CỨU RỖI CHÚNG SINH KHỎI KIẾP NAN TRẦN THẾ

ĐẠI SỐ BOOLEAN

$$0+0=0$$
 $0.0=0$ $0+1=1$ $0.1=0$ $0.1=0$ DINH LÝ DEMORGAN $\overline{A+B+C+...}=\overline{A}.\overline{B}.\overline{C}...$ $1+1=1$ $\overline{1}.1=1$ $\overline{1}=0$ $\overline{A}.B.C....=\overline{A}+\overline{B}+\overline{C}+...$

Giao hoán
$$A + B = B + A$$

 $A.B = B.A$

Phân phối
$$(A+B).C = A.C + B.C$$

$$A + B.C = (A+B).(A+C)$$

$$A + 1 = 1$$

$$A + A = A$$

$$A + A =$$

Một số đẳng thức:

$$A + AB = A$$

$$A(A + B) = A$$

$$AB + A\overline{B} = A$$

$$A + \overline{AB} = A + B$$

$$A(\overline{A} + B) = AB$$

$$(A + B)(A + \overline{B}) = A$$

$$(A + B)(A + C) = A + BC$$

$$AB + \overline{AC} + BC = AB + \overline{AC}$$

$$(A + B)(\overline{A} + C)(B + C) = (A + B) + (\overline{A} + C)$$

BCD CODE

Decimal digit	BCD (8421)	2421	Excess-3	Biquinary	1-out-of-10
0	0000	0000	0011	0100001	1000000000
1	0001	0001	0100	0100010	0100000000
2	0010	0010	0101	0100100	0010000000
3	0011	0011	0110	0101000	0001000000
4	0100	0100	0111	0110000	0000100000
5	0101	1011	1000	1000001	0000010000
6	0110	1100	1001	1000010	0000001000
7	0111	1101	1010	1000100	000000100
8	1000	1110	1011	1001000	000000010
9	1001	1111	1100	1010000	000000001
		Unused	d code words		
	1010	0101	0000	0000000	0000000000
	1011	0110	0001	0000001	000000011
	1100	0111	0010	0000010	0000000101
	1101	1000	1101	0000011	0000000110
	1110	1001	1110	0000101	0000000111
	1111	1010	1111	• • •	

85₁₀ = 1000 0101 (BCD) 572₁₀ = 0101 0111 0010 (BCD)

. So ooth
CD 110
+ 35
7 5

BCD ADDER

ADDER

HALF ADDER

USING NAND, NOR

FULL ADDER

FULL ADDER USING HALF ADDER

$$A \cdot B + Cin(A \cdot B) = A \cdot B + Cin(AB + A'B)$$

$$X + Cin(A \cdot B) = A \cdot B + AB \cdot Cin + A'B \cdot Cin$$

$$= A(B + Cin) + A'B \cdot Cin$$

$$= A(B + Cin) + A'B \cdot Cin$$

$$= A \cdot B + A \cdot Cin + A'B \cdot Cin$$

$$= A \cdot B + (A + A'B) \cdot Cin$$

$$= A \cdot B + (A + B) \cdot Cin$$

$$= A \cdot B + A \cdot Cin + B \cdot Cin$$

2 BIT COMPARATOR

A,	Ao	B,	Во	ALB	A = B	A>B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0		0	0
0	0	1	1	i	0	0
0	1	0	0	0	0	1
0	1	0	1			
0	1	1	0			
0	l _p	1	1			
1	0	O	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			

SUBTRACTOR

HALF SUBTRACTOR

HS USING NAND

HA USING NOR

FULL SUBTRACTOR

A B	C D	8.
0 - 0=0-0	0=0	0
0 - 0=0 -1	1	1
Ø2 - 1= 0	1	1
0 - 1-1 1	0	1
1 _ 0 -1 -0	-1 1	0
1 - 0=1-1	=0 0	0
1 - 1 = 0 - 0	EO 0	0
1 - 1 = 0 - 1	1	1

FS USING NAND

MUX

8X1 MUX

2X1

DEMUX

ENCODER

PRIORITY ENCODER

M

DECIMAL TO BCD ENCODER

00

(1)0

OCTAL TO BINARY ENCODER

DECODER

2X4 DECODER

I	nputs		Outputs						
EN	l1	10	Y3	Y2	Y1	Y0			
0	X	X	0	0	0	0			
1	0	0	0	0	0	1			
1	0	1	0	0	1	0			
1	1	0	0	1	0	0			
1	1	1	1	0	0	0			

COMBIANTIONAL LOGIC USING DECODER

A	В	Cin	اد	Go	Fs
0	0	0	0	05	moj
0	0	1	0	0	m ₁
0	1	0	0	0	m ₂
0	1	1	6	0	m ₃
1	0	0	0	0	m4
1	Ō	1	0	1	m ₅
1	1	0	0	0	ma
1	1	1	0	(1)	m

