

Beneath the Cream

Unveiling Relevant Information Points from CrimeBB with Its Ground Truth Labels

Felipe Moreno-Vera, Cabral Lima, and Daniel S. Menasché

- 1. Introduction
- 2. Dataset
- 3. Beneath the Cream Methodology
- 4. Experimental Results
- 5. Conclusion

- 1. Introduction
- 2. Dataset
- 3. Beneath the Cream Methodology
- 4. Experimental Results
- 5. Conclusion

Motivation

Underground forums are frequently used by malicious actors to discuss vulnerabilities and exploitation strategies.

Exploitation of vulnerabilities in the wild poses a significant threat to the Internet ecosystem.

There is a lack of effective methods to process discussions about threats and identify potential exploitation in underground forums.

Context

Developing methods to analyze these forums can help predict and prevent cyber attacks, safeguarding critical systems and data.

Analyzing these forums allows for tracking

- Analyse keywords, their usage
- Exploit prices, demand, and targets
- Classify vulnerability level of treats
- Classify discussions threads

- 1. Introduction
- 2. Dataset
- 3. Beneath the Cream Methodology
- 4. Experimental Results
- 5. Conclusion

Dataset Description

Made available by Cambridge Cybercrime

Centre

Contains data scraped from multiple underground forums (37 studied)

Organized in forums, boards, threads and posts

Provide about 45,2 GB of textual information.

CrimeBB

As of August 28, 2024, CrimeBB have:

- **6,739,073** users interacting on **37** websites.
- **4,339** boards
- 10,600,580 discussion threads
- **117,365,492** posts.
- More than ~45Gb of information.

Forum	#Boards	#Threads	#Posts	First post	Recent post
Hack Forums	212	4,301,893	42,686,891	2007-01-27	2024-05-24
Zismo	39	546,832	12,194,525	2010-05-26	2024-05-04
MPGH	770	918,439	12,193,797	2005-12-26	2024-05-26
Blackhatworld	112	1,017,226	12,132,290	2005-10-31	2024-05-20
Nulled	169	687,522	9,546,230	2013-04-02	2024-05-16
lolzteam	292	577,642	6,196,005	2013-03-10	2019-09-01
Cracked	163	419,517	3,911,032	2018-04-03	2024-04-17
OGUsers	58	244,766	3,608,306	1990-01-01	2019-04-09
UnKnoWnCheaTs	248	182,667	2,837,509	2002-11-02	2024-05-24
Antichat	80	254,810	2,642,161	2002-05-29	2024-03-15
V3rmillion	40	456,262	2,459,519	2016-02-02	2019-11-11
Raidforums	88	114,450	1,231,126	2015-03-20	2022-02-20
Elhacker	53	212,081	987,039	2002-08-21	2024-05-28
Probiv	168	123,023	909,007	2014-11-05	2024-04-25
Breached	72	34,412	737,922	2022-03-16	2023-03-19
Hackers Armies	53	42,548	468,880	2009-06-01	2024-04-01
Forum Team	201	44,404	433,901	2017-10-31	2024-03-26
BreachForums	76	28,800	331,357	2023-05-12	2024-05-14
Indetectables	72	32,274	328,539	2006-02-20	2024-05-19
XSS Forum	49	48,718	310,796	2004-11-13	2023-04-27
Dread	446	75,122	294,596	2018-02-15	2020-01-09
Runion	19	16,867	240,632	2012-01-11	2020-01-05
Offensive Community	71	119,251	161,492	2012-06-30	2018-12-11
Underc0de	73	27,054	95,723	2010-02-10	2024-05-26
The Hub	62	11,286	88,753	2014-01-09	2019-08-09
Ifud	65	11,827	72,851	2012-05-10	2022-12-19
PirateBay Forum	33	11,526	60,678	2013-10-23	2020-12-03
OnniForums	27	3,542	45,094	2023-02-08	2024-05-24
Torum	11	4,346	28,485	2017-05-25	2019-08-07
Safe Sky Hacks	50	12,963	27,018	2013-03-28	2019-01-23
Kernelmode	11	3,606	26,815	2010-03-11	2019-11-29
Freehacks	228	5,106	26,471	2013-07-27	2023-04-23
Deutschland im Deep Web	43	4,075	20,185	2018-11-22	2020-06-04
GreySec	28	2,232	11,925	2015-06-10	2022-01-04
Garage for Hackers	47	2,329	8,710	2010-07-06	2018-10-13
Stresser Forums	17	708	7,069	2017-04-09	2018-04-09
Envoy Forum	93	454	2,163	2019-07-06	2019-08-09
Total	4.339	10.600.580	117.365.492		

