<u>Лекция 8.2.</u> Мрежови модели на задачи за намиране на най-къс път и минимален скелет. Методи и алгоритми за решаването им

8.2.1. Алгоритми за решаване на задачи за намиране на най-къс път на ориентиран граф

Задача за намиране на най-къс път

Дадена е мрежа $M = \{V, D, C\},\$

където:

графа $G = \{V, D\}$ е ориентиран;

за тегла на дъгите $D_k = (V_i, V_j)$ отговарят дължините $c_{ij} \ge 0$ им.

Да се намери най-късия път между възлите V_1 и V_n .

Фиг. 8.2.1. Межови модел на ориентиран граф

Забележка. Възлите в графа $G = \{V, D\}$ могат да се преномерират така, че всяка дъга да е от вида (V_i, V_j) , където i < j.

Следователно, от поставената задача и условието следва, че възел V_1 не е край, а V_n не е начало на нито една дъга от графа.

Така поставената задача се свежда до класическата транспортна задача със

складове (производители) $V_1, \dots, V_i, \dots, V_{n-1}$, като общото количество на наличностите им е равно на 1;

потребители (клиенти) V_2 , ..., V_j , ..., V_n , като общото количество на потребностите им е равно на 1;

стойностите $c_{ij} \ge 0$, отговарят на транспортните разходи и ако липсва някоя дъга, то съответната стойност на разхода е $M \gg 0$.

Разпределителната таблица на тази задача е:

	V_2	V_3	•••	V_n	Σ
V_1	c_{12}	c_{13}	• • •	c_{1n}	1
V_2	0	c_{23}		c_{2n}	1
•••					
V_{n-1}	c_{n-12}	c_{n-13}		c_{n-1n}	1
Σ	1	1		1	n-1

Задачата за определяне на най-къс път в граф се състои в определянето на свързани помежду си пътища в граф, които съставят път с минимална дължина между два възела на граф.

Подходите за определяне на най-къс път в граф се използват за решаване на важни задачи в практиката от най-различно естество:

- за определяне на най-къс път между две селища при зададена пътна мрежа;
- за определяне на оптимална подмяна на оборудване

и т.н.

Алгоритъм на Дейкстра

Образува се един вектор с координати, съответстващи на всички възли на графа $(V_1, V_2, ..., V_n)$ и всяка координата се малкира постоянно – използва се знак "*" или временно.

- *Стартовият възел* V_1 се маркира постоянно с 0^* .
- $\mathit{Стъпка}\ 2$. Всеки съседен възел на V_1 се маркира временно с теглото c_{1j} на съответната дъга. Останалите възли се маркират временно с ∞.
- Стъпка 3. От временните маркировки се избира една от тези с най-малка стойност и се маркира постоянно – добавя се знак *. Нека тази стойност съответства на възел V_k .
- Стъпка 4. Променя се временната маркировка на съседните възли на V_k , които са с
 - $\theta = min \begin{cases} \text{по-голям индекс, като се избира} \\ \text{сумата на постоянната маркировка на } V_k \text{ и разстоянието до съседния възел} \\ \text{Преминава се към Стъпка 3 и се продължава, докато всички възли се} \end{cases}$ маркират постоянно. Стойността на постоянната маркировка на възел V_n е равна на стойността на най-късия път от V_1 до V_n . В обратна посока от V_n до V_1 се определя множеството от дъгите, които участват в този най-къс път. Такъв път съществува поне един.

Пример

Да се намери най-къс път от V_1 до V_5 на графа:

Решение

Съставяме разпределителна таблица:

	V_2	V_3	V_4	V_5	Σ
V_1	1	5	Μ	М	1
V_2	0	2	4	М	1
V_3	М	0	1	3	1
V_4	М	М	М	1	1
Σ	1	1	1	1	4

- 1. Образуваме вектор V, чийто координати са върховете на дадения граф $V=(V_1,V_2,V_3,V_4,V_5)$. Маркираме стартовия възел с постоянна маркировка 0^* . Възлите V_2 и V_3 , които са свързани с началния възел се маркират с число равно на теглото на съответната дъга, която ги свързва, т.е. V_2 се маркира с 1, а V_3 с 5. Всички останали възли получават временна маркировка, която означаваме с ∞ . Тогава $V=(0^*,1,5,\infty,\infty)$.
- 2. От координатите на векторът V избираме тази, която е с най-малка временна маркировка и я маркираме с постоянна. Това е координатата съответстваща на възел V_2 . Имаме $V = (0^*, 1^*, 5, \infty, \infty)$.
 - 3. Възелът V_2 е свързан с V_3 и V_4 .

Маркираме временно V_3 с числото $\theta = min\{5; 1+2\} = 3$, където 5 е временната маркировка на V_3 , а 1+2 е сумата от постоянната маркировка на V_2 и теглото на дъгата свързваща V_2 и V_3 .

Маркираме временно V_4 с числото $\theta = min\{\infty; 1+4\} = 5$, където ∞ е временна маркировка на V_4 , а 1+4 е сумата от постоянната маркировка на V_2 и теглото на дъгата свързваща V_2 и V_4 .

- 4. Получаваме $V = (0^*, 1^*, 3, 5, ∞)$.
- 5. Координатата с най-малка временна маркировка (възел V_3) получава постоянна маркировка. Тогава $V=(0^*,1^*,3^*,5,\infty)$.
 - 6. Възелът V_3 е свързан с възлите V_4 и V_5 .

Маркираме временно V_4 с числото $\theta = min\{5; 3+1\} = 4$, където 5 е временната маркировка на V_4 , а 3+1 е сумата от постоянната маркировка на V_3 и теглото на дъгата свързваща V_3 и V_4 .

Маркираме временно V_5 с чеслото $\theta = min\{\infty; 3+3\} = 6$, където ∞ евременна маркиравка на V_5 , а 3+3 е сумата от постоянната маркировка на V_3 и теглото на дъгата свързваща V_3 и V_5 .

- 7. Получаваме $V = (0^*, 1^*, 3^*, 4,6)$.
- 8. Най-малката временна маркировка има маркировката, която съответства на възел V_4 , така че тя получава постоянна маркировка. Имаме $V = (0^*, 1^*, 3^*, 4^*, 6)$.
 - 9. Възелът V_4 е свързан само с V_5 .

Маркираме възел V_5 с чеслото $\theta = min\{6; 4+1\} = 5$, където 6 е временната маркировка на V_5 , а 4+1 е сумата от постоянната маркировка на V_4 и теглото на дъгата свързваща V_4 и V_5 .

Окончателно, $V = (0^*, 1^*, 3^*, 4^*, 5^*)$.

Стойността на постоянната маркировкана възел V_5 е равна на стойността на най-късия път от V_1 до V_5 , т.е. $F_{min}=5$. Най-късият път W е съставен от дъгите D_1 , D_4 , D_5 , D_6 , т.е. $W=(D_1,D_4,D_5,D_6)$ и $F_{min}=c_{12}+c_{23}+c_{34}+c_{45}=1+1+2+1=5$.

Алгоритъм на Белман

Решаването на задачата за намиране на най-къс път на граф се състои в определяне на етапи на решение и формулиране на оптимизационна задача за всеки етап, чиято сложност е по-малка от сложността на началната задача. На всеки етап съществува една скаларна или оптимизирана (управлявана) променлива, като резултатите от етапите са свързани с рекурентен алгоритъм. Решението на началната задача се получава чрез последователно решаване на задачите от отделните етапи, като решението на задачата е достигнато в последния етап. Този алгоритъм е последователен и итерационен.

Нека се декомпозират K на брой етапи на поставената задача. На всеки етап E_k , k= $1, \dots, K$ се решава подзадача за намиране на най-къс път от възел V_1 до възел $V_k, k=1$ 1, ... , K. Въвежда се функция на Белман f_N , N=0,1, ... , k , която характеризира дължината на най-късия път от началния до k – тия, k = 1, ..., K, възел и се определя от рекурентната зависимост:

$$f_j = \min_{i < j} \{c_{ij} + f_i\}, i = 1, ..., k-1; j = 2, ..., k;$$

$$f_0 \equiv 0, f_1 = 0$$
 Оптималната стойност се получава на последният етап E_k и тя е:

$$f_k = f_{min}$$

 $f_k = f_{min}$ Посредством обратният ход на принципа на Белман се намира и дължината на найкъсия маршрут от началния до крайния възел.

Забележка 1. Обратният ход на алгоритъма на Белман се прави с цел да се избегне прекъсване на описването на възлите по най-късия път.

Забележка 2. Алгоритъмът на Белман може да се приложи само в случаи, когато в графа няма зацикляне, т.е. е "добре ориентиран".

Пример

Да се намери най-къс път от възел 1 до възел 5 на графа:

Решение

$$f_0 \equiv 0, f_1 = 0$$

Означаваме дължината на най-късия път от началото до възел 1 върху графа до самия възел 1 с **0**.

<u>Лекция 8.2.</u> Мрежови модели на задачи за намиране на най-къс път и минимален скелет. Методи и алгоритми за решаването им

Във възел 2 има само една входяща дъга и тя е от възел 1. Тогава:

$$f_2 = c_{12} + f_0 = 1 + 0 = 1$$

 $f_2 = c_{12} + f_0 = 1 + 0 = 1$ Означаваме дължината на най-късия път от началото до възел 2 върху графа до самия възел 2 с 1. Отбелязваме на графа и входящата дъга във възел 2, по която е достигнат най-къс път.

Във възел 3 има две входящи дъги от възел 1 и възел 2. Тогава:

$$f_3 = min\{c_{13} + f_1; \underline{c_{23} + f_2}\} = min\{5 + 0; \underline{2 + 1}\} = 3$$

Означаваме дължината на най-късия път от началото до възел 3 върху графа до самия възел 3 с 3. Отбелязваме на графа и входящата дъга във възел 3, по която е достигнат най-къс път.

Във възел 4 има две входящи дъги от възел 2 и възел 3. Тогава:

$$f_4 = min\{c_{24} + f_2; c_{34} + f_3\} = min\{4 + 1; 1 + 3\} = 4$$

Означаваме дължината на най-късия път от началото до възел 4 върху графа до самия възел 4 с 4. Отбелязваме на графа и входящата дъга във възел 4, по която е достигнат най-къс път.

Във възел 5 има две входящи дъги от възел 3 и възел 4. Тогава:

$$f_5 = min\{c_{35} + f_3; \underline{c_{45} + f_4}\} = min\{3 + 3; \underline{1 + 4}\} = 5$$

Означаваме дължината на най-късия път от началото до възел 5 върху графа до самия възел 5 с 5. Отбелязваме на графа и входящата дъга във възел 5, по която е достигнат най-къс път.

Стигнахме до последния възел на графа. Тогава най-късият път на графа има дължина:

$$f_5 = f_{min} = 5$$

 $f_5 = f_{min} = 5$ За да опишем най-късия път, използваме обратния ход от алгоритъма на Белман:

Най-късия път се описва чрез възлите:

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$
,

а дължината му е:

$$f_{min} = 5.$$

Пример

Да се намери най-къс път от възел 1 до възел 8 на графа:

Решение

$$f_0\equiv 0, f_1=0$$

Означаваме дължината на най-късия път от началото до възел 1 върху графа до самия възел 1 с **0**.

Във възел 2 има само една входяща дъга и тя е от възел 1. Тогава:

$$f_2 = c_{12} + f_0 = 3 + 0 = 3$$

 $f_2 = c_{12} + f_0 = 3 + 0 = 3$ Означаваме дължината на най-късия път от началото до възел 2 върху графа до самия възел 2 с 3. Отбелязваме на графа и входящата дъга във възел 2, по която е достигнат най-къс път.

Във възел 3 има само една входяща дъга от възел 1. Тогава:

$$f_3 = c_{13} + f_1 = 2 + 0 = 2$$

 $f_3 = c_{13} + f_1 = 2 + 0 = 2$ Означаваме дължината на най-късия път от началото до възел 3 върху графа до самия възел 3 с 2. Отбелязваме на графа и входящата дъга във възел 3, по която е достигнат най-къс път.

Лекция 8.2. Мрежови модели на задачи за намиране на най-къс път и минимален скелет. Методи и алгоритми за решаването им

Във възел 4 има две входящи дъги от възел 1 и възел 3. Тогава:

$$f_4 = min\{c_{14} + f_1; c_{34} + f_3\} = min\{5 + 0; 3 + 2\} = 5$$

 $f_4=min\left\{\underline{c_{14}+f_1};\underline{c_{34}+f_3}\right\}=min\left\{\underline{5+0};\underline{3+2}\right\}=5$ Означаваме дължината на най-късия път от началото до възел 4 върху графа до самия възел 4 с 5. Отбелязваме на графа и входящата дъга във възел 4, по която е достигнат най-къс път – в този случай те са две и отбелязваме и двете.

Във възел 5 има три входящи дъги от възел 2, възел 3 и възел 4. Тогава:

$$f_5 = min\{c_{25} + f_2; \underline{c_{35} + f_3}; c_{45} + f_4\} = min\{8 + 3; \underline{6 + 2}; 10 + 5\} = 8$$

Означаваме дължината на най-късия път от началото до възел 5 върху графа до самия възел 5 с 8. Отбелязваме на графа и входящата дъга във възел 5, по която е достигнат най-къс път.

Във възел 6 има две входящи дъги от възел 2 и възел 5. Тогава:

$$f_6 = min\{c_{26} + f_2; \underline{c_{56} + f_5}\} = min\{12 + 3; \underline{6 + 8}\} = 14$$

Означаваме дължината на най-късия път от началото до възел 6 върху графа до самия възел 6 с 14. Отбелязваме на графа и входящата дъга във възел 6, по която е достигнат най-къс път.

Лекция 8.2. Мрежови модели на задачи за намиране на най-къс път и минимален скелет. Методи и алгоритми за решаването им

Във възел 7 има две входящи дъги от възел 4 и възел 5. Тогава:

$$f_7 = min\{c_{46} + f_4; c_{57} + f_5\} = min\{15 + 5; 8 + 8\} = 16$$

 $f_7=min\left\{c_{46}+f_4;\underline{c_{57}+f_5}\right\}=min\left\{15+5;\underline{8+8}\right\}=16$ Означаваме дължината на най-късия път от началото до възел 7 върху графа до самия възел 7 с 16. Отбелязваме на графа и входящата дъга във възел 7, по която е достигнат най-къс път.

Във възел 8 има три входящи дъги от възел 6, възел 5 и възел 7. Тогава:

$$f_8 = min\{c_{68} + f_6; c_{58} + f_5; c_{78} + f_7\} = min\{4 + 14; 7 + 8; 5 + 16\} = 15$$

Означаваме дължината на най-късия път от началото до възел 8 върху графа до самия възел 8 с 15. Отбелязваме на графа и входящата дъга във възел 8, по която е достигнат най-къс път.

Стигнахме до последния възел на графа. Тогава най-късият път на графа има дължина: $f_8 = f_{min} = 15$ За да опишем най-късия път, използваме обратния ход от алгоритъма на Белман:

<u>Лекция 8.2.</u> Мрежови модели на задачи за намиране на най-къс път и минимален скелет. Методи и алгоритми за решаването им

Най-късия път се описва чрез възлите:

$$1 \rightarrow 3 \rightarrow 5 \rightarrow 8$$

а дължината му е:

$$f_{min} = 15.$$

Пример

Задача за оптимална подмяна на оборудване

Фирма за автомобили под наем планира подмяна на автомобилите си за следващите пет години. Тя е закупила нов автомобил. Разходите за експлоатацията и подръжката му през следващите пет години могат да се окажат много големи. Това може да доведе до подмяната му с нов след две, три, четири или пет години, но трябва да се експлоатира поне една пълна година.

В таблица са дадени евентуалните планирани и прогнозирани чисти разходи (в хил. лв.) за автомобила, които фирмата трябва да направи от годината на закупуването му до годината на подмяната му:

Година на подмяна Година на закупуване	2	3	4	5	6
1	1,7	2,6	4,8	7,9	10,3
2	-	1,9	2,7	4,9	8,2
3	-	-	2	3,2	5,1
4	-	-	-	2,1	3,4
5	-	-	-	-	2,4

Да се намери такава управленска стратегия на фирмата, която да минимизира описаните разходи.

Решение

Математическият модел на описаната задача може да се представи като мрежови модел чрез ориентиран граф, в който възлите представляват годините - от първата година на закупуването на автомобила до последната му на подмяна, а дъгите – съответните разходи от годината на закупуването му до годината на подмяната му:

Тогава търсим най-къс път между възел 1 и възел 6.

Графът е "добре ориентиран", т.е. няма цикли и можем да приложим алгоритъм на Белман:

$$f_0 \equiv 0, f_1 = 0$$

 $f_0 \equiv 0$, $f_1 = 0$ Означаваме дължината на най-късия път от началото до възел 1 върху графа до самия възел 1 с **0**.

Във възел 2 има само една входяща дъга и тя е от възел 1. Тогава:

$$f_2 = c_{12} + f_0 = 1.7 + 0 = 1.7$$

 $f_2 = c_{12} + f_0 = 1,7 + 0 = 1,7$ Означаваме дължината на най-късия път от началото до възел 2 върху графа до самия възел 2 с 1,7. Отбелязваме на графа и входящата дъга във възел 2, по която е достигнат най-къс път.

<u>Лекция 8.2.</u> Мрежови модели на задачи за намиране на най-къс път и минимален скелет. Методи и алгоритми за решаването им

Във възел 3 има две входящи дъги - от възел 1 и възел 2. Тогава:

$$f_3 = min\{\underline{c_{13} + f_1}; c_{23} + f_2\} = min\{\underline{2,6+0}; 1,9+1,7\} = 2,6$$

Означаваме дължината на най-късия път от началото до възел 3 върху графа до самия възел 3 с 2,6. Отбелязваме на графа и входящата дъга във възел 3, по която е достигнат най-къс път.

Във възел 4 има три входящи дъги - от възел 1, възел 2 и възел 3. Тогава:

$$f_4 = min\{c_{14} + f_1; c_{24} + f_2; c_{34} + f_3\} = min\{4, 8 + 0; 2, 7 + 1, 7; 2 + 2, 6\} = 4, 4$$

Означаваме дължината на най-късия път от началото до възел 4 върху графа до самия възел 4 с 4,4. Отбелязваме на графа и входящата дъга във възел 4, по която е достигнат най-къс път.

<u>Лекция 8.2.</u> Мрежови модели на задачи за намиране на най-къс път и минимален скелет. Методи и алгоритми за решаването им

Във възел 5 има четири входящи дъги - от възел 1, възел 2, възел 3 и възел 4. Тогава: $f_5 = min\{c_{15} + f_1; c_{25} + f_2; c_{35} + f_3; c_{45} + f_4\} = min\{7,9+0;4,9+1,7; 3,2+2,6;2,1+4,4\} = 5,8$

Означаваме дължината на най-късия път от началото до възел 5 върху графа до самия възел 5 с 5,8. Отбелязваме на графа и входящата дъга във възел 5, по която е достигнат най-къс път.

Във възел 6 има пет входящи дъги - от възел 1, възел 2, възел 3, възел 4 и възел 5. Тогава:

$$f_6 = min \left\{ c_{16} + f_1; c_{26} + f_2; \underline{c_{36} + f_3}; c_{46} + f_4; c_{56} + f_5 \right\} =$$

$$= min \left\{ 10,3 + 0; 8,2 + 1,7; \underline{5,1 + 2,6}; 3,4 + 4,4; 2,4 + 5,8 \right\} = 7,7$$

Означаваме дължината на най-късия път от началото до възел 6 върху графа до самия възел 6 със 7,7. Отбелязваме на графа и входящата дъга във възел 6, по която е достигнат най-къс път.

Стигнахме до последния възел на графа. Тогава най-късият път на графа има дължина: $f_6 = f_{min} = 7{,}7$

За да опишем най-късия път, използваме обратния ход от алгоритъма на Белман:

<u>Лекция 8.2.</u> Мрежови модели на задачи за намиране на най-къс път и минимален скелет. Методи и алгоритми за решаването им

Най-късият път се описва чрез възлите: $1 \to 3 \to 6$, а дължината му е $f_{min} = 7$,7.

В конкретно поставеното задача означава, че най-удачно е автомобилът да се подмени на третата година (годините на оптимална подмяна са между първата година на закупуване и последната на подмяна). Тогава фирмата ще има най-малко общи разходи за автомобила и те ще са 7,7 хил. лв.