MANAV RACHNA UNIVERSITY

SUPERVISED LEARNING

Submitted to:-Dr. Roshi Saxena Submitted by:-Udita Kalra 2K23CSUN01235 AIML-3A

INDEX

S. No.	Name of the Program	Date
1.	Write a python code to demonstrate commands for numpy and pandas.	
2.	Write a python program to calculate mean square and mean absolute error.	
3.	Write a python program to calculate gradient descent of a machine learning model.	
4.	Prepare a linear regression model for predicting the salary of user based on number of years of experience.	
5.	Prepare a linear regression model for prediction of resale car price.	
6.	Prepare a Lasso and Ridge regression model for prediction of house price and compare it with linear regression model.	
7.	Prepare a decision tree model for Iris Dataset using Gini Index.	
8.	Prepare a decision tree model for Iris Dataset using entropy.	
9.	Prepare a naïve bayes classification model for prediction of purchase power of a user.	
10.	Prepare a naïve bayes classification model for classification of email messages into spam or not spam.	
11.	Prepare a model for prediction of prostate cancer using KNN Classifier.	
12.	Prepare a model for prediction of survival from Titanic Ship using Random Forest and compare the accuracy with other classifiers also.	

Write a python code to demonstrate commands for numpy and pandas.

```
# Demonstrate numpy commands
# Import necessary libraries
import numpy as np
# Creating arrays with zeros a = np.zeros(3) #
1D array of zeros print("Array a:", a)
print("Type of array a:", type(a)) print("Type of
elements in array a:", type(a[0]))
b = np.zeros(3, dtype=int) # 1D array of zeros with integer type
print("Array b:", b) print("Type of array b:", type(b))
print("Type of elements in array b:", type(b[0]))
\# Reshape example z = np.zeros(3)
print("Original Array: ", z)
print("Shape of Array: ", z.shape)
z.shape = (3, 1) # Reshape array to 5x1
print("Reshaped Array:\n", z) print("Shape
of Reshaped Array: ", z.shape)
# Creating an array using linspace z =
np.linspace(1, 2, 5) print("Array created
using linspace: ", z)
# Accessing array elements with positive and negative indexing
print("Element at index 0: ", z[0]) print("Element at index -
3: ", z[-3]) print("Array elements from index 0 to 2: ",
z[0:21)
# Identity matrix i =
np.identity(2, dtype=int)
print("Identity Matrix:\n", i)
# Creating a 2D matrix in two different ways
z = np.zeros((2, 2)) # 2D array of zeros
print("2-D Array (method 1):\n", z)
y = np.array([[1, 2], [3, 4]]) # Manually defined 2D array
print("2-D Array (method 2):\n", y)
# Accessing elements with index
print("Element at (0,1): ", y[0, 1])
print("Element at (0,0): ", y[0, 0])
# Slicing in 2D arrays
print("Second row: ", y[1, :])
print("First column: ", y[:, 0])
H = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print("2-D Array:\n", H) print("First row:",
H[0, :]) print("Third row:", H[2, :])
print("First column across rows: ", H[:, 0])
# Access elements at specified indices x = np.linspace(2, -1)
4, 5) indices = np.array((0, 2, 3)) print("Array x:", x)
print("Elements at specified indices(0,2,3): ", x[indices])
\# Boolean array d = np.array([0, 1, 2, 0, 0], dtype=bool) <math>\# Every non-zero is
True, 0 is False print("Boolean Array d:", d)
# Sorting and basic array statistics a = np.array([17,
11, 15, 19, 24, 28, 26, 37, 35, 40])
a.sort() print("Original
Array:", a) print("Sorted
Array:", a) print("Sum:",
a.sum()) print("Min:",
a.min()) print("Max:",
a.max()) print("Argmin
(index of min):",
a.argmin()) print("Argmax
(index of max):",
a.argmax())
print("Cumulative Sum:",
a.cumsum())
print("Cumulative
Product:", a.cumprod())
print("Mean:", a.mean())
```

```
np.median(a))
print("Variance:", a.var())
print("Standard
Deviation:", a.std())
print("Searchsorted (insert
position for 25):",
a.searchsorted(25))
# Array arithmetic operations
a = np.array([1, 2, 3, 4]) b
= np.array([5, 6, 7, 8])
print("a + b:", a + b)
print("a * b:", a * b)
print("a + 10:", a + 10)
print("a * 10:", a * 10)
# Matrix operations
X = np.array([[1, 2, 3], [4, 5, 6], [5, 6, 7]]) Y
= np.array([[7, 8, 9], [4, 8, 9], [6, 3, 5]])
print("X:\n", X) print("Y:\n", Y) print("X +
Y:\n", X + Y) print("X + 10:\n", X + 10) print("X
* Y:\n", X @ Y) # Matrix multiplication
print("Transpose of X:\n", X.T)
# Comparison and modifying elements
Z = np.array([2, 3]) X =
np.arrav([2, 31)
print("X == Z:", X == Z)
X[0] = 5
print("X == Z after modifying X:", X == Z)
      Show hidden output
# Impoerneccessary libraries from pandas import DataFrame, Series # Import Series
and DataFrame for convenience import pandas as pd import numpy as np
\# Creating a Series with default index ser_1 = Series([1, 1, 2, -3, -5, 8, 13])
print("Series with default index:\n", ser_1) print("Values in series: ",
ser 1.values) # Display only the values of the series
# Creating a Series with a custom index ser 2 = Series([1, 1, 2, -
3, -5], index=['a', 'b', 'c', 'd', 'e']) print("Series 2:\n",
ser_2)
# Accessing elements in a Series using index and labels
print("ser_2[1] == ser_2[b]", ser_2[1] == ser_2["b"])
print(ser 2[['c', 'a', 'b']]) # Filter Series for
values greater than 0 ser 2[ser 2 > 0]
# Apply an operation on Series elements
ser_2 * 2 np.exp(ser_2)
# Create a Series from a dictionary dict_1 = {'foo': 100, 'bar':
200, 'baz': 300} ser_3 = Series(dict_1) # Custom index on Series
index = ['foo', 'bar', 'baz', 'qux'] ser 4 = Series(dict 1,
index=index) # Missing values become NaN
# Print Series print("Series
3:\n", ser_3) print("Series
4:\n", ser_4) # Check for null
values in Series
print("Null values in ser_4:\n", pd.isnull(ser_4)) # Arithmetic
operations between Series print("Sum of series 3 and 4:\n", ser 3 +
ser 4) # Setting names for the Series and index ser 4.name =
'foobarbaz' ser_4.index.name = 'label' print("Series 4 after setting
names for series and index:\n", ser 4)
# Create another Series with custom index ser = Series([10, 15,
18, 12, 20, 9], index=[5, 8, 12, 0, 1, 7]) # Access elements by
label or position using loc and iloc print("Accessing elements
by label or position: ") print(ser.loc[0:1])
print(ser.iloc[0:1]) print(ser.iloc[0]) print(ser.loc[0])
# Create a DataFrame with dictionaries data_1 =
{'state': ['VA', 'VA', 'VA', 'MD', 'MD'],
'year': [2012, 2013, 2014, 2015, 2016],
'pop': [5.0, 5.1, 5.2, 4.0, 4.1]} df_1 =
DataFrame(data 1)
# Access a column of the DataFrame
df 1['state']
```

