Tutorial: Pengenalan terhadap POS tagging dan Probabilistic Parsing

Ruli Manurung

Fakultas Ilmu Komputer Universitas Indonesia

maruli@cs.ui.ac.id

Workshop Nasional INACL Kamis, 7 Januari 2016

- Pemodelan bahasa
- 2 Part of speech tagging
 - Kelas kata
 - Tagging
 - Hands-on
- Parsing
 - Grammar
 - Probabilistic parsing
 - Menggunakan PCFG
 - Hands-on

- Pemodelan bahasa
- Part of speech tagging
 - Kelas kata
 - Tagging
 - Hands-on
- 3 Parsing
 - Grammar
 - Probabilistic parsing
 - Menggunakan PCFG
 - Hands-on

Apa itu model bahasa?

- Model bahasa dapat memprediksi perilaku sebuah bahasa, mis. aturan tata bahasa, distribusi probabilitas.
- Dibutuhkan pada hampir setiap aplikasi NLP.
- Dengan bantuan model bahasa, kita dapat memahami dan memprediksi sifat, fungsi, dan makna sebuah teks.

Pendekatan Linguist ("top-down")

Implementasikan algoritma dan struktur data berdasarkan teori dan model linguistik.

Pendekatan Empiricist ("bottom-up")

Gunakan model "black-box" berdasarkan statistik atau *machine learning*.

Contoh sederhana

Bagaimana caranya menginterpretasikan sebuah sinyal lisan:

- "I scream is delicious".
- 2 "Ice cream is delicious".

Model linguistik

Kalimat (1) tidak valid, sedangkan kalimat (2) adalah valid.

Model empiris

"Ice cream is" lebih sering dijumpai daripada "I scream is".

Cara kita memodelkan bahasa pun beragam, mis. *n*-gram, bag of words, POS sequence, parse tree, dst.

- Pemodelan bahasa
- 2 Part of speech tagging
 - Kelas kata
 - Tagging
 - Hands-on
- 3 Parsing
 - Grammar
 - Probabilistic parsing
 - Menggunakan PCFG
 - Hands-on

- Pemodelan bahasa
- 2 Part of speech tagging
 - Kelas kata
 - Tagging
 - Hands-on
- 3 Parsing
 - Grammar
 - Probabilistic parsing
 - Menggunakan PCFG
 - Hands-on

POS

Kelas kata

Part-of-speech, POS, word class, morphological class, lexical tag: sebuah atribut dari kata. Secara umum, menentukan "tipe" dari kata tersebut.

Apa yang bisa diprediksi oleh POS?

- Sifat morphological: imbuhan apa saja yang bisa ditambahkan?
- Sifat syntactic: apa saja kata-kata yang bisa muncul di dekatnya?
- Sifat semantic: secara umum, apa "maksud" dari kata tersebut?

Apa gunanya?

- Speech recognition: "I scream is delicious"
- Information retrieval: stemming (tahu imbuhan yang mungkin)
- Masih banyak lagi... shallow parsing

Open vs closed class types

- Open class words adalah kelas kata yang keanggotaannya biasanya besar dan senantiasa bertambah (serapan bahasa lain, teknologi baru, etc.). Kata-kata ini, pada umumnya, menyatakan "isi dunia": obyek, kejadian, atribut.
- Closed class words adalah kelas kata yang keanggotaannya biasanya kecil dan stabil. Kata-kata ini, pada umumnya, digunakan untuk menyatakan hubungan antar open class words.

Open class words

Nomina

Kata-kata yang menyatakan orang, benda, tempat. Tunggal vs. jamak. Konkrit vs. abstrak. Proper vs. common noun.

Verbs

Kata-kata yang menyatakan tindakan, proses, kejadian. *English verbs* bisa berbeda bentuk (*eat, eats, eating, eaten*).

Adjectives

Kata-kata yang menyatakan sifat/atribut. Hampir semua bahasa memiliki adjective yang menyatakan warna (hitam, putih), usia (tua, muda), dst.

Adverbs

Merupakan *modifier*/keterangan terhadap *verb*. Seringkali menjadi category "dan lain-lain". Contoh: "Unfortunately, John walked home extremely slowly yesterday"

Closed class words

- Closed class words sebuah bahasa jumlahnya biasanya terbatas.
- Penutur bahasa harusnya tahu (hampir) semua closed class words.
- Disebut juga function words memainkan peran grammatical.

Contoh:

- prepositions: on, under, over, near, ...
- determiners: a, an, the
- pronouns: she, who, I others
- conjunctions: and, but, or, as, if, when
- auxiliary verbs: can, may, should, are
- particles: up, down, on, off, in, out, at, by
- numerals: one, two, three, first, second, third

Bandingkan dengan open class words. Kira-kira apa ciri-ciri pembedanya?

Open vs. closed

Kata-kata ini open atau closed?

- Bakso
- pedoman
- menyakitkan
- tentang
- menyanyi
- melakukan
- melalui
- bawah

Analogi CS?

Anggap closed class word seperti *reserved keyword* dalam bahasa pemrograman: for, if, while, etc. Open class ≈ variable(?)

Tagset

Contoh tagset bahasa Inggris

- Brown corpus tagset: 87 tag (Francis and Kučera, 1982)
- Penn Treebank tagset: 45 tag (Marcus et al., 1993)
- C5 CLAWS BNC tagset: 61 tag (Garside et al., 1997)
- C7 tagset: 146 tag (Leech et al., 1994)

Perbedaannya?

- Penn Treebank menggabungkan beberapa tag menjadi satu, karena ada informasi parse tree.
- Tergantung kebutuhan!

Penn Treebank Tagset

Cuplikan Penn Treebank Tagset

Tag	Description	Example
DT	Determiner	a, the
IN	Preposition	on, in, by
JJ	Adjective	big
JJR	Adjective, comparative	bigger
NN	Noun, sing. or mass	dog, snow, llama
NNS	Noun, plural	dogs, llamas
NNP	Proper noun, singular	IBM
VB	Verb, base form	eat
VBD	Verb, past tense	ate
VBG	Verb, gerund	eating

Contoh kalimat yang di-tag: The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

- Pemodelan bahasa
- 2 Part of speech tagging
 - Kelas kata
 - Tagging
 - Hands-on
- 3 Parsing
 - Grammar
 - Probabilistic parsing
 - Menggunakan PCFG
 - Hands-on

Part-of-speech tagging

- Tagging adalah proses menentukan kelas kata / part-of-speech tag untuk setiap kata dalam sebuah teks.
- Input: rangkaian kata + tagset. Output: tag yang paling tepat untuk setiap kata.
- ≈ tokenization untuk bahasa pemrograman (di mana bedanya?) → POS tagging bisa ambiguous!
- Contoh:

```
\begin{array}{cccc} \textit{Book} & \textit{that} & \textit{flight} & . \\ V_B & D_T & N_N & . \\ \\ \textit{Book} & \textit{bisa} & \textit{juga} & N_N \text{ (malahan lebih sering?)}. \end{array}
```


Mengamati masalah POS tagging

- Sebetulnya, seberapa sulitkah POS tagging ini?
- DeRose(1988): Hanya 11.5% kata Inggris unik (type) dari Brown corpus adalah rancu.

Unambiguous (1 tag)	35340
Ambiguous (2-7 tags)	4100
2 tags	3760
3 tags	264
4 tags	61
5 tags	12
6 tags	2
7 tags	1 ("still")

- Namun demikian, 40% dari (token) di Brown corpus rancu!
- Type vs. token = class vs. instance. "the boy saw the man":

Mengamati masalah POS tagging

- Sebetulnya, seberapa sulitkah POS tagging ini?
- DeRose(1988): Hanya 11.5% kata Inggris unik (type) dari Brown corpus adalah rancu.

Unambiguous (1 tag)	35340
Ambiguous (2-7 tags)	4100
2 tags	3760
3 tags	264
4 tags	61
5 tags	12
6 tags	2
7 tags	1 ("still")

- Namun demikian, 40% dari (token) di Brown corpus rancu!
- Type vs. token = class vs. instance.
 "the boy saw the man": 5 token, 4 type
 "pria itu berdiri di tengah pria-pria lainnya":

Mengamati masalah POS tagging

- Sebetulnya, seberapa sulitkah POS tagging ini?
- DeRose(1988): Hanya 11.5% kata Inggris unik (type) dari Brown corpus adalah rancu.

Unambiguous (1 tag)	35340
Ambiguous (2-7 tags)	4100
2 tags	3760
3 tags	264
4 tags	61
5 tags	12
6 tags	2
7 tags	1 ("still")

- Namun demikian, 40% dari (token) di Brown corpus rancu!
- Type vs. token = class vs. instance.
 "the boy saw the man": 5 token, 4 type
 "pria itu berdiri di tengah pria-pria lainnya": 7 token, 7 type
- (Perhatikan ini adalah beda tag, bukan makna/sense.)

