Grafi

Strutture dati e algoritmi di visita

Ingegneria degli Algoritmi 2017/2018 Università di Roma Tor Vergata

Giacomo Marciani

Roadmap

- Grafo
- Lista di adiacenza
- Lista di incidenza
- Matrice di adiacenza
- Visita generica
- Visita BFS
- Visita DFS

Grafo

Un **grafo** è una struttura dati usata per *rappresentare e processare relazioni tra entità* (es., social networks e mappe).

Formalmente, un grafo è una coppia **G=(V,E)**, dove **V** è un insieme di *n nodi* (entità) e **E={(u,v): u in V, v in V}** è un insieme di *m archi* (relazioni).

Un grafo diretto [indiretto] è un grafo in cui gli archi sono monodirezionali (bidirezionali). Un grafo pesato è un grafo in cui ad ogni arco è associato un peso w(u,v) (rilevanza della relazione).

Grafo

La struttura dati deve esporre i seguenti metodi:

- addNode(v): aggiunge un nodo
- removeNode(v): rimuove un nodo
- addEdge(e): aggiunge un arco
- removeEdge(e): rimuove un arco
- getNodes(): lista di nodi
- **getEdges():** lista di archi
- numNodes(): numero di nodi
- numEdges(): numero di archi
- degNode(v): grado del nodo
- getAdjNodes(v): lista di nodi adiacenti
- areAdjNodes(u,v): verifica se due nodi sono adiacenti

Lista di adiacenza

Il grafo è rappresentato da un insieme di liste, una per ogni nodo. La u-esima lista contiene i nodi v tali che esiste un arco (u,v).

Spazio: O(n+m)

Complessità: vedi codice

Lista di incidenza

Il grafo è rappresentato da un insieme di liste, una per ogni nodo. La u-esima lista contiene gli archi (u,v).

Spazio: O(n+m)

Complessità: vedi codice

Matrice di adiacenza

Il grafo è rappresentato da una matrice |V|x|V| tale che:

- [u][v] = w(u,v) se (u,v) esiste;
- [u][v] = 0 altrimenti

Spazio: O(n^2)

Complessità: vedi codice

Visite

Visitare un grafo significa accedere ai nodi secondo una specifica disciplina d'ordine. Un algoritmo di visita restituisce una lista di nodi o un albero.

La visita Breadth First Search (BFS) esplora il grafo in ampiezza (disciplina FIFO).

La visita Depth First Search (DFS) esplora il grafo in profondità (disciplina LIFO).

Domande?

Let's keep in touch

Università di Roma Tor Vergata Via del Politecnico 1, 00133, Rome, Italy +39 06 7259 7388

https://utv-teaching.github.io/algorithms-engineering-2017

giacomo.marciani@alumni.uniroma2.eu