

TARGET: JEE (ADVANCED) 2015

Course: VIJETA & VIJAY (ADP & ADR) Date: 01-05-2015

TEST INFORMATION

DATE: 03.05.2015

All INDIA OPEN TEST (AIOT) - 02

Syllabus: Full Syllabus

DPP No. # 08 (JEE-ADVANCED)

Total Marks: 169 Max. Time: 137 min. Single choice Objective (-1 negative marking) Q.1 to Q.15 (3 marks 2½ min.) [45, 37½] (4 marks, 3 min.) Multiple choice objective (-1 negative marking) Q.16 to Q.20 [20, 15] Assertion and Reason ('-1' negative marking) Q.21 to Q.23 (3 marks 2½ min.) [09, 71/2] Comprehension (-1 negative marking) Q.24 to Q.32 (3 marks 2½ min.) [27, 221/2] Single Digit Subjective Questions (no negative marking) Q.33 to Q.41 (4 marks 2½ min.) [36, 22½] Match the column (4 vs 4) (no negative marking) Q.42 to Q.43 (8 marks, 8 min.) [16, 16] Match the column (4 vs 5) (no negative marking) Q.44 to Q.45 (8 marks, 8 min.) [16, 16] 1. Which of the following statements is false? (A) In 3d series, there is a regular increase in the first ionisation enthalpy of transition elements from left to riaht. (B) In 3d series, the negative value of standard electrode potential (E⁰) for M²⁺/M decreases in the order Ti > Mn > Cr > Fe. (C) The decrease in metallic radius coupled with increase in atomic mass results in a general increase in the density of transition elements from Ti to Cu. (D) The higher oxidation state are favoured by the heavier elements (i.e. heavier members) in the groups of dblock. 2. Extraction of zinc from zinc blende is done industrially by: (A) electrolytic reduction (B) roasting followed by reduction with carbon

(C) roasting followed by reduction with another metal (D) roasting

(D) roasting followed by self-reduction

3. Which of the nitrates on strong heating leaves the metal as the residue?

(A) AgNO₃

(B) $Pb(NO_3)_2$

(C) $Cu(NO_3)_3$

(D) AI(NO₃).

4. Manganous salt in presence of catalyst zinc sulphate or zinc oxide is oxidised by potassium permanganate in neutral or faintly alkaline medium to :

(A) MnO_2

(B) Mn₂O₇

(C) Mn₂O₃

(D) Can not be oxidised

5. V_oO_c reacts with alkalies to give :

(A) VO₄3-

(B) VO,+

(C) VO²⁺

(D) VO₂²⁺

6._ A white crystalline substance dissolves in water. On passing H₂S gas in this solution, a black precipitate is obtained. The black precipitate dissolves completely in hot HNO₃. On adding a few drops of conc. H₂SO₄, a white precipitate is obtained. This precipitate is that of :

(A) BaSO,

(B) SrSO,

(C) PbSO,

(D) CdSO,

7._ Salt mixture __dil. HCl __white ppt. __Heated __and filtered under hot condition ______ Residue __NH₃ Sol. > Clear solution

Salt is consisting of cations:

