Using metagenomic methods to detect organismal contaminants in microbial materials.

- Nathan D. Olson¹, Justin Zook¹, Jayne Morrow¹, and Nancy Lin¹
- ¹Material Measurement Laboratory, National Institute of Standards and Technology

6 ABSTRACT

High sensitivity methods as next generation sequencing and PCR are adversely impacted by organismal and DNA contaminants. Current methods for detecting contaminants in microbial materials (genomic DNA and cultures) are not sensitive enough and require either a known or culturable contaminant. Therefore, high sensitivity methods not requiring *a priori* assumptions about the contaminant are needed. We demonstrate the use of whole genome sequencing (WGS) and a metagenomic taxonomic classification algorithm for assessing the organismal purity of a microbial material. Using this proposed method we characterized the types of false positive contaminants reported and the dependence of detectable contaminant concentration on material and contaminant genome using simulated WGS data. Using the proposed method to characterize microbial material purity will help to ensure that the materials used to validate pathogen detection assays, generate genome assemblies for database submission, and benchmarking sequencing methods are free of contaminants adversely impacting measurement results.

- 18 Keywords: Genomic Purity, Whole Genome Sequencing, Bioinformatics, Biodetection, Microbial
- 19 Material, Reference Material

INTRODUCTION

39

42

Microbial materials such as cells and extracted genomic DNA from a presumably pure culture should ideally be free of organismal contaminants. However, high sensitivity detection methods including poly-22 merase chain reaction (PCR) and next generation sequencing (NGS) can detect organismal contaminants previously undetectable by traditional microbiology methods such as culturing, biochemical tests, and microscopy. Characterizing and reducing the level of these contaminants is critical to ensuring high quality microbial materials are used to populate sequence databases (Parks et al., 2015), for mock com-27 munities used to validate metagenomic methods (Bokulich et al., 2016), to validate biodetection assays (Ieven et al., 2013; Coates et al., 2011), and for basic research using model systems (Shrestha et al., 2013). General contaminant assessment is also needed for the characterization of microbial reference materials (Olson et al., 2016), where contaminant profiles allow users to properly determine whether the material is suitable for their application. In addition to organismal contaminants in the material itself, 31 PCR and NGS can also detect reagent impurities, highlighting the need to differentiate material and reagent contaminants. Issues related to reagent contaminants have been well documented and addressed with negative controls (Jervis-Bardy et al., 2015), improved methods for removing contaminants (Woyke et al., 2011; Motley et al., 2014), and post-processing of sequence data (Mukherjee et al., 2015). How-35 ever, contaminants in microbial materials, as found in non-axenic cellular materials or genomic materials with foreign DNA, have only been addressed in data processing (Shrestha et al., 2013; Tennessen et al., 37 2015). 38

NEED TO ADDRESS NANCY'S COMMENT: Not sure what this means contaminants have only been addressed in data processing? But the next paragraph says there are current methods for detecting contaminants. So I think this sentence needs to be more specific in regard to what in particular related to contaminants in materials has only been addressed with data processing. **END OF COMMENT**

Current approaches for detecting contaminants in microbial materials typically rely on methods such as culture, microscopy, or PCR. Culture and microscopy-based methods lack the required sensitivity for microbial materials being used in NGS and PCR applications, are not appropriate for genomic DNA

materials, and assume the contaminants are phenotypically distinct from the material they contaminate. While PCR-based methods can detect contaminants in genomic DNA, the methods are limited as they can only detect specifically targeted contaminants and are not amenable to highly multiplexed applications (Heck et al., 2016; Marron et al., 2013). In contrast to these methods, shotgun metagenomic methods can be used to detect contaminants in both cell cultures and genomic DNA materials while only requiring the contaminant has sequencing reads differentiating it from the material strain.

Shotgun metagenomic sequencing is used to characterize environmental samples, detect pathogens in clinical samples, and is suitable for detecting contaminants in microbial materials. Shotgun metagenomics consists of two main steps, whole genome sequencing of all DNA in a sample, and analyzing the resulting sequencing data, most commonly using a taxonomic assignment algorithm (Thomas et al., 2012). For genomic DNA materials, the material itself is sequenced, whereas genomic DNA must be extracted from cell cultures prior to sequencing. After sequencing, a taxonomic assignment algorithm is used to characterize the sequencing data. There is a variety of classification algorithms with varying accuracy and computational performance (Bazinet and Cummings, 2012; Menzel et al., 2016). All methods require a reference database. In order to detect contaminants in a microbial material, the contaminating organism (or an organism more closely related to the contaminant than the material) must be in the database. As taxonomic classification algorithms are constantly improving, reference databases are expanding, and the cost of sequencing decreases, shotgun metagenomic sequencing provides an alternative to current methods for detecting contaminants in microbial materials.

