Лабораторная работа 4.3.2 Дифракция света на ультразвуковой волне в жидкости

Яковлева Саша, группа 625

25 февраля 2018 г.

Цель работы: изучение дифракции света на синусоидальной акустической решетке и наблюдение фазовой решетки методом темного поля.

В работе используются оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления n изменяется по закону:

$$n = n_0(1 + m\cos\Omega x)$$

Здесь $\Omega=2\pi/\Lambda$ - волновое число для ультразвуковой волны, m - глубина модуляции n ($m\ll 1$).

Положим фазу φ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\varphi = knL = \varphi_0(1 + m\cos\Omega x)$$

Здесь L - толщина жидкости в кювете, $k=2\pi/\lambda$ - волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{1}$$

Этот эффект проиллюстрирован на рисунке 1.

Рис. 1: Дифракция световых волн на акустической решетке

Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin \theta \approx \theta \approx l_m/F$, где l_m - расстояние от нулевого до последнего видимого максимума, F - фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{2}$$

Скорость ультразвуковых воли в жидкости, где ν - частота колебаний излучателя:

$$v = \Lambda \nu \tag{3}$$

1 Определение скорости ультразвука по дифракционной картине

Схема установки приведена на рисунке 2. Источник света Π через светофильтр Φ и конденсор K освещает вертикальную щель S, находящуюся в фокусе объектива O_1 . После объектива параллельный световой пучок проходит через кювету C перпендикулярно акустической решетке, и дифракционная картина собирается в фокальной плоскости объектива O_2 , наблюдается при помощи микроскопа M.

Предварительная настройка установки произведем в соответствии с инструкцией с зеленым фильтром, далее в работе используется красный.

Рис. 2: Схема для наблюдения дифракции на акустической решетке

Параметры установки: фокусное расстояние объектива O_2 F=30 см, одно деление винта микроскопа составляет 4 мкм, погрешность измерений примем равной 2 деления, или 8 мкм.

Исследуем изменения дифракционной картины на зеленом свете. При увеличении частоты УЗ-генератора и приближении к $1,1~\mathrm{M}\Gamma$ ц проявляется дифракционная решетка; расстояние между максимумами растет.

Измерим положения x_m дифракционных максимумов с помощью микроскопического винта для четырех частот. Результаты измерений занесены в таблицы 1-4 ниже. На основе каждой таблицы построены графики зависимости $x_m(m)$, они изображены на рисунках 3-6. Экспериментальные точки хорошо ложатся на прямую. Проведем ее методом наименьших квадратов. Выражения для коэффициентов прямой $x_m = bm + a$ с указанием погрешностей:

$$b = \frac{\langle mx_m \rangle - \langle x_m \rangle \langle m \rangle}{\langle m^2 \rangle - \langle m \rangle^2}$$
$$a = \langle x_m \rangle - b \langle m \rangle$$
$$\sigma_b = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle x_m^2 \rangle - \langle x_m \rangle^2}{\langle m^2 \rangle - \langle m \rangle^2} - b^2}$$
$$\sigma_a = \sigma_b \sqrt{\langle m^2 \rangle - \langle m \rangle^2}$$

Коэффициенты наклона b для каждой прямой занесены в сводную таблицу 5, содержащую вычисления длины ультра-звуковой волны Λ и скорости ее распространения в воде v по формулам (2), (3) с учетом выражения:

$$b = l_m/m \to \Lambda = \lambda F/b$$

Относительную определения длины волны Λ будем считать равной относительной погрешности определения коэффициента наклона прямой b.

m	-3	-2	-1	0	1	2	3
x_m , дел	-115	-78	-37	0	38	74	106
x_m , MKM	-460	-312	-148	0	152	296	424

Таблица 1: Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1{,}168~{\rm M}\Gamma{\rm g}$

Рис. 3: График зависимость $x_m(m)$ при частоте генератора $\nu=1{,}168$ МГц

m	-4	-3	-2	-1	0	1	2	3	4
x_m , дел	-150	-116	-81	-38	0	38	80	120	154
x_m , MKM	-600	-464	-324	-152	0	152	320	480	616

Таблица 2: Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1{,}219~{\rm M}\Gamma{\rm g}$

