Um pesquisador realizou um levantamento obtendo 84 observações sobre uma grandeza com média 65,00. Após, verificou que duas destas observações, com medidas 95,52 e 105,82, estavam comprometidas. Desejase eliminar estas duas medidas e calcular o valor da média.

Sabendo-se que a variância de todas as observações é 41,590, qual vai ser o valor da nova variância (conjunto de observações sem as medidas comprometidas)?

$$N_T = 84$$

$$\mu_T = \frac{\sum N_T}{N_T} = 65,00$$

$$\sum N_T = \mu_T * N_T = 65,00 * 84 = 5460$$

$$\sum N_T = \sum N_P + 95,52 + 105,82$$

$$\sum_{I} N_P = \sum_{I} N_T - 95,52 - 105,82$$

$$\sum_{P} N_P = 5460 - 95,52 - 105,82 = 5258,66$$

$$N_P = 82$$

$$\mu_P = \frac{\sum N_P}{N_P} = \frac{5258,66}{82}$$

$$\mu_P = 64, 13$$

$$\sigma_T^2 = \frac{\sum (X_T - \mu_T)^2}{N_T - 1} = 41,590$$

$$\mu_T = \frac{\sum X_T}{N_T}$$

$$\sum (X_T - \mu_T)^2 = (X_{T1} - \mu_{T1})^2 + (X_{T2} - \mu_{T2})^2 + \dots + (X_{Tn} - \mu_{Tn})^2$$

$$\sigma_T^2 = \frac{\sum X_T^2 - 2\mu_T \sum X_T + \sum \mu_T^2}{N_T - 1} = \frac{\sum X_T^2 - 2\mu_T (\mu_T N_T) + (\mu_T^2 N_T)}{N_T - 1} = \frac{\sum X_T^2 - \mu_T^2 N_T}{N_T - 1}$$

$$\sum X_T^2 = [\sigma_T^2 * (N_T - 1)] + \mu_T^2 N_T = 41,590 * 83 + 65,00^2 * 84 = 358351,97$$

$$\sum X_P^2 = \sum X_T^2 - 95,52^2 - 105,82^2 = 338030,0272$$

$$\sigma_P^2 = \frac{\sum X_P^2 - \mu_P^2 N_P}{N_P - 1} = \frac{338030,0272 - 64,13^2 * 82}{82 - 1} = 9,780$$

Em uma instituição bancária, o salário médio dos 100 empregados do sexo masculino é de R\$ 1.500,00, com desvio padrão de R\$100,00. O salário médio dos 150 empregados do sexo feminino é de R\$ 1.000,00, com desvio padrão de R\$200,00. A variância em (R\$) dos dois grupos reunidos é de: (BACEN, 2005)

a) 25.600,00; b) 28.000,00; c) 50.000,00; d) 62.500,00; e) 88.000,00

Observe-se que se está falando de população e não amostra. Segue-se que:

$$\sigma^2 = \frac{\sum (X - \mu)^2}{N} \qquad \qquad \mu = \frac{\sum X}{N}$$

$$\sigma^2 = \frac{\sum X^2 - 2\mu \quad \sum X \quad + \sum \mu^2}{N} = \frac{\sum X^2 - 2\mu \quad (\mu \quad N \quad) + (\mu^2 \quad N \quad)}{N} = \frac{\sum X^2 - \mu^2 \quad N}{N}$$

Ou ainda: $\sum X^2 = N * (\sigma^2 + \mu^2)$

Tem-se:

$$N_M = 100$$
 $N_F = 150$ $\mu_M = 1500,00$ $\mu_F = 1000,00$ $\sigma_M = 100$ $\sigma_F = 200$

Calcula-se:
$$\sum X_M^2 = N_M * (\sigma_M^2 + \mu_M^2) = 226000000$$

 $\sum X_E^2 = N_E * (\sigma_E^2 + \mu_E^2) = 156000000$

Para o conjunto total da população tem-se:

$$\sum X^2 = \sum X_M^2 + \sum X_F^2 = N * (\sigma^2 + \mu^2)$$
 onde: $N = N_M + N_F$

