

Ing. Telec., CC.OO.: el receptor Tema que se va a presentar

BLOQUE	TÍTULO
Tema 0	Introducción a las Comunicaciones Ópticas
BLOQUE I	La transmisión de información por enlaces básicos de comunicación por fibra óptica
I.1	Generación de la portadora: fuentes de luz
I.2	Modulación de la portadora óptica con la información
I.3	Multiplexación de varias fuentes de información
I.4	Transmisión de información por la fibra óptica
I.5	La detección de la información: receptores ópticos
I.6	Componentes activos y pasivos

Ing. Telec., CC.OO.: el receptor Tema que se va a presentar

BLOQUE	I.5 La detección de la información: receptores ópticos					
Objetivos	 Se pretende que el alumno sea capaz de: Conocer los procesos de detección de luz y los tipos básicos de detectores. Identificar los parámetros relevantes de la conversión óptico-eléctrica. Entender el funcionamiento de los fotodiodos PIN y APD, siendo capaz de comparar ambos dispositivos. Asimilar los conceptos de límite cuántico y NEP. Establecer las ventajas y desventajas de los distintos tipos de preamplificadores. Aprender los mecanismos que provocan la aparición de ruido en el receptor y saber cuál limita la calidad de la señal según la configuración del sistema. Definir el concepto de sensibilidad y describir las causas de degradación. Interpretar las curvas potencia recibida-B.E.R. y similares 					
Duración	4 horas					
Programa	Tipos: detección directa y detección coherente Detectores ópticos Conceptos básicos Tipos: PIN; APD Ruido en fotodiodos Receptores ópticos Diseño del receptor (preamplificador, filtrado, recuperación reloj circuito de decisión) Ruido en el receptor Sensibilidad de receptores digitales Resumen Conclusiones					

- Introducción: tipos de detección
- Detectores ópticos
 - Conceptos básicos
 - Fotodiodos PIN y APD
 - Ruido en detectores
- Receptores ópticos
 - Otros componentes del receptor
 - Ruido en el receptor
 - Sensibilidad y relación con calidad, penalizaciones en potencia
- Resumen y conclusiones

- Introducción: tipos de detección
- Detectores ópticos
 - Conceptos básicos
 - Fotodiodos PIN y APD
 - Ruido en detectores
- Receptores ópticos
 - Otros componentes del receptor
 - Ruido en el receptor
 - Sensibilidad y relación con calidad, penalizaciones en potencia
- Resumen y conclusiones

Ing. Telec., CC.OO.: el receptor Introducción: detec. directa vs. detec. coherente

La función de los receptores ópticos es convertir las señales ópticas a señales eléctricas y recuperar la información transmitida a través de los sistemas comunicación óptica.

Dos tipos según estuviese codificada la información: coherente, incoherente (detección directa)

$e_0 + i(t)$ $e_0 + e(t) \cdot \cos(\omega(t) \cdot t + \phi(t))$ e/o $e^2(t) \circ \omega(t) \circ \phi(t)) \circ \phi(t)$ TX

Detección coherente

Ing. Telec., CC.OO.: el receptor Introducción: diagrama de bloques del receptor

Los receptores están formados por varios componentes, de los cuales el fundamental es el fotodetector que realiza la conversión óptico-eléctrica

Pueden incluir preamplificadores ópticos o no, pero prácticamente siempre incluyen un preamplificador eléctrico a la salida del PD puesto que las señales eléctricas obtenidas son débiles.

El resto de circuitos del receptor dependen de si el sistema emplea señales analógicas o

digitales

Los fotodetectores deberían tener las siguientes propiedades idealmente

- Alta sensibilidad
- Alta velocidad de respuesta
- Poco ruido
- Compacto, robusto
- Bajas tensiones o int. de polarización
- Respuesta lineal

- Introducción: tipos de detección
- Detectores ópticos
 - Conceptos básicos
 - Fotodiodos PIN y APD
 - Ruido en detectores
- Receptores ópticos
 - Otros componentes del receptor
 - Ruido en el receptor
 - Sensibilidad y relación con calidad, penalizaciones en potencia
- Resumen y conclusiones

Ing. Telec., CC.OO.: el receptor Conceptos básicos

La interacción entre fotones y materia (semiconductores) se explica con tres

mecanismos básicos

Absorción

- Un fotón incide en el material
- La energía del fotón es absorbida por el material, que queda en un estado de mayor energía
- Un electrón pasa de la banda de valencia a la de conducción

