Algoritmos e Estrutura de Dados I Métodos de Ordenação

Michel Pires da Silva michel@cefetmg.br

Departamento de Computação DECOM-DV

Centro Federal de Educação Tecnológica de Minas Gerais CEFET-MG

Sumário

- Métodos de Ordenação
 - Contextualização
 - Método Bubble Sort
 - Método Selection Sort
 - Método Insertion Sort
 - Método Shell Sort
 - Método Merge Sort
 - Método Quick Sort
 - Método Heap Sort
 - Método Radix Sort
- Observações Gerais

<u>Ordenar:</u> Processo aplicado a um conjunto de dados objetivando organiza-lo de forma ascendente ou descentente.

• Dicionários, Catálogo Telefônico, etc ...

A ordenação pode facilitar várias operações com conjuntos:

- Buscar um elemento em particular (busca binária, linear, etc.)
- Computar a quantidade de um certo objeto no conjunto ©
- Ampliar a visão externa aos dados contídos no conjunto
- etc ...

Formalizando

Dado um conjunto de n elementos $E = \langle e_1, e_2, \dots, e_n \rangle$, a ordenação busca produzir um novo conjunto E' na forma $\langle e'_1, e'_2, \dots, e'_n \rangle$, tal que, $e'_1 \leq e'_2 \leq \dots \leq e'_n$ ou $e'_1 \geq e'_2 \geq \dots \geq e'_n$.

O que ordenar?

Na prática, os valores a serem ordenados raramente são valores isolados.
 Em geral, sempre se apresentam como registros cujo conteúdo possui, dentre seus itens, um valor único, comumente chamado de chave.

Exemplos ...

CPF, RG, RA ...

Métodos estáveis e não estáveis

- Um método de ordenação é classificado como <u>estável</u> se a ordem dos itens com **chaves iguais**, já ordenados, não é modificada durante o processo
- Um método de ordenação é dito <u>não estável</u> quando este afeta a ordem relativa do conjunto pré ordenado. Nesse contexto, se for o caso, é preciso forçar sua estabilidade.

Tipos de Ordenação

- Ordenação interna: Aplicado quando é possível colocar o conjunto de dados por completo na memória principal.
- Ordenação parcial / externa: Aplicado quando o conjunto de dados a ser ordenado não pode ser armazenado por completo em memória devido a seu tamanho.

Diferença ...

Na ordenação interna, o objetivo é ter acesso direto a qualquer dado do conjunto, ao contrário, na externa ou parcial tem-se acesso somente a partes (blocos) ou linha a linha em forma sequencial.

Observação: Um método de ordenação pode apresentar o princípio de ordenação por comparação ou distribuição

- Comparação: Método mais conhecido, em que um conjunto de dados é organizado utilizando-se comparações de chaves.
- Distribuição: Método que leva em consideração a existência de um conjunto pré definido de variáveis e que é de conhecimento prévio os valores existentes. Ex.: as 52 cartas de um baralho.

Como trabalha os métodos por distribuição ...

- O Distribuir as cartas em treze montes: Ases, dois, três, ..., reis.
- Oclete os montes na ordem específica
- Distribua novamente as cartas em 4 montes: paus, ouros, copas e espadas.
- Oloque os montes na ordem específica

Métodos por distribuição, exemplos ...

Ordenação Digital, Radix Sort e Bucket Sort ...

Observação 1: O maior problema dos métodos de ordenação por distribuição é compor a regra que será utilizada para organizar os diferentes montes.

Observação 2: O custo computacional associado aos métodos de ordenação por distribuição para um conjunto de dados de n elementos é, geralmente, O(n)

Pergunta: Como um método de ordenação por distribuição poderia ser aplicado em uma sala de aula para classificar os alunos?

Ordenação interna

 Quando torna-se necessário a utilização de um método de ordenação interna, atente-se ao custo computacional antes de iniciar sua implementação e aplicação no problema estudado.

Custos Associados

- Número de Comparações C(n)
- Número de Movimentações M(n)

Observação: A economia de memória interna é primordial nesse caso.

Atenção: Métodos que fazem uso de listas encadeadas não são muito utilizados para o trabalho e os que fazem cópias do conjunto não possuem importância.

