

Este manual ha sido realizado por el equipo de la asociación FABlab Mérida para el proyecto CITLab de la Diputación de Badajoz.

Equipo técnico: Alberto Cañaveras Solís, Carlos Gómez-Landero Hernández, Javier García González, Javier García Arias, Javier Conejero Rodríguez, Juan Luis Arenas Sánchez, Pablo Augusto Gordillo Caro y Víctor Gallardo Sánchez.

Redacción de contenidos: Javier García González.

Diseñador gráfico: Javier García González.

Maquetación: Javier García González.

Revisión: Javier García Arias, Juan Luis Arenas Sánchez, Julián Ortega Durán, Mercedes García Burrel y Víctor Gallardo Sánchez.

Todos los nombres propios de programas, sistemas operativos, equipos hardware, etc. que aparecen en este libro son marcas registradas de sus respectivas compañías u organizaciones.

Manual de usuario del Proyecto SMARS © 2024 by FA-Blab Mérida is licensed under CC BY-NC-SA 4.0

¿QUÉ	VAMOS A HACER?0Módulo agricultor0Módulo detector de objetos0Módulo montacargas0	06 06
LA PI	L ACA (Micro:bit (Programación: MakeCode (07
	Motor DC Servomotor Motor paso a paso Placa expansión Sensor de humedad de suelo Sensor ultrasonidos	09 10 11 15
EXPL:	ICACIÓN	17
MONTA	AJE Impresión 3d Montaje de SMARS	19

¿QUÉ VAMOS A HACER?

En este proyecto se pretende construir un smars basándonos en micro:bit con el que conocer las posibilidades de esta placa para la educación en programación y robótica. Además, se ofrecen distintas alternativas para que sea un proyecto dinámico y modular, como inicio al mundo de los SMARS.

Smars básico

Temática	Materiales	Electrónica
Impresión 3d	Filamento PLA de tipos	Micro:bit x1
Programación básica	Filamento TPU (opcional)	Placa de expansión Micro:bit Motor Expansion
540104	Tornillos M3x5mm x4	•
Electrónica básica	Portapilas 4xAA x1	Motor* x2
Robótica	Pilas AA x4	

- * Para empezar, se han añadido diversas opciones de montaje de motores:
- Servomotor 360°
- Motor paso a paso
- Motor DC 6V 150RPM

Cada uno de los motores requiere de una programación y modelo distinto, que se debe tener en cuenta en el desarrollo del prototipo.

¿QUÉ VAMOS A HACER?

Módulo agricultor

Con este módulo, se añade un sensor de humedad de tierra que puede pincharse en el suelo para comprobar su humedad y mapear la humedad del suelo siguiendo un recorrido.

Materiales	Electrónica		
Filamento PLA dos colores	Sensor capacitivo humedad de suelo V1.2 x1		
	Servomotor x1		

Módulo detector de objetos

Con este módulo se añade un sensor de ultrasonidos que permite la detección de objetos frente al SMARS y la posibilidad de esquivarlo.

Materiales	Electrónica		
Filamento PLA dos colores	Sensor de ultrasonidos	y 1	

Módulo montacargas

Con este módulo, se puede sujetar objetos del suelo para desplazarlos de un lado a otro.

Materiales	Electrónica
Filamento PLA de dos tipos	Servomotor 90º x1 Motor DC 6V 60RPM M3 5cm x1

LA PLACA

Micro:bit

Micro:bit es una pequeña placa de desarrollo diseñada por la BBC para enseñar programación y computación en la educación primaria y secundaria. Es una herramienta educativa que permite a los estudiantes aprender conceptos básicos de programación y electrónica de una manera práctica y divertida.

Echa un vistazo al QR si quieres saber más.

Entradas del micro:bit y sensores integrados:

Micro:bit posee varias entradas y salidas para conectarse con otros dispositivos:

- 3 Entradas salidas digitales
- 4 Salida de 3V
- 6 Pin de tierra

También tiene sensores integrados para tener una iniciación más rápida.

Frontal

- Botón A y B
- 2 Matriz de 5x5 leds
- 6 Logo con sensor táctil

Trasera

- 1 Antena de radio y bluetooth
- 2 Sensor de temperatura
- 3 4 Acelerómetro y osciloscopio
- 6 Pines
- 6 Entrada Micro USB
- 9 Entrada de batería
- Altavoz
- Micrófono
- 13 Botón de reset

7

LA PLACA

Programación: MakeCode

MakeCode de micro:bit es una plataforma de programación desarrollada por Microsoft que permite a los usuarios programar la placa micro:bit de manera sencilla e intuitiva. Está especialmente diseñada para la educación y es ideal para principiantes y estudiantes de todas las edades que están aprendiendo a programar.