(A) Pb2+ and Hg2+

(B) Ag+ and Hg22+

(C) Pb2+ and Aq+

(D) None of these

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

8.	An aqueous solution of a substance (X) gives a black precipitate on treatment with H_2S gas in presence NH_4OH and NH_4CI which dissolves in aqua regia on heating. The ammoniacal solution of substance (X) giver precipitate with dimethylglyoxime. The substance (X) is:					
	(A) Cu^{2+} salt (B) Fe^{3+} salt	(C) Ni ²⁺ salt	(D) Pb ²⁺ salt			
9.	Consider the following metallurgical processes: (i) Heating impure metal with CO and distilling the resulting volatile carbonyl (boiling point 43°C) and finally decomposing at 150°C to 200°C to get the pure metal.					
	(ii) Heating the sulphide ore in air until a part is converted to oxide and then further heating in the absence of air to let the oxide react with unchanged sulphide.					
	(iii) Electrolysing the molten electrolyte containing approximately equal amounts of the metal chloride and CaCl ₂ to obtain the metal.					
	The process used for obtaining sodium, nickel ar (A) (i), (ii) and (iii) (B) (ii), (iii) and (i)	nd copper are, respectivel (C) (iii), (i) and (ii)				
10.	Impure + I ₂ > Metal iodide	The above method of purif	fication is :			
	(A) Van – arkel process for Zr, Hg etc (C) Electro refining for W, Ag, Au, etc	(B) Distillation for Zn, C				
11.	Which of the following is desirable as a slag in each (A) CuFeS ₂ (B) FeSiO ₃	xtraction of copper but no (C) CaSiO ₃	t during the extraction of iron? (D) CuSiO ₃			
12.	Which of the following is not correctly matched with respect to the processes involved in the extractive metallurgy of the respective metal? (A) $Al_2O_3.2H_2O \rightarrow Al$: Leaching, precipitation, calcination and electrolytic reduction (molten state). (B) $Ag_2S \rightarrow Ag$: Leaching and displacement method. (C) $PbS \rightarrow Pb$: Froth flotation process, roasting and self reduction. (D) $KCl.MgCl_2.6H_2O \rightarrow Mg$: Dehydration by simple heating and electrolytic reduction (molten state).					
13.	(D) KCI.NIgCl ₂ . Θ H ₂ O \rightarrow Mig : Denydration by Sim Which of the following will not give positive chron		nc reduction (moiten state).			
10.	(A) Copper chloride, CuCl ₂ (C) Zinc chloride, ZnCl ₂	(B) Mercuric chloride, H (D) Aniline hydro chlorid				
14.	Which of the following statements is correct for matte which is formed during extraction of copper? (A) Matte is a molten mixture of mostly cuprous sulphide and a little iron sulphide (B) Matte is a solid mass consisting of CuO and FeO. (C) Matte is a molten mixture largely consisiting of CuS and FeS ₂ . (D) None of these					
15	H_2S and SO_2 can be distinguished by : (A) Litmus paper (B) MnO_4^-	-	(D) None of these			
16.*	Which of the following statements is/are true ab (A) It decolourises KMnO ₄ (C) It is a double salt	0 2	ing with KOH.			
17.*	Suppose Cu ²⁺ and Pb ²⁺ both are present in a mix (A) adding KI solution (C) adding NaOH solution	xture, then they can be se (B) adding NH ₃ solution (D) adding dilute HCl (2l				
18.*	In electrolysis of Al ₂ O ₃ by Hall-Heroult process: (A) cryolite Na ₃ [AlF ₆] lowers the melting point of Al ₂ O ₃ and increases its electrical conductivity. (B) Al is obtained at cathode and probably CO ₂ at anode (C) electrolysis is carried out in aqueous medium (D) anode consist of graphite					
19.*_	Heating which of the following salts in a dry test (A) ZnCO ₃ (white) (B) Co(NO ₃) ₂ .6H ₂ O (red)	tube may cause a chango (C) FeSO ₄ .6H ₂ O (green)				
20.*–	Complexes formed in the cyanide process are : (A) $[Au(CN)_2]^-$ (B) $[Ag(CN)_2]^-$	(C) [Cu(CN) ₄] ²⁻	(D) [Zn(CN) ₄] ²⁻			
21.	Statement-1: MgO bricks are used for inner lini	ng of the zone of combus	tion of blast furnace in extraction			
	of iron. Statement-2: MgO fails to react with SiO ₂ under the furnace condition where it is used as inner lining. (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.					
	(C) Statement-1 is True, Statement-2 is False.	(D) Statement-1 is False	e, Statement-2 is True.			

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PTC024029

22. Statement-1: Adding KCN to CuSO, produces a white ppt which dissolves in excess KCN.

Statement-2: With excess KCN, CuSO, forms K, [Cu(CN),] complex.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False. Statement-2 is True.
- Statement-1: NH₄Cl is added while analysing the IIIrd group basic radicals to suppress the ionisation of 23. NH₄OH.

Statement-2: With high concentration of OH ions, basic radicals of other groups also get precipitated with III group cations.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

Comprehension # 1

When 16.8 g of white solid (X) was heated 4.4 g of acid gas (A) that turned lime water milky was driven off together with 1.8 g of a gas (B) which condensed to a colorless liquid. The solid that remained (Y) dissolved in water to given an alkaline solution, which with excess of BaCl,, solution gave a white precipitate (Z). The precipitate effloresces with acid giving off CO₂ gas.

24. Compounds A and B are respectively:

(A) CO₂ and H₂O

(B) SO_a and H_aO

(C) CO_2 and N_2O_4 (D) SO_2 and N_2O_4

25. Compounds X and Y are respectively:

(A) Na₂CO₂ . 10H₂O and Na₂O

(B) KHCO, and CO,

(C) NaHCO, and Na,CO,

(D) Na,CO, NaHCO, 1.5H,O and Na,CO,

26. Compound Z is:

(A) BaSO₃

(B) BaSO,

(C) Ba(HCO₂)₂

(D) BaCO₃

Comprehension # 2

A mixture (M) of two salts was treated as follows:

- (i) The mixture was heated with MnO₂ and concentrated H₂SO₄, when yellowish green gas (P) was liberated.
- (ii) The mixture on heating with NaOH solution gave a gas (Q) that turned red litmus blue.
- (iii) Its solution in water gave blue precipitate (R) with potassium ferricyanide and red cololration (S) with ammonium thiocyanate.
- (iv) The mixture was boiled with KOH and the liberated gas was bubbled through on alkaline solution of K, Hgl, to give brown precipitate (T).
- 27. Gas P and Q are respectively.

(A) CIO₂ and NH₃

(B) SOCI, and SO,

(C) NH₃ and Cl₃

(D) Cl₂ and NH₃

Compounds R and S confirm the presence of: 28.

(A) Fe²⁺ and Fe³⁺ respectively

(B) Fe3+ and Fe2+ respectively

(C) Fe3+ ions only

(D) Fe2+ ions only

Comprehension #3

X + dil H₂SO₄ ---> brown colored vapours turning wet starch iodide paper blue

X + NaOH $\stackrel{\triangle}{\longrightarrow}$ NH₂ gas

 $X \xrightarrow{\Delta} Y(g) + Z(g)$ but liquid at room temperature.

29. Compound X is

(A) (NH₄)₂SO₄

(B) NH, NO

(C) (NH₄)₂CO₂

(D) none of these

Compound Y and Z are respectively 30.

(A) N_2 , H_2O

(B) CO₂ H₂O

(C) NO₂, H₂O

(D) SO, H,O

Comprehension # 4

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PTC024029

in hybridization of "X"? What is the oxidation number of Cr in the product of the reaction of K₂Cr₂O₂, with H₂O₂ / H¹, followed boiling, followed by treatment with excess KOH. How many of the following contain at least one iron atom in +2 oxidation state? (a) FeS₂ (b) Haematite (c) Magnetite (d) Brown ring complex (e) Na₂[Fe(CN)₂] (f) Felfe(CN)₂] (g) K₂Fe[Fe(CN)₂] (h) Ferrocene ([Fe(C,H₂)₂]) (f) FeWO₂ Amongst the following, the total number of compounds whose aqueous solution gives white precipitate with Pb² ions is : Kl, NH₃, Na₂CO₂, K₂CrO₂, NaCl, Na₂SO₃, Na₂S, KNO₃, NaClO₂ How many of the following metallurgies involve leaching? Alo₃ → Al₁; Ag₃S → Ag; Au → Au; CuFeS₃ → Cu; PbS → Pb MgCl₂ → Mg; FeCO₃ → Fe; Low grade copper ore → Cu; HgS → Hg The number of reducing agents involved in the extraction of iron (as pig iron) using blast furnace from or haematite is(are). Match the compound in column (l) with the properties of products obtained on heating it in column (ll). Column - I Column - II (A) FeSO₂ (p) One of the product is basic oxide (B) NH₃ NO₂ (q) One of the product is sacidic oxide (C) Ba(NJ₂, GH₂O) (s) At least one of the products owards O₂ at room temperatur (b) MgCl₂. 6H₂O (s) At least one of the products given in column - II Column - I Column - II (A) S₂O²₂ (aq) + H²(aq) → (p) Show disproportionation (B) Cu²² (aq) + H²(aq) → (q) Redox reaction (C) Cro²² (aq) + H²(aq) → (q) Redox reaction (C) Cro²² (aq) + H²(aq) → (q) Redox reaction (C) Cro²² (aq) + H²(aq) → (q) Redox reaction (C) Cro²² (aq) + H²(aq) → (q) Redox reaction (C) Mg(NH₂)VO₄ Δ (s) One of the products is diamagnetic olumn-II in qualitative analysis. Now match the entries given in column-II (p) N₂Cro², solution (C) N²² ions form first white precipitate with (p) N₂ ions form giren precipitate with (p) N₂ ions form first white precipitate with (p) NaOrlosolution (p) NaOrlosolution (F) Na ions form blue precipitate with (p) NaOrlosolution (p) NaOrlosolution (F) Column - I (A) Milesor buff colored (p) Milesolution (p) Mile	31.	What is (Z) ? (A) It is a salt of Fe ³⁺ (B) It is a salt of	of Sn ⁴⁺	(C) It is a salt of Mn ²⁺	(D) It is a salt of Cr ⁶⁺		
 Amongst the following the total number of ions which produce colour in the solutions (in water) is.	32.	(A) neutralisation reaction.	nedium ?	(B) disproportionation re	eaction.		
 Amongst the following the total number of ions which produce colour in the solutions (in water) is.	33.	* * * * * * * * * * * * * * * * * * * *					
 BaCl₂, NiSO₄, Mohr's salt, AlCl₈ Bi(NO₃)₃, Hg(CH₃COO)₂, ÂgNO₃, ŜnCl₂ CoSO₄. NaCl + Solid K, Cr₂O₇ + Conc. H₃SO₂ → "X" (reddish brown fumes) How many axial-d-orbital are involve in hybridization of "X"? What is the exidation number of Cr in the product of the reaction of K₂Cr₂O₇ with H₂O₃ / H*, followed by boiling, followed by treatment with excess KOH. How many of the following contain at least one iron atom in +2 oxidation state? (a) FeS₂ (b) Haematite (c) Magnetite (d) Brown ring complex (e) Na₃[Fe(CN)₈(NO)] (f) Fe[Fe(CN)₈] (g) K₂Fe[Fe(CN)₈] (h) Ferrocene ([Fe(C₃H₂)₂]) (i) FeWO₂ Amongst the following, the total number of compounds whose aqueous solution gives white precipitate with Pb²⁺ ions is: KI, NH₃, Na₂CO₃, K₂CrO₄, NaCl, Na₂SO₃, Na₂S, KNO₃, NaClO₄ How many of the following metallurgies involve leaching? Al₂O₃ → Al₁; Ag₂S → Ag; Au → Au; CuFeS₂ → Cu; PbS → Pb MgCl₂ → Mg; FeCO₃ → Fe; Low grade copper ore → Cu; HgS → Hg The number of reducing agents involved in the extraction of iron (as pig iron) using blast furnace from on haematite is(are). Match the compound in column (I) with the properties of products obtained on heating it in column (II). Column - I (A) FeSO₂ (p) One of the product is acidic oxide (g) NH₂NO₃ (q) One of the product is acidic oxide (g) NH₂NO₃ (p) MgCl₂. 6H₂O (s) At least one of the product is neutral oxide. Match the reactions given in column - I with the nature of the reaction/products given in column - II (A) S₂O₃²⁻²(aq) + H'(aq) → (q) Show a product is a magnetic object of the product is a magnetic object of the product is a magnetic object. (C) CrO₃²⁻² (aq) + H'(aq) → (q) Pse₂ (m) Ps	34.	Amongst the following the total number of ions which produce colour in the solutions (in water) is.					
