

Data Technician Week 5 Introduction to Python & Pandas

Name: Al Amin

Course Date: From 03/03/2025 to 06/03/2025

Table of contents

Day 2: Task 1	3
Day 3: Task 1	7
Exercise 1: Loading and Exploring the Data	7
Exercise 2: Indexing and Slicing	10
Exercise 3: Data Manipulation	11
Exercise 4: Aggregation and Grouping	12
Exercise 5: Advanced Operations	13
Exercise 6: Exporting Data	15
Exercise 7: If finished early try visualising the results	15
Day 4: Task 1	18
Day 4: Task 2	20
Course Notes	33
Additional Information	33

Day 2: Task 1

It is a common software development interview question to create the below with a certain programming language. Create the below using Python syntax, test it and past the completed syntax and output below.

FizzBuzz:

```
Go through the integers from 1 to 100.

If a number is divisible by 3, print "fizz."

If a number is divisible by 5, print "buzz."

If a number is both divisible by 3 and by 5, print "fizzbuzz."

Otherwise, print just the number.
```

```
# FizzBuzz implementation in Python
                         for num in range(1,101):
                          if num%3==0 and num%5==0:
                            print(num,'fizzbuzz')
                          elif num%3==0:
                            print(num, 'fizz')
                          elif num%5==0:
                            print(num,'buzz')
                          else:
                            print(num)
Paste your completed
  work to the right
                         # Print the number if it's not divisible by 3 or 5.
                         1
                         2
                         3 fizz
                         4
                         5 buzz
                         6 fizz
                         7
                         8
                         9 fizz
                         10 buzz
```

Day 3: Task 1

Using the 'student.csv' which can be downloaded <u>here</u>, complete the below exercises as a group and paste your input and output. Although this is a group activity, everyone should have the below answered so it supports your portfolio:

Exercise 1: Loading and Exploring the Data

- 1. Question: "Write the code to read a CSV file into a Pandas DataFrame."
- 2. Question: "Write the code to display the first 5 rows of the DataFrame."
- 3. Question: "Write the code to get the information about the DataFrame."
- 4. Question: "Write the code to get summary statistics for the DataFrame."

1. #code to read a CSV file into a Pandas DataFrame					
		as as pd			
	dataframe = pd.read_csv('student.csv')				
data	frame id	name class	mark	gende	r
0	1 u	John Deo	Four	75	female
1	2	Max Ruin	Three	85	male
2	3	Arnold	Three	55	male
3	4	Krish Star	Four	60	female
4	5	John Mike	Four	60	female
5	6	Alex John	Four	55	male
6	7	My John Rob	Fifth	78	male
7	8	Asruid	Five	85	male
8	9	Tes Qry	Six	78	NaN
9	10	Big John	Four	55	female
10	11	Ronald	Six	89	female
11	12	Recky	Six	94	female
12	13	Kty	Seven	88	female
13	14	Bigy	Seven	88	female
14	15	Tade Row	NaN	88	male
15	16	Gimmy	Four	88	male
16	17	Tumyu	Six	54	male
17	18	Honny	Five	75	male

18	19	Tinny	Nine	18	male
19	20	Jackly	Nine	65	female
20	21	Babby John	Four	69	female
21	22	Reggid	Seven	55	female
22	23	Herod	Eight	79	male
23	24	Tiddy Now	Seven	78	male
24	25	Giff Tow	Seven	88	male
25	26	Crelea	Seven	79	male
26	27	NaN	Three	81	NaN
27	28	Rojj Base	Seven	86	female
28	29	Tess Played	Seven	55	male
29	30	Reppy Red	Six	79	female
30	31	Marry Toeey	Four	88	male
31	32	Binn Rott	Seven	90	female
32	33	Kenn Rein	Six	96	female
33	34	Gain Toe	Seven	69	male
34	35	Rows Noump	Six	88	female

2. #code to display the first 5 rows of the DataFrame. dataframe.head()

	id	name cl	ass mark	gend	ler
0	1	John Deo	Four	75	female
1	2	Max Ruin	Three	85	male
2	3	Arnold	Three	55	male
3	4	Krish Star	Four	60	female
4	5	John Mike	Four	60	female

