

Org Lett. Author manuscript; available in PMC 2008 September 4.

Published in final edited form as:

Org Lett. 2006 December 21; 8(26): 6087-6090. doi:10.1021/ol062595u.

De Novo Formal Synthesis of (-)-Apicularen A via an Iterative Asymmetric Hydration Sequence

Miaosheng Li and George A. O'Doherty

Department of Chemistry, West Virginia University, Morgantown, WV 26506

Abstract

A de novo approach to the formal total synthesis of the macrolide natural product (–)-apicularen A has been achieved in 18 steps from achiral starting materials. Both the absolute and relative stereochemistry of apicularen A were introduced by a Sharpless asymmetric dihydroxylation, a π -allyl-palladium catalyzed reduction, a stereoselective reduction and a base promoted transannulation to install the C-9 stereocenter.

Since its isolation and structural determination by Jansen and co-workers, 1 apicularen A has attracted significant interest due to its extremely potent antitumor activity, apicularen A showed remarkable cytotoxicities against nine human cancer lines at quite low concentration (IC $_{50} \sim 0.1\text{-}3$ ng/mL). This activity persisted even with the multi-drug resistant line, KB-VI (IC $_{50} \sim 0.4$ ng/mL). 1b Recently, the mode of action for the apicularens was demonstrated to occur via the selective inhibition of the mammalian VATPases, 2 which are responsible for regulating the intracellular pH. Interestingly, while apicularen A and B were equipotent inhibitors of V-ATPases, apicularen A is $\sim\!100$ times more toxic to cancer cells. 1b This switch in activity controlled by glycosylation has peaked our interest in the synthesis of both apicularen A and B, as well as other glycosylated potential prodrugs.

In addition to its fascinating biological activities, the structural novelty of apicularen A has also attracted the attention of the synthetic community. To date several total syntheses of apicularen A have been completed, along with several formal total syntheses and various efforts to the unique bicyclic ring system. While all of the previous syntheses of the apicularen A derived their asymmetry by a resolution or from the chiral pool, we were interested in a de novo asymmetric approach that would use asymmetric catalysis to install the four stereocenters in apicularen A from achiral starting materials. Herein we describe our successful efforts to implement this strategy for the de novo formal total synthesis of apicularen A.

Retrosynthetically, we envisioned apicularen A (1) and apicularen B (2) as being derived from the known macrolide 3 and the amide side chain 4, which have been successfully used by Maier

George.ODoherty@mail.wvu.edu.

for the synthesis of $\bf 1$ (Scheme 1). In our strategy (Scheme 2), the macrolide $\bf 3$ could be derived from macrolactone $\bf 5$, which in turn could be obtained by cross metathesis of styrene $\bf 6$ and alkene $\bf 7$. The homoallylic alcohol stereochemistry in the differentially protected tetraol $\bf 7$ was planned to be introduced by the diastereoselective introduction of an allyl-group to the benzylidene-protected triol $\bf 8$. Previously we have been successful at preparing protected 3,5-dihydroxy esters from 2,4-dienoates. $\bf 6$,7 Thus, we envisioned using this 4-step asymmetric bishydration protocol for the preparation of benzylidene acetal $\bf 8$ from dienoate $\bf 9$.

To access of useful quantities of dienoate **9**, an efficient 5-step approach was developed (Scheme 3). The route featured the KAPA promoted alkyne zipper reaction⁸ and the Ph₃P promoted ynoate to dienoate isomerization, developed by Trost. Treatment of the lithium acetylide of **10** with paraformaldehyde gave good yield (87%) of a propargylic alcohol, which when exposed to the KAPA reagent readily isomerized to the terminal heptynol **11** (79%). The primary alcohol in **11** was easily protected as a benzyl ether (KH/BnBr, 92%) and the terminal alkyne was carboxylated (*n*-BuLi/ClCO₂Et, 93%) to give ynoate **12**. Exposure of alkynoate **12** to the Rychnovsky variant of the Trost isomerization (Ph₃P/PhOH) cleanly gave dienoate **9** in excellent yield (95%) and near perfect double bond stereoselectivity.

We next turned to our 3-step asymmetric hydration protocol (dihydroxylation, carbonate formation and palladium catalyzed reduction) to convert dienoate $\bf 9$ into δ -hydroxyenoate $\bf 14$. In practice, dienoate $\bf 9$ was dihydroxylated under the Sharpless conditions to give diol, which was cyclized into carbonate $\bf 13$ in good overall yield (78%). Exposure of carbonate $\bf 13$ to the palladium(0) catalyzed reduction conditions (HCO₂H/Et₃N) provided δ -hydroxy enoate $\bf 14$ in good yield (90%). With the initial chiral center introduced in δ -hydroxy enoate $\bf 14$, the remaining double bond was diastereoselectively hydrated and protected to form the benzylidene acetal $\bf 8$ using Evans' procedure (PhCHO/t-BuOK, 59%). The ester $\bf 8$ was then converted into Weinreb amide $\bf 16$ (ClMgN(OMe)Me) in 89% yield (Scheme 3). $\bf 11$

