まずエネルギー補正 $E_n^{(1)}$ について考える. 式 $(\ref{eq:condition})$ の両辺に $\left\langle n^{(0)} \right|$ を作用すると,

$$\left\langle n^{(0)} \middle| \left(E_n^{(0)} - \hat{H}^{(0)} \right) \middle| n^{(1)} \right\rangle + \left\langle n^{(1)} \middle| E_n^{(1)} \middle| n^{(0)} \right\rangle = \left\langle n^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{0.0.1}$$

$$\Leftrightarrow E_n^{(0)} \left\langle n^{(0)} \middle| n^{(1)} \right\rangle - E_n^{(0)} \left\langle n^{(0)} \middle| n^{(1)} \right\rangle + E_n^{(1)} \left\langle n^{(1)} \middle| n^{(0)} \right\rangle = \left\langle n^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{0.0.2}$$

$$\Leftrightarrow 0 + E_n^{(1)} \left\langle n^{(0)} \middle| n^{(0)} \right\rangle = \left\langle n^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{0.0.3}$$

$$\Leftrightarrow E_n^{(1)} = \left\langle n^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{0.0.4}$$

を得る. よって、1次摂動によるエネルギー補正は、

- 1 次摂動によるエネルギー補正 ―――

$$E_n^{(1)} = \left\langle n^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{0.0.5}$$

である.

次に固有ベクトル $\left|n^{(1)}
ight
angle$ の補正を求める.**式** $(\ref{eq:condition})$ の両辺に $\left\langle m^{(0)}
ight|$ を左から作用すると,

$$\left\langle m^{(0)} \middle| \left(E_n^{(0)} - \hat{H}^{(0)} \right) \middle| n^{(1)} \right\rangle + \left\langle m^{(0)} \middle| E_n^{(1)} \middle| n^{(0)} \right\rangle = \left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{0.0.6}$$

$$E_n^{(0)} \left\langle m^{(0)} \middle| n^{(1)} \right\rangle - E_m^{(0)} \left\langle m^{(0)} \middle| n^{(1)} \right\rangle + 0 = \left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{0.0.7}$$

$$\left(E_n^{(0)} - E_m^{(0)}\right) \left\langle m^{(0)} \middle| n^{(1)} \right\rangle = \left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{0.0.8}$$

となる. 式 (0.0.8) に $\left\langle m^{(0)} \right|$ をかけて,m に関して和を取れば,

$$\sum_{m} \left(E_n^{(0)} - E_m^{(0)} \right) \left| m^{(0)} \right\rangle \left\langle m^{(0)} \middle| n^{(0)} \right\rangle = \sum_{m} \left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \left| m^{(0)} \right\rangle \tag{0.0.9}$$

$$\Leftrightarrow \sum_{m} \left(E_n^{(0)} - E_m^{(0)} \right) \left| n^{(0)} \right\rangle = \sum_{m} \left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \left| m^{(0)} \right\rangle \tag{0.0.10}$$

$$\Leftrightarrow \left| n^{(0)} \right\rangle \sum_{m \neq n} \left(E_n^{(0)} - E_m^{(0)} \right) = \sum_{m \neq n} \left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \middle| m^{(0)} \right\rangle \tag{0.0.11}$$

$$\Leftrightarrow \left| n^{(0)} \right\rangle = \sum_{m \neq n} \frac{\left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle}{E_n^{(0)} - E_m^{(0)}} \left| m^{(0)} \right\rangle \tag{0.0.12}$$

となる. 途中の式変形でエネルギー縮退がないので、

$$E_n^{(0)} - E_m^{(0)} \begin{cases} = 0 & n = m \\ \neq 0 & n \neq m \end{cases}$$
 (0.0.13)

とした. また、Hermite 演算子である $\hat{H}^{(0)}$ の固有ベクトルに関する完全性より、

$$I = \sum_{m} \left| m^{(0)} \right\rangle \! \left\langle m^{(0)} \right| \tag{0.0.14}$$

を用いた.

1 次摂動による固有ベクトル補正・

$$\left| n^{(1)} \right\rangle = \sum_{m \neq n} \frac{\left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle}{E_n^{(0)} - E_m^{(0)}} \left| m^{(0)} \right\rangle \tag{0.0.15}$$

を得る. 式 (0.0.15) において, $\left|n^{(1)}\right\rangle$ と $\left|n^{(0)}\right\rangle$ は直交することに注意する.