PCA and Kernel PCA

Learning Representations. Dimensionality Reduction.

降殖方法.

Maria-Florina Balcan

04/08/2015

LDA

max wt Zow : w是投影向量,记是分类之间的协方影 记是发别之的的协方差 记是发别之的的协方差 2,是类别之的的协方差.

Big & High-Dimensional Data

High-Dimensions = Lot of Features 数据具高錐的、⇒ (内) 元法収 Document classification ⇒正列化/降進 Features per document = thousands of words/unigrams millions of bigrams, contextual information

Surveys - Netflix

480189 users x 17770 movies

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6
Tom	5	?	?	1	3	?
George	?	?	3	1	2	5
Susan	4	3	1	?	5	1
Beth	4	3	?	2	4	2

Big & High-Dimensional Data

High-Dimensions = Lot of Features

MEG Brain Imaging

120 locations \times 500 time points \times 20 objects

Or any high-dimensional image data

Big & High-Dimensional Data.

 Useful to learn lower dimensional representations of the data.

Learning Representations

PCA, Kernel PCA, ICA: Powerful unsupervised learning techniques for extracting hidden (potentially lower dimensional) structure from high dimensional datasets.

- · More efficient use of resources (e.g., time, memory, communication)
- Statistical: fewer dimensions → better generalization
- · Noise removal (improving data quality)
- Further processing by machine learning algorithms

What is PCA: Unsupervised technique for extracting variance structure from high dimensional datasets.

 PCA is an orthogonal projection or transformation of the data into a (possibly lower dimensional) subspace so that the variance of the projected data is maximized.

X- X-M 这里具体操作。 降维后可能减少相关轴数据预处理 是旅转 能够简化.

Intrinsically lower dimensional than the dimension of the ambient space.

If we rotate data, again only one coordinate is more important.

Only one relevant feature

Both features are relevant

Question: Can we transform the features so that we only need to preserve one latent feature?

In case where data lies on or near a low d-dimensional linear subspace, axes of this subspace are an effective representation of the data.

Identifying the axes is known as Principal Components Analysis, and can be obtained by using classic matrix computation tools (Eigen or Singular Value Decomposition).

Principal Components (PC) are orthogonal directions that capture most of the variance in the data.

- First PC direction of greatest variability in data.
- Projection of data points along first PC discriminates data most along any one direction (pts are the most spread out when we project the data on that direction compared to any other directions).

S关注主成分为同 Quick reminder: 故将主成为向量模分量为1

||v||=1, Point x (D-dimensional vector)

Projection of xi onto v is v· xi 利用投影方数

每个点都有自己的报影、构成新数据集

カルー カルル
$$\eta = \frac{1}{2}$$
 ない。 $\eta = \frac{1}{2}$ ない。

预处理

=> mgx Vear(s)=計製(ボリーバッ)=計製パステル)(バーカブリー バ(製(xi-))(xi-))リー バXXTV S.t. ||リー

协方差矩阵

对有约束问题应用拉格朗印

与 matrix
$$V = \begin{bmatrix} \dot{v}_1 & \dot{v}_2 & \cdots & \dot{v}_d \end{bmatrix}_{p \times d}$$
 (毎个 \dot{v}_2 可是相互正友的)

对 $\lambda \dot{v}_1 = 1$
 $\lambda \dot{v}_2 = 1$
 $\lambda \dot{v}_3 = 1$
 $\lambda \dot{v}_4 = 1$
 $\lambda \dot{v}_2 = 1$
 $\lambda \dot{v}_3 = 1$
 $\lambda \dot{v}_4 = 1$
 $\lambda \dot{v}_4 = 1$
 $\lambda \dot{v}_5 = 1$
 $\lambda \dot{v}_7 = 1$
 $\lambda \dot{v}_7$

可以用特证值分解外加速 XX的计算

Principal Components (PC) are orthogonal directions that capture most of the variance in the data.

• 1st PC - direction of greatest variability in data.

 2nd PC - Next orthogonal (uncorrelated) direction of greatest variability

(remove all variability in first direction, then find next direction of greatest variability)

And so on ...

