Answer to the Question No. - 1

To show that $\sqrt{n} = \Omega(\log \frac{3}{2}n)$ using Definition 2, we proceed as follows:

Ω-notation: $g(n) \in \Omega(f(n))$

If there exist constants c > 0 and $n_0 \ge 0$ such that:

$$g(n) \ge c \cdot f(n)$$
 for all $n \ge n_0$.

Here, we need to show:

$$\sqrt{n} \ge c \cdot \log \frac{3}{2}n$$
 for sufficiently large n (for some n_0)

Let,

$$g(n) = \sqrt{n}$$

$$f(n) = \log \frac{3}{2}n = \left(\frac{\ln n}{\ln 2}\right)^3$$

So, we need to show that:

$$\sqrt{n} \ge c \cdot \left(\frac{\ln n}{\ln 2}\right)^3$$

Dividing both sides by $\ln^3 n$, we get,

$$\frac{\sqrt{n}}{\ln^3 n} \ge c \cdot \left(\frac{1}{\ln 2}\right)^3$$

For choosing constants c and n₀,

We can let $c = (\ln 2)^3$ as a positive constant and we need to choose n_0 large enough such that the equation holds for all $n \ge n_0$.

As the right side is constant, let's analyze the left side.

Since, $n \to \infty$, the term \sqrt{n} grows much faster than $\ln^3 n$. Because logarithmic functions grow much slower than any polynomial of n.

$$\Rightarrow \lim_{n \to \infty} \frac{\sqrt{n}}{\ln^3 n}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{2\sqrt{n}}}{\frac{3(\ln n)^2}{n}} = \lim_{n \to \infty} \frac{\sqrt{n}}{6(\ln n)^2}$$

$$= \lim_{n \to \infty} \frac{\sqrt{n}}{24 \ln n}$$

$$= \lim_{n \to \infty} \frac{\sqrt{n}}{48} = \infty$$

The above proof shows that, $\lim_{n\to\infty} \frac{g(n)}{f(n)} = \infty$

The condition for Ω -notation is satisfied because,

$$\sqrt{n} \ge c \cdot \log \frac{3}{2}n$$
 for all $n \ge n_0$.

So, by Definition 2, it is proven that,

$$\sqrt{n} = \Omega(\log \frac{3}{2}n)$$

Answer to the Question No. -2

If we convert the given time into microseconds we get,

 $1 \text{ second} = 10^6 \text{ microseconds}$

1 minute = 6×10^7 microseconds

1 hour = 3.6×10^9 microseconds

1 day = 8.64×10^{10} microseconds

1 month = 2.59×10^{12} microseconds

1 year = 3.15×10^{13} microseconds

1 century = 3.15×10^{15} microseconds

Let the time = t, then for each expression the result will be as following:

$$\begin{array}{lll} \log_2 n & \to & 2^t \\ \sqrt{n} & \to & t^2 \\ n & \to & t \\ n \log n & \to & \text{approximations by calculating } n \log n \sim t \\ n^2 & \to & \sqrt{t} \\ n^3 & \to & \sqrt[3]{t} \\ 2^n & \to & \log_2 t \\ n! & \to & \text{approximations by calculating } n! \sim t \end{array}$$

The value for the comparison of running times has been shown in the following table:

	1 second	1 minute	1 hour	1 day	1 month	1 year	1 century
$\log_2 n$	2^{10^6}	$2^{6\times10^7}$	2 ^{3.6×10⁹}	2 ^{8.64×10¹⁰}	2 ^{2.59×10¹²}	$2^{3.15\times10^{13}}$	2 ^{3.15×10¹⁵}
\sqrt{n}	10^{12}	3.6×10^{15}	1.3×10^{19}	7.46×10^{21}	6.72×10^{24}	9.95×10^{26}	9.95×10^{30}
n	10 ⁶	6×10^{7}	3.6×10^{9}	8.64×10^{10}	2.59×10^{12}	3.15×10^{13}	3.15×10^{15}
$n \log n$	6.24×10^{4}	2.8×10^{6}	1.33×10^{8}	2.76×10^{9}	7.19×10^{10}	7.98×10^{11}	6.86×10^{13}
n^2	1000	7745	60000	293938	1.6×10^{6}	5.62×10^{6}	5.62×10^{7}
n^3	100	391	1532	4420	13736	31593	146645
2^n	19	25	31	36	41	44	51
n!	9	11	12	13	15	16	17

Answer to the Question No. -3

Assuming that $k \ge 1$, $\epsilon > 0$, and c > 1 are constants, we need to find the relative asymptotic growths for each pair of expressions (A, B).

$\lg^k n \text{ vs } n^{\epsilon}$:

$$\lim_{n\to\infty}\frac{\log^k n}{n^\epsilon}$$

Since n^{ϵ} grows much faster than any power of $\log n$, the limit goes to 0. We get,

$$\lim_{n\to\infty}\frac{\log^k n}{n^\epsilon}=0$$

So, it will be **yes** for O, o but **no** for Ω , ω , θ .

n^k vs c^n :

$$\lim_{n\to\infty}\frac{n^k}{c^n}$$

Using logarithms,

$$= \lim_{n \to \infty} \frac{k \log n}{n \log c}$$

$$= \lim_{n \to \infty} e^{k \log n - n \log c}$$

Since, $n \log c$ grows faster than $k \log n$,

$$=\lim_{n\to\infty}e^{-\infty}=0$$

So, it will be **yes** for O, o but **no** for Ω , ω , θ .

\sqrt{n} vs $n^{\sin n}$:

The value for $\sin n$ is in the range between -1 to +1 and it doesn't have a consistent growth pattern. As there is no consistency, none of the asymptotic relations can be justified. So, it will be **no** for each one.

 2^n vs $2^{n/2}$:

$$\lim_{n\to\infty}\frac{2^n}{2^{n/2}}$$

If we take the ratio, it would be $2^{n/2}$, which tends to ∞ . It refers to the lower bound. So, it will be **yes** for Ω , ω but **no** for Ω , o and θ .

$n^{lg\,c}$ vs $c^{lg\,n}$:

We can rewrite the expressions as,

$$n^{\lg c} = e^{\log c \cdot \log n}$$

$$c^{\lg n} = e^{\log n \cdot \log c}$$

Therefore,

$$n^{\lg c} = c^{\lg n}$$

As both the expressions are equal, they will grow at the same rate. So, it will be **yes** for O, Ω and θ but **no** for o and ω .

$\lg(n!)$ vs $\lg(n^n)$:

Both the functions represent the same output. As the difference is almost non-existent, they grow at the same rate. So, for this case, it will be **yes** for O, Ω and θ but **no** for o and ω .

Considering all the cases, the final results have been shown in the following table:

A	В	О	О	Ω	ω	θ
$\lg^k n$	n^{ϵ}	Yes	Yes	No	No	No
n^k	c^n	Yes	Yes	No	No	No
\sqrt{n}	$n^{\sin n}$	No	No	No	No	No
2^n	$2^{n/2}$	No	No	Yes	Yes	No
$n^{\lg c}$	$c^{\lg n}$	Yes	No	Yes	No	Yes
$\lg(n!)$	$\lg(n^n)$	Yes	No	Yes	No	Yes