1ère S : Dérivation - Cours 2 : Calculer la dérivée d'une fonction

www.cours-futes.com

Sébastien Harinck

a) Définition de la dérivation d'une fonction

- a) Définition de la dérivation d'une fonction
- b) Les 3 fonctions usuelles

- a) Définition de la dérivation d'une fonction
- b) Les 3 fonctions usuelles
- c) Les 5 règles de dérivation

Définition:

Définition:

Soit f une fonction définie sur un intervalle I.

Définition:

Soit f une fonction définie sur un intervalle I. Si f est dérivable $\forall x \in I$,

Définition:

Soit f une fonction définie sur un intervalle I. Si f est dérivable $\forall x \in I$, on dit que f est dérivable sur I.

Définition:

Soit f une fonction définie sur un intervalle I. Si f est dérivable $\forall x \in I$, on dit que f est dérivable sur I. La fonction dérivée de f est la fonction f' qui à tout x de I

Définition:

Soit f une fonction définie sur un intervalle I. Si f est dérivable $\forall x \in I$, on dit que f est dérivable sur I. La fonction dérivée de f est la fonction f' qui à tout x de l associe le nombre de f'(x).

Définition:

Soit f une fonction définie sur un intervalle I. Si f est dérivable $\forall x \in I$, on dit que f est dérivable sur I. La fonction dérivée de f est la fonction f' qui à tout x de I associe le nombre de f'(x).

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x =$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^0$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1)}$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} =$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = x^1$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) =$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) = 2$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) = 2 \times$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) = 2 \times x^{(2)}$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) = 2 \times x^{(2-1)} =$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) = 2 \times x^{(2-1)} = 2 \times x^1 =$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) = 2 \times x^{(2-1)} = 2 \times x^1 = 2x$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) = 2 \times x^{(2-1)} = 2 \times x^1 = 2x$$

e)
$$f(x) = x^7 \Rightarrow$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) = 2 \times x^{(2-1)} = 2 \times x^1 = 2x$$

e)
$$f(x) = x^7 \Rightarrow f'(x) =$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) = 2 \times x^{(2-1)} = 2 \times x^1 = 2x$$

e)
$$f(x) = x^7 \Rightarrow f'(x) = 7$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) = 2 \times x^{(2-1)} = 2 \times x^1 = 2x$$

e)
$$f(x) = x^7 \Rightarrow f'(x) = 7 \times$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) = 2 \times x^{(2-1)} = 2 \times x^1 = 2x$$

e)
$$f(x) = x^7 \Rightarrow f'(x) = 7 \times x^{(7-1)} =$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) = 2 \times x^{(2-1)} = 2 \times x^1 = 2x$$

e)
$$f(x) = x^7 \Rightarrow f'(x) = 7 \times x^{(7-1)} = 7 \times x^6 =$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) = 2 \times x^{(2-1)} = 2 \times x^1 = 2x$$

e)
$$f(x) = x^7 \Rightarrow f'(x) = 7 \times x^{(7-1)} = 7 \times x^6 = 7x^6$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) = 2 \times x^{(2-1)} = 2 \times x^1 = 2x$$

e)
$$f(x) = x^7 \Rightarrow f'(x) = 7 \times x^{(7-1)} = 7 \times x^6 = 7x^6$$

f)
$$f(x) = \sqrt{x} \Rightarrow$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) = 2 \times x^{(2-1)} = 2 \times x^1 = 2x$$

e)
$$f(x) = x^7 \Rightarrow f'(x) = 7 \times x^{(7-1)} = 7 \times x^6 = 7x^6$$

f)
$$f(x) = \sqrt{x} \Rightarrow f'(x) = \frac{1}{2\sqrt{x}}$$

Intervalle de dérivation	f(x)	f'(x)
\mathbb{R}	k(constante réelle)	0
\mathbb{R}	x ⁿ	$n \times x^{(n-1)}$
]0; +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$

