

listributions. (A) All

east 50 H1N1 and 50

nels follow the same 1s. NH = Northern

age

Ö

Ö

een annual antigenic Each data point subtype were observed in each age in R. (B) Seasonus season.

waves of the 2009 northern hemisphere

Season	Confirmed H1N1	Confirmed H3N2
1993-94	0	101
1994-95	12	38
2002-03	71	8
2003-04	0	71
2004-05	0	131
2005-06	1	321
2006-07	212	28
2007-08	196	244
2010-11	472	1204
2011-12	595	348
2012-13	80	1578
2013-14	1475	151
2014-15	5	2109
Total	3119	6332

Season	Confirmed H1N1	Confirmed H3N2	Country	Total confirmed
NH 2010-11	93	13	Argentina	1552
SH 2011	25	243	Australia	21
NH 2011-12	1	123	Belgium	512
SH 2012	24	49	Chile	22
NH 2012-13	115	105	Denmark	50
SH 2013	248	95	Estonia	91
NH 2013-14	218	140	Germany	55
SH 2014	36	349	Greece	72
NH 2014-15	47	320	Japan	12
SH 2015	36	386	Peru	131
NH 2015-16	271	80	Poland	107
SH 2016	432	90	Spain	35
NH 2016-17	13	60	Thailand	727
Total	1559	2053	UK	14
			USA	211

Model	ΔAIC
AZDHS	models
AN	0.00
AS	23.42
AG	245.18
Α	380.47
INSIGH [*]	T models
ATVN	0.00
ATVS	0.25
ATV	0.98
ATUVN	2.00
ATUVS	2.25
ATUV	2.96
ATVG	4.26
ATN	6.16
ATUVG	6.25
ATS	6.40
ATUN	8.10
ATUS	8.33
AT	8.67
AVN	8.79
AVS	8.95
AV	9.54
ATU	10.56
AUVN	10.79
AUVS	10.95
ATG	11.35
AUV	11.54
AVG	12.99
ATUG	13.23
AN	14.02
AS	14.18
AUVG	14.99
AUN	16.00
AUS	16.16
Α	16.18
AU	18.14
AG	19.17
AUG	21.12

B), frequencies from ases was not available es at the extremes of 1 to all tested cases.

HS cases, of the same D illustrates that the type-specific

observed age plotted if 10 or more Smoothing splines wer data points would

, with smoothing splines shown in the

76

77

78

79

rved age distributions rved, (as opposed to Smoothing splines rer data points would

g observed age Smoothing splines

g. 3, except with a es.

L		N											Poss	ible l	oirth	dates											
	A	Ĭ	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	
				1999							20	00										2001					Summary
	son	Oct 2000		ļ.,	ļ	<u> </u>						ļ		ļ		ľ	Ĭ		Li.	L		ĺ	ľ		L	Ĭ	4.5 (6.25%) possible
	sea	Nov 2000	1	<u> </u>		ļ							ļ	ļ	ļ				Ļ			Ĺ	1			Li	birth months in 1999
	1 NH	Dec 2000		LL	L.		ļ							ļ					L					LL	L	LL	63 (87.5%) possible
date	2001	Jan 2001	[Į į		ļ						ļ		ļ	ļ					[[[[[Į.	birth months in 2000
	2000-	Feb 2001	j	Ĭ	L	Ĺ								ļ				į		ì	Ĭ	ĺ	j	Ĭ	Li	ľ	4.5 (6.25%) possible
ent	7	Mar 2001	ı	Ü	l i		ı I															Ì	Î	l l	l i	l I	birth months in 2001
Enrollment		Apr 2001			L]
2	ason	May 2001	j	Ĭ	Ĭ	i i	j	Ĭ	j			ļ			ļ				<u> </u>				j	j	Ĭ	Ĭ	36 (50%) possible birth months in 2000
□	H se	June 2001	j	Li	Li	i	Li	Ľ	L i	Ĭ				<u> </u>	<u> </u>				<u> </u>					Ĭ	Li	Ĭ	
	S	Jul 2001		LL	LL				LL									l								LL]
	2001	Aug 2001			L	[[36 (50%) possible birth months in 2001
L		Sept 2001	Ü	Ĭ	Ï	į	Ü	Ĭ	Ĭ	į	Ĭ	Ĭ															1

В	1		
		Probability	Birth year formula
		.0625	b = y1-age-1
	y0-y1 NH season	.875	b = y1-age
		.0625	b = y1 – age +1
	y1 SH	0.5	b = y1 – age -1
	season	0.5	b = y1 - age

h months (shaded) of s the start of the NH n (top half of figure), 1999 (gray) or in 2001 of figure), have an month of case shown in (A), were sars for cases observed of birth year-specific of SH seasons.

