IGBT-Module IGBT-modules

FF200R12KS4

62mm C-Serien Modul mit schnellem IGBT2 für hochfrequentes Schalten 62mm C-series module with the fast IGBT2 for high-frequency switching

IGBT-Wechselrichter / IGBT-inverter

Höchstzulässige Werte / maximum rated values

Kollektor-Emitter-Sperrspannung collector-emitter voltage	T _{vj} = 25°C	Vces	1200	V
Kollektor-Dauergleichstrom DC-collector current	$T_C = 65^{\circ}C$, $T_{vj} = 150^{\circ}C$ $T_C = 25^{\circ}C$, $T_{vj} = 150^{\circ}C$	I _{C nom}	200 275	A A
Periodischer Kollektor Spitzenstrom repetitive peak collector current	t _P = 1 ms	ICRM	400	Α
Gesamt-Verlustleistung total power dissipation	T _C = 25°C, T _{vj} = 150°C	P _{tot}	1400	w
Gate-Emitter-Spitzenspannung gate-emitter peak voltage		VGES	+/-20	V

Charakteristische Werte / chara	acteristic values		ı	min.	typ.	max.	
Kollektor-Emitter Sättigungsspannung collector-emitter saturation voltage	I _C = 200 A, V _{GE} = 15 V I _C = 200 A, V _{GE} = 15 V	$T_{vj} = 25^{\circ}C$ $T_{vj} = 125^{\circ}C$	V _{CE} sat		3,20 3,85	3,70	V
Gate-Schwellenspannung gate threshold voltage	I _C = 8,00 mA, V _{CE} = V _{GE} , T _{vj} = 25°C		V _{GEth}	4,5	5,5	6,5	V
Gateladung gate charge	V _{GE} = -15 V +15 V		Q _G		2,10		μC
Interner Gatewiderstand internal gate resistor	T _{vj} = 25°C		RGint		2,5		Ω
Eingangskapazität input capacitance	f = 1 MHz, T _{vj} = 25°C, V _{CE} = 25 V, V _{GE} =	0 V	Cies		13,0		nF
Rückwirkungskapazität reverse transfer capacitance	f = 1 MHz, T _{vj} = 25°C, V _{CE} = 25 V, V _{GE} =	0 V	Cres		0,85		nF
Kollektor-Emitter Reststrom collector-emitter cut-off current	V _{CE} = 1200 V, V _{GE} = 0 V, T _{vj} = 25°C		Ices			5,0	mA
Gate-Emitter Reststrom gate-emitter leakage current	V _{CE} = 0 V, V _{GE} = 20 V, T _{vj} = 25°C		I _{GES}			400	nA
Einschaltverzögerungszeit (ind. Last) turn-on delay time (inductive load)	I _C = 200 A, V _{CE} = 600 V V _{GE} = ±15 V R _{Gon} = 4,7 Ω	T _{vj} = 25°C T _{vj} = 125°C	t _{d on}		0,10 0,11		μs μs
Anstiegszeit (induktive Last) rise time (inductive load)	I _C = 200 A, V _{CE} = 600 V V _{GE} = ±15 V R _{Gon} = 4,7 Ω	T _{vj} = 25°C T _{vj} = 125°C	t r		0,06 0,07		μs μs
Abschaltverzögerungszeit (ind. Last) turn-off delay time (inductive load)	Ic = 200 A, V _{CE} = 600 V V _{GE} = ±15 V R _{Goff} = 4,7 Ω	T _{vj} = 25°C T _{vj} = 125°C	t _{d off}		0,53 0,55		μs μs
Fallzeit (induktive Last) fall time (inductive load)	Ic = 200 A, V _{CE} = 600 V V _{GE} = ±15 V R _{Goff} = 4,7 Ω	$T_{vj} = 25^{\circ}C$ $T_{vj} = 125^{\circ}C$	t _f		0,03 0,04		μs μs
Einschaltverlustenergie pro Puls turn-on energy loss per pulse	Ic = 200 A, V _{CE} = 600 V V _{GE} = ±15 V, L _S = 60 nH R _{Gon} = 4,7 Ω	T _{vj} = 25°C T _{vj} = 125°C	Eon		19,0		mJ mJ
Abschaltverlustenergie pro Puls turn-off energy loss per pulse	Ic = 200 A, V _{CE} = 600 V V _{GE} = ±15 V, L _S = 60 nH R _{Goff} = 4,7 Ω	$T_{vj} = 25^{\circ}C$ $T_{vj} = 125^{\circ}C$	E _{off}		15,0		mJ mJ
Kurzschlussverhalten SC data	V _{GE} ≤ 15 V, V _{CC} = 900 V V _{CEmax} = V _{CES} -L _{sCE} ·di/dt t _P ≤ 10	μs, T _{vj} = 125°C	Isc		1300		А
Innerer Wärmewiderstand thermal resistance, junction to case	pro IGBT per IGBT		RthJC			0,09	K/W
Übergangs-Wärmewiderstand thermal resistance, case to heatsink	pro IGBT / per IGBT $\lambda_{Paste} = 1 \text{ W/(m·K)}$ / $\lambda_{grease} = 1 \text{ W/(m·I)}$	<)	RthCH		0,03		K/W

