CONTENTS

3	\mathbf{Agg}	gregate Loss Models	4
	3.1	Introduction	2
	3.2	The Recursive Method	3
	3.3	The Compound Model for Aggregate Claims:	
		Convolution Method	9
	3.4	Approximating Distribution	8
	3.5	Analytic Results	6
		3.5.1 Gamma Severity	6
		3.5.2 Compound Negative Binomial Expo-	
		nential	0
	3.6	Discretization: Method of Rounding 3	5
	3.7	Stop-loss Premium	9
		3.7.1 Using the definition of $E[S \wedge d]$ 4	0
		3.7.2 Using Linear Interpolation 4	9

UECM3463 Loss Models

202206 Chapter 3

3.2 The Recursive Method

Suppose that the severity distribution $f_X(x)$ is define on $0, 1, 2, \ldots, m$ representing multiples of some convenient monetary unit. The number m represents the largest possible payment and could be infinite. Further suppose that the frequency distribution, p_k , is a member of the (a, b, 1) class and therefore satisfies

$$p_k = \left(a + \frac{b}{k}\right) p_{k-1}, k = 2, 3, 4, \dots$$

Then, the following result holds.

Theorem 1. For the (a, b, 1) class,

$$f_S(k) = g_k = \frac{\left[p_1^M - (a+b)p_0^M\right]f_k + \sum_{j=1}^k \left(a + \frac{bj}{k}\right)f_jg_{k-j}}{1 - af_0}$$

3 Aggregate Loss Models

3.1 Introduction

Aggregate losses are the total losses paid by an insurer for a defined portfolio of insureds in one period, say a year. They are the sum of the individual losses for the year.

Definition 1.

The collective risk model (Compound Distribution, $S = X_1 + X_2 + \ldots + X_N$, is the aggregate loss variable, with N as the random variable representing the number of losses in the year. X'_js are independent and identically (i.i.d.) random variables. The independence assumptions are

- (i) Conditional on N = n, the random variables $X_1 + X_2 + \ldots + X_n$ are i.i.d. random variables.
- (ii) Conditional on N = n, the common distribution of the random variables $X_1 + X_2 + \ldots + X_n$ does not depend on n.
- (iii) The distribution of N does not depend in any way on the values of $X_1 + X_2 + \ldots$

UECM3463 Loss Models

202206

3

Chapter 3

4

Corollary:

For the (a, b, 0) class,

$$f_S(k) = g_k = \frac{\sum_{j=1}^k \left(a + \frac{bj}{k}\right) f_j g_{k-j}}{1 - a f_0}$$

The starting value of the recursive is

$$f_S(0) = P(S = 0)$$

= $P_N[P_X(0)]$
= $P_N[f_0]$.

Example 1.

The number of claims in a period has a Negative Binomial distribution with parameters r=3 and $\beta=6$. The amount of each claim X follows P(X=x)=0.25, x=0,1,2,3. The number of claims and claim amounts are independent. S is the aggregate claim amount in the period. Using recursive formula, calculate $F_S(3)$.

Example 2.

The number of claims on an insurance coverage follows a binomial distribution with parameters $m=3,\ q=0.2.$ The size of each claim has the following distribution:

$$\begin{array}{c|cccc} x & 0 & 1 & 2 \\ \hline P(X=x) & 0.50 & 0.35 & 0.15 \\ \end{array}$$

Calculate the probability of aggregate claims of 3 or more. $\boxed{0.0147}$

UECM3463 Loss Models

202206

Chapter 3

7

Example 3.

Taxis arrive at an airport in a Poisson process at a rate of 4 per minute. Each taxi picks up 1 to 4 passengers, with the following probabilities:

Number of Passengers				3
Probability, $P(X = x)$	0.7	0.2	0.05	0.05

Calculate the probability that in one minute 4 or more passengers leave the airport by taxi. $\boxed{0.1671}$

UECM3463 Loss Models

202206

Chapter 3

8

Example 4.

For an insurance coverage, the number of claims has a zero-modified negative binomial distribution with parameters $r=4,\ \beta=1$ and $p_0^M=0.5$. Claim size is distributed as follows:

Claim Size	1	2	3
Probability	0.50	0.40	0.10

Calculate $F_S(3)$. 0.63125

Example 5.

