אלגוריתמים 1

תוכן העניינים

5	ק 1. אלגוריתמי BFS ו-DFS	פרכ
5	BFS - Breadth First Search .1	l
5	1.1. הגדרת המרחק בגרף לא מכוון	L
5	1.2. מוטיבציה לאלגוריתם BFS	?
6	1.3. אלגוריתם ה-BFS	3
6	1.4. נכונות האלגוריתם	ļ
10	DFS - Depth First Search .2	?
10	2.1. חותמות זמן: זמני גילוי וסיום של צומת (במהלך אלגוריתם סריקה)	L
10	2.2. האלגוריתם	2
11	2.3. זמן ריצה	3
11	2.4. סוגי קשתות ביער ה-DFS	ļ
11	DFS- אפיון יחסי אב-צאצא ביער ה-2.5.	5
13	2.6. רכיבים קשירים היטב	5
17	2.7. האלגוריתם למציאת רכיבים קשירים היטב	7
19	ק 2. עצים פורשים מינימליים	פרכ
19	1. בעיות אופטימיזציה ברשתות	L
19	2. בעיית עץ פורש מינימום (עפ"מ)	2
21	3. אלגוריתמים לבעיית עץ פורש מינימום	3
22	3.1. האלגוריתם הגנרי למציאת עפ"מ	L
25	2.2. האלגוריתם של Prim	2
27	3.3. האלגוריתם של Kruskal	3
31	ק 3. מסלולים קלים ביותר	פרכ
31	1. מסולים קלים ביותר בגרפים מכוונים ממושקלים	L
32	2. מבנה אופטימלי של מסלולים קלים	<u> </u>

DFS-ו BFS אלגוריתמי

BFS - Breadth First Search .1

 ${}^{\circ}G$ שאלה 1.1 כיצד לחשב מסלול קצר ביותר בין שני צמתים בגרף לא מכוון

1.1. הגדרת המרחק בגרף לא מכוון.

(G בגרף בון צמתים u,v בגרף (המרחק בין המרחק 1.1 הגדרה

 $u,v\in V$ ושתי צמתים G=(V,E) בהינתן גרף לא

 $\delta_G\left(u,v
ight)$ או ב-G. נסמן מרחק הוא האורך המפר קשתות) של המסלול הקצר ביותר בין u ו-u ב-G הוא האורך המפר קשתות) של המסלול הקצר ביותר בין σ הוא האורך האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול המסלול

 $u \in V$ מצומת ליד כל מסומנים מסומנים גרף א בגרף בגרף מצומת איור 1: המרחקים ל $\delta\left(s,u\right)$ מצומת מסומנים איור

טענה 1.1 (המקבילה לאי-שוויון המשולש)

ינים: $e=(u,v)\in E$ קשת לכל קישת היהי איהי מכוון, ויהי G=(V,E) יהי

$$\underbrace{\delta\left(s,v\right)}_{v\text{-1 }s} \leq \underbrace{\delta\left(s,u\right)}_{e} + \underbrace{1}_{e}$$
 אורך הקשת e המרחק בין e

. הטענה מתקיימת הטענה. אם אין מסלול בין s -ו u ב-s והטענה מתקיימת. הוכחת הטענה.

 $.\delta(s,u)$ - אחרת, יהי P מסלול קצר ביותר בין s ו-s ו-s מסלול קצר מסלול אחרת, יהי P מסלול ב-S(s,)+1 את הקשת P, ווקיבלנו מסלול ב-S(s,)+1

 $\delta(s,v) \leq \delta(s,u) + 1$ ולכן G- ב-יותר בין אורך המסלול הקצר ביותר בין אורך המסלול היותר בין אורך המסלול היותר ביותר ביותר

- בגרף: פומת s לכל צומת בער המרחק לרצה לחשב את נרצה נרצה נרצה. BFS מוטיבציה לאלגוריתם
 - $S \in V$ וצומת G = (V, E) אמכוון קלט: גרף לא
 - $.\delta_{G}\left(s,v\right)$ את $v\in V$ מטרה: לחשב לכל

DFS ו-BFS אלגוריתמי.

. עצמו. $\delta(s,?)$ את יודעים את שעבורו היחיד מהצומת מהצומת להתחיל האינטואיציה:

.BFS- אלגוריתם ה-1.3

6

. תור.
$$Q \leftarrow \{s\}, \ T \leftarrow \{s\}, \ \lambda(v) \leftarrow \begin{cases} 0 & v = s \\ \infty & v \neq s \end{cases}$$
 •

- $:Q \neq \emptyset$ כל עוד •
- Q יהי u הצומת בראש התור (1)
- $v \notin T$ -ט כך ש- $e = (u, v) \in E$ לכל קשת (2)

$$T$$
 ← $T \cup \{v\}$ (x)

$$\lambda(v) \leftarrow \lambda(u) + 1$$
 (2)

- Q גו הכנס את v לסוף התור (ג)
 - Q הוצא את u מהתור (3)

.1.4 נכונות האלגוריתם.

 $|V|=n,\;|E|=m$ נסמן, G=(V,E) עבור גרף עבור בקורס) נסמון מקובל הערה 1.1 (סימון מקובל בקורס)

שאלה 1.2

- (1) מדוע האלגוריתם מחזיר תשובה נכונה?
- (2) עד כמה האלגוריתם יעיל? (בד"כ יעילות תתייחס לזמן)

נתחיל מ-(2).

- .O(n) :האתחול
- $O(\deg(u)):Q$ יוצא מ-u האיטרציה בה u יוצא -

כמו כן,

- . אחת פעם אחתר פעם לכל Q-לכל נכנס \bullet
 - Q- כל צומת שנכנס ל-Q גם יוצא מ-Q •

סך הכל זמן ריצה:

$$\underbrace{O(n)}_{\text{MIDIM}} + \underbrace{O\left(\sum_{u \in V} \deg(u)\right)}_{\text{MIDIM}} = O(n+m)$$
הסם עליון על אוון אינון אינון אינון הריצה של הריצה של האינורצונן

נתמקד בטענה (1), ונוכיח אותה תוך שימוש בטענות העזר הבאות:

 $.s\in V$ אוון, ותהא צומת G=(V,E) יהי יהי למסה") אויה למה 1.1 החל מפספס למטה") יהי יהי אזי: $\forall v\in V,\ \lambda(v)$ החל מי.s. אזי:

$$\lambda(v) \ge \delta(s, v), \ \forall v \in V$$

 $v \in V$ הוכחה. יהי

. הטענה נכונה $\lambda\left(v\right)=\infty$ יתקיים Q, אם על לא נכנס ל-

אם ע נכנס ל-Q (וזה קורה בדיוק פעם אחת), נוכיח את הטענה באינדוקציה על סדר כניסת הצמתים ל-O:

: אז: v = sנכנס ראשון לתור (המקרה ש-s), ואז:

$$\lambda(s) = \underbrace{0}_{\text{הגדרת האלגוריתם}} = \delta(s, s)$$

, אניח נכונות עבור k הצמתים הראשונים שהוכנסו לתור אניח כניח כי v היא הצומת ה-1 k+1 שהוכנסה לתור.

:ברגע ההכנסה של v ל-Q, נסמן ב-u את הצומת שבראש Q, ונקבל

$$\lambda\left(v
ight) = \lambda\left(u
ight) + 1 \underset{\text{(u, v)} \in E-1 \ s}{\geq} \delta\left(s, u
ight) + 1 \underset{\text{(u, v)} \in E-1}{\geq} \delta\left(s, v
ight)$$

אזי: s- מרל מ-S אזי: מרכן של BFS אזי: בשלב כלשהו על תוכן Q בשלב (v_1,v_2,\ldots,v_k) יהי

- $\lambda(v_1) \le \lambda(v_2) \le \ldots \le \lambda(v_k)$ (1)
 - $\lambda(v_k) \le \lambda(v_1) + 1$ (2)

:Qהוצאה מ-Qהונית באינדוקציה על סדר הפעולות של הכנסה/הוצאה מ-

- . בסיס: האתחול הוא כש-Q מכיל רק את s. לכן (1) ו-(2) מתקיימים באופן ריק.
 - r+1הפעולה ה-1 צעד: נניח נכונות עבור r הפעולות הראשונות, ונוכיח עבור הפעולה •

אז: אור, אז: uו בראש התור, אז: r+1הייתה הכנסה, נניח שהכנסנו את ר+1 הייתה הייתה הכנסה, נניח שהכנסנו את

$$\lambda(v) = \lambda(u) + 1$$

לפי הגדרת האלגוריתם.

v בגלל שלפני הוספת v ל-v (1) ו-(2) התקיימו, זה יתקיים גם לאחר הוספת

אם ההפעלה ה-t+1 הייתה הוצאה, אז ברור שמהנחת האינדוקציה (1) ו-(2) יתקיימו גם לאחריה.

משפט 1.1 (הוכחת נכונות אלגוריתם BFS)

 $S \in V$ יהי (א מכוון ו-G = (V, E)יהי

sמתקיים: אז בסיום ריצת BFS אז בסיום אז בסיום

$$\forall v \in V, \ \lambda(v) = \delta(s, v)$$

.2-ו וו-2.

:s-בית מרחקן מ-s נסתכל על שכבות הגרף לפי מרחקן מ

$$V_k \triangleq \{u \in V : \delta(s, u) = k\}$$

DFS ו-BFS אלגוריתמי 1.

s כלשהי צומת איור 2: שכבות של גרף לא מכוון לדוגמה עבור צומת

 $.\delta\left(s,v\right)=\infty\iff v$ ו- s בין מסלול שב-G נניח שב- נניח המשפט. נניח שב- לפי טענה β נקבל ש- לפי טענה לפי טענה $\lambda\left(v\right)\geq\infty$ ש- אין נקבל ש- לפי טענה לפי טענה לפי טענה אין גענה לפי אין מסלול ש-

. $\delta\left(s,v\right)=k$ נניח שב-G יש מסלול בין s ו-S יש מסלול שב-S נוכיח את המשפט באינדוקציה על

- $\lambda(s)=0$ אז מוגדר מפני שבאתחול מתקיים מפני, $\lambda(s)=s$ אז אז איז פסיס:
 - :עד: נניח כי $v \in V_k$ ונסמן •

$$A \triangleq \{u \in V_{k-1} | (u, v) \in E\}$$

.כאשר הגדרת A אינה תלויה באלגוריתם

Q שהיא האונה לצאת הצומת ב-A שהיא הראשונה לצאת מהתור עסמן

נשים לב ש-A אינה יכולה להיות ריקה, ולפי הנחת האינדוקציה, גםיום ריצת האלגוריתם לכל הצמתים ב-A ישנו ערך λ השווה ל- λ ולכן בהכרח כל אחד מהם הוכנס לתור λ .

 $\lambda(v)=\infty$ נראה שבאיטרציה שבה u^* נמצא בראש התור $\lambda(v)=\infty$ לצומת ע מתקיים ש $\lambda(v)=\infty$ (כלומר, ע עדיין "לא התגלה").

w- וונניח עוכנס לתור Q, שבה א מוכנס מוכנס לתור u^* מונניח ש- נניח בשלילה שזה א מוכנס לתור Q וונניח שאיטרציה או).

(נובע מלמה 1.2). בגלל בחירת u^* , מתקיים ש-w הוא שכן של ע בשכבה j, כך ש- $j \leq k-1$ (נובע מלמה 2.2).

לפי הנחת האינדוקציה $\lambda(w) < \lambda(u^*)$, וכעת:

$$\lambda\left(v\right)$$
 $\underset{\text{ הנחת האינדוקציה }}{=} \lambda\left(w\right) + 1 < \lambda\left(u^*\right) + 1$ $\underset{\text{ הנחת האינדוקציה }}{=} (k-1) + 1 = k = \delta\left(s,v\right)$

.1.1 סה"כ קיבלנו $\lambda(v) < \delta(s,v)$, וזו סתירה מלמה

וויכנס אייכנס זי ע יקבל אייטרציה או אייכנס מקיימת ע מקיימת א מקיימת ע מקיימת ע בראש התור אייכנ u^* בראש בראש ל- u^*

DFS אלגוריתמי 10. אלגוריתמי 1.

DFS - Depth First Search .2

משימה: למצוא רכיבים קשירים היטב של גרף מכוון בזמן לינארי.

.2.1 חותמות זמן: זמני גילוי וסיום של צומת (במהלך אלגוריתם סריקה).

u אומת של הגילוי של - s(u) 1.2 הגדרה

u אום של פיום סיום - f(u) 1.3 הגדרה

.2.2 האלגוריתם.

- :אתחול
- $\forall u \in V$, status $(u) \leftarrow$ unvisited (1)

$$\forall u \in V, \quad p(u) \leftarrow \text{NULL}$$
 $t \leftarrow 0$ (2)

- .visit (u) בצע :status (u) = unvisited u כל עוד יש צומת u כל u בצע
 - :visit (u) •

$$s(u) \leftarrow t -$$
 (1)

$$t \leftarrow t + 1$$

status
$$(u) \leftarrow \text{visited } -$$

.visit (v) וגם, $p(v) \leftarrow u$ אז ,status (v) = unvisited אם, $(u \rightarrow v) \in E$ לכל קשת (2)

$$\begin{cases} f(u) \leftarrow t \\ t \leftarrow t + 1 \end{cases}$$
 (3)

.DFS איור 3: דוגמת הרצה של אלגוריתם

 $,u\in V$ אומת לכל אכל מכוון על גרף DFS מסקנה בריצת מסקנה מסקנה בריצת

אחת. בדיוק פעם יקרא ייקרא visit (u)

.2.3 זמן ריצה.

- מה זמן הריצה של אלגוריתם ה-DFS!
- $O(1) + O\left(\deg_{\mathrm{out}}(u)\right)$ כמה אמן לוקח לכצע (אס יש) אינונו (אס יש) אינונעו (אס יש) יינונע (אס יש) אינונעו יינוע יי
 - (ובפרט האלגוריתם עוצר). O(n+m) סה"כ \longleftarrow

הערה 1.2 לאלגוריתם ה-DFS דרגות חופש רבות.

