Прикладной статистический анализ данных. 1. Введение.

Рябенко Евгений riabenko.e@gmail.com

I/2016

Зачем нужен этот курс

- Специфические статистические методы для конкретных постановок задач.
- Границы применимости методов.
- Статистическое мышление.

Зачем нужен этот курс

- Специфические статистические методы для конкретных постановок задач.
- Границы применимости методов.

(Marriott, 1974):

If the results disagree with informed opinion, do not admit a simple logical interpretation, and do not show up clearly in a graphical presentation, they are probably wrong. There is no magic about numerical methods, and many ways in which they can break down. They are a valuable aid to the interpretation of data, not sausage machines automatically transforming bodies of numbers into packets of scientific fact.

• Статистическое мышление.

Зачем нужен этот курс

- Специфические статистические методы для конкретных постановок задач.
- Границы применимости методов.
- Статистическое мышление.
 - Понимание механизмов работы статистики позволяет находить менее стереотипные и более осознанные решения повседневных задач (Begg et al., 1992).

Генеральная совокупность — множество объектов, свойства которых подлежат изучению в рассматриваемой задаче.

Выборка — конечное множество объектов, отобранных из генеральной совокупности для проведения измерений.

$$X^n = (X_1, \dots, X_n).$$

n — объём выборки.

 X^n — простая выборка, если X_1,\dots,X_n — независимые одинаково распределённые случайные величины (i.i.d.).

Пусть F(x) — функция распределения элемента простой выборки:

$$F(x) = \mathbf{P}(X \leqslant x) \,.$$

Основная задача статистики — описание F(x) по реализации выборки.

Функция распределения

$$F_{n}\left(x
ight)=rac{1}{n}\sum_{i=1}^{n}\left[X_{i}\leqslant x
ight]$$
 — эмпирическая функция распределения.

Плотность распределения

Часто интерес представляют отдельные характеристики распределения F(x):

ullet матожидание — среднее значение X:

$$\mathbb{E}X = \int x \, dF(x);$$

дисперсия — мера разброса X:

$$\mathbb{D}X = \mathbb{E}\left(\left(X - \mathbb{E}X\right)^2\right);$$

• квантиль порядка $\alpha \in (0,1)$:

$$X_{\alpha}$$
: $\mathbf{P}(X \leqslant X_{\alpha}) \geqslant \alpha$, $\mathbf{P}(X \geqslant X_{\alpha}) \geqslant 1 - \alpha$;

 медиана — квантиль порядка 0.5, центральное значение распределения:

$$\operatorname{med} X : \quad \mathbf{P}(X \leqslant \operatorname{med} X) \geqslant \frac{1}{2}, \quad \mathbf{P}(X \geqslant \operatorname{med} X) \geqslant \frac{1}{2};$$

• интерквартильный размах:

$$IQR = X_{3/4} - X_{1/4};$$

• коэффициент ассиметрии (skewness):

$$\gamma_1 = \mathbb{E}\left(\frac{X - \mathbb{E}X}{\sqrt{\mathbb{D}X}}\right)^3;$$
 Negative Skew

Нулевой коэффициент ассиметрии — необходимое, но не достаточное условие симметричности:

• коэффициент эксцесса (excess, без вычитания трёх — kurtosis):

$$\gamma_2 = \frac{\mathbb{E}(X - \mathbb{E}X)^4}{(\mathbb{D}X)^2} - 3.$$

Статистика

Статистика $T(X^n)$ — любая измеримая функция выборки. Примеры:

• выборочное среднее:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$$

выборочная дисперсия:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2};$$

вариационный ряд:

$$X_{(1)} \leqslant X_{(2)} \leqslant \ldots \leqslant X_{(n)};$$

ранг элемента выборки X_i :

$$rank(X_i) = r : X_i = X_{(r)};$$

- k-я порядковая статистика: $X_{(k)}$;
- ullet выборочный lpha-квантиль: $X_{([nlpha])}$;
- выборочная медиана:

$$m = \begin{cases} X_{(k+1)}, & \text{если } n = 2k+1, \\ \frac{X_{(k)} + X_{(k+1)}}{2}, & \text{если } n = 2k. \end{cases}$$

• выборочный интерквартильный размах:

$$IQR_n = X_{([3n/4])} - X_{([n/4])};$$

• выборочный коэффициент ассиметрии:

$$g_1 = \frac{\sqrt{n} \sum_{i=1}^{n} (X_i - \bar{X})^3}{\left(\sum_{i=1}^{n} (X_i - \bar{X})^2\right)^{3/2}};$$

• выборочный коэффициент эксцесса:

$$g_2 = \frac{n \sum_{i=1}^{n} (X_i - \bar{X})^4}{\left(\sum_{i=1}^{n} (X_i - \bar{X})^2\right)^2} - 3.$$

Оценки центральной тенденции

Выборочное среднее — среднее арифметическое по выборке. Медиана — центральный элемент вариационного ряда. Мода — самое распространённое значение в выборке.

