Objective-first optimization for nanophotonics

- adjoint method
- objective-first approach
- field setup: boundary-value problem
- structure setup: level-set formulation
- example
- ongoing and future work

Adjoint method

Typical formulation of a structural optimization problem:

decrease
$$f(x)$$
 (1)

subject to
$$g(x,p) = 0$$
 (2)

- $f(x): \mathbf{C}^n \to \mathbf{R}$ is the design objective
- $g(x,p): \mathbf{C}^n \times \mathbf{R}^n \to \mathbf{C}^n$ is the governing physics
- $x \in \mathbf{C}^n$ is the field
- $p \in \mathbf{R}^n$ is the structure
- ullet x is the dependent variable, p is the independent variable

 problem is generally non-convex, so we optimize using only the first-order approximations,

$$f(x_0 + dx) \approx f(x_0) + \frac{\partial f}{\partial x} dx$$
 (3)

$$g(x_0 + dx, p_0 + dp) \approx g(x_0, p_0) + \frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial p} dp$$
 (4)

ullet assuming that $g(x_0,p_0)=0$, the equality constraint is satisfied via

$$dx = -\left(\frac{\partial g}{\partial x}\right)^{-1} \frac{\partial g}{\partial p} dp \tag{5}$$

• now we can decrease $f(x_0 + dx)$,

$$f(x_0 + dx) \approx f(x_0) + \frac{\partial f}{\partial x} dx$$
 (6)

$$\approx f(x_0) - \frac{\partial f}{\partial x} \left(\frac{\partial g}{\partial x}\right)^{-1} \frac{\partial g}{\partial p} dp$$
 (7)

$$\approx f(x_0) + \frac{\partial f}{\partial p} dp$$
 (8)

by choosing dp in the direction of $dp \propto -\frac{\partial f}{\partial p}$

• computing $\frac{\partial f}{\partial p}$ can be reduced to a single field solve (i.e. solving g(x,p) for x, given p)

Characteristics of the adjoint method:

- can use existing field solvers
- ullet each iteration requires two solves, one to calculate $rac{\partial f}{\partial p}$, and the other to calculate the new x
- need good initial guess, since this heavily influences what the final structure will be
- optimization generally "stalls" on local minima

Objective-first approach

Ob-1 means that we prioritize the design objective over satisfying physics

decrease
$$||g(x,p)||^2$$
 (9)

subject to
$$f(x) = 0$$
 (10)

- $r(x,p) = ||g(x,p)||^2$ is the physics residual
- ullet x always satisfies our design objective, we change x and p only to increasingly satisfy physics
- x and p are both independent variables

this problem is still non-convex, use linear approximation

$$r(x_0 + dx, p_0 + dp) \approx r(x_0, p_0) + \frac{\partial r}{\partial x} dx + \frac{\partial r}{\partial p} dp$$
 (11)

$$f(x_0 + dx) \approx f(x_0) + \frac{\partial f}{\partial x} dx$$
 (12)

- ullet decrease r by choosing $dp \propto -\frac{\partial r}{\partial p}$
- decrease r by choosing $dx \propto -(I P_{fx}) \frac{\partial r}{\partial x}$
- P_{f_x} is the projector onto the vector space defined by $\frac{\partial f}{\partial x}$, this satisfies the equality constraint
- computing P_{fx} requires solving for $\left(\frac{\partial f}{\partial x}^T \frac{\partial f}{\partial x}\right)^{-1}$, but this is often *trivial*

Ob-1 requires only matrix multiplication (and trivial matrix solve)

- \bullet For 3D structures, most field solvers are based on (often > 10,000) matrix multiplies
- this means that is may be possible to solve larger design problems in the same amount of time needed for a field solve

Ob-1 should be less dependent on starting guess

- some previous problems (using a similar approach) did not depend at all on initial structure
- such a formulation may result in fewer local minima to stall on