EE 044252: Digital Systems and Computer Structure Spring 2018

Lecture 7: Equivalence, Faults, Pipeline

EE 044252: Digital Systems and Computer Structure

Topic	wk	Lectures	Tutorials	Workshop	Simulation
Arch	1	Intro. RISC-V architecture	Numbers. Codes		
	2	Switching algebra & functions	Assembly programming		
Comb	3	Combinational logic	Logic minimization	Combinational	
	4	Arithmetic. Memory	Memory Gates		Combinational
	5	Finite state machines	Logic		
Soci	6	Sync FSM	Flip flops, FSM timing	Sequential	Sequential
Seq	7	FSM equiv, scan, pipeline	FSM synthesis		
	8	Serial comm, memory instructions	Serial comm, pipeline		
	9	Function call, single cycle RISC-V	Function call		
	10	Multi-cycle RISC-V	Single cycle RISC-V		Multi-cycle
μArch	11	Interrupts, pipeline RISC-V	Multi-cycle RISC-V		
	12	Dependencies in pipeline RISC-V	Microcode, interrupts		
	13		Depend. in pipeline RISC-V		

Agenda

- Equivalence of States and Machines
- Fault Detection in Sequential Systems
- Pipeline

שקילות מצבים וצמצום מכונות

■ לעיתים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתירים (redundant states): הפונקציה שהם ממלאים ניתנת להשגה באמצעות מצבים אחרים

- כיוון שמספר רכיבי הזיכרון הדרוש למימוש המכונה גדל עם מספר מצביו (אם $\log n$ הוא מספר המצבים, נדרשים $\log n$ רכיבי זיכרון), צמצום מספר המצבים יביא למימוש זול יותר ויאפשר השוואה בין מכונות
 - <u>המטרה:</u> בהנתן מכונה סופית, מצא מכונה המבצעת אותה משימה בדיוק(=עבור כל קלט תפיק אותו פלט) בעלת מינימום מספר מצבים

הגדרות

- הגדרה: מצבים בני-הפרדה
- שני מצבים S_i ו- S_j של מכונה M נקראים S_j של מכונה M נקראים (סדרת-הפרדה) של S_i בני-הפרדה (distinguishable), אם קיימת סדרת כניסה אחת לפחות (סדרת-הפרדה) של S_i המספקת יציאות שונות עבור המצבים ההתחלתיים S_i ו- S_i
 - הגדרה: מצבים k-בני-הפרדה
 - שני מצבים (S_j ו- S_j) ייקראו שני מצבים (S_j) ייקראו (k-distinguishable)

דוגמה

	NS	, z	$:\!M1$ נתונה המכונה
PS	x=0	x=1	
A	E,0	D,1	1 7
B	F,0	D,0	$X \longrightarrow M1$
C	E,0	<i>B</i> , <i>1</i>	
D	F,0	B,0	
E	C,0	F,1	
F	B,0	<i>C</i> ,0	

B פלט 1 ממצב A ופלט 0 ממצב (A ,B) • הם 1 - בני-הפרדה, שכן תחת הקלט 1 תפיק

	NS	, z		
PS	<i>x</i> =0	x=1		
A	E,0	D,1	פרדה:	רם 3 − בני הט (A, E) •
В	F,0	D,0	010 E	0/0 C
C	E,0	B,1	0 0 ▼ C	010 ▼ E
D	F,0	<i>B</i> ,0	E 0/0 → B	C 0/0 F
\boldsymbol{E}	<i>C</i> ,0	F,1	1/7 F	00 1/7 B
F	В,О	<i>C</i> ,0	1/0 ► C	<i>1/0</i> ► D
			0/0 B	0/0 F
			0 0 ▼ F	0 0 ▼ B
			D 0/0 F	F 0/0 E
			1/0 ▲ B	1/0 ▲ C
			1/0 D	1/1 ► B

A - אין אף סדרה באורך 2 המפרידה בין מצבים אלה, אך הסדרה 111 נותנת יציאה 100 מ- A. ו- 101 מ- E. זו סדרת ההפרדה היחידה באורך 3.

