Estimating the Effect of a Mis-measured, Endogenous, Binary Treatment

Francis J. DiTraglia

Camilo Garcia-Jimeno

University of Pennsylvania

December 6th, 2016

What is the causal effect of T^* ?

$$y_i = h(T_i^*, \mathbf{x}_i) + \varepsilon_i$$

- ▶ y Outcome of interest
- ▶ h Unknown function that does not depend on i
- ► T* Unobserved, endogenous binary treatment
- ightharpoonup T Observed, mis-measured binary surrogate for T^*
- ▶ x − Exogenous covariates
- \triangleright ε Mean-zero error term
- \triangleright z Discrete (typically binary) instrumental variable

Target of Inference:

ATE function: $\tau(\mathbf{x}) = h(1, \mathbf{x}) - h(0, \mathbf{x})$

Example: Smoking and Birthweight (SNAP Trial)

Coleman et al. (N Engl J Med, 2012)

RCT with 1050 pregnant smokers in England: 521 given nicotine patches, the rest given placebo patches.

- ▶ y Birthweight
- ▶ T* True smoking behavior
- ► T Self-reported smoking behavior
- x Mother characteristics
- z Indicator of nicotine patch

Example: Schooling and Test Scores

Burde & Linden (2013, AEJ Applied)

RCT in Afghanistan: 32 villages divided into 11 clusters. Randomly choose 6 and set up school in each village of these clusters.

- ▶ y Child's score on math and language test
- ► T* Child's true school attendance
- ➤ T Parent's report of child's school attendance
- x Child and household characteristics
- ▶ z School built in village

Example: Returns to Schooling

Oreopoulos (2006, AER)

Fuzzy RD: minimum school-leaving age in UK increased from 14 to 15 in 1947 but some already stayed until 15 before the law and others failed to comply after it.

- y − Log wage
- ▶ T* School attendance at age 15
- ➤ T Self-report of school attendance at age 15
- x Individual characteristics
- ▶ z Indicator: born in or after 1933

Related Literature

Continuous Treatment

Lewbel (1997, 2012), Schennach (2004, 2007), Chen et al. (2005), Hu & Schennach (2008), Song (2015), Hu et al. (2015)...

Binary, Exogenous Treatment

Aigner (1973), Bollinger (1996), Kane et al. (1999), Black et al. (2000), Frazis & Loewenstein (2003), Mahajan (2006), Lewbel (2007)

Binary, Endogenous Treatment

Mahajan (2006), Shiu (2015), Ura (2015)

▶ Mahajan Details

Model: $y = c + \beta T^* + \varepsilon$

Valid Instrument

$$\mathbb{E}[\varepsilon|z]=0.$$

First-stage

$$p_k^* \equiv \mathbb{P}(T^* = 1|z = z_k) \neq \mathbb{P}(T^* = 1|z = z_\ell) \equiv p_\ell^*, \ k \neq \ell$$

Non-differential Measurement Error

- $\qquad \mathbb{E}[\varepsilon|T^*,T,z] = \mathbb{E}[\varepsilon|T^*,z]$
- $\alpha_0 = \mathbb{P}(T = 1 | T^* = 0, z)$
- $\alpha_1 = \mathbb{P}(T = 0 | T^* = 1, z)$
- ▶ $\alpha_0 + \alpha_1 < 1$

Observable Moments: $y = c + \beta T^* + \varepsilon$

$$z = 1 \qquad z = 2 \qquad \dots \qquad z = K$$

$$T = 0 \qquad \overline{y_{01}} \qquad \overline{y_{02}} \qquad \dots \qquad \overline{y_{0K}}$$

$$p_{01} \qquad p_{02} \qquad \dots \qquad \overline{y_{0K}}$$

$$T = 1 \qquad \overline{y_{11}} \qquad \overline{y_{12}} \qquad \dots \qquad \overline{y_{1K}}$$

$$ar{y}_{tk} = \mathbb{E}[y|T=t,z=z_k], \quad p_{tk} = q_k p_k$$
 $q_k = \mathbb{P}(z=z_k), \quad p_k = \mathbb{P}(T=1|z=z_k)$

