

SAR Test Report

Report No.: AGC00564190701FH01

FCC ID 2AFD9NETMATRIX

Original Equipment APPLICATION PURPOSE

PRODUCT DESIGNATION **TABLET**

KRONO BRAND NAME

MODEL NAME NET_MATRIX

APPLICANT MOVEON TECHNOLOGY LIMITED

DATE OF ISSUE Sep. 12,2019

IEEE Std. 1528:2013

STANDARD(S) FCC 47 CFR Part 2§2.1093:2013

IEEE C95.1TM:2005

REPORT VERSION V1.1

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

CAUTION:This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

+86-755 2523 4088

E-mail:agc@agc-cert.com

Page 2 of 81

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Sep. 05,2019	Invalid	Initial Release
V1.1	1 st	Sep. 12,2019	Valid	Added System validation result on page 24.

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

Report No.: AGC00564190701FH01 Page 3 of 81

	Test Report				
Applicant Name	MOVEON TECHNOLOGY LIMITED				
Applicant Address	World Trade Plaza-A block#3201-3202 Fuhong Road,Futian				
Manufacturer Name	MOVEON TECHNOLOGY LIMITED				
Manufacturer Address	World Trade Plaza-A block#3201-3202 Fuhong Road,Futian				
Factory Name	MOVEON TECHNOLOGY LIMITED				
Factory Address	World Trade Plaza-A block#3201-3202 Fuhong Road,Futian				
Product Designation	TABLET				
Brand Name	KRONO				
Model Name	NET_MATRIX				
EUT Voltage	DC3.7V by battery				
Applicable Standard	IEEE Std. 1528:2013 FCC 47 CFR Part 2§2.1093:2013 IEEE C95.1TM:2005				
Test Date	Aug. 01,2019 to Aug. 03,2019				
Report Template	AGCRT-US-3G3/SAR (2018-01-01)				

Note: The results of testing in this report apply to the product/system which was tested only.

	Owen Xiao			
Tested By	- 100 - 100 -			
	Owen Xiao (Xiao Qi)	Aug. 03,2019		
	Jack brui			
Checked By	-6	100		
	Jack Gui (Gui Jiafeng)	Sep. 12,2019		
	Lowest ce			
Authorized By	NOC NO			
	Forrest Lei(Lei Yonggang)	Sep. 12,2019		
	Authorized Officer			

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	5
2. GENERAL INFORMATION	6
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	8
3.1. THE DASY5 SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS 3.2. DASY5 E-FIELD PROBE	
3.3. DATA ACQUISITION ELECTRONICS DESCRIPTION	9
3.4. ROBOT	
3.5. LIGHT BEAM UNIT	
3.7. MEASUREMENT SERVER	
3.8. PHANTOM	
4. SAR MEASUREMENT PROCEDURE	13
4.1. SPECIFIC ABSORPTION RATE (SAR)	13
4.2. SAR MEASUREMENT PROCEDURE	14
4.3. RF EXPOSURE CONDITIONS	
5. TISSUE SIMULATING LIQUID	
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	
5.3. TISSUE CALIBRATION RESULT	
6. SAR SYSTEM CHECK PROCEDURE	
6.1. SAR SYSTEM CHECK PROCEDURES	
6.2. SAR SYSTEM CHECK	
7. EUT TEST POSITION	
7.2. CHEEK POSITION	
7.3. TILT POSITION	
8. SAR EXPOSURE LIMITS	
9. TEST FACILITY	
10. TEST EQUIPMENT LIST	
11. MEASUREMENT UNCERTAINTY	
12. CONDUCTED POWER MEASUREMENT	
13. TEST RESULTS	
13.1. SAR Test Results Summary	42
APPENDIX A. SAR SYSTEM CHECK DATA	
APPENDIX B. SAR MEASUREMENT DATA	
APPENDIX C. TEST SETUP PHOTOGRAPHS	
APPENDIX D. CALIBRATION DATA	81

Page 5 of 81

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Eroguanov Band	Highes	SAR Test Limit	
Frequency Band	Head	Body-worn(with 0mm separation)	(W/Kg)
GSM 850	0.017	0.290	
PCS 1900	0.094	0.667	
UMTS Band II	0.119	0.545	
UMTS Band V	0.010	0.165	1.6
WIFI 2.4G	0.139	0.393	
Simultaneous Reported SAR		1.022	
SAR Test Result		PASS	

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 648474 D04 Handset SAR v01r03
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 941225 D01 3G SAR Procedures v03r01
- KDB 941225 D06 Hotspot Mode v02r01
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

Page 6 of 81

2. GENERAL INFORMATION

General Information			
Product Designation	TABLET		
Test Model	NET_MATRIX		
Hardware Version	RC_K706		
Software Version	K706.O1.V10.8.RC-V01.6276		
Device Category	Portable		
RF Exposure Environment	Uncontrolled		
Antenna Type	Internal		
GSM and GPRS			
Support Band			
GPRS Type	Class B		
GPRS Class	Class 12(1Tx+4Rx, 2Tx+3Rx, 3Tx+2Rx, 4Tx+1Rx)		
TX Frequency Range	GSM 850 : 820-850MHz;; PCS 1900: 1850-1910MHz;		
RX Frequency Range	GSM 850 : 869~894MHz; PCS 1900: 1930~1990MHz		
Release Version	R99		
Type of modulation	GMSK for GSM/GPRS;		
Antenna Gain	GSM850:1.77dBi; PCS1900: 1.62dBi;		
Max. Average Power	GSM850: 32.84dBm ;PCS1900: 29.80dBm		
WCDMA			
Support Band	☐UMTS FDD Band II ☐UMTS FDD Band V ☐UMTS FDD Band I ☐UMTS FDD Band VIII		
HS Type	HSPA(HSUPA/HSDPA)		
TX Frequency Range	WCDMA FDD Band II: 1850-1910MHz; WCDMA FDD Band V: 820-850MHz		
RX Frequency Range	WCDMA FDD Band II: 1930-1990MHz; WCDMA FDD Band V: 869-894MHz		
Release Version	Rel-6		
Type of modulation	HSDPA:QPSK/16QAM; HSUPA:BPSK; WCDMA:QPSK		
Antenna Gain	WCDMA850: 1.55dBi; WCDMA1900:1.45dBi;		
Max. Average Power	Band II: 21.89dBm; Band V: 21.92dBm		

Page 7 of 81

EUT Description(Continue)

Bluetooth			
Operation Frequency	2402~2480MHz		
Antenna Gain	1.0dBi		
Bluetooth Version	V4.0		
Type of modulation	BR/EDR: GFSK, ∏/4-DQPSK, 8-DPSK; BLE: GFSK		
EIRP	BR/EDR : 2.970dBm; BLE : 2.575dBm		
WIFI			
WIFI Specification	□802.11a ⊠802.11b ⊠802.11g ⊠802.11n(20) ⊠802.11n(40)		
Operation Frequency	2412~2462MHz		
Avg. Burst Power	11b:12.26dBm,11g:13.14dBm,11n(20):13.08dBm,11n(40):9.80dBm		
Antenna Gain	1.0dBi		
Accessories			
Battery	Brand name: ZL Model No. : 3495103 Voltage and Capacitance: 3.7 V & 3500mAh		
Earphone	Brand name: N/A Model No. : N/A		

Note:1.CMU200 can measure the average power and Peak power at the same time 2.The sample used for testing is end product.

Product	Type		
Product	☑ Production unit	☐ Identical Prototype	

3. SAR MEASUREMENT SYSTEM

3.1. The DASY5 system used for performing compliance tests consists of following items

- A standard high precision 6-axis robot with controller, teach pendant and software.
- Data acquisition electronics (DAE) which attached to the robot arm extension. The DAE consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock
- A dosimetric probe equipped with an optical surface detector system.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital Communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- A Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- Phantoms, device holders and other accessories according to the targeted measurement.

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China

3.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE-1528 etc.)Under ISO17025.The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	EX3DV4-SN:3953
Manufacture	SPEAG
frequency	0.7GHz-6GHz Linearity:±0.9%(k=2)
Dynamic Range	0.01W/Kg-100W/Kg Linearity: ±0.9%(k=2)
Dimensions	Overall length:337mm Tip diameter:2.5mm Typical distance from probe tip to dipole centers:1mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

3.3. Data Acquisition Electronics description

The data acquisition electronics (DAE) consist if a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement sever is accomplished through an optical downlink fir data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

DAE4

Input Impedance	200MOhm	100000000000000000000000000000000000000	00000
The Inputs	Symmetrical and floating	70000 700000 7000000000000000000000000	Sale Sale D 000 Dot BM in Saltzerland
Common mode rejection	above 80 dB		A Constitution of the Cons

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1–4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Page 10 of 81

3.4. Robot

The DASY system uses the high precision robots (DASY5:TX60) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from is used.

The XL robot series have many features that are important for our application:

- ☐ High precision (repeatability 0.02 mm)
- ☐ High reliability (industrial design)
- ☐ Jerk-free straight movements
- ☐ Low ELF interference (the closed metallic construction shields against motor control fields)
- ☐ 6-axis controller

3.5. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned prob.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position. e, the same position will be reached with another aligned probe within 0

Page 11 of 81

3.6. Device Holder

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ϵ =3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

3.7. Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chip-disk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DAYS I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Page 12 of 81

3.8. PHANTOM SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

Left head

□ Right head

☐ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

ELI4 Phantom

□ Flat phantom a fiberglass shell flat phantom with 2mm+/- 0.2 mm shell thickness. It has only one measurement area for Flat phantom

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

Add: 2/F., Building 2, No.1–4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755 2523 4088 E-

E-mail: agc@agc-cert.com

Page 13 of 81

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;
 E is the r.m.s. value of the electric field strength in the tissue in volts per meter;
 σ is the conductivity of the tissue in siemens per metre;
 ρ is the density of the tissue in kilograms per cubic metre;
 ch is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt}$ | t=0 is the initial time derivative of temperature in the tissue in kelvins per second

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Page 14 of 81

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	3 – 4 GHz: ≤ 5 mm [*] 4 – 6 GHz: ≤ 4 mm [*]
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
	$\begin{array}{c} \Delta z_{Z00m}(1)\text{: between} \\ 1^{\text{st}} \text{ two points closest} \\ \text{to phantom surface} \\ \\ \Delta z_{Z00m}(n > 1)\text{:} \\ \text{between subsequent} \\ \text{points} \end{array}$	1 st two points closest	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		≤ 1.5·Δz	Zoom(n-1)	
Minimum zoom scan volume	scan x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

4.3. RF Exposure Conditions

Test Configuration and setting:

The EUT is a model of GSM/WCDMA Portable Mobile Station (MS). It supports GSM/GPRS, WCDMA/HSPA, BT, WIFI, and support hot spot mode.

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator were established by air link. The distance between the EUT and the antenna is larger than 50cm, and the output power radiated from the emulator antenna is at least 30db smaller than the output power of EUT.

For WLAN testing, the EUT is configured with the WLAN continuous TX tool through engineering command.

Antenna Location: (the back view)

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

Add: 2/F., Building 2, No.1–4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Page 17 of 81

For WWAN mode:

Test Configurations	Antenna to edges/surface	SAR required	Note			
Head	3 ⁰ -G	0	70 700			
Left Touch		Yes				
Left Tilt	0	Yes	-0 -0			
Right Touch		Yes	D 30 20 2			
Right Tilt	- 60	Yes				
Body						
Back	<25mm	Yes	- C			
Front	<25mm	Yes	· P NO - NO -			
Hotspot	70		C 20 LO			
Back	<25mm	Yes	- GU C 0 P			
Front	<25mm	Yes	C			
Edge 1 (Top)	192mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR			
Edge 2 (Right)	3mm	Yes				
Edge 3 (Bottom)	2mm	Yes				
Edge 4 (Left)	62mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR			

For WLAN mode:

For WLAN mode:	- ()		
Test Configurations	Antenna to edges/surface	SAR required	Note
Head			
Left Touch	-G	Yes	P
Left Tilt	9 70	Yes	
Right Touch		Yes	C + C - C
Right Tilt	0	Yes	
Body	1 6	(8)	- C
Back	<25mm	Yes	
Front	<25mm	Yes	C 0 P- 30
Hotspot	0		C C C C
Back	<25mm	Yes	
Front	<25mm	Yes	
Edge 1 (Top)	2mm	Yes	0
Edge 2 (Right)	80mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR
Edge 3 (Bottom)	195mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR
Edge 4 (Left)	10mm	Yes	

Page 18 of 81

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid

Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Polysorbate 20	DGBE	1,2 Propanediol	Triton X-100
835 Head	50.36	1.25	48.39	0.0	0.0	0.0
835 Body	54.00	1	0.0	15	0.0	30
1900 Head	54.9	0.18	0.0	44.92	0.0	0.0
1900 Body	70	1	0.0	9	0.0	20
2450 Head	71.88	0.16	0.0	7.99	0.0	19.97
2450 Body	70	1	0.0	9	0.0	20

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency	he	ad	b	oody
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73

($\varepsilon r = relative permittivity$, $\sigma = conductivity and <math>\rho = 1000 \text{ kg/m}3$)

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China

Page 19 of 81

5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY 5 Dielectric Probe Kit and R&S Network Analyzer ZVL6.

		Tissue Stimulant M	leasurement for 835MHz		
	Fr.	Dielectric Par	rameters (±5%)	Tissue	
	(MHz)	εr 41.5 (39.425-43.575)	δ[s/m] 0.90(0.855-0.945)	Temp [°C]	Test time
	824.2	42.86	0.87	0	
Head	826.4	42.55	0.89	60	
	835	42.17	0.91	22.4	Aug.
	836.6	41.56	0.92	22.1	01,2019
	846.6	40.95	0.93	6	·
	848.8	40.29	0.93		.C
(6)	Fr.	Dielectric Par	rameters (±5%)	Tissue	1 . C
	(MHz)	εr 55.20(52.44-57-96)	δ[s/m]0.97(0.9215-1.0185)	Temp [oC]	Test time
	824.2	56.24	0.93		(8)
Body	826.4	55.68	0.94		C
	835	54.16	0.95	22.0	Aug.
	836.6	54.01	0.96	22.0	01,2019
	846.6	53.76	0.98	r.C	0
	848.8	53.12	0.99		C

		Tissue Stimulant Me	easurement for 1900MHz		
	Fr.	Dielectric Par	Tissue Temp	39	
	(MHz)	εr40.00(38.00-42.00)	.00(38.00-42.00) δ[s/m]1.40(1.33-1.47)		Test time
	1850.2	41.53	1.35		9
Head	1852.4	40.92	1.36		
	1880	40.39	1.38	21.7	Aug.
	1900	39.56	1.39	21.7	02,2019
	1907.6	39.11	1.40		
8	1909.8	38.42	1.42		-C
G	Fr.	Dielectric Par	ameters (±5%)	Tissue	9
	(MHz)	εr53.30(50.635-55.965)	δ[s/m]1.52(1.444-1.596)	Temp [oC]	Test time
	1850.2	55.13	1.46	30	. C.
Body	1852.4	54.81	1.47		
	1880 53.46		1.50	21.6	Aug.
	1900	52.36	1.51	21.0	02,2019
	1907.6	51.93	1.53		
@	1909.8	51.27	1.55		-60

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Page 20 of 81

		Tissue Stimulant Mo	easurement for 2450MHz		
√ C	Fr.	Dielectric Par	Tissue	<u> </u>	
	(MHz)	εr39.2(37.24-41.16)	δ[s/m]1.80(1.71-1.89)	Temp [°C]	Test time
Head	2412	40.75	1.73		10
	2437	40.26	1.76	21.5	Aug.
	2450	39.31	1.78	21.5	03,2019
	2462	38.65	1.79	10	- 60
-0	Fr.	Dielectric Par	Tissue		
	(MHz)	εr52.7(50.065-55.335)	δ[s/m]1.95(1.8525-2.0475)	Temp [ºC]	Test time
Body	2412	53.75	1.91	W.	60
	2437	53.16	1.95	21.6	Aug.
	2450	52.20	1.96	∠1.0	03,2019
	2462	51.69	1.98	C	

Page 21 of 81

6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each DASY system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Page 22 of 81

6.2. SAR System Check 6.2.1. Dipoles

The dipoles used are based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of IEEE. the table below provides details for the mechanical and electrical specifications for the dipoles.

The dipoles used are based on the IEEE-1528 standard, the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
835MHz	161.0	89.8	3.6
1900MHz	68	39.5	3.6
2450MHz	51.5	30.4	3.6

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com E-mail: agc@agc-cert.com Service Hotline: 400 089 2118

Page 23 of 81

6.2.2. System Check Result

System Per	formance	Check a	t 835MHz&1900N	//Hz &2450MHz f	or Head			
Validation K	(it: SN 29/	15 DIP 00	3850-383& SN 4	6/11 DIP 1G900-	187& D2	450V2-SI	N:968	
Frequency		get W/Kg)	Reference Result (± 10%)		Tested Value(W/Kg)		Tissue Temp.	Test time
[MHz]	1g	10g	1g	10g	1g	10g	[°C]	0
835	9.85	6.27	8.865-10.835	5.643 -6.897	10.25	6.58	22.1	Aug. 01,2019
1900	40.25	20.50	36.225-44.275	18.45-22.55	40.57	21.55	21.7	Aug. 02,2019
2450	53.6	25.0	48.24-58.96	22.50-27.50	53.57	23.61	21.5	Aug. 03,2019
System Per	formance	Check a	835 MHz &1900	MHz & 2450MHz	for Boo	ly		
Frequency	Tar Value(get W/Kg)		ce Result 0%)		sted (W/Kg)	Tissue Temp.	Test time
[MHz]	1g	10g	1g	10g	1g	10g	[°C]	
835	9.95	6.50	8.955-10.945	5.85-7.15	10.37	6.70	22.0	Aug. 01,2019
1900	40.82	20.99	36.738-44.902	18.891-23.089	41.37	22.03	21.6	Aug. 02,2019
2450	50.7	24.2	45.63-55.77	21.78-26.62	52.46	22.98	21.6	Aug. 03,2019

Note:

⁽¹⁾ We use a CW signal of 18dBm for system check, and then all SAR values are normalized to 1W forward power. The result must be within ±10% of target value.

Report No.: AGC00564190701FH01 Page 24 of 81

6.2.3. System validation result

	yotom van														
										CV	V validation	า	Mo	od. valida	ition
Test Data	Probe S/N	Tested Freq. (MHz)	Tissue Type	Cond.	Perm	Sensitivity	Probe Linearity	Probe Isotropy	Mod. Type	Duty Factor	Peak to average power ratio				
10/05/2019	EX3DV4- SN:3953	850	head	0.89	42.72	PASS	PASS	PASS	QPSK	N/A	PASS				
10/05/2019	EX3DV4- SN:3953	850	body	0.98	54.69	PASS	PASS	PASS	QPSK	N/A	PASS				
11/05/2019	EX3DV4- SN:3953	1900	head	1.41	39.56	PASS	PASS	PASS	GFSK	PASS	N/A				
11/05/2019	EX3DV4- SN:3953	1900	body	1.51	51.85	PASS	PASS	PASS	GFSK	PASS	N/A				
20/05/2019	EX3DV4- SN:3953	2450	head	1.81	39.12	PASS	PASS	PASS	OFDM	N/A	PASS				
17/05/2019	EX3DV4- SN:3953	2450	body	1.94	53.64	PASS	PASS	PASS	OFDM	N/A	PASS				

Page 25 of 81

7. EUT TEST POSITION

This EUT was tested in Right Cheek, Right Tilted, Left Cheek, Left Tilted, Body back, Body front and 4 edges.

7.1. Define Two Imaginary Lines on the Handset

- (1) The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3)The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

7.2. Cheek Position

- (1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center picec in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (2) To move the device towards the phantom with the ear piece aligned with the the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost

7.3. Tilt Position

- (1) To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

AGC®

Page 27 of 81

7.4. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to ${\bf 0mm}$.

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

Page 28 of 81

8. SAR EXPOSURE LIMITS

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

Page 29 of 81

9. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA

Page 30 of 81

10. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date
Stäubli Robot	Stäubli-TX60	F13/5Q2UD1/A/01	N/A	N/A
Robot Controller	Stäubli-CS8	139522	N/A	N/A
E-Field Probe	Speag- EX3DV4	SN:3953	Aug. 10,2018	Aug. 09,2019
SAM Twin Phantom	Speag-SAM	1790	N/A	N/A
Device Holder	Speag-SD 000 H01 KA	SD 000 H01 KA	N/A	N/A
DAE4	Speag-SD 000 D04 BM	1398	Feb. 16,2019	Feb. 15,2020
SAR Software	Speag-DASY5	DASY52.8	N/A	N/A
Liquid	SATIMO	-	N/A	N/A
Radio Communication Tester	R&S-CMU200	069Y7-158-13-712	Mar. 14,2019	Mar. 13,2020
Dipole	SATIMO SID835	SN 29/15 DIP 0G850-383	Apr. 26,2019	Apr. 25,2022
Dipole	SATIMO SID1900	SN 46/11 DIP 1G900-187	Apr. 26,2019	Apr. 25,2022
Dipole	D2450V2	SN968	July 31,2018	July 30,2021
Signal Generator	Agilent-E4438C	US41461365	Feb. 27,2019	Feb. 26,2020
Vector Analyzer	Agilent / E4440A	US41421290	Feb. 27,2019	Feb. 26,2020
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	Feb. 27,2019	Feb. 26,2020
Attenuator	Warison /WATT-6SR1211	S/N:WRJ34AYM2F1	June 11,2019	June 10, 2020
Attenuator	Mini-circuits / VAT-10+	31405	June 11,2019	June 10, 2020
Amplifier	EM30180	SN060552	Feb. 27,2019	Feb. 26,2020
Directional Couple	Werlatone/ C5571-10	SN99463	June 12,2019	June 11,2020
Directional Couple	SNIGGIST		June 12,2019	June 11,2020
Power Sensor	NRP-Z21	1137.6000.02	Sep. 20,2018	Sep. 19,2019
Power Sensor	NRP-Z23	US38261498	Feb. 27,2019	Feb. 26,2020
Power Viewer	R&S	V2.3.1.0	N/A	N/A

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

Xixiang, Bao'an District, Shenzhen, Guangdong, China
Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com

Report No.: AGC00564190701FH01 Page 31 of 81

11 MEASUREMENT UNCERTAINT

Measi	urement u	DASY ncertainty for		ty- EX3DV averaged o		/ 10 gram.			
а	b	С	d	е	f	g	h cxf/e	i ova/o	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	f(d,k) Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	c×g/e 10g Ui (±%)	vi
Measurement System		(± 70)	Dist.		7.0		(±/0)	(±70)	
Probe calibration	E.2.1	6.65	N	1	1	1	6.65	6.65	٥
Axial Isotropy	E.2.2	0.6	R	√3	√0.5	√0.5	0.24	0.24	o
Hemispherical Isotropy	E.2.2	1.6	R	√3	√0.5	√0.5	0.65	0.65	
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	c
Linearity	E.2.4	0.45	R	√3	1	1	0.26	0.26	٥
System detection limits	E.2.4	1.0	R	√3	1	1	0.58	0.58	c
Modulation response 调制响应	E2.5	3.3	R	√3	1	1	1.91	1.91	o
Readout Electronics	E.2.6	0.15	N	1	1	1	0.15	0.15	,
Response Time	E.2.7	0	R	$\sqrt{3}$	1	1	0	0	
Integration Time	E.2.8	1.7	R	$\sqrt{3}$	1	1	0.98	0.98	
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	(
Probe positioner mechanical colerance	E.6.2	0.4	R	√3	_® 1	1	0.37	0.37	
Probe positioning with respect to phantom shell	E.6.3	6.7	R	√3	1	1	3.87	3.87	,
Extrapolation, interpolation, and ntegrations algorithms for max. SAR evaluation	E.5	4	R	√3	1	1	2.31	2.31	c
Test sample Related			2	7.0					
Test sample positioning	E.4.2	2.9	N	1	1	1	2.90	2.90	
Device holder uncertainty	E.4.1	3.6	N	1	1	1	3.60	3.60	
Output power variation—SAR drift measurement	E.2.9	5	R	√3	1	1	2.89	2.89	ď
SAR scaling	E.6.5	5	R	$\sqrt{3}$	1	1	2.89	2.89	
Phantom and tissue parameters	C.	8				z.C	1		
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	6.6	R	√3	1	1	3.81	3.81	(
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	10	1	0.84	1.90	1.60	
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	I
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.15	1.30	N
iquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	
iquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	(
Combined Standard Uncertainty			RSS		(3)		11.80	11.635	0
Expanded Uncertainty (95% Confidence interval)			K=2		-C		23.60	23.27	

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

Page 32 of 81

System	n Chack III			ty- EX3DV		ı / 10 gram.			
a	b	C	d	е	f	g	h	i ,	k
Uncertainty Component	Sec.	Tol	Prob.	f(d,k) Div.	Ci (1g)	Ci (10g)	cxf/e 1g Ui	c×g/e 10g Ui	vi
Measurement System		(± %)	Dist.		(3)	(),	(±%)	(±%)	
Probe calibration drift	E.2.1	0.5	N	1	1	10	0.5	0.5	
	E.2.1	0.6	R		0	0	0.00	0.00	∞
Axial Isotropy	E.2.2	1.6	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Hemispherical Isotropy Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Linearity	E.2.4	0.45	R		0	0	0.00	0.00	∞
System detection limits	E.2.4	1.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Modulation response	E2.5	3.3	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Readout Electronics	E.2.6	0.15	N	1	0	0	0.00	0.00	∞
Response Time	E.2.7	0.15	R		0	0	0.00	0.00	∞
	E.2.7	1.7	R	√3 √3	0	0	0.00	0.00	∞
Integration Time RF ambient conditions-Noise	E.6.1	3.0		$\sqrt{3}$	0	0	0.00	0.00	∞
RF ambient conditions-reflections	E.6.1	3.0	R R	· ·	0	0	0.00	0.00	∞ ∞
Probe positioner mechanical tolerance	E.6.2	0.4	R	$\sqrt{3}$ $\sqrt{3}$	1	1	0.37	0.37	~
Probe positioning with respect to phantom shell	E.6.3	6.7	R	√3	1	1	3.87	3.87	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	4	R	√3	0	0	0.00	0.00	∞
System check source (dipole)			C	0				-	1
Deviation of experimental dipoles	E.6.4	2.0	N	1	1	1	2.00	2.00	∞
Input power and SAR drift measurement	8,6.6.4	5.0	R	√3	1	1	2.89	2.89	∞
Dipole axis to liquid distance	8,E.6.6	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Phantom and tissue parameters				.C	0			Υ.	C
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	6.6	R	√3	1	1	3.81	3.81	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	_ 5	N	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	∞
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	∞
Combined Standard Uncertainty	0		RSS		< C)		7.344	7.076	
Expanded Uncertainty (95% Confidence interval)	60		K=2	(3)		10	14.689	14.153	

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

System	Validation			ty- EX3DV		m / 10 gram			
a System	b	C	d d	е	f		h	i	k
Uncertainty Component	Sec.	Tol	Prob.	f(d,k) Div.	Ci (1g)	g Ci (10g)	cxf/e 1g Ui	c×g/e 10g Ui	vi
Measurement System		(±%)	Dist.		- (- 3)	(· (· · · g)	(±%)	(±%)	
	F 0.4	0.05			64		0.05	0.05	
Probe calibration	E.2.1	6.65	N	1 /5	1	1	6.65	6.65	000
Axial Isotropy	E.2.2	0.6	R	√3 	1	1	0.35	0.35	~
Hemispherical Isotropy	E.2.2	1.6	R	√3 	0	0	0.00	0.00	~
Boundary effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	~
Linearity	E.2.4	0.45	R	√3	1	1	0.26	0.26	~
System detection limits	E.2.4	1.0	R	√3	1	1	0.58	0.58	∞
Modulation response	E2.5	3.3	R	$\sqrt{3}$	0	0	0.00	0.00	~
Readout Electronics	E.2.6	0.15	N	1	1	1	0.15	0.15	~
Response Time	E.2.7	0	R	$\sqrt{3}$	0	0	0.00	0.00	×
Integration Time	E.2.8	1.7	R	$\sqrt{3}$	0	0	0.00	0.00	×
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	×
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	1	_1	1.73	1.73	~
Probe positioner mechanical colerance	E.6.2	0.4	R	$\sqrt{3}$	1	1	0.37	0.37	00
Probe positioning with respect to obtain the problem in the problem in the problem is a second control of the problem in the problem is a second control of the problem in the problem is a second control of the problem is a sec	E.6.3	6.7	R	√3	1	1	3.87	3.87	~
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	4	R	√3	1	1	2.31	2.31	∞
System check source (dipole)									
Deviation of experimental dipole from numerical dipole	E.6.4	5.0	N	C1	1	1	5.00	5.00	×
Input power and SAR drift measurement	8,6.6.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	×
Dipole axis to liquid distance	8,E.6.6	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	~
Phantom and tissue parameters									
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	6.6	R	√3	1	10	3.81	3.81	~
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	×
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	N
iquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.15	1.30	N
iquid conductivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	×
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	00
Combined Standard Uncertainty			RSS		NO		11.451	11.281	
Expanded Uncertainty (95% Confidence interval)	GU	-C	K=2	0			22.901	22.561	

Page 34 of 81

12. CONDUCTED POWER MEASUREMENT

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
/laximum Power <	l>	-0 -0		
- C.	824.2	32.78	-9	23.78
GSM 850	836.6	32.84	-9	23.84
	848.8	32.58	-9	23.58
GPRS 850	824.2	31.90	-9	22.90
(1 Slot)	836.6	31.82	-9	22.82
(1000)	848.8	31.54	-9	22.54
ODDO 050	824.2	27.46	-6	21.46
GPRS 850 (2 Slot)	836.6	27.57	-6	21.57
(2 GiOt)	848.8	27.66	-6	21.66
0000 050	824.2	25.74	-4.26	21.48
GPRS 850 (3 Slot)	836.6	25.26	-4.26	21.00
(3 3101)	848.8	25.48	-4.26	21.22
0000 050	824.2	25.77	-3	22.77
GPRS 850 (4 Slot)	836.6	25.51	-3	22.51
(4 3101)	848.8	25.58	-3	22.58
1aximum Power <2	2>	- COV - C	0	
20	824.2	30.82	-9	21.82
GSM 850	836.6	30.98	-9	21.98
	848.8	30.59	-9	21.59
ODDO 050	824.2	30.75	-9	21.75
GPRS 850 (1 Slot)	836.6	30.86	-9	21.86
(1 3101)	848.8	30.56	-9	21.56
ODDC 050	824.2	27.39	-6	21.39
GPRS 850 (2 Slot)	836.6	27.46	-6	21.46
(2 3101)	848.8	27.61	-6	21.61
0000 050	824.2	25.68	-4.26	21.42
GPRS 850 (3 Slot)	836.6	25.22	-4.26	20.96
(3 3101)	848.8	25.43	-4.26	21.17
000000	824.2	25.71	-3	22.71
GPRS 850 (4 Slot)	836.6	25.46	-3	22.46
(4 5101)	848.8	25.52	-3	22.52

Page 35 of 81

GSM BAND CONTINUE

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <1	>	0	700	- 0
	1850.2 29.80		-9	20.80
PCS1900	1880	29.11	-9	20.11
~GU	1909.8	29.20	-9	20.20
GPRS1900	1850.2	28.24	-9	19.24
(1 Slot)	1880	28.25	-9	19.25
(1 Glot)	1909.8	28.29	-9	19.29
GPRS1900	1850.2	26.33	-6	20.33
(2 Slot)	1880	26.37	-6	20.37
(2 Glot)	1909.8	26.49	-6	20.49
CDDC1000	1850.2	25.58	-4.26	21.32
GPRS1900 (3 Slot)	1880	25.25	-4.26	20.99
(3 300)	1909.8	25.20	-4.26	20.94
00004000	1850.2	23.33	-3	20.33
GPRS1900 (4 Slot)	1880	23.40	-3	20.40
(4 3101)	1909.8	23.24	-3	20.24
Maximum Power <2	2>			0 20
	1850.2	28.11	-9	19.11
PCS1900	1880	28.05	-9	19.05
	1909.8	28.09	-9	19.09
CDDC4000	1850.2	27.20	-9	18.20
GPRS1900 (1 Slot)	1880	27.16	-9	18.16
(1 Glot)	1909.8	27.19	-9	18.19
GPRS1900	1850.2	26.26	-6	20.26
(2 Slot)	1880	26.31	-6	20.31
(2 0101)	1909.8	26.42	-6	20.42
ODD04000	1850.2	25.46	-4.26	21.20
GPRS1900 (3 Slot)	1880	25.22	-4.26	20.96
(3 SIUL)	1909.8	25.15	-4.26	20.89
00001000	1850.2	23.27	-3	20.27
GPRS1900	1880	23.36	-3	20.36
(4 Slot)	1909.8	23.21	-3	20.21

The Frame Power (Source-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

Frame Power = Max burst power (1 Up Slot) - 9 dB

Frame Power = Max burst power (2 Up Slot) – 6 dB Frame Power = Max burst power (3 Up Slot) – 4.26 dB

Frame Power = Max burst power (4 Up Slot) - 3 dB

Xixiang, Bao'an District, Shenzhen, Guangdong, China +86-755 2523 4088 E-mail: agc@agc-cert.com

E-mail: agc@agc-cert.com Service Hotline: 400 089 2118

Page 36 of 81

UMTS BAND HSDPA Setup Configuration:

- •The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- •The RF path losses were compensated into the measurements.
- ·A call was established between EUT and Based Station with following setting:
- (1) Set Gain Factors(β c and β d) parameters set according to each
- (2) Set RMC 12.2Kbps+HSDPA mode.
- (3) Set Cell Power=-86dBm
- (4) Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
- (5) Select HSDPA Uplink Parameters
- (6) Set Delta ACK, Delta NACK and Delta CQI=8
- (7) Set Ack Nack Repetition Factor to 3
- (8) Set CQI Feedback Cycle (k) to 4ms
- (9) Set CQI Repetition Factor to 2
- (10) Power Ctrl Mode=All Up bits
- •The transmitted maximum output power was recorded.

