Derivatives - Hull

Last Updated January 19, 2023

Concepts

Maturity - The end of the life of a contract.

Short - Short position = Seller position

Long - Long position = Buyer position

Risk factor - Source of uncertainty.

- IR: Interest Rate
 - Yield Curves: Rate curves given by countries
 - Reference rate curves: EURIBOR, LIBOR, SOFR
 - CDS curves
- FX: Foreign Exchange. ex. EUR/USD
- Equity: ex. BNP equity.
- Commodities: ex. Oil price.

Spot Price - The price for immediate delivery.

OTC Market - Over-the-counter. A market where traders deal directly with each other or through an interdealer broker. The traders are usually financial institutions, corporations, and fund managers.

Exchange-traded markets - A derivatives exchange is a market where individuals and companies trade standardized contracts that have been defined by the exchange. Contrary to OTC

Notation

S - Stock price, more generally underlying asset price.

 Δ - Variation

- t Time
- ϕ Normal distribution
- σ Volatility
- r Interest rate
- c, f Price of option

Assets

Commodities

ъ

Real State

-

Intellectual properties

-

Pollution emission rights

~ .

Stocks

Bonds

Currencies

Currence

Derivatives

A derivative involves two parties agreeing to a future transaction. Its value depends on (or derives from) the values of other underlying variables.

Forward contracts

- A contract that obligates the holder to buy or sell an asset for a predetermined delivery price at a predetermined future time.

Future contracts

- A contract that obligates the holder to buy or sell an asset at a predetermined delivery price during a specified future time period. The contract is settled daily.

Difference Forward and Future

- Future are traded in exchange markets whereas Forwards are OTC.

Options

-

Swaps: Interest rate swap

-

Swaps: Currency swap

-

Swaps: CDS(Credit default swap)

-

Swaps: Quanto

_

Black and Scholles

Assumptions

 Stock price assumes that percentage changes in very short period of time are normally distributed.

$$\frac{\Delta S}{S} \backsim \phi(\mu \Delta t, \Delta t)$$

Equation

$$\frac{\partial f}{\partial t} + rS\frac{\partial f}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} = rf$$

Risk

Greeks or Risk sensitivities

Greek	Symbol	Measures	Definition
Delta	$\Delta = \frac{\partial c}{\partial S}$	Underlying variable (S) exposure	Change in option price due to spot
Gamma	$\Gamma = \frac{\partial^2 c}{\partial S^2}$	Underlying variable (S) convexity	Curvature of option price with respect to spot
Theta	$\Theta = \frac{\partial c}{\partial t}$	Time decay	Change in option price due to time passing
Vega	$v = \frac{\partial c}{\partial \sigma}$	Volatility exposure	Change in option price due to volatility
Rho	$\rho = \frac{\partial c}{\partial r}$	Interest rate exposure	Change in option price due to interest rates
Volga	$\frac{\partial^2 c}{\partial \sigma^2}$	Volatility convexity	Curvature of option price with respect to spot
Vanna	$\frac{\partial c}{\partial S \partial t}$		Change in Delta due to Volatility

VaR & ES

PnL