

```
Binary Operations Ex 3.1 Q2 (i) On \mathbf{Z}^+, * is defined by a*b=a-b. It is not a binary operation as the image of (1, 2) under * is 1*2=1-2=-1\notin\mathbf{Z}^+.
```

(ii) On \mathbf{Z}^+ , * is defined by a*b=ab. It is seen that for each $a,b\in\mathbf{Z}^+$, there is a unique element ab in \mathbf{Z}^+ . This means that * carries each pair (a,b) to a unique element a*b=ab in \mathbf{Z}^+ . Therefore, * is a binary operation.

(iii) On \mathbf{R} , * is defined by $a*b=ab^2$. It is seen that for each $a,b\in\mathbf{R}$, there is a unique element ab^2 in \mathbf{R} . This means that * carries each pair (a,b) to a unique element $a*b=ab^2$ in \mathbf{R} . Therefore, * is a binary operation.

(iv) On \mathbf{Z}^+ , * is defined by a*b=|a-b|. It is seen that for each $a,b\in\mathbf{Z}^+$, there is a unique element |a-b| in \mathbf{Z}^+ . This means that * carries each pair (a,b) to a unique element a*b=|a-b| in \mathbf{Z}^+ . Therefore, * is a binary operation.

(v) On \mathbf{Z}^+ , * is defined by a*b=a. * carries each pair (a,b) to a unique element a*b=a in \mathbf{Z}^+ . Therefore, * is a binary operation.

(vi) on R, * is defined by a * b = a + $4b^2$ it is seen that for each element a, b \in R, there is unique element a + $4b^2$ in R This means that * carries each pair (a, b) to a unique element a * b = $a + 4b^2$ in R.

Therefore, \ast is a binary operation.

Binary Operations Ex 3.1 Q3 It is given that, a*b = 2a+b-3Now $3*4 = 2 \times 3 + 4 - 3$ = 10 - 3= 7

Binary Operations Ex 3.1 Q4

The operation * on the set A = $\{1, 2, 3, 4, 5\}$ is defined as

a * b = L.C.M. of a and b.

2*3 = L.C.M of 2 and 3 = 6. But 6 does not belong to the given set. Hence, the given operation * is not a binary operation.

Binary Operations Ex 3.1 Q5 We have,

$$S = \{a,b,c\}$$

We know that the total number of binary operation on a set S with n element is $n^{\!\!\!/^2}$

 \Rightarrow Total number of binary operation on $S = \{a, b, c\} = 3^3 = 3^9$

Binary Operations Ex 3.1 Q6 We have,

$$S = \{a,b\}$$

The total number of binary operation on $S = \{a, b\}$ in $2^{2^2} = 2^4 = 16$