АРИФМЕТИЧЕСКИЙ КОРЕНЬ

Арифметическим корнем n-ой степени из неотрицательного числа a называется такое неотрицательное число b, n-ая степень которого равна a, т.е. $\sqrt[n]{a} = b$, если $b^n = a$ $(a \geqslant 0, b \geqslant 0)$.

СВОЙСТВА КОРНЕЙ

CD011C1D11	TVOI IIIIII
Основное свойство корня	$\sqrt[n]{a^m} = \sqrt[nk]{a^{mk}}, a \geqslant 0$
Умножение корней	$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$, $a \ge 0$, $b \ge 0$
Деление корней	$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}, a \ge 0, b > 0$
Возведение корня в степень	$(\sqrt[n]{a})^m = \sqrt[n]{a^m}, a \geqslant 0$
Извлечение корня из корня	$\sqrt[n]{\sqrt[k]{a}} = \sqrt[nk]{a}, \ a \geqslant 0$
Вынесение множителя из-под знака корня	$egin{aligned} egin{aligned} & \sqrt[2n]{a^{2n}b} &= \left a ight \cdot \sqrt[2n]{b} \;,\; b \geqslant 0 \ & ext{в частности,} \; \sqrt{a^2b} &= \left a ight \sqrt{b} \end{aligned}$
Внесение множителя под знак корня	$a \cdot \sqrt[2n]{b} = egin{cases} \sqrt[2n]{a^{2n}b}, (a \geqslant 0, \ b \geqslant 0) \ -\sqrt[2n]{a^{2n}b}, (a < 0, \ b \geqslant 0) \ a \cdot \sqrt[2n+1]{b} = \sqrt[2n+1]{a^{2n+1}b} \end{cases}$

СТЕПЕНИ

С натуральным показателем	$a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n \text{ pas}}, a^1 = a$
С положительным дробным показателем	$a^{rac{m}{n}}=\sqrt[n]{a^m}$, the $a\geqslant 0,$ $m,$ $n\in N$
С нулевым показателем	$a^0=1$, где $a \neq 0$
С отрицательным рациональным показателем	$a^{-r}=rac{1}{a^r}$, где $a>0$
Умножение степеней	$a^p \cdot a^q = a^{p+q}; a^p \cdot b^p = (ab)^p$
Деление степеней	$\boxed{\frac{a^p}{a^q} = a^{p-q}; \frac{a^p}{b^p} = \left(\frac{a}{b}\right)^p}$
Возведение степени в степень	$(a^p)^q = a^{pq}$

модуль числа

$$|a| = \begin{cases} a, a \ge 0 \\ -a, a < 0 \end{cases}, |a| = \sqrt{a^2}$$

$$|a| \ge 0; \qquad |a \cdot b| = |a| \cdot |b| \qquad |a + b| \le |a| + |b|$$

$$|a| = 0 \Leftrightarrow a = 0 \qquad \left| \frac{a}{b} \right| = \frac{|a|}{|b|}, b \ne 0 \qquad |a - b| \ge ||a| - |b||$$