print("Median:",

```
\mbox{\#} Find and print the series of prime numbers from 1 to 300
primes = [] fori in range(1, 301):
    if i> 1:
       for j in range(2, i // 2 + 1):
           if i % j == 0:
primes.append(i) primes_series =
pd.Series(primes) print("Series of
Primes:\n", primes_series)
# Generate Fibonacci numbers up to 100
a, b = 0, 1 fibonacci_nums = [] while
                            a, b = b, a + b
fibonacci_nums.append(a)
fibonacci_series = Series(fibonacci_nums)
print("Fibonacci Series:\n", fibonacci series)
\# Prompt user for a list of 20 numbers 1 = [int(x) for x
in input("Enter 20 numbers: ").split()]
# Initialize min, max, and sum variables
min_val = 1[0] max_val = 1[0] sum_val =
# Calculate sum, min, and max manually
for i in 1:
sum val += i
                i f
i<min val:
min val = i
   if i>max_val:
max_val = i
print("Sum:", sum_val)
print("Min:", min val)
print("Max:", max_val)
# Manually inputing values in a list one by one and finding the sum
1 = [] sum_val = 0 for i in range(1, 21):
num = int(input("Enter number: "))
1.append(num) sum val
+= num print("Sum:",
sum_val)
```

 $\overline{\Rightarrow}$

Show hidden output

```
Array a: [0. 0. 0.]
Type of array a: <class 'numpy.ndarray'>
Type of elements in array a: <class 'numpy.float64'>
    Array b: [0 0 0]
    Type of array b: <class 'numpy.ndarray'>
    Type of elements in array b: <class 'numpy.int64'>
    Original Array: [0. 0. 0.]
Shape of Array: (3,)
    Reshaped Array:
     [[0.]
      [0.]
     [0.]]
    Shape of Reshaped Array: (3, 1)
Array created using linspace: [1.
                                           1.25 1.5 1.75 2. ]
    Element at index 0: 1.0 Element at index -3: 1.5
    Array elements from index 0 to 2: [1. 1.25]
    Identity Matrix:
     [[1 0]
      [0 1]]
    2-D Array (method 1):
      [[0. 0.]
      [0. 0.]]
    2-D Array (method 2):
     [[1 2]
     [3 4]]
    Element at (0,1): 2
    Element at (0,0): 1
Second row: [3 4]
    First column: [1 3]
    2-D Array:
     [[1 2 3]
     [4 5 6]
     [7 8 9]]
    First row: [1 2 3]
Third row: [7 8 9]
    First column across rows: [1 4 7]
    Array x: [2. 2.5 3. 3.5 4.]
    Array x: [2. 2.5 3. 3.5 4.]
    Elements at specified indices(0,2,3): [2. 3. 3.5]
→ Boolean Array d: [False True True False False]
    Original Array: [11 15 17 19 24 26 28 35 37 40]
    Sorted Array: [11 15 17 19 24 26 28 35 37 40]
    Sum: 252
    Min: 11
    Max: 40
    Argmin (index of min): 0
    Argmax (index of max): 9
    Cumulative Sum: [ 11 26 43 62 86 112 140 175 212 252]
    Cumulative Product: [
                                        11
                                                      165
                                                                       2805
                                                                                       53295
            1279080
                            33256080
                                            931170240
                                                        32590958400
      1205865460800 48234618432000]
    Mean: 25.2
    Median: 25.0
    Variance: 87.55999999999999
    Standard Deviation: 9.357350052231668
    Searchsorted (insert position for 25): 5
    a + b: [ 6 8 10 12]
    a * b: [ 5 12 21 32]
    a + 10: [11 12 13 14]
    a * 10: [10 20 30 40]
    X:
     [[1 2 3]
     [4 5 6]
     [5 6 7]]
    Y:
     [[7 8 9]
     [4 8 9]
     [6 3 5]]
    X + Y:
     [[ 8 10 12]
     [ 8 13 15]
     [11 9 12]]
    X + 10:
     [[11 12 13]
     [14 15 16]
     [15 16 17]]
    X * Y:
[[ 33 33 42]
[ 84 90 111]
     [101 109 134]]
    Transpose of X:
     [[1 4 5]
     [2 5 6]
     [3 6 7]]
    [2 3]
    X == Z: [ True True]
    X == Z after modifying X: [ True False]
```

```
