Tipos de señales

Verónica E. Arriola-Rios

Robótica móvil

21 de agosto de 2025

- 1 Modulación por ancho de pulso (PWM)
 - Definiciones
 - Aplicaciones
 - Ejercicio
- 2 Señales analógicas
 - Discretización y cuantización
 - Ejercicio

- Modulación por ancho de pulso (PWM)
 - Definiciones
 - Aplicaciones
 - Ejercicio
- 2 Señales analógicas
 - Discretización y cuantización
 - Ejercicio

PWM (Pulse Width Modulation)

- Se puede traducir al español como *ancho de pulso modulado*.
- El pulso está formado por una señal de onda cuadrada periódica.
- A lo largo del tiempo la señal varía entre dos valores de tensión.
 - T_{on} *Time on*, el tiempo que la señal se encuentra en el nivel alto.
 - Toff Time off, el tiempo que está en el nivel bajo.
 - Periodo (T) la suma de T_{on} y T_{off} .
 - Frecuencia el inverso del periodo 1/T.

Figura: Onda cuadrada periódica. Alterna entre un nivel alto de 5V y uno bajo GND.

Ciclo de trabajo

Definición (Ciclo de trabajo)

El ciclo de trabajo (Duty Cycle) es el tiempo que la señal está activa frente al tiempo que la señal está apagada. (Santos 2018)

$$DC = \frac{T_{on}}{T}$$
 (1)

- Con un ciclo de trabajo del 50 % la señal estará activa la mitad del tiempo, mientras que la otra mitad del tiempo estará apagada.
- Si el ciclo de trabajo es del 100 %, la señal estará activa todo el tiempo.

Figura: Señales PWM 10-40-90

Variación de ancho de pulso

• La variación de ancho de pulso consiste en variar el ancho del pulso en el nivel alto Ton mientras T permanece fijo.

- 1 Modulación por ancho de pulso (PWM)
 - Definiciones
 - Aplicaciones
 - Ejercicio
- 2 Señales analógicas
 - Discretización y cuantización
 - Ejercicio

Aplicaciones

- Variar la energía recibida por un dispositivo electrónico variando rápidamente la energía que éste recibe al cambiar entre apagado y encendido.
 - Controlar la velocidad de un motor de corriente continua, como el de los ventiladores de una PC.
 - Controlar la intensidad de la iluminación por leds.
- Comunicación entre redes.
- En amplificadores, teniendo una eficiencia más alta que otras alternativas. (Santos 2018)
- Enviar una señal PWM que varia su ciclo de trabajo a un altavoz o zumbador para generar sonidos y melodías de manera sencilla y rápida. (Gómez 2017)

- 1 Modulación por ancho de pulso (PWM)
 - Definiciones
 - Aplicaciones
 - Ejercicio
- 2 Señales analógicas
 - Discretización y cuantización
 - Ejercicio

Circuito

Figura: (Diagrama original)

Materiales:

- Potenciómetro de no más de 10K.
- Resistencia (~330Ω)

https://moviltronics.com/controlar-el-brillo-de-un-led-con-un-potenciometro-arduino/

LEDs

Valores estándares de voltaje requerido por LEDs de diferentes colores:

Tensión umbral
1.9V
1.7V a 2V
2.4 V
2.4 V
3.4 V
2.4

Pueden soportar una corriente de 20mA aproximadamente. Resistencia necesaria para el circuito:

$$V - V_{LED} = RI$$

$$R = \frac{5V - 1.8V}{0.02A} = 160\Omega$$

Cómo generar una señal PWM

```
const int LED PWD = 6;
     const int POT PIN = A0;
3
4
5
6
7
8
9
     int value = 0:
     void setup() {
       Serial.begin (9600);
       pinMode(LED PWD. OUTPUT):
10
     void loop() {
11
       value = analogRead(POT PIN);
12
       Serial.print("Pot:");
13
       Serial.println(value);
14
       value = map(value, 0, 1024, 0, 255);
15
       analogWrite(LED_PWD, value);
16
```

- 1 Modulación por ancho de pulso (PWM)
 - Definiciones
 - Aplicaciones
 - Ejercicio
- 2 Señales analógicas
 - Discretización y cuantización
 - Ejercicio

- Modulación por ancho de pulso (PWM)
 - Definiciones
 - Aplicaciones
 - Ejercicio
- 2 Señales analógicas
 - Discretización y cuantización
 - Ejercicio

Conversión analógica digital

Figura: jecrespom 2017

DAC en Arduino I

El microcontrolador de Arduino UNO contiene internamente un **único** conversor analógico a digital con:

- 6 canales
- resolución de 10 bits (enteros entre 0 y 1023)

Uso:

- Sólo se puede leer el valor de un puerto analógico a la vez, porque sólo hay un DAC.
- Se aconseja que después de manipular pines analógicos (en modo digital), añadir un pequeño retraso antes de usar analogRead() para leer otros pines analógicos, para evitar ruido eléctrico y la introducción de jitter en el sistema analógico.

