TD 2.1 Différentiabilité

Exercice 1

a) Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ l'application donnée par

$$f(x,y) = \begin{vmatrix} \frac{y^2}{x} & \text{si } x \neq 0 \\ y & \text{si } x = 0 \end{vmatrix}$$

Montrer que f admet une dérivée suivant toutes les directions mais n'est pas différentiable en 0 ni même continue en 0.

- **b)** Étudier suivant les valeurs de $\alpha > 0$, la différentiabilité en (0,0) de l'application $f:(x,y) \in \mathbb{R}^2 \mapsto |xy|^{\alpha}$.
- c) Soit U un ouvert de \mathbb{R}^2 , soit $f: U \to \mathbb{R}$ telle que

$$\forall (x,y) \in U, \partial_1 f(x,y) = 0$$

A-t-on f(x,y) = g(y)? (ie que f ne dépend pas de la première variable?)

- **d)** Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction différentiable. On définit $g: (x,y) \mapsto f(y,x), g_1: (x,y) \mapsto f(x,y+x)$ et $h: x \mapsto f(x,-x)$. Calculer $\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g_1}{\partial x}, \frac{\partial g_1}{\partial y}$ et h'(x).

 Remarque: Cet exemple illustre bien l'intérêt d'écrire $\frac{\partial f}{\partial e_i}$ ou ∂_i au lieu de $\frac{\partial f}{\partial x_i}$.
- **e)** Soient $f: \mathbb{R}^n \longrightarrow \mathbb{R}^p$, $g: \mathbb{R}^p \longrightarrow \mathbb{R}^q$ et $h: \mathbb{R}^{(n+p)} \longrightarrow \mathbb{R}^q$. On note Df(a) la matrice telle que $df_a(u) = Df(a)u$ (en identifiant u et son écriture vectorielle).
 - i Quel lien y a-t-il entre $D(f \circ g)$, Df et Dg?
 - ii Soit (e_1, \dots, e_{n+p}) une base de \mathbb{R}^{n+p} . On s'intéresse à la dérivée partielle de h par rapport aux n premières variables, quel est le lien entre sa matrice et la matrice de dh?
 - iii On suppose ici n = p, soit $a \in \mathbb{R}^n$ tel que df est un C^1 -difféomorphisme. Quel est le lien entre Df(a) et $D(f^{-1})(f(a))$.
- f) Soit f définie sur $\mathbb{R}^n \setminus \{0\}$ et différentiable sur cet ensemble. Montrer que

$$\forall x \in \mathbb{R}^n \setminus \{0\}, \ \sum_{i=1}^n x_i \frac{\partial f}{\partial x_i}(x) = kf(x)$$

est équivalent à $\forall x \in \mathbb{R}^n \setminus \{0\}$, $\forall t \in \mathbb{R}^*$, $f(tx) = t^k f(x)$ (on dit que la fonction est homogène). **Exercice 2** Soit $n \in \mathbb{N}$.

- a) On se place sur $M_n(\mathbb{R})$. Calculer le gradient des applications Trace et Déterminant.
- b) Soit I une partie de [|1,n|]. Pour $A \in M_n(\mathbb{R})$, on note $|A_I|$ le mineur principal de A obtenu en considérant les lignes et les colonnes d'indice appartenant à I. Déterminer le gradient de $f: M_n(\mathbb{R}) \to \mathbb{R}$ telle que $f(A) = |A_I|$.

c) Calculer la différentielle de l'application $f: \mathbb{R}^n \to \mathbb{R}$ définie par :

$$f(x) = \frac{1}{2}\langle Ax, x \rangle + \langle d, x \rangle + \delta$$

avec $A \in M_n(\mathbb{R})$, $d \in \mathbb{R}^n$ et $\delta \in \mathbb{R}$. Cas où A est symétrique?

