

EG3013芯片数据手册

大功率MOS管、IGBT管栅极驱动芯片

版本变更记录

版本号	日期	描述
V1.0	2012年09月18日	EG3013 数据手册初稿

目录

1.	特点		4
2.	描述		Δ
3.		域	
4.			
	4.1.	引脚定义	
	4.2.	引脚描述	
5.		图	
6.		 :用电路	
7.		性	
	7.1		
	7.2	典型参数	
	7.3	开关时间特性及死区时间波形图	
8.	应用设	计	
	8. 1	Vcc 端电源电压	
	8. 2	输入逻辑信号要求和输出驱动器特性	10
	8.3	自举电路	11
9.	封装尺	寸	12
	9.1	SO8 封装尺寸	

EG3013 芯片数据手册 V1.1

1.特点

- 高端悬浮自举电源设计,耐压可达 100V
- 内建死区控制电路
- 自带闭锁功能,彻底杜绝上、下管输出同时导通
- 采用半桥达林顿管输出结构具有 1A 大电流栅极驱动能力
- 专用于无刷电机 N 沟道 MOS 管、IGBT 管栅极驱动
- HIN 输入通道高电平有效,控制高端 HO 输出
- LIN 输入通道低电平有效,控制低端 LO 输出
- 外围器件少
- 静态电流小: 4.5mA
- 封装形式: SOP-8

2. 描述

EG3013 是一款高性价比的大功率 MOS 管、IGBT 管栅极驱动专用芯片,内部集成了逻辑信号输入处理电路、死区时控制电路、闭锁电路、电平位移电路、脉冲滤波电路及输出驱动电路,专用于无刷电机控制器中的驱动电路。

EG3013 高端的工作电压可达 100V, Vcc 的电源电压范围宽 4.5V~30V, 静态功耗低仅 4.5mA。该芯片具有闭锁功能防止输出功率管同时导通,输入通道LIN内建了上拉5V高电位和HIN 内建了一个10K下拉电阻,在输入悬空时使上、下功率 MOS 管处于关闭状态,输出结构采用半桥式达林顿管结构,采用 SOP8 封装。

3.应用领域

- 电动摩托车控制器
- 电动自行车控制器
- 100V 降压型开关电源

- 变频水泵控制器
- 无刷电机驱动器
- 高压 Class-D 类功放

4.引脚

4.1. 引脚定义

图 4-1. EG3013 管脚定义

4.2. 引脚描述

引脚序号	引脚名称	I/O	描述		
1	Vcc	Power	芯片工作电源输入端,推荐工作电压典型值为 10V-15V,外接一个高		
			频 0. 1uF 旁路电容能降低芯片输入端的高频噪声		
2		1	逻辑输入控制信号高电平有效,控制高端功率 MOS 管的导通与截 ————————————————————————————————————		
	HIN		TO THE AMERICAN HIS HILL STREAM - (M M D. 2. 0. 7. 14)		
			"0"是关闭功率 MOS 管		
			"1"是开启功率 MOS 管		
3	LIN	ı	逻辑输入控制信号低电平有效,控制低端功率 MOS 管的导通与截		
			止, 当 HIN 引脚为低电平时, LIN 功能如下(详细参考 8. 2 节)		
			"0"是开启功率 MOS 管		
			"1"是关闭功率 MOS 管		
4	GND	GND	芯片的地端。		
5	LO	0	输出控制低端 MOS 功率管的导通与截止		
6	VS	0	高端悬浮地端		
7	НО	0	输出控制高端 MOS 功率管的导通与截止		
8	VB	Power	高端悬浮电源		

5. 结构框图

图 5-1. EG3013 结构框图

6. 典型应用电路

图 6-1. EG3013 典型应用电路图——中、小功率半桥驱动应用

图 6-2. EG3013 典型应用电路图——大功率电机场合应用

图 6-3. EG3013 典型应用电路图——外接自举二极管应用

7. 电气特性

7.1 极限参数

无另外说明,在TA=25℃条件下

符号	参数名称	测试条件	最小	最大	单位
自举高端 VB 电源	VB	-	-0.3	100	V
高端悬浮地端	VS	-	-0. 7	100	V
高端输出	НО	-	-0.3	100	V
低端输出	LO		-0.3	35	V
电源	VCC	-	-0.3	35	V
高通道逻辑信号 输入电平	HIN	-	-0.3	35	V
低通道逻辑信号 输入电平	LIN	-	-0.3	35	V
TA	环境温度	-	-45	85	${\mathfrak C}$
Tstr	储存温度	-	-65	125	င
TL 焊接温度		T=10S	-	300	${\mathbb C}$

