```
In [177]: %load_ext sql
          The sql extension is already loaded. To reload it, use:
            %reload ext sql
In [178]: %sql mysql://prod:nerd@52.2.153.189/rental_nerd
Out[178]: u'Connected: prod@rental_nerd'
In [179]: result = %sql (SELECT \
          properties.id as "property_id", \
          property_transaction_logs.id as "transaction_log_id", \
          properties.*, \
          property_transaction_logs.* \
          FROM \
          properties, \
          property_transactions, \
          WHERE \
          properties.id = property_transactions.property_id AND \
          property_transactions.property_transaction_log_id = property_transaction_logs.id AND \
          property_transactions.transaction_type = 'rental')
          data = result.DataFrame()
          560 rows affected.
In [180]: result.csv(filename="SQLdump.csv")
Out[180]: CSV results (./files/SQLdump.csv)
In [181]: # imports
          import pandas as pd
          {\tt import\ matplotlib.pyplot\ as\ plt}
          # follow the usual sklearn pattern: import, instantiate, fit
          from sklearn.linear_model import LinearRegression
          import numpy as np
          \# this allows plots to appear directly in the notebook
          %matplotlib inline
          # read data into a DataFrame
          data.head()
```

Out[181]:

• [property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url	 id	price	tra
	0	1	1	1	567 Vallejo Street #PH500	San Francisco (North Beach)	3	3	2081	climbsf_renting	http://www.climbsf.com/for- rent/567-vallejo-st	 1	12000	ор
	1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.climbsf.com/for- rent/252-granada-ave/	 2	3950	ор
	2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.climbsf.com/for- rent/460-valley-st/	 3	5400	ор
;	3	4	4	4	333 Fremont Street #705	San Francisco (South Beach)	1	1	0	climbsf_renting	http://www.climbsf.com/for- rent/333-fremont-st	 4	3600	ор
	4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.climbsf.com/for- rent/420-mission-ba	 5	3975	ор

5 rows × 26 columns

```
In [182]: import datetime

Date_final = [0.1] * len(data)

for x in range(0,len(data)):
    data
    if data["date_closed"][x] is not None :
        # print " row: "+ `x` + ": using date_rented"
        # data.ix['Date_final', x]
        Date_final[x] = data["date_closed"][x]

elif data["date_listed"][x] is not None :
        # print " row: "+ `x` + ": using date_listed"
        Date_final[x] = data["date_listed"][x]
    else:
        Date_final[x] = data["date_closed"][2]
        print " row: "+ `x` + ": we are screwed"

data['Date'] = pd.to_datetime(Date_final)
    data.head()
```

Out[182]:

Ī	property	id transaction_log_id	l id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url	 price	transa
(1	1	1	567 Vallejo Street #PH500	San Francisco (North Beach)	3	3	2081	climbsf_renting	http://www.climbsf.com/for- rent/567-vallejo-st	 12000	open
1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.climbsf.com/for- rent/252-granada-ave/	 3950	open
2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.climbsf.com/for- rent/460-valley-st/	 5400	open
3	4	4	4	333 Fremont Street #705	San Francisco (South Beach)	1	1	0	climbsf_renting	http://www.climbsf.com/for- rent/333-fremont-st	 3600	open
4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.climbsf.com/for- rent/420-mission-ba	 3975	open

5 rows × 27 columns

```
In [183]: # create neighborhoods from lat/long coordinates
    import fiona
    import shapely as shapely
    from shapely.geometry import asShape
```

```
In [184]: shaped_neighborhood = ['None'] * len(data)
with fiona.open('data/Realtor_Neighborhoods_4326/hoods_4326.shp') as fiona_collection:
    for hood in fiona_collection:
        print "checking for listings in: " + hood["properties"]["nbrhood"]
        # Use Shapely to create the polygon
        shape = asShape( hood['geometry'] )

        for row in range(0,len(data)):
            point = shapely.geometry.Point([data['longitude'][row], data['latitude'][row]]) # longitude, latitude

        if shape.contains(point):
            #print `row` + ": Found " + data.address[row] + " in hood " + hood["properties"]["nbrhood"]
            shaped_neighborhood[row] = hood["properties"]["nbrhood"]

data['shaped_neighborhood'] = shaped_neighborhood
            data.head()
```

```
checking for fistings in: Alamo square
checking for listings in: Anza Vista
checking for listings in: Balboa Terrace
checking for listings in: Bayview
checking for listings in: Bernal Heights
checking for listings in: Buena Vista Park/Ashbury Heights
checking for listings in: Central Richmond
checking for listings in: Central Sunset
checking for listings in: Clarendon Heights
checking for listings in: Corona Heights
checking for listings in: Cow Hollow
checking for listings in: Crocker Amazon
checking for listings in: Diamond Heights
checking for listings in: Downtown
checking for listings in: Duboce Triangle
checking for listings in: Eureka Valley / Dolores Heights
checking for listings in: Excelsior
checking for listings in: Financial District/Barbary Coast
checking for listings in: Yerba Buena
checking for listings in: Forest Hill
checking for listings in: Forest Hills Extension
checking for listings in: Forest Knolls
checking for listings in: Glen Park
checking for listings in: Golden Gate Heights
checking for listings in: Golden Gate Park
checking for listings in: Haight Ashbury
checking for listings in: Hayes Valley
checking for listings in: Hunters Point
checking for listings in: Ingleside
checking for listings in: Ingleside Heights
checking for listings in: Ingleside Terrace
checking for listings in: Inner Mission
checking for listings in: Inner Parkside
checking for listings in: Inner Richmond
checking for listings in: Inner Sunset
checking for listings in: Jordan Park / Laurel Heights
checking for listings in: Lake Street
checking for listings in: Lake Shore
checking for listings in: Lakeside
checking for listings in: Lone Mountain
checking for listings in: Lower Pacific Heights
checking for listings in: Marina
checking for listings in: Merced Heights
checking for listings in: Merced Manor
checking for listings in: Midtown Terrace
checking for listings in: Miraloma Park
checking for listings in: Mission Bay
checking for listings in: Mission Dolores
checking for listings in: Mission Terrace
checking for listings in: Monterey Heights
checking for listings in: Mount Davidson Manor
checking for listings in: Noe Valley
checking for listings in: North Beach
checking for listings in: North Panhandle
checking for listings in: North Waterfront
checking for listings in: Oceanview
checking for listings in: Outer Mission
checking for listings in: Outer Parkside
checking for listings in: Outer Richmond
checking for listings in: Outer Sunset
checking for listings in: Pacific Heights
checking for listings in: Parkside
checking for listings in: Cole Valley/Parnassus Heights
checking for listings in: Pine Lake Park
checking for listings in: Portola
checking for listings in: Potrero Hill
checking for listings in: Presidio
checking for listings in: Presidio Heights
checking for listings in: Russian Hill
checking for listings in: Saint Francis Wood
checking for listings in: Sea Cliff
checking for listings in: Silver Terrace
checking for listings in: South Beach
checking for listings in: South of Market
checking for listings in: Stonestown
checking for listings in: Sunnyside
checking for listings in: Telegraph Hill
checking for listings in: Twin Peaks
checking for listings in: Van Ness/Civic Center
checking for listings in: Visitacion Valley
```

```
checking for listings in: West Portal
checking for listings in: Western Addition
checking for listings in: Westwood Highlands
checking for listings in: Westwood Park
checking for listings in: Lincoln Park
checking for listings in: Sherwood Forest
checking for listings in: Tenderloin
checking for listings in: Central Waterfront/Dogpatch
checking for listings in: Bayview Heights
checking for listings in: Little Hollywood
checking for listings in: Nob Hill
```