Let $v_1, v_2, ..., v_d$ denote the d principal components.

$$v_i \cdot v_j = 0, i \neq j$$
 and $v_i \cdot v_i = 1, i = j$

Assume data is centered (we extracted the sample mean).

Let $X = [x_1, x_2, ..., x_n]$ (columns are the datapoints)

Find vector that maximizes sample variance of projected data

$$\frac{1}{n} \sum_{i=1}^{n} (\mathbf{v}^T \mathbf{x}_i)^2 = \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v}$$

$$\max_{\mathbf{v}} \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} \quad \text{s.t.} \quad \mathbf{v}^T \mathbf{v} = 1$$

Lagrangian: $\max_{\mathbf{v}} \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} - \lambda \mathbf{v}^T \mathbf{v}$

Wrap constraints into the objective function

$$\partial/\partial \mathbf{v} = 0$$
 $(\mathbf{X}\mathbf{X}^T - \lambda \mathbf{I})\mathbf{v} = 0$ $\Rightarrow (\mathbf{X}\mathbf{X}^T)\mathbf{v} = \lambda \mathbf{v}$

 $(X X^T)v = \lambda v$, so v (the first PC) is the eigenvector of sample correlation/covariance matrix $X X^T$

Sample variance of projection $\mathbf{v}^T X X^T \mathbf{v} = \lambda \mathbf{v}^T \mathbf{v} = \lambda$

Thus, the eigenvalue λ denotes the amount of variability captured along that dimension (aka amount of energy along that dimension).

特征值排序,代表从第一或为利等以主成分
Eigenvalues
$$\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \cdots > \lambda_n$$

- The 1st PC v_1 is the the eigenvector of the sample covariance matrix XX^T associated with the largest eigenvalue
- The 2nd PC v_2 is the the eigenvector of the sample covariance matrix X X associated with the second largest eigenvalue
- And so on ...

- So, the new axes are the eigenvectors of the matrix of sample correlations $X X^T$ of the data.
- Transformed features are uncorrelated.

- Geometrically: centering followed by rotation.
 - Linear transformation

Key computation: eigendecomposition of XX^T (closely related to SVD of X).

Two Interpretations

So far: Maximum Variance Subspace. PCA finds vectors v such that projections on to the vectors capture maximum variance in the data

$$\frac{1}{n}\sum_{i=1}^{n}(\mathbf{v}^{T}\mathbf{x}_{i})^{2}=\mathbf{v}^{T}\mathbf{X}\mathbf{X}^{T}\mathbf{v}$$
 st. $\mathbf{v}^{T}\mathbf{v}=\mathbf{I}$

Alternative viewpoint: Minimum Reconstruction Error. PCA finds vectors v such that projection on to the vectors yields minimum MSE reconstruction

$$\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{x}_i-(\mathbf{v}^T\mathbf{x}_i)\mathbf{v}\|^2$$
 Square Loss 场性流生.

Two Interpretations

E.g., for the first component.

Maximum Variance Direction: 1st PC a vector v such that projection on to this vector capture maximum variance in the data (out of all possible one dimensional projections)

$$\frac{1}{n} \sum_{i=1}^{n} (\mathbf{v}^T \mathbf{x}_i)^2 = \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v}$$

Minimum Reconstruction Error: 1^{st} PC a vector v such that projection on to this vector yields minimum MSE reconstruction

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - (\mathbf{v}^T \mathbf{x}_i) \mathbf{v}\|^2$$

Why? Pythagorean Theorem E.g., for the first component. 最大行差 影小化误差

Maximum Variance Direction: 1st PC a vector v such that projection on to this vector capture maximum variance in the data (out of all possible one dimensional projections)

$$\frac{1}{n} \sum_{i=1}^{n} (\mathbf{v}^T \mathbf{x}_i)^2 = \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v}$$

$$\frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_i - (\mathbf{v}^T \mathbf{x}_i) \mathbf{v}||^2$$

Minimum Reconstruction Error: 1st PC a vector v such that projection on to this vector yields minimum MSE reconstruction

$$blue^2 + green^2 = black^2$$

black² is fixed (it's just the data)

So, maximizing blue² is equivalent to minimizing green²

Dimensionality Reduction using PCA

The eigenvalue λ denotes the amount of variability captured along that dimension (aka amount of energy along that dimension).

Zero eigenvalues indicate no variability along those directions => data lies exactly on a linear subspace

Only keep data projections onto principal components with non-zero eigenvalues, say $v_1, ..., v_k$, where $k=rank(XX^T)$

Original representation

Data point

$$x_i = (x_i^1, \dots, x_i^D)$$

D-dimensional vector

Transformed representation

projection

$$(v_1 \cdot x^i, \dots, v_d \cdot x^i)$$

d-dimensional vector

Dimensionality Reduction using PCA

Original representation

Data point

$$x_i = (x_i^1, \dots, x_i^D)$$

D-dimensional vector

Transformed representation

projection

$$(v_1 \cdot x^i, \dots, v_d \cdot x^i)$$

d-dimensional vector

Dimensionality Reduction using PCA

In high-dimensional problems, data sometimes lies near a linear subspace, as noise introduces small variability

Only keep data projections onto principal components with large eigenvalues

Can ignore the components of smaller significance.

Might lose some info, but if eigenvalues are small, do not lose much

Example: faces

Figenfaces from 7562 images:

top left image is linear combination of rest.

Sirovich & Kirby (1987) Turk & Pentland (1991)

Can represent a face image using just 15 numbers!

PCA Discussion

Strengths

Eigenvector method

No tuning of the parameters

No local optima

Limited to second order statistics

Limited to linear Limited to linear projections 可以用 fernel 解疗

Kernel PCA (Kernel Principal Component Analysis)

Useful when data lies on or near a low d-dimensional linear subspace of the ϕ -space associated with a kernel

Properties of PCA

• Given a set of n centered observations $x_i \in \mathbb{R}^D$, 1^{st} PC is the direction that maximizes the variance

$$\begin{aligned} & - v_1 = argmax_{\|v\|=1} \frac{1}{n} \sum_i (v^\top x_i)^2 \\ & = argmax_{\|v\|=1} \frac{1}{n} v^\top X X^\top v \end{aligned}$$

- v_1 can be found by solving the eigenvalue problem:
 - $Cv_1 = \lambda v_1$ (of maximum λ)

Properties of PCA

• Given a set of n centered observations $x_i \in R^D$, 1^{st} PC is the direction that maximizes the variance

$$- X = (x_1, x_2, \dots, x_n)$$

$$\begin{aligned} - & v_1 = argmax_{\|v\|=1} \frac{1}{n} \sum_i (v^\top x_i)^2 \\ &= argmax_{\|v\|=1} \frac{1}{n} v^\top X X^\top v \end{aligned}$$

- Covariance matrix $C = \frac{1}{n}XX^{T}$ is a DxD matrix the (i,j) entry of XX^{T} is the correlation of the i-th coordinate of examples with jth coordinate of examples
- To use kernels, need to use the inner-product matrix X^TX .

Alternative expression for PCA

The principal component lies in the span of the data

$$v_1 = \sum_i \alpha_k x_i = X\alpha$$

Why? 1st PC is direction of largest variance, and for any direction outside of the span of the data, only get more variance if we project that direction into the span.

Plug this in we have

$$Cv_1 = \frac{1}{n}XX^{\mathsf{T}}X\alpha = \lambda X\alpha$$

• Now, left-multiply the LHS and RHS by X^T .

$$\frac{1}{n}X^{\mathsf{T}}XX^{\mathsf{T}}X\alpha = \lambda X^{\mathsf{T}}X\alpha$$

Only depends on the inner product matrix

Kernel PCA

Key Idea: Replace inner product matrix by kernel matrix

- Let $K = \left[K(x^i, x^j)\right]_{ij}$ be the matrix of all dot-products in the ϕ -space.
- Kernel PCA: replace " X^TX " with K. $\frac{1}{n}KK\alpha = \lambda K\alpha$, or equivalently, $\frac{1}{n}K\alpha = \lambda \alpha$
- **Key computation:** form an n by n kernel matrix K, and then perform eigen-decomposition on K.

What You Should Know

- Principal Component Analysis (PCA)
 - What PCA is, what is useful for.
 - Both the maximum variance subspace and the minimum reconstruction error viewpoint.
- Kernel PCA

Additional material on computing the principal components and ICA

Power method for computing PCs

Given matrix $X \in \mathbb{R}^{D \times n}$, compute the top eigenvector of $X X^T$

Initialize with random $\hat{v} \in \mathbb{R}^D$

Repeat

$$\hat{\mathbf{v}} \leftarrow \mathbf{X} \ \mathbf{X}^T \hat{\mathbf{v}}$$

$$\hat{\mathbf{v}} \leftarrow \hat{\mathbf{v}} / ||\hat{\mathbf{v}}||$$

Claim

For any $\epsilon > 0$, whp over choice of initial vector, after $O\left(\frac{1}{\epsilon}\log\frac{d}{\epsilon}\right)$ iterations, we have $\hat{v}^TXX^T\hat{v} \geq (1-\epsilon)\lambda_1$.

Then can subtract the \hat{v} component off of each example and repeat to get the next.

Eigendecomposition

Any symmetric matrix $A = XX^T$ is guaranteed to have an eigendecomposition with real eigenvalues: $A = V \Lambda V^T$.

$$\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_3 & ... \end{bmatrix} = \sum_i \lambda_i v_i v_i^T$$

$$\begin{bmatrix} A & V & \Lambda & V^T \\ (D \times D) & (D \times D) & (D \times D) \end{bmatrix}$$

$$\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_3 & ... \end{bmatrix}$$

$$\begin{bmatrix} V^T & V^$$

Matrix Λ is diagonal with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots$ on the diagonal. Matrix V has the eigenvectors as the columns.

Singular Value Decomposition (SVD)

Eigendecomp of XX^T is closely related to SVD of X.

Given a matrix $X \in \mathbb{R}^{D \times n}$, the SVD is a decomposition: $X^T = USV^T$

$$\begin{bmatrix} S & V^T \\ (n \times D) & (n \times d) \end{bmatrix} = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ (d \times d) & (d \times D) \end{bmatrix} = \sum_i \sigma_i u_i v_i^T$$

- S is a diagonal matrix with the singular values $\sigma_1, ..., \sigma_d$ of X.
- Columns of U, V are orthogonal, unit length.
- So, $XX^T = VSU^TUSV^T = VS^2V^T = eigendecomposition of <math>XX^T$.

So, $\lambda_i = \sigma_i^2$ and can read off the solution from the SVD.

Singular Value Decomposition (SVD)

Eigendecomp of XX^T is closely related to SVD of X.

Given a matrix $X \in \mathbb{R}^{D \times n}$, the SVD is a decomposition: $X^T = USV^T$

$$= \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ \vdots & \vdots \\ S & V^T \\ (a \times D) & (a \times d) \end{bmatrix} = \sum_i \sigma_i u_i v_i^T$$

• In fact, can view the rows of US as the coordinates of each example along the axes given by the d eigenvectors.

So, $\lambda_i = \sigma_i^2$ and can read off the solution from the SVD.

Independent Component Analysis (ICA)

Find a linear transformation

$$x = V \cdot s$$

for which coefficients $s = (s_1, s_2, ..., s_D)^T$ are statistically independent

$$p(s_1, s_2, ..., s_D) = p_1(s_1)p_2(s_2) ... p_n(s_D)$$

Algorithmically, we need to identify matrix V and coefficients s, s.t. under the condition $x = V^T \cdot s$ the **mutual information** between $s_1, s_2, ..., s_D$ is minimized:

$$I(s_1, s_2, ..., s_D) = \sum_{i=1}^{D} H(s_i) - H(s_1, s_2, ..., s_D)$$

PCA finds directions of maximum variation, ICA would find directions most "aligned" with data.