Branch: master 2022-10-31 12:10:00+01:00

CONTINUOUS LOGIC FOR THE CLASSICAL LOGICIAN

1. A CLASS OF STRUCTURES

- **1 Definition.** We will work with *L*-structures of the form $\mathcal{M} = \langle M, R \rangle$, where *R* is fixed. Moreover, we are given for each *n* a Hausdorff topology on R^n . We assume that all compact sets of R^n are definable in *L*. We require that the functions symbols of sort $M^n \times R^m \to R$ are interpreted in functions such that
 - 1. $f^{\mathcal{M}}(-,\alpha): M^n \to R$ is bounded (i.e. its range is contained in a compact set) for every $\alpha \in R^m$.
 - 2?? $f^{\mathcal{M}}(a,-): \mathbb{R}^m \to \mathbb{R}$ is continuous uniformly in $a \in M^n$, that is (?),

$$\bigcap_{a \in M^n} f^{\mathcal{M}}(a, -)^{-1}(O) \text{ is open for every open } O \subseteq R.$$

Caveat: occasionally, we work with totopogical spaces that are not T_0 . When we say that such a space is Hausdorff, we mean that its Kolmogorov quotient is Hausdorff.

There may be no saturated structure among those described in Definition 1. As a remedy, we restrict the notion of saturation to formulas in a set \mathbb{L} that we define below. In a nutshell, formulas in \mathbb{L} do not contain existential quantifiers of sort R. Moreover, we require that some *critical* function symbols only occour only inside compact relations and never under the scope of negation.

Intuitively, the function symbols are divided in two classes according to their sort

- 1. $M^n \times R^m \to M$
- 2. $M^n \times R^m \to R$

Functions in the latter group are the *critical* one and will be dealt with caution.

Below, \mathbb{T} denotes the set of the terms of sort $M^n \times R^m \to R$. Definition 1 ensures that for all $t(x; y) \in \mathbb{T}$ the range of the functions $t^{\mathcal{M}}(-, \alpha) : M^n \to R$ is bounded.

- **2 Definition.** Formulas in \mathbb{L} are defined inductively as follows
 - i. \mathbb{L} contains all formulas without quantifiers of sort R and functions of sort $M^n \times R^m \to R$;
 - ii. L contains formulas of the form $t(y; z) \in C$ where $C \subseteq R^n$ is compact and $t(y; z) \in \mathbb{T}^n$;
 - iii. L is closed under the Boolean connectives \land , \lor , and the quantifiers \forall , \exists of sort M;
 - iv. \mathbb{L} is closed under the quantifier \forall of sort R.

2. Ultrapowers

We recall the standard definition of *F*-limits. Let *I* be a non-empty set. Let *F* be a filter on *I*. If $f: I \to R^m$ and $\lambda \in R^m$ we write

$$F$$
- $\lim_{i} f(i) = \lambda$

if $f^{-1}[A] \in F$ for every $A \subseteq R^m$ that is a neighborhood of λ . Such a λ is always unique (by the property of filters). When F is an ultrafilter, and range f is bounded (i.e. it is contained in a compact set), the limit always exists.

Below we introduce a suitable notion of ultrapower. To keep notation tidy, we make two simplifications: (1) we only consider ultraproducts; (2) we do not consider formulas containing equality, so we need not take any quotient.

Let I be an infinite set. Let F be an ultrafilter on I. Let $\mathcal{M} = \langle M, R \rangle$ be an L-structure.

- **3 Definition.** We define a structure $\mathcal{N} = \langle N, R \rangle$ that we call the ultrapower of \mathcal{M} .
 - 1. $N = M^I$ that is, it is the set of sequences $\hat{a}: I \to M$.
 - 2. If f is a function of sort $M^n \times R^m \to M$ then $f^{\mathcal{N}}(\hat{a}; \alpha)$ is the sequence $\langle f^{\mathcal{M}}(\hat{a}i; \alpha) : i \in I \rangle$.
 - 4. If f is a function of sort $M^n \times R^m \to R$ then

$$f^{\mathcal{N}}(\hat{a}; \alpha) = F - \lim_{i} f^{\mathcal{M}}(\hat{a}i; \alpha).$$

4 Fact. The structure \mathbb{N} satisfies the conditions of Definition 1. (Didin't check condition 2.)

The following fact is easily proved by induction on the syntax.

