PTSP QUESTION BANK

UNIT-I

- 1. Distinguish between Joint Probability and Conditional Probability.
- 2. State and Prove that Total Probability and Bayes Theorem.
- 3. In a box there are 100 Resistors having resistance and tolerance as shown in Table 1. Let a resistor be selected from the box and assume each resistor has the same likelihood of being chosen. Define three events: A as "draw a 47- Ω resistor ", B as "draw a resistor with 5% tolerance ", C as "draw a 100- Ω resistor". Find the Joint and Conditional Probabilities.

Resistance(Ω)	Tolerance			
	5%	10%	Total	
22	10	14	24	
47	28	16	44	
100	24	8	32	
Total	62	38	100	

- 4. i) A single card is drawn from a 52- card deck.
 - a) What is the probability that the card is a jack?
 - b) What is the probability the card will be a 5 or smaller?
 - c) What is the probability that the card is a red 10?
 - d) What is the probability that the card is being either a red or a king?
 - ii) A missile can be accidentally launched if two relays A and B both have failed. The probabilities of A and B failing are known to be 0.01 and 0.03, respectively. It is also known that B is more likely to fail (probability 0.06) if A has failed.
 - i) What is the probability of an accidental missile launch?
 - ii) What is the probability that A will fail if B has failed?
 - iii) Are the Events 'A' fails and 'B' fails statistically independent?
- 5. i) Write short notes on "poission distribution function" and "Binomial distribution function".
 - ii) Write short notes on "Gaussian distribution function" and "Uniform distribution function".
- 6. Distinguish between Probability Distribution and Probability Density functions and their properties.
- 7. Distinguish between Conditional Probability Distribution and Conditional Probability Density functions and their properties.
- 8. (a) Define Probability and give its three Axioms?
 - **(b)** S.T the chances of throwing "six" with 4, 3 or 2 dice respectively are as 1:6:18.
- 9. If 'X' is normally distributed with mean 70 and standard deviation (σ) , 16

Find (i) P (38 \le X \le 46), (ii) P (82 \le X \le 94).

- 10. Consider the probability density $f(x) = ae^{-b|x|}$, where x is a random variable whose allowable values range from $x = -\infty$ to ∞ . Find
 - i) CDF
 - ii) Relationship between a and b

Probability that the outcome x lies between 1 and 2

UNIT-II

- 1. Distinguish between Moment generating function and Characteristic function and their properties.
- 2. Explain about Moments. State and prove that Variance and their properties.
- 3. Show that the mean value E[X] and variance σ_X^2 of the Rayleigh random variable, with density given by $f_x(x) = \frac{2}{b}(x-a)e^{-(x-a)^2/b}, x \ge a$, are E[X] = $a + \sqrt{\pi b/4}$,
 - $\sigma_X^2 = b(4-\pi)/4.$
- 4. A random variable X has a probability density $f_x(x) = \frac{\pi}{16}\cos(\pi x/8)$ $-4 \le x \le 4$ 0 Elsewhere.

Find: a) Mean value E[X], b) Second order moment E[X²] and c) Variance σ_X^2

5. The random variable X has the characteristic function given by $\phi_x(w) = 1 - |w|, |w| \le 1$ 0, |w| > 1

Find density function of random variable X.

- 6. Find the Mean and Variance& characteristic function $\emptyset_x(\omega)$ and moment generating function $M_x(t)$ for uniform distribution?
- 7. Show that the distribution function for which the characteristic function $e^{-|t|}$ has the density function $f_X(x) = \frac{1}{\pi(1+x^2)}$; $-\infty < x < \infty$.
- 8. (a)If 'X' is a R.V, Show that $Var(ax+b) = a^2 Var(X)$.
 - (b) If 'X' and 'Y' are two independent random variables, such that

$$E(X) = \lambda_1$$
, variance $(X) = \sigma_1^2$, $E(Y) = \lambda_2$, Variance $(Y) = \sigma_2^2$.

Prove that variance (XY) = $\sigma_1^2 \sigma_2^2 + \lambda_1^2 \sigma_2^2 + \lambda_2^2 \sigma_1^2$.

9. The density function of a random variable X is

$$f(x) = 5 e^{-5x} \quad 0 \le x \le \infty$$

$$= 0 \quad \text{else where}$$
Find $E[(X-1)^2]$

UNIT-III

- 1. Distinguish between Joint Probability Distribution and Probability Density functions and their properties.
- 2. The Joint probabilities of two random variables X & Y are given in table 2.

Y∖X	1	2	3
1	0.2	0.1	0.2
2	0.15	0.2	0.15

Find out 1). Joint & Marginal Distribution function and Plot.

- 2). Joint & Marginal Density function and Plot.
- 3. Write short notes on "Point conditioning", and "Interval conditioning".

4. The Joint Probability Density function
$$f_{x,y}(x,y) = \frac{1}{18}e^{-\left(\frac{x-y}{6-3}\right)}; x \ge 0, y \ge 0$$
 Find

Marginal density functions and show that X and Y are independent random variables.

- 5. Find the Conditional Density Function $f_{x/y}(x/y)$ and $f_{y/x}(y/x)$ for the Joint Density function $f_{x/y}(x,y) = xe^{-x(y+1)}u(x)u(y)$.
 - 6. Write short notes on "Jointly Gaussian Random variables".
 - 7. Consider random variables $Y_1 \& Y_2$ related to arbitrary random variables X & Y by the coordinate rotation $Y_1 = X\cos\theta + Y\sin\theta$, $Y_2 = -X\sin\theta + Y\cos\theta$.
 - i) Find the covariance of $Y_1 \& Y_2$
 - ii) For what value of θ , the random variables $Y_1 \& Y_2$ uncorrelated
 - 8. A Joint density is given by

$$f_{xy}(x,y) = \begin{cases} \frac{2}{43} (x + 0.5y)^2 & 0 < x < 2 \text{ and } 0 < y < 3 \\ 0 & \text{otherwise} \end{cases}$$

- i) Find all the first and second order moment
- ii) Find the Covariance
- iii) Are X and Y uncorrelated?
- 9. Random variables X and Y have Joint density function

$$f_{yy}(x,y) = (x+y)^2/40$$
, for $-1 < x < 1$, $-3 < y < 3$
= 0, else where

- i) Find all the second order moments of X and Y
- ii) What are the variances of X and Y
- iii) What is the correlation coefficient?

- 10. Write about the "Linear Transformation of Gaussian Random Variables"?
- 11. a) What is the "Joint moments about Origin" and give its First order and second order moments?
 - b) Briefly explain about the "Joint Central Moments"?
- 12. Two Random Variable 'X' and 'Y' have the joint characteristic function $\emptyset_{X,Y}$ (ω_1, ω_2) = exp ($-2\omega_1^2 8\omega_2^2$) Show that X and Y are both Zero-Mean Random Variables and they are uncorrelated?
- 13. Let X and Y be jointly continuous random variable with joint

PDF
$$f_{XY}(X, Y) = X^2 + \frac{xY}{3}$$
; $0 \le X \le 1$; $0 \le Y \le 2$.

Find (i) $f_X(X)$ (Marginal Density function of X). (ii) $f_X(Y)$.

- (iii) Are X and Y are Independent. (iv) $f_X(\frac{X}{Y})$. (v) $f_Y(\frac{Y}{X})$.
- 14. For the following Joint Distribution of R.V 'X' & 'Y' Find

i)
$$P(X \le 1)$$
 (ii) $P(Y \le 3)$ (iii) $P(X \le 1, Y = 2)$ (iv) $P(X \le 3, Y \le 4)$

	1	2	3	4	5	6
X						
0	0	0	1/32	2/32	2/32	3/32
1	1/16	1/16	1/8	1/8	1/8	1/8
2	1/32	1/32	1/64	1/64	0	2/64

UNIT-IV

- 1. State and prove that auto correlation & cross correlation functions and their properties.
- 2. Explain the following with respect to Random process
 - i) Wide sense stationary ii) Time average & Ergodic Random Processer
- 3. Given the random process $X(t)=A \cos(w_0 t) + B \sin(w_0 t)$ where w_0 is a constant and A and B are uncorrelated zero mean random variables having different density functions but the same variances G^2 show that X(t) wide sense stationary but not strictly stationary.
- 4. Given the ACF for a stationary ergodic process with no periodic components is $R_{XX}(\tau)=25+4/(1+6\tau)$. Find mean & variance of process X(t).
- 5. A random process X(t) is defined as X(t) = A; $0 \le t \le 1$ Where A is random variable that is uniformly distributed from A to

Where A is random variable that is uniformly distributed from $-\theta$ to θ . Prove that auto correlation function of X(t) is $\theta^2/3$.

- 6. Two random processes X(t) and Y(t) be defined by $X(t) = A\cos\omega t + B\sin\omega t$ and $Y(t) = B\cos\omega t A\sin\omega t$, where A & B are uncorrelated random variables with zero mean and same variance and ω is a constant. Find the cross-correlation function and show that X(t) and Y(t) are jointly WSS.
- 7. Define "Stationary Random Process" and explain the First order Stationary processes?
- 8. (a)Explain the Wide-Sense Stationary?
 (b) S.T the Random Processes X(t)=Acos(ω₀ t + θ) is wide-sense stationary, if it is assumed that A and ω₀ are constants and 'θ' is uniformly distributed R.V as the interval (0,2π).
- 9. (a) $R_{XY}(\tau) = 36+16/(1+8\tau)$. Find Mean and Mean Square, Variance of Random process X(t)?
 - (b) Give short notes on Covariance and give its properties?

UNIT-V

- 1. Explain Wiener Khinchine theorem.
- 2. Prove that cross power spectrum and cross correlation function form Fourier transform pair.
- 3. If the Autocorrelation function of a loss process is $R_{XX}(\tau) = Ke^{-K|\tau|}$. Show that its spectral density is given by

$$S_{XX}(\boldsymbol{\omega}) = \frac{2}{1 + \left(\frac{\boldsymbol{\omega}}{K}\right)^2}$$

- 4. Find the power spectral density of a WSS random process X(t) where ACF is $R_{XX}(\tau)=ae^{-b|\tau|}$.
- 5. State and prove that power density spectrum and their properties.
- 6. Find the cross correlation function for the cross power spectral density is

$$S_{XY}(\omega) = \frac{1}{25 + \omega^2}.$$

- 7. State and prove that Cross power density spectrum and their properties.
- 8. An Ergodic Random process is known to have an Auto Correlation function of the form $R_{XX}(\tau) = 1 |\tau|$; for $|\tau| \le 1$

$$=0$$
 ; for $|\tau| \ge 1$

Show that the Spectral density is given by $S_{XX}(\omega) = \left[\frac{\sin(\frac{\omega}{2})}{(\frac{\omega}{2})}\right]^2$.

- 9. Find the Power Spectral density of the random process if that has the Auto Correlation function $R_{XX}(\tau) = \frac{A_0^2}{2} \cos(\omega_0 \tau)$ where A_0 and ω_0 are constants.
- 10. Find the cross power spectral density, if i) $R_{XY}(\tau) = \frac{A^2}{2} sin(\omega_o \tau)$ ii) $R_{XY}(\tau) = \frac{A^2}{2} cos(\omega_o \tau)$

i)
$$R_{XY}(\tau) = \frac{A^2}{2} sin(\omega_o \tau)$$

ii)
$$R_{XY}(\tau) = \frac{A^2}{2} cos(\omega_o \tau)$$

UNIT-VI

- 1. Explain the following any two
 - Effective Noise temperature i)
 - ii) Resistive Noise
 - Average Noise figure iii)
 - iv) Thermal noise
- 2. Prove that the output power spectral density equals the input power spectral density multiplied by the squared magnitude of the transform of the filter.
- 3. Define Band limited processes and state its properties.
- 4. A random process X(t) is applied as input to a system whose impulse response is $h(t) = 3u(t)t^2 \exp(-8t)$. If E[X(t)] = 2, what is the mean value of the system response y (t).
- 5. Explain the Spectral characteristics of linear system response.
- Find overall noise figure and equivalent input noise temperature of following figure at room temperature.

- b) Derive noise bandwidth (ω_N) equation.
- 7. a) Briefly explain the "White Noise"?
 - b) Write about the "Average Noise Figure of Cascaded Network"?
 - c) Briefly explain about the "Effective Noise Temperature"?
- 8. Define the Average Noise Band Width and explain the Noise Band Width of R C Low Pass Filter?