DATA CLUSTERING

Algorithms and Applications

Edited by
Charu C. Aggarwal
Chandan K. Reddy

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business A CHAPMAN & HALL BOOK

Contents

Pr	Preface							
Ed	litor B	iographi	ies	xxiii				
Co	Contributors xx							
1	An Introduction to Cluster Analysis Charu C. Aggarwal		1					
	Char	u C. Agge	arwal					
	1.1	Introdu	ection	. 2				
	1.2	Commo	on Techniques Used in Cluster Analysis					
		1.2.1	Feature Selection Methods	. 4				
		1.2.2	Probabilistic and Generative Models					
		1.2.3	Distance-Based Algorithms	. 5				
		1.2.4	Density- and Grid-Based Methods	. 7				
		1.2.5	Leveraging Dimensionality Reduction Methods					
			1.2.5.1 Generative Models for Dimensionality Reduction	. 8				
			1.2.5.2 Matrix Factorization and Co-Clustering	. 8				
			1.2.5.3 Spectral Methods	. 10				
		1.2.6	The High Dimensional Scenario	. 11				
		1.2.7	Scalable Techniques for Cluster Analysis	. 13				
			1.2.7.1 I/O Issues in Database Management	. 13				
			1.2.7.2 Streaming Algorithms	. 14				
			1.2.7.3 The Big Data Framework					
	1.3	Data Ty	ypes Studied in Cluster Analysis					
		1.3.1	Clustering Categorical Data	. 15				
		1.3.2	Clustering Text Data					
		1.3.3	Clustering Multimedia Data					
		1.3.4	Clustering Time-Series Data	. 17				
		1.3.5	Clustering Discrete Sequences					
		1.3.6	Clustering Network Data	. 18				
		1.3.7	Clustering Uncertain Data					
	1.4	Insight	s Gained from Different Variations of Cluster Analysis					
		1.4.1	Visual Insights	. 20				
		1.4.2	Supervised Insights					
		1.4.3	Multiview and Ensemble-Based Insights					
		1.4.4	Validation-Based Insights					
	1.5	Discuss	sion and Conclusions					

viii Contents

2	Featu	ıre Select	tion for Cl	lustering: A Review	29
	Salen	n Alelyan	i, Jiliang T	Tang, and Huan Liu	
	2.1	Introdu	ction		30
		2.1.1		stering	32
		2.1.2	Feature S	Selection	32
		2.1.3		Selection for Clustering	33
			2.1.3.1	Filter Model	34
			2.1.3.2	Wrapper Model	35
			2.1.3.3	Hybrid Model	35
	2.2	Feature		for Clustering	35
		2.2.1		ms for Generic Data	36
			2.2.1.1	Spectral Feature Selection (SPEC)	36
			2.2.1.2	Laplacian Score (LS)	36
			2.2.1.3	Feature Selection for Sparse Clustering	37
			2.2.1.4	Localized Feature Selection Based on Scatter Separability	
				(LFSBSS)	38
			2.2.1.5	Multicluster Feature Selection (MCFS)	39
			2.2.1.6	Feature Weighting <i>k</i> -Means	40
		2.2.2		ms for Text Data	41
		2.2.2	2.2.2.1	Term Frequency (TF)	41
			2.2.2.2	Inverse Document Frequency (IDF)	42
			2.2.2.3	Term Frequency-Inverse Document Frequency (TF-IDF)	42
			2.2.2.4	Chi Square Statistic	42
			2.2.2.5	Frequent Term-Based Text Clustering	44
			2.2.2.6	Frequent Term Sequence	45
		2.2.3		ms for Streaming Data	47
		2.2.3	2.2.3.1	Text Stream Clustering Based on Adaptive Feature Selection	77
			2.2.3.1	(TSC-AFS)	47
			2.2.3.2	High-Dimensional Projected Stream Clustering (HPStream)	48
		2.2.4		ms for Linked Data	50
		2.2.4	2.2.4.1	Challenges and Opportunities	50
			2.2.4.2	LUFS: An Unsupervised Feature Selection Framework for	50
			2.2.7.2	Linked Data	51
			2.2.4.3	Conclusion and Future Work for Linked Data	52
	2.3	Discuss		Challenges	53
	2.3	2.3.1		cken or the Egg Dilemma	53
		2.3.2		election: K and l	54
		2.3.3		ty	54
		2.3.4			55
		2.5.4	Stability		5.
3	Prob	abilistic l	Models for	r Clustering	61
			and Jiawe	9	
	3.1				61
	3.2				62
		3.2.1		W	62
		3.2.2		n Mixture Model	64
		3.2.3		i Mixture Model	67
		3.2.4		election Criteria	68
	3.3			d Its Variations	69
	J.J	3.3.1	•	eral EM Algorithm	69
		3.3.2		Models Revisited	73

				Contents	ix
		3.3.3	Limitatio	ns of the EM Algorithm	75
		3.3.4		ons of the EM Algorithm	76
	3.4			Models	76
	J. -	3.4.1		stic Latent Semantic Analysis	77
		3.4.2		richlet Allocation	79
		3.4.2		s and Extensions	81
	3.5				81
	3.3	Colicius	sions and S	ummary	01
4	A Sui	vev of P	artitional a	and Hierarchical Clustering Algorithms	87
		-		hanukiran Vinzamuri	
	4.1		•		88
	4.2			ng Algorithms	89
	⊤. ∠	4.2.1		Clustering	89
		4.2.2		tion of Sum of Squared Errors	90
		4.2.3		ffecting K-Means	91
		4.2.3	4.2.3.1	Popular Initialization Methods	91
			4.2.3.1	Estimating the Number of Clusters	91
		4.2.4		s of K-Means	93
		4.2.4	4.2.4.1		93
				K-Medoids Clustering	93
			4.2.4.2	K-Medians Clustering	
			4.2.4.3	K-Modes Clustering	94
			4.2.4.4	Fuzzy K-Means Clustering	95
			4.2.4.5	X-Means Clustering	95
			4.2.4.6	Intelligent K-Means Clustering	96
			4.2.4.7	Bisecting K-Means Clustering	97
			4.2.4.8	Kernel <i>K</i> -Means Clustering	97
			4.2.4.9	Mean Shift Clustering	98
			4.2.4.10	Weighted <i>K</i> -Means Clustering	98
			4.2.4.11	Genetic K-Means Clustering	99
		4.2.5			100
	4.3			8 8	100
		4.3.1	Agglome	ϵ	101
			4.3.1.1		101
			4.3.1.2	1 6 66	102
			4.3.1.3		103
			4.3.1.4	Agglomerative Hierarchical Clustering Algorithm	103
			4.3.1.5	Lance-Williams Dissimilarity Update Formula	103
		4.3.2	Divisive (Clustering	104
			4.3.2.1	Issues in Divisive Clustering	104
			4.3.2.2		105
			4.3.2.3		105
		4.3.3			106
	4.4	Discuss			106
				•	
5		•	l Clusterin	g 1	111
	Marti	n Ester			
	5.1				111
	5.2	DBSCA	λN		113
	5.3	DENCL	LUE		115
	5.4	OPTICS	S		116
	5.5	Other A	lgorithms		116

x Contents

	5.6 5.7	Subspace Clustering	
	5.8		
		Other Directions	
	5.9	Conclusion	124
6		0	127
		Cheng, Wei Wang, and Sandra Batista	
	6.1		128
	6.2	- 0	131
		11	131
		1.1	132
		6.2.3 WaveCluster: Wavelets in Grid-Based Clustering	134
	6.3	Adaptive Grid-Based Algorithms	135
		6.3.1 AMR: Adaptive Mesh Refinement Clustering	135
	6.4	Axis-Shifting Grid-Based Algorithms	136
		6.4.1 NSGC: New Shifting Grid Clustering Algorithm	136
			137
			137
		e	138
	6.5	·	139
		· ·	139
		8 8	140
			140
			141
			141
			143
		<u> </u>	143
		± ±	144
	6.6	· · · · · · · · · · · · · · · · · · ·	144
	0.0	Conclusions and Summary	145
7			149
		i and Chris Ding	
	7.1		150
		\mathcal{C}	150
		7.1.2 NMF Formulations	151
	7.2	NMF for Clustering: Theoretical Foundations	151
		7.2.1 NMF and K-Means Clustering	151
		7.2.2 NMF and Probabilistic Latent Semantic Indexing	152
		7.2.3 NMF and Kernel <i>K</i> -Means and Spectral Clustering	
			153
	7.3		153
			153
			153
	7.4		155
	,	e	155
			155
			156
		2	156
			156
		11 0	157
		· ·	
		7.4.3.4 Scalability	157