Emisión Espontánea

- Un electrón pasa de la BC a la BV, donde se recombina con un hueco
- El sistema pasa a un estado de menor energía
- Se genera un fotón (de fase y direcc. propagación arbitrarias)

Emisión Estimulada

- Un fotón incide en el material
- Un electrón pasa de la BC a la BV, donde se recombina con un hueco
- Se genera un fotón (de fase y direcc. propagación idénticas al incidente)

Ing. Telec., CC.OO.: el receptor Conceptos básicos

El primer paso en la detección es generar pares e-h en respuesta a la luz incidente. Se suelen usar materiales semiconductores

Absorción

- Un fotón incide en el material
- La energía del fotón es absorbida por el material, que queda en un estado de mayor energía
- Un electrón pasa de la banda de valencia a la de conducción

Para que se produzca la absorción debe cumplirse

$$E_g < h \nu = h \frac{c}{\lambda}$$

 $E_{\rm g} < h \, \nu = h \, \frac{c}{\lambda}$ Según la longitud de onda, esto lo cumplen unos materiales u otros.

Se expresa en forma del coeficiente de absorción, α

$$P_{abs} = (1 - e^{\alpha L})P_{in}$$

- 1^a ventana, Si
- 2^a,3^a ventana, InGaAs, InGaAsP

Ing. Telec., CC.OO.: el receptor Conceptos básicos, parámetros importantes en fotodetectores

Para conseguir estos valores de R altos, se necesitan estructuras especiales (PIN)

Eficiencia cuántica, η , relación entre la tasa de electrones generados y la tasa de fotones incidentes. $n_{el} = I_p / e$

 $\eta = \frac{n_{el}}{n_{fot}} = \frac{\bar{I}_p / e}{P_{in} / h v}$

Responsividad, \Re , (A/W), relación entre la intensidad eléctrica de salida y la potencia óptica de entrada $\Re = \frac{I_p}{P_{in}} = \frac{\eta e}{h \nu} \approx \frac{\eta \lambda}{1.24}$

Tiempo de subida, T_r , tiempo en el que la corriente va desde el 10% al 90% de su valor final, cuando la pot. ópt. cambia abruptamente $T_r = (\ln 9)(\tau_{tr} + \tau_{RC})$

 au_{tr} : tiempo que tarda un e en cruzar la zona de absorción

 au_{RC} : cte de tiempo del circuito RC equivalente Ancho de banda, Δf , $\Delta f = \left[2\pi(\tau_{tr} + \tau_{RC})\right]^{-1}$

 \Re aumenta con λ porque hay más fotones para la misma pot. óptica. Y cada fotón contribuye a la formación de pares e-h. Pero esto ocurre hasta el límite en que $h\nu = E_q$

Corriente de oscuridad, I_{d_i} corriente en ausencia de potencia óptica. Se origina por luz ambiental o por pares e-h generados térmicamente.

Nivel aceptable : I_d < 10 nA

4

Ing. Telec., CC.OO.: el receptor Conceptos básicos

El segundo paso en la detección es generar una corriente a partir de los pares e-h, sometiéndolos a un campo eléctrico. Para ello, unión P-N y mejor polarizada en

Para $\eta=1$, $R_f=0$ (capa de recubrimiento antirreflectante), $\alpha L \to \infty$, aumentar L al máximo. Evitar tiempo de difusión, que limita ancho de banda

- Introducción: tipos de detección
- Detectores ópticos
 - Conceptos básicos
 - Fotodiodos PIN y APD
 - Ruido en detectores
- Receptores ópticos
 - Otros componentes del receptor
 - Ruido en el receptor
 - Sensibilidad y relación con calidad, penalizaciones en potencia
- Resumen y conclusiones

Una manera simple de aumentar el ancho L de la región de vaciamiento, consiste en insertar una capa de material semiconductor no dopado (o levemente dopada)

(intrínseco) entre los materiales p y n

Fotodetector PIN

Con respecto a fotodiodo PN, mejora la eficiencia –responsividad- y la rapidez.

Valores típicos

η casi del 100%

Anchos de banda >10GHz

Respons. 0.5-0.8 A/W

Uso de doble heteroestr.: la capa (i) se ubica entre capas tipo-p y tipo-n de diferentes semiconductores, cuyo bandgap se escoge de manera que la luz sea absorbida solamente en la capa i.