print("ser_2[1] == ser_2[b]", ser_2[1] == ser_2["b"])
Series with default index:
0  1
   1
2
3
          1
          2
         -3
    4
         -5
    5
          8
    6
        13
    dtype: int64
    Values in series: [ 1 1 2 -3 -5 8 13]
    Series 2:
        1
    a
    b
        2
    C
       -3
    d
       -5
    e
    dtype: int64
    ser_2[1] == ser_2[b] True
    C
        1
    dtype: int64
    Series 3:
          100
    foo
           200
    bar
    baz
           300
    dtype: int64
    Series 4:
     foo 100.0
    bar
           200.0
          300.0
    baz
    qux
            NaN
    dtype: float64
    Null values in ser_4:
           False
    foo
    bar
           False
⇒ baz
          False
    aux
            True
    dtype: bool
    Sum of series 3 and 4:
            400.0
     bar
    baz
           600.0
    foo
          200.0
            NaN
    dtype: float64
    Series 4 after setting names for series and index:
     label
           100.0
    foo
           200.0
    bar
          300.0
    baz
    qux
            NaN
    Name: foobarbaz, dtype: float64
    Accessing elements by label or position:
    0 12
        20
    dtype: int64
        10
    dtype: int64
    10
    12
    Series of Primes:
     0
             2
    1
            3
    2
            5
    3
    4
          11
         271
    57
    58
          277
    59
          281
    60
          283
    61
          293
```

```
Length: 62, dtype: int64
Fibonacci Series:
<del>_____</del>*
      0
               0
     1
               1
     2
               1
     3
4
5
               5
     6
7
              13
21
     8
              34
55
     9
     10
             89
     11
     dtype: int64
Enter 20 numbers: 1 2 3 4 5 6 7 8 0 9 11 23 44 2 21 34 5 12 23 21
     Sum: 241
     Min: 0
     Max: 44
     Enter number: 1
Enter number: 2
Enter number: 3
     Enter number: 4
Enter number: 5
     Enter number: 6
     Enter number: 3
     Enter number: 62
     Enter number: 47
     Enter number: 34
     Enter number: 67
     Enter number: 67
Enter number: 433
Enter number: 33
Enter number: 25
     Enter number: 24
     Enter number: 54
     Enter number: 53
     Fnter number: 2
```

Write a python program to calculate mean absolute error and mean square error.

```
#function to calculate the predicted values
def predicted output(x,w,b):
y_hat=[]
         for i in range(len(x)):
y_hat.append(w*x[i]+b)
          return y hat
#function to calculate mean absolute error
def MAE(y, y_hat):
         sum=0
          for i in range(len(y)):
                  sum+=abs(y hat[i]-y[i])
          return sum/len(y)
#function to calculate mean square error
def MSE(y, y_hat):
sq_sum=0
          for i in range(len(y)):
sq_sum+=(y_hat[i]-y[i])**2
         return sq_sum/len(y)
\#taking inputs x=[eval(x)] for x in input("Enter the values of x(input) separated by ',':
").split(",")] y=[eval(x) for x in input("Enter the values of y(output) separated by ',':
").split(",")] w=eval(input("Enter the value of w: ")) b=eval(input("Enter the value
b: "))
#calling functions
y hat=predicted output(x, w, b)
MAE_value=MAE(y, y_hat)
MSE\_value=MSE(y, y\_hat) #printing the
values print("Predicted Output: ", y hat)
print("Mean Absolute Error: ",MAE_value)
print("Mean Square Error: ",MSE_value)
Enter the values of x(input) separated by ',': 3, 6, 9, 12, 15, 18, 20
            Enter the values of y(output) separated by ',': 15, 28, 63, 90, 120, 152, 190
             Enter the value of w: 2.5
            Enter the value of b: 0
            Predicted Output: [7.5, 15.0, 22.5, 30.0, 37.5, 45.0, 50.0]
            Mean Absolute Error: 64.35714285714286
            Mean Square Error: 6188.678571428572
```

?

