Logical Agents

Dr. Steven Bethard

Computer and Information Sciences University of Alabama at Birmingham

11 Feb 2016

Outline

- Logical Agents
 - The Wumpus World
 - Logic Basics
 - Entailment
- Propositional Logic
 - Syntax and Semantics
 - Truth Tables
 - Reasoning Patterns
- 3 Inference Algorithms
 - Truth Tables
 - Chaining
 - Resolution
 - WalkSAT

Outline

- Logical Agents
 - The Wumpus World
 - Logic Basics
 - Entailment
- Propositional Logic
 - Syntax and Semantics
 - Truth Tables
 - Reasoning Patterns
- 3 Inference Algorithms
 - Truth Tables
 - Chaining
 - Resolution
 - WalkSAT

Knowledge Bases

Idea: Separate Knowledge from Reasoning

Inference Engine: domain-independent algorithms

Knowledge Base: domain-specific content

Knowledge Base (KB) Properties

- Contains a set of "sentences"
- Can Tell it new "sentences'
- Can Ask it "queries"

Knowledge Bases

Idea: Separate Knowledge from Reasoning

Inference Engine: domain-independent algorithms

Knowledge Base: domain-specific content

Knowledge Base (KB) Properties

- Contains a set of "sentences"
- Can Tell it new "sentences"
- Can Ask it "queries"

class KnowledgeBaseAgent(object):

```
class KnowledgeBaseAgent(object):
    def __init__(self, knowledge_base):
        self.knowledge_base = knowledge_base
        self.time = 0
    def take_action(self, percept):
```

```
class KnowledgeBaseAgent(object):
    def __init__(self, knowledge_base):
        self.knowledge_base = knowledge_base
        self.time = 0
    def take_action(self, percept):
        # convert the percept to knowledge
        percept_sentence = self.percept_to_sentence(percept, self.time)
        self.knowledge_base.tell(percept_sentence)
```

```
class KnowledgeBaseAgent(object):
    def __init__(self, knowledge_base):
        self.knowledge_base = knowledge_base
        self.time = 0
    def take_action(self, percept):
        # convert the percept to knowledge
        percept_sentence = self.percept_to_sentence(percept, self.time)
        self.knowledge_base.tell(percept_sentence)
        # select an action based on the knowledge
        action_query = self.make_action_query(self.time)
        action = self.knowledge_base.ask(action_query)
```

```
class KnowledgeBaseAgent(object):
   def __init__(self, knowledge_base):
        self.knowledge_base = knowledge_base
        self.time = 0
   def take_action(self, percept):
        # convert the percept to knowledge
        percept_sentence = self.percept_to_sentence(percept, self.time)
        self.knowledge_base.tell(percept_sentence)
        # select an action based on the knowledge
        action_query = self.make_action_query(self.time)
        action = self.knowledge_base.ask(action_query)
        # update the knowledge base with the planned action
        action sentence = self.action to sentence(action. self.time)
        self.knowledge_base.tell(action)
        self.time += 1
```

```
class KnowledgeBaseAgent(object):
    def __init__(self, knowledge_base):
        self.knowledge_base = knowledge_base
        self.time = 0
    def take_action(self, percept):
        # convert the percept to knowledge
        percept_sentence = self.percept_to_sentence(percept, self.time)
        self.knowledge_base.tell(percept_sentence)
        # select an action based on the knowledge
        action_query = self.make_action_query(self.time)
        action = self.knowledge_base.ask(action_query)
        # update the knowledge base with the planned action
        action sentence = self.action to sentence(action. self.time)
        self.knowledge_base.tell(action)
        self.time += 1
        # perform the action
        return action
```

The Wumpus World

Environment:

- 4×4 rooms, 1 with gold, 1 with wumpus, k with pits
- \blacksquare Agent starts in (1,1), facing right, holding 1 arrow

Performance Measure:

- gold +1000, death -1000, -1 per step, -10 per arrow
 - Stench/Breeze in squares adjacent to wumpus/pit
 - GLITTER in squares with gold
 - Bump when running into wall
 - Scream when wumpus is killed by arrow

Actions

Environment:

- 4×4 rooms, 1 with gold, 1 with wumpus, k with pits
- \blacksquare Agent starts in (1,1), facing right, holding 1 arrow

Performance Measure:

- gold +1000, death -1000, -1 per step, -10 per arrow Percepts:
 - Stench/Breeze in squares adjacent to wumpus/pit
 - GLITTER in squares with gold
 - Bump when running into wall
 - Scream when wumpus is killed by arrow

Actions

Environment:

- 4×4 rooms, 1 with gold, 1 with wumpus, k with pits
- \blacksquare Agent starts in (1,1), facing right, holding 1 arrow

Performance Measure:

- gold +1000, death -1000, -1 per step, -10 per arrow Percepts:
 - Stench/Breeze in squares adjacent to wumpus/pit
 - GLITTER in squares with gold
 - Bump when running into wall
 - Scream when wumpus is killed by arrow

Actions

Environment:

- 4×4 rooms, 1 with gold, 1 with wumpus, k with pits
- \blacksquare Agent starts in (1,1), facing right, holding 1 arrow

Performance Measure:

- gold +1000, death -1000, -1 per step, -10 per arrow Percepts:
 - Stench/Breeze in squares adjacent to wumpus/pit
 - GLITTER in squares with gold
 - Bump when running into wall
 - Scream when wumpus is killed by arrow

Actions:

Environment:

- 4×4 rooms, 1 with gold, 1 with wumpus, k with pits
- \blacksquare Agent starts in (1,1), facing right, holding 1 arrow

Performance Measure:

■ gold +1000, death -1000, -1 per step, -10 per arrow

Percepts:

- Stench/Breeze in squares adjacent to wumpus/pit
- GLITTER in squares with gold
- Bump when running into wall
- Scream when wumpus is killed by arrow

Actions:

```
Observable? No, only local perception

Deterministic? Yes, state+action determines outcome
Episodic? No, involves a sequence of actions
Static? Yes, pits and wumpus are stationary
Discrete? Yes, no real-valued states or actions
Single-Agent? Yes, wumpus takes no (real) actions
```

```
Observable? No, only local perception

Deterministic? Yes, state+action determines outcome
Episodic? No, involves a sequence of actions
Static? Yes, pits and wumpus are stationary
Discrete? Yes, no real-valued states or actions
Single-Agent? Yes, wumpus takes no (real) actions
```

```
Observable? No, only local perception

Deterministic? Yes, state+action determines outcome
Episodic? No, involves a sequence of actions
Static? Yes, pits and wumpus are stationary
Discrete? Yes, no real-valued states or actions
Single-Agent? Yes, wumpus takes no (real) actions
```

```
Observable? No, only local perception

Deterministic? Yes, state+action determines outcome
Episodic? No, involves a sequence of actions
Static? Yes, pits and wumpus are stationary
Discrete? Yes, no real-valued states or actions
Single-Agent? Yes, wumpus takes no (real) actions
```

```
Observable? No, only local perception

Deterministic? Yes, state+action determines outcome
Episodic? No, involves a sequence of actions
Static? Yes, pits and wumpus are stationary
Discrete? Yes, no real-valued states or actions
Single-Agent? Yes, wumpus takes no (real) actions
```

```
Observable? No, only local perception

Deterministic? Yes, state+action determines outcome
Episodic? No, involves a sequence of actions
Static? Yes, pits and wumpus are stationary
Discrete? Yes, no real-valued states or actions
Single-Agent? Yes, wumpus takes no (real) actions
```

