A series of maximum entropy upper bounds of the differential entropy

https://arxiv.org/abs/1612.02954 https://www.lix.polytechnique.fr/~nielsen/MEUB/

Frank Nielsen^{1,2} Richard Nock^{3,4,5} Frank.Nielsen@acm.org

¹École Polytechnique, France ²Sony Computer Science Laboratories, Japan ³Data61, Australia ⁴ANU, Australia ⁵The University of Sydney, Australia

January 2017

Shannon's differential entropy

 $X \sim p(x)$: continuous random variable, support

$$\mathcal{X} = \{x \in \mathbb{R} : p(x) > 0\}$$

Shannon's entropy quantifies amount of uncertainty [2]:

$$H(X) = \int_{\mathcal{X}} p(x) \log \frac{1}{p(x)} dx = -\int_{\mathcal{X}} p(x) \log p(x) dx$$
 (1)

logarithm: basis 2 (unit in *bits*), basis *e* (*nats*). Differential entropy is strictly concave and:

- May be negative: $X \sim N(\mu, \sigma)$, $H(X) = \frac{1}{2} \log(2\pi e \sigma^2) < 0$ when $\sigma < \frac{1}{\sqrt{2\pi \sigma}}$
 - ▶ May be infinite (unbounded): $X \sim p(x)$ with $p(x) = \frac{\log(2)}{x \log^2 x}$ for x > 2 (with support $\mathcal{X} = (2, \infty)$)
 - ► Closed forms [7, 9] for many distribution families, but the differential entropy of mixtures usually does not admit closed-form expressions [10, 6]

Maximum Entropy Principle (MaxEnt)

Jaynes' MaxEnt distribution principle [4, 5] (1957): Infer a distribution given several moment constraints. Constrained optimization problem:

$$\max_{p} H(p) : E[t_i(X)] = \eta_i, \quad i \in [D] = \{1, \dots, D\}.$$
 (2)

- When an iid sample set $\{x_1, \ldots, x_s\}$ is given, we may choose, for example, the raw geometric sample moments $\eta_i = \frac{1}{s} \sum_{j=1}^s x_j^i$ for setting up the constraint $E[X^i] = \eta_i$ (ie., taking $t_i(X) = X^i$ in Eq. 2).
- ▶ The distribution p(x) maximizing the entropy under those moment constraints is unique and termed the MaxEnt distribution. The constrained optimization of Eq. 2 is solved by means of Lagrangian multipliers [8, 2].

MaxEnt and exponential families

MaxEnt distribution p(x) belongs to a parametric family of distributions called an exponential family [1, 8, 3].

Canonical probability density function of an exponential family (EF):

$$p(x;\theta) = \exp\left(\langle \theta, t(x) \rangle - F(\theta)\right) \tag{3}$$

 $\langle a,b\rangle=a^{\top}b$: scalar product

 $\theta \in \Theta$: natural parameter

 Θ : natural parameter space

t(x): sufficient statistics

 $F(\theta) = \log \int p(x; \theta) dx$: log-normalizer [1]

Dual parameterizations of exponential families

A distribution $p(x; \theta)$ of an exponential family can be parameterized equivalently either using the

- ▶ natural coordinate system θ ,
- expectation coordinate system $\eta = E_{p(x;\theta)}[t(x)]$ (also called moment coordinate system)

The two coordinate systems are linked by the Legendre transformation:

$$F^*(\eta) = \sup_{\theta} \{ \langle \eta, \theta \rangle - F(\theta) \}$$

$$\eta = \nabla F(\theta), \quad \theta = \nabla F^*(\eta)$$

In practice, when $F(\theta)$ is not available in closed-forms, conversion $\theta \leftrightarrow \eta$ is approximated numerically [8].

Differential entropy of exponential families

Closed-form when the dual Legendre convex conjugate function is in closed-form:

$$H(p(x;\theta)) = -F^*(\eta(\theta))$$

More general form when allowing an auxiliary carrier measure term [9]

Strategy to get MaxEnt Upper Bounds (MEUBs)

Rationale: Any other distribution with density p'(x) different from the MaxEnt distribution p(x) and satisfying all the D moment constraints $E[t_i(X)] = \eta_i$ have smaller entropy: $H(p'(x)) \le H(p(x))$ with $p(x) = p(x; \theta)$.

