化学原理 Chemical Principles

(9)

内容回顾

- > 离子晶体的结构
 - NaCl型
 - CsCl型
 - ZnS型

- > 离子半径与配位数
- > 离子极化 (极端的情况?)

极化力: 某离子使其它离子变形的能力

极化率: 某离子变形能力的量度

十、分子晶体

分子通过分子间作用力或氢键形成的晶体, 称为分子晶体。

分子晶体大都很软,熔、沸点低,易挥发(升华),固体不导电,熔化时也不导电,机械加工性能很差。

10.1 极性分子与非极性分子

分子中具有正电荷部分(原子核)与负电荷部分(核外电子),因此分子中存在一个正电中心和负电中心。

非极性分子: 正电中心与负电中心重合

极性分子: 正电中心与负电中心不重合

对于复杂的多原子分子:

非极性共价键组成的分子

 S_8

 P_4

极性共价键组成的分子

臭氧: 03

 O_3 的分子结构

二氧化硫

二氧化碳

C: sp杂化

简单类型分子的极性

分子类型及其空间结构	极性或非极性	1列
* F 3 / 3 /	alle Arra Ivil	7X -4- /
单原子分子 A	非极性	稀有气体
双原子分子 A2	非极性	N_2 , H_2 , O_2
AB	极性	CO、HCl
三原子分子 ABA(直线型)	非极性	CO_2 CS_2
ABA (弯曲型)	极性	H ₂ O ₂ SO ₂
ABC(直线型)	极性	OCS、HCN
四原子分子 AB3(平面三角形)	非极性	BCl ₃
AB3(棱锥体)	极性	NH ₃ 、AsCl ₃
五原子分子 AB4(四面体)	非极性	CH4、SnCl4
AB ₃ C(四面体)	极性	CH ₃ Cl

10.2 分子的偶极矩—分子极性大小的量度

偶极矩(μ): 极性分子中正电荷中心与负电荷中心的距离(偶极长, d)与正(负)电中心上电量(q)的乘积。

$$\mu = \mathbf{q} \cdot \mathbf{d}$$

μ为矢量, 既有数量, 又有方向(由正到负)。

单位: C·m

量级: 1.602×10⁻¹⁹C · 10⁻¹⁰m ≈ 10⁻³⁰ C·m

1D (Debye) = 3.336×10^{-30} C·m

表 10-9 一些物质分子的偶极矩 μ/(10⁻³⁰ C·m)

分子式	偶极矩	分子式	偶极矩
H ₂	0	SO ₂	5.33
N_2	0	H ₂ O	6.17
CO_2	0	NH ₃	4.90
CS ₂	0	HCN	9.85
CH ₄	0	HF	6.37
co	0.40	HCl	3.57
CHCl ₃	3.50	HBr	2.67
H_2S	3.67	HI	1.40

存在偶极矩的分子是极性分子(偶极子),偶极子与偶极子间存在相互作用力。

偶极矩可用来推测分子空间构型

μ_{NH3} = 4.90 极性分子 三角锥形

μ_{BCI3} = **0** 非极性分子 平面三角形 永久偶极:由于极性分子的正负电荷中心不重合,在 极性分子中始终有一个正极和一个负极,极性分子的 这种固有偶极叫永久偶极。

诱导偶极: 非极性分子和极性分子在外加电场作用下, 非极性分子可变成有一定偶极的极性分子; 极性分子 其偶极增大。

瞬间偶极: 非极性分子的正负电荷中心在某一瞬间发生不重合的现象,这时产生的偶极叫瞬间偶极。瞬间偶极的大小与分子的变形性有关,分子越大,越容易变形,瞬间偶极也越大。

10.3 分子的极化

分子中原子核和电子的运动使得分子具有变形性,分子中正负电中心分开的过程,称为极化。极化产生了偶极子。

变形性的量度称为分子极化率,分子越大,包含的电子越多,变形性越大。

10.4 分子间作用力—范德华力

分子间作用力: 范德华力和氢键

范德华力:弱的相互作用,几到几十kJ·mol⁻¹ (化学键,100~800 kJ·mol⁻¹),决定了分子晶体的溶点、沸点、溶解度等。

分子的<mark>极性</mark>和变形性是分子间作用力产生的 根本原因。

按作用力产生的原因和特征分类:

1. 取向力 2. 诱导力 3. 色散力

取向力

极性分子靠近时,同极相斥,异极相吸,分子发生取向,产生吸引力。这种靠永久偶极产生的作用力叫取向力。

NOTE:

- 1. 只有在距离很近的 时候才会发生作用
- 对于分子量和分子 大小相当的体系, 取向力随着分子偶 极矩增大而增大

取向力存在于<mark>极性分子与极性分子之间,与偶</mark> 极矩、温度和分子间距离有关。

取向力

TABLE 11.2	Molecular Weights, Dipole Moments, and Boiling F	oints
	nple Organic Substances	

Substance	Molecular Weight (amu)	Dipole Moment μ (D)	Boiling Point (K)
Propane, CH ₃ CH ₂ CH ₃	44	0.1	231
Dimethyl ether, CH ₃ OCH ₃	46	1.3	248
Methyl chloride, CH ₃ Cl	50	1.9	249
Acetaldehyde, CH3CHO	44	2.7	294
Acetonitrile, CH ₃ CN	41	3.9	355

丙烷、甲醚(一般指二甲醚)、氯代甲烷、乙醛、乙腈

- 1. 几个分子的分子量相当
- 2. 在这个条件下,分子间作用力和分子偶极有关
- 3. 从上到下,偶极矩越大,沸点越高(沸点和分子间作用力)

诱导力

在极性分子的电场诱导下,邻近的分子正负电中心被拉开,产生的吸引力。

诱导力存在于极性分子与非极性分子、 以及极性分子与极性分子之间。

色散力

电子的运动和原子核的振动会产生瞬间的相对位移,产生瞬间偶极。形成了偶极子。

这种瞬间偶极与邻近分子的瞬间偶极步调一致异极相邻,两个分子靠瞬间偶极吸引在一起。

e He原子有两个电子 两个电子会围绕原子核跑 在某一时刻,两个电子偏向一边 结论:瞬时偶极 电子运动的不规律性导致瞬时偶 极是常态

NOTE:

- 1. 色散力存在于所有分子中,无论分子是否有永久偶极
- 2. 色散力与分子的变形性有关, 极化率越大, 色散力越强。
- 3. 色散力的大小既依赖于分子的大小,也依赖于分子的形状。

丙烷、正丁烷和正戊烷均为直链化合物(可以忽略分子形状的影响),色散力随分子体积的增大而增大,导致沸点按同一顺序升高:

CH₃CH₂CH₃ b.p. -44.5°C CH₃CH₂CH₂CH₃ b.p. -0.5°C CH₃CH₂CH₂CH₂CH₃ b.p. 36°C 正戊烷、异戊烷和新戊烷三种异构体的相对分子质量相同,色散力随分子结构密实程度的增大而减小,导致沸点按同一顺序下降:

色散力不但普遍存在于各类分子之间,而且除极少数强极性分子(如 HF, H₂O)外,大多数分子间力都以色散力为主。

总结:

- 1. 取向力:永久偶极之间的相互作用力(两个分子都是极性的)
- 2. 诱导力:永久偶极与诱导偶极之间的吸引力(一个极性分子去诱导其他分子,被诱导的可以是极性分子也可以是非极性分子。意味着两个永久偶极除了有取向力,还有诱导力)
- 3. 色散力: 瞬时偶极之间的作用力

范德华力的特点

- ✓ 永远存在于分子或原子间
- ✓ 吸引力,作用能比化学键小1~2个数量级
- ✓ 没有方向性和饱和性
- ✓ 作用范围只有几个 pm
- ✓ 三种力中主要是色散力

分子	取向力	诱导力	色散力	综合
Ar	0.000	0.000	8.5	8.5
CO	0.003	0.008	8.75	8.75
HI	0.025	0.113	25.87	26.00
HBr	0.69	0.502	21.94	23.11
HCl	3.31	1.00	16.83	21.14
NH_3	13.31	1.55	14.95	29.60
H ₂ O	36.39	1.93	9.00	47.31

10.5 氢键

氢键: 质子给体和质子受体之间的作用力

尼龙:聚酰胺

由于有氢键(两个长链平行排列)

可以用在衣服、防弹衣、绳子、防火服

O: 3.44 H: 2.2

共用电子对强烈偏向O,H近乎成为裸露的质子

氢键的表示方法:

 $X - H \cdots Y$

X和Y分别代表F、O、N等电负性大,半径小的原子。X与Y可相同也可不同。 键能(几到几十kJ·mol⁻¹) <化学键

分子形成氢键必备的两个条件:

- 1. 分子中必须有一个与电负性很强的元素形成强极性键的H原子。
- 2. 分子中必须有带孤对电子对、电负性大、而且原子半径较小的元素(如F、O、N)。因为氢键有方向性,氢键的方向要与Y中孤电子对的对称轴相一致,这样可使Y原子中负电荷分布最多的部分最接近H原子。

氢键的键能: 指X—H……Y—R分解成 X—H 和 Y—R 所需要的能量。

氢键的键长:指X—H······Y,由X原子中心到Y原子中心的距离。

氢键	键能(kJ·mol-1)	键 长(pm)	化合物
F-H···F	28.03	255	$(HF)_n$
О-Н…О	18.83	276	冰
	25.94	266	甲醇、乙醇
N-H…F	20.93	268	NH4F
N-H···O	_	286	CH ₃ CONH ₂
N-H···N	5.44	358	NH ₃

氢键的键能和键长

分子间氢键

一个分子的X-H与另一个分子的Y原子之间形成的氢键

使分子间形成了较强的结合力,化合物的熔、沸点显著升高。

分子内氢键

一个分子的X-H与其分子内部的Y原子之间形成的氢键

分子内氢键的形成,一般会使化合物的 熔、沸点降低,气化热、 升华热减小。

氢键具有方向性

氢键的方向尽可能地与H-O键轴保持同一方向,这样两个O间的距离最大,斥力最小。

氢键具有饱和性

氢键形成后,再有O原子靠近时,受到已结合O原子的排斥作用。排斥力>吸引力

氢键的强弱与元素的电负性有关

氢键的强弱与X、Y的电负性有关,它们的电负性越大,氢键越强。

另外还有原子半径有关: CI原子的电负性 虽大,但原子半径较大,形成的氢键很弱。

$$F-H--F > O-H--O > O-H--N > N-H--N$$

氢键的本质

一般认为氢键主要是静电力导致的。但这无法解释氢键的饱和性和方向性。

氢键又不同于共价键,它的键能比共价键 小得多。可把氢键看成是有方向性的分子间作 用力。

Hydrogen Bonding

十一、原子晶体

一类共价型非金属单质(金刚石、Si、B等)和化合物(SiO_2 、SiC等)形成的晶体,晶体中不存在独立的小分子,可把整个晶体看成是一个大分子。

金刚石C

金刚石

原子晶体一般具有高硬度,高熔、沸点,极低或没有挥发性,不导电,难导热,在极性或非极性溶剂中都不溶,熔化时也不导电,固体Si、SiC等为半导体,可有条件地导电。

层状晶体

石墨:介于原子 晶体与分子晶体之间的 一种晶体结构。

层内为共价键, 层间为分子间作用力。 层与层之间可以滑移。

C材料

碳纳米管

范守善 清华大学

魏飞 清华大学

石墨烯

康斯坦丁·诺沃肖洛夫

安德烈-海姆