1/34/1

DIALOG(R)File 351:Derwent WPI (c) 2003 Thomson Derwent. All rts. reserv.

013577359

WPI Acc No: 2001-061566/ 200107

Ink-jet transfer system for printing textile substrate by e.g. iron-on method, has base coated with hot melt adhesive containing fine spherical polyester particles, white pigmented elastic plastics background layer and ink-receptive layer

Patent Assignee: OCE SCHWEIZ AG (CHEZ); ARKWRIGHT INC (ARKW-N)

Inventor: BAMBERG U; KUMMER P; STIBUREK I Number of Countries: 087 Number of Patents: 003

Patent Family:

Kind Date Applicat No Kind Date Week Patent No

A 19990601 200107 B W@ 200073570 A1 20001207 WO 99IB976

A 19990601 200118 A 20001218 AU 9938418 AU 9938418

A 19990601 WO 991B976

A 19990601 200222 A1 20020227 EP 99921049 EP 1181409

A 19990601 WO 99IB976

Priority Applications (No Type Date): WO 99IB976 A 19990601

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

WO 200073570 A1 G 29 D06Q-001/12

Designated States (National): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU ČZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK

SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GH GM GR

IE IT KE LS LU MC MW NL OA PT SD SE SL SZ UG ZW

D06Q-001/12 Based on patent WO 200073570 AU 9938418 A

EP 1181409 A1 G D06Q-001/12 Based on patent WO 200073570

Designated States (Regional): CH DE FR GB IT LI NL

Abstract (Basic): WO 200073570 A1

NOVELTY - Ink-jet transfer system comprises:

(a) a base material; coated with

(b) a hot melt adhesive layer containing dispersed spherical

polyester particles finer than 30 microns; and then

(c) a white background layer of elastic plastics, not melting at temperatures up to 220degreesC, which is filled with white inorganic pigments; and

(d) ink-receptive layer(s).

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for:

(a) the production of this system; and

(b) a process for printing textile substrates, using this system.

USE - The system is used in transfer printing on textile substrates (claimed), especially on articles of clothing, e.g. T-shirts, sweat-shirts and shirts, and also on other textile substrates, e.g.

mouse pads.

ADVANTAGE - Transfer printing on dark textile substrates is difficult, as the dyes are transparent against dark backgrounds and a light contrast background must be provided. An existing 2-stage process gives inadequate fastness to washing and adhesion, whilst a 1-stage process using white transfer film gives a mat, blurred, relatively thick, non-breathable image. Neither system is suitable for iron-on transfer by individual consumers. The present system gives high contrast and definition on dark substrates, good adhesion and good fastness to washing. Transfer is very simple, i.e. involves only 1 stage, and the system is suitable for iron-on transfer.

pp; 29 DwgNo 0/0

Technology Focus:

TECHNOLOGY FOCUS - IMAGING AND COMMUNICATION - Process: For printing textile substrates, a right-side computer graphic is printed on the system and ironed onto the textile substrate. After cooling, the base is peeled off cold.

INORGANIC CHEMISTRY - Preferred Pigments: The white background layer is pigmented with BaSO4 (barium sulfate), ZnS (zinc sulfide), TiO2 (titanium dioxide), ZnO (zinc oxide) and/or SbO.

ORGANIC CHEMISTRY - Preferred Composition: The system also contains a dispersant for organic pigments.

POLYMERS - Preferred Receptive Layer: The molecules of the receptive layer and/or its binder are capable of forming chemical, especially covalent, bonds with the dye molecules of the ink and preferably have reactive groups, especially amino groups, forming covalent bonds with dye molecules, especially azo or acid dye molecules. The receptive layer especially contains a highly porous polyamide pigment, with a surface area of not less than 15, preferably 20-30 m2/g and average particle size of 2-25 (especially 2-10) microns, and a soluble polyamide as binder. The polyamide pigment is obtained by anionic polyaddition, followed by controlled precipitation, the particle size being regulated by stopping precipitation. The pigment/binder ratio is (5-1):1 (preferably (3-2):1, especially 2.4:1.).

Preferred Materials: The base consists of heat-resistant release paper, preferably silicone paper. The hot melt adhesive layer contains or consists of a polyester, especially a blend of an ethylene-acrylic acid copolymer and polyester particles with a size at most 20 microns. Suitable elastic resins for the white background layer are polyacrylates, polyalkylenes and especially polyurethanes.

- Preferred Production: The system is produced by:
- (a) applying a 30-40 microns thick layer of the hot melt adhesive to the base;
 - (b) applying the white background layer;
- (c) applying ink-receptive layer(s) with a total thickness of 20-35 microns; and
 - (d) allowing the solvent to evaporate during coating. Preferably, two ink-receptive layers are applied.

Derwent Class: A97; F06; G05; P75; P78 International Patent Class (Main): D06Q-001/12 International Patent Class (Additional): B41M-005/035; B44C-001/17

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 7. Dezember 2000 (07.12.2000)

PCT

(10) Internationale Veröffentlichungsnummer WO 00/73570 A1

(51) Internationale Patentklassifikation?: B41M 5/035, B44C 1/17

D06Q 1/12,

(21) Internationales Aktenzeichen:

PCT/IB99/00976

(22) Internationales Anmeldedatum:

1. Juni 1999 (01.06.1999)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): OCÉ (SCHWEIZ) AG [CH/CH]; Sägereistrasse 29, CH-8152 Glattbrugg (CH).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): BAMBERG, Ulf [DE/DE]; Kastanienweg 8, D-79798 Jestetten (DE). KUMMER, Pater [CH/CH]; Schaffhauserstrasse 19, CH-8213 Neunkirch (CH). STIBUREK, Ilona [CH/CH]; Köchlistrasse 6, CH-8004 Zürich (CH).
- (74) Anwalt: E. BLUM & CO.; Vorderberg 11, CH-8044 Zürich (CH).

- (81) Bestimmungsstaaten (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE. ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (34) Bestimifungsetanten (regional). ARIPO Palent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

Mit internationalem Recherchenbericht.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: INKJET TRANSFER SYSTEMS FOR DARK TEXTILE SUBSTRATES
- (54) Bezeichnung: TINTENSTRAHL-TRANSFERSYSTEME FÜR DUNKLE TEXTILSUBSTRATE
- (57) Abstract: The invention relates to an inkjet transfer system and to a transfer printed product for dark textile substrates which is highly wash-resistant and color-fast while being ecologically friendly. The invention further relates to a method of producing said system and to a printing process that uses the inventive inkjet transfer system. The inventive inkjet transfer system comprises a substrate, a hot-melt layer that is applied on said substrate and that has spherical polyester particles of a grain size of less than 30 µm that have been dispersed into said layer. It further comprises a white background layer that consists of an elastic synthetic material that does not melt at temperatures of up to 220 °C, that is filled with white inorganic pigments and that is applied on the hot-melt layer. It also includes an ink receiving layer.
- (57) Zusammenfassung: Beschrieben wird ein Tintenstrahl-Transfersystem bzw. Transferdruck für dunkle Textilsubstrate, welches ein hohes Mass an Waschechtheit und Farbechtheit sowie gutes ökologisches Verhalten aufweist, sowie ein Verfahren zu dessen Herstellung und die Verwendung für ein Druckverfahren mit Hilfe des erfindungsgemässen Tintenstrahl-Transfersystems. Das erfindungsgemässe Tintenstrahl-Transfersystem umfasst ein Trägermaterial, eine auf dem Trägermaterial aufgebrachte Hotmeltschicht, welche eindispergierte, sphärische Polyesterteilchen von einer Korngrösse von weniger als 30 µm aufweist, eine weisse Hintergrundschicht, bestehend aus einem bei Temperaturen von bis 220 °C nicht-schmelzbaren, elastischen Kunststoff, welcher mit weissen anorganischen Pigmenten gefüllt ist, auf der Hotmeltschicht und mindestens eine Tintenaufnahmeschicht.

NO 00/73570 A1

5

Tintenstrahl-Transfersysteme für dunkle Textilsubstrate

Technisches Gebiet

Die vorliegende Erfindung betrifft ein Tintenstrahl-Transfersystem bzw. ein Tintenstrahl-Transferdruck gemäss dem Oberbegriff des Anspruchs 1, sowie ein Verfahren gemäss den unabhängigen Ansprüchen 14 und 16.

Stand der Technik

Transferdrucke erfreuen sich einer grossen 15 Beliebtheit, weil sie das Aufbringen von beliebigen graphischen Darstellungen, Mustern, Bildern oder Schriftbildern insbesondere auf Kleidungsstücke wie T-Shirts, Sweat-Shirts, Hemden oder auch andere Textilsubstrate wie beispielsweise Mousepads ermöglichen. Von besonderem In-20 teresse sind Tintenstrahl-Transfersysteme (Tintenstrahl-Transferdrucke), die den potentiellen Benutzern die Möglichkeit der individuellen Auswahl des elektronisch verarbeitbaren und mittels Computer abspeicherbaren graphischen Darstellungen gibt und vom Benutzer letztendlich 25 selbst auf seinem gewünschten Kleidungsstück bzw. einem anderen Textilsubstrat (Unterlage) aufgedruckt bzw. aufgebügelt werden kann. Dabei wird in einem ersten Schritt vom Benutzer des Transferdrucks mittels Computer das gewünschte, elektronisch verarbeitbare Bild erzeugt, wel-30 ches vom Computer zu einem geeigneten Drucker, beispielsweise einem Tintenstrahldrucker, geleitet wird, der wiederum das gewünschte Bild auf das Transfersystem ausdruckt. Der so erzeugte Transferdruck muss dabei eine Beschaffenheit aufweisen, welcher die Weiterverwendung zum 35 Aufdrucken auf beispielsweise ein Textilsubstrat erlaubt. Mit Hilfe eines geeigneten Transferdrucks wird die gewünschte graphische Darstellung auf das gewünschte Textilsubstrat zur Haftung aufgebracht. Üblicherweise werden

graphische Darstellungen unter Zufuhr von Wärme und Druck über einen Heissabzug und gegebenenfalls durch einen vorgängigen Kaltabzug auf das gewünschte Textilsubstrat appliziert.

5

In den letzten Jahren wurden Anstrengungen unternommen, um die Heiss-Transfersysteme zu verbessern sowie den Aufdruck der gewünschten graphischen Darstellung auf das Textilsubstrat mit einer zufriedenstellenden Qualität zu ermöglichen.

So beschreibt beispielsweise US-5,242,739 ein bildaufnahmefähiges, wärmeempfindliches Transferpapier, welches die folgenden Bestandteile umfasst: (a) ein flexibles zellulosehaltiges, ungewobenes, gewebeartiges Papier, welches eine obere und eine untere Oberfläche aufweist und (b) eine bildaufnahmefähige Schmelztransfer-Filmschicht, welche sich auf der oberen Oberfläche der Blattunterlage befindet, c) sowie gegebenenfalls eine Hotmelt-Zwischenschicht. Die Filmschicht besteht zu etwa 15 bis 80 Gew.-% aus einem filmbildenden Bindemittel und zu etwa 85 bis etwa 20 Gew.-% aus einem pulverförmigen thermoplastischen Polymer, wobei das filmbildende Bindemittel und das thermoplastische Polymer einen Schmelzpunkt von zwischen etwa 65°C und 180°C aufweist.

US-5,501,902 stellt eine Weiterentwicklung von US-5,242,739 dar, welche ebenfalls aus einem Zwei-Schichtensystem besteht, wobei allerdings zur Verbesserung des Druckbildes noch ein Tintenviskositätsmittel enthalten ist. Ausserdem ist im Transferdruck von US-5,501,902 zur Verbesserung der Tintenaufnahmefähigkeit vorzugsweise noch ein kationisches, thermoplastisches Polymer enthalten.

Als Pigmente für die Aufnahme des Tintenfarbstoffes werden im Stand der Technik üblicherweise Polyester, Polyethylenwachs, Ethylen-Vinylacetat-Copolymere und als Bindemittel Polyacrylate, Styrol-Vinylacetat-Copolymere, Nitrilrubber, Polyvinylchlorid, Polyvinylacetat, Ethylenacrylat-Copolymere und Melaminharze genannt.

In WO 98/30749 (Océ-Schweiz) wird ein Tintenstrahl-Transfersystem beschrieben, welches ein Trägermaterial, eine auf dem Trägermaterial aufgebrachte Hotmeltschicht und mindestens eine Tintenaufnahmeschicht umfasst. Die Tintenaufnahmeschicht ist dabei eine Mischung eines hochporösen Pigments und eines Bindemittels, wobei die Moleküle des Pigments und gegebenenfalls des Bindemittels sowie gegebenenfalls des Hotmelts zur Ausbildung von chemischen Bindungen mit den Farbstoffmole-

Eine besondere Problematik tritt allerdings bei Transferdrucken auf, welche auf eine dunkle Textilunterlage aufgebracht werden sollen. Da die Farbstoffe 15 gegen dunkle Hintergründe transparent sind, d.h. maximal als Schatten wahrnehmbar sind, muss zuerst ein heller Kontrasthintergrund geschaffen werden, um so das gewünschte farbige Bild besser sichtbar zu machen. Gemäss dem Stand der Technik, wird dazu ein Transferdruck auf ein dunkles Textilteil im Rahmen eines 2-Schritte-Verfahrens oder eines 1-Schritt-Verfahrens aufgebracht. Im Fall des herkömmlichen 2-Schritte-Verfahrens wird ein weisses, auf der Rückseite mit Schmelzkleber ausgerüstetes Textilgewebe, mit einer in einem xerographischen Verfahren (oder 25 Ink-Jet) bedruckten Transferfolie laminiert und dann mit der Schmelzkleberseite auf das zu bedruckende dunkle Kleidungsstück (T-Shirt) mittels einer Transferpresse bei ca. 180°C und einem Druck von etwa 7 bar aufgepresst. Die Bildseite, auf welcher sich die dünne Folie (Transfer-30 schicht) befindet, wird dabei mit einem Silikonpapier geschützt. Nach dem Transfervorgang, der etwa 10 Sekunden in Anspruch nimmt, wird das Silikonpapier abgezogen. Die Haftung des Transferdrucksystems auf dem dunklen Textilstück wird dabei mittels einer Polyethylen-, bzw. Poly-35 ester/Polyamid-Textilhaftung (d.h. einem Schmelzkleber) der Kontrastunterlage auf dem Textilsubstrat erreicht. Das gesamte System wird vom Anwender insofern als unpraktisch empfunden, als man für die Durchführung

des Verfahrens einen Laminator und/oder eine Textiltransferpresse benötigt, wobei insbesondere noch die Waschfestigkeit bzw. die Haftung der weissen Kontrastunterlage
auf dem dunklen Textilstück ausgesprochen unbefriedigend
ist und sich mit jedem Waschvorgang noch zusätzlich nachhaltig verschlechtert.

Die bekannten, mittels eines 1-Schritt-Verfahren zugänglichen Systeme basieren auf einer weissen, dicken Transferfolie von einer Dicke von etwa 400 bis 600 10 μm , welche man im Ink-Jet-Verfahren oder xerographischen Verfahren bedrucken und anschliessend mittels einer Transferpresse auf ein dunkles Textilstück transferieren kann. Die Nachteile dieses Systems liegen insbesondere in einer unbefriedigenden Bildqualität unmittelbar nach dem 15 Transfer auf das Textilstück. Die Bilder wirken matt und verschwommen. Ausserdem gestaltet sich das Gesamtsystem als vergleichsweise dick, es wirkt unästhetisch (panzerartig) und es ist nicht atmungsaktiv. Ein gravierender zusätzlicher Nachteil besteht im Umstand, dass der Anwen-20 der, welcher über keine Transferpresse verfügt und infolgedessen auf die Verwendung eines handelsüblichen Bügeleisens ausweicht, mit einer nachhaltig verschlechterten Haftung der Transferfolie auf dem Textilstück konfrontiert wird. Dieser Haftungsverlust wird durch wiederholte Waschgänge weiter beschleunigt.

Ein weiterer Nachteil der beiden herkömmlichen Drucksysteme besteht in deren Aufbringungsverfahren
auf das Textilsubstrat, wobei das Aufbringen eines Kontrasthintergrunds auf das Textilstück unter ausgesprochen
hohem Druck von Privatpersonen ohne adäquate Ausrüstung
gar nicht durchgeführt werden kann. Die dafür häufig erforderlichen Drücke von mindestens etwa 7 bar (= 7 x 10⁵
Pa) können nur mit einer kostenintensiven Transferpresse
aufgebracht werden, wobei die Verbraucher aber vielmehr
an einem einfachen Aufbügeln mittels eines im Handel gebräuchlichen Bügeleisen interessiert sind. Die oben dargelegten Nachteile haben massgeblich zur Konsequenz gehabt, dass sich die gegenwärtig vertriebenen Transfer-

drucksysteme nicht wie gewünscht auf dem Markt ausgebreitet bzw. sogar durchgesetzt haben. Vielmehr besteht nach wie vor ein grosses Bedürfnis nach befriedigenden Systemen, welche die oben aufgeführten Nachteile nicht aufweist.

Darstellung der Erfindung

Es war daher eine Aufgabe der vorliegenden Erfindung ein Textil-Transferdrucksystem bereitzustellen, welches die oben genannten Nachteile zumindest teilweise vermeidet. Insbesondere sollte ein Transfer-Drucksystem für dunkle Textilunterlagen bereitgestellt werden, welches einerseits den gewünschten hohen Kontrast, hohes Auflösungsvermögen liefert und andererseits die unbefriedigende Waschfestigkeit wegen unzureichender Haftung des Transferdrucks auf der Textilunterlage vermeidet und schliesslich möglichst unkompliziert und rationell, d.h. im Rahmen eines 1-Schritt Verfahrens, mittels eines Bügeleisens auf ein Textilstück aufgebracht werden kann.

Es war ausserdem ein Ziel der vorliegenden Erfindung ein Verfahren zur Herstellung von Textil-Transferdrucksystemen für dunkle Textilsubstrate mit hoher Waschfestigkeit bereitzustellen.

Schliesslich war es ein Ziel der vorliegenden
25 Erfindung ein Druckverfahren bereitzustellen, wobei mit
Hilfe von Textil-Transferdrucksystemen für dunkle Textilsubstrate graphische Darstellungen mit hoher Qualität
bzw. mit hoher Waschfestigkeit in einem einzigen Schritt
auf Textilsubstrate aufgebracht werden können.

30

20

Die oben genannten Ziele werden gemäss den unabhängigen Ansprüchen gelöst. Bevorzugte Ausführungsformen sind in den abhängigen Ansprüchen aufgeführt.

Das Tintenstrahl-Transfersystem gemäss der vorliegenden Erfindung umfasst bzw. besteht aus einem Trägermaterial (Untergrundschicht), einer auf dem Trägermaterial aufgebrachten Klebeschicht - bevorzugt eine Hot-

meltschicht - welche eindispergierte, sphärische (kugelförmige) Polyesterteilchen von einer Korngrösse von weniger als 30 µm aufweist, einer wiederum auf der Klebeschicht aufgebrachten weissen Hintergrundschicht, und 5 mindestens einer auf der Hintergrundschicht aufgebrachten Tintenaufnahmeschicht. Die weisse Hintergrundschicht, welche sich direkt auf der Klebeschicht befindet, umfasst oder besteht erfindungsgemäss aus einem bei Bügeltemperaturen nicht-schmelzbaren (d.h. bis etwa 220°C), permanent 10 elastischen Kunststoff, gefüllt mit weissen - ebenfalls (bis etwa 220°C) nicht schmelzbaren - Pigmenten. Der ela-... stische Kunststoff darf bei den Bügeltemperaturen deshalb nicht schmelzen, um nicht mit der Klebeschicht, z.B. dem Hotmelt, der die Haftung zum Textilsubstrat herstellt, 15 eine unerwünschte Mischung mit verschlechterten (Haftungs- und Deckungs-) Eigenschaften zu liefern. Darüber hinaus muss die weisse Hintergrundschicht elastisch sein, um bei einer späteren mechanischen Belastungen nicht zu einem Sprödbruch zu führen. Unter Elastizität wird im 20 Sinne der vorliegenden Erfindung eine Dehnung von mindestens 200 %, bevorzugt von zwischen 500-1000 % und ganz besonders bevorzugt von etwa 800 % verstanden.

Bevorzugte elastische Kunststoffe für die weisse Hintergrundschicht sind ausgewählt aus der Gruppe umfassend die Polyurethane, Polyacrylate oder Polyalkylene bzw. auch Naturkautschuk (Latex). Der am meisten bevorzugte elastische Kunststoff enthält oder besteht aus Polyurethane.

Geeignete Pigmente sind nur diejenigen, wel30 che bei Bügeltemperaturen nicht schmelzen. Die gefüllte
weisse Schicht bzw. die darin enthaltenden Polymere wie
z.B. Polyurethan dürfen nicht schmelzen, weil die weissen
Pigmente ansonsten in das Textilsubstrat versinken bzw.
eindringen würden. Damit wäre eine Abschwächung bzw. sogar eine Zerstörung der weissen Hintergrundfarbe verbunden, welche ja gerade erfindungsgemäss bereitgestellt
werden soll, um einen Hintergrund für dunkle Aufdrucke
bereitzustellen. Besonders bevorzugte weisse Pigmente

20

25

35

sind anorganische Pigmente ausgewählt aus der Gruppe umfassend BaSO₄, ZnS, TiO₂, ZnO, SbO. Auch organische Pigmente sind für die weisse Hintergrundschicht verwendbar, sofern diese bei Bügeltemperaturen nicht schmelzbar 5 sind. Diese Pigmente können allein oder aber im Gemisch auch mit anderen (bis etwa 220°C) nicht schmelzbaren Trägermittel, wie etwa mit Silikaten oder Aluminaten vermischt werden.

- Damit ist es erfindungsgemäss gelungen ein 10 Transfersystem bereitzustellen, welches eine weisse Hintergrundschicht im Drucksystem selbst, d.h. zwischen der Klebeschicht und der Tintenaufnahmeschicht aufweist, wobei das Gesamtsystem trotz der nicht-schmelzbaren weissen 15 Hintergrundschicht völlig überraschend den folgenden Anforderungen entspricht :
 - a) Die insgesamt 4 chemisch verschiedenen Schichten sind im Rahmen des Beschichtungsverfahrens (Coating-Prozess), sowie des Schmelzverfahrens (dem Aufbügeln auf das Textilsubstrat), insbesondere chemisch, verträglich. Es findet keinerlei Abperlen bzw. Ablösen der weissen Hintergrundschicht von der Klebeschicht und/oder der Tintenaufnahmeschicht von der weissen Hintergrundschicht statt.
- b) Die 4 chemisch verschiedenen Schichten weisen ausserdem nach Erhalten des Transfersystems eine . gute Haftung zueinander auf, so dass ein Absplittern bzw. Ablösen einzelner Schichten des auf dem Textilsubstrat aufgebügelten Transfersystems 30 nicht eintritt.
 - c) Das Transfersystem zeigt auch eine ausgezeichnete Haftung und Elastizität auf dem Textilsubstrat, insbesondere nach dem Aufbügeln auf das Textilsubstrat. Die besagte Elastizität ist von grosser Bedeutung, weil das aufgebügelte Transfersystem nicht brüchig werden und so keine nachhaltige Verschlechterung der graphischen Darstellung auf dem Textilsubstrat bewirken darf. Besonders bei

5

sportlichen Belastungen (z.B. Zerren am, bzw. Knittern des T-Shirts) muss das auf der Textilunterlage aufgedruckte Bild fest haften.

d) Schliesslich ist das erfindungsgemässe Transfersystem als Verbund auf dem Textilsubstrat waschbar, ohne dass die Farbechtheit sowie die Haftung auf dem Textilsubstrat darunter leiden.

Die aufgeklebte Schichtenabfolge stellt gewissermassen eine Sandwichstruktur dar, bei welcher die
weisse Hintergrundschicht auf das Textilsubstrat aufgeklebt ist, wobei keinerlei Vermischung der Hintergrundschicht mit der Klebeschicht, z.B. einer Hotmeltschicht,
durch einen Schmelzvorgang möglich ist und das Gesamtsystem dennoch so flexibel ist, dass die auf der Tintenaufnahmeschicht aufgedruckte Bilddarstellung durch mechanische Beanspruchung nicht abgelöst wird.

Die Klebeschicht muss im wesentlichen oder vollständig schmelzbar sein und darf nur im geschmolzenen 20 Zustand klebend sein. In einer ganz besonders bevorzugten Ausführungsform ist die Klebeschicht, welche sich direkt auf dem Trägermaterial befindet, eine reine Hotmeltschicht. Die Hotmeltschicht ist ein im wesentlichen 25 wachsartiges Polymer, das einfach schmelzbar ist und somit beispielsweise durch Aufbügeln zusammen mit der bedruckten Tintenaufnahmeschicht auf das Textilsubstrat übertragen werden kann. Die Hotmeltschicht bewirkt, dank ihrer wachsartigen Eigenschaften, primär die Haftung zum 30 Textilsubstrat. Auf der anderen Seite muss die Hotmeltschicht aber auch eine gute Haftung zur weissen Hintergrundschicht, welche chemisch ganz anders (nicht wachsartig, nicht-schmelzbar) beschaffen ist vermitteln. Dies wird erfindungsgemäss dadurch erreicht, das in der Hot-35 meltschicht, ganz kleine, sphärische Polyesterteilchen von einer Korngrösse von weniger als 30 μm eindispergiert sind. Diese sphärischen Polyesterteilchen sind wiederum chemisch mit der weissen Hintergrundschicht chemisch ver-

wandter (als die reinen Hotmelt-Wachskomponenten), so dass sie beim Schmelzen die Haftung zur weissen Hintergrundschicht ausbilden bzw. verstärken können. Eine Teilchengrösse von weniger als 30 µm ist erforderlich, damit 5 die Teilchen nicht aus der Schicht herausragen und so beim Beschichten zu Störungen führen. Die sphärischen Polyesterteilchen werden bevorzugt dadurch erhalten, dass beispielsweise kryo-gemahlenes Polyester bei der Herstellung einer Dispersion mit der wachsartigen Hotmeltverbin-10 dung eingerührt und zu 30 µm kleinen Tröpfchen aufgeschmolzen (Emulsion) wird. Nach dem Abkühlen erstarren die Tröpfchen, es entstehen kleine Kügelchen und somit eine Dispersion. Eine bevorzugte Hotmeltverbindung ist beispielsweise ein Ethylenacrylsäure-Copolymer oder eine 15 PU-Dispersion. Diese wird mit den sphärischen Polyesterteilchen von weniger als 30 µm Korngrösse zu einer Hotmeltschicht-Dispersion zubereitet.

Als Klebeschicht kann ausser einem reinen
Hotmelt auch ein, in einem Lösungsmittel gelöster,

20 Schmelzkleber verwendet werden. Beispielsweise ein Lösungsmittelkleber auf der Grundlage von Polyamiden oder
Polyethylene, welcher auf der einen Seite eine guten Haftung zum Textilsubstrat, und auf der anderen Seite zur
weissen Hintergrundschicht bewirkt sind für die Durch25 führung der vorliegenden Erfindung geeignet.

In einer bevorzugten Ausführungsform enthält oder besteht aber die Klebeschicht aus einem reinen Hotmelt, weil dieser über eine vergleichsweise einfache externe Steuerung, d.h. mittels Aufbügeln, in bequemer aber effizienter Weise die gewünschte Haftung zur weissen Hintergrundschicht und zum Textilsubstrat ausbildet.

Die Tintenaufnahmeschicht (Ink-Schicht) be-35 findet sich auf der weissen Hintergrundschicht und umfasst primär ein hochporöses Pigment und ein Bindemittel. Das hochporöse Pigment dient zum einen der rein mechanischen Aufnahme der Tinte beim Ausdrucken der gewünschten

graphischen Darstellung, wobei eine maximale Porosität eine besonders hohe Aufnahmefähigkeit gewährleistet wird. Bindemittel sind notwendig um die hochporösen Pigmente auf der Produktoberfläche zu binden, um so die Verarbeitung (das Bedrucken) des Tintenstrahl-Transfersystems zu ermöglichen.

Als Tintenaufnahmeschicht kommen für die Belange der vorliegenden Erfindung grundsätzlich alle bekannten, vor allem hoch-porösen, Pigmente in Frage: 10 Beispiele sind Polyester, PE-Wachs, PE-Pulver, Ethylen-VAC-Copolymere, Nylon, Epoxy-Verbindungen. Als Bindemittel kommen Polyacrylate, Styrol-Butadien-Copolymere, Ethylen-VAC-Copolymere, Nylon, Nitrilrubber, PVC, PVAC, Ethylen-Acrylat-Copolymere in Frage.

15

Vorzugsweise umfasst die mindestens eine Tintenaufnahmeschicht, eine Mischung eines hochporösen Pigments und eines Bindemittels, wobei noch bevorzugter die Moleküle des hochporösen Pigments und gegebenenfalls des Bindemittels und gegebenenfalls der Klebeschicht, z.B. der Hotmeltschicht zur Ausbildung von, im wesentlichen kovalenten, Bindungen mit den Farbstoffmolekülen der Tinte befähigt sind. Dies hat den Vorteil, dass die entsprechenden Farbstoffe nach dem Aufdrucken auf das Textilsubstrat, beispielsweise durch Aufbügeln, nicht mehr vorwiegend mechanisch gebunden sind, sondern infolge von - im wesentlichen kovalenten - Bindungen an die Moleküle des Pigments und des Bindemittels und gegebenenfalls des Hotmelts chemisch gebunden sind. Dies wird dadurch 30 erreicht, dass die Moleküle des Pigments und gegebenenfalls des Bindemittels und gegebenenfalls des Hotmelts über reaktive Gruppen verfügen, welche zur Ausbildung von kovalenten Bindungen mit ebenfalls reaktiven Gruppen der Farbstoffmoleküle der Tinte befähigt sind.

