MA110 Lecture 21

Saurav Bhaumik Department of Mathematics IIT Bombay

Spring 2025

Linear Transformations

Definition

Let V and W be vector spaces over \mathbb{K} . A linear transformation or a linear map from V to W is a function $T:V\to W$ which 'preserves' the operations of addition and scalar multiplication, that is, for all $u,v\in V$ and $\alpha\in\mathbb{K}$,

$$T(u+v) = T(u) + T(v)$$
 and $T(\alpha v) = \alpha T(v)$.

It is clear that if $T:V\to W$ is linear, then T(0)=0. Also, T 'preserves' linear combinations of elements of V:

$$T(\alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k) = \alpha_1 T(\mathbf{v}_1) + \cdots + \alpha_k T(\mathbf{v}_k)$$

for all $k \in \mathbb{N}$, $v_1, \ldots, v_k \in V$ and $\alpha_1, \ldots, \alpha_k \in \mathbb{K}$.

Remark: A linear transformation from a vector space V to itself is often called a linear operator on V.

Examples

1. Let **A** be an $m \times n$ matrix with entries in \mathbb{K} . Then the map $T: \mathbb{K}^{n \times 1} \to \mathbb{K}^{m \times 1}$ defined by $T(\mathbf{x}) := \mathbf{A} \mathbf{x}$ is linear. Similarly, the map $T': \mathbb{K}^{1 \times m} \to \mathbb{K}^{1 \times n}$ defined by $T'(\mathbf{y}) := \mathbf{y} \mathbf{A}$ is linear. More generally, the map

$$T: \mathbb{K}^{n \times p} \to \mathbb{K}^{m \times p}$$
 defined by $T(\mathbf{X}) := \mathbf{A} \mathbf{X}$

is linear, and the map

$$T': \mathbb{K}^{p \times m} \to \mathbb{K}^{p \times n}$$
 defined by $T'(\mathbf{Y}) := \mathbf{YA}$

is linear.

- **2**. $T: \mathbb{K}^{m \times n} \to \mathbb{K}^{n \times m}$ defined by $T(\mathbf{A}) := \mathbf{A}^T$ is linear.
- **3**. The map $T: \mathbb{K}^{n \times n} \to \mathbb{K}$ defined by $T(\mathbf{A}) := \text{trace } \mathbf{A}$ is linear. But $\mathbf{A} \longmapsto \det \mathbf{A}$ does not define a linear map.
- **4**. The map $T: \mathbb{K}[X] \to \mathbb{K}$ defined by T(p(X)) = p(0) is linear.

5. Let $V := c_0$, the set of all sequences in \mathbb{K} which converge to 0. Then the map $T: V \to V$ defined by

$$T(x_1, x_2, \ldots) := (0, x_1, x_2, \ldots)$$

is linear, and so is the map $T': V \to V$ defined by

$$T'(x_1, x_2, \ldots) := (x_2, x_3, \ldots).$$

Note that $T' \circ T$ is the identity map on V, but $T \circ T'$ is not the identity map on V. The map T is called the **right shift operator** and T' is called the **left shift operator** on V.

6. Let $V := C^1([a,b])$, the set of all real-valued continuously differentiable functions, and let W := C([a,b]), the set of all real-valued continuous functions on [a,b]. Then the map $T' : V \to W$ defined by T'(f) = f' is linear. Also, the map

$$T:W o V$$
 defined by $T(f)(x) := \int_a^x f(t)dt$ for $x \in [a,b]$,

is linear. [Question. What are $T' \circ T$ and $T' \circ T$?]

Let V and W be vector spaces over \mathbb{K} , and let $T:V\to W$ be a linear map. Two important subspaces associated with T are

(i) $\mathcal{N}(T) := \{ v \in V : T(v) = 0 \}$, the **null space** of T, which is a subspace of V,

(ii) $\mathcal{I}(T) := \{T(v) : v \in V\}$, the **image space** of T, which is a subspace of W.

Suppose V is finite dimensional, and let dim V=n. Since $\mathcal{N}(T)$ is a subspace of V, it is finite dimensional and $\dim \mathcal{N}(T) \leq n$

Let v_1, \ldots, v_n be a basis for V. If $v \in V$, then there are $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ such that $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$, so that $T(v) = \alpha_1 T(v_1) + \cdots + \alpha_n T(v_n)$. This shows that $\mathcal{I}(T) = \operatorname{span}\{T(v_1), \ldots, T(v_n)\}$. Hence $\mathcal{I}(T)$ is also finite dimensional and $\dim \mathcal{I}(T) \leq n$.

