Part 1 The Prolog Language

Chapter 7 More Built-in Predicates

7.1.1 Predicates var, nonvar, atom,...

- Term may be of different types: variable, integer, atom, etc.
 - If a term is variable, then it can be instantiated (舉例說 明) or uninstantiated.
 - If it is instantiated, its value can be an atom, a structure, etc.
 - It is sometimes useful to know what the type of this value is.
 - For example, we may add the values of two variables,
 X and Y, by:

Z is X + Y

- Before this goal is executed, X and Y have to be instantiated to numbers.
- If we are not sure that X and Y will indeed be instantiated to numbers at this point then we should check this in the program before arithmetic is done.

7.1.1 Predicates var, nonvar, atom,...

number(X):

- number is a built-in predicate.
- number(X) is true if X is a number or if it is a variable whose value is a number.
- The goal of adding X and Y can then be protected by the following test on X and Y:
 - ..., number(X), number(Y), Z is X + Y,...
- If X and Y are not both numbers then no arithmetic will be attempted.

7.1.1 Predicates var, nonvar, atom,...

Built-in predicates of this sorts are:

var(X)		succeeds if X is currently an uninstantiated variable	
	nonvar(X)	succeeds if X is not a variable, or X is an already instantiated variable	
	atom(X)	is true if X currently stands for an atom	
	integer(X)	is true if X currently stands for an integer	
	float(X)	is true if X currently stands for a real number	
	number(X)	is true if X currently stands for a number	
	atomic(X)	is true if X currently stands for a number or an atom	
	compound(X)	is true if X currently stands for a compound term (a structure)	

7.1.1 Predicates var, nonvar, atom,...

```
| ?- var(Z), Z = 2.
                                | ?- atom( 3.14).
Z = 2
                                no
yes
                                | ?- atomic( 3.14).
| ?- Z = 2, var(Z).
                                yes
no
                                | ?- atom( ==>).
                                yes
                                | ?- atom( p(1)).
\mid ?- integer( Z), Z = 2.
                                no
no
| ?- Z = 2, integer( Z),
  nonvar( Z).
                                \mid?- compound(2 + X).
Z = 2
                                yes
yes
```

7.1.1 Predicates var, nonvar, atom,...

- We would like to count how many times a given atom occurs in a given list of objects.
- To this purpose we will define a procedure:

```
count( A, L, N)
```

where **A** is the atom, **L** is the list and **N** is the number of occurrences.

```
count( _, [], 0).
count( A, [A|L], N) :- !, count( A, L, N1), N is N1 +1.
count( A, [_|L], N) :- count( A, L, N).
```

7.1.1 Predicates var, nonvar, atom,...

```
| ?- count( a, [a, b, a, a], N).
                                  | ?- L=[a, b, X, Y],
N = 3?
                                       count(a, L, Na),
ves
                                       count(b, L, Nb).
                                  L = [a, b, a, a]
| ?- count( a, [a, b, X, Y], Na).
Na = 3
                                  Na = 3
X = a
                                  Nb = 1
Y = a?
                                  X = a
yes
                                  Y = a?
                                  yes
| ?- count( b, [a, b, X, Y], Nb).
Nb = 3
X = b
Y = b?
yes
```

7.1 Testing the type of terms 7.1.1 Predicates var, nonvar, atom,...

- We are interested in the number of the real occurrences of the given atom, and not in the number of terms that match this atom.
- The modified program is as follows:

7.1.1 Predicates var, nonvar, atom,...

```
| ?- count1( b, [a, b, X, Y], Nb).
Nb = 1 ?;
no
| ?- count1( a, [a, b, X, Y], Na).
Na = 1?
ves
| ?- L=[a,b,X,Y], count1( a, L, Na), count1( b, L, Nb).
L = [a,b,X,Y]
Na = 1
Nb = 1 ?;
no
```

A popular example of a cryptarithmetic(密碼算術)
 puzzle is

DONALD + GERALD ROBERT

- The problem here is to assign decimal digits to the letters D, O, N, etc., so that the above sum is valid.
- All letters have to be assigned different digits, otherwise trivial solutions are possible—for example, all letters equal zero.

Define a relation

sum(N1, N2, N)

where N1, N2 and N represent the three numbers of a given cryptarithmetic puzzle.

- The goal sum(N1, N2, N) is true if there is an assignment of digits to letters such that N1 + N2 = N.
- Each number can be represented as a list of decimal digits.
 - For example, the number 225 would be represented by the list [2, 2, 5].
 - Using this representation, the problem can be depicted as:

```
[D, O, N, A, L, D] + [G, E, R, A, L, D] = [R, O, B, E, R, T]
```

Then the puzzle can be stated to Prolog by the question:

?- sum([D,O,N,A,L,D], [G,E,R,A,L,D], [R,O,B,E,R,T]).

```
Number1 = [D_{11}, D_{12}, ..., D_{1i},...]
Number2 = [D_{21}, D_{22}, ..., D_{2i},...]
Number3 = [D_{31}, D_{32}, ..., D_{3i},...]
                              Carry from
                                                Here carry
           Here carry
           must be 0
                               the right
                                                    is 0
                                      C_1
    Number 1
  + Number2
  = Number3
                                      D<sub>3i</sub>......
```

The relations at the indicated ith digit position are:

$$D_{3i} = (C_1 + D_{1i} + D_{2i}) \mod 10;$$

 $C = (C_1 + D_{1i} + D_{2i}) \text{ div } 10.$

Define a more general relation

sum1(N1, N2, N, C1, C, Digits1, Digits)

where **N1**, **N2** and **N** are our three numbers,

C1 is carry from the right, and

C is carry to the left (after the summation).

Digits1 is the list of available digits for instantiating the variables in N1, N2, and N.

Digits is the list of digits that were not used in the instantiation of these variables.

For example:

?- sum1([H, E], [6, E], [U,S], 1, 1, [1,3,4,7,8,9], Digits).

1 ←		←1
	8	3
	6	3
	4	7

 The definition of sum in terms of sum1 is as follows:

```
sum( N1, N2, N) :-
sum1(N1, N2, N, 0, 0, [0,1,2,3,4,5,6,7,8,9],_).
```

- This relation is general enough that it can be defined recursively.
- We assume the threes lists representing the three numbers are of equal length.
- Our example problem satisfies this constraint; if not, the 'shorter' number can be prefixed by zeros.

- The definition of **sum1** can be divided into two cases:
 - (1) The three numbers are represented by empty lists. Then:

sum1([], [], [], C, C, Digs, Digs).

(2) All three numbers have some left-most digit and the remaining digits on their right. So they are of the form:

[D1 | N1], [D2 | N2], [D |N]

In this case two conditions must be satisfied:

(a) The three numbers N1, N2 and N have to satisfy the **sum1** relation, giving some carry digit, C2, to the left, and leaving some unused subset of decimal digits, **Digs2**.

- (b) The left-most digits D1, D2, and D, and the carry digit C2 have to satisfy the relation indicated in Figure 7.1: C2, D1, and D2 are added giving D and a carry to the left. This condition will be formulated in our program as a relation digitsum.
- Translating this case into Prolog we have:

```
sum1( [D1|N1], [D2|N2], [D|N], C1, C, Digs1, Digs) :-
sum1( N1, N2, N, C1, C2, Digs1, Digs2), digitsum( D1, D2, C2, D, C, Digs2, Digs).
```

- The definition of relation digitsum
 digitsum(D1, D2, C2, D, C, Digs2, Digs).
 - D1, D2 and D have to be decimal digits.
 - If any of them is not yet instantiated then it has to become instantiated to one of the digits in the list Digs2.
 - The digit has to be deleted from the set of Digs2.
 - If D1, D2 or D is already instantiated then none of avaiable digits will be spent.
 - This is realized in the program as a nondeterministic deletion of an item from a list.
 - If this item is non-variable then nothing is deleted.

```
del_var( A, L, L) :- nonvar(A), !.
del_var( A, [A|L], L).
del_var( A, [B|L], [B|L1]) :- del_var(A, L, L1).
```

```
% Figure 7.2 A program for cryptoarithmetic puzzles.
sum(N1, N2, N):-
  sum1( N1, N2, N, 0, 0, [0,1,2,3,4,5,6,7,8,9], _).
sum1( [], [], [], C, C, Digits, Digits).
sum1( [D1|N1], [D2|N2], [D|N], C1, C, Digs1, Digs) :-
      sum1( N1, N2, N, C1, C2, Digs1, Digs2),
      digitsum(D1, D2, C2, D, C, Digs2, Digs).
digitsum(D1, D2, C1, D, C, Digs1, Digs):-
     del_var( D1, Digs1, Digs2), del_var( D2, Digs2, Digs3),
     del_var(D, Digs3, Digs), S is D1 + D2 + C1,
     D is S \mod 10, C \bowtie S // 10.
del_var( A, L, L) :- nonvar(A), !.
del_var( A, [A|L], L).
del_var( A, [B|L], [B|L1]) :- del_var(A, L, L1).
% Some puzzles
puzzle1( [D,O,N,A,L,D], [G,E,R,A,L,D], [R,O,B,E,R,T] ).
puzzle2( [0,S,E,N,D], [0,M,O,R,E], [M,O,N,E,Y] ).
```

