批	班级	学号	姓名	得分
阅				
人				

一、选择题

- 7.1.1. 如果一平面简谐波的波动方程为 $y = A\cos(Bt Cx)$,式中 $A \setminus B \setminus C$ 为正值恒量,则该平面简谐波沿 X 轴正方向传播,振幅为 A , ()。
 - (A) 频率为B, 波速为 $\frac{C}{B}$, 波长为 $\frac{2\pi}{C}$, 周期为 $\frac{2\pi}{B}$
 - (B) 频率为 $\frac{B}{2\pi}$,波速为 $\frac{B}{C}$,波长为 $\frac{2\pi}{C}$,周期为 $\frac{2\pi}{B}$
 - (C) 频率为 $\frac{B}{2\pi}$,波速为 $\frac{C}{B}$,波长为 $\frac{1}{C}$,周期为 $\frac{2\pi}{B}$
 - (D) 频率为B, 波速为 $\frac{B}{C}$, 波长为 $\frac{2\pi}{C}$, 周期为 $\frac{1}{B}$
- 7.1.2. 一横波沿 X 轴负方向传播,t 时刻波形如作业图 7.1.2 所示,周期为T,则在 t+T/4 时刻,a、b、c 各点处质元的位移和运动方向分别为: ()。
 - (A) a 点处质元: 位移 -A, 运动速度为 0; b 点处质元: 位移 0, 沿 Y 轴正方向运动; c 点处质元: 位移 A, 运动速度为 0。
 - (B) \mathbf{a} 点处质元: 位移 A , 沿 Y 轴正方向运动; \mathbf{b} 点处质元: 位移 $\mathbf{0}$, 沿 Y 轴负方向运动; \mathbf{c} 点处质元: 位移 -A , 沿 Y 轴负方向运动。
 - (C) a 点处质元: 位移0,沿Y 轴负方向运动; b 点处质元: 位移A,沿Y 轴正方向运动; c 点处质元: 位移0,沿Y 轴正方向运动。
 - (D) **a** 点处质元: 位移 0, 沿 **Y** 轴负方向运动; **b** 点处质元: 位移 -**A**, 沿 **Y** 轴正方向运动; **c** 点处质元: 位移 0, 沿 **Y** 轴正方向运动。

- **7.1.3.** 如作业图 7.1.3 所示,一余弦横波沿 X 轴正向传播。实线表示 t = 0 时刻的波形,虚线表示 t = 0.5 s 时刻的波形,此波的波动方程为: ()。
 - (A) $y = 0.2\cos\left[2\pi\left(\frac{t}{4} x\right)\right] m$
 - (B) $y = 0.2\cos\left[2\pi\left(\frac{t}{2} \frac{x}{4}\right) + \frac{\pi}{2}\right] m$
 - (C) $y = 0.2\cos\left[2\pi\left(\frac{t}{4} x\right) + \pi\right] m$
 - (D) $y = 0.2\cos\left[2\pi\left(\frac{t}{2} \frac{x}{4}\right) \frac{\pi}{2}\right] m$

作业图 7.1.3

Y(m)

0.04

0.20

作业图 7.1.4

 $u = 0.08 \,\mathrm{m \cdot s^{-1}}$

 $X(\mathbf{m})$

7.1.4. 如作业图 7.1.4 所示为t=0时刻平面简谐波 的波形图,则波动方程为:()。

(D)
$$y = 0.04 \cos \left[2\pi \left(\frac{t}{5} + \frac{x}{0.40} \right) - \frac{\pi}{2} \right]$$
 (SI)

- (A) 媒质质元离开其平衡位置最大位移处
- (B) 媒质质元离开其平衡位置 $\sqrt{2}A/2$ 处
- (C) 媒质质元在其平衡位置处
- (D) 媒质质元离开其平衡位置 A/2 处