M 10-400

Ing. Telec., CC.OO.: el receptor Fotodiodo APD

En los diodos de avalancha (APD) se busca aumentar la responsividad mediante el efecto de avalancha, basado en crear otra unión p-n polarizada fuertemente en inversa en la que hay un intenso campo eléctrico. Los portadores acelerados en esta zona adquieren una enorme energía cinética y son capaces de liberar nuevos pares e y h. De esta manera, un portador (e o h) primario genera múltiples portadores secundarios mediante la

multiplicación por avalancha **Fotodetector APD** p⁺ n+ Concentración carga Campo eléctrico Umbral avalancha Valores típicos zona de multipli-Anchos de banda > 10GHz cación Respons. 10-150 A/W

APD requiere menor potencia óptica para funcionar, pero cuatro veces mayor voltaje de alimentación (50-400V)

$$\mathfrak{R}_{APD} = \overline{M}\mathfrak{R} = \overline{M}\frac{e\,\eta}{hv}$$

El problema principal del APD estriba en que el mecanismo de generación de electrones es aleatorio, es decir, M, es una variable aleatoria, cuya media es \overline{M} (factor de multiplicación)

Ello genera ruido adicional al del pin y limita algo el ancho de banda

Ing. Telec., CC.OO.: el receptor Información comercial

	Material	Tipo	λ	ℛ ∕M	I _d (nA)	$\tau_{r}(ns)$	B/B·M (GHz)	V_{pol}
		pin		0,4-0,6	1-10	0,5-1	0,3-0,7	5
	Si	APD	400-1100	20-400	0,1-1	0,1-2	2-5	150-400
	-	pin		0,4-0,5	50-500	0,1-0,5	0,5-3	5-10
Ge	APD	800-1800	50-200	50-500	0,5-0,8	2-10	20-40	
	InC a An	pin	1100 1700	0,75-0,95	0,5-2	0,05-0,5	1-2	5
InGaAs	APD	1100-1700	10-40	10-50	0,1-0,5	20-250	20-30	

ERM 577

2.5 Gb/s High Gain Avalanche Photodiode Optical Receiver Modules

🔼 JDS Uniphase

PIN

Mini-DIL PINAMPs

PARAMETER	LPAD 0052 PARAMETER UNIT 52 Mb/s			52 Mb/s, 155 Mb/s 1 Gb/s Data Rates	
		Min	Тур	Max	
Data Rate	Mb/s		52		High responsivity and InGaAs pin Detector
Sensitivity	dBm	-41	-43		High sensitivity
Overload	dBm		0		Wide dynamic range
Gain					, ,
@1310nm	V/W		17K		Single Supply operation
Dark Current	nА			5	Hermetic package
Responsivity	A/W				Single ended or Differ
@1310nm			0.85		
@1550nm			0.95		Applications:
Output Impedance	Ω	30		60	 Long Haul transmis Short Haul transmis
Operating Tempature	°C	-40		+85	 DWDM transponde
Storage Tempature	°C	-40		+85	 SDH/SONET single
Supply Voltage	V	4.75		5.25	 Instrumentation & t Data Communication
* Differential					 Gigabit Ethernet

2 Mb/s, 155 Mb/s, 622 Mb/s and Gb/s Data Rates

ligh responsivity and low dark current nGaAs pin Detector ligh sensitivity

ingle Supply operation lermetic package ingle ended or Differential output

Applications:

- Long Haul transmission networks
- Short Haul transmission networks
- DWDM transponders SDH/SONET single mode applications Instrumentation & testing
- Data Communications
- Gigabit Ethernet

Specifications

Conditions (unless noted):

Temperature = 25 °C, λ = 1550 nm, $R_1 = 50\Omega$, $V_{ss} = -5.2V$

All specifications without connector.

Parameter	Measurement Conditions	Min	Тур	Max	Units
Sensitivity	2.5 Gb/s 1E-10 BER R _{APD} = 8.5 A/W		-34	-32	dBm
Small Signal Gain	Single-ended f = 1.2 GHz R _{APD} = 8.5 A/W	30	50		kV/W
Bandwidth	$R_{APD} = 2.5$ to 10 A/W	1.5	1.8		GHz
Overload	$R_{APD} = 2.5 \text{ A/W}$	-7.0	-3.0		dBm
Optical Back Reflection			-40	-30	dB
Output Impedance	Single-ended		50		Ω
Maximum Output Voltage	Single-ended Voltage (p-p)		550		mV (p-p)

- Introducción: tipos de detección
- Detectores ópticos
 - Conceptos básicos
 - Fotodiodos PIN y APD
 - Ruido en detectores
- Receptores ópticos
 - Otros componentes del receptor
 - Ruido en el receptor
 - Sensibilidad y relación con calidad, penalizaciones en potencia
- Resumen y conclusiones

Ing. Telec., CC.OO.: el receptor Ruido en el fotodetector

El *ruido shot* (también llamado de *ruido de disparo* o *ruido cuántico*) se debe a que la absorción y la emisión de fotones se genera en intervalos aleatorios, esto es, es un proceso aleatorio estacionario, lo que se traduce en un ruido de cuantificación. Este ruido referido a la fotocorriente que genera el fotodetector se denomina ruido *shot*.

