Yakeen NEET 2.0 2026

Practice Sheet

Physical Chemistry By Amit Mahajan Sir

Redox Reaction

- Q1 Select the compound in which chlorine shows oxidation state + 7:
 - (A) HCIO₄
- (B) HCIO₃
- (C) HCIO₂
- (D) HCIO
- Q2 The most common oxidation state of oxygen is
 - -2. This is best explained as due to:
 - (A) 2 electrons in the outermost shell
 - (B) 4 electrons in the outermost shell
 - (C) 6 electrons in the outermost shell
 - (D) 8 electrons in the outermost shell
- Q3 $Cl_2 + H_2S
 ightarrow 2HCl + S,$

In the above reaction, oxidation state of chlorine changes from:

- (A) zero to -1
- (B) 1 to zero
- (C) zero to 1
- (D) remains unchanged
- Q4 Which of the following is a mild oxidising agent?
 - (A) Ag₂O
- (B) KMnO₄
- (C) K₂Cr₂O₇
- (D) Cl₂
- Q5 The reaction,

$$H_2S \ + \ H_2O_2
ightarrow \ S \ + \ 2H_2O$$
 manifests:

- (A) oxidising action of H₂O₂
- (B) reducing nature H₂O₂
- (C) acidic nature of H₂O₂
- (D) alkaline nature of H_2O_2
- **Q6** Oxidation number of xenon in XeOF₂ is:
 - (A) 0
- (B)2
- (C) 4
- (D) 3
- **Q7** Match the following:

Column – I	Column – II
(Chemical species)	(Oxidation number of
	sulphur)

(A)	S	(P)	+6
(B)	H ₂ S	(Q)	+1
(C)	S ₂ Cl ₂	(R)	0
(D)	H ₂ S ₂ O ₈	(S)	-2

- (A) A-S, B-R, C-P, D-Q
- (B) A-R, B-S, C-P, D-Q
- (C) A-R, B-S, C-Q, D-P
- (D) A-Q, B-P, C-R, D-S
- Q8 Match List -I (compound) with list II (Oxidation state of N) and select the correct answer using the codes given below the list:-

List – I (Compound)		List – II (Oxidation state of N)		
(A)	KNO ₃	(P)	–1/3	
(B)	HNO ₂	(Q)	-3	
(C)	NH₄Cl	(R)	+5	
(D)	NaN ₃	(S)	+3	

- (A) A-R, B-S, C-Q, D-P
- (B) A-Q, B-S, C-P, D-R
- (C) A-S, B-R, C-P, D-Q
- (D) A-Q, B-R, C-S, D-P
- Q9 Which one of the following is a reducing agent?
 - (A) Ozone
- (B) Chlorine

(D) Na_2SO_3

Q10 The oxidation number of arsenic atom in H₃AsO₄

(A) -1

(B) -3

(C) +3

(D) + 5

Q11 Oxidation number of C in HNC is:

(A) + 2

(B) -3

(C) +3

(D) Zero

Q12 Oxidation states of carbon atoms in diamond and graphite are:

(A) + 2, +4

(B) + 4, +2

(C) -4, 4

(D) Zero, zero

Q13 Phosphorus has the oxidation state of +1 in:

- (A) Orthophosphoric acid
- (B) Phosphorous acid
- (C) Hypophosphorous acid
- (D) Metaphosphoric acid

Q14 Match the Column I with Column II:

Column – I		Column – II	
(A)	$egin{aligned} (NH_4)_2 C r_2 O_7 \ & ightarrow N_2 + C r_2 O_3 \ & ightarrow 4 H_2 O \end{aligned}$	(P)	Intermolecular redox reaction
(B)	$PbO_2 + H_2O \ ightarrow PbO + H_2O_2$	(Q)	Disproportionation
(C)	$egin{aligned} Cl_2 + 2OH^- \ ightarrow ClO^- + Cl^- \ + H_2O \end{aligned}$	(R)	Intramolecular redox reaction

