



# Frequency control and stability requirements on hydro power plants

Sigurd Hofsmo Jakobsen
Department of electrical engineering
September 30, 2019



### **Outline**



Problem

Paper

### Load and production balancing



 The power system frequency measures the power balance.



# Load and production balancing

- The power system frequency measures the power balance.
- It is the responsibility of Statnett to control the frequency.



### Load and production balancing

- The power system frequency measures the power balance.
- It is the responsibility of Statnett to control the frequency.
- However, it is the power plant owners who can control the frequency.



 Statnett pays all power plant owners to provide frequency control.



Figure: Frequency control response to step change in frequency

- Statnett pays all power plant owners to provide frequency control.
- However, they don't provide the same quality of service.



Figure: Frequency control response to step change in frequency

- Statnett pays all power plant owners to provide frequency control.
- However, they don't provide the same quality of service.
- Renewable energy sources such as wind and solar don't contribute.



Figure: Frequency control response to step change in frequency

- Statnett pays all power plant owners to provide frequency control.
- However, they don't provide the same quality of service.
- Renewable energy sources such as wind and solar don't contribute.
  - Barrier for energy transition



Figure: Frequency control response to step change in frequency

### **Future of frequency control**



- Power plants have to pass tests to get paid to provide frequency control.
- Only those who pass the tests get paid for the service.



Figure: Test of power plant

# Tests proposed by the industry



Figure: Testing procedure [source:ENTSO-E]

### **Example from real tests**

- The power plant needs to be disconnected
- Takes up to 20 hours.





### **Example from real tests**

- The power plant needs to be disconnected
- Takes up to 20 hours.
- Only one sine test needed with model learning.





### **Motivation**



 The power system is never really in steady state.



### **Motivation**



- The power system is never really in steady state.
- Can the power plant dynamics be identified from normal operation measurements?



### **Research questions**



— Can power plant dynamics be identified using a PMU?



### Research questions

- Can power plant dynamics be identified using a PMU?
- Can power plant dynamics be identified using control system measurements without disturbing the operation of the plant?



### Research questions



- Can power plant dynamics be identified using a PMU?
- Can power plant dynamics be identified using control system measurements without disturbing the operation of the plant?
- What is the effect of nonlinearities on the identification?



### **Outline**



Problem

Paper I

### **Background**

- Follow up on paper<sup>1</sup> that was inspired by the new requirements.
- Uses the same input and output measurements as in the requirements:
  - Input: Power system frequency.
  - Output: Electric power.



<sup>&</sup>lt;sup>1</sup>Dinh Thuc Duong et al. "Estimation of Hydro Turbine-Governor's Transfer Function from PMU Measurements". In: IEEE PES General Meeting. Boston: IEEE, July 2016

# Methodology



 $\mathsf{VF}$