Оценки центральной тенденции

(Huff, 1954):

Об ограниченности статистик

Уровень стартовой заработной платы выпускников юридических факультетов, США, 2012, данные NALP.

Об ограниченности статистик

Квартет Энскомба (Anscombe, 1973):

Nº	1	2	3	4
\bar{x}	9	9	9	9
S_x	11	11	11	11
\bar{y}	7.5	7.5	7.5	7.5
S_y	4.127	4.127	4.128	4.128
r_{xy}	0.816	0.816	0.816	0.816

Об ограниченности статистик

Точечные оценки

Пусть распределение генеральной совокупности параметрическое:

$$F(x) = F(x, \theta).$$

Статистика $\hat{\theta}_n = \hat{\theta}\left(X^n\right)$ — точечная оценка параметра θ . Какая оценка лучше?

Состоятельность: $\underset{n\to\infty}{\text{plim}} \hat{\theta}_n = \theta.$

Несмещённость: $\mathbb{E}\hat{\theta}_n = \theta$.

Асимптотическая несмещённость: $\lim_{n \to \infty} \mathbb{E} \hat{\theta}_n = \theta$.

Оптимальность: $\mathbb{D}\hat{\theta}_n = \min_{\hat{\theta} \colon \mathbb{E}\hat{\theta} = \theta} \mathbb{D}\hat{\theta}.$

Робастность: устойчивость $\hat{\theta}_n$ относительно

- ullet отклонений истинного распределения X от модельного семейства;
- выбросов, содержащихся в выборке.

Доверительный интервал:

$$\mathbf{P}(\theta \in [C_L, C_U]) \geqslant 1 - \alpha,$$

 $1-\alpha$ — уровень доверия,

 C_L , C_U — нижний и верхний доверительные пределы.

При бесконечном повторении процедуры построения доверительного интервала на аналогичных выборках в $100(1-\alpha)\%$ случаев он будет содержать истинное значение θ .

Пример 1: доверительный интервал для среднего $X \sim N\left(\mu, \sigma^2\right)$ при известной дисперсии σ^2 .

$$X^{n} = (X_{1}, \dots, X_{n}), \ X_{i} \sim N\left(\mu, \sigma^{2}\right) \Rightarrow$$

$$\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \Rightarrow \sqrt{n} \frac{\bar{X} - \mu}{\sigma} \sim N(0, 1) \Rightarrow$$

$$\mathbf{P}\left(\mu \in \left[\bar{X} - z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right]\right) = 1 - \alpha.$$

 $z_{1-\frac{\alpha}{2}}-\left(1-\frac{\alpha}{2}\right)$ -квантиль стандартного нормального распределения; при $\alpha=0.05$ получаем $z_{0.975}\approx 1.96.$

Правило двух сигм: если $X \sim N\left(\mu, \sigma^2\right)$, то $\mathbf{P}(|X - \mu| \leqslant 2\sigma) \approx 0.954$.

Если X распределена не нормально, то можно утверждать только $\mathbf{P}\Big(|X-\mathbb{E}X|\leqslant 2\sqrt{\mathbb{D}X}\Big)\geqslant 0.75$ (из неравенства Чебышёва).

Пример 2: непараметрический доверительный интервал для медианы непрерывного распределения.

$$X^{n} = (X_{1}, \dots, X_{n}), X_{i} \sim F(x) \Rightarrow$$

$$\mathbf{P}(\text{med } X_i \in [X_{(r)}, X_{(n-r+1)}]) = \frac{1}{2^n} \sum_{i=r}^{n-r+1} C_n^i.$$

При n>10 применима нормальная аппроксимация:

$$\mathbf{P}\left(\operatorname{med} X_{i} \in \left[X_{\left(\left\lfloor\frac{n-\sqrt{n}z_{1-\frac{\alpha}{2}}}{2}\right\rfloor\right)}, X_{\left(\left\lceil\frac{n+\sqrt{n}z_{1-\frac{\alpha}{2}}}{2}\right\rceil\right)}\right]\right) \approx 1-\alpha.$$

Аналогично строится непараметрический доверительный интервал для любого квантиля $X_{\alpha}, \alpha \in (0,1)$:

$$\mathbf{P}(X_{\alpha} \in [X_{(l)}, X_{(u)}]) = \sum_{i=1}^{u} C_n^i \alpha^i (1 - \alpha)^{n-i}.$$

Доверительная лента для функции $Y = \beta_0 + \beta_1 x$:

Нормальное распределение

 $X \in \mathbb{R} \sim N\left(\mu,\sigma^2\right),\ \sigma^2>0$ — предельное распределение суммы слабо взаимозависимых сл. в.

Пример: погрешность измерения.

$$F\left(x\right) = \Phi\left(\frac{x-\mu}{\sigma}\right),\,$$

$$f(x) = \frac{1}{\sigma} \phi\left(\frac{x-\mu}{\sigma}\right),\,$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt,$$

$$\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}.$$

Нормальное распределение

$$\mathbb{E}X = \mu,$$

$$\operatorname{med} X = \mu,$$

$$\operatorname{mode} X = \mu,$$

$$\mathbb{D}X = \sigma^{2},$$

$$\gamma_{1}(X) = 0,$$

$$\gamma_{2}(X) = 0.$$

ullet Пусть X_1,\ldots,X_n независимы, $X_i\sim N\left(\mu_i,\sigma_i^2
ight),$ тогда

$$\sum_{i=1}^{n} X_i \sim N\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right).$$

Распределение хи-квадрат

 $X\in\mathbb{R}_+\sim\chi^2_k,\;k\in\mathbb{N}$ — распределение суммы квадратов k независимых стандартных нормальных сл. в.

Пример: выборочная дисперсия.

$$F(x) = \frac{1}{\Gamma\left(\frac{k}{2}\right)} \gamma\left(\frac{k}{2}, \frac{x}{2}\right),$$

$$f(x) = \frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)} x^{\frac{k}{2}-1} e^{-\frac{x}{2}}.$$

$$\Gamma\left(x
ight)=\int_{0}^{\infty}t^{x-1}e^{-t}dt$$
 — гамма-функция, $\gamma\left(a,x
ight)=\int_{0}^{x}e^{-t}t^{a-1}dt$ — нижняя неполная гамма-функция.

Распределение хи-квадрат

$$\mathbb{E}X = k,$$

$$\operatorname{med}X \approx k \left(1 - \frac{2}{9k}\right)^{3},$$

$$\operatorname{mode}X = \operatorname{max}\left(k - 2, 0\right),$$

$$\mathbb{D}X = 2k,$$

$$\gamma_{1}\left(X\right) = \sqrt{8/k},$$

$$\gamma_{2}\left(X\right) = 12/k.$$

Распределение Фишера

 $X \in \mathbb{R}_+ \sim F\left(d_1, d_2\right), \; d_1, d_2 > 0$ — распределение отношения двух независимых нормированных хи-квадрат сл. в.

Возникает в дисперсионном и регрессионном анализе.

$$F(x) = I_{\frac{d_1 x}{d_1 x + d_2}} \left(\frac{d_1}{2}, \frac{d_2}{2}\right),$$

$$f(x) = \sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}}{(d_1 x + d_2)^{d_1 + d_2}}} / xB\left(\frac{d_1}{2}, \frac{d_2}{2}\right).$$

$$B\left({a,b} \right) = \int_0^1 {{t^{a - 1}}} \left({1 - t} \right)^{b - 1} dt$$
 — бета-функция,

 $I_{x}\left(a,b
ight)=rac{B\left(x;a,b
ight)}{B\left(a,b
ight)}$ — регуляризованная неполная бета-функция,

$$B\left(x;a,b
ight) =\int_{0}^{x}t^{a-1}\left(1-t
ight) ^{b-1}dt$$
 — неполная бета-функция.

Распределение Фишера

$$\begin{split} \mathbb{E} X &= \frac{d_2}{d_2 - 2} \text{ при } d_2 > 2, \\ \text{mode } X &= \frac{d_1 - 2}{d_1} \frac{d_2}{d_2 + 2} \text{ при } d_1 > 2, \\ \mathbb{D} X &= \frac{2d_2^2 \left(d_1 + d_2 - 2\right)}{d_1 \left(d_2 - 2\right)^2 \left(d_2 - 4\right)} \text{ при } d_2 > 4, \\ \gamma_1 \left(X\right) &= \frac{\left(2d_1 + d_2 - 2\right) \sqrt{8 \left(d_2 - 4\right)}}{\left(d_2 - 6\right) \sqrt{d_1 \left(d_1 + d_2 - 2\right)}} \text{ при } d_2 > 6, \\ \gamma_2 \left(X\right) &= 12 \frac{d_1 \left(5d_2 - 22\right) \left(d_1 + d_2 - 2\right) + \left(d_2 - 4\right) \left(d_2 - 2\right)^2}{d_1 \left(d_2 - 6\right) \left(d_2 - 8\right) \left(d_1 + d_2 - 2\right)} \text{ при } d_2 > 8. \end{split}$$

Распределение Фишера

ullet Пусть $X_1 \sim \chi^2_{d_1}, \; X_2 \sim \chi^2_{d_2}, \;\; X_1$ и X_2 независимы, тогда

$$\frac{X_1/d_1}{X_2/d_2} \sim F(d_1, d_2).$$

• Если $X \sim F(d_1, d_2)$, то

$$Y = \lim_{d_2 \to \infty} d_1 X \sim \chi_{d_1}^2.$$

• $F(x, d_1, d_2) = F(1/x, d_2, d_1)$.

Распределение Стьюдента

 $X\in\mathbb{R}\sim St\left(
u
ight) ,\
u>0$ — распределение отношения независимых стандартной нормальной сл. в. и корня из нормированной хи-квадрат сл. в. Возникает при оценке среднего значения сл. в. с неизвестной дисперсией.

$$F(x) = \frac{1}{2} + x\Gamma\left(\frac{\nu+1}{2}\right),$$

$$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

Распределение Стьюдента

$$\begin{split} \mathbb{E}X &= 0 \text{ при } \nu > 1, \\ \operatorname{med}X &= 0, \\ \operatorname{mode}X &= 0, \\ \mathbb{D}X &= \begin{cases} \frac{\nu}{\nu-2}, & \nu > 2, \\ \infty, & 1 < \nu \leqslant 2, \end{cases}, \\ \gamma_1\left(X\right) &= 0 \text{ при } \nu > 3, \\ \gamma_2\left(X\right) &= \begin{cases} \frac{6}{\nu-4}, & \nu > 4, \\ \infty, & 2 < \nu \leqslant 4. \end{cases}. \end{split}$$

ullet Пусть $Z\sim N\left(0,1
ight),\ \ V\sim\chi_{
u}^{2}$, тогда

$$T = \frac{Z}{\sqrt{V/\nu}} \sim St(\nu).$$

ullet Если $X \sim St\left(
u
ight)$, то

$$Y = \lim_{N \to \infty} X \sim N(0, 1).$$

Распределение Бернулли

 $X\in\{0,1\}\sim Ber\left(p
ight),\;\;p\in(0,1)$ — распределение, моделирующее испытание Бернулли.

Пример: результат подбрасывания монеты.

$$F(x) = \begin{cases} 0, & x < 0, \\ 1 - p, & 0 \le x < 1, \\ 1, & x \ge 1, \end{cases}$$
$$f(x) = \begin{cases} 1 - p, & x = 0, \\ p, & x = 1. \end{cases}$$

Распределение Бернулли

Биномиальное распределение

 $X\in\{0,\dots,N\}\sim Bin\left(N,p
ight),\ N\in\mathbb{N},\ p\in[0,1]$ — распределение числа успехов в N независимых испытаниях Бернулли.

Пример: число выпавших решек при независимом подбрасывании N монет.

$$F(x) = I_{1-p}(N-x, 1+x),$$

 $f(x) = C_N^x p^x (1-p)^{N-x}.$

Биномиальное распределение

$$\begin{split} \mathbb{E}X &= Np, \\ \operatorname{med}X &= \lfloor Np \rfloor \text{ или } \lceil Np \rceil, \\ \operatorname{mode}X &= \lfloor (N+1)\, p \rfloor \text{ или } \lceil (N+1)\, p \rceil - 1, \\ \mathbb{D}X &= Np\, (1-p)\,, \\ \gamma_1\, (X) &= \frac{1-2p}{\sqrt{Np\, (1-p)}}, \\ \gamma_2\, (X) &= \frac{1-Np\, (1-p)}{Np\, (1-p)}. \end{split}$$

- Bin(1, p) = Ber(p).
- Если N>20 и p не слишком близко к нулю или единице, то для $X\sim Bin\left(N,p\right)$ справедлива нормальная аппроксимация:

$$F_X(x) \approx \Phi\left(\frac{x - Np}{\sqrt{Np(1-p)}}\right).$$

Распределение Пуассона

 $X \in \{0, 1, 2, \dots\} \sim Pois(\lambda), \lambda > 0$ — распределение числа независимых событий в фиксированном временном или пространственном интервале.

$$F(x) = e^{-\lambda} \sum_{i=0}^{\lfloor x \rfloor} \frac{\lambda^i}{i!},$$
$$f(x) = e^{-\lambda} \frac{\lambda^x}{x!}.$$

$$f(x) = e^{-\lambda} \frac{\lambda^x}{x!}$$

Распределение Пуассона

$$\mathbb{E}X = \lambda,$$

$$\operatorname{mode} X = \lfloor \lambda \rfloor, \lceil \lambda \rceil - 1,$$

$$\mathbb{D}X = \lambda,$$

$$\gamma_1(X) = \lambda^{-1/2},$$

$$\gamma_2(X) = \lambda^{-1}.$$

ullet Пусть X_1,\ldots,X_n независимы, $X_i \sim Pois\left(\lambda_i
ight)$, тогда

$$\sum_{i=1}^{n} X_i \sim Pois\left(\sum_{i=1}^{n} \lambda_i\right).$$

 \bullet Если $X \sim Pois(\lambda)$, $Y = \sqrt{X}$, то при больших λ

$$F_Y(x) \approx \Phi\left(\frac{x - \sqrt{\lambda}}{1/2}\right).$$

Проверка гипотез

выборка:
$$X^n = (X_1, \ldots, X_n), X \sim \mathbf{P} \in \Omega;$$

 $H_0: \mathbf{P} \in \omega, \ \omega \in \Omega;$ нулевая гипотеза:

 $H_1: \mathbf{P} \notin \omega;$ альтернатива:

 $T(X^n)$, $T(X^n) \sim F(x)$ при $\mathbf{P} \in \omega$; статистика:

 $T(X^n) \not\sim F(x)$ при $\mathbf{P} \notin \omega$;

реализация выборки:

$$x^n = (x_1, \dots, x_n);$$

 $t = T(x^n)$: реализация статистики:

 $p(x^n)$ — вероятность при H_0 получить достигаемый уровень значимости:

 $T(X^n) = t$ или ещё более экстремальное;

$$p\left(x^{n}\right) = \mathbf{P}(T \geqslant t \mid H_{0})$$

Гипотеза отвергается при $p(x^n) \leq \alpha, \quad \alpha$ — уровень значимости.

Проверка гипотез

Ошибки I и II рода

	H_0 верна	H_0 неверна
H_0 принимается	H_0 верно принята	Ошибка второго рода
		(False negative)
H_0 отвергается	Ошибка первого рода (False positive)	H_0 верно отвергнута

Type I error (false positive)

Ошибки I и II рода

Задача проверки гипотез несимметрична относительно пары (H_0, H_1) : вероятность ошибки первого рода ограничивается малой величиной α , второго рода — минимизируется путём выбора критерия.

Мощность: pow = $\mathbf{P}(p(T) \leqslant \alpha | H_1)$.

Состоятельный критерий: $pow \to 1$ для всех альтернатив H_1 при $n \to \infty$. T_1 — равномерно наиболее мощный критерий, если $\forall T_2$

$$\mathbf{P}(p(T_1) \leqslant \alpha | H_1) \geqslant \mathbf{P}(p(T_2) \leqslant \alpha | H_1) \quad \forall H_1 \neq H_0,$$

$$\mathbf{P}(p(T_1) \leqslant \alpha | H_0) = \mathbf{P}(p(T_2) \leqslant \alpha | H_0),$$

причём хотя бы для одной H_1 неравенство строгое.

Интерпретация результата

Если величина p достаточно мала, то данные свидетельствуют против нулевой гипотезы в пользу альтернативы.

Если величина p недостаточно мала, то данные не свидетельствуют против нулевой гипотезы в пользу альтернативы.

