1 Vinjett nummer 9: beräkning av matrispotenser

- 1. Tag en kvadratisk $n \times n$ -matris A. Vi kan beräkna $A^2 = A * A$, sedan $A^3 = A * A^2$, och $A^4 = A * A^3$, eller som $A^2 * A^2$. Antag att vi behöver beräkna A^{115} . Hur gör vi det med minst antal matrismultiplikationer?
- 2. Låt $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. I Python kan du göra

```
import sympy
A = Matrix([[1,2],[3,4]])
print(A*A)
print(A**115)
```

för att se reultatet. Testa att implementera din metod!

3. Här är en annan metod: vi kan se matrisen A som en vektor i \mathbf{R}^{n^2} genom att läsa av rad för rad, i vårt exempel får vi vektorn $(1,2,3,4) \in \mathbf{R}^4$. Vi "identifierar" på så sätt $n \times n$ -matriser med vektorer i \mathbf{R}^{n^2} . Så om vi räknar ut $A^0, A^1, \ldots, A^{n^2}$ så har vi $n^2 + 1$ vektorer i \mathbf{R}^{n^2} , de är alltså linjärt beroende.

I själva verket så är redan A^0, A^1, \ldots, A^n linjärt beroende!

Räkna ut $A^0 = I, A, A^2$ i exemplet, konvertera till \mathbf{R}^4 , och hitta c_1, c_0 så att

$$A^2 + c_1 A + c_0 I = \mathbf{0}.$$

Skriv detta som

$$A^2 = -c_1 A - c_0 I (1)$$

Använd relationen (1) för att beräkna A^2 , A^3 , A^4 , A^5 . Kontrollera att det stämmer mha din tidigare metod.

- 4. Beräkna sekularpolynomet (karakteristiska polynomet) till A. Kommentar? Vad säger kurslitteraturen om "Cayley-Hamiltons sats"?
- 5. Hur skulle du använda (1) beräkna A^k för ett allmännt $k \geq 3$? Är det effektivare än den metod du tog fram tidigare? Vad gäller för beräkning av B^k då B är en $n \times n$ -matris, då n är stort? Vilken av de två metoderna är effektivast? Kan man göra på något annat sätt?