Structures algébriques : groupes, anneaux et corps

Table des matières

1	\mathbf{Grc}	pupes	2	
	1.1	Lois de composition interne	2	
	1.2	Groupes	3	
	1.3	Sous-groupes		
		Morphismes de groupes		
2	Anı	neaux	5	
	2.1	Structure d'anneau	5	
	2.2	Sous-anneaux		
	2.3	Morphismes d'anneaux	6	
	2.4	Divisibilité		
	2.5	Calculs dans les anneaux		
3	Corps			
	3.1	Structure de corps	8	
	3.2	Exemples		
	9 9	Pour le quite		

1 Groupes

1.1 Lois de composition interne

Definition 1

Soit E un ensemble. Une loi de composition interne (LCI) sur E est une application T de $E \times E$ dans E, notée généralement de façon infixe : on écrit x T y plutôt que T(x, y), lorsque $(x, y) \in E \times E$.

Exemples 1

- La somme sur \mathbb{N} , \mathbb{N}^* , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} (mais pas sur \mathbb{Z}^* , \mathbb{Q}^* , \mathbb{R}^* , \mathbb{C}^*).
- Le produit sur \mathbb{N} , \mathbb{N}^* , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ...
- La différence sur \mathbb{R} ou \mathbb{Z} (mais pas sur \mathbb{N}).
- La composition des applications sur F^F (applications de F dans F).
- La loi \oplus définie sur \mathbb{R}^2 par $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$.
- La loi \otimes définie sur \mathbb{R}^2 par $(x_1, y_1) \otimes (x_2, y_2) = (x_1x_2 y_1y_2, x_1y_2 + x_2y_1)$ (vous la reconnaissez?)
- Les lois \cup , \cap et Δ (réunion, intersection et différence symétrique) définies sur $\mathcal{P}(F)$.

DFINITION 2

 \bullet Une LCI T sur E sera dite associative lorsque :

$$\forall x, y, z \in E^3, \qquad (x T y) T z = x T (y T z).$$

ullet Une LCI T sur E sera dite commutative lorsque :

$$\forall x, y \in E^2, \qquad x T y = y T x.$$

• Si T est une LCI associative sur $E, e \in E$ est un neutre pour T lorsque :

$$\forall x \in E, \qquad x T e = e T x = x.$$

PROPOSITION 1 Si T est une LCI associative sur E qui admet un neutre, alors ce neutre est unique. On peut alors parler DU neutre de T.

PREUVE : On suppose e_1 et e_2 neutres pour T, et on considère $e_1 T e_2 \dots$

Exemples 2

- La somme et le produit sur \mathbb{C} (donc sur ses sous-ensembles) est associative et commutative, et admettent pour neutres respectifs 0 et 1.
- La différence n'est ni associative ni commutative sur \mathbb{R} .
- La loi \circ (composition des fonctions de F dans F) est associative, mais n'est pas commutative (sauf si F est un singleton, auquel cas...). Elle admet un neutre, qui est l'application Id_F .
- Les lois ∪, ∩ et Δ sur P(F) sont associatives et commutatives. Elles admettent pour neutres respectifs ∅, F, et ∅.
- \oplus et \otimes sont associatives et commutatives sur \mathbb{R}^2 .
- Vue comme LCI sur \mathbb{N}^* , + n'admet pas d'élément neutre.

Exercice 1 Montrer que les lois \oplus et \oplus sur \mathbb{R}^2 (cf exemples 1) admettent chacune un neutre.

Definition 3

Si T est une LCI associative sur E qui admet un neutre e et $x \in E$, on dit que x admet un symétrique pour <math>T s'il existe $y \in E$ tel que x T y = y T x = e.

PROPOSITION 2 Dans la définition précédente, si y existe, il est unique. On peut alors parler DU symétrique de x pour T. On le note généralement x^{-1} .