Unobservable Moments: $y = \beta T^* + u$

Define error term that absorbs constant: $u = c + \varepsilon$

$$m_{tk}^* = \mathbb{E}[u|T^* = t, z = z_k], \quad p_{tk}^* = q_k p_k^*$$

 $q_k = \mathbb{P}(z = z_k), \quad p_k^* = \mathbb{P}(T^* = 1|z = z_k)$

Possible Restrictions On m_{tk}^*

Joint Exogeneity:
$$\mathbb{E}[\varepsilon|T^*,z]=0$$
 $\Rightarrow m_{tk}^*=c \quad \text{for all } t,k$

Exogenous Treatment: $\mathbb{E}[\varepsilon|T^*]=0$
 $\Rightarrow \frac{1}{\mathbb{P}(T^*=t)}\sum_k p_{tk}^* m_{tk}^*=c \quad \text{for all } t$

Exogenous Instrument: $\mathbb{E}[\varepsilon|z]=0$
 $\Rightarrow (1-p_k^*)m_{0k}^*+p_k^*m_{1k}^*=c \quad \text{for all } k$

System of Equations given $E[\varepsilon|z] = 0$

$$\mathbb{E}[\varepsilon|z] = 0 \implies \textit{pair} \text{ of equations for each } k = 1, \dots, K$$

$$\begin{split} \hat{y}_{0k} &= \alpha_1(p_k - \alpha_0) \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) + (1 - \alpha_0)c - (p_k - \alpha_0)m_{1k}^* \\ \hat{y}_{1k} &= (1 - \alpha_1)(p_k - \alpha_0) \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) + \alpha_0c + (p_k - \alpha_0)m_{1k}^* \\ \end{split}$$
 where
$$\hat{y}_{0k} = (1 - p_k)\bar{y}_{0k} \text{ and } \hat{y}_{0k} = p_k\bar{y}_{1k} \end{split}$$

2K Equations in K + 4 Unknowns

β is undentified regardless of K.

Proof of special case: $\alpha_0 = 0$

1. System of equations:

$$\widetilde{y}_{0k} = c + p_k \left(\frac{\beta \alpha_1}{1 - \alpha_1} \right) - p_k m_{1k}^*$$

$$\widetilde{y}_{1k} = p_k \beta + p_k m_{1k}^*$$

2.
$$\beta/(1-\alpha_1) \equiv \beta_{IV}$$
 identified, $\beta \alpha_1/(1-\alpha_1) = \frac{\beta_{IV} - \beta}{\beta_{IV} - \beta} \Longrightarrow$

$$(c + p_k \beta_{IV} - \tilde{y}_{0k})/p_k = \beta + m_{1k}^*$$

$$\tilde{y}_{1k}/p_k = \beta + m_{1k}^*$$

3. Sum equations from 1. \implies $(c + p_k \beta_{IV} - \tilde{y}_{0k}) = \tilde{y}_{1k}$

Bounds for Mis-classification Probabilities

$$\alpha_0(z) = \alpha_0, \ \alpha_1(z) = \alpha_1$$

$$\Rightarrow p_k^* = \frac{p_k - \alpha_0}{1 - \alpha_0 - \alpha_1}, \quad 1 - p_k^* = \frac{1 - p_k - \alpha_1}{1 - \alpha_0 - \alpha_1}$$

$$\alpha_0 + \alpha_1 < 1 \iff \operatorname{Cor}(T, T^*) > 0 \iff (1 - \alpha_0 - \alpha_1) > 0$$

$$\alpha_0 < \min_k \{p_k\}, \ \alpha_1 < \min_k \{1 - p_k\}$$

 $\alpha_0 \leq \min_k \{p_k\}, \quad \alpha_1 \leq \min_k \{1 - p_k\}$

Bounds for β

$$\mathbb{E}[\varepsilon|z]=0$$

$$\implies \beta_{RF} = \mathbb{E}[y|z_k] - \mathbb{E}[y|z_\ell] = \beta(p_k^* - p_\ell^*)$$

Mis-classification

$$\implies p_k^* - p_\ell^* = (p_k - p_\ell)/(1 - \alpha_0 - \alpha_1)$$

Combining:
$$\beta_{IV} = \beta/(1 - \alpha_0 - \alpha_1)$$

$$\alpha_0 + \alpha_1 < 1 \implies$$

- \blacktriangleright β is between β_{RF} and β_{IV}
- \blacktriangleright β_{IV} inflated but has correct sign
- β_{RF} bound equivalent to substituting α_0, α_1 bounds

Strengthening the Measurement Error Assumptions

•
$$\alpha_0 = \mathbb{P}(T = 1 | T^* = 0, z)$$

•
$$\alpha_1 = \mathbb{P}(T = 0 | T^* = 1, z)$$

- $\alpha_0 + \alpha_1 < 1$
- $\blacktriangleright \ \mathbb{E}[\varepsilon|T^*,T,z] = \mathbb{E}[\varepsilon|T^*,z]$

Additional Assumption

$$\mathbb{E}[\varepsilon^2|T^*,T,z] = \mathbb{E}[\varepsilon^2|T^*,z]$$

Improve bounds for α_0, α_1 to tighten lower bound for β ...

Tighter Bounds for α_0, α_1 from Conditional Variances

Assume

$$\mathbb{E}[\varepsilon^2|T^*,T,z] = \mathbb{E}[\varepsilon^2|T^*,z]$$

Observables

$$\sigma_{tk}^2 = \operatorname{Var}(y|T=t, z=k)$$

Constrain Unobservables

$$s_{tk}^{*2} = Var(u|T^* = t, z_k) > 0$$

$$(p_k - \alpha_0) \left[(1 - \alpha_0) p_k \sigma_{1k}^2 - \alpha_0 (1 - p_k) \sigma_{0k}^2 \right] > \alpha_0 (1 - \alpha_0) p_k (1 - p_k) (\bar{y}_{1k} - \bar{y}_{0k})^2$$

$$(1 - p_k - \alpha_1) \left[(1 - \alpha_1) (1 - p_k) \sigma_{0k}^2 - \alpha_1 p_k \sigma_{1k}^2 \right] > \alpha_1 (1 - \alpha_1) p_k (1 - p_k) (\bar{y}_{1k} - \bar{y}_{0k})^2$$

Schooling and Test Scores – Afghan RCT

Burde & Linden (2013, AEJ Applied)

"Weak" Bounds

$$\beta \in [0.65 \times \beta_{IV}, \ \beta_{IV}]$$

Add 2nd Moments

$$\beta \in [0.78 \times \beta_{IV}, \ \beta_{IV}]$$

Independence Assumption: $\varepsilon \perp T | (T^*, z)$

Define
$$F_{tk}(au) = \mathbb{P}(Y \le au | T = t, z_k)$$
 and $F_k(au) = \mathbb{P}(Y \le au | z_k)$

$$\alpha_0 \le p_k \inf_{\tau} \left\{ \left[\frac{F_{1k}(\tau)}{F_k(\tau)} \right] \wedge \left[\frac{1 - F_{1k}(\tau)}{1 - F_k(\tau)} \right] \right\} \le p_k$$

$$\alpha_1 \leq (1 - p_k) \inf_{\tau} \left\{ \left[\frac{F_{0k}(\tau)}{F_k(\tau)} \right] \wedge \left[\frac{1 - F_{0k}(\tau)}{1 - F_k(\tau)} \right] \right\} \leq (1 - p_k)$$

Bounds for (α_0, α_1) do *not* require z to be a valid instrument!

Upper Bounds for Mis-Classification Rates

Returns to Schooling Example: Oreopoulos (2006)

Sufficient Conditions To Identify α_0, α_1 , and β

Baseline Assumptions

- ightharpoonup $\mathbb{E}[\varepsilon|z] = 0$
- $\qquad \mathbb{E}[\varepsilon|T^*,T,z] = \mathbb{E}[\varepsilon|T^*,z]$
- ho $\alpha_0 = \mathbb{P}(T = 1 | T^* = 0, z), \ \alpha_1 = \mathbb{P}(T = 0 | T^* = 1, z), \ \alpha_0 + \alpha_1 < 1$