In this work, we present the results from an *in-silico* study evaluating the use of whole genome sequencing data combined with a taxonomic assignment algorithm for detecting contaminant DNA. A baseline assessment of the methods using simulated sequencing data from single microorganisms was performed to characterize the types of false positive contaminants the method may report. Then, the contaminant detection method was evaluated for its ability to detect organismal contaminants in microbial material strains using sequencing data simulated to replicate microbial materials contaminanted with different organismal contaminants at a range of concentrations.

METHODS

50

51

52

54

58

61

64

65

67

Simulated whole genome sequence data and metagenomic taxonomic classification methods were used to detect and identify foreign DNA in microbial materials (genomic DNA and cultures). Simulated data from individual prokaryotic genomes were used to characterize how well the method correctly classifies reads at the species level. To evaluate contaminant detection we used datasets comprised of pairwise combinations of simulated reads from individual genomes.

Simulating Sequencing Data

To approximate real sequencing data, reads were simulated using an empirical error model and insert size distribution. Whole genome sequencing data were simulated using the ART sequencing read simulator (Huang et al., 2012). Reads were simulated with the Illumina MiSeq error model for 2×230 base pair (bp) paired-end reads with an insert size of 690 ± 10 bp (average \pm standard deviation) and 20 X mean coverage. The insert size parameters were defined based on the observed average and standard deviation insert size of the NIST RM8375-MG002 MiSeq sequencing data (Olson et al., 2016) (NCBI Biosample accession SAMN02854573).

Assessing Taxonomic Composition

The taxonomic composition of simulated datasets was determined using the PathoScope sequence taxonomic classifier (Francis et al., 2013). PathoScope was selected for two reasons: (1) it uses a large
reference database reducing potential biases due to contaminants not represented in the database, and
(2) it leverages efficient whole genome read mapping algorithms. This method uses an expectation
maximization algorithm where the sequence data are first mapped to a database comprised of all sequence data in the Genbank nt database. Then, through an iterative process, it re-assigns ambiguously mapped reads based on the proportion of reads mapped unambiguously to individual taxa in
the database. The PathoScope 2.0 taxonomic read classification pipeline has three steps; (1) PathoQC
- read quality filtering and trimming using the PRINSEQ algorithm (Schmieder and Edwards, 2011),
(2) PathoMap - mapping reads to a reference database using the bowtie2 algorithm (Langmead and
Salzberg, 2012), and (3) PathoID - expectation-maximization classification algorithm. The annotated

Figure 1. Diagram of the simulated contaminant dataset workflow for two individual genomes. Contaminant proportions 0.2 and 0.4 are used for demonstration purposes. The reads were initially simulated from individual genomes. The blue genome is twice the size of the orange genome and twice as many reads are simulated for the blue genome compared to the orange in order to obtain the same coverage. The simulated reads were aligned to the reference database using PathoMap. The resulting alignment file, in SAM file format, was randomly subset based on the desired proportions. Complementary subsets of SAM files (e.g. 0.8 material and 0.2 contaminant) from the two genomes were merged to create individual simulated contaminant datasets. Due to the different sized genomes, the simulated contaminant datasets have different numbers of reads. Taxonomic assignment summary tables were generated from simulated contaminant datasets using PathoID.

Genbank nt database provided by the PathoScope developers was used as the reference database (ftp: //pathoscope.bumc.bu.edu/data/nt_ti.fa.gz).

Baseline Assessment Using Individual Genomes

Simulated sequencing data from individual genomes was used to characterize the false positive contaminants reported by PathoScope. Sequence data was simulated for 406 strains, from 9 genera (Table 1, Supplemental Table 1). These genera were selected based on relevance to public health and biothreat detection. We will refer to the genome used to generate the reads as the material genome. The genomes included in the simulation study were limited to the number of closed genomes in the Genbank database (http://www.ncbi.nlm.nih.gov/genbank/, accessed 10/18/2013) belonging to the genera of interest (Table 1). Due to the large number of *Bacillus*, *Escherichia*, and *Salmonella* genomes, genomes from these genera were limited to the species *Bacillus cereus*, *Escherichia coli*, and *Salmonella enterica* respectively. The taxonomic hierarchy for the material genome and simulated read assignment match levels were determined using the R package, Taxize (Scott Chamberlain and Eduard Szocs, 2013; Chamberlain et al., 2016).

Contaminant Detection Assessment

Simulated contaminated datasets were used to evaluate how contaminant detection varied by material and contaminant genome over a range of contaminant concentrations. Representative genomes for 8 of

the 10 genera were used to generate the simulated contaminant datasets (Table 2, Supplemental Table 2). An *Escherichia coli* strain was selected as a representative of both *Escherichia* and *Shigella*, as the genus *Shigella* and species *Escherichia coli* are not phylogenetically resolved (Lan and Reeves, 2002). No representative genome for *Listeria* was included in this part of the study. For each pairwise combination of representative genomes, the simulated contaminant dataset was comprised of a randomly selected subset of reads from the material and contaminant (Fig. 1). The simulated datasets were randomly subsampled at defined proportions, with p representing the proportion of reads from the contaminant, and 1-p the proportion of reads from the material dataset. A range of contaminant proportions at 10-fold increments was simulated with p ranging from p0 to p1 to p2, resulting in 512 simulated contaminant datasets. This approach simulates the proportions of cells in a contaminated material and not the amount of DNA, assuming unbiased DNA extraction. Organisms with larger genomes therefore have more simulated reads.

To generate the simulated contaminant datasets single organism simulated datasets were first generated for the 8 representative genomes using the same methods as used in the baseline assessment (Fig. 1). The resulting simulated sequencing data was first processed using the PathoQC and PathoMap steps in the PathoScope pipeline. The output from the PathoMap step (SAM file, sequence alignment file https://samtools.github.io/hts-specs/SAMv1.pdf) for the material and contaminant datasets were subsampled as described above then combined. The resulting SAM file was processed by PathoID, the third step in the PathoScope pipeline. Subsampling the sam files instead of the simulated sequence files greatly reduces the computational cost of the analysis, as the simulated reads were only processed by the first two steps in PathoScope pipeline once rather than for every simulated contaminant dataset. For simulated datasets with contaminant proportions greater than 10^{-5} , the quantitative accuracy of the contaminant detection method was assessed by comparing the defined contaminant proportion, true proportion, to the PathoScope contaminant proportion, estimated proportion. Pearson's correlation coefficient was used to evaluate agreement between the true and estimated proportions. The normalized contaminant proportion residuals, (estimated – true)/true, were compared across material and contaminant combinations.

Bioinformatics Pipeline

To facilitate repeatability and transparency, a Docker (www.docker.com) container is available with pre-installed pipeline dependencies (www.registry.hub.docker.com/u/natedolson/docker-pathose The scripts used to run the simulations are available at https://github.com/nate-d-olson/genomic_purity. Additionally, seed numbers for the random number generator were randomly assigned and recorded for each dataset so the simulated datasets used in the study could be regenerated. PathoScope results were processed and analyzed using the statistical programming language R (R Core Team, 2016), and intermediate analysis and data summaries were organized using ProjectTemplate (White, 2014) and archived in a GitHub repository (https://github.com/nate-d-olson/genomic_purity_analysis) along with the source files for this manuscript.

RESULTS

Baseline Assessment Using Individual Genomes

First, we assessed the baseline performance of the proposed contaminat detection method. We applied our method to simulated sequencing data from individual genomes. All reads assigned to a different taxa than the genome the reads were simulated from were defined as false positive contaminants. (This assumes the genome sequence is contaminant free.) Our analysis included taxonomic classification results for simulated sequencing data from 406 genomes, representing 10 different genera (Table 1, Supplemental Table 1). The method was evaluated using the estimated proportion of species level matches. The estimated match proportion is the sum of the Final Guess values in the PathoScope output for all correct species level matches. For 105 of the 406 genomes, PathoScope estimated that less than 99% of the material was the expected species (Fig. 2). Of these 105 genomes, the estimated proportion of the sequencing data identified as the correct species varied by genus. None of the *Shigella* genomes and only five of the 49 *Staphylococcus* genomes had estimated proportions for the correct species greater than 0.9. 87 of the 105 genomes with estimated species level match proportions less than 0.99 come from *Shigella*, *Staphylococcus*, or *Escherichia*. Excluding *Shigella*, *Escherichia*, and *Staphylococcus*, the median estimated proportion matching at the species level or higher is 0.9996. We characterized false positive

contaminants detected in genomes from the genera *Shigella*, *Escherichia*, and *Staphylococcus*, as well as genomes of other species with match proportions less than 0.9. Two types of false positive contaminants were identified: (1) contaminants that were genomically indistinguishable from the material and (2) contaminants due to errors in the reference database.