חותמות הזמן s,f מהוות תיעוד של היסטוריית ריצת מהוות s,f

$$E_p = \{(p(v) \rightarrow v) \in E : p(v) \neq \text{NULL}\}$$

G נשים לב ש- G_p הוא תת-גרף של

V הוא ער מכוון אשר פורש הת כל צמתי (תרגיל) את משפט 1.2 משפט 1.2 משפט

.DFS-סוגי קשתות ביער ה-2.4

G שאלה 1.3 כיצד ניתן לסווג את קשתות בהינתן ריצה מסוימת של $^{\circ}$

 $.p\left(v
ight)=u$ אם עץ, אם היא קשת עץ היא ($u
ightarrow v
ight)\in E$ (קשת עץ) הגדרה 1.5 הגדרה

, אם אינה קשת קדמית, אם אינה קשת עץ, האדרה 1.6 (קשת קדמית, אם אינה קשת עץ, הגדרה $u \to v$) (קשת קדמית, אם אינה קשת עץ, ביער ה-DFS).

.DFS-היא של ע ביער אם צאצא u אחורית, אם היא קשת ($u \rightarrow v$) $\in E$ (קשת אחורית) אם 1.7 הגדרה

הגדרה 1.8 (קשת חוצה) כל שאר הקשתות מכונות קשתות חוצות.

הערה 1.3 כאשר מבצעים DFS על גרף לא מכוון, יווצרו רק קשתות עץ וקשתות אחוריות (ללא הוכחה).

.DFS-ה ביער ה-2.5

 $u, v \in V$ ולכל DFS למה G, לכל היצת מכוון למה 1.3 למה בדיוק אחד משלושת הבאים מתקיים:

12 prinz 2 112// 1/0// 0/2 // // prinz

- u אינו צאצא של v ו-[s(v), f(v)] זרים, ו-u אינו צאצא של ו-[s(u), f(v)] ו-[s(u), f(u)]
 - v איל של v ו-v אין v (v) א פרע של v (v) אין v (v) אין v
 - u איל של ער, s(u) < s(v) < f(v) < f(u) (3)

הוכחה. נניח s(u) < s(v) המקרה ההפוך - סימטרי).

 $| \mathbf{s} (v) < f(u) |$ מקרה ראשון: •

DFS ו-BFS אלגוריתמי 12

נרצה להראות שאנחנו במקרה ג'.

.(s(v) < f(u)ש-(בגלל ש-עונו את יימנו א סיימנו א עדיין א גילוי עדיין א גילוי עדיין א טיימנו את

.visit (u) נקרא מתוך ארשרת קריאות ארשרת מתוך visit (v) כקרא visit (v) כקרא איי

.visit (u) מסתיים לפני visit (v)

$$f(v) < f(u) \Longleftrightarrow$$

$$s(u) < s(v) < f(v) < f(u)$$
 \Leftarrow

u מדוע v הוא צאצא של

.visit (v)- visit (u) באינדוקציה לפי מספר הקריאות של visit שבוצעו בין עוכיח לפי מספר

.visit (u) בסיס: visit (v) בסיס visit (v) ב

u של אצא א ולכן u, ולכן v צאצא של של u

.visit (w) נקרא מתוך visit (v) צעד: נניח כי

w של (צאצא) ישיר ישיר הוא ילד סלומר ע כלומר v

u של ע צאצא אל א ולכן u צאצא אל של w הוא אינדוקציה, א לפי הנחת

$$f(u) < s(v)$$
 : מקרה שני

נרצה להראות שאנחנו במקרה א'.

חייב להתקיים:

$$s(u) < f(u) < s(v) < f(v)$$

מכיוון שלא ניתן לסיים צומת לפני שמגלים אותו.

:(סימטרי) אינו צאצא של u (המקרה ההפוך v- סימטרי)

 $\operatorname{visit}(v)$ אם נניח בשלילה ש-v הוא כן צאצא של u, אז צריך להתקיים ש-v אס נניח בשלילה ש-v אווא יוא איז א רובפרט $\operatorname{visit}(v)$ מתרחש בשרשרת קריאות רקורסיביות שמקורן ב- $\operatorname{visit}(u)$, ובפרט $\operatorname{visit}(v)$ מסתיים לפני סיום $\operatorname{visit}(u)$, ז"א $\operatorname{visit}(u)$ בסתירה!

מסקנה 1.2 (מטענת העזר)

 $s(u) < s(v) < f(v) < f(u) \iff DFS$ ביער ה-u צאצא של צאצא ע

,DFS משפט 1.3 אפיון ליחסי אב-צאצא ביער ה-G לכל גרף מכוון ליחסי אב-צאצא ביער ה-

עצמו). (פרט ל-u unvisited פרט הצמתים בו הן של הצמתים בו u, עש ב-u עצמו). עצמו). עצמו שביער ה-DFS, אם ורק אם בזמן גילוי u, יש ב-u

הוכחה.

u נרצה להוכיח שברגע גילוי : \leftarrow

.unvisited שמכיל רק צמתים שמכיל v-ל מסלול מ-ש ב-G- יש ב-

 (G_p) DFS-יהי P ביער מ-סלול מ-u מ

.unvisited ב-P הם ברגע גילוי u, כל הצמתים ב-u

.DFS -ה ביער של של א צאצא א לכן ,P- אומת ביער w

s(u) < s(w) לפי המסקנה

.unvisited ב-P הצמתים כל u גילוי ולכן ברגע גילוי

v-ט מסלול P מסלול G-ט קיים ב-U מילוי שברגע גילוי U

u צאצא של ע-ע נרצה להראות (באותו באותו unvisited שכל הצמתים בו שכל הצמתים בו שו

v אחרת x פוכטח כגלל x, אחרת x הערה: קיוס אינו צאצא של x, ויהי ויהי א הצומת הראשון במסלול שאינו צאצא של x, אוני אינו צאצא של x, אוניח בשלילה ש-x

יהי y הצומת הקודם ל-x במסלול (קיוס y פוכטח כי x כהכרח אינו הצומת הראשון ב-(x). מתקיים:

$$s\left(u
ight) < s\left(x
ight) < f\left(y
ight) \leq f\left(u
ight)$$
 יש קשת מ- y ליש קשת מ- y ל- x , ברגע גילוי y , כל הצמתים ($y = u$ לאולי $y = u$ באצא של y (עד שי x מתגלה. עד שי x מתגלה.

,(שכן אינטרוולים לא יכולים להיחתך), צאצא של x צאצא אבל לפי המסקנה אבל אבל

וזו סתירה להנחת השלילה.

.2.6 רכיבים קשירים היטב.

הגדרה 1.9 (רכיב קשיר היטב) נגדיר יחס (רלציה) על זוגות של צמתים באופן הבא:

 \iff ניחס v-ו u

v-ט ש מסלול מ-u ל-G •

DFS ו-BFS אלגוריתמי 14

u-ט ש מסלול מ-v •

הרכיבים הקשירים היטב הם מחלקות השקילות של היחס הזה.

איור 4: רכיבים קשירים היטב עבור גרף לדוגמה

:היות: $ar{G}ig(ar{V},ar{E}ig)$ להיות הרכיבים הקשירים אלכל גרף מכוון לכל גרף מכוון להגדיר את ארף הרכיבים הקשירים היטב לכל ארף מכוון

$$ar{V} = \{C \, | G$$
 רכיב קשיר היטב של $C\}$

$$\bar{E} = \left\{ \left(C_i \to C_j \right) \middle| \begin{matrix} v \in C_j \text{ -1 } u \in C_i \\ \left(u_i \to u_j \right) \in E \end{matrix} \right\}$$

איור 5: גרף הרכיבים הקשירים היטב של הגרף מהאיור הקודם

איור של גרף הרכיבים הקשירים היטב של הדוגמה הקודמת

הערה 1.4 גרף רכיבים קשירים היטב הוא בהכרח חסר מעגלים מכוונים (גרף א-ציקלי), ולכן ניתן לבצע עליו מיון טופולוגי.

באופן כללי, נוח לפתור בעיות על גרפים מסוג זה.

G = (V, E) אשלה 1.4 בהינתן אותנו) שאלה החישובית שתעניין אותנו) אותנו

כיצד נחשב את גרף הרכיבים הקשירים היטב שלו?

הערה 1.5 קל לפתור את הבעיה בזמן ריבועי, ע"י הרצת אלגוריתם סריקה (BFS, DFS) מכל צומת.

נרצה לפתור את הבעיה בזמן לינארי, בהתבסס על התכונות שמצאנו מקודם.

הערה 1.6 באופן כללי, מובטח שכל קשת אחורית "סוגרת מעגל".

נרצה לבחור נציג לכל רכיב קשיר היטב, שהוא:

- ."קנוני". ●
- "הכי קדמון" בעל זמן הנסיגה הגדול ביותר.

f(v) הנציג של צומת u בהינתן ריצת DFS נתונה, הנציג של צומת v שישיג מ-u בהינתן ריצת הנסיגה (עונה, הנציג של צומת v הגדול ביותר.

 $\varphi(u)$ מסמנים

הערה 1.7 כל רכיב קשירות היטב מוכל בהכרח בעץ יחיד ביער ה-DFS (לפי המסקנה ממקודם), אבל ההפך אינו בהכרח נכון.

. באותו רכיב קשיר היטב ש- $\varphi(u)$ ו ו- $\varphi(u)$ מתקיים ש-u ולכל צומת חלכל צומת ש-ש ולכל למה 1.4 למה

הוכחה. ב-G יש מסלול מ-u ל-(u) (מהגדרת נציג).

נתונה. DFS נתונה ביחס לריצת $\varphi(u)$ יש מסלול מ-Gיש מסלול להראות שב-

DFS-ביער $\varphi\left(u\right)$ ביער ה-אוא צאצא של ער ידי כך שנוכיח על מסלול שכזה של מסלול מסלול ידי כך שנוכיח ש-נראה איז מיתר).

 $\varphi\left(u\right)\neq u$ נניח לכן אז סיימנו, $\varphi\left(u\right)=u$ אם

 $f(u) < f(\varphi(u))$ מהנחה זו נובע כי

 $\varphi\left(u\right)$ ה נסוגנו שכבר איתכן לא יתכן, DFS-ט"י ע"י ע"י בזמן לכן, בזמן לכן, ל

לכאורה, יתכנו 2 אפשרויות:

- (ו) ברגע גילוי $\varphi(u)$ חדש (unvisited).
- $arphi\left(u
 ight)$ אינו חדש, אבל עדיין לא נסוגנו מ- $arphi\left(u
 ight)$ אינו חדש, אבל עדיין אינו מ-(2)

נוכיח ש-(1) אינו אפשרי.

u נציג של $\varphi(u)$ נציג של לפי ההגדרה ע $\varphi(u)$ נציג של נניח בשלילה ש-(1) אפשרי, ויהי

חדשים P-ם חדשים שכל איתכן לא u גילוי ברגע גילוי

(אחרת, לפי משפט, $\varphi(u)$ צאצא של u, ולכן u, ולכן u צאצא של א בסתירה להגדרת הנציג).

.DFS י"ע u גילוי (visited) שאינו אינו במסלול במסלול במסלול ע"י ע"י הצומת האחרון במסלול אינו אינו ו

DFS ו-BFS ו-BFS ו-BFS.

.(unvisited) כולה חדשה $\varphi\left(u\right)$ לכן, ברגע גילוי א, הסיפא של P מ-V מ-V

:לכן, DFS איט פיער של צאצא $\varphi\left(u\right)$ אז:

$$f\left(\varphi\left(u\right)\right) < f\left(v\right)$$

.u וזו סתירה לכך ש-arphi(u) הוא הנציג של

. אצא שלנט, בפרט u צאצא שלנו. אינטרוולים, האינטרוולים, האינטגרל של מוכל בזה של לכן לפי

: מתקיים, DFS טענה לכל גרף מכוון G=(V,E) ולכל שני צמתים ולכל ולכל ריצת לכל מתקיים

 $\varphi\left(u\right)=\varphi\left(v\right)\iff$ באותו רכיב קשיר היטב ע, u,v

הוכחה.

, אוסף הצמתים שישיגים מ-u זהה לאוסף הצמתים שישיגים מ-u. אותו נציג. ולכן בהכרח יש ל-u, אותו נציג.

. באותו רכיב קשיר היטב $u, \varphi(u)$ באותו העזר יטב. \Longrightarrow

באופן דומה, $v, \varphi(v)$ באותו רכיב קשיר היטב.

אבל (ע) היטב קשיר היטב u, v אבל מהנתון, ולכן $\varphi(u) = \varphi(v)$

.2.7 האלגוריתם למציאת רכיבים קשירים היטב.

- $u \in V$ אומת לכל לכל ליגוה (ו) לקבלת אמני לקבלת לק G = (V,E) על DFS מריצים
 - . נסמן ב- G^R את הגרף שמתקבל מ-G ע"י הפיכת כיווני הקשתות (2)
- ביותר משלב ביותר עם אמן הנסיגה שנותר עם ביער ה-DFS, בוחרים את ביער ה-DFS, ביותר משלב מתחילים עץ חדש ביער ה- G^R מריצים ביער ה- G^R אלגוריתם.
 - G = (V, E) הקלט: גרף •
 - .(שלב 5) G^R השנייה על DFS השנייה שמתקבלים בריצת העצים שמתקבלים הפשירים היטב של G.

עצים פורשים מינימליים

1. בעיות אופטימיזציה ברשתות

דוגמה 2.1 נתונה רשת התקשורת הבאה:

איור 1: על כל קשת מופיע מחיר השימוש בה.

נניח כי הצומת a מעוניין להפיץ הודעה לכל הצמתים ברשת. מעוניין להפיץ מעוניין לכל הצמתים. יש למצוא תת קבוצת של קשתות ברשת, שעליהן ההודעה תעבור כך שתגיע לכל הצמתים.

שאלה 2.1 האם יכול להיות שבתת-הגרף שנבחר יהיו מעגלים?

הערה 2.1 נשים לב כי היות שנרצה להשיג מחיר מינימלי, תת-הגרף שהתקבל מבחירת הקשתות הינו לבטח חסר מעגלים.

2. בעיית עץ פורש מינימום (עפ"מ)

w(v,u) יש משקל (v,u) אבו לכל קשת (v,u) שבו לכל קשר לא מכוון (G=(V,E) קשיר לא נתון גרף קשיר) יש משקל

יש למצוא עץ פורש של הגרף, שסך משקל הקשתות שלו מינימלי.

דוגמה 2.2 (דוגמה לעץ פורש של גרף משקלים נתון)

איור 2: עץ פורש של הדוגמה הנתונה.

- . בכחול. מ-a, לכן נסמנה בכחול. ביותר שיוצאת הזולה הקשת (a,e)
 - (e,d) נסמן את הקשת ullet
 - (b,d) נסמן את הקשת \bullet
 - (b,d) נסמן את הקשת ullet
 - (b,c) נסמן את הקשת ullet

.9 כאשר משקל העץ הפורש הינו

ללא הוכחה, נציין שזהו גם למעשה עץ פורש מינימלי.

נבחין שזהו אינו העץ הפורש היחיד בעל משקל 9, שכן היה ניתן נבחין שזהו אינו העץ הפורש (e,d) בקשת להחליף את הקשת למשל להחליף את הקשת

3. אלגוריתמים לבעיית עץ פורש מינימום

נראה אלגוריתם גנרי, ובהמשך נציג אלגוריתמים שמתקבלים כמקרים פרטיים של אלגוריתם זה.

- <u>הרעיון</u>: נשתמש באלגוריתם חמדן שיבנה עפ"מ קשת אחר קשת, ע"י הוספת קשתות עם משקל נמוך והשמטת קשתות עם משקל גבוה.
- האלגוריתם יתקדם ע"י צביעת קשתות: קשתות שיצבעו בכחול יופיעו בעץ, וקשתות שיצבעו באדום יושמטו.
 - האלגוריתם יקיים בכל שלב את שמורת הצבע.

טענה 2.1 (שמורת הצבע) קיים עפ"מ שמכיל את כל הקשתות הכחולות ואף אחת מהקשתות האדומות.

מסקנה 2.1 משמורת הצבע נובע כי כאשר כל הקשתות ב-G נצבעו, הקשתות הכחולות יוצרות עץ עפ"מ.

 $ar{X}=V\setminus X$ ו ו-X ו-X ו-X ו-X הגדרה 2.2 (חתך) בגרף בוצות: G=(V,E) הוא חלוקה של קבוצת הצמתים

 $ar{X}$ נאמר שקשת חוצה את החתך אם קצה אחד שלה ב-X והקצה האחר ב- $ar{X}$. לפעמים נגיד שקשת כזו תהיה קשת של החתך.

 $X = \{a,b,c\}$ ברשת: (גדיר חתך ברשת: לחתך ולקשתות שחוצות שחוצות אותו) נגדיר חתך ברשת: הקשתות שחוצות את החתך:

$$\{(b,d),(a,e),(c,d),(a,d),(b,e)\}$$

איור 3: החתך לדוגמה על גרף הרשת.

22

3.1. האלגוריתם הגנרי למציאת עפ"מ.

הגדרה 2.4 (הכלל הכחול) יהי $X\subseteq V$ כך שאין קשת כחולה שחוצה את הכלל הכחול). אזי ניתן לצבוע בכחול את הקשת הקלה ביותר שאינה צבועה מבין אלו שחוצות את (X, \bar{X}) .

הגדרה בו קשת אדום) יהי C מעגל שאין בו קשת אדומה.

.C אזי ניתן לצבוע מבין המעגל ביותר ביותר הכבדה הקשת את האזי ניתן לצבוע אזי ניתן אינה אווע הקשת הכבדה אזי ניתן לצבוע אווע ה

:האלגוריתם הגנרי

- .אתחל את כל הקשתות ב-E ללא צבועות
- . מהקשתות אחת לצביעת אחדום לצביעת אחת הכלל הכחול או האדום לצביעת אחת הקשתות. ϵ
 - הקשתות הכחולות הן עפ"מ.

דוגמה 2.4 (דוגמת הרצה)

נחזור לדוגמת הרשת, ונבצע דוגמת הרצה של האלגוריתם החמדן:

- $\{b,c,d\}$ הכלל האדום על: $\{b,c,d\}$ הכלל האדום על: $\{b,c,d\}$ הכלל האדום על: $\{b,c,d\}$ הכבדה על: $\{b,c,d\}$ הוהי הכלל האדום את הקשת הכבדה ביותר במעגל חסר הקשתות האדומות במעגל: $\{b,c,d\}$ הוהי הקשת הכבדה ביותר במעגל האדום את הקשת הכבדה ביותר במעגל האדום את הקשת הכבדה ביותר במעגל האדום על: $\{b,c,d\}$
 - $\{a,b,d\}$ הכלל האדום על ullet
- (a,d) אוהי (a,b o d). נבצע באדום את הקשת הכבדה ביותר במעגל חסר הקשתות האדומות a o b o d אוהי (a,d).
- $\{e,b,d\}$ אוהי (e,b) אוהי ווהי (e,b) אוהי (e,b) או
 - $\{a,b,d,e\}$ הכלל האדום על יותר במעגל (נבצע באדום את הקשת הכבדה ביותר במעגל האדום את הקשת הכבדה ביותר במעגל האדום את הקשת הכבדה ביותר במעגל ((d,e)).
 - $X = \{a,e\}$ עם (a,b) אוניבע אותה בכחול: עם $\{a,e\}$ ונצבע אותה בכחול: אוהי (a,b) עם הקלה ביותר שאינה צבועה היוצאת מי $\{a,e\}$ ונצבע אותה בכחול: אוהי (a,b) עם אותה בכחול: אוהי (a,b) אוהי (a,b) אוניבע אותה בכחול: אוהי (a,b) אוניבע אותה בכחול:
 - $X=\{c,d\}$ עם (b,d) אותה בכחול: עם $\{c,d\}$ ונצבע אותה בכחול: אוהי (b,d) אוהי (c,d) ונצבע אותה בכחול: אוהי (c,d) ונצבע אותה בכחול: אוהי (c,d) ונצבע אותה בכחול: אוהי (c,d)

 $X=\{c\}$ הכלל הכחול: עם (b,c) הכלל הכחול: עם (c,c) ונצבע אותה בכחול: אוהי ((b,c) אוהי בכחול: הכחול: הכחול: הכחול: אוהי ((b,c) הכלל הכחול: הכ

ואכן, קיבלנו כי משקל העפ"מ הינו 9.

הערה 2.2 (ללא הוכחה) בכל שלב באלגוריתם הגנרי, הקשתות הכחולות יוצרות יער של עצים כחולים, שכן הקשתות הכחולות תמיד מוכלות באיזשהו עפ"מ של הגרף.

אינו בעץ כחול, אם לא קיימת קשת שנוגעת בצומת v שצבועה בכחול. נאמר שצומת v אינו בעץ כחול, אם אם לא קיימת השנוגעת בצומת v

3.1.1. נכונות האלגוריתם הגנרי.

שאלה 2.2 האם האלגוריתם תמיד מצליח לצבוע את כל הקשתות?

שאלה 2.3 האם מובטח שבסיום האלגוריתם הקשתות הכחולות יגדירו עפ"מ?

