OTIMIZAÇÃO COMBINATÓRIA E META-HEURÍSTICAS

Clustering Search - CS*

Marcos A. Spalenza

Doutorando em Ciência da Computação Laboratório de Computação de Alto Desempenho - LCAD Programa de Pós-Graduação em Informática - PPGI

Introdução

Clustering Search é uma meta-heurística de minimização por *Local Search* nas principais de soluções da vizinhança, resultantes da análise da densidade em clusters da população.

A minimização desse método atenta-se na tentativa agressiva de melhoria dos principais itens de vizinhança através da LS.

OLIVEIRA, Alexandre César Muniz de; CHAVES, Antonio Augusto; LORENA, Luiz Antonio Nogueira. Clustering search. **Pesquisa operacional**, v. 33, n. 1, p. 105-121, 2013.

Introdução

É composta por 4 partes:

- Meta-heurística de Busca SM
- Componente de Clusterização
 Iterativa IC
- Módulo de Análise AM
- Busca Local LS

2-Opt

A clusterização é testada no final dos ciclos do Discrete Particle Swarm Optimization - DPSO.

- Tentativa de forçar melhorias na população gerada pelo PSO
- Seleção de itens por clustering

Capacitated VRP

Vehicle Routing Problem (VRP)

- Verificação de capacidade "c"
- Melhor rota para "v" carros
- Soma das distâncias percorrida pelos carros para as cidades a ele designadas.

AUGERAT, Philippe et al. Separating Capacity Constraints in the CVRP Using Tabu Search. **European Journal of Operational Research**, v. 106, n. 2-3, p. 546-557, 1998.

Teste de População

Ambiente de testes do Google Colab colab.research.google.com

Python 3.6, NumPy, SciPy, Sklearn e Matplotlib.

- DPSO
- Agglomerative Clustering
- Número adaptável de clusters (bias)
- Busca em 2-OPT
- Ajuste da busca por Nearest Neighbors
- Seleção por distribuição

K - Testes

- Cinco testes repetidos no mesmo ambiente

AUGERAT, Philippe et al. Separating Capacity Constraints in the CVRP Using Tabu Search. European Journal of Operational Research, v. 106, n. 2-3, p. 546-557, 1998.

FISHER, Marshall L. Optimal solution of vehicle routing problems using minimum k-trees. Operations research, v. 42, n. 4, p. 626-642, 1994.

		004	0	T	-00+	T	
Teste 1	DPSO	CS*	Organização	Teste 1	DPSO	CS*	Organização
A-n32-k5.vrp	869,08	869,08	891,36	A-n48-k7.vrp	1308,67	1308,67	1303,24
A-n33-k5.vrp	712,28	712,28	762,46	A-n53-k7.vrp	1396,24	1358,73	1358,46
A-n33-k6.vrp	790,36	790,36	790,81	A-n54-k7.vrp	1534,81	1534,81	1641,73
A-n34-k5.vrp	831,03	827,70	847,03	A-n55-k9.vrp	1430,53	1425,89	1360,68
A-n36-k5.vrp	847,54	847,54	880,15	A-n60-k9.vrp	1722,60	1722,60	1733,79
A-n37-k5.vrp	778,91	773,45	849,02	A-n61-k9.vrp	2649,12	2278,42	1980,81
A-n37-k6.vrp	1089,85	1089,85	1118,35	A-n62-k8.vrp	1823,96	1823,96	1788,65
A-n38-k5.vrp	888,22	888,22	897,39	A-n63-k9.vrp	2460,76	2455,27	2297,33
A-n39-k5.vrp	940,33	940,33	981,80	A-n63-k10.vrp	1816,79	1816,79	1866,48
A-n39-k6.vrp	960,78	960,78	981,61	A-n64-k9.vrp	1872,62	1837,06	1806,38
A-n44-k7.vrp	1148,23	1137,44	1140,61	A-n65-k9.vrp	2094,99	2094,99	2016,05
A-n45-k6.vrp	2342,06	2057,10	1872,71	A-n69-k9.vrp	1894,41	1893,43	1865,17
A-n45-k7.vrp	1287,30	1287,30	1323,99	A-n80-k10.vrp	2694,81	2694,81	2607,61
A-n46-k7.vrp	1127,61	1127,61	1126,40				

