Introduction to Statistics

Muchang Bahng

December 2022

We assume the reader is familiar with measure-theoretic probability, and unlike in introductory probability, we throw away the convention that random variables are written with capital Latin letters (so x can also denote a random variable, which is useful if samples are not fixed). Statistics and probability seem like the same topic, but there are very fundamental differences. In probability, we are given some distribution and must compute certain probabilities. In statistics, we are given the results (the data) and must infer what distribution it came from.

1 Sampling Distributions

Definition 1.1 (Population, Parameters). When conducting a statistical study, there is a set of items or events which is of interest for some experiment. This can be modeled with some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Usually, we are interested in some numerical property of this population, and so we implicitly define a random variable $X:\Omega \longrightarrow \mathbb{R}$ that induces some distribution $X \sim P$, which we call the **population**. A statistical population can be a group of existing objects or a hypothetical and potentially infinite group of objects conceived as a generalization from experience.

With this, we can interpret the population $X \sim P$ as a random variable, and we often call this the **parent distribution**. We are often interested in its population **parameters**, which can be any measured quantity of a population that summarizes or describes an aspect of it. In generality, the parameter of population X is denoted θ , and it is a fixed value. The two most useful ones are:

- 1. the population mean μ_X
- 2. the population variance σ_X^2

Example 1.1. Here are some examples of populations:

- 1. We let Ω be the discrete sample space of all hands in poker, and our random variable will assign a numerical ranking to each hand 0 for no hand, 1 for pairs, 2 for two pairs, etc.
- 2. Ω is the sample space of all individuals in the U.S. and we can construct a random variable X that assigns to each individual their height. Even though Ω is finite, we can interpret it as continuous, which leads to a continuous distribution $X \sim P$.

In general, the population is the total set of all relevant things that we are interested in. The specific quantity of the actual population is called the **population parameter**, e.g. the true mean μ or the true variance σ^2 of X, usually denoted with θ . But usually, these parameters are not known since the population is too big to experimentally measure, so we must try and estimate it with samples. This is the entire point of statistics; otherwise, we would already know everything we want to know.

Definition 1.2 (Samples). From the population $X \sim P$ (which still has unknown distribution), we can take n samples by considering iid $x_1, x_2, \ldots, x_n \sim P$.

- 1. We should note that the samples x_i are random variables themselves. Not fixing them yet and still considering them in generality as random objects allows us to do more theoretical calculations.
- 2. Once these samples have been realized (i.e. $\omega \in \Omega$ is realized, and all x_i 's are also realized), we can treat them as fixed values.

Sometimes, we may not assume independence, but for most cases we do. A common rule is that if the sample size n is less than 10% of the population size, then we can assume independence.

Definition 1.3 (Empirical Distribution). Now given that we have these iid samples, we can construct the **empirical distribution** $\hat{X} \sim \hat{P}$, defined as the discrete distribution that assigns probability 1/n to each value x_i for $i \in [n]$. In other words, we have

$$\mathbb{P}(\widehat{X} = x) = \frac{1}{n} \text{ for } x \in \{x_1, \dots, x_n\}$$

We can write the CDF of the empirical distribution, called the **empirical distribution function**, as the sum of indicators

$$F_X(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{[x_i, +\infty)}(x)$$

As expected, we would expect the empirical distribution to converge to the actual distribution.

Theorem 1.1 (Glivenko-Cantelli theorem). The empirical distribution of iid samples $x_1, \ldots, x_n \sim P_n$ converges almost surely to $X \sim P$ as $n \to \infty$. More specifically, given that the CDF of X is F and the CDF of P_n is the step function F_n , we have

$$||F_n - F||_{\infty} = \sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \to 0$$

almost surely as $n \to \infty$.

Example 1.2 (Empirical Distribution of Standard Gaussian). We expect the empirical distribution of the standard Gaussian to converge. Indeed, numerical results show that for 10 and 100 samples, the empirical CDF does converge to the true CDF.

Definition 1.4 (Sample Statistic, Estimators and Estimates). Now given a population X, we would like to use the n iid samples x_1, \ldots, x_n to estimate a parameter θ of interest with our own random variable/value $\widehat{\theta}_n$, called a **sample statistic**. We must note the dual nature of the sample statistic as a random variable and a value is similar to that of samples.

1. The statistic $\widehat{\theta}_n$ is a random variable itself, referred to as the **estimator**. More specifically, it is a function $\widehat{\theta}_n : \mathbb{R}^n \longrightarrow \mathbb{R}$ of the *n* samples, i.e. a transformation of random variables

$$\widehat{\theta}_n = \widehat{\theta}_n(x_1, x_2, \dots, x_n)$$

This makes $\widehat{\theta}_n$ also a random variable, which attempts to estimate the true θ , which is some unknown fixed value. Since $\widehat{\theta}_n$ is a random variable, it has its own distribution, called the **sampling distribution** of $\widehat{\theta}_n$.

2. Once these samples x_i have been realized, the estimator realizes and the value realized is now called the **estimate**.

This sampling distribution is a distribution of the statistic $\widehat{\theta}_n$, and this forms a separate distribution with its own mean and variance.

- 1. the mean of the sampling distribution is denoted $\mu_{\widehat{\theta}_n}$
- 2. the standard deviation of the sampling distribution is denoted $\sigma_{\widehat{\theta}_{r}}^{2}$, also called the **standard error**.

We would like the sampling distribution of our statistic to give us good estimate in two ways. $\widehat{\theta}_n$ should not be too far off from the actual parameter θ (bias is small), and $\widehat{\theta}_n$ should not fluctuate too widely (variance of $\widehat{\theta}_n$ should be small).

Definition 1.5 (Bias, Variance of Estimator). Given an estimator $\hat{\theta}$ of a sample x_1, \ldots, x_n estimating population parameter θ , the **sampling bias** refers to

$$\operatorname{Bias}(\widehat{\theta}) = \left| \mathbb{E}[\widehat{\theta}] - \theta \right|$$

and the sampling variance refers to

$$\mathrm{Var}(\widehat{\theta}) = \mathbb{E}\big[(\widehat{\theta} - \mathbb{E}[\widehat{\theta}])^2\big]$$

A good rule of thumb to remember is that statistics is about replacing expectations with averages.

$$\mathbb{E} \mapsto \frac{1}{n} \sum_{i}$$

This is really the fundamental quality of statistics. Then after that we can do some fancy things, like minimizing something or manipulating another, but every single time we see an expectation just replace it with an average.

1.1 Sample Mean

Definition 1.6 (Sample Mean). Given a population X with $\mu = \mathbb{E}[X]$ and $\sigma^2 = \text{Var}(X)$, our estimator for μ is simply the average of the n samples x_1, \ldots, x_n , called the **sample mean** or the **sampling distribution of the sample mean**.

$$\overline{x}_n = \widehat{\mu}_n = \frac{1}{n}(x_1 + \ldots + x_n)$$

This gives us the sampling distribution of the sample means. The mean and standard deviation (i.e. standard error) of \overline{x}_n is denoted $\mu_{\overline{x}_n}$ and $\sigma_{\overline{x}_n}$.

1. The mean of \overline{x}_n is μ .

$$\mu_{\overline{x}_n} = \mu$$

because

$$\mathbb{E}[\overline{x}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n x_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[x_i] = \mathbb{E}[x] = \mu$$

2. The variance of \overline{x}_n is σ^2/n , i.e. the standard error of \overline{x}_n is $\sigma_{\overline{x}_n} = \sigma/\sqrt{n}$.

$$\sigma_{\overline{x}_n} = \frac{\sigma}{\sqrt{n}}$$

because

$$\sigma_{\overline{x}_n}^2 = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(x_i) = \frac{1}{n} \operatorname{Var}(x) = \frac{\sigma^2}{n}$$

Practically, this tells us that when trying to estimate the value of a population mean, due to the factor of $1/\sqrt{n}$, reducing the error on the estimate by a factor of 2 requires acquiring 4 times as many observations in the sample. But realistically, the true standard deviation σ is unknown, and so the standard error of the mean is usually estimated by replacing σ with the sample standard deviation S instead.

$$\sigma_{\overline{x}_n} \approx \frac{S}{\sqrt{n}}$$

3. By CLT, \bar{x}_n converges to $\mathcal{N}(\mu, \sigma^2/n)$ in distribution as $n \to +\infty$ (but in practicality, we assume this for $n \geq 30$). The fact that its mean and variance is μ and σ^2/n isn't that impressive. What is really impressive is that no matter what the distribution of x is, the sampling distribution of the mean will be Gaussian.

