ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

BİLGİSAYARLI GÖRÜYE GİRİŞ DÖNEM SONU PROJESİ

MİKAİL AKAR 20060981 SERRA AKTAŞ 20060386

Dr. Öğretim Üyesi Erhan Ergün Haziran,2024 Proje içeriğinde kullanılan görsel aşağıda verilmiştir.

İster 1 ve 2

İlaç kutusunun dışında kalan bölgenin maskeleme ile ayrılması ve sadece kutuya ait görüntünün bölgesinin oluşturulması. Kutunun sağ-sol ve alt-üst köşe noktalarının belirlenmesi.

```
[rows, cols, ~] = size(img);
gimg = rgb2gray(img);
box_size = [boxs1, boxs2];
box_center = [mek1, mek2];
mask = zeros(rows, cols);
mask_start = box_center - box_size/2;
mask_end = box_center + box_size/2;
mask(mask_start(2):mask_end(2), mask_start(1):mask_end(1)) = 1;
masked_img = gimg;
masked_img(repmat(mask, [1, 1, size(gimg, 3)]) ~~ 1) = 0;
imshow(masked_img);
```


İster 3 ve 4

İstenilen görüntü matrisinin oluşturulması ve maskelenmiş görüntünün her pikselinin çıkış görüntü matrisinde olması gereken indis değerinin hesaplanarak kopyalanması.

```
output_img = zeros(rows, cols, 'uint8');
for y = 1:rows
    for x = 1:cols
        if mask(y, x) = 1
            output_img(round((y-(mek2-boxs2/2)+1)*(rows/boxs2)),
            round((x-(mek1-boxs1/2)+1)*(cols/boxs1))) = masked_img(y, x);
    end
end
end
imshow(output_img);
```


İster 5

Çıkış görüntü matrisinde karşılığı olmayan pikseller için medyan filtre uygulanarak uygun değerler tahmin edilmesi.

```
B = medfilt2(output_img, [4 4]);
fill_img = output_img;
for y = 1:rows
    for x = 1:cols
        if fill_img(y, x) == 0
            fill_img(y,x) = B(y,x);
        end
    end
end
imshow(fill_img);
```


İster 6

Elde edilen görüntü çıkış dosyası olarak kaydedilmesi.

```
imwrite(fill_img, 'sonuc.jpg');
```

Fonksiyonun tamamı bu şekildedir:

```
function ilac(img, boxs1, boxs2, mek1, mek2)
  [rows, cols, ~] = size(img);
  gimg = rgb2gray(img);
  box_size = [boxs1, boxs2];
  box_center = [mek1, mek2];
  mask = zeros(rows, cols);
  mask_start = box_center - box_size/2;
  mask_end = box_center + box_size/2;
  mask(mask_start(2):mask_end(2), mask_start(1):mask_end(1)) = 1;
  masked_img = gimg;
  masked_img(repmat(mask, [1, 1, size(gimg, 3)]) \approx 1) = 0;
  imshow(masked_img);
  output_img = zeros(rows, cols, 'uint8');
  for y = 1:rows
      for x = 1:cols
          if mask(y, x) = 1
              output_img(round((y-(mek2-boxs2/2)+1)*(rows/boxs2)),
              round((x-(mek1-boxs1/2)+1)*(cols/boxs1))) = masked_img(y, x);
          end
      end
  imshow(output_img);
  B = medfilt2(output_img, [4 4]);
  fill_img = output_img;
  for y = 1:rows
      for x = 1:cols
          if fill_img(y, x) = 0
              fill_img(y,x) = B(y,x);
          end
      end
  end
  imshow(fill_img);
  imwrite(fill_img, 'sonuc.jpg');
endfunction
```

Birinci görsel için bu şekilde fonksiyon çağırdık. Parametre olarak kutunun ebatlarını ve merkez noktasını verdik.

```
img = imread('ilac1.jpg');
ilac(img, 460, 300, 246, 164);
```

İster 7

Birkaç örnekte daha işleyişin gösterilmesi

İlaç kutusunun orijinal görseli:

Fonksiyondan sonra ilaç kutusunun görseli:

İlaç kutusunun orijinal görsel:

Fonksiyondan sonra ilaç kutusunun görseli:

