This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

Listing of Claims:

1. (Currently Amended) A compound having the formula:

$$\begin{array}{c|c}
R^{4} & \stackrel{R^{3}}{\longrightarrow} & \stackrel{(R^{1})_{p}}{\longrightarrow} & O \\
X & & & & & \\
Y & & & \\
Y & & & & \\$$

the N-oxide[[s]], the pharmaceutically acceptable addition salt[[s]] and the stereochemically isomeric form[[s]] thereof, wherein :

p represents an integer being 0, 1, 2, 3 or 4;

X represents O, S, NR⁵ or a direct bond or-X-R² taken together may represent cyano;

Y represents O, S, NR^5 , or $S(O)_2$;

each R^1 independently represents $C(=0)\cdot Z\cdot R^{14}$, C_{1-6} alkyl, halo, polyhalo C_{1-6} alkyl, hydroxy, mercapto, C_{1-6} alkyloxy, C_{1-6} alkylthio, C_{1-6} alkylcarbonyloxy, aryl, cyano, nitro, Het³, R^6 , NR⁷R⁸ or C_{1-4} alkyl substituted with $C(=0)\cdot Z\cdot R^{14}$, Het³, R^6 or NR⁷R⁸;

 R^2 represents Het¹, C_{3-7} cycloalkyl optionally substituted with C(=0)-Z- R^{14} , C_{1-6} alkyl or C_{1-6} alkyl substituted with one or two substituents selected from the group consisting of: C(=0)-Z- R^{14} , hydroxy, mercapto, cyano, amino, mono- or di(C_{1-4} alkyl)amino, C_{1-6} alkyloxy optionally substituted with C(=0)-Z- R^{14} , C_{1-6} alkylthio optionally substituted with C(=0)-Z- R^{14} , C_{1-6} alkylsulfonyloxy, C_{3-7} cycloalkyl optionally substituted with C(=0)-Z- R^{14} , aryl, aryloxy, arylthio, Het¹, Het¹oxy and Het¹thio; and if X is O, S or NR⁵, then R^2 may also represent aminothiocarbonyl, C_{1-4} alkylcarbonyl optionally substituted with C(=0)-Z- R^{14} ,

C₁₋₄alkylthiocarbonyl optionally substituted with C(=0)-Z-R¹⁴, arylcarbonyl, arylthiocarbonyl, Het¹carbonyl or Het¹thiocarbonyl;

R³ represents hydrogen, C₁₋₆alkyl or C₃₋₇cycloalkyl;

R⁴ represents hydrogen, C₁₋₆alkyl or C₃₋₇cycloalkyl; or

R³ and R⁴ taken together form a C₂₋₆alkanediyl;

R⁵ represents hydrogen or C₁₋₄alkyl;

each R⁶ independently represents C₁₋₆alkylsulfonyl, aminosulfonyl, piperidinylsulfonyl, mono- or di(C₁₋₄alkyl)aminosulfonyl, mono- or di(benzyl)aminosulfonyl, polyhaloC₁₋₆alkylsulfonyl, C₁₋₆alkylsulfinyl, phenylC₁₋₄alkylsulfonyl, piperazinylsulfonyl, aminopiperidinylsulfonyl, piperidinylaminosulfonyl, N-C₁₋₄alkyl-*N*-piperidinylaminosulfonyl, Y-R¹⁴, mono- or di-(C₁₋₄alkyl)aminoC₁₋₄alkylsulfonyl, Het⁶sulfonyl or C₃₋₇ cycloalkylsulfonyl; each R⁷ and each R⁸ are independently selected from the group consisting of: hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, mercapto-C₁₋₄alkyl, dihydroxyC₁₋₄alkyl, aryl, arylC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkylcarbonyl, C₁₋₄alkyl-thiocarbonyl, arylcarbonyl, arylthiocarbonyl, Het³thiocarbonyl, Het³carbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, arylaminocarbonyl, arylaminothiocarbonyl, Het³aminocarbonyl, Het³aminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl, C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, -C(=O)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, Het³, Het⁴ and R⁶; or R⁷ and R⁸ taken together with the nitrogen atom to which they are attached form a radical of formula

 R^9 and R^{10} are each independently selected from the group consisting of: hydrogen, C_{1-4} alkyl, hydroxy C_{1-4} alkyl, mercapto- C_{1-4} alkyl, dihydroxy C_{1-4} alkyl, phenyl, phenyl C_{1-4} alkyl, C_{1-4} alkyloxy C_{1-4} alkyl, C_{1-4} alkylcarbonyl, arylcarbonyl, Het 3 carbonyl, Het 3 thiocarbonyl, mono- or di $(C_{1-4}$ alkyl)amino C_{1-4} alkyl, arylaminocarbonyl, arylaminothiocarbonyl, Het 3 aminocarbonyl,

Het³aminothiocarbonyl, C_{3-7} cycloalkyl, pyridinyl C_{1-4} alkyl, C_{1-4} alkanediyl-C(=O)-Z- R^{14} , -C(=O)-Z- R^{14} , -Y- C_{1-4} alkanediyl-C(=O)-Z- R^{14} , Het³, Het⁴ and R^6 ; or R^9 and R^{10} taken together with the nitrogen atom to which they are attached form a radical of formula

each R^{11} independently being selected from the group consisting of: hydroxy, mercapto, cyano, nitro, halo, trihalomethyl, C_{1-4} alkyloxy optionally substituted with C(=0)-Z- R^{14} , C_{1-6} alkylthio optionally substituted with C(=0)-Z- R^{14} , formyl, trihalo C_{1-4} alkylsulfonyloxy, R^6 , NR^7R^8 , $C(=0)NR^{15}R^{16}$, -C(=0)-Z- R^{14} , -Y- C_{1-4} alkanediyl-C(=0)-Z- R^{14} , aryl, aryloxy, arylcarbonyl, arylthiocarbonyl, C_{3-7} cycloalkyl optionally substituted with C(=0)-Z- R^{14} , C_{3-7} cycloalkylthio optionally substituted with C(=0)-Z- R^{14} , phthalimide-2-yl, Het 3 , Het 4 , C(=0)Het 3 , $C(=0)C_{1-4}$ alkyl optionally be substituted with one or more substituents independently selected from hydroxy, mercapto, halo and phenyl;