A média da população total pode ser calculada:

$$\mu = \frac{\sum X}{N} \implies \sum X = N * \mu \implies \sum X_M + \sum X_F = (N_M + N_F) * \mu$$

$$\mu_M * N_M + \mu_F * N_F = (N_M + N_F) * \mu$$

$$\mu = \frac{\mu_M * N_M + \mu_F * N_F}{(N_M + N_F)} = 1200$$

$$(N_M + N_F) * (\sigma^2 + \mu^2) = N_M * (\sigma_M^2 + \mu_M^2) + N_F * (\sigma_F^2 + \mu_F^2)$$

onde:
$$\sigma^2 = \frac{N_M * (\sigma_M^2 + \mu_M^2) + N_F * (\sigma_F^2 + \mu_F^2) - \mu^2 (N_M + N_F)}{(N_M + N_F)}$$

$$\sigma^2 = \frac{226000000 + 156000000 - [1200^2 * (250)]}{250}$$

$$\sigma^2 = 88000$$

opção: e

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA

AJUSTAMENTO 1 – GA106 A ENGENHARIA CARTOGRÁFICA E DE AGRIMENSURA

Prof. Dr. Mario Ernesto Jijón Palma

Departamento de Geomática Setor de Ciências da Terra Universidade Federal do Paraná - UFPR

Seja uma população finita de 100 elementos, que apresenta média μ e variância σ^2 .

O que acontece ao se retirar um conjunto amostral de 30 elementos?

- Valores da média \bar{x} e variância s^2 amostral **diferentes** da população.
- Porém estes são os <u>estimadores</u> → estimam a população

Quando:

Tamanho da amostra -> tamanho da população

$$\bar{x} \rightarrow \mu$$

 $s^2 \rightarrow \sigma^2$

Porém como as amostras são tomadas de forma aleatória, então média e variância variam de amostra a amostra.

Exemplo: População $\sigma^2 = 17.5$ 100 elementos $\mu = 26,1$ Amostra 1 $s^2 = 28,1$ • 30 elementos $\bar{x} = 26.9$ Amostra 2 $s^2 = 2.9$ • 30 elementos $\bar{x} = 27.9$ Amostra 3 $s^2 = 23.0$ 30 elementos $\bar{x} = 27.2$

Qual destas três amostras é mais confiável? Qual é mais precisa? Qual é mais acurada?

Se analisar a média:

Amostra 1

Porém é a que possui maior variância (maior dispersão)

Exemplo:

População

$$\mu = 26,1$$

$$\sigma^2 = 17,5$$

Amostra 1

$$\bar{x} = 26,9$$

$$s^2 = 28,1$$

Amostra 2

$$\bar{x} = 27,9$$

$$s^2 = 2,9$$

Amostra 3

$$\bar{x} = 27.2$$

$$s^2 = 23.0$$

Qual destas três amostras é mais confiável? Qual é mais precisa? Qual é mais acurada?

Se analisar a precisão:

Amostra 2

Maior confiança (menor dispersão)

Exemplo:

População

$$\mu = 26,1$$

$$\sigma^2 = 17,5$$

Amostra 1

• 30 elementos

$$\bar{x} = 26,9$$

$$s^2 = 28,1$$

Amostra 2

• 30 elementos

$$\bar{x} = 27,9$$

$$s^2 = 2,9$$

Amostra 3

• 30 elementos

$$\bar{x} = 27,2$$

$$s^2 = 23,0$$

Qual destas três amostras é mais confiável? Qual é mais precisa? Qual é mais acurada?

A solução é usar funções de distribuição de probabilidade para avaliar os estimadores (média e variância) dada um determinado nível de significância (α) .

Ou seja, busca-se a resposta para: quão bom são os estimadores?

As distribuições podem ser:

Distribuição de probabilidade de uma v.a. discreta

Distribuição de probabilidade de uma v.a. contínua

Distribuição de probabilidade **acumulada**, para os casos de v.a. contínua

Seja X uma v.a. discreta, isto é, que assume valores em associação com números inteiros $x_1, x_2, ..., x_n$.

Associemos a cada x_i um número $p(x_i)$ representativo da sua probabilidade.

$$p(x_i) = P(X = x_i)$$

Tal que:

$$0 \le p(x_i) \le 1$$

$$-\sum_{i=0}^n x_i = 1$$

•
$$P(a \le X \le b) = \sum x_i$$
 ∀ ital que $a \le X \le b$

$$p(x_i) = P(X = x_i)$$

$$P(X = 1) = 1/6$$

$$P(X = 2) = 1/6$$

$$P(X = 3) = 1/6$$

$$P(X = 4) = 1/6$$

$$P(X = 5) = 1/6$$

$$P(X = 6) = 1/6$$

$$p(x_i) = P(X = x_i)$$

$$P(X = 3) = 1/6$$

$$0 \le p(x_i) \le 1$$

$$\sum_{i=0}^{n} x_i = 1$$

$$0 \le \frac{1}{6} \le 1$$

$$\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = 1$$

$$p(x_i) = P(X = x_i)$$

Probabilidade de obter um número par

$$P(a \le X \le b) = \sum x_i$$

•
$$P(a \le X \le b) = \sum x_i$$
 • $P(2 \le X \le 6) = \frac{3}{6} = \frac{1}{2}$

Seja X uma v.a. contínua.

A probabilidade "pontual" associada à variável discreta é substituída pela densidade de probabilidade $\varphi(x)$ relativa a um **intervalo infinitésimo**.

$$\varphi(x)dx = P(x \le X \le x + dx)$$

$$\varphi(x)dx = P(x \le X \le x + dx)$$
 ou $\varphi(x) = \lim \frac{P(x \le X \le x + dx)}{\Delta x}$

Tal que:

$$\varphi(x) \geq 0$$

$$\int_{-\infty}^{+\infty} \varphi(x) \ dx = 1$$

$$P(a \le X \le b) = \int_a^b \varphi(x) \, dx$$

Seja X uma v.a. contínua \longrightarrow densidade de probabilidade $\varphi(x)$

$$\varphi(x)dx = P(x \le X \le x + dx)$$

$$\varphi(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

$$\mu = 170 \ cm$$
 $\sigma = 10 \ cm$

$$\varphi(x) \ge 0 \qquad \qquad \varphi(160) = \frac{1}{10\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{160-170}{10})^2}$$

A função $\varphi(x)$ que estabelece a correspondência entre um valor da v.a. contido no intervalo elementar e a densidade de probabilidade é denominada **função densidade de probabilidade (fdp)**.

$$P(x_1 \le X \le x_2) = \int_{x_1}^{x_2} \varphi(x) \, dx = \text{área } S$$

$$P(a \le X \le b) = \int_a^b \varphi(x) \, dx$$

■
$$P(160 \le X \le 180) = \int_{160}^{180} \varphi(x) dx \approx 0.6826$$

Função de distribuição de probabilidade acumulada

Seja $\varphi(x)$ a função de **distribuição acumulada (fda)** de uma v.a. X, tal que:

$$\varphi(x) = P(X \le x) = \int_{-\infty}^{x} \varphi(u) du$$
 contínuo

$$P(X \le x) = \sum_{x_i \le x} p(x)$$
 discreto

Distribuição Normal

- ✓ A distribuição normal é uma das mais importantes da estatística e aparece frequentemente em nas aplicações tecnológicas e científicas.
- ✓ Ela tem a famosa forma de "curva em sino" e é descrita por dois parâmetros:
 - •Média (µ): indica o centro da distribuição.
 - •Desvio padrão (σ): indica a dispersão dos dados.

