

The National Engineering University

Propelling Transformations and Accelerating Reforms for National Development

College of Engineering – Department of Electrical Engineering

Bachelor of Science in <u>Computer</u> <u>Engineering</u> FINAL EXAMINATION First Semester-AY 2023-2024

Course Code	CpE 428
Course Title	Embedded System
Section	CpE 4102
Date	December 15, 2023
Time	

SR-Code	20-08132, 20-08676, 20-02829
Name of Student	Duller, Nathaniel T. Mendoza, John Harold C. Vergara, John Rey D.

Instructions to Students

1. Read all the instruction below

NO.	SECTIONS	POINTS
1.	Multiple Choices	
2.	Essay/Short Answer	
3.	Design and simulate	
4	Others	50
TOTAL POINTS		50

ILOs	Questions	Points
1	I	50
2		
3		
4		
5		
6		
7		

-----EXAMINATION STARTS HERE-----

The National Engineering University

Propelling Transformations and Accelerating Reforms for National Development

College of Engineering - Department of Electrical Engineering

Face Mask Detection using Raspberry Pi

Given are the materials needed for the Face Mask Detection Mask. Simulate and Debug to make the system work.

Link of Materials:

https://drive.google.com/drive/folders/1VzYisQby8q686FOeLIbkxXVEaJZoNAt6?usp=sharing

Provide the following:

SOFTWARE TOOLS USED:

- Proteus 8 Professional
- Virtual Serial Ports Emulator
- Python 3.9
- Command Prompt

MATERIALS USED:

- Raspberry Pi 3
- COMPIM (Communications Port Physical Interface Model)
- L293D Driver
- LM016L (16x2) Alphanumeric LCD
- LM35 Temperature Sensor
- MCP3208
- DC Motor

PROCEDURES:

We first install dependencies on Command Prompt to function the assigned Python File on detecting a person. Below are the required dependencies needed to install:

```
pip3 install tensorflow
pip3 install imutils
pip3 install opencv_python
pip3 install serial
pip3 install pyserial
```


The National Engineering University

Propelling Transformations and Accelerating Reforms for National Development

After installing dependencies, we opened the required file on Proteus 8 Professional to see the required components needed in this detection.

We then installed and opened an IDLE of Python version 3.9 and opened the detect_mask_video python file.

```
So Aut. Times An Open The Common Hope Comm
```


The National Engineering University

Propelling Transformations and Accelerating Reforms for National Development

After opening the IDLE for Python and Proteus, we proceed on creating a Port Device using Virtual Serial Ports Emulator to connect the Python File to Proteus.

After opening the required files, it's time to run the Python File. When it is successfully executed, a provided webcam will open and it will start detecting if the person has a face mask or not.

The National Engineering University

Propelling Transformations and Accelerating Reforms for National Development

The National Engineering University

Propelling Transformations and Accelerating Reforms for National Development

RUBRICS FOR GRADING

CRITERIA (Score x2)	SCORE	
Criteria 1: Materials/Software Used		
Exceptional (5 points): Comprehensive list of all necessary materials and software with detailed		
specifications. Properly organized and clearly presented.		
Proficient (4points): Majority of materials and software mentioned, with some missing details.		
The list is organized and presented in a clear manner.		
Basic (3 points): Basic list of materials and software, with significant details missing. The		
information is somewhat disorganized.		
Limited (2 points): Minimal information on materials and software. Key details are missing, and		
the presentation is unclear.		
Insufficient (1 point): No information provided regarding materials and software.		
Criteria 2: Detailed Step-by-Step Process		
Exceptional (5 points): Comprehensive, well-organized, and detailed step-by-step process for		
both debugging and simulating the system. Each step is clearly explained, including commands		
used and parameters.		
Proficient (4 points): Most steps are detailed and well-organized, but some clarity is lacking. The		
process is understandable but may leave room for confusion in certain areas.		
Basic (3 points): Steps are outlined, but the explanation is minimal. Lack of clarity in several steps,		
making it challenging to follow the process.		
Limited (2 points): Only basic steps are mentioned, with minimal explanation. The process is		
unclear, and it's difficult to understand the debugging and simulation steps.		
Insufficient (1 points): No step-by-step process provided.		
Criteria 3: Debugging Process		
Exceptional (5 points): Detailed description of the debugging process, including identification of		
potential issues, troubleshooting steps, and effective solutions. Demonstrates a deep		
understanding of debugging concepts.		
Proficient (4 points): Majority of the debugging process is explained, with some gaps in clarity.		
Adequate identification of issues and reasonable troubleshooting steps.		
Basic (3 points): Basic description of the debugging process, with limited detail. Identification of		
issues may be superficial, and troubleshooting steps lack depth.		
Limited (2 points): Minimal information on the debugging process. Little effort to identify and		
troubleshoot issues. Lack of clarity in the explanation.		
Insufficient (1 points): No information provided about the debugging process.		

The National Engineering University

Propelling Transformations and Accelerating Reforms for National Development

College of Engineering - Department of Electrical Engineering

Criteria 4: Simulation Process

Exceptional (5 points): Thorough explanation of the simulation process, including the simulation environment, parameters, and expected outcomes. Shows a deep understanding of simulation

Proficient (4 points): Majority of the simulation process is explained, with some gaps in clarity. Describes the simulation environment and key parameters.

Basic (3 points): Basic description of the simulation process, with limited detail. Provides some information about the simulation environment but lacks depth.

Limited (2 points): Minimal information on the simulation process. Little detail about the simulation environment and parameters. Lack of clarity in the explanation.

Insufficient (1 points): No information provided about the simulation process

Criteria 1: Face Mask Detection Accuracy (30 points)

Exceptional (5 points): The system demonstrates near-perfect accuracy in detecting the presence or absence of face masks. It effectively distinguishes between masked and unmasked faces in various conditions.

Proficient (4 points): The system exhibits high accuracy in face mask detection, with occasional minor misclassifications. Overall, it performs well in different scenarios.

Basic (3 points): The face mask detection system shows moderate accuracy, with noticeable misclassifications. It works adequately in certain conditions but struggles in others.

Limited (2 points): The accuracy of face mask detection is below expectations, with frequent misclassifications. The system has difficulty distinguishing between masked and unmasked faces. Insufficient (1 points): The face mask detection system does not function, or its accuracy is extremely poor.

Prepared by:

Engr. MAR Instructor

Approved by:

E B. DELMO Program Chair

Department Chair, EE

