Dynamic memory (C/C++)

Mariano Trebino

Memory

- Code
 - Const data
 - Static and global variables
- Stack (LIFO)
 - Thread execution data
 - Variables
 - Stack pointer → Simple!
- Heap
 - Dynamic memory
 - Undefined behavior → Complex

Work with dynamic memory

- Explicit allocation
 - Allocate (or new)
 - Free (or delete/destroy) → memory leaks
- Implicit allocation
 - Allocate
 - "Never free" → Garbage Collector

Data type	Size (bytes)		
Char	1		
Short	2		
Int	4		
Double	8		
Object	?		

Data type	Size (bytes)
Char	1
Short	2
Int	4
Double	8
Object	?

Q

Data type	Size (bytes)
Char	1
Short	2
Int	4
Double	8
Object	?

0 1 C

Data type	Size (bytes)
Char	1
Short	2
Int	4
Double	8
Object	?

0 1 2 C C

Data type	Size (bytes)
Char	1
Short	2
Int	4
Double	8
Object	?

Data type	Size (bytes)
Char	1
Short	2
Int	4
Double	8
Object	?

Alignment

- The address of the data must be a multiple of its alignment
- For primitives types the alignment is equal to its size
- For user-defined types the alignment is equal to the greater alignment of one of its members (max. 8 bytes)
 - o @ mod alignment = 0
 - 1 byte \rightarrow 0x...X
 - 2 bytes \rightarrow 0x...00, 0x...02, 0x...04 0x...06
 - 4 bytes \rightarrow 0x...00, 0x...04, 0x...08, 0x...0A

Why alignment?

- Cons: Waste memory
- Pros: Huge increase in performance
 - o CPU reads words (ie: 4 byte size)

Without alignment

With alignment

Data type	Size (bytes)	Alignment (bytes)
Char	1	1
Short	2	2
Int	4	4
Double	8	8
Object	?	?

Data type	Size (bytes)	Alignment (bytes)
Char	1	1
Short	2	2
Int	4	4
Double	8	8
Object	?	?

0 1 2	2 3	4	6	8	
		Λ	0	_	
C C		А	S	Α	

Data type	Size (bytes)	Alignment (bytes)
Char	1	1
Short	2	2
Int	4	4
Double	8	8
Object	?	?

0 1 2	3	4	6	8	12	
CC	C	S		Α	1	

Data type	Size (bytes)	Alignment (bytes)
Char	1	1
Short	2	2
Int	4	4
Double	8	8
Object	?	?

0_	1	2	3	4	6	8		12 13	3
	C	С	С	А	S	Α	1	C	

Data type	Size (bytes)	Alignment (bytes)				
Char	1	1				
Short	2	2				
Int	4	4				
Double	8	8				
Object	?	?				

0	1	2	3	4	6	8		12 1	3 1	6
C			С	Α	S	Α	1	С	Α	

Data type	Size (bytes)	Alignment (bytes)				
Char	1	1				
Short	2	2 4				
Int	4					
Double	8	8 ?				
Object	?					
2 2 4 6 0	10 10 16	24				

0	1	2	3	4	6	8	12	2 13	16	5	.4
С		C	С	A	S	А	1	С	А	D	

				ata ty	pe	,	Size	(bytes)		Alignmen	t (bytes)			
				Char				1		1				
				Short				2		2				
				Int				4		4				
				Double	9			8		8				
				Object	t			?		?				
1	2	3	4	6	8	1	2 13	3 1	6		24			32
С	С	С	Α	S	А	1	С	Α		D			D	

			С	ata ty	ре			Size	(bytes)		Alignmen				
				Char					1		1				
				Short					2		2				
				Int					4		4				
				Double	9				8		8				
				Object	t				?		?				
1	2	3	4	6 8 12 13 16					6		24			32	
С	С	С	Α	S	А		1	С	А		D			D	

- Composition of multiple primitive types
- Object size
 - Sum of its members in aligned positions
- Object alignment
 - Equals to the greater alignment of its members

- Composition of multiple primitive types
- Object size
 - Sum of its members in aligned positions
- Object alignment
 - Equals to the greater alignment of its members

