

REPAIR, EVALUATION, MAINTENANCE, AND REHABILITATION RESEARCH PROGRAM

TECHNICAL REPORT REMR-CS-2

THE CONDITION OF CORPS OF ENGINEERS CIVIL WORKS CONCRETE STRUCTURES

by

James E. McDonald, Roy L. Campbell, Sr.

Structures Laboratory

DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers PO Box 631, Vicksburg, Mississippi 39180-0631

April 1985 Final Report

Approved For Public Release; Distribution Unlimited

Prepared for DEPARTMENT OF THE ARMY
US Army Corps of Engineers
Washington, DC 20314-1000

Under Civil Works Research Work Unit 31553

The following two letters used as part of the number designating technical reports of research published under the Repair, Evaluation, Maintenance, and Rehabilitation (REMR) Research Program identify the problem area under which the report was prepared:

Problem Area			Problem Area		
CS	Concrete and Steel Structures	EM	Electrical and Mechanical		
GT	Geotechnical	EI	Environmental Impacts		
НҮ	Hydraulics	ОМ	Operations Management		
CO	Coastal				

For example, Technical Report REMR-CS-1 is the first report published under the Concrete and Steel Structures problem area.

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

COVER PHOTOS:

TOP—Spalled concrete of lock wall at John Day Lock and Dam, Columbia River, near The Dalles, Oregon. This deficiency, which has since been repaired, was considered severe enough to threaten the safety of the structure.

BOTTOM—"Carwash" effect, an example of excessive water leaking into the gallery due to waterstop failure, Little Goose Lock and Dam, Snake River, near Riparia, Washington.

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
Technical Report REMR-CS-2				
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED		
THE CONDITION OF CORPS OF ENGINEER	S	Final report		
CIVIL WORKS CONCRETE STRUCTURES	6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(8)		
James E. McDonald				
Roy L. Campbell, Sr.				
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Engineer Waterways Experim	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Structures Laboratory	ene bederon	Civil Works Research		
PO Box 631, Vicksburg, Mississippi 39180-0631		Work Unit 31553		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE		
DEPARTMENT OF THE ARMY		April 1985		
US Army Corps of Engineers Washington, DC 20314-1000		13. NUMBER OF PAGES		
		133 15. SECURITY CLASS, (of this report)		
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)		,		
		Unclassified		
	15a, DECLASSIFICATION/DOWNGRADING SCHEDULE			
IC DICTORDUTION CTATEMENT (-/ 4/4- Per4)				

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

A report of the Concrete and Steel Structures problem area of the Repair, Evaluation, Maintenance, and Rehabilitation (REMR) Research Program.

Available from National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

causes of concrete deficiencies hydraulic structures concrete structures maintenance of concrete condition evaluations repair of concrete

damage to concrete REMR (Repair, Evaluation, Maintenance, deficiencies in concrete and Rehabilitation) Research Program

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The Corps of Engineers currently operates and maintains 536 dams and 260 lock chambers at 596 sites. Sixty percent of these hydraulic structures are over 20 years of age, more than 40 percent are more than 30 years old, and approximately one-third are more than 40 years old. With the relatively limited number of new construction starts anticipated, many of these structures are being and will continue to be kept in operation well beyond their original design lives. The primary objective of this study was to develop quantitative (Continued)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT (Continued)

information on the present condition of the concrete portions of these structures.

Two computerized data bases, (a) structure-description and (b) damage and repair, were compiled. The structure-description data base contains basic information (location, category, age, purpose, etc.) on 766 projects. The damage and repair data base contains information on the current condition of the concrete in the Corps' civil works structures as determined through detailed reviews of over 2000 periodic inspection reports.

To assist in the analysis, a number of computer programs were developed to manipulate and search the data bases. This analysis concentrated on the types of deficiencies observed, the cause (if reported), location within the structure, and degree of damage. Also, if the deficiency had been repaired, the material or technique or both that were used and the performance were analyzed.

This identification and assessment of problems relating to evaluation, maintenance, and repair of concrete will provide guidance in developing and establishing priorities for research in the Repair, Evaluation, Maintenance, and Rehabilitation (REMR) Research Program.

PREFACE

The study reported herein was authorized by Headquarters, US Army Corps of Engineers (HQUSACE), under Civil Works Research Work Unit 31553, "Maintenance and Preservation of Civil Works Structures," for which Mr. James E. McDonald is Principal Investigator. Funds for compilation of the structure-description data base and the review of periodic inspection reports were provided through the Concrete Research Program, for which Mr. Fred A. Anderson (DAEN-ECE-D) is Technical Monitor. Funds for compilation of the damage and repair data base and preparation of this report were provided through the Repair, Evaluation, Maintenance, and Rehabilitation (REMR) Research Program, of which Messrs. John R. Mikel (DAEN-CWO-M), Tony C. Liu (DAEN-ECE-D), and Bruce L. McCartney (DAEN-CWH-D) are Technical Monitors.

The study was conducted at the US Army Engineer Waterways Experiment Station (WES) during the period January 1981 to March 1984 under the general supervision of Mr. Bryant Mather, Chief, Structures Laboratory; Mr. John M. Scanlon, Chief, Concrete Technology Division (CTD); and Mr. William F. McCleese, REMR Program Manager. Dr. Terence C. Holland was instrumental in the initial development of the structure-description data base. Mr. Joe G. Tom assisted in the review of periodic inspection reports. This report was prepared by Messrs. James E. McDonald and Roy C. Campbell, Sr.

Commanders and Directors of WES during the conduct of the study and the preparation and publication of this report were COL Nelson P. Conover, CE, COL Tilford C. Creel, CE, and COL Robert C. Lee, CE. Technical Directors were Mr. F. R. Brown and Dr. Robert W. Whalin.

CONTENTS

PREFACE
PART I: INTRODUCTION
Background
Purpose
Scope
PART II: DATA BASE COMPILATION
Computer Programs
Coding of Data
Terminology
Summary of Results
Observed deficiencies
Causes of observed deficiencies
Locations of observed deficiencies
Degree of damage classifications
Repair materials and techniques
PART III: DATA ANALYSIS
Observed Deficiencies
Cracking
Seepage
Spalling
Distortion or movement
Erosion
Disintegration
Construction faults
Joint sealant failure
Causes of Observed Deficiencies
Locations of Observed Deficiencies
Degree of Damage
Repair Materials and Techniques
* · · · · · · · · · · · · · · · · · · ·
PART IV: CONCLUSIONS AND RECOMMENDATIONS
Conclusions
Recommendations
TABLES 1-23
APPENDIX A: DETAILED DESCRIPTIONS OF COMPUTER PROGRAMS DEVELOPED A1
Program ACHECK
Program MB
Program JCLCONT
Program JCLPCONT
Program SNAME
Program ICHECK
Program DEFECTS
Program PTAPE

CONTENTS

	<u>Pa</u>	ge
Program	SEARCH	19
	SEARCH2	22
Program	SEARCH3	25
APPENDIX B:	LISTING OF DAMAGE AND REPAIR CODES, TYPICAL DATA SHEET, AND DEFINITIONS OF OBSERVED DEFICIENCIES	1
APPENDIX C:	TYPICAL CONCRETE DEFICIENCIES CLASSIFIED ACCORDING TO DEGREE OF DAMAGE	
FIGURES C1-C8		

PART I: INTRODUCTION

Background

1. The Corps of Engineers currently operates and maintains 536 dams and 260 lock chambers at 596 sites. Sixty percent of these hydraulic structures are over 20 years of age, more than 40 percent are more than 30 years old, and approximately one-third are more than 40 years old. Nearly half of the 260 lock chambers along inland waterways will reach their 50-year design lives by the turn of the century. During this same period, annual waterborne traffic is expected to increase some 50 percent.* With the relatively limited number of new construction starts anticipated, many of these structures are being and will continue to be kept in operation well beyond their original design lives. Visits to these projects and review of periodic inspection reports have shown that many of the older structures require significant maintenance, repair, and rehabilitation. Furthermore, even the relatively new structures must be maintained and preserved to insure their efficient operation in the future.

Purpose

2. The primary objective of this study was to develop quantitative information on the condition of the concrete portions of the Corps' civil works structures. This information will provide guidance in developing and establishing research priorities in the Repair, Evaluation, Maintenance, and Rehabilitation (REMR) Research Program.

^{*} J. Egan, D. Reitz, and E. Isely. 1982. "Evaluation of the Present Navigation System," final report prepared by A. T. Kearney, Inc., as part of the National Waterways Study conducted for the Institute for Water Resources, US Army Corps of Engineers, Ft. Belvoir, VA.

Scope

- 3. Engineer Regulation 1110-2-100* prescribes the procedures to be followed in periodically inspecting and evaluating those Corps civil works structures whose failure or partial failure would endanger the lives of the public or cause substantial property damage and impair the operational capability or serviceability or both of the structures. Since this inspection program was initiated in 1965, approximately 2500 formal reports have been generated. Of these reports, 2018 were available for this study, and each was reviewed in detail in an attempt to determine the condition of the concrete in the structures. The reviews concentrated on the types of deficiencies observed, the cause (if reported), location within the structure, and degree of damage. Also, if the deficiency had been repaired, the material or technique or both used and the performance were noted.
- 4. The information contained in the various reports varied widely, and in some cases, was followed up to obtain missing data or to clarify information. All data collected were compiled in a computerized data base, and appropriate search routines were developed to assist in the analysis.

^{*} Headquarters, US Army Corps of Engineers. 1983. "Periodic Inspection and Continuing Evaluation of Completed Civil Works Structures," Washington, DC.

PART II: DATA BASE COMPILATION

5. Two data bases, (a) structure-description and (b) damage and repair, were compiled on the Honeywell DPS-1 computer at the Waterways Experiment Station (WES) to evaluate concrete damage and repair at Corps hydraulic structures. The structure-description data base contains basic information (location, category, age, purpose, etc.) on 766 projects. The source for most of these data was the Corps data base, COEDAM. Since a significant number of structures were not listed in COEDAM, additional information was obtained from various District offices and the annual reports on civil works activities of the Chief of Engineers. The damage and repair data base contains data codes that denote the observed deficiency, cause, location, and degree of damage as well as repair materials, techniques, and performance of repair. The primary sources for these data were Corps periodic inspection reports.

Computer Programs

6. Time-sharing programs were created to manipulate and search the data bases. Detailed descriptions of the programs are presented in Appendix A and summarized in the following:

Program	Execution Mode	Program Function
ACHECK	Time-sharing	Reads time-sharing files containing the structure-description data base and checks for coding errors
МВ	Batch	Reads time-sharing files containing the structure-description data base, formats data, and writes formatted data to a saved tape
JCLCONT	Batch	Reads the saved tape from execution of program MB, reformats data into tables, writes tables to a saved tape, and directs output to the page printer
JCLPCONT	Batch	Reads the saved tape from execution of program JCLCONT and directs output to the page printer
SNAME	Time-sharing	Reads and compares structure names from pairs of District time-sharing files, one from the structure-description data base and the other from the damage and repair data base

Program	Execution Mode	Program Function
ICHECK	Time-sharing	Reads time-sharing files containing the damage and repair data base and checks for coding errors
DEFECTS	Batch	Reads time-sharing files containing the damage and repair data base, interprets codes into alpha descriptions, writes tables of inspection reports and tables of sums of damage and repair codes to a saved tape, and directs output to the page printer
PTAPE	Batch	Reads the saved tape from execution of program DEFECTS and directs output to the page printer
SEARCH	Time-sharing	Reads time-sharing files containing the damage and repair data base, searches data for strings of codes, and writes data for any matches found to a time-sharing output file
SEARCH2	Time-sharing	Reads time-sharing files output from execution of program SEARCH, SEARCH2, or SEARCH3; searches data for strings of codes; and writes data for any matches found to a time-sharing output file
SEARCH3	Time-sharing	Reads time-sharing files output from execution of program SEARCH, SEARCH2, or SEARCH3; searches data for range(s) of code(s); and writes data for any matches found to time-sharing output file

Program files are executed from time-sharing for batch mode by giving the command

JRN ROSC45/'File name',R

and for time-sharing mode by giving the command

FRN ROSC45/'File name',R

Coding of Data

7. To expedite analysis of the information in the 2018 periodic inspection reports reviewed, data codes were developed to denote observed deficiencies,

causes, locations, degree of damage, repair material, repair technique, and performance. These damage and repair codes are listed in Appendix B. As the inspection reports were reviewed, the appropriate codes were entered on data sheets in a manner similar to the following:

	Defici	ency			
			Degree of	Repair	
<u>Observation</u>	Cause	Location	Damage	Material Technique Perfo	rmance
125	270	337	403	530 642 7	704

These entries describe a longitudinal crack caused by settlement or movement in a stilling basin wall and classified as moderate damage. The crack had been repaired using an unspecified joint sealant applied by routing and sealing, and the repair performance was rated as poor. A data sheet for a typical inspection is included in Appendix B.

Terminology

8. In general, the terminology used here is in accordance with that prescribed in the 1978 American Concrete Institute Committee 116 report "Cement and Concrete Terminology." The deficiencies observed are defined in Appendix B. Since the terminology used in the inspection reports varied widely, photographs contained in those reports were valuable in efforts to compile available information on a more uniform basis.

Summary of Results

Observed deficiencies

9. A total of 10,096 deficiencies were identified during the review of available periodic inspection reports. Types of deficiencies observed and reported are shown in Table 1. The deficiencies are summarized in eight general categories in Table 2; totals were as follows:

Deficiency	<u>Observations</u>
Construction faults	229
Cracking	3,842
Disintegration	435
Distortion or movement	747
Erosion	642
Joint sealant failure	217
Seepage	2,048
Spalling	1,936
Total	10,096

Causes of observed deficiencies

10. In most instances, it was not possible to determine from the inspection reports the causes of observed deficiencies. There were only 1699 instances (about 17 percent of the total observations) in which a cause was reported. Causes reported are shown in Table 3 and summarized in Table 4. Totals were as follows:

Cause	Instances
Accidental loading	139
Chemical reactions	64
Construction faults	243
Maintenance faults	14
Corrosion	41
Design errors	52
Erosion	414
Settlement or movement	314
Shrinkage	249
Temperature	55
Weathering	114
Total	1699

Locations of observed deficiencies

11. Deficiencies were reported in 10,205 locations within Corps hydraulic structures. Locations are shown in Table 5 and are summarized according to type of structure in Table 6. Totals were as follows:

Location	Instances		
Bridges	683		
Dams	6,518		
Navigation locks	2,227		
Powerhouses	553		
Other	224		
Total	10,205		

Degree of damage classifications

- 12. Where possible, the degree of damage due to the deficiency observed was assessed. The following definitions were used:
 - a. Light. A noticeable deficiency whose relative extent of damage is minor or superficial. No immediate remedial action is needed.
 - b. Moderate. A deficiency whose relative extent of damage is significant; a deficiency whose damage is light in degree and excessive in occurrence. Monitoring or remedial action or both may be required.

- c. Severe. A pronounced deficiency whose relative extent of damage is excessive; a deficiency whose damage is moderate in degree and excessive in occurrence; monitoring or repair is required. A deficiency whose damage is of such a degree that the structural element being observed can no longer serve its design function; repair is required.
- d. Threatens safety of structure. Deficiency such that if not remedied could result in the structure becoming inoperative or failing.

Examples of various observed deficiencies classified in accordance with these guidelines are included in Appendix C. Totals were as follows:

Degree of Damage	Instances
Light Moderate	6494 2612
Severe	569
Threatens safety of structure	30
Total	9705

Repair materials and techniques

13. Repairs to alleviate approximately 900 deficiencies were identified in the review of inspection reports. Various repair materials (Table 7) and techniques (Table 8) were used. It was possible to rate the performance of these repairs (good, fair, poor, or failed) in approximately 600 cases.

