Fakulta matematiky, fyziky a informatiky UK

Návrh Projekt Serial transformers

Obsah

1.	Specifikácia vonkajších interfejsov	2
2.	Dátový model perzistentných údajov pre transformačný modul	3
3.	Formát súborov pre transformačný modul pre teleskop	5
4.	Komunikačné protokoly	5
5.	Dátový model perzistentných údajov pre univerzálny transformačný modul	6
6.	Formát súborov pre univerzálny transformačný modul	7
7.	Návrh používateľského rozhrania	8
8.	Návrh implementácie	10
9.	Plán implementácie	15

1. Špecifikácia vonkajších interfejsov

Táto kapitola popisuje všetky vonkajšie rozhrania informačného systému, ktoré sú zodpovedné za jeho komunikáciu s ostatnými aplikáciami, súbormi, zariadeniami.

1.1. Hardvérové rozhranie

Táto kapitola popisuje použitý hardvér jeho špecifikáciu a účel, pre ktorý bol použitý.

1.1.1. Teensy 4.1 Microcontroller

Mikrokontrolér Teensy 4.1 slúži ako hlavná riadiaca jednotka systému, na ktorej beží softvér, ktorý spracúva prichádzajúce dáta a implementuje logiku transformácie a filtrovania paketov. V rámci informačného systému umožňuje transformovať, filtrovať pakety pre ovládanie rýchlosti krokových motorov teleskopu. Prepojenie s riadiacim PC je pomocou USB a s krokovými motormi teleskopu cez sériové rozhrania RS232 a RS485.

Špecifikácia:

- ARM Cortex-M7 at 600MHz
- 1024K RAM (512K is tightly coupled)
- 8 Mbyte Flash (64K reserved for recovery & EEPROM emulation)
- USB Host Port
- 2 chips Plus Program Memory
- 55 Total I/O Pins
- 3 CAN Bus (1 with CAN FD)
- 2 I2S Digital Audio
- 1 S/PDIF Digital Audio
- 1 SDIO (4 bit) native SD
- 3 SPI, all with 16 word FIFO
- 7 Bottom SMT Pad Signals
- 8 Serial ports
- 32 general purpose DMA channels
- 35 PWM pins
- 42 Breadboard Friendly I/O
- 18 analog inputs
- Cryptographic Acceleration
- Random Number Generator
- RTC for date/time
- Programmable FlexIO
- Pixel Processing Pipeline
- Peripheral cross triggering
- 10 / 100 Mbit DP83825 PHY (6 pins)
- microSD Card Socket
- Power On/Off management

1.1.2. RS232 na RS485 prevodník

Tento prevodník zabezpečuje transformáciu signálu medzi komunikačnými štandardmi RS232 (Teensy) a RS485 (krokové motory teleskopu).

1.2. Softvérové rozhranie

1.2.1. PC Softvér

Softvér slúži ako grafické používateľské rozhranie (GUI) pre výber modulu, jeho ovládanie, nastavenie parametrov a sledovanie stavu systému, komunikácie. Štruktúra transformačného modulu pre teleskop:

- Prepínač režimov manuálny/automatický/bypass
- Vstupná hodnota manuálne nastavenie rýchlosti
- Vizualizácia transformácie graficky znázornená transformácia s možnosťou nastavenia intervalu priemerovania
- Zobrazenie dát o paketoch infromácie o počte so zmenenou rýchlosťou, pozdržaných, nezmenených, zadržaných
- Tlačidlá pre manipuláciu logov zobrazenie/stiahnutie/zmazanie

1.1.1. Komunikácia s Autoguider kamerou

Komunikácia s Autoguider kamerou prebieha cez webový server. Komunikačné rozhranie:

- Kamera odosiela údaje cez protokol HTTP alebo HTTPS na špecifický port (napr. 8080).
- Kamera posiela údaje v JSON formáte prostredníctvom HTTP POST požiadavky na adresu webserveru.
- Kamera odosiela údaje v pravidelných časových intervaloch.
- Webserver prijíma tieto POST požiadavky a zapisuje údajo do interného systému alebo logu.
- Ak webserver zaznamená chybu pri prijímaní údajov, loguje tento incident s časovou pečiatkou pre ďalšie diagnostické účely.

2. Dátový model perzistentných údajov pre transformačný modul

V dátovom modeli budú reprezentované údaje uchovávané počas celej prevádzky systému, ktoré sú dôležité pre konfiguráciu, logovanie a transformáciu komunikácie.

