INDIAN INSTITUTE OF TECHNOLOGY KANPUR

Artificial Intelligence (AI) for Investments

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

Lesson 8: Cost of Capital

Introduction

In this lesson we will cover the following topics:

- Introduction Company and Project Cost of Capital
- Computing Company Cost of Capital
- Estimating the components of WACC
- Analyzing Project Risk
- Certainty Equivalents
- Summary and concluding remarks

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

- Company cost of capital is defined as the expected return on a portfolio of all the company's existing securities
 - It is the opportunity cost of capital for investment in the firm's assets
 - If the firm has no debt outstanding, then the company cost of capital is just the expected rate of return on the firm's stock
 - The company cost of capital is not the correct discount rate if the new projects are more or less risky than the firm's existing business
 - $Firm\ Value = PV(AB) = PV(A) + PV(B)$
 - The two discount rates will, in general, be different

- If the present value of an asset depended on the identity of the company that bought it, present values would not add up
 - Consider a portfolio of \$1 million invested in firm A and \$1 million invested in firm B
 - If the firm considers investing in a third project C, it should also value C as if C were a mini-firm
 - The opportunity cost of capital depends on the use to which that capital is put
 - A new division with different risk profile, considerable uncertainty and customer demand that is yet to be established, should of course have different cost of capital

- Suppose we measure the risk of each project by its beta
 - Then a firm should accept any project lying above the upward-sloping security market line that links expected return to risk
 - If the project is high-risk, the firm needs a higher prospective return than if the project is low-risk
 - That is different from the company cost of capital rule, which accepts any project regardless of its risk as long as it offers a higher return than the company's cost of capital

- The true cost of capital depends on project risk, not on the company undertaking the project
 - Why is so much time spent estimating the company cost of capital?
 - First, many (maybe most) projects can be treated as average risk
 - Second, the company cost of capital is a useful starting point for setting discount rates for unusually risky or safe projects
 - It is easier to add to, or subtract from, the company cost of capital

- Businesspeople have good intuition about relative risks
 - They set a companywide cost of capital as a benchmark
 - Many large companies use the company cost of capital not just as a benchmark, but also as an all-purpose discount rate for every project proposal
 - Measuring differences in risk is difficult to do objectively
 - Top management may demand extra- conservative cash-flow forecasts from extra-risky projects
 - Top management may demand extra- conservative cash-flow forecasts from extra-risky projects

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

Computing Company Cost of Capital

Computing Company Cost of Capital

- Company cost of capital is the expected return on a portfolio of all the company's existing securities
 - The portfolio of company security usually includes debt as well as equity
 - Thus the cost of capital is estimated as a blend of the cost of debt

```
Asset value 100 Debt D = 30 at 7.5% Equity E = 70 at 15% Firm value V = 100
```

The values of debt and equity add up to overall firm value

Computing Company Cost of Capital

- The company cost of capital is not equal to the cost of debt or to the cost of equity but is a blend of the two
 - Suppose you purchased a portfolio consisting of 100% of the firm's debt and 100% of its equity
 - The expected rate of return on your hypothetical portfolio is the company cost of capital
 - The expected rate of return is just a weighted average of the cost of debt $(r_D=7.5\%)$ and the cost of equity $(r_E=15\%)$
 - The weights are the relative market values of the firm's debt and equity, that is, D/V=30% and E/V=70%

Computing Company Cost of Capital

- The company cost of capital is not equal to the cost of debt or to the cost of equity but is a blend of the two
 - The marginal corporate tax rate $T_C = 35\%$
 - WACC or Company cost of capital= $r_D * (1 T_c) * \frac{D}{V} + r_E * \frac{E}{V} = 7.5\% * (1 0.35) * 0.30 + 15 * 0.70 = 12.00\%$
 - This blended measure of the company cost of capital is called the weighted-average cost of capital or WACC

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

- To calculate the weighted-average cost of capital, you need an estimate of the cost of equity
 - We will use the capital asset pricing model (CAPM) to estimate the cost of equity
 - CAPM: Expected Returns = $r_f + \beta(r_m r_f)$
 - In principle we are interested in the future beta of the company's stock
 - We will estimate beta using historical security price data

