Indicateurs d'inégalité

Les indicateurs d'inégalité

• Gini et Courbe de Lorenz

• Utilisation des quantiles

• Histogramme

• La parade des nains ou parade de Pen

Gini

• Varie entre 0 et 1

- 0 : Situation d'égalité parfaite
 - Un groupe représentant une certaine proportion de la population détient toujours cette même proportion de richesses

- 1 : Inégalité maximale
 - Une personne détient l'ensemble des richesses

Plusieurs façons de définir G.

• Distance moyenne entre deux pairs de revenus exprimée comme proportion du revenu total.

- G mesure l'aire représentant l'écart entre la courbe de Lorenz (situation réelle) et la courbe représentant la distribution idéale
 - La courbe de Lorenz décrit la part de richesse détenue par une proportion de la population.

- Courbe de Lorenz : la représentation graphique de la fonction qui, à la part x des détenteurs d'une part d'une grandeur, associe la part y de la grandeur détenue
- G=A/(A+B)
- Page Wikipedia

Courbes de Lorenz

• Les pays les plus égalitaires ont un coefficient de l'ordre de 0,2 (calculé sur le revenu).

• Les pays les plus inégalitaires au monde ont un coefficient de 0,6 (calculé sur le revenu).

• En France: autour de 0,3 en 2012 (calculé sur le revenu).

Evolution Gini en France

Indice de Gini (revenu), France 2003-2011

Indice de Gini (revenu), France 2003-2011

Indice de Gini (revenu), France 2003-2011

Indice de Gini (revenu), France 2003-2011

Limites de l'indice de Gini

- Des courbes de Lorenz différentes peuvent correspondre à un même indice de Gini.
 - Si 50 % de la population n'a pas de revenu et l'autre moitié a les mêmes revenus, l'indice de Gini sera de 0,5.
 - Même résultat de 0,5 avec la répartition suivante :
 - 75 % de la population se partage 25 % du revenu global
 - les 25 % restants se partage de manière identique les 75 % restants du revenu global.

Les quantiles

• Quantile : valeur en dessous de laquelle se trouve une certaine proportion de la population.

Quartile

• Décile

• Etc.

Trois utilisations

• Ecart ou rapport interquartile ou interdécile

• La boîte à moustaches

• Part des revenus détenus par une certaine proportion de la population

Ecart ou rapport interquartile ou interdécile

• D4-D1 : difference entre le salaire nécessaire pour être dans les 25% les plus riches et celui en dessous duquel on est dans les 25% les moins riches

• D9/D1 : rapport entre le salaire necessaire pour être dans les 10% les plus riches et celui à partir duquel on est dans les 10% les plus pauvres

• On peut ensuite étudier l'evolution de ces indicateurs

Rapport interdécile

Revenus après impôts et prestations sociales. Pour 2015 : estimation provisoire Insee. Lecture : en 2015, le niveau de vie minimum des 10 % les plus riches était 3,5 fois supérieur au niveau de vie le plus élevé des 10 % les plus pauvres.

La boîte à moustaches

• Représente la médiane, les quartiles, les minimum et maximum, l'écart interquartile

- Permet d'observer les données exceptionnelles (dites aberrantes)
 - Eloignées de Q3 de plus de 1,5*EIQ

Boîtes à moustache

Suppression des salaires mensuels supérieurs à 20 000 euros

Relation entre salaire et PCS

Transformation logarithmique

• La transformation log : une même distance sur le graphique correspond alors à la multiplication par un même nombre.

• La transformation log réduit le poids des valeurs extrêmes

Histogramme

• Densité en axe des ordonnés

• L'aire représente la proportion

• Ne pas confondre avec le diagramme en barres ou en bâtons

Un histogramme simple
hist(d\$Murder)

Taux d'arrestation pour meurtre dans les différents Etats américains

Taux d'arrestation pour cent mille habitants

Problème avec les salaires

Passage au log

Histogramme des salaires


```
# Construction de l'histogramme avec l'échelle logarithmique.
# Il est nécessaire de supprimer les 0, parce que log(0) = impossible
# j'attribue 1 à la place de 0 avant le passage au log (\log(1) = 0)
d$SALMEE_ln <- d$SALMEE
dSALMEE_1n[dSALMEE==0] <- 1
d$SALMEE_ln <- log(d$SALMEE_ln)
# Je vais changer l'axe des abscisses
# pour qu'il affiche le véritable salaire et non le logarithme du salaire.
# Pour cela, je vais d'abord supprimer l'axe des abscisses dans le graphique
# avec l'argument xaxt="n"
hist(d$SALMEE_ln,
     main="Histogramme des salaires",
     probability=T,
     col="grey",
     xaxt="n".
     xlab="salaire, échelle logarithmique")
# Je vais maintenant ajouter l'axe manguant.
# je crée deux vecteurs, l'un contenant les valeurs
# que je veux afficher sur le graphique (les salaires) et
# l'autre les logarithmes correspondant (coordonnées sur le graphique)
# Pour connaître les maximum et minimum de ma variable
summary(d$SALMEE_ln)
x < - seq(0,14,by=1)
salaire <- exp(x)
salaire <- round(salaire)</pre>
# je trace mon axe
axis(side=1,at=x,labels=salaire)
```

Diminuer la largeur des barres pour se rapprocher de la "normalité"

Histogramme des salaires

• L'argument breaks est ajouté au programme précédent

```
# Je vais changer l'axe des abscisses
# pour qu'il affiche le véritable salaire et non le logarithme du salaire.
# Pour cela, je vais d'abord supprimer l'axe des abscisses dans le graphique
# avec l'argument xaxt="n"
hist(d$SALMEE_ln,
     main="Histogramme des salaires",
     probability=T,
     col="grey",
     xaxt="n",
     xlab="salaire, échelle logarithmique",
     breaks = seq(0,14,0.1)
# Je vais maintenant ajouter l'axe manquant.
# je crée deux vecteurs, l'un contenant les valeurs
# que je veux afficher sur le graphique (les salaires) et
# l'autre les logarithmes correspondant (coordonnées sur le graphique)
# Pour connaître les maximum et minimum de ma variable
summary(d$SALMEE_ln)
x < - seq(0,14,by=1)
salaire <- exp(x)
salaire <- round(salaire)</pre>
# je trace mon axe
axis(side=1,at=x,labels=salaire)
```

La parade des nains ou la parade de Pen

- Chaque individu a une taille proportionnelle à son revenu
 - On divise chaque revenu par le revenu moyen

• La parade des nains

• Chaque graphique montre des caractéristiques différentes de la distribution

• La parade des nains montre la hauteur des plus riches

• La boîte à moustache montre bien les variations

• L'histogramme montre mieux le milieu de la distribution