Definizione di Trasformata unilatera di Laplace $\mathcal L$

$$\mathcal{L}\left\{f\left(t\right)\right\} \doteq \int_{0_{-}}^{\infty} f(t) \, \mathrm{e}^{-st} dt = F\left(s\right), \quad s \in \mathbf{C}; \qquad f\left(t\right) \xleftarrow{\mathcal{L}} \underbrace{\mathcal{L}}_{\mathbf{C} \to \mathbf{C}} F\left(s\right)$$

Proprietà fondamentali della Trasformata unilatera di Laplace

1 Topricta fondamentan dena 11 asiormata dimatera di Lapiace		
Proprietà	Tempo t	Frequenza s
Linearità	$k_1 f_1(t) + k_2 f_2(t)$	$k_1F_1\left(s\right) + k_2F_2\left(s\right)$
Amplificazione	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$
Traslazione nel tempo	f(t- au)	$e^{-\tau s} \hat{F}(s)$
Traslazione nella frequenza	$e^{at}f(t)$	$F\left(s-a\right)$
Derivazione	$\dot{f}(t) = \frac{df(t)}{dt}$	$sF\left(s\right) - f(t=0_{-})$
Doppia derivazione	$\ddot{f}(t) = \frac{d^2 f(t)}{dt^2}$	$s^{2}F(s) - s f(t = 0_{-}) - \dot{f}(t = 0_{-})$
Integrazione	$\int_{0_{-}}^{t} f(\tau) d\tau$	$\frac{1}{s} \cdot F\left(s\right)$
Convoluzione	f(t) * g(t)	$F\left(s ight) \cdot G\left(s ight)$
Teorema del valore iniziale	$f(t=0_+)$	$\lim_{s\to\infty}s\cdot F\left(s\right)$
Teorema del valore finale	$f(t \to \infty)$	$\lim_{s\to 0} s \cdot F\left(s\right)$

Tabella delle principali Trasformate unilatere di Laplace

impulso unitario gradino unitario segnale polinomiale o canonico esponenziale associato al polo semplice p di F(s)esponenziale associato al polo multiplo p di F(s)

esponenziale di matrice

rasiormate unhatere di Laplace		
$f(t), t \geq 0_{-}$	$F(s), s \in \mathbf{C}$	
$\delta\left(t\right)$	1	
$\varepsilon\left(t ight)$	$\frac{1}{s}$	
$\frac{t^k}{k!}, \ k \ge 0$	$\frac{1}{s^{k+1}}$	
$e^{pt}, p \in \mathbf{C}$	$\frac{1}{s-p}$	
$\frac{t^k}{k!} e^{pt}, \ k > 0, \ p \in \mathbf{C}$	$\frac{1}{(k+1)^{k+1}}$	
$\sin\left(\omega_{0}t\right),\ \omega_{0}\in\mathbf{R}$	$\frac{(s-p)^{n+1}}{s^2 + \omega_0^2}$	
$\cos\left(\omega_{0}t\right),\ \omega_{0}\in\mathbf{R}$	$s^2 + \omega_0^2$	
$e^{At}, A \in \mathbf{R}^{n \times n}$	$(sI_n - A)^{-1}$	
, 11 C 10	(0111 11)	

$$F\left(s\right) = \frac{N\left(s\right)}{D\left(s\right)} = \frac{N\left(s\right)}{a_{n}s^{n} + a_{n-1}s^{n-1} + \ldots + a_{1}s + a_{0}} = \frac{N\left(s\right)/a_{n}}{D\left(s\right)/a_{n}} = \frac{N'\left(s\right)}{D'\left(s\right)} = \frac{N'\left(s\right)}{s^{n} + a'_{n-1}s^{n-1} + \ldots + a'_{1}s + a'_{0}} = \frac{N'\left(s\right)}{\prod_{i=1}^{n}\left(s - p_{i}\right)} = \frac{N'\left(s\right)}{\prod_{i=1}^{n'}\left(s - p_{i}\right)^{\mu_{i}}} = \sum_{i=1}^{n'} \sum_{k=1}^{\mu_{i}} \frac{R_{ik}}{\left(s - p_{i}\right)^{k}}$$

N(s), D(s): polinomi in s, di grado m ed n rispettivamente (m < n)

n: numero di radici di D(s) e D'(s) = numero di poli di F(s)

n': numero di radici distinte di D(s) e D'(s) = numero di poli non coincidenti di F(s)

 $p_{i}:i\text{-esima}$ radice di $D\left(s\right)$ e $D^{\prime}\left(s\right)=i\text{-esimo}$ polo di $F\left(s\right)$

 μ_i : molteplicità dell'*i*-esimo polo di F(s)

 $R_{ik}: k\text{-esimo residuo associato a } p_i \text{ mediante il fratto semplice } \frac{R_{ik}}{(s-p_i)^k}, \text{ dato da}$ $R_{ik} = \lim_{s \to p_i} \frac{1}{(\mu_i - k)!} \frac{\partial^{\mu_i - k}}{\partial s^{\mu_i - k}} \left[(s-p_i)^{\mu_i} F(s) \right], \quad 1 \le k \le \mu_i$

$$R_{ik} = \lim_{s \to n_i} \frac{1}{(\mu_i - k)!} \frac{\partial^{\mu_i - k}}{\partial s^{\mu_i - k}} \left[(s - p_i)^{\mu_i} F(s) \right], \quad 1 \le k \le \mu_i$$

Se p_i è un polo semplice $(\mu_i = 1)$, allora ha associato soltanto il fratto semplice $\frac{R_i}{s - p_i}$, con $R_i = \lim_{s \to p_i} (s - p_i) F(s)$

Antitrasformata unilatera di Laplace di funzioni razionali fratte
$$\mathcal{L}^{-1}\left\{\frac{N\left(s\right)}{D\left(s\right)}\right\} = \mathcal{L}^{-1}\left\{\sum_{i=1}^{n'}\sum_{k=1}^{\mu_{i}}\frac{R_{ik}}{\left(s-p_{i}\right)^{k}}\right\} = \sum_{i=1}^{n'}\sum_{k=1}^{\mu_{i}}\frac{R_{ik}}{\left(k-1\right)!}\,t^{k-1}\,\operatorname{e}^{p_{i}t}\,\varepsilon\left(t\right)$$

Se F(s) ha un polo complesso $p_i = \sigma_i + j\omega_i$ con molteplicità μ_i , allora F(s) presenta anche il polo complesso $p_l = p_i^* = \sigma_i - j\omega_i$ con molteplicità $\mu_l = \mu_i$. In tal caso, è opportuno antitrasformare a coppie i fratti semplici di F(s) associati a p_i e p_l , poiché

$$\mathcal{L}^{-1} \left\{ \frac{R_{ik}}{(s-p_i)^k} + \frac{R_{lk}}{(s-p_l)^k} \right\} = \mathcal{L}^{-1} \left\{ \frac{R_{ik}}{(s-p_i)^k} + \frac{R_{ik}^*}{(s-p_i^*)^k} \right\} = \frac{2|R_{ik}|}{(k-1)!} t^{k-1} e^{\sigma_i t} \sin\left(\omega_i t + \angle R_{ik} + \frac{\pi}{2}\right) \varepsilon(t)$$

con
$$\angle R_{ik} = \arctan\left(\frac{\Im m\left(R_{ik}\right)}{\Re e\left(R_{ik}\right)}\right)$$