Motion planning and obstacle avoidance with barrier functions for autonomous car racing

Gary Gao, Enrique Mallada

June 17, 2022

Outline

Introduction and Motivation

Preliminaries and Problem Statement

Methods

Numerical Results

Discussion

Conclusion and future work

Introduction and Motivation

A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates

- Authors: Stephen Prajna, Ali Jadbabaie, and George J. Pappas
- Verify safety by introducing the existence of the barrier certificate

Optimization-Based Autonomous Racing of 1:43 Scale RC Cars

- Authors: Alexander Liniger, Alexander Domahidi and Manfred Morari
 - Motion planning with optimization for autonomous car

Some Applications of Polynomial Optimization in Operations Research and Real-Time Decision Making

- Authors: Amir Ali Ahmadi and Anirudha Majumdar
 - generate barrier certificate with Sum-of-Squares programming

Introduction and Motivation

Figure: F1tenth simulation environment developed from UPenn

Introduction and Motivation

Motivation

- Simultaneously guarantee safety and maximize progress along the track through path planning for autonomous car
 - Ensure safety by generating barrier certificate
 - Maximize track progress with optimization

Main challenge

- Computation efficiency for generating barrier certificate and performing motion planning simultaneously
 - About 30Hz for higher level part but less than 10Hz for lower level part without parallel computing

Outline

Introduction and Motivation

Preliminaries and Problem Statement

Methods

Numerical Results

Discussion

Conclusion and future work

Preliminaries and Problem Statement

Barrier certificate

► Consider a general differential equation:

$$\dot{x} = f(x) \tag{1}$$

ightharpoonup A barrier certificate V(x) is defined as:

$$V(x) \ge 0 \quad \forall x \in S_0 \tag{2}$$

$$V(x) < 0 \quad \forall x \in S_{unsafe}$$
 (3)

$$\frac{\partial V(x)}{\partial x}f(x) \ge 0 \quad \forall x \in S$$
 (4)

▶ S_0 denotes the set contains all the initial states of x and S_{unsafe} denotes unsafe set of states x. $S_0, S_{unsafe} \subset S$

Preliminaries and Problem Statement

Equivalently, the definition of barrier certificates can be modified as the following,

$$V(x) < 1 \quad \forall x \in S_{safe} \tag{5}$$

$$V(x) > 1 \quad \forall x \in S_{unsafe}$$
 (6)

$$\frac{\partial V(x)}{\partial x}f(x) \le 0 \quad \forall x \in S \tag{7}$$

- $ightharpoonup S_{safe}$ and S_{unsafe} are two semi-algebraic sets
- ▶ Trajectory starts in S_{safe} never ends up in S_{unsafe}

Stability and RoA

- ▶ Suppose f(0) = 0 and locally asymptotically stable
- ▶ RoA(\mathcal{O}) of the origin is defined as the set of all initial states starting from x_0 which finally converges to the origin when time goes to infinity.

$$\mathcal{O} = \{ x_0 \in S | \lim_{t \to \infty} \psi(t; x_0) = 0 \}$$
 (8)

$$V(x) > 0 \quad \forall x \neq 0 \tag{9}$$

$$\dot{V}(x) < 0 \quad \forall x \in \{x \mid V(x) \le \beta, x \ne 0\}$$
 (10)

- ightharpoonup eta: sublevel of Lyapunov function V(x)
- $\{x \mid V(x) \leq \beta, x \neq 0\}$ is one part of RoA

Sum-of-Squares(SOS)

Consider a polynomial function,

$$f(x) = x^2 + 8x^4 (11)$$

and a given polynomial basis $b(x)=\begin{bmatrix}x,x^2\end{bmatrix}^T$ and define a coefficient matrix $Q=\begin{bmatrix}q1&q2\\q3&q4\end{bmatrix}$

- Let $f(x) = b^T Q b$, if q1 = 1, q2 = q3 = 0 and q4 = 8, Q is positive definite and $f(x) = b^T Q b = \left\| (x, \sqrt{8}x^2) \right\|^2 \in SOS$
- ▶ Sufficient condition for $f(x) \in SOS$ if Q is PSD and symmetric