Write a python program to calculate gradient descent of a machine learning model.

```
# Import neccessary libraries
import numpy as np import
matplotlib.pyplot as plt
# Function to perform gradient descent def
gradient_descent(func, x, learning_rate, num_iterations):
for i in range(num iterations):
       gradient=func(x)
x_values.append(x)
       x-=(learning rate*gradient)
    return x,x_values
# Define the original function def
function(x):
    return 4*x**2+3*x+1
    # Define the derivative of the
function def derivative f(x):
return 8*x+3
# Plotting the gradient descent steps on the function curve def
plot_gradient_descent(func, x, learning_rate, num_iterations, x_values):
x_range = np.linspace(-10, 10, 400)
y_range = func(x_range)
plt.plot(x_range, y_range, label="f(x) = 4x^2 + 3x + 1")
plt.scatter(x values, [func(x) for x in x values], color='red', label="Gradient Descent Steps")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.legend()
plt.grid(True)
plt.title("Gradient Descent Path on f(x)")
plt.show()
# Set parameters for gradient descent initial_x=10 learning_rate=0.01 num_iterations=25
# Perform gradient descent min x, x values=gradient descent(derivative f, initial x,
learning_rate, num_iterations)
# Print results print("For
function: 4x^2+3x+1: ")
print("Minimum value of x:", min x)
# Call the plot function to visualize gradient descent
plot_gradient_descent(function, x, learning_rate, num_iterations, x_values)
Prepare a linear regression model for predicting the salary of user based on number of years of experience.
# importing neccessary libraries
import numpy as np import pandas
as pd import matplotlib.pyplot
as plt import seaborn as sns
# loading the dataset df =
pd.read_csv('Salary_Data.csv')
```



```
# defining the feature variable 'x' by dropping Salary and target variable 'y' as the Salary column
x = df.drop('Salary', axis=1) y = df['Salary']
# split the dataset into training and testing sets from sklearn.model_selection import
train_test_splitx_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3,
random_state=1)
\# initialize and train the Linear Regression model on the training data
from sklearn.linear model import LinearRegression model =
LinearRegression() model.fit(x_train, y_train)
# Predict the target variable for the test set
y_test_predict = model.predict(x_test)
# Display the model's coefficient and intercept print("Model
coefficient(s):", model.coef_) print("Model intercept:",
model.intercept ) print("Model R^2 score on test set:",
model.score(x_test, y_test))
\# scatter plot to visualize the relationship between predicted and actual values in the test set
plt.figure(figsize=(6, 3)) plt.scatter(y_test, y_test_predict, color='blue', label="Predicted vs
Actual") plt.xlabel("Actual Salary") plt.ylabel("Predicted Salary") plt.title("Actual vs
Predicted Salary (Test Set)") plt.legend() plt.show()
\# bar plot to display the importance of each feature based on model coefficients
\verb|imp=pd.DataFrame(list(zip(x_test.columns,np.abs(model.coef_))),columns=['Feature','Coefficient']| \\
```

sns.barplot(x='Feature', y='Coefficient', data=imp) plt.title("Feature Importance") plt.show()

Actual vs Predicted Salary (Test Set)

Feature Importance 8000 - 6000 - 2000 - 2000 - YearsExperience Feature

Program 5

Prepare a linear regression model for prediction of resale car price.

```
# import necessary libraries
import numpy as np import
pandas as pd import
matplotlib.pyplot as plt
import seaborn as sns
# load the dataset df = pd.read_csv('cars24-car-
price-cleaned.csv')
# replace 'make' and 'model' columns with the mean selling price for each group
df['make'] = df.groupby('make')['selling_price'].transform('mean') df['model']
= df.groupby('model')['selling_price'].transform('mean')
\# normalize the dataset using MinMaxScaler to scale features between 0 and 1
from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler()
df_normalized = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
# define target variable 'y' as the selling price and features 'x' by dropping the selling price
y = df_normalized['selling_price'] x = df_normalized.drop('selling_price', axis=1)
# split the dataset into training and testing sets from sklearn.model_selection import
train_test_splitx_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3,
random state=1)
# initialize and train the Linear Regression model on the training data
from sklearn.linear model import LinearRegression model =
LinearRegression() model.fit(x_train, y_train)
```

```
?
 \ensuremath{\text{\#}} predict the target variable for the test set
 y_test_predict = model.predict(x_test)
 # Display model's coefficient, intercept, and R^2 score on test set
 print("Model coefficients:", model.coef_) print("Model intercept:",
 model.intercept_) print("Model R^2 score on test set:",
 model.score(x_test, y_test))
 # Scatter plot to visualize the relationship between predicted and actual values in the test set
 #plt.figure(figsize=(8, 6)) plt.scatter(y_test, y_test_predict, label="Predicted vs Actual")
 plt.xlabel("Actual Selling Price (Normalized)") plt.ylabel("Predicted Selling Price
 (Normalized)") plt.title("Actual vs Predicted Selling Price (Test Set)") plt.legend() plt.show()
 \# Bar plot to display the importance of each feature based on model coefficients imp =
 #plt.figure(figsize=(8, 6)) sns.barplot(x='Feature',
 y='Coefficient', data=imp) plt.xticks(rotation=90)
 plt.title("Feature Importance in Selling Price Prediction")
 plt.show()
  至 Model coefficients: [ 7.26831852e+11 −2.50610352e-01 −2.32537818e-01 7.38776447e-02
       4.70141495e-02 7.26831852e+11 6.62815814e-02 8.59178586e-01 -
     7.22882618e-03 -7.02099753e-03 7.03528760e-03 1.32983308e-01
       1.49877118e-02 -6.86552095e-03 -3.59124005e-03 -1.61993065e-02 -
     2.35818239e-021
     Model intercept: -726831852169.8219
     Model R^2 score on test set: 0.9459835819294395
```


Prepare a Lasso and Ridge regression model for prediction of house price and compare it with linear regression model.

```
# Import necessary libraries import numpy as np import pandas
as pd import matplotlib.pyplot as plt from sklearn.linear_model
import LinearRegression, Lasso, Ridge from
sklearn.model_selection import train_test_split from
sklearn.metrics import mean_squared_error from
sklearn.preprocessing import MinMaxScaler
# Load the housing dataset df =
pd.read_csv('Housing.csv')
# convert categorical variables into numerical features that can be used by the model (target variable encoding)
df['mainroad']=df.groupby('mainroad')['price'].transform('mean')
df['guestroom']=df.groupby('guestroom')['price'].transform('mean')
df['basement'] = df.groupby('basement')['price'].transform('mean')
df['airconditioning']=df.groupby('airconditioning')['price'].transform('mean')
df['prefarea']=df.groupby('prefarea')['price'].transform('mean')
df['furnishingstatus']=df.groupby('furnishingstatus')['price'].transform('mean')
```

Linear Regression Coefficients: [0.31039697 0.01959006 0.26477477 0.13658528 0.04098972 0.02376751 0.04792801 0.07098812 0.05282266 0.07096655 0.04358941 0.03623753]

Lasso Regression Coefficients: [0.0.0.0.0.0.0.0.0.0.0.0.0.0]

Ridge Regression Coefficients: [0.30639084 0.02106921 0.26241647 0.13615958 0.04133038 0.02401481 0.04774817 0.07051319 0.0530351 0.0713936 0.04377635 0.03640865]

Linear Regression Intercept: -0.0050427725675667445

Lasso Regression Intercept: 0.26192224608287595

Ridge Regression Intercept: -0.0048457449783638196

Linear Regression R^2 Score (Train): 0.6806547764599723

Lasso Regression R^2 Score (Train): 0.06806349211986238

MSE without regularization (Linear Regression): 0.010274158458096141

MSE with Lasso regularization: 0.03051838551799671

MSE with Ridge regularization: 0.010266744866035897

√ Program 7

Prepare a decision tree model for Iris Dataset using Gini Index.

→ Bestfeature: PetalLengthCm

```
# Import necessary libraries
from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier,
plot_tree from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt import pandas as pd
# Load the Iris dataset df
= pd.read_csv("Iris.csv")
\# Define feature matrix 'x' by dropping 'Species' and 'Id' columns and target variable 'y' as
'Species' x = df.drop(['Species', 'Id'], axis=1) y = df['Species']
{\tt\#} \ {\tt Initialize} \ {\tt DecisionTreeClassifier} \ {\tt with} \ {\tt Gini} \ {\tt impurity} \ {\tt criterion}
model = DecisionTreeClassifier(criterion='gini')
# Dictionary to store Gini impurity for each feature
gini impurities = {}
#loop through each feature
for i in range(x.shape[1]):
#fit classifier with only the current feature
model.fit(x.iloc[:, i].values.reshape(-1, 1), y)
   prob=model.predict_proba(x.iloc[:, i].values.reshape(-1,1))
gini_impurities[i] = 1 - (prob[:, 0]**2 + prob[:, 1]**2 + prob[:, 2]**2).sum()
\ensuremath{\mathtt{\#}} Find the feature with the lowest Gini impurity (best
feature) best_feature = min(gini_impurities,
key=gini_impurities.get) print(f"Best feature:
{x.columns[best feature]}") model.fit(x, y)
#plot original tree plt.figure(figsize=(10, 10)) plot_tree(model, filled=True,
Decision Tree")
plt.show()
```

