Introduzione alla Meccanica Quantistica per il Quantum Computing

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	Intr	oduzione	2
2	Forr	malismo della meccanica quantistica	2
	2.1	Principi	2
	2.2	Operazioni	4
		2.2.1 Prodotto "interno"	4
		2.2.2 Operazioni illecite	5
		2.2.3 Prodotto esterno	5
		2.2.4 Operatore aggiunto	6
	2.3	Rappresentazione matriciale	6
		2.3.1 Ket di base	6
	2.4	Teoria della misura	7
3	Quantizzazione dell'esperimento Stern-Gerlach		8
•	3.1	Operatori	8
4	Processi della misura		9
	4.1	Teoria della misura	9
	4.2	Osservabili compatibili	10
	4.3	Osservabili incompatibili	11
	4.4	Postulati (Interpretazione di Copenhagen)	11
5	Dall	la meccanica quantistica al quantum computing	12
	5.1	Computazione quantistica	12
	5.2	Comunicazione quantistica	13
	5.3	Calcolo quantistico	13
		5.3.1 Rappresentazione geometrica del Qubit	14
	5.4	Qubit	14
		5.4.1 Porta di Hadamard	15
6	Enta	anglement	16
		Stato singoletto di spin	16

1 Introduzione

TODO

2 Formalismo della meccanica quantistica

Deriviamo il formalismo partendo dall'esperimento di Stern-Gerlach e di Feynman utilizzando la notazione di Dirac.

2.1 Principi

Ad un sistema fisico corrisponde uno spazio vettoriale complesso di dimensione n, dove n è il numero di gradi di libertà del sistema quanto-meccanico.
 Il grado di libertà è il numero di alternative, o scelte, a disposizione del sistema (da qui deriva il termine "quantistico", siccome le alternative sono quantizzate).

Sistema fisico
$$\to \mathbb{C}^n$$

Ad esempio nell'espermimento di Stern-Gerlach la misura è lo spin di un atomo che può avere solo due valori, quindi $\pm \frac{\hbar}{2}$, ovvero n=2.

Nell'esperimento di Feynman con la doppia fenditura il sistema è una particella che può passare per una delle due fenditure, quindi $\mathfrak{n}=2$. Se oltre al percorso in cui è passato l'atomo si vuole sapere anche lo spin, allora il grado di libertà aumenta.

I sistemi con n=2 si chiamano **sistemi a due stati**.

Allo stato fisico corrisponde un vettore di stato dello spazio vettoriale complesso chiamato Ket. Nella notazione di Dirac il vettore di stato è indicato con |α⟩. Questo vettore è definito a meno di una costante, quindi:

$$|\alpha\rangle \iff c |\alpha\rangle$$

sono lo stesso stato e ciò significa che il Ket è **normalizzato** e sarà un vettore unitario.

Ad esempio un atomo di argento con un certo spin rappresenta uno stato fisico. E il Ket contiene tutte le informazioni riguardanti alla direzione (""raggi"") che si possono avere su quell'atomo.

 Un osservabile è una variabile fisica che si può misurare. All'osservabile corrisponde un operatore dello spazio Cⁿ che agisce sui Ket e restituisce un altro Ket:

$$A |\alpha\rangle$$
 dove A è l'operatore che agisce su alfa

(potrebbero essere matrici se si trova una base ad esempio)

Ci sono degli operatori importanti, cioè quelli che agendo su un Ket $|a_i\rangle$ restituiscono un vettore parallelo ad $|a_i\rangle$ e quindi sono **autoKet** (si può pensare

agli autovettori dell'algebra linare):

$$\underbrace{\mathcal{A}\left|\alpha_{i}\right\rangle}_{\text{autoKet}} = \underbrace{\alpha_{i}}_{\text{autovalore}}\left|\alpha_{i}\right\rangle$$

L'oggetto risultante rappresenta lo stesso stato fisico, siccome è solo moltiplicato per una costante. L'insieme degli autoKet e autostati è rappresentato come:

$$\{|a_i\rangle\};\{a_i\}$$

Ad esempio nell'esperimento di Stern-Gerlach si aveva l'operatore $S_{\hat{z}}$ che rappresentava la misura dello spin lungo l'asse z.

