Actualización de datos de Covid-19 en la infeccion hasta el 2021.

Covid-19 infección en Ecuador. Modelos matemáticos y predicciones

Una comparación de modelos, lineal, polilnomico,logísticos y exponenciales aplicados a la infección por el virus Covid-19

Se realiza un análisis matemático simple del crecimiento de la infección en Python y dos modelos para comprender mejor la evolución de la infección.

Se crea modelos de series temporales del número total de personas infectadas hasta la fecha (es decir, las personas realmente infectadas más las personas que han sido infectadas). Estos modelos tienen parámetros , que se estimarán por ajuste de curva.

In [1]:

```
# Importar Las Librerias para el analasis
import pandas as pd
import numpy as np
from datetime import datetime,timedelta
from sklearn.metrics import mean_squared_error
from scipy.optimize import curve_fit
from scipy.optimize import fsolve
from sklearn import linear_model
import matplotlib.pyplot as plt
%matplotlib inline
```

Url con datos actualizados al 26 de abril del 2021

In [2]:

```
1
2 url = 'http://cowid.netlify.com/data/owid-covid-data.csv'
3
4 df = pd.read_csv(url)
5 df
```

Out[2]:

	iso_code	continent	location	date	total_cases	new_cases	new_cases_smoothed
0	AFG	Asia	Afghanistan	2020- 02-24	1.0	1.0	NaN
1	AFG	Asia	Afghanistan	2020- 02-25	1.0	0.0	NaN
2	AFG	Asia	Afghanistan	2020- 02-26	1.0	0.0	NaN
3	AFG	Asia	Afghanistan	2020- 02-27	1.0	0.0	NaN
4	AFG	Asia	Afghanistan	2020- 02-28	1.0	0.0	NaN
85785	ZWE	Africa	Zimbabwe	2021- 04-29	38235.0	44.0	31.000
85786	ZWE	Africa	Zimbabwe	2021- 04-30	38257.0	22.0	30.286
85787	ZWE	Africa	Zimbabwe	2021- 05-01	38260.0	3.0	28.000
85788	ZWE	Africa	Zimbabwe	2021- 05-02	38281.0	21.0	27.857
85789	ZWE	Africa	Zimbabwe	2021- 05-03	38293.0	12.0	27.286

85790 rows × 59 columns

Imprimos los resultados y agregamos el numero del dia

In [3]:

```
df = df[df['location'].isin(['Ecuador'])] #Filtro la Informacion solo para Ecuador
df = df.loc[:,['date','total_cases']] #Selecciono las columnas de analasis
# Expresar las fechas en numero de dias desde el 01 Enero
FMT = '%Y-%m-%d'
date = df['date']
df['date'] = date.map(lambda x : (datetime.strptime(x, FMT) - datetime.strptime("2020-6")
df
```

Out[3]:

	date	total_cases
22630	60	6.0
22631	61	6.0
22632	62	7.0
22633	63	10.0
22634	64	13.0
23054	484	380689.0
23055	485	381862.0
23056	486	384589.0
23057	487	387299.0
23058	488	388046.0

429 rows × 2 columns

In [4]:

```
1 df.plot(x ='date', y='total_cases')
```

Out[4]:

<matplotlib.axes._subplots.AxesSubplot at 0x140e1b9e700>

Ahora podemos analizar los cuatro modelos que tomaré en el examen, que son la función lineal, polinomica,logística y la función exponencial . Cada modelo tiene tres parámetros , que se estimarán mediante un cálculo de ajuste de curva en los datos históricos.

EL modelo lineal

La regresión lineal es un algoritmo de aprendizaje supervisado que se utiliza en Machine Learning y en estadística. En su versión más sencilla, lo que haremos es «dibujar una recta» que nos indicará la tendencia de un conjunto de datos continuos.

Recordemos rápidamente la fórmula de la recta:

$$Y = mX + b$$

Donde Y es el resultado, X es la variable, m la pendiente (o coeficiente) de la recta y b la constante o también conocida como el «punto de corte con el eje Y» en la gráfica (cuando X=0) Ejemplo

The development in Pizza prices in Denmark from 2009 to 2018

Recordemos que los algoritmos de Machine Learning Supervisados, aprenden por sí mismos y -en este casoa obtener automáticamente esa «recta» que buscamos con la tendencia de predicción. Para hacerlo se mide el error con respecto a los puntos de entrada y el valor «Y» de salida real.

