

单元系统相图

在单元系统中所研究的对象<u>只有一种绝</u>物质,即独立组分数C=1,根据相律:

$$F=C-P+2=3-P$$

当 P_{min}=1时, F_{max}=2

 $P_{min}=3$ 时, $F_{min}=0$

单元系统中平衡共存的相数最多不超过三个,在三相平衡共存时系统是无变量的(即F=0)因为系统中的相数不可能少于一个,所以但是元系统的最大自由度为2.

材料科学与工程学院

专业单元系统相图举例

- SiO₂系统相图
- · C₂S系统相图
- Zr0,系统相图
- 金刚石相图
- 硫的相图

材料科学与工程学院 School of Material Science ® Scripperion

~1670°C 1470°C

SiO2系统相图

- 二氧化硅是具有多晶转变的典型氧化物,在 自然界分布极广,它的存在形态很多,以原 生状态存在的有水晶,脉石英,玛瑙,以次 生态存在的则有砂岩,蛋白石,玉髓。燧石 等。此外,尚有变质作用的产物如石英岩等。
- 石英的用途也很广泛。

材料科学与工程学院 School of Material Science & Engineering

| 578°C | 160°C | β-石英 | β-協石英 | 117°C | γ-協石英 | 117°C | γ-協石英 | 田:各S

SiO₂

系

统

相

~1600°C

870°C

图: 各SiO₂变体间的转变关系 School of Material Science & Engineering

~270°C 急冷 | 加热

180

SiO2的多晶转变

通常二氧化硅SiO、有七种晶型,可分为三个系列,即石英,鳞石英和方石英系列,每个系列中又有高温型变体和低温型变体,即 α 、 β -石英。 α 、 β 、 α 、 β -万石英。各SiO、变体之间的转变关系如图(箭头的虚实线与图的变量平衡曲线相对应)。

材料科学与工程学院

1、在573°C以下的低温,SiO₂的稳定晶型为β-石英,加热至573°C转变为高温型的α-石英,这种转变较快;冷却时在同一温度下以同样的速度发生逆转变。如果加热速度过快,则α-石英过热而在1600°C时熔融。如果加热速度很慢,则在870°C转变为α-鳞石英。

2、α-鳞石英在加热较快时,过热到1670°C时熔融。当缓慢冷却时,在870°C仍可逆地转变为α-石英;当迅速冷却时,沿虚线过冷,在163°C转变为介稳态的β-鳞石英,在117°C转变为介稳态的γ-鳞石英。加热时γ-鳞石英仍在原转变温度以同样的速度先后转变为β-鳞石英和α-鳞石英。

材料科学与工程学院

4

3、α-鳞石英缓慢加热,在1470°C时转变为α-方石英,继续加热到1713°C熔融。当缓慢冷却时,在1470°C时可逆地转变为α-鳞石英;当迅速冷却时,沿虚线过冷,在180~270°C转变为介稳状态的β-方石英;当加热β-方石英仍在180~270°C迅速转变为稳定状态的α-方石英。

4、熔融状态的SiO2由于粘度很大,冷却时往往成为过冷的液相-石英玻璃。虽然它是介稳态,由于粘度很大在常温下可以长期不变。如果在1000℃以上持久加热,也会产生析晶。熔融状态的SiO2,只有极其缓慢的冷却,才会在1713℃可逆地转变为α-方石英。

材料科学与工程学院 School of Material Science & Engineering

综述:

1、在 SiO_2 的多晶转变中,同级转变: α -石英 \leftrightarrow α -鳞石英 \leftrightarrow α -方石英 转变很慢,要加 快转变,必须加入矿化剂。同类转变: α -、 β -和 γ -型晶体,转变速度非常快。

2、不同的晶型有不同的比重, β-石英的最大。

3、 SiO_2 的多晶转变的体积效应 (见表6.1, P258) 结论: 同级转变 ΔV 大, α -石英 \Leftrightarrow α -鳞石英的 ΔV_{MAX} =16% 同类转变 ΔV 小,鳞石英 ΔV 最小,为0.2%; 方石英 ΔV 最大,为2.8%。

同类转变速度快, 因而同类转变的危害大。

材料科学与工程学院

SiO₂相图的应用

以耐火材料硅砖的生产和使用为例。

原料: 天然石英(β-石英) 生产方式: 高温煅烧

晶型转变: 很复杂(原因: 介稳状态的出现)

要求:鳞石英含量越多越好,而方石英越少越好。

实际情况:

加热至573℃很快转变为α-石英,当加热至870℃不转变为 鳞石英,在生产条件下,常过热到1200℃~1350℃直接转变 为介稳的α-方石英。

石英、鳞石英和方石英三种变体的高低温型转变中,方石英 ΔV 变化最大,石英次之,而鳞石英最小。如果制品中方石英含量大,则在冷却到低温时,由于 α -方石英转变成 β -方石英有较大的体积收缩而难以获得致密的硅砖制品。