Al darle a **Nuevo proyecto** e introducir el nombre del proyecto, entramos en la ventana de programación.

Motor DC

Un motor DC es un motor que funciona por corriente contínua. Su propia fabricación hace que, si se le alimenta con una mayor tensión, se obtengan mayores revoluciones.

Solo requiere de una entrada de corriente y una de tierra para funcionar.

Servomotor

Un servomotor es un dispositivo que permite controlar y posicionar un eje en ángulos específicos. A diferencia de los motores convencionales, los servomotores están diseñados para un control preciso de la posición angular.

Pines de un servo

- Señal (PWM): Pin que le proporciona la señal digital que le indicará al servomotor la posición a la que debe girar. Debe conectarse a un pin PWM.
- Positivo (+): entrada de 5V del Arduino.
- Negativo (-): salida a GND del Arduino.

Estos dispositivos son comúnmente utilizados en proyectos y dispositivos que requieren movimiento controlado, como juguetes, robots, modelismo, y otras aplicaciones.

Cómo funciona un servomotor:

La característica principal de un servomotor es su capacidad para girar hasta un ángulo determinado en respuesta a señales eléctricas. La mayoría de los servomotores comerciales para proyectos electrónicos tienen un rango de movimiento de 0 a 180 grados, aunque también existen modelos que pueden girar 360 grados.

En nuestro proyecto utilizaremos dos servomotores que deben ser de 360° para mover las ruedas. En caso de que sean de 180°, este proyecto no sería posible con este tipo de motor.

Microbit: las salidas PWM

«PWM» significa «Modulación de Ancho de Pulso» en inglés (*Pulse Width Modulation*). Es una técnica utilizada en electrónica para controlar la cantidad de energía entregada a un dispositivo, mediante la variación del ancho de los pulsos de una señal eléctrica. Posee un funcionamiento distinto al del resto de pines digitales si se le indica.

Un motor paso a paso es un tipo de motor similar a los servos. Al igual que ellos, se puede regular la posición del eje del motor con mucha precisión. Para ello, en vez de utilizar ángulos, se emplean pasos, que son pequeños desplazamientos de rotación.

En nuestro caso, los motores tienen 20 posiciones distintas.

Pines de un motor paso a paso

Este tipo de motores requiere usualmente de una placa intermedia para funcionar al que se conectan siguiendo la distribución indicada abajo:

Sin embargo, en nuestro proyecto utilizaremos una placa de expansión de motores adaptada a micro:bit.

Placa de expansión

Una placa de expansión (*shield* en inglés) es un accesorio que se conecta a la placa de desarrollo (en este caso, al Micro:bit) para ampliar sus capacidades y funcionalidades. Estas placas están diseñadas para encajar en la placa base y se conectan a través de los pines de entrada/salida y otros conectores.

Existen varios tipos de placas de expansión que proporcionan diversas funciones, ampliando sus puertos y adaptándose a las necesidades del proyecto.

Como característica general, las placas de expansión tienen una conexión para alimentación independiente, para permitir conectar múltiples sensores y actuadores sin quedar a la placa de desarrollo sin energía.

Funcionamiento de la placa de expansión

La placa que se quiere utilizar en este proyecto se puede buscar como *Micro:Bit Motor Expansion* y tiene la forma de la imagen superior. Esta placa añade a cada pin del micro:bit un pin de 5 V o 3,3 V y de tierra (indicado en las placas como GND), para facilitar la conexión de sensores y actuadores.

Para alimentar esta placa de expansión existen dos formas: a través de dos cables introducidos en el - y + indicados en la placa, o a través del puerto de al lado. Existe un interruptor que enciende y apaga toda la placa.

Puerto de introducción de la placa micro:bit, de esta forma se aprovechan todos los pines del micro:bit para conectar multitud de sensores y actuadores.

Conexión de sensores

- GND: Pin de tierra, GND.
- 3V3: Pin de voltaje de 3.3 V.
- P: Pin de señal de sensores (conectado directamente a los pines del micro:bit).

Conexión de motores servo

- GND: Pin de tierra, GND.
- **VIN**: Pin de voltaje de 6V. Realmente es el voltaje directo de la alimentación de la placa. Si a esta placa se le alimenta con las 4 pilas AA, tendrá un voltaje de 6V.
- S: Pin de señal de servo.

Conexión de motor servo

En el ejemplo de la imagen, se han conectado dos servos en S1 y S2 y se le han enviado varias instrucciones para que giren entre 360 y 0°.

Conexión de motores DC/Paso a paso

En estas conexiones es posible conectar cuatro motores DC o dos motores paso a paso.

