单元12.1 支配集、点覆盖集、 点独立集

第二编 图论 第十二章支配集、覆盖集、 独立集与匹配

13.1 支配集、点覆盖集、点独立集

内容提要

- 支配集
- 点独立集
- 点覆盖集
- 团
- 支配数,点独立数,点覆盖数,团数之间的关系

支配集

- G=<V,E>, e=(u,v) ⇔ u 支配v ⇔ v 支配u
- 支配集: V*⊆V, ∀v∈V-V*, ∃u∈V*, u支配v
- 极小支配集: 真子集都非支配集的支配集
- 最小支配集: 顶点数最少的支配集
- 支配数: $\gamma_0(G) = 最小支配集的顶点数$

支配集举例

- 星形图 S_n : { v_0 }, { $v_1, v_2, ..., v_{n-1}$ }, $\gamma_0(S_n)=1$
- 轮图 W_n : { v_0 }, { v_1 , v_3 , v_5 ..., v_{n-2} }, γ_0 (W_n)=1

定理13.1

• 无向图**G无孤立点**, V_1 *是极小支配集, 则存在 V_2 *也是极小支配集, 且 V_1 * $\cap V_2$ *= \emptyset .

• 说明: 支配集要包含所有孤立点

定理13.1证明

证:

(1) V_1 *是极小支配集 $\Rightarrow V_1$ *也是支配集.

反证: 否则,∃u∈V₁*, ∀v∈V-V₁*, (u,v)∉E,V₁*-{u}还是支

配集,与 V_1* 极小性矛盾.

(2) V-V₁*是支配集 ⇒

 $V-V_1*$ 中有子集是极小支配集,设为 V_2* .

显然
$$V_1^* \cap V_2^* = \emptyset$$
.

独立集

- 无向图G=<V,E>
- 独立集: V*⊆V, ∀u,v∈V*, u与v不相邻
- 极大独立集: 真母集都非独立集的独立集
- 最大独立集: 顶点数最多的独立集
- 点独立数: $\beta_0(G) =$ 最大独立集的顶点数

独立集举例

• $\{v_0\}, \{v_1, v_4\}, \{v_1, v_3, v_5\}, \beta_0 = 3$

定理13.2

• 无向图G(无孤立点),

V*是极大独立集 ⇒ V*是极小支配集

• 说明: 极大独立集要包含所有孤立点

"无孤立点"的条件可以去掉

定理13.2证明

- 证: (1) V*是极大独立集 ⇒ V*也是支配集.
 (反证) 否则,∃v∈V-V*,∀u∈V*,(u,v)∉E, V*∪{v}还是独立集,与V*极大性相矛盾.
 - (2) V*是极小支配集.

(反证) 否则,∃u∈V*, V*-{u}是支配集,则∃v∈V*, (u,v)∈E,与V*是独立集相矛盾. #

定理13.2补充推论

• 无向图G,则

$$\gamma_0 \leq \beta_0$$

#

定理13.2逆命题反例

- 极小支配集不一定是(极大)独立集
 - {v₂,v₃}是极小支配集
 - {v₂,v₃}不是独立集, 当然不是极大独立集

- 无向图G=<V,E>
- 团: V*⊆V, G[V*]是完全子图
- 极大团: 真母集都不是团的团
- 最大团: 顶点数最多的团
- 团数: $v_0(G) = 最大团的顶点数$

团举例

• $\{v_0, v_1, v_2\}, \{v_1, v_2\}, \{v_1\}, \frac{v_0}{}=3$

定理13.4

- 无向图G,
 V*是G的团 ⇔ V*是G的独立集. #
- 推论: 无向图G,
 - $(1) \ \mathbf{v}_0(\mathsf{G}) = \beta_0(\overline{\mathsf{G}})$
 - (2) V*是G的极(最)大团
 - $\leftrightarrow V^*$ 是G的极(最)大独立集. #

点覆盖

- 无向图G=<V,E>
- 点覆盖: V*⊂V, ∀e∈E,∃v∈V*, v关联e
 - 说明: 点覆盖要含所有带环点
- 极小点覆盖: 真子集都非点覆盖的点覆盖
 - 说明: 极小点覆盖不含任何孤立点
- 最小点覆盖: 顶点数最少的点覆盖
- 点覆盖数: $\alpha_0(G)$ = 最小点覆盖的顶点数

点覆盖举例

• $\{v_0, v_1, v_3, v_5\}, \{v_1, v_2, v_3, v_4, v_5, v_6\}, \alpha_0 = 4$

补充定理

• 无孤立点(连通)图中,点覆盖是支配集

$$\gamma_0 \leq \alpha_0$$

• 点覆盖加所有孤立点是支配集

反例

- 极小点覆盖不一定是极小支配集
 - {v₀, v₁, v₃, v₅} 是极小点覆盖
 - {v₁, v₃, v₅}是极小支配集

反例

- 支配集不一定是点覆盖
 - {v₁,v₄} 是支配集
 - {v₁,v₄} 不是点覆盖

定理13.3

• 无向图G无孤立点, V*⊂V,

V*是点覆盖 ⇔ V-V*是独立集.

定理13.3证明

证: (⇒)
 (反证) 否则,∃u,v∈V-V*, (u,v)∈E,
 则V*不是点覆盖,矛盾.

(⇐) V-V*是独立集, ∀(u,v)∈E, (u,v)∈E ⇒ ¬(u∈V-V* ∧ v∈V-V*) ⇔ u∈V* ∨ v∈V* ⇒ V*是点覆盖. #

定理13.3推论

• 无向图G无孤立点,

V*是极(最)小点覆盖 ⇔ V-V*是极(最)大独立集

$$\alpha_0 + \beta_0 = n$$
 #

α_0 , β_0 , γ_0 , ν_0 之间关系

- $\alpha_0 + \beta_0 = n$ (无孤立点, 定理13.3推论).
- $\gamma_0 \leq \beta_0$ (定理13.2补充推论)
- $\gamma_0 \leq \alpha_0$ (无孤立点, 补充定理)
- $v_0(G) = \beta_0(G)$ (定理13.4推论)
- α_0 , β_0 , ν_0 都是难解的(intractable, hard)
 - 目前都没有多项式时间算法
 - 与哈密顿回路问题,着色问题等"一样难"

例13.1

• 求全体极小支配集,极小点覆盖,极大独立集

例13.1:全体极小支配集

•
$$\prod_{v \in V} (v + \sum_{u \in \Gamma(v)} u)$$

$$= (a+b)(b+a+c+d)(c+b+d)(d+c+b)$$

$$=$$
 ac+ad+b.

•
$$\gamma_0=1$$
.

例13.1: 极小点覆盖

- $\Pi_{(u,v)\in E}(u+v)$
 - = (a+b)(b+c)(b+d)(c+d)
 - = bc+bd+acd.

(幂等: a+a=a, a●a=a, 逻辑加乘)

- {b,c}, {b,d}, {a,c,d}是全体极小点覆盖.
- $\alpha_0=2$.

例13.1: 极大独立集

V*是极小点覆盖 ⇔ V-V*是极大独立集.

- {b,c}, {b,d}, {a,c,d} 是全体极小点覆盖,
- {a,d}, {a,c}, {b} 是全体极大独立集.

•
$$\beta_0 = 2$$
.

#

小结

- 支配集, 支配数γ₀
- 点独立集,点独立数β₀
- 点覆盖集,点覆盖数α₀
- 团、团数ν₀
- α_0 , β_0 , γ_0 , ν_0 之间关系

