Non-local Neural Networks

Xiaolong Wang^{1,2*} Ross Girshick²

¹Carnegie Mellon University

Abhinav Gupta¹ Kaiming He²
²Facebook AI Research

Introduction

- Long-range dependencies can only be captured when recurrent and convolutional operations are applied repeatedly, propagating signals progressively through the data.
 - Computational inefficient
 - Optimization difficulties
 - Multi-hop dependency modeling is difficult.
- This paper presents non-local operations as an efficient, simple, and generic component for capturing long-range dependencies with deep neural networks.

Non-local Neural Network

A non-local operation computes the response at a position as a weighted sum of the features at *all* positions in the input feature maps.

Non-local Block

Formulation

$$\mathbf{y}_i = \frac{1}{\mathcal{C}(\mathbf{x})} \sum_{\forall j} f(\mathbf{x}_i, \mathbf{x}_j) g(\mathbf{x}_j).$$

- i: index of an output position
- x: input signal
- y: output signal with size equal to x
- C: normalization factor

Instantiation

- $g(\mathbf{x}_j) = W_g \mathbf{x}_j$, linear embedding, W_g weight matrix
- *f* :
 - Gaussian: $f(\mathbf{x}_i, \mathbf{x}_j) = e^{\mathbf{x}_i^T \mathbf{x}_j}$
 - Embedded Gaussian: $f(\mathbf{x}_i, \mathbf{x}_j) = e^{\theta(\mathbf{x}_i)^T \phi(\mathbf{x}_j)}$.

Self Attention module:
$$\mathbf{y} = softmax(\mathbf{x}^T W_{\theta}^T W_{\phi} \mathbf{x}) g(\mathbf{x})$$

- Dot product: $f(\mathbf{x}_i, \mathbf{x}_j) = \theta(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$.
- Concatenation: $f(\mathbf{x}_i, \mathbf{x}_j) = \text{ReLU}(\mathbf{w}_f^T[\theta(\mathbf{x}_i), \phi(\mathbf{x}_j)]).$

$$\theta(\mathbf{x}_i) = W_{\theta}\mathbf{x}_i \qquad \phi(\mathbf{x}_j) = W_{\phi}\mathbf{x}_j$$

Non-local Block

Non-local Neural Network

- Capture long-range dependencies directly by computing interactions between any two positions
- Achieve their best results even with only a few layers
- Maintain the variable input sizes and can be easily combined with other operations

Video Verification model

- 2D ConvNet baseline (C2D)
 - 2D kernel, $1 \times k \times k$
- Inflated 3D ConvNet (I3D)
 - 3D kernel, $t \times k \times k$
- Non-local network
 - Insert non-local blocks into C2D or I3D
 - 1,5, or 10 non-local blocks

	layer	output size
$conv_1$	7×7 , 64, stride 2, 2, 2	16×112×112
$pool_1$	$3\times3\times3$ max, stride 2, 2, 2	8×56×56
res ₂	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	8×56×56
$pool_2$	$3\times1\times1$ max, stride 2, 1, 1	4×56×56
res ₃	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	4×28×28
res ₄	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	4×14×14
res ₅	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	4×7×7
g	lobal average pool, fc	1×1×1

Baseline ResNet-50 C2D model for video

Non-local Block

Examples of the behavior of a non-local block in res₃ computed by a 5-block non-local model trained on Kinetics. The 20 highest weighted arrows for each **x**₁ are visualized.

model, R50	top-1	top-5
C2D baseline	71.8	89.7
Gaussian	72.5	90.2
Gaussian, embed	72.7	90.5
dot-product	72.9	90.3
concatenation	72.8	90.5

model, R50	top-1	top-5
baseline	71.8	89.7
res ₂	72.7	90.3
res_3	72.9	90.4
res_4	72.7	90.5
res ₅	72.3	90.1

(a) **Instantiations**: 1 non-local block of different types is added into the C2D baseline. All entries are with ResNet-50.

(b) **Stages**: 1 non-local block is added into different stages. All entries are with ResNet-50.

model		top-1	top-5
	baseline	71.8	89.7
R50	1-block	72.7	90.5
KJU	5-block	73.8	91.0
	10-block	74.3	91.2
	baseline	73.1	91.0
R101	1-block	74.3	91.3
KIUI	5-block	75.1	91.7
	10-block	75.1	91.6

(c) **Deeper non-local models**: we compare 1, 5, and 10 non-local blocks added to the C2D baseline. We show ResNet-50 (top) and ResNet-101 (bottom) results.

5-block ResNet-50 has only ~70% parameters and ~80% FLOPs of the ResNet-101 baseline

model, R101	params	FLOPs	top-1	top-5
C2D baseline	1×	1×	73.1	91.0
I3D _{3×3×3}	1.5×	1.8×	74.1	91.2
$I3D_{3\times1\times1}$	1.2×	1.5×	74.4	91.1
NL C2D, 5-block	1.2×	1.2×	75.1	91.7

(e) **Non-local vs. 3D Conv**: A 5-block non-local C2D vs. inflated 3D ConvNet (I3D) [7]. All entries are with ResNet-101. The numbers of parameters and FLOPs are relative to the C2D baseline (43.2M and 34.2B).

	model	top-1	top-5
	C2D baseline	71.8	89.7
R50	I3D	73.3	90.7
	NL I3D	74.9	91.6
	C2D baseline	73.1	91.0
R101	I3D	74.4	91.1
	NL I3D	76.0	92.1

(f) **Non-local 3D ConvNet**: 5 non-local blocks are added on top of our best I3D models. These results show that non-local operations are complementary to 3D convolutions.

model	backbone	modality	top-1 val	top-5 val	top-1 test	top-5 test	avg test†
I3D in [7]	Inception	RGB	72.1	90.3	71.1	89.3	80.2
2-Stream I3D in [7]	Inception	RGB + flow	75.7	92.0	74.2	91.3	82.8
RGB baseline in [3]	Inception-ResNet-v2	RGB	73.0	90.9	-	-	-
3-stream late fusion [3]	Inception-ResNet-v2	RGB + flow + audio	74.9	91.6	-	-	-
3-stream LSTM [3]	Inception-ResNet-v2	RGB + flow + audio	77.1	93.2	-	-	-
3-stream SATT [3]	Inception-ResNet-v2	RGB + flow + audio	77.7	93.2	-	-	-
NL 12D [ours]	ResNet-50	RGB	76.5	92.6	-	-	-
NL I3D [ours]	ResNet-101	RGB	77.7	93.3	-	-	83.8

Table 3. Comparisons with state-of-the-art results in **Kinetics**, reported on the val and test sets. We include the Kinetics 2017 competition winner's results [3], but their best results exploited audio signals (marked in gray) so were not vision-only solutions. †: "avg" is the average of top-1 and top-5 accuracy; individual top-1 or top-5 numbers are not available from the test server at the time of submitting this manuscript.

method		AP ^{box}	AP_{50}^{box}	$\mathrm{AP^{box}_{75}}$	AP ^{mask}	AP_{50}^{mask}	AP_{75}^{mask}
R50	baseline	38.0	59.6	41.0	34.6	56.4	36.5
	+1 NL	39.0	61.1	41.9	35.5	58.0	37.4
R101	baseline	39.5	61.4	42.9	36.0	58.1	38.3
K101	+1 NL	40.8	63.1	44.5	37.1	59.9	39.2
X152	baseline	44.1	66.4	48.4	39.7	63.2	42.2
A132	+1 NL	45.0	67.8	48.9	40.3	64.4	42.8

Table 5. Adding 1 non-local block to Mask R-CNN for COCO **object detection** and **instance segmentation**. The backbone is ResNet-50/101 or ResNeXt-152 [53], both with FPN [32].

model	AP^{kp}	$\mathrm{AP}^{\mathrm{kp}}_{50}$	$\mathrm{AP}^{\mathrm{kp}}_{75}$
R101 baseline	65.1	86.8	70.4
NL, +4 in head	66.0	87.1	71.7
NL, +4 in head, +1 in backbone	66.5	87.3	72.8

Table 6. Adding non-local blocks to Mask R-CNN for COCO **keypoint detection**. The backbone is ResNet-101 with FPN [32].

Summary

- The authors presented a new class of neural networks which capture long-range dependencies via non-local operations
- The non-local blocks can be combined with any existing architectures.
- A simple addition of non-local blocks provides solid improvement over baselines.