Computer Graphics -Inverse Kinematics

Junjie Cao @ DLUT Spring 2016

http://jjcao.github.io/ComputerGraphics/

Overview

- Kinematics
- Forward Kinematics and Inverse Kinematics
- Jabobian
- Pseudoinverse of the Jacobian

Vocabulary of Kinematics

Kinematics is the study of how things move, it describles hierarchical skeleton structure.

Base and End Effector.

Kinematic Chains

 For today, we will limit our study to linear kinematic chains, rather than the more general hierarchies (i.e., stick with individual arms & legs rather than an entire body with multiple branching chains)

FK vs. IK

Forward Kinematics

Inverse Kinematics

Forward Kinematics

We have joint DOF (Degrees of freedom) values:

$$\mathbf{\Theta} = [\mathbf{\Theta}_1 \ \mathbf{\Theta}_2 \ \cdots \ \mathbf{\Theta}_M]$$

• We want the end effector description in world space (N=3 in our case):

$$\mathbf{e} = [\mathbf{e_1} \ \mathbf{e_2} \ \cdots \ \mathbf{e_N}]$$

FK gives us:

$$e = f(\theta)$$

But Sometimes We Want the Opposite

 We want to know how the upper joints of the hierarchy would rotate if we want the end effector to reach some goal.

Animations

Robotics

Inverse Kinematics

 The goal of inverse kinematics is to compute the vector of joint DOFs that will cause the end effector to reach some desired goal state

• We have: $\mathbf{e} = [\mathbf{e_1} \ \mathbf{e_2} \ \cdots \ \mathbf{e_N}]$

And we want:

$$\mathbf{\Theta} = \begin{bmatrix} \mathbf{\Theta}_1 & \mathbf{\Theta}_2 & \cdots & \mathbf{\Theta}_M \end{bmatrix}$$

• We need:

$$\theta = f^{-1}(e)$$
 f is a Multivariate nonlinear function

Inverse Kinematics Issues

While FK is relatively easy to evaluate.

• IK is more challenging: several possible solutions, or sometimes maybe

no solutions.

- Require Complex and Expensive computations to find a solution.
- As a result, there are many different approaches to solving IK problems

Analytical vs. Numerical Solutions

- One major way to classify IK solutions is into analytical and numerical methods
- Analytical methods attempt to mathematically solve an exact solution by directly inverting the forward kinematics equations. This is only possible on relatively simple chains.
- Numerical methods use approximation and iteration to converge on a solution. They tend to be more expensive, but far more general purpose.
- Today, we will examine a numerical IK technique based on Jacobian matrices

Numerical Solutions of IK

- Jacobian
- Cyclic Coordinate Descent (CCD)

Multivariate nonlinear root finding

- Want to solve $f(\theta)-X=0$
- Taylor series expansion:
 f(θ+Δ)=f(θ)+f'(θ) Δ+f"(θ) Δ^2/2+...
- Given: current θ , $f(\theta)$ and target X
- How to find Δ such that $f(\theta + \Delta) = X$
 - Find Δ that gets closer
 - Then $\theta < -\theta + \Delta$ and repeat

Local Linearization

- Taylor series expansion: $f(\theta+\Delta)=f(\theta)+f'(\theta)\Delta+f''(\theta)\Delta^2/2+...$
- Use first term of Taylor series:

$$f(\theta + \Delta) = f(\theta) + J(\theta) \Delta$$

Jacobian matrix:

$$J(\mathbf{f}, \theta) = \begin{bmatrix} \partial \theta_1 & \partial \theta_2 & \partial \theta_N \\ \frac{\partial f_2}{\partial \theta_1} & \frac{\partial f_2}{\partial \theta_2} & \cdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_M}{\partial \theta_1} & \cdots & \frac{\partial f_M}{\partial \theta_N} \end{bmatrix}$$

Matrix of partial derivatives of entire system.

• .

Jacobians

 Let's say we have a simple 2D robot arm with two 1-DOF rotational joints:

 The Jacobian matrix J(e,Φ) shows how each component of e varies with respect to each joint angle

$$J(\mathbf{e}, \mathbf{\Phi}) = egin{bmatrix} rac{\partial e_x}{\partial \phi_1} & rac{\partial e_x}{\partial \phi_2} \ rac{\partial e_y}{\partial \phi_1} & rac{\partial e_y}{\partial \phi_2} \end{bmatrix}$$

Jacobians

- Consider what would happen if we increased ϕ_2 by a small amount? What would happen to $\bf e$?
- What if we increased φ₁ by a small amount?

Jacobian for a 2D Robot Arm

• Defines how the end effector **e** changes relative to instantaneous changes of each joint angle

Solving IK—Incremental Changes

- θ: current set of joint DOFs;
- e: current end effector DOFs;
- g: goal DOFs that we want the end effector to reach
- Let $E(\theta) = g e(\theta)$, error in the current pose:

$$J\Delta = E$$

- solve for ∆
- •
 ∆ moves end towards g
 - Only valid for small △
 - Take series of small steps
 - Recompute $J(\theta)$ and $E(\theta)$ at each step
- How to determine length of step?
 - Could try to find optimum size
 - know we're doing rotations:
 - keep less than ~2 degrees

Algorithm

```
solve()
    start with previous \theta;
    E = target - computeEndPoint();
    for (k=0; k<max && |E| > eps; k++) {
      J = computeJacobian();
      solve J \Delta = E;
      if (\max(\Delta) > 2) \Delta = 2\Delta/\max(\Delta);
      \theta = \theta + \Delta;
       E = target - computeEndPoint();
```


Problems

- How to invert J?
 - Pseudoinverse of Jacobian (Required)
 - Cheat by using transpose (Too easy, we don't do that)
- How to compute J?
 - Numerically (Required)
 - Analytically (Extra Credit)

Inverting the Jacobian

- No guarantee it is invertible
 - Typically not a square matrix, in our case, 2 x N

$$\begin{bmatrix}
\underline{\psi}_{x} & \underline{\psi}_{x} & \underline{\psi}_{x} & \cdots & \underline{\psi}_{x} \\
\underline{\psi}_{0} & \underline{\psi}_{0} & \underline{\psi}_{0} & \cdots & \underline{\psi}_{N} \\
\underline{\psi}_{y} & \underline{\psi}_{0} & \underline{\psi}_{0} & \cdots & \underline{\psi}_{N}
\end{bmatrix} = \begin{bmatrix}
\mathbf{E}_{x} \\
\mathbf{E}_{y}
\end{bmatrix}$$

- Singularities.
- Even it's invertible, as the pose vector changes, the properties of the matrix will change.

Solving $J\Delta = E$: pseudo inverse

• Trick: J^TJ is square. So:

```
J \triangle = E
J^{T}J \triangle = J^{T}E
\Delta = (J^{T}J)^{-1}J^{T}E
\Delta = J^{+}E
```

- $J^+=(J^TJ)^{-1}J^T$ is the *pseudoinverse* of J
 - Properties: **JJ**+**J**=**J**, **J**+**JJ**+=**J**+
 - same as J^{-1} when J is square and invertible
 - J is $m \times n => J$ + is $n \times m$
- How to compute pseudoinverse?
 - What if $(J^T J)^{-1}$ is singular?

Singular Value Decomposition

- Any mxn matrix A can be expressed by SVD
 - $A = U S V^T$
 - **U** is *m*xmin(*m*,*n*), columns are orthogonal
 - **V** is *n*xmin(*m*,*n*), columns are orthogonal
 - S is min(m,n)xmin(m,n), diagonal: singular values

$$A = (\vec{h}_1 \mid \vec{h}_2 \mid \dots \mid \vec{h}_N) \begin{pmatrix} s_1 & 0 & 0 & 0 \\ 0 & s_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & s_N \end{pmatrix} \begin{pmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \vdots \\ \vec{a}_N \end{pmatrix}$$

- unique up to sign and order of s_i values
 - canonical: positive, sorted largest to smallest
 - other properties: rank is # of non-zero values; determinant is product of all values, ...

Pseudoinverse using SVD

- Given SVD, $\mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^{\mathsf{T}}$
- pseudoinverse is easy: A+ = VS-1UT

$$\begin{pmatrix} s_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & s_N \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{s_1} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \frac{1}{s_N} \end{pmatrix}$$

- singular: some $s_i = 0$, ill-conditioned: some $s_i << s_0$
 - use 0 instead of 1/s_i for those ("truncated")
 - choose small threshold ε , test $s_i < \varepsilon s_0$

Solving $\mathbf{A} \mathbf{X} = \mathbf{B}$ using SVD

- Using truncated A+ B gives least-squares solution:
 - If no solution, gives X that minimizes $||AX-B||^2$
 - If many solutions, minimizes ||X/|² such that AX=B
 - Numerically stable for ill-conditioned matrices
- SVD has many other properties.
 - rank of A is # non-zero singular values, determinant is product of all singular values, ...
 - known algorithm to compute it
- SVD is a powerful hammer!
 - slow O(n³); there are faster algorithms.
 - but SVD always works, is fast enough for us
 - hard to implement. some libraries have bugs (Java3D)

Back to IK

• Reminder: Let $E(\theta) = g - e(\theta)$, error in the current pose $J(\theta) \Delta = E$

- solve for △
 - ith column of J comes from link i

Computing the Jacobian columns

 For a rotational joint, the linear change in the end effector is the cross product of the axis of revolution and a vector from the joint to the end

effector.

$$\frac{\partial \mathbf{e}}{\partial \mathbf{\theta_i}} = \left[\frac{\partial \mathbf{e_x}}{\partial \mathbf{\theta_i}} \frac{\partial \mathbf{e_y}}{\partial \mathbf{\theta_i}} \frac{\partial \mathbf{e_z}}{\partial \mathbf{\theta_i}} \right]^{\mathrm{T}} = \left(\mathbf{a_i}' \times (\mathbf{e} - \mathbf{r_i}') \right)$$

Rotational DOFs

$$\frac{\partial \mathbf{e}}{\partial \boldsymbol{\phi}_i} = \mathbf{a}_i' \times (\mathbf{e} - \mathbf{r}_i')$$

a'_i: unit length rotation axis in world space

r'_i: position of joint pivot in world space

e: end effector position in world space

Computing the Jacobian columns

For a translational joint:

• $vf(\theta)/v\theta_j$ = vector in direction of link

- Notes:
 - Remember to compute in world space!
 - I've assumed one degree of freedom per joint
 - If there are multiple DOFs per joint, refer to CSE169_12.ppt of CSE 169: Computer Animation @ UCSD winter 2004

Building the Jacobian

- To build the entire Jacobian matrix, we just loop through each DOF and compute a corresponding column in the matrix
- If we wanted, we could use more elaborate joint types (scaling, translation along a path, shearing...) and still compute an appropriate derivative
- If absolutely necessary, we could always resort to computing a numerical approximation to the derivative

IK Algorithm

```
solve()
    Vector \theta = \text{getLinkParameters}();
    Vector E = target - computeEndPoint();
    for(k=0; k<max && E.norm() > eps; k++) {
      Matrix J = computeJacobian();
      Matrix J^+ = J.pseudoinverse();
       Vector \Delta = J^+ E;
      if (\max(\Delta) > 2) \Delta *= 2/\max(\Delta);
      \theta = \theta + \Delta;
       putLinkParameters (\theta);
       E = target - computeEndPoint();
```


What's left for IK?

- Joint limits
- Choosing desired configuration
- When to stop the iterations

Joint limits

- Each joint may have limited range.
- Modify algorithm:
 - After finding ∆, test each joint:

$$\theta min_i < (\theta + \Delta)_i < \theta max_i$$

- If it would go out of range
 - set column i of J to 0
 - claims "this parameter has no effect"
- Recompute J+
 - Least-squares solution will make $\Delta_i z 0$
 - For robustness, you may want to force $\Delta_i = 0$
- Find Δ , repeat

Choosing configuration

Suppose you have a homogeneous solution δ:

$$J \delta = 0$$
If Δ solves $J \Delta = E$, then $(\Delta + \delta)$ does also:
$$J (\Delta + \delta) = J \Delta + J \delta = E + 0 = E$$

- Given a desired change C to θ ,
 - project into *null space* of J using (J+J-I) C:
 J [(J+J-I) C] = [J (J+J-I)] C = (JJ+J-J)C = (J-J)C = 0

Choosing configuration

- Given preferred values $heta_{pref}$
 - construct desired change **C**:

$$C_i = \alpha_i (\boldsymbol{\theta} - \boldsymbol{\theta}_{pref})_i$$

- weights α_i give relative strengths
- Modify algorithm:
 - Construct C
 - Use $\Delta = JE + (J^{+}J^{-1})C$
- Null-space projection of C won't harm solution
- Solution will bias towards $heta_{pref}$

Note on numerical algorithms

- Various algorithms for non-linear multidimensional rootfinding...this one works for us
- Root-finding is related to optimization:
 - $F(\theta)=X \Leftrightarrow minimize ||F(\theta)-X||^2$
- Many computer animation problems are optimization problems
- Many algorithms have solving AX = B at their core.

When to Stop

- There are three main stopping conditions we should account for
 - Finding a successful solution (or close enough)
 - Getting stuck in a condition where we can't improve (local minimum)
 - Taking too long (for interactive systems)
- All three of these are fairly easy to identify by monitoring the progress of Φ
- These rules are just coded into the while() statement for the controlling loop

Finding a Successful Solution

- We really just want to get close enough within some tolerance
- If we're not in a big hurry, we can just iterate until we get within some floating point error range
- Alternately, we could choose to stop when we get within some tolerance measurable in pixels
- For example, we could position an end effector to 0.1 pixel accuracy
- This gives us a scheme that should look good and automatically adapt to spend more time when we are looking at the end effector up close (level-of-detail)

Local Minima

- If we get stuck in a local minimum, we have several options
 - Don't worry about it and just accept it as the best we can do
 - Switch to a different algorithm (CCD...)
 - Randomize the pose vector slightly (or a lot) and try again
 - Send an error to whatever is controlling the end effector and tell it to try something else
- Basically, there are few options that are truly appealing, as they are likely to cause either an error in the solution or a possible discontinuity in the motion

Taking Too Long

- In a time critical situation, we might just limit the iteration to a maximum number of steps
- Alternately, we could use internal timers to limit it to an actual time in seconds

Iteration Stepping

- Step size
- Stability
- Performance

Thank you

Translational DOFs

Wan: ?

Lan:202.118.77.1

Wan: 202.118.77.2

Lan: 192.168.1.1

Wan: 202.118.77.5

Lan: 192.168.1.1

How could we visit PC with 192.168.1.2 or 202.118.77.5 from 192.168.1.3?

We can visit 202.118.77.1 from 192.168.1.3 now.

Lan: 192.168.1.3

Lan: 192.168.1.2