JEE Linear Algebra using Matrix Computation

Harsh Raj MA17BTECH11003 Lakshit Singla EE17BTECH11021

Problem

Find the centre of the circle passing through A: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and B: $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and touching the circle $x^2 + y^2 = 9$ (IIT-JEE 2002)

1

Given Circle: $x^2 + y^2 = 9$

Scaling

Translation

Transformation

The circle G_2 is obtained from circle G_1 by SCALING and TRANSLATION. The net result in AFFINE Tranformation:

$$T(\mathbf{x}) = \alpha \mathbf{I} \mathbf{x} + (\mathbf{C}_2 - \mathbf{C}_1)$$

Where I is Identity matrix

Constraints

Contd.

$$G_1$$
 has centre $\mathbf{C}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and radius $R = 3$

 G_2 has centre C_2 and radius αR Constraints:

- 1. $\|C_2 C_1\| = R(1 \alpha)$as shown in figure
- 2. Equation of G_2 : $(\mathbf{x} \mathbf{C}_2)^T (\mathbf{x} \mathbf{C}_2) = (\alpha R)^2$ is satisfied by $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Contd.

$$\begin{aligned} \mathbf{C}_2 \mathbf{C}_2^T &= R^2 (1 - \alpha)^2 \text{from Constraint 1} \\ (\mathbf{x} - \mathbf{C}_2)^T (\mathbf{x} - \mathbf{C}_2) &= (\alpha R)^2 \text{from Constraint 2} \\ &\Rightarrow \mathbf{x}^T \mathbf{x} - \mathbf{x}^T \mathbf{C}_2 - \mathbf{C}_2^T \mathbf{x} + \mathbf{C}_2^T \mathbf{C}_2 = (\alpha R)^2 \\ &\Rightarrow 2\mathbf{x}^T \mathbf{C}_2 = \mathbf{x}^T \mathbf{x} + R^2 (1 - \alpha^2) - (\alpha R)^2 \\ &\Rightarrow 2\mathbf{x}^T \mathbf{C}_2 = \mathbf{x}^T \mathbf{x} + R^2 (1 - \alpha^2) - (\alpha R)^2 \end{aligned}$$

Above equation is satisfied by $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ Solving gives us:

$$\alpha = 0.5$$
 ; $\mathbf{C}_2 = \begin{pmatrix} 0.5\\\sqrt{2} \end{pmatrix}$ OR $\mathbf{C}_2 = \begin{pmatrix} 0.5\\-\sqrt{2} \end{pmatrix}$

8

Final Solution

$$\mathbf{C}_2 = \left(\begin{array}{c} 0.5 \\ \sqrt{2} \end{array} \right) \quad \text{AND} \quad \mathbf{C}_3 = \left(\begin{array}{c} 0.5 \\ -\sqrt{2} \end{array} \right)$$

9