$\langle x \rangle$

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: 2018

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: الرياضيات المدة: 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

 $u_{n+1} = 1 - \frac{9}{u_n + 5}$: n ومن أجل كل عدد طبيعي $u_0 = 1$ حيث $u_0 = 1$ حيث (u_n) متتالية عددية معرفة بحدها الأول

 $u_n > -2 : n$ أ) برهن بالتراجع أنّه من أجل كل عدد طبيعي أنّه (1

بيّن أنّ (u_n) متتالية متناقصة تماما على $\mathbb N$ واستنتج أنّها متقاربة.

 $v_n = \frac{1}{u_n + 2}$: n نضع من أجل كل عدد طبيعي (2

. أثبت أنّ المتتالية $(
u_n)$ حسابية أساسها $\frac{1}{3}$ يطلب تعيين حدها الأول الثبت أنّ

 $\lim_{n\to +\infty} u_n$ عبّر بدلالة n عن v_n و v_n عبّر بدلالة (3

 $u_0v_0 + u_1v_1 + \dots + u_nv_n = \frac{1}{3}(1-n^2)$: n عدد طبیعي (4

التمرين الثاني: (04 نقاط)

يحوي صندوق 10 كريات متماثلة لا نفرق بينها باللمس، منها أربع كريات بيضاء مرقمة بـ: 1 ، 2 ، 2 ، 3 وثلاث كريات خضراء مرقمة بـ: 2 ، 3 ، 3 نسحب عشوائيا وفي آن واحد 3 كربات من هذا الصندوق.

المعتب عسواني ولي ال واحد و حريات من هذا المعسوق.

نعتبر الحادثتين A: "الكريات الثلاث المسحوبة تحمل ألوان العلم الوطني"

و B: "الكريات الثلاث المسحوبة لها نفس الرقم".

الترتيب. P(A) و P(B) احتمالي الحادثتين P(A) و P(A)

. $P(A \cup B)$ و $P_A(B)$ ثم استنتج $P(A \cap B) = \frac{1}{20}$ و . بيّن أنّ

2) ليكن X المتغيّر العشوائي الذي يرفق بكل نتيجة عملية سحب عدد الكريات التي تحمل رقما فرديا. عرّف قانون الاحتمال للمتغير العشوائي X واحسب أمله الرياضياتي E(X).

التمرين الثالث: (05 نقاط)

 $z^2 - \sqrt{3} z + 1 = 0$: المعادلة ذات المجهول z التالية (1 المركبة $z^2 - \sqrt{3} z + 1 = 0$ المعادلة ذات المجهول المعادلة المركبة $z^2 - \sqrt{3} z + 1 = 0$

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2018

 $\left(\mathbf{O}; \overrightarrow{u}, \overrightarrow{v}
ight)$ المستوي المركب منسوب إلى المعلم المتعامد المتجانس (2

: حيث Z_C و Z_B ، Z_A : الترتيب Z_C عيث المستوي لاحقاتها على الترتيب Z_C عيث Z_C عيث

(
$$Z_B$$
 لمرافق \overline{Z}_B لمرافق \overline{Z}_B و $Z_C=\overline{Z}_B$ و $Z_B=\frac{\sqrt{3}}{2}+i\frac{1}{2}$ ، $Z_A=\frac{1}{2}+i\frac{\sqrt{3}}{2}$ اكتب $Z_A=\frac{1}{2}+i\frac{\sqrt{3}}{2}$ اكتب $Z_A=\frac{1}{2}+i\frac{\sqrt{3}}{2}$ اكتب $Z_A=\frac{1}{2}+i\frac{\sqrt{3}}{2}$ اكتب $Z_A=\frac{1}{2}+i\frac{\sqrt{3}}{2}$ اكتب $Z_A=\frac{1}{2}+i\frac{\sqrt{3}}{2}$

 \cdot OBC وحدّد طبیعة المثلث $\frac{Z_B}{Z_C}=e^{i\frac{\pi}{3}}$: (أ (3)

ب) استنتج أنّ: B هي صورة C بدوران r يطلب تعيين عناصره المميزة.

$$|z| = |\overline{z} - \frac{\sqrt{3} + i}{2}|$$
 تسمي (γ) مجموعة النقط M من المستوي ذات اللاحقة z التي تحقق: (γ) مجموعة (γ) ثم عيّن صورتها بالدوران z .

