COMP1917: Computing 1

6. Binary and Hexadecimal

Reading: Moffat, Section 13.2

Outline

- Number Systems
- Binary Computation
- Converting between Binary and Decimal
- Octal and Hexadecimal
- Fractional Component

Number Systems

- Most cultures have developed number systems based on 5 or 10, but there are some exceptions (often based on counting the spaces between the fingers as well as the fingers):
 - Base 8 (Yuki of northern California)
 - Base 9 (Nenet language of Russia)
 - Base 12 (hours of the day)
 - Base 20 (Maya of Central America)
 - Base 60 (Sumerians)
- For digital computers, it is convenient to use Base 2 (Binary), Base 8 (Octal) or Base 16 (Hexadecimal).

Decimal Representation

Can interpret decimal number 4705 as:

$$4 \times 10^3 + 7 \times 10^2 + 0 \times 10^1 + 5 \times 10^0$$

- The base or radix is 10 Digits 0 9
- Place values:

$$\cdots$$
 1000 100 10 1 \cdots 10³ 10² 10¹ 10⁰

- Write number as 4705₁₀
 - ▶ Note use of subscript to denote base

Binary Computation

■ In a similar way, can interpret binary number 1011 as:

$$1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

- The base or radix is 2
 Digits 0 and 1
- Place values:

$$\cdots$$
 8 4 2 1 \cdots 2³ 2² 2¹ 2⁰

Write number as 1011_2 (= 11_{10})

Binary Computation

- Binary representation is convenient because
 - easily represented using two voltage levels: low and high
 - > simple arithmetic tables that can be implemented using logic gates

+	0	1
0	00	01
1	01	10

×	U	1
0	0	0
1	0	1

Binary Representation

Addition of 1-bit binary numbers can be achieved by half-adder circuit.

General addition requires combination of half-adder circuits

Converting from base *x* **to Decimal**

- Consider 4-digit number in arbitrary base x: abcd $_x$
- Rewrite in polynomial form:

$$ax^3 + bx^2 + cx + d$$

Or nested form:

$$((ax+b)x+c)x+d$$

Perform necessary computations to achieve decimal conversion

Examples

- Convert 1101₂ to base 10 (Decimal):
 - ► $1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 13_{10}$
 - $ightharpoonup 1101_2 = ((1 \times 2 + 1) \times 2 + 0) \times 2 + 1 = 13_{10}$
- Convert 11001011₂ to base 10:
 - 11001011₂= 1.2⁷ + 1.2⁶ + 0.2⁵ + 0.2⁴ + 1.2³ + 0.2² + 1.2¹ + 1.2⁰ = 203₁₀
 - ► 11001011₂ = $((((((1.2+1).2+0).2+0).2+1).2+0).2+1).2+1=203_{10}$

Converting to base x

a base x number in the form ((ax+b)x+c)x+d can be written:

$$abcd_x = Cx + d$$

$$C = Bx + c$$

$$B = ax + b$$

$$a = 0x + a$$

- Numbers a,b,c,d are all less than base x
- Equations above imply that d,c,b,a are remainders when the number $abcd_x$ is repeatedly divided by x
- To convert an integer to base *x*
 - repeatedly divide quotient by x until quotient is 0
 - write the remainders in reverse

Examples

$$25_{10} \div 2 = 12 \text{ r } 1 \uparrow$$
 $12_{10} \div 2 = 6 \text{ r } 0 \uparrow$
 $6_{10} \div 2 = 3 \text{ r } 0 \uparrow$
 $3_{10} \div 2 = 1 \text{ r } 1 \uparrow$
 $1_{10} \div 2 = 0 \text{ r } 1 \uparrow$

- Write remainders from left to right reading from bottom to top.
- $\begin{array}{ccc}
 & \longrightarrow \\
 25_{10} & = & 11001_2
 \end{array}$
- ALWAYS check your answer:

$$11001_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 25_{10}$$

Examples

Convert 11972₁₀ to base 8 (Octal)

$$11972_{10} \div 8 = 1496 \text{ r} \quad 4$$
 $1496 \div 8 = 187 \text{ r} \quad 0$
 $187 \div 8 = 23 \text{ r} \quad 3$
 $23 \div 8 = 2 \text{ r} \quad 7$
 $2 \div 8 = 0 \text{ r} \quad 2$

- \blacksquare 11972₁₀ = 27304₈
- $27304_8 = 2 \times 8^4 + 7 \times 8^3 + 3 \times 8^2 + 0 \times 8^1 + 4 \times 8^0 = 11972_{10}$

Decimal to Binary — With Division

- Repeated division of quotient by 2 as in previous example
- repeat until quotient is 0
- output remainders in the reverse of the order in which they were generated

Decimal to Binary — With Division

$$573_{10} \div 2 = 286 \text{ r} 1$$
 $286 \div 2 = 143 \text{ r} 0$
 $143 \div 2 = 71 \text{ r} 1$
 $71 \div 2 = 35 \text{ r} 1$
 $35 \div 2 = 17 \text{ r} 1$
 $17 \div 2 = 8 \text{ r} 1$
 $8 \div 2 = 4 \text{ r} 0$
 $4 \div 2 = 2 \text{ r} 0$
 $2 \div 2 = 1 \text{ r} 0$
 $1 \div 2 = 0 \text{ r} 1$

- \blacksquare 573₁₀ = 1000111101₂
- Check:

$$1.2^9 + 0.2^8 + 0.2^7 + 0.2^6 + 1.2^5 + 1.2^4 + 1.2^3 + 1.2^2 + 0.2^1 + 1.2^0 = 573_{10}$$

Decimal to Binary — Without Division

- Ind largest power of 2 smaller than current number; subtract this from the number and repeat on the difference
- usually not practical for larger numbers
- powers of 2 are: 128, 64, 32, 16, 8, 4, 2, 1

