编译原理与技术

第4章 语法分析

wenshli@bupt.edu.cn

2024年2月1日星期四

学习任务

- □改造文法,使之满足预测分 析方法的要求;
- □为给定文法构造LL(1)分析表, 分析输入符号串;
- □为给定文法构造SLR(1)、 LR(1)、以及LALR(1)分析表, 分析输入符号串

学习任务

- □改造文法,使之满足预测分析方法的要求;
- □为给定文法构造LL(1)分析表, 分析输入符号串;
- □为给定文法构造SLR(1)、 LR(1)、以及LALR(1)分析表, 分析输入符号串

wenshli@bupt.edu.cn

LL(1)文法考题示例

二、(20分)有如下文法 G[S]:

 $S \rightarrow SAe | Ae$

 $A \rightarrow dAbA|dAe|d$

- (1) 判断该文法是否是 LL(1)文法,说明理由。 若是,继续做(3),若不是,继续做(2)。
- (2) 改造文法 G[S]为 LL(1)文法 G', 继续做(3)。
- (3) 计算文法中每个非终结符号的 FIRST 集合和 FOLLOW 集合。
- (4) 为文法构造 LL(1)分析表。

仁、(20 分) 有如下文法 G[S]:

 $S \rightarrow L + L \mid L$

 $L\rightarrow LB \mid B$

 $B\rightarrow 0 \mid 1$

- (1) 判断该文法是否是 LL(1)文法,说明理由。若是,继续做(3),若不是,继续做(2)。
- (2) 改造文法 G[S]为 LL(1)文法 G'。继续做(3)。
- (3) 计算(2) 得到的文法 G'中每个非终结符号的 FIRST 集合和 FOLLOW 集合。
- (4) 为文法 G'构造 LL(1)分析表。

三、(30 分) 有如下文法 G[S]:

 $E \rightarrow E + T \mid T$

 $T \rightarrow (E) \mid a$

- (1) 判断该文法是否为 LL(1)文法,说明原因。若不是,做 (2),若是,做(3)。
- (2) 是否可以将其改造为 LL(1) 文法? 如果可以,给出改造过程和结果,继续做(3); 如果不可以,说明理由。
- (3) 构造文法中非终结符号的 FIRST 和 FOLLOW 集合。
- (4) 构造文法的 LL(1)分析表。

二、(20 分) 有如下文法 G[S]:

 $S \rightarrow bSAe \mid bA$

 $A \rightarrow Ab \mid d$

(1) 判断该文法是否是 LL(1)文法,说明理由。

若是,继续做(3),若不是,继续做(2)。

- (2) 改造文法 G[S]为 LL(1)文法 G'。继续做(3)。
- (3) 计算文法中每个非终结符号的 FIRST 集合和 FOLLOW 集合。
- (4) 为文法构造 LL(1)分析表。

enshli@bupt.edu.c

★左递归的消除

- □一个文法是左递归的,如有非终结符号A,对某个文法符号串 α ,存在推导: $A \stackrel{\bot}{\rightarrow} A \alpha$ □若存在某个 α = ϵ ,则称该文法是有环路的。
- ■消除左递归的方法:
 - □简单情况:如果文法G有产生式: $A \rightarrow A\alpha \mid \beta$ 可以把A的这两个产生式改写为:
 - □一般情况: 假定关于A的全部产生式是: $A\rightarrow A\alpha_1 | A\alpha_2 | ... | A\alpha_m | \beta_1 | \beta_2 | ... | \beta_n$ 产生式可以改写为:

例:消除文法中的左递归 E→E+T | T T→T*F | F F→(E) | id

文法改写为:

venshli@bupt.edu.c

★左递归的消除(答案)

- □一个文法是左递归的,如有非终结符号A,对某个文法符号串 α ,存在推导: $A \stackrel{\bot}{\rightarrow} A \alpha$ □若存在某个 α = ϵ ,则称该文法是有环路的。
- ■消除左递归的方法:
 - 口简单情况:如果文法G有产生式: $A\rightarrow A\alpha \mid \beta$ 可以把A的这两个产生式改写为: $A\rightarrow \beta A'$ $A'\rightarrow \alpha A' \mid \epsilon$
 - 口一般情况: 假定关于A的全部产生式是: $A \rightarrow A\alpha_1 | A\alpha_2 | ... | A\alpha_m | \beta_1 | \beta_2 | ... | \beta_n$ 产生式可以改写为: $A \rightarrow \beta_1 A' | \beta_2 A' | ... | \beta_n A'$ $A' \rightarrow \alpha_1 A' | \alpha_2 A' | ... | \alpha_m A' | \epsilon$

例:消除文法中的左递归 E→E+T | T T→T*F | F F→(E) | id

文法改写为:

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

★提取左公因子

■ 如有产生式 $A\rightarrow\alpha\beta_1|\alpha\beta_2$ 提取左公因子 α , 改写为:

■ 若有产生式 $A\rightarrow \alpha\beta_1 | \alpha\beta_2 | ... | \alpha\beta_n | \gamma$ 可改写为:

■例:映射IF语句的文法

stmt→ if expr then stmt

| if expr then stmt else stmt

| a

expr→b

■ 提取左公因子,得到:

■可能需要多次提取左公因子

wenshli@bupt.

★提取左公因子(答案)

■ 如有产生式 $A\rightarrow\alpha\beta_1|\alpha\beta_2$ 提取左公因子 α , 改写为:

$$A \rightarrow \alpha A'$$
 $A' \rightarrow \beta_1 | \beta_2$

若有产生式
 A→αβ₁|αβ₂|...|αβ_n|γ
 可改写为:

$$A \rightarrow \alpha A' \mid \gamma$$

 $A' \rightarrow \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$

■可能需要多次提取左公因子

■ 例: 映射IF语句的文法

stmt→ if expr then stmt

| if expr then stmt else stmt

| a

expr→b

■ 提取左公因子,得到:

stmt→if expr then stmt S' | a
S'→ else stmt | ε

expr→b

构造FIRST、FOLLOW集合

■ 文法:

$$E \rightarrow E \lor T \mid T$$
 $T \rightarrow T \land F \mid F$
 $F \rightarrow \neg F \mid (E) \mid 1 \mid 0$

■消除左递归:

	First	Follow
E		
E'		
T		
T'		
F		

构造FIRST、FOLLOW集合(答案)

■ 文法:

$$E \rightarrow E \lor T \mid T$$
 $T \rightarrow T \land F \mid F$
 $F \rightarrow \neg F \mid (E) \mid 1 \mid 0$

■消除左递归:

$$E \rightarrow TE'$$

$$E' \rightarrow \vee TE' \mid \varepsilon$$

$$T \rightarrow FT$$

$$T' \rightarrow \wedge FT' \mid \epsilon$$

$$F \rightarrow \neg F \mid (E) \mid 1 \mid 0$$

	First	Follow	
E	¬, (, 1, 0	\$,)	
E '	ν, ε	\$,)	
$oxed{\mathbf{T}}$	¬, (, 1, 0	\$, ∨ ,)	
T'	Λ, ε	\$, ∨ ,)	
F	¬, (, 1, 0	\$, \(\)	

构造预测分析表

输入: 文法G

输出: 文法G的预测分析表M

方法:

for (文法G的每个产生式 A→ α) {

for (每个终结符号 a∈FIRST(α))

把 A→α 放入 M[A, a] 中;

if $(\epsilon \in FIRST(\alpha))$

for (任何 b∈FOLLOW(A))

把 A→α 放入 M[A, b] 中;

};

for (所有无定义的M[A, a]) 标上错误标志:

E \rightarrow TE' E' \rightarrow +TE' | ϵ T \rightarrow FT' T' \rightarrow *FT' | ϵ F \rightarrow (E) | id

	FIRST	FOLLOW
E	(, id	\$,)
Ε'	+, ε	\$,)
Т	(, id	\$,+,)
Т'	*, ε	\$,+,)
\mathbf{F}	(, id	\$,+,*,)

	id	+	*	()	\$
E						
E'						
T						
T'						
F						

构造预测分析表(答案)

输入: 文法G

输出: 文法G的预测分析表M

方法:

for (文法G的每个产生式 A→ α) {

for (每个终结符号 a∈FIRST(α))

把 $A\rightarrow \alpha$ 放入 M[A, a] 中;

if $(\varepsilon \in FIRST(\alpha))$

for (任何 b∈FOLLOW(A))

把 A→α 放入 M[A, b] 中;

for (所有无定义的M[A, a]) 标上错误标志:

E→TE' $E' \rightarrow +TE' \mid \varepsilon$ T→FT' $T' \rightarrow *FT' \mid \varepsilon$ $F \rightarrow (E) \mid id$