הגדרה: מצבים שקולים

שני מצבים $|S_i|$ ו- $|S_i|$ של מכונה M נקראים שקולים (equivalent) שני מצבים אפשרית של S_i של מכונה S_i אותה סדרת יציאה, בין אם המצב ההתחלתי הוא S_i או S_i

$$S_i \equiv S_j$$
 נסמן

= הוא יחס שקילות. יחס שקילות מקיים את שלוש התכונות הבאות:

רפלקסיביות (1)
$$S_i \equiv S_i$$

סימטריות (2)
$$S_i \equiv S_j \Rightarrow S_j \equiv S_i$$

טרנזיטיביות (3)
$$S_i \equiv S_j, \ S_j \equiv S_k \Rightarrow S_i \equiv S_k$$

הגדרות

- יחס שקילות מחלק קבוצה (במקרה זה קבוצת המצבים של המכונה) ל<u>מחלקות שקילות</u>
- כל חברי אותה מחלקה שקולים זה לזה, ואינם שקולים לאף חבר של אף מחלקה אחרת
- איחוד כל המחלקות נותן את כל הקבוצה, וחיתוך כל שתי מחלקות הוא כמובן קבוצה ריקה (כלומר המחלקות זרות הדדית)

ו-
$$S_j$$
 ו- S_j ו- S_j ו- S_j ו- S_j ו- S_j ו- S_j ו-

נגדיר גם:

שקילות אף הוא יחס שקילות, ומתקיים: k

$$\underline{\mathbf{k}}$$
 ו- $\underline{\mathbf{k}}$ S_j ו- S_i שקולים לכל S_j ו- S_i

וכן מתקיים:

■ את הגדרת השקילות ניתן להרחיב לשני מצבים S_j-i S_i משתי מכונות שונות M1 ו-M2 עם אותו אלפאבית כניסה

האלגוריתם של Moore לצמצום מכונה

- עבור (1) עבור (1) אותה יציאה (1) עבור (1) ואותה יציאה (1) עבור (
 - 1 נותנים אותה יציאה (0) עבור כניסה 0 או (BDF) במו כן, המצבים ב- (BDF) נותנים אותה יציאה (0
 - (BDF) -בני- הפרדה מהמצבים ב (ACE) לכן כל המצבים ב (ACE) בני
 - סדרת ההפרדה בין (ACE) לבין (BDF) לבין (ACE) בדוגמא אין סדרת הפרדה (אחרת. החלוקה החדשה היא $\alpha = 0$

הגדרות: מצב עוקב

 P_0 -דוגמא אחרת: מהי החלוקה P_1 המתקבלת מ-כתוצאה מחלוקה כזו למצבים 1-שקולים?

הגדרות:

0 מצב S_i -עוקב (0-successor) של S_i של (0-successor) מצב S_i -עוקב (1-successor) של S_i של (1-successor) מצב S_i -עוקב (1-successor) מצב S_i -עוקב

מצב X-עוקב (X-successor) של מצב S_i של מצב (X-successor) מצב אליו מ-X סדרת הכניסה א

המשך האלגוריתם (לכל שלב החל מהשני והלאה)

- שקולים (k-1)
- גם המצבים <u>העוקבים</u> שלהם (בהתאמה) הינם (k-1) שקולים
 - נקבל חלוקה שהיא <u>עידון</u> של (כלומר לא ניתן לאחד מחלקות
 - **-** קודמות או לערבב ביניהם; מותר רק לפצל מחלקות):

PS	x=0	x=1
A	E ,0	D,1
В	F,0	D,0
C	E ,0	B ,1
D	F,0	B ,0
E	C,0	F,1
F	B ,0	C,0

הערה: כעת החיצים מסמנים את המעבר ממצב למצב העוקב שלו

	NS	S, z
PS	x=0	x=1
A	E ,0	D,1
В	F,0	D ,0
C	E ,0	B ,1
D	F,0	B ,0
E	C,0	F,1
F	B,0	C,0

$$P_2 = (ACE)(BD)(F)$$

X=11 אבין (F) לבין (BD) סדרת ההפרדה בין כך נמשיך הלאה:

ולכן:

$$P_3 = (AC)(E)(BD)(F)$$

$$P_4 = (AC)(E)(BD)(F)$$

("תנאי עצירה") $P_{k+1} = P_k$ עד אשר חלוקת שקילות

משפט: חלוקת שקילות

:משפט

היא יחידה P_k

: הוכחה

- ו-P_b שונות זו מזו P_b בשלילה, נניח כי קיימות שתי חלוקות שקילות P_b ו- ■
- אזי, קיימים שני מצבים S_i ו ו- S_j הנמצאים באותה מחלקה בחלוקה אחת P_b ובמחלקות שונות בחלוקה האחרת (נניח P_b)
 - S_j ו- S_i נובע כי קיימת סדרת כניסה המפרידה בין P
 - P_a -אינם יכולים להיות באותה מחלקה ב S_j -ו S_i

:(Moore משפט (תכונת העצירה של אלגוריתם

אם S_j ו- אם שני מצבים בני-הפרדה במכונה M בעלת מצבים, כי אז קיימת סדרת-הפרדה באורך של n-1 לכל היותר

<u>הוכחה:</u>

באלגוריתם של Moore, i < j אם P_i , i < j אם Moore, יותר מ- P_j (פרט לצעד האחרון). המשפט נובע מכך שמספר המחלקות הוא n לכל היותר.

