CEM1002

2015-10-05

"Parameter", "Statistic", "Estimator"

Parameter

- ► A parameter is a *constant* numerical property of a distribution (in our model, c.f. Bayesian statisitcs.)
- \triangleright Conventional notation: small letter, often Greek, generically θ .

Statistic

- Recall: a *sample* is an i.i.d. sequence of random variables X_1, \ldots, X_n
- ▶ A "statistic" is any function of a sample, e.g. "sample mean/average": $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$
- Statistics are random variables.

Estimator

An estimator for a parameter, θ , is a statistic whose formula does not contain θ .

Mean, Sample Mean, Observed Sample Mean

▶ The "mean" is a distribution parameter.

$$E(X) = \int x f(x) \, dx$$

- ▶ Often denoted μ (Bad idea?)
- ▶ In practice it is unknown

Sample mean

- $ightharpoonup \overline{X}$ is a random variable.
- ▶ Often the best estimator for μ .

Observed sample mean

- $ightharpoonup \overline{x}$ is a number calculated from a variable in an actual dataset.
- ightharpoonup Can be thought of as a realization of the random variable \overline{X} .
- ▶ Is used as the actual estimate of μ for a given variable.

Variance, Sample Variance, Observed Sample Variance

▶ The "variance" is a distribution parameter.

$$Var(X) = \int (x - E(X)) f(x) dx$$

- ▶ Often denoted σ^2
- ▶ In practice is unknown

Sample Variance

$$S^{2} = \frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}{n-1}$$

* Is a random variable. * Often used to estimate σ^2

Observed sample variance

- $ightharpoonup s^2$ is a number calculated from a variable in an actual dataset.
- etc., etc.