7.1.6. 平面简谐波在弹性介质中传播,在介质质元从平衡位置到最大位移处的过程中()。

- (A) 介质质元的势能转化成动能
- (B) 介质质元的动能转换成势能
- (C) 介质质元从相邻的一段介质质元获得能量, 其能量逐渐增加
- (D) 介质质元把自己的能量传给相邻的一段介质质元,其能量逐渐减小

7.1.7. 如作业图 7.1.7 所示为一平面简谐波在 t 时刻的波 形曲线,如果此时平衡位置在 a 点处介质质元的振动动能 在增大,则()。

作业图 7.1.7

- (A) 平面简谐波沿 X 轴正向传播
- (B) 平衡位置在 a 点处质元的弹性势能在减少
- (C) 平衡位置在 b 点处质元的振动动能在增大
- (D) 平衡位置在 b 点处质元的弹性势能在减少

7.1.8. 在同一介质中,两列相干的平面简谐波的强度之比是 $I_1/I_2=4$,则两列平面简谐波 的振幅比 A_1/A_2 为()。

- (A) 16
- (B) 4
- (C) 2
- (D) 1/4

7.1.9. 在波长为 λ 的驻波中,两个相邻波腹之间的距离为()。

- (A) $\lambda/4$ (B) $\lambda/2$ (C) $3\lambda/4$
- $(\mathbf{D}) \lambda$

7.1.10. 在驻波中,两个相邻波节间各质点的振动()。

- (A) 振幅相同,相位相同 (B) 振幅不同,相位相同
- (C) 振幅相同,相位不同
- (D) 振幅不同,相位不同

7.1.11. 一列波从波疏媒质垂直入射到波密媒质,在界面全反射时它会发生的变化是()。

- (A) 振幅变化 (B) 波速减少 (C) 相位突变 (D) 频率变化

7.1.12. 设声波在介质中的传播速度为u,声源的频率为 γ_s 。若声源S不动,而接收器R相 对于介质以速度 v_R 沿着 $S \cdot R$ 连线向着声源 S 运动,则接收器接收到的声波频率为()。

(A)
$$\frac{u-v_R}{u}\gamma_S$$

(A)
$$\frac{u-v_{\rm R}}{u}\gamma_{\rm S}$$
 (B) $\frac{u+v_{\rm R}}{u}\gamma_{\rm S}$ (C) $\frac{u}{u+v_{\rm R}}\gamma_{\rm S}$ (D) $\frac{u}{u-v_{\rm R}}\gamma_{\rm S}$

7.1.13. 一机车汽笛频率为750Hz, 机车以时速90km 远离静止的观察者, 观察者听到声音 的频率是 ()。(设空气中声速为 $340\text{m}\cdot\text{s}^{-1}$)

- (A) 809.5 Hz (B) 698.6 Hz (C) 805.1 Hz (D) 694.8 Hz

班级

7.1.14. 一辆汽车以速度 v	y_{s} 向一座山崖开去,	同时喇叭发出	频率为 γ_0 的声音。	己知声波在空
气中的传播速度为 u ,则	司机听到山崖的回	声频率为()。	

(A)
$$\frac{u+v_{\rm S}}{u-v_{\rm s}}\gamma_0$$

(B)
$$\frac{u-v_{\rm s}}{u+v_{\rm s}}\gamma$$

(C)
$$\frac{u}{u-v_s}\gamma_0$$

(A)
$$\frac{u + v_{s}}{u - v_{s}} \gamma_{0}$$
 (B) $\frac{u - v_{s}}{u + v_{s}} \gamma_{0}$ (C) $\frac{u}{u - v_{s}} \gamma_{0}$ (D) $\frac{u}{u - 2v_{s}} \gamma_{0}$

- 7.1.15. 真空中传播的平面电磁波的电场表达式为: $E_y = E_z = 0$, $E_x = E_0 \cos \omega \left(t + \frac{y}{c} \right)$ 。 在 $t = t_0$ 时刻, $y = y_0$ 处的电场强度指向X轴负方向,则(
 - (A) 平面电磁波沿Y轴负方向传播, $t=t_0$ 时刻、 $y=y_0$ 处的磁场强度沿Z轴负方向
- (B) 平面电磁波沿Y轴负方向传播, $t=t_0$ 时刻、 $y=y_0$ 处的磁场强度沿Z轴正方向
- (C) 平面电磁波沿Y 轴正方向传播, $t=t_0$ 时刻、 $y=y_0$ 处的磁场强度沿Z 轴负方向
- (D) 平面电磁波沿Y轴正方向传播, $t=t_0$ 时刻、 $y=y_0$ 处的磁场强度沿Z轴正方向 7.1.16. 按频率由小到大的顺序排列, 电磁波谱分为 ()。
- (A) X射线,伽马射线,紫外线,可见光,红外线,微波,无线电波
- (B) 伽马射线, X射线, 紫外线, 可见光, 红外线, 微波, 无线电波
- (C) 无线电波, 微波, 红外线, 可见光, 紫外线, X 射线, 伽马射线
- (D) 无线电波,微波,红外线,可见光,紫外线,伽马射线,X射线

_	埴空縣
<u> </u>	씾工赵

7.2.1. 机械波指的是	_; 机械波在弹性媒质中传播时,质点并个随波
前进,波所传播的只是	或。
7.2.2. 机械波连续通过不同的媒质时,就波变,而	长 λ 、频率 v 和波速 u 而言,其中要改
7.2.3. 已知一平面简谐波的波动方程为 $y =$	$A\cos(at-bx)(a>0, b>0)$, 则该波的频率
$\gamma = $,周期 $T = $,波速 $u = $,	
7.2.4. 平面简谐波方程 $y = A\cos\omega(t - x/u)$)表示的是:
式中固定 $x = x_0$ 时, $y = f(t)$ 表示	, 固定 $t = t_0$ 时, $y = f(x)$ 表示
7.2.5. 已知一平面简谐波沿 X 轴正向传播,	波速为 $u=8 \mathrm{m\cdot s}^{-1}$ 。且已知坐标原点的振动方
程 $y_0 = 2.0\cos 4\pi t$ (m)。那么,在 $x_P = -1.0$	0m处 P 点的振动方程为。
	\mathbf{x} ,波速为 \mathbf{u} 。已知 \mathbf{x}_0 处质点的振动方程为
$y = A\cos(\omega t + \varphi)$,则此波的波动方程为	
7.2.7. 沿 X 轴正向传播的平面简谐波,波速 u	$s=10 \mathrm{m \cdot s^{-1}}$,频率 $\gamma=5 \mathrm{Hz}$,振幅 $A=0.02 \mathrm{m}$ 。
已知 $t=0$ 时刻坐标原点处质元的位移 $y_0=0$	$0.01\mathrm{m}$ 、速度 $v\!>\!0$,则此平面简谐波的波函数
为	o
	写的两束平面简谐波 $y_1 = A\cos\left(\omega t - \frac{2\pi x}{\lambda}\right)$ 和
$y_2 = A\cos\left(\omega t + \frac{2\pi x}{\lambda}\right)$ 形成的驻波方程为 y	$y = 2A\cos\frac{2\pi x}{\lambda}\cos\omega t$,则在 $x = -\frac{\lambda}{2}$ 处质点的
振动方程为, 该质点的	的振动速度表达式是;
在 $x = -\frac{\lambda}{4}$ 处质点的振动方程为	•
7.2.9. 驻波中,相邻两波节或相邻两波腹之门位。 . 同一段内的各占的振动相位	间的距离为;相邻两段之间各点的振动相

7. 2. 10. i	已知波源的振动周期为 $T = 4.00 \times 10^{-2}$ s,波的传播速度为 $u =$	$= 300 \mathrm{m}\cdot\mathrm{s}^{-1}$, §	波沿
X轴正向	可传播,则位于 $x_1 = 10.0 \text{m}$ 和 $x_2 = 13.0 \text{m}$ 的两质点振动相位是		o
7.2.11. —	一个观测者在铁路边看到一列火车从远处开来,他测得远处的火	(车汽笛声的频	率为
	,当列车从身旁驶过而远离他时,他测得汽笛声频率降低为540	OkHz,则火车	行驶
的速度为_	/。(设空气中声速为 340m·s ⁻¹ 。)		
7.2.12. 当	á波由波疏媒质入射波密媒质时,在媒质分界面处,反射波的振	动与入射波的	振动
的相位相差	差,折射波的振动与入射波的振动的相位相差	; 当	波由
波密媒质	[入射波疏媒质时,在媒质分界面处,反射波的振动与入射;	波的振动的相位	位相
差	,折射波的振动与入射波的振动的相位相差	_;	
7. 2. 13.	真空中,一平面电磁波沿 X 轴负方向传播,已知电场强度为	$E_x = 0$, $E_y =$	0、
$E_z = E_0 \mathrm{co}$	$\cos \omega(t+x/c)$,则磁场强度为: $H_x = $ 、 $H_y = $		`
$H_z = \underline{\hspace{1cm}}$,坡印廷矢量为 $ec{S}$ =,表	明电磁波是	_波。
7.2.14. 己分	已知真空中传播的平面电磁波的电场强度振幅为 E_0 ,则该电磁液	皮的平均辐射强	度为
I =	0		

四、计算题

- **7.3.1.** 已知波源在原点(x=0)的平面简谐波方程为 $y=A\cos(Bt-Gx)$,式中 A、 B、 G 为恒量。试求:
- (1) 简谐波的振幅、传播的速度(波速)、波长、周期和频率;
- (2) 写出传播方向上距离波源 L 处质元的振动方程;
- (3) 任一时刻在波传播方向上相距为D的两质元振动的相位差。解:

- **7.3.2.** 一横波沿绳子传播时波动方程为 $y = 0.05\cos(10\pi t 4\pi x)$ (SI), 求:
- (1) 绳子上各质元振动时的最大速度和最大加速度;
- (2) x = 0.2 m 处质点在 t = 1 s 时刻的相位,它是原点处质点在哪一时刻的相位?这一相位 所代表的运动状态在 t = 1.25 s 时刻到达哪一点?解:

- **7.3.3.** 已知平面余弦波波源的振动周期 $T=0.5\,\mathrm{s}$,所激起的波的波长 $\lambda=10\,\mathrm{m}$,振幅 $A=0.1\,\mathrm{m}$;取波源处为坐标原点,并且波沿 +X 方向传播。如果当 t=0时,波源处质元振动位移恰为正方向的最大值,求:
- (1) 此波的波函数;
- (2) t = T/4 时刻的波形方程并画出波形曲线;
- (3) t = T/4 时刻与波源相距 $\lambda/2$ 处质点的位移及速度。

解: (

7.3.4. 如作业图 7.3.4 所示, 在平面简谐波的传播路径上取 相距AB=5cm的A和B两个点。已知平面简谐波在传播 的路径上某点 A 的振动方程为: $y=3\cos 4\pi t$ cm, 波在 媒质中的传播速度为 $u = 20 \text{ m} \cdot \text{s}^{-1}$ 。求以下几种坐标系下 的波函数和 B 点的振动方程:

学号

- (1) 以 A 点为坐标原点, X 轴沿波的传播方向 (即波沿 +X 轴方向传播);
- (2) 以 B 点为坐标原点, X 轴沿波的传播方向(即波沿 +X 轴方向传播);
- (3)以A点为坐标原点,X轴沿波的传播方向的反方向(即波沿-X轴方向传播);
- (4) 以 B 点为坐标原点, X 轴沿波的传播方向的反方向(即波沿 -X 轴方向传播)。 解:

- 7.3.5. 一平面简谐波沿 X 轴负方向传播, t=T/4 时刻的波形曲线如作业图 7.3.5 所示,设波速 u 、振幅 A 和波长 λ 均为已知,求:
- (1) 波函数;
- (2) 距 0 点距离为 3 λ / 8 处振动质点的运动方程;
- (3)距 0 点距离为 $\lambda/8$ 处质点在t=0时刻的振动速度。解:

7.3.6. 如作业图 7.3.6 所示为一平面简谐波在t=0时刻的波形图,设此简谐波的频率为 $\gamma=250~{\rm Hz}$,并且此时质点 P 的运动方向向上,求:

- (1) 该波的波函数;
- (2) 在距坐标原点 $100 \, \mathrm{m}$ 处的质点的振动方程。

解:

7.3.7. 一列平面简谐波在介质中以波速 $u = 5 \text{ m} \cdot \text{s}^{-1}$ 沿 X 轴正向传播,原点 O 处质 元的振动曲线如作业图 7.3.7 所示。求:

学号

- (1) 此波的波函数;
- (2) 原点 O 处质元的振动方程;
- (3) x = 25 m 处质元的振动方程;
- (4) t = 3s 时的波形曲线方程。 解:

作业图 7.3.7

7.3.8. 一平面简谐波,波长为 $\lambda = 12 \,\mathrm{m}$, 周期为T=4s,沿X轴负方向传播。 x=1.0 m 处质元的振动曲线如作业图 7.3.8 所示。求:

- (1) 波动的传播速度;
- (2) 波函数;
- (3) $x = 1.0 \,\mathrm{m}$ 处质点的振动方程;
- (4) x = 2.0 m 处质点的振动方程;
- (5) t=1s 时刻的波形曲线方程;
- (6) t = 2s 时刻的波形曲线方程;
- (7) t = 2 s 时刻 x = 2.0 m 处质元的运动速度。

解:

7.3.9. 设入射波的波动方程为 $y_1 = A\cos 2\pi (t/T + x/\lambda)$,在 x = 0 处发生全反射,反射点为一自由端,求:

- (1) 反射波的波函数;
- (2) 合成波的波方程,并由合成波的波动方程说明哪些点是波腹?哪些点是波节?
- (3)如果反射点为一固定端,求反射波的波方程、驻波波方程和波腹、波节的位置。解:

7.3.10. 如作业图 7.3.10 所示,沿 X 轴反方向传播的平面简谐波,已知波长为 λ ,振幅 A ,频率 γ ,且在 t=0时刻,O 点(坐标原点)处质元由平衡位置向位移正方向运动。如果该波在 P 点发生反射,且无能量损失,求:

- (1) 入射波的波方程;
- (2)入射波和反射波在 P 点的振动方程;
- (3) 反射波的波方程;
- (4) 驻波方程;
- (5) 波节和波腹的位置
- (6) 波腹处的振幅为 A_1 , 在 $x = \lambda/8$ 处的振幅 A_2 。解:

作业图7.3.10

7. 3. 11. 一观察者站在铁路附近,测得迎面开来一列火车汽笛声的频率为 $\gamma_1 = 440~{
m Hz}$,而火车开过身旁后,测得汽笛声的频率为 $\gamma_2 = 392~{
m Hz}$,设空气中的声速为 $u = 330~{
m m\cdot s}^{-1}$ 。求:

- (1) 火车的运动速度和汽笛振动频率;
- (2) 火车静止而观察者以上述求得的火车速度向火车运动,此时观察者听到的频率;
- (3)火车静止而观察者以上述求得的火车速度离开火车运动,此时观察者听到的频率。 解:

7.3.12. 真空中有一平面电磁波的电场强度表达式为

$$E_x = 0$$
, $E_y = 60 \times 10^{-2} \cos \left[2\pi \times 10^8 \times (t - x/c) \right]$, $E_z = 0$

求:(1)频率、周期、波长;

- (2) 该电磁波的传播方向;
- (3) 磁场强度振动的方位;
- (4) 磁场强度的振幅;
- (5) 磁场强度的表达式:
- (6) 玻印亭矢量。

解: