課題 06

1218103 望月 雄友

C 課題

横軸を時間、縦軸を単位時間あたりの崩壊粒子の数を誤差棒つきでプロットすると以下 のグラフとなった.

図1 decay1 の時間-崩壊数

図 2 decay2 の時間-崩壊数

次に、単位時間あたりの崩壊数の対数をとり、誤差棒つきで時間に対してプロットした.

図 3 decay1 の時間-log(崩壊数)

図 4 decay2 の時間-log(崩壊数)

B課題

最小二乗法をプログラムで計算すると,

$$y_i = ax_i + b$$

において,

表 1 decay1 と decay2 の $a, b, \sigma_a, \sigma_b, \chi^2$

	a	b	σ_a	σ_b	χ^2
decay1	-0.222047	7.016497	0.003607	0.020966	17.014302
decay2	-0.126169	4.203819	0.012556	0.079533	8.844339

となった.

これを元に半減期を計算する. 時刻 ${\bf t}$ における原子数を N_t , 初期粒子数を N_0 とおくと, 半減期 T を用いて,

$$N_{t} = N_{0} \left(\frac{1}{2}\right)^{\frac{t}{T}} = N_{0}e^{-\frac{\ln 2}{T}t}$$
 (1)

と表すことができる. $\frac{dN_t}{dt} = n_t$ として、この式の両辺を時間で微分すると、

$$n_t = \frac{\ln 2}{T} N_t \tag{2}$$

となる。今回は $\ln(n_t)=at+b$ として回帰直線を求めたので、回帰直線を代入して半減期とその誤差を求めると、以下の表となった。

表 2	decay	1と	decay2	の半	減期	と半派	載期の	誤	差

	Т	σ_T
decay1	3.121623713	0.101444007
decay2	5.493799432	1.104393908

A 課題

あてはめた直線と $\log(崩壊数)$ を誤差棒つきで、時間にたいしてプロットすると以下のグラフとなった.

図 5 decay1 の時間-log(崩壊数) と回帰直線

図 6 decay2 の時間-log(崩壊数) と回帰直線

S課題

gnuplot でデータを一次関数でフィットした. その時のコマンドは以下のようになった.

```
gnuplot> f(x)=a*x+b
gnuplot> a=-0.22
gnuplot> b=7
gnuplot> fit f(x) "ckadai3.dat" using 1:2 via a,b
           chisq
                         delta/lim lambda a
  1 3.6340833809e-01 -1.59e+03 5.27e-01 2 3.6251136497e-01 -2.47e+02 5.27e-02 3 3.6251128584e-01 -2.18e-02 5.27e-03
                                                                        7.000000e+00
7.001921e+00
7.013477e+00
7.013590e+00
                                                     -2.200000e-01
                                                     -2.213293e-01
-2.224798e-01
                                                     -2.224907e-01
                          delta/lim lambda
           chisq
After 3 iterations the fit converged.
final sum of squares of residuals : 0.362511
rel. change during last iteration : -2.18283e-07
degrees of freedom
                          (FIT_NDF)
                                                                 : 0.141914
                          (FIT\_STDFIT) = sqrt(WSSR/ndf)
rms of residuals
variance of residuals (reduced chisquare) = WSSR/ndf
                                                                 : 0.0201395
                                         Asymptotic Standard Error
Final set of parameters
                  = -0.222491
= 7.01359
                                         +/- 0.005503
                                                              (2.473%)
                                         +/- 0.06353
                                                              (0.9057%)
correlation matrix of the fit parameters:
                  a
1.000
                  -0.866
gnuplot>
```

図7 decay1のfit

```
delta/lim lambda
           chisa
                                                   -2.224907e-01
                                                                     7.013590e+00
     1.9001318897e+00
                                                   -2.029613e-01
                                                                     4.809772e+00
     2.8830866333e-01
                                                   -1.233362e-01
                                                   -1.213785e-01
                                                                     4.154816e+00
     2.8743541469e-01 -1.81e-05
                                     5.12e-04
                                                   -1.213780e-01
                                                                     4.154813e+00
                         delta/lim lambda
After 4 iterations the fit converged.
final sum of squares of residuals : 0.287435
rel. change during last iteration : -1.8137e-10
degrees of freedom
                        (FIT_NDF)
rms of residuals
                        (FIT_STDFIT) = sqrt(WSSR/ndf)
                                                               : 0.154767
variance of residuals (reduced chisquare) = WSSR/ndf
                                        Asymptotic Standard Error
Final set of parameters
                                        +/- 0.01026
                                                           (8.454%)
                  = -0.121378
                  = 4.15481
                                                           (1.995\%)
                                        +/- 0.08289
correlation matrix of the fit parameters:
                 a
1.000
                 -0.867 1.000
```

図8 decay2のfit

よってこれらの結果から χ^2 を計算し、以下の表にまとめた.

表 3 decay1 と decay2 の $a, b, \sigma_a, \sigma_b, \chi^2$ (gnuplot)

	a	b	σ_a	σ_b	χ^2
decay1	-0.222491	7.01359	0.005503	0.06353	17.143567
decay2	-0.121378	4.15481	0.01026	0.08289	9.257367

gnuplot で求めた χ^2 を χ^2_g とすると、decay1 の χ^2_g と χ^2 の差は、

$$\chi_g^2 - \chi^2 = 0.129265$$

 $ext{decay2}$ の χ_g^2 と χ^2 の差は,

$$\chi_g^2 - \chi^2 = 0.413028$$

となった.よって、gnuplot より最小二乗法のプログラムの方が精度が良いことが分かった.