 R^{12} and R^{13} are each independently selected from the group consisting of: hydrogen, C_{1-4} alkyl, hydroxy C_{1-4} alkyl, mercapto- C_{1-4} alkyl, dihydroxy C_{1-4} alkyl, phenyl, phenyl- C_{1-4} alkyl, C_{1-4} alkyloxy C_{1-4} alkyl, C_{1-4} alkylcarbonyl, C_{1-4} alkylthiocarbonyl, arylcarbonyl, mono--or-di(C_{1-4} alkyl)amino C_{1-4} alkyl, arylaminocarbonyl, arylaminothiocarbonyl, C_{3-7} cycloalkyl, pyridinyl C_{1-4} alkyl, C_{1-4} alkanediyl-C(=O)-Z- R^{14} , -C(=O)-Z- R^{14} , -Y- C_{1-4} alkanediyl-C(=O)-Z- R^{14} and R^{6} ; or R^{12} and R^{13} taken together with the nitrogen atom to which they are attached form a radical of formula

each R¹⁴ independently represents hydrogen; C₁₋₂₀acyl or C₁₋₂₀alkylC₁₋₂₀acyl (having a straight or branched, saturated or unsaturated hydrocarbon chain having 1 to 20 carbon atoms) optionally substituted with one or more substituents selected from the group consisting of: hydroxy, mercapto, hydroxyC₁₋₄alkyl, mercaptoC₁₋₄alkyl, NR¹⁷R¹⁸, aryl, mono- or di-(C₁₋₄alkyl)amino, cyano and Het⁵; C₁₋₂₀alkyl optionally substituted with one or more substituents selected from the group consisting of: hydroxy, halo, mercapto, C₁₋₄alkyloxyC₁₋₄alkyloxy, mercaptoC₁₋₄alkyl, NR¹⁷R¹⁸, aryl, mono- or di-(C₁₋₄alkyl)amino, cyano, Het⁵, C₁₋₄alkyloxycarbonyl, arylC₁₋₄alkyloxycarbonyl, arylC₁₋₄alkyloxy, arylC₁₋₄alkylthio, Het⁵C₁₋₄alkyloxy, arylC₁₋₄alkylthio, C₃₋₇ cycloalkyl and Het⁵C₁₋₄alkylthio; C₃₋₂₀alkenyl optionally substituted with phenyl; C₃₋₂₀alkynyl; C₃₋₇ cycloalkyl optionally substituted with one or more substituents selected from the group consisting of: hydroxy, mercapto, halo, mercaptoC₁₋₄alkyl and hydroxyC₁₋₄alkyl; Het⁵ or phenyl or R¹⁴ represents a radical having any of the following formulae:

$$(R_{i})_{S}$$

$$(R_i)_S \qquad (R_i)_S \qquad (R_i)_G \qquad (R_i$$

wherein m is 1 to 4, n is 0 to 5, q is 0 to 2, r is 0 to 2 and s is 0 to 4;

 R^b is selected from the group consisting of: hydrogen, $C_{1\text{-}6}$ alkyl, phenyl,

C₃₋₇cycloalkyl, C₁₋₄ alkyloxyC₁₋₆alkyl and C₁₋₄-alkyl=Y-C₁₋₄alkyl;

R^a, R^c, R^d, R^e and R^f are each independently selected from the group consisting of: hydrogen, C₁₋₆alkyl, phenyl and C₃₋₇cycloalkyl, or R^e and R^f taken together may form -CH₂-CH₂-, -CH₂-CH₂-CH₂- or -CH₂-CH₂-CH₂-;

 R_g , R_h and R_k are each independently hydrogen or C_{1-4} alkyl;

R_i is selected from the group consisting of: hydroxy, C₃₋₇cycloalkyl and C₁₋₄alkyl, or two R_i taken together may form -CH₂-CH₂-, -CH₂-CH₂- or -CH₂-CH₂- CH₂-CH₂-CH₂- (thus building a spiro radical);

R_j is selected from the group consisting of: -O-R_b; C₁₋₆alkyl optionally substituted

with phenyl or C₃₋₇cycloalkyl; phenyl; C₃₋₇cycloalkyl optionally substituted with C₁₋₄ alkyloxy and mono-or di(C₁₋₄alkyl)amino;

R_m is hydrogen or C₁₋₄ alkyloxy;

R_n is hydrogen, C₁₋₄alkyl, C₃₋₇cycloalkyl, phenyl or phenylC₁₋₄alkyl; and W represents O or S;

each Z independently represents O, S, NH, -CH₂-O- or -CH₂-S- whereby -CH₂- is attached to the carbonyl group; or

-Z-R¹⁴ taken together form a radical of formula

$$CH_2$$
 CN
 CH_2
 CH

R¹⁵ and R¹⁶ are each independently selected from the group consisting of: hydrogen; C₁₋₄alkyl optionally substituted with one or more substituents independently selected from hydroxy, mercapto, aryl, mono- or di(C₁₋₄alkyl) amino and pyridinyl; C₁₋₄alkyloxy; aryl; -C(=O)-Z-R¹⁴; arylcarbonyl; arylthiocarbonyl; arylaminocarbonyl; arylaminothiocarbonyl; aminocarbonylmethylene; mono- or di(C₁₋₄alkyl) aminocarbonylmethylene; Het³aminocarbonyl; Het³aminothio-carbonyl; pyridinylC₁₋₄alkyl; Het³ and R⁶; or R¹⁵ and R¹⁶ taken together with the nitrogen atom to which they are attached form a radical of formula

R¹⁷ and R¹⁸ are each independently selected from the group consisting of: hydrogen, C₁₋₆alkyl optionally substituted with one or more substituents independently selected from hydroxy, mercapto, aryl, mono- or di(C₁₋₄alkyl) amino, C₁₋₄ alkyloxy and pyridinyl; C₁₋₄alkyloxycarbonyl; aryl; C₁₋₄alkylcarbonyl; arylcarbonyl; arylthiocarbonyl; arylaminocarbonyl;

arylaminothiocarbonyl; C_{3-7} cycloalkyl; C_{1-4} alkane-diyl-C(=O)-Z- C_{1-6} alkyl; -C(=O)-Z- C_{1-6} alkyl and C_{1-4} alkyl optionally substituted with one, two or three substituents each independently selected from the group consisting of: nitro, azido, cyano, halo, hydroxy, mercapto, C_{1-4} alkyl, C_{3-7} cycloalkyl, C_{1-4} alkyloxy, C_{1-4} alkylthio, formyl, polyhalo C_{1-4} alkyl, C_{1-4} alkyl, C_{1-4} alkyl, C_{1-4} alkyl, C_{1-4} alkyl, C_{1-4} alkyl substituted with one or more substituents each independently selected from the group consisting of: halo, hydroxy, mercapto, C_{1-4} alkyloxy, C_{1-4} alkylthio, C(=O)- C_{1-4} alkanediyl-C(=O)- C_{1-4} alkyloxy, C_{1-4} alkylthio, C(=O)- C_{1-4} alkanediyl-C(=O)- C_{1-4} alkyloxy, C_{1-4} alkylthio, C(=O)- C_{1-4} alkanediyl-C(=O)- C_{1-4} alkylthio.

