Data-driven Intelligent Systems

Lecture 13 Recurrent Neural Network Classification

http://www.informatik.uni-hamburg.de/WTM/

Outline

- Simple Recurrent Neural Networks (Elman)
 - Time-Delay Neural Network
 - Simple Experiments with the RNN
 - Reservoir Network & Extreme Learning Machine
- Theory of Associative Memory
 - Hopfield Network
 - Energy Function

Introduction to Recurrent Neural Networks: Types of Connectivity

- Feedforward networks
 - These compute a series of transformations.
 - Non-linear functions, but elsewise simple input-output systems.
- Recurrent networks
 - These have directed cycles in their connection graph. Typically: w_{ij} ≠ w_{ji} They can have complicated dynamics.
 - More biologically realistic.

Tackle the problem with time

```
[011100000]
[000111000]
```

- Two vectors appear to be instances of the same basic pattern, but displaced in space
- Relative temporal structure should be preserved in the face of absolute temporal displacements

Examples of Time Series

- Dow-Jones Industrial Average
- Products bought in a supermarket
- Electricity demand for a city
- Air temperature in a building
- Sunspot activity
- Speech, text, video

These phenomena may be

- discrete or continuous,
- uni- or multi-valued.

Predicting a time series depends not only on current available system variables, but also on past variables.

→ A prediction model should have a memory.

Example Prediction of words

Input: $w_1 w_2 w_3 \dots w_n$

Output: $w_2 \, w_3 \, w_4 \, \, w_{n+1}$

- The hidden layer contains information from the past, which is not contained in the current input
 - internal state information
- This can be implemented by a context layer
 - Copy the hidden layer activations for next input
- Paper: Elman J., Finding Structure in Time, Cognitive Science 14, 1990 → Elman network

Model of a general dynamical system of the form:

$$s^{hid}(t) = g(s^{in}(t), s^{hid}(t-1))$$

$$s^{out}(t) = h(s^{hid}(t))$$

Outline

- Simple Recurrent Neural Networks (Elman)
 - Time-Delay Neural Network

- Simple Experiments with the RNN
- Reservoir Network & Extreme Learning Machine
- Theory of Associative Memory

- Hopfield Network
- Energy Function

SRN Alternative: Time Delay Neural Network

TDNN: feedforward architecture

Drawbacks of TDNNs:

- Increase of input dimensionality
- Many weights/parameters for large contexts
- Length of context is fixed

Temporal context realized by including *time-delayed inputs*.

Attractiveness of SRNs:

 Old temporal context (memory) fades, but is not completely lost

A larger hidden layer

- increases memory capacity
- yields a more complex (direct) input-output mapping

Backpropagation Through Time (e.g. 3 steps)

Outline

- Simple Recurrent Neural Networks (Elman)
 - Time-Delay Neural Network

- Reservoir Network & Extreme Learning Machine
- Theory of Associative Memory
 - Hopfield Network
 - Energy Function

Some Controlled Data Experiments: Learning Structure from Letter Sequences

- Multi-bit inputs with temporal extent and longer sequences
- 3 consonants (b, d, g) combined in random order to obtain 1000-letter sequence. Then each consonant complemented with vowels using rules
 - \bullet b \rightarrow ba
 - $-d \rightarrow dii$
 - \blacksquare g \rightarrow guuu
- **Example**: dbgbddg → diibaguuubadiidiiguuu
- Task: predict next letter.
 There is uncertainty: sometimes the prediction is clear, sometimes not

Vector Definitions of Alphabet

	Consonant	Vowel	Interrupted	High	Back	Voiced
b	[1	0	1	0	0	1]
d	[1	0	1	1	0	1]
g	[1	0	1	0	1	1]
a	0]	1	0	0	1	1]
i	0]	1	0	1	0	1]
u	0]	1	0	1	1	1]

Each letter encoded by 6 binary features

SRN for Letter Sequences

Error in Letter Prediction Task

The network learnt the most important regularities:

- it predicts the correct vowels, which follow a consonant
- it cannot predict the next consonant

Can we Learn / Mine Lexical Classes from Word Order

- Order of words is constraint
- Can a network learn structure from order?

