0
N
↽
0
ñ
~
0

Kohsaku Shibata

_		
;	Ι	=
ì	ī	
•	I	[
Ļ	1	Ĺ
ļ	•	_
•		ί
ı	i	ì

2/6/2007	Databases	FPRS; EPO; JPO; DERWENT;	FPRS; EPO; JPO; DERWENT; I	USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM	USPAT; USOCR; FPRS; EPO; JPO;	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	FPRS; EPO; JPO; DERWENT;	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	FPRS; EPO; JPO; DERWENT;	DERWENT;	USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_	FPRS; EPO; JPO; DERWENT; I	USOCR; FPRS; EPO; JPO; DERWENT; I	USOCR; FPRS; EPO; JPO; DERWENT; I	USOCR; FPRS; EPO; JPO; DERWENT;	USPAT; USOCR; FPRS; EPO; JPO; DERWENT;	USPAT; USOCR; FPRS; EPO; JPO; DERWENT; I	USPAT; USOCR; FPRS; EPO; JPO; DERWENT; I	USOCR; FPRS; EPO; JPO; DERWENT;	FPRS; EPO; JPO; DERWENT; I	USPAT; USOCR; FPRS; EPO; JPO; DERWENT; I	USOCR; FPRS; EPO; JPO; DERWENT; I	USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM	USPAT; USOCR; FPRS; EPO; JPO;	USPAT; USOCR; FPRS; EPO; JPO; DERWENT; I	USOCR; FPRS; EPO; JPO; DERWENT; I	USPAT; USOCR; FPRS; EPO; JPO; DERWENT; I	USPAT; USOCR; FPRS; EPO; JPO; DERWENT; I	USOCR; FPRS; EPO; JPO;	USPAT; USOCR; FPRS; EPO; JPO; DERWENT; I	USOCR; FPRS; EPO; JPO;	USOCR; FPRS;	USOCR; FPRS; EPO; JPO; DERWENT;	FPRS; EPO; JPO; DERWENT;	FPRS;	USOCR; FPRS; EPO; JPO;	USOCR; FPRS; EPO;	US-PGPUB; USPAI; USOCK; PPKS; EPO; JPO; DEKWENI; IBM_IDB
EAST SEARCH	Hits Search String		77 very long instruction word same simulat\$3				13 S4 and (simulat\$3 with ((group or set or plurality) near2 instruction))	408 S4 and simulat\$3	59 S7 and (simulat\$3 with instruction)	32 S7 and (simulat\$3 with cycle)						2 S7 and (display\$3 with simulat\$3 with result)			1 S7 and (simulat\$3 with stop with instruction)	S7 and	S7 and	12 S7 and (simulat\$3 with (simultaneous\$2 or concurrent\$2))			43 S7 and (pipeline with stage)				7 S7 and (step with execution with cycle)		14 S7 and ((reconstruct\$3 or creat\$3 or generat\$3) with resource)			3 S7 and (break with condition with determin\$3)			137 S7 and (updat\$3 with result)		_	4 S7 and (output near2 dependency)	162 S1 or S2 or S5 or S6 or S8 or S9 or S10 or S11 or S12 or S14 or S15 or S16 or S17 or S18 o US-PGPUB; USPAT;	183 S/ and ((updat\$3 or delay) with instruction)
	L #	S1	S2	જ	ጷ	SS	Se Se	S7	S9	S10	S12	S27	S11	S28	S13	S14	S 33	S35	S16	S17	S18	S19	S20	S21	S22	S23	S24	S47	S25	S26	S29	% %	S30	S31	S32	S36	S37	834 4E	S39	S38	£ 5	V40