DAC en Arduino II

 En lugar de leer voltajes cuyo máximos es 5V, es posible utilizar el pin AREF para voltajes más pequeños (ej: 3.3V). Esto ofrece mayor resolución pues:

$$V = \frac{V_{ref}}{1024} * lectura$$
 lectura $\in [0, 1023]$

Para ello usar AnalogReference()

Convertidor Digital Analógico (DAC)

- Sólo lo tienen Arduino DUE, Zero o MKR1000.
- Se usan para los altavoces, amplificadores para producir sonido. Ejemplo de la transmisión de la voz por la líneas telefónicas.
- Como los pulsos PWM sólo mantienen el voltaje máximo durante un porcentaje del ciclo de trabajo, que ocurre a alta frecuencia, se utilizan para simular una señal analógica en la que se emite un voltaje igual al voltaje promedio.

- Modulación por ancho de pulso (PWM)
 - Definiciones
 - Aplicaciones
 - Ejercicio
- 2 Señales analógicas
 - Discretización y cuantización
 - Ejercicio

Circuito

fritzing

Arturito I

Referencias:

- https://www.instructables.com/R2D2-Sound-Generator/
- https://github.com/veroarriola/paquito-zero/tree/main/bosquejo_completo/Speak

```
const int PIN LED = 13:
    const int PIN BUZZER = 4;
3
4
    void setup() {
5
      pinMode(PIN BUZZER, OUTPUT);
6
      pinMode(PIN LED, OUTPUT);
7
8
      randomSeed(analogRead(0)):
9
10
    void whistle(int baseFreq. bool up. int timesFirst. int timesSecond) {
      int dir = (up) ? 1 : -1:
11
12
         digitalWrite(PIN LED, HIGH);
13
      for (int i = 0; i \le timesFirst; i++){
           tone(PIN BUZZER, baseFreq + (-dir * i * 2)):
14
15
           delay (random (.9, 2));
16
17
      digitalWrite(PIN LED. LOW):
18
      for (int i = 0: i \le timesSecond: i++){
19
           tone(PIN BUZZER, baseFreq + (dir * i * 10));
           delay (random (.9. 2)):
20
21
22
23
24
    void phrase(bool up) {
```

Arturito II

52

```
25
      int baseFreq;
26
      int timesFirst;
27
      int timesSecond:
28
29
      if (up) {
30
         baseFreq = random(700.1000):
31
         timesFirst = random(100,400);
32
         timesSecond = random(100,1000);
33
      } else {
34
         baseFreq = random(2000,3000);
35
         timesFirst = random(200,1000);
36
         timesSecond = random(50.150):
37
38
      whistle(baseFreq, up, timesFirst, timesSecond);
39
40
41
    void babble() {
42
      int K = 2000:
43
      for (int i = 0; i \le random(3, 9); i++){
44
         digitalWrite(PIN_LED, HIGH);
45
         tone(PIN BUZZER, K + random(-1700, 0));
         delay (random (70, 170)):
46
         digitalWrite(PIN_LED, LOW);
47
48
         noTone(PIN BUZZER);
49
         delay(random(0, 30));
50
51
```

Arturito III

```
53
    void loop() {
54
      switch (random(1,7)) {
55
         case 1: phrase (true); break;
56
        case 2:phrase(false); break;
57
        case 3:phrase(true); phrase(false); break;
58
         case 4: phrase(true); phrase(false); phrase(true); break;
59
         case 5: phrase(true); phrase(false); phrase(true); phrase(false); phrase(true
              ->): break:
60
         case 6:phrase(false); phrase(true); phrase(false); break;
61
62
      babble():
63
      noTone(PIN BUZZER):
64
      delay (random (2000, 4000));
65
```

Referencias I

- Gómez, Enrique (dic. de 2017). *Qué es PWM y para qué sirve*. Español. Rincón ingenieril. URL:
 - https://www.rinconingenieril.es/que-es-pwm-y-para-que-sirve/.
- jecrespom (sep. de 2017). Puertos Analógicos Arduino Avanzado. URL:
 - https://aprendiendoarduino.wordpress.com/2017/09/05/puertos-analogicos-arduino-avanzado/.
- Moviltronics (s.f.). Controlar el brillo de un LED con un potenciómetro arduino. URL: https://hetprostore.com/TUTORIALES/resistencia-de-led/.
- Santos, Manuel (mar. de 2018). GeneralPWM: qué usos tiene en ventiladores y luces LED de nuestro PC. Español. Hard Zone. URL:

https://hardzone.es/2018/03/11/uso-pwm-pc/.