Let $p_n = P[N = j - 1] = j/10$ for j = 1, 2, 3, 4, and let $f_X(1) = P(X = 1) = 0.4, f_X(2) = P(X = 2) = f_X(2) =$

0.6. $f_S(x)$ and $F_S(x)$ can be calculated as follows. \Box

12

The Compound Model for Aggregate Claims: Convolution Method

The random sum, $S = X_1 + X_2 + ... + X_N$, has distribution

$$F_S(x) = P(S \le x)$$

$$= \sum_{n=0}^{\infty} p_n P(S \le x | N = n)$$

$$= \sum_{n=0}^{\infty} p_n F_x^{*n}(x)$$

S had pdf

$$g_n = f_S(x) = \sum_{n=0}^{\infty} p_n f_X^{*n}(x),$$

for x > 0 if X is continuous

$$g_n = f_S(x) = \sum_{n=0}^{\infty} P(S = x | N = n),$$

for x = 0, 1, ...

UECM3463 Loss Models

Example 6 (T3Q1).

UECM3463 Loss Models

202206

11

Example 7 (T3Q2).

202206

The number of claims in a period has a geometric distribution with mean 3.8. The amount of each claim is distributed as follows

Chapter 3

Claim Amounts, X	0	1	2	3	4
Probability	0.33	0.33	0.22	0.07	0.05

The number of claims and claim amounts are independent. S is the aggregate claim amount in the period. Calculate $F_S(3)$.

Chapter 3

The number of claims in a period has a Binomial distribution with parameters m = 6 and q = 0.27. The amount of each claim X follows P(X = x) = 0.25, x = 1, 2, 3, 4. The number of claims and claim amounts are independent. S is the aggregate claim amount in the period. Calculate $F_S(4)$.

UECM3463 Loss Models

Chapter 3

14

Example 8 (T3Q3).

- Customers arrive in a store at a Poisson rate of 0.49 per minute.
- The amount of profit the store makes on each customer is randomly distributed as follows:

Profit	0	1	2	3
Probability	0.55	0.38	0.05	0.02

Determine the probability of making 3 profit in 10 minutes.

UECM3463 Loss Models

Example 10 (T3Q5).

202206

The number of claims on an insurance coverage follows a zero modified Poisson distribution with mean $\lambda=5$ and $p_0^M=0.29$. The size of each claim has the following distribution:

Chapter 3

Claim Size, x	0	3	6	9
Probability, $P(X = x)$	0.52	0.2	0.11	0.17

Calculate the probability of aggregate claims of 9 or more.

Example 9 (T3Q4).

Claim counts and sizes on an insurance coverage are independent and have the following distribution:

Number of claims	Probability
0	0.55
1	0.27
2	0.18

Claim Size	Probability
200	0.4
400	0.35
600	0.15
900	0.10

Let S be the aggregate claims. Calculate $F_S(600)$.

UECM3463 Loss Models

202206

15

Chapter 3

16

Example 11 (T3Q6).

The number of snowstorms in January has a binomial distribution with $m=5,\ q=0.5.$ The distribution of the number of inches of snow is

Inches	1	2	3	4	5	6
Probability	0.17	0.29	0.21	0.08	0.09	0.16

The number of snowstorms and the number of inches of snow are independent. Determine the expected amount of snow in January given that at least 4 inches of snow fall.

Example 12 (T3Q7).

For an insurance coverage, you are given:

- Claim frequency (N^M) , before application of deductibles, follows a zero modified geometric distribution with parameters $\beta=8$ and $P(N^M=0)=0.84$.
- Claim size (X^M) , before application of deductibles, follows a zero modified Poisson distribution with parameters $\lambda = 3$ and $P(X^M = 0) = 0.59$.
- Claim frequency and claim size are independent.
- There is a deductible of 2 per loss.

Calculate the probability that the number of payments is greater than 8.

UECM3463 Loss Models

202206 Chapter 3 19

$$E(S) = E[E(S|N = n)]$$
= $E(X_1 + X_2 + ... + X_n)$
= $E[nE(X)]$
= $E(N)E(X)$
= $\mu_N \mu_X$

The moments of S can be obtained in terms of the moments of N and the $X_i s$.

$$\begin{split} V(S) &= E[V(S|N=n)] + V[E(S|N=n)] \\ &= E[nV(X)] + V[nE(X)] \\ &= E(N)V(X) + V(N)E^2(X) \\ &= \mu_N \sigma_X^2 + \sigma_N^2 \mu_X^2 \end{split}$$

By central Limit Theorem, S can be approximated by a normal distribution.

