# Fixed Point Theorem (I)

#### Theorem 2.3

- (i) If  $g \in C[a, b]$  and  $g(x) \in [a, b]$  for all  $x \in [a, b]$ , then g has at least one fixed point in [a, b].
- (ii) If, in addition, g'(x) exists on (a, b) and a positive constant k < 1 exists with

$$|g'(x)| \le k, \quad \text{for all } x \in (a,b),$$

then there is exactly one fixed point in [a, b]. (See Figure 2.4.)



#### Proof of Thm 2.3

- If g(a) = a or g(b) = b, then g has a fixed point at an endpoint.
- Otherwise, g(a) > a and g(b) < b. The function h(x) = g(x) x is continuous on [a, b], with

$$h(a) = g(a) - a > 0$$
 and  $h(b) = g(b) - b < 0$ .

- ▶ This implies that there exists  $p \in (a, b)$ , h(p) = 0.
- ightharpoonup g(p) p = 0, or p = g(p).

If  $|g'(x)| \le k < 1$  for all x in (a, b), and p and q are two distinct fixed points in [a, b]. Then a number  $\xi$  exists (Mean Value Theorem)

$$\frac{g(p)-g(q)}{p-q}=g'(\xi)<1.$$

So

$$1 = \frac{p-q}{p-q} = \frac{g(p) - g(q)}{p-q} = g'(\xi) < 1.$$

#### Proof of Thm 2.3

- If g(a) = a or g(b) = b, then g has a fixed point at an endpoint.
- Otherwise, g(a) > a and g(b) < b. The function h(x) = g(x) x is continuous on [a, b], with

$$h(a) = g(a) - a > 0$$
 and  $h(b) = g(b) - b < 0$ .

- ▶ This implies that there exists  $p \in (a, b)$ , h(p) = 0.
- ightharpoonup g(p) p = 0, or p = g(p).

If  $|g'(x)| \le k < 1$  for all x in (a, b), and p and q are two distinct fixed points in [a, b]. Then a number  $\xi$  exists (Mean Value Theorem)

$$\frac{g(p)-g(q)}{p-q}=g'(\xi)<1.$$

So

$$1 = \frac{p-q}{p-q} = \frac{g(p)-g(q)}{p-q} = g'(\xi) < 1. \implies \boxed{\text{distinct}} \iff$$

This contradiction implies uniqueness of fixed point.

#### Fixed Point Iteration

Given initial approximation  $p_0$ , define Fixed Point Iteration

$$p_n = g(p_{n-1}), \quad n = 1, 2, \cdots,$$

If iteration converges to p, then

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g(p).$$

# Fixed Point Example $x - \log(2 + 2x^2) = 0$ : normal convergence

$$g(x) = \log(2 + 2x^2) \in [2, 3]$$
 for  $x \in [2, 3]$ ,  $|g'(x)| \le \frac{4}{5} < 1$ .





# Fixed Point Theorem (II)

#### Theorem 2.4 (Fixed-Point Theorem)

Let  $g \in C[a,b]$  be such that  $g(x) \in [a,b]$ , for all x in [a,b]. Suppose, in addition, that g' exists on (a,b) and that a constant 0 < k < 1 exists with

$$|g'(x)| \le k$$
, for all  $x \in (a, b)$ .

Then for any number  $p_0$  in [a, b], the sequence defined by

$$p_n=g(p_{n-1}),\quad n\geq 1,$$

converges to the unique fixed point p in [a, b].

# Fixed Point Theorem (II)

#### Theorem 2.4 (Fixed-Point Theorem)

Let  $g \in C[a,b]$  be such that  $g(x) \in [a,b]$ , for all x in [a,b]. Suppose, in addition, that g' exists on (a,b) and that a constant 0 < k < 1 exists with

$$|g'(x)| \le k$$
, for all  $x \in (a, b)$ .

Then for any number  $p_0$  in [a, b], the sequence defined by

$$p_n=g(p_{n-1}), \quad n\geq 1,$$

converges to the unique fixed point p in [a, b].

PRO: simple iteration

CON: conditions hard to verify

No algorithm for finding [a, b]

#### Proof of Thm 2.4

- ▶ A unique fixed point  $p \in [a, b]$  exists.

$$|p_n-p|=|g(p_{n-1})-g(p)|=|g'(\xi_n)(p_{n-1}-p)|\leq k|p_{n-1}-p|$$

$$|p_n - p| \le k|p_{n-1} - p| \le k^2|p_{n-2} - p| \le \cdots \le k^n|p_0 - p|.$$

Since

$$\lim_{n\to\infty}k^n=0,$$

 $\{p_n\}_{n=0}^{\infty}$  converges to p.

# No Harm Principle in numerical algorithm design

What we do not know never harms us

# No Harm Principle in numerical algorithm design

What we do not know never harms us

(NOT REALLY!!!)