Receipe for building MaxEnt Upper Bounds on arbitrary density q(x):

- ► Choose sufficient statistics $t_i(x)$ so that the differential entropy $H(p(x; \eta))$ of the induced maxent distribution $p(x; \theta)$ is in closed-form (or can be unbounded easily)
- ▶ Compute the moment coordinates $\eta_i = E_q[t_i(x)]$, and deduce that $H(q(x)) \le H(p(x;\eta))$

Absolute Monomial Exponential Family

$$p_l(x;\theta) = \exp\left(\theta|x|^l - F_l(\theta)\right), \quad x \in \mathbb{R}$$
 (4)

for $\theta < 0$.

Exponential family $(t(x) = |x|^{l})$ with log-normalizer:

$$F_{l}(\theta) = \log 2 + \log \Gamma\left(\frac{1}{l}\right) - \log l - \frac{1}{l}\log(-\theta), \tag{5}$$

$$\Gamma(u) = \int_0^\infty x^{u-1} \exp(-x) dx$$
 generalizes the factorial: $\Gamma(n) = (n-1)!$ for $n \in \mathbb{N}$

Differential entropy of AMEFs

The entropy expressed using the θ -parameter is:

$$H_{I}(\theta) = \log 2 + \log \Gamma\left(\frac{1}{I}\right) - \log I + \frac{1}{I}(1 - \log(-\theta)),$$

$$= a_{I} - \frac{1}{I}\log(-\theta), \tag{6}$$

where $a_I = \log 2 + \log \Gamma \left(\frac{1}{I}\right) - \log I + \frac{1}{I}$.

The entropy expressed using the η -parameter is:

$$H_{I}(\eta) = \log 2 + \log \Gamma\left(\frac{1}{I}\right) - \log I + \frac{1}{I}(1 + \log I + \log \eta),$$

$$= b_{I} + \frac{1}{I}\log \eta,$$
(7)

with $b_l = \log \frac{2\Gamma(\frac{1}{l})(el)^{\frac{1}{l}}}{l}$.

A series of MaxEnt Upper Bounds (MEUBs)

For any continuous RV X, MaxEnt entropy Upper Bound (MEUB) U_I :

$$H(X) \leq H_I^{\eta} \left(E_X \left[|X|^I \right] \right)$$

Are all UBs useful? That is, can we build a RV X so that $U_{l+1} < U_l$? (Anwser is yes!)

AMEF MEUBs for Gaussian Mixture Models

Density of a mixture model with k components:

$$m(x) = \sum_{c=1}^k w_c p_c(x)$$

Gaussian distribution:

$$p_i(x) = p(x; \mu_i, \sigma_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right),$$

$$\mu_i = E[X_i] \in \mathbb{R}$$
: mean parameter $\sigma_i = \sqrt{E[(X_i - \mu_i)^2]} > 0$: standard deviation

To upper bound $H(X) \leq H_I^{\eta}\left(E_X\left[|X|^I\right]\right)$, we need to compute the raw absolute geometric moments $E_X\left[|X|^I\right]$ for a GMM.

Raw absolute geometric moments of a GMM

Technical part (integration by parts and solving recurrence)

$$A_l(X) = \left\{ \begin{array}{l} \sum_{c=1}^k w_c \sum_{i=0}^{\lfloor \frac{l}{2} \rfloor} \binom{l}{2i} \mu_c^{l-2i} \sigma_c^{2i} z_c^{i} \frac{\Gamma(\frac{1+2i}{2})}{\sqrt{\pi}} \\ = \sum_{c=1}^k w_c \sum_{i=0}^{\lfloor \frac{l}{2} \rfloor} \binom{l}{2i} \mu_c^{l-2i} \sigma_c^{2i} (2i-1)!! & \text{for even } l, \\ \sum_{c=1}^k w_c \sum_{i=0}^l \binom{n}{i} \mu_c^{l-i} \sigma_c^{i} \left(l_i \left(-\frac{\mu_c}{\sigma_c} \right) - (-1)^i l_i \left(\frac{\mu_c}{\sigma_c} \right) \right) & \text{for odd } l. \end{array} \right.$$

