Inference for SRL

Armin Halilovic & Thierry Deruyttere (r
0660485)

 $March\ 25,\ 2018$

Chapter 1

Probabilistic Inference Using Weighted Model Counting

1.1

1.1.1 ENC 1

For our conversion from the cancer bayesian network to ENC1 please look at 2.1 in our appendix.

1.1.2 ENC 2

As for ENC1 please look at 2.2 in our appendix.

1.2

The CNF of the monty hall problem is given in image 1

```
CNF:
select door(1)

A win keep v -prize(1)

A -win keep v prize(1)

A open_door(2) v prize(2) v -prize(3)

A -open_door(2) v prize(2)

A -open_door(2) v prize(3)

A open_door(3) v prize(3)

A -open_door(3) v -prize(3)

A -open_door(3) v -prize(2)

A win_switch v -prize(2) v open_door(2)

A win_switch v -prize(2) v open_door(3)

A -win_switch v prize(2) v prize(3)

A -win_switch v prize(2) v -open_door(3)

A -win_switch v -open_door(2) v prize(3)

A -win_switch v -open_door(2) v -open_door(3)

Queries:
query(prize(1))
query(prize(3))
query(select door(1))
query(win_keep)
query(win_switch)
```

Figure 1.1: Grounded problog cnf

TODO WEIGHTS

1.3

1.3.1

We will use minic2d and Cachet as WMC counters.

minic2d

minic2d needs to use the -W option to do weighted model counting.

• ENC1:

Figure 1.2: Grounded problog cnf

• ENC2:

Figure 1.3: Grounded problog cnf

• Prolog first:

Cachet

• ENC1:

Number of total components	11
Number of split components	2
Number of non-split components	5
Number of SAT residual formula	12
Number of trivial components	0
Number of changed components	0
Number of adjusted components	0
First component split level	1
Number of Decisions	11
Max Decision Level	5
Number of Variables	30
Original Num Clauses	74
Original Num Literals	172
Added Conflict Clauses	0
Added Conflict Literals	0
Deleted Unrelevant clauses	0
Deleted Unrelevant literals	0
Number of Implications	124
Total Run Time	0.018895
Satisfying probability	8.72319e-08
Number of solutions	93.6645

Figure 1.4: Grounded problog cnf

• ENC2:

Figure 1.5: Grounded problog cnf

• Prolog first:

For ENC1 we see that with Cachet we get a satisfying probability of almost 0. This is due to the fact that with ENC1 all our negative literals have a weight of 1, while Cachet expects that a literal + its negation = 1.

1.3.2. Difference between the used WMC's

minic2d Vs Cachet

Minic2d and Cachet are both weighted model counters but how to do this is quite different. Minic2d is a top down compiler that compiles CNF's into a SDD which results in a faster system but it also uses less space while Cachet is an algorithm that uses formula caching together with clause learning and component analysis. Minic2d needs vtree's to be able to compile the CNF's into an SDD. TThey, however, both use things from the SAT literature. They both use clause learning and component caching as to be able to reuse components that later appear again in the search. Cachet on the other hand also uses some other things from SAT literature like an explicit on the fly calculation of connected components. This is different in minic2d as it uses a vtree to identify disconnected CNF components.

[1] [2]

1.3.3 Overview of computational requirements

All the tests can be found in the test folder. We used our scripts to create the dimac files. The input files for our enc1 and enc2 converter ard ".dsc" files which can be found at

http://www.bnlearn.com/bnrepository/discrete-small.html#cancer.

Test 1: Cancer network

Table 1.1: My caption

	ENC1			ENC2		
	Prob	Memory	Runtime	Prob	Memory	Runtime
Minic2d	1.0	0.2 KB	0.155s	1.0	1.0 KB	0.000s
Cachet	val1	val2	a	b	val3	val4

Test 2: asia network

Table 1.2: My caption

	ENC1				ENC2		
	Prob Memory Runtime			e Prob Memory Run			
Minic2d	1.0	0.9 KB	0.145s	1.0	2.0 KB	0.139s	
Cachet	val1	val2	a	b	val3	val4	

Test 3: sachs network

Table 1.3: My caption

	ENC1			ENC2		
	Prob	Memory	Runtime	e Prob Memory Runt		
Minic2d	0.99707	14.3 KB	0.184s	1.0	14.5 KB	0.154s
Cachet	val1	val2	a	b	val3	val4

Test 4: earthquake network

Table 1.4: My caption

	ENC1			ENC2		
	Prob	Memory	Runtime	Prob	Memory	Runtime
Minic2d	1.0	0.6 KB	0.137s	1.0	1.0 KB	0.153s
Cachet	val1	val2	a	b	val3	val4

Test 5: survey network

Table 1.5: My caption

	ENC1				ENC2		
	Prob Memory Runtime			Prob Memory Runtin			
Minic2d	1.0	1.6 KB	0.125s	1.0	2.0 KB	0.125s	
Cachet	val1	val2	a	b	val3	val4	

Test 6: alarm network

Table 1.6: My caption

	ENC1			ENC2		
	Prob	Memory	Runtime	Prob	Memory	Runtime
Minic2d	1.0	959.7KB KB	0.268s	1.0	139KB	0.095 s
Cachet	val1	val2	a	b	val3	val4

Test 6: andes network

Table 1.7: My caption

	ENC1			ENC2			
	Prob	Memory	Runtime	Prob	Memory	Runtime	
Minic2d	1.0	2.7GB	122.78s	1.0	139KB	0.095s	
Cachet	val1	val2	a	b	val3	val4	

1.4 Knowledge compilation

Chapter 2

Appendix

2.1 ENC1

Indicator clauses:

```
 \begin{array}{l} (\neg \ \lambda_{PollutionLow} \lor \neg \ \lambda_{PollutionHigh}) \land (\lambda_{PollutionLow} \lor \lambda_{PollutionHigh}) \land (\neg \ \lambda_{SmokerTrue} \lor \neg \ \lambda_{SmokerFalse}) \land (\lambda_{SmokerTrue} \lor \lambda_{SmokerFalse}) \land (\neg \ \lambda_{CancerTrue} \lor \neg \ \lambda_{CancerFalse}) \land (\lambda_{CancerTrue} \lor \lambda_{CancerFalse}) \land (\neg \ \lambda_{XrayPositive} \lor \neg \ \lambda_{XrayNegative}) \land (\lambda_{XrayPositive} \lor \lambda_{XrayNegative}) \land (\neg \ \lambda_{DyspnoeaTrue} \lor \neg \ \lambda_{DyspnoeaFalse}) \land (\lambda_{DyspnoeaTrue} \lor \lambda_{DyspnoeaFalse}) \end{array}
```

Parameter clauses:

```
(\neg \lambda_{PollutionLow} \lor \theta_{PollutionLow}) \land (\lambda_{PollutionLow} \lor \neg \theta_{PollutionLow}) \land (\neg )
   \lambda_{PollutionHigh} \vee \theta_{PollutionHigh}) \wedge (\lambda_{PollutionHigh} \vee \neg \theta_{PollutionHigh}) \wedge (\neg
        \lambda_{SmokerTrue} \vee \theta_{SmokerTrue} \rangle \wedge (\lambda_{SmokerTrue} \vee \neg \theta_{SmokerTrue}) \wedge (\neg
       \lambda_{SmokerFalse} \lor \theta_{SmokerFalse}) \land (\lambda_{SmokerFalse} \lor \neg \theta_{SmokerFalse}) \land (\neg \theta_{SmokerFalse}) \land (\neg \theta_{SmokerFalse})
                       \lambda_{PollutionLow} \vee \neg \lambda_{SmokerTrue} \vee \neg \lambda_{CancerTrue} \vee 
                 \theta_{CancerTrue|PollutionLow,SmokerTrue}) \wedge (\lambda_{PollutionLow} \vee \neg
                 \theta_{CancerTrue|PollutionLow,SmokerTrue}) \land (\lambda_{SmokerTrue} \lor \lnot
                  \theta_{CancerTrue|PollutionLow,SmokerTrue}) \wedge (\lambda_{CancerTrue} \vee \neg
 \theta_{CancerTrue|PollutionLow,SmokerTrue}) \land (\neg \lambda_{PollutionLow} \lor \neg \lambda_{SmokerTrue} \lor \neg
    \lambda_{CancerFalse} \vee \theta_{CancerFalse|PollutionLow,SmokerTrue}) \wedge (\lambda_{PollutionLow} \vee \neg
                 \theta_{CancerFalse|PollutionLow,SmokerTrue}) \land (\lambda_{SmokerTrue} \lor \neg
                 \theta_{CancerFalse|PollutionLow,SmokerTrue}) \land (\lambda_{CancerFalse} \lor \neg
\theta_{CancerFalse|PollutionLow,SmokerTrue}) \land (\neg \lambda_{PollutionLow} \lor \neg \lambda_{SmokerFalse} \lor \neg
     \lambda_{CancerTrue} \lor \theta_{CancerTrue|PollutionLow,SmokerFalse}) \land (\lambda_{PollutionLow} \lor \neg)
                \theta_{CancerTrue|PollutionLow,SmokerFalse}) \land (\lambda_{SmokerFalse} \lor \neg
                 \theta_{CancerTrue|PollutionLow,SmokerFalse}) \land (\lambda_{CancerTrue} \lor \lnot
\theta_{CancerTrue|PollutionLow,SmokerFalse}) \land (\neg \lambda_{PollutionLow} \lor \neg \lambda_{SmokerFalse} \lor \neg
    \lambda_{CancerFalse} \vee \theta_{CancerFalse|PollutionLow,SmokerFalse}) \wedge (\lambda_{PollutionLow} \vee \neg
                \theta_{CancerFalse|PollutionLow,SmokerFalse}) \land (\lambda_{SmokerFalse} \lor \neg
                \theta_{CancerFalse|PollutionLow,SmokerFalse}) \land (\lambda_{CancerFalse} \lor \neg
\theta_{CancerFalse|PollutionLow,SmokerFalse}) \land (\neg \lambda_{PollutionHigh} \lor \neg \lambda_{SmokerTrue} \lor \neg
    \lambda_{CancerTrue} \vee \theta_{CancerTrue|PollutionHigh.SmokerTrue}) \wedge (\lambda_{PollutionHigh} \vee \neg
                 \theta_{CancerTrue|PollutionHigh,SmokerTrue}) \wedge (\lambda_{SmokerTrue} \vee \neg
                 \theta_{CancerTrue|PollutionHigh,SmokerTrue}) \land (\lambda_{CancerTrue} \lor \lnot)
```

```
\theta_{CancerTrue|PollutionHigh,SmokerTrue}) \land (\neg \lambda_{PollutionHigh} \lor \neg \lambda_{SmokerTrue} \lor \neg
             \lambda_{CancerFalse} \lor \theta_{CancerFalse|PollutionHigh,SmokerTrue}) \land (\lambda_{PollutionHigh} \lor \lnot)
                                                             \theta_{CancerFalse|PollutionHigh,SmokerTrue}) \land (\lambda_{SmokerTrue} \lor \neg
                                                             \theta_{CancerFalse|PollutionHigh,SmokerTrue}) \land (\lambda_{CancerFalse} \lor \neg
     \theta_{CancerFalse|PollutionHigh,SmokerTrue}) \land (\neg \lambda_{PollutionHigh} \lor \neg \lambda_{SmokerFalse} \lor 
        \neg \lambda_{CancerTrue} \lor \theta_{CancerTrue|PollutionHigh,SmokerFalse}) \land (\lambda_{PollutionHigh} \lor \neg
                                                            \theta_{CancerTrue|PollutionHigh,SmokerFalse}) \land (\lambda_{SmokerFalse} \lor \neg
                                                               \theta_{CancerTrue|PollutionHigh,SmokerFalse}) \land (\lambda_{CancerTrue} \lor \neg
     \theta_{CancerTrue|PollutionHigh,SmokerFalse}) \land (\neg \lambda_{PollutionHigh} \lor \neg \lambda_{SmokerFalse} \lor 
     \neg \lambda_{CancerFalse} \lor \theta_{CancerFalse|PollutionHigh,SmokerFalse}) \land (\lambda_{PollutionHigh} \lor \neg
                                                           \theta_{CancerFalse|PollutionHigh,SmokerFalse}) \land (\lambda_{SmokerFalse} \lor \neg
                                                           \theta_{CancerFalse|PollutionHigh,SmokerFalse}) \land (\lambda_{CancerFalse} \lor \neg
        \theta_{CancerFalse|PollutionHigh,SmokerFalse}) \land (\neg \lambda_{CancerTrue} \lor \neg \lambda_{XrayPositive} \lor \neg \lambda_{
                   \theta_{XrayPositive|CancerTrue}) \land (\lambda_{CancerTrue} \lor \neg \theta_{XrayPositive|CancerTrue}) \land 
                                     (\lambda_{XrayPositive} \lor \neg \theta_{XrayPositive|CancerTrue}) \land (\neg \lambda_{CancerTrue} \lor \neg
                                                 \lambda_{XrayNegative} \vee \theta_{XrayNegative|CancerTrue}) \wedge (\lambda_{CancerTrue} \vee \neg
\theta_{XrayNegative|CancerTrue}) \wedge (\lambda_{XrayNegative} \vee \neg \theta_{XrayNegative|CancerTrue}) \wedge (\neg
\lambda_{CancerFalse} \lor \lnot \lambda_{XrayPositive} \lor \theta_{XrayPositive|CancerFalse}) \land (\lambda_{CancerFalse} \lor \lnot
  \theta_{XrayPositive|CancerFalse}) \land (\lambda_{XrayPositive} \lor \neg \theta_{XrayPositive|CancerFalse}) \land (\neg \theta_{XrayPositive})
 \lambda_{CancerFalse} \lor \neg \lambda_{XrayNegative} \lor \theta_{XrayNegative | CancerFalse}) \land (\lambda_{CancerFalse} \lor 
 \neg \theta_{XrayNegative|CancerFalse}) \land (\lambda_{XrayNegative} \lor \neg \theta_{XrayNegative|CancerFalse}) \land (\lambda_{XrayNegative} \lor \neg \theta_{XrayNegative|CancerFalse}) \land (\lambda_{XrayNegative} \lor \neg \theta_{XrayNegative})
  (\neg \lambda_{CancerTrue} \lor \neg \lambda_{DyspnoeaTrue} \lor \theta_{DyspnoeaTrue} | CancerTrue) \land (\lambda_{CancerTrue})
 \vee \neg \theta_{DyspnoeaTrue|CancerTrue}) \wedge (\lambda_{DyspnoeaTrue} \vee \neg \theta_{DyspnoeaTrue|CancerTrue})
                               \wedge (\neg \lambda_{CancerTrue} \lor \neg \lambda_{DyspnoeaFalse} \lor \theta_{DyspnoeaFalse|CancerTrue}) \land 
                                  (\lambda_{CancerTrue} \lor \neg \theta_{DyspnoeaFalse|CancerTrue}) \land (\lambda_{DyspnoeaFalse} \lor \neg
                                     \theta_{DyspnoeaFalse|CancerTrue}) \land (\neg \lambda_{CancerFalse} \lor \neg \lambda_{DyspnoeaTrue} \lor \neg \lambda_{DyspnoeaTrue
        \theta_{DyspnoeaTrue|CancerFalse}) \wedge (\lambda_{CancerFalse} \vee \neg \theta_{DyspnoeaTrue|CancerFalse}) \wedge (\lambda_{CancerFalse}) \wedge
                             (\lambda_{DyspnoeaTrue} \lor \neg \theta_{DyspnoeaTrue}|_{CancerFalse}) \land (\neg \lambda_{CancerFalse} \lor \neg
                                        \lambda_{DyspnoeaFalse} \vee \theta_{DyspnoeaFalse|CancerFalse}) \wedge (\lambda_{CancerFalse} \vee \neg
      \theta_{DyspnoeaFalse|CancerFalse}) \wedge (\lambda_{DyspnoeaFalse} \vee \neg \theta_{DyspnoeaFalse|CancerFalse})
Weights:
```

