Підготовка до контрольної роботи з теми «Рух і взаємодія. Закони збереження»

Мета уроку: закріпити знання за темою V «Рух і взаємодія. Закони збереження» (частина II), продовжити формувати навички та вміння розв'язувати фізичні задачі різних типів, застосовуючи отримані знання.

Імпульс

Імпульс тіла — це векторна фізична величина, яка дорівнює добутку маси тіла та швидкості його руху.

$$[p] - 1$$
 кг $\cdot \frac{M}{c}$ $\vec{p} = m \, \vec{v}$

Закон збереження імпульсу: У замкненій системі тіл векторна сума імпульсів до взаємодії дорівнює векторній сумі імпульсів після взаємодії.

$$m_{1}\overrightarrow{v_{01}} + m_{2}\overrightarrow{v_{02}} = m_{1}\overrightarrow{v_{1}} + m_{2}\overrightarrow{v_{2}}$$

$$\overrightarrow{p_{01}} + \overrightarrow{p_{02}} = \overrightarrow{p_{1}} + \overrightarrow{p_{2}}$$

Енергія

Енергія (від. грецьк. «діяльність») — це фізична величина, яка є загальною мірою руху та взаємодії всіх видів матерії.

$$[E]$$
 або $[W]$ — Дж

Механічна енергія— це фізична величина, яка є мірою руху та взаємодії тіл і характеризує здатність тіл виконувати механічну роботу.

Види механічної енергії

Кінетична енергія

Потенціальна енергія

$$E_k = \frac{mv^2}{2}$$

$$E_p = \frac{kx^2}{2}$$

$$E_p = mgh$$

Сума кінетичної і потенціальної енергій тіла (системи тіл) — це повна механічна енергія тіла (системи тіл)

$$E = E_k + E_p$$

Закон збереження енергії: У випадку, коли система тіл є замкненою, а тіла системи взаємодіють одне з одним тільки силами пружності та силами тяжіння, повна механічна енергія системи не змінюється.

$$E_{k0} + E_{p0} = E_k + E_p$$

Види енергії

		Види е	нергії в пр	оироді		
Меха- нічна	Внутрішня			Електромагнітна		
	Теплова	Ядерна	Хімічна	Елек- трична	Маг- нітна	Випро- міню- вання
Енергія руху та взає- модії тіл або частин тіла	Енергія хаотич- ного руху та взає- модії частинок речовини	Енергія, «схо- вана» в ядрах атомів	Енергія хіміч- них зв'язків	Енергія елек- тричного струму	Енергія постій- них маг- нітів і електро- магнітів	Енергія електро- маг- нітних хвиль

Фундаментальні взаємодії

O.		Структурні рі	вні Всесвіту			
М Фундаментальні взаємодії в природі					\$iT	
Світ молек	Гравітаційна	Електромагнітна	Сильна	Слабка	р, зоряних	
та їхніх ск	Будь-які матеріальні	Електричне притягання та	Взаємне притягання	Виявляеться на відстанях	лактик	
Розмір 10 ⁻¹ Маса не бі.		відштовхування заряджених тіл і частинок; магнітне притягання та відштовхування рухомих заряджених частинок і намагнічених тіл. Виявляється на будь-яких відстанях.	нуклонів усередині ядра незалежно від їхнього заряду. Виявляється лише на відстанях, які приблизно дорівнюють розмірам нуклона (10 ⁻¹⁵ м).	порядку 10 ⁻¹⁸ м. Пояснює β-розпад атомних ядер.	0 ⁷ м ²⁰ кг	
	Утворення та існування планет, зіркових планетних систем, галактик тощо.	Утворення та існування атомів, молекул, фізичних тіл; утворення радіосигналів, нервових імпульсів тощо.	«Відповідає» за стійкість атомних ядер.	Світіння зір.		

Які перетворення енергії відбуваються при падінні яблука на замлю?

Порожній залізничний вагон маса якого 20 тонн, що котиться зі швидкістю 0,8 м/с, зіштовхнувся з навантаженим вагоном, який перебуває в стані спокою. Після щеплення вагони рухаються зі швидкістю 0,2 м/с. Визначте масу другого вагона.

Дано: $m_1 = 20 \text{ T} = 20000 \text{ кг}$ $v_1 = 0.8 \text{ M/c}$ $v_2 = 0 \text{ M/c}$ v' = 0.2 M/c $m_2 - ?$

За законом збереження імпульсу: $p_1 + p_2 = p'$ $m_1 v_1 = (m_1 + m_2) v'$ $m_1 + m_2 = \frac{m_1 v_1}{v'}$ $m_2 = \frac{m_1 v_1}{v_2'} - m_1$ $m_2 = m_1 \left(\frac{v_1}{v'} - 1 \right)$ $m_2 = 20\ 000\ \mathrm{kr} \left(\frac{0.8\ \mathrm{m/c}}{0.2\ \mathrm{m/c}} - 1 \right) = 60\ 000\ \mathrm{kg} = 60\ \mathrm{T}$

Стріляючи з іграшкового пістолета хлопчик розтягнув його пружину на 10 см. Розрахуйте швидкість із якою з пістолета вилітає в горизонтальному напрямку кулька масою 1 г, якщо жорсткість пружини становить 10 H/м.

Дано: x = 10 см = = 0,1 м m = 1 г = = 0,001 кгk = 10 H/м

 ν -?

$$3$$
а законом збереження енергії: $E_p = E_k$

$$\frac{kx^2}{2} = \frac{mv^2}{2}$$

$$kx^2 = mv^2$$

$$v^2 = \frac{kx^2}{m}$$

$$v = \sqrt{\frac{kx^2}{m}}$$

$$v = \sqrt{\frac{10 \text{ H/m} \cdot (0.1 \text{ m})^2}{0.001 \text{ kg}}} = 10 \text{ m/c}$$

Тіло маса якого 2 кг яке рухається зі швидкістю 6 м/с вдаряється в нерухоме тіло, маса якого 1 кг. Визначте швидкість тіл після абсолютно пружного центрального зіткнення.

Дано: $m_1 = 2 \text{ K}\Gamma$ $v_1 = 6 \text{ M/c}$ $m_2 = 1$ кг $v_2 = 0 \, \text{M/c}$

За законом збереження імпульсу: (2x + y = 12 $p_1 = p_1' + p_2'$ $m_1 v_1 = m_1 v_1' + m_2 v_2'$ Задзаконом збереження енергії: $E_{k}y_{2} = E_{k1}^{\prime 2} + E_{k2}^{\prime 2} = 8$ $\frac{m_1^2 v_1^2 = 2m_1^2 v_1^2}{v_2^2 = 8 \text{ M/C}} + \frac{m_2 v_2^2}{2}$ $m_1 v_1^2 = m_1 v_1'^2 + m_2 v_2'^2$ $(m_1v_1=m_1v_1'+m_2v_2')$ $(m_1v_1^2 = m_1v_1'^2 + m_2v_2'^2)$ $v_1' = x; \ v_2' = y$ $\begin{cases} 2 \cdot 6 = 2x + y \\ 2 \cdot 6^2 = 2x^2 + y^2 \end{cases}$

$$\begin{cases} 2x + y = 12 \\ 2x^2 + y^2 = 72 \end{cases}$$

$$\begin{cases} y = 12 - 2x \\ 2x^2 + (12 - 2x)^2 = 72 \\ 2x^2 + 144 - 48x + 4x^2 = 72 \end{cases}$$

$$6x^2 - 48x + 72 = 0$$

$$x^2 - 8x + 12 = 0$$

$$D = 64 - 4 \cdot 12 = 16$$

$$\sqrt{D} = \sqrt{16} = 4$$

$$x_1 = \frac{8 + 4}{2} = 6$$

$$x_2 = \frac{8 - 4}{2} = 2$$

Домашне завдання

Повторити параграфи 36-39