Converting SOS to SDP

Consider a semi-definite program,

$$\min_{X \in S^n} \mathbf{Tr}(CX),\tag{12}$$

s.t.
$$X \succeq 0$$
, (13)

$$\mathbf{Tr}(A_i X) = b_i, \ \forall i = 1, ..., N \tag{14}$$

we can form a SDP problem to find a Q

$$\min_{Q \in S^n} 1,\tag{15}$$

$$\mathbf{s.t.}\ Q \succeq 0, \tag{16}$$

$$q1 = 1, (17)$$

$$q2 = q3 = 0, (18)$$

$$q4 = 8 \tag{19}$$

Outline

Introduction and Motivation

Preliminaries and Problem Statement

Methods

Numerical Results

Discussion

Conclusion and future work

High level path planning

Consider a general car model,

Figure: dynamic model of a simple car

$$\dot{x} = u_s \cos \theta, \tag{20}$$

$$u = u_s \sin \theta,$$
 (21)

$$\dot{y} = u_s \sin \theta, \tag{21}$$

$$\dot{\theta} = (u_s/L) \tan u_{\phi} \tag{22}$$

 $lack u=(u_s,u_\phi)$ where u_s is speed and u_ϕ is steering angle of front wheel

High level path planning

► Find the nominal trajectory maximizing the progress along the track can be converted into the following integer program

$$\max_{j \in 1, \dots, M_0} P^*(X_N^j, Y_N^j), \tag{23}$$

s.t.
$$x_0^j = x,$$
 (24)

$$x_{k+1}^j = f_{km}(x_k^j), (25)$$

$$x_k^j \in \mathcal{X}_{track} \tag{26}$$

- $igwedge x_k = (X_k, Y_k, heta_k)$ represents discrete version of position and vehicle heading
- ▶ *M*₀: total number of nominal trajectory
- N: total number of discrete points on a single nominal trajectory
- $f_{km}(x_k^j)$ is discrete version of dynamics

High level path planning

Figure: Nominal trajectories and progress

- $P^*: \mathbb{R}^2 \to [0, L]$
- ightharpoonup L: total length of the centerline
- lacktriangleright nominal trajectories on different u_s

Choose a trajectory

- ▶ Need to define a starting point for aggregating progress
- Green points: equally spaced points have data structure (x,y,p)
- Vehicle is travelling counter-clockwise

Figure: Two nominal trajectories progress comparison

$$Pr = \left| \frac{\langle P_1 - P_0, P_3 - P_0 \rangle}{\|P_3 - P_0\|} \right| \tag{27}$$

ightharpoonup Pr: projection value for end point P_1

SOS on polynomial optimization

Global optimization

Consider $\min_{x,y} F(x,y)$, with

$$F(x,y) := 4x^2 - \frac{21}{10}x^4 + \frac{1}{3}x^6 + xy - 4y^2 + 4y^4.$$

Not convex. Many local minima. NP-hard. How to find good lower bounds?

 \bigcirc Find the largest γ s.t.

$$F(x,y) - \gamma$$
 is SOS.

- $\ \, \blacksquare \,$ If exact, can recover optimal solution.
- Surprisingly effective.

Solving, the maximum γ is -1.0316. Exact bound.

Details in (P. & Sturmfels, 2001).

Direct extensions to constrained case.

ACC 2006 - Sum of squares optimization - p. 17/39

Figure: Slide from Parrilo

SOS on polynomial optimization

- ► Gradient based methods do not work, stuck at local minimum
- ▶ Define γ to be lower bound of F(x,y)
- ▶ Check if $F(x,y) \gamma > 0$

$$\min_{Q \in S^n} \quad \gamma \tag{28}$$

$$\mathbf{s.t.}\ F(x,y) - \gamma = b^T Q b \in SOS \tag{29}$$

 $lackbox{}{}$ b is a polynomial basis and $b=[1,x,x^2,x^3,y,y^2,y^3,xy,x^2y,xy^2]$

Obstacle avoidance with Sum-of-squares programming

On lower level of algorithm, our goal is to make autonomous car avoid obstacles by calculating barrier certificate for each control primitives $u_i = (u_s, u_{\phi_{des},i})$, here we let $u_s = 1.0m/s$

$$V(\mathbf{x}_0) = 0, \tag{30}$$

$$V(\mathbf{x}) > 1, \quad \forall (x, y) \in X_{obs} \setminus (x_0, y_0), \tag{31}$$

$$\dot{V}(\mathbf{x}) = \frac{\partial V}{\partial \mathbf{x}} f(\mathbf{x}, u_i) < 0, \quad \forall \mathbf{x} \in X$$
 (32)

- ▶ $u_{\phi_{des},1}=0$ rad , $u_{\phi_{des},2}=-20\pi/180$ rad, $u_{\phi_{des},3}=20\pi/180$ rad, $u_{\phi_{des},4}=-45\pi/180$ rad and $u_{\phi_{des},5}=45\pi/180$ rad
- ▶ Search for polynomial function V(x) of degree 4

