میں سے کسی مجھی کچھے کی مقناطیسی دباو ہ $au=k_w rac{4}{\pi} rac{Ni}{2}\cos\theta_p$

سے خلائی درز میں کثافت مقناطیسی بہاو B پیدا ہو گی جہاں

(6.2)
$$B = \mu_0 H = \mu_0 \frac{\tau}{l_g} = \mu_0 k_w \frac{4}{\pi} \frac{Ni}{2l_g} \cos \theta_p$$

6.2. معاصر مشین کے امالہ

یہ مساوات زاویہ θ_p کے ساتھ برلتی کثافتِ مقناطیسی دباو B بتلاتی ہے۔ اس کچھے کا ایک قطب پر کل مقناطیسی بہاو ϕ کا حساب کرنے کے لئے ہمیں اس مساوات کا سطحی تکمل 15 یوں لینا ہو گا۔

(6.3)
$$\phi = \int \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} Bl\rho \, d\theta_p$$

$$= \mu_0 k_w \frac{4}{\pi} \frac{Ni}{2l_g} l\rho \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \cos \theta_p \, d\theta_p$$

$$= \frac{4\mu_0 k_w Nil\rho}{\pi l_g}$$

اب ہم اس کیجے کی خود امالہ L مساوات 2.29 میں جزو کھیلاد k_w کا اثر شامل کرتے ہوئے حاصل کر سکتے ہیں۔

$$(6.4) L = \frac{\lambda}{i} = \frac{k_w N \phi}{i} = \frac{4\mu_0 k_w^2 N^2 l \rho}{\pi l_q}$$

یہ مساوات اس شکل میں کسی بھی کچھے کی خود امالہ دیتا ہے۔ یعنی

(6.5)
$$L_{aa0} = L_{bb0} = L_{cc0} = \frac{4\mu_0 k_{wa}^2 N_a^2 l\rho}{\pi l_g}$$

اور

(6.6)
$$L_{mm0} = \frac{4\mu_0 k_{wm}^2 N_m^2 l \rho}{\pi l_q}$$

6.2.2 مشتركه اماله

 $surface integral^{15}$

ہو، a کچھے سے گزرے گا۔ اس مقناطیسی بہاو کا حساب مساوات 6.3 میں تکمل کے حدود تبدیل کر کے یوں حاصل ہو گا۔

$$\phi_{am} = \int \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2} - \theta}^{+\frac{\pi}{2} - \theta} B l \rho \, d\theta_{p}$$

$$= \mu_{0} k_{wm} \frac{4}{\pi} \frac{N_{m} i_{m}}{2 l_{g}} l \rho \int_{-\frac{\pi}{2} - \theta}^{+\frac{\pi}{2} - \theta} \cos \theta_{p} \, d\theta_{p}$$

$$= \frac{4\mu_{0} k_{wm} N_{m} i_{m} l \rho}{\pi l_{g}} \cos \theta$$

اس مساوات سے ان کا مشتر کہ امالہ میہ ہے

(6.8)
$$L_{am} = \frac{\lambda_{am}}{i_m} = \frac{k_{wa}N_a\phi_{am}}{i_m} = \frac{4\mu_0k_{wa}k_{wm}N_aN_ml\rho}{\pi l_q}\cos\theta$$

اس کو یول لکھ سکتے ہیں

$$(6.9) L_{am} = L_{am0}\cos\theta$$

جہال جیسے پہلے ذکر ہوا زاویہ heta گھومنے کی رفتار پر منحصر ہے لیعنی heta=0 اور L_{am0} ہیہ ہے

$$(6.10) L_{am0} = \frac{4\mu_0 k_{wa} k_{wm} N_a N_m l \rho}{\pi l_g}$$

ا گرچہ یہ مساوات ایک گھومتے اور ایک ساکن کچھ کے لئے نکالا گیا ہے در حقیقت یہ اس شکل میں کسی بھی دو کچھوں کے لئے درست ہے۔ یہ دونوں کچھے ساکن ہوتے تب بھی جواب یہی آتا۔ اگر یہ دونوں گھومتے ہوتے تب بھی جواب یہی آتا۔ لہذا دو ساکن یکسال کچھے مثلاً a اور b جن کے مابین °120 کا زاویہ ہے کا آپس کا مشتر کہ امالہ یہ ہو گا

(6.11)
$$L_{ab} = \frac{4\mu_0 k_{wa} k_{wb} N_a N_b l \rho}{\pi l_g} \cos 120^\circ = -\frac{2\mu_0 k_{wa}^2 N_a^2 l \rho}{\pi l_g}$$

جہاں دونوں کچھے بالکل کیساں ہونے کی بدولت $k_{wb}=k_{wa}$ اور $N_b=N_a$ لئے گئے ہیں۔اگر تینوں ساکن کچھے بالکل کیسال ہو تب ہم اس مساوات اور مساوات 6.5 کی مدد سے یہ لکھ سکتے ہیں۔

(6.12)
$$L_{ab} = L_{bc} = L_{ca} = -\frac{L_{aa0}}{2}$$

6.2. معاصر مشين ك اماله

6.2.3 معاصراماليه

مشین پر لا گو برقی دباو کو مشین کے لیچھوں کی خود امالہ، مشتر کہ امالہ اور لیجھوں میں برقی رو کی مدد سے لکھا جا سکتا ہے۔ یہ کرنے کے لئے ہم پہلے لیجھوں کی ارتباط بہاو \(کو ان کے امالہ اور ان میں برقی رو کی مدد سے یوں لکھتے ہیں۔

(6.13)
$$\lambda_{a} = L_{aa}i_{a} + L_{ab}i_{b} + L_{ac}i_{c} + L_{am}I_{m}$$

$$\lambda_{b} = L_{ba}i_{a} + L_{bb}i_{b} + L_{bc}i_{c} + L_{bm}I_{m}$$

$$\lambda_{c} = L_{ca}i_{a} + L_{cb}i_{b} + L_{cc}i_{c} + L_{cm}I_{m}$$

$$\lambda_{m} = L_{ma}i_{a} + L_{mb}i_{b} + L_{mc}i_{c} + L_{mm}I_{m}$$

ان مساوات میں ساکن کچھوں کے بدلتی برقی رو کو چھوٹے حروف لیعنی i_a,i_b,i_c سے ظاہر کیا گیا ہے جبکہ گھومتے میدانی کچھے کے یک سمتی برقی رو کو بڑے حرف I_m سے ظاہر کیا گیا ہے۔

ان چار مساوات میں سے ہم کسی ایک کو پُٹنتے ہیں اور اسے حل کرتے ہیں۔ چونکہ یہ چاروں مساوات ایک طرح کے ہیں اس لئے باقی بھی ایسے ہی حل ہول گے۔ ہم ان میں سے پہلے مساوات لیتے ہیں لینی

$$\lambda_a = L_{aa}i_a + L_{ab}i_b + L_{ac}i_c + L_{am}I_m$$

مساوات 6.5 ہمیں a کچھے کا خود امالہ دیتا ہے۔ یہ مساوات یہ تصور کر کے نکالا گیا تھا کہ اس کچھے کا پورا مقناطیسی بہاو خلائی درز سے گزرتا ہے۔ حقیقت میں ایسا نہیں ہوتا اور کچھ مقناطیسی بہاو اس خلائی درز میں سے گزر کر دوسری جانب نہیں پنچتا۔ ایسے مقناطیسی بہاو کی وجہ سے رستا امالہ L_{al} وجود میں آتا ہے۔ یہ بالکل ٹرانسفار مر کے رستا امالہ کی طرح ہے۔ یوں اس کچھے کا کل خود امالہ میں ہے۔

$$(6.15) L_{aa} = L_{aa0} + L_{al}$$

ہم مساوات 6.5، مساوات 6.9، مساوات 6.12 اور مساوات 6.15 کی مدد سے مساوات 6.14 کو یول لکھتے ہیں۔

(6.16)
$$\lambda_{a} = (L_{aa0} + L_{al}) i_{a} - \frac{L_{aa0}}{2} i_{b} - \frac{L_{aa0}}{2} i_{c} + L_{am0} I_{m} \cos \omega t$$
$$= (L_{aa0} + L_{al}) i_{a} - \frac{L_{aa0}}{2} (i_{b} + i_{c}) + L_{am0} I_{m} \cos \omega t$$

اب تین مرحلہ برقی رو مجموعہ صفر ہوتا ہے یعنی

$$(6.17) i_a + i_b + i_c = 0$$

للذا مساوات 6.16 میں اس کو استعال کرتے ملتا ہے

(6.18)
$$\lambda_a = (L_{aa0} + L_{al}) i_a - \frac{L_{aa0}}{2} (-i_a) + L_{am0} I_m \cos \omega t$$
$$= \left(\frac{3}{2} L_{aa0} + L_{al}\right) i_a + L_{am0} I_m \cos \omega t$$
$$= L_s i_a + L_{am0} I_m \cos \omega t$$

جہاں

$$(6.19) L_s = \frac{3}{2}L_{aa0} + L_{al}$$

کو معاصراماله ¹⁶ کہتے ہیں۔

اس مساوات اور مساوات 5.48 پر ایک مرتبہ دوبارہ غور کریں۔ یہ دونوں ملتے جلتے ہیں۔ وہاں کل گھومتا مقناطیسی دباو ایک کچھے کی امالہ کے $\frac{3}{2}$ گھنا ہے۔ یہ دو مساوات در حقیقت ایک ہی حقیقت کے دو پہلو ہیں۔

معاصر امالہ تین حصوں پر مشتمل ہے۔ پہلا حصہ L_{aa0} ہے جو a کچھے کا خود امالہ ہے۔ دوسرا حصہ $\frac{L_{aa0}}{2}$ اس کچھے یعنی a کچھے کا باقی دو کچھوں کے ساتھ اُس صورت میں مشتر کہ امالہ ہے جب مشین میں تین مرحلہ متوازن برتی رو ہو۔ تیسرا حصہ a کے کے کا رستا امالہ ہے۔ اس طرح معاصر امالہ مشین کے ایک کچھے کا ظاہری امالہ ہوتا ہے جب مشین متوازن برتی رو ہو۔

مثال 6.1: ایک معاصر جنریٹر کی یک مرحله کل خود اماله 2.2 mH اور رستا اماله 0.2 mH بین-اس مثین کے دو مرحلوں کا آپس میں مثتر که اماله اور مثین کا معاصر اماله حاصل کریں-

 $L_{ab}=-1~{
m mH}$ على: چونکه $L_{aa}=L_{aa0}+L_{aa}$ لهذا $L_{aa}=L_{aa0}+L_{aa}$ کی مدد سے $L_{aa0}=2~{
m mH}$ اور مساوات $L_{aa}=L_{aa0}+L_{aa}$ کی مدد سے $L_{s}=3.2~{
m mH}$ ہے۔

synchronous inductance¹⁶

6.3 معاصر مشین کامساوی دوریاریاضی نمونه

کے ہوتی دباو کے برابر ہو گا، لیتی R_a میں برتی دباو کے گھنے اور λ_a کے برتی دباو کے برابر ہو گا، لیتی R_a

$$(6.20) v_a = i_a R_a + \frac{\mathrm{d}\lambda_a}{\mathrm{d}t}$$

$$= i_a R_a + L_s \frac{\mathrm{d}i_a}{\mathrm{d}t} - \omega L_{am0} I_m \sin \omega t$$

$$= i_a R_a + L_s \frac{\mathrm{d}i_a}{\mathrm{d}t} + e_{am}$$

يہاں

(6.21)
$$e_{am} = -\omega L_{am0} I_m \sin \omega t$$
$$= \omega L_{am0} I_m \cos \left(\omega t + \frac{\pi}{2}\right)$$

کو پیجانی برقی دباو یا اندرونی پیدا برقی دباو کہتے ہیں جو گھومتے کچھے سے پیدا مقناطیسی بہاو کی وجہ سے وجود میں آتی ہے۔ اس کے موثر قیت Eam,rms مساوات 1.42 کی مدد سے حاصل ہوتا ہے۔

(6.22)
$$E_{am,rms} = \frac{\omega L_{am0} I_m}{\sqrt{2}} = 4.44 f L_{am0} I_m$$

مساوات 6.20 کو ایک برتی دور سے ظاہر کیا جا سکتا ہے جے شکل 6.3 میں دکھایا گیا ہے۔ کسی بھی برتی آلہ پر جب برتی دباو لا گو کیا جائے تو برتی روکی مثبت سمت لا گو برتی دباو کے مثبت سرے سے باہر کی جانب کو ہوتی ہے۔ المذا اس شکل میں برتی رو i_a لا گو برتی دباو v_a کی مثبت سرے سے باہر کی جانب کو ہے۔ یہ شکل ایک موٹر کو ظاہر کرتی ہے جہاں موٹر کے مثبت سرے پر برتی رو اندر کی جانب کو ہوتا ہے۔ اگر موٹر کی بجائے ایک معاصر جزیئر کی بات

شکل 6.4: معاصر جزیٹر کامساوی دوریاریاضی نمونہ۔

شکل 6.5: معاصر جنریٹر کے مساوی ادوار۔

ہوتی تو یہ جزیٹر برقی دباو پیدا کرتا اور برقی رو اس جزیٹر کی مثبت سرے سے باہر کی جانب کو ہوتی۔ اس صورت میں ہمیں شکل 6.3 کی جگہ شکل 6.4 ملے گا۔اس شکل کی مساوات اسی شکل سے یوں حاصل ہوتی ہے۔

$$(6.23) e_{am} = i_a R_a + L_s \frac{\mathrm{d}i_a}{\mathrm{d}t} + v_a$$

یہاں بید دھیان رہے کہ جزیٹر کے مساوی دور میں برقی رو کی مثبت سمت موٹر کے مساوی دور میں برقی رو کی مثبت سمت کے اُلٹ ہے۔اس کا مرحلی سمتیہ مساوات یوں لکھا جائے گا۔

(6.24)
$$\hat{E}_{am} = \hat{I}_a R_a + j \hat{I}_a X_s + \hat{V}_a$$

اس مر حلی سمتیہ کے مساوات کو شکل 6.5-الف میں دکھایا گیا ہے۔عام حالات میں X_s کی مقدار R_a سے سوسے دو سو گنا زیادہ ہوتی ہے۔

مثال 6.2: دو قطب 50 ہرٹز کا ایک معاصر جزیٹر 40 ایمپیئر میدانی برقی رو پر 2100 وولٹ یک مرحلہ موثر برقی دباو پیدا کرتی ہے۔اس مشین کی قوی اور میدانی کچھول کے مابین مشتر کہ امالہ حاصل کریں۔

حل: مساوات 6.22 سے

(6.25)
$$L_{am} = \frac{\sqrt{2}E_{am}}{\omega I_m} = \frac{\sqrt{2} \times 2100}{2 \times \pi \times 50 \times 40} = 0.2363 \,\text{H}$$

 \Box

6.4 برقی طاقت کی منتقلی

شکل 3.23 ٹرانسفار مر کا مساوی دور (ریاضی نمونہ) اور شکل 6.5 معاصر جزیٹر کا مساوی دور (ریاضی نمونہ) ہے۔ دونوں بالکل ایک طرح کے ہیں، للذا مندرجہ ذیل بیان دونوں کے لئے درست ہوگا، اگرچہ یہاں ہمیں صرف معاصر آلوں سے دلچیسی ہے۔

معاصر آلوں میں معاصر متعاملہ کچھے کی مزاحمت سے بہت زیادہ ہوتا ہے للذا اس کے مزاحمت کو نظرانداز کیا جا سکتا۔ ایسا ہی شکل کے حصہ با میں کیا گیا ہے۔

شکل 6.5ب کو اگر ہم ایک کھے کے لئے ایک سادہ برقی دور سمجھیں جس کے بائیں جانب \hat{E}_{am} اور دائیں جانب \hat{V}_a جانب \hat{V}_a برقی دباو ہے جن کے مابین ایک متعاملہ $\hat{J}X_s$ جڑا ہے۔ اس برقی دور میں برقی طاقت کے منتقلی کا حساب یوں ممکن ہے۔

شکل 6.5-ب کی مرحلی سمتیہ شکل 6.6 میں دی گئی ہے۔شکل 6.6-الف میں برتی رو \hat{I}_a برتی دباو \hat{V}_a سے ϕ زاویہ پیچھے ہے اور شکل 6.6-ب میں برتی رو ϕ زاویہ برتی دباو سے آگے ہے۔ چونکہ زاویہ اُفقی سمت سے گھڑی کی اُلٹی سمت ناپا جاتا ہے للذا شکل-الف میں ϕ منفی زاویہ ہے اور σ مثبت زاویہ ہے جبکہ شکل-ب میں دونوں زاویے مثبت ہیں۔

دائیں جانب طاقت p_v منتقل ہو رہی ہے جہاں

$$(6.26) p_v = V_a I_a \cos \phi$$

شکل 6.6: معاصر جزیٹر کامر حلی سمتیہ۔

کے برابر ہے۔شکل 6.6-الف سے

(6.27)
$$\hat{I}_{a} = I_{a} \underline{/\phi_{a}} = \frac{\hat{E}_{am} - \hat{V}_{a}}{jX_{s}}$$

$$= \frac{E_{am}\underline{/\sigma} - V_{a}\underline{/0}}{X_{s}\underline{/\frac{\pi}{2}}}$$

$$= \frac{E_{am}\underline{/\sigma - \pi/2 - V_{a}\underline{/-\pi/2}}}{X_{s}}$$

(6.28)
$$I_a \cos \phi_a = \frac{E_{am}}{X_s} \cos \left(\sigma - \frac{\pi}{2}\right) - \frac{V_a}{X_s} \cos \left(-\frac{\pi}{2}\right)$$
$$= \frac{E_{am}}{X_s} \sin \sigma$$

اس مساوات اور مساوات 6.26 سے حاصل ہوتا ہے

$$(6.29) p_v = \frac{V_a E_{am}}{X_s} \sin \sigma$$

تین مرحلہ معاصر مشین کے لئے اس مساوات کو تین سے ضرب دیں لعنی

$$(6.30) p_v = \frac{3V_a E_{am}}{X_s} \sin \sigma$$

 E_{am} یہ طاقت بالمقابل زاویہ 17 کا قانون ہے۔اگر V_a معین ہو تو جزیٹر E_{am} یا σ بڑھا کر طاقت بڑھا سکتا ہے۔اگر معین ہو تو جزیٹر کرنا ممکن ہے۔ کچھے کی مزاحمت میں برقی توانائی گھومتے کچھے میں برقی رو بڑھا کر بڑھائی جاتی ہے۔البتہ یہ ایک حد تک کرنا ممکن ہے۔ کچھے کی مزاحمت میں برقی توانائی

power-angle law¹⁷

6.4. برقى طب قت كى منتقلى

ضائع ہونے سے یہ گرم ہوتا ہے اور اس کی حرارت کو خطر ناک حد تک پہنچنے نہیں دیا جا سکتا۔ دوسری جانب σ کو نوے زاویہ تک بڑھایا جا سکتا ہے اور اس صورت میں جزیٹر زیادہ سے زیادہ طاقت مہیا کرے گا۔

$$p_{v, ; z_i} = \frac{3V_a E_{am}}{X_s}$$

حقیقت میں جزیٹر کو اس طرح بنایا جاتا ہے کہ اس کی زیادہ سے زیادہ قابل استعال طاقت نوے درجے سے کافی کم زاوبہ یر ہو۔ نوے درجے یر جزیٹر کو قابو رکھنا مشکل ہو جاتا ہے۔

مثال 6.3: ایک 50 قطب ستارہ جڑی تین مرحلہ 50 ہرٹز 2300 وولٹ تار کی برقی دباو پر چلنے والی 1800 کلو وولٹ-ایمپیئر کی معاصر مشین کی یک مرحلہ معاصر امالہ 2.1 اوہم ہے۔

- مثین کے برتی سروں پر 2300 وولٹ تارکی برتی دباو مہیا کرتے ہوئے اگر اس کی میدانی برتی رواتنی رکھی جائے کہ پورے بوجھ پر مثین کا جزو طاقت ایک کے برابر ہو تو اس سے زیادہ سے زیادہ کتنی قوت مروڑ حاصل کی جائے ہے۔
- اگر اسے 2 قطب 3000 چکر فی منٹ تین مرحلہ سارہ جڑی 2300 وولٹ تارکی برقی دباو پیدا کرنے والی 2200 کلو وولٹ اللہ 2.3 اوہم ہو۔ موٹر 2200 کلو وولٹ ایمبیئر کی معاصر جزیئر سے چلایا جائے جس کی یک مرحلہ معاصر امالہ 2.3 اوہم ہو۔ موٹر پر اس کا پورا برقی بوجھ لاد کر جزیئر کو معاصر رفتار پر چلاتے ہوئے دونوں مشینوں کی میدانی برقی رو یہاں برقرار رکھ کر کی جاتی ہے حتی کہ موٹر ایک جزو طاقت پر چلنے لگے۔دونوں مشینوں کی میدانی برقی رو یہاں برقرار رکھ کر موٹر پر بوجھ آہستہ آہستہ بڑھائی جاتی ہے۔اس صورت میں موٹر سے زیادہ سے زیادہ کتنی قوت مروڑ حاصل کی جا علی ہے اور اس کی سروں پر تارکی برقی دباو کتنی ہو گی۔

حل:

• شكل 6.7-الف اور 6.7-ب سے رجوع كريں ـ يك مرحله برقى دباو اور كل برقى رويه بين

$$\frac{2300}{\sqrt{3}} = 1327.9 \,\mathrm{V}$$
$$\frac{1800000}{\sqrt{3} \times 2300} = 451.84 \,\mathrm{A}$$

6.4. بر قى ك منتقلى 6.4.

