Introduction to Running Time Analysis of Algorithms

Dimitris Diochnos

January 26, 2018

CS 251 Data Structures UIC

Outline

- Definitions
- Examples

Definitions

Basics

We want to analyze the running time behavior T(N) of algorithms.

N is a positive integer capturing the input size of a particular instance where the algorithm is applied.
 (e.g., N is the size of an array to be sorted.)

Basics

We want to analyze the running time behavior T(N) of algorithms.

N is a positive integer capturing the input size of a particular instance where the algorithm is applied.
 (e.g., N is the size of an array to be sorted.)

In other words, T(N) is a function,

$$T(N): \mathbb{N}^* \mapsto \mathbb{N}^*$$

- The domain reflects the different values that the problem size can take.
- The range is the running time (in discrete units of time).

Definition (Big *O* - Upper Bound)

T(N) = O(f(N)) if there exist positive constants c and n_0 such that

$$T(N) \leq cf(N)$$

for every $N \ge n_0$.

Definition (Big *O* - Upper Bound)

T(N) = O(f(N)) if there exist positive constants c and n_0 such that

$$T(N) \leq cf(N)$$

for every $N \ge n_0$.

Example

$$3N^2 = O(N^3)$$

 $(c = 1 \text{ and } n_0 = 3)$

 $(c = 2 \text{ and } n_0 = 2)$

 $(c = 3 \text{ and } n_0 = 1)$

(one is enough; constants do not matter!)

Definition (Big *O* - Upper Bound)

T(N) = O(f(N)) if there exist positive constants c and n_0 such that

$$T(N) \le cf(N)$$

for every $N \ge n_0$.

Example

$$3N^2 = O(N^3)$$

 $(c = 1 \text{ and } n_0 = 3)$

 $(c = 2 \text{ and } n_0 = 3)$ $(c = 2 \text{ and } n_0 = 2)$

 $(c = 3 \text{ and } n_0 = 1)$

(one is enough; constants do not matter!)

We say,

- $3N^2$ is big-oh N to the third, or that,
- $3N^2$ is order of N to the third.

Definition (Set Definition of Big *O*)

$$O(f(N)) = \{g(N) : \text{ there exist } c, n_0 > 0 \text{ such that}$$

$$0 \le g(N) \le cf(N) \text{ for all } N \ge n_0\}$$

Example

 $3N^2 \in O(N^3)$

An Example for the *O* Notation

$$T(N) = 3N^2 \le N^3$$

Lower Bounds

Definition (Big Ω - Lower Bound)

 $T(N) = \Omega(f(N))$ if there are positive constants c and n_0 such that

$$cf(N) \leq T(N)$$

for every $N \ge n_0$.

Example

$$\sqrt{N} = \Omega(\log_2 N)$$

 $(c = 1 \text{ and } n_0 = 16)$

Lower Bounds

Definition (Set Definition of Big Ω)

$$\Omega(f(n)) = \{g(n) : \text{ there exist } c, n_0 > 0 \text{ such that } 0 \le cf(n) \le g(n) \text{ for all } n \ge n_0\}$$

$$\sqrt{N} \in \Omega(\log_2 N)$$

The Example for the $\boldsymbol{\Omega}$ Notation

$$\log_2 N \le T(N) = \sqrt{N}$$

Tight Bounds

Definition

$$T(N) = \Theta(f(N))$$
 if and only if

$$\begin{cases} T(N) = \Omega(f(N)) & \text{and} \\ T(N) = O(f(N)) \end{cases}$$

Example

$$\frac{3}{2}N\log_2 N - N + 2 = \Theta(N\log_2 N)$$

$$N \log_2 N + 2 \le \frac{3}{2} N \log_2 N - N + 2 \le \frac{3}{2} N \log_2 N + 2$$

for every $N \ge 4$.

