Paired *t*-test

Comparing two populations

When comparing two populations, we could be interested in:

- Comparing the mean of some property of each population, or
- ▶ Comparing the *proportion* of some property in each population.

For example, you may be comparing:

- the running time of software on two different hardware setups;
- the proportion of users who click an ad on one site versus another;
- the effectiveness of a medication versus a placebo;
- the difference in performance of two classes on the same test.

Even if you took two samples from the *same* population, you will almost certainly get different means/proportions. Thus, the relevant question to address is: *is the difference between the two outcomes statistically significant?*

Paired versus unpaired

Consider the following two scenarios:

- Scenario 1. Fifteen people were given alcohol, and fifteen people were not. The reaction speed of each group was tested and compared.
- Scenario 2. Fifteen people had their reaction speed tested before being given alcohol, and then tested again after being given alcohol.

The difference between the two is:

- ▶ In scenario 1, the two samples are entirely independent of one another. The two samples are unpaired.
- ▶ In scenario 2, the two samples are dependent on one another. Each (before, after) reading is a pair, so the two samples are *paired*.

A paired sample is more informative, so applying the right test can ensure we get the most out of the data.

Paired *t*-test

The paired t-test is actually just an application of the one-sample t-test. The procedure works by computing the difference for each pair, and then a one-sample t-test is performed on the resulting differences.

A stipulation: it is assumed that the differences follow a normal distribution or that the sample size is large.

Example

Suppose that 5 students were given a diagnostic test before completing a short online course. After completing the module, they then attempted the diagnostic test again. The scores for each student are shown in the table below.

Student	1	2	3	4	5
Score before course	18	23	21	23	15
Score after course	22	22	23	27	20
Difference	+4	-1	+2	+4	+5

To a 5% level of significance, do the students perform better after taking the course?

Reminder: df for a one-sample t-test is n-1, where n is the sample size.

Unpaired *t*-test

Unpaired t-test

The unpaired t-test is more elaborate, because it needs to account for the potential difference in variance for the two populations. To test the following hypotheses:

$$H_0$$
: $\mu_1 - \mu_2 = 0$ versus H_1 : $\mu_1 - \mu_2 \neq 0$,

we need to compute the test statistic

$$t = \frac{\overline{x} - \overline{y}}{\mathsf{SE}},$$

where \overline{x} and \overline{y} denote the sample means for each population, and SE is the standard error.

A stipulation: it is assumed that each population is normally distributed or the sample sizes are large.

Important! The standard error and degrees of freedom for the unpaired *t*-test are different compared to the other *t*-tests we have seen.

Standard error

For two samples of size n_1 and n_2 , with sample standard deviations s_1 and s_2 , the standard error is given by

$$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

This is the most general form of the unpaired *t*-test. There are other unpaired *t*-tests considered in the literature, but they often have unreasonable assumptions such as assuming equal variances.

Degrees of freedom and p-values

The p-value depends on the appropriate choice of t-distribution. For an unpaired t-test, the following degrees of freedom formula is used:

$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}.$$

In STM4PSD, you will not need to calculate this yourself.

Then, the p-value is calculated depending on the form of the hypotheses.

With $T \sim t_{\rm df}$:

- ▶ If H_1 is of the form $\mu_1 \mu_2 \neq 0$, calculate $2P(T \geq |t|)$.
- ▶ If H_1 is of the form $\mu_1 \mu_2 > 0$, calculate $P(T \ge t)$.
- ▶ If H_1 is of the form $\mu_1 \mu_2 < 0$, calculate $P(T \leq t)$.

Example

The shelf life of two competing products (product A and product B) is being compared. To test this, 39 instances of product A and 35 instances of product B were randomly selected for testing. The sample mean for product A was 77 days, and the sample mean for product B was 72 days. The sample standard deviation for products A and B was 11.9 and and 4.2, respectively. To a 5% level of significance, is there a difference in shelf life for the two products?

Confidence intervals

Confidence intervals are calculated by using a *t*-distribution with the appropriate degrees of freedom.

A 95% confidence interval for the previous example:

Interpretation: the confidence interval is the estimate of the *difference* between the two means.