Metode POS tagging

Secara umum, ada 3 cara:

- Rule-based tagging. Cara top-down konsultasi ahli linguistik; definisikan aturan-aturan yang biasa digunakan manusia.
- **Stochastic tagger.** Cara bottom-up gunakan corpus sebagai training data untuk menentukan secara probabilistik tag yang terbaik untuk sebuah kata (dalam sebuah konteks).
- Transformation-based tagger. Semacam gabungan teknik di atas. Tetap belajar dari corpus, tapi knowledge yang dipelajari dinyatakan sebagai rule.

POS ditentukan oleh konteks

Ide dasar POS tagging

POS tag sebuah kata dapat ditentukan oleh konteks di mana ia muncul.

Bisa dalam corpus

- Gue bisa menyelesaikan persoalan itu kok.
- Penjinak ular menguras bisa hanya dengan cangkir plastik.
- Masyarakat dan aparat bisa membersihkan sampah dengan baik.
- Beliau menyatakan bisa menurunkan harga kedelai tahun ini.

Aturan apa yang dapat disimpulkan mengenai bisa?

- Dalam rule-based tagger, ide ini dinyatakan dalam rule yang dibuat secara manual (mis: "jika kata sesudahnya ..., maka ...")
- Pada stochastic POS, konteks (corpus) diamati dan dipelajari secara otomatis.

Sebuah contoh kasus

Amati race pada dua kalimat berikut:

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NN
- People/NNS continue/VBP to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN

Bayangkan sudah diketahui POS tag yang benar **kecuali** untuk *race*. Konteks yang perlu diamati (secara *bigram*):

- 1 to/TO race/???
- ② the/DT race/???

Perumusan statistik (untuk kasus pertama):

"Berapa kemungkinan tag **VB** (atau **NN**) jika tag sebelumnya **TO**?" (tag sequence probability) dikalikan dengan

"Jika diketahui sebuah kata adalah **VB** (atau **NN**), berapa kemungkinan ia adalah *race*?" (*lexical likelihood*)

Pemodelan statistik

- Pada intinya, kita ingin memilih tag yang memaksimalkan rumus berikut: $P(kata|tag) \times P(tag|n \ tag \ sebelumnya)$
- Sebagai aproksimasi, sebuah bigram tagger memilih tag untuk kata ke-i (t_i) berdasarkan tag sebelumnya (t_{i-1}) dan kata ke-i tersebut (w_i) $t_i = \operatorname{argmax}_i P(t_i|t_{i-1}, w_i)$

Melalui beberapa asumsi Markovian, diperoleh:

$$t_i = \operatorname{argmax}_j P(t_j|t_{i-1}) \times P(w_i|t_j)$$

(Pada kenyataannya, kita ingin melakukan *tagging* pada seluruh kalimat sekaligus, bukan hanya satu kata!)

Probabilitas mengamati sekuens kata & tag

- **1** $P(VB|TO) \times P(race|VB) = 0.34 \times 0.00003 = 0.00001$
- ② $P(NN|TO) \times P(race|NN) = 0.021 \times 0.00041 = 0.000007$

Menggunakan statistik

Definisi

Hidden Markov Model (HMM) adalah pemodelan statistik di mana sebuah sistem "menghasilkan" (*emit*) urutan simbol yang dapat diamati (*observation symbols*) berdasarkan sebuah proses probabilistik yang parameternya tidak diketahui (*hidden parameters*).

Proses probabilistik dinyatakan sebuah FSA:

- x_1, x_2, \ldots adalah *state* yang menyatakan proses.
- a_{ij} adalah state transition probabilities: berapa kemungkinan proses berpindah dari state i ke j?
- $y_1, y_2, ...$ adalah observation symbols.
- b_{ij} adalah output/emission probability: berapa kemungkinan proses di state i menghasilkan symbol j?

Contoh gambar HMM

Menggunakan statistik

HMM sering digunakan untuk memodelkan data sequential/temporal, di mana proses berjalan seiring waktu t, dengan asumsi berikut:

- Nilai hidden state x(t) sepenuhnya ditentukan oleh hidden state sebelumnya, x(t-1).
- Nilai observed symbol y(t) sepenuhnya ditentukan oleh hidden state pada saat itu, x(t).

Menghitung probabilitas sebuah observation sequence

Probabilitas $Y = y_0, y_1, y_2, \ldots, y_{L-1}$ dengan panjang L adalah $P(Y) = \sum_X P(Y|X)P(X)$. Jadi, kita menjumlahkan **semua kemungkinan** $X = x_0, x_1, x_2, \ldots, x_{L-1}$. Penghitungan *brute-force* dalam prakteknya bersifat *intractable*. Namun, ada algoritma *forward*.