	FIRST	FOLLOW
E	(, id	\$,)
E '	+, ε	\$,)
Т	(, id	\$,+,)
Т'	*, ε	\$,+,)
F	(, id	\$,+,*,)

	id	+	*	()	\$
E	E→TE′			E→TE′		
E'		E'→+TE'			Ε ′→ε	Ε ′→ε
T	T→FT′			T→FT′		
T'		Τ'→ε	T'→*FT'		Τ ′→ε	Τ'→ε
F	F→id			F→(E)		

期中/期末考试 LL(1)文法-例1

有文法G[S]: $S\rightarrow (L) \mid a$ $L\rightarrow L, S \mid S$

- (1) 判断该文法是否为LL(1)文法? 不是, 做(2); 是, 做(3)。
- (2) 改写文法为LL(1)文法,继续做(3)。
- (3) 构造文法的FIRST和FOLLOW集合,继续做(4)。
- (4) 构造文法的LL(1)分析表。

解答:

- (1) 文法含有左递归,故不是LL(1)文法
- (2) 改写文法: 消除左递归

$$S \rightarrow (L) \mid a$$

$$L \rightarrow SL'$$

$$L' \rightarrow SL' \mid \epsilon$$

判断改写后的文法是LL(1)文法:

$$\mathbf{FIRST((L))} \cap \mathbf{FIRST(a)} = \phi$$

$$FIRST(,SL') \cap FOLLOW(L') = \phi$$

(3) 构造文法的FIRST和FOLLOW集合:

	FIRST	FOLLOW
S	(a	\$,)
L	(a)
\mathbf{L}'	, ε)

(4) 构造文法的LL(1)分析表:

	a	()	,	\$
S	S→a	S →(L)			
\mathbf{L}	L→SL′	L→SL′			
L'			L′ → ε	L′→,SL′	

enshli@bupt.edu.cn

★期中/期末考试 LL(1) 文法-例2

已知文法G[A]为:

A→aABe|a

 $B \rightarrow Bb|d$

- (1) 试给出与G[A]等价的LL(1)文法G'[A]
- (2) 构造G'[A]的预测分析表
- (3) 给出输入串aade的分析过程。

		First	Follow
	A	a	\$, d
	A'	a, e	\$, d
)	В	d	e
•	B'	b, ε	e

	a	b	d	e	\$
A	A→aA'				
A'	A'→ABe		Α'→ε		Α'→ε
В			B→dB'		
B'		B'→bB'		Β'→ε	

$A \rightarrow aA'$ $A' \rightarrow ABe \mid$ $B \rightarrow dB'$	
A'→ABe	3
B→dB'	
B'→bB' 8	

★ aade的分析过程

	a	b	d	e	\$
A	A→aA'				
A'	A'→ABe		Α'→ε		A'→ε
В			B→dB'		
B'		B'→bB'		B'→ε	

步骤	栈	输入	分析动作
(1)	\$A	aade\$	A→aA'
(2)	\$A'a	aade\$	
(3)	\$A'	ade\$	A'→ABe
(4)	\$eBA	ade\$	A→aA'
(5)	\$eBA'a	ade\$	
(6)	\$eBA'	de\$	A'→ε
(7)	\$eB	de\$	B→dB'
(8)	\$eB'd	de\$	
(9)	\$eB'	e\$	Β'→ε
(10)	\$e	e\$	
(11)	\$	\$	分析成功

学习任务

- □改造文法,使之满足预测分析方法的要求;
- □为给定文法构造LL(1)分析表, 分析输入符号串;
- □为给定文法构造SLR(1)、 LR(1)、以及LALR(1)分析表, 分析输入符号串

LR 文法考题示例

- 三、(25分)有如下文法 G[S]:
 - $S \rightarrow A + B$
 - $A\rightarrow a+Ab \mid ab \mid \epsilon$
 - $B\rightarrow B*b | \epsilon$
- (1) 给出该文法的拓广文法:
- (2) 构造其 LR(1)项目集规范族及识别其所有活前缀的 DFA;
- (3) 基于(2)中的 DFA,构造文法的 LR(1)分析表;
- (4) 判断该文法是否为 LALR(1)文法,说明理由。
- 三、(45 分)有如下文法 G[S]:
 - $S \rightarrow AB$
 - $A \rightarrow aaAb \mid ab \mid \epsilon$
 - $B \rightarrow Bb \mid \epsilon$
- (1) 给出文法 G 的拓广文法;
- (2) 构造其LR(1) 项目集规范族及识别其所有活前缀的 DFA;
- (3) 构造该文法的LR(1)分析表;
- (4) 判断该文法是否是 LALR (1) 文法,说明理由。

