CHAPTER THREE

One Dimensional Boundary Value Problem

Matlab functions for solution of one dimensional boundary value problem

For *Matlab* solution of one dimensional boundary value problems using linear and quadratic element, the following functions can be defined and used in the manner shown in Chapter 2 for axial deformation problem.

MatlabFiles\Chap3\BVP1DLinElement.m

function [ke, re] = BVP1DLinElement(k, p, q, coord) % [ke, re] = BVP1DLinElement(k, p, q, coord)

% Generates equations for a linear element for 1D BVP

% k,p,q = parameters defining the BVP

% coord = coordinates at the element ends

L=coord(2)-coord(1);

```
ke = [k/L - (L*p)/3, -(k/L) - (L*p)/6; -(k/L) - (L*p)/6, k/L - (L*p)/3];

re = [(L*q)/2; (L*q)/2];
```

MatlabFiles\Chap3\BVP1DQuadElement.m

```
function [ke, re] = BVP1DQuadElement(k, p, q, coord)
% [ke, re] = BVP1DQuadElement(k, p, q, coord)
% Generates equations for a quadratic element for 1D BVP
% k,p,q = parameters defining the BVP
% coord = coordinates at the element ends

L=coord(3)-coord(1);
ke = [(7*k)/(3*L) - (2*L*p)/15, (-8*k)/(3*L) - (L*p)/15, ...
k/(3*L) + (L*p)/30;
(-8*k)/(3*L) - (L*p)/15, (16*k)/(3*L) - (8*L*p)/15, ...
(-8*k)/(3*L) - (L*p)/15;
k/(3*L) + (L*p)/30, (-8*k)/(3*L) - (L*p)/15, ...
(7*k)/(3*L) - (2*L*p)/15];
re = [(L*q)/6; (2*L*q)/3; (L*q)/6];
```

Several examples in the following sections illustrate the use of these functions.

Computer Implementation 3.1 (Matlab) Solution using Matlab functions for 1D BVP

The tedious calculations to solve the previous heat flow problem can be conveniently carried out using *Matlab* functions presented earlier. Using these functions, and following procedures discussed in Chapter 1, the global equations for the four quadratic element model can be developed and assembled as follows.

MatlabFiles\Chap3\FinHeatFlowEx.m

```
% Heat flow through a fin kx=237; w=3; t=0.3/100; A=w*t; h=30; L=20/100.; P=2*(w+t); Tinf=25; alpha=-h*A/(kx*A); beta=h*A*Tinf/(kx*A); k=kx*A; p=-h*P; q=h*P*Tinf; nodes = [0:L/8:L]; n=length(nodes); K=zeros(n); R=zeros(n,1); % Generate equations for each element and assemble them. for i=1:4 <math display="block">lm=[2*(i-1)+1,2*(i-1)+2,2*(i-1)+3]; [ke, re] = BVP1DQuadElement(k,p,q, nodes(lm)); K(lm, lm) = K(lm, lm) + ke; R(lm) = R(lm) + re; end % Adjust for NBC
```

```
K(n,n)=K(n,n)-alpha*k
R(n)=R(n)+beta*k
% Nodal solution and reactions
d = NodalSoln(K, R, [1], [100])
plot(nodes,d),title('Temperature distribution'), xlabel('x'),ylabel('T')
>> FinHeatFlowEx
K =
 Columns 1 through 7
 100.7412 -113.1594 13.9197
                                        0
                                              0
                                                    0
-113.1594 232.3248 -113.1594
                                  0
                                        0
                                                     0
                                               0
 13.9197 -113.1594 201.4824 -113.1594 13.9197
                                                     0
                                                           0
           0 -113.1594 232.3248 -113.1594
     0
           0 13.9197 -113.1594 201.4824 -113.1594 13.9197
     0
           0
                       0 -113.1594 232.3248 -113.1594
     0
           0
                 0
                        0 13.9197 -113.1594 201.4824
     0
           0
                 0
                       0
                              0
                                    0 -113.1594
     0
           0
                 0
                        0
                              0
                                    0 13.9197
 Columns 8 through 9
     0
           0
     0
           0
     0
           0
     0
           0
     0
           0
     0
           0
-113.1594 13.9197
 232.3248 -113.1594
-113.1594 101.0112
R=
 37.5375
 150.1500
 75.0750
 150.1500
 75.0750
 150.1500
 75.0750
 150.1500
 44.2875
```


Computer Implementation 3.2 (Matlab) Solution of Buckling Problem

The buckling problem can be implemented easily in *Matlab* by defining simple functions returning element k and k_p matrices as follows.

MatlabFiles\Chap3\BucklingLinElement.m

```
function [ke, kp] = BucklingLinElement(k, coord)
% [ke, kp] = BucklingLinElement(k, coord)
% Generates equations for a linear element for 1D Buckling
% k = bar stiffness (EI)
% coord = coordinates at the element ends

L=coord(2)-coord(1);
ke = k/L*[1, -1; -1, 1];
kp = [L/3, L/6; L/6, L/3];
```

MatlabFiles\Chap3\BucklingQuadElement.m

```
function [ke, kp] = BucklingQuadElement(k, coord)
% [ke, kp] = BucklingQuadElement(k, coord)
% Generates equations for a quadratic element for 1D Buckling
% k = bar stiffness (EI)
% coord = coordinates at the element ends

L=coord(3)-coord(1);
ke = [(7*k)/(3*L), -((8*k)/(3*L)), k/(3*L);
-((8*k)/(3*L)), (16*k)/(3*L), -((8*k)/(3*L));
k/(3*L), -((8*k)/(3*L)), (7*k)/(3*L)];
kp = [((2*L)/15), (L/15), -L/30;
(L/15), ((8*L)/15), (L/15);
-L/30, (L/15), ((2*L)/15)];
```

Using the BucklingQuadElement function, a solution using 4 quadratic is obtained as follows.

MatlabFiles\Chap3\BucklingEx.m

```
% Solution of Euler buckling using quadratic elements
L = 12*10.; EI = 10^6;
nodes = [0:L/8:L];n=length(nodes);
Ke=zeros(n); Kp=zeros(n);
% Generate equations for each element and assemble them.
for i=1:4
  Im=[2*(i-1)+1,2*(i-1)+2,2*(i-1)+3];
  [ke, kp] = BucklingQuadElement(EI, nodes(Im));
  Ke(Im, Im) = Ke(Im, Im) + ke;
  Kp(Im, Im) = Kp(Im, Im) + kp;
end
% Adjust for EBC
debc=[1,n];
df = setdiff(1:n, debc);
Kef = Ke(df, df)
Kep = Kp(df, df)
[v,e] = eig(Kef, Kep);
fprintf('Buckling load = %10.6g',e(1,1))
d = zeros(n,1);
d(df) = v(:,1)
plot(nodes,d),title('First buckling mode'), xlabel('x'),vlabel('v')
>> BucklingEx
```

```
Kef =
1.0e+005 *
 0 0.1111 -0.8889 1.5556 -0.8889 0.1111
   0
           0 -0.8889 1.7778 -0.8889 0
   0
       0
           0 0.1111 -0.8889 1.5556 -0.8889
              0 0 -0.8889 1.7778
   0
       0
           0
Kep =
 16
    2
       0 0 0 0 0
    8
      2 -1
 0
    2 16 2
            0 0 0
 0 -1
      2 8 2 -1 0
 0
       0 2 16 2 0
 0
    0
       0 -1 2 8 2
    0
       0
         0 0
              2 16
Buckling load = 685.74
d =
   0
 0.0494
 0.0913
 0.1193
 0.1292
 0.1193
 0.0913
 0.0494
   0
```