Taller 2

① Encuentre la cantidad de enteros $n \in [10^{30}]$ tales que existe $x \in \mathbb{Z}$ que satisface que $x^2 = n$ o $x^3 = n$ o $x^5 = n$

Demostración. Defina los siguientes conjuntos:

$$E_2 = \{ n \in [10^{30}] : \exists x \in \mathbb{Z} | x^2 = n \}$$

$$E_3 = \{ n \in [10^{30}] : \exists x \in \mathbb{Z} | x^3 = n \}$$

$$E_5 = \{ n \in [10^{30}] : \exists x \in \mathbb{Z} | x^5 = n \}$$

Luego el cardinal de dichos conjuntos y sus intersecciones será:

• $|E_2| = 10^{15}$, ya que si $n \in E_2$ entonces existe un $x \in \mathbb{Z}$ tal que $x^2 = n$. Dicho x^2 no puede ser mayor que 10^30 por lo que:

$$x^2 \ge 10^{30}$$
$$x > 10^{15}$$

De manera similar podemos concluir que $|E_3|=10^{10}\ \mathrm{y}\ |E_5|=10^6.$

• $|E_2 \cap E_3| = 10^5$ ya que si $n \in E_2 \cap E_3$ entonces se puede expresar n como x^6 para algún $x \in \mathbb{Z}$, y luego similar a lo que se dedujo anteriormente tendremos que $|E_2 \cap E_3| = 10^5$, $|E_2 \cap E_5| = 10^3$, $|E_3 \cap E_5| = 10^2$ y $|E_2 \cap E_3 \cap E_5| = 10$.

Por lo que usando el Principio de Inclusión-Exclusión tendremos:

$$|E_2 \cup E_3 \cup E_5| = |E_2| + |E_3| + |E_5| - |E_2 \cap E_3| - |E_2 \cap E_5| - |E_3 \cap E_5| + |E_2 \cap E_3 \cap E_5|$$

$$= 10^{15} + 10^{10} + 10^6 - 10^5 - 10^3 - 10^2 + 10$$

$$= 1000010000898910$$

Por lo que la cantidad de enteros en $[10]^{30}$ que cumplen esa condición es 1000010000898910.

2 Pruebe, usando una biyección, que $\binom{n}{2} = \frac{2^n-2}{2}$.

Hint: A los números del 1 al n asóciele un número 1 o 2 dependiendo de su bloque.

Demostración. Esto será equivalente a demostrar que:

$$\binom{n}{2} \times 2 + 2 = 2^n$$

Por lo que podremos escoger conjuntos que representen estos números de para demostrar esta igualdad. Para ello, demostraremos que:

$$\left(\left\{ \begin{bmatrix} n \\ 2 \end{bmatrix} \times \{1,2\} \right) \cup \{1,2\} \cong \{1,2\}^{[n]}$$

Para ello, definiremos una función φ como:

$$\varphi: \left(\left\{{n \choose 2} \times \{1,2\}\right) \cup \{1,2\} \to \{1,2\}^{[n]}\right)$$

Donde para un elemento $a \in \left(\left\{{n \brack 2} \times \{1,2\right\}\right) \cup \{1,2\}$ definimos su imagen dependiendo de su estructura:

$$\varphi(a) = \begin{cases} f_a(x) = 1 \text{ para todo } x \in [n], & a = 1 \\ f_a(x) = 2 \text{ para todo } x \in [n], & a = 2 \\ f_a(x) = i \text{ si y solo si } x \in B_i, & a = (\pi, 1) \\ f_a(x) = i \text{ si y solo si } x \notin B_i, & a = (\pi, 2) \end{cases}$$

Podemos demostrar que esta función es una biyección como:

- Inyectividad: Supongamos que existen $a, b \in \left(\left\{\frac{[n]}{2}\right\} \times \{1, 2\}\right) \cup \{1, 2\}$ de forma que $\varphi(a) = \varphi(b)$, por lo que las funciones f_a y f_b que genera φ deben ser la misma. Luego, $f_a^{-1}(\{1\}) = f_b^{-1}(\{1\})$ y $f_a^{-1}(\{2\}) = f_b^{-1}(\{2\})$, por lo que los denotaremos como $f^{-1}(\{1\})$ y $f^{-1}(\{2\})$. Es evidente que ambos no pueden ser vacíos al tiempo, pero si uno solo de ellos. Luego, tendremos varios casos:
 - Si $f^{-1}(\{1\}) = \emptyset$ entonces quiere decir que para todo $x \in [n]$, f(x) = 2. Luego, no es posible que a = 1 puesto que entonces $\varphi(a)$ generará una función de forma que a todos los elementos les asigna 1, y de igual manera no puede ser una tupla de la forma $(\pi, 1)$ o $(\pi, 2)$ ya que entonces B_1 o B_2 serán vacíos contradiciendo el hecho de que π es una partición, por lo que a = 2. Con un razonamiento similar se demuestra que b = 2 y por tanto a = b.
 - Si $f^{-1}(\{2\}) = \emptyset$ se puede usar un argumento similar para deducir que a = b = 1.
 - Si $f^{-1}(\{1\}) \neq \emptyset$ y $f^{-1}(\{2\}) \neq \emptyset$, entonces dado que se involucran dos particiones, tendremos la partición $A = \{A_1, A_2\}$ y $B = \{B_1, B_2\}$ en orden canónico y correspondientes a los objetos a, b. Ahora, si $1 \in f^{-1}(\{1\})$ entonces bajo los posibles escenarios solo es posible que f(x) = i si y solo si $x \in B_i$ y dado que ambas particiones están ordenadas

en orden canónico $f(A_1) = f(B_1) = \{1\}$ y $f(A_2) = f(B_2) = \{2\}$ para $A_1, A_2 \in \pi_a$ y $B_1, B_2 \in \pi_b$, y entonces $a = (\pi_a, 1)$ y $b = (\pi_b, 1)$. Ahora, supongamos que $x \in A_1$, por tanto $f_a(x) = 1$ pero a la vez $f_b(x) = 1$ y por la definción de la función entonces $x \in B_1$ y viceversa, por lo que $A_1 = B_1$, y de manera similar se prueba que $A_2 = B_2$, por lo que $\pi_1 = \pi_2$, por lo que a = b. Para cuando $1 \notin f^{-1}(\{1\})$ y concluir que a = b se usa el mismo argumento pero con $(\pi_1, 2)$ y $(\pi_2, 2)$.

■ Sobreyectividad: Para las funciones que asigan todos los elementos a 1 o a 2 están los elementos 1 y 2 en el dominio para generar estas funciones. Si f es una función de forma que $f^{-1}(\{1\})$ y $f^{-1}(\{2\})$ son no vacíos, entonces generaremos el conjunto:

$$\pi := \{ f^{-1}(\{i\}) | i \in \{1, 2\} \}$$

Y enumeraremos π de forma que $\pi = \{B_1, B_2\}$ si y solo si mín $(B_1) < \text{mín}(B_2)$, y no es díficil ver que $\pi \in [n]2$. Definiermos entonces x como:

$$x := \begin{cases} (\pi, 1), & 1 \in f^{-1}(\{1\}) \\ (\pi, 2), & 1 \notin f^{-1}(\{1\}) \end{cases}$$

Y es fácil que $\varphi(x) = f$, por lo que la función es sobreyectiva.

Luego, la función definida es biyectiva y por tanto:

$$\left(\left\{ \begin{bmatrix} n \\ 2 \end{bmatrix} \right\} \times \{1, 2\} \right) \cup \{1, 2\} \cong \{1, 2\}^{[n]}$$

Y tendremos que:

$$\binom{n}{2} \times 2 + 2 = 2^n$$

- (3) Use el punto 2. para hallar una fórmula parecida para $\binom{n}{3}$.
- $oldsymbol{4}$ Sea B_n una sucesión definida por

$$B_n = \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix} \text{ para } n \ge 1,$$

y $B_0 = 1$. Argumente que B_n es la cantidad de particiones de [n]. Pruebe que

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_{n-k},$$

y concluya que B_n es la cantidad de relaciones de equivalencia sobre [n].

Hint: Considere el bloque donde está n+1 y quíteselo a la partición.

Demostración. Denomine como P_n como el conjunto de todas las particiones de [n]. Luego, podemos demostrar que:

$$\bigcup_{i \in [n]} \left\{ \begin{bmatrix} n \\ i \end{bmatrix} \right\} = P_n$$

Es evidente que $\bigcup_{i\in[n]} {[n] \brace i} \subseteq P_n$. Luego, si $\pi \in P_n$ es claro que por definción $\pi \neq \emptyset$ y π es un conjunto finito, por lo que debe existir $i \in [n]$ tal que $|\pi| = i$ (Si no fuera así y tuvieramos que i > n entonces $\pi = \emptyset$), y por definción $\pi \in \bigcup_{i \in [n]} {n \brace i}$, por lo que ambos conjuntos son iguales. Es evidente que si $i, j \in [n]$ y $i \neq j$ entonces ${[n] \brack i} \cap {[n] \brack j} = \emptyset$ puesto que un conjunto no puede poseer dos cardinales distinos al tiempo. Luego, el cardinal de la unión de los conjuntos será:

$$\left| \bigcup_{i \in [n]} \left\{ \begin{bmatrix} n \\ i \end{bmatrix} \right\} \right| = \sum_{i=1}^{n} \left| \left\{ \begin{bmatrix} n \\ k \end{bmatrix} \right|$$
$$= \sum_{i=1}^{n} \left\{ \begin{bmatrix} n \\ i \end{bmatrix} \right\}$$
$$= \sum_{i=1}^{n} \left\{ \begin{bmatrix} n \\ i \end{bmatrix} \right\}$$

Pero dicho cardinal también será el cardinal de P_n y al tiempo es por definción del problema B_n , por lo que $|P_n| = B_n$.

Para cada partición π vamos a definir S como el conjunto $S \in \pi$ tal que $n+1 \in S$, y definiremos las funciones $T : [n] \to [n-|S|]$ de forma que:

$$T(x) = \begin{cases} x, & x \le n - |S| - 1 \\ x - |S| - 1, & x \ge n - |S| - 1 \end{cases}$$

Y la función $R: \mathbb{P}([n]) \to \mathbb{P}([n-|S|-1])$ definida por:

$$R(B) = \{T(x) : x \in B\}$$

Por lo que $\phi := \{R(B) : B \in \pi \land B \neq S\}$ Y luego definiremos la función $\varphi : P_{n+1} \to \bigcup_{i=0}^{n} \binom{n}{i} \times P_{n-i}$ de forma que:

$$\varphi(\pi) = (S \setminus \{n+1\}, \phi)$$

Esta función es una biyección, pero para demostrarla definiremos la función $\psi: \bigcup_{i=0}^{n} \binom{n}{i} \times P_{n-i} \to P_{n+1}$ de forma que:

$$\psi(S, \phi) = \phi' \cup \{S \cup \{n+1\}\}\$$

definiendo $\phi' = \{x: T(x) \in \phi\}$ Luego, componiendo ambas funciones:

- $(\psi(\varphi))(\pi) = \psi(S \setminus \{n+1\}, \phi)$, y queremos demostrar que la partición generada por ψ será π . Para ello, recordemos que $(S \setminus \{n+1\}) \cup \{n+1\} = S$. Luego, al unir S al conjunto ϕ' generará de nuevo la partición π .
- $(\varphi(\psi(S,\phi)) = \varphi(\pi)$ y queremos demostrar que π generará S y ϕ . Dada la definición de π sabemos que $(S \cup \{n+1\}) \setminus \{n+1\} = S$ y para entender que ϕ' es la partición generada por π , basta entender que ϕ' es generada por la función inversa de R, y al volver a aplicarse dentro de π , vuelve a generar ϕ . Por tanto, $\varphi(\pi) = (S, \phi)$.

Otra forma es definir una biyección donde a cada partición π de [n+1] le asignaremos una pareja ordenada definida $(S \setminus \{n+1\}, \pi \setminus \{S\})$ donde:

- S se define como el conjunto que pertenece a π de forma que $n+1 \in S(Garantizado por las propiedades de una partición)$
- $\pi \setminus \{S\}$ es una partición del conjunto $[n] \setminus S$, el cual tiene cardinal n-k cuando |S|=k+1 con $0 \le k \le n$. (Esto por la inclusión de n+1 en el conjunto S pero no en la partición)

Es fácil ver que la función es inyectiva ya que si para dos particiones π_1 y π_2 la imagen es la misma, es decir $(S_1 \setminus \{n+1\}, \pi_1 \setminus \{S_1\}) = (S_2 \setminus \{n+1\}, \pi_2 \setminus \{S_2\})$ entonces por la propiedad:

Si
$$A, B, C$$
 son conjuntos sales que $A \setminus C = B \setminus C$ entonces $A = B$

se puede concluir que $S_1 = S_2$ y luego que $\pi_1 = \pi_2$. Para ver la función es sobreyectiva solo hace falta ver que dado un conjunto $S \in {[n] \choose k}$ y una partición π de $[n] \setminus S$ podremos determinar una partición $\pi \cup \{S \cup \{n+1\}\}$ de forma que su imagen es (S,π) de manera sencilla.

