GEOMETRY HOMEWORK 11

B96201044 黃上恩, B98901182 時丕勳, K0020100x 劉士瑋

December 15, 2011

Problem 4 (Ex p261 8.). Show that if all the geodesics of a connected surface are plane curves, then the surface is contained in a plane or a sphere.

Proof.

Problem 5 (Ex p262 17.). Let $\alpha: I \to S$ be a curve parametrized by arc length s, with nonzero curvature. Consider the parametrized surface

$$\mathbf{x}(s,v) = \alpha(s) + vb(s), \quad s \in I, -\epsilon < v < \epsilon, \epsilon > 0,$$

where b is the binormal vector of α . Prove that if ϵ is small, $\mathbf{x}(I \times (-\epsilon, \epsilon)) = S$ is a regular surface over which $\alpha(I)$ is geodesic. (thus, every curve is a geodesic on the surface generated by its binormals).

Proof.

$$\mathbf{x}_s = lpha'(s) + vb'(s) \ = t(s) + v\tau(s)n(s) \ \mathbf{x}_v = b(s) \
ightarrow \mathbf{x}_s imes \mathbf{x}_v = -n(s) + v\tau(s)t(s) \
eq 0$$

So x is a regualr surface.

Since $\alpha''(s) = n(s)$, and at v = 0, $N \parallel \mathbf{x}_s \times \mathbf{x}_v = -n(s)$. So $\alpha'(s) \parallel N$, and $\kappa_g = 0$. So $\alpha(I)$ is geodesic.

Problem 8. 用 (A) 表示在座標變換下不變、用 (B) 表示在 isometry 下不變 (R E, F, G) 下的性質

	line of curvature	geodesic	$asymptotic\ curve$	Γ^k_{ij}	Н	K
(A)	$Yes_{(1)}$	$Yes_{(1)}$	$Yes_{(1)}$	$No_{(2)}$	$Yes_{(1)}$	$Yes_{(1)}$
(B)	(2)	Yesproblem 9(a)	(6)	$Yes_{(3)}$	No	$Yes_{(4)}$

Proof. (1) Since curves, surface, T,A,N, t,n,b are all geometry objects, κ_n , κ_g , τ_g are geometry objects too. So line of curvature, geodesic, asymptotic curve are also geometry objects. Since principal direction and principal curvature are geometry objects too, H and K are geometry objects.

- (2) Consider an surface $\mathbb{X}(u,v)$ and $\hat{\mathbb{X}}(u,v)=\mathbb{X}(v,u)$, it's trivial that $\hat{\Gamma}_{11}^2=\Gamma_{22}^1$, so $\hat{\Gamma}_{11}^2\neq\Gamma_{11}^2$ when $\Gamma_{11}^2\neq\Gamma_{22}^1$, and it's trivial to find a surface with $\Gamma_{11}^2\neq\Gamma_{12}^1$ (For example, $\mathbb{X}(u,v)=(u\cos v,u\sin v,0)$. As shown in HW 10, $\Gamma_{22}^1=-u\neq\Gamma 11^2=0$).
- (3) Since $\Gamma_{ij}^k = g^{kl}[i,j,l]$, and both g^{kl} and [i,j,l] only depends on g_{ij} , Γ_{ij}^k is same in isometry.
- (4) Gauss Theorema Egregium.

Problem 9. 考慮 p221, p222 中 helicoid Y 和 catenoid X 的 parametrization。

 $X(u,v)=(a\cosh v\cos u,a\cosh v\sin u,av),\ Y(u,v)=(a\sinh v\cos u,a\sinh v\sin u,au)$

- (a) X 中的 geodesics 相對應映到 Y 中也是 geodesics 嗎?
- (b) 已知 X 的經線 (u = const) 與 v = 0 都是 geodesics。描述他們在 Y 中的對應曲線?他們都是 geodesics 嗎?
- Proof. (a) Since X and Y are isometry, they have the same Γ^k_{ij} , and have the same geodesic equation. So geodesic in X is also geodesic in Y.
- (b) when u = const, Y(u, v) is a line $(a \cos C \sinh v, a \sin C \sinh v, aC)$, and is a geodesic of Y. when v = 0, Y(u, v) is a line (0, 0, au), and is a geodesic of Y.