

FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA LICENCIATURA EM ENGENHARIA INFORMÁTICA REDES DE COMPUTADORES II

TEMA: Border Gateway Protocol

Grupo Docente:

• Regente: Eng°. Felizardo Munguambe

• Assistente: Eng°. Délcio Chadreca

Tópicos da Aula

- ➤ 1. Introdução
- ➤ 2. Sistemas Autonomos (AS)
- ➤ 3. Protocolo BGP (Border Gateway Protocol) e Atributos
- > 4. Formato das mensagens trocadas pelo protocolo BGP
- > 5. Estados de Sessoes BGP

<u>Introdução</u>

Internet Protocol Suit

Application Layer

BGP · DHCP · DNS · FTP · HTTP · IMAP · IRC · LDAP · MGCP · NNTP · NTP · POP · RIP ·

RPC · RTP · SIP · SMTP · SNMP · SSH Telnet · TLS/SSL · XMPP ·

(more)

Transport Layer

TCP - UDP - DCCP - SCTP - RSVP - ECN - (more)

Internet Layer

IP (IPv4, IPv6) - ICMP - ICMPv6 - IGMP - IPsec-(more)

Link Layer

ARP/InARP · NDP · OSPF · Tunnels (L2TP) · PPP · Media Access

Control

(Ethernet, DSL, ISDN, FDDI) · (more)

Physical Layer

Introdução

Introdução

- Interior Gateway Routing Protocols (IGP): Usados para roteamento dentro de um sistema autónomo e entre as próprias redes individuais.
 - RIP (Routing Information Protocol),
 - IGRP (Interior Gateway Routing Protocol),
 - EIGRP (Enhanced IGRP),
 - OSPF (Open Shortest Path First)
- Exterior Routing Protocols (EGP): Usados para roteamento entre sistemas autónomos
 - BGPv4 (Border Gateway Protocol Versao 4)

<u>Introdução</u>

- Roteamento é o mecanismo através do qual duas máquinas em comunicação "acham" e usam um caminho óptimo (o melhor) através de uma rede. O processo envolve:
- Determinar que caminhos estão disponíveis;
- Selecionar o "melhor" caminho para uma finalidade particular;
- Usar o caminho para chegar aos outros sistemas;
- Ajustar o formato dos dados (datagramas) às tecnologias de transporte disponíveis (MTU, MSS, etc.).
- Na arquitetura TCP/IP, o roteamento é baseado no endereçamento IP, particularmente, na parte de identificação de rede de um endereço IP. Toda a tarefa é desenvolvida na camada Interrede da pilha de protocolos TCP/IP.
- A ARPANET (Advanced Research Projects Agency Network) foi a rede que iniciou o backbone da Internet.
- Nessa época cada participante administrava suas tabelas de roteamento e suas atualizações eram feitas manualmente. Com o rápido crescimento da rede, verificou-se que essa estratégia adotada tornava-se impraticável e Adotou-se um roteamento centralizado no núcleo (core).

Introdução

- Arquitetura proposta na época
 - Um conjunto reduzido e centralizado de roteadores no núcleo da rede
 (Core routers)
 - Mantinham rotas para todos os possíveis destinos na Internet
 - Administrados pelo INOC (Internet network Operation Center)
 - Desenvolvimento do protocolo GGP (*Gateway-to-Gateway Protocol*) para atualização automática das tabelas de rotas
 - Baseado no algoritmo vetor-distância (Bellman Ford)
 - Um conjunto maior de roteadores (Non cores routers) com rotas parciais
 - Administrados pelas instituições de pesquisa

Histórico

Arquitetura proposta na época

Histórico

- Limitações da arquitetura proposta na época
 - Backbone complexo de cada site (instituição)
 - Impossibilidade de conectar diretamente as redes
 - Levava em conta apenas interligação com apenas uma Internet
 - Não contemplava questões administrativas
- Solução
 - Desenvolver um mecanismo para possibilitar a comunicação com o "mundo exterior"
 - Nasce e firma-se o conceito de AS
 - Desenvolvimento do EGP (Que também mostrou-se limitado)
 - Desenvolvimento do BGP em substituição ao EGP

Sistema Autônomo (Autonomous System) - AS

- Um grupo de roteadores
 - Administrados com uma politica comum de roteamento,
 - Operam sob a mesma administração tecnica,
 - Percebidos externamente como um único dominio de roteamento.
- Inteiro de 16 bits (1-65535)
- 64512-65535 AS Privados
- Segundo a RFC 1930 (Definição formal)
 - Um conjunto de roteadores controlados por uma única administração técnica, usando um protocolo interior e métricas comuns para rotear pacotes dentro do AS, e usando um protocolo exterior para rotear pacotes para outros ASs.
 - Requisito básico: uma política de roteamento única
 - A política de roteamento define como são tomadas as decisões de roteamento na Internet.

<u>Sistema Autônomo (Autonomous System) - AS</u>

- Conjunto de redes compartilhando a mesma política
- Utilizam um único protocolo de roteamento
- Estão sob a mesma administração técnica
 - Exemplos de ASs

Sistema Autônomo (Autonomous System) - AS

Desafio:

 como transformar uma arquitetura Internet para não depender de um sistema centralizado (core routers) - deixando uma topologia organizada hierarquicamente e iniciando outra, com diferente estrutura

<u>Sistema Autônomo (Autonomous System) - AS</u>

- Solução:
 - Roteadores utilizados para trocar informações dentro de um AS
 - Roteadores interiores (Internal Routers)
 - Utilizam algum protocolo IGP (Interior Gateway Protocol)
 - » RIP, OSPF, IS-IS, IGRP, EIGRP
 - Roteadores utilizados para trocar informações entre ASs
 - Roteadores exteriores (External Routers)
 - Utilizam algum protocolo EGP (External Gateway Protocol)
 - » BGP-4 (RFC 4271)
 - Consideram blocos CIDR (Super Redes)

IGP Vs EGP

- É um protocolo de roteamento do tipo inter-domínio, criado transmite informações de prefixo;
- É um protocolo do tipo "path vector";
- Percebe a Internet como uma coleção de AS
- Projetado para evitar loops de roteamento em topologias
 - O BGP é baseado em política (Policy-based routing)
 - Atende a um conjunto de regras não técnicas
 - As regras são definidas pelo administrador do AS

- Sucessor do EGP (Substituiu o EGP)
- Roteamento entre ASs
- Suporte a Super-redes (CIDR Classless Interdomain Router)
- Interage com IGPs: RIP, OSPF, etc.
- Usa TCP porta 179
- Estabelece sessões BGP
- Estabelecimento de conexão TCP entre os roteadores
- Envio de tabela de rotas completas apenas uma vez
- Atualização parcial da tabela (Incremental)
- Mensagens de *keepalive* para manter a sessão

- Mensagens de aviso são enviadas quando ocorrem erros ou outras situações especiais
- Caso uma conexão verifique um erro, uma mensagem é enviada e a conexão fechada, encerando a sessão.

A actual arquitetura da Internet, onde ASs comunicam-se via BGP-4

Atributos BGP

- AS-Path
 - Sequência de ASs que a rota atravessou; usado para detecção de loop;
 Aplicação de políticas.
- BGP Nexthop
 - é loopback do roteador iBGP
 - eBGP endereço do neighbor externo
 - iBGP Next-hop do eBGP
 - BGP speaker deve conhecer caminho para o next-hop
- Local-preference
 - Determina melhor caminho para tráfego saínte
 - Caminho com maior local-preference vence
 - Local-preference default 100 (JUNOS)

Atributos BGP

- MED (Multi-Exit Descriminator)
 - Inter-AS não transitivo; determina melhor caminho para tráfego entrante
 - Seu uso deve ser acordado entre ASs
- Origin
 - Informa a origem do prefixo
 - Influencia seleção do melhor caminho
 - Três tipos:
 - IGP configurada de forma explícita no BGP (agregado, policy)
 - EGP gerada pelo EGP
 - Incomplete redistribuida por outro protocolo de roteamento

