0.1 Introduksjon

I en undersøkelse henter vi inn informasjon. Denne informasjonen kan gjerne være tall eller ord, og kalles data. En samling av innhentet data kalles et datasett.

For eksempel, tenk at du spør to mennesker om de liker kaviar. Den ene svarer "ja", den andre "nei". Da er "ja" og "nei" dataene (svarene) du har samlet inn, og {"ja", "nei"} er datasettet ditt.

Statistikk handler grovt sett om to ting; å presentere og å tolke innsamlet data. For begge disse formålene har vi noen verktøy som vi i kommende seksjoner skal studere ved hjelp av noen forskjellige eksempler på undersøkelser. Disse finner du på side 2.

Det er ikke noen fullstendige fasitsvar på hvordan en presenterer eller tolker data, men to retningslinjer bør du alltid ha med deg:

- La det alltid komme tydelig fram hva du har undersøkt, og hvilke data som er innhentet.
- Tenk alltid over hvilke metoder du bruker for å tolke dataene.

Språkboksen

Personer som deltar i en undersøkelse der man skal svare på noe, kalles *respondenter*.

10 personer testet hvor mange sekunder de kunne holde pusten. Resultatene ble disse:

47 124 61 38 97 84 101 79 56 40

Undersøkelse 2

15 personer ble spurt hvor mange epler de spiser i løpet av en uke. Svarene ble disse:

7 4 5 4 1 0 6 5 4 8 1 6 8 0 14

Undersøkelse 3

300 personer ble spurt hva deres favorittdyr er.

- 46 personer svarte tiger
- 23 personer svarte løve
- 17 personer svarte krokodille
- 91 personer svarte hund
- 72 personer svarte katt
- 51 personer svarte andre dyr

Undersøkelse 4

Mobiltelefoner med smartfunksjoner (app-baserte) kom på det norske markedet i 2009. Tabellen¹ under viser det totale salget mobiltelefoner i tidsperioden 2009-2014, og andelen med og uten smartfunkskjoner. Salgstallene oppgir antall 1 000 telefoner.

$\mathbf{\mathring{A}r}$	2009	2010	2011	2012	2013	2014
totalt	2365	2500	2250	2 200	2 400	2 100
u. sm.f.	1665	1250	790	300	240	147
m. sm.f.	700	1250	1 460	1 900	2160	1953

¹Tallene er hentet fra medienorge.uib.no.

0.2 Presentasjonsmetoder

Skal vi presentere våre undersøkelser, bør vi vise datasettene slik at det er lett for andre å se hva vi har funnet. Dette kan vi gjøre blant annet ved hjelp av frekvenstabeller, søylediagram, sektordiagram eller linjediagram.

0.2.1 Frekvenstabell

I en frekvenstabell setter man opp dataene i en tabell som viser hvor mange ganger hvert unike svar dukker opp. Dette antallet kalles frekvensen.

Undersøkelse 2

I vår undersøkelse har vi to 0, to 1, tre 4, to 5, to 6, én 7, to 8 og én 14. I en frekvenstabell skriver vi da

antall epler	frekvens	
0	2	
1	2	
4	3	
5	2	
6	2	
7	1	
8	2	
14	1	

0.2.2 Søylediagram (stolpediagram)

Med et søylediagram presenterer vi dataene med søyler som viser frekvensen.

0.2.3 Sektordiagram (kakediagram)

I et sektordiagram vises frekvensene som sektorer av en sirkel.

Å lage et sektordiagram for hand

Skal du selv tegne et sektordiagram, trenger du kunnskaper om vinkler og om brøkandeler. Se seksjon ??, MB, s. 76 og oppgave ??.

0.2.4 Linjediagram

I et linjediagram legger vi inn dataene som punkt i et koordinatsystem, og trekker en linje mellom dem. Linjediagram brukes oftest når det er snakk om en form for utvikling.

0.3 Tolking av tendenser; sentralmål

I et datasett er det gjerne svar som er helt eller tilnærmet like, og som gjentar seg. Dette betyr at vi kan si noe om hva som gjelder for mange; en **tendens**. De matematiske begrepene som forteller noe om dette kalles **sentralmål**. De vanligste sentralmålene er typetall, gjennnomsnitt og median.

0.3.1 Typetall

0.1 Typetall

Typetallet er verdien det er flest eksemplarer av i datasettet.

Undersøkelse 2

I datasettet er det verdien 4 som opptrer flest (tre) ganger. 4 er altså typetallet.

Flere typetall

Hvis flere verdier opptrer oftest i et datasett, har datasettet flere typetall.

0.3.2 Gjennomsnitt

Når et datasett består av svar i form av tall kan vi finne summen av svarene. Når vi spør hva gjennomsnittet er, spør vi om dette:

"Hvis alle svarene var like, og summen den samme, hvilken verdi måtte alle svarene da ha hatt?"

Dette er jo ingenting annet enn divisjon¹:

0.2 Gjennomsnitt

$$gjennomsnitt = \frac{summen \text{ av verdiene fra datasettet}}{antall \text{ verdier}}$$

Undersøkelse 1

Vi summerer verdiene fra datasettet, og deler med antall verdier:

gjennomsnitt =
$$\frac{47 + 124 + 61 + 38 + 97 + 84 + 101 + 79 + 56 + 40}{10}$$
$$= \frac{727}{10}$$
$$= 72.7$$

Altså, i gjennomsnitt holdt de 10 deltakerne pusten i 72,7 sekunder.

¹se MB, side 23.

Metode 1

gjennomsnitt =
$$\frac{7+4+5+4+1+0+6+5+4+8+1+6+8+0+14}{15}$$
 =
$$\frac{73}{15}$$
 ≈ 4.87

Metode 2

Vi utvider frekvenstabellen fra side 3 for å finne summen av verdiene fra datasettet (vi har også tatt med summen av frekvensene):

Antall epler	Frekvens	$antall \cdot frekvens$	
0	2	$0 \cdot 2 = 0$	
1	2	$1 \cdot 2 = 2$	
4	3	$4 \cdot 3 = 12$	
5	2	$5 \cdot 2 = 10$	
6	2	$6 \cdot 2 = 12$	
7	1	$7 \cdot 1 = 14$	
8	1	$8 \cdot 2 = 16$	
14	1	$14 \cdot 1 = 14$	
sum	15	73	

Nå har vi at

gjennomsnitt =
$$\frac{73}{15}$$

 ≈ 4.87

Altså, i gjennomsnitt spiser de 15 respondentene 4,87 epler i uka.

(Utregning utelatt. Verdiene er rundet ned til nærmeste éner).

- Gjennomsnitt for totalt salg av mobiler: 2302
- Gjennomsnitt for salg av mobiler uten smartfunksjon: 732
- Gjennomsnitt for salg av mobiler med smartfunksjon: 1570

Lik fordeling

Legg merke til at gjennomsnitt handler om lik fordeling. Hvis vi har 4 rektangler med respektive lengder 1, 6, 3 og 2, blir den samlede lengden 1+6+3+2=12.

Dette betyr at gjennomsnittslengden er $\frac{12}{4} = 3$. Hvis vi kunne omformet rektanglene slik at de ble like lange, ville altså hver av dem hatt lengde 3.

Gjennomsnittlig endring per enhet

Tenk deg at du på en løpetur gjør tre målinger av farten din. Datasettet du ender opp med er

$$10 \,\mathrm{m/s}$$
 $10 \,\mathrm{m/s}$ $10 \,\mathrm{m/s}$

Gjennomsnittsfarten din var da

$$\frac{10 + 10 + 10}{3} \,\mathrm{m/s} = 10 \,\mathrm{m/s}$$

Siden alle målinger av farten din hadde samme verdi, kan det være rimelig å anta at farten din var konstant. Og hvis den virkelig var det, ville alle målinger av farten din hatt samme verdi, uansett hvor mange målinger du tok. Dette gjør at en konstant fart fra Definisjon ?? i dagligtale også kalles **gjennomsnittsfart**. Sagt på en annen måte er dette den gjennomsnittlige endringen i antall meter per sekund.

0.3 Gjennomsnittlig endring per enhet

Hvis vi *antar* at to størrelser er proporsjonale, kaller vi proporsjonalitetskonstanten fra (??) den **gjennomsnittlige endringen per enhet**.

Undersøkelse 4

• For årene 2009 og 2010 er differansen mellom smarttelefoner solgt delt på differansen mellom år gått lik

$$\frac{1260 - 700}{2010 - 2009} = \frac{550}{1} = 550$$

Mellom 2009 og 2010 har altså salget av smarttelefoner i gjennomsnitt økt med 550000 smarttelefoner per år.

• For årene 20010 og 2014 er differansen mellom smarttelefoner solgt delt på differansen mellom år gått lik

$$\frac{1953 - 1250}{2014 - 2010} = \frac{703}{4} = 175,75$$

Mellom 2010 og 2014 har altså salget av smarttelefoner i gjennomsnitt $\emptyset kt$ med ca. 176 smarttelefoner per år.

• For årene 2013 og 2014 er differansen mellom smarttelefoner solgt delt på differansen mellom år gått lik

$$\frac{1953 - 2160}{2014 - 2013} = \frac{-207}{1} = -207$$

Mellom 20013 og 2014 har altså salget av smarttelefoner sunket med ca. 207 000 smarttelefoner per år.

Stignistallet til linja mellom to punkt

Gitt en funksjon f(x). I MB har vi sett at stigningstallet til linja mellom punktene (a, f(a)) og (b, f(b)) er gitt som

$$\frac{f(b) - f(a)}{b - a}$$

Sammenlikner vi dette uttrykket med utregningene fra side 11, ser vi at utrekningene er identiske. Stigningstallet mellom to punkt på en graf gir oss dermed den gjennomsnittlige endringen per enhet.

0.3.3 Median

0.4 Median

Medianen er tallet som ender opp i midten av datasettet når det rangeres fra tallet med lavest til høgest verdi.

Hvis datasettet har partalls antall verdier, er medianen gjennomsnittet av de to verdiene i midten (etter rangering).

Undersøkelse 1

Vi rangerer datasettet fra lavest til høgest verdi:

De to tallene i midten er 61 og 79. Gjennomsnittet av disse er

$$\frac{61+79}{2} = 70$$

Altså er medianen 70.

Vi rangerer datasettet fra lavest til høgest verdi:

0 0 1 1 4 4 4 5 5 6 6 7 8 8 14

Tallet i midten er 5, altså er medianen 5.

(Utregning utelatt. Verdiene er rundet ned til nærmeste éner).

- Median for totalt salg av mobiler: 2307
- Median for salg av mobiler uten smartfunksjon: 545
- Median for salg av mobiler med smartfunksjon: 1570

0.4 Tolking av forskjeller; spredningsmål

Ofte vil det også være store forskjeller (stor spredning) mellom dataene som er samlet inn. De vanligste matematiske begrepene som forteller noe om dette er variasjonsbredde, kvartilbredde, varians og standardavvik.

0.4.1 Variasjonsbredde

0.5 Variasjonsbredde

Differansen mellom svarene med henholdsvis høgest og lavest verdi.

Undersøkelse 1

Svaret med henholdsvis høgest og lavest verdi er 124 og 38. Altså er

variasjonsbredde =
$$124 - 38 = 86$$

Undersøkelse 2

Svaret med henholdsvis høgest og lavest verdi er 14 og 0. Altså er

variasjonsbredde =
$$14 - 0 = 14$$

Undersøkelse 4

• Variasjonsbredde for mobiler totalt:

$$2500 - 2100 = 400$$

• Variasjonsbredde for mobiler uten smartfunksjoner:

$$1665 - 147 = 518$$

• Variasjonsbredde for mobiler med smartfunksjoner:

$$2160 - 700 = 1460$$

0.4.2 Kvartilbredde

0.6 Kvartilbredde og øvre og nedre kvartil

Kvartilbredden til et datasett kan finnes på følgende måte:

- 1. Ranger datasettet fra høgest til lavest verdi.
- 2. Skill det rangerte datasettet på midten, slik at to nye sett oppstår. (Viss det er oddetalls antall verdier i datasettet, utelates medianen).
- 3. Finn de respektive medianene i de to nye settene.
- 4. Finn differansen mellom medianene fra punkt 3.

Om medianene fra punkt 3: Den med høgest verdi kalles øvre kvartil og den med lavest verdi kalles nedre kvartil.