35

Die im wesentlichen kovalenten Bindungen zwischen den Farbstoffmolekülen der Tinte und den Molekülen des Pigments sowie des Bindemittels werden unter

anderem unter Zufuhr von Energie ausgebildet, beispielsweise durch Aufbügeln (bei ungefähr 190°C) des erfindungsgemässen Tintenstrahl-Transfersystems auf das Textilsubstrat.

5

10

Für das Bedrucken des Tintenstrahl-Transfersystems, beispielsweise mittels Tintenstrahldrucker, werden auf dem Markt in den Druckertinten üblicherweise Säurefarbstoffe, beispielsweise Azofarbstoffe gemäss der Formel I, verwendet.

$$N = N$$

$$N =$$

20

W = COOH X = H oder COOH Y & Z = H, COOH oder SO_3H R = H, CH_2COOH oder CH_2CH_2COOH

(I)

Die Moleküle der Tintenfarbstoffe liegen vorwiegend in Lösung als Anionen vor und verfügen ebenfalls über reaktive Gruppen, welche die Ausbildung von chemischen Bindungen mit den reaktiven Gruppen der Pigmentmoleküle sowie gegebenenfalls der Bindemittelmoleküle erlauben. Bei den reaktiven Gruppen handelt es sich dabei in der Regel um eine oder mehrere Sulfonatgruppen oder Carboxylatgruppen pro Farbstoffmolekül. Unter geeigneten Bedingungen, beispielsweise unter Erwärmen beim Aufbügeln des Tintenstrahl-Transfersystems auf das Textilsubstrat,

können sich kovalente oder auch eher ionische Bindungen bzw. Zwischenvalenz-Bindungen zwischen den besagten Sulfonatgruppen bzw. Carboxylatgruppen und den reaktiven Gruppen, beispielsweise Aminogruppen, des Pigments bzw.

Bindemittels bilden. Insbesondere aber die kovalenten Bindungen der Farbstoffmoleküle mit den Molekülen der Tintenaufnahmeschicht, unter Ausbildung von z.B. Sulfonamiden ($-SO_2NH-R$) bzw. Amidgruppierungen (-CONH-R) (neben 5 auch eher zwitterionischen -SO3 NH3 -R Gruppen) sind besonders bevorzugt.

Als Beispiel sei das Poly[1,2-bis(aminomethylcyclohexyl)ethan-adipinsäureamid] der Formel (II) ge-10 nannt, welches mit seinen terminalen Aminogruppen bei Umsetzung mit den Säuregruppen eines Azofarbstoffes die im wesentlichen kovalenten Bindungen (Sulfonamidgruppen bzw. Säureamidgruppen) erzeugen.

15
$$H = \left\{ \begin{array}{c} \text{CH}_{2} \text{NHCH}_{2} \\ \end{array} \right\} = \left\{ \begin{array}{c} \text{CH}_{2} \text{NH} \\ \end{array} \right\} = \left\{ \begin{array}{c} \text{CH}_{2}$$

Wege zur Ausführung der Erfindung

In einer bevorzugten Ausführungsform besteht die Tintenaufnahmeschicht des erfindungsgemässen Tinten-25 strahl-Transfersystem aus einem hochporösen Pigment und einem Bindemittel, wobei mindestens eine der beiden Komponenten, insbesondere das in grösseren Mengen vorhandene Pigment, über reaktive Aminogruppen verfügt, die zur Ausbildung von im wesentlichen kovalenten Bindungen zu den 30 Farbstoffmolekülen der Tintenflüssigkeit befähigt sind.

In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die Tintenaufnahmeschicht ein hochporöses Polyamidpigment und ein Binde-35 mittel bestehend aus einem löslichen Polyamid, wobei die terminalen, freien Aminogruppen des Polyamidpigments und des Polyamid-Bindemittels zur Fixierung von reaktiven Gruppen, beispielsweise Sulfonatgruppen oder Carboxylatgruppen, der Farbstoffmoleküle befähigt sind. Dadurch kann sowohl mit der Pigmentkomponente, als auch mit der Bindemittelkomponente eine chemische Fixierung der Farbstoffmoleküle erreicht werden.

5

Neben dem erfindungsgemässen Erfordernis der Fähigkeit zur Ausbildung von im wesentlichen kovalenten Bindungen zwischen den Farbstoffmolekülen der Tinte und den Molekülen des Pigments sowie des Bindemittels, muss das Tintenstrahl-Transfersystem gemäss der vorliegenden Erfindung eine hohe Absorptionsfähigkeit, bzw. Aufnahmefähigkeit von Tinte aufweisen, um so ein klaies Druckbild zu gewährleisten. Dieses Erfordernis wird durch Bereitstellung eines Pigments, vorzugsweise eines Polyamidpigments, mit hoher Porosität erzielt.

Bevorzugte Polyamidpigmente, welche für die Tintenstrahl-Transfersysteme gemäss der vorliegenden Erfindung verwendet werden, weisen vorzugsweise eine sphärische, beispielsweise eine kugelförmige, Geometrie 20 und eine möglichst hohe innere Oberfläche auf. Die Korngrössen der eingesetzten Polyamidpigmente bewegen sich in einem Bereich von ungefähr 2 µm und etwa 45 µm, wobei ein Bereich von 2 bis 10 µm besonders bevorzugt ist. Je grösser die Korngrösse der Polyamidpigmente ist, desto mehr wird die Oberfläche der besagten Pigmente geschlossen und somit die Tintenaufnahmefähigkeit verringert bzw. sogar verunmöglicht. Die innere Oberfläche des hochporösen Pigments beträgt mindestens etwa 15 m²/g, vorzugsweise liegt sie zwischen etwa 20-30 m²/g.

30

Es hat sich gezeigt, dass insbesondere ein Polyamidpigment mit der Handelsbezeichnung "Orgasol" die erforderlichen Eigenschaften, insbesondere die hochgradige Porosität, aufweist.

Ein hochporöses Polyamidpigment mit einer inneren Oberfläche von mindestens etwa 15 m²/g und Korngrössen von ungefähr 2 μ m und etwa 45 μ m wird mittels anionischer Polyaddition und einem anschliessenden kontrollierten Fällungsprozess gewonnen. Im Unterschied zu

den herkömmlichen Herstellungsverfahren, in welchen ein Polyamidkondensationsprodukt, beispielsweise als Granulat) hergestellt wird, welches dann vermahlen wird, werden die Polyamidpigmente regelrecht gezüchtet und das Wachstum der Pigmente bei Erreichen der gewünschten Korngrösse abgebrochen. 85-95% des so erhaltenen Polyamidpigments weisen die gewünschte Form und Korngrösse auf, während nur maximal 15% eine kleinere oder grössere Korngrösse aufweisen.

Bei einer Tintenaufnahmeschicht, in welcher hochporöse Polyamide als Pigmente verwendet werden, besteht das Bindemittel vorzugsweise ebenfalls aus einem Polyamid. Das als Bindemittel verwendete Polyamid ist in seiner Beschaffenheit vom Polyamidpigment insofern verschieden, als es als Lösung eingesetzt wird und deshalb keine spezielle Formerfordernisse erfüllen muss. Die Verwendung von Polyamid als Bindemittel ist daher weniger kritisch. Es muss lediglich in einem geeigneten Lösungsmittel, beispielsweise Alkohol bzw. einem Alkohol-Wassergemisch, löslich sein und vorzugsweise über freie terminale Aminogruppen verfügen, mit deren Hilfe Farbstoffmoleküle, beispielsweise Sulfongruppen von Azofarbstoffen, oder Estergruppen fixiert werden können.

