

# Action and Emotion Recognition by Graph Convolutional Network (GCN)



Instructor - Cesare Alippi
TAs - Tommaso Marzi and Gabriele Dominici
Presenter – S. M. Hossein Mousavi

May 2024



# **Outline**

- Introduction
- Action and Emotion Recognition
- Emotion Recognition Modalities
- Body Motion Modality
- Xia Dataset
- Graph Convolutional Network (GCN)
- The Contribution
- Results
- References



## Introduction

#### • Importance [1]

- > GDL methods offer a deeper understanding of the **data structure** by capturing **subtle details** of the input.
- Also, it can handle **irregular data structures** like **body skeletons** in which each joint (or node in the graph) can have a varying number of connections to other joints.
- It normally leads to higher accuracy by **capturing the complex relationship** of the data (extracting relevant features of edges and joints).

#### Challenges

- **Feature extraction** is always a problem in traditional methods
- Even algorithms such as CNN, which extract features, can't handle different data structures and handle everything **grid-like**
- > Older methods can't handle irregular data structures of the human body perfectly.

# Introduction

#### Solution

- > To extract just **meaning full features** automatically exactly based on the data structure as a graph.
- > To avoid unnecessary computation due to having more understanding of the data structure.
- > To handle irregular shapes of the body more effectively, by mapping skeletal data into graphs.

#### Drawback

➤ The data structure for input must be extracted and defined.



# **Action and Emotion Recognition**

#### Action Recognition (AR):

It involves using machine learning and pattern recognition to classify human actions such as walking, running, jumping, and more.

#### • Emotion Recognition (ER):

The same techniques are used to determine subjects' emotional states, such as neutral, anger, joy, and more.

#### • In Body Motion:

- ➤ Body motions are sequential frames of bodily movement over time, which consist of joints and connected bones/edges.
  - ✓ By investigating **joint angles, positions, rotations**, and the relationships between these joints and edges, actions and emotions could be interpreted [2].

#### **Ekmanian ER Model**

- *1. Joy*
- 2. Anger
- 3. Sadness
- 4. Fear
- 5. Disgust
- 6. Surprise
- 7. Neutral





**Ekmanian ER Model** 

2-D Arousal Valance ER Model [3]

# **Action and Emotion Recognition**

## • Some AR Applications are:

- Security
- > Sport
- Physical Therapy
- > Entertainment
- > Smart Home

## > Some AR Challenges are:

- Variability in Actions
- ➤ Real-Time Processing
- > Data Scarcity
- Privacy Issues





# **Action and Emotion Recognition**

## • Some ER Applications are:

- > Healthcare
- > Automotive
- > Education
- > Security
- > Marketing

## > Some ER Challenges are:

- ➤ Variability in Expression
- > Subtlety of Emotional Expressions
- Data Scarcity
- Privacy Issues





# **Emotion Recognition (ER) Modalities** [4]

- Facial Expressions: Image Change in Facial Wrinkles
- **Vocal Expressions:** Sound Signal Change in Vocal Tone
- **Physiological Signals for ER:** Vector Signal Ratio of the Sudden Change √№
- Text-Based ER: String Change in Writing Style
- Eye Gaze and Pupil Dilation for ER: Vector Signal Change in Eye Direction or Pupil Size
- **Body Motion for ER:** Motion Matrix Change in Body Posture



## **Xia Dataset**

#### • Structure:

- ➤ 11 Min in 572 Samples and Four Subjects
- ➤ BVH Format and 32 Body Joints
- ➤ Recorded by **Vicon optical** motion capture system
- Five Actions of Walking, Running, Jumping, Kicking, Punching
- **Emotions of Neutral, Proud, Angry, and Depressed.**
- ➤ Publicly Available by <u>Link</u>





Samples of the Xia dataset generated by BVHView software

# **Body Motion**

- This data type is easily collectible with normal cameras or motion capture technologies; in the latter case, individual identity won't be revealed.
- Normal color sensors: Extracting body joints and edges by algorithms.
  - > Any smartphone or digital camera.
- Mocap infrared sensors: These are the same as color sensors, but subject's identity is secured.
  - ➤ Kinect, OptiTrack, and Vicon.
- Mocap Wearable sensors: Same as above, and the most precise and the subject's identity is secured.
  - > VR headset and handheld controller and Xsens.













# **Body Motion**

**BioVision Hierarchy (BVH) file** [5]: BVH file format stores motion capture data in the form of **position and rotation of joints over time**.

- > It has a hierarchical skeletal structure of the body in which each joint has a name.
- ➤ A lot of software like Blender and Maya use it as **animation** files.



Skeletal structure of the Xia dataset samples

# **Graph Convolutional Network (GCN)** [6-8]

- GCN extends the concept of convolution, traditionally used to process grid-like data (such as images), to operate on graphs.
- This allows GCNs to effectively capture the relationships and interactions between nodes (entities) in a graph.
- Powerful tools for tasks involving networks, such as social network analysis, molecular structure analysis, and body skeleton.

## • GCN Input:

- For instance, it is feature matrix X and an adjacency matrix A.
- ➤ X contains the feature vectors of each node in the graph, with dimensions [N×F], where N is the number of nodes and F is the number of features per node.
- A represents the connections between nodes, with dimensions [N×N], where a value of 1 indicates a connection between nodes, and 0 indicates no connection.

# **Graph Convolutional Network (GCN)**

#### GCN Convolution Layers:

A graph convolution layer **updates the feature vector of each node** by aggregating features from its neighbors and its own features, often using the adjacency matrix A and a set of learnable weights. All followed by ReLU.

#### • Hidden Layers:

A GCN can have multiple graph convolution layers stacked to learn increasingly abstract representations of the graph data. Tasks such as **dropout**, **normalization**, **and attention mechanism**.

#### • Output Layer:

The final layer of a GCN transforms the learned representations into the desired output format, which can be node-level predictions (e.g., node classification). It is **fully connected**.



# **Graph Convolutional Network (GCN)**

#### • Training Loss Function:

 $\triangleright$  GCNs are trained using **gradient descent** to minimize a loss function, **adjusting the weights** W to improve the model's predictions.

#### • Why GCN in Body Motion?:

- Applying GCNs to classify body motion resembles the **natural graph structure of human anatomy**, where **joints and limbs can be represented as nodes and edges**, respectively.
- ➤ By understanding these relationships, GCNs can accurately classify various types of body motions, benefiting applications in **sports science**, **physical therapy**, and human-computer interaction.
- For emotion recognition, it is superior for **subtle movement representing emotions** over other methods.

- Defining joint and body skeletal structure
- Loading the dataset for Action/Emotion
- Interpolating the number of frames to the maximum to have unified samples
- Converting body skeleton to graph
- Defining GCN model structure
- The recording node features and edge list
- T-SNE plot of Nodes
- Splitting dataset to 70 % train and 30% test
- Training the model
- Testing the model
- Piloting results (acc/loss plot, classification report, and confusion matrix)



#### **Defining joint and body skeletal structure**

```
Joint_Names (31) = [
"Hips", "LHipJoint", "LeftUpLeg", "LeftLeg", "LeftFoot", "LeftToeBase", "RHipJoint", "RightUpLeg", "RightLeg", "RightFoot",
"RightToeBase", "LowerBack", "Spine", "Spine1", "Neck", "Neck1", "Head", "LeftShoulder", "LeftArm", "LeftForeArm", "LeftHand",
"LeftFingerBase", "LeftHandIndex1", "LThumb", "RightShoulder", "RightArm", "RightForeArm", "RightHand", "RightHandIndex1", "RThumb"

[]
```

Pairs of joints that form the skeleton's connections

```
Skeletal_Connections (28) = [
```

```
("Hips", "LHipJoint"), ("LHipJoint", "LeftUpLeg"), ("LeftUpLeg", "LeftLeg"), ("Hips", "RHipJoint"), ("RHipJoint", "RightUpLeg"), ("RightUpLeg", "RightLeg"), ("RightLeg", "RightFoot"), ("RightFoot", "RightToeBase"), ("Hips", "LowerBack"), ("LowerBack", "Spine"), ("Spine", "Spine1"), ("Spine1", "Neck"), ("Neck", "Neck1"), ("Neck1", "Head"), ("Spine1", "LeftShoulder"), ("LeftShoulder", "LeftArm"), ("LeftArm", "LeftForeArm"), ("LeftForeArm", "LeftHand"), ("LeftHand", "LfthigerBase"), ("LeftFingerBase", "LeftHandIndex1"), ("Spine1", "RightShoulder"), ("RightShoulder", "RightArm"), ("RightArm", "RightForeArm"), ("RightForeArm", "RightHand"), ("RightHand", "RightFingerBase"), ("RightFingerBase", "RightHandIndex1"), ("RightHand", "RThumb")
```

## **Converting body skeleton to graph**

- Graph **nodes** represent **body joints**
- Edges represent skeletal connections



- Node in body motion is the multiplication of the number of body joints by the number of frames
- Node features are descriptions of nodes/joints (how many ways a node/joint could be described)
  - o For instance, 3000\*1000 means there are 3000 nodes which each could be described in 1000 ways
- Edges are connections of joints multiplied by the number of frames
  - o For instance, 2\*3000 means we have 3000 edges, and each row represents two nodes connection
  - o If the first column is [0, 1], it indicates there is an edge from node 0 to node 1

#### • Input Layer:

➤ The input consists of node features (x) and edge information (edge\_index) from a graph data structure that represents body motion.

#### • First Graph Convolutional Layer (conv1):

- > Type: GCNConv
- > Input Features: The number of node features is dynamically determined based on the input data.
- > Output Features: 16 features. This layer transforms the input node features into a 16-dimensional feature space.
- ➤ Activation Function: ReLU (applied after this layer in the forward method). This introduces non-linearity to the model, allowing it to capture complex patterns in the data.
- **ReLU** says if the neuron is important or not to be sent to the next layer.