$$\{S_z;\pm\};\left\{\pm\frac{\hbar}{2}\right\}$$

nell'esperimento si ha che l'operatore \mathbb{S}_z che agisce sullo stato a spin in su restituisce:

$$S_z |S_z; +\rangle = \frac{\hbar}{2} |S_z; +\rangle$$

l'operatore \mathbb{S}_z agisce sullo stato a spin in giu restituisce:

$$S_z |S_z; -\rangle = -\frac{\hbar}{2} |S_z; -\rangle$$

Nell'esperimento di Stern-Gerlach i due autoKet di S_z sono una base dello spazio \mathbb{C}^2 e quindi si può scrivere un qualsiasi Ket come combinazione lineare di questi due Ket:

$$|S_x;\pm\rangle$$

 $|S_u;\pm\rangle$

Un generico stato rappresentato come combinazione lineare di questi Ket è:

$$|\alpha\rangle = c_{+} |S_{z}; +\rangle + c_{-} |S_{z}; -\rangle$$

o anche la seguente notazione (qbit):

$$|\alpha\rangle = c_0 |0\rangle + c_1 |1\rangle$$

• Qualsiasi **generico stato fisico** del sistema si può rappresentare come **so-vrapposizione di autostati**, cioè una combinazione lineare degli autoKet.

$$|\alpha\rangle = \sum_{i}^{n} c_{i} |a_{i}\rangle$$

(questo sviluppo è unico per il sistema a_i) dove n è il grado di libertà e:

$$A |a_i\rangle = a_i |a_i\rangle$$

Finchè non viene effettuata una misura, il sistema è in uno stato di sovrapposizione e non si può sapere il suo stato. Trovare tutti gli autostati di un

sistema si chiama problema di quantizzazione.

2.2 Operazioni

2.2.1 Prodotto "interno"

• Esiste una corrispondenza uno ad uno tra lo spazio degli stati (Ket) e un suo spazio duale (Bra):

$$\begin{array}{c} |\alpha\rangle \stackrel{\mathsf{Duale}}{\longleftrightarrow} \langle\alpha| \\ \mathsf{Ket} & \mathsf{Bra} \end{array}$$

La base dei Ket è in corrispondenza duale con la base dei Bra:

$$\underbrace{\{|\alpha_n\rangle\}}_{\mathsf{autoKet}} \overset{\mathsf{C.D.}}{\longleftrightarrow} \underbrace{\{\langle\alpha_n|\}}_{\mathsf{autoBra}}$$

ad exempio:

$$C\left|\alpha\right\rangle \overset{\text{C.D.}}{\longleftrightarrow} C^{*}\left\langle \alpha\right|$$

dove C^* è il complesso coniugato di C. Questo vuol dire che ad una somma di Ket corrisponde la somma dei Bra.

Vogliamo definire un prodotto tra stati fisici.

Definizione 2.1 (Prodotto interno). È definito **prodotto interno** il prodotto tra un Ket e un Bra:

$$\underbrace{\langle \alpha | \beta \rangle}_{\text{Notazione di Dirac}} = (\langle \alpha |) \cdot (|\beta \rangle)$$

Proprietà:

- $\langle \alpha | \beta \rangle = \langle \beta | \alpha \rangle^*$
- $\langle \alpha | \alpha \rangle \geqslant 0$, quindi $\langle \alpha | \alpha \rangle$ è reale.

Definizione 2.2 (Ket ortogonali). Due Ket sono ortogonali quando:

$$\langle \alpha | \beta \rangle = 0$$

Con questo operatore si possono normalizzare gli stati fisici, che sono definiti a meno di una costante.

Definizione 2.3 (Normalizzazione). La normalizzazione di uno stato fisico si esegue come:

$$|\hat{lpha}
angle = rac{|lpha
angle}{\sqrt{\langlelpha|lpha
angle}}$$

Di conseguenza

$$\langle \hat{\alpha} | \hat{\alpha} \rangle = 1$$

2.2.2 Operazioni illecite

Alcune operazioni nella meccanica quantistica sono vietate, perchè non hanno significato.

• Un operatore non può agire su un Ket da destra:

$$A |\alpha\rangle \quad \checkmark$$

 $|\alpha\rangle A \quad \times$

Analogamente un osservabile non può agire da sinistra su un Bra:

• Non ha significato moltiplicare due Ket:

$$|\alpha\rangle|\beta\rangle$$
 ×

Non ha significato moltiplicare due Bra:

$$\langle \alpha | \langle \beta | \times$$

La notazione $|\alpha\rangle\,|\beta\rangle$ si può utilizzare solo quando si hanno spazi fisici diversi (due variabili diverse dello stesso sistema o due sistemi diversi). Ad esempio se si hanno 2 particelle si può rappresentare il sistema fisico di ogni singola particella con un Ket diverso:

$$|\alpha\rangle_1$$

 $|\alpha\rangle_2$

ma si può anche rappresentare il sistema fisico totale di entrambe le particelle con la seguente notazione:

$$|\alpha\rangle_1 \otimes |\alpha\rangle_2 = |\alpha\rangle_1 |\alpha\rangle_2$$

