TSR: Segon Parcial

Aquest examen consta de 20 qüestions d'opció múltiple. En cadascuna, només una resposta és correcta. Ha de respondre's en una altra fulla. Les respostes correctes aporten 0.5 punts a la qualificació de l'examen. Les errònies descompten 0.167 punts.

TEORIA

1. El desplegament inclou la instal·lació inicial i la configuració d'una aplicació. A més d'això, el desplegament d'un servei també comprèn...

	. Fr Q
Α	La depuració dels programes.
В	La gestió del cicle de vida del servei.
С	El desenvolupament de l'aplicació.
D	El disseny de l'aplicació.

2. L'objectiu principal de la injecció de dependències és...

Α	Resoldre les dependències entre components utilitzant fitxers de configuració.
В	Eliminar totes les dependències entre components durant l'etapa de disseny.
С	Que la resolució de dependències siga el més transparent possible per al desenvolupador dels components.
D	Evitar l'ús de contenidors ja que aquests penalitzen el rendiment.

3. Imaginem un servei que necessita 400 ms per a processar localment cada petició que modifique el seu estat. Aquestes peticions inverteixen 20 ms per a transmetre a altres rèpliques l'estat modificat i 30 ms a aplicar les modificacions en elles. Un missatge de petició pot ser difós (en ordre total) en aquesta xarxa en 3 ms. Una petició de lectura pot ser gestionada localment en 20 ms. La proporció d'accessos és: 80% accessos de lectura i 20% accessos de modificació.

Per a escalar aquest servei, la millor aproximació serà...

Α	Replicar-lo utilitzant el model actiu.
В	Replicar-lo utilitzant el model passiu, processant totes les sol·licituds en la rèplica
	primària.
С	Replicar-lo utilitzant el model passiu, però permetent que les sol·licituds de lectura
	siguen processades per les rèpliques secundàries.
D	No replicar-lo perquè la replicació introdueix massa coordinació i això impedeix un
	escalat eficient.

4. En els models de consistència centrats en dades, podem dir que el model A és més fort que el model B en els següents casos:

	- mount 2 on one requirement and our	
Α	A: causal, B: "cache".	
В	A: FIFO, B: "cache".	
С	A: causal, B: seqüencial.	
D	A: causal, B: FIFO.	

5. Els magatzems escalables NoSQL no suporten el model relacional perquè...

Α	El model relacional no admet replicació.
В	El model relacional no admet particionat horitzontal ("sharding").
С	Les dades relacionals han de mantenir-se en disc.
D	Les transaccions en el model relacional necessiten mecanismes de control de concurrència que poden ser complexos.

6. El teorema CAP...

Α	exigeix que els serveis escalables i disponibles utilitzen sempre el model de
	consistència estricte per a tolerar així les particions de la xarxa.
В	permet que els serveis escalables relaxen la seua consistència mentre la xarxa
D	romanga particionada, assegurant així la seua disponibilitat.
С	no permet la implantació de serveis altament disponibles utilitzant models de
	consistència forts.
D	no té sentit en els centres de dades de computació en el núvol perquè no hi haurà
	mai particions de la xarxa en ells.

7. Respecte a l'escalabilitat de serveis es pot afirmar que...

Α	Un mateix servei no pot escalar horitzontalment i vertical.
В	Els algorismes descentralitzats milloren l'escalabilitat de distància.
С	El particionat horitzontal ("sharding") millora l'escalabilitat administrativa.
D	Evitar la contenció és un factor clau per a millorar l'escalabilitat d'un servei.

8. Els objectius principals d'un subsistema de seguretat són:

Α	Protecció, control d'accés i seguretat física.
В	Protecció, gestió de la confiança i un bon suport per a mecanismes de xifrat.
С	Comptabilitat, integritat, confidencialitat i disponibilitat.
D	Polítiques robustes, mecanismes eficients i garanties correctes.