Het¹ represents a three-membered, four-membered, five-membered or sixmembered aromatic or non-aromatic, monocyclic or polycyclic heterocycle comprising one or more, preferably one to four, heteroatoms, preferably selected from nitrogen, oxygen, sulfur and phosphorus, or a fused polycyclic ring system including such heterocycle (such as for instance a fused benzoheterocycle); nonlimiting examples of such heterocycles include for instance pyrrolyl, pyrrolinyl, imidazolyl, imidazolinyl, pyrazolyl, pyrazolinyl, triazolyl, tetrazolyl, furanyl, tetrahydrofuranyl, thionyl, thiolanyl, dioxolanyl, oxazolyl, oxazolinyl, isoxazolyl, thiazolyl, thiazolinyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, dioxanyl, dithianyl, trithianyl, triazinyl, benzothienyl, isobenzothienyl, benzofuranyl, isobenzofuranyl, benzothiazolyl, benzoxazolyl, benzodioxanyl, indolyl, isoindolyl, indolinyl, purinyl, 1H-pyrazolo[3,4-d]pyrimidinyl, benzimidazolyl, quinolyl, isoquinolyl, cinnolinyl, phtalazinyl, quinazolinyl, quinoxalinyl, thiazolopyridinyl, oxazolopyridinyl and imidazo[2,1-b]thiazolyl; wherein said heterocycle[[s]] each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from the group consist of: Het2, R11 and C1-4alkyl optionally substituted with one or, where possible, two or three substituents each independently selected from Het² andor R¹¹;

Het² represents a three-membered, four-membered, five-membered or sixmembered aromatic or non-aromatic, monocyclic or polycyclic heterocycle comprising one or more, preferably one to four, heteroatoms, preferably selected from nitrogen, oxygen, sulfur and phosphorus, or a fused polycyclic ring system including such heterocycle (such as for instance a fused benzoheterocycle); nonlimiting examples of such heterocycles include for instance pyrrolyl, pyrrolinyl, imidazolyl, imidazolinyl, pyrazolyl, pyrazolinyl, triazolyl, tetrazolyl, furanyl, tetrahydrofuranyl, thienyl, thiolanyl, dioxolanyl, oxazolyl, oxazolinyl, isoxazolyl, thiazolyl, thiazolinyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl, dioxanyl, dithianyl, trithianyl, triazinyl, benzothienyl, isobenzothienyl, benzofuranyl, isobenzofuranyl, benzothiazolyl. benzoxazolyl, indolyl, isoindolyl, indolinyl, purinyl, 1H-pyrazolo[3,4-d]pyrimidinyl, benzimidazolyl, quinolyl, isoquinolyl, cinnolinyl, phtalazinyl, quinazolinyl, quinoxalinyl, thiazolopyridinyl, oxazolopyridinyl and imidazo[2,1-b]thiazolyl; wherein said heterocycle[[s]] each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from the group consist of: Het⁴, R¹¹ and C₁₋₄alkyl optionally substituted with one or, where possible, two or three substituents each independently selected from Het⁴ andor R¹¹;

Het³ represents a three-membered, four-membered, five-membered or six-membered aromatic or non-aromatic monocyclic heterocycle comprising one or more, preferably one to four, heteroatoms, preferably selected from nitrogen, exygen, sulfur and phosphorus; non-limiting examples of such heterocycles include for instance pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, dioxolanyl and tetrahydropyranyl; wherein said monocyclic heterocycle[[s]] each independently-may optionally be substituted with, where possible, one, two, three or four substituents each independently selected from the group consist of: hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, piperidinyl, NR¹²R¹³, C(=O)-Z-R¹⁴, R⁶ and C₁₋₄alkyl substituted with one or two substituents independently selected from the group consist of: hydroxy, carbonyl

 C_{1-4} alkyloxy, phenyl, C(=O)-Z- R^{14} , -Y- C_{1-4} alkanediyl-C(=O)-Z- R^{14} , R^6 and $NR^{12}R^{13}$:

Het⁴ represents a three-membered, four-membered, five-membered or sixmembered aromatic or non-aromatic monocyclic heterocycle comprising one or more, preferably one to four, heteroatoms, preferably selected from nitrogen, oxygen, sulfur and phosphorus; non-limiting examples of such heterocycles include for instance pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl and triazinyl; Het⁵ represents a three-membered, four-membered, five-membered or sixmembered aromatic or non-aromatic, monocyclic or polycyclic heterocycle comprising one or more, preferably one to four, heteroatoms, preferably selected from nitrogen, oxygen, sulfur and phosphorus, or a fused polycyclic ring system including such heterocycle (such as for instance a fused benzoheterocycle); nonlimiting examples of such heterocycles include for instance pyrrolyl, pyrrolinyl, imidazolyl, imidazolinyl, pyrazolyl, pyrazolinyl, triazolyl, tetrazolyl, furanyl, tetrahydrofuranyl, thienyl, thiolanyl, dioxolanyl, oxazolyl, oxazolinyl, isoxazolyl, thiazolyl, thiazolinyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, tetrahydropyranyl, dioxanyl, dithianyl, trithianyl, triazinyl, benzothienyl, isobenzothienyl, benzothiazolyl, benzoxazolyl, benzodioxanyl, indolyl, isoindolyl, indolinyl, purinyl, 1H-pyrazolo[3,4-d]pyrimidinyl, benzimidazolyl, quinolyl, isoquinolyl, cinnolinyl, phtalazinyl, quinazolinyl, quinoxalinyl, thiazolopyridinyl, oxazolopyridinyl and imidazo[2,1-b]thiazolyl; wherein said heterocycle[[s]] each independently may be substituted with, where possible, one, two, three or four substituents each independently selected from the group consisting of: hydroxy, mercapto, carbonyl, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylthio, C₁₋₄alkylcarbonyl, piperidinyl, NR¹⁷R¹⁸, C(=O)-Z-C₁₋₆alkyl, R⁶, sulfonamido and C₁₋₄alkyl substituted with one or two substituents independently selected from hydroxy, C₁₋₄alkyloxy, mercapto,

 C_{1-4} alkylthio, phenyl, C(=O)-Z- C_{1-6} alkyl, -Y- C_{1-4} alkanediyl-C(=O)-Z- C_{1-6} alkyl, R^6 and $NR^{17}R^{18}$:

