Randomized Search

The grid search approach is fine when you are exploring relatively few combinations, like in the previous example, but RandomizedSearchCV is often preferable, especially when the hyperparameter search space is large. This class can be used in much the same way as the GridSearchCV class, but instead of trying out all possible combinations it evaluates a fixed number of combinations, selecting a random value for each hyperparameter at every iteration. This may sound surprising, but this approach has several benefits:

- If some of your hyperparameters are continuous (or discrete but with many possible values), and you let randomized search run for, say, 1,000 iterations, then it will explore 1,000 different values for each of these hyperparameters, whereas grid search would only explore the few values you listed for each one.
- Suppose a hyperparameter does not actually make much difference, but you don't know it yet. If it has 10 possible values and you add it to your grid search, then training will take 10 times longer. But if you add it to a random search, it will not make any difference.
- If there are 6 hyperparameters to explore, each with 10 possible values, then grid search offers no other choice than training the model a million times, whereas random search can always run for any number of iterations you choose.

For each hyperparameter, you must provide either a list of possible values, or a probability distribution:

rnd_search.fit(housing, housing_labels)

Scikit-Learn also has HalvingRandomSearchCV and HalvingGridSearchCV hyperparameter search classes. Their goal is to use the computational resources more efficiently, either to train faster or to explore a larger hyperparameter space. Here's how they work: in the first round, many hyperparameter combinations (called "candidates") are generated using either the grid approach or the random approach. These candidates are then used to train models that are evaluated using cross-validation, as usual. However, training uses limited resources, which speeds up this first round considerably. By default, "limited resources" means that the models are trained on a small part of the training set. However, other limitations are possible, such as reducing the number of training iterations if the model has a hyperparameter to set it. Once every candidate has been evaluated, only the best ones go on to the second round, where they are allowed more resources to compete. After several rounds, the final candidates are evaluated using full resources. This may save you some time tuning hyperparameters.

Ensemble Methods

Another way to fine-tune your system is to try to combine the models that perform best. The group (or "ensemble") will often perform better than the best individual model—just like random forests perform better than the individual decision trees they rely on—especially if the individual models make very different types of errors. For example, you could train and fine-tune a *k*-nearest neighbors model, then create an ensemble model that just predicts the mean of the random forest prediction and that model's prediction. We will cover this topic in more detail in Chapter 7.

Analyzing the Best Models and Their Errors

You will often gain good insights on the problem by inspecting the best models. For example, the RandomForestRegressor can indicate the relative importance of each attribute for making accurate predictions:

```
>>> final_model = rnd_search.best_estimator_ # includes preprocessing
>>> feature_importances = final_model["random_forest"].feature_importances_
>>> feature_importances.round(2)
array([0.07, 0.05, 0.05, 0.01, 0.01, 0.01, 0.01, 0.19, [...], 0.01])
```

Let's sort these importance scores in descending order and display them next to their corresponding attribute names:

```
>>> sorted(zip(feature_importances,
... final_model["preprocessing"].get_feature_names_out()),
... reverse=True)
...
[(0.18694559869103852, 'log__median_income'),
(0.0748194905715524, 'cat__ocean_proximity_INLAND'),
(0.06926417748515576, 'bedrooms__ratio'),
(0.05446998753775219, 'rooms_per_house__ratio'),
(0.05262301809680712, 'people_per_house__ratio'),
(0.03819415873915732, 'geo__Cluster 0 similarity'),
[...]
(0.00015061247730531558, 'cat__ocean_proximity_NEAR BAY'),
(7.301686597099842e-05, 'cat__ocean_proximity_ISLAND')]
```

With this information, you may want to try dropping some of the less useful features (e.g., apparently only one ocean_proximity category is really useful, so you could try dropping the others).

TIP

The sklearn.feature_selection.SelectFromModel transformer can automatically drop the least useful features for you: when you fit it, it trains a model (typically a random forest), looks at its feature_importances_ attribute, and selects the most useful features. Then when you call transform(), it drops the other features.

You should also look at the specific errors that your system makes, then try to understand why it makes them and what could fix the problem: adding extra features or getting rid of uninformative ones, cleaning up outliers, etc.

Now is also a good time to ensure that your model not only works well on average, but also on all categories of districts, whether they're rural or urban, rich or poor, northern or southern, minority or not, etc. Creating subsets of your validation set for each category takes a bit of work, but it's important: if your model performs poorly on a whole category of districts, then it should probably not be deployed until the issue is solved, or at least it should not be used to make predictions for that category, as it may do more harm than good.

Evaluate Your System on the Test Set

After tweaking your models for a while, you eventually have a system that performs sufficiently well. You are ready to evaluate the final model on the test set. There is nothing special about this process; just get the predictors and the labels from your test set and run your final_model to transform the data and make predictions, then evaluate these predictions:

```
X_test = strat_test_set.drop("median_house_value", axis=1)
y_test = strat_test_set["median_house_value"].copy()
final_predictions = final_model.predict(X_test)
final_rmse = mean_squared_error(y_test, final_predictions, squared=False)
print(final_rmse) # prints 41424.40026462184
```

In some cases, such a point estimate of the generalization error will not be quite enough to convince you to launch: what if it is just 0.1% better than the model currently in production? You might want to have an idea of how precise this estimate is. For this, you can compute a 95% *confidence interval* for the generalization error using scipy.stats.t.interval(). You get a fairly large interval from 39,275 to 43,467, and your previous point estimate of 41,424 is roughly in the middle of it:

```
>>> from scipy import stats
>>> confidence = 0.95
>>> squared_errors = (final_predictions - y_test) ** 2
>>> np.sqrt(stats.t.interval(confidence, len(squared_errors) - 1,
... loc=squared_errors.mean(),
... scale=stats.sem(squared_errors)))
...
array([39275.40861216, 43467.27680583])
```

If you did a lot of hyperparameter tuning, the performance will usually be slightly worse than what you measured using cross-validation. That's because your system ends up fine-tuned to perform well on the validation data and will likely not perform as well on unknown datasets. That's not the case in this example since the test RMSE is lower than the validation RMSE, but

when it happens you must resist the temptation to tweak the hyperparameters to make the numbers look good on the test set; the improvements would be unlikely to generalize to new data.