- In the scatter diagram shown here, each dot represents the return on a security and return on market
 - The slope of fitted line is called beta
 - The R-square measure tells the proportion of total variance that can be explained by market variance
 - It appears that 29.7% of the variance was was explained by the market
 - The 95% confidence interval estimate of beta is 2.16

- In the scatter diagram shown here, each dot represents the return on a security and return on market
 - Standard error of the estimated beta is computed to show the extent of possible mismeasurement
 - Standard error of beta estimate is 0.436
 - The 95% confidence interval estimate 2.16 plus or minus 2*0.436
 - That is, you have 95% chance of being right in saying that beta can fall in this interval

- How to estimate the risk-free rate of interest (r_f)
 - Should we use short-term treasury bill rate, daily over night rate, monthly rate, one year interest rate or long-term interest rates
 - CAPM is a short-term model
 - It works period by period and calls for a short-term interest rate
 - Could a .2% three-month risk-free rate give the right discount rate for cash flows 10 or 20 years in the future?

- How to estimate the risk-free rate of interest (r_f)
 - Financial managers can simply use a long-term risk-free rate in the CAPM formula
 - Or, they can compute the term premia (for investing in long-term government bonds T-Bills) = 1.5%
 - The difference in current Govt. bond yields (e.g., 3.3%) and this term premia reflects that short-term T-Bill rates= 3.3%-1.5%=1.8%
 - If the market risk-premium in 7%, beta is 1.16, then the cost of equity can be computed as follows. Cost of equity = Expected Returns = r_f + $\beta(r_m r_f) = 1.8 + 1.16 * 7.0 = 9.9\%$

- Estimating cost of equity and WACC
 - If the market risk-premium in 7%, beta is 1.16, then the cost of equity can be computed as follows. Cost of equity = Expected Returns = r_f + $\beta(r_m r_f) = 1.8 + 1.16 * 7.0 = 9.9\%$
 - Let us calculate the WACC for a firm with cost of Debt of about 7.8%, corporate tax-rate of 35%, and debt ratio (D/V) of 31.5%.
 - After Tax WACC = $(1 T_C) * r_D * \frac{D}{V} + r_E * \frac{E}{V} = (1 0.35) * 7.8 * 0.315 + 9.9 * 0.685 = 8.4%$

- The cost of debt is always less than the cost of equity
 - The WACC formula blends the two costs: Debt and Equity
 - As the debt ratio D/V increases, the cost of the remaining equity also increases
 - This offsets offsetting the apparent advantage of more cheap debt
 - Debt does have a tax advantage, however, because interest is a taxdeductible expense

- The after-tax WACC depends on the average risk of the company's assets, but it also depends on taxes and financing
 - It's easier to think about project risk if you measure it directly
 - As the debt ratio D/V increases, the cost of the remaining equity also increases
 - We calculate the asset beta as a blend of the separate betas of debt (β_D) and equity (β_E)
- For example, let us consider a security with β_E =1.16 and β_D = 0.3. The weights are the fractions of debt and equity financing, D/V= .315 and E/V = .685

- The after-tax WACC depends on the average risk of the company's assets, but it also depends on taxes and financing
 - For example, let us consider a security with β_E =1.16 and β_D = 0.3. The weights are the fractions of debt and equity financing, D/V= .315 and E/V = .685
 - Asset beta= β_A = $\beta_D*\left(\frac{D}{V}\right)+\beta_E*\left(\frac{E}{V}\right)=0.3*0.315+1.16*0.685=0.89$
 - Calculating an asset beta is similar to calculating a weighted-average cost of capital
 - This asset beta is an estimate of the average risk of the firm's business

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

- Suppose that a coal-mining corporation wants to assess the risk of investing in commercial real estate
 - The asset beta for coal mining is not helpful
 - You need to know the beta of real estate
 - A company that wants to set a cost of capital for one particular line of business typically looks for pure plays in that line of business
 - Pure-play companies are public firms that specialize in one activity

