Chuyên Đề: ÚNG DỤNG CỦA ĐỊNH LÍ LAGRANG

I. <u>Lý thuyết</u>:

1. $\overline{\textbf{\textit{Pinh li Lagrang}}}$: Cho hàm số y=f(x) liên tục trên [a;b] và khả vi trên (a;b), khi đó tồm tại số thực $c \in (a;b)$: $f'(c) = \frac{f(b) - f(a)}{b - a}$

Hệ quả 1:Nếu hàm số y=f(x) liên tụa trên [a;b], khả vi trên (a;b) và f(a)=f(b) thì Pt: f'(x)=0 có ít nhất một nghiệm trên (a;b)

Hệ quả 2:Cho hàm số y=f(x) có đạo hàm đến cấp n. Nếu pt $f^{(n)}(x)=0$ có k nghiệm thì Pt $f^{(n-1)}(x)=0$ có nhiều nhất (k+1) nghiệm

II. Các ứng dụng:

1. Úng dụng đ/l Lagrang để giải pt:

<u>Phương pháp</u>: Để giải pt f(x)=0 ta sử dụng hệ quả 2 chứng minh số nghiệm nhiều nhất của pt có thể có được, sau đó ta chỉ ra được các nghiệm của pt

Bài 1:Giải pt: $2003^x + 2005^x = 4006x + 2$ (*HSG Nghệ an 2005*)

Giải: Xét hàm số: $f(x) = 2003^x + 2005^x - 4006x - 2$

Ta có: $f'(x) = 2003^x \ln 2003 + 2005^x \ln 2005 - 4006$

 $f''(x) = 2003^x \ln^2 2003 + 2005^x \ln^2 2005 > 0 \quad \forall x \implies f''(x) = 0 \text{ vô nghiệm}$

 \Rightarrow f'(x)=0 có nhiều nhất là một nghiệm \Rightarrow f(x)=0 có nhiều nhất là hai nghiệm Mà ta thấy f(1)=f(0)=0 nên pt đã cho có hai nghiệm x=0 và x=1

Bài 2: Giải pt: $3^{\cos x} = 2^{\cos x} + \cos x$

Giải: Đặt t=cosx; $t \in [-1;1]$ khi đó pt trở thành: $3^t = 2^t + t \Leftrightarrow 3^t - 2^t - t = 0$, ta thấy pt này có hai nghiệm t=0 và t=1 ta sẽ c/m đó là số nghiệm nhiều nhất mà pt có thể có:

Xét hàm số: $f(t) = 3^t - 2^t - t$ với $t \in [-1;1]$ ta có $f'(t) = 3^t \ln 3 - 2^t \ln 2 - 1$

 $f''(x) = 3^t \ln^2 3 - 2^t \ln^2 2 > 0 \Rightarrow$ f'(x)=0 có nhiều nhất 1 nghiệm nên f(x) =0 có nhiều nhất hai nghiệm từ đó ta có đọcm

Vậy pt có hai họ nghiệm: $x = k2\pi$; $x = \frac{\pi}{2} + k\pi$

Bài 3: Giải pt: $3^x = 1 + x + \log_3(1 + 2x)$ (*TH&TT*)

Giải: Đk: x>-1/2

 $pt \Leftrightarrow 3^x + x = 1 + 2x + \log_3(1 + 2x) \Leftrightarrow 3^x + \log_3 3^x = 1 + 2x + \log_3(1 + 2x)$ (1)

Xét hàm số: $f(t) = t + \log_3 t$ ta có f(t) là hàm đồng biến nên

 $(1) \Leftrightarrow f(3^x) = f(1+2x) \Leftrightarrow 3^x = 2x+1 \Leftrightarrow 3^x - 2x - 1 = 0 \quad (2)$

Xét hàm số: $f(x) = 3^x - 2x - 1 \Rightarrow f'(x) = 3^x \ln 3 - 2 \Rightarrow f''(x) = 3^x \ln^2 3 > 0$