 $N(\mu, \sigma^2)$

Exemplos:

Altura de pessoas

Notas de alunos em uma prova

Erros de medição em experimentos

Distribuição Normal Reduzida

✓ A distribuição normal reduzida é uma versão padronizada da distribuição normal e segue a distribuição N(0,1)

$$\mu = 0$$
 $\sigma = 1$

$$z = \frac{x - \mu}{\sigma}$$

Distribuição Normal Reduzida / Distribuição normal padrão

$$\mu = 0$$
 $\sigma = 1$

$$z = \frac{x - \mu}{\sigma}$$

Adaptado Profa. Érica Santos Matos Baluta

Distribuição Normal Reduzida

√ Áreas sob a curva normal reduzida

$$\mu = 0$$
 $\sigma = 1$

$$z = \frac{x - \mu}{\sigma}$$

A média dos diâmetros internos de uma amostra de 200 arruelas produzidas por uma certa máquina é 0,502 cm e o desvio padrão é 0,005 cm.

A finalidade para a qual essas arruelas são fabricadas permite a tolerância máxima, para o diâmetro de 0,496 cm a 0,508 cm; se isso não se verificar, as arruelas serão consideradas defeituosas.

Determinar a percentagem de arruelas defeituosas produzidas pela máquina, admitindo-se que os diâmetros são distribuídos normalmente.

A média dos diâmetros internos de uma amostra de 200 arruelas produzidas por uma certa máquina é 0,502 cm e o desvio padrão é 0,005 cm.

A finalidade para a qual essas arruelas são fabricadas permite a tolerância máxima, para o diâmetro de **0,496 cm** a **0,508 cm**; se isso não se verificar, as arruelas serão consideradas defeituosas.

Determinar a percentagem de arruelas defeituosas produzidas pela máquina, admitindo-se que os diâmetros são distribuídos normalmente.

Dados

$$N = 200$$

$$\mu = 0.502 \text{ cm}$$

$$\sigma = 0.005 \text{ cm}$$

$$x_1 = 0.496$$
 cm

$$x_2 = 0.508$$
 cm

Valores limítrofes aceitáveis Arruelas não defeituosas

N = 200

 μ = 0,502 cm

 $\sigma = 0,005 \text{ cm}$

$$x_1 = 0,496 \text{ cm}$$

$$x_2 = 0,508 \text{ cm}$$

Qual o significado?

$$z = \frac{x - \mu}{\sigma}$$

 \boldsymbol{z}_1

 $\boldsymbol{z_2}$

$$\mathbf{z_1} = \frac{(0,496 - 0,502)}{0,005} = -1,2$$

$$\mathbf{z_2} = \frac{(0,508 - 0,502)}{0.005} = +1,2$$

Proporção de arruelas não defeituosas -> área destacada na curva normal

- ✓ Área compreendida entre z = -1.2 e z = +1.2
- ✓ Pela simetria \rightarrow 2 vezes a área entre z = 0 e z = +1,2

Da tabela da distribuição normal padrão, extrai-se:

área destacada na curva normal quando z = 1,2

Distribuição Normal Padrão										
z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
	DAFEA	0.4554	0.4573	0.4500	0.4504	0.4500	0.4500	0.4646	0.4535	0.4522

Da tabela da distribuição normal padrão, extrai-se o valor 0,3849:

$$2 * (0,3849) = 0,7698 = 76,98\%$$

% não defeituosas

Então, a porcentagem de arruelas defeituosas:

$$= 100\% - 76,98\%$$

O peso médio de 500 estudantes do sexo masculino, de uma determinada universidade, é 75,50 kg e o desvio padrão é 7,50 kg. Admitindo-se que os pesos estão distribuídos normalmente, determinar quantos estudantes pesam:

a) Entre 59,75 kg e 77,75 kg;

 $z=\frac{x-\mu}{\sigma}$

- b) Mais do que 92,75 kg;
- c) Menos do que 63,75 kg;
- d) Entre 63,75kg e 64,25kg;
- e) 64,25 kg ou menos;

Uma variável aleatória contínua X, que pode assumir somente valores compreendidos entre 2 e 8, inclusive, tem uma função de densidade de probabilidade dada por a * (X + 3), em que a é uma constante.

- a) Calcular o valor de a;
- b) Determinar P(3 < X < 5)
- c) Determinar $P(X \ge 4)$
- d) Determinar P(|X 5| < 0.5)

$$P(x_1 \le X \le x_2) = \int_{x_1}^{x_2} \varphi(x) dx$$