 $W(\lambda_{PollutionLow}) = 1.00$ $W(\neg \lambda_{PollutionLow}) = 1.00$ $W(\lambda_{PollutionHigh}) = 1.00$ $W(\neg \lambda_{PollutionHigh}) = 1.00$ $W(\lambda_{SmokerTrue}) = 1.00$ $W(\neg \lambda_{SmokerTrue}) = 1.00$ $W(\lambda_{SmokerFalse}) = 1.00$ $W(\neg \lambda_{SmokerFalse}) = 1.00$ $W(\lambda_{CancerTrue}) = 1.00$ $W(\neg \lambda_{CancerTrue}) = 1.00$ $W(\lambda_{CancerFalse}) = 1.00$ $W(\neg \lambda_{CancerFalse}) = 1.00$ $W(\lambda_{XrayPositive}) = 1.00$ $W(\neg \lambda_{XrayPositive}) = 1.00$ $W(\lambda_{XrayNegative}) = 1.00$ $W(\neg \lambda_{XrayNegative}) = 1.00$ $W(\lambda_{DyspnoeaTrue}) = 1.00$ $W(\neg \lambda_{DyspnoeaTrue}) = 1.00$

```
W(\lambda_{DyspnoeaFalse}) = 1.00
W(\neg \lambda_{DyspnoeaFalse}) = 1.00
W(\theta_{PollutionLow}) = 0.90
W(\neg \theta_{PollutionLow}) = 1.00
W(\theta_{PollutionHigh}) = 0.10
W(\neg \theta_{PollutionHigh}) = 1.00
W(\theta_{SmokerTrue}) = 0.30
W(\neg \theta_{SmokerTrue}) = 1.00
W(\theta_{SmokerFalse}) = 0.70
W(\neg \theta_{SmokerFalse}) = 1.00
W(\theta_{CancerTrue|PollutionLow,SmokerTrue}) = 0.03
W(\neg \theta_{CancerTrue|PollutionLow,SmokerTrue}) = 1.00
W(\theta_{CancerFalse|PollutionLow,SmokerTrue}) = 0.97
W(\neg \theta_{CancerFalse|PollutionLow,SmokerTrue}) = 1.00
W(\theta_{CancerTrue|PollutionLow,SmokerFalse}) = 0.00
W(\neg \theta_{CancerTrue|PollutionLow,SmokerFalse}) = 1.00
W(\theta_{CancerFalse|PollutionLow,SmokerFalse}) = 1.00
W(\neg \theta_{CancerFalse|PollutionLow,SmokerFalse}) = 1.00
W(\theta_{CancerTrue|PollutionHigh,SmokerTrue}) = 0.05
W(\neg \theta_{CancerTrue|PollutionHigh,SmokerTrue}) = 1.00
W(\theta_{CancerFalse|PollutionHigh,SmokerTrue}) = 0.95
W(\neg \theta_{CancerFalse|PollutionHigh,SmokerTrue}) = 1.00
W(\theta_{CancerTrue|PollutionHigh,SmokerFalse}) = 0.02
W(\neg \theta_{CancerTrue|PollutionHigh,SmokerFalse}) = 1.00
W(\theta_{CancerFalse|PollutionHigh,SmokerFalse}) = 0.98
W(\neg \theta_{CancerFalse|PollutionHigh,SmokerFalse}) = 1.00
W(\theta_{XrayPositive|CancerTrue}) = 0.90
W(\neg \theta_{XrayPositive|CancerTrue}) = 1.00
W(\theta_{XrayNegative|CancerTrue}) = 0.10
W(\neg \theta_{XrayNegative|CancerTrue}) = 1.00
W(\theta_{XrayPositive|CancerFalse}) = 0.20
W(\neg \theta_{XrayPositive|CancerFalse}) = 1.00
W(\theta_{XrayNegative|CancerFalse}) = 0.80
W(\neg \theta_{XrayNegative|CancerFalse}) = 1.00
W(\theta_{DyspnoeaTrue|CancerTrue}) = 0.65
W(\neg \theta_{DyspnoeaTrue|CancerTrue}) = 1.00
W(\theta_{DyspnoeaFalse|CancerTrue}) = 0.35
W(\neg \theta_{DyspnoeaFalse|CancerTrue}) = 1.00
W(\theta_{DyspnoeaTrue|CancerFalse}) = 0.30
W(\neg \theta_{DyspnoeaTrue|CancerFalse}) = 1.00
W(\theta_{DyspnoeaFalse|CancerFalse}) = 0.70
W(\neg \theta_{DyspnoeaFalse|CancerFalse}) = 1.00
```

2.2 ENC2

Indicator clauses

$$(\neg \lambda_{PollutionLow} \lor \neg \lambda_{PollutionHigh}) \land (\lambda_{PollutionLow} \lor \lambda_{PollutionHigh}) \land (\neg$$

```
\lambda_{SmokerTrue} \vee \neg \lambda_{SmokerFalse}) \wedge (\lambda_{SmokerTrue} \vee \lambda_{SmokerFalse}) \wedge (\neg \lambda_{CancerTrue} \vee \neg \lambda_{CancerFalse}) \wedge (\lambda_{CancerTrue} \vee \lambda_{CancerFalse}) \wedge (\neg \lambda_{XrayPositive} \vee \neg \lambda_{XrayNegative}) \wedge (\lambda_{XrayPositive} \vee \lambda_{XrayNegative}) \wedge (\neg \lambda_{DyspnoeaTrue} \vee \neg \lambda_{DyspnoeaFalse}) \wedge (\lambda_{DyspnoeaTrue} \vee \lambda_{DyspnoeaFalse})
```

Parameter clauses

```
(\neg \rho_{PollutionLow} \lor \lambda_{PollutionLow}) \land (\rho_{PollutionLow} \lor \lambda_{PollutionHigh}) \land (\neg
       \rho_{SmokerTrue} \lor \lambda_{SmokerTrue}) \land (\rho_{SmokerTrue} \lor \lambda_{SmokerFalse}) \land (\neg
  \lambda_{PollutionLow} \vee \neg \lambda_{SmokerTrue} \vee \neg \rho_{CancerTrue|PollutionLow,SmokerTrue} \vee 
                   \lambda_{CancerTrue}) \wedge (\neg \lambda_{PollutionLow} \vee \neg \lambda_{SmokerTrue} \vee \neg \lambda_{SmokerTrue})
\rho_{CancerTrue|PollutionLow,SmokerTrue} \lor \lambda_{CancerFalse}) \land (\lnot \lambda_{PollutionLow} \lor \lnot
 \lambda_{SmokerFalse} \lor \lnot 
ho_{CancerTrue} \land PollutionLow.SmokerFalse} \lor \lambda_{CancerTrue} \land (\lnot
   \lambda_{PollutionLow} \vee \neg \lambda_{SmokerFalse} \vee \rho_{CancerTrue|PollutionLow,SmokerFalse} \vee
                \lambda_{CancerFalse}) \wedge (\neg \lambda_{PollutionHigh} \vee \neg \lambda_{SmokerTrue} \vee \neg
\rho_{CancerTrue|PollutionHigh,SmokerTrue} \lor \lambda_{CancerTrue}) \land (\neg \lambda_{PollutionHigh} \lor \neg )
  \lambda_{SmokerTrue} \vee \rho_{CancerTrue|PollutionHigh,SmokerTrue} \vee \lambda_{CancerFalse}) \wedge (\neg
\lambda_{PollutionHigh} \vee \neg \lambda_{SmokerFalse} \vee \neg \rho_{CancerTrue|PollutionHigh,SmokerFalse} \vee 
                  \lambda_{CancerTrue}) \wedge (\neg \lambda_{PollutionHigh} \vee \neg \lambda_{SmokerFalse} \vee 
\rho_{CancerTrue|PollutionHigh,SmokerFalse} \lor \lambda_{CancerFalse}) \land (\lnot \lambda_{CancerTrue} \lor \lnot
            \rho_{XrayPositive|CancerTrue} \vee \lambda_{XrayPositive}) \wedge (\neg \lambda_{CancerTrue} \vee
         \rho_{XrayPositive|CancerTrue} \lor \lambda_{XrayNegative}) \land (\lnot \lambda_{CancerFalse} \lor \lnot
          \rho_{XrayPositive|CancerFalse} \vee \lambda_{XrayPositive}) \wedge (\neg \ \lambda_{CancerFalse} \ \vee \\
         \rho_{XrayPositive|CancerFalse} \vee \lambda_{XrayNegative}) \wedge (\neg \lambda_{CancerTrue} \vee \neg
          \rho_{DyspnoeaTrue|CancerTrue} \vee \lambda_{DyspnoeaTrue}) \wedge (\neg \lambda_{CancerTrue} \vee )
        \rho_{DyspnoeaTrue|CancerTrue} \lor \lambda_{DyspnoeaFalse}) \land (\lnot \lambda_{CancerFalse} \lor \lnot
         \rho_{DyspnoeaTrue|CancerFalse} \vee \lambda_{DyspnoeaTrue}) \wedge (\neg \lambda_{CancerFalse} \vee 
                          \rho_{DyspnoeaTrue|CancerFalse} \lor \lambda_{DyspnoeaFalse})
```

