Table 1
 Microeconomic Model Calibration

Calibrated Parameters					
Description	Parameter	Value	Source		
Permanent Income Growth Factor	Φ	1.03	PSID: Carroll (1992)		
Interest Factor	R	1.04	Conventional		
Time Preference Factor	β	0.96	Conventional		
Coefficient of Relative Risk Aversion	ρ	2	Conventional		
Probability of Zero Income	\wp	0.005	PSID: Carroll (1992)		
Std Dev of Log Permanent Shock	$\sigma_{f \Psi}$	0.1	PSID: Carroll (1992)		
Std Dev of Log Transitory Shock	$\sigma_{ heta}$	0.1	PSID: Carroll (1992)		

 Table 2
 TITLE OF THE TABLE

Key Transcripts in Endometrial Carcinoma with "Hot" Immune Prescence				
Transcript	Protein Type	Specific Function	Role	
CD8B	T-cell Surface Glycoprotein	Activates CD4+ CTLs	Immune function	
CX3CR1	Immature WBCs	Recruits NK cells	Immune function	
	Chemokine Receptor	through inflammation	Chemotaxis	
TGFB1	Growth Factor	Promotes Th17	Immune function	
		& Tregs cells	Normal Development	
CD69	T cell, B cell, NK cell	Promotes lymphocyte	Immune function	
	Post-activation Antigen	proliferation	immune function	
IL-6	Cytokine	Stimulates B cells	Immune function	
		Differentiates CD4 T cells	Tissue Regeneration	
PRF1	Perforin Protein	Creates pore in cell	Programmed Death	
CD1C	T-cell Surface	Presents antigen to	Immune function	
	Glycoprotein	TCR and NK cells	immune function	
CXCL11	Chemokine	Attracts & induces Ca+	Immune function	
		release in activated T cells	Chemotaxis	
TGFB3	Growth Factor	Stimulates Growth	Immune function	
	GIOWIII FACTOR	Simulates Growth	Normal Development	

Table 3 Sufficient Conditions for Nondegenerate[‡] Solution

Consumption Model(s)	Conditions	Comments
$\bar{\mathbf{c}}(m)$: PF Unconstrained	RIC, FHWC°	$\text{RIC} \Rightarrow \mathbf{v}(m) < \infty; \text{ FHWC} \Rightarrow 0 < \mathbf{v}(m) $
$\underline{c}(m) = \underline{\kappa}m$		PF model with no human wealth $(h = 0)$
Section 2.5.3:		RIC prevents $\bar{\mathbf{c}}(m) = \underline{\mathbf{c}}(m) = 0$
Section 2.5.3:		FHWC prevents $\bar{\mathbf{c}}(m) = \infty$
Eq (5) :		$PF-FVAC+FHWC \Rightarrow RIC$
Eq (6):		$GIC+FHWC \Rightarrow PF-FVAC$
$\grave{\mathrm{c}}(m)$: PF Constrained	GIC, RIC	FHWC holds $(\Phi < P < R \Rightarrow \Phi < R)$
Section 2.5.6:		$\grave{\mathbf{c}}(m) = \bar{\mathbf{c}}(m) \text{ for } m > m_{\#} < 1$
		(RHC would yield $m_{\#} = 0$ so $\grave{c}(m) = 0$)
Appendix E:	GIC,RIC	$\lim_{m\to\infty} \dot{c}(m) = \bar{c}(m), \lim_{m\to\infty} \dot{\boldsymbol{k}}(m) = \underline{\kappa}$
		kinks where horizon to $b = 0$ changes*
Appendix E:	GIC,RIC	$\lim_{m\to\infty} \dot{\boldsymbol{k}}(m) = 0$
		kinks where horizon to $b = 0$ changes*
c(m): Friedman/Muth	Section 3.1,	$\underline{\mathbf{c}}(m) < \mathbf{c}(m) < \bar{\mathbf{c}}(m)$
	Section 3.2	$\underline{\mathbf{v}}(m) < \mathbf{v}(m) < \bar{\mathbf{v}}(m)$
Section ??:	FVAC, WRIC	Sufficient for Contraction
Section ??:		WRIC is weaker than RIC
Figure ??:		FVAC is stronger than PF-FVAC
Section ??:		EHWC+RIC \Rightarrow GIC, $\lim_{m\to\infty} \kappa(m) = \underline{\kappa}$
Section ??:		RHC \Rightarrow EHWC, $\lim_{m\to\infty} \kappa(m) = 0$
Section 3.3:		"Buffer Stock Saving" Conditions
Section ??:		GIC $\Rightarrow \exists \ \check{m} \text{ s.t. } 0 < \check{m} < \infty$
Section 3.3.1:		GIC-Mod $\Rightarrow \exists \hat{m} \text{ s.t. } 0 < \hat{m} < \infty$

[‡]For feasible m satisfying $0 < m < \infty$, a nondegenerate limiting consumption function defines a unique optimal value of c satisfying $0 < c(m) < \infty$; a nondegenerate limiting value function defines a corresponding unique value of $-\infty < \mathrm{v}(m) < 0$.

[°]RIC, FHWC are necessary as well as sufficient for the perfect foresight case. *That is, the first kink point in c(m) is $m_{\#}$ s.t. for $m < m_{\#}$ the constraint will bind now, while for $m > m_{\#}$ the constraint will bind one period in the future. The second kink point corresponds to the m where the constraint will bind two periods in the future, etc.

^{**}In the Friedman/Muth model, the RIC+FHWC are sufficient, but not necessary for nondegeneracy

Table 4 Appendix: Perfect Foresight Liquidity Constrained Taxonomy For constrained \hat{c} and unconstrained \bar{c} consumption functions

Main Condition				
Subcondition		Math		Outcome, Comments or Results
SIC		1 <	Φ/Φ	Constraint never binds for $m \geq 1$
and RIC	⊅ /R	< 1		FHWC holds $(R > \Phi)$;
				$\grave{\mathbf{c}}(m) = \bar{\mathbf{c}}(m) \text{ for } m \geq 1$
and RIC		1 <	\mathbf{P}/R	$\grave{\mathbf{c}}(m)$ is degenerate: $\grave{\mathbf{c}}(m)=0$
GIC	$\mathbf{p}/\mathbf{\Phi}$	< 1		Constraint binds in finite time $\forall m$
and RIC	Þ /R	< 1		FHWC may or may not hold
				$\lim_{m\uparrow\infty} \bar{\mathbf{c}}(m) - \grave{\mathbf{c}}(m) = 0$
				$\lim_{m\uparrow\infty} \hat{\boldsymbol{\kappa}}(m) = \underline{\kappa}$
and RIC		1 <	\mathbf{P}/R	EHWC
				$\lim_{m\uparrow\infty} \grave{\boldsymbol{\kappa}}(m) = 0$

Conditions are applied from left to right; for example, the second row indicates conclusions in the case where GIC and RIC both hold, while the third row indicates that when the GIC and the RIC both fail, the consumption function is degenerate; the next row indicates that whenever the GICholds, the constraint will bind in finite time.