Pedestrian Detection

Scarrig under

But first... The Viola/Jones Face Detector (2001)

- > A widely used method for real-time object detection.
- > Training is slow, but detection is very fast. <
- The same ideas are used for pedestrian detection

Classifier is Learned from

- Training Data
 - 5000 faces
 - All frontal
 - 300 million non faces
 - 9400 non-face images
 - Faces are normalized
 - Scale, translation
- Many variations
 - Across individuals
 - Illumination
 - Pose (rotation both in plane and out)

Key Properties of Face Detection

- Each image contains 10 50 thousand locs/scales
- Faces are rare 0 50 per image
 - 1000 times as many non-faces as faces
- Extremely small # of false positives: 10⁻⁶

The Integral Image

- The integral image computes a value at each pixel (x,y) that is the sum of the pixel values above and to the left of (x,y), inclusive.
- This can quickly be computed in one pass through the image

100 x (00)

Computing Sum within a Rectangle

- Let A,B,C,D be the values of the integral image at the corners of a rectangle
- Then the sum of original image values within the rectangle can be computed:

$$sum = A - B - C + D$$

- Only 3 additions are required for any size of rectangle!
 - This is now used in many areas of computer vision

Boosted Face Detection: Image Features

"Rectangle filters"

Similar to Haar wavelets Papageorgiou, et al.

Add white parts
Add dark parts
Use the difference

For a 24x 24 image 180,000 features to choose from

D 005 + My

Applying rectangle filters for faces

 For a 24x24 detection region, the number of possible rectangular features is ~180,000!

AdaBoost:Super Efficient Feature Selector

- Features = Weak Classifiers
- Each round selects the optimal feature given:
 - Previous selected features
 - Exponential Loss

Boosting

- Boosting is a classification scheme that works by combining weak learners into a more accurate ensemble classifier.
- Weak learner: Classifier with accuracy that need to be only better than chance
- Weak learners defined based on rectangular features:

Boosting 2

- Initially, assign equal weight to each training example
- Iterative training procedure
- Find best weak learner for current weighted training set
- Seek one feature with minimum error.
- Raise the weights of training examples misclassified by current weak learner
- Final classifier as a linear combination of all weak learners (weight of each learner is related to its accuracy)

AdaBoost

Freund & Shapire

Example Classifier for Face Detection

A classifier with 200 rectangle features was learned using AdaBoost

95% correct detection on test set with 1 in 14084 y states positives. ROC curve for 200 feature classifier. 0.94 correct defection rate 88.0 6.0 88 0.84 0.82 8.0 0.2 1.4 1.8 curve for 200 feature classifier

Building Fast Classifiers

 Given a nested set of classifier hypothesis classes

 Computational Risk Minimization

Cascaded Classifier

- A 1 feature classifier achieves 100% detection rate and about 50% false positive rate.
- A 5 feature classifier achieves 100% detection rate and 40% false positive rate (20% cumulative)
 - using data from previous stage.
- A 20 feature classifier achieve 100% detection rate with 10% false positive rate (2% cumulative)

Output of Face Detector on Test Images

Solving other "Face" Tasks

Facial Feature Localization

Profile Detection

Demographic Analysis

Feature Localization Features

Learned features reflect the task

Profile Detection

Profile Features

Back to Pedestrian Detection

 If we use exactly the same face detection system trained on pedestrians:

Pedestrians with face detection

Pedestrian detection

 We need to use extra features such as motion information

$$\Delta^{l} = abs(I_{t}^{l} - I_{t+1}^{l})$$

$$U^{l} = abs(I_{t}^{l} - I_{t+1}^{l} \uparrow)$$

$$L^{l} = abs(I_{t}^{l} - I_{t+1}^{l} \leftarrow)$$

$$R^{l} = abs(I_{t}^{l} - I_{t+1}^{l} \rightarrow)$$

$$D^{l} = abs(I_{t}^{l} - I_{t+1}^{l} \downarrow)$$

Pedestrians detection

Pedestrian Detection

Figure 6: The first 5 filters learned for the dynamic pedestrian detector. The 6 images used in the motion and appearance representation are shown for each filter.