SOLAR CELL

Publication number: JP61292381 (A)
Publication date: 1986-12-23

Inventor(s): TONOMURA YOSHIAKI +

Applicant(s): SHARP KK +

Classification:

- international: H01L31/042; H01L31/0352; H01L31/068; H01L31/042; H01L31/0248; H01L31/066;

(IPC1-7): H01L31/04

- European: H01L31/0352C3; H01L31/068
Application number: JP19850133799 19850619
Priority number(s): JP19850133799 19850619

Abstract of JP 61292381 (A)

PURPOSE:To obtain a solar cell maintaining high electromotive efficiency by constructing a solar cell whose one part of the surface layer is intruding into the base layer. CONSTITUTION: The P-layer 1 of a solar cell 100 as a base layer is thicker than the Nlayer 2 as a surface layer. A P-electrode 4 and an Nelectrode 5 are provided on the P-layer 1 and the Nlayer 2 respectively. A shallow, lattice- shaped groove 8 is arranged on the junction plane 3' of the P-layer 1, and a quadrangular pyramid-shaped dent section 9 ranging over 70-90% of the thickness of the base layer 1 is arranged in the lower section of the cross-section of the shallow groove 8. The shallow bank 10 and the dent 9 of the N-layer 2 correspond to the shallow groove 8 and the convex section 9. A junction section 3 intrudes into the inside of the P-layer 1 at plural parts. Thus, a free carrier 6, even if it is generated in a deeper place A7 than the N-layer 2, securely reaches the PN junction section 3 within the lifetime of it since the distance X from the junction section 3 is smaller. Thus, the solar cell 100 possesses superior electromotive efficiency.

Data supplied from the espacenet database — Worldwide

19 日本国特許庁(JP)

① 特許出願公開

⑩ 公 開 特 許 公 報 (A) 昭61-292381

(51) Int Cl.4 H 01 L 31/04 識別記号

庁内整理番号 6851 - 5F

④公開 昭和61年(1986)12月23日

審査請求 未請求 発明の数 1 (全3頁)

69発明の名称 太陽電池セル

> 願 昭60-133799 21)特

願 昭60(1985)6月19日 22出

嘉章 ② 発 明 者 殿村 シャープ株式会社 大阪市阿倍野区長池町22番22号 シャープ株式会社内

大阪市阿倍野区長池町22番22号

⑪代 理 人 弁理士 野河 信太郎

明細翻

1. 発明の名称

②出 願 人

太陽電池セル

2, 特許請求の範囲

1. 厚みを有する基層とその基層上に形成され る表層とからなり、その両層が相対的にP層、N 層を形成し、かつ両層面上にそれぞれ電極が付設 されてなる太陽電池セルにおいて、基層と表層と の接合部が複数個所において基層内側に突出して 位置するように構成されてなる太陽電池セル。

2. 接合部の突出深さが、基層厚みの70~90% に至ることを特徴とする特許請求の範囲第1項記 載の太陽電池セル。

3. 発明の詳和な説明

(イ)産業上の利用分野

この発明は太陽電池セルに関し、特にそのPN 接合構造に関する。

(ロ) 従来の技術

従来の太陽電池セル(100a)は、その艇断面を 第3図に示すとおり P層 (1a) と N 層 (2a) との PN接合部(3a)をほぼ平面としている。尚、 (4a) はP電極、(5a) はN電極である。

(ハ)発明が解決しようとする問題点

光起電効果を呈する光電変換素子では、入射し て来た光量子により自由キャリアが励起発生する。

従来の上記太陽電池セル (100a) では、PN接 合部 (3a) の近傍で励起発生した自由キャリアは PN接合部 (3a) に到達し、P電極 (4a) は正電 位にN電極(5a)は負電位になるような起電力が 生じる。しかし、PN接合部(3a)から離れた位 置、例えばN曆(2a)表面から深い位置A(7a) で励起発生した自由キャリア (6a) は、接合部 (3a) に到達する前に再結合をして消失し、起電 の効率を悪くしているという問題があつた。特に、 宇宙空間で用いる場合では、太陽電池セル (100a) は放射線による損傷を受けやすく、自由キャリア (6a)の再結合するまでの寿命が減少し光電流が 低下するという問題があつた。上記の問題は、太 陽電池セルにおいて下方側に位置する基層が上方

