Subgradient Descent

David Rosenberg

New York University

February 5, 2015

Convex Sets

Definition

A set C is **convex** if the line segment between any two points in C lies in C.

KPM Fig. 7.4

Convex and Concave Functions

Definition

A function $f : \mathbb{R}^n \to \mathbb{R}$ is **convex** if the line segment connecting any two points on the graph of f lies above the graph. f is **concave** if -f is convex.

KPM Fig. 7.5

First-Order Approximation

- Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable
- Suppose we know f(x) and $\nabla f(x)$.
- What can we say about f(y), when y is near x?

First-Order Approximation

- Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable
- Suppose we know f(x) and $\nabla f(x)$.
- What can we say about f(y), when y is near x?
- We have the following linear approximation:

$$f(y) \approx f(x) + \nabla f(x)^T (y - x)$$

First-Order Approximation

- Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable
- Suppose we know f(x) and $\nabla f(x)$.
- What can we say about f(y), when y is near x?
- We have the following linear approximation:

$$f(y) \approx f(x) + \nabla f(x)^T (y - x)$$

Boyd & Vandenberghe Fig. 3.2

- Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is **convex** and **differentiable**
- Then for any $x, y \in \mathbb{R}^n$

$$f(y) \geqslant f(x) + \nabla f(x)^T (y - x)$$

- Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable
- Then for any $x, y \in \mathbb{R}^n$

$$f(y) \geqslant f(x) + \nabla f(x)^T (y - x)$$

The linear approximation to f at x is a global underestimator of f:

- Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable
- Then for any $x, y \in \mathbb{R}^n$

$$f(y) \geqslant f(x) + \nabla f(x)^T (y - x)$$

- Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable
- Then for any $x, y \in \mathbb{R}^n$

$$f(y) \geqslant f(x) + \nabla f(x)^T (y - x)$$

Corollary

If $\nabla f(x) = 0$ then x is a global minimizer of f.

Subgradients

Definition

A vector $g \in \mathbb{R}^n$ is a subgradient of $f : \mathbb{R}^n \to \mathbb{R}$ at x if for all z,

$$f(z) \geqslant f(x) + g^{T}(z-x).$$

Subgradients

Definition

A vector $g \in \mathbb{R}^n$ is a subgradient of $f : \mathbb{R}^n \to \mathbb{R}$ at x if for all z,

$$f(z) \geqslant f(x) + g^{T}(z-x).$$

• g is a subgradient iff $f(x) + g^{T}(z - x)$ is a global underestimator of f

Subdifferential

Definitions

- f is subdifferentiable at x if \exists at least one subgradient at x.
- The set of all subgradients at x is called the **subdifferential**: $\partial f(x)$

Subdifferential

Definitions

- f is subdifferentiable at x if \exists at least one subgradient at x.
- The set of all subgradients at x is called the **subdifferential**: $\partial f(x)$

Basic Facts

• If f is convex and differentiable, then $\nabla f(x)$ is the unique subgradient of f at x.

Subdifferential

Definitions

- f is subdifferentiable at x if \exists at least one subgradient at x.
- The set of all subgradients at x is called the **subdifferential**: $\partial f(x)$

Basic Facts

- If f is convex and differentiable, then $\nabla f(x)$ is the unique subgradient of f at x.
- Any point x, there can be 0, 1, or infinitely many subgradients.
 - Can only be 0 for non-convex f.

Globla Optimality Condition

Definition

A vector $g \in \mathbb{R}^n$ is a subgradient of $f : \mathbb{R}^n \to \mathbb{R}$ at x if for all z,

$$f(z) \geqslant f(x) + g^{T}(z - x)$$
.

Globla Optimality Condition

Definition

A vector $g \in \mathbb{R}^n$ is a subgradient of $f : \mathbb{R}^n \to \mathbb{R}$ at x if for all z,

$$f(z) \geqslant f(x) + g^{T}(z-x).$$

Corollary

If $0 \in \partial f(x)$, then x is a **global minimizer** of f.