Strengthen IV Assumption

- $\blacktriangleright \ \mathbb{E}[\varepsilon^2|z] = \mathbb{E}[\varepsilon^2]$
- $\blacktriangleright \ \mathbb{E}[\varepsilon^3|z] = \mathbb{E}[\varepsilon^3]$

Strengthen Measurement Error Assumption

- $\mathbb{E}[\varepsilon^2|T^*,T,z] = \mathbb{E}[\varepsilon^2|T^*,z]$
- $\mathbb{E}[\varepsilon^3|T^*,T,z] = \mathbb{E}[\varepsilon^3|T^*,z]$

First Moment Condition

Assumptions

- $\mathbb{E}[\varepsilon|z] = 0$
- $\mathbb{E}[\varepsilon|T^*,T,z] = \mathbb{E}[\varepsilon|T^*,z]$
- $\alpha_0 = \mathbb{P}(T = 1 | T^* = 0, z)$
- $\alpha_1 = \mathbb{P}(T = 0 | T^* = 1, z)$

Moment Condition

$$\mathsf{Cov}(y,z) - \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) \mathsf{Cov}(\mathcal{T},z) = 0$$

MC # 1 identifies $\beta/(1-\alpha_0-\alpha_1)$

Second Moment Condition

Additional Assumptions

- $\mathbb{E}[\varepsilon^2|z] = \mathbb{E}[\varepsilon^2]$
- $\qquad \mathbb{E}[\varepsilon^2|T^*,T,z] = \mathbb{E}[\varepsilon|T^*,z]$

Moment Condition

$$\mathsf{Cov}(y^2,z) - \frac{\beta}{1 - \alpha_0 - \alpha_1} \left\{ 2\mathsf{Cov}(yT,z) - \beta\mathsf{Cov}(T,z) \left(\frac{1 + \alpha_0 - \alpha_1}{1 - \alpha_0 - \alpha_1} \right) \right\} = 0$$

Given MC #1, MC #2 identifies $(\alpha_1 - \alpha_0)$

Third Moment Condition

Additional Assumptions

- $\mathbb{E}[\varepsilon^3|z] = \mathbb{E}[\varepsilon^2]$
- $\qquad \mathbb{E}[\varepsilon^3|\,T^*,\,T,z] = \mathbb{E}[\varepsilon|\,T^*,z]$

Moment Condition

$$\begin{split} \mathsf{Cov}(y^3,z) - \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) \left\{ \ \beta^2 \left[1 + \frac{6\alpha_0(1 - \alpha_1)}{(1 - \alpha_0 - \alpha_1)^2}\right] \mathsf{Cov}(T,z) \right. \\ \left. -3\beta \left[\frac{1 - (\alpha_1 - \alpha_0)}{1 - \alpha_0 - \alpha_1}\right] \mathsf{Cov}(y^T,z) + 3\mathsf{Cov}(y^2T,z) \right\} = 0 \end{split}$$

Sketch of Identification Argument

Very tedious algebra...

- 1. Use 1st MC to eliminate $\beta/(1-\alpha_0-\alpha_1)$ from others
- 2. Use 2nd MC to solve for α_1 in terms of α_0
- 3. 3rd MC becomes a quadratic in $(1 \alpha_1)$ and observables only.
- 4. The quadratic always has two real roots: $(1 \alpha_1)$ and α_0 .
- 5. To tell which root is which, use $\alpha_0 + \alpha_1 < 1$.
- 6. Calculate $\alpha_0 + \alpha_1$ and substitute into 1st MC to obtain β .

Unfortunately, identification of α_0, α_1 fails if $\beta = 0...$

Simple Special Case: $\alpha_0 = 0$

$$\begin{split} \operatorname{Cov}(y,z) - \left(\frac{\beta}{1-\alpha_0}\right) \operatorname{Cov}(T,z) &= 0 \\ \operatorname{Cov}(y^2,z) - \frac{\beta}{1-\alpha_0} \left\{ 2 \operatorname{Cov}(yT,z) - \beta \operatorname{Cov}(T,z) \right\} &= 0 \end{split}$$

$$\beta = \frac{2\mathsf{Cov}(yT, z)}{\mathsf{Cov}(T, z)} - \frac{\mathsf{Cov}(y^2, z)}{\mathsf{Cov}(y, z)}$$

Simulation Example: $y = \beta T^* + \varepsilon$

Errors

 $(\varepsilon, \eta) \sim$ jointly normal, mean 0, variance 1, correlation 0.5.