prepared by: Martin Knecht	date of publication: 2005-4-27
approved by: Wilhelm Rusche	revision: 3.2

IGBT-Module IGBT-modules

FF200R12KS4

Diode-Wechselrichter / diode-inverter Höchstzulässige Werte / maximum rated values

Grenzlastintegral $V_R = 0 \text{ V}, t_P = 10 \text{ ms}, T_{vj} = 125^{\circ}\text{C}$ I^2t 18000 A^2s

Charakteristische Werte / chara	cteristic values			min.	typ.	max.	
Durchlassspannung forward voltage	I _F = 200 A, V _{GE} = 0 V I _F = 200 A, V _{GE} = 0 V	$T_{vj} = 25^{\circ}C$ $T_{vj} = 125^{\circ}C$	VF		2,00 1,70	2,40	V
Rückstromspitze peak reverse recovery current	I _F = 200 A, - di _F /dt = 2000 A/μs V _R = 600 V V _{GE} = -15 V	T _{vj} = 25°C T _{vj} = 125°C	I _{RM}		140 210		A A
Sperrverzögerungsladung recovered charge	I _F = 200 A, - di _F /dt = 2000 A/μs V _R = 600 V V _{GE} = -15 V	T _{vj} = 25°C T _{vj} = 125°C	Qr		11,5 32,0		μC μC
Abschaltenergie pro Puls reverse recovery energy	I _F = 200 A, - di _F /dt = 2000 A/μs V _R = 600 V V _{GE} = -15 V	T _{vj} = 25°C T _{vj} = 125°C	Erec		4,20 11,0		mJ mJ
Innerer Wärmewiderstand thermal resistance, junction to case	pro Diode per diode		RthJC			0,18	K/W
Übergangs-Wärmewiderstand thermal resistance, case to heatsink	pro Diode / per diode $\lambda_{Paste} = 1 \text{ W}/(\text{m} \cdot \text{K}) / \lambda_{grease} = 1 \text{ W}/(\text{m} \cdot \text{K})$		R _{thCH}		0,06		K/W

prepared by: Martin Knecht	date of publication: 2005-4-27
approved by: Wilhelm Rusche	revision: 3.2

IGBT-Module IGBT-modules

FF200R12KS4

Modul / module

Isolations-Prüfspannung insulation test voltage	RMS, f = 50 Hz, t = 1 min.	Visol		2,5		kV
Material Modulgrundplatte material of module baseplate				Cu		
Material für innere Isolation material for internal insulation				Al ₂ O ₃		
Kriechstrecke creepage distance	Kontakt - Kühlkörper / terminal to heatsink Kontakt - Kontakt / terminal to terminal			20,0		mm
Luftstrecke clearance distance	Kontakt - Kühlkörper / terminal to heatsink Kontakt - Kontakt / terminal to terminal			11,0		mm
Vergleichszahl der Kriechwegbildung comparative tracking index		СТІ		> 425		
			min.	typ.	max.	
Übergangs-Wärmewiderstand thermal resistance, case to heatsink	pro Modul / per module $\lambda_{Paste} = 1 \text{ W/(m·K)} / \lambda_{grease} = 1 \text{ W/(m·K)}$	R _{thCH}		0,01		K/W
Modulinduktivität stray inductance module		Lsce		20		nH
Modulleitungswiderstand, Anschlüsse - Chip module lead resistance, terminals - chip	T _C = 25°C, pro Schalter / per switch	Rcc'+EE'		0,70		mΩ
Höchstzulässige Sperrschichttemperatur maximum junction temperature	Wechselrichter, Brems-Chopper / Inverter, Brake-Chopper	T _{vj max}			150	°C
Temperatur im Schaltbetrieb temperature under switching conditions	Wechselrichter, Brems-Chopper / Inverter, Brake-Chopper	T _{vj op}	-40		125	°C
Lagertemperatur storage temperature		T _{stg}	-40		125	°C
Anzugsdrehmoment f. mech. Befestigung mounting torque	Schraube M6 - Montage gem. gültiger Applikation Note screw M6 - mounting according to valid application note	М	3,00	-	6,00	Nm
Anzugsdrehmoment f. elektr. Anschlüsse terminal connection torque	Schraube M6 - Montage gem. gültiger Applikation Note screw M6 - mounting according to valid application note	М	2,5	-	5,0	Nm
Gewicht weight		G		340		g

prepared by: Martin Knecht	date of publication: 2005-4-27
approved by: Wilhelm Rusche	revision: 3.2

IGBT-Module IGBT-modules

FF200R12KS4

Ausgangskennlinie IGBT-Wechselr. (typisch) output characteristic IGBT-inverter (typical) I_C = f (V_{CE}) V_{GE} = 15 V

Ausgangskennlinienfeld IGBT-Wechselr. (typisch) output characteristic IGBT-inverter (typical) $I_C = f(V_{CE})$ $T_{vj} = 125^{\circ}C$

Übertragungscharakteristik IGBT-Wechselr. (typisch) transfer characteristic IGBT-inverter (typical) Ic = f (VgE) VcE = 20 V

prepared by: Martin Knecht	date of publication: 2005-4-27
approved by: Wilhelm Rusche	revision: 3.2

IGBT-Module IGBT-modules

FF200R12KS4

Schaltverluste IGBT-Wechselr. (typisch) switching losses IGBT-Inverter (typical) $E_{on} = f (R_G)$, $E_{off} = f (R_G)$ $V_{GE} = \pm 15 \text{ V}$, $I_C = 200 \text{ A}$, $V_{CE} = 600 \text{ V}$

Transienter Wärmewiderstand IGBT-Wechselr. transient thermal impedance IGBT-inverter Z_{thJC} = f (t)

Sicherer Rückwärts-Arbeitsbereich IGBT-Wr. (RBSOA) reverse bias safe operating area IGBT-inv. (RBSOA) Ic = f (VcE) $V_{GE} = \pm 15 \text{ V}$, $R_{Goff} = 4,7 \Omega$, $T_{vi} = 125^{\circ}\text{C}$

Durchlasskennlinie der Diode-Wechselr. (typisch) forward characteristic of diode-inverter (typical) $I_F = f(V_F)$

prepared by: Martin Knecht	date of publication: 2005-4-27
approved by: Wilhelm Rusche	revision: 3.2

