Να δειχθεί ότι η κλαση των ομόκεντρων μπαλών (δίσκων) γύρω από το (0,0) στον \mathbb{R}^2 είναι PAC-learnable.

Λύση: Η κλάση που επιθυμούμε να μάθουμε είναι η $C = \{B_r : r > 0\}$, όπου $B_r = \{x \in \mathbb{R}^2 : \|x\|_2 \le r\}$ είναι η μπάλα με κέντρο το (0,0) και ακτίνα r. Θεωρούμε τον εξής αλγόριθμο A: Για δοθέν δείγμα S, ο A επιστρέφει τη μικρότερη μπάλα που περιέχει τα θετικά σημεία του δείγματός μας.

Συγκεκριμένα, αν $c=B_r$ η πραγματική μπάλα που προσπαθούμε να μάθουμε και S το δείγμα, ορίζουμε $S^+=\{x\in S:c(x)=1\}$ το σύνολο των θετικών δειγμάτων. Αν θέσουμε $r_*=\max\{\|x\|:x\in S^+\}$, τότε η μπάλα B_{r_*} είναι η μικρότερη μπάλα που περιέχει τα θετικά δείγματα και επομένως $A(S)=h_S=B_{r_*}$. Προφανώς $h_S\subseteq c$ και επομένως το ενδεχόμενο $[h_S\neq c]$ περιέχεται στο ενδεχόμενο $[h_S\neq c]$ η εριέχεται στο ενδεχόμενο $[h_S\neq c]$ η εριέχει ενδεχομενο $[h_S\neq c]$ η εριέχει ενδεχομενο $[h_S\neq c]$ η εριέχε

Έστω $\varepsilon>0$, $\delta>0$ και D κατανομή. Αν $P(c)\leq \varepsilon$, τότε $P[h_S\neq c]\leq P(c)\leq \varepsilon$ για κάθε δείγμα S, επομένως $P_{S\sim D^m}[P_{x\sim D}[h_S\neq c]\leq \varepsilon]=1>1-\delta$ και η ιδιότητα που προσπαθούμε να δείξουμε ισχύει.

Εαν $P(c) > \varepsilon$, θεωρούμε την οικογένεια των δακτυλίων $\Delta_t = \{x \in \mathbb{R}^2 : t \le \|x\|_2 \le r\}$. Η οικογένεια $(\Delta_t)_{t=0}^r$ είναι φθίνουσα και nested, με την ιδιότητα ότι $P(\Delta_0) = P(c) > \varepsilon$ και $P(\Delta_r) = 0$. Θέτουμε t_ε να είναι ο μεγαλύτερος δείκτης t για τον οποίον $P(\Delta_t) \ge \varepsilon$,

$$t_{\varepsilon} = \sup\{t > 0 : P(\Delta_t) \ge \varepsilon\}. \tag{1}$$

Προφανώς θα ισχύει ότι $P(\Delta_{t_{\varepsilon}}) \geq \varepsilon$. Πράγματι, αν θεωρήσουμε μια γνησίως αύξουσα ακολουθία $(t_n)_n$ η οποία συγκλίνει στο t_{ε} , η αντίστοιχη ακολουθία δακτυλίων $(\Delta_{t_n})_n$ θα είναι φθίνουσα με $P(\Delta_{t_n}) \geq \varepsilon$ για κάθε n και επιπλέον $\bigcap_{n=1}^{\infty} \Delta_{t_n} = \Delta_{t_{\varepsilon}}$, επομένως

$$P(\Delta_{t_{\varepsilon}}) = \lim_{n} P(\Delta_{t_{n}}) \ge \varepsilon.$$
 (2)

Θέτουμε $A=\Delta_{t_{\varepsilon}}$. Τονίζουμε σε αυτό το σημείο ότι για την κατασκευή του A δε λάβαμε υπόψιν μας ούτε κάποιο πιθανό δείγμα S, ούτε κάποια συνάρτηση h_S , αλλά βασιστήκαμε μόνο στο αληθινό πρότυπο c, την κατανομή D και το δοθέν $\varepsilon>0$.

Σκοπός μας είναι να φράξουμε την ποσότητα $P_{S\sim D^m}[P_{x\sim D}[h_S\neq c]>\varepsilon]$. Για να το επιτύχουμε, πρώτα δεσμεύουμε την πιθανότητα αυτή στο ενδεχόμενο το S να τέμνει το A ή όχι:

$$P_{S \sim D^{m}}[P_{X \sim D}[h_{S} \neq c] > \varepsilon] = P_{S \sim D^{m}}[P_{X \sim D}[h_{S} \neq c] > \varepsilon \mid S \cap A \neq \emptyset] \cdot P_{S \sim D^{m}}[S \cap A \neq \emptyset]$$

$$+ P_{S \sim D^{m}}[P_{X \sim D}[h_{S} \neq c] > \varepsilon \mid S \cap A = \emptyset] \cdot P_{S \sim D^{m}}[S \cap A = \emptyset]$$

$$(3)$$

Για να φράξουμε αποτελεσματικά την (3) αρκεί να φράξουμε τις δύο ποσότητες που χρωματίσαμε. Σημειώνουμε ότι για να υπολογίσουμε την κόκκινη ποσότητα, δε μας ενδιαφέρει η συνάρτηση h_S που επέστρεψε ο αλγόριθμός μας. Είναι μια πιθανότητα που αφορά μονάχα την τυχαία μεταβλητή $S=\{X_1,\ldots,X_m\}$ και το σύνολο A. Λόγω ανεξαρτησίας,

$$P_{S \sim D^m}[S \cap A = \emptyset] = P_{S \sim D^m} \left(\bigcap_{i=1}^m [x_i \notin A] \right) = \prod_{i=1}^m (1 - P_{x \sim D}(A))$$

$$= (1 - P_{x \sim D}(A))^m \le (1 - \varepsilon)^m, \tag{4}$$

επειδή $P(A) ≥ \varepsilon$.

