

深圳市雷赛智能控制股份有限公司

地 址:深圳市南山区学苑大道 1001 号南山智园 A3 栋 10-11 楼

邮 编: 518000

电话: 400-885-5521 传真: 0755-26402718

Email: marketing@leisai.com

网 址: www.leisai.com

3DM580S

数字式三相步进驱动器 使用说明书

版本: V1.10

版权所有 不得翻印

版本	日期	更改内容
V1.00	2018-06-10	
V1.10	2020-03-27	增删部分内容

目 录

一、产品简介	2
1. 概述	2
2. 特点	2
3. 应用领域	2
二、电气、机械和环境指标	2
1. 电气指标	2
2. 使用环境及参数	3
3. 机械安装图	3
4. 加强散热方式	4
三、驱动器接口和接线介绍	4
1. 接口描述	4
2. 控制信号接口电路	5
3. 控制信号时序图	6
4. 报警信号接口电路	6
5. 接线要求	6
四、电流、细分拨码开关设定和参数自整定	7
1. 电流设定	7
2. 细分设定	8
3. 参数自整定功能	8
五、供电电源选择	8
六、电机选配	8
1. 电机选配	9
2. 输入电压和输出电流的选用	9
七、典型接线案例	. 10
八、保护功能	. 10
九、常见问题	. 11
1. 应用中常见问题和处理方法	11
2. 用户常见问题解答	. 12
雷赛产品保修条款	. 13
	1. 概述 2. 特点 3. 应用领域

3DM580S

数字式三相步进驱动器

一、产品简介

1. 概述

3DM580S 是雷赛公司推出的数字式步进电机驱动器,采用数字式 PID 技术,用户可以设置 1~256 内的细分以及 8A 以下的任意电流值,能够满足大多数场合的应用需要。由于采用内置微细分技术,即使在低细分的条件下,也能够达到高细分的效果,低中高速运行都很平稳,噪音超小。驱动器内部集成了参数自动整定功能,能够针对不同电机自动生成最优运行参数,最大限度发挥电机的性能。

2. 特点

- ●数字 DIP 技术
- ●超低振动噪声
- ●内置高细分
- ●参数自动整定功能
- ●精密电流控制使电机发热大为降低
- ●静止时电流自动减半
- ●外置一组8位拨码,多种功能可设置

- ●可驱动 3,6 线三相步进电机
- ●光隔离差分信号输入
- ●脉冲响应频率最高可达 500KHz
- ●电流设定方便,在1.0~8.0A内设置
- ●细分可在 1~256 任意设置
- ●具有过压、过流、短路等保护功能

3. 应用领域

适合各种中小型自动化设备和仪器,例如:雕刻机、打标机、切割机、激光照排、绘图仪、数控机床、自动装配设备等。

二、电气、机械和环境指标

1. 电气指标

28 99	3DM580S					
	最小值	典型值	最大值	单位		
输出电流(峰值)	1.0	-	8.0	A		
输入电源电压	18VDC	36VDC	50VDC	VDC		
控制信号输入电流	7	10	16	mA		
步进脉冲频率	0	-	500	KHz		
绝缘电阻	100			ΜΩ		

2. 使用环境及参数

冷却方式		自然冷却或强制风冷
	场合	不能放在其它发热的设备旁,要避免粉尘、油雾、腐蚀性气体,
使用环境		湿度太大及强振动场所,禁止有可燃气体和导电灰尘;
	温度	0—50℃
	湿度	40—90%RH
	振动	10~55Hz/0.15mm
保存温度		-20°C∼65°C
重量		约 260 克

3. 机械安装图

图 1 3DM580S 安装尺寸图

※推荐采用侧面安装,散热效果更佳,安装设计时,需要考虑接线端子大小和散热所需空间!

