

Clique-Width: Harnessing the Power of Atoms Narzędzie do rozwiązywania wielu problemów jednocześnie?

Paulina Brzęcka

16 października 2024

Motywacje do badań

Wiele trudnych problemów z grafami można rozwiązać, ograniczając dane wejściowe do jakiejś klasy grafów. Dwa główne pytania brzmią:

- Dla jakich klas grafów problem grafowy jest wykonalny?
- Dla jakich klas grafów jest on trudny obliczeniowo?

Idealnie byłoby, gdybyśmy chcieli odpowiedzieć na te pytania w odniesieniu do dużego zestawu problemów jednocześnie, zamiast rozważać poszczególne problemy jeden po drugim.

Parametry szerokości grafu pomagają w umożliwieniu takich wyników. Klasa grafów ma ograniczoną szerokość, jeśli istnieje stała c taka, że szerokość wszystkich jej elementów wynosi co najwyżej c.

Definicje

Podgraf indukowany.

Jest to graf, którego zbiór wierzchołków jest zawarty (jest podzbiorem) w zbiorze wierzchołków grafu G, a zbiór krawędzi składa się ze wszystkich krawędzi grafu G, których końce należą do zbioru wierzchołków podgrafu.

Definicje

Klasa grafów heredytalnych (dziedzicznych).

Klasa jest dziedziczna wtedy i tylko wtedy, gdy może być scharakteryzowana przez unikalny zbiór ${\cal H}$ minimalnych, zabronionych podgrafów indukowanych.

Graf G jest H-wolny jeśli G nie ma podgrafu indukowanego, izomorficznego do H.

Graf G jest $(H_1, ..., H_p)$ -wolny jeśli G nie ma podgrafów indukowanych, izomorficznych do H_i dla każdego i.

Szerokość kliki.

Szerokość kliki grafu G, oznaczona jako cw(G), to minimalna liczba etykiet potrzebnych do skonstruowania G przy użyciu czterech następujących operacji:

- utworzenie nowego grafu składającego się z pojedynczego wierzchołka
 v z etykietą i;
- przyjęcie sumy rozłącznej dwóch grafów oznaczonych etykietami G_1 i G_2 ;
- dodanie krawędzi pomiędzy każdym wierzchołkiem o etykiecie i a każdym wierzchołkiem o etykiecie j $(i \neq j)$;
- ullet oznaczenie każdego wierzchołka etykietą i tak, aby miał etykietę j.

POLITECHNIKA | Szerokość kliki

Klasa grafów G ma ograniczoną szerokość kliki, jeśli istnieje stała c taka, że $cw(G) \leqslant c$ dla każdego $G \in G$; w przeciwnym razie szerokość kliki Gjest nieograniczona.

Przykłady

Atom.

Spójny graf, który nie posiada podgrafu rozpinającego będącego kliką.

Wiele NP-zupełnych problemów grafowych można rozwiązać w czasie wielomianowym na klasach grafów o ograniczonej szerokości kliki. Część z nich, między innymi:

- Kolorowanie
- Minimalne dopełnienie
- Maksymalna klika
- Maksymalny ważony zbiór niezależny
- Maksymalne indukowane dopasowanie

są rozwiązywalne w czasie wielomianowym na grafie dziedzicznym klasy G wtedy i tylko wtedy, gdy ma to miejsce w przypadku atomów G.

Klasa atomów $(2P_2, \overline{P_2 + P_3})$ -wolnych ma ograniczoną szerokość kliki (mając na uwadze że klasa grafów $(2P_2, \overline{P_2 + P_3})$ -wolnych ma nieograniczoną szerokość kliki)

 $\overline{P_2 + P_3}$

Z czego będziemy korzystać?

Dla stałej $k\geqslant 0$ i operacji na grafach γ , klasa grafów G' jest (k,γ) -uzyskana z klasy grafów G, jeśli:

- (i) każdy graf w G' został uzyskany z grafu w G poprzez wykonanie γ co najwyżej k razy, oraz
- (ii) dla każdego $G \in G$, istnieje co najmniej jeden graf w G', uzyskany z G poprzez wykonanie γ co najwyżej k razy.
 - 1. Usuwanie wierzchołków zachowuje ograniczoność szerokości kliki.
- 2. Dopełnienie podgrafu zachowuje ograniczoność szerokości kliki.
- **3.** Dopełnienie grafu dwudzielnego zachowuje ograniczoność szerokości kliki.