3. #code to get the information about the DataFrame.

dataframe.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 35 entries, 0 to 34 Data columns (total 5 columns):

Column Non-Null Count Dtype

--- ----- -----

- 0 id 35 non-null int64
- 1 name 34 non-null object
- 2 class 34 non-null object
- 3 mark 35 non-null int64
- 4 gender 33 non-null object

dtypes: int64(2), object(3) memory usage: 1.5+ KB

4.#code to get summary statistics for the DataFrame.

dataframe.describe()

	id n	nark
count	35.000000	35.000000
mean	18.000000	74.657143
std	10.246951	16.401117
min	1.000000	18.000000
25%	9.500000	62.500000
50%	18.000000	79.000000
75%	26.500000	88.000000
max	35.000000	96.000000

Exercise 2: Indexing and Slicing

- 1. Question: "Write the code to select the 'name' column."
- 2. Question: "Write the code to select the 'name' and 'mark' columns."
- 3. Question: "Write the code to select the first 3 rows."
- 4. Question: "Write the code to select all rows where the 'class' is 'Four'."
- 1. #code to select the 'name' column dataframe['name']
- 2. #code to select the 'name' and 'mark' columns dataframe[['name','mark']].head(5)

name mark 0 John Deo 75 1 Max Ruin 85 2 Arnold 55 3 Krish Star 60 4 John Mike 60

3. #code to display the first 3 rows dataframe.head(3)

	id	name cla	ss mark	gende	er
0	1	John Deo	Four	75	female
1	2	Max Ruin	Three	85	male
2	3	Arnold	Three	55	male

4. #code to select all rows where the 'class' is 'Four' dataframe[dataframe['class']=='Four']

	id	name class	mark	gender	
0	1	John Deo	Four	75	female
3	4	Krish Star	Four	60	female
4	5	John Mike	Four	60	female
5	6	Alex John	Four	55	male
9	10	Big John	Four	55	female
15	16	Gimmy	Four	88	male
20	21	Babby John	Four	69	female
30	31	Marry Toeey	Four	88	male

Exercise 3: Data Manipulation

- 1. Question: "Write the code to add a new column 'passed' that indicates whether the student passed (mark > = 60)."
- 2. Question: "Write the code to rename the 'mark' column to 'score'."
- 3. Question: "Write the code to drop the 'passed' column."
- 1. #code to add a new column 'passed' that indicates whether the student passed (mark >=60).

dataframe['passed'] = dataframe['mark'] >= 60
dataframe

	id	name	class	mark	gender	passed
0	1	John Deo	Four	75	female	True
1	2	Max Ruin	Three	85	male	True
2	3	Arnold	Three	55	male	False
3	4	Krish Star	Four	60	female	True
4	5	John Mike	Four	60	female	True
5	6	Alex John	Four	55	male	False
6	7	My John Rob	Fifth	78	male	True
7	8	Asruid	Five	85	male	True
8	9	Tes Qry	Six	78	NaN	True
9	10	Big John	Four	55	female	False
10	11	Ronald	Six	89	female	True

2. #code to rename the 'mark' column to 'score' dataframe.rename(columns={'mark':'score'}, inplace=True) dataframe

3. #code to drop the 'passed' column dataframe.drop('passed', axis=1, inplace=True) dataframe

	id	name	class	mark	gender
0	1	John Deo	Four	75	female
1	2	Max Ruin	Three	85	male
2	3	Arnold	Three	55	male

Exercise 4: Aggregation and Grouping

- 1. Question: "Write the code to group the DataFrame by the 'class' column and calculate the mean 'mark' for each group."
- 2. Question: "Write the code to count the number of students in each class."
- 3. Question: "Write the code to calculate the average mark for each gender."
- 1. #code to group the DataFrame by the 'class' column and calculate the mean 'mark' for each group dataframe.groupby('class')['mark'].mean() class mark Eight 79.000000 Fifth 78.000000 80.000000 Five Four 68.750000 Nine 41.500000 77.600000 Seven Six 82.571429 73.666667 Three 2. #code to count the number of students in each class dataframe['class'].value_counts() class count Seven 10 8 Four Six 7 3 Three 2 Five Nine 2 Fifth 1 Eight 3. #code to calculate the average mark for each gender dataframe.groupby('gender')['mark'].mean() gender mark female 77.312500 male 71.588235