where n!! denotes the double factorial: $n!! = \prod_{k=0}^{\lceil \frac{n}{2} \rceil - 1} (n-2k) = \sqrt{\frac{2^{n+1}}{\pi}} \Gamma(\frac{n}{2} + 1)$, and:

$$\begin{split} l_i(a) &= &\frac{1}{\sqrt{2\pi}} \int_a^{+\infty} x^i \exp\left(-\frac{1}{2}x^2\right) \mathrm{d}x, \\ &= &\frac{1}{\sqrt{2\pi}} \left(a^{i-1} \exp\left(-\frac{1}{2}a^2\right)\right) + (i-1)l_{i-2}(a), \end{split}$$

with the terminal recursion cases:

$$\begin{split} &\mathit{l_0(a)} & = & 1 - \Phi(a) = \frac{1}{2} \left(1 - \operatorname{erf} \left(\frac{a}{\sqrt{2}} \right) \right) = \frac{1}{2} \operatorname{erfc} \left(\frac{a}{\sqrt{2}} \right), \\ &\mathit{l_1(a)} & = & \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} a^2 \right). \end{split}$$

Laplacian MEUB for a GMM (l=1)

AMEF for l = 1 is the Laplacian distribution

The differential entropy of a Gaussian mixture model $X \sim \sum_{c=1}^{k} w_c p(x; \mu_c, \sigma_c)$ is upper bounded by:

$$H(X) \leq U_1(X)$$

$$U_{\mathbf{1}}(X) = \log \left(2e \left(\sum_{c=\mathbf{1}}^k w_c \left(\mu_c \left(1 - 2\Phi \left(-\frac{\mu_c}{\sigma_c} \right) \right) + \sigma_c \sqrt{\frac{2}{\pi}} \exp \left(-\frac{1}{2} \left(\frac{\mu_c}{\sigma_c} \right)^2 \right) \right) \right) \right).$$

Gaussian MEUB for a GMM (l=2)

AMEF for I = 2 is the Gaussian distribution

The differential entropy of a GMM $X \sim \sum_{c=1}^k w_c p(x; \mu_c, \sigma_c)$ is upper bounded by:

$$H(X) \leq U_2(X) = \frac{1}{2} \log \left(2\pi e \sum_{c=1}^k w_c ((\mu_c - \bar{\mu})^2 + \sigma_c^2) \right),$$

with
$$\bar{\mu} = \sum_{c=1}^{k} w_c \mu_c$$
.

Vanilla approximation method: Monte-Carlo

Estimate H(X) using Monte-Carlo (MC) stochastic integration:

$$\hat{H}_s(X) = -\frac{1}{s} \sum_{i=1}^{s} \log p(x_i),$$
 (8)

where $\{x_1, \ldots, x_s\}$ is an iid set of variates sampled from $X \sim p(x)$.

MC estimator $\hat{H}_s(X)$ is consistent:

$$\lim_{s\to\infty}\hat{H}_s(X)=H(X)$$

(convergence in probability)

However, no deterministic bound, can be above or below true value.

Experiments: Laplacian vs Gaussian MEUBs

k=2 to 10 for $\mu_i, \sigma_i \sim_{\text{iid}} U(0,1)$, averaged on 1000 trials.

k	Average error	Percentage of times $U_1(X) < U_2(X)$
2	0.5401015778688498	32.7
3	2.7397146972652484	39.2
4	3.4333962273074774	47.9
5	0.9310683623797987	49.9
6	0.5902956910979954	52.1
7	0.7688142345093779	53.2
8	0.2982994538560814	53.8
9	0.1955843679792208	56.8
10	0.1797637053023196	59.9

Important to *recenter the GMMs* so that they have zero expectation (as AMEFs): This does not change the entropy. If not, the 30%+ rates fall significantly to less than 10%.

