Challenge MTI865 : Segmentation d'images médicales

Simon-Olivier Duguay Léa Grima Raphaël Largeau Tristan Loukianenko

07 Décembre 2023

Sommaire

Introduction

2 Modèles testés

3 Méthode

4 Résultats

Conclusion

1. Introduction

Diagnostic

- Volume des organes
- Détection de lésions

Suivi

Évolution des pathologies

Formation

- Modélisation
- Réalité virtuelle

Recherche

 Morphologie des organes

Problématique

- Quantité de données
- Variabilité du domaine médical
- Difficulté d'avoir des données labellisées

Architectures Unet

- Unet de base
- Unet avec plus de filtres
- Unet++
- U2Net

Autres architectures

- FPN (Segmentation générale)
- MANet (Tumeurs & Foie)

Critères:

- Architecture plus récente
- Poids pré-entraînés disponible
- Appliqué à l'imagerie médicale

Limitations:

- Ressources disponibles
- Flexibilité du modèle

Modèle sélectionné: Unet ++

Transfert Learning:

o Encodeurs: Resnet34

o Poids: imagenet

• Fonction d'activation : ReLu

• Dropout: **0.5**

• Optimisateur: Adam

• Lr : 0.001

Zhou, Zongwei et al. « UNet++: A Nested U-Net Architecture for Medical Image Segmentation ». arXiv, 18 juillet 2018. http://arxiv.org/abs/1807.10165.

Entraînement:

- SaturnCloud
- Nvidia GTX 1070

Epochs 20 à 30 :

- Loss de validation la plus basse
- Meilleur modèle

Epochs > 30:

• Léger surapprentissage

Poids enregistrés:

• Loss de validation minimale

Entraînement Unet ++

Entraînement Unet ++

Métrique pour l'entraînement :

Dice

Epochs 20 à 30:

- Plateau atteint (validation)
- Cohérent avec la meilleure loss de validation

Pre-processing

Normalisation

Normalisation par batch

Data-augmentation

Data-augmentation

Data-augmentation

Semi-Supervisé

l. Entraînement initial

2. Création de pseudo-labels

3. Adaptation du DataLoader

Unet++

Losses

Losses testées:

- Cross-entropy
- Cross-entropy pondérée
- Dice
- Centroïdes

Méthode pour trouver la meilleure loss:

- 1. Test individuel (sur Unet de base)
- 2. Test de combinaisons de losses (sur Unet de base)

Meilleurs résultats avec :

Cross-entropy pondérée

Ouverture (enlève imperfections)

4. Résultats

Métriques

Dice

[0, 1]

1: idéal

Hausdorff

 $[0, +\infty[$

0:idéal

Average surface distance

[0, +∞[

0 : idéal

4. Résultats

Bon résultat

Dice: 0.94 HD: 2.08 ASD: 0.61

Label

Prédiction

Dice: 0 HD: 50 ASD: 20

Mauvais résultat

- Recherche des 3 classes
- Faux positifs majoritaires
 - → avantage pour le domaine médical

4. Résultats

	Dice	HD	ASD
C1	0	50	20
C2	0.88	3.2	1.0
C3	0.97	1.4	0.5
Mean	0.62	18.2	7.2

Label

Prédiction

Dice Loss moins bonne pour la classe 1

- → classe avec les formes les plus variées
- → pas présente sur toutes les images contenant une partie du coeur

5. Conclusion

Unet ++:

Dice finale:

C1: 0.574C2: 0.763

• C3: 0.871 **Moyenne: 0.7358**

HD:

C1: 23.67C2: 23.456C3: 13.29

Moyenne: 20.14

ASD:

C1: 6.13
C2: 3.595
C3: 4.38

Moyenne: 4.38

5. Conclusion Ouverture

Data augmentation

Optimisation hyperparamètres

Merci de votre attention

Avez-vous des questions?