SR LATCH

NOR LATCH

NAND LATCH

SR FF

0

I

1

0

01

0

Rª

907 = S + 97 R

Qn+1 = I+I

BEHAVIOUR OF MASTER SLAVER D FF

an J K	Qn+1	Qn	Qnn	1	K
0 0 0	0	0	0	0	×
0 0 1	6	0	1	1	X
0 10	m	7	. 0	X	1
0 1 1	1	tu 2	1	×	٥
00	1	On 10 L	- an	nH o	L
1 01	0	001		0	X
(1) LD	1	1 1		-10	101
1 1 1	(B)	J = 0	nH	K s	Gn+1

MASTER SLAVE JK FF

Master slave JK FF is the same as negative edge trigg

CIK	Т	Qn+ı	an T Onti	a _n	anti	ΙΤ
0	x	Qn] memory	0 0	0	0	0
1	9	Qn memory	<u>0</u> 1 0	0	7	1
		Qn Topple	1 1 0 0dd 1's det	edn L	0	1
L	1	an Ju	1 1 0 0dd	1	L	0

FLIPFLOP CONVERSION

JK TO D

T TO D

SR TO JK

		off :	SR JK			9n 9nH 5 R
00	1	k	Qn+	V S	* R	for S - 1 1 X 0
0	0	0	0	0	×	Qn 00 01 11 16
0	0	1	0	0	×	0 0 0 1 1 S = Qn
101	1	D	1	1	D	1 X 10 101V
0	1	1	1	1	0	for R-
11	0	0	1	×	0	
1	0	1	0	0	1	80 00 01 11 16
1	1	٥	1	×	0	0 x x 0 0 R=0
11	1	1		0	1	1 OF FOR

SR TO T

SET AND CLR INPUT

STATE DIAGRAM

EX JK FF

Design Procedure for Clocked Sequential Circuits

Step 1: A State diagram or timing diagram is given, which describes the behaviour of the circuit that is to be designed.

Step 2: Obtain the state table.

Step 3: The number of states can be reduced by state reduction method.

Step 4: Do state assignment. (If required)

Step 5: Determine the number of flip-flops required and assign letter symbols.

Step 6: Decide the type of flip-flop to be used.

Step 7: Derive the circuit excitation table from state table.

Step 8: Obtain the expression for circuit output and flip flop input.

Step 9: Implement the circuit.

0 x 01	1/Q4 /	Q.	*	Total	6t	Iff.	F. 1	Я	
1 0 91	٥	9	0	0	0	0	0	0	
1 1 1 90	0	2	7	0	1	0	1	0	TAC
On any +	0	1	0	L	7	(1)	0	0	14
006	0	F	1-	0	Ļ	0	6	0	
10/1	L	0	0	L	0	0	0	1	
1110	7	0	1	0	ō	1	0	1	
1 = 0 m Ony	1	1	0	L	0	0	1	0	
	1	F	- 1	1.	- F	0	6	0	

$$T_{A} = \overline{Q}_{A} \overline{Q}_{B} \overline{x} + \overline{Q}_{A} \overline{Q}_{B} \overline{x}$$

$$T_{B} = \overline{Q}_{A} \overline{Q}_{D} \overline{x} + \overline{Q}_{A} \overline{Q}_{B} \overline{x}$$

$$Y = \overline{Q}_{A} \overline{Q}_{D} \overline{x} + \overline{Q}_{A} \overline{Q}_{B} \overline{x}$$

$$= \overline{Q}_{A} \overline{Q}_{D} \overline{x} + \overline{Q}_{A} \overline{Q}_{B} \overline{x}$$

$$= \overline{Q}_{A} \overline{Q}_{B} \cdot 1$$

$$= \overline{Q}_{A} \overline{Q}_{B} \cdot 1$$

$$= \overline{Q}_{A} \overline{Q}_{B}$$

Analysis of Clocked Sequential Circuits

JK FF

Pages	int State	: i/P					M-2-		
(0)	(Qa)	13	JA	K ₄	1º	Ke	Q.	Qts	So = 00
0	0	0	0	0	1	0	0	L	s ₁ = 0 1
0	0	1	0	0	٥	L	0	0	52 . 10
0	1	0	1	1	1	0	1	L	53 = 11
۵	1	1	1	6	0	7	Ĺ	0	1 0
1	0	0	0	0	1	7	1_	1	CO (01)
	0	1.	0	0	0	0	1	O	
1	1	0	1	L	1	1	0	0	0 0 1
1	,	1 1	1	D	0	0	1	L	1 (11) 0 (10)

