SECONG ORDER CONE PROGRAMMING

CONTENTS

- 1. SECONG-ORDER CONE
- 2. SECONG-ORDER CONE PROGRAMMING
- 3. EXAMPLE

REFERENCES:

S. BOYD AND L. VANDENBERGHE, CONVEX OPTIMIZATION. CAMBRIDGE

UNIVERSITY PRESS, 2004. (Available from http://www.stanford.edu/~boyd/cvxbook/)

1. Second-order Cone

1.1 Euclidean Norm

$$\|\mathbf{x}\|_{2} = \sqrt{\mathbf{x}^{T}\mathbf{x}} = \sqrt{x_{1}^{2} + \dots + x_{N}^{2}},$$
 (1)

1.2 Second-order Cone

$$C = \{(\boldsymbol{x}, t) \in \Re^{N+1} | \|\boldsymbol{x}\|_{2} \le t\}$$

$$= \left\{ \begin{bmatrix} \boldsymbol{x} \\ t \end{bmatrix} \middle| \begin{bmatrix} \boldsymbol{x} \\ t \end{bmatrix}^{T} \begin{bmatrix} I & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \boldsymbol{x} \\ t \end{bmatrix} \le 0, \ t \ge 0 \right\}$$
(2)

Example:

Boundary of second-order cone in \Re^3 .

$$\{(x_1, x_2, t) | \sqrt{x_1^2 + x_2^2} \le t\}$$

2. Second-order Cone Programming

min
$$c^T x$$

subject to $\|A_i x + b_i\|_2 \le c_i^T x + d_i$, $i = 1,...,M$, (3)
 $Fx = g$,

where $\mathbf{x} \in \mathbb{R}^N$ is the optimization variable, $\mathbf{A}_i \in \mathbb{R}^{N_i \times N}$, $\mathbf{F} \in \mathbb{R}^{P \times N}$, and $\|\mathbf{A}_i \mathbf{x} + \mathbf{b}_i\| \le \mathbf{c}_i^T \mathbf{x} + \mathbf{d}_i$ for $n = 1, \dots, N$ are second-order cone constraints.

- When $c_i = 0$ for i = 1,...,M, the SOCP reduces to quadratically constrained quadratic programming (QCQP).
- When $A_i = 0$ for i = 1,...,M, the SOCP reduces to linear programming (LP).

3. Design Example: FIR Filter Design

■ Frequency response of a general digital FIR filter:

$$H(e^{j\omega}) = \sum_{n=0}^{N-1} h(n)e^{-j\omega n} = \boldsymbol{h}^{T}(\boldsymbol{c}(\omega) - j\boldsymbol{s}(\omega)),$$

where
$$h = [h(0),...,h(N-1)]^T$$
, $c(\omega) = [1,...,\cos((N-1)\omega)]^T$ and $s(\omega) = [0,...,\sin((N-1)\omega)]^T$.

Minimax Design Criterion:

$$\min_{h} \max_{\omega \in \Omega} W(\omega) |H(e^{j\omega}) - H_d(\omega)|,$$

where Ω is the frequency interval of interest; $W(\omega)$ is a positive weighting function; $H_d(\omega)$ is the desired frequency response.

lacktriangledown Discretizing $\omega \in \Omega$ into M equally spaced samples, gives

$$\min_{\boldsymbol{h}} \quad \delta$$
subject to
$$\delta - \{\alpha_R^2(\omega_i) + \alpha_I^2(\omega_i)\}^{1/2} \ge 0, \quad i = 1, ..., M,$$
where
$$\alpha_R(\omega) = W(\omega) \cdot \{\boldsymbol{h}^T \boldsymbol{c}(\omega) - \operatorname{Re}[H_d(\omega)]\},$$

$$\alpha_I(\omega) = W(\omega) \cdot \{\boldsymbol{h}^T \boldsymbol{s}(\omega) + \operatorname{Im}[H_d(\omega)]\}.$$

Equivalent SOCP problem (with variable $x = [\delta \quad h^T]^T$):

$$\min_{\mathbf{x}} \quad \mathbf{c}^{T} \mathbf{x}$$
subject to
$$\mathbf{c}^{T} \mathbf{x} \ge \|\mathbf{A}_{i} \mathbf{x} - \mathbf{b}_{i}\|_{2}, \quad i = 1, ..., M,$$

where
$$c = \begin{bmatrix} 1 & O_N^T \end{bmatrix}^T$$
, $A_i = W(\omega_i) \begin{bmatrix} 0 & c(\omega_i)^T \\ 0 & s(\omega_i)^T \end{bmatrix}$, $b_i = W(\omega_i) \begin{bmatrix} -\operatorname{Re}[H_d(\omega_i)] \\ \operatorname{Im}[H_d(\omega_i)] \end{bmatrix}$

 \boldsymbol{O}_N is an N row zero vector.

Example (low-delay lowpass FIR filter)

Desired response: $H_d(e^{j\omega}) = \begin{cases} e^{-j\omega\tau}, & 0 < \omega < \omega_p \\ 0, & \omega_s < \omega < \pi \end{cases}$

where group delay $\tau = (N-1)/2 - D$; D is delay reduction parameter.

Specifications: N=17 , D=2 , $\omega_p=0.3\pi$, $\omega_s=0.6\pi$, M=200 and $W(\omega)=1, \forall \omega$.

Impulse Response

Frequency Response

Group Delay Response