Sinyaller ve Sistemler

Örnekleme Analizi

Ayrık Zaman Fourier Dönüşümü (Discrete-Time Fourier Transform-DTFT)

$$\widetilde{x}(t) = x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT) = x(t)\delta_T(t)$$

$$\widetilde{x}(t) = \sum_{n = -\infty}^{\infty} x[n] \delta(t - nT)$$

$$\widetilde{X}(\omega) = \widetilde{\mathcal{F}} \left\{ \sum_{n = -\infty}^{\infty} x[n] \delta(t - nT) \right\}$$
$$= \sum_{n = -\infty}^{\infty} x[n] \widetilde{\mathcal{F}} \left\{ \delta(t - nT) \right\}$$

$$\widetilde{X}(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-jn\omega T}$$

Fourier Tablosu
$$\delta(t-c) \implies e^{-j\alpha c}$$

$$\Omega = \omega T$$
 dersek $T = 1/F_s$

DTFT:
$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-jn\Omega}$$

DTFT 'nin Karakteristiği

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n}$$

CTFT
$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Benzer yapıdalar !!!

1-Periyodikliği:

$$X(\Omega)$$
 | Ω 'un 2π periyotlu bir fonksiyonu ise $\Rightarrow |X(\Omega)|$ periyodiktir 2π $\angle X(\Omega)$ periyodiktir 2π

2-Genelde kompleks değerlidir:

$$X(\Omega) = \sum_{n} x[n] e^{-j\Omega n}$$
 kompleks
$$X(\Omega) = |X(\Omega)| e^{j\angle X(\Omega)}$$
 genlik genlik

3-Simetri:
$$|X(-\Omega)| = |X(\Omega)|$$

 $\angle X(-\Omega) = -\angle X(\Omega)$

Ters Ayrık Zaman Fourier Dönüşümü (Inverse DTFT)

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{jn\Omega} d\Omega$$

Ornek-1

$$x[n] = 1, \ \forall n \ \leftrightarrow \ X(\Omega) = \begin{cases} 2\pi\delta(\Omega), -\pi < \Omega < \pi \\ \text{periyodik} \end{cases}$$
 Fourier dönüşüm tablosu (sunu-6)
$$\frac{\text{Time Signal}}{1, \ -\infty < t < \infty} \frac{\text{Fourier Transforms}}{2\pi}$$

Hatırlayın!

Time Signal	Fourier Transform
$1, -\infty < t < \infty$	$2\pi\delta(\omega)$

$$X(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - k2\pi)$$

Ters DTFT:

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{jn\Omega} d\Omega$$

$$=\frac{1}{2\pi}\int_{-\pi}^{\pi}2\pi\delta(\Omega)e^{jn\Omega}d\Omega$$

$$=e^{jn\cdot 0}$$

$$= 1$$

Ornek-2

Rectangular darbe:

$$p_q[n] = \begin{cases} 1, & n = -q, \dots, -1, 0, 1, \dots, q \\ 0, & \text{di} \check{g} er \end{cases}$$

$$P_q(\Omega) = \sum_{n=-q}^q e^{-jn\Omega}$$

$$\sum_{n=q_1}^{q_2} r^n = \frac{r^{q_1} - r^{q_2+1}}{1-r}$$

$$P_q(\Omega) = \frac{e^{jq\Omega} - e^{-j(q+1)\Omega}}{1 - e^{-j\Omega}} = \frac{\sin\{(q+1/2)\Omega\}}{\sin\{\Omega/2\}} \quad \text{Pay ve paydayı çarp} \\ e^{j \Omega/2}$$

