Enabling the Supply Chain Optimization for the Citi Bike Station, New York using Machine Learning

Ketan Walia and Swetha Vemula

Introduction:

- Citi Bike is New York City's bike sharing system with an efficient network
- A model that could predict the number of rental bikes per hour and span of a particular trip for the bike station—"The Seventh Avenue at 27 Street Citi Bike station"
- Depends on the customer's behavior
- A range of potential factors affecting the customer's behavior are the gender, age, membership, weather conditions, season, the total number of bikes available at a station, commuting on which day of the week.

Description of concept to be learnt:

- Objective of this study is to enable the supply chain optimization for a Citi bike station in New York City.
- An imperative measure to manage the smooth supply chain is to ensure that optimum number of bikes are available at a particular station at given point in time.
- One of the major problems faced by the bike stations is of re-balancing(maintain a reasonable distribution across docking stations)
- In order to achieve above objective we decided to utilize machine learning techniques to learn two concepts:
 - 1) To estimate the number of trips per hour for the mentioned bike station
 - 2) To estimate whether a particular trip would end at the start station and if not, predict the station trip will terminate at.

Problem Statement Redefined:

Reason:

- Close proximity of near by stations~0.2miles
- Very less proportion of trips ending at the start station-"7th Ave 27th Street.
- "Problem of Rebalancing persists" from a Business point of view.

Approach: Divide the stations into clusters.

Problem Statement:

"To estimate whether a particular trip would end at the cluster it started from, if not predict which cluster the trip will terminate at."

Obtaining and Cleansing of Data

- Obtaining data-39,000 instances(CitiBike Data), 10,000(Weather).
- Merging the three datasets- Normalization of data
- Data Validation (weather.com)
- Cleansing of data-
- Removing Outliers- Box Plots
- Imputing/Removing Missing values- Predicting missing values, taking Average, Removing irrelevant instances
- Treating inconsistent data- Manual checking, Validating with internet
- Formatting/Structuring of dataset- Bringing the merged data to same format, formatting the user data

Attributes	Source	Extraction Method
Trip	Citibike	ADT I
information	Website	API extraction
Holiday Information	Office Holiday website	Extraction data directly
	Time and date website	Extraction data directly
Weather	Wundergroun	
Information	d.com	Web Scraping
User	Citibike	
Information	Website	API extraction

	Outlier Treatme	nt
Attribute	Upper Cutoff	LowerCutoff
Distance	Mean+2SD	Mean-1.5SD
Age	Mean+1.5SD	Mean-1.5SD
Temperature	Mean+1.5SD	Mean-2SD
Humidity	Mean+1.7SD	Mean-1.5SD
Trip Duration	Mean+SD	N/A
No. of trips	Mean+SD	N/A

Summary									
Tool	Weka, Python, R, Excel, Mysql								
Learning	Supervised & Unsupervised								
Data Split	Cross Validation								
File	CSV								
Attribute Selection Technique	Wrapper Subset Eval Method								

Dataset Snippet:

end station name	Index		tripdura tion(mi ns)	usertyp			Temper atureF	Dew PointF	Humidit Y	Wind SpeedM PH	Conditio ns	Season	Holiday (Y/N)	Day of week	d/week	Working day(tru e/false)	Event(Y	Distanc e B/w Stations (Miles)
Broadwa y & E 22 St	1/1/2014	late night		Subscrib er	39	1	. 25	5	43	9.2	Clear	WINTER	Υ	Wednesd ay		FALSE	N	0.49182
W 15 St & 7 Ave	1/1/2014	late night		Subscrib er	54	. 1	. 25	5	43	9.2	Clear	WINTER	Υ	Wednesd ay		FALSE	N	0.57775 9
9 Ave & W 45 St	1/1/2014	morning		Subscrib er	49	1	. 28	12	51	5.8	Clear	WINTER	Y	Wednesd ay		FALSE	N	0.94620
W 20 St & 7 Ave	1/1/2014	morning	0	Subscrib er	55	2	28	12	51	9.2	Clear	WINTER	Y	Wednesd ay		FALSE	N	0.34249
Broadwa y & W 32			4.11666	Subscrib	41	1	. 28.9	12	. 49	10.4	Clear	WINTER	Y	Wednesd ay		FALSE	N	0.33229
Lexingto n Ave & E 26 St	1/1/2014	morning	4.58333	Subscrib er	62	1	. 30	12	47	6.9	Mostly Cloudy	WINTER	Υ	Wednesd ay		FALSE	N	0.66473 4
W 4 St & 7 Ave S	1/1/2014			Subscrib er	23	1	. 32	15.1	. 50	8.1	Partly Cloudy	WINTER	Υ	Wednesd ay		FALSE	N	0.99264
Park PI & Church St		afternoo n		Subscrib er	56	1	. 32	. 16	5 52	8.1	Clear	WINTER	Y	Wednesd ay		FALSE	N	2.43813
W 26 St & 8 Ave	1/1/2014	afternoo n	199.9	Subscrib er	36	1	. 32	16	52	. 0	Mostly cloudy	WINTER	Υ	Wednesd ay		FALSE	N	0.18043
W 22 St & 10 Ave	1/1/2014			Subscrib er	34	. 1	. 32	16	52		Mostly cloudy	WINTER	Y	Wednesd ay		FALSE	N	0.55538
W 45 St & 6 Ave	1/1/2014			Subscrib	24	. 1	. 32	16	52		Mostly cloudy	WINTER	Y	Wednesd ay		FALSE	N	0.90764
W 41 St		afternoo		Subscrib er	25	1	32.5	15.5	50	0	Clear	WINTER	Υ	Wednesd	·	FALSE		0.7043

Approach for clustering:

- Business Problem-Supply chain optimization through re-balancing
- Relevant attribute-Distance and Location(longitude & latitude): Introduced Bias
- Considered Attribute:
 Distance

Clustering

- Simple K means
- Bias: significant fluctuation with random seeds
 - Initialization method: Random
- Approach: K means with initialization method K++

K	Within cluster sum of squared errors
1	49.26829776
2	24.78157677
3	11.10708489
4	7.980840837
5	6.807196242
6	4.646752241
7	4.073448372
8	3.353900433
9	2.976969237
10	2.786784985
11	2.220590131
12	1.88433489
13	1.67360513

cluster		percenta ge of stations
	1	29%
	2	19%
	3	11%
	4	12%
	5	29%

Clustering:

Class Attribute generation:

Season	Holiday	Day of week	weekend/da v	working day	event	popularity	D-C5
WINTER	N	Tuesday	weekday	TRUE	N	High	cluster5
SPRING	N	Tuesday	weekday	TRUE	N	Good	cluster1
AUTUMN	Υ	Monday	weekday	FALSE	N	Low	cluster3
WINTER	N	Monday	weekday	TRUE	N	Very High	cluster5
WINTER	N	Monday	weekday	TRUE	N	Very High	cluster5
SUMMER	N	Friday	weekday	TRUE	N	Very High	cluster5
SUMMER	N	Tuesday	weekday	TRUE	N	Very High	cluster5
WINTER	N	Friday	weekday	TRUE	N	Low	cluster4
AUTUMN	N	Monday	weekday	TRUE	N	Low	cluster1
SUMMER	N	Monday	weekday	TRUE	N	Good	cluster5
WINTER	N	Thursday	weekday	TRUE	N	Low	cluster4
AUTUMN	N	Tuesday	weekday	TRUE	N	Low	cluster1
AUTUMN	N	Tuesday	weekday	TRUE	N	Very High	cluster5
SUMMER	N	Thursday	weekday	TRUE	N	Good	cluster3
SPRING	N	Thursday	weekday	TRUE	N	High	cluster1

Classification:

Algorithm	Accuracy	F-measure
naïve bayes	59.10%	45.5
J48	59.90%	54.3
IBK	53.30%	48.6
Logistic	59.20%	44.6
Zero R	59.10%	44

=== Co	nfusion	Ma	trix ===		L	ogistic Regression
a	b	С	d	e		< classified as
7282	27	0	0	0	1	a = cluster5
3750	39	0	0	0	1	b = cluster3
250	6	0	0	0	1	c = cluster4
913	14	0	0	0	1	d = cluster1
70	1	0	0	0	1	e = cluster2

=== Co	nfusion	Ma	trix ==	=		Naïve Bayes
a	b	C	d	e		< classified as
7197	110	0	2	0	1	a = cluster5
3681	105	0	3	0	1	b = cluster3
248	8	0	0	0	1	c = cluster4
896	30	0	1	0	1	d = cluster1
69	2	0	0	0	I	e = cluster2

=== Co	onfusi	on Ma	trix			KNN
a	b	С	d	e		< classified as
5739	1422	17	130	1	1	<pre>a = cluster5</pre>
2887	821	5	75	1	1	b = cluster3
197	54	1	4	0	1	c = cluster4
692	204	2	29	0	1	d = cluster1
53	17	0	1	0	I	e = cluster2

J48 <-- classified a a = cluster5 6414 24 102 766 2791 915 4 | b = cluster3 198 31 12 0 | c = cluster4 d = cluster1 60 e = cluster2

Why low performance?

- Algorithms are not learning the concept for cluster 4, cluster 2 and cluster 1
- Weather attributes effect the trip after a certain distance of ~0.8 miles
- Under representation of classes
 - -More information required for learning the concept

Label	Percentage proportion
Cluster 5	59.6%
Cluster 3	30%
Cluster 4	2.1%
Cluster 1	7.6%
Cluster 2	0.5%

Problem 1: Weather attributes effect the trip after a certain distance of ~0.8 miles

Trend noticed based on popularity:

Irrespective of the season or timing, there exists a similar frequency(95%) of trips per hour for the various stati<mark>ons</mark>

Attribute generation:

- There exists no generalized relationship between distance and trip. Popularity in itself represents other attributes associated with a particular station(schools, offices, bus stops)
- Attribute generation based on frequency of trips received.

Attribution generation based on frequency of trips:

Snippet of data:

Attribute value: very high, high, very good, good, low, very low

				Weekend/We				
Conditions	Season	Holiday	Day of Week	ekday	Working Day	Event	Popularity	D C-5
Clear	WINTER	N	Tuesday	weekday	TRUE	N	<mark>High</mark>	cluster5
Mostly cloudy	SPRING	N	Tuesday	weekday	TRUE	N	<mark>Good</mark>	cluster1
Mostly cloudy	AUTUMN	Υ	Monday	weekday	FALSE	N	Low	cluster3
Mostly cloudy	WINTER	N	Monday	weekday	TRUE	N	<mark>Very High</mark>	cluster5
Clear	WINTER	N	Monday	weekday	TRUE	N	<mark>Very High</mark>	cluster5
Mostly cloudy	SUMMER	N	Friday	weekday	TRUE	N	<mark>Very High</mark>	cluster5
Fog	SUMMER	N	Tuesday	weekday	TRUE	N	<mark>Very High</mark>	cluster5
Clear	WINTER	N	Friday	weekday	TRUE	N	Low	cluster4
Clear	AUTUMN	N	Monday	weekday	TRUE	N	Low	cluster1
Clear	SUMMER	N	Monday	weekday	TRUE	N	Good	cluster5
Clear	WINTER	N	Thursday	weekday	TRUE	N	Low	cluster4
Clear	AUTUMN	N	Tuesday	weekday	TRUE	N	Low	cluster1
Clear	AUTUMN	N	Tuesday	weekday	TRUE	N	<mark>Very High</mark>	cluster5
Mostly Cloudy	SUMMER	N	Thursday	weekday	TRUE	N	Good	cluster3
Clear	SPRING	N	Thursday	weekday	TRUE	N	High	cluster1

Classification:

Testing option: Cross Validation

Algorithm	Accuracy	F-measure
naïve bayes	69.40%	67.8
J48	71.8%	71
IBK	63.2%	63
Logistic	70.2%	67.3
Zero R	59.10%	44

=== C	onfusio	on Mat	rix =		L	ogistic Regress	ion
a	b	С	d	e		< classified as	
6048	1261	0	0	0	1	<pre>a = cluster5</pre>	
1163	2626	0	0	0	1	b = cluster3	
2	254	0	0	0	1	c = cluster4	
31	896	0	0	0	1	d = cluster1	
0	71	0	0	0	1	e = cluster2	

=== Co	onfusion	Ma	trix			Naïve Bayes
a	b	С	d	e		< classified as
5966	1310	1	32	0	1	a = cluster5
1157	2504	3	123	2	1	b = cluster3
5	201	1	47	2	1	c = cluster4
31	792	0	102	2	1	d = cluster1
0	60	0	9	2	I	e = cluster2

=== Co	onfusi	on Ma	KNN		
					< classified as
5758	1285	54	197	15	a = cluster5
1452	1791	113	398		b = cluster3
53	102				c = cluster4
243	377	66	223	18	d = cluster1
12	31		11		e = cluster2

== Confusion Matrix						J48
a	b	С	d	e		< classified as
6255	931	23	95	5	Ī	a = cluster5
1140	2318	62	261	8	I	b = cluster3
28	125	49	52	2	I	c = cluster4
186	458	37	239	7	I	d = cluster1
9	30	9	13	10	I	e = cluster2

Problem 2:Under representation of classes

- Generating synthetic instances for under-represented classes
- Supervised learning
- Technique: Synthetic minority Oversampling Technique(SMOTE) & Randomized sampling

Label	Percentage proportion
Cluster 5	45.7%
Cluster 3	23%
Cluster 4	9.7%
Cluster 1	11.6%
Cluster 2	9.8%

Algorithm performance

Algorithm	Accuracy	F-measure		
naïve bayes	64.6%	64.2		
J48	74.03%	73.37		
IBK	69.8%	69.6		
Logistic	66.09%	65.9		
Zero R	45.7%	28.7		

=== Confusion Matrix === Logistic Regression

a	b	С	d		< classified as
17865	419	2881	308	209	a = cluster5
175	1571	1974	1178	636	b = cluster1
3243	1037	5277	913	448	c = cluster3
7	464	445	2746	952	d = cluster4
0	195	57	533	3871	e = cluster2

==	Confusion	Matrix		Naive	Bayes:
----	-----------	--------	--	-------	--------

a	b	С	d	e		< classified as
17680	523	2915	329	235	1	a = cluster5
187	1463	1977	1157	750	1	b = cluster1
3170	1074	5209	911	554	1	c = cluster3
20	552	498	2462	1082	1	d = cluster4
0	232	175	399	3850	I	e = cluster2

i	=== Cor	fusion	Matri	х ===		J48
		b		d	е	< classified as
	18451		2484	130	54	a = cluster5
	633	2774	1468		159	b = cluster1
	3322	1283		364		c = cluster3
	133		371			d = cluster4
	32	92	79		4376	e = cluster2

IBK			K ===	Matri	fusion	=== Con
< classified as	<	e	d	C	b	a
a = cluster5	1	47	173	3641	726	17095
b = cluster1	1	138	402	1425	2823	746
c = cluster3	1	133	421	4943	1495	3926
d = cluster4	1	66	3802	320	282	144
e = cluster2		4468	37	67	54	30

Classifier comparision:

Null Hypothesis: All 4 classifiers perform similarly

Dataset	Metric		Logistic Regress ion	Naïve Bayes	IBK
Experime nter File		74.03	66.09	64.64	69.87
Random Seeds>10		73.37	65.9	64.2	69.6

- At 95% confidence level J48 significantly performs better than IBK, Logistic and Naïve Bayes
- Therefore, Null Hypothesis is rejected
- J48 is the better classifier for the considered data set

Way forward

- Adding the attribute, trip duration significantly improves the accuracy and Fmeasure for most of the classifiers
- And there is an improvement in learning the concept for all the 5 clusters.
- We will be exploring this attribute further for improving the model
- Identifying the attributes affecting the trip duration and building a regression model to predict the trip duration
- Further observing its implementation in our classification model

	F-
Accurac	measu
У	re
73.2%	71.7
80.80%	80
65.1%	65
75.3%	73.8
59.10%	44
	73.2% 80.80% 65.1% 75.3%

Task 2: Estimating the no. of trips/hour

Linear Regression:

Index		Temperatu reF	Dew PointF		Wind SpeedMPH		1	weekend/ weekday	Working day(true/fa lse)	Event(Y/N)	no. of trips
1/1/2014	1	25	5	43	9.2	Y	Wednesday	weekday	FALSE	N	2
1/1/2014	8	28	12	51	5.8	Y	Wednesday	weekday	FALSE	N	1
1/1/2014	9	28	12	51	9.2	Υ	Wednesday	weekday	FALSE	N	1
1/1/2014	10	28.9	12	49	10.4	Υ	Wednesday	weekday	FALSE	N	1
1/1/2014	11	30	12	47	6.9	Υ	Wednesday	weekday	FALSE	N	1
1/1/2014	13	32	15.1	50	8.1	Υ	Wednesday	weekday	FALSE	N	1
1/1/2014	14	32	16	52	8.1	Υ	Wednesday	weekday	FALSE	N	1
1/1/2014	15	32	16	52	0	Y	Wednesday	weekday	FALSE	N	3
1/1/2014	16	32.5	15.5	50	0	Υ	Wednesday	weekday	FALSE	N	1
1/1/2014	17	33.1	15.1	48	0	Υ	Wednesday	weekday	FALSE	N	2

Regression:

Linear Regression vs M5P

Classifier comparision:

Null Hypothesis: Both the algorithms perform equally

Dataset	Metric	M5P	Linear Regression
Experimenter File	Accuracy	0.74	0.46
Random Seeds>10	F-Measure	2.57	3.44

- At 95% confidence level M5P significantly performs better than Linear Regression.
- Therefore, Null Hypothesis is rejected
- M5P is the better classifier for the considered data set

Thank you.....