As
$$n \to \infty$$
,
 $S \to N(\mu = \mu_N \mu_X, \sigma^2 = \mu_N \sigma_X^2 + \sigma_N^2 \mu_X^2)$

Probability Generating Function of S is given by

$$P_S(z) = P_N[P_X(z)]$$

The pgf is typically used when S is discrete.

Moment Generating Function:

$$M_S(z) = E(e^{zS}) = P_N[M_X(z)]$$

UECM3463 Loss Models

3.4 Approximating Distribution

Calculating the distribution function for the aggregate distribution is difficult. An alternative is to use an approximating distribution. The aggregate distribution can be approximated with a normal distribution by the Central Limit Theorem when the sample size is large.

If the severity is discrete, then the aggregate loss distribution is discrete, and a continuity correction is required. This means adding or subtracting 1/2 from the bound. For example, if you are asked for the probability that S is greater than 100, then we would calculate the probability that the normal variable is greater than 100.5, i.e.

- P(S > s) = P(S > s + 0.5)
- $P(S \ge s) = P(S \ge s 0.5)$
- P(S < s) = P(S < s 0.5)
- $\bullet \ P(S \le s) = P(S \le s + 0.5)$

UECM3463 Loss Models

202206 Chapter 3

Example 13 (T3Q8).

For insurance coverage, you are given:

- The number of claims for each insured follows a Binomial distribution with parameters m = 7 and q.
- q varies by insured according to beta distribution with parameters a=12 and b=5
- Claim size, before application to claims limits, follows a gamma distribution with parameters $\alpha = 4$, $\theta = 820$.
- Coverage is subject to claim limit of 1,950.
- Number of claims and claim sizes are independent.

Calculate the probability that aggregate losses will be greater than 1,811, using the normal approximation.

Example 14.

For a group insurance policy, the number of claims from a group has a binomial distribution with mean 100 and variance 20. The size of each claim has the following distribution:

Chapter 3

Claim Size	probability
1	0.50
2	0.35
3	0.10
4	0.05

Using approximating normal distribution, calculate the probability that aggregate claims from this group will be greater than 180. $\boxed{0.1762}$

UECM3463 Loss Models

202206 Chapter 3

Example 16 (T3Q9).

You are given:

- The number of claims for each insured follows a Poisson distribution with mean 4.
- Claim size, follows a Gamma distribution with parameters $\alpha=3,\,\theta=980.$
- Number of claims and claim sizes are independent.

Derive the formula for the skewness of the aggregate losses and then calculate the skewness.

Example 15.

For aggregate losses $S = X_1 + X_2 + \ldots + X_N$, you are given:

- (i) N has a Poisson distribution with mean 500.
- (ii) X_1, X_2, \ldots have mean 100 and variance 100.
- (iii) N, X_1, X_2, \ldots are mutually independent.
- (iv) For a portfolio of insurance policies, the loss ratio is the ratio of aggregate losses to aggregate premiums collected.
- (v) The premium collected is 1.1 times the expected aggregate losses.

Using the normal approximation to the compound Poisson distribution, calculate the probability that the loss ratio exceeds 0.95. $\boxed{0.1584}$

UECM3463 Loss Models

202206

23

Chapter 3

24

Example 17 (T3Q10).

Losses follow a compound distribution with both frequency and severity having discrete distribution. For frequency

$$P_N(z) = 0.45 + 0.55 \left[\frac{e^{2.30z} - 1}{e^{2.30} - 1} \right]$$

For Severity

$$P_{\rm Y}(z) = 0.47 + 0.32z + 0.15z^2 + 0.03z^3 + 0.03z^4$$

Calculate the Variance of the aggregate losses.

Example 18 (T3Q11).

For a certain insurance, individual losses in 2020 were Pareto distributed with parameters $\alpha=6$ and $\theta=1500$. A deductible of 150.0 is applied to each loss. In 2021, individual losses have increased 7%. A deductible of 150.0 is still applied to each loss. Determine the standard deviation of amount paid per loss.

