

Sequence Listing

<110> Desnoyers, Luc

Eaton, Dan L.

Goddard, Audrey

Godowski, Paul J.

Gurney, Austin L.

Pan, James

Stewart, Timothy A.

Watanabe, Colin K.

Wood, William I.

Zhang, Zemin

<120> SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME

<130> P3030R1C8

<150> 60/085579

<151> 1998-05-15

<150> 60/112514

<151> 1998-12-15

<150> 60/113300

<151> 1998-12-22

<150> 60/113430

<151> 1998-12-23

<150> 60/113605

<151> 1998-12-23

<150> 60/113621

<151> 1998-12-23

<150> 60/114140

<151> 1998-12-23

<150> 60/115552

<151> 1999-01-12

<150> 60/116843

<151> 1999-01-22

<151> 1999-04-05
<150> 60/129122
<151> 1999-04-13

<150> 60/130359
<151> 1999-04-21

<150> 60/131270
<151> 1999-04-27

<150> 60/131272
<151> 1999-04-27

<150> 60/131291
<151> 1999-04-27

<150> 60/132371
<151> 1999-05-04

<150> 60/132379
<151> 1999-05-04

2000-05-04
<150> 60/132383
<151> 1999-05-04

<150> 60/135750
<151> 1999-05-25

<150> 60/138166
<151> 1999-06-08

<150> 60/144791
<151> 1999-07-20

<150> 60/146970
<151> 1999-08-03

<150> 60/162506
<151> 1999-10-29

<150> 09/311832
<151> 1999-05-14

<150> 09/380142
<151> 1999-08-25

<150> 09/644848
<151> 2000-08-22

<150> 09/747259
<151> 2000-12-20

<150> 09/816744
<151> 2001-03-22

<150> 09/854208
<151> 2001-05-10

<150> 09/854280
<151> 2001-05-10

<150> 09/874503
<151> 2001-06-05

<150> 09/869599
<151> 2001-06-29

<150> 09/908,827
<151> 2001-07-18

<150> PCT/US99/10733
<151> 1999-05-14

<150> PCT/US99/28551
<151> 1999-12-02

<150> PCT/US99/30720
<151> 1999-12-22

<150> PCT/US00/05601
<151> 2000-03-01

<150> PCT/US00/05841
<151> 2000-03-02

<150> PCT/US00/14042
<151> 2000-05-22

<150> PCT/US00/15264
<151> 2000-06-02

<150> PCT/US00/23522
<151> 2000-08-23

<150> PCT/US00/23328
<151> 2000-08-24

<150> PCT/US00/32678
<151> 2000-12-01

<150> PCT/US00/34956
<151> 2000-12-20

<150> PCT/US01/06520
<151> 2001-02-28

<150> PCT/US01/17800
<151> 2001-06-01

<150> PCT/US01/19692
<151> 2001-06-20

<150> PCT/US01/21066
<151> 2001-06-29

<150> PCT/US01/21735

<151> 2001-07-09

<160> 80

<210> 1
<211> 1712
<212> DNA
<213> Homo Sapien

<400> 1
gcatctgcc cgaggagacc acgctcctgg agctctgctg tcttctcagg 50
gagactctga ggctctgtt agaatcatgc tttggaggca gctcatctat 100
tggcaactgc tggctttgtt ttcctccct tttgcctgt gtcaagatga 150
atacatggag tctccacaaa ccggaggact acccccagac tgcagtaagt 200
gttgcattgg agactacagc ttgcaggct accaaggccc ccctggcca 250
ccggccctc ctggcattcc agggaaaccat ggaaacaatg gcaacaatgg 300
agccacttgt catgaaggag ccaaaggta gaaggcgac aaaggtgacc 350
tggggcctcg aggggagcgg gggcagcatg gccccaaagg agagaaggc 400
tacccgggga ttccaccaga acttcagatt gcattcatgg cttctctggc 450
aacccacttc agcaatcaga acagtggat tatttcagc agtgttgaga 500
ccaacattgg aaacttctt gatgtcatga ctggtagatt tggggcccca 550
gtatcaggtg tgtatTTCTT cacttcagc atgatgaagc atgaggatgt 600
tgaggaagtg tatgtgtacc ttatgcacaa tgccaacaca gtcttcagca 650
tgtacagcta tgaaatgaag ggcaaattcag atacatccag caatcatgct 700
gtgctgaagc tagccaaagg ggatgaggtt tggctgcggaa tggcaatgg 750
cgctctccat ggggaccacc aacgcttctc cacccttgcgaa ggattcctgc 800
tctttgaaac taagtaaata tatgactaga atagctccac tttggggaaag 850
acttgttagct gagctgattt gttacgatct gaggaacatt aaagttgagg 900
gttttacatt gctgtattca aaaaatttatt ggttgcaatg ttgttcacgc 950
tacaggtaca ccaataatgt tggacaattc aggggctcag aagaatcaac 1000
cacaaaaatag tcttctcaga tgaccttgac taatatactc agcatctta 1050
tcactcttc cttggcacct aaaagataat tctcctctga cgcaggttgg 1100
aaatattttt ttctatcaca gaagtcattt gcaaagaatt ttgactactc 1150
tgcttttaat ttaataccag tttcaggaa cccctgaagt tttaagttca 1200

ttattctta taacatttga gagaatcgga tgttagtgata tgacaggct 1250
ggggcaagaa caggggcaact agctgcctta ttagctaatt tagtgcctc 1300
cgtgttcagc ttagcccttg acccttcct tttgatccac aaaatacatt 1350
aaaactctga attcacatac aatgctattt taaagtcaat agattttagc 1400
tataaagtgc ttgaccagta atgtggtgt aattttgt atgtcccc 1450
acatcgcccc caacttcgga tgtgggtca ggaggttgag gttcactatt 1500
aacaaatgtc ataaatatct catagaggta cagtgccaat agatattcaa 1550
atgttgcattt ttgaccagag ggattttata tctgaagaac atacactatt 1600
aataaatacc ttagagaaag attttgacct ggcttagat aaaactgtgg 1650
caagaaaaat gtaatgagca atatatggaa ataaacacac ctttgtaaa 1700
gataaaaaaa aa 1712

<210> 2
<211> 246
<212> PRT
<213> Homo Sapien

<400> 2
Met Leu Trp Arg Gln Leu Ile Tyr Trp Gln Leu Leu Ala Leu Phe
1 5 10 15
Phe Leu Pro Phe Cys Leu Cys Gln Asp Glu Tyr Met Glu Ser Pro
20 25 30
Gln Thr Gly Gly Leu Pro Pro Asp Cys Ser Lys Cys Cys His Gly
35 40 45
Asp Tyr Ser Phe Arg Gly Tyr Gln Gly Pro Pro Gly Pro Pro Gly
50 55 60
Pro Pro Gly Ile Pro Gly Asn His Gly Asn Asn Gly Asn Asn Gly
65 70 75
Ala Thr Gly His Glu Gly Ala Lys Gly Glu Lys Gly Asp Lys Gly
80 85 90
Asp Leu Gly Pro Arg Gly Glu Arg Gly Gln His Gly Pro Lys Gly
95 100 105
Glu Lys Gly Tyr Pro Gly Ile Pro Pro Glu Leu Gln Ile Ala Phe
110 115 120
Met Ala Ser Leu Ala Thr His Phe Ser Asn Gln Asn Ser Gly Ile
125 130 135
Ile Phe Ser Ser Val Glu Thr Asn Ile Gly Asn Phe Phe Asp Val
140 145 150

Met Thr Gly Arg Phe Gly Ala Pro Val Ser Gly Val Tyr Phe Phe
155 160 165
Thr Phe Ser Met Met Lys His Glu Asp Val Glu Glu Val Tyr Val
170 175 180
Tyr Leu Met His Asn Gly Asn Thr Val Phe Ser Met Tyr Ser Tyr
185 190 195
Glu Met Lys Gly Lys Ser Asp Thr Ser Ser Asn His Ala Val Leu
200 205 210
Lys Leu Ala Lys Gly Asp Glu Val Trp Leu Arg Met Gly Asn Gly
215 220 225
Ala Leu His Gly Asp His Gln Arg Phe Ser Thr Phe Ala Gly Phe
230 235 240
Leu Leu Phe Glu Thr Lys
245

<210> 3
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 3
tgtaaaacga cggccagttt aatagacctg caattattaa tct 43

<210> 4
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 4
caggaaacacg ctatgaccac ctgcacacct gcaaattcat t 41

<210> 5
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 5
gcaacaatgg agccactggt catg 24

<210> 6
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 6
gcaaagggtgg agaagcgttg gtgg 24

<210> 7
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 7
cccacttcag caatcagaac agtgggattta tctttcagca gtgtttgaga 50
cc 52

<210> 8
<211> 1579
<212> DNA
<213> Homo Sapien

<400> 8
gagagaatag ctacagattc tccatcctca gtcttgcaa ggcgacagct 50
gtgccagccg ggctctggca ggctcctggc agcatggcag tgaagcttgg 100
gaccctcctg ctggcccttg ccctggcct gcccgagcca gcctctgccc 150
gccggaagct gctgggttt ctgctggatg gtttcgctc agactacatc 200
agtgatgagg cgctggagtc attgcctggt ttcaaagaga ttgtgagcag 250
gggagtaaaa gtggattact tgactccaga cttccctagt ctctcgatc 300
ccaattatta taccctaattg actggccgcc attgtgaagt ccatcagatg 350
atcgggaact acatgtggga cccccaccacc aacaagtccct ttgacattgg 400
cgtcaacaaa gacagcctaa tgcctcttg gtggaatgga tcagaacctc 450
tgtgggtcac tctgaccaag gccaaaagga aggtctacat gtactactgg 500
ccaggctgtg aggttgagat tctgggtgtc agacccacct actgcctaga 550
atataaaaaat gtcccaacgg atatcaattt tgccaatgca gtcagcgatg 600
ctcttgactc cttcaagagt ggccggccg acctggcagc catataccat 650
gagcgcattg acgtggaaagg ccaccactac gggcctgcat ctccgcagag 700
gaaagatgcc ctcaaggctg tagacactgt cctgaagtac atgaccaagt 750
ggatccagga gcggggcctg caggaccgcc tgaacgtcat tattttctcg 800
gatcacggaa tgaccgacat tttctggatg gacaaagtga ttgagctgaa 850

taagtacatc agcctgaatg acctgcagca agtgaaggac cgcgggcctg 900
ttgtgagcct ttggccggcc cctggaaac actctgagat atataacaaa 950
ctgagcacag tggAACACAT gactgtctac gagAAAGAAG ccatcccaag 1000
caggttctat tacaAGAAAG gaaAGTTGT ctctcTTTg actttAGTGG 1050
ctgatGAAGG ctggTTcATA actgagaATC gagAGATGCT tccgTTTGG 1100
atGAACAGCA ccggcAGGCG ggaAGGTTGG cAGCgtggat ggcacggcta 1150
cgacaACGAG ctcATGGACA tgcggggcat cttcctggcc ttcggacctg 1200
atttcaaATC caacttcAGA gctgctccta tcaggtcggt ggacgtctac 1250
aatgtcatgt gcaatgtgg gggcatcacc ccgctGCCA acaacggatc 1300
ctggTCCAGG gtgatgtgca tgctGAAGGG ccgcGCCGGC actgccccgc 1350
ctgtctggcc cagccACTGT GCCCTGGCAC tgattttctt cttcctgctt 1400
gcataactga tcataATTGCT tgtctcAGAA aaaaACACCA tcagCAAAGT 1450
gggcctccaa agccAGATGA ttttCATTTT atgtgtGAAT aatAGCTTCa 1500
ttaacacaat caagACCATG cacATTGTAa atacATTATT cttggataat 1550
tctatacata aaagtTCCTA cttgttaaa 1579

<210> 9
<211> 440
<212> PRT
<213> Homo Sapien

<400> 9
Met Ala Val Lys Leu Gly Thr Leu Leu Leu Ala Leu Ala Leu Gly
1 5 10 15
Leu Ala Gln Pro Ala Ser Ala Arg Arg Lys Leu Leu Val Phe Leu
20 25 30
Leu Asp Gly Phe Arg Ser Asp Tyr Ile Ser Asp Glu Ala Leu Glu
35 40 45
Ser Leu Pro Gly Phe Lys Glu Ile Val Ser Arg Gly Val Lys Val
50 55 60
Asp Tyr Leu Thr Pro Asp Phe Pro Ser Leu Ser Tyr Pro Asn Tyr
65 70 75
Tyr Thr Leu Met Thr Gly Arg His Cys Glu Val His Gln Met Ile
80 85 90
Gly Asn Tyr Met Trp Asp Pro Thr Thr Asn Lys Ser Phe Asp Ile
95 100 105
Gly Val Asn Lys Asp Ser Leu Met Pro Leu Trp Trp Asn Gly Ser

110	115	120
Glu Pro Leu Trp Val Thr Leu Thr Lys Ala Lys Arg Lys Val Tyr		
125	130	135
Met Tyr Tyr Trp Pro Gly Cys Glu Val Glu Ile Leu Gly Val Arg		
140	145	150
Pro Thr Tyr Cys Leu Glu Tyr Lys Asn Val Pro Thr Asp Ile Asn		
155	160	165
Phe Ala Asn Ala Val Ser Asp Ala Leu Asp Ser Phe Lys Ser Gly		
170	175	180
Arg Ala Asp Leu Ala Ala Ile Tyr His Glu Arg Ile Asp Val Glu		
185	190	195
Gly His His Tyr Gly Pro Ala Ser Pro Gln Arg Lys Asp Ala Leu		
200	205	210
Lys Ala Val Asp Thr Val Leu Lys Tyr Met Thr Lys Trp Ile Gln		
215	220	225
Glu Arg Gly Leu Gln Asp Arg Leu Asn Val Ile Ile Phe Ser Asp		
230	235	240
His Gly Met Thr Asp Ile Phe Trp Met Asp Lys Val Ile Glu Leu		
245	250	255
Asn Lys Tyr Ile Ser Leu Asn Asp Leu Gln Gln Val Lys Asp Arg		
260	265	270
Gly Pro Val Val Ser Leu Trp Pro Ala Pro Gly Lys His Ser Glu		
275	280	285
Ile Tyr Asn Lys Leu Ser Thr Val Glu His Met Thr Val Tyr Glu		
290	295	300
Lys Glu Ala Ile Pro Ser Arg Phe Tyr Tyr Lys Lys Gly Lys Phe		
305	310	315
Val Ser Pro Leu Thr Leu Val Ala Asp Glu Gly Trp Phe Ile Thr		
320	325	330
Glu Asn Arg Glu Met Leu Pro Phe Trp Met Asn Ser Thr Gly Arg		
335	340	345
Arg Glu Gly Trp Gln Arg Gly Trp His Gly Tyr Asp Asn Glu Leu		
350	355	360
Met Asp Met Arg Gly Ile Phe Leu Ala Phe Gly Pro Asp Phe Lys		
365	370	375
Ser Asn Phe Arg Ala Ala Pro Ile Arg Ser Val Asp Val Tyr Asn		
380	385	390
Val Met Cys Asn Val Val Gly Ile Thr Pro Leu Pro Asn Asn Gly		
395	400	405