| ?- puzzle1(N1, N2, N), sum(N1, N2, N).

```
N = [7,2,3,9,7,0]

N1 = [5,2,6,4,8,5]

N2 = [1,9,7,4,8,5] ?;

(15 \text{ ms}) no
```


| ?- puzzle2(N1, N2, N), sum(N1, N2, N).

```
N = [0,8,3,5,6]

N1 = [0,7,5,3,1]

N2 = [0,0,8,2,5] ?;
```


$$N = [0,6,3,7,8]$$

 $N1 = [0,5,7,3,1]$
 $N2 = [0,0,6,4,7] ? ...$

```
| ?- sum1([5,0, N, A, L, 5],
       [G, E, R, A, L, 5],
       [R, O, B, E, R, T],
       0, 0, [0,1,2,3,4,5,6,7,8,9], _).
      A = 4 A = 4
A = 4
                           A = 4
      B = 2 B = 3
                             B = 3
B = 2
       E = 9 E = 9
                             E = 9
F = 9
       G = 1 G = 1 G = 1
G = 1
        L = 8 L = 8
L = 8
        N = 5 N = 6
                             N = 6
N = 5
        O = 6 O = 2 O = 5
0 = 3
        R = 7 \qquad R = 7 \qquad R = 7
R = 7
         T = 0 ?; T = 0 ?; T = 0 ?;
T = 0 ? ;
                              (47 ms) no
```

Exercise (Homework)

Exercise 7.1

 Write a procedure **simplify** to symbolically simplify summation expressions with numbers and symbols (lower-case letters). Let the procedure rearrange the expressions so that all the symbols precede numbers. These are examples of its use:

```
?- simplify( 1+1+a, E).

E= a+2

?- simplify( 1+a+4+2+b+c, E).

E= a+b+c+7

?- simplify( 3+x+x, E).

E= 2*x+3
```

- There are three built-in predicates for decomposing terms and constructing new terms: functor, arg and '=...'.
- The goal 'Term =.. L' is true if L is a list that contains the principal functor of Term, followed by its arguments.
 - For example:

```
| ?- f( a, b) =.. L.

L = [f,a,b]

yes

| ?- T =.. [rectangle, 3, 5].

T = rectangle(3,5)

yes

| ?- Z =.. [p, X, f( X, Y)].

Z = p( X, f( X, Y))

yes
```

- Consider a program that manipulates geometric figures.
 - Figures are squares, rectangles, triangles, circles, etc.
 - They can be represented as follows:

```
square( Side)
triangle( Side1, Side2, Side3)
circle( R) ...
```

One operation on such figures can be enlargement(擴展).

```
enlarge(Fig, Factor, Fig1).
```

For example:

```
enlarge( square(A), F, square(A1)) :- A1 is F*A.
enlarge( circle(R), F, circle(R1)) :- R1 is F*R.
enlarge( rectangle(A,B), F, rectangle(A1,B1)) :-
A1 is F*A, B1 is F*B.
```

23

• Can any clause be used to fit every above cases?

```
enlarge( Fig, F, Fig1) :-
    Fig =.. [Type | Parameters],
    multiplylist( Parameters, F, Parameters1),
    Fig1 =.. [Type | Parameters1].

multiplylist( [], _, []).

multiplylist([X | L], F, [X1 | L1]):-
    X1 is F*X, multiplylist( L, F, L1).
```

```
| ?- enlarge( square(3), 2, X).
X = square(6)
yes
| ?- enlarge( square(3), 2, square( X)).
X = 6
yes
| ?- enlarge( circle(3), 2, circle( X)).
X = 6
ves
| ?- enlarge( triangle(3,4,5), 2, X).
X = triangle(6,8,10)
yes
```

