Non-interactive publicly verifiable distributed key generation and re-sharing

Path to a fully distributed, secure, yet regulated financial word

What will be talk about?

A specific algorithm, that enables the generation of a shared public key in a distributed way, without a central actor, so that a given number of private keys - secretly generated by the participants in the generation process - can be used to create a digital signature that can be authenticated and verified with the shared public key.

Table of contents

- PART I: Related math
 - Notations, definitions
 - BLS, secret sharing, verifiable secret sharing
- PART II: Publicly Verifiable Secret Sharing
- PART III: Non-Interactive publicly verifiable distributed key generation and resharing - full algorithm
- PART IV: Example graphical representation of the algorithm

NPVDKG-RS

PART I.

Publicly Verifiable Secret Sharing Definitions

Let's see what's in the rabbit hole Refresh our memory

- $\mathbb{Z}p$: a finite field, p is a prime number. The filed elements are [0, 1, 2, 3 ... (p-1)], $(y = x \mod p)$
- (n,t): t-of-n or (n,t) threshold secret sharing enables to a dealer creating $s_1, s_2 \dots s_n$ shares from a secret s, such that any t shares are enough to compute the original secret s, while t-1 shares do not reveal any information about the secret s.
- G_1 : group over a field (BLS12-381) and G_1 : generator of G_1
- G_2 : group over a field (BLS12-381) and G_2 : generator of G_2
- e: a non-degenerate, efficiently computable, bilinear pairing function between G_1 and G_2 , e: $G_1 \times G_2 \Rightarrow G_t$; other words: $e(g_1, g_2)$ generates G_t .
- G: a point on the elliptic curve over G₁
- Q: a point on the elliptic curve over G_2
- Shamir Secret Sharing (Lagrange evaluation and interpolation)

Lagrange polynomial and interpolation Step 1 – Define f(x)

• Define a (t-1) degree random polynomial over $\mathbb{Z}p$: $f(x) = a_{t-1} * x^{t-1} + a_{t-2} * x^{t-2} + \dots + a_1 * x^1 + a_0, mod p$

$$f(x) = \sum_{k=0}^{t-1} a_k * x^k, mod p$$

• Any a_k can be calculated with the Lagrange interpolation polynomials a(x) over $\mathbb{Z}p$.

Lagrange polynomial and interpolation Step 2 – Define coefficients from points of f(x)

• Given *t* points:

$$(x_0, y_0), \dots, (x_i, y_j), \dots, (x_{t-1}, y_{t-1}); \forall y_k = f(x_k), 0 \le k < t$$

• Then a(x) function can be written as:

$$a(x) = a_x = \sum_{j=0}^{t-1} y_j * l_j(x), mod p$$

$$l_j(x) = \prod_{\substack{0 \le i \le t-1 \\ i \ne j}} \frac{x - x_i}{x_j - x_i}, mod p$$

Lagrange polynomial and interpolation Step 3 – Calculate a_0

• The easiest way to calculate a_0 if we calculate the value of f(x) at x = 0. If we given t points, then a_0 is:

$$(x_0, y_0), \dots, (x_i, y_j), \dots, (x_{t-1}, y_{t-1}); \ \forall y_k = f(x_k), 0 \le k < t$$

$$a(0) = \sum_{j=0}^{t-1} y_j * l_j(0), mod p$$

$$l_{j}(0) = \prod_{\substack{0 \le i \le t-1 \\ i \ne j}} \frac{0 - x_{i}}{x_{j} - x_{i}} = \prod_{\substack{0 \le i \le t-1 \\ i \ne j}} \frac{x_{i}}{x_{i} - x_{j}}, mod p$$

Lagrange polynomial and interpolation Step 3 – Calculate a_0 final form

$$(x_0, y_0), \dots, (x_i, y_j), \dots, (x_{t-1}, y_{t-1}); \quad \forall y_k = f(x_k), 0 \le k < t$$

$$a_0 = a(0) = \sum_{j=0}^{t-1} y_j * \prod_{\substack{0 \le i \le t-1 \ i \ne j}} \frac{x_i}{x_i - x_j}, mod p$$

Shamir Secret Sharing Share method

• To share a secret s use the previously defined f(x) function define the share function:

```
Share(n, t, s, [id_0, id_{t-1}]) \Rightarrow (sh_{id_0}, ..., sh_{id_{n-1}}): \forall id_i \neq 0, 0 \leq i \leq t - 1, set a_0 = s, s \in \mathbb{F}p, pick randomly a_1, ..., a_{t-1} from \mathbb{Z}p and define f(x) = \sum_{k=0}^{t-1} a_k x^k, mod \ p.

Return (sh_{id_0}, ..., sh_{id_{n-1}}) = (f(id_0), ..., f(id_{n-1})). (N number of point)
```

25/07/2022 NATRIX - NPVDKG-RS 10

Shamir Secret Sharing Recover method

- To recover secret s just need to calculate a_0 with the previously shown formula minimum t number of share (sh):
- $Recover([sh_{id_0}, ..., sh_{id_{t-1}}], [id_0, id_{t-1}]) \Rightarrow s: \forall id_i \neq 0, 0 \leq i \leq t-1.$ (In other words, given t number of (x, y) point of the original function)

$$s = a(0) = \sum_{j=0}^{t-1} sh_{id_j} * \prod_{\substack{0 \le i \le t-1 \ i \ne j}} \frac{id_i}{id_i - id_j}, mod p$$

Return s

Verifiable Secret Sharing Problem to solve

- Problem of the receiver: did she get a correct share?
- Dealer may send bad share that does not correspond to the dealing or give so many fake shares to different receiver that they could not recover the real secret.

Verifiable Secret Sharing Feldman's solution

- Feldman proposed a verifiable secret share (VSS) to deal with this problem. His proposed solution uses a $\mathbb G$ or order p. The receivers distributes shares together with public group elements $A_0 = g^{a_0}, \ldots, A_{t-1} = g^{a_{t-1}}$. (Remember: $a_0 = s, s \in \mathbb Zp$, a_1, \ldots, a_{t-1} are random from $\mathbb Zp$ and are kept in secret.)
- Now " id_i " receiver may check $sh_{id_i} = f(id_i)$ since the correct share satisfy

$$g^{Sh_{id_i}} = g^{f(id_i)} = g^{\sum_{k=0}^{t-1} a_k * (id_i)^k} = \prod_{k=0}^{t-1} g^{a_k (id_i)^k} =$$

$$= \prod_{i=1}^{t-1} A_k^{(id_i)^k} = A_0 * A_1^{(id_i)^1} * A_2^{(id_i)^2} * \dots * A_{t-1}^{(id_i)^{t-1}}, mod p$$

Verifiable Secret Sharing Can be publicly verifiable?

- Many verifiable secret sharing protocol use Feldman's related idea.
 Usually, these protocols let the receiver issue a complaint in case his share is wrong (not satisfy the check). It means, that these protocols have more than one communication rounds, they are interactive.
- Instead of digging deep and create an interactive protocol, we construct a publicly verifiable secret sharing (PVSS) scheme where it is immediately verifiable to everybody, not just the receiver, whether a share is correct or not. Furthermore, it is a non-interactive solution.

Publicly Verifiable Secret Sharing By definition

- A secret sharing mechanism is publicly verifiable if it is a verifiable secret sharing scheme and if any party (not just the participants of the protocol) can verify the validity of the shares distributed by the dealer
- the object is to resist malicious players, such as:
 - I. a dealer sending incorrect shares to some or all of the participants, and
 - II. participants submitting incorrect shares during the reconstruction protocol, cf. [CGMA85].

Publicly Verifiable Secret Sharing In general – Distribution

Distribution of secret s shares is performed by the dealer D, which does the following:

- The dealer creates sh_{id_0} , sh_{id_1} , ..., $sh_{id_{n-1}}$ for each participant P_{id_0} , P_{id_1} , ..., $P_{id_{n-1}}$ respectively.
- The dealer publishes:
 - the encrypted share $E_{id_i}(sh_{id_i})$ for each P_{id_i} .
 - public group elements $A_0=g^{a_0},\ldots,A_{t-1}=g^{a_{t-1}}$. (Remember: $a_0=s,s\in\mathbb{Z}p$, a_1,\ldots,a_{t-1} are random from $\mathbb{Z}p$ and are kept in secret.) (Feldman's solution)
 - $Proof_{id_0}$

Publicly Verifiable Secret Sharing In general – Verification

- Anybody knowing the public keys for the encryption methods E_{id_i} , can verify the shares.
- The $Proof_{id_i}$, $0 \le i < n$:
 - shows that each $E_{id_i}(sh_{id_i})$ encrypts sh_{id_i} , $0 \le i < n$ using Feldman's idea.
 - guarantees that the encrypted share can be decrypted by the receiver participant
 - the reconstruction protocol will result in the same secret s.
- If one or more verifications fails, the protocol is aborted.

