- 1. Определете броя на подвижните звена и вида на кинематичните двоици на механичната система. Опишете детайлите, от които е съставено неподвижното звено. Определете вида на механизма. Начертайте кинематична схема на лостовия механизъм и определете степените на свобода. Изберете обобщена(и) координата(и).
 - а) Броят на подвижните звена е 5:
 - 4, 1' зъбни колела;
 - В₁ вал;
 - 1 диск;
 - 2 звено (лост);

Вид на кинематичните двоици на механичната система:

- между 4 и 1' шарнир;
- между 1' и В₁ цилиндрична;
- между 1 и В₁ цилиндрична;
- между 1 и 2 плъзгаща;
- между 2 и С плъзгаща;
- b) Опишете детайлите, от които е съставено неподвижното звено:

Неподвижното звено представлява плоскост, върху която са монтирани: електродвигател, статор, и три опори. Двете опори имат отвори в горната средна част, за да може да се върти вала B_1 . Третата опора има монтирана към нея неподвижна ос — C, която влиза в канал на лоста (звено 2).

- c) Определете вида на механизма: Механизма използван в нашия случай е *"КУЛИСЕН МЕХАНИЗЪМ"*.
- d) Кинематична схема на лостовия механизъм:

Степените на свобода се пресмятат по следната формула (равнинен механизъм): $h=3n-2p_5-p_4$

- n подвижни, свободни звена;
- р₅ двоици от 5 клас (елементрани);
- p₄ двоици от 4 клас (контурни);

Броят на степените на свобода e: h=3n-2p₅-p₄=3.3-2.4-0=1;

е) Изберете обобщена(и) координата(и):

Избирам за обобщена координата ъгъла ϕ_1 .

2. Начертайте план на положението на механизма за зададената стойност на ъгъла ϕ_1 . Постройте още два плана на механизма за мъртвите положения.

Зададени параметри:

- OA=0,035 m;
- x_c=0,09 m (OC);
- AM=0,05 m;
- <CAM=β=45°;
- <φ₁ = 135°
- а) План на положението на механизма за зададената стойност на ъгъла ϕ_1 :

- b) План на положението на механизма при мъртвите положенияЗа трите плана: k_i=0,06/60 [mm/m]=0,001
- 3. Съставете векторните уравнения за скоростта на точка М. Чрез метода на плановете намерете скоростта на точката М за зададената стойност на ъгъла ϕ_1 :
 - а) Векторни уравнения за скоростта на точка М:

$$lackbox{\blacksquare}$$
 За $oxed{V_{A_2}: V_{A_2} \perp OA}$ Дадено.: $\omega_1 = 50 \, \mathrm{s}^{-1}$ Търси се: $V_{A_2} = ?$ $OA_2 = 0,035 \, m$ $V_{A_2} = \omega_1.OA_2 = 50.0,035 = 1.75 \, rac{m}{s}$

lacktriangledown За намиране на скоростта на $V_{\mathcal{C}_2}$ решаваме следната система:

$$|\overline{V_{C_2}}| \overline{V_{A_2}} + \overline{V_{C_2^{A_1}}} | \overline{V_{C_2}}|$$

$$lacksquare 3a V_{C_{2^{c_{3}}}} : V_{C_{2^{c_{3}}}} ||AC|$$

$$\frac{\overline{V_{C_2^{c_3}}} = \overline{V_{A_2}} + \overline{V_{C_2^{c_2}}}}{\overline{V_{M_2}} \rightarrow \Delta ACM \sim \Delta A_2 C_2 M_2}$$

$$k_{v} = k_{l}. \omega_{1} = 0,001.50 = 0,05 \frac{m}{mm}$$

$$p'a = \frac{V_{a}}{k_{v}} = \frac{1,75,8}{0,05} = 35 mm$$

$$V'_{ca} = a'c. k_{v} = 95.0,05 = 4.75 \frac{m}{s}$$

$$V'_{M} = p'M. k_{v} = 65.0,05 = 3.25 \frac{m}{s}$$

$$V'_{c} = p'c. k_{v} = 80.0,05 = 4 \frac{m}{s}$$

4.С помощта на данните от т.2 изчислете мощността на силата F. Като вземете предвид зададения КПД и пренебрегнете инерционните сили, определете мощността и въртящия момент на електродвигателя за зададената стойност на ϕ_1 :

$$\cos\beta = \frac{CP^2 + PM^2 - CM^2}{2.CP.PM} = 0,835$$

b=33,3

• Зададени параметри:

Търси се:

$$F = 0.9 \, kN = 0.9.10^3 \, N$$

$$P_{\scriptscriptstyle E} = ?$$

$$P_F = F \cdot \cos\alpha \cdot V_M = 0.9.10^3 \cdot \cos 146.7^0 \cdot 3.25 \approx -1687.7W$$

Мощността на силата F е 1687.7 W.

• Зададени параметри:

$$P_F = 1687,7 W$$

 $\eta = 0,62$

$$P_{\partial e} = ?$$

$$P_{\partial s} = \frac{P_F}{\eta} = \frac{1687.7}{0.62} \approx 2722 W$$

Мощността на електродвигателя е 2722 W.

• Зададени параметри:

Търси се:

$$P_{\partial s} = 2722W$$
 $M_{\partial} = ?$ $\omega_1 = 50 s^{-1}$ $z_1 = 69 \delta p.; z_4 = 17 \delta p.$

$$i_{14} = \frac{\omega_1}{\omega_4} = \frac{z_4}{z_1} \Rightarrow \omega_4 = \frac{\omega_1 \cdot z_1}{z_4} = \frac{50 * 69}{17} \approx 202.94 \, s^{-1}$$

$$M_{\partial} = \frac{P_{\partial e}}{\omega_4} = \frac{2722}{202.94} \approx 13.41 \, N \cdot m$$

<u>Въртящият момент на електродвигателя е 13.41 N.m.</u>

5. Изчислете геометричните параметри на зъбната предавка и зъбните колела:

- а) Геометрични параметри на зъбните колела: 3adadehu параметри: $\alpha = 20^0$; $h_a^i = 1$; $c^i = 0.25$; m = 1.5 mm
 - **■** *За зъбното колело z*₁=69 бр.
 - 1) Стъпка по делителната окръжност: $p=\pi$. m=3,14*1,5=4.71 mm
 - **2)** Диаметър на делителната окръжност: d=m. $z_1=1,5*69=103,5 \,mm$
 - 3) Дебелина на зъба по делителната окръжност:

$$s = \frac{p}{2} = \frac{4,71}{2} = 2,35 \, mm$$

4) Диаметър на основната окръжност:

$$d_b = m. z_1. \cos\alpha = 1,5*69*0,577=59,71 mm$$

5) Диаметър на петовата окръжност:

$$d_f = m.(z_1 - 2.(h_a^i + c^i)) = 1,5.(69 - 2*(1+0,25)) = 99,75 \, mm$$

6) Диаметър на върховата окръжност:

$$d_f = m \cdot (z_1 + 2 \cdot h_a^i) = 1,5 * (69 + 2 * 1) = 106.5 \, mm$$

■ За зъбното колело z₁=17 бр.

1) Стъпка по делителната окръжност:

 $p=\pi$. m=3,14*1.5=4.71 mm

2) Диаметър на делителната окръжност:

d=m. $z_4=1.5*21=25,5 mm$

3) Дебелина на зъба по делителната окръжност:

$$s = \frac{p}{2} = \frac{4,71}{2} = 2,35 \, mm$$

4) Диаметър на основната окръжност:

 $d_b = m. z_4. \cos\alpha = 1,5*17*0,577 = 14,71 mm$

5) Диаметър на петовата окръжност:

 $d_f = m \cdot (z_4 - 2 \cdot (h_a^i + c^i)) = 1,5 * (17 - 2 * (1 + 0,25)) = 21,75 mm$

6) Диаметър на върховата окръжност:

 $d_f = m \cdot (z_4 + 2 \cdot h_a^{i}) = 1.5 * (17 + 2 * 1) = 28,5 mm$

b) Геометрични параметри на зъбната предавка: Зададени параметри:

 $\alpha = 20^{\circ}$; $h_a^{i} = 1$; $c^{i} = 0.25$; m = 1.5 mm

Ъгъл на зацепване:

$$\alpha_{w} = \alpha = 20^{\circ}$$

■ *Радусии на началните окръжности:*

$$r_{w_1} = r_1 = \frac{d_{z_1}}{2} = \frac{69}{2} = 34.5 \, mmu \, r_{w_2} = r_2 = \frac{d_{z_4}}{2} = \frac{17}{2} = 8,5 \, mm$$

Междуцентрово разстояние:

$$\alpha_{w} = r_{w_{1}} + r_{w_{2}} = 34,5 + 8,5 = 43 \, mm$$

6.Пресметнете момента, с който се натоварва вал B_1 . Изберете материал и изчислете диаметъра на вала от условието за якост на усукване. Изчислете ъгъла на усукване на вала за същото положение:

а) $\underline{\textit{Моментът, с който се натоварва валът B}_1 (\underline{\textit{M}}_{yc})}$ се изчислява по формулата:

Зададени параметри:

Търси се:

$$M_{\partial}$$
=13,41 $N.m$

$$z_1$$
=69 δp .

$$z_{A}=17 \, 6p$$
.

$$M_{yc.} = ?$$

$$M_{yc} = M_{\partial} \cdot \frac{z_1}{z_4} = \frac{13,41*69}{17} \approx 54.4 \, N.m$$

b) Избирам за материал на вала <u>чугун</u> и по следната формула се пресмята <u>диаметъра на сечението на вала (d)</u>:

Mpa			
	Стомана	Чугун	Дурал
статично	120	60	90
пулсиращо	80	40	50
знакопроменливо	60	30	30
	8.10 ¹⁰	4.10 ¹⁰	2,65.10 ¹⁰

Зададени параметри:

$$M_{yc} = 54.4 \, \text{N.m}$$
 $d = ?$
 $\tau_{yc} = 40 \, \text{MPa} = 40.10^6 \, \text{Pa}$

$$d = \sqrt[3]{\frac{16.M_{yc}}{\pi.\tau_{yc}}} = \sqrt[3]{\frac{16*54.4}{3,14*40*10^6}} = 1,906 cm$$

(Тъй като на вала действа пулсиращо натоварване, то за чугуна $\left[au_{yc.} \right] \!\! = \!\! 40.10^6 Pa$

c) <u>**Ъгълът**</u> на усукване на вала (φ) се пресмята чрез следните формули:

Зададени параметри:

$$I_c = ?$$
 $d = 2,07.10^{-2} m$
 $M_{yc} = 54,4 N.m$
 $L = 0,30 m$
 $G_1 = 4.10^{10} Pa$

$$I_c = \frac{\pi \cdot d^4}{32} = \frac{3,14 * (2,07 * 10^{-2})^4}{32} = 1,8 * 10^{-8}$$

$$\varphi = \frac{M_{yc} \cdot L}{G_1 \cdot I_c} = \frac{54.4 * 0.3}{4.10^{10} \cdot 1.18 \cdot 10^{-8}} = 0.022 \, rad = 1.22^0$$

7.Определете приведения масов инерционен момент и приведения момент на активните сили на механичната система:

а) Приведен масов инерционен момент (I_г):

Зададени параметри:

$$\begin{split} I_r &= \sum_{1}^{n} \left[I_i \left(\frac{\omega_i}{\omega_r} \right)^2 + m_i \left(\frac{V_{c_i}}{\omega_r} \right)^2 \right] \\ I_r &= \left(I_{\partial} + I_{4} \right) + \left[I_1 \left(\frac{\omega_1}{\omega_4} \right)^2 + m_1 \left(\frac{V_{c_1}}{\omega_4} \right)^2 \right] + \left[I_2 \left(\frac{\omega_2}{\omega_4} \right)^2 + m_2 \left(\frac{V_{c_2}}{\omega_4} \right)^2 \right] \\ I_r &= \left(I_{\partial} + I_{4} \right) + \left[I_1 \left(\frac{\omega_1}{\omega_4} \right)^2 + m_1 \left(\frac{0}{\omega_4} \right)^2 \right] + \left[I_2 \left(\frac{\omega_1}{\omega_4} \right)^2 + m_2 \left(\frac{V_M}{\omega_4} \right)^2 \right] \\ I_r &= \left(I_{\partial} + I_{4} \right) + I_1 \left(\frac{\omega_1}{\omega_4} \right)^2 + I_2 \left(\frac{\omega_1}{\omega_4} \right)^2 + m_2 \left(\frac{V_M}{\omega_4} \right)^2 \end{split}$$

$$I_r = (0.02 + 0.002) + 0.002.(\frac{50}{202.94})^2 + 0.002.(\frac{50}{202.94})^2 + 0.1.(\frac{3.25}{202.94})^2 = 0.0222684 \, kg.m^2$$

- За зъбното колело 1' $V_{c_2} = 0 \, m/s$, тъй като масовият му център лежи на неговата ос на ротация;
- $\omega_1 = \omega_2$, тъй като зъбното колело 1' и звеното 2 имат една и съща ъглова скорост;
 - $V_{c_2} = V_{M}$, тъй като масовият център на звеното 2 е точката М;

Приведеният инерциален момент е: $I_r = 0.0222684 \, kg \, m^2$

b) <u>Приведен момент на активните сили (М,)</u>:

Зададени параметри: Търси се:

$$M_{o}=13,41 \, N.m$$
 $M_{r}=?$ $M_{o}=13,41 \, N.m$ $F=0,9 \, kN = 0,9 * 10^{3} \, N$ $\alpha = 146,7^{0}$ $V_{M}=3.25 \, \frac{m}{s}$ $\omega_{4}=202,94 \, s^{-1}$

$$M_r = M_{\partial} - F. \frac{V_M.\cos\alpha}{\omega_A} = 13,41 - 0.9 * 10^3. \frac{3,25 * \cos 146,7^0}{202,94} = 21,73 N.m$$

<u>Приведеният момент на активните сили е:</u> $M_r = 21,73 \, N.m$

8. Разпишете уравненията за движение на механичната система в диференциална и интегрална форма:

 а) Уравнение за движение на механичната система в диференциална форма:

Изследването на движението на равнинни механизми с една степен на свобода се свежда до определяне на закона на движение на динамичния му модел — въртящо се тяло с привиден инерциален момент I_r под действие на приведен момент M_r . Движенията на останалите звена на механизма еднозначно се определят след кинематичен анализ по даден закон за движение на механизма.

Уравнението за движение на механичната система в диференциална форма е така нареченото диференциално уравнение на Лагранж от втори род:

$$I_r.\omega_r.\frac{d\omega_r}{d\phi} + \frac{\omega_{r^2}}{2}.\frac{dI_r}{d\phi} = M_r$$

Може да се преобразува във вида:

$$I_r.\frac{d\omega_r}{dt} + \frac{\omega_{r^2}}{2}.\frac{dI_r}{d\phi} = M_r$$
 , тый като $\omega_r = d\phi/dt$

- b) Уравнение за движение на механичната система в интегрална форма:
 - lacktriangle Приведеният момент зависи от положението, т.е. $M\!=\!M\left(\phi\right)$ и $I\!=\!I\left(\phi\right)$.

$$I.\frac{\omega^2}{2} - I_0.\frac{\omega_{0^2}}{2} = \int\limits_{\phi_0}^{\phi} Md \ \phi = \Delta A$$
 , където

 I_0, ω_0, I, ω са стойности на масовия инерционен момент и на ъгловата скорост съответно при ъгли $^{\phi_0}$ и $^{\phi}$, определящи началното и текущото положение на главния вал на механизма.

Като се вземе предивд, че $\omega = d\phi/dt$, се получава:

$$dt = \frac{d\phi}{\omega} \qquad t = t_0 + \int_{\phi_0}^{\phi} \frac{d\phi}{\omega(\phi)} = t(\phi)$$

■ Приведеният момент зависи от положението, т.е. $M\!=\!M\left(\phi\right)$ и $I\!=\!const$.

$$_{\Pi ext{pu}}$$
 $I = const$ се получава: $I \cdot \frac{d \phi}{\omega(\phi)} = M$;

След отделяне на променливите t и ω и интегриране при начални условия t0=0 и $\omega=\omega_0$ се получава уравнението в интегрална форма: