Multiplicidad aritmética y geométrica Teorema de Gershgorin

GAL₂

IMERL

19 de agosto de 2010

definición

multiplicidad algebraica y geométrica

definición (multiplicidad algebraica y geométrica)

definición (multiplicidad algebraica y geométrica)

 $\bullet T: V \to V \text{ t.l.}$

definición (multiplicidad algebraica y geométrica)

- $\bullet \ \ T: \ V \to \ V \ \text{t.l.}$
- λ_0 vap de T

definición (multiplicidad algebraica y geométrica)

- $\bullet \ \ T: \ V \to \ V \ \text{t.l.}$
- λ_0 vap de T
- multiplicidad algebraica de λ_0 :

definición (multiplicidad algebraica y geométrica)

- $\bullet \ T: V \to V \text{ t.l.}$
- λ_0 vap de T
- multiplicidad algebraica de λ_0 :

 $m.a.(\lambda_0) = \text{multiplicidad de } \lambda_0 \text{ como raíz característica}$

definición (multiplicidad algebraica y geométrica)

- $\bullet \ \ T: \ V \to \ V \text{ t.l.}$
- λ_0 vap de T
- multiplicidad algebraica de λ_0 :

 $m.a.(\lambda_0) = \text{multiplicidad de } \lambda_0 \text{ como raíz característica}$

• multiplicidad geométrica de λ_0 :

definición (multiplicidad algebraica y geométrica)

- $\bullet T: V \to V \text{ t.l.}$
- λ_0 vap de T
- multiplicidad algebraica de λ_0 :

$$m.a.(\lambda_0) = \text{multiplicidad de } \lambda_0 \text{ como raíz característica}$$

• multiplicidad geométrica de λ_0 :

$$m.g.(\lambda_0) = \dim S_{\lambda_0}$$

ejemplo

ejemplo

ejemplo

$$A = \left(\begin{array}{ccccc} 0 & -6 & 0 & 1 & 0 \\ 0 & -5 & 0 & 0 & 0 \\ -6 & 0 & -5 & 6 & 0 \\ -1 & -6 & 0 & 2 & 0 \\ 0 & -1 & 0 & 1 & 1 \end{array}\right)$$

ejemplo

• $T: \mathbb{R}^5 \to \mathbb{R}^5$ dado por

$$A = \left(\begin{array}{ccccc} 0 & -6 & 0 & 1 & 0 \\ 0 & -5 & 0 & 0 & 0 \\ -6 & 0 & -5 & 6 & 0 \\ -1 & -6 & 0 & 2 & 0 \\ 0 & -1 & 0 & 1 & 1 \end{array}\right)$$

• m.a.(-5) = 2 y m.a.(1) = 3

ejemplo

$$A = \left(\begin{array}{ccccc} 0 & -6 & 0 & 1 & 0 \\ 0 & -5 & 0 & 0 & 0 \\ -6 & 0 & -5 & 6 & 0 \\ -1 & -6 & 0 & 2 & 0 \\ 0 & -1 & 0 & 1 & 1 \end{array}\right)$$

- m.a.(-5) = 2 y m.a.(1) = 3
- m.g.(-5) = 2 y m.g.(1) = 1

ejemplo

$$A = \left(\begin{array}{ccccc} 0 & -6 & 0 & 1 & 0 \\ 0 & -5 & 0 & 0 & 0 \\ -6 & 0 & -5 & 6 & 0 \\ -1 & -6 & 0 & 2 & 0 \\ 0 & -1 & 0 & 1 & 1 \end{array}\right)$$

- m.a.(-5) = 2 y m.a.(1) = 3
- m.g.(-5) = 2 y m.g.(1) = 1
- $\bullet \Rightarrow \dim S_{-5} = 2 \text{ y dim } S_1 = 1$

ejemplo

$$A = \left(\begin{array}{ccccc} 0 & -6 & 0 & 1 & 0 \\ 0 & -5 & 0 & 0 & 0 \\ -6 & 0 & -5 & 6 & 0 \\ -1 & -6 & 0 & 2 & 0 \\ 0 & -1 & 0 & 1 & 1 \end{array}\right)$$