שקילות בין מכונות

- : הגדרה
- ולהיפך M'ים מצב שקול מתאים ב-M'ים לכל מצב ב-M קיים מצב שקול מתאים ב-M', ולהיפך שתי מכונות
 - המושג שקילות בין מצבים הוא כמו במכונה בודדת:
 - משני מצבים שקולים תתקבל אותה סדרת פלט תחת אותה סדרת קלט
 - בהינתן מכונה M, נמצא מכונה M^* השקולה ל-M ובעלת מספר מצבים מינימלי -
 - M^* תיקרא הצורה המינימלית, או מצומצמת של M^*
- כל מצב במכונה M יתאים למחלקת שקילות של מצבים בחלוקת השקילות של M, כיוון שחלוקת השקילות יחידה, ולכן לא ייתכן כי מצב ב- M יהיה שקול לשני מצבים לא-שקולים ב- M!

$$P_3 = (AC)(E)(BD)(F)$$

	NS,	Z
PS	x=0	x=1
A	E,0	D,1
В	F,0	D,0
C	E,0	B,1
D	F,0	B,0
E	<i>C</i> ,0	F,1
F	В,0	<i>C</i> ,0

 $:M_{I}$ נחזור למכונה

נחליף כל מצב בטבלת המצבים במחלקת השקילות שלו:

	NS,	Z	ות	מיותר
PS	x=0	x=1	 דלקמן:	
(AC)	(E),0	(BD),1		α
(BD)	(F),0	(BD),0	$P_3 = ($	(AC)
(AC)	(E),0	(BD),1		
→ (BD)	(F),0	(BD),0		PS A
(E)	(AC),0	(F),1		В С
(F)	(BD),0	(AC),0		D E
	I			F

רואים שיש שתי שורות מיותרות. נכנה את מחלקות השקילות כדלקמן:

$$P_3 = (\stackrel{\alpha}{AC})(\stackrel{\beta}{E})(\stackrel{\gamma}{BD})(\stackrel{\delta}{F})$$

	NS, z		
PS	x=0	x=1	
A	E,0	D,1	
В	F,0	D,0	
C	E,0	B,1	
D	F,0	B,0	
E	C,0	F,1	
F	B,0	<i>C</i> ,0	

: M_I^* ונקבל את טבלת המצבים הבאה עבור

			NS,	Z	$P_3 = (AC)(E)(BD)(BD)(BD)$		΄ ξ	5 、	
	P	S	x=0	<i>x</i> =1	$P_{\mathcal{J}} = (AC)$	C)(E)	E)(BI)	D)(F	7)
(AC)		α	$\beta,0$	γ,1	. $M_{\it 1}$ מכונה	ולה ל	של <i>M</i>	$_{I}^{st}$ כונה	המנ
(E)		β	$\alpha,0$	8,1		PS		, z	
(BD)		γ	8,0	γ,O		A B	x=0 E,0 F,0	x=1 D,1 D,0	
(F)		δ	$\gamma,0$	$\alpha,0$		C D	E,0 F,0	B,1 B,0	
()			,	·		E F	C,0 B,0	F,1 C,0	

:M2 דוגמה נוספת- מכונה

	NS	, Z	A
PS	x=0	x=1	10
A	E,0	<i>C</i> ,0	$\begin{array}{c c} \hline G \\ \hline 1/0 \\ \hline \end{array}$
B	C,0	A,0	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
C	B,0	G, 0	
D	G,0	A,0	
E	F,1	<i>B</i> ,0	9 9 70
F	E,0	D,0	E
G	D,0	G, 0	

סדרת חלוקות השקילות היא (בכל שלב מצויינת סדרת הפרדה בין שתי מחלקות):

$$P_{o} = (ABCDEFG)$$

$$P_{1} = (ABCDFG)^{o} (E)$$

$$P_{2} = (AF)^{o} (BCDG)(E)$$

$$P_{3} = (AF)(BD)^{1} (CG)(E)$$

$$P_{4} = (A)^{1} (F)(BD)(CG)(E)$$

$$P_{5} = (A)(F)(BD)(CG)(E)$$

	NS, z		
PS	x=0	x=1	
A	E,0	C,0	
В	C,0	A,0	
С	В,0	G,0	
D	G ,0	A,0	
Е	F,1	В,0	
F	E,0	D,0	
G	D,0	G,0	

	NS, z		
PS	x=0	x=1	
A	E,0	C,0	
В	C,0	A,0	
C	В,0	G,0	
D	G,0	A,0	
Е	F,1	В,0	
F	E,0	D,0	
G	D,0	G,0	

$$P_4 = (A)(F)(BD)(CG)(E)$$

 $:M_2^*$ מכונה מצומצמת

	N	NS, z	
PS	x=0	x=1	
$(A) \longrightarrow \alpha$	$\varepsilon,0$	δ , 0	
$(F) \longrightarrow \beta$	$\varepsilon,0$	γ, O	
(BD) $\longrightarrow \gamma$	δ , O	$\alpha,0$	
(CG) $\longrightarrow \delta$	γ, O	δ , 0	
(E) $\longrightarrow \varepsilon$	$\beta, 1$	γ, O	

	NS, z	
PS	x=0	x=I
(A) $\longrightarrow \alpha$	ε,0	δ,0
(F) $\longrightarrow \beta$	ε,0	γ , O
(BD) $\longrightarrow \gamma$	δ,0	α,0
(CG) $\longrightarrow \delta$	γ,0	δ ,0
(E) $\longrightarrow \varepsilon$	β,1	γ, O

- שתי מכונות זהות הנבדלות רק בשמות המצבים נקראות **איזומורפיות** (שוות צורה)
- בדי לוודא ששתי מכונות הן איזומורפיות זו לזו נגדיר צורה סטנדרטית או קנונית, בה נתחיל ממצב כלשהוושמות המצבים ייקבעו לפי סדר הופעתם
- בהתאמה, נקבל מכונה איזומורפית α,ε,δ,β,γ במקום האותיות A,B,C,D,E במקום האותיות למשל נבחר את האותיות לראשונה:

		NS,	, Z	\overline{A}
	PS	x=0	x=1	110
$\alpha \longrightarrow$	A	В,0	C,0	E 1/0 B
$\varepsilon \longrightarrow$	В	D,1	E,0	
$\delta \longrightarrow$	C	E,0	C ,0	5 011
$\beta \longrightarrow$	D	В,0	E,0	
$\gamma \longrightarrow$	E	C,0	A,0	

Agenda

- Equivalence of States and Machines
- Fault Detection in Sequential Systems
- Pipeline

גילוי תקלות במערכות עקיבה

- בדקנו תקלות במערכת צירופית על ידי בדיקות וניסוי
 - קשה יותר לבדוק מערכות עקיבה
- כדאי לפרק מערכות עקיבה למעגלים צירופיים ולרכיבי הזיכרון, ולבדוק כל אחד לחוד
 - : (Scan) שיטת הסריקה •
 - Scanned FF -ב FF החלף כל –
 - חבר את כל ה- Scanned FFs בשרשרת אחת, ההופכת אותם לרגיסטר הזזה אחד
 - חבר כניסת בקרה SCAN CONTROL לכל ה-FF-ים

Scanned FF

מערכת עקיבה עם אפשרות סריקה

מהלך הסריקה

- בפעולה רגילם, FF מתנהגים כרגיל SCAN CONTROL = 0 בפעולה רגילה, •
- FF אחזורי שעון מכניסים לכל SCAN CONTROL = 1 לצורך בדיקה, את הכניסה לבצע בדיקה אחת את הכניסה הדרושה על מנת לבצע בדיקה אחת
- את שבצעים את SCAN CONTROL שוב ל-0 למשך מחזור שעון אחד, מבצעים את FFטוענים לתוכם את תוצאות הבדיקה
- הבדיקה SCAN CONTROL=1 מחזורי השעון הבאים N במשך פמשך החוצה וחוזר חלילה נקראות החוצה ובו זמנית נטענות הכניסות הדרושות לבדיקה הבאה, וחוזר חלילה