 $ightharpoonup X_{obs} \subset \mathbb{R}^2$

Obstacle avoidance with Sum-of-squares programming

Conditions in (29)-(31) can be transferred into the following SOS programming,

$$V(\mathbf{x}_0) = b_0^T Q b_0 = 0, (33)$$

$$(V(\mathbf{x}) - (1 + \epsilon)) - Jg_{obs} \in SOS, \tag{34}$$

$$-\dot{V}(\mathbf{x}, u_i) \in SOS, \tag{35}$$

$$J \in SOS \tag{36}$$

- $\epsilon > 0$
- ightharpoonup J is a multiplier with a specific degree
- ▶ $g_{obs} = \{(x,y): g_{obs}(x,y) \ge 0\}$ denotes a semi-algebraic set (e.g $g_{obs} = \{(x,y) \in X | 1.0 (x-4.0)^2 (y-2.0)^2 \ge 0\}$)

Convert to SDP via coefficient matching

We parameterize $V(\mathbf{x}) = b_1^T Q b_1$ where vector $b_1 = \begin{bmatrix} 1, x, y, \theta, x^2, xy, y^2, x\theta, y\theta, \theta^2 \end{bmatrix}^T$

$$\min_{N,M,G,Q \in S^n} \mathbf{Tr}(CQ), \tag{37}$$

s.t.
$$V(\mathbf{x}) = b_1^T Q b_1,$$
 (38)

$$J = b_2^T N b_2, \tag{39}$$

$$(V(\mathbf{x}) - (1 + \epsilon)) - Jg_{obs} = b_1^T M b_1, \tag{40}$$

$$-\dot{V}(\mathbf{x}, u_i) = b_1^T G b_1, \tag{41}$$

$$N, M, G \succeq 0 \tag{42}$$

- ▶ $b_2 = [1, x, y, \theta]^T$, C for choosing particularly elegant solution(e.g minimize sum of diagonal elements)
- SCS solver in CVXPY package can be used to solve this SDP problem
- objective function is set to 1 in simulation

Algorithm: Hierarchical obstacle avoidance with BC

```
Algorithm 2: Hierarchical obstacle avoidance with BC2
  Data: f(\mathbf{x}), speed, \mathbf{x}_0, \phi_{des,i}
  Result: return control input u = (u_s, u_\phi)
  while True do
      u \cdot \leftarrow speed:
      \psi_{candidates} \leftarrow \text{emptv list};
      Solve integer program and get \phi_{best};
      Store candidate trajectories into \psi_{candidates};
      Check if vehicle is close to any obstacle (x, y) \in X_{obs}:
      if not close then
       u \leftarrow (u_s, \phi_{best})
      end
      else
          Solve SOS program on \phi_{hest}:
          if available then
              u \leftarrow (u_s, \phi_{best})
          end
          else
               Solve first available \phi in \psi_{candidates} with SOS;
              u \leftarrow (u_s, \phi)
          end
      end
      execute control u
  end
```

- SDP program in CVXPY package includes both setting up time and solving time
- ▶ Recommend parallel computing on SOS program

Algorithm implemented in simulation

```
Algorithm 1: Hierarchical obstacle avoidance with BC1
  Data: f(\mathbf{x}), speed, \mathbf{x}_0, \phi_{des,i}, threshold
  Result: return control input u = (u_s, u_\phi)
  while True do
      u \cdot \leftarrow speed;
      \psi_{candidates} \leftarrow \text{empty list};
      Solve integer program and get \phi_{best};
      Store candidate trajectories into \psi_{candidates};
      Check if vehicle is close to any obstacle (x, y) \in X_{obs}:
      if not close then
          u \leftarrow (u_s, \phi_{best})
      end
      else
          Solve SOS program on \phi_{best} and get solving time t;
          if t < threshold then
              u \leftarrow (u_s, \phi_{hest})
           end
           else
               Solve first available \phi in \psi_{candidates} with SOS:
               u \leftarrow (u_r, \phi)
          end
      end
      execute control u
  end
```

► Through experiment results, solving time increases for colliding direction when vehicle approaches the obstacle

Outline

Introduction and Motivation

Preliminaries and Problem Statement

Methods

Numerical Results

Discussion

Conclusion and future work

High level path planning simulation

Figure: Going straight maximizes the track progress

Figure: Slight right turn maximizes the track progress

Green points indicate best nominal trajectory in both vehicle state, red lines denote five nominal trajectories and blue line is "centerline"

Lower level barrier certificate generation

Figure: 1 sublevel of barrier function

- ightharpoonup 2-D circle obstacle with radius $r=\sqrt{0.4}$ and locate at (-10.82,0.32)
- Green dot indicates origin of the vehicle coordinate location in the global coordinate system

