Problem Short 4 11) 101 6 m. TP1287 Z== <11, 2, 3, 43 27= 2 mod 5 (2693 · 26 12 = 1 mod 5 22 = 4 mod 5 4.26 24 = 1 mod 5 47= 4 mods 31 = 3 mod 5 42= 1 mod 5 32 = 4 mod 5 () 33 = 2 mod 5 Sanone 34 = 1 mod 5 (02 Zh*=21;25,3;4,5,63 100011 Sunder Sandere (45)= 5 JUM i Diocolie : 5:

b)
$$Z_{7}^{+} = \frac{1}{2} \cdot 1, 2, 3, 4, 5, 63$$
 $1^{2} \equiv 1 \mod 7$
 $2^{1} \equiv 2 \mod 7$
 $3^{1} \equiv 3 \mod 7$
 $3^{2} \equiv 2 \mod 7$
 $3^{2} \equiv 2 \mod 7$
 $3^{3} \equiv 6 \mod 7$
 $3^{4} \equiv 4 \mod 7$
 $3^{5} \equiv 5 \mod 7$
 $3^{6} \equiv 1 \mod 7$
 $4^{1} \equiv 4 \mod 7$
 $4^{2} \equiv 2 \mod 7$
 $4^{2} \equiv 2 \mod 7$
 $5^{1} \equiv 5 \mod 7$
 $5^{1} \equiv 5 \mod 7$
 $5^{2} \equiv 4 \mod 7$
 $5^{3} \equiv 6 \mod 7$
 $5^{3} \equiv 6 \mod 7$
 $5^{4} \equiv 7 \mod 7$
 $5^{4} \equiv 7 \mod 7$
 $5^{5} \equiv 7 \mod 7$
 $5^{5} \equiv 7 \mod 7$
 $5^{6} \equiv 7 \mod 7$

2)
$$|7/5| = 4$$
 $|7/7| = 6$ $|7/3| = 12$

Scanned by CamScanner

3)
$$P=467$$
 and $x=2$

a) $a=3$

Alice

23 mod $467=8=A$
 32^{3} mod $467=\frac{A}{3}$
 32^{3} mod $467=\frac{A}{3}$

Alice 51 11 31 12 8 1 2 1345 mod 467 2 400 mod 467 8 4 51 51 4 3 2 1345 mod 467 = 84 / 601 z 137 137_

(d

bro

that would immediately allow to recognise that would immediately allow to recognise the private key is I, the public FS private key is I, the public key would be \propto , is an altacker would deted this identity, he would know kpr = 1 public key would take IS kpr = P - 1, public key would take Is value I according to FLT, another could deduce kpr = P - 1

5) Compute β : $\beta = \alpha d \mod p$ Encrypt $(K_{E}, y) = (\alpha i \mod p, \alpha \beta i \mod p)$ Decrypt $(K_{E}, y) = y(f^{q}_{E})^{-1} \mod p$ 1) $(K_{E}, y) = (29, 296) \quad \alpha = 33$ 2) $(K_{E}, y) = (125, 301) \quad \alpha = 33$ 3) $(K_{E}, y) = (80, 174) \quad \alpha = 248$ 4) $(K_{E}, y) = (320, 139), \quad \alpha = 248$

6)
$$y^2 = x^3 + 2x + 2 \mod 1$$

 $4a^3 + 27b^2 \neq 0 \mod p$
 $4(2)^3 + 27(2)^2$
 $= 32 + 108 = 140$
 $14 \neq 0 \mod 17$
b) $(2, 7) + (5, 2)$
Pouit addition: -
 $S = \frac{y_2 - y_1}{32 - x_1} \mod p$
 $= \frac{7}{5 - 2} \pmod{17}$
 $= -5(3^{-1}) \mod 17$
 $17 = 3(5) + 2$
 $3 = 2(1) + 1$
 $2 = 1(2) + 0$
 $1 = 3 - 2$
 $= 3 - (17 - 3(5))$
 $= -17 + 6(3)$

