Assignment Project Exam Help

Sequence labeling problems

https://eduassistpro.github.io/Many problems in NLP can be formulated as sequence

- Many problems in NLP can be formulated as sequence labeling Assignment Project Exam Help
 - POS tagging:
 - The DT man_NN who WP whi Assignment VP collect edu_assist_pro
 - Named
 - Thttps://eduassistpro.glibup.log capitalist_O Andre _B- _ R
 - ► Time exaction Weter timat edu_assist_pro
 - Bedford_O police_O said_O they_O received_O a_O call_O about_O 3:45_B-TIMEX p.m._I-TIMEX Monday_B-TIMEX
 - Spoken language understanding
 - Which_O flights_FLIGHT arrive_ARRIVE in_O Burbank_CITY from_O Denver_CITY on_ON Saturday_Day
 -

Search and Learning

Recall most natural https://eduassistpro.github.io/mathematically as optimization:
Assignment Project Exam Help

Assign And Letter edu_assist_pro

There are two mattps://eduassistpro.github.io/

Search, the module that is responsible for

- Search, the module that is responsible for of the score Audiction Chat edu_assist_pro
- ightharpoonup Learning, the module that is responsible f optimal parameters heta

For simple text classification problems, the search module is fairly straightforward, and most of the work goes to learning. For sequence labeling and more complicated NLP problems, the search module is getting more complicated.

Sequence labeling: first idea

https://eduassistpro.github.io/

Assignment Project Exam Help

Assign And the Chat edu_assist_pro

Classify the https://eduassistpro.github.io/
Add WeChat edu_assist_pro

Sequence labeling example: POS tagging

https://eduassistpro.github.io/

- Let's useAPQS tagging at a Project Exam Help
 The most common used data set for training P
- the Penn TreeBank of the Penn

▶ DT: Determiner

NN: uncountable noun or noun in singula

▶ WP: Wh-pronoun

VBZ: 3rd person singular verb

NNS: plural noun

How do we extract features from sequences in a linear model? https://eduassistpro.github.io/

Assignment Project Exam Help

- We take as input a terminate of word to be assist their of corresponding POS tags **y**, as well as a po , and return a set of features
- Typically we https://eduassistpro.github.io/
 matters for classifying the word at positi re its surrounding words. We define a education assist_pro
 position m of size k, and only extract contextual information from this window.

Extracting features from a window size of 1 https://eduassistpro.github.io/

Assuming a window of 1, the features we will be extracting from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be:

Assignment Project Exam Help
from the example sentence will be: Assignment Project Exam Help
from the example sentence will be:

<math>m = 1, DT m = 1, DT

How many features will we extract if we use a window of size 1?

Weights

https://eduassistpro.github.io/

We can then Arain in generalities the properties of the set of the

Assignment Problem Edu assist promotion
$$w_0$$
 = the -0.05 -3.9 - 4.6 w_0 = ma w_0 = mh https://eduassistpro.githup.6io/ w_0 = whistles w_0 = tunes do w_0 = pianos -4.6 -4.6 -4.6 -4.6 -3.0 -0.08

For example, the weight $\theta_1 = -0.05$ for the feature $f_1(w_0 = the, DT)$

Using these weights we can classify each word in the sequence https://eduassistpro.github.io/

Predicting the tag for each word in the sequence https://eduassistpro.github.io/

After finding the argman at all positions to Ethe sent rice we get:

DT	NŅ	WP	NNS	1.		
A\$\$1	gnan	egotivy	rojeat	edu_a	assist_	pro

w _{0=the} http	s://ed	luass	istpro	z o.gith	NNS <mark>up₆Io</mark> /
$w_0 = \text{man}$ $w_0 = \text{who} A dc$	-4.6 l_ X /6 e (-0.35 C hat	edu_a	assis	-3.5 t <u>_</u> pro
<i>w</i> ₀=whistles	-4.6	-4.6	-4.6	-0.8	-0.63
w_0 =tunes	-4.6	-4.6	-4.6	-0.8	-0.6
<i>w</i> ₀=pianos	-4.6	-4.6	-4.6	-3.0	-0.08