Now comes the project prelaunch phase: you need to present your solution (highlighting what you have learned, what worked and what did not, what assumptions were made, and what your system's limitations are), document everything, and create nice presentations with clear visualizations and easy-to-remember statements (e.g., "the median income is the number one predictor of housing prices"). In this California housing example, the final performance of the system is not much better than the experts' price estimates, which were often off by 30%, but it may still be a good idea to launch it, especially if this frees up some time for the experts so they can work on more interesting and productive tasks.

Launch, Monitor, and Maintain Your System

Perfect, you got approval to launch! You now need to get your solution ready for production (e.g., polish the code, write documentation and tests, and so on). Then you can deploy your model to your production environment. The most basic way to do this is just to save the best model you trained, transfer the file to your production environment, and load it. To save the model, you can use the joblib library like this:

import joblib

joblib.dump(final_model, "my_california_housing_model.pkl")

TIP

It's often a good idea to save every model you experiment with so that you can come back easily to any model you want. You may also save the cross-validation scores and perhaps the actual predictions on the validation set. This will allow you to easily compare scores across model types, and compare the types of errors they make.

Once your model is transferred to production, you can load it and use it. For this you must first import any custom classes and functions the model relies on (which means transferring the code to production), then load the model using joblib and use it to make predictions:

```
import joblib
[...] # import KMeans, BaseEstimator, TransformerMixin, rbf_kernel, etc.

def column_ratio(X): [...]
  def ratio_name(function_transformer, feature_names_in): [...]
  class ClusterSimilarity(BaseEstimator, TransformerMixin): [...]

final_model_reloaded = joblib.load("my_california_housing_model.pkl")

new_data = [...] # some new districts to make predictions for
  predictions = final_model_reloaded.predict(new_data)
```

For example, perhaps the model will be used within a website: the user will type in some data about a new district and click the Estimate Price button. This will send a query containing the data to the web server, which will forward it to your web application, and finally your code will simply call the model's predict() method (you want to load the model upon server startup, rather than every time the model is used). Alternatively, you can wrap the model within a dedicated web service that your web application can query through a REST API ¹³ (see Figure 2-20). This makes it easier to upgrade your model to new versions without interrupting the main application. It also simplifies scaling, since you can start as many web services as needed and load-balance the requests coming from your web application across these web services. Moreover, it allows your web application to use any programming language, not just Python.

Figure 2-20. A model deployed as a web service and used by a web application

Another popular strategy is to deploy your model to the cloud, for example on Google's Vertex AI (formerly known as Google Cloud AI Platform and Google Cloud ML Engine): just save your model using joblib and upload it to Google Cloud Storage (GCS), then head over to Vertex AI and create a new model version, pointing it to the GCS file. That's it! This gives you a simple web service that takes care of load balancing and scaling for you. It takes JSON requests containing the input data (e.g., of a district) and returns JSON responses containing the predictions. You can then use this web service in your website (or whatever production environment you are using). As you will see in Chapter 19, deploying TensorFlow models on Vertex AI is not much different from deploying Scikit-Learn models.

But deployment is not the end of the story. You also need to write monitoring code to check your system's live performance at regular intervals and trigger alerts when it drops. It may drop very quickly, for example if a component breaks in your infrastructure, but be aware that it could also decay very slowly, which can easily go unnoticed for a long time. This is quite common

because of model rot: if the model was trained with last year's data, it may not be adapted to today's data.

So, you need to monitor your model's live performance. But how do you do that? Well, it depends. In some cases, the model's performance can be inferred from downstream metrics. For example, if your model is part of a recommender system and it suggests products that the users may be interested in, then it's easy to monitor the number of recommended products sold each day. If this number drops (compared to non-recommended products), then the prime suspect is the model. This may be because the data pipeline is broken, or perhaps the model needs to be retrained on fresh data (as we will discuss shortly).

However, you may also need human analysis to assess the model's performance. For example, suppose you trained an image classification model (we'll look at these in Chapter 3) to detect various product defects on a production line. How can you get an alert if the model's performance drops, before thousands of defective products get shipped to your clients? One solution is to send to human raters a sample of all the pictures that the model classified (especially pictures that the model wasn't so sure about). Depending on the task, the raters may need to be experts, or they could be nonspecialists, such as workers on a crowdsourcing platform (e.g., Amazon Mechanical Turk). In some applications they could even be the users themselves, responding, for example, via surveys or repurposed captchas.

Either way, you need to put in place a monitoring system (with or without human raters to evaluate the live model), as well as all the relevant processes to define what to do in case of failures and how to prepare for them. Unfortunately, this can be a lot of work. In fact, it is often much more work than building and training a model.

If the data keeps evolving, you will need to update your datasets and retrain your model regularly. You should probably automate the whole process as much as possible. Here are a few things you can automate:

• Collect fresh data regularly and label it (e.g., using human raters).