Obliczenia Inteligentne		Projekt 1	
Grupa: Grupa 1	Dzień i czas: Czwartek, 10:00		Rok akademicki: 2023/24
Imię i nazwisko: Jakub Pawlak		Imię i	nazwisko: Magdalena Pakuła

1 Eksperyment 1: Metoda K-Means

Rysunek 1: Zmiana wartości silhouette score dla wszystkich zbiorów w zależności od parametru n_clusters w metodzie K-means

Rysunek 2: Wizualizacja klastrów dla wszystkich zbiorów na diagramie Voronoia dla najlepszego i najgorszego przypadku w metodzie K-means

2 Eksperyment 1: Metoda DBSCAN

Rysunek 3: Zmiana wartości silhouette score oraz n_clusters dla wszystkich zbiorów w zależności od zmieniającego się parametru eps w metodzie DBSCAN

Rysunek 4: Wizualizacja klastrów dla wszystkich zbiorów na diagramie Voronoia dla najlepszego i najgorszego przypadku w metodzie DBSCAN

Obliczenia inteligentne	Projekt 1
-------------------------	-----------

3 Eksperyment 2: Metoda K-Means z etykietami

Wyniki drugiego eksperymentu dla sześciu sztucznie wygenerowanych zbiorów danych i metody K-Means. Dla każdego zbioru należy pokazać wykres obrazujący zmianę wartości miar adjusted rand score, homogeneity score, completeness score oraz V-measure score przy zmieniającym się parametrze n-clusters oraz wizualizację klastrów (diagram Woronoja z pokazanymi prawdziwymi etykietami obiektów) dla najlepszego i najgorszego przypadku (wskazując, który to był przypadek i dlaczego).

Obliczenia inteligentne	Projekt 1

4 Eksperyment 2: Metoda DBSCAN z etykietami

Wyniki drugiego eksperymentu dla sześciu sztucznie wygenerowanych zbiorów danych i metody DBSCAN. Dla każdego zbioru należy pokazać wykres obrazujący zmianę wartości wartości miar adjusted rand score, homogeneity score, completeness score oraz V-measure score przy zmieniającym się parametrze eps oraz wizualizację klastrów (diagram Woronoja z pokazanymi prawdziwymi etykietami obiektów) dla najlepszego i najgorszego przypadku (wskazując, który to był przypadek i dlaczego). W przypadku metody DBSCAN warto również wskazać na wykresie jaką liczbę klastrów uzyskano dla różnych wartości parametru eps. Przykładowy wykres:

Projekt 1

5 Wnioski

Opis wniosków z eksperymentów przeprowadzonych na sześciu sztucznie wygenerowanych zbiorach. W przypadku pierwszego eksperymentu należy stwierdzić, jak, obserwując silhouette score, można dobrrać właściwe parametry metod klasteryzacji, aby klastry dobrze odkrywały strukturę danych. Dla eksperymentu drugiego należy wskazać jakie informację o separowalności klas można wycią obserwując wartości miar: adjusted rand score, homogeneity score, completeness score oraz V-measure score. Wnioski powinny mieć charakter ogólny, pozwalający przenieść je na przypadek, w którym nie ma możliwości zwizualizowania danych. Każdy wniosek powinien być poparty odniesieniami do wyników przedstawionych na pierwszych czterech stronach raportu.

Eksperyment 1

Eksperyment 2

.

Analiza

Analiza pozostałych, rzeczywistych zbiorów danych powinna uwzględniać wnioski z poprzednich eksperymentów. Można je również uzasadnić poprzez odwołanie do wartości miar uzyskanych na tych zbiorach.

Obliczenia	a inte	ligentne
Oblicaciii	u mo	1180110110

Projekt 1

6 Analiza pozostałych zbiorów danych

Opis analizy pozostałych, rzeczywistych zbiorów danych, w której to zastosowane zostaną wnioski z wcześniejszych eksperymentów. Wyniki tej analizy należy również uzasadnić poprzez odwołanie do wartości miar uzyskiwanych na tych zbiorach (warto wykorzystać tabele i/lub wykresy i się do nich odwołać). W przypadku zbioru Iris da się swoje wnioski podeprzeć wizualizacjami rzutów cech obiektów na dwuwymiarowe przestrzenie wybranych kombinacji dwóch z nich.

Wnioski

Na podstawie przeprowadzonych eksperymentów możemy wnioskować o strukturze rzeczywistych zbiorów danych i skuteczności wybranych metod klasteryzacji.

Zbiór Iris

Zbiór Wine

Zbiór Breast Cancer Wisconsin