 \Rightarrow f(x) = 0 có nhiều nhất là hai nghiệm, mà f(0) = f(1) = 0 nên pt đã cho có hai nghiệm x = 0 và x = 1

GV: Nguyễn Tất Thu – Trường THPT Lê Hồng Phong – Biên Hòa

Bài 4: Giải pt: $5^x + 12^x = 6^x + 11^x$

Giải: $pt \Leftrightarrow 12^x - 11^x = 6^x - 5^x$. Giả sử m là nghiệm của pt, xét hàm số

 $f(t) = t^m - (t-1)^m$ ta có f(12) = f(6) nên theo hệ quả 1 thì tồn tại $c \in (6;12)$: f'(c) = 0

hay
$$mc^{m-1} - m(c-1)^{m-1} = 0 \Leftrightarrow m[c^{m-1} - (c-1)^{m-1}] = 0 \Leftrightarrow m = 0, m = 1$$

Thử lại ta thấy thoả mãn. Vậy x=0 và x=1 là nghiệm của pt

Bài Tập: Giải các pt sau

1.
$$3^x + 5^x = 2.4^x$$

2.
$$(1+x)(2+4^x) = 3.4^x$$

3.
$$9^x + 3^x = (2x+1)2^{x+1}$$

4.
$$4^{x^2} + 2^x = 3^{x^2} + 3^x$$

2. Úng dụng định lí Lagrang để cm pt có nghiệm:

<u>Phương pháp</u>: Để cm pt f(x)=0 có nghiệm trên (a;b) ta đi xét hàm F(x) có tính chất :thỏa mãn các điều kiện đ/l Lagrang , F'(x)=f(x) sau đó ta cm hàm F(x) thỏa mãn đk của $H\hat{e}$ quả I từ đó ta có điều phải chứng minh

Bài 1: Cho các số thực a,b,c thỏa mãn đk: $\frac{a}{m+2} + \frac{b}{m+1} + \frac{c}{m} = 0$. Cmr $b^2 \ge 4ac(1)$

Giải: Ta có (1) chính là điều kiện cần và đủ để pt: $ax^2+bx+c=0$ có nghiệm nên ta chuyển việc cm (1) về cm pt $ax^2+bx+c=0$ có nghiệm

* Nếu a=0 thì (1) luôn đúng

* Nếu
$$a \neq 0$$
. Xét hàm số $f(x) = a \frac{x^{m+2}}{m+2} + b \frac{x^{m+1}}{m+1} + c \frac{x^m}{m}$ ta thấy f(x) có đạo hàm trên R

và
$$f(1) = \frac{a}{m+2} + \frac{b}{m+1} + \frac{c}{m} = 0 = f(0)$$
 nên theo hệ quả 1 thì pt f'(x)=0 có nghiệm (0;1)

hay pt: $ax^{m+1}+bx^m+cx^{m-1}=0 \Leftrightarrow ax^2+bx+c=0$ có nghiệm trên (0;1) từ đó ta có đọcm **Bài 2:**Cho các số thực a,b,c và số nguyên n>0 thoả mãn: 5c(n+2)+6(a+b)=0. Cmr pt

 $a.\sin^n x + b.\cos^n x + c.\sin x + c=0$ luôn có n_0 trên $(0; \frac{\pi}{2})$ (**HSG Nghệ an 2004**)

Giải: Ta có:
$$gt \Leftrightarrow \frac{a}{n+2} + \frac{5c}{6} = -\frac{b}{n+2}$$
 (*)

