CURVE FITTING AND DATA REGRESSION

Numerical methods in chemical engineering

Dr. Edwin Zondervan

OVERVIEW

- We are going to fit measurements to models today.
- You will also learn what R² actually means

FITTING MODELS TO DATA

y is the measured variable

x is the controlled variable

HOW TO FIT A MODEL TO THE DATA

We would like to fit the following model to the data:

$$\hat{y} = a_1 + a_2 x + a_3 x^2 + a_4 x^3 \quad \text{(9-1)}$$

• First step: If we have N data points, we could write the model as the product of a matrix and a vector:

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \\ \vdots \\ \hat{y}_N \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_N & x_N^2 & x_N^3 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$$
 X is and

$$\hat{y} = Xa_{(9-3)}$$

X is called the design matrix and a are the fit parameters.

(9-2)

RESIDUALS

 Second step: work out the residuals for each data point:

$$d_{i} = (y_{i} - \hat{y}_{i}) \qquad (9-4)$$

 Third step: Work out the sum of squares of the residuals:

$$\sum_{i} (d_{i})^{2} = \sum_{i} (y_{i} - \hat{y}_{i})^{2}$$
 (9-5)
$$\sum_{i} (d_{i})^{2} = d \bullet d = d^{T} \times d = (y_{i} - \hat{y}_{i})^{T} (y_{i} - \hat{y}_{i})$$
 (9-6)

MINIMIZING THE SUM OF SQUARES

 Choose the parameter vector such that the sum of squares of the residuals is minimized; the partial derivative with respect to each parameter should be set to zero:

$$\frac{\partial}{\partial a_i} [(y - (Xa)^T (y - Xa)] = 0$$
 (9-7)

MINIMIZING THE SUM OF SQUARES

$$\frac{\partial}{\partial a_{j}}[(y^{T}-(Xa)^{T})(y-Xa)]=0 \Leftrightarrow$$

$$\frac{\partial}{\partial a_{j}}[(y^{T}-X^{T}a^{T})(y-Xa)]=0 \Leftrightarrow$$

$$(y^{T}-X^{T}a^{T})X\frac{\partial}{\partial a_{j}}[(a)]+\frac{\partial}{\partial a_{j}}[(a)^{T}]X^{T}(y-Xa)=0 \Leftrightarrow$$

$$(y^{T}-X^{T}a^{T})Xe_{j}+e_{j}^{T}X^{T}(y-Xa)=0$$

$$(y^{T}-(Xa)^{T})Xe_{j}+e_{j}^{T}X^{T}(y-Xa)=$$

$$(y^{T}-(Xa)^{T})Xe_{j}+e_{j}^{T}X^{T}(y-Xa)=$$

$$(y^{T}-(Xa)^{T})Xe_{j}+e_{j}^{T}X^{T}(y-Xa)=0 \Leftrightarrow$$

$$(Xe_{j})^{T}(y-Xa)+e_{j}^{T}X^{T}(y-Xa)=0 \Leftrightarrow$$

$$e_{j}^{T}X^{T}(y-Xa)+e_{j}^{T}X^{T}(y-Xa)=0 \Leftrightarrow$$

$$e_{j}^{T}(X^{T}(y-Xa)+X^{T}(y-Xa))=0 \Leftrightarrow$$

$$2X^{T}(y-Xa)=0 \Leftrightarrow$$

$$X^{T}y=X^{T}Xa$$

$$(9-9)$$

USING MATLAB FOR LLSQ

 If we have the same number of data points as fit parameters, we can solve the system:

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$$
 (9-10)

• As $a = X \setminus y$

USING MATLAB FPR LLSQ

 If there are more data points (N>4), we can write an analogue, but maybe a consistent solution does not exist (the system is over specified).

• However, matlab will find values for the vector a which minimize $||y-aX||^2$, so i.e. a least squares fit.

FIT TO OUR PROBLEM

```
N=length(x);
X(:,1) = ones(N,1);
X(:,2) = x;
X(:,3) = x.^2;
X(:,4) = x.^3;
```

```
A = X \setminus y;
```


HOW GOOD IS THE MODEL?

- For a model to make sense the data points should be scattered randomly around the model predictions, the mean of the residuals d should be zero.
- $d_i = (y_i \hat{y}_i)$ It's always good to check if the residuals are not correlated with the measured values, if that is the case, it can indicate that your model is wrong.

REGRESSION COEFFICIENTS

Variance measured in the data (y) is:

$$\sigma_y^2 = \frac{1}{N} \sum_i (y_i - \bar{y})^2$$
 (9-11)

Variance of the residuals is:

$$\sigma_{error}^2 = \frac{1}{N} \sum_{i} (d_i)^2$$
 (9-12)

Variance in the model is:

$$\sigma_{\text{model}}^2 = \frac{1}{N} \sum_{i} (\hat{y}_i - \bar{\hat{y}}_i)^2$$
 (9-13)

REGRESSION COEFFICIENTS

Given that the error is uncorrelated we can

state that:
$$\sigma_y^2 = \sigma_{error}^2 + \sigma_{\text{model}}^2$$
 (9-14)

$$R^{2} = \frac{\sigma_{\text{model}}^{2}}{\sigma_{y}^{2}} = 1 - \frac{\sigma_{error}^{2}}{\sigma_{y}^{2}}$$
 (9-15)

$$R^2 = 1 - \frac{SSE}{SST}$$
 SSE: Sum of errors squared SSR: Sum of squares (data) SST: Total sum of squares (matrix)

SST SST: Total sum of squares (model)

(9-16)

STATISTICAL ANALYSIS

- An uncorrellated error (mean will be zero) \rightarrow SSE, SST and SSR will have χ^2 -distributions and the ratios will have an *F*-distribution. If SSR/SSE is large, the model is good!
- There is a change that the model is rubbish, but that SSR/SSE will yield a good value, Analysis of Variance (ANOVA) will be a good tool to calculate the probability of such a thing happening!

BACK TO THE EXAMPLE

• Stats:

$$-N = 100$$

$$-$$
 SSE = 8.1031

$$-$$
 SST = 232.5490

$$-$$
 SSR = 224.4459

$$- R^2 = 0.9652$$

Source	Deg. Of freedom	Sum of squares	F-value
Regression	K = 4	SSR =	F =
		224.44	657.84
Residual	N-K-1=	SSE =	
	95	8.103	
Total	99	SST =	
		232.55	

F>657 means: very unlikely!!!

F = (SSR/4)/(SSE/95)

CONFIDENCE LIMITS FOR THE FIT PARAMETERS

 Using the t-distribution, the confidence limits for the fit parameters can be set as:

CONFIDENCE LIMITS FOR THE PREDICTED POINTS

 A confidence interval for each predicted value is given by:

$$\hat{y}_{i} - t \frac{\sigma_{error}}{v} \sqrt{[X(X^{T}X)^{-1}X^{T}]}_{j,j} < \hat{y}_{j} < \hat{y}_{i} + t \frac{\sigma_{error}}{v} \sqrt{[X(X^{T}X)^{-1}X^{T}]}_{j,j}$$

(9-18)

SUMMARY

- We have seen how fit parameters of a model can fitted to a data set, using the linear least squares method.
- We found out how to calculate the regression coefficients and how to perform a statistical analysis of the model using ANOVA.
- We also postulated expressions for the confidence limits for the fit parameters and the predicted points