

11.10.2024

Statistical Methods in AI (CS7.403)

Lecture-19: Ensemble Methods (Bagging, Boosting, Stacking)

Ravi Kiran (ravi.kiran@iiit.ac.in)

https://ravika.github.io

@vikataravi

Center for Visual Information Technology (CVIT)

IIIT Hyderabad

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right] = \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^2\right]}_{\mathsf{var}(\mathbf{x})} + \underbrace{\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^2}_{\mathsf{bias}(\mathbf{x})}$$

$$\mathbb{E}_{\mathbf{x}}[\mathsf{bias}(\mathbf{x}) + \mathsf{var}(\mathbf{x})]$$

The tradeoff

$$\mathsf{bias} = \mathbb{E}_{\mathbf{x}} \left[\left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2 \right] \qquad \mathsf{var} = \mathbb{E}_{\mathbf{x}} \left[\left. \mathbb{E}_{\mathcal{D}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 \right] \right]$$

High bias (underfit)

"Just right"

High variance (overfit)

Francis Galton

- Galton promoted statistics and invented the concept of correlation.
- In 1906 Galton visited a livestock fair and stumbled upon an intriguing contest.
- An ox was on display, and the villagers were invited to guess the animal's weight.
- Nearly 800 gave it a go and, not surprisingly, not one hit the exact mark: 1,198 pounds.

Francis Galton

- Galton promoted statistics and invented the concept of correlation.
- In 1906 Galton visited a livestock fair and stumbled upon an intriguing contest.
- An ox was on display, and the villagers were invited to guess the animal's weight.
- Nearly 800 gave it a go and, not surprisingly, not one hit the exact mark: 1,198 pounds.
- Astonishingly, however, the average of those 800 guesses came close - very close indeed. It was 1,197 pounds.

Ensemble Learning

 An ensemble is a combination of classifiers that output a final classification.

General idea

- Generate many classifiers and combine them to get a final classification
- They perform very good. In general better than any of the single learners they are composed of
- The classifiers should be different from one another
- It is important to generate diverse classifiers from the available data

How to build them?

- There are several techniques to build diverse base learners in an ensemble:
 - Use modified versions of the training set to train the base learners

- Modifications of the training set can be generated by
 - Resampling the dataset. By bootstrap sampling (e.g. bagging), weighted sampling (e.g. boosting).

Bootstrap Aggregating (Bagging)

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction: $\sum_{i=1}^{25} {25 \choose i} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06$

"An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants" Eric Bauer & Ron Kohavi, Machine Learning 36, 105–139 (1999)

- Modifications of the training set can be generated by
 - Resampling the dataset. By bootstrap sampling (e.g. bagging), weighted sampling (e.g. boosting).
 - Altering the attributes: The base learners are trained using different feature subsets (e.g Random subspaces)

Random Forests

Ensemble Learning

 An ensemble is a combination of classifiers that output a final classification.

Ensemble methods that minimize variance

- Classifier Bagging
- Classifier + Feature Bagging (e.g. Random Forests)

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right] = \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^2\right]}_{\mathsf{var}(\mathbf{x})} + \underbrace{\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^2}_{\mathsf{bias}(\mathbf{x})}$$

How to build them?

- There are several techniques to build diverse base learners in an ensemble:
 - Use modified versions of the training set to train the base learners
 - Introduce changes in the learning algorithms

A toy example[2]

Training set: 10 points (represented by plus or minus)
Original Status: Equal Weights for all training samples

Round 1: Three "plus" points are not correctly classified; They are given higher weights.

Round 2: Three "minus" points are not correctly classified; They are given higher weights.

Round 3: One "minus" and two "plus" points are not correctly classified; They are given higher weights.

Final Classifier: integrate the three "weak" classifiers and obtain a final strong classifier.

Given:
$$(x_1, y_1), \dots, (x_m, y_m)$$
 where $x_i \in \mathcal{X}$, $y_i \in \{-1, +1\}$. Initialize $D_1(i) = 1/m$ for $i = 1, \dots, m$.

Initial Distribution of Data

Train model

For t = 1, ..., T:

- Train weak learner using distribution D_t .
- Get weak hypothesis $h_t: \mathscr{X} \to \{-1, +1\}$.
- Aim: select h_t with low weighted error:

$$\varepsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i].$$
 Error of model

- Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \varepsilon_t}{c} \right)$.
- Update, for $i = 1, \dots, m$

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$
 Update Distribution

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$
. Final average

Theorem: training error drops exponentially fast

Bagging vs Boosting

- Bagging
 - Construction of <u>complementary</u> base-learners is left to chance
 - .. and to the unstability of the learning methods.
- Boosting
 - Actively seek to generate complementary base-learner
 - Training the next base-learner based on the mistakes of the previous learners.

"An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants" Eric Bauer & Ron Kohavi, Machine Learning 36, 105–139 (1999)

Given:
$$(x_1, y_1), \dots, (x_m, y_m)$$
 where $x_i \in \mathcal{X}$, $y_i \in \{-1, +1\}$.

Initialize $D_1(i) = 1/m$ for $i = 1, \dots, m$.

For $t = 1, \dots, T$:

Train weak learner using distribution D .

• Train weak learner using distribution D_t . • Get weak hypothesis $h_t: \mathscr{X} \to \{-1, +1\}$.

Aim: select
$$h_t$$
 with low weighted error:
$$\varepsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right].$$
 Error of model

- Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \varepsilon_t}{\varepsilon_t} \right)$. Coefficient of model
- Update, for i = 1, ..., m: $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$ Update Distribution where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis: $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$ Final average

Adaboost: Additive model with exponential loss function

$$\min_{lpha_{n=1:N},eta_{n=1:N}}L\left(y,\sum_{n=1}^{N}lpha_{n}f(x,eta_{n})
ight)$$