Exploitation des symétries dynamiques pour la résolution des problèmes SAT

Thèse de doctorat de Sorbonne Université

Hakan MFTIN

Jury Members:

PASCAL FONTAINE
LAURE PETRUCCI
JEAN-MICHEL COUVREUR
EMANUELLE ENCRENAZ
SOUHEIB BAARIR
FABRICE KORDON

Maître de conférences, Université de Liège Professeur, Université Paris 13 Professeur, Université d'Orléans Maître de conférences, Sorbonne Université Maître de conférences, Université Paris Nanterre Professeur, Sorbonne Université

Supervisors:

SOUHEIB BAARIR FABRICE KORDON Maître de conférences, Université Paris Nanterre Professeur, Sorbonne Université

Motivation

SAT is widely used in different domains:

- Artificial intelligence (planning, games, ...)
- Bioinformatics (haplotype inference, ...)
- Security (cryptanalysis, inversion attack on hash function)
- Computationally hard problems (graph coloring, ...)
- Formal Methods (hardware model checking, ...)

Outline

- SAT overview
 SAT basics
 SAT and symmetries
- 2 Existing approaches

3 Contribution and results

SAT an example

SAT an example

Is it possible to attribute each group to a classroom?

YES!

SAT an example

Is it possible to attribute each group to a classroom?

YES! Many solutions

SAT

CNF Representation:

$$\underbrace{\left(X_1 \lor X_2 \lor \neg X_3\right)}_{\text{Clause with literals } X_1, X_2, \neg X_3}$$

5/31

SAT

CNF Representation:

Formula (CNF)
$$\underbrace{\left(x_1 \lor x_2 \lor \neg x_3\right)}_{Clause} \land \left(\neg x_1 \lor \neg x_2\right) \land \left(x_2 \lor \neg x_4\right)$$

5/31

CNF Representation:

$$(x_1 \lor x_2 \lor \neg x_3) \to \{x_1, x_2, \neg x_3\}$$

5/31

SAT Solving

Solving SAT formula is known to be **NP-complete** [Coo71]

Enumerative Algorithm:

- Davis, Putnam, Logemann, and Loveland (DPLL) [DLL62]
 - Boolean Constraint Propagation (BCP)
- Conflict Driven Clause Learning (CDCL) [MSS99]
 - derived from DPLL
 - clause learning

Conflict Driven Clause Learning (CDCL)

$$\omega_{1} = \{x_{1}, x_{2}, x_{3}\}
\omega_{2} = \{x_{4}, x_{5}, x_{6}\}
\omega_{3} = \{\neg x_{1}, \neg x_{5}\}
\omega_{4} = \{\neg x_{2}, \neg x_{4}\}
\omega_{5} = \{\neg x_{3}, \neg x_{4}\}
\omega_{6} = \{\neg x_{3}, \neg x_{6}\}$$

$$\omega_{1} = \{x_{1}, x_{2}, x_{3}\}
\omega_{2} = \{x_{4}, x_{5}, x_{6}\}
\omega_{3} = \{\neg x_{1}, \neg x_{5}\}
\omega_{4} = \{\neg x_{2}, \neg x_{4}\}
\omega_{5} = \{\neg x_{3}, \neg x_{4}\}
\omega_{6} = \{\neg x_{3}, \neg x_{6}\}$$

$$\omega_{1} = \{x_{1}, x_{2}, x_{3}\}
\omega_{2} = \{x_{4}, x_{5}, x_{6}\}
\omega_{3} = \{\neg x_{1}, \neg x_{5}\}
\omega_{4} = \{\neg x_{2}, \neg x_{4}\}
\omega_{5} = \{\neg x_{3}, \neg x_{4}\}
\omega_{6} = \{\neg x_{3}, \neg x_{6}\}$$

$$\omega_{1} = \{x_{1}, x_{2}, x_{3}\}
\omega_{2} = \{x_{4}, x_{5}, x_{6}\}
\omega_{3} = \{\neg x_{1}, \neg x_{5}\}
\omega_{4} = \{\neg x_{2}, \neg x_{4}\}
\omega_{5} = \{\neg x_{3}, \neg x_{4}\}
\omega_{6} = \{\neg x_{3}, \neg x_{6}\}$$

$$\omega_{1} = \{x_{1}, x_{2}, x_{3}\}
\omega_{2} = \{x_{4}, x_{5}, x_{6}\}
\omega_{3} = \{\neg x_{1}, \neg x_{5}\}
\omega_{4} = \{\neg x_{2}, \neg x_{4}\}
\omega_{5} = \{\neg x_{3}, \neg x_{4}\}
\omega_{6} = \{\neg x_{3}, \neg x_{6}\}$$

$$\omega_{1} = \{x_{1}, x_{2}, x_{3}\}
\omega_{2} = \{x_{4}, x_{5}, x_{6}\}
\omega_{3} = \{\neg x_{1}, \neg x_{5}\}
\omega_{4} = \{\neg x_{2}, \neg x_{4}\}
\omega_{5} = \{\neg x_{3}, \neg x_{4}\}
\omega_{6} = \{\neg x_{3}, \neg x_{6}\}$$

$$\omega_{1} = \{x_{1}, x_{2}, x_{3}\}
\omega_{2} = \{x_{4}, x_{5}, x_{6}\}
\omega_{3} = \{\neg x_{1}, \neg x_{5}\}
\omega_{4} = \{\neg x_{2}, \neg x_{4}\}
\omega_{5} = \{\neg x_{3}, \neg x_{4}\}
\omega_{6} = \{\neg x_{3}, \neg x_{6}\}$$

$$\omega_{1} = \{x_{1}, x_{2}, x_{3}\}
\omega_{2} = \{x_{4}, x_{5}, x_{6}\}
\omega_{3} = \{\neg x_{1}, \neg x_{5}\}
\omega_{4} = \{\neg x_{2}, \neg x_{4}\}
\omega_{5} = \{\neg x_{3}, \neg x_{4}\}
\omega_{6} = \{\neg x_{3}, \neg x_{6}\}$$

$$\omega_7 = \{x_1, \neg x_4\}$$

Is it possible to attribute each group to a classroom?

No!

Is it possible to attribute each group to a classroom?

No!

Presence of symmetries hinders the performance of the solver

Outline

SAT overview
 SAT basics

SAT basics SAT and symmetries

2 Existing approaches

Static symmetry breaking Dynamic symmetry breaking

3 Contribution and results

Symmetry

$$g = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ x_2 & x_1 & x_3 & x_5 & x_4 & x_6 & x_8 & x_7 & x_9 \end{pmatrix} \rightarrow (x_1 \ x_2)(x_4 \ x_5)(x_7 \ x_8)$$

A symmetry (permuation) g is a bijective function (on variables) that leaves φ invariant.

Computing symmetries of a SAT problem $(x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6) \land (x_7 \lor x_8 \lor x_9)$

CNF formula

 $\begin{array}{c} (x_1 \vee x_2 \vee x_3^{\circ}) \wedge (x_4 \vee x_5 \vee x_6) \wedge (x_7 \vee x_8 \vee x_6) \\ \wedge (\neg x_1 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_7) \wedge (\neg x_4 \vee \neg x_7) \\ \wedge (\neg x_2 \vee \neg x_5) \wedge (\neg x_2 \vee \neg x_8) \wedge (\neg x_5 \vee \neg x_8) \\ \wedge (\neg x_3 \vee \neg x_6) \wedge (\neg x_3 \vee \neg x_9) \wedge (\neg x_6 \vee \neg x_9) \end{array}$

¹http://www.tcs.hut.fi/Software/bliss/

²http://vlsicad.eecs.umich.edu/BK/SAUCY/

Computing symmetries of a SAT problem $(x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6) \land (x_7 \lor x_8 \lor x_9)$

CNF formula

colored graph

Computing symmetries of a SAT problem $(x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6) \land (x_7 \lor x_8 \lor x_9)$

CNF formula $\wedge(\neg x_1 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_7) \wedge (\neg x_4 \vee \neg x_7)$ $\wedge (\neg x_2 \vee \neg x_5) \wedge (\neg x_2 \vee \neg x_8) \wedge (\neg x_5 \vee \neg x_8)$ $\wedge(\neg x_3 \vee \neg x_6) \wedge (\neg x_3 \vee \neg x_9) \wedge (\neg x_6 \vee \neg x_9)$ colored graph (bliss 1 or saucy 2) graph automorphism

¹http://www.tcs.hut.fi/Software/bliss/

²http://vlsicad.eecs.umich.edu/BK/SAUCY/

Computing symmetries of a SAT problem

CNF formula

 \Downarrow

colored graph

graph automorphism ↓

set of symmetries

 $⁽x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6) \land (x_7 \lor x_8 \lor x_9)$ $\wedge(\neg x_1 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_7) \wedge (\neg x_4 \vee \neg x_7)$ $\wedge(\neg x_2 \vee \neg x_5) \wedge (\neg x_2 \vee \neg x_8) \wedge (\neg x_5 \vee \neg x_8)$ $\wedge(\neg x_3 \vee \neg x_6) \wedge (\neg x_3 \vee \neg x_9) \wedge (\neg x_6 \vee \neg x_9)$ (bliss 1 or saucy 2) $g_1 = (x_2 \ x_3)(x_5 \ x_6)(x_8 \ x_9)$ $g_2 = (x_4 \ x_7)(x_5 \ x_8)(x_6 \ x_9)$ $g_3 = (x_1 \ x_2)(x_4 \ x_5)(x_7 \ x_8)$ $q_4 = (x_1 \ x_4)(x_2 \ x_5)(x_3 \ x_6)$

