

The Annals of Applied Statistics
 2008, Vol. 2, No. 1, 432–433
 DOI: 10.1214/07-AOAS154
 © Institute of Mathematical Statistics, 2008

RESPONSE TO THE LETTER TO THE EDITOR

BY CLIFFORD SPIEGELMAN, S. J. SHEATHER, W. A. TOBIN,
 W. D. JAMES, S. WEXLER AND D. M. ROUNDHILL

*Texas A&M University, Texas A&M University, Forensic Engineering
 International, Texas A&M University, Hightstown High School
 and Chem Consulting*

This paper has attracted interest around the world from the media (both TV and newspapers). In addition, we have received letters, emails and telephone calls. One of our favorites was a voicemail message asking us to return a call to Australia at which point we would learn who really killed JFK.

We welcome the opportunity to respond to the letter to the editor from Mr. Fiorentino.

Mr. Fiorentino claims that our “statement relating to the likelihood of a second assassin based on the premise of three or more separate bullets is demonstrably false.” In response we would like to simply quote from page 327 of Gerald Posner’s book *Case Closed*, one of the most well known works supporting the single assassin theory: “If Connally was hit by another bullet, it had to be fired from a second shooter, since the Warren Commission’s own reconstructions showed that Oswald could not have operated the bolt and refired in 1.4 seconds.”

Mr. Fiorentino also claims that the “second fatal flaw is the use of a rather uncomplicated formula based on Bayes Theorem.” Let E denote the evidence and T denote the theory that there were just two bullets (and hence a single shooter). We used Bayes Theorem to hypothetically calculate $P(T|E)$ from $P(E|T)$ and the prior probability $P(T)$. In order to make $P(T|E)$ ten times more likely than $P(\bar{T}|E)$, the ratio of the prior probabilities [i.e., $P(T)/P(\bar{T})$] would have to be greater than 15. Thus, we again conclude that this casts serious doubt on Dr. Guinn’s conclusion that the evidence supported just two bullets. Sadly, this is far from the first time that probability has been misunderstood and/or misapplied in a case of public interest. A notable British example is the Clark case. See Nobles and Schiff (2005) for details.

Received November 2007.

This is an electronic reprint of the original article published by the Institute of Mathematical Statistics in *The Annals of Applied Statistics*, 2008, Vol. 2, No. 1, 432–433. This reprint differs from the original in pagination and typographic detail.

Finally, we welcome and, in fact, encourage members of the scientific community to provide alternative analyses of the data.

REFERENCE

NOBLES, R. and SCHIFF, D. (2005). Misleading statistics within criminal trials: The Sally Clark case. *Significance* **2** 17–19. [MR2224077](#)

C. SPIEGELMAN
S. J. SHEATHER
DEPARTMENT OF STATISTICS
TEXAS A&M UNIVERSITY
3143 TAMU
COLLEGE STATION, TEXAS 77843-3143
USA
E-MAIL: cliff@stat.tamu.edu

W. D. JAMES
CENTER FOR CHEMICAL CHARACTERIZATION
AND ANALYSIS
TEXAS A&M UNIVERSITY
3144 TAMU
COLLEGE STATION, TEXAS 77843-3144
USA

W. A. TOBIN
FORENSIC ENGINEERING INTERNATIONAL
2708 LITTLE GUNSTOCK RD.
LAKE ANNA, VIRGINIA 23024-8882
USA

S. WEXLER
HUMANITIES AND ADVANCED
PLACEMENT GOVERNMENT
HIGHTSTOWN HIGH SCHOOL
25 LESHIN LANE
HIGHTSTOWN, NEW JERSEY 08520
USA

D. M. ROUNDHILL
CHEM CONSULTING
13325 BLACK CANYON DRIVE
AUSTIN, TEXAS 78729
USA