Definition

The dimension of $\mathcal{N}(T)$ is called the **nullity** of the linear map T, and the dimension of $\mathcal{I}(T)$ is called the **rank** of T.

The Rank-Nullity Theorem for a matrix **A** that we proved earlier is a special case of the following result.

Proposition (Rank-Nullity Theorem for Linear Maps)

Let V and W be vector spaces over \mathbb{K} , and let $T:V\to W$ be a linear map. Suppose dim $V=n\in\mathbb{N}$. Then

$$rank(T) + nullity(T) = n.$$

Proof (Sketch): Let s := nullity(T) and let $\{u_1, \ldots, u_s\}$ be a basis of $\mathcal{N}(T)$. Extend the linearly independent set $\{u_1, \ldots, u_s\}$ to a basis $\{u_1, \ldots, u_s, u_{s+1}, \ldots, u_n\}$ of V. Check that the set $\{T(u_{s+1}), \ldots, T(u_n)\}$ is a basis of $\mathcal{I}(T)$.

Corollary

Let V, W be finite dimensional vector spaces with dim V = n and dim W = m. Also, let $T : V \to W$ be a linear map. Then

$$T$$
 is one-one \iff rank $(T) = n$.

In particular, if T is one-one, then $n \leq m$. Further,

if
$$m = n$$
, then T is one-one $\iff T$ is onto.

Proof. The first assertion follows from the Rank-Nullity Theorem since

T is one-one
$$\iff \mathcal{N}(T) = \{0\} \iff \text{nullity}(T) = 0.$$

If T is one-one, then $n = \operatorname{rank}(T) = \dim \mathcal{I}(T) \le \dim W = m$. Further, if m = n, then $\operatorname{rank}(T) = n \iff T$ is onto. As another application of the Rank-Nullity Theorem, we find an interesting relation between dimensions of finite dimensional subspaces of a vector space.

Proposition

Let W_1 and W_2 be finite dimensional subspaces of a vector space V. Then

$$\dim W_1 + \dim W_2 = \dim(W_1 \cap W_2) + \dim(W_1 + W_2).$$

Proof. The dimension of the vector space $W_1 \times W_2$ is equal to dim $W_1 + \dim W_2$. Define $T: W_1 \times W_2 \to W_1 + W_2$ by $T(w_1, w_2) := w_1 - w_2$. Then T is linear, and

$$\mathcal{N}(T) = \{(w, w) : w \in W_1 \cap W_2\} \text{ and } \mathcal{I}(T) = W_1 + W_2.$$

Hence by the Rank-Nullity Theorem,

$$\dim(W_1 + W_2) + \dim(W_1 \cap W_2) = \dim(W_1 \times W_2).$$

To a linear map from a finite dimensional vector space to another finite dimensional space, one can associate a matrix exactly as before.

Let V be a vector space of dimension n, and let $E := (v_1, \ldots, v_n)$ be an ordered basis for V. Also, let W be a vector space of dimension m, and let $F := (w_1, \ldots, w_m)$ be an ordered basis for W. Let $T : V \to W$ be a linear map. Then for each $k = 1, \ldots, n$, we can uniquely write

$$T(v_k) = a_{1k}w_1 + \cdots + a_{mk}w_m = \sum_{j=1}^m a_{jk}w_j$$
 for some $a_{jk} \in \mathbb{K}$.

The $m \times n$ matrix $\mathbf{A} := [a_{jk}]$ is called the **matrix of the linear transformation** $T: V \to W$ with respect to the ordered basis $E := (v_1, \ldots, v_n)$ of V and the ordered basis $F := (w_1, \ldots, w_m)$ of W. It is denoted by $\mathbf{M}_F^E(T)$.

Examples 1. Define $T:\mathcal{P}_n\to\mathcal{P}_{n-1}$ by T(p)=p', the derivative of p. Consider the ordered bases $E:=(1,t,\ldots,t^n)$ and $F:=(1,t,\ldots,t^{n-1})$ of \mathcal{P}_n and \mathcal{P}_{n-1} respectively. Then the $n\times(n+1)$ matrix of the linear map T with respect to these bases is

$$\mathbf{M}_{F}^{E}(T) := \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & n \end{bmatrix}.$$

