Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №6

З дисципліни «Методи наукових досліджень» Проведення трьохфакторного експерименту при використанні рівняння регресії з квадратичними членами

ВИКОНАВ:

Студент II курсу ФІОТ

Групи IB-91

Онищук Ю. І.

Номер заліковки: 9122 Номер у списку: 20

> ПЕРЕВІРИВ: ас. Регіда П. Г.

Мета роботи: Провести трьохфакторний експеримент і отримати адекватну модель — рівняння регресії, використовуючи **рототабельний** композиційний план.

Завдання до лабораторної роботи:

- 1. Ознайомитися з теоретичними відомостями.
- 2. Вибрати з таблиці варіантів і записати в протокол інтервали значень x1, x2, x3. Обчислити і записати значення, відповідні кодованим значенням факторів +1; -1;+; -; 0 для 1, 2, 3.
- 3. Значення функції відгуку знайти за допомогою підстановки в формулу: $y_i = f(x_1, x_2, x_3) + random(10)-5$,

де f(x1, x2, x3) вибирається по номеру в списку в журналі викладача.

- 4. Провести експерименти і аналізуючи значення статистичних перевірок, отримати адекватну модель рівняння регресії. При розрахунках використовувати натуральні значення факторів.
- 5. Зробити висновки по виконаній роботі.

Алгоритм отримання адекватної моделі рівняння регресії

- 1) Вибір рівняння регресії (лінійна форма, рівняння з урахуванням ефекту взаємодії і з урахуванням квадратичних членів);
- 2) Вибір кількості повторів кожної комбінації (m = 2);
- 3) Складення матриці планування експерименту і вибір кількості рівнів (N)
- 4) Проведення експериментів;
- 5) Перевірка однорідності дисперсії. Якщо не однорідна повертаємося на п. 2 і збільшуємо т на 1);
- 6) Розрахунок коефіцієнтів рівняння регресії. При розрахунку використовувати **натуральні** значення x1, x2 и x3.
- 7) Перевірка нуль-гіпотези. Визначення значимих коефіцієнтів;
- 8) Перевірка адекватності моделі рівняння оригіналу. При неадекватності повертаємося на п.1, змінивши при цьому рівняння регресії;

Виконання роботи

Nº	x ₁		x ₂		X ₃		$f(x_1, x_2, x_3)$				
варіанту	min	max	min	max	min	max					
120	-30	20	-70	-10	-70	-40	2,1+1,7*x1+6,8*x2+6,6*x3+9,5*x1*x1+1,0*x2*x2+3,9*x3*x3+3,0*x1*x2+0,1*x1*x3+4,5*x2*x3+1,8*x1*x2*x3				

Лістинг програми

```
from math import fabs
from random import randrange
import numpy as np
from numpy.linalg import solve
from scipy.stats import f, t

m = 3
n = 15

x1_min = -30
x1_max = 20
x2_min = -70
x2_max = -10
x3_min = -70
x3_max = -40
```

```
x02, -1.73 * x2 delt + <math>x02, 1.73 *
x3 = [x3_{min}, x3_{max}, x3_{min}, x3_{max}, x3_{min}, x3_{max}, x3_{min}, x3_{max}, x03, x03, x03, -1.73 * x3_{delt} + x03,
x3kv))
```

```
aver y.append(np.mean(Y[i], axis=0))
dispersions = []
        number lst.append(list for a[j][i])
   mx.append(sum(number lst) / len(number lst))
```

```
a(6, 8), a(6, 9), a(6, 10)],
a(10, 7), a(10, 8), a(10, 9), a(10, 10)]
find kn(6), find kn(7), find kn(8),
beta[3], beta[4], beta[5],
beta[6], beta[7], beta[8],
beta[9], beta[10]))
beta[6] * list_for_a[k][5] + beta[7] * \
list_for_a[k][6] + beta[8] * list_for_a[k][7] + beta[9] *
    sb = sum(dispersions) / len(dispersions)
```

```
coef_1.append(beta[j])
       st y.append(res[0] + res[1] * x1[i] + res[2] * x2[i] + res[3] * x3[i] +
x1kv[i] + res[9] *
    F4 = n - d
```

Результат роботи програми

ę	Lab6 ×															
↑	C:\Users\-Ad	C:\Users\-Admin-\AppData\Local\Programs\Python\Python39\python.exe D:/SEM4/MND/Lab6/Lab6.py														
4	Матриця план	Матриця планування з натуралізованими коефіцієнтами X														
	X1	X2	Х3	X1X2	X1X3	X2X3	X1X2X3	X1X1	X2X2	X3X3						
-₽	-30.000	-70.000	-70.000	2100.000	2100.000	4900.000	-147000.000	900.000	4900.000	4900.000						
≡	-30.000	-70.000	-40.000	2100.000	1200.000	2800.000	-84000.000	900.000	4900.000	1600.000						
	-30.000	-10.000	-70.000	300.000	2100.000	700.000	-21000.000	900.000	100.000	4900.000						
=	-30.000	-10.000	-40.000	300.000	1200.000	400.000	-12000.000	900.000	100.000	1600.000						
-	20.000	-70.000	-70.000	-1400.000	-1400.000	4900.000	98000.000	400.000	4900.000	4900.000						
Ē	20.000	-70.000	-40.000	-1400.000	-800.000	2800.000	56000.000	400.000	4900.000	1600.000						
	20.000	-10.000	-70.000	-200.000	-1400.000	700.000	14000.000	400.000	100.000	4900.000						
	20.000	-10.000	-40.000	-200.000	-800.000	400.000	8000.000	400.000	100.000	1600.000						
	-48.250	-40.000	-55.000	1930.000	2653.750	2200.000	-106150.000	2328.062	1600.000	3025.000						
	38.250	-40.000	-55.000	-1530.000	-2103.750	2200.000	84150.000	1463.062	1600.000	3025.000						
	-5.000	-91.900	-55.000	459.500	275.000	5054.500	-25272.500	25.000	8445.610	3025.000						
	-5.000	11.900	-55.000	-59.500	275.000	-654.500	3272.500	25.000	141.610	3025.000						
	-5.000	-40.000	-80.950	200.000	404.750	3238.000	-16190.000	25.000	1600.000	6552.903						
	-5.000	-40.000	-29.050	200.000	145.250	1162.000	-5810.000	25.000	1600.000	843.903						
	-5.000	-40.000	-55.000	200.000	275.000	2200.000	-11000.000	25.000	1600.000	3025.000						

