Khôlles de Mathématiques - Semaine 14

Felix Rondeau

12 janvier 2024

1 Calcul de la signature d'une transposition par dénombrement de ses inversion

Démonstration. Soient n, i_1, i_2 trois entiers tels que $1 \le i_1 < i_2 \le n$. Observons que

$$\tau_{i_1,i_2} = \left(\begin{array}{cccccc} 1 & \cdots & i_1-1 & i_1 & i_1+1 & \cdots & i_2-1 & i_2 & i_2+1 & \cdots & n \\ 1 & \cdots & i_1-1 & i_2 & i_1+1 & \cdots & i_2-1 & i_1 & i_2+1 & \cdots & n \end{array}\right)$$

si bien que la liste des inversions de τ_{i_1,i_2} (couple (i,j) tel que i < j et $\tau_{i_1,i_2}(i) > \tau_{i_1,i_2}(j)$) est

$$I(\tau_{i_1,i_2}) = \{\underbrace{(i_1,i_1+1),(i_1,i_1+2),\ldots,(i_1,i_2)}_{i_2-i_1 \text{ inversions}},\underbrace{(i_1+1,i_2),(i_1+2,i_2),\ldots,(i_2-1,i_2)}_{i_2-i_1-1 \text{ inversions}}\}$$

Ainsi, $|I(\tau_{i_1,i_2})|=2(i_2-i_1)-1\equiv 1$ [2] donc $\varepsilon(\tau_{i_1,i_2})=(-1)^{|I(\tau_{i_1,i_2})|}=-1$, d'où toute transposition est impaire (de signature -1).

2 Calculs des cardinaux du groupe symétrique S_n et du groupe alterné A_n .

Démonstration.

Cardinal de S_n . La recherche de toutes les permutations possibles de $\{1, 2, ..., n\}$ par un arbre de dénombrement montre que l'on dispose de

- n choix pour l'image de 1,
- (n-1) choix pour l'image de 2,
- ...
- 1 choix pour l'image de n,

ce qui permet de dénombrer, par le principe des choix successifs, exactement $n(n-1)\cdots 1=n!$ permutations deux à deux distinctes.

Cardinal de A_n . Fixons $\tau = (1,2)$. Considérons l'application

$$\Phi: \begin{array}{ccc} \mathcal{A}_n & \longrightarrow & \mathcal{S}_n \setminus \mathcal{A}_n \\ \sigma & \longmapsto & \tau \circ \sigma \end{array}$$

— Φ est bien définie.

Soit $\sigma \in \mathcal{A}_n$ fixée quelconque. Par propriété de morphisme de la signature,

$$\varepsilon(\tau \circ \sigma) = \varepsilon(\tau) \times \varepsilon(\sigma) = (-1) \times (+1) = -1$$

donc $\tau \circ \sigma \notin \mathcal{A}_n$. Par conséquent, $\Phi(\sigma) \in \mathcal{S}_n \setminus \mathcal{A}_n$.

— Φ est bijective. Soit $\gamma \in \mathcal{S}_n \setminus \mathcal{A}_n$ fixé quelconque. Résolvons l'éq. d'inconnue $\sigma \in \mathcal{A}_n$:

$$\Phi(\sigma) = \gamma \iff \tau \circ \sigma = \gamma$$

$$\iff \tau \circ \tau \circ \sigma = \tau \circ \gamma$$

$$\iff \sigma = \tau \circ \gamma \in \mathcal{A}_n \quad \text{car } \varepsilon(\tau \circ \gamma) = \varepsilon(\tau) \times \varepsilon(\gamma) = (-1)^2 = 1$$

d'où la bijectivité.