Observable? No, only local perception

Deterministic? Yes, state+action determines outcome
Episodic? No, involves a sequence of actions
Static? Yes, pits and wumpus are stationary
Discrete? Yes, no real-valued states or actions
Single-Agent? Yes, wumpus takes no (real) actions

Difficult Wumpus World Situations

Solution: Coercion

- Shoot an arrow
 - Scream
 - ⇒ Wumpus above
 - No scream
 - ⇒ Wumpus on right

Difficult Wumpus World Situations

Solution: Coercion

- Shoot an arrow
 - Scream
 - ⇒ Wumpus above
 - No scream
 - ⇒ Wumpus on right

Shoot an arrow

- Scream
 - ⇒ Wumpus above
- No scream
 - ⇒ Wumpus on right

Solution: Coercion

Shoot an arrow

- Scream
 - \Rightarrow Wumpus above
- No scream
 - ⇒ Wumpus on right

Solution: Probability

- 86% pit in (2,2)
- 31% pit in (3,1) or

Solution: Coercion

Shoot an arrow

- Scream
 - \Rightarrow Wumpus above
- No scream
 - ⇒ Wumpus on right

Solution: Probability

- 86% pit in (2,2)
- 31% pit in (3,1) or

Solution: Coercion

Shoot an arrow

- Scream
 - ⇒ Wumpus above
- No scream⇒ Wumpus on right

Solution: Probability

- 86% pit in (2,2)
- 31% pit in (3,1) or (1,3)

Logic

Key Ideas

Formal language for representing information Syntax defines structure of sentences Semantics defines meaning of sentences

Example: Arithmetic

Syntax Valid: x + 2 > yInvalid: x2 + y > y

Semantics The sentence x + 2 > y is true if: The sum of x and 2 is greater than y

Logic

Key Ideas

Formal language for representing information

Syntax defines structure of sentences

Semantics defines meaning of sentences

Example: Arithmetic

Syntax Valid: x + 2 > y

Invalid: x2 + y >

Semantics The sentence x + 2 > y is true if:

The sum of x and 2 is greater than y

Definitions

- A model is a possible state of the world
- If a sentence α is true in model m, then m is a model of α
- $M(\alpha)$ means all models of α

Example: Arithmetic

- Is $\{x = 7, y = 1\}$ a model of α ? Yes
- Is $\{x = 3, y = 6\}$ a model of α ? No

Definitions

- A model is a possible state of the world
- If a sentence α is true in model m, then m is a model of α
- $M(\alpha)$ means all models of α

Example: Arithmetic

- Is $\{x = 7, y = 1\}$ a model of α ? Yes
- Is $\{x = 3, y = 6\}$ a model of α ? No

Definitions

- A model is a possible state of the world
- If a sentence α is true in model m, then m is a model of α
- $M(\alpha)$ means all models of α

Example: Arithmetic

- Is $\{x = 7, y = 1\}$ a model of α ?
- Is $\{x = 3, y = 6\}$ a model of α ? No

Definitions

- A model is a possible state of the world
- If a sentence α is true in model m, then m is a model of α
- $M(\alpha)$ means all models of α

Example: Arithmetic

- Is $\{x = 7, y = 1\}$ a model of α ? Yes
- Is $\{x = 3, y = 6\}$ a model of α ? No

Definitions

- A model is a possible state of the world
- If a sentence α is true in model m, then m is a model of α
- $M(\alpha)$ means all models of α

Example: Arithmetic

- Is $\{x = 7, y = 1\}$ a model of α ? Yes
- Is $\{x = 3, y = 6\}$ a model of α ?

Definitions

- A model is a possible state of the world
- If a sentence α is true in model m, then m is a model of α
- $M(\alpha)$ means all models of α

Example: Arithmetic

- Is $\{x = 7, y = 1\}$ a model of α ? Yes
- Is $\{x = 3, y = 6\}$ a model of α ? No

Entailment

Definition

 $\beta \models \alpha$ if and only if $M(\beta) \subseteq M(\alpha)$

A sentence β entails a sentence α if and only if α is true in all worlds where β is true

Definition (Again)

Definition (Again)

- $(x + y = 4) \models (4 = x + y)$
- $(x = 0) \models (xy = 0)$
- "The Crimson Tide won and the Blazers won" |= "The Crimson Tide won or the Blazers won"

Definition (Again)

- $(x + y = 4) \models (4 = x + y)$
- $(x = 0) \models (xy = 0)$
- "The Crimson Tide won and the Blazers won" |= "The Crimson Tide won or the Blazers won"

Definition (Again)

- $(x + y = 4) \models (4 = x + y)$
- $(x = 0) \models (xy = 0)$
- "The Crimson Tide won and the Blazers won" |= "The Crimson Tide won or the Blazers won"

Models

Number of possible models when placing pits in three squares:

Models

Number of possible models when placing pits in three squares:

Models Number of possible models when placing pits in three squares:

Models

Number of possible models when placing pits in three squares:

Models

Number of possible models when placing pits in three squares:

$$2^3 = 8$$

KB = rules + observations

 α_1 = "[1,2] is safe" KB |= α_1

 α_2 = "[2,2] is safe" KB $\not\models \alpha_2$

KB = rules + observations

 α_1 = "[1,2] is safe" KB |= α_1

 α_2 = "[2,2] is safe" KB $\not\models \alpha_2$

KB = rules + observations

$$\alpha_1$$
 = "[1,2] is safe"
KB $\models \alpha_1$

$$\alpha_2$$
 = "[2,2] is safe"
KB $\not\models \alpha_2$

KB = rules + observations

$$\alpha_1$$
 = "[1,2] is safe"
KB $\models \alpha_1$

 α_2 = "[2,2] is safe" KB $\not\models \alpha_2$

KB = rules + observations

$$\alpha_1$$
 = "[1,2] is safe"
KB $\models \alpha_1$

$$\alpha_2$$
 = "[2,2] is safe"
KB $\not\models \alpha_2$

KB = rules + observations

$$\alpha_1$$
 = "[1,2] is safe"
KB $\models \alpha_1$

$$\alpha_2$$
 = "[2,2] is safe"
KB $\not\models \alpha_2$

Outline

- Logical Agents
 - The Wumpus World
 - Logic Basics
 - Entailment
- Propositional Logic
 - Syntax and Semantics
 - Truth Tables
 - Reasoning Patterns
- 3 Inference Algorithms
 - Truth Tables
 - Chaining
 - Resolution
 - WalkSAT

Propositional Logic Syntax

Basics

- Symbols look like *P*, *Q*, *R*, etc.
- Connectives look like:
 - ¬ negation, a.k.a. "not"
 - ∧ conunction, a.k.a. "and"
 - ∨ disjunction, a.k.a. "or"
 - ⇒ implication, a.k.a. "implies"
 - ⇔ biconditional, a.k.a. "equivalent"

Examples

 $P \qquad \neg Q \qquad \neg Q \land P \qquad R \Rightarrow \neg Q \land P$

Propositional Logic Syntax

Basics

- \blacksquare Symbols look like P, Q, R, etc.
- Connectives look like:
 - ¬ negation, a.k.a. "not"
 - ∧ conunction, a.k.a. "and"
 - ∨ disjunction, a.k.a. "or"
 - ⇒ implication, a.k.a. "implies"
 - ⇔ biconditional, a.k.a. "equivalent"

Examples

P

 $\neg Q$

 $\neg Q \wedge P$

 $R \Rightarrow \neg Q \land P$

Propositional Logic Semantics

Symbols

A model specifies true or false for each symbol

```
E.g. \{P = true, Q = false, R = true\}
```

Connectives

```
\neg S is true iff S is false

S_1 \wedge S_2 is true iff S_1 is true and S_2 is true

S_1 \vee S_2 is true iff S_1 is true or S_2 is true

S_1 \Rightarrow S_2 is true iff S_1 is false or S_2 is true

S_1 \Leftrightarrow S_2 is true iff S_1 \Rightarrow S_2 is true and S_2 \Rightarrow S_1 is true
```

Propositional Logic Semantics

Symbols

A model specifies true or false for each symbol

E.g.
$$\{P = true, Q = false, R = true\}$$

Connectives

```
\neg S is true iff S is false

S_1 \land S_2 is true iff S_1 is true and S_2 is true

S_1 \lor S_2 is true iff S_1 is true or S_2 is true

S_1 \Rightarrow S_2 is true iff S_1 is false or S_2 is true

S_1 \Leftrightarrow S_2 is true iff S_1 \Rightarrow S_2 is true and S_2 \Rightarrow S_1 is true
```

Propositional Logic Complex Expressions

Given

$$P = true \quad Q = false \quad R = true$$

Evaluate

$$P \lor R \Rightarrow \neg (Q \land \neg R)$$

- \blacksquare true \lor true $\Rightarrow \neg$ (false $\land \neg$ true)
- $rac{1}{2}$ true $ightharpoonup true <math>
 ightharpoonup \neg (false \land false)$
- $\exists true \lor true \Rightarrow \neg false$
- 4 $true \lor true \Rightarrow true$
- $true \Rightarrow true$
- 6 true

Propositional Logic Complex Expressions

Given

$$P = true \quad Q = false \quad R = true$$

Evaluate

$$P \lor R \Rightarrow \neg (Q \land \neg R)$$

- $rac{1}{2}$ true $ightharpoonup true <math>
 ightharpoonup \neg (false \land false)$
- $\exists true \lor true \Rightarrow \neg false$
- 4 $true \lor true \Rightarrow true$
- $true \Rightarrow true$
- 6 true

Propositional Logic Complex Expressions

Given

$$P = true \quad Q = false \quad R = true$$

Evaluate

$$P \lor R \Rightarrow \neg (Q \land \neg R)$$

- **■** $true \lor true \Rightarrow \neg(false \land \neg true)$
- true \lor true $\Rightarrow \neg (false \land false)$
- $true \lor true \Rightarrow \neg false$
- \blacksquare true \lor true \Rightarrow true
- $true \Rightarrow true$
- 6 true

Given

$$P = true \quad Q = false \quad R = true$$

$$P \lor R \Rightarrow \neg (Q \land \neg R)$$

- **■** $true \lor true \Rightarrow \neg(false \land \neg true)$
- $rac{1}{2}$ true $ightharpoonup true <math>
 ightharpoonup \neg (false \land false)$
- $\exists true \lor true \Rightarrow \neg false$
- 4 $true \lor true \Rightarrow true$
- 5 $true \Rightarrow true$
- 6 true

Given

$$P = true \quad Q = false \quad R = true$$

$$P \lor R \Rightarrow \neg (Q \land \neg R)$$

- **■** $true \lor true \Rightarrow \neg(false \land \neg true)$
- true \lor true $\Rightarrow \neg (false \land false)$
- $\exists true \lor true \Rightarrow \neg false$
- 4 $true \lor true \Rightarrow true$
- $true \Rightarrow true$
- 6 true

Given

$$P = true \quad Q = false \quad R = true$$

$$P \lor R \Rightarrow \neg (Q \land \neg R)$$

- **■** $true \lor true \Rightarrow \neg(false \land \neg true)$
- true \lor true $\Rightarrow \neg (false \land false)$
- $\exists true \lor true \Rightarrow \neg false$
- 4 $true \lor true \Rightarrow true$
- 5 true \Rightarrow true
- 6 true

Given

$$P = true \quad Q = false \quad R = true$$

$$P \lor R \Rightarrow \neg (Q \land \neg R)$$

- **■** $true \lor true \Rightarrow \neg(false \land \neg true)$
- true \lor true $\Rightarrow \neg (false \land false)$
- $\exists true \lor true \Rightarrow \neg false$
- 4 $true \lor true \Rightarrow true$
- $true \Rightarrow true$
- 6 true

Implication $(\alpha \Rightarrow \beta)$

 \blacksquare α is *false* or β is *true*

Entailment ($\alpha \models \beta$)

■ In all models where α is true, β is also true

Example

the earth is flat the moon is made of green cheese

Implication $(\alpha \Rightarrow \beta)$

 \blacksquare α is *false* or β is *true*

Entailment ($\alpha \models \beta$)

■ In all models where α is true, β is also true

Example

the earth is flat the moon is made of green cheese

Implication $(\alpha \Rightarrow \beta)$

 \blacksquare α is *false* or β is *true*

Entailment ($\alpha \models \beta$)

■ In all models where α is true, β is also true

Example

the earth is flat $\stackrel{?}{\Rightarrow}$ the moon is made of green cheese

Implication $(\alpha \Rightarrow \beta)$

 \blacksquare α is *false* or β is *true*

Entailment ($\alpha \models \beta$)

■ In all models where α is true, β is also true

Example

the earth is flat \Rightarrow the moon is made of green cheese

Implication $(\alpha \Rightarrow \beta)$

 \blacksquare α is *false* or β is *true*

Entailment $(\alpha \models \beta)$

■ In all models where α is true, β is also true

Example

the earth is flat \models the moon is made of green cheese

Implication $(\alpha \Rightarrow \beta)$

 \blacksquare α is *false* or β is *true*

Entailment $(\alpha \models \beta)$

■ In all models where α is true, β is also true

Example

the earth is flat $\not\models$ the moon is made of green cheese

Implication $(\alpha \Rightarrow \beta)$

 \blacksquare α is *false* or β is *true*

Entailment $(\alpha \models \beta)$

■ In all models where α is true, β is also true

Example

the earth is flat ⊭ the moon is made of green cheese

Relation between Implication and Entailment

 $\alpha \models \beta$ if and only if $\alpha \Rightarrow \beta$ in all models

Truth Tables

Key Idea

- Enumerate all possible values for symbols
- Calculate expression for each set of values

