Topic 1 Exercise Answers

Steve Paterson 2024-05-24

Reading in csv files

The code to read in a csv file is just:

```
disox.csv <- read.csv("Dissolved02.csv", header=TRUE)</pre>
```

In fact, read.csv differs from read.table in that it assumes that the first line of the file is the header, so you don't need to include the argument header=TRUE, but it will still work if you do.

You can check in reads in OK, using head, summary, or View.

```
## cv day do
## 1 Azucena 1 7.74
## 2 Azucena 1 8.03
## 3 Azucena 1 7.98
## 4 Azucena 1 7.65
## 5 Azucena 1 7.85
## 6 Azucena 1 8.21
```

```
summary(disox.csv)
```

```
##
        C۷
                         day
                    Min. :1.0 Min. :0.350
##
   Length: 144
  Class :character
                    1st Qu.:2.0
                                 1st Qu.:1.972
   Mode :character
                    Median :3.5
                                 Median :2.890
##
                    Mean :3.5
                                 Mean :3.747
##
                     3rd Qu.:5.0
                                 3rd Qu.:4.933
##
                    Max.
                          :6.0 Max. :8.660
```

See also the video on this exercise.

Spider data

Read the data in and check it's OK. You can use getwd and dir to check that you're in the right directory

```
spider <- read.table("spider.txt",header=TRUE)
head(spider)</pre>
```

```
speed.before speed.after
## 1
            1.25
## 2
             2.94
                         3.50
## 3
             2.38
                         4.49
## 4
             3.09
                         3.17
## 5
             3.41
                         5.26
             3.00
                         3.22
```

Now do a simple plot. The bit that says data=spider is telling R where the data are for the plot, speed.after \sim speed.before is saying what data to plot, i.e. speed.after vs speed.before.

```
plot(speed.after ~ speed.before, data=spider)
```


This plots up the data, but it's not immediately obvious what the the relationship, if any, is between the speed after vs speed before. Note that the x axis goes from about 1 to about 3.5 but the y axis goes from about 2.5 to 5.5 (cm/s). Forcing both the x and y axes to be on the scale might help to see an effect of cutting off a spider's pedipalp.

Let's plot through the origin (x=0 and y=0), and up to 6 cm/s on both axes.

```
plot(speed.after ~ speed.before,data=spider,xlim=c(0,6),ylim=c(0,6))
```


These are the same data, just a different plot. There's more white space on the right hand side of the plot; there aren't many spiders with pedipalps that move as quickly as spiders after their pedipalp have been cut off.

The point circled in red, for example, refers to a spider that moved at ~3 cm/s before removal of it's pedipalp and ~5 cm/s afterwards. Hence, pedipalps slow male spiders down and may be a sexual handicap.