12. Az \mathbb{R}^n tér, vektorműveletek azonosságai, (generált) altér (példák), (triviális) lineáris kombináció, alterek metszete, generátorrendszer, lineáris függetlenség (kétféle definíció). Lin.ftn rendszer hízlalása, generátorrendszer ritkítása, kicserélési lemma, FG-egyenlőtlenség és következménye.

1. Az Rⁿ tér

Def: $A \times B = \{(a, b) : a \in A, b \in B\}$ az A és B-beli elemekből álló rendezett párok halmaza. Hasonlóan

 $A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) : a_i \in A_i \forall i\}$ a rendezett n-esek halmaza. Végül

 $A^n := A \times A \times ... \times A$ az *n*-szeres Descartes-szorzat jelölése.

Megj: (1) A továbbiakban \mathbb{R}^n elemeivel fogunk dolgozni. Ezeket n magasságú vektoroknak fogjuk hívni, jelezve, hogy (általában) oszlopvektorként gondolunk rájuk.

 $\begin{array}{c} \textbf{P\'elda:} \\ \begin{pmatrix} e \\ \pi \\ 42 \end{pmatrix} \in \mathbb{R}^3, \quad \underline{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^n \text{, ill. } \underline{e_i} = \begin{pmatrix} \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix} \in \mathbb{R}^n \text{, ut\'obbi} \end{array}$

esetben az 1-es felülről az i-dik helyen áll.

Megj: (1) A továbbiakban \mathbb{R}^n elemeivel fogunk dolgozni. Ezeket n magasságú vektoroknak fogjuk hívni, jelezve, hogy (általában) oszlopvektorként gondolunk rájuk. Def: $0, e_i$

(2) Ha n világos a szövegkörnyezetből, akkor \mathbb{R}^n elemeit vektoroknak, \mathbb{R} elemeit pedig skalároknak fogjuk nevezni. Konvenció: A jelölés során az oszlopvektorokat aláhúzással különböztetjük meg a skalároktól.

Megj: A vektorok tehát itt és most nem "irányított szakaszok", hanem ennél általánosabb fogalmat takarnak: az irányított szakaszok is tekinthetők vektornak, de egy vektor a mi tárgyalásunkban nem feltétlenül irányított szakasz.

2. Vektorműveletek azonosságai

Állítás: Az \mathbb{R}^n tér vektoraival történő számolásban néhány fontos szabály sokat segít. Tetsz. $\underline{u},\underline{v},\underline{w}\in\mathbb{R}^n$ vektorokra és $\lambda,\mu\in\mathbb{R}$ skalárokra az alábbiak teljesülnek

- (1) $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ (az összeadás kommutatív)
- (2) $(\underline{u} + \underline{v}) + \underline{w} = \underline{u} + (\underline{v} + \underline{w})$ (az összeadás asszociatív)
- (3) $\lambda(\underline{u} + \underline{v}) = \lambda \underline{u} + \lambda \underline{v}$ (egyik disztributivitás)
- (4) $(\lambda + \mu)\underline{u} = \lambda \underline{u} + \mu \underline{u}$ (másik disztributivitás)
- (5) $(\lambda \mu)\underline{u} = \lambda(\mu \underline{u})$ (skalárral szorzás asszociativitása)

Biz: Mivel mindkét művelet koordinátánként történik, elég az egyes azonosságokot koordinátánként ellenőrizni. Ezek viszont éppen a valós számokra (azaz a skalárokra) vonatkozó, jól ismert szabályok.

Konvenció: $\underline{v} \in \mathbb{R}^n$ esetén $-\underline{v} := (-1) \cdot v$.

Megj: Vektorok között nem csak az összeadás, hanem a kivonás is értelmezhető: $\underline{u} - \underline{v} := \underline{u} + (-1)\underline{v}$. Ezáltal a kivonás is egyfajta összeadás, tehát az összadásra vonatkozó szabályok értelemszerű változatai a kivonásra is érvényesek.

A vektorokkal történő számoláskor érvényes szabályok nagyon hasonlók a valós számok esetén megszokott szabályokhoz.

3. Generált altér(példák)

Def: $\emptyset \neq V \subseteq \mathbb{R}^n$ az \mathbb{R}^n tér altere (jel: $V \leq \mathbb{R}^n$), ha V zárt a műveletekre: $\underline{x} + \underline{y}, \lambda \underline{x} \in V$ teljesül $\forall \underline{x}, \underline{y} \in V$ és $\forall \lambda \in \mathbb{R}$ esetén. **Példa:** \mathbb{R}^2 -ben tetsz. origón áthaladó egyenes pontjaihoz tartozó vektorok alteret alkotnak. \mathbb{R}^3 -ban tetsz. origón áthaladó sík vagy egyenes pontjainak megfelelő vektorok alteret alkotnak.

Kérdés: Mik az \mathbb{R}^n tér alterei, és hogyan lehet ezeket megkapni? **Megf:** Ha $V \leq \mathbb{R}^n$, $\underline{x}_1, \underline{x}_2, \dots, \underline{x}_k \in V$ és $\lambda_1, \dots, \lambda_k \in \mathbb{R}$, akkor $\sum_{i=1}^k \lambda_i \underline{x}_i = \lambda_1 \cdot \underline{x}_1 + \dots + \lambda_k \cdot \underline{x}_k \in V$.

Def: Az $\underline{x}_1, \ldots, \underline{x}_k$ által generált altér a $\langle \underline{x}_1, \ldots, \underline{x}_k \rangle$ halmaz. Ez a legszűkebb olyan altér, ami mindezen vektorokat tartalmazza. Megf: (1) Alterek metszete altér: $V_i \leq \mathbb{R}^n \ \forall i \Rightarrow \bigcap_i V_i \leq \mathbb{R}^n$. (2) $\{\underline{0}\} \leq \mathbb{R}^n$. (3) $\mathbb{R}^n \leq \mathbb{R}^n$. Def: \mathbb{R}^n triviális alterei: $\{\underline{0}\}, \mathbb{R}^n$.

4. Triviális lineáris kombináció

Def: A $\sum_{i=1}^{\kappa} \lambda_i \underline{x}_i$ kifejezés az $\underline{x}_1, \ldots, \underline{x}_k$ lineáris kombinációja. Triviális lineáris kombináció: $0 \cdot \underline{x}_1 + \ldots + 0 \cdot \underline{x}_k$. Megf: $(V \leq \mathbb{R}^n) \Longleftrightarrow (V$ zárt a lineáris kombinációra) Biz: \Rightarrow : $\lambda_i \underline{x}_i \in V \ \forall i$ esetén, így a $\sum_{i=1}^k \lambda_i \underline{x}_i$ összegük is V-beli. \Leftarrow : Ha $\underline{x}, \underline{y} \in V$ és $\lambda \in \mathbb{R}$, akkor $\underline{x} + \underline{y}$ ill. $\lambda \underline{x}$ lineáris kombinációk. Mivel V zárt a lináris kombinációra, ezért $\underline{x} + \underline{y}, \lambda \underline{x} \in V$. Ez tetszőleges $\underline{x}, \underline{y}, \lambda$ esetén fennáll, tehát V zárt a műveletekre, vagyis altér.

5. Alterek metszete

Def: Az $\underline{x}_1, \ldots, \underline{x}_k$ által generált altér a $\langle \underline{x}_1, \ldots, \underline{x}_k \rangle$ halmaz. Ez a legszűkebb olyan altér, ami mindezen vektorokat tartalmazza. **Megf:** (1) Alterek metszete altér: $V_i \leq \mathbb{R}^n \ \forall i \Rightarrow \bigcap_i V_i \leq \mathbb{R}^n$. (2) $\{\underline{0}\} \leq \mathbb{R}^n$. (3) $\mathbb{R}^n \leq \mathbb{R}^n$. **Def:** \mathbb{R}^n triviális alterei: $\{\underline{0}\}, \mathbb{R}^n$.

6. Generátorrendszer

Def: Az $\underline{x}_1,\ldots,\underline{x}_k\in\mathbb{R}^n$ vektorok a $V\leq\mathbb{R}^n$ altér generátorrendszerét alkotják, ha $\langle\underline{x}_1,\ldots,\underline{x}_k\rangle=V$. Példa: $\underline{e}_1,\underline{e}_2,\ldots,\underline{e}_n$ az \mathbb{R}^n generátorrendszere, hisz minden \mathbb{R}^n -beli vektor előáll az egységvektorok lineáris kombinációjaként, azaz $\langle\underline{e}_1,\ldots,\underline{e}_n\rangle=\mathbb{R}^n$. Ha \mathbb{R}^2 -ben ha \underline{u} és \underline{v} nem párhuzamosak, akkor $\{\underline{u},\underline{v}\}$ generátorrendszer, hiszen bármely \underline{z} vektor előállítható \underline{u} és \underline{v} lineáris kombinációjaként. (Ehhez \underline{u} és \underline{v} egyenesére kell a "másik" vektorral párhuzamosan vetíteni az előállítandó \underline{z} vektort.) Hasonlóan, ha \mathbb{R}^3 -ban három vektor nem esik ugyanarra az origón átmenő síkra, akkor ez a három vektor generátorrendszert alkot.

7. Lineáris függetlenség 1.

Def: Az $\underline{x}_1, \dots, \underline{x}_k \in \mathbb{R}^n$ vektorok lineárisan függetlenek, ha a nullvektort csak a triviális lineáris kombinációjuk állítja elő:

$$\lambda_1 \underline{x}_1 + \ldots + \lambda_k \underline{x}_k = \underline{0} \Rightarrow \lambda_1 = \ldots = \lambda_k = 0.$$

Ha a fenti vektorok nem lin. ftn-ek, akkor lineárisan összefüggők. **Példa**: $\underline{e}_1, \underline{e}_2, \dots, \underline{e}_n$ lin. ftn \mathbb{R}^n -ben, hisz ha $\lambda_1\underline{e}_1 + \dots \lambda_n\underline{e}_n = \underline{0}$ akkor az *i*-dik koordináta 0 volta miatt $\lambda_i = 0$, tehát a lineáris kombináció triviális.

 \mathbb{R}^2 -ben két vektor akkor lin.öf, ha párhuzamosak. Tehát ha nem párhuzamosak, akkor lin. ftn-ek. ($\underline{0}$ minden vektorral párhuzamos.) \mathbb{R}^3 -ban pedig az igaz, hogy ha három vektor nem esik ugyanarra az origón átmenő síkra, akkor ez a három vektor lineárisan független rendszert alkot.

Megj: A lin.ftn-ség (akárcsak a lin.öf tulajdonság) vektorok egy halmazára és nem az egyes vektorokra vonatkozik. Hasonló igaz a generátorrendszerre. Az, hogy egy konrét <u>v</u> vektor benne van egy lin.ftn (vagy lin.öf vagy generátor-) rendszerben lényegében semmi információt nem ad <u>v</u>-ről.

8. Lineáris függetlenség 2.

Lemma: $\{\underline{x}_1, \dots, \underline{x}_k\}$ lineárisan független vektorrendszer \iff egyik \underline{x}_i sem áll elő a többi lineáris kombinációjaként.

Biz: A fenti állítások tagadásainak ekvivalenciáját igazoljuk.

1. Tfh $\{\underline{x}_1, \dots, \underline{x}_k\}$ nem lineárisan független, azaz

 $\lambda_1\underline{x}_1+\ldots+\lambda_k\underline{x}_k=\underline{0}$ és $\lambda_i\neq 0$. Ekkor \underline{x}_i előállítható a többiből:

$$\underline{x}_i = \frac{-1}{\lambda_i} \cdot \left(\lambda_1 \underline{x}_1 + \ldots + \lambda_{i-1} \underline{x}_{i-1} + \lambda_{i+1} \underline{x}_{i+1} + \ldots \lambda_k \underline{x}_k \right) .$$

2. Most tfh valamelyik xi előáll a többi lineáris kombinációjaként:

$$\underline{x}_i = \lambda_1 \underline{x}_1 + \ldots + \lambda_{i-1} \underline{x}_{i-1} + \lambda_{i+1} \underline{x}_{i+1} + \ldots \lambda_k \underline{x}_k$$
. Ekkor $\{\underline{x}_1, \ldots, \underline{x}_k\}$ nem lineárisan független, hiszen a nullvektor megkapható nemtriviális lineáris kombinációként:

$$\underline{0} = \lambda_1 \underline{x}_1 + \ldots + \lambda_{i-1} \underline{x}_{i-1} + (-1) \cdot \underline{x}_i + \lambda_{i+1} \underline{x}_{i+1} + \ldots \lambda_k \underline{x}_k . \quad \Box$$

Állítás: Tfh
$$\underline{v} \in \mathbb{R}^n$$
, $\underline{v} \notin G$ és $\langle G \cup \{\underline{v}\} \rangle = V \leq \mathbb{R}^n$. Ekkor $(\langle G \rangle = V) \iff (\underline{v} \in \langle G \rangle)$

Megj: A fenti állítás tkp azt mondja ki, hogy egy V altér generátorrendszeréből pontosan akkor tudunk egy elemet elvenni úgy, hogy a maradék vektorok továbbra is generátorrendszert alkossanak, ha a kihagyott elem előáll a maradék elemek lineáris kombinációjaként.

