SIMULAZIONE parte teorie- appello 18 dicembre 2020

nome: cognome:

- Scrivere in modo CHIARO. Elaborati illegibili non saranno considerati.
- NON si contano le BRUTTE copie.
- Si ricorda di ESPLICITARE l'uso della regola dello scambio sia a destra che a sinistra del sequente.
- Si ricorda di ETICHETTARE LE DERIVAZIONI CON LE REGOLE USATE (se non lo fate perdete punti!)
- Si esplicitino le eventuali regole derivate usate che non sono menzionate nel foglio allegato al compito.
- ATTENZIONE: se si risolvono correttamente TUTTI gli esercizi con il segno ++ si prende il voto 30 independentemente dall'avere o meno un bonus accumulato.
- 1. Sia T_{golf} la teoria ottenuta estendendo LC= con la formalizzazione dei seguenti assiomi: (ciascuna formalizzazione conta 1 punto)
 - Sara gioca a golf solo se Filippo non ci gioca.
 - Sara o Beppe giocano a golf, se e soltanto se, Filippo gioca a golf.
 - Se Beppe gioca a golf allora non ci gioca Valerio.
 - Se Filippo non gioca a golf allora Valerio e Beppe giocano.
 - Ognuno o gioca a golfa oppure non ci gioca.

Si consiglia di usare:

G(x) = x gioca a golf,

v=Valerio,

s=Sara,

b=Beppe,

f=Filippo

Formalizzare le seguenti affermazioni e dedurne la validità in T_{bask} : (ciascuna derivazione conta 4 punti quando non indicato altrimenti)

- Se Filippo non gioca a golf allora neanche Sara e nè Beppe ci giocano.
- (6 punti) Filippo gioca a golf.
- Sara non gioca a golf.
- Beppe gioca a golf.
- Qualcuno gioca a golf e qualcuno non ci gioca.

- 2. (++) Sia T_{mon} la teoria ottenuta estendendo $LC_{=}$ con la formalizzazione dei seguenti assiomi:
 - (2 punti) La Marmolada è più alta di tutti.
 - (1 punto) O il Pelmo è più alto del Grappa o non lo è.
 - (2 punti) Non si dà il caso che qualcuno sia più alto di se stesso.
 - (2 punti) Non c'è nulla più alto della Marmolada.
 - (2 punti) Non è il Pelmo che è più alto dell'Antelao ma l'Antelao è più alto del Pelmo.
 - (4 punti) Uno è più alto di un'altro, e quest'altro è più alto di un terzo soltanto se il primo è più alto del terzo.
 - (2 punti) Non si dà il caso che il Pelmo non sia più alto del Grappa.

Si consiglia di usare:

A(x,y)= "x è più alto di y"

p="Pelmo"

a="Antelao"

g="Grappa"

m="Marmolada"

Dedurre poi in T_{mon} le seguenti affermazioni (ciascuna vale 12 punti quando non diversamente indicato):

- (7 punti) Il Pelmo non è più alto della Marmolada.
- Il Pelmo non è il Grappa.
- L'Antelao è più alto del Grappa.
- 3. (++): Dall'affermazione

Ip In primavera non tutti sono infelici.

si dica quali delle seguenti affermazioni si possono dedurre (la classificazione di ciascuna vale 8 punti se è deducibile e 12 punti se NON lo è):

- A Se qualcuno è felice allora non è primavera.
- B Se è primavera qualcuno è felice.
- C Se tutti sono infelici non è primavera.

Si giustifichi la risposta corretta producendo una sua derivazione nella teoria predicativa

$$\mathbf{T_{Ip}} = \mathbf{LC_{=}} + \mathbf{Ip}$$

dopo aver formalizzato ciascuna affermazione utilizzando:

F(x)=xè felice

P=è primavera

Inoltre si giustifichi le risposte "affermazione X" non corrette classificando in $\mathbf{LC}_=$ il sequente $\mathbf{Ip} \vdash$ "affermazione X" .