- m.a.(-5) = 2 y m.a.(1) = 3
- m.g.(-5) = 2 y m.g.(1) = 1
- ullet \Rightarrow dim $S_{-5}=2$ y dim $S_1=1$
- $\bullet \Rightarrow T$ no es diagonalizable

teoremas

multiplicidad algebraica y ≥ geométrica

teorema ($m.a. \ge m.g.$)

teorema ($m.a. \geq m.g.$)

 $\bullet \ \ T: \ V \to \ V \text{ t.l.}$

teorema $(m.a. \ge m.g.)$

- \bullet $T: V \rightarrow V \text{ t.l.}$
- λ_0 vap de T

teorema ($m.a. \ge m.g.$)

- $T: V \rightarrow V \text{ t.l.}$
- λ_0 vap de T
- $\bullet \Rightarrow$

$$m.a.(\lambda_0) \geq m.g.(\lambda_0)$$

•
$$m.g.(\lambda_0) = k$$

- $m.g.(\lambda_0) = k$
- $\bullet \Rightarrow \dim(S_{\lambda_0}) = k$

- $m.g.(\lambda_0) = k$
- $\bullet \Rightarrow \dim(S_{\lambda_0}) = k$
- sea $\mathcal{B}_0 = \{v_1, \dots, v_k\}$ base de \mathcal{S}_{λ_0}

- $m.g.(\lambda_0) = k$
- $\bullet \Rightarrow \dim(S_{\lambda_0}) = k$
- ullet sea $\mathcal{B}_0 = \{ \emph{v}_1, \ldots, \emph{v}_k \}$ base de \emph{S}_{λ_0}
- ullet completamos \mathcal{B}_0 hasta \mathcal{B} base de V

- $m.g.(\lambda_0) = k$
- $\bullet \Rightarrow \dim(S_{\lambda_0}) = k$
- ullet sea $\mathcal{B}_0 = \{ \emph{v}_1, \ldots, \emph{v}_k \}$ base de \emph{S}_{λ_0}
- ullet completamos \mathcal{B}_0 hasta \mathcal{B} base de V

$$_{\mathcal{B}}(T)_{\mathcal{B}} = \left(\begin{array}{cc} \lambda_0 I & B \\ \mathbb{O} & C \end{array}\right)$$

- $m.g.(\lambda_0) = k$
- $\bullet \Rightarrow \dim(S_{\lambda_0}) = k$
- ullet sea $\mathcal{B}_0 = \{ \emph{v}_1, \ldots, \emph{v}_k \}$ base de \emph{S}_{λ_0}
- ullet completamos \mathcal{B}_0 hasta \mathcal{B} base de V

$$_{\mathcal{B}}(T)_{\mathcal{B}} = \left(\begin{array}{cc} \lambda_0 I & B \\ \mathbb{O} & C \end{array}\right)$$

donde $I \in \mathcal{M}_k(\mathbb{K})$

- $m.g.(\lambda_0) = k$
- $\bullet \Rightarrow \dim(S_{\lambda_0}) = k$
- ullet sea $\mathcal{B}_0 = \{ \emph{v}_1, \ldots, \emph{v}_k \}$ base de \emph{S}_{λ_0}
- ullet completamos \mathcal{B}_0 hasta \mathcal{B} base de V

$$_{\mathcal{B}}(T)_{\mathcal{B}} = \left(\begin{array}{cc} \lambda_0 I & B \\ \mathbb{O} & C \end{array}\right)$$

donde
$$I \in \mathcal{M}_k(\mathbb{K}) \ B \in \mathcal{M}_{k \times (n-k)}(\mathbb{K}),$$

- $m.g.(\lambda_0) = k$
- $\bullet \Rightarrow \dim(S_{\lambda_0}) = k$
- sea $\mathcal{B}_0 = \{v_1, \dots, v_k\}$ base de \mathcal{S}_{λ_0}
- ullet completamos \mathcal{B}_0 hasta \mathcal{B} base de V

$$_{\mathcal{B}}(T)_{\mathcal{B}} = \left(\begin{array}{cc} \lambda_0 I & B \\ \mathbb{O} & C \end{array}\right)$$

donde
$$I \in \mathcal{M}_k(\mathbb{K})$$
 $B \in \mathcal{M}_{k \times (n-k)}(\mathbb{K})$, $\mathbb{O} \in \mathcal{M}_{(n-k) \times k}(\mathbb{K})$

