Resolution of PDE using domain decomposition methods on TeraFLOPic architectures

Pierre Jolivet

Laboratoire Jacques-Louis Lions*

December 6, 2011 Third workshop on FreeFem++

Work supervised by F. Nataf*, C. Prud'Homme[‡], F. Hecht*

Outline

- Introduction
- 2 Clusters
- Domain decomposition methods
 - One-level methods
 - Two-level methods
 - Numerical results
- 4 Conclusion

Context

We want to solve large systems arising from the finite element method.

Context

We want to solve large systems arising from the finite element method.

What are the different alternatives?

- parallel direct solvers (MUMPS, SuperLU ..),
- parallel iterative solvers (Hypre ..),
- domain decomposition methods,
- ...

Context

We want to solve large systems arising from the finite element method.

What are the different alternatives?

- parallel direct solvers (MUMPS, SuperLU ..),
- parallel iterative solvers (Hypre ..),
- domain decomposition methods,
- ...

 \implies high-performance algorithms on massively parallel distributed memory multiprocessor architectures.

Within FreeFem++

Since version 1.16, bundled with the Message Parsing Interface.

Within FreeFem++

Since version 1.16, bundled with the Message Parsing Interface.

C++ plus load function within FreeFem++:

⇒ OpenMP (shared memory architectures), C for CUDA (GPGPU).

Outline

- Introduction
- 2 Clusters
- 3 Domain decomposition methods
 - One-level methods
 - Two-level methods
 - Numerical results
- 4 Conclusion

FreeFem++ is working on the following parallel architectures (amongst others):

	N° of cores	Memory	Peak performance	Compilers
hpc1@LJLL	64@2.00 Ghz	252 Go	< 1 TFLOP/s	Intel
titane@CEA	12192*@2.93 Ghz	37 To	140 TFLOP/s	Intel
babel@IDRIS	40960@850 Mhz	20 To	139 TFLOP/s	IBM+GNU

^{* + 46080} CUDA cores

http://www-ccrt.cea.fr, Bruyères-le-Châtel, France.

http://www.idris.fr, Orsay, France.

Outline

- 1 Introduction
- 2 Clusters
- 3 Domain decomposition methods
 - One-level methods
 - Two-level methods
 - Numerical results
- 4 Conclusion

The original Schwarz method for a 2-way decomposition

Consider the following BVP in \mathbb{R}^d (d=2, 3):

$$\nabla \cdot \kappa \nabla u = F(u) \quad \text{in } \Omega$$
$$B(u) = 0 \quad \text{on } \partial \Omega$$

The original Schwarz method for a 2-way decomposition

Consider the following BVP in \mathbb{R}^d (d = 2, 3):

$$abla \cdot \kappa \nabla u = F(u) \quad \text{in } \Omega$$
 $B(u) = 0 \quad \text{on } \partial \Omega$

Then, solve in parallel:

$$\begin{array}{lll} \nabla \cdot \kappa \nabla u_1^{n+1} = F(u_1^{n+1}) & \text{in } \Omega_1 & \nabla \cdot \kappa \nabla u_2^{n+1} = F(u_2^{n+1}) & \text{in } \Omega_2 \\ B(u_1^{n+1}) = 0 & \text{on } \partial \Omega_1 \cap \partial \Omega & B(u_2^{n+1}) = 0 & \text{on } \partial \Omega_2 \cap \partial \Omega \\ u_1^{n+1} = u_2^n & \text{on } \partial \Omega_1 \cap \overline{\Omega_2} & u_2^{n+1} = u_1^n & \text{on } \partial \Omega_2 \cap \overline{\Omega_1} \end{array}$$

The original Schwarz method for a 2-way decomposition

Consider the following BVP in \mathbb{R}^d (d = 2, 3):

$$abla \cdot \kappa \nabla u = F(u) \quad \text{in } \Omega$$
 $B(u) = 0 \quad \text{on } \partial \Omega$

Then, solve in parallel:

$$\nabla \cdot \kappa \nabla u_1^{n+1} = F(u_1^{n+1}) \quad \text{in } \Omega_1 \qquad \qquad \nabla \cdot \kappa \nabla u_2^{n+1} = F(u_2^{n+1}) \quad \text{in } \Omega_2$$

$$B(u_1^{n+1}) = 0 \qquad \text{on } \partial \Omega_1 \cap \partial \Omega \qquad \qquad B(u_2^{n+1}) = 0 \qquad \text{on } \partial \Omega_2 \cap \partial \Omega$$

$$u_1^{n+1} = u_2^n \qquad \text{on } \partial \Omega_1 \cap \overline{\Omega_2} \qquad \qquad u_2^{n+1} = u_1^n \qquad \text{on } \partial \Omega_2 \cap \overline{\Omega_1}$$

① Decomposition of Ω into N overlapping domains $(\Omega_i)_{1 \leq i \leq N}$,

• Decomposition of Ω into N overlapping domains $(\Omega_i)_{1 \leqslant i \leqslant N}$, \Longrightarrow the original Schwarz method is not a *scalable* algorithm.

• Decomposition of Ω into N overlapping domains $(\Omega_i)_{1 \leqslant i \leqslant N}$, \Longrightarrow the original Schwarz method is not a *scalable* algorithm.

f e Highly heterogeneous coefficient κ in the BVP,

• Decomposition of Ω into N overlapping domains $(\Omega_i)_{1 \leqslant i \leqslant N}$, \Longrightarrow the original Schwarz method is not a *scalable* algorithm.

ullet Highly heterogeneous coefficient κ in the BVP, \Longrightarrow long plateaux in the convergence of the algorithm.

How to deal with those problems

We introduce a *second* level (a coarse operator), denoted E.

How to deal with those problems

We introduce a *second* level (a coarse operator), denoted *E*.

Construction of E

- build a coarse mesh $\mathcal{T}_{\text{coarse}}$, then a new fespace and a new varf on $\mathcal{T}_{\text{coarse}}$ (available under examples++-mpi/MPIGMRES*D.edp).
- ② use the low-frequency modes of the *Dirichlet-to-Neumann* operator of the BVP at the interface of each neighboring domains (Nataf *et al.*, 2011).

How to deal with those problems

We introduce a *second* level (a coarse operator), denoted *E*.

Construction of E

- build a coarse mesh $\mathcal{T}_{\text{coarse}}$, then a new fespace and a new varf on $\mathcal{T}_{\text{coarse}}$ (available under examples++-mpi/MPIGMRES*D.edp).
- ② use the low-frequency modes of the *Dirichlet-to-Neumann* operator of the BVP at the interface of each neighboring domains (Nataf *et al.*, 2011).

Two-level methods

- solve the global coarse problem Ex = b on one node,
- ② use the solution of the coarse problem on each local fine problem.

This is used to precondition a Krylov method (CG, GMRES) (Tang et al., 2009).

Test case in \mathbb{R}^2

with a *skyscrapper* viscosity $\kappa(x, y)$:

Convergence curves

Some more 2D results

2D test case running on various number of processors using \mathbb{P}_1 FE ($\varepsilon=10^{-10}$)

And some 3D results

3D test case running on various number of processors using \mathbb{P}_2 FE ($\varepsilon=10^{-8}$)

Outline

- Introduction
- Clusters
- Omain decomposition methods
 - One-level methods
 - Two-level methods
 - Numerical results
- 4 Conclusion

Final words

Concerning FreeFem++:

- efficient parallel algorithms (memory and CPU overhead with the FreeFem++ - MPI bindings),
- ont very user-friendly interface at the moment (for DDM),
- onice research tools (coarse operators, preconditionners ..).

Final words

Concerning FreeFem++:

- efficient parallel algorithms (memory and CPU overhead with the FreeFem++ - MPI bindings),
- ont very user-friendly interface at the moment (for DDM),
- onice research tools (coarse operators, preconditionners ..).

Concerning domain decomposition methods:

- add another level,
- 4 do parallel computations on more complex systems (e.g. elasticity).

Introduction Clusters Domain decomposition methods Conclusion

Thanks for your attention.

Nataf, F., Xiang, H., Dolean, V., & Spillane, N. 2011.

A coarse space construction based on local Dirichlet to Neumann maps, to appear.

SIAM Journal on Scientific Computing.

TANG, J.M., NABBEN, R., VUIK, C., & ERLANGGA, Y.A. 2009.

Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods.

Journal of Scientific Computing, **39**(3), 340–370.