DAFTAR ISI

DAFTAR	ISI	. i
DAFTAR	GAMBAR	ii
	TABEL	
BAB 1. PE	ENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Perumusan Masalah	2
1.3	Tujuan	2
1.4	Luaran yang Diharapkan	2
1.5	Manfaat Program	
BAB 2. TI	NJAUAN PUSTAKA	2
2.1	Light Detection and Ranging	2
2.2	Arduino Mega 2560	3
2.3	Kursi Roda Elektrik	4
2.4	Pendeteksi dan Penghindar Rintangan berbasis LIDAR	4
BAB 3. TA	AHAP PELAKSANAAN	5
3.1	Studi Literatur LIDAR	5
3.2	Perancangan LIDAR 3D	5
3.3	Rekonstruksi Point Cloud LIDAR	6
3.4	Perancangan Deteksi Rintangan	
3.5	Perancangan Kursi Roda Otonom	8
3.6	Pengujian dan Evaluasi	9
3.7	Pembuatan Laporan	9
BAB IV B	IAYA DAN JADWAL KEGIATAN	9
4.1	Anggaran Biaya	9
4.2	Jadwal Kegiatan	10
DAFTAR	PUSTAKA	10
LAMPIRA	N-LAMPIRAN	11
	1. Biodata Ketua dan Anggota, Biodata Dosen Pendamping	
Lampiran 2	2. Justifikasi Anggaran Kegiatan	19
-	3. Sususan Organisasi Tim Peneliti Dan Pembagian Tugas	
Lampiran 4	4. Surat Pernyataan Ketua Peneliti	22
Lampiran :	5. Gambaran Teknologi yang akan Dikembangkan	23

DAFTAR GAMBAR

Gambar 2.1. Cara Kerja LIDAR	3
Gambar 3.1. Flowchart LIDAR 3D	5
Gambar 3.2. Desain LIDAR Bagian Penggerak	6
Gambar 3.3. 3D Konversi Koordinat	7
Gambar 3.4. Desain Kursi Roda Otonom	9
DAFTAR TABEL	
Tabel 4.1. Rekapitulasi Rencana Anggaran Dana	9
Tabel 4.2. Jadwal Kegiatan Pembuatan Alat	

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Kursi roda merupakan alat bantu mobilitas yang sering digunakan bagi orang yang memiliki keterbatasan pergerakan dalam melakukan aktivitas sehariharinya. Keterbatasan pergerakan ini bisa dalam hal cacat fisik, cedera, ataupun penyakit yang menyerang motorik pada manusia. Dalam dunia kedokteran, kursi roda sudah tidak asing lagi dalam pemanfaatannya bagi pasien baik dalam keterbatasan yang parah seperti stroke, lumpuh, dan disabilitas total yang tidak memungkinkan untuk bisa menggerakkan kursi roda sendiri sehingga tetap membutuhkan bantuan orang dalam mobilitasnya. Sedangkan, keterbatasan yang tidak parah seperti cacat pada kaki atau cedera masih memungkinkan pasien dalam menggerakkan kursi roda tanpa bantuan orang lain (Hatta dan Tasripan, 2012).

Dilihat dari fungsinya kursi roda digunakan oleh orang yang memiliki keterbatasan terutama untuk lansia yang memang rentan mengalami masalah dalam hal kesehatan dan disabilitas atau penyandang cacat. Berdasarkan data pusat statistika dalam waktu hampir lima dekade, persentase lansia Indonesia meningkat sekitar dua kali lipat (1971-2019), yakni menjadi 9,6% atau 25 juta penduduk usia lansia (Badan Pusat Statistik, 2019). Selain itu data dari Sensus Penduduk Nasional pada 2018, ada 14,2 persen penduduk Indonesia yang menyandang disabilitas atau 30,38 juta jiwa.

Dengan adanya perkembangan teknologi, kursi roda mengalami pengembangan yang awalnya hanya digerakkan secara manual sekarang sudah dikembangkan kursi roda elektrik konvensional menggunakan pengendali *joystick* yang sekarang bisa ditemui di pasaran. Namun, kursi roda elektrik konvensional yang biasa dioperasikan dengan *joystick* masih sulit digunakan oleh penyandang disabilitas lumpuh total (Ichlasa, 2016). Pada penelitian yang terdahulu mulai dikembangkan kursi roda otonom yang bisa menghindari rintangan, termasuk benda yang bergerak dengan menggunakan kamera. Namun, penggunaan kamera hanya dapat digunakan pada siang hari.

Berdasarkan hal tersebut maka disusun Program Kreativitas Mahasiswa (PKM) dengan judul "Rancang Bangun LIDAR 3D Berbiaya Murah untuk Navigasi Kursi Roda Otonom". Sensor LIDAR 3D yang digunakan dalam alat ini merupakan rancangan sendiri dengan menggunakan TF Mini LIDAR dengan jarak jangkauan 12 meter. Hasil dari pembacaan LIDAR 3D nantinya akan digunakan untuk navigasi dari kursi roda otonom yang dapat mengenali wilayah sekitarnya sehingga kursi roda akan mampu untuk menghindari rintangan yang ada di sekitarnya. Selain itu dengan membuat LIDAR 3D sendiri maka biaya untuk pembuatan alat akan lebih murah karena harga yang ditawarkan LIDAR 3D cukup mahal. Sehingga dari PKM yang dibuat diharapkan akan mampu membantu mobilitas penyandang disabilitas dan lansia agar dapat lebih leluasa dalam bergerak dengan aman tanpa bergantung dengan orang lain.

