# GNN-based Biomedical Knowledge Graph Mining in Drug Development

Maria Wyrzykowska Seminar: Data Mining - Clustering and Classification

# Chapter 24 GNN-based Biomedical Knowledge Graph Mining in Drug Development

Chang Su, Yu Hou, Fei Wang

# Agenda

#### 1. Data

- Characteristics & challenges
- Biomedical Knowledge Graphs

#### 2. Inference on Knowledge Graphs

- Conventional inference techniques
- GNN-based inference techniques

#### 3. Real-life applications

- Drug repurposing
- Limitations & future directions

# Data

# Biomedical data

- a lot of it...
- ...but is usually buried in the literature
- **heterogenous**: genes, diseases, drugs, interactions
- relational



knowledge retrieval & organization is difficult

**Solution**: using graphs!



- set of <head, relation, tail> tuples
- created by extraction and integration of data from other sources
- examples: Hetionet, Drug Repurposing Knowledge Graphs and many others
- usage: prior knowledge to different models, generation of hypotheses

# Inference on Knowledge Graphs

# Inference on Knowledge Graphs

#### Important attributes to take into consideration:

- local and global structure properties
- heterogeneity of entities and relations

#### **Standard pipeline:**

- 1. Learning embeddings
- 2. Performing downstream tasks e.g. link prediction

#### Approaches:

- 1. Conventional: semantic matching, distance models, meta-path-based, CNN
- GNN-based: GCN, GAT

# Common notation

| Entity                                 | Symbol                  |
|----------------------------------------|-------------------------|
| Entities (diseases, drugs, genes)      | E                       |
| Entity $i$ (disease, drug, gene)       | $e_i$                   |
| Relation $k$ ("cures", "causes")       | $r_k$                   |
| Embedding of entity $i$                | $h_i \in \mathcal{R}^n$ |
| Embedding of relation $\boldsymbol{k}$ | $g_k \in \mathcal{R}^n$ |

# Conventional KG inference: semantic matching models

Based on idea that entities are similar if connected to similar entities via similar relations.

Example: **RESCAL** 

$$f(e_i, r_k, e_j) = \mathbf{h}_i^{\mathsf{T}} M_k \mathbf{h}_j$$

where:

 $M_k$  - embedding matrix,  $M_k \in \mathcal{R}^{n imes n}$ 

Loss used for training is standard RMSE + regularization.

#### Conventional KG inference: translational distance model

Based on idea that relation can be considered as a translation from head entity to tail entity in the embedding space.

Example: TransE

$$f(e_i, r_k, e_j) = ||\mathbf{h_i} + \mathbf{g_k} - \mathbf{h_j}||$$

where:

 $\| \|_{2}$  - Euclidean norm

# TransE: training

Loss function:

$$L = \sum_{(e_i, r_k, e_j) \in S} \sum_{(e_i', r_k, e_j') \in S'} [\gamma + d(h_i + g_k, h_j) - d(h_i' + g_k, h_j')]_+$$

where:

S' - corrupted triplets

$$S' = \{(e_i', r_k, e_j) | e_i' \in E\} \cup \{(e_i, r_k, e_j') | e_j' \in E\}$$

 $\gamma$  - margin

d - dissimilarity measure (e.g. L1 or L2 norm)

# TransE: modifications

TransE does well for 1-to-1 relations, but does not manage to model N-to-1, 1-to-N and N-to-N relations. Many modifications try to alleviate this problem:

- TransH
- TransR
- TransD
- TranSparse
- TransF
- ..

Most are based on idea to project the low-dimensional embeddings to hyperplanes, different for each relation.

# Conventional KG inference: meta-path-based approaches

Issue of semantic & distance models is that they focus on one-hop neighbourhoods. The meta-path based models aim at capturing both local and global structure properties.

$$a_1 \stackrel{b_1}{\rightarrow} a_2 \stackrel{b_2}{\rightarrow} \dots \stackrel{b_{l-1}}{\rightarrow} a_l$$

- Heterogeneous Information Network Embedding (HINE) minimizing the difference between meta-path-based proximity and expected proximity in the embedding space
- **metapath2vec** random walks in the graph are treated as sentences and SkipGram with negative sampling is used to learn embeddings

### Conventional KG inference: CNN models

#### ConvE



Convolutional 2D Knowledge Graph Embeddings

### Conventional KG inference: CNN models

ConvKB



A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network

#### Relational GCN (R-GCN)



$$\mathbf{h}_{i}^{(l+1)} = \sigma \left( \sum_{r_k \in \mathbb{R}} \sum_{j \in \mathcal{N}_i^k} \frac{1}{c_{i,k}} W_k^{(l)} \mathbf{h}_j^{(l)} + W_0^{(l)} \mathbf{h}_i^{(l)} \right)$$



Modeling Relational Data with Graph Convolutional Networks

TransGCN combines GCN & translational distance models (e.g. TransE) to learn both entities and relations embeddings.