Categorização dos métodos de ordenação interna:

Métodos Simples

- Adequado para pequenos conjuntos de dados
- Em sua maioria apresentam custo perto de $O(n^2)$
- Produzem programas pequenos
- Em sua maioria, são de fácil implementação

Métodos Eficientes

- Adequados para grandes conjuntos de dados
- Requerem, em sua maioria, O(nlogn) comparações
- As comparações são mais complexas a nível de detalhes
- São mais complexos de implementar e, muitas vezes, fazem uso de recursão durante o processo de ordenação.

Método de Ordenação - Bubble Sort

A classificação por bolha é um método simples de ordenação, possível de ser associado a pequenas entradas de dados.

- É um dos algoritmos mais simples encontrados na literatura
- Seus passos de execução podem ser descritos como:
 - Inicialize a execução no primeiro elemento, compare-o com os demais.
 - Troque-o, caso o i-ésimo item for menor, reposicione o ponteiro e continue comparando até o fim.
 - **3** Repita os passos 1 e 2 com os n-1 elementos, depois com $n-2, \ldots$, até que reste um único elemento.

Métodos de Ordenação - Bubble Sort

Algorithm 1: Bubble Sort: Maximum bubbles values first

```
input: n \rightarrow number of items in data vector
  input: D \rightarrow the data vector
  output: Ordered data vector
1 while n > 1 do
       Min = 1:
       for i = 2 to n do
            if D[i].value < D[Min].value then
                 /* swap method
                                                                                            */
                 aux = D[Min];
                D[Min] = D[i];
                D[i] = aux;
                 Min = i;
            end
       end
10
       n = n - 1;
12 end
```

- É um dos algoritmos mais simples encontrados na literatura
- Seus passos de execução podem ser descritos como:
 - Selecione o menor item do vetor
 - 2 Troque-o com o item da primeira posição
 - Sepita as operações dos itens 1 e 2 com os n-1 elementos, depois com $n-2, \ldots$, até que reste um único elemento

	1	2	3	4	5	6
Chaves iniciais:	0	R	D	E	N	\boldsymbol{A}
i = 1	A	R	D	\boldsymbol{E}	N	0
i = 2	\boldsymbol{A}	D	R	\boldsymbol{E}	N	0
i = 3	\boldsymbol{A}	D	E	R	N	0
i = 4	\boldsymbol{A}	D	\boldsymbol{E}	N	R	0
i = 5	A	D	E	N	0	R

Algorithm 2: Selection Sort

```
input : n \rightarrow number of items in data vector
  input : D \rightarrow data vector
  output: The ordered data vector
1 for i = 1 to n-1 do
       Min = i;
       for j = i + 1 to n do
            if D[i].value < D[Min].value then
                 Min = j;
            end
       end
       /* swap method
                                                                                               * /
       if i \neq Min then
            aux = D[Min];
            D[Min] = D[i];
10
            D[i] := aux;
11
       end
13 end
```

Custo computacional do método:

$$C(n) = \frac{n^2}{2} - \frac{n}{2}$$
$$M(n) = 3(n-1)$$

Observação

Segundo Knuth(1973, exercícios 5.2.3.3-6), o comando de atribuição Min := j é executado aproximadamente nlogn vezes.

Vantagens

- Apresenta custo linear no tamanho da entrada para o número de movimentos entre registros
- É um bom algoritmo para ser utilizado para conjuntos de dados que apresentam regitros muito grandes
- É muito interessante para arquivos pequenos

Desvantagens

- O fato de o conjunto de dados estar ordenado não ajuda em nada, pois o custo ainda está em $O(n^2)$
- O algoritmo não é estável

Implemente os métodos de ordenação Bubble Sort e Selection Sort e execute esses para os seguintes problemas.

- Considere um vetor linear de 15 posições, cada uma com um número inteiro aleatório. Quais seriam os passos do método para ordenar crescentemente esse vetor?
- Aproveite as exemplificações realizadas para discutir o que muda de um método para outro. Algum deles executa mais operações ou aparenta ser mais rápido visualmente? Por quê?
- Faça adaptações em ambos os métodos para receber uma lista simplesmente encadeada dinâmica, a qual deve ser ordenada utilizando-se apenas movimentação de ponteiros e não de conteúdo.