First-Stage

- ▶ Half of subjects have z = 1, the rest have z = 0.
- ► $T^* = \mathbf{1} \{ \gamma_0 + \gamma_1 z + \eta > 0 \}$

Mis-classification

- Set $\alpha_0 = 0$ so $T^* = 0 \implies T = 0$
- $ightharpoonup T | T^* = 1 \sim \mathsf{Bernoulli}(1 \alpha_1)$

Sampling Distribution of $\hat{lpha}_1 - \hat{lpha}_0$

(a)
$$N = 500, \delta = 0.1$$
 (b) $N = 1000, \delta = 0.1$ (c) $N = 5000, \delta = 0.1$ (d) $N = 5000, \delta = 0.1$ (e) $N = 5000, \delta = 0.1$ (f) $N = 5000, \delta = 0.1$ (f) $N = 5000, \delta = 0.1$ (f) $N = 5000, \delta = 0.1$ (g) N

(a)
$$N = 500, \delta = 0.2$$
 (b) $N = 1000, \delta = 0.2$ (c) $N = 5000, \delta = 0.2$ (d) $N = 5000, \delta = 0.2$ (e) $N = 5000, \delta = 0.2$ (f) $N = 5000, \delta = 0.2$ (f) $N = 5000, \delta = 0.2$ (f) $N = 5000, \delta = 0.2$ (g) N

(a)
$$N = 500, \delta = 0.3$$
 (b) $N = 1000, \delta = 0.3$ (c) $N = 5000, \delta = 0.3$ (d) $N = 5000, \delta = 0.3$ (e) $N = 5000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (g) N

Sampling Distribution of $\widehat{eta}=(1-\widehat{lpha}_0-\widehat{lpha}_1)\widehat{eta}_{IV}$

(a)
$$N = 500, \delta = 0.1$$
 (b) $N = 1000, \delta = 0.1$ (c) $N = 5000, \delta = 0.1$ (d) $N = 5000, \delta = 0.1$ (e) $N = 5000, \delta = 0.1$ (f) $N = 1000, \delta = 0.1$ (f) $N = 1000, \delta = 0.1$ (g) N

(a)
$$N = 500, \delta = 0.2$$
 (b) $N = 1000, \delta = 0.2$ (c) $N = 5000, \delta = 0.2$ (d) $N = 5000, \delta = 0.2$ (e) $N = 5000, \delta = 0.2$ (f) $N = 5000, \delta = 0.2$ (g) $N = 5000, \delta = 0.2$ (g) $N = 5000, \delta = 0.2$ (h) $N = 5000, \delta = 0.2$ (g) N

(a)
$$N = 500$$
, $\delta = 0.3$ (b) $N = 1000$, $\delta = 0.3$ (c) $N = 5000$, $\delta = 0.3$ (d) $N = 5000$, $\delta = 0.3$ (e) $N = 5000$, $\delta = 0.3$ (f) $N = 5000$, $\delta = 0.3$ (g) $N = 0.3$ (g)

$$(z \perp \varepsilon)$$
 and $(T \perp \varepsilon | T^*, z) \Rightarrow$ Continuum of MCs

Characteristic Functions

$$e^{i\omega\beta} [(1 - \alpha_1) - \xi(\omega)] = \alpha_0 - \xi(\omega)$$
$$\xi(\omega) \equiv \frac{\varphi_k(\omega) - \varphi_\ell(\omega)}{p_k \varphi_{1k}(\omega) - p_\ell \varphi_{1\ell}(\omega)}$$

Distribution Functions

$$\widetilde{\Delta}_{1}(\tau + \beta) - \widetilde{\Delta}_{1}(\tau) = \alpha_{0}\Delta(\tau + \beta) - (1 - \alpha_{1})\Delta(\tau)$$

$$\Delta(\tau) = F_{k}(\tau) - F_{\ell}(\tau)$$

$$\widetilde{\Delta}_{1}(\tau) = p_{k}F_{1k}(\tau) - p_{\ell}F_{1\ell}(\tau)$$

CDF Conditions for Simulation DGP

$$\widetilde{\Delta}_1(\tau+\beta) - \widetilde{\Delta}_1(\tau) = \alpha_0 \Delta(\tau+\beta) - (1-\alpha_1)\Delta(\tau)$$

Conclusion

Summary

- Endogenous, mis-measured binary treatment.
- Important in applied work but no solution in the literature.
- lacktriangle Usual (1st moment) IV assumption fails to identify eta
- ▶ Bounds for mis-classification probabilities and β .
- ▶ Higher moment / independence restrictions identify β

Extensions / Work in Progress

- Efficient estimation w/ continuum of MCs
- Inference / Specification Testing
- ► LATE interpretation

Mahajan (2006, ECTA)

Regression Model

$$y = \mathbb{E}[y|T^*] + \nu$$

$$\mathbb{E}[
u|T^*] = 0$$
 by construction

Causal Model

$$y = c + \beta T^* + \varepsilon$$

$$\mathbb{E}[\varepsilon|T^*] \neq 0$$

Main Result (Correct) – Exogenous Treatment

Relevant binary instrument z $(p_k^*
eq p_\ell^*)$ identifies $lpha_0, lpha_1$ and

$$\mathbb{E}[y|T^*]$$
 provided that $\mathbb{E}[\nu|T^*, T, z] = 0$ and $\alpha_0 + \alpha_1 < 1$.

Extension (Incorrect) – Endogenous Treatment

$$\mathbb{E}[\varepsilon|z] = 0, \ p_k^* \neq p_\ell^*, \ \mathbb{E}[\varepsilon|T,T^*,z] = \mathbb{E}[\varepsilon|T^*] \implies \beta \ \text{identified}.$$

Mahajan (2006, ECTA)

Regression Model

$$y = \mathbb{E}[y|T^*] + \nu$$

$$\mathbb{E}[\nu|T^*] = 0$$
 by construction

Causal Model

$$y = c + \beta T^* + \varepsilon$$

$$\mathbb{E}[\varepsilon|T^*] \neq 0$$

Ingredients

- 1. If $p_k^* \neq p_\ell^*$, $\mathbb{E}[\varepsilon|z] = 0$ then, since $\beta_{IV} = \beta/(1 \alpha_0 \alpha_1)$, knowledge of α_0, α_1 is sufficient to recover β . (Correct)
- 2. If $p_k^* \neq p_\ell^*$, $\mathbb{E}[\nu|T^*,T,z]=0$, α_0,α_1 are identified. (Correct) How to satisfy both 1 and 2 while allowing $\mathbb{E}[\varepsilon|T^*]\neq 0$?
- 3. Assume that $\mathbb{E}[arepsilon|T^*,T,z]=\mathbb{E}[arepsilon|T^*]$ (i.e. $m_{0k}^*=m_{0\ell}^*$ and $m_{1k}^*=m_{1\ell}^*$)

Flaw in the Argument

Proposition

If
$$\mathbb{E}[\varepsilon|T^*] \neq 0$$
 then $\mathbb{E}[\varepsilon|T^*, T, z] = \mathbb{E}[\varepsilon|T^*]$ combined with $\mathbb{E}[\varepsilon|z] = 0$ implies $p_k^* = p_\ell^*$, i.e. z is irrelevant for T^* .

Proof

$$\mathbb{E}[\varepsilon|z] = 0$$
 implies

$$(1 - p_1^*) m_{0k}^* + p_1^* m_{1k}^* = c$$
$$(1 - p_2^*) m_{0k}^* + p_2^* m_{1k}^* = c$$

while Mahajan's assumption implies $m_{0k}^*=m_{0\ell}^*$ and $m_{1k}^*=m_{1\ell}^*$.

Therefore either $m_{0k}^*=m_{0\ell}^*=m_{1k}^*=m_{1\ell}^*=c$, which is ruled out by $E[\varepsilon|T^*]=0$, or $p_k^*=p_\ell^*$.