UECM3463 Loss Models

202206

Chapter 3

27

Substituting, we get

$$F_S(x) = \sum_{n=0}^{\infty} p_n \sum_{j=0}^{\alpha n-1} \left(1 - \frac{(x/\theta)^j e^{-x/\theta}}{j!} \right)$$

$$= 1 - \sum_{n=1}^{\infty} p_n \sum_{j=0}^{\alpha n-1} \left(\frac{(x/\theta)^j e^{-x/\theta}}{j!} \right)$$

$$= 1 - \sum_{n=1}^{\infty} p_n \sum_{j=1}^{\alpha n-1} a_j$$

where
$$a_j = \frac{(x/\theta)^j e^{-x/\theta}}{j!}$$
 and $p_n = P[N = n]$

This is still an infinite sum, but if the frequency distribution is bounded, such as binomial, it is a finite sum.

$$F_S(x) = 1 - \sum_{n=1}^m {m \choose n} q^n (1-q)^{m-n}$$
$$\times \sum_{i=0}^{\alpha(n)-1} \left(\frac{(x/\theta)^j e^{-x/\theta}}{j!} \right)$$

3.5 Analytic Results

For certain combination of choices, simple analytic results are available, thus reducing the computational problems considerably.

3.5.1 Gamma Severity

If $X_j \sim \operatorname{gamma}(\alpha, \theta)$, then

$$F_S(x) = \sum_{n=0}^{\infty} p_n F^{*n}(x)$$

Here,
$$F^{*n}(x) = P\left[\sum_{j=1}^{n} X_j \le x\right]$$

where
$$\sum_{j=1}^{n} X_j = S_{\alpha n} \sim gamma(\alpha^* = \alpha n, \theta)$$

So.

$$F^{*n} = 1 - \sum_{j=0}^{\alpha n-1} e^{-x/\theta} \frac{(x/\theta)^j}{j!}.$$

UECM3463 Loss Models

202206

Chapter 3

28

Example 19.

Claim counts have a binomial distribution with $m=2,\,q=0.2$. Claim sizes are exponential with mean 1000. Calculate the probability that aggregate claims are less than their mean. $\boxed{0.74796}$

Chapter 3

30

Example 20.

Claim sizes follow a gamma distribution with parameters $\alpha = 2$ and $\theta = 100$. Claim counts are independent of claim sizes, and have the following distribution:

n	0	1	2
p_n	0.6	0.3	0.1

Calculate the probability that aggregate claims are less than 120. $\boxed{0.7046}$

UECM3463 Loss Models

3.5.2 Compound Negative Binomial Exponen-

$$N \sim NB(r,\beta); X \sim exp(\theta)$$

$$M_S(z) = P_N[M_X(z)]$$

$$= P_N[(1 - \theta z)^{-1}]$$

$$= \{1 - \beta[(1 - \theta z)^{-1} - 1]\}^{-r}$$

$$= \left(1 + \frac{\beta}{1+\beta}\{[1 - \theta(1+\beta)z]^{-1} - 1\}\right)^r$$

$$= P_N^*[M_X^*(z)]$$

where

$$\begin{split} P_N^*(z) &= [1 + \frac{\beta}{1+\beta}(z-1)]^r \text{ and } M_X^*(z) = (1 - \theta(1+\beta)z)^{-1} \\ \Longrightarrow N^* \sim Binomial\left[r, \frac{\beta}{1+\beta}\right] \text{ and } X^* \sim exp[\theta(1+\beta)] \end{split}$$

Thus,
$$F_S(x) = \sum_{i=0}^{\infty} p_n F^{*n}(x)$$

where

where
$$p_n = \binom{r}{n} \left(\frac{\beta}{1+\beta}\right)^n \left(\frac{1}{1+\beta}\right)^{n-r}$$
 and

UECM3463 Loss Models

202206

Chapter 3

31

202206

32

 $F^{*n}(x) = P\left[\sum_{i=1}^{n} X_i^* \le x\right]$ where $\sum_{i=1}^{n} X_i^* \sim \operatorname{gamma}(\alpha = n, \theta^* = \theta(1+\beta))$

Thus,

$$F_S(x) = 1 - \sum_{n=1}^r {r \choose n} \left(\frac{\beta}{1+\beta}\right)^n \left(\frac{1}{1+\beta}\right)^{r-n}$$

$$\times \sum_{j=0}^{n-1} \frac{[x\theta^{-1}(1+\beta)^{-1}]^j e^{-x/[\theta(1+\beta)]}}{j!}$$

$$= 1 - \sum_{n=1}^r p_n \sum_{j=0}^{n-1} a_j$$

where
$$p_n = \binom{r}{n} \left(\frac{\beta}{1+\beta}\right)^n \left(\frac{1}{1+\beta}\right)^{r-n};$$

 $a_j = \frac{[x\theta^{-1}(1+\beta)^{-1}]^j e^{-x/[\theta(1+\beta)]}}{i!}$

If r = 1, S has a compound geometric distribution, then

$$F_S(x) = 1 - \frac{\beta}{1+\beta} exp \left[-\frac{x}{\theta(1+\beta)} \right]$$

i.e. if r=1, S is a two-point mixture of a degenerate distribution at 0 with weight $\frac{1}{1+\beta}$ and an exponential distribution with mean $\theta(1+\beta)$, weight $\frac{\beta}{1+\beta}$.