G אפרש עץ עים יהי T עץ פורש של T למה (הבחנה על עצים פורשים) יהי

C מעגל יחיד ב-T מעגל יחיד אם נוסיף ל-T קשת T

G אם נשמיט מ-G קשת, בוודאות נקבל שוב עץ פורש של

משפט 2.1 (נכונות האלגוריתם הגנרי) קיים עפ"מ T שמכיל את כל הקשתות הכחולות ואף אחת מהקשתות האדומות.

משפט 2.2 (כל הקשתות נצבעות + נכונות שמורת הצבע)

."שמורת הצבע". מקיים את "שמורת הצבע". האלגוריתם הגנרי צובע את כל הקשתות של G

הוכחת המשפט.

(1) הראינו כי האלגוריתם מקיים את שמורת הצבע אחרי הפעלה של הכלל הכחול.

<u>הוכחה</u>. נראה תחילה כי האלגוריתם מקיים את השמורה, באינדוקציה על מספר האיטרציות (הפעלות של הכלל האדום או הכחול):

. בסיס האינדוקציה: בתחילה אף קשת לא צבועה, ולכן כל עפ"מ ב-G מקיים את השמורה (כלומר, הטענה נכונה באופן ריק).

צעד האינדוקציה: נטפל לחוד בשני מקרים:

(1) נניח כי השמורה מתקיימת לפני הפעלה של הכלל הכחול.

. עפ"מ e שהקשת לפני את שקיים את עפ"מ עפ"מ דיהי בכחול, ויהי כעת כעת שנצבעת תהי e

.(סיימנו) מקיים e שהקשת אחרי השמורה את מקיים מקיים T אזי אזי , $e\in T$

. אם הכלל את שעליו הפעלנו את שעליו החתך על החתך , $e \notin T$

2. עצים פורשים מינימליים

e שמחבר בעץ u,v בקצוות של הקשת T שמחבר בין מסלול

. היות שe' חוצה את החתך, קיימת על המסלול הנ"ל קשת אחרת e' שחוצה את החתך.

מהנחת האינדוקציה אין ב-T קשת אדומה, שכן הוא מקיים את שמורת הצבע. מהכלל הכחול (בחרנו חתך ללא קשתות חוצות כחולות), נקבל גם כי e' לא צבועה בכחול לכן, e' אינה צבועה.

בנוסף, בהכרח (שכן $w\left(e'\right)\geq w\left(e'\right)$ (שכן $w\left(e'\right)\geq w\left(e'\right)$ במוסף, בהכרח משקל מינימלי. למעשה, בהכרח ש שוויון). פלן, נוכל להשמיט את הקשת e' מהעץ T ולהוסיף במקומה את

נשאר e' נשאר בנוסף, e' נשאר בין שני צמתים ב-T עבר קודם דרך אם המסלול יעבור כעת דרך. בנוסף, T נשאר עפ״מ, כי המשקל הכולל של הקשתות בעץ לא עלה.

. החדש. T החדש מתקיימת עבור כי הסחול, נקבל כי הסחול, בכחול e

(2) נניח כי השמורה מתקיימת לפני הפעלה של הכלל האדום.

. עפ"מ שמקיים את עפ"מ עפ"מ פאדום, ויהי ℓ עפ"מ שנצבעת כעת שנצבעת עפ"מ עפ"מ עפ"מ עפ"מ פאדום, ויהי

. מקיים e מקיים אחרי אחרי אחרי מקיים את מקיים T אזי אוי $e \notin T$ אם

.G- מ-לוקה של הצמתים מT מחלקת את מחלקת של מ-דירה חלוקה של הצמתים ב-B. נניח ש-e אזי, השמטת מ

איור

vע מסלול מסלול נוסף מ-Uע מהכלנו את הכלל האדום מכיל מסלול מסלול הפעלנו את הכלל האדום מכיל

 (T_1,T_2) שחוצה את שחוצה איe'=(x,y) שחער יש על המעגל אי

. אדומה אדומה פ' e' גם אינה כחולה כי $e' \notin T$ אינה כחולה פי אינה מהשמורה נובע פי e'

 $w(e') \le w(e)$ בנוסף, מהכלל האדום נובע

הוספת e' ל-T והשמטת e' יוצרת עץ פורש חדש (מבחנה 1, אם נוסיף... אם נשמיט...ם). בנוסף, לא הגדלנו את משקל העץ. לכן T החדש עפ"מ.

:G-נראה כעת כי האלגוריתם צובע את כל הקשתות ב

. נניח בשלילה שיש קשת e לא צבועה, אבל אי אפשר להפעיל אף אחד מהכללים.

לפי הכלל הכחול, הקשתות הכחולות יוצרות \underline{vv} של עצים כחולים, שכן הקשתות הכחולות תמיד מוכלות באיזשהו עפ"מ של הגרף. e=(u,v) מקרים לגבי מקרים לגבי

*איור אוי נקבל: אוי באותו עץ אוי נקבל: e איור אוי שני הקצוות של

v-ט u מעגל בעץ הכחול בין e ואת שמכיל את אדומות, של בין u לכן מעגל בעץ הכחול בין u לכן ניתן להפעיל את הכלל האדום.

*איור של פעצם בעצם e איור איור אונים:

נסמן ב-X את שאר הצמתים ב- T_1 , וב-X את שאר הצמתים.

. קיבלנו חתך ב-G שאין בו קשתות כחולות, לכן נוכל להפעיל את הכלל הכחול.

. בחול. e=(u,v) כחול, בה"כ נניח בעץ פחול פאינו בעץ פחול פאינו פיי פחול. בעץ פחול פאינו בעץ פחול. $\bar{X}=V\setminus X=\{v\}$ נגדיר

מצאנו חתך ללא קשת כחולה, ולכן ניתן להפעיל את הכלל הכחול.

. כל עוד יש ב-G קשת לא צבועה, מובטח שנוכל להפעיל את אחד הכללים, ולכן האלגוריתם צובע את כל הקשתות.

- G = (V, E) נתון גרף קשיר לא מכוון .Prim נתון .3.2
- . צומת כלשהי r כאשר $T \leftarrow \{r\}$ כאשר, נבחר לא צבועות, כלשהי.
 - (2) כל עוד $T \neq V$ בצע:
- $u \in T$ -ט כך שר, $(T, V \setminus T)$, כך שחוצה את החתך פ = (u, v), כך ש-
 - $T \leftarrow T \cup \{v\}$ צבע את פ בכחול ובצע •

דוגמת הרצה:

, $a \to e$ היא ($\{a\}$, $\{b,e,d,c\}$) היא את החתך שחוצה ביותר הקלה הקשת הקלה . $T = \{a\}$ נבחר נצבע אותה בכחול ונבצע (a,e) היא

, $a \to b$ איא ($\{a,e\}$, $\{b,d,c\}$) עבור את החתך שחוצה ביותר קלה ביותר . $T = \{a,e\}$ היא יעבור . $T \leftarrow \{a,b,e\}$ ונצבע אותה בכחול ונבצע

,b o d איא ($\{a,b,e\}$, $\{d,c\}$) את החתך שחוצה ביותר קלה ביותר . $T = \{a,b,e\}$ היא פעבור נצבע אותה בכחול ונבצע $T \leftarrow \{a,b,d,e\}$

 $b \to c$ איא ($\{a,b,d,e\}$, $\{c\}$) איז את החתך שחוצה ביותר הקלה הקלה . $T=\{a,b,d,e\}$ פעבור רבע אותה בכחול ונבצע $T\leftarrow\{a,b,c,d,e\}$

. מתקיים V=V לכן הגענו לעצירה.

G-ם אפ"מ ב-T (Prim משפט 2.3 (נכונות אלגוריתם ב-

הוא מימוש של האלגוריתם הגנרי. בראה כי האלגוריתם של Prim הוא נוספה כי האלגוריתם האלגוריתם האלגוריתם באדום. באדום. באדום לכל קשת שלא נוספה ל- T

נסתכל על קשת e=(u,v) שהאלגוריתם מוסיף ל-T באיטרציה כלשהי. באיטרציה זו, אין קצת כחולה שחוצה את החתך ($T,V\setminus T$).

בנוסף, הקשת e חוצה את החתך, והיא הקלה ביותר שחוצה את החתך הנ"ל ("בין אלו שאינן צבועות"). לכן צביעת e היא חוקית לפי הכלל הכחול.

 $(T,V\setminus T)$ איור 4: נבחר את הקשת הקלה ביותר אחוצה את החתך

נבחן את הקשתות שאינן ב-T בסיום האלגוריתם.

. במעגל ב-T סוגרת מעגל ב-T. במעגל זה הינה הקשת היחידה שאינה צבועה, ושאר הקשתות בהכרח כחולות. כל קשת e באדום היא הפעלה חוקית של הכלל האדום.

איור 5: כל קשת שלא נוספה ל-T סוגרת מעגל בעץ. ניתן להפעיל את הכלל האדום.

סה"כ קיבלנו שהאלגוריתם של Prim הוא מימוש ספציפי של האלגוריתם הגנרי.

.Prim סיכוכיות אלגוריתם 3.2.1

שאלה 2.4 מהי סיבוכיות האלגוריתם?

המפתח החתך. Prim הוא לבחור של אלגוריתם של של של של בחור בקלות החתך. בקלות החתך של אלגוריתם שאינן בTבתור עדיפויות Q.

.T- המשקל המינימלי של איזושהי האפע - $\ker(v)$ המפתח את לכל צומת לכל צומת אוחזק מפתח - $\ker(v)$ המשקל מסמנים און קשת כזאת, אז מסמנים און האלגוריתם האלגוריתם התור ריק.

$$T$$
-ט ע ו- ∞ איז $\left(\underbrace{\pi\left(v\right)}_{\text{key }\pi\left(v\right)},v\right)$ איז $\left(\underbrace{\pi\left(v\right)}_{\text{key }\pi\left(v\right)},v\right)$ איז $v\in Q$ איז $v\in Q$ איז $v\in Q$

.(heap) מינימום ערימת ערימת בעזרת Q את מינימום

שאלה 2.5 מה הפעולות שנבצע על הערימה?

$$\ker (v) \leftarrow \infty$$
 : אתחול עומת $v \in G$ מגדירים (1) אתחול לכל צומת יינו לכל אומת אתחול אתחול אתחול אתחול ווא אתחול אתחול לכל אומת אתחול א

- $u \in V \setminus T$ מצא בערימה את המפתח המינימלי, נניח כי הינו שייך לצומת (2)
 - T-ט u את (3)
 - $v \notin T$ ע, כך שר ע של ע (4)

 $\pi(v) \leftarrow u$ ועדכן, Decrease Key אם, בצע פעולת, בצע פעולת, בצע או $w(u,v) < \ker(v)$

סיבוכיות כל אחד מהשלבים:

- .O(|V|)- מתבצע ב-(1) צעד •
- $O(\log |V|)$ הוצאת המפתח המינימלי בצעד הוצאת המפתח ה
 - $O(|V|\log |V|)$ פעמים, סה"כ |V| פעמים •
- . פעמים, |E| תתבצע לכל היותר עבור כל השכנים של כל צומת, לכל היותר (4) פעמים. Decrease Key פעולת

סיבוכיות האלגוריתם:

$$O(|V|\log|V|) + O(|E|\log|V|) = O(|E|\log|V|)$$

.Kruskal האלגוריתם של 3.3.

- $F=\emptyset$, כל הקשתות לא צבועות, מיין את הקשתות בסדר לא יורד לפי משקלן, (1)
 - . המיון e סדר המיון (2)

.אם e סוגרת מעגל בעץ כחול, צבע אותה באדום

F-ל e של הוספה הוספה של בכחול, ובצע את אחרת צבע את

F-ב החזר הקשתות ב-(3)

דוגמת הרצה:

נקבל מיון של הקשתות:

$$\{(a \rightarrow e), (e \rightarrow d), (a \rightarrow b), (b \rightarrow d), (b \rightarrow c), (b \rightarrow e), (a \rightarrow d), (c \rightarrow d)\}$$
 מינימלית

- $.F \leftarrow F \cup \{a \rightarrow e\}$ נבחר בעץ כחול, בעץ או זו או קשת ($a \rightarrow e$). פנבחר נבחר נבחר •
- $F\leftarrow F\cup\{e
 ightarrow d\}$ נבחר בקשת (e
 ightarrow d). קשת זו לא סוגרת מעגל בעץ כחול, נבצע (e
 ightarrow d).
- $F \leftarrow F \cup \{a
 ightarrow b\}$ נבחר בקשת (a
 ightarrow b). קשת זו לא סוגרת מעגל בעץ כחול, נבצע (a
 ightarrow b). פנבחר בקשת (a
 ightarrow b).
 - F- נבחר בקשת (b o d). קשת או סוגרת מעגל בעץ כחול, לכן לא נוסיף אותה ל- נבחר בקשת (b o d). נבחר בקשת (b o d).
- $F \leftarrow F \cup \{b
 ightarrow c\}$ נבחר בקשת (b
 ightarrow c). קשת זו לא סוגרת מעגל בעץ כחול, נבצע (b
 ightarrow c). פער נבחר בקשת (b
 ightarrow c).
 - F- נבחר בקשת (b o e). קשת או סוגרת מעגל בעץ כחול, לכן לא נוסיף אותה ל- נבחר בקשת (b o e). קשת או סוגרת פער ינבחר בקשת (b o e).
 - F- נבחר בקשת (a o d). קשת זו סוגרת מעגל בעץ כחול, לכן לא נוסיף אותה ל-(a o d). פנבחר בקשת (a o d).
 - F- נבחר בקשת (c o d). קשת זו סוגרת מעגל בעץ כחול, לכן לא נוסיף אותה ל-(c o d). פנבחר בקשת (c o d) נבחר בקשת (c o d) פנבחר בקשת (c o d) נבחר בקשת (c o d) אותה ל-c o d
 - . ווו. לפי סדר המיון. G לפי קשתות לעבור על סיימנו לעבור על קשתות לפי האיל ($F=\{(a\to e)\,,(e\to d)\,,(a\to b)\,,(b\to c)\}$ את לחזיר כפלט את

.G. משפט 2.4 (נכונות) הגרף (V,F) שמורכב מכל הצמתים ב-G ומהקשתות ב-G שמורכב מכל הצמתים ב-G שמורכב מכל הצמתים ב-

הוכחה. נראה כי Kruskal מבצע הפעלה חוקית של הכלל הכחול או האדום.

. אם שאין בו קשתות אדומות מעגל בעץ כחול, אז מצאנו מעגל איין פו סוגרת מעגל פעץ סוגרת אדומות.

. היות שאינן צבועות שאינן בועה, היא המקסימלית בין הקשתות היחידה שאינה צבועה, היא היחידה שאינה eנפעיל את הכלל האדום.

:טוגרת מעגל ב-F, אז נבחין שני מקרים לא e=(u,v) אם

u אינו בעץ כחול, בה"כ נניח כי זהו הצומת e אינו של קצה אחד של

$$ar{X} = V \setminus X$$
 ואת $X = \{v\}$ נגדיר

מצאנו חתך שלא חוצות אותו קשתות כחולות. נפעיל את הכלל הכחול.

מבין הקשתות הלא צבועות שחוצות את $(X,ar{X})$, היא בעלת משקל מינימלי (בגלל המיון).

e אינו בעץ כחול, ניתן להגדיר חתך ולהפעיל את אינו בעץ פחול אינו בעץ פחול, ניתן איור 6: אם קצה אחד של

.שעצים כחולים e יש עצים כחולים.

 $ar{X}=V\setminus T_1$ ואת $X=T_1$, ונגדיר הקצוות, נסמנו ב- T_1 , ונגדיר ניקח עץ מאחד הקצוות,

קיבלנו חתך שלא חוצות אותו קשתות כחולות.

. הקשת שקל מינימלי בין הקשתות את החתך (X, \bar{X}) ואינן צבועות, עקב המיון. נפעיל את הכלל הכחול. הקשת e בעלת משקל מינימלי בין הקשתות שחוצות את החתך (X, \bar{X}) ואינן צבועות, עקב המיון. נפעיל את הכלל הכחול. לכן Kruskal הוא מימוש ספציפי של האלגוריתם הגנרי, ולכן T

סיבוכיות האלגוריתם של Kruskal: נשתמש בקבוצות לייצוג עצים כחולים, נבצע על מבנה הנתונים את הפעולות הבאות:

- v את הצומת אמכילה רק יצירת קבוצה Make-Set(v)
 - v בציאת את שמכילה שמכילה Find-Setv
- v של עם הקבוצה של Union(u,v) עחוד Union
- .Find-Set(v)-ו Find-Set(u) נסתכל על הקשת הבאה ברשימה לפי סדר המיון. נבצע (1)
- . בכחול. Union(u,v) אם Union באדום. אחרת, נבצע את e את קבוצה, נבצע את v-ו עו-ע (2)
 - $O(|E|\log |E|) = O(|E|\log |V|)$ אמן המיון של הקשתות: •
- בסיבוכיות: Union-ו Find-Set פעולות או באתחול, ועוד |E| באתחול, ועוד O(|V|) פעולות •

$$O((|V| + |E|)\log|V|) = O(|E|\log|V|)$$

 $O(|E|\log |V|)$ סה"כ זמן הריצה הוא

מסלולים קלים ביותר

t מצומת s לצומת ביותר הקצרה ביותר מצומת מאלה 3.1 מה הדרך

בו. שפר המסלול נמדד לפי מספר הקשתות בו. BFS- ימצא את המסלול הקצר כאשר אורך

1. מסולים קלים ביותר בגרפים מכוונים ממושקלים

.G. ופונקציית משקל על הקשתות אי ו $E o \mathbb{R}$ נתון גרף מכוון משקלים על הקשתות משקל על הקשתות הקשתות ה

שאלה 3.2 מה האורך של מסלול P בגרף מכוון ממשוקל?

הגדרה 3.1 (אורך של מסלול בגרף מכוון ממושקל) עבור גרף מכוון G=(V,E) אורך העסלול בגרף מכוון ממושקל הקשתות על המסלול, דהיינו:

$$w(P) \triangleq \sum_{e \in P} w(e)$$

הגדרה 3.2 (מסלול קל ביותר בגרף מכוון ממושקל)

אזי: ע, אזיי לצומת הסלול היי
ה $\delta\left(u,v\right)$ אזיי אזיי אורך אזרך אורך אורך אזיי

$$\delta\left(u,v\right) = \begin{cases} \min\left\{w\left(P\right):\ u \overset{P}{\to} v\right\} & G\text{--} \text{ } u\text{--} v \end{cases}$$
 אחרת

נרצה לחשב מסלולים קלים ביותר בגרף מכוון נתון.

דוגמה 3.1 (דוגמה לסיבה שמסלול קל ביותר עלול להיות לא מוגדר היטב כאשר יש מעגלים שליליים)

איור 1: גרף מכוון ממושקל לדוגמה

3. מסלולים קלים ביותר

32

s o r o v o t :7 הינו s o t ביותר

 $.w(u,v) \leftarrow (-5)$ עתה, נניח שנשנה

• נסתכל על המסלול:

$$s \xrightarrow{3} u \xrightarrow{-5} v \xrightarrow{2} t$$

אורך המסלול: 0.

• אם ניקח את המסלול:

$$s \xrightarrow{3} u \xrightarrow{-5} v \xrightarrow{4} u \xrightarrow{-5} v \xrightarrow{2} t$$

(-1)!נקבל אורך מסלול

,t-s- היות שהמשקל של המעגל v הוא v הוא v הוא v היות מסלול קל ביותר מ-v היות המעגל השלילי מספר לא חסום של פעמים ולהגיע לאורך ($-\infty$).

2. מבנה אופטימלי של מסלולים קלים

G מסלול בגרף מכוון) יהי (תת-מסלול בגרף מסלול כלשהו איזי בגרף מכוון) יהי (תת-מסלול בגרף מכוון) יהי

עבור v_i ל ל-יות ער מסלול של P להיות: את גדיר את גדיר ל-1, נגדיר להיות:

$$P_{ij} = \left\langle v_i, v_{i+1}, \dots, v_j \right\rangle$$

 v_j ל ל-יותר מ-אזי אזי אוא מסלול קל מסלול אזי אזי P_{ij}

הוכחת הלמה. אם נפרק את המסלול P לתתי-מסלולים:

$$v_1 \stackrel{P_{1i}}{\longleftrightarrow} v_i \stackrel{P_{ij}}{\longleftrightarrow} v_j \stackrel{P_{jk}}{\longleftrightarrow} v_k$$

:אזי:

$$w(P) = w(P_{1i}) + w(P_{1j}) + w(P_{jk})$$

 $w\left(P_{ij}'\right) < w\left(P_{ij}\right)$ ע כך ש- v_i מ- v_j מ- v_j מסלול מסלול מסלול מיים בשלילה בשלילה מסלול מ

 $:v_k$ -אזי קיים מסלול מ-ע ל-אזי

$$v_1 \stackrel{P_{1i}}{\longleftrightarrow} v_i \stackrel{P'_{ij}}{\longleftrightarrow} v_j \stackrel{P_{jk}}{\longleftrightarrow} v_k$$

P של מינימליות בסתירה W(P), של של קיבלנו שאורכו של מינימליות של