Maciej Byczko	Prowadzący:	Numer ćwiczenia
Bartosz Matysiak	dr inż. Jacek Mazurkiewicz	4
PN 10:50 TP	Temat ćwiczenia:	Ocena:
1 10.50 11	Układy wielobitowych wejść i wyjść	Ocena.
Grupa:	Data wykonania:	
В	8 Listopada 2021r.	

Spis treści

1 Z a	danie 1													
1.1	Polecenie													
1.2	Rozwiązanie													
	1.2.1 Schemat stanów													
	1.2.2 Schemat układu													
	1.2.3 Kod VHDL													
	1.2.4 Symulacja													
1.3	3													
	1.3.1 Kod UCF													
2 Zac	anie 2													
2.1	Polecenie													
2.2														
	2.2.1 Schemat stanów													
	2.2.2 Tabela prawdy													
	2.2.3 Siatki Karnaugh													
	2.2.4 Schemat układu													
	2.2.5 Kod VHDL													
	2.2.6 Symulacja													
2.3	3													
	2.3.1 Kod UCF													
3 Z a	adanie 3													
3.1														
3.2														
0.2	3.2.1 Schemat stanów													
	3.2.2 Tabela prawdy													
	3.2.3 Siatki Karnaugh													
	3.2.4 Schemat układu													
	3.2.5 Kod VHDL													
ງງ	σ													
3.3	v 1													
	3.3.1 Kod UCF													
	adanie 4													
4.1														
4.2	C													
	4.2.1 Schemat stanów													
	4.2.2 Tabela prawdy													
	4.2.3 Siatki Karnaugh													

5	Wn	ioski																	ļ
		4.3.1	Kod UCF		•			 •	•	 •	•						•	 •	
	4.3	Fizycz	na implementa	cja															ļ
		4.2.6	Symulacja																
			Kod VHDL .																
			Schemat ukła																

Sprawozdanie

Strona 2

1 Zadanie 1

1.1 Polecenie

Detektor 2-znakowej sekwencji słów 8-bitowych: wejścia 2 znaków 8-bitowych, 1 wyjście 1-bitowe – sekwencja rozpoznana / sekwencja błędna. Źródło danych: początkowo "guziki" przystawki, potem klawiatura PC via terminal.

1.2 Rozwiązanie

Do rozwiązania problemu wymagane jest od nas podłączenie dwóch komparatorów 8-bitowych (COMP8), które po pobraniu wartości od użytkownika kolejno po sobie sprawdzają wprowadzone słowa. W zależności od wymagania można wprowadzić także obowiązkowe wprowadzanie wartości w odpowiedniej kolejności.

- 1.2.1 Schemat stanów
- 1.2.2 Schemat układu
- 1.2.3 Kod VHDL
- 1.2.4 Symulacja
- 1.3 Fizyczna implementacja
- 1.3.1 Kod UCF

2 Zadanie 2

2.1 Polecenie

Układ arytmetyczny pracujący na dwóch argumentach 4-bitowych wyrażonych w kodzie Aikena i generujący stosowny wynik w tymże kodzie.

2.2 Rozwiązanie

- 2.2.1 Schemat stanów
- 2.2.2 Tabela prawdy
- 2.2.3 Siatki Karnaugh
- 2.2.4 Schemat układu
- 2.2.5 Kod VHDL
- 2.2.6 Symulacja
- 2.3 Fizyczna implementacja
- 2.3.1 Kod UCF

3 Zadanie 3

3.1 Polecenie

Konwerter cyfry szesnastkowej zapisanej na czterech bitach od 0 do 9, A do F na kod ASCII tej cyfry – wyjście 8-bitowe. Prezentacja wyniku na diodach przystawki, potem na wyświetlaczu 7-segmentowym.

3.2 Rozwiązanie

- 3.2.1 Schemat stanów
- 3.2.2 Tabela prawdy
- 3.2.3 Siatki Karnaugh
- 3.2.4 Schemat układu
- 3.2.5 Kod VHDL
- 3.2.6 Symulacja
- 3.3 Fizyczna implementacja
- 3.3.1 Kod UCF

4 Zadanie 4

4.1 Polecenie

Komparator dwóch 4-bitowych cyfr: 2 wejścia po 4 bity, 3 wyjścia 1-bitowe: mniejszy, większy, równy pracujący w kodzie Aikena.

4.2 Rozwiązanie

- 4.2.1 Schemat stanów
- 4.2.2 Tabela prawdy
- 4.2.3 Siatki Karnaugh
- 4.2.4 Schemat układu
- 4.2.5 Kod VHDL
- 4.2.6 Symulacja
- 4.3 Fizyczna implementacja
- 4.3.1 Kod UCF
- 5 Wnioski