 $\mathsf{Biz:} \Rightarrow : \mathsf{Mivel} \ \langle \mathit{G} \rangle = \mathit{V} = \langle \mathit{G} \cup \{\underline{\mathit{v}}\} \rangle, \ \mathsf{ez\'{e}rt} \ \underline{\mathit{v}} \in \mathit{V} \ \mathsf{\'{e}s} \ \underline{\mathit{v}} \in \langle \mathit{G} \rangle.$

 $\Leftarrow: \ \mathsf{Tetsz}. \ \underline{\underline{u}} \in V \ \mathsf{elemr\"{o}l} \ \mathsf{azt} \ \mathsf{kell} \ \mathsf{megmutatni}, \ \mathsf{hogy} \ \underline{\underline{u}} \in \langle \mathit{G} \rangle.$

Mivel $\underline{v} \in \langle G \rangle$, feltehető, hogy $\underline{v} = \sum_{\underline{g} \in G} \lambda_{\underline{g}} \underline{g}$.

Tudjuk, hogy $\underline{u} \in V = \langle G \cup \{\underline{v}\} \rangle$, ezért $\underline{u} = \lambda \underline{v} + \sum_{\underline{g} \in G} \mu_{\underline{g}} \underline{g}$.

Ebbe behelyettesítve a fenti kifejezést $\underline{u} = \sum_{\underline{g} \in G} (\mu_{\underline{g}} + \lambda \cdot \overline{\lambda_{\underline{g}}})\underline{g}$ adódik, azaz $\underline{u} \in \langle G \rangle$. Ez bmely $\underline{u} \in V$ -re igaz, így $\langle G \rangle = V$.

9. <u>Lin.ftn rendszer hízlalása</u>

Megf: (1) A $\{0\}$ nem lineárisan független: $1 \cdot 0 = 0$.

- (2) Két vektor akkor lin.ftn, ha nem egymás skalárszorosai.
- (3) \mathbb{R}^2 -ben két vektor pontosan akkor lineárisan független, ha (irányított szakaszként) nem párhuzamosak. Bármely két nem párhuzamos \mathbb{R}^2 -beli vektor generálja \mathbb{R}^2 -t. (ábra)
- (4) Ha $\langle G \rangle = V$ és $G \subseteq G' \subseteq V \leq \mathbb{R}^n$, akkor $\langle G' \rangle = V$, azaz generátorrendszert (V-n belül) hízlalva generátorrendszer marad.
- (5) $F \subseteq \mathbb{R}^n$ lin.ftn és $F' \subseteq F$, akkor F' is lin.ftn, azaz lin.ftn rendszert ritkítva lin.ftn marad.

10. Generátorrendszer ritkítása

Megf: (1) A $\{0\}$ nem lineárisan független: $1 \cdot 0 = 0$.

- (2) Két vektor akkor lin.ftn, ha nem egymás skalárszorosai.
- (3) R²-ben két vektor pontosan akkor lineárisan független, ha (irányított szakaszként) nem párhuzamosak. Bármely két nem párhuzamos R²-beli vektor generálja R²-t. (ábra)
- (4) Ha $\langle G \rangle = V$ és $G \subseteq G' \subseteq V \leq \mathbb{R}^n$, akkor $\langle G' \rangle = V$, azaz generátorrendszert (V-n belül) hízlalva generátorrendszer marad.
- (5) $F \subseteq \mathbb{R}^n$ lin.ftn és $F' \subseteq F$, akkor F' is lin.ftn, azaz lin.ftn rendszert ritkítva lin.ftn marad.

11. Kicserélési lemma

Lemma: Tfh $F = \{\underline{f}_1, \dots, \underline{f}_k\} \subseteq \mathbb{R}^n$ lin.ftn és $\underline{f} \in \mathbb{R}^n$. Ekkor $(F \cup \{\underline{f}\} \text{ lin.ftn.}) \iff (\underline{f} \notin \langle F \rangle)$

Köv: (Kicserélési lemma) Ha $F \subseteq V \subseteq \mathbb{R}^n$ lin.ftn. és $\langle G \rangle = V$ gen.rsz. akkor $\forall \underline{f} \in F \exists \underline{g} \in G$, amire $F \setminus \{\underline{f}\} \cup \{\underline{g}\}$ is lin.ftn.

Megj: A kicserélési lemma szerint bárhogy is törlünk a V altér egy ftn rendszeréből egy vektort, az pótolható V generátorrendszerének egy alkalmas elemével úgy, hogy a kapott rendszer lin.ftn marad.

Biz: Legyen $F' := F \setminus \{\underline{f}\}$. Indirekt bizonyítunk.

Tfh $F' \cup \{\underline{g}\}$ egyetlen $\underline{g} \in G$ -re sem lin. ftn. Ekkor az előző lemma miatt $\underline{g} \in \langle F' \rangle$ teljesül minden $g \in G$ -re. Ezért $G \subseteq \langle F' \rangle$, ahonnan $\langle G \rangle \subseteq \langle F' \rangle$ következik. Ebből pedig $\underline{f} \in V = \langle G \rangle \subseteq \langle F' \rangle$, azaz $\underline{f} \in \langle F' \rangle$ adódik. A fenti lemma miatt $\{f\} \cup F' = F$ nem lin. ftn, ami ellentmondás.

Az indirekt feltevés hamis, így $\exists g \in G$, amire $F' \cup \{g\}$ lin.ftn. \square

12. FG-Egyenlőtlenség

FG-egyenlőtlenség: Tfh G a $V \leq \mathbb{R}^n$ altér generátorrendszere, és $F \subseteq V$ lin.ftn. Ekkor $|F| \leq |G|$.

Megj: Magyarul: altérben egy ftn. rendszer sosem nagyobb, mint egy generátorrendszer.

Biz: Legyen $F_0 := F$. Ha $F_0 \subseteq G$, akkor $|F_0| \le |G|$. Ha $F_0 \not\subseteq G$, akkor $F_0 \setminus G \ne \emptyset$, legyen mondjuk $\underline{f} \in F_0 \setminus G$. A kicserélési lemma miatt van olyan $\underline{g} \in G$, amire $F_1 := F_0 \setminus \{\underline{f}\} \cup \{\underline{g}\}$ lin.ftn. Ezzel az F_1 -gyel ugyanezt folytatva kapjuk az F_2 , F_3 , ..., lin.ftn rendszereket. Előbb-utóbb olyan F_i -hez jutunk, amivel ez már nem folytatható, mert $F_i \subseteq G$. Ekkor $|F_0| = |F_1| = \ldots = |F_i| \le |G|$, győztünk.

Köv: Ha $F \subseteq \mathbb{R}^n$ lin.ftn, akkor $|F| \le n$. Biz: Láttuk, hogy $G = \{\underline{e}_1, \dots, \underline{e}_n\}$ az \mathbb{R}^n generátorrendszere. Az FG-egyenlőtlenség miatt $|F| \le |G| = n$.

Allítás: Tfh $F = \{\underline{f}_1, \dots, \underline{f}_k\} \subseteq \mathbb{R}^n$ lin.ftn. és $\underline{f} \in \langle F \rangle$. Ekkor \underline{f} egyértelműen áll elő F-beli vektorok lin.komb.-jaként. Biz: Mivel $f \in \langle F \rangle$, ezért \underline{f} előáll az F-beliek lin.komb.-jaként. Tfh $\underline{f} = \lambda_1 \underline{f}_1 + \dots + \lambda_k \underline{f}_k = \mu_1 \underline{f}_1 + \dots + \mu_k \underline{f}_k$ két előállítás. Ekkor $\underline{0} = \underline{f} - \underline{f} = (\lambda_1 - \mu_1)\underline{f}_1 + \dots + (\lambda_k - \mu_k)\underline{f}_k$. Mivel F lin.ftn, a JO-on álló lineáris kombináció triviális, azaz $\lambda_i = \mu_i \ \forall i$. Így a két fenti előállítás megegyezik, vagyis f csak egyféleképp áll elő az F-beliek lin.komb-jaként.

- 13. ESÁ hatása a sor- és oszlopvektorokra, oszlopvektorok lin.ftn-ségének eldöntése. Bázis fogalma, altér bázisának előállítás a generátorrendszerből ill. homogén lineáris egyenletendszerrel megadott altér esetén.
 - 1. ESÁ hatása a sor- és oszlopvektorokra, **oszlopvektorok lin.ftn-ségének eldöntése**

Egy $M \in \mathbb{R}^{n \times k}$ mátrixot tekinthetünk n db \mathbb{R}^k -beli sorvektornak és k db \mathbb{R}^n -beli oszlopvektornak is. Most azt vizsgáljuk, hogyan hat egy ESÁ ezen sor- ill. oszlopvektorok rendszerére.

Állítás: Tfh M'-t ESÁ-okkal kaptuk az $M \in \mathbb{R}^{n \times k}$ mátrixból. Ha S ill. S' az M ill. M' sorvektorainak halmaza, akkor $\langle S \rangle = \langle S' \rangle$. Állítás: Tfh az $M \in \mathbb{R}^{n \times k}$ mátrixból M'-t ESÁ-okkal kaptuk és $O = \{\underline{o}_1, \dots \underline{o}_k\}$ ill. $O' = \{\underline{o}_1', \dots \underline{o}_k'\}$ az oszlopvektoraik halmaza. Ekkor O-n és O'-n ugyanazok a lineáris összefüggések teljesülnek: $(\sum_{i=1}^k \lambda_i \underline{o}_i = \sum_{i=1}^k \mu_i \underline{o}_i) \iff (\sum_{i=1}^k \lambda_i \underline{o}_i' = \sum_{i=1}^k \mu_i \underline{o}_i')$. Pólda: Döntsük el hogy lin ftn. rendszert alkatnak a az alábbi M

Példa: Döntsük el, hogy lin.ftn. rendszert alkotnak-e az alábbi *M* mátrix oszlopai. Megoldás: ESÁ-okkal RLA mátrixot képezünk.

Biz: Feltehető, hogy M'-t egyetlen ESÁ-sal kaptuk M-ből. Bármelyik konkrét ESÁ-t is alkalmaztuk, $S' \subseteq \langle S \rangle$, így $\langle S' \rangle \subseteq \langle S \rangle$. Láttuk, hogy bármely ESÁ megfordítása is kivitelezhető ESÁ-okkal, ezért $\langle S \rangle \subseteq \langle S' \rangle$, és a két megfigyelésből $\langle S \rangle = \langle S' \rangle$ adódik.

Biz: Ismét feltehető, hogy M' egyetlen ESÁ-sal keletkezett. Ráadásul elég a ⇒: irányt bizonyítani: a ←: következik abból, hogy minden ESÁ fordítottja megvalósítható legfeljebb három ESÁ-sal. Ezért ha egy lin.összefüggés fennál M'-re akkor az ezt legfeljebb három ESÁ megőrzi, tehát igaz marad M-re is.

Biz: \Rightarrow : A fenti lineáris összefüggés M-re pontosan azt jelenti, hogy a $\sum_{i=1}^k \lambda_i x_i = \sum_{i=1}^k \mu_i x_i$ egyenletnek M minden sora megoldása. Nekünk pedig azt kell igazolni, hogy ugyanezt az egyenletet az ESÁ után kapott M' minden sora is megoldja. Sorcsere esetén pontosan ugyanazokról az egyenlőségekről van szó, skalárral szorzás esetén az egyik egyenletet skalárral kell szorozni, sorösszeadás esetén pedig az új egyenlőség két korábban teljesülő egyenlet összege.

2. Bázis fogalma

Def: A $V \leq \mathbb{R}^n$ altér bázisa a V egy lin.ftn generátorrendszere. **Példa:** Az $\underline{e}_1, \underline{e}_2, \dots, \underline{e}_n$ vektorok az \mathbb{R}^n standard bázisát alkotják. **Kínzó kérdés:** Minden altérnek van bázisa? Ha \mathbb{R}^n egy V altérének van, akkor hogyan lehet előállítani V egy bázisát?

- 1. módszer: Ha $V=\langle G \rangle$, azaz ha ismert a V egy véges G generátorrendszere, akkor G-t addig ritkítjuk, amíg lin.ftn nem lesz. Konkrétan: ha egy $\underline{g} \in G$ generátorelem előáll a $G \setminus \{\underline{g}\}$ elemeinek alkalmas lin. kombinácójaként, akkor $G \setminus \{\underline{g}\}$ is generálja V-t. Ezért \underline{g} -t eldobhatjuk. Ha már nincs ilyen eldobható \underline{g} vektor, akkor G maradéka nem csak generátorrendszer, de lin.ftn is.
- 2. módszer: Felépíthetjük V bázisát a V egy tetsz. F lin.ftn rendszeréből (akár $F=\emptyset$ -ból) kiindulva. Ha $\langle F \rangle = V$, akkor kész vagyunk. Ha nem, akkor tetsz. $\underline{f} \in V \setminus \langle F \rangle$ esetén $F \cup \{\underline{f}\}$ lin.ftn marad. Az FG-egyenlőtlenség miatt F nem tartalmazhat n-nél több elemet, ezért legfeljebb n lépésben megkapjuk V bázisát.

3. Altér bázisának előállítása generátorrendszerből

Példa:

Keressük meg az alábbi vektorok által generált V altér egy bázisát!

$$\underline{\underline{u}} = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \ \underline{\underline{v}} = \begin{pmatrix} 2 \\ 3 \\ -1 \\ -1 \end{pmatrix}, \ \underline{\underline{w}} = \begin{pmatrix} -1 \\ 4 \\ -1 \\ -2 \end{pmatrix}, \ \underline{\underline{x}} = \begin{pmatrix} 5 \\ -9 \\ 2 \\ 5 \end{pmatrix}, \ \underline{\underline{y}} = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 3 \end{pmatrix}$$

Megoldás: Az $(\underline{u}|\underline{v}|\underline{w}|\underline{x}|\underline{y})$ mátrixot ESÁ-okkal RLA-vá alakítjuk. Ehhez szabad (de nem kötelező) Gauss-eliminációt használni.

