

Lecture 5. Features and Fitting
Harris corner detector

Juan Carlos Niebles and Jiajun Wu
CS131 Computer Vision: Foundations and Applications

What will we learn today?

• Keypoint localization: Harris corner detector

Some background reading: Rick Szeliski, Chapter 4.1.1; David Lowe, IJCV 2004

Keypoint Localization

• Goals:

- Repeatable detection
- Precise localization
- Interesting content
- \Rightarrow Look for two-dimensional signal changes

Finding Corners

- Key property:
 - In the region around a corner, the image gradient has two or more dominant directions
- Corners are repeatable and distinctive

Corners as Distinctive Interest Points

Design criteria

- We should easily recognize the corner point by looking through a small window (locality)
- Shifting the window in *any direction* should give *a large change* in intensity (good localization)

"flat" region:
no change in all
directions

"edge":
no change along
the edge direction

"corner": significant change in all directions

Slide credit: Alyosha Efros

$$\begin{array}{ccc}
\sum I_x^2 & \longrightarrow & \text{Small} \\
\sum I^2 & \longrightarrow & \text{Large}
\end{array}$$

$$\sum I_x^2 \longrightarrow \text{Small}$$
 Flat

Corners versus edges

$$\sum I_x^2 \longrightarrow ??$$

$$\sum I_y^2 \longrightarrow ??$$

Corner

- Localize patches that result in large change of intensity when shifted in any direction.
- When we shift by [u, v], the intensity change at the center pixel is:

"corner":
significant change
in all directions

 Measure change as intensity difference:

$$(I(x+u,y+v)-I(x,y))$$

 That's for a single point, but we have to accumulate over the patch or "small window" around that point...

• When we shift by [u, v], the change in intensity for the "small window" is:

This measure of change can be approximated by (Taylor expansion):

$$E(u,v) \approx [u \ v] M \begin{vmatrix} u \\ v \end{vmatrix}$$

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 Gradient with respect to x , times gradient with respect to y

checking for corner

 I_xI_y

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 Gradient with respect to x , times gradient with respect to

Sum over image region – the area we are checking for corner

times gradient with respect to y

$$m{M} = \left[egin{array}{ccc} \sum I_x I_x & \sum I_x I_y \ \sum I_x I_y & \sum I_y I_y \end{array}
ight] = \sum \left[egin{array}{c} I_x \ I_y \end{array}
ight] \left[I_x \ I_y
ight]$$

Slide credit: Rick Szeliski

What Does This Matrix Reveal?

- First, let's consider an axis-aligned corner.
- In that case, the dominant gradient directions align with the *x* or the *y* axis

•
$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

- This means: if either λ is close to 0, then this is not a corner, so look for image windows where both lambdas are large.
- What if we have a corner that is not aligned with the image axes?

General Case

• Since
$$M = \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 is symmetric, we can re-rewrite $M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$

(Eigenvalue decomposition)

• We can think of M as an ellipse with its axis lengths determined by the eigenvalues λ_1 and λ_2 ; and its orientation determined by R

 A rotated corner would produce the same eigenvalues as its nonrotated version.

Interpreting the Eigenvalues

• Classification of image points using eigenvalues of *M*:

Corner Response Function

$$Q = \det(M) - a \operatorname{trace}(M)^2 = {1 \choose 1}_2 - a({1 \choose 1} + {1 \choose 2}^2$$

- Fast approximation
 - Avoid computing the eigenvalues
 - $-\alpha$: constant (0.04 to 0.06)

Window Function w(x,y)

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- Option 1: uniform window
 - Sum over square window

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Problem: not rotation invariant

1 in window, 0 outside

- Option 2: Smooth with Gaussian
 - Gaussian already performs weighted sum

$$M = g(\sigma) * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Result is rotation invariant

Summary: Harris Detector [Harris88]

$$M(\sigma_{I}, \sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix}$$

 σ_D : for Gaussian in the derivative calculation

 σ_I : for Gaussian in the windowing function

2. Square of

derivatives

3. Gaussian

4. Cornerness function - two strong eigenvalues

$$Q = \det[M(S_I, S_D)] - a[\operatorname{trace}(M(S_I, S_D))]^2$$

= $g(I_x^2)g(I_y^2) - [g(I_xI_y)]^2 - \alpha[g(I_x^2) + g(I_y^2)]^2$

5. Perform non-maximum suppression

• Input Image

- Input Image
- Compute corner response function θ

- Input Image
- Compute corner response function θ
- Take only the local maxima of θ , where θ > threshold

- Input Image
- Compute corner response function θ
- Take only the local maxima of θ , where θ > threshold

Harris Detector – Responses [Harris88]

Harris Detector – Responses [Harris88]

Harris Detector – Responses [Harris88]

• Results are well suited for finding stereo correspondences

Harris Detector: Properties

• Translation invariance?

Harris Detector: Properties

- Translation invariance
- Rotation invariance?

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response θ is invariant to image rotation

Harris Detector: Properties

- Translation invariance
- Rotation invariance
- Scale invariance?

Summary

- Harris corner detector
 - Formulation
 - Examples