Het⁶ represents a three-membered, four-membered, five-membered or six-membered aromatic or non-aromatic monocyclic heterocycle comprising one or more, preferably one to four, heteroatoms, preferably selected from nitrogen, exygen, sulfur and phosphorus; non-limiting examples of such heterocycles include for instance pyrrolidinyl, piperidinyl, azaridinyl, pyrazolinyl and pyrolinyl, wherein said heterocycle may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het², R¹¹ andor C₁₋₄alkyl optionally substituted with one or more substituents independently selected from Het² and R¹¹[[.]];

provided however that

- R² is other than C₁₋₆ alkyloxycarbonylC₁₋₆alkyl or aminocarbonyl; and
- R⁷, R⁸, R⁹ and R¹⁰ are other than aminocarbonyl, C₁₋₄alkylcarbonyloxy-C₁₋₄alkylcarbonyl, hydroxyC₁₋₄alkylcarbonyl, C₁₋
 4alkyloxycarbonylcarbonyl, C(=O)-O-R¹⁹, C₁₋₄alkanediylC(=O)-O-R¹⁹ or
 -Y-C₁₋₄alkanediylC(=O)-O-R¹⁹; and
- R¹² and R¹³ are other than C₁₋₄alkylcarbonyloxy-C₁₋₄alkylcarbonyl, hydroxyC₁₋₄alkylcarbonyl or C₁₋₄alkylcarbonylcarbonyl; and
- R¹¹ is other than C(=O)-O-R¹⁹, Y-C₁₋₄alkanediyl C(=O)-OR¹⁹, C(=O)NH₂, C(=O)NHC₁₋₄alkyl or C(=O)NHC₃₋₇cycloalkyl; and
- R¹⁵ and R¹⁶ are other than aminocarbonyl, C₁₋₄alkylcarbonyloxy-C₁₋₄alkylcarbonyl, hydroxy C₁₋₄alkylcarbonyl or C₁₋₄alkyloxycarbonylcarbonyl; and
- aryl is other than phenyl substituted with C(=O)-O-R¹⁹, C(=O)NH₂,
 C(=O)NHC₁₋₄alkyl, C(=O)NHC₃₋₇cycloalkyl and/or with C₁₋₄alkyl substituted with C(=O)-O-R¹⁹ or Y-C₁₋₄alkanediyl C(=O)-O-R¹⁴; and
- Het³ is other than a monocyclic heterocycle substituted with C(=O)·O-R¹⁹ and/or with C₁₋₄alkyl substituted with C(=O)-O-R¹⁹ and/or Y-C₁₋₄alkanediyl C(=O)-O-R¹⁹; and

• in each of the above proviso's R¹⁹ is defined as hydrogen, C₁₋₄alkyl, C₃.

₇cycloalkyl, aminocarbonylmethylene or mono- or

di(C₁₋₄alkyl)aminocarbonylmethylene; and

wherein the said compound of the formula (I) contains at least one - C(=O)-Z-R¹⁴ moiety.

2. (Currently Amended) A compound according to claim 1 having the formula

$$\begin{array}{c|c}
R^{3} & \stackrel{(R^{1})_{p}}{=} & O \\
X & & N & NH \\
X & & N & O
\end{array}$$
(I')

a N-oxide, a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof, wherein :

p represents an integer being 0, 1, 2, 3 or 4;

X represents O, S, NR⁵ or a direct bond or-X-R² taken together may represent cyano;

Y represents O, S, NR⁵, or S(O)₂;

each R¹ independently represents C(=0)·Z-R¹⁴, C₁₋₆alkyl, halo, polyhaloC₁₋₆alkyl, hydroxy, mercapto, C₁₋₆alkyloxy, C₁₋₆alkylthio, C₁₋₆alkylcarbonyloxy, aryl, cyano, nitro, Het³, R⁶, NR⁷R⁸ or C₁₋₄alkyl substituted with C(=0)-Z·R¹⁴, Het³, R⁶ or NR⁷R⁸;

R² represents Het¹, C₃₋₇cycloalkyl optionally substituted with C(=0)-Z-R¹⁴, C₁₋₆alkyl or C₁₋₆alkyl substituted with one or two substituents selected from the group consisting of: C(=0)·Z-R¹⁴, hydroxy, cyano, amino, mono- or di(C₁₋₄alkyl)amino, C₁₋₆alkyloxy optionally substituted with C(=0)-Z-R¹⁴, C₁₋₆alkylsulfonyloxy, C₃₋₇cycloalkyl optionally substituted with C(=0)-Z-R¹⁴, aryl, aryloxy, arylthio, Het¹, Het¹oxy and Het¹thio; and if X is O, S or NR⁵, then R² may also represent aminothiocarbonyl, C₁₋₄alkylcarbonyl optionally substituted

with C(=0)-Z-R¹⁴, C₁₋₄alkylthiocarbonyl optionally substituted with C(=0)-Z-R¹⁴, arylcarbonyl, arylthiocarbonyl, Het¹carbonyl or Het¹thiocarbonyl;

R³ represents hydrogen, C₁₋₆alkyl or C₃₋₇cycloalkyl;

R⁴ represents hydrogen, C₁₋₆alkyl or C₃₋₇cycloalkyl; or

R³ and R⁴ taken together form a C₂₋₆alkanediyl;

R⁵ represents hydrogen or C₁₋₄alkyl;

- each R⁶ independently represents C₁₋₆alkylsulfonyl, aminosulfonyl, mono- or di(C₁₋₄alkyl)aminosulfonyl, mono- or di(benzyl)aminosulfonyl, polyhaloC₁₋₆alkylsulfonyl, C₁₋₆alkylsulfinyl, phenylC₁₋₄alkylsulfonyl, piperazinylsulfonyl, aminopiperidinylsulfonyl, piperidinylaminosulfonyl, *N*-C₁₋₄alkyl-*N*-piperidinylaminosulfonyl or mono-or di(C₁₋₄alkyl)aminoC₁₋₄alkylsulfonyl;
- each R⁷ and each R⁸ are independently selected from the group consisting of: hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, aryl, arylC₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, arylcarbonyl, Het³carbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, arylaminocarbonyl, arylaminothiocarbonyl, Het³aminocarbonyl, Het³aminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl, C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, -C(=O)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, Het³, Het⁴ and R⁶;
- R⁹ and R¹⁰ are each independently selected from the group consisting of: hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, phenyl, phenylC₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, phenylcarbonyl, Het³carbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, phenylaminocarbonyl, phenylaminothiocarbonyl, Het³aminocarbonyl, Het³aminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl, C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, -C(=O)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, Het³, Het⁴ and R⁶:
- each R¹¹ independently being selected from the group consisting of: hydroxy, mercapto, cyano, nitro, halo, trihalomethyl, C₁₋₄alkyloxy optionally substituted with C(=0)-Z-R¹⁴, formyl, trihaloC₁₋₄alkylsulfonyloxy, R⁶, NR⁷R⁸, C(=0)NR¹⁵R¹⁶, -C(=0)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=0)-Z-R¹⁴, aryl, aryloxy, arylcarbonyl,

 C_{3-7} cycloalkyl optionally substituted with C(=0)-Z- R^{14} , C_{3-7} cycloalkyloxy optionally substituted with C(=0)-Z- R^{14} , phthalimide-2-yl, Het^3 , Het^4 and C(=0)Het³;

