Experimentation for Improvement

© Kevin Dunn, 2015 http://learnche.org/

Design and Analysis of Experiments

Copyright, sharing, and attribution notice

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Unported License. To view a copy of this license, please visit http://creativecommons.org/licenses/by-sa/4.0/

This license allows you:

- ▶ to share to copy, distribute and transmit the work, including print it
- ▶ to adapt but you must distribute the new result under the same or similar license to this one
- ► commercialize you <u>are allowed</u> to use this work for commercial purposes
- attribution but you must attribute the work as follows:
 - "Portions of this work are the copyright of Kevin Dunn", or
 - "This work is the copyright of Kevin Dunn"

(when used without modification)

Number of	Total	Cost of all	Time to
factors	experiments	experiments	run experiments
2	4	\$300	1 day
3	8	\$600	2 days
4	16	\$1,200	4 days
5	32	\$2,400	8 days
6	64	\$4,800	16 days
7	128	\$9,600	32 days

There are 2^k model parameters in a full-factorial: not all are meaningful!

For k = 4 factors:

```
\hat{y} = b_0
  + b_{\Delta} x_{\Delta}
   +b_{\rm B}x_{\rm B}
   + b_{\rm C} x_{\rm C}
   +b_{\rm D}x_{\rm D}
   + b_{AB} x_A x_B
   + b_{AC} x_A x_C
   + b_{BC} x_{B} x_{C}
  + b_{AD} x_A x_D
   +b_{BD}x_{B}x_{D}
   + b_{CD} x_{C} x_{D}
   +b_{ABC}x_{A}x_{B}x_{C}
   + b_{ABD} x_A x_B x_D
   + b_{ACD} x_A x_C x_D
   +b_{BCD}x_{B}x_{C}x_{D}
  + b_{ABCD} x_A x_B x_C x_D
```

Most real systems exhibit minor interactions; main effects usually dominate

p. 200 in Box, Hunter and Hunter, 2nd ed

Metal removal from wastewater; McMaster student project

Core assumption regarding fractional factorials

```
\hat{y} = b_0
    +b_{\Delta}x_{\Delta}
    + b_{\mathsf{R}} x_{\mathsf{R}}
    + bc xc
    +b_{D}x_{D}
    +b_{AB}x_{A}x_{B}
    +b_{\Delta C} x_{\Delta} x_{C}
    + b_{BC} x_{B} x_{C}
    +b_{AD}x_{A}x_{D}
    +b_{BD}x_{B}x_{D}
    + b_{CD} x_{C} x_{D}
    + b_{ABC} x_{A} x_{B} x_{C}
    +b_{ABD}x_{A}x_{B}x_{D}
    + b_{ACD} x_A x_C x_D
    + b_{\mathsf{BCD}} x_{\mathsf{B}} x_{\mathsf{C}} x_{\mathsf{D}}
    + b_{ABCD} x_A x_B x_C x_D
```

The main effects and some two factor interactions are often the only parameters of interest

The higher order interactions can safely be ignored

- Now it is an assumption, but it's reasonable in many cases
- ► The cost of obtaining them can be prohibitive

Experiment	Α	В	С
1	_	_	_
2	+	_	_
3	_	+	_
4	+	+	_
5	_	_	+
6	+	_	+
7	_	+	+
8	+	+	+

Experiment	Α	В	С
1	_	_	_
2	+	_	_
3	_	+	_
4	+	+	_
5	_	_	+
6	+	_	+
7	_	+	+
8	+	+	+

Experiment	Α	В	С
1	_	_	_
2	+	_	_
3	_	+	_
4	+	+	_
5	_	_	+
6	+	_	+
7	_	+	+
8	+	+	+

Experiment	Α	В	С
1	_	_	_
2	+	_	_
3	_	+	_
4	+	+	_
5	_	_	+
6	+	_	+
7	_	+	+
8	+	+	+

Experiment	Α	В	С
1	_	_	_
2	+	_	_
3	_	+	_
4	+	+	_
5	_	_	+
6	+	_	+
7	_	+	+
8	+	+	+

Experiment	Α	В	С
1	_	_	_
2	+	_	_
3	_	+	_
4	+	+	_
5	_	_	+
6	+	_	+
7	_	+	+
8	+	+	+

Experiment	Α	В	С
1	_	_	_
2	+	_	_
3	_	+	_
4	+	+	_
5	_	_	+
6	+	_	+
7		+	+
8	+	+	+

Experiment	Α	В	С
1	_	_	_
2	+	_	_
3	_	+	_
4	+	+	_
5	_	_	+
6	+	_	+
7	_	+	+
8	+	+	+

Experiment	Α	В	С
1	_	_	_
2	+	_	_
3	_	+	_
4	+	+	_
5	_	_	+
6	+	_	+
7	_	+	+
8	+	+	+

There are embedded full factorials inside the fractional factorial

If we choose our runs in a smart way, then fractional factorials will collapse to full factorials if an effect is insignificant.

Experiment	Α	В	С
1	_	_	_
2	+	_	_
3	_	+	_
4	+	+	_
5	_	_	+
6	+	_	+
7	_	+	+
8	+	+	+

Only consider the 4 open circles.

Model comparison between the full and fractional factorials

Full factorial model

$$\begin{split} \hat{y} &= 11.25 \\ &+ 6.25 \, x_{\text{A}} \\ &+ 0.75 \, x_{\text{B}} \\ &- 7.25 \, x_{\text{C}} \\ &+ 0.25 \, x_{\text{A}} x_{\text{B}} \\ &- 6.75 \, x_{\text{A}} x_{\text{C}} \\ &- 0.25 \, x_{\text{B}} x_{\text{C}} \\ &- 0.25 \, x_{\text{A}} x_{\text{B}} x_{\text{C}} \end{split}$$

Fractional factorial model

$$\hat{y} = 11.0$$

$$+ 6.0 x_{A}$$

$$- 6.0 x_{B}$$

$$- 7.0 x_{C}$$

$$+ b_{AB} x_{A} x_{B}$$

$$+ b_{AC} x_{A} x_{C}$$

$$+ b_{BC} x_{B} x_{C}$$

$$+ b_{AB} x_{A} x_{B} x_{C}$$

The mathematics behind a fractional factorial

Setting up the half-fraction in 3 factors

Experiment	Α	В
1	_	_
2	+	_
3	_	+
4	+	+

Setting up the half-fraction in 3 factors

Experiment	Α	В	C = AB
1	_	_	(-)(-) = +
2	+	_	(+)(-) = -
3	_	+	(-)(+) = -
4	+	+	(+)(+) = +

on when fractional-factorials are suitable

Screening is when you evaluate a new system

- ► lab-scale exploration
- making a new product
- troubleshooting a problem to isolate major causes

Optimization: where you need that prediction accuracy

- avoid optimizing prematurely
- a less-fractionated design is used for optimization (more on this later)

Quote from George Box

Wikipedia

"In an ongoing investigation, a rough rule is that only a portion (say 25%) of the experimental effort and budget should be invested in the first design."

In the next class ...

We learn how to create half-fractions for any general system.

For example, how did we get C = AB?