

Matemática IV - Ing. Mecánica - 2019 Dra. Andrea Ridolfi Ing. Marcos Saromé

Guía de Actividad 1: Subespacios y Transformaciones Lineales

Ejercicio 1. ¿Cuáles de los siguientes son subespacios de \mathbb{R}^{∞} ?

- a) Todas las sucesiones como (1,0,1,0,...) que incluyen una infinidad de ceros.
- b) Todas las sucesiones $(x_1, x_2, ...)$ con $x_j = 0$ a partir de un punto.
- c) Todas las sucesiones decrecientes: $x_{j+1} \le x_j$ para cada j.
- d) Todas las sucesiones convergentes: la x_j tiene límite cuando $j \to \infty$.

Ejercicio 2. Encuentre la dimensión y una base para los cuatro subespacios fundamentales de

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \qquad \text{y} \qquad U = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Ejercicio 3. Si Ax = b siempre tiene por lo menos una solución, demuestre que la única solución de $A^Ty = 0$ es y = 0. (Sugerencia ¿Cuál es el rango?)

Ejercicio 4. Falso o verdadero (Según corresponda, proporcione una razón o un contraejemplo)

- a) $A y A^T$ tienen el mismo número de pivotes.
- b) $A y A^T$ tienen el mismo espacio nulo izquierdo.
- c) Si el espacio renglón es igual al espacio columna, entonces $A^T=A$.
- d) Si $A^T=-A$, entonces el espacio renglón de A es igual al espacio columma.

Ejercicio 5. Encuentre una base de cada uno de los cuatro subespacios de

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Ejercicio 6. ¿Qué matriz tiene el efecto de rotar cada vector un ángulo de 90° y luego proyectar el resultado sobre el eje x? ¿Qué matriz representa la proyección sobre el eje x seguida de la proyección sobre el eje y?.

Ejercicio 7. La matriz

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

1

produce un alargamiento en la dirección x. Trace el círculo $x^2 + y^2 = 1$ y a su alrededor trace los puntos (2x, y) que resulta de la multiplicación por A. ¿Qué forma tiene esa curva?

Ejercicio 8. La matriz

$$A = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$$

produce una transformación por esfuerzo cortante, que deja el eje y sin cambio. Bosqueje este efecto en el eje x, indicando lo que le ocurre a (1,0), (2,0), (-1,0) y cómo se transforma todo el eje.

Ejercicio 9. ¿Cuáles son las matrices de 3 por 3 que representan las transformaciones que:

- a) Proyectan cada vector sobre el plano x y?
- b) Reflejan cada vector a través del plano x y?
- c) Rotan el plano x-y un ángulo de 90° , dejando sólo al eje z?
- d) Rotan un ángulo de 90° al plano x-y, luego al plano x-z, luego al plano y-z?
- e) Realizan las tres rotaciones, pero cada una de un ángulo de 180º?

Ejercicio 10. Sea $D: P_3 \to P_2$, el operador diferencial D(p(x)) = p'(x). Sean $B = \{1, x, x^2, x^3\}$ y $C = \{1, x, x^2\}$ bases para P_3 y P_2 respectivamente.

- 1. Encuentra la matriz A de D con respecto a B y C .
- 2. Encuentra la matriz A' de D con respecto a B' y C donde $B' = x^3, x^2, x, 1$

Ejercicio 11.

De los cúbicos P_3 hasta los polinomios de cuarto grado P_4 . ¿Qué matriz representa la multiplicación por 2+3t? Las columnas de la matriz A de 5 por 4 provienen de la aplicación de la transformación a $1, t, t^2, t^3$.

Ejercicio 12. En el espacio P_3 de polinomios cúbicos, ¿qué matriz representa $\frac{d^2}{dt^2}$? Construya la matriz de 4×4 a partir de la base estándar $1, t, t^2, t^3$. Encuentre su espacio nulo y su espacio columna. ¿Qué significan éstos en términos de polinomios?

Ejercicio 13. En el espacio vectorial P_3 de todos los $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$, sea S el subconjunto de todos los polinomios con Compruebe que S es un subespacio y encuentre una base.

Ejercicio 14. Encuentre la matriz A de 4×3 que representa un desplazamiento derecho: (x_1, x_2, x_3, x_4) se transforma en $Ax = (x_2, x_3, x_4, x_1)$. ¿Cuál es el efecto de A^2 ? Demuestre que $A^3 = A^{-1}$.

Ejercicio 15. En el espacio vectorial P_3 de todos los $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$, sea S el subconjunto de todos los polinomios con Compruebe que S es un subespacio y encuentre una base.

Ejercicio 16. ¿Cuáles de las siguientes transformaciones no son lineales? La entrada es $v = (v_1, v_2)$.

a)
$$T(v) = (v_2, v_1).$$

- b) $T(v) = (v_1, v_1).$
- c) $T(v) = (0, v_1).$
- d) T(v) = (0, 1).
- e) $T(v) = (v_1, 2v_2, v_1 + v_2).$
- f) T(v) = la mayor componente de v.

Ejercicio 17. Dada la matriz

$$A = LU = \begin{bmatrix} 1 \\ 2 & 1 \\ 2 & 1 & 1 \\ 3 & 2 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 1 & 2 & 1 \\ 0 & 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- a) Encuentre el rango de A, y proporcione una base de su espacio nulo.
- b) Los 3 primeros renglones de U son una base del espacio renglón de A: ¿Falso o Verdadero? Las columnas 1, 3, 6 de U son una base del espacio columna de A: ¿falso o verdadero? Los cuatro renglones de A son una base del espacio renglón de A: ¿falso o verdadero?.
- c) Encuentre tantos vectores b linealmente independientes como sea posible para los cuales Ax = b tenga una solución.
- d) En la eliminación sobre A, ¿Qué múltiplo del tercer renglón se restó para eliminar el cuarto renglón?.

Ejercicio 18.

- a) ¿Qué matriz transforma (1,0) en (2,5) y (0,1) en (1,3)?.
- b) ¿Qué matriz transforma (2,5) en (1,0) y (1,3) en (0,1)?.
- c) ¿Por qué ninguna matriz transforma (2,6) en (1,0) y (1,3) en (0,1)?

Ejercicio 19.

- a) ¿Qué matriz transforma (1,0) y (0,1) en (r,t) y (s,u)?.
- b) ¿Qué matriz transforma (a,c) y (b,d) en (1,0) y (0,1)?.
- c) ¿Qué condición sobre a, b, c, d hace imposible el inciso b)?

Ejercicio 20. Suponga que v_1, v_2, v_3 son vectores característicos para T (esto significa que $T(v_1) = \lambda_1 v_1$ para i = 1, 2, 3). ¿Cuál es la matriz para T cuando las bases de entrada y de salida son estos vectores?

Ejercicio 21. (Opcional) Determine la matriz de adyacencia del los siguientes grafos.

Figura 1: Grafo 1

Figura 2: Grafo2

Figura 3: Digrafo1

Figura 4: Digrafo2

$\underline{\mathbf{Entrega}}$

Se deben entregar obligatoriamente los ejercicios: