

(A7) soive the all-pairs shortest path problem = Flody's Algorithm

	A	B	C	D	8					
A	10	2	00	1	8				- 1	
B	10	0	3	2	00		101	7	3	1334
	1						6	0	3	2
C	00	00	0	4	00	-		12	0	4
0	00	00	2	0	3			8	2	
8	2				0		6	1		14
0	0	00	00	00	0		3	15	10	1

(#3) Job Scheduling

n jobs of known duration to , tz, tz, ... to by a single processor

time to finish

*any order *one @ atime create of schedule that finds min (waitTime + Execution live) Goal: find a schedule that minimizes time spent bayall the jobs in system

* time spent by 1 job = 2 sime spent on 1 job + waiting time execution

Design a greedy alg & does it alway yield the optimal sol?

for this case yes, most times they are very efficient

step I sort all (n) jobs from shortest to longest time to finish 3 execute (base case) {i, , iz, lz, ... in}

Step 2 if (the jobs are executing in increasing order of execution time) continue,

tikstika

then the total time can be decreased

AKA gathin (NwaitTime, NexecutionTime) return a sorted list of these results from smallest to largest

Tree Vertices	Remaining Vertices
a(-,-)	b(a,5) c(a,7) d(-,∞) e(a,2)
e(a,2)	b(e,3) c(e,4) d(e,5)
b(e,3)	C(-,∞) d(b,6)
d(b,6)	c(d,4)
c(d,4)	


```
7.2
(#2) searching for genes in DNA using Horsepool's Alg
    text = { A, C, G, T}
    port = gene / gene segment
   @ construct the shift table of chromosome 10
                  T C C TATT C TT
              C T C A
G(C) 1 2 5
   (b) Apply Horsepool to locate the pattern
      Pattern: TCCTATTCTT
       Text : TTATAGATCTCGTATTCTTTTATAGATCTCCTATTCTT
      T-02015
                           C = compairison
      C-DIC 25
                           5 = Shift
      T-D 20 18
      A-DIC 55
      T-080 15
      T-030 15
      T-030 15
      A-DIC 55
      T-020 15
      C-DIC 25
      C-P10 25
      T-D20 15
      A-PIC 55
      T-DIOC-DStop
```


Make S' = V-S (compliment)

a.
$$S' = \{A,D\}$$

Therefore, this graph has an independent set

11.3 Continued to next page

Prove that a Vertex Cover can be reduced to a Clique

DEFINITION G has a clique of size k if and only if G' has a vertex cover of size | V | -k

(i)

1. You have undirected graph G=(V,E) & int M

2. Get the Clique (S) of this graph with |S|= m

a.
$$S = \{B,C,E,F\}$$

b.
$$m = 4$$

3. Make S' = V-S (compliment)

a.
$$S' = \{A,D\}$$

- 4. To show S' is a Vertex Cover= V-S={A,D}
 - a. Consider any edge (c,d) \in E'
 - i. Then (c,d) ∉ E
 - ii. At least one of c or d is not in S (since S forms a clique)
 - iii. At least one of c or d is in S'
 - iv. therefore (c, d) is covered by S'

(ii)

Prove it backwards

5. Make G'

6. Get the Vertex Cover (S') of this graph

a.
$$|S'| = |V| - k$$

- 7. Consider S= V-S'
 - a. Therefore |S| = k
- 8. Show that S is a clique

- a. Consider any edge (c,d) \in E'
 - i. if $(c,d) \in E'$, then either $c \in S'$ or $d \in S'$ or both
 - ii. By the contrapositive rule, if $c \notin S'$ and $d \notin S'$, then they are both in E proving S is a Clique in G

-2		
1		2
-	*	V

	1	2	3	4	5
,	0	14	14	10	Too
2	14	0	5	8	7
3	14	5	0	9	16
4	10	8	9	0	32
5	00	7	16	32	0

which is the same as

- 1. Choose the edge with the smallest cost & use it as the 1st edge
- 2. Chase from the edges that are connected from the invent vertices that have NOT been visited
- 3. When you have visited ALL vertex's return to the start

in compute the accuracy voltio of this solution

(#1) find the length of the optimal tour

1 > 2 > 3 > 5 > 4 > 177 1 > 2 > 4 > 5 > 3 > 174 1 > 2 > 5 > 3 > 4 > 156 1 > 2 > 5 > 4 > 3 > 166 1 > 2 > 5 > 4 > 3 > 166 1 > 4 > 2 > 5 > 3 > 145 1 > 4 > 5 > 2 > 3 > 1 58

$$accuray = \frac{Sa}{S*} = \frac{58}{45} = 1.29$$

FIGURE 12.11 Illustration of the twice-around-the-tree algorithm. (a) Graph. (b) Walk around the minimum spanning tree with the shortcuts.

(#5)

Solve the following instance of the knapsack

em	weight	value
1	10	\$100
2	7	\$63
3	8	\$56
4	4	\$12

w=16
max weight

12.2 (#6)

a suggest a more sophisticated bounding function for solving the knapsack problem

ub(s) = varue of any subset that can be obtained by adding items to s upper bound = add all the values until max weight is hit = value + (next w - iteny next w) next value

> W=15 V=119

Wb=119

W=19

ex = 100 + (6 1 7) 63 = 154

m 0 W=0 V=0 Ub=154 With 1 without 1 W=0 V=0 W=10 V = 100 40=122 Wb=154 With without 2 W=0 WF0104 Wb=68 W=7 V=63 M=10Wb=122 V=100 Mb=142 without 3 W=7 V=63 W=15 V=119 ub= 75 9 Ub= 124 W=10 V=100 Without 4 ub=112

T#

First Fit Alg

P. 129

place each of the items in the order given into the 1st (it there are no bins > make new bin 3 add 2 end of bin list

(a) apply

Max amt = largest sx = 0.7

S1 = 0.4

Sz=0.7

51,53,54

53 = 0.2 Sy = 0.1

55=0.5

6) what is the worst case? n2

checking i-1 bins if all items are greater than the origional bin size

C) Prove that FF is a L-approximation only

(parti)

for any i there will be more than I bin by the nature of the alg

part 2 H of bins by approximate dig $\angle 2\sum_{i=1}^{n} S_i$ approximate dig $\angle 2\sum_{i=1}^{n} S_i$ BFF $\angle 2\sum_{i=1}^{n} S_i \angle 2B^*$ BFF $\angle 2B^*$ BFF $\angle 2B^*$ BFF $\angle 2B^*$ E = 1 E

BFF 4 [1.78*] part 4) Best Solution

smallest sum solution

any bin in

of the item size