PART III: DATA ANALYSIS

Observed Deficiencies

14. The 10,096 observed deficiencies in Table 1 are grouped according to Corps Divisions in Table 9. The observed deficiencies can be summarized as follows:

Division		Light	Moderate	Severe	Threatens Safety of Structure	Overall
Lower Mississippi Valley	(I.MVD)	288	289	111	7	781
Missouri River (MRD)	(11111)	749	252	12	0	1,042
North Atlantic (NAD)		362	117	7	2	502
North Central (NCD)		531	400	116	10	1,080
New England (NED)		476	96	16	0	593
North Pacific (NPD)		637	329	46	3	1,113
Ohio River (ORD)		1309	583	185	2	2,141
South Atlantic (SAD)		455	235	38	6	746
South Pacific (SPD)		423	100	16	0	559
Southwestern (SWD)		1264	211	22	_0	1,539
	Total	6494	2612	569	30	10,096

The number of deficiencies reported per Division (Figure 1) ranged from 502 by NAD to 2141 by ORD. These two Divisions also represent the extremes in numbers of structures, 25 and 147 for NAD and ORD, respectively. There appears to be a general correlation between the number of structures in a given Division and the number of observed deficiencies (Figure 2).

15. There was no apparent correlation between the average age of structures within a given Division and the number of overall deficiencies observed (Figure 3). This lack of correlation is attributed in part to the large number of observed deficiencies classified as light damage. These minor deficiencies, representing approximately 65 percent of the total, might be expected to occur at any time during the life of a structure. However, considering only those deficiencies classified as severe damage or threatens safety of structure, there appears to be a general trend toward an increased number of these deficiencies as the average age of the structures increases (Figure 4). This would indicate that, as Corps structures remain in service and their average age increases, the number of deficiencies requiring repair will increase.

NO. OF OBSERVED DEFICIENCIES

LMVD		781			
MRD		104	12		
NAD	502				
NCD		1	080		
NED	593				
NPD		1	113		
ORD					2141
SAD		746			
SPD	559				
SWD				1539	TOTAL-10,096

Figure 1. Number of deficiencies observed and reported by Corps Divisions

Figure 2. Relationship between number of observed deficiencies and number of structures within Corps Divisions

Figure 3. Relationship between total number of deficiencies reported and average age of structures within Corps Divisions

Figure 4. Relationship between number of deficiencies classified as either severe or threatens safety of structure and average age of structures within Corps Divisions

- 16. The total of 10,096 deficiencies amounts to approximately 17 deficiencies for each lock or lock and dam project owned and operated by the Corps in 1984. The total number of deficiencies is probably somewhat less than 10,096 since a given deficiency may have been observed and reported in more than one inspection report for a given structure. However, since the primary objective of this analysis is to identify trends in problems relating to maintenance and repair of hydraulic structures, the information obtained from the 2018 inspection reports is believed to be an adequate sample.
- 17. Types of observed deficiencies are shown in Table 1 and summarized in Table 2. Concrete cracking was the deficiency most often observed (Figure 5). Other major problem areas based on number of deficiencies were seepage and spalling, which accounted for 20 and 19 percent of the total, respectively. Cracking
- 18. Concrete cracking was the deficiency most often observed (3842 cases), regardless of degree of damage (Figure 6). Deficiencies related to cracking, as a percentage of the total deficiencies within a given degree of damage classification, were somewhat erratic (Figure 7), ranging from 25 to 42 percent of the deficiencies classified as severe and moderate, respectively, as compared to 38 percent overall (Figure 5). Of the 3719 cases in which cracking was noted as a deficiency and it was possible to classify as to degree of damage, 96 percent were either light or moderate damage. Concrete cracking of this degree, while in itself not generally detrimental to a structure other than aesthetically, can lead to other more serious problems. For example, moisture intrusion through such cracks can cause the concrete to become critically saturated. Non-airentrained concrete subjected to freezing and thawing while critically saturated will suffer significant deterioration. It should be noted that, of the Corps' 186 structures which are more than 40 years old, more than 70 percent are located in NCD and ORD, areas of relatively severe exposure to freezing and thawing. This factor emphasizes the need for reliable materials and effective techniques to maintain these structures to prevent progressive deterioration.
- 19. Concrete cracking classified as either severe or threatens safety of structure, although only 4 percent of the cracking deficiencies, accounted for 25 percent of the total deficiencies within these two damage classifications. Thus, in addition to the need for maintenance methods to deal with concrete cracking, there is also a need for effective repair procedures.

% OF TOTAL DEFICIENCIES

CRACKING			38
SEEPAGE		20	
SPALLING		19	
DISTORTION OR MOVEMENT	7		
EROSION	6		
DISINTEGRATION	4		
CONSTRUCTION FAULTS	2		
JOINT SEALANT FAILURE	2		

Figure 5. Percentage of total observed deficiencies for eight general categories of observed deficiencies

Figure 6. Relationship between number of cracking, seepage, and spalling deficiencies observed and their degree of damage

Figure 7. Percentage of total cracking, seepage, and spalling deficiencies within the various degree of damage classifications

- 20. During the review, attempts were made to classify concrete cracks according to width or direction (Table 1); however, this was possible for only 55 percent of the deficiencies. Improved procedures in inspection, evaluation, and classification of concrete cracking are needed.

 Seepage
- 21. Seepage was the second most prevalent deficiency reported (2048 cases), accounting for 20 percent of the total deficiencies (Table 2). Whereas cracking as a percentage of the total deficiencies within a given degree of damage classification was somewhat erratic, seepage deficiencies steadily decreased both in number (Figure 6) and as a percentage of total deficiencies (Figure 7) as the degree of damage increased. In the 2005 cases in which it was possible to classify seepage according to degree of damage, 1950 of the deficiencies (97 percent) were either light or moderate damage.
- 22. Where possible, seepage was broken down into the more specific deficiencies (corrosion, etc.) shown in Table 1. However, in most cases (65 percent), it was not possible to determine the specific type of seepage. In those cases (726) where a specific manifestation of seepage was reported, efflorescence accounted for 75 percent of the deficiencies.

Spalling

- 23. Overall, 1936 cases of spalling were reported, amounting to 19 percent of the total deficiencies (Table 2). Spalling deficiencies decreased steadily in number as the degree of damage increased (Figure 6). However, as a percentage of the total deficiencies within a given degree of damage classification, spalling deficiencies were essentially constant (17 to 19 percent) for the light, moderate, and severe damage classifications, decreasing to 10 percent of the deficiencies classified as threatens safety of structure (Figure 7).
- 24. Although the total number of cracking deficiencies observed was approximately twice the number of spalling deficiencies, the number of structures involved in each case was much more nearly equal (Figure 8). For example, in the light damage classification, there were 2473 cracking deficiencies observed involving 494 structures as compared to 1258 spalling deficiencies involving 417 structures.
- 25. Where it was possible to classify spalling deficiencies as to degree of damage, the results were similar to those for cracking and seepage deficiencies; i.e., 95 percent were either light or moderate damage indicating a significant effort in the future relating to repair of concrete spalls.

Figure 8. Relationship between number of structures with cracking, seepage, and spalling deficiencies and their degree of damage

Distortion or movement

- 26. There were 747 deficiencies reported relating to distortion or movement, which accounted for 7 percent of the total deficiencies observed (Table 2). Although the number of distortion or movement deficiencies decreased with increasing degree of damage (Figure 9), as a percentage of the total deficiencies within a given degree of damage classification, they increased as the degree of damage increased (Figure 10).
- 27. The type of distortion or movement was unspecified in 416 of the 747 cases reported (Table 1). In the remaining cases, settling accounted for 70 percent of the deficiencies. In those cases where the deficiency could be classified as to degree of damage, 90 percent were either light or moderate damage. Erosion
- 28. There were 642 cases of erosion damage reported, which accounted for 6 percent of the total deficiencies reported (Table 2). The relationship between number of observed erosion deficiencies and degree of damage was very similar to that for distortion or movement deficiencies (Figure 9). There were no erosion deficiencies classified as threatens safety of structure. Eightyeight percent of the erosion deficiencies classified according to degree of damage were either light or moderate damage. However, it should be noted that most structures are not dewatered at the time of their inspection. If they were, it is expected that this percentage would be higher.
- 29. The type of erosion was not specified in 74 percent of the cases reported. Given the relative ease in distinguishing between abrasion and cavitationerosion, this shortcoming in the data appears to indicate a need for either more attention to detail in inspection reports or additional training for inspection personnel. In those cases where the type of erosion was specified, abrasionerosion accounted for 54 percent of the deficiencies.

Disintegration

30. There were 435 cases of disintegration reported, which accounted for 4 percent of the total deficiencies (Table 2). Although the number of disintegration deficiencies decreased with increasing degree of damage (Figure 9), the numbers of deficiencies classified as light and moderate damage were nearly the same. Disintegration, as a percentage of the total deficiencies within a given degree of damage classification, generally increased with increasing severity of damage (Figure 10) though not as dramatically as distortion or movement deficiencies.

Figure 9. Relationship between number of distortion or movement, erosion, and disintegration deficiencies observed and their degree of damage

Figure 10. Percentage of total distortion or movement, erosion, and disintegration deficiencies within the various degree of damage classifications

- 31. The type of disintegration was specified in 266 (61 percent) of the cases. In most of these cases, either scaling or weathering was specified, accounting for 22 and 32 percent of the total disintegration deficiencies, respectively.
- 32. Disintegration deficiencies were classified according to degree of damage in 413 of the total 435 observations. In those cases, 77 percent of the total were classified as either light or moderate compared to 96 and 97 percent for cracking and seepage deficiencies, respectively. This difference would indicate that problems with concrete disintegration, though fewer in number than those related to cracking and seepage, are significantly more severe. Therefore, it would be expected that the emphasis in addressing problems involving disintegration would be on repair and rehabilitation as opposed to the maintenance activities required in the majority of cracking and seepage problems. Construction faults
- 33. There were 229 construction faults reported, which accounted for 2 percent of the total deficiencies (Table 2). Most of these deficiencies, 172 cases involving 112 structures, were classified as light damage. The type of construction fault was specified in 88 percent of the cases (Table 1). The construction fault most frequently observed was irregular surface, which accounted for 45 percent of the specified deficiencies.

Joint sealant failure

34. There were 217 observations of joint sealant failure, accounting for 2 percent of the total deficiencies (Table 2). This was the only deficiency for which the largest number of cases was not classified as light damage. Of the 203 deficiencies classified according to degree of damage, 100 (49 percent) were classified as moderate damage compared to 30 and 21 percent for light and severe damage, respectively.

Causes of Observed Deficiencies

35. During the review of inspection reports, it was possible to determine causes of the observed deficiencies in only 1699 instances out of the total of 10,096 deficiencies observed and reported. Granted, there are situations in which detailed investigations involving nondestructive testing, core drilling, laboratory testing, etc., are required to ascertain the cause of concrete deterioration and such activities are normally beyond the scope of a periodic

inspection. However, it would appear that investigations of this nature would not have been required in a significant number of the more than 8000 instances in which a cause was not reported. This would appear to indicate a need for improved evaluation procedures. Also, additional training of inspection personnel in visual evaluation and classification of concrete condition and increased attention to detail in reporting procedures may be needed.

- 36. Causes reported for the observed deficiencies are shown in Table 3 and summarized according to general category of cause in Table 4. In each case, the overall total for each cause is shown; also, the causes are shown in relation to the degree of damage assigned to the resulting deficiency. Cause-deficiency relations are shown in Tables 10-13 for the various degrees of damage and are summarized in Table 14.
- 37. Erosion, settlement or movement, shrinkage, and construction faults, in that order, were most frequently reported as causes of the observed deficiencies. These four causes accounted for 71 percent of the total causes reported (Figure 11). This result is attributed, at least in part, to the fact that these causes could be relatively easily discerned visually.
- 38. Overall, causes were reported for only 17 percent of the total observed deficiencies. As might be expected, the more severe the damage, the more cases in which the cause of the deficiency was reported (Figure 12). However, even in those instances in which the severity of damage was such that repairs were required, causes were reported for only 31 and 50 percent of the deficiencies classified as severe and threatens safety of structure, respectively.
- 39. The percentage of causes reported for a given category of observed deficiency varied widely (Table 14). Construction faults and erosion were the deficiencies most easily diagnosed, with the causes of each being reported nearly 60 percent of the time (Figure 13). On the other hand, causes for seepage and joint sealant failure were reported for only 5 percent or less of the observed deficiencies. These results indicate a need for improved evaluation procedures in these areas.

Locations of Observed Deficiencies

40. Deficiencies were reported at the locations within Corps hydraulic structures shown in Table 5. In addition to the total number of deficiencies at each location, the locations are shown in relation to the degree of damage

% OF TOTAL CAUSES

Figure 11. Percentage of total causes of observed deficiencies for 11 general categories of causes

Figure 12. Relationship between ratio or reported causes to observed deficiencies and their degree of damage

% OF TOTAL DEFICIENCIES WITH CAUSES REPORTED

CONSTRUCTION FAULTS					59
CRACKING		11			
DISINTEGRATION			21		
DISTORTION OR MOVEMENT				37	
EROSION					59
JOINT SEALANT FAILURE	5				
SEEPAGE	4				
SPALLING		10			

Figure 13. Percentage of total observed deficiencies for which causes were reported for eight categories of observed deficiencies

assigned to the deficiency at that location. There were slightly more locations (10,205) of deficiencies reported than deficiencies themselves (10,096). The major reason for this difference was a number of cases in which maintenance or repair activity was reported at a given location but no record could be found of the type of deficiency requiring this attention.

41. The most frequently reported locations of deficiencies were as follows:

Type of Structure	Location	No. of <u>Deficiencies</u>
Dam	Conduits	1147
Dam	Intake structures	719
Dam	Stilling basin walls	707
Dam	Monolith joints	659
Dam	Spillway faces	482
Dam	Piers	451
Lock	Chamber walls, vertical surfaces	416
Dam	Galleries	356
Lock	Chamber walls, horizontal surfaces	354
Lock	Monolith joints	283

These 10 locations accounted for 58 percent of the total locations where deficiencies were observed. The top 6 and 7 of the 8 most frequently reported locations of deficiencies were in dams.

- 42. Locations of observed deficiencies are summarized according to type of structure in Table 6. More than 60 percent of the total deficiencies reported were located in dams compared to 22 percent in navigation locks (Figure 14). One reason for the large number of problems with dams relative to locks is that the Corps owns and operates more than twice as many dams as lock chambers. The number of deficiencies located in each type of structure decreased with increasing degree of damage. This trend was particularly true for dams (Figure 15). In those cases in which degree of damage could be assigned to a deficiency at a given location, 96 percent of the deficiencies located in dams were classified as either light or moderate damage. This result indicates that most problems with dams will require maintenance activities along with continued surveillance and monitoring.
- 43. The number of navigation lock deficiencies, classified according to degree of damage, decreased with increasing severity of damage (Figure 15). However, as a percentage of the total deficiencies within a given degree of

% OF TOTAL DEFICIENCY LOCATIONS

BRIDGES	7	
DAMS		64
LOCKS	22	
POWERHOUSES	5	
OTHERS	2	

Figure 14. Percentage of total observed deficiency locations for five types of structures

Figure 15. Relationship between number of deficiencies observed in locks and in dams and their degree of damage

damage classification, lock deficiencies increased with increased degree of damage (Figure 16). Also, the number of deficiencies located in locks was greater than that in dams for both the severe and threatens safety of structure classifications of damage. This result indicates that navigation locks will require emphasis on repair and rehabilitation in addition to normal maintenance activities.

