Verkefni 2 Tölvueðlisfræði

Valtýr Kári Daníelsson Emil Gauti Friðriksson

Nóvember 2018

1 Tímaþróun kerfis með Liouville-Von Neumann jöfnunni

Við viljum beita tölulegum aðferðum til þess að meta hvernig ástandið þróast með tíma. Til þess þurfum að leysa Liouville-Von Neumann jöfnuna:

$$i\hbar\dot{\rho} = [H(t), \rho(t)] = i\Lambda[\rho(t)]$$
 (1)

Par sem H(t) er tímaháði Hamiltonvirkinn og Λ er skilgreint sem $\Lambda[\rho(t)] = -i[H(t), \rho(t)]$. Einkenni $\rho(t)$ virkjans er að hornalínustök hans gefa sætni ástanda. Það er einnig hægt að nota hann til að reikna út væntigildi á staðsetningu $\langle x \rangle$ og $\langle x^2 \rangle$:

$$\langle x \rangle = tr\{x\rho\} \tag{2}$$

$$\langle x^2 \rangle = tr\{x^2 \rho\} \tag{3}$$

Hamiltonvirkinn sem við fáumst við er

$$H = H_0 + \Omega\theta(t)x\tag{4}$$

þar sem θ er Heaviside fallið og Ω er einhver tala.

1.1 Truflaður kjörsveifill án deyfingar

Aðferðin sem við beitum til þess að reikna út fylkið $\rho(t)$ byggir á eftirfarandi jöfnum:

$$\{\rho(t_{n+1}) - \rho(t_n)\} \approx \frac{\Delta t}{\hbar} \Lambda \left[\rho(t_n)\right]$$
 (5)

$$\{\rho(t_n) - \rho(t_{n-1})\} \approx \frac{\Delta t}{\hbar} \Lambda \left[\rho(t_n)\right]$$
 (6)

(7)

Par sem Δt er tímaskrefið sem við tökum og þarf að vera nógu lítið svo þessi nálgun gildi. Þessar jöfnur gefa svo að lokum þá jöfnu sem við notum í forritinu okkar í útreikningum á $\rho(t)$:

$$\rho(t_{n+1}) = \rho(t_n) + \frac{\Delta t}{2\hbar} \left\{ \Lambda[\rho(t_n)] + \Lambda[\rho(t_{n+1})] \right\}$$
(8)

Athugum að við skilgreinum $\rho(t_{n+1})$ sem fall af sjálfu sér, við leysum það vandamál með því að ítra jöfnuna og nota alltaf nýja gildið á $\rho(t_{n+1})$ í næstu ítrun. Í fyrstu ítrun látum við $\rho(t_{n+1}) = \rho(t_n)$.

Við athugum því næst sætni nokkurra lægstu ástandanna sem fall af tíma og teiknum þær á mynd 1. Notaður var grunnur af stærð $N=10,\,\Omega=1$ og $\Delta t=0.02.$

Mynd 1: Sætni fyrstu 10 ástanda truflaða kjörsveifilsins

Síðan getum við athugað hversu góðar mismunandi stærðir af grunnum Neru í hlutfalli við $\frac{\hbar\Omega}{\hbar\omega}$ á mynd 2:

Mynd 2: fjórða orkuástand reiknað í misstórum grunnum

 Við tökum eftir að lausnirnar fyrir N=32 og N=64 falla eiginlega alveg saman, og lausnirnar eru samleitnar með hækkandi stærð á grunni. Reiknum síðan og teiknum upp $\langle x \rangle$ og $\langle x^2 \rangle$ á myndum 3 og 4.

Mynd 3: Væntigildi á $x,\,\Delta t=0.02,\,N=10,\,\Omega=1$

Mynd 4: Væntigildi á x^2 , $\Delta t = 0.02$, N = 10, $\Omega = 1$

1.2 Truflaður og deyfður kjörsveifill

Þegar hér kemur að sögu er rökrétta næsta skref að bæta við deyfilið í sveifilinn okkar. Við gerum það á eftirfarandi hátt:

$$i\hbar\dot{\rho} = [H, \rho] - \frac{ik}{2} \left\{ [a\rho, a^+] + [a, \rho a^+] \right\}$$
 (9)

Þar sem a er lækkunarvirkinn góðkunni og a^+ hækkunarvirkinn. Þeir eru smíðaðir úr **xmat** þar sem a er neðra þríhyrningsfylki þess og a^+ er efra þríhyrningsfylki þess. Við skulum nú aftur teikna mynd af sætni fyrstu 10 ástandanna með þesum breytta sveifli á myndum 5 og 6.

Mynd 5: Sætni fyrstu 10 ástanda með dempunarstuðli $k=0.015,\,\Omega=1,$ tímaskrefi $\Delta t=0.01$

Mynd 6: Sætni fyrstu 10 ástanda með dempunarstuðli $k=0.05,\,\Omega=0.7,$ tímaskrefi $\Delta t=0.05$

Við endurtökum nú aftur reikningana fyrir $\langle x\rangle$ og $\langle x^2\rangle$ með dempunarstuðlinum og teiknum myndir 7 og 8 líkt og áður:

Mynd 7: Meðalgildi xfyrir $(k,\Omega,\Delta t)=(0.015,1,0.01)$

Mynd 8: Meðalgildi x^2 fyrir $(k,\Omega,\Delta t)=(0.015,1,0.01)$

1.2.1 Óreiða kerfisins

Því næst reiknum við tímaháðu óreiðuna í kerfinu sem:

$$S(t) = -k_B \ln \left\{ \operatorname{tr} \left(\rho^2 \right) \right\} \tag{10}$$

Teiknum upp niðurstöðurnar í mynd $9\,$

Mynd 9: Óreiða sem fall af tíma

Athugum að óreiðan eykst sem fall af tíma en virðist nálgast jafnvægi þegar $t \to \infty.$

1.2.2 Væntigildi orkunnar

Hér reiknum við væntigildi orkunnar sem fall af tíma með venslunum

$$\langle E \rangle = \operatorname{tr}(\rho H) \tag{11}$$

Væntigildið er teiknað sem fall af tíma í mynd 10.

2 Frumkóði

Kóðann má nálgast á https://gitlab.com/Jaktrep/te í möppunni v2

Til að klóna skrárnar með Git má skrifa git clone https://gitlab.com/Jaktrep/te.git í skipanaglugga.

Mynd 10: Væntigildi orkunnar, $(\Delta t, k, \Omega, N) = (0.05, 0.05, 0.7, 10)$