Тема:

Разложение в бесконечную цепную дробы

Сергей Витальевич Рыбин svrybin@etu.ru

СПбГЭТУ «ЛЭТИ», кафедра «Алгоритмической математики»

14 января 2023 г.

1 Представляем произвольное вещественное число $\alpha \in \mathbb{R}$ в виде **цепной (непрерывной)** дроби.

1 Представляем произвольное вещественное число $\alpha \in \mathbb{R}$ в виде **цепной (непрерывной)** дроби.

$$\begin{split} &\alpha = q_0 + \eta_1 = q_0 + \frac{1}{\alpha_1}\,, \quad \alpha_1 > 1\,, \quad q_0 = [\alpha]\,, \\ &\alpha_1 = q_1 + \eta_2 = q_1 + \frac{1}{\alpha_2}\,, \quad \alpha_2 > 1\,, \quad q_1 = [\alpha_1]\,, \end{split}$$

$$\begin{split} &\alpha_{s-2} = q_{s-2} + \eta_{s-1} = q_{s-2} + \frac{1}{\alpha_{s-1}} \,, \quad \alpha_{s-1} > 1 \,, \quad q_{s-2} = [\alpha_{s-2}] \,, \\ &\alpha_{s-1} = q_{s-1} + \eta_s \,. \end{split} \tag{1}$$

Из (1) получаем следующее разложение α в бесконечную непрерывную дробь:

$$\alpha = q_0 + \cfrac{1}{q_1 + \cfrac{1}{q_2 + \cfrac{1}{\cdots + \cfrac{1}{q_{s-1} + \eta_s}}}} = [q_0; q_1, \dots, q_k, \dots]. \tag{2}$$

1 Представляем произвольное вещественное число $\alpha \in \mathbb{R}$ в виде **цепной (непрерывной)** дроби.

$$\begin{split} &\alpha = q_0 + \eta_1 = q_0 + \frac{1}{\alpha_1}\,, \quad \alpha_1 > 1\,, \quad q_0 = [\alpha]\,, \\ &\alpha_1 = q_1 + \eta_2 = q_1 + \frac{1}{\alpha_2}\,, \quad \alpha_2 > 1\,, \quad q_1 = [\alpha_1]\,, \end{split}$$

.....

$$\begin{split} &\alpha_{s-2} = q_{s-2} + \eta_{s-1} = q_{s-2} + \frac{1}{\alpha_{s-1}} \,, \quad \alpha_{s-1} > 1 \,, \quad q_{s-2} = [\alpha_{s-2}] \,, \\ &\alpha_{s-1} = q_{s-1} + \eta_s \,. \end{split} \tag{1}$$

Из (1) получаем следующее разложение α в бесконечную непрерывную дробь:

$$\alpha = q_0 + \cfrac{1}{q_1 + \cfrac{1}{q_2 + \cfrac{1}{ \cdots + \cfrac{1}{q_1 + \cfrac{1}{q_2 +$$

 $oxed{3}$ Дроби, возникающие при разложении вида (2), называют **подходящими дробями**. Числа $oldsymbol{q}_0,oldsymbol{q}_1,\dots,oldsymbol{q}_k,\dots$ называют $oxed{3}$ веньями дроби.

$$\delta_0 = q_0, \quad \delta_1 = q_0 + \frac{1}{q_1}, \quad \delta_2 = q_0 + \frac{1}{q_1 + \frac{1}{q_2}} \quad \cdots$$
 (3)

4 Обозначим P_k и Q_k — числитель и знаменатель подходящей дроби δ_k из (3). Тогда

$$\begin{cases} P_k = q_k P_{k-1} + P_{k-2}, \\ Q_k = q_k Q_{k-1} + Q_{k-2}, k \geqslant 1, \end{cases} \begin{cases} P_{-1} = 1, \ P_0 = q_0, \\ Q_{-1} = 0, \ Q_0 = 1. \end{cases}$$
 (4)

4 Обозначим P_k и Q_k — числитель и знаменатель подходящей дроби δ_k из (3). Тогда

$$\begin{cases} P_k = q_k P_{k-1} + P_{k-2}, \\ Q_k = q_k Q_{k-1} + Q_{k-2}, k \geqslant 1, \end{cases} \begin{cases} P_{-1} = 1, \ P_0 = q_0, \\ Q_{-1} = 0, \ Q_0 = 1. \end{cases}$$

Формула (4) позволяет вычислять отдельно числители и знаменатели подходящих дробей.

