Les tres rodes del vehicle no llisquen respecte del terra (T). Les rodes a O' i O'' estan articulades al xassís, mentre que la roda a C manté un enllaç cilíndric amb la barra p-p', paral·lela a O'-O''.

- Diagrama de moviments relatius?
- · GL del sistema?
- Funcions $\dot{\varphi}_1 = f(\mathbf{v}, \dot{\psi})$ i $\dot{\varphi}_2 = f(\mathbf{v}, \dot{\psi})$?
- Funcions $\dot{\mathbf{x}} = f(\mathbf{v}, \dot{\psi}) i \dot{\varphi} = f(\mathbf{v}, \dot{\psi})$?

Aplicació a telecontrol del vehicle:

Aquest vehicle es pot utilitzar com a plataforma robòtica mòbil per a transport de càrrega. El vehicle es pot motoritzar de dues maneres:

- Amb dos motors que actuen les rotacions pròpies $\dot{\varphi}_1$ i $\dot{\varphi}_2$ (de les rodes del davant respecte el xassís). És la manera més habitual.
- Amb dos motors que actuen els graus de llibertat \dot{x} i $\dot{\phi}$ de la roda del darrere.

Si suposem que v i $\dot{\psi}$ són consignes de velocitat donades per un joystick, les funcions que ens demanen permeten convertir v i $\dot{\psi}$ en les comandes de velocitat que hauran de satisfer els motors.

La roda no llisca al damunt del terra (T), i està articulada a un suport vertical. El suport està articulat a un braç, que està articulat a un bloc. El bloc pot lliscar dins la guia rectilínia fixa a terra.

Calcula $\left|\overline{v}_{T}(\mathbf{O})\right|$ en funció de θ i de $\dot{\phi}$.

PISTA: feu-vos un dibuix 2D en planta i apliqueu projectivitat de C cap a O (eviteu buscar el CIR del braç).

Les rodes del tractor i el remolc són identiques i no llisquen al damunt del terra (T). Determina el \textbf{CIR}_T^{remolc} .

La barra blanca està articulada al terra (T). La barra vermella (BV) està articulada a la blanca i té un enllaç prismàtic amb el suport, que recolza sobre el terra. Determina el \mathbf{CIR}_{T}^{BV} .

Com és la trajectòria respecte T d'un punt qualsevol de la barra?

L'anella de la sínia gira amb velocitat Ω_0 constant respecte del terra (T). La cabina està articulada a l'anella. El punt ${\bf Q}$ és fix a l'anella. Calcula $\overline{\bf a}_{cabina}({\bf Q})$.

La bola manté contacte sense lliscar amb un rotor i una pista circular que gira amb 2ω respecte del terra $\left(\mathsf{T}\right)$. L'EIRL $_\mathsf{T}^\mathsf{bola}$ és vertical. Calcula $\overline{\Omega}_\mathsf{T}^\mathsf{rotor}$.