

MACHINE LEARNING ENABLING PREDICTIVE BATTERY ANALYTICS

YOUR PARTNER TO ACCELERATE THE TRANSITION TO E-MOBILITY

Manuel Wanisch, Senior Machine Learning Engineer Munich, 5/12/2022

E-VEHICLES & GREEN ENERGY ARE ON THE RISE

10 YEARS OF EXPONENTIAL GROWTH

Electric Vehicles Sales in Europe, North America & China

Global Cumulative Battery Storage Energy Capacity [GWh] (2020-2050)

BATTERY LIFECYCLE

TWAICE ADDRESSES ALL STAGES OF THE BATTERY LIFECYCLE – ACROSS TRANSPORTATION & ENERGY

- Data ingest
- Data quality check
- Data filtering
- Outlier removal
- Parameter determination
- Feature calculation
- Label calculation
- O ...

FEATURE CALCULATION

TWAICE

RAW DATA

Time Series Data

ML-CLUSTERING

Encoding Spaces

LOAD COLLECTIVES

Histograms / Clusters

SCALAR FEATURES

Feature-Vector

Amount of Data Domain-Knowledge

ML MODEL SELECTION

CLASSICAL MODELS

- Simple patterns like scalar features as input
- Understand correlations and influences of input space
- High interpretability

NEURAL NETWORKS

- Complex mapping of input to output
- High dimensional and complex patterns as input
- Improve accuracies from best classical model setting

RECURRENT NEURAL NETWORKS

- NETWORKS
 Temporal mapping of inputsequences to output
- Learn correlations across timesteps
- Accuracies can be further improved

USE CASE BATTERY SWAPPING

CHALLENGE: IS THE BATTERY IN THE VEHICLE STILL GOOD FOR OPERATION?

STATUS QUO

 Regular or ad-hoc tests of selected buses to check Battery State of Health

Bus Roller Test Bench

PROBLEM WITH STATUS QUO

- Costly
- Not continuous
- Not scalable

Approach still scalable with

...100 e-buses in the field?

... 1.000 e-buses in the field?

... 10.000 e-buses in the field?

ML-EMPOWERED SOLUTION

- No specific test procedures required
- Non-intrusive
- Robust regarding incomplete time series
- Continuous State of Health information

STATE OF HEALTH ESTIMATION

- Purely data-driven approach¹⁾ on dynamic real-world profiles
- TWAICE ML algorithms validated on laboratory measurements and realworld profiles

- TWAICE machine learning algorithms consider changes in operating strategy and stress conditions as well as linear and nonlinear aging behavior
- High accuracy with absolute deviation of < 1%

STATE OF HEALTH PREDICTION

- Proprietary model architecture¹⁾ can learn aging behavior from dynamic operating data
- Feature calculation based on use case
- Model architecture allows transfer learning

- TWAICE machine learning aging model considers dynamic and changing operating conditions as well as nonlinear aging
- High accuracy with mean deviation of < 1.5%

ML BASED SOH ESTIMATION AND PREDICTION

SUMMARY

- TWAICE combines battery, software and machine learning expertise
- Predictive battery analytics based on battery field data
 - Enables continuous state of health estimations and predictions
 - Safes manual testing efforts
- Modeling principles
 - Understand the problem
 - Start simple
 - Iterate fast