Statistical Inference Course Project Part 2

Yan

5/8/2018

Part 2: Basic Inferential Data Analysis Instructionsless

Now in the second portion of the project, we're going to analyze the ToothGrowth data in the R datasets package.

Load the ToothGrowth data and perform some basic exploratory data analyses

```
library(datasets)
library(ggplot2)
data(ToothGrowth)
head (ToothGrowth)
##
      len supp dose
## 1 4.2
            VC 0.5
## 2 11.5
            VC 0.5
## 3 7.3
            VC 0.5
     5.8
            VC 0.5
## 5 6.4
            VC 0.5
## 6 10.0
            VC 0.5
tg <- ToothGrowth
tg$dose <- as.factor(tg$dose)</pre>
qplot(x=supp,y=len,data = tg,facets = .~dose) + geom_boxplot(aes(fill = supp))
```


Provide a basic summary of the data.

```
dim(tg)
## [1] 60 3
summary(tg)
##
         len
                     supp
                              dose
##
    Min.
           : 4.20
                     OJ:30
                             0.5:20
##
    1st Qu.:13.07
                     VC:30
                             1 :20
##
    Median :19.25
                             2
                                :20
           :18.81
    3rd Qu.:25.27
##
            :33.90
    Max.
```

Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose.

Note: (Only use the techniques from class, even if there's other approaches worth considering) split the dataset according to dose and supp

```
OJdose1 <- tg[tg$supp == "OJ" & tg$dose == 0.5,]
OJdose2 <- tg[tg$supp == "OJ" & tg$dose == 1,]
OJdose3 <- tg[tg$supp == "OJ" & tg$dose == 2,]
VCdose1 <- tg[tg$supp == "VC" & tg$dose == 0.5,]</pre>
```

```
VCdose2 <- tg[tg$supp == "VC" & tg$dose == 1,]
VCdose3 <- tg[tg$supp == "VC" & tg$dose == 2,]</pre>
```

Check if tooth growth is affected by dose

Get confidence intervals for different supp regardless different dose

```
t.test(len ~ supp, data = tg,paired=FALSE, var.equal = FALSE )$conf

## [1] -0.1710156  7.5710156

## attr(,"conf.level")
## [1] 0.95
```

So when doesn't consider the dosage, doesn't show significant difference between two supplements.

Get confidence intervals for low/median/large dose with different supp

```
t.test(0Jdose1$len, VCdose1$len, paired = FALSE, var.equal = FALSE)$conf

## [1] 1.719057 8.780943

## attr(,"conf.level")

## [1] 0.95

t.test(0Jdose2$len, VCdose2$len, paired = FALSE, var.equal = FALSE)$conf

## [1] 2.802148 9.057852

## attr(,"conf.level")

## [1] 0.95

t.test(0Jdose3$len, VCdose3$len, paired = FALSE, var.equal = FALSE)$conf

## [1] -3.79807 3.63807

## attr(,"conf.level")

## [1] 0.95
```

From the 95% confidence intervals, 0 is not included when the dosage is small or median. So there's significant difference between two supplement with OJ leads to faster tooth growth than VC.

Get confidence intervals for same supp with different dosage

```
t.test(0Jdose1$len, 0Jdose2$len, paired = FALSE, var.equal = FALSE)$conf

## [1] -13.415634 -5.524366
## attr(,"conf.level")
## [1] 0.95

t.test(0Jdose1$len, 0Jdose3$len, paired = FALSE, var.equal = FALSE)$conf

## [1] -16.335241 -9.324759
## attr(,"conf.level")
## [1] 0.95

t.test(0Jdose2$len, 0Jdose3$len, paired = FALSE, var.equal = FALSE)$conf

## [1] -6.5314425 -0.1885575
## attr(,"conf.level")
## [1] 0.95
```

```
t.test(VCdose1$len, VCdose2$len, paired = FALSE, var.equal = FALSE)$conf

## [1] -11.265712 -6.314288
## attr(,"conf.level")
## [1] 0.95

t.test(VCdose1$len, VCdose3$len, paired = FALSE, var.equal = FALSE)$conf

## [1] -21.90151 -14.41849
## attr(,"conf.level")
## [1] 0.95

t.test(VCdose2$len, VCdose3$len, paired = FALSE, var.equal = FALSE)$conf

## [1] -13.054267 -5.685733
## attr(,"conf.level")
## [1] 0.95
```

From the 95% confidence intervals, 0 is not included in all cases. So there's significant difference between different dosage of same supplement, the tooth growth becomes faster with increasing dosage.

State your conclusions and the assumptions needed for your conclusions.

Assumptions:

- The varience with different supplement and different dosage is not the same.
- The data between different groups are not paired
- The sample population is not skewed

Conclusions:

- With same supplement, OJ or VC, increasing the dosage leads to faster tooth growth
- With small or median dosage, OJ leads to faster tooth growth than VC
- With large dosage, no significant difference observed using OJ or VC

Review criteria (self check)

- [x] Did you show where the distribution is centered at and compare it to the theoretical center of the distribution?
- [x] Did you show how variable it is and compare it to the theoretical variance of the distribution?
- [x] Did you perform an exploratory data analysis of at least a single plot or table highlighting basic features of the data?
- [x] Did the student perform some relevant confidence intervals and/or tests?
- [x] Were the results of the tests and/or intervals interpreted in the context of the problem correctly?
- [x] Did the student describe the assumptions needed for their conclusions?

Links used:

link 1, link 2, link 3, link 4, link 5, link 6, link 7, link 8