

Satellite Lab1

Group6: Zhengyang Hua, Xipeng Li, Yushuo Feng

December 9, 2023

Contents

1	Introduction						
2	Data Description						
	2.1 ITRF2008 IGS station						
	2.2 Station GPS Obversations						
	2.3 NUVEL 1A Model						
	2.4 Other data						
	2.5 Matlab Code						
3	Methodology						
	3.1 Transoformation to LHS						
	3.2 Least Square Adjustment for Parameters Estimation						
	3.3 Model of Plate Tectonics						
	3.4 Program Description						
4	Results and Analysis						
	4.1 Time Series, Linear Trend and Residuals						
	4.2 Comparison with the Plate Tectonics Model						
	4.3 Comparison of vertical movements						
5	Conclusion						

1 Introduction

This lab focuses on the geometry and kinematics of the polar region. And our group use the IGS products(station positions) to estimate the time series, horizontal and vertical velocities of three stations: KIRU, MORP, and REYK, whose locations are shown in the following figure: In the final part, we compare these result with the plate tectonics model NUVEL 1A and GIA models.

2 Data Description

2.1 ITRF2008 IGS station

The ITRF is The International Reference Frame, and ITRF2008 is a realization of the International Terrestrial Reference System that uses as input data time series of station positions and EOPs provided by the Technique Centers of the four space geodetic techniques (GPS, VLBI, SLR, DORIS).

Figure 1: Station Positions

In the file "ITRF2008_GNSS.SSC.txt", we can find the coordinates of different stations at epoch 2005.0. and Time is given as the yyyy.yyyy format, which is the number of decimal years:

	Station	Station pos	ition			Tir	ne state
DOMES NB. SITE NAME	TECH. ID. X	:/Vx Y/Vy m/m/y	Z/Vz	Sigmas	SOLN DATA	_START DA	ra_end
10001S006 Paris Gf	NSS OPMT 420277	7.371 171367.9	99 4778660	0.203 0.001 0	.001 0.001		
10001S006	0125 0	.0178 0.0107	.0001 .0000	.0001			
10002M006 Grasse (OCA)	GNSS GRAS 458	31690.901 5561	14.831 438	9360.793 0.0	01 0.001 0.001	1 00:000:00	0000 03:113:00000
10002M006	0133	0.0188 0.012	0.0001 .000	00 .0001			
10002M006 Grasse (OCA)	GNSS GRAS 458	31690.900 5561	14.837 438	9360.793 0.0	01 0.001 0.001	2 03:113:00	000 04:295:43200
10002M006	0133	0.0188 0.012	0.0001 .000	00 .0001			
10002M006 Grasse (OCA)	GNSS GRAS 458	31690.900 5561	14.836 438	9360.797 0.0	01 0.001 0.001	3 04:295:43	200 00:000:00000
10002M006	0133	0.0188 0.012	0.0001 .000	00 .0001			
10003M004 Toulouse	GNSS TOUL 4627				1 0.001 0.001		
10003M004			1 .0001 .000				
10003M009 Toulouse	GNSS TLSE 46278				0.001 0.001	00:000:0000	0 03:335:00000
10003M009			1 .0001 .000				
10003M009 Toulouse	GNSS TLSE 46278				0.001 0.001	2 03:335:0000	00:000:00000
10003M009	0114	0.0193 0.012	1 .0001 .000	00 .0001			

Figure 2: ITRF2008 GNSS.ssc.txt Description

2.2 Station GPS Obversations

We were responsible for the computation of the positions and movements of three measurement stations: KIRU, MORP, and REYK. The locations are illustrated in the following figure:

An example of the observation file for each data set is provided below, including two time formats and XYZ coordinates.

And the file Discontinuities_snx provides the discontinuity information in the positions' time series. The reasons for that include change of antenna and receiver, earthquake and so on. In this example(station: REYK), the discontinuity happened three times due to earthquake, antenna change and unknown reason.

2.3 NUVEL 1A Model

NUVEL(Northeast University Velocity) is a the collective term for geophysical Earth models that describes observable continental movements through a dynamic theory of plaet tectonics.


```
MJD
                                                                                                                                                                                           Coordinates (x,y,z)
KIRU A
KIRU A
KIRU A
                                             49366.12486 0731 5 (2251420958405605E+7 .86281710792228591E+6 .58854765731352381E+7 ).4546590E-2 .3153733E-2 .8558948E-2 49372.49986 0732 4 .22514209625573754E+7 .86281710931147402E+6 .58854765783153027E+7 .4445152E-2 .3220038E-2 .744025E-2 49379.49986 0733 4 .22514209610558231E+7 .86281710966029135E+6 .58854765743633714E+7 .3647180E-2 .2867647E-2 .6408686E-2
 KIRU A
                                              49386.49986 0734 4 .22514209588548429E+7 .86281710788470914E+6 .58854765686460575E+7 .5082105E-2 .4125389E-2 .6495703E-2
                                             43393,24986 0735 4. 22514209576969156E+7. 86281710557302972E+6. 5885476569863928E+7. 4235104E-2. 3361212E-2. 5809427E-2. 49407.4986 0737 4. 22514209576969156E+7. 86281710531363264E+6. 58854765698663928E+7. 4235104E-2. 3361212E-2. 5809427E-2. 49407.49986 0737 4. 2251420954383213E+7. 86281710564680735E+6. 58854765704803048E+7. 4650871E-2. 3912282E-2. 6691448E-2
  KIRU A
KIRU A
KIRU A
                                             4941.4.9986 0738 4 .22514209554168875E+7 .86281710892977635E+6 .58854765673357984E+7 .3256841E-2 .2874934E-2 .5449907E-2 .49421.49986 0739 4 .225142096359631E+7 .86281710437103314E+6 .58854765726452796E+7 .6094717E-2 .5145147E-2 .7171221E-2 .49428.49986 0740 4 .22514209674105954E+7 .86281711367467372E+6 .58854765726432796E+7 .6094717E-2 .5191708E-2 .9945787E-2 .5913708E-2 .9945787E-2 .5913708E-2 .9945787E-2 .5913708E-2 .59
 KIRU A
KIRU A
KIRU A
KIRU A
 KIRU A
                                              49442.49986 0742 4 .22514209645643337E+7 .86281711846710742E+6 .58854765758999716E+7 .3923771E-2 .3339545E-2 .5824893E-2
KIRU A
KIRU A
KIRU A
                                             49449,49986 0743 4. 22514209587599267E+7.86281711157962470E+6.58854765782895284E+7.3788400E-2.3217135E-2.5796049E-2.49456.62486 0744 4.22514209637514777E+7.86281711424310168E+6.58854765822355244E+7.4633061E-2.3850479E-2.6923458E-2.
                                              49463.49986 0745 4 .22514209604567364E+7 .86281711332197592E+6 .58854765825606706E+7 .4195015E-2 .3593613E-2 .5366438E-2
                                             49470,49986 0746 4 .22514209616745543E+7 .86281711298889748E+6 .58854765863939598E+7 .4262998E-2 .3515094E-2 .6085852E-2
```

Figure 3: station.xyz Description

```
1 P 00:000:00000 00:000:00000 V
         1 P 00:000:00000 00:169:56460 P - Earthquake
REYK A
         3 P 00:173:03120 03:117:00000 P -
                                          Unknown
REYK A
         4 P 08:073:00000 00:000:00000 P
         5 P 03:117:00000 08:073:00000 P - Antenna Change
REYK A
REYK A
         1 P 00:000:00000 00:000:00000 V
         1 P 00:170:00000 00:000:00000 P -
         2 P 00:000:00000 00:170:00000 P - Unknown
REYZ A
REYZ A
         1 P 00:000:00000 00:000:00000 V -
```

Figure 4: Discontinuities in time series

The "NNR_NUVEL1A.txt" gives the rotation referred to epoch t_0 . The file contains the following data, where the leftmost column represents the station name, and in that row, the angular velocity changes in three directions are provided (unit: radians per million years or rad/My).

2.4 Other data

coast30.mat: coast lines for visualization crust_ICE4G.mat, crust_ICE5G.mat: Global grids with vertical crustal deformations rates [mm/year]. These matrices are given from 89.5° to -89.5° ellipsoidal latitude and 0.5° to 359.5° longitude.