HMM Tagger

- Contoh race: memilih tag terbaik untuk kata yang diamati.
- Sebuah HMM tagger memilih tag sequence terbaik untuk word sequence yang diamati.
 - Word sequence yang diamati: $W = w_1, w_2, \dots, w_n$
 - Tag sequence yang terbaik/"benar": $T = t_1, t_2, \dots, t_n$

$$\hat{T} = \operatorname{argmax}_{T \in \tau} P(T|W)$$

Dengan Bayes Law:

$$\hat{T} = \operatorname{argmax}_{T \in \tau} P(T) P(W|T)$$

Dengan chain rule:

$$\hat{T} = \operatorname{argmax}_{T \in \tau} \prod_{i=1}^{n} P(w_i | w_1 t_1 \dots w_{i-1} t_{i-1} t_i) P(t_i | t_1, \dots t_{i-1})$$

 Algoritma Viterbi dapat melakukan pencarian tag sequence terbaik ini secara cepat (dynamic programming).

- Pemodelan bahasa
- 2 Part of speech tagging
 - Kelas kata
 - Tagging
 - Hands-on
- 3 Parsing
 - Grammar
 - Probabilistic parsing
 - Menggunakan PCFG
 - Hands-on

Persiapan data

- Data: http://bahasa.cs.ui.ac.id/postag/corpus
- Tool: http://nlp.stanford.edu/software/tagger.shtml
- Siapkan dokumen training:
 Dokumen training berisi kalimat yang sudah diberi tagging secara manual dengan format:

Jokowi/NNP merayakan/VB tahun/NN baru/JJ di/IN Papua/NNP

Contoh file dokumen training dapat dilihat pada file: postag_training_doc.txt

Pembuatan model

- Buat file properties (contoh: postag_training.props) untuk menentukan setting untuk melakukan training model POS Tagger.
- Dua properti utama adalah: model: nama file model yang akan dihasilkan trainFile: dokumen training yang akan digunakan
- Jalankan perintah untuk melakukan training:
 java -classpath stanford-parser.jar
 edu.stanford.nlp.tagger.maxent.MaxentTagger -prop
 postag_training.props
- Akan dihasilkan sebuah model: tagger.model

Penggunaan model

- Berikan parameter path/nama_file_tagger_model (Pada contoh ini file model disimpan dalam folder model)
- Jalankan perintah: java -classpath stanford-parser.jar edu.stanford.nlp.tagger.maxent.MaxentTagger -model model/tagger.model

- Pemodelan bahasa
- 2 Part of speech tagging
 - Kelas kata
 - Tagging
 - Hands-on
- Parsing
 - Grammar
 - Probabilistic parsing
 - Menggunakan PCFG
 - Hands-on

- Pemodelan bahasa
- Part of speech tagging
 - Kelas kata
 - Tagging
 - Hands-on
- Parsing
 - Grammar
 - Probabilistic parsing
 - Menggunakan PCFG
 - Hands-on

Apa itu grammar?

- *Grammar*: aturan-aturan yang menjelaskan struktur suatu fenomena.
- Dalam bahasa, grammar ≈ tata bahasa: aturan yang menjelaskan bagaimana merangkai kata-kata menjadi kalimat.
- Istilah lain: syntax. Secara umum, berarti "hal-hal yang berkaitan dengan tata-bahasa".
- ullet Dengan grammar, kita bisa memahami struktur kalimat o model lebih kaya dan ekspresif.
- Kita akan melihat sebuah *grammar formalism*, yakni *Context-Free Grammar*.

Definisi formal CFG

Ingat, sebuah CFG adalah 4-tuple:

- 1 himpunan simbol non-terminal N
- 2 himpunan simbol terminal Σ (di mana $N \cap \Sigma = \emptyset$)
- $oldsymbol{3}$ himpunan production rule P, masing-masing berbentuk A
 ightarrow lpha di mana
 - $A \in N$. dan
 - $\alpha \in (\Sigma \cup N)*$ (dkl. α adalah string simbol terminal/nonterminal)
- 4 sebuah start symbol $S \in N$

Bahasa formal yang dinyatakan oleh sebuah CFG adalah himpunan string yang bisa di-*derive* dari symbol khusus: *start symbol* (S). Dalam NLP, S sering diartikan sebagai *"sentence"*.