Példa: Keressük meg az alábbi $V \leq \mathbb{R}^4$ altér egy bázisát!

$$V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} : x_1 + x_2 + x_3 + x_4 = 0, 3x_2 - 2x_4 = 0 \right\}$$

Megoldás: Az altér egy homogén lineáris egyenletrendszer megoldásaiból áll. (Homogén: a jobboldalon 0-k állnak, amiket a kib.egyhómx-ból elhagyunk.) A megoldásokat leíró képletből fogjuk meghatározni V egy bázisát.

A bázis elkészítéséhez a szp-ek olyan lin.ftn értékadásait keressük, amelyek lin.komb-jaként a szp-ek tetsz. értékadása előáll. Ilyen pl., ha minden lehetséges módon egy szp-nek 1, a többinek 0 értéket adunk. Azaz az $x_3=1, x_4=0$ ill. $x_3=0, x_4=1$ értékadásokhoz a

$$\underline{b}_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
, és $\underline{b}_2 = \begin{pmatrix} -\frac{5}{3} \\ \frac{2}{3} \\ 0 \\ 1 \end{pmatrix}$ vektorokból álló bázis tartozik. \square

Példa: Írjuk fel a $V = \langle \underline{u}, \underline{v}, \underline{w}, \underline{z} \rangle$ alteret lin.egyrsz megoldásaiként, ha

$$\underline{u} = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \ \underline{v} = \begin{pmatrix} 2 \\ 3 \\ -1 \\ -1 \end{pmatrix}, \ \underline{w} = \begin{pmatrix} 5 \\ -9 \\ 2 \\ 5 \end{pmatrix}, \ \underline{z} = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 3 \end{pmatrix}$$

Megoldás: Az (<u>u|v|w|z|x</u>) mátrixot RLA-ra (LA-ra) hozzuk.

A kiindulási mátrix 5-dik oszlopa pontosan akkor van \vec{V} -ben, ha az első 4 oszlop generálja. Ez azzal ekvivalens, hogy az RLA mátrix első 4 oszlopa generálja az 5-diket. Mivel $\underline{e}_1, \underline{e}_2, \underline{e}_3$ a generáló oszlopok között vannak, ezért csupán $3x_1 - x_2 + 13x_3 - 10x_4 = 0$ a feltétel.

4. homogén lineáris egyenletrendszerrel megadott altér esetén

- 14. Generátorrendszerből homogén lin.egyenletrendszer előállítása. Altér dimenziójának jóldefináltsága, Rⁿ standard bázisa, bázishoz tartozó koordinátavektor kiszámítása.
 - 1. Generátorrendszerből homogén lin, egyenletrendszer előállítása
 - 2. Altér dimenziójának jóldefináltsága

Tétel: Ha B_1 és B_2 a $V \leq \mathbb{R}^n$ bázisai, akkor $|B_1| = |B_2|$. **Biz:** Mivel B_1 lin.ftn és B_2 generátorrendszer V-ben, ezért az FG-egyenlőtlenség miatt $|B_1| \leq |B_2|$. Az is igaz, hogy B_2 lin.ftn és B_1 generátorrendszer V-ben, ezért az FG-egyenlőtlenség miatt $|B_2| \leq |B_1|$ is teljesül. A két eredmény összevetéséből $|B_1| = |B_2|$ adódik.

Def: A $V \leq \mathbb{R}^n$ altér dimenziója dim V = k, ha V-nek van k vektorból álló bázisa.

Megj: A fenti tétel szerint az altér dimenziója egyértelmű.

Példa: Az \mathbb{R}^n tér dimenziója n.

Állítás: Ha $U \le V \le \mathbb{R}^n$, akkor dim $U \le$ dim V.

Biz: Legyen B az U bázisa. Ekkor $B \subseteq V$ lin.ftn, ezért a korábban látott 2. módszerrel B-t ki lehet egészíteni V egy B' bázisává, így dim $U = |B| \le |B'| = \dim V$.

Állítás: Ha $V \leq \mathbb{R}^n$ és V_1, V_2 a V alterei, akkor $\dim(V_1 \cap V_2) + \dim V \geq \dim V_1 + \dim V_2$. Biz: Egészítsük ki az $U \cap V$ egy B bázisát a V_1

Biz: Egészítsük ki az $U \cap V$ egy B bázisát a V_1 egy $B \cup B_1$ ill. a V_2 egy $B \cup B_2$ bázisává. Igazoljuk, hogy $B \cup B_1 \cup B_2$ lin.ftn. Tfh $\sum_{\underline{b} \in B} \lambda_{\underline{b}\underline{b}} + \sum_{\underline{b}_1 \in B_1} \lambda_{\underline{b}_1} \underline{b}_1 + \sum_{\underline{b}_2 \in B_2} \lambda_{\underline{b}_2} \underline{b}_2 = \underline{0}$. Ezt átrendezve: $V_1 \ni \underline{x} = \sum_{\underline{b} \in B} \lambda_{\underline{b}} \underline{b} + \sum_{\underline{b}_1 \in B_1} \lambda_{\underline{b}_1} \underline{b}_1 = -\sum_{\underline{b}_2 \in B_2} \lambda_{\underline{b}_2} \underline{b}_2 \in V_2$ adódik, ezért $\underline{x} \in V_1 \cap V_2$. Ekkor $\underline{x} = \sum_{\underline{b} \in B} \mu_{\underline{b}} \underline{b}$, hisz B a $V_1 \cap V_2$ bázisa. Innen $\sum_{\underline{b} \in B} \mu_{\underline{b}} \underline{b} + \sum_{\underline{b}_2 \in B_2} \lambda_{\underline{b}_2} \underline{b}_2 = \underline{x} - \underline{x} = \underline{0}$. A $B \cup B_2$ lin.ftn-sége miatt $\lambda_{\underline{b}_2} = 0$ $\forall \underline{b}_2 \in B_2$. Hasonlóan $\lambda_{\underline{b}_1} = 0$ $\forall \underline{b}_1 \in B_1$, és $\lambda_{\underline{b}} = 0$ $\forall \underline{b} \in B$, azaz $B \cup B_1 \cup B_2$ lin.ftn. Ebből adódik, hogy dim $(V_1 \cap V_2)$ +dim $V \ge |B| + |B_1| + |B_2| + |B| = \dim V_1 + \dim V_2$. \square

Köv: \mathbb{R}^3 -ban bármely két origón áthaladó sík (más szóval: kétdimenziós altér) tartalmaz közös egyenest.

Megj: \mathbb{R}^4 -ben már található két olyan origón áthaladó sík, amik csak az origóban metszik egymást. Ilyenek pl. $\langle \underline{e}_1, \underline{e}_2 \rangle$ ill. $\langle \underline{e}_3, \underline{e}_4 \rangle$.

A továbbiakban azt szeretnénk indokolni, hogy \mathbb{R}^n tetszőleges k dimenziós altere "lényegében" úgy viselkedik, mint \mathbb{R}^k .

3. Rⁿ standard bázisa

Def: A $V \leq \mathbb{R}^n$ altér bázisa a V egy lin.ftn generátorrendszere. **Példa:** Az $\underline{e}_1, \underline{e}_2, \dots, \underline{e}_n$ vektorok az \mathbb{R}^n standard bázisát alkotják. **Kínzó kérdés:** Minden altérnek van bázisa? Ha \mathbb{R}^n egy V altérének van, akkor hogyan lehet előállítani V egy bázisát?

- 1. módszer: Ha $V = \langle G \rangle$, azaz ha ismert a V egy véges G generátorrendszere, akkor G-t addig ritkítjuk, amíg lin.ftn nem lesz. Konkrétan: ha egy $\underline{g} \in G$ generátorelem előáll a $G \setminus \{\underline{g}\}$ elemeinek alkalmas lin. kombinácójaként, akkor $G \setminus \{\underline{g}\}$ is generálja V-t. Ezért \underline{g} -t eldobhatjuk. Ha már nincs ilyen eldobható \underline{g} vektor, akkor G maradéka nem csak generátorrendszer, de lin.ftn is.
- 2. módszer: Felépíthetjük V bázisát a V egy tetsz. F lin.ftn rendszeréből (akár $F=\emptyset$ -ból) kiindulva. Ha $\langle F \rangle = V$, akkor kész vagyunk. Ha nem, akkor tetsz. $\underline{f} \in V \setminus \langle F \rangle$ esetén $F \cup \{\underline{f}\}$ lin.ftn marad. Az FG-egyenlőtlenség miatt F nem tartalmazhat n-nél több elemet, ezért legfeljebb n lépésben megkapjuk V bázisát.

Bázis előállítása generátorrendszerből

Példa:

Keressük meg az alábbi vektorok által generált V altér egy bázisát!

$$\underline{u} = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \ \underline{v} = \begin{pmatrix} 2 \\ 3 \\ -1 \\ -1 \end{pmatrix}, \ \underline{w} = \begin{pmatrix} -1 \\ 4 \\ -1 \\ -2 \end{pmatrix}, \ \underline{x} = \begin{pmatrix} 5 \\ -9 \\ 2 \\ 5 \end{pmatrix}, \ \underline{y} = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 3 \end{pmatrix}$$

Megoldás: Az (<u>u|v|w|x|y</u>) mátrixot ESÁ-okkal RLA-vá alakítjuk. Ehhez szabad (de nem kötelező) Gauss-eliminációt használni.

4. Bázishoz tartozó koordinátavektor kiszámítása

Legyen B a $V \leq \mathbb{R}^n$ altér bázisa. Mivel B generátorrendszer, minden $\underline{v} \in V$ előáll a B elemeinek lin.komb-jaként, azaz $\underline{v} = \sum_{\underline{b} \in B} \lambda_{\underline{b}} \underline{b}$ alakban. A B bázis lin.ftn-ségéből pedig az következik, hogy tetszőleges $\underline{v} \in V$ lin.komb-ként történő előállítása egyértelmű: ha $\underline{v} = \sum_{\underline{b} \in B} \lambda_{\underline{b}} \underline{b} = \sum_{\underline{b} \in B} \mu_{\underline{b}} \underline{b}$, akkor $\lambda_{\underline{b}} = \mu_{\underline{b}} \ \forall \underline{b} \in B$. Ez a gondolatmenet indokolja az alábbi fogalom jóldefiniáltságát. Def: Ha $B = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_k\}$ a $V \leq \mathbb{R}^n$ altér bázisa és $\underline{v} = \sum_{i=1}^k \lambda_i \underline{b}_i$, akkor a \underline{v} vektor B bázis szerinti koordinátavektora $[\underline{v}]_B = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{pmatrix}$

Az alábbi összefüggések azonnal adódnak a definícióból. Állítás: Ha $B = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_k\}$ a $V \leq \mathbb{R}^n$ altér bázisa és $\underline{u}, \underline{v} \in V$ ill. $\lambda \in \mathbb{R}$, akkor (1) $[\underline{u} + \underline{v}]_B = [\underline{u}]_B + [\underline{v}]_B$ ill. (2) $[\lambda \underline{u}]_B = \lambda [\underline{u}]_B$. Biz: (1) Tfh $[\underline{u}]_B = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{pmatrix}$ és $[\underline{v}]_B = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_k \end{pmatrix}$. Ekkor $\underline{u} = \sum_{i=1}^k \lambda_i \underline{b}_i$ és $\underline{v} = \sum_{i=1}^k \lambda_i \underline{b}_i$ tehát $\underline{u} + \underline{v} = \sum_{i=1}^k \lambda_i \underline{b}_i + \sum_{i=1}^k \mu_i \underline{b}_i = \sum_{i=1}^k (\lambda_i + \mu_i) \underline{b}_i$, ezért $[\underline{u} + \underline{v}]_B = \begin{pmatrix} \lambda_1 + \mu_1 \\ \vdots \\ \lambda_k + \mu_k \end{pmatrix} = [\underline{u}]_B + [\underline{v}]_B$.

Biz: (2) Tfh
$$[\underline{u}]_B = \begin{pmatrix} \vdots \\ \lambda_k \end{pmatrix}$$
. Ekkor
$$\lambda \underline{u} = \lambda \cdot \sum_{i=1}^k \lambda_i \underline{b}_i = \sum_{i=1}^k \lambda \lambda_i \underline{b}_i \Rightarrow [\lambda \underline{u}]_B = \begin{pmatrix} \lambda \lambda_1 \\ \vdots \\ \lambda \lambda_k \end{pmatrix} = \lambda [\underline{u}]_B \quad \Box$$

Megj: A fenti állítás azt mutatja meg, hogy \mathbb{R}^n bármely V altere lényegében ugyanúgy viselkedik, mint az \mathbb{R}^k tér, ahol $k = \dim V$.

- n elem permutációja, a permutáció inverziószáma. Bástyaelhelyezés, inverzióban álló bástyapárok, determináns, felső háromszögmátrix determinánsa.
 - 1. N elem permutációja

Az $\underline{e}_1,\underline{e}_2,\ldots,\underline{e}_n$ tetsz. sorrendje esetén a vektorok úgy oszthatók csoportokba, hogy a csoportokon belül ciklikus helycsere történik.

