AB Geometrie & Topologie

Prof. Bernhard Leeb, Ph.D.

Dr. Stephan Stadler

Analysis I

ÜBUNGSBLATT 4

- 1. Für beliebige $b, r \in \mathbb{R}$ mit b > 1 existiert $n \in \mathbb{N}$ mit $b^n > r$. Hinweis: Benutzen Sie die Ungleichung von Bernoulli.
 - illimweis. Denduzen bie die engleiendig von Dernoum
- 2. (i) Für $a, b \in \mathbb{R}$ gelten die Aussagen: $(\alpha) |a - b| \ge ||a| - |b||$
 - $(\beta) |b |a b| \le a \le b + |a b|$
 - $(\gamma) \max(a,b) = \frac{a+b}{2} + \frac{|a-b|}{2}$
 - (ii) (α) Für beliebige Teilmengen $A,B\subset\overline{\mathbb{R}}$ gilt:

$$\sup(A \cup B) = \max(\sup A, \sup B)$$

(β) Allgemeiner gilt für eine Familie von Teilmengen $A_n \subset \overline{\mathbb{R}}$ für $n \in \mathbb{N}$:

$$\sup\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sup\left\{\sup A_n \mid n\in\mathbb{N}\right\}$$

Hinweis: Suprema und Maxima sollen in $\overline{\mathbb{R}}$ gebildet werden.

- 3. Es sei $M \subset \mathbb{R}$ nichtleer und nach oben beschränkt. Zeigen Sie, daß für jedes $\epsilon > 0$ eine Zahl $x \in M$ existiert, so daß $x + \epsilon$ eine obere Schranke für M ist.
- 4. (i) Es sei X eine beliebige Menge. Zeigen Sie, daß keine Surjektion $X \to P(X)$ auf die Menge P(X) aller Teilmengen von X existiert.

Hinweis: Betrachten Sie für eine Abbildung $F: X \to P(X)$ die Teilmenge $M_F := \{x \in X \mid x \notin F(x)\} \in P(X)$ und verifizieren Sie, daß $M_F \notin F(X)$.

(ii) Es existieren Injektionen $P(\mathbb{N}) \to \mathbb{R}$ und Surjektionen $\mathbb{R} \to P(\mathbb{N})$.

Hinweis: Verwenden Sie die Dezimaldarstellung reeller Zahlen.

(iii) Es existiert keine Surjektion $\mathbb{N} \to \mathbb{R}$.

Bemerkung: Es folgt, daß insbesondere keine Bijektion $\mathbb{N} \to \mathbb{R}$ existiert. Man sagt dazu, daß \mathbb{R} nicht abzählbar bzw überabzählbar ist.