# Lesson 12. IP Formulations Part 1

## Solving Integer Programs can be Really Hard!

Suppose we are solving the following integer program:

$$\max 12x_1 + 13x_2$$

$$\operatorname{st} 6x_1 + 7x_2 \leq 21$$

$$x_1, x_2 \in \mathbb{Z}^+$$

XIIX2 20 integer Usually, everyone's first thought for solving IPs is to solve the LP and then round to the nearest integer. Let's try that here:



A: (0,0) Z=0 B: (0,3) Z= 39 C: (3,5,0) Z= 42

If we solve the LP we get the solution:

Rounding this solution, we get an IP solution of:

$$(310)$$
  $Z = 36$  Is this the optimal solution to the IP?

In general, IPs are **significantly harder** to solve than LPs.

- In the next two lessons, we will discuss why IPs are harder than LPs and why the way we model IP problems can impact solver performance.
- In lesson 14 we will learn about the **branch and bound algorithm** which is a method to solve IPs.

1

## 2 Review Linear Programming Solution Techniques

#### 2.1 Types of LP solutions

**Theorem:** Every LP's solution is EXACTLY one of the following:

- 1. Unique optimal solution
- 2. Multiple optimal solutions -> In Up infinite, IP 2 or More
- 3. Unbounded LP
- 4. Infeasible LP



These types of solutions are also true for integer programs. Recall that if an LP has an optimal solution, it always occurs at a corner point.

Max XI SI XIZO integer XZSI XZZO integer

3 Integer Program Formulations

kzzo infeger

A formulation of an integer (linear) program is a set of linear Constraints

that

capture ALL of the

integer points, and NO OTHER integer points.

Max Cx

Ax=6 x zo integer LP Relaxation

Max Ax=6 X20

The **LP relaxation** of an IP is the LP that is formed by relaxing (i.e., removing) the integer requirement on the variables.

**Problem 2.** Below are two integer programs, along with the diagrams of their constraints.

# Integer Program A

maximize 8x + 7ysubject to  $-18x + 38y \le 133$  $13x + 11y \le 125$  $10x - 8y \le 55$  $x, y \geq 0$ , integer



FIGURE 13.1 Feasible region for integer program (13.3).

# Integer Program B

maximize 
$$8x + 7y$$
  
subject to  $-x + 2y \le 6$   
 $x + y \le 10$   
 $x - y \le 5$   
 $x \le 7$   
 $y \le 5$   
 $x, y \ge 0$ , integer



FIGURE 13.2 Feasible region for integer program (13.4).

| (a) | On the | diagrams, | identify | all | feasible | solutions | to | both | IPs. |
|-----|--------|-----------|----------|-----|----------|-----------|----|------|------|
|-----|--------|-----------|----------|-----|----------|-----------|----|------|------|

# Grid of blue points

Objective volve

Relaxation

## 3.1 Better Formulation $\Rightarrow$ Better Bound

Min Zup & ZIA

Now let's consider the relationship between an IP and its LP relaxation.

In general:

- If we are solving a **maximization** IP, the solution of its LP relaxation provides a bound on the solution of the IP problem.

- If we are solving a **minimization** IP, the solution of its LP relaxation provides a bound on the solution of the IP problem.

The **tighter** a formulation, the

better

bound you obtain via the LP relaxation.

This idea is key for solving IPs!

**Problem 3.** Sketch a problem which proves if we're maximizing,  $z_{LP} \geq z_{IP}$  and vice versa if A is optimal to UP. a options



- A is integer. So ZLP = ZIP
- A is not integer. No integer point in grid has higher objective value than A ZUP ZIP

Combining this ZUZ ZIP

Often the decision of how to formulate an IP comes down to a tradeoff between the formulation quality and number of constraints.

- More constraints can lead to a better (tighter) formulation, but:

relaxation is namer

Fewer constraints lead to a weaker formulation but:

CP relaxation is easier