5 Fact. If no function symbol of sort $M^n \times R^m \to R$ occurs in t(v; z) then

$$t^{\mathcal{N}}(\hat{a};\alpha) = \langle t^{\mathcal{M}}(\hat{a}i;\alpha) : i \in I \rangle.$$

If true, the proof of the following fact is tedious.

6 Fact. For every term t(y; z) of sort $M^n \times R^m \to R$

$$t^{\mathcal{N}}(\hat{a}; \alpha) = F - \lim_{i} t^{\mathcal{M}}(\hat{a}i; \alpha).$$

For $\varphi(x)$, $\varphi'(x) \in \mathbb{L}(A)$ we say that $\varphi' > \varphi$ if φ' has been obtained replacing each atomic formulas $t \in C$ occurring in φ by $t \in D$ for some closed neighborhood of C. Note that, if such atomic formulas do not occur in φ , then $\varphi > \varphi$.

Finally, we prove

7 Proposition (Łŏś Theorem). Assume $|I| \ge$ the weight of the topology on R. Let \mathcal{N} be as above and let $\varphi(x; y) \in \mathbb{L}$. Then for all $\hat{a} \in N^{|x|}$ and all $\alpha \in R^{|y|}$

$$\mathbb{N} \models \varphi(\hat{a}; \alpha) \iff \left\{ i \in I \ : \ \mathbb{M} \models \varphi'(\hat{a}i; \alpha) \right\} \in F \text{ for every } \varphi' > \varphi.$$

Proof. First note that if $\varphi(x; y)$ is as in (i) of Definition 2 then, after absorbing α into le language, the proposition reduces to the classical Łŏś Theorem.

Now, suppose that $\varphi(x; y)$ is as in (ii) of Definition 2, say it is the formula $t(x; y) \in C$, where t(x; y) is a tuple of terms of sort $M^{|x|} \times R^{|y|} \to R$.

Assume $\mathbb{N} \models t(\hat{a}, \alpha) \in C$. If D a compact neighborhood of C then D is also a neighborhood of $t^{\mathbb{N}}(\hat{a}, \alpha)$. Hence, by the definition of F-limit, $\{i : \mathbb{M} \models t(\hat{a}i, \alpha) \in D\} \in F$.

Vice versa, assume $\mathbb{N} \models t(\hat{a}, \alpha) \notin C$. We can assume to work inside a compact set containing C and $t(\hat{a}, \alpha)$. By regularity, $t^{\mathbb{N}}(\hat{a}, \alpha) \notin D$ for D a compact neigboorhood of C. By the definition of F-limit, $\{i : \mathbb{M} \models t(\hat{a}i, \alpha) \notin D\} \in F$. Then $\{i : \mathbb{M} \models t(\hat{a}i, \alpha) \in D\} \notin F$.

As for induction, only the existential quantifier require some work. Inductively we assume that

$$\mathbb{N} \models \varphi(\hat{a}, \hat{b}; \alpha) \iff \left\{ i \in I \ : \ \mathbb{M} \models \varphi'(\hat{a}i, \hat{b}i; \alpha) \right\} \in F \text{ for every } \varphi' > \varphi.$$

We need to prove

$$\mathcal{N} \models \exists y \, \varphi(\hat{a}, y \, ; \alpha) \iff \left\{ i \in I \ : \ \mathcal{M} \models \exists y \, \varphi'(\hat{a}i, y \, ; \alpha) \right\} \in F \text{ for every } \varphi' > \varphi.$$

The implication \Rightarrow is clear. For the converse, assume the r.h.s. Assume for simplicity that $I = \omega$. For every $i \in I$ pick a formula φ_i so that $\varphi_i > \varphi_i > \varphi$ for for every i < j and

$$\mathcal{M} \models \bigwedge_{i \in I} \varphi_i(x, y; \alpha) \rightarrow \varphi(x, y; \alpha).$$

For every $j \in I$ there is a sequence \hat{b}_i such that

$$\left\{i\in I\ :\ \mathcal{M}\models\varphi_{j}(\hat{a}i,\hat{b}_{j}i\,;\alpha)\right\}\in F.$$

As $\varphi_j(x, y; \alpha) \to \varphi_{j'}(x, y; \alpha)$ holds for j > j', the diagonal sequence $\hat{d} = \langle \hat{b}_i i : i \in I \rangle$ satisfies $\mathbb{N} \models \varphi(\hat{a}, \hat{d}; \alpha)$.