COUNTER

UP COUNTER

3 BIT SYNCHRONOUS/RIPPLE COUNTER

4 BIT RIPPLE COUNTER

2 BIT SYNCHRONOUS COUNTER

DOWN COUNTER

3 BIT RIPPLE DOWN COUNTER

CIK	100	9.	Qn	Qu (90 9	4	
Initially	0	0	200	1			(7)=
15 (1)	0	0	1	1	1	D	
2" (1)	0	1	0	L	0	1	
3"4 (4)	0	1	1	L	0	D	į.
4 (1)	1	0	0	0	1	1	,
5" (1)	1	0	1	0	L	٥	(2)
6" H)	1	1	6	ю	0	1	(I)
7× (1)	1	1			0	D	(0)-

UP/DOWN COUNTER

3 BIT RIPPLE UD COUNTER

3 BIT UD SYNCHRONOUS COUNTER

Control		P .5-			3-B	it Up	/Down	n Synd	chron	nous Counter
Control 1/P M	18c	De		, at		a,	, Te 1/P	of ffs.	4	M=0 up country 1=0
0	0	0	0	0	٥	1	0	0	-1	M=0 up country
0	0	0	1	0	1	0	0	1		N=1
0	0	Ţ	0	0	1	1	0	0		up 🐠 🧖
٥	0	1	1	L)	0	0	1	1)	Country 1
0	1	0	0	1	0	J	0	0		101 100 011
٥	1	0	1	1	1	0	0	T		
0	1	Î	6	1	1)	D	0		
0	1	1	1	0	0	0	1	L		
1	0	0	0							
1	0	0	1							4
0	1	Ī	0	1	1)	0	0	1	
0	1	į	1	0	0	0	1	L	ı	
1	0	0	0	1	1	1	1	t	1	
1	0	0	1	0	0	0	0	D	1	
1	0	1	0	0	0	1	0	1	1	
1	0	L	1	0	1	0	0	O	1	
1	1	0	0	0	1	1	1	1	1	
1	1	0	1	1	D	0	0	0	Į.	
1	1	1	0	1	0)	0	1	1	
1	1	1	L	1	1	О	0	0	1	

Modulus of the Counter & Counting up to Particular Value

RESIGTER

Introduction to Registers

»,Flip Flop is 1-bit memory cell.

1011

» To increase the storage capacity, we have to use group of flip-flop. This group of ff is known as REGISTER.

» The n-bit register consist of "n" number of flip-flops and is capable of storing "n-bit" word.

Synch :- clout and load?

asynch: - only loads

SISO

SIPO

PIPO

Bidirectional Shift Register

It is a type of fixed architecture logic device with programmable AND gates followed by programable OR gates

4	β	C	1 Y1	Y2 N	
0	0	0	0	0 500	YI = ABC + ABC + ABC
0	0	7	0	0	Y1 = AB + AC Stab :- 2
0	1	0	0	0] 514.7
0	1	1	0	1	Y2 = BC+AC
1	0	0	1	0	
1	0	1	1	1	
1	1	0	0	0	
1	1	1	1	1	

Programmable Array Logic (PAL)

$$X(ABC) = Z_{0}(2,3,5,7) = AB + AC$$
 2
 $Y(ABC) = Z_{m}(0,1,5) = AB + BC$ 2
 $Z(ABC) = Z_{m}(0,2,3,5) = AB + AC + ABC$ 3

3 MINTERM

Revolution (Bước lượng tử): $q = Vref/(2^n - 1)$ (n là số bit)

Vref: ADC reference volatage

ADC and DAC

LOGIC GATE

	XI	NO	R	
A- B-)		>	X

$$X = A \oplus B$$

V.	- 1	A	D
A =	= ~	B	D

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

Α	В	X
0	0	1
0	1	0
1	0	0
1	1	1

BINARY CONVERT

Hex Digit	Decimal Value	Binary Value
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A or a	10	1010
B or b	11	1011
Corc	12	1100
D or d	13	1101
E or e	14	1110
F or f	15	1111

7 SEG DECODER

Schematic of BCD to 7-Segment Decoder

Câu 5 (1 điểm)

Thành lập bộ nhớ có kích thước 16K x 8 bit từ các bộ nhớ có kích thước 8K x 8 bit và các phần tử AND, OR, NOT

Câu 6 (1 điểm)

```
Cho các biểu thức hàm logic sau (a = LSB, c = MSB): f(a, b, c) = \Sigma \ (1,4,7); g(a, b, c) = \prod \ (0,3,5); h(a, b, c) = \Sigma \ (1,2,7); Hãy sử dụng ROM 64 x 8 bit để thực hiện các hàm này.
```


Câu 5:

$$f(a,b,c) = \Sigma(1,4,7)$$

 $g(a,b,c) = \Pi(0,3,5) = \Sigma(1,2,4,6,7)$
 $h(a,b,c) = \Sigma(1,2,7)$.