Lemat. Grafy łańcuchowe dwudzielne mają szerokość kliki co najwyżej 3. **Lemat.** Atomy podzielone są grafami pełnymi i mają szerokość kliki co najwyżej 2.

Schemat działania

Dowód.

Podejście opiera się na trzech następujących twierdzeniach:

- **1.** $(2P_2, \overline{P_2 + P_3})$ -wolnych atomów z indukowanym C_5 ma ograniczoną szerokość kliki.
- **2.** $(2P_2, \overline{P_2 + P_3})$ -wolnych atomów z indukowanym C_4 ma ograniczoną szerokość kliki.
- **3.** $(C_4, C_5, 2P_2, \overline{P_2 + P_3})$ -wolnych atomów ma ograniczoną szerokość kliki.

 $(C_4,C_5,2P_2)$ -wolne grafy są grafami podzielonymi i na mocy lematu, atomy tej klasy są grafami pełnymi, więc mają szerokość kliki wynoszącą co najwyżej 2.

Schemat działania

Dowód.

- 1. Dzielimy zbiór wierzchołków dowolnego $(2P_2, \overline{P_2 + P_3})$ -wolnego atomu G na różne podzbiory w zależności od ich sąsiedztw w indukowanym C_5 lub C_4 .
- 2. Analizujemy właściwości podzbiorów V(G) oraz ich połączenia, a także wykorzystujemy tę wiedzę do zastosowania odpowiednich operacji γ .
- **3.** Te operacje zmienią G w graf G' będący rozłącznym grafem kilku mniejszych grafów, które mają ograniczoną szerokość kliki.

To podejście działa, ponieważ:

- stosujemy operacje usuwania wierzchołków, dopełnień podgrafów i dopełnień grafów dwudzielnych tylko ograniczoną liczbę razy;
- nie wykorzystujemy właściwości bycia atomem ani bycia $(2P2, \overline{P_2} + \overline{P_3})$ -wolnym, gdy opuszczamy klasę grafów po zastosowaniu powyższych operacji grafowych.

Lemat

Klasa atomów $(2P_2, \overline{P_2 + P_3})$ -wolnych atomów z indukowanym C_5 ma ograniczoną szerokość kliki.

Dowód.

Niech G będzie atomem wolnym od $(2P_2,\overline{P_2+P_3})$, który zawiera indukowany cykl $C=v_1,\ldots,v_5$. Wprowadzamy następujące oznaczenia: dla $S\subseteq\{1,2,3,4,5\}$, niech V_S oznacza zbiór wierzchołków $x\in V(G)\setminus V(C)$, takich że $N(x)\cap V(C)=\{v_i\mid i\in S\}$. Rozważamy możliwe wartości S.

 $V_i \cup V_{i,i+1} \cup V_{i-1,i,i+1}$ jest puste dla każdego i.

Dowód przez sprzeczność: $x \in V_2 \cup V_{2,3} \cup V_{1,2,3}$

Zbiory $V_{\emptyset} \cup V_{i,i+2}$ dla każdego i są niezależne.

Dowód przez sprzeczność: $x,y \in V_{\emptyset} \cup V_{1,3}$

Dla każdego i, $|V_{i,i+1,i+3} \cup V_{i,i+1,i+2,i+3}| \leq 1$.

Dowód przez sprzeczność: $x,y \in V_{1,2,4} \cup V_{1,2,3,4}$

Dla każdego i istnieje co najwyżej jedną krawędź między $V_{i,i+2}$ a $V_{i,i-2}$.

Dowód przez sprzeczność: $x \in V_{1,3}$ i ma dwóch sąsiadów $y,y' \in V_{1,4}$

Dla każdego i, $V_{i,i+2}$ jest pełne w stosunku do $V_{i-1,i+1} \cup V_{i+1,i+3}$.

Dowód przez sprzeczność: $x \in V_{1,3}$ i $y \in V_{2,4}$

Jeżeli $x \in V_{1,2,3,4,5}$, to x jest pełne w stosunku do $V(G) \setminus \{x\}$. W szczególności, $V_{1,2,3,4,5}$ jest kliką.

1. Dla każdego i, $|V_{i,i+1,i+3} \cup V_{i,i+1,i+2,i+3}| \leqslant 1$. – usuwamy co najwyżej 5 wierzchołków.

- **2.** Jeżeli $x\in V_{1,2,3,4,5}$, to x jest pełne w stosunku do $V(G)\setminus \{x\}$. W szczególności, $V_{1,2,3,4,5}$ jest kliką. dopełnienie dwudzielne na $V_{1,2,3,4,5}$ względem reszty grafu.
- **3.** Wykonujemy dopełnienie na $V_{1,2,3,4,5}$ staje się on zbiorem niezależnym.

 $V_{1,2,3,4,5}$

- **4.** Dla każdego i istnieje co najwyżej jedna krawędź między $V_{i,i+2}$ a $V_{i,i-2}$.
- usuwamy co najwyżej 5 wierzchołków. Pozostałe zbiory ${\cal V}$ są niezależne.

 $V_{1,2,3,4,5}$

5. Dla każdego i, $V_{i,i+2}$ jest pełne w stosunku do $V_{i-1,i+1} \cup V_{i+1,i+3}$. - wykonujemy 5 dopełnień dwudzielnych. Między parami $V_{i-1,i+1} \cup \{v_i\}$, a $V_{i,i+2} \cup \{v_{i+1}\}$

 $V_{1,2,3,4,5}$

Dowód.

Z powyższych twierdzeń wynika, że odpowiednia liczba operacji na G (10 usunięć wierzchołków, 1 dopełnienia podgrafu, 6 dopełnień dwudzielnych) prowadzi do grafu, który ma ograniczoną szerokość kliki.

Lemat

Klasa atomów $(2P_2, \overline{P_2 + P_3})$ -wolnych atomów z indukowanym C_4 ma ograniczoną szerokość kliki.

Dowód.

Załóżmy, że G jest atomem wolnym od $(2P_2, P_2 + P_3)$, który zawiera indukowany cykl $C = v_1, v_2, v_3, v_4$. Na mocy wcześniejszego lematu, możemy założyć, że G jest wolny od C_5 . Dla $S \subseteq \{1, 2, 3, 4\}$, niech V_S oznacza zbiór wierzchołków $x \in V(G) \setminus V(C)$, takich że $N(x) \cap V(C) = \{v_i \mid i \in S\}$.

- **1.** Dla każdego i, $V_{i,i+1,i+2}$ jest pusty.
- **2.** Zbiór $V_{\emptyset} \cup V_i \cup V_{i+1} \cup V_{i,i+1}$ jest niezależny dla każdego i.
- **3.** Dla każdego i, zbiory $V_{i,i+1} \cup V_{i,i+2}$ i $V_{i,i+1} \cup V_{i+1,i+3}$ są niezależne.
- **4.** Graf $G[V_{1,2,3,4}]$ jest wolny od $P_1 + P_2$, a więc ma ograniczoną szerokość kliki.
- **5.** Dla $i \in \{1,2\}$, $V_{i,i+2}$ jest pełne względem $V_{1,2,3,4}$.
- **6.** Dla każdego i, albo $V_{i-1} \cup V_{i-1,i}$, albo $V_{i,i+1} \cup V_{i+1}$ jest puste.
- 7. Jeżeli $x \in V_{\emptyset}$, to x ma co najmniej dwóch sąsiadów w jednym z $V_{1,3}$ lub $V_{2,4}$ i jest antykompletny względem drugiego zbioru. Ponadto, x jest pełny względem $V_{1,2,3,4}$.
- **8.** Dla każdego $i \in \{1,2\}, |V_{i,i+1} \cup V_{i+2,i+3}| \leq 2.$
- **9.** Dla każdego $i \in \{1, 2, 3, 4\}$, V_i jest pełne względem $V_{1,2,3,4}$, a co najwyżej jeden wierzchołek z $V_{i,i+2}$ ma sąsiadów w V_i .

1. Dla każdego i, albo $V_{i-1} \cup V_{i-1,i}$, albo $V_{i,i+1} \cup V_{i+1}$ jest puste. Dla każdego $i \in \{1,2\}$, $|V_{i,i+1} \cup V_{i+2,i+3}| \leqslant 2$. - co najwyżej 2 operacje usunięcia wierzchołków. Graf na tym etapie może już nie być atomem.

2. Usunięcie cyklu poprzez 4 operacje usunięcia wierzchołka.

3. Dla każdego $i\in\{1,2,3,4\}$, V_i jest pełne względem $V_{1,2,3,4}$, a co najwyżej jeden wierzchołek z $V_{i,i+2}$ ma sąsiadów w V_i . - usunięcie dwóch wierzchołków.

4. Dla każdego i, albo $V_{i-1} \cup V_{i-1,i}$, albo $V_{i,i+1} \cup V_{i+1}$ jest puste. - przyjmujemy V_3 i V_4 za puste.

5. Dzięki twierdzeniom:

- Dla $i \in \{1,2\}$, $V_{i,i+2}$ jest pełne względem $V_{1,2,3,4}$.
- Jeżeli $x\in V_\emptyset$, to x ma co najmniej dwóch sąsiadów w jednym z $V_{1,3}$ lub $V_{2,4}$ i jest antykompletny względem drugiego zbioru. Ponadto, x jest pełny względem $V_{1,2,3,4}$.
- Dla każdego $i\in\{1,2,3,4\}$, V_i jest pełne względem $V_{1,2,3,4}$, a co najwyżej jeden wierzchołek z $V_{i,i+2}$ ma sąsiadów w V_i .

 $V_{1,2,3,4}$ jest pełny względem $V_\emptyset \cup V_1 \cup V_2 \cup V_{1,3} \cup V_{2,4}$ - wykorzystujemy dopełnienie dwudzielne.

- Graf $G[V_{1,2,3,4}]$ jest wolny od $P_1 + P_2$, a więc ma ograniczoną szerokość kliki.
- Jeżeli $x \in V_{\emptyset}$, to x ma co najmniej dwóch sąsiadów w jednym z $V_{1,3}$ lub $V_{2,4}$ i jest antykompletny względem drugiego zbioru. Ponadto, x jest pełny względem $V_{1,2,3,4}$.

Zatem $V_{\emptyset} \cup V_{2,4}$ jest łańcuchem dwudzielnym, który ma ograniczoną szerokość kliki.

Dowód.

Na podstawie powyższych twierdzeń, odpowiednia liczba operacji (usunięcia wierzchołków, komplementacje podgrafów i komplementacje dwudzielne) prowadzi do grafu o ograniczonej szerokości kliki.

Klasa atomów $(2P_2, \overline{P_2 + P_3})$ -wolnych ma ograniczoną szerokość kliki (mając na uwadze ze klasa grafów $(2P_2, \overline{P_2 + P_3})$ -wolnych ma nieograniczoną szerokość kliki)

Dowód.

Klasa grafów podzielnych to klasa grafów wolnych od $(C_4,C_5,2P_2)$. Ponieważ grafy podzielne tworzą podklasę klasy grafów wolnych od $(2P_2,\overline{P_2+P_3})$, a grafy podzielne mają nieograniczoną szerokość kliki, wynika z tego, że grafy wolne od $(2P_2,\overline{P_2+P_3})$ również mają nieograniczoną szerokość kliki. Przypomnijmy, że atomy podzielne są grafami pełnymi, a zatem ich szerokość kliki wynosi co najwyżej 2. Atomy wolne od $(2P_2,\overline{P_2+P_3})$, które nie są podzielne, muszą zatem zawierać indukowany C_4 lub C_5 .

POLITECHNIKA Pozostałe wyniki

- 1. Klasa atomów w G ma ograniczoną szerokość kliki, jeśli jest równoważna klasie grafów wolnych od (H_1,H_2) , gdzie spełniony jest jeden z następujących warunków:
 - (i) H_1 lub $H_2 \subseteq_i P_4$
 - (ii) $H_1 = K_s$ i $H_2 = tP_1$ dla pewnych $s, t \geqslant 1$
 - (iii) $H_1\subseteq_i$ paw i $H_2\subseteq_i$ $K_{1,3}+3P_1,K_{1,3}+P_2,P_1+P_2+P_3,P_1+P_5,P_1+S_{1,1,2},P_2+P_4,P_6,S_{1,1,3}$ lub $S_{1,2,2}$
 - (iv) $H_1 \subseteq_i \text{ diamond i } H_2 \subseteq_i P_1 + 2P_2, 3P_1 + P_2 \text{ lub } P_2 + P_3$
 - (v) $H_1 \subseteq_i \text{ gem i } H_2 \subseteq_i P_1 + P_4 \text{ lub } P_5$
 - (vi) $H_1 \subseteq_i K_3 + P_1 \text{ i } H_2 \subseteq_i K_{1,3}$
 - (vii) $H_1 \subseteq_i \overline{2P_1 + P_3}$ i $H_2 \subseteq_i 2P_1 + P_3$
- 2. Klasa atomów w G ma ograniczoną szerokość kliki, jeśli G jest podklasą klasy:
 - (i) grafów wolnych od $(P_6, \overline{2P_2})$
 - (ii) grafów wolnych od $(2P_2, \overline{P_2 + P_3})$