4 Обозначим P_k и Q_k — числитель и знаменатель подходящей дроби δ_k из (3). Тогда

$$\begin{cases} P_k = q_k P_{k-1} + P_{k-2}, \\ Q_k = q_k Q_{k-1} + Q_{k-2}, k \geqslant 1, \end{cases} \begin{cases} P_{-1} = 1, \ P_0 = q_0, \\ Q_{-1} = 0, \ Q_0 = 1. \end{cases}$$

Формула (4) позволяет вычислять отдельно числители и знаменатели подходящих дробей.

5 Как оценить приближение δ_k к числу α в (1) с точностью до ε ? Справедлива оценка:

$$|\alpha - \delta_k| \le |\delta_{k+1} - \delta_k| = \frac{1}{Q_{k+1}Q_k}. \tag{5}$$

4 Обозначим P_k и Q_k — числитель и знаменатель подходящей дроби δ_k из (3). Тогда

$$\begin{cases} P_k = q_k P_{k-1} + P_{k-2}, \\ Q_k = q_k Q_{k-1} + Q_{k-2}, k \geqslant 1, \end{cases} \begin{cases} P_{-1} = 1, \ P_0 = q_0, \\ Q_{-1} = 0, \ Q_0 = 1. \end{cases}$$

Формула (4) позволяет вычислять отдельно числители и знаменатели подходящих дробей.

5 Как оценить приближение δ_k к числу α в (1) с точностью до ε ? Справедлива оценка:

$$|\alpha - \delta_k| \leqslant |\delta_{k+1} - \delta_k| = \frac{1}{Q_{k+1} Q_k}. \tag{5}$$

 $oldsymbol{0}$ Оценка (1) требует дополнительного вычислительного ресурса: для оценки δ_k требуется определить знаменатель следующей подходящей дроби Q_{k+1} .

4 Обозначим P_k и Q_k — числитель и знаменатель подходящей дроби δ_k из (3). Тогда

$$\begin{cases} P_k = q_k P_{k-1} + P_{k-2}, \\ Q_k = q_k Q_{k-1} + Q_{k-2}, k \geqslant 1, \end{cases} \begin{cases} P_{-1} = 1, \ P_0 = q_0, \\ Q_{-1} = 0, \ Q_0 = 1. \end{cases}$$
 (4)

Формула (4) позволяет вычислять отдельно числители и знаменатели подходящих дробей.

5 Как оценить приближение δ_k к числу α в (1) с точностью до ε ? Справедлива оценка:

$$|\alpha - \delta_k| \leqslant |\delta_{k+1} - \delta_k| = \frac{1}{Q_{k+1}Q_k}.\tag{5}$$

 $oldsymbol{6}$ Оценка (1) требует дополнительного вычислительного ресурса: для оценки δ_k требуется определить знаменатель следующей подходящей дроби Q_{k+1} .

Используем более грубую оценку:

$$|\alpha - \delta_m| \leqslant \frac{1}{Q_{m+1}Q_m} < \frac{1}{Q_m^2} < \varepsilon. \tag{6}$$

4 Обозначим P_k и Q_k — числитель и знаменатель подходящей дроби δ_k из (3). Тогда

$$\begin{cases} P_k = q_k P_{k-1} + P_{k-2}, \\ Q_k = q_k Q_{k-1} + Q_{k-2}, k \geqslant 1, \end{cases} \begin{cases} P_{-1} = 1, \ P_0 = q_0, \\ Q_{-1} = 0, \ Q_0 = 1. \end{cases}$$
 (4)

Формула (4) позволяет вычислять отдельно числители и знаменатели подходящих дробей.

5 Как оценить приближение δ_k к числу α в (1) с точностью до ε ? Справедлива оценка:

$$|\alpha - \delta_k| \leqslant |\delta_{k+1} - \delta_k| = \frac{1}{Q_{k+1} Q_k}. \tag{5}$$

 $oldsymbol{6}$ Оценка (1) требует дополнительного вычислительного ресурса: для оценки δ_k требуется определить знаменатель следующей подходящей дроби Q_{k+1} .

Используем более грубую оценку:

$$|\alpha - \delta_m| \leqslant \frac{1}{Q_{m+1}Q_m} < \frac{1}{Q_m^2} < \varepsilon. \tag{6}$$

 $\boxed{1} \ \ \text{Таким образом для достижения нужной точности } \varepsilon \ \text{вычисляем подходящие дроби } \{\delta_m\} \ \text{до тех пор, пока } Q_m^2 \leqslant \frac{1}{\varepsilon}.$

4 Обозначим P_k и Q_k — числитель и знаменатель подходящей дроби δ_k из (3). Тогда

$$\begin{cases} P_k = q_k P_{k-1} + P_{k-2}, \\ Q_k = q_k Q_{k-1} + Q_{k-2}, k \geqslant 1, \end{cases} \begin{cases} P_{-1} = 1, P_0 = q_0, \\ Q_{-1} = 0, Q_0 = 1. \end{cases}$$

$$(4)$$

Формула (4) позволяет вычислять отдельно числители и знаменатели подходящих дробей.

 \bullet Как оценить приближение δ_k к числу α в (1) с точностью до ε ? Справедлива оценка:

$$|\alpha - \delta_k| \leqslant |\delta_{k+1} - \delta_k| = \frac{1}{Q_{k+1} Q_k}. \tag{5}$$

 $oldsymbol{6}$ Оценка (1) требует дополнительного вычислительного ресурса: для оценки δ_k требуется определить знаменатель следующей подходящей дроби Q_{k+1} .

Используем более грубую оценку:

$$|\alpha - \delta_m| \leqslant \frac{1}{Q_{m+1}Q_m} < \frac{1}{Q_m^2} < \varepsilon. \tag{6}$$

- П Иррациональное число, являющееся корнем некоторого квадратного уравнения с целыми коэффициентами, называют **квадратичной иррациональностью**, например $\frac{5+\sqrt{17}}{4}$, $\frac{7+\sqrt{29}}{10}$, $3+\sqrt{7}$.

 ${4}$ Обозначим P_k и Q_k — числитель и знаменатель подходящей дроби δ_k из (3). Тогда

$$\left\{ \begin{array}{l} P_k = q_k P_{k-1} + P_{k-2}, \\ Q_k = q_k Q_{k-1} + Q_{k-2}, k \geqslant 1, \end{array} \right. \left. \left\{ \begin{array}{l} P_{-1} = 1, \; P_0 = q_0, \\ Q_{-1} = 0, \; Q_0 = 1. \end{array} \right.$$

Формула (4) позволяет вычислять отдельно числители и знаменатели подходящих дробей.

5 Как оценить приближение δ_k к числу α в (1) с точностью до ε ? Справедлива оценка:

$$|\alpha - \delta_k| \le |\delta_{k+1} - \delta_k| = \frac{1}{Q_{k+1} Q_k}. \tag{5}$$

 $oldsymbol{6}$ Оценка (1) требует дополнительного вычислительного ресурса: для оценки δ_k требуется определить знаменатель следующей подходящей дроби Q_{k+1} .

Используем более грубую оценку:

$$|\alpha - \delta_m| \leqslant \frac{1}{Q_{m+1}Q_m} < \frac{1}{Q_m^2} < \varepsilon. \tag{6}$$

- П Иррациональное число, являющееся корнем некоторого квадратного уравнения с целыми коэффициентами, называют **квадратичной иррациональностью**, например $\frac{5+\sqrt{17}}{4}$, $\frac{7+\sqrt{29}}{10}$, $3+\sqrt{7}$.
- Квадратичные иррациональности и только они представимы в виде бесконечной периодической цепной дроби.

Задача

 $oldsymbol{1}$ представить квадратичную иррациональность $\sqrt{180}$ в виде периодической цепной дроби;

Задача

- представить квадратичную иррациональность $\sqrt{180}$ в виде периодической цепной дроби;
- **2** вычислить значение $\sqrt{180}$ с точностью до $\varepsilon = 10^{-5}$.

Задача

- $oldsymbol{1}$ представить квадратичную иррациональность $\sqrt{180}$ в виде периодической цепной дроби;
- **2** вычислить значение $\sqrt{180}$ с точностью до $\varepsilon = 10^{-5}$.
- Получаем разложение (1) для √180:

$$\begin{split} \sqrt{180} &= 13 + \frac{1}{\alpha_1}\,, \\ \alpha_1 &= \frac{1}{\sqrt{180} - 13} = \frac{\sqrt{180} + 13}{11} = 2 + \frac{1}{\alpha_2}\,, \\ \alpha_2 &= \frac{11}{\sqrt{180} - 9} = \frac{\sqrt{180} + 9}{9} = 2 + \frac{1}{\alpha_3}\,, \\ \alpha_3 &= \frac{9}{\sqrt{180} - 9} = \frac{\sqrt{180} + 9}{11} = 2 + \frac{1}{\alpha_4}\,, \\ \alpha_4 &= \frac{11}{\sqrt{180} - 13} = \sqrt{180} + 13 = 26 + \frac{1}{\alpha_5}\,. \end{split}$$

(7)

Задача

- $oldsymbol{1}$ представить квадратичную иррациональность $\sqrt{180}$ в виде периодической цепной дроби;
- **2** вычислить значение $\sqrt{180}$ с точностью до $\varepsilon = 10^{-5}$.
- Получаем разложение (1) для √180:

$$\begin{split} \sqrt{180} &= 13 + \frac{1}{\alpha_1}, \\ \alpha_1 &= \frac{1}{\sqrt{180} - 13} = \frac{\sqrt{180} + 13}{11} = 2 + \frac{1}{\alpha_2}, \\ \alpha_2 &= \frac{11}{\sqrt{180} - 9} = \frac{\sqrt{180} + 9}{9} = 2 + \frac{1}{\alpha_3}, \\ \alpha_3 &= \frac{9}{\sqrt{180} - 9} = \frac{\sqrt{180} + 9}{11} = 2 + \frac{1}{\alpha_4}, \\ \alpha_4 &= \frac{11}{\sqrt{180} - 13} = \sqrt{180} + 13 = 26 + \frac{1}{\alpha_5}. \end{split}$$

① Заметим, что в схеме 7 $\alpha_5 = \alpha_1$ и происходит возврат к первому уравнению. Процесс **зацикливается**. Таким образом, получаем представление $\sqrt{180} = [13, (2, 2, 2, 26)]$.

1 Вычислим теперь $\sqrt{180}$ с точностью до $\varepsilon = 10^{-5}$.

1 Вычислим теперь $\sqrt{180}$ с точностью до $\varepsilon=10^{-5}$.

Используя рекуррентные соотношения для числителей и знаменателей подходящих дробей (4) из равенств предыдущего шага (7) получаем следующие последовательности (таблица 1.)

 \bigcirc Вычислим теперь $\sqrt{180}$ с точностью до $\varepsilon=10^{-5}$.

Используя рекуррентные соотношения для числителей и знаменателей подходящих дробей (4) из равенств предыдущего шага (7) получаем следующие последовательности (таблица 1.)

Таблица 1

s		0	1	2	3	4
q_s		13	2	2	2	26
P_s	1	13	27	67	161	4253
Q_s	0	1	2	5	12	317

Вычислим теперь $\sqrt{180}$ с точностью до $\varepsilon=10^{-5}$.

Используя рекуррентные соотношения для числителей и знаменателей подходящих дробей (4) из равенств предыдущего шага (7) получаем следующие последовательности (таблица 1.)

Таблица 1

s		0	1	2	3	4
q_s		13	2	2	2	26
P_s	1	13	27	67	161	4253
Q_s	0	1	2	5	12	317

2 Нужная точность будет достигнута, когда $\frac{1}{{Q_k}^2}$ станет меньше arepsilon.

 \bigcirc Вычислим теперь $\sqrt{180}$ с точностью до $\varepsilon=10^{-5}$.

