

BUNDESREPUBLIK **DEUTSCHLAND**

2 Patentschrift _® DE 199 05 571 C 1

(5) Int. Cl.7: B 23 K 26/38

DEUTSCHES PATENT- UND MARKENAMT (7) Aktenzeichen:

199 05 571.8-34

② Anmeldetag:

11. 2. 1999

43 Offenlegungstag:

Veröffentlichungstag

der Patenterteilung: 16. 11. 2000

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Robert Bosch GmbH, 70469 Stuttgart, DE

② Erfinder:

Benz, Gerhard, Dr., 71032 Böblingen, DE; Schneider, Rainer, Dr., 71739 Oberriexingen, DE; Eisemann, Achim, 74196 Neuenstadt, DE; Wawra, Thomas, 89558 Böhmenkirch, DE

66) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> DE 197 45 280 A1 DE 39 33 448 A1 DE 69 004 22 5T2 US 48 22 974 EP 4 32 528 B1

Werfahren zur Erzeugung definiert konischer Löcher mittels eines Laserstrahls

Durch Einstellen von Strahlgeometrie- und/oder Strahlparametern eines Laserstrahls werden Bohrlöcher mit einer definierten Lochgeometrie in Bohrlochlängsrichtung, insbesondere konische Bohrlöcher, hergestellt.

Die Erfindung betrifft ein Verfahren zur Erzeugung von Löchern in einem Werkstück mittels eines Laserstrahls.

Stand der Technik

Für eine Vielzahl von Anwendungen, beispielsweise zur Herstellung von Einspritzdüsen für Kraftfahrzeug-Otto- und Dieselmotoren ist die Erzeugung von Löchern mit einer de- 10 finierten Lochgeometrie in Längsrichtung des Bohrloches wünschenswert. Insbesondere kann es erforderlich sein, konische Bohrlöcher mit einem zu einem Ende hin zunehmenden Lochquerschnitt zu erzeugen.

Es ist bekannt, derartige konische Löcher mittels Drahte- 15 rodierens herzustellen, wobei die konische Geometrie des Bohrlochs durch eine Schwingung des Erodierdrahtes hervorgerufen wird. Aufgrund des aus Stabilitätsgründen erforderlichen Mindestdurchmessers des Drahtes ist dieses Verfahren für kleine Bohrlochdurchmesser im Bereich unter- 20 halb 150 µm problematisch. Gerade die Herstellung kleiner Bohrlöcher mit hoher Präzision ist jedoch beispielweise für Einspritzdüsen erforderlich. Weiterhin weist das Drahterodierverfahren den Nachteil auf, daß die konische Lochgeometrie schwer reproduzierbar ist und das Verfahren relativ 25 langsam und damit kostenaufwendig ist.

Aus der EP 432 528 B1 geht ein Verfahren zur Herstellung von Löchern in einen Bildübertragungsapparat hervor, die mittels Laserstrahlung erzeugt werden. Bei dem Bohrvorgang mittels des Laserstrahls wird dieser relativ zur Aussenfläche des Bildübertragungsapparats gedreht, so daß Bohrungen erzeugt werden, die an der Innenfläche des Bildübertragungsapparats weiter sind als an der Drehstelle.

Aus der DE 39 33 448 A1 geht ein Verfahren und eine Vorrichtung zum Herstellen einer besonders geformten Boh- 35 rung in Werkstücken hervor, bei dem der Laserstrahl relativ zum Werkstück eine Taumelbewegung ausführt und dabei am Werkstück eine Bohrung mit einer Kegelmantelfläche erzeugt.

Auch bei der US 4 822 974 wird durch eine sich drehende 40 Prismenanordnung ein taumelnder Laserstrahl erzeugt, der zur Herstellung von konischen Bohrungen verwendet wird.