2. Let $T: \mathbb{K}^{2\times 2} \to \mathbb{K}^{2\times 2}$ be the linear transformation defined by $T(A) = A^T$. Then the matrix of T with respect to the

basis
$$E := \{ \mathbf{E}_{11}, \mathbf{E}_{12}, \mathbf{E}_{21}, \mathbf{E}_{22} \}$$
 is $\mathbf{M}_{E}^{E}(T) := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

Eigenvalues and Eigenvectors of Linear Operators

Definition

Let V be a vector space over \mathbb{K} , and let $T:V\to V$ be a **linear operator**. A scalar $\lambda\in\mathbb{K}$ is called an **eigenvalue** of T if there is a nonzero $v\in V$ such that $T(v)=\lambda v$, and then v is called an **eigenvector** or an **eigenfunction** of T corresponding to λ , and the subspace $\mathcal{N}(T-\lambda I)$ is called the **eigenspace** of T.

Example: Let V denote the vector space $C^{\infty}(\mathbb{R})$ of all real-valued infinitely differentiable functions on \mathbb{R} . Define T(f) = f' for $f \in V$. Then T is a linear operator on V.

Given $\lambda \in \mathbb{R}$, consider $f_{\lambda}(t) := e^{\lambda t}$ for $t \in \mathbb{R}$. Then $f_{\lambda} \in V$, $f_{\lambda} \neq 0$ and $T(f_{\lambda}) = \lambda f_{\lambda}$. Thus every $\lambda \in \mathbb{R}$ is an eigenvalue of T with f_{λ} as a corresponding eigenfunction. In fact, any eigenfunction of T corresponding to λ is a scalar multiple of f_{λ} .

We now consider a vector space V of finite dimension. Let E be an ordered basis for V, and let $\mathbf{A} := \mathbf{M}_E^E(T)$, the matrix of the linear operator T with respect to E. We remark that if F is another ordered basis for V, and $\mathbf{B} := \mathbf{M}_F^E(T)$, the matrix of the linear operator T with respect to F, then \mathbf{B} is similar to \mathbf{A} ; in fact we have seen that $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$, where $\mathbf{P} = \mathbf{M}_F^E(I)$, and where $I: V \to V$ is the identity map.

Definition

The **geometric multiplicity** of an eigenvalue of T is the dimension of the corresponding eigenspace. It equals the geometric multiplicity of λ as an eigenvalue of the associated matrix A. The **characteristic polynomial** of T is defined to be the characteristic polynomials of A. Further, T is called **diagonalizable** if the matrix A is diagonalizable.

Definition

The algebraic multiplicity of an eigenvalue of the linear operator T is defined to be the algebraic multiplicity of the associated matrix A.

The relationships between the geometric multiplicity and the algebraic multiplicity of an eigenvalue of a square matrix hold for a linear operator as well.

The above definitions do not depend on the choice of the ordered basis E for V because if F is any other ordered basis of V, then the matrix $\mathbf{B} := \mathbf{M}_F^F(T)$ is similar to the matrix $\mathbf{A} := \mathbf{M}_E^E(T)$ as we have seen earlier.

Results about the linear independence of eigenvectors corresponding to distinct eigenvalues hold in the general case.

Inner Product Spaces

Definition

Let V be a vector space over \mathbb{K} . An inner product on V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{K}$ satisfying the following properties. For $u, v, w \in V$ and $\alpha, \beta \in \mathbb{K}$,

- 1. $\langle v, v \rangle \ge 0$ and $\langle v, v \rangle = 0 \iff v = 0$, (positive definite)
- 2. $\langle u, \alpha v + \beta w \rangle = \alpha \langle u, v \rangle + \beta \langle u, w \rangle$, (linear in 2nd variable)
- 3. $\langle v, u \rangle = \overline{\langle u, v \rangle}$. (conjugate symmetric)

From the above properties, conjugate linearity in the 1st variable follows: $\langle \alpha u + \beta v, w \rangle = \overline{\alpha} \langle u, w \rangle + \overline{\beta} \langle v, w \rangle$.

A vector space V over \mathbb{K} with a prescribed inner product on it is called an **inner product space**.

If $u, v \in V$ and $\langle u, v \rangle = 0$, then we say that u and v are **orthogonal**, and we write $u \perp v$.

For $v \in V$, we define the **norm** of v by $||v|| := \langle v, v \rangle^{1/2}$.

If $v \in V$ and ||v|| = 1, then we say that v is a **unit vector** or a **unit function**. The set $\{v \in V : ||v|| \le 1\}$ is called the **unit ball** of V.

