Quantum simulation of a space-time atom in loop quantum gravity

Caleb Rotello and Hakan Ayaz

I. INTRODUCTION

With quantum computers becoming more useful in recent years, many problems with large solution spaces or problem states are being tested.

Loop Quantum Gravity (LQG), is a theory based on the quantization of space-time, where entangled quantum tetrahedra give rise to space-time in a way the unifies quantum mechanics and general relativity.

II. LOOP QUANTUM GRAVITY

A. Quantum Tetrahedra

In any *n*-dimensional space, an *n*-simplex is the shape with the fewest possible number of faces; a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and so on to higher dimensions. One central tenet of LQG is quantized space-time **CITATION** - **WHY tetrahedra?**. Therefore, to get discrete space in 3 dimensions we will choose the 3-simplex, or tetrahedron, to be our discrete unit of space. One tetrahedron is defined by the equation

$$\vec{J_1} + \vec{J_2} + \vec{J_3} + \vec{J_4} = 0 \tag{1}$$

where $\vec{J_i} = (J_x, J_y, J_z)$ is the angular momentum vector of the *i*th face [2]. We can then define a quantum tetrahedron, or qubit of space, with the following [3], where θ and ϕ are angles on the Bloch sphere

$$|t\rangle = \cos\left(\frac{\theta}{2}\right)|0_L\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1_L\rangle$$
 (2)

$$|0_L\rangle = \frac{1}{2}(|01\rangle - |10\rangle)(|01\rangle - |10\rangle) \tag{3}$$

$$|1_L\rangle = \frac{1}{\sqrt{3}}[|1100\rangle + |0011\rangle - \frac{1}{2}(|01\rangle + |10\rangle)(|01\rangle + |10\rangle)] \tag{4}$$

This quantum tetrahedron is the discrete unit of 3 dimensional quantum space.

B. Space-time Atom

The 4-simplex is a geometric object used to create discrete 3+1 dimensional space-time [4], so in order to properly simulate LQG spinfoam amplitudes we need to create a 4-simplex with our quantum tetrahedra. An n-simplex is created by gluing n+1 simplices from the n-1 dimension; a 2 dimension triangle is created by "gluing" 3 lines together. To create the 4-simplex, we will glue 5 quantum tetrahedra together with entanglement between faces.

A collection of connected quantum tetrahedra gives rise to a spin-network graph, where each node in the graph is a tetrahedron and links are formed by gluing adjacent faces [5].

C. Gaussian Constraint

D. Transition Amplitudes

III. QUANTUM SIMULATION

We performed quantum simulations in order to obtain the aforementioned vertex amplitudes. Simulations were intended to solve the equation

$$A(B,S) = \langle B | P_G | S \rangle \tag{5}$$

where P_G is the Gaussian constraint. There is no guarantee that P_G is unitary, so in order to simulate the vertex amplitude, we must further constrain it to the projection operator $P_G = |T\rangle \langle T|$.

A. Circuit

Template for how circuits are formed. Function of $|0_L\rangle$ state.

B. Topology

Emergent non-homeomorphisms among the spin network.

IV. DIPOLE SPIN NETWORK

V. 4-SIMPLEX SPIN NETWORK

VI. RESULTS AND DISCUSSION

^[1] G. Czelusta, J. Mielczarek, "Quantum simulations of a qubit of space", Phys. Rev. **D103**, 046001 (2021) [arXiv:2003.13124].

^[2] C. Rovelli, F. Vidotto, "Covariant Loop Quantum Gravity: An elementary introduction to Quantum Gravity and Spinfoam Theory", Cambridge Monographs on Mathematical Physics, 2014.

^[3] K. Li, Y. Li, M. Han, et. al., "Quantum spacetime on a quantum simulator", Communications Physics 2, 122 (2019)

^[4] S. Lawphongpanich, n.d., Simplicial decompositionSimplicial Decomposition, Encyclopedia of Optimization, Boston, MA, Springer US, pp. 2375-2378

B. Bayatas, E. Bianchi, N. Yokomizo, "Gluing polyhedra with entanglement in loop quantum gravity", Physical Review, **D98**, 026001 (2018)