Homework Assignment 3

Due in class, Wednesday March 7th

SDS 384-11 Theoretical Statistics

- 1. Suppose that X_1 and X_2 are zero-mean and sub-Gaussian with parameters σ_1 and σ_2 respectively. Assume that the variance parameters are equal to the sub-gaussian parameters.
 - (a) Show that $X_1^2 E[X_1^2]$ is subexponential with parameters $(2\sigma_1^2, 4\sigma_1^2)$. Hint: write the mgf in terms of X_1 and an independent standard normal.
 - (b) If X_1 and X_2 are not independent, show that $X_1 + X_2$ is sub-Gaussian with parameter at most $\sqrt{2(\sigma_1^2 + \sigma_2^2)}$.
 - (c) If X_1 and X_2 are independent, show that X_1X_2 is sub-exponential with parameters $(\sqrt{2}\sigma_1\sigma_2, \frac{1}{\sqrt{2}\sigma_1\sigma_2})$.
- 2. Let X_1, X_2, \ldots, X_n be i.i.d. samples of random variable with density f on the real line. A standard estimate of f is the kernel density estimate

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right)$$

where $K: \Re \to [0,\infty)$ is a kernel function satisfying $\int_{-\infty}^{\infty} K(t)dt = 1$, and h is a bandwidth parameter. We will measure the quality of \hat{f} using

$$\|\hat{f} - f\|_1 := \int_{-\infty}^{\infty} |\hat{f}(t) - f(t)| dt.$$

Prove that:

$$P(\|\hat{f} - f\|_1 \ge E\|\hat{f} - f\|_1 + \delta) \le e^{-cn\delta^2},$$

where c is some constant.

3. Let $\{X_i\}_{i=1}^n$ be an i.i.d. sequence of Bernoulli variables with parameter $\alpha \in (0, 1/2]$, and consider the binomial random variable $Z_n = \sum_i X_i$. We want to prove for any $\delta \in (0, \alpha)$,

$$P(Z_n \le \delta n) \le \exp(-nKL(\delta||\alpha))$$
 $KL(\delta||\alpha) := \delta \log \frac{\delta}{\alpha} + (1 - \delta) \log \frac{1 - \delta}{1 - \alpha}$

where KL(p,q) is the Kullback-Leibler divergence between two bernoullis with parameters p,q respectively. Show that the above is strictly better than Hoeffding's inequality.

4. Now we will prove a lower bound on the binomial tail to show that indeed what you derived in the last question is sharp upto polynomial factors. Define $m = \lfloor n\delta \rfloor$ and $\delta' = \frac{m}{n}$.

1

- (a) Prove $\frac{1}{n} \log P(Z_n \le \delta n) \ge \frac{1}{n} \log \binom{n}{m} + \delta' \log \alpha + (1 \delta') \log(1 \alpha)$.
- (b) Show that

$$\frac{1}{n}\log\binom{n}{m} \ge -\delta'\log\delta' - (1-\delta')\log(1-\delta') - \frac{\log(n+1)}{n}$$

Hint: Use the fact that for $Y \sim Bin(n, m/n)$ P(Y = k) is maximized at k = m.

(c) Now show that

$$P(Z_n \le \delta n) \ge \frac{1}{n+1} \exp(-KL(\delta||\alpha))$$