- $m.g.(\lambda_0) = k$
- $\bullet \Rightarrow \dim(\mathcal{S}_{\lambda_0}) = k$
- ullet sea $\mathcal{B}_0 = \{ \emph{v}_1, \ldots, \emph{v}_k \}$ base de \emph{S}_{λ_0}
- ullet completamos \mathcal{B}_0 hasta \mathcal{B} base de V

$$_{\mathcal{B}}(T)_{\mathcal{B}} = \left(\begin{array}{cc} \lambda_0 I & B \\ \mathbb{O} & C \end{array}\right)$$

donde
$$I \in \mathcal{M}_k(\mathbb{K}) \ B \in \mathcal{M}_{k \times (n-k)}(\mathbb{K}), \ \mathbb{O} \in \mathcal{M}_{(n-k) \times k}(\mathbb{K}) \ \mathsf{y}$$

 $C \in \mathcal{M}_{(n-k)}(\mathbb{K})$

- $m.g.(\lambda_0) = k$
- $\bullet \Rightarrow \dim(\mathcal{S}_{\lambda_0}) = k$
- ullet sea $\mathcal{B}_0 = \{ \emph{v}_1, \ldots, \emph{v}_k \}$ base de \emph{S}_{λ_0}
- ullet completamos \mathcal{B}_0 hasta \mathcal{B} base de V

$$_{\mathcal{B}}(T)_{\mathcal{B}} = \left(\begin{array}{cc} \lambda_0 I & B \\ \mathbb{O} & C \end{array}\right)$$

•
$$\Rightarrow \chi_T(\lambda) = (\lambda_0 - \lambda)^k \det(C - \lambda I)$$

- $m.g.(\lambda_0) = k$
- $\bullet \Rightarrow \dim(\mathcal{S}_{\lambda_0}) = k$
- ullet sea $\mathcal{B}_0 = \{ \emph{v}_1, \ldots, \emph{v}_k \}$ base de \mathcal{S}_{λ_0}
- ullet completamos \mathcal{B}_0 hasta \mathcal{B} base de V

$$_{\mathcal{B}}(T)_{\mathcal{B}} = \left(\begin{array}{cc} \lambda_0 I & B \\ \mathbb{O} & C \end{array}\right)$$

- $\bullet \Rightarrow \chi_T(\lambda) = (\lambda_0 \lambda)^k \det(C \lambda I)$
- \Rightarrow multiplicidad de λ_0 como raíz $\geq k$

- $m.g.(\lambda_0) = k$
- $\bullet \Rightarrow \dim(S_{\lambda_0}) = k$
- ullet sea $\mathcal{B}_0 = \{ \emph{v}_1, \ldots, \emph{v}_k \}$ base de \emph{S}_{λ_0}
- completamos B₀ hasta B base de V

$$_{\mathcal{B}}(T)_{\mathcal{B}} = \left(\begin{array}{cc} \lambda_0 I & B \\ \mathbb{O} & C \end{array}\right)$$

- $\bullet \Rightarrow \chi_{\mathcal{T}}(\lambda) = (\lambda_0 \lambda)^k \det(C \lambda I)$
- \Rightarrow multiplicidad de λ_0 como raíz $\geq k$
- $\bullet \Rightarrow m.a.(\lambda_0) \geq m.g.(\lambda_0)$

- $m.g.(\lambda_0) = k$
- $\bullet \Rightarrow \dim(S_{\lambda_0}) = k$
- ullet sea $\mathcal{B}_0 = \{ \emph{v}_1, \ldots, \emph{v}_k \}$ base de \emph{S}_{λ_0}
- ullet completamos \mathcal{B}_0 hasta \mathcal{B} base de V

$$_{\mathcal{B}}(T)_{\mathcal{B}} = \left(\begin{array}{cc} \lambda_0 I & B \\ \mathbb{O} & C \end{array}\right)$$

- $\bullet \Rightarrow \chi_T(\lambda) = (\lambda_0 \lambda)^k \det(C \lambda I)$
- \Rightarrow multiplicidad de λ_0 como raíz $\geq k$
- \Rightarrow $m.a.(\lambda_0) \geq m.g.(\lambda_0)_{\square}$

teoremas

condición necesaria y suficiente para diagonalizabilidad

condición necesaria y suficiente para diagonalizabilidad

teorema (cond. necesaria y suficiente para diagonalizabilidad)