Are all AMEF MEUBs useful for GMMs?

- ► For zero-centered GMMs, only Laplacian or Gaussian MEUB is useful,
- For arbitrary GMMs, each bound can be the tightest one (k = 2, with GMM mean 0 and two symmetric components with small standard deviation).

Zero-centered GMMs

$$U_1(X) < U_2(X)$$
 iff

$$\log 2e\sqrt{\frac{2}{\pi}}\bar{\sigma_1} \leq \log \sqrt{2\pi e}\overline{\sigma_2}.$$

$$\frac{\overline{\sigma}_1}{\overline{\sigma}_2} \le \frac{\pi}{2\sqrt{e}} \approx 0.9527$$

 $\overline{\sigma}_1$: arithmetic weighted mean, $\overline{\sigma}_2 = \sqrt{\sum_{i=1}^k w_i \sigma_i^2}$: quadratic mean weighted quadratic mean dominates weighted arithmetic mean: $\overline{\sigma}_1 < 1$

$$\frac{\overline{\sigma}_1}{\overline{\sigma}_2} \leq 1.$$

$$k=1$$
: $\sigma>\frac{2\sqrt{e}}{\pi}$ (ie., $\sigma>1.0496$)

Zero-centered GMMs: $U_{l+2} < U_l$?

Geometric raw (even) moments coincide with the central (even) geometric moments

$$H(X) \leq H_I^{\eta}(A_I(X)) = b_I + \frac{1}{I} \log z_I + \log \bar{\sigma}_I,$$

$$E_X[X^I] = \underbrace{2^{\frac{I}{2}} \frac{\Gamma(\frac{1+I}{2})}{\sqrt{\pi}}}_{z_I} \left(\sum_{i=1}^k w_i \sigma_i^I \right) = A_I(X).$$

$$ar{\sigma}_l$$
: l -th power mean: $ar{\sigma}_l = \left(\sum_{i=1}^k w_i \sigma_i^l\right)^{\frac{1}{l}}$ $\frac{ar{\sigma}_{l+2}}{ar{\sigma}_l} \geq 1 \Rightarrow \log \frac{ar{\sigma}_{l+2}}{ar{\sigma}_l} \geq 0$

 \rightarrow not possible (see arXiv).

Arbitrary GMMs: Consider 2-component GMM

$$m(x) = \frac{1}{2}p(x; -\frac{1}{2}, 10^{-5}) + \frac{1}{2}p(x; \frac{1}{2}, 10^{-5})$$

```
H (MC):-9.400517405407735
          MEUB: 0.99999999958284
          MEUB: 0.7257913528258293
3
         MEIIR: 0. 5863457882025702
         MEUB: 0.4983017544470345
         MEUB: 0.43651349327316713
          MEJB: 0.390267211711506
          MEUR: 0.35410343073850886
          MEUB: 0.32490700997403515
         MEJIR: 0.3007543998901125
         MEJIR : 0. 2803860698295638
11
         MEUB: 0.2629389102447494
12
         MEUB: 0.24779955106708096
13
          MEUR: 0. 23451890956649502
14
          MEUB: 0.22275989562550735
15
          MEUB: 0.21226407836562905
16
          MEUR: 0. 2028296978359989
17
          MEUR: 0. 19429672922288133
18
          MEUB: 0.18653647716356042
19
          MEUR: 0.17944416377804479
20
          MEJB: 0.1729335449648154
21
          MEUB: 0.16693293142890442
22
          MEUB: 0.16138220185001972
23
          MEJB: 0. 1562305292037145
24
          MEUB: 0.15143462788690765
25
         MEUB: 0.14695738668300817
26
          MEUR: 0.14276679134420478
27
          MEUR: 0. 13883506718452443
28
          MEUB: 0.13513799065560295
29
          MEUR: 0. 13165433203558718
30
          MEUR: 0. 12836540080724268
31
         MEUB: 0.12525467216646413
```

Contributions and conclusion

- ► Introduced the class of *Absolute Monomial Exponential Families* (AMEFs) with closed-form log-normalizer,
- Reported closed-form formulæ for the differential entropy of AMEFs.
- ► Calculated the exact *non-centered absolute geometric* moments for a Gaussian Mixture Model (GMMs),
- ► Apply MaxEnt Upper Bounds induced by AMEFs to GMMs: All upper bounds are potentially useful for non-centered GMMs (But for zero centered-GMMs, only the first two bounds are enough.)
- ▶ Recommend min(U_1, U_2) in applications! (not only U_2)
- Reproducible research with code https://www.lix.polytechnique.fr/~nielsen/MEUB/

L.D. Brown.