- 1) 驱动器的可靠工作温度通常在60℃以内, 电机工作温度为80℃以内;
- 2) 建议使用时选择自动半流方式, 马达停止时电流自动减一半, 以减少电机和驱动器的发热;
- 3) 安装驱动器时请采用竖着侧面安装, 使散热齿形成较强的空气对流: 必要时机内靠近驱动 器处安装风扇,强制散热,保证驱动器在可靠工作温度范围内工作。

三、驱动器接口和接线介绍

1. 接口描述

1)控制信号接口

名称	功能					
PUL+ (+5V)	脉冲控制信号:脉冲上升沿有效;PUL-高电平时 $4\sim5$ V,低电平时 $0\sim0.5$ V。					
PUL- (PUL)	为了可靠响应脉冲信号,脉冲宽度应大于 $1.2\mu s$ 。如采用+ $12V$ 或+ $24V$ 时需串电阻。					
DIR+ (+5V)	方向信号:高/低电平信号,为保证电机可靠换向,方向信号应先于脉冲信号至少 5μs 建立。电机的初始运行方向与电机的接线有关,互换任一相绕组(如					
DIR-(DIR)	$A+$ 、 $A-$ 交换)可以改变电机初始运行的方向,DIR-高电平时 $4\sim5V$,低电平时 $0\sim0.5V$ 。					
ENA+ (+5V)	使能信号:此输入信号用于使能或禁止。ENA+接+5V,ENA-接低电平(或内部光耦导通)时,驱动器将切断电机各相的电流使电机处于自由状态,此时步					
ENA-(ENA)	进脉冲不被响应。当不需用此功能时,使能信号端悬空即可。					

2) 强电接口

名称	功能			
GND	直流电源地			
+Vdc	直流电源正极,范围+18V—+50V,推荐值+36V 左右。			
U	电机 U 端			
V	电机 V 端			
W	电机 W 端			

3) 通讯接口

端子号	图示	管脚号	信号	名称
CN3		1	+5V	5V 电源正端 (50mA)
		2	TxD	RS232 发送端

3	GND	电源地
4	RxD	RS232 接收端

驱动器可以通过 RS232 通讯口进行通讯,修改和保存驱动器的部分参数。

4) 状态指示

绿色 LED 为电源指示灯, 当驱动器接通电源时, 该 LED 常亮: 当驱动器切断电源时, 该 LED 熄灭。红色 LED 为故障指示灯,当出现故障时,该指示灯以3 秒钟为周期循环闪烁: 当故障被用户清除时,红色 LED 常灭。红色 LED 在 3 秒钟内闪烁次数代表不同的故障信息, 具体关系如下表所示:

序号	红色 LED 闪烁次数	故障说明	
1	1 过流或相间短路故障		
2	2	过压故障(电压>90)	

2. 控制信号接口电路

3DM580S 驱动器采用差分式接口电路可适用差分信号,单端共阴及共阳等接口,内置高 读光电耦合器,允许接收长线驱动器,集电极开路和 PNP 输出电路的信号。在环境恶劣的场 合,我们推荐用长线驱动器电路,抗干扰能力强。现在以集电极开路和 PNP 输出为例,接口 电路示意图如下:

图 2 输入接口电路

注意: VCC 值为 5V 时, R 短接;

VCC 值为 12V 时, R 为 1K, 大于等于 1/4W 电阻; VCC 值为 24V 时, R 为 2K, 大于等于 1/4W 电阻;

图 3 西门子 PLC 与驱动器共阳极连接

3. 控制信号时序图

为了避免一些误动作和偏差, PUL、DIR 和 ENA 应满足一定要求, 如下图所示:

图 4 控制信号时序图

注释:

- 1) t1: ENA (使能信号) 应提前 DIR 至少 5ms,确定为高。一般情况下建议 ENA+和 ENA-悬空即可。
- 2) t2: DIR 至少提前 PUL 下降沿 5μs 确定其状态高或低。
- 3) t3: 脉冲宽度至少不小于 2.5 us。
- 4) t4: 低电平宽度不小于 2.5 us。

4. 报警信号接口电路

3DM580S 报警信号如下图所示,报警信号的逻辑可以通过拨码 SW12 进行设置。

报警信号输出接口电路

一般 ALM+连接控制卡或者控制器的 ALM 输入端, ALM-连接控制卡或控制器的公共负端。

5. 接线要求

- 1) 为了防止驱动器受干扰,建议控制信号采用屏蔽电缆线,并且屏蔽层与地线短接,除特殊要求外,控制信号电缆的屏蔽线单端接地:屏蔽线的上位机一端接地,屏蔽线的驱动器一端悬空。同一机器内只允许在同一点接地,如果不是真实接地线,可能干扰严重,此时屏蔽层不接。
- 2) 脉冲和方向信号线与电机线不允许并排包扎在一起,最好分开至少 10cm 以上,否则电机噪声容易干扰脉冲方向信号引起电机定位不准,系统不稳定等故障。
- 3) 如果一个电源供多台驱动器,应在电源处采取并联连接,不允许先到一台再到另一台链状式连接。
- 4) 严禁带电拔插驱动器电源和电机端子,带电的电机停止时仍有大电流流过线圈,拔插电源和电机端子将导致巨大的瞬间感生电动势将烧坏驱动器。
- 5) 严禁将导线头加锡后接入接线端子,否则可能因接触电阻变大而过热损坏端子。
- 6) 接线线头不能裸露在端子外,以防意外短路而损坏驱动器。

