Contrôle continu 3

Durée 1h10. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. On définit $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ par

$$f(x,y) = \frac{x^2}{(x^2 + y^2)^{3/4}}$$

- 1. Déterminer la limite de f en (0,0). On a $|f(x,y)| \le (x^2+y^2)/(x^2+y^2)^{3/4} = (x^2+y^2)^{1/4} \xrightarrow[(x,y)\to(0,0)]{} 0$. Ainsi $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.
- 2. En déduire que l'on peut prolonger f en une fonction \tilde{f} continue sur tout \mathbb{R}^2 .

 Comme f est clairement continue (c'est un quotient de fonctions continues dont le dénominateur ne s'annule pas) sur $\mathbb{R}^2 \setminus \{(0,0)\}$, il suffit de poser $\tilde{f}(x,y) = \begin{cases} f(x,y) & \text{si } (y,x) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$.
- 3. Étudier l'existence des dérivées partielles de \tilde{f} . Les calculer lorsqu'elles existent. Sur $\mathbb{R}^2 \setminus \{(0,0)\}$ la fonction \tilde{f} admet les dérivées partielles suivantes :

$$\frac{\partial \tilde{f}}{\partial x}(x,y) = \frac{2x}{(y^2 + x^2)^{\frac{3}{4}}} - \frac{3x^3}{2(y^2 + x^2)^{\frac{7}{4}}} \quad \text{et } \frac{\partial \tilde{f}}{\partial y}(x,y) = -\frac{3x^2y}{2(y^2 + x^2)^{\frac{7}{4}}}$$

En (x,y)=(0,0) la fonction partielle $y\mapsto f(0,y)=0$ et il vient $\frac{\partial \tilde{f}}{\partial y}(0,0)=0$. De plus

$$\frac{\tilde{f}(x,0) - \tilde{f}(0,0)}{x - 0} = |x|^{-1/2},$$

ce taux d'accroissement tend vers $+\infty$ si x tend vers 0, et donc \tilde{f} n'admet pas de dérivée partielle par rapport à la première variable en (0,0).

4. Sur quel domaine la fonction \tilde{f} est-elle différentiable ? Sur $\mathbb{R}^2 \setminus \{(0,0)\}$ la fonction \tilde{f} est \mathcal{C}^1 et est donc différentiable. En l'origine, on a un point singulier : la fonction partielle $x \mapsto \tilde{f}(x,0) = |x|^{2-3/2} = |x|^{1/2}$ admet un point anguleux en x = 0:

Exercice 2. Soit $a \in \mathbb{R}$, on cherche toutes les fonctions $g : \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 sur \mathbb{R}^2 vérifiant

$$\frac{\partial g}{\partial x}(x,y) - \frac{\partial g}{\partial y}(x,y) = a. \tag{1}$$

1. On pose $\phi:(u,v)\to((u+v)/2,(v-u)/2)$. Montrer que ϕ est un \mathcal{C}^1 -diffeomorphisme sur \mathbb{R}^2 et preciser son inverse.

La fonction ϕ est une application linéaire inversible (d'inverse $\phi^{-1}(x,y) = (x-y,x+y)$). Les applications ϕ et ϕ^{-1} sont donc $\mathcal{C}^1(\mathbb{R}^2)$ et donnent bien des difféomorphismes du plan.

2. Étant donnée une fonction $g: \mathbb{R}^2 \to \mathbb{R}$ solution de (1), on pose $f = g \circ \phi$. Démontrer alors que $\frac{\partial f}{\partial u}(u,v) = \frac{a}{2}$.

On pose $\phi(u,v) = (x(u,v),y(u,v))$ et il faut appliquer la règle de la chaîne :

$$\begin{split} \frac{\partial f}{\partial u}(u,v) &= \frac{\partial g}{\partial x}(x,y)\frac{\partial x}{\partial u}(u,v) + \frac{\partial g}{\partial y}(x,y)\frac{\partial y}{\partial u}(u,v) \\ &= \frac{\partial g}{\partial x}(x,y)\frac{1}{2} - \frac{\partial g}{\partial y}(x,y)\frac{1}{2} \\ &= \frac{1}{2}\underbrace{\left(\frac{\partial g}{\partial x}(x,y) - \frac{\partial g}{\partial y}(x,y)\right)}_{\text{utiliser (1)}} = \frac{a}{2} \end{split}$$

3. Intégrer l'expression de la question précédente pour en déduire une expression générique $\mathrm{de}\ f.$

La dérivée partielle de f par rapport à u est une constante : on a donc

$$f(u,v) = \frac{a}{2}u + h(v) + b$$

où $h: \mathbb{R} \to \mathbb{R}$ est une fonction \mathcal{C}^1 quelconque et $b \in \mathbb{R}$ (on aurait pu "rentrer" la constante b dans la fonction h...).

4. En déduire les solutions de (1).

On utilise le changement de variable inverse. On a

$$g(x,y) = f \circ \phi^{-1}(x,y) = \frac{a}{2}(x-y) + h(x+y) + b.$$

qui est bien solution de (1). Voici un exemple avec $a=2,\,b=0$ et $h(v)=3\sin{(-v^2/10)}$:

- ercice 3. Soit $f: \mathbb{R}^2 \to \mathbb{R}$, définie par $f(x,y) = \frac{1}{3}x^3 + 4xy^2 + x^2 + 4y^2$. 1. Démontrer que les 4 points critiques de la fonction f sont (0,0), (-2,0), (-1,-1/2) et (-1, 1/2).

La fonction f est clairement de classe \mathcal{C}^2 sur \mathbb{R}^2 car polynôme. Pour tout $(x,y) \in \mathbb{R}^2$ on a

$$\frac{\partial f}{\partial x}(x,y) = x^2 + 4y^2 + 2x, \quad \frac{\partial f}{\partial y}(x,y) = 8xy + 8y,$$

et

$$\frac{\partial^2 f}{\partial x^2}(x,y) = 2x + 2, \quad \frac{\partial^2 f}{\partial x \partial y}(x,y) = 8y, \quad \frac{\partial^2 f}{\partial y^2}(x,y) = 8x + 8.$$

Un point $(x,y) \in \mathbb{R}^2$ est un point critique si et seulement si

$$\begin{cases} x^2 + 4y^2 + 2x = 0 \\ y(x+1) = 0 \end{cases} \Leftrightarrow \begin{cases} x^2 + 4y^2 + 2x = 0 \\ y = 0 \text{ ou } x = -1 \end{cases}.$$

Ainsi si y = 0 on obtient de la première équation x = 0 ou x = -2; et si x = -1 on obtient y = -1/2 ou y = 1/2. Il y a donc quatre points critiques : (0,0), (-2,0), (-1,-1/2) et (-1,1/2).

- 2. Déterminer la nature (maximum, minimum, point selle) de chacun de ces points critiques.
 - Point (0,0): on a

$$\operatorname{Hess}_f(0,0) = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix},$$

et avec les notations du cours on obtient $rt - s^2 = 16 > 0$ et r = 2 > 0, donc (0,0) est un minimum local de f.

- Point (-2,0): on a

$$\operatorname{Hess}_f(-2,0) = \begin{pmatrix} -2 & 0\\ 0 & -8 \end{pmatrix},$$

ce qui implique $rt - s^2 = 16 > 0$ et r = -2 < 0, donc (-2,0) est un maximum local de f.

- Point (-1, -1/2): on a

$$\operatorname{Hess}_f(-1, -1/2) = \begin{pmatrix} 0 & -4 \\ -4 & 0 \end{pmatrix},$$

ce qui implique $rt - s^2 = -16 < 0$, donc (-1, -1/2) est un point selle de f.

- Point (-1, 1/2): on a

$$\operatorname{Hess}_f(-1, 1/2) = \begin{pmatrix} 0 & 4 \\ 4 & 0 \end{pmatrix},$$

ce qui implique $rt - s^2 = -16 < 0$, donc (-1, 1/2) est un point selle de f.

3. La fonction f possède-t-elle un maximum global?

On peut considérer la restriction $y \mapsto f(0,y) = 4y^2$ qui n'est pas majorée par un nombre fini. La fonction f n'admet donc pas de maximum global.