IGBT-Module IGBT-modules

FF200R12KS4

Schaltverluste Diode-Wechselr. (typisch) switching losses diode-inverter (typical) $E_{rec} = f(I_F)$

 $E_{rec} = f(I_F)$ $R_{Gon} = 4.7 \Omega, V_{CE} = 600 V$ Schaltverluste Diode-Wechselr. (typisch) switching losses diode-inverter (typical) $E_{rec} = f(R_G)$ $I_F = 200 \text{ A}, V_{CE} = 600 \text{ V}$

Transienter Wärmewiderstand Diode-Wechselr. transient thermal impedance diode-inverter $Z_{\text{thJC}} = f(t)$

prepared by: Martin Knecht	date of publication: 2005-4-27
approved by: Wilhelm Rusche	revision: 3.2

IGBT-Module IGBT-modules

FF200R12KS4

Schaltplan / circuit diagram

Gehäuseabmessungen / package outlines

prepared by: Martin Knecht	date of publication: 2005-4-27
approved by: Wilhelm Rusche	revision: 3.2

Nutzungsbedingungen

Die in diesem Produktdatenblatt enthaltenen Daten sind ausschließlich für technisch geschultes Fachpersonal bestimmt. Die Beurteilung der Geeignetheit dieses Produktes für die von Ihnen anvisierte Anwendung sowie die Beurteilung der Vollständigkeit der bereitgestellten Produktdaten für diese Anwendung obliegt Ihnen bzw. Ihren technischen Abteilungen.

In diesem Produktdatenblatt werden diejenigen Merkmale beschrieben, für die wir eine liefervertragliche Gewährleistung übernehmen. Eine solche Gewährleistung richtet sich ausschließlich nach Maßgabe der im jeweiligen Liefervertrag enthaltenen Bestimmungen. Garantien jeglicher Art werden für das Produkt und dessen Eigenschaften keinesfalls übernommen.

Sollten Sie von uns Produktinformationen benötigen, die über den Inhalt dieses Produktdatenblatts hinausgehen und insbesondere eine spezifische Verwendung und den Einsatz dieses Produktes betreffen, setzen Sie sich bitte mit dem für Sie zuständigen Vertriebsbüro in Verbindung (siehe www.eupec.com, Vertrieb&Kontakt). Für Interessenten halten wir Application Notes bereit.

Aufgrund der technischen Anforderungen könnte unser Produkt gesundheitsgefährdende Substanzen enthalten. Bei Rückfragen zu den in diesem Produkt jeweils enthaltenen Substanzen setzen Sie sich bitte ebenfalls mit dem für Sie zuständigen Vertriebsbüro in Verbindung.

Sollten Sie beabsichtigen, das Produkt in Anwendungen der Luftfahrt, in gesundheits- oder lebensgefährdenden oder lebenserhaltenden Anwendungsbereichen einzusetzen, bitten wir um Mitteilung. Wir weisen darauf hin, dass wir für diese Fälle

- die gemeinsame Durchführung eines Risiko- und Qualitätsassessments;
- den Abschluss von speziellen Qualitätssicherungsvereinbarungen;
- die gemeinsame Einführung von Maßnahmen zu einer laufenden Produktbeobachtung dringend empfehlen und gegebenenfalls die Belieferung von der Umsetzung solcher Maßnahmen abhängig machen.

Soweit erforderlich, bitten wir Sie, entsprechende Hinweise an Ihre Kunden zu geben.

Inhaltliche Änderungen dieses Produktdatenblatts bleiben vorbehalten.

Terms & Conditions of usage

The data contained in this product data sheet is exclusively intended for technically trained staff. You and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.eupec.com, sales&contact). For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify. Please note, that for any such applications we urgently recommend

- to perform joint Risk and Quality Assessments;
- the conclusion of Quality Agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery depended on the realization of any such measures.

If and to the extent necessary, please forward equivalent notices to your customers.

Changes of this product data sheet are reserved.