Para concluir que B_n es la cantidad de relaciones de equivalencia sobre [n] basta recordar que toda partición de un conjunto genera una relación de equivalencia y toda relación de equivalencia genera una partición, y dado que B_n es el número de particiones sobre [n] entonces B_n será también el número de relaciones de equivalencia sobre [n].

(5) Denote por D_n el número de desarreglos en [n]. O sea

$$D_n = |\{\pi \in \mathfrak{S}_n : \pi(i) \neq i \text{ para todo } i \in [n]\}|.$$

Defina $D_0 = 1$. Pruebe que para $n \ge 2$ se tiene que

$$D_n = (n-1)(D_{n-1} + D_{n-2}).$$

Demostración. Para esto, tenga en cuenta que $A \times (B \cup C) = (A \times B) \cup (A \times C)$ y que $\mathbb{D}[n-1] \times [n]$ está en biyección con las permutaciones en [n] que poseen 1 punto fijo(Notese por $A_{n,k}$). Fijese que:

$$(n-1)(D_{n-1} + D_{n+2}) = |[n-1] \times (\mathbb{D}_{n-1} \cup \mathbb{D}_{n-2}|$$

$$= |([n-1] \times \mathbb{D}_{n-1}) \cup ([n-1] \times \mathbb{D}_{n-2})|$$

$$= |([n-1] \times \mathbb{D}_{n-1}) \cup A_{n-1,1}|$$

Defina ahora una función $\varphi: \mathbb{D}_n \to ([n-1] \times \mathbb{D}_{n-1}) \cup A_{n-1,1}$ de forma que para $\pi \in \mathbb{D}_n$ definiremos una biyección $\sigma_{\pi}: [n-1] \to [n-1]$ tal que:

$$\sigma_{\pi}(k) = \begin{cases} \pi(n), & k = \pi^{-1}(n) \\ \pi(k), & k \neq \pi^{-1}(n) \end{cases}$$

Y podremos definir:

$$\varphi(\pi) = \begin{cases} (\pi^{-1}(n), \sigma_{\pi}), & \sigma_{\pi} \in \mathbb{D}_{n-1} \\ \sigma_{\pi}, & \sigma_{\pi} \notin \mathbb{D}_{n-1} \end{cases}$$

Note que si σ_{π} no es un desarreglo de \mathbb{D}_{n-1} entonces tiene que pertenecer a $A_{n-1,1}$ ya que si tuviera más de un punto fijo, π no sería un desarreglo.

- Inyectividad: Note que ambos casos son mutuamente excluyentes ya que los conjuntos son disyuntos y no es posible que una pareja ordenada sea al tiempo una biyección. Para el caso donde para dos desarreglos $\pi_1, \pi_2 \in \mathbb{D}_n$ tales que $\varphi(\pi_1) = \varphi(\pi_2) = \sigma_{\pi_1} = \sigma_{\pi_2}$. Luego, para todo $k \neq \pi_1^{-1}$ y $k \neq \pi_2^{-1}$ tendremos que $\sigma_{\pi_1}(k) = \pi_1(k) = \sigma_{\pi_2}(k) = \pi_2(k)$. Además, es descartable que $k \neq \pi_1^{-1}$ y $k = \pi_2^{-1}$ ya que esto implicaría que $\pi_1(n) = \pi_2(k)$ lo que haría que k = n y k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m y k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m y k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m y k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m y k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m y k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m y k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m y k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m y k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m y k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m y k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m y k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m y k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m y k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m y k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m y k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m dejará de ser un desarreglo. Por esa razón concluiremos que k = m dejará de
- Sobreyectividad: Para una pareja ordenada (i, σ) de $[n-1] \times \mathbb{D}_{n-1}$ podremos construir una biyección $\pi : [n] \to [n]$ definida por:

$$\pi(k) = \begin{cases} n, & k = i \\ \sigma(i), & k = n \\ \sigma(k), & k \neq i \land k \neq n \end{cases}$$

Fijese que luego por la definición de π , $\pi^{-1}(n) = i$ y por la definición de σ_{π} tendremos que $\sigma(k) = \sigma_{\pi}(k)$ para todo k, por lo que $\varphi(\pi) = (i, \sigma)$. Ahora, si tomamos una permutación σ en $A_{n-1,1}$ y denominamos i su punto fijo defina $\pi : [n] \to [n]$ como:

$$\pi(k) = \begin{cases} n, & k = i \\ i, & k = n \\ \sigma(k), & k \neq i \land k \neq n \end{cases}$$

Y por la propia definición de π , tendremos que $\varphi(\pi) = \sigma$. Concluimos entonces que la función es sobreyectiva.

Luego, la función será biyectiva y por tanto:

$$D_n = (n-1)(D_{n-1} + D_{n-2})$$

(6) Pruebe que si X es un conjunto finito, entonces

$$\sum_{x \in X} 1 = |X|.$$

Demostración. Si X es un conjunto finito entonces $X\cong [n]$, es decir |X|=n para algún $n\in\mathbb{Z}^{\geq 0}$. Luego, defina:

$$A_i := \{i\}$$

para todo $i \in [n]$. Ningúno de estos conjuntos es vacío, si $i \neq j$ es evidente que $A_i \cap A_j = \emptyset$ y demostraremos que la unión de todos estos conjunto es [n].

- \subseteq) Si $x \in \bigcup_{i \in [n]} A_i$ entonces $x \in A_i$ para algún $i \in [n]$, pero por la definición de A_i tiene que pasar que x = i y por tanto $x \in [n]$.
- \supseteq) Si $x \in [n]$ entonces tendremos definido $A_x = \{x\}$, y luego dado que $x \in A_x$ entonces $x \in \bigcup_{i \in [n]} A_i$.

Por lo la colección $\{A_i\}_{i\in[n]}$ es una partición de [n] y por tanto la suma de los cardinales de estos conjuntos será el cardinal de [n], es decir n. Pero note que $|A_i| = 1$ para todo $i \in [n]$, y dado que

son disyuntos 2 a 2:

$$\left| \bigcup_{i \in [n]} A_i \right| = \sum_{i=1}^n |A_i|$$

$$= \sum_{i=1}^n 1$$

$$= |[n]|$$

$$= |X|$$

$$= n$$

7 Pruebe que si $m \leq n$, entonces

$$\sum_{k=0}^{m} (-1)^k \binom{n}{k} \binom{n-k}{m-k} = 0.$$

Hint: Separe el término k=0 de la suma y considere $A_i=\{B\in \binom{[n]}{m}: i\in B\}$. Use incl-excl.

Demostración. Para esta demostración, empezaremos definiendo justamente el siguiente conjunto:

$$A_i := \{ B \in \binom{[n]}{m} : i \in B \}$$

Para todo $i \in [n]$. Luego, nos gustaría usar *Principio de inclusión-exclusión* por lo que nuestro objetivo será determinar el cardinal de $\bigcap_{x \in X} A_x$ si $X \in \binom{n}{k}$.

- Para empezar, de manera intuitiva para A_1 , tenemos que todo conjunto en A_1 incluye a 1 como su elemento. Luego, sabemos que si $B \in A_1$ entonces |B| = m. Para determinar el cardinal de A_1 , ya sabemos que $1 \in B$ por lo que en realidad estamos organizando conjuntos de m-1 elementos que no son fijos, y aunque los elementos de B son de [n], dado que 1 ya es un elemento, y en un conjunto no hay elementos repetidos, tendremos que seleccionarlos de $[n] \setminus \{1\}$, lo que al final nos da a concluir que $|A_1| = \binom{n-1}{m-1}$. De manera similar podemos determinar que para cualquier A_i , su cardinal es $\binom{n-1}{m-1}$.
- Para $A_1 \cap A_2$, tenemos conjuntos B donde es fijo que $1 \in B$ y $2 \in B$. De nuevo, |B| = m, aunque dado que todos estos conjuntos poseen m elementos y dos de ellos son fijos, nos importa en sí escoger m-2 elementos, y dado que $1,2 \in B$ y no queremos elementos repetidos, entonces tendremos que tomarlos de $[n] \setminus \{1,2\}$. Luego, podremos concluir que $|A_1 \cap A_2| = \binom{n-2}{m-2}$, y en general para $i, j \in [n]$ tal que $i \neq j$, tendremos que $|A_i \cap A_j| = \binom{n-2}{m-2}$.
- En general aplicando el razonamiento anterior podemos deducir que $|\bigcap_{x \in X} A_x| = \binom{n-k}{m-k}$ si $X \in \binom{n}{k}$.

