Dr Katarzyna Grzesiak-Kopeć

Inżynieria oprogramowania

11 Modelowanie analityczne

Plan wykładu

- Tworzenie oprogramowania
- Najlepsze praktyki IO
- Inżynieria wymagań
- Technologia obiektowa i język UML
- Techniki IO
- Metodyki zwinne
- Refaktoryzacja
- Mierzenie oprogramowania
- Jakość oprogramowania
- Programowanie strukturalne
- Modelowanie analityczne
- Wprowadzenie do testowania

Model analityczny

- Powinien być:
 - Opisem wymagań klienta stawianych systemowi
 - Podstawą późniejszych działań projektowych
 - Definicją kryteriów oceny produktu

Model analityczny

- Analiza obiektowa
- Analiza strukturalna
- i inne...

Analiza strukturalna

- Zestaw metod do modelowania oprogramowania
 - Pierwsze techniki 60te/70te lata
- Tworzenie modeli
 - Danych
 - Funkcji
 - Zachowania systemu

Model analityczny

- Słownik danych
 - Opisy wszystkich obiektów danych pobieranych i tworzonych przez modelowany system
- Diagram encja-związek (diagram związków encji)
 - Entity-Relationship Diagram (ERD)
 - Zależności między obiektami danych
- Diagram przepływu danych
 - Data Flow Diagram (DFD)
 - Opisuje sposób przetwarzania danych
 - Przedstawia procedury przetwarzające dane

Model analityczny

- Diagram przejść
 - State Transition Diagram (STD)
 - Opisuje zachowanie systemu w zależności od zachodzących zdarzeń

Struktura modelu analitycznego

Modelowanie danych

- Opisuje związane ze sobą informacje
 - Obiekty danych (encje)
 - Atrybuty
 - Związki

ENCJA: pojęcie bazowe (niedefiniowalne); podstawową cechą encji jest to, że jest rozróżnialna od innych encji

Obiekt danych

- Złożony element informacji
- Ma kilka atrybutów, np.:

Rozmiar: długość, szerokość, wysokość

Długość (liczba) nie jest obiektem danych

Imię i Nazwisko: Z. Kowalski

ld pracownika: 54331

Data zatrudnienia: 01.09.2000

Status: umowa na 4 lata

Przedmiot: chemia

Max ilość zajęć: 3 w tygodniu

Obiekty danych

- Zewnętrzne elementy systemu: urządzenia dostarczające i pobierające dane
- Rzeczy: raporty
- Rodzaje zdarzeń: alarm
- Wystąpienia zdarzeń: konkretna rozmowa telefoniczna
- Role: nauczyciel
- Struktury organizacyjne: dział księgowości
- Struktury danych: pliki

Obiekty danych

- Wyłącznie dane bez opisu operacji przetwarzania tych danych
- Obiekt danych można opisać w postaci tabeli

ld	Imię	Nazwisko	Tytuł	MaxGodz	Szef	30%
1100	Zbigniew	Kowalski	Profesor	6		
						PI U

Atrybuty

- Określają cechy obiektu danych
 - Nazwa wystąpienia obiektu
 - Opis jego własności
 - Odniesienia do innych wystąpień w innych tabelach
- Identyfikator
 - Zestaw atrybutów służących jako klucz wyszukiwania (nie musi być unikalny)

Atrybuty

- Zależą od roli obiektu danych w kontekście konkretnego problemu
 - Zbigniew Kowalski nauczyciel
 - Zbigniew Kowalski student
 - Zbigniew Kowalski pacjent
 - O ...