- (A) A-R, B-Q, C-P
- (B) A-Q, B-R, C-P
- (C) A-P, B-R, C-Q
- (D) A-R, B-P, C-Q

Q15 Oxidation number of P in PO_4^{3-} , of S in SO_4^{2-} and that of Cr in $Cr_2O_7^{2-}$ in respectively:

- (A) -3, +6and +6
- (B) +5, +6 and +6
- (C) +3, +6and +5
- (D) +5, +3 and +6

Q16 Match the Column I with Column II:

Column – I	Column – II
(Compound)	(Oxidation state of)

(A)	SO ₂	(P)	Sulphur is +4
(B)	Na ₂ S ₂ O ₄	(Q)	Sulphur is +5
(C)	H ₂ S ₂ O ₆	(R)	Sulphur is +6
(D)	H ₂ S ₂ O ₇	(S)	Sulphur is +3

- (A) A-R, B-S, C-Q, D-P
- (B) A-S, B-R, C-P, D-Q
- (C) A-P, B-S, C-Q, D-R
- (D) A-R, B-S, C-P, D-Q

Match the column I with column II: Q17

Column – I (Redox Process)			Column – II (Equivalent weight for underlined species)		
(A)	$\underline{As_2S_3} o AsO_3^- + SO_4^{2-}$	(P)	$\frac{M}{28}$		
(B)	$\underline{I}_2 ightarrow I^- + IO_3^-$	(Q)	$\frac{3M}{4}$		
(C)	$\underline{H_3PO_2} \to PH_3 + 2H_3PO_3$	(R)	M		
(D)	$\underline{H_3PO_2}$ + NaOH $→$ Na H_2PO_2 + H_2O	(S)	$\frac{3M}{5}$		

- (A) A-P, B-S, C-Q, D-R
- (B) A-R, B-S, C-P, D-Q
- (C) A-S, B-R, C-Q, D-P
- (D) A-S, B-R, C-P, D-Q
- Q18 Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R:

Assertion (A): PbCl₂ is more stable than PbCl₄. **Reason (R):** PbCl₄ is a powerful oxidising agent. In the light of the above statements, choose the correct answer from the options given below:

- (A) A is true but R is false.
- (B) A is false but R is true.

- (C) Both A and R are true and R is the correct explanation of A.
- (D) Both A and R are true but R is NOT the correct explanation of A.
- Q19 In which of the following reactions no change in valency occurs?

(A)
$$SO_2 + 2H_2S
ightarrow 3S + 2H_2O$$

(B)
$$2Na+O_2
ightarrow Na_2O_2$$

(C)
$$Cl_2 + 2NaOH
ightarrow NaClO + NaCl + H_2O$$

(D)
$$AgNO_3 + KCl o AgCl + KNO_3$$

- **Q20** The brown ring complex compound is formulated as $[Fe(H_2O)_5(NO)]SO_4$. The oxidation state of iron is:
 - (A) +1
- (B) +2
- (C) +3
- (D) Zero
- **Q21** 10 ml of 1 N-HCl, 20 mL of N/2 H₂SO₄ and 30 mL of N/3 HNO₃ are mixed together and volume made to one litre. The normality of H⁺ in the resulting solution is:
 - (A) 3N/100
- (B) N/10
- (C) N/20
- (D) N/40
- Q22 In which of the following compounds, iron has an oxidation state of +3?
 - (A) $Fe(NO_3)_2$
 - (B) FeC_2O_4
 - (C) $[Fe(H_2O)_6]Cl_3$
 - (D) $(NH_4)_2SO_4$.Fe SO_4 .6H₂O
- Q23 Which species are oxidized and reduced in the reaction?

$$FeC_2O_4 + KMnO_4 \rightarrow Fe^{3+} + CO_2 + Mn^{2+}$$

- (A) Oxidised: Fe, C; Reduced: Mn
- (B) Oxidised: Fe: Redued: Mn
- (C) Reduced : Fe, Mn; Oxidised : C
- (D) Reduced: C; Oxidised: Mn, Fe
- **Q24** Match the Column I with Column II:

	Column – I (Compound)	Column – II (Oxidation state of nitrog		en)
(A)	Mg ₃ N ₂	(P)	–1	

(B)	NO	(Q)	+2
(C)	N ₂	(R)	0
(D)	NH ₂ OH	(S)	-3

- (A) A-R, B-S, C-P, D-Q
- (B) A-S, B-Q, C-R, D-P
- (C) A-S, B-R, C-P, D-Q
- (D) A-R, B-S, C-Q, D-P
- Q25 Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R:

Assertion: H_2SO_4 can not act as reducing agent.

Reason: Sulphur can not increase its oxidation number beyond +6.

In the light of the above statements, choose the correct answer from the options given below:

- (A) A is true but R is false.
- (B) A is false but R is true.
- (C) Both A and R are true and R is the correct explanation of A.
- (D) Both A and R are true but R is NOT the correct explanation of A.
- Q26 In which of the following reactions the underlined substance is oxidised?
 - (A) $3Mg + N_2 \rightarrow Mg_3N_2$
 - (B) $2KI + \underline{Br_2} \rightarrow 2KBr + I_2$
 - (C) CuO + H₂ \rightarrow Cu + H₂O
 - (D) $\underline{CO} + Cl_2 \rightarrow COCl_2$
- Q27 What will be the normality of a solution obtained by mixing 0.45 N and 0.60 N NaOH in the ratio 2 :1 by volume?
 - (A) 0.4 N
- (B) 0.5 N
- (C) 1.05 N
- (D) 0.15 N
- **Q28** When P reacts with caustic soda, the products are PH3 and NaH2PO2. The reaction is an example of:
 - (A) oxidation
 - (B) reduction
 - (C) both oxidation and reduction
 - (D) neutralisation

- **Q29** 0.1 mole of H_3PO_x is completely neutrilised by 5.6 g KOH then the true statement is:
 - (A) x = 3 and given acid is dibasic
 - (B) x = 4 and given acid has no P-H linkage
 - (C) x = 2 and given acid does not form acid salt
 - (D) All of the above
- Q30 Magnesium reacts with acids producing hydrogen and corresponding magnesium salts. In such reactions Mg undergoes:
 - (A) reduction
 - (B) oxidation
 - (C) neither oxidation nor reduction
 - (D) simple dissolution
- Q31 Following reaction describes the rusting of iron $4\text{Fe} + 3\text{O}_2 \rightarrow 4\text{Fe}^{3+} + 6\text{O}^{2-}$ Which one of the following statement is incorrect?
 - (A) This is an example of a redox reaction
 - (B) Metallic iron is reduced to Fe³⁺
 - (C) Fe³⁺ is an oxidizing agent
 - (D) Metallic iron is a reducing agent
- Q32 The oxidation number of Fe in $K_4[Fe(CN)_6]$ is :
 - (A) + 6
- (B) + 4
- (C) +3
- (D) + 2
- Q33 When SO₂ is passed into an acidified potassium dichromate solution, the oxidation numbers of sulphur and chromium in the final products respectively are:
 - (A) + 6, +6
- (B) + 6, +3
- (C) 0, +3
- (D) +2, +3
- Q34 Phosphorus has the oxidation state of +3 in:
 - (A) ortho phosphoric acid
 - (B) phosphorus acid
 - (C) meta phosphoric acid
 - (D) pyrophosphoric acid
- Q35 Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R:

Assertion (A): Fluorine acts as a stronger reducing agent than oxygen.

Reason (R): Fluorine is more electronegative than oxygen.