Publicly Verifiable Secret Sharing In general – Reconstruction

- After getting all the published data each participant:
 - Executes the verifications process
 - If the verification process fails than stop
 - P_{id_i} decrypts their share of the secret sh_{id_i} using its own private key and $E_{id_i}(sh_{id_i})$.
- t number of n participant P_{id_i} with their sh_{id_i} the secret s can be reconstructed with Shamir secret sharing recovery function.

Our Publicly Verifiable Secret sHaring - PVSH

- Our PVSS called PVSH and uses the ideas from the previous slides:
- Shamir Secret Sharing
- Feldman's solution
- Publicly verifiable secret sharing in general.

First define our encrypt, verify and decrypt method then we formalize our scheme

PVSH Encrypt, Verify, Decrypt Notations

- *id*: the receiver participant's public identifier
- sk: the receiver's secret key (PCSRNG), (Fr)
- PK: the receiver's public key, $PK = g_2^{sk}$
- sh or sh_{id} : secret share related to receviver id, the plain text
- PH or PH_{id} : public key of sh_{id} , $PH_{id} = g_2^{sh_{id}}$
- $e(A,B) \to G_t$, "A" is a point at G_1 , "B" is a point at G_2 and "e" is a pairing function as described earlier.
- Hash: is a hash function
- ullet HashToG1: a function, which hashes the input parameter and maps a point on G_1

PVSH Encrypt Input parameters: *id*, *PK*, *sh*

- 1. Let r = random (CSPRNG)
- 2. Let Q = HashToG1(id, PK)
- 3. Let $eh = Hash(e(Q, PK^r))$
- 4. Let c = sh + eh (cipher text)
- 5. Let $U = g_2^r$ (public part of r) (used to decode)
- 6. Let H = HashToG1(Q, c, U)
- 7. Let $V = H^{eh/r}$ (digital signature of H with eh/r) (use to verify)
- 8. Return (c, U, V)

PVSH Verify Input parameters: id, PK, PH, (c, U, V)

- 1. Let Q = HashToG1(id, PK)
- 2. Let H = HashToG1(Q, c, U)
- 3. Let $e_1 = e(H, g_2^c)$ and let $e_2 = e(H, PH) \times e(V, U)$

4. IF $e1 \neq e2$ RETURN Error Else RETURN OK

True means:

- 1. The owner of sk must be able to decode the cipher text with U
- 2. The cipher text c must contain the secret part sh of PH

False means: (c, U, V) are invalid to each other

PVSH Verify Proof of correctness, given: *id*, *PK*, *PH*, (*c*, *U*, *V*)

- 1. Let Q = HashToG1(id, PK)
- 2. Let H = HashToG1(Q, c, U)
- 3. $e(H, g_2^c)$, use identities $\Rightarrow e(H, g_2)^c$, use c = sh + eh $\Rightarrow e(H, g_2)^{sh+eh} \Rightarrow e(H, g_2)^{sh} \times e(H, g_2)^{\frac{eh}{r}r}$ use identities $\Rightarrow e(H, g_2^{sh}) \times e(H^{eh/r}, g_2^r)$, use $V = H^{eh/r}, U = g_2^r, PH = g2^{sh}$ $\Rightarrow e(H, PH) \times e(V, U)$

PVSH Decrypt Input parameters: id, PK, sk, (c, U, V)

- 1. Let Q = HashToG1(id, PK)
- 2. Let $eh' = Hash(e(Q^{sk}, U))$
- 3. Let sh' = c eh'
- 4. Return sh'

PVSH Decrypt Proof of correctness, given: *id*, *PK*, *sk*, (*c*, *U*, *V*)

Statement: sh' = sh

Let Q = HashToG1(id, PK)

- 1. $eh = Hash(e(Q, PK^r))$, use $PK = g_2^{sk}$
 - $\Rightarrow Hash(e(Q, g_2^{sk*r}))$, use identities
 - \Rightarrow $Hash(e(Q^{sk}, g_2^r))$, use $U = g_2^r$
 - $\Rightarrow Hash(e(Q^{sk}, U)) = eh'$
- 2. $\Rightarrow c = sh + eh \Rightarrow c = sh + eh' \Rightarrow sh = c eh' \Rightarrow sh = sh'$

Some observation

- Could pre-calculate: Q = HashToG1(id, PK) or the user unique Id could be Q.
- To decode you need to know sk, r or eh. To calculate r or eh from U or V, $U = g_2^r$, $V = H^{eh/r}$ is hard since this is a discrete logarithm problem. The private key sk is owned by the recipient and kept in secret.
- To decode you need to know somehow $e(Q,g_2)^{sk*r}$
- $z_1 = PK * U = g_2^{sk} * g_2^r = g_2^{sk+r}$, you can't get sk * r, dlog problem.
- $z_2 = e(V, U) = e(H, g_2)^{\frac{eh}{r} * r} = e(H, g_2)^{eh}$, you can't get eh, dlog problem.
- Since Q = HashToG1(id, PK), so NEVER digitally sign Q with sk. Because knowing Q^{sk} and with the give $U = g_2^r$ leads to easy decoding!

Proof *V* is a zero-knowledge proof?

Zero knowledge definition: if the statement is true, no verifier learns anything other than the fact that the statement is true. In other words, just knowing the statement (not the secret) is sufficient to imagine a scenario showing that the prover knows the secret.

The PVSHencrypt method result verification vector V does not add more information to the verifier but V can be used to verify that the statement is true. **Statement: with** (c, U, V) **the receiver** (owner of PK knows sk) **must be able to decode cipher text and the cipher text contains the secret part of PH.**

End of PART I.

NPVDKG-RS

PART II.

Publicly Verifiable Secret Sharing Methods summary

PVSH – the full algorithm Share method

Share $(n, t, [a_0, ..., a_{t-1}], [id_0, ..., id_{n-1}]) \Rightarrow$ $([sh_{id_0}, ..., sh_{id_{n-1}}], [A_0, ..., A_{t-1}]) : \forall id_i \neq 0, 0 \leq i \leq n-1, (a_0 = s, s \in \mathbb{Z}p \text{ is a secret to share and } a_1, ..., a_{t-1} \text{ are randomly picked from } \mathbb{Z}p)$ Define $f(x) = \sum_{k=0}^{t-1} a_k x^k$, mod p. Return:

$$\begin{aligned}
[sh_{id_0}, \dots, sh_{id_{n-1}}] &= [f(id_0), \dots, f(id_{n-1}))] \\
[A_0, \dots, A_{t-1}] &= [g^{a_0}, \dots, g^{a_{t-1}}]
\end{aligned}$$

(Note: previously we defined A_i , later we call it PG_i . Also keep in mind that a_i are sg_i . Never mind, later we will define it.)

25/07/2022 NATRIX - NPVDKG-RS 30

PVSH – the full algorithm PVSHEncrypt method

PVSHEncrypt $(id_i, PK_{id_i}, sh_{id_i}) \Rightarrow (c_{id_i}, U_{id_i}, V_{id_i})$: $\forall id_i \neq 0, 0 \leq i \leq n-1$. The id_i is the a public identifier of the i-th receiver participant and PK_i is the public key of the i-th receiver participant.

$$r = random, Q = HashToG1(id_i), eh = Hash(e(Q, PK_{id_i}^r))$$

Return:

$$c_{id_i} = sh_{id_i} + eh$$
 $U_{id_i} = g_2^r$
 $V_{id_i} = (HashToG1(Q, c, U))^{eh/r}$

PVSH – the full algorithm PVSHVerify method

PVSHVerify $(id_i, PK_{id_i}, PH_{id_i}, (c_{id_i}, U_{id_i}, V_{id_i})) \Rightarrow \vdash \mid \exists: \forall id_i \neq 0, 0 \leq i \leq n-1$. \vdash means OK, \dashv means Error. The id_i is the public identifier of the i-th receiver participant and $(c_{id_i}, U_{id_i}, V_{id_i})$ is the encrypted share of the i-th receiver participant.

