Homework Solutions 4

Spencer Cooper

ECON 501B

Prof. Friedenberg

September 2018

1. To revise the definition of block*:

A coalition C blocks* μ if there exists:

- (a) same
- (b) for each $i \notin C$ with $\mu(i) \notin C$, $\mu'(i) = \mu(i)$.
- (c) same

Problem:

$$T = \{t\}, B = \{b_1, b_2\}$$

Preferences:

$$t:b_1\succ b_2\succ t$$

 $b_i: t \succ b_i$

Think about μ such that $\mu(t) = b_2, \mu(b_1) = b_1$

Then $C = \{t, b_1\}$ should form a block, but does not under the definition of block*

Under the new definition of block*, neither condition is stronger; that is, block is equivalent to block*

 $block^* \Rightarrow block$ is obvious.

 $block \Rightarrow block^*$:

Suppose C blocks μ

That means $\exists \mu'$ such that:

- a) for each $i \in C : \mu'(i) \in C$
- b) for each $i \in C : \mu'(i) \succ_i \mu(i)$

Constraint μ'' :

- a) if $i \in C, \mu''(i) = \mu'(i)$
- b) if $i \notin C$ and $\mu(i) \notin C$, $\mu''(i) = \mu'(i)$
- c) if $i \notin C$ and $\mu(i) \in C, \mu''(i) = i$

By construction, for each i inC, $\mu''(i) = \mu'(i) \succ_t \mu(i)$ and $\mu''(i) = \mu'(i) \in C$

- 2. (a) $f_1: W \succ \{w_1, w_3\} \succ \{w_2, w_3\} \succ \{w_1\} \succ \{w_2\} \succ \{w_3\} \succ \{w_1, w_2\} \succ f_1$ $f_2: W \succ \{w_1, w_2\} \succ \{w_1, w_3\} \succ \{w_2, w_3\} \succ \{w_1\} \succ \{w_2\} \succ \{w_3\} \succ f_2$
 - (b) No, externalities.

(c) If $\mu(f_1) = f_1$, then (f_1, w_i) will block. If $\mu(f_1) = \{w_i\}$ then there exists a $w_j \neq w_j$ such that f_1 and w_j will form a block.

If $\mu(f_1) = \{w_1, w_2\}$ then f_1 blocks.

If $\mu(f_1) = \{w_2, w_3\}$ then (f_1, w_1) form a block.

 $\mu(f_1) = \{w_1, w_3\} \mu(w_2)$ and $\mu(f_2) = f_2$ unique stable match.

(d) Yerp.

(e)
$$f_1: W \succ \{w_1, w_3\} \succ \{w_1, w_2\} \succ \{w_2, w_3\} \succ \{w_1\} \succ \{w_2\} \succ \{w_3\} \succ f_1$$

Only unique match is again $\mu(f_1) = \{w_1, w_3\} \mu(w_2)$ and $\mu(f_2) = f_2$ (proof omitted cause tired).

Worker preferred same.

3. False:

$$T = \{t\}, B = \{b_1, b_2, b_3\}$$

Preferences:

$$t: \{b_2, b_3\} \succ \{b_1\} \succ \{b_2\} \succ \{b_3\}$$

Let
$$B_1 = \{b_2, b_3\}$$
 and $B_2 = \{b_1\}$

Then for each $b_i \in B_1, \{b_1\} \succ_t \{b_i\}$

4. True.

Since $B_1 \succ_t B_2$, then it is not the case that $B_1 \subseteq B_2$

Thus $B_1 \backslash B_2 \neq \emptyset$

Then see Lemma 2.

5. False.

$$t: \{b_2\} \succ \{b_1, b_2\} \succ t \succ \{b-1\}$$

$$B_1 = \{b_1, b_2\} \text{ and } B_2 = \{b_2\}$$

$$\{b_1\} = B_1 \backslash B_2 \text{ but } t \succ_t b_1$$