Contents xi

	7.5	NMF R	elated Factorizations	158
	7.6	NMF fo	r Clustering: Extensions	161
		7.6.1	Co-Clustering	161
		7.6.2	Semisupervised Clustering	162
		7.6.3		162
		7.6.4		163
		7.6.5	e	164
		7.6.6		164
	7.7	Conclus		165
_	_			
8	-	ral Clust	0	177
			iawei Han	
	8.1			177
	8.2			179
	8.3		1 &	180
		8.3.1		180
		8.3.2	1 1	180
		8.3.3	1	181
		8.3.4	Unnormalized Spectral Clustering Algorithm	182
	8.4	Normal	ized Spectral Clustering	182
		8.4.1	Normalized Graph Laplacian	183
		8.4.2	Spectrum Analysis	184
		8.4.3	Normalized Spectral Clustering Algorithm	184
	8.5	Graph C		185
		8.5.1	Ratio Cut Relaxation	186
		8.5.2	Normalized Cut Relaxation	187
	8.6	Randon	n Walks View	188
	8.7			189
	8.8			191
	8.9		<u> </u>	192
	8.10	_	•	194
9			gh-Dimensional Data	201
		r Zimek		
	9.1		ction	
	9.2		urse of Dimensionality"	
			Different Aspects of the "Curse"	
		9.2.2	1	206
	9.3			206
		9.3.1	e i	206
			1	206
			1	207
			9.3.1.3 Special Cases	207
		9.3.2	Search Spaces for the Clustering Problem	207
	9.4	Fundam	ental Algorithmic Ideas	208
		9.4.1	Clustering in Axis-Parallel Subspaces	208
			·	208
				208
				210
		9.4.2		215
			•	215

xii Contents

		9.4.2.2 Basic Techniques and Example Algorithms	
	9.5	Open Questions and Current Research Directions	18
	9.6	Conclusion	19
10		v 0	31
	Charu	C. Aggarwal	
	10.1		31
	10.2	6 1	33
		c	33
		9	35
			35
		J contract of the contract of	36
		ϵ	37
	10.3	Density-Based Stream Clustering	39
		10.3.1 DenStream: Density-Based Microclustering	40
		10.3.2 Grid-Based Streaming Algorithms	41
		10.3.2.1 D-Stream Algorithm	41
		10.3.2.2 Other Grid-Based Algorithms	42
	10.4	Probabilistic Streaming Algorithms	43
	10.5	Clustering High-Dimensional Streams	43
		10.5.1 The HPSTREAM Method	44
		10.5.2 Other High-Dimensional Streaming Algorithms	44
	10.6	Clustering Discrete and Categorical Streams	45
			45
			45
			46
	10.7		49
	10.8	e	52
			53
		ϵ	53
		C I	54
	10.9	<u> </u>	54
11	_		59
	U	ang Tong and U Kang	
	11.1		59
	11.2	6 6	50
			50
		ξ ξ ,	51
			53
	11.3		53
		, , ,	54
		11.3.2 Global Projection	56
	11.4	e e	58
			58
		11.4.2 DBDC: Density-Based Clustering	59
			59
			70
			71
			72
	115		74

Contents xiii

12	Cluste	ering Ca	tegorical Data	277
	Bill A	ndreopou	ulos	
	12.1		ction	278
	12.2	Goals of	f Categorical Clustering	279
		12.2.1	Clustering Road Map	280
	12.3		ty Measures for Categorical Data	282
		12.3.1	The Hamming Distance in Categorical and Binary Data	282
		12.3.2	Probabilistic Measures	283
		12.3.3	Information-Theoretic Measures	283
		12.3.4	Context-Based Similarity Measures	284
	12.4		tions of Algorithms	284
	12.1	12.4.1	Partition-Based Clustering	284
		12.7.1	12.4.1.1 <i>k</i> -Modes	284
			12.4.1.2 <i>k</i> -Prototypes (Mixed Categorical and Numerical)	285
			12.4.1.3 Fuzzy <i>k</i> -Modes	286
			12.4.1.4 Squeezer	286
			1	
		10.40	12.4.1.5 COOLCAT	286
		12.4.2	Hierarchical Clustering	287
			12.4.2.1 ROCK	287
			12.4.2.2 COBWEB	288
		10 10	12.4.2.3 LIMBO	289
		12.4.3	Density-Based Clustering	289
			12.4.3.1 Projected (Subspace) Clustering	290
			12.4.3.2 CACTUS	290
			12.4.3.3 CLICKS	291
			12.4.3.4 STIRR	291
			12.4.3.5 CLOPE	292
			12.4.3.6 HIERDENC: Hierarchical Density-Based Clustering	292
			12.4.3.7 MULIC: Multiple Layer Incremental Clustering	293
		12.4.4	Model-Based Clustering	296
			12.4.4.1 BILCOM Empirical Bayesian (Mixed Categorical and Numer-	
			ical)	296
			12.4.4.2 AutoClass (Mixed Categorical and Numerical)	296
			12.4.4.3 SVM Clustering (Mixed Categorical and Numerical)	297
	12.5	Conclus	sion	298
13	Docui	nent Clu	stering: The Next Frontier	305
			tasiu, Andrea Tagarelli, and George Karypis	
	13.1		ction	306
	13.2		ng a Document	306
	13.2	13.2.1	Preliminaries	306
		13.2.1	The Vector Space Model	307
		13.2.2	Alternate Document Models	309
		13.2.4	Dimensionality Reduction for Text	309
		13.2.4	· · · · · · · · · · · · · · · · · · ·	310
	12 2		Characterizing Extremes	311
	13.3	13.3.1	Purpose Document Clustering	311
		13.3.2	Density-Based Algorithms	312
		13.3.3	Adjacency-Based Algorithms	313
	12 4	13.3.4	Generative Algorithms	313
	13.4	Ciusteri	ng Long Documents	315

xiv Contents

		13.4.1	Document Segmentation	315
		13.4.2	Clustering Segmented Documents	317
		13.4.3	Simultaneous Segment Identification and Clustering	321
	13.5	Clusteri	ng Short Documents	
		13.5.1	General Methods for Short Document Clustering	
		13.5.2	Clustering with Knowledge Infusion	
		13.5.3	Clustering Web Snippets	
		13.5.4	Clustering Microblogs	
	13.6	Conclus		
14		_	ıltimedia Data	339
			Guo-Jun Qi, Shiyu Chang, Min-Hsuan Tsai, and Thomas S. Huang	2.40
	14.1		ction	
	14.2		ng with Image Data	
		14.2.1	Visual Words Learning	
		14.2.2	Face Clustering and Annotation	
		14.2.3	Photo Album Event Recognition	
		14.2.4	Image Segmentation	
		14.2.5	Large-Scale Image Classification	
	14.3		ng with Video and Audio Data	
		14.3.1	Video Summarization	
		14.3.2	Video Event Detection	
		14.3.3	Video Story Clustering	
		14.3.4	Music Summarization	
	14.4		ng with Multimodal Data	
	14.5	Summa	ry and Future Directions	353
15	Time-	Series D	Pata Clustering	357
10			akos, Goce Trajcevski, Dimitrios Gunopulos, and Charu C.	001
	Aggar		akos, Goce Trajcevski, Dimirios Gunopulos, ana Charu C.	
	15.1		ction	259
	15.1		rerse Formulations for Time-Series Clustering	
	15.2		Correlation-Based Clustering	
	13.3	15.3.1	Selective Muscles and Related Methods	
		15.3.1		
	15 /		Sensor Selection Algorithms for Correlation Clustering	
	15.4		ty and Distance Measures	
		15.4.1	Univariate Distance Measures	
			15.4.1.1 L_p Distance	
			15.4.1.2 Dynamic Time Warping Distance	
			15.4.1.3 EDIT Distance	
		15.10	15.4.1.4 Longest Common Subsequence	
		15.4.2	Multivariate Distance Measures	
			15.4.2.1 Multidimensional L_p Distance	
			15.4.2.2 Multidimensional DTW	
			15.4.2.3 Multidimensional LCSS	
			15.4.2.4 Multidimensional Edit Distance	
			15.4.2.5 Multidimensional Subsequence Matching	
	15.5	-	Based Time-Series Clustering Techniques	
		15.5.1	<i>k</i> -Means Clustering	
		15.5.2	Hierarchical Clustering	
		1552	Density-Based Clustering	372

			Contents	ΧV
		15.5.4	Trajectory Clustering	372
	15.6	Time-Se	eries Clustering Applications	
	15.7		sions	375
16	Clust	ering Bio	ological Data	381
	Chan	dan K. Re	eddy, Mohammad Al Hasan, and Mohammed J. Zaki	
	16.1		ction	382
	16.2	Clusteri	ng Microarray Data	383
		16.2.1	Proximity Measures	383
		16.2.2	Categorization of Algorithms	384
		16.2.3	Standard Clustering Algorithms	385
			16.2.3.1 Hierarchical Clustering	385
			16.2.3.2 Probabilistic Clustering	386
			16.2.3.3 Graph-Theoretic Clustering	386
			16.2.3.4 Self-Organizing Maps	387
			16.2.3.5 Other Clustering Methods	387
		16.2.4	Biclustering	388
			16.2.4.1 Types and Structures of Biclusters	389
			16.2.4.2 Biclustering Algorithms	390
			16.2.4.3 Recent Developments	391
		16.2.5	Triclustering	391
		16.2.6	Time-Series Gene Expression Data Clustering	392
		16.2.7	Cluster Validation	393
	16.3		ng Biological Networks	394
		16.3.1	Characteristics of PPI Network Data	394
		16.3.2	Network Clustering Algorithms	394
			16.3.2.1 Molecular Complex Detection	394
			16.3.2.2 Markov Clustering	395
			16.3.2.3 Neighborhood Search Methods	395
			16.3.2.4 Clique Percolation Method	395
			16.3.2.5 Ensemble Clustering	396
			16.3.2.6 Other Clustering Methods	396
		16.3.3	Cluster Validation and Challenges	
	16.4		cal Sequence Clustering	
	10.1	16.4.1	Sequence Similarity Metrics	
		10.111	16.4.1.1 Alignment-Based Similarity	
			16.4.1.2 Keyword-Based Similarity	398
			16.4.1.3 Kernel-Based Similarity	
			16.4.1.4 Model-Based Similarity	399
		16.4.2	Sequence Clustering Algorithms	399
		10.7.2	16.4.2.1 Subsequence-Based Clustering	399
			16.4.2.2 Graph-Based Clustering	400
			16.4.2.3 Probabilistic Models	402
			16.4.2.4 Suffix Tree and Suffix Array-Based Method	403
			IV. I. Z. I. VUIIIA IIVV AIIU VUIIIA / VIIAV-DASVU WIVIIVU	

403

Software Packages

16.5

16.6

xvi Contents

17	Netwo	ork Clustering	415
	Sriniv	asan Parthasarathy and S M Faisal	
	17.1	Introduction	416
	17.2	Background and Nomenclature	417
	17.3	· ·	417
	17.4		418
	17.5		419
		8	419
			419
			420
	17.6	8	421
	17.0		422
	17.7		423
	17.7	66	424
	17.0		425
		J	425 425
			+23 426
			426 426
		1 1	420 427
		1 1	427 427
	17.0	\mathcal{E}	427 428
	17.9	8	420 429
	17.10	δ ' 1	
		\mathcal{E}	430
		8 8	432
		J1 0 1	433
	17.13		435
		1 1	435
		J 1	436 427
		6	437
			438
			439
		11 6	440
	17 14		442
	17.14	Conclusion	443
18	A Sur	vey of Uncertain Data Clustering Algorithms	457
10		•	T O /
		C. Aggarwal	157
			457 450
	18.2	ϵ	459 460
	18.3		460
		e	460
	10.4		461
	18.4	e e	462
			462
		e	463
		e	464
			464
	40 -		465
	18.5		466
			466
		18.5.2 The LuMicro Algorithm	471

			Contents	xvi
		18.5.3	Enhancements to Stream Clustering	471
	18.6		Ing Uncertain Data in High Dimensionality	
	10.0	18.6.1	Subspace Clustering of Uncertain Data	
		18.6.2	UPStream: Projected Clustering of Uncertain Data Streams	
	18.7		ing with the Possible Worlds Model	
	18.8		ing Uncertain Graphs	478
	18.9		sions and Summary	478
	10.7	Conclus	nons and Summary	7/0
19		-	isual and Interactive Clustering	483
		nder Hin	ě	
	19.1		ction	
	19.2		Visual and Interactive Clustering	
		19.2.1	Scatterplots	
		19.2.2	Parallel Coordinates	488
		19.2.3	Discussion	491
	19.3		nteractive Steering of Clustering	491
		19.3.1	Visual Assessment of Convergence of Clustering Algorithm	491
		19.3.2	Interactive Hierarchical Clustering	492
		19.3.3	Visual Clustering with SOMs	494
		19.3.4	Discussion	494
	19.4	Interact	ive Comparison and Combination of Clusterings	495
		19.4.1	Space of Clusterings	495
		19.4.2	Visualization	497
		19.4.3	Discussion	497
	19.5	Visualiz	zation of Clusters for Sense-Making	497
	19.6	Summa	ry	500
20	Semis	upervise	ed Clustering	505
	Amru	din Agov	ic and Arindam Banerjee	
	20.1	Introdu	ction	506
	20.2	Clusteri	ing with Pointwise and Pairwise Semisupervision	507
		20.2.1	Semisupervised Clustering Based on Seeding	507
		20.2.2	Semisupervised Clustering Based on Pairwise Constraints	508
		20.2.3	Active Learning for Semisupervised Clustering	511
		20.2.4	Semisupervised Clustering Based on User Feedback	
		20.2.5	Semisupervised Clustering Based on Nonnegative Matrix Factorization .	513
	20.3	Semisu	pervised Graph Cuts	513
		20.3.1	Semisupervised Unnormalized Cut	
		20.3.2	Semisupervised Ratio Cut	515
		20.3.3	Semisupervised Normalized Cut	516
	20.4	A Unifi	ed View of Label Propagation	
		20.4.1	Generalized Label Propagation	
		20.4.2	Gaussian Fields	517
		20.4.3	Tikhonov Regularization (TIKREG)	518
		20.4.4	Local and Global Consistency	518
		20.4.5	Related Methods	519
			20.4.5.1 Cluster Kernels	519
			20.4.5.2 Gaussian Random Walks EM (GWEM)	
			20.4.5.3 Linear Neighborhood Propagation	
		20.4.6	Label Propagation and Green's Function	

xviii Contents

	20.5	20.5.1	Dervised Embedding	522
		20.5.2	Semisupervised Embedding	
			20.5.2.1 Unconstrained Semisupervised Embedding	
			20.5.2.2 Constrained Semisupervised Embedding	
	20.6	_	ative Experimental Analysis	
		20.6.1	Experimental Results	
		20.6.2	Semisupervised Embedding Methods	
	20.7	Conclus	ions	530
21	Alteri	native Cl	ustering Analysis: A Review	535
		Bailey		
	21.1			535
	21.2		al Preliminaries	
	21.3	Multiple	e Clustering Analysis Using Alternative Clusterings	538
		21.3.1	Alternative Clustering Algorithms: A Taxonomy	538
		21.3.2	Unguided Generation	539
			21.3.2.1 Naive	
			21.3.2.2 Meta Clustering	
			21.3.2.3 Eigenvectors of the Laplacian Matrix	
			21.3.2.4 Decorrelated <i>k</i> -Means and Convolutional EM	
			21.3.2.5 CAMI	540
		21.3.3	Guided Generation with Constraints	541
		21.5.5	21.3.3.1 COALA	
			21.3.3.2 Constrained Optimization Approach	
			21.3.3.3 MAXIMUS	
		21.3.4	Orthogonal Transformation Approaches	
		21.3.4	21.3.4.1 Orthogonal Views	
			21.3.4.1 Olthogonal views	
		21 2 5	Information Theoretic	
		21.3.5		
			21.3.5.1 Conditional Information Bottleneck (CIB)	
			21.3.5.2 Conditional Ensemble Clustering	
			21.3.5.3 NACI	
		~	21.3.5.4 mSC	
	21.4		tions to Multiview Clustering and Subspace Clustering	
	21.5		Research Issues	
	21.6	Summai	ry	547
22			nbles: Theory and Applications	551
			a and Ayan Acharya	
	22.1		ction	551
	22.2		ster Ensemble Problem	554
	22.3		ing Similarity Between Clustering Solutions	555
	22.4	Cluster	Ensemble Algorithms	558
		22.4.1	Probabilistic Approaches to Cluster Ensembles	558
			22.4.1.1 A Mixture Model for Cluster Ensembles (MMCE)	558
			22.4.1.2 Bayesian Cluster Ensembles (BCE)	558
			22.4.1.3 Nonparametric Bayesian Cluster Ensembles (NPBCE)	559
		22.4.2	Pairwise Similarity-Based Approaches	560
			22.4.2.1 Methods Based on Ensemble Co. Association Matrix	560

Contents xix

				Relating Consensus Clustering to Other Optimization Formulations	62	
		22.4.3		proaches Using Cluster Labels		
		22.1.5		Graph Partitioning		
				Cumulative Voting		
	22.5	Applicat		nsensus Clustering		
	22.3	22.5.1				
			_	5		
	22.6	22.5.2		gmentation		
	22.6	Conclud	iing Kemari	ks	oc	
23		easures 57	71			
		0	Zhongmou			
23.1 Introduction						
	23.2	External		Validation Measures		
		23.2.1		iew of External Clustering Validation Measures 5	74	
		23.2.2		Validation Measures	75	
			23.2.2.1	<i>K</i> -Means: The Uniform Effect 5	75	
				A Necessary Selection Criterion 5	76	
			23.2.2.3	The Cluster Validation Results	76	
			23.2.2.4	The Issues with the Defective Measures 5'	77	
			23.2.2.5	Improving the Defective Measures 5'	77	
		23.2.3		Normalization	77	
				Normalizing the Measures	78	
				The DCV Criterion	81	
				The Effect of Normalization	83	
		23.2.4		Properties	84	
				The Consistency Between Measures		
				Properties of Measures		
				Discussions		
	23.3	Internal		Validation Measures		
· · · · · · · · · · · · · · · · · · ·				iew of Internal Clustering Validation Measures		
		23.3.2		ding of Internal Clustering Validation Measures		
		23.3.2		The Impact of Monotonicity		
				The Impact of Noise		
				The Impact of Density		
				The Impact of Density		
				The Impact of Skewed Distributions		
		20.00		1 1		
	20.4	23.3.3		of Measures		
	23.4	Summar	y		IJ	
24				re Resources for Data Clustering 6	07	
	Charu	ı C. Aggarwal and Chandan K. Reddy				
	24.1	24.1 Introduction			07	
	24.2				08	
24.2.1 Books on Data Clustering		Data Clustering	08			
		24.2.2		urvey Papers on Data Clustering 60	08	
24.3 Software for Data Clustering			• •	10		
		24.3.1		Open-Source Software	10	
				General Clustering Software 6	10	
				Specialized Clustering Software 6		