DTFT Table

<u> </u>	
Signal	DTFT
$1, -\infty < n < \infty$	$2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)$
$sgn[n] = \begin{cases} -1, &, -3, -2, -1 \\ 1, & 0, 1, 2, \cdots \end{cases}$	$\frac{\frac{k - \infty}{2}}{1 - e^{-j\Omega}}$
<i>u</i> [<i>n</i>]	$\frac{1}{1 - e^{-j\Omega}} + \pi \sum_{k = -\infty}^{\infty} \delta(\Omega - 2\pi k)$ $1, -\infty < \Omega < \infty$
$\delta[n]$	1, -∞<Ω<∞
$\delta[n-q], q = \pm 1, \pm 2, \pm 3, \dots$	$e^{-jq\Omega}$, $q = \pm 1, \pm 2, \pm 3,$
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\Omega}}, a < 1$
$e^{j\Omega_{o}n},~~\Omega_{o}$ real	$2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_o - 2\pi k)$, Ω_o real
$p_{q}[n] = \begin{cases} 1, & n = -q, -q + 1, \dots \\ & , -1, 0, 1, \dots q \\ 0, & otherwise \end{cases}$	$\frac{\sin\left[\left(q+\frac{1}{2}\right)\Omega\right]}{\sin\left(\Omega/2\right)}$
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\Omega})^2} a < 1$
$\cos(\Omega_o n)$	$\pi \sum_{k=-\infty}^{\infty} \left[\delta(\Omega + \Omega_o - 2\pi k) + \delta(\Omega - \Omega_o - 2\pi k) \right]$
$\cos(\Omega_o n + \theta)$	$\pi \sum_{k=-\infty}^{\infty} \left[e^{-j\theta} \delta(\Omega + \Omega_o - 2\pi k) + e^{j\theta} \delta(\Omega - \Omega_o - 2\pi k) \right]$
$\sin(\Omega_o n)$	$j\pi \sum_{k=-\infty}^{\infty} \left[\delta(\Omega + \Omega_o - 2\pi k) - \delta(\Omega - \Omega_o - 2\pi k) \right]$
$\sin(\Omega_o n + \theta)$	$j\pi \sum_{k=-\infty}^{\infty} \left[e^{-j\theta} \delta(\Omega + \Omega_o - 2\pi k) - e^{j\theta} \delta(\Omega - \Omega_o - 2\pi k) \right]$

Ayrık Fourier Dönüşümü (Discrete Fourier Transform-DFT)

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$

analitik olarak hesaplanabilir(bileşenlerine ayırma)

DTFT

Gerekenler:

1-Sonlu sayıdaki terimlerin toplamı

$$n = \dots, -3, -2, -1, 0, 1, 2, 3, \dots$$

2-Sonlu sayıda noktalar değerlendirilmelidir

$$\Omega \in (-\pi, \pi]$$
 aralığı

$$x[n]$$
 $n = 0, ..., N-1$ adet veri

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} = \sum_{n=0}^{N-1} x[n]e^{-j\Omega n}$$

İlgilenilen Bölge

frekans noktaları sinyal noktaları ile aynı olduğundan M = N

N adet veri noktası x[n] n = 0, ..., N-1

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N} \qquad k = 0, 1, 2, ..., N-1$$

DFT 'nin Özellikleri

$$X[N-k] = \overline{X}[k], \quad k = 0, 1, 2, ..., N-1$$

Temel frekansa ötelenirse

2-Ters DFT:

$$x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{j2\pi kn/N} \qquad n = 0, 1, 2, ..., N-1$$

Inverse DFT (IDFT)

DTFT - DFT İlişkisi

DTFT Özellikleri

1-Doğrusallık:

$$x_1[n] \overset{\mathfrak{F}}{\longleftrightarrow} X_1(\Omega)$$
$$x_2[n] \overset{\mathfrak{F}}{\longleftrightarrow} X_2(\Omega)$$

$$ax_1[n] + bx_2[n] \leftrightarrow aX_1(\Omega) + bX_2(\Omega)$$

2-Zamanda Öteleme:

$$x[n] \stackrel{\mathfrak{F}}{\longleftrightarrow} X(\Omega)$$

$$x[n-n_0] \stackrel{\mathfrak{F}}{\longleftrightarrow} e^{-j\Omega n_0} X(\Omega)$$

3-Zaman Genişlemesi (Ölçeklendirme):

4-Konvolüsyon:

$$y[n] = x[n] * h[n]$$

$$Y(\Omega) = X(\Omega)H(\Omega)$$

Örnek: Dürtü cevabı $h[n] = \alpha^n u[n]$ olan LTI sistemin girişi $x[n] = \beta^n u[n]$ ise y[n] = ?

$$H(\Omega) = \frac{1}{1 - \alpha e^{-j\Omega}} \qquad X(\Omega) = \frac{1}{1 - \beta e^{-j\Omega}}$$
$$Y(\Omega) = H(\Omega)X(\Omega) = \frac{1}{(1 - \alpha e^{-j\Omega})(1 - \beta e^{-j\Omega})}$$

$$Y(\Omega) = \frac{A}{1 - \alpha e^{-j\Omega}} + \frac{B}{1 - \beta e^{-j\Omega}} \qquad A = \frac{\alpha}{\alpha - \beta} \qquad B = -\frac{\beta}{\alpha - \beta}$$
$$y[n] = \frac{\alpha}{\alpha - \beta} \alpha^{n} u[n] - \frac{\beta}{\alpha - \beta} \beta^{n} u[n]$$
$$= \frac{1}{\alpha - \beta} \left[\alpha^{n+1} u[n] - \beta^{n+1} u[n] \right]$$