$$W_{ABB} = \int_{A}^{B} - \gamma \frac{mm'}{\pi^2} \bar{u}_2 d\bar{s} =$$

$$=-\gamma mm' \int_{R_{\Delta}}^{R_{B}} \frac{dr}{r^{2}} = -\gamma mm' \left[-\frac{1}{r}\right]_{R_{\Delta}}^{R_{B}} =$$

$$\Rightarrow \frac{1}{\epsilon} = -\gamma \frac{mm'}{r} + cost$$

$$r \rightarrow \infty$$
 $F_c \rightarrow 0$ $E_p \rightarrow 0 \Rightarrow cat=0$

$$E_{m} = E_{k} + E_{p} = cost$$
 $= 0$

$$E_{m,i} = E_{m,f} \Rightarrow \frac{1}{2} \text{ ye } \Sigma_i - \gamma \frac{m_{\gamma} \text{ ye}}{r_{\gamma}} = \frac{1}{2} \text{ ye } \Sigma_f^2$$