Example: Euclidean Metric on

Example: Euclidean Metric on

The n-dimensional Euclidean space \mathbb{R}^n with the Euclidean distance forms a Metric Space.

Definition of the Euclidean Metric

For points $x=(x_1,x_2,...,x_n)$ and $y=(y_1,y_2,...,y_n)$ in \mathbb{R}^n , the Euclidean distance is:

$$d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Verification of Metric Space Axioms

We verify that d satisfies all properties of a metric:

- 1. Non-negativity: $d(x,y) \ge 0$ since it's a square root of a sum of squares.
- 2. Identity of indiscernibles:

 - If x=y, then $x_i=y_i$ for all i, so d(x,y)=0. If d(x,y)=0, then $\sum_{i=1}^n (x_i-y_i)^2=0$, which implies $x_i=y_i$ for all i, so x=y.
- 3. Symmetry: d(x,y) = d(y,x) since $(x_i y_i)^2 = (y_i x_i)^2$.
- 4. Triangle inequality: For any $x, y, z \in \mathbb{R}^n$:

$$d(x,z) \le d(x,y) + d(y,z)$$

This follows from the Cauchy-Schwarz inequality.

Special Cases

- n = 1: The usual absolute value metric on \mathbb{R} : d(x, y) = |x y|
- n=2: The familiar distance in the plane: $d((x_1,y_1),(x_2,y_2)) = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
- n=3: The distance in 3D space used in physics and engineering

Dependency Graph

Local dependency graph