USPAT; USOCR; FPRS; EPO; JPO; DERWENT; USOCR; FPRS; EPO; JPO; USOCR; FPRS; EPO; TPOCR; FPRS; EPOCR; FPRS; EPOCR; FPRS; EPOCR; FPRS; EPOCR; FPRS; EPOCR; FPRS; EPOCR; FPRS;	FPRS; EPO; JPO; DERWENT;	USPAT, USOCK, FPRS, EPO,	USOCR; FPRS; EPO, JPO; DERWENT; IBM USOCR; FPRS; EPO, JPO; DERWENT; IBM USOCR; FPRS; EPO, JPO; DERWENT; IBM USOCR; FPRS; EPO; JPO; DERWENT; IBM	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB ON near2 cycle)) US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB UCLION) US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB
	S54 and (simulat\$3 with stop with instruction) S54 and (display\$3 with simulat\$3 with result) S5 S49 or S50 S54 and (simulat\$3 with pipeline) S54 and (simulat\$3 with pipeline) S54 and (simulat\$3 with cycle-by-cycle) S54 and (simulat\$3 with instruction) S54 and (simulat\$3 with pipeline)			S87 or S89 S51 and (pipeline with instruction with (simu S54 and ((reconstruct\$3 or creat\$3 or gene S99 or S100 S54 and (break with condition with determir S54 and (by by second (count\$3 or chang\$3) with resour S54 and (count\$3 or number) with (executin S54 and (delay\$3 with (cycle or instruction)) S54 and (cancet\$3 with resouth S54 and (cancet\$3 with execution) S54 and (cancet\$3 with execution)
304 142 162 13 13 3 43	1 2 1952 50 102 102 2 2 3	8	10 10 102 7 7 7 9 9 2 28 6 6	162 8 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16
S42 S44 S45 S45 S61 S61 S68	S S S S S S S S S S S S S S S S S S S	855 855 855 855 850 850 851	\$63 \$70 \$65 \$67 \$71 \$72 \$72 \$73	S90 S94 S75 S101 S77 S82 S83 S83 S81

US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	2/6/2007	Issue Date Current OR Abstract 20060803 711/10 20060803 711/10 20060504 712/240 20060504 712/24 20060504 712/24 20060504 712/24 2006030 75/341 2006030 75/341 2006030 77/1/36 2005122 710/72 20051124 718/105 20051124 718/105 20050901 327/1/75 20050901 327/1/75 20050901 327/1/75 20050728 712/22 20050728 712/22 20050728 712/22 2005077 712/214 2005077 712/214 2005077 712/214 20050421 77/1/151
S67 or S76 or S83 or S86 or S85 S54 and (output near2 dependency) S54 and (updat\$3 or delay) with (information or instruction)) S54 and (updat\$3 or delay) with instruction) S57 and (updat\$3 or delay) with instruction) S51 and (ippeline with cycle) S51 and (pipeline with instruction) S51 and (pipeline with instruction) S53 or S94 or S95 S96 or S97 S96 and (S87 or S88) S91 and (cycle with debug\$4) S92 and (instruction with debug\$4) S92 and (instruction with debug\$4)	Kohsaku Shibata EAST SEARCH	se Title Speculative data loading using circular addressing or simulated circular addressing Methods and apparatus for automated generation of abbreviated instruction set and configur. Functional coverage driven test generation for validation of pipelined processors Functional coverage driven test generation for validation of pipelined processors Functional coverage driven test generation for validation of pipelined processors Functional coverage driven test generation for validation of pipelined processors Processes, circuits, devices, and systems for branch prediction and other processor improver Processes, circuits, devices, and systems for branch prediction and other processor improver Super-reconfigurable fabric architecture (SURFA): a multi-FPGA parallel processor improver Super-reconfigurable fabric architecture (SURFA): a multi-FPGA parallel processor garchitect Fault processor and optimization techniques Automated failover in a cluster of geographically dispersed server nodes using data replicatio Systems and methods for replacing NOP instructions in a first program with instructions of a significant methods for providing bit-reversal and multitose co-processors Methods and apparatus for power control in a scalable array of processor elements Dual-processor complex domain floating-point DSP system on chip Enhanced negative constraint calculation for event driven simulations Processor and compiler Methods and apparatus for providing data transfer control Programmable event driven yield mechanism which may activate other threads Printer with capacitive printer carticige data reader Integrated circuit with tamper detection circuit Mechanism to exploit synchronization overhead to improve multithreaded performance Compiler apparatus System incorporating physics processing unit
S88 304 S84 4 S85 218 S86 183 S89 142 S95 12 S91 325 S92 419 S96 18 S98 18 S97 17 S99 5 S100 28	10730120	Results of search set S91: Document Kind Codes Title US 20060174059 A1 Spect US 2006017070 A1 Metho US 200601017158 A1 Funct US 20060095750 A1 Proce US 20060095745 A1 Proce US 20060095716 A1 Auto US 20060047776 A1 Auto US 20060047776 A1 Auto US 20060047776 A1 Metho US 20050289259 A1 Metho US 20050289259 A1 Metho US 20050216702 A1 Dual- US 20050189976 A1 Enha US 20050189976 A1 Proce US 200501172050 A1 Metho US 200501172050 A1 Metho US 2005011777 A1 Integ US 20050149697 A1 Metho

