

Risk measures

Camilo A. García Trillos

Market risk and portfolio theory

Risk measures

How to measure the "risk" encoded in a financial position X?

Definition

A (unidimensional) **risk measure** is a function $\rho: \mathcal{X} \to \mathbb{R}$ that assigns to a given random variable X representing a financial position a real number representing its "riskiness".

?Our convention is *X* is positive for profits/wealth.

Risk measures

- R.M. generalise utility functions: they put more emphasis on profit and losses than in the perception from the investor
- They allow defining risk management strategies and regulatory limits (e.g. minimal capital requirements, risk taking limits, etc.)
- They can be used in conjunction with profit analysis to evaluate performance

Some examples:

Variance: $var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Standard deviation: $sd(X) = (var(X))^{1/2}$

Properties of risk measures

- Monotonicity: For all X_1 , $X_2 \in \mathcal{X}$ such that $X_1 \leqslant X_2$ almost surely we have $\rho(X_1) \geqslant \rho(X_2)$ (Smaller risk for larger profits)
- Translation (cash) invariance: For all $X \in \mathcal{X}$ and for every $a \in \mathbb{R}$, we have $\rho(X + a) = \rho(X) a$ (Risk reduces with additional sure amounts)
- Normalisation: $\rho(0) = 0$.

Risk measures that satisfy the above are called monetary risk measures: they can be used for **capital allocation**.

Properties of risk measures

We assume from now on that \mathcal{X} is a convex subset of a vector space.

■ Convexity: For all X_1 , $X_2 \in \mathcal{X}$ and $\lambda \in [0, 1]$ then

$$\rho[\lambda X_1 + (1-\lambda)X_2] \leqslant \lambda \rho(X_1) + (1-\lambda)\rho(X_2).$$

A monetary risk measure with the convexity property is called a *convex* risk measure. They favour diversification.

Properties of risk measures

If we have a convex risk measure, and we assume in addition that the space $\mathcal X$ is a *convex cone* and that the risk measure satisfies

■ Positive homogeneity: For all $X \in \mathcal{X}$ and every $\lambda > 0$ we have

$$\rho(\lambda X) = \lambda \rho(X)$$
 (Scaling)

The measure is called *coherent* risk measure.

Alternatively we can assume

■ Subadditivity: For all X_1 , $X_2 \in \mathcal{X}$, we have

$$\rho(X_1 + X_2) \leqslant \rho(X_1) + \rho(X_2)$$

In fact, any two properties out of positive homogeneity, convexity and subadditivity imply the third one.

Other properties

Comonotonic additivity (No diversification for total dependence): Let f_1 , f_2 be two increasing functions. Then

$$\rho(f_1(X) + f_2(X)) = \rho(f_1(X)) + \rho(f_2(X))$$

Law invariance (Context independence): If $X_1 \sim X_2$, then

$$\rho(X_1) = \rho(X_2)$$

Ellicitability (Can be comparatively tested): Let \mathcal{P} be a class of probability measures in Ω . ρ is said to be *ellicitable* relative to the class \mathcal{P} if there is a scoring function $s : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that

$$\rho(\textbf{\textit{X}}) = \arg\min_{\textbf{\textit{X}} \in \mathbb{R}} \mathbb{E}[\textbf{\textit{s}}(\textbf{\textit{X}},\textbf{\textit{X}})]$$

Utility based risk measures

Several risk measures can be defined from a given a concave utility function *u*:

■ Simple loss: Satisfies convexity (not monetary in general)

$$\rho_u^{sl}(X) := \mathbb{E}[-u(X)]$$

 Certainty equivalent: Monetary risk measure (for CARA, also convex)

$$\rho_u^{ce}(X) = -u^{-1}(\mathbb{E}[u(X)])$$

■ Shortfall risk: Convex risk measure

$$\rho_u^{SR}(X) := \inf\{z : \mathbb{E}[u(X+z)] \geqslant \varphi\}.$$

Example: Entropic risk measure

For some $\theta>0$, the *entropic risk measure* with parameter θ (that we denote (ρ_{θ}^{exp})) is defined by

$$\rho_{\theta}^{\text{exp}}(X) := \frac{1}{\theta} \log \left(\mathbb{E}[e^{-\theta X}] \right)$$

It is in general **not** coherent, since for $\lambda > 1$

$$\rho_{\theta}^{\mathsf{exp}}(\lambda X) = \frac{1}{\theta} \log \mathbb{E}[e^{-\theta \lambda X}] \geqslant \frac{1}{\theta} \log \left(\mathbb{E}[e^{-X\theta}]^{\lambda} \right) = \lambda \rho_{\theta}^{\mathsf{exp}}(X)$$

with a strict inequality for most distributions (take for example a standard Gaussian and $\lambda=2$).

Tail risk measures and quantile function

We can define measures that focus more on the results than the investor, by using the tail of the distributions.

Definition (Quantile function)

The quantile function of X, $q_X : (0, 1) \to \mathbb{R}$, is

$$q_X(\lambda) = \inf\{x : \lambda \leqslant F_X(x)\} = \inf\{x : \lambda \leqslant P(X \leqslant x)\}$$

Equivalently the quantile is characterised as the **only left continuous** with right limits function defined from (0,1) to $\mathbb R$ such that

$$q_X(\lambda) \leqslant x \Leftrightarrow \lambda \leqslant F_X(x) \text{ for all } \lambda \in (0, 1).$$

Example of quantile

Let $X \sim U[-3, 3]$, uniformly distributed. Then we have,

$$F_X(x) = \frac{1}{6}(x+3)\mathbb{1}_{\{-3 < x \leqslant 3\}} + \mathbb{1}_{\{x > 3\}}$$

and we find for $\lambda \in (0, 1)$

$$q_X(\lambda) = 6\lambda - 3$$
,

Example of quantile

Let *X* represent the outcome of one fair dice throw. We have

$$F_X(x) = \min \left\{ \max \left\{ 0, \frac{\lfloor x \rfloor}{6} \right\}, 1 \right\}$$

Then, we can find that the quantile function is

$$q_X(\lambda) = \lceil 6\lambda \rceil$$
,

Value at risk

Value at risk (V@R) at level α minimal amount sufficient to assure no losses with probability α .

$$\operatorname{VQR}^{\alpha}(X) := q_{-X}(\alpha) = \inf\{z \in \mathbb{R} : \mathbb{P}(-X \leqslant z) \geqslant \alpha\}$$

Whind the convention. Some references take α as the probability of having losses, which is equivalent to taking $1-\alpha$ here.

With our convention, typical values used in market risk management practice are: $\alpha=95\%$ or $\alpha=99\%$.

Example of Value at Risk

An investment produces profit of 100 with probability 0.75, or a loss of 150 with probability 0.25.

What is the value at risk at level $\alpha \in (0,1)$ of the P& L of this investment?

$$\textit{F}_{-\textit{X}}(\textit{x}) = 0.75 \; 1_{\{\textit{x} \geqslant -100\}} + 0.25 \; 1_{\{\textit{x} \geqslant 150\}}$$

Hence,

$$\mathrm{V@R}^{\alpha}(X) = q_{-X}(\lambda) = -100 \; \mathbb{1}_{\{0 < \lambda \leqslant 0.75\}} + 150 \; \mathbb{1}_{\{0.75 < \lambda < 1\}}$$

Note: $V@R^{0.99}(X) = 150$, but $V@R^{0.75}(X) = -100$.

Expected shortfall

Expected shortfall (ES) at level α is the average of values at risk above level α .

$$ES^{\alpha}(X) = \frac{1}{1-\alpha} \int_{\alpha}^{1} V@R^{u}(X) du$$

It has several alternative representations:

$$\mathrm{ES}^{\alpha}(X) = \inf \left\{ z + \frac{1}{1 - \alpha} \mathbb{E}[(X + z)^{-}] : z \in \mathbb{R} \right\}$$

Expected shortfall

Expected shortfall (ES) at level α is the average of values at risk above level α .

$$ES^{\alpha}(X) = \frac{1}{1-\alpha} \int_{\alpha}^{1} V@R^{u}(X) du$$

It has several alternative representations:

$$\mathrm{ES}^{\alpha}(X) = \inf \left\{ z + \frac{1}{1 - \alpha} \mathbb{E}[(X + z)^{-}] : z \in \mathbb{R} \right\}$$

and, with $\tilde{\alpha} := F_{-X}(V@R^{\alpha}(X))$,

$$\mathrm{ES}^{\alpha}(X) = \frac{1}{1-\alpha} \left\{ \mathbb{E}[-X \cdot \mathbb{1}_{\{-X > \mathrm{V@R}^{\alpha}(X)\}}] + (\tilde{\alpha} - \alpha) \mathrm{V@R}^{\alpha}(X) \right\}.$$

Mind the convention.

Expectiles

For $\tau \in (0, 1)$, the τ -expectile of a random variable X with finite mean is the only solution to the equation

$$\tau \mathbb{E}[(X - e_{\tau})^{+}] - (1 - \tau)\mathbb{E}[(X - e_{\tau})^{-}] = 0,$$

- Generalisation of the mean: weighted mean squares minimisation
- Usual mean when $\tau = 1/2$.

Summary of properties

	var	sd	$ ho_{ heta}^{ ext{exp}}$	V @ R ^α	ES^{α}	e_{τ}
Monotonicity	*	*	√	√	√	\checkmark
Translation invariance			\checkmark	\checkmark	\checkmark	\checkmark
Subadditivity		\checkmark	\checkmark	†	\checkmark	\checkmark
Positive homogeneity		\checkmark		\checkmark	\checkmark	\checkmark
Convexity		\checkmark	\checkmark	†	\checkmark	\checkmark
Normalisation	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Comonotonic additivity				√	√	
Law invariance	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ellicitability			\checkmark	\checkmark		\checkmark

 $[\]star$ Variance and standard deviation are monotonous when restricting to losses with the same mean.

 $[\]dagger~V@R$ is subadditive (and hence convex) when considering linear combinations of a multidimensional elliptic function.

Conditional and dynamic risk measures

Definition

Let $t \in 0, ..., T$. A mapping $\rho_t : L^{\infty}(\Omega, \mathcal{F}, \mathbb{R}) \to L^{\infty}(\Omega, \mathcal{F}_t, \mathbb{R})$ is called a conditional risk measure.

Examples:

- $\blacksquare \operatorname{VQR}_t^{\alpha}(X) := \operatorname{ess\,inf}\{Z \in L_t^{\infty} : \mathbb{E}_t[\mathbb{1}_{-X \leqslant Z}] \geqslant \alpha\}.$
- $\blacksquare \ \mathrm{ES}_t^\alpha(X) := \mathrm{ess}\inf\{Z + \tfrac{1}{1-\alpha}\mathbb{E}_t[(X+Z)^-] : Z \in L_t^\infty\}.$

A sequence of conditional risk measures $\{\rho_t\}_{t=0,\dots,T}$ is denoted a *dynamic risk measure*.

Concepts in risk management

Risk management is the action of identifying, evaluating and prioritizing risks.

Risk management system

It comprises: policies, organisational structure, quantitative models and indicators

Its goal is:

- understanding the risk sources and exposures of a company
- deciding and monitoring when they are within what is acceptable
- taking action in cases when they are not acceptable: mitigate (collateral, hedging, diversification), avoid.

Risk management

In the face of risk, there are three main strategies:

- Accept
- Mitigate
- Avoid

Acceptable risks

A helpful tool in risk management is to determine which risks are acceptable

Mathematically, we define this set $\mathcal{A}\subset\mathcal{W}$, where \mathcal{W} is the set of all possible wealth values that a market participants can have

Definition

The acceptability set associated to a risk measure ρ is defined by

$$\mathcal{A}_{\rho}=\{X:X\in\mathfrak{X};\rho(X)\leqslant0\}.$$

A position X is **acceptable** if $X \in \mathcal{A}_{\rho}$.

Risks that cannot be accepted can be mitigated to render them acceptable, or avoided if mitigation is unfeasible or too expensive.

Collateral addition

Collateral: financial deposit, provided to mitigate economic losses associated to a default. Ex: mortgages and **capital**

The deposit is not used unless the risk is materialised.

The amount of collateral required depends on the *numeraire* on which it is provided:

- If collateral in a risk-less numéraire and ρ is **monetary** $\kappa = (\rho(X))^+$
- \blacksquare If collateral in a defaultable numéraire N,

$$\kappa(X) = \inf_{r \in \mathbb{R}^+} \{r : \rho(X + rN) \leqslant 0\}.$$

If ρ is strictly convex , there is at most a unique solution. If the solution is infinity (or infinity in practice) another mitigation tool must be used.

Capital

Capital can be seen as a collateral that the owners of a financial company provide to make their business acceptable.

Financial regulation¹ imposes some maximal acceptability sets: forbids some operations, and making minimal capital requirements. It also defines the types of instruments acceptable for capital provision, and their maximum proportions.

Capital determination:

standard Based on the linearisation-normal approximation. Sensitivities times exposures times regulated coefficients.

internal model Each institution proposes a model for capital calculation adjusted to its business. Model subject to tests and approval by regulator.

¹To learn more, visit each regulator's sites: BoE, BIS, FED,...

Hedging

To *hedge* a risk means to make a sequence of operations in the market to obtain payoffs that offset the initial risks.

In our framework: find a strategy $\pmb{\theta}$ with minimal initial cost such that $\rho(\pmb{S}_1^{\pmb{\theta}}-\pmb{X})\leqslant 0$.

Types of hedging

Partial hedging Risk is mitigated but the probability of having losses is not zero.

Replication The risk of the operation is exactly matched: no losses and no profits.

Super hedging No losses and some profits.

Risk sharing / Diversification

Risk sharing: Transfer part of your risk to another institution.

Diversification: Avoid depending on a few factors.

Some final comments

- Risk measures have *blind spots*.
- Mitigation strategies might introduce new risks that need to be considered

■ There are many additional interesting properties that risk measures can have.

(**) Robust representations: coherent measures

Assume:

$$L_n \uparrow L \Rightarrow \rho(L_n) \uparrow \rho(L)$$
 (continuity from below; a.k.a. Fatou property)

Examples: V@R, ES, expectiles.

(**) Robust representations: coherent measures

Assume:

$$L_n \uparrow L \Rightarrow \rho(L_n) \uparrow \rho(L)$$
 (continuity from below; a.k.a. Fatou property)

Examples: V@R, ES, expectiles.

Let \mathcal{M} be set of probability measures s.t. $\forall Q \in \mathcal{M}$, $\mathbb{E}^Q[X]$ is well-defined for all $X \in \mathcal{X}$.

Theorem (Robust representation for coherent risk measures)

There exists a set $\mathfrak{Q} \subset \mathfrak{M}$ such that

$$\rho(X) = \sup_{Q \in \Omega} \left\{ \mathbb{E}^{Q}[-X] \right\}$$

Intuition: A coherent risk measure is the worst average loss that can be obtained amongst all the possible distributions in Q.

(**)Robust representations: convex measures

Theorem (Robust representation for convex risk measures)

Let ρ be a convex risk measure with Fatou property. Then there exist a set $\Omega\subset M$ and a function $\alpha:M\to \mathbb{R}$ such that

$$\rho(X) = \sup_{Q \in \Omega} \left\{ \mathbb{E}^{Q}[X] - \alpha(Q) \right\}.$$

Furthermore, defining $\mathcal{A}_{\rho} = \{X : X \in \mathfrak{X}; \rho(X) \leqslant 0\}$

$$\alpha(Q) = \sup_{X \in A_{\rho}} \left\{ \mathbb{E}^{Q}[X] \right\}$$

(**)Robust representations: convex measures

Theorem (Robust representation for convex risk measures)

Let ρ be a convex risk measure with Fatou property. Then there exist a set $\Omega\subset M$ and a function $\alpha:M\to \mathbb{R}$ such that

$$\rho(X) = \sup_{Q \in \Omega} \left\{ \mathbb{E}^{Q}[X] - \alpha(Q) \right\}.$$

Furthermore, defining $\mathcal{A}_{\rho} = \{X : X \in \mathfrak{X}; \rho(X) \leqslant 0\}$

$$\alpha(Q) = \sup_{X \in A_{\rho}} \left\{ \mathbb{E}^{Q}[X] \right\}$$

Loosely speaking, we have penalised (through the term α) probability distributions that are considered "unrealistic".

The converse of both robust representation theorems also holds.