2 pointers C++ X > indice iterating over the Array. Qui Given a Sorted Array of size N of distinct amazon clements. Check if there emists a pair (i,j) A[i] + A[i] = K, i = j. \Rightarrow 2 Sum. A: {3, 7, 8, 12, 193 K=15 -> True Approach#1: + +c: 0(N2) SC: 0(1) Approach#2: TC: 0(N) SC: 0(N) Approach # 3: A: { 3, 7, 8, 12, 193 K=15 Search (K-A[i]) TC: O(NlogN) Sc: O(1) in Array.

Approach # 4:

A: $\{-3, 0, 1, 3, 6, 8, 11, 14, 18, 253\}$ K=17

Ĺ	ĵ	Liga	[Lita	Sum
0	9	-3	25	22 7 17
0	8	-3	18	15 < 17
1	8	0	18	18 > 17
7	4	0	14	14 < 17
2	7	T	\ \4	15 < 17
3	7	3	14	17 == 17
		1		return true.

TC: 0(N) Sc: 0(1)

Qiven a sorted Array of size N of Amazon/ distinct elements. Check if there enists VISA a pair (i,j) S.t A[i]-A[j]=(k), K>0

A[]: $\{-3,0,1,3,6,8,11,14,18,25\}$

K=5 > True

[19]A - [29]A

1) 0

91

P2

N-1 \times 28 75 (decrease) $\frac{91+t}{1}$

2) 0

N/2 × 11 7 5

 $\frac{N}{2}+1$

3 < 5

T

3 < 5

2

4 < 5

0

3

6 75

3 < 5

4

2

5 = = 5 veturn

A[]:
$$\{1, \frac{1}{4}, \frac{2}{6}\}$$
 $K=2$

P! $P2$ $A[P2] - A[P1]$

0 1 $372 \Rightarrow P1++$

1 1 $\frac{1}{4}(P1==P2) \Rightarrow P2++$

1 2 $2==2 \Rightarrow xeturn$

Assue.

boot Check (A[], N, K) {

 $P1=0$
 $P2=1$

while ($P2$ (N) {

if ($A[P2] - A[P1] = = K$)

where $\{1, 4[P2] - A[P1] > K$) {

 $P1++$
 $\{1, 4[P2] - A[P1] > K$) {

 $P1++$
 $\{1, 4[P2] - A[P1] > K$) {

 $P1++$
 $\{1, 4[P1==P2) = P2++$
 $\{1, 4[P1==P2] = P2$

TC: 0(N)

SC: 0(1)

A:
$$\{3, 7, 8, 12, 143\}$$
 $K = 16$.

$$\#$$
 What if $K < 0$.

- * Important points about 2 pointers approach 1) Where to intiliaze the pointers.
- 2) How to update your pointers.
- 3) When to stop?

Distriction Swift

Rain Water Trapping Given an Array of size N, where Alig represents the height of ith wall. Pick any 2 walls set max water can be started byw them.

Ex: {3, 7, 4, 5, 7}

i, j water = theight & midth water = min (Api), Alj) * (j-i) boute force for(i=0; i< N; i++) < i < for(j=i+1; j< N; j++) < i < min(A(i), A(i)) w = j-i vater = ++ w vare = max(aus, water); vare = vare =

A: (3,5,4,7,3,6,5,4,1,23 P1

H

Water = min (April, April) * (1-1)

W.

91	P2	([59]A, [19]A) nim = H	W=92-P1	wower
0	9	2_	9	18.
0	8	7	8	8
0	7	3	H	21
1	¥	4	6	24
1	6	5	5	25
2	6	4	4	16
3	6	5	3	15
3	5	6	2,	12
3	4	3	7	3
3	3	쿠	٥	0

Populate pointer mhleh 13 having leaser height wall.

If the heights of the wall at P12 P2 are equal then we can update any of them.

MS.

Given 3 sorted Arrays ATI, BTI4 CTI of Sizes N. find i, j&k s.t

max (Afij, Bfjj, Cfkj) - min (Afij, Bfjj, Cfkj) is minimized.

A: \(\frac{2}{3}, \frac{14}{14}, \frac{16}{16}, \frac{20}{20}, \frac{29}{40} \frac{3}{4} \)

B: {-6,23,24,30,35,503

C: (-15, 15, 26, 31, 39, 423

i j k Alij Blij Clkj max min ang 0 0 0 3 -6 -15 3 -15 18 0 1 1 3 23 15 23 3 20 4 30 31 31 29 2 4 30 50 42 50 3 47 5 5 4 40 35 37 39 40 35 5 5 5 4 40 50 39 50 39 11

Boute force

TC: 0(N3) SC: 0(1)

A: \(\frac{2}{3}, \frac{1}{4}, \frac{2}{16}, \frac{2}{20}, \frac{29}{40} \frac{3}{40} \frac{3}{

B: {-6, 23, 24, 30, 35, 503

C: {-15, 15, 26, 31, 39, 423

E = [19]A

B[P2] = -6

min = -15

aus = 18

X - Y Mar(A9,Bj,Cr) Min (A9,Bj,Cr)

C[P3] = (15)

* To minimize the value

X-Y, me are trying the increase the value of Y.

A: $\{3, 14, 16, 20, 29, 403\}$ B: $\{-6, 23, 24, 30, 35, 503\}$ C: $\{-15, 15, 26, 31, 39, 423\}$

Code

 $TC: O(N+N+N) \Rightarrow O(N)$ SC: O(1)

______** _____