Example 1.3 (Sample Mean of Uniforms). We plot the PDF of an $X \sim \text{Uniform}[0, 2]$ random variable by taking 100k samples. We also take 100k samples from the sampling distribution of the mean $\overline{X}_3, \overline{X}_{10}, \overline{X}_{30}$. We can see that the standard deviation decreases by a factor of \sqrt{n} .

Note that with a uniform parent distribution, the sampling distribution of its mean looks like a Gaussian even without a large n. However, this is not necessarily true for different parent distributions, such as the exponential.

Example 1.4 (Sample Mean of Exponentials). We plot the PDF of an $X \sim \text{Exponential}(1.5)$ random variable by taking 100k samples. We also take 100k samples from the sampling distribution of the mean $\overline{X}_3, \overline{X}_{10}, \overline{X}_{30}$.

If the parent distribution is normal, then we don't even need CLT to claim that the sampling distribution of the sample mean is normal, since sums of normals are normal.

1.2 Sample Variance

Now the variance of the population is defined to be $\sigma^2 = \mathbb{E}[(X - \mathbb{E}[X])^2]$, and by our rule of thumb, we can replace the expectations with sample means, by first setting $\mathbb{E}[X] = \hat{\mu}$ and averaging out the values $(X - \hat{\mu})^2$.

Definition 1.7 (Sample Variance). Given a population X, our estimator for $\sigma^2 = \mathbb{E}[(X - \mathbb{E}[X])^2]$ is simply the average of the squared distances of the n samples $\{(x_i - \widehat{\mu})^2\}_{i=1}^n$.

$$S_n^2 = \hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2$$

The mean and standard deviation of S_n^2 is denoted $\mu_{S_n^2}$ and $\sigma_{S_n^2}$. Note that there is a small difference that the sum for variance is divided by n-1 rather than n, since we want it to be unbiased, but we will correct this later.

While the CLT states that the sampling distribution of the sample mean will look approximately Gaussian, we do not have this luxury when looking at the sampling distribution of sample variance. Take a look at the following sampling distributions of the sample variance. There does not seem to be strong signs of convergence to a Gaussian. Their means do not align either.

Example 1.5. Sample variance of uniforms.

Example 1.6. Sample variance of exponentials.

1.3 Sampling from Gaussians

Now if we assume that the parent distribution is Gaussian, then we can conclude some extra things and more kinds of distributions arise. Let $x_1, \ldots, x_n \sim \mathcal{N}(\mu, \sigma^2)$, with \overline{x}_n the sample mean and S_n^2 the sample variance. Say that we want to find the distribution of \overline{x}_n .

1. In the unrealistic case where we know the true σ^2 , we don't even need to consider the sample variance. From the basic property of Gaussians, we know that $\overline{x}_n \sim \mathcal{N}(\mu, \sigma^2/n)$, or after standardizing,

$$\frac{\overline{x}_n - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

2. In the realistic case where we don't know the true σ^2 , we should replace it with our sample variance S^2 , and it turns out that because of this extra uncertainty in the variance, our sampling distribution follows the student-t distribution, which can be interpreted as a mixture of Gaussians with differing variances.

$$\frac{\overline{x}_n - \mu}{S/\sqrt{n}} \sim \text{StudentT}(n-1)$$

Now if we are interested in finding the distribution of S_n^2 :

1. In the unrealistic case where the know the true μ , we don't need to consider the sampling distribution of \overline{x}_n . We have

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2 \sim \operatorname{Gamma}\left(\frac{n}{2}, \frac{n}{2\sigma^2}\right)$$

2. In the realistic case where we don't know μ , we have

$$\frac{n-1}{\sigma^2}S_n^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \overline{x}_n)^2 \sim \chi^2(n-1)$$

2 Confidence Intervals and Significance Tests

2.1 Confidence Intervals

Recall that the central limit theorem says that given a sequence of iid random variables x_1, \ldots, x_n coming from a random variable with true mean μ and variance σ^2 , the sample mean is similar to a $\mathcal{N}(\mu, \sigma^2/n)$ random variable. That is, the sample mean converges in distribution

$$\overline{X}_n \xrightarrow{dist} \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

as $n \to \infty$. Another way to state it is that the normalized sample mean is similar to a standard Gaussian.

$$\frac{\overline{x}_n - \mu}{\sigma_{\overline{x}_n}} = \frac{\overline{x}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{dist} \mathcal{N}(0, 1)$$

So, given that we have enough samples, I will perfectly understand its fluctuations. Now let's introduce some definitions that will allow us to unify some ideas into simpler notation: the realized value x, the number of standard deviations it is away from the mean, and the probability that it takes that value (or more extreme).

