* Algoritmos de descida

Xo = Solução Inicial i = 1 Repedio

 $\overline{X}_{i} = \overline{X}_{i-1} + + \overline{d}$

d = Direção sogundo a qual f diminui

Definição (Direção de Descida)

Considere una função $f: \mathbb{R}^n \to \mathbb{R}$,
un ponto $X \in \mathbb{R}^n$ o una direção $d \in \mathbb{R}^n \setminus \{0\}$. Dizemos que d: euna direção de descida para f,
a partir de X, quando existe S > 0 Tal que $f(x + +d) \in f(x)$, para
todo $f(x) \in \mathbb{R}^n$

$$\sqrt{2} = [1]^{7}$$

$$\sqrt{2} = [-0.5]$$

$$\sqrt{2} = [0.2]^{7}$$

$$\sqrt{2} = [0.5]$$

Teorema (Oivegao de descidon)

Se Df(9) d < 0, então d é uma divegão de descida para fila partir de 7.

Demons Inação:

$$\nabla f(x)^T d = \frac{\partial f}{\partial d}(x) = \lim_{x \to 0} \frac{f(x - td) - f(x)}{t}$$

$$\int \frac{\partial f}{\partial x} = \lim_{x \to 0} \frac{f(x + tt) - f(x)}{t}$$

Pela hipótesa e presentação da sina / 1
existe 8>0 tal que

$$\frac{f(x+dd)-f(\bar{x})}{+}<0$$

Para 1000 + € (-8.8). Perlanto, +(x-10) × f(x), para todo + € (018). □

$$f = f(x)$$

$$d\bar{x} = \begin{bmatrix} dx_1 \\ dx_2 \\ \vdots \\ dx_n \end{bmatrix}$$

$$ds^2 = {2 \over 2} dx_1^2$$

$$f + df = f(x + dx)$$

$$df = \sum_{i=1}^{N} \frac{\partial x_i}{\partial x_i} dx_i = \nabla f^{\mathsf{T}} d\bar{x}$$

$$d\bar{x} = \bar{U}ds \rightarrow \bar{U} = \frac{d\bar{x}}{ds}$$

$$\frac{df}{ds} = \underbrace{\begin{cases} \frac{\partial f}{\partial x_i} & \frac{\partial x_i}{\partial s} \\ \frac{\partial f}{\partial s} & \frac{\partial f}{\partial s} \end{cases}}_{I=1} = \underbrace{\begin{cases} \frac{\partial f}{\partial x_i} & \frac{\partial f}{\partial s} \\ \frac{\partial f}{\partial s} & \frac{\partial f}{\partial s} \end{cases}}_{I=1} = \underbrace{\begin{cases} \frac{\partial f}{\partial x_i} & \frac{\partial f}{\partial s} \\ \frac{\partial f}{\partial s} & \frac{\partial f}{\partial s} \end{cases}}_{I=1} = \underbrace{\begin{cases} \frac{\partial f}{\partial x_i} & \frac{\partial f}{\partial s} \\ \frac{\partial f}{\partial s} & \frac{\partial f}{\partial s} & \frac{\partial f}{\partial s} \end{cases}}_{I=1} = \underbrace{\begin{cases} \frac{\partial f}{\partial x_i} & \frac{\partial f}{\partial s} \\ \frac{\partial f}{\partial s} & \frac{\partial f}{\partial s} & \frac{\partial f}{\partial s} \end{cases}}_{I=1} = \underbrace{\begin{cases} \frac{\partial f}{\partial x_i} & \frac{\partial f}{\partial s} \\ \frac{\partial f}{\partial s} & \frac{\partial f}{\partial s} & \frac{\partial f}{\partial s} \end{cases}}_{I=1} = \underbrace{\begin{cases} \frac{\partial f}{\partial x_i} & \frac{\partial f}{\partial s} \\ \frac{\partial f}{\partial s} & \frac{\partial f}{\partial s} & \frac{\partial f}{\partial s} \end{cases}}_{I=1} = \underbrace{\begin{cases} \frac{\partial f}{\partial x_i} & \frac{\partial f}{\partial s} \\ \frac{\partial f}{\partial s} & \frac{\partial f}{\partial s} & \frac{\partial f}{\partial s} & \frac{\partial f}{\partial s} & \frac{\partial f}{\partial s} \end{cases}}_{I=1} = \underbrace{\begin{cases} \frac{\partial f}{\partial s} & \frac{\partial f}{\partial s} \\ \frac{\partial f}{\partial s} & \frac{$$

Cos 0 21

Y 2 f(x) = 6 (t): a

Algoriano básico

Dado Xo ERh

K = 0

Repida enquanto $\nabla f(x^k) \neq 0$ Calcule d^k tal que $\nabla f(x^k)^T d^k < 0$ Escolha $t_k > 0$ tal que $f(x^k + t_k d^k) < f(x^k)$ $x^{k+1} = x^k + t_k d^k$ K = k + 1

Para garantie convergência tr vão pode Sen arbitrátio. Milodos de buséa unidirectionais

* Busca exato.

Ixamplo:

$$f(x) = \frac{1}{2}(x_1 - 2)^2 + (x_2 - 1)^2$$

$$x = \begin{bmatrix} 1 \\ 0 \end{bmatrix} d - \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\nabla f(x)^{T} d = \begin{bmatrix} -1 - 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = -5 < 0$$

$$d = \begin{bmatrix} 1 \\ 0 \end{bmatrix} d = \begin{bmatrix} -1 - 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = -5 < 0$$

* Busca unidi mensional iterativa

1) Assumindo que a função é utimodal e m [a, b]

a G d

Déliniquo: Una função f(x) é unimodas se para algum valor mela Crosco monotonamento para x < m e de crosce monolonamon. forma X > m

$$G = \alpha + \frac{1}{3}(b-\alpha)$$
 $d = b - \frac{1}{3}(b-\alpha)$

- D considere acuculo E [0,00] 2) se 9(0) < p(d) enter [d, b] não pode conton 6 Minimo.
- 3) Se ((6) 7 (0) 2 notão o tracho [a, 6] não pode conter o mínino

Un ponto a divide o segmento [a,6] ha vazão áveca quando a vazão como a maion seguieno e o segmente tode é ignal à vazar contre o monor segmento e o major. Eces nosão o o número de ouvo. $Q = \sqrt{\frac{5}{2}} = 0.618$ C = b = 0 (6-a) $d = \alpha + \Theta(6-a)$ $\frac{3-\sqrt{5}}{2}\approx 0.382$ = $\frac{\sqrt{5-1}}{2}\approx 0.618$ Eviguanto b-a (to) Se ((c) < (d) 0 0362 0618 1 b = d 0.362 0.36(p(c) = eval (c) Lyao a = C c = d d = a + 0 (b-a) Q(c)= (0(d) (D(d) = eval (d)

* Busa inexata - Condição de Armijo

Considere un pondo X∈R, una direção de descida d∈Rh e R∈ (0,1).

A regre de Armijo encontra +70 tal que

Procervamos um passo cuja redução de função objedivo seja Pelo menos uma fração da redução M da redução obdida no modulo linear. f(g(t)) = 2 + 29

- Algonitmo:

Dados: ZERn, dER", VINE(O,1)

+=1

Ropita enquanto $f(x+4d) > f(x) + h + \nabla f(x)^T d$ $+ = \chi +$