$$Q = HashToG1(id_i, PK_{id_i}), H = HashToG1(Q, c, U)$$
$$e_1 = e(H, g_2^c), e_2 = e(H, PH_{id_i}) \times e(V_{id_i}, U_{id_i})$$

Return:

 $if\ e1 \neq e2\ RETURN \dashv ELSE\ RETURN \vdash$

PVSH – the full algorithm PVSHDecrypt method

PVSHDecrypt $(id_i, PK_{id_i}, sk_{id_i}, (c_{id_i}, U_{id_i}, V_{id_i})) \Rightarrow sh_{id_i}$: $\forall id_i \neq 0, 0 \leq i \leq n-1$. The id_i is the public identifier, the PK_{id_i} is the public key and sk_{id_i} is the private key and $(c_{id_i}, U_{id_i}, V_{id_i})$ is the encrypted share of the i-th receiver participant.

$$Q = HashToG1(id_i, PK_{id_i})$$

$$eh' = Hash(e(Q^{sk_{id_i}}, U))$$

Return:

$$sh_{id_i} = c_{id_i} - eh'$$

PVSH – the full algorithm Recover share method

 $Recover([sh_{id_0}, ..., sh_{id_{t-1}}], [id_0, ..., id_{t-1}]) \Rightarrow s: \forall id_i \neq 0, 0 \leq i \leq t-1.$ (In other words, given t number of (x, y) point of the original function)

$$s = a(0) = \sum_{j=0}^{t-1} sh_{id_j} * \prod_{\substack{0 \le i \le t-1 \ i \ne j}} \frac{id_i}{id_i - id_j}, mod p$$

Return s

End of PART II.

NPVDKG-RS

PART III.

Non-Interactive Publicly Verifiable Distributed key generation and resharing

The full algorithm

Algorithm - from a bird's eye view

A goal is a t-of-n or (n,t) Threshold distributed key generation, which is non-interactive and publicly verifiable

- Setup phase (privately)
- II. Publication of the result of the Setup phase, can be public
- III. Key generation (privately) from the publicly available data

Preliminary

The followings are given:

- N number of participants want to create a t-of-n or (n,t) threshold signature public key and privately create a valid secret key of itself.
- Every participant knows all id_i and PK_{id_i} of the participants
- ullet Each participant have its own id_i , sk_{id_i} and PK_{id_i}
- $1 \le t \le n$, note: if t = 1 means that all participants will end up the same secret key, it can be useful in some application.

I. Setup phase – Creating the "gifts" Each participant privately, *i*-th participant

- 1. Generate a random number s_i (in case of resharing s_i is the old sh secret key) and call $Share(n,t,[s_i,a_1,...,a_{t-1}],[id_0,...,id_{n-1}])\Rightarrow ([sh_{i,0},...,sh_{i,j},...,sh_{i,n-1}],[PG_{i,0},...,PG_{i,k},...,PG_{i,t-1}]): \forall id_j \neq 0, \forall i,j \in [0,n-1], \forall k \in [0,t-1].$ The $a_1,...,a_{t-1}$ are randomly picked. The i-th participant create shares to all participant (including itself) Note: $[PG_{i,0},...,PG_{i,t-1}]$ original notation is $[A_0,...,A_{t-1}]$
- 2. To $\forall sh_{i,j}$ call $PVSHEncrypt\left(id_j, PK_{id_j} sh_{i,j}\right) \Rightarrow \left(c_{id_{i,j}}, U_{id_{i,j}}, V_{id_{i,j}}\right)$: $\forall i,j \in [0,n-1]$). Note: The i-th participant generated and encrypted a share to j-th participant.

II. Publication – Place all the gifts under the Christmas tree, *i*-th participant

1. All participant publish, $\forall i, j \in [0, n-1]$, $\forall k \in [0, t-1]$: $[PG_{i,0}, ..., PG_{i,k}, ..., PG_{i,t-1}], (c_{id_{i,i}}, U_{id_{i,i}}, V_{id_{i,i}})$

Note: in some slides for a shorter writing, we write $ESH_{i,j}$, where

$$ESH_{i,j} = \left(c_{id_{i,j}}, U_{id_{i,j}}, V_{id_{i,j}}\right)$$

Everybody knows which participant created the data (sender) and contains the recipient, too.

