

Higher n-Paraffins of Bitkovsk and Dolinsk
Petroleum

77928
SOV/65-60-3-1/19

Key to Table: (A) Hydrocarbons; (B) Literature data; (C) Experimental data on Bitkovsk petroleum; (D) Experimental data on Dolinsk petroleum; (E) Refractive index; (F) mp, °C; (G) Molecular weight; (H) Aniline point, °C; (I) Amount of petroleum, %; (J) Note: The intermediate fractions are not given in the Table and were not considered in calculations. (1) n-Hexadecane, (2) n-Heptadecane, (3) n-Octadecane, (4) n-Nonadecane, (5) n-eicosane, (6) n-Heneicosane, (7) n-Docosane, (8) n-Tricosane, (9) n-Tetracosane, (10) n-Pentacosane, (11) n-Hexacosane, (12) n-Heptacosane, (13) n-Octacosane, (14) n-Nonacosane, (15) n-Triacontane, (16) n-Hentriacontane, (17) n-Dotriacontane, (18) n-Tritriacontane, (19) n-Tetratriacontane, (20) n-Pentatriacontane.

Card 5/5

YATSENKO, Ye.F.; CHERNOZHUKOV, N.I.

Aromatic hydrocarbons of the oil fractions from Dolina and Bytkov
petroleums. Khim.i tekhnicheskaya promyshlennost' i gazovoy promyshlennosti
im. akad. Gubkina.
(Petroleum—Analysis) (Hydrocarbons)

S/065/60/000/010/002/010
E030/E412

AUTHORS: Yatsenko, Ye.F. and Chernozhukov, N.I.

TITLE: Naphthenic Hydrocarbons in the Residue Fraction of
Belinsky and Bitkovsky Crudes

PERIODICAL: Khimiya i tekhnologiya topliv i masel, 1960, No. 10,
pp. 6-10

TEXT: The naphthenic hydrocarbons in the residues from Dolina
and Bitkovskiy crudes have been investigated. In order to avoid
cracking of the high-molecular weight components, non-thermal
methods of separation were mainly used (chromatographic separation
over silica gel, complex formation with thiocarbamide, and
selective solution in acetone). The residue is 25.72% of
Bitkovskiy crude, containing 41% weight of naphthenic hydrocarbons
and 27.53% of Dolina crudes, consisting of 47% of naphthenic
hydrocarbons. The average Dolina composition is $C_{21.1}H_{41.6}$
with the general formula $C_nH_{2n-0.6}$. and for Bitkovskiy it is
 $C_{24.0}H_{46.4}$ with the general formula $C_nH_{2n-1.6}$. The quantity

Card 1/2

S/065/60/000/010/002/010
E030/E412

Naphthenic Hydrocarbons in the Residue Fraction of Belinsky and Bitkovskiy Crudes

of hydrocarbons associated with ring structures is 35 to 36%, consisting of about 25% with branched paraffin chains and 5% with straight chains; the number of rings per molecule lies between 0.5 and 1.7. More complete structural analysis employed four stage dehydrogenation, selective crystallization with carbamide, further chromatographic extraction over silica gel, and studies of density, refractive index, molecular weight, aniline point and infrared transmission. Highly cyclized (more than 6 rings) compounds were present only in the Bitkovskiy residue, consisting of 0.77%, with an average of 6.24 rings. In both crudes, tricyclics formed about 0.42%. About 41% of the Bitkovskiy fraction contained cycloparaffins, and for Dolina the figure was 46% (including about half in isoparaffins). Six-membered cycloparaffins comprised about 27% of Dolina and 32% of Bitkovskiy crudes. There are 3 figures, 4 tables and 10 references: 7 Soviet and 3 non-Soviet.

ASSOCIATION: UkrNIGRI, MINKh and GP
Card 2/2

YATSENKO, Ye. F.

Cand Chem Sci - (diss) "Comparative study of hydrocarbons of the oil fraction of petroleum from the Dolinskiy and the Bitkovskiy deposits of the Ukrainian SSR." Moscow, 1961. 21 pp; (Ministry of Higher and Secondary Specialist Education USSR, Moscow Inst of Petrochemical and Gas Industry imeni I. M. Gubkin); 160 copies; price not given; (KL, 6-61 sup, 200)

YATSENKO, Ye.F.; BOYKO, G.Ye.; DONTSOVA, G.M.

Higher liquid hydrocarbons in Carpathian ozocerites. Izv.vys.
ucheb.zav.; neft' i gaz 5 no.2:71-75 '62. (MIRA 15:7)

1. L'vovskiy gosudarstvennyy universitet imeni I. Franko
i Ukrainskiy nauchno-issledovatel'skiy geologorazvedochnyy
institut.
(Carpathian Mountains--Ozocerite)
(Hydrocarbons)

YATSENKO, Ye.F.; DONTSOVA, G.M.

Composition and properties of Carpathian oils. Geol.neft i gaza
6 no.10:29-33 O '62. (MIRA 15:12)

1. Ukrainskiy nauchno-issledovatel'skiy geologorazvedochnyy
institut.
(Carpathian Mountain region--Petroleum--Analysis)

"APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001962310006-3

YATSENKO, Ye.F.; DONTSOVA, G.M.

Physicochemical properties of petroleums in the water-oil
contact. Trudy UkrNIGRI no.7:250-256 '63.

(MIRA 19:1)

APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001962310006-3"

YATSENKO, Ye.F.; DONTSOVA, G.M.; GORBUNOVA, I.Ye.

Physicochemical properties of petroleum in the new
Carpathian fields. Trudy UkrNIGRI no.7:233-241 '63.
(MIRA 19:1)

"APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001962310006-3

BOYKO, G.Ye.; KLIMOVSKAYA, L.K.; RYL'TSEV, Ye.V.; TURKEVICH, V.V.; YATSENKO, Ye.F.

Infrared absorption spectra of the higher liquid hydrocarbons of
Carpathian ozocerites. Trudy UkrNIGRI no.5:378-381 '63.

(MIRA 18:3)

APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001962310006-3"

"APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001962310006-3

YATSENKO, Ye.F.; DONTSOVA, G.M.

Determining the chemical composition of petroleum paraffin and ozocerite. Trudy UkrNIGRI no.5:371-377 '63.

(MIRA 18:3)

APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001962310006-3"

L 2216-65 EWT(m)/EPF(c)/T Pr-4 WE

ACCESSION NR: AR4049261

S/0081/64/000/016/E064/E064

SOURCE: Ref. zh. Khimiya, Abs. 16E115

AUTHOR: Yatsenko, Ye. F.; Dontsova, G. M.; Gorbunova, I. Ye.

TITLE: Physical and chemical properties of crudes from new Carpathian
deposits //

CITED SOURCE: Tr Ukr. n.-i. geologorazved. in-t, vy* p. 7, 1963, 233-241

MAIN TOPIC: petroleum prospecting, Carpathian crude, Carpathian nature,
crude oil, paraffin crude, tarry crude

ABSTRACT: The authors studied a number of recently discovered petroleum
deposits located at depths of 1000-1500 m below ground. The specific gravity
of the crudes ranged from 0.816 to 0.870. Crudes from the Starjav and
Voli-Blazhev series were light ($d_4^{20} = 0.81$ to 0.82), those from the Voli-Blazhev-
Dolina series were intermediate ($d_4^{20} = 0.83$ to 0.84) and those from the Dolina

Card 1/3

L 22187-65

ACCESSION I/R: AR4049261

Crude oil samples were medium (0.83 to 0.85), while crudes from the remaining

samples were heavy (0.85 to 0.88). All crudes contained 0.5% to 0.6% sulfur content. Foreign elements (S, N and/or) did not exceed 0.05%. The following table gives the results of the analysis of the samples.

Sample No.	Crude Oil Type	Sulfur Content (%)	Nitrogen Content (%)	Foreign Elements (%)
1	Medium	0.83	0.05	0.05
2	Medium	0.83	0.05	0.05
3	Medium	0.83	0.05	0.05
4	Medium	0.83	0.05	0.05
5	Medium	0.83	0.05	0.05
6	Medium	0.83	0.05	0.05
7	Medium	0.83	0.05	0.05
8	Medium	0.83	0.05	0.05
9	Medium	0.83	0.05	0.05
10	Medium	0.83	0.05	0.05
11	Medium	0.83	0.05	0.05
12	Medium	0.83	0.05	0.05
13	Medium	0.83	0.05	0.05
14	Medium	0.83	0.05	0.05
15	Medium	0.83	0.05	0.05
16	Medium	0.83	0.05	0.05
17	Medium	0.83	0.05	0.05
18	Medium	0.83	0.05	0.05
19	Medium	0.83	0.05	0.05
20	Medium	0.83	0.05	0.05
21	Medium	0.83	0.05	0.05
22	Medium	0.83	0.05	0.05
23	Medium	0.83	0.05	0.05
24	Medium	0.83	0.05	0.05
25	Medium	0.83	0.05	0.05
26	Medium	0.83	0.05	0.05
27	Medium	0.83	0.05	0.05
28	Medium	0.83	0.05	0.05
29	Medium	0.83	0.05	0.05
30	Medium	0.83	0.05	0.05
31	Medium	0.83	0.05	0.05
32	Medium	0.83	0.05	0.05
33	Medium	0.83	0.05	0.05
34	Medium	0.83	0.05	0.05
35	Medium	0.83	0.05	0.05
36	Medium	0.83	0.05	0.05
37	Medium	0.83	0.05	0.05
38	Medium	0.83	0.05	0.05
39	Medium	0.83	0.05	0.05
40	Medium	0.83	0.05	0.05
41	Medium	0.83	0.05	0.05
42	Medium	0.83	0.05	0.05
43	Medium	0.83	0.05	0.05
44	Medium	0.83	0.05	0.05
45	Medium	0.83	0.05	0.05
46	Medium	0.83	0.05	0.05
47	Medium	0.83	0.05	0.05
48	Medium	0.83	0.05	0.05
49	Medium	0.83	0.05	0.05
50	Medium	0.83	0.05	0.05
51	Medium	0.83	0.05	0.05
52	Medium	0.83	0.05	0.05
53	Medium	0.83	0.05	0.05
54	Medium	0.83	0.05	0.05
55	Medium	0.83	0.05	0.05
56	Medium	0.83	0.05	0.05
57	Medium	0.83	0.05	0.05
58	Medium	0.83	0.05	0.05
59	Medium	0.83	0.05	0.05
60	Medium	0.83	0.05	0.05
61	Medium	0.83	0.05	0.05
62	Medium	0.83	0.05	0.05
63	Medium	0.83	0.05	0.05
64	Medium	0.83	0.05	0.05
65	Medium	0.83	0.05	0.05
66	Medium	0.83	0.05	0.05
67	Medium	0.83	0.05	0.05
68	Medium	0.83	0.05	0.05
69	Medium	0.83	0.05	0.05
70	Medium	0.83	0.05	0.05
71	Medium	0.83	0.05	0.05
72	Medium	0.83	0.05	0.05
73	Medium	0.83	0.05	0.05
74	Medium	0.83	0.05	0.05
75	Medium	0.83	0.05	0.05
76	Medium	0.83	0.05	0.05
77	Medium	0.83	0.05	0.05
78	Medium	0.83	0.05	0.05
79	Medium	0.83	0.05	0.05
80	Medium	0.83	0.05	0.05
81	Medium	0.83	0.05	0.05
82	Medium	0.83	0.05	0.05
83	Medium	0.83	0.05	0.05
84	Medium	0.83	0.05	0.05
85	Medium	0.83	0.05	0.05
86	Medium	0.83	0.05	0.05
87	Medium	0.83	0.05	0.05
88	Medium	0.83	0.05	0.05
89	Medium	0.83	0.05	0.05
90	Medium	0.83	0.05	0.05
91	Medium	0.83	0.05	0.05
92	Medium	0.83	0.05	0.05
93	Medium	0.83	0.05	0.05
94	Medium	0.83	0.05	0.05
95	Medium	0.83	0.05	0.05
96	Medium	0.83	0.05	0.05
97	Medium	0.83	0.05	0.05
98	Medium	0.83	0.05	0.05
99	Medium	0.83	0.05	0.05
100	Medium	0.83	0.05	0.05
101	Medium	0.83	0.05	0.05
102	Medium	0.83	0.05	0.05
103	Medium	0.83	0.05	0.05
104	Medium	0.83	0.05	0.05
105	Medium	0.83	0.05	0.05
106	Medium	0.83	0.05	0.05
107	Medium	0.83	0.05	0.05
108	Medium	0.83	0.05	0.05
109	Medium	0.83	0.05	0.05
110	Medium	0.83	0.05	0.05
111	Medium	0.83	0.05	0.05
112	Medium	0.83	0.05	0.05
113	Medium	0.83	0.05	0.05
114	Medium	0.83	0.05	0.05
115	Medium	0.83	0.05	0.05
116	Medium	0.83	0.05	0.05
117	Medium	0.83	0.05	0.05
118	Medium	0.83	0.05	0.05
119	Medium	0.83	0.05	0.05
120	Medium	0.83	0.05	0.05
121	Medium	0.83	0.05	0.05
122	Medium	0.83	0.05	0.05
123	Medium	0.83	0.05	0.05
124	Medium	0.83	0.05	0.05
125	Medium	0.83	0.05	0.05
126	Medium	0.83	0.05	0.05
127	Medium	0.83	0.05	0.05
128	Medium	0.83	0.05	0.05
129	Medium	0.83	0.05	0.05
130	Medium	0.83	0.05	0.05
131	Medium	0.83	0.05	0.05
132	Medium	0.83	0.05	0.05
133	Medium	0.83	0.05	0.05
134	Medium	0.83	0.05	0.05
135	Medium	0.83	0.05	0.05
136	Medium	0.83	0.05	0.05
137	Medium	0.83	0.05	0.05
138	Medium	0.83	0.05	0.05
139	Medium	0.83	0.05	0.05
140	Medium	0.83	0.05	0.05
141	Medium	0.83	0.05	0.05
142	Medium	0.83	0.05	0.05
143	Medium	0.83	0.05	0.05
144	Medium	0.83	0.05	0.05
145	Medium	0.83	0.05	0.05
146	Medium	0.83	0.05	0.05
147	Medium	0.83	0.05	0.05
148	Medium	0.83	0.05	0.05
149	Medium	0.83	0.05	0.05
150	Medium	0.83	0.05	0.05
151	Medium	0.83	0.05	0.05
152	Medium	0.83	0.05	0.05
153	Medium	0.83	0.05	0.05
154	Medium	0.83	0.05	0.05
155	Medium	0.83	0.05	0.05
156	Medium	0.83	0.05	0.05
157	Medium	0.83	0.05	0.05
158	Medium	0.83	0.05	0.05
159	Medium	0.83	0.05	0.05
160	Medium	0.83	0.05	0.05
161	Medium	0.83	0.05	0.05
162	Medium	0.83	0.05	0.05
163	Medium	0.83	0.05	0.05
164	Medium	0.83	0.05	0.05
165	Medium	0.83	0.05	0.05
166	Medium	0.83	0.05	0.05
167	Medium	0.83	0.05	0.05
168	Medium	0.83	0.05	0.05
169	Medium	0.83	0.05	0.05
170	Medium	0.83	0.05	0.05
171	Medium	0.83	0.05	0.05
172	Medium	0.83	0.05	0.05
173	Medium	0.83	0.05	0.05
174	Medium	0.83	0.05	0.05
175	Medium	0.83	0.05	0.05
176	Medium	0.83	0.05	0.05
177	Medium	0.83	0.05	0.05
178	Medium	0.83	0.05	0.05
179	Medium	0.83	0.05	0.05
180	Medium	0.83	0.05	0.05
181	Medium	0.83	0.05	0.05
182	Medium	0.83	0.05	0.05
183	Medium	0.83	0.05	0.05
184	Medium	0.83	0.05	0.05
185	Medium	0.83	0.05	0.05
186	Medium	0.83	0.05	0.05
187	Medium	0.83	0.05	0.05
188	Medium	0.83	0.05	0.05
189	Medium	0.83	0.05	0.05
190	Medium	0.83	0.05	0.05
191	Medium	0.83	0.05	0.05
192	Medium	0.83	0.05	0.05
193	Medium	0.83	0.05	0.05
194	Medium	0.83	0.05	0.05
195	Medium	0.83	0.05	0.05
196	Medium	0.83	0.05	0.05
197	Medium	0.83	0.05	0.05
198	Medium	0.83	0.05	0.05
199	Medium	0.83	0.05	0.05
200	Medium	0.83	0.05	0.05
201	Medium	0.83	0.05	0.05
202	Medium	0.83	0.05	0.05
203	Medium	0.83	0.05	0.05
204	Medium	0.83	0.05	0.05
205	Medium	0.83	0.05	0.05
206	Medium	0.83	0.05	0.05
207	Medium	0.83	0.05	0.05
208	Medium	0.83	0.05	0.05
209	Medium	0.83	0.05	0.05
210	Medium	0.83	0.05	0.05
211	Medium	0.83	0.05	0.05
212	Medium	0.83	0.05	0.05
213	Medium	0.83	0.05	0.05
214	Medium	0.83	0.05	0.05
215	Medium	0.83	0.05	0.05
216	Medium	0.83	0.05	0.05
217	Medium	0.83	0.05	0.05
218	Medium	0.83	0.05	0.05
219	Medium	0.83	0.05	0.05
220	Medium	0.83	0.05	0.05
221	Medium	0.83	0.05	0.05
222	Medium	0.83	0.05	0.05
223	Medium	0.83	0.05	0.05
224	Medium	0.83	0.05	0.05
225	Medium	0.83	0.05	0.05
226	Medium	0.83	0.05	0.05
227	Medium	0.83	0.05	0.05
228	Medium	0.83	0.05	0.05
229	Medium	0.83	0.05	0.05
230	Medium	0.83	0.05	0.05
231	Medium	0.83	0.05	0.05
232	Medium	0.83	0.05	0.05
233	Medium	0.83	0.05	0.05
234	Medium	0.83	0.05	0.05
235	Medium	0.83	0.05	0.05
236	Medium	0.83	0.05	0.05
237	Medium	0.83	0.05	0.05
238	Medium	0.83	0.05	0.05
239	Medium	0.83	0.05	0.05
240	Medium	0.83	0.05	0.05
241	Medium	0.83	0.05	0.05
242	Medium	0.83	0.05	0.05
243	Medium	0.83	0.05	0.05
244	Medium	0.83	0.05	0.05
245	Medium	0.83	0.05	0.05
246	Medium	0.83	0.05	0.05
247	Medium	0.83	0	

L 22187-65

ACCESSION NR: AR4049261

0.75-0.80) The gas is substantially lighter than reserves from the outer

...
The new deposits are basically low-sulfur, paraffinic and tarry, with a significant content of light fractions. 7 Kutseruda

SUB CODE: FP

ENCL: 00

Card 3/3

YATSYUKO, Ye.N.

Reproduction of the Prorethron mole (*Prorethronya echapospachnikovi*)
(MIR, 12:11)
Satunin). Zool.zhur. 38 no.6:914-919 Je '59.

1. Chair of Zoology, North-Ossetian Pedagogical Institute, Ordzhonikidze.
(Caucasus--Field mice)

YATSENIKO, Ya N., Cand. Bio Sci -- (diss) "Biology and economic value of Prometyev weeding and high mountainous areas of Northern Ossetia and the Kazbek rajon of Georgia," Moscow, 1960, 13 pp (Moscow City Pedagogical Institute im V. P. Potemkin - Chair of Zoology) (KL, 35-60, 124)

YATSENKO-KHMELEVSKIY, A.A.

D
State
Police

Representation for degrees of Complex Biological Sciences

APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001962310006-3"

YATSENKO-KHMELEVSKY, A. A.

REACTION DES CELLULES VIVANTES DU BOIS DE HÊTRE ABATTU À LA PROPAGATION DU CHAMPIGNON. [The reaction of the living cells of felled beech wood to fungal propagation.]—*C. R. Acad. Sci. U.R.S.S.*, N.8, xxvi, 7, pp. 709-712, 1940.

In comparative experiments freshly cut beech blocks and similar blocks, killed with formaldehyde or alcohol and thoroughly washed, were placed on cultures of *Fomes igniarius* and incubated for 10 to 90 days in one test and for 20 to 120 days in another. Microchemical determinations were made (in both tests) of starch, sugar, and tannic materials; sections were stained with safranin and methylene blue, and the hyphae with aniline blue dissolved in lactic acid.

The data obtained showed that the presence of the fungus in the wood induced changes in the state of the plastic materials different from those observed in the wood after felling. In the killed wood infected by the fungus all the plastic materials gradually disappeared. The tannic materials and starch disappeared first, probably becoming changed into sugar, which itself became less in quantity towards the end of the experiment. The disappearance of starch and tannic substances coincided with the appearance of the first signs of the destruction of the cell walls. In some of the vessels in heavily infected wood the hyphae and

APPENDIX METALLURGICAL LITERATURE CLASSIFICATION

FROM EDITIONS

1930-1940 M.L.D. AND U.S.S.R.

1941-1950 M.L.D. AND U.S.S.R.

1951-1960 M.L.D. AND U.S.S.R.

1961-1970 M.L.D. AND U.S.S.R.

1971-1980 M.L.D. AND U.S.S.R.

1981-1990 M.L.D. AND U.S.S.R.

1991-1995 M.L.D. AND U.S.S.R.

1996-1999 M.L.D. AND U.S.S.R.

2000-2005 M.L.D. AND U.S.S.R.

2006-2010 M.L.D. AND U.S.S.R.

2011-2015 M.L.D. AND U.S.S.R.

2016-2020 M.L.D. AND U.S.S.R.

2021-2025 M.L.D. AND U.S.S.R.

2026-2030 M.L.D. AND U.S.S.R.

2031-2035 M.L.D. AND U.S.S.R.

2036-2040 M.L.D. AND U.S.S.R.

2041-2045 M.L.D. AND U.S.S.R.

2046-2050 M.L.D. AND U.S.S.R.

2051-2055 M.L.D. AND U.S.S.R.

2056-2060 M.L.D. AND U.S.S.R.

2061-2065 M.L.D. AND U.S.S.R.

2066-2070 M.L.D. AND U.S.S.R.

2071-2075 M.L.D. AND U.S.S.R.

2076-2080 M.L.D. AND U.S.S.R.

2081-2085 M.L.D. AND U.S.S.R.

2086-2090 M.L.D. AND U.S.S.R.

2091-2095 M.L.D. AND U.S.S.R.

2096-2099 M.L.D. AND U.S.S.R.

2010-2015 M.L.D. AND U.S.S.R.

2016-2020 M.L.D. AND U.S.S.R.

2021-2025 M.L.D. AND U.S.S.R.

2026-2030 M.L.D. AND U.S.S.R.

2031-2035 M.L.D. AND U.S.S.R.

2036-2040 M.L.D. AND U.S.S.R.

2041-2045 M.L.D. AND U.S.S.R.

2046-2050 M.L.D. AND U.S.S.R.

2051-2055 M.L.D. AND U.S.S.R.

2056-2060 M.L.D. AND U.S.S.R.

2061-2065 M.L.D. AND U.S.S.R.

2066-2070 M.L.D. AND U.S.S.R.

2071-2075 M.L.D. AND U.S.S.R.

