Distributed Systems 分布式系统

Distributed Time and Clock Synchronization (2) 分布式时间和时间同步
Logical Time
逻辑时间

Motivation of logical clocks

- Cannot synchronize physical clocks perfectly in distributed systems. [Lamport 1978]
- Main function of computer clocks order events
 - If two processes don't **interact**, there is no need to sync clocks.
 - This observation leads to "causality"

Causality(因果性)

- Order events with <u>happened-before</u> (\rightarrow) relation
 - $-a \rightarrow b$
 - a could have affected the outcome of b
 - $-a \parallel b$
 - a and b take place in different processes that don't exchange data
 - Their relative ordering does not matter (they are concurrent)

Definition of *happened-before*

Definition of " \rightarrow " relationship:

- 1. If a and b take place in the same process
 - a comes before b, then $a \rightarrow b$
- 2. If a and b take place in the different processes
 - a is a "send" and b is the corresponding "receive", then $a \rightarrow b$
- 3. Transitive: if $a \to b$ and $b \to c$, then $a \to c$

Partial ordering – unordered events are concurrent

Logical Clocks

- A logical clock is a monotonically increasing software counter. It need not relate to a physical clock.
 - Corrections to a clock must be made by adding, not subtracting
- Rule for assigning "time" values to events
 - if $a \rightarrow b$ then clock(a) < clock(b)

Event counting example

- Three processes: P_0 , P_1 , P_2 , events a, b, c, ...
- A local event counter in each process.
- Processes occasionally communicate with each other, where inconsistency occurs, ...

Lamport's algorithm, 1978

Each process P_i has a logical clock L_i . Clock synchronization algorithm:

- 1. L_i is initialized to 0;
- 2. Update L_i :
 - LC1: L_i is incremented by 1 for each new event happened in P_i
 - LC2: when P_i sends message m, it attaches $t = L_i$ to m
 - LC3: when P_j receives (m,t) it sets $L_j := max\{L_j, t\}$, and then applies LC1 to increment L_i for event receive(m)

Problem: Identical timestamps

Concurrent events (e.g., a, g) may have the same timestamp

Make timestamps unique

Append the process ID (or system ID) to the clock value after the decimal point:

- e.g. if P_1 , P_2 both have $L_1 = L_2 = 40$, make $L_1 = 40.1$, $L_2 = 40.2$

Problem: Detecting causal relations

- If $a \rightarrow b$, then L(a) < L(b), however:
- If L(a) < L(b), we cannot conclude that $a \to b$
- It is not very useful in distributed systems.

Solution: use vector clocks

Vector of Timestamps

Suppose there are a group of people and each needs to keep track of events happened to others.

Requirement: Given two events, you need to tell whether they are sequential or concurrent.

Solution: you need to have a vector of timestamps, one element for each member.

Vector clocks (向量时钟)

Each process P_i keeps a clock V_i which is a vector of N integers

- Initialization: for $1 \le i \le N$ and $1 \le k \le N$, $V_i[k] := 0$
- Update V_i :
 - VC1: when there is a new event in P_i , it sets $V_i[i] := V_i[i] + 1$
 - VC2: when P_i sends a message m out, it attaches $t = V_i$ to m
 - VC3: when P_j receives (m,t), for $1 \le k \le N$, it sets $V_j[k] := \max\{V_j[k], t[k]\}$, then applies VC1 to increment $V_i[j]$ for event receive(m,t)

Note: $V_i[j]$ is a timestamp indicating that P_i knows all events that happened in P_i upto this time.

Detecting " \rightarrow " or "||" events by time vectors

Define

$$V = V'$$
 iff $V[i] = V'[i]$ for $i = 1, ..., N$
 $V \le V'$ iff $V[i] \le V'[i]$ for $i = 1, ..., N$
 $V < V'$ iff $V < V'$ and $V \ne V'$

- $V(e) \equiv \text{timestamp vector of an event } e$
- For any two events *a* and *b*,
 - $-a \rightarrow b \text{ iff } V(a) < V(b), a \neq b$
 - $a \parallel b$ iff neither $V(a) \le V(b)$ nor $V(b) \le V(a)$

Detecting "→" or "||" events: an example

Summary on vector timestamps

- No need to synchronize physical clocks
- Able to order causal events
- Able to identify concurrent events (but cannot order them)

An Application of Timestamp Vectors: causally-ordered multicast

Multicast: a sender sends a message to a group of receivers. Every message must be received by all group members.

Causally ordered multicast: if $m_1 \rightarrow m_2$, m_1 must be received before m_2 by all receivers.

Algorithm of Causally-Ordered Multicast

Each group member keeps a timestamp vector of *n* components (*n* group members), all initialized to 0.

- 1. When P_i multicasts a message m, it increments i-th component of its time vector V_i and attaches V_i to m.
- 2. When P_i with V_i receives (m, V_i) from P_i :

if
$$(V_j[k] \ge V_i[k]$$
 for all $k, k \ne i$), then

$$V_j[i] := V_i[i]$$
; // $V_i[i]$ is always greater than $V_j[i]$

$$V_{j}[j] := V_{j}[j] + 1;$$

Deliver m;

otherwise

Delay *m* until "if" is met.

Causal-Order Preserved

- If $m_1 \rightarrow m_2$, m_1 is received by (delivered to) all recipients before m_2 .
- If $m_1 \parallel m_2$, m_1 and m_2 can be received in arbitrary order by recipients.
- Total ordered multicast (全序组播): for case of $m_1 \parallel m_2$, m_1 and m_2 must be received in the same order by all recipients (i.e., either all m_1 before m_2 , or all m_2 before m_1).

Question

- . Suppose a group of process P0 -P5 and timestamp vector is used to represent logical times. P0 sends out a message m_1 with timestamp vector $T_0 = \{5,7,2,3,4,8\}$:
- a) what is the event number of P0?
- b) what is the event number of the last event that P0 knows about P4?
- c) suppose P4 sends a message m_2 with vector $T_4 = \{5,7,3,3,6,8\}$. What is relationship between m_1 and m_2 ?