Examples

1. We have already studied the primary example, namely $V := \mathbb{K}^{n \times 1}$ with the **usual inner product** $\langle \mathbf{x}, \mathbf{y} \rangle := \mathbf{x}^* \mathbf{y}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{K}^{n \times 1}$. There are other inner products on $\mathbb{K}^{n \times 1}$. For example, let w_1, \ldots, w_n be positive real numbers, and define

$$\langle \mathbf{x}, \mathbf{y} \rangle := w_1 \overline{x}_1 y_1 + \dots + w_n \overline{x}_n y_n \text{ for } \mathbf{x}, \mathbf{y} \in \mathbb{K}^{n \times 1}.$$

On the other hand, the function on $\mathbb{R}^{4\times 1}\times \mathbb{R}^{4\times 1}$ defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle_{M} := x_1 y_1 + x_2 y_2 + x_3 y_3 - x_4 y_4$$
 for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{4 \times 1}$

is not an inner product on $\mathbb{R}^{4\times 1}$. Note that for $\mathbf{x} \in \mathbb{R}^{4\times 1}$, $\langle \mathbf{x}, \mathbf{x} \rangle_M = x_1^2 + x_2^2 + x_3^2 - x_4^2$. (This is used in defining the **Minkowski space**)

2. Let V := C([a, b]), the vector space of all continuous \mathbb{K} -valued functions on [a, b]. Define

$$\langle f, g \rangle := \int_a^b \overline{f(t)} g(t) dt \quad \text{for } f, g \in V.$$

It is easy to check that this is an inner product on V. We shall call this inner product the **usual inner product** on C([a, b]).

In this case, the norm of $f \in V$ is $||f|| := \left(\int_a^b |f(t)|^2 dt \right)^{1/2}$.

This example gives a continuous analogue of the usual inner product on $\mathbb{K}^{n\times 1}$.

There are other inner products on V. For example, let $w:[a,b] \to \mathbb{R}$ be positive function, and define

$$\langle f, g \rangle := \int_{a}^{b} w(t) \overline{f(t)} g(t) dt$$
 for $f, g \in V$.

Let w be a nonzero element of V. As earlier, define

$$P_w(v) := \frac{\langle w, v \rangle}{\langle w, w \rangle} w \text{ for } v \in V.$$

It is called the (orthogonal) **projection** of v in the direction of w. It is easy to see that $P_w:V\to V$ is a linear map and its image space is one dimensional. Also, $P_w(w)=w$, so that $(P_w)^2:=P_w\circ P_w=P_w$.

Two important properties of the projection of a vector in the direction of another (nonzero) vector are as follows.

Proposition

Let $w \in V$ be nonzero. Then for every $v \in V$,

(i)
$$(v - P_w(v)) \perp w$$
 and (ii) $||P_w(v)|| \leq ||v||$.

The proof of (i) is an easy verification, and (ii) follows from the formula $||v||^2 = ||P_w(v)||^2 + ||v - P_w(v)||^2$, which is a consequence of (i).

Theorem

Let $\langle \cdot \, , \, \cdot \rangle$ be an inner product on a vector space V, and let $v,w \in V$. Then

- (i) (Schwarz Inequality) $|\langle v, w \rangle| \le ||v|| ||w||$.
- (ii) (Triangle Inequality) $||v + w|| \le ||v|| + ||w||$.

Proof. (i) First, suppose w=0. Then for any $v\in V$, $\langle v,\,w\rangle=\langle v,\,0\rangle=\langle v,\,0+0\rangle=2\langle v,\,0\rangle$, and so $\langle v,\,w\rangle=0$. Also, $\|w\|=0$. Hence we are done.

Now suppose $w \neq 0$. Then by (ii) of the previous proposition,

$$\left\|\frac{\langle w, v\rangle}{\langle w, w\rangle}w\right\| = \|P_w(v)\| \leq \|v\|,$$

that is,

$$|\langle w, v \rangle| ||w|| \le ||v|| \langle w, w \rangle = ||v|| ||w||^2.$$

Hence $|\langle v, w \rangle| \leq ||v|| ||w||$.

(ii) Since
$$\langle v, w \rangle + \langle w, v \rangle = 2 \Re \langle v, w \rangle$$
, we see that

$$||v + w||^{2} = \langle v + w, v + w \rangle = ||v||^{2} + ||w||^{2} + 2\Re\langle v, w \rangle$$

$$\leq ||v||^{2} + ||w||^{2} + 2|\langle v, w \rangle|$$

$$\leq ||v||^{2} + ||w||^{2} + 2||v|| ||w|| \text{ (by (i) above)}$$

$$= (||v|| + ||w||)^{2}.$$

Thus
$$||v + w|| \le ||v|| + ||w||$$
.

We observe that the norm function $\|\cdot\|:V\to\mathbb{K}$ satisfies the following three crucial properties:

(i)
$$||v|| \ge 0$$
 for all $v \in V$ and $||v|| = 0 \iff v = 0$,

(ii)
$$\|\alpha v\| = |\alpha| \|v\|$$
 for all $\alpha \in \mathbb{K}$ and $v \in V$,

(iii)
$$||v + w|| \le ||v|| + ||w||$$
 for all $v, w \in V$.

Let V be an inner product space. Let E be a subset of V. Define

$$E^{\perp} := \{ w \in V : w \perp v \text{ for all } v \in E \}.$$

It is easy to see that E^{\perp} is a subspace of V.

The set E is said to be **orthogonal** if any two (distinct) elements of E are orthogonal (to each other), that is, $v \perp w$ for all v, w in E with $v \neq w$. An orthogonal set whose elements are unit vectors is called an **orthonormal set**.

If E is orthogonal and does not contain 0, then E is linearly independent. For example, let $V:=C[-\pi,\pi]$ and $E:=\{\cos nt:n\in\mathbb{N}\}\cup\{\sin nt:n\in\mathbb{N}\}$. Since E is orthogonal and $0\not\in E$, the set E is linearly independent.

If we are given a sequence of linearly independent elements of V, then we can construct an orthogonal subset of V not containing 0, retaining the span of the elements so constructed at every stepby the Gram-Schmidt Orthogonalization Process (G-S OP), just as discussed earlier.

Let (v_n) be a sequence of linearly independent elements in V. Define $w_1:=v_1$, and for $j\in\mathbb{N}$, define

$$w_{j+1} := v_{j+1} - P_{w_1}(v_{j+1}) - \dots - P_{w_j}(v_{j+1})$$

$$= v_{j+1} - \frac{\langle w_1, v_{j+1} \rangle}{\langle w_1, w_1 \rangle} w_1 - \dots - \frac{\langle w_j, v_{j+1} \rangle}{\langle w_j, w_j \rangle} w_j.$$

Then $\operatorname{span}\{w_1,\ldots,w_{j+1}\}=\operatorname{span}\{v_1,\ldots,v_{j+1}\}$, and the set $\{w_1,\ldots,w_{j+1}\}$ is orthogonal.

Now let $u_j := w_j/\|w_j\|$ for $j \in \mathbb{N}$, then (u_1, u_2, \ldots) is an ordered orthonormal set such that for each $j \in \mathbb{N}$,

$$span\{v_1,\ldots,v_j\}=span\{w_1,\ldots,w_j\}=span\{u_1,\ldots,u_j\}.$$

Example

Let V be the set of all real-valued polynomial functions on $\left[-1,1\right]$ along with the inner product defined by

$$\langle p, q \rangle := \int_{-1}^{1} p(t)q(t)dt \quad \text{for } p, q \in V.$$

For $j=0,1,2,\ldots$, let $p_j(t):=t^j,\ t\in[-1,1]$. Let us orthogonalize the set $\{p_0,p_1,p_2,p_3\}$. Define $q_0:=p_0$, and

$$q_1 :=
ho_1 - rac{\langle q_0, \,
ho_1
angle}{\langle q_0, \, q_0
angle} q_0 =
ho_1 - igg(rac{1}{2} \int_{-1}^1 t \ dt igg)
ho_0 =
ho_1.$$

Next, define

$$q_{2} := p_{2} - \frac{\langle q_{0}, p_{2} \rangle}{\langle q_{0}, q_{0} \rangle} q_{0} - \frac{\langle q_{1}, p_{2} \rangle}{\langle q_{1}, q_{1} \rangle} q_{1}$$

$$= p_{2} - \left(\frac{1}{2} \int_{-1}^{1} t^{2} dt\right) q_{0} - \left(\frac{3}{2} \int_{-1}^{1} t^{3} dt\right) q_{1}$$

$$= p_{2} - \frac{1}{3} p_{0},$$

and similarly,

$$q_3 := p_3 - \frac{\langle q_0, p_3 \rangle}{\langle q_0, q_0 \rangle} q_0 - \frac{\langle q_1, p_3 \rangle}{\langle q_1, q_1 \rangle} q_1 - \frac{\langle q_2, p_3 \rangle}{\langle q_2, q_2 \rangle} q_2$$
$$= p_3 - \frac{3}{5} p_1.$$

.

