Worksheet # 22: Newton's Method and Antiderivatives

- 1. Use Newton's method to find an approximation to $\sqrt[3]{2}$. You may do this by finding a solution of $x^3 2 = 0$.
- 2. Use Newton's method to approximate the critical points of the function $f(x) = x^5 7x^2 + x$.
- 3. Let $f(x) = \frac{x}{1+x^2}$.
 - (a) Solve f(x) = 0 without using Newton's method.
 - (b) Use Newton's method to solve f(x) = 0 beginning with the starting point $x_1 = 2$. Does something interesting happen?
 - (c) Make a sketch of the graph of f and explain what you observed in part b).
- 4. (a) Let $f(x) = \frac{x^3}{3} + 1$. Calculate the derivative f'(x). What is an anti-derivative of f'(x)?
 - (b) Let $g(x) = x^2 + 1$. Let G(x) be any anti-derivative of g. What is G'(x)?
- 5. Find f given that

$$f'(x) = \sin(x) - \sec(x)\tan(x), \qquad f(\pi) = 1.$$

6. Find g given that

$$g''(t) = -9.8,$$
 $g'(0) = 1,$ $g(0) = 2.$

On the surface of the earth, the acceleration of an object due to gravity is approximately $-9.8 \,\mathrm{m/s^2}$. What situation could we describe using the functino g? Be sure to specify what g and its first two derivatives represent.

- 7. A small rock is dropped from a bridge and the splash is heard 3 seconds later. How high is the bridge?
- 8. Let f be a function on the domain $(-\infty, \infty)$ that satisfies $(f')^2 = 1$. This is an example of a differential equation. Suppose also that we are given an initial value condition f(0) = 1.
 - (a) Show that this does not have a unique solution by finding two different functions that satisfy both conditions.
 - (b) What does the fact that there are multiple solutions say about this as a model for physical phenomena?
- 9. Find a function f(x) such that f'(x) = f(x). Find the solution, given initial condition $f(0) = \pi$.
- 10. Let f(x) = 1/x, $F(x) = \ln(|x|)$, and

$$G(x) = \begin{cases} \ln(x), & x > 0 \\ \ln(-x) + 8, & x < 0. \end{cases}$$

- (a) Is F an anti-derivative of f? Is G an anti-derivative of f? Is F-G equal to a constant?
- (b) Does Theorem 1 on page 275 imply that F G is constant? Is the theorem wrong?