

TTT++: When Does Self-Supervised Test-Time Training Fail or Thrive?

Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, Alexandre Alahi

OVERVIEW

Background:

- Test-time training (TTT) through self-supervised learning (SSL) to tackle <u>distributional shifts</u>
- Despite encouraging results, not as competitive as other recent approaches

Contribution:

> P1: feature alignment remains necessary

 $\mathcal{L}_{f,z} = \|\mu_z - \mu_z'\|_2^2 + \|\Sigma_z - \Sigma_z'\|_F^2$

- √ S1: offline summarization + online matching
- > P2: relation btw the main and SSL tasks matters
- ✓ S2: contrastive method as a strong SSL learner

Train (i.i.d.) Test (shift) Train SSL Whair SSL

(worse)

 $\mathcal{L}_{test} = \mathcal{L}_s + \lambda_z \mathcal{L}_{f,z} + \lambda_s \mathcal{L}_{f,s}$

WHEN DOES TTT THRIVE?

Assumption: aligned marginal distribution in the feature space, Z' ~ Z

Theorem 1. If the encoder only extracts information about the SSL task:

$$\mathbb{P}(\pi_m(Z') = Y'_m) = \sum_{y_s} \left[\mathbb{P}(Y_s = y_s) \sum_{y_m} \mathbb{P}(Y_m = y_m \mid Y_s = y_s)^2 \right].$$

Theorem 2. In the general case:

$$\mathbb{P}(\pi_m(Z') = Y'_m) \ge \sum_{y_s} \mathbb{P}(Y_s = y_s) \max \left\{ 0, 2 \left(\max_{y_m} \mathbb{P}(Y_m = y_m \mid Y_s = y_s) - \frac{1}{2} \right) \right\}.$$

Implication: the amount of shared information b/w the two tasks is crucial

$$\mathbb{P}(Y_m = y_m \mid Y_s = y_s)$$

PROPOSED METHOD

TTT++: adapt the encoder g from unlabeled test examples through (i) contrastive self-supervision \mathcal{L}_s + (ii) online feature alignment \mathcal{L}_f

SOTA RESULTS

☐ CIFAR10 C100-C Method C10-C 61.2 Test (No Adaptation) 43.3 14.1 BN (Schneider et al., 2020) 15.7 TTT-R (Sun et al., 2020a) 38.1 14.7 SHOT (Liang et al., 2020) TENT (Wang et al., 2021) 12.6 42.5 12.1 TFA (Ours) 11.9 36.9 TTT-C (Ours) 10.7 36.1 TTT++ (Ours) 9.6

□ VisDA-C													
Method	plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	Per-class
Test	56.52	88.71	62.77	30.56	81.88	99.03	17.53	95.85	51.66	77.86	20.44	99.51	58.72
BN	44.38	56.98	33.24	55.28	37.45	66.60	16.55	59.02	43.55	60.72	31.07	82.98	48.12
TENT	13.43	77.98	20.17	48.15	21.72	82.45	12.37	35.78	21.06	76.41	34.11	98.93	42.73
SHOT	5.73	13.64	23.33	42.69	7.93	86.99	19.17	19.97	11.63	11.09	15.06	43.26	25.04
TFA	28.25	32.03	33.67	64.77	20.49	56.63	22.52	36.30	24.84	35.20	25.31	64.24	39.58
TTT-C	5.46	32.23	25.42	37.03	7.84	85.20	9.14	23.80	11.72	11.00	7.74	56.87	25.72
TTT++	4.13	26.20	21.60	31.70	7.43	83.30	7.83	21.10	7.03	7.73	6.91	51.40	22.46

Ablation