Extracting features from a larger window

https://eduassistpro.github.io/

If we increase the window size to 2 and also include the previous word in the context Project Exam Help

```
f((\mathbf{w} \in \mathbf{w})) = \{(\mathbf{w} \in \mathbf{w}) \mid \mathbf{w} \in \mathbf{w} \in
```

Include weights for the new features

Assign	na na ent	Phoi	ewr E	xvæm	Mesp
w_0 =the	-0.05	-3.9	-4.6	-4.6	-4.6
w₀=mạn ₩SSHQNA	-4.6 -4.6	-0.35 Porta	ŧ_edu	ı_ass	sis <u>\$</u> pro
w_0 =wh				8	-0.63
$w_0=tu$ $w_0=pia$:://ed	uass	istpro	o.gḯth	<u>ာပါဝ</u> ို့ io/
$W_{-1} = START$	-0.92	-3.9			-0.92
$w_{-1} = th Add$	W.eC	Chart e	edu_a	assis	<u>t-opro</u>
w_{-1} =man	-1.6	-2.3			-2.3
w_{-1} =who	-1.8	-4.6	-4.6	-0.2	-4.6
w_{-1} =whistles	-2.3	-4.6	-4.6	-1.6	-0.4
w_{-1} =tunes	-1.6	-4.6	-4.6	-4.6	-0.26

Classification with the new weights

So VBZ receives the highest score when classifying position 4.

Updated classification results

https://eduassistpro.github.io/ DT NN WP VBZ NNS NNS Thassignment Pritifectt Examia Help

	DT.	NN	l. •		NS ,
M-St91gnm	egotosp	roje e	t-edr	ı_ass	sist_pro
<i>w</i> ₀=man	-4.6	-0.35	-4.6	-1.4	-3.5
$\frac{w_0=wh}{w_0=wh}$ https	.//04	11000	ictor	6 Cuth	-4.6
$w_0 = wh IIII ps$).// c u	uass	isthic	7.98 11	100/6310/
<i>w</i> ₀=tunes	-4.6	-4.6			-0.6
$w_0 = pian \Delta s d d$	\ ₩@(lhat e	edu a	assis	t-0 19870
w_{-1} =START	-0.92	-3.9			-0.92
w_{-1} $=$ the	-4.6	-0.7	-4.6	-4.6	-0.75
w_{-1} =man	-1.6	-2.3	-0.9	-1.6	-2.3
w_{-1} =who	-1.8	-4.6	-4.6	-0.2	-4.6
w_{-1} =whistles	-2.3	-4.6	-4.6	-1.6	-0.4
w _{−1} =tunes	-1.6	-4.6	-4.6	-4.6	-0.26

Sequence labeling as structured prediction

- Assignment Project Exam Help

 Enlarging the window to include more context helps, to a
- sequences of t NNS" shou attps://eduassistpro.github.io/ Incorporating such information in the m improve tage compact that edu_assist_pro
- ▶ The tags are of course not observable in the data, and they need to be predicted together.

Sequence labeling: Computing a global score for the entire sequence https://eduassistpro.github.io/

Consider an possible label sequences for the input sequence, and choose the one that has the highest score

Assignment Project Example Project of the input sequence, and choose the one that has the highest score

Assignment Project Example Project Of the input sequence, and choose the one that has the highest score

Assignment Project Example Project Example Project Of the input sequence, and choose the one that has the highest score

Assignment Project Example Project Input sequence, and choose the one that has the highest score

Assignment Project Input sequence, and choose the one that has the highest score

Www.(DT, NN, WP, VB)

- For a sequence of Welchat edu_assist_pro, there are N^M possible sequences, a very large number!
- ► To find the sequence with the highest score, we need to do this efficiently
- The common solution is the Viterbi Algorithm

Sequence labeling as structured prediction

The goal of the https://eduassistpro.github.io/the highest score f

Assignment Project Exam Help
$$y \in \mathcal{Y}(w)$$

Assign And West edu_assist_pro

► To make the co r the entire sequentips://eduassistpro.github.io/ m

$$Add_{\mathbf{w}}, \mathbf{w}e^{\underbrace{\mathbf{w}}_{m-1}^{m-1}}edu_{assist_pro}$$