Nell'esperimento di Feynman avremo lo stato fisico del percorso:

ma se si vuole rappresentare il percorso e lo spin si avrà:

$$|\mathsf{Percorso}\rangle \otimes |\mathsf{Spin}\rangle = |\mathsf{Percorso}\rangle |\mathsf{Spin}\rangle$$

2.2.3 Prodotto esterno

In meccanica quantistica ha senso definire un prodotto esterno:

$$|\alpha\rangle\langle\beta|$$

Questo oggetto è un operatore.

Teorema 2.1 (Assioma associativo della moltiplicazione).

$$(\left|\alpha\right\rangle \left\langle \beta\right|)\left|\psi\right\rangle = \left|\alpha\right\rangle (\left\langle \beta|\psi\right\rangle)$$

Secondo l'assioma associativo della moltiplicazione si ha che:

$$\underbrace{\left(\left|\alpha\right\rangle\left\langle\beta\right|\right)}_{\mathsf{Operatore}}\underbrace{\left|\psi\right\rangle}_{\mathsf{Ket}} = \underbrace{\left|\alpha\right\rangle}_{\mathsf{Ket}}\underbrace{\left(\left\langle\beta\right|\psi\right\rangle\right)}_{\mathsf{Numero}}$$

Osserviamo che $\left(\left|\beta\right\rangle\left\langle\alpha\right|\right)$ è un operatore

Ha agito come proiettore, proiettando il Ket $|\psi\rangle$ sullo stato $|\alpha\rangle$ (esegue una rotazione di uno stato).

2.2.4 Operatore aggiunto

Definizione 2.4 (Operatore aggiunto). Si definisce operatore aggiunto l'operatore A^+ . Ogni operatore che agisce su uno stato ha una corrispondenza uno ad uno con un operatore duale (operatore aggiunto) che agisce su un Bra:

$$A |\alpha\rangle \stackrel{\mathsf{C.D.}}{\longleftrightarrow} \langle \alpha | A^+$$

Se $A = A^+$ allora l'operatore è **hermitiano** o **autoaggiunto**.

2.3 Rappresentazione matriciale

2.3.1 Ket di base

Se $A = A^+$, allora

- Gli autovalori $\{a_i\}$ sono reali
- Gli autoKet $\{|a_i\rangle\}$ sono una base

$$\langle a_i | a_j \rangle = \delta_{ij}$$

e un ket arbitrario potrà essere espresso come sovrapposizione di autoket dell'osservabile A:

$$\mathsf{Ket}\ \mathsf{qualunque} = \sum_{\mathfrak{i}} \mathsf{autoKet}\ \mathsf{di}\ \mathsf{A}$$

$$|lpha
angle = \sum_{i}^{\Downarrow} c_{i} \, |lpha_{i}
angle$$

L'oggetto c_i è la proiezione $\langle a_i | \alpha \rangle$:

$$\langle \alpha_{\mathfrak{i}} | \alpha \rangle = \sum_{\mathfrak{i}} c_{\mathfrak{i}} \, \langle \alpha_{\mathfrak{i}} | \alpha_{\mathfrak{i}} \rangle = c_{\mathfrak{i}}$$

ovvero:

$$|\alpha\rangle = \sum_{i} |\alpha_{i}\rangle \langle \alpha_{i}|\alpha\rangle$$

Questa è la **relazione di completezza**, che dice che a_i è base dello spazio:

$$\sum \left|\alpha_i\right\rangle \left\langle \alpha_i\right| = \mathbb{I}$$

Questo oggetto è il proiettore sul Ket di base $|a_i\rangle$ e si può indicare anche come:

$$|a_i\rangle\langle a_i|=\Lambda_{a_i}$$

Da questo si deriva che la somma dei coefficienti al quadrato fa 1:

$$\sum |c_i|^2 = 1$$

perchè:

$$\begin{split} \left<\alpha |\alpha\right> &= 1 \\ &= \left<\alpha |\left(\sum_{i} |\alpha_{i}\rangle \left<\alpha_{i}|\right) |\alpha\right> \\ &= \sum_{i} \left<\alpha |\alpha_{i}\rangle \left<\alpha_{i}|\alpha\right> \\ &= \sum_{i} |c_{i}|^{2} = 1 \end{split}$$

2.4 Teoria della misura

In pratica ogni Ket si può rappresentare come un vettore colonna:

$$|lpha
angle = egin{pmatrix} lpha_1 \ dots \ lpha_n \end{pmatrix}$$

dove le componenti α_n sono i coefficienti della sovrapposizione $\langle a_i | \alpha \rangle$

Ogni Bra è un vettore riga:

$$\langle \alpha | = \begin{pmatrix} \alpha_1^* & \cdots & \alpha_n^* \end{pmatrix}$$

dove le componenti sono il complesso coniugato delle componenti del Ket.

