NOIP 2022 模拟赛

KDOI Round 3

时间: 2022 年 11 月 20 日 08:30 ~ 13:00

题目名称	还原数据	构造数组	I LOVE U TOO	序列变换
题目类型	传统型	传统型	传统型	传统型
可执行文件名	restore	array	ilu	control
时间限制	1.0 秒	4.0 秒	2.0 秒	4.0 秒
空间限制	512 MiB	512 MiB	512 MiB	1.0 GiB
测试点数目	10	25	10	25
测试点是否等分	是	是	是	是

提交源文件程序名

对于 C++ 语言 restore.cpp	array.cpp	ilu.cpp	control.cpp
-----------------------	-----------	---------	-------------

编译选项

对于 C++ 语言	-02 -1m
-----------	---------

注意事项(请仔细阅读)

- 1. C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 2. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 3. 选手提交的程序源文件必须不大于 100KB。
- 4. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 5. 只提供 Linux 格式附加样例文件。
- 6. 禁止在源代码中改变编译器参数 (如使用 #pragma 命令),禁止使用系统结构相关指令 (如内联汇编)和其他可能造成不公平的方法。
- 7. 所有题目均使用标准输入输出。

还原数据 (restore)

【题目描述】

小 E 正在做一道经典题:

给定一个长度为 n 的序列 a 和 q 个操作,操作共有 2 种类型:

- 11 r x: 对于所有 l < i < r, $a_i \leftarrow a_i + x$ 。
- 21 r x: 对于所有 $l \le i \le r$, $a_i \leftarrow \max(a_i, x)$ 。

题目要求输出所有操作结束后的最终序列 a'。

小 E 迅速写了一份代码提交,但是发现,由于宇宙射线的影响,输入数据出现了一些小问题。具体地,对于所有 2 操作,操作中给出的 x 均被丢失了,也就是说,输入数据中的 2 操作只剩下了 21r。输出数据则没有问题。小 E 现在想要通过剩余的数据恢复原来的输入数据,请你帮助他完成这个任务。

当然,可能会有多种合法的输入数据,你需要找到其中任意一种。数据保证有解。

【输入格式】

从标准输入读入数据。

本题有多组测试数据。

第一行一个正整数 T,表示数据组数。

对于每组测试数据,第一行两个非负整数 n,q。

第二行 n 个整数,表示初始序列 a_1, a_2, \dots, a_n 。

接下来 q 行,每行一次操作,形如 11rx 或 21r。

接下来一行 n 个整数,表示最终序列 a'_1, a'_2, \cdots, a'_n 。

【输出格式】

输出到标准输出。

本题开启自定义校验器(Special Judge)。

对于每组测试数据,设共有 q_2 个 2 操作,输出一行 q_2 个整数,第 i 个整数表示第 i 次 2 操作中所给出的 x 的值。

你需要保证 $-10^{15} < x < 10^{15}$ 。

【样例1输入】

```
4 2 3 5
5 1 3 4 2
```

6 2 1 1

7 20 2 5 6 5

【样例1输出】

1 3 20

【样例1解释】

所有合法输出需要满足: 第1个数 <3, 第2个数恰好为20。

【样例 2】

见选手文件中的 restore/restore2.in 与 restore/restore2.ans。

【样例 3】

见选手文件中的 restore/restore3.in 与 restore/restore3.ans。

【数据范围】

记 q_2 为单组数据内 2 操作的个数, $\sum n$ 为单个测试点内所有 n 的和, $\sum q$ 为单个测试点内所有 q 的和。

对于 20% 的数据, 保证 $n, q \le 50$, $\sum n, \sum q \le 1000$ 。

对于 40% 的数据,保证 $n,q \le 1$ 000, $\sum n, \sum q \le 10^5$ 。

对于另外 20% 的数据, 保证 l=1, r=n。

对于另外 20% 的数据, 保证 $q_2 \le 100$ 。

对于 100% 的数据,保证 $1 \le T \le 100$, $1 \le n, q \le 10^5$, $1 \le \sum n, \sum q \le 3 \times 10^5$, $-10^9 \le a_i, x \le 10^9$, $-10^{15} \le a_i' \le 10^{15}$, $q_2 \ge 1$ 。

【校验器】

为了方便测试,在 restore 目录下我们下发了 checker.cpp 文件。你可以编译该文件,并使用它校验自己的输出文件。请注意它与最终评测时所用的校验器并不完全一致,你不需要也不应该关心其代码的具体内容。

编译命令为:

1 g++ checker.cpp -o checker -std=c++14

使用方式为:

1 ./checker <inputfile> <outputfile> <answerfile>

校验器可能会返回以下状态中的其中一种:

- Accepted: 表示你的输出完全正确。
- Wrong answer at testcase x: 表示你的输出在第 x 个测试数据出错。

【提示】

本题输入输出量较大,建议使用较快的输入输出方式。

构造数组 (array)

【题目描述】

你现在有一个长度为 n 的数组 a。一开始,所有 a_i 均为 0。给出一个同样长度为 n 的目标数组 b。求有多少种方案,使得通过若干次以下操作,可以让 a 数组变成 b。

• 选出两个不同的下标 $1 \le i < j \le n$, 并将 a_i 和 a_j 同时增加 1。

两种方案被称之为不同的,当且仅当存在至少一个 x 使得一种方案中第 x 次操作选择的两个下标 (i,j) 与另一种方案中的不同。

答案对 998244353 取模。

【输入格式】

从标准输入读入数据。

输入数据一共包含两行。

第一行包含一个正整数 n。

第二行 n 个正整数,表示 b_1, b_2, \dots, b_n 。

【输出格式】

输出到标准输出。

输出一行一个正整数,表示将 a 数组通过若干次操作变成 b 数组的方案数对 998244353 取模后的结果。

【样例1输入】

1 4

2 2 2 2 2

【样例1输出】

1 90

【样例1解释】

种类编号	第一组	第二组	第三组	第四组	方案数
1	1<->2	1<->2	3<->4	3<->4	$\binom{4}{2} = 6$
2	1<->3	1<->3	2<->4	2<->4	$\binom{4}{2} = 6$
3	1<->4	1<->4	2<->3	2<->3	$\binom{4}{2} = 6$
4	1<->2	1<->4	2<->3	3<->4	4! = 24
5	1<->2	1<->3	2<->3	2<->4	4! = 24
6	1<->3	1<->4	2<->3	2<->4	4! = 24

总方案数是 $6 \times 3 + 24 \times 3 = 90$ 。

【样例 2】

见选手文件中的 array/array2.in 与 array/array2.ans。 此样例满足测试点 $6 \sim 8$ 的限制。

【样例 3】

见选手文件中的 array/array3.in 与 array/array3.ans。 此样例满足测试点 $12 \sim 14$ 的限制。

【样例 4】

见选手文件中的 array/array4.in 与 array/array4.ans。 此样例满足测试点 $15 \sim 18$ 的限制。

【样例 5】

见选手文件中的 array/array5.in 与 array/array5.ans。 此样例满足测试点 $19 \sim 20$ 的限制。

【样例 6】

见选手文件中的 array/array6.in 与 array/array6.ans。 此样例满足测试点 $21 \sim 22$ 的限制。

【样例 7】

见选手文件中的 array/array7.in 与 array/array7.ans。 此样例满足测试点 $23 \sim 25$ 的限制。

【数据范围】

对于 100% 的数据, $1 \le n \le 5$ 000, $1 \le b_i \le 30$ 000, $\sum b_i \le 30$ 000。

测试点编号	n	$\sum b_i$	
1	$\leq 5 000$	$\equiv 1 \pmod{2}$	
$2 \sim 3$	= 1	< 30 000	
$4 \sim 5$	= 2	<u>≥ 50 000</u>	
$6 \sim 8$	≤ 5	≤ 8	
$9 \sim 11$	≤ 20		
$\boxed{12 \sim 14}$	$\leq 5 000$	= n	
$\boxed{15 \sim 18}$	≤ 16	≤ 16	
$19 \sim 20$	≤ 700	≤ 700	
$21 \sim 22$	/ 5,000	$\leq 5~000$	
$23 \sim 25$	$\leq 5~000$	≤ 30 000	

I LOVE U TOO (ilu)

【题目背景】

I LOVE U TOO

「因为有你 我的舞台 才会发亮 化身炙热的太阳 在彼此的世界闪光 欢呼响起 我的声音 还在回响 台下挥舞的荧光 连接成蓝色的海洋

天依和阿绫是一对好朋友。

一天晚上, 天依和阿绫闲着没事干, 打算出道题。

阿绫:"我有很多的数。"

天依:"那我要求和!"

阿绫: "再来个最大值咋样?"

天依: "不行,我要最小值!"

阿绫:"最大值,好嘛..."

于是,就有了这道题。

【题目描述】

天依给了你一个数 n,表示现在有一个 n 层的金字塔形的格子纸,第 i 层有 i 个格子。**保** 证 n 是 2 的正整数次幂。

阿绫给了你 $\frac{n\times(n+1)}{2}$ 个数,分别为 $1,2,\cdots,\frac{n\times(n+1)}{2}$,现在你要将这些数分别填入这 $\frac{n\times(n+1)}{2}$ 个格子。

定义一条到i的路径为从第一行的格子走到最底层从左往右第i个格子,每次只能往左下或者右下走的路径。

定义一条路径的权值为其所有经过的格子的权值的和。

定义 f(i) 表示所有到 i 的路径的权值的最大值。

定义一种填放方案的权值为 $\min_{i=1}^{n} f(i)$ 。现在你要求出所有填放方案的最大权值,并输出任意一种权值最大的填放方案。

【输入格式】

从标准输入读入数据。

输入数据仅包含一行一个正整数 n。

保证 n 是 2 的正整数次幂。

【输出格式】

输出到标准输出。

本题开启自定义校验器(Special Judge)。

第 1 行一个正整数 k,表示所有方案中最大的权值。

第 2 至 n+1 行, 第 i+1 行包含 i 个数, 表示填放方案。

【样例1输入】

1 2

【样例1输出】

1 4

2 3

3 1 2

【数据范围】

对于第 i 个测试点, $n=2^{i+1}$,总计 10 个测试点。 对于 100% 的数据, $2 \le n \le 2$ 048。

【评分方式】

对于每个测试点,如果你输出的 k 和你的填数方案的权值不同,你将在该测试点得到 0 分。

否则,记标准答案为x,设 $p=\frac{x-k}{x}$,则你的得分由下表给出:

$p \leq$	0	0.005	0.06	0.1	0.15	0.3	0.6
分数	10	8	7	6	5	3	1

序列变换(control)

【题目描述】

给定一个长度为 n 的 **01** 序列 a 和 q 次询问,询问参数 k。 每次询问给定 L,R,其中 $1 \le L \le R \le n$,你可以进行如下操作:

- 选择一个下标 L < i < R;
- 将 a_{i-1} 赋值为 $a_{i-1} \oplus a_i$, a_{i+1} 赋值为 $a_{i+1} \oplus a_i$ 。如果 i = n,则不对 a_{i+1} 作出改变。其中 \oplus 表示按位异或运算。

求使得 [L,R] 区间内**至多**有 k 个 **1** 的最小操作次数。询问之间相互独立,也就是说,每次询问后重置为初始序列。

【输入格式】

从标准输入读入数据。

第一行三个正整数 n, k, q。

第二行 n 个正整数 a_1, a_2, \dots, a_n 。

接下来 q 行,每行两个正整数 L,R,表示一次询问。

【输出格式】

输出到标准输出。

输出共 q 行,每行一个整数,表示答案。

【样例1输入】

```
1 5 1 2
```

2 1 1 1 0 1

3 2 3

4 1 3

【样例1输出】

1 1

2 1

【样例1解释】

如图,用绿色代表 0,红色代表 1,初始序列如下:

对于第 1 次询问,选择 i=3,则序列变为下图:

对于第 2 次询问,选择 i=2,则序列变为下图:

【样例 2 输入】

```
1
  20 3 22
2
  12 15
  1 6
4
5
  5 10
  2 5
7
  9 18
8 6 17
9
  2 13
10 4 16
11 2 8
12 9 19
13 10 15
14 7 15
15 1 3
16 14 18
17 6 17
18 12 14
19 7 16
20 14 18
21
  11 12
22
  3 5
```

```
23 3 6
```

24 3 15

【样例 2 输出】

【样例2解释】

对于第 1 次询问,由于 $a_{12}, a_{13}, a_{14}, a_{15}$ 中只有 2 个 **1**,所以不需要进行任何操作。 对于第 6 次询问,可以依次选择 $i = \{7, 8, 9, 10, 11, 12\}$ 。

【样例 3】

见选手文件中的 control/control3.in 与 control/control3.ans。 此样例满足测试点 $7 \sim 10$ 的限制。

【样例 4】

见选手文件中的 control/control4.in 与 control/control4.ans。 此样例满足测试点 $15\sim17$ 的限制。

【样例 5】

见选手文件中的 control/control5.in 与 control/control5.ans。 此样例满足测试点 $18 \sim 21$ 的限制。

【数据范围】

对于 100% 的数据, $2 \le n \le 3$ 000, $1 \le k \le \min(n, 1 \ 000)$, $1 \le q \le 5 \times 10^5$ 。

测试点编号	$n \leq$	$k \leq$	$q \leq$	特殊性质	
$1 \sim 3$	80	50	2 000	无	
$4 \sim 6$		300	1	k 是偶数	
$\frac{}{7 \sim 10}$	400	2	10 000		
$\boxed{11 \sim 14}$		300	10 000	无	
$\boxed{15 \sim 17}$		10			
$\boxed{18 \sim 21}$	3 000	1 000	5×10^5	k 是偶数	
$20 \sim 25$		1 000		无	