Exercise 5: Advanced Operations

- 1. Question: "Write the code to create a pivot table with 'class' as rows, 'gender' as columns, and 'mark' as values."
- 2. Question: "Write the code to create a new column 'grade' where marks >= 85 are 'A', 70-84 are 'B', 60-69 are 'C', and below 60 are 'D'."
- 3. Question: "Write the code to sort the DataFrame by 'mark' in descending order."
- 1. #code to create a pivot table with 'class' as rows, 'gender' as columns, and 'mark' as values

dataframe.pivot_table(index='class', columns='gender',values='mark')

2. #code to create a new column 'grade' where marks >= 85 are 'A', 70-84 are 'B', 60-69 are 'C', and below 60 are 'D'

dataframe['grade'] = pd.cut(dataframe['mark'], bins=[0,59,69,84,100], labels=['D','C','B','A'])

dataframe

	id	name	class	mark	gendei	r grade
0	1	John Deo	Four	75	female	В
1	2	Max Ruin	Three	85	male	Α
2	3	Arnold	Three	55	male	D
3	4	Krish Star	Four	60	female	С
4	5	John Mike	Four	60	female	С
5	6	Alex John	Four	55	male	D
6	7	My John Rob	Fifth	78	male	В
7	8	Asruid	Five	85	male	Α
8	9	Tes Qry	Six	78	NaN	В
9	10	Big John	Four	55	female	D
10	11	Ronald	Six	89	female	Α

3. #code to sort the DataFrame by 'mark' in descending order dataframe.sort_values(by='mark', ascending=False)

	id	name	class	mark	gender	grade
32	33	Kenn Rein	Six	96	female	Α
11	12	Recky	Six	94	female	Α
31	32	Binn Rott	Seven	90	female	Α
10	11	Ronald	Six	89	female	Α
24	25	Giff Tow	Seven	88	male	Α
15	16	Gimmy	Four	88	male	Α

14	15	Tade Row	NaN	88	male	Α
13	14	Bigy	Seven	88	female	A
			Seven			
12	13	Kty		88	female	A
34	35	Rows Noump	Six	88	female	Α .
30	31	Marry Toeey	Four	88	male	Α
27	28	Rojj Base	Seven	86	female	Α
7	8	Asruid	Five	85	male	Α
1	2	Max Ruin	Three	85	male	Α
26	27	NaN	Three	81	NaN	В
22	23	Herod	Eight	79	male	В
29	30	Reppy Red	Six	79	female	В
25	26	Crelea	Seven	79	male	В
8	9	Tes Qry	Six	78	NaN	В
6	7	My John Rob	Fifth	78	male	В
23	24	Tiddy Now	Seven	78	male	В
0	1	John Deo	Four	75	female	В
17	18	Honny	Five	75	male	В
20	21	Babby John	Four	69	female	С
33	34	Gain Toe	Seven	69	male	С
19	20	Jackly	Nine	65	female	С
4	5	John Mike	Four	60	female	С
3	4	Krish Star	Four	60	female	С
21	22	Reggid	Seven	55	female	D
9	10	Big John	Four	55	female	D
28	29	Tess Played	Seven	55	male	D
5	6	Alex John	Four	55	male	D
2	3	Arnold	Three	55	male	D
16	17	Tumyu	Six	54	male	D
18	19	Tinny	Nine	18	male	D
.5	1,7	7 11 11 19	741110	10	maic	<i>D</i>

Exercise 6: Exporting Data

 Question: "Write the code to save the DataFrame with the new 'grade' column to a new CSV file."