מהלך הסריקה

גילוי תקלות בזיכרונות

- שיטת הסריקה איננה מתאימה לזיכרונות
- שיטה אפשרית אחרת היא לכתוב לכל תא בזיכרון, לקרוא אותו, ולהשוות את מה שנכתב למה שנקרא
 - יש צורך לחזור על כך עם תוכן שונה בכל פעם, בכדי לבדוק תקלות שונות התלויות בתוכן
 הנכתב. זהו תהליך ארוך ויקר.
- במקום זאת משתמשים במכונות מצבים המייצרות תוכן אקראי לכאורה, כותבות לזיכרון וקוראות בחזרה
 - משתמשים בקודים לגילוי שגיאות, הפוטרים את מכונת המצבים מלזכור מה נרשם לתוךהזיכרון
 - המכונה יכולה לחשב האם הייתה שגיאה (כלומר תקלה) על פי התוכן הנקרא

גילוי תקלות בזיכרונות (המשך)

מכונות אלו בנויות יחד עם הזיכרון והפעלתן איננה דורשת מכשיר בדיקה חיצוני.
 שיטה זו קרויה

Built In Self Test (BIST)

- ניתן להוסיף לכל זיכרון כמות קטנה של זיכרון רזרבי:
- המכונה לגילוי התקלות יכולה לתכנת את הזיכרון כך שאיזור זיכרון שיש בו תקלה יוחלף
 בזיכרון רזרבי
 - שיטה זו קרויה (Built In Self Repair (BISR) והיא נפוצה מאוד במוצרי זיכרון שונים –

Agenda

- Equivalence of States and Machines
- Fault Detection in Sequential Systems
- Pipeline

Pipeline

שני מדדים לביצועי מערכת ספרתית

- זמן שעובר מתחילת חישוב ועד סופו
 - Latency השהיה,
- Propagation Delay למערכות כלליות
 - קצב החישוב •
 - מספר החישובים שניתן לעשות ביחידת זמן
 - Throughput ספיקה,
- מדדים אפשריים נוספים: הספק, שטח, אמינות וכי

דוגמה להשהיה במימושים סדרתי וצירופי

- N מספרים המשימה חיבור
 - מימוש סדרתי
 - על-ידי מסכם יחיד ורגיסטר
 - t_0 זמן לחיבור יחיד
 - $N \times t_0$: זמן כולל –
 - שני ערוצים מקבילים •
 - $(N/2 + 1) \times t_0$ זמן כולל
 - מימוש צירופי
 - עץ מסכמים בינארי –
 - $\log_2 N \sim$ ייעומק" –
 - $\log_2(N) \times t_0 \sim 1$ מן כולל –

Throughput – ספיקה

- ישוב צירופית! Throughput של מערכת חישוב צירופית!
 - דוגמה: עץ המסכמים
 - $\log_2(N) \times t_0 \sim -$ ההשהיה –
 - רק לאחר סיום החישוב ניתן לספק נתונים חדשים
 - לכן מספר קבוצות הנתונים ליחידת זמן:

$$Throughput = \frac{1}{Latency} = \frac{1}{\log_2(N) \times t_0}$$

$$Throughput = \frac{1}{3 \times t_0}$$
Combinational Example

אבטלת חמרה

- t_{o} בעץ המסכמים, לאחר זמן המסכמים. השלב הראשון בעץ לא עושה דבר.
- י האם ניתן לנצל טוב יותר את החמרה י
 - : כן, אם
- יש לבצע הרבה חישובים זהים על נתונים שונים
 - ניתן לקבוע כרצוננו את קצב הגעת הנתונים
 - נכניס נתונים חדשים \mathbf{t}_0 נכניס לאחר זמן •
- בעיה: עץ המסכמים צירופי –אסור לשנות את כניסותיו עד לסיום החישוב הכולל

+ :אדום ממאמץ

שיפור ספיקה בעזרת Pipeline

Real-World Pipelines: Car Washes

Sequential

Pipelined

Parallel

Idea

- Divide process into independent stages
- Move objects through stages in sequence
- At any instant, multiple objects being processed

שיפור ספיקה בעזרת Pipeline

• פתרון: "נלכוד" את תוצאות הביניים באוגרים (רגיסטרים), ואז נוכל לשנות את הכניסה לפני שנגמר החישוב כולו

(צינור) Pipeline לתהליך בו חישוב טורי עובד בו זמנית על מספר חישובים קוראים •

Pipeline תזמון

Throughput =
$$\frac{1}{t_0}$$

- t_0 נבחר מחזור שעון
- תוצאה חדשה יוצאת בכל מחזור •
- ניצולת מכסימלית של המשאבים