Numerical error and solving method

Numerical error

- SCS doen't show numerical error on desired angle p_d3 but SeDuMi solver in MATLAB indicate numerical error
- ► There does not exist such barrier certificate on p_d3

Solving method

- Similar to primal-dual interior point method
 - Setup dual problem for SDP
 - Compute primal dual search direction by solving linear system of equations from KKT condition
 - Perform line search to ensure PSD for matrix variables (F Alizadeh 1998 SIAM Journal)

Optimality

- Maximum iteration of the solver is 10000
- Primal, dual residual and duality gap r_p, r_d, r_g are less than ϵ (user defined)

Algorithm simulation result

Figure: Vehicle's optimal direction pointing toward the obstacle

Figure: Vehicle steers to the right to avoid obstacles

Algorithm simulation result

Figure: Vehicle steers to the left to avoid second obstacles

- ▶ Initialize pixel obstacles located at (-10.82,0.32) and (-8.504,-0.840) globally
- Treat pixel obstacle as a circle with a certain radius
- lacktriangle Append corresponding g_{obs} constraint to optimization problem when close to obstacle

Algorithm simulation result

For multiple obstacles detected, we need to specify new multiplier for each obstacle $J_i=b_2^TN_ib_2$ and let $N_i\succeq 0$

$$(V(\mathbf{x}) - (1 + \epsilon)) - J_i g_{obs_i} \in SOS \quad \forall (x, y) \in X_{obs_i}$$
 (43)

- \triangleright Where g_{obs_i} corresponds different obstacle
- Other constraints in the SDP problem stay same
- When travelling toward obstacle, it takes more steps to enforce zero duality gap

Outline

Introduction and Motivation

Preliminaries and Problem Statement

Methods

Numerical Results

Discussion

Conclusion and future work

Discussion 31

Obstacles with Lidar detection

Recall a polyhedron is the intersection of finite number of half spaces,

$$P_{polyhedron} = \{ \mathbf{x} \in \mathbb{R}^2 \mid \alpha_i^T \mathbf{x} \le b_i, \ i = 1, ..., n \}$$
(44)

ightharpoonup n is the total number of half space constraint to form the polyhedron Then we can form the matrix inequality $A\mathbf{x} < \mathbf{b}$

- ightharpoonup Each row in $A \in \mathbb{R}^{n \times 2}$ is α_i^T
- $lackbox{\bf b} \in \mathbb{R}^n$ where each entry in $lackbox{\bf b}$ is b_i

Obstacles with Lidar detection

Let vector $\mathbf{G}(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$ that each entry in vector $\mathbf{G}(\mathbf{x})$ is non-negative, then we have the semi-algebraic set $g_{polyhedron} = \{\mathbf{x} \in X \mid \mathbf{G}(\mathbf{x}) \geq \mathbf{0}\}$. Conditions for searching for a valid $V(\mathbf{x})$ can be modified as the following to handle polyhedron obstacle,

$$V(\mathbf{x}_0) = b_0^T Q b_0 = 0, (45)$$

$$(V(\mathbf{x}) - (1 + \epsilon)) - \mathbf{J}^T \mathbf{G}(\mathbf{x}) \in SOS, \tag{46}$$

$$-\dot{V}(\mathbf{x}, u_i) \in SOS, \tag{47}$$

$$J_i \in SOS, \ \forall i = 1, ..., n \tag{48}$$

- ightharpoonup J is vector of multipliers containing J_i
- ► Generate convex hull with laser points

Dealing with noise term

Assume there is an uncertain "cross-wind" term w bounded between $\left[-0.05,0.05\right]$ in the dynamics,

$$\dot{x} = u_s \cos \theta + \mathbf{w},\tag{49}$$

$$\dot{y} = u_s \sin \theta, \tag{50}$$

$$\dot{\theta} = (u_s/L) \tan u_{\phi} \tag{51}$$

Previous condition can be modified as the following,

$$\dot{V}(\mathbf{x}, \mathbf{w}) = \frac{\partial V}{\partial \mathbf{x}} f(\mathbf{x}, u_i, \mathbf{w}) < 0, \quad \forall \mathbf{x} \in X, \ \forall \mathbf{w} \in [-0.05, 0.05]$$
 (52)

Discussion 34

Outline

Introduction and Motivation

Preliminaries and Problem Statement

Methods

Numerical Results

Discussion

Conclusion and future work

Conclusion

Possible future improvement

Figure: Maximize region of barrier certificate

- Maximizing safe region with permissive barrier certificate (L Wang 2018)
- Introduce parallel computing on SOS for efficiency
- ► Take noise term into account on dynamics to increase robustness of the algorithm
- Design control algorithm for higher level part

Thank You