

Art of Problem Solving 2014 Iran Team Selection Test

Iran Team Selection Test 2014

_	TST 1
Day 1	
1	suppose that O is the circumcenter of acute triangle ABC . we have circle with center O that is tangent too BC that named w suppose that X and Y are the points of intersection of the tangent from A to w with line $BC(X)$ and B are in the same side of AO) T is the intersection of the line tangent to circumcirle of ABC in B and the line from X parallel to AC . S is the intersection of the line tangent to circumcirle of ABC in C and the line from Y parallel to AB . prove that ST is tangent ABC .
2	find all polynomials with integer coefficients that $P(\mathbb{Z})=\{p(a):a\in\mathbb{Z}\}$ has a Geometric progression.
3	we named a $n*n$ table $selfish$ if we number the row and column with $0,1,2,3,,1$. (from left to right an from up to down) for every $\{i,j\in 0,1,2,,n-1\}$ the number of cell (i,j) is equal to the number of number i in the row j . for example we have such table for $n=5$ 1 0 3 3 4 1 3 2 1 1 0 1 0 1 0 2 1 0 0 0 1 0 0 0 prove that for $n>5$ there is no $selfish$ table
Day 2	
4	Find the maximum number of Permutation of set $\{1, 2, 3,, 2014\}$ such that for every 2 different number a and b in this set at last in one of the permutation b comes exactly after a
5	n is a natural number. for every positive real numbers $x_1, x_2,, x_{n+1}$ such that $x_1x_2x_{n+1} = 1$ prove that: $\sqrt[x_1]{n} + + \sqrt[x_{n+1}]{n} \ge n\sqrt[n]{x_1} + + n\sqrt[n]{x_{n+1}}$

Art of Problem Solving 2014 Iran Team Selection Test

6	I is the incenter of triangle ABC . perpendicular from I to AI meet AB and AC at B' and C' respectively . Suppose that B'' and C'' are points on half-line BC and CB such that $BB'' = BA$ and $CC'' = CA$. Suppose that the second intersection of circumcircles of $AB'B''$ and $AC'C''$ is T . Prove that the circumcenter of AIT is on the BC .
_	TST 2
Day 1	
1	Consider a tree with n vertices, labeled with $1, \ldots, n$ in a way that no label is used twice. We change the labeling in the following way - each time we pick an edge that hasn't been picked before and swap the labels of its endpoints. After performing this action $n-1$ times, we get another tree with its labeling a permutation of the first graph's labeling. Prove that this permutation contains exactly one cycle.
2	Point D is an arbitary point on side BC of triangle ABC . I,I_1 and I_2 are the incenters of triangles ABC,ABD and ACD respectively. $M \neq A$ and $N \neq A$ are the intersections of circumcircle of triangle ABC and circumcircles of triangles IAI_1 and IAI_2 respectively. Prove that regardless of point D , line MN goes through a fixed point.
3	prove for all $k > 1$ equation $(x + 1)(x + 2)(x + k) = y^2$ has finite solutions.
Day 2	
4	n is a natural number. We shall call a permutation a_1, \ldots, a_n of $1, \ldots, n$ a quadratic(cubic) permutation if $\forall 1 \leq i \leq n-1$ we have $a_i a_{i+1} + 1$ is a perfect square(cube). (a) Prove that for infinitely many natural numbers n there exists a quadratic permutation. (b) Prove that for no natural number n exists a cubic permutation.
5	if $x, y, z > 0$ are postive real numbers such that $x^2 + y^2 + z^2 = x^2y^2 + y^2z^2 + z^2x^2$ prove that $((x-y)(y-z)(z-x))^2 \le 2((x^2-y^2)^2 + (y^2-z^2)^2 + (z^2-x^2)^2)$

www.artofproblemsolving.com/community/c5390 Contributors: sahadian, TheOverlord, nima1376

Art of Problem Solving 2014 Iran Team Selection Test

6	Consider n segments in the plane which no two intersect and between their $2n$ endpoints no three are collinear. Is the following statement true? Statement: There exists a simple $2n$ -gon such that it's vertices are the $2n$ endpoints of the segments and each segment is either completely inside the polygon or an edge of the polygon.
_	TST 3
Day 1	
1	The incircle of a non-isosceles triangle ABC with the center I touches the sides BC, AC, AB at A_1, B_1, C_1 . let AI, BI, CI meets BC, AC, AB at A_2, B_2, C_2 . let A' is a point on AI such that $A_1A' \perp B_2C_2$. B', C' respectively. prove that two triangle $A'B'C', A_1B_1C_1$ are equal.
2	is there a function $f: \mathbb{N} \to \mathbb{N}$ such that $i)\exists n \in \mathbb{N}: f(n) \neq n$ ii) the number of divisors of m is $f(n)$ if and only if the number of divisors of $f(m)$ is n
3	let $m, n \in \mathbb{N}$ and $p(x), q(x), h(x)$ are polynomials with real Coefficients such that $p(x)$ is Descending. and for all $x \in \mathbb{R}$ $p(q(nx+m)+h(x))=n(q(p(x))+h(x))+m$. prove that dont exist function $f: \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$ $f(q(p(x))+h(x))=f(x)^2+1$
Day 2	
4	Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that $x, y \in \mathbb{R}^+$, $f\left(\frac{y}{f(x+1)}\right) + f\left(\frac{x+1}{xf(y)}\right) = f(y)$
5	Given a set $X = \{x_1, \ldots, x_n\}$ of natural numbers in which for all $1 < i \le n$ we have $1 \le x_i - x_{i-1} \le 2$, call a real number a good if there exists $1 \le j \le n$ such that $2 x_j - a \le 1$. Also a subset of X is called compact if the average of its elements is a good number. Prove that at least 2^{n-3} subsets of X are compact.
6	The incircle of a non-isosceles triangle ABC with the center I touches the sides BC at D .

www.artofproblemsolving.com/community/c5390 Contributors: sahadian, TheOverlord, nima1376

Art of Problem Solving

2014 Iran Team Selection Test

let X is a point on arc BC from circumcircle of triangle ABC such that if E, F are feet of perpendicular from X on BI, CI and M is midpoint of EF we have MB = MC.

prove that $\widehat{BAD} = \widehat{CAX}$