Out[184]:

: [property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url	 transaction_s
	0	1	1	1	567 Vallejo Street #PH500	San Francisco (North Beach)	3	3	2081	climbsf_renting	http://www.climbsf.com/for- rent/567-vallejo-st	 open
	1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.climbsf.com/for- rent/252-granada-ave/	 open
	2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.climbsf.com/for- rent/460-valley-st/	 open
	3	4	4	4	333 Fremont Street #705	San Francisco (South Beach)	1	1	0	climbsf_renting	http://www.climbsf.com/for- rent/333-fremont-st	 open
	4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.climbsf.com/for- rent/420-mission-ba	 open

5 rows × 28 columns

```
In [185]: # filter out any outliers, defined as rent >$10k or >2,500 sq ft, or not in SF

print "Entries before filter: " + `len(data)`
data = data[(data.shaped_neighborhood != 'None') & (data.sqft <= 2500) & (data.price <= 8000) & (data.price != 0) & (data.bedrooms <= 4) & (data.bathrooms <= 3) & (data.sqft != 0)]

# filter out listings over one month old

print "Entries after filter: " + `len(data)`</pre>
```

Entries before filter: 560 Entries after filter: 304

```
In [186]: # create year dummy variables (because date isn't very intuitive variable)
    data["Year"] = pd.DatetimeIndex(data["Date"]).to_period('Y')

# create dummy variables using get_dummies, then exclude the first dummy column
    year_dummies = pd.get_dummies(data.Year, prefix='Year').iloc[:, :-1]

# print out baseline neighborhood
base_area = pd.get_dummies(data.shaped_neighborhood, prefix='neighborhood').iloc[:, 0:1].columns[0]
    print('Base neighborhood: %s' % base_area)

# create dummy variables using get_dummies, then exclude the first dummy column
    area_dummies = pd.get_dummies(data.shaped_neighborhood, prefix='neighborhood').iloc[:, 1:]

# concatenate the dummy variable columns onto the original DataFrame (axis=0 means rows, axis=1 means columns)
    data = pd.concat([data, area_dummies, year_dummies], axis=1)

data.head()
```

Base neighborhood: neighborhood_Alamo Square

Out[186]:

: [property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url	 neighborho Hill
	1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.climbsf.com/for- rent/252-granada-ave/	 0
	2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.climbsf.com/for- rent/460-valley-st/	 0
	4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.climbsf.com/for- rent/420-mission-ba	 0
	7	8	8	8	1160 Mission Street #1112	San Francisco (SOMA)	1	1	664	climbsf_renting	http://www.climbsf.com/for- rent/1160-mission-s	 0
	11	12	12	12	655 26th Avenue	San Francisco (Central Richmond)	2	1	1300	climbsf_renting	http://www.climbsf.com/for- rent/655-26th-ave/	 0

 $5 \; rows \times 83 \; columns$

```
In [187]: # FACTORING BY YEAR AND NEIGHBORHOOD
           # Thesis: Neighborhoods influence valuations as a multiplier, rather than a constant.
           \ensuremath{\textit{\#}} a square foot in SOMA is worth more than a square foot in Portrero by X%
           # New model will look like this:
                  Price = B_1 x (SOMA Coeff * Year Coeff * Sqft) + intercept
           # $3,900 = B_1 \times (1.20\% * 1.15\% * 2,023 \text{ sqft}) + \text{intercept}
# where B_1 represents the price per square foot in base year and base neighborhood
           # I will ignore intercepts for now FIXME
           # calculate the coefficients for the following matrix and save them for later regressions
                                SOMA Mission Portrero
                                                                 Intercept
           # Price/SQFT
                                $1.23
                                         $0.59
                                                       $0.88
                                                                      $_.__
           # create Price per square foot
           price per foot = data.price / data.sqft
           price_per_foot.name = 'price_per_foot'
           data = pd.concat([data, price_per_foot], axis=1)
           data.head()
```

Out[187]:

:		property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url	 neighborho Ness/Civic
	1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.climbsf.com/for- rent/252-granada-ave/	 0
	2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.climbsf.com/for- rent/460-valley-st/	 0
	4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.climbsf.com/for- rent/420-mission-ba	 0
	7	8	8	8	1160 Mission Street #1112	San Francisco (SOMA)	1	1	664	climbsf_renting	http://www.climbsf.com/for- rent/1160-mission-s	 0
	11	12	12	12	655 26th Avenue	San Francisco (Central Richmond)	2	1	1300	climbsf_renting	http://www.climbsf.com/for- rent/655-26th-ave/	 0

5 rows × 84 columns

```
In [188]: # visualize the relationship between the features and the response using scatterplots
    data.plot(kind='scatter', x='elevation', y='price_per_foot')
data.plot(kind='scatter', x='elevation', y='price_per_foot')
```

Out[188]: <matplotlib.axes._subplots.AxesSubplot at 0x112475f10>


```
In [190]: feature_cols = area_dummies.columns
          X = data[feature_cols]
          y = data.price_per_foot
          # instantiate, fit
          lm = LinearRegression()
          lm.fit(X, y)
          # print coefficients
          # The mean square error
          print("Residual sum of squares: %.2f"
                % np.mean((lm.predict(X) - y) ** 2))
          # Explained variance score: 1 is perfect prediction
          print('Variance score: %.2f' % lm.score(X, y))
          # print raw results
          print("Base area is %s: $%.2f" % (base_area, lm.intercept_))
          zip(feature_cols,lm.coef_)
          table = ListTable()
          dtype = [('Neighborhood', 'S100'), ('$ per square', float)]
          # round to pennies
          round_coef = map(round,lm.coef_,[2]*len(lm.coef_))
          x = np.array(zip(feature_cols, round_coef),dtype=dtype)
          x.T
          x = np.sort(x,axis=0,order='$ per square')
          table.append(['Neighborhood','$ per square (+/-)'])
          for i in x:
              table.append(i)
          table
```

Variance score: 0.44
Base area is neighborhood_Alamo Square: \$4.17

Residual sum of squares: 0.82

Out[190]:

Neighborhood	\$ per square (+/-)
neighborhood_Mount Davidson Manor	-1.75
neighborhood_Ingleside	-1.7
neighborhood_Visitacion Valley	-1.6
neighborhood_Portola	-1.52
neighborhood_Glen Park	-1.44
neighborhood_Bernal Heights	-1.38
neighborhood_Diamond Heights	-1.36
neighborhood_Silver Terrace	-1.33
neighborhood_Lake Shore	-1.3
neighborhood_Central Richmond	-1.05
neighborhood_Anza Vista	-1.03
neighborhood_Bayview	-0.94
neighborhood_Excelsior	-0.94
neighborhood_Cole Valley/Parnassus Heights	-0.79
neighborhood_Downtown	-0.78
neighborhood_Outer Parkside	-0.64
neighborhood_Outer Richmond	-0.57
neighborhood_Buena Vista Park/Ashbury Heights	-0.47
neighborhood_Western Addition	-0.4
neighborhood_Forest Hills Extension	-0.37
neighborhood_Golden Gate Heights	-0.33
-	

neighborhood_Oceanview	-0.21
neighborhood_Central Waterfront/Dogpatch	-0.13
neighborhood_Van Ness/Civic Center	-0.13
neighborhood_North Panhandle	-0.12
neighborhood_Miraloma Park	-0.1
neighborhood_South of Market	-0.08
neighborhood_Telegraph Hill	-0.02
neighborhood_Inner Richmond	-0.0
neighborhood_Potrero Hill	0.07
neighborhood_Marina	0.1
neighborhood_Noe Valley	0.18
neighborhood_South Beach	0.19
neighborhood_Lower Pacific Heights	0.2
neighborhood_Lone Mountain	0.34
neighborhood_Yerba Buena	0.48
neighborhood_Eureka Valley / Dolores Heights	0.5
neighborhood_Pacific Heights	0.5
neighborhood_Inner Mission	0.6
neighborhood_Nob Hill	0.64
neighborhood_Duboce Triangle	1.04
neighborhood_Russian Hill	1.05
neighborhood_North Waterfront	1.07
neighborhood_Mission Dolores	1.22
neighborhood_Inner Sunset	1.69
neighborhood_North Beach	2.46
neighborhood_Hayes Valley	2.64
neighborhood_Financial District/Barbary Coast	4.17

```
In [191]: full_price = [lm.intercept_] * len(lm.coef_)
full_price += lm.coef_

area_price_per_foot = dict(zip(feature_cols,full_price))
area_price_per_foot[base_area] = lm.intercept_

dtype = [('Neighborhood', 'S100'), ('$ per sqft', float)]

# round to pennies
round_coef = map(round,full_price,[2]*len(full_price))
x = np.array(zip(feature_cols, full_price),dtype=dtype)
x.T
x = np.sort(x,axis=0,order='$ per sqft')

table = ListTable()

table.append(['Neighborhood','$ per sqft'])
for i in x:
    table.append(i)
```

Out[191]:

Neighborhood	\$ per sqft
neighborhood_Mount Davidson Manor	2.41970021413
neighborhood_Ingleside	2.46875
neighborhood_Visitacion Valley	2.56314257913
neighborhood_Portola	2.64285714286
neighborhood_Glen Park	2.72727272727

