Healthcare Appointment No-Show Prediction

Tools Used

- **Programming:** Python (Pandas, Scikit-learn)
- Visualization & Reporting: Power BI

1. Data Collection & Preprocessing

Given dataset: The dataset contains historical medical appointment records with fields including:

- Patient ID
- Appointment Date and Day
- Age
- Gender
- SMS Reminder (Yes/No)
- Scholarship (Medical aid)
- No-show status (Target variable)
- Hypertension, Diabetes, Alcoholism, Handicap
- Neighbourhood

Cleaning Steps in Python

- Removed invalid or negative values for age
- Dropped duplicate records
- Converted categorical features (e.g., No-show, Gender, SMS received) to numerical
- Converted date fields to datetime objects
- Engineered new features: Appointment Day, Wait Days, Is Weekend

2. Exploratory Data Analysis (EDA)

Key Findings:

- **SMS Reminders:** Patients who received SMS reminders were more likely to show up.
- **Age Factor:** Elderly patients (60+) had better attendance. Teenagers had higher noshow rates.
- **Days of the Week:** Friday appointments had higher no-show rates.
- Lead Time (Wait Days): Longer wait times were linked to higher no-shows.
- **Scholarship Influence:** Patients with medical aid (scholarship) had a slightly higher no-show rate.

3. Predictive Modeling

Model Used: Decision Tree Classifier

Feature Set:

- Age
- SMS received
- Day of week
- Wait Days
- Scholarship
- Hypertension
- Diabetes
- Gender
- Handicap

Train-Test Split:

Train: 80%Test: 20%

Model Performance:

Accuracy: ~76%
Precision: 72%
Recall: 70%
F1 Score: 71%

Interpretation: The model moderately predicts the likelihood of a no-show and can be used to flag high-risk appointments.

4. Power BI Dashboard

Dashboards Developed:

- Appointment Trends Dashboard:
 - o Shows total appointments, no-shows, show rates by day of the week.
- Demographic Insights:
 - o Heatmaps of age vs. no-show rate.
- Impact of SMS Reminders:
 - o Bar chart comparing show rates between SMS-received vs. not.
- Neighborhood Analysis:
 - o Geo-distribution of high no-show regions.

5. Optimization Recommendations

Based on Insights:

Automated SMS Reminders

Implement multiple reminders (1 day before and on the morning of the appointment).

• Optimize Scheduling

Avoid high no-show days (e.g., Fridays) for first-time or high-risk patients.

• Overbooking Strategy

Slightly overbook during known high no-show slots based on model probability.

• Patient Follow-ups

For patients with high model-predicted no-show likelihood, follow up with calls or WhatsApp messages.

• Lead Time Management

Keep waiting periods under 7 days wherever possible.

6. Deliverables Summary

Deliverable	Description
Prediction Model	Python-based Decision Tree Classifier with 76% accuracy
BI Dashboard	Power BI dashboard covering show/no-show trends, SMS effectiveness, age demographics, and location analysis
Recommendation Report	Strategic suggestions for reducing no-shows through scheduling optimization and communication improvements

Submitted by Aishwarya P