III. Key generation – gift unwrap – 1 Each participant privately, *i*-th participant

- 1. Get all data: $[PG_{i,0}, ..., PG_{i,k}, ..., PG_{i,t-1}], (c_{id_{i,j}}, U_{id_{i,j}}, V_{id_{i,j}})$ and known to public id_i, PK_i and all id_i Participant knows her secret key sk_i . $\forall i, j \in [0, n-1]$, $\forall k \in [0, t-1]$
- 2. Calculate $PH_{i,j}$: $Share(n, t, [PG_{i,0}, ..., PG_{i,k}, ..., PG_{i,t-1}], [id_0, ..., id_j, ..., id_{n-1}]) \Rightarrow ([PH_{i,0}, ..., PH_{i,j}, ..., PH_{i,n-1}], [... not interested ...]), <math>\forall i, j \in [0, n-1]), \forall k \in [0, t-1]$
- 3. All participant: $\forall i, j$ call $PVSHVerify\left(id_i, PK_i, PH_{i,j}, \left(c_{id_{i,j}}, U_{id_{i,j}}, V_{id_{i,j}}\right)\right) \Rightarrow \vdash \mid \exists$ If any verification process returns \exists , then the j is the sender who tries to trick the recipient i. Abort the process. Because the data are public, easily can everybody check this.

III. Key generation – gift unwrap – 2 Each participant privately, *i*-th participant

- 4. The *i*-th participant: $\forall j$ call $PVSHDecrypt\left(id_i, PK_i, sk_i, \left(c_{id_{i,j}}, U_{id_{i,j}}, V_{id_{i,j}}\right)\right) \Rightarrow sh_{ij}$
- 5. The *i*-th participant to recover her secret key call $Recover([sh_{i,0},...,sh_{i,j},...,sh_{i,n-1}],[id_0,...,id_{n-1}]) \Rightarrow sh_i, \forall j \in [0,n-1])$
- 6. The *i*-th participant to calculate all public keys call $\forall i, j \in [0, n-1]$: $Recover([PH_{i,0}, ..., PH_{i,j}, ..., PH_{i,n-1}], [id_0, ..., id_{n-1}]) \Rightarrow PH_i$, Note: PH_i can be calculated from sh_i if *i* contains itself.
- 7. The *i*-th participant call $Recover([PH_i, ..., PH_{n-1}], [id_0, ..., id_{n-1}]) \Rightarrow PG, \forall i \in [0, n-1])$, Note: PG will be the same to all participant

End of PART III.

NPVDKG-RS

PART IV.

Non-Interactive Publicly Verifiable Distributed key generation and resharing

Graphical representation of steps

I. Setup phase – Step 1

Choose random numbers $[SG_{i,0}, SG_{i,1}, ..., SG_{i,j}] = [s_i, a_1, ..., a_{t-1}]$

Private							
Participant 1	SG1	SH1	PG1	ESH1			
ID1	SG11						
SM1 - PM1	SG12						

Public	

Participant 2	SG2	SH2	PG2	ESH2
ID2 SM2 - PM2	SG21 			

Participant 3	SG3	SH3	PG3	ESH3
ID3 SM3 - PM3				

I. Setup phase – Step 1Generate secret shares (Lagrange evaluation)

Participant 2	SG2	SH2	PG2	ESH2
ID2 SM2 - PM2	SG21	SH21 SH22		

Participant 3	SG3	SH3	PG3	ESH3
ID3 SM3 - PM3	SG31 SG32			

I. Setup phase – Step 1 Share calculate $[PG_{i,0}, ..., PG_{i,j}]$

Partici	pant 2	SG2	SH2	PG2	ESH2
		6624	SH21	DC24	
	SM2 - PM2	SG21	SH22	PG21	
SIVIZ		3022	SH23	•••	

Participant 3	SG3	SH3	PG3	ESH3
ID3 SM3 - PM3	SG31 SG32	SH31	PG31 	
		SH32		
		SH33		

I. Setup phase – Step 2 Encrypt all $sh_{i,j}$

Participant 2	SG2	SH2	PG2	ESH2
152		SH21		ESH21
SM2 - PM2	SG22	SH22	PG21 PG22	ESH22
		SH23		

Participant 3	SG3	SH3	PG3	ESH3
ID3 SM3 - PM3	SG31 SG32	SH31	PG31 PG32	ESH31
		SH32		
		SH33		