Xét hàm số
$$f(x) = a \frac{\sin^{n+2} x}{n+2} - b \frac{\cos^{n+2} x}{n+2} + c \frac{\sin^3 x}{3} + c \frac{\sin^2 x}{2}$$
 trên $[0; \frac{\pi}{2}]$ ta thấy $f(x)$ thoả

mãn đk đ/l Lagrang trên
$$[0; \frac{\pi}{2}]$$
. Mặt khác ta lại có: $f(0) = -\frac{b}{n+2}$; $f(\frac{\pi}{2}) = \frac{a}{n+2} + \frac{5c}{6}$

$$\Rightarrow f(0) = f(\frac{\pi}{2})$$
 (do (*)). Theo đ/l Lagrang thì pt f'(x) có nghiệm trên $(0; \frac{\pi}{2})$

GV: Nguyễn Tất Thu – Trường THPT Lê Hồng Phong – Biên Hòa

hay pt: $a.\sin^{n+1} x.cosx + \cos^{n+1} x sinx + c.\sin^2 x.cosx + c.sinx.cosx = 0$ $\Leftrightarrow sinx.cosx(asin^n x + b.cos^n x + csinx + c) = 0 \Leftrightarrow a.sin^n x + b.cos^n x + c.sinx + c = 0$ (vì sinx, cosx > 0 trên $(0; \frac{\pi}{2})$) có nghiệm trên $(0; \frac{\pi}{2})$ (đpcm)

Bài 3:Cho các số thực $a_1, a_2, ..., a_n$ thỏa mãn: $a_0 + \frac{a_1}{2} + \frac{a_2}{3} + ... + \frac{a_n}{n+1} = 0$ và

 $a_0 + \frac{a_1 k}{2} + \frac{a_2 k^2}{3} + ... + \frac{a_n k^n}{n+1} = 0$ với k >0. Cmr pt sau luôn có nghiệm $a_1 + 2a_2 x + ... + na_n x^n = 0$

Giải: Xét hàm số $f(x) = a_0 x + \frac{a_1 x^2}{2} + \frac{a_2 x^3}{3} + ... + \frac{a_n x^{n+1}}{n+1}$ ta có f(0) = f(1) = f(k) = 0

Nên theo hệ quả 1 thì pt: $f'(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n = 0$ có hai nghiệm phân biệt $x_1, x_2 \Rightarrow f'(x_1) = f'(x_2) = 0 \Rightarrow \text{Pt } f''(x) = a_1 + 2a_2 x + + na_n x^{n-1} = 0$ có nghiệm

Bài 4: Pt: $a \sin x + p^2 b \sin px + q^2 c \sin qx = 0$ (với p,q là các số nguyên dương lẻ) có ít nhất bao nhiều nghiệm trên $[0;2\pi]$?

Giải: Xét pt: f(x) = a sinx + b sinpx + c sinqx = 0. $f(0) = f(\pi) = f(2\pi)$ nên pt f'(x) = a cosx + pb.cos px + qc.cos qx = 0 có $2 n_0 x_1, x_2$: $0 < x_1 < \pi < x_2 < 2\pi$

Vì p,q là các số nguyên dương lẻ nên ta có : $f'(\frac{\pi}{2}) = 0 \Rightarrow f'(x_1) = f'(x_2) = f'(\frac{\pi}{2}) = 0$ \Rightarrow pt f''(x)= $a \sin x + p^2 b \sin px + q^2 c \sin qx = 0$ có $2 \operatorname{n}_0 y_1, y_2$:

Min $\{x_1, \frac{\pi}{2}\}\$ < $y_1 < Max\{x_1, \frac{\pi}{2}\}\$ < $y_2 < x_2$, Hon nữa $f''(0) = f''(\pi) = 0$ Vậy pt: f''(x) = 0 có ít nhất 4 nghiệm trên $[0; 2\pi]$.

3. Ứng dụng đ/l Lagrang để chứng minh Bất Đẳng Thức:

<u>Phương pháp:</u>* Để c/m Bđt có dạng: $m < \frac{f(a) - f(b)}{a - b} < M$ ta xét hàm số y=f(x) thỏa

mãn điều kiện đ/l Lagrang trên [a;b], khi đó có $c \in (a;b)$: $f'(c) = \frac{f(a) - f(b)}{a - b}$ sau đó ta

chứng minh: m < f'(c) < M

* Để c/m Bđt có dạng : $m \le f(a) - f(b) \le M$ ta xét hàm số y=f(x) thỏa mãn điều kiện đ/l Lagrang trên [a;b], khi đó có $c \in (a;b)$: f(a) - f(b) = f'(c)(a - b)

sau đó ta chứng minh: m < (a-b)f'(c) < M

Bài 1: Cho 0<a<b. Cmr: $\frac{b-a}{b} < \ln \frac{b}{a} < \frac{b-a}{a}$

Giải: Bắt đã cho $\Leftrightarrow \frac{1}{b} < \frac{\ln b - \ln a}{b - a} < \frac{1}{a}$

Xét hàm số f(x)=lnx trên [a;b]. Ta thấy f(x) thỏa mãn đk đ/l Lagrang trên [a;b] nên tồn

tại số c: a<c
b: $f'(c) = \frac{1}{c} = \frac{f(b) - f(a)}{b - a} = \frac{\ln b - \ln a}{b - a}$. Vì $c \in (a;b) \Rightarrow \frac{1}{b} < \frac{1}{c} < \frac{1}{a}$

Do đó ta có $\frac{1}{b} < \frac{\ln b - \ln a}{b - a} < \frac{1}{a}$ đpcm

Bài 2: Cho 0<x<y và m là một số nguyên dương bất kì. Cmr: $y^m < \frac{x(x^{m-1} + my^{m-1})}{m+1}$

Giải: Bắt đã cho $\Leftrightarrow \frac{y^m - x^m}{y - x} < my^{m-1}$

Xét hàm số $f(t) = t^m$ trên [x;y], ta thấy f(t) thỏa mãn đk đ/l Lagrang trên [x;y] nên tồn tại số $c \in (x;y)$: $\frac{f(y) - f(x)}{y - x} = f'(c) = mc^{m-1} < my^{m-1}$ đpcm

Bài 3:Cmr: $n^{n+1} > (n+1)^n \quad \forall n \ge 3 \quad (DH AN NINH 2001)$

Giải: Bắt $\Leftrightarrow (n+1)\ln n > n\ln(n+1) \Leftrightarrow \frac{\ln(n+1)}{n+1} - \frac{\ln n}{n} < 0 \Leftrightarrow f(n+1) - f(n) < 0$

Với $f(x) = \frac{\ln x}{x}$ ta thấy f(x) thỏa mãn đk đ/l Lagrang trên [n;n+1] nên có số c: n < c < n+1

 $f(n+1) - f(n) = f'(c)(n+1-n) = f'(c) = \frac{1-\ln c}{c^2} < 0 \Rightarrow \text{dpcm}$

Bài 4: CMR: $\sin e \sqrt[3]{\cos(e-1)} - \sin(e-1) \sqrt[3]{\cos e} > \sqrt[3]{\cos e \cdot \cos(e-1)}$

Giải: Vì cose, $\cos(e-1) > 0$ nên Bđt $\Leftrightarrow \frac{\sin e}{\sqrt[3]{\cos e}} - \frac{\sin(e-1)}{\sqrt[3]{\cos(e-1)}} > 1$

GV: Nguyễn Tất Thu – Trường THPT Lê Hồng Phong – Biên Hòa

Xét hàm số:
$$f(x) = \frac{\sin x}{\sqrt[3]{\cos x}}$$
 trên [e-1;e], ta có $f'(x) = \frac{2\cos^2 x + 1}{3\sqrt[3]{\cos^4 x}}$

Áp dụng đ/l Lagrang thì có số e-1<c<e: f(e) - f(e-1) = f'(c)

Mặt khác: $\cos^2 c + \cos^2 c + 1 \ge 3\sqrt[3]{\cos^4 c} \Rightarrow f'(c) > 1 \Rightarrow \text{dpcm}$