1.2 Perumusan Masalah

Berdasar latar belakang di atas, dirumuskan permasalahan sebagai berikut:

- 1. Bagaimana cara mendesain LIDAR 3D?
- 2. Bagaimana cara penentuan objek pembacaan rintangan dari pembacaan LIDAR?
- 3. Bagaimana cara membuat kursi roda otonom dapat menghindari rintangan?

1.3 Tujuan

Tujuan yang ingin dicapai dari penelitian ini adalah:

- 1. LIDAR 3D didesain dengan menggunakan TF Mini LIDAR memanfaatkan motor DC dan servo sebagai pemutar LIDAR.
- 2. Penentuan objek kursi roda otonom menggunakan pembacaan data LIDAR 3D yang telah direkonstruksi.
- 3. Penghindaran objek kursi roda otonom dilakukan dengan menjaga jarak antara kursi roda dan rintangan yang terdeteksi dengan mengubah arah gerak motor.

1.4 Luaran yang Diharapkan

Luaran yang diharapkan dari penelitian ini adalah:

- 1. Laporan kemajuan pembuatan prototipe LIDAR 3D untuk navigasi kursi roda.
- 2. Laporan akhir pembuatan prototipe LIDAR 3D untuk navigasi kursi roda.
- 3. Terciptanya prototipe LIDAR 3D untuk navigasi kursi roda otonom.
- 4. Mendapatkan artikel ilmiah berupa paper dan karya tulis ilmiah yang siap dipublikasikan di *International Journal on Advanced Science, Engineering, and Information Technology (Q2 Scopus)*.

1.5 Manfaat Program

Berikut manfaat program penelitian ini adalah:

- 1. Bagi Pelaksana
 - a. Tercapainya peran dan fungsi mahasiswa untuk masyarakat
 - b. Mengenal dan mempelajari tentang berbagai permasalahan yang sering terjadi kemudian mencari penyelesaiannya berdasarkan ilmu pengetahuan yang telah didapatkan di bangku perkuliahan.
- 2. Bagi Masyarakat dan umum
 - a. Memperoleh LIDAR 3D dengan harga yang lebih terjangkau.
 - b. Dapat mengimplementasikan penggunaan LIDAR 3D untuk navigasi kursi roda otonom.
 - c. Dapat membantu lansia dan orang cacat untuk bergerak secara bebas dengan aman tanpa bantuan orang lain.

BAB 2. TINJAUAN PUSTAKA

2.1 Light Detection and Ranging

LIDAR atau biasa disebut *Light Detection and Ranging* adalah suatu metode pemetaan jarak suatu objek dengan menggunakan prinsip pantulan cahaya laser yang mengenai objek tertentu. Cara kerja dari LIDAR adalah dengan memancarkan sinar laser ke permukaan suatu objek, kemudian sinar laser tersebut dipantulkan

kembali ke LIDAR (Cho dkk., 2019). Uraian cara kerja LIDAR dapat dilihat pada gambar 2.1. Berkas sinar yang kembali kemudian dianalisis untuk mengetahui jarak dari sensor ke posisi objek. Sedangkan apabila untuk mencari nilai jaraknya adalah sesuai dengan persamaan berikut:

$$Jarak = \frac{Kecepatan cahaya * waktu kembali cahaya}{2}$$
 (1)

Perhitungan jarak LIDAR menggunakan kecepatan cahaya yaitu 3×10^8 m/s. Berdasarkan persamaan ini, karena dalam banyak kasus kecepatan cahaya dikenal dengan akurasi yang sangat baik maka pengukuran jarak berbasis LIDAR adalah efektif dan akurat. Nilai jarak didapat dengan mengukur keterlambatan bolak-balik dari gelombang cahaya ke target. Hal ini dapat dicapai dengan memodulasi intensitas, fase, dan frekuensi bentuk gelombang cahaya yang ditransmisikan dan mengukur waktu yang dibutuhkan untuk modulasi pola tersebut muncul kembali di penerima (Behroozpour dkk., 2017).

Gambar 2.2. Cara Kerja LIDAR

2.2 Arduino Mega 2560

Arduino Mega 2560 adalah mikrokontroler yang menggunakan ATmega2560. Ini memiliki 54 pin *input / output* digital dimana 14 dapat digunakan sebagai output PWM, 16 input analog, 4 UART merupakan port serial perangkat keras, osilator kristal 16 MHz, koneksi USB, colokan listrik, header ICSP, Dan tombol reset. Arduino Mega dapat digunakan dan dihubungkan dengan komputer menggunakan kabel USB. Arduino Mega kompatibel dengan kebanyakan shield yang dirancang untuk Arduino Duemilanove atau Diecimila. ATmega2560 memiliki memori flash 256 KB untuk menyimpan kode dimana 8 KB digunakan untuk bootloader, 8 KB SRAM dan 4 KB dari EEPROM. ATmega2560 menyediakan empat perangkat keras UART untuk komunikasi serial TTL (5V). ATmega8U2 di papan menyalurkan salah satu dari USB ini dan menyediakan port virtual untuk perangkat lunak di komputer. Perangkat lunak Arduino termasuk monitor serial yang memungkinkan data tekstual sederhana dikirim ke dan dari papan Arduino. LED RX dan TX di papan akan berkedip saat data dikirimkan melalui chip ATmega8U2 dan koneksi USB ke komputer.

2.3 Kursi Roda Elektrik

Kursi roda bertenaga listrik biasanya digunakan untuk memberikan mobilitas dan meningkatkan kemandirian para penyandang cacat atau lansia yang sulit berjalan secara mandiri (Pu dkk., 2018). Kursi roda elektrik lebih sering digerakkan dengan motor listrik dari pada tenaga manual. Tenaga manual hanya digunakan untuk cadangan. Kursi roda bermotor berguna bagi mereka yang tidak dapat menggerakkan kursi roda manual atau yang mungkin perlu menggunakan kursi roda untuk jarak atau medan yang akan melelahkan dengan kursi roda manual.

Kursi roda listrik umumnya memiliki roda empat atau enam roda dan tidak dapat dilipat. Namun dalam beberapa terdapat desain lipat dan desain lain mungkin memiliki beberapa kemampuan untuk dibongkar sebagian untuk transit. Ada empat gaya umum sistem penggerak kursi roda listrik, yaitu penggerak roda depan, tengah atau belakang dan penggerak semua roda. Roda yang digunakan untuk penggerak biasanya agak lebih besar dari roda belakang, sedangkan roda elektrik biasanya lebih besar dari roda pada kursi manual. Kursi roda listrik memiliki penggerak roda tengah memiliki roda di depan dan belakang untuk tata letak enam roda.

Motor kursi roda listrik biasanya memiliki sumber energi yang berasal dari baterai siklus dalam 12 hingga 80 ampere jam 12 volt yang dapat diisi ulang. Baterai yang lebih kecil digunakan berpasangan untuk memberi kursi yang cukup daya untuk bertahan setidaknya satu hari di antara pengisian daya. Hal ini tersedia dalam pilihan basah atau kering. Banyak kursi roda listrik membawa pengisi daya terpasang yang dapat dipasang ke stop kontak dinding standar dengan model lama atau menggunakan yang lebih portabel dengan unit pengisi daya terpisah (Morales dkk., 2018).

2.4 Pendeteksi dan Penghindar Rintangan berbasis LIDAR

Penelitian dan metode sebelumnya yang berhubungan dengan pendeteksi dan penghindar rintangan berbasis LIDAR adalah pada penelitian dengan judul."Autonomous Navigation and Obstacle Avoidance of a Micro-bus" (Fernández dkk., 2013). Pada penelitian tersebut digunakan LIDAR untuk mengenali dan berinteraksi dengan lingkungannya. Data LIDAR Velodyne diproses pada laptop untuk menghindari rintangan. Posisi GPS realtime dikirim dari komputer kendaraan ke laptop dan Posisi GPS rintangan dihitung. Trotoar, Titik latitude dan longitude (waypoint), dan perencanaan jalur juga diproses pada laptop. Waypoint berikutnya dikirim ke komputer kendaraan. Eksekusi tugas pada komputer kendaraan seperti membaca posisi RTK-GPS, komunikasi dengan base station, komputasi Time Ahead Distance (TAD), dan mengontrol kendaraan untuk bergerak ke tujuan waypoint. Ketika rintangan terdeteksi pada jalur yang telah direncanakan, rute sebelumnya dimodifikasi agar dapat menghindari rintangan dengan aman. Kendaraan mampu mengendalikan secara otomatis dari satu waypoint menuju waypoint berikutnya. Sistem kontrol PID adaptif digunakan untuk menghasilkan perintah gerakan berbasis pada lateral kendaraan.

BAB 3. TAHAP PELAKSANAAN

Rencana tahapan pelaksanaan yang akan dilakukan untuk membuat PKM ini adalah dengan metode daring dan luring. Pada saat luring, pengerjaan PKM dilaksanakan di laboratorium Elektronika Industri dengan mematuhi protokol kesehatan yang telah ditetapkan oleh departemen Teknik Elektro ITS. Adapun tahapan pelaksanaannya adalah sebagai berikut:

3.1 Studi Literatur LIDAR

Dalam studi literatur hal yang dilakukan adalah mempelajari buku-buku literatur, jurnal-jurnal dan materi pada internet yang berhubungan dengan masalah yang dihadapi dalam pembuatan alat. Pada tahap studi literatur, dengan membaca referensi yang ada diharapkan akan dapat memahami komponen-komponen yang akan digunakan dalam pembuatan desain LIDAR 3D dan bagaimana cara kerja setiap detail yang akan dikerjakan sehingga akan memudahkan dalam pembuatan alat baik secara mekanis maupun dalam hal pemrograman.

3.2 Perancangan LIDAR 3D

Perancangan sistem ditujukan untuk mendapatkan desain yang optimal dalam pembuatan alat. Perancangan desain ini mencakup desain mekanik dan desain elektrik dari alat. LIDAR 3D nantinya akan diletakkan di atas *box* kontrol yang berisi Arduino mega sehingga akan leluasa dalam berputar tanpa dihalangi oleh bagian lainnya. Setelah data terbaca oleh lidar maka data akan dikirimkan pada laptop dan akan direkonstruksi menjadi 3D. Adapun *flowchart* dari alat ini terdapat pada gambar 3.1.

Gambar 3.1. Flowchart LIDAR 3D

Pada langkah awal yang dilakukan adalah inisial *hardware*. Pada tahap inisial nanti *hardware* akan diatur dengan membuat LIDAR berada pada aksis-Y terendah yang ditentukan. Setelah inisial selesai maka motor servo LIDAR akan berputar dan servo akan bergerak dari bawah ke atas secara perlahan. Sedang pada aksis-X motor DC bergerak terus berputar. Dari pergerakan servo dan motor DC akan menghasilkan pembacaan LIDAR 3D. Setelah didapatkan data pembacaan LIDAR dilakukan *decoding* data dan rekonstruksi *point cloud* yang nantinya digunakan untuk penentuan algoritma kursi roda otonom.