Context-Free Grammar

- Context-Free Grammar (CFG/Phrase-Structure Grammar/Backus-Naur Form) adalah suatu notasi matematis yang menyatakan aturan sebuah bahasa berdasarkan constituency.
- CFG terdiri dari dua bagian:
 - sehimpunan (rewrite) rule atau production, yang menyatakan bagaimana symbol dalam bahasa dikelompokkan
 - 2 lexicon: daftar symbol/kata
- Symbol-symbol dalam CFG terbagi 2 kelas:
 - **1 Terminal symbols**: symbol yang merepresentasikan kata dalam bahasa (muncul dama string/kalimat).
 - Non-terminal symbols: symbol yang merepresentasikan kelompok/aggregate/generalisasi terminal.
- Lexicon adalah daftar terminal symbol.
- Non-terminal yang diasosiasikan dengan terminal kadang disebut preterminal symbol. Pada NLP, preterminal = part of speech!

Grammar Probabilistic parsing Menggunakan PCFO Hands-on

Contoh CFG

Contoh *rule*:

Dalam bhs. Inggris, sebuah NP bisa terdiri dari ProperNoun atau Determiner diikuti Nominal. Sebuah Nominal bisa terdiri dari satu atau lebih Noun.

Contoh rule:

Dalam bhs. Inggris, sebuah NP bisa terdiri dari ProperNoun atau Determiner diikuti Nominal. Sebuah Nominal bisa terdiri dari satu atau lebih Noun.

NP → Det Nominal

Contoh rule:

Dalam bhs. Inggris, sebuah NP bisa terdiri dari ProperNoun atau Determiner diikuti Nominal. Sebuah Nominal bisa terdiri dari satu atau lebih Noun.

NP → Det Nominal

 $NP \rightarrow ProperNoun$

Contoh rule:

Dalam bhs. Inggris, sebuah NP bisa terdiri dari ProperNoun atau Determiner diikuti Nominal. Sebuah Nominal bisa terdiri dari satu atau lebih Noun.

NP → Det Nominal

 $NP \rightarrow ProperNoun$

Nominal → Noun | Noun Nominal

Contoh lexicon:

Lexicon bisa saja dinyatakan sebagai aturan context-free sebagai berikut:

Contoh rule:

Dalam bhs. Inggris, sebuah NP bisa terdiri dari ProperNoun atau Determiner diikuti Nominal. Sebuah Nominal bisa terdiri dari satu atau lebih Noun.

NP → Det Nominal

 $NP \rightarrow ProperNoun$

Nominal → Noun | Noun Nominal

Contoh lexicon:

Lexicon bisa saja dinyatakan sebagai aturan context-free sebagai berikut:

 $Det \rightarrow a$

Contoh rule:

Dalam bhs. Inggris, sebuah NP bisa terdiri dari ProperNoun atau Determiner diikuti Nominal. Sebuah Nominal bisa terdiri dari satu atau lebih Noun.

NP → Det Nominal

 $NP \rightarrow ProperNoun$

Nominal → Noun | Noun Nominal

Contoh lexicon:

Lexicon bisa saja dinyatakan sebagai aturan context-free sebagai berikut:

Det
ightarrow a

Det
ightarrow the

Contoh rule:

Dalam bhs. Inggris, sebuah NP bisa terdiri dari ProperNoun atau Determiner diikuti Nominal. Sebuah Nominal bisa terdiri dari satu atau lebih Noun.

NP → Det Nominal

 $NP \rightarrow ProperNoun$

Nominal → Noun | Noun Nominal

Contoh lexicon:

Lexicon bisa saja dinyatakan sebagai aturan context-free sebagai berikut:

 $Det \rightarrow a$

 $Det \rightarrow the$

Noun → flight

(dalam kenyataannya, kurang efisien)

CFG sebagai parser

Sebagai parser:

CFG sebagai mesin yang menghasilkan struktur untuk sebuah kalimat input.

Sebagai parser, bacalah tanda " \rightarrow " sebagai: "if you see the symbols on the right, rewrite with the symbol on the left".

- Masalah bahasa manusia: satu kalimat, banyak struktur (=ambiguity/kerancuan)
- Tujuan akhir parsing: agar program dapat "memahami" semantics/makna dari kalimat.

