Chapter 02, Simu	lation Examples in a Spreadsl	heet			
	acing Bearings in a Milling Ma				
By Mohammad A	bubakar Atiq, BSIE, F2022031	1002, To Sir Rehan Ash	nraf		
Table 22	Distribution for E	Bearing Life			
	Distribution of Bea	aring-Life			
Bearing Life	Probability	Cumulat	ive Probability		
	1000	0.100	0.100		
	1100	0.130	0.230		
	1200	0.250	0.480		
	1300	0.130	0.610		
	1400	0.090	0.700		
	1500	0.120	0.820		
	1600	0.020	0.840		
	1700	0.060	0.900		
	1800	0.050	0.950		
	1900	0.050	1.000		
Table 23	Distribution of D	elay until Mechanic A	rrives		
	Distribution of Delay Time				
Delay Time	Proability	Cumulat	ive Probability		
•	5	0.600	0.600		
	10	0.300	0.900		
	15	0.100	1.000		

page 65, Chapter 02: Simulation Examples in a Spreadsheet Example 9: Replacing Bearings in a Milling Machine

A milling machine has three different bearings that fail in service. The distribution of the life of each bearing is identical, as shown in Table 22. When a bearing fails, the mill stops, a mechanic is called, and he or she installs a new bearing (costing \$32 per bearing). The delay time for the mechanic to arrive varies randomly, having the distribution given in Table 23. Downtime for the mill is estimated to cost \$10 per minute. The direct on-site cost of the mechanic is \$30 per hour. The mechanic takes 20 minutes to change one bearing, 30 minutes to change two bearings, and 40 minutes to change three bearings. The engineering staff has proposed a new policy to replace all three bearings whenever one bearing fails. Management needs an evaluation of the proposal, using total cost per 10,000 bearing-hours as the measure of performance.

Current Method

Current Method			
Bearing 1			
Step	Random#	Life (Hours)	Delay (minutes)
1	0.565	1300	5
2	0.854	1700	10
3	0.308	1200	5
4	0.297	1200	5
5	0.638	1400	10
6	0.886	1700	10
7	0.654	1400	10
8	0.940	1800	15
9	0.707	1500	10
10	0.099	1000	5
11	0.431	1200	5
12	0.860	1700	10
13	0.663	1400	10
14	0.202	1100	5
15	0.398	1200	5
TOTAL		20800	120

Bearing 2			
Step	Random#	Life (Hours)	Delay (minutes)
1	0.264	1200	5
2	0.694	1400	10
3	0.014	1000	5
4	0.706	1500	10
5	0.308	1200	5
6	0.600	1300	10
7	0.733	1500	10
8	0.733	1500	10
9	0.859	1700	10
10	0.438	1200	5
11	0.329	1200	5
12	0.143	1100	5
13	0.488	1300	5
14	0.400	1200	5
15	0.991	1900	15
		20200	115

Bearing 3			·
Step	Random#	Life (Hours)	Delay (minutes)
1	0.731	1500	10
2	0.726	1500	10
3	0.072	1000	5
4	0.561	1300	5
5	0.621	1400	10
6	0.678	1400	10
7	0.533	1300	5
8	0.087	1000	5
9	0.258	1200	5
10	0.811	1500	10
11	0.605	1300	10
12	0.108	1100	5
13	0.430	1200	5
14	0.689	1400	10
15	0.846	1700	10
		19800	115

Costs of Bearing= \$ 32.00 per bearing Downtime cost= \$ 10.00 per minute Mechanic cost= \$

30.00 per hour 0.50 per min

Replacement Time by Mechanic

1 Bearing 20 minute 2 Bearing 30 minute 3 Bearing 40 minute

For Single Trial of the simulation, the cost of the current system is estimated as follows:

Cost of Bearing \$ 1,440.00

Cost of delay time

\$ 3,500.00

Cost of downtime

during repair

\$ 9,000.00

Cost of Mechanics

450.00

Total Cost \$ 14,390.00 The total life of all 45 bearings is 60800 Hours / 10,000 Bearings 6.080

The Total cost per 10,000 bearing -

Hours is \$ 2,366.78

Proposed Method

	Bearing 1		Bearing 2		Bearing 3		First Failure	Random#	Delay (minutes)
Step	Random#	Life (Hours)	Random#	Life (Hours)	Random#	Life (Hours)	(Hours)	Naliuolli#	Delay (Illillutes)
	1 0.044	1000	0.815	1500	0.217	1100	1000	0.397	5
	2 0.936	1800	0.781	1500	0.185	1100	1100	0.072	5
	3 0.236	1200	0.909	1800	0.899	1700	1200	0.065	5
	4 0.294	1200	0.639	1400	0.261	1200	1200	0.253	5
	5 0.358	1200	0.141	1100	0.495	1300	1100	0.973	15
	6 0.763	1500	0.786	1500	0.205	1100	1100	0.005	5
	7 0.674	1400	0.535	1300	0.729	1500	1300	0.420	5
	8 0.837	1600	0.140	1100	0.710	1500	1100	0.728	10
	9 0.196	1100	0.902	1800	0.857	1700	1100	0.891	10
	10 0.395	1200	0.807	1500	0.991	1900	1200	0.193	5
	11 0.598	1300	0.743	1500	0.840	1700	1300	0.239	5
	12 0.551	1300	0.597	1300	0.807	1500	1300	0.605	10
	13 0.429	1200	0.263	1200	0.689	1400	1200	0.367	5
	14 0.094	1000	0.669	1400	0.241	1200	1000	0.253	5
	15 0.051	1000	0.660	1400	0.056	1000	1000	0.027	5
Total	•	•	•	•	•	•	17200		100

The total life of all 45 bearings is

The Total cost per 10,000 bearing -

Hours is

Hours / 10,000 Bearings

17200

1.720

\$ 5,081.40

Costs of Bearing= \$ 32.00 per bearing Downtime cost= \$ 10.00 per minute

Mechanic cost= \$ 30.00 per hour \$ 0.50 per min

Replacement Time by Mechanic

1 Bearing 20 minute 2 Bearing 30 minute 3 Bearing 40 minute

For Single Trial of the simulation, the cost of the current system is estimated as follows:

Cost of Bearing \$ 1,440.00

Cost of delay time \$ 1,000.00

Cost of downtime

Cost of Mechanics

during repair \$ 6,000.00

300.00

Total Cost \$ 8,740.00