Text Classification

ต้องการตัดประโยคนี้

• Word segmentation : เติมตัวแบ่งคำ

• Input: ร่องระหว่างตัวอักษรในประโยค

• Output: ตัดคำตรงนั้น vs ไม่ตัดคำตรงนั้น

คนงานขนเสื้อขนแกะใส่กระบะ

• Part of speech tagging : แปะชนิดของคำ

• Input: คำแต่ละคำ

• Output: {Noun, Adj, Verb, Adv, Preposition, ..}

โทรศัพท์รุ่นใหม่ๆ แบตเตอรีไม่ค่อยอีดเท่ารุ่นเก่าๆ

Sentiment Analysis

• Input: ประโยค

• Output: {ทัศนคติแง่บวก, ทัศนคติแง่ลบ, อื่นๆ}

• ให้คะแนนเรียงความอัตโนมัติ

• ตรวจจับข่าวปลอม

• Input: เรียงความ

Input: ข่าว

• Output: {0, 1, 2, 3, 4, 5}

Output: {ปลอม, จริง}

3 ปัจจัยหลักๆ ที่ส่งผลต่อคุณภาพของ Text Classifier

1. ปริมาณและคุณภาพของข้อมูล

2. Algorithm e.g. Naive Bayes, Logistic Regression, Random Forests, Neural networks

3. Feature Engineering

Logistic Regression

Parameter ของโมเดล Maximum Entropy หลังจากฝึกเสร็จเรียบร้อยแล้ว

	ค่าสัญญาณ
f1 (คำว่าต่อต้าน)	1
f2 (คำว่าชื่นชอบ)	0
f3 (จำนวนตัวอักษร)	100

	บวก	ลบ	กลาง
f1 (คำว่าต่อต้าน)	-2	2	-1
f2 (คำว่าชื่นชอบ)	-1	-0.2	0.4
f3 (จำนวนตัวอักษร)	0.0004	0.005	-0.00001

	บวก	ลบ	กลาง
f1 (คำว่าต่อต้าน)	1 x - 2	1 x 2	1 x -1
f2 (คำว่าชื่นชอบ)	0 x -1	0 x -0.2	0 x 0.4
f3 (จำนวนตัวอักษร)	100 * 0.0004	100 x 0.005	100 x -0.00001

	บวก	ลบ	กลาง
f1	-2	2	-1
f2	-1	-0.2	0.4
f3	0.0004	0.005	-0.00001

	บวก		ลบ		กลาง	
f1 (คำว่าต่อต้าน)	1 x - 2	-2	1 x 2	2	1 x -1	-1
f2 (คำว่าชื่นชอบ)	0 x -1	0	0 x -0.2	0	0 x 0.4	0
f3 (จำนวนตัวอัก	100 * 0.0004	0.04	100 x 0.005	0.5	100 x -0.00001	-0.001
คะแนนรวม		1.96		2.5		-1.001

In [64]: exp(1.96) / (exp(1.96) + exp(2.5) + exp(-1.001))

Out[64]: 0.3613011773847603

$$\ell(W; X, Y) = \sum_{i=0}^{n} \log P(Y = y^{i} | x^{i}, W)$$

$$= \sum_{i=0}^{n} \log \frac{\exp a(y^{i}; x^{i}, W)}{\sum_{j} \exp a(j; x^{i}, W)}$$

$$= \sum_{i=0}^{n} \log \exp a(y^{i}; x^{i}, W) - \log \sum_{j} \exp a(j; x^{i}, W)$$

$$a(j; x, W) = \sum_{i=0}^{k} w_{ij} x_{i}$$

Log-likelihood

$$\arg\max_{W}\ell(W;X,Y) = \arg\min_{W} -\ell(W;X,Y)$$

Crossentropy loss Negative log-likelihood

Stochastic Gradient Descent (SGD)

Optimization Problem

$$\arg\max_{W}\ell(W;X,Y) = \arg\min_{W} -\ell(W;X,Y)$$

Gradient-based training/optimization

Gradient of Cross-entropy Loss

$$\arg\max_{W}\ell(W;X,Y) = \arg\min_{W} -\ell(W;X,Y)$$

$$\frac{\partial \ell(W; X, Y)}{\partial w_{ij}} = x_i(P(Y = j|X) - \mathbb{1}(y^* = j))$$

	บวก	ลบ	กลาง
f1	-2	2	-1
f2	-1	-0.2	0.4
f3	0.0004	0.005	-0.00001

	ค่าสัญญาณ
f1	1
f2	0
f3	100

Stochastic Gradient Descent

```
for x, y in training_set:
```

compute P(Y|X)

update w_{ij} ของใหม่:= w_{ij} ของเก่า - αx_i (P(Y=j|X) - 1(y=j)

for x, y in training_set:

Stochastic Gradient Descent

compute P(Y|X)

update w_{ij} ของใหม่:= w_{ij} ของเก่า - αx_i (P(Y=j|X) - 1(y=j)

for x, y in training_set:

Batch Gradient Descent

compute P(Y|X)

 $gradient_{ij} += x_i (P(Y=j|X) - 1(y=j)$

update w_{ij} ของใหม่:= w_{ij} ของเก่า - α gradient $_{ij}$

Gradient-based training/optimization

Feedforward Neural Network

	f1	f2	f3
บวก	-2	-1	0
ลบ	2	0	0
กลาง	-1	0.4	0

f1	1
f2	0
f3	100

$$o = \operatorname{softmax}(W^T x + b)$$

	f1	f2	f3
บวก	-2	-1	0
ลบ	2	0	0
กลาง	-1	0.4	0

f1	1
f2	0
f3	100

1.961
2.506
-0.999

	f1	f2	f3
บวก	-2	-1	0
ลบ	2	0	0
กลาง	-1	0.4	0

f1	1		
f2	0		
f3	100		

Rectified Linear Unit (ReLU)

$$f(x) = \left\{ egin{array}{ll} 0 & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array}
ight.$$

$$f'(x) = \left\{egin{array}{ll} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array}
ight.$$

Hyperbolic Tangent (tanh)

$$f(x) = anh(x) = rac{(e^x - e^{-x})}{(e^x + e^{-x})}$$

$$f'(x) = 1 - f(x)^2$$

Backpropagation

Training Neural Network

Techniques in Neural Network Training

Automatic gradient computation

Dropout

Learning Rate

Distributional Semantics

Techniques in Neural Network Training

Automatic gradient computation

Dropout

Learning Rate

Word Embedding

Techniques in Neural Network Training

Automatic gradient computation

Dropout

Learning Rate