IC- <ADDITIONAL> C01B-031/36

FS- CPI

(c) 2006 The Thomson Corporation. All rights reserved. FN- DIALOG(R) File 351:Derwent WPI CZ- (c) 2006 The Thomson Corporation. All rights reserved. AA- 1992-055374/199207 XR- <XRAM> C1992-025127 TI- Prodn. of ultra-dispersed silicon carbide powder - by heating briquettes made of silica and carbon black in argon atmos., then heating under pressure in argon hydrogen stream PA- KIPARISOV S S (KIPA-I) IV- KIPARISOV S S; KOSTYUKOVA L P; PETROV A P NC- 1 NP- 1 PN- SU 1636334 A 19910323 199207 B AN- <LOCAL> SU 4705943 A 19890421 AB- <BASIC> SU A The method comprises making briquettes of mixt. of SiO2 and carbon black (at molar ratio 1:4) with water, drying for 10 hrs. at 150 deg.C, heating to 1300-1350 deg.C in argon atmos, then heating to 1400-1350 deg.C at rate 1-1.5 deg.C/min. in a stream of argon with addn. of 5-15 vol.% of H2 and at 20-100 kPa, holding at this temp. and pressure for 6-10 hrs. and firing obtd. silicon carbide powder in air at 600 deg.C for 40 hrs. to remove free carbon. Tests show that obtd. silicon carbide powder has specific surface 30.0-35.3 sq.m/g. against 4-24 sq.m/g for silicon carbide powderr obtd. using the known method. USE/ADVANTAGE - In prodn. of highly dispersed silicon carbide powder used in space research, power prodn. and machine construction. Increased degree of dispersion is obtd., at lower power consumption. Bul.11/23.3.91 TT- PRODUCE; ULTRA; DISPERSE; SILICON; CARBIDE; POWDER; HEAT; BRIQUETTE; MADE; SILICA; CARBON; BLACK; ARGON; ATMOSPHERE; PRESSURE; HYDROGEN; STREAM DC- E36

(19) SU (11) 1636334

(51)5 C O1 B 31/36

ГОСУДАРСТВЕННЫЙ НОМИТЕТ по изобретениям и отнрытиям при гннт ссср

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4705943/26

(22) 21.04.89

(46) 23.03.91. Бюл. № 11:

(72) С.С. Кипарисов, А.П. Петров, Л.П. Костюкова, Г.М. Вольдман

и А.Ф. Кравченко

(53) 661.665(088.8)

(56) Заявка Японии № 58-32007, кл. С 01 В 31/36, 1983.

Косолапова Т.Я., Андреева Т.В. и др. Неметаллические тугоплавкие соединения. - М.: Металлургия, 1985, c. 224.

Патент ФРГ № 2848377, кл. С 01 В 31/36, 1978.

(54) СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСного порошка карбида кремния

.(57) Изобретение относится к техноло-

гии высокодисперсного порошка карбида кремния, используемого для изготовления изделий, находящих широкое применение в космонавтике, энергетике, машиностроении. Цель изобретения повышение дисперсности порошка карбида креминя. Готовят смесь из диоксида кремния и сажи, брикетируют и нагревают ее до 1300-1350°C в атмосфере аргона, затем нагрев до 1400- 1450° С ведут со скоростью 1-1.5 град/мин в потоке аргона с добавкой 5-15 об. % водорода при давлении 20-100 кПа, и выдерживают шихту при этом давлении и конечной температуре 6-10 ч. Получен порошок карбида кремния удельной поверхностью 30,0- $35.3 \,\mathrm{M}^2/\mathrm{r}$. Снижение температуры синтеза приводит к уменьшению энергозатрат. 1 табл.

Изобретение относится к технологии получения высокодисперсного порошка карбида кремния, используемого для изготовления изделий, находящих широкое применение в космонавтике, энергетике и машиностроении.

Целью изобретения является повышение дисперсности порошка карбида кремния.

Пример 1. Смесь диоксида, кремния с высокодисперсной сажей (в молярном соотношении 1:4) и водой брикетируют, сушат в течение 10 ч при 1506С и загружают в графитовый тигель, который помещают в печь.

