Shrita Singh 17D170009

Energy Science and Engineering

Indian Institute of Technology Bombay

Specialization: Energy Systems Engineering

Third Year Undergraduate

Female

DOB: 17/02/2000

Examination	University	Institute	Year	$ ext{CPI} / \%$
Graduation	IIT Bombay	IIT Bombay	2017-22	8.14
Intermediate/+2	CBSE	Ryan International School	2017	93.20
Matriculation	CBSE	Apeejay School, Kharghar	2015	94.3

Publications

• Riya, **Shrita Singh** et al, "Closed Loop Simulation for Attitude Control of Nano-satellite" in *International Conference on Small Satellites and Systems*, Hyderabad, India, 2019

Scholastic

- Awarded Undergraduate Research Award for work applying optimal control on plug-in hybrid cars ('19)
- Pursuing a Minor in Systems and Control Engineering

('18 - Present)

• Achieved a rank of 1415 in JEE Main 2017 among 1.2 million candidates

('17)

- Secured an All India Rank in the top 1.09% in JEE Advanced 2017 among 2.2 lakh students ('17)
- Pursuing Modern Robotics: Mechanics, Planning, and Control Specialization offered by Northwestern University online via Coursera ('19 - Present)

Workshops

Non Linear Control and Robotics Workshop

(March '19)

Sri Lanka Technological Campus, Padukka, Sri Lanka

- Introduction to nonlinear controllability, rigid body control, feedback linearisation and observer design
- Exposure to nonlinear control switching logic for control of inverted pendulum and a simplified helicopter model

Helicopters Lab (May '19)

Helicopter and VTOL Lab, Aerospace Department, IIT Kanpur

- Visited Helicopter lab to understand and gain hands-on experience on dynamics and control of aerial vehicles
- Simulated position & attitude estimation of a quadrotor using real sensor data & Passive Complementary Filter on MATLAB and developed understanding of implementing the code on Pixhawk Flight Controller

Technical Projects

Optimal Control on Hybrid Vehicles | URA01

(Nov '18 - Present)

Guide: Prof. Ravi Banavar, Department of Systems and Control, IIT Bombay

- Surveyed literature on optimization, hybrid vehicles and optimal control in both continuous and discrete time, and **formulated an optimal control problem** for minimizing fuel consumption of the Chevrolet Volt
- Built a detailed, modular closed loop simulator on Simulink for testing different control strategies
- Used quasi-static models for generator, motor, engine & experimentally verified dynamic model for battery
- Implemented longitudinal dynamics of the vehicle in simulator for various driving cycles and road grades
- Solving the optimization problem in discrete time via multiple shooting method through the discrete time Pontryagin's maximum principle using the CasADi framework for optimal control problems

Advitiy, Student Satellite Team, IIT Bombay

(Feb '18 - Jan '19)

Team Member, Attitude Determination and Controls Subsystem

Second Student Satellite, technically advanced and efficient version of the first, Pratham

- Conducted literature survey on nonlinear adaptive controllers for satellite control via magnetic actuation
- Tested a **PID** controller by running real time **On Board In Loop Simulations** in **python** and interfacing the software with a **microcontroller**, used to verify stabilization of the satellite's attitude
- Simulated power generated in orbiting 1U satellite in **python** to estimate the **power budget** of the satellite

- Implemented **UART communication protocol** between an **ATmega micro-controller** and a computer for the exchange of health monitoring data and commands
- Contributed in development of quality assured modular closed loop simulation frame-work for attitude dynamics of satellite by developing codes, test-codes and maintaining Readme files and QA reports

State Estimation of Power Systems

(Jan '20 - March '20)

Guide: Prof. Zakir Rather, Dept of Energy Science and Engineering, IIT Bombay (Course Project)

- Conducted literature review of **state estimation algorithms** for linear and **nonlinear power systems**, like method of least squares, kalman filtering and iterative methods for the same.
- Developed the state estimation model for the **IEEE-14 Bus system** using iterative methods for regression analysis on MATLAB for two cases, PMU data available and PMU data unavailable.
- Performing **observability analysis** of the system buses and trying to find the optimal number of PMUs to be placed using **integer linear programming optimization technique**.

Heliostat Tracking and Control

(Nov '18 - July '19)

Guide: Prof. Shireesh B Kedare, Dept. of Energy Science and Engineering, IIT Bombay

- Conducted literature review in solar geometry, solar radiation patterns, solar thermal systems and **heliostat tracking algorithms** which implement **feedback control**
- Devised a tracking logic using solar geometry and **iterative methods** and simulated it in **MATLAB** for an entire solar year at different latitudes to determine effectiveness and accuracy
- Prototyped a Heliostat model using a mirror, stepper motors, worm gears and motor drivers and implemented a tracking logic on the Heliostat model using Arduino Mega microcontroller

Six DOF Stewart platform

(May '18 - July '18)

Institute Technical Summer Project

Student Technical Activities Body, IIT Bombay

- Built a Stewart Platform that uses parallel manipulators to achieve six degrees of freedom of movement
- Employed inverse kinematics to calculate control input for the servos for the desired position and orientation
- Developed the system using **servo motors** and **ball bearing actuators** driven via **Arduino** and achieved the aim of the project with the error of **5 degrees** in orientation and **2 cms** in position

Energy Assessment of Sri Lanka

(Feb '19)

Guide: Prof. Anish Modi, Dept of Energy Science and Engineering, IIT Bombay (Course Project)

- Modelled primary & end-use energy composition by source and sector using Sankey and PECSS Diagram
- Speculated future energy scenario and suggested impactful reforms, taking into account current resources, technological advancements and Intended Nationally Determined Contributions (INDCs)
- Studied **present energy scenario**, the various policies in place, and how growth in sectors like transportation, and residential, might pose a constraint to their 2050 targets for **decarbonisation** of economy

Hobby Projects

Line Follower (Feb '18)

Electronics and Robotics Club, IIT Bombay

• Designed a bot using PID controller based on differential mechanism that follows a given path using Arduino

Remote Controlled Plane

(Sep '17)

Electronics and Robotics Club, IIT Bombay

• Designed the mechanical body and used Electronic Speed Controller, Servos, RF Module to control the plane

Automatic Lighting System

(Feb '18 - April '18)

Guide: Prof. Rangan Banerjee, Dept of Energy Science and Engg, IIT Bombay (Course Project,

• Built an automatic lighting system using Arduino, LDRs, lasers and relays for a typical hostel room

Chain Reaction Game

(Jan '18 - April '18)

Guide: Prof. Krishna S Narayan, Department of Computer Science, IIT Bombay (Course Project)

• Created a simulation in C++ of a chain reaction game played between multiple players via command line

Technical Skills

Programming Atmel Studio (ATmega), Arduino IDE, C++, Python, MATLAB

Simulation and CAD softwares AutoCAD, Simulink, SolidWorks

Relevant Courses Undertaken

Systems and Controls Geometric and Analytic aspects of Optimal Control, Linear and Nonlinear Control,

Advanced Process Control*, Control and Instrumentation*, Signals and Systems,

Mathematical Structures for Systems and Control

Mathematics Calculus, Linear Algebra, Differential Equations, Data Analysis and Interpretation,

Introduction to Numerical Analysis

Mechanical Engineering Kinematics and Dynamics of Machines*, Solid Mechanics, Material Science,

Engineering Graphics

Energy Science Solar Energy for Industrial Process Heat, Thermodynamics, Transport Phenomena,

Reaction Engineering and Combustion, Thermo-Fluid Devices, Electrochemistry*,

Renewable Energy Technologies, Energy Economics and Environment

Electrical Engineering Power Generation and System Planning*, Electrical Energy Systems*, Power

Electronics, Electrical Machines, Basic Electrical & Electronics Engineering

* to be completed by April '20

Extra-Curricular Activities

• Volunteered to tutor 9th and 10th graders for three months under Asha NGO in collaboration with NSS ('19)

• Received Merit in grade 1 to 3 of Electronic Keyboard by **Trinity College of London** ('11)

• Wrote reviews of restaurants and ideated themes for the Powai Leisure Map section of **Undergraduate**Freshers Newsletter 5.2 under Insight, IIT Bombay ('18)

• Sports:

• Completed a distance of 13.5 kms in 12 hours at Swimmathon, IIT Bombay 2018 (May '18)

• Represented Hostel 15 in inter-hostel Swimming General Championship & Triathlon event ('18)

• Among 32 students selected for Swimming National Sports Organisation (June '18)

• Industrial Visits: ('18)

• Naval Dockyard - Learnt about gas turbine engines in military ships

• Reliance Metro Control Centre, Mumbai - Gained insight into the control of metro trains

• IITB Powerhouse - Gained insight into **power distribution systems**, and analyzed the structure and working of **relays** and **transformers**