FOR TEACHERS' USE ONLY

1996]

A. Maths

GENERAL INSTRUCTIONS TO MARKERS

- It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct alternative solution merits all the marks allocated to that part, unless a particular method is specified in the question.
- 2. In the marking scheme, marks are classified as follows:

'M' marks - awarded for knowing a correct method of solution and attempting to apply it;

'A' marks - awarded for the accuracy of the answer;

Marks without 'M' or 'A' - awarded for correctly completing a proof or arriving at an answer given in the question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answer should NOT be awarded. Unless otherwise specified, no marks in the marking scheme are subdivisible.

- 3. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 4. The symbol pp-1 should be used to denote marks deducted for poor presentation (p.p.). Marks entered in the Page Total Box should be the <u>net</u> total score on that page. Note the following points:
 - (a) At most deduct 1 mark for p.p. in each question, up to a maximum of 3 marks for the whole paper.
 - (b) For similar p.p., deduct only 1 mark for the first time that it occurs, i.e. do not penalise candidates twice in the whole paper for the same p.p.
 - (c) In any case, do not deduct any marks for p.p. in those parts where candidates could not score any marks.
 - (d) Some cases in which marks should be deducted for p.p. are specified in the marking scheme. However the lists are by no means exhaustive. Markers should exercise their professional judgement to give p.p.s in other situations.
 - 5. In the Marking Scheme, steps which can be omitted are enclosed by dotted rectangles whereas alternative answers are enclosed by solid rectangles
 - Unless otherwise specified in the question, numerical answers not given in exact values should not be accepted.
 - Unless otherwise specified in the question, use of notations different from those in the marking scheme should not be penalised.

96-CE-A MATHS I-2 只限教師參閱

 Solution	Marks	Remarks
$f'(x) = 3\sin^2 x \cos x$	1A	·
$f''(x) = 6\sin x \cos^2 x - 3\sin^3 x$	1M+1A 3	Accept equivalent forms
 $\frac{\mathrm{d}}{\mathrm{d}x}(x^2) = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x}$	1A	Withhold this mark if $\Delta x \rightarrow 0$ is omitted.
$= \lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2}{\Delta x}$	1A	For simplification
$= \lim_{\Delta x \to 0} (2x + \Delta x)$ $= 2x$	1A	Tot simplification
= 2 x	<u>1A</u>	
$\frac{2x-3}{x+1} \le 1$		
$\frac{2x-3}{x+1} - 1 \le 0$	1M	
$\frac{x-4}{x+1} \le 0$	1A	
$-1 < x \le 4$		1A only for $-1 \le x \le 4$
Alternative Solution (1)		
Consider the following cases (i) $x > -1$, (ii) $x < -1$.	1M	Awarded even if equality sign included
Case $1:x > -1$		
$2x-3\leq x+1$		
<i>x</i> ≤ 4		
Since $x > -1$, $\therefore -1 < x \le 4$.	→ 1A	
Case $2:x < -1$		
$2x-3 \ge x+1$	†	
x ≥ 4		
Since $x < -1$, there is no solution.		
Combining the 2 cases, $-1 < x \le 4$.	2A	1A only for $-1 \le x \le 4$

