알고리즘및실습

[실습 및 과제 5]

과목명/분반	알고리즘및실습/02	담당교수	한연희
학 부 명	컴퓨터공학부	제 출 일	2022/ 06 / 15
학번	2018136121	이름	조원석

INDEX

표지 및 차례	1
서론 Homework의 내용 및 목적	.3
본론 [문제1] 색칠문제	5
[문제2] 0-1Knapsack Problem	6
[문제3] TSP(Traveling Salesman Problem)	7
결론 고착1	5

서론: Homework의 내용 및 목적

▶ 내용

: 백트래킹 알고리즘을 통한 색칠문제의 풀이

: BPS, DPS, 최고우선탐색을 통해 0-1 Knapsack

Problem 풀이

: TSP 한정분기

▶ 목적

: 백트램킹 알고리즘의 이해

: BPS, DPS, 최고우선탐색의 이해 및 상태 공간 트리의 이해

본론 : 문제 풀이

[문제 1] 색칠 문제

- 색칠 문제를 푸는 백트래킹 알고리즘 [알고리즘 14-2 (교재 481페이지)]을 사용하여 빨간색, 녹색, 흰색의 3가지 종류의 색을 가지고 아래 그래프를 색칠하는 것이 가능한지를 판단하기 위한 실행절차를 [그림 14-6 (교재 482페이지)] 과 같은 방법으로 제시하시오
 - 빨간색: 1, 녹색: 2, 흰색: 3 으로 설정
 - 이 때 메인함수에서 kColoring(1, 1) 호출한다고 가정
 - 연습장에 깔끔하게 손으로 풀이를 하고, 사진을 선명하게 찍어 해당 사진 이미 지를 보고서에 붙이는 식으로 해답 제시

[1번 풀이]

[문제 2-1] 0-1 Knapsack Problem

- 0-1 Knapsack Problem에서 배낭의 한계 무게가 13 (즉 M=13)이고, 보석 아이템이 아래 표와 같이 주어질 때, 다음 세 가지 방법으로 각각에 대한 상태 공간 트리를 제시하고, 상태 공간 트리 내에서 방문한 전체 노드 수를 비교하시오.

		i	Pi	Wi	Pi/Wi
	1) 깊이 우선 검색을 사용한 한정 분기(Branch and Bound)	1	\$20	2	10
ā	➤ 상태 공간 트리 및 전체 방문 노드 수 제시	2	\$30	5	6
		3	\$35	7	5
• 2) 너비 우선 검색을 사용한 한정 분기(Branch ar ▶ 상태 공간 트리 및 전체 방문 노드 수 제시		4	\$12	3	4
	2) 너비 우선 검색을 사용한 한성 분기(Branch and Bound) ➤ 상태 공간 트리 및 전체 방문 노드 수 제시	5	\$3	1	3

• 3) 최고 우선 검색을 사용한 한정 분기(Branch and Bound)

▶ 상태 공간 트리 및 전체 방문 노드 수 제시

[문제2-1 풀이]

1) 17개

2) 23개

[문제 2-2] 0-1 Knapsack Problem

- 0-1 Knapsack Problem에서 배낭의 한계 무게가 13 (즉 M=13)이고, 보석 아이템이 아래 표와 같이 주어질 때, 다음 세 가지 방법으로 각각에 대한 상태 공간 트리를 제시하고, 상태 공간 트리 내에서 방문한 전체 노드 수를 비교하시오.
 - 4) 위 각 방법으로 구한 0-1 Knapsack Problem의 최적 해를 제시하시오. ▶ 즉, 5개의 아이템 중 어떤 아이템을 배낭에 넣어야 하는가?
 - 본 문제에서 요구하는 상태 공간 트리를 그리기 위해서는 강의 노트 "14_상태 공간 트리의 탐색.pdf"를 참고해야 함
 - 연습장에 풀이를 하고, 사진을 찍어 해당 사진 이미지를 보고서에 삽입

[문제 2-2 풀이]

- 4) 최적해 : { 1, 3, 4, 5 } 번을 배낭에 넣어야합니다.
- 1) 깊이우선탐색, 2) 너비우선탐색, 3) 최고우선탐색은 각각
- 1) 17번 2) 23번 3) 13번

탐색했음을 알 수 있습니다.

1) 깊이우선탐색

2) 너비우선탐색

3) 최고우선탐색

[문제 3] TSP (Traveling Salesman Problem)

- 아래 주어진 유향 가중치 그래프 및 인접 행렬에서 TSP 문제의 해를 최고 우선 검색을 사용한 한정 분기(Branch and Bound)로 산출할 때
 - 1) 상태 공간 트리 제시 ([그림 14-8 (교재 486 페이지)]와 같은 방법으로 제시)
 - 2) 상태 공간 트리 내 방문한 전체 노드 수 제시
 - 3) TSP 문제의 최적 해 (즉, 최적 경로) 제시

• 연습장에 풀이를 하고, 사진을 찍어 해당 사진 이미지를 보고서에 삽입

[문제3 풀이]

- 2) 13
- 3) 1-2-3-7-4-8-6-5-1

결론

고찰

마지막 과제를 하면서 상태 공간 트리와 그래프 알고리즘에 조금 더 친숙해진 것 같습니다. 감사합니다.

2022-1학기동안 감사했습니다.