Puzzle: switch positions of dark and white knights

Solving computationally hard problems

Ashutosh Gupta

IITB, India

Compile date: 2023-01-31

Computers solve problems

Business processes

► Search

► Weather prediction

Problems are

Easy, Hard, or Impossible

Best way to Bandra

Hard problems

► Everywhere and important

► Class scheduling, optimal circuits, password cracking

► Needs solving

How do we solve?

► Clever algorithms

Heuristics

► Al based approximate solving (e.g. AlphaGo)

⊕⊕⑤
TalkeCS103 2023 2023
Ashutosh Gupta
IITB, India

Limited resources

ightharpoonup How much computation per second? 10^9

► How much time? 10⁵

► How many computers? 10⁵

 $pprox 10^{19}$ is a hard limit.

©()©()

Topic 1.1

Example hard problem: graph coloring

Graph colorinng problem

Given a graph and a set colors, assign a color to each node such that no edge has same color in both ends.

Example

Example 1.1

A graph coloring using three colors.

Can we color the above using two color?

Exercise

Example 1.2

Can we color the following using three color?

Exercise

Example 1.3

How many ways can we color using three colors?

Let us look at a graph coloring solver.

How does this solver work?

► Make Boolean constraints

► Call a solver to solve the constraints

► The solvers are called SAT solvers.

⊕⊕⊚ Talk@CS103 2023 2023 Ashutosh Gupta IITB, India 1-

Graph coloring: definition again

color a graph($\{v_1, \ldots, v_n\}, E$) with d colors such that if $(v_i, v_j) \in E$ then the colors of v_i and v_j are different.

@()(\$(9)

Talk@CS103 2023 2023

Graph coloring: Boolean variables

Variables: p_{ij} for $i \in 1..n$ and $j \in 1..d$.

 p_{ij} is true if and only if v_i is assigned jth color.

@()(\$(9)

Talk@CS103 2023 2023

Boolean constraints: Each vertex has at least one color

for each $i \in 1..n$

$$p_{i1}$$
 OR ... OR p_{id}

@()\$(0)

Talk@CS103 2023 2023

Boolean constraints: if $(v_i, v_i) \in E$ then color of v_i is different from v_i

for each
$$k \in 1..d$$
, $(v_i, v_j) \in E$

(NOT
$$p_{ik}$$
) OR (NOT p_{ik})

Ashutosh Gupta Talk@CS103 2023 2023 IITB. India

Exercise 1.1

Do we need "every vertex has at most one color" to solve the problem?

Lessons from experiments : hard problems are not always hard

Not all instances are hard

Real-world instances may be easy

➤ SAT solvers do solve real-world instances of hard problems

⊕⊕⊕⊚ TalkeCS103 2023 2023 Ashutosh Gupta IITB, India 2

Final thought: Can you solve?

► 2-body problem

► 3-body problem

► 10²³-body problem

Medium sized problems are unsolved, e.g., biology.

©(1) Talk(CS103 2023 2023 Ashutosh Gupta IITB, India 21