Genus	N	Genome Size (Mb)
Bacillus	76	5.05 (3.07-7.59)
Clostridium	32	4.02 (2.55-6.67)
Escherichia	62	5.11 (3.98-5.86)
Francisella	18	1.89 (1.85-2.05)
Listeria	39	2.97 (2.78-3.11)
Pseudomonas	57	6.18 (4.17-7.01)
Salmonella	44	4.88 (4.46-5.27)
Shigella	10	4.74 (4.48-5.22)
Staphylococcus	49	2.82 (2.69-3.08)
Yersinia	19	4.73 (4.62-4.94)

Table 1. Breakdown of the number of genomes by genus used to generate single genome simulated datasets. N indicates the number of genomes (406 total), and Genome Size is presented as the median and range (minimum to maximum).

172

173

174

175

176

177

178

179

180

182

183

184

186

187

188

189

190

191

193

194

195

197

199

201

202

203

205

Two genomes can be genomically indistinguishable if the majority of the two genome sequences are highly similar. Phylogenetically closely related organisms are expected to have large genomic regions with high levels of similarity. Phylogenetic similarity is at least partially responsible for the low species level match proportion for Shigella and Escherichia, as Shigella is not phylogenetically distinct from E. coli (Lan and Reeves, 2002). When including matches to E. coli as species level matches, the median match proportions for Shigella genomes increases from 0.66 to 0.92. Another example of false positives at the species level due to phylogenetic similarity was low match percentage for *Clostridium* autoethanogenum strain DSM10061, where Clostridium ljungdahlii strain DSM13528 was assigned the top proportion of reads (0.998) instead of C. autoenthanogenum. False positive contaminants due to phylogenetic similarity are not limited to a closely related species or genus. Escherichia coli strain UMNK88 low match proportions were due to two bacteria in the same family as E. coli (Enterobacteriaceae): Providencia stuartii and Salmonella enterica subsp. enterica serovar Heidelberg, which had estimated proportions of 0.11 and 0.03, respectively. False positives were also due to shared genetic material between bacteria and their phage. Phage were identified as false positive contaminants at varying proportions for genomes from all genera investigated, excluding Francisella (Fig. 3). The low proportions of species level matches for E. coli and Staphylococcus are partly due to relatively higher proportions of matches to phage, compared to the other genera investigated. Based on phage names all of the false positive phage contaminants were specific to the taxonomy of the genome the sequence data were simulated from.

False positive contaminants were also due to potential errors in the database such as unclassified or misclassified sequences and the presence of genome assemblies in the database including sequence data from organismal or reagent contaminants. Low estimated match proportions can also be due to the database containing unclassified sequence data for organisms with genomic regions that are highly similar to regions of the material genome. For example, the low match proportion for *Pseudomonas* strain FGI182 was due to matches to unclassified bacteria, bacterium 142412, and unclassified Pseudomonas species, *Pseudomonas* sp. HF-1. The low species proportion of species level matches for *Pseudomonas* strain TKP was also due to potentially misclassified sequences (Thioalkalivibrio sulfidophilus strain HL-EbGr7, match proportion 0.0648). Bacillus subtilis BEST7613 genome had low estimated species level match proportion due to Synechocystis sp. PCC 6803 substr. PCC-P being estimated as comprising 47% of the material. Synechocystis is in a different phylum compared to Bacillus (cyanobacteria versus firmicutes) and is a false positive due to a misclassification. The Bacillus subtilis BEST7613 genome in the database is a synthetic chimeric genome constructed from *Bacillus subtilis* BEST7613 and *Syne*chocystis sp. PCC 6803 substr. PCC-P not Bacillus subtilis BEST7613 (Watanabe et al., 2012). The Bacillus subtilis BEST7613 genome assembly (GenBank Accession GCA_000328745.1) was flagged as an anomalous assembly and removed from the RefSeq database. The genome sequences used to pop-

Figure 2. Species level or higher estimated match proportion varies by material genus. The estimated match proportion is the total proportion of the material with correct taxonomic assignments to the genome species, subspecies, strain, or isolate level. The proportions used are the Final Guess values in the PathoScope results table. Each point is calculated for a genome from a different isolate within the genus. The vertical dashed line indicates the 0.99 match proportion. Orange points are genomes with species level match proportions less than 0.90 and blue points greater than or equal to 0.90.