Notasi alternatif, bracketed notation:

 $\left[\text{$_{S}$ [NP Anto] [VP [V memakan] [NP bakso] [PP [Prep dengan] [NP sendok]]] } \right]$

Grammar singkat untuk bahasa Inggris (ATIS)

```
Lexicon untuk \mathcal{L}_{\mathbf{0}}
```

```
Noun
                       flights — breeze — trip — morning — . . .
Verh
                       is — prefer — like — need — . . .
Adiective
                       cheapest — first — other — direct — . . .
Pronoun
                       me - I - you - it - \dots
ProperNoun
                       Alaska — Baltimore — Chicago — Garuda — . . .
Determiner
                       the — a — an — this — . . .
                \rightarrow
Preposition
                \rightarrow
                       from — to — on — near — . . .
```

Grammar untuk \mathcal{L}_0

```
S
                  NP VP
                                    I + prefer a morning flight
NP
                  Pronoun
                  ProperNoun
                                    Los Angeles
                  Det Nominal
                                    a + flight
Nominal
                  Noun Nominal
                                    morning + flight
                   Noun
                                    flights
VP
                   Verh
                                    dο
                   Verb NP
                                    prefer a morning flight
                   Verb NP PP
                                    leave Boston in the morning
                   Verb PP
                                    leave in the morning
PP
                   Prep NP
                                    from Los Angeles
```


Grammaticality

- Kalimat-kalimat yang bisa di-derive dari S dikatakan grammatical.
- Kalimat-kalimat yang **TIDAK** bisa di-*derive* dari *S* dikatakan *ungrammatical*.
- Perbedaan yang sangat "tajam" untuk bahasa formal seperti ini terkadang kurang cocok untuk bahasa natural/manusia ...
- Dalam bidang *linguistics*, pemodelan ini disebut generative grammar (Chomsky), akhir '60-an.

Apakah kalimat-kalimat berikut grammatical (menurut \mathcal{L}_0)?

You need a trip to Baltimore. I prefer a morning trip. I prefer a trip morning. I do to you.

Grammaticality

- Kalimat-kalimat yang bisa di-*derive* dari *S* dikatakan *grammatical*.
- Kalimat-kalimat yang **TIDAK** bisa di-*derive* dari *S* dikatakan *ungrammatical*.
- Perbedaan yang sangat "tajam" untuk bahasa formal seperti ini terkadang kurang cocok untuk bahasa natural/manusia ...
- Dalam bidang linguistics, pemodelan ini disebut generative grammar (Chomsky), akhir '60-an.

Apakah kalimat-kalimat berikut grammatical (menurut \mathcal{L}_0)?

You need a trip to Baltimore. I prefer a morning trip. I prefer a trip morning. I do to you.

Pesan kepada sang linguist: Perhatikan masalah overgeneration!

Outline

- Pemodelan bahasa
- 2 Part of speech tagging
 - Kelas kata
 - Tagging
 - Hands-on
- 3 Parsing
 - Grammar
 - Probabilistic parsing
 - Menggunakan PCFG
 - Hands-on

Dunia tidak hitam dan putih

- CFG mempartisi string NLP menjadi 2: sah (di-accept) dan tidak (di-reject).
- Namun, bahasa tidak sediskrit ini. Ada kalimat yang "lebih sah" dari yang lain.
- Pendekatan formal tidak menangani disambiguation.
 Pokoknya, kembalikan semua kemungkinan!
- Language modelling: sebuah model yang lebih akurat.
 Aplikasi: psycholinguistics, NLU, NLG, speech recognition

Menambahkan probabilitas

Rule sebuah CFG secara non-deterministik menjabarkan semua kemungkinan rewrite sebuah non-terminal:

Contoh kemungkinan expansion VP:

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow Verb NP NP$

Menambahkan probabilitas

Rule sebuah CFG secara non-deterministik menjabarkan semua kemungkinan rewrite sebuah non-terminal:

Contoh kemungkinan expansion VP:

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow Verb NP NP$

 Dengan PCFG, kita nyatakan probabilitas setiap kemungkinan expansion terjadi.

Menambahkan probabilitas

Rule sebuah CFG secara non-deterministik menjabarkan semua kemungkinan rewrite sebuah non-terminal:

Contoh **kemungkinan** *expansion* VP:

```
VP \rightarrow Verb [0.55]

VP \rightarrow Verb \ NP [0.40]

VP \rightarrow Verb \ NP \ NP [0.05]
```

- Dengan PCFG, kita nyatakan probabilitas setiap kemungkinan expansion terjadi.
- Notasi: $A \to \beta[p]$, di mana $p = P(A \to \beta|A)$
- Jumlah probabilitas semua kemungkinan rule yang meng-expand A harus
 1.