#### At layer I:

1. Message propagation:

$$m_i^{(l+1)} = rac{1}{c_i} W_0^{(l)} (\sum_{(e_j, r_k, e_i) \in T_{in}(e_i)} (h_j^{(l)} \circ g_k^{(l)}) + \sum_{(e_i, r_k, e_j) \in T_{out}(e_i)} (h_j^{(l)} \star g_k^{(l)}))$$

2. Embedding update:

$$h_i^{(l+1)} = \sigma(m_i^{(l+1)} + h_i^{(l)})$$
  $g_k^{(l+1)} = \sigma(W_1^{(l)}g_k^{(l)})$ 



$$m_i^{(l+1)} = rac{1}{c_i} W_0^{(l)} (\sum_{(e_j, r_k, e_i) \in T_{in}(e_i)} (h_j^{(l)} \circ g_k^{(l)}) + \sum_{(e_i, r_k, e_j) \in T_{out}(e_i)} (h_j^{(l)} \star g_k^{(l)}))$$

We want the "dot" and "star" operators to translate the entities to  $h_i^{(l)}$ . Easiest assumption, TransE inspired - "dot" is plus, "star" is minus:

$$h_i^{(l)} = \left\{ egin{aligned} h_j^{(l)} + g_k^{(l)}, (e_j, r_k, e_i) \in T_{in}(e_i) \ h_j^{(l)} - g_k^{(l)}, (e_i, r_k, e_j) \in T_{out}(e_i) \end{aligned} 
ight.$$

Loss function is also analogous to TransE:

$$L = \sum_{(e_i, r_k, e_j) \in S} \sum_{(e_i', r_k, e_j') \in S'} [\gamma + f_{g_k}(h_i, h_j) - f_{g_k}(h_i', h_j')]_+$$

Graph attention-based embedding in KG (GATE-KG):

$$\mathbf{c}_{ijk}^{(l)} = W_1^{(l)}[\mathbf{h}_i^{(l)}||\mathbf{h}_j^{(l)}||\mathbf{g}_k^{(l)}]$$

$$\boldsymbol{\beta}_{ijk}^{(l)} = \text{LeakyReLU}\left(W_2^{(l)}\mathbf{c}_{ijk}^{(l)}\right)$$

$$\alpha_{ijk}^{(l)} = \frac{\exp(\beta_{ijk}^{(l)})}{\sum_{j' \in \mathscr{N}_i} \sum_{k' \in \mathscr{R}_{ij'}} \exp(\beta_{ij'k'}^{(l)})}$$

$$\mathbf{h}_i^{(l+1)} = \sigma \left( \sum_{j \in \mathscr{N}_i} \sum_{k \in \mathscr{R}_{ij}} lpha_{ijk}^{(l)} \mathbf{c}_{ijk}^{(l)} 
ight)$$

Loss function is also analogous to TransE. For edge prediction, ConvKB is used as a decoder.

Graph attention-based embedding in KG (GATE-KG):



<u>Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs</u>

Relational Graph neural network with Hierarchical ATtention (RGHAT)



$$\alpha_{ik} = \frac{\exp(\sigma(\mathbf{z}_1 \cdot \mathbf{a}_{ik}))}{\sum_{r_x \in \mathcal{N}_i} \exp(\sigma(\mathbf{z}_1 \cdot \mathbf{a}_{ix}))}$$

$$\mathbf{b}_{ikj} = W_2 \left[\mathbf{a}_{ik} || \mathbf{h}_j\right]$$

$$\beta_{kj} = \frac{\exp(\sigma(\mathbf{z}_2 \cdot \mathbf{b}_{ikj}))}{\sum_{r_y \in \mathcal{N}_{i,k}} \exp(\sigma(\mathbf{z}_1 \cdot \mathbf{b}_{iyj}))}$$

$$\mu_{ikj} = \alpha_{ik} \cdot \beta_{kj}.$$

$$\hat{\mathbf{h}} = \sum_{r \in \mathcal{N}_h} \sum_{t \in \mathcal{N}_{h,r}} \mu_{h,r,t} \mathbf{b}_{h,r,t}.$$

 $\mathbf{a}_{ik} = W_1 \left[ \mathbf{h}_i || \mathbf{g}_k \right]$ 

# Real-life applications

# Drug repurposing

#### Drug repurposing process:

- 1. Hypothesis generation
- 2. Assessment
- 3. Validation

KG can be helpful in the hypothesis generation step and has been used to investigate potential drugs for COVID-19:

- <u>Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning</u>: used RotatE (modification of TransE); identified 41 potential drugs, from which 9 were under clinical trials
- <u>Drug Repurposing for COVID-19 using Graph Neural Network with Genetic, Mechanistic, and Epidemiological Validation</u>: used variational graph autoencoder and transfer learning, identified 22 potential drugs

### Limitations & future directions

#### **Limitations:**

- Data quality:
  - incorrectness
  - incompleteness
- Scalability:
  - KG can include hundreds of millions of relations
  - it can be a challenge for complex GNNs

#### **Future directions:**

- Data quality control
- Improving scalability
- Incorporating other data sources:
  - To improve robustness against data quality problems



# Thanks for your attention!