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

7.2 典型参数

无另外说明,在TA=25℃, Vcc=15V,负载电容CL=10nF条件下

参数名称	符号	测试条件	最小	典型	最大	单位	
电源	Vcc	-	4.5	15	30	٧	
静态电流	Icc	输入悬空, Vcc=15V	-	4.5	6	mA	
输入逻辑信号高 电位	Vin(H)	所有输入控制信号	2.5	5.0	-	V	
输入逻辑信号低 电位	Vin(L)	所有输入控制信号	-0.3	0	1.0	V	
输入逻辑信号高 电平的电流	Iin(H)	Vin=5V	-	300	400	uA	
输入逻辑信号低 电平的电流	Iin(L)	Vin=0V	-	0	-	uA	
低端输出 LO 开关	付间特性						
开延时	Ton	见图 7-1	-	500	700	nS	
关延时	Toff	见图 7-1	-	50	100	nS	
上升时间	Tr	见图 7-1	-	400	600	nS	
下降时间	Tf	见图 7-1	-	200	300	nS	
高端输出 HO 开关时间特性							
开延时	Ton	见图 7-2	-	300	500	nS	
关延时	Toff	见图 7-2	-	400	600	nS	
上升时间	Tr	见图 7-2	-	400	600	nS	
下降时间	Tf	见图 7-2	-	200	300	nS	
死区时间特性	死区时间特性						
死区时间	DT	见图 7-3 , 无负载电容 CL=0	80	120	400	nS	
10 输出最大驱动能力							
10 输出拉电流	I0+	Vo=0V,VIN=VIH PW≤10uS	0.6	0.8	-	А	
IO 输出灌电流	I0-	Vo=15V,VIN=VIL PW≤10uS	0.8	1	-	А	

7.3 开关时间特性及死区时间波形图

图 7-1. 低端输出 LO 开关时间波形图

图 7-2. 高端输出 HO 开关时间波形图

图 7-3. 死区时间波形图

8.应用设计

8.1 Vcc 端电源电压

在考虑有足够的驱动电压去驱动 N 沟道功率 MOS 管,推荐电源 Vcc 工作电压典型值为 12V-15V,内部逻辑电路的电源和模拟电平转换电路的电源共用 Vcc 电源,内部的逻辑地和模拟地也连接到一起。

8.2 输入逻辑信号要求和输出驱动器特性

EG3013 主要功能有逻辑信号输入处理、死区时间控制、电平转换功能、悬浮自举电源结构和上下桥图腾柱式输出。逻辑信号输入端高电平阀值为 2.5V 以上,低电平阀值为 1.0V 以下,要求逻辑信号的输出电流小,可以使 MCU 输出逻辑信号直接连接到 EG3013 的输入通道上。

高端上桥臂和低端下桥臂图腾柱式输出驱动器的最大灌入可达1A和最大输出电流可达0.8A,高端上桥臂通道可以承受100V的电压,输入逻辑信号与输出控制信号之间的传导延时小,低端输出开通传导延时为500nS、关断传导延时为50nS,高端输出开通传导延时为300nS、关断传导延时为400nS。低端输出开通的上升时间为400nS、关断的下降时间为200nS。高端输出开通的上升时间为400nS、关断的下降时间为200nS。

输入信号和输出信号逻辑功能图如图 8-2:

图 8-2. 输入信号和输出信号逻辑功能图

输入信号和输出信号逻辑真值表:

输入		输出			
输入、输出逻辑					
HIN (引脚 4)	LIN (引脚 3)	HO (引脚 7)	LO (引脚 5)		
0	0	0	1		
0	1	0	0		
1	0	0	0		
1	1	1	0		

从真值表可知,在输入逻辑信号 HIN 和 LIN 非同时为"0"和非同时为"1"情况下,驱动器控制输出 HO、LO 同时为"0"上、下功率管同时关断;当输入逻辑信号 HIN、LIN 同时为"0"时,驱动器控制输出 HO为"0"上管关断,LO为"1"下管导通;当输入逻辑信号 HIN、LIN 同时为"1"时,驱动器控制输出 HO为"1"上管导通,LO为"0"下管关断;内部逻辑处理器杜绝控制器输出上、下功率管同时导通,具有相互闭锁功能。

8.3 自举电路

EG3013 采用自举悬浮驱动电源结构大大简化了驱动电源设计,只用一路电源电压 VCC 即可完成高端 N沟道 MOS 管和低端 N沟道 MOS 管两个功率开关器件的驱动,给实际应用带来极大的方便。EG3013 可以使用内部自举二极管或外接一个自举二极管如图 8-3 和一个自举电容自动完成自举升压功能,假定在下管开通、上管关断期间 C 自举电容已充到足够的电压(Vc=VCC),当 HO 输出高电平时上管开通、下管关断时,VC 自举电容上的电压将等效一个电压源作为内部驱动器 VB 和 VS 的电源,完成高端 N沟道 MOS 管的驱动。

图 8-3. EG3013 自举电路结构

9. 封装尺寸

9.1 SO8 封装尺寸