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Problem

Problem

Р	Q	R	$P \vee R \Rightarrow \neg (Q \wedge \neg R)$
true	true	true	
true	true	false	
true	false	true	
true	false	false	
false	true	true	
false	true	false	
false	false	true	
false	false	false	

Problem

Р	Q	R	$P \vee R \Rightarrow \neg (Q \wedge \neg R)$
true	true	true	true
true	true	false	
true	false	true	
true	false	false	
false	true	true	
false	true	false	
false	false	true	
false	false	false	

Problem

Р	Q	R	$P \vee R \Rightarrow \neg (Q \wedge \neg R)$
true	true	true	true
true	true	false	false
true	false	true	
true	false	false	
false	true	true	
false	true	false	
false	false	true	
false	false	false	

Problem

Р	Q	R	$P \vee R \Rightarrow \neg (Q \wedge \neg R)$
true	true	true	true
true	true	false	false
true	false	true	true
true	false	false	
false	true	true	
false	true	false	
false	false	true	
false	false	false	

Problem

Р	Q	R	$P \vee R \Rightarrow \neg (Q \wedge \neg R)$
true	true	true	true
true	true	false	false
true	false	true	true
true	false	false	true
false	true	true	
false	true	false	
false	false	true	
false	false	false	

Problem

Р	Q	R	$P \vee R \Rightarrow \neg (Q \wedge \neg R)$
true	true	true	true
true	true	false	false
true	false	true	true
true	false	false	true
false	true	true	true
false	true	false	
false	false	true	
false	false	false	

Problem

Р	Q	R	$P \vee R \Rightarrow \neg (Q \wedge \neg R)$
true	true	true	true
true	true	false	false
true	false	true	true
true	false	false	true
false	true	true	true
false	true	false	true
false	false	true	
false	false	false	

Problem

Р	Q	R	$P \vee R \Rightarrow \neg (Q \wedge \neg R)$
true	true	true	true
true	true	false	false
true	false	true	true
true	false	false	true
false	true	true	true
false	true	false	true
false	false	true	true
false	false	false	

Problem

Р	Q	R	$P \vee R \Rightarrow \neg (Q \wedge \neg R)$
true	true	true	true
true	true	false	false
true	false	true	true
true	false	false	true
false	true	true	true
false	true	false	true
false	false	true	true
false	false	false	true

Logical Equivalences

Commutativity of \land Commutativity of \vee Associativity of \land Associativity of ∨ Double-negation elimination Contraposition Implication elimination De Morgan De Morgan Distributivity of \land over \lor

Key Ideas

- Use logical equivalences etc. to prove things
- No need for a truth table!

Example

Prove:
$$\neg (P \land R \land Q)$$

Given: $P \land R \Rightarrow \neg Q$

Given
Implication Elimination
De Morgan
De Morgan

$$P \land R \Rightarrow \neg Q$$
$$\neg (P \land R) \lor \neg G$$
$$\neg P \lor \neg R \lor \neg Q$$
$$\neg (P \land R \land Q)$$

Key Ideas

- Use logical equivalences etc. to prove things
- No need for a truth table!

Example

Prove: $\neg (P \land R \land Q)$ Given: $P \land R \Rightarrow \neg Q$

Given
Implication Elimination
De Morgan
De Morgan

$$P \wedge R \Rightarrow \neg Q$$
$$\neg (P \wedge R) \vee \neg G$$
$$\neg P \vee \neg R \vee \neg Q$$
$$\neg (P \wedge R \wedge Q)$$

Key Ideas

- Use logical equivalences etc. to prove things
- No need for a truth table!

Example

Prove: $\neg (P \land R \land Q)$ Given: $P \land R \Rightarrow \neg Q$

Given

Implication Elimination De Morgan De Morgan

$$P \land R \Rightarrow \neg Q$$

$$\neg (P \land R) \lor \neg G$$

$$\neg P \lor \neg R \lor \neg Q$$

$$\neg (P \land R \land Q)$$

Key Ideas

- Use logical equivalences etc. to prove things
- No need for a truth table!

Example

Prove: $\neg (P \land R \land Q)$ Given: $P \land R \Rightarrow \neg Q$

Given
Implication Elimination
De Morgan

$$P \wedge R \Rightarrow \neg Q$$
$$\neg (P \wedge R) \vee \neg Q$$
$$\neg P \vee \neg R \vee \neg Q$$
$$\neg (P \wedge R \wedge Q)$$

Key Ideas

- Use logical equivalences etc. to prove things
- No need for a truth table!

Example

Prove: $\neg (P \land R \land Q)$ Given: $P \land R \Rightarrow \neg Q$

Given Implication Elimination

De Morgan De Morgan

$$P \land R \Rightarrow \neg Q$$
$$\neg (P \land R) \lor \neg Q$$
$$\neg P \lor \neg R \lor \neg Q$$
$$\neg (P \land R \land Q)$$

Key Ideas

- Use logical equivalences etc. to prove things
- No need for a truth table!

Example

Prove: $\neg (P \land R \land Q)$ Given: $P \land R \Rightarrow \neg Q$

Given Implication Elimination De Morgan

De Morgan

$$P \land R \Rightarrow \neg Q$$
$$\neg (P \land R) \lor \neg Q$$
$$\neg P \lor \neg R \lor \neg Q$$
$$\neg (P \land R \land Q)$$

Key Ideas

- Use logical equivalences etc. to prove things
- No need for a truth table!

Example

Prove: $\neg (P \land R \land Q)$ Given: $P \land R \Rightarrow \neg Q$

Given Implication Elimination De Morgan

De Morgan

$$P \land R \Rightarrow \neg Q$$
$$\neg (P \land R) \lor \neg Q$$
$$\neg P \lor \neg R \lor \neg Q$$
$$\neg (P \land R \land Q)$$

Key Ideas

- Use logical equivalences etc. to prove things
- No need for a truth table!

Example

Prove: $\neg (P \land R \land Q)$ Given: $P \land R \Rightarrow \neg Q$

Given
Implication Elimination
De Morgan
De Morgan

$$P \land R \Rightarrow \neg Q$$
$$\neg (P \land R) \lor \neg Q$$
$$\neg P \lor \neg R \lor \neg Q$$
$$\neg (P \land R \land Q)$$

Key Ideas

- Use logical equivalences etc. to prove things
- No need for a truth table!

