Logical operators full truth table

Input		Output					
		Conjunction	Exclusive or	Disjunction	Conditional	Biconditional	
p	q	$p \wedge q$	$p\oplus q$	$p \lor q$	$p \to q$	$p \leftrightarrow q$	
\overline{T}	T	T	F	T	T	T	
T	F	F	T	T	F	F	
F	T	F	T	T	T	F	
F	F	F	F	F	T	T	
		" p and q "	"p xor q"	"p or q"	"if p then q "	" p if and only if q "	

Logical operators truth tables

Truth tables: Input-output tables where we use T for 1 and F for 0.

Input		Output				
		Conjunction	Exclusive or	Disjunction		
p	q	$p \wedge q$	$p\oplus q$	$p \lor q$		
\overline{T}	T	T	F	T		
T	F	F	T	T		
F	T	F	T	T		
F	F	F	F	F		
		AND	XOR	DOR)—		

Input	Output Negation
	Negation
p	$\neg p$
\overline{T}	F
F	T
	NOT O