- Composition of multiple primitive types
- Object size
 - Sum of its members in aligned positions
- Object alignment
 - Equals to the greater alignment of its members

```
struct foo {
    bool b;
    int i;
};
struct foo {
    // S = 5
    boot
    int i;
};
struct foo {
    // S = 5
    int i = 4
};
```

- Composition of multiple primitive types
- Object size
 - Sum of its members in aligned positions
- Object alignment
 - Equals to the greater alignment of its members

```
struct foo {
    bool b;
    // S = 1
    int i;
};
struct foo {
    bool b;
    // S = 1
    // A = 3
    // S = 4
};
struct foo {
    // S = 8
    // S = 1
    // A = 3
    // S = 4
};
```

```
struct bar {
    double d;  // S = 8
    char c;  // S = 1
};
```

Keep memory aligned!

```
struct bar {
    double d;
    char c;
}

struct bar {
    double d;
    // S = 16
    A = 8
    double d;
    // S = 8
    char c;
};
```


Dvnamic Memory Tip#1: Dvnamic Memory for ndows XΡ not support guests **Dvnamic** Tip#2: Only **Enterprise** and Ultimate editions of lows and Memory Vista are supported guests. DM properties the Dynamic Tip#3: lf you want demo quickly, just set the MSraint maximum size. Memory to Dvnamic Tip#4: DM only responds to actual allocation respond queries (registry) Memory memorv que memorv **Dvnamic** Memory Tip#5: You update both the Hymer-V AND guest DM need to ost to use for most OSes. Memory Tip#6: You need this hotfix on 2008 Span or DM: http://support.microsoft.com/kb/2230887/en-us Web and tanda Dynamic Memory Tip#7: Easiest way to setup DM: men Best way: set Maximum memory as well (not 64 GB) ire starti Dynamic Memory Tip#8: Don't worry if you don't see DM retuning 4 when vou pps. This is by design. Only under heavy load will RAM be reclaimed. Dynamic Tip#9: For Windows 7 Vindov R2 only need to install SP1 enable Memorv and Server 2008 you to **Dvnamic** Memory Tip#10:Almost alw there 'Memory Priority' VDI no reason set in scenarios. to Dynamic Tip#11: VMs rered of change/enable RAM and Memorv be Startup Maximum RAM ıffer and **Priority** be while guest Dynamic Memory Tip#12: Memory changed is running. can Dynamic Memory Tip#13: Setting DM s not poport it will result in the VM ignoring all but the Startup RAM config. This will be the traditional maximum memory.

Dynamic Memory Tip 14: Entered Memory Buffer if you have DM performance problems and have I/O-intensive applications and services. Dynamic Memory Tip 15: DM most review when you determine the RAM needed to just successfully boot and set Startup RAM to that value. Dynamic Memory Tip 15: If the lyper-V host is part of a failover cluster, Hyper-V also reserves enough memory to run the failover cluster services. Dynamic Memory Tip 16: Know that adding a RFX adapter adds a significant amount of RAM. Be sure to review Startup RAM at that time. Dynamic Memory Tip#16 ecting Startup RAM too low is bad. Real bad. Your VM will not boot and there is no descriptive message on the VM. Dynamic Memory Tip#19:When you use DM in a VM, don't trust Task Manager anymore for the available memory. It only sees the Startup RAM. Dynamic Memory Tip#20: To gather performance data on DM, you should not use guest tooling. Run perfmon on the host instead.