- The next example of using the '=..' predicate comes from symbolic manipulation of formulas where a frequent operation is to substitute some subexpression by another expression.
- Define the relation
 substitute(Subterm, Term, Subterm1, Term1)
 if all occurrences of Subterm in Term are substituted by Subterm1 then we get Term1.
 - For example:

```
?- substitute( sin(x), 2*sin(x)*f(sin(x)), t, F)
F = 2 * t * f(t)
```

- By 'occurrence' of **Subterm** in **Term** we will mean something in **Term** that matches subterm.
- We will look for occurrences from top to bottom.
- o For example:

```
?- substitute( a+b, f(a, A+B), v, F).
```

will produce

```
F = f(a,v)
```

A = a

B = b

and not

$$F = f(a,v+v)$$

A = a+b

B = a + b

 In defining the **substitute** relation we have to consider the following decisions depending on the case:

```
If Subterm = Term then Term1 = Subterm1 otherwise if Term is 'atomic' (not a structure) then Term1 = Term (nothing to be substituted), otherwise the substitution is to be carried out on the arguments of Term.
```

```
substitute( Subterm, Term, Subterm1, Term1)
substitute( sin(x), f(sin(x)), t, F)
```

% Figure 7.3 A procedure for substituting a subterm of a term by another subterm. % Case 1: Substitute whole term substitute(Term, Term, Term1, Term1) :- !. % Case 2: Nothing to substitute substitute(_, Term,_, Term) :- atomic(Term), !. % Case 3: Do substitution on arguments substitute(Sub, Term, Sub1, Term1) :-Term = .. [F|Args], substlist(Sub, Args, Sub1, Args1), Term1 =.. [F|Args1]. substlist(_, [], _, []). substlist(Sub, [Term|Terms], Sub1, [Term1|Terms1]) :substitute(Sub, Term, Sub1, Term1), substlist(Sub, Terms, Sub1, Terms1).

```
{trace}
\mid?- substitute(a+b, f(a, A+B), v, F).
       1 Call: substitute(a+b,f(a,_19+_20),v,_27)?
       2 Call: atomic(f(a, 19+ 20))?
       2 Fail: atomic(f(a, 19+ 20))?
       2 Call: f(a,_19+_20)=..[_76|_77]?
       2 Exit: f(a,_19+_20)=..[f,a,_19+_20]?
        2 Call: substlist(a+b,[a, 19+ 20],v, 147)?
        3 Call: substitute(a+b,a,v, 133)?
        4 Call: atomic(a)?
        4 Exit: atomic(a)?
       3 Exit: substitute(a+b,a,v,a) ?
       3 Call: substlist(a+b,[_19+_20],_134)?
        4 Call: substitute(a+b, 19+ 20,v, 212)?
        4 Exit: substitute(a+b,a+b,v,v)?
        4 Call: substlist(a+b,[],v, 213)?
       4 Exit: substlist(a+b,[],v,[]) ?
       3 Exit: substlist(a+b,[a+b],v,[v])?
        2 Exit: substlist(a+b,[a,a+b],v,[a,v]) ?
        2 Call: 27=..[f,a,v]?
        2 Exit: f(a,v)=..[f,a,v]?
        1 Exit: substitute(a+b,f(a,a+b),v,f(a,v))?
A = a
B = b
F = f(a,v)?
(32 ms) yes
{trace}
```

```
substitute( Term, Term, Term1, Term1) :- !.
substitute( _, Term, _, Term) :- atomic(Term), !.
substitute( Sub, Term, Sub1, Term1) :-
    Term =.. [F|Args],
    substlist( Sub, Args, Sub1, Args1),
    Term1 =.. [F|Args1].
substlist( _, [], _, []).
substlist( Sub, [Term|Terms], Sub1, [Term1|Terms1]) :-
    substitute( Sub, Term, Sub1, Term1),
    substlist( Sub, Terms, Sub1, Terms1).
```