The Example for the Θ Notation

$$N \log_2 N + 2 \le T(N) = \frac{3}{2} N \log_2(N) - N + 2 \le \frac{3}{2} N \log_2(N)$$

Some General Rules

Rule 1 Let
$$T_1(N) = O(f(N))$$
 and $T_2(N) = O(g(N))$. Then,
• $T_1(N) + T_2(N) = O(f(N) + g(N))$
(intuitively, $T_1 + T_2 = O(\max(f(N), g(N)))$)
• $T_1(N) \cdot T_2(N) = O(f(N) \cdot g(N))$

Some General Rules

Rule 1 Let
$$T_1(N) = O(f(N))$$
 and $T_2(N) = O(g(N))$. Then,
• $T_1(N) + T_2(N) = O(f(N) + g(N))$
(intuitively, $T_1 + T_2 = O(\max(f(N), g(N)))$)
• $T_1(N) \cdot T_2(N) = O(f(N) \cdot g(N))$

Rule 2 Let T(N) be a polynomial of degree k. Then, $T(N) = \Theta(n^k)$.

Some General Rules

Rule 1 Let
$$T_1(N) = O(f(N))$$
 and $T_2(N) = O(g(N))$. Then,

- $T_1(N) + T_2(N) = O(f(N) + g(N))$ (intuitively, $T_1 + T_2 = O(\max(f(N), g(N)))$)
- $\bullet \ T_1(N) \cdot T_2(N) = O(f(N) \cdot g(N))$

Rule 2 Let T(N) be a polynomial of degree k. Then, $T(N) = \Theta(n^k)$.

Rule 3 $\log^k(N) = O(N)$ for any constant k.

Typical Growth Rates

Function	Name
С	Constant
log N	Logarithmic
$\log^2 N$	Log-squared
Ν	Linear
$N \log N$	
N^2	Quadratic
N^3	Cubic
2 ^N	Exponential

Definition (Execution in Constant Time)

An operation (more generally an algorithm) is said to be constant time, written as O(1) time, if the **time** required **to execute** the operation (or the algorithm) is upper bounded by a value that **does not depend on the size of the input**.

Definition (Execution in Constant Time)

An operation (more generally an algorithm) is said to be constant time, written as O(1) time, if the **time** required **to execute** the operation (or the algorithm) is upper bounded by a value that **does not depend on the size of the input**.

Examples

 Basic arithmetic operations (addition, subtraction, multiplication, division, exponentiation) between two numbers.***

Definition (Execution in Constant Time)

An operation (more generally an algorithm) is said to be constant time, written as O(1) time, if the **time** required **to execute** the operation (or the algorithm) is upper bounded by a value that **does not depend on the size of the input**.

- Basic arithmetic operations (addition, subtraction, multiplication, division, exponentiation) between two numbers.***
- Any comparison (<, =, >) between two numbers.***

Definition (Execution in Constant Time)

An operation (more generally an algorithm) is said to be constant time, written as O(1) time, if the **time** required **to execute** the operation (or the algorithm) is upper bounded by a value that **does not depend on the size of the input**.

- Basic arithmetic operations (addition, subtraction, multiplication, division, exponentiation) between two numbers.***
- Any comparison (<, =, >) between two numbers.***
- Accessing a particular element in an array; e.g., a[5].

Definition (Execution in Constant Time)

An operation (more generally an algorithm) is said to be constant time, written as O(1) time, if the **time** required **to execute** the operation (or the algorithm) is upper bounded by a value that **does not depend on the size of the input**.

- Basic arithmetic operations (addition, subtraction, multiplication, division, exponentiation) between two numbers.***
- Any comparison (<, =, >) between two numbers.***
- Accessing a particular element in an array; e.g., a[5].
- Swap two elements in an array if necessary.

Definition (Execution in Constant Time)

An operation (more generally an algorithm) is said to be constant time, written as O(1) time, if the **time** required **to execute** the operation (or the algorithm) is upper bounded by a value that **does not depend on the size of the input**.

- Basic arithmetic operations (addition, subtraction, multiplication, division, exponentiation) between two numbers.***
- Any comparison (<, =, >) between two numbers.***
- Accessing a particular element in an array; e.g., a[5].
- Swap two elements in an array if necessary.
- Assign a value to a pointer.

Definition (Execution in Constant Time)

An operation (more generally an algorithm) is said to be constant time, written as O(1) time, if the **time** required **to execute** the operation (or the algorithm) is upper bounded by a value that **does not depend on the size of the input**.

