Задачи 1.1 и 1.2. Найдите двумя способами (с помощью элементарных преобразований строк и с помощью элементарных преобразований столбцов) размерность и базис линейного подпространства, являющегося линейной оболочкой следующих векторов:

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 2 \\ 2 \\ 0 \\ 0 \\ -1 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 1 \\ 1 \\ 5 \\ 5 \\ 2 \end{pmatrix}, \quad v_5 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$

Как искать базис — мы разбирали на семинаре. Размерность равна числу базисных векторов.

Ранг матрицы определяется тремя способами; из них сейчас нам будет полезно два:

- Ранг матрицы это ранг системы её столбцов, то есть размерность линейной оболочки её столбцов (представьте, что столбцы матрицы - это векторы, которые мы просто почему-то записали внутри одних скобок);
- Ранг матрицы это ранг системы её строк, то есть размерность линейной оболочки её строк.

Можно доказать, что эти два определения всегда дают одно и то же число (будет на лекциях; впрочем, если вы вспомните, как мы искали ранги, то вы уже и сейчас сможете понять, почему это так).

Таким образом, чтобы найти ранг матрицы, не нужно никаких новых методов: просто приводите её к ступенчатому виду с помощью элементарных преобразований — и считаете число ненулевых строк в ступенчатом виде (это и будет ранг матрицы!).

Важное замечание: Когда вы ищете базис подпространства, вы должны выбрать, чем пользоваться: элементарными преобразованиями строк или элементарными преобразованиями столбцов и ни в коем случае не смешивать эти два типа преобразований. Когда же вы ищете просто ранг (системы векторов или матрицы), вы на самом деле можете пользоваться то одними, то другими; это не поменяет ответа.

Задачи 1.3 и 1.4. Найдите ранги следующих матриц:

$$a) \begin{pmatrix} 8 & 2 & 2 & -1 & 1 \\ 1 & 7 & 4 & -2 & 5 \\ -2 & 4 & 2 & -1 & 3 \end{pmatrix}, \qquad b) \begin{pmatrix} 77 & 32 & 6 & 5 & 3 \\ 32 & 14 & 3 & 2 & 1 \\ 6 & 3 & 1 & 0 & 0 \\ 5 & 2 & 0 & 1 & 0 \\ 4 & 1 & 0 & 0 & 1 \end{pmatrix}$$

В последнем пункте постарайтесь оптимизировать вычисления (уж точно не должно возникать дробей!).

Задачи 1.5 и 1.6. Найдите размерности следующих подпространств и придумайте в них какой-нибудь базис (на самом деле, вам нужно сначала придумать базис, а потом посчитать, сколько в нём элементов — и это число будет размерностью)

- а) В пространстве верхнетреугольных матриц 3×3 ;
- b) В пространстве кососимметричных матриц 3×3 .

Задачи 1.7 и 1.8. Докажите, что следующие системы векторов линейно независимы и дополните из до базиса пространства \mathbb{R}^5 :

$$a) \begin{pmatrix} 4 \\ 3 \\ -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -3 \\ 2 \\ -5 \end{pmatrix}, \begin{pmatrix} 1 \\ -3 \\ 0 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \\ 2 \\ -2 \\ 6 \end{pmatrix}$$
$$b) \begin{pmatrix} 2 \\ 3 \\ 5 \\ -4 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 2 \\ 3 \\ 5 \end{pmatrix}$$

Задача 1.9 Докажите, что следующие матрицы образуют базис пространства матриц 2×2

$$E_1 = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, E_2 = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}, E_3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, E_4 = \begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix}$$

Указание: просто вытяните их в векторы и докажите, что они линейно независимы. Так как мы уже знаем, что пространство матриц имеет размерность 4, любые 4 линейно независимых матрицы будут базисом.

Задача 1.10 Из набора многочленов x^2+x-2 , $2x^2+x-3$, x^2-1 , $4-2x-2x^2$, 3x+1 выберите те, которые образуют базис пространства многочленов степени не выше 2.

Задачи 2.1 и 2.2. Найдите размерности следующих подпространств и придумайте в них какой-нибудь базис (на самом деле, вам нужно сначала придумать базис, а потом посчитать, сколько в нём элементов — и это число будет размерностью)

- 2.1) В подпространстве пространства \mathbb{R}^4 , состоящем из векторов x, для которых $x_1+x_2+x_3+x_4=0$ (Подсказка: поверьте пока, что размерность подпространства, задаваемого одним линейным уравнением, на 1 меньше размерности всего пространства; из этого следует, что рассматриваемое подпространство имеет размерность 3; значит, чтобы найти его базис, достаточно добыть три линейно независимых вектора, лежащих в этом подпространстве; соответственно, вам надо их угадать или подобрать, а потом доказать, что они линейно независимы);
- 2.2) В подпространстве пространства $\mathbb{R}[x]_3$ многочленов степени не выше 3 с действительными коэффициентами, состоящем из многочленов f(x), для которых f(-1) = 0 (Hodckaska: такой многочлен можно представлять себе как вектор длины 4, состоящий из коэффициентов многочлена; условие f(-1) = 0 будет линейным уравнением).

Линейная независимость функций. Допустим, вас просят доказать, что функции 1, $\sin x$ и $\cos x$ линейно независимы. Бессмысленно говорить, что "ну, они же связаны только квадратичным соотношением $\sin^2 x + \cos^2 x - 1 = 0$ ". На это вам любой возразит: "да, может, просто в школе от вас скрывали самые главные формулы, вот вы и не знаете ничего". Вы можете ещё поупираться, но лучше вместо этого доказать их линейную независимость простым и элегантным способом.

Для этого заметим, что если сами функции связаны некоторым линейным соотношением, то и любые их значения тоже ему подчинены: если $a+b\sin x+c\cos x=0$, то $a+b\sin x_0+c\cos x_0=0$ для любого конкретного x_0 . Ну, и подставим какие-нибудь конкретные значения. Например, $0, \frac{\pi}{2}$ и π (значений я взял три — столько же, сколько и функций). Получим:

при
$$x=0$$
:
$$a+b\cdot 0+c\cdot 1;$$
 при $x=\frac{\pi}{2}$:
$$a+b\cdot 1+c\cdot 0;$$
 при $x=\pi$:
$$a+b\cdot 0+c\cdot (-1).$$

Это даёт нам систему на a, b и c с матрицей

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

В принципе, невооружённым взглядом видно, что эта матрица невырожденная. Таким образом, система с этой матрицей имеет только нулевое решение. И отсюда вывод: если $a+b\sin x+c\cos x=0$ — некоторое линейное соотношение, то a=b=c=0. То есть наши функции линейно независимы.

Итак, у нас есть следующий алгоритм доказательства линейной независимости n функций. Берём n точек, подставляем их в функцию, значения записываем в матрицу. Если матрица оказалась невырожденной, то смело делаем вывод о невырожденности матрицы. Замечу, что обратное, вообще говоря, неверно: если матрица получилось вырожденной, то вывод можно сделать только один — что точки подобраны плохие и надо взять другие. Например, функции x, x^3 и x^5 в точках (-1), 0 и 1 принимают одни и те же значения, но при этом они линейно независимы.

Задача 2.3. Докажите, что функции $\cos(x)$, $\cos(2x)$ и $\cos(3x)$ линейно независимы.

Задача 2.4. Пусть v_1,\ldots,v_n — линейно независимая система. При каких λ система $v_1+v_2,v_2+v_3,\ldots,v_{n-1}+v_n,v_n+\lambda v_1$ также является линейно независимой?

Задача 3.1. Пусть A — матрица $n \times n$. Докажите, что найдётся не равный тождественно нулю многочлен f(x), для которого f(A) = 0.

 $\Pi o d c \kappa a s \kappa a$: Рассмотрите все степени $E, A, A^2, ...$ и их линейную оболочку.

Задача 3.2. Докажите, что пространство бесконечных последовательностей вещественных чисел несчётномерно.

Указание. Поначалу кажется, что это неправильно и что базисом является набор последовательностей

$$(0,\ldots,0,1,0,\ldots)$$

(единица на i-м месте, а остальные нули). Но, например, последовательность из всех единиц не лежит в их линейной оболочке: ведь линейные комбинации в линейной алгебре бывают только конечными! Чтобы решить задачу, докажите, что система, состоящая их всех геометрических прогрессий вида $(1, \lambda, \lambda^2, \ldots)$, является линейно независимой, то есть то, что любой конечный набор таких прогрессий является линейно независимым. Поскольку множество таких прогрессий равномощно множеству действительных чисел, то это решит задачу.

Задача 3.3. Докажите, что пространство всех многочленов (от переменной x с коэффициентами из данного поля) является счётномерным.

Задача 3.4. Сколько базисов в n-мерном пространстве над конечным полем из q элементов?