 Algoritmo preferido dos jogadores de carta. A ideia básica está em ordena-las por distribuição

Em cada passo, a partir de
 i = 1 selecione o i-esimo item
 de cada sequência e coloque-o
 no lugar apropriado de acordo
 com o critério de ordenação
 adotado.

1	2	3	4	5	6
0	R	D	E	N	\boldsymbol{A}
0	R	D	\boldsymbol{E}	N	\boldsymbol{A}
D	0	R	\boldsymbol{E}	N	\boldsymbol{A}
D	E	0	R	N	\boldsymbol{A}
D	E	N	0	R	\boldsymbol{A}
A	D	E	N	0	R
	O O D D	O R O R D O D E D E	O R D O R D D O R D E O D E N	O R D E O R D E D O R E D E O R D E N O	D O R E N D E O R N D E N O R

Algorithm 3: Insertion Sort

```
input: n \rightarrow number of items in data vector
  input : D \rightarrow data vector
  output: The ordered data vector
1 for i = 1 to n do
       aux := D[i];
       i := i - 1;
       while j \ge 0 and aux.value < D[j].value do
            D[i+1] := D[i];
            i := i - 1;
       end
       D[i + 1] := aux;
9 end
```

Observação: Há implementações desse método que utilizam o conceito de sentinela para eliminar a necessidade de uma variável de auxílio (i.e., aux) durante a execução.

Quando que o algoritmo Insertion Sort irá parar ?

- Um valor menor que o atribuido para **aux.value** é encontrado, então o valor de teste é inserido na sua frente na sequência do vetor
- Ou, a posição sentinela é alcançada.

Observação

Note que a posição sentinela é utilizada para facilitar as condições de parada e/ou como alternativa para a variável *aux*

Custo Computacional / Análise Assintótica

melhor caso:
$$C(n) = (1 + 1 + \cdots + 1) = n - 1$$

pior caso:
$$C(n) = (2+3+\cdots+n) = \frac{n^2}{2} + \frac{n}{2} - 1$$

caso médio:
$$C(n) = \frac{1}{2}(3+4+\cdots+n+1) = \frac{n^2}{4} + \frac{3n}{4} - 1$$

Custo Computacional / Análise Assintótica

melhor caso:
$$M(n) = (3 + 3 + \cdots + 3) = 3(n-1)$$

pior caso:
$$M(n) = (4 + 5 + \dots + n + 2) = \frac{n^2}{2} + \frac{5n}{2} - 3$$

caso médio:
$$M(n) = \frac{1}{2}(5+6+\cdots+n+3) = \frac{n^2}{4} + \frac{11n}{4} - 3$$

Observações Gerais

- O número mínimo de comparações e movimentações ocorre quando os valores estão ordenados de forma crescente
- O número máximo de comparações ocorre quando os valores estão originalmente em ordem reversa
- O *Insertion Sort* é um bom método para ser aplicado a arquivos quase ordenados
- O método é uma boa opção para a inserção de poucos registros em arquivos já ordenados, apresentando nesse caso custo linear no tamanho da entrada
- O algoritmo é estável

Contextualização:

- Método proposto por Shell em 1959
- Pode ser visto como uma extensão do método de inserção Insertion Sort
- Problemas tratados se comparado com o método de Inserção:
 - Facilita a troca de itens adjacentes, identificando o ponto de inserção em saltos maiores
 - ② Evita as n − 1 comparações quando o menor item está na posição mais a direita no vetor

<u>Ideia:</u> A base do Shell Sort para contornar os problemas do método de inserção é permitir a troca de itens distantes no vetor

A ideia por trás do método

- Os itens em uma distância h são comparados e se necessário rearranjados.
- Todo *h-ésimo* item deve levar a uma sequência ordenada. Essa sequência pré-ordenada é dita *h-ordenada*

	1	2	3	4	5	6
Chaves iniciais:	0	R	D	E	N	Α
h = 4	N	\boldsymbol{A}	D	\boldsymbol{E}	0	R
h = 2	D	\boldsymbol{A}	N	$\boldsymbol{\mathit{E}}$	0	R
h = 1	A	D	E	N	0	R

Como escolher bons valores para h

Knuth, em 1973, mostrou que uma boa sequência para esse modelo de método seria:

$$h(s) = 3h(s-1) + 1 \text{ para } s > 1$$
$$h(s) = 1 \qquad \text{para } s = 1$$

Algorithm 4: Shell Sort: Based on the Knuth theory for the h variable

```
input: n \rightarrow number of items in data vector
   input : D \rightarrow data vector
   output: The ordered data vector
1 h = 1:
2 do h = 3 * h + 1; while h < n;
3 do
         h = |h \div 3|;
         for i = h to n do
              aux = D[i]:
              j = i;
              while D[j - h].value > aux.value do
                    D[i] = D[i-h];
                    j = j - h;
                    if(j \le h or j \le 0){ break; }
              end
              D[i] := aux;
         end
15 while h \neq 1:
```

- A implementação do Shell Sort **não** faz uso de posições <u>sentinelas</u>
- Seriam necessárias *h* posições <u>sentinelas</u> para que o algoritmo pudesse aplicar o mesmo conceito do Insertion Sort.
- Um outro ponto a considerar é que não se sabe ao certo qual é exatamente a eficiência desse algoritmo, pois, ninguém ainda foi capaz de analiza-lo.

Custo Computacional / Analise Assintótica

Conjectura 1:
$$C(n) = O(n^{1.25})$$

Conjectura 2:
$$C(n) = O(n(lnn)^2)$$

Vantagens

- O Shell Sort é um excelente método para arquivos de tamanho moderado
- Sua implementação é bem simples e requer uma quantidade de código relativamente pequena

Desvantagem

- O tempo de execução do algoritmo é sensível a ordem inicial do arquivo
- O método não é estável

Observações Gerais:

- Avaliamos até agora métodos que utilizam aninhamento de for e técnicas que utilizam saltos para resolver o problema da ordenação
- Os algoritmos apresentados até o momento estão definidos como sendo da ordem quadrática, ou próximos disso $O(n^2)$
- Outra característica comum é que as implementações são de fácil codificação e não fazem uso de recursos complexos da linguagem.

Contextualização

- Criado em 1945 pelo matemático John Von Neumann, o algoritmo considera:
 - Que um número menor de passos é utilizado para ordenar um subconjunto de dados
 - Que é fácil criar uma lista ordenada a partir de duas já ordenadas
- Método que faz uso de intercalações e chamadas recursivas
- Apresenta como característica a divisão e conquista¹ como meio para ordenar o conjunto de dados

¹Divide o problema em subproblemas para, só depois, resolvê-los

Passos executados pelo algoritmo:

- 1º: Verificar se não é um caso base, ou seja, os indicadores de início e fim do vetor apontam para a mesma posição. Isso nos diz que nosso conjunto só possui um elemento e que, neste caso, o vetor já se encontra ordenado
- 2º: Dividir a lista em duas sublistas de tamanho semelhante. Feito isso, chamar o algoritmo recursivamente até alcançar o caso base.
- 3°: Executar, para cada sublista obtida no 2° passo, uma ordenação e uma junção (mesclagem) com o procedimento *Merge*

Observação: O algoritmo é dividido em dois procedimento, *Merge Sort* e *Merge*

```
Algorithm 5: Merge Sort : Recursive start stage
  input: start \rightarrow start position in the data vector
  input: last \rightarrow last position in the data vector
  input : D \rightarrow data vector
  output: The ordered data vector
1 if start < last then
      middle = (start + last) \div 2;
      MergeSort(D, start, middle);
      MergeSort(D, middle + 1, last);
      Merge(D, start, middle, last);
6 end
```

Algorithm 6: Merge procedure: The second stage used to merge data vector parts

```
input : start \rightarrow start position in the data vector
  input: middle \rightarrow middle position in the data vector
  input: last \rightarrow last position in the data vector
  input : D \rightarrow data vector
  output: The ordered data vector
i = start:
i = middle + 1;
3 k = 0:
4 while i \le middle and j \le last do
       if D[i] < D[j] then
            aux[k] = D[i];
            i = i + 1:
       end
       else
            aux[k] = D[i];
            j = j + 1;
       end
       k = k + 1;
14 end
   /* Continua aqui ...
```

10

11

12

13

*/

Algorithm 7: Merge procedure: The second stage used to merge data vector parts

```
/* Continuação ...
1 while i < middle do
      aux[k] = D[i];
  k = k + 1;
   i = i + 1;
5 while j \le last do
 aux[k] = D[i];
 k = k + 1;
  j = j + 1;
9 for k = start to last do
  D[k] := aux[k - start];
  /* Fim da continuação ...
                                                                             */
```

Custo computacional / Análise Assintótica

 Por se tratar de um método recursivo, o Merge Sort nos fornece como análise uma equação de recorrência. A mesma pode ser solucionada por meio do teorema mestre.

$$T(n) = \begin{cases} \Theta(1) & n = 1 \\ 2T(\frac{n}{2}) + \Theta(n) & n > 1 \end{cases}$$

Observação

Resonvendo a equação de recorrência pelo teorema mestre tem-se que o método Merge Sort apresenta custo de O(nlogn) pelo caso 2.

Métodos de Ordenação - Quick Sort

Contextualização

- Algoritmo proposto por Sir Charles Antony Richard Hoare em 1960 e publicado em 1962 após refinamentos
- O Quick Sort é o algoritmo de ordenação interna mais rápido que se conhece para uma ampla variedade de situações

A ideia ...

A ideia básica é dividir o problema de ordenar um conjunto de n itens em dois problemas menores.

Observação

O Quick Sort não é um algoritmo de divisão e conquista, mas sim, conquista e divisão

Contextualização

- A parte mais delicada do algoritmo é o processo de particionamento
- O vetor *D*, nesse algoritmo, é rearranjado a partir da escolha de um item "arbitrário" chamado de pivô

Observação

O vetor D é particionado em dois segmentos:

- O segmento esquerdo com chaves menores ou iguais ao pivô
- O segmento direito com chaves maiores ou iguais ao pivô

O processo de ordenação

- Escolha arbitrariamente um pivô
- Percorra o vetor a partir da esquerda até que o item na posição D[i] seja maior ou igual ao pivô
- Percorra o vetor a partir da direita até que o item na posição D[j] seja menor ou igual ao pivô
- Troque as posições D[i] e D[j] encontradas nos itens 2 e 3
- Ontinue o processo até os apontadores i e j se cruzarem

A forma de execução

- O pivô é escolhido, no modelo padrão, como sendo o D[(i + j) ÷ 2]
- No exemplo ao lado, como
 i = 1 e j = 6, então o pivô
 será o elemento da posição 3
 Elemento D
- Ao termino do processo de partição, i e j se cruzam

1	2	3	4	5	6
o	R	D	Ε	N	\boldsymbol{A}
A	R	D	\boldsymbol{E}	N	0
A	D	R	\boldsymbol{E}	N	0

Algorithm 8: Quick Sort: partition stage

```
input: n \rightarrow number of items in data vector
   input : D \rightarrow data vector
   input: left \rightarrow left vector pointer
   input : right \rightarrow right vector pointer
   output: The ordered data vector
i = esq; j = dir;
2 pivo = D[(i+j) \div 2]; // Escolha do pivô
3 do
         while pivo.value > D[i].value do
              i = i + 1:
        end
        while pivo.value < D[j].value do
              j = j - 1;
        end
        if i \le j then
10
              aux = D[i]:
11
              D[i] = D[j];
              D[i] = aux;
13
              i = i + 1; j = j - 1;
        end
15
16 while i > j;
```

Algorithm 9: Quick Sort: start stage **input**: $n \rightarrow$ number of items in data vector **input** : $D \rightarrow$ data vector **input** : $left \rightarrow left$ vector pointer **input** : $right \rightarrow right$ vector pointer output: The ordered data vector 1 Partition(left, right, i, j); 2 if left < i then QuickSort(left, j); // i e j ocultados 30 e 40 parâmetros 4 end 5 if i < right then QuickSort(i, right); // i e j ocultados 3º e 4º parâmetros 7 end

Curso computacional / Análise assintótica

 O Quick Sort, em média, apresenta comportamento semelhante ao Merge Sort. Logo, apresenta custo de O(nlogn)

Pior Caso

O pior caso ocorre quando sistematicamente o pivô é escolhido como sendo um dos extremos de um arquivo já ordenado (o maior elemento do conjunto). Nesse caso o algoritmo apresenta custo quadratico $O(n^2)$