	Solution	Marks	Remarks
Alternative Sol	ution (2)		
$\frac{2x-3}{x+1} \le 1$			
		1M	
(2x-3)(x+1)	and $x \neq -1$ and $x \neq -1$ and $x \neq -1$ $0 \leq 0$ and $x \neq -1$		
$x^2 - 3x - 4 \le 0$	and $x \neq -1$		
(x+1)(x-4)	≤ 0 and $x \neq -1$	1A	1A only for $-1 \le x \le 4$
$-1 < x \le 4$		2A	
	_		
. (a) $x^2 - 6x$	$+11 = (x^2 - 6x + 9) + 2$	1M	For using method of completing square
	$=(x-3)^2+2$		
$\therefore a = -1$	B, b=2	1A	
Alternat	ive Solution (1)		
x^2-6x	$+11 \equiv (x+a)^2 + b$		
ļ	$=x^2+2ax+a^2+b$		
	ng coefficients,		
$\begin{cases} 2a = -1 \\ a^2 + b \end{cases}$	6	1M	For comparing coefficients
	-3 , b = 2	1A	
	ive Solution (2)		
	$+11 \equiv (x+a)^2 + b$		
	$= 0, a^2 + b = 11$) _{1M}	For substituting any two real value of x
	$= 1 (a+1)^2 + b = 6$	J	
Solving	the 2 equations, $a = -3$, $b = 2$.	1A	
The leas	t value of $x^2 - 6x + 11$ is 2.	1A	
			,
			,

96-CE-A MATHS I-4 只限教師參閱

	Solution	Marks	Remarks
(b)	The range of possible values of $\frac{1}{x^2 - 6x + 11}$ is $0 < \frac{1}{x^2 - 6x + 11} \le \frac{1}{2}.$	_1M+1A 5	1M for ≤ 1 least value fond in(a) 1A if all correct
•	Alternative solution Let $\frac{1}{x^2 - 6x + 11} = r$ $rx^2 - 6rx + (11r - 1) = 0$ $\Delta = 36r^2 - 4r(11r - 1) \ge 0$ $2r^2 - r \le 0$ $r(2r - 1) \le 0$ $0 < r \le \frac{1}{2}$ Since $r \ne 0$	1M	
	$0 < r \le \frac{1}{2} \qquad \text{Since } r \ne 0$	1A	
(a)	$\frac{2+4i}{1-i} = \frac{2+4i}{1-i} (\frac{1+i}{1+i})$	1M	- '
	$=\frac{2+2i+4i-4}{2}$ $=-1+3i$	1A	
(b)	$p+qi=\frac{2+4i}{1-i}(q+i)$		
	p+qi = (-1+3i)(q+i) $= -q-3+(3q-1)i$ Comparing coefficients,	1M	For simplifying to the form $a + b i = c + d i$
	$\begin{cases} p = -q - 3 \\ q = 3q - 1 \end{cases}$	1M	
	Alternative solution $p + qi = \frac{2 + 4i}{1 - i}(q + i)$		
	(p+qi)(1-i)=(2+4i)(q+i) (p+q)+(-p+q)i=(2q-4)+(2+4q)i Comparing coefficients,	1M	For simplifying to the form $a + b i = c + d i$
	$\begin{cases} p+q=2q-4\\ -p+q=2+4q \end{cases}$	1M	
	$\therefore q = \frac{1}{2}$ $p = \frac{-7}{2}$	1A 1A	_

只限教師參閱 FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-6}{(x+1)^2}$	1A	
$\frac{-6}{(x+1)^2} = -\frac{1}{6}$	1M+1A	1A for slope of line = $-\frac{1}{6}$
$(x+1)^2 = 36$		
x = 5 or $-7The points of contact are (5, 1) and (-7, -1).$	1A+1A	
Equations of tangents are $\frac{y-1}{x-5} = -\frac{1}{6} \text{and} \frac{y+1}{x+7} = -\frac{1}{6}$	1M	For point-slope form
x-5 6 $x+7$ 6 $x+6y-11=0$ and $x+6y+13=0$.	1A	
Alternative Solution Let the equation of the tangent be $x+6y+c=0$	1A	
Put $x = -(6y + c)$ into C. $y = \frac{6}{6y + (1 - c)}$	1M	
$y = \frac{6}{-6y + (1-c)}$ $6y^{2} + (c-1)y + 6 = 0$ $\Delta = (c-1)^{2} - 144 = 0$	1A	
$\Delta = (c-1)^2 - 144 = 0$ $c = 13 \text{ or } -11$	1M 1A+1A	
The equations of the tangents are $x + 6y + 13 = 0$ and $x + 6y - 11 = 0$.	1A	
•	7	
7. (a) Unit vector = $\frac{1}{\sqrt{4^2 + 3^2}} (4\vec{i} + 3\vec{j})$	1M	Accept $\frac{\overline{OA}}{ \overline{OA} }$
$=\frac{4}{5}\vec{i}+\frac{3}{5}\vec{j}$	1A	
$\overrightarrow{OC} = \frac{16}{5} \left(\frac{4}{5} \vec{i} + \frac{3}{5} \vec{j} \right)$ $= \frac{64}{25} \vec{i} + \frac{48}{25} \vec{j}$	1A	OR $\frac{16}{25}(4\bar{i}+3\bar{j})$
		,
		÷

96-CE-A MATHS I-6 只限教師參閱 FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
(b) $\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB}$ $= (\frac{64}{25}\overrightarrow{i} + \frac{48}{25}\overrightarrow{j}) - (\overrightarrow{i} + 4\overrightarrow{j})$ $= \frac{39}{25}\overrightarrow{i} - \frac{52}{25}\overrightarrow{j}$ $\overrightarrow{BC} \cdot \overrightarrow{OA} = (\frac{39}{25}\overrightarrow{i} - \frac{52}{25}\overrightarrow{j}) \cdot (4\overrightarrow{i} + 3\overline{j})$	1M .	
$=\frac{39}{25}(4)-\frac{52}{25}(3)$	1M	For $\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = 1$ and $\vec{i} \cdot \vec{j} = 0$
$= 0$ $\therefore BC \text{ is perpendicular to } OA.$	1	Omitting vector sign generally (pp-1) Omitting dot sign generally (pp-1) (pp-1) for writing \vec{i}^2 or $\frac{\vec{a}}{\vec{b}} = \frac{1}{2}$ etc.
Alternative solution	6	
(b) $ \overrightarrow{OB} = \sqrt{1^2 + 4^2} = \sqrt{17}$ $ \overrightarrow{OC} = \sqrt{\left(\frac{64}{25}\right)^2 + \left(\frac{48}{25}\right)^2} = \frac{16}{5}$ $\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB}$ $= \left(\frac{64}{25}\overrightarrow{i} + \frac{48}{25}\overrightarrow{j}\right) - (\overrightarrow{i} + 4\overrightarrow{j})$ $= \frac{39}{25}\overrightarrow{i} - \frac{52}{25}\overrightarrow{j}$	1M	
$ \overrightarrow{BC} = \sqrt{(\frac{39}{25})^2 + (\frac{-52}{25})^2} = \frac{13}{5}$ $ \overrightarrow{OC} ^2 + \overrightarrow{BC} ^2 = (\frac{16}{5})^2 + (\frac{13}{5})^2$ $= (\frac{16}{5})^2 + (\frac{13}{5})^2$	lM	For using Pythagoras Theorem
$= 17 = OB^{2}$ $\therefore BC \text{ is perpendicular to } OA$	1	1 of using 1 yangotas Theorem
8. (a) $(k-2)^2 - 4(k+1) > 0$	1M	No mark for ≥ 0
$k^2 - 8k > 0$	1A	For simplifying L.H.S.
k(k-8) > 0		vanipas, and Marie.
k > 8 or $k < 0$	1A	
(b) $\alpha + \beta = k - 2$	1A	,
k - 2 < 5		
-5 < k - 2 < 5	lM	For $-5 < \alpha + \beta < 5$ OR $(\alpha + \beta)^2 < 25$
-3 < k < 7	1A	
Combining with (a), $-3 < k < 0$.	1 <u>A</u>	

Solution		Marks	Remarks
		1A	Accept $(\frac{3}{4}, 0)$
 (a) (i) The x-intercept is 3/4. The y-intercept is -3. 		1A	Accept (0, -3)
(ii) $\frac{dy}{dx} = \frac{4(x^2+1) - 2x(4x-3)}{(x^2+1)^2}$		1M+1A	1M for quotient rule.
$\frac{4(x^2+1)-2x(4x-3)}{(x^2+1)^2} \le 0$		1M	Awarded even if included in (iii) Accept < 0
$-4x^2 + 6x + 4 \le 0$ $(2x+1)(x-2) \ge 0$			1
$x \ge 2$ or $x \le -\frac{1}{2}$		1A	Accept $x > 2$ or $x < -\frac{1}{2}$
(iii) $\frac{dy}{dx} = \frac{4(x^2 + 1) - 2x(4x - 3)}{(x^2 + 1)^2}$ $\frac{dy}{dx} = 0 \text{at} x = 2 \text{or} -\frac{1}{2}$		1M	
dx 2 The turning points are (2, 1) an	d $(-\frac{1}{2}, -4)$.		
(2, 1) is a maximum point.		1A	Awarded independent from the answer in (ii).
$(-\frac{1}{2}, -4)$ is a minimum point	t.	1A9	allower in (a).
(1)			
(b) $y = \frac{4x}{x^2+1}$ $(2,1)$ $(2,1)$ $(2,1)$ $(3,1)$ $(3,1)$ $(4,1)$ $(4,1)$ $(4,1)$ $(5,-6,43)$	(10, 3 7) (10, 0.37)	1A	Shape y Accept
(-1/2,-4)		1A 1A	Labelling the end-points Labelling the intercepts and turning points
		3	-

96-CE-A MATHS I-8 只限教師參閱

		- ONL	
Solution	Marks	Remarks	
$y = \frac{ 4x-3 }{x^2+1}$ $(10, \frac{43}{101})$ $(10, \frac{37}{101})$ $(10, \frac{37}{101})$	2M	For reflection (Accept no labelling)	
The greatest value is 4. The least value is 0.	1A 1A 4		_
			_
96-CE-A MATHS I-9		· ·	

只限教師參閱

	Solution	Marks	Remarks
(a) (i)	$\overrightarrow{AE} = \frac{2\overrightarrow{a} + t\overrightarrow{b}}{1 + t}$	1A	
(ii)	$\overrightarrow{AE} = \frac{7\overline{a} + \overrightarrow{AF}}{8}$	2A	
	Alternative Solution		
	$\overrightarrow{AE} = \overrightarrow{AD} + \overrightarrow{DE}$	1A	
	$= \vec{a} + \frac{1}{8}(\overrightarrow{DF})$		
	$= \vec{a} + \frac{1}{8} (\overrightarrow{AF} - \vec{a})$		
	$= \frac{7}{8}\vec{a} + \frac{1}{8}\overrightarrow{AF}$	1A	
	$\frac{2\vec{a} + t\vec{b}}{1 + t} = \frac{7\vec{a} + \overrightarrow{AF}}{8}$ $\Rightarrow 2\vec{a} + t\vec{b}$	1M	
	$\overrightarrow{AF} = 8\left(\frac{2\overrightarrow{a} + t\overrightarrow{b}}{1 + t}\right) - 7\overrightarrow{a}$ $= \frac{9 - 7t}{1 + t}\overrightarrow{a} + \frac{8t}{1 + t}\overrightarrow{b}$	1	
	Alternative Solution		-
grade and seeded	$\overrightarrow{AF} = \overrightarrow{AD} + \overrightarrow{DF}$	1M	
	$= \overrightarrow{AD} + 8\overrightarrow{DE}$ $= \overrightarrow{a} + 8(\overrightarrow{AE} - \overrightarrow{AD})$		·
	$= \vec{a} + 8(A\vec{E} - A\vec{D})$ $= \vec{a} + 8(\frac{2\vec{a} + t\vec{b}}{1 + t} - \vec{a})$		
	$=\frac{9-7t}{1+t}\vec{a}+\frac{8t}{1+t}\vec{b}$	1	
		5	
(b) (i)	Since A , B , F are collinear,		
	$\frac{9-7t}{1+t}=0$	1M	
	$t = \frac{9}{7}$	1A	
(ii)	$(1) \ \vec{a} \cdot \vec{b} = \vec{a} \vec{b} \cos \angle BAC$		
	$=3(2)(\frac{1}{3})$		
	=.2	1A	,
	(2) $\overrightarrow{AB} \cdot \overrightarrow{BC} = \overrightarrow{b} \cdot (\overrightarrow{AC} - \overrightarrow{AB})$	1M	For $\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$
	$= \vec{b} \cdot (2\vec{a} - \vec{b})$ $= 2\vec{b} \cdot \vec{a} - \vec{b} \cdot \vec{b}$	1M	For distributive law
	$= 2b \cdot a - b \cdot b$ $= 2(2) - 4$	lA	For $\vec{b} \cdot \vec{b} = 4$
	= 0	1A	;