للذا

$$\begin{split} \hat{E}_{am,m} &= \hat{V}_a - j\hat{I}_a X_{s,m} \\ &= 1327.9 \underline{/0^{\circ}} - j451.84 \underline{/0^{\circ}} \times 2.1 \\ &= 1327.9 - j948.864 \\ &= 1632 \underline{/-35.548^{\circ}} \end{split}$$

ہے۔یوں مساوات 6.31 سے ایک مرطلے کی زیادہ سے زیادہ برقی طاقت

$$p_{\xi^{\prime\prime}} = \frac{1327.9 \times 1632}{2.1} = 1\,031\,968\,\mathrm{W}$$

ہے۔ یوں تین مرحلوں کی زیادہ سے زیادہ طاقت 904 3095 واٹ ہو گی۔ 50 ہر ٹز اور 50 قطب سے مثین کی معاصر میکانی رفتار مساوات 5.5 کی مدد سے دو چکر فی سیکنڈ حاصل ہوتی ہے لیعنی $f_m=2$ یوں مثین سے زیادہ سے زیادہ قوت مروڑ

$$T_{\mathcal{F}^{\dagger}} = \frac{p_{\mathcal{F}^{\dagger}}}{2\pi f_m} = \frac{3095904}{2 \times \pi \times 2} = 246364 \,\mathrm{N\,m}$$

حاصل ہو گی۔

• شکل 6.7-پ سے رجوع کریں۔ پہلی جزو کی طرح یہاں بھی موٹر کی برقی سروں پر تار کی برقی دباو 2300 وولٹ اور اس کی محرک برقی دباو 1632 وولٹ ہے۔ جزیئر کی محرک برقی دباو

$$\begin{split} \hat{E}_{am,g} &= \hat{V}_a + j\hat{I}_a X_{s,g} \\ &= 1327.9 / 0^{\circ} + j451.84 / 0^{\circ} \times 2.3 \\ &= 1327.9 + j1039.233 \\ &= 1686 / 38.047^{\circ} \end{split}$$

ہے۔ یہ صورت شکل 6.7-ت میں دکھائی گئی ہے۔

معاصر موٹر اس وقت زیادہ سے زیادہ طاقت پیدا کرے گی جب $\hat{E}_{am,m}$ اور $\hat{E}_{am,m}$ آپس میں $\hat{E}_{am,m}$ زاویہ پر ہوں۔ ایسا شکل $\hat{E}_{am,m}$ میں و کھایا گیا ہے ۔

اب مساوات 6.31 میں ایک معاصر امالہ کی جگہ سلسلہ وار جڑی موٹر اور جزیئر کی امالہ ہیں اور دو برقی دباو اب موٹر اور جزیئر کی محرک برقی دباو ہیں۔یول موٹر کی یک مرحلہ زیادہ سے زیادہ طاقت

$$p_{\xi^{\prime}} = \frac{1686 \times 1632}{2.3 + 2.1} = 625352 \,\mathrm{W}$$

عاصل ہوں گے۔ تین مرحلوں سے بول 876 056 واٹ حاصل ہوں گے اور زیادہ سے زیادہ قوت مروڑ $T_{|\vec{\varphi}|} = \frac{1876056}{2 \times \pi \times 2} = 149\,291\,\mathrm{N}\,\mathrm{m}$

ہو گی۔

معاصر جزیٹر: برقی بوجھ ہالمقابل I_m کے خطوط 6.5.1

شکل 6.5-ب کے لئے مرحلی سمتیوں کا مساوات یہ ہے

$$\hat{E}_{am} = \hat{V}_a + j\hat{I}_a X_s$$

اسے بول لکھ سکتے ہیں

(6.33)
$$E_{am/\sigma} = V_a/0 + I_a X_s / \frac{\pi}{2} + \phi$$

اس مساوات کو مخلوط عدد ¹⁸ کے طور پر یوں لکھ سکتے ہیں۔

$$E_{am}\cos\sigma + jE_{am}\sin\sigma = V_a\cos0 + jV_a\sin0 + I_aX_s\cos\left(\frac{\pi}{2} + \phi\right) + jI_aX_s\sin\left(\frac{\pi}{2} + \phi\right)$$
$$= E_{am,x} + jE_{am,y}$$

اس مساوات سے $\left|\hat{E}_{am}
ight|$ یعنی $\left|\hat{E}_{am}
ight|$ کی مقدار یوں حاصل ہوتی ہے۔

(6.34)
$$\begin{aligned} \left| \hat{E}_{am} \right| &= E_{am} = \sqrt{E_{am,x}^2 + E_{am,y}^2} \\ &= \sqrt{V_a^2 + (I_a X_s)^2 + 2V_a I_a X_s \sin \phi} \end{aligned}$$

 E_{am} جزیئر کے سروں پر معین V_a رکھتے ہوئے مختلف ϕ کے لئے E_{am} بالمقابل I_a خط شکل E_{am} میں دکھائے گئے ہیں۔ چونکہ E_{am} اور I_m براہِ راست متناسب ہیں اور اسی طرح کسی ایک مخصوص جزو طاقت اور معین V_a لئے جزیٹر کا طاقت I_a کے براہ راست متناسب ہوتا ہے لہذا یہی ترسیم I_m بالقابل جزیٹر کے طاقت کو بھی ظاہر کرتا

 ${\rm complex}\ {\rm number}^{18}$

 I_a بر تی بار ہاقوی کھھے کی بر تی رو

شکل 6.8: جزیڑ: برقی بوجھ بالمقابل I_m خط

معاصر موٹر: I_a بالقابل معاصر موٹر: I_m معاصر موٹر:

معاصر موٹر کا مساوی دور (ریاضی نمونہ) شکل 6.3 میں د کھایا گیا ہے اور اس کا مرحلی سمتیہ شکل 6.9 میں د کھایا گیا ہے۔ اس میں مزاحمت نظرانداز کرنے سے اس کی مساوات بوں ہو گا۔

(6.35)
$$\begin{split} \hat{V}_{a} &= \hat{E}_{am} + j\hat{I}_{a}X_{s} \\ V_{a}\underline{/0} &= E_{am}\underline{/\sigma} + jI_{a}\underline{/\phi}X_{s} \\ &= E_{am}\underline{/\sigma} + I_{a}X_{s}\underline{/\frac{\pi}{2} + \phi} \end{split}$$

اس مساوات میں زاویے موٹر پر لا گو برقی دباو \hat{V}_a کے حوالہ سے ہیں، یعنی \hat{V}_a کا زاویہ صفر لیا گیا ہے۔یاد رہے کہ زاویہ ناینے کی مثبت سمت اُفقی کلیر سے گھڑی کی اُلٹی سمت ہے المذا پیرچ زاویہ 19 مثبت اور ماخیری زاویہ 20 منفی ہیں۔ اس مساوات سے امالی دیاو E_{am} کی مقدار بوں حاصل ہو گی۔

$$\begin{split} E_{am}\underline{\prime\sigma} &= V_a\underline{\prime0} - I_aX_s\underline{/\frac{\pi}{2} + \phi} \\ &= V_a - I_aX_s\cos\left(\frac{\pi}{2} + \phi\right) - jI_aX_s\sin\left(\frac{\pi}{2} + \phi\right) \\ &= V_a + I_aX_s\sin\phi - jI_aX_s\cos\phi \end{split}$$

leading angle¹⁹ lagging angle²⁰

شکل 6.9:موٹر کامر حلی سمتیہ۔ ح

للذا

(6.36)
$$|E_{am}| = \sqrt{(V_a + I_a X_s \sin \phi)^2 + (I_a X_s \cos \phi)^2}$$
$$= \sqrt{V_a^2 + I_a^2 X_s^2 + 2V_a I_a X_s \sin \phi}$$

موٹر پر لاگو برقی دباہ اور اس پر میکانی بوجھ کو 0%، 25% اور 75% پر رکھ کر اس مساوات کو شکل 6.10 میں ترسیم کیا گیا ہے۔ یہ موٹر کے E_{am} بالمقابل I_a بالمقابل I_a بالمقابل میں ہے ہر خط ایک معین میکانی بوجھ I_a کے لئے ہے جہاں I_a

$$(6.37) p = V_a I_a \cos \phi$$

اس مساوات سے واضح ہے کہ اگر q اور V_a معین ہوں تو جزو طاقت تبدیل کر کے I_a تبدیل کیا جا سکتا ہے۔لہذا مساوت 6.36 کو مساوات 6.37 کی مدو سے ترسیم کیا جاتا ہے۔ یہ کچھ یوں کیا جاتا ہے۔ معین V_a اور V_a کا مختلف V_a کی مساوات 6.36 سے V_a حاصل کریں۔ ان V_a اور V_a کو مساوات 6.36 میں استعال کر کے V_a کا محتلف V_a کا مساوات V_a کے مساوات کر کے کہ کریں۔

موٹر کی ان خطوط سے واضح ہے کہ I_m کو تبدیل کر کے موٹر کی جزو طاقت تبدیل کی جا سکتی ہے۔ للذا موٹر کو پیاچ زاویہ یا آخیر کے زاویہ پر چلایا جا سکتا ہے۔ اگر اسے پیش زاویہ پر رکھا جائے تو یہ ایک کپیسٹر 21 کے طور پر استعال ہو سکتا ہے اگرچہ ایسا کیا نہیں جاتا چونکہ کپیسٹر از خود زیادہ سستا ہوتا ہے۔

 ${\rm capacitor}^{21}$

 $ec{\epsilon}$ ى ئىچى كىرىن دە I_a

 I_m میدانی کچھے کی بر تی رو

شکل I_a : موٹر: I_m بالمقابل I_a خط

6.6 کھلے دوراور کسرِ دور معائنہ

معاصر مشین کے مساوی دور بنانے کے لئے اس کے جزو معلوم کرنا لازم ہے۔ یہ دو قشم کے معائنوں سے کیا جاتا ہے۔ انہیں کھلے دور معائنہ اور کسرِ دور معائنہ کہتے ہیں۔ان معائنوں سے قالب کے سیر اب ہونے کے اثرات بھی سامنے آتے ہیں۔ ہم نے ٹرانسفار مر کے لئے بھی اسی قشم کے معائنے کیے تھے۔ وہاں ہم نے دیکھا تھا کہ کھلے دور معائنہ اس برقی دباو پر کیا جاتا ہے معائنہ اس برقی دو پر کیا جاتا ہے جاتا ہے مثین بنائی گئی ہو جبکہ کسرِ دور معائنہ اس برقی رو پر کیا جاتا ہے جاتے گئے مثین بنائی گئی ہو جبکہ کسرِ دور معائنہ اس برقی رو پر کیا جاتا ہے جاتے گا۔

6.6.1 گطے دور معائنہ

معاصر مثین کے برقی سرے گھلے رکھ کر اور اسے معاصر رفتار پر گھماتے ہوئے مختلف I_m پر مثین کے سرول پر پیدا برقی دباو V_a ناپی جاتی ہے ۔ ان دو کا ترسیم شکل 6.11-الف میں دکھایا گیا ہے۔ یہ خط مثین کے گھلے دور خاصیت ظاہر کرتا ہے۔ یہی خط مثین بنانے والے بھی مہیا کر سکتے ہیں۔

design²²

شكل 6.11: گھلے دور خطاور قالبی ضیاع۔

اس کتاب کے حصہ 2.8 میں بتلایا گیا تھا کہ قالب پر لاگو مقناطیسی دباوا گر بڑھایا جائے تو اس میں مقناطیسی بہاو بڑھتی ہے البتہ جلد ہی قالب سیر اب ہونے لگتا ہے۔اس کا اثر شکل-الف میں خط کے جھکنے سے واضح ہے۔اگر قالب سیر اب نہ ہوتا تو یہ خط شکل میں دیئے سیدھی ککیر کی پیروی کرتا۔شکل میں مشین کا پورا برقی دباو اور اس پر درکار برقی رو I_{m0} دکھلایا گیا ہے۔

یہ معائنہ کرتے وقت اگر دھرے پر میکانی طاقت p_1 ناپی جائے تو یہ بے بوجھ مشین کی طاقت کے ضیاع کے برابر ہو گی۔ اس کا بیشتر حصہ رگڑ کی وجہ سے ، کچھ حصہ قالب میں ضیاع کی وجہ سے اور کچھ گھومتے لچھے میں ضیاع کی وجہ سے ہو گا۔ یاد رہے کہ عموماً گھومتے لچھے کو یک سمتی جزیئر سے برقی توانائی دی جاتی ہے اور یہ جزیئر بھی مشین کی وجہ سے ہو گا۔ یاد رہے کہ عموماً گھومتے لچھے کو یک سمتی جزیئر سے بی ملتی ہے۔ بے بوجھ مشین اور بوجھ بردار مشین دونوں کا رگڑ سے طاقت کے ضیاع کو کیساں سمجھا جاتا ہے چونکہ رگڑ سے طاقت کے ضیاع کا مشین پر لدے بوجھ سے کوئی خاص تعلق نہیں۔ اب اگر یہی معائنہ دوبارہ کیا جائے لیکن اس مرتبہ I_m بھی صفر رکھا جائے تو اس مرتبہ ناپا گیا طاقت کا فرق لیخی تو اس مرتبہ ناپا گیا طاقت کے ضیاع اور گھومتے لچھے میں برتی ضیاع کے برابر ہو گا۔ ان دو ناپے گئے طاقت کا فرق لیخی بہت کم ہوتا قالب میں طاقت کے ضیاع کا حصہ ہی تصور کیا جاتا ہے۔ اس طرح ناپے گئے قالبی ضیاع کا ایک خط شکل ہے اور اس کو عموماً قالب کے ضیاع کا حصہ ہی تصور کیا جاتا ہے۔ اس طرح ناپے گئے قالبی ضیاع کا ایک خط شکل ہے۔ اور اس کو عموماً قالب کے ضیاع کا حصہ ہی تصور کیا جاتا ہے۔ اس طرح ناپے گئے قالبی ضیاع کا ایک خط شکل

6.6.2 كسرٍ دور معائنه

شكل 6.12: كسر دور خطاور كھلے دور خط۔

خاصیت و کھلاتا ہے۔ یہ معائنہ کرتے وقت یہ دھیان رکھنا بہت اہم ہے کہ I_a کی مقدار کہیں خطرناک حد تک نہ بڑھ جائے للذا اسے جزیئر کے پورے برقی بوجھ 24 پر I_a کی مقدار یا اس کی دگنی مقدار سے کم رکھنا ضروری ہے ورنہ مثین گرم ہو کر تباہ ہو سکتی ہے۔ کسرِ دور مثین میں، ڈیزائن کردہ برقی دباو کے، صرف دس سے پندرہ فی صد برقی دباو پر ہی اس میں سو فی صد برقی رو شروع ہو جاتی ہے۔ اتنا کم برقی دباو حاصل کرنے کے لئے خلائی درز میں اس تناسب سے کم مقناطیسی بہاو درکار ہوتا ہے۔

شکل 6.5 میں جزیٹر کے مساوی برتی دور دکھائے گئے ہیں۔ اسے شکل 6.13 میں کسرِ دور کر کے دکھایا گیا ہے۔ یہاں سے واضح ہے کہ

$$\hat{E}_{am} = \hat{I}_a R_a + j \hat{I}_a X_s$$

کو نظر انداز کر کے اس مساوات سے معاصر امالہ یوں حاصل کیا جا سکتا ہے۔ R_a

(6.39)
$$X_s = \frac{\left|\hat{E}_{am}\right|}{\left|\hat{I}_a\right|} = \frac{E_{am}}{I_a}$$

اس مساوات میں \hat{I}_a کسرِ دور مشین کی برقی رو اور \hat{E}_{am} اس کی اسی حال میں ایک دور کی امالہ برقی دباو ہے۔ کھلے دور مشین میں \hat{I}_a صفر ہو تو \hat{E}_{am} اور مشین میں \hat{I}_a صفر ہوتا ہے ۔مساوات \hat{E}_{am} ہول گے۔ لہذا ہم کسی معین \hat{I}_a پر شکل \hat{I}_a -الف سے \hat{I}_a اور شکل \hat{I}_a -ب سے \hat{I}_a معلوم کرتے ہیں اور ان سے \hat{I}_a کا حساب لگاتے ہیں، یعنی \hat{I}_a

$$(6.40) X_s = \frac{V_{a0}}{I_{a0}}$$

 $full\ load^{24}$

$$\begin{split} \hat{E}_{am} &= \hat{I}_a R_a + j \hat{I}_a X_s \\ &\approx j \hat{I}_a X_s \qquad X_s \gg R_a \\ X_s &= \frac{|\hat{E}_{am}|}{|\hat{I}_a|} \end{split}$$

شكل 6.13: معاصراماليه

معاصر امالہ عموماً مشین کے بورے برقی دباو پر معلوم کی جاتی ہے تاکہ قالب سیر اب ہونے کے اثر کو بھی شامل کیا جائے۔شکل میں ایسا ہی کیا گیا ہے۔

معاصر امالہ مشین کو ستارہ نما تصور کر کے اس کا یک مرحلہ X_s حاصل کیا جاتا ہے۔لہذا اگر معائنہ کرتے وقت مشین کی تار برقی دباو 25 ناپے گئے ہوں تو انہیں $\sqrt{3}$ سے تقسیم کر کے مشین کے یک مرحلہ برقی دباو حاصل کر کے مسین کے بیک مرحلہ برقی دباو حاصل کر کے مساوات میں استعال کریں، لیعنی

$$V_{\rm pl} = \frac{V_{\rm N}}{\sqrt{3}}$$

مثال 6.4: ایک 75 کلو وولٹ-ایمپیئر ستارہ جڑی 415 وولٹ پر چلنے والی تین مرحلہ معاصر مشین کے کھلے دور اور کسرِ دور معائنے کئے گئے۔حاصل نتائج کیے ہیں۔

- کھلے دور معائنہ: $I_m = 3.2\,\mathrm{A}$ اور $I_m = 3.2\,\mathrm{A}$ بیں۔
- کسر دور معائنه: جب قوی کچھے کی برتی رو A 104 کھی تب میدانی کچھے کی برتی رو A 2.48 کھی اور جب قوی کچھے کی برقی رو A 126 کھی تب میدانی کچھے کی برقی رو A 3.2 کھی۔

اس مشین کی معاصر امالہ حاصل کریں۔

حل: یک مرحله برقی د باو

$$V_{\rm loc} = rac{V_{
m loc}}{\sqrt{3}} = rac{415}{\sqrt{3}} = 239.6\,{
m V}$$

line voltage 25

شكل 6.14: كسر دور معاصر مشين ميں طاقت كاضياع۔

ہے۔ یہ کھلے دور برقی دباو 3.2 ایمپیئر میدانی برقی رو پر حاصل ہوتی ہے۔ اتنی میدانی برقی رو پر کسرِ دور برقی رو 126 ایمپیئر ہیں للذا یک مرحلہ معاصر امالہ

$$X_s = \frac{239.6}{126} = 1.901\,\Omega$$

ہو گی۔

 T_{2} کر دور معائنہ کرتے وقت اگر دھرے پر لاگو میکانی طاقت T_{2} ناپی جائے تو یہ کسر دور مشین کی کل ضیاع ہو گی۔ T_{2} ناپ لیس۔ اس کا کچھ حصہ قالب کی برتی ضیاع، کچھ دونوں کچھوں میں برتی ضیاع اور کچھ رگڑ سے میکانی ضیاع سے بہلے معائنہ میں ناپی گئی رگڑ کی ضیاع T_{2} منفی کی جائے تو ہمیں کچھوں کی ضیاع اور قالب کی ضیاع ملا ہے۔ جیسا اُوپر عرض کیا گیا کہ کسر دور مشین میں پورا برتی رو، پورے برتی دباوے مرف دس تا ہیں فی صدیر حاصل ہو جاتا ہے اور اتنا کم برتی دباو حاصل کرنے کے لئے درکار مقاطیعی بہاو اتنا ہی کم ہوتا ہے۔ اس طرح کسی مقاطیعی بہاو پر قالب میں ضیاع کو نظر انداز کیا جا سکتا ہے۔ اس طرح کسی میں برقی ضیاع سے بہت کم ہوتا ہے اور اسے بھی نظر انداز کیا جا سکتا ہے۔ اس طرح کسی کسر دور معاصر مشین کے گھومتے لیچھ میں برتی ضیاع کے برابر لیا جاتا ہے۔ شکل T_{2} کسی نظر انداز کیا جا سکتا ہے۔ لہذا

$$p_3 - p_2 = I_{a,3}^2 R_a$$

اس مساوات سے معاصر مشین کی مساوی مزاحمت یول حاصل ہوتی ہے۔

(6.42)
$$R_a = \frac{p_3 - p_2}{I_{a.3}^2}$$

مثال 6.5: ایک 75 کلو وولٹ-ایمبیئر 415 وولٹ پر چلنے والی تین مرحلہ معاصر مشین کے پورے برقی رو پر کل کر ہے۔ اس مشین کی یک مرحلہ موثر مزاحمت حاصل کریں۔

$$733.33\,\mathrm{W}$$
 کوری برقی رو $\frac{2200}{3}=733.33\,\mathrm{W}$ کوری برقی رو $\frac{75000}{\sqrt{3}V_{\mathrm{JU}}}=104.34\,\mathrm{A}$

ہے۔للذا

$$R_a = \frac{733.33}{104.34^2} = 0.067 \,\Omega$$

مثال 6.6: شکل 6.15 میں 500 وولٹ، 50 ہر ٹز، 4 قطب ستارہ جڑی معاصر جزیٹر کا کھلے دور خط دکھایا گیا ہے۔ اس جزیٹر کا معاصر امالہ 0.1 اوہم اور قوی کچھے کی مزاحمت 0.01 اوہم ہے۔ پورے برقی بوجھ پر جزیٹر 0.92 تاخیری جزو طاقت²⁶ پر 1000 ایمپیئر فراہم کرتا ہے۔ پورے بوجھ پر رگڑ کے ضیاع اور کچھے کی مزاحمت میں ضیاع کا مجموعہ 30 کلو واٹ جبکہ قالب کی ضیاع 25 کلو واٹ ہے۔

- جزیٹر کی رفتار معلوم کریں۔
- بے بوجھ جزیٹر کی سرول پر 500 وولٹ برقی دباو کتنی میدانی برقی رو پر حاصل ہو گا۔
- اگر جزیٹر پر 92.0 تاخیر ی جزو طاقت، 1000 ایمپیئر کا برقی بوجھ لادا جائے تو جزیٹر کے برقی سروں پر 500 وولٹ برقرار رکھنے کے لئے کتنی میدانی برقی رو در کار ہو گی۔
- جزیٹر پورے بوجھ پر کتنی طاقت فراہم کر رہا ہے جبکہ اس کو محرک کتنی میکانی طاقت فراہم کر رہا ہے۔ان دو سے جزیٹر کی فی صد کارگزار کھے 27 حاصل کریں۔
 - اگر جزیٹر سے یک دم برقی بوجھ ہٹایا جائے تواس لحہ اس کے برقی سروں پر کتنا برقی دباو ہو گا۔
- اگر جزیٹر پر 1000 ایمپیئر 0.92 پیش جزو طاقت والا بوجھ لادا جائے تو جزیٹر کے برقی سروں پر 500 وولٹ برقرار رکھنے کے لئے کتنی میدانی برقی رو درکار ہو گی۔

lagging power factor²⁶ efficiency²⁷

شكل 6.15: كطيح دور خطيه

• ان دو 1000 ایمپیئر تاخیری جزو طاقت اور پیش جزو طاقت بو جھوں میں کو نمی بوجھ زیادہ میدانی برقی رو پر حاصل ہوتی ہے۔ جزیٹر کس بوجھ سے زیادہ گرم ہو گا۔

حل:

- $f_{e}=rac{2}{2}$ چکر فی منٹ ہے۔ $f_{e}=rac{P}{2}$ منٹ ہے۔ $f_{e}=rac{P}{2}$ منٹ ہے۔ جہوں کی منٹ ہے۔ کی منٹ ہے۔
 - شكل 6.15 سے 500 وولٹ كے لئے دركار ميداني برقى رو تقريباً 2.86 ايمپيئر ہے۔
- سارہ برتی دباو کے تعلق سے مرحلہ برتی دو اور تار برتی رو برابر ہوتے ہیں۔ جزو طاقت سارہ یک مرحلہ برتی دو اور تار برتی رو برابر ہوتے ہیں۔ جزو طاقت سارہ یک مرحلہ برتی دباو کے نسبت جوڑ میں یک مرحلہ برتی رو اور تار برتی رو برابر ہوتے ہیں۔ جزو طاقت سارہ یک مرحلہ برتی دباو $\frac{289}{0}$ کھا جائے سے بیان کیا جاتا ہے۔ چونکہ $\frac{289}{0}$ کھا جائے گی۔ یوں شکل کہ گا یا مساوات $\frac{6.24}{0}$ سے اندرونی تو تاخیری دوری برتی رو $\frac{6.24}{0}$ 1000 کھی جائے گی۔ یوں شکل 6.4 یا مساوات $\frac{6.24}{0}$ سے اندرونی یبدا یک مرحلہ برتی دباو

$$\begin{split} \hat{E}_a &= \hat{V}_a + \hat{I}_a \left(R_a + j X_s \right) \\ &= 289 \underline{/0^\circ} + 1000 \underline{/-23.07^\circ} (0.01 + j0.1) \\ &= 349 \underline{/14.6^\circ} \end{split}$$

ہو گا جس سے اندرونی پیدا تار برتی دباہ $604=604 imes\sqrt{3} imes0$ وولٹ حاصل ہوتا ہے۔ شکل 6.15 سے اتن دباہ کے لئے $4.1\,\mathrm{A}$ میدانی برتی رو درکار ہے۔

• جزیٹر اس صورت میں

$$p = \sqrt{3}\hat{V}_a \cdot \hat{I}_a$$

= $\sqrt{3} \times 500 \times 1000 \times 0.92$
= 796743 W

فراہم کر رہاہے جبکہ محرک

$$p_m = 796.743 + 30 + 25 = 851.74 \,\text{kW}$$

$$\eta=rac{796.743}{851.74} imes100=93.54\%$$
 فراہم کر رہا ہے للذا اس جزیٹر کی کار گزاری

• اگر جزیٹر سے یک دم برتی بوجھ ہٹایا جائے تو اس لحہ اس کے برتی سرول پر 604 وولٹ برتی دباو ہو گا۔

• پیش جزو طاقت کی صورت میں

$$\hat{E}_a = \hat{V}_a + \hat{I}_a (R_a + jX_s)$$

$$= 289/0^{\circ} + 1000/23.07^{\circ} (0.01 + j0.1)$$

$$= 276/20.32^{\circ}$$

در کار ہو گی جس سے اندرونی پیدا تار برتی دباو 478 $= 478 imes \sqrt{3} imes 276$ وولٹ حاصل ہوتا ہے۔ شکل 6.15 سے اتنی دباو کے لئے 2.7 A میدانی برتی رو در کار ہے۔

• تاخیری جزو طاقت کے بوجھ پر جزیٹر کو زیادہ میدانی برقی رو درکار ہے۔میدانی کچھے کی مزاحمت میں اس کی وجہ سے زیادہ برقی طاقت ضائع ہوگی اور جزیئر یوں زیادہ گرم ہوگا۔

П

مثال 6.7: ایک 415 دولٹ، 40 کلو دولٹ-ایمپیئر ستارہ جڑی 0.8 جزو طاقت، 50 ہرٹز پر چلنی والی معاصر موٹر کا معاصر اللہ 2.2 اوہم ہے جبکہ اس کی مزاحمت قابل نظرانداز ہے۔اس کی رگڑ اور کچھوں کی مزاحمت میں طاقت کا ضیاع ایک کلو واٹ جبکہ قالبی ضیاع 800 واٹ ہے۔یہ موٹر 12.2 کلوواٹ میکانی بوجھ سے لدی ہے اور یہ 0.8 پیش جزو طاقت پر چل رہی ہے۔یاد رہے کہ معاصر امالہ مشین کو ستارہ نما تصور کرتے ہوئے حاصل کی جاتی ہے۔

اس کی مرحلی سمتیہ بنائیں۔تار کی برتی رو \hat{I}_t اور توی کیچھے کی برتی رو \hat{I}_a حاصل کریں۔موٹر کی اندرونی ہیجانی برقی دباو \hat{E}_a حاصل کریں۔

- میدانی برقی رو کو بغیر تبدیل کئے میکانی بوجھ آہتہ آہتہ بڑھا کر دگنی کی جاتی ہے۔اس صورت میں موٹر کی ردِ عمل مرحلی سمتیہ سے واضح کریں ۔
- اس دگنی میکانی بوجھ پر قوی کچھے کی برتی رو، تارکی برقی رواور موٹر کی اندرونی پیجانی برقی دباو حاصل کریں۔موٹر کی جزو طاقت بھی حاصل کریں۔

حل:

• سارہ جڑی موٹر کے سروں پر یک مرحلہ برتی دباو $239.6\,\mathrm{V}$ ہوگا جسے صفر زاوبیہ پر تصور کرتے ہوئی رو کا زاوبیہ بیان کیا جاتا ہے۔یوں $239.6/0^\circ$ کیھا جائے گا۔ جزو طاقت $0.8\,\mathrm{cm}$ ناوبیہ $\hat{V}_{sa}=239.6/0^\circ$ کو ظاہر کرتا ہے۔ یوں تارکی برتی روکا پیڑھے زاوبیہ یہی ہو گا۔موٹر کو مہیا برتی طاقت اس کی میکانی طاقت اور طاقت کے ضیاع کے برابر ہوگی لیعنی

12200 W + 1000 W + 800 W = 14000 W

جس کے لئے در کار تار کی برقی رو

$$I_t = \frac{p}{\sqrt{3}V_t \cos \theta}$$
$$= \frac{14\,000}{\sqrt{3} \times 415 \times 0.8}$$
$$= 24.346 \,\text{A}$$

ہو گی۔ستارہ جڑی موٹر کے قوی کچھے کی برقی رو تار کے برقی رو کے برابر ہو گی۔یوں برقی رو کا زاویہ شامل کرتے ہوئے اسے

$$\hat{I}_a = \hat{I}_t = 24.346 / 36.87^{\circ}$$

لکھا جا سکتا ہے۔

موٹر کا اندرونی یک مرحلہ بیجانی برقی دباو موٹر کی مساوی دور شکل 6.3 کی مدد سے

$$\begin{split} \hat{E}_a &= \hat{V}_{a,s} - jX_s\hat{I}_a \\ &= 239.6/0^{\circ} - j2.2 \times 24.346/36.87^{\circ} \\ &= 276/-8.96^{\circ} \end{split}$$

ہو گی۔یہ تمام صورت حال شکل 6.16 میں مرحلی سمتیات کی مدد سے دکھایا گیا ہے۔

شکل6.16: بوجھ بر دار معاصر موٹر۔

شكل 6.17: يوجھ رڑھنے كااثر۔

میکانی بوجھ بڑھنے سے موٹر کو زیادہ برقی طاقت درکار ہوگی۔ یہ اس صورت ممکن ہوگا جب موٹر کے قوی لیجھے کی برقی رو بڑھ سکے۔ میدانی برقی رو معین ہونے کی وجہ سے موٹر کی اندرونی ہجانی برقی دباو \hat{E}_a کی مقدار تبدیل نہیں ہو سکتی البتہ اس کا زاویہ تبدیل ہو سکتا ہے۔ موٹر \hat{E}_a کی مقدار تبدیل کئے بغیر برقی سروں پر لاگو برقی دباو \hat{V}_a کی مقدار تبدیل کئے بغیر برقی سروں پر لاگو برقی دباو دائی داوی گا۔ ایسا شکل 17 کی داور ہوں حاصل برقی طاقت بڑھا کے گا۔ ایسا شکل 6.17 میں دکھایا گیا ہے۔ شکل میں فی میں دکھایا گیا ہے۔ شکل میں ہوتا۔ زاویہ بڑھنے سے $\left|\hat{j}\hat{I}_aX_s\right|$ بڑھتا ہے۔ چونکہ $\left|\hat{j}\hat{I}_aX_s\right|$ کا طول تبدیل نہیں ہوتا۔ زاویہ بڑھنے کے متغیرات کو ہلکی سیابی میں دکھایا گیا ہے۔

• وگنی میکانی بوجھ پر موٹر کو کل 26200 = 26200 + 800 + 1000 واٹ یا 26.2 کلو واٹ برتی طاقت در کار ہے۔مساوات 6.29 کی مدد سے

$$\sigma = \sin^{-1}\left(\frac{pX_s}{3V_aE_a}\right) = \sin^{-1}\left(\frac{26200 \times 2.2}{3 \times 239.6 \times 276}\right) = 16.89^{\circ}$$

یوں موٹر کی اندرونی ہیجانی برتی دباو <u>°16.89 – 27</u>6 ہو گی اور قوی کچھے کی برتی رو

$$\begin{split} \hat{I}_a &= \frac{\hat{V}_a - \hat{E}_a}{jX_s} \\ &= \frac{239 / 0^{\circ} - 276 / -16.89^{\circ}}{j2.2} \\ &= 38 / 17.4^{\circ} \end{split}$$

ہو گی۔ ستارہ جوڑ کی وجہ سے \hat{I}_t بھی اتنا ہی ہو گا۔ پیش جزو طاقت $\cos 17.4^\circ = 0.954$ ہے۔

ياب7

امالی مشین

گزشتہ برسوں میں قوم الیمرانکرہ 1 کی میدان میں بہت ترقی ہوئی۔اس کا ایک بتیجہ یہ نکا کہ امالی موٹروں کی رفتار پر قابو رکھنا ممکن ہوا اور یوں ان موٹروں نے کارخانوں میں یک سمتی رو موٹروں کی جگہ لینی شروع کی۔ یہاں یہ بتااتا چلوں کہ اس سے پہلے جہاں بھی موٹر کی رفتار اہمیت رکھتی وہاں یک سمتی رو موٹر ہی استعال ہوتی جن کی رفتار پر قابو رکھنا نہایت آسان ہوتا ہے۔ پچاس سال پہلے ترقی یافتہ ممالک میں یک سمتی سے امالی آلوں کی جانب تبدیلی شروع تھی۔ آج میں یہی تبدیلی پاکستان میں دکھ رہا ہوں۔ امالی موٹروں کی مضبوطی اور دیر پاکام کرنے کی صلاحیت مثالی سے۔ قومی الکیئرانکس نے ان کی بے قابو رفتار کو قابو کر کے انہیں بلا مقابلہ بنا دیا۔

امالی موٹر ٹرانسفار مرکی ایک اور شکل ہے یا یوں کہنا بہتر ہو گاکہ یہ ایک ایسا ٹرانسفار مر ہے جس میں ثانوی لچھا حرکت بھی کرتا ہے۔یوں امالی موٹر کے ساکن کچھے ٹرانسفار مر کے ابتدائی کچھے اور موٹر کے گھومتے کچھے ٹرانسفار مرک ثانوی کچھوں کی جگہ ہوتے ہیں۔موٹر کے ساکن کچھوں کو بیرونی برقی طاقت دی جاتی ہے جبکہ اس کے گھومتے کچھوں میں خلاء میں گھومتے مقناطیسی موج سے پیدا امالی برقی دباو ہی کام آتی ہے۔اسی سے اس کا نام امالی موٹر نکلا ہے۔

اس باب کا مقصد امالی موٹر کی مساوی دور لیعنی ریاضی نمونہ 2 بنا کر اس کی خصوصیات پر غور کرنا ہے۔ہم دیکھیں گے کہ ان کا مساوی دور ٹرانسفار مر کے مساوی دور کی طرح کا ہے۔

 $\begin{array}{c} power \ electronics^1 \\ mathematical \ model^2 \end{array}$

یہاں بھی ہم تصور کرتے ہیں کہ موٹر دو قطب اور تین مرحلہ ہے اور اس کے کیھے ستارہ نما بڑے ہیں۔اس طرح یک مرحلہ کچھوں میں برقی رو، تارکی برقی رو ہی ہوگی اور ان پر لاگو برقی دباو، یک مرحلہ برقی دباو ہوگی۔ایسا کرنے سے مسئلہ پر غور کرنا آسان ہو جاتا ہے جبکہ نتیجہ کسی بھی موٹر کے لئے درست ہوتا ہے۔

7.1 ساكن لچھوں كى گھومتى مقناطيسى موج

امالی مثین کے ساکن کچھے بالکل معاصر مثین کے ساکن کچھوں کی طرح ہوتے ہیں۔ مزید یہ کہ اس کے گھومتے جھے کے اتنے ہی قطب ہوتے ہیں جتنے اس کے ساکن کچھوں کے ہوتے ہیں ۔اگر ان ساکن کچھوں کو متوازن تین مرحلہ برقی روسے بیجان کیا جائے تو یہ ایک گھومتے مقناطیسی دباو کی موج کو جنم دیں گے جے مساوات 5.48 میں دکھایا گیا ہے۔ مساوات 5.58 میں موج کی معاصر رفتار دیتی ہے۔ یہ دونوں مساوات بیہاں یاد دھیانی کے لئے دوبارہ دیئے جاتے ہیں۔ یہاں ساکن کچھوں میں برقی روکی تعدد ω کتعدد ω کتعدد عرب کھی گئی ہے اور ω کو صفر لیا گیا ہے۔

(7.1)
$$\tau_s^+(\theta, t) = \frac{3\tau_0}{2}\cos(\theta - \omega_t)$$
$$f_m = \frac{2}{P}f_e$$

7.2 مشین کی سر کنے اور گھومتی موجوں پر تبسرہ

ہم دو قطب کے مثین پر غور کر رہے ہیں۔P قطب کا تذکرہ بھی بالکل اسی طرح ہے۔ساکن کیجھوں میں تین مرحلہ برتی رو کی تعدد f_e ہے۔مساوات f_e کہتا ہے کہ دو قطب کی مثین میں موج کی معاصر رفتار بھی f_e چکر فی سکنڈ ہے۔ اب نصور کریں کہ مثین کا گھومتا حصہ f میکانی چکر فی سکنڈ سے موج کی سمت میں گھوم رہا ہے جہاں $f < f_e$ مہار کے اس صورت میں ہر سکنڈ گھومتا حصہ مقناطیسی بہاو کی موج سے پیچھے سرک جائے گا۔اس سر کنے کو موج کی معاصر رفتار کی نسبت سے یوں لکھا جاتا ہے۔

$$(7.2) s = \frac{f_s - f}{f_s} = \frac{f_e - f}{f_e}$$

یہاں s مشین کے سرک 2 کی ناپ ہے۔اس مساوات سے حاصل ہوتا ہے۔

(7.3)
$$f = f_s(1-s) = f_e(1-s)$$
$$\omega = \omega_s(1-s) = \omega_e(1-s)$$

یہاں غور کریں۔ مقناطیسی بہاو کی موج f_e زاویائی رفتار سے گھوم رہی ہے جبکہ گھومتے کچھے کی زاویائی رفتار f_e ہے۔ گھومتے کچھے کے حوالہ سے مقناطیسی بہاو کی موج (f_e-f) رفتار سے گھوم رہی ہے۔ یعنی اگر گھومتے کچھے کو ساکن تصور کیا جائے تو گھومتے مقناطیسی بہاو کی موج (f_e-f) اضافی رفتار سے گھوم رہی ہو گی۔ یوں گھومتے کچھے میں امالی برقی دباو کی تعدد f_r کو یوں کھا جاسکتا ہے۔ جاسکتا ہے۔

(7.4)
$$f_r = f_e - f = f_e - f_e(1 - s) = sf_e$$

اگر مشین کو ایک امالی موٹر کے طور پر استعال کیا جا رہا ہو تو اس کے گھومتے کچھے کسر دور رکھے جاتے ہیں۔یوں ان کچھوں میں برقی رو کی تعدد sf_e اور ان کی مقدار کچھوں میں پیدا امالی برقی دباو اور کچھوں کی رکاوٹ پر منحصر ہوتی ہے۔ کچھوں کی رکاوٹ برقی رو کی تعدد پر منحصر ہوتی ہے۔

ساکن موٹر جب چالو کی جائے تو اس کے سرک s کی قیمت ایک ہوتی ہے لین 1=s اور یوں اس کے گومتے کچھوں میں برتی رو کی تعدد f_e ہوتی ہے۔ گومتے کچھوں میں f_e تعدد کی برتی رو ایک گومتی مقناطیسی دباو کی موج کو جنم دے گی جو معاصر رفتار سے گومے گی۔ یہ بالکل اس طرح ہے جیسے ساکن کچھوں میں برتی رو سے گومتا مقناطیسی دباو کا موج وجود میں آتا ہے۔ لہذا ساکن اور گومتے کچھے دونوں کے گومتے مقناطیسی دباو کے موج ایک ہی رفتار سے گومتے ہیں۔ یہ دو مقناطیسی دباو کی موجیں دو گومتے ہیناطیسوں کی طرح ہیں جو کوشش کریں گے کہ ان کے مابین زاویہ صفر ہو۔ یوں موٹر قوضے مروڈ کہ پیدا ہوتا ہے جس کا حساب مساوات 5.90 سے لگیا جا سکتا ہے۔ اگر موٹر کے دھرے پر لدے بوجھ کو مثنین کا پیدا کردہ قوت مروڑ گھما سکے تو مثنین گھومے گی۔ اس کی رفتار تیز ہو کر ایک برقرار حد تک پہنچ جائے گی۔ امالی موٹر کی رفتار کبھی بھی معاصر رفتار تک نہیں پہنچ سکتی چونکہ اس رفتار پر اس کے گھوں کی نسبت سے ساکن کچھوں کی گھومتی مقناطیسی دباو کی موج ساکن ہو گی اور گھومتے کچھوں میں کوئی امالی برقی دباو پیدا نہیں ہو گی۔ ویا در گھومتے کچھوں میں کوئی امالی برقی دباو پیدا نہیں ہو گی اور گھومتے کچھوں میں کوئی امالی برقی دباو پیدا نہیں ہو گا۔

جب موٹر چل پڑتی ہے تو اس کے گھومتے کچھوں میں برقی رو کی تعدد sf_e ہوتی ہے۔ ان برقی رو سے پیدا مقاطیسی دباو کی موج گھومتے کچھے کے حوالہ سے sf_e رفتار سے گھومے گی چونکہ معاصر رفتار برقی رو کی تعدد کے

slip³ torque⁴

 $(f+sf_e)$ برابر ہی ہوتی ہے۔اب گھومتا کچھا از خود f رفتار سے گھوم رہا ہوتا ہے لہذا یہ موج در حقیقت خلاء میں رفتار سے گھومتی ہے۔مساوات f. کسے

$$(7.5) f + sf_e = f + f_e - f = f_e$$

یہ ایک بہت اہم منتیجہ ہے۔ یہ مساوات کہتا ہے کہ موٹر کسی بھی رفتار سے گھوم رہی ہو، گھومتے کچھول سے پیدا مقناطیسی دباو کی موج ساکن کچھول سے پیدا مقناطیسی دباو کی موج کی رفتار سے ہی گھومتی ہے۔

مثال 7.1: ایک چار قطب کی ستارہ جڑی 50 ہر ٹرن 415 وولٹ پر چلنے والی امالی موٹر 15 کلو واٹ کی اپنی پوری بوجھ پر پانچ فی صد سرک پر چلتی ہے۔

- اس موٹر کی معاصر رفتار کیا ہے۔
- بورے بوجھ پر اس کی کیا رفتار ہے۔
- يورے بوجھ پر گھومتے لچھے ميں برقی تعداد ارتعاش كيا ہے۔
- پورے بوجھ سے لدے موٹر کی دھرے پر قوت مروڑ حاصل کریں۔

حل:

- مساوات 7.1 کی مدو سے معاصر رفتار $f_m = \frac{2}{4} \times 50 = 25$ کیکر نی سیکنڈ یا 7.1 کی مدو سے معاصر رفتار منٹ ہے۔
- پورے بوجھ سے لدا موٹر پانچ فی صد سرک پر چلتا ہے لہذا اس کی رفتار معاصر رفتار سے قدرِ کم ہو گی۔موٹر کی رفتار مساوات 7.3 کی مدد سے 23.75 = 25(1-0.05) = 25 کی رفتار مساوات 7.3 کی مدد سے 23.75 گیا۔ گیا۔
 - $f_r = 0.05 imes 50 = 2.5$ ہر ٹر ہے۔
 - اس کے وحرے پر قوت مروڑ $T_m=rac{p}{\omega_m}=rac{15000}{2 imes\pi imes2.75}=100.5\,\mathrm{N}\,\mathrm{m}$ ہوگی۔

7.3 ساكن لچھوں ميں امالى برقى دباو

مساوات 7.1 کا پہلا جزو ساکن کچھوں کی پیدا کردہ مقناطیسی دباو کی موج کو ظاہر کرتی ہے۔ یہ مقناطیسی دباو مشین کی خلائی درز میں مقناطیس شدت $H^+(\theta)$ پیدا ہو گا۔ اگر خلائی درز میں مقناطیس بہاو $H^+(\theta)$ پیدا ہو گا۔ اگر اس خلائی درز کی رداس کی سمت میں لمبائی $H^+(\theta)$ ہو تو

(7.6)
$$B^{+}(\theta) = \mu_0 H^{+}(\theta) = \mu_0 \frac{\tau^{+}(\theta)}{l_g}$$
$$= \frac{3\mu_0 \tau_0}{2l_g} \cos(\theta - \omega_e t)$$
$$= B_0 \cos(\theta - \omega_e t)$$

یہ مساوات بالکل مساوات $B^+(\theta)$ کی طرح ہے۔ یوں مساوات 5.72 اس مقناطیسی موج $B^+(\theta)$ کی ساکن کچھوں میں پیدا کردہ امالی برقی دباو کو ظاہر کرے گی ۔ یہ مساوات یہاں دوبارہ دیا جا رہا ہے۔

(7.7)
$$e_{as}(t) = \omega_e N_s \phi_0 \cos(\omega_t - 90^\circ) = E_s \cos(\omega_t - 90^\circ)$$
$$e_{bs}(t) = \omega_e N_s \phi_0 \cos(\omega_t + 150^\circ) = E_s \cos(\omega_t + 150^\circ)$$
$$e_{cs}(t) = \omega_e N_s \phi_0 \cos(\omega_t + 30^\circ) = E_s \cos(\omega_t + 30^\circ)$$

جہال N_s ساکن کچھے کے چکر ہیں اور

$$(7.8) E_s = \omega_e N_s \phi_0$$

7.4 ساکن کچھوں کی موج کا گھومتے کچھوں کے ساتھ اضافی رفتار اور ان میں پیداامالی برقی دباو

مساوات 7.1 کا پہلا بُڑن ساکن کچھوں کی پیدا کردہ، گھومتے مقناطیسی دباو کی موج کو ظاہر کرتا ہے۔اس موج کی چوٹی 7.1 اس مقام پر ہوتی ہے جہال $(\theta-\omega_e t)$ صفر کے برابر ہو۔ یوں لمحہ صفر پر اس کی چوٹی صفر زاویہ پر ہو گی اور لمحہ t پر

انظ ساکن میں حرف س کے آواز کوsے ظاہر کیا گیاہے۔ $ext{peak}^6$

شکل 7.1: امالی موٹراوراس کے گھومتے مقناطیسی دباو کی موجیں۔

اس موج کی چوٹی زاویہ $\omega_e t$ پر ہو گی۔ ساکن کچھوں کی مقناطیسی دباو کی موج کا زاویہ کسی بھی نقطہ کے حوالے سے کیا جا سکتا ہے۔ اس کتاب میں صفر زاویہ ساکن کچھا a کو لیا جاتا ہے۔ اس طرح یہ زاویہ نقطہ دار اُفقی کلیر سے ناپا جاتا ہے۔ اس طرح یہ زاویہ نقطہ دار اُفقی کلیر سے ناپا جاتا ہے۔ شکل 7.1 میں ایسا ہی دکھایا گیا ہے۔ اس شکل میں ایک امالی موٹر دکھائی گئی ہے جس کے تین مرحلہ ساکن کچھے ہیں۔ ہیں۔

f شین f گومتے کچھے بھی بالکل اسی طرح ہوتے ہیں اگرچہ شکل میں صرف ایک ہی گھومتا کچھا دکھایا گیا ہے۔ مثین f زاویائی رفتار سے گھوم رہی ہے۔ نصور کریں کہ لمحہ صفر یعنی f پر گھومتے حصہ کا g کچھا صفر زاویہ پر ہے، یعنی یہ نقطہ دار اُفقی کلیر پر ہے مزید ہے کہ اس لمحہ ساکن کچھوں کی گھومتی مقناطیسی دباو کی موج بھی اسی اُفقی کلیر پر ہے۔ اب بخھ دیر بعد لمحہ f پر ہے موج زاویہ g بر ہو گی۔ اتنی دیر میں گھومتا حصہ گھوم کر زاویہ موج ناویہ نہو کی دویائی میکانی رفتار ہے۔ یہ سب شکل میں دکھایا گیا ہے۔ لہذا لمحہ f پر موج اور گھومتے کچھے کے در میان زاویہ جg ہے ہو گا

$$\theta_z = \omega_e t - \omega t$$

 $(\omega_e t - \omega t)$ اگرچ مقناطیسی موج نے $\omega_e t$ زاویہ طے کیا لیکن گومتے کچھ کے حوالے سے اس نے صرف زاویہ $\omega_e t - \omega t$ طے کیا۔اسی طرح گھومتے کچھ کے حوالے سے اس موج کی اضافی σ زاویائی رفتار ω_z کی یہ ہوگی۔

(7.10)
$$\omega_z = \frac{\mathrm{d}\theta_z}{\mathrm{d}t} = \omega_e - \omega$$

یں لکھتے ہوئے زیر نوشت میں چے، لفظا ضافی کے حرف ض کی آواز کو ظاہر کر تا ہے۔ ω_z^7 relative angular speed

اس کو مساوات 7.4 کی مدد سے یوں لکھ سکتے ہیں۔

(7.11)
$$\omega_z = 2\pi (f_e - f) = 2\pi s f_e = s\omega_e$$

یہ مساوات کہتا ہے کہ گھومتے کچھے کے حوالے سے مقناطیسی موج کی رفتار سرک s پر منحصر ہے۔اس موج کا حیطہ البتہ تبدیل نہیں ہوا۔ اس طرح گھومتے کچھے کے حوالے سے مقناطیسی موج کی مساوات جو کہ مساوات 7.4 میں دی گئ ہے تبدیل ہو کر یہ بن جائے گی۔

(7.12)
$$B_{s,rz}^{+}(\theta,t) = B_0 \cos(\theta - \omega_z t) = B_0 \cos(\theta - s\omega_e t)$$

یاد $B_{s,rz}^+$ میں + کا نشان گھڑی کی اُلٹی سمت گھومتی موج کو ظاہر کرتا ہے جبکہ زیر نوشت میں s,rz اس بات کی یاد دھیانی کرتا ہے کہ یہ موج ساکن کچھوں کی وجہ سے وجود میں آیا اور اسے گھومتے یعنی رواں کچھوں کے حوالے سے دیکھا جا رہا ہے۔مزید ہے کہ اس مساوات کی تعدد اضافی تعدد $s\omega$ کے برابر ہے۔

یوں گھومتے کچھوں میں امالی برقی دباو مساوات 7.7 کی طرح ہی ہو گی مگر ان کی تعدد $\omega_z=s\omega_e t$ ہو گی $\omega_z=s\omega_e t$ ہو گی

(7.13)
$$e_{arz}(t) = s\omega_e N_r \phi_0 \cos(s\omega_e t - 90^\circ) = sE_r \cos(s\omega_e t - 90^\circ)$$
$$e_{brz}(t) = s\omega_e N_r \phi_0 \cos(s\omega_e t + 150^\circ) = sE_r \cos(s\omega_e t + 150^\circ)$$
$$e_{crz}(t) = s\omega_e N_r \phi_0 \cos(s\omega_e t + 30^\circ) = sE_r \cos(s\omega_e t + 30^\circ)$$

ان مساوات میں N_r گھومتے کچھے کے چکر ہیں اور

$$(7.14) E_r = \omega_e N_r \phi_0$$

 $^{11}i_{arz}$ اب تصور کریں کہ گھومتے کچھوں کو کسرِ دور کر دیا کیا گیا ہے۔ یہ امالی برقی د باد گھومتے کچھوں میں برقی رو $^{12}i_{arz}$ اور اس کی وغیرہ پیدا کرے گی جس کی تعدد $^{12}R_r$ اور اس کی امالی سماکن کچھے کی طرح، گھومتے کچھے کی مزاحمت $^{12}R_r$ اور اس کی امالیت $^{12}R_r$ میں متعامیت $^{12}R_r$ ہو گی جس کی متعامیت $^{13}S_r$ ہو گی۔ اسے ہم یوں لکھ سکتے ہیں۔

$$(7.15) js\omega_e L_r = jsX_r$$

جہاں jX_r کو $j\omega_e L_r$ کے برابر لیا گیا ہے، لیتی jX_r اس کچھے کی ساکن حالت میں متعاملیت ہے جب سرک ایک کے برابر ہو۔ گھومتے کچھوں میں برقی رو i_{arz} شکل 7.2 کی مدد سے حاصل کی جا سکتی ہے جہاں گھومتے کچھے میں امالی برقی دباو $e_{arz}(t)$ مساوات 7.13 میں دیا گیا ہے۔

انظر ماکن کے میں کو ظاہر کرتا ہے،r لفظ روال کے رکو ظاہر کرتا ہے اور پر لفظ اصافی کے میں کو ظاہر کرتا ہے۔ e_{arz}^{10}

¹¹ یبان 7 گھومتے کچھے کو ظاہر کرتاہے اور چاس بات کی یاد دھیائی کرتاہے کہ اس بر قی رو کی تعدد ،اضافی تعدد ہے۔ 12 ٹرانسفار مر کیاصطلاح میں ثانو کی کچھے کو زیر نوشت میں 2 سے ظاہر کرتے ہیں۔ یبال اے 2 سے ظاہر کیا جاتا ہے۔

$$Z_r = R_r + jsX_r$$

$$+$$

$$e_{arz}$$

$$-$$

$$\hat{I}_{arz} = \frac{\hat{E}_{arz}}{Z_r}$$

$$i_{arz}(t) = \frac{sE_r}{|Z|} \cos(s\omega_e t - 90^\circ - \phi_z)$$
$$= I_{0r} \cos(s\omega_e t - 90^\circ - \phi_z)$$

شكل 7.2: گھومتے لیچھے کی مساوی دوراوراس میں اضافی تعدد کی رو۔

یہ شکل بالکل شکل 1.15 کی طرح ہے المذا مساوات 1.50 اس میں برتی رو دے گی یعنی

(7.16)
$$i_{arz}(t) = \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}} \cos(s\omega_e t - 90^\circ - \phi_z) = I_{0r} \cos(s\omega_e t + \theta_0)$$

$$i_{brz}(t) = \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}} \cos(s\omega_e t + 150^\circ - \phi_z) = I_{0r} \cos(s\omega_e t - 120^\circ + \theta_0)$$

$$i_{crz}(t) = \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}} \cos(s\omega_e t + 30^\circ - \phi_z) = I_{0r} \cos(s\omega_e t + 120^\circ + \theta_0)$$

یہ تین مرحلہ برقی رو ہیں جو آپس میں °120 کا زاویہ رکھتے ہیں۔ یہاں ϕ رکاوٹ کا زاویہ 13 ہے۔امید کی جاتی ہے کہ اسے آپ مقناطیسی بہاو نہیں سمجھیں گے۔ یہاں

(7.17)
$$\theta_0 = -90 - \phi_z \\ I_{0r} = \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}}$$

شکل 7.2 سے واضح ہے کہ ایک گھومتے کچھے کی مزاحمت میں

$$(7.18) p_r = I_{or}^2 R_r$$

برقی طاقت کا ضیاع ہو گا۔ یہ طاقت حرارت میں تبدیل ہو کر اس مزاحمت کو گرم کرے گ۔

 $^{-13}$ استعمال ہوتا ہے۔ یہاں یمی کیا گیا ہے۔ $^{-13}$

7.5 گھومتے کیچھوں کی گھومتی مقناطیسی دباو کی موج

ہم جانتے ہیں کہ ساکن تین مرحلہ کچھوں میں f_e تعدد کی برقی رو گھومتے مقناطیسی دباو کی موج کو جنم دیتی ہے جو اس ساکن کچھے کے حوالے سے f_e معاصر زاویائی رفتار سے گھومتی ہے۔ اس طرح گھومتے تین مرحلہ کچھوں میں sf_e تعدد کی برقی روایک گھومتی مقناطیسی دباو کی موج τ_{rz}^+ کو جنم دیتی ہے جو اس گھومتے کچھے کے حوالے سے sf_e زاویائی رفتار سے گھومتی ہے۔

(7.19)
$$\tau_{rz}^{+}(\theta, t) = k_w \frac{4}{\pi} \frac{N_r I_{0r}}{2} \cos(\theta - s\omega_e t - \theta_0)$$

یہاں I_{0r} اور θ_0 مساوات 7.17 میں دیئے گئے ہیں۔اب چونکہ گھومتا لچھا از خود f زاویائی رفتار سے گھوم رہا ہے لہذا اس کی پیدا کردہ مقاطیسی دباو کی موج خلاء میں $(f+sf_e)$ زاویائی رفتار سے گھومتی ہے۔ اس رفتار کو مساوات 7.3 کی مدد سے بول کھ سکتے ہیں۔

$$(7.20) f + sf_e = f_e(1-s) + sf_e = f_e$$

للذا گھومتے کچھوں کی مقناطیسی دباو کی موج کو ساکن کچھوں کے حوالے سے یوں لکھا جا سکتا ہے۔

(7.21)
$$\tau_{r,s}^{+}(\theta,t) = k_w \frac{4}{\pi} \frac{N_r I_{0r}}{2} \cos(\theta - \omega_e t - \theta_0)$$

 $au_{r,s}$ میں + کا نشان گھڑی کی اُلٹی سمت گھومتی موج کو ظاہر کرتا ہے جبکہ زیر نوشت میں r,s اس بات کی وضاحت کرتا ہے کہ یہ موج گھومتے یعنی رواں کچھوں کی وجہ سے وجود میں آیا ہے مگر اسے ساکن کچھوں کے حوالے سے دیکھا جا رہا ہے۔

یہاں وقفہ لے کر ذرا غور کرتے ہیں۔ مساوات 7.21 کے مطابق گومتا لچھا خود کسی بھی رفتار سے گوم رہا ہو،
اس کی پیدا کردہ گھومتی مقناطیسی دباو کی موج ساکن لچھے کے پیدا کردہ موج کی رفتار سے ہی گھومے گی۔للذا مشین میں دو گھومتی مقناطیسی دباو کی موجیں ہیں جو ایک ہی معاصر رفتار سے گھوم رہی ہیں۔ مساوات 5.89 میں کہا گیا ہے کہ دو مقناطیسی دباو کی موجود گی پیدا کرتی ہیں جو ان کے مابین زاویہ پر منحصر ہے۔للذا امالی مشین میں موجود دو مقناطیسی موجیس پیدا کرتی ہیں اور اس کی مقدار ان دو موجوں کے مابین زاویہ پر منحصر ہوتی ہے۔امالی موٹر اس پر لدے بوجھ کے مطابق ان دو موجوں کے مابین زاویہ رکھتی ہے اور یوں درکار پیدا کرتی ہے۔

باب. ١ مالي شين

$$i_{fs}(t) \xrightarrow{R_r} jX_r$$

$$+ e_{fs}(t)$$

$$- e_{fs}(t)$$

$$= \tan^{-1} \frac{sX_r}{R_r}$$

شكل 7.3: گھومتے کچھوں كى جلّه فرضى ساكن کچھے كادور۔

7.6 گھومتے کچھوں کے مساوی فرضی ساکن کچھے

اب دوبارہ اصل موضوع پر آتے ہیں۔اگر گھومتے کچھوں کی جگہ N_r چکر کے تین مرحلہ فرضی ساکن کچھے ہوں تو مساوات 7.7 کی طرح ان میں امالی برقی دباو پیدا ہوگی یعنی 14

(7.22)
$$e_{afs}(t) = \omega_e N_r \phi_0 \cos(\omega_e t - 90^\circ) = E_r \cos(\omega_e t - 90^\circ)$$
$$e_{bfs}(t) = \omega_e N_r \phi_0 \cos(\omega_e t + 150^\circ) = E_r \cos(\omega_e t + 150^\circ)$$
$$e_{cfs}(t) = \omega_e N_r \phi_0 \cos(\omega_e t + 30^\circ) = E_r \cos(\omega_e t + 30^\circ)$$

وزید فرض کریں کہ ان فرضی ساکن کمچھوں کی مزاحمت
$$\frac{R_r}{s}$$
 اور متعاملیت jX_r ہیں لیعنی (7.23)
$$Z_{fs}=\frac{R_r}{s}+jX_r$$

اگران پر مساوات 7.22 میں دیئے گئے برقی دباو لا گو کی جائے جیسے شکل 7.3 میں دکھایا گیا ہے تو ان میں برقی رو

بیہ ہو گی۔

$$(7.24) \\ i_{afs}(t) = \frac{E_r}{\sqrt{\left(\frac{R_r}{s}\right)^2 + X_r^2}} \cos\left(\omega_e t - 90^\circ - \phi_Z\right) = I_{or} \cos\left(\omega_e t + \theta_0\right) \\ i_{bfs}(t) = \frac{E_r}{\sqrt{\left(\frac{R_r}{s}\right)^2 + X_r^2}} \cos\left(\omega_e t + 150^\circ - \phi_Z\right) = I_{or} \cos\left(\omega_e t - 120^\circ + \theta_0\right) \\ i_{cfs}(t) = \frac{E_r}{\sqrt{\left(\frac{R_r}{s}\right)^2 + X_r^2}} \cos\left(\omega_e t + 300^\circ - \phi_Z\right) = I_{or} \cos\left(\omega_e t + 120^\circ + \theta_0\right)$$

یہاں مساوات 7.17 استعال کی گئی ہے۔اس مساوات میں دھیان رہے کہ رکاوٹ کا زاویہ ϕ_Z وہی ہے جو گھومتے لیھے کا تھا یعنی

(7.25)
$$\phi_{fZ} = \tan^{-1} \frac{X}{\left(\frac{R}{s}\right)} = \tan^{-1} \frac{sX}{R} = \phi_Z$$

ان برقی رو کی تعدد ω_e ہے اور ان کا پیدا کردہ گھومتا مقناطیسی موج میہ ہو گا۔

(7.26)
$$\tau_{fs,s}^{+}(\theta,t) = k_w \frac{4}{\pi} \frac{N_r I_{0r}}{2} \cos(\theta - \omega_e t - \theta_0)$$

یہ مقناطیسی موج ہو بہو گھومتے لچھے کی موج $au_{r,s}^+(heta,t)$ ہے۔

7.7 امالي موٹر كامساوي برقى دور

ہم ٹرانسفار مرکی ابتدائی جانب کچھے کی برقی دور پہلے بنا چکے ہیں جہاں کچھے کی مزاحمت R_1 اور اس کی رستا متعاملیت E_1 متحال میں مقاطیسی بہاو اس کچھے میں امالی برقی د باو E_1 پیدا کرتی۔ پول کے میں امالی برقی د باو E_1 پیدا کرتی۔ پول

$$\hat{V}_1 = \hat{I}_1 \left(R_1 + j X_1 \right) + \hat{E}_1$$

شکل 7.4: امالی موٹر کے ساکن کیچھوں کامساوی برقی دور۔

کھا جا سکتا ہے جہاں \hat{V}_1 ابتدائی کچھے پر لاگو بیرونی برتی دباو ہے۔ہم دیکھیں گے کہ امالی موٹر کے ساکن کچھے کے لئے بھی یہی مساوات حاصل ہو گی۔

تصور کریں کہ مثین کے گھومتے کچھے کھلے دور ہیں اور اس کے ساکن کچھوں پر تین مرحلہ برقی دباو لا گو ہے۔ اس صورت میں ساکن کچھوں میں روال برقی رو ایک گھومتے مقناطیسی دباو کی موج $au_s^+(heta,t)$ پیدا کرے گی جو مساوات 7.1 میں دی گئی ہے۔

باب کے اس حصہ میں ہم مشین کے ایک مر طلے کو مدِ نظر رکھیں گے، مثلاً مرحلہ a یہاں شکل 7.4 سے رجوع $v_s(t)$ ہو اور اس پر لاگو بیرونی برقی دباو $v_s(t)$ ہو تو کر نوف $v_s(t)$ ہو در قبی دباو کے قانون کے تحت

$$(7.28) v_s(t) = i_s R_s + L_s \frac{\mathrm{d}i_s}{\mathrm{d}t} + e_s(t)$$

مساوات 7.7 میں دی گئی اس موج کی ساکن کیھے میں پیدا امالی برتی دباو ہے ۔اسی کو مرحلی سمتیہ کے طور پر $e_s(t)$ یوں لکھ سکتے ہیں۔

(7.29)
$$\hat{V}_{s} = \hat{I}_{s} (R_{s} + jX_{s}) + \hat{E}_{s}$$

ٹرانسفار مر کی مثال آگے بڑھاتے ہیں۔اگر موٹر کا گھومتا لچھا کھلے دور 17 رکھا جائے تو قالب میں ایک ہی گھومتی مقاطیسی دباو کی موج au_s ہو گی۔ساکن لچھے میں صرف برقی رو \hat{I}_{arphi} ہو گا جو قالب میں مقاطیسی بہاو φ_s کو

leakage reactance¹⁵

Kirchoff's voltage law¹⁶

open circuited¹⁷

223 7.7. امالي موٹر کامساوي پر قي دور

جنم دے گی۔ یہ برقی رو \hat{I}_{o} غیر سائن نما ہوتی ہے۔ فورئر تسلسل 18 سے اس کے بنیادی جزو اور ہار مونی جزو معلوم کئے حا سکتے ہیں۔ اس کے بنیادی جزو کے دو جھے ہوتے ہیں۔ ایک حصہ \hat{I} ، لا گو بیر ونی برقی دیاو \hat{V}_s کے ہم قدم ہوتا ہے اور یہ قالب میں طاقت کے ضاع کو ظاہر کرتا ہے اور دوسرا حصہ \hat{V}_{s} سے نوبے درجہ پیچھے زاویہ پر رہتا ہے۔ \hat{I}_{o} میں سے منفی کر کے بقایا کو مقناطیسی جزو کہتے ہیں اسے \hat{I}_m سے ظاہر کرتے ہیں۔ یوں مقناطیسی جزو بنیادی جزو کے \hat{I}_c پیھے ھے اور باقی سارے ہارمونی جزو کے مجموعے پر مشتمل ہوتا ہے اور یہ قالب میں مقناطیسی بہاو ہ^ی پیدا کرتا ہے۔ $\hat{I}_{cc} = \hat{I}_{cc} + \hat{I}_{mc}$ (7.30)

امالی موٹر کے مساوی دور میں \hat{I}_c کو مزاحمت R_c سے اور \hat{I}_m سے ظاہر کیا جاتا ہے۔ ان دونوں کا حساب چلتے موٹر میں متوقع برقی تعدد اور امالی برقی دیاو \hat{E}_{lpha} بر کیا جاتا ہے لیعنی

(7.31)
$$R_c = \frac{\hat{E}_s}{\hat{I}_c} = \frac{E_s}{I_c}$$

$$X_{\varphi} = \frac{\left|\hat{E}_s\right|}{\left|\hat{I}_m\right|} = \frac{E_s}{I_m}$$

مقناطیسی دیاو کی موج au^+ گھومتے کھے میں بھی امالی برقی دیاو پیدا کرے گی۔مساوات 7.29 میں اگر رکاوٹ میں برقی دباو کے گھنے کو نظر انداز کیا جائے تو لا گو بیرونی برقی دباو اور کیجھے کی اندرونی امالی برقی دباو ہر حالت میں برابر ہوں گے۔اب تصور کرس کہ گھومتے کچھے کسر دور کر دیے جائیں۔ ایبا کرتے ہی ان میں برقی رو گزرنے لگے گا جو مقناطیسی دباو کی موج $au_{r,s}^+(heta,t)$ جو مساوات 7.21 میں دی گئی ہے کو جنم دے گی۔ اس موج سے ساکن کیھے میں امالی برقی دیاو $\hat{E}_{
m s}$ تبدیل ہو جائے گی اور بول یہ لا گو برقی دیاو کے برابر نہیں رہے گی۔ یہ ایک نا مکنہ صورت حال ہے۔

ساکن کھیے میں امالی برقی و باو، لا گو برقی و باو کے برابر تب رہے گی کہ قالب میں مقناطیسی و باو تبدیل نہ ہو۔ مثین کے قالب میں مقناطیسی دیاو بر قرار بوں رہتی ہے کہ ساکن کچھے مقناطیسی دیاو $au_{t}^{+}(heta,t)$ کی متضاد مقناطیسی و ماو کی ایک موج پیدا کرتی ہے جو اس کے اثر کو مکمل طور پر ختم کر دیتی ہے۔ یہ موج پیدا کرنے کے لئے ساکن کیچھوں میں برقی رو \hat{L}_{0} سے بڑھ کر $\hat{L}_{0}+\hat{L}_{0}$) ہو جاتی ہے جہاں یہ اضافی برقی رو یہ ہیں۔

(7.32)
$$i'_{ar}(t) = I'_{or}\cos(\omega_{e}t + \theta_{0})$$
$$i'_{br}(t) = I'_{or}\cos(\omega_{e}t - 120^{\circ} + \theta_{0})$$
$$i'_{cr}(t) = I'_{or}\cos(\omega_{e}t + 120^{\circ} + \theta_{0})$$

Fourier series¹⁸

ان اضافی برتی رو کی متضاد مقناطیسی دباو کی موج بیر ہے

(7.33)
$$\tau_{(r)}^{+}(\theta,t) = k_w \frac{4}{\pi} \frac{N_s I'_{0r}}{2} \cos(\theta - \omega_e t - \theta_0)$$

ساکن کچھوں میں اضافی برقی رونے ہر لمحہ گھومتے کچھوں کی برقی رو کے اثر کو ختم کرنا ہے لہذا ہے دونوں برقی رو ہم قدم ¹⁹ ہی ہوں گے۔چونکہ بیہ مساوات اور مساوات 7.21 برابر ہیں

$$(7.34) N_s I'_{0r} = N_r I_{0r}$$

للذا ان سے حاصل ہوتا ہے۔

(7.35)
$$I'_{0r} = \left(\frac{N_r}{N_s}\right) I_{0r} = \left(\frac{N_r}{N_s}\right) \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}}$$

آپ نے دیکھا کہ گھومتے کچھے مقناطیس دباو کی موج پیدا کرتے ہیں جن کے ذریعہ ساکن کچھوں کو معلوم ہوتا ہے کہ موٹر پر بوجھ لدا ہے اور وہ اس کے مطابق لا گو برقی دباوسے برقی رولیتی ہیں۔ یہاں تک امالی موٹر کی مساوی برقی دور شکل 7.5 میں دکھائی گئی ہے۔

یہاں ذرہ شکل 7.6 سے رجوع کریں۔ اس شکل میں

(7.36)
$$R'_r = \left(\frac{N_s}{N_r}\right)^2 R_r$$

$$X'_r = \left(\frac{N_s}{N_r}\right)^2 X_r$$

 $in-phase^{19}$

7.7. امالي موٹر کامپ وي بر تي دور

$$\hat{I}'_r \qquad \frac{\hat{R}'_r}{s} \qquad jX'_r \\ + \qquad \qquad \hat{E}_s \qquad \qquad X'_r = \left(\frac{N_s}{N_r}\right)^2 X_r \\ - \qquad \qquad \circ \qquad \qquad \qquad$$

$$i_a'(t) = \frac{sE_s}{\sqrt{R_r'^2 + s^2 X_r'^2}} \cos(s\omega_e t - \theta_0 - \phi_z)$$

شكل 7.6: گھومتے لچھے كاايك اور مساوى دور

یر ساکن کچھوں کی امالی برقی دباہ \hat{E}_s لاگو ہے الہذا ان میں برقی رویہ ہوں گی۔

(7.37)
$$i'_{a}(t) = \frac{sE_{s}}{\sqrt{R'_{r}^{2} + s^{2}X'_{r}^{2}}} \cos(\omega_{e}t - 90^{\circ} - \phi_{Z})$$
$$i'_{b}(t) = \frac{sE_{s}}{\sqrt{R'_{r}^{2} + s^{2}X'_{r}^{2}}} \cos(\omega_{e}t + 150^{\circ} - \phi_{Z})$$
$$i'_{c}(t) = \frac{sE_{s}}{\sqrt{R'_{r}^{2} + s^{2}X'_{r}^{2}}} \cos(\omega_{e}t + 30^{\circ} - \phi_{Z})$$

ان سب مساوات کا حیطہ برابر ہے۔اس حیطے کو یوں لکھا جا سکتا ہے۔

$$(7.38) \qquad \frac{sE_s}{\sqrt{R_r'^2 + s^2 X_r'^2}} = \frac{s\omega_e N_s \phi_0}{\sqrt{\left(\frac{N_s}{N_r}\right)^2 \left(R_r^2 + s^2 X_r^2\right)}} = \left(\frac{N_r}{N_s}\right) I_{0r} = I_{0r}'$$

للذا مساوات 7.37 اس طرح لكھا جاسكتا ہے۔

(7.39)
$$i'_{a}(t) = I'_{0r}\cos(\omega_{e}t - 90^{\circ} - \phi_{Z})$$
$$i'_{b}(t) = I'_{0r}\cos(\omega_{e}t + 150^{\circ} - \phi_{Z})$$
$$i'_{c}(t) = I'_{0r}\cos(\omega_{e}t + 30^{\circ} - \phi_{Z})$$

یہ مساوات بالکل مساوات 9.32 کی طرح ہے۔ لہٰذا اگر شکل 7.5 میں ساکن کچھوں کی امالی برتی دباو \hat{E}_s کے متوازی شکل 7.6 جوڑا جائے تو ایبا کرنے سے ساکن کچھوں میں اُتنا ہی اضافی برتی رو رواں ہو گا جو اصل موٹر میں گھومتے کچھوں کی وجہ سے ہوتا ہے۔ شکل 7.7 میں ایبا ہی کیا گیا ہے لہٰذا شکل میں دیا برتی دور، امالی موٹر کی صحیح عکاسی کرتی ہے۔ یہی امالی موٹر کی مساوی برتی دور ہے۔

7.8 مساوی برقی دوریر غور

مساوات 7.18 ایک گھومتے کچھے میں برقی طاقت کے ضیاع کو ظاہر کرتا ہے۔مساوات 7.36 اور 7.38 کی مدد سے اسے یوں لکھا جا سکتا ہے۔

(7.40)
$$p_{\zeta_{1};} = I_{0r}^{2} R_{r} = \left(\frac{N_{s}^{2}}{N_{r}^{2}} I_{0r}^{\prime 2}\right) \left(\frac{N_{r}^{2}}{N_{s}^{2}} R_{r}^{\prime}\right) = I_{0r}^{\prime 2} R_{r}^{\prime}$$

$$\hat{Z}_{0r} = \frac{1}{2} I_{0r}^{\prime 2} R_{r} = \frac{1}{2} I_{0r}^{\prime 2} R_{r}^{\prime}$$

$$(7.41) p_r = I_{0r}^{\prime 2} \frac{R_r^{\prime}}{s}$$

برقی طاقت دی جاتی ہے جس میں سے خاور میکانی طاقت میں ضائع ہو جاتی ہے اور بقایا بطور میکانی طاقت مشین کے دھرے پر پائی جاتی ہے یعنی

(7.42)
$$p = I_{0r}^{\prime 2} \frac{R_r^{\prime}}{s} - I_{0r}^{\prime 2} R_r^{\prime} = I_{0r}^{\prime 2} \frac{R_r^{\prime}}{s} (1 - s) = p_r (1 - s)$$

یوں تین مرحلہ مشین جس میں تین لچھے ہوتے ہیں اس کے تین گنا میکانی طاقت فراہم کر سکتی ہے یعنی

$$p_{\mbox{is}} = 3I_{0r}^{\prime 2} \frac{R_r^\prime}{s} (1-s) = 3p_r (1-s)$$

اس مساوات سے واضح ہے کہ اگر سرک ایک کے برابر ہو تو موٹر کوئی میکانی طاقت فراہم نہیں کرے گی اور گھومتے مصلے کو جتنی برتی توانائی مل رہی ہو وہ ساری کی ساری اس میں ضائع ہو کر اسے گرم کرے گی۔ یوں موٹر کے گرم

ہو کر جل جانے کا امکان ہوتا ہے۔ آپ اس مساوات سے دیکھ سکتے ہیں کہ امالی موٹر کی سرک صفر کے قریب رہنی چاہئے ورنہ یہ ناقابل قبول حد تک برقی توانائی ضائع کرے گا۔ ہم امالی موٹر کی مساوی برقی دور کو شکل 7.8 کی طرح بھی بنا سکتے ہیں۔ اس شکل میں شکل 7.7 میں دیئے مزاحت علیہ کے دو حصوں میں لکھا گیا ہے لیعنی

$$\frac{R_r'}{s} = R_r' + R_r' \left(\frac{1-s}{s}\right)$$

 $R'_r\left(\frac{1-s}{s}\right)$ میں مزاحت R'_r میں برقی طاقت کی ضیاع $I'^2_{0r}R'_r$ گھومتے کچھے کی ضیاع ہے جبکہ مزاحمت $R'_r\left(\frac{1-s}{s}\right)$ میں برقی طاقت کی ضیاع $I'^2_{0r}R'_r\left(\frac{1-s}{s}\right)$ دراصل میکانی طاقت ہے۔یاد رہے کہ تین مرحلہ مشین کے لئے یہاں سے حاصل نتائج کو تین سے ضرب دینا ہوگا۔

میکانی طاقت، قوت مروڑ ضربِ میکانی زاویائی رفتار ہوتی ہے۔ امالی موٹر کی میکانی زاویائی رفتار مساوات 7.3 میں دی گئی ہے۔ یوں دی گئی ہے۔ یوں

(7.44)
$$p = T_m \omega = T_m \times 2\pi f = T_m \times 2\pi (1 - s) f_s = T_m (1 - s) \omega_{sm}$$

للذا

(7.45)
$$T_m = \frac{p}{(1-s)\omega_{sm}} = \frac{3I_{0r}^{\prime 2}}{\omega_{sm}} \frac{R_r^{\prime}}{s}$$

اصل موٹر میں رگڑ، قالبی ضیاع، کچھوں میں ضیاع اور دیگر وجوہات کی بنا پر دھرے پر طاقت یا توت مروڑ اس سے قدرِ کم ہوگی۔ باب. ١ مالي مشين