# No Harm Principle in numerical algorithm design

What we do not know never harms us

(NOT REALLY!!!)

Trust but Verify

# §2.3 Newton's Method for solving f(p) = 0

- ▶ Suppose that  $f \in C^2[a, b]$ .
- Let  $p_0 \in [a, b]$  be an approximation to p with

$$f'(p_0) \neq 0$$
, and  $|p - p_0|$  "small".

▶ Taylor expand f(x) at x = p:

$$0 = f(p) = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p)).$$

"Solve" for p:

$$p = p_0 - \frac{f(p_0)}{f'(p_0)} - \frac{(p - p_0)^2}{2f'(p_0)} f''(\xi(p))$$

$$\approx p_0 - \frac{f(p_0)}{f'(p_0)} \stackrel{def}{=} p_1.$$

Newton's Method:  $p_{k+1} = p_k - \frac{f(p_k)}{f'(p_k)}, \quad k = 0, 1, \cdots$ 

## Newton's Method for solving f(p) = 0

$$p = p_0 - \frac{f(p_0)}{f'(p_0)} - \frac{(p - p_0)^2}{2f'(p_0)} f''(\xi(p))$$

$$\approx p_0 - \frac{f(p_0)}{f'(p_0)} \stackrel{def}{=} p_1.$$

- ▶ If  $p_0$  "close to" p, we can expect fast convergence.
- Best hope in practice: p<sub>0</sub> "not too far from" p. Newton's method may or may not converge.
- ▶ If Newton's method converges, it converges quickly.

# Geometry of Newton's Method

▶ Taylor expand f(x) at x = p:

$$0 = f(p) = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p)).$$

ightharpoonup Replace f(x) by a straight line:

$$f(p_0) + (p - p_0)f'(p_0) \approx 0.$$

$$p pprox p_0 - rac{f(p_0)}{f'(p_0)}$$
 is

horizontal intercept of straight line

$$y = f(p_0) + (x - p_0)f'(p_0)$$



```
function [fun. dfun. x. out] = NewtonMethod(Fcn. dFcn.x0. params)
% On input:
    Fun and dFun are the names of function and its derivative.
    x0 is initial guess, and tol tolerance.
% On output
  fun and dfun contain all function values and derivatives
  computed by Newton
% out.flg = 0 means success; otherwise method failed.
  x(end) is the root if out.flg = 0.
   out.it = # of iterations.
%
%
% Written by Ming Gu for Math 128A, Spring 2021
શ્ક
out.fla = 1:
x(1) = x0:
N = params.MaxIt;
tol = params.tol:
out.x = []:
out.f = []:
for k = 1:N
    fun(k) = Fcn(x(k)):
    dfun(k) = dFcn(x(k));
    out.x = [out.x;x(k)];
    out.f =[out.f;fun(k)];
    if (abs(fun(k)) < tol)
       out.fla = 0:
       out.it = k;
       return;
    end
    if (dfun(k) == 0)
       out.it = k:
       return;
    end
    x(k+1) = x(k) - fun(k)/dfun(k):
end
```

**Theorem 2.6** Let  $f \in C^2[a,b]$ . If  $p \in (a,b)$  is such that f(p) = 0 and  $f'(p) \neq 0$ , then there exists a  $\delta > 0$  such that Newton's method generates a sequence  $\{p_n\}_{n=1}^{\infty}$  converging to p for any initial approximation  $p_0 \in [p-\delta,p+\delta]$ .

#### Newton's Method as Fixed Point Iteration

Assume f(p) = 0 is a root, and x close to p. Would like a fixed point iteration

$$p_{k+1}=g(p_k), \quad k=0,1,\cdots,$$

where 
$$g(x) = x - f(x) h(x)$$
. How to choose  $h(x)$ ?

#### Newton's Method as Fixed Point Iteration

Assume f(p) = 0 is a root, and x close to p. Would like a fixed point iteration

$$p_{k+1}=g(p_k), \quad k=0,1,\cdots,$$

where g(x) = x - f(x) h(x). How to choose h(x)? Since

$$g'(x) = 1 - f'(x) h(x) - f(x) h(x)' \approx 1 - f'(x) h(x).$$

"optimal choice":  $g'(x) \approx 0$ , so that

$$h(x) = \frac{1}{f'(x)}$$

and so

$$p_{k+1} = p_k - \frac{f(p_k)}{f'(p_k)}, \quad k = 0, 1, \cdots.$$

# Newton Method for $f(x) = e^x - (2 + 2x^2)$



# Computing square root with Newton's Method

▶ Given a > 0,  $p \stackrel{def}{=} \sqrt{a}$  is positive root of equation

$$f(x) \stackrel{\text{def}}{=} x^2 - a = 0.$$

Newton's Method

$$p_{k+1} = p_k - \frac{p_k^2 - a}{2p_k} = \frac{1}{2} \left( p_k + \frac{a}{p_k} \right), k = 0, 1, 2, \cdots,$$

Newton's Method is well defined for any  $p_0 > 0$ .

# Computing square root with Newton's Method: Analysis

Assume that  $p_0 > 0$ , then for  $k = 0, 1, 2, \dots$ ,

Newton's Method satisfies

$$p_{k+1} - \sqrt{a} = \frac{1}{2} \left( p_k + \frac{a}{p_k} \right) - \sqrt{a} = \frac{1}{2 p_k} \left( p_k - \sqrt{a} \right)^2 \ge 0,$$

- ▶ It follows that  $p_k \sqrt{a} \ge 0$  for all  $k \ge 1$ .
- Newton's Method converges for any  $p_0 > 0$ :

$$0 \leq p_{k+1} - \sqrt{a} \leq \frac{1}{2} \left( p_k - \sqrt{a} \right) \leq \cdots \leq \frac{1}{2^k} \left( p_1 - \sqrt{a} \right) \longrightarrow 0.$$

#### Newton Method for square root



#### Newton Method for square root



# Newton Method: Think 5 (if it works)



**Theorem 2.6** Let  $f \in C^2[a,b]$ . If  $p \in (a,b)$  is such that f(p) = 0 and  $f'(p) \neq 0$ , then there exists a  $\delta > 0$  such that Newton's method generates a sequence  $\{p_n\}_{n=1}^{\infty}$  converging to p for any initial approximation  $p_0 \in [p-\delta,p+\delta]$ .

#### Proof of Theorem 2.6

- Newton's method is fixed point iteration  $p_n = g(p_{n-1}), g(x) = x \frac{f(x)}{f'(x)}.$
- Since  $f'(p) \neq 0$ , there exists an interval  $[p \delta_1, p + \delta_1] \subset [a, b]$  on which  $f'(x) \neq 0$ . Thus, g(x) is defined on  $[p \delta_1, p + \delta_1]$ .

$$g'(x) = 1 - \frac{f'(x) f'(x) - f(x) f''(x)}{(f'(x))^2} = \frac{f(x) f''(x)}{(f'(x))^2} \in C[p - \delta_1, p + \delta_1].$$

- Since g'(p)=0, there exists  $0<\delta<\delta_1$  so that  $|g'(x)|\leq \kappa \quad (=\frac{1}{2}), \quad \text{for all} \quad x\in [p-\delta,p+\delta].$
- ▶ If  $x \in [p \delta, p + \delta]$ , then  $|g(x) p| = |g(x) g(p)| = |g'(\xi)(x p)| < \kappa |x p| < |x p|$ .

Therefore  $g(x) \in [p - \delta, p + \delta]$ .

▶  $\{p_n\}$  converges to p by Fixed Point Theorem.

# Newton Method Divergence Example: $f(x) = x^{1/3}$



$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^{1/3}}{1/3x_k^{-2/3}} = x_k - 3x_k = -2x_k$$

#### Secant Method: Poor man's Newton Method

#### Motivation

- Newton method style of fast convergence
- Avoid need for derivative calculations.

#### Approach

- Newton method:  $p_{n+1} = p_n \frac{f(p_n)}{f'(p_n)}$ .
- ▶ Replace  $f'(p_n)$  by its cheap approximation

$$f'(p_n) = \lim_{x \to \infty} \frac{f(p_n) - f(x)}{p_n - x} \approx \frac{f(p_n) - f(p_{n-1})}{p_n - p_{n-1}}.$$

Secant method

$$p_{n+1} = p_n - \frac{f(p_n)(p_n - p_{n-1})}{f(p_n) - f(p_{n-1})}, n = 1, 2, \cdots.$$

# Secant Method: Geometry

▶ "Approximate" f(x) by a straight line

$$f(x) \approx \frac{(x-p_0)f(p_1)-(x-p_1)f(p_0)}{p_1-p_0}.$$

Both f(x) and straight line go through points  $(p_0, f(p_0)), (p_1, f(p_1))$ .

Let approximate root p<sub>2</sub> be the x-intercept of the straight line



$$p_2 = \frac{p_0 f(p_1) - p_1 f(p_0)}{f(p_1) - f(p_0)} = p_1 - \frac{f(p_1)(p_1 - p_0)}{f(p_1) - f(p_0)}.$$

#### Secant method for

$$f(x) = e^x - (2 + 2x^2)$$



# Secant method for $f(x) = e^x - (2 + 2x^2)$



#### Recall Newton Method



Fewer iterations, and less work?

# Secant method for $f(x) = e^x - (2 + 2x^2)$



#### Recall Newton Method



Fewer iterations, and less work?

