TP5 Thermodynamique

Partie 1 : Rayonnement

BERREDO DE LA COLINA Lucas MARTIN Lola

But de l'experience

L'emissivité
 Nous allons determiner l'emmissivité d'un corps noir et gris.
 Pour cela nous avons :

$$\epsilon = \frac{C}{\tau S_1 \sigma 4 T_f^3}$$

■ Échange de chaleur Nous allons déterminer l'échange de chaleur de nos deux corps h représente l'ensemble des échanges de chaleur (conduction,rayonement,convection)

$$h = \frac{C}{\tau' S_1} - \frac{\sigma 4 T_f^3}{\frac{1}{\epsilon} + \frac{1}{\epsilon \cdot s_f} - 1}$$

EXPLICATION DE L'EXPERIENCE

La variation de Temperature obéit à l'équation diférencielle :

$$C\frac{dT}{dt} = \epsilon S\sigma(T_f^4 - T(t)^4)$$

■ Résolution exacte

$$t = 2\tau \left[\left(\arctan \left(\exp \left(2 \tanh^{-1} \frac{T(t)}{T_f} \right) \right) - \arctan \left(\exp \left(2 \tanh^{-1} \frac{T_i}{T_f} \right) \right) \right) + \left(\tanh^{-1} \frac{T(t)}{T_f} - \tanh^{-1} \frac{T_i}{T_f} \right) \right]$$

■ Résolution approchée

$$T = T_f + (T_i - T_f)(1 - \exp(\frac{-t}{\tau}))$$

EXPLICATION DE L'EXPERIENCE

- Mise sous vide Évite les échange de chaleur h = 0
- Pression ambiante
 Permet de déterminer l'échange de chaleur

DISPOSITIF EXPÉRIMENTAL

- Deux échantillons (gris, noir)
- Deux chambres :
 - ► Four (200° *C*)
 - ► Refroidessement à l'eau
- Elles peuvent être mises sous vide
- Mesures de temperature analogiques (100 points, 15 min)

EXPERIENCES

- 1. Corps gris, chauffage, vide
- 2. Corps gris, refroidissement, vide
- 3. Corps gris, chauffage, sans vide
- 4. Corps gris, refroidissement, sans vide
- 5. Corps noir, chauffage, vide
- 6. Corps noir, chauffage, sans vide

ORGANISATION DES DONNÉES

- tp5-gris-vide-chauff.csv
 tp5-gris-vide-refroid.csv
 tp5-gris-air-chauff.csv
- 4. tp5-gris-air-refroid.csv
- 5. tp5-noir-vide-chauff.csv

remps	Inermocouple	EA0
0	43,2356657	0,209796296
9	50,75927386	0,214779578
18	57,27973427	0,214779578
27	64,80334243	0,219762859
36	71,32380283	0,219762859
45	77,84426324	0,22474614
54	84,36472365	0,219762859
63	90,88518405	0,22474614
72	96,90407058	0,219762859
81	102,9229571	0,22474614
90	108,4402698	0,219762859
99	113,9575824	0,214779578

Tompo Thormocouple EAO

Approximation graphique 1er ordre

Il ne faut que vérifier les valeur initiales, finales et approcher au de façon qu'on trouve des courbes proches

Figure – Example representation graphique : Vert : points experimentaux, Bleu : courbe théorique

APPROXIMATION GRAPHIQUE

Nous obtenons les prochains valeurs :

1. Corps gris, chauffage, vide
$$au=100$$

2. Corps gris, refroidissement, vide
$$au=69$$

3. Corps gris, chauffage, sans vide
$$au=117$$

4. Corps gris, refroidissement, sans vide
$$\tau = 68$$

5. Corps noir, chauffage, vide
$$au=105$$

6. Corps noir, chauffage, sans vide
$$au=99$$

Approximation graphique 2ème ordre

1. Corps gris, chauffage, vide	$\tau = 82$
2. Corps gris, refroidissement, vide	$\tau = 85$
3. Corps gris, chauffage, sans vide	$\tau = 100$
4. Corps gris, refroidissement, sans vide	$\tau = 84$
5. Corps noir, chauffage, vide	$\tau = 111$
6. Corps noir, chauffage, sans vide	$\tau = 89$

.0

Approximation numérique avec Python

Comme nous avons la résolution pour τ , nous pouvons donner ça vers un curve_fit dans Python.

```
def theoretical_model(t, tau):
    term1 = np.arctan(np.exp(2) * arccoth(T_kelvin_data / T_f))
    term2 = np.arctan(np.exp(2) * arccoth(T_i / T_f))
    term3 = arccoth(T_kelvin_data / T_f)
    term4 = arccoth(T_i / T_f)
    return 2 * tau * (term1 - term2 + term3 - term4)

# Use curve_fit to find the optimal tau
popt, pcov = curve_fit(theoretical_model, t_data, T_kelvin_data, p0=[1.0])
optimal_tau = popt[0]
print(optimal_tau)
```

Figure – Exemple refroidissement. Il y a aussi un fichier pour chauffement.

Approximation numérique avec Python

Résultats:

- 1. Corps gris, chauffage, vide $\tau = 96,0399...$
- 2. Corps gris, refroidissement, vide $\tau = 86, 1429...$
- 3. Corps gris, chauffage, sans vide $\tau = 99,2634...$
- 4. Corps gris, refroidissement, sans vide $\tau = 84,5618...$
- 5. Corps noir, chauffage, vide $\tau = 111,8591...$
- 6. Corps noir, chauffage, sans vide au = 90,5110...

Comparaison des résultats

Expérience	1er ordre	2ème ordre	Python
1	100	82	96,0399
2	69	85	86,1429
3	117	100	99,2634
4	68	84	84,5618
5	105	111	111,8591
6	99	89	90,5110

Table – Valeurs du paramètre au

Analyse des résultats

- Les valeurs generés par Python suivent avec le moindre erreur possible la courbe.
- L'approximation à premier ordre a un erreur autour 20% pour chaque expérience.
- L'approximation à deuxième ordre est beaucoup plus proche (autour ± 1 point).

.4

Analyse des résultats

On trouve les résultats suivant

$$\bullet$$
 $\epsilon_{gris}=0,54$

$$h_{gris} = 11,27W.m.K^{-1}$$

$$\epsilon_{noir} = 0.76$$

$$h_{noir} = 15, 13W.m.K^{-1}$$

TP5 Thermodynamique

Partie 2 : Loi de Stefan

BERREDO DE LA COLINA Lucas MARTIN Lola

Avertissement

Bien que nous ayons travaillé avec l'équipement et observé des résultats avec Mme Quilliet, nous n'avons pas enregistré de résultats numériques.

Rappel théorique

■ Loi de Stefan

$$M = \sigma T^4$$

Avec M la densité de puissance $(W.m^{-2})$

Figure – Shémas de l'experience

DISPOSITIF EXPERIMENTAL

- Deux parties :
 - ► Côté emmisive Boule à cuivre "corps noir"
 - Côté receptive Thermopile CA2 (filtre en option) et multimètre

- Emmisivité fixé mesure du puissance avec le multimètre
- Il faut attendre après chaque changement vers la stabilisation
- Mesures a plusieurs distances (0,3; 0,4; 0,8; 1,2m) et temperatures (20, 60, 90, 120 °C)

APPROXIMATION DES RÉSULTATS

```
distances <- c(0.3, 0.4, 0.6, 0.8, 1)
T ext <- 293.15
temperatures <- c(293.15, 333.15, 363.15, 395.15) # Emmiter temperatures (K)
isFiltered <- TRUE
times <- 1:50
```

Figure – Paramètres à choisir

```
T_func <- function(t, PK, KC, T_ext) {</pre>
    PK * (1-exp(-KC*t)) + T_ext
```

Figure – Fonction pour l'évolution temporelle théorique

APPROXIMATION DES RÉSULTATS

```
noisy_func_name <- paste0("NoisyDeltaV_d", d, "_T", T)
f <- function(x) {
    original_val <- original_f(x)
    noise <- rnorm(n=1, mean=1, sd=0.05)*original_val
    return(noise)
}
assign(noisy_func_name, f)</pre>
```

Figure - Ajout du bruit