شکل 7.9: امالی موٹر کاساد ہ دور۔ قالبی ضاع کو نظرانداز کیا گیاہے۔

ٹرانسفار مر کے سادہ ترین مساوی دور بناتے وقت R_c اور K_m کو نظرانداز کیا گیا تھا۔ امالی موٹر میں ایسا کرنا ممکن نہیں ہوتا چونکہ موٹروں میں خلائی درز ہوتی ہے جس میں مقناطیسی بہاو پیدا کرنے کے لئے بہت زیادہ مقناطیسی دباو درکار ہوتی ہے۔ حقیقت میں بے بوجھ امالی موٹر کو اپنے پورے برقی رو کے تیس سے بچاس فی صد برقی رو قالب کو جہان کرنے کے لئے درکار ہوتی ہے۔ مزید سے کہ خلائی درز کی وجہ سے اس کی رِستا امالہ بھی زیادہ ہوتی ہے اور اسے نظر انداز کرنا ممکن نہیں ہوتا۔ البتہ مساوی دور میں کہ و نظر انداز کرنا جا سکتا ہے جیسے شکل 7.9 میں دکھایا گیا ہے۔ اس شکل میں نقطہ دار کلیر کی بائیں جانب کا مساوی تھونن دور بنایا جا سکتا ہے۔ایسا کرنے سے امالی موٹر پر غور کرنا نہیں آسان ہو جاتا ہے۔ اب ہم ایسا ہی کرتے ہیں۔

مثال 7.2: ستارہ بڑی چید قطب بچاس ہر ٹز اور 415 وولٹ پر چلنے والی 15 کلو واٹ امالی موٹر کے مساوی دور کے ابزاء یہ ہیں

$$R_s = 0.5 \,\Omega$$
, $R'_r = 0.31 \,\Omega$, $X_s = 0.9 \,\Omega$, $X'_r = 0.34 \,\Omega$, $X_m = 0.22 \,\Omega$

موٹر میں رگڑ سے طاقت کا ضیاع 600 واٹ ہے۔ قالبی ضیاع کو اس کا حصہ تصور کیا گیا ہے۔ اس کو اٹل تصور کیا جائے۔ یہ موٹر درکار وولٹ اور تعداد ارتعاش پر دو فی صد سرک پر چل رہی ہے۔اس حالت میں موٹر کی رفتار، اس کے دھرے پر پیدا قوت مروڑ اور طاقت، اس کے ساکن کیھے کی برقی رو اور اس کی فی صد کار گزاری حاصل کریں۔

عل: موٹر کی معاصر رفتار $6.66 \times 60 = 16.66$ چکر ٹی سیکنڈ یا $1000 = 16.66 \times 60 = 16.66$ پکر ٹی منٹ دو فی صد سرک پر موٹر کی رفتار $6.33 \times 60 = 979.8$ پکر ٹی سیکنڈ یا $6.33 \times 60 = 979.8$ پکر ٹی منٹ ہے۔

شكل 7.9 مين دائين جانب

$$jX'_r + R'_r + R'_r \frac{1-s}{s} = jX'_r + \frac{R'_r}{s} = j0.34 + \frac{0.31}{0.02} = j0.34 + 15.5$$

7.8 مساوي پر تي دور پر غور

اور jX_m متوازی جڑے ہیں۔ان کی مساوی رکاوٹ یہ ہے

$$\begin{split} \frac{1}{Z} &= \frac{1}{15.5 + j0.34} + \frac{1}{j22} \\ Z &= 10.147 + j7.375 = R + jX \end{split}$$

موٹر پر لا گو یک مرحلہ برقی دباو $\frac{415}{\sqrt{3}} = 239.6$ وولٹ ہے۔ یوں ساکن کچھے کی برقی رو

$$\begin{split} \hat{I}_s &= \frac{\hat{V}_s}{R_s + jX_s + Z} \\ &= \frac{239.6}{0.5 + j0.99 + 10.147 + j7.375} \\ &= 17.6956 / \!\!\! -38.155^{\circ} \end{split}$$

ہے۔اس موٹر کے گھومتے حصہ کو وہی طاقت منتقل ہو رہی ہے جو رکاوٹ Z کو منتقل ہو رہی ہے۔یعنی مساوات 7.41 کو ہم یوں بھی لکھ سکتے ہیں۔

$$p = I_{or}^{\prime 2} \frac{R_r^{\prime}}{s} = I_s^2 R = 17.6956^2 \times 10.147 = 3177.37 \,\text{W}$$

تین مراحل کے لئے یہ مقدار 9532 = 3177.37 × 3 واٹ ہو گ۔مساوات 7.43 موٹر کی اندرونی میکانی طاقت وی سے یعنی

$$p_{\rm ibs} = 9532 \times (1 - 0.02) = 9341 \, \mathrm{W}$$

اس سے طاقت کا ضیاع منفی کر کے 8741 = 600 – 9341 واٹ رہ جاتا ہے۔ یہ موٹر کے دھرے پر میکانی طاقت ہو گی جس سے دھرے پر قوت مروڑ

$$T = \frac{8741}{2 \times \pi \times 16.33} = 85.1 \,\mathrm{Nm}$$

ہو گی۔

واٹ ہے۔ ایوں موٹر کو کل مہیا برقی طاقت
$$\sqrt{3} \times 415 \times 17.6956 \times \cos(-38.155) = 10001.97$$
 واٹ ہے۔ ایوں موٹر کی کار گزاری $\sqrt{3} \times 415 \times 100 = 87.39$ ہے۔

ياب. امالي شين

شکل 7.10: تھونن ر کاوٹ اور تھونن بر تی د باوحاصل کرنے کے دور۔

7.9 امالي موٹر کامساوي تھونن دوريارياضي نمونه

مسئلہ تھونونے ²⁰ کے مطابق کسی بھی سادہ خطی برتی دور ²¹ کو اس کے دو برتی سرول کے مابین ایک رکاوٹ اور ایک برقی دباو کی مساوی دور سے ظاہر کیا جا سکتا ہے۔اس مساوی دور کو مساوی تھوِنن دور کہتے ہیں جبکہ اس مساوی تھوِنن دور کی رکاوٹ کو تھوِنن رکاوٹ اور برتی دباو کو تھوِنن برتی دباو کہتے ہیں۔

برقی دور کے دو برقی سروں کے مابین تھونن رکاوٹ حاصل کرنے کے لئے اس برقی دور کے اندرونی برقی دباو کسرِ دور کر کے ان دو برقی سروں کے مابین رکاوٹ معلوم کی جاتی ہے۔ یہی رکاوٹ، تھونن رکاوٹ ہے۔انہیں برقی سروں پر تھونن برقی دباو برقرار رکھ کر ان دو سروں سروں پر تھونن برقی دباو برقرار رکھ کر ان دو سروں پر بھونن برقی دباو معلوم کی جاتی ہے۔ یہی برقی دباو در حقیقت تھونن برقی دباو ہے۔ بعض او قات ہم ایک برقی دور کے ایک خاص ھے کا مساوی تھونن دور بنانا چاہتے ہیں۔ایسا کرتے وقت بقایا برقی دور کو اس ھے سے مکمل طور پر منقطع کیا جاتا ہے۔ یوں شکل 7.10 سے واضح ہے کہ دو سرول الف اور باکے مابین مساوی تھونن رکاوٹ اور تھونن برقی دباو ہہ ہیں۔

(7.46)
$$Z_t = \frac{(R_s + jX_s)jX_m}{R_s + jX_s + jX_m} = R_t + jX_t$$

$$\hat{V}_t = \frac{jX_m\hat{V}_s}{R_s + jX_s + jX_m} = V_t/\underline{\theta_t}$$

کسی بھی مخلوط عدد 22 کی طرح Z_t کو ایک حقیقی عدد R_t اور ایک فرضی عدد jX_t کا مجموعہ لکھا جا سکتا ہے۔ یہی اس مساوات میں کیا گیا ہے۔

The venin theorem²⁰ linear circuit²¹ complex number²²

شکل 7.11: تھونن دوراستعال کرنے کے بعد امالی موٹر کا مساوی دور۔

ہم یوں امالی موٹر کی مساوی برقی دور کو شکل 7.11 کی طرح بنا سکتے ہیں جہاں سے مرحلی سمتیہ کی استعال سے مندرجہ ذیل برقی رو \hat{I}'_{r} عاصل ہوتی ہے۔

(7.47)
$$\hat{I}'_r = \frac{\hat{V}_t}{R_t + jX_t + \frac{R'_r}{s} + jX'_r} \\ \left|\hat{I}'_r\right| = I'_r = \frac{V_t}{\sqrt{\left(R_t + \frac{R'_r}{s}\right)^2 + \left(X_t + X'_r\right)^2}}$$

چونکہ V_t کی قیمت پر \hat{V}_t کے زاویے کا کوئی اثر نہیں للذا مساوی تھونن دور میں \hat{V}_t کی جگہ V_t استعال کیا جا سکتا ہے۔ بقایا کتاب میں ایہا ہی کہا جائے گا۔

مساوات 7.45 سے یوں تین مرحله مشین کی قوت مروڑ یہ ہو گی

(7.48)
$$T = \frac{1}{\omega_{sm}} \frac{3V_t^2 \left(\frac{R_r'}{s}\right)}{\left(R_t + \frac{R_r'}{s}\right)^2 + \left(X_t + X_r'\right)^2}$$

$$= \frac{1}{\omega_{sm}} \frac{3V_t^2 \left(\frac{R_r'}{s}\right)}{\frac{R_r'^2}{s^2} + 2R_t \frac{R_r'}{s} + R_t^2 + \left(X_t + X_r'\right)^2}$$

اس مساوات کو شکل 7.12 میں دکھایا گیا ہے۔ اس شکل میں موٹر کی رفتار کو معاصر رفتار کی نسبت سے دکھایا گیا ہے۔موٹر ازخود گھومتے مقناطیسی موج کی سمت میں گھومتی ہے اور اس کی رفتار معاصر رفتار سے قدرِ کم رہتی ہے۔زیادہ سرک پر موٹر کی کار گزاری نہایت خراب ہو جاتی ہے۔اس لئے لگاتار استعال کے وقت اسے تقریباً پانچ فی

شكل 7.12: امالي موٹر كي قوت مر وڙ بالقابل سرك۔

صد سے کم سرک پر چلایا جاتا ہے بلکہ ان کی تخلیق یوں کی جاتی ہے کہ امالی موٹر اپنی پوری طاقت تقریباً پانچ فی صد سے کم سرک پر حاصل کرتی ہے۔

اگر موٹر کو زبردستی ساکن کیجھوں کی گھومتے مقناطیسی موج کی ست میں معاصر رفتار سے زیادہ رفتار پر گھمایا جائے تو یہ ایک جزیئر کے طور پر کام کرنے شروع ہو جائے گی۔اییا کرنے کے لئے بیرونی میکانی طاقت درکار ہو گی ۔اگرچہ امالی مشین عام طور پر جزیئر کے طور پر استعال نہیں ہوتے البتہ ہوا سے برقی طاقت پیدا کرنے میں یہ جزیئر کے طور پر کار آمد ثابت ہوتے ہیں۔

شکل 7.12 میں منفی رفتار بھی دکھائی گئی ہے جہاں سرک ایک سے زیادہ ہے۔ ایسا تب ہوتا ہے جب موٹر کو ساکن کچھوں کی گھومتی مقناطیسی دباوکی موج کی اُلٹ سمت میں گھمایا جائے۔موٹر کو جلد ساکن حالت میں لانے کے لئے یوں کیا جاتا ہے۔ تین مرحلہ موٹر پر لاگو برقی دباوکی کسی دو مرحلوں کو آپس میں اُلٹا دیا جاتا ہے۔ اس طرح موٹر کی ساکن کچھوں کی گھومتی مقناطیسی موج کیدم اُلٹ سمت میں گھومنے شروع ہو جاتی ہے جبکہ موٹر ابھی پہلی سمت میں ہی گھوم رہی ہوتی ہے۔اس طرح موٹر جلد آہستہ ہوتی ہے اور جیسے ہی موٹر رکھ کر دوسری جانب گھومنا چاہتی ہے اس پر لاگو برتی دباو منقطع کر دی جاتی ہے۔اسال کی جاتی ہے۔

یوں امالی مشین s < 0 کی صورت میں بطور جزیٹر ، 1 < s < 0 کی صورت میں بطور موٹر اور s < 0 کی صورت میں بطور بریک کام کرتا ہے۔

امالی موٹر کی زیادہ سے زیادہ قوت مروڑ مساوات 7.48 سے یوں حاصل کی جاسکتی ہے۔ قوت مروڑ اُسی لمحہ زیادہ سے زیادہ ہو گی جب گھومتے ھے کو زیادہ سے زیادہ طاقت میسر ہو۔زیادہ سے زیادہ طاقت منتقل کرنے کے مسئلہ 24

 $brake^{23}$

maximum power theorem 24

کے مطابق مزاحمت $\frac{R'_r}{s}$ میں طاقت کا ضیاع اس وقت زیادہ سے زیادہ ہو گا جب

(7.49)
$$\frac{R'_r}{s} = \left| R_t + jX_t + jX'_r \right| = \sqrt{R_t^2 + (X_t + X'_r)^2}$$

ہو۔اس مساوات سے زیادہ سے زیادہ طاقت پر سرک s_z کو بوں لکھ سکتے ہیں۔

(7.50)
$$s_z = \frac{R_r'}{\sqrt{R_t^2 + (X_t + X_r')^2}}$$

مساوات 7.48 میں کسر کے نچلے جصے میں $R_t^2 + (X_t + X_r')^2$ کی جگہ مساوات 7.48 کا مربع استعال کرتے ہوئے زیادہ سے زیادہ قوت مروڑ یوں حاصل کی جا سکتی ہے

(7.51)
$$T_{z} = \frac{1}{\omega_{sm}} \frac{3V_{t}^{2} \left(\frac{R'_{r}}{s}\right)}{\frac{R'_{r}^{2}}{s^{2}} + 2R_{t} \frac{R'_{r}}{s} + \frac{R'_{r}^{2}}{s^{2}}}$$

$$= \frac{1}{\omega_{sm}} \frac{3V_{t}^{2}}{2\left(R_{t} + \frac{R'_{r}}{s}\right)}$$

$$= \frac{1}{\omega_{sm}} \frac{3V_{t}^{2}}{2\left(R_{t} + \sqrt{R_{t}^{2} + (X_{t} + X'_{r})^{2}}\right)}$$

جہاں آخری قدم پر مساوات کا استعال دوبارہ کیا گیا۔

اس مساوات کے مطابق امالی موٹر کی زیادہ سے زیادہ قوت مروڑ اس کے گھومتے کچھوں کی مزاحمت پر منحصر نہیں۔ یہ ایک اہم معلومات ہے جسے استعال کر کے امالی موٹر کی زیادہ سے زیادہ قوت مروڑ درکار رفتار پر حاصل کی جا سکتی ہے۔آئیں دیکھیں کہ یہ کیسا کیا جاتا ہے۔

امالی موٹر کے گھومتے کچھوں کے برتی سروں کو سرکے پھلوں 25 کے ذریعہ باہر نکالا جاتا ہے 26 جہاں ان کے ساتھ سلسلہ وار بیرونی مزاحمت جوڑی جاتی ہے۔اس طرح گھومتے کچھوں کی کل مزاحمت بڑھ کر بیرونی مزاحمت جوڑی جاتی کے مطابق زیادہ سے زیادہ توت مروڑ نسبتاً زیادہ سرک یعنی کم زاویائی رقار پر حاصل کی جا سکتی ہے۔ شکل 7.13 میں مزاحمت ہے۔ R_T کے ساتھ ساکن موٹر کو جالو کرتے وقت زیادہ سے زیادہ

slip rings²⁵ 26شکل کے نمونے پر۔

شکل 7.13: بیر ونی مزاحت لگانے کے قوت مر وڑ بالقابل سرک کے خطوط پراثرات۔

قوت مروڑ حاصل ہو سکتی ہے۔اس طرح بوجھ بردار موٹر ساکن حالت سے ہی زیادہ بوجھ اٹھانے کے قابل ہوتا ہے۔ چونکہ زیادہ سرک پر موٹر کی کار گزاری خراب ہوتی ہے للذااس طرح موٹر کو زیادہ دیر نہیں چلایا جاتا اور جیسے ہی اس کی رفتار بڑھ جاتی ہے، اس سے جُڑے بیرونی مزاحمتیں منقطع کر کے گھومتے کچھوں کے برقی سرے کسرِ دور کر دیئے حاتے ہیں۔

مثال 7.3: صفحہ 228 پر مثال 7.2 میں دی گئی امالی موٹر اس مثال میں استعال کریں۔رگڑ سے طاقت کی ضیاع کو نظر انداز کریں۔

- اگر موٹر در کار وولٹ اور تعداد ارتعاش پر تین فی صد سرک پر چل رہی ہو تو ساکن کچھے میں گھومتے کچھے کے حصہ کی برقی رو 'I اور مشین کی اندرونی میکانی طاقت اور قوت مروڑ حاصل کریں۔
 - موٹر کی زیادہ سے زیادہ اندرونی پیدا قوت مروڑ اور اس قوت مروڑ پر موٹر کی رفتار حاصل کریں۔
 - موٹر کی چالو ہونے کے لمحہ پر قوت مروڑ اور اس لمحہ اس کی I'_r حاصل کریں۔

حل:

یک مرحلہ برقی دباو
$$\frac{415}{\sqrt{3}} = 239.6$$
 استعال کرتے ہوئے مساوات 7.46 کی مدد سے

$$Z_t = \frac{(0.5 + j0.99) j22}{0.5 + j0.99 + j22} = 0.4576 + j0.9573$$

$$\hat{V}_t = \frac{j22 \times 239.6 / 0^{\circ}}{0.5 + j0.99 + j22} = 229.2 / 1.246^{\circ}$$

مساوات 7.47 میں تین فی صد سرک پر 10.3333 مساوات 7.47 میں تین فی صد سرک پر

$$\begin{split} \hat{I}'_r &= \frac{229.2 / 1.246^\circ}{0.4576 + j0.9573 + 10.3333 + j0.34} = 21.1 / -5.6^\circ\\ I'_r &= \left| \hat{I}'_r \right| = 21.1\,\text{A} \end{split}$$

یہاں رک کر تسلی کر لیں کہ مندرجہ بالا مساوات میں <u>°229.2/1.246</u> کی جگہہ <u>°229.2/0</u> استعال کرنے سے I'_r کی یہی قیمت حاصل ہوتی۔ مساوات 7.43 اور 7.44 کی مدد سے

$$p_m = \frac{3 \times 21.1^2 \times 0.31}{0.03} \times (1 - 0.03) = 13387.46 \,\text{W}$$
$$T = \frac{13387.46}{(1 - 0.03) \times 2 \times \pi \times 16.66} = 131.83 \,\text{N m}$$

• مساوات 7.50 سے زیادہ سے زیادہ طاقت پر سرک

$$s_z = \frac{0.31}{\sqrt{0.4576^2 + (0.9573 + 0.34)^2}} = 0.1638$$

اور اس پر موٹر کی رفمار 836.2 = 836.2 اور اس پر موٹر کی رفمار 836.2 ہوگی۔

و چالو کرتے کھے پر سرک ایک ہو گی لہذا $\frac{R'_r}{s} = 0.31$ ہو گا اور یوں

$$\hat{I}'_r = \frac{229.2 / 1.246^\circ}{0.4576 + j0.9573 + 0.31 + j0.34} = 152.07 / -58.14^\circ$$

$$I'_r = 152 \, \mathrm{A}$$

اس لمحه قوت مرورٌ

$$T = \frac{3 \times 152.07^2 \times 0.31}{2 \times \pi \times 16.66} = 205 \,\mathrm{N}\,\mathrm{m}$$

مثال 7.4: دو قطب ستارہ جڑا بچاس ہر ٹز پر چلنے والا تین مرحلہ امالی موٹر 2975 چکر فی منٹ کی رفتار پر بارہ کلوواٹ کے میکانی بوجھ سے لدا ہے۔موٹر کی سرک اور دھرے پر قوت مروڑ حاصل کریں۔

 $50 \times 60 = 3000$ کی سینٹر یا $50 \times 60 = 3000$ کی سینٹر یا $\frac{2}{P}f_e = \frac{2}{2} \times 50 = 50$ کی منٹ ہے۔ یوں سرک $\frac{2}{P}f_e = \frac{2}{2} \times 50 = 50$ کی منٹ ہے۔ لیذا $s = \frac{3000 - 2975}{3000} = 0.00833$ کی منٹ ہے لیذا $s = \frac{3000 - 2975}{3000} = 0.00833$ کی سینٹر ہے لیذا $s = \frac{12000}{3000} = 38 \, \mathrm{Nm}$ کی دھرے پر قوت مروڑ ہو گی۔

7.10 پنجرانمالمالی موٹر

گومتے کچھوں کی ساخت پر ذرا غور کرتے ہیں۔ گومتے کچھوں کے N_r چکر ہوتے ہیں جہاں N_r کوئی بھی عدد ہو سکتا ہے۔ سادہ ترین صورت میں N_r ایک کے برابر ہو سکتا ہے بعنی ایک ہی چکر کا گومتا کچھا۔ اب بجائے اس کے کہ قالب میں کچھوں کے لئے شگاف بنائے جائیں اور ہر شگاف میں تانبے کی تار کا ایک چکر لیٹا جائے ہم یوں بھی کر سکتے ہیں کہ ہر شگاف میں سیدھا تانبے کا ایک سلاخ رکھ دیں اور اس طرح کے سب سلاخوں کی ایک جانب کے سروں کو تانبے کی ایک دائرہ نما سلاخ سے کسر دور کر دیں اور اسی طرح دوسری جانب کے سب سروں کو بھی ایک تانبے کی دائرہ نما سلاخ سے کسر دور کر دیں۔ اس طرح تانبے کی سلاخوں کا پنجرا بن جاتا ہے۔ اسی گئے ایسے امالی موٹر وں کو پنجرا نما امالی موٹر کہتے ہیں۔

حقیقت میں شگافوں میں پگھلا تانبا یا سلور 27 ڈالا جاتا ہے جو ٹھنڈا ہو کر ٹھوس ہو جاتا ہے اور قالب کو جھکڑ لیتا ہے۔ دونوں اطراف کے دائرہ نما کسرِ دور کرنے والے چھلے بھی اِسی طرح اور اِسی وقت بنائے جاتے ہیں۔ اس طرح یہ ایک مضبوط گھومتا حصہ بن جاتا ہے۔ اسی مضبوطی کی وجہ سے پنجرا نما امالی موٹر نہایت مقبول ہوا ہے۔ ایسے موٹر سالوں تک بغیر دیکھ بال کے کام کرتے ہیں اور عام زندگی میں ہر جگہ بائے جاتے ہیں۔ گھروں میں پانی کے پہپ اور پیکھے اِنہیں سے چلتے ہیں۔ گھروں میں پانی کے پہپ اور پیکھے اِنہیں سے چلتے ہیں۔

copper, aluminium²⁷

7.11 بي جوجه موٹراور جامد موٹر کے معائنہ

امالی موٹر کی کارکردگی دو معائنوں سے معلوم کی جاتی ہے۔ انہی سے اس کے مساوی برقی دور کے جزو بھی حاصل کئے جاتے ہیں۔ہم تین مرحلہ امالی موٹر کی مثال سے ان معائنوں کا تذکرہ کرتے ہیں۔

7.11.1 ي بوجھ موٹر کامعائنہ

یہ معائنہ بالکل ٹرانسفار مر کے بے بوجھ معائنہ کی طرح ہے۔اس میں موٹر کی ہیجان انگیز برقی رو اور بے بوجھ موٹر میں طاقت کے ضیاع کی معلومات حاصل ہوتی ہیں۔

اس میں بے بوجھ امالی موٹر پر تین مرحلہ مساوی برقی و ہاو 28 لاگو کر کے بے بوجھ موٹر کی برقی طاقت کا ضیاع p_{bb} اور اس کے ساکن کچھے کی بیجان انگیز برقی رو $I_{s,bb}$ ناپی جاتی ہے۔یہ معائنہ امالی موٹر کی پورے برقی و باو اور برقی تعدد پر کیا جاتا ہے۔

ہو۔ اور دیگر طاقت کے ضیاع کی وجہ سے درکار I'_r ہو جاتی رگڑ اور دیگر طاقت کے ضیاع کی وجہ سے درکار I'_r ہو۔ اتن کم قوت مروڑ بہت کم سرک پر حاصل ہو جاتی ہے۔ مساوات 7.47 سے ظاہر ہے کہ بہت کم سرک پر بایت کم ہوگی نہایت کم ہوگی اور اس سے گھومتے کچھوں میں برقی طاقت کے ضیاع کو نظر انداز کیا جا سکتا ہے۔ اس بات کو صفحہ 226 پر شکل 7.7 کی مدد سے بھی سمجھا جا سکتا ہے جہاں میہ واضح ہے کہ بہت کم سرک پر مزاحمت $\frac{R'_r}{s}$ کی قیمت بہت زیادہ ہو جاتی ہے اور اس کو گھلے دور سمجھا جا سکتا ہے۔ ایسا کرنے سے شکل 7.14-الف ماتا ہے۔

شکل 7.14-الف میں R_c اور jX_m کے متوازی دور کا مساوی سلسلہ وار دور شکل 7.14-ب میں دکھایا گیا Z_m کی تیمت سے بہت زیادہ ہوتی ہے۔متوازی دور کی رکاوٹ X_m