in hybridization of "X"? What is the oxidation number of Cr in the product of the reaction of K₂Cr₂O₂, with H₂O₂ / H¹, followed boiling, followed by treatment with excess KOH. How many of the following contain at least one iron atom in +2 oxidation state? (a) FeS₂ (b) Haematite (c) Magnetite (d) Brown ring complex (e) Na₂[Fe(CN)₂] (f) Felfe(CN)₂] (g) K₂Fe[Fe(CN)₂] (h) Ferrocene ([Fe(C,H₂)₂]) (f) FeWO₂ Amongst the following, the total number of compounds whose aqueous solution gives white precipitate with Pb² ions is : Kl, NH₃, Na₂CO₂, K₂CrO₂, NaCl, Na₂SO₃, Na₂S, KNO₃, NaClO₂ How many of the following metallurgies involve leaching? Alo₃ → Al₁; Ag₃S → Ag; Au → Au; CuFeS₃ → Cu; PbS → Pb MgCl₂ → Mg; FeCO₃ → Fe; Low grade copper ore → Cu; HgS → Hg The number of reducing agents involved in the extraction of iron (as pig iron) using blast furnace from or haematite is(are). Match the compound in column (l) with the properties of products obtained on heating it in column (ll). Column - I Column - II (A) FeSO₂ (p) One of the product is basic oxide (B) NH₃ NO₂ (q) One of the product is sacidic oxide (C) Ba(NJ₂, GH₂O) (s) At least one of the products owards O₂ at room temperatur (b) MgCl₂. 6H₂O (s) At least one of the products given in column - II Column - I Column - II (A) S₂O²₂ (aq) + H²(aq) → (p) Show disproportionation (B) Cu²² (aq) + H²(aq) → (q) Redox reaction (C) Cro²² (aq) + H²(aq) → (q) Redox reaction (C) Cro²² (aq) + H²(aq) → (q) Redox reaction (C) Cro²² (aq) + H²(aq) → (q) Redox reaction (C) Cro²² (aq) + H²(aq) → (q) Redox reaction (C) Mg(NH₂)VO₄ Δ (s) One of the products is diamagnetic olumn-II in qualitative analysis. Now match the entries given in column-II (p) N₂Cro², solution (C) N²² ions form first white precipitate with (p) N₂ ions form giren precipitate with (p) N₂ ions form first white precipitate with (p) NaOrlosolution (p) NaOrlosolution (F) Na ions form blue precipitate with (p) NaOrlosolution (p) NaOrlosolution (F) Column - I (A) Milesor buff colored (p) Milesolution (p) Mile	35.	Which of the following will produce an insoluble precipitate with NH ₃ (aq.)/H ₂ S.					
boiling, followed by treatment with excess KOH. How many of the following contain at least one iron atom in +2 oxidation state? (a) FeS₂ (b) Haematite (c) Magnetite (d) Brown ring complex (e) Na_[Fe(CN)₂(NO)] (f) Fe[Fe(CN)₂] (g) K_2Fe[Fe(CN)₂] (h) Ferrocene ([Fe(C₂H₂)₂]) (f) FeWO₄ 39. Amongst the following, the total number of compounds whose aqueous solution gives white precipitate with Pb²+ ions is: KI, NH₃, Na₂CO₃, K₂CrO₂, NaCI, Na₂SO₃, Na₂S, KNO₃, NaCIO₄ 40. How many of the following metallurgies involve leaching? Al₂O₃ → Al, ; Ag₃S → Ag ; Au → Au ; CuFeS₂ → Cu ; PbS → Pb MgCl₂ → Mg : FeCO₃ → Fe ; Low grade copper ore → Cu ; HgS → Hg 41. The number of reducing agents involved in the extraction of iron (as pig iron) using blast furnace from on haematitle is(are). 42. Match the compound in column (I) with the properties of products obtained on heating it in column (II). Column - I Column - I Column - I Column - I (A) FeSO₃ (g) One of the product is basic oxide (G) Ba(N)₃ (g) One of the product is neutral oxide. 43. Match the reactions given in column - I with the nature of the reaction/products given in column - II Column - I (A) S₂O₃ (aq) + H*(aq) → (p) Show disproportionation (B) Cu² (aq) + H*(aq) → (p) Show disproportionation (C) CrO₂² (aq) + H*(aq) → (p) Show disproportionation (C) CrO₂² (aq) + H*(aq) → (p) Show disproportionation (C) Mg(NH₃)VO₃ (a) Heast one of the products is diamagnetic Column-II (a) Pb² ions form yellow precipitate with (B) Zn² ions form first white precipitate and then dissolves in excess with (C) Ni²* ions form green precipitate with (B) Zn²* ions form first white precipitate and then dissolves in excess with (C) Ni²* ions form blue precipitate with (D) Cu³* ions form blue precipitate with (D) Ciounn-II (A) White or buff colored (B) Oxidisable by a	36	NaCl + Solid $K_2Cr_2O_7$ + Conc. $H_2SO_4 \longrightarrow "X"$ (reddish brown fumes) How many axial-d-orbital are involved in hybridization of "X"?					