SEMINARIS

9. Quina de les següents tasques NO es realitza en utilitzar aquesta ordre Docker? docker run -it ubuntu /bin/bash

Α	Executar el programa /bin/bash en un contenidor.
В	Descarregar la imatge "ubuntu:latest" des de Docker Hub si no la teníem en el dipòsit d'imatges local.
С	Arreplegar l'eixida del contenidor que està sent utilitzat per a executar aquesta ordre. L'eixida podrà mostrar-se mitjançant l'ordre docker logs.
D	Eliminar automàticament aquest contenidor una vegada la seua execució haja acabat.

10. L'ordre docker commit a b ...

Α	Crea un nou contenidor anomenat "a" utilitzant el Dockerfile situat en la carpeta "b".
В	Crea una nova imatge "b" utilitzant el Dockerfile de la carpeta "a".
С	Crea una nova imatge "b" amb el contingut actual del contenidor el nom o identificador del qual és "a".
D	Realitza el "commit" d'una transacció "a" que va ser iniciada amb una ordre docker pull o docker push, generant un contenidor amb ID "b".

11. El mòdul "cluster" de NodeJS s'utilitza per a...

Α	desplegar un conjunt de programes NodeJS en un "cluster" d'ordinadors.
В	gestionar múltiples fils en un procés NodeJS.
С	gestionar un conjunt de processos NodeJS perquè puguen compartir alguns recursos; p. ex., un port en el qual escoltar i un mateix programa a executar.
D	implantar fàcilment múltiples models de consistència de memòria.

12. MongoDB utilitza els següents mecanismes per a millorar la seua escalabilitat:

Α	Control de concurrència distribuït.
В	Algorismes descentralitzats.
С	Replicació passiva i particionat horitzontal (o "sharding").
D	Escalabilitat administrativa.

13. L'objectiu principal dels servidors de configuració en MongoDB és:

Α	Adoptar el paper d'àrbitres quan una rèplica falle.
В	Controlar la distribució de dades entre les múltiples particions horitzontals ("shards") existents.
С	Respectar el teorema CAP quan es done una partició en la xarxa.
D	Detectar fallades en els nodes, iniciant un protocol de recuperació quan es done alguna fallada.

14. Considerant la classificació temàtica de vulnerabilitats vista en el Seminari 8, es pot considerar certa la següent afirmació:

Α	L'explotació de defectes en polítiques de seguretat no pot automatitzar-se tan fàcilment com l'explotació de contrasenyes febles.
В	El "phishing" és una vulnerabilitat de tipus "error de programari".
С	La protecció física és un exemple de vulnerabilitat d'enginyeria social.
D	Un defecte en una política de seguretat de protecció personal requereix menor interacció per a ser explotada que un error de programari en el sistema operatiu.

15. Assumint aquest Dockerfile...

FROM zmq
RUN mkdir /zmq
COPY ./broker.js /zmq/broker.js
WORKDIR /zmq
EXPOSE 8000 8001
CMD node broker.js

Quina de les següents afirmacions és FALSA?

Α	Necessitem tenir el fitxer "broker.js" en el directori de l'amfitrió en el qual es trobe
	aquest Dockerfile.
В	El programa a executar en aquests contenidors utilitza el port 8000 del contenidor i
	l'associa al port 8001 de l'amfitrió.
С	Per omissió, els contenidors generats a partir d'aquest Dockerfile executaran l'ordre
	"node broker.js".
D	Aquest Dockerfile assumeix l'existència d'una imatge anomenada "zmq" amb una
	instal·lació vàlida de l'intèrpret de JavaScript "node".

16. Imaginem que el component broker de la questió 15 s'inclou en un fitxer docker-compose.yml amb aquests continguts (entre uns altres que corresponguen a altres components):

version: '2'
services:
...
bro:
image: broker
build: ../broker/

Quina de les següents afirmacions és FALSA?

