27) Spatial Econometrics with PySAL

Vitor Kamada

August 2018

Reference

Tables, Graphics, and Figures from:

Rey and Arribas-Bel (2018). **Geographic Data**Science with PySAL

http://darribas.org/gds_scipy16/

Texas Counties from the Census Bureau

```
import pysal as ps
import pandas as pd
import numpy as np
from pysal.contrib.viz import mapping as maps
shp_path = 'C:/Users/Vitor/Desktop/ECO 7110 Ec
data = ps.pdio.read_files(shp_path)
```

data.head()

	NAME	STATE_NAME	STATE_FIPS	CNTY_FIPS	FIPS	STFIPS	COFIPS	FIPSNO
0	Lipscomb	Texas	48	295	48295	48	295	48295
1	Sherman	Texas	48	421	48421	48	421	48421
2	Dallam	Texas	48	111	48111	48	111	48111
3	Hansford	Texas	48	195	48195	48	195	48195
4	Ochiltree	Texas	48	357	48357	48	357	48357

```
FH90
                                                              geometry
    6.093580
               <pysal.cg.shapes.Polygon object at 0x0000020C5...</pre>
0
               <pysal.cg.shapes.Polygon object at 0x0000020C5...</pre>
    3.869407
2
               <pysal.cg.shapes.Polygon object at 0x0000020C5...</pre>
   14.231738
3
    7.125457
               <pysal.cg.shapes.Polygon object at 0x0000020C5...</pre>
4
    9.159159
               <pvsal.cg.shapes.Polygon object at 0x0000020C5...</pre>
```

Map Pattern

```
import matplotlib.pyplot as plt
import geopandas as gpd
tx = gpd.read file(shp path)
hr10 = ps.Quantiles(data.HR90, k=10)
f, ax = plt.subplots(1, figsize=(9, 9))
tx.assign(cl=hr10.vb).plot(column='cl',
        categorical=True, k=10, cmap='OrRd',
        linewidth=0.1, ax=ax,
        edgecolor='white', legend=True)
ax.set axis off()
plt.title("HR90 Deciles")
plt.show()
```

County Homicide Rates in 1990

Spatial Weights

Queen Contiguity: adjacency relationships as a binary indicator variable denoting whether or not a polygon shares an **edge or a vertex** with another polygon

KNN: distance to k nearest neighbors

Kernel: neighbors defined by bandwidth

Spatial Lag: $\sum_{j} w_{i,j} HR90_{j}$

```
W = ps.queen from shapefile(shp path)
W.transform = 'r'
HR90Lag = ps.lag spatial(W, data.HR90)
HR90LagQ10 = ps.Quantiles(HR90Lag, k=10)
f, ax = plt.subplots(1, figsize=(9, 9))
tx.assign(cl=HR90LagQ10.yb).plot(column='cl',
              categorical=True, k=10, cmap='OrRd',
              linewidth=0.1, ax=ax,
              edgecolor='white', legend=True)
ax.set axis off()
plt.title("HR90 Spatial Lag Deciles")
plt.show()
```

8 / 25

HR90 Spatial Lag Deciles

Moran Scatterplot

```
HR90 = data.HR90
b,a = np.polyfit(HR90, HR90Lag, 1)
f, ax = plt.subplots(1, figsize=(9, 9))
plt.plot(HR90, HR90Lag, '.', color='firebrick')
# dashed vert at mean of the last year's PCI
plt.vlines(HR90.mean(), HR90Lag.min(), HR90Lag.max(),
           linestyle='--')
# dashed horizontal at mean of lagged PCI
plt.hlines(HR90Lag.mean(), HR90.min(), HR90.max(),
           linestvle='--')
# red line of best fit using global I as slope
plt.plot(HR90, a + b*HR90, 'r')
plt.title('Moran Scatterplot')
plt.vlabel('Spatial Lag of HR90')
plt.xlabel('HR90')
plt.show()
```

10 / 25

Moran's Statistic (I)

```
I\_HR90 = ps.Moran(data.HR90.values, W)
I\_HR90.I, I\_HR90.p\_sim
```

(0.08597664031388977, 0.01)

b

0.0859766403138895

Austin Properties Listed in AirBnb

http://insideairbnb.com/austin/index.html

```
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pysal as ps
import geopandas as gpd
sns.set(style="whitegrid")
abb link = 'C:/Users/Vitor/Desktop/ECO 7110 E
lst = pd.read csv(abb link)
x = ['host listings count', 'bathrooms',
     'bedrooms', 'beds', 'guests included'l
```

Cleaning Data

```
def has pool(a):
    if 'Pool' in a:
        return 1
    else:
        return 0
lst['pool'] = lst['amenities'].apply(has pool)
vxs = lst.loc[:, x + ['pool', 'price']].dropna()
v = np.log(yxs['price'].apply(lambda x:
      float(x.strip('$').replace(',', '')))
      + 0.000001)
```

8 nearest neighbors

```
w = ps.knnW from array(lst.loc[vxs.index,
       ['longitude', 'latitude']].values)
w.transform = 'R'
m1 = ps.spreg.OLS(y.values[:, None],
        yxs.drop('price', axis=1).values,
        w=w, spat diag=True,
                name x=yxs.drop('price',
                axis=1).columns.tolist(),
                 name v='ln(price)')
print(m1.summary)
```

$ln(P) = \alpha + \beta X + \epsilon$

Variable	Coefficient	Std.Error	t-Statistic	Probability
CONSTANT host_listings_count bathrooms	4.0976886	0.0223530	183.3171506	0.0000000
	-0.0000130	0.0001790	-0.0726772	0.9420655
	0.2947079	0.0194817	15.1273879	0.0000000
bedrooms beds	0.2947679 0.3274226 0.0245741	0.0194817 0.0159666 0.0097379	20.5067654 2.5235601	0.0000000 0.0000000 0.0116440
guests_included	0.0075119	0.0060551	1.2406028	0.2148030
pool	0.0888039	0.0221903	4.0019209	0.0000636

DIAGNOSTICS FOR SPATIAL DEPENDENCE

DINGHOSTICS FOR SITTIFIC DEFENDENCE							
TEST	MI/DF	VALUE	PROB				
Lagrange Multiplier (lag)	1	255.796	0.0000				
Robust LM (lag)	1	13.039	0.0003				
Lagrange Multiplier (error)	1	278.752	0.0000				
Robust LM (error)	1	35.995	0.0000				
Lagrange Multiplier (SARMA)	2	291.791	0.0000				

Vitor Kamada ECO 7110 Econometrics II August 2018 16 / 25

Spatially Lagged Exogenous Regressors

$$In(P_i) = \alpha + \beta X_i + \delta \sum_j w_{ij} X_i' + \epsilon_i$$

print(m2.summary)

guests included

pool

w_pool

Sum squared residual:	3070.363	F-statistic		:	558.6139
Sigma-square :	0.533	Prob(F-statistic)		:	0
S.E. of regression :	0.730	Log likelihood		:	-6365.387
Sigma-square ML :	0.532	Akaike info criterion		:	12746.773
S.E of regression ML: 0.7297		Schwarz criterion		:	12800.053
9					
Variable	Coefficient	Std.Error	t-Statistic		Probability
CONSTANT	4.0906444	0.0230571	177.4134022		0.0000000
host_listings_count	-0.0000108	0.0001790	-0.0603617		0.9518697
bathrooms	0.2948787	0.0194813	15.1365024		0.0000000
bedrooms	0.3277450	0.0159679	20.5252404		0.0000000
beds	0.0246650	0.0097377	2.5329419		0.0113373

0.0076894

0.0725756

0.0188875

0.2042695

0.0048181

0.2132508

1.2696250

2.8200486

1,2448141

0.0060564

0.0257356

0.0151729

Spatially Lagged Endogenous Regressors

$$In(P_i) = \alpha + \lambda \sum_{j} w_{ij} In(P_i) + \beta X_i + \epsilon_i$$

4D > 4B > 4B > 4B > B 900

Spatial 2SLS

```
Dependent Variable : ln(price) Number of Observations: 5767
Mean dependent var : 5.1952 Number of Variables : 8
S.D. dependent var : 0.9455 Degrees of Freedom : 5759
Pseudo R-squared : 0.4224
Spatial Pseudo R-squared: 0.4056
```

Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT host_listings_count bathrooms bedrooms beds guests_included pool	3.7085715 -0.0000587 0.2857932 0.3272598 0.0239548 0.0065147 0.0891100	0.1075621 0.0001765 0.0193237 0.0157132 0.0095848 0.0059651 0.0218383	34.4784213 -0.3324585 14.7897969 20.8270544 2.4992528 1.0921407 4.0804521	0.0000000 0.7395430 0.0000000 0.0000000 0.0124455 0.2747713 0.0000449
W_ln(price)	0.0785059	0.0212424	3.6957202	0.0002193

Instrumented: W ln(price)

Instruments: W_bathrooms, W_bedrooms, W_beds, W_guests_included,

W_host_listings_count, W_pool

Spatial Durbin Model (SDM)

$$(I_n - \rho W)y = X\beta + WX\theta + \epsilon$$

$$y = \sum_{r=1}^k S_r(W)x_r + V(W)\epsilon$$

$$V(W) = (I_n - \rho W)^{-1}$$

$$S_r(W) = V(W)(I_n\beta_r + W\theta_r)$$

21 / 25

Vitor Kamada ECO 7110 Econometrics II August 2018

Summary Measures of Impacts

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \sum_{r=1}^k \begin{pmatrix} S_r(W)_{11} & S_r(W)_{12} & \cdots & S_r(W)_{1n} \\ S_r(W)_{21} & S_r(W)_{22} & & & \\ \vdots & \vdots & \ddots & & \\ S_r(W)_{n1} & S_r(W)_{n2} & & S_r(W)_{nn} \end{pmatrix} \begin{pmatrix} x_{1r} \\ x_{2r} \\ \vdots \\ x_{nr} \end{pmatrix} + V(W)\epsilon$$

$$\frac{\partial y_i}{\partial x_{jr}} = S_r(W)_{ij} \text{ and } \frac{\partial y_i}{\partial x_{ir}} = S_r(W)_{ii}$$

$$\bar{M}(r)_{direct} = n^{-1}tr(S_r(W))$$

$$\bar{M}(r)_{total} = n^{-1}t'_n(S_r(W))t_n$$

$$\bar{M}(r)_{indirect} = \bar{M}(r)_{total} - \bar{M}(r)_{direct}$$

Spatial Autoregressive (SAR) Model

$$(I_n - \rho W)y = X\beta + \epsilon$$

$$y = \sum_{r=1}^{k} (I_n - \rho W)^{-1} I_n \beta_r x_r + (I_n - \rho W)^{-1} \epsilon$$

Total Impact

$$n^{-1}\iota'_n(I_n-\rho W)^{-1}\beta_r\iota_n=(1-\rho)^{-1}\beta_r$$

Indirect Impact: $\frac{\beta_r}{(1-\rho)} - \beta_r$

Code: Direct & Indirect Impacts

```
b = m3.betas[:-1]
h
rho = m3.betas[-1]
rho
btot = b / (1.0 - rho) #total impact
bind = btot - b #indirect impact
x names = ['NROOM','NBATH','PATIO','FIREPL','AC','GAR','AGE',
           'LOTSZ', 'SOFT']
varnames = ["CONSTANT"] + x + ["pool"]
print("
                  Variable Direct
                                               Indirect \
   Total" )
for i in range(len(varnames)):
    print("%20s %12.3f %12.3f %12.3f" % (varnames[i],b[i][0],
                                bind[i][0],btot[i][0]))
```

Direct & Indirect Impacts

$$In(P_i) = \alpha + \lambda \sum_{j} w_{ij} In(P_i) + \beta X_i + \epsilon_i$$

Variable	Direct	Indirect	t Total
CONSTANT	3.709	0.316	4.025
host_listings_count	-0.000	-0.000	-0.000
bathrooms	0.286	0.024	0.310
bedrooms	0.327	0.028	0.355
beds	0.024	0.002	0.026
<pre>guests_included</pre>	0.007	0.001	0.007
pool	0.089	0.008	0.097

Vitor Kamada ECO 7110 Econometrics II August 2018 25 / 25