Lecture 11: Convergence in probability

Ciaran Evans

Convergence in probability

Definition: A sequence of random variables $X_1, X_2, ...$ converges in probability to a random variable X if, for every $\varepsilon > 0$,

$$\lim_{n\to\infty}P(|X_n-X|\geq\varepsilon)=0$$

We write $X_n \stackrel{p}{\to} X$.

Example

Let $U \sim \textit{Uniform}(0,1)$, and let $X_n = \sqrt{n} \ \mathbb{I}\{U \leq 1/n\}$.

Then $X_n \stackrel{p}{\to} 0$.

Weak Law of Large Numbers (WLLN)

Theorem: Let $X_1, X_2, ...$ be iid random variables with $\mathbb{E}[X_i] = \mu$ and $Var(X_i) = \sigma^2 < \infty$. Then

$$\overline{X}_n \stackrel{p}{\to} \mu$$

Activity Part I

Conduct a simulation to see the WLLN in action:

 $https://sta711\text{-}s25.github.io/class_activities/ca_lecture_11.html\\$

Activity Part I

Another example

Suppose that $X_1, X_2, ... \stackrel{iid}{\sim} Uniform(0, 1)$, and let $X_{(n)} = \max\{X_1, ..., X_n\}$. Then $X_{(n)} \stackrel{p}{\rightarrow} 1$.

Activity Part II

Use a simulation to verify the Uniform example from the previous slide:

 $https://sta711-s25.github.io/class_activities/ca_lecture_11.html$