Modified Gauss-Newton Algorithms under Noise

Krishna Pillutla, Vincent Roulet, Sham Kakade, Zaid Harchaoui

Setting

Consider the finite sum composite problem

$$F(w) = \frac{1}{n} \sum_{i=1}^{n} f \circ \phi_i(w)$$
 (1)

with $f: \mathbb{R}^m \to \mathbb{R}$ Lipschitz and convex (loss), $\phi_i: \mathbb{R}^d \to \mathbb{R}^m$ smooth and non-convex (predictor)

Examples:

- Robust Regression: $f = \|\cdot\|_2$
- Classification: f = multi-class hinge loss

Prox-linear/ Modified Gauss-Newton Method

 $Model(w; w_k)$

Quadratic local convergence

Proposition: If f is \mathcal{E} -Lipschitz and μ -sharp, $\phi = (\phi_1; \dots; \phi_n)$ is L-smooth and $\sigma_{\min}(\nabla \phi(w)^{\mathsf{T}}) \ge \nu > 0$, then $F(w_k) \to F^*$ globally.

If
$$F(w_k) - F^* \le R$$
, then for all $t \ge k$:
$$F(w_{t+1}) - F^* \le \frac{1}{2R^2} \left(F(w_t) - F^* \right)^2$$
where $R = \frac{\mu^2 \nu^2}{L\ell n^{3/2}}$

Statistical Trade-offs

Setting: $y_i = \psi(x_i; \bar{w}) + \xi_i$, where $\xi_i \sim \mathcal{N}(0, \sigma^2 I_m)$ Consider problem (1) with $\phi_i(w) = \psi(x_i, w)$

Proposition: Let *R* denote the radius of quadratic convergence and $\exists w^*$ s.t. $y_i = \psi(x_i, w^*)$ for all i. Let w_k be the first iterate enjoying quadratic convergence. Then w.h.p.,

(1) if
$$\sigma > \frac{R}{m^{1/2} - m^{1/4}}$$
 then $F(w_k) < F(\bar{w})$ then $F(w_k) > F(\bar{w})$ w^* σ large \Rightarrow quadratic σ tiny \Rightarrow quadratic

convergence is not

active

0.05

0.00

0.6

0.5

0.4