Das Verhältnis von hochporösem Pigment und 25 dem Bindemittel in der Tintenaufnahmeschicht des erfindungsgemässen Tintenstrahl-Transfersystems beträgt zwischen ungefähr 5:1 und 1:1, vorzugsweise 3:1 und 2:1, und ganz besonders bevorzugt 2,4:1.

Der im erfindungsgemässen Tintenstrahl-Trans30 fersystem bevorzugt als Klebeschicht verwendete Hotmelt
befindet sich direkt auf dem abziehbaren Trägermaterial
und dient dazu die vom Tintenstrahldrucker aufgedruckte
graphische Darstellung auf das Textilsubstrat zu übertragen und eine Haftung zur weissen Hintergrundschicht zu
35 gewährleisten. Diese Übertragung wird beispielsweise
durch einen Kaltabzug, d.h. durch Aufbügeln, Abkühlen und
Abziehen der Abdeckschicht (Backpapier), bewirkt. Beim
Aufbügeln wird dabei die Hotmeltschicht und die Ink-Jet-

5

Aufnahmeschicht, nicht aber die weisse Hintergrundschicht, zum Schmelzen gebracht. So wird das auf die Tintenaufnahmeschicht aufgedruckte Bild ohne schmelzbedingte Verzerrungen auf das Textilsubstrat übertragen.

- Der bevorzugt als Klebeschicht verwendete Hotmelt ist im Gegensatz zum hochporösen Pigment, Bindemittel sowie der Hintergrundschicht, im wesentlichen wachsartig, d.h. er kann geschmolzen werden. Üblicherweise schmelzen Hotmelts in einem Bereich von etwa 100-10 120°C, während die hochporösen Pigmente vorzugsweise in einem Bereich von etwa 120-180°C, vorzugsweise 140-160°C schmelzen. Ein üblicher Hotmelt ist beispielsweise eine Ethylenacrylsäure-Copolymer-Dispersion.
- Weitere Zusatzstoffe können im Tintenstrahl-15 Transfersystem gemäss der vorliegenden Erfindung noch enthalten sein, allerdings ist bei der Verwendung solcher Zusatzstoffe darauf zu achten, dass sich dadurch nicht die Waschfestigkeit des letztendlichen Transferdrucks 20 verschlechtert. Aus verfahrenstechnischen Gründen ist beispielsweise die Verwendung eines Dispergieradditivs für organische Pigmente zur Herstellung des erfindungsgemässen Tintenstrahl-Transfersystems sinnvoll.
- Als Unterlage (Abdeckschicht) kann für den 25 Kaltabzug nahezu jedes Trennpapier verwendet werden, bevorzugt wird ein hitzebeständiges Papier, beispielsweise Silikonpapier verwendet.
- Neben dem Tintenstrahl-Transfersystem selbst 30 besteht ein weiterer Aspekt der vorliegenden Erfindung im Verfahren zu dessen Herstellung. Das Beschichtungsverfahren umfasst die folgenden Schritte:
- a) Auftragen einer Klebeschicht, bevorzugt 35 einer Hotmeltschicht, welche eindispergierte, sphärische Polyesterteilchen von einer Korngrösse von weniger als 30 µm aufweist, auf ein Trägermaterial, beispielsweise Silikonpapier, mit Hilfe eines Beschichtungsmittels, bei-

spielsweise einer Beschichtungsmaschine, wobei eine Schichtdicke von ungefähr 30 bis 40 µm eingestellt wird, danach Trockenen der Hotmeltschicht, und

- b) Auftragen einer weissen Hintergrundschicht bestehend aus einem bei Bügeltemperaturen nicht-schmelz-baren (d.h. bis etwa 220°C), elastischen Kunststoff, welcher mit weissen, bevorzugt anorganischen, Pigmenten gefüllt ist, auf die Hotmeltschicht, vorzugsweise mit einer letztendlichen Schichtdicke von ungefähr 20-35 µm,
- 10 c) Auftragen von mindestens einer Tintenaufnahmeschicht-Dispersion auf die weisse Hintergrundschicht, und
 - d) Trocknen des Tintenstrahl-Transfersystems.
- Das zweimalige/mehrmalige Auftragen Tintenaufnahmeschicht gemäss Schritt c) hat den Vorteil, dass
 eine glatte und gleichmässige Oberfläche sowie eine Tintenaufnahmeschicht mit ausgeglichener Schichtdicke gebildet wird, wodurch das Druckverfahren bzw. das resultierende Druckbild positiv beeinflusst werden.

Die auf das Textilsubstrat zu applizierende graphische Darstellung wird zunächst auf das so erhaltene Tintenstrahl-Transfersystem über einen üblichen Drucker, 25 beispielsweise einen Tintenstrahldrucker (Ink-Jet-Plotter), seitenrichtig aufgedruckt, ausgeschmitten, von der Unterlage (z.B. Silikonpapier) abgezogen, mit Backpapier abgedeckt und anschliessend auf das gewünschte Textilsubstrat, beispielsweise ein T-Shirt bei einer Temperatur 30 von zwischen etwa 160 und 220°C, vorzugsweise von 170°C, während mindestens 10 Sekunden aufgebügelt. Die unterste Schicht ist das Trägermaterial, welches vor dem Applizieren der graphischen Darstellung abgezogen und verworfen wird. Als bevorzugtes Abdeckpapier wird ein hitzebe-35 ständiges Silikonpapier (Backpapier) verwendet. Die auf diese Weise (Kaltabzug) erhaltene aufgedruckte graphische Darstellung ist glatt und matt.

Im folgenden soll nun die vorliegende Erfindung anhand von zwei Beispielen verdeutlicht werden, wobei die Beispiele nicht als beschränkend auf den Schutzbereich anzusehen sind.

5

Beispiel 1 Herstellung eines Tintenstrahl-Transfersystems

In einem ersten Schritt wird die Hotmeltschicht auf ein Trägermaterial aufgetragen: Dabei wird
Silikonpapier, von einer Schichtdicke von etwa 0,1 mm,
mit Ethylenacrylsäure-Copolymer, welches eindispergierte,
sphärische Polyesterteilchen von einer Korngrösse von
zwischen 5-25 µm aufweisen, beschichtet. Das Verhältnis
von Ethylenacrylsäure-Copolymer und sphärische Polyesterteilchen beträgt etwa 60:40 und die letztendliche
Schichtdicke der Hotmeltschicht etwa 30 µm.

Anschliessend wird eine weisse Hintergrundschicht (Polyurethanfolie) mit einer Dicke von etwa 40 µm enthaltend etwa 15 Gew.-% TiO2 auf das mit dem Hotmelt beschichtete Silikonpapier aufgebracht.

Auf die besagte elastische Hintergrundschicht aus Polyurethan/ TiO_2 wird nun eine Dispersion, enthaltend die Tintenaufnahmeschicht in zwei Durchgängen

25 aufgetragen. Im ersten Durchgang wird eine Schichtdicke von 15 µm und im zweiten Durchgang eine Schichtdicke von 15 µm aufgetragen, womit sich eine Gesamtschichtdicke der Tintenaufnahmeschicht von 30 µm ergibt.

Die Tintenaufnahmeschicht ist dabei vorgängig

folgenderweise hergestellt worden: ein Ethanol/Wassergemisch im Verhältnis von 3:1 wird vorgelegt und ein lösliches Polyamid-Bindemittel wird darin unter Erwärmen auf
45°C gelöst. Anschliessend wird das hochporöse Polyamidpigment "Orgasol 3501 EX D NAT1" mit einer Korngrösse von

10 μm sowie einer inneren Oberfläche von etwa 25 m²/g
Pigment in die Lösung eindispergiert.

Um die Dispersion zu stabilisieren, wird ein von der Firma Coatex vertriebenes, für organische Pig-

mente vorgesehenes, Dispergieradditif mit der Produktbezeichnung COADIS 123K eingebracht und die Dispersion während 10 Minuten bei Raumtemperatur gerührt.

Auf der Beschichtungsmaschine lässt man die Lösungsmittel verdunsten, um so eine feste Tintenaufnahmeschicht zu erhalten, auf welche die gewünschte graphische Darstellung mittels eines Tintenstrahldruckers aufgedruckt werden kann.

Die gewünschten Folien können beliebig für 10 die erforderlichen Bedürfnisse zurechtgeschnitten werden.

Beispiel 2

Verwendung eines Tintenstrahl-Transfersystems zum Druck

15 Das in Beispiel 1 hergestellte Tintenstrahl-Transfersystem wird verwendet, um eine graphische Darstellung auf ein T-Shirt aufzudrucken. Dabei wird im ersten Schritt die gewünschte elektronisch verarbeitbare und gespeicherte graphische Darstellung vom Computer mit-20 tels eines Tintenstrahldruckers seitenrichtig auf das Blatt ausgedruckt, welches im Beispiel 1 als Tintenstrahl-Transfersystem erhalten wurde.

Anschliessend wird der Ausdruck abgezogen und mit der weissen Seite auf die gewünschte Seite des ausge-25 wählten T-Shirts aufgelegt und mittels eines heissen Bügeleisen (Backpapier + Temperatur von ungefähr 190°C) während 10 Sekunden aufgebügelt. Danach wird das so bearbeitete T-shirt auf etwa Raumtemperatur abgekühlt und das Backpapier, d.h. das Silikonpapier abgezogen. Das so erhaltene Bild ist glänzend und matt. 30

Während in der vorliegenden Anmeldung bevorzugte Ausführungen der Erfindung beschrieben sind, ist klat darauf hinzuweisen, dass die Erfindung nicht auf 35 diese beschränkt ist und in auch anderer Weise innerhalb des Umfangs der folgenden Ansprüche ausgeführt werden kann.

5

10

15

Ansprüche

- 1. Ein Tintenstrahl-Transfersystem dadurch gekennzeichnet, dass es
 - a) ein Trägermaterial,
 - b) eine auf dem Trägermaterial aufgebrachte Klebeschicht, welche eindispergierte, sphärische Polyesterteilchen von einer Korngrösse von weniger als 30 µm aufweist,
 - c) eine auf der Hotmeltschicht aufgebrachte weisse Hintergrundschicht bestehend aus einem bei Temperaturen von bis 220°C nicht-schmelzbaren, elastischen Kunststoff, welcher mit weissen anorganischen Pigmenten gefüllt ist, und
 - d) mindestens eine Tintenaufnahmeschicht, umfasst, oder daraus besteht.
- 2. Das Tintenstrahl-Transfersystem gemäss

 20 Anspruch 1, dadurch gekennzeichnet, dass die Moleküle der
 Tintenaufnahmeschicht und/oder des darin enthaltenden
 Bindemittels zur Ausbildung von chemischen, insbesondere
 von kovalenten, Bindungen mit den Farbstoffmolekülen der
 Tinte befähigt sind.
- 25
- 3. Das Tintenstrahl-Transfersystem gemäss
 Anspruch 1 oder 2, dadurch gekennzeichnet, dass die
 Tintenaufnahmeschicht über reaktive Gruppen verfügen,
 welche zur Ausbildung von im wesentlichen kovalenten
 Bindungen zu den Farbstoffmolekülen, insbesondere zu
 Azofarbstoffmolekülen oder Säurefarbstoffmolekülen, der
 Tinte in der Lage sind.
- 4. Das Tintenstrahl-Transfersystem gemäss 35 Anspruch 3, dadurch gekennzeichnet, dass die reaktiven Gruppen Aminogruppen sind.

5. Das Tintenstrahl-Transfersystem gemäss einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Tintenaufnahmeschicht ein hochporöses Polyamidpigment mit einer Oberfläche von mindestens etwa 15 m^2/g , vor-5 zugsweise von etwa 20-30 m^2/g und eine mittlere Korngrösse von ungefähr etwa 2-25 µm, vorzugsweise etwa 2-10 μm , sowie ein lösliches Polyamid als Bindemittel enthält oder daraus besteht und dass der Hotmelt ein Polyester enthält oder daraus besteht.

10

- 6. Das Tintenstrahl-Transfersystem gemäss Anspruch 5. dadurch gekennzeichnet, dass das hochporöse Polyamidpigment mittels anionischer Polyaddition und anschliessendem kontrolliertem Fällungsprozess gewonnen 15 wird, wobei die Korngrössen durch Abbrechen der Fällung eingestellt werden.
- 7. Das Tintenstrahl-Transfersystem gemäss einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass 20 das Verhältnis zwischen porösem Pigment und dem Bindemittel zwischen ungefähr 5:1 und 1:1, vorzugsweise 3:1 und 2:1 und ganz besonders bevorzugt 2,4:1 beträgt.
- 8. Das Tintenstrahl-Transfersystem gemäss 25 einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der elastische Kunststoff der weissen Hintergrundschicht ausgewählt ist aus der Gruppe umfassend Polyurethane, Polyacrylate, Polyalkylene, ganz besonders bevorzugt Polyurethane.

30

9. Das Tintenstrahl-Transfersystem gemäss einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Pigmente in der weissen Hintergrundschicht ausgewählt sind aus der Gruppe umfassend $BaSO_4$, ZnS, TiO_2 , ZnO, SbO.

35

10. Das Tintenstrahl-Transfersystem gemäss einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Klebeschicht eine Hotmeltschicht ist.

25

30

35

- 11. Das Tintenstrahl-Transfersystem gemäss
 Anspruch 10, dadurch gekennzeichnet, dass die Hotmeltschicht eine Mischung einen Verschnitt aus einem Ethylenacrylsäure-Copolymer und Polyesterpartikel von einer
 Korngrösse von kleiner oder gleich 20 µm enthält oder
 daraus besteht.
- 12. Das Tintenstrahl-Transfersystem gemäss
 einem der Ansprüche 1 bis 11, dadurch gekennzeichnet,
 10 dass die Trägerschicht aus einem hitzebeständigem Trennpapier, vorzugsweise Silikonpapier besteht.
- 13. Das Tintenstrahl-Transfersystem gemäss
 einem der Ansprüche 1 bis 12, dadurch gekennzeichnet,
 15 dass zusätzlich noch ein Dispergieradditiv für organische Pigmente enthalten ist.
- 14. Verfahren zur Herstellung eines Tintenstrahl-Transfersystems gemäss einem der Ansprüche 1 bis20 13, umfassend die folgenden Schritte:
 - a) Auftragen einer Klebeschicht, welche eindispergierte, sphärische Polyesterteilchen von einer Korngrösse von weniger als 30 µm aufweist, auf ein Trägermaterial, wobei eine Schichtdicke von ungefähr 30 bis 40 µm eingestellt wird,
 - b) Auftragen einer weissen Hintergrundschicht, bestehend aus einem bei Temperaturen bis 220°C nicht-schmelzbaren, elastischen Kunststoff, welcher mit weissen anorganischen Pigmenten gefüllt ist, auf die Hotmeltschicht,
 - c) Auftragen von mindestens einer Tintenaufnahmeschicht auf die weisse Hintergrundschicht so dass eine Gesamtschichtdicke der Tintenaufnahmeschicht von ungefähr 20-35 µm erreicht wird, und

- d) Verdampfenlassen der Lösungsmittel beim Coating.
- 15. Verfahren nach Anspruch 14, dadurch ge-5 kennzeichnet, dass zwei Tintenaufnahmeschichten aufgetragen werden.
- 16. Verfahren zum Bedrucken von Textilsubtraten dadurch gekennzeichnet, dass eine graphische Dar10 stellung vom Computer über einen Drucker auf das Tintenstrahl-Transfersystems gemäss einem der Ansprüche 1 bis
 13 seitenrichtig aufgedruckt wird und anschliessend auf
 das Textilsubstrat heiss aufgebügelt wird und dass das
 Trägermaterial nach dem Abkühlen kalt abgezogen wird.