Conexión de motor DC:

Se utiliza la conexión de M1. Si se cambia la posición del positivo con el negativo, se cambia la dirección del motor. Es posible conectar cuatro motores distintos (M1, M2, M3 y M4).

En el ejemplo de la imagen, se han conectado dos motores DC en M1 y M2 y se le han enviado varias instrucciones para que hacia un lado o hacia otro a toda velocidad, que corresponde con 255.

- La opción CW es para girar hacia un lado el motor.
- La opción CCW para girar para el otro.

Conexión de motor paso a paso.

Se utiliza la configuración de 1A-, 1A+, 1B- y 1B+. Cada letra corresponde a una bobina del motor. Es posible conectar otro motor siguiendo la distribución 2A-, 2A+, 2B- y 2B+.

En la imagen se ve cómo se ha conectado un motor en M1 y M2, es decir: 1A-, 1A+, 1B- y 1B+. Estos bloques son un poco complejos:

- La opción CW es para girar hacia un lado el motor.
- La opción CcW para girar para el otro.
- Los pasos en este bloque son los llamados "trun".

Sensor de humedad del suelo

Este sensor mide la humedad del suelo a través de una propiedad del agua: es conductora de la electricidad. Cuanta más agua tiene un suelo, más conductor es.

Este sensor mide la corriente que pasa por él y nos da un valor en función de esa corriente.

Este sensor es un elemento de entrada analógica.

Para más información de este sensor, escanea el QR.

Funcionamiento del sensor de Humedad

La lectura del sensor es realmente sencilla. Únicamente tenemos que realizar su lectura empleando uno de los puertos P. En este ejemplo, realizamos la lectura del sensor y mostramos el valor por pantalla. Las conexiones necesarias están indicadas en la imagen.

Sensor ultrasonidos

Este sensor utiliza ondas de ultrasonidos para medir distancias. Emite y recibe estas ondas y mide el tiempo que tarda en recibir el eco de la señal. De esta forma, junto con la velocidad del sonido, nos permite conocer la distancia recorrida por la onda entre los objetos con los que rebota y el sensor. En nuestro proyecto, los utilizaremos para detectar al robot contrario.

Echa un vistazo al QR si quieres saber más.

Funcionamiento del sensor de ultrasonidos

Este en un sensor que requiere de cuatro pines:

- **Positivo (VCC)**: entrada de tensión, en micro:bit está preparado para funcionar con 3,3 V.
- **Trig (Trigger)**: activador, pin por donde le entra la orden de enviar una onda. Conéctalo a P0.
- Echo (Echo): eco, pin por donde el sensor envía el cálculo del tiempo que ha tardado en recibir la onda. Conéctalo al P1.
- Tierrra (GND): salida a GND del micro:bit.

EXPLICACIÓN

El propósito final de este proyecto es crear robots que sean capaces de moverse utilizando un micro:bit como cerebro y posean distintas funcionalidades según los módulos que se quieran fabricar. Para el movimiento del robot, simplemente hay que conocer las instrucciones del movimiento del motor (antes explicados).

Además, se puede utilizar el bluetooth y la radio del microbit para conectarse a un móvil u otro microbit para mandarle instrucciones de movimiento.

Módulo agricultor

Este módulo consiste en un brazo robótico controlado por un solo servomotor. Este brazo pincha un sensor de humedad de tierra en la tierra (blandita tipo arena porque esto es un juguete) y mide la humedad de la misma.

En función del nivel de humedad, pondrá carita triste o carita contenta en la matriz led del micro:bit.

Módulo ultrasonidos

Este módulo consiste en añadir un sensor de ultrasonidos al robot para que no choque contra objetos cuando se mueve.

EXPLICACIÓN

Módulo montacargas

Este módulo consiste en añadir un toro de carga al smars, haciendo con ello un pequeño transportín que puede cargar, transportar y descargar pequeños objetos.

Su funcionamiento consiste en un motor DC para elevar el toro y un motor servo para girarlo parcialmente, haciendo que la carga no se caiga hacia delante.

MONTAJE

Impresión 3D

Altura de capa:

Material:

PLA

Perímetros:

Relleno:

20%

Soporte:

Las piezas a imprimir y cortar se encuentran en el GitHub del proyecto.

ESCANEA

Todo lo necesario para montar el proyecto se encuentra en:

https://github.com/FabLab-Merida/Smars-con-Microbit

piezas:

Todos los smars deben tener estas Para el movimiento del robot, se han diseñado dos tipos de cadenas de oruga: unas rígidas que se ensamblan utilizando filamento PLA y otras flexibles fabricadas con TPU.