- Schlumberger wants to set a cost of capital for its new Oil exploration venture
 - It could estimate the average asset beta or cost of capital for Oil and Gas firms that have not diversified into multiple business lines (e.g., Reliance)
 - They should not consider Reliance group as it would have multiple companies in different groups
 - ONGC would be a pure-play and suitable for estimating the cost of capital
 - Many times good comparable pure plays are not available, then we go for asset betas

- What determines asset betas?
 - Cyclicality: What is the strength of the relationship between the firm's earnings and aggregate market earnings
 - We can measure this either by the earnings beta or by the cash-flow beta
 - Cyclical firms—firms whose revenues and earnings are strongly dependent on the state of the business cycle—tend to be high-beta firms
 - Cyclical businesses include airlines, luxury resorts and restaurants, construction, and steel

- What determines asset betas?
 - Operating Leverage: A production facility with high fixed costs, relative to variable costs, is said to have high operating leverage
 - High operating leverage means a high asset beta
 - Cash flow = revenue fixed cost variable cost
 - Fixed costs are cash outflows that occur regardless of whether the asset is active or idle
 - PV(asset)= PV(revenue)- PV(fixed cost) PV(variable cost)

- What determines asset betas?
 - Operating Leverage: PV(revenue) = PV(fixed cost)+ PV(variable cost)+PV(Asset)

•
$$\beta_{revenue} = \beta_{fixedcost} * \frac{PV(fixedcost)}{PV(Revenue)} + \beta_{variablecost} * \frac{PV(variablecost)}{PV(Revenue)} + \beta_{asset} * \frac{PV(variablecost)}{PV(Revenue)} + \beta_{variablecost} * \frac{PV(variablecost)}{PV(variablecost)} + \beta_{variablecost} * \frac{PV(variablecost)}{PV(variablecost)} + \frac{PV(variab$$

•
$$\beta_{asset} = \beta_{revenue} * \frac{PV(revenue) - PV(variablecost)}{PV(Asset)} = \beta_{revenue} [1 + \frac{PV(fixedcost)}{PV(Asset)}]$$

• Given the cyclicality of revenues ($\beta_{revenue}$), the asset beta (β_{asset}) is proportional to the ratio of the present value of fixed costs to the present

- What determines asset betas?
 - Don't Be Fooled by Diversifiable Risk
 - In everyday usage, "risk" simply means "bad outcome"
 - People think of the risks of a project as a list of things that can go wrong
 - Risks such as a pharma-company finding side-effects of a new drug are diversifiable risks
 - Thus, these hazards should not affect the discount rates

- Sometimes financial managers increase discount rates in an attempt to offset these risks
 - Consider a project Z that produces just one cash flow, forecasted at \$1 million at year 1

•
$$PV = \frac{C_1}{1+r} = \frac{100000}{1.1} = 909,100$$

- Company discovers a small hazard, which may cause a small chance that project will have zero cash flow
- The appropriate way to deal with this situation is to prepare unbiased cash flow forecasts that give due weight to all possible outcomes

- Managers making unbiased forecasts are correct on average
 - Sometimes their forecasts will turn out high, other times low, but their errors will average out over many projects
 - The appropriate way to deal with this situation is to prepare unbiased cash flow forecasts that give due weight to all possible outcomes
 - . If you forecast a cash flow of \$1 million for projects like Z, you will overestimate the average cash flow

Possible Cash Flow	Probability	Probability- Weighted	Unbiased Forecast
1.2	0.25	0.3	
1	0.5	0.5	\$1 million
0.8	0.25	0.2	

- Managers making unbiased forecasts are correct on average
 - If technological uncertainty introduces a 10% chance of a zero cash flow, the unbiased forecast could drop

Possible	Probability	Probability-	Unbiased
Cash Flow		Weighted	Forecast
1.2	0.25	0.27	
1	0.45	0.45	\$0.90 million
0.8	0.225	0.18	
0.0	0.10	0.00	

• Thus, the new present value computation would be: $PV = \frac{0.90}{1.1} = \0.818 million

- Managers often work out a range of possible outcomes for major projects, sometimes with explicit probabilities attached
 - The manager can still consider the good and bad outcomes as well as the most likely one
 - When the bad outcomes outweigh the good, the cash-flow forecast should be reduced until balance is regained
 - Step 1, then, is to do your best to make unbiased forecasts of a project's cash flows
 - Step 2 is to consider whether diversified investors would regard the project as more or less risky than the average project

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

- Discount rates are not constant and constantly change over the project life as the project risk changes
 - You are considering construction of an office building that you plan to sell after one year for \$420,000
 - That cash flow is uncertain with the same risk as the market, so $\beta=1$
 - Given $r_f = 5\%$ and $r_m r_f = 7\%$, you compute the present value as: 420,000/1.12 = \$375,000
 - What is that certain payoff you are willing to accept to sell the project in future
 - $\frac{Certain\ cash\ flow}{Certain\ cash\ flow} = 375000$, Certain cash flow= \$393,750

- Discount rates are not constant and constantly change over the project life as the project risk changes
 - Thus, a certain cash flow of \$393,750 has exactly the same present value as an expected but uncertain cash flow of \$420,000
 - To compensate for both the delayed payoff and the uncertainty in real estate prices, you need a return of 420,000 375,000 = \$45,000
 - One part of this difference compensates for the time value of money
 - The other part (\$420,000 -393,750 = \$26,250) is a markdown or haircut to compensate for the risk attached to the forecasted cash flow of \$420,000.

- How to value risky project cash flows
 - Method 1: Discount the risky cash flow at a risk-adjusted discount rate r that is greater than $r_{\!f}$
 - Method 2: Find the certainty-equivalent cash flow and discount at the risk-free interest rate $\emph{r}_{\it f}$
 - What is the smallest certain payoff for which I would exchange the risky cash flow, this is called certainty equivalent (CEQ)

- Thus, We now have two identical expressions for the PV of a cash flow
 - At period 1, $PV = \frac{C_1}{1+r} = \frac{CEQ}{1+r_f}$
 - For cash flows two, three, or t years away, $PV = \frac{C_t}{(1+r)^t} = \frac{CEQ}{(1+r_f)^t}$

- Consider two simple projects
 - Project A is expected to produce a cash flow of \$100 million for each of three years. The risk-free interest rate is 6%, the market risk premium is 8%, and project A's beta is .75
 - Cost of capital for A as per CAPM: $= r_f + \beta (r_m r_f) = 6 + 8 * 0.75 = 12\%$

Year	Cash Flow	PV at 12%
1	100	89.3
2	100	79.7
3	100	71.2
	100	Total PV 240.2

- Consider two simple projects
 - Project B is a safe project and the cash flows can be discounted at riskfree rate
 - The discounted cash flows are shown here

Year	Cash Flow	PV at 6%
1	94.6	89.3
2	89.6	79.7
3	84.8	71.2 Total PV 240.2

- Risk-free cash flow vs. certainty equivalents
 - In year 1 project A has a risky cash flow of 100. This has the same PV as the safe cash flow of 94.6 from project B
 - In year 2 project A has a risky cash flow of 100, and B has a safe cash flow of 89.6

Year	Forecasted Cash Flow	Certainty- Equivalent	Deduction for Risk
1	100	94.6	5.4
2	100	89.6	10.4
3	100	<u>84.8</u>	15.2

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

Summary and Concluding remarks

Summary and Concluding remarks

- If the project has the same risk as the average company risk, then company cost of capital is good benchmark to discount project cash flows
- Company cost of capital is measured with after-tax weighted-average cost of capital (after-tax WACC)
- When the project risk is considerably different from average company risk, then asset betas are often employed t estimate the project risk
- Overtime as the project risk changes, discount rates also change
- In such scenarios, we may use certainty equivalents (CEQ) to discount at risk-free rate to value the project

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

Thanks!