¹ http://www.tcs.hut.fi/Software/bliss/

²http://vlsicad.eecs.umich.edu/BK/SAUCY/

Using symmetries to prune search space

Using symmetries to prune search space

Adds additional constraints to prune search space.

Generates symmetry breaking predicates (SBP)

- Define lexicographic order
 - Define total order on variables
 - Define minimal value
- Forbid non minimal assignment with addition of SBP

Example:

$$x_1 \le x_2 \le x_3 \le x_4 \le x_5 \le x_6 \le x_7 \le x_8;$$
false $<$ true $g = (x_1 \ x_2)(x_4 \ x_5)(x_7 \ x_8)$

$x_1 \leq x_2$	$x_1 \vee \neg x_2$
$x_1=x_2\to x_4\le x_5$	$x_1 \vee x_2 \vee x_4 \vee \neg x_5$
	$\neg x_1 \lor \neg x_2 \lor x_4 \lor \neg x_5$
$x_1 = x_2 \wedge x_4 = x_5 \rightarrow x_8 \leq x_3$	$X_1 \vee X_2 \vee X_4 \vee X_5 \vee X_7 \vee \neg X_8$
	$\neg x_1 \vee \neg x_2 \vee x_4 \vee x_5 \vee x_7 \vee \neg x_8$
	• • •

Static symmetry breaking

- Works well on many symmetric instances
- The solver can "explode" instead of being helped

Static symmetry breaking

- Works well on many symmetric instances
- The solver can "explode" instead of being helped

Static symmetry breaking

- Works well on many symmetric instances
- The solver can "explode" instead of being helped

Using symmetries to accelerate tree traversal

Using symmetries to accelerate tree traversal

Using symmetries to accelerate tree traversal

Use symmetries to deduce symmetrical facts.

Dynamic Symmetry Breaking

- Accelerate SAT engine using symmetry properties
- •

Modify solver behavior to accelerate tree traversal modify solver Different tools SP, SLS, SEL, ...

Symmetry Propagation

TODO Present SP

TODO Build an example

Outline

SAT overview

SAT basics SAT and symmetries

2 Existing approaches

Static symmetry breaking Dynamic symmetry breaking

3 Contribution and results

CDCL [Sym]
Combination of different approaches

Our contribution CDCL[Sym]

Our contribution CDCL[Sym]

Symmetry status

- reducer: $g.\alpha. \prec \alpha$
- inactive: $\alpha \prec g.\alpha$
- active: not enough information

Efficient implementation of symmetry status

Keep track the smallest unassigned variable x:

- **1** $\alpha(g.x)$ ≤ $\alpha(x)$, then g is reducer \Rightarrow Effective SBP (ESBP)
- 2 $\alpha(x) \le \alpha(g.x)$, then g is inactive $\Rightarrow g$ cannot reduce α
- 3 $\alpha(g.x)$ or $\alpha(x)$ is unassigned then g is active

Update whenever variables are assigned / unassigned

- 1 reducer: $\alpha(g.x) \leq \alpha(x)$
- 2 inactive: $\alpha(x) \leq \alpha(g.x)$
- 3 active: $\alpha(g.x)$ or $\alpha(x)$ is unassigned

$$x_1 \le x_2 \le x_3 \le x_4 \le x_5 \le x_6 \le x_7 \le x_8$$
; false < true
 $g_1 = (x_2 \quad x_3) \quad (x_5 \quad x_6) \quad (x_8 \quad x_9) \mid x = x_2 \quad g.x = x_3$ active
 $g_2 = (x_1 \quad x_2) \quad (x_4 \quad x_5) \quad (x_7 \quad x_8) \mid x = x_1 \quad g.x = x_2$ active

