MMA/MMAI 869 Machine Learning and AI

Cross-Validation

Stephen Thomas

Updated: October 29, 2022

Outline

- How to estimate a model's future performance?
 - How well does it generalize to new, unseen data?
- How to choose the best model (out of many candidates)?

Answer: Cross-Validation

CROSS-VALIDATION

Why Cross-Validation?

- Will have dozens of candidate models
 - Some will overfit
 - Some will underfit
 - Some will be terrible
 - Some will be great
- CV gives an accurate/robust estimate of F1 score on unseen data
 - "A resampling technique for estimating model performance"

Other Model Validation Methods

K-fold Cross-Validation
 Holdout Method
 Repeated Holdout / Shuffle Split
 Repeated K-fold Cross-Validation
 Leave One Out
 Generalized Cross-Validation
 Bootstrapping

• ... and variants for Time Series, Group, and other non-i.i.d. data

Cross-Validation is a Test

Military wants to find the strongest individuals

- Cross-validation is like a test of strength
 - CV won't make the individuals stronger
 - CV will tell the military which individuals are stronger

Why Resample?

Just Use All the Data to Find F1 Score!

Doesn't work! Why?

- Randomly split the data into K "folds" (i.e., subsets)
- K times:
 - Set one fold for validation
 - Set all other folds for training
 - Train the model like normal, evaluate predictions like normal

- Do the same thing, with the next fold as validation.
- F1 Scores = [.78, .80]

- Do the same thing, with the next fold as validation.
- F1 Scores = [.78, .80, .71]

- Do the same thing, with the last fold as validation.
- F1 Scores = [.78, .80, .71, .85]
- F1 score on future data will be 0.78 ± 0.05

Example

Note 1: Final Production Model

- During CV, K models will be created
 - Which do you use for production?
 - None!
- After you've done CV and selected best model, retrain model "one last time" with full data

Note 2: Holdout Testing Set for HT

Note 3: FE, CV, and Leakage

 Next session, we will discuss best practices to avoid data leakage while engineering features

QUICK CHECK

Quick Check

• T or F? If you don't do CV, your model will overfit.

• T or F? CV will ensure you select the best model.

RESOURCES

Resources

- Coding Tutorial Files by Uncle Steve
 - https://github.com/stepthom/869 course/tree/main/classification

SUMMARY

Summary

- Cross-validation: Robust way to assess/estimate model's performance on [future, unseen, unlabeled] data
 - So you can select which model is best
 - ... with confidence

APPENDIX

Holdout Method

- Holdout Method: Randomly divide the data into two subsets
 - Rule of thumb: 80%/20% split
- Train set: Used to train the models
- Test set (also called holdout set): used to evaluate model's predictions
 - We pretend the test data is "future data"

Example

Bootstrapping (1/4)

- Also called "repeated random subsampling"
- Same as the holdout method, except you do it many times:
 - Divide data into testing and training, get evaluation measure

Bootstrapping (2/4)

- Also called "repeated random subsampling"
- Same as the holdout method, except you do it many times:
 - Divide data into testing and training, get evaluation measure
 - Repeat as many times as you want

Bootstrapping (3/4)

- Also called "repeated random subsampling"
- Same as the holdout method, except you do it many times:
 - Divide data into testing and training, get evaluation measure
 - Repeat as many times as you want

Bootstrapping (4/4)

- Also called "repeated random subsampling"
- Same as the holdout method, except you do it many times:
 - Divide data into testing and training, get evaluation measure
 - Repeat as many times as you want
 - Take average of evaluation measures

Final Evaluation measure =
$$\frac{EM1 + EM2 + EM3}{3}$$

K-Fold Cross Validation (1/6)

Similar to bootstrapping, except each round, make sure you use a different subset for training.

Example

Example


```
from pandas ml import ConfusionMatrix
print(ConfusionMatrix(y, y_pred_dt))
Predicted False True all
Actual
False
             251
                           251
True
                  249
                           249
all
            251
                  249
                           500
from sklearn.metrics import classification report
print(classification_report(y, y_pred_dt, target_names=class_names))
                         recall f1-score support
            precision
          0
                 1.00
                           1.00
                                     1.00
                                                251
          1
                 1.00
                           1.00
                                     1.00
                                                249
avg / total
                 1.00
                           1.00
                                     1.00
                                                500
from sklearn.metrics import accuracy_score, cohen_kappa_score, f1_score, log_loss
print("Accuracy = {:.2f}".format(accuracy score(y, y pred dt)))
print("Kappa = {:.2f}".format(cohen kappa score(y, y pred dt)))
print("F1 Score = {:.2f}".format(f1_score(y, y_pred_dt)))
print("Log Loss = {:.2f}".format(log loss(y, y pred dt)))
Accuracy = 1.00
Kappa = 1.00
F1 Score = 1.00
Log Loss = 0.00
```


- Best method to test future performance
 - Randomly split the data into K "folds" (i.e., subsets)
 - K times:
 - Set one fold for validation
 - Set all other folds for training
 - Train the model like normal, evaluate predictions like normal

Example

Holdout Method

- Holdout Method: Randomly divide the data into two subsets
 - Rule of thumb: 80%/20% split
- Training set: Used to train the model
- Test set (also called holdout set): used to evaluate model's predictions
 - We pretend that the test data is "future data"

Why Model Validation?

During a typical ML project, you will ask yourself:

How well will my model perform in the future?

Which algorithm should I use?

Which values for hyperparameters are best?

Which variables should I use?

• "Algorithm selection"

• "Hyperparameter tuning"

• "Model selection"

• "Feature/variable selection"

- Model Validation are ways to robustly quantify the performance of one model
- Way to estimate how well the model will work in the future, when the data is not labeled!
- Can use to compare two models/algorithms/hyperparameter values/etc.
- Different model validation techniques:
 - Hold out
 - K-fold cross validation

Leave One Out (LOO)

- Special case of K-Fold CV, where K=N
 - i.e., each fold only has one instance
- Not practical; rarely used