Bipartite Entanglement Entropy

Aditya Chincholi June 28, 2021

Quasiperiodic Kicked Rotor

What I did earlier

Constructing the full floquet operator in a single basis.

What I did earlier

- Constructing the full floquet operator in a single basis.
- Using a density matrix the whole time for calculations.

What I did earlier

- Constructing the full floquet operator in a single basis.
- Using a density matrix the whole time for calculations.
- This has the drawback of increasing computational complexity of each individual step and the memory used at any given time is large.

• Separate the floquet operator into momentum space and position space parts.

- Separate the floquet operator into momentum space and position space parts.
- Use a single pure state for calculations.

- Separate the floquet operator into momentum space and position space parts.
- Use a single pure state for calculations.
- Fourier transform the state at each time step and apply both parts of the floquet operator in their resp. basis.

- Separate the floquet operator into momentum space and position space parts.
- Use a single pure state for calculations.
- Fourier transform the state at each time step and apply both parts of the floquet operator in their resp. basis.
- This is better as the memory used is less but computation increases. Since fourier transforms are computationally cheap anyway, so it's fine.

- Separate the floquet operator into momentum space and position space parts.
- Use a single pure state for calculations.
- Fourier transform the state at each time step and apply both parts of the floquet operator in their resp. basis.
- This is better as the memory used is less but computation increases. Since fourier transforms are computationally cheap anyway, so it's fine.
- Peak memory required scales the same way but we have reduced it by a constant factor and it is not used in all calculations.

Results

We use
$$\hbar=2.85, \omega_2=2\pi\sqrt{5}, \omega_3=2\pi\sqrt{13}$$
 , the momentum ranges from -10 to 10

$$H = \frac{p_1^2}{2} + p_2\omega_2 + p_3\omega_3 + K\cos(\theta_1)(1 + \alpha\cos(\theta_2)\cos(\theta_3))\sum_n \delta(t-n)$$

Figure 1: Precritical (Insulator): $K = 4, \alpha = 0.2$

Figure 2: Critical: $K = 6.36, \alpha = 0.4375$

Figure 3: Post-critical (Metal): $K = 8, \alpha = 0.8$

• I don't see much of a trend here. The entanglement grows faster and higher with higher K values i.e. more diffusive the regime higher the entanglement for the same number of time steps but other than that, I don't see anything here.

• What I was doing: $|\psi\rangle \to \rho \to \rho_1 = \textit{Tr}_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.

- What I was doing: $|\psi\rangle \to \rho \to \rho_1 = \textit{Tr}_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- What I realized: $|\psi\rangle \to \rho_1 = \textit{Tr}_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.

- What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- What I realized: $|\psi\rangle \to \rho_1 = \textit{Tr}_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.
- I used these params to generate the following results: p-basis = [-100, 100], 80 timesteps, $\omega_2=2\pi\sqrt{5}$, $\omega_3=2\pi\sqrt{13}$, $\hbar=2.85$.

9

- What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- What I realized: $|\psi\rangle \to \rho_1 = \textit{Tr}_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.
- I used these params to generate the following results: p-basis = [-100, 100], 80 timesteps, $\omega_2=2\pi\sqrt{5}$, $\omega_3=2\pi\sqrt{13}$, $\hbar=2.85$.
- We plot the following quantities:

- What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- What I realized: $|\psi\rangle \to \rho_1 = \textit{Tr}_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.
- I used these params to generate the following results: p-basis = [-100, 100], 80 timesteps, $\omega_2=2\pi\sqrt{5}$, $\omega_3=2\pi\sqrt{13}$, $\hbar=2.85$.
- We plot the following quantities:
 - $P(p_1 = m\hbar)$

- What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- What I realized: $|\psi\rangle \to \rho_1 = \textit{Tr}_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.
- I used these params to generate the following results: p-basis = [-100, 100], 80 timesteps, $\omega_2=2\pi\sqrt{5}$, $\omega_3=2\pi\sqrt{13}$, $\hbar=2.85$.
- We plot the following quantities:
 - $P(p_1 = m\hbar)$
 - $E = p_1^2/2 + p_2\omega_2 + p_3\omega_3$

9

- What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- What I realized: $|\psi\rangle \to \rho_1 = \textit{Tr}_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.
- I used these params to generate the following results: p-basis = [-100, 100], 80 timesteps, $\omega_2=2\pi\sqrt{5}$, $\omega_3=2\pi\sqrt{13}$, $\hbar=2.85$.
- We plot the following quantities:
 - $P(p_1 = m\hbar)$
 - $E = p_1^2/2 + p_2\omega_2 + p_3\omega_3$
 - $S = -\rho_1 ln(\rho_1)$

9

Momentum (p_1) distributions

Figure 4: K = 3, α = 0.1

Momentum (p_1) distributions

Figure 5: K = 6.36, α = 0.4375

Momentum (p_1) distributions

Figure 6: K = 7, α = 0.8

Energy

Figure 7: K = 3, $\alpha = 0.1$

Energy

Figure 8: K = 6.36, $\alpha = 0.4375$

Energy

Figure 9: K = 7, $\alpha = 0.8$

Entropy

Figure 10: K = 3, $\alpha = 0.1$

Entropy

Figure 11: K = 6.36, α = 0.4375

Entropy

Figure 12: K = 7, $\alpha = 0.8$