2.5 Matlab Code

3 Methodology

3.1 Transoformation to LHS

[Geocentric cartesian coordinate system] is a three-dimensional, earth-centered reference system in which locations are identified by their x, y, and z values. The x-axis is in the equatorial plane and intersects the prime meridian (usually Greenwich). The y-axis is also in the equatorial plane; it lies at right angles to the x-axis and intersects the 90-degree meridian. The z-axis coincides with the polar axis and is positive toward the north pole. The origin is located at the center of the sphere or spheroid.

[Local horizontal system] uses the Cartesian coordinates(East,Nort,Up) to represent position relative to a local origin. The local origin is described by the geodetic coordinates.

Plate name	Wx (rad/Ma)	Wy (rad/Ma)	Wz (rad/Ma)
Pacific	-0.001510 0.004840	-0.009970	
Cocos	-0.010425 -0.021605	0.010925	
Nazca	-0.001532 -0.008577	0.009609	
Caribbean -0.000178	-0.003385 0.001581		
South America	-0.001038 -0.001515	-0.000870	
Antarctica -0.000821	-0.001701 0.003706		
Inida	0.006670 0.000040	0.006790	
Australia 0.007839	0.005124 0.006282		
Africa	0.000891 -0.003099	0.003922	
Arabia	0.006685 -0.000521	0.006760	
Eurasia	-0.000981 -0.002395	0.003153	
North America	0.005200 -0.003599	-0.000153	
Juan de Fuca	0.005200 0.008610	-0.005820	
Philippine 0.010090	-0.007160 -0.009670		
Rivera	-0.009390 -0.030960	0.012050	
Scotia	-0.000410 -0.002660	-0.001270	
1			

Figure 5: NUVEL_1A.txt Description

The initial coordinates are in the geocentric Cartesian coordinate system and need to be transformed into representation in the local horizontal coordinate system. In this project, we use two angles and the ITRF2008 point positions as the original point,

Figure 6: Coordinates Transformation

Calculate the angle according to stations' geodetic coordinates:

$$\lambda = \arctan \frac{y}{x}$$

$$\varphi = \arctan \frac{2}{\sqrt{x^2 + y^2}}$$

Then we can get the rotation matrix:

$$R_2(\delta) = \begin{pmatrix} \cos \delta & 0 & -\sin \delta \\ 0 & 1 & 0 \\ \sin \delta & 0 & \cos \delta \end{pmatrix} \quad R_3(\delta) = \begin{pmatrix} \cos \delta & \sin \delta & 0 \\ -\sin \delta & \cos \delta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Transformation of coordinates:

$$\begin{pmatrix} x_{up} \\ x_{east} \\ x_{north} \end{pmatrix} = R_2(-\varphi^0)R_3(\lambda^0) \begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} - \begin{pmatrix} x_1^0 \\ x_2^0 \\ x_3^0 \end{pmatrix} \end{pmatrix}$$

 x^0 are the stations' geodetic coordinates, and x is observations in file '.xyz'. Notice that we also can directly use the longitude and latitude of stations provided in the file "Discontinuities" CONFIRMED.snx".

In terms of velocity, its transformation into LHS only requires multiplication by a rotation matrix.

3.2 Least Square Adjustment for Parameters Estimation

For time series,

$$y(t) = \beta_1 + \beta_2 t + \beta_3 \cos \omega t + \beta_4 \sin \omega t$$

among which β_3 and β_4 are total amplitude of annual, and β_2 is linear trend; so we can build model like:

$$\begin{pmatrix} y(t_1) \\ \vdots \\ y(t_n) \end{pmatrix} = \begin{pmatrix} 1 & t_1 & \cos \omega t_1 & \sin \omega t_1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & t_n & \cos \omega t_n & \sin \omega t_n \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix}$$

We can simppfit the model like:

$$Y = X\beta + \varepsilon$$

where Y is the observations, X is the design matrix, β is the parameters, and ε is the noise.

According to least square, minimize the noise, derivative the square of noise and set it to zero so we get:

$$\beta = (X^T X)^{-1} X^T Y$$

through this we can get the estimated parameters.

3.3 Model of Plate Tectonics

The movement of any plate on a spherical Earth can be described through a rotation around the Euler pole:

$$\underline{\Omega} = (\Omega_1, \Omega_2, \Omega_3)^T$$

In point $\underline{x}_0 = (x, y, z)^T$ the velocity vector v is obtained by:

$$\underline{v} = \underline{\Omega} \times \underline{x}_0 = \begin{pmatrix} 0 & -\Omega_z & \Omega_y \\ \Omega_z & 0 & -\Omega_x \\ -\Omega_y & \Omega_x & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

3.4 Program Description

4 Results and Analysis

4.1 Time Series, Linear Trend and Residuals

Through the least square adjustment, out group get the time series of these three stations as shown below:

Figure 7: Time Series of KIRU/(meter)

Figure 8: Time Series of MORP(meter)

Figure 9: Time Series of REYK(meter)

And we can see that the linear trend (millimeter per year) of KIRU in Up, East and North directions are 7.3089, 15.5296 and 14.8375 respectively, that of MORP in Up, East and North directions are 0.4201, 15.5923 and 15.9229 respectively.

Table 1: Linear Trend of Time Series

Station	$Linear\ Trend(mm/y)$			
	UP	EAST	NORTH	
KIRU	7.3089	15.5296	14.8375	
MORP	0.4201	15.5923	15.9229	
REYK				

After we minus the linear trend, out group get the residual time series of these three stations as below and the specific vaules are shown in the table 1. At the same time, table 2 shows the total amplitude of non-linear trend (millimeter per year) which can be computed by $\sqrt{\beta_3^2 + \beta_4^2}$.

When we removing the linear trend, our group also remove the constant term in the model($\beta_1 + \beta_2 t$), so that we can see more clearly about the residual values. After doing this, we can see residual value in millimeter in three directions of three stations.

Figure 10: Residual Time Series of KIRU

Figure 11: Residual Time Series of MORP

Plate name	Wx (rad/Ma)	Wy (rad/Ma)	Wz (rad/Ma)
Pacific	-0.001510 0.004840	-0.009970	
Cocos	-0.010425 -0.021605	0.010925	
Nazca	-0.001532 -0.008577	0.009609	
Caribbean - 0.000178			
South America	-0.001038 -0.001515	-0.000870	
Antarctica -0.000821	-0.001701 0.003706		
Inida	0.006670 0.000040	0.006790	
Australia 0.007839	0.005124 0.006282		
	0.000891 -0.003099		
Arabia	0.006685 -0.000521	0.006760	
Eurasia	-0.000981 -0.002395	0.003153	
North America	0.005200 -0.003599	-0.000153	
Juan de Fuca	0.005200 0.008610	-0.005820	
Philippine 0.010090	-0.007160 -0.009670		
Rivera	-0.009390 -0.030960	0.012050	
Scotia	-0.000410 -0.002660	-0.001270	

Figure 12: Residual Time Series of REYK

And obvisously, the residual values of UP direction are much larger than the other two directions, which also are predominant in total residual values.

4.2 Comparison with the Plate Tectonics Model

Through the NUVEL 1A model, we can get the velocity of three stations, for this model only consider the horizontal movements, so our group only compare the velocity in East and North directions. And the comparison is shown below:

Figure 13: Velocity of KIRU

Figure 14: Velocity of MORP

Plate name	Wx (rad/Ma)	Wy (rad/Ma)	Wz (rad/Ma)
Pacific	-0.001510 0.004840	-0.009970	
Cocos	-0.010425 -0.021605	0.010925	
Nazca	-0.001532 -0.008577	0.009609	
Caribbean - 0.000178	-0.003385 0.001581		
South America	-0.001038 -0.001515	-0.000870	
Antarctica -0.000821	-0.001701 0.003706		
Inida	0.006670 0.000040	0.006790	
Australia 0.007839	0.005124 0.006282		
Africa	0.000891 -0.003099		
Arabia	0.006685 -0.000521	0.006760	
Eurasia	-0.000981 -0.002395	0.003153	
North America	0.005200 -0.003599	-0.000153	
Juan de Fuca	0.005200 0.008610	-0.005820	
Philippine 0.010090	-0.007160 -0.009670		
Rivera	-0.009390 -0.030960	0.012050	
Scotia	-0.000410 -0.002660	-0.001270	

Figure 15: Velocity of REYK

- 4.3 Comparison of vertical movements
- 5 Conclusion