التمرين الرابع: (07 نقاط)

. $g(x)=2+(x-1)e^{-x}$ كما يلي: \mathbb{R} كما يلي: الدالة العددية المعرفة على g .I

 $\lim_{x\to +\infty} g(x)$ و $\lim_{x\to -\infty} g(x)$ احسب (أ

p ادرس اتجاه تغیر الدالة p ثم شكّل جدول تغیراتها.

- \mathbb{R} على g(x) على أنّ المعادلة g(x)=0 تقبل حلا وحيدا lpha حيث $\alpha<-0.38$ حيث $\alpha<-0.38$ على α
- المستوي المستوي المستوي وليكن $f(x) = 2x + 1 xe^{-x}$ به المستوي ا
 - $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ احسب (أ (1
 - بیانیا. $\lim_{x\to +\infty} (f(x)-(2x+1))$ مصر النتیجة بیانیا.
 - $(\Delta): y=2x+1$:حيث (Δ) والمستقيم (C_f) والمستقيم الدرس الوضع النسبي للمنحني المنحني (C_f)
- بيّن أنّه من أجل كل عدد حقيقي x يكون g(x) = g(x) ثم استنتج اتجاه تغير الدالة f وشكّل جدول تغيراتها.
 - . 1 كتب معادلة المماس (T) للمنحنى للمنحنى (3
 - . $(f(\alpha)=0.8$ نأخذ (C_f) والمنحنى (T) ، (Δ) ارسم (4
 - . $x = (1-m)e^x$: x القش بيانيا وحسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة ذات المجهول $x = (1-m)e^x$
- . x=1 على \mathbb{R} والتي تنعدم من أجل الدالة الأصلية للدالة $x\mapsto xe^{-x}$ على التجزئة عيّن الدالة الأصلية للدالة عين الدالة الأصلية ألدالة الأصلية الدالة المحاملة بالتجزئة عين الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة المحاملة بالتجزئة عين الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة المحاملة بالتجزئة عين الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الذالة الأصلية الدالة الدالة الذالة الأصلية الدالة الأصلية الدالة الذالة الأصلية الدالة الذالة ا
- (x=1) احسب العدد (C_f) والمستقيمات التي معادلاتها الحين المحدّد بالمنحنى (x=1) الحسب العدد (x=1) الحسب (x=1) الحسب (x=1) الحسب العدد (x=1) العدد (x=1

انتهى الموضوع الأول

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2018

الموضوع الثاني

التمرين الأول: (04 نقاط)

$$u_{n+1} = u_n + \ln\left(\frac{2n+3}{2n+1}\right)$$
 : n عددیة عددیة معرفة کما یلي: $u_0 = 0$ و من أجل کل عدد طبیعي $u_n = 0$

- u_3 و u_2 ، u_1 کلا من (1
- . (u_n) غير المتتالية $\frac{2n+3}{2n+1} > 1$: n عدد طبيعي عدد طبيعي (2
 - $v_n=2n+1$: بn متتالیة عددیة معرفة من أجل کل عدد طبیعي (v_n
 - $e^{u_n}=v_n$ ، برهن بالتراجع أنه من أجل كل عدد طبيعي (أ
 - . $\lim_{n\to\infty} u_n$ عبارة الحد العام للمتتالية (u_n) بدلالة n ثم احسب عبارة الحد
 - احسب المجموعين S_n و T حيث:

$$T = e^{u_{1439}} + e^{u_{1440}} + \dots + e^{u_{2018}} \quad \text{o} \quad S_n = \ln\left(\frac{v_1}{v_0}\right) + \ln\left(\frac{v_2}{v_1}\right) + \dots + \ln\left(\frac{v_n}{v_{n-1}}\right)$$

التمرين الثاني: (04 نقاط)

 (P_1) والمستويين A(1;-2;1) نعتبر النقطة A(1;-2;1) والمستويين والفضاء منسوب إلى المعلم المتعامد المتجانس

- -3x+y+z+4=0 و -x+y+2z+1=0 و اللذين معادلتيهما على الترتيب -x+y+2z+1=0
- لكتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل النقطة A و u(1;5;-2) شعاع توجيه له.
 - (Δ) بيّن أنّ المستويين (P_1) و (P_2) متقاطعان ثم تحقق أن تقاطعهما هو المستقيم و (2
- الذي يشمل B(-1;4;0) ويعامد كلا من P_1 و الذي يشمل B(-1;4;0) الذي يشمل B(-1;4;0) ويعامد كلا من P_2 ويعامد كلا من P_3 ويعامد كلا من P_2 و المستويات الثلاثة P_3 و P_2 و P_3 و المستويات الثلاثة P_3 و المستويات الثلاثة و المستويات المستويات الثلاثة و المستويات المستويات الثلاثة و المستويات الثلاثة و المستويات المستو
 - لتكن E(2;3;-1) و E(2;3;-1) نقطتان من الفضاء.
 - اً) تحقّق أنّ H هي المسقط العمودي للنقطة B على المستوي H
 - \bullet . AEBH ثم احسب V حجم رباعي الوجوه EBH ثم احسب

التمرين الثالث: (05 نقاط)

- (z المعادلة : $(z-4+i)(z^2-4z+5)=0$ المعادلة : $(z-4+i)(z^2-4z+5)=0$ المعادلة : (z المرافق العدد (z
- و C التي لاحقاتها C في المستوي المركب المنسوب إلى المعلم المتعامد المتجانس C نعتبر النقط C و C التي لاحقاتها في المستوي المركب المنسوب إلى المعلم المتعامد المتجانس C و C التي لاحقاتها على الترتيب المنسوب إلى المعلم المتعامد المتعامد
 - تحقق أنّ $\frac{Z_B-Z_A}{Z_C-Z_A}$ ثم عيّن قيم العدد الطبيعي n بحيث يكون العدد $\frac{Z_B-Z_A}{Z_C-Z_A}=i$ تخيليا صرفا.

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2018

$$\begin{cases} |z_D - z_A| = |z_B - z_A| \\ Arg\left(\frac{z_D - z_A}{z_B - z_A}\right) = \frac{\pi}{3} + 2k\pi \quad (k \in \mathbb{Z}) \end{cases}$$
 :غطة من المستوي لاحقتها z_D حيث: z_D نقطة من المستوي لاحقتها z_D

 \mathcal{Z}_D بيّن أن المثلث ABD متقايس الأضلاع و احسب

A مركز ثقل المثلث ABD ثم عيّن نسبة وزاوية التشابه المباشر الذي مركزه G مركز G الحسب G

$$\operatorname{Arg}\left(\frac{z_G-z}{z_C-z}\right)=\pi+2k\pi\;(k\in\mathbb{Z})$$
 عيّن (C عيّن (C عيّن (C تختلف عن C تختلف عن (C تختلف عن (C عيّن (C عين (C عي

التمرين الرابع: (07 نقاط)

الدالة العددية ذات المتغير الحقيقي x المعرفة على $]0;+\infty[$ بـ: g

و (C_g) و $g(x) = \frac{1}{x} - (\ln x)^2 - \ln x - 1$ و المنحنى البياني الممثل لها كما هو مبيّن في الشكل المقابل:

. g(x) ثم استنتج بیانیا إشارة g(1) –

إلى المعلم المتعامد المتجانس $(O; \vec{i}, \vec{j})$.

$$\lim_{x\to+\infty} f(x) = 0$$
 و بيّن أنّ $\lim_{x\to-\infty} f(x)$ احسب (1) احسب ثم فسّر النتيجتين بيانيا.

 $oldsymbol{+}$ استنتج اتجاه تغیر الداله f و شکل جدول تغیراتها.

بيّن أنّ
$$y=\left(\frac{e^2}{e-1}\right)x-\frac{e}{e-1}$$
 مماس المنحنى $y=\left(\frac{e^2}{e-1}\right)x-\frac{e}{e-1}$ بيّن أنّ ارسم المماس $y=\left(\frac{e^2}{e-1}\right)x$ و المنحنى $y=\left(\frac{e^2}{e-1}\right)x$ الفواصل، ثم ارسم المماس $y=\left(\frac{e^2}{e-1}\right)x$

. عيّن بيانيا قيم الوسيط الحقيقي m بحيث تقبل المعادلة $(e-1)f(x)=e^2x-me$ عيّن بيانيا قيم الوسيط الحقيقي m

 $\left(C_f\right)$ مساحة الحيز من المستوي المحدد بحامل محور الفواصل و المنحنى I_n ، n>1 عدد طبيعي حيث n>1 عدد طبيعي المحدد بحامل محادلتيهما x=1 و المستقيمين اللذين معادلتيهما x=1

 $I_n = \ln \left(1 + n \ln n \right) : n > 1$ مين أنّه من أجل كل عدد طبيعي n حيث (1

 (I_n) ادرس اتجاه تغیر المتتالیة (2

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
02	01	التمرين الأول: (04 نقاط) البرهان بالتراجع (1 البرهان بالتراجع (1 با إثبات أن (u_n) متناقصة تماما على $\mathbb N$
	0.5	$u_{n+1} - u_n = \frac{-(u_n + 2)^2}{u_n + 5} : n$ من أجل كل عدد طبيعي
	0.5	متقاربة (u_n) متقاربة
0.75	0.5	$v_{n+1} - v_n = \frac{1}{3} : n$ إثبات أن (v_n) متتالية حسابية : من أجل كل عدد طبيعي (2
	0.25	$v_0 = \frac{1}{3}$ حدها الأول $v_0 = \frac{1}{3}$
	0.5	$v_n = \frac{1}{3} + \frac{1}{3}n$: n عدد طبیعی $v_n = \frac{1}{3} + \frac{1}{3}$
01	0.25	$u_n = \frac{-2n+1}{n+1}$ ومنه $u_n = \frac{1}{v_n} - 2: n$ ومنه عدد طبيعي - من أجل كل عدد طبيعي
	0.25	_ حساب النهاية
0.25	0.25	$S_n = u_0 v_0 + u_1 v_1 + + u_n v_n : n$ يعنى عدد طبيعي $u_n v_n = 1 - 2 v_n$ معناه $v_n = \frac{1}{u_n + 2} : n$ من أجل كل عدد طبيعي $S_n = (1 - 2 v_0) + (1 - 2 v_1) + + (1 - 2 v_n)$ $S_n = \frac{1}{3} (1 - n^2)$
03	0.75×2 0.5×3	$P(B) = \frac{7}{60}$ ، $P(A) = \frac{3}{10}$ (أ (1 $P(A \cup B) = \frac{11}{30}$) $P(A \cap B) = \frac{1}{20}$ و $P(A \cap B) = \frac{1}{20}$ (ب