#code to save the DataFrame with the new 'grade' column to a new CSV file. dataframe.to_csv('student_with_grade.csv', index=False)

Exercise 7: If finished early try visualising the results


```
#Scatter plot
df['gender']=df['gender'].astype(str)
plt.figure(figsize=(10,8))
plt.scatter(df['gender'], df['mark'], alpha=0.3, color='green', marker='x', s=50)
plt.title('Scatter Plot of Gender vs Marks')
plt.xlabel('Gender')
plt.ylabel('Marks')
plt.show()
                                        Scatter Plot of Gender vs Marks
              š
        80
                                                       ×
        70
        60
        50
        40
        30
        20
            female
                                                     male
                                                                                              nan
#Box Plot
plt.figure(figsize=(10,5))
sns.boxplot(x='class', y='mark', data=df, width=0.7)
plt.title('Box Plot of Class vs Marks')
plt.xlabel('Class')
plt.ylabel('Marks')
plt.show()
₹
                                           Box Plot of Class vs Marks
        90
        70
       60
                                                            0
        50
        40
        30
        20
               Four
                         Three
                                     Fifth
                                                           six
                                                                     Seven
                                                                                 Nine
                                                                                            Eight
                                                     Class
```



```
#Count Plot
plt.figure(figsize=(10,5))
std=sns.countplot(x='class',data=df)
std.bar_label(std.containers[0])
plt.title('Number of Students')
plt.xlabel('Class')
plt.ylabel('Count')
plt.show()
Number of Students
                                                                     10
        10
         8
     Count
         2
                                    Fifth
               Four
                         Three
                                                                                          Eight
                                               Five
                                                           Six
                                                                    Seven
                                                                               Nine
#To sort in descending order
plt.figure(figsize=(10,5))
std=sns.countplot(x='class',data=df, order=df['class'].value_counts().index)
std.bar_label(std.containers[0])
plt.title('Number of Students')
plt.xlabel('Class')
plt.ylabel('Count')
plt.show()
<del>____</del>*
                                              Number of Students
                10
        10 -
         8
      Count
         2
                                                                       Nine
                                                                                  Fifth
                                                                                             Eight
               Seven
                          Four
                                      Six
                                                Three
                                                            Five
                                                      Class
```


Day 4: Task 1

Using the 'GDP (nominal) per Capita.csv' which can be downloaded <u>here</u>, complete the below exercises and paste your input and output. Work individually, but we will work and support each other in the room.

- Read and save the 'GDP (nominal) per Capita' data to a data frame called "df" in Jupyter notebook
- Print the first 10 rows
- Print the last 5 rows
- Print 'Country/Territory' and 'UN_Region' columns

Print 'Country/Territory' and 'UN_Region' columns df[['Country/Territory', 'UN_Region']] _ **III** Country/Territory UN_Region 0 Monaco Europe ıl. 1 Liechtenstein Europe 2 Luxembourg Europe 3 Ireland Europe Bermuda Americas 218 Malawi Africa 219 South Sudan Africa Africa 220 Sierra Leone 221 Afghanistan Asia 222 Burundi Africa 223 rows x 2 columns

Day 4: Task 2

Back with 'GDP (nominal) per Capita'. As a group, import and work your way through the Day_4_Python_Activity.ipynb notebook which can be found here. There are questions to answer, but also opportunities to have fun with the data – paste your input and output below.

Once complete, and again as a group, work with some more data and have some fun – there is no set agenda for this section, other than to embed the skills developed this week. Paste your input and output below and upon return we'll discuss progress made.

Additional data found here.