(a) FeS₂ (b) Haematite (c) Magnetite (d) Brown ring complex (e) Na₃[Fe(CN)₃(NO)] (f) Fe(Fe(CN)₃] (g) K₂Fe[Fe(CN)₃] (h) Ferrocene ([Fe(C₃H₂)₂]) (f) FeWO₄ 39. Amongst the following, the total number of compounds whose aqueous solution gives white precipitate with Pb²⁺ ions is: KI, NH₃, Na₂CO₃, K₂CO₃, NaCI, Na₂SO₃, Na₂S, KNO₃, NaCIO₄ 40. How many of the following metallurgies involve leaching? Al₂O₃ → AI,: Ag₃S → Ag; Au → Au; CuFeS₂ → Cu; PbS → Pb MgGl₂ → Mg; FeCO₃ → Fe; Low grade copper ore → Cu; HgS → Hg 41. The number of reducing agents involved in the extraction of iron (as pig iron) using blast furnace from on haematite is(are). 42. Match the compound in column (I) with the properties of products obtained on heating it in column (II). Column - I (A) FeSO₄ (p) One of the product is basic oxide (B) NH,NO₃ (q) One of the product is acidic oxide (B) NH,NO₃ (q) One of the product is uncative towards O₂ at room temperatur (D) MgCl₂. 6H₂O (s) At least one of the products given in column - II (A) S₂O₂² (aq) + H⁺(aq) → (p) Show disproportionation (B) Cu²² (aq) + I⁺ (aq) → (p) Redox reaction (C) CrO₂²² (aq) + H⁺(aq) → (p) Redox reaction (C) Mg(NH₂)VO₄ → (s) One of the products has metal-oxygen-metal bond/ linkage. 44. In column-I there are certain reactions which are given by different basic radicals with the reagents given in column-II in qualitative analysis. Now match the entries given in column-I with entries given in column-II (A) Pb²⁺ ions form yellow precipitate with (B) Zn²⁺ ions form green precipitate with (C) Ni²⁺ ions form green precipitate with (C) Ni²⁺ ions form green precipitate with (C) Ni²⁺ ions form green precipitate with (D) Cu²⁺ ions form blue precipitate with (E) Ni² ions form green precipitate with (E) Column - I (A) White or buff colored (B) Oxidisable by air (C) Amphoteric (D) Green (37.	What is the oxidation number of Cr in the product of the reaction of $K_2Cr_2O_7$ with H_2O_2 / H^+ , followed by boiling, followed by treatment with excess KOH.					
Pb²+ ions is : KI, NH₃, Na₂Co₃, K₂Cro₄, NaCl, Na₂So₃, Na₂S, KNo₃, NaClO₄ 40. How many of the following metallurgies involve leaching? Al,O₃ → Al, ; Ag₃ → Ag ; Au → Au ; CuFeS₂ → Cu ; PbS → Pb MgCl₂ → Mg ; FeCo₃ → Fe ; Low grade copper ore → Cu : HgS → Hg 41. The number of reducing agents involved in the extraction of iron (as pig iron) using blast furnace from or haematite is(are). 42. Match the compound in column (I) with the properties of products obtained on heating it in column (II). Column - I (A) FeSO₂ (p) One of the product is basic oxide (B) NH₃NO₃ (q) One of the product is acidic oxide (C) Ba(N)₂ (r) One of the product is acidic oxide (C) Ba(N)₂ (r) One of the product is unreactive towards O₂ at room temperatur (D) MgCl₂. 6H₂O (s) At least one of the product is neutral oxide. 43. Match the reactions given in column - I with the nature of the reaction/products given in column - II Column - I (A) S₂O₃² (aq) + H¹(aq) → (p) Show disproportionation (B) Cu²² (aq) + H²(aq) → (q) Redox reaction (C) CrO₂⁴ (aq) + H²(aq) → (r) At least one of the products is diamagnetic (D) Mg(NH₄)VO₄ → (s) One of the products has metal-oxygen-metal bond/ linkage. 10. In column-I there are certain reactions which are given by different basic radicals with the reagents given in column-I with entries given in column-I (O) Ni²¹ ions form green precipitate with (r) KCN solution (B) Cu²² ions form first white precipitate and then dissolves in excess with (r) NaOH solution (r) KI solution	38.	(a) FeS_2 (b) Haematite (e) $Na_2[Fe(CN)_5(NO)]$ (f) $Fe[Fe(CN)_6]$		(c) Magnetite	(d) Brown ring complex		
Al, Q ₃ → Al, ; Ag, S → Ag ; Au → Au ; CuFeS ₂ → Cu ; PbS → Pb MgCl ₂ → Mg ; FeCO ₃ → Fe ; Low grade copper ore → Cu ; HgS → Hg 41. The number of reducing agents involved in the extraction of iron (as pig iron) using blast furnace from or haematite is(are). 42. Match the compound in column (I) with the properties of products obtained on heating it in column (II). Column - I (A) FeSO ₄ (p) One of the product is basic oxide (B) NH ₄ NO ₃ (q) One of the product is acidic oxide (C) Ba(N ₂) ₂ (r) One of the product is unreactive towards O ₂ at room temperature (D) MgCl ₂ . 6H ₂ O (s) At least one of the product is neutral oxide. 