Context-Free Grammars

1

(10 pts)

Formal Languages and Abstract Machines Take Home Exam 2

 $\begin{array}{c} \text{Name SURNAME} \\ 1234567 \end{array}$

	(20 P 00)
a) Give the rules of the Context-Free Grammars to recognize strings in the given where $\Sigma = \{a, b\}$ and S is the start symbol.	ven languages
$L(G) = \{ w \mid w \in \Sigma^*; \ w \geq 3;$ the first and the second from the last symbols of w are the same $\}$	(2/10 pts)
answer here	
$L(G) = \{ w \mid w \in \Sigma^*; \text{ the length of w is odd} \}$	(2/10 pts)
answer here	
$L(G) = \{ w \mid w \in \Sigma^*; \ n(w, a) = 2 \cdot n(w, b) \}$ where $n(w, x)$ is the number of x symbols	in w (3/10 pts)
answer here	

b)	Find the set of strings recognized by the CFG rules given below:	(3/10 pts)
----	--	-------------

$$\begin{split} S \rightarrow X \mid Y \\ X \rightarrow aXb \mid A \mid B \\ A \rightarrow aA \mid a \\ B \rightarrow Bb \mid b \\ Y \rightarrow CbaC \\ C \rightarrow CC \mid a \mid b \mid \varepsilon \end{split}$$

answer here	
answer nere	

2 Parse Trees and Derivations

(20 pts)

Given the CFG below, provide parse trees for given sentences in ${\bf a}$ and ${\bf b}$.

a) Jane constructed automata with a pen

(4/20 pts)

answer here		

b) my book in the man built a Jane by a pen

(4/20 pts)

Given the CFG below, answer $\mathbf{c},\,\mathbf{d}$ and \mathbf{e}

S	ightarrow E
E	ightarrow E + T E - T T
Т	ightarrow T * I T / I I
Ι	ightarrow 0 1 2 3 4 6 7 8 9

$\mathbf{c})$	Provide the left-most derivation of 7 - 4 * 3 step-by-step and plot the final parse	(4/20 pts)
tree	matching that derivation	

answer here ...

d) Provide the right-most derivation of 7 - 4 * 3 step-by-step and plot the final parse $\,$ (4/20 pts) tree matching that derivation

answer here ...

e) Are the derivations in c and d in the same similarity class? (4/20 pts)

3 Pushdown Automata

(30 pts)

a) Find the language recognized by the PDA given below

(5/30 pts)

where the transition $((q_i, \alpha, \beta), (q_j, \gamma))$ is represented as:

answer here ...

b) Design a PDA to recognize language $L = \{x^n y^{m+n} x^m \mid n, m \ge 0; n, m \in \mathbb{N}\}$ (5/30 pts)

c) Design a PDA to recognize language $L = \{x^n y^m \mid n < m \le 2n; n, m \in \mathbb{N}^+\}$ Do not use multi-symbol push/pop operations in your transitions. Simulate the PDA on strings xxy (with only one rejecting derivation) and $xxyyyy$ tion) with transition tables.	
answer here	

	and L as $L' = \{ w \mid w \in L; w = 4n + 2 \text{ for } n \in \mathbb{N} \}$	
L is a CFL, show that L' is omaton that recognizes L .	s also a CFL by constructing an automaton for L'	in terms of anot
omaton that recognizes L.		
answer here		
answer nere		

4 Closure Properties

(20 pts)

Let L_1 and L_2 be context-free languages which are not regular, and let L_3 be a regular language. Determine whether the following languages are necessarily CFLs or not. If they need to be context-free, explain your reasoning. If not, give one example where the language is a CFL and a counter example where the language is not a CFL.

a)	$L_4 = L_1 \cap (L_2 \setminus$	L_2)	(1)	0/20	pts)
α_{j}	$L_4 - L_1 \cap L_2 \setminus$	$L_3)$	(1)	<i>) 2</i> 0	pus	J

answer here ...

b)
$$L_5 = (L_1 \cap L_3)^*$$
 (10/20 pts)

5 Pumping Theorem

(20 pts)

a) Show that $L=\{a^nm^nt^i\mid n\leq i\leq 2n\}$ is not a Context Free Language using Pumping Theorem for CFLs.

(10/20 pts)

answer here ...

b) Show that $L = \{a^nb^{2n}a^n \mid n \in \mathbb{N}+\}$ is not a Context Free Language (10/20 pts) using Pumping Theorem for CFLs.

6 CNF and CYK

(not graded)

a) Convert the given context-free grammar to Chomsky Normal Form.

$$\begin{split} S &\to XSX \mid xY \\ X &\to Y \mid S \\ Y &\to z \mid \varepsilon \end{split}$$

answer here	

b) Use the grammar below to parse the given sentence using Cocke–Younger–Kasami algorithm. Plot the parse trees.

 $S \to NP\ VP$ $VP \rightarrow book \mid include \mid prefer$ $S \rightarrow X1 VP$ $VP \rightarrow Verb NP$ $VP \rightarrow X2 PP$ $X1 \rightarrow Aux NP$ $S \rightarrow book \mid include \mid prefer$ $X2 \rightarrow Verb NP$ $S \to Verb\ NP$ $VP \rightarrow Verb PP$ $VP \rightarrow VP PP$ $S \rightarrow X2 PP$ $S \to Verb PP$ $PP \rightarrow Prep NP$ $S \to VP PP$ $Det \rightarrow that \mid this \mid the \mid a$ $NP \rightarrow I \mid she \mid me \mid Houston$ Noun \rightarrow book | flight | meal | money $\mathrm{NP} \to \mathrm{Det}\ \mathrm{Nom}$ $Verb \rightarrow book \mid include \mid prefer$ $Nom \rightarrow book \mid flight \mid meal \mid money$ $Aux \rightarrow does$ $Nom \rightarrow Nom Noun$ $\operatorname{Prep} \to \operatorname{from} \mid \operatorname{to} \mid \operatorname{on} \mid \operatorname{near} \mid \operatorname{through}$ $Nom \rightarrow Nom PP$

book the flight through Houston

7 Deterministic Pushdown Automata

(not graded)

Provide a DPDA to recognize the given languages, the DPDA must read its entire input and finish with an empty stack.

\mathbf{a}	$a^*bc \cup$	a^nb^nc

answer here		
answer here		

answer here			