CMPE 185 Autonomous Mobile Robots

Perception, Sensor Characteristics and Uncertainty

Dr. Wencen Wu
Computer Engineering Department
San Jose State University

Group Project

 Reminder: check the group project assignments on Canvas

What is Perception of Mobile Robots?

Perception is Hard!

- Understanding = raw data + (probabilistic) models + context
 - Intelligent systems interpret raw data according to probabilistic models and using contextual information that gives meaning to the data.
- Dealing with real-world situations
- Reasoning about a situation
- Cognitive systems have to interpret situations based on uncertain and only partially available information
- They need ways to learn functional and contextual information (semantics / understanding)

Perception is Hard!

- "In robotics, the easy problems are hard and the hard problems are easy"
 - S. Pinker. The Language Instinct. New York: Harper Perennial Modern Classics, 1994

beating the world's chess master: EASY

create a machine with some "common sense": very HARD

Example: Perception for a Self-driving Car

- Any information a self-driving car collects about itself or its environment requires sensing
- The self-driving cars that want to learn, map and/or navigate need to collect information about their surroundings
- All sensors have some degree of uncertainty
- Uncertainty can be reduced by multiple measurements.

Common Sensors for Mobile Robots

- Wheel encoders
 - Local motion estimation (odometry)
- GPS
 - Global localization and navigation
- Inertial Measurement Unit (IMU)
 - Orientation and acceleration of the robot
- Laser scanners, Radar, Ultrasonic sensors
 - Obstacle avoidance, motion estimation, scene interpretation (road detection, pedestrians)
- Cameras
 - Texture information, motion estimation, scene interpretation
- Bumper
- ...

Classification of Sensors

- Robot = sensors + actuators
- Sensors are the key components for perceiving the environment

What:

- Proprioceptive sensors
 - measure values internally to the system (robot)
 - e.g. motor speed, wheel load, heading of the robot, battery status
- Exteroceptive sensors
 - information from the robots environment
 - distances to objects, intensity of the ambient light, unique features.

How

- Passive sensors
 - Measure energy coming from the environment; very much influenced by the environment
- Active sensors
 - emit their proper energy and measure the reaction
 - better performance, but some influence on environment

Classification of Sensors

Sensor type	Sensor System	Proprioceptive (PC) or Exteroceptive (EC)	Active or Passive
Tacticle sensors	Bumbers	EC	P
Wheel/motor sensors	Brush encoders	PC	P
	Optical encoders	PC	Α
Heading sensors	Compass	EC	P
	Gyroscope	PC	P
	Inclinometer	EC	A/P
Acceleration sensors	Accelerometer	PC	Р
Beacons	GPS	EC	Α
	Radio, ultrasonic, reflective beacons	EC	Α
Motion/speed sensors	Doppler: radar or sound	EC	Α
Range sensors	Ultrasound, laser rangefinder, structured light, time of flight	EC	Α
Vision sensors	CCD/CMOS cameras	EC	P

Sensors

Sensor Characteristics

Sensor Uncertainty

• Different Sensors

- Range
 - Lower and upper limits
 - E.g., IR range sensor measures distance between 10 and 80cm
- Resolution
 - Minimum difference between two measurements
 - For digital sensors, it is usually the A/D resolution

e.g.
$$\frac{5V}{255(8 \ bit)} = 0.02V$$

- Dynamic range
 - Used to measure spread between lower and upper limits of sensor inputs
 - Formally, it is the ratio between the maximum and minimum measurable input, usually in decibels (dB)

$$Dynamic\ Range = 10 \log \left[\frac{UpperLimit}{LowerLimit} \right]$$

 E.g., A sonar range sensor measures up to a max distance of 3m, with smallest measurement of 1cm

$$Dynamic Range = 10 \log \left[\frac{3}{0.01}\right]$$
$$= 24.8dB$$

- Linearity
 - A measure of how linear the relationship between the sensor's output signal and input signal
 - Linearity is less important when signal is treated after with a computer
- Linearity example
 - Consider the range measurement from an IR range sensor
 - Let x be the actual measurement in meters, let y be the output from the sensor in volts, and y = f(x)

- Bandwidth or Frequency
 - The speed with when a sensor can provide a stream of readings
 - Usually there is an upper limit depending on the sensor and the sampling rate
 - o e.g., sonar takes a long time to get a return signal
 - Higher frequencies are desired for autonomous control
 - e.g., if a GPS measurement occurs at 1 Hz and the autonomous vehicle uses this to avoid other vehicles that are 1 meter away
- Sensitivity
 - Ratio of output change to input change
 - E.g., range sensor will increase voltage output 0.1 V for every cm distance measured

- Accuracy
 - The difference between the sensor's output and the true value (i.e., error = m v)

$$accuracy = 1 - \frac{|m - v|}{v}$$

- Precision
 - The reproducibility of sensor results

$$precision = \frac{range}{\sigma}$$

 σ = standard deviation

Sensors: In Situ Characteristics

- Random Error
 - Non-deterministic
 - Not predictable
 - Usually described probabilistically

- Systematic Error
 - Deterministic
 - Caused by factors that can be modeled, e.g., optical distortion in camera

Sensors: In Situ Characteristics

- Measurements in the real-world are dynamically changing and error-prone
 - Changing illuminations
 - Light or sound absorbing surfaces
- Systematic versus random errors are not well-defined for mobile robots
 - There is a cross-sensitivity of robot sensor to robot pose and environment dynamics
 - Difficult to model, appear to be random

Sensors

Sensor Characteristics

Sensor Uncertainty

• Different Sensors

- How can it be represented?
 - With probability distributions
- Representation
 - Describe measurement as a random variable X
 - Given a set of *n* measurements with values ρ_1
 - Characterize statistical properties of X with a probability density function f(x)

• Expected value of X is the mean μ

$$\mu = E[X] = \int_{-\infty}^{\infty} x f(x) \, dx$$

• The variance of X is σ^2

Expected value of X is the mean
$$\mu$$

$$\mu = E[X] = \int_{-\infty}^{\infty} xf(x) dx$$

$$\mu = E[X] = \frac{\sum_{n=1}^{\infty} x}{n}$$

$$\mu = E[X] = \frac{\sum_{n=1}^{\infty} x}{n}$$

$$\mu = E[X] = \frac{\sum_{n=1}^{\infty} x}{n}$$

$$\sigma^{2} = Var(X) = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx \qquad \sigma^{2} = Var(X) = \frac{\sum^{n} (x - \mu)^{2}}{n}$$

Use a Gaussian Distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right]$$

- How do we use the Gaussian?
- Learn the variance of sensor measurements ahead of time
- Assume mean measurement is equal to actual measurement
- Example:
 - If a robot is 1.91 meters from a wall, what is the probability of getting a measurement of 2 meters?
 - Answer: if the sensor error is modeled as a Gaussian, we can assume the sensor has the following probability distribution

■ Then, use the distribution to determine P(x = 2)

• Thank you!