Chương 3	Tích phân đường mặt
	Câu 1: Công thức tính tích phân $I = \int_{AB} f(x, y) ds$ với $AB: y = 2x^2, 0 \le x \le 1$
	A. $I = \int_0^1 f(x, 2x^2) \sqrt{2x^2 + 16x^2} dx$
	B. $I = \int_0^1 f(x, 2x^2) \sqrt{1 + 4x} dx$
	C. $I = \int_0^1 f(x, 2x^2) dx$
	D. $I = \int_0^1 \sqrt{1 + 16x^2} dx$
	E. $I = \int_0^1 f(x, 2x^2) \sqrt{1 + 16x^2} dx$
	F. $I = \int_0^1 f(x, 2x^2) \sqrt{1 + 2x^2} dx$
	Câu 2: Công thức tính tích phân $I = \int_{CD} f(x, y) ds$ với CD : $x = 2 - y, 0 \le y \le 2$
	A. $I = \int_0^2 f(2 - y, y) \sqrt{2 - y + [2 - y]^2} dy$
	B. $I = \int_0^2 f(2 - y, y) \sqrt{2} dy$
	C. $I = \int_0^2 f(2 - y, y) dy$
	D. $I = \int_0^2 \sqrt{2 - y + [2 - y]^2} dy$
	E. $I = \int_0^2 f(2 - y, y) y \sqrt{2} dy$
	F. $I = \int_0^2 f(2 - y, y) \sqrt{3 - y} dy$
	Câu 3: Tích phân $I = \int_{OA} (x + 2y) dx - (x - y) dy$; $OA: y = x^2$; $O(0,0) \rightarrow A(1,1)$.
	A. $I = \int_0^1 (x + 2x^2) dx$
	B. $I = \int_0^1 (x + 2x^2) dx - 2(x - x^2) dx$
	C. $I = \int_0^1 (x + 2x^2) dx - x(x - x^2) dx$
	D. $I = \int_0^1 2(x - x^2) dx$
	$E. I = \int_0^1 (x + 2x^2) dx - 2x dx$
	$F. I = \int_0^1 (x + 2x^2) dx - 2x(x - x^2) dx$
	Câu 4: Công thức tính tích phân $I = \iint_S f(x, y, z) dS$ với $S: z = 1 - x - y$; S có
	hình chiếu lên $(0xy)$ là $D_{xy} = \{0 \le x \le 1; 0 \le y \le 1 - x\}$ A. $I = \int_0^1 dx \int_0^{1-x} f(x, y, 1 - x - y) \sqrt{3} dy$
	B. $I = \int_0^1 dx \int_0^{1-x} f(x, y) \sqrt{3} dy$
	C. $I = \int_0^1 dx \int_0^{1-x} \sqrt{3} dy$
	D. $I = \int_0^1 dx \int_0^{1-x} f(x, y, 1 - x - y) dy$
	E. $I = \int_0^1 dx \int_0^{1-x} f(x, y, 1 - x - y) dy$
	F. $I = \int_0^1 dx \int_0^{1-x} f(x, y, 1 - x - y) \sqrt{2} dy$
	$\begin{bmatrix} 1 \cdot 1 - j_0 & \mu \lambda j_0 & j(\lambda, y, 1 - \lambda - y) \vee 2 \mu y \end{bmatrix}$

Câu 5: Tích phân $I = \int_C f(x, y) ds$ với $C: x^2 + y^2 = x$
A. $I = \int_{-\pi/2}^{\pi/2} f(r\cos\varphi, r\sin\varphi)\varphi d\varphi$
B. $I = \int_{-\pi/2}^{\pi/2} f(r\cos\varphi, r\sin\varphi) d\varphi$
C. $I = \int_{-\pi/2}^{\pi/2} f(r\cos\varphi, r\sin\varphi) \varphi^2 d\varphi$
D. $I = \int_{-\pi/2}^{\pi/2} f(r\cos\varphi, r\sin\varphi) d\varphi$
E. $I = \int_0^{\pi/2} f(r\cos\varphi, r\sin\varphi) d\varphi$
F. $I = \int_0^{\pi/2} f(r\cos\varphi, r\sin\varphi)\varphi d\varphi$
Câu 6: Công thức tính tích phân $I = \iint_S f(x,y,z)dS$ với $S: z = x^2 + y^2, 0 \le z \le 1$
1
A. $I = \int_0^{2\pi} d\varphi \int_0^1 f(r\cos\varphi, r\sin\varphi, r^2) \sqrt{1 + 4r^2} dr$
B. $I = \int_0^{2\pi} d\varphi \int_0^1 f(r\cos\varphi, r\sin\varphi, r^2) \sqrt{1 + r^2} dr$
C. $I = \int_0^{2\pi} d\varphi \int_0^1 f(r\cos\varphi, r\sin\varphi, r^2) \sqrt{1 + 4r^2} r dr$
D. $I = \int_0^{2\pi} d\varphi \int_0^1 f(r\cos\varphi, r\sin\varphi, r^2) dr$
E. $I = \int_0^{2\pi} d\varphi \int_0^1 f(r\cos\varphi, r\sin\varphi, r^2) r dr$
F. $I = \int_0^{2\pi} d\varphi \int_0^1 f(r\cos\varphi, r\sin\varphi) \sqrt{1 + 4r^2} r dr$
Câu 7: Tính tích phân $I = \int_{\mathcal{C}} (x+y)ds$, trong đó $\mathcal{C}: x+y=2$; $0 \le x \le 1$.
$A. I = 2\sqrt{2}$
B. $I = \sqrt{2}$
$C. I = \frac{1}{2}\sqrt{2}$ $D. I = 2$
$E. I = 2$ $E. I = -2\sqrt{2}$
$F. I = \frac{1}{2\sqrt{2}}$
Câu 8: Tính tích phân $I = \int_{OA} (x - y)^2 dx - (x + y)^2 dy$, lấy theo đường thẳng đi từ
O(0,0) đến $A(2,0)$.
A. $I = \frac{7}{3}$
B. $I = \frac{8}{3}$
C. $I = -\frac{8}{3}$ D. $I = -\frac{7}{3}$
E. $I = \frac{1}{3}$
F. $I = -\frac{1}{3}$
Câu 9: Tính tích phân $I = \int_{0A} xy dx + 2x^2 dy$, lấy theo đường thẳng $y - x = -1$ từ
A(0,-1) đến $B(1,0)$.
$A. I = -\frac{1}{2}$
B. $I = -1$ C. $I = 2$
 D. I = 0

1
E. $I = \frac{1}{2}$
F. I = 1
Câu 10: Tính tích phân $I = \int_C (x - y) ds$, trong đó C là đoạn thẳng nối $O(0,0)$ và
A(1,3).
A. $I = \frac{\sqrt{10}}{2}$
B. $I = \sqrt{10}$
C. $I = \frac{1}{\sqrt{10}}$ D. $I = \frac{1}{2}$
$E. I = -\sqrt{10}$
$F. I = \frac{2\sqrt{2}}{\sqrt{5}}$
100
Câu 11: Tính tích phân $I = \iint_S xzdS$, trong đó S là mặt $x + y + z - 1 = 0$ nằm
trong góc phần 8 thứ nhất.
A. $I = 1$ B. $I = 2$
C. I = 3
D. $I = \frac{\sqrt{3}}{8}$
$E. I = \sqrt{3}$
F. $I = \frac{\sqrt{3}}{24}$
24
Câu 12: Tính tích phân $I = \int_{(1,1)}^{(2,3)} (x+3y)dx + (y+3x)dy$
A. $I = \frac{1}{2}$
B. $I = \frac{11}{2}$
C. $I = \frac{21}{3}$
B. $I = \frac{11}{2}$ C. $I = \frac{21}{2}$ D. $I = \frac{41}{2}$ E. $I = -\frac{21}{2}$ F. $I = -\frac{41}{2}$
$E_{i} I = -\frac{21}{21}$
$E I = -\frac{41}{2}$
$1 \cdot 1 - \frac{1}{2}$

Chương 4	Phương trình vi phân
	Câu 13: Phương trình $y' + 2xy = xe^{-x^2}$ là phương trình vi phân
	A. Đẳng cấp
	B. Tách biến
	C. Béc-nu-li
	D. Tuyến tính cấp 1
	E. Vi phân toàn phần
	F. Tuyến tính cấp 2 hệ số hằng số
	Câu 14: Phương trình $(x + y + 1)dx + (x - y^2 + 3)dy = 0$ là phương trình vi
	phân A. Đẳng cấp
	B. Tách biến
	C. Béc-nu-li
	D. Tuyến tính cấp 1
	E. Vi phân toàn phần
	F. Tuyến tính cấp 2 hệ số hằng số
	Câu 15: Phương trình $y' + y = e^{\frac{x}{2}} \cdot \sqrt{y}$ là phương trình vi phân
	A. Đẳng cấp
	B. Tách biến
	C. Béc-nu-li
	D. Tuyến tính cấp 1
	E. Vi phân toàn phần
	F. Tuyến tính cấp 2 hệ số hằng số
	Câu 16: Phương trình $y' = \frac{x^2 - 2y^2}{xy}$ là phương trình vi phân
	A. Tuyến tính cấp 2 hệ số hằng số
	B. Vi phân toàn phần
	C. Tuyến tính cấp 1
	D. Béc-nu-li
	E. Tách biến
	F. Đẳng cấp
	Câu 17: Tìm nghiệm tổng quát của phương trình $\frac{dx}{1+x^2} + \frac{dy}{\sqrt{1-y^2}} = 0$
	A. $\arcsin x + \arctan y = C$
	B. $\arctan x + \arccos y = C$
	C. $\arctan x - \arcsin y = C$
	D. $\arctan x + \arcsin y = C$
	E. $\arctan x - \arccos y = C$
	F. $\arcsin x - \arctan y = C$
	Câu 18: Tìm nghiệm tổng quát của phương trình $y' + \frac{2}{x}y = 0$
	$A. y = \frac{1}{x}$
	B. $y = \frac{c}{x^3}$
	A. $y = \frac{c}{x}$ B. $y = \frac{c}{x^3}$ C. $y = \frac{c}{x^4}$ D. $y = Cx^2$
	$\sum_{x} y = \frac{1}{x^4}$
	$D. y = Cx^{-1}$ $E. y = Cx^{3}$
	$E. y = Cx^3$

$F. y = \frac{c}{x^2}$
Câu 19: Phương trình vi phân nào sau đây đưa được về dạng tách biến?
