Московский государственный университет имени М.В. Ломоносова Химический факультет

Кафедра электрохимии Лаборатория химии высоких энергий

Радиационно-химические превращения молекул бензола в матрицах твёрдых инертных газов

Дипломная работа студентки 619 группы Лукьяновой Марии Антоновны

Научный руководитель: к. х. н., н. с. Саночкина Е. В.

Оглавление

1	Обзор литературы		
	1.1	Радиолиз бензола	3
\mathbf{C}_{1}	писо	к литературы	ç

1 Обзор литературы

В данном обзоре проведён анализ имеющихся работ по изучению

1.1 Радиолиз бензола

Радиолизу бензола посвящено мноство работ. Многие из них направлены на установление конечных продуктов разложения бензола, що не на установление детального механизма.

Показано, что при радиолизе бензола в газообразном состоянии радиационно-химический разложения выход составляет 6 молекул/100 эВ [1, 2]. В работе [1] изучен радиолиз бензола при температурах 260–390°С. Наблю пось образование водорода, метана, ацетилена, этана, этилена, бифенила И продуктов. Были установлены зависимости выходов от плотности и температуры. Сильнее всего от температуры менялся выход водорода (от 0.1 до 3 молекул/100 9B). При повышении плотности выход разлождая бензола снижался из-за конкуренции между дезактивацией возбуждённых состояний и их превращением в продукты.

При радиолизе бензола в конденсированном состоянии наблюдаются низкие выходы газообразных продуктов. Так при облучении γ -лучами или электронами жидкого бензола выход водорода составляет около 0.04 молекул/100 эВ, ацетилена — 0.02 молекул/100 эВ [3, 4]. При радиолизе твёрдого бензола при 160 К выходы становятся ещё меньше: $G(H_2) = 0.0085$ молекул/100 эВ, $G(CH_4) = 0.008$ молекул/100 эВ, $G(C_2H_2) = 0.0016$ молекул/100 эВ []. При радиолизе жидкого дейтерированного бензола образуется молекулярный дейтерий, его радиационно-химический выход меньше, чем молекулярного водорода (0.017 молекул/100 эВ). Выход дейтерированного ацетилена не сильно отличается от его недейтерированного аналога (0.0133 молекул/100 эВ) [5].

Выход тяжёлых продуктов при радиолизе бензола на несколько порядков выше. Основным продуктом является так называемый «полимер» — смесь веществ, полученных объединением нескольких

молекул бензола. Радиационно-химический выход превращения бензола в «полимер» составляет 0.75 молекул/100 эВ [6]. Отношение содержания углерода и водорода варьируется в «полимере» от 1.0 до 1.6, средняя молекулярная масса растёт с поглощённой дозой и может достигать 430 при дозе около 10⁷ Гр [6]. Показано, что при радиолизе бензола образуются бифенил, циклогексадиены, фенилциклогексадиены, бициклогексадиены, а так же различные терфенилы [].

Перейдём к рассмотрению промежуточных частиц, образующихся в процессе радиолиза бензола. Так, радиационно-химический выход ионн пар составляет по разным оценкам от 0.052 до 0.081 и.п./100 эВ [7–9].

возбуждённых Были предприняты попытки оценить выходы бенга радиолизе различными способами. состояний при оценку выхода триплетных возбуждённых состояний проводили с использованием иис-транс-изомеризации алкенов. Считалось, изомеризация происходит при передаче возбуждения с бензола на алкен. Были получены значения выходов триплентно-возбуждённых молекул бензола 4.0–4.7 молекул/100 эВ []. Однако эти результаты стоит подвергнуть сомнению, так как было показано, что акцептор понижает выход триплетных состояний [10], а изомеризация *цис*-бутена-2 является цепным процессом (выход около $4\cdot10^3$ молекул/100 эВ) [11].

Другой подход к определению выходов возбуждения — метод Флуоресценцию облучённого бензола импульсного радиолиза. максимумами на длинах волн 279 и 285 нм относят к синглетному возбуждённому состоянию мономера бензола, а с максимумом на длине волны 320 нм — к эксимерному возбуждённому состоянию [12, 13]. работе [14] с помощью наносекундного радиолиза бензола с добавками нафталина и антрацена радиационно-химический выход первого синглетного возбуждённого состояния бензола оценён как 1.6-1.7 молекул/100 эВ. Позднее с помощью пикосекундного импульсного радиолиза было изучено образование возбуждённых состояний в бензоле [15]. Показано, что синглетное возбуждённое состояние образуется за время меньшее 10 пс и имеет время жизни около 2.10^{-8} с. Зафиксировано образование эксимерного возбуждённого состояния бензола. Характерное время его формирования оценено как 7 пс.