Ser Trp Ser Arg Val Met Cys Met Leu Lys Gly Arg Ala Gly Thr
410 415 420

Ala Pro Pro Val Trp Pro Ser His Cys Ala Leu Ala Leu Ile Leu
425 430 435

Leu Phe Leu Leu Ala
440

<210> 10

<211> 1047

<212> DNA

<213> Homo Sapien

<400> 10

gccaggtgt caggccgctc caagcccacg ctggcccgct gcccgcacca 50

tgacgctcct ccccgccctc ctgtttctga cctggctgca cacatgcctg 100

gcccaccatg acccctccct cagggggcac ccccacagtc acggtacccc 150

acactgctac tcggctgagg aactgcccct cggccaggcc ccccccacacc 200

tgctggctcg aggtgccaag tgggggcagg cttgcctgt agccctggtg 250

tccagcctgg aggcaagcaag ccacaggggg aggcacgaga ggcctcagc 300

tacgacccag tgcccggtgc tgccggccga ggaggtgttg gaggcagaca 350

ccaccaggc ctccatctca ccctggagat accgtgtgga cacggatgag 400

gaccgctatc cacagaagct ggcattcgcc gagtgcctgt gcagaggctg 450

tatcgatgca cggacggcc gcgagacagc tgcgctcaac tccgtgcggc 500

tgctccagag cctgctggtg ctgcggccgc ggccctgctc ccgcgacggc 550

tcggggctcc ccacacctgg ggccttgcc ttccacaccc agttcatcca 600

cgtccccgtc ggctgcacct gcgtgctgcc ccgttcagtg tgaccggcga 650

ggccgtgggg ccccttagact ggacacgtgt gctccccaga gggcacccccc 700

tatttatgtg tatttattgt tatttatatg cctccccaa cactaccctt 750

gggtctggg cattccccgt gtctggagga cagccccca ctgttctcct 800

catctccagc ctcagtagtt ggggttagaa ggagctcagc acctttcca 850

gcccttaaag ctgcagaaaa ggtgtcacac ggctgcctgt accttggctc 900

cctgtcctgc tcccggttc cttacccta tcactggct caggccccgc 950

aggctgcctc ttcccaacct ctttggaaat acccctgttt cttaaacaat 1000

tattnaagtg tacgtgtatt attaaactga tgaacacatc cccaaaa 1047

<210> 11

>
<211> 197
<212> PRT
<213> Homo Sapien

<400> 11
Met Thr Leu Leu Pro Gly Leu Leu Phe Leu Thr Trp Leu His Thr
1 5 10 15

Cys Leu Ala His His Asp Pro Ser Leu Arg Gly His Pro His Ser
20 25 30

His Gly Thr Pro His Cys Tyr Ser Ala Glu Glu Leu Pro Leu Gly
35 40 45

Gln Ala Pro Pro His Leu Leu Ala Arg Gly Ala Lys Trp Gly Gln
50 55 60

Ala Leu Pro Val Ala Leu Val Ser Ser Leu Glu Ala Ala Ser His
65 70 75

Arg Gly Arg His Glu Arg Pro Ser Ala Thr Thr Gln Cys Pro Val
80 85 90

Leu Arg Pro Glu Glu Val Leu Glu Ala Asp Thr His Gln Arg Ser
95 100 105

Ile Ser Pro Trp Arg Tyr Arg Val Asp Thr Asp Glu Asp Arg Tyr
110 115 120

Pro Gln Lys Leu Ala Phe Ala Glu Cys Leu Cys Arg Gly Cys Ile
125 130 135

Asp Ala Arg Thr Gly Arg Glu Thr Ala Ala Leu Asn Ser Val Arg
140 145 150

Leu Leu Gln Ser Leu Leu Val Leu Arg Arg Arg Pro Cys Ser Arg
155 160 165

Asp Gly Ser Gly Leu Pro Thr Pro Gly Ala Phe Ala Phe His Thr
170 175 180

Glu Phe Ile His Val Pro Val Gly Cys Thr Cys Val Leu Pro Arg
185 190 195

Ser Val

<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 12
atccacagaa gctggccttc gccg 24

<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 13
gggacgtgga tgaactcggt gtgg 24

<210> 14
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 14
tatccacaga agctggcctt cgccgagtc ctgtgcagag 40

<210> 15
<211> 660
<212> DNA
<213> Homo Sapien

<400> 15
cggccagggc gcccacagcc cgacctcacc aggagaacat gcagctggc 50
actgggctcc tgctggccgc cgtcctgagc ctgcagctgg ctgcagccga 100
agccatatgg tgtcaccagt gcacgggctt cggagggtgc tcccatggat 150
ccagatgcct gagggactcc acccactgtg tcaccactgc cacccgggtc 200
ctcagcaaca ccgaggattt gcctctggtc accaagatgt gccacatagg 250
ctgccccgat atccccagcc tgggcctggg cccctacgta tccatcgctt 300
gctgccagac cagcctctgc aaccatgact gacggctgcc ctcctccagg 350
ccccccggacg ctcagcccc acagccccca cagcctggcg ccagggctca 400
cggccggcccc tccctcgaga ctggccagcc cacctctccc ggcctctgca 450
gccaccgtcc agcaccgctt gtccttaggaa agtcctgcgt ggagtcttgc 500
ctcaatctgc tgccgtccaa gcctggggcc catcgtgcct gccggccctt 550
caggtccccga cctccccaca ataaaatgtg attggatcgt gtggtacaaa 600
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 650
aaaaaaaaaaaa 660

<210> 16
<211> 97

<212> PRT
<213> Homo Sapien

<400> 16
Met Gln Leu Gly Thr Gly Leu Leu Leu Ala Ala Val Leu Ser Leu
1 5 10 15

Gln Leu Ala Ala Ala Glu Ala Ile Trp Cys His Gln Cys Thr Gly
20 25 30

Phe Gly Gly Cys Ser His Gly Ser Arg Cys Leu Arg Asp Ser Thr
35 40 45

His Cys Val Thr Thr Ala Thr Arg Val Leu Ser Asn Thr Glu Asp
50 55 60

Leu Pro Leu Val Thr Lys Met Cys His Ile Gly Cys Pro Asp Ile
65 70 75

Pro Ser Leu Gly Leu Gly Pro Tyr Val Ser Ile Ala Cys Cys Gln
80 85 90

Thr Ser Leu Cys Asn His Asp
95

<210> 17
<211> 2570
<212> DNA
<213> Homo Sapien

<400> 17
ccaggaccag ggccgacccgg ctcagcctct cacttgcgtcagg 50
agagaagcaa agcgcaacgg tgtggtccaa gcccggcgtt ctgcttcgccc 100
tcttaggacat acacgggacc ccctaacttc agtcccccaa acgcgcaccc 150
tcgaagtctt gaactccagc cccgcacatc cacgcgcggc acaggcgcgg 200
caggcggcag gtcccgccg aaggcgatgc gcgcaggggg tcgggcagct 250
gggctcgggc ggcggagta gggcccgca gggaggcagg gaggctgcat 300
attcagagtc gcgggctgctg cctggcag aggccgcct cgctccacgc 350
aacacactgtc gctgccaccg cgccgcgtatc agccgcgtgg tctcgctgtc 400
gctgggcgcc gcgctgctct gcccgcacgg agccttctgc cgccgcgtgg 450
tcagcggcca aaagggtgtt tttgctgact tcaagcatcc ctgctacaaa 500
atggcctact tccatgaact gtccagccga gtgagtttc aggaggcacg 550
cctggcttgt gagagtgagg gaggagtctt cctcagcctt gagaatgaag 600
cagaacagaa gttaatagag agcatgttgc aaaacctgac aaaacccggg 650
acaggattt ctgatggta tttctggata gggctttgga ggaatggaga 700

tgggcaaaca tctggtcct gcccagatct ctaccagtgg tctgatggaa 750
gcaattccca gtaccgaaac tggtacacag atgaaccttc ctgcggaagt 800
gaaaagtgtg ttgtgatgta tcaccaacca actgccaatc ctggccttgg 850
gggtccctac ctttaccagt ggaatgatga caggtgtAAC atgaagcaca 900
attatatTTT caagtatgaa ccagagatta atccaacAGC ccctgtAGAA 950
aagccttATC ttacAAatCA accaggAGAC acccatcAGA atgtggTTGT 1000
tactgaagca ggtataATTc ccaatctaAT ttatgttGTT ataccaacAA 1050
tacCCCTGCT cttactgata ctggTTGCTT ttggAACCTG ttgtttccAG 1100
atgctgcATA aaagtaaAGG aagaacaaaa actagtccAA accagtctAC 1150
actgtggATT tcaaAGAGTA ccagAAAAGA aagtggCATG gaagtataAT 1200
aactcattGA cttggTTCCA gaattttGTA attctggATC tgtataAGGA 1250
atggcatcAG aacaatAGCT tggAAatGGCT tggAAatcACA aaggatCTGC 1300
aagatgaACT gtaagCTCCC cttgaggCA aatattAAAG taatttttAT 1350
atgtctATT tttcatttAA agaatATGCT gtgctaATAA tggagtGAGA 1400
catgcttATT ttgctAAAGG atgcacccAA acttcaAAact tcaagCAAAT 1450
gaaatggACA atgcAGATAA agttgttATC aacacgtCGG gagtatgtGT 1500
gttagaAGCA attcctttTA tttctttcac ctttcataAG ttgttatcta 1550
gtcaatgtAA tgtatattGT attgaaATT acagtgtGCA aaagtatttt 1600
acctttgcat aagtgttGA taaaaatgaa ctgttctaAT atttatttt 1650
atggcatCTC attttcaAT acatgctttt ttgattAAAG aaacttatttA 1700
ctgttgtCAA ctgaattcac acacacacAA atatAGTACC atagaaaaAG 1750
tttggTTCT cGAAATAATT catcttcaG cttctctGCT tttggTCAT 1800
gtcttaggAAA tctcttcAGA aataAGAAGC tatttcattA agtgtgatAT 1850
aaacctcCTC aaacatttTA cttagaggCA aggattgtCT aatttcaATT 1900
gtgcaagACA tgtgcTTAT aatttatttt agcttaAAAT taaacAGATT 1950
ttgtaataAT gtaactttGT taatAGGTGC ataaACACTA atgcAGTCAA 2000
tttgaacAAA agaagtGACA tacacaATAT aaatcatatG tcttcacACG 2050
ttgcctataAT aatgagaAGC agctctctGA gggTTCTGAA atcaatgtGG 2100
tccctcttCTT gcccactAAA caaAGATGGT tgTTcqqqqt ttqqqattqa 2150

cactggaggc agatagttgc aaagtttagtc taaggttcc ctagctgtat 2200
ttagcctctg actatatttag tatacaaaga ggtcatgtgg ttgagaccag 2250
gtgaatagtc actatcagtg tggagacaag cacagcacac agacatTTA 2300
ggaaggaaag gaactacgaa atcgtgtgaa aatgggttgg aacccatcag 2350
tgatcgata ttcattgatg agggtttgct tgagatagaa aatggtggct 2400
ccttctgtc ttatctcta gtttcttcaa tgcttacgcc ttgttcttct 2450
caagagaaag ttgttaactct ctggtcttca tatgtccctg tgctccttt 2500
aaccaaataa agagttcttg tttctgggg aaaaaaaaaa aaaaaaaaaa 2550
aaaaaaaaaa aaaaaaaaaa 2570

<210> 18
<211> 273
<212> PRT
<213> Homo Sapien

<400> 18
Met Ser Arg Val Val Ser Leu Leu Leu Gly Ala Ala Leu Leu Cys
1 5 10 15
Gly His Gly Ala Phe Cys Arg Arg Val Val Ser Gly Gln Lys Val
20 25 30
Cys Phe Ala Asp Phe Lys His Pro Cys Tyr Lys Met Ala Tyr Phe
35 40 45
His Glu Leu Ser Ser Arg Val Ser Phe Gln Glu Ala Arg Leu Ala
50 55 60
Cys Glu Ser Glu Gly Gly Val Leu Leu Ser Leu Glu Asn Glu Ala
65 70 75
Glu Gln Lys Leu Ile Glu Ser Met Leu Gln Asn Leu Thr Lys Pro
80 85 90
Gly Thr Gly Ile Ser Asp Gly Asp Phe Trp Ile Gly Leu Trp Arg
95 100 105
Asn Gly Asp Gly Gln Thr Ser Gly Ala Cys Pro Asp Leu Tyr Gln
110 115 120
Trp Ser Asp Gly Ser Asn Ser Gln Tyr Arg Asn Trp Tyr Thr Asp
125 130 135
Glu Pro Ser Cys Gly Ser Glu Lys Cys Val Val Met Tyr His Gln
140 145 150
Pro Thr Ala Asn Pro Gly Leu Gly Gly Pro Tyr Leu Tyr Gln Trp
155 160 165
Asn Asp Asp Arg Cys Asn Met Lys His Asn Tyr Ile Cys Lys Tyr

170 175 180
Glu Pro Glu Ile Asn Pro Thr Ala Pro Val Glu Lys Pro Tyr Leu
185 190 195
Thr Asn Gln Pro Gly Asp Thr His Gln Asn Val Val Val Thr Glu
200 205 210
Ala Gly Ile Ile Pro Asn Leu Ile Tyr Val Val Ile Pro Thr Ile
215 220 225
Pro Leu Leu Leu Leu Ile Leu Val Ala Phe Gly Thr Cys Cys Phe
230 235 240
Gln Met Leu His Lys Ser Lys Gly Arg Thr Lys Thr Ser Pro Asn
245 250 255
Gln Ser Thr Leu Trp Ile Ser Lys Ser Thr Arg Lys Glu Ser Gly
260 265 270
Met Glu Val

<210> 19
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 19
caccaaccaa ctgccaatcc tggc 24

<210> 20
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 20
accacattct gatgggtgtc tcctgg 26

<210> 21
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 21
gggtccctac ctttaccagt ggaatgatga caggtgtaac atgaagcac 49

<210> 22
<211> 3824

<212> DNA
<213> Homo Sapien

<400> 22
ggagaatgga gagagcagtg agagtggagt ccggggtcct ggtcgggtg 50
gtctgtctgc tcctggcatg ccctgccaca gccactgggc ccgaagttgc 100
tcagcctgaa gtagacacca ccctgggtcg tgtgcgaggc cggcaggtgg 150
gcgtgaaggg cacagaccgc cttgtgaatg tctttctggg cattccattt 200
gcccagccgc cactgggccc tgaccggttc tcagccccac acccagcaca 250
gccctggag ggtgtgcggg atgccagcac tgcgcacccca atgtgcctac 300
aagacgtgga gagcatgaac agcagcagat ttgtcctcaa cgaaaaacag 350
cagatcttct ccgtttcaga ggactgcctg gtcccaacg tctatagccc 400
agctgaggtc cccgcagggt ccggtaggcc ggtcatggta tgggtccatg 450
gaggcgctct gataactggc gctgccacct cctacgatgg atcagctctg 500
gctgcctatg gggatgtggt cgtggttaca gtccagtacc gccttgggt 550
ccttggcttc ttcaagcaactg gagatgagca tgcacctggc aaccagggt 600
tcctagatgt ggtagctgct ttgcgctggg tgcaagaaaa catcgcccc 650
ttcgggggtg acctaactg tgtcaactgct tttggtgat ctgccggtgg 700
gagcatcatc tctggcctgg tcctgtcccc agtggctgca gggctgtcc 750
acagagccat cacacagagt ggggtcatca ccacccagg gatcatcgac 800
tctcaccctt ggcccttagc tcagaaaatc gcaaacacct tggcctgcag 850
ctccagctcc ccggctgaga tggtgcaactg cttcagcag aaagaaggag 900
aagagctgt ctttagcaag aagctgaaaa atactatcta tcctctcacc 950
gtttagggca ctgtttcccc caaaagcccc aaggaactcc tgaaggagaa 1000
gcccttccac tctgtgcctt tcctcatggg tgtcaacaac catgagttca 1050
gctggctcat ccccaaggccc tggggctcc tggataaat ggagcagatg 1100
agccggaggagg acatgctggc catctcaaca cccgtcttga ccagtctgga 1150
tgtgccccct gagatgatgc ccaccgtcat agatgaatac ctaggaagca 1200
actcggacgc acaagccaaa tgccaggcgt tccaggaatt catgggtgac 1250
gtattcatca atgttccac cgtcagttt tcaagatacc ttcgagattc 1300
tggaagccct gtcttttct atgagttcca gcatcgaccc agttctttg 1350

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

cgaagatcaa acctgcctgg gtgaaggctg atcatggggc cgagggtgct 1400
tttgttgcg gaggtccctt cctcatggac gagagctccc gcctggcctt 1450
tccagaggcc acagaggagg agaaggcagct aagcctcacc atgatggccc 1500
agtggaccctt ctggcccg acaggggacc ccaatagcaa ggctctgcct 1550
ccttggcccc aattcaacca ggccgaacaa tatctggaga tcaaccagt 1600
gccacggggc ggacagaagt tcagggaggc ctggatgcag ttctggtcag 1650
agacgctccc cagcaagata caacagtggc accagaagca gaagaacagg 1700
aaggcccagg aggacctctg aggccaggcc tgaacttct tggctgggc 1750
aaaccactct tcaagtggtg gcagagttcc agcacggcag cccgcctctc 1800
cccctgctga gacttaatc tccaccagcc cttaaatgtt cggccgtct 1850
gtgactggag ttatgcttt ttgaaatgtc acaaggccgc ctcccacctc 1900
tggggcattt tacaagttct tccctctccc tgaagtgcct ttccctgcttt 1950
cttcgtggta ggttcttagca cattcctcta gcttcctgga ggactcactc 2000
cccaggaagc cttccctgcc ttctctggc tgtgcggccc cgagtctgct 2050
tccatttagag cacagtccac ccgaggctag caccgtgtct gtgtctgtct 2100
ccccctcaga ggagctctct caaaatggg attagcctaa ccccactctg 2150
tcacccacac caggatcggtt tgggacctgg agctaggggg tggttgctga 2200
gtgagtgagt gaaacacaga atatggaaat ggcagctgct gaacttgaac 2250
ccagagcctt caggtgccaa agccatactc aggccccac cgacattgtc 2300
caccctggcc agaagggtgc atgccaatgg cagagacctg ggatgggaga 2350
agtccctgggg cgccaggggta tccagcctag agcagacctt agccctgac 2400
taaggcctca gactagggcg ggaggggtct cctcctctct gctgcccagt 2450
cctggccctt gcacaagaca acagaatcca tcagggccat gagtgtcacc 2500
cagacctgac ctcaccaat tccagccctt gaccctcagg acgctggatg 2550
ccagctccca gccccagtgc cgggtccctt ctccttcct ggcttgggaa 2600
gaccagtttc tggggagctt ccaagagcac ccaccaagac acagcaggac 2650
aggccagggg agggcatctg gaccaggca tccgtcgggc tattgtcaca 2700
gagaaaagaa gagacccacc cactcgggct gcaaaaggtg aaaagcacca 2750
agaggttttc agatggaagt gagaggtgac agtgtgctgg cagccctcac 2800