Ainsi, puisque Φ est une bijection,

$$|\mathcal{A}_n| = |\mathcal{S}_n \setminus \mathcal{A}_n| = |\mathcal{S}_n| - |\mathcal{A}_n|$$

d'où

$$|\mathcal{A}_n| = \frac{|\mathcal{A}_n|}{2} = \frac{n!}{2}$$

3 Les transpositions engendrent les groupes symétriques

Démonstration. Soit $n \ge 3$. Considérons la propriété $\mathcal{P}(\cdot)$ définie pour tout $k \in [1, n]$ par

 $\mathcal{P}(k)$: « toute permutation de \mathcal{S}_n qui fixe au moins les éléments de l'ensemble

$$\{1,\dots,n\}\setminus\{1,\dots,k\}$$
 s'écrit comme un produit de transpositions »

- Soit $\sigma \in \mathcal{S}_n$ une permutation qui fixe au moins tous les éléments de $\{2, \ldots, n\}$. Alors, σ étant une bijection de $\{1, \ldots, n\}$ dans $\{1, \ldots, n\}$, $\sigma = \operatorname{Id} \operatorname{donc} \sigma = \tau_{1,2} \circ \tau_{1,2}$. Par conséquent, $\mathcal{P}(1)$ est vraie.
- Soit $k \in [1, n-1]$ fixé quelconque tel que $\mathcal{P}(k)$ est vraie. Soit $\sigma \in \mathcal{S}_n$ une permutation qui fixe au moins tous les éléments de $\{1, \ldots, n \setminus \{1, \ldots, k+1\}\}$ (on a bien $k+1 \leq n$ car $k \leq n-1$).
 - Si $\sigma(k+1) = k+1$, alors σ fixe les éléments de l'ensemble $\{1, \ldots, n\} \setminus \{1, \ldots, k\}$ or $\mathcal{P}(k)$ est vraie donc σ s'écrit comme un produit de transpositions.
 - Si $\sigma(k+1) \neq k+1$, puisque $\forall i \in \{k+2,\ldots,n\}, \sigma(i) = i, \sigma(k+1) < k+1$. Considérons la permutations $\sigma_k = \tau_{k+1,\sigma(k+1)} \circ \sigma$. Alors, $\forall i \in \{k+2,\ldots,n\}, \sigma(i) = i \implies \sigma_k(i) = i$ et de plus, $\sigma_k(k+1) = \tau_{k+1,\sigma(k+1)}(\sigma(k+1)) = k+1$. Par conséquent, σ_k fixe les éléments de l'ensemble $\{1,\ldots,n\}\setminus\{1,\ldots,k\}$ or $\mathcal{P}(k)$ est vraie dons $\exists p \in \mathbb{N}^*, \exists (\tau_1,\ldots,\tau_p)$ une famille de transpositions telles que

$$\tau_{k+1,\sigma(k+1)} \circ \sigma = \sigma_k = \tau_1 \circ \cdots \circ \tau_p$$

si bien qu'en composant par $\tau_{k+1,\sigma(k+1)}$ à gauche,

$$\sigma = \tau_{k+1,\sigma(k+1)} \circ \tau_1 \circ \cdots \circ \tau_p$$

Ainsi, $\mathcal{P}(k+1)$ est vraie.

4 Montrer que si E est un ensemble fini et $f: E \longrightarrow F$, alors f(E) est un ensemble fini et $|f(E)| \leq |E|$.

 $D\'{e}monstration.$

Résultat préliminaire : si A est un ensemble non vide et $f:A\longrightarrow B$ est surjective, il existe $g:B\longrightarrow A$ injective telle que $f\circ g=\mathrm{id}_B$.

A est fini et non vide donc on peut numéroter ses éléments : $A = \{a_1, \dots, a_n\}$. Posons

$$g: \begin{array}{ccc} B & \longrightarrow & A \\ b & \longmapsto & a_{k(b)} \end{array} \quad \text{où } k(b) = \min\{i \in \llbracket 1, |A| \rrbracket \mid f(a_i) = b\}$$

— Soit $b \in B$ fixé quelconque.

$$f \circ g(b) = f(a_{k(b)}) = b \quad \text{car } k(b) \in \{i \in [1, |A|] \mid f(a_i) = b\}$$

donc $f \circ g = id_B$.

— id_B est bijective donc $f \circ g$ est injective donc g est injective.