Solution	Marks	Remarks
$\overrightarrow{AD} \cdot \overrightarrow{DE} = \overrightarrow{AD} \cdot (\overrightarrow{AE} - \overrightarrow{AD})$ $= \overrightarrow{a} \cdot (\frac{2\overrightarrow{a} + \frac{9}{7}\overrightarrow{b}}{1 + \frac{9}{7}} - \overrightarrow{a})$	lM	For substituting t to find \overrightarrow{DE}
$= \vec{a} \cdot (\frac{-2\vec{a} + 9\vec{b}}{16})$ $= -\frac{2}{16} (\vec{a} \cdot \vec{a}) + \frac{9}{16} (\vec{b} \cdot \vec{a})$ $= -\frac{2}{16} (3)^2 + \frac{9}{16} (2)$		
= 0	1A	
(3) Since $\overrightarrow{AB} \cdot \overrightarrow{BC} = \overrightarrow{AD} \cdot \overrightarrow{DE} = 0$, $\therefore \angle CBF = \angle CDF = \frac{\pi}{2}$ $\therefore \text{ The points } B, C, D \text{ and } F \text{ are}$	} 1M	
concyclic. Converse of ∠s in the same seg	ment.	
\therefore The circle also passes through F .	1A	Omitting vector sign generally (pp-1) Omitting dot sign generally (pp-1) (pp-1) for writing \vec{i}^2 or $\frac{\vec{a}}{\vec{b}} = \frac{1}{2}$ etc.

Solution	l	Marks	Remarks
1. (a) $V = (\frac{1}{2}x^2 \sin \theta)$	0°)ℓ		
$=\frac{\sqrt{3}}{4}x^2 \ell$	*	1A	
Since $V=24$,	$\sqrt{3}$ $\sqrt{2}$ $\ell = 24$	1M	For establishing a relation in x and t
Since v = 24,	$\frac{4}{4}x^2\ell = 32\sqrt{3}$		
$S = 2\left(\frac{1}{2}x^2\sin x\right)$		1A	
_			
$=\frac{\sqrt{3}}{2}x^2+2$	$x(\frac{32\sqrt{3}}{x^2})$		-
$S = \frac{\sqrt{3}}{2}x^2 + \frac{6}{3}$	4√3	,	
$S = \frac{1}{2}x^{2} + \frac{1}{2}$	x	4	
(b) $\frac{\mathrm{d}S}{\mathrm{d}x} = \sqrt{3}x - \frac{6}{3}$	$\frac{1\sqrt{3}}{x^2}$	1A	
$\frac{dS}{dr} = 0$			
$\sqrt{3}x = \frac{64\sqrt{3}}{r^2}$	· · · •	1M	
x = 4		1A	
			
$\frac{\mathrm{d}^2 S}{\mathrm{d} x^2} = \sqrt{3} + \frac{1}{2}$	$\frac{128\sqrt{3}}{x^3} > 0 \qquad \text{at } x = 4$	1	
. 6::-		1M	For checking
	imum at $x = 4$.	ľ	
When x	$= 4, \ell = 2\sqrt{3}.$	1A5	Withhold this mark if checking is omitted
-	$2h \tan 30^\circ) (2\sqrt{3})$		
$=2h^2$	tan 30°) (2√3)	1	
A = (2h) $= 4h$	$tan 30^{\circ}) (2\sqrt{3})$	1	
$\frac{\mathrm{d}V}{\mathrm{d}t} = -$	$\frac{1}{10}A$		
$\frac{\mathrm{d}V}{\mathrm{d}h}\frac{\mathrm{d}h}{\mathrm{d}t}$		1M	For chain rule
		1A	
	$=-\frac{1}{10}(4h)$	IA IA	For $\frac{\mathrm{d}V}{\mathrm{d}h} = 4h$ only.
$\frac{\mathrm{d}h}{\mathrm{d}t} = -$	10	1A	·

Solution	Marks	Remarks
Alternative Solution (1)		
$V=2h^2$		·
$\frac{\mathrm{d}V}{\mathrm{d}t} = 4h \frac{\mathrm{d}h}{\mathrm{d}t}$	1A	
$-\frac{1}{10}(4h) = 4h\frac{\mathrm{d}h}{\mathrm{d}t}$	1 M	For substitution in LHS
$\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{1}{10}$	1A	·
Alternative Solution (2)		
$\frac{\mathrm{d}V}{\mathrm{d}t} = -\frac{1}{10}A$		
$\frac{dV}{dh}\frac{dh}{dt} = -\frac{1}{10}A$ $A\frac{dh}{dt} = -\frac{1}{10}A$ $\therefore \frac{dV}{dh} = A$	1M	For chain rule
$A\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{1}{10}A \qquad \because \frac{\mathrm{d}V}{\mathrm{d}h} = A$	1A	For $\frac{\mathrm{d}V}{\mathrm{d}h} = A$
$\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{1}{10}$	1A	-
(ii) At $t = 0$, $h = 4\cos 30^\circ = 2\sqrt{3}$		
$\therefore \text{ Time required } = \frac{2\sqrt{3}}{\frac{1}{10}}$	lM	
$=20\sqrt{3}$	<u>IA</u>	

只限教師參閱 FOR TEACHERS' USE ONLY

		Marks	Remarks
	Solution		
2. (a)	$arg(1-i) = -\frac{\pi}{4} \qquad OR - 45^{\circ}$	1A	Accept $-\frac{\pi}{4} + 2k\pi$
	$\arg\left(\frac{z}{1-i}\right) = \frac{\pi}{2}$	2M	
	$\arg z - \arg(1-i) = \frac{\pi}{2}$ $\arg z - (-\frac{\pi}{4}) = \frac{\pi}{2}$		
	$\arg z = \frac{\pi}{4} \qquad \text{OR } 45^{\circ}$	1A	Accept $\frac{\pi}{4} + 2k\pi$
	Alternative solution for evaluating arg (z)		
	Let $z=x+yi$ $\frac{z}{1-i} = \frac{x+yi}{1-i} \left(\frac{1+i}{1+i}\right)$	1M	
	$=\frac{(x-y)}{2}+\frac{x+y}{2}i$	 >0 1M	
	Since $\arg(\frac{z}{1-i}) = \frac{\pi}{2}$, $\therefore \operatorname{Re}(\frac{z}{1-i}) = 0$ and $\operatorname{Im}(\frac{z}{1-i})$		
	i.e. $x-y=0$ x=y $x+y>0$		
	$\therefore \arg z = \tan^{-1}(\frac{y}{x}) = \tan^{-1}(1)$	1A	
	$=\frac{\pi}{4}$		-
	Imaginary	1A+1A	1A for a straight line through O
			1A if argument is also correct
	Real		(pp-1) if axes are not labelled
			-2A Real
			Im Z —— 1A only
			Real
		6	,
f)			
	$w^3 = (\overline{w})^3$	1A+1M	1 1A for LHS
	$r^{3}(\cos 3\theta + i \sin 3\theta) = [r(\cos(-\theta) + i \sin(-\theta))]^{3}$ $= r^{3} [\cos(-3\theta) + i \sin(-3\theta)]$	IATIN	1 IA for $\overline{w} = r[\cos(-\theta) + i\sin(-\theta)]$ (can be