- 三、(25 分) 有如下文法 G[S]:
 - $S \rightarrow bD$

 $S \rightarrow Sab$

 $D \rightarrow a$

 $D \rightarrow aa$

- (1) 给出该文法的拓广文法。
- (2) 构造其 LR(0)项目集规范族及识别其所有活前缀的 DFA。
- (3) 判断该文法是否为 SLR(1)文法,说明理由。
- (4) 构造其 LR(1)项目集规范族及识别其所有活前缀的 DFA。
- (5) 判断该文法是否为 LR(1)文法,说明理由。
- 三、(25 分) 有如下文法 G[L]:
 - $L\rightarrow LB \mid B$
 - $B \rightarrow BaF \mid F$
 - $F\rightarrow (L) \mid b$
- (1) 给出该文法的拓广文法;
- (2) 构造其 LR(0)项目集规范族及识别其所有活前缀的 DFA;
- (3) 根据(2), 判断该文法是否为 SLR(1)文法; 若是,继续做(4)
- (4) 构造该文法的 SLR(1)分析表。

拓广文法

■ 拓广文法G'的接受项目是唯一的($PS' \rightarrow S \bullet$)

- 拓广文法G':

wenshli@bupt.edu.cn

拓广文法(答案)

■ 拓广文法G'的接受项目是唯一的 $(PS' \rightarrow S\bullet)$

- 拓广文法G':
 - $(0) S' \rightarrow S$
 - $(1) S \rightarrow aA \quad (2) S \rightarrow bB$
 - (3) $A \rightarrow cA$ (4) $A \rightarrow d$
 - $(5) B \rightarrow cB \quad (6) B \rightarrow d$

LR(0)项目

- 右部某个位置上标有圆点的产生式称为文法G的一个LR(0)项目
- ■产生式A→XYZ对应有4个LR(0)项目

- 移进项目:圆点后第一个符号为终结符号的LR(0)项目
- 待约项目:圆点后第一个符号为非终结符号的LR(0)项目
- 归约项目:圆点在产生式最右端的LR(0)项目
- 接受项目: 对文法开始符号的归约项目
- 产生式 $A\to \varepsilon$, 只有一个LR(0)归约项目 $A\to \bullet$

wenshli@bupt.edu.ci

构造文法G的LR(0)项目集规范族

输入: 文法G 输出: G的LR(0)项目集规范族C 方法: $C = \{closure(\{S' \rightarrow \bullet S\})\};$ do for (对C中的每一个项目集I 和每一个文法符号X) if (go(I, X)不为空且不在C中) 把 go(I, X) 加入C中; while (没有新项目集加入C中);

- 拓广文法G':
 - $(0) S' \rightarrow S$
 - (1) $S \rightarrow aA$ (2) $S \rightarrow bB$
 - (3) $A \rightarrow cA$ (4) $A \rightarrow d$
 - $(5) B \rightarrow cB \quad (6) B \rightarrow d$
- 活前缀ε的有效项目集

$$I_0 = closure(\{S' \rightarrow \bullet S\})$$
=\{ S' \rightarrow \bigs S, \quad S \rightarrow \bigs B \}

识别文法G'的所有活前缀的DFA

练习:分析 accd

0	1	4	10	10
1	S	A	A	A

Accept!

enshli@bupt.edu.

LR(0)分析表和LR(0)文法

- □一个文法是LR(0)文法, 当且仅当该文法的每个活前缀的有效项目集中:
 - □要么所有元素都是移进-待约项目
 - □要么只含有唯一的归约项目
- 具有LR(0)分析表的文法, 称为LR(0)文法。
 - □在执行算法4.6的过程中,不需要向前看任何输入符号以解决冲突,则构造的SLR(1)分析表称为LR(0)分析表。

wenshli@bupt.edu.cı

LR(0)项目集中的冲突及解决

- 如项目集: $I=\{X\rightarrow\alpha\bullet b\beta, A\rightarrow\alpha\bullet, B\rightarrow\beta\bullet\}$
 - □存在移进-归约冲突
 - □存在归约-归约冲突
- 冲突的解决: 查看 FOLLOW(A) 和 FOLLOW(B)
 - □ FOLLOW(A)∩FOLLOW(B)=Φ
 - □b∉FOLLOW(A) 并且 b∉FOLLOW(B)
 - □决策:
 - 当 a=b 时,把 b 移进栈顶;
 - 当 a∈FOLLOW(A) 时, 用 A→α 进行归约;
 - 当 a∈FOLLOW(B) 时,用 B→β 进行归约。

示例

■ 判断文法4.3是LR(0)文法, 还是SLR(1)文法?