شكل 7.14: ہے بوجھ امالی موٹر كامعا ئند۔

سے مساوی سلسلہ وار رکاوٹ Z_s یوں حال ہوتی ہے۔

$$Z_{m} = \frac{R_{c}jX_{m}}{R_{c} + jX_{m}}$$

$$= \frac{R_{c}jX_{m}}{R_{c} + jX_{m}} \frac{R_{c} - jX_{m}}{R_{c} - jX_{m}}$$

$$= \frac{jR_{c}^{2}X_{m} + R_{c}X_{m}^{2}}{R_{c}^{2} + X_{m}^{2}}$$

$$\approx \frac{jR_{c}^{2}X_{m} + R_{c}X_{m}^{2}}{R_{c}^{2}} \qquad \text{if } R_{c} \gg X_{m}$$

$$= jX_{m} + \frac{X_{m}^{2}}{R_{c}} = jX_{m} + R_{c}^{*} = Z_{s}$$

بے بوجھ ٹرانسفار مروں میں ابتدائی کچھوں کے برقی طاقت کے ضیاع کو بھی نظر انداز کیا جاتا ہے۔ بے بوجھ امالی موٹروں کی چھان انگیز برقی روکافی زیادہ ہوتی ہے لہذا ان کے ساکن کچھوں کی برقی طاقت کے ضیاع کو نظر انداز نہیں کیا جا سکتا۔ بے بوجھ امالی موٹر کی pbb سے اگر تین ساکن کچھوں کی برقی ضیاع منفی کی جائے تو اس میں میکافی طاقت کے ضیاع کا حساب لگایا جا سکتا ہے یعنی

$$(7.53) p_{bb} - 3I_{s,bb}^2 R_s$$

میکانی طاقت کا ضیاع بے بوجھ اور بوجھ بردار موٹر کے لئے کیساں تصور کیا جاتا ہے۔

شكل 7.14-ب سے ہم لكھ سكتے ہيں۔

(7.54)
$$R_{bb} = \frac{p_{bb}}{3I_{s,bb}^2}$$

$$Z_{bb} = \frac{V_{bb}}{I_{s,bb}}$$

$$X_{bb} = \sqrt{|Z_{bb}|^2 - R_{bb}^2}$$

$$X_{bb} = X_s + X_m$$

 X_s عالیت کے بوجھ متعاملیت X_{bb} حاصل ہوتی ہے۔اگر کسی طرح ساکن کچھے کی متعاملیت معلوم ہو تب اس مساوات سے X_m حاصل کی جاستی ہے۔اگلے معائنہ میں ہم X_s کا اندازہ لگا سکیں گے۔

7.11.2 حامد موٹر کامعائنہ

یہ معائد ٹرانسفار مر کے کسرِ دور معائد کی طرح ہے۔ اس میں مشین کے بِستا امالوں کی معلومات حاصل ہوتی ہے۔ البتہ امالی موٹر کا مسئلہ ذرا زیادہ پیچیدہ ہے۔ امالی موٹر کی بِستا امالہ گھومتے کچھوں میں برقی تعدد اور قالب کے سیر اب ہونے پر مخصر ہوتے ہیں۔

اس معائنہ میں امالی موٹر کے گھومتے جھے کو حرکت کرنے سے زبردستی روک دیا جاتا ہے جبکہ ساکن کچھوں پر بیرونی برقی د باو V_{rk} لا گو کر کے برقی طاقت p_{rk} اور ساکن کچھوں کی برقی رو $I_{s,rk}$ ناپی جاتی ہیں۔ اصولی طور پر بیہ معائنہ اُن حالات کو مدِ نظر رکھ کر کیا جاتا ہے جن پر موٹر کی معلومات درکار ہوں۔

_

t=0اس لمجہ کے برتی رو کو چیوٹی کلھائی میں وقت صفر ہے منسلک کیا گیا ہے بعنی t=0

شکل7.15:رکےامالی موٹر کامعا ئنہ۔

ر کھی جائے گی جتنی سے گھومتے کچھوں میں $I_{t\to\infty}$ برقی رو وجود میں آئے۔تقریباً $20\,\mathrm{kV}$ سے حچوٹی موٹروں میں برقی تعدد کے اثرات قابل نظر انداز ہوتے ہیں لہذا ان کا معائنہ f_e تعدد کی برقی دباو پر ہی کیا جاتا ہے۔

یہاں صفحہ 226 پر دکھائے شکل 7.7 کو رکے موٹر کے معائنہ کی نقطہ نظر سے دوبارہ بناتے ہیں۔رکے موٹر کی سرک ایک کے برابر ہوتی ہے۔مزید ہے کہ اس معائنہ میں لاگو برقی دباو عام چالو موٹر پر لاگو برقی دباو سے خاصی کم ہوتی ہے۔اتی کم لاگو برقی دباو پر قالبی ضیاع کو نظرانداز کیا جا سکتا ہے۔شکل میں R_c کو کھلے دور کرنا قالبی ضیاع کو نظرانداز کرنے کے مترادف ہے۔الیما کرنے سے شکل 7.15-الف ملتا ہے۔چونکہ S=1 ہے لہذا اس شکل میں S=1 کو نظرانداز کرنے کے مترادف ہے۔الیما کرنے سے شکل 7.15-الف ملتا ہے۔چونکہ S=1 ہے لہذا اس شکل میں S=1 کو نظرانداز کرنے ہے۔

-7.15 فیل 7.15-الف میں jX_m اور $(R'_r+jX'_r)$ متوازی جڑے ہیں۔ ان کا مساوی سلسلہ وار دور شکل 7.15- بیل دکھایا گیا ہے۔اس متوازی دور کی مزاحمت Z_m سے سلسلہ وار مزاحمت Z_s یوں حاصل ہوتی ہے۔

$$Z_{m} = \frac{jX_{m}(R'_{r} + jX'_{r})}{R'_{r} + j(X_{m} + X'_{r})}$$

$$= \left(\frac{jX_{m}R'_{r} - X_{m}X'_{r}}{R'_{r} + j(X_{m} + X'_{r})}\right) \left(\frac{R'_{r} - j(X_{m} + X'_{r})}{R'_{r} - j(X_{m} + X'_{r})}\right)$$

$$= \frac{jX_{m}R'^{2} + X_{m}R'_{r}(X_{m} + X'_{r}) - X_{m}X'_{r}R'_{r} + jX_{m}X'_{r}(X_{m} + X'_{r})}{R'^{2} + (X_{m} + X'_{r})^{2}}$$

$$= \frac{X_{m}^{2}R'_{r}}{R'^{2} + (X_{m} + X'_{r})^{2}} + \frac{j(X_{m}R'^{2} + X_{m}^{2}X'_{r} + X_{m}X'^{2})}{R'^{2} + (X_{m} + X'_{r})^{2}}$$

$$= R_{s}^{*} + jX_{s}^{*} = Z_{s}$$

اگر ان مساوات میں $X_m\gg X_r'$ اور $X_m\gg X_r'$ لیا جائے تو حاصل ہوتا ہے۔

$$(7.56) R_s^* \approx R_r' \left(\frac{X_m}{X_m + X_r'}\right)^2$$

(7.57)
$$X_s^* = \approx \frac{X_m R_r'^2}{X_m^2} + \frac{X_m^2 X_r'}{X_m^2} + \frac{X_m X_r'^2}{X_m^2} \approx X_r'$$

اس معائنہ میں ناپے مقداروں اور شکل 7.15-ب سے

(7.58)
$$Z_{rk} = \frac{V_{rk}}{I_{s,rk}}$$

$$R_{rk} = \frac{p_{rk}}{3I_{s,rk}^2}$$

$$X_{rk} = \sqrt{|Z_{rk}|^2 - R_{rk}^2}$$

حاصل ہوتے ہیں۔ اس مساوات کے پہلے جزو میں ناپے برقی دباو اور برقی روسے رکاوٹ حاصل کی گئی ہے، اس کے دوسرے جزوسے مزاحمت اور تیسرے میں متعاملیت۔

اب شکل 7.15-ب سے واضح ہے کہ

$$(7.59) X_{rk} = X_s + X_r'$$

امالی مثنین مختلف خصوصیات کو مد نظر رکھ کر بنائے جاتے ہیں۔ عام آدمی کے آسانی کے لئے ایسے مثنینوں کی درجہ بندی کی جاتی ہیں۔ A,B,C,D اور الی مثنین جن کا گھمتا حصہ بندی کی جاتی ہے۔ جدول 7.1 میں پنجرا نما امالی موٹر کے مختلف اقسام A,B,C,D اور الیکی مثنین جن کا گھمتا حصہ لیچھے پر مشتمل ہو، کے رِستا متعالمیت X_{rk} کو ساکن اور گھومتے لیچھوں میں تقسیم کرنا دکھایا گیا ہے۔ اس جدول کے مطابق، گھومتے لیچھے والی مثنین میں ساکن اور گھومتے متعالمیت برابر ہوتے ہیں۔ اسی طرح شکل 7.15-ب سے واضح ہے کہ R_s ہراہِ راست مزاحمت ناپنے کے آلہ لیخی اوہم میڑ R_s ہم میڑ آلی بائی جائے تو

$$(7.60) R^* = R_{rk} - R_s$$

ہو گا اور اب R'_r کو مساوات 7.56 سے حاصل کیا جا سکتا ہے جہاں X_m بوجھ امالی موٹر کے معائنہ میں حاصل کی جاتی ہے۔

Ohm $meter^{31}$

باب. ١ مالي مشين

X'_r	X_s	خاصيت	گھومتاحصہ
$0.5X_{rk}$	$0.5X_{rk}$	کار کرد گی گھومتے ھے کی مزاحمت پر منحصر	ليثاهوا
$0.5X_{rk}$	$0.5X_{rk}$	عام ابتدائی قوت مر وڑ،عام ابتدائی رو	A بناو Δ
$0.6X_{rk}$	$0.4X_{rk}$	عام ابتدائی قوت مر وڑ، کم ابتدائی رو	Bبناوك
$0.7X_{rk}$	$0.3X_{rk}$	زیادها بتدائی قوت مر وژ، کم ابتدائی رو	Cبناوك
$0.5X_{rk}$	$0.5X_{rk}$	زیاد ہابتدائی قوت مر وڑ،زیادہ سرک	D بناو Δ

جدول 7.1: متعامليت كي ساكن اور گھومتے حصوں ميں تقسيم۔

شکل 7.16: ستارہ اور تکونی جڑی موٹروں کی ساکن لیجھوں کی مزاحمت کااوہم میٹر کی مدد سے حصول۔

اوہم میٹر کی مدد سے ساکن کچھے کی مزاحمت ناپتے وقت یہ جاننا ضروری ہے کہ موٹر ستارہ یا تکونی جڑی ہے۔ شکل R_s میں کچھے کو دونوں طرح جڑا دکھایا گیا ہے۔ اگر یک مرحلہ مزاحمت R_s ہو تو ستارہ جڑی موٹر میں اوہم میٹر $2R_s$ مزاحمت دے گی۔ $2R_s$ مزاحمت دے گی۔

مثال 7.5: ستارہ جڑی چار قطب پچاس ہر ٹز اور 415 وولٹ پر چلنے والی موٹر کے معائنہ کئے جاتے ہیں۔ موٹر کی بناوٹ درجہ بندی A کے مطابق ہے۔اوہم میٹر کسی بھی دو برتی سروں کے مابین 0.55 اوہم جواب دیتا ہے۔ب بوجھ معائنہ Hz اور طاقت کا ضیاع W 906 ناپے جاتے ہیں۔جامد موٹر معائنہ Hz اور کا 30 اور کا 35 ہوئے برقی رو A 1.9 اور طاقت کا ضیاع W 850 ناپے جاتے ہیں۔اس موٹر معائنہ Hz اور کا 30 پر کرتے ہوئے برقی رو A 13.9 اور طاقت کا ضیاع W 850 ناپے جاتے ہیں۔اس موٹر کی مساوی برقی دو ر بنائیں اور پانچ فی صد سرک پر اس کی اندرونی میکانی طاقت عاصل کریں۔

 $R_s = rac{0.55}{2} = 0.275\,\Omega$ حاصل کے جواب سے ستارہ بڑی موٹر کے ساکن کچھے کی مزاحمت کا جواب سے ستارہ بڑی موٹر کے ساکن کتھے کی مزاحمت کا ہوتہ

 $R_{bb}=rac{415}{\sqrt{3}}=239.6\,\mathrm{V}$ جوتی معائنہ میں یک مرحلہ برتی دباو $R_{bb}=rac{906}{3 imes4.1^2}=17.965\,\Omega$ $|Z_B|=rac{239.6}{4.1}=58.439\,\Omega$ $X_{bb}=\sqrt{58.439^2-17.965^2}=55.609\,\Omega=X_s+X_m$ للذارك موٹر معائنہ كے نتائج سے X_s حاصل برو جائے گ

ساکن کھھے کی مزاحمت میں اس برقی رو پر کل

 $3I_{bb}^2R_s = 3 \times 4.1^2 \times 0.275 = 13.87 \,\mathrm{W}$

برتی طاقت کا ضیاع ہو گا لہذا رگڑ اور دیگر طاقت کا ضیاع 892=13.86=906 واٹ ہو گا۔

رکے موٹر کے معائنہ میں یک مرحلہ برتی ویاو $\frac{50}{\sqrt{3}}=28.9$ وولٹ ہیں یوں اس معائنہ سے $R_{rk}=\frac{850}{3\times13.91^2}=1.464\,\Omega$ $|Z_{rk}|=\frac{28.9}{13.91}=2.07\,\Omega$ $X_{rk,15}=\sqrt{2.07^2-1.464^2}=1.46\,\Omega$

 $X_{rk,50}=rac{50}{15}$ ماصل ہوتے ہیں۔ اس معائنہ میں برقی تعدد 15 ہرٹز تھی للذا 50 ہرٹز پر متعاملیت $X_{rk,50}=rac{50}{15} imes X_{rk,15}pprox 4.9\,$

ہوتی ہے لہذا A کی امالی موٹر کے لئے یہ متعاملت ساکن اور گھومتے کچھے میں بکسال تقسیم ہوتی ہے لہذا $X_s=X_r'=rac{4.9}{2}=2.45\,\Omega$

بول

 $X_m = X_{bb} - X_s = 55.609 - 2.45 = 53\,\Omega$

چونکہ $R_s=0.275$ اوہم ہے للذا

 $R'_r = R_{rk} - R_s = 1.464 - 0.275 = 1.189 \,\Omega$

باب.7. امالي شين

ہو گا۔ یہ مساوی برقی دور شکل 7.17 میں دکھایا گیا ہے۔

پانچ فی صد سرک پر اندرونی میکانی طاقت کی خاطر بائیں جانب کا تھوِنن مساوی دور استعال کرتے ہوئے

$$\begin{split} V_t &= 229 \underline{/0.2833^\circ} \\ Z_t &= 0.251 + j2.343 \\ \left| \hat{I}'_r \right| &= 11.8 \, \mathrm{A} \\ p_m &= \frac{3 \times 11.8^2 \times 0.974 \times (1 - 0.05)}{0.05} = 7730 \, \mathrm{W} \end{split}$$

باب8

یک سمتی رومشین

کے سمتے رومشین یا تو یک سمتی روا برقی طاقت پیدا کرتے ہیں یا پھر یہ یک سمتی رو برقی طاقت سے چلتے ہیں۔ یک سمتی رو مشین یا تو یک سمتی رومشین یا تو یک ہوتی جا رہی ہے اور ان کی جگہ امالی موٹر استعال ہونے گئے ہیں جو جدید طرز کے قورے الیکڑانگرے 2 سے قابو کئے جاتے ہیں۔موجودہ دور میں گاڑیوں میں گئے یک سمتی جزیر بھی دراصل سادہ بدلتی رو جزیر ہوتے ہیں جن کے اندر نب ڈالوؤڈ ان کی بدلتی محرک برقی دباو کو یک سمتی محرک برقی دباو میں تبدیل کر د بی ہے۔

اس باب میں دو قطب کے یک سمتی آلوں کا مطالعہ کیا جائے گا۔میکانی سمت کار رکھنے والے یک سمتی آلوں میں میدانی لیھا ساکن ہوتا ہے جبکہ قوی کیھا گھومتا ہے۔

8.1 ميکانی سمت کار کې بنياد ي کار کردگي

جزیٹر بنیادی طور پر بدلتی رو برقی دباو ہی پیدا کرتا ہے۔ یک سمتی جزیٹر کے اندر نسب سمھے کار4 میکانی طریقہ سے اس بدلتی رو کو یک سمتی برقی دباو حاصل ہوتا ہے۔ اس بدلتی رو کو یک سمتی برقی دباو حاصل ہوتا ہے۔

dc, direct current¹ power electronics² diode³ commutator⁴

شكل 8.1: ميكاني ست كار

سمت کار کو شکل 8.1 میں دکھایا گیا ہے۔ اس شکل میں جزیٹر کے قوی کچھے کو ایک چکر کا دکھایا گیا ہے اگرچہ حقیقت میں ایسا نہیں ہوتا۔ قوی کچھے کے برقی سروں کو د اور ڈسے ظاہر کیا گیا ہے جو سمت کار کے د اور ڈسھوں کے ساتھ جُڑے ہیں۔ قوی کچھا اور سمت کار ایک ہی دھرے پر نسب ہوتے ہیں اور یوں یہ ایک ساتھ حرکت کرتے ہیں۔ نصور کریں کہ یہ دونوں گھڑی کی اُلٹی سمت مقناطیسی میدان میں گھوم رہے ہیں۔ مقناطیسی میدان اُفقی سطح میں S کی جانب ہے جے نوکدار لکیروں سے دکھایا گیا ہے۔ سمت کار کے ساتھ کار بن کے ساکن اُبٹن، اسپر نگ کی مدد سے دبا کر رکھے جاتے ہیں۔ ان کاربن کے اُبٹوں سے برقی دباو بیرونِ جزیٹر موصل برقی تاروں کے ذریعہ منتقل کی جاتی ہیں۔ ان اُبٹوں کو مثبت نشان لیغن ہے۔ اور منفی نشان لیغن سے سے ظاہر کیا گیا ہے۔

د کھائے گئے لمحہ پر لچھے میں پیدا برتی دباو e کی وجہ سے لحجھے کا برتی سراد مثبت اور اس کا برتی سرا ڈ منفی ہے۔ یوں سست کار کا حصہ د مثبت اور اس کا حصہ ڈ منفی ہے جس سے کاربن کے + نشان والا بُش مثبت اور – نشان والا بُش منفی ہے۔ آدھے چکر بعد خلاء میں لحجھے کی د اور ڈ اطراف آپس میں جگہیں تبدیل کر لیں گی۔ یہ شکل 8.2 میں د کھایا گیا ہے۔ لحجھ پر برتی گیا ہے۔ لحجھ کے د اور ڈ اطراف اب بھی سمت کار کے د اور ڈ حصول کے ساتھ جُڑے ہیں۔ اس لمحہ پر لحجھ پر برتی دباو اُلٹ ہو گی اور اب اس کا د طرف منفی اور ڈ طرف مثبت ہو گا جیسے شکل میں دکھایا گیا ہے۔ یہاں سمت کارکی کارکردگی سامنے آتی ہے اور ہم دیکھتے ہیں کہ کاربن کا + نشان والا بُش اب بھی مثبت اور – نشان والا بُش اب بھی منفی ہے۔ یوں جزیئر کے بیرونی برقی سرول پر اب بھی برقی دباو پہلے کی سمت میں ہی ہے۔ سمت کاری کے دانتوں کے مابین برقی دباو ہوتا ہے لہذا ان کو غیر موصل شہ کی مدد ایک دونوں سے اور دھرے سے دور رکھا جاتا ہے۔

گھومتے وقت ایک ایسالمحہ آتا ہے جب سمت کار کے دونوں دانت کاربن کے دونوں بُثوں کے ساتھ جُڑے ہوتے ہیں لیعنی اس لمحہ کاربن کے بُش لیجھے کو کسرِ دور کرتے ہیں۔ کاربن کے بُش محیط پر اس طرح رکھے جاتے ہیں کہ جس

شکل 8.2: آدھے چکر کے بعد بھی بالائی بُش مثبت ہی ہے۔

لمحہ کچھے میں برقی دباو مثبت سے منفی یا منفی سے مثبت ہونے لگے اسی لمحہ کاربن کے بُش کچھے کو کسرِ دور کرے۔ چونکہ اس لمحہ کچھے کے پیدا کردہ برقی دباو صفر ہوتی ہے للذا اسے کسرِ دور کرنے سے کوئی نقصان نہیں ہوتا۔اس طرح حاصل برقی دباو شکل 8.3 میں دکھایا گیا ہے۔

یہاں دو دندوں والا سمت کار اور دو مقناطیسی قطب کے درمیان گھومتا ایک ہی قوی کچھا دکھایا گیا ہے۔ حقیقت میں جزیئر کے بہت سارے قطب ہوں گے۔ مزید سے میں جزیئر کے بہت سارے قطب ہوں گے۔ مزید سے کہ نہایت چھوٹی آلوں میں مقناطیسی میدان مقناطیس ہی فراہم کرتا ہے جبکہ بڑی آلوں میں مقناطیسی میدان ساکن میدانی کچھے فراہم کرتے ہیں۔ مثین کے دونوں قتم کے کچھے تقسیم شدہ ہوتے ہیں۔

اب ہم زیادہ دندول کے ایک سمت کار کو دیکھتے ہیں۔

8.1.1 ميكاني سمت كاركي تفصيل

پچھلے حصہ میں سمت کار کی بنیادی کار کردگی سمجھائی گئی۔ اس حصہ میں اس پر تفصیلاً غور کیا جائے گا۔ یہاں شکل 8.4 سے رجوع کریں۔اس شکل میں اندر کی جانب دکھائے گئے سمت کار کے دندوں کو ہندسوں سے ظاہر کیا گیا ہے۔سمت

شکل 4.8: کاربن بُش سمتکار کے دندوں کو کسرِ دور نہیں کررہا۔

کار کی اندر جانب کاربن بُش دکھائے گئے ہیں جبکہ بیرونِ جزیٹر برتی رو کو ظاہر کرتی ہے۔ شکافوں کو بھی ہندسوں سے ظاہر کیا گیا ہے۔اس جزیٹر کے دو قطب ہیں جبکہ اس میں کل آٹھ شکاف ہیں۔اس طرح اگر ایک شکاف ایک قطب کے سامنے ہو تو تین شکاف چھوڑ کر موجود شکاف دوسرے قطب کے سامنے ہو گا۔ہم کہتے ہیں کہ ایسے دو شکاف ایک قطب فاصلے پر ہیں۔

شگافوں میں موجود کچھوں میں برتی رو کی سمتیں نقطہ اور صلیب سے ظاہر کئے گئے ہیں۔ نقطہ صفحہ سے عمودی طور پر باہر جانب کی سمت کو ظاہر کرتی ہے جبکہ صلیب کے نشان اس کی اُلٹ سمت کو ظاہر کرتی ہے۔یوں پہلی شگاف میں برتی رو کی سمت عمودی طور پر صفحہ کی اندر جانب کو ہے۔

ہر شگاف میں دو لچھے و کھائے گئے ہیں۔ پہلی شگاف کی اندر جانب موجود لچھا، ست کار کی پہلی دانت سے بُڑا ہے۔ یہ جوڑا ہوٹی لکیر سے ظاہر کی گئی ہے۔ شگاف کے نچلے سرے سے نکل کر یہ لچھا پائی نمبر شگاف کے نچلے سرے میں باہر جانب کو داخل ہوتا ہے۔ اس بات کو نقطہ دار لکیر سے دکھایا گیا ہے۔ اس طرح دو لچھے دوسرے اور چیٹے شگافوں میں ہیں۔ ان میں ایک لچھا دوسرے شگاف میں اندر کی جانب اور چیٹے شگاف میں باہر کی جانب ہے جبکہ دوسرا لچھا دوسرے شگاف میں باہر کی جانب اور پانچویں لچھا دوسرے شگاف میں باہر کی جانب ہو جبکہ لور پانچویں شگاف میں اندر کی جانب ہے۔ نقطہ دار لکیریں صرف پہلی اور پانچویں شگاف میں اندر کی جانب ہے۔ نقطہ دار لکیریں صرف پہلی اور پانچویں شگاف میں اندر جانب اور اس کی دوسری طرف شگاف میں ہبلا اندر جانب اور اس کی دوسری طرف ایک قطب دور موجود شگاف میں باہر جانب کو ہوتی ہے۔ ست کار کا یہی پہلا اندر جانب اور اس کی دوسری طرف ایک قطب دور موجود شگاف میں باہر جانب کو ہوتی ہے۔ ست کار کا یہی پہلا

شكل 8.5: ست كارسے جڑے كھے۔

دانت چوشے شگاف کی باہر جانب موجود کچھے سے بھی جُڑا ہے۔آپ یہاں رکھ کر شکل 8.5 کی مدد سے مشین میں برقی رو کی سمتیں سمجھیں اور تیلی کر لیں کہ بید درست دکھائے گئے ہیں۔اس شکل میں کچھوں کو الف، ب، پ وغیرہ نام دیئے گئے ہیں جبکہ سمت کار کے دندوں کو ہندسوں سے ظاہر کیا گیا ہے۔کاربن کے کُش پہلے اور پانچویں دانت سے جڑے دکھائے گئے ہیں۔

اس شکل میں کاربن بُش سے برقی رو سمت کارکی پہلے دانت سے ہوتے ہوئے دو برابر مقداروں میں تقسیم ہو کر دو کیساں متوازی راستوں گزرے گی۔ایک راستہ سلسلہ وار جڑے الف، ب، پ اور ت کچھوں سے بنتا ہے جبکہ دوسرا راستہ سلسلہ وار جڑے ہے، ث، ج اور چ کچھوں سے بنتا ہے۔یہ دو سلسلہ وار راستے آپس میں متوازی جڑے ہیں۔برقی روکی سمت نقطہ دار چونچ والی لکیر سے ظاہر کی گئی ہے۔دو متوازی راستوں سے گزرتا برقی روایک مرتبہ دوبارہ مل کر ایک ہو جاتا ہے اور سمت کار کے پانچویں دانت سے جڑے کاربن بُش کے ذریعہ مشین سے باہر نکل جاتا ہے۔ آپ دیکھ سکتے ہیں کہ گھومتے جھے کی شکافوں میں موجود کچھوں میں برقی رو مقناطیسی دباو کو جنم دے گی جو ساکن مقناطیسی دباو کی عمودی سمت میں ہو گی جیسا شکل 8.4 میں دکھایا گیا ہے۔یہ دو مقناطیسی دباو دھرے پر گھڑی کی سمت میں قوت مروڑ پیدا کریں گے۔یوں اگر مثین موٹر کے طور پر استعال کی جا رہی ہو تو یہ گھڑی کی سمت میں طور کے جا رہی ہو تو یہ گھڑی کی سمت میں طور کے جائے گی کہ اس میں برقی دود کھائی گئی سمت میں لاگو کی جائے گی کہ اس میں برقی دود کھائی گئی سمت میں ہو۔

اب یہ تصور کریں کہ مشین ایک جزیٹر کے طور پر استعال کی جارہی ہو اور اسے گھڑی کی اُلٹی سمت بیرونی میکانی طاقت سے گھمایا جا رہا ہو۔یوں سمت کار کے آدھے دانت برابر حرکت کرنے کے بعد یہ شکل 8.6 میں دکھلائے

باب.8. يك ستى روشىين

شكل 8.6 : كاربن كبش سمت كاركے دندوں كو كسرِ دور كررہاہے۔

حالت اختیار کرلے گی۔اس شکل میں دائیاں کاربن ابُش سمت کار کے پہلے اور دوسرے دانت کے ساتھ جبکہ بائیاں کاربن ابُش اس کے پانچویں شکافوں میں موجود کچھے کسرِ دور کاربن ابُش اس کے پانچویں اور چھٹے دانت کے ساتھ جُڑ گئے ہیں۔یوں پہلے اور پانچویں شکافوں میں موجود کچھوں میں حسبِ معمول برقی رو ہو گا جن سے مقاطیسی دباو اب بھی پہلے کی طرح ساکن مقاطیسی کی دباو کی عمودی سمت میں ہوگا۔اس لحمہ کی صورت شکل 8.7 میں زیادہ واضح ہے۔

مشین جب سمت کار کے ایک دانت برابر حرکت کر لے تو کاربن کے کُش دوسرے اور چھٹے دانت سے جُڑ جائیں گے۔ پہلے اور پانچویں شگافوں میں برقی رو کی سمت پہلی سے اُلٹ ہو جائے گی جبکہ باقی شگافوں میں برقی رو کی سمتیں برقرار رہیں گی۔ گھوشتے کچھوں کا برقی دباواب بھی اُسی سمت میں ہو گا۔

جتنے کہتے کے لئے کاربن کے بُش دو کچھوں کو کسرِ دور کرتے ہیں اتنے وقت میں ان کچھوں میں برقی روکی سمت اُلٹ ہو جاتی ہے۔کوشش کی جاتی ہے کہ اس دوران برقی رو وقت کے ساتھ بتدر تئ تبدیل ہو۔ایسا نہ ہونے سے کاربن کے بُش سے چنگاریاں نکلتی ہیں جن سے یہ بُش جلد ناکارہ ہو جاتے ہیں۔جزیٹر کے کسر دور کچھوں میں پیدا برقی دباو انہیں کچھوں میں گھومتی برقی رو پیدا کرتی ہے جو ہمارے کسی کام کی نہیں۔ کچھے اور کاربن بش کے برقی مزاحمت اس برقی روکی قیمت کا تعین کرتے ہیں۔

حقیقت میں یک سمتی جزیٹر میں در جن دانت فی قطب والا سمت کار استعال ہو گا اور اگر مشین نہایت مچھوٹی نہ ہو تو اس میں دو سے زیادہ قطب ہول گے۔

شکل 8.7: کاربن بش دودندوں کو کسر دور کررہے ہیں۔

8.2 كى سىتى جزيىر كى برقى د باو

گزشتہ حصہ میں شکل 8.5 کے الف، ب، پ اور ت کچھے سلسلہ وار جڑے ہیں۔ اس طرح ٹ، ث، ج اور ج کچھے سلسلہ وار جڑے ہیں۔ وہ وہ وہ وہ وہ وہ وہ وہ اسلہ وار جڑے ہیں۔ حصہ 5.3 میں مساوات 5.23 ایک کچھے کی یک سمتی جزیڑ کی محرک برتی دباو وہ وہ وہ اسے یہاں یاد دھیانی کی خاطر دوبارہ دیا جاتا ہے۔

$$(8.1) e_1 = \omega N \phi_m = \omega N A B_m$$

8.4 اگر خلائی درز میں B_m کی مقدار ہر جگہ کیساں ہو تو سب کچھوں میں برابر محرک برقی دباو پیدا ہو گا۔یوں شکل B_m میں دکھائے کمحہ پر جنزیٹر کی کل محرک برقی دباو e ایک کچھے کی محرک برقی دباو کی چار گنا ہو گی لیعنی

(8.2)
$$e = e_{\downarrow\downarrow} + e_{\downarrow} + e_{\downarrow} + e_{\downarrow}$$

$$= e_{\downarrow} + e_{\downarrow} + e_{\downarrow} + e_{\downarrow}$$

$$= 4\omega NAB_{m}$$

جبه شکل 8.6 میں و کھائے لمحہ پر صرف تین لچھوں کی محرکی برقی دباو زیر استعال آتی ہے لینی

(8.3)
$$\begin{aligned} e &= e_{\downarrow} + e_{\downarrow} + e_{\ddot{\downarrow}} \\ &= e_{\ddot{\downarrow}} + e_{\ddot{\downarrow}} + e_{\ddot{\downarrow}} \\ &= 3\omega NAB_m \end{aligned}$$

باب.8. يكت تى روشين

شکل8.8: آٹھ دندوں کی میکانی سمت کارسے حاصل برقی دباو۔

شکل 8.8 میں اس آٹھ وندوں والے میکانی سمت کارسے حاصل برتی وباو وکھائی گئی ہے۔اس شکل میں یک سمتی برقی وباو پر مطلوبہ اہریں نظر آ رہی ہیں۔اگر جزیٹر میں ایک جوڑی قطب پر کل n کچھے ہوں تو شکل 8.5 کی طرح ہیدوں ہو سے سلسلہ وار کچھوں جتنی محرکی برقی وباو پیدا کرے گی۔

(8.4)
$$e = \frac{n}{2}\omega N\phi_m = \frac{n}{2}\omega NAB_m$$

اس صورت میں یہ غیر مطلوبہ اہریں کل یک سمتی برقی دباو کی تقریباً

$$\frac{\omega N \phi_m}{\frac{n}{2} \omega N \phi_m} \times 100 = \frac{2}{n} \times 100$$

فی صد ہو گی۔آپ دیکھ سکتے ہیں کہ اگر فی قطب دندوں کی تعداد بڑھائی جائے تو حاصل برتی دباو زیادہ ہموار ہو گی اور یہ غیر مطلوبہ لہریں قابل نظر انداز ہوں گے۔

اب تصور کریں کہ شکل 8.4 میں دیئے مشین کی خلائی درز میں B_m کی مقدار ہر جگہ کیساں نہیں ہے۔اس صورت میں کچھوں میں محرک برقی دباو مساوات 8.1 کے تحت مختلف زاویوں پر مختلف ہو گی۔اس طرح مشین سے حاصل کل برقی دباو چار سلسلہ وار کچھوں کی مختلف محرک برقی دباو کے مجموعہ کے برابر ہو گی یعنی

$$(8.6) e = e_1 + e_2 + e_3 + e_4$$

جہاں e_1, e_2, \cdots مختلف کچھوں کی محرک برقی دباو کو ظاہر کرتے ہیں۔

اب شکل 8.4 پر غور کریں۔اگر گھومتا حصہ صرف ایک دندے برابر حرکت کرے تو اس شکل کی حالت دوبارہ حاصل ہوتی ہے اور اس سے حاصل برتی دباو بھی دوبارہ وہی ملتی ہے۔اگر میکانی سمت کارکی فی قطب دندوں کی تعداد زیادہ کر دی جائے تو یہ حرکت قابل نظر انداز ہو جاتی ہے۔ اب اگر خلائی درز میں کثافتِ متناطیسی بہاو ہمواری کے ساتھ تبدیل ہو تو آتی کم حرکت کے احاطے میں B_m کی مقدار میں کوئی خاص تبدیلی نہیں آئے گی اور اس احاطے

8.3. قوت مسرور الله 8.3

شكل8.9: آرى دندون نما كثافت مقناطيسي دباو ـ

میں اسے یکساں تصور کیا جا سکتا ہے۔ یوں اگر لچھا اس احاطے میں حرکت کرے تو اس میں محرک برقی دباو تبدیل نہیں ہو گی۔ یعنی جس لچھے کی محرکی برقی دباو e_1 ہے اُس کی اس احاطے میں محرکی برقی دباو یہی رہے گی۔ یوں اگرچہ نہیں ہو گی۔ یعنی جس محلف ہو سکتے ہیں مگر ان کی مقدار قطعی ہے، لہذا اس صورت میں مساوات e_1, e_2, \dots گئی محرکی برقی دباوکی مقدار مجمی قطعی ہو گی۔

ہم نے دیکھا کہ اگر خلائی درز میں B_m ہمواری کے ساتھ تبدیل ہو تو جزیٹر سے معیاری یک سمتی محرک برقی دباو حاصل ہوتی ہے۔ بہایت چھوٹی یک سمتی آلوں میں دباو حاصل ہوتی ہے۔ بہایت چھوٹی یک سمتی آلوں میں خلائی درز میں B_m یکساں رکھا جاتا ہے جبلہ بڑی آلوں میں اسے ہمواری کے ساتھ تبدیل کیا جاتا ہے۔ جیسا اوپر ذکر ہوا عملاً میکانی سمت کار کے دندوں تک لچھوں کے سروں کی رسائی ممکن تب ہوتی ہے جب ہر شگاف میں دو لچھے رکھے جائیں۔ اس طرح رکھے لچھوں کی خلائی درز میں مقناطیسی دباو آری کے دندوں کی مانند ہوتا ہے۔ یہ شکل 8.9 میں دکھایا گیا ہے۔

زیادہ قطب کے مشین میں شالی اور جنوبی قطب کے ایک جوڑے کی پیدا یک سمتی برقی دباو مساوات 8.4 سے حاصل ہو گی جہال n ایک قطبین کے جوڑے پر میکانی ست کار کے دندول کی تعداد ہو گی۔یوں زیادہ قطبین کے جوڑیوں سے حاصل یک سمتی برقی دباو کو سلسلہ وار یا متوازی جوڑا جا سکتا ہے۔

8.3 قوت مروڑ

یک سمتی آلول کی امالی برقی دباو اور قوت مرور خلائی درز میں مقناطیسی دباو کی شکل پر منحصر نہیں۔اپنی سہولت کے لئے ہم ان کی خلائی درز میں مقناطیسی دباو سائن نما تصور کرتے ہیں۔شکل 8.9 میں دکھائے گئے قوی کچھے کی مقناطیسی

با__8. يك___تن رومثين

د باو کی بنیادی فور *یئر جز*و⁵

$$\tau_q = \frac{8}{\pi^2} \frac{NI}{2}$$

ہے۔یوں چونکہ یک سمتی مشین میں ساکن اور گھومتے کچھوں کی مقناطیسی دباو عمودی ہیں لہذا ان میں قوت مروڑ مساوات 5.101 کی طرح

(8.8)
$$T = -\frac{\pi}{2} \left(\frac{P}{2}\right)^2 \phi_m \tau_q$$

ہو گی۔

مثال 8.1: دو قطب بارہ دندوں کے میکانی سمت کار کے یک سمتی جزیٹر میں ہر قوی کچھا بیس چکر کا ہے۔ایک کھھے سے گزرتی مقناطیسی بہاو 0.0442 ویبر ہے۔جزیئر 3600 چکر فی منٹ کی رفتار سے گھوم رہا ہے۔

- اس کی پیدا یک سمتی برقی دباو میں غیر مطلوبہ لہرس کل برقی دباو کے کتنے فی صد ہیں۔
 - یک سمتی برقی دباو حاصل کریں۔

حل:

مساوات
$$8.5$$
 سے غیر مطلوبہ لہریں $\frac{2}{n} imes 100 = \frac{2}{12} imes 100 = 16.66$ صدبیں۔

• جزیٹر کی رفتار
$$60=rac{3600}{60}$$
 ہر ٹڑ ہے یوں مساوات 8.4 کی مدد سے حاصل کیک سمتی برقی دباو

$$e = \frac{12}{2} \times 2 \times \pi \times 60 \times 20 \times 0.0442 = 1999.82 \,\mathrm{V}$$

-4

شكل8.10: بير وني بيجان اورخود بيجان يك سمتي جزيثر ـ

8.4 بير وني هيجان اور خود هيجان يك سمتى جنريثر

بیرونی ایجانے 6 یک سمتی جزیر کے میدانی لیچھ کو بیرونی یک سمتی برقی دباو مہیا کی جاتی ہے جبکہ نود ایجانے 7 یک سمتی جزیر کے میدانی لیچھ کو اس جزیر کی اپنی پیدا کردہ محرک برقی دباو ہی مہیا کی جاتی ہے۔یک سمتی جزیر کی کارکردگی اس کو بیجان کرنے کے طریقے پر منحصر ہے۔

شکل 8.10-الف میں قوی کچھے اور میدانی کچھے 9کو آپس میں عمودی بنایا گیا ہے۔ یہ ایک سادہ طریقہ ہے جس سے یہ یاد رہتا ہے کہ ان کچھوں کی پیدا کردہ مقناطیسی دباو عمودی ہیں۔ یہاں قوی کچھے کی شکل میکانی سمت کارکی طرح بنائی گئی ہے۔

چونکہ میدانی اور قوی کچھوں کی مقناطیسی دباو عمودی ہیں ہم اس سے یہ اخذ کرتے ہیں کہ ایک کچھے کی برقی دباو دوسرے کچھے کی برقی دباو پر اثر انداز نہیں ہوتی۔اس کا مطلب ہے کہ مقناطیسی قالب کی کسی ایک سمت میں سیر ابیت اس سمت کی عمودی سمت میں سیر ابیت پر اثر انداز نہیں ہوتی۔

شکل 8.10-الف میں بیرونی بیجان مشین کی میدانی کیجے کو بیرونی یک سمتی برتی طاقت مہیا کی گئی ہے۔یوں میدانی کیجے کی برتی رو تبدیل کر کے اس کی میدانی مقناطیسی دباو m، میدانی مقناطیسی دباو m اور کثافتِ مقناطیسی

separately excited⁶ self excited⁷ armature coil⁸

field coil⁹

_

شکل 8.11: میدانی برتی روسے محرکی برتی دباو قابو کی جاتی ہے۔

بہاو B_m تبدیل کی جا سکتی ہے۔یوں جزیٹر کی محرک برقی دباو مساوات 8.1 کے تحت تبدیل کی جا سکتی ہے یا پھر موٹر کی قوت مروڑ مساوات 8.8 کے تحت تبدیل کی جا سکتی ہے۔

برتی رو بڑھانے سے قالب کا سیر اب ہونا شکل 8.11 میں واضح ہے۔ یوں برتی رو بڑھاتے ہوئے شروع میں محرک برتی دباو اور میدانی کچھے کی برتی رو براہِ راست متناسب ہو گی جبکہ زیادہ برتی رو پر ایسا نہیں۔ شکل میں خط ب مشین کے کھلے سرے معائنہ سے حاصل کی جاستی ہے۔ اس شکل میں محرکی برتی دباو کو e_{q0} کی بجائے e_{q0} کھ کر اس بات کی یاد دھیانی کرائی گئ ہے کہ یہ محرکی دباو قوی کچھے سے حاصل کی گئ ہے اور یہ ایک معین رفتار ω_0 برق دباو e_q ماصل کرتی ہو تو مساوات 8.4 کی مدد سے کی گئ ہے۔ اگر کسی اور رفتار س پر اس خط سے محرکی برتی دباو e_q حاصل کرنی ہو تو مساوات 8.4 کی مدد سے

(8.9)
$$\frac{e_q}{e_{q0}} = \frac{\frac{n}{2}\omega NAB_m}{\frac{n}{2}\omega_0 NAB_m} = \frac{\omega}{\omega_0}$$

لعيني

$$(8.10) e_q = \frac{rpm}{rpm_0} e_{q0}$$

جہال رفتار کو چکر فی منٹ ¹⁰ میں بھی لیا گیا ہے۔یاد رہے کہ یہ مساوات صرف اُس صورت میں درست ہے جب مقناطیسی میدان تبدیل نہ ہو۔

مقناطیسی قالب اگر مقناطیس بنائی جائے تو اس میں بقایا مقناطیسی بہاو رہتی ہے۔یہ شکل کے حصہ الف میں دکھائی گئی ہے۔یوں اگر میدانی کچھے کو بیجان نہ بھی کیا جائے تو جزیئر کچھ محرکی برقی دباو پیدا کرے گی ا۔ یہ بقایا محرکی برقی دباو شکل ب میں صفر میدانی برقی رو پر دکھائی گئی ہے۔

rpm, rounds per minute¹⁰

¹¹ آپ ٹھیک سوچ رہے ہیں۔ جزیر بنانے والے کار خانے میں قالب کو پہلی مرتبہ مقناطیس بنانایر تاہے

شكل 8.12: سلسله واراور مر كب جڑى خود بيجان جنريٹر۔

اگر خود ہیجان جزیر کو ساکن حال سے چالو کیا جائے تو بقایا محرکی برتی دباہ پیدا ہو گی۔اس محرک برتی دباہ سے میدانی کچھے میں برقی رو روال ہو گا اور بول مقناطیسی میدان پیدا ہو گا جس سے مشین ذرا زیادہ ہیجان ہو جائے گا اور یول اس کی محرک برقی دباہ بھی کچھ بڑھ جائے گی۔اس طرح کرتے کشین جلد پوری محرک برقی دباہ پیدا کرنے مشین جلد پوری محرک برقی دباہ پیدا کرنے مشین کی رفتار بڑھ رہی ہوتی ہے۔

شکل 8.10-ب میں خود بیجان مشین دکھائی گئی ہے جس کے میدانی اور قوی کیھے متوازی بُوئے ہیں۔ اس طرح جڑی جزیر کو خود بیجار متوازی جڑھے ¹² جزیر کہتے ہیں۔اس شکل میں میدانی کچھ کے ساتھ ایک مزاحت سلسلہ وار جڑی ہے۔اس مزاحت کو تبدیل کر کے میدانی برقی رو تبدیل کی جاتی ہے جس سے بالکل بیرونی بیجان مشین کی طرح جزیر کی محرکی برقی دباویا موٹر کی قوت مروڑ تبدیل کی جاتی ہے۔

شکل 8.12 میں خود بیجان جزیر کی دو اور قسمیں دکھائی گئی ہیں۔ ایک خود بیجائے سلملہ وار بڑئے جزیر اور دوسری خود بیجائے سلملہ وار بڑئے جزیر اور دوسری خود بیجائے مرکب جنریر میں میدانی اور قوی کچھ سلسلہ وار بجڑے ہوتے ہیں۔مرکب جنریر میں میدانی اور دوسرا اس کے سلسلہ وار بجڑے ہوتے میں میدانی کچھ کے متوازی اور دوسرا اس کے سلسلہ وار بجڑے ہوتے ہیں۔مزید میہ کہ متوازی بجڑا حصہ قوی کچھ کے قریب ہو سکتا ہے یا پھر یہ سلسلہ وار کچھ کے دوسری جانب یعنی دور بین صورت میں دور بڑئی مرکب جزیر کہیں بھڑا ہو سکتا ہے۔ پہلی صورت میں اس قریب جزیر کہیں اگئے ہیں۔

یک سمتی موٹر بھی اسی طرح رپارے جاتے ہیں۔ یعنی شکل 8.10 کی طرح بڑی دو موٹروں کو بیرونی ہیجان موٹر اور خود ہیجان متوازی بڑی موٹر کہیں گے۔موٹر میں قوی کیچھے کی برقی رو کی سمت جزیئر کے برقی رو کی سمت کے اُلٹ ہوتی ہے۔ اُلٹ ہوتی ہے۔

parallel connected 12

باب.8 یک ستی روشین

شکل 8.13: مر کب قریب جڑی اور مر کب دور جڑی خو دہیجان جزیٹر

ہر طرح جڑی یک سمتی جزیٹر کی میدانی مقناطیسی دباواس کے میدانی کچھے کے چکر ضرب برقی رو کے برابر ہوتی سے یعنی

شکل 8.10 میں خود بیجان متوازی بڑی جزیٹر کی میدانی کیھے میں برتی رو اس کیھے اور اس کے ساتھ بڑی مزاحمت $R=R_m+R_m'$ مخصر ہوگی یعنی $I_m=rac{V}{R}$ یوں خود بیجان متوازی بڑی جزیئر کے لئے اس مساوات کو یوں کھیا جائے گا۔

$$\tau_{m,m} = \frac{I_m V}{R_m + R'_m}$$

سلسلہ وار جڑی جزیئر میں میدانی برقی رو جزیئر کے قوی کچھے کی برقی رو کے برابر ہوتی ہے للذا اس صورت میں اس مساوات کو یوں لکھا جا سکتا ہے۔

$$\tau_{m,s} = N_m I_q$$

شکل 8.13 میں مرکب جزیر میں میدانی مقناطیسی دباو کے دو جصے ہیں۔اس میں N_{mm} چکر کے متوازی جڑے میدانی کچھے میں برقی رو I_{ms} اور N_{ms} چکر کے سلسلہ وار جڑے میدانی کچھے میں برقی رو N_{ms} ہے لہذا

(8.14)
$$\tau_{m,mk} = N_{ms}I_{ms} + N_{mm}I_{mm}$$

شکل 8.14: یک سمتی جزیٹر کی محرک برقی د باوبمقابلہ برقی بوجھ کے خطہ

8.5 کیک سمتی مشین کی کار کردگی کے خط

8.5.1 حاصل برقى دياو بالمقابل برقى بوجھ

مختلف طریقوں سے بُڑے یک سمتی جزیٹروں سے حاصل برقی دباو بمقابلہ ان پر لدے برقی بوجھ کے خط شکل 8.14 میں دکھائے گئے۔ گھومتی رفتار معین تصور کی گئی ہے۔ دھرے پر لاگو بیرونی میکانی طاقت جزیٹر کی قوت مروڑ کے خلاف اسے گھمائے گی۔

ان خط کو سیجھنے کی خاطر پہلے ہیرونی بیجان جزیٹر پر غور کرتے ہیں جس کی مساوی برقی دور شکل 8.15-الف میں دی گئی ہے۔ ہیرونی بیجان جزیٹر پر برقی بوجھ لادنے سے اس کے قوی کچھے کی مزاحت R_q^{13} میں برقی رو I_q گزرنے سے اس میں برقی دباو گھٹی ہے۔ لہذا جزیٹر سے حاصل برقی دباو V، جزیٹر کی اندرونی محرک برقی دباو E_q سے قدرِ کم ہوتی ہے بیعنی

$$(8.15) V = E_q - I_q R_q$$

برقی بوجھ I_q بڑھانے سے جزیٹر سے حاصل برقی دباو کم ہو گی۔شکل میں بیرونی بیجان جزیٹر کی خط ایبا ہی رجمان ظاہر کرتی ہے۔ حقیقت میں کچھ اور وجوہات بھی کار آمد ہوتے ہیں جن سے یہ خط سید سی نہیں بلکہ جھکی ہوتی ہے۔

متوازی جڑی جزیٹر کے خط کا یمی رجمان ہے۔ متوازی جڑی جزیٹر پر بھی برتی بوجھ لادنے سے قوی کچھے کی مزاحمت میں برقی دباو گھٹی ہے ۔یوں اس کے میدانی کچھے پر لاگو برقی دباو کم ہو جاتی ہے جس سے میدانی کچھے میں برقی رو

شکل 8.15: بیرونی ہیجان اور متوازی جڑی جزیٹر کی مساوی برتی دور۔

شكل 8.16: سلسله واراور مركب جزييرك مساوى برقى دور

بھی گھٹی ہے۔ اس سے محرک برقی دباو مزید کم ہوتی ہے۔اس طرح ان جزیٹر سے حاصل برقی دباو بمقابلہ برقی بوجھ کے خط کی ڈھلان بیرونی بیجان جزیٹر کی خط سے زیادہ ہوتی ہے۔

شکل 8.16 میں سلسلہ وار اور مرکب جزیئر کی مساوی برقی داو دکھائے گئے ہیں۔سلسلہ وار جڑی جزیئر کے میدانی کچھے میں لدے بوجھ کی برقی رو ہی گزرتی ہے۔اس طرح بوجھ بڑھانے سے میدانی مقناطیس وباو بھی بڑھتی ہے۔اس طرح بڑس سے محرک برقی دباو بڑھتی ہے۔اس کا خط یہی دکھا رہا ہے۔اس طرح بڑٹے جزیئر عموماً استعال نہیں ہوتے چونکہ ان سے حاصل برقی دباو، بوجھ کے ساتھ بہت زیادہ تبدیل ہوتی ہے۔