2076-2080 M.L.D. AND U.S.S.R.

2081-2085 M.L.D. AND U.S.S.R.

2086-2090 M.L.D. AND U.S.S.R.

2091-2095 M.L.D. AND U.S.S.R.

2096-2099 M.L.D. AND U.S.S.R.

2010-2015 M.L.D. AND U.S.S.R.

2016-2020 M.L.D. AND U.S.S.R.

2021-2025 M.L.D. AND U.S.S.R.

2026-2030 M.L.D. AND U.S.S.R.

2031-2035 M.L.D. AND U.S.S.R.

2036-2040 M.L.D. AND U.S.S.R.

2041-2045 M.L.D. AND U.S.S.R.

2046-2050 M.L.D. AND U.S.S.R.

2051-2055 M.L.D. AND U.S.S.R.

2056-2060 M.L.D. AND U.S.S.R.

2061-2065 M.L.D. AND U.S.S.R.

2066-2070 M.L.D. AND U.S.S.R.

2071-2075 M.L.D. AND U.S.S.R.

2076-2080 M.L.D. AND U.S.S.R.

2081-2085 M.L.D. AND U.S.S.R.

2086-2090 M.L.D. AND U.S.S.R.

2091-2095 M.L.D. AND U.S.S.R.

2096-2099 M.L.D. AND U.S.S.R.

2010-2015 M.L.D. AND U.S.S.R.

2016-2020 M.L.D. AND U.S.S.R.

2021-2025 M.L.D. AND U.S.S.R.

2026-2030 M.L.D. AND U.S.S.R.

2031-2035 M.L.D. AND U.S.S.R.

2036-2040 M.L.D. AND U.S.S.R.

2041-2045 M.L.D. AND U.S.S.R.

2046-2050 M.L.D. AND U.S.S.R.

2051-2055 M.L.D. AND U.S.S.R.

2056-2060 M.L.D. AND U.S.S.R.

2061-2065 M.L.D. AND U.S.S.R.

2066-2070 M.L.D. AND U.S.S.R.

2071-2075 M.L.D. AND U.S.S.R.

2076-2080 M.L.D. AND U.S.S.R.

2081-2085 M.L.D. AND U.S.S.R.

2086-2090 M.L.D. AND U.S.S.R.

2091-2095 M.L.D. AND U.S.S.R.

2096-2099 M.L.D. AND U.S.S.R.

2010-2015 M.L.D. AND U.S.S.R.

2016-2020 M.L.D. AND U.S.S.R.

2021-2025 M.L.D. AND U.S.S.R.

2026-2030 M.L.D. AND U.S.S.R.

2031-2035 M.L.D. AND U.S.S.R.

2036-2040 M.L.D. AND U.S.S.R.

2041-2045 M.L.D. AND U.S.S.R.

2046-2050 M.L.D. AND U.S.S.R.

2051-2055 M.L.D. AND U.S.S.R.

2056-2060 M.L.D. AND U.S.S.R.

2061-2065 M.L.D. AND U.S.S.R.

2066-2070 M.L.D. AND U.S.S.R.

2071-2075 M.L.D. AND U.S.S.R.

2076-2080 M.L.D. AND U.S.S.R.

2081-2085 M.L.D. AND U.S.S.R.

2086-2090 M.L.D. AND U.S.S.R.

2091-2095 M.L.D. AND U.S.S.R.

2096-2099 M.L.D. AND U.S.S.R.

2010-2015 M.L.D. AND U.S.S.R.

2016-2020 M.L.D. AND U.S.S.R.

2021-2025 M.L.D. AND U.S.S.R.

2026-2030 M.L.D. AND U.S.S.R.

2031-2035 M.L.D. AND U.S.S.R.

2036-2040 M.L.D. AND U.S.S.R.

2041-2045 M.L.D. AND U.S.S.R.

2046-2050 M.L.D. AND U.S.S.R.

2051-2055 M.L.D. AND U.S.S.R.

2056-2060 M.L.D. AND U.S.S.R.

2061-2065 M.L.D. AND U.S.S.R.

2066-2070 M.L.D. AND U.S.S.R.

2071-2075 M.L.D. AND U.S.S.R.

2076-2080 M.L.D. AND U.S.S.R.

2081-2085 M.L.D. AND U.S.S.R.

2086-2090 M.L.D. AND U.S.S.R.

2091-2095 M.L.D. AND U.S.S.R.

2096-2099 M.L.D. AND U.S.S.R.

2010-2015 M.L.D. AND U.S.S.R.

2016-2020 M.L.D. AND U.S.S.R.

2021-2025 M.L.D. AND U.S.S.R.

2026-2030 M.L.D. AND U.S.S.R.

2031-2035 M.L.D. AND U.S.S.R.

2036-2040 M.L.D. AND U.S.S.R.

2041-2045 M.L.D. AND U.S.S.R.

2046-2050 M.L.D. AND U.S.S.R.

2051-2055 M.L.D. AND U.S.S.R.

2056-2060 M.L.D. AND U.S.S.R.

2061-2065 M.L.D. AND U.S.S.R.

2066-2070 M.L.D. AND U.S.S.R.

2071-2075 M.L.D. AND U.S.S.R.

2076-2080 M.L.D. AND U.S.S.R.

2081-2085 M.L.D. AND U.S.S.R.

2086-2090 M.L.D. AND U.S.S.R.

2091-2095 M.L.D. AND U.S.S.R.

2096-2099 M.L.D. AND U.S.S.R.

2010-2015 M.L.D. AND U.S.S.R.

2016-2020 M.L.D. AND U.S.S.R.

2021-2025 M.L.D. AND U.S.S.R.

2026-2030 M.L.D. AND U.S.S.R.

2031-2035 M.L.D. AND U.S.S.R.

2036-2040 M.L.D. AND U.S.S.R.

2041-2045 M.L.D. AND U.S.S.R.

2046-2050 M.L.D. AND U.S.S.R.

2051-2055 M.L.D. AND U.S.S.R.

2056-2060 M.L.D. AND U.S.S.R.

2061-2065 M.L.D. AND U.S.S.R.

2066-2070 M.L.D. AND U.S.S.R.

2071-2075 M.L.D. AND U.S.S.R.

2076-2080 M.L.D. AND U.S.S.R.

2081-2085 M.L.D. AND U.S.S.R.

2086-2090 M.L.D. AND U.S.S.R.

2091-2095 M.L.D. AND U.S.S.R.

2096-2099 M.L.D. AND U.S.S.R.

2010-2015 M.L.D. AND U.S.S.R.

2016-2020 M.L.D. AND U.S.S.R.

2021-2025 M.L.D. AND U.S.S.R.

2026-2030 M.L.D. AND U.S.S.R.

2031-2035 M.L.D. AND U.S.S.R.

2036-2040 M.L.D. AND U.S.S.R.

2041-2045 M.L.D. AND U.S.S.R.

2046-2050 M.L.D. AND U.S.S.R.

2051-2055 M.L.D. AND U.S.S.R.

2056-2060 M.L.D. AND U.S.S.R.

2061-2065 M.L.D. AND U.S.S.R.

2066-2070 M.L.D. AND U.S.S.R.

2071-2075 M.L.D. AND U.S.S.R.

2076-2080 M.L.D. AND U.S.S.R.

2081-2085 M.L.D. AND U.S.S.R.

2086-2090 M.L.D. AND U.S.S.R.

2091-2095 M.L.D. AND U.S.S.R.

2096-2099 M.L.D. AND U.S.S.R.

2010-2015 M.L.D. AND U.S.S.R.

2016-2020 M.L.D. AND U.S.S.R.

2021-2025 M.L.D. AND U.S.S.R.

2026-2030 M.L.D. AND U.S.S.R.

2031-2035 M.L.D. AND U.S.S.R.

2036-2040 M.L.D. AND U.S.S.R.

2041-2045 M.L.D. AND U.S.S.R.

2046-2050 M.L.D. AND U.S.S.R.

2051-2055 M.L.D. AND U.S.S.R.

2056-2060 M.L.D. AND U.S.S.R.

2061-2065 M.L.D. AND U.S.S.R.

2066-2070 M.L.D. AND U.S.S.R.

2071-2075 M.L.D. AND U.S.S.R.

2076-2080 M.L.D. AND U.S.S.R.

2081-2085 M.L.D. AND U.S.S.R.

2086-2090 M.L.D. AND U.S.S.R.

2091-2095 M.L.D. AND U.S.S.R.

2096-2099 M.L.D. AND U.S.S.R.

2010-2015 M.L.D. AND U.S.S.R.

2016-2020 M.L.D. AND U.S.S.R.

2021-2025 M.L.D. AND U.S.S.R.

2026-2030 M.L.D. AND U.S.S.R.

2031-2035 M.L.D. AND U.S.S.R.

2036-2040 M.L.D. AND U.S.S.R.

2041-2045 M.L.D. AND U.S.S.R.

2046-2050 M.L.D. AND U.S.S.R.

2051-2055 M.L.D. AND U.S.S.R.

2056-2060 M.L.D. AND U.S.S.R.

2061-2065

Their products were visible macroscopically as brownish spots and lines. The introduction of the fungus into the untreated living wood in ten days changed all the plastic materials into a brownish liquid filling the whole cavity of the living cell and then accumulating in the cavities of the fibres and vessels. The infiltration of this liquid (provisionally referred to as 'mycoinfiltrate') into the walls imparted the brown colour to the living infected wood. The formation of the mycoinfiltrate is considered to have resulted from the reaction of the living cells to the fungus. This substance was not observed in dead wood. Tyloses were formed only in infected wood and never in the sterile controls.

These results demonstrate that it is possible to distinguish infected wood from wood showing a traumatic reaction, and to determine, even in the absence of tyloses, from the state of the plastic substances whether infection has occurred in the living or dead wood.

YATSENKO-KHMELEVSKIY, A.A.

Report on the anatomical structure of the eastern beech *Fagus orientalis* Lipsky. Izv. AN Arm. SSR. Est. nauki no.6:53-68 '47.
(MLRA 9:8)

1. Botanicheskiy institut AN Armyanskoy SSR, Otdel evolyutsionnoy morfologii i paleobotaniki,
(Beech)

"APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001962310006-3

YATSENKO-KHMELEVSKIY, A.A.

Principles in the classification of wood. Trudy Bot.inst.AN Arm.
(MLBA 9:8)
SSR. 5:5-155 '48.
(Wood)

APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001962310006-3"

YATSIENKO-KEMELEVSKIY, A.A.

[The trees of the Caucasus] Drevesiny Kavkaza. Erevan, Izd-vo
Akademii nauk Armianskoi SSR, 1954. (MIRA 9:3)
(Caucasus--Forests and forestry)

KAZARYAN, V.O.; YATSENKO-KHMELEVSKIY, A.A., professor, redaktor; SAROVAN,
P., tekhnicheskiy redaktor

[Physiological characteristics of the embryology of biennial
plants; application of embryological physiology to methods for
obtaining a second cabbage crop] Fiziologicheskie osobennosti
razvitiia dvuletnikh rastenii; opyt prilozheniya fiziologii
razvitiia k polucheniyu povtornogo urozhaiya kapusty. Erevan, Izd-
vo Akademii nauk Armianskoi SSR, 1954. 215 p. [Microfilm]
(Botany--Physiology)
(Cabbage)

(MLRA 7:10)

~~YATSENKO-KHMBLEVSKIY, A.A.; VIKHROVA, V.Ye.; GZYRYAN, M.S.; MOSKALEVA,
V.Ye.; VARDZHYAN, A.L.~~, otvetstvennyy redaktor; SUVOROVA, L.D.,
tekhnicheskiy redaktor.