a)
$$f(x) = 4 \Rightarrow f'(x) = 0$$

b)
$$f(x) = 493.9 \Rightarrow f'(x) = 0$$

c)
$$f(x) = x = x^1 \Rightarrow f'(x) = 1 \times x^{(1-1)} = 1 \times x^0 = 1 \times 1 = 1$$

d)
$$f(x) = x^2 \Rightarrow f'(x) = 2 \times x^{(2-1)} = 2 \times x^1 = 2x$$

e)
$$f(x) = x^7 \Rightarrow f'(x) = 7 \times x^{(7-1)} = 7 \times x^6 = 7x^6$$

f)
$$f(x) = \sqrt{x} \Rightarrow f'(x) = \frac{1}{2\sqrt{x}}$$

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
и	u'v - v'u
V	v^2
u ⁿ	$n \times u'u^{(n-1)}$

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
и	u'v-v'u
\overline{v}	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
и	u'v - v'u
V	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

1.
$$f(x) = x^2 + x$$
.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u>	$\underline{u'v-v'u}$
V	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

Exemples:

1. $f(x) = x^2 + x$. Dans notre cas, on remarque que f(x) est de la forme u + v.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u>	$\underline{u'v-v'u}$
V	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

Exemples:

1. $f(x) = x^2 + x$. Dans notre cas, on remarque que f(x) est de la forme u + v. Comme $(x^2)' = 2x$

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
и	$\underline{u'v-v'u}$
V	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

Exemples:

1. $f(x) = x^2 + x$. Dans notre cas, on remarque que f(x) est de la forme u + v. Comme $(x^2)' = 2x$ et (x)' = 1.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
и	u'v - v'u
<u></u>	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

Exemples:

1. $f(x) = x^2 + x$. Dans notre cas, on remarque que f(x) est de la forme u + v. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
и	u'v-v'u
$\frac{\overline{V}}{V}$	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

- 1. $f(x) = x^2 + x$. Dans notre cas, on remarque que f(x) est de la forme u + v. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- 2. $g(x) = 42\sqrt{x}$.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u>	$\underline{u'v-v'u}$
V	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

- 1. $f(x) = x^2 + x$. Dans notre cas, on remarque que f(x) est de la forme u + v. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- 2. $g(x) = 42\sqrt{x}$. Dans notre cas, on remarque que g(x) est de la forme λu

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u>	$\underline{u'v-v'u}$
V	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

- 1. $f(x) = x^2 + x$. Dans notre cas, on remarque que f(x) est de la forme u + v. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- 2. $g(x) = 42\sqrt{x}$. Dans notre cas, on remarque que g(x) est de la forme λu où $\lambda = 42$

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u>	u'v - v'u
V	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

- 1. $f(x) = x^2 + x$. Dans notre cas, on remarque que f(x) est de la forme u + v. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- 2. $g(x) = 42\sqrt{x}$. Dans notre cas, on remarque que g(x) est de la forme λu où $\lambda = 42$ et $u = \sqrt{x}$.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u>	$\underline{u'v-v'u}$
V	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

- 1. $f(x) = x^2 + x$. Dans notre cas, on remarque que f(x) est de la forme u + v. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- 2. $g(x) = 42\sqrt{x}$. Dans notre cas, on remarque que g(x) est de la forme λu où $\lambda = 42$ et $u = \sqrt{x}$. Comme $u' = (\sqrt{x})' =$

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u>	u'v - v'u
V	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

- 1. $f(x) = x^2 + x$. Dans notre cas, on remarque que f(x) est de la forme u + v. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- 2. $g(x) = 42\sqrt{x}$. Dans notre cas, on remarque que g(x) est de la forme λu où $\lambda = 42$ et $u = \sqrt{x}$. Comme $u' = (\sqrt{x})' = \frac{1}{2\sqrt{x}}$,

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u>	u'v - v'u
\overline{V}	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

- 1. $f(x) = x^2 + x$. Dans notre cas, on remarque que f(x) est de la forme u + v. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- 2. $g(x)=42\sqrt{x}$. Dans notre cas, on remarque que g(x) est de la forme λu où $\lambda=42$ et $u=\sqrt{x}$. Comme $u'=(\sqrt{x})'=\frac{1}{2\sqrt{x}}$, on en déduit que g'(x)=

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u>	u'v - v'u
\overline{V}	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

- 1. $f(x) = x^2 + x$. Dans notre cas, on remarque que f(x) est de la forme u + v. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- 2. $g(x)=42\sqrt{x}$. Dans notre cas, on remarque que g(x) est de la forme λu où $\lambda=42$ et $u=\sqrt{x}$. Comme $u'=(\sqrt{x})'=\frac{1}{2\sqrt{x}}$, on en déduit que g'(x)=42

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u>	u'v - v'u
V	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

- 1. $f(x) = x^2 + x$. Dans notre cas, on remarque que f(x) est de la forme u + v. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- 2. $g(x)=42\sqrt{x}$. Dans notre cas, on remarque que g(x) est de la forme λu où $\lambda=42$ et $u=\sqrt{x}$. Comme $u'=(\sqrt{x})'=\frac{1}{2\sqrt{x}}$, on en déduit que $g'(x)=42\times$

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u>	$\underline{u'v-v'u}$
V	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

- 1. $f(x) = x^2 + x$. Dans notre cas, on remarque que f(x) est de la forme u + v. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- 2. $g(x)=42\sqrt{x}$. Dans notre cas, on remarque que g(x) est de la forme λu où $\lambda=42$ et $u=\sqrt{x}$. Comme $u'=(\sqrt{x})'=\frac{1}{2\sqrt{x}}$, on en déduit que $g'(x)=42\times\frac{1}{2\sqrt{x}}$

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u>	$\underline{u'v-v'u}$
V	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

- 1. $f(x) = x^2 + x$. Dans notre cas, on remarque que f(x) est de la forme u + v. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- 2. $g(x) = 42\sqrt{x}$. Dans notre cas, on remarque que g(x) est de la forme λu où $\lambda = 42$ et $u = \sqrt{x}$. Comme $u' = (\sqrt{x})' = \frac{1}{2\sqrt{x}}$, on en déduit que $g'(x) = 42 \times \frac{1}{2\sqrt{x}} = \frac{42}{2\sqrt{x}} = \frac{24}{\sqrt{x}}$

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u>	$\underline{u'v-v'u}$
V	v^2
u ⁿ	$n \times u'u^{(n-1)}$

Soit u et v deux fonctions.

- 1. $f(x) = x^2 + x$. Dans notre cas, on remarque que f(x) est de la forme u + v. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- 2. $g(x) = 42\sqrt{x}$. Dans notre cas, on remarque que g(x) est de la forme λu où $\lambda = 42$ et $u = \sqrt{x}$. Comme $u' = (\sqrt{x})' = \frac{1}{2\sqrt{x}}$, on en déduit que $g'(x) = 42 \times \frac{1}{2\sqrt{x}} = \frac{42}{2\sqrt{x}} = \frac{24}{\sqrt{x}}$

Exemple avec (uv)' = u'v + v'u

Exemple avec (uv)' = u'v + v'u

Dériver h(x) $h(x) = x^3 \sqrt{x}$.

Exemple avec
$$(uv)' = u'v + v'u$$

Dériver h(x)

 $h(x) = x^3 \sqrt{x}$. Il s'agit d'une fonction de la forme uv

Exemple avec (uv)' = u'v + v'u

Dériver h(x)

 $h(x) = x^3 \sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions

Exemple avec (uv)' = u'v + v'u

Dériver h(x)

 $h(x) = x^3 \sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x) = x^3$

Dériver h(x)

 $h(x) = x^3 \sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x) = x^3$ et $v(x) = \sqrt{x}$.

Dériver h(x)

 $h(x) = x^3 \sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x) = x^3$ et $v(x) = \sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u.