Undersøkelse 1

- 1. 38 40 47 56 61 79 84 97 101 124
- 2. 38 40 47 56 61 79 84 97 101 124
- 3. Medianen i det blå settet er 47 (nedre kvartil) og medianen i det røde settet er 97 (øvre kvartil).
 - 38 40 47 56 61 79 84 97 101 124
- 4. Kvartilbredde = 97 47 = 50

Undersøkelse 2

- $1. \ 0 \ 0 \ 1 \ 1 \ 4 \ 4 \ 4 \ 5 \ 5 \ 6 \ 6 \ 7 \ 8 \ 8 \ 14$
- 2. 0 0 1 1 4 4 4 5 5 6 6 7 8 8 14
- 3. Medianen i det blå settet er 1 (nedre kvartil) og medianen i det røde settet er 7 (øvre kvartil).
 - 0 0 1 1 4 4 4 5 6 6 7 8 8 14
- 4. Kvartilbredde = 7 1 = 6

(Utregning utelatt)

- For mobiler totalt er kvartilbredden: 200
- For mobiler uten smartfunksjoner er kvartilbredden: 1010
- For mobiler med smartfunksjoner er kvartilbredden: 703

Språkboksen

Nedre kvartil, medianen og øvre kvartil blir også kalt henholdsvis 1. kvartil, 2. kvartil og 3. kvartil.

0.4.3 Avvik, varians og standardavvik

0.7 Varians

Differansen mellom en verdi og gjennomsnittet i et datasett kalles *avviket* til verdien.

Variansen til et datasett kan finnes på følgende måte:

- 1. Kvadrer avviket til hver verdi i datasettet, og summer disse.
- 2. Divider med antall verdier i datasettet.

Standardavviket er kvadratroten av variansen.

Eksempel

Gitt datasettet

Da har vi at

gjennomsnitt =
$$\frac{2+5+9+7+7}{5} = 6$$

Og videre er

variansen =
$$\frac{(2-6)^2 + (5-6)^2 + (9-6)^2 + (7-6)^2 + (7-6)^2}{5}$$
= 5

Da er standardavviket = $\sqrt{5} \approx 2,23$.

Undersøkelse 1

(Utregning utelatt)

Variansen er 754,01. Standardavviket er $\sqrt{754,01} \approx 27,46$

Gjennomsnittet fant vi på side 9. Vi utvider frekvenstabellen vår fra side 3:

antall epler	frekvens	frekvens · kvadrert avvik
0	2	$2 \cdot \left(0 - \frac{73}{15}\right)^2$
1	2	$2 \cdot \left(1 - \frac{73}{15}\right)^2$
4	3	$3\cdot\left(4-rac{73}{15} ight)^2$
5	2	$2\cdot \left(5 - \frac{73}{15}\right)^2$
6	2	$2 \cdot \left(6 - \frac{73}{15}\right)^2$
7	1	$1 \cdot \left(7 - \frac{73}{15}\right)^2$
8	2	$2 \cdot \left(8 - \frac{73}{15}\right)^2$
14	1	$1 \cdot \left(9 - \frac{73}{15}\right)^2$
sum	15	$189{,}7\bar{3}$

Altså er variansen

$$\frac{189,7\bar{3}}{15} \approx 12,65$$

Da er standardavviket $\sqrt{12,65} \approx 3.57$

Undersøkelse 4

(Utregning utelatt)

- For mobiler totalt er variansen 17781,25 og standardavviket ca. 133,4.
- For mobiler uten smartfunksjoner er variansen 318 848. $\bar{3}$ og standardavviket ca. 17,87
- For mobiler med smartfunksjoner er variansen $245\,847.91\bar{6}$ og standardavviket ca. 495,83.

Hvorfor innebærer variansen kvadrering?

La oss se hva som skjer hvis vi gjentar utregningen fra *Eksempel* på side 18, men uten å kvadrere:

$$\frac{(2-6)+(5-6)+(9-6)+(7-6)+(7-6)}{5} = \frac{2+5+9+7+7}{5} - 6 \quad (1)$$

Men brøken $\frac{2+5+9+7+7}{5}$ er jo per definisjon gjennomsnittet til datasettet, og dermed blir uttrykket over lik 0. Dette vil gjelde for alle datasett, så i denne sammenhengen gir ikke tallet 0 noen ytterligere informasjon. Om vi derimot kvadrerer avvikene, unngår vi et uttrykk som alltid blir lik 0.