Observação

O pior caso pode ser evitado empregando pequenas modificações no algoritmo. Para isso basta escolher três itens quaisquer do vertor e usar a **mediana dos três** como pivô. Essa solução é chamada de <u>mediana de três</u>

Vantagens

- É extremante eficiente para ordenar arquivos de dados
- Necessita de apenas uma pequena pilha como memória auxiliar
- Requer cerca de *nlogn* comparações em média para ordenar *n* itens

Desvantagens

- Tem um pior caso $O(n^2)$ quando o pivô é escolhido nos extremos de um arquivo já ordenado
- Sua implementação é muito delicada e difícil. Um pequeno engano pode levar a efeitos inesperados para algumas entradas em particular
- o método não é estável

Contextualização

- Apresenta o mesmo princípio de funcionamento que o método de seleção
- No contexto do algoritmo de seleção o custo para encontrar o menor ou maior elemento é de n − 1 comparações.
- O tempo de execução do Heap Sort pode ser melhorado utilizando fila de prioridade.

Fila de prioridade

Conceito visto com frequência em sistemas operacionais:

- Para identificar o tempo que cada evento deve ocorrer.
- Para identificar em memória quando uma página deve ser substituida
- Para gerenciar processos

Utilizando Lista de Prioridades

A representação da TAD pode ser feita por meio de uma lista linear ordenada.

- Custo para construir é O(nlogn)
- Custo para inserir é O(n)
- Custo para retirar é O(1)
- Custo para unir é O(n)

A representação da TAD pode ser feita por meio de uma lista linear não ordenada

- Custo para construir é O(n)
- Custo para inserir é O(1)
- Custo para retirar é O(n)
- Custo para unir por apontador O(1) e por arranjo O(n)

Observação: A melhor forma de se representar a estrutura é utilizando-se um $\overline{\textit{Heap}}$

- Custo para construir é O(n)
- Custo para inserir é O(nlogn)
- Custo para retirar é O(nlogn)
- Custo para unir O(nlogn)

Observação

Formas mais eficiêntes podem utilizar alguns TADs sofisticados, como: Árvores Binomiais. Para mais detalhes consulte

https://www.ic.unicamp.br/~meidanis/courses/mo417/2003s1/aulas/2003-04-23.html

O que são heaps?

• É uma sequência de itens com chaves $c[1], c[2], \dots, c[n]$, tal que:

$$c[i] \ge c[2i]$$
$$c[i] \ge c[2i+1]$$

- Para todo $i = 1, 2, ..., \frac{n}{2}$
- Essa definição deixa a estrutura similar a de uma árvore binária completa.

Observações:

- Para que as chaves satisfaçam a condição do *Heap*, a chave de um nó pai deve ser maior que a chave aplicada à seus filhos.
- A chave do nó raiz, primeira posição do *Heap*, é a maior chave contida no conjunto

- Filhos de i são: 2i e 2i + 1

Observação

Um bom algoritmo para implementação de *heaps* foi apresentado em 1964 por Floyd

Processo de execução do Heap Sort

	1	2	3	4	5	6	7
Chaves iniciais:	0	R	D	\boldsymbol{E}	N	\boldsymbol{A}	S
Esq = 3							
Esq = 2	0	R	S	$\boldsymbol{\mathit{E}}$	N	\boldsymbol{A}	D
Esq = 1	S	R	0	\boldsymbol{E}	N	A	D

```
Algorithm 10: Heap Sort: Método principal, HeapSort(Dados, n)
  input : n \rightarrow number of items in data vector
  input : D \rightarrow the data vector
  output: Ordered data vector
1 left = 0; right = n;
2 while right > 1 do
     right = right - 1;
     BuildHeap(Dados, right);
     aux := Dados[0];
     Dados[0] := Dados[right];
     Dados[right] := aux;
8 end
  /* Método 2x mais lento que o Quick Sort
```

6

Procedimento que se encarrega de criar a estrutra de heap

```
Algorithm 11: Heap Sort: Método auxiliar, BuildHeap(Dados, right)
input : right → right position in the data vector
input : D → the data vector
output: Ordered data vector

1 left := right div 2;
2 while left > 0 do

3 | left = left - 1;
4 | RebuildHeap(Dados, left);
5 end
```