Finewer of
$$3 \text{ is } 6$$
 $S = -5(6) \text{ mod } 17$
 $S = 4$

$$23 = 4^2 - 2 - 5 \mod 17$$
.

$$y_{3} = 4(2-5) - 7 \mod 17$$
= 15

apout 16.26

b)
$$(3,6)+(3,6)$$

$$S = \frac{3(3^2) + 2}{2(6)}$$

$$= \frac{29}{12} \mod 17$$

$$|2x = 1 \mod 17$$

$$|7 = 12(1) + 5| = 5 - 2(2)$$

$$|7 = 5(2) + 2| = 5 - 2(12 - 5(2))$$

$$|7 = 5(2) + 2| = 5(17 - 12) - 2(12)$$

$$|7 = 5(2) + 1| = 5 - 2(2)$$

$$|7 = 5(2) + 2| = 5(17 - 12) - 2(12)$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 2(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12) - 3(12)|$$

$$|7 = 5(17 - 12)|$$

$$|7 = 5(17 - 12)|$$

$$|7 = 5(17 - 12)|$$

$$|7 = 5(17 - 12)|$$

$$|7 = 5(17 - 12)|$$

$$|7 = 5(17 - 12)|$$

$$|7 = 5(17 - 12)|$$

7)
$$17+1-2\sqrt{17} \approx 9$$

 $17+1+2\sqrt{17} \approx 26$
 $17+1+2\sqrt{17} \approx 26$
 $9 \leq 19 \leq 26$

 $\int \int \int y^2 = x^3 + 3x + 2 \mod 7$ a) The paints of E are { (0, 3), (0, 4), (2, 3), (2, 4), (4,1) 07 (4,6), 65,3, (5,4)3 Group order is #G=#9 3) O. Q = O 10 x= (0,3) 20 4=(2,3) 05.17.3-1+71 3. Q= (5,4) 17-11-120172026 4. CX = (4, b) 15 5 14 5 B 5. x= (4,1) 6. a= (5,3) 70 X= (2,4) 8, Q= (0,4) 9 × 0 = (0) = 0 × 0 ord(q)=9=#G

Shift

of is primitive reet 9) $E : y^2 = x^3 + 4x + 20$ 7/29 a) K=9 9P= (1001).P Step 0:- Compute P=1P P= 10P P P+P=2P step la :- Compute P=(100)P D 2P+2P=4P Step 2a: - Compute P= (1000)PD 4P+4P=8P Step 3a:- Compute P= (100)P=8P+PA sten 36: - Compate (4,10) & Final b) K=20 ·ansures 2019 Step 0:- Compute P= (P P+P=2P=10.P.7 Step (a :- Compute Step 2a: - Compute 2P.2P = 4P = 100P @ 4POP= 5P= 101P A Step 26: - Compute 5P. 5P= 10P= 1010 D Step 3a: - Compute 10P°10P=20P= 10100P Step 49: - Compute P= (19, 13)

$$P = (5, 9)$$

$$(5, 9) + (5, 9)$$

$$S = \frac{3\alpha_1^2 + \alpha}{2y_1} \mod 1$$

$$= \frac{3(5)^2 + 1}{2(9)} \mod 1$$

$$= 76 \cdot 18^{-1} \mod 1$$

$$= 76 \cdot 8 \mod 1 = 3 \mod 1$$

$$\alpha_3 = 5^2 - \alpha_1 - \alpha_2 \mod 1$$

$$= 3^2 - 5 - 5 \mod 1$$

$$= 10 \mod 1$$

$$y_3 = S(\alpha_1 - \alpha_3) - y_1 \mod 1$$

$$= 3(5 - 16) - 9 \mod 1$$

$$= 9 \mod 1$$

$$(10, 9) \pmod 1$$

$$(5, 9) + (10, 9)$$

$$S = 9 - 9 = 0$$

$$10 - 5$$