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

- 1. $u'(x) = 3 \times x^{(3-1)} = 3x^2$
- $2. \ v'(x) = \frac{1}{2\sqrt{x}}$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

- 1. $u'(x) = 3 \times x^{(3-1)} = 3x^2$
- $2. \ v'(x) = \frac{1}{2\sqrt{x}}$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u =$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u = 3x^2$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u = 3x^2 \times$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u = 3x^2 \times \sqrt{x}$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u = 3x^2 \times \sqrt{x} +$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u = 3x^2 \times \sqrt{x} + \frac{1}{2\sqrt{x}}$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u = 3x^2 \times \sqrt{x} + \frac{1}{2\sqrt{x}} \times$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u = 3x^2 \times \sqrt{x} + \frac{1}{2\sqrt{x}} \times x^3$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u = 3x^2 \times \sqrt{x} + \frac{1}{2\sqrt{x}} \times x^3$$

 $g'(x) = 3x^2\sqrt{x} + \frac{x^3}{2\sqrt{x}}$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u = 3x^2 \times \sqrt{x} + \frac{1}{2\sqrt{x}} \times x^3$$

$$g'(x) = 3x^2\sqrt{x} + \frac{x^3}{2\sqrt{x}}$$

$$g'(x) = \frac{3x^2\sqrt{x}}{x^2}$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u = 3x^2 \times \sqrt{x} + \frac{1}{2\sqrt{x}} \times x^3$$

$$g'(x) = 3x^2\sqrt{x} + \frac{x^3}{2\sqrt{x}}$$

$$g'(x) = 3x^2\sqrt{x} \times 2\sqrt{x}$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u = 3x^2 \times \sqrt{x} + \frac{1}{2\sqrt{x}} \times x^3$$
$$g'(x) = 3x^2\sqrt{x} + \frac{x^3}{2\sqrt{x}}$$
$$g'(x) = \frac{3x^2\sqrt{x} \times 2\sqrt{x}}{2\sqrt{x}}$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u = 3x^{2} \times \sqrt{x} + \frac{1}{2\sqrt{x}} \times x^{3}$$

$$g'(x) = 3x^{2}\sqrt{x} + \frac{x^{3}}{2\sqrt{x}}$$

$$g'(x) = \frac{3x^{2}\sqrt{x} \times 2\sqrt{x}}{2\sqrt{x}} + \frac{x^{3}}{2\sqrt{x}}$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u = 3x^{2} \times \sqrt{x} + \frac{1}{2\sqrt{x}} \times x^{3}$$

$$g'(x) = 3x^{2}\sqrt{x} + \frac{x^{3}}{2\sqrt{x}}$$

$$g'(x) = \frac{3x^{2}\sqrt{x} \times 2\sqrt{x}}{2\sqrt{x}} + \frac{x^{3}}{2\sqrt{x}}$$

$$g'(x) = \frac{6x^{3} + x^{3}}{2\sqrt{x}} =$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

1.
$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

2.
$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u = 3x^{2} \times \sqrt{x} + \frac{1}{2\sqrt{x}} \times x^{3}$$

$$g'(x) = 3x^{2}\sqrt{x} + \frac{x^{3}}{2\sqrt{x}}$$

$$g'(x) = \frac{3x^{2}\sqrt{x} \times 2\sqrt{x}}{2\sqrt{x}} + \frac{x^{3}}{2\sqrt{x}}$$

$$g'(x) = \frac{6x^{3} + x^{3}}{2\sqrt{x}} = \frac{7x^{3}}{2\sqrt{x}}$$

Dériver i(x)

$$i(x) = \frac{x^2 + x}{3x}.$$

Dériver i(x)

$$i(x) = \frac{x^2 + x}{3x}$$
. Il s'agit d'une fonction de la forme $\frac{u}{v}$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x.

