TPL4 Máquinas generatrices: Generador de CC

Se realiza el ensayo y obtención de las características de un generador de corriente continua mediante los equipos TERCO MV100 y MV120 en la siguiente configuración:

Especificaciones:

MV100: Motor de CC, accionado por panel de control TERCO.

MV120: Generador de CC - 220VCC- 1400rpm- 6A- Excitación: 220VCC- 0,55A

Rmy: Reóstato de CC - 220VCC - 2A

Rb: Banco de resistencia variable hasta 10A

Práctico 1: Característica en vacío

Se busca la tensión de salida en función de la corriente de excitación para el sistema con excitación independiente a rpm constante y sin carga.

Se eleva la corriente del circuito de excitación del MV120 de 0A hasta la corriente nominal (0.55A), registrando el valor de tensión de salida del generador a través del voltímetro.

Seguidamente se monitoreo la tensión de salida esta vez disminuyendo la corriente de excitación obteniendo los siguientes datos:

lexc [A]	fem [V]
0	13,8
0,019	20,44
0,035	27,28
0,074	49,5
0,11	76,7
0,15	101,5
0,218	137
0,312	183,5
0,385	199,4
0,495	215,9
0,5	216,8
0,486	215,2
0,389	204,8
0,321	192,6
0,27	180
0,236	169,3
0,189	148,1
0,154	128
0,12	106
0,094	87,4
0,065	65,3
0,031	39,9
0	14,8

Y la gráfica correspondiente:

fem[v]

Se observa que a corriente nula se genera una tensión de salida de 13.8V, debido a la remanencia magnética del circuito magnético del inductor.

Además se observa que la curva ascendente y la descendente no transitan por el mismo camino, debido al fenómeno de histéresis magnética.

Práctico 2: Característica de carga

Se busca la tensión de salida en función de la corriente de carga a rpm y corriente de excitación constantes.

Se partió de una tensión a bornes de 220V sin carga y luego se fue aumentando la corriente de carga hasta el valor nominal (6A), en cada paso se monitoreo la corriente de carga y la tensión a bornes obteniendo los siguientes puntos:

Icarga [A]	fem [V]
0,07	216
0,092	216
0,46	212,9
0,53	212,1
0,71	210,2
1,04	207,5
1,66	204
3,81	190,6
4,01	188,7
4,58	185
5,36	180,6
5,72	177,3

Y la gráfica correspondiente que muestra la variación de la tensión a bornes con la corriente demandada al generador:

En este caso se observa la característica real de un generador con excitación independiente donde la tensión en la carga disminuye gradualmente a medida que la misma demanda más corriente. Fenómeno que se debe a las caídas de tensión propias del generador debidas a la reacción del inducido y a la caída de tensión de la resistencia propia del inducido proporcional a la corriente por la carga.

Ferraris Domingo MAT: 36656566

Carrera: Ing. Electrónica