CE100 Algorithms and Programming II $_{\rm RAM\,/\,Matrix\,Multiplication}$

Author: Asst. Prof. Dr. Uğur CORUH

Contents

0.1	CE100 Algorithms and Programming II	1
0.2	Week-3 (Matrix Multiplication/ Quick Sort)	1
0.3	Solving Recurrences	1
0.4	Outline	1
0.5	Matrix Multiplication	2
0.6	$c_{ij} = \sum_{1 \le k \le n} a_{ik} \cdot b_{kj} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	2
0.7	References	2

List of Figures

List of Tables

- 0.1 CE100 Algorithms and Programming II
- 0.2 Week-3 (Matrix Multiplication/ Quick Sort)
- **0.2.0.1** Spring Semester, 2021-2022 Download DOC¹, SLIDE², PPTX³

0.3 Solving Recurrences

0.4 Outline

- Matrix Multiplication
 - Traditional
 - Recursive
 - Strassen

##
Outline
##
Outline

 $^{^{1}}$ ce100-week-3-matrix.md $_$ doc.pdf

 $^{^2}$ ce100-week-3-matrix.md_slide.pdf

 $^{^3{}ce}100\text{-week-3-matrix.md_slide.pptx}$

Outline Quick- sort Analysis- Randomized Quick- sort - Randomized Selection - Recursive - Medians

0.5 Matrix Multiplication

 $\begin{array}{l} \bullet \ \ \mathbf{Input:} \ A = [a_{ij}], B = [b_{ij}] \\ \bullet \ \ \mathbf{Output:} \ C = [c_{ij}] = A \cdot B \Longrightarrow i, j = 1, 2, 3, \ldots, n \end{array}$

$$\begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \vdots & \ddots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \vdots & \ddots \\ b_{n1} & a_{n2} & \dots & b_{nn} \end{bmatrix}$$

0.6 $c_{ij} = \sum_{1 \le k \le n} a_{ik}.b_{kj}$

0.7 References

TODO