Algorithm 12: Heap Sort: Método auxiliar, RebuildHeap(Dados, left)

```
input: n \rightarrow number of items in data vector
  input: left \rightarrow left position in the data vector
  input : D \rightarrow the data vector
  output: Ordered data vector
1 \text{ child} = 2 * \text{left}; // \text{ Em C, left pode ser } 0
2 if child+1 \le n and Dados[child] \le Dados[child+1] then
      child = child + 1;
4 end
5 if Dados[left] < Dados[child] then
      aux = Dados[left];
      Dados[left] := Dados[child];
      Dados[child] := aux;
9 end
```

6

Métodos adicionais para tratamento da estrutura de dados *Heap*

```
Algorithm 13: Heap Sort: Método auxiliar, RemoveMaxValue(Dados, n)
  input : n \rightarrow number of items in data vector
  input : D \rightarrow the data vector
  output: The maximum item in D (removeMax)
1 if n < 0 then
      writeln('Erro: Heap vazio');
3 end
4 else
      removeMax = Dados[0];
      Dados[0] = Dados[n];
      n = n - 1;
      BuildHeap(Dados, n);
9 end
```

Vantagens:

- O comportamento do *Heap Sort* é sempre O(nlogn), qualquer que seja a entrada.
- Não utiliza memória adicional já que não faz uso de recursão

Desvantagens:

- O anel interno do algoritmo é bastante complexo se comparado com o Quick Sort
- O Heap Sort não é estável

Recomentado para?

- Aplicações que não podem tolerar um caso desfavorável e/ou exigem precaução com o gasto de memória com chamadas recursivas
- Não é recomendado para arquivos com poucos registros devido o tempo gasto na construção do Heap

Abordagem alternativa para ordenação que processa as chaves por partes

 Por exemplo, comparação realizada em um nome a partir das letras 1, 2, 3, ..., n.

Ideia

Quebrar a chave em vários pedaços

- 312 tem os dígitos 3, 1 e 2 na base 10
- 312 tem os dígitos 100111000 na base 2
- "exemplo" tem 6 caracteres na base 256

Observação: A idéia a partir da base é ordenar por meio do valor do número mais a esquerda do conjunto.

Vejamos um exemplo na base 10. Nessa base teremos dígitos de 0 a 9 para processar.