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow (E) \mid id$$

- 解答:
 - □拓广文法4.3为G':

$$(0) E' \rightarrow E$$

$$(0) \mathbf{E'} \rightarrow \mathbf{E} \qquad (1) \mathbf{E} \rightarrow \mathbf{E} + \mathbf{T}$$

(2)
$$E \rightarrow T$$

$$(3) T \rightarrow T^*F \qquad (4) T \rightarrow F$$

$$(4) T \rightarrow F$$

$$(5) F \rightarrow (E)$$

(6)
$$F \rightarrow id$$

□构造G'的LR(0)项目集规范族及识别其所有活前缀的DFA:

G'的 LR(0)项目集规范族及识别它所有活前缀的DFA

构造SLR(1)分析表

(0) S'→S		
(1) S→aA	(2) S→bB	$(3) A \rightarrow cA$
(4) A→d	(5) B → cB	(6) B→d

	FOLLOW
S'	\$
S	\$
A	\$
В	\$

I ₀ :	$S' \rightarrow \cdot S$	$S \rightarrow \bullet aA$
	$S \rightarrow \bullet \ bB$	

I ₂ :	<u>S→a • A</u>	A→ • cA
	$A \rightarrow \cdot d$	

Т.•	S->aA	•
⊥4•	o → an	_

1_{6} . $\mathbf{n} \rightarrow \mathbf{u}$	I ₆ :	$A \rightarrow d$	•
---	------------------	-------------------	---

I ₈ :	<u>B→c • B</u>	$B \rightarrow \bullet cB$
	B→ • d	

$I_{10}:A-$	→cA	•
-------------	-----	---

状态			action				goto		
	a	b	С	d	(\$)	S	A	В	
0	S2	S3				1			
1					acc				I
2			S5	S6			4		
3			S8	S9				7	Ι
4					R1				
5			S5	S6			10		Ī
6					R4				
7					R2				Ι
8			S8	S9				11	
9					R6				I
10					R3				
11					R5				Ι

$$I_1: S' \rightarrow S \bullet$$

$$I_3: \ \underline{\overset{S \to b \bullet B}{B \to \bullet d}} \quad B \to \bullet cB$$

$$I_5: \underbrace{A \rightarrow c \cdot A}_{A \rightarrow \cdot d} \qquad A \rightarrow \cdot cA$$

$$I_7:S \rightarrow bB \bullet$$

$$I_9:B\rightarrow d$$
 •

学习任务

- □改造文法,使之满足预测分 析方法的要求;
- □为给定文法构造LL(1)分析表, 分析输入符号串;
- □为给定文法构造SLR(1)、 LR(1)、以及LALR(1)分析表, 分析输入符号串

wenshli@bupt.edu.cn

构造文法G的LR(1)项目集规范族

输入: 拓广文法G'

输出: G'的LR(1)项目集规范族

方法:

C={closure({ $[S'\rightarrow \bullet S, \$] }) };$ do

for (C中的每一个项目集I和每一个文法符号X) if (go(I, X)不为空, 且不在C中) 把 go(I, X) 加入C中;

while (没有新项目集加入C中).

例:构造文法G[S]的LR(1)项目集规范族:

(1) S→CC (2) C→cC (3) C→d (文法4.8)

```
拓广文法:
(0) S'→S
(1) S→CC (2) C→cC (3) C→d
```

$$I_0 = closure(\{[S' \rightarrow \bullet S, \$]\})$$

$$= \{ [S' \rightarrow \bullet S, \$]$$

$$[S \rightarrow \bullet CC, \$]$$

$$[C \rightarrow \bullet cC, c/d]$$

$$[C \rightarrow \bullet d, c/d] \}$$

构造 LR(1) 项目集规范族及识别其所有活前缀的 DFA

例: 文法G[S]:

- $(1) S \rightarrow CC$
- $(2) C \rightarrow cC$
- (3) C→d (文法4.8)

- $(0) S' \rightarrow S$
- (1) S→CC
- (2) $C \rightarrow cC$
- (3) $C \rightarrow d$