Fundamentals of Statistical Exponential Families: With Applications in Statistical Decision Theory.

Thomas M Cover and Joy A Thomas.

Elements of information theory.

John Wiley & Sons. 2012.

Aapo Hyvarinen, Juha Karhunen, and Erkki Oja.

Independent component analysis.

Adaptive and learning systems for signal processing, communications, and control. John Wiley, New York, Chichester, Weinheim, 2001.

Edwin T Jaynes.

Information theory and statistical mechanics.

Physical review, 106(4):620, 1957.

Edwin T Jaynes.

Information theory and statistical mechanics II.

Physical review, 108(2):171, 1957.

Joseph V Michalowicz, Jonathan M Nichols, and Frank Bucholtz.

Calculation of differential entropy for a mixed Gaussian distribution.

Entropy, 10(3):200-206, 2008.

Joseph Victor Michalowicz, Jonathan M. Nichols, and Frank Bucholtz.

Handbook of Differential Entropy.

Chapman & Hall/CRC, 2013.

Ali Mohammad-Djafari.

A Matlab program to calculate the maximum entropy distributions.

In Maximum Entropy and Bayesian Methods, pages 221-233. Springer, 1992.

Frank Nielsen and Richard Nock.

Entropies and cross-entropies of exponential families.

In 2010 IEEE International Conference on Image Processing, pages 3621-3624. IEEE, 2010.

Sumio Watanabe, Keisuke Yamazaki, and Miki Aoyagi.

Kullback information of normal mixture is not an analytic function.

Technical report of IEICE (in Japanese), pages 41-46, 2004.

Differential entropy of a location-scale family

Density of a location-scale distribution: $p(x; \mu, \sigma) = \frac{1}{\sigma} p_0(\frac{x-\mu}{\sigma})$ $\mu \in \mathbb{R}$: location parameter and $\sigma > 0$: dispersion parameter. Change of variable $y = \frac{x-\mu}{\sigma}$ (with $\mathrm{d}y = \frac{\mathrm{d}y}{\sigma}$) in the integral to get:

$$H(X) = \int_{x=-\infty}^{+\infty} -\frac{1}{\sigma} p_0 \left(\frac{x-\mu}{\sigma} \right) \left(\log \frac{1}{\sigma} p_0 \left(\frac{x-\mu}{\sigma} \right) \right) dx,$$