Figure 3. Estimated total proportion of phage in the simulated single genome datasets by genera. Final Guess values reported by PathoScope used to calculate estimated total proportions. No phage were reported by PathoScope for any *Francisella* genomes.

ulate the reference database can contain contaminants themselves (Parks et al., 2015). These database contaminants are responsible for additional false positive contaminants. The low proportion of species level matches for *Pseudomonas* strain TKP was partially due to contaminated genome sequences in the database (wheat - *Triticum aestivum* match proportion 0.087). The eukaryotic false positive contaminants are likely due to contaminants in the eukaryotic DNA extract or reagents used to generate the sequencing data for the assembly (Parks et al., 2015).

Contaminant Detection Assessment

207

210 211

212

214

215

216

217

218

219

221

222

223

225

227

228

229

230

231

232

233

234

235

236

237

238

240

241

242

244

Representative Strain	Species	Aligned Reads	Mb
Bacillus anthracis str. Ames	1.00	227270	5.23
Clostridium botulinum A str. Hall	1.00	163500	3.76
Escherichia coli O157:H7 str. EC4115	0.98	247990	5.70
Francisella tularensis subsp. tularensis SCHU S4	1.00	82290	1.89
Pseudomonas aeruginosa PAO1	1.00	272360	6.26
Salmonella enterica subsp. enterica serovar Typhimurium str. D23580	1.00	212140	4.88
Staphylococcus aureus subsp. aureus ED133	0.98	123150	2.83
Yersinia pestis CO92	1.00	209970	4.83

Table 2. Representative strains used in simulated contaminant datasets. When available type strains were selected as the representative genome. Species indicates the proportion of the material assigned to the correct species. Aligned Reads is the number of simulated reads aligned to the database by PathoMap. DNA size is the total size of the genome, chromosome and plasmids in Mb.

Finally, contaminant detection was assessed by combining subsets of simulated data from two organisms at defined proportions, with the larger proportion representing the microbial material and smaller proportion the contaminant (Fig. 1). We simulated contaminant datasets as pairwise combinations of representative genomes from 8 of the genera used in the baseline assessment section of the study (Table 2). For all of the genomes selected for the detection assessment study, the estimated proportion of material assigned to the correct species was greater than 0.98 (Table 2, Species column).

The minimum contaminant proportion detected was 10^{-3} and 10^{-4} for most pairwise comparisons with a few exceptions. When *Y. pestis* was the simulated contaminant, the minimum detected proportion was 0.1 for all material strains. For all simulated datasets where *F. tularensis* was the contaminant, the contaminant was not detected. A few contaminants were detected at proportions as low as 10^{-8} , such as when *Yersinia* contaminated with *E. coli* or *S. enterica*. However, contaminants detected at lower proportions were due to reads simulated from the material genome incorrectly assigned to the contaminant. The simulated contaminant-free *Y. pestis* material dataset had reads assigned to two of the contaminants resulting in artificially low contaminant detection proportions for *Salmonella enterica* subsp. enterica serovar Typhi str. CT18 and *Escherichia coli* O104:H4 str. 2011C-3493 with estimated proportions of 1.76×10^{-5} and 3.77×10^{-8} , respectively.

The minimum detected contaminant proportion ranged from 10^{-3} to 10^{-4} for most simulated contaminant datasets. As the individual datasets were simulated at 20X coverage, <300,000 reads were simulated for each dataset, and on average <3 reads were spiked into the material datasets for simulated contaminant proportions $\leq 10^{-5}$ (Table 2). Unexpectedly low contaminant proportions, 10^{-8} , were detected for Y. pestis contaminated with S. enterica and E. coli. The low detection proportions were due to false positive contaminants present in the simulated material single genome dataset used to generate the contaminant mixtures. For datasets with Y. pestis as the simulated contaminant the minimum detected contaminant proportion was 0.1 and F. tularensis was not detected in any simulated contaminant datasets. It is unclear why Y. pestis was detected at a higher proportion relative to the other datasets, 10^{-1} versus 10^{-3} , and F. tularensis was not detected at all. One possible reason for the lower contaminant detect for these two organisms is that there are fewer genomes is the database for these two genera. Additionally, the F. tularensis dataset is much smaller relative to the other genera, less than 90,000 reads. Therefore, with fewer reads in the dataset and genomes in the database, the probability that the randomly selected subset of reads spiked into the simulated material dataset contains reads allowing for contaminant detection is lower. In addition to the minimum detected contaminant proportion we also evaluated the quantitative accuracy the contaminant detection method.

