Examen del Bloque 2 de Sistemas Inteligentes (tipo A)

ETSINF, UPV, 18 de diciembre de 2017. Puntuación: num_aciertos - num_errores/3.

- 1 A ¿Cuál de las siguientes expresiones es incorrecta?

 - A) $\sum_{y} P(x \mid y) = 1$, $\forall x$ B) $\sum_{x} P(x \mid y) = 1$, $\forall y$ C) $\sum_{x} \sum_{y} P(x, y) = 1$ D) $\sum_{x} P(x \mid u) = \sum_{y} P(y \mid w)$, $\forall u, w$
- $2 \mid B \mid$ Se tienen dos almacenes de naranjas: 1 y 2. El 65 % de las naranjas se hallan en el almacén 1 y el resto en el 2. Se sabe que en el almacén 1 hay un 1% de naranjas no aptas para el consumo; y un 3% en el 2. Supóngase que se distribuye una naranja no apta para el consumo. ¿Cuál es la probabilidad P de que provenga del almacén 1?
 - A) 0.00 < P < 0.25
 - B) $0.25 \stackrel{-}{\leq} P < 0.50$ $P = P(A = 1 | C = 0) = \frac{P(A = 1)P(C = 0 | A = 1)}{P(C = 0)} = \frac{P(A = 1)P(C = 0 | A = 1)}{P(A = 1)P(C = 0 | A = 1)} = 0.38$
 - C) $0.50 \le P < 0.75$
 - D) $0.75 \le P$
- $3 \square$ Sea $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$ un objeto dado mediante una secuencia de N vectores de características, el cual se quiere clasificar en una de C clases. Indica cuál de los siguientes clasificadores si es de error mínimo (\mathbf{x}_2^N denota $\mathbf{x}_2, \dots, \mathbf{x}_N$):
 - A) $c(\mathbf{x}) = \arg \max \ p(\mathbf{x}_1 \mid c) \ p(\mathbf{x}_2^N \mid \mathbf{x}_1)$
 - B) $c(\mathbf{x}) = \arg \max \ p(\mathbf{x}_1, c) \ p(\mathbf{x}_2^N \mid \mathbf{x}_1)$
 - C) $c(\mathbf{x}) = \arg\max \ p(\mathbf{x}_1 \mid c) \ p(\mathbf{x}_2^N \mid \mathbf{x}_1, c)$
 - D) $c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{arg\,max}} \ p(\mathbf{x}_1,c) \, p(\mathbf{x}_2^N \mid \mathbf{x}_1,c)$
- Sea un clasificador en 3 clases para $\mathbf{x} = (x_1, x_2)^t \in [0, 1]^2$ con las distribuciones de probabilidad dadas a la derecha. ¿Cuál es la probabilidad de error p_e del clasificador?
 - $p_e < 0.35$
 - B) $0.35 \le p_e < 0.45$ $.1 \cdot 0 + .2 \cdot .02 + .3 \cdot .5 + .4 \cdot 2/3 = .42$
 - C) $0.45 \le p_e < 0.65$
 - D) $0.65 \le p_e$

x_1	x_2	$p(c=1 \mathbf{x})$	$p(c=2 \mathbf{x})$	$p(c=3 \mathbf{x})$	$p(\mathbf{x})$
0	0	1.0	0.0	0.0	0.1
0	1	0.01	0.01	0.98	0.2
1	0	0.25	0.5	0.25	0.3
1	1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0.4

- $5 \mid B \mid$ Sea un problema de clasificación en cuatro clases de objetos en \mathbb{R}^3 . Se tiene un clasificador de funciones discriminantes lineales con vectores de pesos (en notación homogénea): $\mathbf{w}_1 = (-2, 1, 2, 0)^t$, $\mathbf{w}_2 = (0, 2, 2, 0)^t$, $\mathbf{w}_3 = (1, 1, 1, 0)^t$ y $\mathbf{w}_4 = (3,0,0,1)^t$. Indica a qué clase se asignará el objeto $\mathbf{x} = (1,2,2)^t$ (no en notación homógenea).
 - $-2+1\cdot 1+2\cdot 2+0\cdot 2=3$ A) 1.
 - $0 + 2 \cdot 1 + 2 \cdot 2 + 0 \cdot 2 = 6$ B) 2.
 - $1 + 1 \cdot 1 + 1 \cdot 2 + 0 \cdot 2 = 4$ C) 3.
 - $3 + 0 \cdot 1 + 0 \cdot 2 + 1 \cdot 2 = 5$
- 6 C En la figura se representan frontera y regiones de decisión de un clasificador binario. ¿Cuál de los siguientes pares de vectores de pesos corresponde al clasificador de la figura?
 - A) $\mathbf{w}_1 = (-1, -1, -2)^t \quad \text{y} \quad \mathbf{w}_2 = (-1, -2, -1)^t \quad x_2 = x_1 \qquad R_1 : x_2 < x_1 \qquad R_2 : x_2 > x_1$
 - B) $\mathbf{w}_1 = (1, -1, -2)^t \ \mathbf{w}_2 = (0, -2, -1)^t \ x_2 = x_1 + 1 \ R_1 : x_2 < x_1 + 1 \ R_2 : x_2 > x_1 + 1$
 - C) $\mathbf{w}_1 = (1, 1, 2)^t \ y \ \mathbf{w}_2 = (1, 2, 1)^t \ x_2 = x_1 \qquad R_1 : x_2 > x_1 \qquad R_2 : x_2 < x_1$
 - D) $\mathbf{w}_1 = (-1, 1, 2)^t \ \mathbf{y} \ \mathbf{w}_2 = (0, 2, 1)^t \ x_2 = x_1 + 1 \ R_1 : x_2 > x_1 + 1 \ R_2 : x_2 < x_1 + 1$
- 7 D Sea un problema de clasificación en 3 clases, c=1,2,3, para objetos representados mediante vectores de características bidimensionales. Se tienen 3 muestras de entrenamiento representadas en notación homogénea: $\mathbf{x}_1 = (1,1,2)^t$ de la clase $c_1 = 1$, $\mathbf{x}_2 = (1, 2, 3)^t$ de la clase $c_2 = 2$ y $\mathbf{x}_3 = (1, 3, 1)^t$ de la clase $c_3 = 3$. Asimismo, se tiene un clasificador lineal definido por los vectores de pesos: $\mathbf{w}_1 = (w_{10}, w_{11}, w_{12}) = (2, -8, 0)^t, \mathbf{w}_2 = (w_{20}, w_{21}, w_{22}) = (-5, -2, -1)^t$ y $\mathbf{w}_3 = (w_{30}, w_{31}, w_{32}) = (-2, 1, -10)^t$. Si aplicamos una iteración del algoritmo Perceptrón a partir de estos vectores de pesos, con factor de aprendizaje $\alpha = 1$ y margen b = 1.5, entonces:
 - A) Se modificarán los vectores de pesos \mathbf{w}_1 y \mathbf{w}_2 .
 - B) Se modificarán los vectores de pesos \mathbf{w}_1 y \mathbf{w}_3 .
 - C) Se modificarán los vectores de pesos \mathbf{w}_2 y \mathbf{w}_3 .
 - D) No se modificará ningún vector de pesos.

- 8 D En el proceso de entrenamiento de un árbol de clasificación, un nodo interno t tiene un grado de impureza $\mathcal{I}(t) > 0$. Uno de los "splits" produce un decremento de impureza igual a $\mathcal{I}(t)$. Indica la afirmación correcta:
 - A) No es posible lograr ese decremento de impureza.
 - B) Dicho "split" genera dos nodos impuros.
 - C) Dicho "split" genera un nodo puro y otro impuro.
 - D) Dicho "split" genera dos nodos puros.
- 9 A Para un problema de clasificación de datos bidimensionales $\mathbf{x} = (x_1, x_2)$ en dos clases disponemos de un árbol de clasificación. ¿Qué tipo de fronteras de decisión define el nodo raíz?
 - A) $a \cdot x_1 + b \cdot x_2 + c = 0$ donde $a = 0 \lor b = 0$ Fronteras paralelas a los ejes
 - B) $a \cdot x_1 + b \cdot x_2 + c = 0$ donde $a \neq 0 \land b \neq 0$
 - $C) a \cdot x_1 + b \cdot x_2 + c = 0$ donde $a \neq 0 \lor b = 0$
 - D) $a \cdot x_1 + b \cdot x_2 + c = 0$ donde $a = 0 \lor b \neq 0$
- 10 D Supóngase que estamos aplicando el algoritmo de aprendizaje de árboles de clasificación para un problema de cuatro clases: 1, 2, 3 y 4. El algoritmo ha alcanzado un nodo t que incluye un dato de cada clase, esto es, 4 en total. Se pretende evaluar la calidad de una partición del nodo t mediante un "split" s=(j,r), que divide los datos en dos nodos t_1 y t_2 de la siguiente forma: los datos de las clases 1 y 2 quedan en el nodo t_1 y los datos de las clases 3 y 4 quedan en el nodo t_2 . El decremento de impureza $\Delta \mathcal{I}(j,r,t)$ (medida como entropía) para cuantificar la calidad de esta partición es:
 - A) $\Delta \mathcal{I}(j, r, t) < 0.0$.
 - B) $0.0 \le \Delta \mathcal{I}(j, r, t) < 0.5$.
 - C) $0.5 \le \Delta \mathcal{I}(j, r, t) < 1.0$.
 - D) $1.0 \leq \Delta \mathcal{I}(j, r, t)$.
 - $\Delta \mathcal{I}(j, r, t) = \mathcal{I}(t) \hat{P}_t(t_1)\mathcal{I}(t_1) \hat{P}_t(t_2)\mathcal{I}(t_2) = 2 \frac{1}{2} \cdot 1 \frac{1}{2} \cdot 1 = 1$
- 11 A Indica cual de las siguientes afirmaciones sobre un árbol de clasificación construido mediante el algoritmo de aprendizaje de árboles es incorrecta.
 - A) En cada nodo t, la probabilidad a posteriori de cualquier clase c, $P(c \mid t)$, es siempre mayor o igual que el menor de los pesos o probabilidades de decisión de sus dos hijos.
 - B) En cada nodo t la suma para todas las clases de $P(c \mid t)$ es 1.
 - C) La impureza de un nodo, medida como entropía, no puede ser menor que 0 ni mayor que $\log_2 C$, donde C es el número de clases.
 - D) Si N es el número de datos de aprendizaje, la profundidad del árbol no será mayor que N aunque, en la práctica, suele ser proporcional a $\log_2 N$.
- 12 D En la figura de la derecha se representan 4 muestras de bidimensionales. ¿Cuál es el número de clústers que minimiza la suma de errores cuadráticos para dicho conjunto de muestras?
 - A) 1
 - B) 2
 - C) 3
 - D) 4 J = 0
- 13 D La figura a la derecha muestra una partición de 4 puntos bidimensionales en 2 clústers (representados mediante los símbolos \bullet y \circ). La transferencia del punto $(2,3)^t$ del clúster \bullet al \circ conduce a una variación de la SEC, ΔJ , tal que:

- B) $0 \ge \Delta J > -\frac{1}{2}$.
- C) $-\frac{1}{2} \ge \Delta J > -1$. D) $-1 \ge \Delta J$.

$$\Delta J = \frac{1}{2} - \frac{3}{2} = -1$$

- 14 A En la figura de la derecha se muestra una partición de 4 puntos bidimensionales de 2 clústers. La transferencia del punto $(1,1)^t$ del clúster \bullet al clúster \circ
 - A) produce un incremento en la SEC.
 - B) produce un decremento en la SEC.
 - C) no altera la SEC.
 - D) produce una SEC negativa.

- 15 A Considérese el algoritmo C-medias de Duda y Hart. Indicar cuál de las siguientes afirmaciones es correcta:
 - A) Su buena eficacia computational se consigue gracias al cálculo incremental de la variación de distorsión y de los vectores media de clúster.
 - B) Determina el número de clústers que minimiza la suma de errores cuadráticos (SEC).
 - C) Cuando un clúster se queda vacío, dicho clúster se elimina.
 - D) Ninguna de las anteriores.