1
2
3
4
5
6
7
8
9
10
11
12
13
14

agccctcgct tgctctccct gccgcctctg cctgggctcc cactttggca 2850
gcacttgagg agcccttcaa cccgcccgtg cactgttagga gcccctttct 2900
gggctggcca aggccggagc cagctccctc agcttgcggg gaggtgcgga 2950
gggagagggg cgggcaggaa ccggggctgc ggcagcgt tgcgggccag 3000
agtgagttcc gggtgggcgt gggctcgcg gggccccact cagacgact 3050
ggccggccccc aggcaagttaga ggccttagca cctggccag cagctgtgt 3100
gctcgatttc tcgctggcc ttagctgcct ccccgccggg cagggctcg 3150
gacctgcagc cctccatgcc tgaccctccc cccacccccc gtgggctcct 3200
gtgcggccgg agcctcccca aggagcgcgg cccctgctc cacagcgc 3250
agtcccatacg accacccaag ggctgaggag tgccgggtgca cagcgcggg 3300
ctggcaggca gtcacccatcg ctggcccaact gctggatcca ctgggtgaag 3350
ccagctggc tcctgagtct ggtggggact tggagaacct ttatgtctag 3400
ctaaggatt gtaaatacac acatgggcac tctgttatcta gctcaagg 3450
tgtaaacaca ccaatcagca ccctgtgtct agtcagtgt ttgtgaatgc 3500
accaatccac actctgtatc tggctactct ggtggggact tggagaacct 3550
ttgtgtccac actctgtatc tagctaattct agtggggatg tggagaacct 3600
ttgtgtctag ctcagggatc gtaaacgcac caatcagcac cctgtcaaaa 3650
cagaccactt gactctctgt aaaatggacc aatcagcagg atgtgggtgg 3700
ggcgagacaa gagaataaaa gcaggctgcc tgagccagca gtgacaaccc 3750
ccctcgggc ccctccacg ccgtggaagc tttgttctt cgctttgc 3800
aataaatctt gctactgc 3824

<210> 23
<211> 571
<212> PRT
<213> Homo Sapien

<400> 23
Met Glu Arg Ala Val Arg Val Glu Ser Gly Val Leu Val Gly Val
1 5 10 15
Val Cys Leu Leu Leu Ala Cys Pro Ala Thr Ala Thr Gly Pro Glu
20 25 30
Val Ala Gln Pro Glu Val Asp Thr Thr Leu Gly Arg Val Arg Gly
35 40 45
Arg Gln Val Gly Val Lys Gly Thr Asp Arg Leu Val Asn Val Phe

50	55	60
Leu Gly Ile Pro Phe Ala Gln Pro Pro Leu Gly Pro Asp Arg Phe		
65	70	75
Ser Ala Pro His Pro Ala Gln Pro Trp Glu Gly Val Arg Asp Ala		
80	85	90
Ser Thr Ala Pro Pro Met Cys Leu Gln Asp Val Glu Ser Met Asn		
95	100	105
Ser Ser Arg Phe Val Leu Asn Gly Lys Gln Gln Ile Phe Ser Val		
110	115	120
Ser Glu Asp Cys Leu Val Leu Asn Val Tyr Ser Pro Ala Glu Val		
125	130	135
Pro Ala Gly Ser Gly Arg Pro Val Met Val Trp Val His Gly Gly		
140	145	150
Ala Leu Ile Thr Gly Ala Ala Thr Ser Tyr Asp Gly Ser Ala Leu		
155	160	165
Ala Ala Tyr Gly Asp Val Val Val Val Thr Val Gln Tyr Arg Leu		
170	175	180
Gly Val Leu Gly Phe Phe Ser Thr Gly Asp Glu His Ala Pro Gly		
185	190	195
Asn Gln Gly Phe Leu Asp Val Val Ala Ala Leu Arg Trp Val Gln		
200	205	210
Glu Asn Ile Ala Pro Phe Gly Gly Asp Leu Asn Cys Val Thr Val		
215	220	225
Phe Gly Gly Ser Ala Gly Gly Ser Ile Ile Ser Gly Leu Val Leu		
230	235	240
Ser Pro Val Ala Ala Gly Leu Phe His Arg Ala Ile Thr Gln Ser		
245	250	255
Gly Val Ile Thr Thr Pro Gly Ile Ile Asp Ser His Pro Trp Pro		
260	265	270
Leu Ala Gln Lys Ile Ala Asn Thr Leu Ala Cys Ser Ser Ser Ser		
275	280	285
Pro Ala Glu Met Val Gln Cys Leu Gln Gln Lys Glu Gly Glu Glu		
290	295	300
Leu Val Leu Ser Lys Lys Leu Lys Asn Thr Ile Tyr Pro Leu Thr		
305	310	315
Val Asp Gly Thr Val Phe Pro Lys Ser Pro Lys Glu Leu Leu Lys		
320	325	330
Glu Lys Pro Phe His Ser Val Pro Phe Leu Met Gly Val Asn Asn		
335	340	345

HUMAN

His	Glu	Phe	Ser	Trp	Leu	Ile	Pro	Arg	Gly	Trp	Gly	Leu	Leu	Asp	
				350					355					360	
Thr	Met	Glu	Gln	Met	Ser	Arg	Glu	Asp	Met	Leu	Ala	Ile	Ser	Thr	
	365						370							375	
Pro	Val	Leu	Thr	Ser	Leu	Asp	Val	Pro	Pro	Glu	Met	Met	Pro	Thr	
		380						385						390	
Val	Ile	Asp	Glu	Tyr	Leu	Gly	Ser	Asn	Ser	Asp	Ala	Gln	Ala	Lys	
		395					400							405	
Cys	Gln	Ala	Phe	Gln	Glu	Phe	Met	Gly	Asp	Val	Phe	Ile	Asn	Val	
		410					415							420	
Pro	Thr	Val	Ser	Phe	Ser	Arg	Tyr	Leu	Arg	Asp	Ser	Gly	Ser	Pro	
	425						430							435	
Val	Phe	Phe	Tyr	Glu	Phe	Gln	His	Arg	Pro	Ser	Ser	Phe	Ala	Lys	
		440					445							450	
Ile	Lys	Pro	Ala	Trp	Val	Lys	Ala	Asp	His	Gly	Ala	Glu	Gly	Ala	
		455					460							465	
Phe	Val	Phe	Gly	Gly	Pro	Phe	Leu	Met	Asp	Glu	Ser	Ser	Arg	Leu	
		470					475							480	
Ala	Phe	Pro	Glu	Ala	Thr	Glu	Glu	Glu	Lys	Gln	Leu	Ser	Leu	Thr	
		485					490							495	
Met	Met	Ala	Gln	Trp	Thr	His	Phe	Ala	Arg	Thr	Gly	Asp	Pro	Asn	
		500					505							510	
Ser	Lys	Ala	Leu	Pro	Pro	Trp	Pro	Gln	Phe	Asn	Gln	Ala	Glu	Gln	
		515					520							525	
Tyr	Leu	Glu	Ile	Asn	Pro	Val	Pro	Arg	Ala	Gly	Gln	Lys	Phe	Arg	
		530					535							540	
Glu	Ala	Trp	Met	Gln	Phe	Trp	Ser	Glu	Thr	Leu	Pro	Ser	Lys	Ile	
		545					550							555	
Gln	Gln	Trp	His	Gln	Lys	Gln	Lys	Asn	Arg	Lys	Ala	Gln	Glu	Asp	
		560					565							570	
Leu															

<210> 24
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 24
gcaaagctct gcctccttgg cc 22

<210> 25
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 25
gggtggactg tgctctaattt gacgc 25

<210> 26
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 26
cgtggcactg ggttgatc 18

<210> 27
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 27
gatgcagttc tggtcagaga cgctccccag caagatacaa cagtg 45

<210> 28
<211> 1342
<212> DNA
<213> Homo Sapien

<400> 28
catggaggcct cttgcagctt acccgctaaa atgttccggg cccagagcaa 50
aggtaattgc agttttgctg tctatagttc tatgcacagt aacgctattt 100
cttctacaac taaaattcct caaacctaaa atcaacagct tttatgcctt 150
tgaagtgaag gatgaaaaag gaagaactgt ttctctggaa aagtataaaag 200
gcaaagttc actagttgta aacgtggcca gtgactgcca actcacagac 250
agaaattact tagggctgaa ggaactgcac aaagagttt gaccatccc 300
cttcagcgtg ttggctttc cctgcaatca gtttggagaa tcggagcccc 350
gcccaagcaa ggaagtagaa tctttgcaa gaaaaaacta cggagtaact 400
ttccccatct tccacaagat taagattcta ggatctgaag gagaacctgc 450
attttagattt cttgttgatt cttcaaagaa ggaaccaagg tggaaattttt 500

ggaagtatct tgtcaaccct gagggtcaag ttgtgaagtt ctggaggcca 550
gaggagccca ttgaagtcat caggcctgac atagcagctc tggtagaca 600
agtgatcata aaaaagaaag aggatctatg agaatgccat tgcgttctca 650
atagaacaga gaaatgtctc catgagggtt tggctcatt ttaaacattt 700
tttttttggg gacagtgtct cactctgtca cccaggctgg agtgcagtag 750
tgcgttctca gctcattgca acctctgcct ttttaaacat gctattaaat 800
gtggcaatga aggattttt ttaatgtta tcttgctatt aagtggtaat 850
gaatgttccc aggatgagga tgttacccaa agcaaaaatc aagagtagcc 900
aaagaatcaa catgaaatat attaactact tcctctgacc atactaaaga 950
attcagaata cacagtgacc aatgtgcctc aatatcttat tgttcaactt 1000
gacattttctt aggactgtac ttgatgaaaa tgccaacaca ctagaccact 1050
ctttggattc aagagcactg tgtatgactg aaatttctgg aataactgta 1100
aatggttatg ttaatggaat aaaacacaaa tgttgaaaaa tgtaaaatat 1150
atatacatag attcaaatcc ttatatatgt atgcttgttt tgtgtacagg 1200
attttgtttt ttcttttaa gtacaggttc ctgtgtttt actataactg 1250
tcactatgta tgtaactgac atatataaat agtcatttat aaatgaccgt 1300
attataacat ttgaaaaagt cttcatcaaa aaaaaaaaaa aa 1342

<210> 29

<211> 209

<212> PRT

<213> Homo Sapien

<400> 29

Met	Glu	Pro	Leu	Ala	Ala	Tyr	Pro	Leu	Lys	Cys	Ser	Gly	Pro	Arg
1							5				10			15
Ala	Lys	Val	Phe	Ala	Val	Leu	Leu	Ser	Ile	Val	Leu	Cys	Thr	Val
		20							25				30	
Thr	Leu	Phe	Leu	Leu	Gln	Leu	Lys	Phe	Leu	Lys	Pro	Lys	Ile	Asn
					35				40				45	
Ser	Phe	Tyr	Ala	Phe	Glu	Val	Lys	Asp	Ala	Lys	Gly	Arg	Thr	Val
					50				55			60		
Ser	Leu	Glu	Lys	Tyr	Lys	Gly	Lys	Val	Ser	Leu	Val	Val	Asn	Val
					65				70			75		
Ala	Ser	Asp	Cys	Gln	Leu	Thr	Asp	Arg	Asn	Tyr	Leu	Gly	Leu	Lys
					80				85			90		

Glu Leu His Lys Glu Phe Gly Pro Ser His Phe Ser Val Leu Ala
95 100 105
Phe Pro Cys Asn Gln Phe Gly Glu Ser Glu Pro Arg Pro Ser Lys
110 115 120
Glu Val Glu Ser Phe Ala Arg Lys Asn Tyr Gly Val Thr Phe Pro
125 130 135
Ile Phe His Lys Ile Lys Ile Leu Gly Ser Glu Gly Glu Pro Ala
140 145 150
Phe Arg Phe Leu Val Asp Ser Ser Lys Lys Glu Pro Arg Trp Asn
155 160 165
Phe Trp Lys Tyr Leu Val Asn Pro Glu Gly Gln Val Val Lys Phe
170 175 180
Trp Arg Pro Glu Glu Pro Ile Glu Val Ile Arg Pro Asp Ile Ala
185 190 195
Ala Leu Val Arg Gln Val Ile Ile Lys Lys Lys Glu Asp Leu
200 205

<210> 30
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 30
atcctccaac atggaggcctc ttgc 24

<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 31
gtatcttgtc aaccctgagg 20

<210> 32
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 32
taaccagagc tgctatgtca ggcc 24

<210> 33

<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 33
aggcaaagtt tcactagttg taaacgtggc cagtgactgc caactcacag 50

<210> 34
<211> 3721
<212> DNA
<213> Homo Sapien

<400> 34
tgtcgcctgg ccctcgccat gcagaccccg cgagcgtccc ctccccgcc 50
ggccctcctg cttctgctgc tgctactggg gggcgccac ggcctttc 100
ctgaggagcc gccggcgctt agcgtggccc ccagggacta cctgaaccac 150
tatcccgtgt ttgtggcag cgggccccga cgcctgaccc ccgcagaagg 200
tgctgacgac ctcaacatcc agcgagtctt gcgggtcaac aggacgtgt 250
tcattgggga cagggacaac ctctaccgcg tagagctgga gccccccacg 300
tccacggagc tgcggtacca gaggaagctg acctggagat ctaacccag 350
cgacataaac gtgtgtcgga tgaaggcaa acaggaggc gagtgtcgaa 400
acttcgtaaa ggtgctgctc cttcggacg agtccacgct ctttgtgtc 450
ggttccaacg cttcaaccc ggtgtgcgcc aactacagca tagacaccct 500
gcagccggtc ggagacaaca tcagcggtat gccccgtgc ccgtacgacc 550
ccaagcacgc caatgttgcc ctcttctctg acgggatgct cttcacagct 600
actgttaccc acttccttagc cattgatgct gtcatctacc gcagcctcg 650
ggacaggccc accctgcgca ccgtgaaaca tgactccaag tggttcaaag 700
agccttactt tgtccatgct gtggagtgg gcagccatgt ctacttcttc 750
ttccggaga ttgcgtatgga gtttaactac ctggagaagg tggtggtgtc 800
ccgcgtggcc cgagtgtgca agaacgacgt gggaggctcc ccccggtgc 850
tggagaagca gtggacgtcc ttcctgaagg cgccgtcaa ctgctctgt 900
cccggagact cccatttcta cttcaacgtg ctgcaggctg tcacggcgt 950
ggtcagcctc gggggccggc ccgtggtcct ggccgtttt tccacgcccc 1000
gcaacagcat ccctggctcg gctgtctgctg cctttgacct gacacaggtg 1050

gcagctgtgt ttgaaggccg cttccgagag cagaagtccc ccgagtc 1100
ctggacgccc gtgccggagg atcaggtgcc tcgaccggg cccgggtgct 1150
gcccgcagcccc cggatgcag tacaatgcct ccagcgccctt gccggatgac 1200
atcctcaact ttgtcaagac ccaccctctg atggacgagg cggtgc 1250
gctggccat gcgcctgga tcctgcgac cctgatgagg caccagctga 1300
ctcgagtggc tgtggacgtg ggagccggcc cctggggcaa ccagaccgtt 1350
gtcttcctgg gttctgaggc gggacggtc ctcaagttcc tcgtccggcc 1400
caatgccagc acctcaggga cgtctggct cagtgtcttc ctggaggagt 1450
ttgagaccta ccggccggac aggtgtggac gcccgggg tggcgagaca 1500
gggcagcggc tgctgagctt ggagctggac gcagcttcgg gggcctgct 1550
ggctgccttc ccccgctgctg tggtccgagt gcctgtggct cgctgcc 1600
agtactcggg gtgtatgaag aactgtatcg gcagtcagga cccctactgc 1650
gggtgggccc ccgacggctc ctgcatttc ctcagccgg gcaccagagc 1700
cgccttttag caggacgtgt ccggggccag cacctcaggc ttagggact 1750
gcacaggact cctgcgggccc agcctctccg aggaccgcgc gggctgg 1800
tcggtaacc tgctggtaac gtcgtcggtg gcggccttcg tggtggagc 1850
cgtggtgtcc ggcttcagcg tggctggtt cgtggcctc cgtgagcggc 1900
gggagctggc ccggcgcaag gacaaggagg ccatcctggc gcacggg 1950
ggcgaggcgg tgctgagcgt cagccgcctg ggcagcgcga gggcg 2000
tcccgggggc cggggcggag gcggtggcg tggcgccgg gttccccgg 2050
aggccctgtt ggcgc 2100
ctgcagggcg ggccccacga cctggactcg gggctgctgc ccacgcccga 2150
gcagacgccc ctgcccaga agcgcctgcc cactccgcac ccgcac 2200
acgcctggg ccccgcc 2250
tccgcttcat cctccctcct gctgctggcg cccgcccggg ccccgagca 2300
gccccccgcg cctggggagc cgaccccgaa cggccgcctc tatgctgccc 2350
ggcccggccg cgccctccac ggcgacttcc cgctcacccc ccacgccc 2400
ccggaccggc ggcgggtggt gtccgcgccc acggccctt tggacc 2450
ctcagccgcc gatggcctcc cgcggccctg gagcccgccc ccgacggc 2500

Homo Sapiens

gcctgaggag gccactggc ccccacgccc ctccggccgc caccctgcgc 2550
cgcacccaca cgttcaacag cggtcgaggcc cggcctgggg accgccaccg 2600
cggctgccac gccccggccgg gcacagactt ggcccacctc ctcccctatg 2650
ggggggcgga caggactgcg ccccccgtgc cctaggccgg gggcccccgg 2700
atgccttgc agtgcagcc acggaaacca ggagcgagag acgggtgccag 2750
aacgccgggg cccggggcaa ctccgagtgg gtgctcaagt ccccccggcg 2800
acccacccgc ggagtgggg gccccctccg ccacaaggaa gcacaaccag 2850
ctcgccctcc ccctaccggg ggccgcagga cgctgagacg gtttgggggt 2900
gggtggggcg gaggacttg ctatggatt gaggttgacc ttatgcgcgt 2950
aggtttttgtt tttttttgc agtttttgtt tctttgcgg ttttctaacc 3000
aattgcacaa ctccgttctc ggggtggcg caggcagggg aggcttggac 3050
gccgggtgggg aatggggggc cacagctgca gacctaagcc ctcccccacc 3100
cctggaaagg tccctccccca acccaggccc ctggcgtgtg tgggtgtgcg 3150
tgcgtgtgcg tgccgtgttc gtgtgcaagg ggcggggag gtggcgtgt 3200
gtgtgcgtgc cagcgaaggc tgctgtggc gtgtgtgtca agtggggcac 3250
gcgtgcaggg tgtgtgtcca cgagcgcacga tcgtggtggc cccagcggcc 3300
tggcggttgg ctgagccgac gctggggctt ccagaaggcc cgggggtctc 3350
cgaggtgccg gtagggagtt tgaacccccc ccactctgca gagggaaagcg 3400
gggacaatgc cggggttca ggcaggagac acgaggaggg cctgcccgg 3450
agtcacatcg gcagcagctg tctaaaggc ttggggcct gggggcgcc 3500
gaaggtgggt gggcccccctc tgtaaatacg gccccagggt ggtgagagag 3550
tcccatgcca cccgtccccct tggacccctcc cccctatgac ctccagctga 3600
ccatgcacatgc cacgtggctg gctgggtcct ctgccccttt tggagttgc 3650
ctcccccagc cccctccccca tcaataaaaac tctgtttaca accaaaaaaa 3700
aaaaaaaaaa aaaaaaaaaa a 3721

<210> 35
<211> 888
<212> PRT
<213> Homo Sapien

<400> 35
Met Gln Thr Pro Arg Ala Ser Pro Pro Arg Pro Ala Leu Leu Leu
1 5 10 15

Leu Leu Leu Leu Leu Gly Gly Ala His Gly Leu Phe Pro Glu Glu
 20 25 30

Pro Pro Pro Leu Ser Val Ala Pro Arg Asp Tyr Leu Asn His Tyr
 35 40 45

Pro Val Phe Val Gly Ser Gly Pro Gly Arg Leu Thr Pro Ala Glu
 50 55 60

Gly Ala Asp Asp Leu Asn Ile Gln Arg Val Leu Arg Val Asn Arg
 65 70 75

Thr Leu Phe Ile Gly Asp Arg Asp Asn Leu Tyr Arg Val Glu Leu
 80 85 90

Glu Pro Pro Thr Ser Thr Glu Leu Arg Tyr Gln Arg Lys Leu Thr
 95 100 105

Trp Arg Ser Asn Pro Ser Asp Ile Asn Val Cys Arg Met Lys Gly
 110 115 120

Lys Gln Glu Gly Glu Cys Arg Asn Phe Val Lys Val Leu Leu Leu
 125 130 135

Arg Asp Glu Ser Thr Leu Phe Val Cys Gly Ser Asn Ala Phe Asn
 140 145 150

Pro Val Cys Ala Asn Tyr Ser Ile Asp Thr Leu Gln Pro Val Gly
 155 160 165

Asp Asn Ile Ser Gly Met Ala Arg Cys Pro Tyr Asp Pro Lys His
 170 175 180

Ala Asn Val Ala Leu Phe Ser Asp Gly Met Leu Phe Thr Ala Thr
 185 190 195

Val Thr Asp Phe Leu Ala Ile Asp Ala Val Ile Tyr Arg Ser Leu
 200 205 210

Gly Asp Arg Pro Thr Leu Arg Thr Val Lys His Asp Ser Lys Trp
 215 220 225

Phe Lys Glu Pro Tyr Phe Val His Ala Val Glu Trp Gly Ser His
 230 235 240

Val Tyr Phe Phe Phe Arg Glu Ile Ala Met Glu Phe Asn Tyr Leu
 245 250 255

Glu Lys Val Val Val Ser Arg Val Ala Arg Val Cys Lys Asn Asp
 260 265 270

Val Gly Gly Ser Pro Arg Val Leu Glu Lys Gln Trp Thr Ser Phe
 275 280 285

Leu Lys Ala Arg Leu Asn Cys Ser Val Pro Gly Asp Ser His Phe
 290 295 300

Tyr Phe Asn Val Leu Gln Ala Val Thr Gly Val Val Ser Leu Gly

305	310	315
Gly Arg Pro Val Val Leu Ala Val Phe Ser Thr Pro Ser Asn Ser		
320	325	330
Ile Pro Gly Ser Ala Val Cys Ala Phe Asp Leu Thr Gln Val Ala		
335	340	345
Ala Val Phe Glu Gly Arg Phe Arg Glu Gln Lys Ser Pro Glu Ser		
350	355	360
Ile Trp Thr Pro Val Pro Glu Asp Gln Val Pro Arg Pro Arg Pro		
365	370	375
Gly Cys Cys Ala Ala Pro Gly Met Gln Tyr Asn Ala Ser Ser Ala		
380	385	390
Leu Pro Asp Asp Ile Leu Asn Phe Val Lys Thr His Pro Leu Met		
395	400	405
Asp Glu Ala Val Pro Ser Leu Gly His Ala Pro Trp Ile Leu Arg		
410	415	420
Thr Leu Met Arg His Gln Leu Thr Arg Val Ala Val Asp Val Gly		
425	430	435
Ala Gly Pro Trp Gly Asn Gln Thr Val Val Phe Leu Gly Ser Glu		
440	445	450
Ala Gly Thr Val Leu Lys Phe Leu Val Arg Pro Asn Ala Ser Thr		
455	460	465
Ser Gly Thr Ser Gly Leu Ser Val Phe Leu Glu Glu Phe Glu Thr		
470	475	480
Tyr Arg Pro Asp Arg Cys Gly Arg Pro Gly Gly Gly Glu Thr Gly		
485	490	495
Gln Arg Leu Leu Ser Leu Glu Leu Asp Ala Ala Ser Gly Gly Leu		
500	505	510
Leu Ala Ala Phe Pro Arg Cys Val Val Arg Val Pro Val Ala Arg		
515	520	525
Cys Gln Gln Tyr Ser Gly Cys Met Lys Asn Cys Ile Gly Ser Gln		
530	535	540
Asp Pro Tyr Cys Gly Trp Ala Pro Asp Gly Ser Cys Ile Phe Leu		
545	550	555
Ser Pro Gly Thr Arg Ala Ala Phe Glu Gln Asp Val Ser Gly Ala		
560	565	570
Ser Thr Ser Gly Leu Gly Asp Cys Thr Gly Leu Leu Arg Ala Ser		
575	580	585
Leu Ser Glu Asp Arg Ala Gly Leu Val Ser Val Asn Leu Leu Val		
590	595	600

PROTEIN SEQUENCE

Thr Ser Ser Val Ala Ala Phe Val Val Gly Ala Val Val Ser Gly
605 610 615

Phe Ser Val Gly Trp Phe Val Gly Leu Arg Glu Arg Arg Glu Leu
620 625 630

Ala Arg Arg Lys Asp Lys Glu Ala Ile Leu Ala His Gly Ala Gly
635 640 645

Glu Ala Val Leu Ser Val Ser Arg Leu Gly Glu Arg Arg Ala Gln
650 655 660

Gly Pro Gly Gly Arg Gly Gly Gly Gly Gly Ala Gly Val
665 670 675

Pro Pro Glu Ala Leu Leu Ala Pro Leu Met Gln Asn Gly Trp Ala
680 685 690

Lys Ala Thr Leu Leu Gln Gly Gly Pro His Asp Leu Asp Ser Gly
695 700 705

Leu Leu Pro Thr Pro Glu Gln Thr Pro Leu Pro Gln Lys Arg Leu
710 715 720

Pro Thr Pro His Pro His Pro His Ala Leu Gly Pro Arg Ala Trp
725 730 735

Asp His Gly His Pro Leu Leu Pro Ala Ser Ala Ser Ser Ser Leu
740 745 750

Leu Leu Leu Ala Pro Ala Arg Ala Pro Glu Gln Pro Pro Ala Pro
755 760 765

Gly Glu Pro Thr Pro Asp Gly Arg Leu Tyr Ala Ala Arg Pro Gly
770 775 780

Arg Ala Ser His Gly Asp Phe Pro Leu Thr Pro His Ala Ser Pro
785 790 795

Asp Arg Arg Arg Val Val Ser Ala Pro Thr Gly Pro Leu Asp Pro
800 805 810

Ala Ser Ala Ala Asp Gly Leu Pro Arg Pro Trp Ser Pro Pro Pro
815 820 825

Thr Gly Ser Leu Arg Arg Pro Leu Gly Pro His Ala Pro Pro Ala
830 835 840

Ala Thr Leu Arg Arg Thr His Thr Phe Asn Ser Gly Glu Ala Arg
845 850 855

Pro Gly Asp Arg His Arg Gly Cys His Ala Arg Pro Gly Thr Asp
860 865 870

Leu Ala His Leu Leu Pro Tyr Gly Gly Ala Asp Arg Thr Ala Pro
875 880 885

Pro Val Pro

<210> 36
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 36
gaggacctac cggccggaca g 21

<210> 37
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 37
atacaccccg agtactgctg gcag 24

<210> 38
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 38
agacagggca gcggctgctg agcttggagc tggacgcagc tt 42

<210> 39
<211> 2014
<212> DNA
<213> Homo Sapien

<400> 39
agcaactcaa gttcatcatt gtcctgagag agaggagcag cgcggttctc 50
ggccgggaca gcagaacgcc aggggacct cacctggcg cgccgggca 100
cgggcttga ttgtcctgg gtcgcggaga cccgcgcgcc tgccctgcac 150
gccgggcggc aaccttgca gtcgcgttgg ctgctgcgat cggccggcgg 200
gtccctgccg aaggctcggc tgcttctgtc cacccttac acttcttcat 250
ttatcggtgg atcatttcga gagtccgtct tgtaaatgtt tggcactttg 300
ctactttatt gcttcttct ggcgacagtt ccagcactcg ccgagaccgg 350
cggagaaagg cagctgagcc cggagaagag cggaaatatgg ggacccgggc 400
taaaaagcaga cgtcgtcctt cccgccccgtt atttctatat tcaggcagtg 450

K
E
G
D
B
P
F
B
D
B
D
B
D
B
D

gatacatcag ggaataaatt cacatcttct ccaggcgaaa aggtcttcca 500
ggtaaaagtc tcagcaccag aggagcaatt cactagagtt ggagtccagg 550
tttagaccc aaaagatggg tccttcata tagatacag aatgtatgca 600
agctacaaaa atctgaaggt ggaaattaaa ttccaaggc aacatgtggc 650
caaatccccca tatatttaa aaggccggt ttaccatgag aactgtgact 700
gtcctctgca agatagtgc gcctggctac gggagatgaa ctgccctgaa 750
accattgctc agattcagag agatctggca cattccctg ctgtggatcc 800
agaaaagatt gcagtagaaa tccaaaaag attggacag aggcagagcc 850
tatgtcacta caccttaaag gataacaagg tttatatcaa gactcatggt 900
gaacatgtag gtttagaat tttcatggat gccatactac tttcttgac 950
tagaaaggta aagatgccag atgtggagct cttgttaat ttggagact 1000
ggcctttgga aaaaaagaaa tccaattcaa acatccatcc gatctttcc 1050
tggtgtggct ccacagattc caaggatatc gtgatgccta cgtacgattt 1100
gactgattct gttctggaaa ccatggccg ggtaagtctg gatatgatgt 1150
ccgtgcaagc taacacgggt cctccctggg aaagaaaaaa ttccactgcc 1200
gtctggagag ggcgagacag ccgcaaagag agactcgagc tggtaaact 1250
cagtagaaaaa caccagaac tcatagacgc tgcttcacc aacttttct 1300
tcttaaaca cgataaaaac ctgtatggc ccattgtgaa acatattca 1350
tttttgatt tcttcaagca taagtatcaa ataaatatcg atggcactgt 1400
agcagcttat cgcctgcccattt attgctagt tggcacagt gttgtgctga 1450
agcaggattc catctactat gaacattttt acaatgagct gcagccctgg 1500
aaacactaca ttccagttaa gagcaacctg agcgatctgc tagaaaaact 1550
taaatggccg aaagatcagc atgaagaggc caaaaaagata gcaaaagcag 1600
gacaagaatt tgcaagaaat aatctcatgg gcgatgacat attctgttat 1650
tatttcaaac tttccagga atatgccaat ttacaagtga gtgagcccc 1700
aatccgagag ggcattaaaaa ggtagaacc acagactgag gacgacctct 1750
tcccttgtac ttgccatagg aaaaagacca aagatgaact ctgatatgca 1800
aaataacttc tattagaata atggtgctct gaagactctt cttaactaaa 1850
aagaagaatt ttttaagta ttaattccat ggacaatata aatctgtgt 1900

gattgttgc agtatgaaga cacatttcta cttatgcagt attctcatga 1950
ctgtacttta aagtacattt ttagaatttt ataataaaac caccttattt 2000
ttaaaggaaa aaaa 2014

<210> 40
<211> 502
<212> PRT
<213> Homo Sapien

<400> 40
Met Phe Gly Thr Leu Leu Tyr Cys Phe Phe Leu Ala Thr Val
1 5 10 15

Pro Ala Leu Ala Glu Thr Gly Gly Glu Arg Gln Leu Ser Pro Glu
20 25 30

Lys Ser Glu Ile Trp Gly Pro Gly Leu Lys Ala Asp Val Val Leu
35 40 45

Pro Ala Arg Tyr Phe Tyr Ile Gln Ala Val Asp Thr Ser Gly Asn
50 55 60

Lys Phe Thr Ser Ser Pro Gly Glu Lys Val Phe Gln Val Lys Val
65 70 75

Ser Ala Pro Glu Glu Gln Phe Thr Arg Val Gly Val Gln Val Leu
80 85 90

Asp Arg Lys Asp Gly Ser Phe Ile Val Arg Tyr Arg Met Tyr Ala
95 100 105

Ser Tyr Lys Asn Leu Lys Val Glu Ile Lys Phe Gln Gly Gln His
110 115 120

Val Ala Lys Ser Pro Tyr Ile Leu Lys Gly Pro Val Tyr His Glu
125 130 135

Asn Cys Asp Cys Pro Leu Gln Asp Ser Ala Ala Trp Leu Arg Glu
140 145 150

Met Asn Cys Pro Glu Thr Ile Ala Gln Ile Gln Arg Asp Leu Ala
155 160 165

His Phe Pro Ala Val Asp Pro Glu Lys Ile Ala Val Glu Ile Pro
170 175 180

Lys Arg Phe Gly Gln Arg Gln Ser Leu Cys His Tyr Thr Leu Lys
185 190 195

Asp Asn Lys Val Tyr Ile Lys Thr His Gly Glu His Val Gly Phe
200 205 210

Arg Ile Phe Met Asp Ala Ile Leu Leu Ser Leu Thr Arg Lys Val
215 220 225

Lys Met Pro Asp Val Glu Leu Phe Val Asn Leu Gly Asp Trp Pro

230	235	240
Leu Glu Lys Lys Lys Ser Asn Ser Asn Ile His Pro Ile Phe Ser		
245	250	255
Trp Cys Gly Ser Thr Asp Ser Lys Asp Ile Val Met Pro Thr Tyr		
260	265	270
Asp Leu Thr Asp Ser Val Leu Glu Thr Met Gly Arg Val Ser Leu		
275	280	285
Asp Met Met Ser Val Gln Ala Asn Thr Gly Pro Pro Trp Glu Ser		
290	295	300
Lys Asn Ser Thr Ala Val Trp Arg Gly Arg Asp Ser Arg Lys Glu		
305	310	315
Arg Leu Glu Leu Val Lys Leu Ser Arg Lys His Pro Glu Leu Ile		
320	325	330
Asp Ala Ala Phe Thr Asn Phe Phe Phe Lys His Asp Glu Asn		
335	340	345
Leu Tyr Gly Pro Ile Val Lys His Ile Ser Phe Phe Asp Phe Phe		
350	355	360
Lys His Lys Tyr Gln Ile Asn Ile Asp Gly Thr Val Ala Ala Tyr		
365	370	375
Arg Leu Pro Tyr Leu Leu Val Gly Asp Ser Val Val Leu Lys Gln		
380	385	390
Asp Ser Ile Tyr Tyr Glu His Phe Tyr Asn Glu Leu Gln Pro Trp		
395	400	405
Lys His Tyr Ile Pro Val Lys Ser Asn Leu Ser Asp Leu Leu Glu		
410	415	420
Lys Leu Lys Trp Ala Lys Asp His Asp Glu Glu Ala Lys Lys Ile		
425	430	435
Ala Lys Ala Gly Gln Glu Phe Ala Arg Asn Asn Leu Met Gly Asp		
440	445	450
Asp Ile Phe Cys Tyr Tyr Phe Lys Leu Phe Gln Glu Tyr Ala Asn		
455	460	465
Leu Gln Val Ser Glu Pro Gln Ile Arg Glu Gly Met Lys Arg Val		
470	475	480
Glu Pro Gln Thr Glu Asp Asp Leu Phe Pro Cys Thr Cys His Arg		
485	490	495
Lys Lys Thr Lys Asp Glu Leu		
500		

<210> 41
<211> 26

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 41
gaaggtggaa attaaattcc aagggc 26

<210> 42
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 42
cgataagctg ctacagtgcc atcg 24

<210> 43
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 43
gtgactgtcc tctgcaagat agtgcagcct ggctacggga 40

<210> 44
<211> 2395
<212> DNA
<213> Homo Sapien

<400> 44
cctggagccg gaagcgccgc tgcagcaggg cgaggctcca ggtggggtcg 50
gttccgcac tc cagcctagcg tgtccacgat gcggctggc tccgggactt 100
tcgctacctg ttgcgttagcg atcgaggtgc taggatcgc ggtttcctt 150
cggggattct tccccgtcc cgttcgttcc tctgccagag cgaaacacgg 200
agcggagccc ccagcgcccg aaccctcggc tggagccagt tctaactgga 250
ccacgctgcc accacctctc ttca gtaaag ttgttattgt tctgatagat 300
gccttgagag atgattttgt gtttgggtca aagggtgtga aatttatgcc 350
ctacacaact tacttgtgg aaaaaggagc atctcacagt tttgtggctg 400
aagcaaagcc acctacagtt actatgcctc gaatcaaggc attgatgacg 450
gggagccttc ctggcttgc cgacgtcatc aggaacctca attctcctgc 500
actgctggaa gacagtgtga taagacaagc aaaagcagct ggaaaaagaa 550

FBI LABORATORY

tagtctttta tggagatgaa acctgggtta aattattccc aaagcatttt 600
gtggaatatg atggaacaac ctcattttc gtgtcagatt acacagaggt 650
ggataataat gtcacgaggc atttgatcaa agtattaaaa agaggagatt 700
gggacatatt aatccctccac tacctggggc tggaccacat tggccacatt 750
tcagggccca acagccccct gattggcag aagctgagcg agatggacag 800
cgtgctgatg aagatccaca ctcactgca gtgcaggag agagagacgc 850
ctttacccaa tttgctggtt ctttgtggtg accatggcat gtctgaaaca 900
ggaagtca cg ggcctccctc caccgaggag gtgaatacac ctctgatttt 950
aatcagttct gcgttggaaa ggaaaccgg tgatatccga catccaaagc 1000
acgtccaata gacggatgtg gctgcacac tggcgatagc acttggctta 1050
ccgattccaa aagacagtgt agggagccctc ctattccag ttgtgaaagg 1100
aagaccaatg agagagcagt tgagatttt acattgaat acagtgcagc 1150
tttagtaaact gttgcaagag aatgtgccgt catatgaaaa agatcctggg 1200
tttgagcagt ttaaaatgtc agaaagattg catggaaact ggatcagact 1250
gtacttggag gaaaagcatt cagaagtcct attcaacctg ggctccaagg 1300
ttctcaggca gtacctggat gctctgaaga cgctgagctt gtccctgagt 1350
gcacaagtgg cccagttctc accctgctcc tgctcagcgt cccacaggca 1400
ctgcacagaa aggctgagct ggaagtccca ctgtcatctc ctgggttttc 1450
tctgctctt tatttgtga tcctggttct ttccggccgtt cacgtcattg 1500
tgtgcacctc agctgaaagt tcgtgctact tctgtggcct ctcgtggctg 1550
gcggcaggct gcctttcggtt taccagactc tggtaaca cctggtgtgt 1600
gccaagtgtc ggcagtgcctc tggacagggg gcctcaggga aggacgtgga 1650
gcagccttat cccaggccctc tgggtgtccc gacacaggtg ttcacatctg 1700
tgctgtcagg tcagatgcct cagttcttgg aaagcttaggt tcctgcact 1750
gttaccaagg tgattgtaaa gagctggcgg tcacagagga acaagcccc 1800
cagctgaggg ggtgtgtgaa tcggacagcc tccacaggaa ggtgtggag 1850
ctgcagctga gggaaagaaga gacaatccgc ctggacactc aggagggtca 1900
aaaggagact tggtcgcacc actcatcctg ccaccccaag aatgcacccct 1950
gcctcatcag gtccagattt ctttccaagg cgacgtttt ctgttggaaat 2000

tcttagtcct tggcctcgga cacccatt cgttagctgg ggagtggtgg 2050
tgaggcagtg aagaagaggc gcatggtcac actcagatcc acagagccca 2100
ggatcaaggg acccaactgca gtggcagcag gactgttggg cccccacccc 2150
aaccctgcac agccctcatc ccctcttggc ttgagccgtc agaggccctg 2200
tgctgagtgt ctgaccgaga cactcacagc tttgtcatca gggcacaggc 2250
ttcctcggag ccaggatgtat ctgtgccacg cttgcacctc gggcccatct 2300
gggctcatgc tctcttcct gctattaat tagtacctag ctgcacacag 2350
tatgttagtta ccaaaaagaat aaacggcaat aattgagaaa aaaaa 2395

<210> 45
<211> 310
<212> PRT
<213> Homo Sapien

<400> 45
Met Arg Leu Gly Ser Gly Thr Phe Ala Thr Cys Cys Val Ala Ile
1 5 10 15
Glu Val Leu Gly Ile Ala Val Phe Leu Arg Gly Phe Phe Pro Ala
20 25 30
Pro Val Arg Ser Ser Ala Arg Ala Glu His Gly Ala Glu Pro Pro
35 40 45
Ala Pro Glu Pro Ser Ala Gly Ala Ser Ser Asn Trp Thr Thr Leu
50 55 60
Pro Pro Pro Leu Phe Ser Lys Val Val Ile Val Leu Ile Asp Ala
65 70 75
Leu Arg Asp Asp Phe Val Phe Gly Ser Lys Gly Val Lys Phe Met
80 85 90
Pro Tyr Thr Thr Tyr Leu Val Glu Lys Gly Ala Ser His Ser Phe
95 100 105
Val Ala Glu Ala Lys Pro Pro Thr Val Thr Met Pro Arg Ile Lys
110 115 120
Ala Leu Met Thr Gly Ser Leu Pro Gly Phe Val Asp Val Ile Arg
125 130 135
Asn Leu Asn Ser Pro Ala Leu Leu Glu Asp Ser Val Ile Arg Gln
140 145 150
Ala Lys Ala Ala Gly Lys Arg Ile Val Phe Tyr Gly Asp Glu Thr
155 160 165
Trp Val Lys Leu Phe Pro Lys His Phe Val Glu Tyr Asp Gly Thr
170 175 180

Thr Ser Phe Phe Val Ser Asp Tyr Thr Glu Val Asp Asn Asn Val
185 190 195

Thr Arg His Leu Asp Lys Val Leu Lys Arg Gly Asp Trp Asp Ile
200 205 210

Leu Ile Leu His Tyr Leu Gly Leu Asp His Ile Gly His Ile Ser
215 220 225

Gly Pro Asn Ser Pro Leu Ile Gly Gln Lys Leu Ser Glu Met Asp
230 235 240

Ser Val Leu Met Lys Ile His Thr Ser Leu Gln Ser Lys Glu Arg
245 250 255

Glu Thr Pro Leu Pro Asn Leu Leu Val Leu Cys Gly Asp His Gly
260 265 270

Met Ser Glu Thr Gly Ser His Gly Ala Ser Ser Thr Glu Glu Val
275 280 285

Asn Thr Pro Leu Ile Leu Ile Ser Ser Ala Phe Glu Arg Lys Pro
290 295 300

Gly Asp Ile Arg His Pro Lys His Val Gln
305 310

<210> 46

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 46

cgggactttc gctacctgtt gc 22

<210> 47

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 47

catcatattc cacaaaatgc tttggg 26

<210> 48

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 48

BIOLOGICAL ASPECTS

ccttcgggga ttcttccgg ctcccgtcg ttccctcg 38
<210> 49
<211> 918
<212> DNA
<213> Homo Sapien

<400> 49
agccaggcag cacatcacag cgggaggagc tgtcccaggt gcccccagctc 50
agcaatggca atgggggtcc ccagagtcat tctgctctgc ctctttgggg 100
ctgcgcctcg cctgacaggg tcccaagccc tgcatgtcta cagctttag 150
cacacctact ttggccctt tgacctcagg gccatgaagc tgcccagcat 200
ctcctgtcct catgagtgct ttgaggctat cctgtctctg gacaccgggt 250
atcgcgccgc ggtgaccctg gtgcggaagg gctgctggac cgggcctcct 300
gcgggccaga cgcaatcgaa cccggacgcg ctggcccgag actactcggt 350
ggtgccgcgc tgcacaactg acaaattgaa cggccacctc atgactcatg 400
acggccctccc caacctgagc caagcacccg acccgccgac gctcagcggc 450
gccgagtgt acgcctgtat cggggtccac caggatgact ggcgtatcgg 500
caggtccccga cgagtccagt gtcaccagga ccagaccgcc tgcttccagg 550
gcagtggcag aatgacagtt ggcaatttct cagttctgt gtacatcaga 600
acctgccacc ggccctcctg caccaccgag ggcaccacca gcccctggac 650
agccatcgac ctccaggcgt cctgctgtga ggggtacctc tgcaacagga 700
aatccatgac ccagcccttc accagtgttt cagccaccac ccctccccga 750
gcactacagg tcctggccct gtcctccca gtcctcctgc tggtgccct 800
ctcagcatag accgccccctc caggatgctg gggacaggc tcacacaccc 850
cattcttgct gttcagccc ctatcacata gtcactgga aaatgatgtt 900
aaagtaagaa ttgcaaaa 918

<210> 50
<211> 251
<212> PRT
<213> Homo Sapien

<400> 50
Met Ala Met Gly Val Pro Arg Val Ile Leu Leu Cys Leu Phe Gly
.. 1 5 10 15
Ala Ala Leu Cys Leu Thr Gly Ser Gln Ala Leu Gln Cys Tyr Ser
20 25 30

Phe	Glu	His	Thr	Tyr	Phe	Gly	Pro	Phe	Asp	Leu	Arg	Ala	Met	Lys
35									40					45
Leu	Pro	Ser	Ile	Ser	Cys	Pro	His	Glu	Cys	Phe	Glu	Ala	Ile	Leu
50									55					60
Ser	Leu	Asp	Thr	Gly	Tyr	Arg	Ala	Pro	Val	Thr	Leu	Val	Arg	Lys
65									70					75
Gly	Cys	Trp	Thr	Gly	Pro	Pro	Ala	Gly	Gln	Thr	Gln	Ser	Asn	Pro
80									85					90
Asp	Ala	Leu	Pro	Pro	Asp	Tyr	Ser	Val	Val	Arg	Gly	Cys	Thr	Thr
95									100					105
Asp	Lys	Cys	Asn	Ala	His	Leu	Met	Thr	His	Asp	Ala	Leu	Pro	Asn
110									115					120
Leu	Ser	Gln	Ala	Pro	Asp	Pro	Pro	Thr	Leu	Ser	Gly	Ala	Glu	Cys
125									130					135
Tyr	Ala	Cys	Ile	Gly	Val	His	Gln	Asp	Asp	Cys	Ala	Ile	Gly	Arg
140									145					150
Ser	Arg	Arg	Val	Gln	Cys	His	Gln	Asp	Gln	Thr	Ala	Cys	Phe	Gln
155									160					165
Gly	Ser	Gly	Arg	Met	Thr	Val	Gly	Asn	Phe	Ser	Val	Pro	Val	Tyr
170									175					180
Ile	Arg	Thr	Cys	His	Arg	Pro	Ser	Cys	Thr	Thr	Glu	Gly	Thr	Thr
185									190					195
Ser	Pro	Trp	Thr	Ala	Ile	Asp	Leu	Gln	Gly	Ser	Cys	Cys	Glu	Gly
200									205					210
Tyr	Leu	Cys	Asn	Arg	Lys	Ser	Met	Thr	Gln	Pro	Phe	Thr	Ser	Ala
215									220					225
Ser	Ala	Thr	Thr	Pro	Pro	Arg	Ala	Leu	Gln	Val	Leu	Ala	Leu	Leu
230									235					240
Leu	Pro	Val	Leu	Leu	Leu	Val	Gly	Leu	Ser	Ala				
245									250					

<210> 51
<211> 3288
<212> DNA
<213> Homo Sapien

```
<400> 51
cccacgcgtc cgggacagat gaacttaaaa gagaagctt agctgccaaa 50
gattggaaaa gggaaaggac aaaaaagacc cctgggtcac acggcgtagg 100
tgcagggttt cctactgctg ttcttttatg ctgggagctg tggctgtaac 150
caacttaggaa ataacgtatg cagcagctat ggctgtcaga gagttgtct 200
```

