

一、一元向量值函数及其导数 空间曲线条数方程: $\chi = \varphi(t)$, $\chi = \varphi(t)$,

向量刑式: r=xi+yj+zk, f(t)= φ(t)i+ψ(t)j+ω(t)k 向量方程: r=f(t), t ∈ [α,β].

定义1:设数集DCR,则称映射 \vec{f} :D \rightarrow R"为一元向量值函数,通常记为 \vec{r} = \vec{f} (t),t \in D,其中数集D称为函数的定义域,七为自变量,产为因变量.

在 R^3 中, $\vec{f}(t) = f_1(t)\vec{i} + f_2(t)\vec{j} + f_3(t)\vec{k}$, $t \in D$ 或 $\vec{f}(t) = (f_1(t), f_2(t), f_3(t))$, $t \in D$

定义2:向量值函数 $\vec{f}(t)$ 当 $t\to t$ 0时的极限: $\lim_{t\to 0} \vec{f}(t) = \vec{r_0}$.

$$\lim_{t\to t_0} \vec{f}(t) = \left(\lim_{t\to t_0} f_1(t), \lim_{t\to t_0} f_2(t), \lim_{t\to t_0} f_3(t)\right)$$

若 $\lim_{t\to 0} \vec{f}(t) = \vec{f}(t_0)$, 则称, $\vec{f}(t)$ 在 to 连续.

例
$$\vec{f}(t) = (cost)\vec{i} + (sint)\vec{j} + t\vec{k}$$
.
lim $\vec{f}(t) = (lim cost)\vec{i} + (lim sint)\vec{j} + (lim t)\vec{k}$
 $t \to \vec{4}$

$$= \frac{1}{2}\vec{i} + \frac{1}{2}\vec{j} + \frac{1}{4}\vec{k}$$

例2. $\vec{r} = \vec{f}(t) = (t^2+1, 4t-3, 2t^2-6t), t \in \mathbb{R}$,求派 曲线在与t=2相应点处的单位切向量.

解:
$$f'(t) = (2t, 4, 4t-6)$$

 $f'(2) = (4, 4, 2)$
 $|f'(2)| = 6$

六单位切向重为±(3,3,3).

二、空间曲线的切线与法平面

空间曲线条数方程:
$$\chi = \varphi(t)$$
, $\chi = \varphi(t)$,

$$\vec{f}(t) = (\varphi(t), \psi(t), \omega(t))$$

$$\vec{f} = \vec{f}'(t_0) = (\varphi'(t_0), \psi'(t_0), \omega'(t_0))$$

切线方程(点向式):

$$\frac{x-x_0}{\varphi'(t_0)} = \frac{y-y_0}{\varphi'(t_0)} = \frac{z-z_0}{w'(t_0)}$$

法平面(点法式):

例 1. 求曲线 x=t, y=t², z=t³ 在 (1,1,1) 处的切线 及法平面方程.

解:
$$x' = 1$$
, $y' = 2t$, $z' = 3t^2$, $t = 1$
: $T = (1, 2, 3)$

:、切线
$$\frac{x-1}{1} = \frac{y-1}{2} = \frac{2-1}{3}$$

法平面: X+2y+32+1)=0,代入(1,1,1)橮:

$$D = -6$$

$$\Rightarrow x + 2y + 3z - 6 = 0$$

若空间曲线方程为
$$\begin{cases} y = \varphi(x) \\ z = \psi(x) \end{cases} \Rightarrow \begin{cases} \chi = \chi \\ y = \varphi(x) \\ z = \psi(x) \end{cases}$$

二在 $M(x_0, y_0, z_0)$ 处的切线为: $\frac{x-x_0}{1} = \frac{y-y_0}{\varphi'(x_0)} = \frac{z-z_0}{\varphi'(x_0)}$ 法平面: $(x-x_0) + \varphi'(x_0)(y-y_0) + \varphi'(x_0)(z-z_0) = 0$

例5. 求曲线 $\chi^2 + y^2 + z^2 = 6$, $\chi + y + z = 0$ 在点 (1,-2,1) 处的切线及法平面方程.

解:
$$\begin{cases} \chi^2 + y^2 + z^2 = 6 \\ \chi + y + z = 0 \end{cases}$$

$$\frac{dy}{dx} + \frac{dz}{dx} = -1$$

$$\frac{dy}{dx} = \frac{\begin{vmatrix} 1^{-x} z \\ -1 z \end{vmatrix}}{\begin{vmatrix} y z \\ 1 \end{vmatrix}} = \frac{z - x}{y - z}, \quad \frac{dz}{dx} = \frac{\begin{vmatrix} y - x \\ -1 z \end{vmatrix}}{\begin{vmatrix} y z \\ 1 \end{vmatrix}} = \frac{x - y}{y - z}$$

$$\frac{dy}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,1)} = -1$$

$$\frac{dz}{dx} \Big|_{(1,-2,1)} = 0, \quad \frac{dz}{dx} \Big|_{(1,-2,$$

三、曲面的切平面与法线

切平面(点法式):

Fx (xo,yo, 20) (x-xo)+Fy (xo,yo,20)(y-yo)+Fz(xo,yo,20)(2-20) = 0

法线(点向式):

$$\frac{\chi - \chi_0}{F_{\lambda}(\chi_0, y_0, \xi_0)} = \frac{y - y_0}{F_{\lambda}(\chi_0, y_0, \xi_0)} = \frac{z - \xi_0}{F_{\lambda}(\chi_0, y_0, \xi_0)}$$

例 6. 求球面 $\chi^2 + y^2 + z^2 = 14$ 在点(1,2,3)处的切平 而 3 法线公积。

解:
$$F(x,y,z) = x^2 + y^2 + z^2 - 14$$

 $F_x = 2x$, $F_y = 2y$, $F_z = 2z$
二前 = (2,4,6)

$$P_{X}(x,y,z) = f_{X}(x,y), F_{Y}(x,y,z) = f_{Y}(x,y), F_{Z}(x,y,z) = -1$$

法线:
$$\frac{x-x_0}{f_{x}(x_0,y_0)} = \frac{y-y_0}{f_{y}(x_0,y_0)} = \frac{z-z_0}{-1}$$

方向余弦:

$$\cos \alpha = \frac{-f_x}{\sqrt{1+f_x^2+f_y^2}}$$
, $\cos \beta = \frac{-f_y}{\sqrt{1+f_x^2+f_y^2}}$,

$$\cos \gamma = \frac{1}{\sqrt{1+f_x^2+f_y^2}}$$

例7. 求旋转抛物图 ≥= x +y -1 在点(2,1,4)处的切平面及法线方程。

解:
$$f(x,y) = x^2 + y^2 - 1$$

 $f_x = 2x$, $f_y = 2y$, $f_z = -1$

$$|\vec{n}|_{(2,1,4)} = (4,2,-1)$$

法线:
$$\frac{x_{-2}}{4} = \frac{y_{-1}}{2} = \frac{z_{-4}}{-1}$$