Neyman-Pearson and likelihood ratio tests

Recap: Neyman-Pearson test

Let X_1, \ldots, X_n be a sample from a distribution with probability function f, and parameter θ . To test

$$H_0: heta = heta_0 \quad H_A: heta = heta_1,$$

the Neyman-Pearson test rejects H_0 when

$$rac{L(heta_1|\mathbf{X})}{L(heta_0|\mathbf{X})}>k,$$

where k is chosen so that $\beta(\theta_0) = \alpha$.

Recap: Neyman-Pearson lemma

The Neyman-Pearson test is a *uniformly most power* level α test of $H_0: \theta = \theta_0$ vs. $H_A: \theta = \theta_1$.

Composite hypotheses with a UMP test

Let $\mathbf{X} = X_1, \dots, X_n \overset{iid}{\sim} N(\mu, \sigma^2)$ with σ^2 known. We wish to test

$$H_0: \mu = \mu_0 \quad H_A: \mu > \mu_0$$

Claim: the Wald test is a uniformly most powerful level α test for these hypotheses.

Composite hypotheses without a UMP test

Let $\mathbf{X} = X_1, \dots, X_n \overset{iid}{\sim} N(\mu, \sigma^2)$ with σ^2 known. We wish to test

$$H_0: \mu = \mu_0 \quad H_A: \mu \neq \mu_0$$

Claim: there is no uniformly most powerful level α test for these hypotheses.

The likelihood ratio test

Example

Let $X_1,\dots,X_n\stackrel{iid}{\sim} Poisson(\lambda)$. We wish to test $H_0:\lambda=\lambda_0$ vs. $H_A:\lambda\neq\lambda_0$.