- In the light of the above statements, choose the correct answer from the options given below:
- (A) A is true but R is false.
- (B) A is false but R is true.
- (C) Both A and R are true and R is the correct explanation of A.
- (D) Both A and R are true but R is NOT the correct explanation of A.
- Q36 In which one of the following changes, there is transfer of five electrons?
 - (A) $MnO_4^- o Mn^{2+}$
 - (B) $CrO_4^{2-}
 ightarrow Cr^{3+}$
 - (C) $MnO_4^- o MnO_2$
 - (D) $Cr_2O_7^{ ilde2-} o 2Cr^{3+}$
- Match the Column I with Column II: Q37

(Compound)		Column – II (Oxidation state of central atom)	
(A)	CrO ₅	(P)	+6
(B)	H ₂ SO ₃	(Q)	+4
(C)	CaCl ₂	(R)	+2
(D)	(CH ₃) ₂ SO	(S)	0

- (A) A-P, B-Q, C-R, D-S
- (B) A-S, B-R, C-P, D-Q
- (C) A-S, B-R, C-Q, D-P
- (D) A-P, B-Q, C-S, D-R
- Q38 The oxidation state(s) of Cl in CaOCl₂ (bleaching powder) is/are:
 - (A) +1 only
 - (B) -1 only
 - (C) +1 and -1 only
 - (D) None of these
- **Q39** Which of the following is **not** a redox change?
 - (A) $2H_2S + SO_2 \rightarrow 2H_2O + 3S$
 - (B) 2BaO + O₂ \rightarrow 2BaO₂
 - (C) $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$
 - (D) $2KClO_3 \rightarrow 2KCl + 3O_2$

- **Q40** Which of the following is not a redox reaction?
 - (A) Burning of candle
 - (B) Rusting of iron
 - (C) Dissolving a salt in water
 - (D) Dissolving Zn in dil. H₂SO₄
- Q41 In which of the following the oxidation number of oxygen has been arranged in increasing order:
 - (A) $OF_2 < BaO_2 < KO_2 < O_3$
 - (B) $BaO_2 < KO_2 < O_3 < OF_2$
 - (C) $BaO_2 < O_3 < OF_2 < KO_2$
 - (D) $KO_2 < OF_2 < O_3 < BaO_2$
- **Q42** The oxidation number of oxygen in KO_3 , Na_2O_2

is:

- (A) 3, 2
- (B) 1, 0
- (C) 0, 1
- (D) -0.33, -1
- Q43 In the reaction,

$$2Na_{2}S_{2}O_{3} \ + \ I_{2} \
ightarrow \ Na_{2}S_{4}O_{6} \ + \ 2NaI, \ I_{2}$$

- acts as:
- (A) reducing agent
- (B) oxidising agent
- (C) oxidising agent as well as reducing agent
- (D) none of the above
- Q44 When tin(IV) chloride is treated with excess of conc. hydrochloric acid, the complex ion [SnCl₆]²is formed. The oxidation state of tin in this complex ion is:
 - (A) + 4
- (B) zero
- (C) -2
- (D) -4
- Q45 In the following reaction,

$$3Br_2 + 6CO_3^{2-} + 3H_2O
ightarrow 5Br^- + BrO_3^- + 6HCO_3^-$$

- (A) bromine is oxidised, carbonate is reduced
- (B) bromine is reduced, carbonate is oxidised
- (C) bromine is neither reduced nor oxidised
- (D) bromine is reduced as well as oxidised

Answer Key

Q1	(A)	Q24	(B)
Q2	(C)	Q25	(C)
Q3	(A)	Q26	(D)
Q4	(A)	Q27	(B)
Q5	(A)	Q28	(C)
Q6	(C)	Q29	(C)
Q7	(C)	Q30	(B)
Q8	(A)	Q31	(B)
Q9	(D)	Q32	(D)
Q10	(D)	Q33	(B)
Q11	(A)	Q34	(B)
Q12	(D)	Q35	(B)
Q13	(C)	Q36	(A)
Q14	(D)	Q37	(A)
Q15	(B)	Q38	(C)
Q16	(C)	Q39	(C)
Q17	(A)	Q40	(C)
Q18	(D)	Q41	(B)
Q19	(D)	Q42	(D)
Q20	(A)	Q43	(B)
Q21	(A)	Q44	(A)
Q22	(C)	Q45	(D)
Q23	(A)		