	1								
01	0.75	P(x)	X_i X_i	0 1 12	1 5 12	2 <u>5</u> 12	3 1 12	(2	
	0.25				E(.	$X) = \frac{3}{2}$	، الرياضياتي	- الأمل	
							05 نقاط)	مرين الثالث : (5	<u>الته</u>
1.5	0.5×3						المعادلة: $\Delta = \frac{\sqrt{3} - i}{2}$		(1
1.5	2×0.5					$Z_B = e^{i\frac{\pi}{6}}$	$Z_A = e^{i}$	$\frac{\pi}{3}$ الشكل الاسي:	(2
	$0.25 imes 2$ ومنه $n=12k+2; k\in\mathbb{N}$ ومنه $\left(rac{Z_A}{Z_B} ight)^n=\left(e^{irac{\pi}{6}}\right)^n$					$e^{i\frac{\pi}{6}}\right)^n = e^{i\frac{n\pi}{6}}$	_		
1.5	0.5	$rac{z_B}{z_C}=rac{e^{irac{\pi}{6}}}{e^{i\left(rac{-\pi}{6} ight)}}=e^{irac{\pi}{3}}$ لدينا (أ							
	0.5			لاضلاع	OE متقایس ا	3C نه المثلث	$\frac{Z_B - Z_0}{Z_C - Z_0}$		
	0.5	رزاویته $\frac{\pi}{3}$	9 0 0	الذي مركز) بالدوران r	هي صورة 🤈	B ومنه Z_{I}	$_{3}=e^{i\frac{\pi}{3}}z_{C}$	د
0.5	0.25	$ Z =\left \overline{Z}-Z_{B} ight $ تعيين مجموعة النقط : $\left Z ight =\left \overline{Z}-rac{\sqrt{3}}{2}-irac{1}{2} ight $: $ Z =\left \overline{Z}-Z_{B} ight $ تكافئ $ Z = Z-Z_{C} $ أي $ Z = Z-Z_{C} $ ومعناها $ Z = Z-Z_{C} $ و معناها $ Z = Z-Z_{C} $ و معناها $ Z = Z-Z_{C} $ و معناها محور القطعة المستقيمة $ Z = Z-Z_{C} $							
	0.25	نطعة [OB]	محور الف	ِان _۲ هي				O = O : O = O	

		التمرين الرابع: (07 نقاط)
	0.25×2	$g(x) = 2 + (x-1)e^{-x}$.I
		$\lim_{x \to +\infty} g(x) = 2 \Im \lim_{x \to -\infty} g(x) = -\infty ($
		ب) دراسة اتجاه تغير الدالة g .
1.5	0.25	$g'(x) = (2-x)e^{-x}$ ، $\mathbb R$ الدالة g تقبل الإشتقاق على
	0.5	الدالة g متزايدة تماما على $[2;+\infty[$ ومتناقصة تماما على $[2;+\infty[$ الدالة الدا
	0.25	ـــ جدول تغيرات ⁸
		ج) g دالة مستمرة ومتزايدة تماما على $[2,\infty]$ مغيرة إشارتها فحسب مبرهنة القيم
	0.5	lpha المتوسطة المعادلة $g(x)=0$ تقبل في $g(x)=0$ حلا وحيدا
01	0.5	و $g(-0.38) \times g(-0.37) < 0$ $g(-0.37) = 0.016$ $g(-0.38) = -0.017$ اِذَن
		$-0.38 < \alpha < -0.37$
	0.5	$g(x)$ استنتاج إشارة \cdots
	0.05.0	II.
	0.25×2	$\lim_{x \to +\infty} f(x) = +\infty \lim_{x \to -\infty} f(x) = +\infty (1)$
1.25	0.25×2	(C) نستنج أن $y = 2x + 1$ مستقيم مقارب مائل لـ $\lim_{x \to +\infty} (f(x) - (2x + 1)) = 0$ (ب
	0.25	بجوار ∞+ ج) دراسة الوضع النسبي :
	0.5	$f'(x) = g(x) \mathbb{R}$ من أجل كل x من أجل كل (2
1.25	0.5	$]-\infty;lpha$ متزایدة تماما علی المجال $[lpha;+\infty[$ و f متناقصة تماما علی المجال f
	0.25	_ جدول التغيرات
0.5	0.5	(3) معادلة المماس $(T): y = 2x + 1 - e^{-1}$
		(1).9 23011 0

