First-Order Transients in Linear Electrical Networks (2)

Lecture 13 November 5th, 2018

Jae W. Lee (<u>jaewlee@snu.ac.kr</u>)
Computer Science and Engineering
Seoul National University

Slide credits: Prof. Anant Agarwal at MIT

Review: Analysis of RC Circuits

Outline

Textbook: 10.4, 10.5, 10.6.2, 10.7

- Propagation Delay and the Digital Abstraction
- State and State Variables
- Digital Memory

Propagation Delay

Definitions

Propagation delay
$$t_{pd} = \max(t_{pd,1\rightarrow 0}, t_{pd,0\rightarrow 1})$$

Propagation Delay Let's apply the result to an inverter.

Propagation Delay

First, rising delay t_r at B

Propagation Delay

First, rising delay t_r at B

Propagation Delay

Equivalent circuit for $0 \rightarrow 1$ at B

$$\begin{array}{c} v_I = V_S \\ v_B(0) = 0 \end{array} \quad \text{for} \quad t \ge 0$$

From (1)

$$v_{B} = V_{S} + (0 - V_{S}) e^{\frac{-t}{R_{L}C_{GS}}}$$

Now, we need to find t for which $v_B = V_{OH}$.

Propagation Delay

First, rising delay t_r at B

Or

$$v_{OH} = V_S - V_S e^{\frac{-t}{R_L C_{GS}}}$$

Find t_r :

$$V_S e^{\frac{-t_r}{R_L C_{GS}}} = V_S - V_{OH}$$

$$\frac{-t_r}{R_L C_{GS}} = \ln \frac{V_S - V_{OH}}{V_S}$$

$$t_r = -R_L C_{GS} \ln \frac{V_S - V_{OH}}{V_S}$$

Propagation Delay

First, rising delay t_r at B

Or

$$v_{OH} = V_S - V_S e^{\frac{-t}{R_L C_{GS}}}$$

Find t_r :

$$V_S e^{\frac{-t_r}{R_L C_{GS}}} = V_S - V_{OH}$$

$$\frac{-t_r}{R_L C_{GS}} = \ln \frac{V_S - V_{OH}}{V_S}$$

$$t_r = -R_L C_{GS} \ln \frac{V_S - V_{OH}}{V_S}$$

e.g.

$$R_I = 1K$$

$$V_S = 5V$$

$$C_{GS} = 0.1 \, pF$$

$$V_{OH} = 4V$$

$$t_r = -1 \times 10^3 \times 0.1 \times 10^{-12} \ln \frac{5 - 4}{5}$$

$$= 0.16 \, ns$$

$$RC = 0.1 ns!$$

Propagation Delay

Falling Delay t_f

Falling delay t_f is the t for which v_B falls to V_{OL}

Equivalent circuit for $1 \rightarrow 0$ at B

Propagation Delay

Falling Delay t_f

Equivalent circuit for $1 \rightarrow 0$ at B

Thévenin replacement

$$R_{TH} = R_L \parallel R_{ON}$$

$$V_{TH} = V_S \frac{R_{ON}}{R_{ON} + R_L}$$

Propagation Delay

Falling Delay t_f

From (1)

$$v_B = V_{TH} + (V_S - V_{TH}) e^{\frac{-t}{R_{TH}C_{GS}}}$$

Falling decay t_f is the t for which v_B falls to V_{OL}

$$V_{OL} = V_{TH} + \left(V_S - V_{TH}\right) e^{\frac{-t_f}{R_{TH}C_{GS}}}$$

or

$$t_f = -R_{TH}C_{GS} \ln \frac{V_{OL} - V_{TH}}{V_S - V_{TH}}$$

Propagation Delay

Falling Delay t_f

$$t_f = -R_{TH}C_{GS} \ln \frac{V_{OL} - V_{TH}}{V_S - V_{TH}}$$

e.g.
$$R_L = 1K$$
 $V_S = 5V$ $R_{ON} = 10\Omega$ $C_{GS} = 0.1 \, pF$ $V_{OL} = 1V$ $R_{TH} \approx 10\Omega$, $V_{TH} \approx 0V$ $t_f = -10 \cdot 0.1 \cdot 10^{-12} \ln \frac{1}{5}$ $= 1.6 \, ps$ $RC = 1 \, ps$!

Outline

Textbook: 10.4, 10.5, 10.6.2, 10.7

- Propagation Delay and the Digital Abstraction
- State and State Variables
- Digital Memory

State and State Variables

This lecture will dwell on the memory property of capacitors.

For the RC circuit in the previous slide

Notice that the capacitor voltage for $t \ge 0$ is independent of the form of the input voltage before t = 0. Instead, it depends only on the capacitor voltage at $t \ge 0$, and the input voltage for t = 0.

State and State Variables

State: summary of past inputs relevant to predicting the future

State and State Variables

Back to our simple RC circuit (1)

$$v_{C} = f(v_{C}(0), v_{I}(t))$$

$$v_{C} = V_{I} + (v_{C}(0) - V_{I}) e^{\frac{-t}{RC}}$$

Summarizes the past input relevant to predicting future behavior

State and State Variables

An alternative method to solve the problem: Solve the transient problem by superposition!

$$\frac{dv_C}{dt} = -\frac{v_C}{RC} + \frac{v_I(t)}{RC}$$

 $\frac{d}{dt}$ (state variable)= K_1 (State variable present value) + K_2 (input variable)

Total Solution = zero-input response + zero-state response

State and State Variables

An alternative method to solve the problem: Solve the transient problem by superposition!

$$\frac{dv_C}{dt} = -\frac{v_C}{RC} + \frac{v_I(t)}{RC}$$

Zero-input response: $\frac{dv_C}{dt} = -\frac{v_C}{RC}$

Zero-state response: $\frac{dv_C}{dt} = -\frac{v_C}{RC} + \frac{v_I(t)}{RC}$

State and State Variables

We are often interested in circuit response for

■ zero state
$$v_C(\mathbf{0}) = \mathbf{0}$$

$$\blacksquare$$
 zero input $v_I(t) = 0$

Correspondingly,

zero state response or ZSR

$$v_C = V_I - V_I e^{\frac{-t}{RC}}$$
 — 2 Total solution = 2 + 3

■ zero input response or ZIR

$$v_C = v_C(0)e^{\frac{-t}{RC}} \qquad \qquad \boxed{3}$$

State and State Variables

Ramp input as an example: Total solution = ZSR (+ ZIR)

Outline

Textbook: 10.4, 10.5, 10.6.2, 10.7

- Propagation Delay and the Digital Abstraction
- State and State Variables
- Digital Memory

Digital Memory

One application of STATE

Why memory?

DIGITAL MEMORY

Or, why is combinational logic insufficient?

Examples

Consider adding 6 numbers on your calculator

("Add the displayed value to the memory")

"Remembering" transient inputs

 d_{IN}

 d_{OUT}

Digital Memory

Memory Abstraction

store

A 1-bit memory element

Remembers input when store goes high. Like a camera that records input (d_{IN}) when the user presses the shutter release button.

The recorded value is visible at d_{OUT} .

Digital Memory

Building a memory element ...

(A) First attempt

Digital Memory

Building a memory element ...

Stored value leaks away

$$v_C = 5 \cdot e^{\frac{-i}{R_L C}}$$
 from (2)
$$T = -R_L C \ln \frac{V_{OH}}{5}$$

store pulse width $\gg R_{ON}$ C

Digital Memory

Building a memory element ...

(B) Second attempt \rightarrow buffer

Input resistance R_{IN}

$$T = -R_{IN}C \ln \frac{V_{OH}}{5}$$

$$R_{IN} >> R_{L}$$

Better, but still not perfect.

Digital Memory

Building a memory element ...

 \bigcirc Third attempt \rightarrow buffer + refresh

Does this work?

No. External value can influence storage node.

Digital Memory

Building a memory element ...

Works!

Digital Memory

A Memory Array

Digital Memory

Truth table for decoder

a_0	a_1	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	1 0 0 0	0	0	1