R¹² and R¹³ are each independently selected from the group consisting of: hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, phenyl, phenylC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkylcarbonyl, phenylcarbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, phenylaminocarbonyl, phenylaminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl, C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, -C(=O)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-Z-R¹⁴ and R⁶;

each R¹⁴ independently represents C₁₋₄ alkyl substituted with one or more substituents selected from the group consisting of: phenyl, di- C₁₋₄alkylamino, cyano, Het¹ and C₃₋₇ cycloalkyl, hydrogen, C₁₋₂₀acyl (having a straight or branched, saturated or unsaturated hydrocarbon chain having 1 to 20 carbon atoms), C₁₋₂₀alkyl, C₃₋₇cycloalkyl, polyhaloC₁₋₂₀alkyl or a radical of formula

$$(a) \qquad \begin{pmatrix} CH_2 & O \\ CH_2 & CH_2 \end{pmatrix} \begin{pmatrix} CH_2 & O \\ R^b & CH_2 & O \end{pmatrix} \begin{pmatrix} CH_2 & CH_2 & O \\ R^c & CH_2 & CH_2 & CH_2 \end{pmatrix} \begin{pmatrix} R^c & CH_2 & C$$

wherein n is 0 to 5 and m is 1 to 4;

R^a, R^b, R^c, R^d, R^e and R^f are each independently hydrogen, C₁₋₆alkyl or C₃₋₇cycloalkyl; or

R^e and R^f taken together may form -CH₂-CH₂-, -CH₂-CH₂-CH₂- or -CH₂-CH₂-CH₂-CH₂-CH₂-;

Rg and Rh are each independently C₁₋₄ alkyl;

each Z independently represents O, S, NH, -CH₂-O- or -CH₂-S- whereby -CH₂- is attached to the carbonyl group;

-Z-R¹⁴ taken together form a radical of formula

$$CH_2$$
 CN
 CH_2
 CH

R¹⁵ and R¹⁶ are each independently selected from dihydroxyC₁₋₄alkyl, aryl, arylC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, -C(=O)-Z-R¹⁴, arylcarbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, arylaminocarbonyl, arylaminothiocarbonyl, Het³aminocarbonyl, Het³aminothiocarbonyl, pyridinylC₁₋₄alkyl, Het³, Het⁴ or R⁶; aminocarbonylmethylene or mono-or di(C₁₋₄alkyl)aminocarbonylmethylene; aryl represents phenyl optionally substituted with one, two or three substituents each independently selected from the group consisting of: nitro, azido, cyano, halo, hydroxy, C₁₋₄alkyl, C₃₋₇cycloalkyl, C₁₋₄alkyloxy, formyl, polyhaloC₁₋₄alkyl, NR⁹R¹⁰, C(=O)NR⁹R¹⁰, C(=O)-Z-R¹⁴, R⁶, -O-R⁶, phenyl, Het³, C(=O)Het³ and C₁₋₄alkyl substituted with one or more substituents each independently selected from halo, hydroxy, C₁₋₄alkyloxy, C(=O)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, Het³ or NR⁹R¹⁰:

Het¹ represents a heterocycle selected from the group consisting of: pyrrolyl, pyrrolinyl, imidazolyl, imidazolinyl, pyrazolyl, pyrazolinyl, triazolyl, tetrazolyl, furanyl, tetrahydrofuranyl, thienyl, thiolanyl, dioxolanyl, oxazolyl, oxazolinyl, isoxazolyl, thiazolyl, thiazolinyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, dioxanyl, dithianyl, trithianyl, triazinyl, benzothienyl, isobenzothienyl, benzothiazolyl, benzoxazolyl, indolyl, isoindolyl, indolinyl, purinyl, 1*H*-pyrazolo[3,4-d]pyrimidinyl,

benzimidazolyl, quinolyl, isoquinolyl, cinnolinyl, phtalazinyl, quinazolinyl, quinoxalinyl, thiazolopyridinyl, oxazolopyridinyl and imidazo[2,1-b]thiazolyl; wherein said heterocycle[[s]] each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het², R¹¹ andor C₁₋₄alkyl optionally substituted with one or two substituents independently selected from Het² andor R¹¹;

Het² represents a heterocycle selected from pyrrolyl, pyrrolinyl, imidazolyl, imidazolyl, pyrazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, tetrahydrofuranyl, thienyl, thiolanyl, dioxolanyl, oxazolyl, oxazolinyl, isoxazolyl, thiazolyl, thiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl, dioxanyl, dithianyl, trithianyl, triazinyl, benzothienyl, isobenzothienyl, benzofuranyl, isobenzofuranyl, benzothiazolyl, benzoxazolyl, indolyl, isoindolyl, indolinyl, purinyl, 1*H*-pyrazolo[3,4-d]pyrimidinyl, benzimidazolyl, quinolyl, isoquinolyl, cinnolinyl, phtalazinyl, quinazolinyl, quinoxalinyl, thiazolopyridinyl, oxazolopyridinyl andor imidazo[2,1-b]thiazolyl; wherein said heterocycle[[s]] each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het⁴, R¹¹ and or C₁. ₄alkyl optionally substituted with one or two substituents independently selected from Het⁴ andor R11;

Het³ represents a monocyclic heterocycle selected from pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl andor tetrahydropyranyl; wherein said monocyclic heterocycle[[s]] each independently-may optionally be substituted with, where possible, one, two, three or four substituents each independently selected from the group consisting of: hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, piperidinyl, NR¹²R¹³, C(=O)-Z-R¹⁴, R⁶ and C₁₋₄alkyl substituted with one or two substituents independently selected from hydroxy, C₁₋₄alkyloxy, phenyl, C(=O)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, R⁶ andor NR¹²R¹³;

Het⁴ represents a monocyclic heterocycle selected from pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl,

isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl and triazinyl; provided however that

- R² is other than C₁₋₆ alkyloxycarbonylC₁₋₆alkyl, aminocarbonyl; and
- R⁷, R⁸, R⁹ and R¹⁰ are other than aminocarbonyl, C₁₋₄alkylcarbonyloxy- C₁₋₄alkylcarbonyl, hydroxy C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonylcarbonyl C(=O)-O-R¹⁴, C₁₋₄alkanediylC(=O)-O-R¹⁴ and -Y-C₁₋₄alkanediylC(=O)-O-R¹⁴; and
- R¹² and R¹³ are other than C₁₋₄alkylcarbonyloxy-C₁₋₄alkylcarbonyl, hydroxy C₁₋₄alkylcarbonyl, C₁₋₄alkylcarbonyl; and
- R¹¹ is other than C(=O)-O-R¹⁴, Y-C₁₋₄alkanediyl C(=O)-OR¹⁴, C(=O)NH₂,
 C(=O)NHC₁₋₄alkyl or C(=O)NHC₃₋₇cycloalkyl; and
- R¹⁴ is other than hydrogen, C₁₋₄alkyl, C₃₋₇cycloalkyl, aminocarbonylmethylene, mono- or di (C₁₋₄alkyl) aminocarbonylmethylene in the event Z is 0; and
- R¹⁵ and R¹⁶ are other than aminocarbonyl, C₁₋₄alkylcarbonyloxy-C₁₋₄alkylcarbonyl, hydroxy C₁₋₄alkylcarbonyl or C₁₋₄alkyloxycarbonylcarbonyl; and
- Aryl is other than phenyl substituted with C(=O)-O-R¹⁴ C(=O)NH₂, C(=O)NHC₁₋₄ alkyl, C(=O)NHC₃₋₇ cycloalkyl and/or with C₁₋₄ alkyl substituted with C(=O)-O-R¹⁴ or Y-C₁₋₄ alkanediyl C(=O)-O-R¹⁴; and
- Het³ is other than a monocyclic heterocycle substituted with C(=O)·O-R¹⁴ and/or with C₁₋₄alkyl substituted with C(=O)-O-R¹⁴ and/or Y-C₁₋₄alkanediyl (=O)-O-R¹⁴; and
- Thethe said-compound of formula (I) contains at least one C(=O)-Z-R¹⁴ moiety.
- 3. (Currently Amended) A compound according to claim 1 having the formula

a *N*-oxide, a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof, wherein :

p represents an integer being 0, 1, 2, 3 or 4;