In [5]:

```
1  x = list(df.iloc [:, 0]) # Fecha
2  y = list(df.iloc [:, 1]) # Numero de casos
3  # Creamos el objeto de Regresión Lineal
4  regr = linear_model.LinearRegression()
5
6  # Entrenamos nuestro modelo
7  regr.fit(np.array(x).reshape(-1, 1) ,y)
8
9  # Veamos los coeficienetes obtenidos, En nuestro caso, serán la Tangente
10  print('Coefficients: \n', regr.coef_)
11  # Este es el valor donde corta el eje Y (en X=0)
12  print('Independent term: \n', regr.intercept_)
13  # Error Cuadrado Medio
```

Coefficients:

[881.23780419]
Independent term:
-91952.27722827051

De la ecuación de la recta y = mX + b nuestra pendiente «m» es el coeficiente y el término independiente «b»

In [6]:

```
#Vamos a comprobar:
# Quiero predecir cuántos "Casos" voy a obtener por en el dia 100,
# según nuestro modelo, hacemos:
y_prediccion = regr.predict([[100]])
print(int(y_prediccion))
```

In [7]:

```
#Graficar
plt.scatter(x, y)
x_real = np.array(range(50, 100))
print(x_real)
plt.plot(x_real, regr.predict(x_real.reshape(-1, 1)), color='green')
plt.show()
```

[50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99]

El modelo logistico

El modelo logístico se ha utilizado ampliamente para describir el crecimiento de una población. Una infección puede describirse como el crecimiento de la población de un agente patógeno, por lo que un modelo logístico parece razonable . La expresión más genérica de una función logística es:

$$f(x,a,b,c) = \frac{c}{1 + e^{-(x-b)/a}}$$

En esta fórmula, tenemos la variable x que es el tiempo y tres parámetros: a, b, c.

- a se refiere a la velocidad de infección
- b es el día en que ocurrieron las infecciones máximas
- · c es el número total de personas infectadas registradas al final de la infección

A continuacion se puede apreciar un ejemplo de regresion logistica

Definamos la función en Python y realicemos elprocedimiento de ajuste de curva utilizado para el crecimiento logístico.

In [8]:

```
def modelo_logistico(x,a,b):
    return a+b*np.log(x)

exp_fit = curve_fit(modelo_logistico,x,y) #Extraemos los valores de los paramatros
print(exp_fit)
```

Graficas

In [9]:

```
pred x = list(range(min(x), max(x)+50)) # Predecir 50 dias mas
   plt.rcParams['figure.figsize'] = [7, 7]
   plt.rc('font', size=14)
4
   # Real data
   plt.scatter(x,y,label="Datos Reales",color="red")
 5
   # Predicted exponential curve
   plt.plot(pred_x, [modelo_logistico(i,exp_fit[0][0],exp_fit[0][1]) for i in pred_x], lake
 7
   plt.legend()
9
   plt.xlabel("Desde el 1 Enero 2020")
   plt.ylabel("Total de personas infectadas")
   plt.ylim((min(y)*0.9,max(y)*3.1)) # Definir los Limites de Y
12
   plt.show()
```


Modelo exponencial

Mientras que el modelo logístico describe un crecimiento de infección que se detendrá en el futuro, el modelo exponencial describe un crecimiento de infección imparable. Por ejemplo, si un paciente infecta a 2 pacientes por día, después de 1 día tendremos 2 infecciones, 4 después de 2 días, 8 después de 3 y así sucesivamente.

$$f(x,a,b,c) = a \cdot e^{b(x-c)}$$

A continuacion se tiene un ejemplo de regresion exponencial

Curva de ajuste para una función tipo exponencial y = ae^kx usando mínimos cuadrados

In [10]:

1 # Implementar

Modelo polinomial

Predicción de una variable de respuesta cuantitativa a partir de una variable predictora cuantitativa, donde la relación se modela como una función polinomial de orden n (esto significa que pueden tener de diferentes exponenciales o grados y se debe ir probando)

Se puede tener una ecuacion con diferentes grados

$$y = a0 + a1x + a2x^2 + a3x^3 + ... + anx^n + \epsilon$$

Ejemplo de una regresion polinomica de grado 4.

In [11]:

```
1 # Implementar
2
3
4 # Se puede implementar modelos adicionales, en caso de ser asi explicar o dar una intro
5
6 # Se tomara como puntos adicionales al trabajo.
```

Analisis

Conclusiones

Criterio personal (politico, economico y social de la situacion)

Referencias

- https://www.researchgate.net/publication/340092755 Infeccion del Covid 19 en Colombia Una comparacion de modelos logisticos y exponenciales aplicados a la infeccion po (https://www.researchgate.net/publication/340092755 Infeccion del Covid 19 en Colombia Una comparacion de modelos logisticos y exponenciales aplicados a la infeccion po
- https://www.aprendemachinelearning.com/regresion-lineal-en-espanol-con-python/)

 (https://www.aprendemachinelearning.com/regresion-lineal-en-espanol-con-python/)

In	[]:								
1										