MAT434: Theory of Mathematical Statistics Conditional Distributions [1]

Miraj Samarakkody

Tougaloo College

Updated: April 16, 2025

The Discrete Case

If X and Y are jointly distributed discrete random variables, the conditional probability that $X = x_i$ given that $Y = y_j$ is, if $p_Y(y_j) > 0$,

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{P_{XY}(x_i, y_j)}{p_Y(y_j)}$$

This probability is defined to be zero if $p_Y(y_i) = 0$.

Example

A fair coin is tossed three times: let X denote the number of heads on the first toss and Y the total number of heads.

	у			
x	0	1	2	3
0	$\frac{1}{8}$	2 8	$\frac{1}{8}$	0
1	0	1/8	$\frac{2}{8}$	$\frac{1}{8}$

Find the conditional frequency function of X given Y = 1.

Total Probability

The definition of the conditional frequency function can be reexpressed as

$$p_{XY}(x,y) = p_{X|Y}(x|y)p_Y(y)$$

Total Probability

The definition of the conditional frequency function can be reexpressed as

$$p_{XY}(x,y) = p_{X|Y}(x|y)p_Y(y)$$

Summing both sides over all values of y, we have an extreamly useful application of the law jof total probability:

$$p_X(x) = \sum_Y p_{X|Y}(x|y)p_Y(y)$$

Example B

Suppose that a particle counter is imperfect and independently detects each incoming particle with probability p. If the distribution of the number of incoming particles in a unit time is a Poisson distribution with parameter λ , what is the distribution of the number of counted particles?

The Continuous Case

Definition

References

John A. Rice.

Mathematical Statistics and Data Analysis.

Cengage Learning, 3rd edition, 2006.