UECM3463 Loss Models

Example 21 (T3Q12).

Let the frequency distribution be negative binomial with r=4 and $\beta=5$. Let the severity distribution has the exponential distribution with mean 46. Determine $F_S(52)$

Chapter 3

Example 23.

and $E(S \wedge 200)$. 0.2284, 86.8754

Let the frequency distribution be negative binomial with

r=2 and $\beta=2$. Let the severity distribution has the

exponential distribution with mean 25. Determine $F_S(20)$

34

36

Example 22 (T3Q13).

Claim sizes follow an exponential distribution with $\theta = 13.50$. Claim counts are independent of claim sizes, and have the following distribution:

n	0	1	2	3
P_n	0.36	0.31	0.19	0.14

Calculate $F_S(5)$.

UECM3463 Loss Models

UECM3463 Loss Models

202206

Chapter 3

35

Chapter 3

3.6 Discretization: Method of Rounding

The recursive and convolution methods for calculating the aggregate distribution require a discrete distribution. Usually the severity distribution is continuous. We will pick a span, the distance between the points that will have a positive probability in the discretized distribution.

$$f_0 = P(X < h/2) = F_X(h/2 - 0)$$

$$f_{jh} = P(jh - h/2 \le X < jh + h/2)$$

$$= F_X(jh + h/2 - 0) - F_X(jh - h/2 - 0),$$

$$= F_x \left[\frac{(2j+1)h}{2} - 0 \right] - F_x \left[\frac{(2j-1)h}{2} - 0 \right]$$

$$j = 1, 2, \dots$$

Notes:

- \bullet h is the span of the distribution
- -0 indicates that the lower bound is included but the upper bound isn't.

Example 24.

202206

X has an exponential distribution with mean 1. Calculate p_2 of the distribution discretized using the method of rounding with a span of 1. $\boxed{0.1410}$

Chapter 3

38

Example 25.

Loss sizes follow a Pareto distribution with $\alpha=2$, $\theta=3$. The distribution will be discretized by the method of rounding with a span of 4. Calculate the resulting probabilities of 0, 4, 8, and 12; f_0 , f_4 , f_8 , and f_{12} . 0.64, 0.24889, 0.05786, 0.02211

Example 26 (T3Q14).

A random variable has an exponential distribution with mean 80. It is to be discretized using the method of rounding with span 50. Determine the mean of the discretized distribution.

UECM3463 Loss Models

202206

Chapter 3

39

202206 Chapter 3 40

3.7 Stop-loss Premium

Definition 2.

Insurance on the aggregate losses, subject to a deductible, is called stop-loss insurance. The expected cost of this insurance is called the net stop-loss premium and can be computed as $E[(S-d)_+]$, where d is the deductible and the notation $(.)_+$ means to use the value in parentheses if it is positive but use zero otherwise.

For any aggregate distribution,

$$E[(S-d)_{+}] = \int_{d}^{\infty} [1 - F_{S}(x)dx$$
$$= \int_{d}^{\infty} (x - d)f_{S}(x)dx$$
if X is continuous

$$E[(S-d)_{+}] = \int_{d}^{\infty} [1 - F_{S}(x)dx$$

$$= \sum_{k=d}^{\infty} (x-d)g_{k}$$
if X is discrete

Note that

$$E[(S-d)_+] = E[S] - E[S \wedge d]$$
 Since $E[S] = E[N]E[X]$, we only have to deal with $E[S \wedge d]$

UECM3463 Loss Models

3.7.1 Using the definition of $E[S \wedge d]$

UECM3463 Loss Models

For a discrete distribution in which the only possible values are multiples of h, it becomes

$$E[S \wedge d] = \sum_{j=0}^{[d/h]-1} h_j g_{hj} + dP[(S \ge d)]$$

Example 27.

For a stop-loss insurance on a 7 person group:

- \bullet Loss amounts are independent.
- The distribution of loss amount for each person is:

Loss Amount	_	1	2	3
Probability	0.38	0.25	0.21	0.16

• The stop-loss insurance has a deductible of 1 for the group.

Calculate the net stop-loss premium.

UECM3463 Loss Models

202206

Chapter 3

43

Example 29 (T3Q16).