44. Deficiencies observed in the various types of structures are shown in Tables 15-18 for individual damage classifications and summarized in Table 19. Concrete cracking was the most frequently observed deficiency in all types of structures. The data base can be searched to obtain additional information on the types of deficiencies observed at various locations within a type of structure. For example, the locations in dams of observed deficiencies classified as moderate damage are shown in Table 20. Similarly, information can be obtained on the types of deficiencies observed at a specific location such as dam conduits, the most frequently reported location of deficiencies (Table 21).

Degree of Damage

45. It was possible to classify observed deficiencies according to degree of damage in 96 percent of the total observations. The number of observed deficiencies (Figure 17) and the number of structures involved (Figure 18) decreased rapidly with increasing degree of damage. Deficiencies classified as light damage accounted for 67 percent of those classified according to degree of damage. Ninety-four percent of the observed deficiencies were classified as either light or moderate damage. There were 599 deficiencies, involving almost 200 structures, classified as either severe damage or threatens safety of structure. Deficiencies within these more serious damage classifications are expected to increase as the average age of Corps structures increases.

Repair Materials and Techniques

46. Repair and maintenance activities were described in the periodic inspection reports for less than 10 percent of the total observed deficiencies. As expected, the ratio of repaired deficiencies to total observed deficiencies within a damage classification increased with severity of damage (Figure 19). However, reports of repairs to only 20 and 33 percent of the deficiencies

Figure 16. Relationship between percentage of total observed deficiencies in locks and in dams and their degree of damage

Figure 17. Relationship between number of observed deficiencies and their degree of damage

Figure 18. Relationship between number of structures with observed deficiencies and their degree of damage

Figure 19. Relationship between ratio of number of repairs to number of observed deficiencies and their degree of damage

classified as severe damage and threatens safety of structure, respectively, were unexpectedly low. This result could be attributed in part to the time lag involved in observation and reporting of a deficiency in one inspection report and the repair being performed at some time prior to the following inspection (as much as 5 years later). More likely, this result could indicate a significant number of deficiencies awaiting attention. In either case, there is a need for increased attention in inspection reports to maintenance and repair activities, particularly regarding the types of materials used and their subsequent performance.

- 47. The types of observed deficiencies for which repairs have been reported are shown in Table 22. Cracking, spalling, and erosion were the types of deficiencies most often reported as having been repaired. These three types of deficiencies accounted for nearly 70 percent of the 569 cases in which a repair material could be related to a type of deficiency. There appears to be a general correlation between the number of deficiencies of a given type observed and the number repaired (Figure 20).
- 48. The locations of deficiencies which have been repaired are shown in Table 23. Fifty-four percent of the repairs reported were on dams, where 64 percent of the total deficiencies were observed (Table 6). In comparison, 33 percent of the repairs were on lock structures which accounted for 22 percent of the total observed deficiencies. This result is attributed to the fact that the numbers of deficiencies in locks were higher than those in dams for the more severe damage classifications (Figure 16).
- 49. The type of material used was reported for 699 maintenance and repair activities. The performance of the various materials could be rated in 618 cases as shown in Table 7 and summarized in Figure 21. Overall, the performance of the various materials was rated good for only half of the repairs, and for 35 percent of the cases the material performance was rated as either poor or failed. This result indicates a need for additional evaluation of existing materials prior to prototype application or development of improved materials for maintenance and repair or both.
- 50. There were four general types of materials (concrete, epoxy, grout, and joint sealants) which had more than 100 reported uses as repair materials. The relative performance of these materials is shown in Figure 22. The percentages of repair materials rated as good ranged from 39 to 66 percent for epoxy and joint sealants, respectively, with an average for the four materials of

Figure 20. Relationship between number of observed deficiencies and number repaired for eight general categories of observed deficiencies

% OF TOTAL RATED REPAIRS

GOOD			51
FAIR	14		
POOR	12		
FAILED		23	

Figure 21. Performance of repair materials for which ratings were reported

Figure 22. Relative performance of four general types of repair materials

- 51 percent. On the other end of the scale, joint sealants had the fewest reported failures (10 percent), whereas concrete had the most failures (27 percent).
- 51. The repair technique used was specified in 592 reports of maintenance and repair as compared to 699 reports on the type of material. The performance of the various techniques could be rated in 588 cases as shown in Table 8. As expected, performance ratings for the various repair techniques were essentially the same as ratings for the repair materials (Figure 23). Approximately half of the materials and techniques were rated good, a fourth failed, and the remaining fourth evenly divided between fair and poor.
- 52. Route and seal, conventional forming and placing, overlay, injection, and trowel-on were the techniques most frequently used. These five techniques accounted for 73 percent of the repairs reported. The percentages of repair techniques rated as good ranged from 40 to 57 percent for overlays and routing and sealing, respectively, with an average for the five techniques of 50 percent. With the performance of one out of every two repairs being rated as less than good, there is a need for significant improvements in selection and application of repair materials and techniques.

Figure 23. Relative performance of repair materials and techniques

PART IV: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 53. Over 2000 periodic inspection reports were reviewed in an attempt to develop quantitative information on the condition of the concrete portions of the Corps' civil works structures. The information contained in the various reports varied widely both in content and detail. While the information is believed to be an adequate sample for the purposes of this report, uniform reporting procedures Corps-wide would improve the potential of these reports in identifying future trends and problem areas in maintenance and repair of civil works structures.
- 54. There was no apparent correlation between the average age of structures within a given Division and the overall number of deficiencies observed. However, considering only those deficiencies classified as severe damage or threatens safety of structure, there was a general correlation between the average age of structures and the number of deficiencies. This would indicate that, as Corps structures remain in service and their average age increases, the number of deficiencies requiring repair will increase.
- 55. Concrete cracking was the deficiency most often observed (3842 observations) accounting for 38 percent of the total deficiencies. Other major problem areas, based on the number of deficiencies, were seepage and spalling, which accounted for 20 and 19 percent of the total, respectively. Development of equipment, materials, and techniques to evaluate and correct these types of deficiencies should be emphasized in the REMR Research Program.
- 56. Overall, causes of observed deficiencies were reported for only 17 percent of the total deficiencies. As might be expected, the more severe the damage, the more cases in which the cause of the deficiency was reported. However, even in those instances in which the severity of damage was such that repairs were required, causes were reported for only 31 and 50 percent of the deficiencies classified as severe and threatens safety of structure, respectively. This result indicates a need for improved evaluation equipment and procedures. Also, additional training of inspection personnel in visual evaluation and classification of concrete condition and increased attention to detail in reporting procedures appear warranted.

- 57. More than 60 percent of the total deficiencies reported were located in dams compared to 22 percent in navigation locks. One reason for the large number of problems with dams relative to locks is that the Corps owns and operates more than twice as many dams as lock chambers. The number of deficiencies located in each type of structure decreased with increasing degree of damage. In those cases in which degree of damage could be assigned to a deficiency at a given location, 96 percent of the deficiencies located in dams were classified as either light or moderate damage. This result indicates that the majority of problems with dams will require maintenance activities along with continued surveillance and monitoring.
- 58. Although the overall number of concrete deficiencies located in navigation locks was approximately one-third the number in dams, the number of deficiencies in locks was greater than that in dams for both the severe and threatens safety of structure classifications of damage. This result indicates that navigation locks will require emphasis on repair and rehabilitation in addition to normal maintenance activities.
- 59. Most of the observed deficiencies (94 percent) were classified as light or moderate damage indicating a need for emphasis on maintenance activities. However, there were 599 reported deficiencies, involving almost 200 structures, classified as either severe damage or threatens safety of structure. Deficiencies within these more serious damage classifications are expected to increase as the average age of Corps structures increases.
- 60. Repair and maintenance activities were described in the periodic inspection reports for less than 10 percent of the total deficiencies observed. As expected, the ratio of repaired deficiencies to total observed deficiencies within a given damage classification increased with severity of damage. However, reports of repairs to only 20 and 33 percent of the deficiencies classified as severe damage and threatens safety of structure, respectively, were unexpectedly low. This result could be attributed in part to the time lag involved in observation and reporting of a deficiency in one inspection report and the repair being performed at some time prior to the following inspection (as much as 5 years later). More likely, this indicates a significant backlog of concrete deficiencies awaiting attention. In either case, there is a need for increased attention in inspection reports to maintenance and repair activities, particularly regarding the types of materials used and their subsequent performance.

61. Overall, the performance of the various maintenance and repair materials was rated good for only half of the repairs, and for 35 percent of the cases the material performance was rated as either poor or failed. With the performance of one out of every two repairs being rated as less than good, there is a need for significant improvements in selection and application of repair materials and techniques.

Recommendations

- 62. Information contained in the present data bases on the condition of concrete in the Corps' civil works structures should be a valuable asset to both field and laboratory personnel involved in maintenance and repair activities. Consequently, additional efforts to locate missing inspection reports to complete the data bases are recommended. Also, to keep the data bases current, future inspection reports should be reviewed and input into the data bases as they become available.
- 63. An easy, timesaving system of visual methods for uniform identification and classification of concrete deterioration symptoms should be developed for future inspection reports. Such a system should be based on detailed definitions of typical concrete damage adequately illustrated with photographic examples similar to an expanded version of those shown in Appendix C. Data sheets or hand-held field data entry devices or both should be developed to ease data collection and transmission.
- 64. This identification and assessment of problems relating to evaluation, maintenance, and repair of concrete should be used in developing and establishing research priorities in the REMR Research Program. In addition, principal investigators for research work units in the REMR Concrete and Steel Structures problem area should use the existing data bases to develop background information on the specific problems being addressed in the individual work units.

Table l
Observed Deficiencies

					No. o	of Deficiend Degree	cies Clas of Damage	
	Deficier	ісу					<u> </u>	Threatens
				No.				Safety of
Code	Type		Overall	Unclassified	Light	Moderate	Severe	Structure
110	Construction faults (unspecifi	Led)	28	8	14	2	4	0
111	Bug holes		24	2	20	1	1	0
112	Cold joints		23	1	19	3	0	. 0
113	Exposed reinforcing steel		27	1	20	2	3	1
114	Honeycombing		36	4	24	. 5	3	0
115	Irregular surface		91	2	75	12	2	_0
		Total	229	18	172	25	13	1
120	Cracking (unspecified)		1,725	83	1142	420	77	3
121	Checking or crazing		51	3	39	8	1	0
122	D-cracking		7	0	6	1	0	0
123	Diagonal		130	1	74	47	8	0
124	Hairline		314	3	275	36	0	0
125	Longitudinal		340	9	169	143	14	5
126	Map or pattern		110	8	77	24	1	0
. 127	Random		167	2	103	54	6	2
128	Transverse		372	8	212	142	9	1
129	Vertical		431	3	261	150	17	0
130	Horizontal		195	3	115	69	8	_0
		Total	3,842	123	2473	1094	141	11

Table 1 (Continued)

					No. o	of Deficien		sified by
	Deficie	nov			-1-7	Degree (of Damage	
	Deficie	incy		No.				Threatens
Code	Туре		Overal1	Unclassified	Light	Moderate	Severe	Safety of Structure
140	Digintognation (Structure
	Disintegration (unspecified)		169	12	50	63	43	1
141	Blistering		1	0	0	1	0	0
143	Delamination		3	0	1	2	0	. 0
144	Drummy area		16	1	9	6	Ō	0
145	Dusting		3	0	2	1	0	0
146	Peeling		6	2	3	1	0	0
147	Scaling		96	3	37	37	19	0
148	Weathering		141	4	64	43	<u>27</u>	_3
		Total	435	22	166	154	89	.4
155	Distortion or movement (unspe	cified)	416	30	258	86	38	4
156	Buckling		3	0	2	0	1	0
157	Curling		2	0	1	0	1	ő
159	Settling		229	7	150	58	14	ŏ
160	Tilting		95	5	52	22	11	5
161	Warping		2	0	2	0	0	_0
		Total	747	42	465 -	166	65	9
170	Erosion (unspecified)		475	35	261	125	54	0
171	Abrasion		90	7	48	32	3	0
172	Cavitation		77	19	27	21	10	_0
		Total	642	61	336	178	67	0
175	Joint sealant failure	Total	217	14	61	100	42	0

Table 1 (Concluded)

				No.	No. of Deficiencies Classified Degree of Damage					
	Deficiency		No.				Threatens Safety of			
Code	Type	Overal1	Unclassified	Light	Moderate	Severe	Structure			
180	Seepage (unspecified)	1,322	38	970	270	42	2			
181	Corrosion	37	1	26	6	4	0			
182	Discoloration or staining	127	0	109	14	0	0			
183	Exudation	6	0	4	2	0	0			
184	Efflorescence	546	2	447	94	3	0			
185	Incrustation	10	2	7	1	0	0			
	Tota	1 2,048	43	1563	387	53	2			
190	Spalling (unspecified)	1,791	68	1133	489	98	3			
191	Pitting	44	0	40	4	0	0			
192	Popouts	101	0	85	15	1	_0			
	Tota	1,936	68	1258	508	99	3			
·	Overall Tota	10,096	391	6494	2612	569	30			

Table 2
Summary of Observed Deficiencies

						De	ficienc	ies Classifi	ed by	Degree	of Damage			
Deficiency			Light			Moder			Sev	ere	Threatens Safety of Structure			
Туре	No.	% of Total	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures
Construction faults	229	2	172	3	112	25	1	18	13	2	9	1	3	1
Cracking	3,842	38	2473	38	494	1094	42	320	141	25	75	11	3.7	. 6
Disintegration	435	4	166	3	101	154	6	82	89	16	41	4	13	2 .
Distortion or movement .	747	7	465	7	255	166	6	101	65	11	38	9	30	4
Erosion	642	6	336	5	200	178	7	85	67	12	34	0	0	0
Joint sealant failure	217	2	61	1	. 44	100	4	65	42	7	28	0	0	0
Seepage	2,048	20	1563	24	420	387	15	189	53	9	33	2	7	2
Spalling	1,936	19	1258	19	417	508	19	234	99	17	63	_3	10	2
Total	10,096		6494			2612			569			30		_

Table 3

Causes of Observed Deficiencies

					No. o	of Deficience Degree	cies Class of Damage	sified by
	Cause	;						Threatens
Code	Туре		0veral1	No. Unclassified	Tiab+	Moderate	C 0***0 ***0	Safety of
					Light		Severe	Structure
210	Accidental loading (unspecifie	:d)	8	0	1	5	2	0
211	Earthquake		11	0	3	2	4	2
212	Impact		117	4	49	39	24	1
213	Overloading		3	<u>0</u>	2	_0	_0	<u>1</u>
		Total	139	4	55	46	30	4
220	Chemical reactions (unspecifie	ed)	24	0	17	7	0	0
221	Acid water		8	0	2	4	2	0
222	Aggressive water		1	0	0	1	0	0
223	Alkali-carbonate rock reacti	.on	0	0	0	0	0	0
224	Alkali-silica reaction		17	0	5	6	4	2
225	Chemical attack (type unknow	m)	9	0	1	7	1	. 0
226	Sulfate attack		5	2	1	_2	0	<u>0</u>
		Total	64	2	26	27	7	2
230	Construction faults	Total	243	30	149	53	10	1
235	Maintenance faults	Total	14	. 0	12	2	0	0
240	Corrosion .	Total	41	0	27	10	4	0
250	Design errors (unspecified)		32	2	11	7	9	3
251	Faulty design details		8	0	5	0	3	0
252	Under-designed		12	1	5	_2	4	<u>0</u>
		Total	52	3	21	9	16	3
			(Conti	inued)			(Sl	neet 1 of 2)

Table 3 (Concluded)

				The state of the s	No.	No. of Deficiencies Classified by Degree of Damage				
	Cai	ıse		No.				Threatens		
Code	Type		Overall	Unclassified	Light	Moderate	Severe	Safety of Structure		
260	Erosion (unspecified)		160	24	71	40	25	0		
261	Abrasion		146	6	71	58	11	0		
262	Cavitation		108	21	_50	_25	12	_0		
		Total	414	51	192	123	48	0		
270	Settlement or movement	Total	314	25	168	93	23	5		
275	Shrinkage (unspecified)		247	2	205	40	0	0		
276	Drying		2	_0	0	2	0	_0		
		Total	249	2	205	42	0	0		
280	Temperature (unspecified)		46	2	36	8	0	0		
282	Fire		4	1	3	0	0	0		
283	Internally generated		5	_0	3	2	_0	_0		
		Total	55	3	42	10	0	0		
290	Weathering (unspecified)		30	2	9	13	6	0		
291	Freezing and thawing		_84	_2	16	<u>34</u>	32	<u>0</u>		
		Total	114	4	25	47	38	0		
	0ve:	rall Total	1699	124	922	462	176	15		

Table 4

Summary of Causes of Observed Deficiencies

		Causes Classified by Degree of Damage										
									Thre	atens		
										ty of		
		~ -	L	ight	Mod	<u>erate</u>	Se	vere	Structure			
		% of		% of		% of		% of		% of		
Туре	No.	<u>Total</u>	No.	<u>Total</u>	No.	<u>Total</u>	No.	<u>Total</u>	No.	Total		
Accidental loading	139	8	55	6	46	10	30	17	4	27		
Chemical reactions	64	4	26	3	27	6	7	4	2	13		
Construction faults	243	14	149	16	53	11	10	6	1	7		
Maintenance faults	14	1	12	1	2	0	0	0	0	0		
Corrosion	41	2	27	3	10	2	4	2	0	0		
Design errors	52	3	21	2	9	2	16	9	3	20		
Erosion	414	24	192	21	123	27	48	27	0	0		
Settlement or movement	314	18	168	18	93	20	23	13	5	33		
Shrinkage	249	15	205	22	42	9	0	0	0	0		
Temperature	55	3	42	5	10	2	0	0	0	0		
Weathering	114	7	25	3	47	10	_38	. 22	_0	0		
Total	1699		922		462		176		15			

Table 5
Locations of Observed Deficiencies

			No. of Locations Classified by Degree of Damage					
	Location	···	No.					Threatens Safety of
Code	Type		Overall	Unclassified	Light	Moderate	Severe	Structure
310	Bridges (unspecified)		26	3	17	6	6	0
311	Decks		228	6	162	55	5	0
312	Expansion joints		63	12	30	16	5	0
313	Piers, pedestals, or abutments		230	7	159	52	12	Ô
314	Parapet walls		60	2	39	16	3	Õ
315	Bearings		<u>76</u>		33	26	10	<u>0</u>
		Total	683	37	440	171	35	0

Table 5 (Continued)

				No.	of Location	ns Classi	fied by
					Degree	of Damag	e
	Location						Threatens
			No.				Safety of
Code	Туре	<u>Overall</u>	Unclassified	<u>Light</u>	Moderate	Severe	Structure
320	Dams (unspecified)	88	15	46	26	1	0
321	Conduits	1,147-	69	793	261	24	0
322	Downstream face	128	1	97	28	2	0
323	Drains	17	0	9	8	0	0
324	Flip buckets	27	2	23	1	1	0
325	Galleries	356	4	263	86	3	0
326	Gates	237	5	161	46	24	1
327	Gate anchorages	65	4	36	21	4	0
328	Horizontal construction joints	160	2	118	39	1	0
329	Intake structures	719	17	599	89	14	0
330	Monolith joints	659	35	458	137	29	0
331	Piers or abutments	451	20	272	134	21	4
3 32	Sluices	128	4	102	16	6	0
333	Spillway crest (ogee)	276	16	191	63	6	0
334	Spillway face	482	21	323	126	12	0
335	Stilling basin, baffles	90	4	55	24	7	0
336	Stilling basin, floor	249	16	130	79	24	0
337	Stilling basin walls	707	29	512	129	34	3
338	Upstream face	76	7	37	27	3	2 ·
339	Spillway monolith	128	3	93	28	4	0
340	Slope paving	34	2	18	4	10	0
341	Outlet works (separate from spillway)	53	5	38	7	3	0
3 42	Approach	47	3	24	16	3	1
343	End sill	79	6	60	12	1	0
344	Horizontal (top face)	115	6	70	39	0	_0
	Total	6,518	296	4528	1446	237	11

Table 5 (Continued)

				No.		of Locations Classified by Degree of Damage		
	Location	······································					Threatens	
Code	Typo		No.				Safety of	
	Туре	<u>Overall</u>	Unclassified	<u>Light</u>	Moderate	Severe	Structure	
345	Locks (unspecified)	66	8	32	20	6	0	
346	Chamber walls, vertical surfaces	416	26	161	166	61	2	
347	Chamber walls, horizontal surfaces	354	17	134	165	37	1	
348	Emptying and filling conduits	124	11	59	49	J/	1	
349	Floor	42	3	15	16	<i>.</i>	<i>\(\)</i>	
350	Galleries	266	6	170	77	12	4	
351	Gates	93	4	55	17	13	1	
352	Guard walls	100	6	51	31	13	4	
353	Guide walls	243	10	111	80	11	1	
354	Horizontal construction joints	37	2	16		42	0	
35 5	Monolith joints	283	18		16	2	1	
3 56	Sill blocks			123	98	4 4	0	
357	Lock monoliths	43	2	25	14	. 2	. 0	
221	HOCK MOHOLICHS	160		59	44	35	_5	
	Total	2,227	130	1011	793	274	19	

Table 5 (Concluded)

			No.	of Location	ns Classi	fied by		
						Degree	of Damage	2
	Location							Threatens
				No.				Safety of
Code	Type		<u>Overall</u>	Unclassified	<u>Light</u>	Moderate	Severe	Structure
365	Powerhouses (unspecified)		60	6	46	8	0	0
366	Bridge crane		7	0	4	3	0	0
367	Draft tubes		30	1	24	4	1	0
368	Exterior walls		35	0	24	10	1	0
369	Floors		44	4	29	11	0	0
370	Horizontal construction joints		23	2	17	3	1	0
3 71	Intake structure		21	5	11	5	0	0
372	Interior walls		86	4	65	17	0	0
373	Roof		30	4	15	11	0	0
374	Tailrace deck		11	0	8	2	1	0
375	Vertical construction joints		48	3	35	10	0	0
376	Walls		45	3	25	16	1	0
377	Penstock		56	0	40	15	1	0
378	Galleries		57	0	42	15	0	_0
	Tot	tal	553	32	385	130	6	0
390	Other (unspecified)		51	1	28	17	5	0
391	Esplanade		74	2	40	27	5	0
392	Fish facilities		19	1	10	. 5	3	0
393	Floodwalls		8	0	8	0	0	0
394	Retaining walls		70	3	40	23	4	0
395	Dikes		2	0_	1	0	1	_0
	To	tal	224	7	127	72	18	0
	Overall To	tal	10,205	502	6491	2612	570	30

Table 6
Summary of Locations of Observed Deficiencies

				Location	ns Clas	sified	by Deg	ree of	Damage	
									Thre	atens
T .				_					Safe	ty of
LO	cation		Li	ght	Mode	rate	Se	vere	Stru	cture
		% of		% of		% of		% of		% of
Туре	No.	Total	No.	<u>Total</u>	No.	Total	No.	<u>Total</u>	No.	Total
Bridges	683	7	440 -	7	171	7	35	6	0	0
Dams	6,518	64	4528	70	1446	55	237	42	11	37
Locks	2,227	22	1011	16	793	30	274	48	19	63
Powerhouses	553	5	385	6	130	5	6	1,	0	0.
Other	224	2	127	2	72	3	_18	3	_0	0
Total	10,205		6491		2612		570		30	

Table 7
Repair Materials

	Material				y Perf	ormance	
Code	Type	No Overall	of Uses Unclassified	Good		Materia	
					<u>Fair</u>	Poor	<u>Failed</u>
500	Unspecified Total	204	65	81	9	15	34
510	Concrete (unspecified)	109	, 24	36	18	6	25
511	Conventional (portland cement)	25	17	5	0	0	3
513	Fiber reinforced (steel)	8	2	5	0	1	0
516	Polymer-impregnated (PIC)	4	_1	_2	_1_	_0	_0
	Total	144	44	48	19	7	28
520	Epoxy Total	115	21	37	16	19	22
525	Grout (unspecified)	66	17	22	5	8	14
526	Chemical	9	3	3	2	1	0
527	Portland cement	13	6	6	1	0	0
528	Epoxy	19	_6	9	_3	_0	_1
	Total	107	32	40	11	9	15
530	Joint sealants (unspecified)	83	25	39	8	4	7
531	Field-molded mastic	8	8	.0	0	0	0
532	Field-molded thermoplastic (hot applied)	1	0	1	0	0	0
533	Field-molded thermoplastic (cold applied)	3	1	0	0	2	0
534	Field-molded thermosetting (chemical curing)	3	1	2	0	С	0
536	Preformed compression seal	6	_2	_2	2	_0	_0
	Total	104	37	44	10	6	7

(Sheet 1 of 3)

Table 7 (Continued)

	Material					irs Clas	ssified of
			. of Uses		Repair	Materia	al
Code	Type	<u>Overall</u>	Unclassified	Good	Fair	Poor	Failed
540	Mortar (unspecified)	17	7	7	0	1	2
541	Epoxy	38	15	7	5	6	5
542	Portland cement	_7	_4	_2	_0	0	1
	Total	62	26	16	5	7	8
545	Paint Total	2	1	0	1	0	0
5 50	Shotcrete (unspecified) Total	38	4	9	3	7	15
560	Steel	8	1	6	0	1	0
563	Plate	13	5	2	2	Ô	4
564	Posttensioning strand or bars	15	8	7	0	õ	0
565	Rock anchors	3	2	1	0	Ö	Ö
566	Magnesium oxide anodes	_6	_3	_1	_2	_0	_0
	Total	45	19	17	4	1	4
570	Surface sealants or coatings (unspecified)	48	22	12	4	2	8
571	Acrylics	2	1	0	0	0	1
572	Bituminous	8	2	5	0	1	Ō
574	Neoprene	5	2	0	1	0	2
575	Urethane	_2	_0	_1	_1	_0	_0
	Total	65	27	18	6	3	11

Table 7 (Concluded)

			Material		No. of Repairs Classified by Performance of								
. .				No	No. of Uses			Repair Material					
Code		Туре		<u>Overall</u>	Unclassified	Good	Fair	Poor	Failed				
580	Waterstops	(unspecified)		5	2	3	0	0	0				
581 583	Metal Rubber			1 4	1 _2	0 1	0	0 _0	0 _1				
			Total	10	5	4	0	0	1				
590	Asphalt		Total	5	4	0	1	0	0				
			Overall Total	903	285	314	85	74	145				

Table 8
Repair Techniques

	Technique				by Perf	ormance	
Code	Туре	No. Overall	of Uses Unclassified	Good	Repair Fair	Materi. Poor	al Failed
600	Unspecified	329	100	127	27	27	48
603	Brush-on	41	11	11	5	1	13
604	Cathodic protection	6	3	1	2	0	0
606	Conventional forming and placing	100	31	35	1	10	23
609	Drilling and plugging	21	6	13	1	0	1
612	Dry pack	6	1	3	2	0	0
615	Injection	71	27	23	7	5	9
61 8	Jacketing	1	1	0	0	0	0
624	Overlay	97	22	30	17	11	17
627	Polymer impregnation	3	1	. 1	1	0	0
630	Posttensioning	18	10	8	0	0	0
633	Precast elements	4	1	. 1	0	2	0
636	Preplaced aggregate	1	1	0	0	0	. 0
639	Roll-on	1	0	0	0	0	1
64 2	Route and seal	102	41	35	12	4	10
645	Shotcrete (dry-mix)	1	0	0	0	0	1
648	Shotcrete (wet-mix)	20	1	1	1	6	11
654	Spray-on	7	3	1	1	1	1
657	Stitching	1	0	1	0	0	0
658	Sawing for stress relief	20	9	10	0	0	1
		(Continued)				(Sheet	1 of 2)

Table 8 (Concluded)

	Technique	No.	of Uses	No. of Repairs Classified by Performance of Repair Material						
Code	Туре	<u>Overall</u>	Unclassified	Good	Fair	Poor	Failed			
660	Trowel-on	63	19	21	8	5	10			
663	Underwater placement (preplaced aggregate)	4	2	0	0	2	0			
666	Underwater placement (pump)	1	0	1	0	0	0			
669	Underwater placement (tremie)	3	3	0	_0	_0	0			
	Total	921	293	323	85	74	146			

Table 9
Observed Deficiencies by Corps Division

	Deficiency		N	o. of	Defici	encies	Class	ified	by Cor	os Div	ision	
Code	Туре	No.	LMVD	MRD	NAD	NCD	NED	NPD	ORD	SAD	SPD	SWD
110	Construction faults (unspecified)	28	7	8	0	0	1	3	3	3	0	3
111	Bug holes	24	7	5	0	0	0	4	3	0	2	2
112	Cold joints	23	0	1	0	2	0	1	5	0	2	12
-113	Exposed reinforcing steel	27	8	2	2	3	2	0	2	1		12
114	Honeycombing	36	6	3	1	4	9	1	6	0	0	1
115	Irregular surfaces	91	4	12	5.	5	3	11	11	9	0 4	6 27
	Total	229	32	31	8	14	15	20	30	13	8	58
120	Cracking (unspecified)	1,725	135	129	73	240	78	193	390	171	84	232
121	Checking or crazing	51	0	0	1	1	3	5	16	16	1	8
122	D-cracking	7	0	7	0	0	0	0	0	0	0	
123	Diagonal	130	8	12	4	12	12	17	21	11	12	0 21
124	Hairline	314	26	26	28	18	26	29	39	6	39	77
125	Longitudinal	340	23	38	18	22	11	41	93	17	17	60
126	Map or pattern	110	5	51	1	13	12	10	2	3	8	50
127	Random	167	12	6	1	3	5	13	86	12	14	15
128	Transverse	372	25	35	10	13	17	49	83	28	23	89
129	Vertical	431	43	55	9	37	55	54	69	37	13	59 59
130	Horizontal	195	9	18	2	18	25	22	38	23	3	37
•	Total	3,842	286	377	147	377	244	433	837	324	214	603

Table 9 (Continued)