例:构造文法4.8的LR(1)分析表

(0)	S'	→S
•	•		

$$(3) C \rightarrow d$$

$I_0: \underline{S'} \rightarrow \cdot \underline{S}, \underline{\$}$
$S \rightarrow \cdot CC, \$$
$C \rightarrow \cdot cC, c/d$
$C \rightarrow \cdot d, c/d$

$I_2: \underline{S \rightarrow C \cdot C, \$}$
$C \rightarrow \cdot cC, \$$
$C \rightarrow \cdot d, \$$

I ₄ :	C-	→d	• ,	c/d
4			,	

$I_6: \underline{C} \rightarrow \underline{c} \cdot \underline{C},$	\$
$C \rightarrow \cdot cC$	\$
$C \rightarrow \cdot d$,	\$
$I \cdot C \rightarrow cC \bullet$	c/d

北太		action	goto			
状态	c	d	\$	S	C	
0	S3	S4		1	2	
1			ACC			
2	S6	S7			5	
3	S3	S4			8	
4	R3	R3				
5			R1			
6	S6	S7			9	
7			R3			
8	R2	R2				
9			R2			

I ₁ :	S'-	→S	•	,	\$	
-------------------------	------------	----	---	---	----	--

I₃:
$$C \rightarrow c \cdot C$$
, c/d
 $C \rightarrow \cdot cC$, c/d
 $C \rightarrow \cdot d$, c/d

$$I_5: S \rightarrow CC \cdot , \$$$

$$I_7: C \rightarrow d \cdot ,$$
\$

$$I_9: C \rightarrow cC \cdot , \$$$

说明文法G[X]是LR(1)文法,但不是SLR(1)文法。 $X \rightarrow Ma \mid bMc \mid dc \mid bda$ $M \rightarrow d$

解答:

- 首先, 拓广文法
 - $(0) S \rightarrow X$
 - (1) $X \rightarrow Ma$
- $(2) X \rightarrow bMc$
- $(3) X \rightarrow dc \qquad (4) X \rightarrow bda$

 $(5) M \rightarrow d$

- (0) S→X
- (1) X→Ma
- (2) $X \rightarrow bMc$
- (3) $X \rightarrow dc$
- (4) $X \rightarrow bda$
 - (5) $M \rightarrow d$

其次,构造文法的LR(1)项目集规范族及识别其所有活前缀的DFA。

 $X\rightarrow dc \cdot , \$$

- 集合IO、I3中没有归约项目, 所以,不存在冲突;
- 集合I1、I2、I5、I6、I8、I9、 I10 各只有一个归约项目, 所 以这些集合中没有冲突;
- ③ 集合14和17中既有移进项目又 有归约项目, 但是归约符号 和移进符号不同, 所以也没 有冲突。

结论: 是LR(1)。

I₄、I₇:存在移进-归约冲突。 $FOLLOW(M) = \{ a, c \}$ 用SLR(1)方法无法解决, 所以该文法不是SLR(1)文法。

判断该文法是LR(1)文法:

 $X \rightarrow d \cdot c, \$$

 $M\rightarrow d \cdot , a$

FOLLOW(X)={ \$ } $FOLLOW(M) = \{ a, c \}$

FOLLOW(S)={ \$ }

然后,构造文法的LR(0)项目集规范族及识别其所有活前缀的DFA。

学习任务

- □改造文法,使之满足预测分 析方法的要求;
- □为给定文法构造LL(1)分析表, 分析输入符号串;
- □为给定文法构造SLR(1)、 LR(1)、以及LALR(1)分析表, 分析输入符号串

wenshli@bupt.edu.o

LALR(1)分析表的构造

- ■定义: 同心集 如果两个LR(1)项目集去掉搜索符号之后 是相同的,则称这两个项目集具有相同的 心(core),即这两个项目集是同心集。
- 基本思想: 合并LR(1)项目集规范族中的 同心集,以减少分析表的状态数。
- ■同心集的合并,可能导致归约-归约的冲 突

$$I_4$$
: $C \rightarrow d$, c/d

$$I_7: C \rightarrow d \cdot, \$$$

I₈:
$$C \rightarrow cC \cdot , c/d$$

示例: 同心集的合并可能导致归约-归约冲突(答案)

wenshli@bupt.edu.cn

0) $S' \rightarrow S$

1) $S \rightarrow aAd$

2) S \rightarrow bBd

3) $S \rightarrow aBe$

4) $S \rightarrow bAe$

5) $A \rightarrow c$

6) $B \rightarrow c$

enshli@bupt.edu.cı

★期中/期末考试 LR(1) 文法-例1

有如下文法G[A]:

 $A \rightarrow BA \mid a$ $B \rightarrow aB \mid b$

- (1) 判断该文法是以下哪些类型的文法,要求给出判断过程。 LL(1)、LR(0)、SLR(1)
- (2) 构造该文法的LR(1)项目集规范族及识别其所有活前缀的DFA。
- (3) 构造该文法的LR(1)分析表
- (4) 给出对输入符号串abb的分析过程。

不是LL(1)文法, 理由?

