笔记整理

赵丰

November 7, 2017

1 草稿

理想不可压缩无旋流动方程

对于理想不可压缩无旋流动,存在速度势函数 φ , 并且 φ 在域内满足 Laplace 方程,附加一定的边界条件即可由下面的式子先求出速度势:

$$\Delta \varphi = 0$$

$$\frac{\partial F}{\partial t} + \nabla \varphi \cdot \nabla F = 0,$$
壁面条件
$$\nabla \varphi_{|B=\infty} = \overrightarrow{v_{\infty}},$$
无穷远条件 (1)

解出 φ 后,求梯度得速度场,再代入 CL 方程(??)式中求压强 p 即可。

单连域速度场的唯一性定理

如果求解域 D 是单连通的,采用设速度作差法我们可以得到速度差函数 (仍记为 \overrightarrow{v}) 也满足(1)式。为说明 $\overrightarrow{v} = \overrightarrow{0}$,考虑动能积分:

$$\begin{split} T = & \frac{1}{2} \rho \int_{D} |\overrightarrow{v}|^{2} d\tau \\ = & \frac{1}{2} \rho \int_{D} \nabla \varphi \cdot \nabla \varphi d\tau \\ = & \frac{1}{2} \rho \int_{D} \nabla \cdot (\varphi \nabla \varphi) d\tau, \nabla^{2} \varphi = 0 \\ = & \frac{1}{2} \rho \int_{A} (\overrightarrow{n} \cdot \nabla \varphi) \varphi dA \\ = & \frac{1}{2} \rho \int_{A} \varphi \frac{\partial \varphi}{\partial n} dA \end{split}$$

因此,如果在 D 的边界 A 中逐点指定 φ 的值或者 φ 沿着边界面的法向导数的值,那么速度差函数在边界 A 中逐点有 $\varphi \frac{\partial \varphi}{\partial n} = 0$,因此上式中动能为零,从而推出 $\overrightarrow{v} = \overrightarrow{0}$,即我们得到了单连通域解的唯一性的条件为如下三类:

- (Dirichlet 边界条件) 在 A 上指定 φ
- (Neumann 边界条件) 在 A 上指定 $\frac{\partial \varphi}{\partial n}$

• (混合边界条件) 在 A_1 上指定 $\frac{\partial \varphi}{\partial n}$, 在 A_2 上指定 φ , 并且 A 可以分成 A_1 和 A_2 的不交并。

速度势函数的极值原理:

- 速度势函数 φ 不能在域内达到极大值或极小值。可以用反证法,假设在某点 φ 取到极大值,那么以该点为球心取一个半径很小的球,有面积分 $\iint_{\Sigma} \frac{\partial \varphi}{\partial n} dA < 0$,但由 Gauss 公式等式左边可化为 $\int_{D} \nabla \cdot \overrightarrow{v} d\tau = 0$,矛盾。
- 在重力场中,压强不能在域内达到极小值。对(??)式作用 Laplace 算子,得到 $\Delta p = -\frac{1}{2}\Delta|\overrightarrow{v}|^2$

$$\Delta \frac{1}{2} |\overrightarrow{v}|^2 = \frac{1}{2} \nabla \cdot (\nabla |\overrightarrow{v}|^2)$$

$$= \nabla \cdot (\nabla \overrightarrow{v} \cdot \overrightarrow{v})$$

$$= \Delta \overrightarrow{v} \cdot \overrightarrow{v} + \nabla \overrightarrow{v} \cdot \nabla \overrightarrow{v}$$

 $\Delta \overrightarrow{v} = \nabla \cdot (\nabla \nabla \varphi) = \nabla (\nabla \cdot (\nabla \varphi)) = \overrightarrow{0}$ 所以 $\Delta p = -\nabla \overrightarrow{v} \cdot \nabla \overrightarrow{v} \leq 0$, 对任一域内点的邻域球有:

所以该点不可能取到极小值。

理想无旋不可压流场势函数三类基本解:

- 1. 对于均匀流场 $\varphi = u_{\infty}x + v_{\infty}y + w_{\infty}z + c$
- 2. 对于点源诱导的流场,首先推导速度场,由球对称性有 $\overrightarrow{v}=v(R)\overrightarrow{e_R}$,考虑通过半径为 R 的球的流量有: $2\pi Rv(R)=Q$,因此 $v(R)=\frac{Q}{4\pi R^2}$,由 $\frac{\partial \varphi}{\partial R}=v(R)$ 积分得 $\varphi(R)=-\frac{Q}{4\pi R}+c$,称 Q>0 为点源,若 Q<0 则称为点汇
- 3. 偶极子,考虑两个相互靠的很近的源和汇,并定义 $m = \lim_{\delta l \to 0} (Q \delta l) > 0$,由 叠加原理,两个源和汇在空间中产生的速度场为(假设 -Q 在原点,+Q 在 $(\delta l, 0, 0)$:

$$\varphi = \frac{Q}{4\pi\sqrt{x^2 + y^2 + z^2}} + \frac{-Q}{4\pi\sqrt{(x - \delta l)^2 + y^2 + z^2}}$$

$$= \frac{-mx}{4\pi(\sqrt{x^2 + y^2 + z^2})^3}$$
(3)

下面举一个应用基本解待定系数求解的例子,考虑圆球(圆心在原点,半径为a)绕流问题,无穷远处来流为 $\overrightarrow{v_\infty} = U_\infty \overrightarrow{i}$,考虑速度势函数有 $\varphi = U_\infty x - \frac{g_3}{R^3}$ 的解,其中 $R = \sqrt{x^2 + y^2 + z^2}$,这相当于均匀流场的基本解与偶极子的基本解的叠加,由于 φ 的奇点在球心,属于流场之外,且流场为单边域,故只需通过

壁面条件确定系数 q,为此,采用球坐标系,并设 θ 为空间一点 \overrightarrow{r} 与 \overrightarrow{i} 的夹 角 (与一般球坐标 θ 定义不同)。则 $x = R \cos \theta$, 所以

$$\varphi = \cos \theta (U_{\infty} R - \frac{q}{R^2}) \tag{4}$$

由壁面不可穿透性条件: $\frac{\partial \varphi}{\partial R}|_{R=a}=0$ 解出 $q=-\frac{1}{2}a^3U_{\infty}$,所以

$$\varphi = U_{\infty}R(1 + \frac{a^3}{2R^3})\cos\theta$$

$$v_R = \frac{\partial \varphi}{\partial R} = U_{\infty}(1 - \frac{a^3}{R^3})\cos\theta$$

$$v_{\theta} = \frac{1}{R}\frac{\partial \varphi}{\partial \theta} = -U_{\infty}(1 + \frac{a^3}{R^3})\sin\theta$$

由 Bernoulli 方程(??)式 (不考虑有势力) 可进一步解出 p 如果考虑壁面 R=a的速度和压力分布, $v_R = 0, v_\theta = -\frac{3}{2}U_\infty \sin\theta, \ p = p_\infty - \frac{\rho}{2}U_\infty^2(\frac{9}{4}\sin^2\theta - 1)$ 当 $\theta = 0$ 或 π 时 $v_\theta = 0$,此时速度为零,分别对应着后驻点和前驻点,压强为 $p_0 = p_\infty + \frac{1}{2}\rho U_\infty^2$ 当 $\theta = \frac{\pi}{2}$ (或 $\frac{3\pi}{2}$) 时,此时速度达到最大,大小为 $\frac{3}{2}v_\infty$,压强达到最小, $p_{\min} = p_\infty - \frac{5}{8}\rho U_\infty^2$ 。 针对平面不可压流,可引入流函数 ψ 的概念,有了流函数,速度场可写成:

$$\begin{cases} u = \frac{\partial \psi}{\partial y} \\ v = -\frac{\partial \psi}{\partial x} \end{cases}$$
 (5)

于是有 $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$,即不可压条件自动满足。若已知速度场 (u,v),可对 udy - vdx 做路径积分,由 Green 公式,上面的微分形式环路积分为:

$$\oint_{l} u dy - v dx = \iint_{A} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) dx dy = 0$$
(6)

因此对不可压平面流场,流函数总是存在的,可写成

$$\psi(x,y) = \int_{(x_0,y_0)}^{(x,y)} (udy - vdx)$$
 (7)

流函数具有如下的性质:

- 平面流线是流函数的等值线, 因为 $\frac{dx}{u} = \frac{dy}{v} \Leftrightarrow udy vdx = 0 \Leftrightarrow d\psi = 0 \Leftrightarrow$
- 通过某截曲线 $\widehat{M_0M}$ 的体积流量等于 $\psi(M) \psi(M_0)$, 因为 $\int_{M_0}^M (\overrightarrow{v} \cdot \overrightarrow{n}) ds =$ $\int_{M_0}^M (\overrightarrow{v} \cdot (dy, -dx)) = \int_{M_0}^M (udy - vdx), 于是由(7)式可知。$
- 若等势线(速度势函数的等值线)存在,则流线与等势线正交。因为前者 的法方向为:(-v,u),后者的法方向为 (u,v)。

对于平面无旋流动,由 $\nabla \times \overrightarrow{v} = 0$ 可推出 ψ 适合平面 Laplace 方程, 附加 适当的边界条件,对于单连域, ψ 满足

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$$

$$(\frac{\partial \psi}{\partial y}, \frac{\partial \psi}{\partial x}) = (u_{\infty}, -v_{\infty}), 来流条件$$

$$\psi = c, 物面不可穿透条件 \tag{8}$$

平面流场流函数三类基本解: 我们考虑满足 $\Delta \psi = 0$,

- 1. 对于均匀流场 $\psi = u_{\infty}y v_{\infty}x + c$
- 2. 对于点源诱导的流场,首先推导速度场,类似中的推导我们有 $2\pi Rv(R)=Q,\overrightarrow{v}=v(R)\overrightarrow{e_R}$,在极坐标系中, $v(R)=\frac{1}{R}\frac{\partial \psi}{\partial \theta}$,所以 $\psi=\frac{Q}{2\pi}\theta+c$,变换到直角坐标系中即为

$$\psi = \frac{Q}{2\pi} \arctan \frac{y}{x} + c \tag{9}$$

3. 偶极子,类似(3)式的推导,对 $\arctan \frac{y}{x}$ 对 x 求导得到偶极子诱导的势函数为

$$\psi = \frac{-m}{2\pi} \frac{y}{x^2 + y^2} + c \tag{10}$$

- (11)
- (12)

References

- [1] https://en.wikipedia.org/wiki/Triple_product
- [2] http://www.continuummechanics.org/velocitygradient.html
- [3] https://en.wikipedia.org/wiki/Angular_velocity#Angular_velocity_tensor
- [4] https://en.wikipedia.org/wiki/Divergence#Cylindrical_coordinates
- [5] https://en.wikipedia.org/wiki/Curl (mathematics)
- [6] https://en.wikipedia.org/wiki/Fundamental_solution
- [7] https://en.wikipedia.org/wiki/Green%27s_function#Green.27s_functions_for_the_Laplacian
- [8] https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates
- [9] https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation