Sprawozdanie Laboratorium PTC

Realizacja układów kombinacyjnych z wykorzystaniem multipleksera i pamięci ROM. Układy arytmetyczne.

Stanisław Fiedler 160250

LAB 2, 21 października 2024

1 Zadanie 2

Transkoder wyposażony jest w 4 wejścia i 4 wyjścia. Jego działanie przedstawiono w Tabeli 1. Wszystkie wartości zakodowane w naturalnym kodzie binarnym (NBC). Wybierz kolumnę odpowiadającą ostatniej cyfrze Twojego numeru indeksu. Zrealizuj transkoder korzystając z programu Logisim z użyciem pamięci ROM i wypróbuj jego działanie.

2 Zadanie 4d

Sumator wielobitowy można zrealizować jako układ iteracyjny zbudowany z łańcucha połączonych sumatorów 1-bitowych. Czy na podobnej zasadzie można zrealizować układ realizujący odejmowanie? Jak będą wyglądały funkcje różnica i pożyczka?

a	b	c	różnica	pożyczka
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Różnica

$$a$$
 00
 01
 11
 10
 0
 0
 1
 0
 1
 1
 1
 0
 1
 0

 $R = a\bar{b}\bar{c} + \bar{a}\bar{b}c + abc + \bar{a}b\bar{c}$

Pożyczka

$$P = bc + \bar{a}c + \bar{a}b$$

3 Zadanie 7

Przedstaw oczekiwane wyniki przedstawionego niżej programu. Następnie wykonaj program i porównaj wyniki.

Program żeby poprawnie przypisać wartość zmiennej o mniejszym rozmiarze do zmiennej o większej liczbie bitów musi odpowiednio uzupełnić najstarsze bity nowej zmiennej aby zachować oryginalny moduł. W przypadku liczb ujemnych powinno to być 1, a dodatnich 0.

Program przypisuje wartość 000F do zmiennej ze znakiem (sa) i bez (usa). W obu przypadkach jest interpretowana jako dodatnia więc na miejsca najstarszych bitów wstawiane są 0. Wartość FFFB przypisana do zmiennych usb i sb jest interpretowana różnie. Zmienna ze znakiem uznaje ją za wartość ujemną więc, aby zachować znak, podczas rozszerzania dopisywane są 1. Zmienna bez znaku interpretuje ją jako dodatnią więc z przodu dopisywane są 1.

4 Zadanie 8

Przedstaw w postaci dwójkowej i szesnastkowej liczby następujące liczby 16-bitowe w kodzie U2.

liczba	dwójkowo	szesnastkowo	dziesiętnie
-5_{10}	000000000000101_{U2}	0005	
-5_{10}	111111111111111111111111111111111111	FFFB	
największa	01111111111111111_{U2}	7FFF	32767_{10}
najmniejsza	10000000000000000_{U2}	8000	-32768_{10}

5 Zadanie 9

Wyjaśnij, dlaczego wyniki programu 2 są takie jak pokazano poniżej.

- a) 121 34 155155 jest poprawnym wynikiem dodawania.
- b) 20000 1000 21000
 21000 jest poprawnym wynikiem dodawania.
- c) 20000 30000 -15536 Do zapisania wyniku dodawania 20000 + 30000 w kodzie U2 potrzeba 17 bitów. Typ short może przechowac tylko 16, liczba reperzentowana przez 16 najmniej znaczączych bitów to -15536.
- d) -20000 -3000 -23000-23000 jest poprawnym wynikiem odejmowania.

e) -20000 -25000 20536

Do zapisania wyniku odejmowania -20000-25000 w kodzie U2 potrzeba 17 bitów. Typ short może przechowac tylko 16, liczba reperzentowana przez 16 najmniej znaczączych bitów to 20536.