Definition 2.1 (z-score). Given a $\mathcal{N}(\mu, \sigma^2)$ distribution, the **z-score** of a number $x \in \mathbb{R}$ is defined to be the number of standard deviations away from the mean.

$$z = \frac{x - \mu}{\sigma}$$

Definition 2.2 (Percentile). Given $X \sim \mathcal{N}(0,1)$ and significance level $\alpha \in [0,1]$, let us define $q_{\alpha} \in \mathbb{R}$ as the point where

$$\mathbb{P}(X \ge q_{\alpha}) = \alpha$$

i.e. the 100α th percentile of the standard normal. Note that given $X \sim \mathcal{N}(0,1)$, we have

$$\mathbb{P}(|X| > q_{\alpha/2}) = \alpha$$

Now given x_1, \ldots, x_n from a population X with mean μ and standard deviation σ , let \overline{x}_n be the sampling distribution of the mean. By virtue of the central limit theorem, we can write

$$\mathbb{P}\left(\left|\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}}\right| \ge q_{\alpha/2}\right) \approx \alpha \iff \mathbb{P}\left(\left|\frac{\overline{X}_n - \mu}{\sigma\sqrt{n}}\right| \le q_{\alpha/2}\right) \approx 1 - \alpha$$

which implies that with probability $1 - \alpha$, we have

$$\overline{X}_n \in \left[\mu - q_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \mu + q_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right] \iff \mu \in \left[\overline{X}_n - q_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X}_n + q_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

This is how we construct a confidence interval. In other words, as n becomes large (ideally at least 30), the probability that an interval around our sample mean contains the actual mean μ can be approximated by a Gaussian. But note that CI requires to know the actual standard deviation σ . There are three ways to deal with this:

- 1. This may actually be known from the start, especially if we are working with calibrated devices with standard devices that have been experimentally verified.
- 2. We can simply bound σ , depending on what kind of random variable we are working with. For example, given $X \sim \text{Bernoulli}(p)$, its standard deviation is bounded by $\sigma = \sqrt{p(1-p)} \leq \frac{1}{2}$, so we can create a confidence interval that is larger than any other confidence interval we can make if we had known the true σ .

$$p \in \left[\overline{X}_n - q_{\alpha/2} \frac{1}{2\sqrt{n}}, \overline{X}_n + q_{\alpha/2} \frac{1}{2\sqrt{n}}\right]$$

3. We can approximate σ with the sample standard deviation S, which turns out to be an unbiased estimator.

Example 2.1 (Proportion of Right-Side Kissers). We have observed 80 out of 124 right-side kisses, resulting in a sample estimate of $\hat{p} = 0.645$. Given that we want a confidence interval of 95%, we want an $\alpha = 0.05$, implying a the value $q_{\alpha/2} = q_{0.025} = 1.96$. So, with probability 0.95, we have

$$p \in \left[0.645 - \frac{1.96}{2\sqrt{124}}, 0.645 + \frac{1.96}{2\sqrt{124}}\right] = [0.56, 0.73]$$

If we had, say 3 observations, rather than 124, we would have a 95% confidence interval of $p \in [0.10, 1.23]$, which is terrible, but in this case even CLT is not valid.

Example 2.2 (Proportion of Voters). Given that we sample n = 100 people from a city's population to ask whether they support candidate A or B, we have 54 people who support candidate A, so $\hat{p} = 0.54$. Say that we want a 95% confidence interval, which leads to $q_{\alpha/2} = q_{0.025} = 1.96$. So, with probability 0.95, we have

$$p \in \left[0.54 - 1.96 \frac{\sigma}{\sqrt{100}}, 0.54 + 1.96 \frac{\sigma}{\sqrt{100}}\right]$$

and by substituting σ for $S = \sqrt{0.54(1-0.54)} \approx 0.5$, we get

$$p \in \left[0.54 - 1.96 \frac{0.284}{\sqrt{100}}, 0.54 + 1.96 \frac{0.284}{\sqrt{100}}\right] = [0.44, 0.64]$$

An interpretation of confidence intervals is that if you keep on sampling \overline{x} or \widehat{p} and construct 95% CIs, then 95% of the time these intervals will contain the true mean μ or proportion p (or more if we had bounded the CI with a bigger interval).

