Generating sequences

- Generating a sequence from a term-to-term rule
- Using algebra to find missing terms in an arithmetic sequence
- Generating sequences like the Fibonacci sequence

Keywords

You should know

explanation 1

1 Each table shows patterns in a sequence. Copy and complete each table.

a

Pattern				
Position	1	2	3	
Term	3	5		

b

Pattern				
Position	1	2	3	
Term	1	4		

 \mathbf{c}

Pattern				
Position	1	2	3	
Term	3	7		

explanation 2a

explanation 2b

explanation 2c

2 What is the term-to-term rule for each sequence in question 1? State the value of the common differnce, *d*.

Algebra A1.1 Generating sequences

3 Write the term-to-term rule for each sequence.

10

- **a** 2 4 6 8
- **b** 1 4 7 10 13
- **c** 3 0 -3 -6 -9
- **d** $\frac{1}{3}$ 0 $-\frac{1}{3}$ $-\frac{2}{3}$
- e $\frac{3}{4}$ 1 $\frac{5}{4}$ $\frac{3}{2}$ $\frac{7}{4}$
- **f** 4 1.5 -1 -3.5 -6
- 4 Write the next two terms in each sequence in question 3.
- **5** Copy and complete the table.

	1st term	Term-to-term rule	First five terms
	0	+ 3	0, 3, 6, 9, 12
a	2	+ 5	
b	3	$+\frac{1}{2}$	
c	-13	+ 3	
d	8	- 5	
e	4	- 1.5	
f	1	- 0.3	
g	-0.5	+ 0.2	
h	-0.5	- 0.4	
i	1/2 _1	$+\frac{1}{3}$	
j	$-\frac{1}{2}$	$+\frac{1}{5}$	

6 Copy and complete the table.

	1st term	Term-to-term rule	2nd, 3rd, 4th and 5th terms
a	7	+ 5	
b		+ 4	9, 13, 17, 21
c			10, -1, -12, -23
d	-8		-5, -2, 1, 4
e			0.5, -1.5, -3.5, -5.5
f	$\frac{1}{2}$	$-\frac{1}{2}$	
g			$-\frac{1}{4}, -\frac{3}{4}, -1\frac{1}{4}, -1\frac{3}{4}$
h	0.1	+ 0.01	
i			1.10, 1.15, 1.20, 1.25

explanation 3a

explanation 3b

7 Look at these arithmetic sequences. Some terms in each sequence are missing.

i What is the common difference, d, for each sequence?

ii Write the missing terms of each sequence.

$$\mathbf{a}$$
 3, \square , \square , 12

$$\mathbf{c} = -3, \square, \square, \square, 17$$

$$\mathbf{e}$$
 5, \square , \square , \square , -11

$$\mathbf{g} \quad \Box, \Box, -8, \Box, \Box, \Box, -28$$

i
$$\square$$
, 3.2, \square , \square , 4

b 1,
$$\square$$
, \square , \square , 17

$$\mathbf{d} \quad \Box, \Box, 3, \Box, \Box, \Box, 11$$

$$\mathbf{f} \quad \square, \square, 0, \square, \square, -12$$

h
$$\square$$
, \square , $2\frac{1}{2}$, \square , \square , 4

$$\square$$
, \square , 1.3, \square , \square , 0.1

8 Make up three sequences of your own, like those in question 7.
Pass them to a friend to find the missing terms.
Make sure you have worked out the answers so you can check their answers!

ex	nla	na	tin	n	4
CV	μιu	пu	เเบ	••	-

9 These sequences are like the Fibonacci sequence: each term after the second is the sum of the previous two terms.

Work out the missing terms in each sequence.

- **a** 1, 3, 4, \square , \square , \square
- **b** 2, 4, \square , \square , \square , \square
- **c** 3, 6, \square , \square , \square , \square
- 10 Think about sequences like the Fibonacci sequence and the sequences in question 9.
 - **a** If two consecutive terms in one of these sequences are even, what can you say about the terms in that sequence? Explain how you know.
 - **b** If two consecutive terms in a Fibonacci sequence are odd, what can you say about the terms in that sequence? Explain how you know.
- 11 a Hanif adds 1 to each term of the sequence in question 9a.

 Is his new sequence like the Fibonacci sequence? Explain how you know.
 - b Jenni multiplies each term of the sequence in question 9a by 2. Is her new sequence like the Fibonacci sequence? Explain how you know.
- **12** Joe wrote a sequence like the Fibonacci sequence. The fourth term of the sequence was 10.
 - a He started with two positive integers. What could they be?
 - **b** How many possible values for the first two terms can you find?
- 13 Try to find a sequence like the Fibonacci sequence that starts with two positive whole numbers less than 10 and contains the number 100. How close to 100 can you get? You can use a calculator or a computer to help.
- **14** Fibonacci was a famous Italian mathematician of the twelfth and thirteen centuries.

Find out what he did and make a mini-poster about him.

