## Music Genre Classification

Omer Diab & Chi Ung

# Objectives

 Developing a Machine Learning Models to classify Music into genres based on various different features,.

 Reaching a good accuracy so that the model classifies new music into its genre correctly.

Finding the best model for genre classification

## Goal

 To build a machine learning models which classifies music into its respective genre

 To compare the accuracies between these models and draw the necessary conclusions.

#### **GTZAN** Dataset

- Collection of 10 genres with 100 audio files each, and all of them have a length exactly 30 seconds
- Most used data in public for music genre recognition, classifier or different purpose related to audio files
- Collected between 2000-2001 from variety of sources by Marsyas

- ▼ □ Data
  - ▼ □ genres\_original
    - ▶ □ blues
    - ▶ □ classical
    - ▶ □ country
    - ▶ □ disco
    - hiphop
    - ▶ 🗀 jazz
    - ▶ □ metal
    - ▶ □ pop
    - reggae 🗀
    - ▶ □ rock

#### **Features Extraction**

- Librosa Python library
- Extracted Features
  - Spectral Centroid
  - Spectral Rolloff
  - Mel-Frequency Cepstral Coefficients (MFCC)
  - Chroma Frequencies





| filename | chroma_stft         | rmse                | spectral_centroid  | spectral_bandwidth | rolloff            | zero_crossing_rate   | tempo              |
|----------|---------------------|---------------------|--------------------|--------------------|--------------------|----------------------|--------------------|
| 0.wav    | 0.2784844616742250  | 0.07697049528360370 | 1198.6076653608000 | 1573.308974392400  | 2478.3766802619500 | 0.051987591911764700 | 83.35433467741940  |
| 1.wav    | 0.26932002161441300 | 0.11907171458005900 | 1361.045467327890  | 1567.8045957296200 | 2739.6251005284900 | 0.06912392064144740  | 92.28515625        |
| 2.wav    | 0.3990254820962200  | 0.1273106336593630  | 2155.6549226375500 | 2372.403604141640  | 5012.019693002610  | 0.08716538373161760  | 129.19921875       |
| 3.wav    | 0.363602838496103   | 0.17557303607463800 | 1552.4819582458900 | 1747.1659849613100 | 3040.514947755420  | 0.07630074799245360  | 161.4990234375     |
| 4.wav    | 0.23323036568767000 | 0.1978176385164260  | 1247.244815048790  | 1908.0527219040400 | 2620.5924869690900 | 0.03690378289473680  | 151.99908088235300 |
| 5.wav    | 0.3379221685307680  | 0.12909626960754400 | 2258.538418665700  | 2176.031189289770  | 4755.429577901270  | 0.11276500217685800  | 161.4990234375     |
| 6.wav    | 0.37668670275283400 | 0.14101780951023100 | 1239.3372282343400 | 1659.4664703825000 | 2517.6181096410600 | 0.05090785543246900  | 103.359375         |
| 7.wav    | 0.39625831632076200 | 0.2352380007505420  | 2061.1507350613700 | 2085.1594475651900 | 4221.149475286620  | 0.11339689555921100  | 112.34714673913000 |
| 8.wav    | 0.4088756181758110  | 0.24321739375591300 | 2206.7712464152600 | 2191.4735056963400 | 4657.388504075560  | 0.11152578064531700  | 99.38401442307690  |
| 9.wav    | 0.33645438248493200 | 0.11224512755870800 | 2013.3824371007600 | 2310.305515615940  | 4849.49567576311   | 0.07534497145897830  | 151.99908088235300 |

| flux               | contrast           | flatness               | mfcc1               | mfcc2              | mfcc3               | mfcc4              |
|--------------------|--------------------|------------------------|---------------------|--------------------|---------------------|--------------------|
| 1.435081956982080  | 21.972193081321500 | 0.00045489592594094600 | -284.81950384065600 | 108.78562772693600 | 9.131956126420550   | 51.259029998309400 |
| 1.519149619770120  | 22.135934626217100 | 0.0007676648092456160  | -207.20808000096700 | 132.79917547173500 | -15.438985574580700 | 60.9867270103288   |
| 1.3077578525283800 | 20.802436569429800 | 0.006464886013418440   | -109.1653551094610  | 100.62150013173600 | -8.614720855067290  | 47.35847504208030  |
| 1.6382578632284800 | 22.197265163058100 | 0.0026277729775756600  | -90.75439379120980  | 140.45990690263600 | -29.109965287934800 | 31.689014398052000 |
| 1.4618357651403700 | 27.371254391953700 | 0.00044875507592223600 | -200.22073177846700 | 116.34518082707800 | 18.060785149574200  | 25.288819404536400 |
| 1.3769762144535100 | 22.474323585465500 | 0.005756578873842960   | -95.4244227767093   | 101.36865217103400 | -20.682496525429000 | 48.65547563178830  |
| 1.2392396756030300 | 22.898596571831900 | 0.0011128768092021300  | -206.2784314380990  | 126.62746798711600 | 10.585204843575800  | 43.22316786341590  |
| 1.462625638962390  | 21.791968250547200 | 0.007293089292943480   | -38.96594076550620  | 112.03984269768000 | -31.817035125846600 | 38.24083516736790  |
| 1.523978328196600  | 21.405812093115900 | 0.008233388885855680   | -29.010990408564400 | 104.53291407548900 | -30.97420732522320  | 38.156392118947200 |
| 1.0723682114087000 | 22.397010299398500 | 0.0031964604277163700  | -149.95170135848400 | 93.62947981732710  | 6.343454383790060   | 71.51194573220690  |

| mfcc15              | mfcc16             | mfcc17              | mfcc18              | mfcc19              | mfcc20              | label |
|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------|-------|
| 3.323454744053180   | 3.2589197585578700 | -4.551105988944880  | 0.49384497352911100 | 5.937065625981840   | 3.231544281978250   | blues |
| -5.1889237507533200 | -9.527455286518670 | -9.244394048981400  | -2.8482737510322900 | -1.4187068621065600 | -5.932606959673910  | blues |
| -15.442803770843800 | 1.5387503660590100 | -6.732474384169310  | 1.417774069864480   | -3.9617504697981300 | 3.2874602683449200  | blues |
| -9.218358897037510  | 2.4558052297775800 | -7.726901333051800  | -1.8157238511277200 | -3.433434271765650  | -2.22682144103072   | blues |
| -11.959013510454900 | -12.61797674724140 | -14.18778120883700  | -8.20447551470853   | -15.024769441842800 | -10.322150110988700 | blues |
| -9.809445014581910  | 6.911755575153530  | -11.303163834042900 | 8.940704316986400   | -2.959638893321990  | -0.9754280541750500 | blues |
| -7.157463819439720  | 1.1711138995440900 | -6.22197459678454   | 0.6007025900278730  | -1.6050949507100900 | -0.5287738546953920 | blues |
| -5.031276930806520  | 7.200982009913240  | -6.754969137087670  | 2.663611617925980   | -4.380429791225660  | 0.4140547073570290  | blues |
| -10.294857593805200 | 6.967845409298610  | -10.256099593498600 | 0.7050139543501770  | -6.000722016502680  | 1.3489551857679500  | blues |
| -12.40164114461870  | 9.624599613984730  | -5.014184843709930  | -3.7041455184211100 | 2.3425105218444400  | 4.161077270801140   | blues |

#### **Dataset Standardization**

- Feature scaling the dataset by applying StandarScaler(), provided from sklearn
- Encode the target (genres) with value between 0 and 9
- Placing the data and label in the same scaled space

```
scaler = StandardScaler()
X = scaler.fit_transform(np.array(data.iloc[:, :-1], dtype = float))

genre_list = data.iloc[:, -1]
encoder = LabelEncoder()
y = encoder.fit_transform(genre_list)
```

## Classification

K-Nearest Neighbors

- Support Vector Machine (SVM) includes 3 kernels
  - Linear
  - o RBF
  - o Polynomial
- Logistic Regression

# Analysis of MFCCs and Chromagram

- MFCCs perform better than Chromagram
- Chromagram closely relates 12 pitch classes -> common and used across all genres
- MFCCS models the characteristic of human voices and related to tones and musical instrument
- Tones and instrument does related to music genres

| Algorithms          | Chromagram | MFCC |
|---------------------|------------|------|
| Logistic Regression | 20%        | 47%  |
| Linear_SVC          | 19%        | 41%  |
| RBF_SVC             | 25%        | 49%  |
| Poly_SVC            | 18%        | 45%  |
| KNN (neighbors = 3) | 23%        | 53%  |





# Analysis of The Dataset

- Polynomial\_SVC has best approach and Linear\_SVC has least approach
- The confusion matrix graphs show:
  - Predicted Blue music genre as Country genre
  - Predicted Country genre as Jazz genre
  - Predicted Reggae genre as disco genre

| Models / Algorithms     | Training Accuracy | Test Accuracy |
|-------------------------|-------------------|---------------|
| Logistic Regression     | 76%               | 63%           |
| Linear_SVC              | 70%               | 57%           |
| RBF_SVC                 | 79%               | 59%           |
| Polynomial_SVC          | 83%               | 61%           |
| KNN (best k value is 5) | 78%               | 61%           |















### Conclusion

- We Created our own dataset using GTZEN dataset of music files, and LIBROSA python library to extract Music Features.
- We used different approaches for the classification of music genres. These approaches:
  - K-Nearest Neighbor
  - Support Vector Machine (SVM)
  - Logistic Regression
- the best approach was Polynomial\_SVC kernel in SVC algorithm with accuracy of 83% in training accuracy and 61% in testing accuracy.

### **Future Work**

- Enlarge the Dataset by extracting features of more music
- enhance our classification models to get a better accuracy
- implement different options such as Music Emotion Recognition

# Questions