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

tcccaagaca aaggcaagtc ctgtttcttt ttctttttt gggagtgccc 250
ttggcagggtt ctggggttgg acgttattcg gtgactgagg aaacagagaa 300
aggatccttt gtggtaatc tggcaaagga tctgggacta gcagaggggg 350
agctggctgc aaggggaaacc agggtggttt ccgatgataa caaacaatac 400
ctgctcctgg attcacatac cggaaatttg ctcacaaatg agaaaactgga 450
ccgagagaag ctgtgtggcc ctaaagagcc ctgtatgctg tatttccaaa 500
ttttaatgga tgatccctt cagatttacc gggctgagct gagagtccagg 550
gatataaatg atcacgcgcc agtatttcag gacaaagaaa cagtctaaa 600
aatatcagaa aatacagctg aaggcacgc atttagacta gaaagagcac 650
aggatccaga tggaggactt aacggtatcc aaaactacac gatcagcccc 700
aactctttt tccatattaa cattagtgcc ggtgatgaag gcatgatata 750
tccagagcta gtgttgaca aagcactgga tcgggaggag cagggagagc 800
tcagcttaac cctcacagcg ctggatggtg ggtctccatc caggtctggg 850
acctctactg tacgcacatgt tgtcttgac gtcaatgaca atgccccaca 900
gtttgcccag gctctgtatg agacccagggc tccagaaaac agccccattg 950
gtttccttat tgttaaggta tgggcagaag atgtagactc tggagtcaac 1000
gcggaaagtat cctattcatt ttttgatgcc tcagaaaata ttcgaacgac 1050
ctttcaaatac aatcctttt ctggggaaat ctttctcaga gaattgctt 1100
attatgagtt agtaaattct tacaaaataa atatacaggc aatggacggt 1150
ggaggccttt ctgcaagatg tagggttta gtggaaagtat tggacaccaa 1200
tgacaatccc cctgaactga tcgtatcatc attttccaac tctgttgctg 1250
agaattctcc tgagacgccc ctggctgttt ttaagattaa tgacagagac 1300
tctggagaaa atggaaagat ggtttgctac attcaagaga atctgccatt 1350
cctactaaaa cttctgtgg agaattttta catcctaatt acagaaggcg 1400
cgctggacag agagatcaga gccgagtaca acatcaactat caccgtcact 1450
gacttgggga cacccaggct gaaaaccgag cacaacataa cggtcctgg 1500
ctccgacgtc aatgacaacg ccccccgcctt cacccaaacc tcctacaccc 1550
tgttcgtccg cgagaacaac agccccgccc tgcacatcggt cagcgtcagc 1600
gccacagaca gagactcggtt caccaacgccc caggtcacct actcgctgct 1650

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

gccgccccaa gaccgcacc tgcccctcgc ctccctggtc tccatcaacg 1700
cggacaacgg ccacctgttc gccctcaggt cgctggacta cgaggccctg 1750
caggcttcg agttccgcgt gggcgccaca gaccgcggct ccccccgcgt 1800
gagcagagag gcgctggtgc gcgtgctggt gctggacgcc aacgacaact 1850
cgcccttcgt gctgtacccg ctgcagaacg gctccgcgcc ctgcaccgag 1900
ctggtgcccc gggcggccga gccgggctac ctggtgacca aggtggtggc 1950
ggtggacggc gactcgggcc agaacgcctg gctgtcgta cagctgctca 2000
aggccacgga gcccgggctg ttccggtgt gggcgcacaa tggggaggtg 2050
cgcaccgcca ggctgctgag cgagcgcgac gcagccaagc acaggctcgt 2100
ggtgcttgtc aaggacaatg gcgagcctcc tcgctcgcc accgccacgc 2150
tgcacttgct cctggtggac ggcttctccc agccctacct gcctctccg 2200
gaggcggccc cggcccaggc ccaggccgag gccgacttgc tcaccgtcta 2250
cctggtggtg gcgtggcct cggtgtcttc gctttcctc ctctcggtgc 2300
tcctgttcgt ggcgggtcgg ctgtgcagga ggagcaggc ggcctcggtg 2350
ggtcgctgct cggtgcccga gggtcctttt ccagggcatc tggtgacgt 2400
gaggggcgtc gagaccctgt cccagagcta ccagtatgag gtgtgtctga 2450
cgggaggccc cgggaccagt gagttcaagt tctgaaacc agttatttcg 2500
gatattcagg cacagggccc tgggaggaag ggtgaagaaa attccaccaa 2550
ccgaaatagc tttggattta atattcagta aagtctgtt ttagttcat 2600
atacttttgg tgtgttacat agccatgtt ctattagtt acttttaaat 2650
ctcaaattta agttattatg caacttcaag cattatttc aagtagtata 2700
ccccgttgtt tttacaatgt ttcatcattt tttgcatta ataacaactg 2750
ggtttaattt aatgagtatt ttttctaaa tgatagtgtt aaggtttaa 2800
ttctttccaa ctgccaagg aattaattac tattatatct cattacagaa 2850
atctgagggtt ttgattcatt tcagagctt catctcatga ttctaatcac 2900
ttctgtctat agtgtacttg ctctattaa gaaggcatat ctacattcc 2950
aaactcattc taacattcta tatattcgtt tttgaaaacc atgtcattta 3000
tttctacatc atgtattaa aaagaaatat ttctctacta ctatgctcat 3050
gacaaaatga aacaaagcat attgtgagca atactgaaca tcaataatac 3100

Homo Sapien

ccttagttta tatacttatt attttatctt taagcatgct actttactt 3150
ggccaatatt ttcttatgtt aactttgct gatgtataaa acagactatg 3200
ccttataatt gaaataaaaat tataatctgc ctgaaaatga ataaaaataa 3250
aacatttga aatgtgaaaa aaaaaaaaaa aaaaaaaaa 3288

<210> 52
<211> 800
<212> PRT
<213> Homo Sapien

<400> 52

Met	Ala	Val	Arg	Glu	Leu	Cys	Phe	Pro	Arg	Gln	Arg	Gln	Val	Leu
1				5				10					15	

Phe Leu Phe Leu Phe Trp Gly Val Ser Leu Ala Gly Ser Gly Phe
20 25 30

Gly Arg Tyr Ser Val Thr Glu Glu Thr Glu Lys Gly Ser Phe Val
35 40 45

Val Asn Leu Ala Lys Asp Leu Gly Leu Ala Glu Gly Glu Leu Ala
50 55 60

Ala Arg Gly Thr Arg Val Val Ser Asp Asp Asn Lys Gln Tyr Leu
65 70 75

Leu Leu Asp Ser His Thr Gly Asn Leu Leu Thr Asn Glu Lys Leu
80 85 90

Asp Arg Glu Lys Leu Cys Gly Pro Lys Glu Pro Cys Met Leu Tyr
95 100 105

Phe Gln Ile Leu Met Asp Asp Pro Phe Gln Ile Tyr Arg Ala Glu
110 115 120

Leu Arg Val Arg Asp Ile Asn Asp His Ala Pro Val Phe Gln Asp
125 130 135

Lys Glu Thr Val Leu Lys Ile Ser Glu Asn Thr Ala Glu Gly Thr
140 145 150

Ala Phe Arg Leu Glu Arg Ala Gln Asp Pro Asp Gly Gly Leu Asn
155 160 165

Gly Ile Gln Asn Tyr Thr Ile Ser Pro Asn Ser Phe Phe His Ile
170 175 180

Asn Ile Ser Gly Gly Asp Glu Gly Met Ile Tyr Pro Glu Leu Val
185 190 195

Leu Asp Lys Ala Leu Asp Arg Glu Glu Gln Gly Glu Leu Ser Leu
200 205 210

Thr Leu Thr Ala Leu Asp Gly Gly Ser Pro Ser Arg Ser Gly Thr
215 220 225

Ser Thr Val Arg Ile Val Val Leu Asp Val Asn Asp Asn Ala Pro
230 235 240

Gln Phe Ala Gln Ala Leu Tyr Glu Thr Gln Ala Pro Glu Asn Ser
245 250 255

Pro Ile Gly Phe Leu Ile Val Lys Val Trp Ala Glu Asp Val Asp
260 265 270

Ser Gly Val Asn Ala Glu Val Ser Tyr Ser Phe Phe Asp Ala Ser
275 280 285

Glu Asn Ile Arg Thr Thr Phe Gln Ile Asn Pro Phe Ser Gly Glu
290 295 300

Ile Phe Leu Arg Glu Leu Leu Asp Tyr Glu Leu Val Asn Ser Tyr
305 310 315

Lys Ile Asn Ile Gln Ala Met Asp Gly Gly Gly Leu Ser Ala Arg
320 325 330

Cys Arg Val Leu Val Glu Val Leu Asp Thr Asn Asp Asn Pro Pro
335 340 345

Glu Leu Ile Val Ser Ser Phe Ser Asn Ser Val Ala Glu Asn Ser
350 355 360

Pro Glu Thr Pro Leu Ala Val Phe Lys Ile Asn Asp Arg Asp Ser
365 370 375

Gly Glu Asn Gly Lys Met Val Cys Tyr Ile Gln Glu Asn Leu Pro
380 385 390

Phe Leu Leu Lys Pro Ser Val Glu Asn Phe Tyr Ile Leu Ile Thr
395 400 405

Glu Gly Ala Leu Asp Arg Glu Ile Arg Ala Glu Tyr Asn Ile Thr
410 415 420

Ile Thr Val Thr Asp Leu Gly Thr Pro Arg Leu Lys Thr Glu His
425 430 435

Asn Ile Thr Val Leu Val Ser Asp Val Asn Asp Asn Ala Pro Ala
440 445 450

Phe Thr Gln Thr Ser Tyr Thr Leu Phe Val Arg Glu Asn Asn Ser
455 460 465

Pro Ala Leu His Ile Gly Ser Val Ser Ala Thr Asp Arg Asp Ser
470 475 480

Gly Thr Asn Ala Gln Val Thr Tyr Ser Leu Leu Pro Pro Gln Asp
485 490 495

Pro His Leu Pro Leu Ala Ser Leu Val Ser Ile Asn Ala Asp Asn
500 505 510

Gly His Leu Phe Ala Leu Arg Ser Leu Asp Tyr Glu Ala Leu Gln

515	520	525
Ala Phe Glu Phe Arg Val Gly Ala Thr Asp Arg Gly Ser Pro Ala		
530	535	540
Leu Ser Arg Glu Ala Leu Val Arg Val Leu Val Leu Asp Ala Asn		
545	550	555
Asp Asn Ser Pro Phe Val Leu Tyr Pro Leu Gln Asn Gly Ser Ala		
560	565	570
Pro Cys Thr Glu Leu Val Pro Arg Ala Ala Glu Pro Gly Tyr Leu		
575	580	585
Val Thr Lys Val Val Ala Val Asp Gly Asp Ser Gly Gln Asn Ala		
590	595	600
Trp Leu Ser Tyr Gln Leu Leu Lys Ala Thr Glu Pro Gly Leu Phe		
605	610	615
Gly Val Trp Ala His Asn Gly Glu Val Arg Thr Ala Arg Leu Leu		
620	625	630
Ser Glu Arg Asp Ala Ala Lys His Arg Leu Val Val Leu Val Lys		
635	640	645
Asp Asn Gly Glu Pro Pro Arg Ser Ala Thr Ala Thr Leu His Leu		
650	655	660
Leu Leu Val Asp Gly Phe Ser Gln Pro Tyr Leu Pro Leu Pro Glu		
665	670	675
Ala Ala Pro Ala Gln Ala Gln Ala Glu Ala Asp Leu Leu Thr Val		
680	685	690
Tyr Leu Val Val Ala Leu Ala Ser Val Ser Ser Leu Phe Leu Leu		
695	700	705
Ser Val Leu Leu Phe Val Ala Val Arg Leu Cys Arg Arg Ser Arg		
710	715	720
Ala Ala Ser Val Gly Arg Cys Ser Val Pro Glu Gly Pro Phe Pro		
725	730	735
Gly His Leu Val Asp Val Arg Gly Ala Glu Thr Leu Ser Gln Ser		
740	745	750
Tyr Gln Tyr Glu Val Cys Leu Thr Gly Gly Pro Gly Thr Ser Glu		
755	760	765
Phe Lys Phe Leu Lys Pro Val Ile Ser Asp Ile Gln Ala Gln Gly		
770	775	780
Pro Gly Arg Lys Gly Glu Glu Asn Ser Thr Phe Arg Asn Ser Phe		
785	790	795
Gly Phe Asn Ile Gln		
800		

<210> 53
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 53
ctggggagtg tccttggcag gttc 24

<210> 54
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 54
cagcatacag ggctcttttag ggcacac 27

<210> 55
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 55
cggtgactga ggaaacagag aaaggatcct ttgtggtaa tctggc 46

<210> 56
<211> 2242
<212> DNA
<213> Homo Sapien

<220>
<221> unsure
<222> 2181
<223> unknown base

<400> 56
aatgaatac ctccgaagcc gctttgttct ccagatgtga atagctccac 50
tataccagcc tcgtcttcct tccggggac aacgtgggtc agggcacaga 100
gagatattta atgtcaccct cttggggctt tcatggact ccctctgcc 150
cattttttgg aggttggaa agttgctaga ggcttcagaa ctccagccta 200
atggatccca aactcgggag aatggctgctg tccctgctgg ctgtgctgct 250
gctgctgctg gagcgcggca tggtctccctc accctccccg ccccccggcgc 300
tgtagagaaa agtcttccag tacattgacc tccatcagga tgaatttgt 350

cagacgctga aggagtgggt ggccatcgag agcgactctg tccagcctgt 400
gcctcgcttc agacaagagc tcttcagaat gatggccgtg gctgcggaca 450
cgctgcagcg cctgggggcc cgtgtggcct cggtggacat gggtcctcag 500
cagctgcccc atggtcagag tcttccaata cctcccgta tcctggccga 550
actggggagc gatcccacga aaggcaccgt gtgcttctac ggccacttgg 600
acgtgcagcc tgctgaccgg ggcgatgggt ggctcacgga cccctatgtg 650
ctgacggagg tagacggaa actttatgga cgaggagcga ccgacaacaa 700
aggccctgtc ttggcttggta tcaatgctgt gagcgccttc agagccctgg 750
agcaagatct tcctgtgaat atcaaattca tcattgaggg gatggaagag 800
gctggctctg ttgccttgaa ggaacttggta gaaaaagaaa aggaccgatt 850
cttctcttgt gtggactaca ttgttaatttc agataacctg tggatcagcc 900
aaaggaagcc agcaatcaact tatggaaccc ggggaacag ctacttcatg 950
gtggaggtga aatgcagaga ccaggatttt cactcaggaa cctttgggtgg 1000
catccttcataatgg ctgatcttgt tgctcttc ggtgcctgg 1050
tagactcgta tggtcataatc ctggccctg gaatctatga tgaagtggtt 1100
cctcttacag aagaggaat aaatacatac aaagccatcc atctagaccc 1150
agaagaatac cggaatagca gccgggttga gaaatttctg ttgcataacta 1200
aggaggagat tctaattgcac ctctggaggt acccatctt ttctattcat 1250
gggatcgagg gcgcgttga tgagccttggta actaaaacag tcataacctgg 1300
ccgagttata gaaaaatttt caatccgtct agtccctcac atgaatgtgt 1350
ctgcgggttga aaaacaggtg acacgacatc ttgaagatgt gttctccaaa 1400
agaaaatagtt ccaacaagat gttgtttcc atgactctag gactacaccc 1450
gtggatttgcataatggatg acacccagta tctcgaccaaaa 1500
tcagaacagt gtttggaca gaaccagata tgatccggta tggatccacc 1550
attccaaatttgcataatggatg acacccagta tctcgaccaaaa 1600
aattccgttgcataatggatg acacccagta tctcgaccaaaa 1650
tcaacaggtg gaactacata gagggAACCA aattatttgc tgccttttc 1700
tttagagatgg cccagctcca ttaatcacaatgg 1750
atccactgac agattcacatc ccccccacatc cctagacagg gatggaatgt 1800

aaatatccag agaatttggg tctagtatag tacatTTCC cttccatTTA 1850
aaatgtcttg ggatatctgg atcagtaata aaatatttca aaggcacaga 1900
tgttggaaat ggttaaggt cccccactgc acacCTTcCT caagtcata 1950
ctgcttgcag caacttgatt tccccaaGTC ctgtgcaata gccccaggat 2000
tggattcctt ccaacCTTT agcatatCTC caacCTTgca atttgattgg 2050
cataatcact ccggTTTgCT ttcttaggtCC tcaagtGCTC gtgacacata 2100
atcattccat ccaatgatcg ccttgcTTT accactCTT ccttttatct 2150
tattaataaa aatgttggTC tccaccactg nCTCCaaaa aaaaaaaaaa 2200
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 2242