Logica classica con uguaglianza- LC₌

TAUTOLOGIE CLASSICHE

associatività \vee	$(A \lor B) \lor C$	\leftrightarrow	$A \lor (B \lor C)$
associatività &	(A&B)&C	\leftrightarrow	A&(B&C)
commutatività \vee	$A \vee B$	\leftrightarrow	$B \vee A$
commutatività &	A&B	\leftrightarrow	B&A
distributività \vee su &	$A \lor (B\&C)$	\leftrightarrow	$(A \lor B)\&(A \lor C)$
distributività & su \vee	$A\&(B\lor C)$	\leftrightarrow	$(A\&B)\lor(A\&C)$
idempotenza \vee	$A \lor A$	\leftrightarrow	A
idempotenza &	A&A	\leftrightarrow	A
leggi di De Morgan	$\neg (B \lor C)$	\leftrightarrow	$\neg B \& \neg C$
	$\neg (B\&C)$	\leftrightarrow	$\neg B \vee \neg C$
legge della doppia negazione	$\neg \neg A$	\leftrightarrow	A
implicazione classica	$(A \rightarrow C)$	\leftrightarrow	$\neg A \lor C$
disgiunzione come antecendente	$(A \lor B \to C)$	\leftrightarrow	$(A \rightarrow C) \& (B \rightarrow C)$
congiunzione come antecendente	$(A\&B \rightarrow C)$	\leftrightarrow	$(A \rightarrow (B \rightarrow C))$
legge della contrapposizione	$(A \rightarrow C)$	\leftrightarrow	$(\neg C \rightarrow \neg A)$
legge del modus ponens	$A \& (A \rightarrow C)$	\rightarrow	C
legge della NON contraddizione	$\neg (A\& \neg A)$		
legge del terzo escluso	$A \vee \neg A$		
leggi di De Morgan	$\neg (\exists x \ A(x))$	\leftrightarrow	$\forall x \ \neg A(x)$
	$\neg (\forall x \ A(x))$	\leftrightarrow	$\exists x \ \neg A(x)$

Regola di composizione

$$\frac{\vdash \mathtt{fr} \qquad \qquad \Gamma, \mathtt{fr}, \Gamma' \vdash \nabla}{\Gamma, \Gamma' \vdash \nabla} \ \mathrm{comp}$$

Regole derivate o ammissibili per $LC_{=}$

si ricorda che $t \neq s \, \equiv \, \neg t = s$

$$\begin{array}{cccc}
 & \neg \cdot \operatorname{ax}_{sx1} & \neg \cdot \operatorname{ax}_{sx2} \\
 & \Gamma, A, \Gamma', \neg A, \Gamma'' \vdash C & \Gamma, \neg A, \Gamma', A, \Gamma'' \vdash C \\
 & \neg \cdot \operatorname{ax}_{dx1} & \neg \cdot \operatorname{ax}_{dx2} \\
 & \Gamma \vdash \Sigma, A, \Sigma', \neg A, \Sigma'' & \Gamma \vdash \Sigma, \neg A, \Sigma', A, \Sigma'' \\
 & \frac{\Gamma, A \vdash \Delta}{\Gamma, \neg \neg A \vdash \Delta} \neg \neg - \operatorname{S} & \frac{\Gamma \vdash A, \Delta}{\Gamma \vdash \neg \neg A, \Delta} \neg \neg - \operatorname{D} \\
 & \frac{\Gamma, \Gamma'' \vdash \Sigma}{\Gamma, \Gamma', \Gamma'' \vdash \Sigma} & \operatorname{in}_{\operatorname{sx}} & \frac{\Gamma \vdash \Sigma, \Sigma''}{\Gamma \vdash \Sigma, \Sigma', \Sigma''} & \operatorname{in}_{\operatorname{dx}} \\
 & \frac{\Gamma, A(t) \vdash \Delta}{\Gamma, \forall x \ A(x) \vdash \Delta} & \forall - \operatorname{S}_{v} & \frac{\Gamma \vdash A(t), \Delta}{\Gamma \vdash \exists x \ A(x), \Delta} & \exists - \operatorname{D}_{v}
\end{array}$$