Package 'denim'

June 5, 2024

Type Package

```
Title Generate and Simulate Deterministic Discrete-Time Compartmental
      Models
Version 1.0.0
Date 2024-05-28
Description R package to build and simulate deterministic discrete-time compartmental mod-
      els that can be non-Markov. Length of stay in each compartment can be defined to follow a para-
      metric distribution (d_exponential(), d_gamma(), d_weibull(), d_lognormal()) or a non-
      parametric distribution (nonparametric()). Other supported types of transition from one compart-
      ment to another includes fixed transition (constant()), multinomial (multinomial()), fixed transi-
      tion probability (transprob()).
License MIT + file LICENSE
URL https://drthinhong.com/denim/, https://github.com/thinhong/denim
BugReports https://github.com/thinhong/denim/issues
Imports Rcpp (>= 1.0.6), viridisLite
Suggests covr, knitr, rmarkdown, testthat (>= 3.0.0), xml2, deSolve,
      DiagrammeR
LinkingTo Rcpp, testthat
Encoding UTF-8
RoxygenNote 7.3.1
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation yes
Author Thinh Ong [aut, cph] (<a href="https://orcid.org/0000-0001-6772-9291">https://orcid.org/0000-0001-6772-9291</a>),
      Anh Phan [aut, cre],
      Marc Choisy [aut] (<a href="https://orcid.org/0000-0002-5187-6390">https://orcid.org/0000-0002-5187-6390</a>),
      Niels Lohman [ctb],
      Bjoern Hoehrmann [ctb],
      Florian Loitsch [ctb],
      Ingo Berg [ctb]
```

2 denim-package

Maintainer Anh Phan <anhptq@oucru.org>

Repository CRAN

Date/Publication 2024-06-05 19:50:10 UTC

Contents

denim-package		denim	
Index			1
	nonparametric		
	mathexpr		

Description

Simulate deterministic discrete time model

Details

Imports

Author(s)

Maintainer: Anh Phan <anhptq@oucru.org>

Authors:

- Thinh Ong <thinhop@oucru.org> (ORCID) [copyright holder]
- Marc Choisy <mchoisy@oucru.org> (ORCID)

Other contributors:

- Niels Lohman [contributor]
- Bjoern Hoehrmann

bjoern@hoehrmann.de> [contributor]
- Florian Loitsch [contributor]
- Ingo Berg [contributor]

constant 3

See Also

Useful links:

• https://drthinhong.com/denim/

• https://github.com/thinhong/denim

• Report bugs at https://github.com/thinhong/denim/issues

constant

Fixed transition

Description

Define a fixed number of individuals of the left compartment transit to the right compartment at every time step

Usage

constant(x)

Arguments

Х

number of individuals who move from one compartment to another

Value

a Distribution object for simulator

Examples

```
transitions <- list("S->I" = constant(10))
```

d_exponential

Discrete exponential distribution

Description

Discrete exponential distribution

Usage

```
d_exponential(rate)
```

Arguments

rate

rate parameter of an exponential distribution

d_lognormal

Value

a Distribution object for simulator

Examples

```
transitions <- list("I -> D" = d_exponential(0.3))
```

d_gamma

Discrete gamma distribution

Description

Discrete gamma distribution

Usage

```
d_gamma(scale, shape)
```

Arguments

scale scale parameter of a gamma distribution shape shape parameter of a gamma distribution

Value

a Distribution object for simulator

Examples

```
transitions <- list("S -> I" = d_gamma(1, 5))
```

d_lognormal

Discrete log-normal distribution

Description

Discrete log-normal distribution

Usage

```
d_lognormal(mu, sigma)
```

d_weibull 5

Arguments

mu location parameter or the ln mean

sigma scale parameter or ln standard deviation

Value

a Distribution object for simulator

Examples

```
transitions <- list("I -> D" = d_lognormal(3, 0.6))
```

d_weibull

Discrete Weibull distribution

Description

Discrete Weibull distribution

Usage

```
d_weibull(scale, shape)
```

Arguments

scale scale parameter of a Weibull distribution shape shape parameter of a Weibull distribution

