Scientific Computing Lab 01

Problem 1:

No. of iteration(n)	x(n)	e(n)	$\log_2(e(n+1)/e(n))$
1	-3.5000000000	-	-1
2	-3.2500000000	0.25000000000	-1
3	-3.1250000000	0.12500000000	-1
4	-3.1875000000	-0.0625000000	-1
5	-3.1562500000	0.03125000000	-1
6	-3.1718750000	-0.0156250000	-1
7	-3.1796875000	-0.0078125000	-1
8	-3.1835937500	-0.0039062500	-

Semilog plot of e(n) vs n:

<u>Problem 2:</u> Using the Bisection method to find solution accurate to within 10⁻³, the following solutions were obtained:

- 1) Solution obtained is 1.0078.
- 2) Solution obtained is 0.64062.
- 3) Solution obtained is 0.25732.
- 4) Solution obtained in range -3 to -2 is -2.1914 and solution obtained in range -1 to 0 is -0.79834.
- 5) Solution obtained in range is 0.2 to 0.3 is 0.29766 and solution obtained in range 1.2 to 1.3 is 1.2566.

<u>Problem 3:</u> An approximation of cuberoot of 25 correct to with in 10⁻⁴ using the Bisection algorithm is 2.92401885986328.

n	x(n)	f(x(n))
1	2.750000000000000	-4.20312500000000
2	2.875000000000000	-1.23632812500000
3	2.937500000000000	0.347412109375000
4	2.90625000000000	-0.452972412109375
5	2.92187500000000	-0.0549201965332031
6	2.92968750000000	0.145709514617920
7	2.92578125000000	0.0452607274055481
8	2.92382812500000	-0.00486319512128830
9	2.92480468750000	0.0201903982087970
10	2.92431640625000	0.00766150990966708
11	2.92407226562500	0.00139863452932332
12	2.92395019531250	-0.00173241100674204
13	2.92401123046875	-0.000166920917081370
14	2.92404174804688	0.000615848636442706
15	2.92402648925781	0.000224461817271759
16	2.92401885986328	2.87699394938556e-05

Problem 4:

Number of iterations in part (i) = 4 and it then blows up.

Number of iterations in part (ii) = 7Value of f(x) for fourth iterate for part(ii) = -4.752244293114369e+113. Clearly, it has blown up.

Number of iterations in part (iii) = 7 and approximation is 1.4758 Value of f(x) for fourth iterate for part(iii) = 0.3307

Number of iterations in part (iv) = 939 and approximation is 1.4758

Value of f(x) for fourth iterate for part(iv) = -0.54808

Based on first four iterations, part(iii) gives the best approximation to the solution.

<u>Problem 5:</u> Using Newton's method to find solution accurate to within 10⁻⁵, the following solutions were obtained:

- 1) Solution for function 1 is 1.8294.
- 2) Solution for function 2 is 1.3977.
- 3) Solution for function 3 in range 2 to 3 is 2.3707. Solution for function 3 in range 3 to 4 is 3.7221.
- 4) Solution for function 4 in range 1 to 2 is 1.4124. Solution for function 4 in range e to 4 is 3.0571.
- 5) Solution for function 5 in range 0 to 1 is 0.91001. Solution for function 5 in range 3 to 5 is 3.7331.
- 6) Solution for function 6 in range 0 to 1 is 0.58853. Solution for function 6 in range 3 to 4 is 3.0964. Solution for function 6 in range 6 to 7 is 6.285.

<u>Problem 6:</u> Solution by Newton method for the negative root is - 14.1013.

The code has been designed to take the constant term as input to investigate the sensitivity of the root to perturbations in the constant term.

Constant term	Solution		
-1.46	-8.9783		
-1.47	-9.8823		
-1.48	-10.9813		
-1.49	-12.3492		
-1.50	-14.1013		
-1.51	-16.4281		
-1.52	-19.6695		
-1.53	-24.4984		
-1.54	-32.4611		

Problem 7:

- ➤ Solution by Newton method in range -1 to 0 is -0.040659.
- ➤ Solution by Newton method in range 0 to 1 is 0.9624.(but it is not obtained by taking 0.5 as initial approximation rather by 0.6 or greater approximation).
- > Solution by Secant method in range -1 to 0 is 0.9624.
- ➤ Solution by Secant method in range 0 to 1 is -0.040659.

<u>Problem 8:</u> The code can take two initial approximations as inputs from the user and one can find root in any interval.

- 1) It has infinite roots.
- 2) It also has infinite roots.
- 3) It has roots 0.452, -0.189 and 11.737.
- 4) It has roots -0.885, -2.646, -0.47.
- 5) It has roots -1.856 and 1.371.