	Deficiency		N	o. of	Defici	encies	Class	ified	by Cor	ps Div	ision	
Code	Type	No.	LMVD	MRD	NAD	NCD	NED	NPD	ORD	SAD	SPD	SWD
140	Disintegration (unspecified)	169	5	12	2	2	0	4	123	4	1	16
141	Blistering	1	0	0	. 0	0	1	0	0	0	0	0
143	Delamination	3	2	1	0	0	0	0	0	0	0	0
144	Drummy area	16	0	8	1	1	0	1	2	0	1	2
145	Dusting	3	1	0	0	0	0	1	0	. 1	0	0
146	Peeling	6	0	1	0	0	2	0	1	0	1	1
147	Scaling	96	3	8	6	41	6	10	12	2	0	8
148	Weathering	141	1	4	5	13	3	5	100	7	2	1
	Tota	L 435	12	34	14	57	12	21	238	14	5	28
155	Distortion or movement (unspecified)	416	72	36	17	52	10	23	78	23	30	75
156	Buckling	3	0	2	1	0	0	0	0	О	0	0
157	Curling	2	0	0	0	2	0	0	0	0	0	0
159	Settling	229	39	44	11	19	1	9	36	18	22	30
160	Tilting	95	13	23	6	16	3	3	2	7	7	15
161	Warping	2	0	1	0	0	0	0	0	í	Ó	0
	Tota	1 747	124	106	35	89	14	35	116	49	59	120
170	Erosion (unspecified)	475	10	30	18	40	34	112	111	19	36	65
171	Abrasion	90	15	51	0	4	1	6	8	1	2	2
172	Cavitation	77	3	14	2	1	3	36	8	4	4	2
	Tota	1 642	28	95	20	45	38	154	127	24	42	69
180	Seepage (unspecified)	1,322	71	94	85	90	50	239	230	132	67	264
181	Corrosion	37	0	7	1	9	1	1	6	6	4	2
182	Discoloration or staining	127	8	18	10	6	18	8	13	13	10	23
183	Exudation	6	3	0	0	0	0	0	3	0	0	0
184	Efflorescence	546	19	40	40	53	95	47	87	45	35	85
185	Incrustation	10	4	1	0	0	0	0	5	0	0	0
	Tota	1 2,048	105	160	136	158	164	295	344	196	116	374
		(Co	ontinued	l)						(S	heet 2	of 3)

Table 9 (Concluded)

	Deficienc	cy		N	o. of	Defici	encies	Class	ified	by Cor	ne Div	igion	
Code	Туре		No.	LMVD	MRD	NAD	NCD	NED	NPD	ORD	SAD	SPD	SWD
190	Spalling (unspecified)		1,791	112	177	122	310	95	142	390	116	86	241
191 192	Pitting Popouts		44 101	1 3	6 33	2 2	1 11	4 0	2	17 25	5 1	2 9	4 16
		Total	1,936	116	216	126	322	99	145	432	122	97	261
		Overall Total	10,096	781	1042	502	1080	593	1113	2141	746	559	1539

Table 10

Causes of Observed Deficiencies Classified as Light Damage

						No. of	Specifie	d Causes						
Deficiency Type	No.	Accidtl Loading	Chemical Reactions	Constr Faults	Maint Faults	Corrosion	Design Errors	Erosion	Settlmt or Movement	Shrinkage	Temp	Weath	Total	Cause/ Deficiency
Construction faults	172	0	0	102	5	. 0	1	1	0	0	0	0	109	0.63
Cracking	2473	4	3	7,	0	0	11	0	9	202	37	5	278	0.11
Disintegration	166	0	12	3	1	0	0	0	0	0	0	9	25	0.15
Distortion or movement	465	8	0	6	0	0	1	1	151	0	0	1	168	0.36
Erosion	336	1	4	2	2	0	1	190	0	0	0	0	200	0.60
Joint sealant failure	61	0	0	2	0	0	0	0	0	0	0	1	3	0.05
Seepage	1563	0 .	7	11	0	24	4	0	1	3	1	0	51	0.03
Spalling	1258	42	_0	_16	_4	. 3	_3	0	7	0	4	9	88	0.07
Total	6494	55	26	149	12	27	21	192	168	205	42	25	922	

Table 11
Causes of Observed Deficiencies Classified as Moderate Damage

•						No. of	Specifi	ed Causes	i					
Deficiency Type	No.	Accidtl Loading	Chemical Reactions	Constr Faults	Maint Faults	Corrosion	Design Errors	Erosion	Settlmt or Movement	Shrinkage	Temp	Weath	Total	Cause/ Deficiency
Construction faults	25	0	0	17	0	0	0	0	0	0	0	0	17	0.68
Cracking	1094	11	9	9	1	1	7	. 0	10	40	9	10	107	0.10
Disintegration	154	1	14	2	0	0	1	0	0	2	1	15	36	0.23
Distortion or movement	166	8	0	3	0	0	0	1	67	0	0	0	79	0.48
Erosion	178	1	0	6	0	0	1	121	0	0	0	0	129	0.72
Joint sealant failure	100	0	0 .	3	0	0	0	0	1	0	0	2	6	0.06
Seepage	387	0	0	4	0	7	0	1	6	0	0	1	19	0.05
Spalling	508	25	_4	_9	_1	_2	0	0	9	0	0	19	69	0.14
Total	2612	46	27	53	2	10	9	123	93	42	10	47	462	0.14

Table 12

Causes of Observed Deficiencies Classified as Severe Damage

						No.	of Speci	fied Caus	es					
Deficiency Type	No.	Accidtl Loading	Chemical Reactions	Constr Faults	Maint Faults	Corrosion	Design Errors	Erosion	Settlmt or Movement	Shrinkage	Temp	Weath	Total	Cause/ Deficiency
Construction faults	13	0	0	6	0	0	3	0	0	0	0	0	9	0.69
Cracking	141	4	2	2	0	0	5	0	4	0	0	6	23	0.16
Disintegration	89	3	4	0	0	0	5	0	0	0	0	17	29	0.33
Distortion or movement	65	7	0	1	0	1	1	1	16	0	0	0	27	0.42
Erosion	67	0	0	0	0	0	0	47	0	0	0	0	47	0.70
Joint sealant failure	42	0	0	0	0	0	0	0	2	0	0	0	2	0.05
Seepage	53	. 0	0	1	0	3	0	0	0	0	0	. 2	6	0.11
Spalling	99	<u>15</u>	_1	_0	_0	0	_1	_0	_1	_0	_0	<u>13</u>	<u>31</u>	0.31
Total	569	29	7	10	0	4	15	48	23	0	0	38	174	

Table 13

Causes of Observed Deficiencies Classified as Threatens Safety of Structure

						No. of	Specifi	ed Causes						
Deficiency Type	No.	Accidtl Loading	Chemical Reactions	Constr Faults	Maint Faults	Corrosion	Design Errors	Erosion	Sett1mt or Movement	Shrinkage	Temp	Weath	Total	Cause/ Deficienc
Construction faults	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Cracki ng	11	2	2	0	0	0	0	0	4	0	0.	0	8.	0.73
isintegration	4	0	0	0	0	0	3	0	0	0	0	0	3	0.75
istortion or movement	9	1	0	0	0	0 -	0	0	1	0	0	0	2	0.22
rosion	0	0	0	0	0	0	0	0	0	0	0	0	0	0
oint sealant failure	0	0	0	0	0	0	0	0	0	0	0	0	0	0
eepage	2	1	0	0	0	0	0	0	0	0	0	0	1	0.50
palling	_3	<u>0</u>	<u>0</u>	<u>1</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	0	0	0	0	1	0.33
Total	30	4	2	1	0	0	3	0	_ 5	0	0	0	15	

Table 14
Summary of Cause-Deficiency Relations

						No. c	of Specif	ied Cause	s -					
									Settlmt					
De ficie ncy		Accidtl	Chemical	Constr	Maint		Design		or					Cause/
Type	No.	Loading	Reactions	Faults	<u>Faults</u>	Corrosion	Errors	Erosion	Movement	Shrinkage	Temp	Weath	Total	Deficienc
Construction faults	229	0	0	125	5	0	4	1	0	0	0	0	135	0.59
Cracking	3,842	21	16	18	1	1	23	0	27	242	46	21	416	0.11
)isintegration	435	4	30	5	1	0	9	0	0	2	1	41	93	0.21
Distortion or movement	747	24	0	10	0	1	2	3	235	0	0	1	276	0.37
Erosion	642	2	4	8	2	0	2	358	0	0	Ó	0	376	0.59
Joint sealant failure	217	0	0	5	0	0	0	0	3	0	0	3	11	0.05
S ee page	2,048	1.	7.	16	0	34	4	1	7	3	1	3	77	0.04
Spalling	1,936	82	_5	_26	_5	_5	_4	0	_17	0	_4	41	189	0.10
Total	10,096	134	62	213	14	41	48	363	289	247	52	110	1573	

Table 15
Observed Deficiencies Classified as Light Damage in Various Structures

							<u>Deficienci</u>	es in	Various	Types of St	ructur	es				
Deficiency			Brid			Dan	ıs		Loc			Powerh	ouses		Othe	re
Туре	No.	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures	No.	% of Total	No. of
nstruction													Delactures	110.	IUCAL	Structure
nults	172	16	4	15	126	3	91	21	2	17	9	2	7	0	0	0
acking	2473	216	49	131	1652	36	420	385	38	134	156	41	61	63	50	49
sintegration	166	15	3	11	114	3	74	24	2	17	5	. 1	4	8	6	
.stortion											_	-	4	0	O	8
movement	465	66	15	51	256	6	168	96	9	61	23	6	19	24	19	21
osion	336	5	1	4	302	7	184	22	2	17	5	1	5	0	0	
int sealant											_	*	,	U	U	0
ilure	61	7	2	7	43	1	32	9	1	6	2	1	2	0	0	0
epage	1563	21	5	14	1189	26	350	210	21	103	130	34	53	13	10	
alling	1258	94	21	78	846	19	337	244	24	108		14	- -			12
Total	6494	440				_			2.7	100	55	14	34	19	15	18
Total	0434	440			4528			1011			385			127		

Table 16

Observed Deficiencies Classified as Moderate Damage in Various Structures

							Deficiencies	in Va	rious T	ypes of Stru	ctures				- 	
			Brid	ges		Dam			Loc			Powerh	ouses		Othe	rs
Deficiency		N.	% of	No. of	3.7	% of	No. of		% of	No. of		% of	No. of		% of	No. of
Туре	No.	No.	<u>Total</u>	Structures	No.	Total	Structures	No.	Total	Structures	No.	<u>Total</u>	Structures	No.	<u>Total</u>	Structures
Construction faults	25	4	2	2	17	1	15	4	1	3	0	0	•			
			_						1	3	U	0	0	0	0	0
Cracking	1094	61	36	46	558	39	229	377	48	119	66	51	29	33	46	24
Disintegration	154	24	14	15	72	5	46	51	6	28	5	4	5	3	4	3
Distortion																
or movement	166	20	12	16	82	6	52	37	5	25	5	4	4	22	31	18
Erosion	178	1	1	1	160	11	75	14	2	12	1	1	1	0	0	0
Joint sealant																
failure	100	11	6	8	56	4	40	31	4	22	1	1	1	1	1	1
Seepage	387	3	2	2	256	18	132	92	12	57	33	25	20	3	4	3
Spalling	508	47	27	39	245	17	146	187	24	86	19	15	17	10	14	9
Total	2612	171			1446			793			130			72		

Table 17

Observed Deficiencies Classified as Severe Damage in Various Structures

							Deficiencie	s in	Various	Types of Str	ucture	s				
5 6			Brid			Dan			Loc			Powerh	ouses		Othe	rs
Deficiency Type	No.	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures
Construction															Iocar	beruceares
faults	13	1	3	1	3	1	3	6	2	4	0	0	0	3	17	3
Cracking	141	14	40	9	38	16	28	84	31	40	2	33	1	3	17	3
Disintegration	89	7	20	5	27	11	18	52	19	22	0	0	0	3	17	3
Distortion											•	ŭ	Ŭ	,	17	3
or movement	65	9	26	6	22	9	16	32	12	17	0	0	0	2	11	1
Erosion	67	0	0	0	59	25	31	6	2	4	1	17	1	1	6	- 1
Joint sealant														_	•	-
failure	42	2	6	2	22	9	17	18	7	9	0	0	0	0	0	0
S eepa ge	53	1	3	1	35	15	24	17	6	9	0	0	0	0	0	0
Spalling	99	1	3	1	29	12	24	59	- 22	41	. 3	50	3	6	33	6
Total	569	35			235			274			6		J	18	33	U

Table 18

Observed Deficiencies Classified as Threatens Safety of Structure in Various Structures

						D	eficiencies	in Var	ious Ty	pes of Struc	tures					
			Brid	ges		Dam			Loc			Powerh	ouses		Othe	rs
Deficiency			% of	No. of		% of	No. of		% of	No. of		% of	No. of		% of	No. of
Туре	No.	No.	<u>Total</u>	Structures	No.	Total	Structures	No.	Total	Structures	No.	Total	Structures	No.	Total	Structures
Construction																
faults	1	0	0	0	0	0	0	1	5	1	0	0	0	0	0	0
Cracking	11	0	0	0	5	45	2	6	32	4	0	0	0	0	0	0
Disin tegration	4	0	0	0	0	0	0	4	21	2	0	0	0	0	0	0
Distortion																
or movement	9	0	0	0	5	45	3	4	21	1	0	0	0	0	0	0
Erosion	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Joint sealant																
failure	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Seepage	2	0	0	0	1	9	1	1	5	1	0	0	0	0	0	0
Spalling	3	0	0	0	0	0	0	3	16	2	0	0	. 0	0	0	0
Total	30	0			11			19			0			0		

Table 19
Summary of Observed Deficiencies in Various Structures

					Defic	iencies	in Var	ious Ty	pes of	Structur	ces	
Deficiency	у		Bri	dges		ms		cks		houses		ers
Туре	No.	% of Total	No.	% of Total	No.	% of Total	No.	% of Total	No.	% of Total	No.	% of Total
Construction faults	229	2	21	3	146	2	32	2	9	2	3	1
Cracking	3,842	38	291	45	2253	36	852	41	224	43	93	46
Disintegration	435	4	46	7	213	3	131	6	10	2	14	6
Distortion or movement	747	7	95	15	365	6	169	8	28	5	48	22
Erosion	642	6	6	1	521	8	42	2	7	1	1	0
Joint sealant failure	217	2	20	3	121	2	58	3	3	1	1	0
Seepage	2,048	20	25	4	1481	24	320	15	163	31	16	7
Spalling	1,936	19	142	22	1120	18	493	24	77	15	35	16
Total	10,096		646		6220		2097		521		217	

Table 20

Locations in Dams of Observed Deficiencies Classified as Moderate Damage

					N	lo. of De	ficienci	es at S	pecified		ns			
Deficiency Type	No.	Unspec	Condu	DS Face	Drains	Flip Buckts	Callrs	Gates	Gate Anchrg	Horiz Const Joints	Intake Struc	Monlth Joints	Piers or Abutms	Sluics
Construction faults	17	0	6	2	0	0	1	0	0	1	0	1	1	0
Cracking	558	15	113	13	0	0	55	1	15	11	29	9	80	3
Disintegration	72	0	14	2	1	0	1	0	0	0	9	6	4	1
Distortion or movement	82	- 2	12	0	0	0	0	4	0	0	. 4	15	3	0
Erosion	160	0	32	0	1	1	0	5	0	1	7	. 9	5	4
Joint sealant failure	56	1	11	0	0	0	0	0	1	0	3	19	1	0
Seepage	256	5	45	5	6	0	29	35	1	21	18	46	15	5
Spalling	245	_3	_28	_6_	0	_0	0	_1	4	_5	19	_32	25	_3
Total	1446	26	261	28	8	1	86	46	21	39	89	137	134	16
Туре	No.	Splway Crest (Ogee)	Splway Face	Stil Basi Baff	n Basi	n or	n s US	Splwa Monlt			_	End h Sill	Horiz or Top Face	
Construction faults	17	1 .	2		0 1		1 0	0	0	0			0	
Cracking	558	32	52		0 12	. 5	7 15	11	1	3	8	3	20	
Disintegration	72	3	11		1 3	1	0 0	2	1	0	0	1	2	
Distortion or movement	82	5	2		0 2	2 2	3 1	2	0	1	2	1	3	
Erosion	160	2	10	2	0 48	3	4 1	1	1	0	1	5	2	
Joint sealant failure	56	2	9		0 4		3 0	1	1	0	0	0	0	
Seepage	256	3	6		1 ()	7 4	1	. 0	1	1	0	1	
Spalling	245	<u>15</u>	34	_	2 2	2	4 6	10	0	<u>2</u>	_4		11	
Total	1446	63	126	2				28					39	

^{*} Separate from spillway.

