Simple Connectivity and Jordan Curve Theorem

February 23, 2020

以下所有内容均源自[1]. 首先回顾一下复分析中的一些基本定义.

Definition 0.1 (p.7). 开集 Ω \subset \mathbb{C} 被称为连通的, 若不存在两个不交的非空开集 Ω_1 和 Ω_2 使得

$$\Omega = \Omega_1 \cup \Omega_2$$
.

ℂ 中的连通开集被称为区域.

Definition 0.2 (p.93). 粗略地讲, 称区域 Ω 中拥有相同端点的两条曲线是同伦的, 若这其中一条能不离开区域 Ω 连续的变换成另一条曲线.

Definition 0.3 (p.96). 称区域 Ω 是单连通的, 若 Ω 中拥有相同端点的任意两条曲线是同伦的.

Definition 0.4 (p.20). 粗略地讲,一个光滑或者分段光滑曲线被称为是闭的,若曲线首尾相连.一个光滑或者分段光滑曲线被称为是简单的,若曲线不自交.

Theorem 0.5 (Theorem 2.2, p.351). 设Γ 是一段简单的, 闭的, 分段光滑的曲线. 则 Γ^c 等于两个不交区域的并. 特别的, 这两个区域一个是有界单连通区域, 称它为 Γ 的内部; 另一个是无界单连通区域, 称它为 Γ 的外部.

References

[1] E. M. Stein and R. Shakarchi, Complex Analysis, Princeton University Press, 2010.