אנלוגיות מועילות

- קו ייצור (הומצא עייי הנרי פורד לפני 100 שנים)
 - קיימות מספר תחנות בקו
- בכל תחנה עושים פעולה שונה, שהיא חלק מהעיבוד
 - הקו עובד בו-זמנית על מוצרים רבים
 - גלי ים
 - תנועה מתמדת –
 - הגל מתחיל לפני שהקודם לו הגיע לחוף
 - הגלים בים יכולים לעלות אחד על השני,בלוגיקה לא כדאי שזה יקרה...
 - י לא כל בעיה ניתנת לפתרון יעיל יותר בעזרת Pipeline
 - האם תמיד ניתן למקבל חישוב!

www.corporate.ford.com

חכנון יחידת Pipeline

- :תכנון אינטואיטיבי
 - תכנן מעגל צירופי –
- הוסף אוגרים במקומות הדרושים עד להשגת ספיקה מכסימלית
 - בעיה אפשרית: חוסר איזון
 - דוגמה: חיבור 3 מספרים

$$X_1+Y_1+Z_2$$
 נקבל -

Pipeline תכנון שיטתי של

- K Pipeline : הגדרה
 - מעגל לוגי ללא משוב
- כולל רכיבים צירופיים ואוגרים
- אוגרים \mathbf{K} אוגרים כל מסלול מכניסה ליציאה כולל בדיוק
- מיועד למנוע את חוסר האיזון שראינו בדוגמה
 - ס-Pipeline דוגמה: מעגל צירופי הוא
 - י תהליך התכנון השיטתי:
 - (0-Pipeline) נתחיל ממעגל צירופי –
- נוסיף אוגרים לפי שני החוקים להלן, שישמרו את ה-Pipeline כון תמיד

חוק ראשון: הוספת אוגרים (רגיסטרים)

- הוסף אוגר לכל יציאה של המערכת
 - החישוב אינו משתנה
- התוצאה מתעכבת במחזור שעון אחד

Retiming :חוק שני

- הורד אוגר מכל יציאה והוסף אוגר לכל כניסה
- ניתן ליישום למערכת שלמה או לרכיב אחד בתוכה
 - : תוצאה
 - הרכיב A עושה בדיוק אותו חישוב על אותם נתונים,אבל מאוחר יותר
- ההשהיה (מדודה במחזורי שעון) מכל כניסה לכל יציאה של המערכת נשארת זהה –

רקני Pipeline

- : נשתמש רק ביחידות בסיסיות הכוללות
 - רכיבים צירופיים
 - אוגרים –

מודולריות:

Technion EE 044252 Winter 2018 Lecture 7

Pipeline-ממעגל צירופי

Pipeline תזמון

- הוא מערכת סדרתית לכל דבר Pipeline •
- יים מחזור השעון נקבע לפי התנאי שבכל מסלול מאוגר לאוגר יתקיים $T_{C} \geq T_{PD}(DFF) + T_{PD}(CL) + T_{SU}(DFF)$
 - HOLD צריך גם לוודא שמתקיימים תנאי

דוגמה

ננסה למצוא Throughput מכסימלי ו- ננסה למצוא •

- ! Latency אבל לא Throughput שימוש ב- pipeline שימוש ב-
- אם מוסיפים את שהיה $t_{
 m pCO}$, $t_{
 m SETUP}$ של האוגרים מסתבר שההשהיה אפילו גדלה במקצת •

דוגמה

ננסה למצוא Throughput מכסימלי ו- Latency •

- ! Latency אבל לא Throughput שימוש ב- pipeline שימוש ב-
- אם במקצת אפילו אפילו מסתבר שההשהיה אל $t_{
 m pCQ}$, $t_{
 m SETUP}$ אם מוסיפים את •

דרך חליפית ליישום החוקים

- חוק ראשון: צייר קו שחוצה את כל היציאות מהמערכת, וסמן את שתי נקודות הקצה שלו
- חוק שני: הוסף קוים בין נקודות הקצה כך שיחצו חיצים שונים, ושכל החיצים שנחצים הם באותו כיוון
- הצב רגיסטר בכל חציית חץ —
 ה-pipeline המתקבל יהיה תמיד
 חוקי

ביקור נוסף בדוגמה

Summary

- Equivalence of States and Machines
- Fault Detection in Sequential Systems
- Pipeline