

Faculty Of Sciences

Dynamical analysis of a dark-matter halo and galaxies in cosmological, hydrodynamical simulations.

Boateng Christopher, Verheecke Jitske

Master of Science in Physics and Astronomy

Department of Physics and Astronomy - WE05 October 2025

Contents

1	Introduction	1
	1.1 Cosmology	
	1.1.1 Cosmological parameters	
	1.1.2 Unit system	1
2	Methodology	2
3	Results and Discussion	3
4	Conclusion	4
A	Appendix A.0.1 Scripts	5

Dynamical analysis of a dark-matter halo and galaxies in cosmological, hydrodynamical simulations.

Boateng Christopher, Verheecke Jitske

Abstract

Keywords:

Chapter 1

Introduction

1.1 Cosmology

1.1.1 Cosmological parameters

$$1 + z = \frac{1}{a} \tag{1.1}$$

$$\Omega_m(z) = \frac{\Omega_{m,0}(1+z)^3}{\Omega_{m,0}(1+z)^3 + \Omega_{\Lambda,0}}$$
(1.2)

1.1.2 Unit system

$$kpc, M_{\odot}, Gyr$$
 (1.3)

A general function can be expanded in spherical harmonics as

$$f(\mathbf{r}) = f(r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{lm}(r) Y_{lm}(\theta, \phi)$$

$$\tag{1.4}$$

The coefficients are given by

$$f_{lm}(r) = \int Y_{lm}^*(\theta, \phi) f(r, \theta, \phi) d\Omega$$
 (1.5)

where $d\Omega = \sin\theta d\theta d\phi$ is the solid angle element following the orthonormality relation of the spherical basis functions. For a fully spherically symmetric system, only the monopole term in the expansion survives, i.e. l = 0, m = 0.

For a discrete sampling of the underlying function, the above expression amounts to a summation over all particles in a shell of radius r_i .

$$f_{lm}(r_j) = \sum_{i} Y_{lm}^*(\theta_i, \phi_i) f(r_i, \theta_i, \phi_i)$$
(1.6)

For a discrete distribution of particles, with $\rho(\mathbf{r}_j) = \sum_i \delta(\mathbf{r}_j - \mathbf{r}_i)$, the coefficients can be expressed as

$$\rho_{lm}(r_j) = \int Y_{lm}^*(\theta, \phi) \rho(r_j, \theta, \phi) d\Omega$$
(1.7)

Chapter 2 Methodology

Chapter 3

Results and Discussion

Chapter 4

Conclusion

Appendix A Appendix

A.0.1 Scripts

Bibliography