Extrema

1	n	ct	al	01	29	ŀЬ	20	12	1
l	U	ct	on	er	291	ın.	71	IZ	•

	of $f(x)$, then it is an	maximum.				
If it is greater than all the other values in i	maximum.					
ullet If $f(c)$ is less than all the other values of f		minimum. If it				
is less than all the other values in its neigh	aborhood, then it is a	minimum.				
ullet The Extreme Value Theorem says that if f is		on a closed interval $[a, b]$, then				
f attains an absolute maximum value and	f attains an absolute maximum value and an absolute minimum on that interval.					
ullet We say that c is a critical value if	or	<u> </u>				
Local extrema can only exist at		<u>.</u>				
Absolute extrema can exist at	or					
Problem 1: Here's a general algorithm for finding	ng absolute extrema on a closed	interval $[a, b]$.				
1. Find the critical values of $f(x)$.						
2. For each critical value c , find the correspond	nding y -value given by $f(c)$.					
3. Find the values of f at the endpoints of th	e interval.					
4. The largest value in the Steps 2 and 3 is th	e absolute maximum. The smal	lest value is the absolute minimum.				
(Stewart 4.1) Find the absolute maximum and a	absolute minimum values of $f(x)$	2 [0.5]				
Mrs. Attorney by		$(x) = 12 + 4x - x^2$ on $[0, 5]$.				
My Attempt:	Solution:	$(x) = 12 + 4x - x^2$ on $[0, 5]$.				
My Attempt:		$(x) = 12 + 4x - x^2$ on $[0, 5]$.				
My Attempt:		$(x) = 12 + 4x - x^2$ on $[0, 5]$.				
My Attempt:		$(x) = 12 + 4x - x^2$ on $[0, 5]$.				
My Attempt:		$(x) = 12 + 4x - x^2$ on $[0, 5]$.				
My Attempt:		$(x) = 12 + 4x - x^2$ on $[0, 5]$.				
My Attempt:		$(x) = 12 + 4x - x^2$ on $[0, 5]$.				

Problem 2:

- a) How does the algorithm in Problem 1 change if we are finding absolute extrema on an open interval (a, b)?
- b) Draw the graph of a function defined on the open interval (0,5) that does not have any absolute or local extrema.

My Attempt:	Solution:

 $\label{eq:problem 3: (Stewart 4.1) Find the critical values of the following functions.}$

a)
$$g(t) = |3t - 4|$$
;

b)
$$g(\theta) = 4\theta - \tan \theta$$
;

c)
$$f(x) = x^2 e^{-3x}$$
.

My Attempt:

Solution:

Problem 4: (Stewart 4.1) Find the absolute extrema of $f(t) = t + \cot(t/2)$ on the closed interval $[\pi/4, 7\pi/4]$.

My Attempt:

Solution:

Problem 5: (Stewart 4.1) Find the maximum value of $f(x) = x^a(1-x)^b$ on the interval $[0,1]$, assuming a and b	are
both positive numbers.	

My Attempt: Solution:

Problem 6: Find the absolute extrema of $f(x) = \frac{x^2 - 4}{x^2 + 4}$ on the interval [-4, 4].

My Attempt:

Solution:

Challenge problem: (Stewart Chapter 4) If x, y, and z are positive numbers, then prove that

$$\frac{(x^2+1)(y^2+1)(z^2+1)}{xyz} \ge 8.$$