Value

a Distribution object for simulator

Examples

```
transitions <- list("I -> D" = d_weibull(0.6, 2))
```

6 multinomial

mathexpr

Mathematical expression

Description

Mathematical expression

Usage

```
mathexpr(expr)
```

Arguments

expr

User defined mathematial expression. he expression will be processed by muparser library which offers a wide variety of operators. Visit muparser website (https://beltoforion.de/en/muparser/features.php) to see full list of available operators.

Value

a Distribution object for simulator

Examples

```
transitions <- list("S->I"=mathexpr("beta*S/N")) # definition for parameters in the expression required params <- c(N = 1000, beta = 0.3)
```

multinomial

Multinomial

Description

Define a set of probabilities of transition from one compartment to multiple compartments

```
"I -> R, D" = multinomial(0.9, 0.1),
"I -> R" = d_gamma(3, 2),
"I -> D" = d_lognormal(2, 0.5)

is equal to

"0.9 * I -> R" = d_gamma(3, 2),
"0.1 * I -> D" = d_lognormal(2, 0.5)
```

Usage

```
multinomial(...)
```

nonparametric 7

Arguments

... a vector of probabilities, must add up to 1

Value

a Distribution object for simulator

nonparametric

Nonparametric distribution

Description

Convert a vector of frequencies, percentages... into a distribution

Usage

```
nonparametric(...)
```

Arguments

... a vector of values

Value

a Distribution object for simulator

Examples

```
transitions <- list("S->I"=nonparametric(0.1, 0.2, 0.5, 0.2))
```

 sim

Simulator for deterministic discrete time model with memory

Description

Simulation function that call the C++ simulator

Usage

```
sim(
   transitions,
   initialValues,
   parameters = NULL,
   simulationDuration,
   timeStep = 1,
   errorTolerance = 0.001
)
```

8 sim

Arguments

transitions a list of transitions follows this format "transition" = distribution() a vector contains the initial values of all compartments defined in the transiinitialValues tions, follows this format compartment_name = initial_value a vector contains values of any parameters that are not compartments, usually parameters parameters used in mathexp() functions simulationDuration duration of time to be simulate timeStep set the output time interval. For example, if simulationDuration = 10 means 10 days and timeStep = 0.1, the output will display results for each 0.1 daily interval errorTolerance set the threshold so that a cumulative distribution function can be rounded to 1. For example, if we want a cumulative probability of 0.999 to be rounded as 1,

we set errorTolerance = 0.001 (1 - 0.999 = 0.001). Default is 0.001

Value

a data.frame with class denim that can be plotted with a plot() method

Examples

```
transitions <- list(</pre>
   "S -> I" = "beta * S * I / N",
   "I -> R" = d_{gamma}(3, 2)
initialValues <- c(</pre>
  S = 999,
  I = 1,
   R = 0
parameters <- c(</pre>
  beta = 0.012,
   N = 1000
simulationDuration <- 30
timeStep <- 0.01
mod <- sim(transitions = transitions,</pre>
            initialValues = initialValues,
            parameters = parameters,
            simulationDuration = simulationDuration,
            timeStep = timeStep)
```

transprob 9

transprob

Transition probability

Description

A fixed percentage of the left compartment transit to the right compartment at every time step

Usage

```
transprob(x)
```

Arguments

Х

a float number between 0 to 1

Value

a Distribution object for simulator

Examples

```
transitions <- list("S->I"=transprob(0.8))
```

Index

```
constant, 3

d_exponential, 3

d_gamma, 4

d_lognormal, 4

d_weibull, 5

denim (denim-package), 2

denim-package, 2

mathexpr, 6

multinomial, 6

nonparametric, 7

sim, 7

transprob, 9
```