#Country has highest IMF Estimate gdp=df[df["IMF_Estimate"]==df["IMF_Estimate"].max()] gdp['Country/Territory'] ₹ Country/Territory 3 Luxembourg # Calculate the average of 'Worldbank_Estimate' and 'UN_Estimate' columns avg_worldbank_UN = df[['WorldBank_Estimate', 'UN_Estimate']].mean() avg_worldbank_UN WorldBank_Estimate 18927.417040 UN_Estimate 17767.304933 #Histogram df.hist(figsize=(10,8)) plt.show() ₹ IMF_Estimate IMF Year 200 150 -150 100 100 50 50 0 0 20000 40000 60000 8000010000**1**20000 500 1000 1500 2000 WorldBank Estimate WorldBank Year 200 150 150 100 100 50 50 0 0 50000 100000 150000 200000 1000 1500 2000 **UN Estimate** avg worldbank un 0.04 150 0.02 100 0.00 -0.0250 -0.04100000 150000 200000 0.2 50000 0.0 0.4 0.6 0.8 1.0


```
fig = plt.figure(figsize = (8,5))
ax = sns.barplot(x = "UN_Region", y = "IMF_Estimate",
            data = df, errorbar = None)
ax.bar_label(ax.containers[0])
ax.set_title("Regions by IMF Estimate")
plt.show()
₹
                                         Regions by IMF Estimate
                  34446.8
        35000
        30000
        25000
      MF Estimate
        20000
                                            16665.3
        15000
                                                                                    13440
                                11871
        10000
                                                         9133.15
         5000
                                                                      2802.35
             0
                                                                       Africa
                                                                                    World
                  Europe
                              Americas
                                             Asia
                                                         Oceania
                                                 UN Region
#Scatter Plot
df.plot(x='UN_Region', y='UN_Estimate', kind='scatter',
     figsize=(10,6),
     title="Scatter Plot")
plt.show()
                                                Scatter Plot
    200000
    150000
  UN_Estimate
000001
     50000
                                                                           Africa
            Europe
                           Americas
                                            Asia
                                                          Oceania
                                                                                           World
                                                  UN_Region
```


sns.boxplot(x=df["IMF_Estimate"]) plt.show() 0 20000 40000 60000 80000 100000 120000

IMF_Estimate

df[df["UN_Estimate"]>100000]

#Create another dataframe called data excluding 5 countries with highest UN estimate data = df[-(df["UN_Estimate"]>100000)] data.head()

	Country/Territory	UN_Region	<pre>IMF_Estimate</pre>	IMF_Year	${\tt WorldBank_Estimate}$	WorldBank_Year	UN_Estimate	UN
6	Norway	Europe	101103	2023	89154	2021	89242	
7	Switzerland	Europe	98767	2023	91992	2021	93525	
8	Singapore	Asia	91100	2023	72794	2021	66822	
9	Isle of Man	Europe	0	0	87158	2019	0	
10	Cayman Islands	Americas	0	0	86569	2021	85250	


```
Removing outliers
        lower_q = df["UN_Estimate"].quantile(0.25)
        lower_q

→ 2039.0

/<sub>s</sub> [100] higher_q = df["UN_Estimate"].quantile(0.75)
        higher_q
   → 20740.0
 [101] iqr = higher_q - lower_q
        iqr

→ 18701.0

[102] upper_boundary = higher_q + 1.5 * iqr
        upper_boundary

→ 48791.5

[103] lower_boundary = lower_q - 1.5 * iqr
        lower_boundary
   -26012.5
df_filtered = df[(df["UN_Estimate"] < upper_boundary) & (df["UN_Estimate"] >
lower_boundary)]
df_filtered.head()
    Country/Territory UN_Region IMF_Estimate IMF_Year WorldBank_Estimate WorldBank_Year UN_Estimate UN
 9
           Isle of Man
                                                                         2019
                                                                                      0
                      Europe
                                                           87158
 14
        Channel Islands
                      Europe
                                      0
                                              0
                                                           75153
                                                                         2007
                                                                                      0
 15
         Faroe Islands
                       Europe
                                              0
                                                           69010
                                                                         2021
                                                                                      0
 29
              Macau
                        Asia
                                   50571
                                            2023
                                                           43874
                                                                         2021
                                                                                   43555
          United Arab
                                                                                   43295
 30
                                   49451
                                            2023
                                                           44316
                                                                         2021
                        Asia
            Emirates
```


Course Notes

It is recommended to take notes from the course, use the space below to do so, or use the revision guide shared with the class:

We have included a range of additional links to further resources and information that you may find useful, these can be found within your revision guide.

END OF WORKBOOK

Please check through your work thoroughly before submitting and update the table of contents if required.

Please send your completed work booklet to your trainer.