Subdifferential of Absolute Value

• Consider f(x) = |x|

• Plot on right shows $\cup \{(x,g) \mid x \in \mathbb{R}, g \in \partial f(x)\}$

Subdifferential of Absolute Value

• Consider f(x) = |x|

- Plot on right shows $\cup \{(x,g) \mid x \in \mathbb{R}, g \in \partial f(x)\}$
- See B&V's notes for more: http://web.stanford.edu/class/ ee364b/lectures/subgradients_notes.pdf

Subgradient Descent

Subgradient Descent

- Initialize x = 0
 - repeat
 - $x \leftarrow x \eta g$ for $g \in \partial f(x)$ and η chosen according to step size rule
 - until stopping criterion satisfied
- Note: Not necessarily a "descent method"
 - in a descent method, every step is an improvement
- Always keep track of the best x we've seen as we go

Step Size

- Because not a descent method, can't adaptive step size
 - i.e. we don't use backtracking line search.
- Need to determine step sizes in advance
- Two main choices:
 - Fixed step size
 - Step sizes decrease according to Robbins-Monro Conditions:

$$\sum_{t=1}^{\infty} \eta_t^2 < \infty$$
 $\sum_{t=1}^{\infty} \eta_t = \infty$

• e.g. $\eta_t = 1/t$.

Convergence Theorem for Fixed Step Size

Assume $f: \mathbb{R}^n \to \mathbb{R}$ is convex and

• f is Lipschitz continuous with constant G > 0:

$$|f(x)-f(y)| \leqslant G||x-y||$$
 for all x, y

Theorem

For fixed step size η , subgradient method satisfies:

$$\lim_{k \to \infty} f(x_{best}^{(k)}) \leqslant f(x^*) + G^2 t/2$$

Convergence Theorems for Decreasing Step Sizes

Assume $f: \mathbb{R}^n \to \mathbb{R}$ is convex and

• f is Lipschitz continuous with constant G > 0:

$$|f(x)-f(y)| \leqslant G||x-y||$$
 for all x, y

Theorem

For step size respecting Robbins-Monro conditions,

$$\lim_{k \to \infty} f(x_{best}^{(k)}) \leqslant f(x^*)$$

Lasso objective:

$$\min_{w \in \mathbf{R}^d} \sum_{i=1}^n \left(w^T x_i - y_i \right)^2 + \lambda |w|_1$$

Lasso objective:

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^n (w^T x_i - y_i)^2 + \lambda |w|_1$$

• Partial derivative of empirical risk (homework):

$$\frac{\partial}{\partial w_k} \sum_{i=1}^n \left(w^T x_i - y_i \right)^2 = a_k w_k - c_k$$

where

$$a_j = 2 \sum_{i=1}^{n} x_{ij}^2$$
 $c_j = 2 \sum_{i=1}^{n} x_{ij} (y_i - w_{-j}^T x_{i,-j})$

• Subdifferential of $|w|_1$:

$$\partial_{w_k} \lambda |w| = \begin{cases} -\lambda & w_k < 0 \\ \lambda & w_k > 0 \\ [-\lambda, \lambda] & w_k = 0 \end{cases}$$

• Subdifferential of $|w|_1$:

$$\partial_{w_k} \lambda |w| = \begin{cases} -\lambda & w_k < 0 \\ \lambda & w_k > 0 \\ [-\lambda, \lambda] & w_k = 0 \end{cases}$$

• So subdifferential of objective is:

$$\partial_{w_k}(\mathsf{Lasso\ Objective}) = \begin{cases} a_k w_k - c_k - \lambda & w_k < 0 \\ a_k w_k - c_k + \lambda & w_k > 0 \\ [-c_k - \lambda, -c_k + \lambda] & w_k = 0 \end{cases}$$

- Solving for $0 \in \partial_{w_k}(Lasso Objective)$:
 - Case 1: $w_k < 0$:

$$a_k w_k - c_k - \lambda = 0 \implies w_k = (c_k + \lambda)/a_k$$

So if $c_k < -\lambda$, then $w_k = (c_k + \lambda)/a_k$ is a critical point

- Case 2: $w_k > 0$: If $c_k > \lambda$ then $w_k = (c_k \lambda)/a_k$ is a critical point
- Case 3: $w_k=0$: $w_k=0$ and $c_k\in [-\lambda,\lambda] \implies 0\in [-c_k-\lambda,-c_k+\lambda]$ so $w_k=0$ is a critical point
- So $0 \in \partial_{w_k}(Lasso Objective)$ iff

$$w_j(c_j) = \begin{cases} (c_j + \lambda)/a_j & \text{if } c_j < -\lambda \\ 0 & \text{if } c_j \in [-\lambda, \lambda] \\ (c_j - \lambda)/a_j & \text{if } c_j > \lambda \end{cases}$$