PostCog, a framework to navigate through CrimeBB data.

Welcome to Postcog

View statistics, explore, filter, and learn more about the Cambridge Cybercrime Centre datasets

் Niew forum and post statistics

Explore the full dataset

Q Search and filter dataset posts

Note:

Data is regularly updated, therefore counts of recent posts may change.

Data is collected using scraping, by visiting forum pages, on a best-effort basis. Therefore, datasets may not be a fully complete collection, but should contain the majority of posts. We recommend running a sanity check on datasets, checking that values and statistics are showing expected results.

Logs are kept, which includes details on the complexity of queries (e.g. number of filters used), but not the contents of the query (e.g. keywords searched)

PostCog - Labels

- From PostCog, at the date of 2024-08-28, we search the word "CVE" and found about 15,742 posts since 2004-01-08 until 2024-05-26.
- We identify that only post scrapped from
 HackForums has crime type, post type, and intent tags included.

- Introduction
- Dataset
- Beneath the Cream Methodology
- 4. Experimental Results
- 5. Conclusion

New Thread Hackforums Antichat **CrimeBB** Explain **Training Pipeline Pipeline Pipeline** Filter Posts **Filtered** Cited **Posts CVEs Extract Threads Features** Feature Data **Extraction** Labeling NVD **Threads Features Threads Dataset Construction**

Data Preparation - Filtering threads

Data Preparation - Feature Extraction

Doc2Vec								
Vectors	x1	x2	х3	x4	x 5	x6	х7	
Document 1	0.35	0.86	1.82	3.48	1.05	10.15	8.63	
Document 2	0.84	0.45	3.45	4.49	2.64	2.87	13.97	
Document 3	0.39	1.0	0.98	7.92	5.14	6.19	20.98	

UFRJ | PPGI | SIEMENS

Bag-Of-Words (1-2-gram)														
Words	1	like	cats	I like	like cats	are	the	best	they	awesome	cats are	the best	they are	
Document 1	1	1	1	1	1	0	0	0	0	0	0	0	0	
Document 2	0	0	1	0	0	2	1	1	1	1	1	1	1	
Document 3	0	0	0	0	0	1	0	0	0	0	0	0	0	

TF-IDF (1-2-gram)														
Words	1	like	cats	I like	like cats	are	the	best	they	awesome	cats are	the best	they are	
Document 1	0	0	0.47	0.62	0.62	0	0	0	0	0	0	0	0	
Document 2	0	0	0.33	0	0	0.56	0.43	0	0	0	0.43	0.43	0.13	
Document 3	0	0	0	0	0	0.35	0	0	0	0	0	0	0	

Data Preparation - Feature Extraction

I used private setting and some tweaks on obfuscation and result is 1/39 Raw input for CVE-2017-0199. use private set tweak obfuscation result 1/39 cve-2017-0199 Preprocessing Language Belongs to English language with 75% of confidence Evaluation 1/39 cve-2017-0199 Tokenization use private set tweak obfuscation result