- (0) $S \rightarrow A$
- (1) $A \rightarrow BA$
- $(2) A \rightarrow a$
- (3) $B \rightarrow aB$
- $(4) B \rightarrow b$

LR(0)文法,项目集中:

- (1) 要么所有元素都是移进-待约项目
- (2) 要么只含有唯一的归约项目

不是LR(0)文法

LR(0)项目集规范族及识别其所有活前缀的DFA:

参考答案

LR(1)项目集规范族及识别其所有活前缀的DFA:

★文法的LR(1)分析表

abb的分析过程

Jb &		action		go	oto
状态	a	b	\$	\mathbf{A}	В
0	S3	S4		1	2
1			ACC		
2	S3	S4		5	2
3	S 7	S4	R2		6
4	R4	R4			
5			R1		
6	R3	R3			
7	S 7	S4			6

步骤	栈	输入	分析动作
(1)	0	abb\$	S3
(2)	0 3 - a	bb\$	S4
(3)	034 - ab	b\$	R4 B→b
(4)	0 3 6 - a B	b\$	R3 B→aB
(5)	0 2 - B	b\$	S4
(6)	0 2 4 - B b	\$	error 弹出栈顶状态4
(7)	0 2 - B	\$	goto(2, A)=5 将状态5压入栈顶
(8)	0 2 5 - B A	\$	R1 A→BA
(9)	0 1 - A	\$	accept

wenshli@bupt.edu.c

期中/期末考试 LR(1)文法-例2

四、(40 分) 有如下文法 G[E]:

$$E \rightarrow (L) \mid a$$

 $L \rightarrow L, E \mid E$

- (1) 给出该文法的拓广文法;
- (2) 构造其 LR(1)项目集规范族及识别其所有活前缀的 DFA;
- (3) 构造该文法的 LR(1)分析表;
- (4) 判断该文法是否为 LALR(1)文法,说明理由。

期中/期末考试 LR(1) 文法-例2

四、解答:

- (1) 拓广文法:
 - $(0) E' \rightarrow E$
 - $(1) E \rightarrow (L)$
- $(2) \to a$
- (3) $L \rightarrow L, E$
 - $(4) L \rightarrow E$

(2) 其 LR(1)项目集规范族及识别其所有活前缀的 DFA

wenshli@bupt.edu.cn

期中/期末考试 LR(1) 文法-例2

(3) LR(1)分析表

状态			goto				
1八心	a	,	()	\$	E	L
0	S3		S2			1	
1					ACC		
2	S7		S6			5	4
3					R2		
4		S9		S8			
5		R4		R4			
6	S7		S6			5	10
7		R2		R2			
8					R1		
9	S7		S6			11	
10		S9		S12			
11		R3		R3			
12		R1		R1			

venshli@bupt.edu.c

期中/期末考试 LR(1)文法-例2

(4) 该文法是 LALR(1)文法。

首先,合并同心集

I₂和 I₆合并,得到:

 $I_{26} = \{ [E \rightarrow (\cdot L) \quad \$/)/,] [L \rightarrow \cdot L, E \quad)/,] [L \rightarrow \cdot E \quad)/,] [E \rightarrow \cdot (L) \quad)/,] [E \rightarrow \cdot a \quad)/,] \}$

 I_3 和 I_7 合并,得到: $I_{37}=\{[E \rightarrow a \cdot \$/)/,]\}$

 I_4 和 I_{10} 合并,得到: $I_{4a} = \{[E \rightarrow (L \cdot) \$/)/,][L \rightarrow L \cdot ,E)/,]\}$

