Introduction to Program Synthesis (SS 2025) Chapter 1 - Introduction

Dr. rer. nat. Roman Kalkreuth

Chair for Al Methodology (AIM), Department of Computer Science, RWTH Aachen University, Germany

- ▶ Discovery of algorithms with proofs → early in the history of constructive mathematics
 - → Explicitly avoids non-constructive proofs
 - \rightarrow Constructive mathematics \rightarrow proof should be algorithmic
 - \sim Proof design \rightarrow based on examples
- Origin of the proofs-as-programs paradigm
- Follows intuitionistic logic
- Sometimes generally called constructive logic
- ▶ Does not allow non-constructive proofs

Zur Deutung der intuitionistischen Logik.

Von

A. Kolmogoroff in Moskau.

Figure: Kolmogorov's 1932 work on intuitionistic logic [Kol32]

Definition (Intuitionism)

- ightharpoonup Fundamental idea ightharpoonup mathematics is a creation of the mind
- ► Truth of a mathematical statement → conceived via mental construction that proves it to be true
- Introduced by Brouwer
- Mathematical objects must be accessible to intuition
- Rejects non-constructive proofs

Definition (Intuitionistic logic)

- Form of logic studied and proposed by Gödel and Kolmogorov
- Formalises the only-constructive aspect of intuitionism

Proposition

There exist non-rational numbers a and b such that ab is rational.

Proof.

We can proof that the above statement to be true by considering two cases:

- ► Case 1: $\sqrt{2}^{\sqrt{2}}$ is rational. Choose $a = \sqrt{2}$ and $b = \sqrt{2}$. Then a, b are irrational, and by assumption a^b is rational.
- ► Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational. Choose $a = \sqrt{2}^{\sqrt{2}}$ and $b = \sqrt{2}$. Then by assumption a, b are irrational and

$$a^b = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \left(\sqrt{2}\right)^{\sqrt{2}\cdot\sqrt{2}} = \left(\sqrt{2}\right)^2 = 2$$
 is rational.

- Existence proof → non-constructive proof
 - → Shows that a mathematical object exists without giving a concrete example
- Law of excluded middle
 - $\, \leadsto \,$ Means that there is no middle ground
- Minimalistic and simple constructive proof:
 - \sim Set $a = \sqrt{2}$ and $b = \log_2 9$.
- Constructive proofs
 - → Proofing the existence of a mathematical object by showing how to create the object

- Curry-Howard correspondence [Cur34; How80; CFC59]:
 Proofs can be considered programs and programs can be considered proofs
 - → Isomorphism between proof systems and computation models
 - → Proofs-as-programs paradigm
 - \sim Isomorphism between intuitionistic logic and λ -calculus
 - \sim λ -calculus \rightarrow minimalistic formal system
 - → Expression of algorithms as compositions of functions
- ▶ Transformation between theoretical and implementation level
- ▶ **Proof** \cong **Program** \rightarrow Formal systems
 - \sim Formal language \rightarrow constructed by a formal grammar
 - \rightarrow **Deductive system** \rightarrow proof system
 - → Natural deduction → logical reasoning
 - → Frameworks for formal construction and reasoning

Lemma

If a and b are odd numbers, then a + b is even.

Proof.

- Any odd number can be represented by 2n + 1 and by definition and any even number can be represented as 2n where n can be any integer
- ► Hence, by adding two odd numbers we obtain:

$$(2x+1) + (2y+1) = 2x + 2y + 2 = 2(x+y+1)$$

- ▶ Since the sum of x, y, 1 is an integer we can define n = x + y + 1
- ▶ Thus, the calculation leads then to an even number:

$$a + b = (2x + 1) + (2y + 1)$$

$$= 2x + 2y + 1$$

$$= 2(x + y + 1)$$

$$= 2n$$

- Direct proof that is algorithmic
- ► The proof can be considered as a function that has to be implemented
- We can derive and implement the definitions for odd and even numbers
 - → Use of compound data types and abstraction

- ▶ Inductive Proof \cong Iterative or recursive function
- ▶ For all integers $n \ge a$, a property P(n) is true

Induction Proof	Recursive Function	Iterative Function
Proof $P(a)$	Base case definition	Initialisation statement definition
Assumption that $P(k)$ is true if $k \ge a \to \text{inductive hypothesis}$	Recursive use of function $f(x)$. Assumption: It works with any value $k \ge a$	Condition holds for any $k \ge a$ and statement $S(k)$ yields a valid result
Show that if $P(k)$ is true then $P(k+1)$ is also true	Show that the result of $f(k)$ produces a valid result for $f(k+1)$	If the condition is true the expression leads to $k+1$

Proposition

$$| [None] * n | = n$$

Proof.

- ▶ Let P(n) be the statement | [None] *n | = n
- $ightharpoonup \exists n P(n)$
- ▶ $P(a) = P(0) \Rightarrow |[]| = |\emptyset| = 0$
- ▶ Inductive hypothesis: $P(k) = P(1) \Rightarrow |$ [None] | = 1 = | [None] | + | [] |
- ▶ Inductive step: $P(k+1) = P(2) \Rightarrow |$ [None, None] |=| [None] |+| [None] |=2

Proposition

 $2^n > 2n$, $n > 2 \wedge n \in \mathbb{N}^+$

Proof.

- ▶ Let P(n) be the statement $2^n > 2n$
- ► $P(a) = P(3) \Rightarrow 2^3 > 2 * 3 \Rightarrow 8 > 6$
- ▶ Inductive hypothesis: P(k) holds for $2^k > 2k$
- ▶ Inductive step: $P(k+1) \Rightarrow 2^{k+1} = 2 * 2^k > 2 * 2k \Leftrightarrow 2 * 2^k > 2 * (k+1)$

- ► Later more:
 - Recursion vs iteration
 - ▶ Inductive vs deductive approach
 - ► Tabulation vs memoisation ~> dynamic programming

References I

- [Kol32] A. Kolmogoroff. "Zur Deutung der intuitionistischen Logik". In: Mathematische Zeitschrift 35.1 (1932), pp. 58–65. DOI: 10.1007/BF01186549. URL: https://doi.org/10.1007/BF01186549.
- [Cur34] H. B. Curry. "Functionality in Combinatory Logic". In: Proceedings of the National Academy of Sciences 20.11 (1934), pp. 584-590. DOI: 10.1073/pnas.20.11.584. eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.20.11.584. URL: https://www.pnas.org/doi/abs/10.1073/pnas.20.11.584.
- [How80] William Alvin Howard. "The Formulae-as-Types Notion of Construction". In: To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism. Ed. by Haskell Curry et al. Academic Press, 1980.
- [CFC59] Haskell B. Curry, Robert Feys, and William Craig. "Combinatory Logic, Volume I". In: *Philosophical Review* 68.4 (1959), pp. 548–550. DOI: 10.2307/2182503.