四、电流、细分拨码开关设定和参数自整定

3DM580S 驱动器采用八位拨码开关设定细分精度、动态电流和静止半流。详细描述如下:

半流/全流模式设定

1. 电流设定

1) 工作(动态) 电流设定

3.指令滤波、微细分设置

微细分/泫	CWO	CW/10	
11A 版本及之前版本	11B 版本及以后	SW9	SW10
微细分(出厂设置)	无滤波(出厂设置)	on	on
6ms	3ms	off	on
12ms	6ms	on	off
25ms	微细分	off	off

4.力矩模式选择

SW11 模式设置:

SW11=off: 模式一, 低速平滑模式; SW11=on: 模式二, 大力矩模式。

5.报警输出阻态设置

SW12 设置报警输出阻态:

SW12=off(出厂值): 正常工作情况下,报警输出为低阻态(导通状态),当驱动器发生报警时,报警输出为高阻(非导通状态)。

SW12=on: 正常工作情况下,报警输出为高阻态(非导通状态),当驱动器发生报警时,报警输出为低阻(导通状态);

注意:报警输出阻态设置根据客户实际要求设置。

6.脉冲有效沿设置

SW13 设置脉冲有效沿:

SW13=off: 脉冲下降沿有效(出厂默认);

SW13=on: 脉冲上升沿有效。

7.脉冲模式设置

SW14 设置脉冲模式:

SW14=off: 设置为单脉冲模式(出厂默认);

SW14=on: 设置为双脉冲模式。

_		3DM3808 数元	T-M	V 处 那 401 1	解 医用 奶,	21 11	
	输出峰值电流	输出均值电流	SW1	SW2	SW3	SW4	电流自设定
	(2.1A)	Default	off	off	off	off	
	2.5A	1.8A	on	off	off	off	
	2.9A	2.1A	off	on	off	off	
	3.2A	2.3A	on	on	off	off	
	3.6A	2.6A	off	off	on	off	N. CHII CHII
	4.0A	2.9A	on	off	on	off	当 SW1~SW4
	4.5A	3.2A	off	on	on	off	均为 off 时,使用上位机对电流
	4.9A	3.5A	on	on	on	off	进行设置,最大
	5.3A	3.8A	off	off	off	on	为 8.0A,分辨率
	5.7A	4.1A	on	off	off	on	为 0.1A,默认是
	6.2A	4.4A	off	on	off	on	2.1A
	6.4A	4.6A	on	on	off	on	
	6.9A	4.9A	off	off	on	on	
	7.3A	5.2A	on	off	on	on	
	7.7A	5.5A	off	on	on	on	
	8.0A	5.7A	on	on	on	on	

2) 静止(静态)电流设定

SW5=off: (出厂默认) 驱动器停止接收脉冲约 0.3 秒后,输出电流为峰值的 50%。

SW5=on: 驱动器输出电流在电机静止时为峰值的 90%。

2. 细分设定

步数/转	SW6	SW7	SW8	细分说明
(200)Default	on	on	on	
6400	off	on	on	
500	on	off	on	当 SW6~SW8 是 ON 时, 驱动器使用
1000	off	off	on	内部默认细分为1,用户可以通过上
2000	on	on	off	位机软件或其他调试器进行细分设
4000	off	on	off	置,最小为 200,最大为 51200。
5000	on	off	off	

Q

8.使能锁轴设置

SW15 设置非使能时电机状态:

SW15=off: 当驱动器非使能时,不响应脉冲,无电流输出,电机不锁(出厂默认);

SW15=on: 当驱动器非使能时,不响应脉冲,有电流输出,电机锁定。

9.自测设置

SW16 设置自检测:

SW16=off: 关闭自检测(出厂默认);

SW16=on: 电机以 0.2R/S 的速度,在当前设置的细分条件下正转一圈,再反转一圈。

五、供电电源选择

电源电压在 DC18V-50V 之间都可以正常工作,3DM580S 驱动器最好采用非稳压型直流电源供电,也可以采用变压器降压+桥式整流+电容滤波,电容可取 6800uF 或 10000uF。建议用户使用 36V 左右直流供电,避免电网波动超过驱动器电压工作范围。