側に位置する表層に比して厚みが大きいという基

本的な構成に由来する。

この発明は、これらの問題点に鑑み、自由キヤリアが有効にPN接合部に到達し、高い起電効率を確保する太陽電池セルを提供することを目的とする。

(二) 問題点を解決するための手段

この発明においては、太陽電池セルの表層の一部を、厚みを有する整層内に入り込む構成とし、 PN接合部に基層の下部を接近させる構成とした ものである。

その詳細な構成は、厚みを有する基層とその基層上に形成される表層とからなり、その両層が相対的にPB、NBを形成し、かつ両層面上にそれぞれ電極が付設されてなる太陽電池セルにおいて基層内側に突出して位置するように構成されてなる太陽電池セルである。

(ホ)作用

光量子により励起発生する自由キャリアの発生 位置とPN接合部との距離が短く、自由キャリア

る形状とされ、浅溝(8)と凹部(9)に対応してそれぞれ浅堤(00)と凸部(11)が位置する。

上記のそれぞれの接合部面(3)(3″)が接合部(3)を構成する結果、接合部(3)は複数個所において P暦(1)内側に突出して位置する。

この太陽電池セル (100) および各部は、上述したように構成さていることにより、次のとおりに作動する。

太陽電池セル(100)のN腐(2)表面に光が照射すると、P腐(1)が電子を運ぶ自由キャリアおよびN腐(2)で正孔を運ぶ自由キャリアが発生する。発生した自由キャリア(6)は、PN接合部(3)に到達する。自由キャリア(6)は、PN接合部(3)に到達する前にようとする。つまり、発生した腐産がある。したののでは、PN接合部(3)の形状が上に自由・ロア(6)が発生してもごの位置A(7)とPN接合ののでは、アののでは、アン

が再結合することなく効率よく PN接合部に到達 する。

(へ)実施例

以下この発明の実施例を図面によつて詳述する が、この発明は以下の実施例に限定されるもので はない。

第1図は宇宙使用タイプの太陽電池セル(100)の縦断面構成を示し、基層となるP層(1)と表層となるN層(2)に比して厚みを有する。そしてP層(1)、N層(2)上にそれぞれP電極(4)、N電極(5)が付設されている。

第2図はこの発明を説明すべく、P腐(1)、N腐(2)を仮りに分離した状態を示し、この図面において両層(1)(2)の接合部(3)の構成を説明する。

まず P腐 (1) の接合部面 (3) には格子状に浅溝 (8) が位置し、この浅溝 (8) の交差する部分に、下方に至る四角 鍾台形状の凹部 (9) が位置する。この凹部 (9) の下方への突出割合は、P腐 (1) の全体 厚みに対して例えば 70~90% である。 N腐 (2) の接合部面 (3) に合致す

(6) の殆んどはその寿命時間内に確実にPN接合部(3) に到達する。しかも、自由キャリア(6) はN層(2) 上面に近い部位ほどより豊富に発生するが、この部位での両層(1) (2) の接合部(3) は、凹部(9) と凸部(1) および浅堤(0) と浅溝(8) によって入り組んで広く形成されており、自由キャリア(6) は接合部(3) に確実に到達できる。よって、この太陽電池セル

(100) の起電効率は極めてよい。

又、宇宙空間で用いる場合、太陽電池セル (100) は放射線により損傷を受けて自由キャリア(G)の寿命時間が減少しがちだが、従来に比べ発生した自由キャリア(G)のうち接合部に到達する自由キャリア(G)の割合はやはり高く、耐放射線性が向上している。

以下、上記の太陽電池セル (100) の製造例を 2 つ 示す。

P層(1)の接合部面の改満(3)、四部(9)の形成は、 異方性エッチングによりおこなう。このP層(1)の 接合部面の上にN型結晶を成長させてP層(1)上に N層(2)を形成し、この形成に伴ない、浅堤(0)と凸

特開昭61-292381(3)

部間が浅堤(8)と凹部(9)内に位置するように形成される。電極(4)(5)はこの後付設される。

他の方法としては、シリコン板体の、浅溝(8)、 浅堤(0)と凹部(9)、凸部(11)が所望される部位に加速 した不純物イオンを、他の部位には一定速度の不 純物イオンを注入して得るものである。

(ト)発明の効果

この発明によれば、自由キャリアの発生位置と PN接合部との距離が短くなつて自由キャリアが その寿命内にPN接合部へ到達することが確実に なり、よつて起電効率が高く、耐放射線性にすぐ れる太陽電池セルを得ることができる。

4. 図面の簡単な説明

第 1 図はこの発明の一実施例の構成を示す報断 面図、第 2 図はその仮想分離斜視図、第 3 図は従 来例の構成を示す報断面図である。

(100) … … 太陽電池セル、

- (1) … … P層、
- (2) ··· ··· N 層、
- (3) … … PN接合部、
- (4) ··· ··· P 電極、
- (5) --- N 電極、
- (6) …… 自由キャリア、

代理人 弁理士 野河信力

