# CMPE 185 Autonomous Mobile Robots

Perception: Feature Extraction II & Computer Vision and Image Processing

Dr. Wencen Wu
Computer Engineering Department
San Jose State University

#### Line Extraction from a Point Cloud

- Extract lines from a point cloud (e.g. range scan)
- Three main problems:
  - How many lines are there?
  - Segmentation: Which points belong to which line?
  - Line Fitting/Extraction: Given points that belong to a line, how to estimate the line parameters?
- Algorithms we will see:
  - Split-and-merge
  - Linear regression
  - RANSAC
  - Hough-Transform



- Points vote for plausible line parameters
- Hough-Transform: maps image-space into Hough-space
- Hough-space: voting accummulator, parametrized w.r.t. line characteristics



<sup>1.</sup> P. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

<sup>2.</sup> J. Richard, O. Duda, P.E. Hart (April 1971). "Use of the Hough Transformation to Detect Lines and Curves in Pictures". Artificial Intelligence Center (SRI International)

 A line in the image corresponds to a point in Hough space



• What does a point  $(x_0, y_0)$  in the image space map to in the Hough space?



- Where is the line that contains both  $(x_0, y_0)$  and  $(x_1, y_1)$ 
  - It is the intersection of the lines

$$b = -x_0 m + y_0$$
 and  $b = -x_1 m + y_1$ 

Image space

Hough parameter space







 Each point in image space votes for line-parameters in Hough parameter space



- Problems with the (m,b) space:
  - Unbounded parameter domain
  - How to represent vertical lines?
- Alternative: polar representation



Each point in image space will map to a sinusoid in the  $(\rho, \theta)$  parameter space

- 1. Initialize accumulator H to all zeros
- **2. for** each edge point (x,y) in the image

```
for all \theta in [0,180]
    Compute \rho = x \cos\theta + y \sin\theta
    H(\theta, \rho) = H(\theta, \rho) + 1
 end
```

end

- **3.** Find the values of  $(\theta, \rho)$  where  $H(\theta, \rho)$  is a local maximum **4.** The detected line in the image is
- given by:

$$\rho = x \cos\theta + y \sin\theta$$



## Line Extraction – Hough-Transform: Examples



## Line Extraction – Hough-Transform: Examples



## Line Extraction – Hough-Transform: Examples



Peak gets fuzzy and hard to locate

#### Line Extraction – Comparison

- Split-and-merge, Incremental and Line-Regression: **fastest** best applied on **laser scans**
- Deterministic & make use of the sequential ordering of raw scan points (: points captured according to the rotation direction of the laser beam)
- If applied **on randomly captured points** only last 3 algorithms would segment all lines.

RANSAC, Hough-Transform and EM produce greater precision --> more robust

to outliers

| N     | : no. points considered         |
|-------|---------------------------------|
| $N_f$ | : no. points in window          |
| S     | : no. line-segments to be found |
| k     | : no. iterations                |
| λI    | : no columns, rows of the       |

accumulator array

|                             | Complexity        | Speed (Hz) | False<br>positives | Precision |
|-----------------------------|-------------------|------------|--------------------|-----------|
| Split-and-Merge             | N log N           | 1500       | 10%                | +++       |
| Incremental                 | SN                | 600        | 6%                 | +++       |
| Line-Regression             | $NN_f$            | 400        | 10%                | +++       |
| RANSAC                      | SNk               | 30         | 30%                | ++++      |
| Hough-Transform             | $SNN_C + SN_RN_C$ | 10         | 30%                | ++++      |
| Expectation<br>Maximization | $SN_1N_2N$        | 1          | 50%                | ++++      |

Comparison by [Nguyen et al. IROS 2005]

## Example:Lane Detection in 3D Lidar Point Cloud



#### Lane Detection in 3D Lidar Point Cloud

- The advantages of using Lidar data for lane detection are:
  - Lidar point clouds give a better 3D representation of the road surface than image data, thus reducing the required calibration parameters to find the bird's-eye view
  - Lidar is more robust against adverse climatic conditions than image-based detection
  - Lidar data has a centimeter level of accuracy, leading to accurate lane localization