Definisi formal CFG

Sebuah CFG adalah 4-tuple $G = (N, \Sigma, P, S)$:

- himpunan simbol non-terminal N
- 2 himpunan simbol terminal Σ (di mana $N \cap \Sigma = \emptyset$)
- $oldsymbol{0}$ himpunan production rule P, masing-masing berbentuk A
 ightarrow lpha di mana
 - $A \in N$, dan
 - $\alpha \in (\Sigma \cup N)*$ (dkl. α adalah string simbol terminal/nonterminal)
- 4 sebuah start symbol $S \in N$

Definisi formal PCFG

Sebuah PCFG adalah 5-tuple $G = (N, \Sigma, P, S, D)$:

- 1 himpunan simbol non-terminal N
- 2 himpunan simbol terminal Σ (di mana $N \cap \Sigma = \emptyset$)
- $oldsymbol{0}$ himpunan production rule P, masing-masing berbentuk A
 ightarrow lpha di mana
 - $A \in N$, dan
 - $\alpha \in (\Sigma \cup N)*$ (dkl. α adalah string simbol terminal/nonterminal)
- **4** sebuah start symbol $S \in N$
- $oldsymbol{\circ}$ sebuah fungsi D yang menyatakan nilai probabilitas [0,1] untuk setiap rule $A \to \alpha \in P$

$S \rightarrow NP VP$	[.80]	$ Det \rightarrow that [.05] the [.80] a$	[.15]
$S \rightarrow Aux NP VP$	[.15]	$Noun \rightarrow book$	[.10]
$S \rightarrow VP$	[.05]	$Noun \rightarrow flights$	[.50]
$NP \rightarrow Det Nom$	[.20]	$Noun \rightarrow meal$	[.40]
NP → Proper-Noun	[.35]	$Verb \rightarrow book$	[.30]
$NP \rightarrow Nom$	[.05]	Verb ightarrow include	[.30]
$NP \rightarrow Pronoun$	[.40]	$Verb \rightarrow want$	[.40]
Nom → Noun	[.75]	$Aux \rightarrow can$	[.40]
Nom → Noun Nom	[.20]	$Aux \rightarrow does$	[.30]
Nom → Proper-Noun Nom	[.05]	$Aux \rightarrow do$	[.30]
$VP \rightarrow Verb$	[.55]	Proper-Noun o TWA	[.40]
$VP \rightarrow Verb NP$	[.40]	Proper-Noun → Denver	[.40]
$VP \rightarrow Verb NP NP$	[.05]	$ Pronoun \rightarrow you[.40] I[.60] $	

Outline

- Pemodelan bahasa
- 2 Part of speech tagging
 - Kelas kata
 - Tagging
 - Hands-on
- Parsing
 - Grammar
 - Probabilistic parsing
 - Menggunakan PCFG
 - Hands-on

Disambiguation dengan PCFG

Menghitung probabilitas sebuah parse tree T

- Probabilitas T untuk sebuah kalimat S adalah hasil perkalian probabilitas semua rule r yang digunakan untuk meng-expand setiap node $n \in T$: $P(T,S) = \prod_{n \in T} p(r(n))$
- P(T,S) = P(T). Mengapa? $P(T,S) = P(T) \times P(S|T)$. Namun P(S|T) pasti 1, karena parse tree secara deterministik menentukan kalimat (postorder leaf traversal?)

Disambiguation dengan PCFG:

Definisi: $\tau(S) = \text{himpunan semua kemungkinan } parse tree untuk S.$ Parse tree yang "tepat" untuk sebuah kalimat S adalah parse tree dengan probabilitas tertinggi:

$$\hat{T}(S) = \operatorname{argmax}_{T \in \tau(S)} P(T|S) = \operatorname{argmax}_{T \in \tau(S)} \frac{P(T,S)}{P(S)}$$

$$\hat{T}(S) = \operatorname{argmax}_{T \in \tau(S)} P(T, S) = \operatorname{argmax}_{T \in \tau(S)} P(T)$$

Contoh disambiguation dengan PCFG

Rules		P	Т	Rules				
S	\rightarrow	Aux NP VP	.15	1	S	\rightarrow	Aux NP VP	.15
NP	\rightarrow	Pro	.40	1	NP	\rightarrow	Pro	.40
VP	\rightarrow	V NP NP	.05		VP	\rightarrow	V NP	.40
NP	\rightarrow	Nom	.05		NP	\rightarrow	Nom	.05
NP	\rightarrow	PNoun	.35		Nom	\rightarrow	PNoun Nom	.05
Nom	$x \!$	Noun	.75		Nom	\rightarrow	Noun	.75
Aux	\rightarrow	Can	.40		Aux	\rightarrow	Can	.40
NP	\rightarrow	Pro	.40		NP	\rightarrow	Pro	.40
Pro	\rightarrow	you	.40		Pro	\rightarrow	you	.40
Verb	\rightarrow	book	.30		Verb	\rightarrow	book	.30
PNoun	\rightarrow	TWA	.40		Pnoun	\rightarrow	TWA	.40
Noun	\rightarrow	flights	.50		Noun	\rightarrow	flights	.50