Table 21
Observed Deficiencies in Dam Conduits

					No	of D	eficien	cies Classif	ied by	Degree	of Damage			
Deficiency				Li	ght		Mode	rate		Sev	ere	Sa		atens Structure
Туре	No.	% of Total	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures
Construction faults	47	4	36	5	27	6	2	5	0	0	0	0	0	0
Cracking	432	39	307	39	164	113	43	64	7	29	5	0	0	0
Disintegration	25	2	9	1	9	14	5	10	2	8	2	0	0	0
Distortion or movement	57	5	43	5	38	12	5	11	2	8	2	0	0	0
Erosion	121	11	78	10	67	32	12	21	8	33	5	0	0	0
Joint sealant failure	23	2	10	1	8	11	4	9	2	8	2	0	0	0
Seepage	253	23	203	26	126	45	17	35	2	8	2	0	0	0
Spalling	138	13	107	13	71	_28	11	23	_1	4	1	<u>o</u>	0	0
Total	1096		793			261			24			0		

Table 22
Types of Observed Deficiencies Which Have Been Repaired

				Repai	rs Cla	ssified	l by Degree o	f Dama	ge of O	bserved Defi	ci ency				
			Li	ght		Moder	ate		Seve	re	T		s Safety cucture	Ov	verall
Deficiency Type	No.	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures	No.	% of Total
Construction faults	229	13	7	12	3	1	2	2	2	2	0	0	0	18	3
Cracking	3,842	72	40	33	79	30	54	23	20	20	6	60	4	180	32
Disintegration	435	5	3	4	14	5	13	13	12	10	0	0	0	32	6
Distortion or movement	747	2	1	1	9	3	8	13	12	10	3	30	2	27	5
Erosion	642	12	7	11	47	18	24	25	22	17	0	0	0	84	15
Joint sealant failure	217	8	4	7	23	9	16	12	11	4	0	0	0	43	8
Seepage	2,048	17	9	14	27	10	24	11	10	5	0	0	0	55	10
Spalling	1,936	_52	29	37	63	24	54	14	12	13	_1	10	1	130	23
Total	10,096	181			265			113			10			569	

Table 23
Locations of Observed Deficiencies Which Have Been Repaired

			· · · · · · · · · · · · · · · · · · ·	Repairs	Class	ified b	y Degree of	Damage	of Obs	erved Defici	ency			•	
				ght		Mode	rate		Sev	ere	T		s Safety	Ov	erall
Locatio Type	No.	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures	No.	% of Total	No. of Structures	No.	% of Total
Bridges	683	14	8	11	22	8	17	8	7	5	0	0	0	44	8
Dams	6,518	115	64	68	139	52	80	53	46	33	3	30	2	310	54
Locks	2,227	43	24	15	88	33	51	51	45	22	7	70	5	189	33
Powerhouses	553	6	3	6	14	5	9	. 1	1	1	0	. 0	0	21	4
Others	224	3	2	. 3	2	1	2	1	1	1	0	0	0	6	1
Tota1	10,205	181			265			114	,		10		-	570	•

APPENDIX A: DETAILED DESCRIPTIONS
OF COMPUTER PROGRAMS DEVELOPED

Program ACHECK

Mode of Program: Time-sharing

<u>Input Description:</u> Time-sharing files, one per District, containing unformatted data that describe the location, operation, and physical features of each Corps of Engineers civil works structure.

Program Description: The program is an interactive program that reads time-sharing files containing the structure-description data base and checks for coding errors. The user requests a single District file for processing. There are 22 different data line reads used by the program to process data. Only five of these reads use an integer format. All other reads are alpha-formatted reads. Each structure name is read and written as output to the time-sharing terminal. If an error is encountered during execution of one of the integer reads, an error message is written to the terminal, and program execution is terminated. If no errors are encountered, only the structure names are written to the terminal.

An example run using Galveston District data file 'SWG' is shown below. Note that no errors were encountered.

◆FRN ROSC45/ACHECK•R

ENTER 3-LETTER CODE FOR DISTRICT TO BE PROCESSED =SWG
ADDICKS DAM
BARKER DAM
BRAZOS RIVER FLOODGATES AND LOCK
COLORADO RIVER EAST LOCK
COLORADO RIVER WEST LOCK

DO YOU WISH TO PROCESS ANOTHER FILE(Y OR M) =M

Program MB

Mode of Program: Batch

Source Program File: BMERGE

<u>Input Description:</u> Time-sharing files, one per District, containing unformatted data that describe the location, operation, and physical features of each Corps of Engineers civil works structure.

Program Description: The program file is executed from time-sharing by giving the command

JRN ROSC45/MB, R

The program reads time-sharing files containing the structure-description data base, formats data, and writes formatted data to a saved tape. Data are processed alphabetically by Division, District, and structure names. The first line in each District file contains a '#' sign in column 1 followed by a 3-character Corps of Engineers abbreviation report code by which the dam is geographically located in accordance with Appendix B, Engineer Regulation (ER) 18-2-1, "Civil Works Information System," as follows:

LMVD		NCD	
Memphis District New Orleans District St. Louis District Vicksburg District	LMM LMN LMS LMK	Buffalo District Chicago District Detroit District Rock Island District St. Paul District	NCB NCC NCE NCR NCS
MRD		NPD	
Kansas City District	MRK	NI D	
Omaha District	MRO	Alaska District	NPA NPP
		Portland District Seattle District	NPS
NED		Walla Walla District	NPW
NAD		ORD	
Baltimore District	NAB	Huntington District	ORH
New York District	NAN	Louisville District	ORL
Norfolk District Philadelphia District	NAO NAP	Nashville District Pittsburgh District	ORN ORP
rnitauerphia District	NUT	Treesparen processes	0 202

(Continued)

POD	SWD
I UD	עשכ

Charleston District Jacksonville District Mobile District Savannah District Wilmington District	SAC SAJ SAM SAS SAW	Albuquerque District Ft. Worth District Galveston District Little Rock District Tulsa District	SWA SWF SWG SWL SWT
SPD			
Los Angeles District Sacramento District San Francisco District	SPL SPK SPN		

Other data contained in a file are read according to the order and formats shown in the following:

• STRUCTURE NAME (45 characters)

Official name of structure.

• PROJECT NAME (45 characters)

Official name of project.

• LAKE NAME (45 characters)

Official name of lake or reservoir.

RIVER NAME (45 characters)

Official name of river or stream on which the dam is built. If the stream is without name, the name of the tributary to the river into which it flows is entered; e.g., 'TR-COLORADO'. If offstream, the name of the river plus 'OFFSTREAM' is entered.

• STATE NAME, MILE NUMBER (2 characters, comma, 8 characters)

2-character Postal Service abbreviation, and official river mileage for the structure. Abbreviations are as follows:

Alabama	AL	Maine	ME	Pennsylvania	PA
Alaska	AK	Maryland	MD	Rhode Island	RI
Arizona	AZ	Massachusetts	MA	South Carolina	SC
	(0	Continued)			

Arkansas	AR	Michigan	ΜI	South Dakota	SD
California	CA	Minnesota	MN	Tennessee	TN
Colorado	CO	Mississippi	MS	Texas	TX
Connecticut	CT	Missouri	MO	Utah	UT
Delaware	DE	Montana	MT	Vermont	VT
District of Columbia	DC	Nebraska	NE	Virginia	VA
Florida	FL	Nevada	NV	Washington	WA
Georgia	GA	New Hampshire	NH	West Virginia	WV
Hawaii	HI	New Jersey	NJ	Wisconsin	WI
Idaho	ID	New Mexico	NM	Wyoming	WY
Illinois	IL	New York	NY	Samoa	AS
Indiana	IN	North Carolina	NC	Puerto Rico	PR
Iowa	IA	North Dakota	ND	Territories	TT
Kansas	KS	Ohio	OH	Virgin Islands	VI
Kentucky	KY	Oklahoma	OK	Guam	GU
Louisiana	LA	Oregon	OR		

• DOWNSTREAM CITY (45 characters)

Name of nearest downstream city, town, or village of such size as can be found on a general map of the area or state.

• SEISMIC ZONE, DOWNSTREAM HAZARD (1 character, comma, 1 character)

Seismic zone code defined and delineated in ER 1110-2-1806, "Earthquake Design and Analysis for Corps of Engineers Dams," and hazard potential category. The seismic zone code (0 through 4) indicates probability of seismic damage as follows:

Code	Damage	Coefficient
0	None	0
1	Minor	0.025
2	Moderate	0.05
3	Major	0.10
4	Great	0.15

The hazard potential category (1 through 3) is that which most closely represents hazard potential to the downstream area resulting from failure or misoperation of the dam or facilities as follows:

	Hazard	Conseque	ences
Category	Potential	Loss of Life	Economic Loss
1	Low	None expected	Minimal
2	Significant	Few	Appreciable
3	High	More than a few	Excessive

CATEGORY, COMPLETION DATE (1 character, comma, 4 characters)

Category or status of dam, and year when main structure was completed and ready for use. Categories are as follows:

- D dam being designed by the Corps
- U dam under construction by the Corps
- C Corps-built dam being managed by the Corps
- O Corps-built dam being managed by others
- S Non-Corps dam with purchased flood control storage

• OWNER (35 characters)

Name of owner, abbreviated as necessary. Federal agencies are uniformly designated by major and minor abbreviations according to the following list:

Federal Agency Name	Major	Minor
International Boundary and Water Commission	IBWC	
US Department of Agriculture Soil Conservation Service Forest Service	USDA USDA	SCS FS
US Department of Energy Federal Energy Regulatory Commission	DOE	FERC
Tennessee Valley Authority	TVA	
US Department of Interior Bureau of Sport Fisheries and Wildlife Geological Survey Bureau of Land Management Water and Power Resources Services Bureau of Indian Affairs National Park Service	DOI DOI DOI DOI DOI	BSFW GS BLM WPRS BIA NPS
US Department of Labor Mine Safety and Health Administration	DOL	MSHA
US Department of Defense US Army US Navy US Air Force US Marine Corps	DOD DOD DOD	USA USN USAF USMC
US Department of Justice Bureau of Prisons	DOJ	ВОР
US Army Corps of Engineers	DAEN	*
Others not listed above	USA	Agency Name

^{* 3-}character Corps of Engineers abbreviation report code is used for the minor abbreviation.

• OPERATOR (35 characters)

Name of organization, other than the owner, having regulatory authority, operational control, or surveillance responsibilities over operation of the dam.

PURPOSE (1 character for each purpose separated by commas)

Array of 1-character codes that describe the purpose for which the reservoir is used, as follows:

- I irrigation
- H hydroelectric
- F flood control
- D debris control
- 0 other
- S water supply
- R recreation
- N navigation
- P stock or small farm pond

Up to 10 purposes can be entered in order of relative decreasing importance.

TYPE OF DAM (1 character for each type separated by commas)

Array of 1-character codes that describe the type(s) of construction used for the dam, as follows:

E	earthfill	В	buttress
R	rockfill	Α	arch
G	gravity	M	multi-arch

Up to 6 types can be entered in order of relative decreasing importance.

• STRUCTURAL HEIGHT OF DAM, CREST LENGTH, STORAGE CAPACITY, SPILLWAY DISCHARGE, SPILLWAY TYPE (45 characters, values separated by commas)

Contains:

- (1) Structural height of the dam, to the nearest foot; defined as the overall vertical distance from the lowest point of the foundation surface to the top of the dam.
- (2) Crest length of the dam, to the nearest foot; defined as the total horizontal distance measured along the axis at the elevation of the top of the dam between abutments or ends of the dam. Note that this includes spillway width, powerhouse sections, and navigation locks where they form a continuous part of the dam water-retaining structure. Detached spillways, locks, and powerhouses are not included.

- (3) Acre-feet of storage for the maximum storage; defined as the total storage space in a reservoir below the maximum attainable water elevation, including any surcharge storage.
- (4) Number of cubic feet per second which the spillway is capable of discharging when the reservoir is at its maximum designed water surface elevation.
- (5) 1-character code that describes the type of spillway and is as follows:

C controlled

U uncontrolled

N none

OUTLET TYPE (45 characters)

Description of the outlets that exist.

• NUMBER OF LOCK CHAMBERS (1 integer)

1-digit number indicating the number of existing navigation locks for the project. Maximum number of locks is four (4). Entry of '9' indicates number is unknown.

• LOCK LENGTH (23 characters, values separated by commas)

Contains to the nearest foot the length of the navigation lock(s). As many as four (4) locks per structure are possible.

LOCK WIDTH (23 characters, values separated by commas)

Contains to the nearest foot the width of the navigation lock(s). As many as four (4) locks per structure are possible.

LOCK LIFT (23 characters, values separated by commas)

Contains to the nearest foot the mean lock lift for the normal operating conditions of the lock. Lock lift is defined as the difference in elevation between the upper and lower pools. As many as four (4) locks per structure are possible.

• CONCRETE DESCRIPTION OR COMMENTS (four 70-character lines)

Narrative describing what portions of structure are concrete, and any other necessary comments.

Output data are written to a saved tape in the following order and format:

Output Per District

District ID flag

'#' in column 1 followed by 3-character District code

Output Per Structure

45 characters Structure name 45 characters Project name 45 characters Lake name 45 characters River name 45 characters Downstream name 2 characters, space; 9 characters, State name; mile number; seismic zone; space; 1 character, space; 1 characdownstream hazard category; completer, space; 1 character, space; 4 tion date integers 35 characters, space; 35 characters Owner, operator Ten 1-character values separated by Purposes spaces Six 1-character values separated by Dam type; structural height, crest spaces for dam type; (followed by a length, storage capacity, spillway space); four 10-character values sepadischarge, spillway type rated by spaces for project description (followed by a space); one 1character value for spillway type 2 integers, space; twelve 5-character Number of lock chambers and lock values separated by spaces lengths, widths, and lifts Four lines, each containing a space Concrete description or comment in column 1 followed by a 45statements character value

The saved tape generated from the program execution is later used by program JCLCONT to list the data base in table form.

The data base is maintained by updating the contents of the individual District time-sharing files and rerunning programs MB and JCLCONT.

Program JCLCONT

Mode of Program: Batch

Source Program File: CONTROL

Input Description: Output tape from execution of program MB that contains formatted data describing the location, operation, and physical features of Corps of Engineers civil works structures.

<u>Program Description:</u> The program file is executed from time-sharing by giving the command

OLD ROSC45/JCLCONT, R

changing the input tape number to that of the saved tape from the execution of program MB, and giving the command 'JRN'. The program reads saved tape, reformats data into table form, writes tables to a saved tape, and directs output to the page printer. Data are read by the program in the same order and format as written by program MB. Division and District names are expanded from the 3-letter codes and written into tables. Category and purposes of structure, types of dam, and types of spillway are expanded from their 1-letter codes and written into tables. The following three output options are available:

- OPTION 1: A 1-page table for each structure that describes the location, operation, and physical features of the structure.
- OPTION 2: An alphabetical listing by structure name of all structures in the data base, each structure being allocated one line.
- OPTION 3: Summary tables based on the physical characteristics of the structure:

Table 1 Overall Summary by Division

Table 2 Summary Within Each Division

Table 3 Summary Within Each District

To select option(s), enter the number(s) of the option(s) selected in the 'OPT' data statement of source program file CONTROL. Options may be selected in any order. A '9' must be entered after the last option selected to terminate the program. The output for all options is written to a saved tape and to a temporary tape. The temporary tape is used to produce a listing of output from the page printer. An additional copy of output can be made by executing program JCLPCONT.