$$= \int_{y=-\infty}^{+\infty} -p_0(y) (\log p_0(y) - \log \sigma),$$

$$= H(X_0) + \log \sigma.$$

ightarrow always independent of the location parameter μ

Non-central even geometric moments of a normal distribution

Non-central odd geometric moments of a normal distribution

$$\begin{array}{|c|c|c|c|c|} \hline \text{Odd } I & A_I = E\left[|X|^I\right] = C_I(\mu,\sigma)\sqrt{\frac{2}{\pi}}\exp(-\frac{\mu^2}{2\sigma^2}) + D_I(\mu,\sigma)\mathrm{erf}(\frac{\mu}{\sqrt{2}\sigma}) \\ \hline 1 & \sigma\sqrt{\frac{2}{\pi}}\exp(-\frac{\mu^2}{2\sigma^2}) + \mu\mathrm{erf}(\frac{\mu}{\sqrt{2}\sigma}) \\ 3 & (2\sigma^3 + \mu^2\sigma)\sqrt{\frac{2}{\pi}}\exp(-\frac{\mu^2}{2\sigma^2}) + (\mu^3 + 3\mu\sigma^2)\mathrm{erf}(\frac{\mu}{\sqrt{2}\sigma}) \\ 5 & (8\sigma^5 + 9\mu^2\sigma^3 + \mu^4\sigma)\sqrt{\frac{2}{\pi}}\exp(-\frac{\mu^2}{2\sigma^2}) + (\mu^5 + 10\mu^3\sigma^2 + 15\mu\sigma^4)\mathrm{erf}(\frac{\mu}{\sqrt{2}\sigma}) \\ 7 & (48\sigma^7 + 87\mu^2\sigma^5 + 20\mu^4\sigma^3 + \mu^6\sigma)\sqrt{\frac{2}{\pi}}\exp(-\frac{\mu^2}{2\sigma^2}) + (\mu^7 + 21\mu^5\sigma^2 + 105\mu^3\sigma^4 + 105\mu\sigma^6)\mathrm{erf}(\frac{\mu}{\sqrt{2}\sigma}) \\ 9 & (384\sigma^9 + 975\mu^2\sigma^7 + 345\mu^4\sigma^5 + 35\mu^6\sigma^3 + \mu^8\sigma)\sqrt{\frac{2}{\pi}}\exp(-\frac{\mu^2}{2\sigma^2}) + (\mu^9 + 36\mu^7\sigma^2 + 378\mu^5\sigma^4 + 1260\mu^3\sigma^6 + 945\sigma^8)\mathrm{erf}(\frac{\mu}{\sqrt{2}\sigma}) \end{array}$$

Maxima program

```
assume (theta<0);
F(theta) := log(integrate(exp(theta*abs(x)^5),x,-inf,inf));
integrate(exp(theta*abs(x)^5-F(theta)),x,-inf,inf);</pre>
```

Maxima program

```
/* Binomial expansion */
binomialExpansion(i,p,q) := if i = 1 then p+q
else expand((p+q)*binomialExpansion(i-1,p,q));
/* The standard distribution (here, normal) */
p0(y) := exp(-y^2/2)/sqrt(2*pi);
/* Even moment */
absEvenMoment(mu,sigma,1) :=
ratexpand(ratsimp(integrate(factor(expand(binomialExpansion(1,mu,v*sigma)))*p0(y),y,-inf,inf)));
/* Odd moment */
absOddMoment(mu.sigma.1) :=
ratexpand(ratsimp(integrate(factor(expand(binomialExpansion(1,mu,v*sigma)))*pO(v).v.-mu/sigma,inf)
-integrate(factor(expand(binomialExpansion(1,mu,y*sigma)))*p0(y),y,-inf,-mu/sigma)));
/* General : Maxima does not give a closed-form formula
because of the absolute value */
absMoment(mu.sigma.1) :=
ratexpand(ratsimp(integrate(abs(factor(expand(binomialExpansion(1,mu,y*sigma))))*p0(y),y,-inf,inf)));
assume(sigma>0):
assume(mu>0); /* maxima needs to branch condition */
absEvenMoment(mu,sigma,8):
absOddMoment(mu, sigma, 7):
```

```
 \begin{array}{l} \text{(\$o5) absMoment } (\mu,\sigma,1) := \\ \text{ratexpand} \left( \begin{array}{l} \text{ratsimp} \left( \int_{-\pi}^{\pi} \left| \text{factor (expand (binomialExpansion } (1,\mu,y\,\sigma) \;) \;) \right| p0 \; (y) \; \mathrm{d}y \right) \right) \\ \text{(\$o6) } [\sigma>0] \\ \text{(\$o6) } [\mu>0] \\ \text{(\$o8) } \frac{105\sqrt{\pi}\,\sigma^8}{\sqrt{\pi}} + \frac{420\sqrt{\pi}\,\mu^2\,\sigma^6}{\sqrt{\pi}} + \frac{210\sqrt{\pi}\,\mu^4\,\sigma^4}{\sqrt{\pi}} + \frac{28\sqrt{\pi}\,\mu^6\,\sigma^2}{\sqrt{\pi}} + \frac{\sqrt{\pi}\,\mu^6}{\sqrt{\pi}} \\ \text{(\$o9) } \frac{32^{9/2}\,\sigma^7\,\$e}{2\,\sigma^2} + \frac{87\sqrt{2}\,\mu^2\,\sigma^5\,\$e}{2\,\sigma^2} + \frac{52^{5/2}\,\mu^4\,\sigma^3\,\$e}{\sqrt{\pi}} + \frac{\sqrt{2}\,\mu^6\,\sigma^8e}{2\,\sigma^2} + \frac{105\sqrt{\pi}\,\mu\,\mathrm{erf}\left(\frac{\mu}{\sqrt{2}\,\sigma}\right)\,\sigma^6}{\sqrt{\pi}} \\ + \frac{105\sqrt{\pi}\,\mu^3\,\mathrm{erf}\left(\frac{\mu}{\sqrt{2}\,\sigma}\right)\,\sigma^4}{\sqrt{\pi}} + \frac{21\sqrt{\pi}\,\mu^5\,\mathrm{erf}\left(\frac{\mu}{\sqrt{2}\,\sigma}\right)\,\sigma^2}{\sqrt{\pi}} + \frac{\sqrt{\pi}\,\mu^7\,\mathrm{erf}\left(\frac{\mu}{\sqrt{2}\,\sigma}\right)}{\sqrt{\pi}} \end{array} \right) \\ + \frac{105\sqrt{\pi}\,\mu^3\,\mathrm{erf}\left(\frac{\mu}{\sqrt{2}\,\sigma}\right)\,\sigma^4}{\sqrt{\pi}} + \frac{21\sqrt{\pi}\,\mu^5\,\mathrm{erf}\left(\frac{\mu}{\sqrt{2}\,\sigma}\right)\,\sigma^2}{\sqrt{\pi}} + \frac{\sqrt{\pi}\,\mu^7\,\mathrm{erf}\left(\frac{\mu}{\sqrt{2}\,\sigma}\right)}{\sqrt{\pi}} \end{array} \right) \\ + \frac{105\sqrt{\pi}\,\mu^3\,\mathrm{erf}\left(\frac{\mu}{\sqrt{2}\,\sigma}\right)\,\sigma^4}{\sqrt{\pi}} + \frac{21\sqrt{\pi}\,\mu^5\,\mathrm{erf}\left(\frac{\mu}{\sqrt{2}\,\sigma}\right)\,\sigma^2}{\sqrt{\pi}} + \frac{\sqrt{\pi}\,\mu^7\,\mathrm{erf}\left(\frac{\mu}{\sqrt{2}\,\sigma}\right)}{\sqrt{\pi}} + \frac{105\sqrt{\pi}\,\mu^3\,\mathrm{erf}\left(\frac{\mu}{\sqrt{2}\,\sigma}\right)\,\sigma^4}{\sqrt{\pi}} + \frac{105\sqrt{\pi}\,\mu^3\,\mu^3\,\mathrm{erf}\left(\frac{\mu}{\sqrt{2}\,\sigma}\right)\,\sigma^4}{\sqrt{\pi}} + \frac{105\sqrt{\pi}\,\mu^3\,\mu^3\,\mathrm{erf}\left(\frac{\mu}{\sqrt{2}\,\sigma}\right)\,\sigma^3\,\mu^3\,\mathrm{erf}\left(\frac{\mu}{\sqrt{2}\,\sigma}\right)\,\sigma^3}{\sqrt{\pi}} + \frac{105\sqrt{\pi}\,\mu^3\,\mu^3\,\mathrm{erf}\left(\frac{\mu}{\sqrt{2}\,\sigma}\right)\,\sigma^3}{\sqrt{\pi}} + \frac{105\sqrt{\pi}\,\mu^3\,\mu^3\,\mu^3\,\mu^3\,\mathrm{erf}\left(\frac{\mu}{\sqrt{2}\,\sigma}\right)\,\sigma^3}{\sqrt{\pi}} + \frac{105\sqrt{\pi}\,\mu^3\,\mu^3\,\mu^3\,\mu^3\,\mathrm{erf}\left(\frac
```