Лабораторная работа № 2-01.

«Методы поиска корней нелинейных уравнений».

Задание.

- ✓ Написать программу поиска корней нелинейных уравнений вида F(x) = 0 с точностью $e = 10^{-3}$ следующими методами:
 - а) дихотомии (половинного деления)
 - b) хорд
 - с) касательных (Ньютона)
 - d) итераций

Требования к выполнению задания:

- Все разработки ведутся в среде объектно-ориентированного языка программирования с использованием присущего ему набора компонент.
- Протабулировать заданную функцию F(x). Полученный результат вывести на форму в виде таблицы.
- Построить график функции F(x). График вывести на форму.
- Произвести отделение корней. Границы интервала локализации искомого корня и значения точности **е** (например, 10⁻³) задавать по вводу.
- <u>Каждый</u> метод поиска корней оформить в виде <u>отдельной</u> функции пользователя.
- Вычисляемые значения корней выводить на каждом шаге итерации.
- Итоговые результаты представить в виде таблицы:

Метод вычисления	Кол-во итераций	Значение корня
дихотомии		
хорд		
касательных		
итераций		
библиотечные		
функции		

• Итоговые результаты вывести в файл

\checkmark Полученные результаты проверить в среде MS Excel и Matlab².

В среде MS Excel использовать режимы:

- ПОИСК РЕШЕНИЯ
- ПОДБОР ПАРАМЕТРА
- МАКРОС или КНОПКА (VBA)

В среде Matlab:

- Функцию F(x) оформить в виде m-функции и построить ее график
- Найти корни, используя функции fzero, fsolve
- Найти корни, используя заданные численные методы

¹ Уравнение задано в Приложении 1.

² Методы указаны в Приложении 2.

[«]Основы алгоритмизации и программирования»

Приложение 1

Варианты заданий:

1.
$$2^x + 5 * x - 3 = 0$$
.

2.
$$0.5^{x} + 1 - (x - 2)^{2} = 0$$
.

3.
$$e^{-2*x} - 2*x + 1 = 0$$
.

4.
$$arctg(x-1) + 2 * x = 0$$
.

5.
$$2 * \sin\left(x + \frac{\pi}{3}\right) - 0.5 * x^2 + 1 = 0.$$

6.
$$\operatorname{arctg}(x) + \frac{1}{3} * x^3 = 0.$$

7.
$$5^x - 6 * x + 3 = 0$$
.

8.
$$2 * x^2 - 0.5^x - 3 = 0$$
.

9.
$$(x-2) * cos(x) - 1 = 0$$
.

10.
$$3^{x-1} + 4 - x = 0$$
.

11.
$$3 * x^4 - 8 * x^3 - 18 * x^2 + 2 = 0$$
.

12.
$$x^4 + 4 * x^3 - 8 * x^2 - 17 = 0$$
.

13.
$$tg(0.5 * x + 0.2) - x^2 = 0.$$

14.
$$x^2 + 4 * \sin(x) = 0$$
.

15.
$$1.8 * x^2 - \sin(10 * x) = 0$$
.

16.
$$x^3 - 3 * x^2 + 9 * x - 8 = 0$$
.

17.
$$x^5 + 11 * x^4 + 101 * x^2 + 10 = 0$$
.

18.
$$\sqrt{\pi/2} * e^{a*x} + \frac{x}{a^2 + x^2} = 0$$
;

19.
$$e^{0.724*x+a} - 2.831*x = 0$$
.

20.
$$x^3 + \sin(x) - 12 * x + 1 = 0$$
.

21.
$$x^2 - \cos^2(\pi * x) = 0$$
.

22.
$$3 * x + cos(x) + 1 = 0$$
.

23.
$$x - \ln(x) - 5 = 0$$

24.
$$x^2 - \sin(x) - 3 = 0$$

25.
$$e^x - 1 + x^3 = 0$$
.

26.
$$x^5 + x - 1 = 0$$
.

27.
$$x^5 - \sin(x) - a = 0$$
.

28.
$$3 * x - a * e^x = 0$$
.

29.
$$0.1 * e^x - \sin^2(x) + 0.5 = 0.$$

30.
$$x + cos(x) - 1 = 0$$
.

Приложение 2

Заданные методы соответствуют следующим обозначениям:

- 1. Метод дихотомии
- 2. Метод касательных
- 3. Метод хорд

Nº	MS	Matlab
варианта	Excel	
1.	1	3
2.	2	2
3.	3	1
4.	1	1
5.	2	1
6.	3	1
<i>7</i> .	2	3
8.	3	3
9.	1	3
<i>10</i> .	2	1
<i>11</i> .	2	2
<i>12</i> .	1	2
<i>13</i> .	1	1
<i>14</i> .	1	2

<i>15</i> .	1	3
<i>16</i> .	3	1
<i>17</i> .	3	2
18.	3	3
19.	1	2
20.	2	3
21.	1	1
22.	2	2
23.	1	1
<i>24</i> .	2	2
<i>25</i> .	2	3
<i>26</i> .	1	3
27.	3	2
28.	1	2
29.	1	1
<i>30</i> .	3	1