Example 2.3. We survey 6250 teachers to ask whether they think computers are essential for teaching. 250 were randomly selected and 142 felt that they were essential. Let's construct a 99% confidence interval for the proportion of teachers who felt that computers were essential. We would like to construct a CI for the true $\mu = p$, and we have $\overline{x} = 142/250 = 0.568$.

- 1. 99% confidence corresponds to $\alpha = 0.01$, which corresponds to a z-score of $q_{\alpha/2} = 2.576$.
- 2. The parent distribution is Bernoulli(p), with $\mu = p$ and $\sigma = \sqrt{p(1-p)}$. The sampling distribution of \overline{x} has $\mu_{\overline{x}} = p$ also and $\sigma_{\overline{x}} = \sigma/\sqrt{n}$.
- 3. We need to know the details of the sampling distribution, but we don't know σ , which is needed to calculate $\sigma_{\overline{x}}$. However, we can estimate it using the sample standard deviation $S = \sqrt{0.568(1-0.568)} = 0.5$.
- 4. Our sampling distribution has standard deviation $\sigma_{\overline{x}} \approx S/\sqrt{n} = 0.5/\sqrt{250} = 0.031$, and our z-score was 2.576, so our 99% confidence interval is 2.576 standard deviations from our mean. That is, with probability 0.99,

$$p \in [0.568 - 2.576 \cdot 0.031, 0.568 + 2.576 \cdot 0.031] = [0.488144, 0.647856]$$

2.2 Significance Tests

A significance test is a method used to decide whether the data at hand sufficiently supports a particular hypothesis. The hypothesis to be tested is called the **alternative hypothesis**, denoted H_1 or H_a , and the status quo is called the **null hypothesis**, denoted H_0 . Assuming that H_0 is true, we compute the likelihood of the data happening. If the sample is not too unlikely (past some significance level), we fail to reject H_0 , and if there is strong evidence, we reject H_0 . H_0 and H_a can be devised in countless ways.

Example 2.4. There are countless test statistics we can build, but here are some common examples,

1. Proportion: Company A produces circuit boards, but 10% of them are defective. Company B claims that they produce fewer defective circuit boards.

$$H_0: p = 0.10 \text{ versus } H_a: p < 0.10$$

2. Means: It is known that the average height of boys in KIS is 176cm. Ben claims that the average height is lower than this.

$$H_0$$
 : $\mu=176$ versus H_a : $\mu<176$

3. Difference of Means: If μ_1 and μ_2 denote the true average breaking strengths of the same type of twine produced by two different companies. Jenny claims that the $\mu_1 - \mu_2 > 5$.

$$H_0: \mu_1 - \mu_2 = 0$$
 versus $H_a: \mu_1 - \mu_2 > 5$

2.3 One Sample Z and T Tests

Let us have some population $X \sim P$ and a null hypothesis that claims $H_0: \mu = \theta_0$. Since we are interested in the mean, we would like to use CLT or some other theorem to determine what the distribution of the mean of n samples \overline{x}_n looks like (either Normal or Student T centered around θ_0 and scaled down by factor of \sqrt{n}). When we actually sample, the value $\overline{x}_n = \hat{\theta}$ is realized, and we would like to see if sampling $\hat{\theta}$ from the distribution centered around θ_0 is likely, usually after normalizing. If it isn't, then we reject H_0 .

How do we decide whether to use the z-test or the t-test? It is known that $\operatorname{StudentT}(n-1)$ converges to $\mathcal{N}(0,1)$ in distribution as $n \to +\infty$. Therefore, depending on the context of the problem, at a certain point N (usually N=30 or perhaps higher for skewed distributions), the difference between these two are negligible.

- 1. Z-test: if we know the population variance σ^2 , but it is rarely the case that we actually know σ^2 .
- 2. T-test: if we do not know the population variance σ^2 , which we then substitute for the sample variance S^2 .
- 3. Z-test: if we do not know the population variance (which we substitute for S^2), but our sample size is greater than N, then we can approximate the t-distribution with our normal, allowing us to use the Z-test again.

