电阻选型规范

(内部)

			T v
Prepared by	付世勇	Date	2021年3月2日
拟制	17 世男	日期	2021年3月2日
Reviewed by	朱晓明	Date	2021年3月15日
审核	大晚明 	日期	2021年3月13日
Reviewed by		Date	
审核		日期	
Approved by		Date	
批准		日期	

电阻选用必须遵守以下 4 个指标:

1	功率	电阻实际功耗最大不能超过额定功率的 50%	
2	表面温度	电阻表面温度在实际使用时,室内机应小于80℃,室外机应小于90℃	
3	工作电压	应小于额定电压	
4 强电	现由由收集用环接	在强电电路中使用,且电阻温升小于 15K 时应使用玻璃釉或金属釉电	
	强电电路使用环境 	阻; 电阻温升大于 15K 的电阻应选用氧化膜电阻	

详细规范见如下:

一、功率

- 1. 当电阻工作的环境温度小于额定温度时,其实际功耗必须小于额定功率的50%;
- 2. 当电阻工作的环境温度大于额定温度时,其实际功耗必须小于电阻功率降额曲线上对应 功率限制的 50%;额定温度通常为 70 度,具体数值参阅各厂家的电阻规格书。 下图所示为电阻功率降额使用曲线,

假设电阻实际工作环境的温度为 T_{Δ} ,其功率降额使用曲线对应额定功率比为60%,则

注意:一般电阻规格书所给出的工作温度范围多指图中"最小温度一最大温度"所对应范围,图中"额定温度"指标若未给出,则取为70℃,将最大温度作为零额定功率比对应温度。即在通常使用的环境温度下(70℃以内),电阻实际消耗的最大功率应小于电阻额定功率的50%.

二、 电阻表面温度

- 1. 对于用于室内控制器的电阻,在电压 220V±15%、工况 32℃、湿度 80%测试,电阻的表面温度应小于 80℃
- 2. 对于用于室外控制器的电阻,在在电压 220V±15%、工况 43℃、湿度 80%测试,电阻 的表面温度应小于 90℃

三、 工作电压

1. 电阻的最大工作电压应小于其额定电压。

额定电压(V)= $min(\sqrt{$ 额定功率 $(W)\times$ 标称电阻 (Ω) ,极限电压(V))

2. 各类电阻的极限电压如下表:

2. 合笑电阻的似版电压如	「衣:	
电阻类型	额定功率	极限电压(V)
氧化膜电阻	0.5W	250
	1W	350
	2W	350
	3W	350
	5W	500
金属膜电阻	0.25W	250
	0.5W	300
	1W	350
	2W	400
	0.5W	250
	1W	350
碳膜电阻	2W	350
	3W	350
	5W	500
玻璃釉电阻	0.25W	500
	0.5W	600
	1W	800
	2W	1000
	3W	1000
	5W	1000
177	0.25W	800
A-FISH LIPE	0.5W	1500
金属釉电阻	1W	3000
X . X X \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2W	6000
	ı	

四、 强电电路使用要求

- 1. 在强电电路使用条件下,且电阻实际应用时的最大温升小于 15K 者,必须选用玻璃釉电阻或金属釉电阻,禁止使用金属膜电阻和氧化膜电阻。
- 2. 强电电路中,当电阻的温升大于 15K 时应选用氧化膜电阻;在跨越零火线使用时,需采用两个氧化膜电阻串联。

附录: 电阻性能特性及适用范围

种类	特性	使用范围
碳膜电阻	精度低,不高于±5%;廉价;抗高脉冲能力差;	用于弱电电路,对电阻精度要求不
	耐高温能力差;	高的场合
金属膜电阻	精度高; 抗高脉冲能力差; 耐高温能力差;	用于弱电电路,对精度要求较高的
		场合
氧化膜电阻	精度低; 抗高脉冲能力差; 耐高温能力强;	发热大、精度要求不高
玻璃釉、金属釉电	抗高压脉冲能力强; 耐高温能力差; 精度高; 成	发热不大,强电电路中
阻	本高	Y v