Definition 1 (filtration). $(\mathcal{F}_t)_T$, for T a segment in \mathbb{Z} , is a *filtration*, if $\mathcal{F}_t \subset \mathcal{F}$ is a σ -body and $\forall_{t \leq s} \mathcal{F}_t \subset \mathcal{F}_s$.

Definition 2 (stopping time). $\tau : \omega \to T \cup \{\infty\}$ is a *stopping time*, if $\forall_{t \in T} \{\tau \leq t\} \in \mathcal{F}_t$ ($\iff \forall_{t \in T} \{\tau = t\} \in \mathcal{F}_t\}$).

Definition 3. Let (\mathcal{F}_t) be a filtration, τ be a stopping time, then define

$$\mathcal{F}_{\tau} = \{ A \in \mathcal{F} : A \cap \{ \tau \leqslant t \} \in \mathcal{F}_t \}.$$

Proposition 4. $\mathcal{F}_{\tau} = \{A \in \mathcal{F} : A \cap \{\tau = t\} \in \mathcal{F}_t\}.$

Proposition 5. τ_1, τ_2 stopping times, then $\tau_1 \wedge \tau_2 = \min(\tau_1, \tau_2)$ and $\tau_1 \vee \tau_2 = \max(\tau_1, \tau_2)$ are too.

 $\tau = t$ is a stopping time.

 $\tau_1 \leqslant \tau_2 \ stopping \ times \implies \mathcal{F}_{\tau_1} \subset \mathcal{F}_{\tau_2}$

 τ jest \mathcal{F}_{τ} -mierzalne.

Definition 6 (adapted process). $(X_t)_{t\in T}$ is adapted to the filtration $(\mathcal{F}_t)_{t\in T}$ or just (\mathcal{F}_t) -adapted, if $\forall_t X_t$ is \mathcal{F}_t -measurable.

Proposition 7. (\mathcal{F}_t) filtration, (X_t) is (\mathcal{F}_t) -adapted, τ a stopping time, then $\tau < \infty \implies X_{\tau}$ is \mathcal{F}_{τ} -measurable.

More generally, X_{τ} is \mathcal{F}_{τ} -measurable on the set $\{\tau < \infty\}$, i.e. $\forall_{B \in \mathcal{B}(\mathbb{R})} \{X_{\tau} \in B\} \cap \{t < \infty\} \in \mathcal{F}_{\tau}$.

Definition 8 (martingale). (X_t) is a martingale (resp. submartingale, supermartingale) with respect to a foltration (\mathcal{F}_t) , if

- $\forall_{t \in T} X_t$ is \mathcal{F}_t -measurable,
- $\forall_{t \in T} \mathbb{E} |X_t| < \infty$,
- $\forall_{s \leq t, s, t \in T} \mathbb{E}(X_t | \mathcal{F}_s) = X_s \text{ a.s. (resp. } \geqslant, \leqslant).$