Tutorial-9 Winter 2024 Basic Electronics (ECE113)

Q1: In Figure-1, If $V_i(t) = 4 \sin wt$ volt then draw $V_o(t)$ & transfer characteristic, also define the nature of circuit. [Ans: Half Wave Rectifiers]

Q2: In Figure-2, If $V_i(t) = 2\sin wt$ volt then draw $V_o(t)$ & transfer characteristic, also define the nature of circuit. [Ans: Half Wave Rectifier]

Q3: In Figure-3, if $V_i(t) = 5 \sin wt$ then draw the curve for capacitor voltage $V_c(t)$ & output voltage $V_o(t)$ with explanation. Define the nature of circuit. [Ans: Clamper Circuit]

Figure 3

Solution:

Here
$$V_i(t) = 5 \sin(\omega t)$$

 $V_i(t) = V_c(t) + V_d + 2$

Part (I)

···
$$\vee_{i}(\pm) = \vee_{d} = \vee_{i}(\pm)$$

Case(II): FOJI () () , Diode is ON.

at
$$t = (7/4)$$
, $v_c(t) = (5-2) = 3$

$$V_o(t) = 2V$$

Case(III): Foot 4>(5), Diode is OFF.

$$V_0(t) = V_0 = V_1(t) - V_0(t)$$

= $\begin{bmatrix} V_1(t) - 3 \end{bmatrix}$

Post(III): The given circuit is working as a Clamper Circuit.