

Network setup

- Total number of layer: K.
- Input (vector) to the jth layer: $\mathbf{z}^{(j-1)}$.
- Output (vector) of the jth layer: $\mathbf{z}^{(j)}$.
- Weight matrix associated with the jth layer: $\mathbf{w}^{(j)}$
- Number of neurons in the jth layer: H_j .

Layer outputs

- Output from layer 1: $\mathbf{z}^{(1)} = \mathcal{A}^{(1)}(\mathbf{w}^{(1)T}\mathbf{x})$
- Output from layer 2: $\mathbf{z}^{(2)} = \mathcal{A}^{(2)}(\mathbf{w}^{(2)T}\mathbf{z}^{(1)})$
- Output from layer j: $\mathbf{z}^{(j)} = \mathcal{A}^{(j)} (\mathbf{w}^{(j)T} \mathbf{z}^{(j-1)})$
- Output from layer K (lastlayer): $\mathbf{y}^* = \mathcal{A}^{(K)}(\mathbf{w}^{(K)T}\mathbf{z}^{(K-1)})$

Final output

• Final output can also be written as

$$\mathbf{y}^* = \mathcal{A}^{(K)} \left(\mathbf{w}^{(K)T} \mathbf{z}^{(K-1)} \right)$$

$$= \mathcal{A}^{(K)} \left(\mathbf{w}^{(K)T} \mathcal{A}^{(K-1)} \left(\mathbf{w}^{(K-1)T} \mathbf{z}^{(K-2)} \right) \right)$$

$$= \mathcal{A}^{(K)} \left(\mathbf{w}^{(K)T} \mathcal{A}^{(K-1)} \left(\mathbf{w}^{(K-1)T} \dots \mathcal{A}^{(j)} \left(\mathbf{w}^{(j)T} \mathbf{z}^{(j-1)} \right) \dots \right) \right)$$

$$= \mathcal{A}^{(K)} \left(\mathbf{w}^{(K)T} \mathcal{A}^{(K-1)} \left(\mathbf{w}^{(K-1)T} \dots \mathcal{A}^{(1)} \left(\mathbf{w}^{(1)T} \mathbf{x} \right) \dots \right) \right)$$

Partial derivative of the loss function

• Partial derivatives of the loss function \mathcal{L} w.r.t. the weights in the hth layer:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}^{(h)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{y}^*} \frac{\partial \mathbf{y}^*}{\partial \mathbf{w}^{(h)}}
= \frac{\partial \mathcal{L}}{\partial \mathbf{y}^*} \frac{\partial \mathbf{y}^*}{\partial \mathbf{z}^{(K-1)}} \frac{\partial \mathbf{z}^{(K-1)}}{\partial \mathbf{w}^{(h)}}
= \frac{\partial \mathcal{L}}{\partial \mathbf{y}^*} \frac{\partial \mathbf{y}^*}{\partial \mathbf{z}^{(K-1)}} \frac{\partial \mathbf{z}^{(K-1)}}{\partial \mathbf{z}^{(K-2)}} \frac{\partial \mathbf{z}^{(K-2)}}{\partial \mathbf{w}^{(h)}}
\vdots
= \frac{\partial \mathcal{L}}{\partial \mathbf{y}^*} \frac{\partial \mathbf{y}^*}{\partial \mathbf{z}^{(K-1)}} \frac{\partial \mathbf{z}^{(K-1)}}{\partial \mathbf{z}^{(K-2)}} \frac{\partial \mathbf{z}^{(K-2)}}{\partial \mathbf{z}^{(K-2)}} \cdots \frac{\partial \mathbf{z}^{(h+1)}}{\partial \mathbf{z}^{(h)}} \frac{\partial \mathbf{z}^{(h)}}{\partial \mathbf{w}^{(h)}}$$

Jacobian matrix

$$\frac{\partial \mathbf{z}_{1}^{(j)}}{\partial z_{1}^{(j)}} = \begin{bmatrix} \frac{\partial z_{1}^{(j)}}{\partial z_{1}^{(j)}} & \frac{\partial z_{1}^{(j)}}{\partial z_{2}^{(j)}} & \cdots & \frac{\partial z_{1}^{(j)}}{\partial z_{H_{j}}^{(j)}} \\ \frac{\partial z_{1}^{(j)}}{\partial z_{1}^{(j)}} & \frac{\partial z_{2}^{(j)}}{\partial z_{2}^{(j)}} & \cdots & \frac{\partial z_{2}^{(j)}}{\partial z_{H_{j}}^{(j)}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial z_{H_{j+1}}^{(j+1)}}{\partial z_{1}^{(j)}} & \frac{\partial z_{H_{j+1}}^{(j+1)}}{\partial z_{2}^{(j)}} & \cdots & \frac{\partial z_{H_{j+1}}^{(j+1)}}{\partial z_{H_{j}}^{(j)}} \end{bmatrix}$$