II. Every member publish

Private Participant 1 SG1 SH1 PG1 ESH1 ESH11 SH11 PG11 ID1 SG11 SH12 ESH12 **SM1 - PM1** SG12 PG12 SH13 ESH13

Public Shared contributions*							
ID1	PM1	ESH11	ESH12	ESH13	PG11	PG12	
ID2	PM2	ESH21	ESH22	ESH23	PG21	PG22	
	•						

Participant 2	SG2	SH2	PG2	ESH2
102	6624	SH21		ESH21
SM2 - PM2	SG22	ISH22	PG22	ESH22
		SH23		ESH23

Participant 3	SG3	SH3	PG3	ESH3
100	6624	SH31		ESH31
	SG32	SH32	PG31	ESH32
SM3 - PM3		SH33	PG32	ESH33

*Every contribution must be signed by the sender!

Modification suggestion: modifying the PVSH algorithms using the senders private key would eliminate the signed contribution.

Setup and publication phase ready

Participant 2	SG2	SH2	PG2	ESH2
100		SH21		ESH21
ID2 SM2 - PM2	SG21	SH22	PG21 PG22	ESH22
SIVIZ - PIVIZ	3022	SH23		ESH23

Participant 3	SG3	SH3	PG3	ESH3
100	6624	SH31		ESH31
	SG31 SG32	SH32		ESH32
	3G32	SH33	PG32	ESH33

III. Key generation – Step 1 Get all data (Example i = 2)

Private										
Participant 1	SG1	SH1	PG1	ESH1						
154	6644	SH11	DC11	ESH11						
ID1 SM1 - PM1	SG11 SG12	SH12	PG11 PG12	ESH12						
SIVIT - PIVIT	3012	SH13	PG12	ESH13						

			Public			
	1	T				
ID1	PM1	ESH11	ESH12	ESH13	PG11	PG12
ID2	PM2	ESH21	ESH22	ESH23	PG21	PG22
ID3	РМ3	ESH31	ESH32	ESH33	PG31	PG32

Participant 2	SG2	SH2	PG2	ESH2
103		SH21		ESH21
ID2 SM2 - PM2	SG21	SH22	PG21 PG22	ESH22
SIVIZ - PIVIZ	3022	SH23		ESH23

Participant 3	SG3	SH3	PG3	ESH3
102	6624	SH31		ESH31
ID3	SG31	SH32	PG31	ESH32
SM3 - PM3	SG32	SH33	PG32	ESH33

ID1	PM1	ESH11	ESH12	ESH13	PG11	PG12		
ID2	PM2	ESH21	ESH22	ESH23	PG21	PG22		
ID3	PM3	ESH31	ESH32	ESH33	PG31	PG32		

III. Key generation – Step 2 Calculate $PH_{i,j}$ (Lagrange evaluation)

Private										
Participant 1	SG1	SH1	PG1	ESH1						
154	6644	SH11	DC44	ESH11						
ID1 SM1 - PM1	SG11 SG12	SH12	PG11 PG12	ESH12						
SIVIT - PIVIT	3012	SH13	FG12	ESH13						

Participant 2	SG2	SH2	PG2	ESH2
103	6624	SH21		ESH21
ID2	SG21	SH22	PG21 PG22	ESH22
SM2 - PM2	3022	SH23	FGZZ	ESH23

Participant 3	SG3	SH3	PG3	ESH3
103	6624	SH31		ESH31
	SG31	SH32		ESH32
	SG32	SH33	PG32	ESH33

ID1	PM1	ESH11	ESH12	ESH13	PG11	PG12	PH11	PH12	PH13
ID2	PM2	ESH21	ESH22	ESH23	PG21	PG22	PH21	PH22	
ID3	РМ3	ESH31	ESH32	ESH33	PG31	PG32			

III. Key generation – Step 3 Verify all $PH_{i,j}$, $ESH_{i,j}$

Participant 2	SG2	SH2	PG2	ESH2
100	6624	SH21		ESH21
SM2 - PM2	SG21 SG22	SH22	PG21 PG22	ESH22
		SH23	PGZZ	ESH23

Participant 3	SG3	SH3	PG3	ESH3
	SG31 SG32	SH31		ESH31
		SH32	PG31	ESH32
		SH33	PG32	ESH33