La componente $\langle \alpha | \beta \rangle$ si può calcolare come un prodotto scalare:

$$\langle \alpha | \beta \rangle = \begin{pmatrix} \alpha_1^* & \cdots & \alpha_n^* \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

e quindi:

$$|\alpha\rangle\langle\beta| = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \begin{pmatrix} \beta_1^* & \cdots & \beta_n^* \end{pmatrix}$$

In entrambi i casi si ottiene una matrice quadrata $N \times N$.

Qualunque operatore B è rappresentato da una matrice quadrata $N \times N$ e agisce sui Bra (a destra) o sui Ket (a sinistra):

$$B = \sum_{i} \sum_{j} \underbrace{\left|\alpha_{i}\right\rangle \left\langle \alpha_{j} \right| B \left|\alpha_{j}\right\rangle \left\langle \alpha_{i} \right|}_{N^{2} \text{ numeri } B_{1:j}} = \mathbb{I}B\mathbb{I}$$

cioè si moltiplica per l'identità a destra e sinistra:

Nella base a_i $A = A^+$ è osservabile e la sua base è diagonale con elementi reali:

$$A = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix} \quad a_i \in \mathbb{R}$$

3 Quantizzazione dell'esperimento Stern-Gerlach

Scelgo i Ket di base:

$$|S_z;\pm\rangle$$

con la seguente notazione:

$$\{\left|+\right\rangle,\left|-\right\rangle\}=\begin{pmatrix}1\\0\end{pmatrix};\begin{pmatrix}0\\1\end{pmatrix}=\left|0\right\rangle,\left|1\right\rangle$$

3.1 Operatori

• Il più semplice operatore è l'operatore di completezza:

$$\mathbb{I} = |+\rangle \langle +|+|-\rangle \langle -|$$

• Operatore S_z

$$\mathbb{S}_{z} = \frac{\hbar}{2} \left[\left| + \right\rangle \left\langle + \right| - \left| - \right\rangle \left\langle - \right| \right]$$

in forma matriciale:

$$S_z = \begin{pmatrix} \frac{\hbar}{2} & 0\\ 0 & -\frac{\hbar}{2} \end{pmatrix}$$

• Autostati di S_z :

$$S_z\ket{+}=rac{\hbar}{2}\ket{+}$$
 \hbar

$$S_z \left| - \right\rangle = -\frac{\hbar}{2} \left| - \right\rangle$$

Uno stato arbitrario α sarà dato dalla combinazione di autoKet di cui i coefficienti si trovano proiettando α sugli autoKet:

$$\begin{split} |\alpha\rangle &= |+\rangle \overbrace{\langle +|\alpha\rangle}^{C_{+}} \ + \ |-\rangle \overbrace{\langle -|\alpha\rangle}^{C_{-}} \\ &= \left(\langle +|\alpha\rangle \atop \langle -|\alpha\rangle \right) \end{split}$$

4 Processi della misura

Il quadrato della funzione d'onda descrive la probabilità di trovare una particella in una certa posizione:

 $P = |\phi|^2$

Se abbiamo due particelle e vogliamo calcolare la probabilità della somma delle ampiezze notiamo che:

• Se non misuro si ha interferenza:

$$\sum \varphi \quad P = |\varphi_1 + \varphi_2|^2$$

• Se misuro si ha che la probabilità è la somma delle probabilità:

$$\mathsf{P} = \sum \mathsf{P}$$

4.1 Teoria della misura

Prendiamo in considerazione la base $|a_i\rangle$, sappiamo che lo stato prima della misura è espresso come sovrapposizione di autostati:

$$|\psi
angle = \sum_{i} c_{i} |\alpha_{i}
angle \quad c_{i} = \langle \alpha_{i} | \psi
angle$$

1. Se faccio la misura di un osservabile A lo stato ψ collassa in un autostato di A con una certa probabilità P:

$$|\psi
angle \stackrel{\mathsf{Misura}\ \mathsf{di}\ \mathsf{A}}{\longrightarrow} |\mathfrak{a}_{\mathfrak{i}}
angle$$

il risultato della misura è a_i , cioè l'autovalore. Sono i possibili risultati della misura, lo spettro dell'osservabile.

La probabilità P di misurare α_i è data dal coefficiente dello sviluppo di $|\psi\rangle$ al quadrato:

$$P = |c_{\mathfrak{i}}|^2 = |\left\langle \alpha_{\mathfrak{i}} | \psi \right\rangle|^2$$

 Con stato normalizzato

La misura in meccanica quantistica cambia lo stato del sistema. Ad esempio nell'esperimento di Stern-Gerlach lo stato $|\psi\rangle$ rappresenta lo spin di un atomo. Prima di misurare non sappiamo che stato abbia, cioè è in sovrapposizione. Attraverso un operatore misuriamo lo spin e la particella potrà dare come risultato l'autostato $|+\rangle$ o l'autostato $|-\rangle$:

Figura 1: Misura di S_z

2. Se $|\psi\rangle = |\alpha\rangle$ è un autostato, allora la misura di A non lo cambia:

$$|\mathfrak{a}\rangle \stackrel{\mathsf{Misura}}{\longrightarrow} \overset{\mathsf{di}}{\longrightarrow} |\mathfrak{a}\rangle$$

Ad esempio nell'esperimento di Stern-Gerlach se dopo aver misurato lo spin \mathcal{S}_z ho trovato l'autostato $|+\rangle$ rifaccio la misura ritrovo lo stesso autostato ed è un risultato certo:

Figura 2: Doppia misura di $|+\rangle$

Definizione 4.1 (Valore di aspettazione). Il **valore di aspettazione** di un osservabile A rispetto a $|\psi\rangle$ è la media dei valori che si possono ottenere misurando A sullo stato $|\psi\rangle$:

$$\langle A \rangle = \langle \psi | A | \psi \rangle = \langle \psi | (A | \psi \rangle)$$

Dimostrazione:

$$\begin{split} \langle \psi | A | \psi \rangle &= \sum_{i} \sum_{j} \left\langle \psi | \alpha_{i} \right\rangle \left\langle \alpha_{i} | \underbrace{A \left| \alpha_{j} \right\rangle}_{\alpha_{j} \mid \alpha_{j} \rangle} \left\langle \alpha_{j} | \psi \right\rangle \\ &= \sum_{i} \alpha_{i} \left\langle \psi | \alpha_{i} \right\rangle \left\langle \alpha_{i} | \psi \right\rangle \\ &= \sum_{i} \alpha_{i} |\left\langle \alpha_{i} | \psi \right\rangle|^{2} \end{split}$$

dove α_i è la misura e $|\langle \alpha_i | \psi \rangle|^2 = P$ è la probabilità di ottenerla.

4.2 Osservabili compatibili

 S_z, S_x (S_y) non si possono misurare simultaneamente. Si vuole definire cosa significa che due osservabili siano compatibili.

Definizione 4.2. Dati due osservabili [A, B] = AB - BA è il **commutatore** di A e B.

• $A(B)|\psi\rangle$ vuol dire che si misura prima B e poi ψ

Teorema 4.1. Se A, B commutano

• Gli elementi di B sono diagonali nella rappresentazione di A, cioè la base di A $|\alpha_i\rangle$ è anche la base di B

Due operatori che commutano hanno una base comune e la notazione è:

$$|a,b\rangle$$

Consideriamo che [A, B] siano osservabili che commutano

$$|\psi\rangle \stackrel{\mathsf{Misuro}\; A}{\longrightarrow} |\alpha\rangle \stackrel{\mathsf{Misuro}\; A}{\longrightarrow} \underbrace{|\alpha\rangle}_{\mathsf{100\%}\; \mathsf{risultato}\; \mathsf{a}}$$

$$|\psi\rangle \stackrel{\mathsf{Misuro}}{\longrightarrow} {}^{\mathsf{A}} |\mathfrak{a},\mathfrak{b}\rangle \stackrel{\mathsf{Misuro}}{\longrightarrow} {}^{\mathsf{B}} |\mathfrak{a},\mathfrak{b}\rangle \stackrel{\mathsf{Misuro}}{\longrightarrow} {}^{\mathsf{A}} |\mathfrak{a},\mathfrak{b}\rangle$$

Non si avrà nessuna distruzione dell'informazione perchè A è anche autostato di B.