POLITECHNIKA | Pozostałe wyniki

- 1. Klasa atomów w G ma nieograniczoną szerokość kliki, jeśli jest równoważna klasie grafów wolnych od (H_1, H_2) , gdzie spełniony jest jeden z następujących warunków:
 - (i) $H_1 \notin S$ i $H_2 \notin S$
 - (ii) $H_1 \notin S$ i $H_2 \notin \overline{S}$
 - (iii) $H_1 \supset_i K_3 + P_1 i H_2 \supset_i 4P_1 \text{ lub } 2P_2$
 - (iv) $H_1 \supseteq_i \text{ diamond i } H_2 \supseteq_i K_{1,3}, 5P_1 \text{ lub } P_2 + P_4$
 - (v) $H_1 \supset_i K_3$ i $H_2 \supset_i 2P_1 + 2P_2, 2P_1 + P_4, 4P_1 + P_2, 3P_2$ lub $2P_3$
 - (vi) $H_1 \supset_i K_4$ i $H_2 \supset_i P_1 + P_4, 3P_1 + P_2$ lub $2P_2$
 - (vii) $H_1 \supset_i \operatorname{gem} i H_2 \supset_i P_1 + 2P_2$
- 2. Klasa atomów w G ma nieograniczoną szerokość kliki, jeśli zawiera klase grafów wolnych od (H_1, H_2) , gdzie spełniony jest jeden z następujących warunków:
 - (i) $H_1 \supseteq_i \text{ diamond i } H_2 \supseteq_i P_1 + P_6$
 - (ii) $H_1 \supset_i 2P_1 + P_2 i H_2 \supset_i P_6$
 - (iii) $H_1 \supset_i \text{ gem i } H_2 \supset_i P_6$
 - (iv) $H_1 \supseteq_i P_1 + 2P_2$ lub P_6 i $H_2 \supseteq_i \overline{P_1 + 2P_2}$ lub $\overline{P_2 + P_3}$
 - (v) $H_1 \supset_i 2P_2$ i $H_2 \supset_i \overline{P_2 + P_4}$, $\overline{3P_2}$ lub $\overline{P_5}$

POLITECHNIKA | Problemy otwarte

Czy klasa atomów wolnych od (H_1,H_2) ma ograniczoną szerokość kliki, jeśli:

(i)
$$H_1 = \text{diamond i } H_2 = P_6$$

(ii)
$$H_1 = C_4$$
 i $H_2 \in \{P_1 + 2P_2, P_2 + P_4, 3P_2\}$

(iii)
$$H_1 = \overline{P_1 + 2P_2}$$
 i $H_2 \in \{2P_2, P_2 + P_3, P_5\}$

(iv)
$$H_1 = \overline{P_2 + P_3}$$
 i $H_2 \in \{P_2 + P_3, P_5\}$

(v)
$$H_1 = K_3 i H_2 \in \{P_1 + S_{1,1,3}, S_{1,2,3}\}^*$$

(vi)
$$H_1 = 3P_1$$
 i $H_2 = \overline{P_1 + S_{1,1,3}}$

(vii)
$$H_1 = \text{diamond i } H_2 \in \{P_1 + P_2 + P_3, P_1 + P_5\}^*$$

(viii)
$$H_1 = 2P_1 + P_2 i H_2 \in \{\overline{P_1 + P_2 + P_3}, \overline{P_1 + P_5}\}^*$$

(ix)
$$H_1 = \text{gem i } H_2 = P_2 + P_3^*$$

(x)
$$H_1 = P_1 + P_4 i H_2 = \overline{P_2 + P_3}^*$$

Przypadki oznaczone gwiazdką (*) oznaczają, że nie jest znana ograniczoność szerokości kliki dla całej klasy grafów wolnych od (H_1,H_2)

Bibliografia I

Minimal classes of graphs of unbounded tree-width and clique-width. *Journal of Graph Theory.*

Konrad K. Dabrowski, Tomáš Masařík, Jana Novotná, Daniël Paulusma, and Paweł Rzążewski.

Clique-width: Harnessing the power of atoms. *arXiv preprint*, (arXiv:2006.03578), 2020.

Jana Novotná.

Clique-width of atoms and coloring for hereditary graphs.

https://www.youtube.com/watch?v=iT9uIHE9-vw.

Daniël Paulusma.

Clique-width and graph colouring for hereditary graph classes. https://www.youtube.com/watch?v=qO-IWNnuFYE.

Dziękuję za uwagę!