Program JCLPCONT

Mode of Program: Batch

Input Description: Output tape from execution of program JCLCONT that contains tables of formatted data describing the location, operation, and physical features of Corps of Engineers civil works structures.

Program Description: The program file is executed from time-sharing by giving the command

OLD ROSC45/JCLPCONT, R

changing the input tape number to that of the saved tape from the execution of program JCLCONT, and giving the command 'JRN'. The program reads saved tape and directs output to the page printer. The program reads a single line of data from the saved tape and writes data lines to a temporary tape using a 132-character format. When all data have been processed, the temporary tape is used to generate a listing of output from the page printer. The output data consist of three types and depend on the option(s) selected in execution of program MB. Output data types are as follows:

- OPTION 1: A 1-page table for each structure that describes the location, operation, and physical features of the structure.
- OPTION 2: An alphabetical listing by structure name of all structures in the data base, each structure being allocated one line.
- OPTION 3: Overall, Division, and District summary tables based on the physical characteristics of the structure.

Program SNAME

Mode of Program: Time-sharing

Input Description: Pairs of time-sharing files, one containing structure-description data and one containing damage and repair data.

<u>Program Description:</u> The program is an interactive time-sharing program in which the structure names are sorted in pairs, one from the structure-description data base and one from the damage and repair data base, for comparison with each other. Both structure names are written to an output file along with an error message when the two names are not identical. The output file can be listed at the terminal or dumped to the page printer using the 'XPRINT' or 'PRINT' time-sharing command.

An example run using the Buffalo and Alaska District files is shown below. Note that no errors were encountered.

Execution

*FRN ROSC45/SNAME*R

ENTER NAME OF DUTPUT FILE =80

ENTER NUMBER OF DISTRICTS TO BE SEARCHED(MAX. 35) ≠2

ENTER 3-LETTER CODE FOR EACH DISTRICT REQUEST =NCB NPA

FILE YONGB / ATTACHED
FILE YINGB / ATTACHED

FILE 1CNPA 1 ATTACHED FILE 11NPA 1 ATTACHED

Output

+LIST SD

(Continued)

NOB BLACK ROCK LOCK NOB BLACK ROCK LOCK

NCB MT MORRIS DAM NCB MT MORRIS DAM

NCB ONONDAGA DAM NCB ONONDAGA DAM

NOB

NPA BRADLEY DAM NPA BRADLEY DAM

NPA CHENA RIVER LAKES DAM NPA CHENA RIVER LAKES DAM

NPA SNETTISHAM DAM NPA SNETTISHAM DAM

NPA

Program ICHECK

Mode of Program: Time-sharing

Input Description: Time-sharing files, one per District, containing unformatted data codes that denote the observation, cause, location, and degree of damage and the material, technique, and performance of repair.

Program Description: The program is an interactive program that reads time-sharing files containing the damage and repair data base and checks for coding errors. The user requests a single District file for processing. Each line of the data file is read using a 70-character format. The first character of the line is decoded. If the first character is '#', the line of data is decoded into a 3-letter District code and a structure name. If the first character is '*', the line of data is decoded as a report identifier. If the first character is neither '#' nor '*', the line of data is processed as damage and repair codes. These codes are sorted according to the following categories of ranges of codes:

100-199	observed damage
200-299	causes of damage
300-399	location of damage
401-405	degree of damage
500-599	repair material
600-699	repair technique
701-705	performance of repair

The program checks for the following errors:

- (1) Incorrect 3-letter District code.
- (2) Undefined code which does not match any of the presently defined codes.
- (3) Two codes within a data line that fall within the same category range.

Messages for the above errors are printed to the time-sharing terminal as errors are encountered. The message for error (1) above includes the District code and structure name. The messages for errors (2) and (3) above include the District code, structure name report identifier, beginning range number for the category in which the error was encountered, and data line containing the error. The program continues processing lines of data until the end of the file is reached. At that time, another District can be attached and processed. This procedure can be repeated as many times as desired.

An example run using the Louisville District data file 'ORL' as input is shown below. Note that no errors were encountered.

+FRN ROSC45/ICHECK,R

ENTER 3-LETTER CODE FOR DISTRICT TO BE PROCESSED =ORL

NUMBER OF REPORTS REVIEWED = 117
NUMBER OF REPORTS NOT FOUND = 39
TOTAL NUMBER OF REPORTS = 156
DO YOU WISH TO PROCESS ANOTHER FILE?(Y OR N)
=N

Program DEFECTS

Mode of Program: Batch

Source Program File: R

Input Description: Time-sharing files, one per District, containing unformatted data codes that denote the observation, cause, location, and degree of damage and the material, technique, and performance of repair.

<u>Program Description:</u> The program is executed from time-sharing by giving the command

JRN ROSC45/DEFECTS, R

The program reads time-sharing files containing the damage and repair data base, interprets codes into alpha descriptions, writes tables of inspection reports and tables of sums of damage and repair codes to a saved tape, and directs output to the page printer. The data are processed alphabetically by Division, District, and structure. Each line of data is read using a 70-character format. The first character of the line is decoded. If the first character is '#', the line of data is decoded into a 3-letter District code and a structure name. If the first character is '*', the line of data is decoded as a report identifier. If the first character is neither '#' nor '*', the line of data is processed as damage and repair codes. The codes are sorted according to the following categories of ranges of codes:

100-199	observed damage
200-299	cause of damage
300-399	location of damage
401-405	degree of damage
500-599	repair material
600-699	repair technique
701-705	repair performance

A description of individual damage and repair numbers is presented in Appendix B.

The input data are processed to generate tables of alpha descriptions of inspection data and tables of sums of occurrences of codes. Alpha descriptions are listed by structure name and grouped according to report identifiers. A minimum of one page of alpha output per structure is generated. Sums of occurrences are listed for each structure, District, and Division and for the Corps as a whole. Two pages of output are generated for each: page 1 contains the sums of occurrences of damage codes; page 2 contains the sums of occurrences of repair codes. Codes with zero occurrence are omitted from output.

The output is written to a saved tape. The data are partitioned into three groups:

- (1) Alpha descriptions of inspection data.
- (2) Sums of occurrences of codes by structure.
- (3) Sums of occurrences of codes by District, Division, and Corps-wide.

The output data are also written to a temporary tape for producing a listing of output at the page printer. An additional page-print copy of output tables can be made by executing program PTAPE.

The data base is maintained by updating the contents of the individual District time-sharing files and rerunning program DEFECTS.

Program PTAPE

Mode of Program: Batch

<u>Input Description</u>: Output tape from execution of program DEFECTS that contains tables of inspection reports and tables of sums of damage and repair codes.

<u>Program Description:</u> The program file is executed from time-sharing by giving the command

OLD ROSC45/PTAPE, R

changing the input tape number to that of the saved tape from the execution of program DEFECTS, and giving the command 'JRN'.

The program reads saved tape and directs output to the page printer. The program reads a single line of data from the saved tape and writes the data line to a temporary tape using a 132-character format. When all the data have been processed, the temporary tape is used to generate a listing of output from the page printer.

Output data are partitioned into three groups:

- (1) Alpha descriptions of inspection data.
- (2) Sums of occurrences of codes by structure.
- (3) Sums of occurrences by District, Division, and Corps-wide.

Program SEARCH

Mode of Program: Time-sharing

Input Description: District time-sharing files containing unformatted data codes that denote the observation, cause, location, and degree of damage and the material, technique, and performance of repair.

Program Description: The program is an interactive program that reads time-sharing file(s) containing the damage and repair data base, searches for string(s) of code(s), and writes data for any matches found to a time-sharing output file. The user can request up to five searches of data per run. The user enters the desired code(s) for each search. A temporary output file is created for each search requested. The number of Districts to be searched is interactively entered, followed by a 3-letter District code for each District. To process all files in the data base, the user can enter the number '35' for the number of Districts to be searched.

Each line of data file is read using a 70-character format. The first character of the line is decoded. If the first character is '#', the line of data is decoded into a 3-letter District code and a structure name. If the first character is '*', the line of data is decoded as a report identifier. If the first character is neither '#' nor '*', the line of data is processed as damage and repair codes.

As each data line is read, the codes contained in the data line are checked to see if they match the search code(s). If a match is found, a 3-letter District code, structure name, report identifier, and the data line are written to the corresponding output file. The output file can be listed at the terminal or dumped to the printer through an 'XPRINT' or a 'PPRINT' time-sharing command.

An example run using Buffalo District file 'INCB' as input is shown below:

Input

LIST INCB

```
◆REPORT 3 NOV 78

◆NO DEFICIENCIES FOUND

⇒NOB DNONDAGA DAM

◆REPORT 1 DCT 67

126 337 402

121 337 402

120 337 402

◆REPORT 2 SEP 73

◆NO DEFICIENCIES FOUND
```

Execution

◆FRN ROSC45/SEARCH•R

ENTER NUMBER OF SEARCHES TO BE MADE (MAX 5) =1

ENTER CODE(S) FOR SEARCH #1 =337

FOR SEARCH #1

ENTER NAME OF OUTPUT FILE =S337

ENTER NUMBER OF DISTRICTS TO BE SEARCHED(MAX. 35) =1

ENTER 3-LETTER DISTRICT CODE FOR EACH REQUEST =NCB

FILE 'INCB / ATTACHED

NUMBER OF REPORTS REVIEWED = 4 NUMBER OF REPORTS NOT FOUND = 3 TOTAL NUMBER OF REPORTS = 6

RESULTS OF SEARCH #1 FOR CODES: 337
NUMBER OF MATCHED CODES = 5

DO YOU WISH TO PROCESS ANOTHER FILE?(Y OR N) =N

Output

```
*LIST $337
1
#NOB MT MORRIS DAM
◆REPORT 2 SEP 73
  190 337 402
                    Û
                         Ð
                               Ũ
                                    Ũ
   192 337 402
                         0
                    0
                               0
                                    Ü
⇔NCB OMONDAGA DAM
◆REPORT 1 OCT 67
  126
       337
             402
                    0
                          Ũ
                               0
                                    0
  121
        337
             402
                    Ū
                          0
                               Ũ
                                    Ũ
       337
                    Û
                          Ū
  120
             402
                               0
                                    0
1
```

RESULTS OF SEARCH #1 FOR CODES: 337 NUMBER OF MATCHED CODES = 5

A21

Program SEARCH2

Mode of Program: Time-sharing

Input Description: Time-sharing file from execution of program SEARCH, SEARCH2, or SEARCH3 containing data that denote the observation, cause, location, and degree of damage and the material, technique, and performance of repair.

Program Description: The program is an interactive program that reads time-sharing files output from execution of program SEARCH, SEARCH2, or SEARCH3; searches data for string(s) of code(s); and writes data for any matches found to a time-sharing output file. The user can request up to five searches of data per run. The user enters the desired codes for each search. A temporary file is created for each search requested.

Each line of the data file is read using a 70-character format. The first character of the line is decoded. If the first character of the line is '#', the line of data is decoded into a 3-letter District code and a structure name. If the first character is '*', the line of data is decoded as a report identifier. If the first character is neither '#' nor '*', the line of data is processed as damage and repair codes. The program ignores any line of damage and repair data in which a read error occurs or the first code number on the data line is less than 100. This procedure allows the program to skip comment and blank lines in the data file.

As each data line is read, the codes contained in the data line are checked to see if they match the search code(s). If a match is found, the associated 3-letter District code, structure name, report identifier, and data line are written to the corresponding temporary file. When all data have been processed, the temporary files are rewritten to a single permanent file. The permanent file can then be listed at the terminal or dumped to the printer through an 'XPRINT' or a 'PPRINT' time-sharing command.

An example run using data obtained from a previous search of Buffalo District file 'INCB' as input is shown below:

Input

+LIST S337

1

≎NCB MT MORRIS DAM ◆REPORT 2 SEP 73 190 337 402 0 0 0 0 192 337 402 0 0 0 0

(Continued)

```
#NCB DNDNDAGA DAM

*REPORT 1 OCT 67

126 337 402 0 0 0 0

121 337 402 0 0 0 0

120 337 402 0 0 0 0

1
```

Execution

◆FRN ROSC45/SEARCH2•R

ENTER NUMBER OF SEARCHES TO BE MADE(MAX 5) =1 ENTER CODE(S) FOR SEARCH #1 =121

ENTER NAME OF OUTPUT FILE =S337A

ENTER NAME OF INPUT FILE =\$337

FILE (\$337 / ATTACHED

RESULTS OF SEARCH #1 FOR CODES: 121
NUMBER OF MATCHED CODES = 1
NO. STR. W/MATCHED CODES = 1

DO YOU WISH TO LIST OUTPUT(Y OR N)

NUMBER OF REPORTS REVIEWED = 2 NUMBER OF REPORTS NOT FOUND = 0 TOTAL NUMBER OF REPORTS = 2

(Continued)

RESULTS OF SEARCH #1 FOR CODES: 121
NUMBER OF MATCHED CODES = 1
NO. STR. W/MATCHED CODES = 1

**NCB ONDNDAGA DAM
**REPORT 1 OCT 67
 121 337 402 0 0 0 0

DO YOU WISH TO PROCESS ANOTHER FILE?(Y OR N) \pm N

Program SEARCH3

Mode of Program: Time-sharing

<u>Input Description</u>: Time-sharing file from execution of program SEARCH, SEARCH2, or SEARCH3 containing data that denote the observation, cause, location, and degree of damage and the material, technique, and performance of repair.

Program Description: The program is an interactive program that reads time-sharing files output from execution of program SEARCH, SEARCH2, or SEARCH3; searches data for range(s) of code(s); and writes data for any matches found to a time-sharing output file. The user can request up to five searches of data per run. The user enters the desired ranges of codes for each search. A temporary file is created for each search requested.

Each line of data file is read using a 70-character format. The first character of the line is decoded. If the first character is '#', the line of data is decoded into a 3-letter District code and a structure name. If the first character is '*', the line of data is decoded as a report identifier. If the first character is neither '#' nor '*', the line of data is processed as damage and repair codes. The program ignores any line of damage and repair data in which a read error occurs or the first code number on the data line is less than 100. This procedure allows the program to skip comment and blank lines in the data file.

As each data line is read, the codes contained in the data line are checked to see if they match the search codes. If a match is found, the associated 3-letter District code, structure name, report identifier, and the data line are written to the corresponding temporary file. When all the data have been processed, the temporary files are rewritten to a single permanent file. The permanent file can be listed at the terminal or dumped to the printer through an 'XPRINT' or a 'PPRINT' time-sharing command.

An example run using data obtained from a previous search of Buffalo District file 'INCB' as input is shown below.

Input

LIST S337

1

#NCB MT MORRIS DAM •REPORT 2 SEP 73 190 337 402 0 0 0 0 192 337 402 0 0 0

(Continued)

```
**NCB ONONDAGA DAM

*REPORT 1 OCT 67

126 337 402 0 0 0 0

121 337 402 0 0 0 0

120 337 402 0 0 0 0

1
```

Execution

◆FRN ROSC45/SEARCH3•R

ENTER NUMBER OF SEARCHES TO BE MADE(MAX 5) =1
ENTER RANGES OF CODE(S) FOR SEARCH #1 =120 130

ENTER NAME OF DUTPUT FILE =S337B

ENTER NAME OF INPUT FILE =S337

FILE 18337 / ATTACHED

RESULTS OF SEARCH #1 FOR CODES: 120 - 130 NUMBER OF MATCHED CODES = 3 NO. STR. W/MATCHED CODES = 1

DO YOU WISH TO LIST OUTPUT(Y OR N) =Y

NUMBER OF REPORTS REVIEWED = 2 NUMBER OF REPORTS NOT FOUND = 0 TOTAL NUMBER OF REPORTS = 2

(Continued)

RESULTS OF SEARCH #1 FOR CODES: 120 - 130 NUMBER OF MATCHED CODES = 3 NO. STR. W/MATCHED CODES = 1

*NCB ONONDAGA DAM *REPORT 1 OCT 67

126	337	402	0	Ü	Û.	0
	337		0	0	Ü	Ū
120	337	402	0	0	Ü	Ũ

DO YOU WISH TO PROCESS ANOTHER FILE?(Y DR N)

APPENDIX B: LISTING
OF DAMAGE AND REPAIR CODES,
TYPICAL DATA SHEET,
AND DEFINITIONS OF
OBSERVED DEFICIENCIES

100. Observed Deficiencies

	100. Observ	red Defi	ciencies
	onstruction faults unspecified)	147. 148.	
111. 112. 113. 114. 115.	Bug holes Cold joints Exposed reinforcing steel Honeycombing Irregular surface	155. 156. 157. 158. 159.	Curling Faulting
120. C	racking (unspecified) Checking or crazing D-cracking	160. 161.	8
123. Diagonal 124. Hairline	Diagonal	171. 172.	Abrasion
126. 127. 128.	Map or pattern Random Transverse	_,	Joint sealant failure Seepage (unspecified)
129. 130.	Vertical Horizontal	181. 182. 183.	Discoloration or staining
140. D 141. 142.	isintegration (unspecified) Blistering Chalking	184. 185.	Incrustation
143. 144. 145.	Delamination Drummy area Dusting	190. 191. 192.	<u> </u>
146.	Peeling 200.	Causes	
(ccidental loading unspecified)	251.	<u> </u>
211. 212. 213.	Earthquake Impact Overloading	252. 260. 1	Under-designed Erosion (unspecified)

2

220. Chemical reactions (unspecified)

- 221. Acid attack
- 222. Aggressive water
- 223. Alkali-carbonate rock reaction
- Alkali-silica reaction 224.
- 225. Chemical attack (type unknown)
- 226. Sulfate attack
- 230. Construction faults
- 235. Maintenance faults
- 240. Corrosion

- 261. Abrasion
- 262. Cavitation
- 270. Settlement or movement
- Shrinkage (unspecified) 275.
 - 276. Drying
 - 277. Plastic
- 280. Temperature (unspecified)
 - Externally generated 281.
 - 282. Fire
 - 283. Internally generated
- 290. Weathering (unspecified)
 - 291. Freezing and thawing

300. Locations

310. B	ridges (unspecified)	345. N	avigation locks (unspecified)
311.	Decks	346.	Chamber walls, vertical surfaces
	Expansion joints	347.	· · · · · · · · · · · · · · · · · · ·
313.	•		surfaces
	Parapet walls	348.	Emptying and filling conduits
315.		349.	Floor
		350.	Galleries
320. Da	ams (unspecified)	351.	Gates
321.	Conduits	352.	Guard walls
322.	•		Guide walls
323.			Horizontal construction joints
324.		355.	Monolith joints
325.	*		Sill blocks
326.			Lock monoliths
327.			, (, , , , , ; ; , , 1)
328.	Horizontal construction	365. P	owerhouses (unspecified)
320.	joints	366.	Bridge crane
329.	Intake structures	367.	
330.	Monolith joints	368.	Exterior walls
331.	Piers or abutments	369.	Floors
332.	Sluices	370.	Horizontal construction joints
333.			Intake structure
334.	Spillway face	372.	Interior walls
335.	Stilling basin, baffles	373.	Roof
336.	Stilling basin, floor		Tailrace deck
337.	Stilling basin, walls	375.	Vertical construction joints
338.	Upstream face		Walls
339.	Spillway monolith	377.	Penstock
340.	Slope paving	378.	Galleries
341.	Outlet works (separate	390. C	thion
• ,	from spillway)	390.	
342.	Approach	391.	Esplanade
343.	End sill		Fish facilities
344.	Horizontal (top face)		Floodwalls
	-		Retaining walls
		395.	Dikes

400. Degree of Damage

- 401. Not specified
- 402. Light
- 403. Moderate
- 404. Severe
- 405. Threatens safety of structure

500. Repair Materials

- 500. Unspecified
- 510. Concrete (unspecified)
 - 511. Conventional (portland cement)
 - 512. Fiber reinforced (glass)
 - 513. Fiber reinforced (steel)
 - 514. Preplaced aggregate
 - 515. Polymer (PC)
 - 516. Polymer impregnated (PIC)
 - 517. Polymer portland cement (PPCC)
- 520. Epoxy
- 525. Grout (unspecified)
 - 526. Chemical
 - 527. Portland cement
 - 528. Epoxy
- 530. Joint sealants (unspecified)
 - 531. Field-molded mastic
 - 532. Field-molded thermoplastic (hot applied)
 - 533. Field-molded thermoplastic (cold applied)
 - 534. Field-molded thermosetting (chemical curing)
 - 535. Field-molded thermosetting (solvent release)
 - 536. Preformed compression seal
- 540. Mortar (unspecified)
 - 541. Epoxy
 - 542. Portland cement

- 545. Paint
- 550. Shotcrete (uspecified)
 - 551. Conventional (portland cement)
 - 552. Fiber reinforced (glass)
 - 553. Fiber reinforced (steel)
- 560. Steel (unspecified)
 - 561. Deformed reinforcing bars
 - 562. Mesh
 - 563. Plate
 - 564. Posttensioning strands or bars
 - 565. Rock anchors
 - 566. Magnesium oxide anodes
- 570. Surface sealants or coatings (unspecified)
 - 571. Acrylics
 - 572. Bituminous
 - 573. Linseed oil
 - 574. Neoprene
 - 575. Urethane
- 580. Waterstops (unspecified)
 - 581. Metal
 - 582. Preformed (PVC)
 - 583. Rubber
- 590. Asphalt

600. Repair Techniques

- 600. Unspecified
- 603. Brush-on
- 604. Cathodic protection
- 606. Conventional forming and placing
- 609. Drilling and plugging
- 612. Dry pack
- 615. Injection
- 618. Jacketing
- 621. Judicious neglect

- 624. Overlay
- 627. Polymer impregnation
- 630. Posttensioning
- 633. Precast elements
- 636. Preplaced aggregate concrete
- 639. Roll-on
- 642. Route and seal
- 645. Shotcrete (dry-mix)
- 648. Shotcrete (wet-mix)
- 651. Slabjacking
- 654. Spray-on
- 657. Stitching
- 658. Sawing for stress relief
- 660. Trowel-on
- 663. Underwater placement (preplaced aggregate)
- 666. Underwater placement (pump)
- 669. Underwater placement (tremie)

700. Repair Performance

- 701. Not specified
- 702. Good
- 703. Fair
- 704. Poor
- 705. Failed

Typical Inspection Data Sheet

A. 3-letter District code, structure name:

LMK Arkabutla Dam

B. Inspection report number, date:

* Report 2 Nov 74

C. Damage and repair codes:

Deficiency

			Degree of		Repair	
Observation	<u>Cause</u>	Location	_Damage	Material	Technique	Performance
180		330	403			
175		321	403	536	600	701
171	261	336	403	520	600	701
175		330	403			
175		334	404	536	600	701
180		343	402			

100. Observations (Definitions)

- 110. Construction faults (unspecified) Deficiencies resulting from improper construction practices.
 - 111. Bug holes Small regular or irregular cavities, usually not exceeding 15 mm in diameter, resulting from entrapment of air bubbles in the surface of formed concrete during placement and compaction.
 - 112. Cold joint A joint or discontinuity resulting from a delay in placement of sufficient time to preclude a union of the material in two successive lifts.
 - 113. Exposed reinforcing steel Improper positioning of reinforcing steel resulting in lack of concrete cover.
 - 114. Honeycomb Voids left in concrete due to failure of the mortar to effectively fill the spaces among coarse aggregate particles.
 - 115. Irregular surface Surface is not flat; does not lie within a plane.
- 120. Cracking (unspecified) Unplanned discontinuity resulting from restrained movement.
 - 121. Checking Development of shallow cracks at closely spaced but irregular intervals on the surface of mortar or concrete.
 - 122. D-cracking The progressive formation on a concrete surface of a series of fine cracks at rather close intervals, often of random patterns, but in slabs on grade paralleling edges, joints, and cracks and usually curving across slab corners.
 - 123. Diagonal An inclined crack caused by shear stress, usually at about 45 degrees to the neutral axis of a concrete member; or a crack in a slab, not parallel to lateral or longitudinal dimension.
 - 124. Hairline Small cracks of random pattern in an exposed concrete surface.
 - 125. Longitudinal Cracks that develop along the long axis of a member.
 - 126. Map/pattern Fine openings on concrete surfaces in the form of a pattern; resulting from a decrease in volume of the material near the surface, or increase in volume of the material below the surface, or both.
 - 127. Random Isolated cracks of varying direction.
 - 128. Transverse Cracks that develop at right angles to the long direction of the member.
 - 129. Vertical Cracks generally oriented in the vertical direction.
 - 130. Horizontal Cracks generally oriented in the horizontal direction.
- 140. Disintegration (unspecified) Deterioration into small fragments or particles due to any cause.
 - 141. Blistering The irregular raising of a thin layer at the surface of placed mortar or concrete during or soon after completion of the finishing operation, or in the case of pipe after spinning; also bulging of the finish plaster coat as it separates and draws away from the base coat.

- 142. Chalking Disintegration of coatings such as a cement paint, manifested by the presence of a loose powder evolved from the paint at, or just beneath, the surface.
- 143. Delamination A separation along a plane parallel to a surface as in the separation of a coating from a substrate or the layers of a coating from each other, or in the case of a concrete slab, a horizontal splitting, cracking, or separation of a slab in a plane roughly parallel to, and generally near, the upper surface; found most frequently in bridge decks and caused by the corrosion of reinforcing steel or freezing and thawing; similar to spalling, scaling, or peeling except that delamination affects large areas and can often only be detected by tapping.
- 144. Drummy area Unsound areas detected by tapping the concrete surface.
 Usually associated with subsurface delaminations.
- 145. Dusting The development of a powdered material at the surface of hardened concrete.
- 146. Peeling A process in which thin flakes of mortar are broken away from a concrete surface, such as by deterioration or by adherence of surface mortar to forms as forms are removed.
- 147. Scaling Local flaking or peeling away of the near-surface portion of hardened concrete or mortar; also of a layer from metal.

 Note: Light scaling of concrete does not expose coarse aggregate; medium scaling involves loss of surface mortar to 5 to 10 mm in depth and exposure of coarse aggregate; severe scaling involves loss of surface mortar to 5 to 10 mm in depth with some loss of mortar surrounding aggregate particles 10 to 20 mm in depth; very severe scaling involves loss of coarse aggregate particles as well as mortar generally to a depth greater than 20 mm.
- 148. Weathering Changes in color, texture, strength, chemical composition or other properties of a natural or artificial material due to the action of the weather.
- 155. Distortion/movement (unspecified) Rotation or movement of the element in any direction.
 - 156. Buckling Failure by lateral or torsional instability of a structural member, occurring with stresses below the yield or ultimate values.
 - 157. Curling The distortion of an originally essentially linear or planar member into a curved shape such as the warping of a slab due to creep or to differences in temperature or moisture content in the zones adjacent to its opposite faces.
 - 158. Faulting Differential vertical displacement of a slab or other member adjacent to a joint or crack.
 - 159. Settling The lowering in elevation of sections of pavement or structures due to their mass, the loads imposed on them, or shrinkage or displacement of the support.
 - 160. Tilting Movement of a structure in a given direction.
 - 161. Warping A deviation of a slab or wall surface from its original shape, usually caused by temperature or moisture differentials or both within the slab or wall.

- 170. Erosion (unspecified) Progressive disintegration of a solid by the abrasive or cavitation action of gases, fluids, or solids in motion.
 - 171. Abrasion Erosion resulting from waterborne gravel, rocks, and other debris being circulated over a concrete surface. Abrasion-erosion is readily recognized from the smooth, worn-appearing concrete surface.
 - 172. Cavitation Erosion resulting from the formation and subsequent collapse of vapor bubbles in a high velocity liquid stream. Repeated collapse of vapor bubbles on or near the surface of concrete result in a rough, pitted surface.
- 175. Joint sealant failure Poor performance resulting from improper joint design, greater joint movement than anticipated, improper selection of joint sealant, limited service life, or poor workmanship in construction and sealing of the joint.
- 180. Seepage (unspecified) Moisture movement through or around a structure due to any reason.
 - 181. Corrosion Disintegration or deterioration of concrete or reinforcement by electrolysis or by chemical attack.
 - 182. Discoloration/staining Departure of color from that which is normal or desired.
 - 183. Exudation A liquid or viscous gel-like material discharged through a pore, crack, or opening in the surface of concrete.
 - 184. Efflorescence A deposit of salts, usually white, formed on a surface, the substance having emerged in solution from within concrete or masonry and deposited by evaporation.
 - 185. Incrustation A crust or coating, generally hard, formed on the surface of concrete or masonry construction or on aggregate particles.
- 190. Spalling (unspecified) A fragment, usually in the shape of a flake, detached from a larger mass by a blow, by the action of weather, by pressure, or by expansion within the larger mass; a small spall involves a roughly circular depression not greater than 20 mm in depth nor 150 mm in any dimension; a large spall may be roughly circular or oval or, in some cases, elongated, more than 20 mm in depth, and 150 mm in greatest dimension.
 - 191. Pitting Development of relatively small cavities in a surface, due to phenomena such as corrosion or cavitation, or, in concrete, localized disintegration.
 - 192. Popout The breaking away of small portions of a concrete surface due to internal pressure which leaves a shallow, typically conical, depression.

APPENDIX C: TYPICAL CONCRETE DEFICIENCIES CLASSIFIED ACCORDING TO DEGREE OF DAMAGE

a. Light (inadequate concrete cover over reinforcing steel)

b. Moderate
(inadequate concrete cover over reinforcing steel)

Figure C1. Construction faults (sheet 1 of 2)

c. Severe
(inadequate concrete consolidation)

d. Threatens safety of structure (inadequate concrete cover over reinforcing steel)

Figure C1. Construction faults (sheet 2 of 2)

a. Light

b. Moderate

Figure C2. Concrete cracking (sheet 1 of 2)

c. Severe

d. Threatens safety of structure

Figure C2. Concrete cracking (sheet 2 of 2)

a. Light

b. Moderate

Figure C3. Concrete disintegration (sheet 1 of 2)

c. Severe

d. Threatens safety of structure

Figure C3. Concrete disintegration (sheet 2 of 2)

a. Light

b. Moderate

Figure C4. Distortion or movement (sheet 1 of 2)

c. Severe

d. Threatens safety of structure

Figure C4. Distortion or movement (sheet 2 of 2)

a. Light

b. Moderate

Figure C5. Concrete erosion (sheet 1 of 2)

c. Severe

Figure C5. Concrete erosion (sheet 2 of 2)

a. Light

b. Moderate

Figure C6. Joint sealant failures (sheet 1 of 2)

c. Severe

Figure C6. Joint sealant failures (sheet 2 of 2)

a. Light

b. Moderate

Figure C7. Seepage (sheet 1 of 2)

c. Severe

d. Threatens safety of structure

Figure C7. Seepage (sheet 2 of 2)

a. Light

b. Moderate

Figure C8. Concrete spalling (sheet 1 of 2)

c. Severe

d. Threatens safety of structure

Figure C8. Concrete spalling (sheet 2 of 2)