Table C.10.2.4: β values for transmitter characteristics tests with HS-DPCCH

	Sub-test	βc (Note5)	βd	βd (SF)	β с /βd	βHS (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
P	1	2/15	15/15	64	2/15	4/15	0.0	0.0
	2	12/15(Note 4)	15/15(Note 4)	64	12/15(Note 4)	24/15	1.0	0.0
	3	15/15	8/15	64	15/8	30/15	1.5	0.5
9	4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with $\beta_{hs} = 30/15 * \beta_c$.

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause

5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with β_{hs} = 24/15 * β_c .

Note 3: CM = 1 for $\beta c/\beta d$ =12/15, hs/ c=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the c/d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to c = 11/15 and d = 15/15.

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Page 37 of 81

HSUPA Setup Configuration:

- · The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- · The RF path losses were compensated into the measurements.
- · A call was established between EUT and Base Station with following setting *:
- (1) Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
- (2) Set the Gain Factors (βc and βd) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
- (3) Set Cell Power = -86 dBm
- (4) Set Channel Type = 12.2k + HSPA
- (5) Set UE Target Power
- (6) Power Ctrl Mode= Alternating bits
- (7) Set and observe the E-TFCI
- (8) Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- · The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βс	βd	βd (SF)	βc/βd	βHS (Note 1)	βес	βed (Note 4) (Note 5)	βed (SF)	βed (Code s)	CM (dB) (Note 2)	MPR (dB) (Note 2) (Note 6)	AG Index (Note 5)	E-TF CI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/22 5	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	- 1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	βed1: 47/15 βed2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	<u> </u>	71
5	15/15	0	- (5/15	5/15	47/15	4	1	1.0	0.0	12	67

Note 1: For sub-test 1 to 4, \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with β_{hs} = 30/15 * β_c . For sub-test 5, \triangle ACK, \triangle NACK and \triangle CQI = 5/15 with β_{hs} = 5/15 * β_c .

Note 2: CM = 1 for $\beta c/\beta d$ =12/15, hs/ c=24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the c/d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to c = 10/15 and d = 15/15.

Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.

Note 5: Bed cannot be set directly; it is set by Absolute Grant Value.

Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

UMTS BAND II

Mode	Frequency (MHz)	Avg. Burst Power (dBm)
MCDMA 4000	1852.4	21.02
WCDMA 1900	1880	21.89
RMC	1907.6	21.86
WODAA 4000	1852.4	21.44
WCDMA 1900	1880	21.63
AMR	1907.6	21.52
11000	1852.4	20.44
HSDPA	1880	20.40
Subtest 1	1907.6	20.37
LIODDA	1852.4	19.68
HSDPA	1880	19.68
Subtest 2	1907.6	19.65
·	1852.4	19.72
HSDPA -	1880	19.65
Subtest 3	1907.6	19.60
LIOPPA	1852.4	19.70
HSDPA	1880	19.63
Subtest 4	1907.6	19.50
1101104	1852.4	18.18
HSUPA	1880	18.05
Subtest 1	1907.6	18.02
LIQUIDA	1852.4	18.24
HSUPA	1880	18.17
Subtest 2	1907.6	18.15
LICLIDA	1852.4	19.12
HSUPA	1880	18.99
Subtest 3	1907.6	18.93
LICLIDA	1852.4	17.82
HSUPA	1880	17.67
Subtest 4	1907.6	17.62
LICLIDA	1852.4	17.48
HSUPA	1880	17.35
Subtest 5	1907.6	17.36

UMTS BAND V

Mode	Frequency	Avg. Burst Power	
Wode	(MHz)	(dBm)	
MCDMA 950	826.4	21.26	
WCDMA 850	836.6	21.92	
RMC	846.6	21.26	
MODMA OFO	826.4	21.17	
WCDMA 850	836.6	21.25	
AMR	846.6	21.05	
LIGODA	826.4	20.92	
HSDPA	836.6	20.95	
Subtest 1	846.6	20.36	
LIODDA	826.4	19.21	
HSDPA	836.6	20.30	
Subtest 2	846.6	21.66	
	826.4	17.96	
HSDPA	836.6	20.24	
Subtest 3	846.6	21.57	
70	826.4	19.22	
HSDPA	836.6	20.26	
Subtest 4	846.6	21.50	
<0YC	826.4	15.88	
HSUPA	836.6	18.63	
Subtest 1	846.6	20.01	
c.C	826.4	18.93	
HSUPA	836.6	18.64	
Subtest 2	846.6	20.04	
LIQUIDA	826.4	21.02	
HSUPA	836.6	21.55	
Subtest 3	846.6	21.02	
LIQUIDA	826.4	17.35	
HSUPA	836.6	18.17	
Subtest 4	846.6	19.60	
200	826.4	19.37	
HSUPA	836.6	18.78	
Subtest 5	846.6	20.30	

Page 40 of 81

According to 3GPP 25.101 sub-clause 6.2.2 , the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

Table of as it of maximum output power with the	Di Collana E Doll							
UE Transmit Channel Configuration	CM(db)	MPR(db)						
For all combinations of ,DPDCH,DPCCH HS-DPDCH,E-DPDCH and E-DPCCH	0≤ CM≤3.5	MAX(CM-1,0)						
Note: CM=1 for β c/ β d=12/15, β hs/ β c=24/15.For all other combinations of DPDCH, DPCCH, HS-DPCCH,								
E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.								

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done .However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensation for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Page 41 of 81

Mode	Data Rate (Mbps)	Channel	Frequency(MHz)	Avg. Burst Power(dBm)
10	0	01	2412	11.54
802.11b	1	06	2437	11.96
		11 0	2462	12.26
- GO - C	0	01	2412	10.18
802.11g	6	06	2437	12.13
	10	11	2462	13.14
-6		01	2412	10.14
802.11n(20)	6.5	06	2437	12.13
	1000	11	2462	13.08
8		03	2422	8.80
802.11n(40)	13.5	06	2437	8.96
		09	2452	9.80

Bluetooth_BR/EDR

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
	0	2402	2.970
GFSK	39	2441	2.790
	78	2480	2.653
3 - G	0	2402	2.131
π /4-DQPSK	39	2441	1.986
	78	2480	1.786
1 8	0	2402	2.101
8-DPSK	39	2441	1.948
	78	2480	1.745

Bluetooth_BLE

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
	0	2402	2.575
GFSK	19	2440	2.483
	39	2480	2.248

Page 42 of 81

13. TEST RESULTS

13.1. SAR Test Results Summary

13.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE 1528-2013, Body-worn and 4 Edges SAR was performed with the device 0mm from the phantom.

13.1.2. Operation Mode

- 1. Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is \geq 0.8W/Kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- 3. Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be test.
- 4. Per KDB 648474 D04 v01r03,when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤1.2W/Kg, SAR testing with a headset connected is not required.
- 5. Per KDB 248227 D01v02r02,for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/kg.
- 6. Per KDB 941225 D06 V02r01, When the same wireless mode transmission configurations for voice and data are required for SAR measurements, the more conservative configuration with a smaller separation distance should be tested for the overlapping SAR configurations.
- Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:
 Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]
- 8. Proximity sensor, just for avoiding the wrong operation in the phone screen when call, and has no influence on output power or SAR result

Page 43 of 81

13.1.3. Test Result

SAR MEASURE	MENT									
Depth of Liquid (cm):>15			Relative Humidity (%): 48.6						
Product: TABLE	Product: TABLET									
Test Mode: GSM	1850 with GMSh	(modu	lation							
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±0.2 dB)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)	
SIM 1 Card			0	- (0			6	
Left Cheek	voice	190	836.6	0.18	0.00582	32.90	32.84	0.006	1.6	
Left Tilt	voice	190	836.6	0.15	0.00731	32.90	32.84	0.007	₀ 1.6	
Right Cheek	voice	190	836.6	-0.11	0.011	32.90	32.84	0.011	1.6	
Right Tilt	voice	190	836.6	0.06	0.017	32.90	32.84	0.017	1.6	
Body back	voice	190	836.6	0.17	0.135	32.90	32.84	0.137	1.6	
Body front	voice	190	836.6	0.13	0.060	32.90	32.84	0.061	1.6	
		10	- 1		8			60		
Body back	GPRS-4 slot	190	836.6	0.13	0.271	25.80	25.51	0.290	1.6	
Body front	GPRS-4 slot	190	836.6	0.17	0.108	25.80	25.51	0.115	1.6	
Edge 2(Right)	GPRS-4 slot	190	836.6	-0.07	0.019	25.80	25.51	0.020	1.6	
Edge 3(Bottom)	GPRS-4 slot	190	836.6	-0.10	0.101	25.80	25.51	0.108	1.6	

Note:

• When the 1-g Reported SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498. • The test separation for body back, body front and Edge is 0mm of all above table.

