

题目名称	习用之语	八卦天盘	盈虚方田
程序文件名	idioms	bagua	field
输入文件名	idioms.in	bagua.in	field.in
输出文件名	idioms.out	bagua. out	field.out
每个测试点时限	1秒	1秒	1秒
内存限制	256MB	256MB	256MB
测试点数目	10	10	10
每个测试点分值	10	10	10
是否有部分分	无	无	无
试题类型	传统	传统	传统

提交源程序须加后缀

对于 Pascal 语言	idioms.pas	bagua. pas	field.pas
对于 C 语言	idioms.c	bagua.c	field.c
对于 C++语言	idioms.cpp	bagua.cpp	field.cpp

追慢達力 2

习用之语

(idioms.pas/c/cpp)

题目描述

成语是古代汉语词汇中特有的一种长期相沿用的固定短语,来自于古代经典或著作、历史故事和人们的口头故事。成语的意思精辟,往往隐含于字面意义之中,不是其构成成分意义的简单相加。它结构紧密,一般不能任意变动词序,抽换或增减其中的成分。成语一共有5万多条,其中96%为四字格式。

成语具有结构固定性、意义整体性、语法 功能的多样性的特点,很多成语都十分相似, 如不孚众望、不负众望,瓮中捉鳖、瓮中之鳖, 但是其意却失之毫厘谬以千里。也有许多成语 仅两字、三字之差。

现有一本成语字典,出于兴趣,欲知其中 仅差 D(1≤D≤4)字的四字成语有多少对。

输入格式

第一行为两个正整数 N、D,表示成语字典中共收录了 N 条四字成语,D 如题中所描述。

接下来一行每行4个字符表示一个成语, 所有字符均被编码为'0'-'9'或'a'-'z'表示。

输出格式

仅包含一个整数表示仅差 D 字的成语有多少对。

样例输入

4 2

0000

a010

0202

a0e2

样例输出

3

数据范围和注释

对于 15%的数据, N≤3000。 对于 100%的数据, N≤50000。

值度達完 2

八卦天盘

(bagua. pas/c/cpp)

题目描述

所谓太极生两仪,两仪生四相,四相生八卦,八卦而变六十四爻,周而复始变化无穷。

传说八卦天盘决定世间万物的消长。八卦天盘中有若干阴阳球,阴阳球只能在天盘中规定的轨道内进行有向运动,盘中的轨道构成了一个N个结点M条边的有向无环图。入度为零的K个位置各有一个阴阳球,同样的有K个出度为零终止位置。运动结束时,所有球都会停止在不同的终止位置,两个阴阳球不会经过相同的位置。我们将K个起始位置的球按照原来的编号大小叫做"球1,球2……",终止位置同样按照编号大小叫做"球1,球2……",终止位置同样按照编号大小叫做"终点 1,终点2……"。若K个阴阳球所到达终点——一个1到K的排列,其中有偶数个逆序对,则时间万物将会增

长一个单位, 反之则万物消亡一个单位。

在一个轮回周期内,阴阳球将会周而复始的运动很多遍,对于每种合法的运动路径,阴阳球都会如此运动一次。现求解一个轮回周期万物将会增长多少(由于结果可能会很大,所以最终要将结果对一个素数 P 取模)。

输入格式

输入的第一行包含三个整数 N, M, P 如题中所述。 之后 M 行每行两个整数 a, b 表示有一条单向轨道从 a 点到 b 点。

输出格式

在一行内输出答案。

样例输入1	样例输入2	样例输入3
4 2 1000003	4 2 1000003	4 4 1000003
1 3	4 1	2 1
2 4	3 2	2 4
样例输出1	样例输出 2	3 1 3 4
1	1000002	样例输出3
数据范围和注释		0

对于 10%的数据, N≤10。

对于 50%的数据, N≤300。

对于 100%的数据, N≤600, M≤100000, 2≤p≤10^9+7。

建建筑 2

盈虚方田

(field.pas/c/cpp)

题目描述

所谓方田者,田之正也。诸田不等,以 方为正,故曰方田。

人们对一块矩形田地的审美感受主要 取决于其长宽比例是否协调,确切的说与长 和宽的最大公约数有

当一个矩形长宽的最大公约数越"简单"时,人们看着它越舒服。一个数字的单纯度等于自身组成的质因子个数。例如12=2*2*3,所以12的单纯度为3。特别的,1的单纯度为0。现在有若干个问题,在所有长不超过N,宽不超过M的整数边长的田地中,有多少种田地其长宽最大公约数的单纯度不超过P。

注记:求最大公约数之法,《九章算术》曾云:"可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。"此所谓更相减损之术也。

输入格式

第一行有一个整数 T 表示下面共有 T 组测试数据。接下来每行三个整数 N, M, P 如题目中所描述意义相同。

输出格式

输出共T行每行一个整数表示题中所求不同田地的个数。

样例输入

2

10 10 0

10 10 1

样例输出

63

93

数据范围和注释

对于 30%的数据 N, M, P≤1000。

对于另外 20%的数据 T=1。

对于另外 20%的数据 P=0。

对于 100%的数据 1≤N, M≤5*10⁵, 0≤P≤5*10⁵, T≤5000。