При помощи инструмента проверки гипотез нельзя доказать справедливость нулевой гипотезы! Absence of evidence \Rightarrow evidence of absence.

Статистическая и практическая значимость

Вероятность отвергнуть нулевую гипотезу зависит не только от того, насколько она отличается от истины, но и от размера выборки. По мере увеличения n нулевая гипотеза может сначала приниматься, но потом выявятся более тонкие несоответствия выборки гипотезе H_0 , и она будет отвергнута.

При любой проверке гипотез нужно оценивать размер эффекта — степень отличия нулевой гипотезы отличается от истины, и оценивать его практическую значимость.

Статистическая и практическая значимость

- (Lee et al, 2010): за три года женщины, упражнявшиеся не меньше часа в день, набрали значимо меньше веса, чем женщины, упражнявшиеся меньше 20 минут в день (p < 0.001). Разница в набранном весе составила 150 г. Практическая значимость такого эффекта сомнительна. Подробности: http://youtu.be/oqDZO-mfN4Q.
- (Ellis, 2010, гл. 2): в 2002 году клинические испытания гормонального препарата Премарин, облегчающего симптомы менопаузы, были досрочно прерваны. Было обнаружено, что его приём ведёт к значимому увеличению риска развития рака груди на 0.08%, риска инсульта на 0.08% и инфаркта на 0.07%. Формально эффект крайне мал, но с учётом численности населения он превращается в тысячи дополнительных смертей.
- (Kirk, 1996): если при испытании гипотетического лекарства, позволяющего замедлить прогресс ослабления интеллекта больных Альцгеймером, оказывается, что разница в IQ контрольной и тестовой групп составляет 13 пунктов, возможно, изучение лекарства стоит продолжить, даже если эта разница статистически незначима.

Другие особенности

 Выбранная статистика может отражать не всю информацию, содержащуюся в выборке. Пример:

$$H_0\colon X\sim N\left(\mu,\sigma^2
ight),\;\; H_1\colon H_0$$
 неверна; $T\left(X^n
ight)=g_1.$

Все симметричные распределения будут признаны нормальными!

- ullet Гипотезы вида $H_0\colon heta= heta_0$ можно проверять при помощи доверительных интервалов для heta:
 - ullet если $heta_0$ не попадает в 100~(1-lpha)% доверительный интервал для heta, то H_0 отвергается на уровне значимости lpha;
 - p-value максимальное lpha, при котором $heta_0$ попадает в соответствующий доверительный интервал.

Shaken, not stirred

Джеймс Бонд говорит, что предпочитает мартини взболтанным, но не смешанным. Проведём слепой тест: n раз предложим ему пару напитков и выясним, какой из двух он предпочитает.

Выборка: бинарный вектор длины $n,\ 1$ — Джеймс Бонд предпочёт взболтанный, 0 — смешанный.

Нулевая гипотеза: Джеймс Бонд не различает два вида мартини, т. е., выбирает наугад.

Статистика t — число единиц в выборке.

Нулевое распределение

Если нулевая гипотеза справедлива и Джеймс Бонд не различает два вида мартини, то равновероятны все выборки длины n из нулей и единиц.

Пусть n=16, тогда существует $2^{16}=65536$ равновероятных варианта. Статистика t принимает значения от 0 до 16:

Односторонняя альтернатива

 H_1 : Джеймс Бонд предпочитает взболтанный мартини. При справедливости такой альтернативы более вероятны большие значения t (т.е., большие t свидетельствуют против H_0 в пользу H_1). Вероятность того, что Джеймс Бонд предпочтёт взболтанный мартини в 12 или более случаях из 16 при справедливости H_0 , равна $\frac{2517}{65536} \approx 0.0384$.

0.0384 — достигаемый уровень значимости при реализации t=12.

Двусторонняя альтернатива

 H_1 : Джеймс Бонд предпочитает какой-то определённый вид мартини. При справедливости такой альтернативы и очень большие, и очень маленькие значения t свидетельствуют против H_0 в пользу H_1). Вероятность того, что Джеймс Бонд предпочтёт взболтанный мартини в 12 или более случаях из 16 при справедливости H_0 , равна $\frac{5034}{65526} \approx 0.0768$.

0.0768 — достигаемый уровень значимости при реализации t=12.

Достигаемый уровень значимости

Чем ниже достигаемый уровень значимости, тем сильнее данные свидетельствуют против нулевой гипотезы в пользу альтернативы.