, 96-CE-A MATHS I-14 只限教師參閱

Solution -	Marks	Remarks
$= r^3 (\cos 3\theta - i \sin 3\theta)$	1A	
$\therefore r^3 \sin 3\theta = 0$	10	
,		
$\sin 3\theta = 0 \qquad \because r > 0$	1A	
$3\theta = n\pi$		(can be omitted)
$\theta = \frac{2\pi}{3} \qquad \because \frac{\pi}{2} < \theta < \pi$	1A	Accept degrees
32		
2π		
$\therefore \arg w = \frac{2\pi}{3}$		
Alternative Solution (1)		4
Let $w = r(\cos\theta + i\sin\theta)$		
$w^3 = (\overline{w})^3$		
$w^3 = \frac{w}{w^3}$	1M	
$w = w$ $\therefore \text{ Imaginary part of } w^3 = 0$		
· · · · · · · · · · · · · · · · · · ·	lA /	
Since $w^3 = r^3(\cos 3\theta + i \sin 3\theta)$	1A	(can be omitted)
$r^3\sin 3\theta = 0$	1.0	
$\sin 3\theta = 0$	1A	
$\theta = \frac{2\pi}{3}$	1A	
Alternative Solution (2)		
Let $w = x + yi$ $w^3 = (\overline{w})^3$		
$w = (w)^{2}$ $(x+yi)^{3} = (x-yi)^{3}$	1M	
$(x+yi) = (x-yi)$ $x^3 + 3x^2(yi) + 3x(yi)^2 + (yi)^3 = x^3 - 3x^2(yi) +$	1101	
$3x(yi)^2 - (yi)^3$	1A	
$6x^2yi + 2(yi)^3 = 0$		
$3x^2y - y^3 = 0$	1A	
$y(3x^2-y^2)=0$		
$y = 0$ or $\frac{y}{x} = \pm \sqrt{3}$		
· ·		
Since $\frac{\pi}{2} < \arg w < \pi$, $\frac{y}{x} = -\sqrt{3}$	1A	
······································		
$y=0$ and $\frac{y}{x} = \sqrt{3}$ are rejected		
i		,
$\therefore \arg w = \tan^{-1} \left(\frac{y}{x} \right)$		
$= \tan^{-1}(-\sqrt{3})$		
$=\frac{2\pi}{3}$	1A	
		-{
	5	

96-CE-A MATHS I-15 **只限教師參閱**

只限教師參閱 FOR	TEACHE	RS'U	SE ONLY
Solution		Marks	Remarks
(c) $z = 2\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$ $w = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$	}	lM	Awarded if either one is correct
The complex number represented by Q $= z + w$ $= 2\sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}) + 2(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})$		2M	·
$=2\sqrt{2}(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i)+2(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)$		1A	(can be omitted)
$= 1 + (2 + \sqrt{3}) i$	-	1A5	