Weights

```
W(\lambda_{PollutionLow}) = 1.00
W(\neg \lambda_{PollutionLow}) = 1.00
W(\lambda_{PollutionHigh}) = 1.00
W(\neg \lambda_{PollutionHigh}) = 1.00
W(\lambda_{SmokerTrue}) = 1.00
W(\neg \lambda_{SmokerTrue}) = 1.00
W(\lambda_{SmokerFalse}) = 1.00
W(\neg \lambda_{SmokerFalse}) = 1.00
W(\lambda_{CancerTrue}) = 1.00
W(\neg \lambda_{CancerTrue}) = 1.00
W(\lambda_{CancerFalse}) = 1.00
W(\neg \lambda_{CancerFalse}) = 1.00
W(\lambda_{XrayPositive}) = 1.00
W(\neg \lambda_{XrayPositive}) = 1.00
W(\lambda_{XrayNegative}) = 1.00
W(\neg \lambda_{XrayNegative}) = 1.00
W(\lambda_{DyspnoeaTrue}) = 1.00
W(\neg \lambda_{DyspnoeaTrue}) = 1.00
W(\lambda_{DyspnoeaFalse}) = 1.00
W(\neg \lambda_{DyspnoeaFalse}) = 1.00
W(\rho_{PollutionLow}) = 0.90
```

```
W(\neg \rho_{PollutionLow}) = 0.10
```

$$W(\rho_{SmokerTrue}) = 0.30$$

$$W(\neg \rho_{SmokerTrue}) = 0.70$$

$$W(\rho_{CancerTrue|PollutionLow,SmokerTrue}) = 0.03$$

$$W(\neg \rho_{CancerTrue|PollutionLow,SmokerTrue}) = 0.97$$

$$W(\rho_{CancerTrue|PollutionLow,SmokerFalse}) = 0.00$$

$$W(\neg \rho_{CancerTrue|PollutionLow,SmokerFalse}) = 1.00$$

$$W(\rho_{CancerTrue|PollutionHigh,SmokerTrue}) = 0.05$$

$$W(\neg \rho_{CancerTrue|PollutionHigh,SmokerTrue}) = 0.95$$

$$W(\rho_{CancerTrue|PollutionHigh,SmokerFalse}) = 0.02$$

$$W(\neg \rho_{CancerTrue|PollutionHigh,SmokerFalse}) = 0.98$$

$$W(\rho_{XrayPositive|CancerTrue}) = 0.90$$

$$W(\neg \rho_{XrayPositive|CancerTrue}) = 0.10$$

$$W(\rho_{XrayPositive|CancerFalse}) = 0.20$$

$$W(\neg \rho_{XrayPositive|CancerFalse}) = 0.80$$

$$W(\rho_{DyspnoeaTrue|CancerTrue}) = 0.65$$

$$W(\neg \rho_{DyspnoeaTrue|CancerTrue}) = 0.35$$

$$W(\rho_{DyspnoeaTrue|CancerFalse}) = 0.30$$

$$W(\neg \rho_{DyspnoeaTrue|CancerFalse}) = 0.70$$

Bibliography

- [1] Umut Oztok and Adnan Darwiche. A top-down compiler for sentential decision diagrams. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI), pages 3141–3148, 2015.
- [2] Paul Beame Tian Sang and Henry Kautz. Heuristics for fast exact model counting. Eighth International Conference on Theory and Applications of Satisfiability Testing, 2005.