1M - Domácí úkol 1 2020/2021

Domácí úkol 1

1. Operace s maticemi

Jsou-li dány matice A, B, C:

$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 3 & -2 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 3 & -1 \\ 1 & 2 \\ 2 & 1 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 2 & 3 \\ 4 & 1 & 2 \end{pmatrix}$$

Spočtěte:

- a) $\mathbf{A} + \mathbf{B}^{\mathrm{T}}$,
- b) $\mathbf{B} \cdot \mathbf{A} \mathbf{C}$.

2. Determinanty

Jsou-li dány matice A, B, C:

$$\mathbf{A} = \begin{pmatrix} 3 & 2 & -2 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & 2 & 2 & 5 \\ 1 & 3 & 2 & 4 \\ -1 & 0 & 3 & 2 \\ 2 & 1 & 6 & 3 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 3 & -3 & 1 \\ 1 & -2 & 4 \\ 2 & 2 & \alpha \end{pmatrix}$$

Spočtěte:

- a) $det(\mathbf{A})$,
- b) det(**B**),
- c) α takové, aby matice **C** byla singulární.

3. Hodnost matice a lineární závislost

Je-li dána matice A a vektory x, y, z:

$$\mathbf{A} = \begin{pmatrix} 1 & -2 & -3 & 1 & 2 \\ 4 & 3 & 2 & 0 & 2 \\ 3 & 2 & 1 & 2 & 2 \\ 2 & -1 & -2 & -1 & 2 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}, \quad \mathbf{z} = \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix}.$$

Zjistěte:

- a) $h(\mathbf{A})$,
- b) zda jsou vektory **x**, **y**, **z** lineárně nezávislé.

4. Inversní matice

Je-li dána matice A:

$$\mathbf{A} = \begin{pmatrix} -1 & 2 & 2 \\ 1 & -2 & -3 \\ 1 & 2 & -1 \end{pmatrix}$$

Nalezněte:

- a) A^{-1} pomocí Gaussovy metody,
- b) A^{-1} pomocí Cramerova pravidla.