材料科学与工程学院

SiO₂相图的应用

以耐火材料硅砖的生产和使用为例。

原料: 天然石英(β-石英) 生产方式: 高温煅烧 晶型转变: 很复杂(原因: 介稳状态的出现)

要求:鳞石英含量越多越好,而方石英越少越好。

可采取的措施:

1、在870℃适当保温,促使鳞石英生成;

2、在1200~1350℃小心加快升温速度避免生成α-方石英;

3、在配方中适当加入 Fe_2O_3 、 MnO_2 、CaO或Ca(OH) $_2$ 等矿化剂,在1000°C左右产生一定量的液相, α -石英、 α -方石英在此液相中的溶解度大,而 α -鳞石英的溶解度小,因而 α -石英、 α -万石英不断溶入液相,而 α -鳞石英则不断从液相中析出。

材料科学与工程学院

SiO₂相图的应用

以耐火材料硅砖的生产和使用为例。

原料: 天然石英(β-石英) 生产方式: 高温煅烧

晶型转变:很复杂(原因:介稳状态的出现)

要求:鳞石英含量越多越好,而方石英越少越好。

使用时应注意:

烤窑过程中应在120°C、163°C、230°C、573°C均有所注意,要缓慢进行,在573°C以后可加快升温速度。 该材料的使用的适宜温度范围在870~1470°C之间。

材料科学与工程学院

• 对压电材料制备的指导作用

在32个点群中,凡是具有对称中心的没有压电性,而没有对称中心的有压电性。对结构分析可知, α -方石英有对称中心,而 β -石英没有,所以 β -石英具有压电性。

因此要合成具有压电性的β-石英必须 遵照相图中β-石英的合成路径来制订相应 的方案。

这也是为什么一般做压电材料不才用提 拉法制备单晶而用水热法的原因。

材料科学与工程学院

C2S系统相图

硅酸二钙 (2Ca0・SiO₂, 缩写为C₂S) 是硅酸盐水泥熟料中重要的矿物组成之一,其多晶转变对水泥生产具有重要的指导意义,同时在碱性矿渣及石灰质耐火材料中都含有大量的C₂S。过去一般认为C₂S有四种晶型: α - C₂S、α′ - C₂S、β - C₂S、γ - C₂S、后来发现 α′ - C₂S,高温和低温两种晶型,其相互转变温度约为1160°C,故C₂S。有α、α′ H、α′ L、β、γ 五种晶型,常温下的稳定相是γ - C₂S,介稳相是β - C₂S。C₂S的各晶型间的转变关系如下:

晶型	结构类型	单位品胞输长	x-射线特征谱线	比重	N_{g}	Nø
a ½-C2S	与低温 型 K ₂ SO ₄ 结构相似(略有变形)	a = 18.80 b = 11.07 c = 6.85	d=2.78,2.76,2.72	3.14	1.737 [®]	1.715 [©]
β-C₂S	同上	a = 9.28 b = 5.48 c = 6.76	d=2.778, 2.740, 2.607	3.20	1.735	1.717
7-C ₂ S	橄榄石结构	a = 5.091 b = 6.782 c = 11.371	d=3.002, 2.728, 1.928	2.94	1.654	1.642

• 可以看出,加热时多晶转变的顺序是: $\gamma - C_0 S \to \alpha' \ L - C_2 S \to \alpha' \ H - C_2 S \to \alpha - C_2 S$ 但冷却是多晶转变的顺序是 $\alpha - C_0 S \to \alpha' \ H - C_0 S \to \alpha' \ L - C_0 S \to \beta - C_0 S \to \gamma - C_0 S = \alpha' \ L - C_0 S \to \beta - C_0 S$

材料科学与工程学院

ZrO。系统相图

材料科学与工程学院

由图可以看出,当温度升高到近 1200℃时,单斜多晶转变为四方晶型, 并伴有5%的体积收缩和5936J/mol的 吸热效应,这个过程不但可逆,而且 转变速度很快,但加热过程和冷却过 程并不一致,有滞后现象。

由于ZrO₂晶型转化伴有较大的体积变化,因此在加热或冷却纯ZrO₂制品过程中会引起开裂,这样就限制了直接使用ZrO₂的范围,必须向ZrO₂中添加外加物,使其稳定成立方晶型ZrO₂,为加物 通常都选择氧化物如CaO、MgO, Y₂O₃等。在纯的ZrO₂中加入6~8%的GaO或15% Y₂O₃,就可使ZrO₂完全稳定成立方ZrO₂。

当然, ZrO₂晶型变化所伴随的体积变化还有可以利用的一面。可 利用ZrO₃的部分相变来起到增韧作用。

> 材料科学与工程学院 School of Material Science & Engineering

金刚石相图

材料科学与工程学院

硫的相图

- 硫有两种变体, 正 交硫和单斜硫。
- 区: F=2
- 线: F=1
- 点: F=0

材料科学与工程学院