Preuve du théorème. Soit E un ensemble fini, F un ensemble et f une fonction de E dans F. La correstriction $f^{|f(E)|}$ est surjective de E dans f(E) or E est fini donc le lemme précédent s'applique et permer d'affirmer qu'il existe une application $g: f(E) \longrightarrow E$ injective telle que $f^{|f(E)|} \circ g = \mathrm{id}_{f(E)}$.

f(E) s'injecte donc dans l'ensemble fini E d'ou la finitude de f(E).

De plus, f(E) est en bijection avec g(f(E)) donc $|f(E)| = |g(f(E))| \le |E|$ car g(f(E)) est une partie de E.

5 Dénombrer les surjections de $[\![1,n]\!]$ dans $[\![1,2]\!]$ puis de $[\![1,n]\!]$ dans $[\![1,3]\!]$

 $D\acute{e}monstration.$

Э

6 Lemme des bergers et anagrammes de BARBARA

Soient E, F deux ensembles finis non vides et $f: E \to F$ telle que tout élément de F possède le même nombre $k \in \mathbb{N}^*$ d'antécédents par f. Alors $|F| = \frac{|E|}{k}$

"Pour compter les moutons, il faut compter les pattes puis diviser par quatre."

 $D\acute{e}monstration$. Considérons la relation binaire définie sur E par :

$$\forall (x,y) \in E^2, x \sim y \iff f(x) = f(y)$$

Elle est réflexive, transitive et symétrique donc c'est bien une relation d'équivalence. Soit $x \in E$ fixé quelconque. Alors

$$\bar{x} = \{ y \in E \mid f(x) = f(y) \} = f^{-1}(\{ f(x) \})$$

or f est surjective donc il y a autant de classes d'équivalences que d'éléments dans F, et ces classes sont les éléments de l'ensemble

$$\{f^{-1}(\{t\}) \mid t \in F\}$$

De plus, étant une relation d'équivalence, ces classes forment une partition de E donc

$$|E| = \sum_{t \in F} |f^{-1}(\{t\})| = k|F|$$

FIGURE 1 – Représentation schématique du lemme des bergers. Les classes d'équivalence de \sim sont les ovales qui contiennent des éléments qui ont la même image par f. Le lemme s'applique ici car tous les éléments de F ont le même nombre d'antécédents par f.

Application aux anagrammes : exemple du mot BARBARA. Les lettres du mot BARBARA étiquetées en $B_1A_1R_1B_2A_2R_2A_3$, on peur construire 7! mots différents avec. Chacun de ces mots peut être obtenu de plusieures façon : en échangeant l'ordre des même lettres au sein de celui-ci. Comme il y a 2! façons d'échanger les lettres B_1 et B_2 , autant d'échanger les lettres R_1 et R_2 et 3! façons d'échanger les lettres A_1 , A_2 et A_3 , un même mot est formé 2!2!3! fois. On peut alors appliquer le lemme des bergers pour trouver un nombre total d'anagrammes de $\frac{7!}{2!2!3!}$.

7 p-partage d'un ensemble E et leur dénombrement. Anagrammes de MISSISSIPPI.

Soit $p \in \mathbb{N}^*$. Un p-partage de E est un p-liste $(A_1, \ldots, A_p) \in \mathcal{P}(E)^p$ de parties de E (éventuellement vide), deux à deux disjointes qui recouvrent E, i.e.

$$\forall (i,j) \in [1,p], i \neq j \implies A_i \cap A_j = \emptyset \quad \text{et} \quad \bigcup_{i=1}^p A_i = E$$