如果使用稳压型开关电源供电,应注意开关电源的输出电流范围需设成最大。 请注意:

- 1)接线时要注意电源正负极切勿反接;
- 2) 最好用非稳压型电源:
- 3) 采用非稳压电源时, 电源电流输出能力应大于驱动器设定电流的 60%即可;
- 4) 采用稳压开关电源时,电源的输出电流应大于或等于驱动器的工作电流;
- 5) 为降低成本, 两三个驱动器可共用一个电源,但应保证电源功率足够大。

六、电机选配

3DM580S 可以用来驱动 3、6 线的三相混合式步进电机,步距角为 1.2 度的均可适用。选择电机时主要由电机的扭矩和额定电流决定。扭矩大小主要由电机尺寸决定。尺寸大的电机扭矩较大;而电流大小主要与电感有关,小电感电机高速性能好,但电流较大。

请联系雷赛公司销售部(0755-26433338 或 E-MAIL: info@leisai.com)咨询电机选型的具体办法!

1. 电机选配

1) 确定负载转矩, 传动比工作转速范围

 $T_{\text{ \tiny MM}}\!\!=\!\!C~(J\epsilon\!\!+\!\!T_{\text{ \tiny MM}})$

J: 负载的转动惯量 ε: 负载的最大角加速度 C: 安全系数,推荐值 1.2-1.4 T φο: 最大负载转矩,包括有效负载、摩擦力、传动效率等阻力转矩

2) 电机输出转矩由哪些因素决定

对于给定的步进电机和线圈接法,输出扭矩有以下特点:

- ●电机实际电流越大,输出转矩越大,但电机铜损(P=I²R)越多,电机发热偏多:
- ●驱动器供电电压越高,电机高速扭矩越大;

•由步进电机的矩频特性图可知, 高速比中低速扭矩小。

图 5 矩频特性图

2. 输入电压和输出电流的选用

1) 供电电压的设定

一般来说,供电电压越高,电机高速时力矩越大。越能避免高速时掉步。但另一方面, 电压太高会导致过压保护,电机发热较多,甚至可能损坏驱动器。在高电压下工作时,电机 低速运动的振动会大一些。

2) 输出电流的设定值

对于同一电机,电流设定值越大时,电机输出力矩越大,但电流大时电机和驱动器的发热也比较严重。具体发热量的大小不仅与电流设定值有关,也与运动类型及停留时间有关。以下的设定方式采用步进电机额定电流值作为参考,但实际应用中的最佳值应在此基础上调整。原则上如温度很低(<40℃)则可视需要适当加大电流设定值以增加电机输出功率(力矩和高速响应)。

△注意: 电流设定后请运转电机 15-30 分钟,如电机温升太高(>70 $^{\circ}$),则应降低电流设定值。所以,一般情况是把电流设成电机长期工作时出现温热但不过热时的数值。

七、典型接线案例

3DM580S 配 573S09 接法(若电机转向与期望转向不同时,仅交换电机 UVW 任意两条线即可),3DM580S 驱动器能驱动 3 线、6 线的三相电机。下图列出了 3 线步进电机的接法。

图 6 3DM580S 配 573S09 典型接法

注: 3DM580S 驱动器只能驱动三相混合式步进电机,不能驱动两相和五相步进电机。

八、保护功能

驱动器具有过流,过压等保护功能,具体描述如下表所示:

保护功能	红色 LED 灯闪烁次数	说明		
过流/短路保护	1	电机或者驱动器出现短路或者接错线等情况下,驱动器会产生过流保护,当出现过流保护时,请及时断电后,检查电机接线,重新上电可清除此报警。		
过压保护	2	当驱动器电压超过 90VDC 时,会进入过压保护,此时要重新给驱动器上电才能清除报警,如果频繁出现过压保护,建议适当调低输入电源电压。		

注意:由于驱动器不具备电源正负极反接保护功能,因此,上电前请再次确认电源正负极接线正确。正负极接反将导致烧坏驱动器中的保险管!

