Applied Regression

Dr. Frank Wood

Nonparametric Regression Curves

- So far we have only dealt with parametric regression approaches
 - Linear
 - Transformed
- Other approaches exist as well
 - Method of moving averages
 - Interpolate between means outputs at adjacent inputs
 - Lowess
 - Locally weighted scatterplot smoothing

Lowess Method

Intuition

- Fit low-order polynomial (linear) regression models to points in a neighborhood
 - The neighborhood size is a parameter
 - Determining the neighborhood is done via a nearest neighbors algorithm
- Produce predictions by weighting the regressors by how far the set of points used to produce the regressor is from the input point for which a prediction is wanted
- While somewhat ad-hoc, it is a method of producing a nonlinear regression function for data that might seem otherwise difficult to regress.

Lowess example

Bonferroni Joint Confidence Intervals

- Calculation of Bonferroni joint confidence intervals is a general technique
- In class we will highlight its application in the regression setting
 - Joint confidence intervals for β_0 and β_1
- Intuition
 - Set each statement confidence level to greater than 1- α so that the family coefficient is at least 1- α

Ordinary Confidence Intervals

• Start with ordinary confidence limits for $\beta_{\rm o}$ and $\beta_{\rm o}$

$$b_0 \pm t(1-\alpha/2; n-2)S\{b_0\}$$

 $b_1 \pm t(1-\alpha/2; n-2)S\{b_1\}$

 And ask what the probability that one or both of these intervals is incorrect.

General Procedure

- Let A_1 denote the event that the first confidence interval does not cover β_0
- Let A_2 denote the event that the second confidence interval does not cover β_1 .
- We want to know

$$P(\bar{A}_1 \cap \bar{A}_2)$$

We know

$$P(A_1) = \alpha \ P(A_2) = \alpha$$

Venn Diagram

Bonferroni inequality

$$P(\bar{A}_1 \cap \bar{A}_2) \ge 1 - P(A_1) - P(A_2)$$

Joint Confidence Intervals

• If we know that β_0 and β_1 are estimated with, for instance, 95% confidence intervals, the Bonferroni inequality guarantees us a family confidence coefficient of at least 90% (if both intervals are correct)

$$P(\bar{A}_1 \cap \bar{A}_2) \ge 1 - \alpha - \alpha = 1 - 2\alpha$$

• To pick a family confidence interval (bound) the Bonferroni procedure instructs us how to adjust the value of α for each interval to achieve the overall interval of interest

1- α family confidence intervals

• ... for β_0 and β_1 by the Bonferroni procedure are

$$b_0 \pm Bs\{b_0\} \ b_1 \pm Bs\{b_1\}$$

$$B = t(1 - \alpha/4; n - 2)$$

Misc. Topics

- Simultaneous Prediction Intervals for New Observations
 - Bonferroni again
- Regression Through Origin
 - One fewer parameters
- Measurement errors in X
- Inverse Prediction