

# ANALYSIS OF VARIANCE (ANOVA)





### **OBJECTIVE:**

At the end of this presentation, students should be able to use One-Way ANOVA technique to determine if there is a significant difference among three or more means.





## ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

When an F test is used to test a hypothesis concerning the means of three or more populations, the technique is called analysis of variance (commonly abbreviated as ANOVA).

 $^{\bullet}H_{o}: \mu_{1}=\mu_{2}=\mu_{3}=...=\mu_{n}$ 

H<sub>1</sub>: At least one of the means is different from the others

Note: No need to identify if left, right or two tailed test should be used since ANOVA works on more than two groups.





## HOW TO USE THE F-DISTRIBUTION TABLE TO FIND THE CRITICAL VALUE

Find the critical value if d.f.N. =6 (degrees of freedom of the numerator), d.f.D.=5 (degrees of freedom of the denominator) and  $\alpha$ =0.01.



**Answer:** C.V.=10.67





## ASSUMPTIONS FOR THE FTEST FOR COMPARING THREE OR MORE MEANS

- 1. The populations from which the samples were obtained must be normally or approximately normally distributed.
- 2. The samples must be independent of one another.
- 3. The variances of the populations must be equal.



## FINDING THE FTEST VALUE Malayan Col A FOR THE ANALYSIS OF VARIANCE



**Step 1** Find the mean and variance of each sample.

$$(\overline{X}_1, s_1^2), (\overline{X}_2, s_2^2), \ldots, (\overline{X}_k, s_k^2)$$

**Step 2** Find the grand mean.

$$\overline{X}_{GM} = \frac{\Sigma X}{N}$$

**Step 3** Find the between-group variance.

$$s_B^2 = \frac{\sum n_i (\overline{X}_i - \overline{X}_{GM})^2}{k - 1}$$

where: x̄<sub>i</sub>=sample
mean per group
s<sub>i</sub><sup>2</sup>=sample variance
per group
n<sub>i</sub>=sample size per
group
N=sum of the sample
sizes of the groups
k=number of groups



## FINDING THE FTEST VALUE FOR THE ANALYSIS OF VARIANCE



### **Step 4** Find the within-group variance.

$$s_W^2 = \frac{\sum (n_i - 1)s_i^2}{\sum (n_i - 1)}$$

### **Step 5** Find the F test value.

$$F = \frac{s_B^2}{s_W^2}$$

The degrees of freedom are

$$d.f.N. = k - 1$$

where k is the number of groups, and

d.f.D. = 
$$N - k$$

where N is the sum of the sample sizes of the groups

$$N = n_1 + n_2 + \dots + n_k$$





A researcher wishes to try three different techniques to lower the blood pressure of individuals diagnosed with high blood pressure. The subjects are randomly assigned to three groups; the first group takes medication, the second group exercises, and the third group follows a special diet. After four weeks, the reduction in each person's blood pressure is recorded. At  $\alpha = 0.05$ , test the claim that there is no difference among the means. The data are shown.





| Medication | Exercise | Diet |  |
|------------|----------|------|--|
| 10         | 6        | 5    |  |
| 12         | 8        | 9    |  |
| 9          | 3        | 12   |  |
| 15         | 0        | 8    |  |
| 13         | 2        | 4    |  |
|            |          |      |  |
|            |          |      |  |
|            |          |      |  |







| Medication              | Exercise               | Diet                   |  |
|-------------------------|------------------------|------------------------|--|
| 10                      | 6                      | 5                      |  |
| 12                      | 8                      | 9                      |  |
| 9                       | 3                      | 12                     |  |
| 15                      | 0                      | 8                      |  |
| 13                      | 2                      | 4                      |  |
| $\overline{X}_1 = 11.8$ | $\overline{X}_2 = 3.8$ | $\overline{X}_3 = 7.6$ |  |
| $s_1^2 = 5.7$           | $s_2^2 = 10.2$         | $s_3^2 = 10.3$         |  |
| n <sub>1</sub> =5       | n <sub>2</sub> =5      | n <sub>3</sub> =5      |  |

sample mean  $(\overline{x}_i)$  and sample variance (s<sub>i</sub><sup>2</sup>) are computed using the shortcut in the calculator © © S

## **ONE-WAY ANALYSIS OF** VARIANCE (ANOVA)-EXAMPLE 1(CONT'D)

Step 1: State the hypotheses and identify the claim.

$$H_0$$
:  $\mu_1 = \mu_2 = \mu_3$  (claim)

 $H_1$ : At least one mean is different from the others.

Step 2: Find the critical value. Since k=3 (number of groups) and N=15 (total number of data values),

$$d.f.N. = k-1 = 3-1 = 2$$
  $d.f.D. = N-k = 15-3 = 12$ 

The critical value is 3.89 obtained from the f-distribution table with  $\alpha = 0.05$ .

- Step 3: Compute for the test value.
- a. Find the mean and variance of each sample (these values are shown on the previous slide)

## **ONE-WAY ANALYSIS OF** VARIANCE (ANOVA)-EXAMPLE 1(CONT'D)



b. Find the grand mean. The grand mean, denoted by  $\overline{X}_{GM}$ , is the mean of all values in the samples.

$$\overline{X}_{GM} = \frac{\sum X}{N} = \frac{10 + 12 + 9 + \dots + 4}{15} = \frac{116}{15}$$

When samples are equal in size, find  $\overline{X}_{GM}$  by summing the  $\overline{X}$ 's and dividing by k, where k = the number of groups.

c. Find the between-group variance, denoted by  $s_R^2$ .

$$s_B^2 = \frac{\sum n_i (\overline{X}_i - \overline{X}_{\rm GM})^2}{k-1}$$
 the numerator is also called sum of squares between groups (SS<sub>B</sub>) 
$$= \frac{5(11.8 - \frac{116}{15})^2 + 5(3.8 - \frac{116}{15})^2 + 5(7.6 - \frac{116}{15})^2}{3-1} = 160.13333333 / 2$$

80.06666667

*Note:* This formula finds the variance among the means by using the sample sizes as weights and considers the differences in the means.



## **ONE-WAY ANALYSIS OF**



## VARIANCE (ANOVA)-EXAMPLE 1(CONT'D)

d. Find the within-group variance, denoted by  $s_W^2$ .

$$s_W^2 = \frac{\sum (n_i - 1)s_i^2}{\sum (n_i - 1)}$$
 the numerator is also called sum of squares within groups (SS<sub>W</sub>)
$$= \frac{(5 - 1)(5.7) + (5 - 1)(10.2) + (5 - 1)(10.3)}{(5 - 1) + (5 - 1) + (5 - 1)} = 104.8 / 12$$

= 8.733333333

Note: This formula finds an overall variance by calculating a weighted average of the individual variances. It does not involve using differences of the means.

Note: Reject H. if test

e. Find the F test value.

$$F = \frac{S_B^2}{S_W^2} = 80.06666667/8.7333333333 = 9.17$$

Note: Reject H<sub>o</sub> if test value ≥ critical value while Do not reject H<sub>o</sub> if test value < critical value.

- **Step 4** Make the decision. The decision is to reject the null hypothesis, since T.V. > C.V. 9.17 > 3.89.
- **Step 5** Summarize the results. There is enough evidence to reject the claim and Anthony S. Morfe CAS\_Math cluster least one mean is different from the others.



### ONE-WAY ANALYSIS OF VARIANCE (ANOVA)



### **Analysis of Variance Summary Table Table 12-1** Sum of Mean d.f. Source squares square k-1Between $SS_R$ $MS_R$ N-kWithin (error) $SS_w$ $MS_w$ Total

In the table,

$$SS_B = sum of squares between groups \longrightarrow Numerator of the between group variance  $(s_B^2)$$$

 $SS_W = \text{sum of squares within groups}$  Numerator of the within group variance ( $s_W^2$ )

$$k = \text{number of groups}$$

$$N = n_1 + n_2 + \cdots + n_k = \text{sum of sample sizes for groups}$$

$$MS_B = \frac{SS_B}{k-1}$$

$$MS_W = \frac{SS_W}{N - k}$$

$$F = \frac{MS_B}{MS_W}$$



| Table 12-2     | Analysis of Variance Summary Table for Example |      |                |      |
|----------------|------------------------------------------------|------|----------------|------|
| Source         | Sum of squares                                 | d.f. | Mean<br>square | F    |
| Between        | 160.13                                         | 2    | 80.07          | 9.17 |
| Within (error) | 104.80                                         | 12   | 8.73           |      |
| Total          | 264.93                                         | 14   |                |      |





### **REFERENCE:**

Bluman, A. (2012). Elementary Statistics: A Step by Step Approach, 8e. McGraw-Hill Higher Ed.







