Prim's MST

- 1. Create a set mst to keep track of vertices included in MST.
- 2. Also keep track of parent of each vertex. Initialize parent of each vertex -1.
- 3. Assign a key to all vertices in the input graph. Key for all vertices should be initialized to INF. The start vertex key should be 0.
- 4. While mst doesn't include all the vertices
 - i. Pick a vertex u which is not there in mst and has minimum key.
 - ii. Include vertex u to mst.
 - iii. Update key and parent of all adjacent vertices of u.
 - a. For each adjacent vertex v, if weight of edge u-v is less than the current key of v, then update the key as weight of u-v.
 - b. Record u as parent of v.

Prim's MST

	K	P
0	_	3
1	N	Ó
2	0	-
3	2	2
4	()	6
5		6
6	4	3

	K P
0	42
1	∞ -
2	0 -1
3	2 7
4	∞ -
5	5 2
6	∞ <u>−</u> 1

	K	P
0	_	N
1	M	(J
2	\bigcirc	-
3	2	
4	7	<u></u>
5	Ŋ	N
6	4	3

	K	P
0		3
1	N	Ó
2	\bigcirc	-
3	2	2
4	7	3
5	Ŋ	2
6	4	3

K	P
	3
2	Ó
\bigcirc	-
2	2
7	3-
5	2
4	3
	1 2 0 2 7 5

	K	P
0		3
1	2	0
2	\bigcirc	-
3	2	2
4	6	6
5		6
6	4	3

	K P
0	(Y)
1	2 0
2	0 -1
3	2 7
4	6
5	1 6
6	4 3

Dijkstra's Algorithm

- 1. Create a set spt to keep track of vertices included in shortest path tree.
- 2. Track distance of all vertices in the input graph. Distance for all vertices should be initialized to INF. The start vertex distance should be 0.
- 3. While spt doesn't include all the vertices
 - i. Pick a vertex u which is not there in spt and has minimum distance.
 - ii. Include vertex u to spt.
 - iii. Update distances of all adjacent vertices of u.

For each adjacent vertex v,

if distance of u + weight of edge u-v is less than the current distance of v, then update its distance as distance of u + weight of edge u-v.

Relaxation

$$if(dist[0]+wt(0,2) < dist[27)$$

 $dist[2] = dist[0]+wt(0,2)$
 $if(0+40 < \infty)$
 $dist[2] = 40;$

$$if(10+20<40)$$
 $dist[2]=30$

Dijkstra's Algorithm

	D	P
0	7	2
1	J	0
2	0	-
3	5	0
4	1	3.
5	5	2
6	9	3

	D	P
0	1	2
1	8	
2	\bigcirc	-
3	8	-)
4	8	-
5	5	7
6	8	_1

	D	P
0	7	2
1	J	O
2	\bigcirc	-
3	W	0
4	8	
5	b	2
6	8	_1

	D	P
0	4	2
1	J	O
2	\bigcirc	-
3	5	0
4	7	3
5	5	2
6	9	3

	D	P
0	1	2
1	J	0
2	\bigcirc	-
3	5	0
4	1	3-
5	5	2
6	g	3

	D	P
0	4	2
1	6	0
2	\bigcirc	-
3	5	0
4	7	3
5	5	2
6	g	3

	D	P
0	4	2
1	6	Q
2	\bigcirc	-
3	5	0
4	17	3
5	5	2
6	g	3

Bellman Ford Algorithm

- 1. Initializes distances from the source to all vertices as infinite and distance to the source itself as 0.
- 2. Calculates shortest distance V-1 times:

For each edge u-v, if dist[v] > dist[u] + weight of edge u-v, then update dist[v], so that dist[v] = dist[u] + weight of edge u-v.

3. Check if negative edge in the graph:

For each edge u-v, if dist[v] > dist[u] + weight of edge (u,v), then graph has -ve weight cycle.

	0	1	2	3	4
	\bigcirc	80	8	8	8
Pass 1	0	6	S	∞	∞
Pass 2	Ō	3	5	5	8
Pass 3	0	3	7	2	8
Pass 4	0	3	5	2	(7)

-10

Warshall Floyd Algorithm

- 1. Create distance matrix to keep distance of every vertex from each vertex. Initially assign it with weights of all edges among vertices (i.e. adjacency matrix).
- 2. Consider each vertex (i) in between pair of any two vertices (s, d) and find the optimal distance between s & d considering intermediate vertex i.e. dist(s,d) = dist(s,i) + dist(i,d), if dist(s,i) + dist(i,d) < dist(s,d).

(F(dist(u,i) + dist(i,v) < dist(u,v))
dist[v] = dist(u,i) + dist(i,v)

Kruskal's MST

- 1. Sort all the edges in ascending order of their weight.
- 2. Pick the smallest edge.

Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge.

Else, discard it.

3. Repeat step 2 until there are (V-1) edges in the spanning tree.

