(Kellwood) Kellwood, a company that produces a single product, has three plants and four customers. The three plants will produce 6000, 4000, and 5000 units, respectively, during the next time period. Kellwood has made a commitment to sell 3000 units to customer 1, 5000 units to customer 2, and at least 2000 units to customer 3. Both customers 3 and 4 also want to buy as many of the remaining units as possible. The profit associated with shipping a unit from each plant to each customer is given in the file P05_80.xlsx. Determine how to maximize Kellwood's profit

Kellwood data				
Unit profits	Cust 1	Cust 2	Cust 3	Cust 4
Plant 1	\$69	\$62	\$69	\$73
Plant 2	\$66	\$62	\$56	\$66
Plant 3	\$60	\$78	\$66	\$79

Discussion: -

Our objective is to increase profit for Kellwood. We must plan the distribution system between plants and customers. Total profit is sum-product of the unit profit and number of units distributed from a plant to customer. So, we can go for Number of units distributed from each plant to each customer as our decision variable.

Mathematical Model: -

Parameters (Inputs):

 $i \in 1,2,3$ (i: Index for plants) $j \in 1,2,3,4$ (j: Index for customers)

 A_{ii} : Profit associated with plant i and customer j

 P_i : Production capacity of plant i

 D_i : Demand from customer j { D_1 : 3000, D_2 : 5000, D_3 : 2000, D_4 : 0}

Decision Variables:

 x_{ij} : Units shipped from plant i to customer j

Objective:

Maximize total profit =
$$\sum_{i=1}^{4} \sum_{j=1}^{3} (x_{ij} * A_{ij})$$

Constraints:

$$\sum_{j=1}^{6} x_{ij} \le P_i \; ; \quad for \; i \in \{1,2,3\}$$
 (1) Production capacity constraint

$$\sum_{i=1}^{3} x_{ij} \ge D_j; \quad for \ j \in \{1,2,3,4\}$$
 (2) Demand constraint from each customer

Our model will not go for any negative decision values as it is maximization problem, so no need to define non-negative constraint in the model.

Excel Implementation: Please find the attached spreadsheet for solution.

35[RA].xlsx

Kellwood data									Inputs
Unit profits	Cust 1	Cust 2	Cust 3	Cust 4					Decision variables
Plant 1	\$69	\$62	\$69	\$73				Profit	Calculated Variables
Plant 2	\$66	\$62	\$56	\$66				1084000	Constraints
Plant 3	\$60	\$78	\$66	\$79					Objective
	Cust 1	Cust 2	Cust 3	Cust 4					
Plant 1	0	0	2000	4000	6000	<=	6000		
Plant 2	3000	0	0	1000	4000	<=	4000		
Plant 3	0	5000	0	0	5000	<=	5000		
	3000	5000	2000	5000					
	>=	>=	>=	>=					
	3000	5000	2000	0					