<210> 57
<211> 507
<212> PRT
<213> Homo Sapien

<400> 57
Met Asp Pro Lys Leu Gly Arg Met Ala Ala Ser Leu Leu Ala Val
1 5 10 15
Leu Leu Leu Leu Leu Glu Arg Gly Met Phe Ser Ser Pro Ser Pro
20 25 30
Pro Pro Ala Leu Leu Glu Lys Val Phe Gln Tyr Ile Asp Leu His
35 40 45
Gln Asp Glu Phe Val Gln Thr Leu Lys Glu Trp Val Ala Ile Glu
50 55 60
Ser Asp Ser Val Gln Pro Val Pro Arg Phe Arg Gln Glu Leu Phe
65 70 75
Arg Met Met Ala Val Ala Ala Asp Thr Leu Gln Arg Leu Gly Ala
80 85 90
Arg Val Ala Ser Val Asp Met Gly Pro Gln Gln Leu Pro Asp Gly
95 100 105
Gln Ser Leu Pro Ile Pro Pro Val Ile Leu Ala Glu Leu Gly Ser
110 115* 120
Asp Pro Thr Lys Gly Thr Val Cys Phe Tyr Gly His Leu Asp Val
125 130 135
Gln Pro Ala Asp Arg Gly Asp Gly Trp Leu Thr Asp Pro Tyr Val
140 145 150
Leu Thr Glu Val Asp Gly Lys Leu Tyr Gly Arg Gly Ala Thr Asp
155 160 165
Asn Lys Gly Pro Val Leu Ala Trp Ile Asn Ala Val Ser Ala Phe

170	175	180
Arg Ala Leu Glu Gln Asp Leu Pro Val Asn Ile Lys Phe Ile Ile		
185	190	195
Glu Gly Met Glu Glu Ala Gly Ser Val Ala Leu Glu Glu Leu Val		
200	205	210
Glu Lys Glu Lys Asp Arg Phe Phe Ser Gly Val Asp Tyr Ile Val		
215	220	225
Ile Ser Asp Asn Leu Trp Ile Ser Gln Arg Lys Pro Ala Ile Thr		
230	235	240
Tyr Gly Thr Arg Gly Asn Ser Tyr Phe Met Val Glu Val Lys Cys		
245	250	255
Arg Asp Gln Asp Phe His Ser Gly Thr Phe Gly Gly Ile Leu His		
260	265	270
Glu Pro Met Ala Asp Leu Val Ala Leu Leu Gly Ser Leu Val Asp		
275	280	285
Ser Ser Gly His Ile Leu Val Pro Gly Ile Tyr Asp Glu Val Val		
290	295	300
Pro Leu Thr Glu Glu Glu Ile Asn Thr Tyr Lys Ala Ile His Leu		
305	310	315
Asp Leu Glu Glu Tyr Arg Asn Ser Ser Arg Val Glu Lys Phe Leu		
320	325	330
Phe Asp Thr Lys Glu Glu Ile Leu Met His Leu Trp Arg Tyr Pro		
335	340	345
Ser Leu Ser Ile His Gly Ile Glu Gly Ala Phe Asp Glu Pro Gly		
350	355	360
Thr Lys Thr Val Ile Pro Gly Arg Val Ile Gly Lys Phe Ser Ile		
365	370	375
Arg Leu Val Pro His Met Asn Val Ser Ala Val Glu Lys Gln Val		
380	385	390
Thr Arg His Leu Glu Asp Val Phe Ser Lys Arg Asn Ser Ser Asn		
395	400	405
Lys Met Val Val Ser Met Thr Leu Gly Leu His Pro Trp Ile Ala		
410	415	420
Asn Ile Asp Asp Thr Gln Tyr Leu Ala Ala Lys Arg Ala Ile Arg		
425	430	435
Thr Val Phe Gly Thr Glu Pro Asp Met Ile Arg Asp Gly Ser Thr		
440	445	450
Ile Pro Ile Ala Lys Met Phe Gln Glu Ile Val His Lys Ser Val		
455	460	465

Val Leu Ile Pro Leu Gly Ala Val Asp Asp Gly Glu His Ser Gln
470 475 480

Asn Glu Lys Ile Asn Arg Trp Asn Tyr Ile Glu Gly Thr Lys Leu
485 490 495

Phe Ala Ala Phe Phe Leu Glu Met Ala Gln Leu His
500 505

<210> 58

<211> 1470

<212> DNA

<213> Homo Sapien

<400> 58
ctcggctgga tttaagggttg ccgctagccg cctggaaatt taagggaccc 50
acactacctt cccgaagtttg aaggcaagcg gtgattgttt gtagacggcg 100
ctttgtcatg ggacctgtgc gggtggaaat attgcttttc ctttttttgg 150
ccgtgcacga ggcttggct gggatgttga aggaggagga cgatgacaca 200
gaacgcttgc ccagcaaattc cgaagtgtgt aagctgctga gcacagagct 250
acaggcggaa ctgagtcgca ccgggtcgatc tcgagaggtg ctggagctgg 300
ggcaggtgtc ggatacaggc aagaggaaga gacacgtgcc ttacagcggt 350
tcagagacaa ggcttggaaaga ggccttagag aatttatgtg agcggatcct 400
ggactatagt gttcacgtgc agcgcaaggg ctcactgaga tatgccaagg 450
gtcagagtca gaccatggca acactgaaag gcctagtgc gaaggggggtg 500
aagggtggatc tggggatccc tctggagctt tgggatgagc ccagcgtgg 550
ggtcacatac ctcaagaagc agtgtgagac catgttggag gagtttgaag 600
acattgtggg agactggta cttccaccatc aggagcagcc cctacaaaat 650
tttctctgtg aaggtcatgt gctccagct gctgaaactg catgtctaca 700
ggaaacttgg actggaaagg agatcacaga tggggaaagag aaaacagaag 750
gggaggaaga gcaggaggag gaggaggaag aggaggaaga ggaagggggga 800
gacaagatga ccaagacagg aagccacccc aaacttgacc gagaagatct 850
ttgacccttg cctttaggcc cccaggaggaa gaagggatca tggagagccc 900
tctaaaggct gcactctccc tgctccacag ctttcagggt gtgtttatga 950
gtgactccac ccaagcttgt agctgttctc tccccatctaa cctcaggcaa 1000
gatcctggtg aaacagcatg acatggcttc tgggggtggag ggtgggggtg 1050
gaggtcctgc tccttagagat gaactctatc cagccctta attggcaggt 1100

gtatgtgctg acagtaactga aagcttcctt ctttaactga tcccaccc 1150
accctaaaagt cagcagtggc actggagctg tgggcttgg ggaagtcact 1200
tagctcctta aggtctgttt ttagaccctt ccaaggaaga ggccagaacg 1250
gacattctct gcgatctata tacattgcct gtatccagga ggctacacac 1300
cagcaaaccg tgaaggagaa tgggacactg ggtcatggcc tggagttgct 1350
gataatttag gtggataga tacttggtct acttaagctc aatgtaaccc 1400
agagcccacc atatagtttt ataggtgctc aactttctat atcgctatta 1450
aacttttttc ttttttcta 1470

<210> 59
<211> 248
<212> PRT
<213> Homo Sapien

<400> 59

Met	Gly	Pro	Val	Arg	Leu	Gly	Ile	Leu	Leu	Phe	Leu	Phe	Leu	Ala
1					5				10					15
Val	His	Glu	Ala	Trp	Ala	Gly	Met	Leu	Lys	Glu	Glu	Asp	Asp	Asp
					20				25					30
Thr	Glu	Arg	Leu	Pro	Ser	Lys	Cys	Glu	Val	Cys	Lys	Leu	Leu	Ser
					35				40					45
Thr	Glu	Leu	Gln	Ala	Glu	Leu	Ser	Arg	Thr	Gly	Arg	Ser	Arg	Glu
					50				55					60
Val	Leu	Glu	Leu	Gly	Gln	Val	Leu	Asp	Thr	Gly	Lys	Arg	Lys	Arg
					65				70					75
His	Val	Pro	Tyr	Ser	Val	Ser	Glu	Thr	Arg	Leu	Glu	Glu	Ala	Leu
					80				85					90
Glu	Asn	Leu	Cys	Glu	Arg	Ile	Leu	Asp	Tyr	Ser	Val	His	Ala	Glu
					95				100					105
Arg	Lys	Gly	Ser	Leu	Arg	Tyr	Ala	Lys	Gly	Gln	Ser	Gln	Thr	Met
					110				115					120
Ala	Thr	Leu	Lys	Gly	Leu	Val	Gln	Lys	Gly	Val	Lys	Val	Asp	Leu
					125				130					135
Gly	Ile	Pro	Leu	Glu	Leu	Trp	Asp	Glu	Pro	Ser	Val	Glu	Val	Thr
					140				145					150
Tyr	Leu	Lys	Lys	Gln	Cys	Glu	Thr	Met	Leu	Glu	Glu	Phe	Glu	Asp
					155				160					165
Ile	Val	Gly	Asp	Trp	Tyr	Phe	His	His	Gln	Glu	Gln	Pro	Leu	Gln
					170				175					180

Asn Phe Leu Cys Glu Gly His Val Leu Pro Ala Ala Glu Thr Ala
185 190 195
Cys Leu Gln Glu Thr Trp Thr Gly Lys Glu Ile Thr Asp Gly Glu
200 205 210
Glu Lys Thr Glu Gly Glu Glu Gln Glu Glu Glu Glu Glu Glu
215 220 225
Glu Glu Glu Gly Gly Asp Lys Met Thr Lys Thr Gly Ser His
230 235 240
Pro Lys Leu Asp Arg Glu Asp Leu
245

<210> 60
<211> 890
<212> DNA
<213> Homo Sapien

<400> 60
aagtacttgt gtccgggtgg tggactggat tagctgcgga gccctggaag 50
ctgcctgtcc ttctccctgt gcttaaccag aggtgccat gggttggaca 100
atgaggcgtgg tcacagcagc actgttactg ggtctcatga tggtggtcac 150
tggagacgag gatgagaaca gcccgtgtgc ccatgaggcc ctcttggacg 200
aggacaccct ctttgccag ggccttgaag tttctaccc agagttgggg 250
aacattggct gcaaggttgt tcctgattgt aacaactaca gacagaagat 300
cacctcctgg atggagccga tagtcaagtt cccggggcc gtggacggcg 350
caacctataat cctggtgatg gtggatccag atgcccctag cagagcagaa 400
cccagacaga gattctggag acattggctg gtaacagata tcaagggcgc 450
cgacctgaag aaagggaaaga ttcagggcca ggagttatca gcctaccagg 500
ctccctcccc accggcacac agtggcttcc atcgctacca gttcttgtc 550
tatcttcagg aaggaaaagt catctctctc cttcccaagg aaaacaaaac 600
tcgaggctct tggaaaatgg acagattct gaaccgcttc cacctggcg 650
aacctgaagc aagcacccag ttcatgaccc agaactacca ggactcacca 700
accctccagg ctcccagagg aagggccagc gagcccaagc acaaaccag 750
gcagagatag ctgcctgcta gatagccgc tttgccatcc gggcatgtgg 800
ccacactgct caccaccgac gatgtggta tggaaccccc tctggataca 850
gaaccccttc tttccaaat taaaaaaaaa aatcatcaaa 890
<210> 61

<211> 223
<212> PRT
<213> Homo Sapien

<400> 61
Met Gly Trp Thr Met Arg Leu Val Thr Ala Ala Leu Leu Leu Gly
1 5 10 15

Leu Met Met Val Val Thr Gly Asp Glu Asp Glu Asn Ser Pro Cys
20 25 30

Ala His Glu Ala Leu Leu Asp Glu Asp Thr Leu Phe Cys Gln Gly
35 40 45

Leu Glu Val Phe Tyr Pro Glu Leu Gly Asn Ile Gly Cys Lys Val
50 55 60

Val Pro Asp Cys Asn Asn Tyr Arg Gln Lys Ile Thr Ser Trp Met
65 70 75

Glu Pro Ile Val Lys Phe Pro Gly Ala Val Asp Gly Ala Thr Tyr
80 85 90

Ile Leu Val Met Val Asp Pro Asp Ala Pro Ser Arg Ala Glu Pro
95 100 105

Arg Gln Arg Phe Trp Arg His Trp Leu Val Thr Asp Ile Lys Gly
110 115 120

Ala Asp Leu Lys Lys Gly Lys Ile Gln Gly Gln Glu Leu Ser Ala
125 130 135

Tyr Gln Ala Pro Ser Pro Pro Ala His Ser Gly Phe His Arg Tyr
140 145 150

Gln Phe Phe Val Tyr Leu Gln Glu Gly Lys Val Ile Ser Leu Leu
155 160 165

Pro Lys Glu Asn Lys Thr Arg Gly Ser Trp Lys Met Asp Arg Phe
170 175 180

Leu Asn Arg Phe His Leu Gly Glu Pro Glu Ala Ser Thr Gln Phe
185 190 195

Met Thr Gln Asn Tyr Gln Asp Ser Pro Thr Leu Gln Ala Pro Arg
200 205 210

Gly Arg Ala Ser Glu Pro Lys His Lys Thr Arg Gln Arg
215 220

<210> 62
<211> 1321
<212> DNA
<213> Homo Sapien

<400> 62
gtcgacccac gcgtccgaag ctgctggagc cacgattcag tccccctggac 50

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

tgtagataaa gacccttct tgccaggcgc tgagacaacc acactatgag 100
aggcactcca ggagacgctg atggtggagg aagggccgct tatcaatcaa 150
tcactgttgc tgttatcaca tgcaagtatc cagaggctct tgagcaaggc 200
agaggggatc ccatttattt gggaatccag aatccagaaa tgtgttgta 250
ttgtgagaag gttggagaac agcccacatt gcagctaaaa gagcagaaga 300
tcatggatct gtatggccaa cccgagcccc tgaaaccctt cctttctac 350
cgtgccaaga ctggtaggac ctccaccctt gagtctgtgg cttcccgga 400
ctggttcatt gcctcccca agagagacca gcccatttctt ctgacttcag 450
aacttggaa gtcatacaac actgcctttg aattaaatat aaatgactga 500
actcagccta gaggtggcag ctggctttt gtcttaagt ttctggcc 550
caatgtgtt tcgtctacat tttcttagtg tcattttcac gctggtgctg 600
agacaggagc aaggctgctg ttatcatctc attttataat gaagaagaag 650
caattacttc atagcaactg aagaacagga tgtggcctca gaagcaggag 700
agctgggtgg tataaggctg tcctctcaag ctggtgctgt gtaggccaca 750
aggcatctgc atgagtgact ttaagactca aagaccaaactc actgagctt 800
cttctagggg tgggtatgaa gatgcttcag agctcatgcg cgttaccac 850
gatggcatga ctagcacaga gctgatctct gtttctgttt tgctttattc 900
cctcttggga tgatatcatc cagtcttat atgttgc当地 tatacctcat 950
tgtgtgtaat agaaccttct tagcattaag accttggtaaa caaaaataat 1000
tcttgggttg ggtatgaaga tgcttcagag ctcatgc当地 ttacccacga 1050
tggcatgact agcacagagc tgatctctgt ttctgtttt ctatttccc 1100
tcttgggatg atatcatcca gtctttat gttgccaata tacctcattt 1150
tgtgtatag aaccttctta gcattaagac cttgttaaaa aaaataattc 1200
ttgtgttaag tttaatcatt tttgtcctaa ttgtatgtg taatcttaaa 1250
gttaaataaaa ctttgtgtat ttatataata ataaagctaa aactgatata 1300
aaataaagaa agagtaaact g 1321

