

Big Data in the Cloud

State of the Union and Future Trends





Ashish Thusoo

Qubole CEO & Co-Founder

#### **About Me**

#### Alma Mater

- ➤ BA, Computer Science IIT (India Institute of Technology, Delhi)
- MS, Computer Science University of Wisconsin Madison

#### Background

- > Started career at Oracle
- Ran Data Infrastructure team at Facebook from 2007-2011:
  - Built out the Self-service Big Data Platform at Facebook for internal operations
  - Saw huge growth, while chartered to provide all teams unified analytics (Marketing, Analytics, Engineering, Sales Finance, etc.)
  - Spawned developments of big data engines such as Apache Hive and precursors of Presto DB
- Co-created and led Apache Hive project

#### Today - CEO & Co-founder of Qubole

- Cloud-Native Big Data Platform
  - Cloud and workload optimized Spark, Hive, Hadoop and Presto Engines
  - Processes more than an Exabyte of data per month on Cloud Infrastructure (AWS, GCP, Azure, Oracle)
  - Provides Automation and Self-Service for big data jobs (e.g. ETL, Machine Learning, Ad-hoc)





## **Changing Nature of Data**





## **Changing Nature of Analytics**

#### **Analytics Value Escalator**





Copyright 2017 © Qubole

00

## Breakdown of Data Warehouse – Emergence of Data Lake







#### Differences Between Data Lakes and Data Warehouses

| DATA LAKE                                                          | VS                    | DATA WAREHOUSE                          |
|--------------------------------------------------------------------|-----------------------|-----------------------------------------|
| Semi-structured / unstructured / structured / raw                  | DATA                  | Structured data                         |
| SQL / Machine Learning / ETL / Graph Analytics etc.                | ANALYTICS FLEXIBILITY | SQL                                     |
| Cheap storage for large volumes of data                            | VOLUME                | Expensive at large volumes of data      |
| High agility with ability to quickly reconfigure for new workloads | AGILITY               | Fixed configuration and limited agility |
| Data Engineers / Data Scientists /<br>Analysts                     | USERS                 | Analysts / Business Users               |



## Data Back Office with a Data Warehouse Centric Approach





#### Data Back Office Transformation with a Data Lake







# The five stages of Data Lake Maturity

01 02 03 04 05 Stage Stage Stage Stage Stage **Aspiration Experimentation Expansion** Inversion Nirvana - Production - Initial Big Data - Multiple - Enterprise - Digital **Transformation** Reporting/DW Deployment Departments Enterprise - Targeted Use - Researching - Multiple Engines - Bottoms up - Ubiquitous Case - Top Down Use Insights use cases Cases - True Business **Transformation** 



#### Data Lake's Reality Gap: Everyone wants self-service nirvana

65% Moving to Self-Service Model to Enable Data Professionals





#### Data Lake's Reality Gap: IT is confident they can get there

#### 87% Confident They Can Provide Self-Service Analytics





#### Data Lake's Reality Gap: Only 8% are there today

#### Only 8% Have Mature Big Data Processes

How do you assess your big data maturity?



00



#### A Prescription to Success - Move to the Cloud





#### **Adaptability**

- Best machine configuration for the workload
- Best Engine for the workload
- On demand and elastic; automatically scale up or down



# **Agility**

- Initial provisioning in min/hours, not months
- Change configurations dynamically
- Compute and Storage scale independently



#### Cost

- Pay only for what you actually use
- Use spot instances to reduce cost by up to 80%





## Changing Nature of the IT Infrastructure



00

#### **Cloud vs Data Centers**

 Infrastructure is an API – Therefore Infrastructure can adapt to the needs of the Application







#### Properties of Data Lakes

#### Data Lakes are



Bursty

e.g. at Qubole we see on an average the minimum to maximum size of infrastructure to vary by 3400%



Ever Expanding

e.g. data processed on Qubole as grown 2.5x in a year



Rapidly Evolving

e.g. Spark, Presto and others addressing gaps in technology

00



# Cloud-Native Big Data Platform – Separation of Compute and Storage

LEGACY DATA CENTER ARCHITECTURE



CLOUD INFRASTRUCTURE ARCHITECTURE





# Architecture – Putting Together Cloud Data Lakes





Copyright 2017 © Qubole

00

#### Cloud Data Lakes vs Data Center Data Lakes - Automation



# **Cluster Lifecycle Management**

Auto start/terminate Auto-scaling up/down



# **Performance Optimization**

Cluster rebalancing Performance/Caching



00



# **Cost Optimization**

Spot node usage Resource substitution



#### Cloud Data Lakes vs Data Center Data Lakes - TCO





#### Cloud Data Lakes vs Data Center Data Lakes – Concurrency and Elasticity





#### Bringing it Together

Using the Cloud for Big Data Platforms and Data Science Operations is *Fundamentally Different* from Operating Big Data Platforms On-Premise.

#### <u>Done Properly This Leads to</u>

- 1. Faster Time to Value
- 2. Increased Flexibility and Scale
- 3. Better Adoption of Analytics
- 4. Better TCO



Copyright 2017 © Qubole

00

# **Future Directions**

#### (Re)Emergence of Deep Learning

#### **BIG DATA & DEEP LEARNING**





#### **Deep Learning Applications**

Applications today focused in areas around

- Image Recognition and Processing
- Speech Recognition and Processing
- NLP and Text Analysis



#### **Emergence of New Use Cases and Technology**

#### Deep Learning Platforms are Emerging





00



# **Serverless Computing**

#### Server-based





#### **Physical Machines**

Unit of scale: Physical servers

- · Deploy in months
- Live for years



#### Virtual Machines

Unit of scale: Machine

- · Deploy in minutes
- · Live for week



#### Containerization

Unit of scale: Application

- Deploy in seconds
- · Live for minutes/hours



#### Serverless

Unit of scale: Functions

- Deploy in milliseconds
- · Live for seconds

Focus on business logic

Source: Deloitte Consulting LLP



# Advantages of Serverless

- Zero Administration
- Fast Bursting
- Cost Advantages





# **Contact Information**