Example

Prove: $\neg (P \land R \land Q)$ Given: $P \land R \Rightarrow \neg Q$

Given $P \wedge R \Rightarrow \neg Q$ Implication Elimination $\neg (P \wedge R) \vee \neg Q$ De Morgan $\neg P \vee \neg R \vee \neg Q$ De Morgan $\neg (P \wedge R \wedge Q)$

Additional Reasoning Patterns

Modus Ponens

$$\frac{\alpha \Rightarrow \beta}{\alpha}$$

$$x > 2 \Rightarrow x \neq 1$$

$$x > 2$$

$$x \neq 1$$

And

elimination

$$\frac{\alpha \wedge \beta}{\beta}$$

$$x = 0 \land y = 42$$

$$y = 42$$

Resolution

$$\alpha \vee \beta$$
 $\neg \alpha$

$$x = 1 \lor x = 2$$

$$\frac{x}{x} = 2$$

Additional Reasoning Patterns

Modus Ponens

$$\frac{\alpha \Rightarrow \beta}{\frac{\alpha}{\beta}}$$

$$x > 2 \Rightarrow x \neq 1$$

$$x > 2$$

$$x \neq 1$$

And elimination

$$\frac{\alpha \wedge \beta}{\beta}$$

$$x = 0 \land y = 42$$
$$y = 42$$

Resolution

$$\alpha \vee \beta$$
 $\neg \alpha$

$$x = 1 \lor x = 2$$

$$x \neq 1$$

Additional Reasoning Patterns

Modus Ponens

$$\frac{\alpha \Rightarrow \beta}{\frac{\alpha}{\beta}}$$

$$x > 2 \Rightarrow x \neq 1$$

$$x > 2$$

$$x \neq 1$$

And elimination

$$\frac{\alpha \wedge \beta}{\beta}$$

$$\frac{x = 0 \land y = 42}{v = 42}$$

Resolution

$$\frac{\alpha \vee \beta}{\beta}$$

$$x = 1 \lor x = 2$$

$$x \neq 1$$

$$x = 2$$

Reasoning Exercise

Prove: $P_{1.3}$

Given:

 $B_{1.2}$ $\neg B_{2,1}$

 $B_{1,2} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{1,3})$ $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$

The reasoning patterns are in your book on pages 249, 250 and 252

(P?)		
(1,3)	(2,3)	(3,3)
(B)		
(1,2)	(2,2)	(3,2)
	$\neg B$	
(1,1)	(2,1)	(3,1)

Prove: $P_{1,3}$

$B_{1,2} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{1,3})$	Given
$B_{1,2} \Rightarrow (P_{1,1} \vee P_{2,2} \vee P_{1,3})$	Biconditional Elimination
B _{1,2}	Given
$P_{1,1} \vee P_{2,2} \vee P_{1,3}$	Modus Ponens
$B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$	Given
$(P_{1,1} \lor P_{2,2} \lor P_{3,1}) \Rightarrow B_{2,1}$	Biconditional Elimination
$\neg B_{2,1} \Rightarrow \neg (P_{1,1} \lor P_{2,2} \lor P_{3,1})$	Contraposition
$\neg B_{2,1}$	Given
$\neg (P_{1,1} \lor P_{2,2} \lor P_{3,1})$	Modus Ponens
$\neg P_{1,1} \wedge \neg P_{2,2} \wedge \neg P_{3,1}$	De Morgan
$\neg P_{1,1}$	And-Elimination
$P_{2,2} \vee P_{1,3}$	Resolution
$\neg P_{2,2}$	And-Elimination
P _{1,3}	Resolution

Outline

- Logical Agents
 - The Wumpus World
 - Logic Basics
 - Entailment
- Propositional Logic
 - Syntax and Semantics
 - Truth Tables
 - Reasoning Patterns
- 3 Inference Algorithms
 - Truth Tables
 - Chaining
 - Resolution
 - WalkSAT

Inference Algorithms

Definition: Derives

Procedure *i* derives β from α ($\alpha \vdash_i \beta$) if: when given α , procedure *i* is able to conclude β

Definition: Soundness

Procedure *i* is sound if: whenever $\alpha \vdash_i \beta$ it is also true that $\alpha \models \beta$

Definition: Completeness

Procedure *i* is complete if: whenever $\alpha \models \beta$ it is also true that $\alpha \vdash_i \beta$

Inference Algorithms

Definition: Derives

Procedure *i* derives β from α ($\alpha \vdash_i \beta$) if: when given α , procedure *i* is able to conclude β

Definition: Soundness

Procedure *i* is sound if:

whenever $\alpha \vdash_i \beta$ it is also true that $\alpha \models \beta$

Definition: Completeness

Procedure *i* is complete if:

whenever $\alpha \models \beta$ it is also true that $\alpha \vdash_i \beta$

Inference Algorithms

Definition: Derives

Procedure *i* derives β from α ($\alpha \vdash_i \beta$) if: when given α , procedure *i* is able to conclude β

Definition: Soundness

Procedure *i* is sound if:

whenever $\alpha \vdash_i \beta$ it is also true that $\alpha \models \beta$

Definition: Completeness

Procedure *i* is complete if:

whenever $\alpha \models \beta$ it is also true that $\alpha \vdash_i \beta$

Prove: Given:

 $\neg P_{1,2}$ $R_1: \neg P_{1,1}$ $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ $R_5: B_{2,1}$

Prove: Given:

 $\neg P_{1,2}$ $R_1: \neg P_{1,1}$ $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ $R_5: B_{2,1}$

B _{1,1}	B _{2,1}	P _{1,1}	P _{1,2}	P _{2,1}	P _{2,2}	P _{3,1}	R ₁	R ₂	R ₃	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
						.						
:	:	:	:	:	:	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

Prove: Given:

 $\neg P_{1,2}$ $R_1: \neg P_{1,1}$ $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ $R_5: B_{2,1}$

B _{1,1}	B _{2,1}	P _{1,1}	P _{1,2}	P _{2,1}	P _{2,2}	P _{3,1}	R ₁	R ₂	R ₃	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
						.						
:	:	:	:	:	:	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

Prove: Given:

 $\neg P_{1,2}$ $R_1: \neg P_{1,1}$ $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ $R_5: B_{2,1}$

B _{1,1}	B _{2,1}	P _{1,1}	P _{1,2}	P _{2,1}	P _{2,2}	P _{3,1}	R ₁	R ₂	R ₃	R_4	R_5	KB
false	false	false	false			false	true	true	true	true	false	false
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true		false			,	true	true	true	true	true	true
false	true	l"	false	1	true	false	true	true	true	true	true	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
1 :		:	:	:		:	l :			:	:	
:	:	:		:	:	-	:	:	:	:	:	
true	false	true	true	false	true	false						

Prove: Given:

 $\neg P_{1,2}$ $R_1: \neg P_{1,1}$ $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ $R_5: B_{2,1}$

_	_	_		_	_	_		_		_	_	777
$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	P _{2,1}	$P_{2,2}$	$ P_{3,1} $	R_1	R_2	R_3	R_4	R_5	KB
false	false	false	false	false	false	false	true	true	true	true	false	false
false	false	false	false	false	false	true	true	true	false	true	false	false
						.						
:	:	:	:	:	:	:	:	:	:	:	:	
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
							-					
:	:	:	:	:	:	:	:	:	:	:	:	
true	true	true	true	true	true	true	false	true	true	false	true	false

```
def truth_table_entails(knowledge_base, query):
```

```
def truth_table_entails(knowledge_base, query):
    # check all assignments of knowledge base and query symbols:
    # if the knowledge base is true the query should be true
    symbols = set.union(knowledge base.symbols, guery.symbols)
    return all(
        query.is_true_for(assignment)
        for assignment in all_models(symbols)
        if knowledge base.is true for(assignment))
```

```
def truth_table_entails(knowledge_base, query):
    # check all assignments of knowledge base and query symbols:
    # if the knowledge base is true the query should be true
    symbols = set.union(knowledge_base.symbols, query.symbols)
    return all(
        query.is_true_for(assignment)
        for assignment in all_models(symbols)
        if knowledge base.is true for(assignment))
def all models(symbols):
```

```
def truth_table_entails(knowledge_base, query):
    # check all assignments of knowledge base and query symbols:
    # if the knowledge base is true the query should be true
    symbols = set.union(knowledge_base.symbols, query.symbols)
    return all(
        query.is_true_for(assignment)
        for assignment in all_models(symbols)
        if knowledge base.is true for(assignment))
def all_models(symbols):
    # base case: no symbols, generate an empty assignment
    if not symbols:
        yield {}
```

```
def truth_table_entails(knowledge_base, query):
    # check all assignments of knowledge base and query symbols:
    # if the knowledge base is true the guery should be true
    symbols = set.union(knowledge_base.symbols, query.symbols)
    return all(
        query.is_true_for(assignment)
        for assignment in all_models(symbols)
        if knowledge base.is true for(assignment))
def all_models(symbols):
    # base case: no symbols, generate an empty assignment
    if not symbols:
        vield {}
    # recursive case: assign to the first symbol and recurse
    else:
        first. rest = symbols[0]. symbols[1:]
        for assignment in all_models(rest):
            for value in [True, False]:
                assignment[first] = value
                yield assignment
```

Definitions (Again)

```
Sound if \alpha \vdash_i \beta then \alpha \models \beta
```

Complete if $\alpha \models \beta$ then $\alpha \vdash_i \beta$

Truth Table Inference Properties

Sound?

Complete? Yes, explores all possibilities

Definitions (Again)

```
Sound if \alpha \vdash_i \beta then \alpha \models \beta
```

Complete if $\alpha \models \beta$ then $\alpha \vdash_i \beta$

Truth Table Inference Properties

Sound? Yes, directly implements entailment definition

Complete? Yes, explores all possibilities

Definitions (Again)

```
Sound if \alpha \vdash_i \beta then \alpha \models \beta
```

Complete if $\alpha \models \beta$ then $\alpha \vdash_i \beta$

Truth Table Inference Properties

Sound? Yes, directly implements entailment definition

Complete? Yes, explores all possibilities

Definitions (Again)

```
Sound if \alpha \vdash_i \beta then \alpha \models \beta
```

Complete if $\alpha \models \beta$ then $\alpha \vdash_i \beta$

Truth Table Inference Properties

Sound? Yes, directly implements entailment definition

Complete? Yes, explores all possibilities

Key Idea

Inference is easier if all statements are Horn Clauses:

$$P_1 \wedge \ldots \wedge P_n \Rightarrow Q$$

Key Idea

Inference is easier if all statements are Horn Clauses:

$$P_1 \wedge \ldots \wedge P_n \Rightarrow Q$$

Given:

Prove *M*:

 $B \wedge L \Rightarrow M$

 $A \wedge B \Rightarrow L$

Α

В

Key Idea

Inference is easier if all statements are Horn Clauses:

$$P_1 \wedge \ldots \wedge P_n \Rightarrow Q$$

Given:

 $B \wedge I \Rightarrow M$

 $A \wedge B \Rightarrow L$

Α

Prove *M*:

, . D

В

 $A \wedge B \Rightarrow L$

Key Idea

Inference is easier if all statements are Horn Clauses:

$$P_1 \wedge \ldots \wedge P_n \Rightarrow Q$$

Given: Prove M: $B \land L \Rightarrow M$ $A \land B \Rightarrow L$ $B \land A \land B \Rightarrow I$

 $\frac{A \land B \rightarrow L}{L}$ by Modus Ponens

Key Idea

Inference is easier if all statements are Horn Clauses:

$$P_1 \wedge \ldots \wedge P_n \Rightarrow Q$$

Given:

$$B \wedge I \Rightarrow M$$

$$A \wedge B \Rightarrow L$$

Α

Α

Prove M:

Α

В

 $A \wedge B \Rightarrow I$

 $A \land B \rightarrow C$

by Modus Ponens

D

. .

 $B \wedge L \Rightarrow M$

Key Idea

Inference is easier if all statements are Horn Clauses:

$$P_1 \wedge \ldots \wedge P_n \Rightarrow Q$$

Given: Prove M: $B \wedge I \Rightarrow M$ $A \wedge B \Rightarrow L$ $A \wedge B \Rightarrow I$ by Modus Ponens $B \wedge L \Rightarrow M$ M by Modus Ponens

def forward_chaining_entails(knowledge_base, query):

```
def forward_chaining_entails(knowledge_base, query):
    # count the symbols in the premise of each clause
    counts = {}
    for clause in knowledge_base.get_clauses():
        counts[clause] = len(clause.premise)
```

```
def forward_chaining_entails(knowledge_base, query):
    # count the symbols in the premise of each clause
    counts = {}
    for clause in knowledge_base.get_clauses():
        counts[clause] = len(clause.premise)
    # start with known symbols and search for non-inferred
    inferred = set()
    agenda = knowledge_base.get_true_symbols()
    while agenda:
        symbol = agenda.pop()
```

```
def forward_chaining_entails(knowledge_base, query):
    # count the symbols in the premise of each clause
    counts = {}
    for clause in knowledge_base.get_clauses():
        counts[clause] = len(clause.premise)
    # start with known symbols and search for non-inferred
    inferred = set()
    agenda = knowledge_base.get_true_symbols()
    while agenda:
        symbol = agenda.pop()
        # if the query was on the agenda, it is known to be true
        if symbol == query:
            return True
```

```
def forward_chaining_entails(knowledge_base, query):
    # count the symbols in the premise of each clause
    counts = {}
    for clause in knowledge_base.get_clauses():
        counts[clause] = len(clause.premise)
    # start with known symbols and search for non-inferred
    inferred = set()
    agenda = knowledge_base.get_true_symbols()
    while agenda:
        symbol = agenda.pop()
        # if the query was on the agenda, it is known to be true
        if symbol == query:
            return True
        # do not repeat symbols that have already been checked
        if symbol not in inferred:
            inferred.add(symbol)
```

```
def forward_chaining_entails(knowledge_base, query):
    # count the symbols in the premise of each clause
    counts = {}
    for clause in knowledge_base.get_clauses():
        counts[clause] = len(clause.premise)
    # start with known symbols and search for non-inferred
    inferred = set()
    agenda = knowledge_base.get_true_symbols()
    while agenda:
        symbol = agenda.pop()
        # if the query was on the agenda, it is known to be true
        if symbol == query:
            return True
        # do not repeat symbols that have already been checked
        if symbol not in inferred:
            inferred.add(symbol)
            # update counts and infer conclusions when possible
            for clause in knowledge_base.get_clauses():
                if symbol in clause.premise:
                    counts[clause] -= 1
                    if counts[clause] == 0:
                        agenda.append(clause.head)
```

```
def forward_chaining_entails(knowledge_base, query):
    # count the symbols in the premise of each clause
    counts = {}
    for clause in knowledge_base.get_clauses():
        counts[clause] = len(clause.premise)
    # start with known symbols and search for non-inferred
    inferred = set()
    agenda = knowledge_base.get_true_symbols()
    while agenda:
        symbol = agenda.pop()
        # if the guery was on the agenda, it is known to be true
        if symbol == query:
            return True
        # do not repeat symbols that have already been checked
        if symbol not in inferred:
            inferred.add(symbol)
            # update counts and infer conclusions when possible
            for clause in knowledge_base.get_clauses():
                if symbol in clause.premise:
                    counts[clause] -= 1
                    if counts[clause] == 0:
                        agenda.append(clause.head)
    return False
```

