

High Performance Computing in the Cloud to Support Weather, Water, and Climate. A Serverless Computing Implementation of Flood Inundation Mapping (FIM)

Robert (Rob) Hanna, Rob Pita-Gonzalez, Corey Krewson, Nick Chadwick, FIM Development Team

HUC8'S, Rivers, DEMs and Rating Curves

National Weather Service GIS Viewer

Complex Workflow

Primary Processing (4 Major Steps)

Originally 59 Hours

500 gb RAM 80 CPU Cores Step 1: unit pre-processing

Step 2: unit processing

- 2,148 units (multi-processing)
 - 47 sub-steps
 - 29 average number of branches (child unit) = each 34 steps
- 58,000 branches total

Step 3: Post-processing

Step 4: Automated Testing Scripts

Complex Workflow

Secondary Processing

Originally 57 Hours

Minimal Multi Processing

Other Steps:

- Docker image builds
- Copying to other environments / departments
- Creating secondary data
- Cleanup

Total Hours = 116 (in parts ~7 days)

Output Sizes = 2.9 TB

Serverless Computing Advantages

- Highly Parallelizable
 - Concurrent Processes via Fargate at Unit Level
- Reliable
- Serverless Architecture
- Scalable
- Cost Effective
- Terraform

Primary Processing = 59 hours -> 9 hrs (so far)

Secondary Processing = 57 hrs (WIP)
expected to drop to approximately 12 hrs or less

Overview of Cloud Resources

- AWS Step Functions Resource Orchestration
- AWS Elastic File System (EFS) Inputs and Outputs
- AWS Elastic Container Service (ECS- Fargate) Compute Environments
- AWS Lambda Serverless Functions to Perform Auxiliary Steps
- AWS CloudWatch Logging
- AWS Cost Explorer Calculate Costs
- AWS EC2 Development Environments and a Production EC2 for Larger Tasks

AWS Processing Overview

- Step Function / State
 Machine
- Fargate / Docker Image /

Pre Processing

Load huc list

RandomNumberGenerator

WaitState

Step Function State Machine - Workflow

Step Function State Machine - Workflow

ECS Task Definition (Fargate)

Step Function State Machine - Workflow

Step Function State Machine

Outer Huc Map

- Load HUC list
- 40 Units at a time (until all 2,138 done)
- Random Number Gen
- Wait
- Inner Map

Step Function State Machine

Inner Map

- Process Unit WB
- 40 Units at a time
- Each is an ECS Fargate/ Docker Image

Why Step Functions and ECS over AWS Parallel Cluster?

- The FIM computations rely heavily on writing and reading files passed from subroutine to subroutine
- Nested parallelization (Units → Branches)
- Refactor Time
- External Collaborators (Universities, Students, Scientific Community)

Open Source

- Code contributions, public GitHub repo
- Code can be run without AWS
- Leverages Docker technology

https://github.com/NOAA-OWP/inundation-mapping

Next Steps

Primary Processing

- \circ Performance 59 Hrs \rightarrow 9 hours \rightarrow goal of 2 hours
- Add Post Processing optimizations
- Automated Testing System

Secondary Processing

- \circ Performance 57 Hrs \rightarrow goal of 12 hours
- Creating Secondary Data
- Copying / Cleanup

Future Opportunities

- 10 meter to 3 meter resolution
 - 9x processing and output volume. AWS can easily scale up
- Code Optimization (memory objects)
- AWS Batch
- AWS RDS
- AWS EC2 Processing
- S3 Direct Integration
- DevOps / Github integration

