计算机组成原理

第十八讲

刘松波

哈工大计算学部 模式识别与智能系统研究中心

第6章 计算机的运算方法

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元

上节课内容回顾

- •6.3 定点运算
 - •一、移位运算
 - 算术移位的硬件实现、算术移位与逻辑移位的区别
 - •二、加减法运算
 - 补码加减运算公式、溢出判断、补码加减法的硬件 配置、控制流程
 - •三、乘法运算
 - 笔算乘法、笔算乘法的改进
 - 原码一位乘
 - 补码乘法
 - 补码一位乘、Booth算法

5. 补码乘法

6.3

(1) 补码一位乘运算规则

以小数为例 设被乘数 $[x]_{i} = x_0 \cdot x_1 x_2 \cdot \dots \cdot x_n$ 乘数 $[y]_{i} = y_0 \cdot y_1 y_2 \cdot \dots \cdot y_n$

① 被乘数任意,乘数为正

同原码乘 但加和移位按补码规则运算 乘积的符号自然形成

② 被乘数任意,乘数为负 乘数[y]_补,去掉符号位,操作同① 最后加[-x]_补,校正

③ Booth 算法(被乘数、乘数符号任意) 6.3

2022/8/24

④ Booth 算法递推公式

6.3

$$\begin{split} &[z_0]_{\nmid h} = 0 \\ &[z_1]_{\nmid h} = 2^{-1} \{ (y_{n+1} - y_n)[x]_{\nmid h} + [z_0]_{\nmid h} \} \qquad y_{n+1} = 0 \\ &\vdots \\ &[z_n]_{\nmid h} = 2^{-1} \{ (y_2 - y_1)[x]_{\nmid h} + [z_{n-1}]_{\nmid h} \} \end{split}$$

$$[x \cdot y]_{\nmid h} = [z_n]_{\nmid h} + (y_1 - y_0)[x]_{\nmid h}$$

最后一步不移位

如何实现 y_{i+1} - y_i ?

y_i	y_{i+1}	$y_{i+1}-y_i$	操作
0	0	0	→1
0	1	1	$+[x]_{\nmid h} \rightarrow 1$
1	0	-1	$+[-x]_{\uparrow \uparrow} \rightarrow 1$
1	1	0	→1

例6.23 已知 x = +0.0011 y = -0.1011 求 $[x \cdot y]_{\uparrow \downarrow}$ 6.3

解: 00.0000	1.0101	0		$[x]_{\mbox{$k$}} = 0.0011$
+11.1101			+[- <i>x</i>] _३	,
补码 11.1101				$[y]_{n} = 1.0101$
古移 >11.1110	1 1010	1	→1	$[-x]_{n} = 1.1101$
+ 00.0011			$+[x]_{ eqh}$	• •
补码 00.001	1			
右移 >00.000	1 1 1 0 <u>1</u>	0	→1	
+ 11.1101			+[-x]*	
补码 11.1101	11			$\therefore [x \cdot y]_{\not = 1}$
古移 大11.1110	111 1 <u>0</u>	1	→1	• •
+ 00.0011			$+[x]_{ eqh}$	=1.11011111
补码 00.001	111			
右移 >00.000	1111 <u>1</u>	0	→ 1	
+ 11.1101			+[- <i>x</i>] _ネ	
2022/8/2 1 1 . 1 1 0 1	1111		最后一步	不移位 7

(2) Booth 算法的硬件配置

6.3

 $A \times X \times Q$ 均 n+2 位 移位和加法操作受乘数末两位控制

乘法小结

6.3

- 整数乘法与小数乘法完全相同可用 逗号 代替小数点
- ▶ 原码乘 符号位 单独处理 补码乘 符号位 自然形成
- > 原码乘去掉符号位运算 即为无符号数乘法
- > 不同的乘法运算需有不同的硬件支持

2022/8/24

四、除法运算

6.3

1. 分析笔算除法

$$x = -0.1011$$
 $y = 0.1101$ $\Re x \div y$

$$\begin{array}{c} 0.1101 \\ \hline 0.1101 \\ \hline 0.10110 \\ \hline 0.01101 \\ \hline 0.010010 \\ \hline 0.001101 \\ \hline 0.0001101 \\ \hline 0.00001101 \\ \hline 0.00001111 \\ \hline \end{array}$$