Példa: 1 2 3 4 5 6 7 8 Orbitok: (<u>e</u> ₁ , <u>e</u> ₅ , <u>e</u> ₃).													
	1	2	3	4	5	6	7	8	Orbitok: $(\underline{e}_1, \underline{e}_5, \underline{e}_3)$,				
	<u>e</u> ₃	<u>e</u> 8	<u>e</u> 5	<u>e</u> ₇	<u>e</u> 1	<u>e</u> 6	<u>e</u> 2	<u>e</u> ₄	$(\underline{e}_8,\underline{e}_2,\underline{e}_7,\underline{e}_4), (\underline{e}_6)$				

Megf: Ez a csoportokra osztás egyértelmű.

Def: A fenti csoportok a sorrendhez tartozó permutáció orbitjai. **Megf:** Az $\underline{e}_1, \underline{e}_2, \ldots, \underline{e}_n$ vektorok tetszőleges sorrendjén egy cserét elvégezve az orbitok száma pontosan 1-gyel változik.

Ugyanez igaz a páros méretű orbitok számára is.

Köv: Az $\underline{e}_1, \underline{e}_2, \dots, \underline{e}_n$ vektorok tetsz. sorrendjére ekvivalensek:

- (1) a sorrend ps sok cserével kapható $(\underline{e}_1, \underline{e}_2, \dots, \underline{e}_n)$ -ből,
- (2) a sorrend orbitjai számának paritása megegyezik n paritásával,
- (3) a sorrend páros méretű orbitjainak száma páros.

Bármelyik teljesül a fentiek közül, akkor a megfelelő hiperkocka térfogata pozitív.

Biz: Az $\underline{e}_1, \underline{e}_2, \dots, \underline{e}_n$ sorrendnek n orbitja van, és ezekből a páros méretűek száma 0.

Megj: Hagyományosan egy harmadik módszert használunk az előjel meghatározására.

2. A permutáció inverziószáma

Def: Az $f: A \rightarrow B$ függvény bijekció, ha minden B-beli elem pontosan egy A-beli képeként áll elő.

Def: A $\sigma:\{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$ bijekciót n elem permutációjának nevezzük. Az ilyen permutációk halmaza S_n . Megf: Az $\underline{e}_1,\underline{e}_2,\ldots,\underline{e}_n$ vektorok tetsz. sorrendjéhez tartozik egy egyértelmű σ permutáció, amelyre $\sigma(i)=j$, ha e_i j-dik a sorban.

Def: A $\sigma \in S_n$ permutációban az $\{i,j\}$ pár inverzióban áll, ha i és j nagyságviszonya fordított $\sigma(i)$ és $\sigma(j)$ nagyságviszonyához képest. A $\sigma \in S_n$ permutáció $I(\sigma)$ -val jelölt inverziószáma a σ szerint inverzióban álló párok száma.

Megf: (1) Szomsz. vektorok cseréjekor $I(\sigma)$ 1-gyel változik. (2) Két tetsz. vektor cseréjekor $I(\sigma)$ mindig páratlannal változik. Biz: (1) A két felcserélt vektor viszonya megfordul, minden más pár ugyanolyan marad, mint korábban volt.

Biz: (2) Ha a felcserélt vektorok között k másik vektor van, akkor ugyanez a csere megkapható 2k + 1 szomszédos vektorpár cseréjének egymásutánjaként. Az inverziószám így (2k + 1)-szer változik 1-gyel, ezért összességében páratlannal változik.

Köv: Az egységvektorok egy sorrendjéhez tartozó σ permutáció inverziószáma pontosan akkor páros, ha ez a sorrend páros sok vektorcserével kapható az $(\underline{e}_1,\ldots,\underline{e}_n)$ sorrendből. Köv: A σ permutációhoz tartozó hiperkocka térfogatának előjele $(-1)^{I(\sigma)}$. Hogyan határozható meg gyorsan ez az előjel?

3. Bástyaelhelyezés

Az $(\underline{e}_1,\ldots,\underline{e}_n)$ tetsz. sorrendjéhez tekintsük azt az $n\times n$ méretű mátrixot, aminek az oszlopai az egységvektorok az adott sorrendben. A mátrixbeli 1-esek bástyaelhelyezést alkotnak: minden sorban és minden oszlopban pontosan egy db 1-es áll. Legyen σ a sorrendhez tartozó permutáció. Mit jelent, hogy az $\{i,j\}$ pár σ szerint inverzióban áll? Azt, hogy e_i és e_j közül a bal oldaliban az 1-es lejjebb van. Az inverzióban álló vektorpárok tehát pontosan azok, amelyekben az 1-esek ÉK-DNy pozícióban állnak egymáshoz képest. Köv: Az $(\underline{e}_1,\ldots,\underline{e}_n)$ egy sorrendjéhez tartozó σ permutáció inverziószáma megegyezik megfelelő bástyaelhelyezésben ÉK-DNy pozícióban álló bástyapárok számaval.

4 m x 4 m x 4 m x 2 x 4 m x 4 m x

él	d	a					
						0	
			0				
0							
					0		
	0						
				0			
							0
		0					

4. Inverzióban álló bástyapárok

5. Determináns

Def: Az $A \in \mathbb{R}^{n \times n}$ négyzetes mátrix determinánsa det $A = |A| = \sum_{\sigma \in S_n} (-1)^{I(\sigma)} \prod_{i=1}^n a_{i,\sigma(i)}$, ahol $a_{i,j}$ az i-dik sornak j-dik eleme. A $(-1)^{I(\sigma)} \prod_{i=1}^n a_{i,\sigma(i)}$ szorzat a determináns kifejtési tagja. Megj: (1) Az A mátrix determinánsa tehát az A bástyaelhelyezéseihez tartozó szorzatok előjeles összege, ahol az előjel akkor pozitív, ha az ÉK-DNy pozícióban álló bástyapárok száma páros. (2) Csak négyzetes mátrixnak van determinánsa, másfélének nincs. (3) 2×2 -es és 3×3 -as mátrixok esetén a determináns az oszlopok által feszített paralelotop előjeles területe ill. térfogata. Def: Az $A \in \mathbb{R}^{n \times k}$ mátrix transzponáltja az az $A^{\top} \in \mathbb{R}^{k \times n}$ mátrix, aminek az i-dik sor j-dik eleme az A mátrix j-dik sorának i-dik eleme $\forall i, j$.

Tétel: Ha A négyzetes mátrix, akkor $|A| = |A^{\top}|$.

Biz: Az A mátrix bármely bástyaelhelyezését meghatározó elemek A^{\top} -ban is bástyaelhelyezést alkotnak. Két bástya pontosan akkor alkot ÉK-DNy párt A-ban, ha A^{\top} -ban is ÉK-DNy-i párt alkotnak. Ezért $\det(A)$ -ban ugyanazokat a kifejtési tagokat (ugyazzal az előjellel) kell összeadni, mint $\det(A^{\top})$ -ban.

Köv: Ha egy tulajdonság általában igaz a determináns oszlopaira, akkor a megfelelő tulajdonság a determináns soraira is teljesül. Megj: Egy $n \times n$ determináns kiszámításához n! kifejtési tagot kell összegezni. Ez rengeteg munka. Gyorsabb módszer adódik, ha megfigyeljük, hogy az ESÁ-ok hogyan változtatják a determinánst. Allítás: Ha $A = (\underline{u}_1, \underline{u}_2, \dots, \underline{u}_n) \in \mathbb{R}^{n \times n}$ és $\underline{v} \in \mathbb{R}^n$, akkor (1) $|\underline{u}_1, \dots, \underline{u}_i + \underline{v}, \dots, \underline{u}_n| = |\underline{u}_1, \dots, \underline{u}_i, \dots, \underline{u}_n| + |\underline{u}_1, \dots, \underline{v}, \dots, \underline{u}_n|$, Biz: A bal oldali determináns minden kifejtési tagjának az i-dik oszlopbeli tényezője a \underline{u}_i és \underline{v} egy koordinátájának összege. Ha felbontjuk a zárójelet, a kifejtési tagból két szorzat lesz. Ezek a szorzatok pedig épp a jobb oldali determinánsok kifejtési tagjái.

```
Allítás: Ha A = (\underline{u}_1, \underline{u}_2, \dots, \underline{u}_n) \in \mathbb{R}^{n \times n} és \underline{v} \in \mathbb{R}^n, akkor (1) |\underline{u}_1, \dots, \underline{u}_i + \underline{v}, \dots, \underline{u}_n| = |\underline{u}_1, \dots, \underline{u}_i, \dots, \underline{u}_n| + |\underline{u}_1, \dots, \underline{v}, \dots, \underline{u}_n|, (2) |\underline{u}_1, \dots, \lambda \underline{u}_i, \dots, \underline{u}_n| = \lambda |\underline{u}_1, \dots, \underline{u}_i, \dots, \underline{u}_n| \ \forall \lambda \in \mathbb{R},
```

- (3) $\underline{u}_i = \underline{0} \Rightarrow |A| = 0$,
- (4) $|\underline{u}_1, \ldots, \underline{u}_i, \ldots, \underline{u}_i, \ldots, \underline{u}_n| = -|\underline{u}_1, \ldots, \underline{u}_i, \ldots, \underline{u}_i, \ldots, \underline{u}_n|$.
- (5) Ha A-nak van két egyforma oszlopa, akkor |A| = 0.

Köv: ESÁ hatása négyzetes A mátrix determinánsára:

- Sort λ-val szorozva a determináns λ-szorosra változik.
- (2) Sorcsere hatására a determináns ellentettjére változik.
- (3) A j-dik sort kicserélve az i-dik és j-dik sor összegére a determináns nem változik.

Def: Az A négyzetes mátrix főátlója az A mindazon elemei, amelyek sor- és oszlopindexe megegyezik.

A determináns kiszámolása ESÁ-okkal

$$\begin{vmatrix} \textbf{P\'elda:} \\ 3 & 0 & 1 & 11 \\ 2 & 2 & 1 & 2 \\ 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & 7 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 0 & 9 \\ 2 & 2 & 1 & 2 \\ 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & 7 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 0 & 9 \\ 2 & 2 & 1 & 2 \\ 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & 7 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 0 & 9 \\ 0 & 6 & 1 & -16 \\ 0 & 2 & 1 & -6 \\ 0 & 1 & 1 & 7 \\ 0 & 2 & 1 & -6 \\ 0 & 6 & 1 & -16 \end{vmatrix} = - \begin{vmatrix} 1 & -2 & 0 & 9 \\ 0 & 1 & 1 & 7 \\ 0 & 0 & -1 & -20 \\ 0 & 0 & -5 & -58 \end{vmatrix} =$$

$$\begin{vmatrix} 1 & -2 & 0 & 9 \\ 0 & 1 & 1 & 7 \\ 0 & 0 & 1 & 20 \\ 0 & 0 & 0 & 42 \end{vmatrix} = 1 \cdot 1 \cdot 1 \cdot 42 = 42$$

Megj: A determináns kiszámításához képezhetünk LA mátrixot. Ehhez nem kötelező Gauss-eliminációt használni, bármilyen ESÁ-sal dolgozhatunk a cél érdekében. Nem muszáj v1-ket sem gyártani: elég a felső háromszögmátrixig (vagy csupa0 sorig) eljutni. Sőt: mindent, amit a sorokkal megtehetünk, azt hasonló módon az oszlopokkal is elvégezhetjük. Ez néha célszerűbb lehet, mint kizárólag csak ESÁ-ok alkalmazása.

6. Felső háromszögmátrix determinánsa

Def: Az A négyzetes mátrix főátlója az A mindazon elemei, amelyek sor- és oszlopindexe megegyezik. Ha A főátlója alatt csak 0-k állnak, akkor A felső háromszögmátrix.

0 2 2 2 2 2 2 0 0 7 2 2 2 2 0 0 0 7 2 7 7 0 0 0 0 7 7 7 0 0 0 0 0 7 7

イロトイクトイミトイモト を めなの

Megf: (1) Minden LA négyzetes mátrix felső háromszögmátrix. Biz: Ha egy sor v1-e a főátlótól balra van, akkor a felette levő soré is. Az első soré nem ilyen, ezért minden v1 a főátlón vagy attól jobbra áll, így a főátló alatt minden elem 0.

16. Mátrix transzponáltja, transzponált determinánsa, ESÁ hatása a determinánsra, előjeles aldetermináns, kifejtési tétel.

1. Mátrix transzponáltja

Def: Az $A \in \mathbb{R}^{n \times n}$ négyzetes mátrix determinánsa det A = |A| = $=\sum_{\sigma\in S_n}(-1)^{I(\sigma)}\prod_{i=1}^n a_{i,\sigma(i)}$, ahol $a_{i,j}$ az i-dik sornak j-dik eleme. A $(-1)^{I(\sigma)} \prod_{i=1}^{n} a_{i,\sigma(i)}$ szorzat a determináns kifejtési tagja. Megj: (1) Az A mátrix determinánsa tehát az A bástyaelhelyezéseihez tartozó szorzatok előjeles összege, ahol az előjel akkor pozitív, ha az ÉK-DNy pozícióban álló bástyapárok száma páros. (2) Csak négyzetes mátrixnak van determinánsa, másfélének nincs. (3) 2 × 2-es és 3 × 3-as mátrixok esetén a determináns az oszlopok által feszített paralelotop előjeles területe ill. térfogata. **Def:** Az $A \in \mathbb{R}^{n \times k}$ mátrix transzponáltja az az $A^{\top} \in \mathbb{R}^{k \times n}$ mátrix, aminek az i-dik sor j-dik eleme az A mátrix j-dik sorának i-dik eleme $\forall i, j$.

