Amendments to the Claims:

1-5 (cancelled)

6 (currently amended): An interleaver comprising: a birefringent element assembly providing two output components which are generally orthogonal to each other; and a reflector configured to direct the two components from the birefringent element assembly back through the birefringent element assembly;

The interleaver as recited in claim 1, wherein the phase delays and the angular orientations of birefringent elements of the birefringent element assembly are selected from the table:

Table III

First Stage Phase Delays	First Stage Orientations	Second Stage Phase Delays	Second Stage Orientations
	<u> </u>	<u> </u>	<u> </u>
$\Gamma + 2m_1 \pi$,	$\varphi_1, \varphi_2, \varphi_3$	$2\Gamma' + 2k_3 \pi$	$90^{\circ} \pm \varphi_3$, $90^{\circ} \pm \varphi_2$, $90^{\circ} \pm \varphi_1$ (parallel component)
$2\Gamma + 2m_2 \pi$		$2\Gamma' + 2k_2 \pi$	$\pm \varphi_3, \pm \varphi_2, \pm \varphi_1$ (orthogonal component)
$2\Gamma + 2m_3 \pi$		$\Gamma' + 2k_1 \pi$	where $\Gamma - \Gamma' = 2l\pi$
$\Gamma + 2m_1 \pi$	$\varphi_1, \varphi_2, \varphi_3$	$2\Gamma' + 2k_3 \pi$	$90^{\circ} \pm \varphi_{3}$, $90^{\circ} \pm \varphi_{2}$, $90^{\circ} \pm \varphi_{1}$ (parallel component)
$2\Gamma + 2m_2 \pi$		$2\Gamma' + 2k_2 \pi$	$\pm \varphi_3, \pm \varphi_2, \pm \varphi_1$ (orthogonal component)
$2\Gamma + 2m_3 \pi$		$\Gamma' + 2k_1 \pi$	where $\Gamma - \Gamma' = (2l + 1) \pi$
$2\Gamma + 2m_3 \pi$	$\varphi_3, \varphi_2, \varphi_1$	$\Gamma' + 2k_1 \pi$	$90^{\circ} \pm \varphi_1$, $90^{\circ} \pm \varphi_2$, $90^{\circ} \pm \varphi_3$ (parallel component)
$2\Gamma + 2m_2 \pi$		$2\Gamma' + 2k_2 \pi$	$\pm \varphi_1, \pm \varphi_2, \pm \varphi_3$ (orthogonal component)
$\Gamma + 2m_1 \pi$		$2\Gamma' + 2k_3 \pi$	where $\Gamma - \Gamma' = 2l\pi$
$2\Gamma + 2m_3 \pi$,	$\varphi_3, \varphi_2, \varphi_1$	$\Gamma' + 2k_1 \pi$	$\pm \varphi_1, \pm \varphi_2, \pm \varphi_3$ (parallel component)
$2\Gamma + 2m_2 \pi$		$2\Gamma' + 2k_2 \pi$	$90^{\circ} \pm \varphi_1$, $90^{\circ} \pm \varphi_2$, $90^{\circ} \pm \varphi_3$ (orthogonal component)
$\Gamma + 2m_1 \pi$		$2\Gamma' + 2k_3 \pi$	where $\Gamma - \Gamma' = (2l + 1) \pi$

Wherein m1, m2, m3, k1, k2, k3 and l are integers $(0, \pm 1, \pm 2, \ldots)$.

7-11 (cancelled)

12 (currently amended): The interleaver as recited in elaim 1 claim 6, wherein the birefringent element assembly comprises a first birefringent element having an angular orientation of φ_1 , a second birefringent element having an angular orientation of φ_2 and a third birefringent element having an angular orientation of φ_3 ;

wherein an order of the first birefringent element, second birefringent element, and third birefringent element is selected from the group consisting of:

first birefringent element, second birefringent element, third birefringent element; third birefringent element, second birefringent element, first birefringent element; and

wherein the angular orientations are with respect to a polarization direction of light entering the birefringent element assembly.

13 (currently amended): The interleaver as recited in elaim 1 claim 6, wherein the birefringent element assembly comprises:

a first birefringent element having an angular orientation of 45° with respect to a polarization direction of light input to the birefringent element assembly and has a phase delay of Γ ;

a second birefringent element has an angular orientation of -21° with respect to a polarization direction of light input to the birefringent element assembly and has a phase delay of 2Γ ; and

a third birefringent element has an angular orientation of 7° with respect to a polarization direction of light input to the birefringent element assembly and has a phase delay of 2Γ .

14 (currently amended): An interleaver comprising: a birefringent element assembly providing two output components which are generally orthogonal to each other; and a reflector configured to direct the two components from the birefringent element assembly back through the birefringent element assembly;

The interleaver as recited in claim 1, wherein the birefringent element assembly comprises two birefringent elements; and

the angular orientations (φ_1 and φ_2) and the corresponding phase delays of the two birefringent elements are selected from the table:

Table III

First Stage Phase Delays	First Stage Orientations	Second Stage Phase Delays	Second Stage Orientations
$\Gamma + 2m_1 \pi,$ $2\Gamma + 2m_2 \pi,$ $2\Gamma + 2m_3 \pi$	$\varphi_1, \varphi_2, \varphi_3$	$2\Gamma' + 2k_3 \pi,$ $2\Gamma' + 2k_2 \pi,$ $\Gamma' + 2k_1 \pi$	$90^{\circ} \pm \varphi_3$, $90^{\circ} \pm \varphi_2$, $90^{\circ} \pm \varphi_1$ (parallel component) $\pm \varphi_3$, $\pm \varphi_2$, $\pm \varphi_1$ (orthogonal component) where $\Gamma - \Gamma' = 2l\pi$
$\Gamma + 2m_1 \pi,$ $2\Gamma + 2m_2 \pi,$ $2\Gamma + 2m_3 \pi$	$\varphi_1, \varphi_2, \varphi_3$	$2\Gamma' + 2k_3 \pi,$ $2\Gamma' + 2k_2 \pi,$ $\Gamma' + 2k_1 \pi$	$90^{\circ} \pm \varphi_3$, $90^{\circ} \pm \varphi_2$, $90^{\circ} \pm \varphi_1$ (parallel component) $\pm \varphi_3$, $\pm \varphi_2$, $\pm \varphi_1$ (orthogonal component) where $\Gamma - \Gamma' = (2l + 1) \pi$
$2\Gamma + 2m_3 \pi,$ $2\Gamma + 2m_2 \pi,$ $\Gamma + 2m_1 \pi$	$\varphi_3, \varphi_2, \varphi_1$	$\Gamma' + 2k_1 \pi,$ $2\Gamma' + 2k_2 \pi,$ $2\Gamma' + 2k_3 \pi$	$90^{\circ} \pm \varphi_1$, $90^{\circ} \pm \varphi_2$, $90^{\circ} \pm \varphi_3$ (parallel component) $\pm \varphi_1$, $\pm \varphi_2$, $\pm \varphi_3$ (orthogonal component) where $\Gamma - \Gamma' = 2l\pi$
$2\Gamma + 2m_3 \pi,$ $2\Gamma + 2m_2 \pi,$ $\Gamma + 2m_1 \pi$	φ ₃ , φ ₂ , φ ₁	$\Gamma' + 2k_1 \pi,$ $2\Gamma' + 2k_2 \pi,$ $2\Gamma' + 2k_3 \pi$	$\pm \varphi_1, \pm \varphi_2, \pm \varphi_3$ (parallel component) 90°± φ_1 , 90°± φ_2 , 90°± φ_3 (orthogonal component) where Γ - Γ ' = (2 l + 1) π

Wherein m1, m2, m3, k1, k2, k3 and l are integers $(0, \pm 1, \pm 2, \ldots)$.

15 (currently amended): The interleaver as recited in elaim 1 claim 14, wherein the birefringent element assembly comprises:

a first birefringent element having an angular orientation of 45° with respect to a polarization direction of light input to the birefringent element assembly and has a phase delay of Γ ; and

the <u>a</u> second birefringent element has an angular orientation of -21° with respect to a polarization direction of light input to the birefringent element assembly and has a phase delay of 2Γ ;

16-18 (cancelled)

Correction to Typos in Table III for Claim 6:

In the patent publication US 2003/0025998 A1 (Feb. 6, 2003), there are four typos for Table III under claim 6 and paragraph [0143]:

"100₁" (happened at two places) should be " φ_1 " and "100₃" (happened at two places) should be " φ_3 ", respectively.

Table III in the specification paragraph [0129] is correct. Please help to make correction if this application is allowed to issue.