Darren Dong

Queens, NY 11357 • (929) 300 - 1012 • ddarren@umich.edu

https://www.linkedin.com/in/darren-dong-108841210/ • https://github.com/DarrenDong0426

EDUCATION

University of Michigan, Ann Arbor, MI

M.S.E in Computer Science and Engineering

B.S.E in Computer Science with Minor in Electrical Engineering, GPA: 3.848/4.0

Expected: May 2026 Relevant Courses: Data Structure and Algorithms, Computer Vision, Artificial Intelligence, Machine Learning, Web Systems, Practical Data Science, Advanced Operating System, Natural Language Processing, Computer Security, Embedded Systems

EXPERIENCES

University of Michigan, Ann Arbor, MI | EECS 442 Computer Vision Instructional Assistant

January 2025 - Present

Expected: May 2027

- Developed homework assignments on neural networks and contrastive learning for a computer vision course (100+ students), enhancing both conceptual and practical skills.
- Held weekly office hours and provided prompt support on Piazza to reinforce lecture content and address student questions.
- Maintained the course website by updating links and resources, ensuring reliable access to current information.

Keurig Dr Pepper, Frisco, TX | IT Automation Prompt Engineering Intern

June 2025 - August 2025

- Piloting automated shelf image analysis with GenAI and computer vision to identify product voids and potential revenue loss; current testing focuses on optimizing image resolution and model accuracy.
- Designing and building an operator-support chatbot for the Allentown plant; early pilot aims for a 20% reduction in troubleshooting downtime and \$300K in annual revenue growth based on projected OEE improvements.
- Collaborating with Google, Microsoft, and internal teams to evaluate open-source and multimodal AI tools, adapting strategies based on early user feedback and technical constraints.
- Delivering interim findings and technical demos to business leaders to inform future direction of AI adoption in manufacturing and retail

University of Michigan, Ann Arbor, MI | Research Assistant

May 2023 - August 2023

- Assembled mechanical, electrical, and software components to create a professional, real-time greenhouse ventilation system.
- Achieved sub-2-second responsiveness to temperature changes and push-button interactions, with full shutter motion completed within 10 seconds of receiving a signal.
- Designed and built an affordable, sustainable greenhouse ventilation system (under \$100) using durable, weather-resistant components; ensured easy assembly and public accessibility.
- Maintained regular communication with the supervising professor, collaborated effectively, and planned future phases, including wireless networking integration with ESP32.

PROJECTS

Soft Robotic Sensor with Embedded Light Control

April 2024

- Designed and built a lightweight, cost-effective soft robotic light sensor (~\$30) using materials with high light transmission and an electrical system (LED, tubing, photodiode, low-pass filter) for accurate signal detection.
- Programmed a Raspberry Pi Pico to control motor speed based on detected light, implementing PID control for responsive, sensor-activated operation.

Virtual Memory Pager

- Designed and implemented a C++ virtual memory pager supporting address space management, including swap/file-backed pages, copy-on-write, and dynamic swap sharing for parent and child processes.
- Managed page state and permissions with read/write, dirty, and referenced bits; optimized memory eviction using the clock replacement algorithm.
- Enabled core operations such as mapping, context switching, and forking, demonstrating a deep understanding of process isolation and OS-level resource management.

SLAM and Navigation of a Two-Wheeled Robot

January 2024 - April 2024

- Programmed a two-wheeled robot to autonomously explore unknown mazes using particle filter-based SLAM and LIDAR localization, achieving pose accuracy within 10 cm and 30°.
- Deployed A* path planning and real-time obstacle avoidance, enabling efficient and safe traversal of dynamic environments.
- Enhanced odometry precision by tuning motor controls with PID algorithms, minimizing movement error.
- Built real-time map and localization visualizations in RViz to monitor robot performance and identify unexplored regions.

Hovercraft Prototype

February 2023 - April 2023

- Developed and presented hovercraft design concepts to ensure successful flight and 50g payload capacity, selecting optimal materials and addressing constraints of two running motors.
- Built, simulated, and tested the prototype using cardboard and CATIA to analyze airflow; achieved a 797g mass (within 800g budget), 15W power output, and 8N lift.
- Enabled hovercraft to complete navigation challenges, achieving a straight line in 50 seconds and a figure-eight in 6 seconds during time trials.

SKILLS

Programming Languages: C++, Java, Python, JavaScript, SQL, C, HTML, CSS, Dart, Shell Scripting

Frameworks & Libraries: Git, GitHub, PyTorch, NumPy, Matplotlib, OpenCV, Pandas, Flask (REST API), React (SPA Development), Flutter, Jinja2