

Excavaciones urbanas Ejemplo de excavación con anclajes

Interacción Terreno Estructura I Especialización en Ingeniería Geotécnica

Problema

UG-1: Pampeano superior UG-2: Pampeano medio

Problema

Tabla 2-1: Parámetros geotécnicos

Descripción	Símbolo	Unidad	UG-1	UG-2
Peso unitario	γ	$[kN/m^3]$	19	19
Ángulo de fricción máx.	ϕ'	[deg]	30	32
Cohesión efectiva	c'	[kPa]	10	20
Ángulo de dilatancia	ψ	[deg]	0	0
Modelo de corte inicial ¹	G_0^{ref}	[MPa]	275	350
Deformación de corte de ref.	γ _{0.7}	[-]	10-4	10-4
Rigidez en descarga ¹	E_{ur}^{ref}	[MPa]	240	300
Rigidez secante ¹	E_{50}^{ref}	[MPa]	80	100
Rigidez edométrica ¹	E_{oed}^{ref}	[MPa]	80	100
Exponente de tensiones	m	[-]	0.50	0.50
Coeficiente de Poisson	$ u_{ur}$	[-]	0.30	0.30
Grado de sobreconsolidación	OCR	[-]	1.5	2.0
Coeficiente de presión horiz.	K_0	[-]	0.45	0.55
Permeabilidad	\boldsymbol{k}	[m/d]	1.0	1.0
Reducción de interfase	R_{inter}	[-]	0.75	0.75

Presión de referencia: 100 kPa;

^{*}El nivel freático se encuentra a 15m de profundidad (para el ejemplo vamos a suponer que es bastante superficial).

Anclajes

Se podrán considerar las siguientes tipologías de anclajes temporarios:

- 1. Anclajes activos inyectados con el método de Inyección Repetitiva Selectiva (IRS), cables de acero T15 Grado 270 (o similar), inclinación de 15° |20° con la horizontal, longitud libre 4 m y diámetro nominal de la perforación, 150|180 mm.
- 2. Anclajes pasivos inyectados con el método de Inyección Global Unica (IGU), diámetro de perforación nominal, 200|250 mm y armaduras compuestas por barras de acero ADN 420 de diámetros ϕ 20 o ϕ 25. Este tipo de anclaje no podrá adoptarse para la primera línea.

Diseño analítico

Usando el método de bustamante

Tabla 3-1: Capacidad de carga geotécnica de anclajes

ID	Tipo	Inyección	d [m]	α	$q_u\left[kPa\right]$	$Q_u[kN/m]$	FS	$Q_{adm}\left[kN/m\right]$
1	Activo	IRS	0.15 0.18	1.4	180	120 140	2.0	60 70
2	Pasivo	-	0.20 0.25	1.0	100	60 75	2.0	30 38

Nota: Los valores de capacidad geotécnica informados se encuentran asociados a un volumen de lechada (a/c≈0.50) mínimo del orden de 2.0 veces el volumen teórico.

Fig. 17. — Abaques pour le calcul de q, pour les argiles et limons.

Diseño analítico

• Para el caso de anclajes activos (tipo 1), se adoptan cables de 0.6" BR Grado 270 (fluencia 235 kN, rotura 261 kN) tipo T15 o similar. Para anclajes provisorios se admite que el acero trabajeen servicio hasta un 75% del límite convencional de fluencia (Fyk).

Esto es,

- Carga al límite elástico (ϵ = 0.1%) Fyk = 235 kN
- Carga estructural admisible (por cable) $Fadm = 176.3 \ kN (= 0.75 \ Fyk)$
- Para los anclajes pasivos (tipo 2), se adopta acero tipo ADN-420.

Esto es,

- Tensión de fluencia del acero: fy = 420 MPa
- Factor de seguridad estructural del acero: FS = 1.75
- Tensión admisible del acero: fadm = 240 MPa

Diseño de sección 1-B

Tabla 3-2: Sistema de contención - Sección 1B | 2

Parámetro	Anc. 01	Anc. 02	Anc. 03	Anc. 04
Prof. Cabeza [m]	1.0	3.1	5.2	7.3
Tipo de anclaje	ACTIVO	ACTIVO	PASIVO	PASIVO
Tipo de inyección	IRS	IRS	IGU	IGU
Sep. Horiz. [m]	2.0	2.0	2.0	2.0
Inclinación [deg]	15	15	15	15
Refuerzo	3T15	3T15	3Ø25	3Ø25
Long. Libre [m]	4.0	4.0	-	-
Long. Bulbo [m]	8.0	8.0	10.0	10.0
Long. Total [m]	12.0	12.0	10.0	10.0
Carga de tesado [kN]	450	450	-	-

Figura 3-2: Sistema de contención - Sección 1B | 2

S1B|S2

Diseño de sección 1-B

Sección 1B | 2

