COSI 134 (Fall 2020): Quiz questions

NAME:

DATE: Dec 3, 2020

Instruction: You only need to answer 10 of the following questions. If you need extra space, you can use a blank page, but make sure you clearly indicate which question you are answering.

1. 10pts Explain the limital to the Scondi power of the model.

Assignment Project Exam Help

Assignated type Glat Exmontelp

https://powcoder.com

2. **10pts** A logistic regression model defines a posterior distribution as $p(y|x) = \frac{1}{Z} \exp\left(\sum_{i=1}^{N} \theta_{i} f_{i}(x,y)\right)$ where Z is the partial production. Write an exarts in forward C

3. **10pts** Prove that the softmax and sigmoid functions are equivalent when the number of possible labels is two. Specifically, for any $\Theta^{(z\to y)}$ (omitting the offset b for simplicity), show how to construct a vector of weights θ such that

SoftMax(
$$\mathbf{\Theta}^{(z \to y} \mathbf{z})[0] = \sigma(\boldsymbol{\theta} \cdot \mathbf{z})$$

4.	10pts Write an expression for a multi-level feedforward neural network with two hidden layers. Specify the dimensions of the input, the weight matrices, as well as the biases.
5.	https://powcoder.com 10pts When training a CBOW model, the output requires a softmax over all words in the vocabulary of a language, which is computationally expensive. Name two ways that make a CBOW model more efficient, and explain how it works. Assignment Project Exam Help
	Assign And the Spanning Partie of the Partie
	https://powcoder.com
6.	10pts What is a filter in a Converted Introck? Others of the layer need to be applied to the convolution layer before its output can be used for classification?
7.	10pts The pseudocode below illustrates the perceptron learning algorithm for sequence labeling. Use an example to explain how the paremeters Θ are updated for each training instance. Your example needs to include the correct tag sequence for a sentence, and the predicted output where there is at least one error.

The averaged perceptron algorithm

```
1: procedure AVE_PERCEPTRON(\boldsymbol{x}^{1:N}, y^{1:N})
           t \leftarrow 0, \boldsymbol{\theta}^{(0)} \leftarrow \mathbf{0}, \boldsymbol{m} \leftarrow \mathbf{0}
           repeat
 3:
                 t \leftarrow t + 1
 4:
                 Select a sequence i
                                                                                                                                                  ▷ Online training
 5:
                 \hat{m{y}} \leftarrow rg \max_{m{y}} m{	heta}^{(t-1)} \cdot m{f}(m{w}^{(i)}, m{y})
                                                                                                                                         ▶ Decoding by Viterbi
 6:
                 if \hat{y} \neq y^{(i)} then
 7:
                       oldsymbol{	heta}^{(t)} \leftarrow oldsymbol{	heta}^{(t-1)} + oldsymbol{f}^{(global)}(oldsymbol{w}^{(i)}, oldsymbol{y}^{(i)}) - oldsymbol{f}^{(global)}(oldsymbol{w}^{(i)}, \hat{oldsymbol{y}})
 8:
                                                                                                                    ▶ Feature count for entire sequence
 9:
                       \boldsymbol{\theta}^{(t)} \leftarrow \boldsymbol{\theta}^{(t-1)}
10:
                 end if
11:
                                                 https://powcoder.com
                 m{m} \leftarrow m{m} + m{	heta}^{(t)}
12:
           until tired
13:
           \bar{\boldsymbol{\theta}} = \frac{1}{t} \boldsymbol{m}
14:
           return \theta
15:
16: end procedure Assignment Project Exam Help
```

Assign And the Spanning Assign And Assign An

https://powcoder.com

Add WeChat powcoder

8. **10pts** Consider the garden path sentence, *The old man the boat*. Given word-tag and tag-tag features, what inequality must in the weights must hold for the correct tag sequence to outscore the garden path tag sequence for this example?

9. **10pts** Let $\alpha(\cdot)$ and $\beta(\cdot)$ indicate the forward and backward variables in the forward-backward algorithm. Show that $\alpha_{M+1}(\blacklozenge) = \beta_0(\lozenge) = \sum_y \alpha(y)\beta_m(y), \forall m \in \{1, 2, \dots, M\}$

- 10. **10pts** To handle VP coordination, a grammar includes the production VP \rightarrow VP CC VP. To handle adverbs, it also includes the production VP \rightarrow VP ADV. Assume all verbs are generated from a sequence of unary productions, e.g., VP \rightarrow V \rightarrow eat.
 - Show how the binarize the production $VP \rightarrow VP$ CC VP.
 - Use your binarized grammar to parse the sentence *They eat and drink together*, treating *together* as an adverb.
 - Prove that a weighted CFG cannot distinguish the two possible derivations of this sentence. Your explanation should focus on the productions in the non-binary grammar.
 - Explain what condition must hold for a parent-annotated WCFG to prefer the derivation in which together modifies the coordination eat and drink.

https://powcoder.com

Assignment Project Exam Help

Assignated type bet pawn Help

 $\begin{array}{ccc} {\rm 11.} & {\rm \bf 10pts} \ {\rm Assuming \ the \ following \ grammar:} \\ {\rm S} & \rightarrow & {\rm NP \ VP} \\ \hline \end{array} \begin{array}{c} {\rm \bf 10pts} \ {\rm \bf Assuming \ the \ following \ grammar:} \\ \end{array}$

 $\mathrm{VP} \quad \to \quad \mathrm{V} \ \mathrm{NP}$

 $NP \rightarrow JJ NP$

 ${
m NP}
ightarrow {
m fish (the Animal) We Chat powcoder} \over {
m V}
ightarrow {
m fish (the action of fishing)}$

 $JJ \rightarrow fish$ (a modifier, as in fish sauce or fish stew)

Show how the sentence "Fish fish fish fish" can be derived with a series of shift-reduce actions.

12. **10pts**

Define the actions in a "arc-standard" transition-based dependency parsing system. What constraints need to be applied to ensure the resulting dependency tree is well-formed?