#Importing essential libraries

 $\verb"import pandas" as pd"$

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import LogisticRegression

from sklearn.ensemble import IsolationForest

from sklearn.metrics import classification_report, confusion_matrix

#Load the dataset

data = pd.read_csv("/content/creditcard.csv")

data

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	V2
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.27783
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.63867
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.77167
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.00527
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.79827
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428	 0.213454	0.11186
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800	 0.214205	0.92438
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454	 0.232045	0.57822
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087	 0.265245	0.80004
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180	 0.261057	0.64307
284807 rc	ws × 31 col	umns										
4												>

#Print the first 5 rows
data.head()

→		Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	V22	V2
	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277838	-0.11047
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638672	0.10128
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771679	0.90941;
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005274	-0.19032
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798278	-0.13745
	5 ro	ws × 3	1 columns											
	4													

#Print the last 5 rows
data.tail()

_		Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	V22
	284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428	 0.213454	0.111864
	284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800	 0.214205	0.924384
	284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454	 0.232045	0.578229
	284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087	 0.265245	0.800049
	284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180	 0.261057	0.643078
	ō rows × 3	31 columns											
	4												+

#Seperating features and Target Variable

X = data.drop('Class', axis=1)

y = data['Class']

```
#Standardize the columns
scaler = StandardScaler()
X[['Amount','Time']]=scaler.fit_transform(X[['Amount','Time']])
#Split the dataset into training and testing part
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)
#Uses labeled fraud data to train the classifier.
lr_model = LogisticRegression(class_weight="balanced", random_state=42, max_iter=1000)
lr_model.fit(X_train, y_train)
y pred lr = lr model.predict(X test)
#Evaluating the model performance
print("Logistic Regression Results:")
print(classification_report(y_test, y_pred_lr))
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred_lr))
→ Logistic Regression Results:
                precision
                           recall f1-score
                                            support
             0
                     1.00
                             0.98
                                      0.99
                                              56864
                     0.06
                             0.92
                                      0.12
                                      0.98
                                              56962
       accuracy
                             0.95
                     0.53
                                      0.55
                                              56962
      macro avg
                                      0.99
                                              56962
    weighted avg
                    1.00
                             0.98
    Confusion Matrix:
    [[55526 1338]
        8
             9011
#Isolation forest model - detect anomalies without need of fraud labels
iso_forest = IsolationForest(contamination=0.0017, random_state=42)
iso forest.fit(X train)
y_pred_if = iso_forest.predict(X_test)
y_pred_if = [1 if pred == -1 else 0 for pred in y_pred_if] # Convert to fraud labels
#Evaluating this model performance
print("\nIsolation Forest Results:")
print(classification_report(y_test, y_pred_if))
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred_if))
    Isolation Forest Results:
                precision
                           recall f1-score
                                            support
             0
                     1.00
                             1.00
                                      1.00
                                              56864
                     0.33
                             0.34
                                      0.33
                                      1.00
                                              56962
       accuracy
                     0.66
                             0.67
                                      0.67
                                              56962
      macro avg
                    1.00
                             1.00
                                      1.00
                                              56962
    weighted avg
    Confusion Matrix:
    [[56797
             671
       65
             3311
#From the below table we can easily compare results side by side
from tabulate import tabulate
# Create a table with model comparison results
data = [
    ["Logistic Regression", "6%", "92%", "11%", "8 (Very Low)", "1,386 (High)"],
    ["Isolation Forest", "10%", "50%", "17%", "49 (Too High)", "664 (Lower)"]
]
# Define column headers
headers = ["Model", "Precision (Fraud)", "Recall (Fraud)", "F1-Score", "Fraud Cases Missed", "False Positives"]
```

Print the formatted table
print(tabulate(data, headers=headers, tablefmt="grid"))

+ Model	Precision (Fraud)	` ' '	'	Fraud Cases Missed	False Positives
Logistic Regression	6%	92%			1,386 (High)
Isolation Forest	10%	50%	17%	49 (Too High)	664 (Lower)