TIPOS ABSTRACTOS DE DATOS T.A.D.

SISTEMAS DE DATOS Licenciatura en Sistemas de Información

Introducción

Introducción

Un *tipo de datos* es una clase de objetos de datos ligados a un conjunto de operaciones para crearlos y manipularlos.

Tipo Abstracto de Datos – T.A.D.

Un *Tipo Abstracto de* Datos (TAD) se define como un modelo matemático de los objetos de datos que constituyen un tipo de datos, así como de las funciones que operan sobre ellos.

Tipo Abstracto de Datos – T.A.D.

Concepto matemático de Entero

Conjunto de números

Unión de {-1,-2,...,-¥} y {0,1,2,...,¥},

Operaciones: suma, resta, multiplicación y división entera.

Implementación del concepto matemático

Lenguajes

C tipo de datos int

Pascal tipo de datos integer.

tipos de datos provistos por un lenguaje de programación,

tipos abstractos de datos para construirlos usaremos los tipos de datos disponibles en un lenguaje de programación de alto nivel.

Arquitectura para desarrollo de software

funcionamiento de computadoras, etc.

Componente de un T.A.D.

Un tipo abstracto de datos definido por el usuario consta de:

- ➤ Un conjunto de Objetos de Datos
- ➤ Un conjunto de Operaciones Abstractas
- > Encapsulamiento

Metodología para construir T.A.D.

Los tres pasos a seguir son:

- 1) Realizar la *especificación* del nuevo tipo abstracto de datos.
- 2) Seleccionar la *representación* del objeto de datos.
- 3) Construir las *operaciones abstractas* por medio de subprogramas.

Metodología para construir T.A.D. Especificación

En esta etapa se establecen los atributos, los valores y las operaciones que pueden realizarse.

Atributos:

- Nømbre del Tipo Abstracto de Datos.
- Número de componentes
- •Tipo de cada componente.
- •Número máximo de componentes, etc.

Valores

Operaciones:

- Nombre de la operación.
- Encabezado de la operación
- Función
- Entrada
- Salida

Metodología para construir T.A.D. Representación

En esta etapa se selecciona la *representación de almacenamiento* a usar para los objetos de datos.

REPRESENTAC.

Representación secuencial: la estructura de datos se guarda en un solo bloque contiguo de memoria

Representación vinculada, encadenada o enlazada: la estructura de datos es mantenida en varios bloques no contiguos de almacenamiento, vinculados entre sí por medio de enlaces.

Variables dinámicas

Cursores

Metodología para construir T.A.D.

Construcción de operaciones abstractas

En esta etapa se precisan, en términos de algoritmos o procedimientos concretos, las operaciones definidas para el tipo abstracto de datos; son estos algoritmos los que manipulan la representación de almacenamiento elegida para los objetos de datos.

Ejemplo T.A.D. Conjunto

1) ESPECIFICACIÓN

Atributos:

- Nombre del Tipo Abstracto de Datos.
- Número de componentes
- •Tipo de cada componente.
- Número máximo de componentes, etc.

1)Realizar la *especificación* del nuevo tipo abstracto de datos.

- 2)Seleccionar la *representación* del objeto de datos.
- 3)Construir las *operaciones abstractas* por medio de subprogramas.

Valores

Operaciones:

- Nombre de la operación.
- Encabezado de la operación
- Función
- Entrada
- Salida

Actividad: Realizar el TAD Conjunto

Ventajas de la abstracción de datos

- Separa Especificación de Implementación
- > Programas de aplicación más simples, comprensibles y fáciles de entender
- > **Reutilización**: Un mismo TAD puede ser utilizado en diferentes contextos de aplicación.
- Ocultamiento de información: El poder escoger entre varias alternativas de implementación es la razón principal para usar abstracción de datos. Los detalles de implementación quedan totalmente ocultos dentro de las barreras del TAD, y es posible hacer modificaciones locales, generalmente para mejorar la eficiencia, que no tengan una repercusión global.
- Integridad: A través del encapsulamiento, permiten contar con información fidedigna tanto en datos como en resultados de procesos, mejorando el rendimiento y robustez del sistema

Tipos Abstractos de Datos

Referencias

Pratt

Clifford A. Shaffer, A Practical Introduction to Data Structures and Algorithm Analysis Third Edition (C++ Version) -2010.

http://people.cs.vt.edu/~shaffer/Book/C++3e20101007.pdf