neighborhood_Bernal Heights	2.78200061463
neighborhood_Diamond Heights	2.8085106383
neighborhood_Silver Terrace	2.83464566929
neighborhood_Lake Shore	2.86666666667
neighborhood_Central Richmond	3.11732711733
neighborhood_Anza Vista	3.13581037796
neighborhood_Excelsior	3.2222222222
neighborhood_Bayview	3.22391991699
neighborhood_Cole Valley/Parnassus Heights	3.3732856291
neighborhood_Downtown	3.38847472785
neighborhood_Outer Parkside	3.52669238052
neighborhood_Outer Richmond	3.59375
neighborhood_Buena Vista Park/Ashbury Heights	3.69863013699
neighborhood_Western Addition	3.76897132069
neighborhood_Forest Hills Extension	3.8
neighborhood_Golden Gate Heights	3.83333333333
neighborhood_Mission Bay	3.85094171788
neighborhood_Oceanview	3.95238095238
neighborhood_Van Ness/Civic Center	4.03577014404
neighborhood_Central Waterfront/Dogpatch	4.04075057006
neighborhood_North Panhandle	4.04545454545
neighborhood_Miraloma Park	4.07072368421
neighborhood_South of Market	4.08636554466
neighborhood_Telegraph Hill	4.14764859845
neighborhood_Inner Richmond	4.16363636364
neighborhood_Potrero Hill	4.2321829593
neighborhood_Marina	4.27103404056
neighborhood_Noe Valley	4.35031959807
neighborhood_South Beach	4.35394300952
neighborhood_Lower Pacific Heights	4.36170254619
neighborhood_Lone Mountain	4.50186409772
neighborhood_Yerba Buena	4.64558173282
neighborhood_Pacific Heights	4.66270219935
neighborhood_Eureka Valley / Dolores Heights	4.66682988664
neighborhood_Inner Mission	4.76632367548
neighborhood_Nob Hill	4.80566691815
neighborhood_Duboce Triangle	5.20254134584
neighborhood_Russian Hill	5.22053967721
neighborhood_North Waterfront	5.24109014675
neighborhood_Mission Dolores	5.38924963925
neighborhood_Inner Sunset	5.85714285714
neighborhood_North Beach	6.62254901961
neighborhood_Hayes Valley	6.80851715243
neighborhood_Financial District/Barbary Coast	8.33333333333

```
In [192]: # calculate the multipliers for each neighborhood relative to base area
# SOMA_mult = SOMA_per_foot / Base_per_foot
area_mults = [lm.intercept_] * len(lm.coef_)
area_mults = full_price / area_mults - [1]*len(lm.coef_)

dtype = [('Neighborhood', 'S100'), ('Multiplier', float)]
# round to pennies
round_coef = map(round,area_mults,[2]*len(area_mults))
x = np.array(zip(feature_cols, area_mults),dtype=dtype)
x.T
x = np.sort(x,axis=0,order='Multiplier')

table = ListTable()
table.append(['Neighborhood','Multiplier'])
table.append([base_area,0])
for i in x:
    table.append(i)
```

Out[192]:

Neighborhood neighborhood_Alamo Square neighborhood_Mount Davidson Manor	Multiplier 0
- '	0
neighborhood_Mount Davidson Manor	
	-0.419271948608
neighborhood_Ingleside	-0.4075
neighborhood_Visitacion Valley	-0.384845781009
neighborhood_Portola	-0.365714285714
neighborhood_Glen Park	-0.345454545455
neighborhood_Bernal Heights	-0.332319852489
neighborhood_Diamond Heights	-0.325957446809
neighborhood_Silver Terrace	-0.31968503937
neighborhood_Lake Shore	-0.312
neighborhood_Central Richmond	-0.251841491841
neighborhood_Anza Vista	-0.247405509289
neighborhood_Excelsior	-0.226666666667
neighborhood_Bayview	-0.226259219923
neighborhood_Cole Valley/Parnassus Heights	-0.190411449016
neighborhood_Downtown	-0.186766065317
neighborhood_Outer Parkside	-0.153593828675
neighborhood_Outer Richmond	-0.1375
neighborhood_Buena Vista Park/Ashbury Heights	-0.112328767123
neighborhood_Western Addition	-0.0954468830351
neighborhood_Forest Hills Extension	-0.088
neighborhood_Golden Gate Heights	-0.08
neighborhood_Mission Bay	-0.0757739877095
neighborhood_Oceanview	-0.0514285714286
neighborhood_Van Ness/Civic Center	-0.0314151654308
neighborhood_Central Waterfront/Dogpatch	-0.0302198631857
neighborhood_North Panhandle	-0.0290909090909
neighborhood_Miraloma Park	-0.0230263157895
neighborhood_South of Market	-0.0192722692805
neighborhood_Telegraph Hill	-0.00456433637285
neighborhood_Inner Richmond	-0.000727272727277

neighborhood_Potrero Hill	0.0157239102317
neighborhood_Marina	0.0250481697352
neighborhood_Noe Valley	0.0440767035374
neighborhood_South Beach	0.0449463222858
neighborhood_Lower Pacific Heights	0.0468086110849
neighborhood_Lone Mountain	0.0804473834535
neighborhood_Yerba Buena	0.114939615876
neighborhood_Pacific Heights	0.119048527843
neighborhood_Eureka Valley / Dolores Heights	0.120039172793
neighborhood_Inner Mission	0.143917682115
neighborhood_Nob Hill	0.153360060357
neighborhood_Duboce Triangle	0.248609923
neighborhood_Russian Hill	0.252929522531
neighborhood_North Waterfront	0.25786163522
neighborhood_Mission Dolores	0.29341991342
neighborhood_Inner Sunset	0.405714285714
neighborhood_North Beach	0.589411764706
neighborhood_Hayes Valley	0.634044116583
neighborhood_Financial District/Barbary Coast	1.0

```
In [193]: # calculate the adjusted Sqft (Sqft * Area_mult) for the dataset and add it as a new column to data
# for each property, multiplier is sum of array [area_dummies] x [area_mults]

t = data[area_dummies.columns] * area_mults
t = t.T.sum()

t.name = 'area_multiplier'
t = t + 1
data = pd.concat([data, t], axis=1)

adj_sqft = data.sqft * t
adj_sqft.name = 'area_adj_sqft'
data = pd.concat([data, adj_sqft], axis=1)

data.head()
```