Quilla de les seguelles diffiliacions es <u>1712571</u> .	
Α	Podem iniciar almenys una instància del component broker amb l'ordre
	docker-compose up –d
В	Una vegada s'ha iniciat el servei, podem tenir 5 instàncies del component broker
	utilitzant docker-compose scale broker=5
С	Aquest fitxer "docker-compose.yml" assumeix que el Dockerfile mostrat en la qüestió
	15 es troba en la carpeta "/broker/".
D	Podem utilitzar l'ordre docker-compose stop bro per a parar totes les instàncies
	d'aquest component broker .

17. Suposem un protocol de replicació basat en un procés seqüenciador que utilitza un socket PUB ZeroMQ per a propagar tots els esdeveniments "write" als processos participants, en ordre de recepció. Aquests esdeveniments han sigut rebuts mitjançant canals PUSH-PULL, on el seu socket PULL està en el seqüenciador. Aquest protocol de replicació suporta els següents models de consistència:

Jegue	seguents models de consistencia.	
Α	Només el model estricte.	
В	Només el model "cache".	
С	Només el model causal.	
D	Seqüencial, processador, causal, "cache" i FIFO.	

18. Aquesta execució...

W1(x)1, R4(x)1, W2(y)2, W1(y)3, W2(x)4, R3(y)2, W3(x)5, R1(x)5, R2(x)1, R3(x)1, R4(y)3, R1(y)2, R3(y)3, R4(x)5, R3(x)4, R2(y)3, R4(y)2, R1(x)4, R2(x)5, R4(x)4.

... suporta aquests models de consistència:

	monporta aquesto monero de consistencia.	
Α	Només el model FIFO.	
В	Només el model "cache".	
С	Processador, FIFO i "cache".	
D	Seqüencial, processador, causal, "cache" i FIFO.	

19. Donat el següent programa servidor de descàrrega de fitxers...

```
var cluster = require('cluster');
                                               } else {
var fs = require('fs');
                                                var rep = zmq.socket('rep');
var path = require('path');
                                                rep.connect(dlName);
var zmq = require('zmq');
                                                rep.on('message', function(data) {
var os = require('os');
                                                var request = JSON.parse(data);
const ipcName = 'Act2.ipc';
                                                 fs.readFile(request.path, function(err,
const dlName = 'ipc://'+ipcName;
                                              data) {
if (cluster.isMaster) {
                                                  if (err) data = ' NOT FOUND';
  var numCPUs = os.cpus().length;
                                                   rep.send(JSON.stringify({
  var rt = zmq.socket('router');
                                                      pid: process.pid,
  var dl = zmq.socket('dealer');
                                                      path: request.path,
  rt.bindSync('tcp://127.0.0.1:8000');
                                                      data: data,
  dl.bindSync(dlName);
                                                      timestamp: new Date().toString()
  rt.on('message', function() {
                                                   }))
       msg = Array.apply(null, arguments);
                                                })
       dl.send(msg); });
                                               })
  dl.on('message', function() {
                                              }
       msg = Array.apply(null, arguments);
       rt.send(msg); });
```

Hem tractat d'executar el programa, però no sembla fer res útil. El seu principal problema és...

Α	Els sockets ZeroMQ no admeten "ipc://" com a transport.
В	No s'ha creat cap procés treballador del mòdul "cluster".
С	S'està tractant de propagar missatges interns del mòdul "cluster" a través d'un socket DEALER ZeroMQ.
D	Un servidor no pot utilitzar un socket ROUTER com el seu "endpoint".

20. La vulnerabilitat OpenSSL Heartbleed descrita en el Seminari 8 és un exemple de vulnerabilitat que pertany a les classes següents:

Α	"Defecte en la política de treball" en la seua categoria i "Personal humà" en l'origen.
В	"Defecte en la lògica del programari" en la seua categoria i "Biblioteca/middleware" en l'origen.
С	"Enginyeria social" en la seua categoria i "Desenvolupador" en l'origen.
D	"Defecte en la lògica del programari" en la seua categoria i "Personal humà" en l'origen.