## ALGORITHMS, FALL 2018, HOMEWORK 2

Due Thursday, September 20 at 11:59pm.

Worth 2% of the final grade.

Submit each problem on a separate page. Subproblems can be on the same page.

- 1.  $S(n) = 2S(\frac{n}{2}) + \Theta(1)$ .
  - (a) Evaluate S(n) with a recursion tree.



Each level of this tree costs  $\Theta(1)$ , and there are  $\log_2 n$  levels.

$$S(1) = \Theta(1) = c_2$$

$$S(n) = c_2 n + \log_2 n$$

$$S(n) = \Theta(n)$$

(b) Use substitution (induction) to get a lower bound that matches the result in (a).

$$S(n) = 2 \cdot S(\frac{n}{2}) + 1$$

Assume that  $S(n) \leq d \cdot n$ .

Therefore for all  $k < n, S(k) \le d \cdot k$ 

Substitute:  $S(n) \le 2 \cdot d^{\frac{n}{2}} + c \cdot 1$ 

$$=dn+1$$

$$=dn+1$$

$$\leq dn \text{ if } d \geq c$$

(c) Not required or graded: confirm the matching upper bound via substitution.

Skipped

2. (a) Use substitution (induction) to prove:  $T(n) = 18T(\frac{n}{3}) + \Theta(n^2) = O(n^3)$ .

$$T(n) = 18T(\frac{n}{3}) + c \cdot n^2$$

Assume that  $T(n) \le 18 \cdot c \cdot (\frac{n}{3})^2 + d \cdot n^2$ 

Therefore for all  $k < n, T(k) \le d \cdot k^3$ 

Substitute  $c \cdot n^3 + dn^2$ 

Therefore it is leaf dominated with a runtime of  $\Theta(n^3)$ .

(b) Show that this isn't the best possible upper bound for T(n).

Substitute: 
$$T(n) \le c \cdot 2 \cdot n^2 + dn^2$$

 $\leq n^2$ .

(c) Not required or graded: confirm (b) by getting a better bound via substitution.

3. Use the master method for the following, or explain why it's not possible. If you get Case 3 you do not need to confirm that there is a geometric series.

(a) 
$$T(n) = 10 \cdot T(\frac{n}{3}) + \Theta(n^2 \log^5 n)$$
.

Using master method, we have to compare  $n^{\log_3 10}$  and  $n^2 \log^5 n$   $n^{\log_3 10}$  is slightly larger, and it represents the leaves, so this is leaf-dominated. Therefore the runtime is  $\Theta(n^{\log_3 10})$ .

(b) 
$$T(n) = T(\frac{19n}{72}) + \Theta(n^2)$$
.

Using master method, we have to compare  $n^0 = 1$  and  $n^2$ .  $n^2$  is the clear winner here, representing the root cost, so this is root-dominated. Therefore the runtime is  $\Theta(n^2)$ .

(c) 
$$T(n) = n \cdot T(\frac{n}{5}) + n^{\log_5 n}$$
.

Using master method, we have to compare  $n^{\log_5 n}$  and  $n^{\log_5 n}$ . Because they're the same, the runtime is  $n^{\log_5 n} \log n$ .

(d) 
$$T(n) = 3 \cdot T(\frac{n}{2}) + n^2$$
.

Using master method, we have to compare  $n^{\log_2 3}$  and  $n^2$ .  $n^2$  is larger, so this function is root dominated and so the runtime is  $\Theta(n^2)$ .

(e) 
$$T(n) = T(\frac{n}{n-1}) + 1$$
.

The master method does not work here because the value of b derived from this function would be less than 1.

(f) 
$$T(n) = 4 \cdot T(\frac{n}{16}) + \sqrt{n} \cdot \log^4 n$$
.

Using the master method we have to compare  $n^{\log_{16} 4}$  and  $\sqrt{n} \cdot \log^4 n$ .  $\sqrt{n} \cdot \log^4 n$  is slightly larger, so this is root-dominated and the runtime is  $\Theta(\sqrt{n} \cdot \log^4 n)$ .

4. Solve  $T(n) = T(\sqrt{n}) + \log n$ 

(a) with a recursion tree

In this tree there are  $\log n$  levels, and on each level we do  $\log n$  work, so we have a runtime of  $\log(\log n)$ .

(b) by substitution (induction)

$$T(n) \ge c \cdot \log n$$
.

For all  $k < n, T(k) \ge c \cdot \log k$ .

$$T(n) \ge c \cdot \log(\sqrt{n}) + \log n.$$

$$= \frac{1}{2} \cdot c \cdot \log n + \log n.$$

Remnants are  $c \cdot \log n$ .

Therefore this function is  $\Theta(\log n)$ .

(c) with the master method, after applying a change of variables,  $n = 2^m$ .

$$T(2^m) = T(2^{\frac{m}{2}}) + \log 2^m$$

$$f(n) = \log 2^m$$

If we were to take the entire set of elements as our parameter, and said that  $m=n^2$ .

Then our equation would equal  $S(m) = 4S(\frac{m}{4}) + m$ , which is just  $\Theta(m)$ .

It is similar in the case of  $n^2$ , where the runtime would be  $\Theta(n^2)$ .

Similarly in this one, the runtime just becomes  $\Theta(m)$ .