0.75	0.75	رسم المماس و المنحنى (C) $\stackrel{6-}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{$
		4- 3- 2-
		-3 -2 -1 0 0 1 ½ 3
		f(x) = 2x + m (5)
	0.25	لما $m\in \left]-\infty;1-rac{1}{e} ight[$ لما المعادلة لا تقبل حلول
0.25		لما $m=1-rac{1}{e}$ المعادلة تقبل حل مضاعف
		المعادلة تقبل حلين موجبين تماما $m\in \left]1-rac{1}{e};1 ight[$ لما
		لما $m=1$ المعادلة تقبل حل واحد معدوم
		لما $m \in]1;+\infty$ المعادلة تقبل حل وحيد سالب تماما
	0.25	الدالة الأصلية للدالة f على $\mathbb R$ والتي تنعدم من أجل القيمة 1 للمتغير F (أ (6
0.5		$F(x) = \int_{1}^{x} te^{-t} dt = (-1 - x)e^{-x} + 2e^{-1}$
	0.25	$A = \int_{1}^{3} ((2x-1)-f(x)) dx = 2e^{-1} - 4e^{-3} u a $

العلامة		
مجمو	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التمرين الأول: (04 نقاط)
01.5	0.5×3	$u_3 = \ln 7$ و $u_2 = \ln 5$ ، $u_1 = \ln 3$: u_3 و u_2 ، u_1 حساب (1)
0.25	0.25	$\frac{2n+3}{2n+1} > 1$ نبین أن $1 + 3 > 2n+1$: بما أن $2n+3 > 2n+1$ فإن (2 نبین أن $1 + 3 > 1$ نبین أن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن
1.75	0.5×2	$e^{u_n}=v_n$ نبين أن $e^{u_n}=v_n$ نبين أن $e^{u_n}=v_n$ و منه الخاصية محققة من أجل $e^{u_n}=v_n$ و منه الخاصية $e^{u_{n+1}}=v_{n+1}$ و نبين أن $e^{u_n}=v_n$ نفرض $e^{u_n}=v_n$ و نبين أن $e^{u_n+\ln\left(\frac{2n+3}{2n+1}\right)}=2n+3=v_{n+1}$ الدينا:
	0.25 0.5	$u_n = \ln v_n = \ln (2n+1)$: u_n عبارة $\lim_{n \to +\infty} u_n = +\infty$
0.5	0.25	: حساب المجموعين (4 $S_n = \ln\left(\frac{v_1}{v_0}\right) + \ln\left(\frac{v_2}{v_1}\right) + \dots + \ln\left(\frac{v_n}{v_{n-1}}\right) = \ln v_n - \ln v_0 = \ln\left(\frac{v_n}{v_0}\right) = \ln v_n = u_n$ $T = e^{u_{1439}} + e^{u_{1440}} + \dots + e^{u_{2018}} = v_{1439} + v_{1440} + \dots + v_{2018}$ $= \frac{2018 - 1439 + 1}{2} \left[2(1439 + 2018) + 2\right] = 2005640$
		$= \frac{2(1439 + 2018) + 2}{2} = 2003640$ $\frac{(03)}{1200} = \frac{2}{2}$
1.25	+0.5 0.75	(Δ) : $egin{cases} x=t+1 \ y=5t-2 \ z=-2t+1 \end{cases}$ (Δ) نمثیل وسیطی للمستقیم Δ : Δ
0.5	0.25 0.25	. التحقق أن المستويين (P_1) ، (P_2) يتقاطعان التحقق أن المستقيم Δ
0.5	0.25	(Q): x+5y-2z-19=0 : (Q) معادلة ديكارتية للمستوي (3)

