Entrega 5 - Daniel Brito

- 89) O Problema do Fluxo Máximo é sempre viável, pois existe uma solução viável trivial para qualquer problema. Temos que $0 \le f_a$, ou seja, a quantidade de fluxo que passa por cada um dos seus arcos é pelo menos 0. Logo, existe um fluxo trivial que é viável para qualquer dígrafo com capacidades atribuídas a seus arcos.
- 90) Qualquer coluna da matriz de incidência de um grafo direcionado tem 2 entradas não-nulas (1 ou -1). A soma das entradas não-nulas de cada coluna é 0.
- 91) Seja A uma matriz quadrada com entradas inteiras e determinante ± 1 , caracterizada como unimodular. Pela definição, temos que uma matriz M é invertível se $det(M) \neq 0$. Portanto, concluímos que toda matriz unimodular é invertível.
- 92) Seja a matriz A, que obedece às características de total-unimodularidade, ou seja, qualquer uma de suas submatrizes quadradas tem determinante 0 ou ± 1 . Baseado nisso, e no fato de que toda submatriz de tamanho 1x1 tem determinante igual ao próprio elemento, podemos concluir que qualquer entrada de A é 0 ou ± 1 .
- 93) Seja A uma matriz que obedece às regras de total-unimodularidade. Definido isso, admita A' como sendo uma matriz obtida a partir de A pela adição de uma linha ou coluna canônica. Note que, uma vez que tal linha ou coluna é canônica, e baseado no fato de que uma matriz total-unimodular não precisa ser necessariamente quadrada, podemos concluir que, se A é TU, então qualquer matriz obtida a partir de A pela adição de uma linha ou coluna canônica também é TU.
- 94) Seja A uma matriz total-unimodular. Ao realizar a transposição de A, temos que seus elementos permanecem sendo 0 ou ± 1 . Desta forma, por meio da argumentação realizada na questão 92, podemos concluir que, se A é TU, então A^T é TU.
- 95) Seja A uma matriz total-unimodular, não necessariamente quadrada, que, como sabemos, para qualquer uma de suas submatrizes temos o determinante resultando em 0 ou ± 1 . Admita, agora, a justaposição de uma matriz I à A. Note que, mesmo com os valores de I, ainda garante-se

a total-unimodularidade, pois, como argumentamos anteriormente, os valores do determinante das submatrizes quadradas continuarão sendo 0 ou ± 1 . Portanto, se A é TU, então $\begin{bmatrix} A & I \end{bmatrix}$ é TU.

96) Para provar que a matriz de coeficientes do programa linear (8.1)-(8.3) é TU, vamos mostrar que a matriz de incidência de um digrafo D=(V,A) é TU. Assim, seja D um digrafo com n vértices e m arestas, sem arestas laços. Sua matriz de incidência $A=[a_{ij}]\in\mathbb{R}^{n\times m}$ é definida como:

$$x_{ij} = \begin{cases} 1, & \text{se a aresta } a_j \text{ diverge do v\'ertice } v_i \\ -1, & \text{se a aresta } a_j \text{ converge para o v\'ertice } v_i \\ 0, & \text{caso contr\'ario} \end{cases}$$

Pela definição acima, podemos verificar, de maneira imediata, que a matriz resultante atende às restrições de total-unimodularidade, conforme argumentado nas questões anteriores. Portanto, provamos, assim, que a matriz de coeficientes do programa linear (8.1)-(8.3) é TU.

106) Para determinar o que se pede, façamos uma breve análise do enunciado, onde as informações dadas estão representados na tabela abaixo:

Estoque	Demanda	Restrições
46 - A	39 - A	$A \leftarrow A O$
34 - B	38 - B	$B \leftarrow B O$
45 - O	42 - O	$O \leftarrow O$
45 - AB	50 - AB	$AB \leftarrow A B O AB$

Realizando os cálculos com base no estoque e demanda de cada um dos casos, temos o seguinte resultado:

Tipo	
A	+7
В	-4
О	+3
AB	-5

Como os pacientes com sangue AB podem receber qualquer tipo de sangue, podemos subtrair as 5 bolsas necessárias do tipo A, que fica com 2 unidades. Assim, todos os pacientes com tipo sanguíneo AB sobrevivem.

Tipo	
A	+2
В	-4
О	+3
AB	-5

No caso dos pacientes com tipo sanguíneo B, eles podem receber as 3 bolsas restantes do tipo O. Entretanto, um paciente ainda não conseguirá a bolsa para seu atendimento, pois as únicas bolsas remanescentes são do tipo A.

Tipo		
A	+2	
В	-4	
О	0	
AB	-5	