Global Optimization Register Allocation

Dataflow Analysis

- Simple optimizations over a basic block may be extended over the entire CFG
- Example: Global Constant Propagation

Dataflow Analysis

- To replace a use of **x** by a constant **k** we must know:
 - On every path to the use of \mathbf{x} , the last assignment to \mathbf{x} is $\mathbf{x} = \mathbf{k}$

Global Optimization

- The correctness condition is not trivial to check
 - *Paths* include paths around loops and through branches of conditionals
- Generally global optimization depends on knowing a property Γ at a particular point in program execution
 - Proving Γ at any point requires knowledge of the entire program
- It is OK to be conservative. If the optimization requires Γ to be true, then want to know either
 - Γ is definitely true
 - Don't know if Γ is true
 - It is always safe to say "don't know"

- We must know whether:
 - On every path to the use of x, the last assignment to x is x = k
- We associate one of the following values with **x** at every program point:
 - \perp (Bottom): This statement never executes
 - C : **x** equals to constant **C**
 - (Top) : **x** is not a constant
- For each statement **s**, the value of **x** immediately before and after **s** is calculated
 - C(s, x, in): Value of **x** before **s**
 - C(s, x, out): Value of **x** after **s**

• Rule #1

if $C(p_i, x, out) = T$ for any i, then C(s, x, in) = T

• Rule #2

if $C(p_i, x, out) = c \& C(p_j, x, out) = d \& d <> c$ then C(s, x, in) = T

if
$$C(p_i, x, out) = c$$
 or \bot for all i,
then $C(s, x, in) = c$

if
$$C(p_i, x, out) = \bot$$
 for all i,
then $C(s, x, in) = \bot$

$$C(s, x, out) = \bot if C(s, x, in) = \bot$$

• Rule #6

C(x := c, x, out) = c if c is a constant

$$C(x := f(...), x, out) = T$$

$$C(y := ..., x, out) = C(y := ..., x, in) if x <> y$$

- For every entry s to the program, set C(s, x, in) = T
- Set $C(s, x, in) = C(s, x, out) = \bot$ everywhere else
- Repeat until all points satisfy 1-8:
 - Pick s not satisfying 1-8 and update using the appropriate rule

Analysis of Loops

• How can global constant propagation for the following CFG be performed?

- The first value of x is dead (never used)
- The second value of x is *live* (may be used)

- A variable **x** is live at statement **s** if
 - There exists a statement s' that uses x
 - There is a path from s to s'
 - That path has no intervening assignment to x
- A statement x = ... is dead code if x is dead after the assignment
 - Dead statements can be deleted from the program

• Liveness can be expressed in terms of information transferred between adjacent statements, just as in copy propagation

• Rule #1

 $L(p, x, out) = \bigvee \{ L(s, x, in) \mid s \text{ a successor of } p \}$

• Rule #2

L(s, x, in) = true if s refers to x on the rhs

• Rule #3

L(x := e, x, in) = false if e does not refer to x

• Rule #4

L(s, x, in) = L(s, x, out) if s does not refer to x

- Let all L(...) = false initially
- Repeat until all statements s satisfy rules 1-4
 - Pick s where one of 1-4 does not hold and update using the appropriate rule

Register Allocation

- The process of assigning a large number of target program variables onto a small number of CPU registers
- **Method:** Assign multiple temporaries to each register without changing the program behavior
 - Example:

$$a := c + d$$

 $e := a + b$
 $f := e - 1$

a, e and f can all be allocated to the same register assuming a and e are dead after use

$$r_1 := r_2 + r_3$$
 $r_1 := r_1 + r_4$
 $r_1 := r_1 - 1$

Basic Idea: Two temporary variables t_1 and t_2 can share the same register if at any point in the program at most one of t_1 or t_2 is live.

- Register Interference Graph (RIG)
 - An undirected graph
 - Each temporary variable is a node
 - Two temporary variables t_1 and t_2 share an **edge** if they are simultaneously alive at some program point

- Graph Colouring: An assignment of colours to nodes, such that nodes connected by an edge have different colours
- k-colouring: A coloring using at most k colours.
- Chromatic number: The smallest number of colours needed to colour a graph
- Independent set: A subset of vertices assigned to the same colour
- k-coloring is the same as a partition of the vertex set into k independent sets
 - The terms k-partite and k-colourable are equivalent
- The graph colouring problem is **NP-Hard**
 - Heuristics needed to solve it

- In the register allocation problem, colours = registers
- We need to assign colours (registers) to graph nodes (temporaries)
- Let k = number of machine registers
- If the RIG is *k-colourable* then there is a register assignment that uses no more than *k* registers

In our example RIG there is no coloring with less than 4 colours

• Under the colouring, the code becomes:

- A heuristic algorithm:
 - Pick a node t with fewer than k neighbors
 - Put t on a stack and remove it from the RIG
 - Repeat until the graph is empty
- Assign colors to nodes on the stack:
 - Start with the last node added
 - At each step pick a color different from those assigned to already colored neighbors

• Example: Let k = 4

• Initial RIG:

Stack: {}

Remove a

Step 2:

Stack: {a}

Remove d

- · All nodes now have fewer than 4 nodes
- Step 3:

Stack: $\{d, a\}$

- Remove any node
- Continue removing nodes until the graph is *empty*
- Let the stack be: {f, e, b, c, d,
 a} after removal of all nodes

 Now start assigning colours to the nodes, starting from the top of the stack

• Stack: { f, e, b, c, d, a }

• Stack: $\{e, b, c, d, a\}$

• Stack: $\{b, c, d, a\}$

• Stack: $\{c,d,a\}$

 r_3 Stack: {*d*, *a*} Stack: $\{a\}(d \text{ and } b \text{ can have } b)$ the same register) Stack: $\{\}\ \}(a \text{ and } e \text{ can have})$ the same register)

What if the heuristic fails?

• Example: Try to do a 3-colouring of the graph:

What if the heuristic fails?

- Pick a node as a candidate for spilling
 - A spilled temporary lives in memory
- Assume we choose f as a candidate for spilling

• The algorithm now succeeds: b, d, e, c

What if the heuristic fails?

- On the assignment phase we get to the point when we have to assign a color to *f*
- We hope that among the 4 neighbors of f we use less than 3 colors \Rightarrow optimistic coloring

• The algorithm now succeeds: b, d, e, c

- Since optimistic coloring failed we must spill temporary f
- We must allocate a memory location as the home of f
 - Typically this is in the current stack frame
 - Call this address fa
- Before each operation that uses f, insert
 - f := load fa
- After each operation that defines f, insert
 - \blacksquare store f, fa

• Original code:

• Code after spilling:

Re-compute Liveness:

- The new liveness information is almost as before
- f_i is live only
 - Between a f_i := load fa and the next instruction
 - Between a store f_i , fa and the preceding instruction
- Spilling reduces the live range of f and thus reduces its interferences
 - Which result in fewer neighbors in RIG for f

- With the new liveness information, we need to rebuild the RIG
 - And try to colour the resulting graph again

- Now f only interfaces with c and d
- The new RIG is 3-colourable

- Additional spills might be required before a coloring is found
- The tricky part is deciding what to spill
 - But any choice is correct

- Possible heuristics:
 - Spill temporaries with most conflicts
 - Spill temporaries with few definitions and uses
 - Avoid spilling in inner loops