INTERNATIONAL SEARCH REPORT

Inter :nal Application No PCT/IB 99/00976

CLASSIFIC	ATION OF SUBJECT MATTER D06Q1/12 B41M5/035 B44C1/17		·
According to In	ternational Patent Classification (IPC) or to both national classificat	tion and IPC	
- 5151 OC CE	ARCHED		
Minimum docu IPC 7	mentation searched (classification system followed by classification B41M D06P D06Q B44C	n symbols)	
Documentation	n searched other than minimum documentation to the extent that su	uch documents are included in the fields se	arched
	a base consulted during the international search (name of data ba	se and, where practical, search terms used)
Flectionic day	a pase constitute early and		
		. How	
C. DOCUME	NTS CONSIDERED, TO BE RELEVANT	e tem.	Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the re	elevant passages	T (Olovani to dia
Α	WO 98 30749 A (A.MESSERLI AG)		1-16
	16 July 1998 (1998-07-16)		
	cited in the application		
·	claims 1,6,11,17; examples 1,2 page 4, line 16 -page 5, line 23		
	page 4, Tine 10 -page 3, Time 20 page 11, line	7	
			1-16
A	US 5 501 902 A (F.J.KRONZER)		1-10
] ''	26 March 1996 (1996-03-26)		
	cited in the application		
Ì	claims 1,13,14,18,27-30		1
Ì	figure 2; examples 1-6 column 2, line 31 -column 3, line	ne 18	
1	column 3, line 58 - line 67		
1		,	
1		-/	
			}
1			
X Fu	urther documents are listed in the continuation of box C.	X Patent family members are ti	sted in annex.
100	categories of cited documents :	"T" later document published after the	international filing date
		or priority date and not in conflict cited to understand the principle	
l con	ment defining the general state of the art which is not isidered to be of particular relevance	invention	the claimed invention
"E" eartie	er document but published on or after the international or date	"X" document of particular relevance, cannot be considered novel or ca involve an inventive step when the	
"L" docu	ment which may throw doubts on priority claim(s) or		the claimed invention
عدة ا	ation of other special reason (as specially)	cannot be considered to involve	or more other such docu-
l oth	ument referring to an oral disclosure, use, exhibition or ner means	ments, such combination being of in the art.	DOMOUS to a person ordina
1 *** ***	ument published prior to the international filing date but er than the priority date claimed	"&" document member of the same p	
	the actual completion of the international search	Date of mailing of the internation	al search report
	3 February 2000	15/02/2000	
Nome	and mailing address of the ISA	Authorized officer	
I MANING A	European Patent Office, P.B. 5818 Patentiaan 2		
l	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Bacon, A	,
1	Fax: (+31-70) 340-3016		

INTERNATIONAL SEARCH REPORT

Inte. mai Application No PCT/IB 99/00976

C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	9/00976		
Category ·	Citation of document, with indication where appropriate, of the relevant passages		Relevant to daim No	
			Relevant to claim No.	
	US 5 242 739 A (F.J.KRONZER ET AL.) 7 September 1993 (1993-09-07) cited in the application column 3, line 45 -column 4, line 29 column 4, line 55 - line 64 claims 1,6,9; example 1		1-16	
	m in the second of the second		,	
			:	
		-		
	continuation of second sheet) (July 1992)			

INTERNATIONAL SEARCH REPORT

inte mai Application No PCT/IB 99/00976

				101710	
Patent document		Publication date		tent family ember(s)	Publication date
wo 9830749	Α	16-07-1998	AU EP	5407198 A 0953079 A	03-08-1998 03-11-1999
US 5501902		26-03-1996	CA	2145891 A	29-12-1995
US 5242739		07-09-1993	CA	2070730 A	26-04-1993

INTERNATIONALER RECHERCHENBERICHT

Inte. snales Aktenzeichen PCT/IB 99/00976

KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES PK 7 D06Q1/12 B41M5/035 B44C1/17 Nach der Internationalen Patentidassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) B41M D06P D06Q B44C Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Α WO 98 30749 A (A.MESSERLI AG) 16. Juli 1998 (1998-07-16) 1-16 in der Anmeldung erwähnt Ansprüche 1,6,11,17; Beispiele 1,2 Seite 4, Zeile 16 -Seite 5, Zeile 23 Seite 11, Zeile 30 -Seite 12, Zeile 7 Α US 5 501 902 A (F.J.KRONZER) 1-16 26. März 1996 (1996-03-26) in der Anmeldung erwähnt Ansprüche 1,13,14,18,27-30 Abbildung 2; Beispiele 1-6 Spalte 2, Zeile 31 -Spalte 3, Zeile 18 Spalte 3, Zeile 58 - Zeile 67 [X] Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie Besondere Kategorien von angegebenen Veröffentlichungen T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erlindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Rechercherbericht genannten Veröffentlichung belegt werder soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelliegend ist ausgerunn;
O" Veröffentlichung, die sich auf eine mündliche Offenbarung,
eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
P" Veröffentlichung, die vor dem internationalen, Anmeldedatum, aber nach
dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 3. Februar 2000 15/02/2000 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Bacon, A

INTERNATIONALER RECHERCHENBERICHT

Inte. mates Aktenzeichen
PCT/IB 99/00976

TEWN	MIONALIN ICIOINA	PCT/IB 99/00976	
	ing) ALS WESENTLICH ANGESEHENE UNTERLAGEN	menden Teile Betr. Anspruch Nr.	
(Fortsetz)	ing) ALS WESENTLICH ANGESERENE UNITED HER Angelor in Betracht kom Bezeichnung der Veröftentlichung, soweit erforderlich unter Angabe der in Betracht kom	menden Teile Betr. Alispfüchter.	
A	US 5 242 739 A (F.J.KRONZER ET AL.) 7. September 1993 (1993-09-07) in der Anmeldung erwähnt Spalte 3, Zeile 45 -Spalte 4, Zeile 29 Spalte 4, Zeile 55 - Zeile 64 Ansprüche 1,6,9; Beispiel 1	1-16	

INTERNATIONALER RECHERCHENBERICHT

Formblatt PCT/ISA/210 (Anhang Patentlamilie)(Juli 1992)

Inter. iales Aktenzeichen
PCT/IB 99/00976

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	PCT/IB 99/00976		
			Mitglied(er) der Patentlamilie		Datum der Veröffentlichung
WO 9830749	Α	16-07-1998	AU EP	5407198 A 0953079 A	03-08-1998 03-11-1999
US 5501902	Α	26-03-1996	CA	2145891 A	29-12-1995
US 5242739	Α	07-09-1993	 CA	2070730 A	26-04-1993