Congratulations! You passed!

Grade

Latest Submission

To pass 80% or

received 83.33%

Grade 83.33%

higher

Go to next item

- **1.** The derivative (expressed as a column vector) with respect to X of AX+b, where A is an $k\times p$ matrix, X is a $p\times 1$ vector and b is a $k\times 1$ vector is? (Use a superscript t for transpose if needed).
 - $\bigcap X$
 - $\bigcirc b$
 - \bigcirc A^t
 - ✓ Correct

The transpose is just taken because of convention on the desired dimensional organization of the gradient.

- **2.** The derivative (expressed as a column vector) with respect to X of $(X-b)^t A(X-b)$ where X and b are $p\times 1$ vectors and A is a $p\times p$ symmetric matrix is?
 - $\bigcirc A$
 - \bigcirc 2A(X-b)
 - $\bigcirc 2(X-b)$
 - igotimes Correct Look back to matrix derivatives lecture. Recall A is symmetric.
- **3.** Let X be an $n \times p$ matrix. The matrix $(I \frac{1}{n}J_{n,n})X(I \frac{1}{p}J_{p,p})$ has all row and column means equal to zero.

1 of 3

Background	Ouiz	Coursera

- True
- False
 - ✓ Correct

Look back at the lecture on centering.

- - igcup The empirical variances and covariances of the rows of X.
 - lacktriangle The empirical variances and covariances of the columns of X.
 - \bigcirc The empirical means of the rows of X.
 - \bigcirc The empirical means of the columns of X.
 - Correct

 Look back at the lecture on variance via matrix multiplication.
- **5.** Let X be an $n \times p$ matrix with $p \times p$ variance/covariance matrix S. Let D be the $p \times p$ diagonal matrix of the square root of the diagonal entries of S. The matrix XD^{-1} has what property?
 - All of its column variances are 1.
 - All of its column means are 0.
 - All of its row means are 0.
 - All of its row variances are 1.
 - \bigotimes Incorrect

This is irrelevant to the problem.

6. Let X be an $n \times p$ matrix with $p \times p$ variance/covariance matrix S. Let $\tilde{X} = (1 - \frac{1}{n}J_{n,n})X$. Let D be the $p \times p$ diagonal matrix of the square root of the diagonal entries of S. The matrix $\frac{1}{n-1}D^{-1}\tilde{X}^t\tilde{X}D^{-1}$ has what properties?

2 of 3 09-11-2022, 10:26

- \square Entries have the units of the columns of the X matrix squared.
- ✓ Has empirical correlations in the off diagonals.
 - Correct $\frac{1}{n-1}D^{-1}\tilde{X}^t\tilde{X}D^{-1}=D^{-1}SD^{-1}.$ The purpose of this problem is to show how to convert a variance/covariance matrix into a correlation matrix via matrix multiplication.
- ✓ Has ones on its diagonals.
- \bigcirc Correct $\frac{1}{n-1}D^{-1}\tilde{X}^t\tilde{X}D^{-1}=D^{-1}SD^{-1}.$ The purpose of this problem is to show how to convert a variance/covariance matrix into a correlation matrix via matrix multiplication.

3 of 3 09-11-2022, 10:26