El número de fotones, n, emitidos por la fuente durante T sigue una *distribución de Poisson*, de valor medio \overline{N}

$$p(n) = \frac{\overline{N}^n \exp(-\overline{N})}{n!}$$

Ing. Telec., CC.OO.: el receptor Ruido en el fotodetector

El *ruido shot* (también llamado de *ruido de disparo* o *ruido cuántico*) se debe a que la absorción y la emisión de fotones se genera en intervalos aleatorios, esto es, es un proceso aleatorio estacionario, lo que se traduce en un ruido de cuantificación. Este ruido referido a la fotocorriente que genera el fotodetector se denomina ruido *shot*.

Estas variaciones producen una intensidad a la salida del fotodector, $\Delta i_s(t)$, añadida al valor medio de la corriente detectada, $\bar{i}(t)$: $i(t) = \bar{i}(t) + \Delta i_s(t)$ siendo $\bar{i}(t) = \Re \overline{P}_{in}(t)$, R la responsividad, $\overline{P}_{in}(t)$ la potencia óptica media incidente

Este ruido *shot* tiene una densidad espectral constante, $S_S(f) = 2q\bar{i}(t)$, es decir, es un ruido blanco cuya varianza está dada por

$$\sigma_s^2 = \overline{(\Delta i_s(t))^2} = \int_0^\infty S_s(f) df = 2q\bar{i}(t)BW$$

siendo q la carga del electrón y BW el ancho de banda del receptor (debido fundamentalmente al preamplificador del front-end o filtros posteriores)

Ing. Telec., CC.OO.: el receptor Ruido en el fotodetector

El *ruido shot* no sólo se produce en la generación e-h debido a la señal sino en todo tipos de procesos de generación de portadores eléctricos

e-h debido a luz ambiente y a excitación térmica corriente de oscuridad La corriente de oscuridad también se puede expresar como un valor medio y una componente debida al ruido shot

$$i_d(t) = \overline{i}_d + \Delta i_{s,d}(t)$$
 $\sigma_{s,d}^2 = \overline{(\Delta i_{s,d}(t))^2} = 2q\overline{i}_d BW$

En el caso de APD, el factor de multiplicación M que experimenta la señal también lo sufre el ruido cuántico generado. Pero además la generación e-h debido al efecto avalancha es también un proceso aleatorio, por lo que se incluye un parámetro llamado factor de exceso de ruido, F=F(M)

$$i_{APD}(t) = M\bar{i}(t) + \Delta i_{s,APD}(t)$$

$$\sigma_{s,APD}^{2} = \overline{(\Delta i_{s,APD}(t))^{2}} = 2qM^{2}F(M)\bar{i}(t)BW$$

$$F(\overline{M}) \cong \overline{M}^x$$
, $x=0.3-0.5$ en Si-APD $F(M) = k_A M + (1-k_A)(2-1/M)^{x=0.7-1}$ en Ge-APD

 $k_{A} = 1$ k_{A

 k_A relación de coeficientes de ionización, depende del semicond. empleado $\frac{10}{10}$ APD gain M

Ing. Telec., CC.OO.: el receptor Ruido en el fotodetector

En resumen, la contribución debida al *ruido shot* o cuántico se expresa a la salida del fotodetector como sigue:

corriente eléctrica a la salida del fotodiodo

varianza de ruido shot (🌣 pot. ruido shot)

Fotodiodo PIN

$$i(t) = \bar{i}(t) + \Delta i_s(t)$$

$$\bar{i}(t) = \Re \overline{P}_{in}(t)$$

$$\sigma_s^2 = \overline{(\Delta i_s(t))^2}$$

$$\sigma_s^2 = 2q[\bar{i}(t) + \bar{i}_d]BW$$

Fotodiodo APD

$$i(t) = M \cdot \bar{i}(t) + \Delta i_s(t)$$

$$\bar{i}(t) = \Re \overline{P}_{in}(t)$$

$$\sigma_s^2 = \overline{\left(\Delta i_s(t)\right)^2}$$

$$\sigma_s^2 = 2q[\bar{i}(t) + \bar{i}_d]M^2 F(M)BW$$

- Introducción: tipos de detección
- Detectores ópticos
 - Conceptos básicos
 - Fotodiodos PIN y APD
 - Ruido en detectores
- Receptores ópticos
 - Otros componentes del receptor
 - Ruido en el receptor
 - Sensibilidad y relación con calidad, penalizaciones en potencia
- Resumen y conclusiones

Ing. Telec., CC.OO.: el receptor

Tipos: Detección directa

$$i_{OUT}(t) = \eta e \Phi = \frac{\eta e P}{h \nu} = \Re P(t)$$

 η = eficiencia cuántica

 Φ = flujo de fotones/s

e = carga electrón

 $\Re = responsividad$

v = frecuencia óptica

- Detección cuadrática
- Formato empleado en sistemas de comunicaciones ópticas comerciales

Ing. Telec., CC.OO.: el receptor Tipos: Detección coherente

Local oscillator

$$P(t)=P_s+P_{
m LO}+2\sqrt{P_sP_{
m LO}}\cos(\omega_{
m IF}t+\phi_s-\phi_{
m LO}),$$
 con $P_s=KA_s^2,~~P_{
m LO}=KA_{
m LO}^2,~~\omega_{
m IF}=\omega_0-\omega_{
m LO}.$

- La detección coherente permite aumentar el nivel de la señal detectada ⇒ receptor con más sensibilidad
- Pero los receptores coherentes son complejos: ajuste de frecuencia/fase/polarización entre señal y oscilador local
- La llegada de la amplificación óptica (EDFA) restó inicialmente interés a los sistemas coherentes, aunque en la actualidad se emplean para sistemas de alta velocidad.

Ing. Telec., CC.OO.: el receptor Diseño del receptor digital

Ref: [Arg@2], sección 4.3

Ing. Telec., CC.OO.: el receptor Diseño del receptor digital: Preamplificador

Alto BW Alto ruido térmico Baja sensibilidad

Alta impedancia (AI) (R_L ↑)

Bajo ruido térmico Reducido BW (necesidad de ecualización) Bajo rango dinámico

$$v_o \propto i_p \cdot R_L$$

$$RW = \frac{1}{1}$$

Ing. Telec., CC.OO.: el receptor Diseño del receptor digital: Preamplificador

Transimpedancia (R_L ~)

Mayor sensibilidad que Bl Mayor BW que Al

$$v_o \propto i_p \cdot R_L$$

$$BW = \frac{G}{2\pi R_L C_T}$$

Ing. Telec., CC.OO.: el receptor Diseño del receptor digital : Filtrado

Es necesario filtrar la señal recibida para limitar los efectos del ruido Existe un compromiso BW filtro: reducción de ruido frente BWmin señal (típicamente BWmin ~ 0.7 BR)

El filtrado debe generar formas de pulso con mínima ISI (coseno alzado)

- Introducción: tipos de detección
- Detectores ópticos
 - Conceptos básicos
 - Fotodiodos PIN y APD
 - Ruido en detectores
- Receptores ópticos
 - Otros componentes del receptor
 - Ruido en el receptor
 - Sensibilidad y relación con calidad, penalizaciones en potencia
- Resumen y conclusiones

Ing. Telec., CC.OO.: el receptor Ruido en el receptor: Ruido Shot

- El ruido shot es consecuencia de que la luz que incide en receptor está compuesta de fotones que llegan en instantes aleatorios.
- Emisión de fotones en fuente óptica = proceso aleatorio con estadística de Poisson (se suele aproximar por Gaussiano)
- Por tanto, la generación de corriente en fotodiodo también aleatoria.

Ing. Telec., CC.OO.: el receptor Ruido en el receptor: Ruido Térmico

Es debido a la fluctuación térmica de la corriente en la resistencia de carga del fotodiodo (= proceso aleatorio con estadística gaussiana). Entonces la corriente total aplicada a esta resistencia es:

$$I(t) = I_p + i_s(t) + i_T(t)$$

$$i_T(t)$$
 = ruido térmico

Densidad espectral ruido térmico es aproximadamente plana hasta $f \sim 1 \text{THz}$:

$$S_S(f) = 4k_BT/R_L$$
 con k_B = constante de Boltzmann = 1,381 x 10⁻²³ J /° K

Varianza de ruido (∞potencia) en ancho de banda BW:

$$\sigma_T^2 = \langle i_T^2(t) \rangle = \int_0^\infty S_T(f) df = \frac{4k_B T \cdot BW}{R_L}$$