X represents O, S, NR⁵ or a direct bond or-X-R² taken together may represent cyano;

Y represents O, S, NR⁵, or S(O)₂;

- each R¹ independently represents C(=0)·Z-R¹⁴, C₁₋₆alkyl, halo, polyhaloC₁₋₆alkyl, hydroxy, mercapto, C₁₋₆alkyloxy, C₁₋₆alkylthio, C₁₋₆alkylcarbonyloxy, aryl, cyano, nitro, Het³, R⁶, NR⁷R⁸ or C₁₋₄alkyl substituted with C(=0)-Z·R¹⁴, Het³, R⁶ or NR⁷R⁸;
- R² represents Het¹, C₃₋₇cycloalkyl optionally substituted with C(=0)-Z-R¹⁴, C₁₋₆alkyl or C₁₋₆alkyl substituted with one or two substituents selected from the group consisting of: C(=0)·Z-R¹⁴, hydroxy, cyano, amino, mono- or di(C₁₋₄alkyl)amino, C₁₋₆alkyloxy optionally substituted with C(=0)-Z-R¹⁴, C₁₋₆alkylsulfonyloxy, C₃₋₇cycloalkyl optionally substituted with C(=0)-Z-R¹⁴, aryl, aryloxy, arylthio, Het¹, Het¹oxy and Het¹thio; and if X is O, S or NR⁵, then R² may also represent aminothiocarbonyl, C₁₋₄alkylcarbonyl optionally substituted with C(=0)-Z-R¹⁴, C₁₋₄alkylthiocarbonyl optionally substituted with C(=0)-Z-R¹⁴, arylcarbonyl, arylthiocarbonyl, Het¹carbonyl or Het¹thiocarbonyl;

R³ represents hydrogen, C₁₋₆alkyl or C₃₋₇cycloalkyl;

R⁴ represents hydrogen, C₁₋₆alkyl or C₃₋₇cycloalkyl; or

R³ and R⁴ taken together form a C₂₋₆alkanediyl;

 R^5 represents hydrogen or C_{1-4} alkyl;

each R⁶ independently represents C₁₋₆alkylsulfonyl, aminosulfonyl, piperidinylsulfonyl, mono- or di(C₁₋₄alkyl)aminosulfonyl, mono- or di(benzyl)aminosulfonyl, polyhaloC₁₋₆alkylsulfonyl, C₁₋₆alkylsulfinyl, phenylC₁₋₄alkylsulfonyl, piperazinylsulfonyl, aminopiperidinylsulfonyl, piperidinylaminosulfonyl, N-C₁₋₄alkyl-N-piperidinylaminosulfonyl or mono-or di(C₁₋₄alkyl)aminoC₁₋₄alkylsulfonyl;

each R⁷ and each R⁸ are independently selected from the group consisting of: hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, aryl, arylC₁₋₄alkyl, C₁₋₄alkyl, arylcarbonyl, Het³carbonyl, mono- or

di(C₁₋₄alkyl)aminoC₁₋₄alkyl, arylaminocarbonyl, arylaminothiocarbonyl, Het³aminocarbonyl, Het³aminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl, C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, -C(=O)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, Het³, Het⁴ and R⁶; or R⁷ and R⁸ taken together with the nitrogen atom to which they are attached form a radical of formula

R⁹ and R¹⁰ are each independently selected from the group consisting of: hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, phenyl, phenylC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkylcarbonyl, phenylcarbonyl, Het³carbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, phenylaminocarbonyl, phenylaminothiocarbonyl, Het³aminocarbonyl, Het³aminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl, C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, -C(=O)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, Het³, Het⁴ and R⁶; or R⁹ and R¹⁰ taken together with the nitrogen atom to which they are attached form a radical of formula

each R¹¹ independently being selected from the group consisting of: hydroxy, mercapto, cyano, nitro, halo, trihalomethyl, C₁₋₄alkyloxy optionally substituted with C(=0)-Z-R¹⁴, formyl, trihaloC₁₋₄alkylsulfonyloxy, R⁶, NR⁷R⁸, C(=0)NR¹⁵R¹⁶, -C(=0)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=0)-Z-R¹⁴, aryl, aryloxy, arylcarbonyl,

 C_{3-7} cycloalkyl optionally substituted with C(=0)-Z- R^{14} , C_{3-7} cycloalkyloxy optionally substituted with C(=0)-Z- R^{14} , phthalimide-2-yl, Het³, Het⁴ and C(=0)Het³;

R¹² and R¹³ are each independently selected from the group consisting of: hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, phenyl, phenylC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkylcarbonyl, phenylcarbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, phenylaminocarbonyl, phenylaminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl, C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, -C(=O)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-Z-R¹⁴ and R⁶; or R¹² and R¹³ taken together with the nitrogen atom to which they are attached form a radical of formula

each R¹⁴ independently represents hydrogen, C₁₋₂₀acyl (having a straight or branched, saturated or unsaturated hydrocarbon chain having 1 to 20 carbon atoms), C₁₋₂₀alkyl, C₃₋₂₀alkenyl optionally substituted with phenyl, C₃₋₂₀alkynyl, C₃₋₇ cycloalkyl, polyhaloC₁₋₂₀alkyl, Het⁵, phenyl or C₁₋₂₀ alkyl substituted with one or more substituents selected from the group consisting of: hydroxy, NR¹⁷R¹⁸, phenyl, mono- or di-(C₁₋₄alkyl)amino, cyano, Het⁵, C₁₋₄ alkyloxycarbonyl, phenyl C₁₋₄ alkyloxycarbonyl and C₃₋₇ cycloalkyl, or R¹⁴ represents a radical of formula

$$(R_{i})_{S} \qquad (R_{i})_{S} \qquad$$

$$(R_{i})_{S}$$

wherein m is 1 to 4, n is 0 to 5, q is 0 to 2, r is 0 to 2 and s is 0 to 4; R^a , R^b , R^c , R^d , R^e and R^f are each independently hydrogen, C_{1-6} alkyl, phenyl or

C₃₋₇cycloalkyl; or

R^e and R^f taken together may form -CH₂-CH₂-, -CH₂-CH₂- or -CH₂-CH₂- CH₂-CH₂-;

 $R_g,\,R_h$ and R_k are each independently hydrogen or $C_{1\text{--}4}$ alkyl;

R_i is C₁₋₄alkyl;

 R_j is -O- R_b , C_{1-6} alkyl, phenyl or C_{3-7} cycloalkyl optionally substituted with C_{1-4} alkyloxy;

where R_m is hydrogen or C₁₋₄ alkyloxy and R_n is hydrogen, C₁₋₄alkyl, C₃₋₇cycloalkyl, phenyl or phenylC₁₋₄alkyl each Z independently represents O, S, NH, -CH₂-O- or -CH₂-S- whereby -CH₂- is attached to the carbonyl group; or

-Z-R¹⁴ taken together form a radical of formula

R¹⁵ and R¹⁶ are each independently selected from hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, aryl, arylC₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, - C(=O)-Z-R¹⁴, arylcarbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, arylaminocarbonyl, arylaminothiocarbonyl, aminocarbonylmethylene, mono- or di(C₁₋₄alkyl) aminocarbonylmethylene, Het³aminocarbonyl, Het³aminothiocarbonyl, pyridinylC₁₋₄alkyl, Het³ or R⁶; or R¹⁵ and R¹⁶ taken together with the nitrogen atom to which they are attached form a radical of formula

R¹⁷ and R¹⁸ are each independently selected from the group consisting of: hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, dihydroxyC₁₋₄alkyl, phenyl, phenylC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkylcarbonyl, phenylcarbonyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, phenylaminocarbonyl, phenylaminothiocarbonyl, C₃₋₇cycloalkyl, pyridinylC₁₋₄alkyl, C₁₋₄alkanediyl-C(=O)-Z-C₁₋₆alkyl, -Y-C₁₋₆alkyl, -Y-C₁₋₆alkyl and R⁶;

aryl represents phenyl optionally substituted with one, two or three substituents each independently selected from the group consisting of: nitro, azido, cyano, halo, hydroxy, C1-4alkyl, C3-7cycloalkyl, C1-4alkyloxy, formyl, polyhaloC1-4alkyl, NR⁹R¹⁰, C(=O)NR⁹R¹⁰, C(=O)-Z-R¹⁴, R⁶, -O-R⁶, phenyl, Het³, C(=O)Het³ and C₁₋₄alkyl substituted with one or more substituents each independently selected from halo, hydroxy, C₁₋₄alkyloxy, C(=O)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, Het³ or NR⁹R¹⁰;

Het¹ represents a heterocycle selected from pyrrolyl, pyrrolinyl, imidazolyl, imidazolyl, pyrazolyl, pyrazolinyl, triazolyl, tetrazolyl, furanyl, tetrahydrofuranyl, thienyl, thiolanyl, dioxolanyl, oxazolyl, oxazolyl, isoxazolyl, thiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, dioxanyl, dithianyl, trithianyl, triazinyl, benzothienyl, isobenzothienyl, benzofuranyl, isobenzofuranyl, benzothiazolyl, benzoxazolyl, benzodioxanyl, indolyl, isoindolyl, indolinyl, purinyl, 1*H*-pyrazolo[3,4-d]pyrimidinyl, benzimidazolyl, quinolyl, isoquinolyl, cinnolinyl, phtalazinyl, quinazolinyl, quinoxalinyl, thiazolopyridinyl, oxazolopyridinyl and-or imidazo[2,1-b]thiazolyl; wherein said heterocycle[[s]] each independently-may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het², R¹¹ andor C₁-4alkyl optionally substituted with one or two substituents independently selected from Het² andor R¹¹;

Het² represents a heterocycle selected from pyrrolyl, pyrrolinyl, imidazolyl, imidazolyl, pyrazolyl, pyrazolinyl, triazolyl, tetrazolyl, furanyl, tetrahydrofuranyl, thienyl, thiolanyl, dioxolanyl, oxazolyl, oxazolinyl, isoxazolyl, thiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl, dioxanyl, dithianyl, trithianyl, triazinyl, benzothienyl, isobenzothienyl, benzofuranyl, isobenzofuranyl, benzothiazolyl, benzoxazolyl, indolyl, isoindolyl, indolinyl, purinyl, 1*H*-pyrazolo[3,4-d]pyrimidinyl, benzimidazolyl, quinolyl, isoquinolyl, cinnolinyl, phtalazinyl,

quinazolinyl, quinoxalinyl, thiazolopyridinyl, oxazolopyridinyl andor imidazo[2,1-b]thiazolyl; wherein said heterocycle[[s]] each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het⁴, R¹¹ andor C₁₋₄alkyl optionally substituted with one or two substituents independently selected from Het⁴ andor R¹¹;

Het³ represents a monocyclic heterocycle selected from pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl andor tetrahydropyranyl; wherein said monocyclic heterocycle[[s]] each independently may optionally be substituted with, where possible, one, two, three or four substituents each independently selected from the group consisting of: hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, piperidinyl, NR¹²R¹³, C(=O)-Z-R¹⁴, R⁶ and C₁₋₄alkyl substituted with one or two substituents independently selected from hydroxy, C₁₋₄alkyloxy, phenyl, C(=O)-Z-R¹⁴, -Y-C₁₋₄alkanediyl-C(=O)-Z-R¹⁴, R⁶ andor NR¹²R¹³;

Het⁴ represents a monocyclic heterocycle selected from pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl andor triazinyl;

Het⁵ represents a heterocycle selected from pyrrolyl, pyrrolinyl, imidazolyl, imidazolyl, pyrazolyl, pyrazolinyl, triazolyl, tetrazolyl, furanyl, tetrahydrofuranyl, thienyl, thiolanyl, dioxolanyl, oxazolyl, oxazolinyl, isoxazolyl, thiazolyl, thiazolyl, thiazolyl, thiazolyl, thiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, tetrahydropyranyl, dioxanyl, dithianyl, trithianyl, triazinyl, benzothienyl, isobenzothienyl, benzofuranyl, isobenzofuranyl, benzothiazolyl, benzoxazolyl, benzodioxanyl, indolyl, isoindolyl, indolinyl, purinyl, 1*H*-pyrazolo[3,4-d]pyrimidinyl, benzimidazolyl, quinolyl, isoquinolyl, cinnolinyl, phtalazinyl, quinazolinyl, quinoxalinyl, thiazolopyridinyl, oxazolopyridinyl andor imidazo[2,1-b]thiazolyl; wherein said heterocycle[[s]] each independently may be substituted with, where possible, one, two, three or four substituents each

independently selected from the group consisting of: hydroxy, C_{1-4} alkyl, C_{1-4} alkyloxy, C_{1-4} alkylcarbonyl, piperidinyl, $NR^{17}R^{18}$, C(=O)-Z- C_{1-6} alkyl, R^6 , sulfonamido and C_{1-4} alkyl substituted with one or two substituents independently selected from hydroxy, C_{1-4} alkyloxy, phenyl, C(=O)-Z- C_{1-6} alkyl, C_{1-6} alkyl,