Piezas comunes

Piezas a imprimir: **Unidades** bacaMicrobit.stl x1 slave_wheel_SL.stl x2

Sistema de oruga

Piezas a imprimir:	Unidades				
mechanical_track.stl	x36				
Sistema de cadena flexible					
Piezas a imprimir:	Unidades				
RuedaMicrobitTUP.stl	x2				

MONTAJE

Para cada tipo de motor, se ha diseñado

un chasis distinto:	piezas:		
Motor Servo	Sensor capacitivo de humedad		
Piezas a imprimir: Unidades	Piezas a imprimir: Unidades		
ChassisServo.stlx1	SmarsCapacitiveEdit.stl x1		
SMARS_servo_wheel.stlx2	fork_lift_e.stl x1		
Motor Paso a paso	fork_lift_f.stl x1		
Piezas a imprimir: Unidades	holder_soil_moisture.stl x1		
ChassisStepper.stl x1	smarsCapacitive2.stl x1		
SMARSTrunk.stlx1	ub2.stl x1		
SmarsMasterWheelStepper.stl x2	ut2.stl x1		
Motor DC	Módulo ultrasonidos		
Piezas a imprimir: Unidades			
ChassisDC.stlx1	Piezas a imprimir: Unidades		
mantan whool otl	ultrasonic_2b_V2.stl x1		
master_wheel.stlx2	ultrasonic_1.stlx1		
	Módulo montacargas		
	Piezas a imprimir: Unidades		
	fork_lift_a.stlx1		
	fork_lift_b.stlx1		
	fork_lift_c.stlx1		
	fork_lift_d.stlx1		
	fork_lift_d.stl		

Para cada módulo, se deben imprimir ciertas

Montaje del SMARS

Chasis SMARS con Motores Servo

Chasis SMARS con Motores Paso a Paso

El material que necesitas si quieres montarlo con este tipo de motores son:

El material que necesitas si quieres montarlo con este tipo de motores son:

Hardware	Unidades	Hardware	Jnidades
bacaMicrobit	x1	bacaMicrobit	x1
slave_wheel_SL	x2	slave_wheel_SL	x2
ChassisServo	x1	ChassisStepper	x1
SMARS_servo_wheel	x2	SMARSTrunk	x1
Tornillo M3x5mm	x4	SmarsMasterWheelStepper	x2
Insertos térmicos M3x4mm	x4	Tornillo M3x5mm	x4
Electrónica	Unidades	Insertos térmicos M3x4mm	x4
Micro:bit	x1	Tornillos M4x5mm	x4
Micro:Bit Motor Expansion	x1	Tuercas M4	x4
Servo Motor 360º	x2	Electrónica l	Jnidades
Portapilas 4AA	X1	Micro:bit	x1
Pilas AA	x4	Micro:Bit Motor Expansion	x1
		Motor paso a paso	x2
		Portapilas 4AA	X1
		Pilas AA	x4

MONTAJE

Chasis SMARS con Motores DC

El material que necesitas si quieres montarlo con este tipo de motores son:

Hardware	Unidades	Electrónica Unidades
bacaMicrobit	x1	Micro:bit x1
slave_wheel_SL	x2	Micro:Bit Motor Expansion x1
ChassisDC	x1	Motor DC x2
master_wheel	x2	Portapilas 4AA X1
Tornillo M3x5mm	x4	Pilas AA x4
Insertos térmicos M3x4mm .	x4	
Tornillos M4x5mm	x4	
Tuercas M4	x4	

Cadena de PLA

Hardware

mechanical_track.stl..... x36

Filamento PLA

Cadena de TPU (flexible)

Hardware

RuedaMicrobitTUP..... x2

Módulo agrícola

El material que necesitas si quieres montarlo es:

Hardware	Unidades	Electrónica	Unidades
SmarsCapacitiveEdit.stl	x1	Sensor capacitivo humedad d	
fork_lift_e.stl	x1		
fork_lift_f.stl	x1	Servomotor	XI
holder_soil_moisture.stl	x1		
smarsCapacitive2.stl	x1		
ub2.stl	x1		
ut2.stl	x1		

Módulo ultrasonidos

El material que necesitas si quieres montarlo es:

Hardware	Unidad	des	Electrón	nica	Unid	ades
ultrasonic_2b_V2.stl		x1	Sensor	ultrasonidos		x1
ultrasonic_1.stl		x1				

Módulo montacargas

El material que necesitas si quieres montarlo es:

Hardware	Unidades	Electrónica	Unidades
fork_lift_a.stl	x1	Servomotor 90º	
fork_lift_b.stl	x1	Motor DC 6V 60RPM M3 5cm	X1
fork_lift_c.stl	x1		
fork_lift_d.stl	x1		
fork_lift_e.stl	x1		
fork_lift_f.stl	x1		9

