

Programación 2 - Certamen N° 2

Eduardo Godoy.

29 de noviembre de 2017

Nombre:	Puntaje
Rut:	Nota

Resultados de aprendizaje a evaluar:

- 1. Conceptos generales de Orientada a Objetos.
- 2. Utilización de Lenguaje Java y sus características pricipales para resolver problemas.
- 3. Diseño e implementación de interfaces de usuario.
- 4. Implementación y explotación de fuentes de persistencia de información.

Instrucciones:

- El puntaje máximo del certamen es $100\,\%$, siendo el $60\,\%$ el mínimo requerido para aprobar.
- El certamen es resuelto en grupos de dos personas.

Contenido:.

Tema	Puntaje total	Puntaje obtenido
Java aplicación de características del lenguaje para solucionar	40 puntos	
un problema		
Java Swing y Manejo de Archivos	20 puntos	
Evaluación de conceptos de Orientación a Objetos y aplicación	40 puntos	
de estos a la resolución del problema		

Puntaje total: 100 puntos Exigencia: 60 % Tiempo: 48 horas.

1. Java Threads (40 pts)

Un videojuego tiene **Personajes** los cuales se enfrentan en una batalla definida por turnos. Cada personaje tiene un *nombre* (String) y un *nivel propio de energía* (int). Además poseen la capacidad de *alimentarse* (método), que recibe por parámetro una cantidad de energía (int) con el que incrementa el *nivel propio de energía*. Los personajes pueden ser:

• Guerreros:

- Tienen además un arma (String). La cual posee 3 tipos de ataques:
 - Golpe directo: Daña al oponente restandole 20 puntos de energia.
 - Giro letal: Daña al oponente de forma reiterada restandole 30 puntos de energia.
 - Super arma: El arma triplica su tamaño dañando al oponente y restandole 70 puntos de energia. A su vez el guerrero se resta puntos de vida equivalentes al 30 % del daño realizado.
 - Pierde turno: El oponente logra eludir el ataque del guerrero.
- Cada uno de los ataques anteriores se ejecutan de forma aleatoria y uno por turno, siendo el 0 Golpe directo, 1 Giro letal, 2 Super arma, 3 Pierde turno.
- Estos ataques se ejecutan mediante la invocación del método combatir().
- Al momento de la instanciación del Mago, este recibe su nombre y arma.
- Los guerreros son siempre creados con un nivel propio de energía igual a 150.
- Al momento de la instanciación reciben su nombre, arma y nivel propio de energía inicial.

Magos:

- Tienen además un hechizo (String). El cual posee 3 niveles de daño definidos a continuación:
 - Llamarada: El mago envia una flama dañando al oponente y restandole 20 puntos de energia.
 - Insendio: Insinera al oponete y su entorno dañandolo y restandole 35 puntos de energia. Además se emite una jugada adicional aleatoria entre 0 y 1 siendo 0 no afecta con mas daño y 1 afecta con 5 puntos más al daño final.
 - Explosión: El mago emite una explosión dañando al oponente restandole 60 puntos de energia. Al ejecutar esta habilidad el mago puede recuperar energia ejecutando el método alimentarse() por el $50\,\%$ del daño realizado al oponente.
 - Pierde turno: El mago falla la ejecución del ataque.
- Cada uno de los ataques anteriores se ejecutan de forma aleatoria y uno por turno, siendo el 0 Llamarada, 1 Insendio, 2 Explosión, 3 Pierde turno.
- Estos ataques se ejecutan mediante la invocación del método encantar().
- Al momento de la instanciación del Mago, este recibe su nombre y hechizo.
- Los magos son siempre creados con un nivel propio de energía igual a 100.
- Poseen el método encantar que disminuye en 2 unidades el nivel propio de energía cada ves que se ejecuta un ataque exitos.
- El combate termina cuando la energía de uno de los dos personajes sea menor o igual a 0.
- El estado del combate se debe visualizar por consola mediante el siguiente formato: Personaje;tipo de ataque;daño realizado.
- La generalización de las clases se muestra en la figura 1.
- Desarrolle las clases e interface mostradas en el modelo.
- implemente los Java Threads asociados al Mago y Guerrero, los cuales simularan el compate permitan ejecutar los ataques de cada uno.

Figura 1: Diagrama de clases

- Implemente la clase que maneje los estados de energía de los pesonajes y permita ejecutar sus ataques de aleatorios segun lo indicado anteriormente.
- implemente una clase que escriba en dos archivos lo siguiente:
 - El primero llamado ataque.csv debe agregar por cada turno un registro con el daño realizado segun el siguiente formato: Personaje;tipo de ataque;daño realizado.
 - El segundo llamado danio.csv debe agregar por cada turno un registro con el daño recibido según el siguiente formato: Personaje; daño realizado.
- Implementar la clase que debe utilizar los métodos para combatir y alimentarse.
- La clase principal que permita instanciar personajes de tipo guerreros y magos. Luuego iniciar la batalla.

	¿Cómo seré evaluado este Control?			
Tópico	Logrado	Medianamente logrado	No logrado	
Tópico 1 -	5pts Crea las Interface Persona con sus mé-	2pts Crea Interface con algunos métodos re-	Opts No crea clases re-	
Java Inter-	todos requeridos.	queridos en el. Crea métodos o Atributos en	queridas.	
face.		otras clases no indicadas en el problema.		
Tópico 1-a -	5pts Define e implementa la Clase Guerrero	2pts Define e implementa método acercando-	0pts No define método o	
Clase Gue-	con sus métodos relacionados	se parcialmente a la salida esperada.	definido pero no cumple	
rrero			con lo mínimo esperado.	
Tópico 1-b -	5pts Define e implementa la Clase Mago con	2pts Define e implementa método acercando-	θpts No define método o	
Clase Mago	sus métodos relacionados.	se parcialmente a la salida esperada.	definido pero no cumple	
			con lo mínimo esperado.	
Tópico 2 -	5pts Define e implementa la clase Thread pa-	2pts Define e implementa la clase acercandose	θpts No define clase o	
ThreadMa-	ra simular el ataque de Mago con sus métodos	parcialmente a la salida esperada.	definida pero no cumple	
go	y atributos requeridos.		con lo mínimo esperado.	
Tópico 3 -	5pts Define e implementa la clase Thread pa-	2pts Define e implementa la clase acercandose	θpts No define clase o	
ThreadGue-	ra simular el ataque de Guerrero con sus mé-	parcialmente a la salida esperada.	definida pero no cumple	
rrero	todos y atributos requeridos.		con lo mínimo esperado.	
Tópico 4 -	5pts Define e implementa la clase de que per-	2pts Define e implementa clase y método	θpts No define método o	
Clase Com-	mite coordinar el combate de los Personajes	acercandose parcialmente a la salida espera-	definido pero no cumple	
bate	simulación del combate con sus método main	da.	con lo mínimo esperado.	
	incluidos.			
Tópico 5 -	5pts Define e implementa la clase de control	2pts Define e implementa clase y método	0pts No define método o	
Clase Inicia-	que permite iniciar el proceso de simulación	acercandose parcialmente a la salida espera-	definido pero no cumple	
lizadora	del combate con sus método main incluido.	da.	con lo mínimo esperado.	
Paradigma	5pts Resuelve el problema utilizando OO y	3pts Utiliza parte del POO y patrones de di-	Opts No utiliza el POO	
Orientación	patrones de diseños presentados en clase.	seño para resolver el problema.	para dar solución al pro-	
a Objetos			blema.	
Total máxi-	40pts	17pts	0pts	
mo puntaje				
pregunta 2				

2. Java Swing y Archivos (20 pts)

Una vez finalizado el combate y utilizando los archivos generados a partir del resultado de la pregunta 1, realizar lo siguiente:

- Generar una interfaz con Java Swing que permita visualizar:
 - 1. En su parte superior: Dos botones con los nombre respectivos de cada personaje.
 - 2. En su parte inferior: Dos Tabla de Datos.
 - 3. Al presionar un boton, éste recuperará los registros desde el archivos asociados al personaje que referencia el boton.
 - 4. En la tabla de datos izquierda se debe desplegar el da o realizado y en la derecha el daño recibido.
 - 5. En el desarrollo de esta interfaz se requiere implementar los patrones de diseño vistos en clases.

¿Cómo seré evaluado en la pregunta 2?			
Tópico	Logrado	Medianamente logrado	No logrado
Manipulación de archivo.	5pts Lee correctamente los	3pts Realiza dos de las tres	0pts No realiza la acciones
	archivos, los mapea a enti-	acciones del punto anterior.	del punto anterior.
	dad y crea ArrayList.		
Diseño e implementación de	15pts Crea la interfaz de for-	7pts Crea la interfaz de for-	0pts No crea interfaz.
interfaz.	ma correcta y con los compo-	ma correcta e implementa al-	
	nentes requeridos.	gunos componentes requeri-	
		dos.	
Integración Interfaz con con-	15pts Asocia acciones a bo-	7pts Crea la clase entidad	Opts No crea las clases enti-
tenido de archivos	tones y despliega registros en	para Movie o la Rating (no	dad.
	tablas según lo requerido en	ambas).	
	el problema.		
Paradigma Orientación a	5pts Implementa la solución	2pts Implementa la solución	Opts No se implementa según
Objetos	según patrones de dise o y	sin patrones de diseño.	lo indicado.
	programas vistos en clases.		
Total máximo puntaje pre-	40pts	18pts	0pts
gunta 2			

3. Interrogación (40 pts)

Interrogación individual sobre codificación y aplicación de conceptos dentro de la solución entregada.

- 1. Pregunta de manejo de conceptos aplicados a la solución implementada.
- 2. Pregunta de codificación 1.
- 3. Pregunta de codificación 2.

¿Cómo seré evaluado en la pregunta 3?			
Tópico	Logrado	Medianamente logrado	No logrado
Pregunta de manejo de Con-	15pts Responde de forma co-	8pts Responde de forma in-	Opts No responde según lo
ceptos aplicados a la solu-	rrecta según lo esperado.	conpleta o con apoyo del pro-	esperado.
ción.		fesor.	
Pregunta de códificación 1.	15pts Responde de forma co-	8pts Responde de forma in-	Opts No responde según lo
	rrecta según lo esperado.	conpleta o con apoyo del pro-	esperado.
		fesor.	
Pregunta de códificación 1.	10pts Responde de forma co-	5pts Responde de forma in-	Opts No responde según lo
	rrecta según lo esperado.	conpleta o con apoyo del pro-	esperado.
		fesor.	
Total máximo puntaje pre-	40pts	20pts	0pts
gunta 2			

Condiciones de entrega:

- Debe compilar.
- Enviar al correo eduardo.gl@gmail.com con el proyecto comprimido, eliminado de ante mano los archivos .class.
- Debe llevar como asunto Certamen 2 y un comprimido con formato Certamen 2 .zip adjuntado.
- Se debe incluir dentro del comprimido un archivo de tipo .txt que contenga nombre apellido y rut de ambos integrantes del grupo.
- El no cumplimiento del formato será penalizado con 10 punto de descuento.
- Entrega Sabado 2 de noviembre antes de las 23:59 am. Subir hasta la hora indicada en el certamen.
- El no cumplimiento con la hora de entrega, será penalizado con 2 punto de descuento por cada minuto de retraso.
- Si bien el trabajo colaborativo esta permitido, la presunción o evidencia de copia entre dos o mas grupos será penalizada con 30 de descuento de la nota final para cada uno.