The Eigenvalues for Quantum Mechanical Operators are Real

Hermitian operator: $\int \Psi_{j}^{*} \stackrel{\circ}{o} \Psi_{i} d\tau = \int \Psi_{i} \left(\stackrel{\circ}{o} \Psi_{j} \right)^{*} d\tau = \int \Psi_{i} \stackrel{\circ}{o}^{*} \Psi_{j}^{*} d\tau$

Hermitian operator \hat{o} and one of its eigenfunctions Ψ_n :

I.
$$\hat{o} \Psi_n = o \Psi_n$$

Show that $o^* = o$

Multiplication of I from the left by Ψ_n^* :

$$\int \Psi_n^* \stackrel{\wedge}{o} \Psi_n \ dx = \int \Psi_n^* \ o \ \Psi_n \ dx = o \int \Psi_n^* \ \Psi_n \ dx$$

Complex conjugate of I:

II.
$$\hat{o}^* \Psi_n^* = o^* \Psi_n^*$$

Multiplication of II from the left by $\Psi_{\mathtt{n}}$:

$$\int \Psi_n \stackrel{.}{o}^* \ \Psi_n^* \ dx = \int \Psi_n \ o^* \ \Psi_n^* \ dx = o^* \int \Psi_n \ \Psi_n^* \ dx$$

ô is Hermitian:

$$\int \Psi_n^* \stackrel{\circ}{o} \Psi_n \ dx = \int \Psi_n \stackrel{\circ}{o}^* \Psi_n^* \ dx$$

$$o \int \Psi_n^* \Psi_n dx = o^* \int \Psi_n \Psi_n^* dx$$

Just functions: $\int \Psi_n^* \Psi_n dx = \int \Psi_n \Psi_n^* dx$.

$$o = o^*$$

The eigenvalues of Hermitian operators are real, therefore the eigenvalues for quantum mechanical observables are real.