Quantum Latin Squares

ian.mcloughlin@atu.ie

Last updated: 18 September 2023

Quantum Latin Square

An $n \times n$ array of elements in \mathbb{C}^n such that each row and each column is an orthonormal basis.

Benjamin Musto and Jamie Vicary. Quantum latin squares and unitary error bases, 2016

Example

$ 0\rangle$	$ 1\rangle$	2⟩	3⟩
$\frac{1}{\sqrt{2}}(1\rangle- 2\rangle)$	$\frac{1}{\sqrt{5}}(i\ket{0}+2\ket{3})$	$\frac{1}{\sqrt{5}}(2\ket{0}+i\ket{3})$	$\frac{1}{\sqrt{2}}(1\rangle+ 2\rangle)$
$\frac{1}{\sqrt{2}}(1\rangle+ 2\rangle)$	$\frac{1}{\sqrt{5}}(2\ket{0}+i\ket{3})$	$\frac{1}{\sqrt{5}}(i\ket{0}+2\ket{3})$	$\frac{1}{\sqrt{2}}(1\rangle- 2\rangle)$
3⟩	2⟩	$ 1\rangle$	$ 0\rangle$

 $\begin{array}{c|cccc} |0\rangle & |1\rangle & |2\rangle & |3\rangle \\ |1\rangle & |2\rangle & |3\rangle & |0\rangle \\ |2\rangle & |3\rangle & |0\rangle & |1\rangle \\ |3\rangle & |0\rangle & |1\rangle & |2\rangle \end{array}$

Figure 1: From Latin Square.