In general, the alternative to the null hypothesis $H_0: \theta = \theta_0$ will looks like one of the following three assertions:

- 1. Two-Sided Test: $H_a: \theta \neq \theta_0$
- 2. One-Sided Test: $H_a: \theta > \theta_0$ (in which case the null hypothesis is $\theta \leq \theta_0$)
- 3. One-Sided Test: $H_a: \theta < \theta_0$ (in which case the null hypothesis is $\theta \geq \theta_0$)

Now we must still quantify how unlikely our sample mean θ must be compared to θ_0 in order to reject the null hypothesis. This is where we specify our **significance level**, denoted by α (common values 0.10, 0.05, 0.01). This specifies the tail-regions in which θ will land in with probability α . Usually, working with general normal/t distributions is tedious, so we can rescale them and use their z/t-scores.

Definition 2.3 (Z-score). Given a value x sampled from distribution $X \sim \mathcal{N}(\mu, \sigma^2)$, its **z-score** is defined to be the number of standard deviations away from the mean.

$$z \coloneqq \frac{x - \mu}{\sigma}$$

Now given a significance level $\alpha \in [0, 1]$, let z_{α} be the value such that the measure of a standard normal distribution past z_{α} is $1 - \alpha$ (i.e. the 100α percentile). z_{α} is called the **critical z-value**.

Definition 2.4 (T-score). Given a value x sampled from distribution $X \sim \text{StudentT}(n)$, its **t-score** is defined to be the number of standard deviations away from the mean.

Example 2.5. A factory has a machine that dispenses 80mL of fluid in a bottle. An employee believes the average amount of fluid is not 80mL. Using 40 samples, he measures the average amount dispensed by the machine to be 78mL with a sample standard deviation of 2.5.

- 1. Let the true mean be μ and true standard deviation be σ . The null hypothesis is $H_0: \mu = 80$ and the alternative is $H_1: \mu \neq 80$, making this a two-sided test.
- 2. We don't know the true standard deviation σ , so we must use the sample standard deviation S. This requires us to use the t-test, but since n > 30, we can invoke CLT and state that \overline{x}_{40} is (approximately) Gaussian with mean μ and standard deviation S/\sqrt{n} . So, we use the z-test.
- 3. At a 95% confidence level, we have $\alpha = 0.05$, and our rejection region is $(-\infty, z_{0.025}] \cup [z_{0.975}, +\infty)$. Since we are looking at a standard Gaussian, we have by symmetry $z_{0.025} = -1.96$ and $z_{0.975} = 1.96$, and our critical z-value is $z^* = 1.96$.
- 4. So the z-score for 78 is

$$z = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} = \frac{78 - 80}{2.5/\sqrt{40}} = -5.06$$

which is definitely in the reject region. So this tells us that we can reject the null hypothesis with a 95% level of confidence.

Example 2.6. A company manufactures car batteries with an average life span of 2 or more years. An engineer believes this value to be less. Using 10 samples, he measures the average life span to be 1.8 years with a standard deviation of 0.15.

- 1. Let the true mean be μ and true standard deviation be σ . The null hypothesis is $H_0: \mu \geq 2$ and the alternative is $H_1: \mu < 2$, making this a one-sided test.
- 2. We don't know the true standard deviation σ , so we must use the sample standard deviation S. This requires us to use the t-test, especially since n = 10 is not large enough for us to invoke CLT.
- 3. At a 99% confidence level, we have $\alpha = 0.01$, and our rejection region is $(-\infty, t_{0.01}] = (-\infty, -2.82]$.
- 4. The t-score for the observed mean value is

$$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} = \frac{1.8 - 2}{0.15/\sqrt{10}} = -4.22$$

which is definitely in the reject region. So this tells us that we can reject the null hypothesis with a 99% level of confidence.

We may have to account for errors. There is always a chance that our evidence leads us to an incorrect conclusion, and we have names for this.

Definition 2.5 (Errors). Given a hypothesis test where we look for evidence supporting our alternative claim,

- 1. A **type 1 error** is when the null hypothesis is rejected, but it is true (false positive).
- 2. A type 2 error is when we fail to reject the null hypothesis, when it is false (false negative).