Σχετικά με την μπλε ποσότητα, τα πράγματα θα ήταν πολύ απλούστερα αν επιπλέον ίσχυε ότι $P(A) \le \varepsilon$, δηλαδή αν η P(A) ήταν ακριβώς ίση με ε . Πράγματι, σε αυτή την περίπτωση, δεδομένου ότι $S \cap A \ne \emptyset$, το σύνολο h_S θα τέμνει το A και επομένως $c \setminus h_S \subseteq A$, από την οποία προκύπτει ότι $P[c \ne h_S] \le P(A) \le \varepsilon$, δηλαδή ο μπλε όρος ισούται με μηδέν για κάθε τέτοιο S.

Εν γένει όμως δεν είναι σωστό ότι $P(A) = \varepsilon$. Θυμίζουμε ότι από την κατασκευή μας έχουμε εξασφαλίσει ότι $P(A) \ge \varepsilon$, αλλά για το συγκεκριμένο A δεν μπορεί να αποδειχθεί ισότητα χωρίς κάποια επιπλέον υπόθεση για την κατανομή D. Για το λόγο αυτό, θα μικρύνουμε το A ελάχιστα, ώστε να μπορέσουμε να πάρουμε την αντίστροφη ανισότητα, χωρίς να χαλάσει βέβαια το προηγούμενο σκέλος της απόδειξης, στο οποίο το γεγονός ότι $P(A) \ge \varepsilon$ έπαιξε κεντρικό ρόλο.

Διαμερίζουμε το δακτύλιο $A=\Delta_{t_{\varepsilon}}=\{x\in\mathbb{R}^2:t_{\varepsilon}\leq\|x\|_2\leq r\}$ στα εξής δύο σύνολα, $A=\tilde{A}\cup L_{t_{\varepsilon}}$, με $\tilde{A}=\{x\in\mathbb{R}^2:t_{\varepsilon}<\|x\|_2\leq r\}$ και $L_{t_{\varepsilon}}=\{x\in\mathbb{R}^2:\|x\|_2=t_{\varepsilon}\}$. Αφού το σύνολο h_S τέμνει το A, αναγκαστικά θα περιέχει και το σύνολο $L_{t_{\varepsilon}}=\{x\in\mathbb{R}^2:\|x\|_2=t_{\varepsilon}\}$. Επομένως δεν ισχύει μόνο ότι $c\setminus h_S\subseteq A$, αλλά επιπλέον ότι $c\setminus h_S\subseteq \tilde{A}$.

Αν για το σύνολο \tilde{A} μπορέσουμε να δείξουμε ότι $P(\tilde{A}) \leq \varepsilon$, τότε από το επιχείρημα που γράψαμε παραπάνω, θα έχουμε καταφέρει να μηδενίσουμε τον μπλε όρο. Καταρχάς, παρατηρούμε ότι το \tilde{A} μπορεί να γραφεί ως ένωση κλειστών δακτυλίων με τον εξής τρόπο:

$$\tilde{A} := \{ x \in \mathbb{R}^2 : t_{\varepsilon} < \|x\|_2 \le r \} = \bigcup_{t \in (t_{\varepsilon}, r]} \{ x \in \mathbb{R}^2 : t \le \|x\| \le r \}.$$
 (5)

Πράγματι, όλα τα σύνολα που εμφανίζονται στο δεξί μέλος περιέχονται στο \tilde{A} , άρα το ίδιο θα ισχύει και για την ένωσή τους. Αντίστροφα, αν $x \in \tilde{A}$, τότε $t_{\varepsilon} < \|x\|_2 \le r$ και για $s = \|x\|_2 - \frac{\|x\| - t_{\varepsilon}}{2}$, έχουμε ότι $x \in \{y \in \mathbb{R}^2 : s \le \|y\|_2 \le r\}$ με $t_{\varepsilon} < s$, δηλαδή το x ανήκει στην ένωση του δεξιού μέλους.

Έστω τώρα $(t_n)_n$ φθίνουσα ακολουθία στο $(t_{\varepsilon},r]$ η οποία συγκλίνει στο t_{ε} . Η ακολουθία $(\Delta_{t_n})_n$ είναι αύξουσα με $\cup_n \Delta_{t_n} = \tilde{A}$, άρα $P(\tilde{A}) = \lim_n P(\Delta_{t_n})$. Όμως από τον ορισμό του t_{ε} , για κάθε $t_n > t_{\varepsilon}$ θα ισχύει ότι $P(\Delta_{t_n}) < \varepsilon$, άρα $P(\tilde{A}) \le \varepsilon$, όπως θέλαμε.

Ουσιαστικά, δείξαμε ότι

$$P_{S \sim D^m} \left[P_{x \sim D} [h_S \neq c] > \varepsilon \mid S \cap A \neq \emptyset \right] \leq P_{S \sim D^m} \left[P_{x \sim D} [h_S \neq c] > \varepsilon \mid S \cap \tilde{A} \neq \emptyset \right] = 0.$$

Τελικά,

$$P_{S \sim D^m}[P_{x \sim D}[h_S \neq c] > \varepsilon] \le 0 + (1 - \varepsilon)^m \le e^{-m},\tag{6}$$

το οποίο είναι μικρότερο του δ για κάθε $m \geq \frac{1}{\varepsilon} \ln \frac{1}{\delta}$.