 I_8 和 I_{12} 合并,得到: $I_{8c} = \{[E \rightarrow (L) \cdot \$/)/,]\}$

其次,检查合并后的集合,不存在任何冲突。

所以,该文法是 LALR(1)文法。

enshli@bupt.edu.ci

本章小结

一、自顶向下的分析方法

- 递归下降分析方法
 - □ 试探性、回溯
 - □ 要求: 文法不含左递归
- 递归调用预测分析方法
 - □ 不带回溯的递归分析方法
 - □ 要求:
 - > 文法不含左递归, 并且
 - ▶ 对任何产生式: $A \rightarrow \alpha_1 | \alpha_2 | ... | \alpha_n$ FIRST $(\alpha_i) \cap \text{FIRST}$ $(\alpha_i) = \phi$
 - □ 构造步骤:
 - > 描述结构的上下文无关文法
 - > 根据文法构造预测分析程序的状态转换图
 - > 状态转换图化简
 - > 根据状态转换图构造递归过程

- 非递归预测分析方法
 - □ 不带回溯、不含递归
 - □ 模型:

输入缓冲区: 存放输入符号串 $a_1a_2...a_n$ \$

符号栈:分析过程中存放文法符号

分析表: 二维表, 每个A有一行, 每个a包括\$有一列 表项内容是产生式(关键)

控制程序:根据栈顶X和当前输入a决定分析动作 (永恒的核心)

X=a=\$ 分析成功

X=a≠\$ 弹出X, 扫描指针前移

X是非终结符号, 查分析表: M[X, a]

 $M[X, a]=X \rightarrow Y_1Y_2...Y_K$,弹出X, Y_K 、...、 Y_2 、 Y_1 入栈

 $M[X, a] = X \rightarrow ε$, 弹出X M[X, a] = 空白, 出错处理

输出:对输入符号串进行最左推导所用的产生式序列

wenshli@bupt.edu.c

本章小结

- 预测分析表的构造
 - □ 构造每个文法符号的FIRST集合
 - □ 构造每个非终结符号的FOLLOW集合
 - □ 检查每个产生式A→α
 - > 对任何a∈FIRST(α), M[A, a]= A→α
 - ightharpoonup 若αightharpoonup 对所有bightharpoonup FOLLOW(A), M[A, b]= Aightharpoonup α
- LL(1)文法
 - □ LL(1)的含义
 - □ 判断一个文法是否为LL(1) 文法
 - >构造分析表,或者
 - 检查每个产生式: A→α|β
 FIRST(α)∩FIRST(β)=φ
 若β⇒ε,则FIRST(α)∩FOLLOW(A)=φ

二、自底向上分析方法

- 移进-归约分析方法
 - □ 分析栈、输入缓冲区
 - □可归约串
 - □ 规范归约: 最右推导的逆过程
- LR分析方法
 - □ 模型:

输入缓冲器: 输出:分析动作序列

分析栈: $S_0X_1S_1...XnSn$

分析表:包括 action 和 goto 两部分(关键)

控制程序:根据栈顶状态 S_n和当前输入符号

a查分析表

 $action[S_n, a]$, 决定分析动作(永恒的核心)

action[S_n, a]=S i, a入符号栈, i入状态栈

 $i=goto(S_n, a)$

action[S_n, a]=R A \rightarrow β, 弹出 |β|个符号,

A入符号栈, goto(S_{n-r}, A)入状态栈

action[S_n, a]=ACC, 分析成功

action[S_n, a]=空白, 出错处理

wenshli@bupt.edu.ca

本章小结

- SLR(1)分析表的构造
 - □ LR(0)项目集规范族
 - □识别文法所有活前缀的DFA
 - □ 构造分析表:检查每个状态集

 - $ightharpoonup 若A
 ightharpoonup \alpha \cdot \in I_i$,则对所有 $a \in FOLLOW(A)$,置action[i, a]=R A $ightharpoonup \alpha$
 - > 若S'→S· \in I_i,则置action[i, \$]=ACC,分析成功。
 - ▶若go(I_i, A)=I_i, A为非终结符号,则置goto[i, A]=j
- LR(1)分析表的构造
 - □ LR(1)项目集规范族
 - □ 构造分析表:检查每个状态集

 - 若 $[A \rightarrow \alpha \cdot, a] \in I_i$,则置 $action[i, a] = RA \rightarrow \alpha,$

 - ▶若go(I_i, A)=I_i, A为非终结符号,则置goto[i, A]=j

■ LALR(1)分析表的构造

- □ LR(1)项目集规范族,若没有 冲突,继续
- □ 合并同心集,若没有冲突, 则为LALR(1)项目集规范族
- □ 构造分析表,方法同LR(1)分析表的构造方法

