Применение MDL (Minimal Descripton length) принципа Риссанена для полумарковских процессов.

Ремизова Анна Петровна

13 апреля 2023 г.

Введение

Для начала рассмотрим простые марковские цепи. Пусть марковская цепь состоит из 2 состояний. Есть данные, мы хотим подобрать марковскую цепь, для которой наибольшая вероятность получить '001'*300. По Риссанену, если мы хотим предсказать, что будет дальше, то должны сравнивать друг с другом гипотезы по их сложности, причём даём преимущество простым гипотезам.

$$C(\mu) + \log_2 \frac{1}{\mu(x)}$$

где $C(\mu)$ - complexity, μ - распределение вероятности.

Задача 1

Дана последовательность состояний Марковской цепи из 2 состояний: 0 и 1. Найти оптимальные переходные вероятности p из 0 в 1 и q из 1 в 0 по принципу Риссанена MDL.

Для решения этой задачи запишем вероятность получения заданной реализации: пусть n_{ij} - число переходов из состояния i в состояние j, тогда:

$$P_c(x) = p^{n_{01}} \cdot (i-p)^{n_{00}} \cdot q^{n_{10}} \cdot (1-q)^{n_{11}} \to max$$

$$\log_2 \frac{1}{P_c(x)} = -(n_{01}\log_2 p + n_{00}\log_2 (1-p) + n_{10}\log_2 q + n_{11}\log_2 (1-q))$$

Сложность $C(\mu)$ будем определять как суммарную длину записи p и q в двоичной системе счисления. Пусть вероятность p имеет k знаков в двоичной системе, q - l знаков, тогда $C(\mu) = k + l$. Далее рассмотрим несколько реализаций Марковских цепей и исследуем, как меняются значения в зависимости от k и l.

Таблица с двоичными значениями

В таблице в каждой ячейке представлены сначала оптимальные (минимальные, т.к. ищем минимальную описательную длину) значения $\log_2\frac{1}{\mu(x)}=-(n_{01}\log_2p+n_{00}\log_2(1-p)+n_{10}\log_2q+n_{11}\log_2(1-q)),$ затем p и q, при которых оно достигается, представленные в двоичной системе счисления. По горизонтали отмечены значения l - длина перебираемых q в двоичной системе, по вертикали - значения k - длина перебираемых p в двоичной системе.

Выводы: заметим, что при фиксированной длине l (по столбцам) двоичной записи переходной вероятности q оптимальное значение q неизменно, но при этом с увеличением k оптимальное значение логарифма уменьшается. Аналогично для фиксированного k (по строкам).

Выводы: для $\sqrt{2}$ то же, что и для π .

Выводы: для $\sqrt{3}$ результаты уже отличаются от π , но наблюдаются те же закономерности.

Таблица с десятичными значениями

В таблице в каждой ячейке представлены сначала оптимальные значения $C(\mu) + \log_2 \frac{1}{\mu(x)}$, затем p и q, при которых оно достигается, округлённые до десятитысячных. По горизонтали отмечены значения l - длина перебираемых q в двоичной системе, по вертикали - значения k - длина перебираемых p в двоичной системе.

Таблица 1: Таблица оптимальных зн-й р и q в двоичной записи для π

k / l	1	2	3	4	5	6
1	0.1	0.1	0.1	0.1	0.1	0.1
	0.1	0.10	0.101	0.1010	0.10100	0.100111
	25.0	25.0	24.4998	24.4998	24.4998	24.4975
2	0.10	0.10	0.10	0.10	0.10	0.10
	0.1	0.10	0.101	0.1010	0.10100	0.100111
	25.0	25.0	24.4998	24.4998	24.4998	24.4975
3	0.101	0.101	0.101	0.101	0.101	0.101
	0.1	0.10	0.101	0.1010	0.10100	0.100111
	24.8217	24.8217	24.3215	24.3215	24.3215	24.3192
4	0.1001	0.1001	0.1001	0.1001	0.1001	0.1001
	0.1	0.10	0.101	0.1010	0.10100	0.100111
	24.7738	24.7738	24.2735	24.2735	24.2735	24.2713
5	0.10011	0.10011	0.10011	0.10011	0.10011	0.10011
	0.1	0.10	0.101	0.1010	0.10100	0.100111
	24.7623	24.7623	24.2621	24.2621	24.2621	24.2598
6	0.100101	0.100101	0.100101	0.100101	0.100101	0.100101
	0.1	0.10	0.101	0.1010	0.10100	0.100111
	24.7594	24.7594	24.2592	24.2592	24.2592	24.2569

Таблица 2: Таблица оптимальных зн-й р и q в двоичной записи для π

k / l	7	8	9	10	11
7	0.1001011	0.1001011	0.1001011	0.1001011	0.1001011
	0.1001111	0.10011110	0.100111011	0.1001110110	0.10011101100
	24.25487169	24.25487169	24.25474365	24.25474365	24.25474365
8	0.10010101	0.10010101	0.10010101	0.10010101	0.10010101
	0.1001111	0.10011110	0.100111011	0.1001110110	0.10011101100
	24.25469022	24.25469022	24.25456218	24.25456218	24.25456218
9	0.100101011	0.100101011	0.100101011	0.100101011	0.100101011
	0.1001111	0.10011110	0.100111011	0.1001110110	0.10011101100
	24.25464497	24.25464497	24.25451694	24.25451694	24.25451694
10	0.1001010101	0.1001010101	0.1001010101	0.1001010101	0.1001010101
	0.1001111	0.10011110	0.100111011	0.1001110110	0.10011101100
	24.25463365	24.25463365	24.25450561	24.25450561	24.25450561
11	0.10010101011	0.10010101011	0.10010101011	0.10010101011	0.10010101011
	0.1001111	0.10011110	0.100111011	0.1001110110	0.10011101100
	24.25463082	24.25463082	24.25450278	24.25450278	24.25450278

Таблица 3: Таблица оптимальных зн-й р и q в двоичной записи для $\sqrt{2}$

k / l	1	2	3	4	5	6
1	0.1	0.1	0.1	0.1	0.1	0.1
	0.1	0.10	0.101	0.1010	0.10100	0.100111
	25.0	25.0	24.4998	24.4998	24.4998	24.4975
2	0.10	0.10	0.10	0.10	0.10	0.10
	0.1	0.10	0.101	0.1010	0.10100	0.100111
	25.0	25.0	24.4998	24.4998	24.4998	24.4975
3	0.101	0.101	0.101	0.101	0.101	0.101
	0.1	0.10	0.101	0.1010	0.10100	0.100111
	24.8217	24.8217	24.3215	24.3215	24.3215	24.3192
4	0.1001	0.1001	0.1001	0.1001	0.1001	0.1001
	0.1	0.10	0.101	0.1010	0.10100	0.100111
	24.7738	24.7738	24.2735	24.2735	24.2735	24.2713
5	0.10011	0.10011	0.10011	0.10011	0.10011	0.10011
	0.1	0.10	0.101	0.1010	0.10100	0.100111
	24.7623	24.7623	24.2621	24.2621	24.2621	24.2598
6	0.100101	0.100101	0.100101	0.100101	0.100101	0.100101
	0.1	0.10	0.101	0.1010	0.10100	0.100111
	24.7594	24.7594	24.2592	24.2592	24.2592	24.2569

Таблица 4: Таблица оптимальных зн-й р и q в двоичной записи для $\sqrt{3}$

k / l	1	2	3	4	5	6
1	0.1	0.1	0.1	0.1	0.1	0.1
	0.1	0.10	0.100	0.1001	0.10001	0.100010
	24.0	24.0	24.0	23.9891	23.9521	23.9521
2	0.11	0.11	0.11	0.11	0.11	0.11
	0.1	0.10	0.100	0.1001	0.10001	0.100010
	21.9053	21.9053	21.9053	21.8944	21.8573	21.8573
3	0.110	0.110	0.110	0.110	0.110	0.110
	0.1	0.10	0.100	0.1001	0.10001	0.100010
	21.9053	21.9053	21.9053	21.8944	21.8573	21.8573
4	0.1100	0.1100	0.1100	0.1100	0.1100	0.1100
	0.1	0.10	0.100	0.1001	0.10001	0.100010
	21.9053	21.9053	21.9053	21.8944	21.8573	21.8573
5	0.11001	0.11001	0.11001	0.11001	0.11001	0.11001
	0.1	0.10	0.100	0.1001	0.10001	0.100010
	21.8783	21.8783	21.8783	21.8674	21.8304	21.8304
6	0.110010	0.110010	0.110010	0.110010	0.110010	0.110010
	0.1	0.10	0.100	0.1001	0.10001	0.100010
	21.8783	21.8783	21.8783	21.8674	21.8304	21.8304

Таблица 5: Таблица оптимальных значений р и q для π

k / l	1	2	3	4	5	6
1	0.5	0.5	0.5	0.5	0.5	0.5
	0.5	0.5	0.625	0.625	0.625	0.6094
	25.0	25.0	24.4998	24.4998	24.4998	24.4975
2	0.5	0.5	0.5	0.5	0.5	0.5
	0.5	0.5	0.625	0.625	0.625	0.6094
	25.0	25.0	24.4998	24.4998	24.4998	24.4975
3	0.625	0.625	0.625	0.625	0.625	0.625
	0.5	0.5	0.625	0.625	0.625	0.6094
	24.8217	24.8217	24.3215	24.3215	24.3215	24.3192
4	0.5625	0.5625	0.5625	0.5625	0.5625	0.5625
	0.5	0.5	0.625	0.625	0.625	0.6094
	24.7738	24.7738	24.2735	24.2735	24.2735	24.2713
5	0.5938	0.5938	0.5938	0.5938	0.5938	0.5938
	0.5	0.5	0.625	0.625	0.625	0.6094
	24.7623	24.7623	24.2621	24.2621	24.2621	24.2598
6	0.5781	0.5781	0.5781	0.5781	0.5781	0.5781
	0.5	0.5	0.625	0.625	0.625	0.6094
	24.7594	24.7594	24.2592	24.2592	24.2592	24.2569