PRATICA S1/l4

Esercizio di Oggi: Il laboratorio di oggi consiste nella creazione e configurazione di una rete di calcolatori con il tool Cisco Packet Tracer, come in figura. Lo scopo è capire come funzionano le comunicazioni a livello 2 e 3 del modello ISO / OSI con i rispettivi device di rete.

• Descrizione:

- 1. Mettere in comunicazione il **laptop-PT0** con **IP 192.168.100.100** con il **PC-PT-PC0** con **IP 192.168.100.103**;
- 2. Mettere in comunicazione il laptop-PT0 con IP 192.168.100.100 con il laptop-PT2 con IP 192.168.200.100;
- 3. Spiegare, con una relazione, cosa succede quando un dispositivo invia un pacchetto ad un altro dispositivo di un'altra rete.

• Esecuzione:

Configurazione IPv4, Subnet Mask e Gateway:

Dispositivi	IPV4	Subnet Mask	Gateway
Laptop-PT0	192.168.100.100	255.255.255.0	192.168.100.1
Laptop-PT1	192.168.100.101	255.255.255.0	192.168.100.1
PC-PT-PC0	192.168.100.103	255.255.255.0	192.168.100.1
Laptop-PT2	192.168.200.100	255.255.255.0	192.168.200.1
PC-PT-PC1	192.168.200.101	255.255.255.0	192.168.200.1

Configurazione Router:

GigabitEthernet0/0/0:

GigabitEthernet0/0/0				
Port Status Bandwidth Duplex MAC Address	On 1000 Mbps 100 Mbps 10 Mbps Auto Half Duplex Full Duplex Auto 000A.F358.6801			
IP Configuration IPv4 Address Subnet Mask	192.168.100.1 255.255.255.0			
Tx Ring Limit	10			

GigabitEthernet0/0/1:

- Suddivisione e collegamento dei dispostivi con 2 Switch:
 - Switch0:
 - Fa0/1 collegato con Laptop-PT0(Fa0);
 - Fa0/2 collegato con Laptop-PT1(Fa0);
 - Fa0/3 collegato con PC-PT-PC0(fa0);
 - Gig0/1 collegato con Router0(Gig0/0/1);

- Switch1:
 - Fa0/1 collegato con PC-PT-PC1(Fa0);
 - Fa0/2 collegato con Laptop-PT2(Fa0);
 - Gig0/1 collegato con Router0(Gig0/0/0);
- Architettura Target Finale:

Test funzionamento tramite Ping (con Comand Prompt) con Source Laptop-PT0:

Laptop-PT1:

```
Physical Config Desktop Programming Attributes
                                                 Command Prompt
                                                                                                                                                                                                                                             Χ
                                                  Pinging 192.168.100.103 with 32 bytes of data:
                                                 Reply from 192.168.100.103: bytes=32 time<lms TTL=128
Reply from 192.168.100.103: bytes=32 time<lms TTL=128
Reply from 192.168.100.103: bytes=32 time<lms TTL=128
Reply from 192.168.100.103: bytes=32 time=6ms TTL=128
                                                 Ping statistics for 192.168.100.103:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 6ms, Average = 1ms
□ PC-PT-PC0: □ Top
                                             Laptop-PT0
                                                                                                                                                                                                                                          ×
                                                                                                                                                                                                                                  Physical Config Desktop Programming Attributes
                                                                                                                                                                                                                                             Х
                                                 Command Prompt
                                                  C:\>
C:\>
C:\>
                                                  C:\>ping 192.168.200.101
                                                  Pinging 192.168.200.101 with 32 bytes of data:
                                                 Reply from 192.168.200.101: bytes=32 time<1ms TTL=127
                                                 Ping statistics for 192.168.200.101:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
□ PC-PT-PC1: □ Top
```

Laptop-PT0

X

□ Laptop-PT2: □ Top

Richieste Pratica:

- 1. Mettere in comunicazione il **laptop-PT0** con **IP 192.168.100.100** con il **PC-PT-PC0** con **IP 192.168.100.103**:
 - Tramite utilizzo di PDU identifico Laptop-PT0 come Source e PC-PT-PC0 come
 Destination:

- 2. Mettere in comunicazione il **laptop-PT0** con **IP 192.168.100.100** con il **laptop-PT2** con **IP 192.168.200.100**:
 - Tramite utilizzo di PDU identifico Laptop-PT0 come Source e Laptop-PT2 come
 Destination:

- 3. Spiegare, con una relazione, cosa succede quando un dispositivo invia un pacchetto ad un altro dispositivo di un'altra rete:
 - Se il Laptop-PT0 vuole inviare un pacchetto a Laptop-PT2, che appartiene a un'altra rete, lo fa attraverso il Router. Ogni interfaccia del Router ha un suo indirizzo IP (gateway) e un suo indirizzo MAC (uno per ogni scheda di rete). Il Pacchetto inviato verrà strutturato in questo modo:
 - Indirizzo IP di Laptop-PT2 come destinazione nell'header del datagramma (livello 3)
 - Indirizzo MAC del Router come destinazione nell'header del frame (livello 2)

- Indirizzo IP di Laptop-PT0 come sorgente nell'header del datagramma
- Indirizzo IP di Laptop-PT0 come sorgente nell'header del frame
 Il router riceverà il pacchetto, ed imposterà:
- Indirizzo MAC destinazione quello di Laptop-PT2
- Indirizzo MAC sorgente quello della sua interfaccia
 Infine, il pacchetto sarà arrivato a Laptop-PT2