43. Match the reactions given in column - I with the nature of the reaction/products given in column - II (A) S ₂ O ₃ ²⁻ (aq) + H ⁺ (aq) → (p) Show disproportionation (B) Cu ²⁺ (aq) + I ⁻ (aq) → (p) Show disproportionation (C) CrO ₄ ²⁻ (aq) + H ⁺ (aq) → (r) At least one of the products is diamagnetic (D) Mg(NH ₄)VO ₄ → (s) One of the products has metal-oxygen-metal bond/ linkage. 44. In column-I there are certain reactions which are given by different basic radicals with the reagents given in column-II in qualitative analysis. Now match the entries given in column-I with entries given in column-II. (Column-I (A) Pb ²⁺ ions form green precipitate with (B) Zn ²⁺ ions form first white precipitate and then dissolves in excess with (C) Ni ²⁺ ions form first white precipitate with (D) Cu ²⁺ ions form first white precipitate with (C) Ni ²⁺ ions form first white precipitate with (D) Cu ²⁺ ions form first white precipitate with (E) Column-I (A) White or buff colored (B) Oxidisable by air (C) Amphoteric (C) Amphoteric (D) Green (S) Cr(OH) ₃ (E) Ni(OH) ₂ (S) Cr(OH) ₃ (E) Ni(OH) ₂	39.	Amongst the following, the total number of compounds whose aqueous solution gives white precipitate with Pb^{2+} ions is : KI, NH $_3$, Na $_2$ CO $_3$, K $_2$ CrO $_4$, NaCl, Na $_2$ SO $_3$, Na $_2$ S, KNO $_3$, NaClO $_4$					
 haematite is(are). 42. Match the compound in column (I) with the properties of products obtained on heating it in column (II). Column - I (A) FeSO₄ (p) One of the product is basic oxide (B) NH,NO₃ (q) One of the product is acidic oxide (C) Ba(N)₂ (r) One of the product is unreactive towards O₂ at room temperature (D) MgCl₂. 6H₂O (s) At least one of the product is neutral oxide. 43. Match the reactions given in column - I with the nature of the reaction/products given in column - II (A) S₂O₂² (aq) + H⁺(aq) → (p) Show disproportionation (B) Cu²⁺ (aq) + I⁻ (aq) → (q) Redox reaction (C) CrO₄²⁻ (aq) + H⁺ (aq) → (r) At least one of the products is diamagnetic (D) Mg(NH₄)VO₄ → (s) One of the products has metal-oxygen-metal bond/ linkage. In column-I there are certain reactions which are given by different basic radicals with the reagents given in column-II in qualitative analysis. Now match the entries given in column-I with entries given in column-II (A) Pb²⁺ ions form yellow precipitate with (B) Zn²⁺ ions form green precipitate with (B) Zn²⁺ ions form green precipitate with (C) Ni²⁺ ions form green precipitate with (D) Cu²⁺ ions form blue precipitate with (D) Cu³⁺ ions form b	40.						
Column - I (A) FeSO₂ (p) One of the product is basic oxide (B) NH₄NO₃ (q) One of the product is acidic oxide (C) Ba(N₃)₂ (r) One of the product is unreactive towards O₂ at room temperature (D) MgCl₂. 6H₂O (s) At least one of the product is neutral oxide. 43. Match the reactions given in column - I with the nature of the reaction/products given in column - II Column - I (A) S₂O₃² (aq) + H*(aq) → (p) Show disproportionation (B) Cu²* (aq) + I* (aq) → (q) Redox reaction (C) CrO₃² (aq) + H* (aq) → (r) At least one of the products is diamagnetic (D) Mg(NH₄)VO₄ → (s) One of the products has metal-oxygen-metal bond/ linkage. 44. In column-I there are certain reactions which are given by different basic radicals with the reagents given in column-II in qualitative analysis. Now match the entries given in column-II with entries given in column-II. Column-I (A) Pb²* ions form yellow precipitate with (B) Zn²* ions form green precipitate and then dissolves in excess with (2) NaOH solution (C) Ni²* ions form green precipitate with (D) Cu²* ions form blue precipitate with (E) Ni²* ions form blue precipitate with (D) Cu²* ions form blue precipitate with (E) Column - I (A) White or buff colored (B) Oxidisable by air (C) Amphoteric (D) Green (E) Or(CH)₃ (E) Or(41.	The number of reducing agents involved in the extraction of iron (as pig iron) using blast furnace from ore haematite is(are).					
