

# Sequence to sequence models

Bleu score (optional)

# Evaluating machine translation

French: Le chat est sur le tapis.

Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.

MT output: the the the the the the.

Precision:  $\frac{7}{3}$ 

Modified precision:

[Papineni et. al., 2002. Bleu: A method for automatic evaluation of machine translation]

Andrew Ng

Wilson enductor understudy

### Bleu score on bigrams

Example: Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat. <

MT output: The cat the cat on the mat. ←

|         | Count    | Countain   | •  |
|---------|----------|------------|----|
| the cat | 26       | 16         |    |
| cat the | ( ←      | $\bigcirc$ | et |
| cat on  | ( <      | ( ←        | 6  |
| on the  | ( ←      | 1 6        |    |
| the mat | <b>←</b> | ( &        |    |

[Papineni et. al., 2002. Bleu: A method for automatic evaluation of machine translation]

# Bleu score on unigrams

Example: Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.

 $\rightarrow$  MT output: The cat the cat on the mat.  $(\hat{y})$ 

 $p_{n} = \frac{\sum_{\substack{unigram \in \hat{y} \\ vigram}} count_{clip}(unigram)}{\sum_{\substack{unigram \in \hat{y} \\ unigram \in \hat{y}}} count_{\substack{unigram \in \hat{y} \\ vigram}}} \sum_{\substack{ngram \in \hat{y} \\ vigram \in \hat{y}}} count_{\substack{ngram \in \hat{y} \\ vigram}}} count_{\substack{ngram \in \hat{y} \\ vigram \in \hat{y}}}} count_{\substack{ngram \in \hat{y} \\ vigram \in \hat{y}}}}} count_{\substack{ngram \in \hat{y} \\ vigram \in \hat{y}}}}} count_{\substack{ngram \in \hat{y} \\ vigram \in \hat{y}}}} count_{\substack{ngram \in \hat{y} \\ vigram \in \hat{y}}}}} count_{\substack{ngram \in \hat{y} \\ vigram \in \hat{y}}}} count_{\substack{ngram \in \hat{y} \\ vigr$ 

[Papineni et. al., 2002. Bleu: A method for automatic evaluation of machine translation]

Andrew Ng

#### Bleu details

 $p_n$  = Bleu score on n-grams only Combined Bleu score:  $\mathbb{R}^p \exp\left(\frac{1}{\sqrt{2\pi}} \mathcal{P}_n\right)$  $p_n$  = Bleu score on n-grams only

P1, P2, P3, P4

$$BP = \begin{cases} 1 & \text{if } \underline{MT\_output\_length} > \underline{reference\_output\_length} \\ exp(1 - \underline{MT\_output\_length}/\underline{reference\_output\_length}) & \text{otherwise} \end{cases}$$