Tota	l No. (of Questions : 8] SEAT No. :
		SEAT NO.
P25	001	[Total No. of Pages : 3
		T.E. (E & TC)
		DIGITAL COMMUNICATION
		(2015 Pattern)
Time	2:2 1/2	[Max. Marks :70
Insti	ructio	ns to the candidates:
	<i>1)</i>	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
	<i>2)</i>	Neat diagrams must be drawn wherever necessary.
	3)	Figures to the right indicate full marks.
	4)	Use of electronic pocket calculator is allowed.
	<i>5)</i>	Assume suitable data, if necessary.
Q1)	a)	What is delta - sigma modulator? Draw its block diagram, what are its advantages? [7]
	b)	What is time division multiplexing? Explain how allocation of time slots in TDM depends on bit rate. [7]
	c)	What is a strictly stationary process? Explain. [6]
		OR
Q2)	a)	A binary channel with 36 kbps bit rate is available for PCM voice

- transmission Find.
 - i) Number of quantization levels.
 - ii) Number of bits per sample.
 - iii) Sampling frequency.

The voice signal is band limited to 3.4 kHz

- b) What is bit synchronisation? Explain any one bit synchroniser. [7]
- c) If a white Gaussian noise is passed through a ideal low pass filter find the autocorrelation function of the filtered noise. Assume passband amplitude response of filter H (f) = 1 and cufoff frequency W Hz. [7]

Q3)	a)	Explain likelihood ratio test (LRT). [6]
	b)	A received binary signal has amplitude $\pm 2V$ and bit durahon is T_b . The signal is corrupted by AWGN having power spectral density 10^{-4} volt ² / Hz. If the signal is processed by integrate & dump filter, what will be required value of T_b so that error probability is less than or equal to 10^{-4} . Given Q (3.71) = 10^{-4} [7]
	c)	State any one property of matched filter. [3]
		OR
Q4)	a)	Derive the expression for signal - to - noise ratio of integrate - and - dump filter. [8]
	b)	Find impulse response of matched filter whose input is given by $g(t) = A \sin\left(\frac{2\pi t}{T}\right); \ 0 \le t \le T$
		= 0 ; otherwise
		= 0 ; otherwise
	c)	Draw the block diagram of correlation receiver for binary digital input signal. [2]
Q5)	a)	Explain the band - pass transmission model (Both transmitter & receiver) [6]
	b)	Binary data is transmitted using PSK at a rate 2 Mbps over RF link having bandwidth 2MHz, find signal power required at the receiver input so that error probability is not more than 10 ⁻⁴ . Given noise PSD
		$\frac{N_o}{2} = 10^{-10} \text{ Watt/ Hz and Q (3.71)} = 10^{-4}$ [6] Explain QPSK signal generation.
	c)	Explain QPSK signal generation. [6]
		OR OR

<i>Q6</i>) a)	Explain M-ary PSK transmitter & receiver.	
00) a)	LADIAIII IVI-ai y I DIX transmitter & receiver.	

[6]

b) Binary data is transmitted using M-ary PSK at a rate 2 Mbps over RF link having bandwidth 2MHz find signal power required at the receiver input so that bit error probability is less than 10⁻⁵.

Given M = 16 and Noise PSD $\frac{N_o}{2}$ = 10⁻⁸ Watt / Hz erf (3.1) = 0.99996

[8]

Explain coherent binary FSK signal generation. c)

[4]

- Draw the block diagram of spread spectrum digital communication and **Q7**) a) explain the various blocks. [8]
 - State and explain properties of PN sequence b) [6]
 - What are advantages of FHSS. c)

[2]

- Draw the block diagram of FHSS transmitter and receiver and explain *Q8*) a) the various blocks. [8]
 - The DSSS communication system has message bit duration $(T_b) = 4.095$ b) ms and chip duration (T_c) = 1 µsec. with $\frac{E_b}{N} = 10$ for average error ning m. probability less than 10.5. Calculate processing gain & Jamming margin. [6]
 - What are disadvantages of DSSS. c)

[2]