# Music & the Internet MUMT301

Gabriel Vigliensoni
Schulich School of Music
McGill University

#### Plan

- Review of the last class and assignment
- Internet technologies
- Introduction to CSS
- In-class exercise
- Assignment #3

#### Review last class

- History of Internet
- History of the WWW and HTML
- History of web browsers
- Access server accounts
- Code editor and FTP software
- Introduction to HTML
  - basic tags and elements
  - basic webpage template
- In-class assignment

## Assignment 2

- 132.206.14.130/jdavid
- <u>132.206.14.130/tlupinacci</u>
- 132.206.14.130/jrosenberg
- 132.206.14.130/vtrunov
- 132.206.14.130/scoxon
- <u>132.206.14.130/imitra</u>
- 132.206.14.130/zmclennan
- What did we learn?

# Internet technologies and protocols

- Ethernet
- TCP/IP
- OSI Model
- IP addresses
- DNS
- Ports
- DHCP
- FTP
- SSH
- HTTP

#### Ethernet

- Computer networking technology
- Specifies a protocol and frame format for data communication
- Invented by Bob Metcalf. First documented in <u>internal XEROX PARC memo</u> (1973)



Architecture of the original Ethernet (1976).

- Thick coaxial "multidrop" cable up to 2.5km long (with repeaters every 500 meters)
- Connect up to 256 computers
- 2.94Mbps line speed
- · CSMA/CD
  - Abort transmissions as soon as collision is detected and "jam" the cable to alert others

http://www.inf.ed.ac.uk/teaching/courses/com/lecture-notes/lect12\_notes.pdf

#### Ethernet

- Stream of data is divided into shorter pieces called frames.
  - Each frame contains source and destination addresses
  - Damaged data can be detected by means of error-checking data (CRC) and is retransmitted
  - Each networking equipment is given a unique identifier comprised of 6 octets (48 bit), known as Media Access Control (MAC) address
- Originally based on inexpensive and ubiquitous coaxial cable and twisted pair wiring
- Standardized in <u>IEEE 802.3</u> (1983) with a data rate of 10Mbps (10BASE-T) and in memo <u>RFC 894</u> (1984)
- In 1995 was standardized to 100Mbps ("Fast Ethernet")
- Contemporary alternative to wired Ethernet is IEEE 802.11, also known as WiFi

## Ethernet packet and frame

#### 802.3 Ethernet packet and frame structure



#### Ethernet standards

| Name       | Connector  | Speed    |
|------------|------------|----------|
| 10BASE-2   | AUI        | 10 Mbps  |
| 10BASE-5   | BNC        | 10 Mbps  |
| 10BASE-T   | RJ-45      | 10 Mbps  |
| 100BASE-TX | RJ-45      | 100 Mbps |
| 100BASE-FX | ST, SC, LC | 100 Mbps |
| 1000BASE-T | RJ-45      | 1 Gbps   |
| 1000BASE-X | ST, SC, LC | 1 Gbps   |
| 10GBASE-X  | ST, SC, LC | 10 Gbps  |



Thin and thick coaxial









Multimode fiber





# Internet Protocol Suite (TCP/IP)

- The Internet Protocol Suite (Transmission Control Protocol and Internet Protocol) works on top of Ethernet frame
  - provides end-to-end connectivity
  - specifies how data is packetized, addressed, transmitted, routed and received at the destination.
- Web browsers use this protocol when they connect to servers on the WWW
- HTTP, HTTPS, SMTP, POP3, IMAP, SSH, FTP, SFTP are protocols encapsulated within TCP/IP

## Complete Ethernet Packet

Taken from openmicrolab.com



#### IP Headers

IP has the task of **delivering packets** from the source host to the destination host solely **based on the IP addresses** in the packet headers.

IPv4 (20 bytes)

|         |       |                            |        |                        |   |   |            |    |   |   |   |    |               | au   |    | •    | IIG  |                 |     |      |    |    |    |    |      |     |    |     |    |    |    |    |    |    |
|---------|-------|----------------------------|--------|------------------------|---|---|------------|----|---|---|---|----|---------------|------|----|------|------|-----------------|-----|------|----|----|----|----|------|-----|----|-----|----|----|----|----|----|----|
| Offsets | Octet |                            |        |                        | ( | 0 |            |    |   |   |   |    |               | 1    |    |      |      |                 |     |      |    | 2  |    |    |      |     |    |     |    | ;  | 3  |    |    |    |
| Octet   | Bit   | 0                          | 1      | 2                      | 3 | 4 | 5          | 6  | 7 | 8 | 9 | 10 | 11            | 12   | 13 | 14   | 15   | 16              | 17  | 18   | 19 | 20 | 21 | 22 | 2 2  | 3 2 | 4  | 25  | 26 | 27 | 28 | 29 | 30 | 31 |
| 0       | 0     | ١                          | /er    | sior                   | 1 |   | IH         | łL |   |   |   | DS | CP            |      |    | Е    | CN   |                 |     |      |    |    |    | Т  | otal | Le  | ng | jth |    |    |    |    |    |    |
| 4       | 32    | Identification Flags Fragr |        |                        |   |   |            |    |   |   |   |    | agment Offset |      |    |      |      |                 |     |      |    |    |    |    |      |     |    |     |    |    |    |    |    |    |
| 8       | 64    |                            | Time T |                        |   |   | ne To Live |    |   |   |   |    | Pro           | toco | ol |      |      | Header Checksum |     |      |    |    |    |    |      |     |    |     |    |    |    |    |    |    |
| 12      | 96    |                            |        |                        |   |   |            |    |   |   |   |    |               |      | S  | our  | ce I | PΑ              | ddi | ress | 8  |    |    |    |      |     |    |     |    |    |    |    |    |    |
| 16      | 128   |                            |        | Destination IP Address |   |   |            |    |   |   |   |    |               |      |    |      |      |                 |     |      |    |    |    |    |      |     |    |     |    |    |    |    |    |    |
| 20      | 160   |                            |        |                        |   |   |            |    |   |   |   |    |               |      | 0  | ptic | ns   | (if I           | HL  | > 5  | )  |    |    |    |      |     |    |     |    |    |    |    |    |    |

IPv4 Header Format

#### Taken from wikipedia.com

Offsets Octet Octet 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Bit 0 0 Version Traffic Class Flow Label 32 Payload Length Next Header Hop Limit 8 64 12 96 Source Address 16 128 20 160 24 192 28 224 Destination Address 32 256 36 288

IPv6 (36 bytes)

Taken from wikipedia.com

### TCP Headers

TCP provides an **error-checked delivery of a stream of octets** between programs running on computers connected to a LAN



Taken from wikipedia.com

User Datagram Protocol (UDP) is by applications that do not require the reliability of a TCP connection and delivery validation ("handshaking")



#### MAC and IP Addresses

- IPv4 (32 bits = 4 bytes)
  - 4,294,967,296 possible IP addresses
    - More than one billion already used
- IPv6 (128 bits)
  - 3.4\*10<sup>38</sup> (340 trillion trillion, or 3.4 undecillion)
    - Bacterial cells on earth: 5\*10<sup>30</sup>
- MAC addresses:
  - MAC-48: 2<sup>48</sup> = 281,474,976,710,656 addresses (2.8 x 10<sup>14</sup>, trillions)
    - All fish in the ocean: 3.5\*10<sup>12</sup>

#### OSI Model

- OSI model is an ISO standard for worldwide communications that defines a framework for implementing protocols in seven layers
- Transmitting bits from one device to another is not enough to establish comprehensible communications
- All information must be organized in a hierarchical manner to convey a message
- OSI model defines what a transmitting device must do to pack up a message for transmission and what the receiving device must do to unpack the transmission to recreate the original message
- Ethernet-based communication protocols do obey the OSI model

## OSI Model

Taken from <a href="http://www.escotal.com/osilayer.html">http://www.escotal.com/osilayer.html</a>

