ÉLECTROCINÉTIQUE III Régime sinusoïdal forcé

Exercices indispensables: 1, 6, 9, 10.

Exercice 1 Dans le circuit a), on donne $i(t) = 10 \cos \omega t$. Calculer avec trois chiffres significatifs la d.d.p. $u_{AB}(t)$ et la puissance moyenne dissipée dans la résistance de 10Ω .

Exercice 2 Dans le circuit b), on donne $e_1(t) = 10 \cos \omega t$ et $e_2(t) = 10 \cos(\omega t + \pi/2)$. Calculer avec trois chiffres significatifs $u_{AB}(t)$ et la puissance moyenne dissipée dans la résistance de 3Ω .

Exercice 3 Calculer avec trois chiffres significatifs la puissance moyenne dissipée dans chacune des quatre résistances du circuit c), sachant que $e(t) = 70.7 \cos \omega t$.

Exercice 4 En d), on a représenté deux dipôles AB et A'B'. Étant donnés L_0 , C_0 et C_1 , montrer que l'on peut choisir L, C et C' de telle façon que l'impédance de A'B' soit la même que celle de AB quelle que soit la fréquence.

Exercice 5 Calculer l'impédance complexe équivalente au dipôle AB représenté en e), lorsque celui-ci est alimenté à la pulsation ω . Tester le résultat en envisageant le cas particulier L=0.

Exercice 6 Montrer qu'il existe une pulsation ω pour laquelle le dipôle AB représenté en f) est équivalent à une résistance r que l'on calculera.

Exercice 7 Sachant que les valeurs efficaces des intensités I, i et i' sur le circuit g) sont respectivement de 29.9 A, 8 A et 22.3 A, déterminer les valeurs de R et Z (Z est réel).

Exercice 8 Dans le circuit h), le dipôle AB a pour impédance complexe $3e^{j\pi/3}\Omega$ (on prend $j^2 = -1$). La valeur efficace de la tension entre les points A et C est de 50 V. En déduire la tension efficace du générateur de tension de f.é.m. e(t).

Exercice 9 On considère le circuit i), alimenté par un générateur idéal de tension de f.é.m. $e(t) = E_0 + E \cos \omega t$. E_0 et E sont des constantes. On s'intéresse au régime quasi-permanent du circuit.

- 1) a) Écrire les équations liant les grandeurs instantanées e(t), q(t), $v(t) = u_{AB}(t)$, i(t) et $i_1(t)$. En déduire l'équation différentielle vérifiée par la fonction $i_1(t)$. Montrer que cette équation différentielle peut être décomposée en une somme de deux équations correspondant à deux circuits différents que l'on représentera, l'un des circuits étant en régime continu et l'autre en régime sinusoïdal forcé.
 - b) La solution de l'équation différentielle de départ est donc la somme des solutions des équations introduites ci-dessus (pourquoi?). En déduire la solution, en utilisant les méthodes du courant continu d'une part et du courant alternatif d'autre part. On calculera numériquement avec trois chiffres significatifs $i_1(t)$ puis i(t) pour $R=9\,\Omega,\ r=1\,\Omega,\ C=1\,\mu\mathrm{F},\ L=10^{-2}\,\mathrm{H},\ \omega=6.10^3\,\mathrm{rad\cdot s^{-1}},\ E_0=1\,\mathrm{V},\ E=10\sqrt{2}\,\mathrm{V}.$
- 2) On se propose de calculer la puissance fournie par le générateur. Pour simplifier les notations on posera ici $i(t) = I_0 + I\cos(\omega t + \varphi)$.
 - a) Calculer la f.é.m efficace $E_{\text{eff}} = \sqrt{\langle e(t)^2 \rangle}$ en fonction de E_0 et E. Calculer de même l'intensité efficace $I_{\text{eff}} = \sqrt{\langle i(t)^2 \rangle}$ en fonction de I_0 et I.
 - b) Calculer la puissance instantanée p(t).
 - c) Calculer la puissance moyenne P_T délivrée par le générateur en fonction de E, E_0, I, I_0 et φ .
 - d) Calculer les puissances moyennes P_0 et P fournies par le générateur dans le circuit en continu et en sinusoïdal forcé respectivement. Comparer P_T , P et P_0 , A.N.

Exercice 10 Dans le circuit j), calculer le rapport des tensions complexes u_{BT}/u_{AT} et son module H en fonction de la fréquence ω . Justifier le nom de "filtre passe-bas de fréquence de coupure $\omega_c = 1/RC$ " pour ce circuit. On représentera sur un graphique le "gain" en décibels, défini par $H_{\rm dB} = 20 \log H$, en fonction de $\log \omega/\omega_c$ (ici log est le logarithme en base 10). Dessiner un circuit correspondant à un "filtre passe-haut." Discuter aussi le cas du "filtre passe-bande."