ord et al., and n a given calendar year.

ice intervals from sk of confirmed

Model	AN	AS	AG	A
ΔΑΙC	0.00	23.42	245.18	380.47
H1N1 impr. protection	0.34 (0.29-0.42)	0.29 (0.24-0.35)	0.67 (0.58-0.78)	
H3N2 impr. protection	0.71 (0.62-0.82)	0.9 (0.78->1)	0.69 (0.6-0.8)	
Ages 5-10	0.68 (0.63-0.74)	0.66 (0.61-0.72)	0.66 (0.62-0.72)	0.62 (0.57-0.68)
Ages 11-17	0.33 (0.3-0.36)	0.31 (0.28-0.34)	0.33 (0.3-0.37)	0.3 (0.28-0.34)
Ages 18-24	0.38 (0.35-0.42)	0.36 (0.32-0.4)	0.39 (0.35-0.43)	0.35 (0.32-0.39)
Ages 25-31	0.34 (0.32-0.38)	0.33 (0.3-0.37)	0.34 (0.31-0.38)	0.31 (0.28-0.35)
Ages 32-38	0.28 (0.26-0.32)	0.26 (0.24-0.3)	0.28 (0.26-0.32)	0.26 (0.24-0.29)
Ages 39-45	0.23 (0.2-0.27)	0.21 (0.18-0.24)	0.24 (0.22-0.28)	0.21 (0.2-0.24)
Ages 46-52	0.24 (0.22-0.28)	0.21 (0.19-0.24)	0.24 (0.22-0.28)	0.23 (0.2-0.26)
Ages 53-59	0.22 (0.2-0.26)	0.2 (0.18-0.23)	0.2 (0.18-0.24)	0.2 (0.18-0.23)
Ages 60-66	0.21 (0.19-0.24)	0.22 (0.2-0.26)	0.19 (0.16-0.22)	0.18 (0.16-0.21)
Ages 67-73	0.22 (0.2-0.26)	0.25 (0.22-0.29)	0.2 (0.18-0.23)	0.19 (0.18-0.22)
Ages 74-80	0.23 (0.2-0.26)	0.25 (0.22-0.3)	0.2 (0.18-0.24)	0.2 (0.18-0.23)
Ages 81+	0.15 (0.14-0.18)	0.17 (0.15-0.2)	0.13 (0.12-0.16)	0.13 (0.12-0.15)

age /4-80 age 81-90	age 67-73	age 60-66	age 53-59	age 46-52	age 39-45	age 25-38	age 18-24	Impr.,, H3N2	Impr., H1N1	Vaccin., H3N2	Vaccin., H1N1	Und. Cond.	Antivir. Trt.	ΔAIC	Model	age 81-90	age 74-80	age 67-73	age 60-66	age 53-59	age 46-52	age 39-45	age 25-38	age 18-24	Impr.,, H3N2	Impr., H1N1	Vaccin., H3N2	Vaccin., H1N1	Und. Cond.	Antivir. Trt.	ΔAIC	Model
0.89 (0.54-1.41)	1.03 (0.82-1.31)	(0.78-	0.92 (0.79-1.10)	0.93 (0.82-1.07)	0.99 (0.87-1.12)	1.01 (0.91-1.14)	0.96 (0.84-1.10)	0.94 (0.79-1.21)	0.98 (0.78-1.27)	0.85 (0.67-1.06)	0.63 (0.45-0.87)	0.99 (0.85-1.16)	1.41 (1.16-1.71)	6.25	ATUVG	0.92 (0.55-1.47)	1.04 (0.72-1.46)	1.06 (0.81-1.36)	0.96 (0.78-1.18)		0.93 (0.81-1.08)	0.97 (0.85-1.12)	1.01 (0.91-1.14)	0.96 (0.84-1.09)	0.92 (0.70-1.26)	0.82 (0.59-1.15)		0.65 (0.47-0.89)		1.41 (1.16-1.71)	0	ATVN
0.92 (0.56-1.43)	1.06 (0.84-1.32)	0.96 (0.80-1.15)	0.89(0.77-1.03)	0.89(0.79-1.01)	0.95 (0.84-1.07)	1.02(0.92 - 1.15)	0.97 (0.85-1.10)	0.97 (0.81-1.17)	0.74(0.57-0.97)				1.38 (1.14-1.68)	6.4	ATS	0.96 (0.58-1.49)	1.08 (0.78-1.47)	1.10 (0.88-1.38)	0.99(0.82 - 1.18)	0.91 (0.79-1.05)	0.90 (0.80-1.03)	0.95 (0.84 - 1.08)	1.01(0.91-1.14)	0.95 (0.84 - 1.08)	0.98 (0.82 - 1.19)	0.77 (0.59-1.00)	(0.67-1)	0.65 (0.46-0.89)		1.41 (1.15-1.71)	0.25	ATVS
0.89 (0.53-1.43)	1.02 (0.78-1.32)	0.94 (0.76-1.15)	0.91 (0.80-1.06)	0.92 (0.80 - 1.07)	0.96 (0.84-1.11)	1.02 (0.92-1.15)	0.97 (0.85-1.11)	0.92 (0.69-1.25)	0.79 (0.57 - 1.12)			0.98 (0.84 - 1.15)	1.39 (1.14-1.68)	8.1	ATUN	0.90 (0.56-1.38)	1.03 (0.76-1.38)	1.05 (0.85-1.28)	0.95 (0.81-1.12)	0.93 (0.82-1.07)	0.94 (0.83-1.06)	0.98 (0.88-1.10)	1.01 (0.91-1.14)	0.96 (0.85 - 1.09)			0.86 (0.68-1.07)	0.62 (0.44-0.85)		1.40 (1.15-1.70)	0.98	ATV
0.92 (0.56-1.45)	1.06 (0.84-1.33)	0.96 (0.80-1.16)	0.89(0.77-1.03)	0.89(0.79-1.02)	0.95 (0.84-1.07)	1.02(0.92 - 1.15)	0.97 (0.85-1.10)	0.97 (0.81-1.17)	0.75(0.57-0.97)			0.98 (0.84-1.15)	1.39 (1.14-1.68)	8.33	ATUS	0.92 (0.55-1.48)	1.04 (0.72-1.47)	1.06 (0.81-1.38)	0.96(0.78-1.18)	0.93 (0.81-1.07)	0.93 (0.81-1.08)	0.97 (0.85-1.12)	1.01(0.91-1.14)	0.96(0.84-1.09)	0.92 (0.70-1.26)	0.82 (0.59-1.15)	0.84 (0.67-1.06)	0.65 (0.47-0.89)	1.00 (0.85-1.17)	1.41 (1.16-1.71)	2	ATUVN
0.98 (0.72-1.31) 0.85 (0.53-1.31)	1.00 (0.81-1.22)	0.92 (0.79-1.08)	0.92 (0.81-1.05)	0.93 (0.82-1.05)	0.97 (0.87-1.10)	1.02 (0.92-1.15)	0.98 (0.86-1.12)						1.38 (1.13-1.67)	8.67	AT	0.96 (0.58-1.50)	1.09 (0.78-1.48)	1.11 (0.88-1.39)	0.99 (0.82 - 1.19)	0.91 (0.79-1.05)	0.90 (0.80-1.03)	0.95 (0.84-1.08)	1.01 (0.91-1.14)	0.95 (0.83-1.09)	0.98 (0.82-1.19)	0.77 (0.59-1.00)	0.84 (0.67-1.06)	0.65 (0.47-0.89)	1.00 (0.85-1.17)	1.41 (1.15-1.71)	2.25	ATUVS
0.99 (0./6-1.57)	1.08 (0.82-1.38)	0.98 (0.80-1.19)	0.93 (0.81-1.07)	0.92 (0.81-1.08)	0.97 (0.86-1.13)	1.01(0.91-1.14)	0.96 (0.84-1.10)	0.94 (0.71-1.29)	0.81 (0.59 - 1.14)	0.84 (0.67 - 1.06)	0.66(0.47 - 0.91)			8.79	AVN	0.90 (0.56-1.39)	1.03 (0.76-1.39)	1.05 (0.85-1.29)	0.96 (0.81 - 1.13)	0.94 (0.82-1.07)	0.94 (0.83-1.06)	0.98 (0.88-1.10)	1.01(0.91-1.14)	0.96(0.84-1.09)			0.86 (0.68-1.07)	0.62 (0.44-0.85)	0.99 (0.85-1.16)	1.40 (1.15-1.70)	2.96	ATUV
1.03 (0.62-1.58)	1.12 (0.89-1.39)	1.00 (0.83-1.19)	0.92 (0.80-1.06)	$0.90 \ (0.80 - 1.03)$	0.96 (0.85 - 1.09)	1.01 (0.91 - 1.14)	0.95 (0.84-1.09)	0.99 (0.82-1.20)	0.77(0.59-1.00)	0.84 (0.67-1.06)	0.66 (0.47 - 0.91)			8.95	AVS	0.88 (0.54-1.40)	1.01 (0.72 - 1.39)	1.03 (0.82-1.30)	0.94 (0.78 - 1.15)	0.92 (0.79-1.10)	0.93 (0.82-1.07)	0.99 (0.87 - 1.12)	1.01 (0.91 - 1.14)	0.96 (0.85 - 1.10)	0.94 (0.79-1.21)	0.98 (0.78-1.28)	0.84 (0.67-1.06)	0.63 (0.45-0.86)		1.41 (1.15-1.71)	4.26	ATVG
0.96 (0.59-1.47)	1.05 (0.86-1.29)	0.96 (0.82-1.13)	0.94 (0.83 - 1.08)	0.94 (0.83-1.06)	0.99(0.89-1.11)	1.01(0.91-1.14)	0.96 (0.85-1.10)			0.86 (0.68 - 1.08)	0.63 (0.46 - 0.86)			9.54	AV	0.88 (0.53-1.41)	1.00(0.69-1.41)	1.01 (0.78-1.31)	0.93 (0.76-1.14)	0.91 (0.80-1.05)	0.92 (0.80-1.07)	0.96 (0.84-1.11)	1.02 (0.92-1.15)	0.97 (0.86 - 1.11)	0.92(0.69-1.25)	0.79 (0.57-1.12)				1.39 (1.14-1.68)	6.16	ATN