- Neighbors, Peers, eBGP e iBGP
- Sistemas (roteadores) que são "vizinhos BGP" (BGP neighbors) comunicam-se através de secções estabelecidas entre eles
- Os roteadores de "borda" (border routers) de ASs vizinhos são considerados peers
- Esses peers são as "fronteiras políticas" dos ASs, que trocam tráfego de acordo com as regras definidas pela Ass participantes

Exemplo de Peers, Neighbors, eBGP e iBGP

Exterior BGP (eBGP)

- Utilizado para passar rotas entre ASs
- Características
 - BGP nexthop é modificado
 - AS-Path é adicionado
 - Peer geralmente entre endereços de interfaces físicas
 - AS-Path é utilizado como mecanismo de prevenção de loop de roteamento

Interior BGP (iBGP)

- Utilizado no interior de um AS
- Next-hop BGP não é modificado
- AS-Path não é adicionado
- É implementado tipicamente com peers totalmente interconectados (full mesh)
 - Análise de AS-PATH não é aplicável para prevenir loops internos
 - Roteador não pode repassar via iBGP rotas aprendidas através de outros peers iBGP

- O algoritmo do eBGP trabalha, basicamente, anunciando todas rotas que conhece, enquanto o do iBGP faz o possível para não anunciar rotas
- para fazer o iBGP funcionar adequadamente dentro de um AS é necessário estabelecer sessões BGP entre todos os roteadores que "falam" iBGP, formando uma "malha completa" (*full mesh*) de sessões iBGP dentro do AS

Sessão BGP

- Antes do estabelecimento de uma sessão BGP, os roteadores "vizinhos BGP"
 trocam mensagens entre si para entrar em acordo sobre quais serão os parâmetros
- Ex.: tempo máximo de espera entre mensagens hold time)
- Quando a sessão é estabelecida entre os roteadores, são trocadas mensagens contendo todas as informações de roteamento, ou seja, todos os "melhores caminhos" (best path) previamente selecionados por cada um

Tipos de Mensagens

- Para comunicação entre roteadores BGP existem alguns tipos de mensagens onde cada um deles tem um papel importante na comunicação BGP, nomeadamente:
- OPEN: são utilizadas para o estabelecimento de uma conexão BGP;
- NOTIFICATION: reportam erros e serve para representar possíveis problemas nas conexões BGP.
- **UPDATE**: são utilizadas para os anúncios propriamente ditos, incluindo rotas que devem ser incluídas na tabela e também rotas que devem ser removidos da tabela BGP.
- **KEEPALIVE**: são utilizadas para manter a conexão entre roteadores BGP caso não existam atualizações através de mensagens **UPDATE**.

Estados de Sessão BGP

Figura: Máquina de estados finitos para sessões BGP

Estados de Sessão BGP

- **IDLE**: identifica o primeiro estágio de uma conexão BGP, onde o protocolo está aguardando por uma conexão de um *peer* remoto. O próximo estado é o de CONNECT e no caso da tentativa ser mal sucedida, volta ao estado IDLE.
- **CONNECT:** BGP aguarda pela conexão no nível de transporte, com destino na porta 179. Quando a conexão a este nível estiver estabelecida, ou seja, com o recebimento da mensagem de OPEN, passa-se ao estado de **OPENSENT.** Se a conexão nível de transporte não for bem sucedida, o estado vai para ACTIVE. No caso do tempo de espera ter sido ultrapassado, o estado volta para CONNECT. Em qualquer outro evento, é retorna-se para IDLE.
- ACTIVE: O BGP tenta estabelecer comunicação com um peer inicializando uma conexão no nível de transporte. Caso esta seja bem sucedida, passa-se ao estado OPENSENT. Se esta tentativa não for bem sucedida, pelo motivo de expiração do tempo, por exemplo, o estado passa para CONNECT. Em cada de interrupção pelo sistema ou pelo administrador, volta ao estado IDLE.