0.0384 — вероятность реализации $t\geqslant 12$ при условии, что нулевая гипотеза справедлива, т. е. Джеймс Бонд выбирает мартини наугад.

Достигаемый уровень значимости нельзя интерпретировать как вероятность справедливости нулевой гипотезы!

Достигаемый уровень значимости

Пример: утверждается, что осьминог предсказывает результаты матчей с участием сборной Германии на чемпионате мира по футболу 2010 года, выбирая кормушку с флагом страны-победителя. По результатам 13 испытаний ему удаётся верно угадать результаты 11 матчей. Аналогичный предыдущему критерий даёт достигаемый уровень значимости $p\approx 0.0112$.

0.0112 — не вероятность того, что осьминог выбирает кормушку наугад! Эта вероятность равна единице.

$$p = \mathbf{P}(T \geqslant t | H_0) \neq \mathbf{P}(H_0 | T \geqslant t)$$
.

Достигаемый уровень значимости

Пример: пусть Джеймс Бонд выбирает взболтанный мартини в 51% случаев (ненаблюдаемая вероятность).

Пусть по итогам 100 испытаний взболтанный мартини был выбран 49 раз. Достигаемый уровень значимости против односторонней альтернативы — $p\approx 0.6178$. Нулевая гипотеза не отвергается, при этом сказать, что она верна, было бы ошибкой — Джеймс Бонд выбирает смешанный и взболтанный мартини не с одинаковыми вероятностями!

Мощность

Проверяя нулевую гипотезу против двусторонней альтернативы, мы отвергаем H_0 при $t\geqslant 13$ или $t\leqslant 3$, что обеспечивает достигаемый уровень значимости $p=0.0213\leqslant \alpha=0.05.$

Пусть Джеймс Бонд выбирает взболтанный мартини в 75% случаев.

 ${
m pow} \approx 0.6202,$ т. е., при многократном повторении эксперимента гипотеза будет отклонена только в 62% случаев.

Мощность

Мощность критерия зависит от следующих факторов:

- размер выборки;
- размер отклонения от нулевой гипотезы;
- чувствительность статистики критерия;
- тип альтернативы.

Размер выборки

Особенности прикладной задачи: 1 порция мартини содержит 55 мл джина и 15 мл вермута — суммарно около 25 мл спирта. Смертельная доза алкоголя при массе тела 80 кг составляет от 320 до 960 мл спирта в зависимости от толерантности (от 13 до 38 мартини).

Обеспечение требуемой мощности: размеры выборки подбирается так, чтобы при размере отклонения от нулевой гипотезы не меньше заданного (например, вероятность выбора взболтанного мартини не меньше 0.75) мощность была не меньше заданной.

Шокирующий график

Падение мощности: объяснение

Справочники по статистике:

- Кобзарь А.И. Прикладная математическая статистика. Москва: Физматлит, 2006.
- Kanji G.K. 100 statistical tests. London: SAGE Publications, 2006.

Вводные учебники по статистике:

- Good P.I., Hardin J.W. Common Errors in Statistics (and How to Avoid Them). — Hoboken: John Wiley & Sons, 2003.
- Reinhart A. Statistics Done Wrong. The woefully complete guide. http://www.statisticsdonewrong.com/

R:

- http://youtu.be/jwBgGS_4RQA
- http://cran.r-project.org/doc/contrib/Short-refcard.pdf
- http://swirlstats.com
- https://www.coursera.org/course/rprog

Литература

Anscombe F.J. (1973). Graphs in Statistical Analysis. American Statistician, 27(1): 17–21.

Begg I.M., Anas A., Farinacci S. (1992). Dissociation of processes in belief: Source recollection, statement familiarity, and the illusion of truth. Journal of Experimental Psychology: General, 121(4), 446–458.

Ellis P.D. The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results. — Cambridge: Cambridge University Press, 2010.

Huff D. How To Lie With Statistics. — New York: W.W. Norton & Company, 1954.

Kirk R.E. (1996). *Practical Significance: A Concept Whose Time Has Come*. Educational and Psychological Measurement, 56(5), 746–759.

Lee I.-M., Djoussè L., Sesso H.D., Wang L., Buring J.E. (2010). *Physical Activity and Weight Gain Prevention*. JAMA: the Journal of the American Medical Association, 303(12), 1173–1179.

Marriott, F. H. C. *The Interpretation of Multiple Observations.* — London: Academic Press, 1974.