Из экспериментальных данных по взаимодействию с акцепторами (COS и N_2O) был оценён выход первых синглетных возбуждённых состояний, образующихся не при рекомбинации электронов с катионрадикалами, а путём прямого возбуждения. Он составляет не более 0.2 молекул/100 эВ [16].

В работе [17] выход первых синглетных возбуждённых состояний, образующихся при прямом возбуждении и путём внутримолекулярной конверсии, оценён с использованием добавок с низколежащими уровнями возбуждённых состояний. Выход составил 0.4 молекул/100 эВ.

В работе [18] был оценён выход триплетно-возбуждённых молекул бензола при помощи техники импульсного радиолиза. Авторы (бифенил, использовали эксперименты ацепторами антрацен, c нафталин). Зависимости выходов триплетных OTконцентрации 1/G(T)-1/Cакцептора спрямляется координатах (кинетика Штерна-Вольмера). Начальный выход триплетных состояний составил 4.2 молекул/100 эВ. Период полураспада оценён как 20 нс.

Существуют другие оценки выходов триплетных и синглетных возбуждённых состояний. Так, в работе [19] по фосфоресценции биацетила при микросекундном импульсном радиолизе получены оценки: выход триплетов 1.24 молекул/100 эВ, синглетов — 1.43 молекул/100 эВ. В работе [20] при помощи наносекундного импульсного радиолиза бензола с добавкой пиперилина выход триплетов оценён как 1.85 молекул/100 эВ, синглетов — 1.62 молекул/100 эВ.

В работе |21|исследовали зависимость выхода трипленовозбуждённых добавки состояний от концентрации (нафталина, антрацена или бифенила) в бензоле. Авторы делают вывод о том, что при концентрациях ниже 0.1 М в основном происходит перенос энергии от возбуждённых молекул бензола на молекулу акцептора, однако при более высоких концентрациях возможно формирование дополнительного количества триплетно-возбуждённых молекул акцептора счёт нейтрализации ионов добавки.

Несмотря на неоднозначность данных о выходах возбуждённых

состояний при радиолизе бензола, автор [22] называет наиболее вероятными значения радиационно-химических выходов триплетновозбуждённых состояний бензола 4.2 молекул/100 эВ, синглетновозбуждённых — 1.5–1.6 молекул/100 эВ.

Существует ряд работ, направленных на идентификацию радикалов, образующихся при радиолизе бензола и определении их выходов. Эксперименты с акцепторами приводят к значениям суммарного выхода радикалов 0.7–0.9 радикалов/100 эВ []. В качестве акцепторов использовались иод и дифенилпикрилгидразил. Однако данные не точны, так как данные молекулы являются акцепторами не только радикалов, но и возбуждённых состояний. Кроме того, образующиеся радикалы способны вступать в реакции с бензольным кольцом. Методом ЭПР в облучённом замороженном бензоле найдены фенильные и циклогексадиенильные радикалы [].

Состав и выходы радикалов в жидком бензоле исследовали при помощи метода спиновых ловушек. При использовании в качестве ловушки 2,4,6-три-mpem-бутилнитрозобенлола зафиксированы аддукты ловушки с фенильным и циклогексадиенильным радикалами []. Суммарный выход радикалов оценён как 0.04–0.06 радикалов/100 эВ. Однако позднее было показано, что наблюдаемый спектр связан не с наличием в системе C_6H_7 радикалов, а с продуктами радиолиза спиновой ловушки []. При использовании в качестве ловушек нитрозодурола и фенилбутилнитрона выход фенильных радикалов составляет 0.05–0.06 радикалов/100 эВ []. Однако спиновые ловушки могут участвовать не только в захвате радикалов, но и в других конкурентных процессах, а значит данные могут быть не достоверны.

Р. Х. Шулер и Дж. А. ЛаВерне проверили систематические исследования радиолиза бензола тяжёлыми ионами. Изучен выход водорода при бомбардировке протонами, дейтронами, ионами гелия [23], 7 Li [24], 9 Be, 11 B, 12 C [25]. Показано, что даже при малых энергиях тяжёлых частиц выход водорода значительно превышает выход при облучении электронами или γ -лучами. Полу нь зависимости выхода водорода от энергии частиц и от ЛПЭ.