• Una demostración más rigurosa de esto puede hacerse mediante biyecciones. Sea $X \in \binom{n}{k}$ defina la función:

$$\varphi: \bigcap_{x \in X} A_x \to \binom{[n] \setminus X}{m-k}$$
$$B \mapsto B \setminus X$$

Luego, usando Principio de inclusión-exclusión podremos derivar la siguiente formula:

$$\left| \bigcup_{i \in [n]} A_i \right| = \sum_{k=1}^n (-1)^{k-1} \cdot \sum_{X \in {[n] \choose k}} \left| \bigcap_{x \in X} A_x \right|$$

$$= \sum_{k=1}^n (-1)^{k-1} \cdot \sum_{X \in {[n] \choose k}} {n-k \choose m-k}$$

$$= \sum_{k=1}^n (-1)^{k-1} \cdot {n-k \choose m-k} \cdot \sum_{X \in {[n] \choose k}} 1$$

$$= \sum_{k=1}^n (-1)^{k-1} \cdot {n-k \choose m-k} {n \choose k}$$

Luego, note que esta suma puede separarse como:

$$\sum_{k=1}^{n} (-1)^{k-1} \cdot \binom{n-k}{m-k} \binom{n}{k} = \sum_{k=1}^{m} (-1)^{k-1} \cdot \binom{n-k}{m-k} \binom{n}{k} + \sum_{k=m+1}^{n} (-1)^{k-1} \cdot \binom{n-k}{m-k} \binom{n}{k}$$

Note que para la segunda suma, todo valor que toma k es mayor que m, por lo que siempre quedará algo de la forma:

$$\begin{pmatrix} n-k \\ -s \end{pmatrix}$$

Donde $s \in \mathbb{Z}^{\geq 0}$, por lo que estaremos hablando de conjuntos de cardinal negativo, y dado que no tiene sentido esto, todos estos valores serán 0, por lo que la segunda suma es 0 y:

$$\left| \bigcup_{i \in [n]} A_i \right| = \sum_{k=1}^m (-1)^{k-1} \cdot \binom{n-k}{m-k} \binom{n}{k}$$

Ahora, notese que:

$$\bigcup_{i \in [n]} A_i = \binom{n}{m}$$

Si m=0, entonces la igualdad es evidente, así que para el caso donde $m\geq 1$ tendremos que demostrar una doble contenecia:

- \subseteq) Supongamos que $A \in \bigcup_{i \in [n]} A_i$, por Definición existe $i \in [n]$ tal que $A \in A_i$, y luego por definción de A_i tendremos que $A \in \binom{[n]}{m}$.
- \supseteq) Supongamos que $A \in \binom{[n]}{m}$, y dado que $m \ge 1$ sabemos que $A \ne \emptyset$, por lo que existe $i \in [n]$ de modo que $i \in A$, y por definción $A \in A_i$, de manera que concluimos que $A \in \bigcup_{i \in [n]} A_i$.

Luego, tendremos la igualdad:

$$\left| \bigcup_{i \in [n]} A_i \right| = \binom{n}{m}$$

Y combinando y reorganizando tendremos:

$$\begin{vmatrix} \bigcup_{i \in [n]} A_i \end{vmatrix} = \binom{n}{m}$$

$$\binom{n}{m} - \bigcup_{i \in [n]} A_i \end{vmatrix} = 0$$

$$\binom{n}{m} - \sum_{k=1}^{m} (-1)^{k-1} \cdot \binom{n-k}{m-k} \binom{n}{k} = 0$$

$$\binom{n}{m} + \sum_{k=1}^{m} (-1)^k \cdot \binom{n-k}{m-k} \binom{n}{k} = 0$$

$$\sum_{k=0}^{m} (-1)^k \cdot \binom{n-k}{m-k} \binom{n}{k} = 0$$

Demostrando la igualdad deseada.