6. Considere que submete 1 mol de um gás perfeito ($C_V = 5/2$ R) ao processo reversível esquematizado. a) Calcule o trabalho e o calor postos em jogo em cada um dos percursos $1\rightarrow 2$ e $2\rightarrow 3$. b) Calcule ΔH para o percurso $1\rightarrow 4$. c) Calcule ΔS para o percurso $4\rightarrow 1$. d) Imagine uma forma irreversível de ir do estado 2 ao estado 3, e calcule o trabalho

28.0

= 0.86 ban

Alivio de pressad als

0.86 ban a expansati

Contro pressa constanti:

W= J-Post AV = - Post AV = - Post AV =

= -0.86 x ws x (28.0 - 11.5) x w = - 1419]

Imperia, em me dula,

a waw (= -2146])

T neste caso não é constante, mas $T_2 = T_3$ e por isso temos $U_2 = U_3$, tal como na alínea a), ou seja, $\Delta U = 0$.