Związki

ZAMAWIA

POKAZUJE

SPRZEDAJE

ZWRACA

księgarnia

PRZECHOWUJE

Związki

Liczebność

- Maksymalna liczba wystąpień obiektów objętych związkiem
- 1:1 jeden do jeden
- 1:M jeden do wiele
- M:M wiele do wiele

Modalność

- Związek opcjonalny modalność=0
- Związek obowiązkowy modalność=1

Awaria telefonu

LICZEBNOŚĆ:

Tylko jeden klient czeka na naprawę(y)

KLIENT

MODALNOŚĆ:

Każda naprawa jest związana z pewnym klientem OBOWIĄZKOWY

LICZEBNOŚĆ:

Usunięcie awarii może wymagać wielu napraw

NAPRAWA

MODALNOŚĆ:

Może się zdarzyć, że naprawa nie jest konieczna OPCJONALNY

Entity-Relationship Diagram

- Diagram związków encji (ERD)
- Peter Chen, The Entity-Relationship Model Toward a Unified View of Data, '76; relacyjne bazy danych
- Przedstawia obiekty danych oraz związki pomiędzy nimi
- Ujęcie statyczne

ERD Dystrybucja aut

ERD Hierarchia typów

ERD Połączone obiekty

Modelowanie funkcji

- Diagramy przepływu danych (Data Flow Diagrams)
- Rozszerzenia DFD dla systemów czasu rzeczywistego
- Przez wielu twórców systemów są one traktowane jako synonim podejścia strukturalnego

Data Flow Diagram (DFD)

- Graficzna prezentacja przepływu danych w procesie
- Na proces składają się następujące elementy:
 - Funkcje (procesy)
 - Magazyny danych
 - Terminatory
 - Przepływy

DFD

- Funkcje (procesy)
 - Realizują określone cele; jeśli funkcji nie można rozbić na pod-funkcje, wówczas nosi ona nazwę elementarnej
- Magazyny danych
 - Trwałe lub tymczasowe składnice danych, argumenty dla funkcji

DFD

- Terminatory
 - Obiekty, które nie są częścią systemu, ale stanowią odbiorców bądź źródła danych lub argumentów funkcji; elementy zewnętrzne
- Przepływy
 - Elementy pokazujące kierunek przesyłu danych (np. bajtów, znaków, pakietów..)

DFD Notacja

Proces

Terminator

Przepływ

DFD

- Opisują system na dowolnym poziomie szczegółowości
 - Diagram kontekstowy
 - Diagram zerowy (systemowy)
 - Diagramy wyższych poziomów

Diagram kontekstowy

DFD Uwagi

- Ciągłość przepływu informacji
 - Dane wchodzące i wychodzące z każdego procesu nie mogą się zmienić po rozbiciu na podprocesy (zasada równoważenia)
- Stopień złożoności systemu
 - Prosty: od 2 do 3 poziomów
 - Średnio złożony: od 3 do 5 poziomów
 - System złożony: powyżej 5 poziomów

DFD Uwagi

- Nie wystarczają do opisu wymagań
 - Brak np. informacji o zawartości i strukturze przekazywanych informacji
- DFD należy uzupełnić tekstowym opisem elementów (Mówi co, ale nie mówi jak!)
 - Specyfikacje procesów
 - Opis wejścia
 - Algorytm
 - Opis wyjścia
 - Ograniczenia
 - Oczekiwana efektywność

DFD Uwagi

- Nie odwzorowuje zależności czasowych
- Zawiera zarówno ręczne, jak i zautomatyzowane procesy

Rozszerzenia DFD

- Rozszerzenia dla systemów czasu rzeczywistego
 - Ciągły i dyskretny przepływ
 - Przepływ sterowania i procesy sterujące
 - Wątki

Modelowanie zachowania

- Diagramy stanów
 - Stany
 - Widoczny na zewnątrz tryb działania np.: zajęty
 - Zdarzenia
 - Mogące powodować zmianę stanu np.: dzwonek
 - Możliwe przejścia między stanami
 - Opisują możliwe sekwencje stanów i akcji, przez które przechodzi element w czasie swego istnienia pod wpływem zdarzeń

Diagramy stanów

 Jest to skierowany graf stanów (węzły) połączonych tranzycjami (skierowane krawędzie)

Diagramy stanów

http://www.yourdon.com/strucanalysis/chapters/ch13.html

Bankomat

Telefon UML

KONIEC