Figure 4. The relationship between the proportion of reads matching the contaminant species and the proportion of simulated contaminant reads. Plots are split by the material species with line and point color indicating contaminant species. Dashed line indicates the expected 1:1 correlation between the proportion of reads matching the expected contaminant and the proportion of reads simulated from the contaminant. The contaminant proportion was underestimated for points below the dashed line and overestimated for points above the dashed line.

Figure 5. f

or pairwise combinations of material and contaminant] Error rate [(estimated - true)/true] for pairwise combinations of material and contaminant. Point and error bars represent the median and range (minimum - maximum) error rate for each material and contaminant combination, and error bars indicate range of observed error.

Pearson's correlation coefficient was used to determine the correlation between the estimated contaminant and true contaminant proportions for simulated contaminant proportions greater than 10^{-6} . The estimated and true proportions were strongly correlated for all pairwise comparisons, with an overall median and 95% confidence interval of 0.99945 (0.96945 - 1) (Fig. 4). Eight of the pairwise comparisons have correlation coefficients below 0.99, all of which have *S. aureus* as either the contaminant or the material. Two coefficients were below 0.98: *S. aureus* contaminated with *P. aeruginosa* and *S. enterica*, 0.952 and 0.969 respectively. The total error rate was used to assess the accuracy of the PathoScope contaminant proportion estimates (Fig. 5). The material genome strongly influenced the total error rate with *E. coli* and *S. aureus* having consistently higher total error rates compared to the other genomes.

DISCUSSION

The potential for using whole genome sequencing data and taxonomic sequence classification algorithms to detect contaminant DNA in microbial materials was evaluated. The method requires no *a priori* information about the contaminant and can identify common as well as unexpected contaminants. Additionally, as whole genome sequencing can be performed on genomic DNA and cell cultures (after DNA extraction), the method is appropriate for both types of microbial materials. A baseline assessment of the contaminant detection method using simulated sequencing data from individual genomes was performed to identify common types of classification errors that would result in false positive contaminants. The false positive contaminants were split into two categories (1) those due to an inability of the method to differentiate the material genome from the contaminant genome, and (2) errors in the reference database. Contaminant detection performance was characterized for different material, contaminants, and contamination level. Overall the method was able to identify contaminant proportions at 10^{-3} for most contaminant-material combinations. A contaminant proportion of 10^{-3} is equivalent to 1 contaminant cell per 1,000 cells in a microbial material, or 1,000 contaminant cells in 1 mL of a 10^{6} cells/mL culture. The estimated contaminant proportion accuracy for the simulated contaminated material varied by contaminant and material strain.

There are three basic steps to using this method to detect contaminants in a microbial material. Baseline assessment is the first step. For a baseline assessment, reads are simulated from the reference genome of the organism of interest and process the simulated reads using a taxonomic classification algorithm. Performing a baseline assessment allows one to identify the false positive contaminants you can expect to observe due to limitations in the method. Simulating data with realistic error profiles, read length, and fragment distribution is likely to yield results more representative of what one would expect from real sequencing data. Next process sequencing data generated from the microbial material using the same taxonomic classification algorithm as used in the baseline assessment. The last step is a critical evaluation of results for potential false positives. For all settings, research, clinical, regulatory, and attribution the contaminant detection method should be validated for the intended application. Appropriate validation methods may include experiments with simulated contaminants like thoes performed as part of this study and potentially sequencing genomic DNA or cells spiked with varying contaminant concentrations.

It is important to evaluate the results in the context of the intended application. Quantitative accuracy in contaminant proportions is important for applications where acceptable contaminant proportion thresholds are established. For example, a microbial material with a contaminant proportion of 10^{-5} may be acceptable for use in an assay where the contaminant adversely impacts an assay when present in proportions greater than 10^{-4} . Quantitative accuracy is also relevant when performing a general characterization of the microbial material. General contaminant characterization is appropriate for reference materials with more than one use case such as the NIST microbial genomic reference materials (NIST RM8375)(Olson et al., 2016). Similar to the false positive contaminant baseline assessment, simulated data can be used to evaluate the minimal detectable contaminant proportion for specific organisms using different taxonomic assignment algorithms and databases.

