Algebra II

January 8, 2024

How To Prove a Big Theorem

- 1. Reduce to a linear algebra problem.
- 2. Solve the linear algebra problem.

Grades

- Weekly Homework
 - For completion, graded by peers or presented. Survey to follow.
- Midterm
- Final
 - March 18, 2024
 - 4:00 PM to 7:00 PM

Office Hours

McHenry 4174

Monday / Wednesday from 1:05 PM to 2:05 PM.

E-mail ahead if arriving promptly at 1:05 PM.

Definition: Module

Let R be a ring.

A (left) R-module is a set M with binary operations $: R \times M \to M$ and $+ : M \times M \to M$ such that

- 1. (M, +) is an Abelian group.
 - (a) $\exists 0 \in M$ such that $\forall m \in M, m + 0 = m = 0 + m$.
 - (b) $\forall m \in M, \exists n \in M \text{ such that } m+n=0=n+m.$
 - (c) $\forall m_1, m_2, m_3 \in M$, $(m_1 + m_2) + m_3 = m_1 + (m_2 + m_3)$.
 - (d) $\forall m_1, m_2 \in M, m_1 + m_2 = m_2 + m_1.$
- 2. Distibution.

$$(r_1 + r_2) \cdot m = r_1 \cdot m + r_2 \cdot m$$

 $r \cdot (m_1 + m_2) = r \cdot m_1 + r \cdot m_2$

3. $1 \cdot m = m$ where $1 \in R$ is the multiplicative identity.

4.
$$(r_1 \cdot r_2) \cdot m = r_1 \cdot (r_2 \cdot m)$$

• Note that • may represent scalar multiplication or multiplication in the ring.

Example 1

 $n \in \mathbb{Z}, n = 1, 2, 3, ..., R = \mathbb{R}, M = \mathbb{R}^n$, equipped with + vector addition and · scalar multiplication.

Example 2

Let R be your favorite field \mathbb{Z}/p , \mathbb{Q} , \mathbb{C} , \mathbb{F}_q , \mathbb{Q}_p , and $M = \mathbb{R}^n$. Similarly with rings $R = \mathbb{Z}$, $R = \mathbb{Z}[x]$, etc.

Example 3

Let $R = \mathbb{Z}$ and M be your favorite Abelian group.

Example 4

Let R be any ring (e.g. $\mathbb{Z}[x]$) and M be any left ideal (e.g. $R \cdot x + R \cdot 3$).

Example 5

Fix
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2\times 2}(\mathbb{R}).$$

Let $R = \mathbb{R}[x]$, the polynomial ring, and $M = \mathbb{R}^2$ where + is standard addition, and \cdot is matrix multiplication.

$$x \cdot m = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot m$$

Example 6

Let R be any ring and M be functions $R \to R$ where + and · are pointwise operations.

Example 6'

Let $R = \mathbb{R}$ and have M require that f is continuous, differntiable, etc.