Graduate Algorithms. Georgia Institute of Technology. Sequencing DP.

Matrix multiplication

Input: a sequence of matrices A_1, A_2, \dots, A_n .

Output: the optimal way to compute the product $A_1 A_2 \dots A_n$.

Recall: a matrix of size $a \times b$ can be multiplied by a matrix of size $b \times c$ in time O(abc).

Matrix multiplication

Input: a sequence of matrices A_1, A_2, \ldots, A_n natural numbers m_0, m_1, \ldots, m_n where $A_i \in M_{m_{i-1} \times m_i}(\mathbb{R})$.

Output: the optimal way to compute the product $A_1A_2...A_n$.

$$\left(\left(A_{1}\left(A_{2}A_{3}A_{4}A_{5}\right)A_{4}A_{5}\right)$$

Table definition

 $T[i,j] = \min$ cost for calculating the product $A_i A_{i+1} \dots A_j$

Note: only need $i \leq j$ since the order matters.

Recurrence and base case

$$T[i,j] = \min_{i \le \ell < j} \{ T[i,\ell] + T[\ell+1,j] + m_{i-1} m_{\ell} m_j \}$$

Base cases: T[i, i] = 0.

Pseudocode

CHAIN MATRIX MULTIPLICATION

- 1. C(i, i) = 0 for all i
- 2. For s = 1 to n 1
 - (a) For i=1 to n-s i.~~j=i+s $ii.~~C(i,j)=\min_{i\leq k< j}\{C(i,k)+C(k+1,j)+m_{i-1}\cdot m_k\cdot m_j\}$
- 3. Return C(1, n).

Running time: $O(n^3)$.