A primary limitation of the proposed method is the observed false positive contaminants identified in the baseline assessment. The reference database and taxonomic assignment algorithm used are likely to impact the number and types of false positives. There are three primary types of taxonomic read classification algorithms; sequence similarity search, sequence composition methods, and phylogenetic methods (Bazinet and Cummings, 2012). The algorithm used in this study, PathoScope, is a type of sequence similarity search algorithm. Evaluating different types of algorithms using simulated data for the material genome of interest, similar to what was done in the baseline assessment part of this study,

would help determine the optimal classification algorithm for a specific microbial material. Furthermore, recent advances in taxonomic classification algorithms have lead to the development of faster methods, including Kaiju a sequence composition type method and Centrifuge a sequence similarity search type method (Menzel et al., 2016; Kim et al., 2016). Application of these new methods would lower the computational cost of the proposed method.

A number of the observed false positive were due to errors in the database and inability of the taxonomic classification algorithm to correctly identify the source of the sequence when it matches multiple organisms in the database. Removing sequences from the database for irrelevant contaminants, such as phage, plasmids, vectors, and multicellular eukaryotes would reduce the proportion of false positives. By excluding irrelevant contaminants from the database sequencing reads aligning to these irrelevant sequences would no longer result in false positive contaminants. Methods for excluding sequence data from a reference database is dependent on the classification algorithm used. For example, user-specified sequence data could be removed from the reference database by PathoScope using the PathoDB function. Users should use caution when removing sequences from a reference database. For example, vector sequences from contaminants in sequencing reagents if excluded from the database may be incorrectly classified as an organismal contaminant. Similarly, using a curated database free of misclassified and unclassified sequence data would further reduce the proportion of false positive contaminants (Tennessen et al., 2015). FOr example, the *Bacillus subtilis-Synechocystis* chimeric genome appeared to have a high false positive contaminant rate in the baseline assessment part of this study due to the genome being incorrectly classified as *Bacillus subtilis* and not a chimeric genome.

CONCLUSIONS

Identification and characterization of low abundance contaminants in a non-targeted manner is critical for a material used in high sensitivity assays such as PCR. With the continual decline in the cost of sequencing and advances in sequence analysis methods, whole genome sequencing combined with taxonomic assignment algorithms provides a viable alternative to commonly used organismal contaminant detection methods such as culturing, microscopy, and PCR. The method presented here is suitable for detecting organismal contaminants in both genomic DNA and whole cell microbial materials, with the only a priori assumption is that the contaminant is in the reference database. The false positive contaminant detection is a primary limitation of the proposed method. As false positive contaminants are database and taxonomic assignment algorithm dependent, additional work is needed to improve database curation and data authentication efforts as well as characterization of taxonomic assignment algorithm performance. With the rapid decrease in sequencing cost and ability to detect unknown contaminants at low concentrations, whole genome sequencing is a viable alternative to culture and PCR-based contaminant detection methods.

4 ACKNOWLEDGMENTS

The authors would like to thank Dr. Steven Lund for his assistance in developing the study. The Depart-335 ment of Homeland Security (DHS) Science and Technology Directorate supported this work under the 336 Interagency Agreement HSHQPM-15-T-00019 with the National Institute of Standards and Technology (NIST). Opinions expressed in this paper are the authors and do not necessarily reflect the policies and 338 views of DHS, NIST, or affiliated venues. Certain commercial equipment, instruments, or materials are 339 identified in this paper in order to specify the experimental procedure adequately. Such identification 340 is not intended to imply recommendations or endorsement by NIST, nor is it intended to imply that the 341 materials or equipment identified are necessarily the best available for the purpose. Official contribution 342 of NIST; not subject to copyrights in USA. 343

