# Building interactive strategy design assignments for game theory courses

**Andrew Wonnacott** 

Advised by David Walker and Matt Weinberg

IW09: You Be the Professor!

# Motivation: strategy design

- COS 445 strategy design and programming assignments
  - Students examine incentives in simple games representing real-world applications of course content
  - Simple interfaces for strategies
  - Focus on strategy (minimal implementation challenge)

| Prisoner's<br>Dilemma | Cooperate | Defect | pub | lic interface  <br>// true to co                        |
|-----------------------|-----------|--------|-----|---------------------------------------------------------|
| Cooperate             | (3, 3)    | (0, 5) |     | <pre>public boolea  // callback t public void a }</pre> |
| Defect                | (5, 0)    | (1, 1) | }   |                                                         |

```
bublic interface Prisoner {
    // true to cooperate, false to defect
    public boolean getAction();

    // callback to receive action
    public void addResult(boolean action);
}
```

# Motivation: strategy design

- COS 445 strategy design and programming assignments
  - Students examine incentives in simple games representing real-world applications of course content
  - Simple interfaces for strategies
  - Focus on strategy (minimal implementation challenge)



```
put
```

#### Motivation: strategy design

- COS 445 strategy design and programming assignments
  - Students examine incentives in simple games representing real-world applications of course content
  - Simple interfaces for strategies
  - Focus on strategy (minimal implementation challenge)



# **Motivation:** my work

- COS 445 needs course staff to rework these every year
  - Current assignments built by grad student no longer working on the course
  - Difficult to test grad student had to copy in student names
  - Currently on COS 445 course staff as a grader



#### Goal

- Teach students how to use game theory to analyze a real world situation and work rationally
- Provide healthy incentive structures for grading to avoid students trying to hurt each others' performance

- Build infrastructure to develop assignments more easily
- Reduce wheel-reinvention by organizing resources
- Eliminate need for dedicated course staff member for 445 programming assignments

#### **Related work**

#### Accessible lines of code



#### • COS 445 2017

- Programming exercises run by Cyril Zhang
- Interfaces and some handwritten testing code
- Harvard CS 136
  - Peer to peer bittorrent simulation
  - Sponsored search auctions
  - Python implementation of handout available
  - No grading code available
- COS 445 2014
  - Undocumented PHP backend
  - Prisoner's dilemma
  - Different assignment design

# **Approach**

- Want to build a reusable codebase for the tasks which are repeated across assignments, i.e. evaluating student strategies against each other
- Built the modular, reusable codebase by building each assignment individually and refactoring reused code
- Take advantage of my role as a grader for COS 445 to test my project and receive feedback - from myself!
- Easily able to build extensions:
  - Student handout to evaluate strategies (vs. interface only)
  - Dropbox Check script
  - Leaderboard
- More extensions could be developed as needed

Interface









# Implementation: Prisoner's dilemma



# Implementation: Handout



## Implementation: Check Submit



### Implementation: Leaderboard



### Implementation: Autograder



#### **Results and Evaluation**

- Used created infrastructure to build five assignments
  - Examine incentives in stable matchings, elections, a classical game, auctions, and gerrymandering



#### **Results and Evaluation**

- Used created infrastructure to build five assignments
  - Examine incentives in stable matchings, elections, a classical game, auctions, and gerrymandering

#### % Illegal Student Submissions



#### **Results and Evaluation**

- Used created infrastructure to build five assignments
  - Examine incentives in stable matchings, elections, a classical game, auctions, and gerrymandering

#### How useful was the provided testing infrastructure?

74 responses



#### **Conclusions and future work**

- Students are enthusiastic to use provided tools
- We take advantage of that to make life easier for course staff
- Real students provided positive reviews for infrastructure
- Other course staff provided positive reviews for new tools

- Will verify reusability next year as a course grader
- The real evaluation will be two years from now

#### Thanks to

- Dave Walker for helping me structure this work to create a cohesive product
- My seminar classmates for their feedback
- Matt Weinberg for providing course resources and providing requests to shape the task at hand