Programming languages are essential for software development. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. Also, specific user environment and usage history can make it difficult to reproduce the problem. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. However, readability is more than just programming style.

Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Following a consistent programming style often helps readability. Use of a static code analysis tool can help detect some possible problems. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Integrated development environments (IDEs) aim to integrate all such help. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. However, readability is more than just programming style. There exist a lot of different approaches for each of those tasks. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers.