3. MĚŘENÍ STEJNOSMĚRNÝCH PROUDŮ

3.1. **Úvod**

Měření stejnosměrných proudů multimetrem

Elektrický proud [A] je jedinou elektrickou veličinou v soustavě SI. Multimetr v režimu měření proudu měří úbytek napětí na rezistoru (tzv. bočníku) a rozsahy se přepínají změnou jeho odporu, viz obr. 3.1.

Obr. 3.1. Přepínání proudových rozsahů pomocí Ayrtonova bočníku (3rozsahový bočník)

Měříme-li tedy např. proud odebíraný číslicovým obvodem, vzniká zde chyba metody (odpor obvodu se zvětší o odpor bočníku a změřený proud je menší, než bez zapojeného multimetru), jejíž velikost mimo jiné závisí i na použitém rozsahu. Použijeme-li (v rozporu se základními pravidly volby měřicího rozsahu) větší rozsah, než by odpovídal měřenému proudu, tato chyba metody klesne. Na druhé straně ale vzroste nejistota měření (složka nejistoty daná chybou z rozsahu). Je nutné tedy řešit následující dilema: měřit s malou nejistotou metodicky chybnou hodnotu, nebo s větší nejistotou hodnotu s menší metodickou chybou.

Měření stejnosměrných proudů převodníkem proud – napětí s operačním zesilovačem

Výše uvedená chyba metody nevzniká v případě, že vstupní odpor měřicího zařízení je roven nule. To splňuje např. převodník proud – napětí s operačním zesilovačem – viz obr. 3.2. Ten lze s běžnými operačními zesilovači použít pro měření proudu řádově do desítek mA s tím, že při měření velmi malých proudů je třeba vzít v úvahu velikost vstupních klidových proudů použitého OZ.

V zapojení dle obr. 3.2 v případě ideálního OZ předpokládáme, že $I_{1P} = I_{1N} = 0$ a pak tedy platí, že měřený proud I_1 je roven záporně vzatému proudu odporem R_2 . Vzhledem k další vlastnosti ideálního OZ, kdy $A_U \rightarrow \infty$ a tedy pro konečné výstupní napětí musí platit $U_D \rightarrow 0$, je invertující vstup na stejném napětí jako vstup neinvertující a pro úbytek napětí na odporu R_2 a tedy i napětí na výstupu OZ bude platit $U_2 = I_2$ R_2 , popř. vztah pro měřený proud $I_1 = I_x = -U_2/R_2$

Obr. 3.2. Převodník proud → napětí s OZ

Vzhledem k tomu, že se jedná a nepřímé měření (měřený proud se vypočte dle výše uvedeného vztahu ze změřeného napětí a odporu), vztah pro určení nejistoty v případě ideálního OZ se odvodí dle zákona

o šíření nejistot – viz podklady k přednášce 1, snímek 18.

Pro reálný OZ je pak vztah doplněn o vstupní klidový proud, který v některých případech zanedbat nemůžeme.

$$I_{\rm X} = -U_2/R_2 \mp I_{\rm 1N}$$

Měření větších stejnosměrných proudů klešťovým ampérmetrem

Pro měření proudů větších než desítky mA však nelze převodník proud – napětí s běžným operačním zesilovačem použít. V těchto případech se pro měření proudu bez chyby metody způsobené úbytkem napětí na bočníku používají klešťové ampérmetry s převodníky na magnetickém principu. Zde navíc není nutné obvod před měřením rozpojovat.

Převodníky proud – napětí pracující na magnetickém principu využívají toho, že v blízkosti vodiče protékaného proudem se vytvoří magnetické pole. Na obr. 3.3 je principiální schéma převodníku s Hallovými sondami (mohou být ale použity i jiné senzory magnetického pole).

Obr. 3.3. Principiální schéma převodníku s Hallovými sondami

Převodník je linearizován zápornou zpětnou vazbou s využitím tzv. ampérzávitové superpozice, kdy s magnetický tok v magnetickém obvodu (feromagnetickém jádře) vytvořený měřeným proudem I_X se odečítá od toku generovaného proude I_2 protékajícím vinutím s N závity ve zpětné vazbě. Za předpokladu velkého zesílení použitého zesílovače platí v ustáleném stavu, že celkový magnetický tok v jádře se blíží nule a tedy $I_X = NI_2$ a po dosazení s použitím Ohmova zákona získáme vztah pro přenos, popř. pro určení měřeného proudu z výstupního napětí.

3.2. Domácí příprava

- 3.2.1. Prostudujte si teoretický úvod
- 3.2.2. Odvoďte vztah pro určení nejistoty měření proudu převodníkem proud napětí s operačním zesilovačem
 - a) v případě ideálního OZ;
 - b) v případě reálného OZ (vliv vstupní napěťové nesymetrie zanedbejte).

2.3. Úkol měření

- 3.3.1. Zapojte měřicí obvod dle obr. 3.4.
- 3.3.2. Změřte napájecí proud budiče sběrnice 74HCT573N pro logické úrovně "log. 1" a "log. 0" na vstupech. Obě měření proveďte:
 - a) multimetrem v režimu měření proudu (pro logickou úroveň "log.1" na 2 rozsazích),
 - b) převodníkem I/U.

- 3.3.3. Pro případ a) určete nejistotu údaje přístroje a chybu metody. Pro případ b) určete nejistotu měření proudu *I*.
- 3.3.4. Zapojte měřicí obvod dle obr. 3.5. a změřte proud zátěží 1,1 Ω při napájení ze zdroje napětí 5 V ($U_1 = 5$ V). Měření proveďte:
 - a) multimetrem v režimu měření proudu
 - b) klešťovým ampérmetrem.
- 3.3.5. Určete chybu metody pro případ 3.3.4. a).

3.4. Schéma zapojení

Obr. 3.4. Zapojení pro měření napájecího proudu budiče sběrnice

Obr. 3.5. Zapojení pro měření napájecího proudu zátěže 1,1 Ω