Студент: Ирина Группа: М4136

Дата: 21 марта 2019 г.

Формальные языки 6

Задача 1. Перечислить слова языка $L_1 \cap L_2$, где $L_1 = (ab)^n \mid n \ge 0$ и $L_2 = a^m b^m \mid m \ge 0$. Доказать, что других цепочек в пересечении нет.

Решение. $L_1=\{\varnothing,\ ab,\ abab,\ ababab,\ ...\}$ - слова, состояние из п пар ab $L_2=\{\varnothing,\ ab,\ aaabb,\ aaabbb,\ ...\}$ - слова, состояние из m a и m b $L_1\cap L_2=\{\varnothing,\ ab\}.$

 ${f 3}$ адача ${f 2}.$ Описать язык ${f L}$, порождаемый грамматикой ${f <} \{0,1\}, \ \{{f S}\}, \ \{{f S} o 01 \ | \ 0{f S}1\}, \ {f S}>$,

• на естественном языке

Других цепочек нет - следует из структуры.

• как множество

 Π ривести три различных дерева вывода для трех цепочек языка L.

Решение. Описание языка:

- на естественном языке: в L входят слова, состоящие из 0 и 1
- как множество: $L = \{(0^m 1^n)^k \mid m \ge 0, n \ge 0, k \ge 1\}$

Деревья вывода:

- $\bullet \ S \to SSS \to 0SS \to 00S \to 0001$
- $S \rightarrow SS \rightarrow 1S \rightarrow 10S1 \rightarrow 1011$
- $S \rightarrow 0S1 \rightarrow 0SS1 \rightarrow 01S1 \rightarrow 0101$

Задача 3. Привести контекстно-свободную грамматику для языка арифметических выражений с правильным приоритетом операций и ассоциативностью

Peшение. Нетерминалы: выражение <expr>, слагаемое <sum>, множитель prod>, логические опеpaнд <comp>, <and>, <or>.

Терминалы: число <num>.

- $\bullet \ < expr > \rightarrow < num >$
- $\bullet \ < expr > \rightarrow < expr > \parallel \parallel < and >$
- < and $> \rightarrow <$ expr > && < logic >
- $< logic > \rightarrow < expr > (= | \neq | \leq | < | \geq | >) < sum >$
- $< \log ic > \rightarrow < sum > (= | \neq | \leq | < | \geq | >) < expr >$
- < sum $> \rightarrow <$ prod > (+|-) < expr >
- $< prod > \rightarrow < pow > (*|) < expr >$
- \bullet < pow > \rightarrow < expr > $^{<}$ num >

 \Box