Neural Probabilistic Language Model (NPLM)

Index

- NPLM structure
- NPLM and its meaning information

Fundamental Structure

- Based on the language model. (+ overcoming its limitations)
- 'n-gram' language model
- Using softmax as training method

Output

Softmax function

- $P(w_t|w_{t-1},...,w_{t-1},w_{t-n+1}) = \frac{\exp(y_{w_t})}{\sum_i \exp(y_i)}$ y_{w_t} : score vector of w_t , V(the # of words) dimensions
- Raise the nominator, lower the denominator
 → increase the conditional probability of P
- Back propagation with target index.

Input

• $x_t = C(w_t)$

 $C(w_t)$: inner product of matrix C and vector w_t

 w_t : One-hot-vector, $C: |V| \times m$ matrix

- $x = [x_{t-1}, x_{t-2}, \dots, x_{t-n+1}], x \in \mathbb{R}^{(n-1)m}$
- $y_{w_t} = b + Wx + U \tanh(d + Hx), y \in \mathbb{R}^{|V|}$

NPLM and its information

- Row vectors of Matrix C is updated by receiving the gradient which minimize the train loss occurred during training.
 - → the word vectors moved to same direction in vector space.
 - → Matrix C contains the context info of each word.

- Too many parameters. (H, x, d, W, U, b, y, C)
 - →Word2Vec