 $\mathbf{X}\mathbf{X}$

Index		617
24.4	Summary	612
	24.3.3 Data Benchmarks for Software and Research	611
	24.3.2 Commercial Packages	611

Contents

Preface

The problem of clustering is perhaps one of the most widely studied in the data mining and machine learning communities. This problem has been studied by researchers from several disciplines over five decades. Applications of clustering include a wide variety of problem domains such as text, multimedia, social networks, and biological data. Furthermore, the problem may be encountered in a number of different scenarios such as streaming or uncertain data. Clustering is a rather diverse topic, and the underlying algorithms depend greatly on the data domain and problem scenario.

Therefore, this book will focus on three primary aspects of data clustering. The first set of chapters will focus on the core methods for data clustering. These include methods such as probabilistic clustering, density-based clustering, grid-based clustering, and spectral clustering. The second set of chapters will focus on different problem domains and scenarios such as multimedia data, text data, biological data, categorical data, network data, data streams and uncertain data. The third set of chapters will focus on different detailed insights from the clustering process, because of the subjectivity of the clustering process, and the many different ways in which the same data set can be clustered. How do we know that a particular clustering is good or that it solves the needs of the application? There are numerous ways in which these issues can be explored. The exploration could be through interactive visualization and human interaction, external knowledge-based supervision, explicitly examining the multiple solutions in order to evaluate different possibilities, combining the multiple solutions in order to create more robust ensembles, or trying to judge the quality of different solutions with the use of different validation criteria.

The clustering problem has been addressed by a number of different communities such as pattern recognition, databases, data mining and machine learning. In some cases, the work by the different communities tends to be fragmented and has not been addressed in a unified way. This book will make a conscious effort to address the work of the different communities in a unified way. The book will start off with an overview of the basic methods in data clustering, and then discuss progressively more refined and complex methods for data clustering. Special attention will also be paid to more recent problem domains such as graphs and social networks.

The chapters in the book will be divided into three types:

- Method Chapters: These chapters discuss the key techniques which are commonly used for clustering such as feature selection, agglomerative clustering, partitional clustering, densitybased clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization.
- **Domain Chapters:** These chapters discuss the specific methods used for different *domains* of data such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data. Many of these chapters can also be considered application chapters, because they explore the specific characteristics of the problem in a particular domain.
- Variations and Insights: These chapters discuss the key variations on the clustering process
 such as semi-supervised clustering, interactive clustering, multi-view clustering, cluster ensembles, and cluster validation. Such methods are typically used in order to obtain detailed
 insights from the clustering process, and also to explore different possibilities on the clustering process through either supervision, human intervention, or through automated generation

xxii Preface

of alternative clusters. The methods for cluster validation also provide an idea of the quality of the underlying clusters.

This book is designed to be comprehensive in its coverage of the entire area of clustering, and it is hoped that it will serve as a knowledgeable compendium to students and researchers.

Editor Biographies

Charu C. Aggarwal is a Research Scientist at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He completed his B.S. from IIT Kanpur in 1993 and his Ph.D. from Massachusetts Institute of Technology in 1996. His research interest during his Ph.D. years was in combinatorial optimization (network flow algorithms), and his thesis advisor was Professor James B. Orlin. He has since worked in the field of performance analysis, databases, and data mining. He has published over 200 papers in refereed conferences and journals, and has applied for or been granted over 80 patents. He is author or editor of nine books, including this one. Because of the commercial value of the above-mentioned patents, he has received several invention achievement awards and has thrice been designated a Master Inventor at IBM. He is a recipient of an IBM Corporate Award (2003) for his work on bioterrorist threat detection in data streams, a recipient of the IBM Outstanding Innovation Award (2008) for his scientific contributions to privacy technology, and a recipient of an IBM Research Division Award (2008) for his scientific contributions to data stream research. He has served on the program committees of most major database/data mining conferences, and served as program vice-chairs of the SIAM Conference on Data Mining (2007), the IEEE ICDM Conference (2007), the WWW Conference (2009), and the IEEE ICDM Conference (2009). He served as an associate editor of the IEEE Transactions on Knowledge and Data Engineering Journal from 2004 to 2008. He is an associate editor of the ACM TKDD Journal, an action editor of the Data Mining and Knowledge Discovery Journal, an associate editor of ACM SIGKDD Explorations, and an associate editor of the Knowledge and Information Systems Journal. He is a fellow of the IEEE for "contributions to knowledge discovery and data mining techniques," and a life-member of the ACM.

Chandan K. Reddy is an Assistant Professor in the Department of Computer Science at Wayne State University. He received his Ph.D. from Cornell University and M.S. from Michigan State University. His primary research interests are in the areas of data mining and machine learning with applications to healthcare, bioinformatics, and social network analysis. His research is funded by the National Science Foundation, the National Institutes of Health, Department of Transportation, and the Susan G. Komen for the Cure Foundation. He has published over 40 peer-reviewed articles in leading conferences and journals. He received the Best Application Paper Award at the ACM SIGKDD conference in 2010 and was a finalist of the INFORMS Franz Edelman Award Competition in 2011. He is a member of IEEE, ACM, and SIAM.

Contributors

Ayan Acharya

University of Texas Austin, Texas

Charu C. Aggarwal

IBM T. J. Watson Research Center Yorktown Heights, New York

Amrudin Agovic

Reliancy, LLC Saint Louis Park, Minnesota

Mohammad Al Hasan

Indiana University - Purdue University Indianapolis, Indiana

Salem Alelyani

Arizona State University Tempe, Arizona

David C. Anastasiu

University of Minnesota Minneapolis, Minnesota

Bill Andreopoulos

Lawrence Berkeley National Laboratory Berkeley, California

James Bailey

The University of Melbourne Melbourne, Australia

Arindam Banerjee

University of Minnesota Minneapolis, Minnesota

Sandra Batista

Duke University Durham, North Carolina

Shiyu Chang

University of Illinois at Urbana-Champaign Urbana, Illinois

Wei Cheng

University of North Carolina Chapel Hill, North Carolina

Hongbo Deng

University of Illinois at Urbana-Champaign Urbana, Illinois

Cha-charis Ding

University of Texas Arlington, Texas

Martin Ester

Simon Fraser University British Columbia, Canada

S M Faisal

The Ohio State University Columbus, Ohio

Joydeep Ghosh

University of Texas Austin, Texas

Dimitrios Gunopulos

University of Athens Athens, Greece

Jiawei Han

University of Illinois at Urbana-Champaign Urbana, Illinois

Alexander Hinneburg

Martin-Luther University Halle/Saale, Germany

Thomas S. Huang

University of Illinois at Urbana-Champaign Urbana, Illinois

U Kang

KAIST Seoul, Korea xxvi Contributors

George Karypis

University of Minnesota Minneapolis, Minnesota

Dimitrios Kotsakos

University of Athens Athens, Greece

Tao Li

Florida International University Miami, Florida

Zhongmou Li

Rutgers University New Brunswick, New Jersey

Huan Liu

Arizona State University Tempe, Arizona

Jialu Liu

University of Illinois at Urbana-Champaign Urbana. Illinois

Srinivasan Parthasarathy

The Ohio State University Columbus, Ohio

Guo-Jun Qi

University of Illinois at Urbana-Champaign Urbana, Illinois

Chandan K. Reddy

Wayne State University Detroit, Michigan

Andrea Tagarelli

University of Calabria Arcavacata di Rende, Italy

Jiliang Tang

Arizona State University Tempe, Arizona

Hanghang Tong

IBM T. J. Watson Research Center Yorktown Heights, New York

Goce Trajcevski

Northwestern University Evanston, Illinois

Min-Hsuan Tsai

University of Illinois at Urbana-Champaign Urbana, Illinois

Shen-Fu Tsai

Microsoft Inc. Redmond, Washington

Bhanukiran Vinzamuri

Wayne State University Detroit, Michigan

Wei Wang

University of California Los Angeles, California

Hui Xiong

Rutgers University New Brunswick, New Jersey

Mohammed J. Zaki

Rensselaer Polytechnic Institute Troy, New York

Arthur Zimek

University of Alberta Edmonton, Canada