DESCRIPTION

Table: Queries
++
Column Name Type
++
query_name varchar
result varchar
position int
rating int
++
This table may have duplicate rows.
This table contains information collected from some queries on a database.
The position column has a value from 1 to 500 .
The rating column has a value from 1 to 5 . Query with rating less than 3 is a poor query.
We define query quality as:
The average of the ratio between query rating and its position.
We also define poor query percentage as:
The percentage of all queries with rating less than 3.
Write a solution to find each query_name, the quality and poor_query_percentage.
Both quality and poor_query_percentage should be rounded to 2 decimal places .
Return the result table in any order .
The result format is in the following example.
Example 1:
Input:
Queries table:
++
query_name result position rating

Output:

+-----+

| query_name | quality | poor_query_percentage |

+----+

| Dog | 2.50 | 33.33 | | Cat | 0.66 | 33.33 |

+----+

Explanation:

Dog queries quality is ((5/1) + (5/2) + (1/200))/3 = 2.50

Dog queries poor_query_percentage is (1/3) * 100 = 33.33

Cat queries quality equals ((2/5) + (3/3) + (4/7))/3 = 0.66

Cat queries poor query percentage is (1/3) * 100 = 33.33

SOLUTION

Option 1:

- Add 'quality' column ('rating' divided by 'position')
- Add 'poor_query_percentage' ('rating' multiplied by 100 if 'rating' < 3)
- Groupby the result table with 'query_name' column
- Compute average of 'quality' and 'poor_query_percentage' columns using mean()
- Round columns using round(x + 1e-9, 2)) instead of of round(2) for two decimal places
- round(2) doesn't pass test case 13

```
def queries_stats(queries: pd.DataFrame) -> pd.DataFrame:
    queries['quality'] = queries['rating']/queries['position']
    queries['poor_query_percentage'] = (queries['rating']<3)*100
    result = queries.groupby('query_name')[['quality','poor_query_percentage']].mean().apply(lambda x:
round(x + 1e-9, 2)).reset_index()
    return result</pre>
```

• Snapshot of the same code above for readability purposes

```
import pandas as pd

def queries_stats(queries: pd.DataFrame) -> pd.DataFrame:
    queries['quality'] = queries['rating']/queries['position']
    queries['poor_query_percentage'] = (queries['rating']<3)*100
    result = queries.groupby('query_name')[['quality','poor_query_percentage']].mean().apply
(lambda x: round(x + 1e-9, 2)).reset_index()
    return result</pre>
```

Option 2:

- Create df1 and df2 using groupby('query_name') and apply()
- Within each apply(), compute average of 'quality' and 'poor_query_percentage' columns using same equations and mean()
- Round columns using round(x + 1e-9, 2)) instead of of round(2) for two decimal places
- Join df1 and df1 for the result table

```
def queries_stats(queries: pd.DataFrame) -> pd.DataFrame:
    df1 = queries.groupby('query_name').apply(lambda x: round((x['rating']/x['position']).mean()+1e-9,
2)).reset_index(name='quality')
    df2 = queries.groupby('query_name').apply(lambda x: round(((x['rating']<3)*100).mean()+1e-9,
2)).reset_index(name='poor_query_percentage')
    result = df1.merge(df2, how='inner')
    return result</pre>
```

Snapshot of the same code above for readability purposes

```
import pandas as pd

'def queries_stats(queries: pd.DataFrame) -> pd.DataFrame:
    df1 = queries.groupby('query_name').apply(lambda x: round((x['rating']/x['position']).mean()+1e-9, 2)).
    reset_index(name='quality')
    df2 = queries.groupby('query_name').apply(lambda x: round(((x['rating']<3)*100).mean()+1e-9, 2)).
    reset_index(name='poor_query_percentage')
    result = df1.merge(df2, how='inner')
    return result</pre>
```