

PROBLEM STATEMENT

- → How can we make it easier for customers to find exactly what they're looking for?
- → How can we recommend items that a customer might be interested in?

WHY IS THIS USEFUL?

- → Quicker and more efficient buying process
- → Reduce returns and transport emissions
- → Increase revenue by increasing the number of purchases per customer

DATASETS: PROVIDED BY H&M

→ TARGET VARIABLE: article_id

CUSTOMERS: 3 million TRANSACTIONS: 30 million ARTICLES: 100,000

EXPLORATION & ANALYSIS

Top customer bought 1346 items

 \rightarrow

Repurchased top product 8 times

TRANSACTIONS BY DEPARTMENT (MILLIONS)

H&M'S TOP CUSTOMER PURCHASES

- Ladieswear counts for over 70% of total transactions
- 8 times more ladieswear purchased than menswear

EXPLORATION & ANALYSIS

Skinny jeans are H&M's most popular product

Most popular product was a repeated purchase of top customer

TRANSACTIONS BY AGE (MILLIONS)

H&M'S TOP PRODUCTS (TRANSACTIONS)

← Ages 24-26 make the most purchases

MODELING

BASELINE MODEL:

- → MOST POPULAR ITEMS
- → RECOMMEND MOST POPULAR ITEM WITHIN A CUSTOMER'S MOST FREQUENTLY PURCHASED PRODUCT TYPE

ADVANCED MODELING:

- → DECISION TREE
- → MARKET BASKET ANALYSIS:
 - ◆ COSINE SIMILARITY
 - PEARSON SIMILARITY

COLLABORATIVE FILTERING

3 INPUT TABLES:

- → ARTICLE PURCHASE COUNT
- → PURCHASE DUMMY
- → NORMALIZED PURCHASE COUNTS

RESULTS

MOST ACCURATE MODEL?

→ COSINE SIMILARITY

WHICH TABLE?

→ PURCHASE DUMMY

ACCURACY METRICS?

→ RMSE & PRECISION AND RECALL