Table S2. Maximum likelihood parameter estimates and 95% profile confidence intervals from each model fit to INSIGHT data

(2/2).

Antivir. Trt. Und. Cond. Vaccin., H1N1 Vaccin., H3N2 Impr., H1N1 Impr., H3N2 age 18-24 age 25-38 age 39-45 age 46-52 age 53-59 age 60-66 age 67-73 age 74-80 age 81-90	ΔAIC	Model	age 81-90	age 74-80	age 60-66	age 53-59	age 46-52	age 39-45	age 25-38	age 18-24	Impr.,, H3N2	Impr., H1N1	Vaccin., H3N2	Vaccin., H1N1	Und. Cond.	Antivir. Trt.	ΔAIC	Model
0.75 (0.57-0.97) 0.98 (0.82-1.19) 0.97 (0.86-1.11) 1.02 (0.92-1.15) 0.95 (0.85-1.08) 0.89 (0.79-1.02) 0.90 (0.78-1.04) 0.97 (0.81-1.16) 1.07 (0.85-1.33) 1.08 (0.78-1.47) 0.98 (0.59-1.51)	14.18	AS	0.86 (0.53-1.32)	0.99 (0.72-1.32)	1.00 (0.81-1.24)	0.92 (0.81-1.06)	0.93 (0.83-1.06)	0.98 (0.88-1.10)	1.02 (0.92-1.15)	0.98 (0.86-1.11)					0.98 (0.84-1.14)	1.38 (1.13-1.68)	10.56	ATU
1.00 (0.86-1.17) 0.64 (0.46-0.89) 0.85 (0.67-1.07) 1.00 (0.80-1.30) 0.94 (0.79-1.20) 0.97 (0.85-1.10) 1.01 (0.91-1.13) 1.00 (0.88-1.13) 1.00 (0.88-1.13) 0.93 (0.82-1.07) 0.92 (0.80-1.10) 0.94 (0.79-1.16) 1.03 (0.82-1.31) 1.04 (0.76-1.45) 0.94 (0.57-1.49)	14.99	AUVG	0.99 (0.59-1.57)	1.09 (0.81-1.52)	0.98 (0.79-1.19)	0.93 (0.81-1.08)	0.92 (0.81-1.08)	0.97 (0.85-1.13)	1.01 (0.91-1.14)	0.96 (0.84-1.10)	0.94 (0.71-1.29)	0.81 (0.59-1.14)	0.84 (0.67-1.06)	0.66(0.47 - 0.91)	1.00 (0.86-1.18)		10.79	AUVN
0.99 (0.85-1.16) 0.78 (0.57-1.11) 0.93 (0.70-1.28) 0.98 (0.86-1.11) 1.02 (0.92-1.15) 0.97 (0.85-1.12) 0.91 (0.80-1.07) 0.92 (0.80-1.06) 0.95 (0.77-1.17) 1.04 (0.79-1.33) 1.05 (0.73-1.47) 0.95 (0.56-1.51)	16	AUN	1.03 (0.62-1.59)	1 13 (0.80-1.53)	1.00 (0.83-1.20)	0.92 (0.80-1.06)	0.90 (0.80-1.03)	0.96 (0.85-1.09)	1.01 (0.91-1.14)	0.95 (0.84-1.09)	0.99 (0.82-1.20)	0.77 (0.59-1.00)	0.84 (0.67-1.06)	0.66 (0.47-0.91)	1.00 (0.86-1.18)		10.95	AUVS
0.99 (0.85-1.16) 0.75 (0.57-0.97) 0.98 (0.82-1.19) 0.97 (0.85-1.11) 1.02 (0.92-1.15) 0.95 (0.85-1.08) 0.89 (0.79-1.02) 0.90 (0.78-1.04) 0.98 (0.81-1.17) 1.07 (0.85-1.34) 1.09 (0.78-1.48) 0.98 (0.60-1.53)	16.16	AUS	0.84 (0.51-1.33)	0.96 (0.76-1.23)	0.91 (0.75-1.11)	0.91 (0.77-1.09)	0.92 (0.81-1.06)	0.98 (0.86-1.11)	1.02 (0.92-1.15)	0.98 (0.86-1.12)	0.94 (0.77-1.20)	0.96 (0.76-1.25)				1.39 (1.14-1.68)	11.35	ATG
0.98 (0.87-1.12) 1.02 (0.92-1.15) 0.98 (0.88-1.11) 0.93 (0.83-1.05) 0.93 (0.81-1.06) 0.93 (0.80-1.09) 1.00 (0.82-1.23) 1.02 (0.74-1.35) 0.91 (0.56-1.39)	16.18	Α	0.96 (0.59-1.48)	1.00 (0.05 1.50)	0.96 (0.82-1.14)	0.94 (0.82-1.08)	0.94 (0.83-1.06)	0.99 (0.89-1.11)	1.01 (0.91-1.14)	0.96 (0.85-1.10)			0.86 (0.68-1.08)	0.63 (0.46-0.86)	1.00 (0.86-1.17)		11.54	AUV
0.98 (0.84-1.15) 0.98 (0.86-1.12) 1.02 (0.92-1.15) 0.98 (0.88-1.11) 0.93 (0.83-1.06) 0.93 (0.81-1.07) 0.93 (0.80-1.10) 1.01 (0.82-1.24) 1.02 (0.75-1.37) 0.91 (0.56-1.41)	18.14	AU	0.94 (0.57-1.48)		0.94 (0.79-1.15) 1.03 (0.83-1.30)	\sim	0.93 (0.82-1.07)	$\overline{}$	<u> </u>	0.97 (0.85-1.10)	0.94 (0.79-1.20)	1.00 (0.80-1.30)	0.85 (0.67-1.07)	0.64 (0.46-0.89)			12.99	AVG
0.98 (0.78-1.27) 0.93 (0.78-1.20) 0.99 (0.87-1.12) 1.02 (0.92-1.15) 0.99 (0.88-1.12) 0.92 (0.81-1.06) 0.91 (0.78-1.09) 0.91 (0.76-1.11) 0.98 (0.79-1.25) 0.99 (0.71-1.38) 0.89 (0.55-1.40)	19.17	\overline{AG}	0.85 (0.52-1.35)	0.07 (0.76-1.29)	0.92 (0.76-1.12)	0.92 (0.78-1.10)	0.93 (0.81-1.07)	0.98 (0.86-1.11)	1.02 (0.92-1.15)	0.98 (0.86-1.12)	0.94 (0.77-1.21)	0.95 (0.76-1.25)			0.97 (0.84-1.14)	1.39 (1.14-1.69)	13.23	ATUG
0.98 (0.84-1.15) 0.97 (0.78-1.27) 0.93 (0.78-1.20) 0.98 (0.86-1.12) 1.02 (0.92-1.14) 0.99 (0.88-1.12) 0.92 (0.81-1.06) 0.91 (0.78-1.10) 0.92 (0.76-1.13) 0.99 (0.79-1.26) 1.00 (0.72-1.39) 0.90 (0.55-1.42)	21.12	AUG	0.94 (0.56-1.50)	1.05 (0.73-1.32)	0.95 (0.78-1.16)	0.92 (0.80-1.06)	0.91 (0.80-1.07)	0.97 (0.85-1.12)	1.02 (0.92-1.15)	0.98 (0.86-1.11)	0.93 (0.70-1.28)	0.78 (0.57-1.11)					14.02	AN

Table S3. Maximum likelihood parameter estimates and 95% profile confidence intervals from each model fit to INSIGHT data