5.1 Feature Engineering Dr. Sultan Alfarhood

Feature Engineering

- The problem of transforming raw data into a dataset is called feature engineering.
- Informative features: those would allow the learning algorithm to build a model that does a good job of predicting labels of the data used for training.
 - Highly informative features are also called features with high **predictive power**.

Feature Selection vs Feature Extraction

Feature Selection

 Selecting subset of extracted features. This subset is relevant and contributes to minimizing the error rate of a trained model.

Feature Extraction

 Combining existing features to produce a more useful one.

Label Encoding

- Encode attributes and target labels with value between 0 and NumberOfClasses-1
 - Using ordered numbers as values is likely to confuse the learning algorithm
- Label Encoding can be helpful when the ordering of values of some categorical variable matters

	quality	
•••	bad	•••
	bad	
	good	
	excellent	•••

One-Hot Encoding

Transforming categorical feature into several binary ones:

•••	Color	•••
	red	
•••	blue	
•••	blue	•••
	green	

•••	Color_red	Color_blue	Color_green	•••
•••	1	0	0	•••
•••	0	1	0	•••
	0	1	0	•••
•••	0	0	1	•••

- Binning is the conversion of continuous values into categorical ones.
- Prevent overfitting.

Sex	Age	
male		22
female		38
female		26
female		35
male		35
male		80
male		54
male		2
female		27
female		14
female		4
female		58

Sex	Age
male	Adult
female	Adult
female	Adult
female	Adult
male	Adult
male	Elderly
male	Adult
male	Toddler/baby
female	Adult
female	Child
female	Toddler/baby
female	Adult

Feature Scaling

- There are two common ways to get all attributes to have the same scale:
 - Normalization
 - Standardization

No Scaling Problem

-		_		
person_name	Salary	Year_ exper	_	Expected Position Level
Aman	100000	10		2
Abhinav	78000	7		4
Ashutosh	32000	5		8
Dishi	55000	6		7
Abhishek	92000	8		3
Avantika	120000	15		1
Ayushi	65750	7		5

The attributes salary and year_of_experience are on different scale and hence attribute salary can take high priority over attribute year_of_experience in the model.

CSC462: MACHINE LEARNING (SPRING 2024)

• Normalization (or min-max normalization) scale all values in a fixed range between **0 and 1**.

$$\bar{x}^{(j)} = \frac{x^{(j)} - min^{(j)}}{max^{(j)} - min^{(j)}}$$

•	$min^{(j)}$.	Minimum	value of th	ne feature <i>i</i>

• $max^{(j)}$: Maximum value of the feature j

•••	cost	•••
	0.4444	
	1	
•••	0.8148	
•••	0	

• Standardization (or z-score normalization) is the procedure during which the feature values are rescaled so that they have the properties of a standard normal distribution with $\mu = 0$ and $\sigma = 1$.

$$\hat{x}^{(j)} = \frac{x^{(j)} - \mu^{(j)}}{\sigma^{(j)}}$$

	cost	
•••	55000	
	70000	
	65000	
	43000	

	•	cost	
		0.314	
		1.137	•••
••		0.653	•••
		1.476	

 $\mu^{(j)}$: Mean value of the feature j

 $\sigma^{(j)}$: Standard deviation from the mean value of the feature j

• Standardization is much less affected by outliers.

Dealing with Missing Features

 Missing data are values that are not recorded in the dataset, represented by NaN.

- Different ways of dealing with missing features:
 - 1. Removing the examples with missing data from the dataset.
 - 2. Using a learning algorithm that can deal with missing feature values.
 - 3. Using a data imputation technique.

CSC462: MACHINE LEARNING (SPRING 2024)

Data Imputation Techniques

- Data Imputation Techniques are ways to deal with missing features by filling them with values such as:
 - Mean/Median Values
 - Most Frequent or Zero/Constant Values
 - Predicted value using a regression model

CSC462: MACHINE LEARNING (SPRING 2024)

12

• https://colab.research.google.com/drive/1YwvH-HLpmm4RDBrqOVX UHQ66UskHwgS?usp=sharing

CSC462: MACHINE LEARNING (SPRING 2024)