#### Lane Detection in 3D Lidar Point Cloud

- Lane detection in Lidar involves detection of the immediate left and right lanes, also known as ego vehicle lanes, w.r.t. the Lidar sensor. It involves the following steps:
  - Region of interest extraction
  - Ground plane segmentation
  - Peak intensity detection
  - Lane detection using window search
  - Parabolic polynomial fitting
  - Parallel lane fitting
  - Lane tracking

#### Examples:

#### **Lidar Toolbox:**

- https://www.mathworks.com/help/lidar/
- What is Lidar:
  - https://www.mathworks.com/discovery/lidar.html

#### **Examples:**

- https://www.mathworks.com/help/lidar/examples.html
- Line extraction:
  - https://www.mathworks.com/help/images/ref/houghlines.html
- Lane detection in 3D Lidar point cloud
  - https://www.mathworks.com/help/lidar/ug/lane-detectionin-3d-lidar-point-cloud.html
- Curb detection and tracking in 3D Lidar point cloud
  - https://www.mathworks.com/help/lidar/ug/curb-detectionin-lidar-point-cloud.html

#### More Examples

- Detect and track vehicles using Lidar data
  - https://www.mathworks.com/help/vision/ug/trackvehicles-using-lidar.html
- Ground plane and obstacle detection using Lidar
  - https://www.mathworks.com/help/driving/ug/groundplane-and-obstacle-detection-using-lidar.html
- Build a map from Lidar data
  - https://www.mathworks.com/help/driving/ug/build-amap-from-lidar-data.html

## Computer Vision and Image Processing

#### Human Visual Capabilities

- Our visual system is very sophisticated
- Humans can interpret images successfully under a wide range of conditions – even in the presence of very limited cues





#### Computer Vision – What is it?

- Automatic extraction of "meaningful" information from images and videos
  - varies depending on the application



Semantic information



Geometric information

#### Computer Vision for Robotics

- Enormous descriptability of images → a lot of data to process (human vision involves 60 billion neurons!)
- Vision provides humans with a great deal of useful cues to explore the power of vision towards intelligent robots

#### Cameras:

- Vision is increasingly popular as a sensing modality:
  - descriptive
  - compactness, compatibility, ...
  - low cost
  - HW advances necessary to support the processing of images

#### Computer Vision – Applications

- 3D reconstruction and modeling
- Recognition
- Motion capture
- Augmented reality:
- Video games and tele-operation
- Robot navigation and automotive
- Medical imaging











### Computer Vision – Why is it hard?

Achieving human-level visual perception is probably "Alcomplete"







What we see

#### **Image Distortion**

- The camera image is a projection of the three dimensional space into a two dimensional space,
- The projection process is affected by the characteristics of each camera



No distortion

Barrel distortion

Pincushion

#### Camera Calibration

- Camera calibration: calculating the camera's unique parameters
- Camera calibration is necessary if you are measuring distance from images acquired with a stereo camera or processing images for object detection
  - Need to know the information of the camera: lens characteristics, the gap between the lens and the image sensor, and the twisted angle of the image sensor, etc.



FIGURE 8-8 Chessboard for calibration (8 x 6)



FIGURE 8- Calibration GUI initial state



FIGURE 8-10 Calibration process using the calibration GUI

#### How do we measure distances with cameras?

- From a single image: we can only deduct the ray along which each image-point lies
- Stereo vision
  - using 2 cameras with known relative position T and orientation R, recover the 3D scene information





## **Image Processing**

#### Image Intensities & Data Reduction

- Image capture a lot of information
- Typical sizes:
  - 320 \* 240 (QVGA)
  - 640 \* 480 (VGA)
  - 1280 \* 720 (HD)
- Intensity sampled to 256 grey levels – 8bits



### What is Useful, What is Redundant?



## What is Useful, What is Redundant?



### What is Useful, What is Redundant?



#### Image Filtering

- **filtering:** accept / reject certain components
- example: a low-pass filter allows low frequencies a blurring (smoothing) effect on an image – used to reduce image noise
- Smoothing can be achieved not only with **frequency filters**, but also with **spatial filters**.