- > Dropout Layer (from layer 1):
- ➤ After the first GCN layer and its ReLU activation, a dropout operation is applied to **prevent overfitting** by randomly **zeroing some of the features**.
- ➤ Dropout rate is 0.5. This rate means that each unit (neuron) in the layer has a **50% chance** of being set to zero during training. Preventing overfitting by **reducing dependency in a single or small group of neurons**.
- Second Graph Convolutional Layer (conv2):
  - > Type: GCNConv.
  - > Input Features: 16 (the output features of the previous GCNConv layer).
  - ➤ Output Features: The number of target classes for the motion classification task.
    - ➤ This layer aims to prepare the features for classification.



#### Global Mean Pooling:

- After the second GCN layer, the global mean pool is applied to aggregate node features into a single graph-level feature vector.
- > For graph-level predictions, such as **classifying entire graphs rather than individual nodes.**

#### • Output Layer:

- > The output of the model is passed through a log\_softmax function, which is used for multi-class classification tasks.
  - This function provides the **probabilities of each class**, making it easier to determine the class with the highest probability.

#### • Training Objective:

➤ A log\_softmax output for training classification models. It calculates the loss between the predicted and the ground truth by adjusting the weights.





| Emotion   | Sample |
|-----------|--------|
| Angry     | 59     |
| Depressed | 58     |
| Neutral   | 58     |
| Proud     | 47     |
| Sum       | 252    |
| Nodes     | 6882   |
| Edges     | 6660   |
| Features  | 2202   |





| Activity | Sample |
|----------|--------|
| Walk     | 135    |
| Jump     | 18     |
| Kick     | 25     |
| Punch    | 44     |
| Run      | 30     |
| Sum      | 252    |
| Nodes    | 7812   |
| Edges    | 7560   |
| Features | 2202   |



| Classificatio | n Report:<br>precision | recall | f1-score | support |
|---------------|------------------------|--------|----------|---------|
| Walk          | 0.97                   | 0.91   | 0.94     | 43      |
| Jump          | 0.71                   | 1.00   | 0.83     | 5       |
| Kick          | 1.00                   | 1.00   | 1.00     | 8       |
| Punch         | 0.85                   | 1.00   | 0.92     | 11      |
| Run           | 0.88                   | 0.78   | 0.82     | 9       |
| accuracy      |                        |        | 0.92     | 76      |
| macro avg     | 0.88                   | 0.94   | 0.90     | 76      |
| weighted avg  | 0.93                   | 0.92   | 0.92     | 76      |
|               |                        |        |          |         |

## Confusion Matrix:

| [[39 | 2   | 0 | 1  | 1] |
|------|-----|---|----|----|
| [ 6  | 5   | 0 | 0  | 0] |
| [ 6  | 0   | 8 | 0  | 0] |
| [ 6  | 0   | 0 | 11 | 0] |
| [ 1  | L 0 | 0 | 1  | 7] |

Train Loss: 0.1319
Train Acc: 0.9602
Test Acc: 0.9211





| Classificatio | on Report:<br>precision | recall | f1-score | support |
|---------------|-------------------------|--------|----------|---------|
| Angry         | 0.75                    | 0.64   | 0.69     | 14      |
| Depressed     | 0.69                    | 0.92   | 0.79     | 12      |
| Neutral       | 0.75                    | 0.60   | 0.67     | 10      |
| Proud         | 0.89                    | 0.89   | 0.89     | 9       |
| accuracy      |                         |        | 0.76     | 45      |
| macro avg     | 0.77                    | 0.76   | 0.76     | 45      |
| weighted avg  | 0.76                    | 0.76   | 0.75     | 45      |
|               |                         |        |          |         |

## Confusion Matrix:

[[ 9 3 1 1] [ 0 11 1 0] [ 2 2 6 0] [ 1 0 0 8]]

Train Loss: 0.1959
Train Acc: 0.9379
Test Acc: 0.7556













## References

- [1]. Shi, Jiaqi, et al. "Skeleton-based emotion recognition based on two-stream self-attention enhanced spatial-temporal graph convolutional network." Sensors 21.1 (2020): 205.
- [2]. Ahmed, Ferdous, ASM Hossain Bari, and Marina L. Gavrilova. "Emotion recognition from body movement." IEEE Access 8 (2019): 11761-11781.
- [3]. Bota, Patricia J., et al. "A review, current challenges, and future possibilities on emotion recognition using machine learning and physiological signals." IEEE access 7 (2019): 140990-141020.
- [4]. Picard, Rosalind W. Affective computing. MIT press, 2000.
- [5]. https://www.cs.cityu.edu.hk/~howard/Teaching/CS4185-5185-2007-SemA/Group12/BVH.html
- [6]. Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).
- [7]. Shi, Henglin, et al. "Multiscale 3D-shift graph convolution network for emotion recognition from human actions." IEEE Intelligent Systems 37.4 (2022): 103-110.
- [8].Ghaleb, Esam, et al. "Skeleton-based explainable bodily expressed emotion recognition through graph convolutional networks." 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021). IEEE, 2021.