OSI (Open Source Interconnection) 7 Layer Model

| Layer                                                                                                                             | Application/Example                                                                                                                                                                                                                                                               | Central<br>Pro                      | Devic<br>tocols                     |                     | DOD4<br>Model   |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|---------------------|-----------------|
| Application (7) Serves as the window for users and application processes to access the network services.                          | End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management                                                                                             | Use<br>Applicat                     | ions                                |                     |                 |
| Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the "Translator" for the network. | Syntax layer encrypt & decrypt (if needed)  Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation                                                                                                                         | EBDIC/TIF                           | JPEG/ASCII<br>BDIC/TIFF/GIF<br>PICT |                     | Process         |
| Session (5) Allows session establishment between processes running on different stations.                                         | Synch & send to ports (logical ports)  Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.                                                                                                                   | RPC/SQL<br>NetBIOS n                | /NFS                                | A                   |                 |
| Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.                    | TCP Host to Host, Flow Control  Message segmentation • Message acknowledgement •  Message traffic control • Session multiplexing                                                                                                                                                  | TCP/SPX                             | /UDP                                | E<br>W<br>A         | Host to<br>Host |
| Network (3) Controls the operations of the subnet, deciding which physical path the data takes.                                   | Packets ("letter", contains IP address)  Routing • Subnet traffic control • Frame fragmentation • Logical-physical address mapping • Subnet usage accounting                                                                                                                      | Route                               |                                     | Y<br>Can be<br>used | Internet        |
| Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.                       | Frames ("envelopes", contains MAC address) [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame error checking • Media access control | Switch<br>Bridge<br>WAP<br>PPP/SLIP | Land<br>Based                       | on all<br>layers    | Network         |
| Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.           | Physical structure Cables, hubs, etc.  Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Bits & Volts                                                                                                    | Hub                                 | Layers                              |                     | HOLWOIK         |

### OSI Model

Taken from <a href="http://www.escotal.com/osilayer.html">http://www.escotal.com/osilayer.html</a>



## Complete Ethernet Packet

Taken from openmicrolab.com



# Domain Name System (DNS)

- DNS translate domain names to IP addresses (domain names are aliases for IP addresses)
- Defined by P. Mockapetris (1982) in <u>RFC882</u>
  - Defined syntax of domain names
    - Righmost label conveys the **top-level domains**, e.g., .edu, .org, or .com
    - Restriction on the length of domain names to 63 characters, excluding the top-level domain
    - Subdivision of domain names can go up until 127 levels
    - Maximum total length of 255 characters
  - Domain names are also limited to a subset of ASCII characters, preventing many languages from representing their names and words correctly
- Obsoleted and expanded in <u>RFC1034</u>, <u>RFC1035</u> (1987)
  - It is based on thirteen "root servers" worldwide, all but three were located in the US. Nowadays they are spread across multiple countries

#### Ports

- Virtual pathways on which Internet data travels
- Metaphor: If we think of IP addresses as telephone numbers, ports are telephone number extensions
- The port number added to the IP address completes the address for a communication session
- Ports identify unique applications or processes running on a computer and enable them to share a single physical connection in the Internet
- All data sent to an IP address is sent on specific ports
- Syntax: (IP Address): (Port Number)
- 16 bits are dedicated for port numbers in TCP and UDP (65536 different ports)
  - Typical system ports: 21 (FTP), 22 (SSH), 25 (SMTP), 53 (DNS), 80 (HTTP), 194 (IRC), 443(HTTPS)
  - **Registered ports**: 5050 (Yahoo! Messenger), 9293 (Sony Playstation remote play), 19294 Google Talk, ... <u>partial list here</u>

## DHCP

- How does the Internet find me when I move around with my laptop/tablet/phone? Or when I plug my computer to an Ethernet jack?
  - By using the Dynamic Host Configuration Protocol
- Protocol standardized in 1993 that uses the IP
- DHCP dynamically distributes network configuration parameters to computers on a network, without the need of a network administrator



## FTP (File Transfer Protocol)

- Protocol that computers on a TCP/IP network use to transfer files to and from each other
  - Can be used with a client application or from command line
  - Usually works on port 21
  - Data is transmitted on plain text
- SFTP (Secure File Transfer Protocol) is similar to FTP but performs over an encrypted SSH transport
  - We used it to access the server 132.206.14.130
  - Usually works on port 22
  - Data is encrypted