Low-pass filtering: retains low-frequency components (smoothing)

High-pass filtering: retains high-frequency components (edge detection)

#### Image Filtering – Spatial Filters

- $S_{xy}$ : neighborhood of pixels around the point (x,y) in an image I
- Spatial filtering operates on  $S_{xy}$  to generate a new value for the corresponding pixel at output image J



For example, an averaging filter is:  $J(x,y) = \frac{\sum_{u,v \in S_{xy}} I(u,v)}{(2M+1)(2N+1)}$ 

#### Image Filtering – Linear, shift-invariant filters

 Linear: every pixel is replaced by a linear combination of its neighbors

 Shift-invariant: the same operation is performed on every point on the image

- Why filter?
  - noise reduction, image enhancement, feature extraction, ...

## Image Filtering – Correlation

An averaging filter in 1D



- Formally, Correlation is  $J(x) = F \cdot I(x) = \sum_{i \in [-N,N]} F(i)I(x+i)$
- In this smoothing example  $F(i) = \begin{cases} 1/3, i \in [-1,1] \\ 0, i \notin [-1,1] \end{cases}$

### Image Filtering – Correlation in 2D

Example: constant averaging filter

$$F = \begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix}$$



- If  $size(F) = (2N + 1)^2$ , i.e., a square filter
  - # of multiplications per pixel =  $(2N + 1)^2$
  - # of additions per pixel =  $(2N + 1)^2 1$

### Image Filtering – Matching Using Correlation

- Find locations in an image that are similar to a template
- Filter = template



→ test it against all image locations



• Similarity measure: Sum of Squared Differences (SSD) minimizes  $\sum_{i=1}^{N} f_i$ 

$$\sum_{i=-N}^{N} (F(i) - I(x+i))^2$$

### Image Filtering – Gaussian Filter

Common practice for image smoothing: use a Gaussian



Normalize filter so that values always add up to 1

 Near-by pixels have a bigger influence on the averaged value rather than more distant ones

### Image Filtering – 2D Gaussian Smoothing

A general, 2D Gaussian

$$G(x,y) = \frac{1}{2\pi |S|^{1/2}} e^{-\frac{1}{2} {x \choose y} S^{-1}(x,y)}$$



 We usually want to smooth by the same amount in both x and y directions

$$S = \begin{bmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{bmatrix}$$



# Image Filtering – Examples



 0
 0
 0

 0
 1
 0

 0
 0
 0



original image

# Image Filtering – Examples



original image





filtered (shifted left by 1 pixel)

# Image Filtering – Examples



original image

| 1/9 | 1/9 | 1/9 |
|-----|-----|-----|
| 1/9 | 1/9 | 1/9 |
| 1/9 | 1/9 | 1/9 |



filtered (blurred with a box filter)

### Image Filtering – Edge Detection

- Ultimate goal of edge detection: an idealized line drawing
- Edge contours in the image correspond to important scene contours



- Edges correspond to sharp changes of intensity
- How to detect an edge?
  - Big intensity change → magnitude of derivative is large

## Image Filtering – Edge Detection

Examples of edge detection filters

$$F_{x} = \begin{vmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{vmatrix}$$

$$F_{y} = \begin{array}{|c|c|c|c|c|}\hline 1 & 1 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -1 & -1 \end{array}$$

$$F_{x} = \begin{array}{|c|c|c|c|c|} -1 & 0 & 1 \\ -2 & 0 & 2 \\ \hline -1 & 0 & 1 \end{array}$$

$$F_{y} = \begin{array}{c|ccc} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \end{array}$$

$$F_{x} = \begin{array}{|c|c|c|c|c|} \hline 0 & 1 \\ \hline -1 & 0 \\ \hline \end{array}$$

$$F_{y} = \begin{array}{|c|c|c|} \hline 1 & 0 \\ \hline 0 & -1 \\ \hline \end{array}$$

# Image Filtering – Edge Detection



I: original image (Lena)





- Lidar-camera filtering:
  - https://www.mathworks.com/help/lidar/ug/lidarcamera-calibration.html
- Camera calibration using AprilTag markers
  - https://www.mathworks.com/help/vision/ug/cameracalibration-using-apriltag-markers.html

• Thank you!