44 REFERENCES

- Bazinet, A. L. and Cummings, M. P. (2012). A comparative evaluation of sequence classification programs. *BMC Bioinformatics*, 13(1):92.
- Bokulich, N. A., Rideout, J. R., Mercurio, W. G., Shiffer, A., Wolfe, B., Maurice, C. F., Dutton, R. J.,
 Turnbaugh, P. J., Knight, R., and Caporaso, J. G. (2016). mockrobiota: a public resource for microbiome bioinformatics benchmarking. *mSystems*, 1(5).
- Chamberlain, S., Szocs, E., Boettiger, C., Ram, K., Bartomeus, I., Baumgartner, J., Foster, Z., and O'Donnell, J. (2016). *taxize: Taxonomic information from around the web*. R package version 0.7.4.
- Coates, S. G., Brunelle, S. L., and Davenport, M. G. (2011). Development of standard method performance requirements for biological threat agent detection methods. *Journal of AOAC International*, 94(4):1328–37.
- Francis, O. E., Bendall, M., Manimaran, S., Hong, C., Clement, N. L., Castro-Nallar, E., Snell, Q., Schaalje, G. B., Clement, M. J., Crandall, K. a., and Johnson, W. E. (2013). Pathoscope: Species identification and strain attribution with unassembled sequencing data. *Genome research*.
- Heck, K., Machineski, G. S., Alvarenga, D. O., Vaz, M. G. M. V., de Mello Varani, A., and Fiore,
 M. F. (2016). Evaluating methods for purifying cyanobacterial cultures by qpcr and high-throughput illumina sequencing. *Journal of Microbiological Methods*.
- Huang, W., Li, L., Myers, J. R., and Marth, G. T. (2012). ART: a next-generation sequencing read simulator. *Bioinformatics (Oxford, England)*, 28(4):593–4.
- Ieven, M., Finch, R., and van Belkum, a. (2013). European quality clearance of new microbiological diagnostics. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 19(1):29–38.
- Jervis-Bardy, J., Leong, L. E., Marri, S., Smith, R. J., Choo, J. M., Smith-Vaughan, H. C., Nosworthy, E., Morris, P. S., OLeary, S., Rogers, G. B., et al. (2015). Deriving accurate microbiota profiles from human samples with low bacterial content through post-sequencing processing of illumina miseq data. *Microbiome*, 3(1):1.
- Kim, D., Song, L., Breitwieser, F. P., and Salzberg, S. L. (2016). Centrifuge: rapid and sensitive classification of metagenomic sequences. *Genome Res.*, 26(12):1721–1729.
- Lan, R. and Reeves, P. R. (2002). Escherichia coli in disguise: molecular origins of shigella. *Microbes and infection*, 4(11):1125–1132.
- Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature methods*, 9(4):357–9.
- Marron, A. O., Akam, M., and Walker, G. (2013). A Duplex PCR-Based Assay for Measuring the
 Amount of Bacterial Contamination in a Nucleic Acid Extract from a Culture of Free-Living Protists.

 PloS one, 8(4):e61732.
- Menzel, P., Ng, K. L., and Krogh, A. (2016). Fast and sensitive taxonomic classification for metagenomics with kaiju. *Nature communications*, 7.
- Motley, S. T., Picuri, J. M., Crowder, C. D., Minich, J. J., Hofstadler, S. A., and Eshoo, M. W. (2014). Improved multiple displacement amplification (imda) and ultraclean reagents. *BMC genomics*, 15(1):1.
- Mukherjee, S., Huntemann, M., Ivanova, N., Kyrpides, N. C., and Pati, A. (2015). Large-scale contamination of microbial isolate genomes by illumina phix control. *Standards in genomic sciences*, 10(1):1.

- Olson, N. D., Zook, J. M., Samarov, D. V., Jackson, S. A., and Salit, M. L. (2016). Pepr: pipelines for evaluating prokaryotic references. *Analytical and bioanalytical chemistry*, 408(11):2975–2983.
- Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W. (2015). Checkm: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome research*, 25(7):1043–1055.
- R Core Team (2016). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria.
- Schmieder, R. and Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. *Bioinformatics*, 27(6):863–864.
- Scott Chamberlain and Eduard Szocs (2013). taxize taxonomic search and retrieval in r. F1000Research.
- Shrestha, P. M., Nevin, K. P., Shrestha, M., and Lovley, D. R. (2013). When Is a Microbial Culture Pure Persistent Cryptic Contaminant Escapes Detection Even with Deep Genome Sequencing.
- Tennessen, K., Andersen, E., Clingenpeel, S., Rinke, C., Lundberg, D. S., Han, J., Dangl, J. L., Ivanova, N., Woyke, T., Kyrpides, N., et al. (2015). Prodege: a computational protocol for fully automated decontamination of genomes. *The ISME journal*.
- Thomas, T., Gilbert, J., and Meyer, F. (2012). Metagenomics a guide from sampling to data analysis. *Microbial informatics and experimentation*, 2(1):3.
- Watanabe, S., Shiwa, Y., Itaya, M., and Yoshikawa, H. (2012). Complete sequence of the first chimera genome constructed by cloning the whole genome of synechocystis strain pcc6803 into the bacillus subtilis 168 genome. *Journal of bacteriology*, 194(24):7007–7007.
- White, J. M. (2014). *ProjectTemplate: Automates the creation of new statistical analysis projects.* R package version 0.6.
- Woyke, T., Sczyrba, A., Lee, J., Rinke, C., Tighe, D., Clingenpeel, S., Malmstrom, R., Stepanauskas, R.,
 and Cheng, J.-F. (2011). Decontamination of mda reagents for single cell whole genome amplification.
 PloS one, 6(10):e26161.