- Basic arithmetic operations (addition, subtraction, multiplication, division, exponentiation) between two numbers.***
- Any comparison (<,=,>) between two numbers.***
- Accessing a particular element in an array; e.g., a[5].
- Swap two elements in an array if necessary.
- Assign a value to a pointer.
- Find the minimum value in a sorted array; a[0].

Definition (Execution in Constant Time)

An operation (more generally an algorithm) is said to be constant time, written as O(1) time, if the **time** required **to execute** the operation (or the algorithm) is upper bounded by a value that **does not depend on the size of the input**.

- Basic arithmetic operations (addition, subtraction, multiplication, division, exponentiation) between two numbers.***
- Any comparison (<,=,>) between two numbers.***
- Accessing a particular element in an array; e.g., a[5].
- Swap two elements in an array if necessary.
- Assign a value to a pointer.
- Find the minimum value in a sorted array; a[0].
- *** numbers stored in registers.

Insert a Node in a Doubly Linked List

```
LIST-INSERT (List L, Listnode x)

1  x.next = L.head

2  if (L.head != NULL)

3  (L.head).prev = x

4  L.head = x

5  x.prev = NULL
```

Insert a Node in a Doubly Linked List

```
LIST-INSERT (List L, Listnode x)

1  x.next = L.head

2  if (L.head != NULL)

3   (L.head).prev = x

4  L.head = x

5  x.prev = NULL
```

- Line 3: 1 time step (1 assignment)
- Line 2: 1 time step (1 comparison)
- Lines 2-3: At most 2 time steps
- Lines 1, 4, and 5: 1 time step each

Total time is at most 5 time steps; so O(1).

Find a Node with a Particular Value in a List

```
LIST-FIND (List L, Listvalue v)
1  current = L.head
2  while ((current != NULL) and (current.val != v))
3    current = current.next
4  return current
```

Find a Node with a Particular Value in a List

```
LIST-FIND (List L, Listvalue v)

1 current = L.head

2 while ((current != NULL) and (current.val != v))

3 current = current.next

4 return current
```

Worst case scenario (*v* not in the list)

- Line 3: 1 time step \Rightarrow Total: *N*
- Line 2: Total 2N + 1 time steps
- Lines 1 and 4: 1 time step each \Rightarrow Total: 2

Total time is at most 3N + 3 time steps; so O(N).

Compute the Sum $\sum_{i=1}^{N} i^3$

```
int sum( int n )
{
    int partialSum;

partialSum = 0;
for( int i = 1; i <= n; ++i )
    partialSum += i * i * i;
return partialSum;
}</pre>
```

Compute the Sum $\sum_{i=1}^{N} i^3$

```
int sum( int n )
{
     int partialSum;

partialSum = 0;

for( int i = 1; i <= n; ++i )
     partialSum += i * i * i;

return partialSum;
}</pre>
```

- Lines 1 and 4: 1 unit of time each ⇒ Total: 2
- Line 3: 4 units of time (2 multiplications, 1 addition, 1 assignment)
 ⇒ Total: 4N

• Line 2:
$$\underbrace{1}_{init} + \underbrace{(N+1)}_{comparisons} + \underbrace{N}_{increments} \Rightarrow \text{Total: } 2N+2$$

Therefore, the overall total is 6N + 4 time steps.

(O(N))

General Rules for Obtaining Upper Bounds

Rule 1 – FOR Loops The running time of a for loop is at most the running time of the statements inside the for loop (including tests) times the number of iterations.

General Rules for Obtaining Upper Bounds

Rule 1 – FOR Loops The running time of a for loop is at most the running time of the statements inside the for loop (including tests) times the number of iterations.

Rule 2 – Nested Loops Analyze inside out, applying Rule 1 in every case.

General Rules for Obtaining Upper Bounds

- Rule 1 FOR Loops The running time of a for loop is at most the running time of the statements inside the for loop (including tests) times the number of iterations.
- Rule 2 Nested Loops Analyze inside out, applying Rule 1 in every case.
- Rule 3 Consecutive Statements Add up the various components.

General Rules for Obtaining Upper Bounds

- Rule 1 FOR Loops The running time of a for loop is at most the running time of the statements inside the for loop (including tests) times the number of iterations.
- Rule 2 Nested Loops Analyze inside out, applying Rule 1 in every case.
- Rule 3 Consecutive Statements Add up the various components.
- Rule 4 If/Else In a situation as below:

```
if (condition)
S1
else
S2
```

the running time is upper bounded by the running time of the test plus the larger of the running times of S1 and S2.

Insertion Sort


```
INSERTION-SORT (A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 \vdash Insert A[j] into the sorted sequence A[1 \square j - 1].

4 i \leftarrow j - 1

5 while i > 0 and A[i] > key

6 do A[i + 1] \leftarrow A[i]

7 i \leftarrow i - 1

8 A[i + 1] \leftarrow key
```

• Line 5: 2 comparisons that always fail \Rightarrow Ignore lines 6 and 7. \Rightarrow O(1) time steps per iteration

```
INSERTION-SORT (A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 \vdash Insert A[j] into the sorted sequence A[1 \square j - 1].

4 i \leftarrow j - 1

5 while i > 0 and A[i] > key

6 do A[i + 1] \leftarrow A[i]

7 i \leftarrow i - 1

8 A[i + 1] \leftarrow key
```

- Line 5: 2 comparisons that always fail \Rightarrow Ignore lines 6 and 7. \Rightarrow O(1) time steps per iteration
- Lines 2, 4, 8: O(1) time steps per iteration

- Line 5: 2 comparisons that always fail \Rightarrow Ignore lines 6 and 7. \Rightarrow O(1) time steps per iteration
- Lines 2, 4, 8: O(1) time steps per iteration
- Line 1: At most 3 operations per iteration $\Rightarrow O(1)$ time per iteration (Overall: 1 init, N comparisons, (N-1) increments)

```
INSERTION-SORT (A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 \vdash Insert A[j] into the sorted sequence A[1 \square j - 1].

4 i \leftarrow j - 1

5 while i > 0 and A[i] > key

6 do A[i + 1] \leftarrow A[i]

7 i \leftarrow i - 1

8 A[i + 1] \leftarrow key
```

- Line 5: 2 comparisons that always fail \Rightarrow Ignore lines 6 and 7. \Rightarrow O(1) time steps per iteration
- Lines 2, 4, 8: O(1) time steps per iteration
- Line 1: At most 3 operations per iteration $\Rightarrow O(1)$ time per iteration (Overall: 1 init, N comparisons, (N-1) increments)

By the **rule of FOR loops**, since the body of the FOR loop will be executed N-1 times, we have that the total running time is O(N). (We also applied the **rule of nested loops** - but it was trivial here.)

```
INSERTION-SORT (A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 \vdash Insert A[j] into the sorted sequence A[1 \square j - 1].

4 i \leftarrow j - 1

5 while i > 0 and A[i] > key

6 do A[i + 1] \leftarrow A[i]

7 i \leftarrow i - 1

8 A[i + 1] \leftarrow key
```

• While loop (lines 5 - 7): Every iteration in O(1) time. Loop at most j-1 times \Rightarrow Total time at most c(j-1)+c=cj time steps (per j)

```
INSERTION-SORT (A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 \vdash Insert A[j] into the sorted sequence A[1 \square j - 1].

4 i \leftarrow j - 1

5 while i > 0 and A[i] > key

6 do A[i + 1] \leftarrow A[i]

7 i \leftarrow i - 1

8 A[i + 1] \leftarrow key
```

- While loop (lines 5 7): Every iteration in O(1) time. Loop at most j-1 times \Rightarrow Total time at most c(j-1)+c=cj time steps (per j)
- Lines 2, 4, 8: O(1) time.

- While loop (lines 5 7): Every iteration in O(1) time. Loop at most j-1 times \Rightarrow Total time at most c(j-1)+c=cj time steps (per j)
- Lines 2, 4, 8: *O*(1) time.
- Line 1: O(1) time per iteration

- While loop (lines 5 7): Every iteration in O(1) time. Loop at most j-1 times \Rightarrow Total time at most c(j-1)+c=cj time steps (per j)
- Lines 2, 4, 8: *O*(1) time.
- Line 1: O(1) time per iteration

Total time
$$T(N) \le c' + \sum_{j=2}^{N} (c' + cj) = c' + c'(N-1) + c \sum_{j=2}^{N} j$$

= $c'N + c \left(\frac{N(N+1)}{2} - 1 \right) = O(N^2)$.

Binary Search

What is the idea of binary search?

Binary Search

```
* Performs the standard binary search using two comparisons per level.
      * Returns index where item is found or -1 if not found.
 4
      */
 5
     template <typename Comparable>
     int binarySearch( const vector<Comparable> & a. const Comparable & x )
 6
 7
8
         int low = 0, high = a.size() - 1;
 9
        while( low <= high )</pre>
10
11
12
            int mid = (low + high) / 2;
13
14
            if(a[mid] < x)
                low = mid + 1:
15
             else if( a[mid] > x)
16
17
                high = mid - 1:
18
             else
19
                return mid; // Found
20
21
         return NOT FOUND; // NOT FOUND is defined as -1
22
```

Assumption: Let the array size be $N = 2^k$ for some $k \in \mathbb{N}^*$.

- Worst case: the number we are looking for is not in the array!
- In each iteration, we are left with an array that has size at most half of the previous array.
- For example, 1 5 7 10 15 20 27 33

Assumption: Let the array size be $N = 2^k$ for some $k \in \mathbb{N}^*$.

- Worst case: the number we are looking for is not in the array!
- In each iteration, we are left with an array that has size at most half of the previous array.
- For example, 1 5 7 10 15 20 27 33

Assumption: Let the array size be $N = 2^k$ for some $k \in \mathbb{N}^*$.

- Worst case: the number we are looking for is not in the array!
- In each iteration, we are left with an array that has size at most half of the previous array.
- For example, 1 5 7 10 15 20 27 33
- So, we have

Queries	Array Size
0	N
1	N/2
2	(N/2)/2
:	:
q	$N/2^q$

Assumption: Let the array size be $N = 2^k$ for some $k \in \mathbb{N}^*$.

- Worst case: the number we are looking for is not in the array!
- In each iteration, we are left with an array that has size at most half of the previous array.
- For example, 1 5 7 10 15 20 27 33
- So, we have

Queries	Array Size
0	N
1	<i>N</i> /2
2	(N/2)/2
÷	:
q	$N/2^q$

• Stop when $N/2^q < 1 \Rightarrow 2^q > N \Rightarrow q > \log_2(N) \Rightarrow q = 1 + k$.

Total time $O(\log_2(N))$

Binary search splits the array ($N \ge 2$) into

$$\big(\lfloor N/2\rfloor-1\big)+1+\lceil N/2\rceil$$

Binary search splits the array ($N \ge 2$) into

$$(\lfloor N/2\rfloor -1)+1+\lceil N/2\rceil$$

 \Rightarrow Worst case: N is odd, we are left with $\lceil N/2 \rceil$ (slightly more than N/2).

Binary search splits the array ($N \ge 2$) into

$$(\lfloor N/2\rfloor -1)+1+\lceil N/2\rceil$$

 \Rightarrow Worst case: N is odd, we are left with $\lceil N/2 \rceil$ (slightly more than N/2).

Lemma

Let
$$2^{k-1} < N < 2^k$$
. Then, $2^{k-2} < \lceil N/2 \rceil \le 2^{k-1}$.

Binary search splits the array ($N \ge 2$) into

$$(\lfloor N/2\rfloor -1)+1+\lceil N/2\rceil$$

 \Rightarrow Worst case: N is odd, we are left with $\lceil N/2 \rceil$ (slightly more than N/2).

Lemma

Let
$$2^{k-1} < N < 2^k$$
. Then, $2^{k-2} < \lceil N/2 \rceil \le 2^{k-1}$.

Queries	Array Size	Array Size Upper Bound
0	N	$< 2^k$
1	$\lceil N/2 \rceil$	$\leq 2^{k-1}$
2	$\lceil \lceil N/2 \rceil / 2 \rceil$	$\leq 2^{k-2}$
÷	:	:
q	$\lceil \cdots \lceil \lceil N/2 \rceil/2 \rceil \cdots \rceil/2 \rceil$	$\leq 2^{k-q}$

Binary search splits the array ($N \ge 2$) into

$$\left(\left\lfloor N/2\right\rfloor -1\right)+1+\left\lceil N/2\right\rceil$$

 \Rightarrow Worst case: N is odd, we are left with $\lceil N/2 \rceil$ (slightly more than N/2).

Lemma

Let
$$2^{k-1} < N < 2^k$$
. Then, $2^{k-2} < \lceil N/2 \rceil \le 2^{k-1}$.

Queries	Array Size	Array Size Upper Bound
0	N	$< 2^k$
1	$\lceil N/2 \rceil$	$\leq 2^{k-1}$
2	$\lceil \lceil N/2 \rceil / 2 \rceil$	$\leq 2^{k-2}$
÷	:	:
q	$\lceil \cdots \lceil \lceil N/2 \rceil/2 \rceil \cdots \rceil/2 \rceil$	$\leq 2^{k-q}$

• Stop when $2^{k-q} < 1 \Rightarrow q = 1 + k = 1 + \lceil \log_2(N) \rceil$.

Total time $O(\log_2(N))$

Appendix: A Few More Comments

Little Oh

Definition (Little Oh)

T(N) = o(f(N)) if, for all positive constants c, there exists an $n_0 > 0$ such that

when $N \geq n_0$.

(Informal:
$$T(N) = o(f(N))$$
 if $T(N) = O(f(N))$ and $T(N) \neq \Theta(f(N))$.)

Example

$$2N^2 = o(N^3) \qquad \qquad \left(n_0 = \frac{2}{c}\right)$$

Little Oh

Definition (Little Oh)

T(N) = o(f(N)) if, for all positive constants c, there exists an $n_0 > 0$ such that

when $N \geq n_0$.

(Informal:
$$T(N) = o(f(N))$$
 if $T(N) = O(f(N))$ and $T(N) \neq \Theta(f(N))$.)

Example

$$2N^2 = o(N^3)$$

$\left(n_0=\frac{2}{c}\right)$

Definition (Set Definition of Little Oh)

$$o(f(n)) = \{g(n) : \text{ for any constant } c > 0,$$

there is a constant $n_0 > 0$ such that $0 \le g(n) < cf(n)$ for all $n \ge n_0\}$

Little Omega

Definition (Little Omega)

 $T(N) = \omega(f(N))$ if, for all positive constants c, there exists an $n_0 > 0$ such that

when $N \geq n_0$.

(Informal:
$$T(N) = \omega(f(N))$$
 if $T(N) = \Omega(f(N))$ and $T(N) \neq \Theta(f(N))$.)

Example

$$2N^2 = o(N^3) \qquad (n_0 = \frac{2}{s})$$

Little Omega

Definition (Little Omega)

 $T(N) = \omega(f(N))$ if, for all positive constants c, there exists an $n_0 > 0$ such that

when $N \geq n_0$.

(Informal:
$$T(N) = \omega(f(N))$$
 if $T(N) = \Omega(f(N))$ and $T(N) \neq \Theta(f(N))$.)

Example

$$2N^2 = o(N^3)$$

$$\left(n_0=\frac{2}{c}\right)$$

Definition (Set Definition of Little Omega)

$$\omega(f(n)) = \{g(n) : \text{ for any constant } c > 0,$$

there is a constant $n_0 > 0$ such that $0 < cf(n) < g(n)$ for all $n > n_0\}$

Using Limits to Compute Relationships

For two functions *f* and *g* we can compute the limit,

$$L = \lim_{N \to \infty} \frac{f(N)}{g(N)}$$

using L'Hôpital's rule.

- $L = 0 \Rightarrow f(N) = o(g(N)).$
- $L = c \neq 0 \Rightarrow f(N) = \Theta(g(N)).$
- $L = \infty \Rightarrow g(N) = o(f(N)).$
- L does not exist ⇒ There is no relation (will never happen in our context)

Macro Substitution

Convention: A set in a formula represents a function from the set.

Example

$$N^2 + O(N) = O(N^2)$$

means that for any $f(N) \in O(N)$:

$$N^2 + f(N) = g(N)$$

for some $g(N) \in O(N^2)$.