[Principles and methods of investigating the structure of wood]
Osnovy i metody anatomiceskogo issledovaniia drevesiny. Moskva,
Izd-vo Akademii nauk SSSR, 1954. 337 p. [Microfilm] (MIRA 8:2)
(Wood)

YATSEKO-KHMELEVSKY

"Dilizhan hornbeam-filbert" and the problem of "generation of species." Bot. zhur. 39 no.6:882-889 N-D '54. (MERA 8:2)

1. Institut botanikci Akademii nauk ArmSSR, Yerevan.
(Dilizhan--Filbert) (Dilizhan--Hornbeam)

YATSENKO-KHMELEVSKIY, A.A.; KHURSHUDIAN, P.A.

"Structure and physical and mechanical properties of the wood of oak." V.E.Vikhrov. Reviewed by A.A.Yatsenko-Khmelevskii, P.A.Khurshudian. Bot.zhur. 39 no.6:918-919 N-D '54. (MLRA 8:2) (Vikhrov, V.E.) (Oak)

YATSENKO-KHMELEVSKIY, A.A.

YATSENKO-KHMELEVSKIY, A.A.

Criticism of M.G.Popov's views on the origin of the Angiospermae.
Bot.zhur.40 no.4:604-606 J1-Ag'55. (MLRA 8:11)

1. Tbilieskiy Gosudarstvennyy universitet
(Angiosperms) (Popov, M.G.)

YATSENKO-KHMELEVSKIY, A.A.

STEBBINS, Dzh.Led'yard [Stebbins, G.L.]; YATSENKO-KHMELEVSKIY, A.A. [translator].

On the hybrid origin of angiosperms. Bot.zhur. 42 no.10:1503-1506
O '57. (MIRA 10:10)

1. Kaliforniyskiy universitet, Davis, SShA.
(Angiosperms) (Phylogeny (Botany))

YATSENKO-KHMELOVSKIY, A.A.

Phylogeny of angiosperms based on the study of the internal
morphology of their vegetative organs [with summary in English].
Bot. zhur. 43 no.3:365-380 Mr '58. (MIRA 11:5)
(Angiosperms) (Phylogeny (Botany))

YATSENKO-KHMELEVSKIY, A.A.; BULKEVICH, Ye.V.

Brief description of the structure of wood of *Cathaya argyrophylla*
Chun et Kuang [with summary in English]. Bot. zhur. 43 no.4:477-480
(MIRA 11:6)
Ap '58.

(China--Pine) (Wood--Anatomy)

YATSENKO-KHMELEVSKIY, Andrey Alekseyevich, prof.; KUZNETSOV, P.A., red.;
GOROKHOVA, S.S., tekhn. red.

[Brief course in plant anatomy] Kratkii kurs anatomii rastenii.
Moskva, Gos. izd-vo "Vysshiaia shkola," 1961. 282 p.

(MIRA 14:7)

(Botany--Anatomy)

YATSENKO-KHMELEVSKY, A. A.

Papers submitted for the 12th Pacific Science Congress, Honolulu, Hawaii 21 Aug-6 Sep 1961.

YATSENKO, A., The Leningrad Forestry Engineering Academy, Izmail S. M. Kirov, invited to give a paper in the Division on Forest Inventories (Section V.I.1).

YEREMENKO, S. I., Institute of Geography, Academy of Sciences USSR, invited to give a paper on meteorology in the Northern Transcaucasian Mountains.

YEREMENKO, S. M., Institute of Antarctic Research (Section VII.D.1), invited to give paper "In the Symposium on Crop Pests and Biological Control" (Section VII.C.1).

YEREMENKO, V. N., Institute of Animal Morphology Izmail A. N. Severtsov, invited to give a paper in the Berlin Arc Relationships session in the Symposium on Pacific Basin Biogeography (Section III.A.5.).

YEREMENKO, V. N., Institute of Volcanological Laboratory, Academy of Sciences USSR, invited to participate in discussion of the Symposium on Volcanism and Earthquakes (Section VII.C.1).

YEREMENKO, V. N., Institute of Physics of the Earth Izmail O. Yu Schmidt, invited to give paper in Session on Effect of General Deformation (Section VII.C.3).

YEREMENKO, V. N., Ocean Institute of Geodesy or Oceanograph, invited to give paper in Symposium on Alpine and Tauric Foothills in the Pacific Basin Region (Section III.A.4).

YEREMENKO, V. N., Institute of Oceanology, invited to give paper in Session on Berlin Arc Relationships (Section VII.C.3.a).

YEREMENKO, V. N., Institute of Geophysics, Academy of Sciences USSR, invited to give paper in Contributed Papers Session of Division of Solid Earth Sciences (Section VII.C.1).

YEREMENKO, V. N., Institute of Physics of the Earth Izmail O. Yu Schmidt, invited to give paper in Symposium on The Earth's Crust in the Pacific Basin (Section VII.C.2).

YEREMENKO, V. N., The Eastern Affiliate Izmail V. I. Komarov, Academy of Sciences USSR, invited to give paper in Session on Berlin Arc Relationships (Section VII.C.3.b).

YEREMENKO, V. N., Institute of Geophysics, Academy of Sciences USSR, invited to give paper in Session on Berlin Arc Biogeography (Section VII.C.3.c).

YEREMENKO, V. N., Institute of Geophysics, Academy of Sciences USSR, invited to give paper in Session on Berlin Arc Relationships (Section VII.C.3.d).

YEREMENKO, V. N., Institute of Physics of the Earth Izmail O. Yu Schmidt, invited to give paper in Session on Berlin Arc Relationships in Oceanography (Section VII.C.3.e).

YEREMENKO, V. N., Chair of Forestry, The Agricultural Academy Izmail V. I. Komarov, invited to give paper in Symposium on Forest Fire.

YEREMENKO, V. N., Institute of Oceanology, invited to present a paper in the Contributed Papers Session of the Division of Marine Biology and Fisheries (Section VII.C.1).

YEREMENKO, V. N., Institute of Botany Izmail V. I. Komarov, invited to give paper in the session of Berlin Arc Relationships of Symposium on Pacific Basin Biogeography (Section VII.C.1.a).

YEREMENKO, V. N., All-Union Institute of Plant Protection, invited to give paper in Symposium on Crop Plant and Biological Control (Section IV.A.10).

YEREMENKO, V. N., Institute of Petroleum Studies, invited to give paper in Symposium on Crop Plant and Biological Control (Section VII.C.1.b).

YEREMENKO, V. N., Institute of Petroleum Studies, invited to give paper in the session of Berlin Arc Relationships of Symposium on Pacific Basin Biogeography (Section VII.C.1.c).

YEREMENKO, V. N., Institute of Zoology, invited to give paper in the session of Berlin Arc Relationships of Symposium on Pacific Basin Biogeography (Section VII.C.1.d).

YEREMENKO, V. N., Institute of Botany Izmail V. I. Komarov, invited to give paper in the session of Berlin Arc Relationships of Symposium on Pacific Basin Biogeography (Section VII.C.1.e).

YEREMENKO, V. N., Department of Plant Anatomy and Plant Physiology, Institute of Botany Izmail V. I. Komarov, invited to give paper in Symposium on Wood Anatomy and Thinnermy (Section III.A.7).

YEREMENKO, V. N., Institute of Botany Izmail V. I. Komarov, invited to give paper in Symposium on Wood Anatomy and Thinnermy (Section III.A.7).

ARZUMANIAN, G.A.; KHURSHUDYAN, P.A.; YATSENKO-KHMELEVSKIY, A.A.

Physicomechanical properties of pine wood from the excavations of Karmir-Blur (7th century B.C.). Dokl. AN Arm. SSR 33 no.4:173-179 '61. (MIRA 15:1)

1. Institut stroitel'nykh materialov i sooruzheniy Gosstroya Armyanskoy SSR i Botanicheskiy institut AN Armyanskoy SSR. Predstavleno chlenom-korrespondentom AN Armyanskoy SSR M.Z.Simonovym. (Eriyan--Pine, Fossil)

ORLOV, Yu.A., glav. red.; TAKHTADZHYAN, A.L., otv. red.; VAKHrameyev, V.A., red.; RADCHENKO, G.P., red.; SHVEDOV, N.A., red.; VASILEVSKAYA, N.D., red.; TURUTANOVA-KETOVA, A.I., red.; MURAV'YEVA, O.A., red.; POKROVSKAYA, I.M., red.; YATSENKO-KHMELEVSKIY, A.A., red.; GOROKHOVA, T.A., red. izd-va; GUROVA, O.A., tekhn. red.

[Fundamentals of paleontology; manual for paleontologists and geologists of the U.S.S.R. in 15 volumes] Osnovy paleontologii; spravochnik dlja paleontologov i geologov SSSR v piatnadtsati tomakh. Glav. red. Iu.A.Orlov. Moskva, Izd-vo AN SSSR. Vol.15.[Gymnosperms and angiosperms] Goloseemennye, pokrytoseemennye. 1963. 742 p. (MIRA 16:11) (Gymnosperms, Fossil) (Angiosperms, Fossil)

YATSENKO-KHMELEVSKIY, A.A.; CHAVCHAVADZE, Ye.S.

Contribution to the methods of the description of conifer wood.
Bot. zhur. 48 no.12:1799-1803 D '63. (MIRA 17:4)

1. Leningradskaya ordena Lenina lesotekhnicheskaya akademiya imeni
Kirova i Botanicheskiy institut imeni Komarova AN SSSR, Leningrad.

YATSENKO-KHMELEVSKIY, A.A.; SHILKINA, I.A.

New finds and a review of the genus Sahnioxylon. Paleont. zhur.
(MIRA 18:2)
no.3:100-110 '64.

1. Leningradskaya lesotekhnicheskaya akademiya imeni S.M. Kirova
- 1 Botanicheskiy institut imeni V.L. Komarova AN SSSR.

VAKIN, Aleksandr Timofeyevich, prof.; YATSENKO-KHMELEVSKIY, A.A.,
red.

[Storage of round lumber] Khranenie kruglogo lesa. Moskva,
Izd-vo "Lesnaia promyshlennost", 1964. 427 p.
(MIRA 17:5)

BORISOVA, N.A.; YATSENKO-KHMELEVSKIY, A.A., prof.

Distribution and resources of medicinal plants in Priczerr' District,
Leningrad Province. Trudy Len. khim.-farm. inst. no.17:11-23 '23 '64.
(MIRA 18:1)

MANOYLOV, S.Ye.; NIKOGOSYAN, I. Kh.; YATSENKO-KHMELEVSKIY, A.A.

Effect of ionizing radiation on mitoses in onion rootlets
following irradiation of various parts of the bulb.
TSitologiya 7 no.5:660-663 S-0 '65. (MIRA 18:12)

I. Kafedra farmakologii i biokhimii Leningradskogo khimiko-farma-
tsevticheskogo institut.. Submitted Aug. 1, 1960.

YAKOVLEV, G.P.; YATSENKO-KHMELEVSKIY, A.A.

Basic trees of the Duarone region (Republic of Guinea) and the
characteristics of their wood. Rast. res. 1 no.2:206-218 '65.
(MIRA 18:11)

1. Leningradskaya ordena Lenina lesotekhnicheskaya akademiya
imeni Kirova i Leningradskiy khimiko-farmatsevticheskiy institut.

GUSEV, Valentin Ivanovich, prof., lesnoy entomolog; RIMSKIY-KORSAKOV, Mikhail Niko-
layevich, prof., lesnoy entomolog [1873-1951]; YATSENTKOVSKIY, Aleksey
Vladimirovich; SHIPEROVICH, Vladimir Yakovlevich, lesnoy entomolog;
POLUBOYARINOV, Ivan Ivanovich, lesnoy entomolog; IL'INSKIY, A.I., dots.,
retsenzent; POLOZNENTSEV, P.A., prof., retsenzent; KHRAMTSOV, N.N., red.;
ARNOL'DOVA, K.S., red. izd-va; BACHURINA, A.M., tekhn. red.