Нагрев смеси до 1000°C проводят при атмосферном давлении аргона, а нагрев от 1300 до 1400°C ведут со скоростью 1 град/мин в потоке смеси аргона и 10 об.% водорода со скоростью потока 5 л/ч, что позволяет поддерживать в печном пространстве остаточное давление 50 кПа. Продолжительность выдержки при 1400°С и давлений 50 кПа составляет 6 ч. Для удаления свободного углерода проводится отжиг порошка карбида кремния на воздухе при 600° С в течение 40 ч.

Полученный порошок карбида кремния имеет следующие характеристики: удель-

ная поверхность 35,3 м 2 /г, максимальный размер частиц \leq 10 мкм, содержание, мас. %: кислород 0,4; свободный углерод 0,05; Fe 0,05.

Из полученного порошка SiC с добавками 0,5% B_{μ} С и 1% сажи при 2000°С и $\mathcal{C}=1$ ч в среде аргона спекают образцы. Их плотность составляет $\sim 94\%$ от теоретической.

результаты примеров 1-6 приведены в таблице.

Изобретение позволяет получить высокодисперсный порошок карбида кремния с удельной поверхностью 30,0- 15
35,3 м²/г, с узкой кривой распределения частиц по размерам, с размерами частиц менее 10 мкм. Снижение температуры синтеза приводит к уменьшению энергозатрат. 20

формула изобретения

Способ получения ультрадисперсного порошка карбида кремния, включающий приготовление смеси из диоксида кремния и сажи, брикетирование полученной шихты, нагревание ее до 1400-1450°С и выдержку при этой температуре в среде аргона, о тличающийс я тем, что, с целью повышения дисперсности порошка карбида кремния, нагрев шихты от 1300-1350° до 1400-1450°С проводят со скоростью 1-1,5 град/мин в потоке аргона, содержащей 5-15 об. % водорода, при давлении 20-10 кПа, а выдержку при конечной температуре осуществляют в течение 6-10 ч при том же давлении.

Ilon- ned	Koney- BAR PEHIR PATY- PA RA- FPERR B ST- HOCOS- PE SP- TOHE, OC	Нагрев в потоке артона, содаржаем				Выдержка при ко- нечной темпера-		Характеристика конечного продукта						
		водород					туре			Макси-	Содержание, нас. Х			спечениях кинкерепа
		Teнne- pary- pa, °C .	Ско- рость нагре- ва; град/ния	Содер- жанке водо- роде, об, х	CRO- pocts noto- ka ap- rona, n/q	Оста- точ- ное двв- леняе, кПа	Давле- Продолжн- нне, тельность, кПа ч	ная поверх— ность, н ² /.r	нальный разнер . частиц, нюч	кислорода	свобод- ного уг- лерода	железа	наделия, 2 от теоретического	
1 2 3 4 5 6	1000 1250 1300 1300 1300	1400 1450 1400 1350 1450	* .	10 5 15 2	5 5 5 2,5 7,5	50 . 20 100 .5 150	50 20 100 5	6 10 8 4 10	35,3 30,0 33,1 38,3 7,5	€10 €10 €10 €5	0,4 0,3 0,5 15 0,25	0,05 0,1 0,05 0,05 0,05	0,05 0,05 0,05 0,05 0,05	94 93 93 70 79
10		•		· · .				٠.				: ·		
10- 167)	1300- 1700	•	•	÷ .	•	-	60-150 Hdap	2-3	4-24	15	0,6-0,7	0-1,2	0,05	79-82

Редактор Н. Рогулич Техред Л. Сардюкова Корректор М. Шароши

Заказ 791 Тираж 305 Подписное

вчинин Госупарственного комитета по изобретениям и открытиям при Г

Заказ 791 Тираж 305 Подписное РЧИИН Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раушская наб., д. 4/5

Составитель М. Соловьева

Производственно-издательский комбинат "Патент", г.Ужгород, ул. Гагарина, 101