Jacobian matrix

• Consider one of the Jacobians $\frac{\partial \mathbf{z}^{(j+1)}}{\partial \mathbf{z}^{(j)}}$:

$$\frac{\partial \mathbf{z}^{(j+1)}}{\partial \mathbf{z}^{(j)}} = \frac{\partial \left(\mathcal{A}^{(j+1)} \left(\mathbf{w}^{(j+1)T} \mathbf{z}^{(j)} \right) \right)}{\partial \mathbf{z}^{(j)}}$$

$$= \operatorname{diag} \left[\mathcal{A}^{(j+1)'} \left(\mathbf{w}^{(j+1)T} \mathbf{z}^{(j)} \right) \right] \mathbf{w}^{(j+1)T}$$

Jacobian matrix: components

$$\mathbf{w}^{(j+1)} = \begin{bmatrix} w_{11}^{(j+1)} & w_{12}^{(j+1)} & \cdots & w_{1H_{j+1}}^{(j+1)} \\ w_{21}^{(j+1)} & w_{22}^{(j+1)} & \cdots & w_{2H_{j+1}}^{(j+1)} \\ \vdots & \vdots & \ddots & \vdots \\ w_{H_{j}1}^{(j+1)} & w_{H_{j}2}^{(j+1)} & \cdots & w_{H_{j}H_{j+1}}^{(j+1)} \end{bmatrix}$$

$$\operatorname{diag}\left[\mathcal{A}^{(j+1)'}(\mathbf{w}^{(j+1)\mathrm{T}}\mathbf{z}^{(j)})\right] = \begin{bmatrix} \mathcal{A}_{1}^{(j+1)'}(\mathbf{w}_{\cdot 1}^{(j+1)\mathrm{T}}\mathbf{z}^{(j)}) & 0 & \cdot & \cdot & 0 \\ 0 & \mathcal{A}_{2}^{(j+1)'}(\mathbf{w}_{\cdot 2}^{(j+1)\mathrm{T}}\mathbf{z}^{(j)}) & \cdot & \cdot & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdot & \cdot & \mathcal{A}_{H_{j+1}}^{(j+1)\mathrm{T}}\mathbf{z}^{(j)}) \end{bmatrix}$$

2-norm of the Jacobians

• 2-norm of the Jacobian:

$$\left\| \frac{\partial \mathbf{z}^{(j+1)}}{\partial \mathbf{z}^{(j)}} \right\| = \left\| \operatorname{diag} \left[\mathbf{\mathcal{A}}^{(j+1)'} \left(\mathbf{w}^{(j+1)T} \mathbf{z}^{(j)} \right) \right] \mathbf{w}^{(j+1)T} \right\|$$

$$\leq \left\| \operatorname{diag} \left[\mathbf{\mathcal{A}}^{(j+1)'} \left(\mathbf{w}^{(j+1)T} \mathbf{z}^{(j)} \right) \right] \right\| \left\| \mathbf{w}^{(j+1)T} \right\|$$

- Nonlinear activation functions $\mathcal{A}(x)$ for which $|\mathcal{A}'(x)|$ is bounded, diag $\left[\mathcal{A}^{(j+1)'}\left(\mathbf{w}^{(j+1)\mathrm{T}}\mathbf{z}^{(j)}\right)\right]$ is also bounded depending on the singular values.
- So there is a limit on how much a vector will be scaled by multiplying the Jacobian with it.

Activation function: sigmoid

$$- \sigma(x)$$

$$- \frac{\mathrm{d}}{\mathrm{d}x}\sigma(x)$$

• If
$$\mathcal{A}^{(j+1)}(\cdot) = \sigma(\cdot)$$
, then $\left| \left| \operatorname{diag} \left[\mathcal{A}^{(j+1)'} \left(\mathbf{w}^{(j+1)T} \mathbf{z}^{(j)} \right) \right] \right| \right| \leq \frac{1}{4}$

Activation function: tanh

 $\frac{-\tanh(x)}{-\frac{\mathrm{d}}{\mathrm{d}x}\tanh(x)}$

• If $\mathcal{A}^{(j+1)}(\cdot) = \tanh(\cdot)$, $\left| \operatorname{diag} \left[\mathcal{A}^{(j+1)'} \left(\mathbf{w}^{(j+1)T} \mathbf{z}^{(j)} \right) \right] \right| \le 1$

Effect of the weight matrix

- Effect of the weight matrices on the chain product:
 - Expansion in directions where the singular values of the weight matrices are greater than one.
 - Shrink along directions where the singular values of the weight matrices are less than one.
- Multiplications by the weight matrices can lead to **exploding** or **vanishing** gradients.

Overall effect

- Overall effect of the Jacobian matrices on the chain product:
 - Expansion in directions where the Jacobian matrices have singular values greater than one.
 - Shrinkage in directions where the Jacobian matrices have singular values less than one.