Ing. Telec., CC.OO.: el receptor Ruido en el receptor: Ruido Térmico

Incremento de ruido térmico en preamplificador

Entonces la varianza de ruido térmico total queda:

$$\sigma_T^2 = \frac{4k_B T \cdot BW \cdot F_n}{R_L}$$

Ing. Telec., CC.OO.: el receptor Relación señal a ruido

Para la señal eléctrica detectada se define:

$$SNR = \frac{\text{potencia media de señal}}{\text{potencia de ruido}} = \frac{\overline{I}_{p}^{2}}{\left\langle i_{ruido}^{2}(t) \right\rangle} = \frac{\overline{I}_{p}^{2}}{\sigma_{ruido}^{2}} = \frac{\overline{I}_{p}^{2}}{\sigma_{S}^{2} + \sigma_{T}^{2}}$$

$$= \frac{\left(R \cdot M \cdot \overline{P}_{in} \right)^{2}}{2qM^{2}F_{A}(R \cdot \overline{P}_{in} + I_{d}) \cdot BW + \frac{4k_{B}T \cdot BW \cdot F_{n}}{R_{L}}}$$

Si limita el ruido térmico:

$$SNR = \frac{R_L (R \cdot M \cdot \overline{P}_{in})^2}{4k_B T \cdot BW \cdot F_n} \propto \overline{P}_{in}^2$$

Si limita el ruido Shot:

$$SNR = \frac{\left(R \cdot M \cdot \overline{P}_{in}\right)^{2}}{2qM^{2}F_{A}\left(R \cdot \overline{P}_{in} + I_{d}\right) \cdot BW} \propto \approx \overline{P}_{in}$$

Ing. Telec., CC.OO.: el receptor Relación señal a ruido

En la práctica:

Fotodiodo Pin ⇒ suele dominar r. térmico

$$SNR = \frac{R_L (R \cdot \overline{P}_{in})^2}{4k_B T \cdot BW \cdot F_n} \propto \overline{P}_{in}^2$$

Fotodiodo APD ⇒ se utilizan con baja potencia incidente en condiciones en las que suele dominar r. térmico

$$SNR = \frac{R_L (R \cdot M \cdot \overline{P}_{in})^2}{4k_B T \cdot BW \cdot F_n} \propto M^2 \cdot \overline{P}_{in}^2$$
 Mejora frente a PIN

Ing. Telec., CC.OO.: el receptor Ruido en el receptor: Ruido Térmico

Potencia equivalente de ruido térmico (NEP, Noise Equivalent Power)

- Es un parámetro utilizado en receptores para dar el dato de ruido térmico
- Se define como la potencia óptica por unidad de ancho de banda requerida para que la relación señal a ruido (SNR)=1 (térmico)
- Es decir, la potencia óptica que tiene que recibirse para que se detecte una señal eléctrica del mismo nivel que el ruido térmico

SNR =
$$\frac{\text{Potencia de señal detectada}}{\text{Potencia de ruido térmico}} = \frac{{I_p}^2}{\sigma_T^2} = \frac{{R_L}{R^2}{P_{in}}^2}{4k_BT \cdot BW \cdot F_n} = 1$$

$$NEP = \frac{P_{in}}{\sqrt{BW}} = \left(\frac{4k_BT \cdot F_n}{R_LR^2}\right)^{1/2}$$

Ing. Telec., CC.OO.: el receptor Efectos del Ruido en señales digitales

Ing. Telec., CC.OO.: el receptor Probabilidad de error en receptores digitales

$$BER = p(1)P(0/1) + p(0)P(1/0) = \frac{1}{2} [P(0/1) + P(1/0)]$$

- p(1) Probabilidad recibir "1"
- p(0) Probabilidad recibir "0"

Normalmente:p(1) = p(0) = 1/2

- P(0/1) Probabilidad decidir "0" cuando era "1"
- P(1/0) Probabilidad decidir "1" cuando era "0"

Ing. Telec., CC.OO.: el receptor Probabilidad de error (BER, *Bit Error Rate*)

$$BER = \frac{1}{2} [P(0/1) + P(1/0)]$$

Asumiendo que distribuciones de probabilidad para niveles del "0" y del "1" son gaussiana

$$P(0/1) = \frac{1}{\sigma_1 \sqrt{2\pi}} \int_{-\infty}^{I_D} \exp\left(-\frac{(I - I_1)^2}{2\sigma_1^2}\right) dI = \frac{1}{2} \operatorname{erfc}\left(\frac{I_1 - I_D}{\sigma_1 \sqrt{2}}\right)$$

$$P(1/0) = \frac{1}{\sigma_0 \sqrt{2\pi}} \int_{I_D}^{\infty} \exp\left(-\frac{(I - I_0)^2}{2\sigma_0^2}\right) dI = \frac{1}{2} \operatorname{erfc}\left(\frac{I_D - I_0}{\sigma_0 \sqrt{2}}\right) \quad \text{con: } \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp(-y^2) \, dy.$$

Entonces:

BER =
$$\frac{1}{4} \left[\operatorname{erfc} \left(\frac{I_1 - I_D}{\sigma_1 \sqrt{2}} \right) + \operatorname{erfc} \left(\frac{I_D - I_0}{\sigma_0 \sqrt{2}} \right) \right]$$

Eligiendo el umbral para minimizar BPR:= $\frac{\sigma_0 I_1 + \sigma_1 I_0}{\sigma_0 + \sigma_1}$

$$BER = \frac{1}{2} \operatorname{erfc} \left(\frac{Q}{\sqrt{2}} \right) \approx \frac{\exp(-Q^2/2)}{Q\sqrt{2\pi}}$$

con:
$$Q = \frac{I_1 - I_0}{\sigma_0 + \sigma_1}$$

con:
$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp(-y^2) dy$$

Ing. Telec., CC.OO.: el receptor Probabilidad de error: Parámetro Q

Para calcular la probabilidad de error en un cierto receptor cuando llega un cierto nivel de potencia:

$$Q = \frac{I_1 - I_0}{\sigma_0 + \sigma_1}$$

■ Ejemplo: asumiendo relación extinción en transmisor $(P_{"1"}/P_{"0"}) = \infty$:

$$\begin{cases} I_1 = 2MR\overline{P}_{rec} \\ I_0 = 0 \end{cases}$$

$$\begin{cases} \sigma_1^2 = \sigma_T^2 + \sigma_S^2 \\ \sigma_0^2 = \sigma_T^2 \end{cases}$$

$$\begin{cases} \sigma_T^2 = \frac{4k_BT \cdot BW \cdot F_n}{R_L} \\ \sigma_S^2 = 2qM^2F_A(R \cdot 2 \cdot \overline{P_{in}}) \cdot BW \end{cases}$$

$$BER = \frac{1}{2}\operatorname{erfc}\left(\frac{Q}{\sqrt{2}}\right) = \frac{1}{2}\operatorname{erfc}\left(\frac{1}{\sqrt{2}}\frac{I_1}{\sigma_0 + \sigma_1}\right) = \frac{1}{2}\operatorname{erfc}\left(\frac{1}{\sqrt{2}}\frac{2MR\overline{P}_{rec}}{\sqrt{\sigma_T^2 + \sigma_S^2} + \sigma_T}\right)$$

Ing. Telec., CC.OO.: el receptor Sensibilidad de receptores digitales

La s'ensibilidad de un receptor es la potencia óptica media mínima que es necesario recibir para tener una determinada probabilidad de error (BER) (tip. BER = 10^{-9})

$$BER = \frac{1}{2} \operatorname{erfc} \left(\frac{Q}{\sqrt{2}} \right)$$
 $BER = 10^{-9} \Rightarrow Q \approx 6$

$$Q = \frac{2MR\overline{P}_{rec}}{\sqrt{\sigma_T^2 + \sigma_S^2} + \sigma_T}$$

Sustituyendo en esta expresión y despejando P_{rec} :

$$\overline{P}_{rec} = \frac{Q}{R} \left(qF_A Q \cdot BW + \frac{\sigma_T}{M} \right)$$

■En PIN (ruido térmico predominante):
$$\overline{P}_{rec} \approx \frac{Q\sigma_T}{R} = \frac{Q}{R} \sqrt{\frac{4k_BT \cdot BW \cdot F_n}{R_L}}$$

Sensibilidad $\propto \sqrt{BW} \propto \sqrt{BR}$

■En APD:
$$\overline{P}_{rec} = \frac{Q}{R} \left(qF_AQ \cdot BW + \frac{\sigma_T}{M} \right)$$

Ing. Telec., CC.OO.: el receptor Sensibilidad: Comparación PIN vs. APD

Bit R	Rate Type		Sensitivity		
155	Mb/s	pinFET	-36 dBm		
622	Mb/s	pinFET	-32 dBm		
2.5	Gb/s	pinFET	-23 dBm		
2.5	Gb/s	APD	-34 dBm		
10	Gb/s	pinFET	-18 dBm		
10	Gb/s	APD	−24 dBm		
40	Gb/s	pinFET	−7 dBm		

