	Utech
Name:	
Roll No.:	A Special (y Exemple) 2nd Comband
Invigilator's Signature :	

CS/B.Tech(ECE)/SEM-7/EC-704B/2011-12 2011

ADVANCED ENGINEERING MATHEMATICS FOR ELECTRONICS ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

GROUP – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

i) Cauchy-Riemann equations are

a)
$$u_x = -v_y$$
, $u_y = v_x$

b)
$$u_x = v_y$$
, $u_y = -v_x$

c)
$$u_x = v_y$$
, $u_y = v_x$

d)
$$u_x = -v_y, u_y = -v_x$$
.

7335 [Turn over

CS/B.Tech(ECE)/SEM-7/EC-704B/2011-12

If α , β are the roots of the equation x^2 ii)

then $\begin{vmatrix} 0 & \alpha & \beta \\ \beta & 0 & 0 \end{vmatrix}$ is

b)
$$\frac{3}{2}$$

The residue of $f(z) = \frac{1}{(z+1)^2(z-2)} at z = -1 is$

a)
$$\frac{1}{3}$$

b)
$$\frac{1}{9}$$

c)
$$-\frac{1}{3}$$

d)
$$-\frac{1}{9}$$
.

If L[f(t)] = F(s) then L[f(2t)] will be

a)
$$\frac{1}{2} F\left(\frac{s}{2}\right)$$

b)
$$2F\left(\frac{s}{2}\right)$$

c)
$$\frac{1}{2} F(2s)$$

v) $L\left\{e^{-2t}\cos t\right\}$ is equal to

a)
$$\frac{p}{p^2 + 4p + 5}$$

b)
$$\frac{p+2}{p^2+4p+5}$$

c)
$$\frac{p+3}{p^2+4p+5}$$

c)
$$\frac{p+3}{p^2+4p+5}$$
 d) $\frac{p+1}{p^2+4p+5}$.

The differential equation $p^2 + q^3 - pq + zxy = 0$ is vi)

vii) If the Fourier transform of a function

$$f(x)$$
 is $\overline{F}(s) = F\{f(x)\} = \int_{-\infty}^{\infty} e^{isx} f(x) dx$,

then the inversion formula for Fourier transform is

a)
$$\frac{1}{2\pi} \int e^{-isx} \overline{F}(s) ds$$

b)
$$\frac{1}{\sqrt{2\pi}} \int e^{-isx} \overline{F}(s) ds$$

c)
$$\frac{1}{2\pi} \int e^{isx} \overline{F}(s) ds$$

d)
$$\frac{1}{\sqrt{2\pi}}\int e^{isx} \bar{F}(s) ds$$
.

viii) For Legendre polynomial of degree $n, P_{2}\left(x\right)$ is equal to

a)

- b) $\frac{1}{2} (3x^2 1)$
- c) $\frac{1}{2}(x^2-3)$
- d) $\frac{1}{2} (3x^{-} 1)$

ix) The equation
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - 1) y = 0$$
 is

- a) Bessel's equation of order zero
- b) Bessel's equation of order one
- c) Legendre's equation of order zero
- d) Legendre's equation of order one.

CS/B.Tech(ECE)/SEM-7/EC-704B/2011-12

x) The solution of the differential equation

$$\left(\frac{y^2z}{x}\right)p + xzq = y^2$$
 is

a)
$$\phi(x^2-z^2,x^3-y^3)=0$$

b)
$$\phi(x^2-z^2, x^2-y^2)=0$$

c)
$$\phi(x^2 - z^2, x - y) = 0$$

d)
$$\phi(x^2-z^2,1)=0$$
.

- xi) Let $f(z) = \sin \frac{1}{z}$. Then Z = 0 is
 - a) a pole
 - b) removable singularity
 - c) essential singularity
 - d) none of these.
- xii) The bilinear transformation that maps the points

$$z_1 = 0$$
, $z_2 = -i$, $z_3 = -1$ into $w_1 = i$, $w_2 = 1$, $w_3 = 0$

respectively is

a)
$$w = \left(\frac{z+1}{z-1}\right)$$

b)
$$w = i \left(\frac{z-1}{z+1} \right)$$

c)
$$w = -i\left(\frac{z-1}{z+1}\right)$$

d)
$$w = -i\left(\frac{z+1}{z-1}\right)$$
.

GROUP - B

(**Short Answer Type Questions**) Answer any *three* of the following.

2. Show that
$$J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cdot \cos x$$
.

3. Solve
$$4 \frac{\partial^2 z}{\partial x^2} - 4 \frac{\partial^2 z}{\partial x \partial} + \frac{\partial^2 z}{\partial y^2} = 16 \log (x + 2y)$$
.

4. Determine the row rank and the column rank of the marix A and verify that the row rank of the matrix A equals to column rank of the matrix A, where

$$A = \left(\begin{array}{cccc} 2 & 1 & 4 & 3 \\ 3 & 2 & 6 & 9 \\ 1 & 1 & 2 & 6 \end{array}\right)$$

5. If f(z) is analytic, prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2.$$

6. Evaluate $L^{-1}\left\{\frac{1}{s^3(s+1)^3}\right\}$ using convolution theorem.

GROUP - C

(Long Answer Type Questions). Answer any *three* of the following.

- 7. Prove that if A & B are orthogonal matrices of the same a) order, then AB is also orthogonal.
 - Find the rank of the matrix $\begin{pmatrix} 0 & 0 & 2 & 2 & 0 \\ 1 & 3 & 2 & 4 & 1 \\ 2 & 6 & 2 & 6 & 2 \end{pmatrix}$

6

Find the Fourier sine integral for $f(x) = e^{-\beta x}$, hence

show that
$$\frac{\pi}{2}$$
 . $e^{-\beta x} = \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{\beta^2 + \lambda^2} d\lambda$.

- Show that the line $y = \frac{x}{3}$ is mapped onto the circle 8. under the bilinear transformation $w = \frac{iz + 2}{4z + i}$. Find the centre and radius of the image circle. 5
 - Applying residue theorem evaluate b)

$$\int \frac{3z^2 + z - 1}{(z^2 - 1)(z - 3)} dz \text{ where } c \text{ is the circle } |z| = 2.$$

5

c) Prove that $\int_{0}^{\alpha} \frac{\cos x}{1 + x^2} dx = \frac{\pi}{2e}.$ 5

7335

b) Applying binomial theorem $(x^2 - 1)^n$, differentiating n times term by term and comparing with Legendre coefficient, prove the Rodrigues Formula

$$P_n(x) = \frac{1}{2^n \cdot n!} \frac{d^n}{dx^n} [(x^2 - 1)^n].$$
 5

- c) Find the Laurent's series expansion of $f(z) = z^2 e^{\frac{1}{z}}$. 5
- 10. a) Show that generating function for Bessel Function $J_n(x) \text{ is } e^{x/2\left(t-\frac{1}{t}\right)} \ . \tag{10}$

b) Prove that
$$J_{3/2} = \sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} - \cos x \right)$$
.

11. a) Solve by Fourier transform

$$K \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$
, $0 < x < \bullet$, $t > 0$

with u(0, t) = 0, t > 0

$$u(x, 0) = f(x), 0 < x < \bullet$$
 and $u & \frac{\partial u}{\partial x} \varnothing 0$ as $x \varnothing \bullet$.

b) Using contour integration evaluate

$$\int_{0}^{\pi} \frac{1+2\cos\theta}{5+4\cos\theta} d\theta.$$