This is the report of one vs one classifier.

```
trainX = rescale(clean_data(trainX));
testX = rescale(clean_data(testX));
col1 = ones([60000,1]);%add a column of one to the matrix
trainX = [trainX col1];
```

Get recognize y by voting i or j

calculate matrix of beta and alpha

```
result_i_j = [];
for h = 1:45
    result_i_j = [result_i_j lsqlin(double(trainX),double(trainY_i_j(h,:)))];
end
```

Calculate result using one_v_one function which count the votes for each digit in each class

```
%one vs all alpha beta values
alpha_i_j = result_i_j(end,:);
alpha_i_j
alpha_i_j = 1 \times 45
                                                                    0.0338 ...
  -0.0834
            0.1027
                      0.1862
                               0.1339
                                        0.2174
                                                  0.0312
                                                          -0.0496
beta i j = result i j(1:end-1,:);
beta_i_j
beta i j = 493 \times 45
   0.0006
            0.1090
                      0.1084
                             -0.0453
                                      -0.0459
                                               -0.1543
                                                           0.2117
                                                                    0.2112 ...
                      0.1036 -0.0333 -0.0085 -0.1121
                                                                    0.0569
   -0.0248
            0.0788
                                                           0.0321
   0.0178
            0.0585
                      0.0407
                             -0.0483 -0.0661
                                               -0.1068
                                                           0.0682
                                                                    0.0504
  -0.0017
            0.0400 0.0417
                             -0.0122 -0.0105
                                                 -0.0522
                                                           0.0304
                                                                    0.0321
  -0.0354
            0.0179
                    0.0534
                             -0.0819
                                      -0.0464
                                                -0.0998
                                                           0.0138
                                                                    0.0493
                                                -0.1087
                   0.0607
                              -0.0581
                                       -0.0480
   -0.0101
            0.0506
                                                           0.0190
                                                                    0.0291
            0.0321
   0.0060
                     0.0262
                             -0.0253
                                       -0.0313
                                                 -0.0575
                                                           0.0216
                                                                    0.0157
                    0.0566
   -0.0292
            0.0275
                              -0.0921
                                       -0.0630
                                                 -0.1196
                                                          -0.0097
                                                                    0.0195
           -0.0548 -0.0320
   -0.0228
                              -0.0046
                                       0.0181
                                                 0.0502
                                                           0.0408
                                                                    0.0636
                    -0.0675
   0.0335
           -0.0340
                              -0.0026
                                       -0.0361
                                                  0.0314
                                                           0.0660
                                                                    0.0325
```

```
trainX(:,end)=[];
result_ovo = [];
for i = 1:60000
    a_i_j = trainX(i,:);
    b_i_j = a_i_j*beta_i_j+alpha_i_j;
    result_ovo = [result_ovo one_v_one(b_i_j)];
end
```

Get error rate.

```
count_i_j = 0;
for j = 1:60000
    if trainY(j) == result_ovo(j)
        count_i_j = count_i_j + 1;
    end
end
ovo_error = 1-(count_i_j/60000);
ovo_error
ovo_error = 0.2609
```

Get confusion matrix.

```
cof_matrix_i_j = zeros(10);
for i = 1:10
    for j = 1:10
        for k = 1:60000
            if trainY(k) == i-1 && result ovo(k) == j-1
                cof_matrix_i_j(i,j) = cof_matrix_i_j(i,j)+1;
            end
        end
    end
end
sum_col_i_j = [];
for i = 1:10
    sum_col_i_j(i) = sum(cof_matrix_i_j(i,:));
end
cof_matrix_i_j = [cof_matrix_i_j (sum_col_i_j).'];
sum_row_i_j = [];
for i = 1:11
    sum_row_i_j(i) = sum(cof_matrix_i_j(:,i));
end
cof_matrix_i_j = [cof_matrix_i_j;(sum_row_i_j)];
cof_matrix_i_j
```

cof_matrix_i_	j = 11×11				
5827	12	21	14	18	13 · · ·
10	6615	58	14	21	20
171	361	5022	174	100	10
97	260	237	5352	36	73
49	179	75	14	5418	63
489	192	63	645	103	3763
444	234	159	5	93	79
429	466	148	264	330	17
538	1497	332	696	243	481
406	494	161	430	2402	137
:					
:					

To compare the result of one vs all and one vs one classifier. The one vs one classifier has higher error rate than one vs all classifier. Thus from my experiment result, one vs one performs worse than one vs all.