Разработка программно-аппаратного комплекса

Отчет

Соревнование: Pose Bowl: Detection Track

Работу выполнили: Щербаков Кирилл гр.22933

Калугина Анастасия гр.22932

Пучков Владислав гр.22933

Новосибирский Государственный Университет 2024 год

Цели:

1. Обучение модели детектированию спутников с целью корректного определения bounding box вокруг спутников.

Задачи:

- 2. Проведение обучения на разных моделях, с разными параметрами.
- 3. Сравнение полученных результатов (а именно, метрик и времени, затраченного на валидации).

Мы обучили модели yolov8n, yolov8s, yolov5n и yolov5s, с разными параметрами. У нас вышло 9 обученных моделей и на каждую мы написали отдельную ячейку для прогона валидации.

Аугментации:

Мы обучали модели с аугментациями.

Ha соревнование мы отправляли веса, обученные с аугментациями: flip's: 0.4, scale: 0, hsv_h: 0.015, flipud: 0.4, fliplr: 0.4, mosaic: 1.0.

Модели, которые мы обучали позже имеют больший набор аугментаций: hsv_h: 0.015, hsv_s: 0.7, hsv_v: 0.4, degrees: 5.0, translate: 0.1, scale: 0.5, shear: 0.0, perspective: 0.0, flipud: 0.4, fliplr: 0.4, mosaic: 1.0, mixup: 0.0.

Метрики:

Для сравнения мы использовали метрики, которые выдает модель yolo: Precision, Recall, maP50, map50-90.

Таблица метрик и времени на валидации

модель, №ехр	Precision	Recall	maP50	map50-90	Время на val, (сек)	коментарии
yolov8n (0)	0,98	0,903	0,968	0,841	394,37	Веса которые мы отправляли на соревнование
yolov8n (1)	0,964	0,933	0,982	0,882	452,77	epochs=50, imgsz=960, batch=64, augment=True
yolov8n (2)	0,976	0,892	0,962	0,837	429,81	epochs=50, imgsz=640, batch=64, augment=True
yolov8s (3)	0,97	0,931	0,979	0,866	454,42	epochs=50, imgsz=640, batch=64, augment=True, patience = 10
yolov8s (4)	0,981	0,952	0,987	0,898	427,23	epochs=50, imgsz=960, batch=64, augment=True, patience = 10
yolov5n (5)	0,935	0,884	0,94	0,787	388,13	похожие условия как на соревновании но yolov5n
yolov5n (6)	0,956	0,896	0,957	0,821	392,23	epochs=50, imgsz=640, batch=64, augment=True, patience = 10
yolov5s (7)	0,972	0,908	0,967	0,851	434,88	epochs=50, imgsz=640, batch=64, augment=True, patience = 10
yolov5s (8)	0,97	0,933	0,981	0,883	463,38	epochs=50, imgsz=960, batch=32, augment=True, patience = 10
yolov5s (9)	0,966	0,918	0,968	0,854	412,29	epochs=50, imgsz=640, batch=48, augment=True, patience = 10

Диаграмма метрик

Диаграмма времени на валидации:

Вывод: За время проведения эксперимента обучено 9 моделей, самые быстрые модели на вариации вышли те, которые обучены на 16 эпохах (как на соревновании), дольше всего на валидации модели типа S, если изменить размер картинки на модели S на 640 вреям приблизительно равно как на N с размером 960. Метрики приблизительно везде получились высокие,