MATH 2132 Problem Workshop 1

- 1. Evaluate the limit if it converges. If the limit tends to ∞ , $-\infty$ indicate it as such.
 - (a) $\lim_{n \to \infty} \frac{n+2}{3n^2+5}$
 - (b) $\lim_{n \to \infty} (-1)^n \frac{n+2}{3n^2+5}$
 - (c) $\lim_{n \to \infty} \frac{n^2 + 2}{3n^2 + 5}$
 - (d) $\lim_{n \to \infty} (-1)^n \frac{n^2 + 2}{3n^2 + 5}$
 - (e) $\lim_{n \to \infty} \frac{n^3 + 2}{3n^2 + 5}$
 - (f) $\lim_{n \to \infty} (-1)^n \frac{n^3 + 2}{3n^2 + 5}$
 - (g) $\lim_{n \to \infty} \left(\sqrt{n^2 + 3n 4} \sqrt{n^2 + 6n + 5} \right)$
 - (h) $\lim_{n \to \infty} \left(1 + \frac{3}{n} \right)^{2n}$
 - (i) $\lim_{n \to \infty} \left(\frac{3n+2}{2-n} \right) \cot^{-1} \left(\frac{3-\sqrt{3}n^3}{2+3n+n^3} \right)$
 - (j) $\lim_{n \to \infty} \left(\frac{3}{n}\right)^{2n}$
 - (k) $\lim_{n \to \infty} \frac{\sin n}{n}$
 - (l) $\lim_{n\to\infty} \left(\tan^{-1}(1/n)\right)^{1/n}$
- 2. Find the general term of the sequence $8, \frac{11}{7}, \frac{14}{25}, \frac{17}{79}, \dots$
- 3. Find the general term of the sequence $1, -\frac{6}{5}, \frac{12}{10}, -\frac{20}{17}, \frac{30}{26}, \dots$
- 4. It can be proven that if $\lim_{n\to\infty} c_n = C$ and $\lim_{n\to\infty} d_n = d$, then $\lim_{n\to\infty} c_n d_n = CD$. Use this to prove the following result. Suppose that $\lim_{n\to\infty} c_n = C \neq 0$ and $c_n \neq 0$ for all n. Suppose further that $\lim_{n\to\infty} d_n$ does not exist. Show $\lim_{n\to\infty} c_n d_n$ does not exist.

1

5. Determine to which function, if it exists, the sequence of functions $\{f_n(x)\}$ converges for x in the given interval.

(a)
$$f_n(x) = \frac{n^2x^2 + 3nx}{2n^2x + 5}, (-\infty, \infty)$$

(b)
$$f_n(x) = \frac{\sin nx}{nx}$$
, (0∞)

(c)
$$f_n(x) = \frac{n \sin(x/n)}{x}, (0, \infty)$$

(d)
$$f_n(x) = (\ln(x^{n+1}))^{1/n}, (1, \infty)$$