## SSH (Secure Shell)

- Network protocol that runs over TCP/IP
- Allows to make a remote login over TCP/IP network via port 22
- Provides access to the shell of a computer
- A shell is an interface to an operating system, for example:
  - Finder (GUI)
  - Bash (CLI)

## HTTP (Hypertext transfer protocol)

- Hypertext concept introduced by Ted Nelson (1965)
- Hypertext is structured text that uses logical links (hyperlinks) between nodes containing text
- HTTP is the protocol to exchange or transfer hypertext
- First Hypertext Transfer Protocol documented in 1991 by Tim Berners-Lee and his group@CERN
- At the heart of web communications using HTTP is the request message
- These request messages are sent using Uniform Resource Locators, known as URLs
- URLs have the following **components**:



Taken from <a href="http://code.tutsplus.com/">http://code.tutsplus.com/</a>

#### HTTP

 "The first version of the protocol had only one method, namely GET, which would request a page from a server. The response from the server was always an HTML page." (T. Berners-Lee)



- However, these days there are some other HTTP "verbs" that allow us to perform other actions on resources:
  - **GET**: fetch an existing resource
  - POST: create a new resource
  - **PUT**: update an existing resource
  - DELETE: delete an existing resource

#### BREAK

## HTML/CSS

"HTML was intended to define the content of a document, CSS defines how HTML elements are to be displayed." -

http://www.w3schools.com/css/css\_intro.asp



A HTML document has two big parts: head, and body.

#### HEAD - Internal (hidden) information, metadata

- Title <a href="http://www.w3schools.com/tags/tag\_title.asp">http://www.w3schools.com/tags/tag\_title.asp</a>
- Base href setting up your base reference link
- Link to favicon <a href="http://www.favicon.cc/">http://www.favicon.cc/</a>
- Meta tags (keywords, description, copyright, publisher-email, author)
- Styles/link stylesheet
- Javascript

#### **BODY - Perceived (rendered) information**

- Content
- Footer

#### HTML5 SEMANTIC ELEMENTS

A semantic element **clearly describes its meaning** to both the browser and the developer

Examples of semantic elements: <form>, , and <img>
These elements clearly define their content

Non-semantic elements tell nothing about their content

Examples of non-semantic elements: <div> and <span>



## CSS Cascading Style Sheets

CSS defines how the HTML elements will be displayed!

CSS is designed primarily to enable the separation of document content from document presentation

http://www.w3schools.com/css/demo\_default.htm

#### **CSS SYNTAX**

A CSS rule has two main parts: a selector, and one or more declarations



#### Example:

```
p {
font-family: arial, helvetica, sans-serif;
font-size: 12px;
color: black;
line-height: auto;
}
```

#### **SOME SELECTORS**

```
2. #X
                                   #container {
                                     width: 960px;
margin: 0;
padding: 0;
                                     margin: auto;
                                   4. X Y
3. .X
                                   li a {
.error {
                                    text-decoration:
 color: red;
                                   none;
```

#### Three Ways to Insert CSS

- External style sheet
- Internal style sheet
- Inline style

#### External style sheet

```
<head>
k rel="stylesheet" type="text/css" href="mystyle.css">
</head>
```

#### Internal style sheet

```
<head>
<style>
body {
    background-color: blue;
}
h1 {
    color: red;
    margin-left: 40px;
}
</style>
</head>
```

#### Inline styles

<h1 style="color:blue;margin-left:30px;">This is a heading.</h1>

#### **CSS Styles**

# Position Borders Backgrounds Gradients Text Effects Fonts 2D Transforms 3D Transforms Transitions Animations Multiple Columns User Interface

grids grids grids

#### In-class demo

- Style the page for a band that I like
- https://mumt301.github.io/2017/code/18plus.html

## Today's class

- Internet technologies
- Introduction to CSS
- In-class demo
- Assignment #3