Out[193]:

	property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url	 neighborho Addition
1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.climbsf.com/for- rent/252-granada-ave/	 0
2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.climbsf.com/for- rent/460-valley-st/	 0
4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.climbsf.com/for- rent/420-mission-ba	 0
7	8	8	8	1160 Mission Street #1112	San Francisco (SOMA)	1	1	664	climbsf_renting	http://www.climbsf.com/for- rent/1160-mission-s	 0
11	12	12	12	655 26th Avenue	San Francisco (Central Richmond)	2	1	1300	climbsf_renting	http://www.climbsf.com/for- rent/655-26th-ave/	 0

5 rows × 86 columns

```
In [194]: # run the regression based on area_adj_sqft rather than sqft
          # create X and y
          feature_cols = [data.area_adj_sqft.name]
          X = data[feature_cols]
          y = data.price
          # instantiate, fit
          lm = LinearRegression()
          lm.fit(X, y)
          # print coefficients
          print("Intercept: %.2f" % lm.intercept_)
          # The mean square error
          print("Residual sum of squares: %.2f"
                % np.mean((lm.predict(X) - y) ** 2))
          # Explained variance score: 1 is perfect prediction
          print('Variance score: %.2f' % lm.score(X, y))
          zip(feature_cols, lm.coef_)
          \# calculate predictions for the data set and plot errors
          predictions = lm.predict(X)
          errors = predictions-y
          errors.name = 'Error'
          # visualize the relationship between the features and the response using scatterplots
          errors.sort()
          errors.plot(kind='bar').get_xaxis().set_ticks([])
```

Intercept: 1581.13
Residual sum of squares: 587671.58
Variance score: 0.67

Out[194]: []


```
In [195]: feature_cols = year_dummies.columns
           X = data[feature cols]
           y = data.price_per_foot
           # instantiate, fit
           lm = LinearRegression()
           lm.fit(X, y)
           # print coefficients
           # The mean square error
           print("Residual sum of squares: %.2f"
                  % np.mean((lm.predict(X) - y) ** 2))
            # Explained variance score: 1 is perfect prediction
           print('Variance score: %.2f' % lm.score(X, y))
           # print raw results
           print lm.intercept_
           zip(feature_cols,lm.coef_)
           Residual sum of squares: 1.32
           Variance score: 0.11
           4.79633313103
Out[195]: [(u'Year_1969', -1.9410031817959141),
            (u'Year_2011', -0.62577229712902971),
            (u'Year_2012', -1.3700383103173595),
            (u'Year_2013', -0.98855679368271021),
(u'Year_2014', -0.60179239513716498)]
In [196]: full_price = [lm.intercept_] * len(lm.coef_)
           full_price += lm.coef_
           year_price_per_foot = dict(zip(feature_cols,full_price))
           year_price_per_foot[base_area] = lm.intercept_
           print year_price_per_foot
           {u'Year_1969': 2.8553299492385782, u'neighborhood_Alamo Square': 4.7963331310344923, u'Year_2012': 3.4262948207171329, u'Y
           ear_2013': 3.8077763373517821, u'Year_2011': 4.1705608339054629, u'Year_2014': 4.194540735897327}
In [197]: | # calculate the multipliers for each year relative to base year
           # 2014_mult = 2014_per_foot / 2015_per_foot
           year mults = [lm.intercept ] * len(lm.coef )
           year_mults = full_price / year_mults - [1]*len(lm.coef_)
           zip(feature_cols, year_mults)
Out[197]: [(u'Year_1969', -0.40468481416287083), (u'Year_2011', -0.13046889780861826),
            (u'Year_2012', -0.28564285942787804),
(u'Year_2013', -0.2061067833854765),
(u'Year_2014', -0.12546926551937987)]
```

```
In [198]: # calculate the adjusted Sqft (Sqft * Year_mult) for the dataset and add it as a new column to data

# for each property, multiplier is sum of array [year_dummies] x [year_mults]

t = data[year_dummies.columns] * year_mults

t = t.T.sum()

t.name = 'year_multiplier'

t = t + 1

data = pd.concat([data, t], axis=1)

year_adj_sqft = data.area_adj_sqft * t
 year_adj_sqft.name = 'adj_sqft'
data = pd.concat([data, year_adj_sqft], axis=1)

data.head()
```

Out[198]:

:		property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url		Year_1969
	1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.climbsf.com/for- rent/252-granada-ave/	:	0
	2	3	3	3		San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.climbsf.com/for- rent/460-valley-st/	:	0
	4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.climbsf.com/for- rent/420-mission-ba		0
	7	8	8	8	1160 Mission Street #1112	San Francisco (SOMA)	1	1	664	climbsf_renting	http://www.climbsf.com/for- rent/1160-mission-s		0
	11	12	12	12	655 26th Avenue	San Francisco (Central Richmond)	2	1	1300	climbsf_renting	http://www.climbsf.com/for- rent/655-26th-ave/		0

5 rows × 88 columns

```
In [199]: # run the regression based on year_and_area_adj_sqft rather than area_adj_sqft
          # create X and v
          feature_cols = ['adj_sqft']
          X = data[feature_cols]
          y = data.price
          # instantiate, fit
          lm = LinearRegression()
          lm.fit(X, y)
          # print coefficients
          print lm.intercept_
          # The mean square error
          print("Residual sum of squares: %.2f"
                % np.mean((lm.predict(X) - y) ** 2))
          # Explained variance score: 1 is perfect prediction
          print('Variance score: %.2f' % lm.score(X, y))
          print zip(feature_cols, lm.coef_)
          \# calculate predictions for the data set and plot errors
          predictions = lm.predict(X)
          errors = predictions-y
          errors.name = 'Error'
          # visualize the relationship between the features and the response using scatterplots
          errors.sort(inplace=True)
          errors.plot(kind='bar').get_xaxis().set_ticks([])
          errors.tail(10)
          1510.45714164
          Residual sum of squares: 547156.69
          Variance score: 0.69
          [('adj_sqft', 2.8457143729597223)]
                 1351.485576
Out[199]: 326
          243
                 1371.524527
          328
                 1609.231682
                 1624.388449
          236
          108
                 1636.430154
          66
                 1807.945788
          427
                 1820.489102
          294
                 2338.071426
                 2435.630745
          60
          455
                 3240.446932
          Name: Error, dtype: float64
```



```
In [200]: # create X and y
           feature_cols = ['adj_sqft', 'bedrooms', 'bathrooms']
           X = data[feature_cols]
           y = data.price
           # instantiate, fit
           lm = LinearRegression()
           lm.fit(X, y)
           # print coefficients
           print("Intercept: %.2f" % lm.intercept_)
           # The mean square error
           print("Residual sum of squares: %.2f"
                 % np.mean((lm.predict(X) - y) ** 2))
           # Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % lm.score(X, y))
           print zip(feature_cols, lm.coef_)
           \ensuremath{\textit{\#}}\xspace calculate predictions for the data set and plot errors
           predictions = lm.predict(X)
           errors = predictions-y
           errors.name = 'Error'
           \# visualize the relationship between the features and the response using scatterplots
           errors.sort()
           errors.plot(kind='bar').get_xaxis().set_ticks([])
           Intercept: 1229.39
           Residual sum of squares: 489125.54
           Variance score: 0.73
           [('adj_sqft', 2.323433447134625), ('bedrooms', 194.36513659462096), ('bathrooms', 341.12870661669922)]
```

Out[200]: []


```
In [201]: # show errors by neighborhood to see if there are any neighborhoods with funky differences
          hooderrors = data[['neighborhood']]
          errors = predictions-y
          errors.name = 'Error'
          hooderrors = pd.concat([hooderrors,errors.abs()],axis=1)
          hood group = hooderrors.groupby('neighborhood')
          import numpy
          def median(lst):
              return numpy.median(numpy.array(lst))
          error_avg = hood_group.median()
          error_avg.sort(columns='Error',ascending=False).plot(kind='bar')
          # show errors by year to see if there are any years with funky differences
          yearerrors = data[['Year']]
          yearerrors = pd.concat([yearerrors,errors.abs()],axis=1)
          year_group = yearerrors.groupby('Year')
          error_avg = year_group.mean()
          error_avg.sort(columns='Error',ascending=False).plot(kind='bar')
          # show errors by source to see if there are any sources have noisy data
          srcerrors = data[['source']]
          srcerrors = pd.concat([srcerrors,errors.abs()],axis=1)
          src_group = srcerrors.groupby('source')
          error avg = src group.mean()
          error avg.sort(columns='Error',ascending=False).plot(kind='bar')
```

Out[201]: <matplotlib.axes._subplots.AxesSubplot at 0x106660ed0>

source

```
In [202]: import csv
          table = ListTable()
          dtype = [('Effect', 'S100'), ('Coefficient', float)]
          # round to pennies
          round_coef = map(round,lm.coef_,[6]*len(lm.coef_))
          x = np.array(zip(feature_cols, round_coef),dtype=dtype)
          print zip(feature_cols, lm.coef_)
          #x = np.sort(x,axis=0,order='Coefficient')
          with open('model_features_v1.csv', 'wb') as csvfile:
              modelwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
              header = ['Effect','Coefficient']
              table.append(header)
              modelwriter.writerow(header)
              for i in x:
                  table.append(i)
                  modelwriter.writerow(i)
              table.append(['base_rent', lm.intercept_])
              modelwriter.writerow(['base_rent',lm.intercept_])
          table
```

[('adj_sqft', 2.323433447134625), ('bedrooms', 194.36513659462096), ('bathrooms', 341.12870661669922)]

Out[202]:

Effect	Coefficient				
adj_sqft	2.323433				
bedrooms	194.365137				
bathrooms	341.128707				
base_rent	1229.39138178				

```
In [203]: table = ListTable()
          dtype = [('Effect', 'S100'), ('Coefficient', float)]
          # round to pennies
          round_coef = map(round,(area_mults + [1]*len(area_mults)),[6]*len(area_mults))
          x = np.array(zip(area_dummies.columns, round_coef),dtype=dtype)
          х.Т
          x = np.sort(x,axis=0,order='Coefficient')
          with open('model hoods v1.csv', 'wb') as csvfile:
              hoodwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
              header = ['Neighborhood','Multiplier']
              table.append(header)
              hoodwriter.writerow(header)
              for i in x:
                  table.append(i)
                  hoodwriter.writerow(i)
              lastrow = [base_area, 1]
              table.append(lastrow)
              hoodwriter.writerow(lastrow)
          table
```

Out[203]:

Neighborhood	Multiplier
neighborhood_Mount Davidson Manor	0.580728
neighborhood_Ingleside	0.5925
neighborhood_Visitacion Valley	0.615154
neighborhood_Portola	0.634286