Column - I (A) S₂O₃²² (aq) + H⁺(aq) → (p) Show disproportionation (B) Cu²⁺ (aq) + I⁻ (aq) → (q) Redox reaction (C) CrO₃⁴² (aq) + H⁺ (aq) → (r) At least one of the products is diamagnetic (D) Mg(NH₃)VO₄ → (s) One of the products has metal-oxygen-metal bond/ linkage. 44. In column-I there are certain reactions which are given by different basic radicals with the reagents given in column-II in qualitative analysis. Now match the entries given in column-I with entries given in column-II. Column-I (A) Pb²⁺ ions form yellow precipitate with (B) Zn²⁺ ions form first white precipitate and then dissolves in excess with (C) Ni²⁺ ions form green precipitate with (D) Cu²⁺ ions form blue precipitate with (D) Cu²⁺ ions form blue precipitate with (E) NH₃ solution (F) KI solution (F) KI solution (F) KCN solution	42.	Column - I (A) FeSO ₄ (B) NH ₄ NO ₃ (C) Ba(N ₃) ₂	(p) One (q) One (r) One	Column - II of the product is basic of the product is acidic cof the product is unreactive	xide oxide e towards O ₂ at room temperature.		
(B) Cu²+ (aq) + I⁻ (aq) → (q) Redox reaction (C) CrO²+ (aq) + H⁺ (aq) → (r) At least one of the products is diamagnetic (D) Mg(NH₄)VO₄ → (s) One of the products has metal-oxygen-metal bond/ linkage. 44. In column-I there are certain reactions which are given by different basic radicals with the reagents given in column-II in qualitative analysis. Now match the entries given in column-I with entries given in column-II. Column-I (A) Pb²+ ions form yellow precipitate with (p) K₂CrO₄ solution (B) Zn²+ ions form first white precipitate and then dissolves in excess with (q) NaOH solution (C) Ni²+ ions form green precipitate with (r) KI solution (D) Cu²+ ions form blue precipitate with (s) NH₃ solution (T) KI Solution (T) KCN solution (T) KCN solution (T) KCN solution (T) KCN solution (T) KI Solution (43.						
(D) Mg(NH ₄)VO ₄ $\xrightarrow{\Delta}$ (s) One of the products has metal-oxygen-metal bond/ linkage. In column-I there are certain reactions which are given by different basic radicals with the reagents given column-II in qualitative analysis. Now match the entries given in column-I with entries given in column-II. Column-I (A) Pb ²⁺ ions form yellow precipitate with (B) Zn ²⁺ ions form first white precipitate and then dissolves in excess with (C) Ni ²⁺ ions form green precipitate with (D) Cu ²⁺ ions form blue precipitate with (E) Culumn-I (A) White or buff colored (B) Oxidisable by air (C) Amphoteric (C) Amphoteric (D) Green (S) Cr(OH) ₂ (S) Cr(OH) ₃ (T) Ni(OH) ₂							
In column-I there are certain reactions which are given by different basic radicals with the reagents given column-II in qualitative analysis. Now match the entries given in column-II with entries given in column-II. Column-I (A) Pb ²⁺ ions form yellow precipitate with (B) Zn ²⁺ ions form first white precipitate and then dissolves in excess with (C) Ni ²⁺ ions form green precipitate with (D) Cu ²⁺ ions form blue precipitate with (D) Cu ²⁺ ions form blue precipitate with (E) Column - I (E) Column - I (E) Column - II (E) White or buff colored (E) Oxidisable by air (E) Amphoteric (E) Amphoteric (E) Green (E) Cr(OH) ₂ (E) Original (E) Cr(OH) ₂ (E) Original (E) Cr(OH) ₂ (E) Original (E) Cr(OH) ₃ (E) Original (E) Cr(OH) ₃ (E) Original (E) Cr(OH) ₃ (E) Ni(OH) ₂			(r) At le	ast one of the products is	s diamagnetic		
column-II in qualitative analysis. Now match the entries given in column-I with entries given in column-II. Column-II (A) Pb^{2+} ions form yellow precipitate with (B) Zn^{2+} ions form first white precipitate and then dissolves in excess with (C) Ni^{2+} ions form green precipitate with (D) Cu^{2+} ions form blue precipitate with (D) Cu^{2+} ions form blue precipitate with (E) $Column - I$ (E)		(D) Mg(NH ₄)VO ₄ $\xrightarrow{\Delta}$	(s) One	of the products has meta	al-oxygen-metal bond/ linkage.		
(A) White or buff colored (B) Oxidisable by air (C) Amphoteric (D) Green (D) Green (D) Green (D) Mn(OH) ₂ (Q) Zn(OH) ₂ (r) Fe(OH) ₂ (s) Cr(OH) ₃ (t) Ni(OH) ₂	44.	column-II in qualitative analysis. Now ma Column-I (A) Pb ²⁺ ions form yellow precipitate with (B) Zn ²⁺ ions form first white precipitate with (C) Ni ²⁺ ions form green precipitate with	atch the e	ntries given in column-l v	with entries given in column-II. Column-II (p) K_2CrO_4 solution (q) NaOH solution (r) KI solution (s) NH_3 solution		
Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005		(A) White or buff colored(B) Oxidisable by air(C) Amphoteric(D) Green	· CG Tawar	(p) Mn(OH) ₂ (q) Zn(OH) ₂ (r) Fe(OH) ₂ (s) Cr(OH) ₃ (t) Ni(OH) ₂			