Példa:
$$\begin{pmatrix} 42 & 4^2 & 4,2 \\ 42^{42} & 42! & \sqrt[42]{42} \end{pmatrix}^{\top} = \begin{pmatrix} 42 & 42^{42} \\ 4^2 & 42! \\ 4,2 & \sqrt[42]{42} \end{pmatrix}$$

2. transzponált determinánsa

Tétel: Ha A négyzetes mátrix, akkor $|A| = |A^{\top}|$. Biz: Az A mátrix bármely bástyaelhelyezését meghatározó elemek A[⊤]-ban is bástyaelhelyezést alkotnak. Két bástya pontosan akkor alkot ÉK-DNy párt A-ban, ha A^{T} -ban is ÉK-DNy-i párt alkotnak. Ezért det(A)-ban ugyanazokat a kifejtési tagokat (ugyazzal az előjellel) kell összeadni, mint det (A^{\top}) -ban.

3. ESÁ hatása a determinánsra

A determináns további fontos tulajdonságai

Állítás: Ha $A = (\underline{u}_1, \underline{u}_2, \dots, \underline{u}_n) \in \mathbb{R}^{n \times n}$ és $\underline{v} \in \mathbb{R}^n$, akkor (1)

 $|\underline{u}_1,\ldots,\underline{u}_i+\underline{v},\ldots,\underline{u}_n|=|\underline{u}_1,\ldots,\underline{u}_i,\ldots,\underline{u}_n|+|\underline{u}_1,\ldots,\underline{v},\ldots,\underline{u}_n|,$

- (2) $|\underline{u}_1, \ldots, \lambda \underline{u}_i, \ldots, \underline{u}_n| = \lambda |\underline{u}_1, \ldots, \underline{u}_i, \ldots, \underline{u}_n| \ \forall \lambda \in \mathbb{R},$
- (3) $\underline{u}_i = \underline{0} \Rightarrow |A| = 0$,
- (4) $|\underline{u}_1, \ldots, \underline{u}_i, \ldots, \underline{u}_i, \ldots, \underline{u}_n| = -|\underline{u}_1, \ldots, \underline{u}_i, \ldots, \underline{u}_i, \ldots, \underline{u}_n|$.
- (5) Ha A-nak van két egyforma oszlopa, akkor |A| = 0.

Köv: ESÁ hatása négyzetes A mátrix determinánsára:

- (1) Sort λ -val szorozva a determináns λ -szorosra változik.
- (2) Sorcsere hatására a determináns ellentettjére változik.
- (3) A *j*-dik sort kicserélve az *i*-dik és *j*-dik sor összegére a determináns nem változik.

Def: Az A négyzetes mátrix főátlója az A mindazon elemei, amelyek sor- és oszlopindexe megegyezik. Ha A főátlója alatt csak 0-k állnak, akkor A felső háromszögmátrix.

Megf: (1) Minden LA négyzetes mátrix felső háromszögmátrix.

(2) F.háromszögmátrix determinánsa a főátlóbeli elemei szorzata.

Biz: Minden kif.tag tartalmaz 0 tényezőt, kivéve a főátlóbeliek szorzata, aminek az előjele pozitív.

4. előjeles aldetermináns

Sakktábla-szabály

$$A = \begin{pmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{pmatrix}$$

minden mátrix bal felső sarka pozítív ,és felváltva változik az előjel. Def: Az A mátrix i-dik sorának j-dik eleméhez tartozó $A_{i,j}$ előjeles

aldeterminánsa az *i*-dik sorának *j*-dik elemenez tartozo $A_{i,j}$ eloje aldeterminánsa az *i*-dik sor és *j*-dik oszlop elhagyásával kapott mátrix determinánsának $(-1)^{i+j}$ -szerese.

A fenti megfigyeléssel másképp is kiszámítható a deteremináns.

5. kifejtési tétel

Megf: Tfh \underline{e}_i az $A \in \mathbb{R}^{n \times n}$ mátrix j-dik oszlopa, továbbá, hogy A első i-1 sora az első j-1 ill. utolsó n-j oszloppal az A_1 ill. A_2 , az utolsó n-i sor az első j-1 ill. utolsó n-j oszloppal pedig az A_3 ill. A_4 mátrixokat alkotja. Ekkor j-1 sor- és i-1 oszlopcserével adódik:

$$\begin{vmatrix} 0 \\ A_1 : A_2 \\ 0 \\ ??? \frac{1}{0}???? \\ A_3 : A_4 \\ 0 \end{vmatrix} = (-1)^{j-1} \begin{vmatrix} 0 \\ \vdots A_1 A_2 \\ 0 \\ 1????? \\ 0 \\ \vdots A_3 A_4 \end{vmatrix} = (-1)^{j-1+i-1} \begin{vmatrix} 1 ?????? \\ 0 \\ \vdots A_1 A_2 \\ \vdots A_3 A_4 \end{vmatrix} = (-1)^{i+j} \begin{vmatrix} A_1 A_2 \\ A_3 A_4 \end{vmatrix} = A_{i,j}$$

Def: Az A mátrix i-dik sorának j-dik eleméhez tartozó $A_{i,j}$ előjeles aldeterminánsa az i-dik sor és j-dik oszlop elhagyásával kapott mátrix determinánsának $(-1)^{i+j}$ -szerese.

Determinánsok kifejtési tétele (*j*-dik oszlop szerinti kifejtés): $|A| = \sum_{i=1}^{n} a_{i,j} A_{i,j}$

Értelemszerűen definiálható a sor szerinti kifejtés is, és a transzponáltról tanultak miatt a deteremináns így is kiszámítható.

Példa:

$$\begin{vmatrix} 3 & 0 & 1 & 11 \\ 2 & 2 & 1 & 2 \\ 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & 7 \end{vmatrix} = -0 \begin{vmatrix} 2 & 1 & 2 \\ 1 & 1 & 3 \\ 0 & 1 & 7 \end{vmatrix} + 2 \begin{vmatrix} 3 & 1 & 11 \\ 1 & 1 & 3 \\ 0 & 1 & 7 \end{vmatrix} - 0 \begin{vmatrix} 3 & 1 & 11 \\ 2 & 1 & 2 \\ 0 & 1 & 7 \end{vmatrix} + 1 \begin{vmatrix} 3 & 1 & 11 \\ 2 & 1 & 2 \\ 1 & 1 & 3 \end{vmatrix} = 2 \begin{vmatrix} 3 & 1 & 1 \\ 1 & 1 & 3 \\ 0 & 1 & 7 \end{vmatrix} + 2 \cdot 7 \begin{vmatrix} 3 & 1 \\ 1 & 1 \end{vmatrix} - \begin{vmatrix} 2 & 2 \\ 1 & 3 \end{vmatrix} + \begin{vmatrix} 3 & 11 \\ 1 & 3 \end{vmatrix} - \begin{vmatrix} 3 & 11 \\ 2 & 2 \end{vmatrix} =$$

$$= -2(9 - 11) + 14(3 - 1) - (6 - 2) + (9 - 11) - (6 - 22) = 4 + 28 - 4 - 2 + 16 = 42$$

17. Vektorok skaláris szorzásának tulajdonságai. Mátrixok összeadása és szorzásai, e műveletek tulajdonságai. A szorzatmátrix sorainak és oszlopainak különös tulajdonsága, ESÁ és mátrixszorzás kapcsolata.

1. Vektorok skaláris szorzásának tulajdonságai

Vektorokon értelmeztük az összeadást és a skalárral szorzást. Az oszlopokat egymás alá írva bármely $n \times k$ méretű mátrixot értelmezhetünk $n \cdot k$ magasságú oszlopvektorként is. Ezzel értelmezni tudjuk az **azonos méretű** mátrixokon az összeadást és a skalárral szorzást.

$$\begin{array}{l} \textbf{P\'elda:} \; \left(\begin{array}{ccc} 1 & 1 & 2 \\ 3 & 0 & 7 \end{array} \right) + \left(\begin{array}{ccc} 2 & 0 & 5 \\ 3 & 5 & 1 \end{array} \right) = \left(\begin{array}{ccc} 3 & 1 & 7 \\ 6 & 5 & 8 \end{array} \right) \\ 7 \cdot \left(\begin{array}{ccc} 6 & 0 & 6 \\ 1 & 6006 & 11 \end{array} \right) = \left(\begin{array}{ccc} 42 & 0 & 42 \\ 7 & 4242 & 77 \end{array} \right) \\ \left(\begin{array}{ccc} 1 & 1 & 2 \\ 3 & 0 & 7 \end{array} \right) + \left(\begin{array}{ccc} 2 & 5 \\ 0 & 7 \\ 1 & 3 \end{array} \right) \; \text{nem \'ertelmes}.$$

Vektorokon értelmeztük az összeadást és a skalárral szorzást. Az oszlopokat egymás alá írva bármely $n \times k$ méretű mátrixot értelmezhetünk $n \cdot k$ magasságú oszlopvektorként is. Ezzel értelmezni tudjuk az **azonos méretű** mátrixokon az összeadást és a skalárral szorzást.

Köv: Ha
$$A, B, C \in \mathbb{R}^{n \times k}$$
 és $\lambda, \kappa \in \mathbb{R}$, akkor (1) $A + B = B + A$, (2) $(A + B) + C = A + (B + C)$, (3) $\lambda(A + B) = \lambda A + \lambda B$, (4) $(\lambda + \kappa)A = \lambda A + \kappa A$, (5) $\lambda(\kappa A) = (\lambda \kappa)A$, továbbá (6) $(A + B)^{\top} = A^{\top} + B^{\top}$, (7) $\lambda \cdot A^{\top} = (\lambda A)^{\top}$.

Vektorok egymással történő összeszorzását nem értelmeztük eddig. Most fogjuk, de bizonyos korlátokkal. Ehhez először azonos méretű vektorokat tanulunk meg összeszorozni.

2. Mátrixok összeadása és szorzása

Def: Az
$$\underline{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$
, $\underline{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$ vektorok skaláris szorzata $\underline{u} \cdot \underline{v} = \sum_{i=1}^n u_i v_i = u_1 v_1 + \dots + u_n v_n$. Megf: $\forall \underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^n$, $\forall \lambda \in \mathbb{R}$ esetén (1) $\underline{u} \cdot \underline{v} = \underline{v} \cdot \underline{u}$, (2) $\underline{u} \cdot (\underline{v} + \underline{w}) = \underline{u} \cdot \underline{v} + \underline{u} \cdot \underline{w}$ ill. (3) $(\lambda \underline{u}) \cdot \underline{v} = \lambda (\underline{u} \cdot \underline{v})$. Megj: (1) Világos, hogy ha $\underline{u} = \underline{0}$ vagy $\underline{v} = \underline{0}$, akkor $\underline{u} \cdot \underline{v} = 0$, ám a fordított következtetés nem igaz, pl $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0$. (2) A skaláris szorzás segítségével értelmezhető a vektorhossz és a merőlegesség (akár magasabb dimenzióban is). Megf: A $\underline{v} = \begin{pmatrix} a \\ b \end{pmatrix}$ vektor hossza az a, b, c oldalakkal rendelkező téglatest testátlójának hossza, ami a Pitagorasz-tétel alapján $\|\underline{v}\| = \sqrt{a^2 + b^2 + c^2}$. Ugyanez, másképp felírva: $\|\underline{v}\|^2 = \underline{v} \cdot \underline{v}$. Megj: Az \underline{u} és \underline{v} vektorok merőlegessége azt jelenti, hogy $\|\underline{u}\|^2 + \|\underline{v}\|^2 = \|\underline{u} + \underline{v}\|^2 = (\underline{u} + \underline{v}) \cdot (\underline{u} + \underline{v}) = \underline{u} \cdot \underline{u} + \underline{v} \cdot \underline{v} + 2\underline{u} \cdot \underline{v} = \|\underline{u}\|^2 + \|\underline{v}\|^2 + 2\underline{u} \cdot \underline{v}$, innen $\underline{u} \cdot \underline{v} = 0$ adódik. Tehát $\underline{u} \cdot \underline{v} = 0 \iff \underline{u} \perp \underline{v}$.

3. e műveletek tulajdonságai

Az \mathbb{R}^n -beli (oszlop)vektorok $n \times 1$ méretű mátrixnak is tekinthetők. Két ilyen vektort (n > 1 esetén) nem lehet összeszorozni, de ha az egyiket transzponáljuk, akkor már igen: $\underline{u},\underline{v} \in \mathbb{R}^n$ esetén $\underline{u}^\top \cdot \underline{v} := \underline{u} \cdot \underline{v}$, vagyis egy n dimenziós sor- és oszlopvektor szorzata egy 1×1 méretű mátrix, ami a két vektor skaláris szorzatát tartalmazza.

Def: Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix **sor**vektorai $\underline{a}_1, \dots \underline{a}_n$ és a $B \in \mathbb{R}^{k \times \ell}$ mátrix **oszlop**vektorai $\underline{b}^1, \dots \underline{b}^\ell$. Ekkor az $A \cdot B \in \mathbb{R}^{n \times \ell}$ szorzatmátrix *i*-dik sorának *j*-dik eleme az $\underline{a}_i \cdot \underline{b}^j$ skaláris szorzat.

