CONTROL'X

Les systèmes de manutentions industrielles prennent différentes formes: robots à bras, convoyeurs à bandes, robots cartésiens, chariots autonomes, etc. Schneider propose différents portiques qui par l'association d'axes numériques permet d'obtenir des solutions performantes. Le Control X est un axe complet qui peut être asservi avec différents capteurs. Cet axe est un démonstrateur qui permet de valider un axe numérique en vue de concevoir un portique complet.

Problématique:

Dans le but de déplacer des objets entre deux points, on cherche à optimiser les réglages du Control'X afin de satisfaire le cahier des charges. Pour cela, on demande :

- 1. d'établir un modèle fiable du système ;
- 2. de proposer un correcteur pour satisfaire le cahier des charges grâce au modèle puis d'implanter ce correcteur.

1 DECOUVERTE - MANIPULATION - OBSERVATION - DESCRIPTION

Objectif 1: S'approprier le fonctionnement du Control'X – 20 minutes

Cette première partie nécessite la lecture préalable de la fiche 3.

Activité 1

- ☐ Mettre en œuvre le système en utilisant la fiche 3. Pour cela ouvrir le fichier *Commande_en_BF_seule.slx* (situé dans le dossier Control_X_PSI) situé sur le bureau. Le cahier des charges est-il validé ? (On traitera des exigences 1.4, 1.3.2 et 1.2.3).
- Réaliser la chaîne fonctionnelle du système. Proposer un schéma bloc du système.

2 MODELISATION/SIMULATION DU SYSTEME

Objectif 2 : Construire un modèle du système

Activité 2 Modélisation linéaire en Boucle ouverte Durée : 15 minutes

- Ouvrir le fichier *Commande_et_Modele.slx*.
- ☐ Lancer une expérimentation/simulation. Qu'observez-vous ?
- Expliquer l'intérêt d'identifier le comportement du système en boucle ouverte ? Quelle est la nature du signal de commande ? la nature du signal mesuré ?
- □ Expliquer le choix d'utiliser un système d'ordre 1 suivi d'un intégrateur pour réaliser l'identification ?
- □ Identifier les caractéristiques du premier ordre en précisant votre méthode (utiliser l'annexe des transformées de Laplace usuelles).

Activité 3 Modélisation des non-linéarités Durée : 15 minutes

Pour modifier le schéma bloc vous aurez éventuellement besoin des blocs situés dans le fichier Bibliotheque_PSI.slx.

- En utilisant la documentation (Fiche 4), donner une méthode pour modéliser la saturation en tension de la commande du moteur. Mettre en œuvre cette modélisation.
- Proposer en protocole expérimental pour déterminer globalement les frottements secs. Mettre en œuvre ce protocole. Modéliser ensuite le frottement **sec.**

Activité 4 Modélisation en boucle fermée Durée : 15 minutes

- Réaliser le bouclage de l'asservissement. Définir la grandeur d'entrée et la grandeur de sortie. Définir le plus grand déplacement possible pour ne pas dépasser le régime saturé.
- □ Sur un échelon de 50 mm, comparer les performances du système et les résultats de la simulation.
- Conclure sur la validité du modèle.

3 INFLUENCE DU CORRECTEUR PROPORTIONNEL

Objectif 3 Identifier l'influence du correcteur proportionnelle sur les performances du système.— Durée : 20 minutes

Activité 5 Durée : 20 minutes

- ☐ Sur un échelon de 50 mm, faire évoluer le gain proportionnel de 0,1 à 5. Qu'observez-vous ?
- Proposer une méthode pour choisir un gain permettant de répondre au cahier des charges.

4 SYNTHESE

Objectif 6 Exposer clairement le travail effectué - Durée : 15 minutes

Activité 6

- Au vu des activités proposées, un gain proportionnel permet-il la satisfaction du cahier des charges ? Si non, proposer (et mettre en œuvre, si le temps le permet) une démarche permettant de corriger le système.
- Réaliser sous forme de poster une synthèse des activités réalisées lors de ce TP. Attention, il ne s'agit pas d'un résumé, mais d'une synthèse globale!