Лабораторная работа 3.2.4 СВОБОДНЫЕ КОЛЕБАНИЯ В ЭЛЕКТРИЧЕСКОМ КОНТУРЕ

Гарина Ольга

3 ноября 2020 г.

Цель работы: изучение свободных колебаний в электрическом контуре.

В работе используются: генератор импульсов, электронное рыле, магазин сопротивлений, магазин емкостей, индуктивность, электронный осциллограф с разделительной панелью, измеритель LCR.

Рисунок 1 – Схема экспериментальной установки

Для периодического возбуждения колебаний в контуре используется генератор испульсов Г5-54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, смонтрированное в отдельном блоке. Реле содержит диодный тиристор D и ограничительный резистор R_1 .

Импульсы заряжают конденсатор С. После каждого испульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебния. Входное сопротивление осциллографа велико (≈ 1 МОм), так что его влиянием на контур можно пренебречь. Для получения устойчивой картины затухающих колбеаний используется режим ждущей развертки с синхронизацией внешними импульсами, поступающими с выхода <синхроимпульсы> генератора.

Уравнение затухающих колебаний можно записать в виде

$$I = -\frac{U_0}{L\varkappa}e^{\gamma t}sh\varkappa t,\tag{1}$$

где U_0 - некоторое начальное напряжение в контуре, $\varkappa = \sqrt{\gamma^2 - \omega_0^2}$, а $\gamma = \frac{R}{2L}$.

Зависимость напряжение U_C от времени в режиме свободных затухающих колебаний представлена на рис.2

В случае слабого затухания ($\gamma << \omega_0$) период можно вычислить по формуле

$$T = 2\pi\sqrt{LC}. (2)$$

В случае апериодически колебаний ($\gamma > \omega_0$), описывающихся уравнением

$$U_C = U_0 e^{-\gamma t} \left(\frac{\gamma}{\varkappa} sh\varkappa t + ch\varkappa t \right) \tag{3}$$

картину колебаний можно представить в следующей виде (рис.3) В этом случае

Рисунок 2 – Затухающие колебания $(\gamma < \omega_0)$

Рисунок 3 – Апериодический режим $(\gamma>\omega_0)$

можно ввести такую величину как критическое сопротивление

$$R_{\rm Kp} = 2\sqrt{\frac{L}{C}}. (4)$$

В критическом режиме картина колебаний принимает следующий вид (рис.4)

Рисунок 4 – Критический режим ($\gamma = \omega_0$)

В колебательном режиме потери в контуре принято характеризовать добротностью Q и логарифмическим декрементом затухания Θ

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} \tag{5}$$

$$\Theta = ln \frac{U_k}{U_{k+1}} = \gamma T. \tag{6}$$

Часто удобнее исследовать не два последовательных максимальных отклонения в одну сторону, а отношение максимальных отклонений, разделенных целым числом периодов n

$$\Theta = \frac{1}{n} ln \frac{U_k}{U_{k+n}}.$$
 (7)

Можно определить физический смысл логарифмического декремента затухания: это величина, обратная числу периодов \mathbf{n}_e , за которое амплитуда колебаний падает в е раз. Связь между добротностью и декрементом затухания выражается следующим уравнением

$$Q = \frac{\pi}{\Theta} \tag{8}$$

1 Измерение периодов

В ходе лабораторной работы удалось с помощью осциллографа получить зависимость периода колебаний от емкости конденсатора (данные в Приложении 3.2.4). Зависимость экспериментально полученных периодов колебаний от теоретически рассчитанных по формуле (2) представлена на рис. 5.

С помощью МНК было получено значение коэффициента наклона данной прямой

$$k = 0.64 \pm 0.05$$

2 Критическое сопротивление и декремент затухания

В ходе эксперимента получилось снять зависимость декремента затухания от сопротивления в периодическом режиме. При этом по формуле (4)

$$R_{\rm kp} = 12600 \pm 2520 \; {
m Om}.$$

По наблюдениям за картиной апериодических колебаний на осциллографе

$$R_{\rm kp} = 9000 \pm 2000 \; {\rm Om}$$

А по коэффициенту наклона прямой графика на рис. 6 по формуле

$$R_{\text{KP}} = 2\pi\sqrt{k} = 10675 \pm 271 \text{ OM},$$
 (9)

где k – посчитанный с помощью MHK коэффицент наклона данной прямой.

3 Колебания на фазовой плоскости

Наблюдения за спиралью на осциллогарфе позволили посчитать добротность контура еще одним способом. Результаты экспериментов преведены в таблице 1

	$R_{ m \kappa p}$				Q		
$L_{ m \tiny Kat}$	Teop	Подбор	Граф	R	Teop	$f(\Theta)$	Спираль
146 мГн	12600 Ом	9000 Ом	10675 Ом	3510.06 Ом 1210.06 Ом		1.34 4.32	1.95 5.25

Таблица 1 – Результаты измерения критического сопротивления и добротности

Погрешности измерений величин разными способами преведены в Таблице 2. Большая погрешность измерения сопротивления и добротности по показаниям осциллографа обусловлена сложностью определения расстояний на экране.

R_{reop}	20%
R _{подбор}	22%
$R_{rpa\phi}$	2,5 %
Q_{reop}	3-8 %
Q_Θ	14-16 %
Q _{спираль}	10-50 %

Таблица 2 – Сводная таблица

4 Вывод

В ходе лабораторной работы удалось изучить свободные колебания в электрическом контуре и измерить характеристики контура при различных параметрах.

Рисунок 5 – Зависимость экспериментально полученного периода от теоретически рассчитанного

Рисунок 6 – Зависимость обратного квадрата декремента затухания от обратного квадрата сопротивления контура

5 Литература

1. Лабораторный практикум по общей физике: Учебное пособие в трех томах. Т. 2. Электричество и магнетизм. 2-е изд., перераб и дополн. / Никулин М.Г., Попов П.В, Нозик А.А. и др.; Под ред. А.В. Максимычева, М.Г. Никулина. – М.: МФТИ, 2019. – 370 с