Def: Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix **sor**vektorai $\underline{a}_1, \dots \underline{a}_n$ és a $B \in \mathbb{R}^{k \times \ell}$ mátrix **oszlop**vektorai $\underline{b}^1, \dots \underline{b}^\ell$. Ekkor az $A \cdot B \in \mathbb{R}^{n \times \ell}$ szorzatmátrix *i*-dik sorának *j*-dik eleme az $\underline{a}_i \cdot \underline{b}^j$ skaláris szorzat.

Megf: Ha a képletek bal oldala értelmes, akkor igazak az alábbi azonosságok. (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$

Biz: A skaláris szorzásról tanult azonosság szerint $\lambda(\underline{u} \cdot \underline{v}) = (\lambda \underline{u}) \cdot \underline{v} = \underline{u} \cdot (\lambda \underline{v})$. Ezért mindhárom szorzatban az *i*-dik sor *j*-dik eleme az *A i*-dik sora és *B j*-dik oszlopa skaláris szorzatának a λ -szorosa ($\forall i, j$ esetén).

4. A szorzatmátrixok sorainak és oszlopainak különös tulajdonsága

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^{\top} \cdot A$ pedig az A mátrix i-dik sora.
- (2) $A \cdot I_k = I_n \cdot A = A$
- (3) Ha $\underline{u} \in \mathbb{R}^k$ és $\underline{v} \in \mathbb{R}^n$, akkor $A \cdot \underline{u}$ az A oszlopainak $\underline{v}^\top \cdot A$ pedig az A sorainak lin.komb-ja.

Köv: Tfh A oszlopai $\underline{a}^1, \dots, \underline{a}^k$ és B sorai $\underline{b}_1, \dots, \underline{b}_k$. Ekkor

- (1) az AB szorzat j-dik oszlopa az $\underline{a}^1, \dots, \underline{a}^k$ oszlopok lineáris kombinációja, az együtthatókat pedig a \underline{b}^j oszlop tartamazza.
- (2) Hasonlóan, az i-dik sor a <u>b</u>₁,..., <u>b</u>_k sorok lineáris kombinációja, mégpedig az <u>a</u>; sorban szereplő együtthatókkal.
- (3) Ha a C mátrix minden oszlopa az A oszlopainak lin.komb-ja, akkor C előáll AB alakban. Ha a C mátrix sorai az A sorainak lin.komb-i, akkor C előáll C = BA alakban.

Köv: Ha A' ESÁ-okkal kapható A-ból, akkor A' = BA alakú.

5. ESÁ és mátrixszorzat kapcsolata.

Megf: Ha a képletek bal oldala értelmes, akkor igazak az alábbi azonosságok. (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$

- (2) A(B+C) = AB + AC ill. (A+B)C = AC + BC.
- $(3) (AB)^{T} = B^{T}A^{T}.$

Megj: Ha AB és BA is értelmes, akkor $A \in \mathbb{R}^{n \times k}$ és $B \in \mathbb{R}^{k \times n}$. Ekkor $AB \in \mathbb{R}^{n \times n}$ és $BA \in \mathbb{R}^{k \times k}$. Azonban még k = n esetén sem igaz általában, hogy AB = BA. A mátrixszorzás nem kommutatív.

(3) $(AB)^{\top} = B^{\top}A^{\top}$.

Biz: $(AB)^T$ j-dik sorának i-dik eleme az A i-dik sorának és B j-dik oszlopának a skaláris szorzata, ami ugyanaz, mint B^T j-dik sorának és A^T i-dik oszlopának a skaláris szorzata $(\forall i, j \text{ esetén})$.

(2) A(B+C) = AB + AC ill. (A+B)C = AC + BC.

Biz: Tudjuk, hogy $\underline{u} \cdot (\underline{v} + \underline{w}) = \underline{u} \cdot \underline{v} + \underline{u} \cdot \underline{w}$. Ezért A(B+C) ill. AB + AC *i*-dik sorának *j*-dik eleme az A *i*-dik sorának és B és C *j*-dik oszlopai összegének skaláris szorzata ($\forall i, j$ esetén). A másik disztributivitás a skaláris szorzás ($\underline{u} + \underline{v}$) · $\underline{w} = \underline{u} \cdot \underline{w} + \underline{v} \cdot \underline{w}$ alakú, másik disztributív azonosságából következik.

1. Lineáris le kepézések és <u>mátrixszorzások kapcsolata</u>

Megf: Ha $A \in \mathbb{R}^{n \times k}$, akkor $\underline{v} \mapsto A\underline{v}$ olyan $\mathbb{R}^k \to \mathbb{R}^n$ leképezés, amire $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $A(\lambda \underline{v}) = \lambda \cdot A\underline{v}$ ill. (2) $A(\underline{u} + \underline{v}) = A\underline{u} + A\underline{v}$ teljesül. Def: Tfh $U \leq \mathbb{R}^k$ és $V \leq \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda \underline{v}) = \lambda f(\underline{v})$ ill. (2) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ teljesül. Példa: Lin.lekép \mathbb{R}^2 -ből \mathbb{R}^2 -be (a szokásos helyvektorokon) az origóra tükrözés, az origó körüli forgatás, az x tengelyre vetítés, vagy egy origón átmenő egyenesre tükrözés. $\mathbb{R}^2 \to \mathbb{R}^3$ lineáris leképezés, ha pl. az sík minden (x,y) pontjához a tér (2x,0,y/2) pontját rendeljük.

Megf: Tetsz. $A \in \mathbb{R}^{n \times k}$ esetén az A-val történő balszorzás lin.lekép-t definiál \mathbb{R}^k -ból \mathbb{R}^n -be. Lemma: Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$. Ekkor $f: U \to V$ lin.lekép \iff f zárt a lin.komb-ra, azaz $f(\sum_{i=1}^\ell \lambda_i \underline{u}_i) = \sum_{i=1}^\ell \lambda_i f(\underline{u}_i) \ \, \forall \lambda_i, \underline{u}_i$. Biz: \Rightarrow : Mivel f additív és homogén, ezért $f(\lambda_1 \underline{u}_1 + \ldots + \lambda_k \underline{u}_k) = f(\lambda_1 \underline{u}_1) + \ldots + f(\lambda_k \underline{u}_k) = \lambda_1 f(\underline{u}_1) + \ldots + \lambda_k f(\underline{u}_k)$, azaz f zárt a lin.komb-ra. \Leftarrow : Ha f zárt a lin.komb-ra, akkor $f(\lambda \underline{u}) = \lambda f(\underline{u})$, hisz λu az u lin.komb-ja, továbbá $f(\underline{u} + \underline{v}) = f(1\underline{u} + 1\underline{v}) = 1f(\underline{u}) + 1f(\underline{v}) = f(\underline{u}) + f(\underline{v})$, tehát f homogén és additív, más szóval f lin.lekép.

Köv: Ha $f: U \to V$ lin.lekép, $B = \{\underline{b}_1, \dots, \underline{b}_m\}$ az U bázisa és $u = \sum_{i=1}^{\ell} \lambda_i \underline{b}_i$, akkor $f(\underline{u}) = \sum_{i=1}^{\ell} \lambda_i f(\underline{b}_i)$, azaz a báziselemeken felvett értékek egyértelműen meghatározzák a lin.lekép-t.

Annak az igazolásához, hogy minden f lineáris leképezés előáll mátrixszal történő balszorzással csupán azt kell megmutatni, hogy van olyan [f] mátrix, amire $f(\underline{b}_i) = [f]\underline{b}_i$ teljesül minden \underline{b}_i báziselemre.

Ekkor ugyanis az [f]-fel való balszorzás lineáris leképezés, továbbá a fenti Következmény miatt $f(\underline{v}) = [f]\underline{v}$, azaz minden \underline{v} vektor f szerinti $f(\underline{v})$ képe az [f] mátrixszal történő balszorzással kapható.

Lemma: Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$, $\underline{b}_1, \ldots, \underline{b}_m$ az U bázisa és $\underline{v}_1, \ldots, \underline{v}_m \in V$ tetsz. vektorok. Ekkor van olyan $A \in \mathbb{R}^{n \times k}$ mátrix, amire $A\underline{b}_i = \underline{v}_i$ teljesül $\forall 1 \leq i \leq m$ esetén. Biz: Legyen $B = (\underline{b}_1, \ldots, \underline{b}_m)$, és $C = (\underline{v}_1, \ldots, \underline{v}_m)$. A Lemma állítása ekvivalens azzal, hogy van olyan A mátrix, amire $A \cdot B = C$. Láttuk, hogy ha C minden sora előáll B sorainak lineáris kombinációjaként, akkor van ilyen A. Azt fogjuk tehát most igazolni, hogy C minden sora előáll B sorainak lineáris kombinációjaként.

Lemma: Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$, $\underline{b}_1, \ldots, \underline{b}_m$ az U bázisa és $\underline{v}_1, \ldots, \underline{v}_m \in V$ tetsz. vektorok. Ekkor van olyan $A \in \mathbb{R}^{n \times k}$ mátrix, amire $A\underline{b}_i = \underline{v}_i$ teljesül $\forall 1 \leq i \leq m$ esetén.

Biz: Mivel B bázis, ezért B oszlopai lin.ftn-ek. Így a B ESÁ-okkal RLA mátrixszá transzformált alakja $(\underline{e}_1,\ldots,\underline{e}_m)$, azaz I_m áll az RLA mátrix tetején. Ezért I_m minden sora előáll a B sorainak lineáris kombinációjaként. Minden m oszlopból álló mátrix, így C is megkapható I_m sorainak lineáris kombinációjaként. Tehát C sorai előállnak nem csak I_m , de B sorainak lin.komb-jaként is.

Köv: Tetsz. $f: U \to V$ lin.lekép esetén van olyan [f] mátrix, amire $[f]\underline{u} = f(\underline{u})$ teljesül $\forall \underline{u} \in U$ esetén.

Biz: Legyen $\{\underline{b}_1,\ldots,\underline{b}_k\}$ az U altér egy bázisa. A fenti Lemma szerint van olyan [f] mátrix, amire $[f]\underline{b}_i=f(\underline{b}_i)$ teljesül minden báziselemre. Az $\underline{u}\mapsto [f]\underline{u}$ olyan lineáris leképezés, ami a \underline{b}_i báziselemeken megegyezik f-fel. Mivel a lineáris leképezést a báziselemek képe meghatározza, ezért $f(\underline{u})=[f]\underline{u}\ \forall\underline{u}\in U$.

2. Lineáris le kepézés mátrixának meghatározása

Állítás: Tfh $f: \mathbb{R}^k \to \mathbb{R}^n$ lin.lekép. Ekkor $[f]\underline{v} = f(\underline{v})$ teljesül $\forall \underline{v} \in \mathbb{R}^k$ esetén, ahol $[f] = (f(\underline{e_1}), \ldots, f(\underline{e_k}))$. Biz: $[f]\underline{e_i} = (f(\underline{e_1}), f(\underline{e_2}), \ldots, f(\underline{e_n}))\underline{e_i} = f(\underline{e_i})$ egy korábbi megfigyelés szerint. Ha tehát $\underline{v} = \sum_{i=1}^n \lambda_i \underline{e_i}$, akkor $[f]\underline{v} = [f](\sum_{i=1}^n \lambda_i \underline{e_i}) = \sum_{i=1}^n \lambda_i [f]\underline{e_i} = \sum_{i=1}^n \lambda_i f(\underline{e_i}) = f(\sum_{i=1}^n \lambda_i \underline{e_i}) = f(\underline{v})$ (A 2-dik és 4-dik egyenlőségnél f ill [f] lineáris kombináció tartó tulajdonságát, a 3-diknál pedig a bizonyítás elején szereplő megfigyelést használtuk.)

Lemma: Tfh $f: \mathbb{R}^n \to \mathbb{R}^k$ és $g: \mathbb{R}^k \to \mathbb{R}^\ell$ lin.lekép-ek. Ekkor $g \circ f: \mathbb{R}^n \to \mathbb{R}^\ell$ is lin.lekép, ahol $(g \circ f)(\underline{v}) = g(f(\underline{v}))$ és $[g \circ f] = [g][f]$.

Megj: A Lemma azt mondja ki, hogy lineáris leképezések egymásutánja olyan lineáris leképezés, aminek a mátrixa a két lineáris leképezés mátrixának a szorzata, ahol a szorzást a másodiknak elvégzett leképezés mátrixával kezdjük.

3. le kepézések egymásutánjának mátrixa

Állítás: Tfh $f: \mathbb{R}^k \to \mathbb{R}^n$ lin.lekép. Ekkor $[f]\underline{v} = f(\underline{v})$ teljesül $\forall \underline{v} \in \mathbb{R}^k$ esetén, ahol $[f] = (f(\underline{e}_1), \dots, f(\underline{e}_k))$.

Def: A fenti [f] mátrix az $f: \mathbb{R}^k \to \mathbb{R}^n$ lineáris leképezés mátrixa. Példa: Legyen f_α az origó körüli α szögű elforgatás \mathbb{R}^2 -ben. Ekkor $f_\alpha(\underline{e}_1) = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$ ill. $f_\alpha(\underline{e}_2) = \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}$, így $[f_\alpha] = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$. Lemma: Tfh $f: \mathbb{R}^n \to \mathbb{R}^k$ és $g: \mathbb{R}^k \to \mathbb{R}^\ell$ lin.lekép-ek. Ekkor $g \circ f: \mathbb{R}^n \to \mathbb{R}^\ell$ is lin.lekép, ahol $(g \circ f)(\underline{v}) = g(f(\underline{v}))$ és $[g \circ f] = [g][f]$.