- ✓商符单独处理
- ?心算上商
- ?余数不动低位补"0" 减右移一位的除数
- ?上商位置不固定

$$x \div y = -0.1101$$
 商符心算求得
余数 0.00001111

2. 笔算除法和机器除法的比较

6.3

笔算除法

商符单独处理 心算上商

余数 不动 低位补"0" 减右移一位 的除数

2 倍字长加法器上商位置 不固定

机器除法

符号位异或形成

$$|x| - |y| > 0$$
 上商 1

$$|x| - |y| < 0$$
 上商 0

余数 左移一位 低位补 "0" 减 除数

1 倍字长加法器 在寄存器 最末位上商

3. 原码除法

6.3

以小数为例

$$[x]_{\mathbb{R}} = x_0. x_1 x_2 \dots x_n$$

$$[y]_{\mathbb{R}} = y_0. y_1 y_2 \dots y_n$$

$$[\frac{x}{y}]_{\mathbb{R}} = (x_0 \oplus y_0). \frac{x^*}{y^*}$$

式中
$$x^* = 0. x_1 x_2 \cdots x_n$$
 为 x 的绝对值 $y^* = 0. y_1 y_2 \cdots y_n$ 为 y 的绝对值

商的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相除 $\frac{x^*}{y^*}$

除数不能为0

约定 小数定点除法 $x^* < y^*$ 整数定点除法 $x^* > y^*$ 被除数不等于 0

(1) 恢复余数法

6.3

例6.24 x = -0.1011 y = -0.1101 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

解: $[x]_{\mathbb{R}} = 1.1011$ $[y]_{\mathbb{R}} = 1.1101$ $[y^*]_{\mathbb{R}} = 0.1101$ $[-y^*]_{\mathbb{R}} = 1.0011$

② 被除数(余数)	商	说 明
0.1011	0.0000	
+ 1.0011		+[- <i>y*</i>]*
1.1110	0	余数为负,上商0
+ 0.1101		恢复余数 +[y*] _补
0.1011	0	恢复后的余数
逻辑左移 1.0110	0	← 1
+ 1.0011		+[-y*] _{*\}
0.1001	0 1	余数为正,上商1
逻辑左移 1.0010	0 1	← 1
$_{2022/8/24}$ + 1.0011		+[-y*] _{*\}

被除数(余数)	商	说明	6.3
0.0101	011	余数为正,上商1	_
逻辑左移 0.1010	011	← 1	
+ 1.0011		+[- <i>y*</i>] _补	
1.1101	0110	余数为负,上商 0	
+ 0.1101		恢复余数 +[y*] _补	
0.1010	0110	恢复后的余数	_
逻辑左移 1.0100	0110	←1	
+ 1.0011		+[- <i>y*</i>] _补	
0.0111	01101	余数为正,上商1	_

$$\frac{x^*}{y^*} = 0.1101$$

$$\therefore \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$$

余数为正 上商1

上商5次

第一次上商判溢出

移 4 次

。金数为负 上商 0,恢复余数

(2) 不恢复余数法(加减交替法)

6.3

• 恢复余数法运算规则

余数
$$R_i > 0$$
 上商 "1", $2R_i - y^*$ 余数 $R_i < 0$ 上商 "0", $R_i + y^*$ 恢复余数 $2(R_i + y^*) - y^* = 2R_i + y^*$

• 不恢复余数法运算规则

上商"1"
$$2R_i-y^*$$

$$2R_i + y^*$$

加减交替

例 6.25 x = -0.1011 y = -0.1101 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$ 6.3

		•	
解: 0.1011	0.0000		$[x]_{\text{@}} = 1.1011$
+1.0011		$+[-y^*]_{ eqh}$	//41
逻辑 1.1110	0	余数为负,上商 0	$[y]_{\mathbb{R}} = 1.1101$
左移 1.1100	0	←1	$[x^*]_{n} = 0.1011$
逻辑 +0.1101		+[y*] _补	$[y^*]_{n} = 0.1101$
左移	0 1	余数为正,上商1	
1.0010	0 1	←1	$[-y^*]_{n} = 1.0011$
+1.0011		+[- <i>y</i> *] _{ネト}	
逻辑	011	余数为正,上商1	
0.1010	011	←1	
+1.0011		+[- <i>y</i> *] _{ネト}	
逻辑 左移 1.1101	0110	余数为负,上商 0	
1.1010	0110	← 1	
+0.1101		+[<i>y*</i>] _补	
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1	01101	余数为正,上商1	16

例6.25 结果

$$\therefore \ [\frac{x}{y}]_{\mathbb{R}} = 0.1101$$

特点 上商 n+1 次

第一次上商判溢出

移 n 次,加 n+1 次

用移位的次数判断除法是否结束

(3) 原码加减交替除法硬件配置

A、X、Q均n+1位

,用 Q_n控制加减交替