2.

you agree with?

测验, 10 个问题

✓	恭喜!	您通过了!	下一项
	~	1/1分	
		notation would you use to denote the 3rd layer's he input is the 7th example from the 8th miniba	
		$a^{[3]\{8\}(7)}$	
	正确		
		$a^{[3]\{7\}(8)}$	
		$a^{[8]\{3\}(7)}$	
		$a^{[8]\{7\}(3)}$	
	~	1/1分	

You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-

Which of these statements about mini-batch gradient descent do

batches at the same time (vectorization).

 One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.

Optimizatio**再晚**lgorithms _{测验, 10} 个问题

10/10 分 (100%)

	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.
~	1/1分
-	the best mini-batch size usually not 1 and not m, but something in-between?
✓ _	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.
正确	
正确	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.
未选择	聚的是正确的

测验, 10 个问题 4。

Suppose your learning algorithm's cost J , plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

Whether you're using batch gradient descent or mini-
batch gradient descent, something is wrong.

- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or minibatch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

正确

Optimization algorithms

测验, 10 个问题

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd:
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$igcup v_2 = 7.5$$
 , $v_2^{corrected} = 7.5$

$$igcolum_2 = 7.5$$
 , $v_2^{corrected} = 10$

正确

$$igcup v_2 = 10$$
 , $v_2^{corrected} = 10$

$$igcup v_2 = 10$$
 , $v_2^{corrected} = 7.5$

1/1分

6,

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$lpha=e^tlpha_0$$

Optimization algorithms $lpha=0.95\ lpha_0$ 测验, 10 个问题 $lpha=rac{1\ t}{1+2*t}\ lpha_0$

$$igcap lpha = rac{1}{\sqrt{t}}\,lpha_0$$

1/1分

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = eta v_{t-1} + (1-eta) heta_t$. The red line below was computed using eta=0.9 . What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing β will shift the red line slightly to the right.

未选择的是正确的

Increasing β will shift the red line slightly to the right.

正确

True, remember that the red line corresponds to $\beta=0.9$. Optimization **algorithms** green line \$\$\beta=0.98\$) that is slightly 测验, 10 个问题 shifted to the right.

10/10 分 (100%)

Decreasing β will create more oscillation within the red line.

正确

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

未选择的是正确的

1/1分

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)

Optimizat _{测验, 10} 个问题	tion a	(1) is gradient descent with momentum (small β). (2) is $\log \beta$ (3) is gradient descent with momentum (large β)	10/10 分 (100%)
		(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)	
	正确		
		(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent	
	~	1/1分	
	excess small v Which	se batch gradient descent in a deep network is taking ively long to find a value of the parameters that achieves a value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. of the following techniques could help find parameter that attain a small value for \mathcal{J} ? (Check all that apply)	
	正确	Try using Adam	
	正确	Try mini-batch gradient descent	
	大洗	Try initializing all the weights to zero 译的是正确的	
	*,1*****		
	/	Try better random initialization for the weights	

	✓
--	----------

Try tuning the learning rate lpha

正确

1/1分

10。

Which of the following statements about Adam is False?

- Adam combines the advantages of RMSProp and momentum
- The learning rate hyperparameter α in Adam usually needs to be tuned.
- We usually use "default" values for the hyperparameters eta_1,eta_2 and arepsilon in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)
- Adam should be used with batch gradient computations, not with mini-batches.

正确

