1st CSI

Development of hybrid finite element/neural network methods to help create digital surgical twins

Authors:

Frédérique LECOURTIER

Supervisors:

Emmanuel FRANCK Michel DUPREZ Vanessa LLERAS

June 14, 2024

Introduction

Scientific context

Current Objective : Develop hybrid finite element / neural network methods.

OFFLINE:
Several Geometries

Several Forces

Train a PINNS

ONLINE:
1 Geometry - 1 Force

prediction

with ϕ -FEM

 ϕ -**FEM**: New fictitious domain finite element method.

⇒ domain given by a level-set function

Appendix 2

Current work

Elliptic problem with Dirichlet conditions:

Find $u:\Omega \to \mathbb{R}^d (d=1,2,3)$ such that

$$\begin{cases} L(u) = -\nabla \cdot (A(x)\nabla u(x)) + c(x)u(x) = f(x) & \text{in } \Omega, \\ u(x) = g(x) & \text{on } \partial \Omega \end{cases} \tag{1}$$

with A a definite positive coercivity condition and c a scalar. We consider Δ the Laplace operator, Ω a smooth bounded open set and Γ its boundary.

Two lines of research:

- 1. How to deal with complex geometry in PINNs?
- 2. Once we have the prediction, how can we improve it (using FEM-type methods)?

How to deal with complex geometry in PINNs?

Standard PINNs

Implicit neural representation.

$$u_{\theta}(x) = u_{NN}(x)$$

with u_{NN} a neural network (e.g. a MLP).

DoFs Minimization Problem:

Considering the least-square form of (1), our discrete problem is

$$\theta_{u} = \operatorname*{argmin}_{\theta \in \mathbb{R}^{N}} \alpha J_{in}(\theta) + \beta J_{bc}(\theta)$$

with N the number of parameters of the NN and

$$J_{lin}(heta) = rac{1}{2} \int_{\Omega} (\mathcal{L}(u_{ heta}) - f)^2 \quad ext{ and } \quad J_{bc}(heta) = rac{1}{2} \int_{\partial\Omega} (u_{ heta} - g)^2$$

Monte-Carlo method: Discretize the cost function by random process.

Limits

Claim on PINNs: No mesh, so easy to go on complex geometry!

<u>∧</u> *In practice*: Not so easy! We need to find how to sample in the geometry.

Solution: Approach by levelset.

Advantages:

- → Sample is easy in this case.
- → Allow to impose in hard the BC :

$$u_{\theta}(X) = \phi(X)w_{\theta}(X) + g(X)$$

Natural LevelSet:

Signed Distance Function (SDF)

Problem : SDF is a \mathcal{C}^0 function

- \Rightarrow its derivatives explode
- ⇒ we need a regular levelset

Learn a regular levelset

If we have a boundary domain Γ , the SDF is solution to the Eikonal equation:

$$\begin{cases} ||\nabla \phi(\mathbf{X})|| = 1, \ \mathbf{X} \in \mathcal{O} \\ \phi(\mathbf{X}) = 0, \ \mathbf{X} \in \Gamma \\ \nabla \phi(\mathbf{X}) = n, \ \mathbf{X} \in \Gamma \end{cases}$$

with $\mathcal O$ a box which contains Ω completely and n the exterior normal to Γ .

How to do that? with a PINNs [2] by adding a regularization term.

$$J_{ extit{reg}} = \int_{\mathcal{O}} |\Delta \phi|^2$$

Poisson On Cat

- \rightarrow Solving the Poisson problem with f=1 and homogeneous Dirichlet BC.
- ightharpoonup Looking for $u_{\theta} = \phi w_{\theta}$ with ϕ the levelset learned.

Remark: Poisson on Bean Appendix 3

How improve PINNs prediction?

 \wedge Considering simple geometry (i.e analytic levelset ϕ).

Idea

 $u_{NN} = g \text{ on } \Gamma$

Correct by adding: Considering u_{NN} as the prediction of our PINNs for (1), the correction problem consists in writing the solution as

$$\tilde{u} = u_{NN} + \tilde{C}_{\ll 1}$$

and searching $\tilde{C}:\Omega\to\mathbb{R}^d$ such that

(and g)

$$\begin{cases} L(\tilde{C}) = \tilde{f}, & \text{in } \Omega, \\ \tilde{C} = 0, & \text{on } \Gamma, \end{cases}$$
 (2)

with
$$\tilde{f} = f - L(u_{NN})$$
. Appendix 1 Appendix 5

Poisson on Square

Solving the Poisson problem with homogeneous Dirichlet BC.

- \rightarrow Domain : $\Omega = [-0.5\pi, 0.5\pi]^2$
- → Analytical levelset function :

$$\phi(x,y) = (x - 0.5\pi)(x + 0.5\pi)(y - 0.5\pi)(y + 0.5\pi)$$

→ Analytical solution :

$$u_{ex}(x,y) = \exp\left(-\frac{(x-\mu_1)^2 + (y-\mu_2)^2}{2}\right)\sin(2x)\sin(2y)$$

with $\mu_1, \mu_2 \in [-0.5, 0.5]$.

Taking $\mu_1 = 0.05$, $\mu_2 = 0.22$, the solution is given by

Theoretical results

We denote u the solution of (1) and u_h the discrete solution of the correction problem (10) with V_h a \mathbb{P}_k Lagrange space. Thus

$$||u - u_h||_0 \le \frac{|u - u_\theta|_{h^{k+1}}}{|u|_{h^{k+1}}} \left(\frac{\gamma}{\alpha} C h^{k+1} |u|_{H^{k+1}}\right)$$

with α and γ respectively the coercivity and continuity constant.

Taking $\mu_1 = 0.05, \mu_2 = 0.22$.

Gains using our approach

Considering a set of 50 parameters.

Solution \mathbb{P}_1

	Gains on PINNs				Gains on FEM			
\mathbf{N}	min	max	mean	std	min	max	mean	std
20	15.7	48.35	33.64	5.57	134.31	377.36	269.4	43.67
40	61.47	195.75	135.41	23.21	131.18	362.09	262.12	41.67

Solution \mathbb{P}_2

	Gains on PINNs				Gains on FEM				
\mathbf{N}	min	max	mean	std	min	max	mean	std	
20	244.81	996.23	655.08	153.63	67.12	165.13	135.21	21.37	
40	$2,\!056.2$	8,345.4	$5,\!504.89$	$1,\!287.16$	66.52	159.73	132.05	20.38	

Solution \mathbb{P}_3

	Gains on PINNs					Gains on FEM			
\mathbf{N}	min	max	mean	std	min	max	mean	std	
20	2,804.27	11,797.23	7,607.51	1,780.7	39.72	72.99	61.85	7.05	
40	50,989.23	212,714.99	137,711.77	32,125.57	40.02	73	61.98	6.92	

Time/Precision

Taking
$$\mu_1 = 0.05, \mu_2 = 0.22$$
.

	r	V	time (s)			
Precision	FEM	Add	FEM	Add		
1e-3	120	8	43	0.24		
1e – 4	373	25	423.89	1.93		

 t_{Add}

The training time of the PINNs (parametric) is defined by $t_{\text{PINNs}} \approx 240 \text{s}$.

So if we solve the problem (1) for a set of n_p parameters, the times of our approach and FEM are respectively

$$Tot_{Add} = t_{PINNs} + n_p t_{Add}$$
 and $Tot_{FEM} = n_p t_{FEM}$.

So if we consider a set of at least $n_p=6$ parameters, our method is faster than FEM when considering network training time.

$$n_p > \frac{t_{PINNs}}{t_{FEM} - t_{Add}} \approx 5.61$$

Remark: Considering that the times are of the same order for each parameter considered.

Conclusion

Conclusion

Current progress:

- → Levelset learning works on complex geometries

 **Advantage: enables "exact" imposition of BC in PINNs
- → Additive approach works on simple geometries Advantage (compared with standard FEM):
 - More accurate solution (smaller error)
 - Better execution time

Perspectives:

- → combine the 2 axis to improve NN predictions on complex geometries Appendix 4
- ightharpoonup use ϕ -FEM (fictitious domain method) to improve NN predictions Advantage : The levelset learned by PINNs can be used in ϕ -FEM
- → Start considering 3D cases

Supplementary work I

Temporary employment at the university

- ▶ 16h of Computer Science Practical Work (Python) L2S3
- ▶ 34h of Computer Science Practical Work (C++) L3S6

Formations

- "Charte de déontologie des métiers de la Recherche" (OBLIGATORY)
- MOOC Bordeaux "Intégrité scientifique dans les métiers de la recherche" (OBLIGATORY)
- "Enseigner et apprendre (public : mission enseignement)"
- "Gérer ses ressources bibliographiques avec Zotero"
- 3 Workshops on EDP at IRMA
- ▶ 19 Remote Sessions (\approx 40h) "Formation Introduction au Deep Leraning" (FIDLE)

Supplementary work II

Talks

- Team meeting (Mimesis) December 12, 2023 "Development of hybrid finite element/neural network methods to help create digital surgical twins"
- Retreat (Macaron/Tonus) February 6, 2024
 "Mesh-based methods and physically informed learning"
- Exama project, WP2 reunion March 26, 2024 "How to work with complex geometries in PINNs?"

Coming soon...

- Paper in progress "Enhanced finite element methods using neural networks"
 Contribution: numerical results
- Poster for a Workshop on Scientific Machine Learning (SciML 2024)

Thank you!

Bibliography

- [1] Alexander Belyaev, Pierre-Alain Fayolle, and Alexander Pasko. Signed Lp-distance fields. Computer-Aided Design.
- [2] Mattéo Clémot and Julie Digne. Neural skeleton: Implicit neural representation away from the surface. Computers and Graphics.
- [3] Pierre-Alain Fayolle. Signed Distance Function Computation from an Implicit Surface.
- [4] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*.
- [5] N. Sukumar and Ankit Srivastava. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Computer Methods in Applied Mechanics and Engineering.
- [6] Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An Expert's Guide to Training Physics-informed Neural Networks.

Appendix

Appendix

Appendix 1: General Idea

Variational Problem : Find $u \in V \mid a(u, v) = I(v), \ \forall v \in V$ with V - Hilbert space, a - bilinear form, I - linear form.

Approach Problem : Find $u_h \in V_h \mid a(u_h, v_h) = I(v_h), \ \forall v_h \in V_h$ with \bullet $u_h \in V_h$ an approximate solution of u, $\bullet V_h \subset V, \ dim V_h = N_h < \infty, \ (\forall h > 0)$

$$V_h := P_{C,h}^k = \{ v_h \in C^0(\bar{\Omega}), \forall K \in \mathcal{T}_h, v_{h|K} \in \mathbb{P}_k \}$$

⇒ Construct a piecewise continuous functions space

T. Circuit

 $\mathcal{T}_h = \{\mathit{K}_1, \ldots, \mathit{K}_{\mathit{N}_e}\}$

where \mathbb{P}_k is the vector space of polynomials of total degree $\leq k$.

Finding an approximation of the PDE solution \Rightarrow solving the following linear system:

$$AU = b$$

with

$$A = (a(\varphi_i, \varphi_j))_{1 \leq i, j \leq N_h}, \quad U = (u_i)_{1 \leq i \leq N_h} \quad \text{and} \quad b = (I(\varphi_j))_{1 \leq j \leq N_h}$$

where $(\varphi_1, \ldots, \varphi_{N_h})$ is a basis of V_h .

MIMESIS

Appendix 2: Problem

Let $u = \phi w + g$ such that

$$\begin{cases} -\Delta u = f, \text{ in } \Omega, \\ u = g, \text{ on } \Gamma, \end{cases}$$

where ϕ is the level-set function and Ω and Γ are given by :

The level-set function ϕ is supposed to be known on \mathbb{R}^d and sufficiently smooth. For instance, the signed distance to Γ is a good candidate.

Remark : Thanks to ϕ and g, the boundary conditions are respected.

Appendix 2: Fictitious domain

- \rightarrow ϕ_h : approximation of ϕ
- $ightarrow \Gamma_{\it h} = \{\phi_{\it h} = 0\}$: approximate boundary of Γ
- $\rightarrow \Omega_h$: computational mesh
- \rightarrow $\partial\Omega_h$: boundary of Ω_h ($\partial\Omega_h\neq\Gamma_h$)

Remark: nvert will denote the number of vertices in each direction

Appendix 2: Facets and Cells sets

- $ightarrow \, \mathcal{T}^{\Gamma}_{\it h}$: mesh elements cut by $\Gamma_{\it h}$
- $\rightarrow \mathcal{F}_h^{\Gamma}$: collects the interior facets of \mathcal{T}_h^{Γ} (either cut by Γ_h or belonging to a cut mesh element)

Appendix 2: Poisson problem

Approach Problem : Find $w_h \in V_h^{(k)}$ such that

$$a_h(w_h, v_h) = I_h(v_h) \quad \forall v_h \in V_h^{(k)}$$

where

$$a_h(w,v) = \int_{\Omega_h} \nabla(\phi_h w) \cdot \nabla(\phi_h v) - \int_{\partial\Omega_h} \frac{\partial}{\partial n} (\phi_h w) \phi_h v + \boxed{G_h(w,v)},$$

$$I_h(v) = \int_{\Omega_h} f \phi_h v + \boxed{G_h^{rhs}(v)}$$

Stabilization terms

and

$$V_h^{(k)} = \left\{ v_h \in H^1(\Omega_h) : v_{h|_T} \in \mathbb{P}_k(T), \ \forall T \in \mathcal{T}_h \right\}.$$

For the non homogeneous case, we replace

$$u = \phi w \rightarrow u = \phi w + g$$

by supposing that g is currently given over the entire Ω_h .

Appendix 2: Stabilization terms

Independent parameter of h Jump on the interface E
$$G_h(w,v) = \begin{cases} \sigma h \sum_{E \in \mathcal{F}_h^{\Gamma}} \int_{E} \left[\frac{\partial}{\partial n} (\phi_h w) \right] \left[\frac{\partial}{\partial n} (\phi_h v) \right] + \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} \Delta(\phi_h w) \Delta(\phi_h v) \right] \\ 1^{\text{st order term}} \\ G_h^{rhs}(v) = \begin{cases} -\sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} f\Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \end{cases}$$

<u>1st term</u>: ensure continuity of the solution by penalizing gradient jumps.

→ Ghost penalty [Burman, 2010]

<u>2nd term</u>: require the solution to verify the strong form on Ω_h^{Γ} .

Purpose:

- → reduce the errors created by the "fictitious" boundary
- → ensure the correct condition number of the finite element matrix
- → restore the coercivity of the bilinear scheme

Poisson on Bean Additive approach on Cat Multiplicative approach Degree of PINNs evaluation

000000

Poisson on Bean

Appendix 3: Learn a levelset

If we have a boundary domain Γ , the SDF is solution to the Eikonal equation:

$$\begin{cases} ||\nabla \phi(\mathbf{X})|| = 1, \ \mathbf{X} \in \mathcal{O} \\ \phi(\mathbf{X}) = 0, \ \mathbf{X} \in \Gamma \\ \nabla \phi(\mathbf{X}) = n, \ \mathbf{X} \in \Gamma \end{cases}$$

with \mathcal{O} a box which contains Ω completely and n the exterior normal to Γ .

How make that? with a PINNs [2] by adding a term to regularize.

$$J_{
m reg} = \int_{\mathcal{O}} |\Delta \phi|^2$$

Appendix 3: Poisson 2D

- \rightarrow Solving the Poisson problem with f=1 and homogeneous Dirichlet BC.
- ightharpoonup Looking for $u_{\theta} = \phi w_{\theta}$ with ϕ the levelset learned.

Poisson on Bean

Additive approach on Cat

Multiplicative approach

Degree of PINNs evaluation

Appendix 4: Add on Cat

Other results

Poisson on Bean Additive approach on Cat

Multiplicative approach
Degree of PINNs evaluation

Appendix 5: Multiplicative approach

Correct by multiplying : Considering u_{NN} as the prediction of our PINNs for (1), we define

$$u_M = u_{NN} + M$$

with M a constant chosen so that $u_M > 0$, called the enhancement constant. Thus, the correction problem consists in writing the solution as

$$\tilde{u} = u_{\mathsf{M}} \times \boxed{\tilde{\mathsf{C}}}_{\approx 1}$$

and searching $\tilde{\mathit{C}}:\Omega \to \mathbb{R}^d$ such that

$$\begin{cases} L(u_{M}\tilde{C}) = f, & \text{in } \Omega, \\ \tilde{C} = 1, & \text{on } \Gamma. \end{cases}$$