Decimal to Binary — Without Division

Convert 174₁₀ to binary:

$$174 - 128 = 46 \longrightarrow 1 \text{ in } 2^7 \text{ place}$$

$$64 > 46$$
 \longrightarrow 0 in 2^6 place

$$46-32=14$$
 \longrightarrow 1 in 2^5 place

$$16 > 14$$
 \longrightarrow 0 in 2^4 place

$$14-8=6$$
 \longrightarrow 1 in 2^3 place

$$6-4=2$$
 \longrightarrow 1 in 2^2 place

$$2-2=0$$
 \longrightarrow 1 in 2^1 place

$$1 > 0$$
 \longrightarrow 0 in 2^0 place

 $= 10101110_2$

Exercises

- Convert the following to binary:
 - **▶** 5₁₀
 - **▶** 10₁₀
 - **▶** 12₁₀
 - **23**₁₀

Octal Representation

Can interpret octal number 7053₈ as:

$$7 \times 8^3 + 0 \times 8^2 + 5 \times 8^1 + 3 \times 8^0$$

- The base or radix is 8Digits 0,1,2,3,4,5,6,7
- Place values:

$$\cdots$$
 512 64 8 1 \cdots 8³ 8² 8¹ 8⁰

Write number as 7053_8 (= 3627_{10})

Binary to Octal

0	1	2	3	4	5	6	7
000	001	010	011	100	101	110	111

- Idea: Collect bits into groups of three starting from right to left
- "pad" out left-hand side with 0's if necessary
- Convert each group of three bits into its equivalent octal representation (given in table above)
- Example: Convert 1011111000101001₂ to Octal:

001	011	111	000	101	0012
1	3	7	0	5	18

Octal to Binary

- Reverse the previous process
- Convert each octal digit into equivalent 3-bit binary representation
- Example: Convert 27015₈ to Binary:

2	7	0	1	58
010	111	000	001	1012

Hexadecimal Representation

Can interpret hexadecimal number 3AF1 as:

$$3 \times 16^3 + 10 \times 16^2 + 15 \times 16^1 + 1 \times 16^0$$

- The base or radix is 16Digits 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Place values:

$$\cdots$$
 4096 256 16 1 \cdots 16³ 16² 16¹ 16⁰

Write number as $3AF1_{16}$ (= 15089_{10})

Binary to Hexadecimal

0	1	2	3	4	5	6	7
0000	0001	0010	0011	0100	0101	0110	0111
8	9	A	В	С	D	E	F
				_	_	_	

- Idea: Collect bits into groups of four starting from right to left
- "pad" out left-hand side with 0's if necessary
- Convert each group of four bits into its equivalent hexadecimal representation (given in table above)

Binary to Hexadecimal

Example: Convert 1011111000101001₂ to Hex:

1011	1110	0010	10012
В	E	2	9 ₁₆

Example: Convert 10111101011100₂ to Hex:

0010	1111	0101	1100
2	F	5	C ₁₆

Hexadecimal to Binary

- Reverse the previous process
- Convert each hex digit into equivalent 4-bit binary representation
- Example: Convert AD5₁₆ to Binary:

A	D	5
1010	1101	01012

Exercises

- Convert to binary
 - **53**₁₀
 - ► 5F3A₁₆
 - ► 12D₁₆
 - **▶** 3701₈
 - **4232**₈
- Convert to octal
 - **10101111011**₂
 - ► 5F3A₁₆
- Convert to hexadecimal
 - **10101111011**₂
 - **▶** 3701₈

Fractions

- In the same way that we use a decimal point (.) to represent fractional quantities for decimal numbers, we use the radix point to represent fractional quantities in any base
- For example, abcd.pqrs_x (note: base x) represents

$$ax^{3} + bx^{2} + cx^{1} + dx^{0} + px^{-1} + qx^{-2} + rx^{-3} + sx^{-4}$$

- Numbers to the left of radix point represent integer component
- Numbers to the right of radix point represent fractional component
- Polynomial above can be evaluated to determine equivalent decimal representation.

Converting Fractions to Base *x*

- Convert integer component as usual
- To convert fractional component use "separate and multiply" technique
- Consider fractional component of abcd.pqrs_{χ}
 - $px^{-1} + qx^{-2} + rx^{-3} + sx^{-4}$
 - Multiplying by x gives: $p + qx^{-1} + rx^{-2} + sx^{-3}$
 - Multiplying remaining fractional component by x gives: $q + rx^{-1} + sx^{-2}$
- Repeat until fractional part exhausted or you have sufficient digits (Note: process is not guaranteed to terminate)

Example

- Convert 23.3125₁₀ to base 8
- Integer component

$$23_{10} \div 8 = 2 \quad r \quad 7$$
$$2 \div 8 = 0 \quad r \quad 2$$

Fractional component

$$.3125_{10} \times 8 = 2.5$$

 $.5_{10} \times 8 = 4.0$

Therefore: $23.3125_{10} = 27.24_8$

Example

- Convert 23.3125₁₀ to base 2
- Integer component

$$23_{10} \div 2 = 11 \quad r \quad 1$$
 $11 \div 2 = 5 \quad r \quad 1$
 $5 \div 2 = 2 \quad r \quad 1$
 $2 \div 2 = 1 \quad r \quad 0$
 $1 \div 2 = 0 \quad r \quad 1$

Example continued

Fractional component

$$.3125_{10} \times 2 = 0.625$$

$$.625 \times 2 = 1.25$$

$$.25 \times 2 = 0.5$$

$$.5 \times 2 = 1.0$$

Therefore, $23.3125_{10} = 10111.0101_2$