A company provides insurance to a concert hall for losses due to power failure. You are given:

- The number of power failures in a year has a Binomial distribution with parameters m = 5 and q = 0.36.
- The distribution of loss amount due to a single power failure is:

 Loss Amount
 10
 20
 30
 40

 Probability
 0.45
 0.27
 0.16
 0.12

• There is an annual deductible of 29.

Calculate the expected amount of claims paid by the insurer in one year.

Example 28 (T3Q15).

Prescription drug losses, S, are modeled assuming the number of claims has a geometric distribution with mean 5.2, and the amount of each prescription is 296.0. Calculate $E[(S-740)_{+}]$.

UECM3463 Loss Models

202206

Chapter 3

44

Example 30.

A company provides insurance to a concert hall for losses due to power failure. You are given:

- (i) The number of power failures in a year has a Poisson distribution with mean 1.
- (ii) The distribution of ground up losses due to a single power failure is:

x	10	20	50
P(X=x)	0.3	0.3	0. 4

- (iii) The number of power failures and the amounts of losses are independent.
- (iv) There is an annual deductible of 30.

Calculate the expected amount of claims paid by the insurer in one year. $\boxed{13.5128}$

Chapter 3

46

Example 31.

For a certain insurance, individual losses in 2015 were uniformly distributed over [0, 1500]. A deductible of 150.0 is applied to each loss. In 2016, individual losses have increased 5%, and are still uniformly distributed. A deductible of 150.0 is still applied to each loss. Determine the percentage increase in the standard deviation of amount paid per loss.[Note: express your answer in %]

UECM3463 Loss Models

202206 Chapter 3

Example 33 (T3Q17).

Claim counts follow a Poisson distribution with mean 4. Claim sizes follow an exponential distribution with $\theta=300$. This severity distribution is discretized using the method of rounding with span 40. Claim counts and claim sizes are independent. A stop-loss reinsurance contract has a deductible of 80.0. Calculate expected losses paid by the reinsurance contract.

Example 32.

You are given:

- The number of claims follows a binomial distribution with m = 3, q = 0.2.
- $\bullet \;\;$ Claim sizes follow the following distribution:

Claim size	Claim probability
0	0.2
1	0.5
2	0.2
3	0.1

• A reinsurance policy has an aggregate deductible of 6.

Determine the expected aggregate amount paid by the reinsurer. $\boxed{0.000336}$

UECM3463 Loss Models

202206

47

Chapter 3

48

Example 34.

You are the producer of a television quiz show that gives cash prizes. The number of prizes, N, and the prize amounts, X have the following distributions:

n	P(N=n)	\boldsymbol{x}	P(X=x)
1	0.8	0	0.2
2	0.2	100	0.7
		1000	0.1

You buy a stop-loss insurance for prizes with deductible of 200. The cost of insurance is 275% of the expected claim cost. Calculate the cost of the insurance. $\boxed{272.8}$

3.7.2 Using Linear Interpolation

For the case where d is non-integral, we can use the following more general result that applies to continuous as well as discrete aggregate distributions.

Chapter 3

Let the deductible d satisfy a < d < b, where P(a < S < b) = 0. Then $E[(S - d)_+]$ is obtained by linear interpolation between $E[(S - a)_+]$ and $E[(S - b)_+]$, producing

Theorem 2.

Suppose P(a < S < b) = 0. Then for $a \le d \le b$,

$$E[(S-d)_+] = \frac{b-d}{b-a} \cdot E[(S-a)_+] + \frac{d-a}{b-a} \cdot E[(S-b)_+].$$

Proof:

UECM3463 Loss Models

202206 Chapter 3 **51**

Example 36.

One way to establish the market view of probabilities is to consider the market price placed on contingent events in an efficient market. For example, suppose we have the following values from a competitive market:

$$E[(S - 5,000)_{+}] = 2000$$

 $E[(S - 10,000)_{+}] = 1500$

Suppose also that loss amounts between 5,000 and 10,000 are impossible. According to this information, what is the probability that total losses will exceed 5,000? $\boxed{0.1}$

Example 35 (T3Q18).

A stop-loss reinsurance pays 80% of the excess of aggregate claims above 1,100, subject to maximum payment of 408. For aggregate claims, S, you are given:

- $E[(S-1,100)_{+}]=410$
- $E[(S-2,200)_{+}] = 205$
- \bullet The probability of an aggregate claim amount between 1,100 and 2,200 is zero.

Determine the total amount of claims the reinsurer expects to pay.