NumberTheory 10

白永乐

202011150087

202011150087@mail.bnu.edu.cn

2024年5月24日

ROBEM I Assume p, q are odd primes, a > 1 is integal. Prove:

- 1. $q \mid a^p 1 \implies q \mid a 1 \vee 2p \mid q 1$.
- 2. $q \mid a^p + 1 \implies q \mid a + 1 \lor 2p \mid q 1$
- SPETION. 1. Consider o(a) in \mathbb{Z}_q^* . We know that $o(a) \mid p$. So $o(a) = 1 \lor o(a) = p$. When o(a) = 1, we get $q \mid a 1$. Besides, $o(a) \mid o(\mathbb{Z}_q^*) = q 1$. So when o(a) = p, we get $p \mid q 1$. Since q is odd, we know $2 \mid q 1$. And $\gcd(2, p) = 1$, so $2p \mid q 1$.
- 2. Consider o(-a) in \mathbb{Z}_q^* . We know that $o(-a) \mid p$. So $o(-a) = 1 \lor o(-a) = p$. When o(-a) = 1, we get $q \mid a+1$. Besides, $o(-a) \mid o(\mathbb{Z}_q^*) = q-1$. So when o(-a) = p, we get $p \mid q-1$. Since q is odd, we know $2 \mid q-1$. And $\gcd(2,p) = 1$, so $2p \mid q-1$.

ROBEM II Find a primitive root for each number 7, 49, 343, 686.

SOLTON. By calculating we get that 3 is primitive root of 7. So we know there exists a primitive root x of 49 such that x = 3 + 7y. By calculating we get that 3 is primitive root of 49. So we know there exists a primitive root x of 49 such that x = 3 + 49y. By calculating we get that 3 is primitive root of 343. So we know that the odd one of 3,346 is primitive root of 686. So 3 is primitive root of 686.