

Теория вероятностей и математическая статистика

Экзамен, 24.12.2016

Имя, фамилия:
**
Номер группы:

Можно пользоваться простым калькулятором. В каждом из 32 вопросов один верный ответ.

Ни пуха, ни пера!

Вопрос 1 \clubsuit Размер выплаты страховой компанией является неотрицательной случайной величиной с математическим ожиданием $10\,000$ рублей. Согласно неравенству Маркова, вероятность того, что очередная выплата превысит $50\,000$ рублей, ограничена сверху числом

A 0.3413

E 0.4

0.2

F 0.5

С неравенство Маркова здесь неприменимо

G Нет верного ответа.

Вопрос 2 \clubsuit Известно, что $\mathrm{E}(X)=3$, $\mathrm{E}(Y)=2$, $\mathrm{Var}(X)=12$, $\mathrm{Var}(Y)=1$, $\mathrm{Cov}(X,Y)=2$. Дисперсия $\mathrm{Var}(2X-Y+4)$ равна

A 45

C 53

E 57

41

__ D 49

F Нет верного ответа.

Вопрос 3 \clubsuit Если $F_X(x)$ — функция распределения случайной величины, то

 $\overline{\mathsf{A}}$ величина X непрерывна

 $\boxed{\mathbf{D}} \lim_{x \to -\infty} F_X(x) = 1$

 $\fbox{B} \ F_X(x)$ может принимать значение 2016

 $\mathbb{P}(X \in (a; b] = F_X(b) - F_X(a)$

 \fbox{C} $F_X(x)$ может принимать отрицательные значения

F величина *X* дискретна G *Hem верного ответа.*

Вопрос 4 \clubsuit Монетка выпадает орлом с вероятностью 0.2. Вероятность того, что при 10 подбрасываниях монетка выпадет орлом хотя бы один раз, равна

 $1 - 0.8^{10}$

D 1/2

G Нет верного ответа.

 $\boxed{\mathbb{E}} \ 0.2^{10}$

C 2/10

 $\boxed{\mathrm{F}} \ C^1_{10} 0.8^1 0.2^9$

В школе три девятых класса: 9A, 9Б и 9В. В 9A классе -50% отличники, в 9Б -30%, в 9В -40%. Если сначала равновероятно выбрать один из трёх классов, а затем внутри класса равновероятно выбрать школьника, то вероятность выбрать отличника равна G Нет верного ответа.

A 0.3

0.4

C 3/(3+4+5)

D 0.5

E 0.27

 \overline{F} (3+4+5)/3

Вопрос 6 \clubsuit Если случайные величины X и Y имеют совместное нормальное распределение с нулевыми математическими ожиданиями и единичной ковариационной матрицей, то

A Corr(X, Y) > 0

 $\boxed{\mathrm{B}}$ существует такое a>0, что $\mathbb{P}(X=a)>0$

X и Y независимы

 $\boxed{\mathsf{D}} \ \forall \alpha \in [0,1] : \mathsf{Var}(\alpha X + (1-\alpha)Y) = 0$

[E] распределение X может быть дискретным

 $\lceil \mathsf{F} \rceil \operatorname{Corr}(X,Y) < 0$

G Нет верного ответа.

Вопрос 7 \clubsuit Случайные величины $\xi_1, \ldots, \xi_n, \ldots$ независимы и имеют таблицы распределения

$$\begin{array}{c|c|c} \xi_i & -1 & 1 \\ \hline \mathbb{P}_{\xi_i} & 1/2 & 1/2 \end{array}$$

Если $S_n=\xi_1+\ldots+\xi_n$, то предел $\lim_{n\to\infty}\mathbb{P}\Big(\frac{S_n-\mathrm{E}[S_n]}{\sqrt{\mathrm{Var}(S_n)}}>1\Big)$ равен

 $\boxed{A} \int_{-1}^{1} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$

 $\boxed{\mathbf{B}} \int_{1}^{+\infty} \frac{1}{2} e^{-t/2} dt$

F Нет верного ответа.

Вопрос 8 4 Граф Сен-Жермен извлекает карты в случайном порядке из стандартной колоды в 52 карты без возвращения. Рассмотрим три события: A — «первая карта — тройка»; B — «вторая карта семёрка»; C — «третья карта — дама пик».

 $\overline{\mathbf{A}}$ События A и B независимы, события B и C зависимы.

[B] События A и B независимы, события B и C независимы.

События A и B зависимы, события B и C зависимы.

 $\boxed{\mathsf{D}}$ События A и B зависимы, события B и C независимы.

[E] События A и независимы, события B и C зависимы.

| F | *Нет верного ответа.*

Если Corr(X,Y)=0.5 и Var(X)=Var(Y), то Corr(X+Y,2Y-7) равна Вопрос 9 🌲

A 1

B 1/2

 $\begin{bmatrix} C \end{bmatrix} 0$

 $\boxed{\mathrm{D}}\sqrt{3}/3$

 $\sqrt{3}/2$

 $\boxed{F} \sqrt{2}/3$

G Нет верного ответа.

Вопрос 10 ૈ Правильный кубик подбрасывается 5 раз. Вероятность того, что ровно два раза выпадет шестерка равна

A 1/36

 $C 1/(2^53^5)$

 $E 125/(2^43^5)$

 $B \ 2/5$

 $D 25/(2^53^5)$

Вопрос 12 \clubsuit Известно, что $\mathrm{E}(X)=3$, $\mathrm{E}(Y)=2$, $\mathrm{Var}(X)=12$, $\mathrm{Var}(Y)=1$, $\mathrm{Cov}(X,Y)=2$. Ожидание $\mathrm{E}(XY)$ равно

Вопрос 13 ♣ Правильный кубик подбрасывается 5 раз. Математическое ожидание и дисперсия числа выпавших шестерок равны соответственно

Вопрос 14 \clubsuit Число посетителей сайта за один день является неотрицательной случайной величиной с математическим ожиданием 400 и дисперсией 400. Вероятность того, что за 100 дней общее число посетителей сайта превысит $40\,400$, приближённо равна

Вопрос 15 \clubsuit Случайный вектор $(\xi,\eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}\right)$ и функцию плотности $f_{\xi,\eta}(x,y) = \frac{1}{2\pi a} \exp\left(-\frac{1}{2a^2}(x^2 - bxy + y^2)\right)$. При этом

A
$$a = 1, b = 0$$
 $a = \sqrt{3}/2, b = 1$

 B $a = \sqrt{3/4}, b = 0$
 D $a = 1, b = 1$

 E $a = 1/2, b = 1$

 F Hem верного ответа.

Вопрос 16 • Монетку подбрасывают три раза. Рассмотрим три события: A — «хотя бы один раз выпала решка»; B — «хотя бы один раз выпал орёл»; C — «все три раза выпал орёл».

- События A и B совместны, события A и C несовместны.
- \fbox{C} События A и B несовместны, события B и C совместны.
- $\boxed{\mathbf{D}}$ События A и B несовместны, события B и C несовместны.
- \fbox{E} События A и B несовместны, события A и C совместны.
- **F** Нет верного ответа.

Е только 1

B 5

0 и 1

F | Нет верного ответа.

Вопрос 18 \clubsuit Случайный вектор $(\xi, \eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}\right)$. Условное математическое ожидание и условная дисперсия равны

A $E(\xi|\eta=1) = 1/2, Var(\xi|\eta=1) = 1$

 $|E| E(\xi | \eta = 1) = 1/2, Var(\xi | \eta = 1) = 1/4$

B $E(\xi|\eta=1) = 1, Var(\xi|\eta=1) = 1/2$

F $E(\xi|\eta=1) = 0, Var(\xi|\eta=1) = 1$

 $E(\xi|\eta=1) = 1/2, Var(\xi|\eta=1) = 3/4$ D $E(\xi|\eta=1) = 1, Var(\xi|\eta=1) = 1$

G Нет верного ответа.

Вопрос 19 \clubsuit Если $\mathbb{P}(A) = 0.2$, $\mathbb{P}(B) = 0.5$, $\mathbb{P}(A|B) = 0.3$, то

 $E \mid \mathbb{P}(B \cup A) = 0.3$

 $\boxed{\mathsf{B}} \ \mathbb{P}(A \cup B) = 0.8$

 $\mathbb{P}(A \cap B) = 0.15$

F Нет верного ответа.

Вопрос 20 Известно, что $\xi \sim U[0; 1]$. Вероятность $\mathbb{P}(0.2 < \xi < 0.7)$ равна

 \triangle $\int_{0.2}^{0.7} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$

 $C \int_0^1 \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$

1/2

B 1/4

D 0.17

F Нет верного ответа.

Размер выплаты страховой компанией является неотрицательной случайной величиной с математическим ожиданием $50\,000$ рублей и стандартным отклонением $10\,000$ рублей. Согласно неравенству Чебышёва, вероятность того, что очередная выплата будет отличаться от своего математического ожидания не более чем на 20 000 рублей, ограничена снизу числом

3/4

E 3/5

B 2/5 C 1/2

F 1/4

|D| неравенство Чебышёва здесь неприменимо

|G| Нет верного ответа.

Известно, что E(X) = 3, E(Y) = 2, Var(X) = 12, Var(Y) = 1, Cov(X, Y) = 2. Корреля-Вопрос 22 🌲 ция Corr(X, Y) равна

 $A \frac{1}{12}$

C $\frac{2}{\sqrt{13}}$

 $\frac{2}{12}$

 $D \frac{1}{\sqrt{12}}$

F | Нет верного ответа.

Вопрос 23 🜲 Вероятность поражения мишени при одном выстреле равна 0.6. Случайная величина ξ_i равна 1, если при i-ом выстреле было попадание, и равна 0 в противном случае. Предел по вероятности последовательности $\frac{\xi_1^{2016}+\ldots+\xi_n^{2016}}{n}$ при $n\to\infty$ равен

3/5

C 2/5

E 3/4

B 1/2

 $D = 0.6^{2016}$

Вопрос 24 🌲 Функцией плотности случайной величины может являться функция

$$\boxed{\mathbb{C}}$$
 $f(x) = egin{cases} x^2, x \in [0, 2] \\ 0, \text{ иначе} \end{cases}$

$$\boxed{ \mathbb{E} } \ f(x) = \begin{cases} -1, x \in [-1, 0] \\ 0, \ \text{иначе} \end{cases}$$

F Нет верного ответа.

Вопрос 25 ♣ Правильный кубик подбрасывается 5 раз. Математическое ожидание суммы выпавших очков равно

A 21

C 3.5

E 18

B 18.5

17.5

F Нет верного ответа.

Вопрос 26 ♣ Среди покупателей магазина мужчин и женщин поровну. Женщины тратят больше 1000 рублей с вероятностью 60%, а мужчины — с вероятностью 30%. Только что был пробит чек на сумму 1234 рубля. Вероятность того, что покупателем была женщина равна

A 0.5

2/3

E 1/3

B 0.18

 \boxed{D} 0.3

F Нет верного ответа.

В вопросах 27–30 совместное распределение пары величин X и Y задано таблицей:

•	Y = -1	Y = 0	Y=1
X = 0	0	1/6	1/6
X = 2	1/3	1/6	1/6

Вопрос 27 \clubsuit Дисперсия случайной величины Y равна

A - 1

C 0

2/3

B 1

D 1/3

F Нет верного ответа.

Вопрос 28 \clubsuit Вероятность того, что X=0 при условии Y<1 равна

1/4

C 1/2

E 1/6

B 0

D 3/4

F Нет верного ответа.

Вопрос 29 \clubsuit Ковариация случайных величин X и Y равна:

 $\boxed{\mathbf{A}} \ 1/3$

 $\begin{bmatrix} \mathbf{C} \end{bmatrix} \mathbf{0}$

-1/3

 $\boxed{B} - 2/3$

 $\boxed{D} \ 2/3$

F Нет верного ответа.

Вопрос 30 \clubsuit Математическое ожидание случайной величины X при условии Y=0 равно

A 1/3

1

E -1

B 1/6

 $\boxed{\mathbf{D}}$ 0

В вопросах 31 и 32 совместное распределение пары величин X и Y задается функцией плотности

$$f(x) = \begin{cases} 9x^2y^2, x \in [0,1], y \in [0,1] \\ 0, \text{ иначе} \end{cases}$$

Вопрос 31 $\clubsuit \hspace{0.4cm}$ Условное распределение X при условии Y=1имеет вид

$$\boxed{\mathbf{A}} \ f(x) = \begin{cases} 9x^2, x \in [0, 1] \\ 0, \text{ where} \end{cases}$$

 $\boxed{\mathbf{D}} \ f(x) = egin{cases} 3x, x \in [0, 1] \\ 0, \ \mathtt{иначe} \end{cases}$

В Не определено

 $\boxed{ \textbf{E} } \ f(x) = \begin{cases} 9x, x \in [0,1] \\ 0, \ \text{иначе} \end{cases}$

F Нет верного ответа.

Вопрос 32 \clubsuit Вероятность того, что X < 0.5, Y < 0.5 равна:

A 1/96

1/64

E 1/128

B 1/4

D 1/16

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 3 : A B C D **F** G

Вопрос 4 : **В** В С D E F G

Вопрос 6 : A B D E F G

Вопрос 7 : A B **D** E F

Вопрос 8 : A B D E F

Вопрос 9: A B C D **F** G

Вопрос 10 : A B C D E

Вопрос 11 : A B C D E G

Вопрос 13 : A B C D E F

Вопрос 14 : A B D E F

Вопрос 15 : A B D E F

Вопрос 16 : B C D E F

Вопрос 17 : A B C E F

Вопрос 18 : A B **В** D E F G

Вопрос 19 : АВСВСБ

Вопрос 20 : A B C D **F**

Вопрос 21 : **В** В С D E F G

Вопрос 22 : A B C D F

Вопрос 23 : В В С D Е F

Вопрос 24 : A B C E F

Вопрос 25 : A B C E F

Вопрос 26 : АВВ В Б Б Е Е

Вопрос 27 : А В С D F

Вопрос 28 : **В** С D E F

Вопрос 29 : A B C D F

Вопрос 30 : A B D E F

Вопрос 31 : A B **В** D E F

Вопрос 32 : A B D E F

Теория вероятностей и математическая статистика

Экзамен, 24.12.2016

Имя, фамилия:
Номер группы:

Можно пользоваться простым калькулятором. В каждом из 32 вопросов один верный ответ.

Ни пуха, ни пера!

Вопрос 1 \clubsuit Если случайные величины X и Y имеют совместное нормальное распределение с нулевыми математическими ожиданиями и единичной ковариационной матрицей, то

- $\boxed{\mathsf{A}}$ существует такое a>0, что $\mathbb{P}(X=a)>0$
- [E] распределение X может быть дискретным

 \square Corr(X, Y) > 0

 $|D| \operatorname{Corr}(X, Y) < 0$

 $\lceil \mathbf{F} \rceil \ \forall \alpha \in [0,1] : \operatorname{Var}(\alpha X + (1-\alpha)Y) = 0$

X и Y независимы

G Нет верного ответа.

Вопрос 2 Вероятность поражения мишени при одном выстреле равна 0.6. Случайная величина ξ_i равна 1, если при i-ом выстреле было попадание, и равна 0 в противном случае. Предел по вероятности последовательности $\frac{\xi_1^{2016}+\ldots+\xi_n^{2016}}{n}$ при $n\to\infty$ равен

 $\boxed{A} \ 3/4$

 $C 0.6^{2016}$

E 2/5

3/5

 $\boxed{\mathrm{D}}$ 1/2

F Нет верного ответа.

Вопрос 3 • Монетка выпадает орлом с вероятностью 0.2. Вероятность того, что при 10 подбрасываниях монетка выпадет орлом хотя бы один раз, равна

 $\boxed{\textbf{A}} \ C^1_{10} 0.8^1 0.2^9$

 $C 0.2^{10}$

 $1 - 0.8^{10}$

B $C_{10}^1 0.2^1 0.8^9$

D 2/10E 1/2

G Нет верного ответа.

Вопрос 4 ♣ Среди покупателей магазина мужчин и женщин поровну. Женщины тратят больше 1000 рублей с вероятностью 60%, а мужчины — с вероятностью 30%. Только что был пробит чек на сумму 1234 рубля. Вероятность того, что покупателем была женщина равна

A 0.3

C 1/3

 $\overline{\mathsf{E}} = 0.5$

2/3

D 0.18

но неравенству Чебышёва, вероятность того, что очередная выплата будет отличаться от своего мате-

C 1/4 |D| неравенство Чебышёва здесь неприменимо |G| Нет верного ответа.

Правильный кубик подбрасывается 5 раз. Математическое ожидание суммы выпавших Вопрос 9 🐥 очков равно

A 21 C 18.5 E 18 B 3.5 17.5F Нет верного ответа.

Число посетителей сайта за один день является неотрицательной случайной величиной с математическим ожиданием 400 и дисперсией 400. Вероятность того, что за 100 дней общее число посетителей сайта превысит 40 400, приближённо равна

C 0.0553 E 0.9772 0.0227 B 0.3413 D 0.1359 F Нет верного ответа.

$$A$$
 $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2}$

$$\boxed{\mathbb{B}} \ f(x) = \begin{cases} x^2, x \in [0, 2] \\ 0, \ \text{иначе} \end{cases}$$

$$\boxed{ \textbf{D} } \ f(x) = \begin{cases} x-1, x \in [0, 1+\sqrt{3}] \\ 0, \ \text{иначе} \end{cases}$$

$$\boxed{ \mathbb{E} } \ f(x) = \begin{cases} -1, x \in [-1, 0] \\ 0, \ \text{иначе} \end{cases}$$

F Нет верного ответа.

Вопрос 12 \clubsuit Известно, что E(X) = 3, E(Y) = 2, Var(X) = 12, Var(Y) = 1, Cov(X, Y) = 2. Ожидание E(XY) равно

8

C 0D 2

B 5

F Нет верного ответа.

Вопрос 13 🌲 Правильный кубик подбрасывается 5 раз. Наиболее вероятное число шестерок равня-

A 5

0 и 1

Е только 1

B 5/6

D только 0

F Нет верного ответа.

Правильный кубик подбрасывается 5 раз. Математическое ожидание и дисперсия числа выпавших шестерок равны соответственно

А 0 и 1

D 1 и 5/6

F 5/6 и 1/36

- В 0 и 5/6
- С 5/6 и 5/36

E 5/6 и 1/5

Нет верного ответа.

Вопрос 15 \clubsuit Если $F_X(x)$ — функция распределения случайной величины, то

- [A] $F_X(x)$ может принимать значение 2016
- значения

 $\boxed{\mathbf{B}} \lim_{x \to -\infty} F_X(x) = 1$

 $\mathbb{P}(X \in (a;b] = F_X(b) - F_X(a)$

|C| величина X дискретна

- **F** величина *X* непрерывна
- $\boxed{\mathrm{D}}$ $F_X(x)$ может принимать отрицательные
- G Нет верного ответа.

Вопрос 16 \clubsuit Известно, что E(X)=3, E(Y)=2, Var(X)=12, Var(Y)=1, Cov(X,Y)=2. Дисперсия Var(2X - Y + 4) равна

A 53

F Нет верного ответа.

Вопрос 17 \clubsuit Случайный вектор $(\xi, \eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}\right)$ и функцию плотности $f_{\xi,\eta}(x,y)=rac{1}{2\pi a}\exp\left(-rac{1}{2a^2}(x^2-bxy+y^2)
ight)$. При этом

- $A = \sqrt{3/4}, b = 0$
- $\boxed{\mathsf{C}} \ a = 1, b = 1$

- $\begin{bmatrix} B \end{bmatrix} a = 1, b = 0$
- - F Нет верного ответа.

Монетку подбрасывают три раза. Рассмотрим три события: A -«хотя бы один раз выпала решка»; B — «хотя бы один раз выпал орёл»; C — «все три раза выпал орёл».

A События A и B несовместны, события B и C совместны.

[B] События A и B совместны, события A и C совместны.

 $\boxed{ \mathbb{C} }$ События A и B несовместны, события A и C совместны.

 $\boxed{\mathrm{D}}$ События A и B несовместны, события B и C несовместны.

События A и B совместны, события A и C несовместны.

F Нет верного ответа.

Вопрос 19 \clubsuit Известно, что $\xi \sim U[0;\,1]$. Вероятность $\mathbb{P}(0.2 < \xi < 0.7)$ равна

$$\mathbb{E} \int_0^1 \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

$$\boxed{\mathbf{B}} \int_{0.2}^{0.7} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

F Нет верного ответа.

Вопрос 20 \clubsuit Случайные величины $\xi_1, \ldots, \xi_n, \ldots$ независимы и имеют таблицы распределения

$$\begin{array}{c|c|c} \xi_i & -1 & 1 \\ \hline \mathbb{P}_{\xi_i} & 1/2 & 1/2 \end{array}$$

Если $S_n=\xi_1+\ldots+\xi_n$, то предел $\lim_{n o\infty}\mathbb{P}\Big(rac{S_n-\mathtt{E}[S_n]}{\sqrt{\mathrm{Var}(S_n)}}>1\Big)$ равен

$$A \int_{1}^{+\infty} \frac{1}{2} e^{-t/2} dt$$

$$D \int_{-1}^{1} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

Вопрос 21 \clubsuit Известно, что $\mathrm{E}(X)=3$, $\mathrm{E}(Y)=2$, $\mathrm{Var}(X)=12$, $\mathrm{Var}(Y)=1$, $\mathrm{Cov}(X,Y)=2$. Корреляция Corr(X, Y) равна

$$A \frac{1}{\sqrt{12}}$$

C $\frac{2}{12}$

$$\frac{1}{\sqrt{3}}$$

$$\boxed{\mathbf{B}} \quad \frac{2}{\sqrt{13}}$$

$$\boxed{D} \ \frac{1}{12}$$

F Нет верного ответа.

Вопрос 22 🜲 Граф Сен-Жермен извлекает карты в случайном порядке из стандартной колоды в 52 карты без возвращения. Рассмотрим три события: A- «первая карта- тройка»; B- «вторая картасемёрка»; C — «третья карта — дама пик».

[A] События A и B независимы, события B и C независимы.

 \fbox{B} События A и B независимы, события B и C зависимы.

События A и B зависимы, события B и C зависимы.

[E] События A и B зависимы, события B и C независимы.

F | *Нет верного ответа.*

Вопрос 23 🌲 Правильный кубик подбрасывается 5 раз. Вероятность того, что ровно два раза выпадет шестерка равна

 $\boxed{A} 125/(2^43^5)$

C 25/(2⁵3⁵)

 $[E] 1/(2^53^5)$

B 2/5

D 1/36

 $E \mid E(\xi | \eta = 1) = 1/2, Var(\xi | \eta = 1) = 1$

F $E(\xi|\eta=1) = 1/2, Var(\xi|\eta=1) = 1/4$

Вопрос 24 Случайный вектор $(\xi, \eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}\right)$. Условное математическое ожидание и условная дисперсия равны

A
$$E(\xi|\eta = 1) = 0, Var(\xi|\eta = 1) = 1$$

 $E(\xi|\eta=1) = 1/2, Var(\xi|\eta=1) = 3/4$

C $E(\xi|\eta=1) = 1, Var(\xi|\eta=1) = 1$

D $E(\xi|\eta=1) = 1, Var(\xi|\eta=1) = 1/2$

Вопрос 25 \clubsuit Если Corr(X,Y) = 0.5 и Var(X) = Var(Y), то Corr(X+Y,2Y-7) равна

A 1

 $\boxed{B} \sqrt{2}/3$

 $\sqrt{3}/2$

D 0

E 1/2

 $\boxed{\mathsf{F}} \sqrt{3}/3$

G Нет верного ответа.

G Нет верного ответа.

Вопрос 26 \clubsuit Размер выплаты страховой компанией является неотрицательной случайной величиной с математическим ожиданием $10\,000$ рублей. Согласно неравенству Маркова, вероятность того, что очередная выплата превысит $50\,000$ рублей, ограничена сверху числом

A 0.1359

В неравенство Маркова здесь неприменимо

C 0.4

 $\boxed{\mathrm{D}}$ 0.5

0.2

F 0.3413

G Нет верного ответа.

В вопросах 27–30 совместное распределение пары величин X и Y задано таблицей:

Вопрос 27 🌲 Дисперсия случайной величины Y равна

A - 1

C 1/3

E 1

2/3

D 0

F Нет верного ответа.

Вопрос 28 \clubsuit Ковариация случайных величин X и Y равна:

A 1/3

 $\begin{bmatrix} \mathsf{C} \end{bmatrix} 0$

-1/3

B - 2/3

D 2/3

F Нет верного ответа.

Вопрос 29 \clubsuit Вероятность того, что X=0 при условии Y<1 равна

1/4

C 1/6

 $\begin{bmatrix} E \end{bmatrix} 0$

B 3/4

D 1/2

F Нет верного ответа.

Вопрос 30 \clubsuit Математическое ожидание случайной величины X при условии Y=0 равно

A - 1

C 1/6

 $\begin{bmatrix} \mathbf{E} \end{bmatrix} \mathbf{0}$

1

D 1/3

$$f(x) = \begin{cases} 9x^2y^2, x \in [0,1], y \in [0,1] \\ 0, \text{ иначе} \end{cases}$$

Вопрос 31 \clubsuit Условное распределение X при условии Y=1 имеет вид

$$\boxed{\textbf{B}} \ f(x) = \begin{cases} 9x^2, x \in [0, 1] \\ 0, \text{ иначе} \end{cases}$$

С Не определено

 $\fbox{D} \ f(x) = egin{cases} 9x, x \in [0,1] \\ 0, \ \text{иначe} \end{cases}$

F Нет верного ответа.

Вопрос 32 \clubsuit Вероятность того, что X < 0.5, Y < 0.5 равна:

A 1/16

C 1/4

E 1/96

B 1/128

1/64

+2/7/47+

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A B D E F G

Вопрос 3 : A B C D E |

Вопрос 5 : A B C E F G

Вопрос 6: А В С E F G

Вопрос 7: АВСВЕБ

Вопрос 9: А В С

Вопрос 10 : В В С D E F

Вопрос 11 : A B **В** D E F

Вопрос 12 : **В** В С D E F

Вопрос 13 : [А] [В] [Д]

Вопрос 14 : A B C D E

Вопрос 15 : A B C D

Вопрос 17 : А В С

Вопрос 18 : А В С D

Вопрос 19:

Вопрос 20 : А В С D

Вопрос 21 : А В С D

Вопрос 22 : [А] [В] [С]

Вопрос 23 : А В С D

Вопрос 24 : |А| | | | | | | | | | | | | E

Вопрос 25 : А В В

Вопрос 26 : А В С D

Вопрос 27 : А CD

Вопрос 28 : А В С D

Вопрос 29 :

Вопрос 31 : В В С D

Вопрос 32 : А В С

Теория вероятностей и математическая статистика

Экзамен, 24.12.2016

Нет верного ответа.

Имя, фамилия:			
Номер группы:			
Можно пользоваться п	ростым калькулятором. В каж	хдом из 32 вопросов один верный	ответ.
Ни пуха, ни пера!			
Вопрос 1 . Правильный выпавших шестерок равни	, ,	Математическое ожидание и диспо	ерсия числа
А 5/6 и 1/36	С 0 и 1	F 0 u 5/6	

Вопрос 2 \clubsuit Размер выплаты страховой компанией является неотрицательной случайной величиной с математическим ожиданием $50\,000$ рублей и стандартным отклонением $10\,000$ рублей. Согласно неравенству Чебышёва, вероятность того, что очередная выплата будет отличаться от своего математического ожидания не более чем на $20\,000$ рублей, ограничена снизу числом

 $\boxed{\mathrm{D}}$ 5/6 и 5/36

Е 5/6 и 1/5

 A 2/5
 Е неравенство Чебышёва здесь неприменимо

 B 3/5
 3/4

 C 1/4
 G Нет верного ответа.

Вопрос 3 • Монетку подбрасывают три раза. Рассмотрим три события: A — «хотя бы один раз выпала решка»; B — «хотя бы один раз выпал орёл»; C — «все три раза выпал орёл».

- \fbox{A} События A и B совместны, события A и C совместны.
- [B] События A и B несовместны, события A и C совместны.
- $\boxed{\mathsf{C}}$ События A и B несовместны, события B и C совместны.
- $\boxed{\mathrm{D}}$ События A и B несовместны, события B и C несовместны.
- События A и B совместны, события A и C несовместны.
- **F** Нет верного ответа.

В 1 и 5/6

Вопрос 7 \clubsuit Монетка выпадает орлом с вероятностью 0.2. Вероятность того, что при 10 подбрасываниях монетка выпадет орлом хотя бы один раз, равна

Вопрос 8 ♣ Число посетителей сайта за один день является неотрицательной случайной величиной с математическим ожиданием 400 и дисперсией 400. Вероятность того, что за 100 дней общее число посетителей сайта превысит 40 400, приближённо равна

Вопрос 9 \clubsuit Если случайные величины X и Y имеют совместное нормальное распределение с нулевыми математическими ожиданиями и единичной ковариационной матрицей, то

Вопрос 10 \clubsuit Случайные величины $\xi_1, \ldots, \xi_n, \ldots$ независимы и имеют таблицы распределения

$$\begin{array}{c|c|c} \xi_i & -1 & 1 \\ \hline \mathbb{P}_{\xi_i} & 1/2 & 1/2 \end{array}$$

Если $S_n = \xi_1 + \ldots + \xi_n$, то предел $\lim_{n \to \infty} \mathbb{P}\left(\frac{S_n - \mathbb{E}[S_n]}{\sqrt{\operatorname{Var}(S_n)}} > 1\right)$ равен

$$C$$
 $\int_{-1}^{1} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$

$$\int_{1}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-t^{2}/2} dt$$

$$\boxed{\mathbf{D}} \int_{1}^{+\infty} \frac{1}{2} e^{-t/2} dt$$

F Нет верного ответа.

Вопрос 11 Случайный вектор $(\xi, \eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}\right)$. Условное математическое ожидание и условная дисперсия равны

$$E \mid E(\xi | \eta = 1) = 1/2, Var(\xi | \eta = 1) = 1$$

B
$$E(\xi|\eta=1) = 1, Var(\xi|\eta=1) = 1/2$$

 $D | E(\xi | \eta = 1) = 0, Var(\xi | \eta = 1) = 1$

F
$$E(\xi|\eta=1) = 1, Var(\xi|\eta=1) = 1$$

$$\mathrm{E}(\xi|\eta=1) = 1/2, \mathrm{Var}(\xi|\eta=1) = 3/4$$

Вопрос 12 \clubsuit Известно, что E(X) = 3, E(Y) = 2, Var(X) = 12, Var(Y) = 1, Cov(X,Y) = 2. Ожидание E(XY) равно

A 5

B 6

D 0

F Нет верного ответа.

Правильный кубик подбрасывается 5 раз. Математическое ожидание суммы выпавших очков равно

A 21

C 3.5

E 18

B 18.5

17.5

F Нет верного ответа.

Вопрос 14 👶 Вероятность поражения мишени при одном выстреле равна 0.6. Случайная величина ξ_i равна 1, если при i-ом выстреле было попадание, и равна 0 в противном случае. Предел по вероятности последовательности $\frac{\xi_1^{2016}+\ldots+\xi_n^{2016}}{n}$ при $n\to\infty$ равен

A 2/5

C 3/4

3/5

B 1/2

 \boxed{D} 0.6²⁰¹⁶

F Нет верного ответа.

Вопрос 15 \clubsuit Известно, что E(X) = 3, E(Y) = 2, Var(X) = 12, Var(Y) = 1, Cov(X, Y) = 2. Дисперсия Var(2X - Y + 4) равна

A 45

41

E 49

B 57

D 53

F Нет верного ответа.

Вопрос 16 🐇 Правильный кубик подбрасывается 5 раз. Наиболее вероятное число шестерок равняется

A 5

С только 1

Е только 0

0 и 1

D 5/6

- [A] События A и независимы, события B и C зависимы.
- В События A и B независимы, события B и C независимы.
- \square События A и B независимы, события B и C зависимы.
- События A и B зависимы, события B и C зависимы.
- [E] События A и B зависимы, события B и C независимы.
- F | Нет верного ответа.

Если $\operatorname{Corr}(X,Y)=0.5$ и $\operatorname{Var}(X)=\operatorname{Var}(Y)$, то $\operatorname{Corr}(X+Y,2Y-7)$ равна Вопрос 19 🌲

- E 1 $\boxed{A} \sqrt{2}/3$ $\boxed{B} \sqrt{3}/3$ F 1/2 $\sqrt{3}/2$ G Нет верного ответа. D 0
- **Вопрос 20 ♣** В школе три девятых класса: 9A, 9Б и 9В. В 9A классе 50% отличники, в 9Б 30%, в 9В 40%. Если сначала равновероятно выбрать один из трёх классов, а затем внутри класса равновероятно выбрать школьника, то вероятность выбрать отличника равна
 - D 0.5E 0.27 A 0.3 G Нет верного ответа. 0.4 \overline{F} (3+4+5)/3 \boxed{C} 3/(3+4+5)

Вопрос 21 🐇 Среди покупателей магазина мужчин и женщин поровну. Женщины тратят больше 1000 рублей с вероятностью 60%, а мужчины — с вероятностью 30%. Только что был пробит чек на сумму 1234 рубля. Вероятность того, что покупателем была женщина равна

A 0.5 2/3E 0.3 D 0.18 B 1/3 F Нет верного ответа.

Вопрос 22 \clubsuit Известно, что E(X) = 3, E(Y) = 2, Var(X) = 12, Var(Y) = 1, Cov(X, Y) = 2. Корреляция Corr(X, Y) равна

 $A \frac{1}{12}$ $\frac{2}{\sqrt{12}}$ $D \frac{1}{\sqrt{12}}$ F | Нет верного ответа.

Вопрос 23 🜲 Правильный кубик подбрасывается 5 раз. Вероятность того, что ровно два раза выпадет шестерка равна

$$E 1/(2^53^5)$$

$$\boxed{B} \ 25/(2^53^5)$$

$$\boxed{\text{D}} \ 125/(2^43^5)$$

Нет верного ответа.

Вопрос 24 \clubsuit Если $\mathbb{P}(A) = 0.2$, $\mathbb{P}(B) = 0.5$, $\mathbb{P}(A|B) = 0.3$, то

$$\mathbb{P}(A \cap B) = 0.15$$

$$\boxed{\mathsf{E}} \ \mathbb{P}(A \cap B) = 0.05$$

$$\boxed{\mathsf{B}} \ \mathbb{P}(A \cup B) = 0.8$$

$$\boxed{\mathsf{D}} \ \mathbb{P}(B \cup A) = 0.3$$

F Нет верного ответа.

Вопрос 25 \clubsuit Известно, что $\xi \sim U[0; 1]$. Вероятность $\mathbb{P}(0.2 < \xi < 0.7)$ равна

$$C$$
 $\int_0^1 \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$

$$\boxed{\mathbf{B}} \int_{0.2}^{0.7} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

F Нет верного ответа.

Вопрос 26 🗍 Функцией плотности случайной величины может являться функция

$$\boxed{\mathbf{A}} \ f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2}$$

$$f(x) = \begin{cases} \frac{1}{x^2}, x \in [1, +\infty) \\ 0, \text{ иначе} \end{cases}$$

$$\boxed{\mathbb{C}}$$
 $f(x) = \begin{cases} x^2, x \in [0, 2] \\ 0, \text{ иначе} \end{cases}$

$$\boxed{\mathbb{D}} \ f(x) = \begin{cases} x-1, x \in [0, 1+\sqrt{3}] \\ 0, \ \text{иначе} \end{cases}$$

$$\boxed{ \mathbb{E} } \ f(x) = \begin{cases} -1, x \in [-1,0] \\ 0, \ \text{иначe} \end{cases}$$

F Нет верного ответа.

В вопросах 27–30 совместное распределение пары величин X и Y задано таблицей:

Вопрос 27 \clubsuit Вероятность того, что X=0 при условии Y<1 равна

$$\boxed{D} \ 3/4$$

F Нет верного ответа.

Вопрос 28 🌲 Математическое ожидание случайной величины X при условии Y=0 равно

1

$$\boxed{\mathbf{B}}$$
 -1

F | *Нет верного ответа.*

Вопрос 29 🌲 Дисперсия случайной величины Y равна

A 0

$$\boxed{\mathsf{B}}$$
 -1

F | Нет верного ответа.

Вопрос 30 🐥 Ковариация случайных величин X и Y равна:

A 0

$$B - 2/3$$

$$-1/3$$

$$f(x) = \begin{cases} 9x^2y^2, x \in [0,1], y \in [0,1] \\ 0, \text{ иначе} \end{cases}$$

Вопрос 31 \clubsuit Условное распределение X при условии Y=1 имеет вид

$$\boxed{\mathbf{A}} \ f(x) = \begin{cases} 9x^2, x \in [0, 1] \\ 0, \text{ иначе} \end{cases}$$

 $f(x) = \begin{cases} 3x^2, x \in [0, 1] \\ 0, \text{ иначе} \end{cases}$

В Не определено

[E] $f(x) = \begin{cases} 9x, x \in [0, 1] \\ 0, \text{ иначе} \end{cases}$

$$\boxed{\mathbb{C}}$$
 $f(x) = \begin{cases} 3x, x \in [0, 1] \\ 0, \text{ иначе} \end{cases}$

F Нет верного ответа.

Вопрос 32 \clubsuit Вероятность того, что X < 0.5, Y < 0.5 равна:

A 1/16

1/64

E 1/128

B 1/96

D 1/4

+3/7/40+

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A B C D E F

Вопрос 2 : A B C D E G

Вопрос 3: А В С D 🖪 F

Вопрос 4 : A B C E F G

Вопрос 6 : A B C D E G

Вопрос 7 : A B C D **F** G

Вопрос 8 : A B **В** D E F

Вопрос 9 : A B D E F G

Вопрос 11 : A B D E F G

Вопрос 12 : A B D E F

Вопрос 13 : A B C E F

Вопрос 14 : A B C D F

Вопрос 15 : A B D E F

Вопрос 16 : А С D Е F

Вопрос 17 : А В С Е Е

Вопрос 18 : А В С Е Е

Вопрос 21 : А В В D Е F

Вопрос 22 : A B D E F

Вопрос 23 : А В С D Е

Вопрос 24 : 📕 📙 С 📙 Е Е

Вопрос 25 : A B C E F

Вопрос 27 : В В С D Е F

Вопрос 28 : В В С D Е F

Вопрос 29 : А В В Б Б F

Вопрос 30 : А В С Е Е

Вопрос 31 : А В С Е Е Г

Вопрос 32 : A B D E F

Теория вероятностей и математическая статистика

Экзамен, 24.12.2016

Имя, фамилия:
Номер группы:

Можно пользоваться простым калькулятором. В каждом из 32 вопросов один верный ответ.

Ни пуха, ни пера!

Если Corr(X,Y) = 0.5 и Var(X) = Var(Y), то Corr(X+Y,2Y-7) равна

- A 1
- $\sqrt{3}/2$
- $\boxed{\mathrm{D}} \sqrt{2}/3$

- $\boxed{E} \sqrt{3}/3$
- F 1/2
- G Нет верного ответа.

Вопрос 2 🐥 Правильный кубик подбрасывается 5 раз. Наиболее вероятное число шестерок равняется

0 и 1

С только 0

Е полько 1

B 5/6

F Нет верного ответа.

Размер выплаты страховой компанией является неотрицательной случайной величиной с математическим ожиданием $50\,000$ рублей и стандартным отклонением $10\,000$ рублей. Согласно неравенству Чебышёва, вероятность того, что очередная выплата будет отличаться от своего математического ожидания не более чем на 20 000 рублей, ограничена снизу числом

- 3/4
- B 1/2
- C 3/5
- D 2/5

- E 1/4
- | F | неравенство Чебышёва здесь неприменимо
- G Нет верного ответа.

Вопрос 4 \clubsuit Случайный вектор $(\xi, \eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}\right)$. Если случайный вектор z определён как $z = (\xi - 0.5\eta, \eta)^T$, то

- [A] компоненты вектора z коррелированы

- $\boxed{\mathbf{B}} \ \xi 0.5\eta \sim \mathcal{N}(0;1)$
- $\boxed{\mathbf{C}} \ z \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)$

- $|E| (\xi 0.5\eta)^2 + 2\eta^2 \sim \chi_2^2$
- F компоненты вектора z зависимы
- z является двумерным нормальным векто-
- G Нет верного ответа.

Вопрос 5 \clubsuit Если $\mathbb{P}(A) = 0.2, \mathbb{P}(B) = 0.5, \mathbb{P}(A|B) = 0.3,$ то

$$\boxed{\mathsf{A}} \ \mathbb{P}(B \cup A) = 0.3$$

$$\boxed{\mathsf{C}} \ \mathbb{P}(A \cup B) = 0.8$$

$$\boxed{\mathsf{E}} \ \mathbb{P}(A \cap B) = 0.05$$

$$\mathbb{P}(A \cap B) = 0.15$$

$$\boxed{\mathbf{D}} \ \mathbb{P}(A \cup B) = 0.7$$

| F | *Нет верного ответа.*

Вопрос 6 🗘 Функцией плотности случайной величины может являться функция

$$\boxed{\mathbf{A}} \ f(x) = \begin{cases} -1, x \in [-1, 0] \\ 0, \ \mathtt{иначe} \end{cases}$$

$$\boxed{\mathbf{E}} \ f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2}$$

$$C$$
 $f(x) = \begin{cases} x - 1, x \in [0, 1 + \sqrt{3}] \\ 0, \text{ иначе} \end{cases}$

F Нет верного ответа.

Вопрос 7 👫 Правильный кубик подбрасывается 5 раз. Математическое ожидание суммы выпавших очков равно

B 3.5

F Нет верного ответа.

Монетку подбрасывают три раза. Рассмотрим три события: A- «хотя бы один раз выпала решка»; B — «хотя бы один раз выпал орёл»; C — «все три раза выпал орёл».

- \boxed{A} События A и B совместны, события A и C совместны.
- В События A и B несовместны, события B и C несовместны.
- $\boxed{ \mathbb{C} }$ События A и B несовместны, события A и C совместны.
- $\boxed{\mathsf{D}}$ События A и B несовместны, события B и C совместны.
- События A и B совместны, события A и C несовместны.
- F Нет верного ответа.

Вопрос 9 \clubsuit Случайный вектор $(\xi, \eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}\right)$. Условное математическое ожидание и условная дисперсия равны

A
$$E(\xi|\eta = 1) = 1/2, Var(\xi|\eta = 1) = 1$$

$$E(\xi|n=1) = 1/2$$
, $Var(\xi|n=1) = 3/4$

B
$$E(\xi|\eta=1) = 1, Var(\xi|\eta=1) = 1$$

$$\boxed{\mathbb{C}} \ \mathbb{E}(\xi|\eta=1) = 1, \mathrm{Var}(\xi|\eta=1) = 1/2$$

D
$$E(\xi|\eta=1) = 1/2, Var(\xi|\eta=1) = 1/4$$

G Нет верного ответа.

Вопрос 10 \clubsuit Известно, что E(X) = 3, E(Y) = 2, Var(X) = 12, Var(Y) = 1, Cov(X,Y) = 2. Корреляция Corr(X, Y) равна

$$A \frac{1}{\sqrt{12}}$$

$$C$$
 $\frac{1}{12}$

$$\frac{1}{\sqrt{3}}$$

$$\boxed{B} \frac{2}{12}$$

$$\boxed{\mathrm{D}} \frac{2}{\sqrt{13}}$$

Вопрос 12 \clubsuit Вероятность поражения мишени при одном выстреле равна 0.6. Случайная величина ξ_i равна 1, если при i-ом выстреле было попадание, и равна 0 в противном случае. Предел по вероятности последовательности $\frac{\xi_1^{2016}+\ldots+\xi_n^{2016}}{n}$ при $n\to\infty$ равен

\boxed{A} 3/4	$\boxed{C} \ 0.6^{2016}$	E 2/5
B 1/2	3/5	F Нет верного ответа.

Вопрос 13 \clubsuit Если $F_X(x)$ — функция распределения случайной величины, то

Вопрос 14 ♣ Правильный кубик подбрасывается 5 раз. Математическое ожидание и дисперсия числа выпавших шестерок равны соответственно

Вопрос 15 \clubsuit Известно, что $\xi \sim U[0;\,1]$. Вероятность $\mathbb{P}(0.2 < \xi < 0.7)$ равна

Вопрос 16 \clubsuit Число посетителей сайта за один день является неотрицательной случайной величиной с математическим ожиданием 400 и дисперсией 400. Вероятность того, что за 100 дней общее число посетителей сайта превысит $40\,400$, приближённо равна

Вопрос 17 \clubsuit Случайный вектор $(\xi,\eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}\right)$ и функцию плотности $f_{\xi,\eta}(x,y) = \frac{1}{2\pi a} \exp\left(-\frac{1}{2a^2}(x^2 - bxy + y^2)\right)$. При этом

Монетка выпадает орлом с вероятностью 0.2. Вероятность того, что при 10 подбрасываниях монетка выпадет орлом хотя бы один раз, равна

A 1/2

B 2/10

 $1 - 0.8^{10}$

 $[F] 0.2^{10}$

 $\begin{array}{|c|c|c|} \hline D & C_{10}^1 0.2^1 0.8^9 \\ \hline E & C_{10}^1 0.8^1 0.2^9 \\ \hline \end{array}$

G Нет верного ответа.

Вопрос 19 ♣ В школе три девятых класса: 9A, 9Б и 9В. В 9A классе — 50% отличники, в 9Б — 30%, в 9В — 40%. Если сначала равновероятно выбрать один из трёх классов, а затем внутри класса равновероятно выбрать школьника, то вероятность выбрать отличника равна

A 0.27

D 3/(3+4+5)

G Нет верного ответа.

 $\boxed{B} (3+4+5)/3$

0.4

F 0.3

Вопрос 20 \clubsuit Случайные величины $\xi_1, \ldots, \xi_n, \ldots$ независимы и имеют таблицы распределения

$$\begin{array}{c|c|c} \xi_i & -1 & 1 \\ \hline \mathbb{P}_{\xi_i} & 1/2 & 1/2 \end{array}$$

Если $S_n=\xi_1+\ldots+\xi_n$, то предел $\lim_{n o\infty}\mathbb{P}\Big(rac{S_n-\mathrm{E}[S_n]}{\sqrt{\mathrm{Var}(S_n)}}>1\Big)$ равен

 \triangle $\int_{1}^{+\infty} \frac{1}{2} e^{-t/2} dt$

 $B \int_{-1}^{1} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$

F Нет верного ответа.

Вопрос 21 🜲 Размер выплаты страховой компанией является неотрицательной случайной величиной с математическим ожиданием 10000 рублей. Согласно неравенству Маркова, вероятность того, что очередная выплата превысит $50\,000$ рублей, ограничена сверху числом

0.2

Е неравенство Маркова здесь неприменимо

B 0.1359

F 0.4

C 0.3413 \boxed{D} 0.5

G Нет верного ответа.

Вопрос 22 🜲 Граф Сен-Жермен извлекает карты в случайном порядке из стандартной колоды в 52 карты без возвращения. Рассмотрим три события: A- «первая карта - тройка»; B- «вторая карта семёрка»; C — «третья карта — дама пик».

События A и B зависимы, события B и C зависимы.

[B] События A и B независимы, события B и C независимы.

 $\boxed{\mathbb{C}}$ События A и B независимы, события B и C зависимы.

 $\boxed{\mathrm{D}}$ События A и независимы, события B и C зависимы.

|E| События A и B зависимы, события B и C независимы.

$$f(x) = \begin{cases} 9x^2y^2, x \in [0,1], y \in [0,1] \\ 0, \text{ иначе} \end{cases}$$

Вопрос 31 \clubsuit Условное распределение X при условии Y=1 имеет вид

$$\boxed{\textbf{A}} \ f(x) = \begin{cases} 3x, x \in [0, 1] \\ 0, \text{ иначе} \end{cases}$$

В
$$f(x) = \begin{cases} 9x, x \in [0, 1] \\ 0, \text{ иначе} \end{cases}$$

$$\boxed{\textbf{C}} \ f(x) = \begin{cases} 9x^2, x \in [0, 1] \\ 0, \text{ иначе} \end{cases}$$

D Не определено

F Нет верного ответа.

Вопрос 32 \clubsuit Вероятность того, что X < 0.5, Y < 0.5 равна:

A 1/4

1/64

E 1/128

B 1/96

D 1/16

+4/7/33+

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 2 : **В** В С D E F

Вопрос 3: | В | В | С | D | Е | Г | G |

Вопрос 4 : A B C E F G

Вопрос 5 : | A | | C | D | E | F |

Вопрос 7: АВВ ВБ Б

Вопрос 8: А В С D

Вопрос 9: А В С D

Вопрос 10: А В С D

Вопрос 11 : А С С

Вопрос 12 : А В С

Вопрос 13 :

Вопрос 14 : A B C D E

Вопрос 15 : А С С

Вопрос 16 : А В С D

Вопрос 18 : A B D E F G

Вопрос 19 : |А| |В| |С| |D|

Вопрос 20 : A B D E F

Вопрос 21 : **В** В С D E F G

Вопрос 22 : В В С D E F

Вопрос 23 :

Вопрос 24 : |А| |В| |С| |D|

Вопрос 25:

Вопрос 26 : A B C D E

CD Вопрос 27 : А

Вопрос 28 : А В С

Вопрос 29 : А В С

Вопрос 30 : А С [D]

Вопрос 31 : А В С D

Вопрос 32 : A B D E F

Теория вероятностей и математическая статистика

Экзамен, 24.12.2016

Імя, фамилия:	
Номер группы:	

Можно пользоваться простым калькулятором. В каждом из 32 вопросов один верный ответ.

Ни пуха, ни пера!

Вопрос 1 ♣ Правильный кубик подбрасывается 5 раз. Математическое ожидание и дисперсия числа выпавших шестерок равны соответственно

 $\boxed{{
m A}}$ 5/6 и 1/5

 \Box 5/6 и 5/36

F 1 и 5/6

- В 0 и 1
- С 5/6 и 1/36

Е 0 и 5/6

Нет верного ответа.

Вопрос 2 \clubsuit Размер выплаты страховой компанией является неотрицательной случайной величиной с математическим ожиданием $10\,000$ рублей. Согласно неравенству Маркова, вероятность того, что очередная выплата превысит $50\,000$ рублей, ограничена сверху числом

- 0.2
- B 0.5
- C 0.3413
- D 0.4

- [E] неравенство Маркова здесь неприменимо
- F 0.1359
- G Нет верного ответа.

Вопрос 3 \clubsuit Если $F_X(x)$ — функция распределения случайной величины, то

- $\blacksquare \quad \mathbb{P}(X \in (a; b] = F_X(b) F_X(a)$
- $oxed{B} \ F_X(x)$ может принимать значение 2016
- $oxed{\mathbb{E}}$ величина X непрерывна
- \fbox{C} $F_X(x)$ может принимать отрицательные значения
- F величина *X* дискретна G *Hem верного ответа.*

Вопрос 4 \clubsuit Монетку подбрасывают три раза. Рассмотрим три события: A- «хотя бы один раз выпала решка»; B- «хотя бы один раз выпал орёл»; C- «все три раза выпал орёл».

- События A и B совместны, события A и C несовместны.
- \fbox{B} События A и B несовместны, события A и C совместны.
- \fbox{C} События A и B несовместны, события B и C совместны.
- $\boxed{\mathbb{D}}$ События A и B совместны, события A и C совместны.
- \fbox{E} События A и B несовместны, события B и C несовместны.
- **F** Нет верного ответа.

$$\triangle$$
 $\int_{0.2}^{0.7} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$

1/2

E 1/4

$$\boxed{\mathbf{B}} \int_0^1 \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

D 0.17

F Нет верного ответа.

Вопрос 6 \clubsuit Известно, что $\mathrm{E}(X)=3$, $\mathrm{E}(Y)=2$, $\mathrm{Var}(X)=12$, $\mathrm{Var}(Y)=1$, $\mathrm{Cov}(X,Y)=2$. Корреляция $\mathrm{Corr}(X,Y)$ равна

$$\frac{1}{\sqrt{3}}$$

C $\frac{2}{\sqrt{13}}$

 $E \frac{1}{\sqrt{12}}$

 $\boxed{\text{B}} \frac{2}{12}$

 $\boxed{D} \frac{1}{12}$

F Нет верного ответа.

Вопрос 7 \clubsuit Известно, что $\mathrm{E}(X)=3$, $\mathrm{E}(Y)=2$, $\mathrm{Var}(X)=12$, $\mathrm{Var}(Y)=1$, $\mathrm{Cov}(X,Y)=2$. Ожидание $\mathrm{E}(XY)$ равно

C 2

E

B 5

8

F Нет верного ответа.

Вопрос 8 🕹 Правильный кубик подбрасывается 5 раз. Наиболее вероятное число шестерок равняется

0 и 1

Е только 1

B 5/6

D только 0

F Нет верного ответа.

Вопрос 9 Вероятность поражения мишени при одном выстреле равна 0.6. Случайная величина ξ_i равна 1, если при i-ом выстреле было попадание, и равна 0 в противном случае. Предел по вероятности последовательности $\frac{\xi_1^{2016}+\ldots+\xi_n^{2016}}{n}$ при $n\to\infty$ равен

$$C 0.6^{2016}$$

 $B \ 3/4$

F Нет верного ответа.

Вопрос 10 🌲 Функцией плотности случайной величины может являться функция

$$\boxed{\mathbf{A}} \ f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2}$$

$$\boxed{\mathbb{C}} \ f(x) = egin{cases} x^2, x \in [0,2] \\ 0, \ \text{иначе} \end{cases}$$

$$\boxed{\mathbf{D}} \ f(x) = \begin{cases} -1, x \in [-1, 0] \\ 0, \ \mathtt{иначe} \end{cases}$$

$$[E]$$
 $f(x) = \begin{cases} x - 1, x \in [0, 1 + \sqrt{3}] \\ 0, \text{ иначе} \end{cases}$

F Нет верного ответа.

Вопрос 11 \clubsuit Размер выплаты страховой компанией является неотрицательной случайной величиной с математическим ожиданием $50\,000$ рублей и стандартным отклонением $10\,000$ рублей. Согласно неравенству Чебышёва, вероятность того, что очередная выплата будет отличаться от своего математического ожидания не более чем на $20\,000$ рублей, ограничена снизу числом

E 1/4

В неравенство Чебышёва здесь неприменимо

3/4

C 2/5 D 3/5

 \overline{A} События A и B независимы, события B и C зависимы.

[B] События A и независимы, события B и C зависимы.

События A и B зависимы, события B и C зависимы.

 $\boxed{\mathsf{D}}$ События A и B независимы, события B и C независимы.

[E] События A и B зависимы, события B и C независимы.

| F | *Нет верного ответа.*

Вопрос 20 \clubsuit Случайные величины $\xi_1, \ldots, \xi_n, \ldots$ независимы и имеют таблицы распределения

$$\begin{array}{c|c|c} \xi_i & -1 & 1 \\ \hline \mathbb{P}_{\xi_i} & 1/2 & 1/2 \end{array}$$

Если $S_n=\xi_1+\ldots+\xi_n$, то предел $\lim_{n o\infty}\mathbb{P}\Big(rac{S_n-\mathtt{E}[S_n]}{\sqrt{\mathrm{Var}(S_n)}}>1\Big)$ равен

$$\int_{1}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

$$\boxed{\mathsf{C}}$$
 0.5

$$\mathbb{E} \int_{-1}^{1} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

$$\boxed{\mathbf{D}} \int_{1}^{+\infty} \frac{1}{2} e^{-t/2} dt$$

F Нет верного ответа.

Вопрос 21 \clubsuit Известно, что E(X)=3, E(Y)=2, Var(X)=12, Var(Y)=1, Cov(X,Y)=2. Дисперсия Var(2X-Y+4) равна

F Нет верного ответа.

Вопрос 22 🐇 Монетка выпадает орлом с вероятностью 0.2. Вероятность того, что при 10 подбрасываниях монетка выпадет орлом хотя бы один раз, равна

A
$$C_{10}^1 0.8^1 0.2^9$$

$$C 1/2$$

 $D 0.2^{10}$

F
$$C_{10}^1 0.2^1 0.8^9$$

$$1 - 0.8^{10}$$

G Нет верного ответа.

Вопрос 23 \clubsuit Случайный вектор $(\xi, \eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}\right)$. Условное математическое ожидание и условная дисперсия равны

$$\boxed{\mathbf{A}} \ \mathbf{E}(\xi|\eta=1) = 1/2, \mathbf{Var}(\xi|\eta=1) = 1$$

$$\mathbb{E}(\xi|\eta=1) = 1/2, Var(\xi|\eta=1) = 3/4$$

$$\boxed{\mathbb{B}} \ \mathbb{E}(\xi|\eta=1)=1, \mathrm{Var}(\xi|\eta=1)=1$$

F
$$\mathbf{E}(\xi|\eta=1)=1, \mathbf{Var}(\xi|\eta=1)=1/2$$

C
$$E(\xi|\eta=1) = 1/2, Var(\xi|\eta=1) = 1/4$$

D $E(\xi|\eta = 1) = 0, Var(\xi|\eta = 1) = 1$

Вопрос 24 🌲 💮 Правильный кубик подбрасывается 5 раз. Вероятность того, что ровно два раза выпадет шестерка равна

$$\boxed{ A } \ 125/(2^4 3^5)$$

$$C 25/(2^53^5)$$

$$\boxed{B} \ 1/(2^53^5)$$

Если случайные величины X и Y имеют совместное нормальное распределение с нулевыми математическими ожиданиями и единичной ковариационной матрицей, то

$$\boxed{\mathsf{A}} \ \forall \alpha \in [0,1] : \mathsf{Var}(\alpha X + (1-\alpha)Y) = 0$$

X и Y независимы

$$\fbox{B}$$
 существует такое $a>0$, что $\Bbb P(X=a)>0$

 $\lceil F \rceil$ распределение X может быть дискретным

$$\boxed{\mathsf{C}} \; \mathsf{Corr}(X,Y) > 0$$

G Нет верного ответа.

$$\boxed{\mathrm{D}} \ \mathrm{Corr}(X,Y) < 0$$

Вопрос 26 \clubsuit Случайный вектор $(\xi, \eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}\right)$

и функцию плотности $f_{\xi,\eta}(x,y)=rac{1}{2\pi a}\exp\left(-rac{1}{2a^2}(x^2-bxy+y^2)
ight)$. При этом

$$\boxed{\mathsf{A}} \ a = 1, b = 0$$

$$a = \sqrt{3}/2, b = 1$$

$$a = \sqrt{3}/2, b = 1$$
 $a = \sqrt{3/4}, b = 0$

$$\boxed{\text{B}} \ a = 1, b = 1$$

$$\boxed{\mathbf{D}} \ a = 1/2, b = 1$$

F Нет верного ответа.

В вопросах 27–30 совместное распределение пары величин X и Y задано таблицей:

Вопрос 27 🌲 Ковариация случайных величин X и Y равна:

$$-1/3$$

$$\begin{bmatrix} \mathbf{E} \end{bmatrix} \mathbf{0}$$

$$D - 2/3$$

F Нет верного ответа.

Вопрос 28 🐥 Дисперсия случайной величины Y равна

$$A - 1$$

$$\begin{bmatrix} \mathbf{C} \end{bmatrix} 0$$

F Нет верного ответа.

Математическое ожидание случайной величины X при условии Y=0 равно Вопрос 29 🌲

 $|\mathbf{A}| 0$

$$C$$
 -1

F | *Нет верного ответа.*

Вероятность того, что X=0 при условии Y<1 равна Вопрос 30 🐥

1/4

C 1/2

E 1/6

 $|\mathbf{B}| 0$

 $\boxed{D} \ 3/4$

F Нет верного ответа.

В вопросах 31 и 32 совместное распределение пары величин X и Y задается функцией плотности

$$f(x) = egin{cases} 9x^2y^2, x \in [0,1], y \in [0,1] \\ 0, \text{ иначе} \end{cases}$$

 $\boxed{ \textbf{D} } \ f(x) = \begin{cases} 9x, x \in [0,1] \\ 0, \ \text{иначе} \end{cases}$

В Не определено

 $\boxed{ \textbf{E} } \ f(x) = \begin{cases} 3x, x \in [0,1] \\ 0, \ \text{иначе} \end{cases}$

$$left{C} f(x) = egin{cases} 9x^2, x \in [0,1] \\ 0, \ \text{иначе} \end{cases}$$

F Нет верного ответа.

Вопрос 32 Вероятность того, что X < 0.5, Y < 0.5 равна:

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A B C D E F

Вопрос 2 : **В** В С D E F G

Вопрос 3: В С D E F G

Вопрос 4: В С D E F

Вопрос 5 : A B D E F

Вопрос 6 : **В** В С D E F

Вопрос 7 : A B C E F

Вопрос 8 : A B D E F

Вопрос 9 : **В** С D E F

Вопрос 10 : А С С Б Е Г

Вопрос 11 : A B C D E **G**

Вопрос 12 : **В** В С D E F G

Вопрос 13 : [A] [B] [C] **[E**] [F] [G

Вопрос 14 : **В** В С D E F

Вопрос 15 : A B C E F

Вопрос 17 : A B D E F

Вопрос 18 : A B D E F

Вопрос 20: В В С D E F

Вопрос 21 : А В В Б Б Б

Вопрос 22 : A B C D F G

Вопрос 23 : A B C D **F** G

Вопрос 24 : А В С D Е

Вопрос 25 : A B C D F G

Вопрос 26 : А В Т В Е Г

Вопрос 27 : А В В Б Б Б

Вопрос 29 : А С С Б Е Г

Вопрос 30 : В В С D Е F

Вопрос 31 : В В С D Е F

Вопрос 32 : A B D E F

Теория вероятностей и математическая статистика

Экзамен, 24.12.2016

Имя, фамилия:
Номер группы:

Можно пользоваться простым калькулятором. В каждом из 32 вопросов один верный ответ.

Ни пуха, ни пера!

Вопрос 1 • Монетку подбрасывают три раза. Рассмотрим три события: A- «хотя бы один раз выпала решка»; B- «хотя бы один раз выпал орёл»; C- «все три раза выпал орёл».

- \fbox{A} События A и B несовместны, события B и C совместны.
- [B] События A и B несовместны, события B и C несовместны.
- События A и B совместны, события A и C несовместны.
- \square События A и B совместны, события A и C совместны.
- [E] События A и B несовместны, события A и C совместны.
- **F** Нет верного ответа.

Вопрос 2 ♣ Среди покупателей магазина мужчин и женщин поровну. Женщины тратят больше 1000 рублей с вероятностью 60%, а мужчины — с вероятностью 30%. Только что был пробит чек на сумму 1234 рубля. Вероятность того, что покупателем была женщина равна

A 0.18

C 0.3

2/3

B 1/3

D 0.5

F | *Нет верного ответа.*

Вопрос 3 ♣ Правильный кубик подбрасывается 5 раз. Математическое ожидание и дисперсия числа выпавших шестерок равны соответственно

А 0 и 1

D 5/6 и 5/36

F 5/6 и 1/5

В 5/6 и 1/36

С 0 и 5/6

Е 1 и 5/6

Нет верного ответа.

Вопрос 4 \clubsuit Если случайные величины X и Y имеют совместное нормальное распределение с нулевыми математическими ожиданиями и единичной ковариационной матрицей, то

X и Y независимы

 $oxed{E} \operatorname{Corr}(X,Y) > 0$

 $oxed{B}$ распределение X может быть дискретным

 $\boxed{\mathbf{F}} \ \forall \alpha \in [0,1] : \mathrm{Var}(\alpha X + (1-\alpha)Y) = 0$

 $oxed{\mathbb{C}}$ существует такое a>0, что $\mathbb{P}(X=a)>0$ $oxed{\mathbb{D}}$ $\operatorname{Corr}(X,Y)<0$

$$\begin{array}{c|c|c} \xi_i & -1 & 1 \\ \hline \mathbb{P}_{\xi_i} & 1/2 & 1/2 \end{array}$$

Если $S_n = \xi_1 + \ldots + \xi_n$, то предел $\lim_{n \to \infty} \mathbb{P}\left(\frac{S_n - \mathbb{E}[S_n]}{\sqrt{\operatorname{Var}(S_n)}} > 1\right)$ равен

$$\boxed{\mathsf{C}} \int_1^{+\infty} \frac{1}{2} \, e^{-t/2} \, dt$$

$$\boxed{\mathbf{B}} \int_{-1}^{1} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

$$\boxed{D} \int_{-\infty}^{1} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

F Нет верного ответа.

Вопрос 6 \clubsuit Случайный вектор $(\xi, \eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}\right)$. Условное математическое ожидание и условная дисперсия равны

A
$$E(\xi|\eta = 1) = 0, Var(\xi|\eta = 1) = 1$$

$$E(\xi|\eta=1) = 1/2, Var(\xi|\eta=1) = 3/4$$

$$\boxed{\mathrm{B}} \ \mathrm{E}(\xi|\eta=1)=1/2, \mathrm{Var}(\xi|\eta=1)=1/4$$

F
$$E(\xi|\eta=1) = 1, Var(\xi|\eta=1) = 1$$

$$\boxed{\mathbb{C}} \ \mathbb{E}(\xi|\eta=1) = 1/2, \mathrm{Var}(\xi|\eta=1) = 1$$

 $D E(\xi | \eta = 1) = 1, Var(\xi | \eta = 1) = 1/2$

Вопрос 7 \clubsuit Если $\operatorname{Corr}(X,Y)=0.5$ и $\operatorname{Var}(X)=\operatorname{Var}(Y)$, то $\operatorname{Corr}(X+Y,2Y-7)$ равна

$$\sqrt{3}/2$$

$$\boxed{F} \sqrt{3}/3$$

$$C \sqrt{2}/3$$

D 1/2

Вопрос 8 \clubsuit Случайный вектор $(\xi,\eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix}0\\0\end{pmatrix};\begin{pmatrix}1&1/2\\1/2&1\end{pmatrix}\right)$ и функцию плотности $f_{\xi,\eta}(x,y)=rac{1}{2\pi a}\exp\left(-rac{1}{2a^2}(x^2-bxy+y^2)
ight)$. При этом

$$\boxed{\mathbf{A}} \ a = 1/2, b = 1$$

$$\boxed{\mathsf{C}} \ a = 1, b = 1$$

$$\boxed{\text{E}} \ a = \sqrt{3/4}, b = 0$$

$$\boxed{\mathbb{B}} \ a=1, b=0$$

$$a = \sqrt{3}/2, b = 1$$

Вопрос 9 \clubsuit Случайный вектор $(\xi, \eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}\right)$. Если случайный вектор z определён как $z=(\xi-0.5\eta,\eta)^T$, то

$$\boxed{\mathbf{A}} \ (\xi - 0.5\eta)^2 + 2\eta^2 \sim \chi_2^2$$

$$oxed{\mathbb{E}}$$
 компоненты вектора z зависимы

z является двумерным нормальным векто-

$$\boxed{\mathbf{F}} \ z \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)$$

|C| компоненты вектора z коррелированы

мпоненты вектора
$$z$$
 коррелированы

$$\overline{\mathrm{D}}$$
 $\xi - 0.5\eta \sim \mathcal{N}(0;1)$

Вопрос 10 \clubsuit Известно, что E(X)=3, E(Y)=2, Var(X)=12, Var(Y)=1, Cov(X,Y)=2. Ожидание E(XY) равно

C 5

 $\mathbf{E} \mid \mathbf{0}$

B 6

D 2

$$\boxed{\mathbf{A}} \ f(x) = \begin{cases} x^2, x \in [0,2] \\ 0, \ \text{иначе} \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{x^2}, x \in [1, +\infty) \\ 0, \text{ иначе} \end{cases}$$

$$E f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2}$$

$$f(x) = \begin{cases} \frac{1}{x^2}, & x \in [1, +\infty) \\ 0, & \text{uhave} \end{cases}$$

$$\boxed{\mathbb{C}} \ f(x) = \begin{cases} -1, x \in [-1, 0] \\ 0, \text{ иначе} \end{cases}$$

Вопрос 12 \clubsuit В школе три девятых класса: 9A, 9Б и 9B. В 9A классе — 50% отличники, в 9Б — 30%, в 9В — 40%. Если сначала равновероятно выбрать один из трёх классов, а затем внутри класса равновероятно выбрать школьника, то вероятность выбрать отличника равна

$$\boxed{F}$$
 $(3+4+5)/3$

$$\boxed{E} \ 3/(3+4+5)$$

G Нет верного ответа.

Вопрос 13 \clubsuit Известно, что $\xi \sim U[0; 1]$. Вероятность $\mathbb{P}(0.2 < \xi < 0.7)$ равна

$$C$$
 $\int_0^1 \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$

$$\boxed{\mathbf{B}} \ \int_{0.2}^{0.7} \frac{1}{\sqrt{2\pi}} \, e^{-t^2/2} \, dt$$

F Нет верного ответа.

Вопрос 14 \clubsuit Если $F_X(x)$ — функция распределения случайной величины, то

|A| величина X непрерывна

- D величина X дискретна
- $|B| F_X(x)$ может принимать отрицательные значения
- [E] $F_X(x)$ может принимать значение 2016

 $\mathbb{P}(X \in (a; b] = F_X(b) - F_X(a)$

$$\bigcap$$
 $\lim_{x \to -\infty} F_X(x) = 1$

Вопрос 15 🐇 Монетка выпадает орлом с вероятностью 0.2. Вероятность того, что при 10 подбрасываниях монетка выпадет орлом хотя бы один раз, равна

$$\begin{array}{|c|c|c|c|}\hline D & C_{10}^1 0.8^1 0.2^9\\\hline E & 0.2^{10}\\\hline \end{array}$$

G Нет верного ответа.

$$\begin{array}{|c|c|c|c|c|}\hline & 1 - 0.8^{10} \\\hline \hline C & C_{10}^1 0.2^1 0.8^9 \\\hline \end{array}$$

$$[E] 0.2^1$$

Вопрос 16 \clubsuit Известно, что E(X) = 3, E(Y) = 2, Var(X) = 12, Var(Y) = 1, Cov(X, Y) = 2. Дисперсия Var(2X - Y + 4) равна

B 53

F Нет верного ответа.

Вопрос 17 \clubsuit Если $\mathbb{P}(A) = 0.2$, $\mathbb{P}(B) = 0.5$, $\mathbb{P}(A|B) = 0.3$, то

$$\boxed{\mathsf{A}} \ \mathbb{P}(A \cup B) = 0.8$$

$$\boxed{\mathsf{C}} \ \mathbb{P}(A \cap B) = 0.05$$

$$\mathbb{P}(A \cap B) = 0.15$$

$$\boxed{\mathsf{B}} \ \mathbb{P}(A \cup B) = 0.7$$

$$\boxed{\mathsf{D}} \ \mathbb{P}(B \cup A) = 0.3$$

Вопрос 18 \clubsuit Размер выплаты страховой компанией является неотрицательной случайной величиной с математическим ожиданием 10000 рублей. Согласно неравенству Маркова, вероятность того, что очередная выплата превысит 50000 рублей, ограничена сверху числом				
A 0.3413		0.2		
B 0.4		F неравенство Маркова здесь неприменимо		
C 0.5 D 0.1359		G Нет верного ответа.		
	7/17) 0 7/17) 0 7			
Вопрос 19 \clubsuit ция $Corr(X, Y)$		${ m r}(X)=12, { m Var}(Y)=1, { m Cov}(X,Y)=2.$ Корреля-		
$\boxed{A} \frac{2}{\sqrt{13}}$	$\boxed{C} \frac{1}{12}$	$\boxed{\mathrm{E}} \frac{1}{\sqrt{12}}$		
$\frac{1}{\sqrt{3}}$	$\boxed{\mathrm{D}} \frac{2}{12}$	F Нет верного ответа.		
Вопрос 20 . Число посетителей сайта за один день является неотрицательной случайной величиной с математическим ожиданием 400 и дисперсией 400. Вероятность того, что за 100 дней общее число посетителей сайта превысит 40400 , приближённо равна				
A 0.3413	C 0.0553	E 0.9772		
0.0227	D 0.1359	F Нет верного ответа.		
Вопрос 21 \clubsuit Граф Сен-Жермен извлекает карты в случайном порядке из стандартной колоды в 52 карты без возвращения. Рассмотрим три события: A — «первая карта — тройка»; B — «вторая карта — семёрка»; C — «третья карта — дама пик».				
События	A и B зависимы, события B и C завис	симы.		
В События	A и независимы, события B и C зави	симы.		
	\fbox{C} События A и B независимы, события B и C зависимы.			
[D] События A и B зависимы, события B и C независимы.				
$oxed{E}$ События A и B независимы, события B и C независимы. $oxed{F}$ Нет верного ответа.				
Вопрос 22 ♣ ших очков рав	Правильный кубик подбрасывается 5	5 раз. Математическое ожидание суммы выпав-		
A 18	C 18.5	E 21		
B 3.5	17.5	F Нет верного ответа.		
Вопрос 23 ♣ шестерка равн		аз. Вероятность того, что ровно два раза выпадет		
A $1/(2^53^5)$	C 2/5	$\boxed{\mathrm{E}} \ 125/(2^4 3^5)$		
		Нет верного ответа.		

$$f(x) = \begin{cases} 9x^2y^2, x \in [0,1], y \in [0,1] \\ 0, \text{ иначе} \end{cases}$$

Условное распределение X при условии Y=1 имеет вид Вопрос 31 🌲

$$\fbox{A} \ f(x) = egin{cases} 3x, x \in [0,1] \\ 0, \ \text{иначе} \end{cases}$$

$$\boxed{\mathbf{D}} \ f(x) = egin{cases} 9x, x \in [0, 1] \\ 0, \ \mathtt{иначe} \end{cases}$$

$$f(x) = \begin{cases} 3x^2, x \in [0, 1] \\ 0, \text{ uhave} \end{cases}$$

F Нет верного ответа.

Вопрос 32 Вероятность того, что X < 0.5, Y < 0.5 равна:

A 1/4

C 1/16

E 1/128

B 1/96

1/64

+6/7/19+

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A B D E F

Вопрос 2 : A B C D **F**

Вопрос 3 : A B C D E F

Вопрос 4 : **В** В С D E F G

Вопрос 5 : В В С D Е F

Вопрос 6 : A B C D F G

Вопрос 8 : А В С Е Е

Вопрос 10 : **В** В С D E F

Вопрос 13 : **В** С D E F

Вопрос 14 : A B C D E G

Вопрос 16 : **В** В С D E F

Вопрос 17 : A B C D **F**

Вопрос 18 : A B C D **F** G

Вопрос 21 : **В** В С D E F

Вопрос 22 : A B C E F

Вопрос 23 : А В С D Е

Вопрос 24 : [A] [C] [D] [E] [F] [G]

Вопрос 25 : A B C E F

Вопрос 26 : В В С D Е F

Вопрос 28 : А В С Е Е

Вопрос 30 : В В С D Е F

Вопрос 31 : А В П D Е F

Вопрос 32 : A B C E F