Используя рекуррентные соотношения для числителей и знаменателей подходящих дробей (4) из равенств предыдущего шага (7) получаем следующие последовательности (таблица 1.)

Таблица 1

s		0	1	2	3	4
q_s		13	2	2	2	26
P_s	1	13	27	67	161	4253
Q_s	0	1	2	5	12	317

2 Нужная точность будет достигнута, когда $\frac{1}{Q_k^2}$ станет меньше ε . Очевидно, что

$$\frac{1}{317^2} = \frac{1}{10489} < 10^{-5} \, .$$

 \bigcirc Вычислим теперь $\sqrt{180}$ с точностью до $\varepsilon=10^{-5}$.

Используя рекуррентные соотношения для числителей и знаменателей подходящих дробей (4) из равенств предыдущего шага (7) получаем следующие последовательности (таблица 1.)

Таблица 1

s		0	1	2	3	4
q_s		13	2	2	2	26
P_s	1	13	27	67	161	4253
Q_s	0	1	2	5	12	317

2 Нужная точность будет достигнута, когда $\dfrac{1}{{Q_k}^2}$ станет меньше $\varepsilon.$

Очевидно, что

$$\frac{1}{317^2} = \frac{1}{10489} < 10^{-5} \,.$$

Отсюда следует, что

$$\sqrt{180} \simeq \frac{4253}{317} \! = 13\,,41640\ldots$$

1 Вычислим теперь $\sqrt{180}$ с точностью до $\varepsilon=10^{-5}$.

Используя рекуррентные соотношения для числителей и знаменателей подходящих дробей (4) из равенств предыдущего шага (7) получаем следующие последовательности (таблица 1.)

Таблица 1

s		0	1	2	3	4
q_s		13	2	2	2	26
P_s	1	13	27	67	161	4253
Q_s	0	1	2	5	12	317

2 Нужная точность будет достигнута, когда $\dfrac{1}{{Q_k}^2}$ станет меньше $\varepsilon.$

$$\frac{1}{317^2} = \frac{1}{10489} < 10^{-5} \, .$$

Отсюда следует, что

Очевидно, что

$$\sqrt{180} \simeq \frac{4253}{317} = 13,41640...$$

Получена более высокая точность, чем ε , так как оценка (6) достаточно грубая.

Задача

 $oldsymbol{1}$ представить квадратичную иррациональность $\sqrt{368}$ в виде периодической цепной дроби;

Задача

- представить квадратичную иррациональность $\sqrt{368}$ в виде периодической цепной дроби;
- вычислить значение $\sqrt{368}$ с точностью до $\varepsilon = 10^{-5}$.

Задача

- представить квадратичную иррациональность $\sqrt{368}$ в виде периодической цепной дроби;
- **2** вычислить значение $\sqrt{368}$ с точностью до $\varepsilon = 10^{-5}$.
- Аналогично предыдущему примеру получаем разложение (1) для √368:

$$\begin{split} \sqrt{368} &= 19 + \frac{1}{\alpha_1}\,, \\ \alpha_1 &= \frac{1}{\sqrt{368} - 19} = \frac{\sqrt{368} + 19}{7} = 5 + \frac{1}{\alpha_2}\,, \\ \alpha_2 &= \frac{7}{\sqrt{368} - 16} = \frac{\sqrt{368} + 16}{16} = 2 + \frac{1}{\alpha_3}\,, \\ \alpha_3 &= \frac{16}{\sqrt{368} - 16} = \frac{\sqrt{368} + 16}{7} = 5 + \frac{1}{\alpha_4}\,, \\ \alpha_4 &= \frac{7}{\sqrt{368} - 19} = \sqrt{368} + 19 = 38 + \frac{1}{\alpha_5}\,. \end{split}$$

(8)

Задача

- 1 представить квадратичную иррациональность $\sqrt{368}$ в виде периодической цепной дроби;
- **2** вычислить значение $\sqrt{368}$ с точностью до $\varepsilon = 10^{-5}$.
- Аналогично предыдущему примеру получаем разложение (1) для √368:

$$\begin{split} &\sqrt{368} = 19 + \frac{1}{\alpha_1}, \\ &\alpha_1 = \frac{1}{\sqrt{368} - 19} = \frac{\sqrt{368} + 19}{7} = 5 + \frac{1}{\alpha_2}, \\ &\alpha_2 = \frac{7}{\sqrt{368} - 16} = \frac{\sqrt{368} + 16}{16} = 2 + \frac{1}{\alpha_3}, \\ &\alpha_3 = \frac{16}{\sqrt{368} - 16} = \frac{\sqrt{368} + 16}{7} = 5 + \frac{1}{\alpha_4}, \\ &\alpha_4 = \frac{7}{\sqrt{368} - 19} = \sqrt{368} + 19 = 38 + \frac{1}{\alpha_5}. \end{split}$$

Заметим, что в схеме 8 $\alpha_5 = \alpha_1$ и происходит возврат к первому уравнению. Как и в предыдущем примере процесс **зацикливается**. Таким образом, получаем представление

$$\sqrt{368} = [19, (5, 2, 5, 38)].$$

(8)

Вычислим теперь $\sqrt{368}$ с точностью до $\varepsilon=10^{-5}$.

1 Вычислим теперь $\sqrt{368}$ с точностью до $\varepsilon = 10^{-5}$.

Используя рекуррентные соотношения для числителей и знаменателей подходящих дробей (4) из равенств предыдущего шага (8) получаем следующие последовательности (таблица 2.)

 \bigcirc Вычислим теперь $\sqrt{368}$ с точностью до $\varepsilon=10^{-5}$.

Используя рекуррентные соотношения для числителей и знаменателей подходящих дробей (4) из равенств предыдущего шага (8) получаем следующие последовательности (таблица 2.)

Таблица 2

s		0	1	2	3	4
q_s		19	5	2	5	38
P_s	1	19	96	211	1151	43949
Q_s	0	1	5	11	60	2291

Пример 2. Вычисление приближенного значения

Используя рекуррентные соотношения для числителей и знаменателей подходящих дробей (4) из равенств предыдущего шага (8) получаем следующие последовательности (таблица 2.)

Таблица 2

s		0	1	2	3	4
q_s		19	5	2	5	38
P_s	1	19	96	211	1151	43949
Q_s	0	1	5	11	60	2291

2 Нужная точность будет достигнута, когда $\dfrac{1}{{Q_k}^2}$ станет меньше arepsilon.

Пример 2. Вычисление приближенного значения

 \bigcirc Вычислим теперь $\sqrt{368}$ с точностью до $\varepsilon=10^{-5}$.

Используя рекуррентные соотношения для числителей и знаменателей подходящих дробей (4) из равенств предыдущего шага (8) получаем следующие последовательности (таблица 2.)

Таблица 2

s		0	1	2	3	4
q_s		19	5	2	5	38
P_s	1	19	96	211	1151	43949
Q_s	0	1	5	11	60	2291

2 Нужная точность будет достигнута, когда $\frac{1}{{Q_k}^2}$ станет меньше $\varepsilon.$

Очевидно, что

$$\frac{1}{2291^2} = \frac{1}{5248681} < 10^{-5} \, .$$

Пример 2. Вычисление приближенного значения

1 Вычислим теперь $\sqrt{368}$ с точностью до $\varepsilon = 10^{-5}$.

Используя рекуррентные соотношения для числителей и знаменателей подходящих дробей (4) из равенств предыдущего шага (8) получаем следующие последовательности (таблица 2.)

Таблица 2

s		0	1	2	3	4
q_s		19	5	2	5	38
P_s	1	19	96	211	1151	43949
Q_s	0	1	5	11	60	2291

2 Нужная точность будет достигнута, когда $\dfrac{1}{{Q_k}^2}$ станет меньше $\varepsilon.$

$$\frac{1}{2291^2} = \frac{1}{5248681} < 10^{-5} \, .$$

Отсюда следует, что

Очевидно, что

$$\sqrt{368} \simeq \frac{43949}{2291} = 19\,, 1833260\ldots$$

Задача: представить $\sqrt{\alpha}$ в виде периодической цепной дроби и вычислить с точностью до $\varepsilon=10^{-5}$.

Задача: представить $\sqrt{\alpha}$ в виде периодической цепной дроби и вычислить с точностью до $\varepsilon=10^{-5}$.

Задача: представить $\sqrt{\alpha}$ в виде периодической цепной дроби и вычислить с точностью до $\varepsilon=10^{-5}$.

Other:
$$\sqrt{252} = [15, (1, 6, 1, 30)] \simeq \frac{3921}{247} = 15, 87449...$$

Задача: представить $\sqrt{\alpha}$ в виде периодической цепной дроби и вычислить с точностью до $\varepsilon=10^{-5}$.

Other:
$$\sqrt{252} = [15, (1, 6, 1, 30)] \simeq \frac{3921}{247} = 15,87449...$$

$$2 \alpha = 155$$

Задача: представить $\sqrt{\alpha}$ в виде периодической цепной дроби и вычислить с точностью до $\varepsilon=10^{-5}$.

Other:
$$\sqrt{252} = [15, (1, 6, 1, 30)] \simeq \frac{3921}{247} = 15,87449...$$

$$2 \alpha = 155$$

Otbet:
$$\sqrt{155} = [12, (2, 4, 2, 24)] \simeq \frac{6088}{489} = 12, 44989...$$

Задача: представить $\sqrt{\alpha}$ в виде периодической цепной дроби и вычислить с точностью до $\varepsilon=10^{-5}$.

Other:
$$\sqrt{252} = [15, (1, 6, 1, 30)] \simeq \frac{3921}{247} = 15,87449...$$

$$2 \alpha = 155$$

Otbet:
$$\sqrt{155} = [12, (2, 4, 2, 24)] \simeq \frac{6088}{489} = 12, 44989...$$

Задача: представить $\sqrt{\alpha}$ в виде периодической цепной дроби и вычислить с точностью до $\varepsilon=10^{-5}.$

Other:
$$\sqrt{252} = [15, (1, 6, 1, 30)] \simeq \frac{3921}{247} = 15,87449...$$

$$2 \alpha = 155$$

Otbet:
$$\sqrt{155} = [12, (2, 4, 2, 24)] \simeq \frac{6088}{489} = 12, 44989...$$

$$\alpha = 222$$

Other:
$$\sqrt{222} = [14, (1, 8, 1, 28)] \simeq \frac{4306}{289} = 14,89965...$$

Задача: представить $\sqrt{\alpha}$ в виде периодической цепной дроби и вычислить с точностью до $\varepsilon=10^{-5}.$

Other:
$$\sqrt{252} = [15, (1, 6, 1, 30)] \simeq \frac{3921}{247} = 15, 87449...$$

$$2 \alpha = 155$$

Otbet:
$$\sqrt{155} = [12, (2, 4, 2, 24)] \simeq \frac{6088}{489} = 12, 44989...$$

$$\alpha = 222$$

Otbet:
$$\sqrt{222} = [14, (1, 8, 1, 28)] \simeq \frac{4306}{289} = 14,89965...$$

Задача: представить $\sqrt{\alpha}$ в виде периодической цепной дроби и вычислить с точностью до $\varepsilon=10^{-5}$.

Otbet:
$$\sqrt{252} = [15, (1, 6, 1, 30)] \simeq \frac{3921}{247} = 15, 87449...$$

$$2 \alpha = 155$$

Otbet:
$$\sqrt{155} = [12, (2, 4, 2, 24)] \simeq \frac{6088}{489} = 12, 44989...$$

Otbet:
$$\sqrt{222} = [14, (1, 8, 1, 28)] \simeq \frac{4306}{289} = 14,89965...$$

Other:
$$\sqrt{119} = [10, (1, 9, 1, 20)] \simeq \frac{2509}{230} = 10,90870...$$

Литература

Литература

С. В. Рыбин. Дискретная математика и информатика. — Лань, 2022.

Литература

- С. В. Рыбин. Дискретная математика и информатика. Лань, 2022.
- С. Н. Поздияков, С. В. Рыбин. Дискретная математика. Издательский центр «Академия», 2008.