		20040115 348/207.2 20040115 348/207.2 20031204 716/1 20031030 716/1 20030025 712/25 20030025 712/25 20030021 703/14 20030227 703/13 20030227 703/13 20030227 703/13 20030220 704/201 20020919 716/1 20020919 716/1 20020919 716/1 20020905 77/200 20020905 77/204 20020905 77/204 20020905 77/204 20020905 77/204 20020905 77/204 20020905 77/204 20020905 77/204 20020905 77/204
	System & Methods & Simulation & Simulation & Simulation & Simulation & Simulation & Simulation & Methods &	
US 20050075849 A1 US 20050075154 A1 US 2005005389 A1 US 20050038936 A1 US 20050027973 A1 US 20040268051 A1 US 20040218048 A1 US 20040172524 A1 US 20040163083 A1 US 20040163083 A1		US 20040008262 A1 US 20040008261 A1 US 20030226120 A1 US 20030204819 A1 US 20030188299 A1 US 20030171907 A1 US 20030079065 A1 US 20030040898 A1 US 20030040898 A1 US 20030037373 A1 US 2002013374 A1 US 2002013374 A1 US 20020124012 A1 US 2002012837 A1 US 20020124012 A1 US 2002012801 A1 US 2002012801 A1

Methods and apparatus for providing data transfer control Methods and apparatus for power control in a scalable array of processor elements Methods and apparatus for providing bit-reversal and multicast functions utilizing DMA contro 20020110 713/322 20020103 710/22 20020103 710/22 Methods and apparatus for scalable array processor interrupt detection and response 20011206 710/264 Methods and apparatus for dual-use coprocessing/debug inherface	Coess control 20011014 20011018 20011004 20011004 20011004 20011004 20011004 20010927 20060801	Method and apparatus for simulation system compiler Method and apparatus for evaluating logic states of design nodes for cycle-based simulation 20060711 703/15 Defect tracking by utilizing real-time counters in network computing environments 20060613 716/6 Clock edge value calculation in hardware simulation 20060613 716/6 Implementation of fast data processing with mixed-signal and purely digital 3D-flow processin 20060523 716/10			is for providing bit-reversal and muticast functions utilizing DMA contro 20051220 Is changing function according to threads Lasing multiple memory circuits 20051101 S for providing data transfer control distributed testing of electronic devices 20050510	is for loading a very long instruction word memory that simulates the execution of paralled instructions in processor funct that simulates the execution of paralled instructions in processor functions for providing context switching between software tasks with reconfiguators of the scalable array processor interrupt detection and response for providing bit-reversal and multicast functions utilizing DMA controlled in processing multicast functions and emulation in a for improved efficiency in pipeline simulation and emulation functions the distribution in the processing manufacture of the processing	20040803 20040803 20040622 20040511 20040413 20040120 20040120 20031125 20031118
		Method and apparatus for sill Method and apparatus for every Defect tracking by utilizing reClock edge value calculation Implementation of fast data pressence of the contents	Method and apparatus for de Camera system with comput Method and apparatus for si Method and apparatus for cy	Methods and apparatus for a Methods and apparatus for e Metacores: design and optim Methods and apparatus for e	Memods and apparatus for processor having priority cha Method frame storage using Methods and apparatus for processor architecture	Methods and apparatus for le Methods and apparatus that st Methods and apparatus for post Methods and apparatus for st Methods and apparatus for in Methods and apparatus for in Processor with programmable	Retargetable computer design Methods and apparatus for e Transcoder-multiplexer (transpectiving different type gen Methods and apparatus for Interrupt control apparatus interrupt control apparatus a Method of executing an inter Methods and apparatus for e Methods and apparatus a Method and apparatus for e Automatic design of VI IW or
US 20020010814 A1 US 20020004916 A1 US 20020002640 A1 US 20020002639 A1 US 20010049763 A1 US 20010032305 A1	US 20010032067 A1 US 20010027499 A1 US 20010025363 A1 US 7084951 B2	US 706416 B2 US 7076416 B2 US 7065723 B2 US 7062735 B2 US 7051309 B1	US 7051303 B1 US 7050143 B1 US 7043596 B2 US 7036114 B2	US 7026200 B2 US 7024540 B2 US 7017126 B2 US 7003450 B2	US 6986020 B2 US 6978460 B2 US 6961843 B2 US 6984683 B2 US 6892328 B2 US 6889317 B2	US 6883088 B1 US 6871298 B1 US 686490 B1 US 6842811 B2 US 683295 B2 US 6826522 B1 US 6823505 B1	US 677305 B1 US 6774687 B1 US 674687 B1 US 674802 B1 US 6771822 B2 US 669438 B1 US 6694385 B1 US 6654380 B1 US 6654870 B1 US 6654870 B1