- $T_a \approx$ "bisakah anda memesan penerbangan untuk TWA"?
- $T_b \approx$ "bisakah anda memesan penerbangan maskapai TWA"?
- $P(T_a) = .15 \times .40 \times .05 \times .05 \times .35 \times .75 \times .40 \times .40 \times .40 \times .40 \times .50 = 1.5 \times 10^{-6}$
- $P(T_b) = .15 \times .40 \times .40 \times .05 \times .05 \times .75 \times .40 \times .40 \times .40 \times .40 \times .30 \times .40 \times .50 = 1.7 \times 10^{-6}$

Language modelling

- ullet PCFG juga menyatakan probabilitas sebuah **kalimat** S.
- Hal ini berguna untuk berbagai aplikasi, mis. speech recognition:
 - I like ice cream
 - I like I scream.
- Untuk kalimat yang unambiguous, P(S) = P(T, S) = P(T).
- Probabilitas sebuah *kalimat S* yang *ambiguous* adalah jumlah probabilitas semua parse tree $T \in \tau(S)$:

$$P(S) = \sum_{T \in \tau(S)} P(T, S) = \sum_{T \in \tau(S)} P(T)$$

 Penjabaran semua parse tree tidak efisien → dynamic programming. Inside algorithm pada PCFG ≈ Forward algorithm pada HMM.
 Menjumlahkan probabilitas semua {parse tree / state sequence} untuk sebuah {input string / observation sequence}.

Menghitung probabilitas dari treebank

- Dari mana asalnya nilai probabilitas PCFG?
- Dari sebuah corpus yang telah di-parse secara manual, atau treebank.
- Contohnya: Penn Treebank (Marcus et al. 1993)
- Probabilitas sebuah *expansion rule* $\alpha \to \beta$ bisa dihitung: berapa kali $\alpha \to \beta$ terjadi, dibagi dengan kemunculan α :

$$P(\alpha \to \beta | \alpha) = \frac{\mathsf{Count}(\alpha \to \beta)}{\sum_{\gamma} \mathsf{Count}(\alpha \to \gamma)} = \frac{\mathsf{Count}(\alpha \to \beta)}{\mathsf{Count}(\alpha)}$$

Treebank harus dihasilkan secara manual, ongkosnya mahal.

Outline

- Pemodelan bahasa
- Part of speech tagging
 - Kelas kata
 - Tagging
 - Hands-on
- Parsing
 - Grammar
 - Probabilistic parsing
 - Menggunakan PCFG
 - Hands-on

Persiapan data

- Data: http://bahasa.cs.ui.ac.id/treebank/corpus
- Tool: http://nlp.stanford.edu/software/lex-parser.shtml
- Siapkan dokumen training:
 Dokumen training berisi kalimat yang sudah diberi bracketing secara manual dengan format:

```
(ROOT (S (NP-SBJ (NNP (Gates)) (CC (dan)) (NNP (Buffett))) (VP (VB (mengatakan)) (SBAR (SC (0)) (S (NP-SBJ (PRP (mereka))) (VP (VP (VB (berada)) (PP (IN (di)) (NP (NNP (Cina))))) (SBAR (SC (untuk)) (S (NP-SBJ (*)) (VP (VB (mempelajari)) (NP (NP (NN (kegiatan)) (NN (amal))) (PP (IN (di)) (NP (NN (negara)) (PR (itu))))))))))))))) (Z (.))))
```

Contoh file dokumen training dapat dilihat pada file: parser_training.bracket

Pembuatan model

- Jalankan perintah untuk melakukan training: java edu/stanford/nlp/parser/shiftreduce/ShiftReduceParser
 - -trainTreebank parser_training.bracket
 - -devTreebank parser_training.bracket
 - -serializedPath Indonesian_Model.ser.gz
- Akan dihasilkan sebuah model: Indonesian_Model.ser.gz
- Jalankan perintah: java ParserShiftReduce "Jokowi merayakan tahun baru di Papua"

Ringkasan

- Model bahasa sangat berguna dalam berbagai aplikasi NLP
- POS tagging: memprediksi sekuens POS tag sebuah teks. Model linear.
- Parsing: memprediksi struktur konstituensi sebuah teks. Model hirarkis.
- Distribusi probabilitas dihitung dari tagged corpus / treebank, dimodelkan dengan HMM/PCFG.
- Lebih banyak training data, lebih baik :-)

