Modélisation des liaisons mécaniques simples dans le simulateur

Mac-Gyver

1 Qu'est-ce qu'une liaison simple?

D'après wikipédia : "Une liaison mécanique simple, est une liaison obtenue par un contact entre une surface simple unique d'une pièce avec celle, simple et aussi unique d'une autre pièce".

Il y a essentiellement une chose à remarquer : une liaison contraint certains degrés de liberté. Conséquence : les efforts (forces et couples) se transmettent suivant ces degrés de liberté. Ainsi, pour une certaine liaison \mathcal{L} , on peut définir deux matrices diagonales $[T^{\mathcal{L}}]$ et $[R^{\mathcal{L}}]$ indiquant quelles translations et quelles rotations sont contraintes.

Exemple pour une liaison pivot :

$$[T^{\mathcal{L}}] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad [R^{\mathcal{L}}] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Ainsi, supposons que l'on a un objet 1 et un objet 2 reliés par une liaison \mathcal{L} . Si l'on applique une force \overrightarrow{F} et un couple \overrightarrow{C} à l'objet 1, l'objet 2 reçoit une force $[T^{\mathcal{L}}]\overrightarrow{F}$ et un couple $[R^{\mathcal{L}}]\overrightarrow{C}$.

2 Cas simple

On considère le cas de deux objets 1 et 2 liés par une liaison \mathcal{L} . On note G_i le barycentre de l'objet $i \in \{1,2\}$. Soit L le point de contact de la liaison. On cherche à déterminer $\overrightarrow{F_L}$ et $\overrightarrow{\mathcal{M}_L}$, c'est-à-dire respectivement la force et le moment appliqués par l'objet 1 sur l'objet 2 au point L.

On note respectivement $\overrightarrow{F_i}$ et $\overrightarrow{\mathcal{M}_i^A}$ la somme des forces et des moments des forces en A pour l'objet $i \in \{1,2\}$ (on ne compte ni $\overrightarrow{F_P}$ ni $\overrightarrow{\mathcal{M}_P}$ dans ces sommes). On note respectivement m_i , $[J_i]$, $\overrightarrow{a_i}(P)$ et $\overrightarrow{\Omega_i}$ la masse, la matrice d'inertie, l'accélération du point P et le vecteur rotation instantanée pour l'objet $i \in \{1,2\}$. Pour un solide fixe, on prendra $m = \infty$ et $[J] = \infty Id$.

On cherche à déterminer $\overrightarrow{F_L}$ en fonction $\overrightarrow{\mathcal{M}_L}$, $\overrightarrow{F_i}$, $\overrightarrow{\mathcal{M}_i^A}$, m_i , $[J_i]$, $\overrightarrow{a_i}(P)$ et $\overrightarrow{\Omega_i}$ pour $i \in \{1,2\}$. Le PDF et le TMC permettent d'écrire :

$$m_{1}\overrightarrow{a_{1}}(G_{1}) = \overrightarrow{F_{1}} - \overrightarrow{F_{L}}$$

$$m_{2}\overrightarrow{a_{2}}(G_{2}) = \overrightarrow{F_{2}} + \overrightarrow{F_{L}}$$

$$[J_{1}]\overrightarrow{\Omega_{1}} = \underbrace{\overrightarrow{\mathcal{M}_{1}^{G_{1}}} - \overrightarrow{\mathcal{M}_{L}}}_{J_{2}}$$

$$[J_{2}]\overrightarrow{\Omega_{2}} = \underbrace{\overrightarrow{\mathcal{M}_{2}^{G_{2}}} + \overrightarrow{\mathcal{M}_{L}}}_{J_{L}}$$

$$(1)$$

Suivant la nature de la liaison certain degré de liberté sont contraints, d'autres non. $_ \ \ \,$

 $a\overrightarrow{X}$ pour une glissière. On a :

$$\overrightarrow{a_1}(L) - \overrightarrow{a_2}(L) = \overrightarrow{a_L} \tag{2}$$

Enfin, la loi des champs de vitesse des points d'un objet donne :

$$\overrightarrow{v_i}(L) = \overrightarrow{v_i}(G) + \overrightarrow{\Omega_i} \wedge \overrightarrow{GL}$$
 (3)

D'où en dérivant :

$$\overrightarrow{a_i}(L) = \overrightarrow{a_i}(G_i) + \dot{\overrightarrow{\Omega_i}} \wedge \overrightarrow{G_iL} + \overrightarrow{\Omega_i} \wedge (\overrightarrow{\Omega_i} \wedge \overrightarrow{G_iL})$$
(4)

En remplaçant (4) et (1) dans (5) on obtient :

$$\overrightarrow{a_1}(G_1) + \overrightarrow{\Omega_1} \wedge \overrightarrow{G_1L} + \overrightarrow{\Omega_1} \wedge (\overrightarrow{\Omega_1} \wedge \overrightarrow{G_1L}) -
\overrightarrow{a_2}(G_2) + \overrightarrow{\Omega_2} \wedge \overrightarrow{G_2L} + \overrightarrow{\Omega_2} \wedge (\overrightarrow{\Omega_2} \wedge \overrightarrow{G_2L}) = \overrightarrow{a_L}$$
(5)