US 6622234 B1 US 6606721 B1	Methods and apparatus for initiating and resynchronizing multi-cycle SIMD instructions Method and apparatus that tracks processor resources in a dynamic pseudo-random test pro-	20030916 712/22 20030812 714/728
US 6604067 B1	Rapid design of memory systems using dilation modeling	20030805 703/21
US 6581187 B2 US 6581152 B2	Automatic design of VLIW processors Methods and apparatus for instruction addressing in indirect VLIW processors	20030617 716/1
US 6507947 B1	Programmatic synthesis of processor element arrays	20030114 717/160
US 6457073 B2	Methods and apparatus for providing data transfer control	20020924 710/22
US 6453367 B2	Methods and apparatus for providing direct memory access control	
US 6408428 B1	Automated design of processor systems using feedback from internal measurements of cand	20020618 716/17
US 6385757 B1	Accessing tables in memory banks using load and store address generators snaring store res Auto design of VLIW processors	20020507 716/1
US 6356994 B1	Methods and apparatus for instruction addressing in indirect VLIW processors	
US 6327552 B1	Method and system for determining optimal delay allocation to datapath blocks based on area	20011204 703/2
US 6260082 B1	Methods and apparatus for providing data transfer control	
US 6256683 B1	Methods and apparatus for providing direct memory access control	
US 6223208 B1	Moving data in and out of processor units using idle register/storage functional units	20010424 718/108
US 6219780 B1	Circuit arrangement and method of dispatching instructions to multiple execution units	20010417 712/215
US 6217165 B1	Ink and media cartridge with axial ink chambers	20010417 347/86
US 6199152 B1	Translated memory protection apparatus for an advanced microprocessor	20010306 711/207
US 6163836 A	Processor with programmable addressing modes	20001219 712/37
US 6112299 A	Method and apparatus to select the next instruction in a superscalar or a very long instruction	20000829 712/236
US 604222 A	Circuits, system, and methods for processing multiple data streams System method and process product for loop instruction scheduling hardware lookahaad	20000425 /12/36
US 6031992 A	Combining hardware and software to provide an improved microprocessor	20000229 717/138
JS 6011908 A	Gated store buffer for an advanced microprocessor	20000104 714/19
US 5966537 A	Method and apparatus for dynamically optimizing an executable computer program using inpi	19991012 717/158
JS 5958061 A	Host microprocessor with apparatus for temporarily holding target processor state	19990928 714/1
US 5937202 A	High-speed, parallel, processor architecture for front-end electronics, based on a single type	19990810 712/19
JS 5926832 A	Method and apparatus for aliasing memory data in an advanced microprocessor	19990720 711/141
JS 5925123 A	Processor for executing instruction sets received from a network or from a local memory	19990720 712/212
US 5896521 A	Processor synthesis system and processor synthesis method	19990420 703/21
JS 5883640 A	Computing apparatus and operating method using string caching to improve graphics perform	19990316 345/503
US 5832205 A	Memory controller for a microprocessor for detecting a failure of speculation on the physical n	19981103 714/53
JS 5313551 A	Multiport memory bypass under software control	19940517 711/149
JP 2003345606 A	METHOD, PROGRAM, AND APPARATUS FOR SIMULATION	20031205
JS 6826522 B	Simulation method of multi-parallel-stage pipe-lined processor, involves reordering chronolog	20041130
US 20040117172 A	Simulation apparatus for very long instruction word processor, generates simulation result of	20040617
US 20040059892 A	Dynamic program decompression device for game engines, has multiplexer using microcode	20040325
JS 6704855 B	Shared resource elements accessing method in very-long instruction word processor, involve	20040309
JP 2003345606 A	Processor command execution simulation method in digital consumer-application apparatus,	20031205
JF 2003140910 A	Binary translation method for very long instruction word processor, involves detecting present Simulation method of very long instruction word processor, involves decoding basic comman	20030516
		! !