Köv: Ha értelmesek a műveletek, akkor A(BC) = (AB)C. Köv: A fenti példában szereplő elforgatásokra igaz, hogy $f_{\alpha+\beta} = f_\alpha \circ f_\beta$, így $\begin{pmatrix} \cos(\alpha+\beta) & -\sin(\alpha+\beta) \\ \sin(\alpha+\beta) & \cos(\alpha+\beta) \end{pmatrix} = [f_{\alpha+\beta}] = [f_\alpha][f_\beta] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} \cos \beta & -\sin \alpha \\ \sin \beta & \cos \alpha \end{pmatrix} = \sin \alpha \sin \beta & -\sin \alpha \cos \beta - \cos \alpha \sin \beta \\ \sin \alpha & \cos \alpha \end{pmatrix} = \sin \alpha \sin \beta & -\sin \alpha \cos \beta - \cos \alpha \sin \beta \\ \sin \alpha & \cos \alpha \end{pmatrix} = \sin \alpha \sin \beta + \cos \alpha \cos \beta - \sin \alpha \sin \beta$ Ebből pedig $\cos(\alpha+\beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ ill. $\sin(\alpha+\beta) = \sin \alpha \sin \beta + \cos \alpha \cos \beta = \sin \alpha \sin \beta$ ill. $\sin(\alpha+\beta) = \sin \alpha \sin \beta + \cos \alpha \cos \beta = \sin \alpha \sin \beta$ ill. $\sin(\alpha+\beta) = \sin \alpha \sin \beta + \cos \alpha \cos \beta = \sin \alpha \sin \beta$ ill. $\sin(\alpha+\beta) = \sin \alpha \sin \beta + \cos \alpha \cos \beta = \sin \alpha \sin \beta$ ill. $\sin(\alpha+\beta) = \sin \alpha \sin \beta + \cos \alpha \cos \beta = \sin \alpha \sin \beta$ ill. $\sin(\alpha+\beta) = \sin \alpha \sin \beta + \cos \alpha \cos \beta = \sin \alpha \sin \beta$ ill. $\sin(\alpha+\beta) = \sin \alpha \sin \beta + \cos \alpha \cos \beta = \sin \alpha \sin \beta$ ill. $\sin(\alpha+\beta) = \sin \alpha \sin \beta + \cos \alpha \cos \beta = \sin \alpha \sin \beta$ ill. $\sin(\alpha+\beta) = \sin \alpha \sin \beta + \cos \alpha \cos \beta = \sin \alpha \sin \beta$ ill. $\sin(\alpha+\beta) = \sin \alpha \sin \beta + \cos \alpha \cos \beta = \sin \alpha \sin \beta$ ill. $\sin(\alpha+\beta) = \sin \alpha \sin \beta + \cos \alpha \cos \beta = \sin \alpha \sin \beta$ ill. $\sin(\alpha+\beta) = \sin \alpha \sin \beta + \cos \alpha \cos \beta = \sin \alpha \sin \beta$ ill. $\sin(\alpha+\beta) = \sin \alpha \sin \beta + \cos \alpha \cos \beta = \sin \alpha \sin \beta$ ill. $\sin(\alpha+\beta) = \sin \alpha \sin \beta + \cos \alpha \cos \beta = \sin \alpha \sin \beta$ ill. $\sin(\alpha+\beta) = \sin \alpha \sin \beta + \cos \alpha \cos \beta = \sin \alpha \sin \beta$ ill. $\cos(\alpha+\beta) = \cos(\alpha+\beta)$ ill. $\cos(\alpha+\beta$

4. mátrixszorzás asszociativitása

Biz: Először $g \circ f$ linearitását igazoljuk: $g(f(\underline{u}\underline{u})) = g(\lambda f(\underline{u})) = \lambda g(f(\underline{u}))$ homogén, ill. $g(f(\underline{u}+\underline{v})) = g(f(\underline{u})+f(\underline{v})) = g(f(\underline{u}))+g(f(\underline{v}))$ lineáris. Tehát $g \circ f$ csakugyan lineáris leképezés.

Végül a kompozíciómátrixról szóló képlet helyességét bizonyítjuk.

(D) (B) (2) (2) 2 00

Biz: A tanultak szerint $[g \circ f]$ i-dik oszlopa $g(f(\underline{e}_i)) = [g]([f]\underline{e}_i)$. Láttuk, hogy $[f]\underline{e}_i$ az [f] i-dik oszlopa, így $[g]([f]\underline{e}_i)$ a [g] mátrix szorzata az [f] mátrix i-dik oszlopával. Ez pedig nem más, mint az [g][f] szorzatmátrix i-dik oszlopa. Ezek szerint a $[g \circ f]$ mátrix i-dik oszlopa megegyezik a [g][f] mátrix i-dik oszlopával $(\forall i$ -re), így aztán $[g \circ f] = [g][f]$.

Köv: Ha értelmesek a műveletek, akkor A(BC) = (AB)C. Biz: Legyenek A, B ill. C az f, g és h lineáris leképezések mátrixai. Ekkor A(BC) az $f \circ (g \circ h)$, (AB)C pedig az $(f \circ g) \circ h$ leképezés mátrixa. Márpedig $f \circ (g \circ h)(\underline{v}) = f(g(h(\underline{v}))) = (f \circ g) \circ h(\underline{v})$ miatt e két leképezés megegyezik, így a mátrixaik is azonosak.

1. Mátrix jobb- és balinverze

Láttuk, hogy egy mátrixra gondolhatunk úgy is, mint egy $\mathbb{R}^n \to \mathbb{R}^k$ lin.lekép-re. Ha egy ilyen leképezés külcsönösen egyértelmű (mint pl. a síkban az origó körüli forgatás, vagy egy origóra illeszkedő egyenesre tükrözés, stb), akkor a leképezés "megfordítása" is lineáris leképezés, amit egy másik mátrix ír le. Ezt a két leképezést egymás után elvégezve minden vektor helyben marad, azaz a két leképezés egymásutánjának mátrixa egyfelől az egységmátrix, másfelől pedig a két leképezés mátrixának szorzata. Nem minden leképezésnek van ilyen megfordítása. A továbbiakban pontosan azt vizsgáljuk, hogy a mátrixok nyelvén hogyan írható le, hogy mikor van ilyen megfordítás, és konkrétan mi is az.

Def: Az $A \in \mathbb{R}^{n \times n}$ mátrix balinverze az A^B mátrix, ha $A^B A = I_n$. Az A^J mátrix az A jobbinverze, ha $AA^J = I_n$.

Megf: Ha A-nak van bal- és jobbinverze is, akkor azok egyenlők. Biz: $A^B = A^B I_0 = A^B (AA^J) = (A^B A)A^J = I_0 A^J = A^J$.

2. ezek viszonya

Tehát $A' = I_n$.

Köv: A-nak vagy semilyen inverze sincs, vagy van mindkét oldali. Ezért A inverzét a továbbiakban A^{-1} -zel jelöljük.

Megf: Ha A balról invertálható, akkor $A^BA = I_n$. Ezért I_n minden sora A sorainak lin.komb-ja, vagyis I_n minden sora benne van az A sorai által generált altérben. Mivel I_n sorai bázist alkotnak, ezért A sorainak is bázist kell alkotniuk, azaz A sorai lin.ftn-ek.

Köv: Ha A-nak van balinverze, akkor I_n előáll A-ból ESÁ-okkal. Biz: Mivel A sorai lineárisan függetlenek, ezért A sorai egy n-dimenziós alteret, konkrétan a teljes \mathbb{R}^n teret generálják. Alakítsuk az A mátrixot ESÁ-ok segítségével RLA mátrixszá! Az így kapott A' mátrix n sora is a teljes \mathbb{R}^n teret generálja. Ezért A' sorai lineárisan függetlenek, így A'-nek nem lehet csupa0 sora.

Megf: (1) Minden ESÁ egy mátrixszal történő balszorzás. (2) ESÁ-ok egymásutánja is egy mátrixszal történő balszorzás. (3) Ha ESÁ-okkal A-ból I_n lesz, akkor A^B -vel szoroztunk balról. Köv: Ha az $(A|I_n)$ mátrixból ESÁ-okkal RLA mátrixot képezünk, és A helyén megjelenik I_n , akkor I_n helyén A^B jelenik meg. Ha A

helyén nem jelenik meg I_n , akkor A-nak nincs balinverze.

4 E > 4 E >

3. Balinverz kiszámítása ESÁ-okkal

Példa: Keressük meg most a $\begin{pmatrix} 3 & 4 & -1 \\ 2 & 0 & 2 \\ 5 & 1 & 4 \end{pmatrix}$ mátrix balinverzét!

$$\begin{pmatrix} 3 & 4 & -1 & | & 1 & 0 & 0 \\ 2 & 0 & 2 & | & 0 & 1 & 0 \\ 5 & 1 & 4 & | & 0 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 4 & -3 & | & 1 & -1 & 0 \\ 2 & 0 & 2 & | & 0 & 1 & 0 \\ 5 & 1 & 4 & | & 0 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 4 & -3 & | & 1 & -1 & 0 \\ 0 & -8 & 8 & | & -2 & 3 & 0 \\ 0 & -19 & 19 & | & -5 & 5 & 1 \end{pmatrix} \\ \mapsto \begin{pmatrix} 1 & 4 & -3 & | & 1 & -1 & 0 \\ 0 & 8 & -8 & | & 2 & -3 & 0 \\ 0 & -3 & 3 & | & -1 & -1 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 4 & -3 & | & 1 & -1 & 0 \\ 0 & 1 & 1 & | & -1 & -6 & 3 \\ 0 & 0 & 3 & | & -1 & -1 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 4 & -3 & | & 1 & -1 & 0 \\ 0 & 1 & -1 & | & 1 & 6 & -3 \\ 0 & 0 & 0 & | & 2 & 17 & -8 \end{pmatrix}$$

A bal oldali részben csupa0 sort kaptunk, tehát az A sorai által generált alteret két vektor generálja, így nem lehet benne három független vektor. Ezért A sorai nem generálhatják a standard bázis elemeit, vagyis I_n biztosan nem kapható meg A-ból balszorzással, azaz A-nak nincs balinverze.

Köv: Ha az $A \in \mathbb{R}^{n \times n}$ mátrix sorai lin.ftn-ek, akkor A-nak van balinverze, ha A sorai nem lin.ftn-ek, akkor A-nak nincs balinverze.

Ugyanez a transzponáltra a jobbinverz létezését karakterizálja: Köv: Ha $A \in \mathbb{R}^{n \times n}$ oszlopai lin.ftn-ek, akkor A-nak van jobbinverze, ha pedig A oszlopai nem lin.ftn-ek, akkor nincs.

4. és előjeles aldeterminánsokkal

Lemma: Tetsz. $A \in \mathbb{R}^{n \times n}$ mátrixra igaz, hogy $(A \text{ sorai lin.ftn-ek}) \iff (|A| \neq 0)$

Biz: Legyen V az A sorai által generált altér, és A' az A-ból ESÁ-okkal kapható RLA mátrix (ami felső háromszögmátrix). Mivel ESÁ nem változtat a sorok által generált altéren, ezért A' sorai is V-t generálják. Így (A sorai lin.ftn-ek) \iff (dim V=n) \iff (A' sorai lin.ftn-ek) \iff (A'-nek nincs csupa0 sora) \iff (A' minden sorában van v1) \iff (|A'|=1) \iff ($|A|\neq 0$)

Az utolsó ekvivalencia azért igaz, mert ESÁ nem változtat a determináns 0 voltán.

С

Köv: Tetsz. $A \in \mathbb{R}^{n \times n}$ mátrixra igaz, hogy (A-nak van balinverze) \iff (A-nak van jobbinverze) Biz: (A-nak van balinverze) \iff (A sorai lin.ftn-ek) \iff ($|A| \neq 0$) \iff ($|A^{\top}| \neq 0$) \iff (A oszlopai lin.ftn-ek) \iff (A-nak van jobbinverze)

Tétel: Tfh $A \in \mathbb{R}^{n \times n}$ és legyen a $B \in \mathbb{R}^{n \times n}$ mátrix i-dik sorának j-dik eleme az $A_{j,i}$ előjeles aldetermináns. Ekkor $AB = |A| \cdot I_n$. Biz: Az AB i-dik sorának j-dik eleme az A i-dik sorának és B j-dik oszlopának skaláris szorzata, azaz

 $a_{i,1}A_{j,1} + a_{i,2}A_{j,2} + \ldots + a_{i,n}A_{j,n}$, ahol $a_{i,k}$ az A mátrix i-dik sorának j-dik elemét jelenti. Ha i=j, akkor ez az összeg épp az A i-dik sor szerinti kifejtése, vagyis |A|. Ha $i \neq j$, akkor ez az összeg egy ú.n. ferde kifejtés: annak az A' mátrixnak az i-dik sor szerinti kifejtése, amit A-ból úgy kapunk, hogy az i-dik sor helyére a j-diket írjuk. Mivel A' két sora egyforma, ezért |A'| = 0.

Köv: A fenti tétel jelöléseivel: ha $|A| \neq 0$, akkor $A^{-1} = \frac{1}{|A|}B$. Biz: $A \cdot \left(\frac{1}{|A|}B\right) = \frac{1}{|A|}(AB) = \frac{1}{|A|}(|A|I_n) = I_n \Rightarrow A^{-1} = \frac{1}{|A|}B$

Köv: Négyzetes mátrix inverzének kiszámítására két módszerünk is van: vagy egy $n \times 2n$ méretű mátrixból RLA mátrixot készítünk ESÁ-okkal, vagy kiszámítjuk |A|-t és az összes előjeles aldeterminánst.