								l l
	A-n32-k5.vrp	849,53	849,53	884,97	A-n48-k7.vrp	1272,99	1272,99	1309,65
	A-n33-k5.vrp	722,02	722,02	745,86	A-n53-k7.vrp	1405,28	1405,28	1406,47
	A-n33-k6.vrp	791,00	791,00	846,64	A-n54-k7.vrp	1482,51	1482,51	1456,74
	A-n34-k5.vrp	856,46	856,46	887,33	A-n55-k9.vrp	1381,88	1381,88	1372,38
	A-n36-k5.vrp	904,20	904,20	910,32	A-n60-k9.vrp	1774,39	1774,39	1718,85
	A-n37-k5.vrp	787,11	787,11	844,44	A-n61-k9.vrp	2722,41	2293,23	1927,57
	A-n37-k6.vrp	1066,35	1066,35	1093,34	A-n62-k8.vrp	1779,30	1779,30	1745,16
AUGERAT, Philippe et al. Separating	A-n38-k5.vrp	874,87	874,87	891,71	A-n63-k9.vrp	2427,81	2427,81	2379,60
Capacity Constraints in the CVRP Using Tabu Search. European Journal	A-n39-k5.vrp	972,34	972,34	996,85	A-n63-k10.vrp	1809,07	1809,07	1892,40
of Operational Research, v. 106, n.	A-n39-k6.vrp	977,35	977,35	988,27	A-n64-k9.vrp	1937,55	1936,54	2040,39
2-3, p. 546-557, 1998.	A-n44-k7.vrp	1149,17	1149,17	1160,62	A-n65-k9.vrp	2190,08	2161,46	2087,58
FISHER, Marshall L. Optimal solution of vehicle routing problems using	A-n45-k6.vrp	1591,09	1591,09	1540,34	A-n69-k9.vrp	1837,57	1816,56	1813,46
minimum k-trees. Operations	A-n45-k7.vrp	1284,63	1280,77	1297,56	A-n80-k10.vrp	2554,91	2554,91	2569,87
research, v. 42, n. 4, p. 626-642, 1994.	A-n46-k7.vrp	1081,70	1081,70	1079,86				

CS*

Organização

Teste 2

DPSO

CS*

Organização

DPSO

Teste 2

	A-n32-k5.vrp	854,34	854,34	884,24	A-n48-k7.vrp	1263,64	1258,71	1310,77
	A-n33-k5.vrp	707,88	707,88	703,68	A-n53-k7.vrp	1365,71	1365,71	1481,41
	A-n33-k6.vrp	794,59	794,59	791,95	A-n54-k7.vrp	1560,05	1560,05	1629,26
	A-n34-k5.vrp	845,40	845,40	893,65	A-n55-k9.vrp	1511,73	1506,56	1563,04
	A-n36-k5.vrp	884,75	884,75	932,70	A-n60-k9.vrp	1769,39	1769,39	1807,54
	A-n37-k5.vrp	770,40	770,40	833,59	A-n61-k9.vrp	2702,91	2170,87	2033,64
	A-n37-k6.vrp	1078,50	1078,50	1156,15	A-n62-k8.vrp	1787,94	1760,69	1726,32
AUGERAT, Philippe et al. Separating	A-n38-k5.vrp	853,59	853,59	874,37	A-n63-k9.vrp	2298,78	2186,79	2158,65
Capacity Constraints in the CVRP Using Tabu Search. European Journal	A-n39-k5.vrp	987,01	987,01	983,02	A-n63-k10.vrp	1830,82	1806,30	1790,97
of Operational Research, v. 106, n.	A-n39-k6.vrp	961,94	961,94	1014,23	A-n64-k9.vrp	1914,04	1914,04	1931,46
2-3, p. 546-557, 1998.	A-n44-k7.vrp	1114,01	1114,01	1172,30	A-n65-k9.vrp	2278,85	2276,99	2072,62
FISHER, Marshall L. Optimal solution of vehicle routing problems using	A-n45-k6.vrp	1595,19	1595,19	1608,71	A-n69-k9.vrp	1874,61	1874,61	1805,15
minimum k-trees. Operations	A-n45-k7.vrp	1303,78	1294,57	1358,33	A-n80-k10.vrp	2668,50	2665,65	2618,01
research, v. 42, n. 4, p. 626-642, 1994.	A-n46-k7.vrp	1086,37	1086,37	1086,67				

CS*

Organização

Teste 3

DPSO

CS*

Organização

DPSO

Teste 3

	A-n32-k5.vrp	861,65	860,32	924,28	A-n48-k7.vrp	1304,69	1267,42	1322,97
	A-n33-k5.vrp	699,37	699,37	712,19	A-n53-k7.vrp	1426,25	1426,25	1376,96
	A-n33-k6.vrp	819,78	819,78	824,45	A-n54-k7.vrp	1537,94	1537,94	1560,61
	A-n34-k5.vrp	832,11	832,11	827,22	A-n55-k9.vrp	1417,65	1417,65	1461,98
	A-n36-k5.vrp	899,43	899,43	920,83	A-n60-k9.vrp	1717,00	1717,00	1731,34
	A-n37-k5.vrp	731,57	731,57	807,78	A-n61-k9.vrp	2729,72	2254,20	1979,52
	A-n37-k6.vrp	1088,64	1088,64	1142,75	A-n62-k8.vrp	1809,37	1809,37	1735,02
AUGERAT, Philippe et al. Separating	A-n38-k5.vrp	885,23	885,23	974,92	A-n63-k9.vrp	2589,07	2589,07	2366,40
Capacity Constraints in the CVRP Using Tabu Search. European Journal	A-n39-k5.vrp	961,51	961,51	1005,24	A-n63-k10.vrp	1810,93	1810,93	1782,62
of Operational Research, v. 106, n.	A-n39-k6.vrp	962,61	962,61	1075,35	A-n64-k9.vrp	1922,06	1922,06	1905,43
2-3, p. 546-557, 1998.	A-n44-k7.vrp	1167,44	1167,44	1229,64	A-n65-k9.vrp	2656,60	2567,74	2285,43
FISHER, Marshall L. Optimal solution of vehicle routing problems using	A-n45-k6.vrp	1684,91	1684,91	1595,90	A-n69-k9.vrp	1911,18	1911,18	1848,47
minimum k-trees. Operations	A-n45-k7.vrp	1303,46	1303,46	1396,86	A-n80-k10.vrp	2744,16	2698,15	2682,78
research, v. 42, n. 4, p. 626-642, 1994.	A-n46-k7.vrp	1108,66	1108,66	1125,82				

CS*

Organização

Teste 4

DPSO

CS*

Organização

DPSO

Teste 4

38 melhorias com uso do CS*

53 melhorias com o vizinho mais próximo

AUGERAT, Philippe et al. Separating Capacity Constraints in the CVRP Using Tabu Search. **European Journa of Operational Research**, v. 106, n. 2-3, p. 546-557, 1998.

FISHER, Marshall L. Optimal solution of vehicle routing probles using minimum k-trees. **Operations research**, v. 42, n. 4, p. 626-642, 1994

	Teste 5	DPSO	CS*	Organização	Teste 5	DPSO	CS*	Organização
	A-n32-k5.vrp	843,05	843,05	876,44	A-n48-k7.vrp	1287,79	1287,79	1293,40
	A-n33-k5.vrp	697,65	697,65	706,89	A-n53-k7.vrp	1369,22	1369,22	1467,88
	A-n33-k6.vrp	800,04	800,04	807,07	A-n54-k7.vrp	1576,63	1576,63	1446,50
0	A-n34-k5.vrp	847,30	847,30	863,78	A-n55-k9.vrp	1459,34	1459,34	1436,91
	A-n36-k5.vrp	908,72	908,72	938,71	A-n60-k9.vrp	1721,95	1705,12	1758,66
	A-n37-k5.vrp	776,26	776,26	814,40	A-n61-k9.vrp	2697,02	2317,36	2130,16
	A-n37-k6.vrp	1087,21	1087,21	1129,47	A-n62-k8.vrp	1734,53	1734,53	1780,55
	A-n38-k5.vrp	884,83	884,83	917,12	A-n63-k9.vrp	2314,80	2314,80	2268,91
nal	A-n39-k5.vrp	971,66	971,66	1034,63	A-n63-k10.vrp	1823,99	1787,82	1768,14
	A-n39-k6.vrp	966,85	962,02	1025,73	A-n64-k9.vrp	1952,38	1916,08	1856,38
	A-n44-k7.vrp	1157,82	1149,78	1236,96	A-n65-k9.vrp	2329,00	2247,33	2136,10
1	A-n45-k6.vrp	2342,78	1988,12	1835,13	A-n69-k9.vrp	1842,57	1841,23	1705,73
	A-n45-k7.vrp	1308,89	1308,89	1282,81	A-n80-k10.vrp	2717,56	2596,78	2523,17
94.	A-n46-k7.vrp	1073,28	1073,28	1106,20		1		

Comparativo com Literatura

Problem	BEST	Proposed Adaptive Sweep + VTPSO	DPSO	DPSO+CS*	+/-
A-n32-k5	784.0	882	819,47	843,05	-38,951954153
A-n33-k5	661.0	698	682,31	697,65	-0,347857618
A-n33-k6	742.0	751	758,26	790,36	39,3566241969
A-n34-k5	778.0	785	819,16	827,22	42,2241708295
A-n36-k5	799.0	881	845,93	847,54	-33,4604197149
A-n37-k5	669.0	754	748,40	731,57	-22,4253131817
A-n37-k6	949.0	1112	1032,16	1066,35	-45,645125703
A-n38-k5	730.0	813	822,78	853,59	40,5920121271
A-n39-k5	822.0	877	916,24	940,33	63,3260922841
A-n39-k6	831.0	972	888,42	960,78	-11,2173367827
A-n44-k6	937.0	1056	1048,23	1114,01	58,0112581862

AKHAND, M. A. H.; PEYA, Zahrul Jannat; MURASE, Kazuyuki. Capacitated Vehicle Routing Problem Solving using Adaptive Sweep and Velocity Tentative PSO. **International Journal of Advanced Computer Science and Applications**, v. 8, n. 12, p. 288-295, 2017.

A-n45-k6	944.0	1073	1452,87	1540,34	467,3428720951
A-n45-k7	1146.0	1305	1228,27	1280,77	-24,2322610439
A-n46-k7	914.0	975	1019,73	1073,28	98,278521263
A-n48-k7	1073.0	1152	1188,39	1258,71	106,7063199245
A-n53-k7	1010.0	1090	1225,76	1358,46	268,4599371801
A-n54-k7	1167.0	1361	1358,58	1446,50	85,5021725111
A-n55-k9	1073.0	1190	1263,18	1360,68	170,6752254093
A-n60-k9	1408.0	1503	1593,19	1705,12	202,1203721308
A-n61-k9	1035.0	1164	2622,14	1927,57	763,5705351634
A-n62-k8	1290.0	1408	1534,74	1726,32	318,3198944943
A-n63-k9	1634.0	1823	2053,78	2158,65	335,6508274777
A-n63-k10	1315.0	1477	1579,07	1768,14	291,1416979852
A-n64-k9	1402.0	1598	1680,59	1806,38	208,3834959412
A-n65-k9	1177.0	1317	1855,22	2016,05	699,0466733627
A-n69-k9	1168.0	1259	1474,50	1705,73	446,732327996
A-n80-k10	1764.0	2136	2276,81	2523,17	387,1690713037

OTIMIZAÇÃO COMBINATÓRIA E META-HEURÍSTICAS

Marcos A. Spalenza

Doutorando em Ciência da Computação Laboratório de Computação de Alto Desempenho - LCAD Programa de Pós-Graduação em Informática - PPGI