Dériver i(x)

Dériver i(x)

Dériver i(x)

1.
$$u'(x) = 2x + 1$$

Dériver i(x)

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

Dériver i(x)

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) =$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) = \frac{u'v - v'u}{v^2} =$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) = \frac{u'v - v'u}{v^2} = {(2x+1)}$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) = \frac{u'v - v'u}{v^2} = {(2x+1)} \times$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) = \frac{u'v - v'u}{v^2} = {(2x+1) \times 3x}$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) = \frac{u'v - v'u}{v^2} = {(2x+1)\times 3x - 1 \over 1}$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) = \frac{u'v - v'u}{v^2} = {(2x+1) \times 3x - 3}$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) = \frac{u'v - v'u}{v^2} = {(2x+1) \times 3x - 3 \times }$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) = \frac{u'v - v'u}{v^2} = {(2x+1) \times 3x - 3 \times (x^2 + x)}$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1)\times 3x - 3\times (x^2 + x)}{(3x)^2}$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1)\times 3x - 3\times (x^2 + x)}{(3x)^2}$$

$$i'(x) =$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1) \times 3x - 3 \times (x^2 + x)}{(3x)^2}$$

 $i'(x) = {}^{6x^2}$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1)\times 3x - 3\times (x^2 + x)}{(3x)^2}$$

$$i'(x) = {}^{6x^2+3x}$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1)\times 3x - 3\times (x^2 + x)}{(3x)^2}$$

$$i'(x) = 6x^2 + 3x -$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1) \times 3x - 3 \times (x^2 + x)}{(3x)^2}$$

$$i'(x) = 6x^2 + 3x - 3x^2$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1)\times 3x - 3\times (x^2 + x)}{(3x)^2}$$

$$i'(x) = {}^{6x^2 + 3x - 3x^2 - 3x}$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- 1. u'(x) = 2x + 1
- 2. v'(x) = 3

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1) \times 3x - 3 \times (x^2 + x)}{(3x)^2}$$
$$i'(x) = \frac{6x^2 + 3x - 3x^2 - 3x}{(3x)^2}$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

1.
$$u'(x) = 2x + 1$$

2.
$$v'(x) = 3$$

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1) \times 3x - 3 \times (x^2 + x)}{(3x)^2}$$
$$i'(x) = \frac{6x^2 + 3x - 3x^2 - 3x}{(3x)^2}$$

$$i'(x) =$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

1.
$$u'(x) = 2x + 1$$

2.
$$v'(x) = 3$$

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1) \times 3x - 3 \times (x^2 + x)}{(3x)^2}$$
$$i'(x) = \frac{6x^2 + 3x - 3x^2 - 3x}{(3x)^2}$$
$$i'(x) = \frac{3x^2}{(3x)^2}$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

1.
$$u'(x) = 2x + 1$$

2.
$$v'(x) = 3$$

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1) \times 3x - 3 \times (x^2 + x)}{(3x)^2}$$

$$i'(x) = \frac{6x^2 + 3x - 3x^2 - 3x}{(3x)^2}$$

$$i'(x) = \frac{3x^2}{(3x)^2}$$

$$i'(x) =$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

1.
$$u'(x) = 2x + 1$$

2.
$$v'(x) = 3$$

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1) \times 3x - 3 \times (x^2 + x)}{(3x)^2}$$

$$i'(x) = \frac{6x^2 + 3x - 3x^2 - 3x}{(3x)^2}$$

$$i'(x) = \frac{3x^2}{(3x)^2}$$

$$i'(x) = \frac{3x^2}{0x^2}$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

1.
$$u'(x) = 2x + 1$$

2.
$$v'(x) = 3$$

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1) \times 3x - 3 \times (x^2 + x)}{(3x)^2}$$

$$i'(x) = \frac{6x^2 + 3x - 3x^2 - 3x}{(3x)^2}$$

$$i'(x) = \frac{3x^2}{(3x)^2}$$

$$i'(x) = \frac{3x^2}{9x^2}$$

$$i'(x) =$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

1.
$$u'(x) = 2x + 1$$

2.
$$v'(x) = 3$$

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1) \times 3x - 3 \times (x^2 + x)}{(3x)^2}$$

$$i'(x) = \frac{6x^2 + 3x - 3x^2 - 3x}{(3x)^2}$$

$$i'(x) = \frac{3x^2}{(3x)^2}$$

$$i'(x) = \frac{3x^2}{9x^2}$$

$$i'(x) = \frac{1}{3}$$