 $\alpha = \{$

- 1 reducer: $\alpha(g.x) \leq \alpha(x)$
- 2 inactive: $\alpha(x) \leq \alpha(g.x)$
- 3 active: $\alpha(g.x)$ or $\alpha(x)$ is unassigned

$$x_1 \le x_2 \le x_3 \le x_4 \le x_5 \le x_6 \le x_7 \le x_8$$
; false < true $g_1 = (x_2 \ x_3) \ (x_5 \ x_6) \ (x_8 \ x_9) \ x = x_2 \ g.x = x_3$ active $g_2 = (x_1 \ x_2) \ (x_4 \ x_5) \ (x_7 \ x_8) \ x = x_1 \ g.x = x_2$ active $\alpha = \{ \neg x_2 \ \}$

- 1 reducer: $\alpha(g.x) \leq \alpha(x)$
- 2 inactive: $\alpha(x) \leq \alpha(g.x)$
- 3 active: $\alpha(g.x)$ or $\alpha(x)$ is unassigned

$$x_1 \le x_2 \le x_3 \le x_4 \le x_5 \le x_6 \le x_7 \le x_8$$
; false < true $g_1 = \begin{pmatrix} x_2 & x_3 \end{pmatrix} \begin{pmatrix} x_5 & x_6 \end{pmatrix} \begin{pmatrix} x_8 & x_9 \end{pmatrix} \begin{vmatrix} x = x_5 & g.x = x_6 \\ & \text{active} \end{pmatrix}$ $g_2 = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} x_4 & x_5 \end{pmatrix} \begin{pmatrix} x_7 & x_8 \end{pmatrix} \begin{vmatrix} x = x_1 & g.x = x_2 \\ & \text{reducer} \end{pmatrix}$

$$\alpha = \{\neg x_2, \neg x_3, x_1\}$$

- 1 reducer: $\alpha(g.x) \leq \alpha(x)$
- 2 inactive: $\alpha(x) \leq \alpha(g.x)$
- 3 active: $\alpha(g.x)$ or $\alpha(x)$ is unassigned

$$x_1 \le x_2 \le x_3 \le x_4 \le x_5 \le x_6 \le x_7 \le x_8$$
; false < true
 $g_1 = \begin{pmatrix} x_2 & x_3 \end{pmatrix} \begin{pmatrix} x_5 & x_6 \end{pmatrix} \begin{pmatrix} x_8 & x_9 \end{pmatrix} \begin{vmatrix} x = x_5 & g.x = x_6 \\ & active \end{pmatrix}$
 $g_2 = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} x_4 & x_5 \end{pmatrix} \begin{pmatrix} x_7 & x_8 \end{pmatrix} \begin{vmatrix} x = x_1 & g.x = x_2 \\ & reducer \end{pmatrix}$

$$lpha = \{ \neg x_2, \neg x_3, x_1 \}$$
 g_2 generates $\omega = \{ \neg x_1, x_2 \}$

Experiments: benchmark

Benchmark:

- from SAT contests 2012 2017,
- retain only instances for which bliss finds significant symmetries in 1000s,
- 1350 symmetric instances (out of 3700)

Setup:

- four tools
 - MiniSat (no symmetry, baseline)
 - MiniSat + breakID (state-of-the-art symmetry SAT solver)
 - MiniSat + Shatter (state-of-the-art symmetry SAT solver)
 - MiniSym = MiniSat + CDCLSym (our approach)
 - 5000s timeout, 8GB memory,
- includes time to compute symmetries (except for MiniSat)

Experimental results

bliss gives more generators than saucy3

Figure: cactus plot total number of instances

Table: time comparison

Experimental results (UNSAT versus SAT)

	MiniSAT	Shatter	BreakID	MiniSym	1	MiniSAT	Shatter	BreakID	MiniSym	
TOTAL (no dup)	261	302	371	345	TOTAL (no dup)	261	324	415	439	
(a) With saucy3					(b) With bliss					

Table: comparison on UNSAT instances

	MiniSAT	Shatter	BreakID	MiniSym		MiniSAT	Shatter	BreakID	MiniSym	
TOTAL (no dup)	325	323	337	335	TOTAL (no dup)	325	316	334	336	
(a) With saucy3					(b) With bliss					

Table: comparison on SAT instances

ESBP + SP

TODO Symmetry propagation on top of ESBP Compose both approaches Is it possible?

Notion of local symmetries

TODO

Computation of local symmetries

TODO

Experimental results

TODO

Conclusion and Perspective

TODO

Conclusion:

Perspectives:

Thanks!

Stephen A Cook.

The complexity of theorem-proving procedures.

In Proceedings of the third annual ACM symposium on Theory of computing, pages 151–158. ACM, 1971.

Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving. *Commun. ACM*, 5(7):394–397, July 1962.

Joao P Marques-Silva and Karem A Sakallah.

Grasp: A search algorithm for propositional satisfiability. *IEEE Transactions on Computers*, 48(5):506–521, 1999.