- **d)** Ćalculer la différentielle de $f: GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$ telle que $f(A) = A^{-1}$. Indication : commencer par déterminer la différentielle en I_n en introduisant une norme d'algèbre sur $M_n(\mathbb{R})$. Généraliser ensuite à une matrice inversible quelconque.
- e) Calculer la différentielle de l'application $f: \mathbb{R}^n \{0\} \to \mathbb{R}$ telle que

$$f(x) = \frac{\langle Ax, x \rangle}{\|x\|^2}.$$

Exercice 3

Soit $f:[1,\infty,[\to\mathbb{R}]$ une fonction dérivable croissante telle que f(x) croit vers $+\infty$ et f'(x) décroit vers 0 lorsque x tend vers $+\infty$. Montrer que les points $\exp(-if(n))$, pour n entier strictement positif, sont denses sur le cercle unité.

Exercice 4 Soient $E = \mathbb{R}_n[X]$ $(n \in \mathbb{N}^*)$ et I un intervalle ouvert de \mathbb{R} . Montrer que l'application $\Phi: E \times I \to \mathbb{R}$ telle que $\Phi(P, x) = P(x)$ est différentiable et calculer sa différentielle.

Exercice 5 On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}^2$ telle que f(x,y) = (x+y,xy)

- a) Montrer que f est de classe C^{∞} . Calculer la différentielle de f en (x, y). Déterminer l'ensemble S des points $(x, y) \in \mathbb{R}^2$ en lesquels $\mathrm{d} f_{(x,y)}$ est inversible.
- **b)** Calculer $f(\mathbb{R}^2)$. L'application f est-elle un difféomorphisme de \mathbb{R}^2 sur $f(\mathbb{R}^2)$? L'application f est-elle un difféomorphisme de S sur f(S)? Trouver un ouvert connexe maximal U de \mathbb{R}^2 tel que f soit un difféomorphisme de U sur f(S).

Exercice 6 Soit * une loi de groupe sur \mathbb{R} dont on note e l'élément neutre. On suppose que la fonction f définie par f(x,y) = x * y est de classe C^1 sur \mathbb{R}^2 . On note $\partial_1 f$ et $\partial_2 f$ les dérivées partielles.

a) Montrer que pour tous $x, y \in \mathbb{R}$:

$$(\partial_2 f)(x * y, e) = (\partial_2 f)(x, y).(\partial_2 f)(y, e)$$

b) On cherche maintenant à construire une application ϕ de classe C^1 sur $\mathbb R$ telle que :

$$\phi(x * y) = \phi(x) + \phi(y)$$

Montrer que nécessairement ϕ est de la forme : $\phi(x) = a \int_e^x \frac{dt}{(\partial_2 f)(t, e)}$

c) Réciproquement, montrer que toute application de la forme précédente est C^1 et transforme la loi * en l'addition.

Exercice 7 On munit l'espace \mathbb{R}^n d'une norme quelconque et on note B_r la boule de centre 0 et de rayon r. Soit f un C^1 difféomorphisme entre deux ouverts U et V de \mathbb{R}^n contenant l'origine. On supposera pour simplifier que f(0) = 0.

a) Soit $\epsilon \in]0,1[$ fixé. Montrer qu'il existe R>0 tel que pour tout $x\in B_R,$

$$\| df(0)^{-1}(f(x)) - x \| \le \epsilon \|x\|$$

- **b)** Montrer qu'il existe R' > 0 tel que, pour $0 \le r \le R'$, $(1 \epsilon) df(0)(B_r) \subset f(B_r) \subset (1 + \epsilon) df(0)(B_r)$ Indication : Pour la première inclusion, observer que $f(B_R)$ est un voisinage de 0.
- c) Soit λ la mesure de Lebesgue sur \mathbb{R}^n dont on admet qu'elle satisfait la relation $\lambda(AX) = |\det(A)|\lambda(X)$ pour tout ensemble Lebesgue-mesurable X et toute application linéaire $A \in \mathcal{L}(\mathbb{R}^n)$. Montrer alors que :

$$|\det df(0)| = \lim_{r \to 0} \frac{\lambda(f(B_r))}{\lambda(B_r)}$$