4.3 Osservabili incompatibili

Se A,B non commutano allora non hanno una base comune e non si possono misurare simultaneamente.

4.4 Postulati (Interpretazione di Copenhagen)

- 1. Ad ogni sistema fisico, si associa uno spazio di **Hilbert** $\mathcal H$, cioè una generalizzazione dello spazio complesso.
 - Ad ogni stato di questo sistema si associa un vettore normalizzato dello spazio di Hilbert:

$$|\psi\rangle \leftrightarrow (\alpha |\psi\rangle) \leftrightarrow \langle \psi |\psi\rangle = 1$$

• Arbitrarietà della fase, cioè $|\psi\rangle$ è definito a meno di una fase:

$$e^{\varphi}\left|\psi\right\rangle$$

La conseguenza è che **ogni stato** può essere espresso come sovrapposizione di altri stati:

$$|\psi\rangle = \sum_{i} c_{i} \left|\alpha_{i}\right\rangle$$

(Principio di sovrapposizione)

2. Ad ogni osservabile A si associa un operatore lineare autoaggiunto \hat{A} dello spazio $\mathcal H$ che si dice hermitiano.

Lo spettro di \hat{A} (l'insieme degli autovalori) è l'insieme dei valori possibili della misura (spettro della misura).

$$\hat{A}\left|\alpha_{i}\right\rangle =\alpha_{i}\left|\alpha_{i}\right\rangle$$

3. Se il sistema fisico si trova in uno stato $|\psi\rangle$, la probabilità che la misura di A (grandezza fisica) dia come risultato α è proporzionale a:

$$P(\alpha_i) \propto |\langle \alpha | \psi \rangle|^2$$

dove $\langle \alpha | \psi \rangle$ è il coefficiente c_i .

Ne consegue che la somma delle probabilità è 1:

$$\sum |\left<\alpha|\psi\right>|^2=1$$

- 4. Collasso della funzione d'onda ψ (non c'è spiegazione fisica). La misura dell'osservabile A sullo stato generico $|\psi\rangle$ (che ha dato un risultato α) proietta $|\psi\rangle$ sull'autospazio di α , (cioè $|\alpha\rangle$)
- 5. Gli stati $|\psi\rangle$ evolvono nel tempo secondo l'equazione di Schrödinger:

$$i\hbar\frac{d}{dt}\left|\psi(t)\right\rangle = \hat{H}(t)\left|\psi(t)\right\rangle$$

dove \hat{H} è l'**operatore Hamiltoniano** del sistema. L'operatore Hamiltoniano è l'"energia" del sistema che è data da:

$$\underbrace{\mathbb{T}}_{\mathsf{Cinetica}} + \underbrace{\mathbb{V}(\vec{\mathsf{x}})}_{\mathsf{Potenziale}}$$

Il risultato di questa equazione sono tutti i possibili valori dell'energia.

5 Dalla meccanica quantistica al quantum computing

L'informazione è **fisica**, cioè manipolare l'informazione è un processo fisico e quindi non si può separare le operazioni logiche dalla loro implementazione fisica. Esiste quindi un limite dato dal **principio di Landauer** che dice che c'è un limite minimo all'energia spesa (lavoro) per una singola computazione irreversibile (ad esempio cancellare un bit). Il limite è dato da:

$$\Delta E = k_b T \ln 2$$

dove k_b è la costante di Boltzmann e T è la temperatura a cui avviene il processo (in gradi Kelvin).

Esempio 5.1. Un esempio a temperatura ambiente è il seguente:

$$T = 300K$$

$$\Delta E \approx 18 \text{mV}$$

È un valore altissimo, quindi visto che l'unica variabile disponibile è la temperatura se si vuole diminuire il limite bisogna diminuire la temperatura a livelli criogenici.

5.1 Computazione quantistica

Si ha uno stato fisico $|\psi\rangle$ di input preparato che entra in un computer quantistico (processo fisico reversibile) e si ottiene un output $|\psi\rangle$ che è un altro stato fisico, quindi un operatore unitario che indica l'evoluzione temporale di $|\psi\rangle$.

$$\underbrace{\frac{|\psi\rangle}{\underset{\text{Input}}{\text{Input}}}}_{\text{Stato fisico (preparato)}} \longrightarrow \boxed{QC} \longrightarrow \underbrace{|\psi\rangle}_{\text{Output}} = \mathbb{U}|\psi\rangle$$

Figura 3: Computazione quantistica

Dove
$$\mathbb{U}\mathbb{U}^+=\mathbb{I}$$

$$\mathbb{U}=exp\left(-\frac{i}{\hbar}\mathfrak{H}t\right)$$

Si farà poi una misura quantistica per selezionare uno dei possibili esiti di $|\psi\rangle$. $_{Output}$ L'algoritmo quantistico ottimizza questo processo di estrazione dell'informazione

Teorema 5.1 (Teorema di No-Cloning). In meccanica quantistica non si può creare (clonare) una copia esatta di uno stato senza distruggere l'originale.