- Term that are constructed by the '=..' predicate can be also used as goals.
- o For example:

```
Obtain( Functor),
Compute( Arglist),
Goal =.. [Functor|Arglist],
Goal ( or call( Goal))
```

- Here, obtain and compute are some user-defined procedures for getting the components of the goal to be constructed.
- The goal is then constructed by '=..', and invoked for execution by simply stating its name, Goal.

functor and arg

- A goal functor(Term, F, N) is true if F is the principal functor of Term and N is the arity of F.
- A goal arg(N, Term, A) is true if A is the Nth argument of Term, assuming that arguments are numbered from left to right starting with 1.
- For example:

o For example:

```
| ?- functor( D, date, 3),
arg( 1, D, 29),
arg( 2, D, june),
arg( 3, D, 1982).
D = date(29,june,1982)
yes
```

 The definition of name(A, L):
 name(A, L) is true if L is the list of ASCII codes of the characters in atom A.

```
| ?- name( a, X).

X = [97]

yes
```

7.3 Various kinds of equality and comparison

- Three kinds of equality in Prolog:
 - X = Y

This is true if X and Y match.

X is E

This is true if X matches the value of the arithmetic expression E.

• E1 =:= E2

This is true if the values of the arithmetic expressions E1 and E2 are equal.

o In contrast, when the values of two arithmetic expressions are not equal, we write E1 = 1 = 1.

7.3 Various kinds of equality and comparison

- The literal equality of two terms:
 - T1 == T2
 - This is true if term T1 and T2 are identical.
 - They have exactly the same structure and all the corresponding components are the same.
 - In particular, the names of the variables also have to be the same.
 - T1 \== T2
 - The complementary relation is 'not identical'.

7.3 Various kinds of equality and comparison

```
| ?- f(a, b) == f(a, b).
yes
                                   | ?- f(a, b) = f(a, X).
| ?- f(a, b) == f(a, X).
                                   X = b
                                   yes
no
| ?- f(a, X) = = f(a, Y).
                                   | ?- X is 3 + 2.
no
                                   X = 5
| ?- X | == Y.
                                   yes
ves
| ?- t(X, f(a,Y)) = = t(X, f(a,Y)).
yes
```

7.3 Various kinds of equality and comparison

Another example, redefine the relation:

```
Compare to Section 7.1.

count( _, [], 0).

count( A, [A|L], N) :- !,

count( A, L, N1), N is N1 +1.

count( A, [_|L], N) :- count( A, L, N).
```

7.3 Various kinds of equality and comparison

 Another set of built-in predicates compare terms alphabetically:

X @< Y

- Term X precedes term Y.
- The precedence between structures is determined by the precedence of their principal functors.
- If the principal functors are equal, then the precedence between the top-most, left-most functors in the subterms in X and Y decides.
- All the built-in predicates in this family are @<, @=<,
 @>, @>= with their obvious meanings.

7.3 Various kinds of equality and comparison

```
| ?- paul @< peter.
yes
| ?- f(2) @< f(3).
yes
| ?- g(2) @ < f(3).
no
|?-g(2)@>=f(3).
yes
| ?- f(a, g(b), c) @ < f(a, h(a), a).
yes
```

- A Prolog program can be viewed as such a database:
 - The specification of relations is partly explicit (facts) and partly implicit (rules).
 - Some built-in predicates make it possible to update this database during the execution of the program.
 - This is done by adding new clauses to the program or by deleting existing clauses.
 - Predicates that serve these purposes are assert, asserta, assertz and retract.

assert(C)

 A goal assert(C) always succeeds and causes a clause C to be 'asserted'—that is, added to the database.

retract(C)