	0.25	$E(2;3;-1)$ بالتعويض نجد نقطة التقاطع $(P_1)\cap (P_2)\cap (Q)=(\Delta)\cap (Q)$
0.75	0.25	التحقق أن النقطة H هي المسقط العمودي H أ) التحقق أن النقطة H
	0.25	H باطبيعة المثلث EBH : المثلث قائم في
	0.25	$V_{ABEH}=rac{1}{3}S_{EBH} imes digl[A,(Q)igr]=5\ uv\ :ABEH\ $ حجم رباعي الوجوه $S_{EBH}=rac{1}{2}EH imes HB=rac{\sqrt{30}}{2}\ :EBH$ (مساحة المثلث
		$S_{EBH} = \frac{1}{2}EH \times HB = \frac{1}{2}:EBH$ (مساحة المنك) (مساحة المنك) (التمرين الثالث: (05 نقاط)
01	0,25×4	$S = \{4+i; 2-i; 2+i\}$ هي $(z-4+i)(z^2-4z+5) = 0$ (ا
1.25	0,25×4	$rac{z_B-z_A}{z_C-z_A}=i$ التحقق أن: (1 (II
	0.25	$n=2k+1; k\in\mathbb{N}$: قيم العدد الطبيعي
01	0.5	$ \left(\frac{z_D - z_A}{z_B - z_A}\right) = e^{i\frac{\pi}{3}} \text{if} \begin{cases} z_D - z_A = z_B - z_A \\ \arg\left(\frac{z_D - z_A}{z_B - z_A}\right) = \frac{\pi}{3} + 2k\pi (k \in \mathbb{Z}) \end{cases} \tag{2} $
		ومنه ABD مثلث متقايس الاضلاع.
	0.5	$z_D = e^{i\frac{\pi}{3}} (z_B - z_A) + z_A = 3 + (1 + \sqrt{3})i$
1.25	0.75	$z_G = 3 + i \left(1 + \frac{\sqrt{3}}{3} \right) : z_G$ حساب (3)
	0.5	$rac{\pi}{6}$ عناصر التشابه المباشر:نسبته $\sqrt{3}$ و زاویته –
0.5	0.5	$]CG[$ هي القطعة النقط $(\Gamma):$ طبيعة مجموعة النقط

		التمرين الرابع :(08 نقاط)
1.5	0.5 01	ا- حساب $g(1)$
		g(x) استنتاج إشارة $g(x)$:
	0.75	$\lim_{x \to \infty} f(x) = -\infty : 1 - \mathbf{I}$
1.75	0.5	$\lim_{x\to +\infty} f(x) = 0$ و تبیان أنّ
	<mark>0.5</mark>	$\left(C_{f} ight)$ التفسير البياني: $x=0$ و $y=0$ معادلتي المستقيمين المقاربين لـ $x=0$
2.50	01	$f'(x) = \frac{g(x)}{(1+x\ln x)^2}$ بيان أنّ (2
	<mark>0.75</mark>	$[0;1]$ و متزایدة تماما علی $[1;+\infty[$ و متزایدة تماما علی f
	<mark>0.75</mark>	ـ جدول التغيرات
	0.25	e^{-1} يقطع محور الفواصل في نقطة فاصلتها $\left(C_f\right)$ (3
1.25	0.25	$(T): y = \frac{e^2}{e-1}x - \frac{e}{e-1}$: معادلة المماس
	<mark>0.75</mark>	ـ رسم المماس و المنحنى
0.5	0.25	$f(x) = \frac{e^2}{e-1}x - \frac{e}{e-1}m$ تكافئ $(e-1)f(x) = e^2x - me$ و
0.5	<mark>0.25</mark>	m>1 منه المعادلة تقبل حلين متمايزين من أجل
0.25	0.25	$I_n = \int_{1}^{n} f(x) dx = \left[\ln(1 + x \ln x) \right]_{1}^{n} = \ln(1 + n \ln n)$ (1 -III)
		$\left(I_{n}\right)$ اتجاه تغیر المتتالیة (2
	0.25	و منه $\left(I_n\right)$ متزایدة تماما $I_{n+1}-I_n=\ln\!\left(\frac{1+\left(n+1\right)\!\ln\left(n+1\right)}{1+n\ln n}\right)$
0.25		$\left(\ln\left(1+(n+1)\ln(n+1)\right)>\ln\left(1+n\ln n\right)\right)$ لأن
		$I_{n+1} - I_n = \int_{n}^{n+1} f(x) dx > 0$