九、常见问题

1. 应用中常见问题和处理方法

现象	可能问题	解决措施		
	电源灯不亮	正常供电		
	电流设定太小	根据电机额定电流,选择合适电流档		
电机不转	驱动器已保护	排除故障后,重新上电		
	使能信号为低	此信号拉高或不接		
	控制信号问题	检查控制信号的幅值和宽度是否满足要求		
中和株片#19	电机线接错	任意交换电机的两根线(例如U、V交换接线位置)		
电机转向错误 	电机线有断路	检查并接对		
	电机线接错	检查接线		
报警指示灯亮	电压过高或过低	检查电源电压		
	电机或驱动器损坏	更换电机或驱动器		
	信号受干扰	排除干扰		
	屏蔽地未接或未接好	可靠接地		
位置不准	细分错误	设对细分		
	电流偏小	适当加大电流		
	控制信号问题	检查控制信号是否满足时序要求		
	加速时间太短	适当增大加速时间		
电机加速时堵	电机扭矩太小	选大扭矩电机		
1र	电压偏低或电流太小	适当提高电压或设置更大的电流		

2. 用户常见问题解答

1) 何为步进电机和步进驱动器?

步进电机是一种专门用于速度和位置精确控制的特种电机,它旋转是以固定的角度(称为"步距角")一步一步运行的,故称步进电机。其特点是没有累积误差,接收到控制器发来的每一个脉冲信号,在驱动器的推动下电机运转一个固定的角度,所以广泛应用于各种开环控制。

步进驱动器是一种能使步进电机运行的功率放大器,能把控制器发来的脉冲信号转化为步进电机的功率信号,电机的转速与脉冲频率成正比,所以控制脉冲频率可以精确调速,控制脉冲数就可以精确定位。

2) 何为驱动器的细分? 步进电机的转速与脉冲频率的关系是什么?

步进电机由于自身特有结构决定,出厂时都注明"电机固有步距角"(如三相步进电机步距角为1.2°,进行2细分后为0.6°,表示工作每走一步转过的角度为0.6°,整步时为,1.2°)。但在很多精密控制和场合,整步的角度太大,影响控制精度,同时振动太大,所以要求分很

14

多步走完一个电机固有步距角,这就是所谓的细分驱动,能够实现此功能的电子装置称为细分驱动器。

$V = \frac{P^*\theta e}{360^*m}$

V: 电机转速 (r/s)

P: 脉冲频率 (Hz)

θe: 电机固有步距角

m: 细分数 (整步为1, 半步为2)

3) 细分驱动器有何优点?

•因减少每一步所走过的步距角,提高了步距均匀度,因此可以提高控制精度。

•可以大大地减少电机振动,低频振荡是步进电机的固有特性,用细分是消除它的最好方法。

•可以有效地减少转矩脉动,提高输出转矩。

以上这些优点普遍被用户认可,并给他们带来实惠,所以建议您最好选用细分驱动器。

4) 为什么我的电机只朝一个方向运转?

•可能方向信号太弱,或接线极性错,或信号电压太高烧坏方向限流电阻。

●脉冲模式不匹配,信号是脉冲/方向,驱动器必须设置为此模式;若信号是 CW/CCW (双脉冲模式),驱动器则必须也是此模式,否则电机只朝一个方向运转。

如出现其它问题请与雷赛公司应用工程师联系:

电话: 400-885-5501

雷赛产品保修条款

1 一年保修期

雷赛公司对其产品的原材料和工艺缺陷提供从发货日起一年的质保。在保修期内雷赛公司为有缺陷的产品提供免费维修服务。

2 不属保修之列

- 不恰当的接线,如电源正负极接反和带电拔插
- 未经许可擅自更改内部器件
- 超出电气和环境要求使用

3 维修流程

如需维修产品,将按下述流程处理:

- 1) 发货前需致电雷赛公司客户服务人员获取返修许可;
- 2) 随货附寄书面说明,说明返修驱动器的故障现象;故障发生时的电压、电流和使用环境等情况;联系人的姓名、电话号码及邮寄地址等信息。
- 3) 预付邮费寄至深圳南山区松白路百旰信工业区第5区22栋3楼 雷赛智能 邮编:518052。

4 保修限制

- 雷赛产品的保修范围限于产品的器件和工艺(即一致性),使用不当导致的损坏不在保修之列。
- 雷赛公司不保证其产品能适合客户的具体用途,因为是否适合还与该用途的技术指标要求 和使用条件及环境有关,因客户选型不当而造成不适用的问题,不属于保修之列。
- 本公司不建议将此产品用于临床医疗用途。