A goal retract(C) deletes a clause that matches C.

```
| ?- data.
uncaught exception:
    error(existence_error(procedure,data/0),top_level/0)
| ?- asserta( data).
yes
| ?- data.
yes
| ?- retract( data).
yes
| ?- data.
no
```

```
| ?- raining.
uncaught exception: error(existence_error(procedure,raining/0),top_level/0)
| ?- asserta(raining).
                                     nice:- sunshine, not raining.
ves
                                     funny:- sunshine, raining.
| ?- asserta(fog).
ves
                                     disgusting: - raining, fog.
l ?- nice.
uncaught exception: error(existence_error(procedure,sunshine/0),nice/0)
?- disgusting.
yes
| ?- retract(fog).
yes
l ?- disgusting.
uncaught exception:
  error(existence_error(procedure, disgueting/0), top_level/0)
! ?- asserta(sunshine).
yes
| ?- funny.
yes
| ?- retract(raining).
ves
?- nice.
yes
```

```
    Clauses of any form can be asserted or retracted.

| ?- asserta( (fast( ann)) ).
yes
| ?- asserta( (slow( tom)) ).
ves
| ?- asserta( (slow( pat)) ).
yes
| ?- asserta( (faster( X, Y) :- fast(X), slow(Y)) ).
ves
| ?- faster( A, B).
A = ann
B = pat ?;
A = ann
B = tom
yes
| ?- retract( slow(X)).
X = pat ?;
X = tom
yes
| ?- faster( ann, _).
no
```

- asserta(C) and assertz(C)
 - The goal asserta(C) adds C at the beginning of the database.
 - The goal assertz(C) adds C at the end of the database.

```
| ?- assertz( p(b)), assertz( p(c)), assertz( p(d)),
  asserta(p(a)).
yes
| ?- p(X).
X = a ?;
X = b?;
X = c ?;
X = d
yes
```

- The relation between consult and assertz:
 - Consulting a file can be defined in terms of assertz as:

To consult file, read each term (clause) in the file and assert it at the end of the database.

- One useful application of asserta is to store already computed answers to questions.
 - Let there be a predicate solve(Problem, Solution)
 defined in the program.
 - We may now ask some question and request that the answer be remembered for future questions.
 - ?- solve(Problem1, Solution), asserta(solve(Problem1, Solution)).
 - If the first goal above succeeds then the answer
 (Solution) is stored and used in answering further questions.

Another example of asserta:

- Generate a table of products of all pairs of integers between 0 and 9 as follows:
 - generate a pair of integers X and Y,
 - compute Z is X * Y,
 - assert the three numbers as one line of the product table, and then
 - force the failure
 - The failure will cause, through backtracking, another pair of integers to be found and so another line tabulated.

maketable:-

```
L = [1,2,3,4,5,6,7,8,9],
member( X, L), member( Y, L),
Z is X * Y, asserta( product( X, Y, Z)), fail.
```

```
maketable:-
                                                     For
         L = [1,2,3,4,5,6,7,8,9],
                                                 backtracking
         member(X, L), member(Y, L),
         Z is X * Y, asserta( product( X, Y, Z)), fail.
| ?- maketable.
no
| ?- product( A, B, 8).
                                 | ?- product( 2, 5, X).
A = 8
                                 X = 10?
B = 1 ? ;
                                 yes
A = 4
B = 2 ? ;
A = 2
B = 4?;
A = 1
B = 8 ? ;
(31 ms) no
```

Exercise

- Exercise 7.6
 - Write a Prolog question to remove the whole product table from the database.
 - Modify the question so that it only removes those entries where the product is 0.

7.5 Control facilities

- The complete set of control facilities is presented here.
 - cut (!) prevents backtracking.
 - once(P) :- P, !.
 once(P) produces one solution only.
 - fail is a goal that always fails.
 - true is a goal that always succeeds.
 - not(P) is negation as failure that behaves exactly as if defined as:
 - not(P) :- P, !, fail; true.
 - call(P) invokes a goal P. It succeeds if P succeeds.
 - repeat is a goal that always succeeds.

7.5 Control facilities

repeat:

- repeat is a goal that always succeeds.
- It is non-deterministic.
- Each time it is reached by backtracking it generates another alternative execution branch.
- repeat behaves as if defined by:
 repeat.
 repeat:- repeat.

