UNIT NO:3.2

Functions

Definition: A relation from set X to set Y is a function from set X to set Y if for every element x in the domain, there corresponds exactly one element y in the range.

Note: The definition of a function requires that a relation must be satisfying two conditions in order to qualify as a function:

The first condition is that every $x \in X$ must be related to $y \in Y$ that is the domain of f must be X and not merely a subset of X (X is covered)

The second requirement of uniqueness can be expressed as: (Not one Many)

 $(x, y) \in f$ and $(x, z) \in f \implies y = z$

Remark: Functions are sometimes also called mappings or transformations

Example Determine which of the relations are function.

a.

b.

c.

In "a" Relation is a function.

In "b" Relation is not a function.

In "c" Relation is a function.

Types of Functions

1. One-to-One or **Injective**: A function $f: A \rightarrow B$ is called one to-one or injective if each element of B is the image of at most one element of A

$$\forall x, x' \in A, f(x) = f(x') \Longrightarrow x = x'$$

For instance, f(x) = 2x from Z to Z is injective

Figure One-to-one function

Types of Functions

2. Onto or Surjective : A function f : A → B is called onto or surjective if every element of B has preimage in A

Figure: Onto function

Example Using two-element sets or three-element sets as domains and ranges, find an example of an onto function that is not one-to-one.

Notice that the function given by f(1) = a, f(2) = b, f(3) = a is an example of a function from $\{1, 2, 3\}$ to $\{a, b\}$ that is onto but not one to one.

Examples

Let $f: N \rightarrow N$, f(x) = 5x. Is f injective? f is injective.

Let f: N \rightarrow N, f(x) =x². Is f injective? f(x)= x² is injective.

Let f: $R \rightarrow R$, $f(x) = x^2$ Is f injective ? $f(x) = x^2$ is not injective as $(-x)^2 = x^2$

Check None of them are surjective (onto) !!!

Types of Functions

3. One-To-One Correspondence or Bijective: A

function $f: A \to B$ is said to be a one-to-one correspondence, or bijective, or a bijection, if it is one-to-one and onto

Example Prove that a function $f:R \rightarrow R$ defined by f(x)=2x-3 is a bijective function

If
$$f(a) = f(b)$$

$$\Rightarrow 2a - 3 = 2b - 3$$

$$\Rightarrow a = b.$$
Thus $f(a) = f(b) \Rightarrow a = b$

Hence f is injective.

Let
$$f(x)=y$$

$$\Rightarrow$$
 2x-3=y

$$\Rightarrow x=(y+3)/2 \& x=(y+3)/2 \in R$$

Thus for $y \in R(codomain) \exists x=(y+3)/2 \in R(domain)$ such that f(x)=y

Hence, f is surjective.

Hence, f is bijective.

Example: Is a function $f: Z \rightarrow Z$ defined by f(x) = 2x-3 a bijective function?

If
$$f(a) = f(b)$$

 $\Rightarrow 2a - 3 = 2b - 3$
 $\Rightarrow a = b$.
Thus $f(a) = f(b) \Rightarrow a = b$
Hence f is injective.
Let $f(x)=y$
 $\Rightarrow 2x-3=y$
 $\Rightarrow x = (y+3)/2$ But $x = (y+3)/2 \notin Z$
Thus for $y \in Z(codomain)$ There is no $x \in Z(domain)$ such that $f(x)=y$
Hence, f is Not surjective.
Hence, f is Not bijective.

Definition Inverse Function

If $f: A \to B$ is a bijective function, its inverse is the function $f^{-1}: B \to A$ such that $f^{-1}(y) = x$ if and only if f(x) = y

Example: let f be the function from $\{1, 2, 3\}$ to $\{a, b, c\}$ such that f(1) = c, f(2) = a, and f(3) = b. Is f invertible, and if it is, what is its inverse?

Ans The function f is invertible because as shown in figure image set is covered and it is a one-to-one

correspondence.

 f^{-1} reverses the direction by f so $f^{-1}(a) = 2$, $f^{-1}(b) = 3$ and $f^{-1}(c) = 1$

Example let $f : \mathbb{Z} \to \mathbb{Z}$ be such that f(x) = x + 1. Is f invertible, and if it is, what is its inverse?

Ans: consider If f(a) = f(b)

$$\Rightarrow$$
a + 1 = b + 1

$$\Rightarrow$$
 a = b.

Thus $f(a) = f(b) \Rightarrow a = b$ Hence f is injective.

Let
$$f(x)=y$$

$$\Rightarrow$$
 x+1 = y

$$\Rightarrow$$
x = y-1 But x = y-1 \in Z

Thus for $y \in Z(codomain)$ There is $x = y-1 \in Z(domain)$ such that f(x)=y Hence, f is surjective.

Hence, f is bijective.

Now
$$x = y-1$$

Consequently
$$f^{-1}(y) = y - 1$$

Definition: Function Composition

Given two functions $f: A \to B$ and $g: B \to C$ the composite function of f and g is the function $g_o f: A \to C$ defined by $(g_o f)(x) = g(f(x))$ for every x in A

Example: Let g be the function from the set $\{a, b, c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a.

Let f be the function from the set $\{a, b, c\}$ to the set $\{1,2,3\}$ such that f (a) = 3, f (b) = 2, and f (c) = 1. What is the composition of fog, and what is the composition of gof?

Solution: Consider diagram representation of information.

The composition $f \circ g$ is defined by $(f \circ g)(a) = f(g(a)) = f(b) = 2,$ $(f \circ g)(b) = f(g(b))$ = f(c) = 1,

$$(fog)(c) = f(g(c)) = f(a) = 3.$$

Note that gof is not defined, because the range of f is not a subset of the domain of g.

Example Let f and g be the functions from the set of integers to the set of integers defined by f(p) = 2p + 3 and g(q) = 3q + 2. What is the composition of f and g? What is the composition of g and f?

Solution:

Both the compositions f_o g and g_o f are defined. Moreover,

$$(f_0 g)(x) = f(g(x)) = f(3x + 2)$$

= $2(3x + 2) + 3 = 6x + 7$

and

$$(g_0 f)(x) = g(f(x)) = g(2x + 3)$$

= $3(2x + 3) + 2 = 6x + 11$.

Try putting some value of x (say 1) and verify !!!

EX

- Function $f: R \{1\} \to R \{3\}$ is defined as $f(x) = \frac{3x-2}{x-1}$. Prove that f is bijective
- Functions $f: R \to R$, $g: R \to R$ are defined as f(x) = 5x + 3, g(x) = 1 + 3x then find $f \circ g$, $f \circ f$, $g \circ f$ & $g \circ g \circ f$