Further,
$$\|q_0\| = \sqrt{2}$$
, $\|q_1\| = \sqrt{2}/\sqrt{3}$, $\|q_2\| = 2\sqrt{2}/3\sqrt{5}$ and $\|q_3\| = 2\sqrt{2}/5\sqrt{7}$.

Hence we obtain the following orthonormal subset of V having the same span as span $\{p_0, p_1, p_2, p_3\}$, namely all real-valued polynomial functions of degree at most 3:

$$u_0(t) := \frac{\sqrt{2}}{2}, \quad u_1(t) := \frac{\sqrt{6}}{2}t,$$
 $u_2(t) := \frac{\sqrt{10}}{4}(3t^2 - 1), \quad u_3(t) := \frac{\sqrt{14}}{4}(5t^3 - 3t).$

The sequence of orthonormal polynomials thus obtained by orthonormalizing the monomials by the G-S OP is known as the sequence of **Legendre polynomials**. These are of much use in many contexts.

Let V be a finite dimensional inner product space. An **orthonormal basis** for V is a basis for V which is an orthonormal subset of V.

We have proved the following results for subspaces of $\mathbb{K}^{n\times 1}$. Their proofs remain valid for any inner product space.

If u_1, \ldots, u_k is an orthonormal set in V, then we can extend it to an orthonormal basis. As a consequence, every nonzero vector subspace V has an orthonormal basis.

The G-S OP enables us to improve the quality of a given basis for V by orthonormalizing it. For instance, if $\{u_1, \ldots, u_n\}$ is an orthonormal basis for V, and $v \in V$, then it is extremely easy to write v as a linear combination of u_1, \ldots, u_n ; in fact

$$v = \langle u_1, v \rangle u_1 + \cdots + \langle u_n, v \rangle u_n.$$

Orthogonal Projections

Let W be a subspace of a finite dimensional inner product space V. The **Orthogonal Projection Theorem** says that for every $v \in V$, there are unique $w \in W$ and $\tilde{w} \in W^{\perp}$ such that $v = w + \tilde{w}$, that is, $V = W \oplus W^{\perp}$. The map $P_W : V \to V$ given by $P_W(v) = w$ is linear and satisfies $(P_W)^2 = P_W$. It is called the **orthogonal projection map** of V onto the subspace W.

In fact, if u_1, \ldots, u_k is an orthonormal basis for W, then

$$P_W(v) = \langle u_1, v \rangle u_1 + \cdots + \langle u_k, v \rangle u_k$$
 for $v \in V$.

Given $v \in V$, its orthogonal projection $P_W(v)$ is the **unique** best approximation to v from W.

Further, $P_W(v)$ is the unique element of W such that $v - P_W(v)$ is orthogonal to W.

Definition

Suppose V is an inner product space of dimension n. For a linear operator $T:V\to V$, define its **adjoint** $T^*:V\to V$ by

$$\langle T(u), v \rangle = \langle u, T^*(v) \rangle$$
 for all $u, v \in V$.

Define T to be Hermitian or self-adjoint if $T = T^*$, and skew-Hermitian or skew self-adjoint if $T = -T^*$.

Thus, T is **Hermitian** if

$$\langle T(u), v \rangle = \langle u, T(v) \rangle$$
 for all $u, v \in V$,

and T is **skew-Hermitian** if

$$\langle T(u), v \rangle = -\langle u, T(v) \rangle$$
 for all $u, v \in V$,

Note that for $\mathbf{A} \in \mathbb{K}^{n \times n}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{K}^{n \times 1}$,

$$\langle \mathbf{A} \mathbf{x}, \mathbf{y} \rangle = (\mathbf{A} \mathbf{x})^* \mathbf{y} = \mathbf{x}^* (\mathbf{A}^* \mathbf{y}) = \langle \mathbf{x}, \mathbf{A}^* \mathbf{y} \rangle.$$

Hence a matrix **A** is self-adjoint, that is, $\mathbf{A}^* = \mathbf{A}$ if and only if $\langle \mathbf{A} \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{A} \mathbf{y} \rangle$. The following result, therefore, is natural.

Proposition

Let V be a finite dimensional inner product space, and let $T:V\to V$ be a linear operator. Then T is Hermitian if and only if the matrix of T with respect to any ordered orthonormal basis of V is self-adjoint.

An operator T which commutes with its adjoint T^* will be called **normal operator** on V. One can prove the spectral theorem for a normal operator on a finite dimensional inner product space V just as before.

THE END