i-Mix

A DOMAIN-AGNOSTIC STRATEGY FOR CONTRASTIVE REPRESENTATION LEARNING

Abstract

Contrastive learning approaches are well designed for vision domains only.

Combine Contrastive learning approaches with Mixup.

 Improve the performance of contrastive learning approaches in across domains (image, speech, tabler)

What is contrastive learning?

SimCLR

Cat: 1.0 Dog: 0.0

Cat: 0.0 Dog: 1.0

Dog: 0.6

How to Mixup is applied in Supervised setting?

$$\ell_{\text{Sup}}(x_i, y_i) = -\sum_{c=1}^{C} y_{i,c} \log \frac{\exp(w_c^{\top} f_i)}{\sum_{k=1}^{C} \exp(w_k^{\top} f_i)}$$

$$\ell_{\text{Sup}}(x_i, y_i) = -\sum_{c=1}^{\infty} y_{i,c} \log \frac{1}{\sum_{k=1}^{C} \exp(w_k^{\top} f_i)}$$

 $\ell_{\operatorname{Sup}}^{\operatorname{MixUp}}((x_i, y_i), (x_j, y_j); \lambda) = \ell_{\operatorname{Sup}}(\lambda x_i + (1 - \lambda)x_j, \lambda y_i + (1 - \lambda)y_j)$

How to apply in Self-Supervised settings?

Then....

$$(x_i, x_j; \lambda) = \lambda x_i + (1 - \lambda) x_j$$

$$(x_i, x_j; \lambda) = \lambda x_i + (1 - \lambda) x_j$$

$$\ell^{i\text{-Mix}}\big((x_i,v_i),(x_j,v_j);\mathcal{B},\lambda\big) = \ell(\text{Mix}(x_i,x_j;\lambda),\lambda v_i + (1-\lambda)v_j;\mathcal{B})$$

$$\operatorname{CutMix}(x_i, x_i; \lambda) = M_{\lambda} \odot x_i + (1 - M_{\lambda}) \odot x_i$$

Contrastive Learning Approaches

• SimCLR

Moco

Byol

$$\ell_{\text{SimCLR}}(x_i; \mathcal{B}) = -\log \frac{\exp\left(s(f_i, f_{(N+i) \mod 2N})/\tau\right)}{\sum_{k=1, k \neq i}^{2N} \exp\left(s(f_i, f_k)/\tau\right)}$$

$$\ell_{ ext{N-pair}}^{i ext{-Mix}}ig((x_i,v_i),(x_j,v_j);\mathcal{B},\lambdaig) = \ell_{ ext{N-pair}}(\lambda x_i + (1-\lambda)x_j,\lambda v_i + (1-\lambda)v_j;\mathcal{B})$$

 $\ell_{ ext{N-pair}}(x_i, v_i; \mathcal{B}) = -\sum_{n=1}^{N} v_{i,n} \log \frac{\exp\left(s(f_i, f_n)/ au\right)}{\sum_{k=1}^{N} \exp\left(s(f_i, \tilde{f}_k)/ au\right)}$

Pseudocode

Algorithm 1 Loss computation for i-Mix on N-pair contrastive learning in PyTorch-like style.

pretrain_loss

10k

12k

NPair + imix

pretrain_loss

Test ACC 67.7

Test ACC 74.8

Comparing with the paper

Test Accuracy

Implementation

Paper

Npair	+ imix	Npair	+ imix
67.7	74.8	68.5	72.1

Future Works

Implementing BYOL, MOCO

Experimenting in Speech commands and CIFAR

Organizing the code