2.1. Konfiguračné údaje

Konfigurácia je uložená v štruktúrovanom súbore, ktorý obsahuje nasledujúce nastavenia:

- **Mód (mode):** prepína medzi automatickým a manuálnym módom.
- Transformačný modul: identifikátor aktívneho transformačného modulu (teleskopický alebo univerzálny).
- Konštanty zrýchlenia/spomalenia (acceleration/deceleration constants): nastavuje pevnú konštantu zrýchlenia pre os RA.
- **Bypass mód:** binárna hodnota určujúca, či systém funguje v móde bypass (1 = bypass, 0 = transformácia).
- Logovanie činnosti: úroveň logovania (napr. "plné logovanie," "iba chybové hlásenia").

Logovanie paketov: parameter, ktorý určuje, či sa majú logovať prichádzajúce a odchádzajúce pakety. "Áno" pre zapnutie logovania alebo "nie" pre jeho vypnutie.

2.2. Údaje o zaznamenaných paketoch

Každý záznam o pakete obsahuje:

- ID záznamu (record id): unikátne ID záznamu.
- Časová pečiatka (timestamp): čas príchodu paketu do systému (a čas po transformácii, ak sa transformuje).
- Originálny paket (original_packet): surové dáta paketu, ako prišli zo vstupu.
- Transformovaný paket (transformed_packet): výsledný paket po aplikovaní transformačných pravidiel (ak je aktívna transformácia).

2.3. Údaje o používateľských a automatických akciách/udalostiach

Každá akcia je logovaná s nasledujúcimi atribútmi:

- Čas akcie (action_timestamp): čas, kedy bola akcia vykonaná.
- Typ akcie (action_type): popis akcie (napr. zmena módu, reset systému, nová konštanta z kamery, nová nakalibrovaná hodnota pre určitú deklináciu a pod.).
- **Parametre akcie (action_parameters):** prípadné dodatočné informácie o akcii, ako napr. hodnota nastavenej konštanty.

2.4. Automaticky kalibrované konštanty

 Tabuľka s poslednou najlepšou platnou verziou nájdených automatických konštánt

3. Formát súborov pre transformačný modul pre teleskop

Pre komunikáciu a ukladanie dát systém využíva nasledujúce formáty súborov

3.1. Konfiguračný súbor

- Formát: TXT.
- Obsah: Obsahuje konfiguračné údaje, ktoré systém načíta pri štarte, vrátane nastavení pre transformáciu, bypass mód, a konfigurácie transformačných modulov.

3.2. Debug-Log súbor

- Formát: TXT.
- **Obsah:** Tento log uchováva informácie o vykonaných operáciách systému, ako je nastavenie rýchlosti motorov, aplikované pravidlá pre transformáciu, a akékoľvek chyby alebo výnimky počas behu systému.
- Štruktúra logu:
 - o Časová pečiatka, Úroveň závažnosti, Správa, Kód chyby

3.3. Paket-Log súbor

- Formát: TXT.
- **Obsah:** Logy obsahujú zaznamenané údaje o prichádzajúcich a odchádzajúcich paketov, časové pečiatky, typ paketu, záznam o vykonaných transformáciách. Binárne pakety sú logované v ASCII podobe, t.j. napr. bajt s hodnotou 0x14 sa zobrazí ako textový reťazec "14"
- Štruktúra logu:
 - Časová pečiatka, Čas zdržania, Originálny paket, Transformovaný paket

4. Komunikačné protokoly

Pre komunikáciu v master-slave architektúre systému je potrebný špecifický protokol, ktorý zahŕňa príkazy pre riadenie teleskopu a dynamickú úpravu rýchlosti motorov.

4.1. Master-Slave Komunikácia

• Formát telegramu: každý telegram obsahuje hlavičku, adresu, príkaz, a checksum.

- Hlavička (header): identifikuje začiatok telegramu.
- Adresa (address): špecifikuje, či ide o príkaz pre os RA alebo DEC.
- **Príkaz (command):** binárna hodnota určujúca typ akcie (napr. zvýšenie/zníženie rýchlosti).
- **Dátová sekcia (data):** informácie o požadovanej rýchlosti, oneskorení, prípadne ďalších parametroch pre transformáciu.
- Checksum: zabezpečuje správnosť telegramu.

4.2. API pre Autoguider

Externý softvér komunikuje s transformačným zariadením cez špeciálne definované API. Toto API obsahuje príkazy pre:

- Dynamickú zmenu konštanty zrýchlenia/spomalenia:
 - o API príkaz: SET ACCEL CONST
 - Popis: Tento príkaz umožňuje zmenu konštanty zrýchlenia alebo spomalenia zariadenia. Hodnota konštanty je zadávaná ako parameter v príkaze a odosiela sa prostredníctvom HTTP požiadavky na API zariadenia.
 - o Formát:

http://IP_ADRESA/camera_api?passwd=HESLO&accel_const=HODN OTA

- passwd=HESLO Heslo pre autentifikáciu prístupu k API.
- accel_const=HODNOTA Nová hodnota konštanty zrýchlenia/spomalenia, ktorá bude nastavená na zariadení.

Reset zariadenia:

- o **API príkaz:** RESET
- Popis: Tento príkaz slúži na resetovanie zariadenia, čím sa zariadenie vráti do pôvodného stavu.
- o **Formát:** http://IP ADRESA/camera api?passwd=HESLO&reset=1
 - passwd=HESLO Heslo pre autentifikáciu prístupu k API.
 - reset=1 indikuje, že zariadenie má byť resetované. Hodnota 1 znamená, že reset bude vykonaný.

5. Dátový model perzistentných údajov pre univerzálny transformačný modul

5.1. Konfiguračné údaje pre univerzálny modul

Univerzálny modul vyžaduje dodatočné konfiguračné údaje pre pravidlá transformácie:

- Pravidlá transformácie: Pole pravidiel, kde každé pravidlo obsahuje:
 - o **ID pravidla:** Unikátne identifikátor pravidla.
 - Vzor (pattern): Regulárny výraz, ktorý opisuje, aké pakety sa majú transformovať.
 - Náhrada (replacement): Text alebo vzor, ktorým sa nahradí zodpovedajúca časť paketu.
 - Aktivácia pravidla: Binárna hodnota určujúca, či je pravidlo aktívne
 (1 = aktívne, 0 = neaktívne).
- **Poradie pravidiel:** Definuje prioritu aplikácie pravidiel, ak ich je viacero.

5.2. Údaje o zaznamenaných paketoch pre univerzálny modul

Rovnaké ako pre teleskopický modul:

- Originálny paket: Surové dáta paketu.
- Transformovaný paket: Paket po aplikácii pravidiel univerzálneho modulu.
- **Aplikované pravidlá:** Zoznam ID pravidiel, ktoré boli aplikované na konkrétny paket.

5.3. Logovanie pre univerzálny modul

Rozšírenie logovania pre univerzálny modul:

• **ID aplikovaného pravidla:** Identifikátor pravidla, ktoré bolo použité na transformáciu.

6. Formát súborov pre univerzálny transformačný modul

6.1. Konfiguračný súbor pre univerzálny modul

- Formát: TXT.
- **Obsah**: Obsahuje konfiguračné údaje, ktoré systém načíta pri štarte, vrátane nastavení pre transformáciu, bypass mód a konfigurácie pravidiel transformácie.

6.2. Debug-Log súbor pre univerzálny modul

- Formát: TXT.
- Obsah: Tento log uchováva informácie o vykonaných operáciách systému, ako je aplikovanie nových pravidiel regulárnych výrazov, zmeny konfigurácie, a akékoľvek chyby alebo výnimky počas behu systému.
- Štruktúra logu:
 - o Časová pečiatka, Úroveň závažnosti, Správa, Kód chyby

6.3. Paket-Log súbor pre univerzálny modul

- Formát: TXT.
- **Obsah**: Logy obsahujú zaznamenané údaje o prichádzajúcich a odchádzajúcich paktoch, časové pečiatky, typ paketu, záznam o vykonaných transformáciách.
- Štruktúra logu:
- Časová pečiatka, Čas zdržania, Originálny paket, Transformovaný paket, Aplikované regex pravidlo.

7. Návrh používateľského rozhrania

7.1. Pre transformačný modul pre teleskop

7.2. Pre univerzálny transformačný modul

8. Návrh implementácie

8.1. Diagram komponentov

- Java telescope program externý softvérový modul, ktorý komunikuje so systémom.
- Telescope motor controller riadi pohyb teleskopu na základe prijatých príkazov.
- Camera obsahuje modul, ktorý umožňuje komunikáciu s navrhovaným systémom. Používa sa na snímanie obrazu z teleskopu.
- Software na PC slúži na nastavovanie a správu.
- Black box transformer obsahuje niekoľko modulov, ktoré vykonávajú rôzne výpočty a transformácie: telescope angle computation module, telescope angle computation module, universal transformation module, logs, main comm/conf module

8.2. Triedny diagram

- TransformWebServer Poskytuje webové rozhranie na komunikáciu so systémom.
 Využíva: UniversalTransformer na univerzálne transformácie dát, SerialLogger na logovanie.
- AutomaticSerialTransformer Spracováva a transformuje sériové dáta. Využíva: SerialLogger na záznam udalostí, Settings na čítanie a ukladanie konfigurácie.
- UniversalTransformer Poskytuje univerzálnu transformáciu dát, pričom: Využíva SerialLogger na logovanie, Uchováva a spracováva zoznam pravidiel TransformationRule
- TransformationRule Definuje jednotlivé pravidlá, ktoré UniversalTransformer aplikuje na dáta

- Settings Uchováva konfiguračné údaje a dokáže ich načítať alebo uložiť na SD kartu.
- SerialLogger Zabezpečuje logovanie (zápis do súboru, čítanie logov, mazanie logov) a využíva sa všade tam, kde je potrebné zaznamenávať udalosti (AutomaticSerialTransformer, UniversalTransformer, TransformWebServer).

8.3. Rozdelenie na časti (moduly) a ich interfejsy

```
class UniversalTransformer {
  public:
    // Konštruktor
    UniversalTransformer() { }
    // Číta dáta zo sériového portu
    void readSerial() { }
    // Vykoná transformáciu dát
    void transformSerial() { }
    // Zapíše dáta na sériový port
    void writeSerial() { }
};
```

```
class Settings {

public:

// Konštruktor - načíta
konfiguráciu zo SD karty

Settings() { }

// Nastaví a uloží RA pomer

void setRaRatio(double ra) { }

// Nastaví a uloží DEC pomer

void setDecRatio(double dec) { }

// Vráti aktuálny RA pomer

double getRaRatio() { }

// Vráti aktuálny DEC pomer

double getDecRatio() { }

};
```

class SerialLogger {

public:

// Konštruktor

SerialLogger() { }

// Vymaže všetky logy

void delete_all_logs() { }

// Zapíše správu do logu

void log(String message) { }

// Vráti obsah logu

String read_logs(int amount) { }

};

```
class AutomaticSerialTransformer {
public:
  // Konštruktor
  AutomaticSerialTransformer(double ra, double dec, SerialLogger*
ptr logger, Settings* ptr settings) { }
  // Resetuje interné premenné
  void reset() { }
  // Vráti počet zmien rýchlosti
  int getSpeedChanges() { }
  // Nastaví RA pomer a aktualizuje logy
  void setRaRatio(double ra) { }
  // Nastaví DEC pomer a aktualizuje logy
  void setDecRatio(double dec) { }
  // Číta dáta zo sériového portu
  void readSerial() { }
};
```

8.4. Využité technológie

- **Arduino/C++ framework** pre programovanie mikrokontrolérov, kde sa využíva jazyk C++ a knižnice ako Arduino.h, ktoré umožňujú prácu so sériovou komunikáciou, časom, a pod.
- **Teensy 4.1** ako hlavný mikrokontrolér, ktorý poskytuje dostatočný výkon a periférie.
- Serial komunikácia na odosielanie a prijímanie dát medzi modulmi.
- Ethernet a QNEthernet knižnica pre implementáciu webového servera, ktorý spracováva HTTP požiadavky a umožňuje interakciu so systémom cez webové rozhranie.
- SPI a SD knižnica na prácu so SD kartou, ktorá slúži na ukladanie konfiguračných údajov a logov.

9. Plán implementácie

- 1. Fáza Základné moduly a infraštruktúra
 - Najprv sa implementujú základné triedy, ako napríklad SerialLogger a Settings, ktoré sú kľúčové pre logovanie a správu konfigurácie.
- 2. Fáza Implementácia transformačných modulov
 - V ďalšej fáze sa vyvíjajú transformačné moduly AutomaticSerialTransformer a UniversalTransformer.
- 3. Fáza Vývoj webového rozhrania
 - Po overení funkčnosti základných a transformačných modulov sa implementuje TransformWebServer, ktorý poskytuje komunikáciu cez HTTP/HTTPS a zabezpečuje integráciu s externými zariadeniami, ako je autoguider či PC softvér.
- 4. Fáza Integrácia s externými komponentmi
 - Nasleduje integrácia s externými systémami, ako sú Java telescope program, Telescope motor controller a kamera. Cieľ om je zabezpečiť bezproblémovú komunikáciu medzi všetkými modulmi a overiť, že rozhrania medzi komponentmi fungujú korektne.
- 5. Fáza Systémové testovanie a ladenie
 - V záverečnej fáze prebehne celková integrácia systému. Systém bude testovaný v reálnych scenároch, čo umožní identifikovať a odstrániť prípadné chyby, optimalizovať výkon a zabezpečiť finálnu spoľahlivosť celého riešenia.