

Plasma window experiment and simulation

K.Zhu

Institute of Heavy Ion Physics

Physics school of Peking university

Outline

- >Introduction
- Plasma window test bench
- >Simulation of plasma window
- **≻**Conclusion

Traditional solid window

Beryllium window

Disadvantage:

- Thermal damage
- Radiation damage
- Increase energy loss and energy spread

Why plasma window

- ➤ Needn't worry about thermal problem.
- ➤ No radiation damage
- ➤ Very thin equivalent thickness(~nm)
- > Focusing beam

Azimuthal magnet field beam

Plasma window

Non-vacuum electron beam welding

Plasma Arc Window e-beam welder schematic

9mA 25mA
Electron beam current after exiting plasma window, Pure helium gas

Aperture: 2.36mm

Current: 45A

Gas target using plasma window

50kW power supply

operating gas pressure is 0.5 bar for argon Diameter of plasma window: 5mm

Performance of a plasma window for a high pressured differentially Pumped deuterium gas target for mono-energetic fast neutron Production-Preliminary results, A.De Beer, A. hershcovitch, et. al..NIMB, 170(2000), 259-265

7

High current beam need larger plasma window

- Small diameter Plasma window(2-5mm) is successfully used for electron beam welding and gas target.
- If large diameter(>3cm) plasma window is possible, It has very important application for SNS and ADS.

Plasma window used for SNS

- **>** damaged after 3000mw-hours
- ➤ DPA damage and thermal problem of Beam window effect the lifetime of target
- ➤ The lifetime of target is shorten if the beam power increase
- ➤ Could we replace the beam window by plasma window?

Produce a larger aperture plasma window fit for SNS, the plasma window with 2 inch diameter require about 40kw power source

Plasma window for SNS target, Deepak Raparia& Ady hershcovitch, BNL

Plasma window used for ADS

➤ Two kinds of Pb-Bi liquid target

➤ target with window → low beam power

difficulties:

- 1. control free surface of liquid metal
- 2. Keep vacuum of beam pipe.

Plasma window test bench

Vacuum gauge

Two stage pump

Plasma window

Plasma window sealing effect

	Inlet pressure(kPa)	Outlet pressurek(Pa)	Gas flow(SLM)
discharge	33.3	70	1.1
No discharge	12.7	220	12.3

Operating current is 40A, Operating voltage is 58V

Experiment result prove the plasma window 's sealing effect

Plasma window's sealing property is not a simple linear relation with operating current and power

Plasma temperature measurement

 Conductivity correspond to plasma temperature.

Temperature change with operating current

Voltage distribution along plasma window

 Experiment show that the plasma window can work. But the sealing ability decreased quickly when plasma window's aperture increase. It may consume much more energy.

Simulation of plasma window

- ➤ Use magneto-hydrodynamic model
- >Ansys fluent
- ➤ Basic assumptions
- plasma is steady, continuous, axisymmetric and optically thin
- Plasma is in LTE state
- Swirling velocity is neglected

Govering equation

Mass conservation equation

$$\frac{\partial}{\partial z}(\rho v_z) + \frac{\partial}{r\partial r}(r\rho v_r) = 0$$

Momentum conservation equation

$$\frac{\partial}{\partial z}(\rho v_z v_z) + \frac{1}{r} \frac{\partial}{\partial r} (r \rho v_z v_r) = \frac{\partial P}{\partial z} + 2 \frac{\partial}{\partial z} (\mu \frac{\partial v_z}{\partial z}) + \frac{1}{r} \frac{\partial}{\partial r} [r \mu (\frac{\partial v_r}{\partial z} + \frac{\partial v_z}{\partial r})] + j_r B_{\theta}$$

$$\frac{\partial}{\partial z}(\rho v_z v_r) + \frac{1}{r} \frac{\partial}{\partial r} (r \rho v_r v_r) = -\frac{\partial P}{\partial r} + \frac{2}{r} \frac{\partial}{\partial z} (r \mu \frac{\partial v_r}{\partial r}) + \frac{\partial}{\partial r} [\mu (\frac{\partial v_z}{\partial r} + \frac{\partial v_r}{\partial z})] - 2\mu \frac{v_r}{r^2} - j_z B_{\theta}$$

Energy conservation equation

$$\frac{\partial}{\partial z}(\rho v_z C_p T) + \frac{1}{r} \frac{\partial}{\partial r} (r \rho v_r C_p T) = \frac{\partial}{\partial z} (k \frac{\partial T}{\partial z}) + \frac{1}{r} \frac{\partial}{\partial r} (r k \frac{\partial T}{\partial r}) + \frac{j_r^2 + j_z^2}{\sigma} - q_r + \frac{5}{2e} k_B (j_z \frac{\partial T}{\partial z} + j_r \frac{\partial T}{\partial r}) + B_\theta (j_r v_z - j_z v_r)$$

 $\mu\text{,}k$ and σ are function of T and P Nonlinear equation set

$$-\left(\frac{\partial}{\partial z}\frac{\partial A_{z}}{\partial z}\right) + \frac{1}{r}\frac{\partial}{\partial r}\frac{\partial A_{z}}{\partial r} = \mu_{0}j_{z}$$

$$-\left(\frac{\partial}{\partial z}\frac{\partial A_{r}}{\partial z}\right) + \frac{1}{r}\frac{\partial}{\partial r}\frac{\partial A_{r}}{\partial r} = \mu_{0}j_{r}$$

 $\frac{\partial}{\partial z} \left(\sigma \frac{\partial \phi}{\partial z} \right) + \frac{\partial}{r \partial r} \left(r \sigma \frac{\partial \phi}{\partial r} \right) = 0$

Boundary conditions

	Р	\vec{u}	Т	ϕ	\overline{A}
AB: Inlet	P = 52.5KPa	/	T = 300	$\partial \phi / \partial n = 0$	$A_i = 0$
HI: Outlet AI: Axis	$P = 60$ $\partial P / \partial n = 0 \partial u_i$	$/\partial n = 0$	$\frac{\partial T}{\partial n} = 0$ $\frac{\partial T}{\partial n} = 0$	$\frac{\partial \phi}{\partial n} = 0$ $\frac{\partial \phi}{\partial n} = 0$	$\frac{\partial A_i}{\partial n} / \frac{\partial n}{\partial n} = 0$ $\frac{\partial A_i}{\partial n} = 0$
CD: Cathode	$\partial P / \partial n = 0$	0	$-k\partial T/\partial n = h_{w}(T-400)$	$\phi = -140$	$\partial A_i / \partial n = 0$
EF: Anode	$\partial P / \partial n = 0$	0	$-k\partial T/\partial n = h_{_{\scriptscriptstyle W}}(T-400)$	$\phi = 0$	$\partial A_i / \partial n = 0$
DE&FG: Wall	$\partial P / \partial n = 0$	0	T = 400	$\partial \phi / \partial n = 0$	$\partial A_i / \partial n = 0$
BC&GH: Wall	$\partial P / \partial n = 0$	0	T = 300	$\partial \phi / \partial n = 0$	$\partial A_i / \partial n = 0$

Simulation domain

Current Distribution

Temperature Distribution

Velocity and Mach Number Distribution

Velocity distribution

Pressure Distribution

Pressure and velocity distribution along axis

Comparison of Experiment and Simulation results

	Inlet Pressure	Outlet Pressure	I	ϕ	Gas Flow
Experiment	52.5KPa	60Pa	47A	115V	4.87E-5kg/s
Computed	Cid	Fixed	Fixed ⁻	140V	5.12E-5kg/s
Error	Fixed			17.8%	4.8%

Conclusion

- ➤ A test bench of plasma window is built. Small aperture plasma window experiment is done.
- A simulation model is set up, the simulation result is agree with experiment result. It can be used for studying the performance of larger aperture plasma window

Acknowledgement

 Thanks for Ady Hershcovitch's (BNL) help on plasma window test bench.

Thank you for your attention!