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

Properties

Sound? Yes, uses Modus Ponens

Complete? Yes (more on this in a moment)

Time? O(n) given n statements in KB

- Requires Horn Clauses
- Won't work with Propositional logic in general

Properties

Sound? Yes, uses Modus Ponens

Complete? Yes (more on this in a moment)

Time? O(n) given n statements in KB

- Requires Horn Clauses
- Won't work with Propositional logic in general

Properties

Sound? Yes, uses Modus Ponens

Complete? Yes (more on this in a moment)

Time? O(n) given n statements in KB

- Requires Horn Clauses
- Won't work with Propositional logic in general

Properties

Sound? Yes, uses Modus Ponens

Complete? Yes (more on this in a moment)

Time? O(n) given n statements in KB

- Requires Horn Clauses
- Won't work with Propositional logic in general

Properties

Sound? Yes, uses Modus Ponens

Complete? Yes (more on this in a moment)

Time? O(n) given n statements in KB

- Requires Horn Clauses
- Won't work with Propositional logic in general

Prove: If $KB \models Q$ then $KB \vdash_{forward-chaining} Q$

- $\blacksquare KB \models Q$, so Q is *true* in every model of KB
- Final inferred set is a model of *KB*
- So *Q* is true in the inferred model
- \blacksquare So $KB \vdash_{forward-chaining} Q$

- Assume not, i.e. $P_1 \wedge \ldots \wedge P_n \Rightarrow Q$ is *false*
- **2** So $P_1 \wedge \ldots \wedge P_n$ is *true* and Q is *false* (= not inferred)
- But then Q should have been inferred!
- So inferred must be a model of KF

Prove: If $KB \models Q$ then $KB \vdash_{forward-chaining} Q$

- $KB \models Q$, so Q is *true* in every model of KB
- Final inferred set is a model of *KB*
- So Q is true in the inferred model
- 4 So $KB \vdash_{forward-chaining} Q$

- Assume not, i.e. $P_1 \wedge \ldots \wedge P_n \Rightarrow Q$ is false
- **So** $P_1 \wedge ... \wedge P_n$ is *true* and Q is *false* (= not inferred
- But then Q should have been inferred!
- So inferred must be a model of KB

Prove: If $KB \models Q$ then $KB \vdash_{forward-chaining} Q$

- $KB \models Q$, so Q is *true* in every model of KB
- **Primal inferred** set is a model of *KB*
- So Q is true in the inferred model
- 4 So $KB \vdash_{forward\text{-}chaining} Q$

- Assume not, i.e. $P_1 \wedge \ldots \wedge P_n \Rightarrow Q$ is *false*
- 2 So $P_1 \wedge ... \wedge P_n$ is *true* and Q is *false* (= not inferred)
- But then *Q* should have been inferred!
- 4 So inferred must be a model of KB

Prove: If $KB \models Q$ then $KB \vdash_{forward\text{-}chaining} Q$

- $KB \models Q$, so Q is *true* in every model of KB
- **2** Final **inferred** set is a model of *KB*
- **So** *Q* is true in the **inferred** model
- **4** So $KB \vdash_{forward\text{-}chaining} Q$

- Assume not, i.e. $P_1 \wedge \ldots \wedge P_n \Rightarrow Q$ is *false*
- **2** So $P_1 \wedge ... \wedge P_n$ is *true* and Q is *false* (= not inferred)
- But then *Q* should have been inferred!
- 4 So inferred must be a model of KB

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Key Idea: Recursion

- Start by trying to prove query *Q*
- If not *true*, try to prove $P_1 \wedge ... \wedge P_n \Rightarrow Q$ (recurse)

Properties

Sound? Yes

Complete? Yes

Resolution (Again)

Example

- \neg *IsSnowing* \lor *IsCold*
- $\neg IsCold \lor WearCoat$
- \neg IsSnowing \lor WearCoat

Intuition

- If *IsCold* is *true*, then *WearCoat* must be *true*
- If *IsCold* is *false*, then *IsSnowing* must be *false*
- So either *IsSnowing* is *false* or *WearCoat* is *true*

Resolution

Resolution Definition

```
P_1 \lor \ldots \lor P_n

Q_1 \lor \ldots \lor Q_m

P_i = \neg Q_i
```

$$P_1 \vee \ldots \vee P_{i-1} \vee P_{i+1} \vee \ldots \vee P_n \vee Q_1 \vee \ldots \vee Q_{j-1} \vee Q_{j+1} \vee \ldots \vee Q_m$$

Inference by Resolution

- Simplify all statements to use only \land , \lor and \neg
- Assume $KB \land \neg \alpha$ (a.k.a $\neg (KB \Rightarrow \alpha)$)
- Apply resolution until *false* is concluded

Prove: A Proof:

Given:

 R_1 : $A \lor B$

 R_2 : $C \vee \neg B$

 R_3 : $A \lor \neg C$

Prove: A

Proof:

Given:

 R_4 : $\neg A$ Assumed

 R_1 : $A \vee B$

 R_2 : $C \vee \neg B$

 R_3 : $A \vee \neg C$

Prove: A

Proof:

Given:

 R_1 : $A \lor B$

 R_2 : $C \vee \neg B$

 R_3 : $A \lor \neg C$

 R_4 : $\neg A$ Assumed

 R_5 : B R_1 , R_4

Prove: A

Given:

 R_1 : $A \lor B$

 R_2 : $C \vee \neg B$

 R_3 : $A \lor \neg C$

Proof:

 R_4 : $\neg A$ Assumed

 R_5 : B R_1 , R_4

 R_6 : $\neg C$ R_3 , R_4

Prove: A	Proof:	
Given: R_1 : $A \lor B$ R_2 : $C \lor \neg B$ R_3 : $A \lor \neg C$	R_4 : $\neg A$ R_5 : B R_6 : $\neg C$	$R_1, R_4 R_3, R_4$
H_3 . A $\vee \neg C$	R_7 : $\neg B$	n_2, n_6

Prove: A

Given:

 R_1 : $A \vee B$

 R_2 : $C \vee \neg B$

 R_3 : $A \lor \neg C$

Proof:

 R_4 : $\neg A$ Assumed

 R_5 : B R_1 , R_4

 R_6 : $\neg C$ R_3 , R_4

 R_7 : $\neg B$ R_2 , R_6

 R_8 : false R_5 , R_7

Conjunctive Normal Form

Goal: Conjunction of Disjunctions of Literals

$$(P_1 \vee \ldots \vee P_n) \wedge (Q_1 \vee \ldots \vee Q_m) \wedge \ldots$$

Procedure

- Replace $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$
- **2** Replace $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$
- **■** Move ¬ inward with De Morgan and Double Negation
- **4** Apply Distributivity of \lor over \land