Estados de Sessão BGP

- OPENSENT: o BGP aguarda pela mensagem de OPEN e faz uma checagem de seu conteúdo. Caso seja encontrado algum erro como número de AS incoerente ao esperado ou a própria versão do BGP, envia-se uma mensagem tipo NOTIFICATION e volta ao estado de IDLE. Caso não ocorram erros na checagem, inicia-se o envio de mensagens KEEPALIVE. Em seguida, acerta-se o tempo de *Hold Time*, sendo optado o menor tempo entre os dois *peers*. Depois deste acerto, compara-se o número AS local e o número AS enviado pelo peer, com o intuito de detectar se trata-se de uma conexão iBGP (números de AS iguais) ou eBGP (números de AS diferentes). Em caso de desconexão a nível de protocolo de transporte, o estado passa para ACTIVE. Para as demais situações de erro, como expiração do Hold Time, envia-se uma mensagem de NOTIFICATION com o código de erro correspondente e retorna-se ao estado de IDLE. No caso de intervenção do administrador ou o próprio sistema, também retorna-se o estado IDLE.
- OPENCONFIRM: Neste estado o BGP aguarda pela mensagem de KEEPALIVE e quando esta for recebida, o estado segue para ESTABLISHED e a negociação do peer é finalmente completa. Com o recebimento da mensagem de KEEPALIVE, é acertado o valor negociado de Hold Time entre os peers. Se o sistema receber uma mensagem tipo NOTIFICATION, retorna-se ao estado de IDLE. O sistema também envia periodicamente, segundo o tempo negociado, mensagens de KEEPALIVE. No caso da ocorrência de eventos como desconexão ou intervenção do operador, retorna-se ao estado de IDLE também. Por fim, na ocorrência de eventos diferentes aos citados, envia-se uma mensagem NOTIFICATION, retornando ao estado de IDLE.

- ESTABLISHED: Neste estado, o BGP inicia a troca de mensagens de UPDATE ou KEEPALIVE, de acordo com o Hold Time negociado. Caso seja recebida alguma mensagem tipo NOTIFICATION, retorna-se ao estado IDLE. No recebimento de cada mensagem tipo UPDATE, aplica-se uma checagem por atributos incorretos ou em falta, atributos duplicados e caso algum erro seja detectado, envia-se uma mensagem de NOTIFICATION, retornando ao estado IDLE. Por fim, se o Hold Time expirar ou for detectada desconexão ou intervenção do administrador, também retorna-se ao estado de IDLE.
- A partir da máquina de estados apresentada anteriormente, é possível saber qual o *status* de uma sessão BGP entre dois roteadores, podendo também iniciar uma investigação sobre qual problema pode estar ocorrendo em alguma sessão. O objetivo esperado é que todas as sessões BGP de um roteador mantenham-se no estado ESTABLISHED, visto que somente neste estado ocorre a troca de anúncios com o roteador vizinho.

- O BGP é bem económico nas mensagens de actualizações
- Só envia quando ocorrem mudanças nas rotas
 - Ex.: uma rota se tornou inválida, informa novas rotas.
- Caso não existam atualizações
 - Apenas mensagens de KEEPALIVE são trocadas
 - Certificar que a comunicação entre eles está "viva", ou seja, ainda está ativa

- Mensagens trocadas em sessões BGP
 - Cabeçalho 19 bytes
 - Campos do cabeçalho
 - Marker: verifica a autenticidade da mensagem recebida e a perda de sincronização entre os roteadores vizinhos BGP
 - Length: tamanho total (incluindo cabeçalho).

Menor mensagem BGP enviada é de 19 bytes (16 + 2 + 1 bytes)

- Type: tipo da mensagem (OPEN, UPDATE, NOTIFICATION, KEEPALIVE)
- Tamanho: 19 a 4096 bytes

- Mensagem to tipo OPEN
 - A mensagem do tipo OPEN é enviada para se iniciar a abertura de uma sessão BGP entre neighbors ou peers BGP

Versão (Version) – 3 ou 4
 Número do AS (AS Number)

 Deve conter o número do AS a qual o roteador pertence

 Tempo de espera (Hold Time)

 Deve conter o valor, em segundos, do maior tempo de espera (hold time) permitido entre mensagens do tipo UPDATE ou KEEPALIVE

 Identificador BGP

 Normalmente o Endereco IP do roteador
 Comprimento dos Parâmetros Opcionais (Optional Parameters Lenght)

- Mensagem do tipo NOTIFICATION
 - Este tipo de mensagem é enviada no caso de detecção de erros durante ou após o estabelecimento de uma sessão BGP. Após o envio da mensagem "notification" as sessões BGP e a conexão TCP são encerradas.

Mensagem do tipo NOTIFICATION

Tabela de códigos e sub-coódigos

Códigos de Erro	Sub códigos de Erro
1 - Erro no cabeçalho da mensagem	1 - Conexão não sincronizada 2 - Comprimento da mensagem inválido 3 - Tipo de mensagem inválido
2 - Erro na mensagem OPEN	1 - Número de versão não suportado 2 - Número de AS vizinho inválido 3 - Identificador BGP inválido 4 - Parâmetro opcional não suportado 5 - Falha na autenticação 6 - Tempo de espera inaceitável
3 - Erro na mensagem UPDATE	1 - Lista de atributos mal formada 2 - Atributo Well-Known desconhecido 3 - Atributo Well-Known faltando 4 - Erro nas flags de atributos 5 - Erro no comprimento do atributo 6 - Atributo origem inválido 7 - Loop de roteamento em AS 8 - Atributo NEXT_HOP inválido 9 - Erro no atributo Opcional 10 - Campo de rede inválido 11 - AS_path mal formado

- Mensagem to tipo UPDATE
 - As mensagens UPDATE, trocadas entre os peers ou neighbors BGP, são de extrema importância, pois são elas que levam as informações para a actualização da tabela de rotas mantida pelo BGP.

- Comprimento das Rotas Removidas ou Inalcançáveis (Unfeasible Routes Length): Neste campo, é indicado o comprimento total, em bytes, do total de rotas removidas
- Rotas Removidas (Withdrawn Routes): Este campo inclui uma lista de prefixos de endereços para rotas que devem ser removidas da tabela de rotas BGP (CIDR)
- **Prefixo** (*Prefix*): Contém prefixos de endereços IP seguidos de bits suficientes para fazer o final deste campo terminar "arredondado" em bytes completos. O valor dos bits complementares não têm importância
- •Comprimento (Lenght): Deve indicar o comprimento total, em bits, do total de rotas removidas. Um comprimento igual a 0 (zero), indica que, nesta mensagem UPDATE, não há rotas a serem removidas.
- Comprimento Total do Atributo PATH (*Total Path Attribute Length*): Deve indicar o comprimento total, em bits, do campo Atributos PATH. O valor contido neste campo deve permitir a determinação do comprimento do campo NLRI.

- Mensagem to tipo KEEPALIV E
 - São mensagens trocadas periodicamente com o propósito de verificar se a comunicação entre os vizinhos está activa
 - A mensagem do tipo KEEPALIVE é composta apenas do cabeçalho padrão das mensagens BGP, sem dados transmitidos após o cabeçalho (BGP header de 19 bytes)
 - O tempo máximo permitido para o recebimento de mensagens KEEPALIVE ou UPDATE é definido pelo hold time, das mensagens OPEN
 - Para manter aberta a sessão, a mensagem de KEEPALIVE deve ser enviada antes que o prazo definido no hold time expire

Bibliografia consultada

- ► Larry L. Peterson and Bruce S. Davie Computer Network a system approach 5th Edition
- ► Tanenbaum A. S. and Wetherall D. J. Computer networks 5th Edition.
- Mário Vestias Redes Cisco para profissionais 6ª Edição
- ► Adaptado do Professor Doutor Lourino Chemane

16/09/20 **38**

OBRIGADO!!!