Рис. 4: График зависимость $x_m(m)$ при частоте генератора $\nu=1{,}168~{\rm M}\Gamma$ ц

m	-3	-2	-1	0	1	2	3
x_m , дел	-116	-80	-38	0	45	86	126
x_m , MKM	-464	-320	-152	0	180	344	504

Таблица 3: Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1{,}258~{\rm M}\Gamma{\rm g}$

Рис. 5: График зависимость $x_m(m)$ при частоте генератора $\nu=1{,}258$ МГц

m	-2	-1	0	1	2
x_m , дел	-94	-43	0	45	85
x_m , MKM	-376	-172	0	180	340

Таблица 4: Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1{,}331~{\rm M}\Gamma{\rm g}$

Рис. 6: График зависимость $x_m(m)$ при частоте генератора $\nu=1{,}331$ МГц

ν , М Γ ц	b, MKM	σ_b , MKM	Λ , mkm	$\Delta\Lambda$, mkm	v, м/с	Δv , м/с
1,168	148,9	1,7	1289	15	1507	17
1,219	154,8	1,3	1240	10	1512	12
1,258	163,0	1,4	1178	10	1482	13
1,331	178	3	1076	19	1432	26

Таблица 5: Вычисление длины ультразвуковой волны Λ и скорости распространения ее в воде v

Ошибка при определении Λ и v не превышает 2%. Согласно справочным данным, при комнатной температуре скорость ультразвуковой волны в воде составляет примерно 1490 м/с. Значения, полученные экспериментально, с достаточной точностью соотносятся с ними.

По таблице 5 видно, что длина волны и скорость распространения падает с ростом частоты излучения...

ПОЧЕМУ???

2 Определение скорости ультразвука методом темного поля

Для наблюдения акустической решетки используется метод темного поля, который заключается в устранении центрального дифракционного максимума с помощью непрозрачного экрана. Схема установки показана на рисунке 7.

Рис. 7: Схема для наблюдения акустической решетки методом темного поля

Приставим к задней стенке (для светового луча) кюветы стеклянную пластинку с миллиметровыми делениями; сфокусируем микроскоп на изображение пластинки. Определим цену деления окулярной шкалы микроскопа, совместив ее с миллиметровыми делениями: в 6 делениях миллиметровой шкалы убирается 100 маленьких делений окулярной. Значит, цена деления окулярной шкалы: C=0.06 мм.

Без применения метода темного поля звуковая решетка не наблюдается. Закроем нулевой максимум вертикальной нитью. Таким образом осевая составляющая фазово-модулированной волны поглощается, а боковые остаются без изменения. Получившееся поле: $f(x) = \frac{im}{2}e^{i\Omega x} + \frac{im}{2}e^{i\Omega x} = im\cos\Omega x$, интенсивность изменяется по закону: $I(x) = m^2\cos^2\Omega x = \frac{1+\cos 2\Omega x}{2} \cdot m^2$. Отсюда получаем, что расстояние между темными полосами есть $\Lambda/2$.

Проведем измерение длины ультра-звуковой волны, приняв ошибку равной цене деления окулярной шкалы. В таблице 6 содержатся количество маленьких делений окулярной шкалы N (цена деления C=0.06), соответствующее n темным полосам акустической решетки. Формулы для расчета длины волны ультразвука Λ и скорости распространения v в воде:

$$\Lambda/2 = NC/(n-1)$$
$$v = \nu\Lambda$$

Расчеты также приведены в таблице 6.

Ошибка при таком определении скорости звука больше, чем в первой части работы, и составляет около 5%. Сами значения тоже получились больше.

ν, Мгц	Количество делений	Количество темных полос	1 201	a. 10 m/a	Δv , 10 m/c
ν , миц	шкалы окуляра N	акустической решетки n	11, MM	v, 10 M/C	Δv , 10 M/C
1,220	150	15	1,29	157	7
1,259	150	16	1,20	151	8
1,271	175	18	1,24	157	8

Таблица 6: Вычисление длины ультразвуковой волны Λ и скорости распространения ее в воде v методом темного поля

Вывод: в работе изучена дифракция света на акустической решетки, рассчитаны длина волны ультразвука и скорость его распространения в воде. Решетка наблюдалась методом темного поля.