CSC301 HW10

Alex Zhang

April 2023

Question 1

Question 2

Since we proved that SAT \rightarrow 3SAT in class, and both of them are NP-complete. If we can prove that 3SAT \rightarrow EXACT 4SAT, then SAT \rightarrow EXACT 4SAT, which indicates that EXACT 4SAT is also NP-complete.

Define f

Case 1 Clause length 1

For the clause of length 1 a_1 , we need to add three new "auxiliary" variables. For clause with length 1, we define f to be:

$$a_1 = (a_1 \lor y_1 \lor y_2 \lor y_3) \land (a_1 \lor \bar{y_1} \lor y_2 \lor y_3) \land (a_1 \lor y_1 \lor \bar{y_2} \lor y_3) \land (a_1 \lor y_1 \lor y_2 \lor \bar{y_3})$$
$$\land (a_1 \lor \bar{y_1} \lor \bar{y_2} \lor y_3) \land (a_1 \lor \bar{y_1} \lor y_2 \lor \bar{y_3}) \land (a_1 \lor y_1 \lor \bar{y_2} \lor \bar{y_3}) \land (a_1 \lor \bar{y_1} \lor \bar{y_2} \lor \bar{y_3})$$

Case 2 Clause length 2

In this case we need to add two more "auxiliary" variables, and we define f as:

$$(a_1 \lor a_2) = (a_1 \lor a_2 \lor y_1 \lor y_2) \land (a_1 \lor a_2 \lor y_1 \lor \bar{y_2}) \land (a_1 \lor a_2 \lor \bar{y_1} \lor y_2) \land (a_1 \lor a_2 \lor \bar{y_1} \lor \bar{y_2})$$

Case 3 Clause length 3

We just need one more "auxiliary" variable. The f now will be:

$$(a_1 \lor a_2 \lor a_3) = (a_1 \lor a_2 \lor a_3 \lor y_1) \land (a_1 \lor a_2 \lor a_3 \lor \bar{y_1})$$

Above all, f will be in polynomial time since creating new auxiliary variables takes O(m).

Define h

h is the true assignment for EXACT 4SAT to solutions to 3SAT. Define h to ignore the truth assignment of auxiliary variables, keeping the truth assignment of the origonal variables. h is poly-time, since we are just chops off at most 3 bits vector.

h(S) satisfies I

Suppose not, then there are three cases.

Case 1 Clause with length 1 is false

Then the false cluase can be transformed into:

$$a_k = (y_1 \lor y_2 \lor y_3) \land (\bar{y_1} \lor y_2 \lor y_3) \land (y_1 \lor \bar{y_2} \lor y_3) \land (y_1 \lor y_2 \lor \bar{y_3})$$

$$\wedge (\bar{y_1} \vee \bar{y_2} \vee y_3) \wedge (\bar{y_1} \vee y_2 \vee \bar{y_3}) \wedge (y_1 \vee \bar{y_2} \vee \bar{y_3}) \wedge (\bar{y_1} \vee \bar{y_2} \vee \bar{y_3})$$

In this case, all three "auxiliary" variables need to be true. However, this will make the last clause to be false which leads to a contradiction.

Case 2 Clause with length 2 is false

Then the false cluase can be transformed into:

$$(a_k \lor a_{k+1}) = (y_1 \lor y_2) \land (y_1 \lor \bar{y_2}) \land (\bar{y_1} \lor y_2) \land (\bar{y_1} \lor \bar{y_2})$$

Based on this string, we have to make both y_1 and y_2 to be true but this will still make the last clause be false. A contradiction happens.

Case 3 Clause with length 3 is false

Then the false clause can be simplified into:

$$(a_k \lor a_{k+1} \lor a_{k+2}) = (y_1) \land (\bar{y_1})$$

and this implies that y_1 needs to be true, but this will lead a contradiction which $\bar{y_1}$ cannot.

I satisfies so that f(I)

Suppose the origonal string is satisfied, then every clause regradless of length need to be true.

Case 1 Clause with length 1

Based on the f in previous statement, it is clear that if a_k is true, f will also be true since a_k is in every clasue.

Case 2 Clause with length 2

Since $(a_k \lor a_{k+1})$ is true, adding two more auxiliary variables will also be true in each clause. Therefore length 2 will be true.

Case 3 Clause with length 3

Since $(a_k \lor a_{k+1} \lor a_{k+2})$ is true, adding an extra auxiliary variable will also be true without considering its boolean value. The transformation will be true is the original stirng is true.

We can conclude that 3SAT \to EXACT 4SAT. Based on the fact that SAT \to 3SAT, we can use reduction compose to show that

$$SAT \rightarrow EXACT 4SAT$$

So EXACT 4SAT is NP-complete. ■

Question 3