Nella computazione quantistica si possono sfruttare tutte le proprietà quantistiche, come ad esempio:

- Sovrapposizione
- Correlazione quantistica (entanglement)
- Teletrasporto

5.2 Comunicazione quantistica

Si considerano due entità A e B che vogliono comunicare attraverso un canale di comunicazione quantistico. Si ha che:

$$\begin{array}{c} \mathsf{A} \xrightarrow{\qquad \qquad \mathsf{Canale\ quantistico}} \mathsf{B} \\ |\psi\rangle \qquad \mathsf{(es.\ fotoni,\ spin)} \end{array}$$

Figura 4: Comunicazione quantistica

Questo da luogo a:

- Crittografia quantistica
- Teletrasporto
- Teletrasporto di maggiori informazioni

B per rilevare il messaggio ha un rilevatore quantistico.

5.3 Calcolo quantistico

L'elemento base di un'operazione è il **Qubit**, cioè un insieme di due possibili stati quantistici distinguibili:

$$|0
angle$$
 ; $|1
angle$ Stato fondamentale Stato eccitato

nell'implementazione fisica potrebbe essere uno spin in su o in giù, un fotone con polarizzazione orizzontale o verticale ecc...

Si possono creare, quindi, degli stati che non hanno analogo classico. Un generico qubit $|\psi\rangle$ si trova in sovrapposizione dei suoi stati:

$$\begin{split} |\psi\rangle &= \alpha_0 \, |0\rangle + \alpha_1 \, |1\rangle \quad \, \alpha_0, \alpha_1 \in \mathbb{C} \\ &|\alpha_0|^2 + |\alpha_1|^2 = 1 \end{split}$$

La fase non ha significato nel mondo quantistico:

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

quindi si può scrivere il qubit come:

$$|\psi
angle = \cosrac{ heta}{2}\left|0
ight
angle + e^{\mathrm{i}\,\varphi}\sinrac{ heta}{2}\left|1
ight
angle$$

Questo è un punto sulla sfera di Bloch.

5.3.1 Rappresentazione geometrica del Qubit

Il qubit è un punto sulla superficie della sfera di Bloch:

Figura 5: Sfera di Bloch

$$\begin{split} |\psi\rangle &= \begin{pmatrix} \cos\frac{\theta}{2} \\ e^{i\varphi}\sin\frac{\theta}{2} \end{pmatrix} \\ \langle\psi| &= \left(\cos\frac{\theta}{2} - e^{-i\varphi}\sin\frac{\theta}{2}\right) \end{split}$$

5.4 Qubit

Il Qubit codifica una quantità infinita di informazioni perchè è in sovrapposizione, ma questo si può sfruttare soltanto all'interno del calcolo quantistico, perchè quando il valore viene estratto si ha il collasso della funzione d'onda e potrà essere soltanto uno dei due stati $|0\rangle$ o $|1\rangle$.

Si hanno n qubit preparati nello stato fondamentale:

$$|\alpha_i\rangle=\{|0\rangle\,,\;|1\rangle\}_i$$

$$\begin{cases} |0\rangle_1 \\ \vdots \\ |0\rangle_n \end{cases} \longrightarrow |\psi\rangle = \alpha_{1,2,\dots,n} \, |\alpha_1,\dots,\alpha_n\rangle = |\alpha\rangle_1 \otimes |\alpha\rangle_2 \otimes \dots \otimes |\alpha\rangle_n$$

Figura 6: Calcolo quantistico

Il sistema descritto da 2 qubit: $|\alpha\rangle_1$; $|\alpha\rangle_2$ si indica con:

$$\left|\alpha\right\rangle_{1}\otimes\left|\alpha\right\rangle_{2}=\left|\alpha_{1}\alpha_{2}\right\rangle \quad\in\mathbb{C}^{2}\otimes\mathbb{C}^{2}$$

Due qubit possono essere ad esempio 2 fotoni che possono assumere gli stati:

$$\{ \begin{vmatrix} 0 \rangle, |1 \rangle \}_1$$
$$\{ \begin{vmatrix} 0 \rangle, |1 \rangle \}_2$$

e quindi ci sono 4 stati possibili che formano la base. Gli stati si indicano:

 $|00\rangle$

 $|01\rangle$

 $|10\rangle$

 $|11\rangle$

Qualsiasi combinazione di questi consiste in una formazione quantistica trasportata all'interno del circuito e quindi:

$$\begin{split} |\psi\rangle &= \alpha_{00} \left|00\right\rangle + \alpha_{01} \left|01\right\rangle + \alpha_{10} \left|10\right\rangle + \alpha_{11} \left|11\right\rangle \\ &\sum |\alpha_{ij}|^2 = 1 \end{split}$$

I coefficienti sono la probabilità di ottenere il primo stato in un certo stato fondamentale e il secondo stato in un altro stato fondamentale.

Gli stati $|0\rangle$ e $|1\rangle$ a livello fisico hanno una differenza di energia piccolissima, che viene annullata dal bagno termico (non si possono differenziare per l'interferenza dell'ambiente) in cui è immerso il sistema, per questo motivo bisogna lavorare a temperature criogeniche. Quando un sistema fisico perde il suo stato si dice **incoerenza fisica**.

5.4.1 Porta di Hadamard

Il processo fisico:

Figura 7: Processo fisico

si può separare in operatori più piccoli che agiscono su un qubit, quindi sono rappresentate da matrici unitarie 2×2 (se agiscono su 2 qbit da matrici $4 \times 4...$) in cui ogni colonna rappresenta uno stato del qubit.

Porta di Hadamard o porta H (non ha analogo classico):

• Il vettore di stato $|0\rangle$ viene trasformato in sovrapposizione di:

$$|0\rangle \rightarrow \frac{1}{\sqrt{2}}\left(|0\rangle + |1\rangle\right)$$

• Il vettore di stato $|1\rangle$ viene trasformato in sovrapposizione di:

$$|1
angle
ightarrow rac{1}{\sqrt{2}} \left(|0
angle - |1
angle
ight)$$

$$H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$
$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Un generico qubit viene trasformato in:

$$lpha \ket{0} + eta \ket{1}
ightarrow lpha \underbrace{\left(rac{\ket{0} + \ket{1}}{\sqrt{2}}
ight)}_{\ket{+}} + eta \underbrace{\left(rac{\ket{0} - \ket{1}}{\sqrt{2}}
ight)}_{\ket{-}}$$

quindi torna in sovrapposizione. Si sta essenzialmente effettuando un cambiamento di base.

6 Entanglement

6.1 Stato singoletto di spin

Lo |stato "singoletto di Spin" \rangle è uno stato composto da 2 particelle che hanno Spin totale = 0 e spin opposto.

Ad esempio una sorgente radioattiva che emette una particella in una direzione e una particella nella direzione opposta:

Figura 8: Particelle con spin opposto

Bisogna mantenere lo spin totale a 0, quindi se una particella ha spin "su" l'altra deve avere spin "giù". Abbiamo 2 particelle con 2 stati e quindi 4 possibili stati:

$$\mathbb{C}^2 \otimes \mathbb{C}^2$$

Per mettere lo spin ($|0\rangle =$ "su" e $|1\rangle =$ "giù") in relazione si avrà:

|stato "singoletto di Spin"
$$angle = rac{1}{\sqrt{2}} \left(\ket{01} - \ket{10}
ight)$$

Le due particelle si dicono **entangled** perchè le particelle devono avere spin opposto. Questo stato si dice **stato di Bell**.

Se aggiungiamo degli osservatori A e B al sistema:

Figura 9: Sistema con osservatori

Se A fa una misura sulla particella p_1 e trova $|0\rangle$ al 50% e $|1\rangle$ al 50%. Siccome si sta lavorando in un sistema di 2 qubit, se A trova $|0\rangle$ esso cade nell'autostato di A, ad esempio:

ullet Al primo lancio A trova $|0\rangle_A$ ed esso collassa nell'autostato

$$\frac{1}{\sqrt{2}}\ket{01}$$

quindi B troverà $|1\rangle_{\mathrm{B}}$ al 100%

La misura di A determina **"simultaneamente"** il valore di B, senza che egli lo abbia misurato.

In meccanica quantistica questa relazione è detta **correlazione di spin** o **entangle-ment**. Questo avviene solo nella stessa base, se un osservatore non conosce la base del secondo osservatore la misura rimane incerta e questa cosa è la fondamentale per la **crittografia quantistica**.