• An example:

7.5 Control facilities

```
dosquares :- repeat, read(X),
                (X = stop, !
                Y is X * X, write(Y), fail).
| ?- dosquares.
3.
9 4.
16 5.
25 6.
36 7.
49 8.
64 9.
81 10.
100 stop.
yes
```

- We can generate, by backtracking, all the objects, one by one, that satisfy some goal.
- Each time a new solution is generated, the previous one disappears and is not accessible any more.
- Sometimes we would prefer to have all the generated objects available together—for example collected into a list.
- The built-in predicates bagof, setof, and findall serve this purpose.

bagof

- The goal bagof(X, P, L) will produce the list L of all the objects X such that a goal P is satisfied.
- If there is no solution for P in the bagof goal, then the goal simply fails.
- If the same object X is found repeatedly, then all of its occurrences will appear in L, which leads to duplicate items in L.

```
For example:
```

```
age( peter, 7).
age( ann, 5).
age( pat, 8).
age( tom, 5).

?- bagof( Child, age( Child, 5), List).
List = [ann,tom]
yes
```

```
?- bagof( Child, age( Child, 5), List).
                                                   age(peter, 7).
List = [ann,tom]
                                                   age( ann, 5).
Yes
                                                   age( pat, 8).
| ?- bagof( Child, age( Child, Age), List).
                                                   age( tom, 5).
Age = 5
List = [ann,tom] ?;
Age = 7
List = [peter] ?;
                      '^' is a predefined infix operator of type xfy.
Age = 8
                       →We do not care about the value of Age.
List = [pat]
(15 ms) yes
| ?- bagof( Child, Age ^ age( Child, Age), List).
List = [peter,ann,pat,tom]
Yes
| ?- bagof( Child, Age ^ age( Child, 5), List).
List = [ann,tom]
ves
| ?- bagof( Child, 5 ^ age( Child, 5), List).
List = [ann,tom]
yes
```

setof

- The goal setof(X, P, L) will produce a list L of objects
 X that satisfy P.
- The list L will be ordered, and duplicate items will be eliminated.
- For example:
 age(peter, 7).
 age(ann, 5).
 age(pat, 8).
 age(tom, 5).

?- setof(Child, Age ^ age(Child, Age), ChildList), setof(Age, Child ^ age(Child, Age), AgeList).

```
AgeList = [5,7,8]
ChildList = [ann,pat,peter,tom]
yes
```

```
| ?- setof( Child, Age ^ age( Child, Age), ChildList),
    setof( Age, Child ^ age( Child, Age), AgeList).
   AgeList = [5,7,8]
   ChildList = [ann,pat,peter,tom]
   Yes
| ?- bagof( Child, Age ^ age( Child, Age), ChildList),
    bagof( Age, Child ^ age( Child, Age), AgeList).
   AgeList = [7,5,8,5]
                                        age(peter, 7).
   ChildList = [peter,ann,pat,tom]
                                        age( ann, 5).
   Yes
                                        age( pat, 8).
                                        age( tom, 5).
?- setof( Age/Child, age( Child, Age), List).
   List = [5/ann,5/tom,7/peter,8/pat]
   yes
```

o findall

- The goal findall(X, P, L) produces a list L of objects X that satisfy P.
- The difference will respect to **bagof** is that all of the objects **X** are collected regardless of different solutions for variables in **P** that are not shared with **X**.
- If there is no object X that satisfies P then findall will succeed with L = [].

```
For example:
    age( peter, 7).
    age( ann, 5).
    age( pat, 8).
    age( tom, 5).
| ?- findall( Child, age( Child, Age), List).
List = [peter,ann,pat,tom]
yes
```

```
| ?- bagof( Child,
age( Child, Age), List).
Age = 5
List = [ann, tom] ?;
Age = 7
List = [peter] ?;
Age = 8
List = [pat]
(15 ms) yes
```

 If **findall** is not available as a built-in predicate in the implementation used then it can be easily programmed as follows.

```
% Figure 7.4 An implementation of the findall relation.
findall(X, Goal, Xlist) :-
 call(Goal),
                                    % Find a solution
                                    % Assert it
 assertz( queue(X) ),
 fail;
                                    % Try to find more solutions
                                    % Mark end of solutions
 assertz( queue(bottom) ),
                                    % Collect the solutions
 collect(Xlist).
collect(L):-
                                    % Retract next solution
 retract( queue(X) ), !,
 (X == bottom, !, L = []
                                    % End of solutions?
  L = [X \mid Rest], collect( Rest) ). % Otherwise collect the rest <sub>58</sub>
```

Exercise

- Exercise 7.8
 - Use setof to define the relation
 powerset(Set, Subsets)
 to compute the set of all subsets of a given set (all sets represented as lists).