Original Decision Tree

√ Program 8

Prepare a decision tree model for Iris Dataset using entropy.

```
# Import necessary libraries import numpy as np import
pandas as pd from sklearn.metrics import confusion matrix,
accuracy_score from sklearn.model_selection import
train_test_split from sklearn.tree import
{\tt DecisionTreeClassifier,\ plot\_tree\ import\ matplotlib.pyplot}
as plt from sklearn import tree
# Load the Iris dataset
df=pd.read csv("Iris.csv")
# Define feature matrix 'x' by dropping 'Species' and 'Id' columns and target variable 'y' as 'Species'
x=df.drop(["Species", "Id"], axis=1) y=df["Species"]
\# Splitting the dataset into train and test x_train, x_test, y_train, y_test =
train_test_split(x, y, test_size=0.3, random_state=100)
# Build decision tree
model = tree.DecisionTreeClassifier(criterion='entropy', max_depth=4)
# Fit the tree to iris dataset
model.fit(x train, y train)
# Find the accuracy of the model
y_pred = model.predict(x_test)
print("Accuracy: ", accuracy_score(y_test, y_pred)*100)
# Function to plot the decision tree def
plot_decision_tree(model, feature_names, class_names):
plt.figure(figsize=(10, 10))
plot tree(model, filled=True, feature names=feature names, class names=class names, rounded=True)
plt.show() plot_decision_tree(model, ["SepalLengthCm", "SepalWidthCm", "PetalLengthCm",
"PetalWidthCm"],
                                  ["Iris-setosa", "Iris-versicolor", "Iris-virginica"])
Accuracy: 95.555555555556
                                    PetalLengthCm <= 2.45
                                       entropy = 1.58
samples = 105
                                     value = [34, 39, 32]
class = Iris-versicolor
                                    True
                                                   False
                                              PetalWidthCm <= 1.65
                                                 entropy = 0.993
                              samples = 34
```


Prepare a naïve bayes classi cation model for prediction of purchase power of a user.

6

```
# Import libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.colors
import ListedColormap import seaborn as sns from sklearn.preprocessing import LabelEncoder, StandardScaler from
sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn import
metrics from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, precision_recall_curve,
f1 score
# Load User_Data dataset df =
pd.read_csv('User_Data.csv')
# Drop User ID column as it does not contribute towards prediction purpose
df.drop(['User ID'], axis=1, inplace=True)
# Label Encoding le=LabelEncoder()
df['Gender']=le.fit_transform(df['Gender'])
# Split data into dependent/independent variables
x = df.iloc[:, :-1].values y = df.iloc[:, -
1].values
\# Split the dataset into training and testing sets x_{train}, x_{test}, y_{train}, y_{test} =
train_test_split(x, y, test_size=0.25, random_state=True)
# Scale dataset sc =
StandardScaler() x train =
sc.fit transform(x train) x test =
sc.transform(x_test)
# Create naive-bayes classifier model
classifier=GaussianNB()
classifier.fit(x_train, y_train)
\# Predict the values y_pred=classifier.predict(x_test) <math>\# Print
accuracy of classifier print ("Accuracy of classifier: ",
accuracy_score(y_test, y_pred))
# Print the classification report print(f'Classification
report:\n{classification_report(y_test, y_pred)}')
# Print the confusion matrix of matrix=confusion matrix(y test,
y_pred) sns.heatmap(cf_matrix, annot=True, fmt='d', cmap='Blues',
cbar=False) 🔁 Accuracy of classifier: 0.87
    Classification report:
                                                precision
    recall f1-score support
                                0.88
                                                       58
                      0.89
                                          0.89
                0.84 0.86 0.85
                     0.87
        accuracy
                                           0.87
                                                      100
                     0.87
    macro avg
                                          0.87
                                                      100
                                0.87
                                           0.87
                                                      100
    weighted avg
    <Axes: >
                      51
     0
```

