Chapitre 2: Lois de composition interne

I Définition

Soit E un ensemble. Une loi de composition interne (l.c.i.) sur E est une application de $E \times E$ dans E. Si * est le symbole désignant cette l.c.i, l'image de (x,y) est notée x * y. Ainsi, se donner une l.c.i. * sur E, c'est se donner une application : $E \times E \to E$. $(x,y) \mapsto x * y$

On parle souvent d'opération plutôt que de l.c.i.

Exemples:

- Les opérations usuelles + et × constituent des l.c.i sur N, Z, Q, R, C...
- La division ÷ constitue une l.c.i sur l'ensemble Q* (ou sur R* ou C*)
- La loi \circ constitue une l.c.i sur l'ensemble $\mathfrak{F}(A,A)$ des applications d'un ensemble quelconque A vers lui-même.
- Sur l'ensemble $P(\Omega)$ des parties d'un ensemble Ω , les opérations \cup et \cap sont des 1 c i
- L'addition entre fonctions de \mathbb{R} dans \mathbb{R} est aussi une l.c.i sur $\mathfrak{F}(\mathbb{R},\mathbb{R})$

II Propriétés éventuelles

Dans tout ce paragraphe, (E,*) désigne un ensemble muni d'une l.c.i.

A) Associativité

On dit que * est associative lorsque, pour tous x, y, z de E: x*(y*z) = (x*y)*z

Cette valeur commune peut être alors notée sans ambiguïté x * y * z

B) Commutativité

On dit que * est commutative lorsque, pour tous x, y de E, x * y = y * x.

C) Elément neutre

Soit $e \in E$. On dit que e est élément neutre pour * lorsque, pour tout x de E, x*e=e*x=x (les deux égalités doivent être vérifiées lorsque * n'est pas commutative)

Proposition:

S'il y a dans E un élément neutre pour *, alors il n'y en a qu'un seul.

Démonstration:

Si e et e' sont deux éléments neutres, alors e'=e*e'=e (La première égalité vient du fait que e est neutre, la seconde du fait que e' est neutre)

Définition :

Si * est une l.c.i. associative sur E et s'il y a dans E un élément neutre pour *, on dit que (E,*) est un monoïde. Si de plus * est commutative, on dit que ce monoïde est commutatif.

Exemple: (N,+) est un monoïde commutatif.

D) Symétrique

On suppose ici que E admet un neutre e pour *.

Soient x et x' deux éléments de E.

On dit que x' est symétrique de x (pour la loi *) lorsque x * x' = x' * x = e.

Proposition:

Si * est associative, et si un élément x de E admet un symétrique pour *, alors il n'en a qu'un seul.

Démonstration:

Si x' et x'' sont symétriques de x, alors :

$$x'' = e * x'' = (x'*x) * x'' = x'*(x * x'') = x'*e = x'$$

Vocabulaire:

Un élément qui admet un symétrique est dit symétrisable. Ainsi, dans \mathbb{Z} muni de la loi \times , l'ensemble des éléments symétrisables se réduit à $\{-1,1\}$.

En fait, dans le cas de certaines lois, comme la loi \times , on dit plutôt « inverse » et « inversible » plutôt que « symétrique » et « symétrisable ».

E) Distributivité

On suppose que E est muni d'une deuxième l.c.i. notée #. On dit que * est distributive sur # lorsque, pour tous x, y, z de E: x*(y#z)=(x*y)#(x*z) et (y#z)*x=(y*x)#(z*x).

III Stabilité

(*E*,*) désigne toujours un ensemble muni d'une l.c.i.

Soit F une partie de E. On dit que F est stable par * lorsque, pour tous x, y de F, x*y est encore dans F. Dans ce cas, on pourra dire que * définit, par restriction, une l.c.i. sur F.

IV Autres propriétés

Soit (E,*) un monoïde (ainsi, * est associative). Alors l'ensemble S des éléments symétrisables de E est stable par * .

En effet:

Soient x, y deux éléments de S. On note x', y' leurs symétriques, e l'élément neutre de E.

$$(x * y) * (y'*x') = x * (y * y') * x' = x * e * x' = x * x' = e$$
.

Et
$$(x'*y')*(y*x) = x'*(y'*y)*x = x'*e*x = x'*x = e$$
.

Donc $x * y \in S$, et le symétrique de x * y pour * est y * x.

Soit A un ensemble, et soit E un ensemble muni d'une l.c.i. * . On définit sur $\mathfrak{F}(A,E)$ une loi $\hat{*}$ de la façon suivante :

Pour tous f,g de $\Re(A,E)$, $f \circ g$ est l'application de A dans E qui à tout x de A associe $f(x) \circ g(x)$. Ainsi : $f \circ g : A \to E$ $x \mapsto f(x) \circ g(x)$.

Proposition:

- (1) Si * est associative sur E, alors $\hat{*}$ est associative sur $\Re(A, E)$
- (2) Si * est commutative sur E, alors $\hat{*}$ est commutative sur $\Re(A, E)$
- (3) Si il y a dans E un neutre pour *, alors il y a dans $\mathfrak{F}(A,E)$ un neutre pour *
- (4) Si tout élément de E admet dans E un symétrique pour *, alors tout élément de $\Re(A,E)$ admet dans $\Re(A,E)$ un symétrique pour $\hat{*}$.
- (5) On munit E d'une deuxième l.c.i notée # et on définit de même la loi # sur $\Re(A, E)$. Si * est distributive sur #, alors \$ 'est distributive sur #.

Démonstration:

(1) Supposons * associative sur E. Soient f, g, h trois éléments de $\Re(A, E)$.

Soit $x \in A$. On a:

$$(f \,\hat{*} \, (g \,\hat{*} \, h))(x) = f(x) \, * \, (g \,\hat{*} \, h)(x) = f(x) \, * \, (g(x) \, * \, h(x)) = f(x) \, * \, g(x) \, * \, h(x)$$

Et
$$((f \hat{*} g) \hat{*} h)(x) = (f \hat{*} g)(x) * h(x) = (f(x) * g(x)) * h(x) = f(x) * g(x) * h(x)$$

Donc
$$(f \hat{*} (g \hat{*} h))(x) = ((f \hat{*} g) \hat{*} h)(x)$$
.

Cette égalité est valable pour tout $x \in A$

D'où l'égalité des applications : $f \hat{*} (g \hat{*} h) = (f \hat{*} g) \hat{*} h$ et ainsi l'associativité de $\hat{*}$.

(2) Supposons * commutative sur E. Soient $f, g \in \Re(A, E)$.

On a, pour tout x élément de A:

$$(f \hat{*} g)(x) = f(x) * g(x) = g(x) * f(x) = (g \hat{*} f)(x)$$
.

Donc
$$f \hat{*} g = g \hat{*} f$$
.

C'est valable pour tous $f, g \in \Re(A, E)$. Donc $\hat{*}$ est commutative.

(3) Supposons qu'il y ait dans E un neutre pour * , noté e.

Alors l'application : $g: A \xrightarrow{} E$, élément de $\Re(A, E)$, est neutre pour $\hat{*}$. En effet :

Soit $f \in \Re(A, E)$. On a, pour tout x élément de A:

$$(g * f)(x) = g(x) * f(x) = e * f(x) = f(x)$$

et
$$(f \hat{*} g)(x) = f(x) * g(x) = f(x) * e = f(x)$$

Donc $f \hat{*} g = g \hat{*} f = f$. Donc g est neutre pour $\hat{*}$.

(4) Supposons que tout élément de E admette dans E un symétrique pour *. Pour tout x de E, on note \overline{x} le symétrique de x pour *. On note de plus e un neutre pour *.

Alors, pour toute application $f \in \mathfrak{F}(A,E)$, $f': A \to \underline{E}$ est symétrique de f pour $\hat{*}$.

En effet : Soit $f \in \Re(A, E)$. On a, pour tout x élément de A :

$$(f \hat{*} f')(x) = f(x) * f'(x) = f(x) * \overline{f(x)} = e$$

$$(f' \hat{*} f)(x) = f'(x) * f(x) = \overline{f(x)} * f(x) = e$$

Donc $f \hat{*} f' = f' \hat{*} f = g$ où $g : A \rightarrow E$.

Donc tout élément de $\mathfrak{F}(A,E)$ admet dans $\mathfrak{F}(A,E)$ un symétrique pour $\hat{*}$

(5) Supposons * distributive sur #. Soient f, g, h trois éléments de $\mathfrak{F}(A, E)$.

On a, pour tout élément x de A:

$$(f \hat{*} (g \hat{\#} h))(x) = f(x) * (g \hat{\#} h)(x) = f(x) * (g(x) \# h(x)) = (f(x) * g(x)) \# (f(x) * h(x))$$
$$= (f \hat{*} g)(x) \# (f \hat{*} h)(x) = ((f \hat{*} g) \# (f \hat{*} h))(x)$$

et:

$$((g^{\hat{\#}}h)^{\hat{*}}f)(x) = (g^{\hat{\#}}h)(x) * f(x) = (g(x)\#h(x)) * f(x) = (g(x)*f(x))\#(h(x)*f(x))$$
$$= (g^{\hat{*}}f)(x)\#(h^{\hat{*}}f)(x) = ((g^{\hat{*}}f)\#(h^{\hat{*}}f))(x)$$

donc $f \hat{*} (g \hat{\#} h) = (f \hat{*} g) \hat{\#} (f \hat{*} h)$ et $(g \hat{\#} h) \hat{*} f = (g \hat{*} f) \hat{\#} (h \hat{*} f)$.

Ces égalités sont valables pour tous $f, g, h \in \mathfrak{F}(A, E)$. Donc $\hat{*}$ est distributive sur $\hat{\#}$.