Soient $(n_1, \ldots, n_p) \in \mathbb{N}^p$ tels que $n = n_1 + \cdots + n_p$. Un p-partage de E de type (n_1, \ldots, n_p) est un p-partage (A_1, \ldots, A_p) de E tel que

$$\forall (i,j) \in [1,p], |A_i| = n_i$$

Le nombre de p-partage de type (n_1, \ldots, n_p) est :

$$\frac{n!}{\prod_{i=1}^{p} n_i!} \tag{1}$$

Démonstration. Considérons les p-partages de type (n_1, \ldots, n_p) et appliquons le principe des choix successifs :

$$\begin{pmatrix}
A_1, & A_2, & A_3, & \dots, & A_p \\
\binom{n}{n_1} \operatorname{choix} & \binom{n}{n_2} \operatorname{choix} & \binom{n}{n_3} \operatorname{choix} & \binom{n}{n_p} \operatorname{choix}
\end{pmatrix}$$

donc il y a

$$\frac{n!}{n_1!(n-n_1)!} \frac{(n-n_1)!}{n_2!(n-n_1-n_2)!} \frac{(n-n_1-n_2)!}{n_2!(n-n_1-n_2-n_3)!} \cdots \underbrace{\frac{(n-(n_1+\ldots+n_{p-1})!}{n_p!(n_1+\ldots+n_p)!}}_{=0!}$$

Donc, au total, il y a $\frac{n!}{n_1!n_2!\dots n_p!}$ p-partages.

Application aux anagrammes : exemple du mot MISSISSIPPI. Ce mot comporte 11 lettres (1 M, 4 I, 4 S et 2 P). L'ensemble des anagrammes est en bijection avec l'ensemble des p-partages de [1,11] du type (1,4,4,2). Par exemple, l'anagramme MISSSIIIPP correspond au p-partage $(\{1\},\{2,7,8,9\},\{3,4,5,6\},10,11)$. Par conséquent leur nombre est le nombre de p-partages d'un tel type, soit $\frac{11!}{1!4!4!2!}$.

8 Énoncé et démonstration combinatoire de la formule de Van der Monde.

La formule de Van der Monde est la suivante : pour tout $(n,p) \in \mathbb{N}^2$,

$$\forall k \in \mathbb{N}, \ \sum_{i=0}^{k} \binom{n}{i} \binom{p}{k-i} = \binom{n+p}{k}$$

 $D\acute{e}monstration.$ — Si k > n + p. On a

$$\binom{n+p}{k} = 0 \quad \text{par d\'efinition}$$

et

$$\sum_{i=0}^{k} \binom{n}{i} \binom{p}{k-i} = \sum_{i=0}^{n} \binom{n}{i} \binom{p}{k-i} + \sum_{i=n+1}^{k} \binom{n}{i} \binom{p}{k-i} = 0 + 0 = 0$$

— Sinon, $k \leq n + p$. Considérons E un ensemble de cardinal n + p et A une partie de cette ensemble, de cardinal n.

Dénombrons les parties de E de cardinal k en fonction du cardinal de leur intersection avec A \cdot

$$\mathcal{P}_k(E) = \bigsqcup_{i=0}^n \{ B \in \mathcal{P}_k(E) \mid |B \cap A| = i \} = \bigsqcup_{i=0}^n \{ C \sqcup D \in \mathcal{P}_k(E) \mid C \in \mathcal{P}_i(A), D \in \mathcal{P}_{k-i}(\overline{A}) \}$$

or l'application

$$\begin{array}{ccc} \mathcal{P}_i(A) \times \mathcal{P}_{k-i}(\overline{A}) & \longrightarrow & \{C \sqcup D \mid C \in \mathcal{P}_i(A), D \in \mathcal{P}_{k-i}(\overline{A})\} \\ (C,D) & \longmapsto & C \sqcup D \end{array}$$

est bijective donc

$$|\{B \in \mathcal{P}_k(E) \mid |B \cap A| = i\}| = |\mathcal{P}_i(A) \times \mathcal{P}_{k-i}(\overline{A})|$$
$$= |\mathcal{P}_i(A)| \times |\mathcal{P}_{k-i}(\overline{A})|$$
$$= {n \choose i} \times {p \choose k-i}$$

d'où

$$|\mathcal{P}_k(E)| = \sum_{i=0}^n |\{B \in \mathcal{P}_k(E) \mid |B \cap A| = i\}|$$

$$= \sum_{i=0}^n \binom{n}{i} \binom{p}{k-i} = \sum_{i=0}^n \binom{n}{i} \binom{p}{k-i}$$