Advanced Calculus 2 – Final Exam

Junwoo Yang

December 16, 2019

- 1. State the definition of a complex inner product space.
- 2. State the definition of L^2 norm of a function $f: A \subset \mathbb{R} \to \mathbb{R}$.
- 3. Let $f:[a,b]\to\mathbb{R}$ be continuous and differentiable on (a,b). Assume f(a)=0, f(b)=-1, and $\int_a^b f(x)\,\mathrm{d} x=0$. Prove that there is a $c\in(a,b)$ such that f'(c)=0.
- 4. Let \mathcal{V} be an inner product space and $\phi_0, \phi_1, \cdots, \phi_n$ a set of orthonormal vectors in \mathcal{V} . Prove that for each set of numbers t_0, t_1, \cdots, t_n ,

$$\left\| f - \sum_{k=0}^{n} t_k \phi_k \right\| \ge \left\| f - \sum_{k=0}^{n} \langle f, \phi_k \rangle \phi_k \right\|.$$

- 5. Suppose that the sets A_1, A_2, \cdots have measure zero in \mathbb{R}^n . Prove that $A_1 \cup A_2 \cup \cdots$ has measure zero in \mathbb{R}^n .
- 6. Let $f:[a,b]\times[c,d]\to\mathbb{R}$ be a C^1 function and $u,v\colon[c,d]\to[a,b]$ be C^1 functions. Suppose

$$F(t) = \int_{v(t)}^{v(t)} f(x, t) \, \mathrm{d}x.$$

Find F'(t).

- 7. Let $f(x) = |\sin x|$. Find the Fourier series of f. (Hint: f is even and π periodic. $\sin a \cos b = \frac{\sin(a+b) + \sin(a-b)}{2}$)
- 8. Let $f, g \colon A \subset \mathbb{R} \to \mathbb{R}$ be continuous functions. Prove that

$$\int_A |f(x)g(x)| \, \mathrm{d}x \le \left(\int_A |f(x)|^p \, \mathrm{d}x\right)^{\frac{1}{p}} \left(\int_A |g(x)|^q \, \mathrm{d}x\right)^{\frac{1}{q}}$$

for $p, q \in (1, \infty)$ satisfying $\frac{1}{p} + \frac{1}{q} = 1$.