

Resolución de Trabajo Práctico Nº 1

REVISADO

- 1. $L1 = \{abc, ac, cba\}$, $L2 = \{BCA, BC, AB\}$, $L3 = \{123, 21, 32\}$
 - a. L1 U L3 = $\{abc, ac, cba, 123, 21, 32\}$
 - b. $L2 \cap L3 = \{\}$
 - c. $^{\sim}L1 = A_{L1}^{*} L1$
 - d. L2.L1.L3 = {BCAabc123, BCAabc21, BCAabc32,BCAac123, BCAac21, BCAac32,BCAcba123, BCAcba21, BCAcba32,BCabc123, BCabc21, BCabc32,BCac123, BCac21, BCac32,BCcba123, BCcba21, BCcba32,ABabc123, ABabc21 ABabc32,Abac123, Abac21, Abac32,ABcba123, ABcba21, ABcba32}

2.

- a. $L1^* = \{\mathcal{E}, a, b, c, ab, ac, acb, cb, ...\}$
- b. $L1^+ = \{a,b,c,ab,ac,acb,cb,...\}$
- c. $L1^+.L2^* = \{aa,ab,ac,abc,ba,bc,...\}$
- d. $\emptyset^+ = \{ \}$
- e. $\emptyset^* = \{E\}$
- f. $L1^* . \emptyset = \{ \}$

3.

- a. a*b*; ejemplos de strings que si pertenecen: aaab, abb, aabbb; ejemplos de strings que no pertenecen: aba, abbaa, ba
- b. a(ba)*b; ejemplos de strings que si pertenecen: ababab, abab, ab; ejemplos de strings que no pertenecen: ba,bab,a
- c. a* U b*; ejemplos de strings que si pertenecen: aa, bbb, a ; ejemplos de strings que no pertenecen: ab, aaab, abb
- d. (aaa)*; ejemplos de strings que si pertenecen: aaa, aaaaaaa, aaaaaaaaa; ejemplos de strings que no pertenecen: aa, a, aaaa
- e. Σ^* a Σ^* b Σ^* a Σ^* ; ejemplos de strings que si pertenecen: aba, aabaa, abba; ejemplos de strings que no pertenecen: ba, a, ab
- f. aba U bab ; ejemplos de strings que si pertenecen: aba, bab ; ejemplos de strings que no pertenecen: ababab, ab, bababa
- g. (E U a) b ;strings que si pertenecen: Eb, ab ; strings que no pertenecen: Eab, bE, aEb
- h. (a U ba U bb) Σ^* ; ejemplos de strings que si pertenecen: a, baab, bba ; ejemplos de strings que no pertenecen: b

4.

- a. 1(1 U 0)*0
- b. Σ*1 Σ*1 Σ*1 Σ*
- c. Σ*0101 Σ*
- d. Σ^0 U Σ^1 U Σ^2 U Σ^3 U Σ^4 U Σ^5
- e. (1(1 U 0))* 1*
- f. 1* (11 U 110 U 101 U 011) 1*
- g. (01 U 11 U 10) Σ*
- h. 1 Σ*1 Σ*1 Σ*110

[(Σ* 00 U (Σ* 00 Σ* 0)) U 1* (01+)*

5.

- a. (a U c U bc U ba)* bb (a U c U cb U ab)*
- **b.** $(\Sigma^2)^* \cup (\Sigma^3)^* =$
- **C**. a⁺ (ba⁺)*
- 6. Los lenguajes que son infinitos son los del ejercicio: a,b,d,e,f.
 - a. L(A) = {w/w es "xy" seguido de una determinada cantidad de "z"}
 - b. L(A) = {w/w es una determinada cantidad de "x" seguido de "yz"}
 - c. L(A) = {w/w es "z" o "y" seguido de una "x"}
 - d. L(A) = {w/w no contiene x} ==
 - e. L(A) = {w/w tiene una longitud múltiplo de 2 y solo contiene "y"}
 - f. L(A) = {w/w es una cantidad determinada de "x" o de "y"}
 - g. $L(A) = \{w/w \text{ es "xx" o "z"}\}$
 - h. L(A) = {w/w es "z" o "y" o "x"}

7.

- a. $L(A) = \{w/w \text{ solo contiene una "x" al final}\}$
- b. L(A) = {w/w es al menos una "x" seguido por al menos una "y" sin contener "z"}
- c. L(A) = {w/w es al menos una "x" o al menos una "y"}
- d. L(A) = {w/w es una cantidad de "x" seguido de una cantidad de "y" seguido de una cantidad de "z"}

8.

- a. Strings que si pertenecen: aaa, ab, aaab ; strings que no pertenecen: aab, b, bbb
- **b.** (a U b)* a U (Σ Σ)**
- 9. La primer expresión es ambigua porque por ejemplo se puede obtener "a" de dos formas, a través de la primer parte de la expresión (a((ab* cd)*) y a través de la segunda parte de la expresión (a(ababcd*)*a*).

La segunda expresión es ambigua porque por ejemplo se puede obtener "aabb" de dos formas, a través de la primer parte de la expresión (aab*(ab)*) y a través de la tercera parte de la expresión (a*bba*).