

- 순차적인 데이터(sequential data)를 학습하여 분류 또는 예측을 수행
- 각 레이어마다 파라미터(Parameter)의 공유
- 과거의 데이터가 미래에 영향을 줄 수 있는 구조
- 응용
 - 음성, 자연어 문장, 동영상, 주가 변동등의 시계열(time series)데이터를 분석하여 분류 및 예측
 - 자율주행 시스템에서 차의 이동 경로를 예측
 - 문장, 문서, 오디오 샘플을 입력 받을 수 있고, 자동번역, 스피치 투 텍스트같은 자연 어 처리에 매우 유용
 - 기계번역, 음성 인식, 필기체 인식, 영상 주석달기, 동영상에서 행동인식, 작곡 및 작사 등 다양한 응용분야에서 활용

ref: python machine learning 2nd Ed

Recurrent Neural Network

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

(Simple) Recurrent Neural Network

The state consists of a single "hidden" vector h:

$$h_t = f_W(h_{t-1}, x_t)$$

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$

$$y_t = W_{hy} h_t$$

Sometimes called a <u>"Vanilla RNN"</u> or an <u>"Elman RNN"</u> after Prof. Jeffrey Elman

A recurrent neural network and the unfolding in time of the computation involved in its forward computation. Source: Nature

- x_t : t에서의 입력 값
- h_t : t에서의 $hidden\ state$. 네트워크의 메모리(과거 시간 스텝들에서 일어난 정보).
 - -t-1의 $hidden\ state$ 값과 현재 t의 입력값 (x_t) 에 의해 계산.
 - $h_t = tanh(Ux_t + Ws_{t-1})$
 - 최초(s_{-1})는 0으로 초기화
- y_t : t에서의 출력 값. 현재시간 t의 메모리만 의존
 - $y_t = softmax(Vh_t)$
- 모든 시간 스텝에 대해 파라미터 값 공유 (U,V,W)

$$h_t = f_W(h_{t-1}, x_t) \ dots \ h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t) \ y_t = W_{hy}h_t$$

$$fw_h^t = W_{xh}x^t + W_{hh}h^{t-1} + b_h$$

$$h^t = \phi_h(fw_h^t) = \phi_h(W_{xh}x^t + W_{hh}h^{t-1} + b_h)$$

$$W_h = [W_{xh}; W_{hh}]$$

$$h^t = \phi_h([W_{xh}; W_{hh}] \begin{bmatrix} x^t \\ h^{t-1} \end{bmatrix} + b_h)$$

$$y^t = \phi_y(W_{hy}h^t + b_y)$$

- RNN 모델을 학습하는데 사용되는 핵심 알고리즘
- 전체 손실(E): t = 1에서 t = T까지 타임 스텝의 모든 손실함수 합

$$L = \sum_{t=1}^{L} L^{t}$$

$$\frac{\delta L_{3}}{\delta V} = \frac{\delta L_{3}}{\delta \hat{y}_{3}} \frac{\delta \hat{y}_{3}}{\delta V} = \frac{\delta L_{3}}{\delta \hat{y}_{3}} \frac{\delta \hat{y}_{3}}{\delta z_{3}} \frac{\delta z_{3}}{\delta V} = (\hat{y}_{3} - y_{3}) \otimes s_{3}$$

$$z_{3} = V h_{3}, \qquad \otimes :$$
 두 벡터의 외적

$$\frac{\delta L_3}{\delta W} = \frac{\delta L_3}{\delta \hat{y}_3} \frac{\delta \hat{y}_3}{\delta h_3} \frac{\delta h_3}{\delta W}$$

$$h_t = tanh(Ux_t + Wh_{t-1}) : h_3 = h_2 \text{에 의존}, h_2 = h_1 \text{에 의존}$$
$$\frac{\delta L_3}{\delta W} = \sum_{t=1}^3 \frac{\delta L_3}{\delta \hat{y}_3} \frac{\delta \hat{y}_3}{\delta h_3} \frac{\delta h_3}{\delta h_k} \frac{\delta h_k}{\delta W}$$

타임 스텝 t에서 손실은 모든 이전 타임 스텝 1: t-1의 유닛에 의존

$$\frac{\delta L_t}{\delta W} = \frac{\delta L_t}{\delta \hat{y}_t} \times \frac{\delta \hat{y}_t}{\delta h_t} \times \left(\sum_{k=1}^t \frac{\delta h_t}{\delta h_k} \times \frac{\delta h_k}{\delta W} \right), \qquad \frac{\delta h^t}{\delta h_k} = \prod_{i=k+1}^t \frac{\delta h_i}{\delta h_{i-1}}$$

 $\frac{\delta h^t}{\delta h^k}$ (이전타임스텝의곱)로 인하여 $vanishing\ gradient$ 발생 $\frac{\delta h^t}{\delta h^k}$ 는k개의 곱셈.즉,가중치w가t-k번 곱해져서 w^{t-1} 이 된다

|w| < 1이면 t - k가 클 때 w^{t-k} 값이 매우 작아진다.

|w| > 1이면 t - k 가 클 때 w^{t-k} 값이 매우 커진다

t - k 크다는 것은 긴 시간 의존성을 가진다는 의미. 해결책 : |w| = 1

Sequences

- **one to one**: from fixed-sized input to fixed-sized output(Vanilla mode)
 - e.g. image classification
- one to many: sequence output
 - e.g. image captioning takes an image and outputs a sentence of words
- many to one : sequence input
 - e.g. sentiment analysis where a given sentence is classified as expressing positive or negative sentiment
- many to many: sequence input and sequence output
 - e.g. machine translation: an RNN reads a sentence in English and then outputs a sentence in French
- many to many: synced sequence input and output
 - e.g. video classification where we wish to label each frame of the video

- RNN의 Gradient Problem 해결책
 - $T-BPTT(Truncated\ BackPropagation\ Through\ time)$
 - LSTM(Long Short Term Memory)
- LSTM의 중요요소 : 메모리 셀(memory cell) 은닉층
 - 각 메모리 셀에 적절한 가중치 w=1를 유지하는 게이트
 - cell state: 게이트의 출력
 - 저장할 것, 버릴 것, 읽어 들일 것을 학습하는 것
 - h_t : 단기상태(short term state)
 - $-c_t$: 장기상태(long term state)
 - y_t : 출력

- 이전 타임 스텝의 셀 상태 (c_{t-1}) $\frac{1}{(r) \odot (r) \odot (r) \odot (r)}$ 현재 타임 스텝 셀 상태 (c_t) 생성
 - 네트워크를 왼쪽에서 오른쪽을 관통하면서 삭제 게이트를 지나 일부 기억을 잃고,
 - 이후 덧셈 연산으로 새로운 기억(입력 게이트에서 선택한 기억)일부를 추가
 - 그래서 타입 스텝마다 일부 기억이 삭제되고 일부 기억이 추가된다
- 덧셈 연산 후 장기 상태 (c_t) 가 복사되어 tanh 함수로 전달
 - 이 결과는 출력 게이트에 의해 걸러진 후 단기상태 (h_t) 와 출력 (y_t) 을 만든다.

- 주층 : g_t
 - 현재 입력 x_i 와 이전의 상태 (단기상태, h_{t-1})을 분석하는 역할
 - 이 층의 출력이 곧 바로 나가지 않고 장기 상태에서 가장 중요한 부분은 저장하고 나 머지는 삭제(기본 셀에서는 y_t , h_t 로 출력)
- 게이트 제어기(gate controller) : f_t , i_t , o_t
 - 시그모이드 함수(σ) 사용
 - 출력은 원소 별 곱셈 연산(⊗) 수행 : gate라 한다
 - 0을 출력하면 게이트를 닫고 1을 출력하면 게이트를 연다
 - 삭제(forget) 게이트(f_t)
 - 장기상태의 어느 부분이 삭제되어야 하는 지 제어
 - 통과할 정보와 억제할 정보 결정
 - 입력(input) 게이트(i_t)
 - g_t 의 어느 부분이 장기 상태에 더해져야 하는지 제어
 - 출력(ouput) 게이트(o_t)
 - 장기 상태의 어느 부분을 읽어서 h_t 와 y_t 로 출력해야 하는지 제어

$$g_t = tanh(W_{xg} \cdot x_t + W_{hg} \cdot h_{t-1} + b_g)$$

$$f_t = \sigma(W_{xf}^T \cdot x_t + W_{hf}^T \cdot h_{t-1} + b_f)$$

$$i_t = \sigma(W_{xi}^T \cdot x_t + W_{hi}^T \cdot h_{t-1} + b_f)$$

$$o_t = \sigma(W_{xo}^T \cdot x_t + W_{ho}^T \cdot h_{t-1} + b_o)$$

$$\mathbf{c_t} = \mathbf{f_t} \otimes \mathbf{c_{t-1}} + \mathbf{i_t} \otimes \mathbf{g_t}$$

$$y_t = h_t = o_t \otimes tanh(c_t)$$

- W_{xf} , W_{xi} , W_{xg} , W_{xo} 입력벡터 x_t 에 연결된 가중치 행렬
- W_{hf} , W_{hi} , W_{hg} , W_{ho} 이전 스텝의 단기 상태 (h_{t-1}) 에 연결된 가 중치 행렬

LSTM Backpropagation

$$\delta h_{t} = \Delta_{t} + \Delta h_{t}$$

$$\delta c_{t} = \delta h_{t} \otimes o_{t} \otimes (1 - tanh^{2}(c_{t})) + \delta c_{t+1} \otimes f_{t+1}$$

$$\delta g_{t} = \delta c_{t} \otimes i_{t} \otimes (1 - g_{t}^{2})$$

$$\delta f_{t} = \delta c_{t} \otimes c_{t-1} \otimes f_{t} \otimes (1 - f_{t})$$

$$\delta i_{t} = \delta c_{t} \otimes g_{t} \otimes i_{t} \otimes (1 - i_{t})$$

$$\delta o_{t} = \delta h_{t} \otimes tanh(c_{t}) \otimes o_{t} \otimes (1 - o_{t})$$

$$\delta x_{t} = W_{x}^{T} \cdot \delta gates_{t}$$

$$\Delta h_{t-1} = W_{h}^{T} \cdot \delta gates_{t}$$

The final updates to the internal parameters is computed as:

$$\delta W_{x} = \sum_{t=0}^{n} \delta gate_{t} \otimes x_{t}$$

$$\delta W_{h} = \sum_{t=0}^{n} \delta gate_{t+1} \otimes h_{t}$$

$$\delta b = \sum_{t=0}^{n} \delta gate_{t+1}$$

Recurrent Neural Network

Convolutional Neural Network

image

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

FC-1000

softmax

test image

image

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

test image

