MAGIC008: Lie Groups and Lie algebras

Problem Sheet 1: Basics of Differential Geometry and Topology

- 1. Using the Implicit Function Theorem, prove that $SL(n,\mathbb{R})$ carries the structure of a smooth manifold. What is its dimension?
- 2. Using the Implicit Function Theorem, prove that the subset M in $\mathbb{R}^4(x,y,u,v)$ given by

$$\left\{ \begin{array}{l} x^2 + y^2 + u^2 + v^2 = 1 \\ x^2 + y^2 - u^2 - v^2 = 0 \end{array} \right.$$

is a smooth manifold. Prove that M is diffeomorphic to the 2-torus T^2 .

- 3. Describe a smooth atlas for the 2-sphere S^2 which consists of two charts. Describe the corresponding transition functions.
- 4. Let θ and ϕ be standard spherical coordinates on the 2-sphere $S^2=\{x^2+y^2+z^2=1\}$. Recall, that θ,ϕ are defined by

$$x = \cos \phi \cos \theta$$
$$y = \sin \phi \cos \theta$$
$$z = \sin \theta$$

and can be considered as local coordinates on the whole S^2 except for the north and south poles. Let $P=\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0\right)\in S^2$ and $\xi=(1,-1,1)$. Check that ξ (as a vector from \mathbb{R}^3) is tangent to S^2 at P. Find the components of ξ in the spherical coordinates (ϕ,θ) .

5. Consider $GL(3,\mathbb{R})$ as a smooth manifold and $F=\det:GL(3,\mathbb{R})\to R$ as a smooth function on it. Compute the directional derivative of $F(X)=\det X$ at point $X_0=Id$ along the vector

$$\xi = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

(Here we naturally identify the tangent space to $GL(3,\mathbb{R})$ at the point $X_0=Id$ with the space of ALL 3×3 matrices.)

Prove the following general formula $\xi(\det) = \operatorname{tr} \xi$, where ξ is an arbitrary $n \times n$ matrix viewed as a tangent vector to $GL(n,\mathbb{R})$ at the identity.

6. Prove that the special orthogonal group SO(3) is diffeomorphic to the subset in \mathbb{R}^6 given by the following 3 equations: $x^2+y^2+z^2=1$, $u^2+v^2+w^2=1$, xu+yv+zw=0.