3 Concentration of Measure

Now let's move on to concentration inequalities, which say that the probability that a random variable is greater than something is bounded by something. These probability bounds are extremely useful in of themselves. It allows us to talk about convergence theory, which tells us what happens to a statistic, such as \overline{X} , as I get more and more data. The first inequality exploits the fact that the tails of a Gaussian RV decay very quickly, and a lot of concentration inequalities attempt to mimic this exponential bound but for non-Gaussian distributions.

Theorem 3.1 (Gaussian Tail Inequality). Given $X \sim \mathcal{N}(0,1)$, the inequality says that the probability of X taking values past a certain t decays exponentially.

$$\mathbb{P}(|X| > t) \le \frac{2e^{-t^2/2}}{t}$$

If we have $x_1, \ldots, x_n \sim \mathcal{N}(0, 1)$, then

$$\mathbb{P}(|\overline{X}| > t) \le \frac{2}{\sqrt{n}t}e^{-nt^2/2}$$

We can assume that the coefficient is less than 1 if n is large. The above tells us that this bound exponentially decays with t but also with the number of samples n.

Theorem 3.2 (Markov's Inequality). Given a nonnegative random variable X > 0, we have

$$\mathbb{P}(X > t) \le \frac{\mathbb{E}[X]}{t}$$

Proof. We have

$$\mathbb{E}[X] = \int_0^\infty x p_X(x) \, dx$$

$$\geq \int_t^\infty x p_X(x) \, dx$$

$$= t \int_t^\infty p_X(x) \, dx$$

$$= t \mathbb{P}(X > t)$$

Theorem 3.3 (Chebyshev's Inequality). Given a random variable X with mean $\mu = \mathbb{E}[X]$, we have

$$\mathbb{P}(|x - \mu| > t) \le \frac{\operatorname{Var}(X)}{t^2}$$

Theorem 3.4 (Hoeffding's Inequality). Let x_1, x_2, \ldots, x_n be independent (not necessarily identical) random variables s.t. $a_i \leq X_i \leq b_i$ almost surely. Consider the random variable $\overline{X} = \frac{1}{n}(x_1 + \ldots + x_n)$. Then, for all t > 0,

$$\mathbb{P}(\left|\overline{X} - \mathbb{E}[\overline{X}]\right| \ge t) \le 2\exp\left(-\frac{2n^2t^2}{\sum_{i=1}^{n}(b_i - a_i)^2}\right)$$

Now in addition to bounding probabilities, we would like to bound expectations.

Theorem 3.5 (Cauchy-Schwartz). Given random variables X, Y, it is often hard to compute the expectation of XY since it is hard to compute the distribution of it (sums are easy). But we can bound it as

$$|\mathbb{E}[XY]| \leq \mathbb{E}[|XY|] \leq \sqrt{\mathbb{E}[X]\,\mathbb{E}[Y]}$$

Theorem 3.6 (Jensen's Inequality). Given g a convex function and X a random variable, we have

$$\mathbb{E}[g(X)] \ge g(\mathbb{E}[X])$$

3.1 Kullback Leibler Divergence

Now a popular metric between PMFs/PDFs is the KL divergence.

Definition 3.1 (Kullback-Leibler Divergence). Given random variable X and Y,

1. If they are discrete with PMFs P and Q, the KL-divergence is defined

$$D_{KL}(P \parallel Q) \coloneqq \sum_{x} P(x) \log \left(\frac{P(x)}{Q(x)} \right) = \mathbb{E} \left[\log \frac{P(x)}{Q(x)} \right]$$

where we can interpret the expectation as $X \sim p$.

2. If they are continuous with PDFs p and q, the KL-divergence is defined

$$D_{KL}(p \mid\mid q) := \int p(x) \log \left(\frac{p(x)}{q(x)}\right) dx = \mathbb{E}\left[\log \frac{P(x)}{Q(x)}\right]$$

where we can interpret the expectation as $X \sim p$.

We should prove that this is indeed a metric.

- 1. The fact that $D_{KL}(p \mid p) = 0$ is obvious.
- 2. To prove that $D_{KL}(p \mid q) \geq 0$, we use Jensen's inequality

$$-D_{KL}(p \mid q) = \mathbb{E}\log\frac{q(X)}{p(X)} \le \log\mathbb{E}\frac{q(X)}{p(X)} = \log\int\frac{q(x)}{p(x)}p(x) dx = \log(1) = 0$$

It is a common trick to switch the log and the expectation using Jensen's.