- R² is other than C₁₋₆ alkyloxycarbonylC₁₋₆alkyl or aminocarbonyl; and
- R⁷, R⁸, R⁹ and R¹⁰ are other than aminocarbonyl, C₁₋₄alkylcarbonyloxy-C₁₋₄alkylcarbonyl, hydroxy C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonylcarbonyl, C(=O)-O-R¹⁹, C₁₋₄alkanediylC(=O)-O-R¹⁹ or -Y-C₁₋₄alkanediylC(=O)-O-R¹⁹; and
- R¹² and R¹³ are other than C₁₋₄alkylcarbonyloxy-C₁₋₄alkylcarbonyl, hydroxy
 C₁₋₄alkylcarbonyl or C₁₋₄alkylcarbonylcarbonyl; and
- R¹¹ is other than C(=O)-O-R¹⁹, Y-C₁₋₄alkanediyl C(=O)-OR¹⁹, C(=O)NH₂,
 C(=O)NHC₁₋₄alkyl or C(=O)NHC₃₋₇cycloalkyl; and
- R¹⁵ and R¹⁶ are other than aminocarbonyl, C₁₋₄alkylcarbonyloxy-C₁₋₄alkylcarbonyl, hydroxy C₁₋₄alkylcarbonyl or C₁₋₄alkyloxycarbonylcarbonyl; and
- aryl is other than phenyl substituted with C(=O)-O-R¹⁹, C(=O)NH₂,
 C(=O)NHC₁₋₄alkyl, C(=O)NHC₃₋₇cycloalkyl and/or with C₁₋₄alkyl substituted with C(=O)-O-R¹⁹ or Y-C₁₋₄alkanediyl C(=O)-O-R¹⁴; and
- Het³ is other than a monocyclic heterocycle substituted with C(=O)·O-R¹⁹
 and/or-with-C₁₌₄alkyl-substituted-with-C(=O)-O-R¹⁹ and/or-Y-C₁₌₄alkanediyl-—
 (=O)-O-R¹⁹; and
- in each of the above proviso's R¹⁹ is defined as hydrogen, C₁₋₄alkyl, C₃₋₇cycloalkyl, aminocarbonylmethylene or mono- or di(C₁₋₄alkyl)aminocarbonylmethylene; and
- the said compound of formula (I) contains at least one C(=O)-Z-R¹⁴ moiety.

- (Previously Amended) A compound according to claim 1 wherein the 6-azauracil moiety is in the para position relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents.
- 5. (Currently Amended) A compound according to claim 1 wherein R² is a monocyclic heterocycle selected from the group consisting of: pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyranyl, pyridazinyl and triazinyl, wherein said monocyclic heterocycle[[s]] each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from Het², R¹¹ andor C₁₋₄alkyl optionally substituted with Het² or R¹¹.
- 6. (Previously Amended) A compound according to claim 1 wherein R³ and R⁴ are both methyl and -X-R² is Het¹.
- 7. (Previously Amended) A compound according to claim1 wherein p is 1 or 2 and each R¹ is chloro.
- 8. (Previously Amended) A compound according to claim 1 wherein R³ and R⁴ are both methyl, -X-R² is optionally substituted 2-thiazolyl or 3-oxadiazolyl, the 6-azauracil moiety is in the para position relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents, and p is 2 whereby both R¹ substituents are chloro positioned ortho relative to the carbon atom bearing the -X-R², R³ and R⁴ substituents.
- A compound according to claim 8 wherein X-R² is di-substituted with phenyl and either (i) R¹¹ where R¹¹ is a group of formula –C(=O)-Z-R¹⁴ in which Z is O and R¹⁴ is C₁₋₂₀alkyl substituted with hydroxy or with Het⁵ where Het⁵ is piperazinyl substituted with Het⁶sulfonyl, or R¹⁴ is a radical of formula (a) in

which R_j is C_{1-6} alkyl and s is 2, or (ii) C_{1-4} alkyl substituted with R^{11} where R^{11} is a group of formula -C(=O)-Z- R^{14} in which Z is O and R^{14} is a radical of formula (a) in which R_j is C_{1-6} alkyl and s is 2.

10 (Currently Amended) A compound according to claim 1 selected from the group consisting those of formulae (A), (B), (C) and (D) below:

$$\begin{array}{c|c}
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

$$\begin{array}{c} & & & \\ & &$$

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

- 11. (Previously Amended) A composition comprising a pharmaceutically acceptable carrier and, as active ingredient, a therapeutically effective amount of a compound according to claim 1.
- 12. (Previously Cancelled).
- 13. (Previously Cancelled).
- 14. (Amended) A method for treating eosinophil-dependent inflammatory diseases comprising administering to a subject in need thereof an effective amount of a compound of claim 1.
- 15. A process for preparing a compound as claimed in claim 1, comprising the step of
- a) reacting an intermediate of formula (II) wherein W¹ is a suitable leaving group with an appropriate reagent of formula (III) optionally in a reaction-inert solvent and optionally in the presence of a base at a temperature ranging between –70°C and reflux temperature;

wherein R¹ R², R³, R⁴, p and X are as defined in claim 1 or;

b) eliminating the group E of a triazinedione of formula (V)

wherein E is an appropriate electron attracting group and R¹, R², R³, R⁴, X and p are as defined in claim 1; and, if desired, converting compounds of formula (I) into each other following art-known transformations, and further, if desired, converting the compounds of formula (I), into a therapeutically active non-toxic acid addition salt by treatment with an acid, or into a therapeutically active non-toxic base addition salt by treatment with a base, or conversely, converting the acid addition salt form into the free base by treatment with alkali, or converting the base addition salt into the free acid by treatment with acid; and also, if desired, preparing stereochemically isomeric forms or *N*-oxide forms thereof.

- 16. (Withdrawn) A process of marking a receptor comprising the steps of
 - a) radiolabelling a compound as defined in claim 1;
 - b) administering said radiolabelled compound to biological material,
 - c) detecting the emissions from the radiolabelled compound.

- 17. (Withdrawn) A process of imaging an organ, comprising, administering a sufficient amount of a radiolabelled compound of formula (I) as claimed in claim 1 in an appropriate composition, and detecting the emissions from the radioactive compound.
- 18. (Withdrawn) A compound of formula

$$\begin{array}{c|c} O & O \\ H_3C & S & \\ \hline CH_3 & N - CH - CHOH \\ \hline R^{20} & R^{21} \end{array} \tag{XXIII)}$$

wherein R^{20} and R^{21} are each independently selected from hydrogen or C_{1-20} alkyl or R^{20} and R^{21} taken together with the carbon atom to which they are attached form a cycloalkyl radical.

- 19. (Previously Cancelled).
- 20. (Previously Cancelled).
- 21. (Currently Cancelled).