	Fxan	

CSCI 561 Spring 2016: Artificial Intelligence

Student ID:						
Last Name:	 	 				
First Name:						
USC email:				@usc	edu	

Instructions:

- 1. Date: 4/28/2015 from 5:00pm 6:20 pm
- 2. Maximum credits/points/percentage for this midterm: 100
- 3. The percentages for each question are indicated in square brackets [] near the question.
- 4. No books (or any other material) are allowed.
- 5. Write down your name, student ID and USC email address.
- 6. Your exam will be scanned and uploaded online.
- 7. **Answers must be written in the provided boxed only.** Do NOT write the answer to one question in the box for another one, or it will NOT be graded.
- 8. Do NOT write on the 2D barcode.
- 9. **The back of the pages will NOT be graded.** You should use the back of the pages only for SCRATCH PAPER, not the actual answers.
- 10. No questions during the exam. **If something is unclear to you, write that in your exam.**
- 11. Be brief: a few words are often enough if they are precise and use the correct vocabulary studied in class.
- 12. When finished, raise completed exam sheets until approached by proctor.
- 13. Adhere to the Academic Integrity code.

Problems	100 Percent total		
1- General Al Knowledge	10		
2- Bayesian Networks	,2 0		
3- Decision Trees	23		
4- Markov Decision Process	17		
5- Neural Networks	20		
6- Al applications	10		

Ning Wang 4/26/16 4:03 PM Deleted:

1. [10%] General Al Knowledge

For each of the statements below, fill in the box T if the statement is always and unconditionally true, or fill in the box F if it is always false, sometimes false, or just does not make sense.

F

i)

j)

- a) If A is one of B's k-nearest-neighbors for a given value of k, then B must be one of A's k-nearest-neighbors.
- b) SVM can only classify data that is linearly separable.
- c) Assuming Boolean attributes, the depth of a decision tree, built using common algorithms such as ID3 (Iterative Dichotomiser 3), can never be larger than the number of training examples.
- d) Every Boolean function can be represented by some Bayesian network.
- e) Naive Bayes is a linear classifier.
- f) A Markov process is a random process in which the future is independent of the present, given the past.
- g) A single perceptron cannot compute the XOR function.
- h) For reinforcement learning, we need to know the transition probabilities between states before we start.
- i) In supervised learning, the examples given to the learner are not labeled.
- j) A perceptron is guaranteed to learn a given linearly separable function within a finite number of training steps.

Ning Wang 4/26/16 4:03 PM

Deleted: (

Ning Wang 4/26/16 4:03 PM

Deleted:
Ning Wang 4/26/16 4:03 PM

Deleted: -)

2. [20%] Bayesian Networks

In the network below, the Boolean variables have the semantics: B: Brilliant, H: Honest, L: LotsOfFriends, Q: Qualified, E: Elected.

2A. [6%] Which of these, if any, are asserted by the structure of the network (leaving aside the conditional probability tables (CPTs))?

- 1. **T F** P(B, L) = P(B) P(L)
- 2. T $P(E \mid Q, L) = P(E \mid Q, L, H)$
- 3. **T F** P(Q | B, H) = P(Q | B, H, L)

B. [7%] Calculate the value of P(B+, H+, L-, Q+, E-). Show your work.					

2C. [7%] Calculate the probability that a candidate is brilliant or not given that she is honest, does not have lots of friends, and gets elected. That is, calculate P(B H+, L-, E+). Show your work. (You need to give both P(B+ H+, L-, E+) and P(B- H+, L-, E+))	
5 / 13	

3. [23%] Decision Tree Learning

You are given the task of learning to classify first names by gender. You are given a list of names labeled as female (F) or male (M) and you want to learn a classifier based on decision tree learning.

For a given name, let us define ${\bf L}$ as its length, ${\bf V}$ as its number of vowels and ${\bf C}$ as its number of consonants. We will consider that A-E-I-O-U-Y are vowels. The other letters are consonants.

You decide to use the following features to predict the classes:

- EndInVowel: The name ends in a vowel.
- $V \ge C$: The name has more vowels than consonants.
- L ≥ 5: The name contains 5 letters or more.

Name		Feature		Gender
	EndInVowel	V≥C	L ≥ 5	
Annie	Yes	Yes	Yes	F
Brad	No	No	No	M
Carl	No	No	No	M
Daisy	Yes	Yes	Yes	F
Eleanor	No	Yes	Yes	F
Fernando	Yes	No	Yes	M
Gary	Yes	Yes	No	M
Hans	No	No	No	M
Isis	No	Yes	No	F
Jerry	Yes	No	Yes	М

With 4 Female names and 6 Male names, the entropy of the decision in bits is 0.97.

<u>3A. [8%]</u> Consider the following decision trees, splitting on (EndInVowel), $(V \ge C)$, $(L \ge 5)$. The $(L \ge 5)$ tree has been filled out. Complete the values for the other features, including entropy.

formulas and steps clearly.	
3C. [2%] Which attribute should you split on first? Justify your answer.	
7 / 13	

 3D. [7%] For the second level of the tree, you decide to use the following rule: split on attribute (V ≥ C) if it was not split on first split on attribute (L ≥ 5) otherwise Draw the entire decision tree. 	
Draw the entire decision tree.	
8 / 13	

4. [17%] Markov Decision Process

Consider the 6-state Markov Decision process below. The goals with rewards are in state S4 and S5. At each state, the possible transitions are **deterministic** and indicated by the arrows. You get a reward of R_4 =27 if you get to the goal S4 and a reward of R_5 =12 if you get to the goal S5.

4A. [7%] Consider a discount factor of $\gamma = 2/3$. On the figure below, show the optimal value V* for each state and the arrows corresponding to the set of optimal actions.

S1	S2	S3
S4	S5	S6

IB. [5%] What values of γ wowhich policy action changes.		erent optimal ac	tion in S2? Indicate	
IC. [5%] In this question, you onger deterministic. When g and a probability 1-p of trippi at state S6 if the discount fac	oing to S5 from S6, ng, and staying in stor γ = 2/3 and p =	you have a prostate S6. What is 1/4?	bability p of succee	
	R=12			

	nany weights does a 2-layer feed-forward neural network with 5 input units and 2 output units contain, including the biases (dummy input your work.	
5B. [4%] True o	or False.	
T F	The back-propagation algorithm, when run until a minimum error is achieved, always converges to the same set of weights no matter what the initial set of weights is.	
T F	When choosing between two different neural network structures, we should always prefer the one with the lower error on the training set.	

5. [20%] Neural Networks

5C. [12%] Consider the neural network built out of units with real-valued inputs X_1 . . . X_n , where the unit output Y is given by

$$Y = \frac{1}{1 + \exp(-(w_0 + \sum_i w_i X_i))}$$

Here we will explore the expressiveness of neural nets, by examining their ability to represent Boolean functions. Here the inputs X_i will be 0 or 1. The output Y will be real-valued, ranging anywhere between 0 and 1. We will interpret Y as a Boolean value by interpreting it to be a Boolean 1 if Y > 0.5, and interpreting it to be 0 otherwise.

The figure for $\frac{1}{1+e^{-x}}$ is:

Give 3 weights for a single unit with two inputs X_1 and X_2 , that implements the logical OR function $Y = X_1 \vee X_2$ and the logical AND function $Y = X_1 \wedge X_2$, respectively.

Functions	\mathbf{w}_0	W ₁	W ₂
Logical OR function			
$Y = X_1 \vee X_2$			
Logical AND function			
$Y = X_1 \wedge X_2$			

6. [10%] Al Applications.			
1. [2%] Which statement is true at	out cognitive architectures?		
b. A cognitive architecture tries to yiel	esis about the fixed structures that provice d intelligent behavior in complex environr spans both the creation of artificial intelliguate, at a suitable level of abstraction.	nents.	
2. [2%] In the task of randomly assument allows us to use an in	signing air marshals to flights using ga cremental strategy for scaling-up?	me theory,	
 a. The support set size is small: most b. The full rewards matrix is sparse. c. The computation can be parallelized d. All of the above e. None of the above 			
3. [2%] Which method can be used not known? a. Reinforcement learning b. Markov Decision Process c. Perceptron learning d. All of the above e. None of the above	to solve a problem in which the utility	function is	
4. [2%] In Natural Language Proce advantage of grammars to represent s a. Conditional Random Field (CRF) b. Cocke-Younger-Kasami (CYK) c. Hidden Markov Models (HMM) d. All of the above e. None of the above	ssing, which of these algorithms takes entences as trees?		
5. [2%] In the minimax algorithm, w practice? a. The knowledge of the utility values b. The generation of the whole game c. The assumption that the players ar d. All of the above e. None of the above	tree	llistic in	
		13 / 13	