 \bullet $T: V \rightarrow V t.l.$

teoremas

condición necesaria y suficiente para diagonalizabilidad

- $T: V \rightarrow V \text{ t.l.}$
- T diagonalizable \iff

condición necesaria y suficiente para diagonalizabilidad

- $T: V \rightarrow V \text{ t.l.}$
- T diagonalizable ←⇒
 - χ_T tiene todas sus raíces en \mathbb{K}

condición necesaria y suficiente para diagonalizabilidad

- $T: V \rightarrow V \text{ t.l.}$
- T diagonalizable ←⇒
 - χ_T tiene todas sus raíces en \mathbb{K}
 - $m.a.(\lambda_i) = m.g.(\lambda_i)$ para todo vap de T

teoremas

demostración

• \Rightarrow) supongamos T diagonalizable (dim V = n)

teoremas

- ullet \Rightarrow) supongamos T diagonalizable (dim V=n)
- ullet \Rightarrow todas las raíces de $\chi_T(\lambda)$ están en $\mathbb K$

- ullet \Rightarrow) supongamos T diagonalizable (dim V=n)
- ullet \Rightarrow todas las raíces de $\chi_T(\lambda)$ están en $\mathbb K$
- lacktriangledown

$$m.a.(\lambda_1) + \cdots + m.a.(\lambda_k) = n$$

- ullet \Rightarrow) supongamos T diagonalizable (dim V=n)
- \Rightarrow todas las raíces de $\chi_T(\lambda)$ están en \mathbb{K}
- lacktriangledown

$$m.a.(\lambda_1) + \cdots + m.a.(\lambda_k) = n$$

$$m.g.(\lambda_1) + \cdots + m.g.(\lambda_k)$$

- ullet \Rightarrow) supongamos T diagonalizable (dim V=n)
- \Rightarrow todas las raíces de $\chi_T(\lambda)$ están en \mathbb{K}

$$\bullet \Rightarrow$$

$$m.a.(\lambda_1)$$
 $+\cdots+$ $m.a.(\lambda_k)$ = n
 $\forall | \forall | \forall |$
 $m.g.(\lambda_1)$ $+\cdots+$ $m.g.(\lambda_k)$ $\leq n$

- ullet \Rightarrow) supongamos T diagonalizable (dim V=n)
- \Rightarrow todas las raíces de $\chi_T(\lambda)$ están en \mathbb{K}
- $\bullet \Rightarrow$

$$m.a.(\lambda_1)$$
 $+\cdots+$ $m.a.(\lambda_k)$ $=$ n
 $\forall |$ $\forall |$ $\forall |$ $\forall |$
 $m.g.(\lambda_1)$ $+\cdots+$ $m.g.(\lambda_k)$ $\leq n$

- ullet \Rightarrow) supongamos T diagonalizable (dim V=n)
- \Rightarrow todas las raíces de $\chi_T(\lambda)$ están en \mathbb{K}
- $\bullet \Rightarrow$

$$m.a.(\lambda_1)$$
 $+\cdots+$ $m.a.(\lambda_k)$ $=$ n
 $\forall |$ $\forall |$ $\forall |$ $\forall |$
 $m.g.(\lambda_1)$ $+\cdots+$ $m.g.(\lambda_k)$ $\leq n$

$$m.g.(\lambda_1) + \cdots + m.g.(\lambda_k) < n$$

- ullet \Rightarrow) supongamos T diagonalizable (dim V=n)
- \Rightarrow todas las raíces de $\chi_T(\lambda)$ están en \mathbb{K}
- $\bullet \Rightarrow$

$$m.a.(\lambda_1)$$
 $+\cdots+$ $m.a.(\lambda_k)$ $=$ n
 $\forall |$ $\forall |$ $\forall |$ $\forall |$
 $m.g.(\lambda_1)$ $+\cdots+$ $m.g.(\lambda_k)$ $\leq n$

$$m.g.(\lambda_1)$$
 $+\cdots+$ $m.g.(\lambda_k)$ $<$ n
 $\dim(S_{\lambda_1})$ $+\cdots+$ $\dim(S_{\lambda_k})$ $<$ n