Vectorization

0.73

0.86

0.02

0.36

0.24

0.11

0.86

0.15

Data Preparation - Language evaluation

• We define an Indicator Language function (ilf) as:

$$\mathbb{1}_{ilf}(word, language) = \begin{cases} 1, & \text{if word belongs to language} \\ 0, & \text{otherwise} \end{cases}$$

• We define a Language Ratio Function (Irf) as:

$$Ratio_{lrf}(text, language_j) = \frac{1}{\text{Total words in text}} \sum_{\substack{i=1 \text{word}_i \in \text{text}}}^{n} \mathbb{1}_{ilf}(word_i, language_j)$$

We determine which language is the most probable to be after evaluate a text as:

$$language(text) = \max_{\forall lang \in \text{languages list}} Ratio_{lrf}(text, lang)$$

Data Preparation - PostCog

- From PostCog, we search the word "CVE" and found about 14,857 posts since .
- We identify that only post scrapped from HackForums has crime type, post type, and intent tags.

CrimeBB - Annotations

- HackForums: 3,037 posts (in 1,162 threads) cite a CVE.
- Manually labeled threads by the posts content: 1,067
- Hackforums: **2,666 posts** (in **1,042** threads) were labeled
- A total of 8,915 (969 unique) CVE codes were found

Label	Threads labeled	Threads citing CVE	Posts citing CVE
Weaponization	410	397	891
PoC	247	244	861
Others	195	192	520
Exploitation	107	102	232
Warning	55	55	67
Help	43	42	60
Scam	10	10	35
Total	1,067	1,042	2,666

Data Preparation - PostCog-HF

Crime type labels					
Labels	Samples				
Not criminal	2,307				
Bots/Malware	604				
Sql Injection	208				
Credentials	41				
VPN/proxy	34				
DDoS/booting	12				
Spam/marketing	7				
CurrencyXchange	4				
Identity fraud	2				
eWhoring	1				

Post type labels				
Labels	Samples			
InfoRequest	912			
Comment	909			
Other	494			
OfferX	490			
Exchange	137			
RequestX	137			
Tutorial	76			
Social	65			

Intention labels					
Labels	Samples				
Neutral	2,184				
Other	494				
Positive	197				
Gratitude	170				
Aggression	53				
Negative	37				
PrivateMessage	30				
Moderate	28				
Vouch	27				

Data Preparation - ChatGPT labeling

- In order to aggregate labels, we kindly ask to GPT to re-assign in group of categories for crime type, post type, and intent.
- Intent:
 - **Sentiment** (emotions or attitudes) 0
 - **Expression of Interaction** (ways of communicating or expressing oneself)
 - **Intensity** (levels of strength or forcefulness)
- Post type:

 - Requests (seeking information or services)
 Offers/Exchanges (providing services or trading)
 - **Communication/Interaction** (forms of interaction or content type)
- Crime type:
 - **Cybercrime Activities** (illegal activities related to cybercrime)
 - **Cybercrime Support Services** (services that facilitate cybercrime activities)
 - **Non-Criminal** (activities that are not considered criminal)
- **Annotations**
 - **Malicious Activity** (weaponization, exploitation, and scam)
 - **Support and Assistance** (help)
 - **Informational** (poc and warning)
 - Others

Prompt

• We use the GPT-40 model to labels our threads using prompts given the context and content of each thread concatenated:

I have a list of possible labels not criminal, bots/malware, ... related to cyber criminal activites.

I want to perform two tasks: the first one is to group the list of possible labels into a smaller list of labels: e.g, not criminal, criminal activity A, criminal activity B, \dots , this new list of labels should be the most accurate to group all of them.

The second task is to set a new label using the new smaller list of labels given an input raw text and their corresponding label.

Based on the following samples (text 1, label 1, new label 1), ..., (text 5, label 5, new label 5), I would like to label the following texts text 1, text 2, text 3, ...

Please return in a list of tuples: [("input", text, "new_l abel", newlabel), ...]

Data Preparation - PostCog-HF

Crime type labels					
Labels	Samples				
Not criminal	2,307				
Cybercrime activities	875				
Cybercrime support services	38				

Post type labels					
Labels	Samples				
Communication/Interaction	1050				
Requests	1049				
Other	494				
Offer/exchanges	627				

Intention labels					
Labels	Samples				
Sentiment	2,418				
Other	494				
Expression	280				
Intensity	28				

Expert labels					
Labels	Samples				
Malicious activity	509				
Informal	297				
Others	190				
Support and assistance	41				

- 1. Introduction
- 2. Dataset
- 3. Beneath the Cream Methodology
- 4. Experimental Results
- 5. Conclusion

Hackforums **Antichat CrimeBB Training Pipeline Filtered Posts Model Training** NVD Threads Labeled **Features Threads**

Experimental Setting

- Train and test split
 - 75% and 25%, respectively
 - Oversampling method to balance classes
 - Stratified split in order to preserve the original distribution
- Hyperparameters tuning
 - Grid Search
 - 5-fold Stratified Cross-Validation on the training set
- **Evaluation** metrics
 - Accuracy, Precision, Recall, and F1-score

Experimental Setting

For BoW and TF-IDF:

- top 30,000 most frequently occurring words
- A word should appear at least 5 times
- Appear in at least 90% of the posts in the corpus are considered for analysis

Doc2Vec:

Encode threads into 5000-dimensional vectors

RandomForest:

- Regularization parameter, learning rate.
- Tree depth, number of features to consider at each tree split
- Minimum samples required to split an internal node
- Maximum node degree.

RandomForest

	Target classes	Accuracy	Precision	Recall	F1
Crime type	PostCog labels	0.97	0.97	0.99	0.98
	ChatGPT labels	0.95	0.98	0.94	0.96
3	Previous work (SIU; COLLIER; HUTCHINGS, 2021)	0.89	0.9	0.89	0.89
Intention	PostCog labels	0.98	0.95	0.97	0.95
	ChatGPT labels	0.99	0.97	0.99	0.98
85	Previous work (CAINES et al., 2018b)	_	0.78	0.49	0.61
Post type	PostCog labels	0.81	0.79	0.89	0.82
	ChatGPT labels	0.74	0.75	0.76	0.75
	Previous work (CAINES et al., 2018b)	-	0.91	0.78	0.84
Expert annotations	Expert labels	0.96	0.97	0.98	0.97
	ChatGPT labels	0.91	0.92	0.93	0.92
	Previous work (MORENO-VERA et al., 2023)	0.86	0.87	0.86	0.86

Explanation

PostCog labeling - posttype

GPT labeling

Explanation

Top 15 feature average impacts 0.06 expression intensity 0.05 other sentiment 0.04 0.03 0.02 0.01 C. Spital bot the 0.00 rela cope CORT or

PostCog labeling - intention

GPT labeling

Explanation

PostCog labeling - crime type

GPT labeling

Manual labeling

mean(|SHAP value|) (average impact on model output magnitude)

GPT labeling

Binary labeling

GPT labeling

Manual labeling

GPT labeling

- 1. Introduction
- 2. Dataset
- 3. Beneath the Cream Methodology
- 4. Experimental Results
- 5. Conclusion

Conclusion

- We were able to analyze and join pertinent annotations related to **CVEs thread-posts**
 - studying the HackForums underground forum.
- It is feasible to train a classifier to infer the maturity level and type of threads.
 - next step is to analyze all of them together.
- Black-box random forests help in understanding word relevance.
 - It performs better than decision trees, SVM, ridge regression, booster models, etc.
 - We won't be able to use complex architectures, such as transformers, due to limited computational resources.
- It has high performance in distinguishing categories, but in some cases, the results are not explainable.
 - We will use other explainers such as LIME which works better than SHAP.

Thanks! Any questions?

felipe.moreno@ppgi.ufrj.br

THANKS!

Any Questions?