CONTINUITY

A function is continuous, If its graph doesn't break anywhere, but this is a graphical Statment. If we talk mathematically, we can say that,

FOR A FUNCTION TO BE CONTINUOUS, LHL = RHL = fca), which says that all the right hand limit, left hand limit & fca) will be equal at 'a'. 'a' is the point where we want to Check Continuity.

. PRIME CONDITION TO CHECK CONTINUITY AT A PARTICULAR &

Lim
$$f(a) = \lim_{n \to a^+} f(a) = f(a)$$
 or LHL= RHL= $f(a)$

- DOUBTFUL POINTS: In A Domain Following Would be the Points, where continuity will be doubtful.
 - 1 Inthere the defination of function changes
 - @ If G.I.F OY F.P exists, doubtful @ Z
 - 3 If Signum exists, then doubtful at o
- CONTINUITY OF DIRICHLET FUNCTIONS

 f(x) { p(x) x = Q (Real)

 q(x) x = Q (imaginery)
- (TF & ITF are only Continuous in their domains)
- Jump!

If LHL = RHL but function is Continuous then a jump is existing. Which canbe concluded as Jump = | LHL-RHL|

· INTERMEDIATE VALUE THEOREM

If f(nc) is Continuous in [a, b], And f(a).f(b) (0 then eqn f(nc) = 0, will have atteast one root in the interval (a, b)

· THEOREMS

f		f+g	f-g	fg	f/g	f(g)
C	C	C	C	C	C	C
C	C D	D	D	* c/D	c/D	c/D
D	D	40	C/D	c/0	40	4D

· For * * *

Let fine be contact a x g(n) be Kent at n=0, then

C1: If f(a) +0, then f(n) g(n) will be dis cont. at n=a.

C2: If f(a) = 0 \$ LHL&RHL&g(a) are finite, then f(x)g(x) will be cont at re-a

C3: If fca) = 0, but at least one of LHL or RHL is 00, then f(x1) 9(x1) may or may not be cont. at x=a [carit Comment]