Knowledge Representation and Reasoning – Mod. 2

Exercise Sheet 1: RDF

Gian Carlo Milanese IKR3 Lab – University of Milano-Bicocca

15 March 2022

Exercise 1: RDF Triples

Notation

Until we see the Turtle syntax in more detail, we may write IRIs, blank nodes and literals as follows:

- IRIs are delimited by angle brackets, -e.g., - or can be abbreviated using a prefix from a known vocabulary e.g., foaf:Person. Common prefixes are:
 - foaf for <http://xmlns.com/foaf/0.1/>
 - rdf for http://www.w3.org/1999/02/22-rdf-syntax-ns#
 - ex for <http://example.org/>
 - xsd for <a type IRIs such as xsd:string
 and xsd:integer)</pre>
- Literals are double-quoted strings paired with a datatype IRI or a language tag, e.g.:
 - "Bob"^^xsd:string for the literal with lexical form Bob and datatype IRI xsd:string.
 - "Roma"@it for the literal with lexical form Roma, datatype IRI rdf:langString and language tag @it
- Blank nodes are prefixed with an underscore and colon, e.g., $_:X, _:y, _:person$.

Exercises:

- 1. Which of the triples from Fig. 1 are valid? If a triple is not valid, explain why.
- 2. Write down the triples and draw the graph corresponding to the following description.
 - Bob is a person, whose name is "Robert" and surname is "Taylor".
 - Bob knows Alice. Alice's full name is "Alice Gorlami", she is 55 years old, she was born in Milan, and she is 176.5 cm tall.
 - Alice knows some person that knows Bob.

You may use the FOAF and RDF vocabularies for some properties, or use https://example.org/ to introduce your own IRIs (e.g., <https://example.org/whatever> or ex:whatever). If you use a literal, include its datatype.

	Subject	Predicate	Object	Valid?
1	<http: alice="" example.org=""></http:>	rdf:type	foaf:Person	
2	_:alice	_:Type	_:Person	
3	ex:bob	rdf:type	foaf:Person	
4	_:Alice	rdf:type	foaf:Person	
5	"bob"^^xsd:string	rdf:type	_:Person	
6	_:alice	rdf:type	"Person"^^xsd:string	
7	_:bob	rdf:type	_:Person	
8	_:Bob	"Type"^^xsd:string	foaf:Person	

Figure 1: Triples for exercise 1

Exercise 2: Blank Nodes and RDF Graphs

1. Draw the union and the merge of the following RDF graphs:

	RDF Graph G_1		
ex:PinkFloyd	ex:member	_:x	
_:x	rdf:type	foaf:Person	
_:x	<pre>foaf:firstName</pre>	"David"	
_:x	foaf:surname	"Gilmour"	
_:y	ex:hasMother	ex:alice	
: y	ex:interestedIn	ex:PinkFloyd	

	RDF Graph G	2
ex:alice	foaf:knows	_:x
_:x	ex:plays	ex:trumpet
ex:alice	ex:hasMother	_:y
_:y	rdf:type	foaf:Person
_:y	foaf:knows	_:x

Exercise 3: Simple Interpretations and Entailment

- 1. Write down a simple interpretation that satisfies the union of the RDF graphs G_1 and G_2 from Exercise 2.
- 2. Does the RDF graph G_3 entail the RDF graphs G_4 and G_5 ? If not, give a counterexample.

RDF Graph G_3			RDF Graph G_4			RDF Graph G_5			
ex:a	ex:p	_:b	ex:a	ex:p	_:x	ex:a	ex:p	_:x	
_:c	ex:q	ex:d	_:y	ex:q	ex:d	_:x	ex:q	ex:d	

3. Prove that every RDF graph is simply satisfiable.

Exercise 4: Turtle

- 1. Write down the merge of G_1 and G_2 from Exercise 2 as a Turtle document.
- 2. Use an online validator such as the following to ensure that your syntax is valid.
 - http://ttl.summerofcode.be/. Turtle validator.
 - https://www.easyrdf.org/converter. Here you can convert RDF data between different serializations. An error will be thrown if your syntax is not correct.
 - https://www.w3.org/RDF/Validator/. Here you can validate RDF data serialized as RDF/XML (you can use the previous converter to convert it to this format). If you select "Triples and Graph" among the Display Result Options you can also see a graph representation of your RDF triples.

Exercise 5: Reification

- 1. Write down a Turtle document that expresses:
 - Alice knows that Bob knows Carol.
 - Alice knows that the probability of her passing the Algebra exam is 99%.
- 2. Reification puzzle: translate the RDF graph of Fig. 2 to natural language.

Figure 2: Reification puzzle (source)

Additional Exercises

Exercise A Properties of Simple Entailment

A graph E is an *instance* of a graph G if there is some mapping $m: B \to B \cup U \cup L$ such that E is obtained from G by replacing some or all of the blank nodes x in G with m(x).

Prove the following:

- 1. An RDF graph is simply entailed by any of its instances.
- 2. The empty graph is simply entailed by any graph, and does not simply entail any graph except itself.
- 3. A graph simply entails all of its subgraphs.
- 4. Interpolation lemma for simple entailment: G simply entails a graph E if and only if a subgraph of G is an instance of E.

Exercise B D-interpretations and Entailment

Let $D_1 = \{xsd:integer, xsd:decimal\}$ and $D_2 = \{xsd:decimal\}$ and consider the following RDF graphs:

RDF Graph G_6				RDF Graph G_7				
ex:a	ex:p	"25.0"^^xsd:decimal		ex:a	ex:p	"25"^^xsd:decimal		
	RI	OF Graph G_8			RI	OF Graph G_9		
ex:a	ex:p	"25"^^xsd:integer		ex:a	ex:p	"book" ^ xsd:integer		

Answer the following:

- 1. For $i \in \{1, 2\}$, does G_6 D_i -entail G_7 and G_8 ?
- 2. For $i \in \{1, 2\}$, is G_9 D_i -satisfiable?

Exercise C RDF Interpretations and Entailment

Let $D = \{xsd:integer, xsd:decimal, xsd:string, rdf:langString\}.$

Consider the following RDF graphs:

- 1. Answer the following:
 - (a) Does G_{10} RDF-entail G_{11} and G_{12} (recognizing D)?
 - (b) Is G_{13} RDF satisfiable (recognizing D)?
- 2. Show that the interpolation lemma does not hold for RDF entailment.

Acknowledgements

• The reification puzzle of Fig. 2 was taken from this set of slides by Werner Nutt.