3.2 Bounding Maximum of Random Variables

Given that we have n samples $x_1, \ldots, x_n \sim P$, it is conventional to index them with open brackets to denote order

$$X_{(1)} \le X_{(2)} \le \ldots \le X_{(n)}$$

Our goal is now to find the distribution of $X_{(n)} = \max_i X_i$. If we know the distribution of P, $\mathbb{P}(X_{(n)} \leq x)$ is just the probability that all the X_i 's are less than x, and by independence we can product out the CDFs, differentiate to get the PDF, and compute. So it's not too hard to do this theoretically, but in practice this is hard to do since we don't exactly know P.

So if you didn't know the X_i 's, the best you can assume is that

$$\mathbb{E} \max\{x_1,\ldots,x_n\}$$

is going to grow like n. But if we can bound the MGF with $\mathbb{E}e^{tX} \leq e^{t^2\sigma^2}2$, then we can show that $\mathbb{E}\max X_i$ doesn't grow like n, but rather like $\log n$.

$$\mathbb{E} \max X_i \le \sigma \sqrt{2 \log n}$$

3.3 Big-O, Little-O Notation

Going back to calculus, if we have a function $f: X \longrightarrow \mathbb{R}$, we can say that

1. f(x) = O(g(x)) if f is of the same order as g. That is, they grow at the same rate

$$\frac{f(x)}{g(x)} \to c \text{ as } x \to \infty$$

for some constant c.

2. f(x) = o(g(x)) if f is negligible w.r.t. g. That is, f is infinitesimal w.r.t. g.

$$\frac{f(x)}{g(x)} \to 0 \text{ as } x \to \infty$$

for some constant c.

Now there is a probabilistic notation as well. The concept of boundedness translates to being able to capture most of the mass of the random variable within some interval, and infinitesimality translates to the probability mass concentrating around 0.

Definition 3.2 $(O_p, o_p \text{ Notation})$. Let x_1, x_2, \ldots be a sequence of random variables.

1. $x_n = o_p(1)$ if

$$\mathbb{P}(|Y_n| > \epsilon) \to 0 \text{ as } n \to \infty$$

for all $\epsilon > 0$. This means that x_n gets more and more concentrated around 0.

2. $x_n = O_p(1)$ if for all $\epsilon > 0$, then there exists a C s.t.

$$\mathbb{P}(|x_n| > C) \le \epsilon$$

for all large n. That is, we can always trap the majority of the probability mass of x_n within the interval [-C, C]. This must hold for all x_n with n > N, so the mass can't "escape" to infinity. We can think of it as the distribution is "settling down" and not shooting off to somewhere.

3. $x_n = o_p(a_n)$ means that

$$\frac{x_n}{a_n} = o_p(1)$$

4. $x_n = O_p(a_n)$ means that

$$\frac{x_n}{a_n} = O_p(1)$$

Theorem 3.7. Given $Y_1, \ldots Y_n \sim \text{Bernoulli}(p)$, let $\widehat{p} = \frac{1}{n} \sum Y_i$. Then

$$\widehat{p}_n - p = o_p(1)$$

which is also written $\hat{p}_n = p + o_p(1)$, which means that the random variable \hat{p}_n is some constant p plus a random variable that is going to 0.

Proof. By Hoeffding's inequality,

$$\mathbb{P}(|\widehat{p}_n - p| > \epsilon) \le 2e^{-2n\epsilon^2}$$

which goes to 0 as $n \to \infty$.

Example 3.1. Given $Y_1, \ldots Y_n \sim \text{Bernoulli}(p)$, let $\widehat{p} = \frac{1}{n} \sum Y_i$. Then,

$$\widehat{p} - p = O_p \left(\frac{1}{\sqrt{n}} \right)$$

4 Regression

Given the data, we would like to estimate the value of Y given X. More specifically, when $\omega \in \Omega$ is realized, $X(\omega)$ is realized, which should tell us something about what the value of $Y(\omega)$ is. The best way to estimate Y given X = x is just the take the conditional expectation:

$$\psi(x) = \mathbb{E}[Y \mid X = x]$$

Here, ψ is our regressor function. But this function holds when the value of x is known and can be controlled. This is not the case in most observational experiments, so we just consider $\psi(X) = \mathbb{E}[Y \mid X]$, which is a transformed random variable of X that approximates Y as best as we can.