Scenario:

- Sentence generator based on categories of lexical items
- Each word represented by random 31 bit vector:
 - one bit is ON if word present, others OFF (one-hot encoding)
- 27,354 word vectors were concatenated into 10,000 sentences

Categories of Lexical Items

Category	Examples
NOUN-HUM	man, woman
NOUN-ANIM	cat, mouse
NOUN-INANIM	book, rock
NOUN-AGRESS	dragon, monster
NOUN-FRAG	glass, plate
NOUN-FOOD	cookie, sandwich
VERB-INTRAN	think, sleep
VERB-TRAN	see, chase
VERB-AGPA	move, break
VERB-PERCEPT	smell, see
VERB-DESTROY	break, smash
VERB-EA	eat

Templates for Sentence Generator

WORD 1	WORDS	WORD 3	
NOUN-HUM	VERB-EAT	NOUN-FOOD	
NOUN-HUM	VERB-PERCEPT	NOUN-INANIM	
NOUN-HUM	VERB-DESTROY	NOUN-FRAG	
NOUN-HUM	VERB-INTRAN		
NOUN-HUM	VERB-TRAN	NOUN-HUM	
NOUN-HUM	VERB-AGPAT	NOUN-INANIM	
NOUN-HUM	VERB-AGPAT		
NOUN-ANIM	VERB-EAT	NOUN-FOOD	
NOUN-ANIM	VERB-TRAN	NOUN-ANIM	
NOUN-ANIM	VERB-AGPAT	NOUN-INANIM	
NOUN-ANIM	VERB-AGPAT		
NOUN-INANIM	VERB-AGPAT		
NOUN-AGRESS	VERB-DESTORY	NOUN-FRAG	
NOUN-AGRESS	VERB-EAT	NOUN-HUM	
NOUN-AGRESS	VERB-EAT	NOUN-ANIM	
NOUN-AGRESS	VERB-EAT	NOUN-FOOD	

Learning Successive Words

INPUT	OUTPUT		
000000000000000000000000000000000000000	(woman)	000000000000000000000000000000000000000	(smash)
0000000000000000000000000010000	(smash)	000000000000000000001000000000	(plate)
00000000000000000001000000000	(plate)	0000010000000000000000000000000	(cat)
000001000000000000000000000000000000000	(cat)	00000000000000000010000000000	(move)
0000000000000000010000000000	(move)	000000000000000100000000000000	(man)
000000000000000100000000000000	(man)	000100000000000000000000000000000000000	(break)
000100000000000000000000000000000000000	(break)	000010000000000000000000000000000000000	(car)
000010000000000000000000000000000000000	(car)	010000000000000000000000000000000000000	(boy)
010000000000000000000000000000000000000	(boy)	00000000000000000010000000000	(move)
0000000000000000010000000000	(move)	000000000001000000000000000000	(girl)
00000000001000000000000000000	(girl)	000000000100000000000000000000	(eat)
000000000100000000000000000000	(eat)	001000000000000000000000000000000000000	(bread)
001000000000000000000000000000000000000	(bread)	000000010000000000000000000000	(dog)
000000010000000000000000000000	(dog)	00000000000000000010000000000	(move)
00000000000000000100000000000	(move)	00000000000000000100000000000	(mouse)
000000000000000001000000000000	(mouse)	00000000000000000100000000000	(mouse)
000000000000000001000000000000	(mouse)	0000000000000000010000000000	(move)
0000000000000000010000000000	(move)	100000000000000000000000000000000000000	(book)
100000000000000000000000000000000000000	(book)	000000000000001000000000000000	(lion

SRN for Word Sequences

SRN for Word Sequences: Hidden Layer Representations

- Representation of the word "man":
 - In the input layer, a 31-dimensional one-hot vector
 - In the hidden layer, a 150-dimensional continuous vector
- Hidden representation depends
 - On current input (always same for "man")
 - On context (varies a lot)
 - ← It's not just by linear superposition of these two!
- Obtain representative hidden representation (for display): average over many occurrences of "man" in many contexts

Hierarchical Cluster Analysis of Hidden Layer Negres transitive (always) Negres transitive (always) WERBS Representations

Distance

Words that are used similarly appear in similar areas of the dendrogram

Outline

- Simple Recurrent Neural Networks (Elman)
 - Time-Delay Neural Network
 - Simple Experiments with the RNN
 - Reservoir Network & Extreme Learning Machine
- Theory of Associative Memory
 - Hopfield Network
 - Energy Function

SRN Variation: Echo State Network (1/4)

For a very large hidden layer:

- Different histories of inputs will lead to different activations, if recurrent/input weights are random (even if not trained!)
- ESN: Train only the output weights (linear perceptron)!
- → perceptron's high-dimensional input allows all classifications

SRN Variation: Echo State Network (2/4)

- Wrec fixed, random, sparse, non-symmetric
- Win fixed, random, sparse
- Train only Wout ← supervised perceptron learning
- N^{hid} large, hidden layer acts as a reservoir

SRN Variation: Echo State Network (3/4)

- ESNs must fulfill the echo state property: the largest eigenvalue of W^{rec} must not be much larger than 1
- In practice this means that weights must not be too large
 - → activations will slowly decay in time, but not blow up
 - → similar input histories will be similarly represented

Water Reservoir Networks (4/4)

LEGO bumpers supply inputs

01 10

Sobel filtered and thresholded images of the reservoir states

11

00

- Perceptron solves (static) XOR with input from reservoir
- Activity on water surface contains all relevant information
- High complexity
- Inherent stability to wide range of inputs

MLP with Partially Fixed Weights

- "Extreme Learning Machine" maybe inspired by ESN or RBF
- Like ESN, requires large number of hidden neurons
- Fast to train
- Difficult / data-dependent setting of parameters, e.g. scaling of weights and their sparseness

Outline

- Simple Recurrent Neural Networks (Elman)
 - Time-Delay Neural Network
 - Simple Experiments with the RNN
 - Reservoir Network & Extreme Learning Machine
 - Theory of Associative Memory
 - Hopfield Network
 - Energy Function

Associative Memory

What is "behind" recurrent neural networks?

- We associate similar events/items/patterns in our brains
- We generalise from patterns we have seen
 - Example: recognize letters in different fonts/sizes/colors
- We complete incomplete information
- We recall memories
- This is Context-Addressable or Associative Memory

Outline

- Simple Recurrent Neural Networks (Elman)
 - Time-Delay Neural Network
 - Simple Experiments with the RNN
 - Reservoir Network & Extreme Learning Machine
- Theory of Associative Memory
 - Hopfield Network
 - Energy Function

The Hopfield Network as Associative Memory

- An example of a network of simple neurons
 - Perceptrons
 - Binary Threshold Units

- Symmetric weights
- No self-connection
- Invented by J. Hopfield

The Hopfield Network – Differently Displayed

The Hopfield Network – An Attractor Network

- Every neuron connected to every other neuron
- Activations are ±1

$$s_{i} = \operatorname{sign}\left(\sum_{j=1}^{N} w_{ij} s_{j}\right)$$

$$N = \text{# neurons} \quad \text{square} \quad \text{weight} \quad \text{matrix}$$

Synchronous or random update

Here w_{ij} is the weight from j to i, as clear from context. Different conventions can be found in different books.

Representing Images

Learning One Pattern

• Set the weights as: $w_{ij} = S_i^p S_j^p$

$$W_{ij} = S_i^p S_j^p$$

Hebbian rule for pattern s^p

If # patterns = 1:

- w_{ii} = 1 if both units i and j have activity 1, or both -1
- w_{ii} = -1 if both units' activities have opposing sign
- The stored pattern *s*^p will be stable under activity update:

$$s_{i} = \operatorname{sign}\left(\sum_{j=1}^{N} w_{ij} s_{j}\right)$$

$$s_{j} = s_{j}^{p}, \ w_{ij} = s_{i}^{p} s_{j}^{p}$$

$$= \operatorname{sign}\left(\sum_{j=1}^{N} s_{i}^{p} s_{j}^{p} s_{j}^{p}\right) = s_{i}^{p}$$

Using the Memory

... iterative update of neuron activations ...

... final pattern

Attractors

- Applying the activity update iteratively will make random initial patterns converge to the stored pattern
- The final pattern is an attractor
- Useful for
 - constraint satisfaction
 - noisy preclassification
 - known attractors

More Patterns in the Memory

- Need to learn many patterns s^p, not just one
- Set the weights:

$$w_{ij} = \frac{1}{P} \sum_{p}^{P} S_i^p S_j^p \qquad P = \text{# patterns}$$

Idea: For any input, network activations shall **converge** to the closest trained pattern

- Problem: multiple patterns may interfere
- The Hebbian rule leads to a memory capacity of ~0.13 N, where N = number of neurons. (under ideal conditions, i.e. little overlap between the patterns)

Outline

- Simple Recurrent Neural Networks (Elman)
 - Time-Delay Neural Network
 - Simple Experiments with the RNN
 - Reservoir Network & Extreme Learning Machine
- Theory of Associative Memory
 - Hopfield Network
 - Energy Function

"Energy" in the Network

$$H = -\frac{1}{2} \sum_{i} \sum_{j} w_{ij} s_i s_j$$

- The energy contained in the network activations
 - Low energy if $s_i \cdot s_j$ tend to match the sign of w_{ij}
 - High energy if $s_i \cdot s_j$ tend not to match the sign of w_{ij}
- Asynchronous activity update: H never increases
 - The proof requires symmetric weights: $w_{ij} = w_{ji}$
- The energy decreases as the network activities stabilize
- The attractors are the local minima of the energy function