مرکب جڑی جزیر کی کارکردگی سلسلہ وار اور متوازی جڑی جزیر ول کے مابین ہے۔ مرکب جزیر میں بوجھ بڑھانے سے قوی کچھے کی وجہ سے حاصل برقی دباو میں کمی کو میدانی کچھے کی بڑھتی مقناطیسی دباو پورا کرتی ہے۔ یوں مرکب جزیر سے حاصل برقی دباواس پر لدے بوجھ کے ساتھ بہت کم تبدیل ہوتی ہے۔

بیرونی بیجان، متوازی اور مرکب جڑی جزیر ول سے حاصل برقی دباو کو متوازی جڑی کچھے میں برقی روکی مدد سے وسیع حد تک تبدیل کیا جا سکتا ہے۔

قوی لچھا چونکہ برتی بوجھ کو درکار برتی رو فراہم کرتی ہے لہذا ہے موٹی موصل تارکی بنی ہوتی ہے اور اس کے عموماً کم چکر ہوتے ہیں۔سلسلہ وار جزیٹر کے میدانی کچھے سے چونکہ مشین کا پوری برتی رو ہی گزرتا ہے للذا یہ بھی موٹی موصل تارکی بنی ہوتی ہے۔باقی آلوں میں میدانی کچھے میں پورے برقی بوجھ کے چند ہی فی صد برقی رو گزرتی ہے للذا یہ بادیک موصل تارکی بنائی جاتی ہے اور اس کے عموماً زیادہ چکر ہوتے ہیں۔

8.5.2 رفتار بالمقابل قوت مرورُ

یہاں بھی شکل 8.15 اور شکل 8.16 سے رجوع کریں البتہ شکل میں برقی روکی سمتیں اُلٹ کر دیں۔ یک سمتی موٹر بھی جزیٹروں کی طرح مختلف طریقوں سے بجڑے جاتے ہیں۔موٹر کو معین بیرونی برقی دباو دی جاتی ہے جہاں سے یہ برقی رو باہر سے قوی کیچے کی جانب چلتی ہے لہذا موٹر کے لئے کھا جائے گا

$$V = E_q + I_q R_q$$

$$I = \frac{V - E_q}{R_q}$$

13 علامتRq کے زیر نوشت میں q لفظ قوی کے پہلی حرف ق کو ظاہر کرتی ہے۔

شکل 8.17: یک سمتی موٹر کی میکانی بوجھ بمقابلہ رفتار کے خط۔

بیرونی بیجان اور متوازی جڑی موٹروں میں میدانی کیچھ کو برقرار معین بیرونی برقی دباو فراہم کی جاتی ہے للذا میدانی متناطیسی بہاو پر میکانی بوجھ کا کوئی اثر نہیں۔ بڑھتی میکانی بوجھ اٹھانے کی خاطر مساوات 8.8 کے تحت قوی کیچھ کی متناطیسی بہاو بڑھنی ہو گی۔ یہ تب ممکن ہو گا کہ اس میں برقی رو بڑھے۔ مساوات سے ہم دیکھتے ہیں کہ قوی کیچھ کی محرکی برقی دباو E_q گئے سے ہی ایبا ممکن ہے۔ E_q موٹر کی رفتار پر منحصر ہے للذا موٹر کی رفتار کم ہو جائے گی۔ یوں میکانی بوجھ بڑھانے سے موٹر کی رفتار کم ہو جائے گی۔ یوں میکانی بوجھ بڑھانے سے موٹر کی رفتار کم ہوتی ہے۔ شکل 8.17 میں یہ دکھایا گیا ہے۔

متوازی جڑی یا بیرونی بیجان موٹر تقریباً معین رفتار ہی برقرار رکھتی ہے۔اس کی رفتار بے بوجھ حالت سے پوری طرح بوجھ بردار حالت تک تقریباً صرف پانچ فی صد کھنتی ہے۔ان موٹروں کی رفتار نہایت آسانی سے میدانی کچھے کی برقی رو تبدیل کر کے تبدیل کی جاتی ہے۔اییا میدانی کچھے کے ساتھ سلسلہ وار جڑی مزاحمت کی تبدیلی سے کیا جاتا ہے۔ان کی رفتار یوں وسیع حدوں کے مابین تبدیل کرنا ممکن ہوتا ہے۔موٹر پر لاگو بیرونی برقی دباو تبدیل کر کے بھی رفتار قابو کی جاسکتی ہے۔اییا عموماً قوی الیکٹرائنس کی مدد سے کیا جاتا ہے۔

ان موٹر کی ساکن حال سے چالو کرتے کھے کی قوت مروڑ اور ان کی زیادہ سے زیادہ قوت مروڑ قوی کچھے تک برقی رو پہنچانے کی صلاحت پر منحصر ہے یعنی یہ میکانی سمت کار پر منحصر ہے۔

سلسلہ وار جڑی موٹر پر لدی میکانی بوجھ بڑھانے سے اس کے قوی اور میدانی کچھوں میں برقی رو بڑھے گا۔ میدانی مقناطیسی بہاو بڑھے گی اور مساوات 8.16 کے تحت E_q کم ہو گی جو موٹر کی رفتار کم ہونے سے ہوتی ہے۔ بوجھ بڑھانے سے ان موٹر کی رفتار کافی زیادہ کم ہوتی ہے۔ایسے موٹر ان جگہوں بہتر ثابت ہوتے ہیں جہاں زیادہ قوت مروڑ درکار ہو۔بڑھی قوت مروڑ کے ساتھ ان کی رفتار کم ہونے سے ان کو درکار برقی طاقت قوت مروڑ کے ساتھ زیادہ تبدیل نہیں ہوتا۔

یہاں اس بات کا ذکر ضروری ہے کہ بے بوجھ سلسلہ وار بڑی موٹر کی رفتار خطرناک حد تک بڑھ سکتی ہے۔ایسے موٹر کو استعال کرتے وقت اس بات کا خاص خیال رکھنا ضروری ہے کہ موٹر ہر لمحہ بوجھ بردار رہے۔

ساکن حالت سے موٹر چالو کرتے وقت I_q کی قیت زیادہ ہوتی ہے جس سے زیادہ مقناطیسی بہاو پیدا ہوتا ہے۔ یوں چالو کرتے وقت موٹر کی قوت مروڑ خاصی زیادہ ہوتی ہے۔ یہ ایک اچھی خوبی ہے جس سے بوجھ بردار ساکن موٹر کو چالو کرنا آسان ہوتا ہے۔

مر کب موٹروں میں ان دو قسموں کی موٹروں کے خصوصیات پائے جاتے ہیں۔جہاں بوجھ بردار موٹر چالو کرنا ضروری ہو لیکن رفتار میں سلسلہ وار موٹر جتنی تبدیلی منظور نہ ہو وہاں مر کب موٹر کارآمد ثابت ہوتے ہیں۔

مثال 8.2: ایک 75 کلو واٹ 415 وولٹ اور 1200 چکر فی منٹ کی رفتار سے چلنے والے متوازی جڑی یک سمتی مثال 2.2: اور 75 کلو واٹ واٹ 415 وولٹ اور 1200 چکھ کی مزاحمت 83.2 اوہم ہے۔موٹر جس بوجھ سے موٹر کے قوی کچھے کی مزاحمت 1123 وہم ہے۔موٹر جس بوجھ سے لدا ہے اس پر موٹر 1123 چکر فی منٹ کی رفتار سے چلتے ہوئے 112 ایمپیئر لے رہی ہے۔

- میدانی برقی رو اور توی کیچه کی برقی رو حاصل کریں۔
 - موٹر کی اندرونی پیدا کردہ برقی دباو حاصل کریں۔
- اگر میدانی کچھے کی مزاحمت 100.2 اوہم کر دی جائے مگر قوی کچھے کی برقی رو تبدیل نہ ہو تو موٹر کی رفتار حاصل کریں۔ قالب کی سیرابیت کو نظرانداز کریں۔

حل:

• شكل 8.18 سے رجوع كريں-415 وولٹ پر ميدانی کچھے كى برقی رو

$$I_m = \frac{V}{R_m + R'_m} = \frac{415}{83.2} = 4.988 \,\mathrm{A}$$

 $I_q = I_b - I_m = 112 - 4.988 = 107.012 \, \mathrm{A}$ ہو گی۔ یوں قوی کچھے کی برقی رو

• يول يك سمتى موٹر كى اندروني پيدا كرده برقى دباو

$$E_q = V - I_q R_q = 415 - 107.012 \times 0.072 = 407.295 \text{ V}$$

• اگر میدانی کچھے کی مزاحمت 100.2 اوہم کر دی جائے تب

$$I_m = \frac{V}{R_m + R_m'} = \frac{415}{100.2} = 4.1417\,\mathrm{A}$$

ہو گی ۔

• اگر قوی کچھے کی برقی رو 107.012 ایمپیئر ہی رکھی جائے تب

$$E_q = V - I_q R_q = 415 - 107.012 \times 0.072 = 407.295 \text{ V}$$

ہی رہے گی۔

• مساوات 8.4 کی مدد سے چونکہ اندرونی پیدا کردہ برقی دباو تبدیل نہیں ہوئی گر مقناطیسی بہاو تبدیل ہوا ہے للذا موٹر کی رفتار تبدیل ہو گی۔ان دو مقناطیسی بہاو اور رفتاروں پر اس مساوات کی نسبت

$$\frac{E_{q1}}{E_{q2}} = \frac{\frac{n}{2}\omega_1 N\phi_{m1}}{\frac{n}{2}\omega_2 N\phi_{m2}}$$

میں چونکہ $E_{q1}=E_{q2}$ للذا $E_{q1}=\omega_2\phi_{m1}=\omega_2\phi_{m2}$ ہو گا۔ قالبی سیر ابیت کو نظر انداز کرتے ہوئے چونکہ مقاطیسی بہاد میدانی دباو پر مخصر ہے جو از خود میدانی برقی رو پر مخصر ہے۔ للذا اس آخری مسادات کو یوں ککھ سکتے ہیں۔

$$\frac{\omega_1}{\omega_2} = \frac{rpm_1}{rpm_2} = \frac{\phi_{m2}}{\phi_{m1}} = \frac{I_{m2}}{I_{m1}}$$

جس سے نئی رفتار

$$rpm_2 = \frac{I_{m1}}{I_{m2}} \times rpm_1 = \frac{4.988}{4.1417} \times 1123 = 1352.47$$

چکر فی منٹ حاصل ہوتی ہے۔اس مثال میں ہم دیکھتے ہیں کہ میدانی برقی رو کم کرنے سے موٹر کی رفتار بڑھتی ہے۔

مثال 8.3: ایک 60 کلو واٹ، 415 وولٹ، 1000 چکر فی منٹ متوازی بڑی یک سمتی موٹر کی قوی کچھے کی مزاحمت 0.05 اوہم اوہم اوہم ہے۔بے بوجھ موٹر کی رفتار 1000 چکر فی منٹ ہے۔میدانی کچھا 1000 کیکر کا ہے۔

- جب یه موٹر ایمپیئر لے رہی ہو اس وقت اس کی رفتار معلوم کریں۔
 - 140 ایمبیئر پر اس کی رفتار معلوم کرین۔
 - 210 ایمپیئر پر اس کی رفتار معلوم کرین۔
 - اس موٹر کی رفتار بالقابل قوت مروڑ ترسیم کریں۔

حل:

شكل8.20: رفتار بالمقابل قوت مروراً ـ

• شکل 8.19 میں یہ موٹر دکھائی گئی ہے۔ متوازی میدانی کچھے کی برقی رو پر بوجھ لادنے سے کوئی فرق نہیں پڑتا۔ لہذا میدانی مقناطیسی بہاو بے بوجھ اور بوجھ بردار موٹر میں یکسال ہے۔ بے باریک سمتی موٹر کی قوی کچھے کی برقی رو I_q قابل نظر انداز ہوتی ہے۔ اس طرح مساوات 8.16 اور مساوات 8.10 سے

$$E_q = V - I_q R_q = 415 - 0 \times R_q = 415 \,\mathrm{V}$$

$$I_m = \frac{V}{R_m} = \frac{415}{60} = 6.916 \,\mathrm{A}$$

یعن 415 وولٹ محرکی برقی دباو پر رفتار 1000 چکر فی منٹ یا 16.66 چکر فی سیکنڈ ہے۔70 ایمپیئر برقی بوجھ پر بھی $I_m = 6.916$ می ہے جبکہ

$$I_q = I_b - I_m = 70 - 6.916 = 63.086 \,\mathrm{A}$$

للذا مساوات 8.16 سے اس صورت میں

$$E_q = V - I_q R_q = 415 - 63.086 \times 0.05 = 411.8458 \, \mathrm{V}$$

اور مساوات 8.10 سے رفار (چکر فی منٹ) یوں حاصل ہوتا ہے

$$rpm = \frac{e_q}{e_{q0}} rpm_0 = \frac{411.8458}{415} \times 1000 = 991.95$$

یبی کچھ دوبارہ کرتے ہیں۔ یبال $I_b = 140\,\mathrm{A}$ ہے۔

$$I_q = I_b - I_m = 140 - 6.916 = 133.084 \text{ A}$$

$$E_q = 415 - 133.084 \times 0.05 = 408.3458 \text{ V}$$

$$rpm = \frac{408.3458}{415} \times 1000 = 983.96$$

 $_{-}$ یہاں $I_b = 210 \,\mathrm{A}$

$$I_q = I_b - I_m = 210 - 6.916 = 203.084 \text{ A}$$

$$E_q = 415 - 203.084 \times 0.05 = 404.8458 \text{ V}$$

$$rpm = \frac{404.8458}{415} \times 1000 = 975.83$$

• موٹر میں طاقت کے ضیاع کو نظر انداز کرتے ہیں۔ یوں اس کی میکانی طاقت اسے فراہم کی گئی برقی طاقت کے برابر ہو گی یعنی

$$(8.17) e_q I_q = T\omega$$

 $T_0 = 0\,\mathrm{N}\,\mathrm{m}$ یوں پچھلے جزوسے حاصل جوابات کی مدد سے بے بوجھ موٹر کی قوت مروڑ صفر ہو گی لینی علیہ جا جہہہ $70\,\mathrm{m}\,\mathrm{m}$ ہے جہہہ $70\,\mathrm{m}\,\mathrm{m}$ ہے ہم ایک میر توت مروڑ کی قیت

$$T_{70} = \frac{e_q I_q}{\omega} = \frac{411.8458 \times 63.086}{2 \times \pi \times 16.5325} = 250 \,\mathrm{N}\,\mathrm{m}$$

ہو گی۔ یہاں 991.95 چکر فی منٹ کی رفتار کو 16.5325 ہرٹز لکھا گیا ہے۔ اس طرح

$$\begin{split} T_{140} &= \frac{e_q I_q}{\omega} = \frac{408.3458 \times 133.084}{2 \times \pi \times 16.399} = 527 \, \text{N m} \\ T_{210} &= \frac{e_q I_q}{\omega} = \frac{404.8458 \times 203.084}{2 \times \pi \times 16.26} = 805 \, \text{N m} \end{split}$$

يه نتائج شكل 8.20 ميں ترسيم كئے گئے ہيں۔

 \Box

فرہنگ

earth, 94	ampere-turn, 32
eddy current loss, 62	armature coil, 131, 251
eddy currents, 62, 126	axle, 161
electric field intensity, 10 electrical rating, 59 electromagnet, 131 electromotive force, 61, 137 emf, 137 enamel, 62 energy, 43 Euler, 21 excitation, 61	carbon bush, 177 cartesian system, 4 charge, 10, 136 circuit breaker, 178 coercivity, 46 coil high voltage, 56 low voltage, 56 primary, 55
excitation, 61 excitation current, 50, 60, 61 excitation voltage, 61 excited coil, 61	secondary, 55 commutator, 164, 241 conductivity, 25 conservative field, 108
Faraday's law, 38, 125 field coil, 131, 251 flux, 30 Fourier series, 63, 142 frequency, 130 fundamental, 142 fundamental component, 64	core, 55, 126 core loss, 62 core loss component, 64 Coulomb's law, 10 cross product, 13 cross section, 9 current transformation, 66 cylindrical coordinates, 5
ac, 159 ground current, 94 ground wire, 94 harmonic, 142	delta connected, 92 design, 195 differentiation, 18 dot product, 15
harmonic components, 64	E,I, 62

ئىرىتاك 270

parallel connected, 253	Henry, 39
permeability, 26	hunting, 178
relative, 26	hysteresis loop, 46
phase current, 94	
phase difference, 23	impedance transformation, 71
phase voltage, 94	in-phase, 69
phasor, 21	induced voltage, 38, 49, 61
pole	inductance, 39
non-salient, 140	
salient, 140	Joule, 43
power, 43	
power factor, 23	lagging, 22
lagging, 23	laminations, 31, 62, 126
leading, 23	leading, 22
power factor angle, 23	leakage inductance, 79
power-angle law, 188	leakage reactance, 79
primary	line current, 94
side, 55	line voltage, 94
	linear circuit, 226
rating, 96, 97	load, 98
rectifier, 164	Lorentz law, 136
relative permeability, 26	Lorenz equation, 102
relay, 101	
reluctance, 25	magnetic constant, 26
residual magnetic flux, 45	magnetic core, 31
resistance, 25	magnetic field
rms, 49, 164	intensity, 11, 33
rotor, 36	magnetic flux
rotor coli, 104	density, 33
rpm, 155	leakage, 78
	magnetizing current, 64
saturation, 47	mmf, 30
scalar, 1	model, 81, 207
self excited, 251	mutual flux linkage, 43
self flux linkage, 42	mutual inductance, 42
self inductance, 42	
separately excited, 251	name plate, 97
side	non-salient poles, 177
secondary, 55	
single phase, 23, 59	Ohm's law, 26
slip, 209	open circuit test, 86
slip rings, 176, 229	orthonormal, 3

ف رہنگ

unit vector, 2	star connected, 92
unit vector, 2	· · · · · · · · · · · · · · · · · · ·
VA, 75 vector, 2 volt, 137 volt-ampere, 75 voltage, 137 DC, 164 transformation, 66	stator, 36 stator coil, 104, 127 steady state, 175 step down transformer, 58 step up transformer, 58 surface density, 11 synchronous, 130 synchronous inductance, 184 synchronous speed, 155, 176
Watt, 43	
Weber, 32	Tesla, 33
winding distributed, 140 winding factor, 147	theorem maximum power transfer, 229 Thevenin theorem, 226 three phase, 59, 92 time period, 100, 142 torque, 165, 209 pull out, 178 transformer air core, 59 communication, 59 ideal, 65
	transient state, 175

پتریاں،62	ابتدائی
يورا بوجھ، 197	جانب،55
نیچے،80	گچھا، 55
ىتىپ پېش زاويە، 22	ار تباط بهاو، 39
	اضافي
تاخير ي زاويه، 22	زاویا کی رفتار، 212
تار کی برقی د باو،94	اکائی سمتیه، 2
تار کی برقی رو،94	اماله، 39
تانبا،28	امالى بر قى د باو، 38، 49، 61
تبادله	اوہم میٹر،237
ر کاوٹ، 71	ا یک، تین پتریال، 62
مختی،97	ایِک مرحلہ،59
تدريجي تفرق،113 - 120	ايمپيئر - چکر ، 32
تعدد،130 آت 179	
تعقب،178 تفرق،18	136.,
عرن،18 جزوی،18	بر قرار چالو،175،100 م ت
برون. تکمل،18	بر قي بار، 136،106
س،18 تکونی جوڙ،92	بر تي د باد، 28، 137
توني بور، 42 توانائي، 43	تبادله،66،56
وانان، 45،59 تین مرحله، 92،59	ځرک،137
20,000,000	بيجاني،185
ٹرانسفار مر	يك شتى،164 ق
برُ تی د باووالا، 59	بر تی رو،28 بیخور نما،126
بوجھ بردار،68	بسور ما،120 تبادله،66
خلائی قالب،59	مبادله،006 بیجان انگیز،50
د باوبر ماتا، 58	یجان۱ میر،30 برتی سکت،59
د باو ِ گھٹا تا،58	ېري سختي،ود بر تي ميدان،10
ذرائع ابلاغ، 59	بری شیدان،10 شدت،28،10
رووالاء59	مرت.28،10 بش،177
كال65،	بناوك، 86
شلا، 33	بنیادی جزو، 142،644
ٹھنڈی تار،94	بو تھ ، 98
ثانوي جانب، 55	بھٹی،114
33. 4 4031	بجينور نما
جاول،43	برتی رو، 62
97.	ضياع،62
يچىلاو،147	بھنور نمابر تی رو،126
جزوطاقت،23	بے بو جھ ،60
پ <u>ث</u> ن،23	
تاخيرى،23	پ ر ی، 31، 126

<u>ــــرہگ</u>ـــــ

سرك چىلے،176،229	جنزیٹر بدلتی رو، 159 جوڑ تکونی، 92 تالیم نیا 92
سطى تكمل، 181	بدلخارو،159
سطى كثافت،11	جوز گانی ۵۲
سكت،96،96	ستاره نماه 92 ستاره نماه 92
سلسله وار 145	92100
سمت كار، 241	چکر فی منٹ،126
برقیاتی،164	پولى - 211 چۇلى، 211
ميكاني،164	
سمتىيە،2	خطى
عمودياکائي، 3	ېر تې دور، 226
سمتی ر فتار ،102	خو دار تباط بهاو، 42
سير ابيت،47	خوداماله، 42
ضرب	داخلي ڀيجان
نقطه،15	ر ساسله وار ، 253 سلسله وار ، 253
ضرب صليبي، 13	متوازی، 253 متوازی، 253
42 ***	مرکب،253
طاقت،43	دور برطی مرکب، 253
طاقت بالمقابل زاويه، 188 طول موج، 18	دور شکن، 178
طول مون، ۱۵	دوری عرصه، 142،100
عار ضی صور ت، 175	دهره 161
عمودی تراش،9	
ر تبہ،9	رشا
•	اماله، 79
غيرسمتي،1	متعامله، 79
غير معاصر ،178	رستامتعامليت،217
250 / :	رفتار
فورئير،250 : برنسل دې ده د	اضافی زاویاکی، 212
فوريئرنشلىل،63،142	روغن،62
فیراڈے	رياضي نمونه، 207،81
تانون،38،125	ریلے،101
قالب،126	زاویه جزوطاقت، 23
قالبي ضياع، 62	رادييه اردي العربي . زمين ،94
64.9.7.	رين. زيني بر تي رو، 94
قانون	رين برن روم. زيني تار، 94
اوېم،26)-t-000-0
كولمب ،10	ساكن حصه،36
لورينز،136	ساكن كيچها،127،104
قدامت پبند میدان، 108	ستاره نماجوژ،92
قريب جڙي مر ٽب، 253	سرك،209

274 سنرہنگ

مر حلی فرق، 23	قطب
مركب جزيثر، 253	ابھرے،140،177
مزاَحت، 2ُ5ُ	ہموار،140،177
مساوات لورينز، 102	قوت مر و _ل ر، 209، 165
مسكم	انتهائي،178
تھو نن ،226	قوى اليكٹر انكس، 241،207
زیادہ سے زیادہ طاقت کی منتقلی، 228	قوى ك <u>ى</u> ھے، 251
مشتر كه ارتباط اماله، 43	•
مشتركه اماله، 42	كارين بش،177
معاصر،130	كِار گذارى،200
معاصراماله،184	^ک پیسر ،194
معاصر ر فتار ، 176،155	کافت :
معائنه	برقې دو، 27
کھلے دور ،86	کثافت مقناطیسی بهاو
مقناطيس	بقاي،45
برق،131	كسر دور ، 38
معائنه کطیر دور،86 متناطیس برتی،131 چال کادائرہ،46	04
خاتم شدت،46	گرم تار، 94 **
مقناطیسی بر قی رو، 64	گومتاحصه،36
مقناطیسی بهاو،30	گھومتالچھا،104
رتا،78	ليجا
كثافت،33	•
مقناطيسي چال،52	ابترائی،55 سال 140
مقناطیسی د باو، 30	<u>کھلے</u> ،140
سمت، 141	.يىچىدار، 40 ئاندى، 55
مقناطيسي قالب، 55،31	عوی،دی زیاده برتی دباو، 56
مقناطیسی مستقل،166،26	ريده بري د بري د. ساكن، 104
31.26.9.7.	سمت،104 سمت،133
مقناطیسی میدان	ئىت. قوي،131
شدت، 33،11	- دن. کم بر تی د باو، 56
موژ،49،19	ا برن دورد. گومتا، 104
موثر قیت ،164	موم،104 میدانی، 131
 موسیقائی جزو،64،142	131,0
موصلیت،25	محد د
ميداني لچھے، 251	محد د کار تثیمی، 4 نکلی 5
¥ · · ·	تَلَى، 5
واٹ، 43	محرك بر تي د باو، 61
وولٹ،137	161.15
وولٺ-ايمپيئر،75	مخلوط عدد، 192
ويبر،32	مرحلي سمتيه، 186،21

> ك سمتى رو مشين، 241 ك مر حله، 23 ك مر حله برقى د باو، 94 كي مر حله برقى د و، 94 يولر مساوات، 21