Xixiang, Bao'an District, Shenzhen, Guangdong, China +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline: 400 089 2118

Page 44 of 81

SAR MEASUREMENT

Relative Humidity (%): 51.7 Depth of Liquid (cm):>15

Product: TABLET

Test Mode: PCS1900 with GMSK modulation

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±0.2 dB)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
SIM 1 Card		1		0			9	V	
Left Cheek	voice	661	1880.0	0.18	0.048	29.80	29.11	0.056	1.6
Left Tilt	voice	661	1880.0	-0.18	0.054	29.80	29.11	0.063	1.6
Right Cheek	voice	661	1880.0	0.09	0.080	29.80	29.11	0.094	1.6
Right Tilt	voice	661	1880.0	0.15	0.054	29.80	29.11	0.063	1.6
Body back	voice	661	1880.0	-0.17	0.264	29.80	29.11	0.309	1.6
Body front	voice	661	1880.0	0.10	0.154	29.80	29.11	0.181	1.6
10	60						60		
Body back	GPRS-3 slot	661	1880.0	0.11	0.580	25.60	25.25	0.629	1.6
Body front	GPRS-3 slot	661	1880.0	-0.05	0.319	25.60	25.25	0.346	1.6
Edge 2(Right)	GPRS-3 slot	661	1880.0	-0.16	0.059	25.60	25.25	0.064	1.6
Edge 3(Bottom)	GPRS-3 slot	661	1880.0	-0.19	0.615	25.60	25.25	0.667	1.6

When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
 The test separation for body back, body front and Edge is 0mm of all above table.

Xixiang, Bao'an District, Shenzhen, Guangdong, China +86-755 2523 4088 E-mail: agc@agc-cert.com

Page 45 of 81

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 51.7

Product: TABLET

Test Mode: WCDMA Band II with QPSK modulation

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±0.2 dB)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Left Cheek	RMC 12.2kbps	9400	1880	0.12	0.076	21.90	21.89	0.076	1.6
Left Tilt	RMC 12.2kbps	9400	1880	0.02	0.083	21.90	21.89	0.083	1.6
Right Cheek	RMC 12.2kbps	9400	1880	-0.12	0.119	21.90	21.89	0.119	1.6
Right Tilt	RMC 12.2kbps	9400	1880	-0.11	0.076	21.90	21.89	0.076	1.6
Body back	RMC 12.2kbps	9400	1880	0.15	0.529	21.90	21.89	0.530	1.6
Body front	RMC 12.2kbps	9400	1880	-0.11	0.272	21.90	21.89	0.273	1.6
Edge 2(Right)	RMC 12.2kbps	9400	1880	0.04	0.067	21.90	21.89	0.067	1.6
Edge 3(Bottom)	RMC 12.2kbps	9400	1880	-0.15	0.544	21.90	21.89	0.545	1.6

Note:

When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
 The test separation for body back, body front and Edge is 0mm of all above table.

Xixiang, Bao'an District, Shenzhen, Guangdong, China +86-755 2523 4088 E-mail: agc@agc-cert.com E-mail: agc@agc-cert.com Service Hotline: 400 089 2118

Page 46 of 81

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 48.6

Product: TABLET

Test Mode: WCDMA Band V with QPSK modulation

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±0.2 dB)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Left Cheek	RMC 12.2kbps	4183	836.6	0.16	0.010	22.00	21.92	0.010	1.6
Left Tilt	RMC 12.2kbps	4183	836.6	-0.12	0.0064	22.00	21.92	0.007	1.6
Right Cheek	RMC 12.2kbps	4183	836.6	0.17	0.00658	22.00	21.92	0.007	1.6
Right Tilt	RMC 12.2kbps	4183	836.6	0.10	0.00554	22.00	21.92	0.006	1.6
Body back	RMC 12.2kbps	4183	836.6	0.14	0.162	22.00	21.92	0.165	1.6
Body front	RMC 12.2kbps	4183	836.6	0.10	0.058	22.00	21.92	0.059	1.6
Edge 2(Right)	RMC 12.2kbps	4183	836.6	-0.11	0.016	22.00	21.92	0.016	1.6
Edge 3(Bottom)	RMC 12.2kbps	4183	836.6	-0.16	0.074	22.00	21.92	0.075	1.6

Note:

- When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
 The test separation for body back, body front and Edge is 0mm of all above table.

Xixiang, Bao'an District, Shenzhen, Guangdong, China +86-755 2523 4088 E-mail: agc@agc-cert.com E-mail:agc@agc-cert.com

Page 47 of 81

SAR MEASUREMENT						
Depth of Liquid (cm):>15	Relative Humidity (%): 46.6					
Product: TABLET						

Test Mode:802.11b

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±0.2 dB)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Left Cheek	DTS	6	2437	0.16	0.041	12.26	11.96	0.044	1.6
Left Tilt	DTS	6	2437	-0.13	0.046	12.26	11.96	0.049	1.6
Right Cheek	DTS	6	2437	0.12	0.130	12.26	11.96	0.139	1.6
Right Tilt	DTS	6	2437	0.06	0.077	12.26	11.96	0.083	1.6
Body back	DTS	6	2437	0.19	0.367	12.26	11.96	0.393	1.6
Body front	DTS	6	2437	0.00	0.352	12.26	11.96	0.377	1.6
Edge 1 (Top)	DTS	6	2437	-0.13	0.359	12.26	11.96	0.385	1.6
Edge 4(Left)	DTS	6	2437	-0.16	0.047	12.26	11.96	0.050	1.6

Note:

- According to KDB248227, SAR is not required for 802.11n HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a/b channels.
- All of above "DTS" means data transmitters.
- •The test separation for body back, body front and Edge is 0mm of all above table.

Page 48 of 81

NO	Simultaneous state	Portable Handset			
NO	Simultaneous state	Head	Body-worn	Hotspot	
1	GSM(voice)+ WLAN 2.4GHz (data)	Yes	Yes	-	
2	GSM(voice)+ Bluetooth(data)	-	Yes		
3	GSM (Data) + WLAN 2.4GHz (data)	-	Yes	Yes	
4	GSM (Data) + Bluetooth(data)		Yes	Yes	
5	WCDMA+ WLAN 2.4GHz (data)	Yes	Yes	Yes	
6	WCDMA+ Bluetooth(data)	-	Yes	Yes	

NOTE:

- 1. WIFI and BT share the same antenna, and cannot transmit simultaneously.
- 2. Simultaneous with every transmitter must be the same test position.
- 3. KDB 447498 D01, BT SAR is excluded as below table.
- 4. KDB 447498 D01, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user; which is 0mm for head SAR and 0mm for body-worn SAR.
- 5. According to KDB 447498 D01 4.3.1, Standalone SAR test exclusion is as follow: For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR³⁰, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation³¹
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

- 6. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 7. According to KDB 447498 D01 4.3.2, simultaneous transmission SAR test exclusion is as follow:
 - (1) Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.
 - (2) Any transmitters and antennas should be considered when calculating simultaneous mode.
 - (3) For mobile phone and PC, it's the sum of all transmitters and antennas at the same mode with same position in each applicable exposure condition
 - (4)When the standalone SAR test exclusion of section 4.3.2 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to det

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline: 400 089 2118

Page 49 of 81

8. When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion. The ratio is determined by (SAR1 + SAR2)1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

Estimated SAR		Max Power inc		Separation Distance (mm)	Estimated SAR (W/kg)	
		dBm	mW	Distance (min)	(vv/kg)	
BT	Head	2	1.995	0	0.082	
9 50	Body	3	1.995	600	0.002	

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Page 50 of 81

Sum of the SAR for GSM 850 &Wi-Fi & BT:

DE Exposuro	Toot	Simultaneo	ous Transmissi	Σ1-g SAR	SPLSR	
RF Exposure Conditions	Test Position	GSM 850	WI-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
	Left Touch	0.006	0.044		0.050	No
Head	Left Tilt	0.007	0.049		0.056	No
(voice)	Right Touch	0.011	0.139		0.150	No
	Right Tilt	0.017	0.083		0.100	No
-6	Rear	0.137	0.393		0.530	No
		0.137		0.082	0.219	No
Body-worn	J	0.061	0.377		0.438	No
	Front	0.061		0.082	0.143	No
8		0.290		0.082	0.372	No
Hotspot	Rear	0.290	0.393		0.683	No
	_C.	0.115		0.082	0.197	No
	Front	0.115	0.377		0.492	No

Note:

- -According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- ·SPLSR mean is "The SAR to Peak Location Separation Ratio "

Sum of the SAR for GSM 1900 &Wi-Fi & BT:

RF Exposure	Test	Simultaneo	us Transmissio	Σ1-g SAR	SPLSR	
Conditions	Position	GSM 1900	WI-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
\ G\(\)	Left Touch	0.056	0.044		0.100	No
Head	Left Tilt	0.063	0.049		0.112	No
(voice)	Right Touch	0.094	0.139		0.233	No
-G	Right Tilt	0.063	0.083		0.146	No
	Rear	0.309	0.393		0.702	No
D		0.309		0.082	0.391	No
Body-worn	_	0.181	0.377		0.558	No
60	Front	0.181		0.082	0.263	No
	G	0.629		0.082	0.711	No
8	Rear	0.629	0.393		1.022	No
Hotspot		0.346		0.082	0.428	No
~.C	Front	0.346	0.377		0.723	No

Note:

- ·According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- SPLSR mean is "The SAR to Peak Location Separation Ratio"

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Page 51 of 81

Sum of the SAR for WCDMA Band II &Wi-Fi & BT:

RF Exposure Conditions	Test	Simultaneo	us Transmissio	on Scenario	Σ1-g SAR	SPLSR (Yes/No)
	Position	WCDMA Band II	Wi-Fi DTS Band	Bluetooth	(W/Kg)	
	Left Touch	0.076	0.044		0.120	No
11444	Left Tilt	0.083	0.049		0.132	No
Head	Right Touch	0.119	0.139		0.258	No
	Right Tilt	0.076	0.083		0.159	No
0	Rear	0.530	0.393		0.923	No
Uetomet	Front	0.273	0.377		0.650	No
Hotspot	Rear	0.530		0.082	0.612	No
	Front	0.273		0.082	0.355	No

Note:

- -According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- -SPLSR mean is "The SAR to Peak Location Separation Ratio "

Sum of the SAR for WCDMA Band V &Wi-Fi & BT:

RF Exposure Conditions	Test	Simultaneo	ous Transmissio	Σ1-g SAR	SPLSR	
	Position	WCDMA Band V	Wi-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
	Left Touch	0.010	0.044		0.054	No
Head	Left Tilt	0.007	0.049		0.056	No
	Right Touch	0.007	0.139		0.146	No
	Right Tilt	0.006	0.083		0.089	No
Hotspot	Rear	0.165	0.393		0.558	No
	Front	0.059	0.377		0.436	No
	Rear	0.165		0.082	0.247	No
	Front	0.059		0.082	0.141	No

Note:

- -According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- ·SPLSR mean is "The SAR to Peak Location Separation Ratio '

Fel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Page 52 of 81

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Date: Aug. 01,2019

System Check Head 835 MHz

DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1;

Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 42.17$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.3, Liquid temperature (°C): 22.1

DASY Configuration:

- EX3DV4 SN:3953; ConvF(10.11, 10.11, 10.11); Calibrated: Aug. 10,2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 835MHz Head/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.819 W/kg

Configuration/System Check 835MHz Head /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.148 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.647 W/kg; SAR(10 g) = 0.415 W/kg Maximum value of SAR (measured) = 0.852 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Fel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Date: Aug. 01,2019

Page 53 of 81

Test Laboratory: AGC Lab System Check Body 835 MHz

DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1;

Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 54.16$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.3, Liquid temperature (°C): 22.0

DASY Configuration:

- EX3DV4 SN:3953; ConvF(10.18, 10.18, 10.18); Calibrated: Aug. 10,2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 835MHz Body/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.882 W/kg

Configuration/System Check 835MHz Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.535 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.654 W/kg; SAR(10 g) = 0.423 W/kg Maximum value of SAR (measured) = 0.875 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Page 54 of 81

Test Laboratory: AGC Lab System Check Head 1900MHz

DUT: Dipole 1900 MHz; Type: SID 1900

Date: Aug. 02,2019

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1;

Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 39.56$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.0, Liquid temperature (°C): 21.7

DASY Configuration:

- EX3DV4 SN:3953; ConvF(8.14, 8.14, 8.14); Calibrated: Aug. 10,2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 1900MHz Head/Area Scan (7x10x1):Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.99 W/kg

Configuration/System Check 1900MHz Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 44.125 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 4.85 W/kg

SAR(1 g) = 2.56 W/kg; SAR(10 g) = 1.36 W/kg Maximum value of SAR (measured) = 3.04 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Page 55 of 81

Test Laboratory: AGC Lab System Check Body 1900MHz

DUT: Dipole 1900 MHz; Type: SID 1900

Date: Aug. 02,2019

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1;

Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.51$ mho/m; $\epsilon r = 52.36$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.0, Liquid temperature (°C): 21.6

DASY Configuration:

- EX3DV4 SN:3953; ConvF(7.90, 7.90, 7.90); Calibrated: Aug. 10,2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 1900MHz Body/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.02 W/kg

Configuration/System Check 1900MHz Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 46.491 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 4.91 W/kg

SAR(1 g) = 2.61 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (measured) = 3.12 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Page 56 of 81

Test Laboratory: AGC Lab System Check Head 2450 MHz

DUT: Dipole 2450 MHz Type: D2450V2

Date: Aug. 03,2019

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1;

Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.78 \text{ mho/m}$; $\epsilon r = 39.31$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):21.8, Liquid temperature (°C): 21.5

DASY Configuration:

- EX3DV4 SN:3953; ConvF(7.73, 7.73, 7.73); Calibrated: Aug. 10,2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check Head 2450MHz /Area Scan (5x8x1):Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.18 W/kg

Configuration/System Check Head 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 45.428 V/m; Power Drift = 0.11dB

Peak SAR (extrapolated) = 7.04 W/kg

SAR(1 g) = 3.38 W/kg; SAR(10 g) = 1.49 W/kg Maximum value of SAR (measured) = 5.11 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1–4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China

Page 57 of 81

Test Laboratory: AGC Lab System Check Body 2450 MHz

DUT: Dipole 2450 MHz Type: SID 2450

Date: Aug. 03,2019

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.96$ mho/m; $\epsilon r = 52.2$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):21.8, Liquid temperature (°C): 21.6

DASY Configuration:

- EX3DV4 SN:3953; ConvF(7.75, 7.75, 7.75); Calibrated: Aug. 10,2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check Body 2450MHz /Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.17 W/kg

Configuration/System Check Body 2450MHz /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 44.517 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 6.87 W/kg

SAR(1 g) = 3.31 W/kg; SAR(10 g) = 1.45 W/kg Maximum value of SAR (measured) = 4.92 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Fel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Page 58 of 81

APPENDIX B. SAR MEASUREMENT DATA

Test Laboratory: AGC Lab Date: Aug. 01,2019

GSM 850 Mid-Tilt-Right <SIM 1> DUT: TABLET; Type: NET_MATRIX

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ =0.92 mho/m; ϵ r =41.56; ρ = 1000 kg/m³

Phantom section: Right Section

Ambient temperature (°C):22.3, Liquid temperature (°C): 22.1

DASY Configuration:

- EX3DV4 SN:3953; ConvF(10.11, 10.11, 10.11); Calibrated: Aug. 10,2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-T/Area Scan (10x15x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0183 W/kg

RIGHT HEAD/R-T/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.442 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.0230 W/kg

SAR(1 g) = 0.017 W/kg; SAR(10 g) = 0.00987 W/kg Maximum value of SAR (measured) = 0.0191 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Page 59 of 81

Test Laboratory: AGC Lab Date: Aug. 01,2019

GSM 850 Mid- Body- Back(MS)<SIM 1> DUT: TABLET; Type: NET_MATRIX

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 54.01$; $\rho = 1000$ kg/m³:

Phantom section: Flat Section

Ambient temperature (°C):22.3, Liquid temperature (°C): 22.0

DASY Configuration:

- EX3DV4 SN:3953; ConvF(10.18, 10.18, 10.18); Calibrated: Aug. 10,2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QDOVA002AA;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/BACK-VOCIE/Area Scan (10x15x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.156 W/kg

BODY/BACK-VOCIE/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.044 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.510 W/kg

SAR(1 g) = 0.135 W/kg; SAR(10 g) = 0.058 W/kg Maximum value of SAR (measured) = 0.189 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Fel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Page 60 of 81

Test Laboratory: AGC Lab Date: Aug. 01,2019

GPRS 850 Mid- Body- Back (4up) < SIM 1> DUT: TABLET; Type: NET_MATRIX

Communication System: GPRS-4 Slot; Communication System Band: GSM 850; Duty Cycle: 1:2.1;

Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon = 54.01$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):22.3, Liquid temperature (°C): 22.0

DASY Configuration:

- EX3DV4 SN:3953; ConvF(10.18, 10.18, 10.18); Calibrated: Aug. 10,2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QDOVA002AA;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/4ST/Area Scan (10x15x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.270 W/kg

BODY/4ST/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.646 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.271 W/kg; SAR(10 g) = 0.106 W/kg Maximum value of SAR (measured) = 0.426 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

Page 62 of 81

Test Laboratory: AGC Lab Date: Aug. 02,2019

PCS 1900 Mid-Touch-Right <SIM 1> DUT: TABLET; Type: NET_MATRIX

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3;

Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ mho/m; $\epsilon r = 40.39$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature (°C):22.0, Liquid temperature (°C): 21.7

DASY Configuration:

- EX3DV4 SN:3953; ConvF(8.14, 8.14, 8.14); Calibrated: Aug. 10,2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C/Area Scan (10x15x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0821 W/kg

RIGHT HEAD/R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.566 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.123 W/kg

SAR(1 g) = 0.080 W/kg; SAR(10 g) = 0.051 W/kg Maximum value of SAR (measured) = 0.0902 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1–4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Page 63 of 81

Test Laboratory: AGC Lab Date: Aug. 02,2019

PCS 1900 Mid-Body- Back(MS)<SIM 1>DUT: TABLET; Type: NET_MATRIX

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3;

Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50$ mho/m; $\epsilon r = 53.46$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):22.0, Liquid temperature (°C): 21.6

DASY Configuration:

- EX3DV4 SN:3953; ConvF(7.90, 7.90, 7.90); Calibrated: Aug. 10,2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/BACK-VOICE/Area Scan (10x15x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.270 W/kg

BODY/BACK-VOICE/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.251 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.305 W/kg

SAR(1 g) = 0.264 W/kg; SAR(10 g) = 0.125 W/kg

Maximum value of SAR (measured) = 0.276 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1–4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

el: +86-755 2523 4088 E-mail: agc@agc-cert.com

Page 64 of 81

Test Laboratory: AGC Lab Date: Aug. 02,2019

GPRS 1900 Mid-Edge 3 (4up) < SIM 1> DUT: TABLET; Type: NET_MATRIX

Communication System: GPRS-3 Slot; Communication System Band: PCS 1900; Duty Cycle: 1:2.7;

Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50$ mho/m; $\epsilon r = 53.46$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):22.0, Liquid temperature (°C): 21.6

DASY Configuration:

- EX3DV4 SN:3953; ConvF(7.90, 7.90, 7.90); Calibrated: Aug. 10,2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY2/Edge3/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.612 W/kg

BODY2/Edge3/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.190 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.615 W/kg; SAR(10 g) = 0.321 W/kg Maximum value of SAR (measured) = 0.749 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Fel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Page 66 of 81

Test Laboratory: AGC Lab Date: Aug. 02,2019

WCDMA Band II Mid-Touch-Right DUT: TABLET; Type: NET_MATRIX

Communication System: UMTS; Communication System Band: Band II UTRA/FDD ;Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ mho/m; $\epsilon r = 40.39$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature (°C):22.0, Liquid temperature (°C): 21.7

DASY Configuration:

- EX3DV4 SN:3953; ConvF(8.14, 8.14, 8.14); Calibrated: Aug. 10,2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C/Area Scan (10x15x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.112 W/kg

RIGHT HEAD/R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.132 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.156 W/kg

SAR(1 g) = 0.119 W/kg; SAR(10 g) = 0.080 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

Page 67 of 81

Test Laboratory: AGC Lab WCDMA Band II Mid-Edge 3

DUT: TABLET; Type: NET_MATRIX

Date: Aug. 02,2019

Communication System: UMTS; Communication System Band: Band II UTRA/FDD ;Duty Cycle:1:1; Frequency:

1880 MHz; Medium parameters used: f = 1900 MHz; σ =1.50 mho/m; ϵ r =53.46; ρ = 1000 kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):22.0, Liquid temperature (°C): 21.6

DASY Configuration:

- EX3DV4 SN:3953; ConvF(7.90, 7.90, 7.90); Calibrated: Aug. 10,2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY3/Edge3/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.588 W/kg

BODY3/Edge3/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.707 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 1.00 W/kg

SAR(1 g) = 0.544 W/kg; SAR(10 g) = 0.285 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1–4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Page 69 of 81

Test Laboratory: AGC Lab Date: Aug. 01,2019

WCDMA Band V Mid-Touch-Left DUT: TABLET; Type: NET_MATRIX

Communication System: UMTS; Communication System Band: BAND V UTRA/FDD;Duty Cycle:1:1; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ =0.92 mho/m; ϵ r =41.56; ρ = 1000 kg/m³

Phantom section: Left Section

Ambient temperature (°C):22.3, Liquid temperature (°C): 22.1

DASY Configuration:

- EX3DV4 SN:3953; ConvF(10.11, 10.11, 10.11); Calibrated: Aug. 10,2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C/Area Scan (10x15x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0123 W/kg

LEFT HEAD/L-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.511 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.0260 W/kg

SAR(1 g) = 0.010 W/kg; SAR(10 g) = 0.00795 W/kg Maximum value of SAR (measured) = 0.0152 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1–4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Page 70 of 81

Test Laboratory: AGC Lab Date: Aug. 01,2019

WCDMA Band V Mid-Body-Towards Grounds

DUT: TABLET; Type: NET_MATRIX

Communication System: UMTS; Communication System Band: BAND V UTRA/FDD;Duty Cycle:1:1; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon = 54.01$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):22.3, Liquid temperature (°C): 22.0

DASY Configuration:

- EX3DV4 SN:3953; ConvF(10.18, 10.18, 10.18); Calibrated: Aug. 10,2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/BACK/Area Scan (10x15x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.198 W/kg

BODY/BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.263 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.365 W/kg

SAR(1 g) = 0.162 W/kg; SAR(10 g) = 0.081 W/kg Maximum value of SAR (measured) = 0.195 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

Page 72 of 81

WIFI MODE

Test Laboratory: AGC Lab Date: Aug. 03,2019

802.11b Mid- Touch-Right

DUT: TABLET; Type: NET_MATRIX

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1;

Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.76$ mho/m; $\epsilon r = 40.26$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature (°C): 21.8, Liquid temperature (°C): 21.5

DASY Configuration:

EX3DV4 – SN:3953; ConvF(7.73, 7.73, 7.73); Calibrated: Aug. 10,2018;

- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C/Area Scan (10x15x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.112 W/kg

RIGHT HEAD/R-C/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.399 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.311 W/kg

SAR(1 g) = 0.130 W/kg; SAR(10 g) = 0.052 W/kg Maximum value of SAR (measured) = 0.182 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Page 73 of 81

Test Laboratory: AGC Lab Date: Aug. 03,2019

802.11b Mid- Body- Back (DTS)
DUT: TABLET; Type: NET_MATRIX

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1;

Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.95$ mho/m; $\epsilon r = 53.16$;; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 21.8, Liquid temperature (°C): 21.6

DASY Configuration:

- EX3DV4 SN:3953; ConvF(7.75, 7.75, 7.75); Calibrated: Aug. 10,2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/BACK/Area Scan (10x15x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.405 W/kg

BODY/BACK/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.529 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.942 W/kg

SAR(1 g) = 0.367 W/kg; SAR(10 g) = 0.163 W/kg Maximum value of SAR (measured) = 0.523 W/kg

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

APPENDIX C. TEST SETUP PHOTOGRAPHS

LEFT- CHEEK TOUCH

LEFT-TILT 15⁰

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

RIGHT- CHEEK TOUCH

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

Body Back 0mm

Body Front 0mm

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

Edge 1(Top) 0mm

Edge 2(Right) 0mm

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

Edge 3(Bottom) 0mm

Edge 4(Left) 0mm

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN

Note: The position used in the measurement were according to IEEE 1528-2013

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline: 400 089 2118

Page 81 of 81

APPENDIX D. CALIBRATION DATA

Refer to Attached files.

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$