- ullet \Rightarrow) supongamos T diagonalizable (dim V=n)
- \Rightarrow todas las raíces de $\chi_T(\lambda)$ están en \mathbb{K}
- $\bullet \Rightarrow$

$$m.a.(\lambda_1)$$
 $+\cdots+$ $m.a.(\lambda_k)$ $=$ n
 $\forall |$ $\forall |$ $\forall |$ $\forall |$ $m.g.(\lambda_1)$ $+\cdots+$ $m.g.(\lambda_k)$ $\leq n$

$$m.g.(\lambda_1)$$
 $+\cdots+$ $m.g.(\lambda_k)$ $<$ n
 $\dim(S_{\lambda_1})$ $+\cdots+$ $\dim(S_{\lambda_k})$ $<$ n
 $\dim(S_{\lambda_1})$ $\oplus\cdots\oplus$ S_{λ_k} $<$ n

- ullet \Rightarrow) supongamos T diagonalizable (dim V=n)
- \Rightarrow todas las raíces de $\chi_T(\lambda)$ están en \mathbb{K}
- lacktriangledown

$$m.g.(\lambda_1)$$
 $+\cdots+$ $m.g.(\lambda_k)$ $<$ n $\dim(S_{\lambda_1})$ $+\cdots+$ $\dim(S_{\lambda_k})$ $<$ n $\dim(S_{\lambda_1})$ $\oplus\cdots\oplus$ S_{λ_k} $<$ n

$$\bullet \Rightarrow S_{\lambda_1} \oplus \cdots \oplus S_{\lambda_k} \neq V$$

- $\bullet \Rightarrow$) supongamos T diagonalizable (dim V = n)
- \Rightarrow todas las raíces de $\chi_T(\lambda)$ están en \mathbb{K}
- lacktriangledown

$$ullet$$
 \Rightarrow $S_{\lambda_1}\oplus\cdots\oplus S_{\lambda_k}
eq V_{\square}$

teoremas

demostración

ullet (a) todas las raíces de $\chi_T(\lambda)$ están en $\mathbb K$

- \Leftarrow) todas las raíces de $\chi_T(\lambda)$ están en \mathbb{K}
- $\bullet \Rightarrow m.a.(\lambda_1) + \cdots + m.a.(\lambda_k) = n$

- \Leftarrow) todas las raíces de $\chi_T(\lambda)$ están en \mathbb{K}
- $\bullet \Rightarrow m.a.(\lambda_1) + \cdots + m.a.(\lambda_k) = n$
- (H2) ⇒

$$m.g.(\lambda_1) + \cdots + m.g.(\lambda_k) = n$$

- \Leftarrow) todas las raíces de $\chi_T(\lambda)$ están en \mathbb{K}
- $\bullet \Rightarrow m.a.(\lambda_1) + \cdots + m.a.(\lambda_k) = n$
- (H2) ⇒

$$m.g.(\lambda_1)$$
 $+\cdots+$ $m.g.(\lambda_k)$ $=$ n
 $\dim(S_{\lambda_1})$ $+\cdots+$ $\dim(S_{\lambda_k})$ $=$ n

- \Leftarrow) todas las raíces de $\chi_T(\lambda)$ están en \mathbb{K}
- $\bullet \Rightarrow m.a.(\lambda_1) + \cdots + m.a.(\lambda_k) = n$
- (H2) ⇒

$$m.g.(\lambda_1)$$
 $+\cdots+$ $m.g.(\lambda_k)$ $=$ n
 $\dim(S_{\lambda_1})$ $+\cdots+$ $\dim(S_{\lambda_k})$ $=$ n
 $\dim(S_{\lambda_1})$ $\oplus\cdots\oplus$ G_{λ_k} $=$ n

- \Leftarrow) todas las raíces de $\chi_T(\lambda)$ están en \mathbb{K}
- $\bullet \Rightarrow m.a.(\lambda_1) + \cdots + m.a.(\lambda_k) = n$
- (H2) ⇒

$$m.g.(\lambda_1)$$
 $+\cdots+$ $m.g.(\lambda_k)$ $=$ n
 $\dim(S_{\lambda_1})$ $+\cdots+$ $\dim(S_{\lambda_k})$ $=$ n
 $\dim(S_{\lambda_1})$ $\oplus\cdots\oplus$ S_{λ_k} $=$ n

$$ullet$$
 \Rightarrow $S_{\lambda_1} \oplus \cdots \oplus S_{\lambda_k} = V$

- \Leftarrow) todas las raíces de $\chi_T(\lambda)$ están en \mathbb{K}
- $\bullet \Rightarrow m.a.(\lambda_1) + \cdots + m.a.(\lambda_k) = n$
- (H2) ⇒

$$m.g.(\lambda_1)$$
 $+\cdots+$ $m.g.(\lambda_k)$ $=$ n
 $\dim(S_{\lambda_1})$ $+\cdots+$ $\dim(S_{\lambda_k})$ $=$ n
 $\dim(S_{\lambda_1})$ $\oplus\cdots\oplus$ S_{λ_k} $=$ n

$$ullet$$
 \Rightarrow $S_{\lambda_1} \oplus \cdots \oplus S_{\lambda_k} = V_{\square}$

definición previa (radios y círculos)

```
definición (radios y círculos)
```

definición previa (radios y círculos)

definición (radios y círculos)

ullet $A \in \mathcal{M}_n(\mathbb{C})$

definición previa (radios y círculos)

definición (radios y círculos)

- $A \in \mathcal{M}_n(\mathbb{C})$
- radio i-ésimo de A

$$r_i = \sum_{j \neq i} |a_{ij}|$$

definición previa (radios y círculos)

definición (radios y círculos)

- $A \in \mathcal{M}_n(\mathbb{C})$
- radio i-ésimo de A

$$r_i = \sum_{j \neq i} |a_{ij}|$$

• círculo i-ésimo de A

$$C_i = \{z \in \mathbb{C} : |z - a_{ii}| \le r_i\}$$

teorema de Gershgorin

teorema (Gershgorin)

teorema (Gershgorin)

$$ullet$$
 $A \in \mathcal{M}_n(\mathbb{C})$

teorema (Gershgorin)

- ullet $A \in \mathcal{M}_n(\mathbb{C})$
- lacktriangledown

```
teorema (Gershgorin)

• A \in \mathcal{M}_n(\mathbb{C})

• \Longrightarrow

• \{\text{vap de }A\} \subset \bigcup_i \mathcal{C}_i
```

teorema (Gershgorin)

- \bullet $A \in \mathcal{M}_n(\mathbb{C})$
- ===
 - ۵

$$\{\text{vap de }A\}\subset\bigcup_{i}\mathcal{C}_{i}$$

• si el conjunto $M = \mathcal{C}_{i_1} \cup \cdots \cup \mathcal{C}_{i_m}$ es disjunto de todos los círculos i-ésimos restantes, entonces hay exactamente m vap en M (contados con m.a.)

demostración

sin demostración

ejemplo 1

ejemplo 1

ejemplo 1

$$A = \left(\begin{array}{rrr} 10 & 1 & -1 \\ 3 & 25 & 0 \\ 2 & 1 & 32 \end{array}\right)$$

ejemplo 1

$$A = \left(\begin{array}{rrr} 10 & 1 & -1 \\ 3 & 25 & 0 \\ 2 & 1 & 32 \end{array}\right)$$

•
$$r_1 = 2$$
,

ejemplo 1

$$A = \left(\begin{array}{rrr} 10 & 1 & -1 \\ 3 & 25 & 0 \\ 2 & 1 & 32 \end{array}\right)$$

•
$$r_1 = 2$$
, $r_2 = 3$,

ejemplo 1

$$A = \left(\begin{array}{rrr} 10 & 1 & -1 \\ 3 & 25 & 0 \\ 2 & 1 & 32 \end{array}\right)$$

$$\bullet$$
 $r_1 = 2, r_2 = 3, r_3 = 3$

ejemplo 1

$$A = \left(\begin{array}{rrr} 10 & 1 & -1 \\ 3 & 25 & 0 \\ 2 & 1 & 32 \end{array}\right)$$

- \bullet $r_1 = 2, r_2 = 3, r_3 = 3$
- $C_1 = \{z \in \mathbb{C} : |z 10| \le 2\}$

ejemplo 1

$$A = \left(\begin{array}{rrr} 10 & 1 & -1 \\ 3 & 25 & 0 \\ 2 & 1 & 32 \end{array}\right)$$

- \bullet $r_1 = 2, r_2 = 3, r_3 = 3$
- $C_1 = \{z \in \mathbb{C} : |z 10| \le 2\}$
- $C_2 = \{z \in \mathbb{C} : |z 25| \le 3\}$

ejemplo 1

$$A = \left(\begin{array}{rrr} 10 & 1 & -1 \\ 3 & 25 & 0 \\ 2 & 1 & 32 \end{array}\right)$$

- \bullet $r_1 = 2, r_2 = 3, r_3 = 3$
- $C_1 = \{z \in \mathbb{C} : |z 10| \le 2\}$
- $C_2 = \{z \in \mathbb{C} : |z 25| \le 3\}$
- $C_3 = \{z \in \mathbb{C} : |z 32| \le 3\}$

ejemplo 1

$$A = \left(\begin{array}{rrr} 10 & 1 & -1 \\ 3 & 25 & 0 \\ 2 & 1 & 32 \end{array}\right)$$

- \bullet $r_1 = 2, r_2 = 3, r_3 = 3$
- $C_1 = \{z \in \mathbb{C} : |z 10| \le 2\}$
- $C_2 = \{z \in \mathbb{C} : |z 25| \le 3\}$
- $C_3 = \{z \in \mathbb{C} : |z 32| \le 3\}$
- \Rightarrow cada C_i contiene un vap

ejemplo 1

$$A = \left(\begin{array}{rrr} 10 & 1 & -1 \\ 3 & 25 & 0 \\ 2 & 1 & 32 \end{array}\right)$$

- \bullet $r_1 = 2, r_2 = 3, r_3 = 3$
- $C_1 = \{z \in \mathbb{C} : |z 10| \le 2\}$
- $C_2 = \{z \in \mathbb{C} : |z 25| \le 3\}$
- $C_3 = \{z \in \mathbb{C} : |z 32| \le 3\}$
- $\bullet \Rightarrow \operatorname{cada} C_i \operatorname{contiene} \operatorname{un} \operatorname{vap}$
- → A es diagonalizable, y

ejemplo 1

$$A = \left(\begin{array}{rrr} 10 & 1 & -1 \\ 3 & 25 & 0 \\ 2 & 1 & 32 \end{array}\right)$$

- \bullet $r_1 = 2, r_2 = 3, r_3 = 3$
- $C_1 = \{z \in \mathbb{C} : |z 10| \le 2\}$
- $C_2 = \{z \in \mathbb{C} : |z 25| \le 3\}$
- $C_3 = \{z \in \mathbb{C} : |z 32| \le 3\}$
- $\bullet \Rightarrow \operatorname{cada} C_i \operatorname{contiene} \operatorname{un} \operatorname{vap}$
- \Rightarrow A es diagonalizable, y {vap de A} $\subset \mathbb{R}$

ejemplo 1

$$A = \left(\begin{array}{rrr} 10 & 1 & -1 \\ 3 & 25 & 0 \\ 2 & 1 & 32 \end{array}\right)$$

- \bullet $r_1 = 2, r_2 = 3, r_3 = 3$
- $C_1 = \{z \in \mathbb{C} : |z 10| \le 2\}$
- $C_2 = \{z \in \mathbb{C} : |z 25| \le 3\}$
- $C_3 = \{z \in \mathbb{C} : |z 32| \le 3\}$
- $\bullet \Rightarrow \operatorname{cada} C_i \operatorname{contiene} \operatorname{un} \operatorname{vap}$
- ullet \Rightarrow A es diagonalizable, y $\{$ vap de A $\} <math>\subset \mathbb{R}$
- {vap de *A*} ⊂ [8, 12] ∪ [22, 28] ∪ [29, 35]

ejemplo 2

ejemplo 2

ejemplo 2

$$A = \left(\begin{array}{rrrr} 1 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 \\ -1 & 0 & 3 & 0 \\ -1 & 0 & 1 & 2 \end{array}\right)$$

ejemplo 2

a ver qué podemos decir de los vap de

$$A = \left(\begin{array}{rrrr} 1 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 \\ -1 & 0 & 3 & 0 \\ -1 & 0 & 1 & 2 \end{array}\right)$$

• $C_1 = \{z \in \mathbb{C} : |z - 1| \le 1\}$

ejemplo 2

$$A = \left(\begin{array}{rrrr} 1 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 \\ -1 & 0 & 3 & 0 \\ -1 & 0 & 1 & 2 \end{array}\right)$$

- $C_1 = \{z \in \mathbb{C} : |z 1| \le 1\}$
- $C_2 = \{z \in \mathbb{C} : |z 2| \le 2\}$

ejemplo 2

$$A = \left(\begin{array}{rrrr} 1 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 \\ -1 & 0 & 3 & 0 \\ -1 & 0 & 1 & 2 \end{array}\right)$$

- $C_1 = \{z \in \mathbb{C} : |z 1| \le 1\}$
- $C_2 = \{z \in \mathbb{C} : |z 2| \le 2\}$
- $C_3 = \{z \in \mathbb{C} : |z 3| \le 1\}$

ejemplo 2

$$A = \left(\begin{array}{rrrr} 1 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 \\ -1 & 0 & 3 & 0 \\ -1 & 0 & 1 & 2 \end{array}\right)$$

- $C_1 = \{z \in \mathbb{C} : |z 1| \le 1\}$
- $C_2 = \{z \in \mathbb{C} : |z 2| \le 2\}$
- $C_3 = \{z \in \mathbb{C} : |z 3| \le 1\}$
- $C_4 = \{z \in \mathbb{C} : |z 2| \le 2\}$

ejemplo 2

$$A = \left(\begin{array}{rrrr} 1 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 \\ -1 & 0 & 3 & 0 \\ -1 & 0 & 1 & 2 \end{array}\right)$$

- $C_1 = \{z \in \mathbb{C} : |z 1| \le 1\}$
- $C_2 = \{z \in \mathbb{C} : |z 2| \le 2\}$
- $C_3 = \{z \in \mathbb{C} : |z 3| \le 1\}$
- $C_4 = \{z \in \mathbb{C} : |z 2| \le 2\}$
- sólo podemos decir que {vap de A} ⊂ C₂

ejemplo 2 - observación

ejemplo 2 - observación

$$\chi_{A}(\lambda) = \begin{vmatrix} (1-\lambda) & 1 & 0 & 0 \\ -1 & (2-\lambda) & 1 & 0 \\ -1 & 0 & (3-\lambda) & 0 \\ -1 & 0 & 1 & (2-\lambda) \end{vmatrix}$$

ejemplo 2 - observación

$$\chi_A(\lambda) = (2 - \lambda) \begin{vmatrix} (1 - \lambda) & 1 & 0 \\ -1 & (2 - \lambda) & 1 \\ -1 & 0 & (3 - \lambda) \end{vmatrix}$$

ejemplo 2 - observación

$$\chi_A(\lambda) = (2 - \lambda) \begin{vmatrix}
(1 - \lambda) & 1 & 0 \\
-1 & (2 - \lambda) & 1 \\
-1 & 0 & (3 - \lambda)
\end{vmatrix}$$

•
$$\chi_A(\lambda) = (2 - \lambda)[(1 - \lambda)(2 - \lambda)(3 - \lambda) + (3 - \lambda) - 1]$$

ejemplo 2 - observación

$$\chi_A(\lambda) = (2 - \lambda) \begin{vmatrix}
(1 - \lambda) & 1 & 0 \\
-1 & (2 - \lambda) & 1 \\
-1 & 0 & (3 - \lambda)
\end{vmatrix}$$

•
$$\chi_A(\lambda) = (2 - \lambda)[(1 - \lambda)(2 - \lambda)(3 - \lambda) + (3 - \lambda) - 1]$$

•
$$\chi_A(\lambda) = (2 - \lambda)(-\lambda^3 + 6\lambda^2 - 12\lambda + 8)$$

ejemplo 2 - observación

$$\chi_{A}(\lambda) = (2 - \lambda) \begin{vmatrix}
(1 - \lambda) & 1 & 0 \\
-1 & (2 - \lambda) & 1 \\
-1 & 0 & (3 - \lambda)
\end{vmatrix}$$

•
$$\chi_A(\lambda) = (2 - \lambda)[(1 - \lambda)(2 - \lambda)(3 - \lambda) + (3 - \lambda) - 1]$$

•
$$\chi_A(\lambda) = (2 - \lambda)(-\lambda^3 + 6\lambda^2 - 12\lambda + 8)$$

•
$$\chi_A(\lambda) = (2 - \lambda)^4$$