Energy Landscapes

Similar as in the context of Error function minimization, but now, **states**, i.e. activations (**not**: weights) are on the x-axis

"Energy" in the Network

$$H = -\frac{1}{2} \sum_{i} \sum_{j} w_{ij} s_i s_j$$

- Positive $w_{ij} \rightarrow H$ becomes small if $s_i = s_j$
- Negative $w_{ij} \rightarrow H$ becomes small if $s_i = -s_j$
- Large $|w_{ii}|$ \rightarrow more importance
- \rightarrow a minimum of H is found by multiple constraint satisfaction
- Symmetry: H(S) = H(-S) (all activations sign-reversed)

"Energy" in the Network

$$H = -\frac{1}{2} \sum_{i} \sum_{j} w_{ij} s_{i} s_{j}$$

• Why is the Hebb rule good? $w_{ij} = S_i^p S_j^p$ (for one pattern)

Insert it:

$$H = -\frac{1}{2} \sum_{i} \sum_{j} s_{i}^{p} s_{j}^{p} s_{i} s_{j} = -\frac{1}{2} \sum_{i} s_{i}^{p} s_{i} \sum_{j} s_{j}^{p} s_{j}$$

- \rightarrow H is minimised if $S_i = S_i^p$ and $S_j = S_j^p$ for all i, j.
- A single pattern s^p stored by Hebb rule has minimal energy (not necessarily true for multiple patterns).

Energy Landscapes

Descent on energy surface while updating activities

(fig. from Solé & Goodwin)

(fig. from Haykin Neur. Netw.)

- energy surface
- flow lines

- energy surface
- flow lines
- attractor basins

(fig. from Haykin Neur. Netw.)

Extending Hebb Rule

- Hebb rule led to small memory capacity, #patterns P ≤ ~0.13 #neurons N.
- Hebb $w_{ij} = \frac{1}{P} \sum_{p}^{P} s_i^p s_j^p$
- Perceptron rule: network can store up to 2N patterns
- Idea: train only units i with patterns d where errors occur

init weights (e.g. random or using Hebb rule)

for all patterns *p*:

for all units *i*:

if $s_i^p \neq \text{sign } \sum_j w_{ij} s_j^p$ then:

$$\Delta w_{ij} = S_i^p S_j^p \qquad \forall j \qquad \longleftarrow$$

• Note: $\rightarrow w_{ij} \neq w_{ij}$ in general, so no energy function

train incoming weights of unit *i* with pattern *p* using Hebb rule

if unit *i* is wrong for pattern *p*

Hopfield Networks for Face Detection(?)

Associative memory

Parts of a pattern can be used to recover the whole pattern

- Simple dynamical system
- Limited to binary variables

Sequence Generation (not Hopfield)

Training patterns to be learnt in order:

pattern s^t will strengthen s^{t+1}

• Hebb-like rule: $w_{ij}^{seq} = \frac{1}{P} \sum_{t=0}^{P} s_i^{t+1} s_j^t$

→ asymmetric weights

Sequence Generation (not Hopfield)

Actually learnt & generated sequence:

- A dynamic pattern emerges, almost as wanted ...
- But: cannot extend network size/complexity!

Sequence Generation (not Hopfield)

Asymmetric weight matrix can be written as a sum of a symmetric plus an unsymmetric component:

$$W^{sequence} = W^{sym} + W^{asym}$$

$$\uparrow \qquad \qquad \uparrow$$

$$w_{ij} = w_{ji} \qquad w_{ij} \neq w_{ji}$$

- The symmetric component stabilizes patterns, favouring static attractors (auto-association)
- The unsymmetic component favors the transition from one pattern to another pattern (hetero-association)

Summary of Hopfield Networks

- Associative network with dynamics
- Simple binary neuron model
- A single layer: input units = output units
 - Serves as a model of the hidden layer of a SRN, since (after initialization) units become activated by the network
- Symmetric weights ensure convergence of activations to a state with minimum energy
- Non-symmetric weight components may cause ever-lasting activation dynamics
 - but not a Hopfield network, according to definition

Summary of Simple Recurrent Networks

- Efficiently applicable to sequence prediction, e.g.
 - Letters and words
 - Stock markets
 - ... and much more!
- Efficiently applicable to sequence classification, e.g.
 - Handwriting and speech recognition
 - Gesture recognition
 - ... and much more!
- Method to problem solving using some context
 - ... that is still *deterministic* and can be analyzed