Санкт-Петербургский национальный исследовательский университет ИТМО

Вычислительная математика

Лабораторная работа №3 Численное интегрирование

Автор:

Ненов Владислав Александрович

Вариант 5

Группа №Р32082

Преподаватель:

Екатерина Алексеевна Машина

Санкт-Петербург 2023

Цель работы

Найти приближенное значение определенного интеграла с требуемой точностью различными численными методами.

Вычислительная часть

Задание

- 1. Вычислить интеграл, приведенный в таблице 1, точно.
- 2. Вычислить интеграл по формуле Ньютона Котеса при n = 5
- 3. Вычислить интеграл по формулам средних прямоугольников, трапеций и Симпсона при n = 10.
- 4. Сравнить результаты с точным значением интеграла.
- 5. Определить относительную погрешность вычислений для каждого метода.
- 6. В отчете отразить последовательные вычисления.

Выполнение

$$\int_{2}^{4} (-2x^3 - 3x^2 + x + 5) dx$$

Точное вычисление

$$\int_{2}^{4} (-2x^{3} - 3x^{2} + x + 5)dx = -164 + 4 = -160$$

Вычисления по формуле Ньютона-Котеса (n=5)

$$h = 2/5 = 0.4$$

x_{i}	2	2.4	2.8	3.2	3.6	4
y_i	-28.62	-37.53	-59.62	-88.05	-123.59	-167

$$\frac{19(b-a)}{288}y_0 + \frac{75(b-a)}{288}y_1 + \frac{50(b-a)}{288}y_2 + \frac{50(b-a)}{288}y_3 + \frac{75(b-a)}{288}y_4 + \frac{19(b-a)}{288}y_5 \approx -161.002$$

$$\Delta I = 0.626\%$$

Вычисления по формуле средних прямоугольников (n=10)

i	0	1	2	3	4	5	6	7	8	9
x_i	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8
y_i	-21	-28.62	-37.53	-47.83	-59.62	-73	-88.05	-104.89	-123.59	-144.26
<i>x</i> _{i+1/2}	2.1	2.3	2.5	2.7	2.9	3.1	3.3	3.5	3.7	3.9
$y_{i+1/2}$	-24.65	-32.9	-42.5	-53.53	-66.10	-80.31	-96.24	-114.0	-133.67	-155.37

$$\sum y_{i+1/2} * h = -159.86$$

 $\Delta I = 0.0875\%$

Вычисления по формуле трапеции (n=10)

i	1	2	3	4	5	6	7	8	9
x_{i}	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8
y_i	-28.61	-37.52	-47.83	-59.62	-73	-88.05	-104.88	-123.59	-144.26

$$(\sum y_i^* 2 + a + b) * h/2 = (-707.4 * 2 + 2 + 4) * 0.1 = -140.88$$

 $\Delta I = 11.95\%$

Вычисления по формуле Симпсона (n=10)

i	0	1	2	3	4	5	6	7	8	9
x_{i}	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8
y_{i}	-21	-28.61	-37.52	-47.83	-59.62	-73	-88.05	-104.88	-123.59	-144.26

$$0.2/3 * (-21 + 4(-28.61 - 47.83 - 73 - 104.88) + 2(-37.52 - 59.62 - 88.05 - 123.59) - 144.26) = -160.00$$

 $\Delta I \approx 0\%$

Программная реализация

На языке Kotlin

```
Класс, от которого наследуются все методы решения
abstract class IntegralSolveMethod(val leftBound: Double, val rightBound: Double, private
val accuracy: Double) {
  protected abstract val k: Int
  abstract fun calculate(func: Function, parts: Int): Double
  fun solve(func: Function) : IntegralSolveResult{
    var n = START N PARTS
    do {
      val result2 = calculate(func, n)
      val result1 = calculate(func, n*2)
      n *= 2
    } while ((result2 - result1)/(2.0.pow(k) - 1) > accuracy)
    return IntegralSolveResult(calculate(func, n/2), n/2)
  }
}
Метод средних прямоугольников
class MiddleRectSolveMethod(leftBound: Double, rightBound: Double, accuracy:
Double)
  : IntegralSolveMethod(leftBound, rightBound, accuracy)
  override val k: Int = 2
  override fun calculate(func: Function, parts: Int): Double {
     val h: Double = (rightBound-leftBound) / parts
     var result = 0.0
     for (i in 0 until parts) {
        result += func.calculate(leftBound+i*h+h/2)
     return result*h
  }
}
```

Метод трапеций

```
class TrapezeSolveMethod(leftBound: Double, rightBound: Double, accuracy: Double)
  : IntegralSolveMethod(leftBound, rightBound, accuracy)
{
  override val k: Int = 2
  override fun calculate(func: Function, parts: Int): Double {
    val h: Double = (rightBound-leftBound) / parts
    var sum = 0.0
    for (i in 1 until parts) {
       sum += func.calculate(leftBound+i*h)
    return (2*sum+leftBound+rightBound) * h/2
  }
}
Метод Симпсона
class SimpsonSolveMethod(leftBound: Double, rightBound: Double, accuracy: Double)
  : IntegralSolveMethod(leftBound, rightBound, accuracy)
{
  override val k: Int = 4
  override fun calculate(func: Function, parts: Int): Double {
    val h: Double = (rightBound-leftBound) / parts
    var sum = func.calculate(leftBound) + func.calculate(rightBound)
    for (i in 1 until parts step 2) {
       sum += 4*func.calculate(leftBound+h*i)
    for (i in 2 until parts step 2) {
       sum += 2*func.calculate(leftBound+h*i)
    return sum * h/3
  }
}
```