[Forest entomology] Lesnaia entomologiia. Izd.4., perer. pod obshchim
rukovodstvom i red. V.I.Guseva. Moskva, Goslesbumizdat, 1961. 486 p.
(MIRA 14:7)

1. Zaveduyushchiy kafedroy entomologii Ukrainskoy akademii sel'sko-
khozyaystvennykh nauk (for Gusev)
(Forest insects)

YATSENKOVSKIY, G. I.

PHASE I BOOK EXPLOITATION

SOV/1945

3(7)

Tsimlyanskaya gidrometeorologicheskaya observatoriya

Sbornik rabot...Vyp. 1. (Collected Papers of the Tsimlyansk
Hydrometeorological Observatory Nr. 1) Leningrad, Gidrometeocizdat,
1958. 159 p. 460 copies printed.

Additional sponsoring agency: USSR. Glavnoye upravleniye
gidrometeorologicheskoy sluzhby.

Ed. (Title page): P.P. Kokoulin; Ed. (Inside book): Z.I. Mironenko;
Tech. Ed.: M.Ya. Flaum.

PURPOSE: This publication is intended for all specialists concerned
with the study and exploitation of water reservoirs and large lakes.

COVERAGE: This collection of articles is concerned with a study of
the following factors as they concern the Tsemlyanskoje Water
Reservoir: wind produced agitation in the lake, the formation of

Card 1/3

Hydrometeorological Observatory (Cont.)

SOV/1945

shorelines, changes in the meteorological conditions induced by the flow of air currents onto the reservoir surface, surface evaporation, and the gaseous regime of the lake. The studies are based on data obtained from observations. This information is shown in tables and graphs. Each article is accompanied by diagrams, tables, and bibliographic references.

TABLE OF CONTENTS:

Foreword	3
Kokoulin, P.P. Tsimlyanskoye Reservoir	5
Kokoulin, P.P., and L.V. Kokouлина. Data Obtained in Carrying Out Observations on the Formation of the Tsimlyanskoye Reservoir Shoreline	13
Kokoulin, P.P., and Ye.F. Semenov. Methods and Results Obtained in Observing Wave Patterns on the Tsimlyanskoye Reservoir During the Years 1953-1955	65
Card 2/3	

Hydrometeorological Observatory (Cont.) SOV/1945

Shpak, I.S. Variations in Meteorological Conditions Caused by the Inflow of Air Currents on the Reservoir 105

Kokoulin, P.P., and G.L. Vatsentkovskiy. The Problem of Estimating Evaporation From the Surfaces of Reservoirs 135

Rogozhkin, V.I. Basic Features of the Regime of Dissolved Gases in the Tsimlyanskoye Reservoir (1952-1956) 149

AVAILABLE: Library of Congress

Card 3/3

MM/jab
6/19/59

YATSENTYUK, M.N. (Kiyev, 1, Geroyev revolyutsii, d.4, 2-y korpus, kv.28)

Evaluation of the effectiveness of using the plasma substitute
EK-8 for the purpose of parenteral protein nutrition. Vest.khir.
no.3:73-74 '62. (MIRA 15:3)

1. Iz kafedry obshchey khirurgii (zav. - prof. M.I. Kolomiychenko)
Kiyevskogo meditsinskogo instituta Kiyevskogo instituta perelivaniya
krvi i neotlozhnoy khirurgii (dir. - prof. N.I. Fedorov).
(BLOOD PLASMA SUBSTITUTES) (PROTEIN METABOLISM)

YATSENTYUK, M.N.

Use of the BK-8 protein blood substitute in cancer patients. Trudy Kiev.
nauch.-issl. inst. perel. krovi i neotlozh. khir. 3:107-109 '61.

(MIRA 17:10)

1. Kafedra obshchey khirurgii Kiyevskogo meditsinskogo instituta imeni
A.A.Bogomol'tsa i Kiyevskiy institut perelivaniya krovi.

YATSENYA, A.Z.

Detection of tumor cells in the blood during surgical intervention
for breast cancer. Klin. khir. no.3:26-30 '65. (MIRA 18:8)

1. Kafedra onkologii (zav. - prof. I.P.Dedkov) Kiyevskogo instituta
usovershenstvovaniya vrachey.

YATSENYA, N.I.

Varicose enlargements of the esophageal veins. Vrach.delo no.8:821-
823 Ag '57. (MILB 10:8)

1. Rentgeno-radiologicheskiy otdel (rukoveditel' - prof. A.Ye.
Rubasheva) Kiyevskogo nauchno-issledovatel'skogo rentgeno-radiolo-
gicheskogo i onkologicheskogo instituta
(ESOPHAGUS--BLOOD SUPPLY) (VARIX)

YATSENYA, H. I.

X-ray diagnosis of chronic arteromesenteric obstruction of the
duodenum. Vrach.delo no.5:527-529 My'58 (MIRA 11:7)

1. Kiyevskiy rentgeno-radiologicheskiy i onkologicheskiy institut.
(INTESTINES--OBSTRUCTION)
(DUODENUM--RADIOGRAPHY)

TATSENYA, N.I.

Secondary chondrosarcomas. Vrach.delo no.12:1319-1321 D '59.
(MIRA 13:5)

1. Kiyevskiy nauchno-issledovatel'skiy rentgeno-radiologicheskiy
i onkologicheskiy institut.
(BONES--TUMORS)

MONCHENKO, V.I.; YATSENYA, O.Z.

Freshwater medusa. Priroda 55 no.1:104 Ja '66.

1. Institut zoologii AN UkrSSR, Kiyev.

(MIRA 19:1)

YATSENTYUK, M.N.

Influence of the protein blood substitute BK-8 on the secretory function of the stomach in gastrostomy patients. Vrach.delo no.7:136-137 Jl '60. (MIRA 13:7)

1. Kafedra obshchey khirurgii (zaveduyushchiy - zasluzhennyy deyatel' nauki, prof. M.I. Kolomiychenko) Kiyevskogo meditsinskogo instituta i Kiyevskiy institut perelivaniya krovi i nectlozhnoy khirurgii.

(BLOOD PLASMA SUBSTITUTES) (STOMACH--SECRECTIONS)

YATSENTYUK, M.N. (Kiyev, ul.Geroyev Revolyutsii, d.4, 2-y korpus, kv.28)

Preliminary data on clinical tests of the BK-8 protein blood substitute. Nov. khir. arkh. no.2:64-68 Mr-Ap '60. (MIRA 14:11)

1. Kafedra obshchey khirurgii (zav. - prof. M.I.Kolomiychenko)
Kiyevskogo meditsinskogo instituta i Kiyevskiy institut perelivaniya
krovi i neotlozhnoy khirurgii (direktor - prof. I.I.Fedorov).
(BLOOD PLASMA SUBSTITUTES)

S/127/60/000/007/011/011
B012/B052

AUTHOR:

Yatsenyuk, L. A., Senior Engineer Dispatcher (Zhitomir)

TITLE:

Mechanized production of fuses

PERIODICAL: Gornyy zhurnal, no. 7, 1960, 73-74

TEXT: This paper describes the production of fuses by the semiautomatic machine of the type MIZT-1K (MIZT-1K) suggested by the mechanic S. B. Karant. It 1) allows a mechanized production of fuses, 2) guarantees safety in the insertion of the fuse cord into the mouth of the detonator, 3) guarantees the connection between detonator and fuse cord, and 4) eliminates any damage to the cores of fuse cords. The device weighs 32.5 kg, its dimensions are 25×42×30 cm. Power consumption is 0.2 kw/hr. 10-14 fuses per minute are produced by mechanical drive, and 6-8 fuses by hand drive. The production of fuses with a detonator consisting of cardboard cases is as follows: bunches of fuse cord containing 50-100 pieces each are put on the right-hand side of the worktable of the semiautomatic machine, and the box with the detonators is put on the left-hand side of it. The following operations are made at the same time: laying the

Card 1/2

Mechanized production of fuses

S/127/60/000/C07/011/011
B012/B052

detonator into the groove of the worktable of the machine, its insertion, fixing, and the automatic insertion of the fuse cord into the mouth piece of the detonator. Joining in a protective bomb only takes fractions of a second. The holder pierces the secondary and primary coverings under 30 to 35° to the fuse-cord axis without damaging the interior. The angle of rotation of the joining head can be adjusted for the fuse cord axis. The semiautomatic machine contains a device which prevents the stitching of a detonator whose mouth piece contains no fuse cord. A prototype was tested in production section No. 4 of the Zapadukrvzryvprom in 1959. No misfires were found on fuses made with this device. Should the metal cases of detonators be of metal, the joining head is to be replaced by another one equipped with pressure screws. Series production of this device is recommended. There is 1 figure.

ASSOCIATION: Zapadukrvzryvprom

Card 2/2

YATSEVICH, A., predsedatel'.

Success of young model airplane builders. Kryl.rod. 4 no. 11:13 N '53.
(MLRA 6:11)

1. Berezinsky rayonnyy orgkomitet Vsesoyuznogo dobrovol'nogo obshchestva
sodeystviya armii, aviatsii i flotu Minskoy oblasti, Belorusskoy SSR.
(Airplanes--Models)

YAKKER, N.I., arkhitektor serii l-528KP; YATSEVICH, I.N.; VINNIKOV,
M.S., brigadir kompleksnoy brigady kamenshchikov; GONCHAROV,
F.I., master UMR-10

'Let's improve the quality of designing and building. Biul.
tekhn.inform. po stroi. 5 no.11:28-29 N '59.
(MIRA 13:4)

1. Glavnyy inzhener UMR-10 tresta No.20 (for Yatskevich)
(Leningrad--Construction industry)

YATSEVICH, K., insh.

Mechanized brick factory. Sel', stroi. 12 no.11:29 N '57.

(MIRA 10:11)

1. Glavnoye upravleniye po stroitel'stvu v kolkhozakh pri Sovete Ministrów BSSR.

(White Russia--Brick industry)

BELYAYEV, V.F.; YATSEVICH, N.M.; SOKOLOV, N.A.

Synthesis of chalcones on the base of β -chlorovinyl ketones. Part 2.
Zhur. ob. khim. 32 no.6:2022-2025 Je '62. (MIRA 15:6)

1. Belorusskiy gosudarstvennyy universitet im. V.I.Lenina.
(Chalcone)

MURASHOV', K.; YATSEVICH, V.; SOLODOVA, A.

Developing the planned efficiency at the Moscow Milling Combine No. 4.
Muk.-elev. prom. 28 no.8:13-15 Ag '62. (MIRA 17:2)

1. Moskovskiy mel'nichnyy kombinat No.4.

YATSEVICH, V., inzhener; KUDRYAVTSEV, Ye., inzhener.

Introduction of beaters for cleaning husks. Muk.-elev.prom.
23 no.3:16-18 Mr. '57. (MLRA 10:5)

1. Moskovskiy mel'nichevsky kombinat No. 3.
(Grain milling)

YASSEVICH, V., inzh.

Introducing new machinery at the Moscow Milling Combine No.3. Muk.
elev. prom. 23 no.12:15-17 D '57. (MIRK 11:2)

1. Moskovskiy mol' nichnyy kombinat No.3.
(Moscow--Flour mills--Equipment and supplies)

YATSEVICH, V.A., inzh.; GOVOROV, N.A., red.; VOLKOV, P.N., red.

[Experience in the mechanization of the handling of ready production in Moscow Milling Combines No.3 and No.4] Opyt mekhanizatsii rabet s gotovoi produktsiei na moskovskikh mel'kombinatakh no.3 i 4. Moscow, Tsentral'noye nauchno-tekhnicheskoye obyedineniye mukomol'noi i krupianoi promyshl. i elevatornoy khozyaistvo, 1964. 33 p. (MIRA 18:5)

YATSEVICH, V. B. Eng.

Electric Networks

Placing, and necessity of insulating the zero conductor of a low voltage, overhead network. Rab. energ. 3 No. 2, 1953.

9. Monthly List of Russian Accessions, Library of Congress, June 1953. Unclassified.

YATSEVICH, V.B., inzhener.

Increasing the lightning resistance of overhead electric transmission lines
on wooden supports. Elek.sta. 24 no.9:58 S '53. (MLRA 6:8)
(Electric lines--Overhead)

YATSEVICH, V. B.

AID P - 1935

Subject : USSR/Electricity

Card 1/1 Pub. 29 - 15/31

Author : Yatsevich, V. B., Eng.

Title : Selecting the place of connection of conductors of overhead lines

Periodical : Energetik, 3, 21, Mr 1955

Abstract : This concerns in particular rural electrical installations where it might not be possible to obtain special trucks to inspect or repair wire connections. The author recommends placing connections at or near the insulators.

Institution: None

Submitted : No date

YATSEVICH, V.B.

AID P - 2540

Subject : USSR/Electricity

Card 1/1 Pub. 26 - 24/32

Author : Yatsevich, V. B., Eng.

Title : Checking high-voltage testers

Periodical : Elek sta, 6, 53, Je 1955

Abstract : The author recommends the use of 1,000 or 2,500 v meggers for testing high-voltage testers.

Institution : None

Submitted : No date

Yatsevich, V.B.
AID P - 2926

Subject : USSR/Electricity

Card 1/1 Pub. 26 - 23/32

Author : Yatsevich, V. B., Eng.

Title : Simultaneous testing of several types of transformer oil with one oil-gage

Periodical : Elek. sta., 7, 56, Jl 1955

Abstract : Testing of transformer oil for dielectric strength in an oil-gage made of china and equipped with electrodes is described.

Institution : None

Submitted : No date

YATSEVICH, V.B., inzhener.

Using metal structures and grounding mains as neutral wires.
Prom.energ. 11 no.11:19-23 N '56. (MIRA 9:12)

1. Trest Elektromontazh-51.
(Electric wiring)

YATSMVICH, V.B. (g. Khar'kov); NAYFEL'D, M.R.

Testing the contacts of grounding systems. Energetik 5 no.4:39 Ap '57.
(Electric circuits) (MIRA 10:6)

AUTHOR: Yatsevich, V.B. Engineer

91-58-6-3/39

TITLE: Errors in Methods of Testing Electricians' Safety Belts
(Oshibki v metodike ispytaniya monterskikh poyasov)

PERIODICAL: Energetik, 1958, Nr 6, pp 5-6, (USSR)

ABSTRACT: It is necessary to adhere strictly to the requirements of GOST 5718-51 "Safety Belt for Work on Power Lines". Some organizations, however, use test methods described in pamphlets and books dealing with labor safety which contain considerable deviations from the aforementioned GOST. The author demands that the organization using safety belts and manufacturers of these belts adhere strictly to the requirements of the GOST. Furthermore, the author demands a revision of the GOST and suggests that an additional requirement, according to a directive of the Glavelektromontazh organization, be included. An editor's note at the end of the article approves the author's suggestion for a revision of the GOST.

AVAILABLE: Library of Congress

Card 1/1 1. Safety harnesses-Test methods 2. Safety harnesses-Standards

KON', A.G., tekhnik; YATSEVICH, V.B., inzh.

Flow of electric current to conducting floors of apartment
houses. Energetik 7 no.3:20 Mr '59. (MIRA 12:4)
(Electric wiring)

YATSEVICH,V.Ya., inzhener

Mechanization and automatization of loading and unloading in a
milling combine. Mekh.trud.rab. 9 no.5:18-20 My '55.
(Loading and unloading) (MLRA 8:7)

DANDERS, Ya.; YATSEVICHUS, I. [Jacevicius, I.]; GOL'DENBERG, A.; KHARIN, B.,
inzh. (Leningrad); MOVA, N., inzh.; VINNIKOV, F. (Gomel');
MAMYKIN, I. (Gomel'); BENDERSKIY, A., starshiy inzh. (pos. Igra,
Udmurtskoy ASSR); CHERTELTSOV, V.; OSIPOV, I.; SIROTIKHIN, M.I.

Exchange of news and experience. Izobr.i rats. no.4:25-26 Ap '62.
(MIRA 15:4)

1. Sekretar' Respublikanskogo soveta Vsesoyuznogo obshchestva
izobretateley i ratsionalizatorov, g. Riga (for Danders).
2. Glavnnyy inzh. mezhdugorodnoy telefonnoy stantsii, g. Vil'nyus
(for Yatsevichus).
3. Prodsedatel' oblastnogo soveta Vsesoyuznogo
obshchestva izobretateley i ratsionalizatorov g. Ufa (for
Gol'denberg).
4. Krayevoy sovet Vsesoyuznogo obshchestva
izobretateley i ratsionalizatorov, g. Krasnodar (for Mova).
5. Igrinskiy lespromkhoz kombinata "Udmurtles", (for Benderskiy).
6. Predsedatel' Krasnoyarskogo krayevogo soveta Vsesoyuznogo
obshchestva izobretateley i ratsionalizatorov (for Sirotin).

(Technological innovations)

"APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001962310006-3

* the following are identified as being used from solutions.
N. F. Ermolenko, A. R. Ulazova, and M. I. Varsenikaya

APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001962310006-3"

YERMOLENKO, N.F.; YATSEVSKAYA, M.I.

Adsorption on charcoal of a mixture of n-toluidine and organic acids from aqueous solutions. Dokl. AN BSSR 4 no. 11:458-461 N '60. (MIRA 13:12)

1. Institut obshchey i neorganicheskoy khimii AN BSSR.
(Toluidine) (Acids, Organic) (Adsorption)

YERMOLENKO, N. F. [IArmolenka, M. F.]; YATSEVSKAYA, M. I.
[IAtseuskaia, M. I.]

Study of the adsorption on coal from aqueous solutions of
mixtures of surface-active substances. Vestsi AN BSSR. Ser.
fiz.-tekhn. nav. no.1:59-64 '63. (MlRA 16:4)

(Surface-active agents)
(Adsorption)

YATSEVYU V I

Yaccev, V. I. On a class of exact solutions of the equationsof the type $\frac{d^2y}{dx^2} = \alpha y + \beta y^2$ and their applications.

Exact solutions of the equations of the type

 $\frac{d^2y}{dx^2} = \alpha y + \beta y^2$ and their applications.

and which are of interest in the theory of differential equations,

$$\begin{aligned}y &= \gamma^2 - (\gamma + \alpha + \beta)x + \frac{1}{2}(\alpha + \beta)^2 - \frac{1}{2}, \\x &= \gamma x + \gamma - \frac{1}{2}(\alpha + \beta)x + \frac{1}{2}\end{aligned}$$

The solutions for the case $\alpha = \beta = 0$ are discussed in some detail. J. V. Schausen (Providence, R. I.).

Source: Mathematical Reviews,

Vol 12 No. 7

87W) *Reft*

YATSEYEV, V. I.

YATSEYEV, V. I.: "On a single class of solutions of complete differential equations for the movement of a viscous liquid." Tomsk State U imeni V. V. Kuybyshev. Tomsk, 1956. (Dissertation for the Degree of Candidate in Physicomathematical Sciences)

Knizhnaya letopis', No 39, 1956. Moscow.

ZATSIK, L.N.

Case in the maternity ward of a hospital. Stomatologija 42
no.4t92 JI-Ag'63 (MIRA 17:4)

1. Iz Zheleznodorozhnoy bol'nitsy stantsii Isil'-Kul' Omskoy
oblasti.

KORSUN', A.A.; YAKUSHEVA, N.B.; YATSIKOV, Ya.S.; FEDOROV, Y.P.,
otv. red.

[Results of observations with zenith telescopes in 1960-
1963: Pulkovo, Gorkiy, Kitab, Poltava, Kazan, Irkutsk,
Blagoveshchensk] Rezul'taty nabliudeniia na zenit-teleskopakh
v 1960-1963 gg.: [Pulkovo, Gor'kii, Kitab, Poltava, Kazan',
Irkutsk, Blagoveshchensk.] Moskva, 1964. 50 p.

(MIRA 18:5)

1. Akademiiia nauk URSR, Kiev, Holovna astronomichna observa-
toriia. 2. Chlen-korrespondent AN Ukr.SSR (for Fedorov).

"APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001962310006-3

YATSIMIRSKAYA-KRONTOVSKAYA, M. K.

c/1961

1964

DECEASED

MEDICINE (RICKETTSIA)

APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001962310006-3"

Oct. 1957

M. K. KRANTOVSKAYA, M.-K.

USSR/Medicine - Rickettsia

Medicine - Typhus - Virus

"Studies of Structure and Multiplication Cycles of the Rickettsia Prowazeki," A. V. Rumyantsev,
M. K. Krantovskaya, Ye. P. Savitskaya, B. V. Zhav, 3 pp

"Dok Akad Nauk SSSR, Nova Ser" Vol LVIII, No 2

Report results of studies conducted on the Rickettsia prowazeki. Studies development
of this disease: 1) in the light muscles due to pernasal infection of latter, and 2) in the
intestines due to perineal infection. Submitted by Academician I. M. Shmal'gauzen, 20 March
1947.

PA 49T51

KRONTOVSKAYA, M.K.

22689. KRONTOVSKAYA, M.K. O patogeneze synnogo tifa novosti meditsiny, vyp. 13, 1949,
S. 45-54

so: LETOPIS' No. 20, 1949

KRONTOVSKAYA, M.K.

(Chief, Typhus Dept.

SHEVELEV, A.S.; GINDIN, A.P., (zaveduyushchiy: KRONTOVSKAYA, M.K., professor)
(zaveduyushchiy; TIMAKOV, V.D., professor, direktor, Institute)

Study of peritoneal rickettsiosis in connection with the effect of splenectomy
and block upon the morphologic reaction of the organism. Zhur.mikrobiol.epid.
i immun. no.9:12-16 S '53. (MLRA 6:11)

Typhus Dept

1. Sygnatifochnyy otdel Instituta epidemiologii i mikrobiologii im. pochetnogo akademika N.F.Gamalei Akademii meditsinskikh nauk SSSR (for Krontovskaya).
2. Patomorfologicheskaya laboratoriya Instituta epidemiologii i mikrobiologii im. pochetnogo akademika N.F.Gamalei Akademii meditsinskikh nauk SSSR (for Gindin).
3. Institut epidemiologii i mikrobiologii im.pochetnogo akademika N.F.Gamalei Akademii meditsinskikh nauk SSSR (for Timakov).

(Peritoneum--Diseases) (Rickettsia) (Spleen--Surgery)

YATSIMIRSKAYA, M. K., and TOGUNCVA, A. I.

"On High-Level Training in the Typhus Division and in the Division of Specific Prophylaxis and Therapy of Tuberculosis." [paper read at a meeting of the institute's Scientific Council held during the first half of 1954.] Proceedings of Inst. Epidem and Microbiol im. Gemaleya 1954-56.

Typhus Division, Krontovskaya, M. K., head, Inst. Epidem and Microbiol im. Gemaleya AMS USSR.

SO: Sum 1186, 11 Jan 57.

VATSIMIRSKAYA, M. K., BILIBIN, A. F., BOCHAROVA, T. V., SINAYKO, G. I., SAVITSKAYA, YE. P.
and SHTROV, I. I.

"Concerning the Question of the Possibility of a Prolonged Carrying of
Prowszki's Ricketsiosis." [paper read at an unidentified scientific
conference held by the institute during the first half of 1955.]
Proceedings of Inst. Epidem and Microbiol im. Gemaleya 1954-56.