Secant faster than Newton

### §2.4 Number of iterations vs. error in the solution

Function to be considered

$$g(x) = log(2 + 2x^2), \quad f(x) = x - g(x) = x - log(2 + 2x^2).$$

▶ Root p of f (i.e., f(p) = 0)

$$p = 2.98930778246493e + 00.$$

#### Method comparison:

- ▶ Bisection Method: 52 iterations
- ► Fixed Point Iteration: 66 iterations
- ▶ Newton's Method: 8 iterations
- Secant Method: 11 iterations

### §2.4 Number of iterations vs. error in the solution

Function to be considered

$$g(x) = log(2 + 2x^2), \quad f(x) = x - g(x) = x - log(2 + 2x^2).$$

▶ Root p of f (i.e., f(p) = 0)

$$p = 2.98930778246493e + 00.$$

#### Method comparison:

- ▶ Bisection Method: 52 iterations
- ► Fixed Point Iteration: 66 iterations
- ▶ Newton's Method: 8 iterations
- Secant Method: 11 iterations

Even in convergence, rates differ

## convergence comparison, semi-log scale

#### **Bisection**



#### Fixed Point Iteration



#### Newton Method



#### Secant Method



### Linear and Quadratic Order of convergence

DEFINITION Suppose  $\{p_n\}_{n=1}^{\infty}$  is a sequence that converges to p with  $p_n \neq p$  for all n. If positive constants  $\lambda$  and  $\alpha$  exist with

$$\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}}=\lambda,$$

then  $\{p_n\}_{n=1}^{\infty}$  converges to p of order  $\alpha$ , with asymptotic error constant  $\lambda$ .

## Linear and Quadratic Order of convergence

DEFINITION Suppose  $\{p_n\}_{n=1}^{\infty}$  is a sequence that converges to p with  $p_n \neq p$  for all n. If positive constants  $\lambda$  and  $\alpha$  exist with

$$\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}}=\lambda,$$

then  $\{p_n\}_{n=1}^{\infty}$  converges to p of order  $\alpha$ , with asymptotic error constant  $\lambda$ .

- ▶ If  $\alpha = 2$ , then  $\{p_n\}_{n=1}^{\infty}$  converges quadratically.
- ▶ If  $\alpha = 1$  and  $\lambda < 1$ ,  $\{p_n\}_{n=1}^{\infty}$  converges linearly.
- ▶ If  $\alpha = 1$  and  $\lambda = 0$ ,  $\{p_n\}_{n=1}^{\infty}$  converges super-linearly.

## Recall and contrast: rate of convergence, the Big O

Suppose  $\{\beta_n\}_{n=1}^{\infty}$  is a sequence known to converge to zero, and  $\{\alpha_n\}_{n=1}^{\infty}$  converges to a number  $\alpha$ . If a positive constant K exists with

$$|\alpha_n - \alpha| \le K|\beta_n|$$
, for large  $n$ ,

then we say that  $\{\alpha_n\}_{n=1}^{\infty}$  converges to  $\alpha$  with **rate, or order, of convergence**  $O(\beta_n)$ . (This expression is read "big oh of  $\beta_n$ ".) It is indicated by writing  $\alpha_n = \alpha + O(\beta_n)$ .

the Big O() = rate of convergence

# Linear and Quadratic Order of convergence (I)

▶ Suppose that  $\{p_n\}_{n=1}^{\infty}$  is linearly convergent to 0,

$$\lim_{n\to\infty}\frac{|p_{n+1}|}{|p_n|}=0.5,\quad \text{or roughly}\quad \frac{|p_{n+1}|}{|p_n|}\approx 0.5,$$

hence 
$$p_n \approx (0.5)^n |p_0|$$
.

▶ Suppose that  $\{\tilde{p}_n\}_{n=1}^{\infty}$  is quadratically convergent to 0,

$$\lim_{n\to\infty}\frac{|\tilde{p}_{n+1}|}{|\tilde{p}_n|^2}=0.5,\quad\text{or roughly}\quad\frac{|\tilde{p}_{n+1}|}{|\tilde{p}_n|^2}\approx0.5.$$

But now

$$\begin{aligned} |\tilde{p}_n| &\approx 0.5 |\tilde{p}_{n-1}|^2 \approx (0.5) [0.5 |\tilde{p}_{n-2}|^2]^2 = (0.5)^3 |\tilde{p}_{n-2}|^4 \\ &\approx (0.5)^3 [(0.5) |\tilde{p}_{n-3}|^2]^4 = (0.5)^7 |\tilde{p}_{n-3}|^8 \\ &\approx \dots \approx (0.5)^{2^n - 1} |\tilde{p}_0|^{2^n}. \end{aligned}$$

# Linear and Quadratic Order of convergence (II)

Consider  $p_n \approx (0.5)^n$  and  $\tilde{p}_n \approx (0.5)^{2^n}$ .