		Solution	Marks	Remarks
13.	(a)	$\alpha + \beta = \lambda$ and $\alpha \beta = 1$	1A	(can be omitted)
J .	(4)			(0.000000000000000000000000000000000000
		$S_2 = \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	1M	•
		$=\lambda^2-2$	1A	
		$S_3 = \alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha^2\beta - 3\alpha\beta^2$	1M	OR = $(\alpha + \beta) (\alpha^2 - \alpha \beta + \beta^2)$ = $(\alpha + \beta) [(\alpha + \beta)^2 - 3\alpha\beta]$
		$= (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$		$= (\alpha + \beta)[(\alpha + \beta)^{-1} - 3\alpha\beta]$
		$=\lambda^3-3\lambda$	1A 5	-
				· ·
	(b)	$\alpha^5 - \lambda \alpha^4 + \alpha^3$		
		$=\alpha^3(\alpha^2-\lambda\alpha+1)$. 1A	
		= 0 $\therefore \alpha$ is a root of $x^2 - \lambda x + 1 = 0$	1A	
		Alternative Solution		-
		Since α is a root of $x^2 - \lambda x + 1 = 0$		
		$\alpha^2 - \lambda \alpha + 1 = 0$	1A	
		$\alpha^3(\alpha^2 - \lambda \alpha + 1) = 0$		
		$\alpha^5 - \lambda \alpha^4 + \alpha^3 = 0 (1)$	1A	
		$S_5 - \lambda S_4 + S_3 = (\alpha^5 + \beta^5) - \lambda(\alpha^4 + \beta^4) + (\alpha^3 + \beta^3)$		
		$= (\alpha^5 - \lambda \alpha^4 + \alpha^3) + (\beta^5 - \lambda \beta^4 + \beta^3)$		
		$=0+\beta^3(\beta^2-\lambda\beta+1)$		
		$=0+\beta^3(0)$	1A	For $\beta^2 - \lambda \beta + 1 = 0$ or $\beta^5 - \lambda \beta^4 + \beta^3 = 0$
		= 0	1	$\beta^{5} - \lambda \beta^{4} + \beta^{3} = 0$
		-0	4	- -
	(c)	Let $S_3 = 10k$, $S_4 = 7\lambda k$, $S_5 = 25k$, where $k \neq 0$.	1M	
		$S_5 - \lambda S_4 + S_3 = 0$		
		$25k - \lambda(7\lambda k) + 10k = 0$		
		$7\lambda^2 = 35$		
		$\lambda = \sqrt{5}$ $\therefore \lambda \ge 2$	1A	
		x= V 3 . x = Z	100	
		•		

Calution	Marks	Remarks
Solution		
Alternative Solution		OR Putting $S_3 = \frac{10}{25} S_5$, $S_4 = \frac{7\lambda}{25}$
Put $S_5 = \frac{25}{10}S_3$, $S_4 = \frac{7\lambda}{10}S_3$.	1M	
1		$S_3 = \frac{10}{7\lambda} S_4$, $S_5 = \frac{25}{7\lambda}$
$S_5 - \lambda S_4 + S_3 = 0$		
$\frac{25}{10}S_3 - \lambda(\frac{7\lambda}{10})S_3 + S_3 = 0$		
$\frac{25}{10} - \frac{7\lambda^2}{10} + 1 = 0$		
7.7 25		
$7\lambda^2 = 35$ $\lambda = \sqrt{5} \because \lambda \ge 2$	1A	
<i>x</i> = y =		
(i) $S_3 = \lambda^3 - 3\lambda$		
$=(\sqrt{5})^3-3\sqrt{5}$	1M	
_(43) 343		
$=2\sqrt{5}$	1A	
√5 ±1		
(ii) Put $\lambda = \sqrt{5}$, $\alpha, \beta = \frac{\sqrt{5} \pm 1}{2}$		
J5+1 - J5-1 s		
$\therefore (\frac{\sqrt{5}+1}{2})^5 + (\frac{\sqrt{5}-1}{2})^5$		
$= S_5 \qquad \text{or } = \alpha^5 + \beta^5$	1M	(pp-1) if explanation was not
0, 0	s:	
$=\frac{25}{10}S_3$	1M	
$=\frac{25}{10}(2\sqrt{5})$		
•	1A	
$=5\sqrt{5}$	7	
	1	