MATH 444 HW 7

Nathaniel Murphy

3.4.10

 x_n is bounded, so by the Bolzano-Weierstrass Theorem, x_n has a convergent subsequence. This comes from the monotone subsquence theorem. We realize that we have 2 cases for s_n :

1. s_n is a constant sequence.

In this case, because $\forall k \in \mathbb{N}$ sup $x_k : k > n = L$ means that even after taking finitely many x_i out of the sequence, that infinitely many x_{k+i} are epsilon close to s_n , thus converging to $\inf s_n = s_n$.

2. s_n is a decreasing sequence.

In this case, we can find a natural k such that $s_k > s_{k+1}$. Now consider the s_{k+1} tail of the sequence s_n . We can keep repeating this process and s_n will converge because s_n is decreasing and bounded. Once we find the limit of s_n , we know that infinitely many x_n are epsilon close to the limit of s_n (because of case 1), so we see that there is definitely a subsequence of s_n which converges to the limit of s_n which is s_n (because s_n is decreasing).

3.5.2

a.

If $x_n = \left(\frac{n+1}{n}\right)$, show that $\forall \epsilon > 0$, $\exists N_{\epsilon} \in \mathbb{N} : n > N_{\epsilon} \Rightarrow |x_n - x_m| < \epsilon$.

$$|x_n - x_m| = \left| \frac{n+1}{n} - \frac{n+p+1}{n+p} \right| = \left| \frac{(n+p)(n+1)}{n(n+p)} - \frac{n(n+p+1)}{n(n+p)} \right| = \left| \frac{n^2 + pn + n + 1 - n^2 - np - n}{n(n+p)} \right| = \frac{1}{n(n+p)} < \frac{1}{n} < \epsilon \Rightarrow \frac{1}{\epsilon} < n$$

By the Archimedean Property, such n exists, and it follows that x_n is Cauchy.

b.

If
$$x_n = 1 + \frac{1}{2!} + \ldots + \frac{1}{n!}$$
, show that $\forall \epsilon > 0$, $\exists N_{\epsilon} \in \mathbb{N} : n, m > N_{\epsilon} \Rightarrow |x_n - x_m| < \epsilon$

$$|x_n - x_m| = |x_n - x_{n+p}| = \left| 1 + \frac{1}{2!} + \ldots + \frac{1}{n!} - \left(1 + \frac{1}{2!} + \ldots + \frac{1}{n!} + \ldots + \frac{1}{(n+p)!} \right) \right| = \frac{1}{(n+1)!} + \ldots + \frac{1}{(n+p)!} < \frac{p}{n!} \le \frac{p}{n} < \epsilon \Rightarrow \frac{p}{\epsilon} < n$$

By the Archimedean Property, such n exists, and it follows that x_n is Cauchy.

3.5.3c

Suppose $\ln n$ is Cauchy. Then, $\forall \epsilon > 0$, $\exists N_{\epsilon} \in \mathbb{N} : n, m > N_{\epsilon} \Rightarrow |x_n - x_m| < \epsilon$. Let us fix $n > N_{\epsilon}$. $\ln n$ is well defined. Let us now examine $\lim_{m \to \infty} \ln m = \infty$. We can clearly see that $\lim_{m \to \infty} |x_n - x_m| = |\ln n - \infty| = \infty < \epsilon$, which is a contradiction. Thus, $x_n = \ln n$ must not be Cauchy.

3.5.4

Suppose that x_n and y_n are Cauchy. Then it follows that:

$$\forall \epsilon > 0 \exists N_{\epsilon} : n, m > N_{\epsilon} \Rightarrow |x_n - x_m| < \frac{\epsilon}{2}$$

$$\forall \epsilon > 0 \exists N_{\epsilon} : i, k > N'_{\epsilon} \Rightarrow |y_i - y_k| < \frac{\epsilon}{2}$$

Denote $z_n := \{x_n + y_n, n \in \mathbb{N}\}$. Let $M = \max\{N_{\epsilon}, N'_{\epsilon}\}$. We can see that

$$|z_n - z_m| = |x_n + y_n - x_m - y_m| = |x_n - x_m + y_n - y_m| \le |x_n - x_m| + |y_n - y_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

So we see that $\forall \epsilon > 0, \exists M \in \mathbb{N} : n, m > M \Rightarrow |z_n - z_m| < \epsilon, \text{ so } z_n \text{ is Cauchy.}$

Every Cauchy sequence is bounded, so let $X := \sup x_n$ and $Y := \sup y_n$. We see that

$$\forall \epsilon > 0 \exists N_{\epsilon} : n, m > N_{\epsilon} \Rightarrow |x_n - x_m| < \frac{\epsilon}{2 \cdot X}$$

$$\forall \epsilon > 0 \exists N_{\epsilon}' : i, k > N_{\epsilon}' \Rightarrow |y_i - y_k| < \frac{\epsilon}{2 \cdot Y}$$

Denote $z_n := \{x_n y_n, n \in \mathbb{N}\}.$

$$|z_{n} - z_{m}| = |x_{n}y_{n} - x_{m}y_{m}| = |x_{n}y_{n} - x_{n}y_{m} + x_{n}y_{m} - x_{m}y_{m}| = |x_{n}(y_{n} - y_{m}) + y_{m}(x_{n} - x_{m})| \le x_{n}|y_{n} - y_{m}| + y_{m}|x_{n} - x_{m}| < x_{n} \frac{\epsilon}{2 \cdot X} + y_{m} \frac{\epsilon}{2 \cdot Y} \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

So wee see that, taking $M = \max\{N_{\epsilon}, N'_{\epsilon}\}, \ \forall \ \epsilon > 0, \ \exists \ M \in \mathbb{N}: \ n, m > M \Rightarrow |z_n - z_m| < \epsilon,$ so z_n is Cauchy.

3.5.5

If $x_n = \sqrt{n}$, show that x_n satisfies $\lim_{n\to\infty} |x_{n+1} - x_n| = 0$.

Show that $\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N} : n > N_{\epsilon} \Rightarrow |x_{n+1} - x_n| < \epsilon^2 + 1.$

$$|x_{n+1} - x_n| = |\sqrt{n+1} - \sqrt{n}| \le |sqrtn + 1| - |\sqrt{n}| = \sqrt{n+1} - \sqrt{n} < \sqrt{n+1} < \epsilon \Rightarrow n > \epsilon^2 + 1$$

We see that such n exists due to the Archimedean property, so it follows that $\lim_{n\to\infty} |x_{n+1} - x_n| = 0$.

Claim: $x_n = \sqrt{n}$ is not Cauchy.

Suppose that x_n is Cauchy. Then $\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N} : n, m > N_{\epsilon} \Rightarrow |x_n - x_m| < \epsilon$.

Fix $n > N_{\epsilon}$. We see that $\lim_{m \to \infty} \sqrt{m} = \infty$, so $\lim_{m \to \infty} |x_n - x_m| = |\sqrt{n} - \infty| = \infty < \epsilon$, a contradiction. Thus, $x_n = \sqrt{n}$ is not Cauchy.

3.5.7

 x_n is Cauchy, so $\forall \epsilon > 0 \ \exists \ N_{\epsilon} \in \mathbb{N} : \ n, m > N_{\epsilon} \Rightarrow |x_n - x_m| < \epsilon$.

Fix $\epsilon = 1$. By the above definition, there exist $n, m \in \mathbb{N}$ usch that $|x_n - x_m| < \epsilon$. But x_n and x_m are both integers, and integer addition and subtraction always results in an integer, so $|x_n - x_m| < 1 \Rightarrow x_n = x_m$, which means that $\forall i > \min\{n, m\}$, the x_i tail of the sequence is constant.

3.7.3a

$$\frac{1}{(n+1)(n+2)} = \frac{A}{n+1} + \frac{B}{n+2} \Rightarrow 1 = A(n+2) + B(n+1)$$

Let n = -2. Then:

$$1 = A(0) + B(-1) \Rightarrow B = -1$$

Let n = -1. Then:

$$1 = A(1) + B(0) \Rightarrow A = 1$$

so

$$\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)} = \frac{A}{n+1} + \frac{B}{n+2} = \frac{1}{n+1} - \frac{1}{n+2}$$

$$\sum_{n=0}^{\infty} \frac{1}{n+1} - \frac{1}{n+2} = \left[1 - \frac{1}{2}\right] + \left[\frac{1}{2} - \frac{1}{3}\right] + \left[\frac{1}{3} - \frac{1}{4}\right] + \dots + \left[\frac{1}{n+1} - \frac{1}{n+2}\right]$$

After canceling values, we observe that $\sum_{n=0}^{\infty} \frac{1}{n+1} - \frac{1}{n+2} = \left[1 - \frac{1}{n+2}\right]$.

$$\lim_{n \to \infty} \left[1 - \frac{1}{n+2} \right] = 1 - 0 = 1 \Rightarrow \sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)} = 1$$

3.7.5

No, because $\sum (x_n + y_n) = \sum x_n = \sum y_n$ and for $\sum (x_n + y_n)$ to be convergent, both x_n and y_n must be convergent. $(L + \infty = \infty)$