MAY 2 6 2004 & PADEMARK OFFICE PADEMARK OFFICE

SEQUENCE LISTING

BARCHFELD, Gail DEL GIUDICE, Giuseppe RAPPUOLI, Rino

- <120> DETOXIFIED MUTANTS OF BACTERIAL ADP RIBOSYLATING TOXINS AS PARENTERAL ADJUVANTS
- <130> 2302 1393 / PP01393.002
- <140> 09/044,696
- <141> 1998 03 18
- <160> 4
- <170> PatentIn Ver. 2.0
- <210> 1
- <211> 711
- <212> DNA
- <213> Artificial Sequence
- <220>
- <221> CDS
- <222> (1)..(708)
- <220>
- <223> Description of Artificial Sequence: wild-type Subunit A from E. coli heat labile toxin
- <400> 1
- aat ggc gac aga tta tac cgt gct gac tct aga ccc cca gat gaa ata 48 Asn Gly Asp Arg Leu Tyr Arg Ala Asp Ser Arg Pro Pro Asp Glu Ile 1 5 10 15
- aaa cgt ttc cgg agt ctt atg ccc aga ggt aat gag tac ttc gat aga 96 Lys Arg Phe Arg Ser Leu Met Pro Arg Gly Asn Glu Tyr Phe Asp Arg 20 25 30
- gga act caa atg aat att aat ctt tat gat cac gcg aga gga aca caa 144 Gly Thr Gln Met Asn Ile Asn Leu Tyr Asp His Ala Arg Gly Thr Gln 35 40 45
- acc ggc ttt gtc aga tat gat gac gga tat gtt tcc act tct ctt agt 192
 Thr Gly Phe Val Arg Tyr Asp Asp Gly Tyr Val Ser Thr Ser Leu Ser
- ttg aga agt gct cac tta gca gga cag tat ata tta tca gga tat tca 240 Leu Arg Ser Ala His Leu Ala Gly Gln Tyr Ile Leu Ser Gly Tyr Ser 65 70 75 80
- ctt act ata tat atc gtt ata gca aat atg ttt aat gtt aat gat gta 288 Leu Thr Ile Tyr Ile Val Ile Ala Asn Met Phe Asn Val Asn Asp Val 85 90 95
- att agc gta tac agc cct cac cca tat gaa cag gag gtt tct gcg tta 336

Ile Ser Val	Tyr Ser	Pro His	Pro	Tyr	Glu	Gln	Glu	Val	Ser	Ala	Leu	
	100			105					110			
ggt gga ata Gly Gly Ile 115												384
ggt gtg att Gly Val Ile 130												432
tat tac aga Tyr Tyr Arg 145												480
gca ggt ttc Ala Gly Phe												528
cat cat gca His His Ala			Gly .									576
gat act tgt Asp Thr Cys 195												624
gaa tat caa Glu Tyr Gln 210	tca aaa Ser Lys	gtt aag Val Lys 215	agg Arg	cag Gln	ata Ile	ttt Phe	tca Ser 220	gac Asp	tat Tyr	cag Gln	tca Ser	672
gag gtt gac Glu Val Asp 225								tga				711
<210> 2 <211> 236 <212> PRT <213> Artificial Sequence												
<220> <223> Description of Artificial Sequence: wild-type Subunit A from E. coli heat labile toxin												
<400> 2 Asn Gly Asp 1	Arg Leu 5	Tyr Arg	Ala	Asp	Ser 10	Arg	Pro	Pro	Asp	Glu 15	Ile	
Lys Arg Phe	Arg Ser 20	Leu Met	Pro 1	Arg 25	Gly	Asn	Glu	Tyr	Phe 30	Asp	Arg	
Gly Thr Gln 35	Met Asn	Ile Asn	Leu '	Tyr	Asp	His	Ala	Arg 45	Gly	Thr	Gln	
Thr Gly Phe	Val Arg	Tyr Asp	Asp (Gly	Tyr	Val	Ser	Thr	Ser	Leu	Ser	

Leu Arg Ser Ala His Leu Ala Gly Gln Tyr Ile Leu Ser Gly Tyr Ser 65 70 75 80 Leu Thr Ile Tyr Ile Val Ile Ala Asn Met Phe Asn Val Asn Asp Val 90 Ile Ser Val Tyr Ser Pro His Pro Tyr Glu Gln Glu Val Ser Ala Leu 100 105 110 Gly Gly Ile Pro Tyr Ser Gln Ile Tyr Gly Trp Tyr Arg Val Asn Phe 120 Gly Val Ile Asp Glu Arg Leu His Arg Asn Arg Glu Tyr Arg Asp Arg 135 140 Tyr Tyr Arg Asn Leu Asn Ile Ala Pro Ala Glu Asp Gly Tyr Arg Leu 145 150 Ala Gly Phe Pro Pro Asp His Gln Ala Trp Arg Glu Glu Pro Trp Ile His His Ala Pro Gln Gly Cys Gly Asp Ser Ser Arg Thr Ile Thr Gly 180 185 Asp Thr Cys Asn Glu Glu Thr Gln Asn Leu Ser Thr Ile Tyr Leu Arg 195 200 Glu Tyr Gln Ser Lys Val Lys Arg Gln Ile Phe Ser Asp Tyr Gln Ser 215 Glu Val Asp Ile Tyr Asn Arg Ile Arg Asp Glu Leu 225 230 235

60

55

<210> 3 <211> 723 <212> DNA

<220>

50

<213> Artificial Sequence

<220> <221> CDS <222> (1)..(720)

<223> Description of Artificial Sequence: wild-type CT
 subunit A

Lys Gln Ser Gly Gly Leu Met Pro Arg Gly Gln Ser Glu Tyr Phe Asp

3

25

30

20

- <210> 4
- <211> 240
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: wild-type CT subunit A
- <400> 4
- Asn Asp Asp Lys Leu Tyr Arg Ala Asp Ser Arg Pro Pro Asp Glu Ile 1 5 10 15
- Lys Gln Ser Gly Gly Leu Met Pro Arg Gly Gln Ser Glu Tyr Phe Asp 20 25 30
- Arg Gly Thr Gln Met Asn Ile Asn Leu Tyr Asp His Ala Arg Gly Thr 35 40 45
- Gln Thr Gly Phe Val Arg His Asp Asp Gly Tyr Val Ser Thr Ser Ile 50 55 60
- Ser Leu Arg Ser Ala His Leu Val Gly Gln Thr Ile Leu Ser Gly His 65 70 75 80
- Ser Thr Tyr Tyr Ile Tyr Val Ile Ala Thr Ala Pro Asn Met Phe Asn 85 90 95
- Val Asn Asp Val Leu Gly Ala Tyr Ser Pro His Pro Asp Glu Gln Glu
 100 105 110
- Val Ser Ala Leu Gly Gly Ile Pro Tyr Ser Gln Ile Tyr Gly Trp Tyr 115 120 125
- Arg Val His Phe Gly Val Leu Asp Glu Gln Leu His Arg Asn Arg Gly 130 135 140
- Gly Tyr Gly Leu Ala Gly Phe Pro Pro Glu His Arg Ala Trp Arg Glu 165 170 175
- Glu Pro Trp Ile His His Ala Pro Pro Gly Cys Gly Asn Ala Pro Arg 180 185 190
- Ser Ser Ile Ser Asn Thr Cys Asp Glu Lys Thr Gln Ser Leu Gly Val 195 200 205
- Lys Phe Leu Asp Glu Tyr Gln Ser Lys Val Lys Arg Gln Ile Phe Ser 210 225 220
- Gly Tyr Gln Ser Asp Ile Asp Thr His Asn Arg Ile Lys Asp Glu Leu 225 230 235 240