12 3	142	08 7	26 3	23 3	014	13 2

Digito	Contador
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0

1º Passo: Contabilizar quantos elementos existem de cada valor

12 3	142	08 7	26 3	23 3	014	13 2

Digito	Contador
0	0
1	0
2	2
3	3
4	1
5	0
6	0
7	1
8	0
9	0

2º Passo: Calcular a posição de cada conjunto contabilizado no vetor

12 3	142	08 7	26 3	23 3	014	13 2

Dig	С	Posicao
0	0	0
1	0	0
2	2	0
3	3	2
4	1	5
5	0	0
6	0	0
7	1	6
8	0	0
9	0	0

12 3	142	08 7	26 3	23 3	014	13 2
		12 3				

Dig	С	Posicao
0	1	0
1		0
2	2	0
3	3	3
4 5	1	5
5	0	0
6	0	0
7	1	6
8	0	0
9	0	0

12 3	142	08 7	26 3	23 3	014	13 2
142		12 3				

Dig	С	Posicao
0	0	0
1	0	0
2	2	1
3	3	3
4	1	5
5	0	0
6	0	0
7	1	6
8	0	0
9	0	0

12 3	142	08 7	26 3	23 3	014	13 2
142		12 3				08 7

Dig	С	Posicao
0	0	0
1	0	0
2	2	1
3	3	3
4	1	5
5	0	0
6	0	0
7	1	7
8	0	0
9	0	0

12 3	142	08 7	26 3	23 3	014	13 2
142		12 3	26 3			08 7

Dig	С	Posicao
0	0	0
1	0	0
2	2	1
3	3	4
4	1	5
5	0	0
6	0	0
7	1	7
8	0	0
9	0	0

12 3	142	08 7	26 3	23 3	014	13 2
142		12 3	26 3	23 3		08 7

Dig	С	Posicao
0	0	0
1	0	0
2	2	1
3	3	5
4	1	5
5	0	0
6	0	0
7	1	7
8	0	0
9	0	0

12 3	142	08 7	26 3	23 3	014	13 2
142		12 3	26 3	23 3	014	08 7

С	Posicao
0	0
0	0
2	1
3	5
1	6
0	0
0	0
1	7
0	0
0	0
	0 0 2 3 1 0 0

12 3	142	08 7	26 3	23 3	014	13 2
142	13 2	12 3	26 3	23 3	014	08 7

Dig	С	Posicao
0	0	0
1	0	0
2	2	1
3	3	5
4	1	6
5	0	0
6	0	0
7	1	7
8	0	0
9	0	0

Repetimos o mesmo processo para os próximos dígitos como no exemplo abaixo:

123	142	087	263	233	014	132
142	132	123	263	233	014	087
014	123	132	233	142	263	087
014	123	132	2 33	142	2 63	087
014	087	123	132	142	233	263

Observação

Observe que ao terminar a execução os números se encontram exatamente na posição correta em ordem crescente de valores.

```
input: n \rightarrow number of items in data vector
   input: base \rightarrow indicator for the worked base
   input: ndigits → maximum number of digits
   input: D \rightarrow the data vector
   output: The maximum item in D (removeMax)
1 for position = 0 to ndigits do
        for j = 0 to base do count[j] = 0;
        for i = 0 to n do
             d = getDigits(Dados[i], position, base);
             count[d+1] := count[d+1] + 1:
        end
        for j = 1 to base do count[j] := count[j] + count[j-1];
        for i = 0 to n do
             d = getDigits(Dados[i], position, base);
              idx := count[d];
10
             count[d] = count[d] + 1:
11
             aux[idx] := Dados[i];
        end
13
        for i := 0 to n do Dados[i] := aux[i]:
14
15 end
```

Custo computacional / Análise do Algoritmo

- Observe que n\u00e3o houve nenhuma compara\u00e7\u00e3o ao decorrer das execu\u00e7\u00f6es
- O custo para verificações de dígitos é de 2 * n * ndigits
- O custo para trocas é de n * ndigits
- Se *ndigits* for pequeno ou constante, então o radix Sort apresenta custo linear O(n)

Observação

- O quick sort é compatível com o radix sort porque o número de dígitos é da ordem de log(n)
- Algumas literaturas dizem que o número máximo de dígitos a serem considerados no modelo é 10. Valores acima disso geram depreciação do método

Vantagens

- O algoritmo é estável
- Não compara chaves para ordenar o conjunto de dados

Desvantagens

- Nem sempre é fácil otimizar a inspeção de dígitos, esse processo depende muito do hardware
- Só é bom se o número de dígitos for pequeno
 - Em geral o número de dígitos tem crescimento a um fator de log(n)

Observações Gerais

Apresentamos duas classes de algoritmos para ordenação em memória primária, os simples com custo $O(n^2)$ e os mais elaborados com custo O(nlogn). Veja a divisão na tabela abaixo:

Métodos	Complexidade
Inserção	$O(n^2)$
Seleção	$O(n^2)$
Shell Sort	$O(n^{1.25})$
Merge Sort	O(nlogn)
Quick Sort	O(nlogn)
Heap Sort	O(nlogn)

Observações Gerais

- O **Quick Sort**, geralmente, se apresenta como melhor solução (tempo de execução) para a maioria dos casos avaliados e reais.
- O Heap Sort e Quick Sort mantêm a mesma relação de tempo para arquivos de mesmo tamanho
- Para arquivos pequenos, o Shell Sort apresenta melhor desempenho que o Heap Sort
- O Inserção é o mais rápido para arquivos que apresentam como característica um conjunto de dados já ordenado. Ele também se apresenta como melhor opção dentre os algoritmos de custo quadrático $O(n^2)$

Observações Gerais

A influência do conjunto de dados

- O Shell Sort e o Quick Sort são bastante sensíveis à ordem ascendente ou descendente da entrada.
- O Shell Sort executa mais rápido para arquivos já ordenados
- O **Heap Sort** não é sensível a ordem ascendente ou descendente da entrada e também não faz uso excessívo de pilha recursiva.

PERGUNTAS?