Prepare a naïve bayes classi cation model for classi cation of email messages into spam or not spam.

```
# Import libraries import pandas as pd from
sklearn.model_selection import train_test_split from
sklearn.naive bayes import MultinomialNB, GaussianNB from
sklearn.feature_extraction.text import CountVectorizer from
sklearn.metrics import accuracy score, f1 score import
matplotlib.pyplot as plt from wordcloud import WordCloud
# Load the dataset into a DataFrame with 'latin-1' encoding to avoid encoding issues
df = pd.read_csv('spam.csv', encoding='latin-1')
# Select only the relevant columns ('v1' as labels and 'v2' as messages) and rename them
df = df[['v1', 'v2']] df = df.rename(columns={'v1': 'label', 'v2': 'text'})
# Define feature matrix 'x' as 'text' and target variable 'y' as 'label'
x=df['text'] y=df['label']
\# Split the dataset into training and testing sets x_train, x_test, y_train, y_test =
train test split(x, y, test size=0.2, random state=42)
\ensuremath{\mathtt{\#}} Find and plot the distribution of spam and ham messages
distribution = y.value_counts() print("Distribution of spam and
ham messages: \n", distribution) distribution.plot(kind='pie',
\verb"autopct="\$1.1f\sigma\sigma") plt.title("Distribution of Spam and Ham")
Messages") plt.show()
# Generate a Wordcloud for the Spam emails spam_text = ' '.join(df[df['label'] == 'spam']['text']) spam wordcloud =
WordCloud(width=800, height=400, max_words=100, background_color='white', random_state=42).generate(spam_tex
# Generate a Wordcloud for the Ham emails ham_text = ' '.join(df[df['label'] == 'ham']['text']) ham_wordcloud =
WordCloud(width=800, height=400, max_words=100, background_color='white', random_state=42).generate(ham_text)
# Plot the word clouds for spam messages
plt.figure(figsize=(10, 4))
plt.subplot(1, 2, 1)
plt.imshow(spam_wordcloud)
plt.title('Word Cloud for Spam Messages')
plt.axis('off')
# Plot the wordcloud for ham messages
plt.subplot(1, 2, 2)
plt.imshow(ham wordcloud)
plt.title('Word Cloud for Ham Messages')
plt.axis('off')
# Show both plots side by side
plt.tight_layout() plt.show()
# Vectorize the text data to convert it into numerical features
vectorizer = CountVectorizer() x train =
vectorizer.fit_transform(x_train) x_test =
vectorizer.transform(x test)
# Train a Multinomial Naive Bayes classifier on the vectorized data
model multinomial = MultinomialNB(alpha = 0.8, fit_prior = True, force_alpha = True)
model multinomial.fit(x train, y train)
# Train a Gaussian Naive Bayes classifier on the vectorized data
model_gaussian = GaussianNB()
model_gaussian.fit(x_train.toarray(), y_train)
# Calculate and print the accuracy of both models on the test data
y pred multinomial = model multinomial.predict(x test) accuracy multinomial
 accuracy_score(y_test, y_pred_multinomial) print("Accuracy for
Multinomial Naive Bayes Model: ", accuracy_multinomial)
y_pred_gaussian = model_gaussian.predict(x_test.toarray())
accuracy_gaussian = accuracy_score(y_test, y_pred_gaussian)
print("Accuracy for Gaussian Naive Bayes Model: ", accuracy_gaussian) #
Plot a comparison of the accuracy scores for the two classification
methods methods = ["Multinomial Naive Bayes", "Gaussian Naive Bayes"]
scores = [accuracy_multinomial, accuracy_gaussian] plt.bar(methods,
scores) plt.xlabel("Classification Methods") plt.ylabel("Accuracy")
plt.title("Comparison of Classification Methods") plt.show()
```

Distribution of spam and ham messages: label ham 4825 spam count, dtype: int64

Distribution of Spam and Ham Messages

Word Cloud for Spam Messages Word Cloud for Ham Messages URGENT want Oh reply send win good co uk new laim

home

Accuracy for Multinomial Naive Bayes Model: 0.9838565022421525 Accuracy for Gaussian Naive Bayes Model: 0.9004484304932735

Program 11

will

Prepare a model for prediction of prostate cancer using KNN Classi er.

Import necessary libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from ${\tt sklearn.preprocessing\ import\ StandardScaler\ from\ sklearn.metrics}$ ${\tt import\ classification_report,\ confusion_matrix\ from}$ sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split

```
# Load the dataset df =
pd.read_csv('prostate.csv')
# Define feature matrix 'x' and target vector 'y'
x=df.drop('Target', axis = 1) y=df['Target']
# Feature scaling using StandardScaler scaler=StandardScaler()
df1=pd.DataFrame(scaler.fit transform(x),columns=x.columns[::-1])
\ensuremath{\sharp} Split data into training and testing sets
\\ x\_train, x\_test, y\_train, y\_test=train\_test\_split(x, y, test\_size=0.3, random\_state=1)
# Initialize K-Nearest Neighbors classifier with 1 neighborknn_model
= KNeighborsClassifier(n_neighbors=1) knn_model.fit(x_train,y_train)
# Make predictions on the test set
y_pred = knn_model.predict(x_test)
\ensuremath{\sharp} Display the confusion matrix to evaluate model performance
print("Confusion Matrix:\n", confusion matrix(y test,y pred))
# Display classification report with precision, recall, F1-score, and accuracy
print("Classification Report:\n", classification report(y test,y pred))
\mbox{\tt\#} Elbow method for determining the optimal number of neighbors \mbox{\tt 'K'}
error_rate = [] for i in range(1,40):
knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(x_train,y_train)
new_y_pred = knn.predict(x_test)
error_rate.append(np.mean(new_y_pred != y_test))
\ensuremath{\text{\#}} Plot the error rate for different values of K
plt.figure(figsize=(12,5)) plt.plot(error_rate,color='blue',
linestyle='dashed', marker='o',
markerfacecolor='red', markersize=10)
plt.title('Error Rate vs. K Value')
plt.xlabel('K') plt.ylabel('Error Rate')
plt.show()
 ₹ Confusion Matrix:
      [[18 4]
      [62]]
     Classification Report:
                                                     precision
     recall f1-score support
                       0.75
                                  0.82
                                              0.78
                                                           22
                            0.25
                  0.33
                                        0.29
           1
         accuracy
                                              0.67
                                                           3.0
     macro avg
                      0.54
                                  0.53
                                             0.53
                                                           30
     weighted avg
                         0.64
                                   0.67
                                              0.65
                                                           30
                                                              Error Rate vs. K Value
        0.375
```