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

- Replace $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Replace $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$ $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- Move \neg inward with De Morgan and Double Negation $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- Apply Distributivity of \vee over \wedge $(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg P_{1,2} \vee B_{1,1}) \wedge (\neg P_{2,1} \vee B_{1,1})$

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

- Replace $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Replace $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$ $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- Move \neg inward with De Morgan and Double Negation $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- Apply Distributivity of \vee over \wedge $(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg P_{1,2} \vee B_{1,1}) \wedge (\neg P_{2,1} \vee B_{1,1})$

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

- Replace $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Replace $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$ $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- Move \neg inward with De Morgan and Double Negation $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- Apply Distributivity of \vee over \wedge $(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg P_{1,2} \vee B_{1,1}) \wedge (\neg P_{2,1} \vee B_{1,1})$

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

- Replace $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- 2 Replace $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$ $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- Move \neg inward with De Morgan and Double Negation $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- Apply Distributivity of \vee over \wedge $(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg P_{1,2} \vee B_{1,1}) \wedge (\neg P_{2,1} \vee B_{1,1})$

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

- Replace $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Parameter Replace $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$ $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- Move \neg inward with De Morgan and Double Negation $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- Apply Distributivity of \vee over \wedge $(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg P_{1,2} \vee B_{1,1}) \wedge (\neg P_{2,1} \vee B_{1,1})$

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

- Replace $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Parameter Replace $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$ $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- Move \neg inward with De Morgan and Double Negation $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- Apply Distributivity of \vee over \wedge $(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg P_{1,2} \vee B_{1,1}) \wedge (\neg P_{2,1} \vee B_{1,1})$

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

- Replace $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Replace $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$ $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- Move \neg inward with De Morgan and Double Negation $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- Apply Distributivity of \vee over \wedge $(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg P_{1,2} \vee B_{1,1}) \wedge (\neg P_{2,1} \vee B_{1,1})$

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

- Replace $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Replace $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$ $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- Move ¬ inward with De Morgan and Double Negation $(¬B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((¬P_{1,2} \land ¬P_{2,1}) \lor B_{1,1})$
- 4 Apply Distributivity of \lor over \land

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

- Replace $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Replace $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$ $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- Move \neg inward with De Morgan and Double Negation $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- Apply Distributivity of \vee over \wedge $(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg P_{1,2} \vee B_{1,1}) \wedge (\neg P_{2,1} \vee B_{1,1})$

Resolution Exercise

Prove using Resolution:

 $P_{1,3}$

Given:

$$B_{1,2}$$

 $\neg B_{2,1}$
 $B_{1,2} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{1,3})$
 $B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$

(P?)		
(1,3)	(2,3)	(3,3)
(B)		
(1,2)	(2,2)	(3,2)
	$\neg B$	
(1,1)	(2,1)	(3,1)

Prove: $P_{1.3}$

After conversion to CNF:

$$R_1$$
: $B_{1,2}$

$$R_2$$
: $\neg B_{2,1}$

$$R_3$$
: $\neg B_{1,2} \lor P_{1,1} \lor P_{2,2} \lor P_{1,3}$

$$R_4$$
: $\neg P_{1,1} \lor B_{1,2}$

$$R_5$$
: $\neg P_{2,2} \lor B_{1,2}$

$$R_6$$
: $\neg P_{1,3} \lor B_{1,2}$

$$R_7$$
: $\neg B_{2,1} \lor P_{1,1} \lor P_{2,2} \lor P_{3,1}$

 $R_8: \neg P_{1,1} \lor B_{2,1}$

 R_0 : $\neg P_{22} \lor B_{21}$

 R_{10} : $\neg P_{31} \lor B_{21}$

Using resolution:

 R_{12} : $\neg P_{11}$ $R_{13}: \neg P_{22}$ R_{14} : $\neg B_{12} \lor P_{11} \lor P_{22}$ $R_{11} + R_{3}$ R_{15} : $P_{1.1} \vee P_{2.2}$

 R_{16} : P_{22}

 $R_{11}: \neg P_{13}$

R₁₇: false

Assumed

 $R_2 + R_8$ $R_2 + R_0$

 $R_{14} + R_{1}$ $R_{15} + R_{12}$

 $R_{16} + R_{13}$

Properties

Sound? Yes, uses Resolution

Complete? Yes

Time? Worst case exponential in # of symbols

- Works for Propositional logic in general
- Not just Horn Clauses!

Properties

Sound? Yes, uses Resolution

Complete? Yes

Time? Worst case exponential in # of symbols

- Works for Propositional logic in general
- Not just Horn Clauses!

Properties

Sound? Yes, uses Resolution

Complete? Yes

Time? Worst case exponential in # of symbols

- Works for Propositional logic in general
- Not just Horn Clauses!

Properties

Sound? Yes, uses Resolution

Complete? Yes

Time? Worst case exponential in # of symbols

- Works for Propositional logic in general
- Not just Horn Clauses!

Properties

Sound? Yes, uses Resolution

Complete? Yes

Time? Worst case exponential in # of symbols

- Works for Propositional logic in general
- Not just Horn Clauses!

Key Ideas

- Treat satisfiability checking as local search
- On each iteration flip a symbol's value
- Choice of symbol to flip is sometimes random, sometimes by MIN-CONFLICTS
- Quit after a certain number of steps

Properties

Sound? Yes, only returns when KB is true

Complete? No, could stop early

Key Ideas

- Treat satisfiability checking as local search
- On each iteration flip a symbol's value
- Choice of symbol to flip is sometimes random, sometimes by MIN-CONFLICTS
- Quit after a certain number of steps

Properties

Sound? Yes, only returns when KB is *true*

Complete? No, could stop early

Key Ideas

- Treat satisfiability checking as local search
- On each iteration flip a symbol's value
- Choice of symbol to flip is sometimes random, sometimes by MIN-CONFLICTS
- Quit after a certain number of steps

Properties

Sound? Yes, only returns when KB is *true*

Complete? No, could stop early

Key Ideas

- Treat satisfiability checking as local search
- On each iteration flip a symbol's value
- Choice of symbol to flip is sometimes random, sometimes by MIN-CONFLICTS
- Quit after a certain number of steps

Properties

Sound? Yes, only returns when KB is true

Complete? No, could stop early

WalkSAT Performance

DPLL
Truth table
entailment +
heuristics
and pruning

Key Points

Propositional Logic

- Symbols: *P*, *Q*, *R*, . . .
- \blacksquare Connectives: \land , \lor , \neg , \Rightarrow , \Leftrightarrow ,
- Entailment: $\alpha \models \beta$ iff $\alpha \Rightarrow \beta$ in all worlds

Inference

- Enumerate all models through truth tables
- Forward/Backward chaining with Horn clauses
- Resolution using conjunctive normal form
- Local search, e.g. WALKSAT