► The local score is a weighted sum of the local features at position m.

$$\psi(\mathbf{w}_{1:M}, y_m, y_{m-1}, m) = \boldsymbol{\theta} \cdot \boldsymbol{f}(\mathbf{w}, y_m, y_{m-1}, m)$$

Feature representation for sequences

```
f(w) = \text{the man who whistles tunes pianos}, y = \text{DT NN WP VBZ VBZ NNS})
= \sum_{m=1}^{M+1} f(w, y_m, y_{m-1}, m)
= f(w, DASSIGNATION Project Exam Help)
= f(w, DASSIGNATION Project Exam Help)
= f(w, DASSIGNATION Project Exam Help)
= f(w, VBZ, graph Project Exam Help)
= f(w, VBZ, graph Project Exam Help)
+ f(w, VBZ,
```

Decoding for sequences: The Viterbi algorithm

https://eduassistpro.github.io/

► The goal is to find the sequence of tags with the highest score:

Assignment Project Exam Help

https://eduassistpro.github.io/

$$Add \underset{\mathbf{y}_{1:M}}{\text{WeC}} \underbrace{\mathbf{y}_{1:M}}_{m=1}^{+1} \mathbf{t}_{s} \mathbf{edu_assist_pro}$$

► Instead of finding the argmax for the entire sequence directly, we start by finding the max up to position *m* and keep a sequence of back pointers

Finding the max score for the sequence

https://eduassistpro.github.io/

Assignment Project Exam Help

max \(\frac{\psi}{\psi}\) \(\frac{\psi}{\psi}\psi\) \(\frac{\psi}{\psi}\psi\) \(\frac{\psi}{\psi}\) \(\frac{\psi}{\psi}\psi\) \(\frac{\psi}{\psi}\psi\) \(\frac{\psi}{\psi}\psi\) \(\frac{\psi}{\psi}\psi\) \(\frac{\psi}{\psi}\psi\) \(\frac{\psi}{\psi}\psi\) \(\frac{\psi}{\psi}\psi\) \(\frac{\psi}{\psi}\psi\)

Viterbi variable

https://eduassistpro.github.io/

Caching Viterbi variables as intermediate results:
Assignment Project Exam Help

https://eduassistpro.github.io/
$$\underset{y_{m-1}}{\underset{y_{m-1}}{\text{Add}}}$$
 edu_assist_pro

Note that $\upsilon_1(y_1) \triangleq s_1(y_1, \lozenge)$ and the maximum overall score for the sequence is the final Viterbi variable $\max_{\mathbf{y}_{1:M}} \Psi(\mathbf{w}_{1:M}, \mathbf{y}_{1:M}) = \upsilon_{M+1}(\blacklozenge)$

The Viterbi Algorithm

https://eduassistpro.github.io/

Viterbi Algorithm: Each $s_m(k, k')$ is a local score for tag $y_m = k$ and $y_{m-1} = k$ Ssignment Project Exam Help

```
1: for k \in \{0, \dots, k\} is in the property of that edu_assist_pro v_1(k) \leftarrow s_1(k, \vee) is for m \in \{2 \cdot \text{https://eduassistpro.github.io/}

3: for m \in \{2 \cdot \text{https://eduassistpro.github.io/}

5: v_m(k) \leftarrow \max_{k'} s_m(k, k')

6: b_m(k) \leftarrow \max_{k'} s_m(k, k')

6: b_m(k) \leftarrow \max_{k'} s_m(k, k')

7: y_M \leftarrow \operatorname{argmax}_k s_{M+1}(\blacklozenge, k) + v_M(k)

8: for m \in \{M-1, \dots, 1\} do

9: y_m \leftarrow b_m(y_{m+1})

10: return y_{1:M}
```