Dvnamic Memory Tip#1: Dvnamic Memory for ndows XΡ not support guests **Dvnamic** Tip#2: and Ultimate editions of dows and Memory Only Enterprise Vista are supported guests. DM properties Dynamic Memory Tip#3: lf you want demo quickly, just set MS aint maximum size. to only responds to actual allocation respond Dvnamic Memorv memory que aueries (registry) memorv Tip#5: You update both the Hwer-V AND guest Dvnamic Memory need to ost use DM for most OSes. Memory Tip#6: You need this hotfix on 2008 Spin or DM: http://support.microsoft.com/kb/2230887/en-us Web and tanda Dynamic Memory Tip#7: Easiest way to setup DM: men Best way: set Maximum memory as well (not 64 GB) ire starti Dynamic Memory Tip#8: Don't worry if you don't see DM retuning 4 when vou pps. This is by design. Only un heavy load will RAM be reclaimed. Dynamic Tip#9: Windows 7 Vindov R2 SP1 enable Memorv For and Server 2008 you only to stall to nel **Dvnamic** Memory Tip#10:Almost alw there ritv in VDI no reason Mem scenarios. to set **Dvnamic** Tip#11: VMs rered of change/enable RAN and Memory be tartu Maximum RAM ıffer and **Priority** Dynamic Memory Tip#12: Memory can hange wk guest running. Dynamic Memory Tip#13: Setting DM s not pport it will result in the VM ignoring the tartup M config. This will be the traditional maximum

#14: En Me ry Buffer if you have DM performar and har I/O-intensive applications and services. Dynamic Memory Dynamic Memory T 15: DM ve when you determine the RAM st su ssfully boot and set Startup RAM to that value. mos eed Dynamic Memory Tip If the lyper-V host is part of a failover cluster. Hyp resets enough memory to run the failover cluster services. that adding a RFX adapter adds a sign RAM. Be sure to review an amou Startup RAM at that time. Dynamic Memory Tip#1 ecting Startup RAM too logis bad ad. M will not boot and there is no descriptive message on the VM. Dynamic Memory Tip#19:When you use DM in VM, h't t Managaranymore for the available memory. It only sees the Startup RAM. Dynamic Memory Tip#20: To gather performance d sh guest tooling. Run perfmon on the host instead.

Dvnamic Memory Tip#1: Dvnamic Memory for ndows XΡ not support guests **Dvnamic** Tip#2: Only Enterprise and Ultimate editions of dows and Memory Vista are supported guests. DM properties the Dynamic Memory Tip#3: lf you want demo quickly, just set the MSraint maximum size. to Dvnamic only responds to actual allocation respond Memory memory que aueries (registry) memorv **Dvnamic** Memory Tip#5: You update both the Hwer-V AND guest need to ost use DM for most OSes. Memory Tip#6: You need this hotfix on 2008 Spin Web and or DM: http://suppert.microsoft.com/kb/2230887/en-us tanda Dynamic Memory Tip#7: Easiest way to setup DM: men Best way: set Maximum memory as well (not 64 GB) ure start Dynamic Memory Tip#8: Don't worry if you don't see DM retuning 4 when vou pps. This is by design, Only under heavy load will RAM be reclaimed. Dynamic Memorv Tip#9: Windows 7 and Vindov 2008 R2 only 🚺 🔙 to SP1 enable For Server you install to **Dvnamic** Memory Tip#10:Almost alw there no Priority' VDI scenarios. reason lemorv in to **Dvnamic** Tip#11: VMs rered of change en blo Startup RAM and RAM Memory be Maximum Priority can be Tip#12: ıffer and Memory while guest Dynamic Memory changed is running. Dynamic Memory Tip#13: Setting DM s not pport it will result in the Willignoring all but the Startup RAM config. This will be the traditional maximum

Dynamic Memory Tip 15: DM most process when you determine the RAM needed to just successfully boot and set Startup RAM to that value. Dynamic Memory Tip 15: DM most process when you determine the RAM needed to just successfully boot and set Startup RAM to that value. Dynamic Memory Tip 16: If the Hyper-V host is part of a failed reduster, Hyper-V also reserves enough memory to run the failover cluster services. Dynamic Memory Tip 16: Know that adding a RFX additor adds a significant amount of RAM. Be sure to review Startup RAM at that time. Dynamic Memory Tip#16 setting Startup RAM to the lad. Real bad. Your VM will not boot and there is no descriptive message on the VM. Dynamic Memory Tip#19:When you use DM in the Mamager anymore for the available memory. It only sees the Startup RAM. Dynamic Memory Tip#20: To gather performance lata on DM, you should not use guest tooling. Run perfmon on the host instead.

To be continued (next week)...Beating malloc!