Новая волна интереса к радиолизу бензола возникла в конце

1990х — начале 2000х в связи с астрохимическими исследованиями. Появилось большое количество работ, в которых изучалось облучение бензола тяжёлыми ионами с большой величиной ЛПЭ. Так, в работе группы Страццуллы [26] замор нный бензол облучали ионами гелия с энергией 3 кэВ. По ИК-спектру облучённых образцов сделаны предположения о составе продуктов радиолиза. Широкие полосы молекулярной матрицы не дали данных для точного отнесения. Однако авторы называют одними из основных продуктов ацетилен и монозамещённый ацетилен, кроме того наблюдают полосы, относимые к С=С и С−Н колебаниям в замещённом бензольном кольце, С−Н колебаниям в алифатических фрагментах. Сделано предположении о существовании продукта со структурой НС≡С−СН₂-С≡С−С6Н₅.

В работе [27] проведено сравнение радиолиза бензола γ -лучами тяжёлыми ионами. Показано, что несмотря на то, что при γ -радиолизе почти все возбуждённые состояния релаксируют до основного электронного состояния, при облучении тяжёлыми ионами возбуждённые состояния приводят к значительным выходам продуктов. зафиксированными продуктами названы Основными молекулярный водород и фенильный радикал. Последний фиксировали в экспериментах с добавками иода. Показано, что фенильный радикал может образовывать с бензолом относительно долгоживущий аддукт, который затем ведёт к образованию «полимеров». Выход бифенила не зависел от типа облучения и составлял 0.075 молекул/100 эВ. Кроме того, авторы делают вывод о том, что предшественником молекулярного водорода является синглетное возбуждённое состояние на основании сходства зависимостей флюоресценции и выхода H_2 от ЛПЭ.

В 2005 году опубликована работа [28], в которой было проведено сравнение УФ-фотолиза и бомбардировки протонами бензола. Кроме облучения чистого бензола были проведены исследования поведения молекул бензола, изолированных в матрице твёрдого аргона, а также в модельных кислородсодержащих астрохимических льдах. Идентификацию продуктов и оценку эффективности разложения бензола проводили при помощи ИК-спектроскопии. Точное определение продуктов радиолиза и фотолиза не было основной целью работы.

Однако авторы полагают, что основными продуктами в случае матричноизолированного бензола являются продукты распада: ацетилен и метилацетилен. Кроме того, часть полос поглощения авторы относят к ассоциатам ацетилена и предположительно к комплексам ацетиленметилацетилен. В спектре облучённого бензола в аргоновой матрице появляются значительные количества СО₂ и СО. Авторы объясняют это загрязнением, появляющимся в процессе долгого эксперимента. Кроме того, в спектре имеется большое количество не отнесённых полос. Сделан вывод, что передача энергии происходит намного эффективнее при радиолизе, чем при фотолизе: бензол разлагается примерно в 300 раз эффективнее при радиолизе, чем при фотолизе в расчёте на один поглощённый протон или фотон.

Список литературы

- [1] Burns W. G., Marsh W. R. γ -radiolysis of benzene at high temperatures and pressures // Trans. Faraday Soc. 1969. Vol. 65. P. 1827–1841.
- [2] Wilzbach K. E., Kaplan L. Vapor-phase γ -radiolysis of benzene, toluene, ethylbenzene, and the xylenes // Advances in Chemistry. 1968. Vol. 82. P. 134–141.
- [3] Chapiro A., Jendrychowska-Bonamour A. M., Lelievre G. "Molecular" products in the radiolysis of vinyl monomers // Faraday Discuss. Chem. Soc. 1977. Vol. 63. P. 134–140.
- [4] Cherniak E. A., Collinson E., Dainton F. S. Beta-radiolysis of liquid benzene // Trans. Faraday Soc. 1964. Vol. 60. P. 1408–1423.
- [5] Gordon S., Burton M. Radiation chemistry of pure organic compounds: benzene and benzene- d_6 // Discuss. Faraday Soc. 1952. Vol. 12. P. 88–98.
- [6] Patrick W. N., Burton M. Polymer production in radiolysis of benzene // J. Am. Chem. Soc. — 1954. — Vol. 76, no. 10. — P. 2626—-2629.
- [7] Schmidt W. F., Allen A. O. Yield of free ions in irradiated liquids; determination by a clearing field // J. Phys. Chem. 1968. Vol. 72, no. 11. P. 3730–3736.
- [8] Schmidt W. F., Allen A. O. Free-ion yields in sundry irradiated liquids // J. Chem. Phys. 1970. Vol. 52, no. 5. P. 2345–2351.
- [9] Shinsaka K., Freema G. R. Epithermal electron ranges and thermal electron mobilities in liquid aromatic hydrocarbons // Can. J. Chem. 1974. Vol. 52. P. 3495–3506.
- [10] Hentz R. R., Sherman W. V. Charge scavenging and energy transfer in γ -radiolysis of benzene solutions // J. Phys. Chem. 1969. Vol. 75, no. 8. P. 2676–2680.

- [11] Harata Y., Matsui M., Imamura M. Radiation-induced chain isomerization of *cis*-2-butene in benzene solution // Chem. Lett. 1977. Vol. 6, no. 2. P. 199–202.
- [12] Horrocks A. R. Emission from benzene excited by pulse radiolysis // Canad. J. Chem. 1970. Vol. 48. P. 1000–1002.
- [13] West M. L., Nichols L. L. Fluorescence of liquid benzene under proton and electron impact // J. Phys. Chem. — 1970. — Vol. 74, no. 11. — P. 2404–2406.
- [14] Thomas J. K. Formation of excited singlet states in the nanosecond pulse radiolysis and nanosecond flash photolysis of aromatic molecules in liquid and solid solutions // J. Chem. Phys. — 1969. — Vol. 51. — P. 770–778.
- [15] Beck G., Thomas J. K. Picosecond observations of some ionic and excited-state processes in liquids // J. Phys. Chem. — 1972. — Vol. 76, no. 25. — P. 3856–3863.
- [16] Sato S., Hosoya K., Shishido S., Hirokami S. Energy transfer in the γ -irradiated benzene solutions of carbonyl sulfide, nitrous oxide, and carbon dioxide // Bull. Chem. Soc. Jap. 1972. Vol. 45, no. 8. P. 2308–2312.
- [17] Horrocks D. L. Scintillation efficiencies at high solute concentrations: Possible energy transfer from s₃ states of excited aromatic solvents // J. Chem. Phys. 1970. Vol. 52, no. 3. P. 1566–1572.
- [18] Baxendale J. H., Fiti M. Yield of triplet state benzene in the pulse radiolysis of solutions of some aromatics // J. Chem. Soc. Farad. Trans. II. 1972. Vol. 68, no. 4. P. 218–222.
- [19] Cundall R. B., Evans G. B., Griffiths P. A., Keene J. P. The pulse radiolysis of benzene-biacetyl solutions // J. Phys. Chem. 1968. Vol. 72, no. 11. P. 3871–3877.

- [20] Cooper R., Thomas J. K. Formation of excited states in the nanosecond-pulse radiolysis of solutions of benzene and toluene // J. Chem. Phys. — 1968. — Vol. 48, no. 11. — P. 5097–5102.
- [21] Land E. J., Swallow A. J. Formation of excited states in the pulse radiolysis of solutions of aromatic compounds in cyclohexane and benzene // Trans. Faraday Soc. 1968. Vol. 64. P. 1247–1255.
- [22] Сараева В. В. Радиолиз углеводородов в жидкой фазе. Современное состояние вопроса. Москва : Издательство Московского Университета, 1986.
- [23] Schuler R. H. Radiolysis of benzene by heavy ions // Trans. Faraday Soc., 61, 100. 1965. Vol. 61. P. 100–109.
- [24] LaVerne J. A., Schuler R. H. H_2 production in the $^7Li^{3+}$ ion radiolysis of benzene // J. Phys. Chem. 1982. Vol. 86. P. 2284–2286.
- [25] LaVerne J. A., Schuler R. H. Track effects in radiation chemistry: Core processes in heavy-particle tracks as manifest by the H₂ yield in benzene radiolysis // J. Phys. Chem. — 1984. — Vol. 88. — P. 1200– 1205.
- [26] Strazzulla G., Baratta G. A. Laboratory study of the ir spectrum of ion-irradiated frozen benzene // Astron. Astrophys. — 1991. — Vol. 241. — P. 310–316.
- [27] LaVerne J. A., Araos M. S. Heavy ion radiolysis of liquid benzene // J. Phys. Chem. A. 2002. Vol. 106. P. 11408–11413.
- [28] Ruiterkamp R., Peeters Z., Moore M. H. et al. A quantitative study of proton irradiation and UV photolysis of benzene in interstellar environments // Astron. Astrophys. 2005. Vol. 440. P. 391—-402.