DISTRIBUTED SEARCH, BUT FAST

SEARCHER
CENTRIC
SEARCH

INONE

SPARQL QUERY

I WANT TO SEARCH

ALL DATA IN EXISTENCE

TO WHICH I HAVE BEEN

GRANTED ACCESS

- 1. "enable large-scale data search across Solid pods"
- 2. "respecting individuals' data sovereignty, considering individuals' different access rights and caching needs"

- 3. Keep the average query as fast as possible (under 5000 milliseconds)
- 4. Request count and duration remains constant as Pod quantity increases
- 5. Offload search compute from the data owner

KEEP THE
AVERAGE QUERY
AS FAST AS
POSSIBLE
(UNDER 5000
MILLISECONDS)

VS

	< 300 ms	User feels like they are in a closed-loop system; as if they are in direct control.					
nmediate		User feels like they are in a closed-loop system; as if they are in direct control.					
	300 ms - 1 sec	Processes perceived by user as easy to perform.					
ransient	1 sec – 5 sec	Perceived by user as requiring some simple processing but user feels that they are making continuous progress (appropriate feedback required). It is unlikely a user would disengage from task flow.					
ttention Span	5 sec – 10 sec	Perceived by users as requiring more processing/wait time but user needs useful and informative feedback to stay closely engaged.					
on-attentive	10 sec – 5 min	Perceived by users as requiring more complex processing. Users would be likely to disengage and multi-task during this process. Feedback of progress is necessary.					
/alk-away	> 5 min	Perceived by users as requiring intensive processing. Users would not stay engage with this task. Feedback of progress is necessary.					
[(ttention Span on-attentive	ttention Span 5 sec – 10 sec on-attentive 10 sec – 5 min					

	Datase	t-1	1pod/server						24 pods total						
			Zipf			Uniform			Zipf			Uniform			
		N/A			Largest index			Largest index			Largest index				
			14/1		1	76.8		.8 MB		$21.5~\mathrm{MB}$			3.5 MB		
S	Kwd	\mathbf{Res}	ST	RT	TT	ST	RT	TT	ST	RT	TT	ST	RT	TT	
	Kwd1	100				9898	28	9926	8964	25	8989	9045	26	9071	
	Kwd2	12				9372	19	9390	7562	21	7583	6026	17	6043	
1	Kwd3	1		N/A	1	9463	17	9480	5431	17	5448	4468	16	4483	
		Larg	est	index	Larg	est	index	Larg	est	index	Larg	est	index		
			34.1 MB		14.5 MB		21.5 MB			3.5 MB					
	Kwd1	100	4132	20	4152	3957	89	4047	4726	20	4746	5363	47	5410	
	Kwd2	12	3928	16	3944	3087	61	3147	4277	15	4291	2780	34	2813	
6	Kwd3	1	3988	16	4004	1883	39	1921	3482	16	3498	1911	40	1951	

"...requires loading index files into memory to run SPARQL queries on them"

AVOID NETWORK REQUESTS LIKE THE PLAGUE. CO-LOCATE INDEXES AND SEARCH COMPUTE.

. .

"We believe that implementing a <u>server-side querying</u> paradigm will significantly enhance search component performance"

REQUEST COUNT
AND DURATION

REMAINS

CONSTANT AS
POD QUANTITY
INCREASES

SEARCH IN AN ECOSYSTEM WITH TWO POD PROVIDERS SHOULD BE ROUGHLY THE SAME AS SEARCH IN AN ECOSYSTEM WITH MILLIONS OF POD PROVIDERS

. .

OFFLOAD
SEARCH
COMPUTE FROM
THE DATA
OWNER

www.shutterstock.com - 66041614

FROM "TRIPLE PATTERN FRAGMENTS: A LOW-COST KNOWLEDGE GRAPH INTERFACE FOR THE WEB"

- "The processing of individual requests is potentially very expensive"
- "the evaluation problem for SPARQL is <u>PSPACE-complete</u>"
- "The majority of public SPARQL endpoints had an <u>uptime of less than 95%</u>"

Source: https://linkeddatafragments.org/publications/jws2016.pdf

THE POD SHOULD <u>NOT</u>
BE THE THING THAT
PERFORMS SEARCH

. .

Source: https://linkeddatafragments.org/publications/jws2016.pdf

KEEP THE AVERAGE OFFLOAD SEARCH QUERY AS <u>FAST AS</u> COMPUTE FROM POSSIBLE (UNDER FROM THE DATA 1000 MILLISECONDS) OWNER **Linked Data** data triple pattern **SPAROL** fragments document result dump more generic requests more specific requests higher client cost various types of lower client cost **Linked Data Fragments** lower server cost higher server cost

Source: https://linkeddatafragments.org/publications/jws2016.pdf

SOLUTION: SEARCHER CENTRIC SEARCH

PRIVATE INDEX

PUBLIC INDEX

PRIVATE INDEX

Read Access Granted

Notification

My Private Index

PRIVATE INDEX

ENABLE LARGE-SCALE DATA SEARCH ACROSS SOLID PODS

PRIVATE INDEX

RESPECTING INDIVIDUALS' DATA SOVEREIGNTY, CONSIDERING INDIVIDUALS' DIFFERENT ACCESS RIGHTS AND CACHING NEEDS

Read Access Granted

Read Access Granted

PRIVATE

KEEP THE AVERAGE QUERY AS FAST AS POSSIBLE (UNDER 5000 MILLISECONDS)

PRIVATE

REQUEST COUNT AND DURATION REMAINS CONSTANT AS POD QUANTITY INCREASES

PRIVATE

OFFLOAD SEARCH COMPUTE FROM THE DATA OWNER

P U B L I C I N D E X

Centralized Public Index B

Pod B

<L><M><N>

PUBLIC INDEX

Centralized Public Index B

<L><M><N>

PUBLIC INDEX

Centralized

(Private or Government Owned)

Collectively Owned

PUBLIC INDEX

ENABLE LARGE-SCALE DATA SEARCH ACROSS SOLID PODS

RESPECTING INDIVIDUALS' DATA
SOVEREIGNTY, CONSIDERING INDIVIDUALS'
DIFFERENT ACCESS RIGHTS AND CACHING
NEEDS

KEEP THE AVERAGE QUERY AS FAST AS POSSIBLE (UNDER 5000 MILLISECONDS)

REQUEST COUNT AND DURATION REMAINS CONSTANT AS POD QUANTITY INCREASES

OFFLOAD SEARCH COMPUTE FROM THE DATA OWNER

CLIENT

PRIVATE INDEX

PUBLIC INDEX

Source: https://linkeddatafragments.org/publications/jws2016.pdf

LOAD THE INDEX...

- X DURING SEARCH
- WHEN DATA IS UPDATED

<u>DRAWBACKS</u>

THAT'S A LOT OF DUPLICATION

THE SEARCH INDEX MAY NOT WORK FOR REAL-TIME DATA

AN INDEX COULD GET OVERLOADED WITH UPDATES/SPAM

DOESN'T RESPECT CACHING PREFERENCES

Cached Data

DOESN'T RESPECT CACHING PREFERENCES

SEARCHER CENTRIC
SEARCH ISN'T THE ONLY
SOLUTION, BUT IT
SHOULD BE THE PRIMARY
SOLUTION

THERE'S NO WAY FOR YOU TO CONTACT ME

jackson@o.team