Typhus Division, Krantovskaya, M. K., head, Inst. Epidem and Microbiol.
im. Gemaleya AMS USSR.

SO: Sum 1186, 11 Jan 57.

YATSIMIRSKAYA-KRONTOVSKAYA, M.K.

GINDIN, A.P.; YATSIMIRSKAYA-KRONTOVSKAYA, M.K.; ZHIV, B.V.; SALGOVA,
T.A.

Pathomorphology of local reactions to the inoculation of the
typhus vaccine following sedimentation. Zhur.mikrobiol.epid.
i.immun. no.7:69-71 Jl '55. (MLRA 8:10)

1. Iz Instituta epidemiologii i mikrobiologii imeni N.F.
Gamalei AMN SSSR dir. prof. G.V.Vygodchikov.
(TYPHUS, immunology,
vaccine, local reactions)
(VACCINES AND VACCINATIONS,
typhus vaccine, local reactions)

YATSIMIRSKAYA-KRONTOVSKAYA, M.K.; BILIBIN, A.F.; BOCHAROVA, T.V.; SINAYKO,
G.A.; SAVITSKAYA, Ye.P.; SHATROV, I.I.

Possibility of prolonged carrying of Rickettsia prowazekii. Zhur.
mikrobiol.epid. immun. 27 no.7:33-39 Jy '56. (MLRA 9:9)

1. Iz Instituta epidemiologii i mikrobiologii imeni Gamalei AMN
SSSR, Kliniki infektsionnykh bolezney i kafedry epidemiologii 2-go
Moskovskogo meditsinskogo instituta imeni Stalina.
(RICKETTSIA PROWAZEKII
prolonged carriage in animals & men)

YATSIMIRSKAYA-KRONTOVSKAYA, M.K.; BOCHAROVA, T.V.; SOSNOVSKAYA, F.M.

Possibility of prolonged carriage of Rickettsia prowazekii. Report No.2: Effect of ionizing radiations on the excretion of Rickettsia prowazekii from the organism of animals after experimental typhus. Zhur.mikrobiol.,epid.i immun. 30 no.11:84-86 N '59. (MIRA 13:3)

1. Iz Instituta epidemiologii i mikrobiologii imeni Gamalei AMN SSSR.
(TYPHUS exper.)
(RADIATION EFFECTS exper.)

YATSIMIRSKAYA-KRONTOVSKAYA, M. K. [deceased]; SALAGOVA, T.A.

Study of the antigenic structure of Rickettsia prowazekii by
means of the precipitation reaction in gel. Zhur. mikrobiol.,
epid. i immun. 32 no.8:137-141 Ag '61. (MIRA 15:7)

1. Iz Instituta epidemiologii i mikrobiologii imeni Gamalei
AMN SSSR.

(RICKETTSIA)

01

7

Acid-base interaction in acetic anhydride. II. Acidimetric and alkalimetric titration in acetic anhydride. M. Usanovich and K. Yatsimirskii. *J. Gen. Chem. (U. S. S. R.)* 11, 957-8(1941).—Acetyl chloride, benzoyl chloride and trichloroacetic acid can be titrated with NaOAc in acetic anhydride soln. with methyl orange or with dimethyl yellow as indicator. With tropolone (D) the color change takes place before the true end-point is reached. ArCl , BaCl and $\text{CCl}_3\text{CO}_2\text{H}$ behave as weak acids. NaOAc is a strong base when dissolved in Ac_2O . The reaction of $\text{CCl}_3\text{CO}_2\text{H}$ with NaOAc is instantaneous; in the case of the reaction of AcCl and BaCl with NaOAc , the indicator changes color as soon as the NaOAc is added and only slowly changes back as AcCl or BaCl acts to neutralize NaOAc . The rate of reaction $\text{CH}_3\text{COCl} + \text{CH}_3\text{COONa} = (\text{CH}_3\text{CO})_2\text{O} + \text{NaCl}$ in Ac_2O soln. at 20° is given by the first-order const. $K = 8.00 \times 10^{-4}$. The rate-decay step in dil. solns. is $\text{CH}_3\text{COCl} + (\text{CH}_3\text{CO})_2\text{O}^- \rightarrow (\text{CH}_3\text{CO})_2\text{O} + \text{Cl}^-$ followed by $(\text{CH}_3\text{CO})_2\text{O}^- \rightarrow 2(\text{CH}_3\text{CO})_2\text{O}$. P. H. Rathmann.

ASMLLA METALLURGICAL LITERATURE CLASSIFICATION

IA 53T8

YATSIMIRSKIY, K. B.

USSR/Chemistry - Heat of Formation
Chemistry - Salts

Sep/Oct 1947

"Thermochemical Radii of Ions and the Heat at Which
Salts Are Formed," K. B. Yatsimirskiy, Inst Genl and
Inorg Chem imeni N. S. Kurnakov, Acad Sci USSR,
4½ pp

"Izv Akad Nauk SSSR, Otd Khim Nauk" No 5

Amplifies data on the so-called "thermochemical ion
radii," and obtains values for eleven anions. These
values in turn used to obtain revised values for
heat at which 110 salts are formed.

53T8

PA 15T27

YATSIMIRSKIY, K. B.

USSR/Chemistry - Hydration
Chemistry - Heat of hydration

Feb 1947

"The Heat of Hydration of Ions and Lattice Energy,"
K. B. Yatsimirskiy, 6 pp

"Zhur Obshch Khim" Vol XVII, No 2

Calculation of heat of hydration for 24 ions, and
values of lattice energy for 93 salts, values of dis-
sociation energy for 5 acids and heats of dissolu-
tion in water for 20 salts.

15T27

Lattice energy of complex salts. N. Yu. Vatutinskii. J. Gen. Chem. (U.S.S.R.) 17, 2019-23 (1947) (In Russian). The lattice energy U' , defined as the difference of the energy of a highly rarefied gas consisting of the complex ions and the energy of the ions in the crystal, was calcd. in 3 ways. From the heat of soln. L in H_2O and the heats of hydration Q_i of each ion, by $U = Q_i + Q_e - L$ (subscripts i and e referring to cation and anion, resp.), calcg. Q_i by the formula ($= 165.5 \text{ m}^3/\text{mole}$) ($r_e + r_i$) (C.A. 42, 25a) where m = elec. charge, d = 0.95, 0.8, or 0.21 for univalent and bivalent cations or for anions, resp., and the ionic radii r are obtained from the mean interionic distances r_m . The latter were computed from the "Ionic content" I , in Avogadro's no., defined by $I = 1000 \text{ cm}^3/M$, where $r = d$, $n = \text{no. of ions of the mol. of the salt}$, $M = \text{mol. wt.}$; this gives for the vol. per ion, $v = 1000/N$ (where $N = \text{Avogadro's no.}$) and $r_m = 10/v^{1/3}/I^{1/2} = 11.85/I^{1/2}$. This gives for the r_m (in Å.) of ions: NO_3^- 2.03, $[\text{Ni}(\text{H}_2\text{O})_6]^{2+}$ 2.20, $[\text{Zn}(\text{H}_2\text{O})_6]^{2+}$ 2.35, $[\text{Mn}(\text{H}_2\text{O})_6]^{2+}$ 2.34, $[\text{Ba}(\text{H}_2\text{O})_6]^{2+}$ 1.68, $[\text{Ca}(\text{H}_2\text{O})_6]^{2+}$ 2.11, $[\text{Sr}(\text{H}_2\text{O})_6]^{2+}$ 2.10, $[\text{Co}(\text{H}_2\text{O})_6]^{2+}$ 1.62, 2.01, $[\text{Fe}(\text{NH}_3)_6]^{2+}$ 2.04, $[\text{Zn}(\text{NH}_3)_6]^{2+}$ 2.04, $[\text{Co}(\text{NH}_3)_6]^{2+}$ 2.00, $[\text{Mn}(\text{NH}_3)_6]^{2+}$ 2.05, $[\text{Cd}(\text{NH}_3)_6]^{2+}$ 2.00, $[\text{Mg}(\text{NH}_3)_6]^{2+}$ 2.03, $[\text{Ca}(\text{NH}_3)_6]^{2+}$ 2.07 Å. The Q_i of the first 10 ions are 70.4, 214.2, 210.2, 210.8, 210.2, 210.8, 236.9, 227.5, 218.3, 284.7. The energies of formation E of the 17 gaseous complex cations from the gaseous addend (H_2O or NH_3) and metal ion are 323, 327, 315, 300, 285, 57, 170, 137, 99, 304, 302, 330,

334, 320, 311, 320, 326. Another way of calcg. U is through a Fajans-Born cycle, involving the heat V of formation of the complex salt from the gaseous addend and the simple salt, and E , by $U = U' + V - E$. A 3rd way of calcg. U is by Kapustininskii's formula $U = [287.3 \times n_{\text{mole}} - 0.45/(r_e + r_i)]/(r_e + r_i)$. Values of U for 20 chlorides, bromides, iodides, and nitrates of complex hydrates and ammoniates, computed by the above 3 methods, show a remarkable degree of agreement. Mean values are: $[\text{Mg}(\text{H}_2\text{O})_6]\text{Cl}_6$ 377, $[\text{Mg}(\text{H}_2\text{O})_6](\text{NO}_3)_6$ 326, $[\text{Ca}(\text{H}_2\text{O})_6](\text{NO}_3)_6$ 378, $[\text{Ba}(\text{H}_2\text{O})_6](\text{NO}_3)_6$ 381, $[\text{Ba}(\text{H}_2\text{O})_6]\text{Cl}_6$ 444, $[\text{Ba}(\text{H}_2\text{O})_6]\text{Br}_6$ 429, $[\text{Ni}(\text{H}_2\text{O})_6]\text{Cl}_6$ 323, $[\text{Ni}(\text{H}_2\text{O})_6](\text{NO}_3)_6$ 304, $[\text{Co}(\text{H}_2\text{O})_6]\text{Cl}_6$ 381, $[\text{Co}(\text{H}_2\text{O})_6]\text{Br}_6$ 361, $[\text{Co}(\text{H}_2\text{O})_6](\text{NO}_3)_6$ 380, $[\text{Mn}(\text{H}_2\text{O})_6]\text{Cl}_6$ 320, $[\text{Zn}(\text{H}_2\text{O})_6]\text{Cl}_6$ 339, $[\text{Zn}(\text{H}_2\text{O})_6](\text{NO}_3)_6$ 348, $[\text{Zn}(\text{H}_2\text{O})_6]\text{Br}_6$ 323, $[\text{Ni}(\text{NH}_3)_6]\text{Cl}_6$ 384, $[\text{Co}(\text{NH}_3)_6]\text{Cl}_6$ 346, $[\text{Cd}(\text{NH}_3)_6]\text{Cl}_6$ 380, $[\text{Pb}(\text{NH}_3)_6]\text{Br}_6$ 340, $[\text{Cd}(\text{NH}_3)_6]\text{Br}_6$ 331 kcal./mole. From U , U' , and E , one can calcg. Q for unknowns or doubtful hydrates and thus predict their stability. Examples of such data are: $[\text{Ba}(\text{H}_2\text{O})_6]\text{F}_6$ 13, $[\text{Ba}(\text{H}_2\text{O})_6]\text{Br}_6$ 9, $[\text{Ba}(\text{H}_2\text{O})_6]\text{Cl}_6$ -0.5, $[\text{Mg}(\text{H}_2\text{O})_6]\text{Li}_6$ 81, $[\text{Mg}(\text{H}_2\text{O})_6]\text{F}_6$ -10; neg. values indicate impossibility of existence of the corresponding hydrates.