$A. xy^2 dx + (3 + x^2) \arctan y dy = 0$
B. $(x^2 + y^2)dx + (1 + x^2)\tan y dy = 0$
C. x2 ln y dx + (x + y) cos y dy = 0
D. $x^2 \ln y dx + (x+y) \sin y dy = 0$
E. $x^2(x+y) \ln y dx + (x-1)(1+y) dy = 0$
F. $(x^2 + y^2)dx + (1 + x^2) \cot y dy = 0$ Câu 20: Tìm nghiệm tổng quát của phương trình $\frac{2xdx}{1+x^2} + \frac{ydy}{\sqrt{1-y^2}} = 0$
A. $\ln(1+x^2) + \arcsin y = C$
B. $\ln(1+x^2) + \sqrt{1-y^2} = C$
C. $\arctan x + \sqrt{1 - y^2} = C$
D. $\ln(1+x^2) - \sqrt{1-y^2} = C$
E. $\operatorname{arccot} x + \sqrt{1 - y^2} = C$
F. $ln(1+x^2) + arccos y = C$
Câu 21: Tìm nghiệm tổng quát của phương trình vi phân $y'' + y' + y = 0$
A. $y = e^{\frac{x}{2}} (C_1 \cos{\frac{\sqrt{3}}{2}} x + C_2 \sin{\frac{\sqrt{3}}{2}} x)$
B. $y = e^x (C_1 \cos \frac{\sqrt{3}}{2} x + C_2 \sin \frac{\sqrt{3}}{2} x)$
C. $y = e^{\frac{x}{2}} (C_1 \cos{\frac{x}{2}} + C_2 \sin{\frac{x}{2}})$
D. $y = e^{-\frac{x}{2}} (C_1 \cos \frac{x}{2} + C_2 \sin \frac{x}{2})$
E. $y = e^{-\frac{x}{2}} (C_1 \cos \frac{\sqrt{3}}{2} x + C_2 \sin \frac{\sqrt{3}}{2} x)$
F. $y = e^{-x} (C_1 \cos \frac{\sqrt{3}}{2} x + C_2 \sin \frac{\sqrt{3}}{2} x)$
Câu 22: Phương trình vi phân $y'' + 2y' = x$ có một nghiệm riêng dạng
$A. y = (x + A)e^x$
B. $y = Ax + B$
C. $y = x(Ax + B)$
D. $y = xAe^x$ E. $y = Ae^x$
$F. y = (Ax + B)e^x$
Câu 23: Tìm nghiệm riêng của phương trình vi phân $y'' - y = \sin x$
$A. y = \frac{1}{2} \sin x$
$B. y = \frac{1}{2} \cos x$
$C. y = -\sin x$
$D. y = -\frac{1}{2}\sin x$
$E. y = -\cos x$
$F. y = -\frac{1}{2}\cos x$
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Câu 24: Tìm nghiệm riêng của phương trình vi phân $y'' - 4y = xe^{2x}$
$A. y = x \left(x - \frac{1}{2}\right) e^{2x}$
B. $y = \frac{1}{8}x\left(x - \frac{1}{2}\right)e^{-2x}$
C. $y = -\frac{1}{8}x\left(x + \frac{1}{2}\right)e^{2x}$
D. $y = \frac{1}{8}x\left(x + \frac{1}{2}\right)e^{-2x}$
$E. y = \frac{1}{8}x\left(x - \frac{1}{2}\right)e^{2x}$
$F. y = \frac{1}{8} x \left(x + \frac{1}{2} \right) e^{2x}$
Câu 25: Tìm nghiệm tổng quát của phương trình $y'' - 2y' - 3y = x$
A. $y = C_1 e^x + C_2 e^{-3x} - \frac{1}{3}x + \frac{2}{9}$
B. $y = C_1 e^x + C_2 e^{-3x} + \frac{1}{3}x + \frac{2}{9}$
C. $y = C_1 e^x + C_2 e^{-3x} - \frac{3}{3}x - \frac{2}{9}$
D. $y = C_1 e^{-x} + C_2 e^{3x} - \frac{1}{3}x + \frac{2}{9}$
E. $y = C_1 e^{-x} + C_2 e^{3x} - \frac{1}{3}x - \frac{2}{9}$
F. $y = C_1 e^{-x} + C_2 e^{3x} + \frac{1}{3}x + \frac{2}{9}$