neighborhood_Glen Park	0.654545
neighborhood_Bernal Heights	0.66768
neighborhood_Diamond Heights	0.674043
neighborhood_Silver Terrace	0.680315
neighborhood_Lake Shore	0.688
neighborhood_Central Richmond	0.748159
neighborhood_Anza Vista	0.752594
neighborhood_Excelsior	0.773333
neighborhood_Bayview	0.773741
neighborhood_Cole Valley/Parnassus Heights	0.809589
neighborhood_Downtown	0.813234
neighborhood_Outer Parkside	0.846406
neighborhood_Outer Richmond	0.8625
neighborhood_Buena Vista Park/Ashbury Heights	0.887671
neighborhood_Western Addition	0.904553
neighborhood_Forest Hills Extension	0.912
neighborhood_Golden Gate Heights	0.92
neighborhood_Mission Bay	0.924226
neighborhood_Oceanview	0.948571
neighborhood_Van Ness/Civic Center	0.968585
neighborhood_Central Waterfront/Dogpatch	0.96978
neighborhood_North Panhandle	0.970909
neighborhood_Miraloma Park	0.976974
neighborhood_South of Market	0.980728
neighborhood_Telegraph Hill	0.995436
neighborhood_Inner Richmond	0.999273
neighborhood_Potrero Hill	1.015724
neighborhood_Marina	1.025048
neighborhood_Noe Valley	1.044077
neighborhood_South Beach	1.044946
neighborhood_Lower Pacific Heights	1.046809
neighborhood_Lone Mountain	1.080447
neighborhood_Yerba Buena	1.11494
neighborhood_Pacific Heights	1.119049
neighborhood_Eureka Valley / Dolores Heights	1.120039
neighborhood_Inner Mission	1.143918
neighborhood_Nob Hill	1.15336
neighborhood_Duboce Triangle	1.24861
neighborhood_Russian Hill	1.25293
neighborhood_North Waterfront	1.257862
neighborhood_Mission Dolores	1.29342
neighborhood_Inner Sunset	1.405714
neighborhood_North Beach	1.589412
neighborhood_Hayes Valley	1.634044
neighborhood_Financial District/Barbary Coast	2.0
neighborhood_Alamo Square	1

Out[204]:

		property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url		Year_20
0)	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN
1	1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.climbsf.com/for- rent/252-granada-ave/		0
2	2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.climbsf.com/for- rent/460-valley-st/		0
3	3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN
4	1	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.climbsf.com/for- rent/420-mission-ba	::	0

5 rows × 90 columns

```
In [205]: # filter out overshoot error
    overshoot = data[(data.error <= -500)]
    columns = data.columns - ['error','latitude', 'longitude', 'address', 'origin_url','price','neighborhood']
    overshoot = data.drop(columns,1)
    overshoot.sort('error',ascending=True,inplace=True)
    overshoot.head(30)</pre>
```

Out[205]:

	address	neighborhood	origin_url	latitude	longitude	price	error		
546	301 Main St UNIT 35A, San Francisco, CA 94105	South Beach	http://www.zillow.com/homedetails/301- Main-St	37.7894	-122.391	7950	-2571.090349		
233	338 Spear Street #39E	San Francisco (South Beach)	http://www.climbsf.com/for-rent/338-spear-st-39e/	37.7894	-122.391	7975	-2121.288504		
273	301 Mission Street #29F	San Francisco (South Beach)	http://www.climbsf.com/for-rent/301-mission-st	37.7905	-122.396	7975	-2047.617280		
517	20th St San Francisco, CA 94110	None	http://www.zillow.com/homedetails/20th-St-San	37.7588	-122.416	6200	-2043.079832		
434	748 Bay St, San Francisco, CA 94109	Russian Hill	http://www.zillow.com/homedetails/748-Bay-St-S	37.8049	-122.419	7500	-1982.857244		
158	338 Spear Street #39A	San Francisco (South Beach)	http://www.climbsf.com/for-rent/338-spear-st-39a/	37.7894	-122.391	6700	-1893.917532		
382	480 Mission Bay Boulevard North #PH1606	San Francisco (Mission Bay)	http://www.climbsf.com/for-rent/480-mission-ba	37.7731	-122.393	7500	-1815.353787		
89	88 King Street #904	San Francisco (South Beach)	http://www.climbsf.com/for-rent/88-king-st- 904/	37.7807	-122.389	6250	-1808.208257		
299	401 Harrison Street #3803	San Francisco (Rincon Hill)	http://www.climbsf.com/for-rent/401-harrison-s	37.7864	-122.392	7225	-1673.712059		
232	2560 Vallejo Street	San Francisco (Pacific Heights)	http://www.climbsf.com/for-rent/2560-vallejo-st/	37.7950	-122.439	7050	-1599.302373		
525	20th St San Francisco, CA 94114	None	http://www.zillow.com/homedetails/20th-St-San	37.7578	-122.432	5700	-1528.763634		
381	301 Main Street #35F	San Francisco (South Beach)	http://www.climbsf.com/for-rent/301-main-st-35f/	37.7894	-122.391	7000	-1487.557871		
457	Lombard St San Francisco, CA 94133	None	http://www.zillow.com/homedetails/Lombard-St-S	37.8021	-122.419	6700	-1392.986525		
357	296 Francisco Street	San Francisco (Telegraph	http://www.climbsf.com/for-rent/296-	37.8053	-122.410	5475	-1232.987894		

ĺ		Hill)	francisco-st/				
459	Tehama St San Francisco, CA 94103	None	http://www.zillow.com/homedetails/Tehama-St-Sa	37.7793	-122.407	6000	-1225.930548
203	461 2nd St. #557T	San Francisco (South Beach)	http://www.climbsf.com/for-rent/461-2nd-st-557t/	37.7838	-122.394	6750	-1137.802049
293	425 1st Street #3402	San Francisco (Rincon Hill)	http://www.climbsf.com/for-rent/425-1st-st- 3402/	37.7858	-122.392	6600	-1121.547956
119	1837 Jefferson Street	San Francisco (Marina)	http://www.climbsf.com/for-rent/1837-jefferson	37.8045	-122.443	6200	-1098.241906
408	Van Ness Ave San Francisco, CA 94102	None	http://www.zillow.com/homedetails/Van-Ness-Ave	37.7767	-122.419	4500	-1097.671345
113	301 Mission Street #701	San Francisco (SOMA)	http://www.climbsf.com/for-rent/301-mission-st	37.7905	-122.396	7400	-1079.024926
204	1839 Jefferson Street	San Francisco (Marina)	http://www.climbsf.com/for-rent/1839-jefferson	37.8048	-122.443	6400	-1058.718792
411	Vallejo St San Francisco, CA 94133	None	http://www.zillow.com/homedetails/Vallejo-St-S	37.7985	-122.410	4000	-1056.922032
405	Vallejo St San Francisco, CA 94123	None	http://www.zillow.com/homedetails/Vallejo-St-S	37.7952	-122.435	4200	-1037.812684
134	301 Main Street #25E	San Francisco (South Beach)	http://www.climbsf.com/for-rent/301-main-st-25e/	37.7894	-122.391	5800	-994.196530
283	234 Grand View Avenue	San Francisco (Noe Valley)	http://www.climbsf.com/for-rent/234-grand-view	37.7545	-122.441	7300	-977.321123
282	301 Main Street #5C	San Francisco (South Beach)	http://www.climbsf.com/for-rent/301-main-st-5c/	37.7894	-122.391	7000	-920.251919
109	229 Brannan Street #12J	San Francisco (South Beach)	http://www.climbsf.com/for-rent/229-brannan-st	37.7826	-122.390	5950	-902.984513
123	480 Mission Bay Boulevard North #1608	San Francisco (Mission Bay)	http://www.climbsf.com/for-rent/480-mission-ba	37.7711	-122.389	5475	-883.385142
430	501 Beale St, San Francisco, CA 94105	South Beach	http://www.zillow.com/homedetails/501- Beale-St	37.7863	-122.389	6000	-883.299578
406	San Bruno Ave San Francisco, CA 94107	None	http://www.zillow.com/homedetails/San-Bruno-Av	37.7621	-122.405	4900	-876.886047

```
In [206]: data = data[(data.sqft <= 2500) & (data.price <= 8000) & (data.price != 0) & (data.bedrooms <= 4) & (data.bathrooms <= 3)
          & (data.sqft != 0)]
          # add squared square footage to the table
          squared = data.adj_sqft ** 2
          squared.name = 'sqft_squared'
          squared beds = data.bedrooms ** 2
          squared_beds.name = 'beds_squared'
          data = pd.concat([data, squared, squared_beds], axis=1)
          #data = pd.concat([data, squared_beds], axis=1)
          # create X and y
          feature cols = ['adj sqft', 'bedrooms', 'bathrooms', 'sqft squared', 'beds squared']
          X = data[feature_cols]
          y = data.price
          # instantiate, fit
          lm = LinearRegression()
          lm.fit(X, y)
          # print coefficients
          print("Intercept: %.2f" % lm.intercept_)
          # The mean square error
          print("Residual sum of squares: %.2f"
                % np.mean((lm.predict(X) - y) ** 2))
          # Explained variance score: 1 is perfect prediction
          print('Variance score: %.2f' % lm.score(X, y))
          print zip(feature_cols, lm.coef_)
          # calculate predictions for the data set and plot errors
          predictions = lm.predict(X)
          errors = predictions-y
          errors.name = 'Error'
          # visualize the relationship between the features and the response using scatterplots
          errors.sort()
          errors.plot(kind='bar').get_xaxis().set_ticks([])
          Intercept: 96.06
          Residual sum of squares: 434859.13
          Variance score: 0.76
          [('adj_sqft', 5.0230290888950986), ('bedrooms', 13.092104186543915), ('bathrooms', 257.0417615635385), ('sqft squared', -0
          .0010601887998804621), ('beds_squared', 21.146936417757299)]
Out[206]: []
            2000
            1500
            1000
             500
            -500
           -1000
           -1500
           -2000
```

-2500

```
In [207]: import statsmodels.formula.api as sm
           result = sm.ols(formula="price ~ adj_sqft + bedrooms + bathrooms + elevation", data=data).fit()
           print result.params
           print result.summary()
           Intercept 1310.572163
           adj_sqft 2.296425
bedrooms 254.244471
           bathrooms 301.255818 elevation -3.063361
           dtype: float64
```

OLS Regression Results

Dep. Variable:	price	R-squared:	0.731						
Model:	OLS	Adj. R-squared:	0.727						
Method:	Least Squares	F-statistic:	202.3						
Date:	Sun, 16 Aug 2015	Prob (F-statistic):	1.29e-83						
Time:	12:52:28	Log-Likelihood:	-2411.4						
No. Observations:	303	AIC:	4833.						
Df Residuals:	298	BIC:	4851.						
Df Model:	4								
Covariance Type:	nonrobust								

______ coef std err t P>|t| [95.0% Conf. Int.] ______

Intercept 1310.5722 129.624 10.111 0.000 1055.477 1565.667 adj_sqft 2.2964 0.138 16.680 0.000 2.025 2.567 bedrooms 254.2445 73.359 3.466 0.001 109.877 398.612 bathrooms 301.2558 97.168 3.100 0.002 110.034 492.477 elevation -3.0634 1.162 -2.636 0.009 -5.351 -0.776 Omnibus: 17.314 Durbin-Watson:
Prob(Omnibus): 0.000 Jarque-Bera (JB):
Skew: ______ 1.860 0.000 Jarque-Bera (JB): 0.341 Prob(JB): 30.199 2.77e-07 4.388 Cond. No. 3.87e+03

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.87e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [208]: from mpl_toolkits.basemap import Basemap import fiona

```
In [209]: plt.figure(figsize=(12,12))
          # Create the Basemap
          event_map = Basemap(projection='merc',
                              resolution='h', epsg=2227,
                              lat_0 = 37.7, lon_0=-122.4, # Map center
                              llcrnrlon=-122.55, llcrnrlat=37.7, # Lower left corner
                              urcrnrlon=-122.35, urcrnrlat=37.85) # Upper right corner
          # Draw important features
          event_map.arcgisimage(service='World_Shaded_Relief', xpixels = 1500, verbose= True)
          # add neighborhoods
          event_map.readshapefile(
              'data/Realtor_Neighborhoods_4326/hoods_4326', 'SF', color='black', zorder=2)
          # create array storing lats and longs
          listing_coords = zip(data.latitude,data.longitude)
          # Draw the points on the map:
          for longitude, latitude in listing_coords:
              x, y = event_map(latitude, longitude) # Convert lat, long to y,x
              event_map.plot(x,y, 'ro', alpha=0.3)
```