A.I.B.-S.A. METALLURGICAL LITERATURE CLASSIFICATION

1950-1954
1955-1959
1960-1964
1965-1969
1970-1974
1975-1979
1980-1984
1985-1989
1990-1994
1995-1999
2000-2004
2005-2009
2010-2014
2015-2019
2020-2024
2025-2029
2030-2034
2035-2039
2040-2044
2045-2049
2050-2054
2055-2059
2060-2064
2065-2069
2070-2074
2075-2079
2080-2084
2085-2089
2090-2094
2095-2099
2100-2104
2105-2109
2110-2114
2115-2119
2120-2124
2125-2129
2130-2134
2135-2139
2140-2144
2145-2149
2150-2154
2155-2159
2160-2164
2165-2169
2170-2174
2175-2179
2180-2184
2185-2189
2190-2194
2195-2199
2200-2204
2205-2209
2210-2214
2215-2219
2220-2224
2225-2229
2230-2234
2235-2239
2240-2244
2245-2249
2250-2254
2255-2259
2260-2264
2265-2269
2270-2274
2275-2279
2280-2284
2285-2289
2290-2294
2295-2299
2300-2304
2305-2309
2310-2314
2315-2319
2320-2324
2325-2329
2330-2334
2335-2339
2340-2344
2345-2349
2350-2354
2355-2359
2360-2364
2365-2369
2370-2374
2375-2379
2380-2384
2385-2389
2390-2394
2395-2399
2400-2404
2405-2409
2410-2414
2415-2419
2420-2424
2425-2429
2430-2434
2435-2439
2440-2444
2445-2449
2450-2454
2455-2459
2460-2464
2465-2469
2470-2474
2475-2479
2480-2484
2485-2489
2490-2494
2495-2499
2500-2504
2505-2509
2510-2514
2515-2519
2520-2524
2525-2529
2530-2534
2535-2539
2540-2544
2545-2549
2550-2554
2555-2559
2560-2564
2565-2569
2570-2574
2575-2579
2580-2584
2585-2589
2590-2594
2595-2599
2600-2604
2605-2609
2610-2614
2615-2619
2620-2624
2625-2629
2630-2634
2635-2639
2640-2644
2645-2649
2650-2654
2655-2659
2660-2664
2665-2669
2670-2674
2675-2679
2680-2684
2685-2689
2690-2694
2695-2699
2700-2704
2705-2709
2710-2714
2715-2719
2720-2724
2725-2729
2730-2734
2735-2739
2740-2744
2745-2749
2750-2754
2755-2759
2760-2764
2765-2769
2770-2774
2775-2779
2780-2784
2785-2789
2790-2794
2795-2799
2800-2804
2805-2809
2810-2814
2815-2819
2820-2824
2825-2829
2830-2834
2835-2839
2840-2844
2845-2849
2850-2854
2855-2859
2860-2864
2865-2869
2870-2874
2875-2879
2880-2884
2885-2889
2890-2894
2895-2899
2900-2904
2905-2909
2910-2914
2915-2919
2920-2924
2925-2929
2930-2934
2935-2939
2940-2944
2945-2949
2950-2954
2955-2959
2960-2964
2965-2969
2970-2974
2975-2979
2980-2984
2985-2989
2990-2994
2995-2999
3000-3004
3005-3009
3010-3014
3015-3019
3020-3024
3025-3029
3030-3034
3035-3039
3040-3044
3045-3049
3050-3054
3055-3059
3060-3064
3065-3069
3070-3074
3075-3079
3080-3084
3085-3089
3090-3094
3095-3099
3100-3104
3105-3109
3110-3114
3115-3119
3120-3124
3125-3129
3130-3134
3135-3139
3140-3144
3145-3149
3150-3154
3155-3159
3160-3164
3165-3169
3170-3174
3175-3179
3180-3184
3185-3189
3190-3194
3195-3199
3200-3204
3205-3209
3210-3214
3215-3219
3220-3224
3225-3229
3230-3234
3235-3239
3240-3244
3245-3249
3250-3254
3255-3259
3260-3264
3265-3269
3270-3274
3275-3279
3280-3284
3285-3289
3290-3294
3295-3299
3300-3304
3305-3309
3310-3314
3315-3319
3320-3324
3325-3329
3330-3334
3335-3339
3340-3344
3345-3349
3350-3354
3355-3359
3360-3364
3365-3369
3370-3374
3375-3379
3380-3384
3385-3389
3390-3394
3395-3399
3400-3404
3405-3409
3410-3414
3415-3419
3420-3424
3425-3429
3430-3434
3435-3439
3440-3444
3445-3449
3450-3454
3455-3459
3460-3464
3465-3469
3470-3474
3475-3479
3480-3484
3485-3489
3490-3494
3495-3499
3500-3504
3505-3509
3510-3514
3515-3519
3520-3524
3525-3529
3530-3534
3535-3539
3540-3544
3545-3549
3550-3554
3555-3559
3560-3564
3565-3569
3570-3574
3575-3579
3580-3584
3585-3589
3590-3594
3595-3599
3600-3604
3605-3609
3610-3614
3615-3619
3620-3624
3625-3629
3630-3634
3635-3639
3640-3644
3645-3649
3650-3654
3655-3659
3660-3664
3665-3669
3670-3674
3675-3679
3680-3684
3685-3689
3690-3694
3695-3699
3700-3704
3705-3709
3710-3714
3715-3719
3720-3724
3725-3729
3730-3734
3735-3739
3740-3744
3745-3749
3750-3754
3755-3759
3760-3764
3765-3769
3770-3774
3775-3779
3780-3784
3785-3789
3790-3794
3795-3799
3800-3804
3805-3809
3810-3814
3815-3819
3820-3824
3825-3829
3830-3834
3835-3839
3840-3844
3845-3849
3850-3854
3855-3859
3860-3864
3865-3869
3870-3874
3875-3879
3880-3884
3885-3889
3890-3894
3895-3899
3900-3904
3905-3909
3910-3914
3915-3919
3920-3924
3925-3929
3930-3934
3935-3939
3940-3944
3945-3949
3950-3954
3955-3959
3960-3964
3965-3969
3970-3974
3975-3979
3980-3984
3985-3989
3990-3994
3995-3999
4000-4004
4005-4009
4010-4014
4015-4019
4020-4024
4025-4029
4030-4034
4035-4039
4040-4044
4045-4049
4050-4054
4055-4059
4060-4064
4065-4069
4070-4074
4075-4079
4080-4084
4085-4089
4090-4094
4095-4099
4100-4104
4105-4109
4110-4114
4115-4119
4120-4124
4125-4129
4130-4134
4135-4139
4140-4144
4145-4149
4150-4154
4155-4159
4160-4164
4165-4169
4170-4174
4175-4179
4180-4184
4185-4189
4190-4194
4195-4199
4200-4204
4205-4209
4210-4214
4215-4219
4220-4224
4225-4229
4230-4234
4235-4239
4240-4244
4245-4249
4250-4254
4255-4259
4260-4264
4265-4269
4270-4274
4275-4279
4280-4284
4285-4289
4290-4294
4295-4299
4300-4304
4305-4309
4310-4314
4315-4319
4320-4324
4325-4329
4330-4334
4335-4339
4340-4344
4345-4349
4350-4354
4355-4359
4360-4364
4365-4369
4370-4374
4375-4379
4380-4384
4385-4389
4390-4394
4395-4399
4400-4404
4405-4409
4410-4414
4415-4419
4420-4424
4425-4429
4430-4434
4435-4439
4440-4444
4445-4449
4450-4454
4455-4459
4460-4464
4465-4469
4470-4474
4475-4479
4480-4484
4485-4489
4490-4494
4495-4499
4500-4504
4505-4509
4510-4514
4515-4519
4520-4524
4525-4529
4530-4534
4535-4539
4540-4544
4545-4549
4550-4554
4555-4559
4560-4564
4565-4569
4570-4574
4575-4579
4580-4584
4585-4589
4590-4594
4595-4599
4600-4604
4605-4609
4610-4614
4615-4619
4620-4624
4625-4629
4630-4634
4635-4639
4640-4644
4645-4649
4650-4654
4655-4659
4660-4664
4665-4669
4670-4674
4675-4679
4680-4684
4685-4689
4690-4694
4695-4699
4700-4704
4705-4709
4710-4714
4715-4719
4720-4724
4725-4729
4730-4734
4735-4739
4740-4744
4745-4749
4750-4754
4755-4759
4760-4764
4765-4769
4770-4774
4775-4779
4780-4784
4785-4789
4790-4794
4795-4799
4800-4804
4805-4809
4810-4814
4815-4819
4820-4824
4825-4829
4830-4834
4835-4839
4840-4844
4845-4849
4850-4854
4855-4859
4860-4864
4865-4869
4870-4874
4875-4879
4880-4884
4885-4889
4890-4894
4895-4899
4900-4904
4905-4909
4910-4914
4915-4919
4920-4924
4925-4929
4930-4934
4935-4939
4940-4944
4945-4949
4950-4954
4955-4959
4960-4964
4965-4969
4970-4974
4975-4979
4980-4984
4985-4989
4990-4994
4995-4999
5000-5004
5005-5009
5010-5014
5015-5019
5020-5024
5025-5029
5030-5034
5035-5039
5040-5044
5045-5049
5050-5054
5055-5059
5060-5064
5065-5069
5070-5074
5075-5079
5080-5084
5085-5089
5090-5094
5095-5099
5100-5104
5105-5109
5110-5114
5115-5119
5120-5124
5125-5129
5130-5134
5135-5139
5140-5144
5145-5149
5150-5154
5155-5159
5160-5164
5165-5169
5170-5174
5175-5179
5180-5184
5185-5189
5190-5194
5195-5199
5200-5204
5205-5209
5210-5214
5215-5219
5220-5224
5225-5229
5230-5234
5235-5239
5240-5244
5245-5249
5250-5254
5255-5259
5260-5264
5265-5269
5270-5274
5275-5279
5280-5284
5285-5289
5290-5294
5295-5299
5300-5304
5305-5309
5310-5314
5315-5319
5320-5324
5325-5329
5330-5334
5335-5339
5340-5344
5345-5349
5350-5354
5355-5359
5360-5364
5365-5369
5370-5374
5375-5379
5380-5384
5385-5389
5390-5394
5395-5399
5400-5404
5405-5409
5410-5414
5415-5419
5420-5424
5425-5429
5430-5434
5435-5439
5440-5444
5445-5449
5450-5454
5455-5459
5460-5464
5465-5469
5470-5474
5475-5479
5480-5484
5485-5489
5490-5494
5495-5499
5500-5504
5505-5509
5510-5514
5515-5519
5520-5524
5525-5529
5530-5534
5535-5539
5540-5544
5545-5549
5550-5554
5555-5559
5560-5564
5565-5569
5570-5574
5575-5579
5580-5584
5585-5589
5590-5594
5595-5599
5600-5604
5605-5609
5610-5614
5615-5619
5620-5624
5625-5629
5630-5634
5635-5639
5640-5644
5645-5649
5650-5654
5655-5659
5660-5664
5665-5669
5670-5674
5675-5679
5680-5684
5685-5689
5690-5694
5695-5699
5700-5704
5705-5709
5710-5714
5715-5719
5720-5724
5725-5729
5730-5734
5735-5739
5740-5744
5745-5749
5750-5754
5755-5759
5760-5764
5765-5769
5770-5774
5775-5779
5780-5784
5785-5789
5790-5794
5795-5799
5800-5804
5805-5809
5810-5814
5815-5819
5820-5824
5825-5829
5830-5834
5835-5839
5840-5844
5845-5849
5850-5854
5855-5859
5860-5864
5865-5869
5870-5874
5875-5879
5880-5884
5885-5889
5890-5894
5895-5899
5900-5904
5905-5909
5910-5914
5915-5919
5920-5924
5925-5929
5930-5934
5935-5939
5940-5944
5945-5949
5950-