Assuming these parameters

	DŢ	NN	WP .	VBZ	NNS _	. ♦.
w_0 =the A	S81 G 11	ment	Hioj	eat ₆ E	xana l	Telp
<i>w</i> ₀=man	-4.6	-0.35	-4.6			$-\infty$
$w_0 = \text{who} A_{SS}$	ighter	Labora	eCiba	ŧ edu	_assi	s t ∞pro
<i>w</i> ₀=whistles	-4.6	-4.6	-4.6			$-\infty$
<i>w</i> ₀=tunes	httpc	· //od	uocci	ctoro	aifb.	$-\infty$
<i>w</i> ₀=pianos	mups	s.//eu	uassi	stpro	-Ai981	\ <u>\</u> \\
$t_{-1} = \Diamond$	-0.92	-3.9	-1.9	d		$-\infty$
$t_{-1} = DT$	12.90	10 .69	Dat e	au_a	ssist_	_Hi
$t_{-1} = NN$	-4.6	-1.6	-0.3	-0.36	-1.0	-0.7
$t_{-1} = WP$	-3.8	-4.6	-4.6	-0.2	-4.6	-4.6
$t_{-1} = VBZ$	-0.2	-1.3	-1.6	-4.6	-0.92	-2.3
w_{-1} =NNS	-4.6	-4.6	-0.1	-4.6	-3.9	-1.2

Example Viterbi computation

Additional features (and their weights) can be added

	DT	NN	WP	VBZ	NNS	•
<i>w</i> ₀ =the	_ -0.05	-3.9	-46 D	1 -4.6	044.E	am Help
$w_0=$ man	1 461	2191321	1161	<u>røje</u>	المنظع الما	am Heip
w_0 =who	-4.6	-4.6	-0.05	-4.6		
<i>w</i> ₀=whistles	-4.6	-4.6	4.6	0.8	مارر	acciat pro
w_0 =tunes A_S	S-Hgn	THE	typco	ibet	eau_	_assist_pro
<i>w</i> ₀=pianos	-4.6	-4.6 ¹	-4.6	-3.0		∞
$t_{-1} = \Diamond$	-					∞
t_{-1} $=$ DT	- htt	ns://	edus	ecic	toro	.giţhub.io/
$t_{-1} = NN$	- 1166	P3.//	Cauc	10010	tpio,	giriub.io/
t_{-1} =WP	-3.8	-4.6	-4.6	-0.		
$t_{-1} = VBZ$	-0. A	4. 3 X/	arch.	24.DC	י בו	ssist_pro
w_{-1} =NNS	-4.6	-4.6	-0.1	4.00	iu_a	oolot_pro
w_{-1} =START	-0.92	-3.9	-1.9	-3.5	-0.92	$-\infty$
w_{-1} $=$ the	-4.6	-0.7	-4.6	-4.6	-0.75	-10
w_{-1} =man	-1.6	-2.3	-0.9	-1.6	-2.3	-1
w_{-1} =who	-1.8	-4.6	-4.6	-0.2	-4.6	-9
w_{-1} =whistles	-2.3	-4.6	-4.6	-1.6	-0.4	-0.5
w_{-1} =tunes	-1.6	-4.6	-4.6	-4.6	-0.26	-0.3

Feature templates used in SoA models

https://eduassistpro.github.io/

State-of-the-atts goden treed to Project set x fra the pod high-order transitions

- current word made the control control
- previous words, w , w
- next words, https://eduassistpro.github.io/
- \triangleright previous two tags, y_{-1}, y_{-2}
- ► for rare word:dd WeChat edu_assist_pro
 - first k characters, up to K=4
 - last k characters, up to k=4
 - ightharpoonup whether w_m contains a number, uppercase character, or hyphen

Parameter estimation for sequence labeling

https://eduassistpro.github.io/

Assignment Project Exam Help

We can extend the text classification models to sequ

Assign And Medit Proglat edu_assist_pro

Text classificat	beling			
Naïve Bayes https://edua	ssistpro.gith Modets/(HMM)			
Logistic Regression	dom Fields (CRF)			
	t edu assist pro			
Support Vector Machines (SVM)	achines (SVM)			