Pada gambar 3.2 merupakan gambar rancangan LIDAR 3D. Dari gambar dapat diketahui bahwa ada 2 penggerak utama dalam alat ini yaitu motor DC untuk aksis-X dan Servo untuk aksis-Y. Pada pergerakan aksis-X motor DC akan memutar gear yang melekat pada bodi penyangga LIDAR sehingga bodi LIDAR akan ikut berputar juga jika motor DC berputar. Sedang pada aksis-Y servo nantinya akan diatur untuk inisial berada pada posisi menghadap ke bawah dan semakin lama akan bergerak ke atas seiring dengan perputaran LIDAR. Pada desain ini digunakan kapsul slip ring agar kabel yang digunakan tidak terbelit.

Gambar 3.2. Desain LIDAR 3D

3.3 Rekonstruksi Point Cloud LIDAR

TF mini LIDAR mengadopsi paket informasi untuk sejumlah nilai heksadesimal. Di samping untuk terus menerima pengembalian informasi, sisi decoding harus menentukan paket setiap data milik jenis informasi apa yang terletak di saluran mana, dan kemudian sistem melakukan komputasi paket. Operasi paket dibagi menjadi dua bagian utama yaitu perhitungan azimuth dan perhitungan jarak.

Sebelum melakukan rekonstruksi, pertama-tama dilakukan *decoding* data LIDAR dengan menghitung sudut horizontal dan sudut horizontal sebagai dua nilai heksadesimal berturut-turut, seperti 0x33 & 0x71, dan dua nilai heksadesimal adalah penggantian dan kombinasi, seperti 0x7133. Selanjutnya, nilai heksadesimal dikonversi menjadi nilai desimal, seperti 28.979. Akhirnya, nilai desimal dibagi

dengan 100. Kemudian diperoleh sudut horizontal saat ini, seperti 289,79 derajat. Untuk pemindaian horizontal 360 derajat diperlukan 76 paket, setiap paket berisi 12 blok, dan setiap blok akan ditransmisikan dua kali sinar LIDAR. Sudut *offset* rata-rata adalah sekitar 0,2 derajat. Setelah mendapatkan dua nilai heksadesimal berturut-turut, dua nilai diganti, digabung dan dikonversi menjadi desimal, dan dikalikan dengan 2,0 mm. Sehingga pada akhirnya sistem akan menyelesaikan konversi jarak dan *decoding* paket TF Mini LIDAR.

Menindaklanjuti langkah *decoding* dari bagian sebelumnya, sehingga mendapatkan informasi jarak, informasi sudut horizontal dan vertikal. Selanjutnya, akan digunakan ketiga informasi tersebut untuk perhitungan transformasi koordinat 3D dan menggunakan OpenGL untuk membangun peta *point cloud*. Karena pemindaian TF Mini LIDAR mengambil koordinat bola (R, ω, α) sebagai koordinat pelaporan seperti yang digambarkan pada gambar 3.3. ika informasi yang didekodekan perlu dikonstruksikan menjadi *point cloud*, itu harus dikonversi menjadi sistem koordinat tiga dimensi. Perhitungan transformasi koordinat tiga dimensi terutama melalui rumus konversi (2) - (4) untuk menghitung koordinat tiga dimensi sebagai berikut.

$$X = R \times \sin(\alpha) \times \cos(\omega) \tag{2}$$

$$Y = R \times \cos(\alpha) \times \cos(\omega) \tag{3}$$

$$Z = R \times \sin(\omega) \tag{4}$$

Gambar 3.3. 3D Konversi Koordinat

Nilai ω adalah tetap yang merupakan sudut vertikal yang dipancarkan oleh LIDAR. Sudut elevasi saat ini ω ditentukan sesuai dengan posisi sinar laser yang kembali. α adalah sudut horizontal yang merupakan hasil perhitungan Azimuth. Akhirnya, R adalah informasi jarak antara LIDAR dan objek, menggunakan nilai jarak dari bagian sebelumnya untuk menghitung nilai hasil. Sistem menggunakan tiga variabel ini untuk menghitung koordinat 3D yang dikonversi (XYZ). Ketika perhitungan nilai koordinat selesai, digunakan OpenGL untuk melakukan konstruksi dan tampilan gambar *cloud*. Titik koordinat diplot menurut nilai

koordinat sumbu XYZ yang didekodekan yang merupakan konversi titik koordinat 3D. Setelah rekonstruksi data selesai maka nantinya data dari LIDAR akan dijadikan acuan yang akan digunakan dalam menentukan posisi dari rintangan kursi roda.

3.4 Perancangan Deteksi Rintangan

Sensor LIDAR 3D yang telah dibuat digunakan sebagai sensor utama yang digunakan untuk navigasi kursi roda. Pembuatan sensor LIDAR 3D secara mandiri dilakukan karena untuk membeli sensor LIDAR 3D memerlukan harga yang mahal. Dari penyusunan *point cloud* yang telah didapat, nanti digunakan untuk menentukan bagaimana algoritma dari deteksi rintangan. Proses deteksi rintangan yang dikembangkan dibagi menjadi tiga tahapan yaitu: *filtering*, proses awal, dan *clustering* rintangan. Pada proses *filtering* digunakan untuk menentukan jarak antara kursi roda dan LIDAR titik tertentu pada saat tersebut. Metode ini dapat memberi perhatian pada ruang dan waktu, menyaring titik noise dan mengurangi kompleksitas dari pengelompokan rintangan.

Pada proses awal LIDAR digunakan untuk mengolah dari rekonstruksi *point cloud* LIDAR yang dapat mengetahui jarak dan bentuk dari objek yang ada di sekitarnya. Selanjutnya dilakukan identifikasi objek serta yang berdekatan dapat dimasukkan menjadi 1 objek. Tahap terakhir adalah *clustering* dimana digunakan untuk mengetahui apa objek yang ada di dekatnya berupa tembok, manusia atau lainnya. Keluaran dari deteksi ini berupa bentuk dan jarak dari rintangan.

3.5 Perancangan Kursi Roda Otonom

Perancangan kursi roda otonom dilakukan dengan mengubah kursi roda standar menjadi kursi roda elektrik dengan mengubah penggerak manual menjadi menggunakan motor DC yang dapat menggerakkan kursi roda. Driver yang digunakan dalam kontrol ini adalah BTS7960. Sedang untuk energinya adalah berasal dari aki mobil 12 V DC 32 Ah. Adapun untuk LIDAR 3D yang telah dirancang diletakkan pada belakang kursi roda dengan posisi yang lebih tinggi dari orang yang menaiki kursi roda agar dapat mengenali wilayah sekitar tanpa terganggu oleh orang yang duduk di kursi roda. Berikut pada gambar 3.4 adalah rancangan 3D dari kursi roda otonom yang akan dibuat.

Gambar 3.4. Desain Kursi Roda Otonom

3.6 Pengujian dan Evaluasi

Pengujian dan evaluasi dalam metode ini berfungsi untuk melakukan pengujian dari keseluruhan alat dan membenahi apa saja kekurangan yang terjadi pada saat dilakukannya percobaan. Dari hasil percobaan dilihat apakah hasil dari percobaan telah memenuhi apa yang diharapkan. Dengan adanya evaluasi diharapkan alat yang dihasilkan akan semakin baik sehingga dapat diaplikasikan dan digunakan untuk membantu masyarakat lansia dan cacat dalam bergerak secara aman tanpa membutuhkan bantuan orang lain.

3.7 Pembuatan Laporan

Pembuatan laporan dilakukan pada tahap akhir setelah seluruh tahapan yang direncanakan terselesaikan sehingga hasil yang disampaikan dapat menjelaskan keseluruhan proses yang dilaksanakan sesuai hasil dan data yang didapatkan. Dengan pembuatan laporan maka diharapkan dapat menjadi bahan evaluasi untuk kebaikan penelitian ini ke depannya.

BAB IV BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Biaya yang dibutuhkan dalam melaksanakan penelitian ini adalah seperti tabel 4.1 berikut.

Tabel 4.1. Rekapitulasi Rencana Anggaran Dana

No.	Jenis Pengeluaran	Biaya (Rp)
1	Jenis Perlengkapan	Rp 1.429.000,00
2	Bahan Habis Pakai	Rp 6.412.000,00
3	Perjalanan	Rp 780.000,00
4	Lain-lain	Rp 1.309.000,00
	Total	Rp 9.930.000,00

4.2 Jadwal Kegiatan

Jadwal kegiatan yang akan dilaksanakan akan seperti pada tabel 4.2 berikut.

Tabel 4.2. Jadwal Kegiatan Pembuatan Alat

						B	ula	n					Person
No	Jenis Kegiatan		1		2			3	}		4	4	Penanggung-
				ļ <u> </u>	-						1		jawab
1	Studi Literatur												Habib
1	LIDAR												Nurkholis
2	Perancangan												Aprial Iqbal
2	LIDAR 3D												Lubis
	Rekonstruksi Point												Indra
3	Cloud LIDAR												Kusuma
4	Perancangan												Dava Aulia
4	Deteksi Rintangan												Dava Auna
5	Perancangan Kursi												Indra
)	Roda Otonom												Kusuma
6	Pengujian dan												Diah
	Evaluasi												Kusuma I.
7	Pembuatan												Diah
'	Laporan LIDAR												Kusuma I.

DAFTAR PUSTAKA

- Badan Pusat Statistik (2019) *Jumlah Kecelakaan; Koban Mati; Luka Berat; Luka Ringan; dan Kerugian Materi yang Diderita Tahun 1992-2018*. Available at: https://www.bps.go.id/linkTableDinamis/view/id/1134.
- Behroozpour, B., Sandborn, P., dan Boser, B.E. (2017) 'Lidar System Architectures and Circuits', *IEEE Communications Magazine* 55(10), pp. 135–142.
- Cho, Y., dan Lyu, J. (2019) 'Auto Gain Control method using the current sensing amplifier to compensate the walk error of the TOF LiDAR, *International Conference on Control, Automation and Systems*, pp. 1403–1406.
- Fernández, C., Domínguez, R., Fernández-Llorca, D., dan Alonso, J. (2013) 'Autonomous navigation and obstacle avoidance of a micro-bus: Regular paper', *International Journal of Advanced Robotic Systems*, 10, pp. 1-9.
- Hatta, Y. K., dan Tasripan, I. (2012) 'Rancang Bangun Kursi Roda Elektrik Android', *Teknik Pomits*, 1(1), pp. 1–6.
- Ichlasa, E. (2016) *Jumlah Lansia Meningkat, Singapura Ingin Kursi Roda Otonom*. Available at: https://www.medcom.id/teknologi/newsteknologi/gNQYQqWN-jumlah-lansia-meningkat-singapura-ingin-kursi-roda-otonom (Accessed: 20 February 2021).
- Morales, Y.. (2018) 'Passenger discomfort map for autonomous navigation in a robotic wheelchair', *Robotics and Autonomous Systems*, 103, pp. 13–26.
- Pu, J., dan Jiang, Y. (2018) 'Low cost sensor network for obstacle avoidance in share-controlled smart wheelchairs under daily scenarios', *Microelectronics Reliability*, pp. 180–186.

LAMPIRAN-LAMPIRAN

Lampiran 1. Biodata Ketua dan Anggota, Biodata Dosen Pendamping

1. Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Indra Kusuma	
2	Jenis Kelamin	L	
3	Program Studi	Teknik Elektro	
4	NRP/NIDN	07111740000077	
5	Tempat Tanggal Lahir	Blitar, 08 Juni 1998	
6	E-mail	indraikhwan66@gmail.com	
7	Nomor Telepon/HP	082232329429	

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1			
2			
3			

C. Penghargaan dalam 10 tahun terakhir

No	Jenis Kegiatan	Pihak Pemberi Penghargaan	Tahun
1	Juara 1 Elexcurtion	ITB	2017
2	Juara 1 Infacter Competition	UPN Veteran Yogyakarta	2018
3			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan **PKM-KC**.

Surabaya, 16 Februari 2021 Ketua Tim

(Indra Kusuma)

A. Identitas Diri

1	Nama Lengkap	Dava Aulia
2	Jenis Kelamin	L
3	Program Studi	Departemen Teknik Komputer
4	NIM	07211840000033
5	Tempat dan Tanggal Lahir	Surabaya, 28 Maret 2000
6	Alamat E-mail	davaaulia2000@gmail.com
7	Nomor Telepon/HP	082131409408

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
	Multimedia dan Game	Staff Akomodasi,	Surabaya, 16 –
1	Event 5 (MAGE 5)	Transportasi, Konsumsi	17 November
		dan Kesehatan	2019
2			

C. Penghargaan dalam 10 tahun terakhir

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
	Peserta, Lomba Esai	Komunitas Penerima	2021
	Kewirausahaan "Make A	Beasiswa Bank Indonesia	
1	New Business Inovation	Komisariat UPN	
	During Pandemic Covid-	"Veteran" Jawa Timur.	
	19"		
2		*	
3			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan **PKM-KC**.

Surabaya, 16 Februari 2021 Anggota Tim

(Dava Aulia)

A. Identitas Diri

1	Nama Lengkap	Diah Kusuma Indrawati
2	Jenis Kelamin	P
3	Program Studi	Teknik Sistem dan Industri
4	NIM	02411840000054
5	Tempat Tanggal Lahir	Ponorogo, 23 Februari2000
6	E-mail	diahki99@gmail.com
7	Nomer HP	085850641936

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1			
2			

C. Penghargaan dalam 10 tahun terakhir

No	Jenis Kegiatan	Pihak Pemberi Penghargaan	Tahun
1			
2			
3			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan **PKM-KC**.

Surabaya, 16 Februari 2021 Anggota Tim

(Diah Kusuma Indrawati)

A. Identitas Diri

1	Nama Lengkap	Habib Nurkholis	
2	Jenis Kelamin	L	
3	Program Studi	Teknik Elektro	
4	NIM	07111940000143	
5	Tempat Tanggal Lahir	Trenggalek, 25 April 2002	
6	Alamat E-mail	habibnurkholis25@gmail.com	
7	Nomor Telepon/HP	0881026835554	

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1			
2			
3			

C. Penghargaan Yang Pernah Diterima

No	Jenis Kegiatan	Pihak Pemberi Penghargaan	Tahun
1	Juara 1 Kompetisi Sains Madrasah (KSM) Fisika Kabupaten Trenggalek	Kementrian Agama RI	2018
2			
3			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan **PKM-KC**.

Surabaya, 16 Februari 2021 Anggota Tim

(Habib Nurkholis)

A. Identitas Diri

1	Nama Lengkap	Aprial Iqbal Lubis
2	Jenis Kelamin	L
3	Program Studi	Teknik Mesin Industri
4	NIM	10211910000065
5	Tempat Tanggal Lahir	Sampang, 15 April 2000
6	Alamat E-mail	iqbal.lubisa@gmail.com
7	Nomor Telepon/HP	085231552096

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1		-	
2			
3			

C. Penghargaan Yang Pernah Diterima

No	Jenis Kegiatan	Pihak Pemberi Penghargaan	Tahun
1			
2			
3	The same of the sa		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan **PKM-KC**.

Surabaya, 16 Februari 2021 Anggota Tim

(Aprial Iqbal Lubis)

Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap	Dr. Muhammad Rivai, ST., MT.
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Elektro
4	NIP/NIDN	196904261994031003/0026046903
5	Tempat dan Tanggal Lahir	Surakarta, 26 April 1969
6	Alamat E-mail	muhammad_rivai@ee.its.ac.id
7	Nomor Telepon/HP	081330701412

B. Riwayat Pendidikan

Gelar Akademik	Sarjana	S2/Magister	S3/Doktor
Nama Institusi	Institut	Universitas	Universitas
	Teknologi	Indonesia	Airlangga
	Sepuluh		
	Nopember		
Jurusan/Prodi	Teknik Elektro	Opto-Elektro	MIPA
		teknika dan	
		Aplikasi Laser	
Tahun Masuk-Lulus	1987-1993	1995-1997	2002-2006

C. Rekam Jejak Tridharma PT

C.1. Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Rangkaian Elektronika	Wajib	3
2	Perancangan Sistem	Wajib	3
	Elektronika Analog		
3	Transduser	Wajib	3
4	Divais Optoelektronika	Pilihan	3

C.2. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Sensor biomarker gas berkonsentrasi	Penelitian Dasar,	2020
	rendah berbasis devais Quartz	Kemenristekdikti	
	Crystal Microbalance terlapis		
	material Carbon Nanotube yang		
	terintegrasi dengan Field		
	Programmable Gate Array		

No	Judul Penelitian	Penyandang Dana	Tahun
2	Pelacakan Sumber Gas	Penelitian Terapan	2019
	Menggunakan Olfactory Robot	Unggulan Perguruan	
	Swarm	Tinggi,	
		Kemenristekdikti	
3	Gas Analyzer Menggunakan Prinsip	Penelitian Berbasis	2018
	Electronic Nose Berbasis Deret	Kompetensi,	
	Interferometric Reflectance Imaging	Kemenristekdikti	
	Sensor dan Neural Network		
4	Alat Portabel Deteksi Tingkat	Program Insinas	2017
	Keparahan Asma dan PPOK	Riset Pratama	
	Menggunakan Electrochemical Gas	Individu,	
	Sensor dan Single Board Computer	Kemenristekdikti	
5	Pengembangan Mobile Robot	Penelitian Terapan	2017
	Platform untuk Aplikasi Self-	Unggulan Perguruan	
	Navigating Autonomous Indoor	Tinggi,	
	Vehicle (AIV)	Kemenristekdikti	
6	Penggunaan Multi-Mobile Olfactory	Penelitian Unggulan	2016
	Robot untuk Mencari Lokasi Bahan	Perguruan Tinggi,	
	Kimia menggunakan Algoritma	Kemenristekdikti	
	Particle Swarm Optimization		
7	Alat Deteksi Exhaled Biomarkers	Insentif Riset SINas,	2015
	Nitric Oxide (NO) dan Carbon	Kemenristekdikti	
	Monoxide (CO) untuk Diagnosa		
	Tingkat Keparahan Asma dan PPOK		
	Menggunakan Sensor Non-		
	Dispersive Infrared dan		
	Preconcentrator		
8	Implementasi Sistim Electronic Nose	Penelitian Unggulan	2015
	pada Mobile Robot untuk Mencari	Perguruan Tinggi,	
	Sumber Gas Berbahaya	Kemenristekdikti	
9	Aplikasi Penguncian dan Penjejakan	Penelitian Unggulan	2015
	Target Berbasis Informasi Visual	Perguruan Tinggi,	
	untuk Sistem Pengarah Senjata	Kemenristekdikti	
	Otomatis		

C.3. Pengabdian Kepada Masyarakat

No	Judul Pengabdian kepada Masyarakat	Penyandang Dana	Tahun
1	Pembuatan Alat Ozon Generator Untuk	Institut Teknologi	2020
	Sterilisasi Robot Medical Assistant Its-	Sepuluh Nopember	
	Airlangga (Raisa)	X	G
2	Sistem Pompa Air Tenaga Surya untuk	Institut Teknologi	2019
	Sistem Irigasi Tetes di UPT	Sepuluh Nopember	
	Pengembangan Agribisnis Tanaman		
	Pangan dan Hortikultura Dinas Pertanian	y*	
	Provinsi Jawa Timur		
3	Penerapan Dan Pelatihan Mobile CCTV	Institut Teknologi	2019
	Untuk Muwujudkan Smart Pesantren Di	Sepuluh Nopember	
	SMA A. Wahid Hasyim Pondok		
	Pesantren Tebuireng Jombang: Akses		
	CCTV Melalui Komputer Dan		
	Smartphone Melalui Jaringan Internet		
	Protocol (TCP/IP)		
4	Sistem Otomatis Pemberi Pakan dan	Institut Teknologi	2017
	Pengendali Kualitas Air pada Budidaya	Sepuluh Nopember	
	Lele Tebar Padat di UKM Budidaya Lele	350	
	Mina Guo Sidoarjo		
5	Workshop Pengoperasian Mesin Cetak	Institut Teknologi	2017
	Braille untuk Guru dan Siswa Tunanetra	Sepuluh Nopember	
	SLB YPAB Surabaya		
6	Revitalisasi Mesin Cetak Braille	Direktorat	2014
		Pembinaan PK-LK	
		Pendidikan Dasar	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Surabaya, 16 Februari 2021 Dosen Pendamping

Dr. Muhammad Rivai, ST., MT.

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Jenis Perlengkapan	Volume	Harga Satuan (Rp)	Nilai (Rp)
- Gergaji Besi	1 buah	Rp 100.000	Rp 100.000
- Obeng Set	1 set	Rp 105.000	Rp 105.000
- Solder Listrik set	1 set	Rp 95.000	Rp 95.000
- Sarung tangan isolator	2 pasang	Rp 105.000	Rp 210.000
- Penyedot timah	1 buah	Rp 30.000	Rp 30.000
- Bor dan mata bor	1 set	Rp 300.000	Rp 300.000
- Tang	1 buah	Rp 75.000	Rp 75.000
- Tool Box	1 buah	Rp 200.000	Rp 200.000
- AVO Meter	1 buah	Rp 250.000	Rp 250.000
- Cutter	2 buah	Rp 20.000	Rp 40.000
- Gunting	2 buah	Rp 12.000	Rp 24.000
SUB TOTAL (I	Rp 1.429.000		
		Harga	
2. Bahan Habis Pakai	Volume	Satuan (Rp)	Nilai (Rp)
- Mur Baut	1 pack	Rp 60.000	Rp 60.000
- Timah	3 roll	Rp 45.000	Rp 135.000
- Arduino Mega 2560	1 buah	Rp 150.000	Rp 150.000
- Case Arduino Mega 2560	1 buah	Rp 30.000	Rp 30.000
- Kabel	10 meter	Rp 2.000	Rp 20.000
- Baterai Lipo	1 buah	Rp 227.000	Rp 227.000
- Charger Baterai Lipo	2 set	Rp 181.500	Rp 363.000
- DC-DC Step Down	2 buah	Rp 45.500	Rp 91.000
- TF Mini LiDAR (ToF)	1 buah	Rp 605.000	Rp 605.000
- Motor DC 775 12v	1 buah	Rp 85.000	Rp 85.000
- LCD	1 buah	Rp 36.000	Rp 36.000
- Akrilik	1 buah	Rp 413.000	Rp 300.000
- Kabel male to male	20	Rp 25.000	Rp 25.000
- Gear 3.7:1	2 buah	Rp 50.000	Rp 50.000
- Servo MG996R	1 buah	Rp 40.000	Rp 40.000
- Kursi Roda	1 buah	Rp 110.000	Rp 885.000
- Motor Driver H-Bridge Module BTS7960	2 buah	Rp 110.000	Rp 220.000
- Aki mobil	1 buah	Rp 700.000	Rp 700.000
- Motor DC 250 W Kursi Roda	2 buah	Rp 1.195.000	Rp 2.390.000
SUB TOTAL (I	Rp 6.412.000		

			Harga	
3.	Perjalanan	Volume	Satuan	Nilai (Rp)
			(Rp)	
	- Keperluan pembelian bahan (Biaya Ongkir)	8 kali	Rp 35.000	Rp 280.000
	- Keperluan uji coba	5x5 Kali	Rp 20.000	Rp 500.000
	SUB TOTAL (Rp)			Rp 780.000
			Harga	
4.	Lain-lain	Volume	Satuan	Nilai (Rp)
			(Rp)	
	- Poster	3 buah	Rp 18.000	Rp 54.000
	- Proposal	3 buah	Rp 25.000	Rp 75.000
	- Surat-Menyurat	3 buah	Rp 15.000	Rp 45.000
	- Laporan Akhir	3 buah	Rp 30.000	Rp 90.000
	- Kertas A4	1 rim	Rp 60.000	Rp 60.000
	- Biaya berlangganan internet (bulanan)	2 buah	Rp 25.000	Rp 50.000
	- Rapid test	5 kali	Rp 150.000	Rp 750.000
	- Hand Sanitizer	5 buah	Rp 17.000	Rp 85.000
	- Masker	5 buah	Rp 20.000	Rp 100.000
	SUB TOTAL (I	Rp 1.309.000		
	TOTAL 1+2+3+4	Rp 9.930.000		
	(Terbilang Sembilan Juta Sembilan Ratus Tiga Puluh Ribu Rupiah)			

Lampiran 3. Sususan Organisasi Tim Peneliti Dan Pembagian Tugas

No	Nama/NRP	Program Studi	Bidang Ilmu	Alokasi Waktu (Jam/Minggu)	Uraian Tugas
1	Indra	Teknik	Elektronika	8 jam/minggu	Bertanggung
	Kusuma	Elektro			jawab
					menyelesaikan
					bagian elektrik
					alat
2	Dava Aulia	Teknik	Programming	8 jam/minggu	Bertanggung
		Komputer			jawab
					menyelesaikan
					programing
					alat
3	Diah	Teknik	Laporan	8 jam/minggu	Bertanggung
	Kusuma	Sistem			jawab
	Indrawati	dan			membuat
		Industri			laporan
4	Habib	Teknik	Desain dan	8 jam/minggu	Bertanggung
	Nurkholis	Elektro	rancangan		jawab
					membuat
					desain
5	Aprial Iqbal	Teknik	Desain dan	8 jam/minggu	Bertanggung
	Lubis	Mesin	rancangan		jawab
		Industri			perancangan
					alat

Lampiran 4. Surat Pernyataan Ketua Peneliti

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama

: Indra Kusuma

NIM

: 07111740000077

Program Studi : Teknik Elektro

Fakultas

: Fakultas Teknologi Elektro dan Informatika Cerdas

Dengan ini menyatakan bahwa proposal PKM-KC saya dengan judul "Rancang Bangun LIDAR 3D Berbiaya Murah untuk Navigasi Kursi Roda Otonom" yang diusulkan untuk tahun anggaran 2021 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Surabaya, 15 Februari 2021

Yang menyatakan,

E3D4BAJX038813012 (Indra Kusuma)

NRP. 0711740000077

Lampiran 5. Gambaran Teknologi yang akan Dikembangkan Desain LIDAR 3D

Gambar 1. Bentuk LIDAR 3D

Gambar 2. Desain LIDAR 3D dengan Penutup

Gambar 3. Skema Cara Kerja Alat

Pada gambar 3 merupakan gambar dari cara kerja perancangan LIDAR 3D yang akan dibuat. Alat dirancang dengan pusat pengendali utama berupa mikrokontroler Arduino Mega yang mengontrol bagian dari penyusun alat lainnya. LIDAR diletakkan pada atas alat dengan mendapatkan daya dari Arduino yang nilainya diturunkan menjadi 3,3 V dengan menggunakan *logic level converter*. Untuk membuat LIDAR yang ada di atas tidak terbelit maka digunakan *capsule slip ring* yang menghubungkan kabelnya dari bagian bawah dan atas alat. Untuk penggerak utama dari pergerakan LIDAR digunakan servo yang dapat bergerak ke atas bawah dan menggunakan motor DC agar alat dapat bergerak berputar. Sehingga nantinya alat dapat bergerak 2 kondisi yaitu berputar dan bergerak ke atas bawah. Pergerakan alat ini nantinya yang dapat menghasilkan pembacaan dari LIDAR dapat berupa bentuk 3D. Adapun setelah dipasang pada kursi roda hasil desain dari alat adalah seperti gambar 4, 5, dan 6. Sedangkan skema kontrol pada motor DC kursi roda otonom adalah seperti gambar 7.

Gambar 4. Desain Kursi Roda Otonom dari Depan

Gambar 5. Desain Kursi Roda Otonom dari Samping

Gambar 6. Desain Kursi Roda Otonom dari Belakang

Gambar 7. Skema Kontrol Motor DC Kursi Roda Otonom