Ing. Telec., CC.OO.: el receptor Sensibilidad: Comparación PIN vs. APD

Para la misma potencia óptica recibida

Ing. Telec., CC.OO.: el receptor Relación SNR y Q

En el caso de limitación por ruido térmico:

$$I_1 \qquad \sigma_1^2 \approx \sigma_T^2$$

$$I_0 = 0 \qquad \sigma_0^2 = \sigma_T^2$$

$$Q = \frac{I_1 - I_0}{\sigma_0 + \sigma_1} = \frac{I_1}{2\sigma_T} = \frac{1}{2}\sqrt{SNR}$$

$$\Rightarrow SNR = 4Q^2$$

• Ej: BER $10^{-9} \Rightarrow Q=6$ \Rightarrow SNR=144 (21.6dB)

Si predomina el shot:

$$Q = \frac{I_1 - I_0}{\sigma_0 + \sigma_1} = \frac{I_1}{\sigma_S} = \sqrt{SNR}$$
$$\Rightarrow SNR = Q^2$$

• Ej: BER
$$10^{-9} \Rightarrow Q=6$$

 \Rightarrow SNR=36 (15.6dB)

Ing. Telec., CC.OO.: el receptor Rango dinámico de un receptor óptico

Feedback Resistance Low Rf

High Rf (High Impedance Preamplifier) • E

(Transimpedance

Preamplifier

- El rango dinámico se define como la relación entre la máxima y la minima potenia para la cuál el BER permanece dentro de las especificaciones mínimas (tip. 10-9). (Se expresa en dB)
- El límite inferior lo marca la sensibilidad
- El límite superior lo determina las no linealidades y la compresión de ganancia

Optional Clock

Ing. Telec., CC.OO.: el receptor Estimación de calidad a partir del diagrama de ojo

Ing. Telec., CC.OO.: el receptor Datasheets

General	Min	Тур	Max	Unit
NRZ data rate		10		Gb/s
Operating case temperature	0		70	°C
Physical dimensions 30 x 19 x 13.6				mm
SM fibre pigtail connector options		Standard SC-PC, C	ustom ST-PC, FC	:-PC

Performance	Symbol	Min	Тур	Max	Unit
Module PIN bias voltage	$V_{\rm m}$	9.5	11.5	13.5	V
Positive supply	Vcc	7-5	8	8.5	V
Power dissipation	$P_{\rm d}$		1	1.6	W
PIN responsivity (1)	R		0.88		A/W
PIN responsivity (5)	R		0.83		A/W
Responsivity variation with temperature o°C to 70°C			5		%
Dark current (25°C)	I _d			10	nA
Optical connector loss			0.3		dВ
Sensitivity (2)		-18	-19		dBm
Optical saturation power (BER< 10-9)	P_{sat}	0			dBm
Average input equivalent noise current density 30KHz - 10GHz	l _e			16.5	pA/√Hz
High frequency -3dB corner (3)			11		GHz
Transimpedance gain (3,4)	TZG	400	500	650	Ohms
Trans. gain variation with supply voltage and temperature (3)		-15		+15	%
Output return loss (3) 100kHz - 8GHz		10			dВ

Notes:

- Excluding optical connector loss. Optical wavelength is in the 1300nm region and between 1525 - 1575nm.
- 2. For 10-30 BER, PRBS 223-1. NRZ @10Gb/s
- 3. Load impedance is 50Ω with a return loss > 20dB, up to 20GHz.
- 4. Excluding PIN responsivity factor and connector loss.
- 5. Excluding optical connector loss. Optical wavelength is in the range 1576 1610nm.

Ing. Telec., CC.OO.: el receptor

ERM 577

Avalanche Photodiode 2.5 Gb/s High Gain Optical Receiver Modules

Specifications

Conditions (unless noted):

Temperature = 25 °C, λ = 1550 nm, R_L = 50 Ω , V_{ss} = -5.2V

All specifications without connector.

Parameter	Measurement Conditions	Min	Тур	Max	Units	
Sensitivity	2.5 Gb/s		-34	-32	dBm	_
	1E-10 BER					
	$R_{APD} = 8.5 \text{ A/W}$					
Small Signal	Single-ended	30	50		kV/W	_
Gain	f = 1.2 GHz					
	$R_{APD} = 8.5 \text{ A/W}$					á
Bandwidth	$R_{APD} = 2.5$	1.5	1.8		GHz	
	to 10 A/W					1
Overload	$R_{APD} = 2.5 \text{ A/W}$	-7.0	-3.0		dBm	
Optical Back			-40	-30	dB	
Reflection						
Output Impedance	Single-ended		50		Ω	
Maximum Output	Single-ended		550		m۷	_
Voltage	Voltage (p-p)				(p-p)	