Schließlich geht aus der älteren Anmeldung DE 197 45 280 A1 ein Verfahren zur Herstellung von Bohrungen mittels Laserstrahlen hervor, bei dem ebenfalls der 45 Laserstrahl durch Drehung eines Prismas in seiner Achse gedreht wird und zusätzlich durch eine geeignete Drehung von Scanner-Spiegeln der Drehbewegung eine Taumelbewegung überlagert wird.

Vorteile der Erfindung

Das erfindungsgemäße Verfähren hat den Vorteil, daß durch Einstellung der Strahlgeometrie und/oder der Strahlparameter des Laserstrahls sehr flexible Lochgeometrien mit 55 hoher Präzision herstellbar sind. Ein weiterer Vorteil ist, daß das erfindungsgemäße Verfahren auch auf sehr kleine Lochdurchmesser im Bereich von 100 µ und darunter anwendbar ist. Darüber hinaus ist das Bohrverfahren im Vergleich zu bekannten Bohrverfahren erheblich schneller, wodurch sich 60 beim Einsatz in der industriellen Produktion merkliche Kostenvorteile realisieren lassen.

Gemäß dem im Patentanspruch 1 angegebenen Verfahren führt der Laserstrahl relativ zum Werkstück eine Taumelbewegung aus und durchläuft dabei eine Kegelmantelfläche. 65 Durch die Taumelbewegung kann das Längsprofil des Bohrloches exakt definiert werden. Der Laserstrahl wird zusätzlich synchron mit der Taumelbewegung um die eigene

Achse gedreht. Daher ist zu jedem Zeitpunkt die gleiche Laserstrahlstelle in azimutaler Richtung im Eingriff mit dem Werkstück. Dadurch wird ein unrunder Laserstrahlquerschnitt egalisiert und es entstehen extrem runde Lochquer-5 schnitte.

Gemäß dem erfindungsgemäßen Verfahren kann die Lochgeometrie in Längsrichtung bei Verwendung von polarisiertem Laserlicht durch Wahl von Polarisationsrichtung und/oder Polariasationsart eingestellt werden.

Mittels eines linear polarisierten Laserstrahls kann eine ovale Lochgeometrie an der Seite des Lichtaustritts erzeugt werden. Mittels zirkular polarisierten Laserlichts lassen sich besonders runde Lochquerschnitte realisieren.

Vorzugsweise kann das Bohrloch konisch ausgebildet werden, wobei der Bohrlochdurchmesser in Strahlaustrittsrichtung zunehmen kann.

Um eine sehr enge Bündelung des Laserstrahls im Fokusbereich zu erzielen, kann es zweckmäßig sein, den Querschnitt des Laserstrahls vor dessen Durchgang durch die Fokussierlinse aufzuweiten. Hierfür kann eine teleskopartige Linsenanordnung verwendet werden, die im Strahlengang zwischen Laser und Linse praktisch an beliebiger Stelle plaziert werden kann.

Der Fokusbereich des Laserstrahls kann am Locheintritt an der Werkstückoberfläche liegen.

Eine erfindungsgemäße Vorrichtung zur Erzeugung von Löchern in einem Werkstück weist eine Laserstrahlquelle, eine Linse zur Fokussierung des Laserstrahls auf das Werkstück, eine Einrichtung zur Erzeugung einer Taumelbewegung des Laserstrahls und eine drehbare Polarisationseinrichtung mit einer 1/2-Platte und einer relativ zu dieser drehbaren N4-Platte auf, derart, daß die Polarisationsebene des Laserstrahls synchron mit der Taumelbewegung drehbar ist.

Zeichnungen

Die Erfindung wird im folgenden anhand von bevorzugten Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Zeichnungen im Datail erläutert, in denen

Fig. 1 eine schematische Querschnittsansicht der Erzeugung eines konischen Loches in einem Werkstück mittels eines bewegten Laserstrahls zeigt;

Fig. 2 schematisch die Lochgeometrie in Abhängigkeit von der Polariation des Laserstrahls zeigt; und

Fig. 3 schematisch eines Polarisatoreinrichtung zur Erzeugung unterschiedlicher Polarisationswinkel und Polarisationsarten zeigt.

Fig. 1 zeigt eine schematische Querschnittsdarstellung eines Laser-Bohrvorganges zur Erzeugung eines Loches 7 in 50 einem Werkstück 1.

Durch eine geeignete Taumelbewegung des Laserstrahls kann eine definierte Lochkonizität hergestellt werden. Dieses Verfahren ist in Fig. 1 illustriert. Der Laserstrahl 2, dessen Strahlprofil in Längsrichtung schematisch dargestellt ist, wird mit einer Kreisfrequenz w auf einer durch gestrichelte Linien angedeuteten Kegelmantelfläche um eine durch eine strichpunktierte Linie angegebene Mittelachse gedreht. Die Bahn dieser Drehbewegung zusammen mit dem Strahlquerschnitt ergibt hierbei die gewünschte Lochform. Dabei ist die Relativbewegung zwischen Laserstrahl und Werkstück entscheidend, so daß sowohl der Laserstrahl als auch das Werkstück oder beides bewegt werden kann, wobei die erstgenannte Variante im Falle von komplizierten Werkstückgeometrien die technisch am einfachsten zu verwirklichende

Der Laserstrahl wird gleichzeitig synchron um seine eigene Achse entsprechend der Drehfrequenz der Taumelbewegung gedreht. Daher ist zu jedem Zeitpunkt die gleiche

Stelle des Laserstrahls in azimutaler Richtung im Eingriff mit dem Werkstück. Es können dann extrem runde Löcher realisiert werden, da ein ungleichmäßiger Laserstrahlquerschnitt kompensiert wird. Wiederum kann die Drehbewegung durch Drehen der Laserstrahlquelle oder durch Drehen 5 des Werkstücks erreicht werden.

Gemäß einer Variante des erfindungsgemäßen Verfahrens wird eine definierte Lochgeometrie durch geeignete Wahl von Polarisationseinrichtung und Polarisationsart des Laserstrahls eingestellt. Die Polarisation eines Laserstrahls wird 10 je nach Orientierung der Polarisationsrichtung unterschiedlich absorbiert. Der Lochaustritt wird durch die Polarisation des Laserlichts maßgeblich mitbestimmt. Um einen kreisförmigen Lochaustritt zu erhalten, ist eine zirkulare Polarisation erforderlich, welche durch geeignete Winkelanordnung eines X/4-Plättchens aus linear polarisiertem Licht erzeugt werden kann. Eine weitere Möglichkeit zur Erzeugung eines kreisförmigen Lochaustritts ist in Verbindung mit dem anhand von Fig. 1 erläuterten Verfahren möglich, wenn die Polarisationsebene des Laserstrahls synchron zur 20 Taumelbewegung mittels eines W2-Plättchens oder eines Bildrotators nachgedreht wird.

Eine Polarisatorvorrichtung zur Erzeugung derartiger definierter Polarisationen ist in **Fig.** 3 schematisch dargestellt. Die Polarisatorvorrichtung **4** weist eine λ/2-Platte **5** und 25 eine drehbar dazu gelagerte λ/4-Platte **6** auf. Je nach Position der λ/4-Platte relativ zur λ/2-Platte kann die Polarisation des Laserstrahls zwischen linear polarisiert (**Fig.** 2b ganz links) und zirkular polarisiert (**Fig.** 2b ganz rechts) eingestellt werden. Durch Drehung der gesamten Polarisatorvorrichtung **4** kann die Polarisationsebene gedreht werden.

Fig. 2 zeigt schematisch die Auswirkung verschiedener Polarisationen auf die Lochgeometrie.

Mittels einer linearen Polarisation des Laserstrahls lassen sich definierte ovale Lochaustrittsquerschnitte erzeugen. 35 Fig. 2a zeigt 5 Beispiele mit Polarisationswinkeln zwischen 0° (senkrechte Polarisation) bis 90° (parallele Polarisation), wobei der Laserstrahl gleichzeitig eine Taumelbewegung ausführt, die in der zweiten Zeile von Fig. 2a illustriert ist. Der Lochquerschnitt am Locheintritt ist in der dritten Zeile 40 von Fig. 2a durch eine durchgezogene Linie, der Lochaustritt durch eine punktierte Linie dargestellt.

Fig. 2b zeigt den Übergang von linearer Polarisation (links) zu zirkularer Polarisiaton (rechts). Während der Lochquerschnitt am Locheintritt in jedem Fall rund ist, ist 45 der Querschnitt beim Lochaustritt (punktierte Linie) nur im Falle der zirkularen Polarisation rund. Durch Veränderung der Polarisationsart von zirkular zu linear läßt sich eine definierte Ovalform am Lochausgang realisieren, wobei die Längsebene des Ovals senkrecht zur Polarisationsebene 50 liegt

Fig. 2c illustriert eine Verfahren, bei dem die Polarisationsebene mit der Taumelbewegung des Laserstrahls mitgedreht wird. In jedem Fall erhält man daher sowohl am Locheintritt als auch am Lochaustritt einen runden Lochquerschnitt. Der Lochdurchmesser am Lochaustritt und damit die Konizität variiert jedoch in Abhängigkeit davon, ob die Polarisationsebene radial zur Kreisbewegung des Laserstrahls ist (Fig. 2c, rechts) oder tangential dazu liegt (Fig. 2c, links). Im ersteren Fall erhält man eine geringere Lochkonizität als im letzten Fall. So kann die Lochkonizität durch Drehung der Polarisationsebene eingestellt werden.

Mit dem erfindungsgemäßen Verfahren lassen sich so durch Einstellung der Polarisationsebene eines Laserstrahls präzise Bohrlöcher mit definiertem Längsprofil, insbesondere konische Bohrlöcher herstellen. Das Verfahren eignet sich auch für Löcher mit kleinem Durchmesser im Bereich von 100 µm und darunter und ist daher insbesondere zur

Herstellung von Einspritzdüsen oder dergleichen vorteilhaft

Patentansprüche

- 1. Verfahren zur Erzeugung von Löchern (7) in einem Werkstück (1) mittels eines Laserstrahls (2), wobei der Laserstrahl (2) relativ zum Werkstück (1) eine Taumelbewegung ausführt und dabei eine Kegelmantelfläche durchläuft, dadurch gekennzeichnet, daß ein polarisierter Laserstrahl eingesetzt wird, dessen Polaristionsebene synchron mit der Taumelbewegung gedreht wird
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Bohrloch (7) konisch ausgebildet wird.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Bohrlochdurchmesser in Strahlaustrittsrichtung zunimmt.
- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Querschnitt des Laserstrahls (2) vor Erreichen der Fokussierlinse aufgeweitet wird.
- 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Fokusbereich des Laserstrahls (2) am Locheintritt an der Werkstückoberfläche liegt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Lochgeometrie durch Wahl der Polarisierungsrichtung und/oder der Polarisierungsart einstellbar ist.
- 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß ein linear polarisierter Laserstrahl verwendet wird.
- Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß ein zirkular polarisierter Laserstrahl verwendet wird.
- 9. Vorrichtung zur Erzeugung von Löchern (7) in einem Werkstück (1), aufweisend
 - eine Laserstrahlquelle,
 - eine Linse zur Fokussierung des Laserstrahls (2) auf das Werkstück (1),
 - eine Einrichtung zur Erzeugung einer Taumelbewegung des Laserstrahls (2), wobei dieser eine Kegelmantelfläche durchläuft,
 - eine drehbar angeordnete Polarisatoreinrichtung (4) mit einer λ /2-Platte (5) und einer relativ zu dieser drehbaren λ /4-Platte (6), derart, daß die Polaristionsebene des Laserstrahls (2) synchron mit der Taumelbewegung drehbar ist.

Hierzu 3 Seite(n) Zeichnungen

Fig.1

DE 199 05 571 C1 B 23 K 26/3816. November 2000

Fig. 2

Fig. 3