Algorithms – Chapter 12 Binary Search Trees

Juinn-Dar Huang Professor jdhuang@mail.nctu.edu.tw

September 2007 Rev. '08, '11, '12, '15, '16, '18, '19, '20

Binary Search Tree (BST)

- BSTs support
 - search, sort
 - minimum, maximum
 - predecessor, successor
 - insert, delete
- Basic operations on BSTs
 - time is proportional to the height of tree
- For a binary tree with n nodes
 - minimum height: $\Theta(Ign)$ (e.g., complete binary tree)
 - maximum height: $\Theta(n)$ (e.g., skewed binary tree)

Property of BST

Property

- Let x be a node in a binary search tree
- If y is a node in the left subtree of x → key[y] ≤ key[x]
- If y is a node in the right subtree of x → $key[x] \le key[y]$

Tree Walks

- 3 types of tree walks
 - inorder: LVR
 - preorder: VLR
 - postorder: LRV
- Inorder walk on a BST produces a sorted list

Inorder Tree Walks

```
INORDER-TREE-WALK(x)
```

- 1 if $x \neq nil$
- 2 then INORDER-TREE-WALK(*left*[x])
- 3 print key[x]
- 4 INORDER-TREE-WALK(right[x])
- If x is the root of n-node tree, then the call INORDER-TREE-WALK(x) takes ⊕(n) time
 - because 2 calls for every node in the tree

Recursive Search on BSTs

TREE-SEARCH(x, k)

```
1 if x = nil or k = key[x]
```

- 2 then return x
- 3 if k < key[x]
- 4 then return TREE-SEARCH(left[x], k)
- 5 **else return** TREE-SEARCH(right[x], k)

Time complexity: O(h)

Iterative Search on BSTs

ITERATIVE-TREE-SEARCH(x,k)

```
1 While x \neq nil and k \neq key[x]
```

- 2 do if k < key[x]
- 3 then $x \leftarrow left[x]$
- 4 else $x \leftarrow right[x]$
- 5 return x

Time complexity: O(h)

BST Example

Minimum and Maximum on BSTs

TREE-MINIMUM(x)

- **while** $left[x] \neq NIL$
- $\mathbf{do} \ x \leftarrow left[x]$
- 3 return x

TREE-MAXIMUM(x)

- 1 while $right[x] \neq NIL$
- $\mathbf{do} \ x \leftarrow right[x]$
- 3 return x

leftmost element

rightmost element

Time complexity: O(h)

Successor on BSTs (1/2)

- Successor of x
 - case 1: if x has a right subtree → the minimum element in the right subtree
 - case 2: if x has no right subtree → the lowest ancestor of x whose left child is x or an ancestor of x
 - case 3: x is the maximum element → no successor

Successor on BSTs (2/2)

TREE-SUCCESSOR(x)

```
1 if right[x] \neq nil
```

2 then return TREE-MINIMUM(right[x])

```
3 y \leftarrow p[x]
```

4 while $y \neq nil$ and x = right[y]

5 do
$$x \leftarrow y$$

6
$$y \leftarrow p[y]$$

7 return y

Time complexity: O(h)

Try to develop TREE-PREDECESSOR(x)

Insertion on BSTs

TREE-INSERT(T, z)

```
1 y \leftarrow \text{NIL}

2 x \leftarrow root[T]

3 while x \neq \text{NIL}

4 do y \leftarrow x

5 if key[z] < key[x]

6 then x \leftarrow left[x]

7 else x \leftarrow right[x]

8 p[z] \leftarrow y
```

Time complexity: O(h)

Example

12

Deletion on BSTs (1/2)

```
TREE-DELETE(T, z)
   if left[z] = NIL  or right[z] = NIL 
        then y \leftarrow z \triangleright z has at most one child
        else y \leftarrow \text{TREE-SUCCESSOR}(z) \triangleright 2 \text{ children}
4 if left[y] \neq NIL
       then x \leftarrow left[y]
5
        else x \leftarrow right[y]
6
7 if x \neq NIL
8
        then p[x] \leftarrow p[y]
```

Deletion on BSTs (2/2)

```
if p[y] = NIL
10
           then root[T] \leftarrow x
11
           else if y = left[p[y]]
12
                  then left[p[y]] \leftarrow x
                  else right[p[y]] \leftarrow x
13
    if y \neq z
14
15
        then key[z] \leftarrow key[y]
16
               copy y's satellite data into z
     return y
```

Case 1: z has no children

Case 2: z has one child

Case 3: z has 2 children

