SurroundSense: Mobile Phone Localization via Ambience Fingerprinting

CSCI780 Sensors and Ubiquitous Computing

Gang Zhou

Computer Science
College of William and Mary

Introduction

- Location-Based Apps (LBAs):
 - GeoLife shows grocery list when near Walmart
 - MicroBlog queries users at a museum
 - Location-based ad: Phone gets coupon at Starbucks

iPhone AppStore: 3000 LBAs, Android: 500 LBAs

Introduction

Most emerging location based apps do not care about the **physical location**

GPS: Latitude, Longitude

Instead, they need the user's logical location

Starbucks, RadioShack, Museum, Library

Physical vs. Logical

- Unfortunately, most existing solutions are physical
 - > GPS
 - GSM based
 - > SkyHook
 - Google Latitude
 - > RADAR
 - Cricket
 - **>** ...

Given this rich literature,

Why not convert from

Physical to Logical Locations?

The Dividing-Wall Problem

A New Idea: SurroundSense

Hypothesis

It is possible to localize phones by sensing the ambience

such as sound, light, color, movement, WiFi ...

Outline

- Introduction
- The Main Idea
- Feasibility and Potential
- System Architecture
- Fingerprinting Details
- Discussions
- Performance Evaluation
- Conclusions and Future work

SurroundSense

- Multi-dimensional fingerprint
 - Based on ambient sound/light/color/movement/WiFi

GSM provides macro location (strip mall) **SurroundSense** refines to Starbucks

Feasibility and Potential

The Intuition:

Economics forces nearby businesses to be diverse

Not profitable to have 3 adjacent coffee shops with same lighting, music, color, layout, etc.

SurroundSense exploits this ambience diversity

Architecture: Filtering & Matching

Fingerprinting Sound

- Fingerprint generation : Signal amplitude
 - ➤ Amplitude values divided in 100 equal intervals
 - Sound Fingerprint = 100 normalized values
 - value_X = # o
- Filter Metric: Eucl space between te
 - Discard candida
- Threshold г
 - Compute pair-w fingerprints at d
 - \rightarrow d_i = 95th percen
 - $\triangleright \Gamma = \text{maximum d}$

Fingerprinting Motion

Want to recognize

- Sitting (restaurants, cafes, haircutters)
- Slow Browsing (bookstores, music stores, clothing)
- Speed-Walking (groceries)

Process

- > 4 samples per second for 3-axes accelerometer
- Moving average of window 10
- > SVM classification into "stationary" and "motion" with features of "mean" and "variance"

Filter Metric:
$$R = \frac{t_{moving}}{t_{static}} \qquad \begin{array}{c} 0.0 \le R \le 0.2 & \text{sitting} \\ 0.2 \le R \le 2.0 & \text{slow browsing} \\ 2.0 \le R \le \infty & \text{speed-walking} \end{array}$$

Discard candidate fingerprints with different classification

Fingerprinting Motion

Fingerprinting Color/

- Floor Pictures
 - Rich diversity across diff
 - Uniformity at the same lo

- Fingerprint generation: pictures in Hue-Saturation-Lightness (HSL) space
 - K-means clustering algorithm to get multiple clusters
 - Get each cluster's centroid and size
- Ranking metric

$$S_{12} = \sum_{i,j} \frac{1}{\delta(i,j)} \frac{SizeOf(C_{1i})}{T_1} \frac{SizeOf(C_{2j})}{T_2}$$

Fingerprinting WiFi

Matching or filtering?

- Used as matching in the absence of light/color
- Otherwise, used as a filter

Detailed method

- > Record AP MAC addr. from received beacons every 5s
- Compute the fraction of times each unique MAC address m was seen over all recordings: f(m)
- > A tuple of fractions forms the WiFi fingerprints
- ➤ Intuition: get a large S when a MAC address occurs frequently in both f1 and f2

$$S = \sum_{m \in M} (f_1(m) + f_2(m)) \frac{\min(f_1(m), f_2(m))}{\max(f_1(m), f_2(m))}$$

Evaluation Methodology

- 51 business locations
 - > 46 in Durham, NC
 - > 5 in India

- Data collected by 4 people
 - > 12 tests per location

Mimicked customer behavior

Per-Cluster Accuracy

Cluster	1	2	3	4	5	6	7	8	9	10
No. of Shops	4	7	3	7	4	5	5	6	5	5

Per-Shop Accuracy

Per-Scheme Accuracy

Mode	WiFi	Snd-Acc-WiFi	Snd-Acc-Lt-Clr	SS
Accuracy	70%	74%	76%	87%

Average accuracy across clusters 1-9 (WiFi not available in cluster 10

Per-User Accuracy

Conclusions

- Identifying the possibility of fingerprinting a logical location based on ambient sound, light, color, and human movement
- An experimental framework that creates a fingerprint database and performs fingerprint matching for test samples
- Evaluation of the scheme in business locations in a university town

Discussion

- How to deal with time varying ambience?
 - Collect ambience fingerprints over different time windows
- What if phones are in pockets?
 - Use sound/WiFi/movement
 - > Opportunistically take pictures, need to
 - Detect phone when out of pocket
 - Takes pictures when camera pointing downward
- How to populate fingerprint database?
 - War-sensing

Discussion (cont.)

- How to make it energy efficient, since continuous sensing likely to have a large energy draw?
 - > Duty cycling sampling, computation, etc?
- How to do localization in real-time, since user's movement requires time to converge?
 - Find features that need less sensor samples?
- Is it promising to use this idea in non-business locations, since, e.g., different houses may have the same style?
 - Need to think hard about features...probably more human-centered features...