PREUVE : Partir de $y_1 T(x T y_2) = (y_1 T x)T y_2...$

Remarques 1

- On peut avoir $x T y = e_G$ sans avoir $y T x = e_G$. On prendra par exemple $E = \mathbb{N}^{\mathbb{N}}$, T la loi \circ de composition des fonctions, $y : n \mapsto n+1$ et $x : n \mapsto \operatorname{Max}(n-1,0)$.
- ullet Les lois notées . sont souvent "oubliées" dans l'écriture : x.y devient xy.
- Grâce à l'associativité, on s'autorise à noter x T y T z la valeur commune de (x T y) T z et x T (y T z).
- Lorsque la loi est additive +, le symétrique est noté -x et est appelé "opposé". Lorsque la loi est multiplicative ., le symétrique est appelé "inverse". On n'utilisera JAMAIS la notation $\frac{1}{x}$ (sauf pour les complexes-réels-entiers), puisqu'alors la notation $\frac{y}{x}$ serait ambigüe dans le cas d'une loi multiplicative non commutative (ce qui sera la rêgle en algèbre linéaire) : a priori, $y \cdot \frac{1}{x}$ et $\frac{1}{x} \cdot y$ peuvent être distincts. . .

Exercice 2 $Si\ x$ et y admettent un symétrique pour une loi *, montrer que x*y admet également un symétrique.

1.2 Groupes

Definition 4

Un groupe est un ensemble non vide muni d'une loi de composition interne (G,*) tels que :

- * est associative;
- * admet un neutre e_G ;
- \bullet tout élément de G est symétrisable (admet un symétrique) pour *.

Si * est commutative, on dit que (G,*) est commutatif, ou encore abélien.

Exemples 3

On fournit d'abord des exemples de groupes : dans les deux premiers cas et le dernier, il s'agit de groupes abéliens. Les deux autres (comme la plupart des groupes fonctionnels) sont non commutatifs.

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} munis de la somme.
- \mathbb{Q}^* , \mathbb{R}^* , \mathbb{C}^* , \mathbb{U} , \mathbb{U}_n munis du produit.
- L'ensemble des homothéties et translations du plan, muni de la loi o.
- L'ensemble des permutations (bijections) de [1, n] muni de la loi \circ .
- L'ensemble $\mathcal{P}(E)$ muni de la différence symétrique Δ .

Exemples 4

Pour diverses raisons (à déterminer), les couples suivants ne sont pas des groupes :

- $(\mathbb{N},+), (\mathbb{R},.).$
- $(\mathbb{U},+)$.
- \bullet $(E^E, \circ).$
- $(\mathcal{P}(E), \cup), (\mathcal{P}(E), \cap).$

EXERCICE 3 Montrer que (\mathbb{R}^2, \oplus) et $(\mathbb{R}^2 \setminus \{(0,0)\}, \otimes)$ sont des groupes commutatifs.

1.3 Sous-groupes

Deinition 5

Un sous-groupe d'un groupe (G,*) est une partie non vide H de G telle que :

- * induit sur H une loi de composition interne.
- Muni de cette loi, H est un groupe.

On note alors : H < G.

Remarques 2

- ullet En pratique, pour montrer qu'une partie non vide H de G en constitue un sous-groupe, il suffit de vérifier :
 - $-e_G \in H$;

- -H est stable par *;
- pour tout $x \in H$, le symétrique x, a priori dans G, est en fait dans H.
- L'intérèt principal de la remarque précédente tient dans le fait que dans bien des cas, on peut montrer que (H,*) est un groupe en montrant grâce au critère précédent que c'est un sous-groupe d'un groupe connu. Il est alors inutile de montrer l'associativité, la commutativité et même l'existence d'un neutre : il n'y a que des VERIFICATIONS à faire.

Exemples 5

• Pour la loi +, on a la "tour de groupe" (inclusions successives de sous-groupes/groupes) suivante :

$$\{0\} < 1515\mathbb{Z} < \mathbb{Z} < \mathbb{Q} < \mathbb{R} < \mathbb{C}$$

• Pour la multiplication usuelle :

$$\{1\} < \mathbb{U}_n < \mathbb{U} < \mathbb{C}^*$$

mais aussi:

$$\{1\} < \{-1,1\} < \mathbb{Q}^* < \mathbb{R}^* < \mathbb{C}^*$$

• Si G est un groupe, $\{e_G\}$ et G en constituent des sous-groupes (dits triviaux)

EXERCICE 4 Soient H_1 et H_2 deux sous-groupes de (G,.). Montrer que $H_1 \cap H_2$ est également un sous-groupe de G.

On verra en TD que ça se passe moins bien pour la réunion de deux sous-groupes.

Exercice 5 On définit l'ensemble :

$$\mathbb{Z}[\sqrt{2}] = \left\{k + l\sqrt{2} \mid k, l \in \mathbb{Z}\right\}.$$

Montrer que $(\mathbb{Z}[\sqrt{2}], +)$ constitue un groupe (+ est l'addition usuelle des réels).

1.4 Morphismes de groupes

DFINITION 6

• Soient (G, *) et (H, T) deux groupes. Une application de G dans H est un "morphisme de groupes" lorsque :

$$\forall x, y \in G, \qquad f(x * y) = f(x) T f(y).$$

- Si G = H et * = T, on parle d'endomorphisme.
- Si f est bijective, on parle d'isomorphisme.
- Si f est un endomorphisme bijectif, on parle d'automorphisme.

Exemples 6

- $x \mapsto 2^x$ réalise un isomorphisme de $(\mathbb{R}, +)$ sur $(\mathbb{R}_+^*, .)$;
- $x \mapsto 2x$ réalise un automorphisme de $(\mathbb{R}, +)$;
- $x \mapsto 3 \ln x$ réalise un isomorphisme de $(\mathbb{R}_+^*, .)$ sur $(\mathbb{R}, +)$;
- $z \mapsto |z|$ réalise un morphisme de $(\mathbb{C}^*, .)$ dans $(\mathbb{R}^*, .)$.
- Si G est un groupe abélien, $x \mapsto x^2$ et $x \mapsto x^{-1}$ réalisent des endomorphismes de G.
- $\theta \mapsto e^{i\theta}$ réalise un morphisme de $(\mathbb{R},+)$ dans $(\mathbb{C}^*,.)$, et même sur $(\mathbb{U},.)$.

EXERCICE 6 Si f est un morphisme de (G,*) dans (H,\circ) et g un morphisme de (H,\circ) dans (K,T), montrer que $g \circ f$ réalise un morphisme de (G,*) dans (K,T).

Exercice 7 Montrer que si f est un isomorphisme de (G,*) sur (H,\circ) , alors son application réciproque f^{-1} réalise un isomorphisme de (H,\circ) sur (G,*).

PROPOSITION 3 Quelques propriétés élémentaires des morphismes de groupes : f est ici un morphisme de (G,*) dans (H,T).

- $f(e_G) = e_H$.
- Si f est un isomorphisme, alors son application réciproque réalise un isomorphisme de (H,T) sur (G,*).
- $Si \ G_1 < G, \ alors \ f(G_1) < H.$
- $Si H_1 < H$, $alors f^{-1}(H_1) < G$.

Preuve : Elémentaire, donc à savoir faire seul!

Definition 7

Soit f un morphisme de G dans H.

• Le noyau de f, noté Ker f est l'ensemble des antécédents par f de e_H :

$$\operatorname{Ker} f = \{ x \in G; \ f(x) = e_H \} = f^{-1}(e_H)$$

(attention, f n'est pas supposée bijective; il n'est donc pas question de la bijection réciproque de f).

• L'image de f, noté $\operatorname{Im} f$ est f(G) (ensemble des images par f des éléments de G).

D'après les deux derniers points de la proposition 3, le noyau et l'image de f sont des sous-groupes respectifs de G et H.

Exercice 8 Montrer que $(\mathbb{U}, .)$ est un groupe, en le voyant successivement comme image et noyau d'un morphisme de groupe.

Bien entendu, et c'est une trivialité, un morphisme de G dans H est surjectif si et seulement si son image est égale à H. Ce résultat est d'ailleurs sans intérèt ... Le résultat suivant est bien plus intéressant, puisqu'il réduit énormément le travail, pour montrer qu'un morphisme est injectif.

PROPOSITION 4 Soit f un morphisme de (G,*) dans (H,T). Alors f est injectif si et seulement si son noyau est réduit à $\{e_G\}$.

Preuve : Elémentaire, donc à savoir faire seul...

EXERCICE 9 L'application $\varphi: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto (2x-y,3x+2y)$ est-elle injective?

2 Anneaux

2.1 Structure d'anneau

DFINITION 8

Un anneau est un ensemble muni de deux LCI (A, +, .) tels que :

- (A, +) est un groupe *commutatif* de neutre noté 0_A .
- La loi . est une LCI sur A associative et distibutive à gauche et à droite par rapport à +:

$$\forall x, y, z \in A$$
, $x.(y+z) = x.y + x.z$ et $(x+y).z = x.z + y.z$

• La loi . admet un neutre différent de 0_A , noté $\mathbf{1}_A$.

Si la loi . est commutative, l'anneau est dit commutatif ou abélien.

EXERCICE 10 Si $x \in A$, montrer que $0_A.x = 0_A$ (considérer $0_A.x + 0_A.x$).

Exemples 7

- $(\mathbb{Z},+,.)$, $(\mathbb{Q},+,.)$, $(\mathbb{R},+,.)$ et $(\mathbb{C},+,.)$ sont des anneaux bien connus.
- $(\mathcal{P}(E), \Delta, \cap)$ est un anneau plus anecdotique.
- $(\mathbb{R}^2, \oplus, \otimes)$ est un anneau...connu sous une autre identité!

• L'ensemble des suites réelles, muni de l'addition et du produit des suites, est un anneau. Même chose pour l'ensemble des fonctions de I dans \mathbb{R} . On déterminera précisément les neutres de ces anneaux.

Remarques 3

- Il est nécessaire d'imposer la distributivité à droite et à gauche. Par exemple, $(\mathbb{R}^{\mathbb{R}}, +, \circ)$ n'est pas un anneau : on a bien $(f+g) \circ h = f \circ h + g \circ h$ pour tout f, g, h, mais pas nécessairement $f \circ (g+h) = f \circ g + f \circ h$.
- Lorsqu'on travaille dans un anneau, de nombreux calculs se passent "comme dans \mathbb{R} ". Cela dit, il faut faire attention par exemple à ne pas diviser. Le meilleur moyen pour ne pas dire d'ânerie consiste en fait à "faire comme dans \mathbb{Z} ".

2.2 Sous-anneaux

DFINITION 9

Soit (A, +, .) un anneau. Une partie non vide A_1 de A est un sous-anneau de A lorsque :

- $\mathbf{1}_A \in A_1$;
- ullet les lois + et . induisent des LCI sur $A_1,$ et, muni de ces lois, $(A_1,+,.)$ est un anneau.

REMARQUE 4 Contrairement aux sous-groupes, on ne peut pas se passer de la condition $\mathbf{1}_A \in A_1$, qui ne découle pas des autres conditions¹. On verra en exercice un contre-exemple.

Comme pour les sous-groupes, il est assez moyennement intéressant de montrer à nouveau les associativités et même la distributivité. Fort heureusement, on a le résultat (quasi-évident) suivant :

Proposition 5 Une partie A_1 de A est un sous-anneau si et seulement si

- $(A_1, +)$ est un sous-groupe de (A, +);
- $1_A \in A_1$;
- . induit une LCI sur A_1 .

Exemples 8

- \bullet Bien entendu, $\mathbb Z$ est un sous-anneau de $\mathbb Q$ qui est un sous-anneau de...
- L'ensemble des fonctions dérivables sur I constitue un sous-anneau des fonctions continues sur I, qui constitue lui-même un sous-anneau de l'ensemble des fonctions de I dans \mathbb{R} .
- L'ensemble des suites réelles stationnaires est un sous-anneau de $(\mathbb{R}^{\mathbb{N}}, +, .)$, qui est un sous-anneau de $(\mathbb{C}^{\mathbb{N}}, +, .)$

Exercice 11 Montrer que $\mathbb{Z}[\sqrt{2}]$ est un sous-anneau de \mathbb{R} .

Exercice 12 Montrer que si A_1 et A_2 sont deux sous-anneaux d'un anneau A, alors $A_1 \cap A_2$ est également un sous-anneau de A.

2.3 Morphismes d'anneaux

Definition 10

Soient (A, +, .) et (B, +, .) deux anneaux (on note de la même façon les lois de A et B...). Un morphisme d'anneaux de A vers B est une application de A vers B telle que :

- $\bullet \ f(\mathbf{1}_A) = \mathbf{1}_B \, ;$
- pour tout $x, y \in A$, f(x + y) = f(x) + f(y) et $f(x,y) = f(x) \cdot f(y)$.

Exemples 9

- $z \mapsto \overline{z}$ réalise un automorphisme d'anneaux de \mathbb{C} .
- $f \mapsto f(\pi)$ réalise un morphisme d'anneaux de $\mathbb{R}^{\mathbb{R}}$ sur² \mathbb{R} .

 $^{^1}$ on se rappelle que dans le cas d'un sous-groupe H de G, la relation $e_G \in H$ est une conséquence de la définition

 $^{^2}$ comme pour les fonctions, on dit "de E sur F" plutôt que "de E dans F", lorsque le morphisme est surjectif

• $u \mapsto u_{1515}$ réalise un morphisme d'anneaux surjectif (pourquoi?) de $\mathbb{C}^{\mathbb{N}}$ sur \mathbb{C} .

Remarques 5

- La relation $f(\mathbf{1}_A) = \mathbf{1}_B$ ne découle pas des autres relations³; on ne peut donc pas s'en passer dans la définition.
- A fortiori, un morphisme d'anneaux est un morphisme de groupe (pour la première loi). A ce titre, on peut parler de son image et de son noyau. Malheureusement, si l'image est un sous-anneau de l'anneau d'arrivée (le montrer), le noyau n'est pas nécessairement un sous-anneau de l'anneau de départ, ce qui limite l'intéret des morphismes d'anneaux. Cependant, on garde l'équivalence entre l'injectivité de f et le fait que $\text{Ker } f = \{0_A\}$.

Exercice 13 Montrer que la composée de deux morphismes d'anneaux est un morphisme d'anneaux.

Exercice 14 Montrer que si f est un isomorphisme d'anneaux, alors son application réciproque également.

2.4 Divisibilité

Deinition 11

Soit (A, +, .) un anneau *commutatif*.

- On dit que $x \in A$ est inversible s'il admet un symétrique pour la loi .
- On dit que a divise b s'il existe $c \in A$ tel que b = ca. On note a|b.
- On dit que a est un diviseur de 0 s'il existe $b \neq 0$ tel que ab = 0.
- Un anneau est dit *intègre* s'il ne contient pas de diviseur de 0 autre que 0 lui-même.

Les faits suivants sont faciles à montrer :

PROPOSITION 6 Dans un anneau commutatif (A, +, .):

- 0_A n'est jamais inversible.
- ullet Si x est inversible, alors ce n'est pas un diviseur de 0.
- $Si\ x_1, x_2, y \in A\ integre$, avec $y \neq 0$ et $x_1y = x_2y$, alors $x_1 = x_2$. On dit qu'"on peut simplifier" (ce qui ne veut pas dire diviser) par $y \neq 0$.

Exemples 10

- \mathbb{Z} est intègre, et ses éléments inversibles sont 1 et -1.
- Q, R et C sont des anneaux intègres dont tous les éléments non nuls sont inversibles.
- L'ensemble des fonctions de \mathbb{R} dans \mathbb{R} n'est pas intègre : toute application f qui s'annulle est diviseur de 0 (le montrer). Les éléments inversibles sont les fonctions qui ne s'annullent pas.

Exercice 15 Montrer que $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ est un sous-anneau intègre de \mathbb{C} , dont les inversibles sont 1, i, -1 et -i.

2.5 Calculs dans les anneaux

• On rappelle la formule du $bin\^{o}me$ de Newton, qui s'étend de \mathbb{Z} aux anneaux commutatifs, mais aussi (et cela sert effectivement⁴) dans un anneau quelconque, avec deux éléments qui commutent:

PROPOSITION 7 Soient $a, b \in A$, avec ab = ba, et $n \in \mathbb{N}^*$. Alors:

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}.$$

PREUVE: Récurrence sur $\mathbb N$ et formule du triangle de Pascal.

³ contrairement aux morphismes de groupes, pour lesquels la relation $\varphi(e_G) = e_H$ est une conséquence de la définition ⁴ en particulier dans les anneaux de matrices

• Si $x,y\in A$ commutent et $n\in\mathbb{N}^*,$ alors $x-y|x^n-y^n,$ et plus précisément :

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{k} y^{n-1-k}.$$

BIEN ENTENDU, pour les deux derniers résultats, l'hypothèse essentielle xy = yx ne sera jamais oubliée...

• Cas particulier de ce qui précède : si 1-x est inversible (ce qui n'est pas EQUIVALENT à $x \neq 1$), on peut calculer $\sum_{k=0}^{n-1} x^k$ grâce à la formule :

$$1 - x^{n} = (1 - x) \sum_{k=0}^{n-1} x^{k}.$$

 $\mathbf{1}_A$ commute en effet avec tous les éléments de l'anneau.

• On verra en TD de Maple l'algorithme d'exponentiation rapide, qui permet de calculer a^n en $O(\ln n)$ multiplications. L'idée apparaît dans l'exemple suivant :

$$a^{53} = a.(a^2)^{26} = a.(a^4)^{13} = a.a^4.(a^8)^6 = a.a^4.(a^{16})^3 = a.a^4.a^{16}.a^{32}.$$

Il suffit donc de calculer les a^{2^k} , et d'en tenir compte dans le résultat final lorsque la puissance en cours est impaire (si $(a^4)^{13}$ apparaît en cours de calcul, alors a^4 interviendra dans le résultat). Au vu de cet exemple, on peut formaliser l'algorithme d'exponentiation rapide de la façon suivante :

Fonction Expo_rapide(x,n)

Debut

Res<-1; # Contiendra à la fin le résultat
Puis<-x; # Contiendra les puissances successives de x
N<-n; # Puissance à laquelle Puis doit encore être évalué
Tant_que N>0
 Si N est impair Alors Res<-Res*Puis Fsi;
 Puis<-Puis^2;
 N<-N/2 # en fait, le quotient dans la division euclidienne
 Fin_Tant_que;</pre>

Fin

Mise en oeuvre en TD Maple...où on verra une seconde version récursive plus rapide à écrire, mais qui semble un peu magique!

Pour prouver la validité de cet algorithme, on peut noter (là encore au vu de l'exemple) PUIS prouver que la quantité Res*Puis^N reste égale à x^n en cours d'exécution⁵. Quand on veut frimer, on parle d'invariant de boucle.

3 Corps

3.1 Structure de corps

RETOURNER (Res)

Definition 12

- $\bullet\,$ Un corps est un anneau commutatif dans lequel tout élément non nul est inversible.
- Si $(\mathbb{K}, +, .)$ est un corps, un sous-corps de \mathbb{K} est un sous-anneau \mathbb{K}_1 de \mathbb{K} tel que pour tout élément non nul x de \mathbb{K}_1 , on a $x^{-1} \in \mathbb{K}_1$; $(\mathbb{K}_1, +, .)$ est alors un corps.

 $^{^5 {\}rm au}$ début et à la fin de chaque tour de boucle

REMARQUE 6 Si on enlève l'hypothèse de commutativité, on obtient ce que les anglo-saxons appellent "division ring", traduit piteusement par "anneau à division". En taupe, dans les temps anciens, le terme de corps désignait d'ailleurs ces anneaux à divisions.

En anglais, les corps se nomment "fields". Pourquoi? mystère...

3.2 Exemples

- \mathbb{Q} , \mathbb{R} et \mathbb{C} sont des corps, mais pas \mathbb{Z} (2 n'est pas inversible).
- On verra plus tard le corps des fractions rationnelles (quotients de polynômes).
- $\mathbb{Q}[\sqrt{2}]$ et $\mathbb{Q}[i]$ sont des sous-corps respectifs de \mathbb{R} et \mathbb{C} .
- Si on reprend les lois \oplus et \otimes des exemples 1, $(\mathbb{R}^2, \oplus, \otimes)$ est un corps... qui ressemble fortement à \mathbb{C} .

3.3 Pour la suite

Il n'existe en Spé (hors MP/MP*) que 2,5 corps : \mathbb{R} , \mathbb{C} , et (accessoirement...) \mathbb{Q} .

Bien entendu, si on passe l'X (et si on n'a pas trop de chance...), il ne faudra rien ignorer des corps finis \mathbb{F}_q , mais c'est une autre histoire!