Глубокое обучение для обработки изображений

Лекция 5

Детекция и сегментация

Примеры задач детекции объектов (слева) и семантической сегментации (справа)

Детекция объектов (Object Detection)

Самый простой способ: рассматривать небольшие части изображения и для каждого из них делать предсказание, есть ли объект или нет

Детекция объектов (Object Detection)

Самый простой способ: рассматривать небольшие части изображения и для каждого из них делать предсказание, есть ли объект или нет

Детекция объектов (Object Detection)

Самый простой способ: рассматривать небольшие части изображения и для каждого из них делать предсказание, есть ли объект или нет

Объекты могут быть разного размера, их может быть много и т.д., поэтому нам потребуется использовать тысячи таких областей разного масштаба

Region proposal

Идея состоит в том, чтобы с помощью, например, алгоритма Selective Search найти области на картинке, которые могут содержать объекты. Это позволит не перебирать множество различных областей простым перебором.

Region proposal

R-CNN: Regions with CNN features

R-CNN: Regions with CNN features

5. Bounding Box Regressor [x, y, w, h]

Предсказывает 4 числа — уточняют расположение бокса внутри области, предсказанной на region proposal stage

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

Комбинированная функция потерь: предсказание класса (cross-entropy loss) + SVM классификатор (**Hinge loss**) + предсказание координат бокса (MSE)

5. Bounding Box Regressor [x, y, w, h]

Предсказывает 4 числа – уточняют расположение бокса внутри области, предсказанной на region proposal stage

R-CNN: Regions with CNN features

1. Input image

2. Extract region

Комбинированная функция потерь: предсказание класса (cross-entropy loss) + SVM классификатор (**Hinge loss**) + предсказание координат бокса (MSE)

5. Bounding Box Regressor [x, y, w, h]

Предсказывает 4 числа – уточняют расположение бокса внутри области, предсказанной на region proposal stage

Время предсказания ~ 1 минута на картинку

Fast R-CNN

Figure 1. Fast R-CNN architecture. An input image and multiple regions of interest (RoIs) are input into a fully convolutional network. Each RoI is pooled into a fixed-size feature map and then mapped to a feature vector by fully connected layers (FCs). The network has two output vectors per RoI: softmax probabilities and per-class bounding-box regression offsets. The architecture is trained end-to-end with a multi-task loss.

Fast R-CNN

Figure 1. Fast R-CNN architecture. An input image and multiple regions of interest (RoIs) are input into a fully convolutional network. Each RoI is pooled into a fixed-size feature map and then mapped to a feature vector by fully connected layers (FCs). The network has two output vectors per RoI: softmax probabilities and per-class bounding-box regression offsets. The architecture is trained end-to-end with a multi-task loss.

Время предсказания ~ 2-3 секунды на картинку. Теперь поиск регионов занимает большую часть времени.

Faster R-CNN

Faster R-CNN

Время предсказания ~ 0.2 секунды на картинку.

YOLO (You Only Look Ones)

Осуществляем детекцию без region proposals

Figure 2: The Model. Our system models detection as a regression problem. It divides the image into an $S \times S$ grid and for each grid cell predicts B bounding boxes, confidence for those boxes, and C class probabilities. These predictions are encoded as an $S \times S \times (B * 5 + C)$ tensor.

Non-maximum suppression

IoU – Intersection over Union

$$IoU = \frac{\Pi$$
лощадь пересечения $= \frac{A \cap B}{A \cup B}$

Before non-max suppression

Non-maximum suppression алгоритм:

Пусть S — массив, элементы которого содержат информацию о каждом боксе $(x_1, y_1, x_2, y_2, confidence)$

- 1. Выбрать бокс с наибольшим *confidence* и удалить его из S.
- 2. Найти IoU выбранного бокса со всеми остальными.
- 3. Удалить боксы с IoU большим порогового значения (часто берут 0.5) из S.
- 4. Повторять 1-3, пока в S есть боксы

One-stage и two-stage детекторы

Детекторы можно разделить на две большие группы:

• Двухстадийные детекторы (two-stage detectors)

На первом этапе находят region proposals, которые используются для нахождения объекта на втором этапе.

Выше качество, Больше время предсказания **Примеры**: семейство R-CNN

• Одностадийные детекторы (one-stage detectors)

Этап region proposals отсутствует.

Ниже качество, меньше время предсказания **Примеры**: семейство YOLO, SSD, RetinaNet, EfficientDet

Семантическая сегментация (Semantic Segmentation)

Можем использовать стандартную архитектуру из раздела классификации изображений, только без полносвязного слоя в конце.

Слишком "резкий" upsampling до исходного размера картинки – границы областей получаются не четкими.

Семантическая сегментация (Semantic Segmentation)

Лучшие результаты показывает так называемая Hourglass (песочные часы) архитектура

Как можно делать upsampling?

Input: 2x2

"Bed of Nails" 0 Output: 4x4

Как можно делать upsampling: Max Unpooling

Индексы максимальных значений после **Max Pooling** сохраняются и используются при **Max Unpooling**

Max pool, 2x2 filter

Max Unpooling

3	0	-2	0
0	0	0	0
0	0	1	0
4	0	0	0

Как можно делать upsampling: Transposed convolution

U-net

Метрики в сегментации

$$Dice = 2 + B$$

$$IoU = Jaccard\ Coefficient = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

Dice Coefficient =
$$2 \frac{|A \cap B|}{|A| + |B|}$$

Cosine Coefficient =
$$\frac{|A \cap B|}{|A|^{0.5} \cdot |B|^{0.5}}$$