Prepare a model for prediction of survival from Titanic Ship using Random Forest and compare the accuracy with other classiers also.

```
# Import necessary libraries import pandas as pd from sklearn.model_selection
import train_test_split from sklearn.ensemble import RandomForestClassifier from
sklearn.metrics import accuracy_score, classification_report, confusion_matrix from
sklearn.preprocessing import LabelEncoder from sklearn.neighbors import
KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.tree
import DecisionTreeClassifier import warnings warnings.filterwarnings('ignore')
# Load the dataset df =
pd.read csv("titanic.csv")
# Drop rows where the target variable is missing
df = df.dropna(subset=['Survived'])
\# Select features 'x' and target variable 'y' x =
df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare']] y =
df["Survived"]
# Encode categorical feature 'Sex' to numeric
le = LabelEncoder() x['Sex'] =
le.fit transform(x['Sex'])
# Fill missing values in 'Age' with the mean
x['Age'] = x['Age'].fillna(x['Age'].mean())
# Split the dataset into training and testing sets x_train, x_test, y_train, y_test =
train_test_split(x, y, test_size=0.2, random_state=42)
# Create a Random Forest Classifier with 100 decision trees rf model
= RandomForestClassifier(n estimators=100, random state=42)
# Train the Random Forest Classifier
rf model.fit(x train, y train)
# Make predictions using the Random Forest Classifier
y_pred_rf = rf_model.predict(x_test)
# Evaluate the Random Forest Classifier rf accuracy =
accuracy_score(y_test, y_pred_rf) rf_classification_report =
classification_report(y_test, y_pred_rf)
print("Accuracy of Random Forest Classifier: ", rf accuracy)
print("Classification Report:\n", rf_classification_report)
# Comparison with other Models
# Initialize models model1 =
{\tt KNeighborsClassifier(n\_neighbors=9) \ model2 =} \\
GaussianNB() model3 =
DecisionTreeClassifier(criterion='entropy') model4 =
RandomForestClassifier(n_estimators=100)
# List of models for comparison modellist =
[model1, model2, model3, model4]
# Evaluate each model print("\n=== Model
Comparison Results ===") for model in
modellist: model.fit(x train, y train)
y_pred = model.predict(x test)
    # Calculate performance metrics
model_accuracy = accuracy_score(y_test, y_pred)
model confusion_matrix = confusion_matrix(y_test, y_pred)
model_classification_report = classification_report(y_test, y_pred)
    # Display results for each model
print(f"\nModel: {model.__class__.__name__}}")
print("Confusion Matrix:")
    print(model_confusion_matrix)
print(f"Accuracy: {model_accuracy:.2f}")
print("Classification Report:")
    print(model_classification_report)
Classification Report: recall fl-score sup
                                        precision
                      support
                                0.81
                                          0.76
                      0.71
                0.67 0.54 0.60
```

accuracy macro avg weighted avg	0.69	0.68	0.70 0.68 0.69	179 179 179
Model: Gaussian Confusion Matrix [[85 20] [21 53]] Accuracy: 0.77				
Classification F	_		precision	n
1 0.	0.80	0.81	0.81	105 74
accuracy macro avg weighted avg	0.76	0.76	0.77 0.76 0.77	179 179 179
Model: Decision of Confusion Matrix [[83 22] [21 53]]		fier		
Accuracy: 0.76 Classification F	Report:		precision	n
Accuracy: 0.76 Classification F recall f1-score	Report: suppor		0.79	
Accuracy: 0.76 Classification F recall f1-score	Report: suppor 0.80 71 0.	0.79 .72 0.	0.79	105 74
Accuracy: 0.76 Classification Frecall f1-score 0 1 0. accuracy macro avg weighted avg Model: RandomFor Confusion Matrix [[91 14] [20 54]] Accuracy: 0.81	Report: 2 suppor 0.80 71 0.75 0.76 RestClassi	0.79 .72 0. 0.75 0.76	0.79 71 0.76 0.75 0.76	105 74 179 179 179
Accuracy: 0.76 Classification Frecall f1-score 0 1 0. accuracy macro avg weighted avg Model: RandomFor Confusion Matrix [[91 14] [20 54]]	Report: a suppor 0.80 71 0.75 0.76 cestClassi	0.79 .72 0. 0.75 0.76	0.79	105 74 179 179 179
Accuracy: 0.76 Classification Frecall f1-score 0 1 0. accuracy macro avg weighted avg Model: RandomFor Confusion Matrix [[91 14] [20 54]] Accuracy: 0.81 Classification Frecall f1-score	Report: output outpu	0.79 .72 0. 0.75 0.76	0.79 71 0.76 0.75 0.76	105 74 179 179 179