MA3101

Analysis III

Autumn 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

1 Euclidean spaces

1

1 Euclidean spaces

We are familiar with the vector space \mathbb{R}^n , with the standard inner product

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = x_1 y_1 + \dots + x_n y_n.$$

The standard norm is define as

$$\|\boldsymbol{x} - \boldsymbol{y}\|^2 = \langle \boldsymbol{x} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{y} \rangle = \sum_{k=1}^n (x_i - y_i)^2.$$

Exercise 1.1. What are all possible inner products on \mathbb{R}^n ?

Theorem 1.1 (Cauchy-Schwarz). Given two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, we have

$$|\langle \boldsymbol{v}, \boldsymbol{w} \rangle| \leq ||\boldsymbol{v}|| ||\boldsymbol{w}||.$$

Theorem 1.2 (Triangle inequality). Given two vectors $v, w \in \mathbb{R}^n$, we have

$$\|v + w\| \le \|v\| + \|w\|.$$

This allows us to define the standard metric on \mathbb{R}^n , seen as a point set.

$$d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\|.$$

MA3101: Analysis III

Definition 1.1. For any $\epsilon > 0$, the set

$$B_{\epsilon}(\boldsymbol{x}) = \{ \boldsymbol{y} \in \mathbb{R}^n : d(\boldsymbol{x}, \boldsymbol{y}) < \epsilon \}$$

is called the open ball centred at $\boldsymbol{x} \in \mathbb{R}^n$ with radius ϵ . This is also called the ϵ neighbourhood of \boldsymbol{x} .

Definition 1.2. A set U is open in \mathbb{R}^n if for every $\boldsymbol{x} \in U$, there exists an open ball $B_{\epsilon}(\boldsymbol{x}) \subset U$.

Remark. Every open ball in \mathbb{R}^n is open.

Remark. Both \emptyset and \mathbb{R}^n are open.

Definition 1.3. A set F is closed in \mathbb{R}^n if its complement $\mathbb{R}^n \setminus F$ is open in \mathbb{R}^n .

Remark. Both \emptyset and \mathbb{R}^n are closed.