Prestazioni CDMA

Andrea Savastano

December 30, 2024

Contents

1	Calcolo teorico media e varianza		
	1.1	Calcolo di $E[X_k]$ e $VAR[X_k]$	2
	1.2	Calcolo di $E[n]$ e $VAR[n]$	2
2	Grafici		3
	2.1	Distribuzione somma di X_k	3
	2.2	Prestazioni CDMA al variare di SNR_{dB}	4
	2.3	Prestazioni CDMA al variare di N	5

1 Calcolo teorico media e varianza

- \bullet N: numero di utenti
- \mathcal{E}_s : Energia del segnale trasmesso s
- s_1 : segnale aspettato
- c_n : chirping code dell'utente n-esimo
- \bullet L_c : lunghezza del chirping code per ogni utente

$$s_1 = \mathcal{E}_s \pm \sum_{k=1}^{L_c} \left(\sum_{n=2}^{N} c_{1k} \cdot c_{nk} \right) = \mathcal{E}_s \pm \sum_{k=1}^{L_c} X_k$$

• $\{X_k\}_{k=1,\dots,L_c}$: variabili aleatorie indipendenti

1.1 Calcolo di $E[X_k]$ e $VAR[X_k]$

$$\left(c_{nk} \in [-1, 1]\right) \implies \left(E[c_{nk}] = 0\right)$$

$$E[X_k] = E\left[\sum_{n=2}^{N} c_{1k} \cdot c_{nk}\right] = c_{1k} \cdot E\left[\sum_{n=2}^{N} c_{nk}\right] = c_{1k} \cdot \sum_{n=2}^{N} E[c_{nk}] = 0$$

$$VAR[X_k] = E[X_k^2] - E^2[X_k] = E[X_k^2] = E\left[\left(\sum_{n=2}^{N} c_{1k} \cdot c_{nk}\right)^2\right] = E\left[c_{1k}^2 \cdot \sum_{n=2}^{N} c_{nk}^2\right] = E\left[\sum_{n=2}^{N} 1\right] = N - 1$$

1.2 Calcolo di E[n] e VAR[n]

$$E[n] = E\left[\sum_{k=1}^{L_c} X_k\right] = \sum_{k=1}^{L_c} E\left[X_k\right] = \sum_{k=1}^{L_c} 0 = 0$$

$$\left(\{X_k\}_{k=1,\dots,L_c} \text{indipendenti}\right) \implies \left(\text{VAR}[X_1 + X_2 + \dots + X_{L_c}] = \text{VAR}[X_1] + \text{VAR}[X_2] + \dots + \text{VAR}[X_{L_c}]\right)$$

$$\implies \text{VAR}[n] = \text{VAR}\left[\sum_{k=1}^{L_c} X_k\right] = \sum_{k=1}^{L_c} \text{VAR}[X_k] = \sum_{k=1}^{L_c} (N-1) = L_c \cdot (N-1)$$

Applicando il Teorema Centrale del Limite,

essendo $\{X_k\}_{k=1,\dots,L_c}$ indipendenti con $\mathrm{E}[X_k]=0$ e $\mathrm{VAR}[X_k]=(N-1)$ la loro somma genera una variabile aleatoria n con distribuzione Gaussiana e questa è il rumore che si aggiunge in ricezione.

$$\sum_{k=1}^{L_c} X_k = n, \quad \boxed{n \sim \mathcal{N}\left(0, L_c(N-1)\right)} \implies \left(s_1 = \mathcal{E}_s \pm \sum_{k=1}^{L_c} X_k = \mathcal{E}_s \pm n\right)$$

2 Grafici page 3 of 5

2 Grafici

2.1 Distribuzione somma di X_k

Svolgendo l'esperimento $\sum_{k=1}^{L_c} \left(\sum_{n=2}^N c_{1k} \cdot c_{nk}\right) = \sum_{k=1}^{L_c} X_k$ con N=10 utenti e $L_c=100$ lunghezza del chirping code per ogni utente, si dimostra empiricamente che la somma degli X_k indipendenti $\sum_{k=1}^{L_c} X_k = n$ ha una distriuzione gaussiana (di colore blu nel grafico) che segue quella teorica (di colore rosso nel grafico), con media $0.038 \to 0$ e varianza $899.883 \to 900 = L_c(N-1)$, come era stato dimostrato teoricamente nella pagina precedente.

2 Grafici page 4 of 5

2.2 Prestazioni CDMA al variare di SNR_{dB}

Simulando la trasmissione CDMA con N=10 e $L_c=100$ sono state ricavate le tre $P_{emp}(e)$ e le rispettive $P_{th}(e)$ che seguono lo stesso andamento.

La $P_{emp}(e)$ blu rappresenta le prestazioni della trasmissione CDMA senza rumore w aggiuntivo, considerando quindi $s_1 = \mathcal{E}_s \pm n, \ n \sim \mathcal{N}(0, L_c(N-1)).$

La $P_{emp}(e)$ nera rappresenta le prestazioni della trasmissione CDMA con rumore w aggiuntivo, considerando quindi $s_1 = \mathcal{E}_s \pm n + w$, $w \sim \mathcal{N}(0, \frac{N_0}{2})$.

La $P_{emp}(e)$ rossa rappresenta le prestazioni della trasmissione con solo rumore w, considerando quindi $s_1 = \mathcal{E}_s + w$.

Si nota dal grafico che la P(e) nera decade più lentamente rispetto alle altre al crescere di SNR_{dB} e denota quindi le prestazioni peggiori.

In questa simulazione è stato scelto N_0 di w tale da non influire eccessivamente nella trasmissione per ottenere tre andamenti distinti. Infatti se si aumentasse N_0 , la P(e) nera si sovrapporrebbe con la P(e) rossa perchè il rumore n risulterebbe trascurabile rispetto a w, mentre la P(e) blu denoterebbe le prestazioni migliori.

2 Grafici page 5 of 5

2.3 Prestazioni CDMA al variare di N

In questa seconda simulazione è stato scelto di fissare l' SNR_{dB} a $15\,dB$ ed L_c a 100 e valutare le prestazioni al variare di $N \in [2, 100]$.

Entrambe le $P_{emp}(e)$ crescono all'aumentare di N perchè aumenta sempre più la varianza del rumore n che dipende da L_c ed N, infatti $n \sim \mathcal{N}(0, L_c(N-1))$.

Per N piccoli, quindi per $N \in [2, 30]$, si nota una maggiore differenza tra la $P_{emp}(e)$ senza w aggiuntivo e quella con w, infatti quest'ultima denota prestazioni peggiori.

Invece al crescere di N, quindi per N > 30, la varianza del rumore n aumenta sempre di più per entrambe le $P_{emp}(e)$ fino a far diventare trascurabile w rispetto ad n per la $P_{emp}(e)$ nera, facendo sovrapporre i due grafici.