Task 1.2. Supervised Learning: Bayesian Linear Regressor

Garoe Dorta-Perez CM50246: Machine Learning and AI

December 10, 2014

1 Introduction

Simple linear regressors are overconfident in their predictions. Bayesian linear regressors are an extension of this model used to solve this particular issue.

2 The problem

In this model we want to compute a posterior distribution given a set of training samples, as shown in Equation 1. Where \mathbf{w} is a one dimensional array with the world state, \mathbf{X} is a matrix with the data points, ϕ are the parameters of a linear function of the data.

$$Pr(\phi|\mathbf{X}, \mathbf{w}) = \frac{Pr(\mathbf{w}|\mathbf{X}, \phi)Pr(\phi)}{Pr(\mathbf{w}|\mathbf{X})}$$
(1)

The prior in Equation 1 is a normal distribution with 0 mean and spherical covariance. And the likelihood is a multivariate normal distribution, as shown in Equation 3. Where σ^2 is the covariance, **I** is the identity matrix and $\boldsymbol{\theta} = \{\phi, \sigma^2\}$.

$$Pr(\mathbf{w}|\mathbf{X}, \boldsymbol{\theta}) = Norm_{\mathbf{w}} \left[\mathbf{X}^T \phi, \sigma^2 \mathbf{I} \right],$$
 (2)

The posterior distribution is:

$$Pr(\phi|\mathbf{X}, \mathbf{w}) = Norm_{\phi} \left[\frac{1}{\sigma^2} \mathbf{A}^{-1} \mathbf{X} \mathbf{w}, \mathbf{A}^{-1} \right],$$
 (3)

$$\mathbf{A} = \frac{1}{\sigma^2} \mathbf{X} \mathbf{X}^T + \frac{1}{\sigma_n^2} \mathbf{I},\tag{4}$$

3 Results

	$\sigma^2 = 10$	$\sigma^2 = 1$	$\sigma^2 = 0.01$	$\sigma^2 = 0.001$
Font1	The same of the sa			
Font2	The same of the sa			
Font3	The same of the sa			