Exposure of Weinreb amide 16 to allylmagnesium chloride cleanly formed the ketone 17 in 86% yield (Scheme 4). Reduction of the ketone under various conditions resulted in different ratios of diastereomers 18 and 19. Our optimized conditions used L-selectride, which produced homoallylic alcohols 18 and 19 in a ratio of 7:1. The two diastereomers 18 and 19 were separable by careful chromatography. The undesired isomer 19 can be recycled by a Dess-Martin oxidation back to ketone 17 (94%). Alternatively, treatment of aldehyde 20, which was formed by Dibal-H reduction of ester 8 (92%), with the Leighton reagent formed the desired homoallylic alcohol 18 in high diastereoselectivity (97:3) and high yield (88%). ¹² Finally, the alcohol in 18 was protected as benzyl ether to provide the cross metathesis precursor 7.

We next looked at the synthesis of styrene fragment 6 (Scheme 5). Selective monomethylation 13 of commercially available salicylic acid 21 (DBU/MeI, 82%) was followed by treatment of the remaining phenol group with Tf_2O to give triflate 22 (89%). The Molander 14 trifluoroborate variant of the Suzuki-Miyaura 15 coupling was then used to convert the triflate 22 to the styrene 6 (91%).

The merging of the two alkenes $\bf 6$ and $\bf 7$ via an olefin cross metathesis reaction was then investigated. Treatment of $\bf 6$ (2 equiv) and $\bf 7$ with the second generation Grubbs reagent (5% Grubbs II) 16 provided the cross metathesis product $\bf 23$ in good yield (86%) and high *trans*-stereoselectivity (Scheme 5).

In preparation for the macrolactone assembly (Scheme 6), the benzylidene protection group in $\bf 23$ was removed with mildly acidic conditions (4:1 AcOH/H₂O, 80 °C) to form diol $\bf 24$ (82%).

Then the methyl ester $\bf 24$ was hydrolyzed with LiOH.
Applying a modified Yamaguchi lactonization
procedure to the seco-acid $\bf 25$ selectively produced the 12-member macrolactone $\bf 6$ (67%) over the 10-membered ring. With the macrolactone established we next

looked for an alternative to the Maier transannular etherification. 3d After numerous fruitless investigations, including $Au(I)^{20}$, and $Pt(II)^{21}$ catalysts, we eventually found that the tetrahydropyran could be formed under basic (t-BuOK, 1 equiv) conditions. Significantly, only one diastereomer was formed under these conditions and in good yield (83%). 22 The desired target macrolide 3 was identical physically (mp, optical rotation) and spectroscopically 1 H NMR, 13 C NMR, IR and MS) to the material previously reported by Maier. 3d

In conclusion, a short formal de novo asymmetric synthesis of apicularen A has been developed. This highly enantio- and diastereocontrolled route illustrates the utility of our dienoate asymmetric hydration strategy for natural product synthesis. In addition, this approach features a cross metathesis reaction, a Yamaguchi lactonization and a base mediated transannular etherification. Further application of this approach to the synthesis of other members of this class of compounds and biological testing are ongoing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We are grateful to Dr. Joseph Dougherty (WVU) for initial exploratory work and to the NIH (GM63150) and NSF (CHE-0415469) for the support of our research program and NSF-EPSCoR (0314742) for a 600 MHz NMR and an LTQ-FT Mass Spectrometer at WVU.

References

- 1 (a). Kunze B, Jansen R, Sasse F, Höfle G, Reichenbach H. J. Antibiot 1998;51:1075–1080. [PubMed: 10048565] (b) Jansen R, Kunze B, Reichenbach H, Höfle G. Eur. J. Org. Chem 2000:913–919.
- 2 (a). Boyd MR, Farina C, Belfiore P, Gagliardi S, Kim JW, Hayakawa Y, Beutler JA, McKee TC, Bowman BJ, Bowman EJ. J. Pharmacol. Exp. Ther 2001;297:114–120. [PubMed: 11259534] (b) Huss M, Sasse F, Kunze B, Jansen R, Steinmetz H, Ingenhorst G, Zeeck A, Wieczorek H. BMC Biochem 2005;6:13. [PubMed: 16080788]
- 3 (a). Bhattacharjee A, Seguil OR, De Brabander JK. Tetrahedron Lett 2001;42:1217–1220. (b) Nicolaou KC, Kim DW, Baati R. Angew. Chem. Int. Ed 2002;41:3701–3704. (c) Su Q, Panek JS. J. Am. Chem. Soc 2004;126:2425–2430. [PubMed: 14982450] (d) Petri AF, Bayer A, Maier ME. Angew. Chem. Int. Ed 2004;43:5821–5823.
- 4 (a). Lewis A, Stefanuti I, Swain SA, Smith SA, Taylor RJK. Tetrahedron Lett 2001;42:5549–5552. (b) Lewis A, Stefanuti I, Swain SA, Smith SA, Taylor RJK. Org. Biomol. Chem 2003;1:104–116. [PubMed: 12929396] (c) Graetz BR, Rychnovsky SD. Org. Lett 2003;5:3357–3360. [PubMed: 12943426] (d) Kühnert S, Maier ME. Org. Lett 2002;4:643–646. [PubMed: 11843612] (e) Hilli F, White JM, Rizzacasa MA. Tetrahedron Lett 2002;43:8507–8510. (f) Hilli F, White JM, Rizzacasa MA. Org. Lett 2004;6:1289–1292. [PubMed: 15070319]
- 5. While Maier's endgame seemed ideal for our purpose, his use of a stochiometric amount (CF₃CO₂)₂Hg to set the trans-annular ether bridge in macrolide 3 (see ref 3d) was viewed as needing to be replaced with an environmentally more benign yet equally stereoselective process.
- Hunter TJ, O'Doherty GA. Org. Lett 2001;3:2777–2780. [PubMed: 11506632] (b) Tosaki SY, Nemoto T, Ohshima T, Shibasaki M. Org. Lett 2003;5:495–498. [PubMed: 12583752] (c) Smith CM, O'Doherty GA. Org. Lett 2003;5:1959–1962. [PubMed: 12762696]
- 7 (a). Hunter TJ, O'Doherty GA. Org. Lett 2001;3:1049–1052. [PubMed: 11277792] (b) Li M, O'Doherty GA. Org. Lett 2006;8:3987–3990. [PubMed: 16928055]
- 8 (a). Brown CA, Yamashita A. J. Am. Chem. Soc 1975;97:891–892.
 (b) Kimmel T, Becker D. J. Org. Chem 1984;49:2494–2496.
- 9 (a). Rychnovsky SD, Kim J. J. Org. Chem 1994;59:2659–2660. (b) Trost B, Kazmaier U. J. Am. Chem. Soc 1992;114:7933–7935.
- 10. Evans DA, Gauchet-Prunet JA. J. Org. Chem 1993;58:2446-2453.

11 (a). Nahm S, Weinreb SM. Tetrahedron Lett 1981;22:3815–3818. (b) Williams JM, Jobson RB, Yasuda N, Marchesini G, Dolling U-H, Grabowski EJ. Tetrahedron Lett 1995;36:5461–5464.

- 12. Previous approaches to apicularen A used the Brown AllylBIpc₂ reagent, see: refs 3b, 3c, 4b and 4f. We have found that the Leighton reagent works equally well in terms of stereochemical outcome and allows for a significantly simpler product isolation procedure, see: Kubota K, Leighton J. Angew. Chem. Int. Ed 2003;42:946–948.
- 13. Mal D. Synth. Commun 1986;16:331-335.
- 14. Molander GA, Rivero MR. Org. Lett 2002;4:107–109. [PubMed: 11772102]
- 15. Miyaura N, Suzuki A. Chem. Rev 1995;95:2457-2483.
- 16. Scholl M, Ding S, Lee CW, Grubbs RH. Org. Lett 1999;1:953–956. [PubMed: 10823227]
- 17. Efforts to lactonize diol **24** under various basic conditions (NaH, KH, or *t*-BuOK) caused either decomposition of the starting material or no reaction.
- 18. Petri AF, Kuhnert SM, Scheufler F, Maier ME. Synthesis 2003;6:940–955.
- 19 (a). Inanaga J, Hirata K, Saeki H, Katsuki T, Yamaguchi M. Bull. Chem. Soc. Jpn 1979;52:1989–1993. (b) Mulzer J, Mareski PA, Buschmann J, Luger P. Synthesis 1992;1:215–234.
- 20. Yang C-G, He C. J. Am. Chem. Soc 2005;127:6966–6967. [PubMed: 15884936]
- 21. Qian H, Han X, Widenhoefer RA. J. Am. Chem. Soc 2004;126:9536–9537. [PubMed: 15291546]
- 22. The high diastereoselectivity associated with this transannular cyclization (5 to 3) has precedent in the work of Rizzacasa, see: refs 4e and 4f. Our results suggest the possibility of an olefin migration preceding cyclization, in Rizzacasa model study, instead of the proposed 6-endo-dig cyclization, see: ref 4e.

(-)-Apicularen A, 1, R = H (-)-Apicularen B, 2, R = N-acetyl- β -glucosamine

Scheme 1. Biological Activity of (-)-Apicularen A and B^{2b}

Scheme 2. Retrosynthesis of (-)-Apicularen A (1).

Scheme 3. Synthesis of Dienoate **9** and Its Bis-hydration.

Scheme 4. Synthesis of Intermediate **7** via Stereoselective Reduction or Asymmetric Allylation.

Scheme 5. Synthesis of Salicylate **23** via Cross-Metathesis Reaction.

Scheme 6. Completion of Formal Synthesis of (-)-Apicularen A.