Methods

Agent Movement Onset Time Mean	μ_A
Agent Movement Onset Time Uncertainty	σ_A
Reaction Time Mean	μ_{RT}
Reaction Time Uncertainty	σ_{RT}
Movement Time Mean	μ_{MT}
Movement Time Uncertainty	σ_{MT}
Neuromechanical Delay Mean	μ_{NMD}
Neuromechanical Delay Uncertainty	σ_{NMD}
Stopping Time Uncertainty	$\sigma_{ au}$
Switch Time Mean	μ_{switch}
Switch Time Uncertainty	σ_{switch}

Table 1. Inputs to the model

Reaction Time Delay	$\mathcal{N}(\mu_{RT}, \sigma_{RT})$
Movement Time Delay	$\mathcal{N}(\mu_{MT},\sigma_{MT})$
Neuromechanical Delay	$\mathcal{N}(\mu_{NMD}, \sigma_{NMD})$
Stopping Time Uncertainty	$\sigma_{ au}$
Switch Time Delay	$\mathcal{N}(\mu_{switch}, \sigma_{switch})$
Agent Movement Onset Time	$\mathcal{N}(\mu_A,\sigma_A)$

Table 2. Inputs to the model

$$f(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{t-\mu}{\sigma})^2}$$
 (1)

$$F(t) = P(T \le t) = \int_{-\infty}^{t} f(t)dt$$
 (2)

$$t \in [0, 1500] \tag{3}$$

$$T \sim \mathcal{N}(\mu, \sigma)$$
 (4)

$$P(React|\tau) = P(\tau > \mu_A; \sigma_{tau}, \sigma_A)$$
 (5)

$$P(Guess|\tau) = P(\tau < \mu_A; \sigma_{tau}, \sigma_A)$$
 (6)

$$\mu_X = \sum_{i = -\infty}^{\infty} x_i f(x_i; \mu_X, \sigma_X) \tag{7}$$

$$\mathbb{1}_{a_i, t_i \in S} = \begin{cases} 1, & \text{if } a_i, t_i \in S \\ 0, & \text{if } a_i, t_i \notin S \end{cases}$$
(8)

$$\mu_{RMO} = \mu_{A_{cutoff}} + \mu_{RT} \tag{9}$$

$$\sigma_{RMO} = \sqrt{\sigma_{A_{cutoff}}^2 + \sigma_{RT}^2} \tag{10}$$

$$\mu_{GMO} = tau + \mu_{NMD} + \mu_{switch} \tag{11}$$

$$\sigma_{GMO} = \sqrt{\sigma_{\tau}^2 + \sigma_{NMD}^2 + \sigma_{switch}^2} \tag{12}$$

$$R_{win} = 1 ag{13}$$

$$R_{indecision} = 0 (14)$$

$$R_{incorrect} = 0 (15)$$