5. reguláris mátrixok jellemzése determinánssal

Def: Az $A \in \mathbb{R}^{n \times n}$ mátrix reguláris (avagy invertálható), ha A-nak van inverze, és szinguláris ha nincs.

Köv: Tfh A négyzetes mátrix. Ekkor (A reguláris) \iff ($|A| \neq 0$) \iff (A sorai lin.ftn-ek) \iff (A oszlopai lin.ftn-ek) \iff (az A-ból kapott RLA mátrix minden sorában van v1)

Láttuk, hogy egy négyzetes mátrixnak vagy a sorai is és az oszlopai is lin.ftn-ek, vagy se a sorai, se az oszlopai nem azok. Lehet-e általánosítani ezt a megfigyelést nem négyzetes mátrixokra? Ebben a formában nem.

Ha mondjuk n < k és egy $n \times k$ méretű mátrix sorai függetlenek, akkor az oszlopok n magasságú vektorok, tehát legfeljebb n lehet közülük független, k semmiképp.

Van azonban egy jól használható általánosítása a fenti ténynek. Megmutatjuk, hogy ha egy M mátrixnak van k lin.ftn sora, akkor van k lin.ftn oszlopa is, és viszont.

Ebből következik pl. a négyzetes mátrixok fenti tulajdonsága is.

6. sorokkal ,oszlopokkal, RLA mátrix segítségével

20. Sor- oszlop- és determinánsrang, ezek viszonya és kiszámítása. Összeg és szorzat rangja. Lineáris egyenletrendszer mátrixegyenletes alakja, a megoldhatóság és az oszlopok alterének kapcsolata. Az egyértelmű megoldhatóság feltétele $n \times n$ együtthatómátrix esetén.

1. Sor-, oszlop-, és determináns rang

Def: Legyen $A \in \mathbb{R}^{n \times k}$ mátrix. Az A sorrangja s(A) = k ha az A sorvektoraiból kiválasztható k lin.ftn de k + 1 nem.

Az A oszloprangja o(A) = k ha az A oszlopvektoraiból kiválasztható k lin.ftn de k + 1 nem.

Az A determinánsrangja A legnagyobb nemnulla determinánsú négyzetes részmátrixának mérete, jele: d(A).

Megf: (1) $o(A) = s(A^{\top})$.

(2) Ha A_1, A_2, \ldots ill. A^1, A^2, \ldots jelöli rendre A sorait és oszlopait, akkor $s(A) = \dim(A_1, A_2, \ldots)$ és $o(A) = \dim(A^1, A^2, \ldots)$.

Biz: (1): A transzponált sorai a mátrix oszlopainak felelnek meg.

(2) A sorok által generált altér egy bázisát választhatjuk a sorvektorokból. Ez a bázis a sorok egy maximális méretű lin.ftn részhalmaza. Ezért ennek a bázisnak az elemszáma s(A), vagyis a sorvektorok által generált altér dimenziója.

Az oszlopokra vonatkozó állítást hasonló érvelés igazolja.

2. Ezek viszonya és kiszámítása

Megf: (1) $o(A) = s(A^{\top})$.

(2) Ha A_1, A_2, \ldots ill. A^1, A^2, \ldots jelöli rendre A sorait és oszlopait, akkor $s(A) = \dim(A_1, A_2, \ldots)$ és $o(A) = \dim(A^1, A^2, \ldots)$.

Állítás: ESÁ során a sorrang és az oszloprang sem változik.

Biz: Láttuk, hogy ESÁ során a sorok által generált altér nem változik, így a dimenziója is ugyanannyi marad.

ESÁ hatására az oszlopok közti lineáris összefüggések sem változnak, ezért oszlopok egy halmaza pontosan akkor lin.ftn ESÁ előtt, ha ugyanezen oszlophalmaz lin.ftn ESÁ után.

3. Megf: Ha A RLA mátrix, akkor s(A) = o(A) = v1-ek száma.

Biz: A v1-ekhez tartozó oszlopok az oszlopok által generált altér bázisát alkotják, így o(A) a v1-ek száma.

RLA mátrix csupa 0 sorait elhagyva a maradék (v1-t tartalmazó) sorok lin.ftn-ek, hisz egyik se áll elő a többi lin.komb-jaként. Ezért s(A) is a v1-ek száma, tehát s(A) = o(A).

4.

Köv: Tetsz. A mátrix esetén s(A) = o(A).

Biz: Legyen A' az A-ból ESÁ-okkal kapott RLA mátrix. Ekkor s(A) = s(A') = o(A') = o(A).

5. Állítás: $(s(A) \ge k) \iff (d(A) \ge k)$

6.

Biz: \Rightarrow : Tfh van k lin.ftn sor, ezek alkossák az A' mátrixot. Ekkor k = s(A') = o(A'): A'-nek van k lin.ftn oszlopa. Alkossák ezek az A'' mátrixot. Így o(A'') = k = s(A''), tehát A'' az A egy k méretű nemnulla determinánsú négyzetes részmátrixa, azaz $d(A) \ge k$.

Állítás: $(s(A) \ge k) \iff (d(A) \ge k)$

Biz: \Leftarrow : Tfh A'' egy k méretű nemnulla determinánsú négyzetes részmátrix. Az inverzről tanultaknál láttuk, hogy A'' sorai lin.ftn-ek. Ezért az A'' sorainak megfelelő A-beli sorok is lin.ftn-ek, vagyis $s(A) \geq k$.

7. Köv: Tetsz. A mátrixra s(A) = o(A) = d(A).

Biz: Ha s(A) = k, akkor az előző állítás miatt $d(A) \ge k$. Ha pedig d(A) = k, akkor $s(A) \ge k$. Ezért s(A) = d(A).

Korábban láttuk, hogy s(A) = o(A).

Köv: Tetsz. A mátrixra s(A) = o(A) = d(A).

Def: Az $A \in \mathbb{R}^{n \times k}$ mátrix rangja r(A) = s(A).

Rang meghatározása:

ESÁ-okkal képzett RLA mátrix v1-ei száma.

10. Összeg és szorzat rangja

8.

Lemma: Ha $A, B \in \mathbb{R}^{n \times k}$, akkor $r(A+B) \leq r(A) + r(B)$. Biz: Tfh $\underline{a}_1, \ldots, \underline{a}_{r(A)}$ az A lin.ftn sorai és $\underline{b}_1, \ldots, \underline{b}_{r(B)}$ a B lin.ftn sorai. Ekkor az $\underline{a}_1, \ldots, \underline{a}_{r(A)}$ sorvektorok generálják A minden sorát, és a $\underline{b}_1, \ldots, \underline{b}_{r(B)}$ sorok generálják B minden sorát. Mivel A+B minden sorát generálják A sorai és B sorai, ezért A+B sorait generálják az $\underline{a}_1, \ldots, \underline{a}_{r(A)}, \underline{b}_1, \ldots, \underline{b}_{r(B)}$ vektorok is. Az A+B sorvektorai által generált altér dimenziójára tehát $r(A+B) \leq r(A) + r(B)$ teljesül.

Lemma: $A \in \mathbb{R}^{n \times k}$, $B \in \mathbb{R}^{k \times \ell} \Rightarrow r(AB) \leq \min(r(A), r(B))$.

Biz: Láttuk, hogy AB minden sora a B sorainak lin.komb-ja, ezért AB sorvektorai által generált altér része a B sorvektorai által generált altérnek. Így az első altér dimenziója nem lehet nagyobb a másodikénál, vagyis $r(AB) = s(AB) \le s(B) = r(B)$.

Hasonlóan, AB minden oszlopa az A oszlopainak lin.komb-ja, tehát az AB oszlopai által generált altér dimenziója nem nagyobb az A oszlopai által generáltnál: $r(AB) = o(AB) \le o(A) = r(A)$. Innen a tétel állítása közvetlenül adódik.

11. Lineáris egyenletrendszer mátrixegyenletes alakja

A mátrixokat a lineáris egyenletrendszerek módszeres megoldásához vezettük be, majd különféle hasznos dolgokat tudtunk meg a róluk. Fel tudjuk-e használni ezt a tudást a lineáris egyenletrendszerekkel kapcsolatos problémák megoldása során? Hát persze. Figyeljük meg, hogy a lineáris egyenletrendszer voltaképp egy mátrixegyenlet.

Megf: Az $(A|\underline{b})$ kib.egyhómx-hoz tartozó lineáris egyenletrendszer ekvivalens az $A\underline{x} = \underline{b}$ mátrixegyenlettel, ahol A az együtthatómátrix, \underline{b} a konstansokat, $\underline{x} = (x_1, \dots, x_n)^{\top}$ pedig az ismeretleneket tartalmazó oszlopvektor.

12. A megoldhatóság és az oszlopok alterének kapcsolata

Lineáris egyenletrendszerek, már megint

Példa:

$$x_1 - 3x_3 + 5x_4 = -6$$

 $7x_1 + 2x_2 + 3x_3 = 9$ \leftrightarrow $\begin{pmatrix} 1 & 0 - 3 & 5 \\ 7 & 2 & 3 & 0 \\ 0 & 1 & 7 - 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ \leftrightarrow $A\underline{x} = \underline{b}$

Megf: Az $(A|\underline{b})$ kib.egyhómx-hoz tartozó lineáris egyenletrendszer ekvivalens az $A\underline{x} = \underline{b}$ mátrixegyenlettel, ahol A az együtthatómátrix, \underline{b} a konstansokat, $\underline{x} = (x_1, \dots, x_n)^{\top}$ pedig az ismeretleneket tartalmazó oszlopvektor.

Kínzó kérdés: Mit jelent mátrix-vektor terminológiában, hogy az $A\underline{x} = \underline{b}$ lineáris egyenletrendszer megoldható?

Frappáns válasz: A kérdés voltaképpen az, hogy mikor található olyan \underline{x} oszlopvektor (konkrét számokkal), amire $A\underline{x} = \underline{b}$ teljesül. Láttuk: Tetsz. A, C mátrixra (C előáll AB = C alakban) \iff (C minden oszlopa az A oszlopainak lin.komb-ja)

Köv: Ha A oszlopai $A^1, \ldots,$ akkor $(\exists \underline{x} : A\underline{x} = \underline{b}) \iff (\underline{b} \in \langle A^1, \ldots \rangle)$ $\iff (\langle A^1, \ldots \rangle = \langle \underline{b}, A^1, \ldots \rangle) \iff (\dim \langle A^1, \ldots \rangle = \dim \langle \underline{b}, A^1, \ldots \rangle)$

13. Az egyértelmű megoldhatóság feltétele n × n együtthatómátrix esetén Lineáris egyenletrendszerek érdekes speciális esete, ha az egyenletek és ismeretlenek száma megegyezik. Ilyenkor az együtthatómátrix

és ismeretlenek száma megegyezik. Ilyenkor az együtthatómátrix négyzetes. Korábban láttuk, hogy n ismeretlen esetén legalább n egyenlet szükséges ahhoz, hogy a megoldás egyértelmű legyen.

Kínzó kérdés: Lehet-e következtetni a megoldás egyértelműségére pusztán az együtthatómátrix alapján?

Válasz: Ez a kérdés csak négyzetes együtthatómátrix érdekes. Állítás: Ha $A \in \mathbb{R}^{n \times n}$: $(A\underline{x} = \underline{b} \text{ egyért. megoldható}) \iff (|A| \neq 0)$ Biz: \Rightarrow : Tfh $|A| \neq 0$. Ekkor A oszlopai nem lineárisan függetlenek, ezért A oszlopainak valamely nemtriviális lineáris kombinációja $\underline{0}$ -t ad: $\exists \underline{y} \neq \underline{0}$: $A\underline{y} = \underline{0}$. Ezért ha \underline{x} az $A\underline{x} = \underline{b}$ megoldása, akkor $A(\underline{x} + \underline{y}) = A\underline{x} + A\underline{y} = \underline{b} + \underline{0} = \underline{b}$ miatt $\underline{x} + \underline{y}$ is megoldása. Tehát az $A\underline{x} = \underline{b}$ mátrixegyenletnek nincs egyértelmű megoldása.

Biz: \Rightarrow : Tfh $|A| \neq 0$. Ekkor A oszlopai nem lineárisan függetlenek, ezért A oszlopainak valamely nemtriviális lineáris kombinációja $\underline{0}$ -t ad: $\exists \underline{y} \neq \underline{0}$: $A\underline{y} = \underline{0}$. Ezért ha \underline{x} az $A\underline{x} = \underline{b}$ megoldása, akkor $A(\underline{x} + \underline{y}) = A\underline{x} + A\underline{y} = \underline{b} + \underline{0} = \underline{b}$ miatt $\underline{x} + \underline{y}$ is megoldás. Tehát az $A\underline{x} = \underline{b}$ mátrixegyenletnek nincs egyértelmű megoldása. \Leftarrow : $|A| \neq 0$, ezért A-nak van inverze. Így

$$\begin{bmatrix} A\underline{x} = \underline{b} \end{bmatrix} \iff \begin{bmatrix} \underline{x} = (A^{-1}A)\underline{x} = A^{-1}(A\underline{x}) = A^{-1}\underline{b} \end{bmatrix}, \text{ azaz } \underline{x}$$
egyértelmű.