# EX1.直接利用Hont 即可 治意题自有两同!!

### 6x2

#### I. STEIN 1.2: CANTOR SET DESCRIBED IN TERNARY EXPANSIONS

Some notations are shown as follows

On construction of Cantor set  $\mathcal{C}$ : Let  $C_0 = [0,1]$ . This interval is divided into three parts: the middle third open interval of  $C_0$  is  $E_{1,1}=(1/3,2/3)$  which is excluded, while  $I_{1,1}=[0,1/3],\ I_{1,2}=[2/3,1]$  is included to obtain  $C_1 = I_{1,1} \cup I_{1,2}$ . Generally, when we get  $C_k = \bigcup_{i=1}^{2^{k-1}} I_{k,i}$ , each  $I_{k,i}$  is divided into three parts with the middle open one denoted as  $E_{k+1,i}$ , the other two are  $I_{k+1,2i-1},I_{k+1,2i}$ . Then  $\mathcal{C}:=\cap_{k=0}^{\infty}C_k$ .

#### A. Cantor sets are points represented in 0 and 2.

*Proof:* Notice that  $x \notin E_{1,1}$  (i.e.,  $x \in C_1$ ) if and only if x has a decomposition with  $a_1 \neq 1$ . By deduction, we claim that  $C_k$  consists of x that has a decomposition with  $a_i \neq 1, j \leq k$ . The definition of  $\mathcal{C}$  completes the

#### B. Well-definedness and continuity of Cantor-Lebesgue function.

Proof: First, to show the well-definedness, it is sufficient to show that the ternary expansion of 0 and 2 is unique. Suppose that

$$x = \sum_{k=1}^{\infty} a_k 3^{-k} = \sum_{k=1}^{\infty} b_k 3^{-k}, \quad a_k, b_k \in \{0, 2\}.$$

$$x = \sum_{k=1}^{\infty} a_k 3^{-k} = \sum_{k=1}^{\infty} b_k 3^{-k}, \quad a_k, b_k \in \{0, 2\}.$$
 Let  $k_0 := \inf\{k : a_k \neq b_k\} < \infty$ , and WLOG (without loss of generality),  $a_{k_0} = 0, b_{k_0} = 2$ . Then 
$$0 = \sum_{k=1}^{\infty} (b_k - a_k) 3^{-k} \geq 2 \cdot 3^{-k_0} - \sum_{k=k_0+1}^{\infty} 2 \cdot 3^{-k} = 3^{-k_0},$$

which is a contradiction! This argument also shows that  $\forall |x-y| < 3^{-k_0}, x, y \in C$ , the first  $k_0$  expansions are

Second, the continuity.  $\forall \epsilon>0, \ \exists k_0, \ s.t. \ 2^{-k_0}<\epsilon.$  Therefore, for any  $x\in\mathcal{C}$ , choose  $\delta=3^{-k_0}$ , then  $\forall y \in \mathcal{C}, |x-y| < \delta$ , the first  $k_0$  expansions of x and y are the same, thus  $|F(x) - F(y)| \le \sum_{k_0+1}^{\infty} 2^{-k} = 2^{-k_0} < \epsilon$ . From the definition, we know that F is continuous.

Moreover, 
$$F(0)=0$$
,  $F(1)=1$  follows directly from  $0=\sum_{k=1}^{\infty}0\cdot 3^{-k}$  and  $1=\sum_{k=1}^{\infty}2\cdot 3^{-k}$ .

#### C. Surjectiveness of Cantor-Lebesgue function.

*Proof:* Every  $y \in [0,1]$  has a binary expression  $y = \sum_{k=1}^{\infty} b_k \cdot 2^{-k}$ ,  $b_k \in \{0,1\}$ , from which we can recover  $x = \sum_{k=1}^{\infty} 2b_k \cdot 3^{-k} \in \mathcal{C}.$ 

#### D. Continuity of extended Cantor-Lebesgue function.

*Proof:* Note that  $F|_{\mathcal{C}}$  is non-decreasing and the extended definition can be interpreted as  $F(x) := F(\sup\{y:$  $y\in\mathcal{C},y\leq x\}=\sup\{F(y):y\in\mathcal{C},y\leq x\}\text{ for any }x\in[0,1]\text{, or }F(x):=\inf\{F(y):y\in\mathcal{C},y\geq x\}\text{ due to the }x\in[0,1],\text{ or }x\in[0,1]\}$ monotonicity of  $F|_{\mathcal{C}}$  and closedness of  $\mathcal{C}$ .

 $\forall \epsilon>0, x\in[0,1]\text{, choose }\delta=3^{-k_0}\text{ same as in (I-B), }(s.t.\ 2^{-k_0}<\epsilon\text{,) then }\forall |x-y|<\delta\text{, if }x,y\in\mathcal{C},$  $|F(x)-F(y)|\leq \textstyle\sum_{k_0+1}^{\infty} 2^{-k}=2^{-k_0}<\epsilon; \text{ else, WLOG } y>x, \text{ let } x'=\inf\{z:z\in\mathcal{C},z\geq x\} \text{ and } y'=\inf\{z:z\in\mathcal{C},z\geq x\}$  $z \in \mathcal{C}, z \leq y$ }, then  $|F(x) - F(y)| = |F(x') - F(y')| < \epsilon$ . From the definition, F is continuous.

6x 4.

(d) 利用 bx2中 in Cantor-lebesque 函数 得到でかしい満射 体题中可直接m(2)>0.

Ex 14

#### III. STEIN 1.14: OUTER JORDAN CONTENT - FINITE COVERING INTERVALS

A. 
$$J_*(E) = J_*(\bar{E})$$
.

 $\textit{Proof:} \text{ If } \bar{E} \subset \cup_{j=1}^N I_j, \text{ then } \bar{E} \subset \bar{E} \subset \cup_{j=1}^N I_j, \text{ thus } J_*(\bar{E}) \leq J_*(\bar{E}). \text{ If } \bar{E} \subset \cup_{j=1}^N I_j, \text{ then } \bar{E} \subset \cup_{j=1}^N \bar{I}_j \text{ with } \bar{E} \subset \cup_{j=1}^N \bar{E}$  $\sum |I_j| = \sum |\bar{I}_j|$ , thus  $J_*(E) \ge J_*(\bar{E})$ .

B. 
$$J_*(E) = 1, m_*(E) = 0.$$

 $E = \mathbb{Q} \cap [0,1]$  is an example.

## Ex 23

#### IX. STEIN 1.25: EQUIVALENT DEFINITION OF MEASURABILITY BY INNER CLOSED APPROXIMATION

Proof: In this problem, we call our original definition as open-measurable and the alternative as closemeasurable. If E is close-measurable, then  $E^c$  is open-measurable, since  $E-F=F^c-E^c$ . From Property 5 (P18), E is open-measurable. On the other hand, if E is open-measurable, from Theorem 3.4 (ii) (P21), E is close-measurable.



**Lemma 1.2** If  $R, R_1, \ldots, R_N$  are rectangles, and  $R \subset \bigcup_{k=1}^N R_k$ , then

$$|R| \le \sum_{k=1}^{N} |R_k|.$$

考与 Stem 更又版 Ps-6

HW: Lebesgre Wish & Caratheodomy Wiki),

Pf: 记 Carathéodory 可測集物成ing集合为M1, Lebesque 可測集物成in環合場M2.

① 若EEM1. 由M4 萬足 M2(E)= inf M2(D): 0 is open, 0>E] (Pi3 Observation 3),

可サー、ヨ open set On コモ s.t. M2(On) < M2(E) + 市.

今 G= 前 On. G为 Go 集. 则 E C G 且 M2(E) = M2(G). ("="V">" M2(G) < M2(E) + 市. Vn ⇒ V)

由 E M1 ⇒ M2(G) = M2(G) + M2(G) = M2(E) = M2(E) + M2(G) = M2(G) =