ID1	PM1	ESH11	ESH12	ESH13	PG11	PG12	PH11	PH12	PH13
ID2	PM2	ESH21	ESH22	ESH23	PG21	PG22	PH21	PH22	PH23
ID3	РМ3	ESH31	ESH32	ESH33	PG31	PG32	PH31	PH32	PH33

III. Key generation – Step 4 Decrypt all $ESH_{2,j}$ (because example i=2)

Participant 2	SG2	SH2	PG2	ESH2
102	6624	SH21		ESH21
ID2 SM2 - PM2	SG21 SG22	SH22	PG21 PG22	ESH22
SIVIZ - PIVIZ		SH23	FUZZ	ESH23

Participant 3	SG3	SH3	PG3	ESH3
ID3	SG31	SH31	PG31	ESH31
	SG32	SH32	PG31 PG32	ESH32
		SH33	FG32	ESH33

			ID1	ID2	ID3					
ID1	PM1	ESH11	ESH12	SH12	ESH13	PG11	PG12	PH11	PH12	PH13
ID2	PM2	ESH21	ESH22	SH22	ESH23	PG21	PG22	PH21	PH22	PH23
ID3	РМ3	ESH31	ESH32		ESH33	PG31	PG32	PH31	PH32	PH33

III. Key generation – Step 5 – Step 6 – Step 7 Recovery SH_2 , PH_j , PG (Lagrange interpolation)

	Private								
Participant 1 SG1 SH1 PG1 ESH1									
154		SG11	SH11	DC44	ESH11				
ID1			SH12	PG11 PG12	ESH12				
SIVIT - P	SM1 - PM1		SH13	PG12	ESH13				
			31113		231113				

Participant 2	SG2	SH2	PG2	ESH2
102		SH21		ESH21
SM2 - PM2	SG21 SG22	SH22	PG21 PG22	ESH22
		SH23	FUZZ	ESH23

Participant 3	SG3	SH3	PG3	ESH3
103	CC24	SH31		ESH31
ID3	SG31 SG32	SH32	PG31	ESH32
SM3 - PM3		SH33	PG32	ESH33

ID1	PM1	ESH11	ESH12	SH12	ESH13	PG11	PG12	PH11	PH12	PH13
ID2	PM2	ESH21	ESH22	SH22	ESH23	PG21	PG22	PH21	PH22	PH23
ID3	РМ3	ESH31	ESH32	SH32	ESH33	PG31	PG32	PH31	PH32	PH33
				sh2		Р	G	ph1		

Participant 2: Key generation ready

Private								
Participant 1	SG1	SH1	PG1	ESH1				
154	6644	SH11	DC44	ESH11				
ID1 SM1 - PM1	SG11 SG12	SH12	PG11 PG12	ESH12				
SIVIT - PIVIT	3G12	SH13	PG12	ESH13				
	'	•						

Public						
15.4						2010
ID1	PM1	ESH11	ESH12	ESH13	PG11	PG12
ID2	PM2	ESH21	ESH22	ESH23	PG21	PG22
ID3	PM3	ESH31	ESH32	ESH33	PG31	PG32
	•					

Participant 2	SG2	SH2	PG2	ESH2
ID2 SM2 - PM2	SG21	SH21		ESH21
		SH22	PG21 PG22	ESH22
		SH23	PUZZ	ESH23

Participant 3	SG3	SH3	PG3	ESH3	
ID3 SM3 - PM3	SG31	SH31	PG31	ESH31 ESH32	
		ISH32	PG32		
		SH33	rusz	ESH33	

						1			1	
ID1	PM1	ESH11	ESH12	SH12	ESH13	PG11	PG12	PH11	PH12	PH13
ID2	PM2	ESH21	ESH22	SH22	ESH23	PG21	PG22	PH21	PH22	PH23
ID3	PM3	ESH31	ESH32	SH32	ESH33	PG31	PG32	PH31	PH32	PH33
				sh2		PG		ph1	ph2	ph3

NPVDKG-RS

Thanks for your attentions

Contact: info@natrix.io

https://www.linkedin.com/company/natrix-blockchain-platform/

Thanks to Andras Szabolcsi for creating the algorithm

https://www.linkedin.com/in/andras-szabolcsi/