Feedback - Week 1 Quiz

Help

You submitted this quiz on Fri 9 May 2014 11:00 PM PDT. You got a score of 15.00 out of 15.00.

Question 1

The American Community Survey distributes downloadable data about United States communities. Download the 2006 microdata survey about housing for the state of Idaho using download.file() from here:

https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06hid.csv

and load the data into R. The code book, describing the variable names is here:

https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FPUMSDataDict06.pdf

How many housing units in this survey were worth more than \$1,000,000?

Your Answer		Score	Explanation
<u>24</u>			
• 53	~	3.00	
<u>164</u>			
<u></u>			
Total		3.00 / 3.00	

Question 2

Use the data you loaded from Question 1. Consider the variable FES in the code book. Which of the "tidy data" principles does this variable violate?

Your Answer		Score	Explanation
Tidy data has one observation per row.			
Tidy data has variable values that are internally consistent.			
Each tidy data table contains information about only one type of observation.			
Tidy data has one variable per column.	~	3.00	
Total		3.00 /	
		3.00	

Question 3

Download the Excel spreadsheet on Natural Gas Aquisition Program here:

https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FDATA.gov_NGAP.xlsx

Read rows 18-23 and columns 7-15 into R and assign the result to a variable called:

dat

What is the value of:

sum(dat\$Zip*dat\$Ext,na.rm=T)

(original data source: http://catalog.data.gov/dataset/natural-gas-acquisition-program)

Your Answer		Score	Explanation
36534720	~	3.00	
338924			
33544718			

154339		
Total	3.00 / 3.00	

Question 4

Read the XML data on Baltimore restaurants from here:

https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Frestaurants.xml

How many restaurants have zipcode 21231?

Your Answer		Score	Explanation
_130			
_28			
<u>_156</u>			
127	~	3.00	
Total		3.00 / 3.00	

Question 5

The American Community Survey distributes downloadable data about United States communities. Download the 2006 microdata survey about housing for the state of Idaho using download.file() from here:

https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06pid.csv

using the fread() command load the data into an R object

DT

Which of the following is the fastest way to calculate the average value of the variable pwgtp15 broken down by sex using the data.table package? **Your Answer** Score **Explanation** mean(DT[DT\$SEX==1,]\$pwgtp15); mean(DT[DT\$SEX==2,]\$pwgtp15) ctapply(DT\$pwgtp15,DT\$SEX,mean) sapply(split(DT\$pwgtp15,DT\$SEX),mean) 3.00 DT[,mean(pwgtp15),by=SEX] mean(DT\$pwgtp15,by=DT\$SEX) _rowMeans(DT)[DT\$SEX==1]; rowMeans(DT)[DT\$SEX==2] Total 3.00 / 3.00