<210> 63
<211> 134
<212> PRT
<213> Homo Sapien

<400> 63

Met Arg Gly Thr Pro Gly Asp Ala Asp Gly Gly Gly Arg Ala Val
1 5 10 15

Tyr Gln Ser Ile Thr Val Ala Val Ile Thr Cys Lys Tyr Pro Glu
20 25 30

Ala Leu Glu Gln Gly Arg Gly Asp Pro Ile Tyr Leu Gly Ile Gln
35 40 45

Asn Pro Glu Met Cys Leu Tyr Cys Glu Lys Val Gly Glu Gln Pro
50 55 60

Thr Leu Gln Leu Lys Glu Gln Lys Ile Met Asp Leu Tyr Gly Gln
65 70 75

Pro Glu Pro Val Lys Pro Phe Leu Phe Tyr Arg Ala Lys Thr Gly
80 85 90

Arg Thr Ser Thr Leu Glu Ser Val Ala Phe Pro Asp Trp Phe Ile
95 100 105

Ala Ser Ser Lys Arg Asp Gln Pro Ile Ile Leu Thr Ser Glu Leu
110 115 120

Gly Lys Ser Tyr Asn Thr Ala Phe Glu Leu Asn Ile Asn Asp
125 130

<210> 64
<211> 999
<212> DNA
<213> Homo Sapien

<400> 64
gcgaggctgc accagcgctt ggcaccatga ggacgcctgg gcctctgccc 50
gtgctgctgc tgctcctggc gggagccccc gccgcgcggc ccactcccc 100
gacctgctac tcccgcatgc gggccctgag ccaggagatc acccgcgact 150
tcaacctcct gcaggtctcg gagccctcgg agccatgtgt gagatacctg 200
cccaggctgt acctggacat acacaattac tgttgctgg acaagctgctg 250
ggactttgtg gcctcgcccc cgtgttgaa agtggccctag gtagattcct 300
tgaaggacaa agcacggaag ctgtacacca tcatgaactc gttctgcagg 350
agagatttgg tattcctgtt ggatgactgc aatgccttgg aatacccaat 400
cccagtgact acggtcctgc cagatcgta cgcctaagg aactgagacc 450
agagaaaagaa cccaagagaa ctaaagttat gtcagctacc cagacttaat 500
gggccagagc catgaccctc acaggcttg tgttagttgt atctgaaact 550
gttatgtatc tctctacctt ctggaaaaca gggctggat tcctaccctg 600
gaacctcctt tgagcataga gtttagcaacc atgcttctca ttcccttgac 650

tcatgtcttg ccaggatgg tagatacaca gcatgttcat ttggtaacta 700
aaaagaagaa aaggactaac aagcttcaact tttatgaaca actatttga 750
gaacatgcac aatagtatgt ttttattact ggttaatgg agtaatggta 800
cttttattct ttcttgatag aaacctgctt acatttaacc aagcttctat 850
tatgccttt tctaacadag actttcttca ctgtcttca tttaaaaaga 900
aattaatgct cttaagatat atatttacg tagtgctgac aggaccact 950
ctttcattga aaggtgatga aaatcaaata aagaatctct tcacatgga 999

<210> 65
<211> 136
<212> PRT
<213> Homo Sapien

<400> 65
Met Arg Thr Pro Gly Pro Leu Pro Val Leu Leu Leu Leu Ala
1 5 10 15
Gly Ala Pro Ala Ala Arg Pro Thr Pro Pro Thr Cys Tyr Ser Arg
20 25 30
Met Arg Ala Leu Ser Gln Glu Ile Thr Arg Asp Phe Asn Leu Leu
35 40 45
Gln Val Ser Glu Pro Ser Glu Pro Cys Val Arg Tyr Leu Pro Arg
50 55 60
Leu Tyr Leu Asp Ile His Asn Tyr Cys Val Leu Asp Lys Leu Arg
65 70 75
Asp Phe Val Ala Ser Pro Pro Cys Trp Lys Val Ala Gln Val Asp
80 85 90
Ser Leu Lys Asp Lys Ala Arg Lys Leu Tyr Thr Ile Met Asn Ser
95 100 105
Phe Cys Arg Arg Asp Leu Val Phe Leu Leu Asp Asp Cys Asn Ala
110 115 120
Leu Glu Tyr Pro Ile Pro Val Thr Thr Val Leu Pro Asp Arg Gln
125 130 135
Arg

<210> 66
<211> 1893
<212> DNA
<213> Homo Sapien

<400> 66
gtctccgcgt cacaggaact tcagcaccca cagggcggac agcgctcccc 50

.....

tctacctgga gacttgactc ccgcgcgccca accccgtctatcccttga 100
ccgtcgagtgtcagagatcc tgcagccgcc cagtcggc ccctctcccg 150
ccccacaccc acccccttgg ctcttcctgt ttttactcct ccttttattt 200
cataacaaaaa gctacagctc caggagccca gcgcgggct gtgaccctaaag 250
ccgagcgtgg aagaatgggg ttccctcgga ccggcacttg gattctggtg 300
tttagtgcctccgattcaagc tttcccaaaa cctggaggaa gccaaagacaa 350
atctctacat aatagagaat taagtgcaga aagacctttg aatgaacaga 400
ttgctgaagc agaagaagac aagattaaaa aaacatatcc tccagaaaaac 450
aagccaggc agagcaacta ttctttgtt gataacttga acctgctaaa 500
ggcaataaca gaaaaggaaa aaattgagaa agaaagacaa tctataagaa 550
gctccccact tgataataag ttgaatgtgg aagatgttga ttcaaccaag 600
aatcgaaaaac tgatcgatga ttatgactct actaagagt gattggatca 650
taaatttcaa gatgatccag atggcttca tcaacttagac gggactcctt 700
taaccgctga agacattgtc cataaaatcg ctggcaggat ttatgaagaa 750
aatgacagag ccgtgtttga caagattttt tctaaactac ttaatctcg 800
ccttatcaca gaaagccaag cacataactt ggaagatgaa gtagcagagg 850
ttttacaaaaa attaatctca aaggaagcca acaattatga ggaggatccc 900
aataagccca caagctggac tgagaatcag gctggaaaaa taccagagaa 950
agtgactcca atggcagcaa ttcaagatgg tcttgctaag ggagaaaaacg 1000
atgaaacagt atctaaccaca ttaaccttga caaatggctt ggaaaggaga 1050
actaaaacctt acagtgaaga caactttgag gaactccat atttcccaa 1100
tttctatgcg ctactgaaaaa gtattgattc agaaaaagaa gcaaaagaga 1150
aagaaacact gattactatc atgaaaacac tgattgactt tgtgaagatg 1200
atggtaaat atggaacaat atctccagaa gaaggtgttt cctaccttga 1250
aaacttggat gaaatgatttgc tcttcagac caaaaacaag ctagaaaaaa 1300
atgctactga caatataagc aagctttcc cagcaccatc agagaagagt 1350
catgaagaaaaa cagacagtac caaggaagaa gcagctaa gttggaaaagga 1400
atatggaagc ttgaaggattt ccacaaaaga tgataactcc aacccaggag 1450
gaaagacaga tgaacccaaa gaaaaaacag aagccttattt ggaagccatc 1500

agaaaaaaata ttgaatggtt gaagaaaacat gacaaaaagg gaaataaaga 1550
agattatgac ctttcaaaga tgagagactt catcaataaa caagctgatg 1600
cttatgtgga gaaaggcatc cttgacaagg aagaagccga ggccatcaag 1650
cgcatttata gcagcctgta aaaatggcaa aagatccagg agtcttcaa 1700
ctgtttcaga aaacataata tagcttaaaa cacttcta at tctgtgatta 1750
aaattttttg acccaagggt tattagaaag tgctgaattt acagtagtta 1800
accttttaca agtggtaaaa acatagctt cttccgtaa aaactatctg 1850
aaagtaaagt tgtatgtaag ctgaaaaaaaaaaaaaaa aaa 1893

<210> 67
<211> 468
<212> PRT
<213> Homo Sapien

<400> 67

Met	Gly	Phe	Leu	Gly	Thr	Gly	Thr	Trp	Ile	Leu	Val	Leu	Val	Leu
1					5					10				15
Pro	Ile	Gln	Ala	Phe	Pro	Lys	Pro	Gly	Gly	Ser	Gln	Asp	Lys	Ser
					20				25					30
Leu	His	Asn	Arg	Glu	Leu	Ser	Ala	Glu	Arg	Pro	Leu	Asn	Glu	Gln
					35				40					45
Ile	Ala	Glu	Ala	Glu	Glu	Asp	Lys	Ile	Lys	Lys	Thr	Tyr	Pro	Pro
					50				55					60
Glu	Asn	Lys	Pro	Gly	Gln	Ser	Asn	Tyr	Ser	Phe	Val	Asp	Asn	Leu
					65				70					75
Asn	Leu	Leu	Lys	Ala	Ile	Thr	Glu	Lys	Glu	Ile	Glu	Lys	Glu	
					80				85					90
Arg	Gln	Ser	Ile	Arg	Ser	Ser	Pro	Leu	Asp	Asn	Lys	Leu	Asn	Val
					95				100					105
Glu	Asp	Val	Asp	Ser	Thr	Lys	Asn	Arg	Lys	Leu	Ile	Asp	Asp	Tyr
					110				115					120
Asp	Ser	Thr	Lys	Ser	Gly	Leu	Asp	His	Lys	Phe	Gln	Asp	Asp	Pro
					125				130					135
Asp	Gly	Leu	His	Gln	Leu	Asp	Gly	Thr	Pro	Leu	Thr	Ala	Glu	Asp
					140				145					150
Ile	Val	His	Lys	Ile	Ala	Ala	Arg	Ile	Tyr	Glu	Glu	Asn	Asp	Arg
					155				160					165
Ala	Val	Phe	Asp	Lys	Ile	Val	Ser	Lys	Leu	Leu	Asn	Leu	Gly	Leu
					170				175					180

Ile Thr Glu Ser Gln Ala His Thr Leu Glu Asp Glu Val Ala Glu
 185 190 195
 Val Leu Gln Lys Leu Ile Ser Lys Glu Ala Asn Asn Tyr Glu Glu
 200 205 210
 Asp Pro Asn Lys Pro Thr Ser Trp Thr Glu Asn Gln Ala Gly Lys
 215 220 225
 Ile Pro Glu Lys Val Thr Pro Met Ala Ala Ile Gln Asp Gly Leu
 230 235 240
 Ala Lys Gly Glu Asn Asp Glu Thr Val Ser Asn Thr Leu Thr Leu
 245 250 255
 Thr Asn Gly Leu Glu Arg Arg Thr Lys Thr Tyr Ser Glu Asp Asn
 260 265 270
 Phe Glu Glu Leu Gln Tyr Phe Pro Asn Phe Tyr Ala Leu Leu Lys
 275 280 285
 Ser Ile Asp Ser Glu Lys Glu Ala Lys Glu Lys Glu Thr Leu Ile
 290 295 300
 Thr Ile Met Lys Thr Leu Ile Asp Phe Val Lys Met Met Val Lys
 305 310 315
 Tyr Gly Thr Ile Ser Pro Glu Glu Gly Val Ser Tyr Leu Glu Asn
 320 325 330
 Leu Asp Glu Met Ile Ala Leu Gln Thr Lys Asn Lys Leu Glu Lys
 335 340 345
 Asn Ala Thr Asp Asn Ile Ser Lys Leu Phe Pro Ala Pro Ser Glu
 350 355 360
 Lys Ser His Glu Glu Thr Asp Ser Thr Lys Glu Glu Ala Ala Lys
 365 370 375
 Met Glu Lys Glu Tyr Gly Ser Leu Lys Asp Ser Thr Lys Asp Asp
 380 385 390
 Asn Ser Asn Pro Gly Gly Lys Thr Asp Glu Pro Lys Gly Lys Thr
 395 400 405
 Glu Ala Tyr Leu Glu Ala Ile Arg Lys Asn Ile Glu Trp Leu Lys
 410 415 420
 Lys His Asp Lys Lys Gly Asn Lys Glu Asp Tyr Asp Leu Ser Lys
 425 430 435
 Met Arg Asp Phe Ile Asn Lys Gln Ala Asp Ala Tyr Val Glu Lys
 440 445 450
 Gly Ile Leu Asp Lys Glu Glu Ala Glu Ala Ile Lys Arg Ile Tyr
 455 460 465
 Ser Ser Leu

<210> 68
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 68
cgtcacagga acttcagcac cc 22

<210> 69
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 69
gtcttggctt cctccagggtt tgg 23

<210> 70
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 70
ggacagcgct cccctctacc tggagacttg actccgc 38

<210> 71
<211> 2379
<212> DNA
<213> Homo Sapien

<400> 71
tttgctccgg cggcgctcgg ggagggagcc agcagcctag ggcctaggcc 50
cgggccacca tggcgctgcc tccaggccca gccgcctcc ggcacacact 100
gctgctcctg ccagcccttc tgagctcagg ttggggggag ttggagccac 150
aaatagatgg tcagacctgg gctgagcggg cacttcggga gaatgaacgc 200
cacgccttca cctgccgggt ggcagggggg cctggcaccc ccagattggc 250
ctggtatctg gatggacagc tgcaggaggc cagcacctca agactgctga 300
gcgtggagg ggaggccttc tctggaggca ccagcacctt cactgtcact 350
gcccatcggg cccagcatga gctcaactgc tctctgcagg accccagaag 400
tggccgatca gccaacgcct ctgtcatcct taatgtcaa ttcaaggccag 450

agattgccca agtcggcgcc aagtaccagg aagctcaggg cccaggcctc 500
ctggttgtcc tgttgcctt ggtgcgtgcc aaccgcggg ccaatgtcac 550
ctggatcgac caggatgggc cagtgaactgt caacacctct gacttcctgg 600
tgctggatgc gcagaactac ccctggctca ccaaccacac ggtgcagctg 650
cagctccgca gcctggcaca caacctctcg gtggtggcca ccaatgacgt 700
gggtgtcacc agtgcgtcgc ttccagcccc aggcccctcc cgccacccat 750
ctctgatatac aagtgactcc aacaacctaa aactcaacaa cgtgcgcctg 800
ccacgggaga acatgtccct cccgtccaac cttagctca atgacctcac 850
tccagattcc agagcagtga aaccagcaga cggcagatg gctcagaaca 900
acagccggcc agagttctg gacccggagc cggcggcct cctcaccagc 950
caaggtttca tccgcctccc agtgctggc tatatactac gagtgtccag 1000
cgtgagcagt gatgagatct ggctctgagc cgagggcagc acaggagtat 1050
tctcttggcc tctggacacc ctcccatattcc tccaaggcat cctctaccta 1100
gcttaggtcac caacgtgaag aagttatgcc actgccactt ttgcttgccc 1150
tcctggctgg ggtgcctcc atgtcatgca cgtgatgcat ttcaactggc 1200
tgtaacccgc aggggcacag gtatcttgg caaggctacc agttggacgt 1250
aagccctca tgctgactca gggtgggccc tgcattgtat gactggccc 1300
ttccagaggg agctcttgg ccaggggtgt tcagatgtca tccagcatcc 1350
aagtgtggca tggcctgctg tataccccac cccagtactc cacagcacct 1400
tgtacagtag gcatggggc gtgcctgtgt gggggacagg gagggccctg 1450
catggatttt ctccttcct atgctatgta gccttggc ctcaggtaaa 1500
atttaggacc ctgctagctg tgcagaaccc aattgcctt tgcacagaaa 1550
ccaacccctg acccagcggt accggccaag cacaacgtc cttttgctg 1600
cacacgtctc tgcccttcac ttcttcttt ctgtccccac ctccctttgg 1650
gaattctagg ttacacgttg gaccttctct actacttcac tggcactag 1700
acttttctat tggcctgtgc catcgcccaag tattagcaca agtttagggag 1750
gaagaggcag gcgatgagtc tagtagcacc caggacggct tggtagctatg 1800
catcattttc ctacggcggtt agcactttaa gcacatcccc taggggaggg 1850
ggtgagttag gggcccaagag cccttttgtt ggctcccca cgttggcct 1900

tctgggattc actgtgagtg tcctgagtc tcggggttga tggttttct 1950
ctcagcatgt ctcctccacc acgggacccc agccctgacc aacccatggt 2000
tgcctcatca gcaggaaggt gcccttcctg gaggatggtc gccacaggca 2050
cataattcaa cagtgtggaa gctttagggg aacatggaga aagaaggaga 2100
ccacataccc caaagtgacc taagaacact ttaaaaagca acatgtaaat 2150
gattggaaat taatatagtc cagaatatat tttcccttg ttgagatctt 2200
cttttgcataat gttttcatg ttactgccta gggcggtgct gagcacacag 2250
caagtttaat aaacttgact gaattcattt aaaaaaaaaa aaaaaaaaaa 2300
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2350
aaaaaaaaaa aaaaaaaaaa aaaaaaaaa 2379

<210> 72

<211> 322

<212> PRT

<213> Homo Sapien

<400> 72

Met	Ala	Leu	Pro	Pro	Gly	Pro	Ala	Ala	Leu	Arg	His	Thr	Leu	Leu
1									10					15
Leu	Leu	Pro	Ala	Leu	Leu	Ser	Ser	Gly	Trp	Gly	Glu	Leu	Glu	Pro
				20					25					30
Gln	Ile	Asp	Gly	Gln	Thr	Trp	Ala	Glu	Arg	Ala	Leu	Arg	Glu	Asn
				35				40						45
Glu	Arg	His	Ala	Phe	Thr	Cys	Arg	Val	Ala	Gly	Gly	Pro	Gly	Thr
				50				55						60
Pro	Arg	Leu	Ala	Trp	Tyr	Leu	Asp	Gly	Gln	Leu	Gln	Glu	Ala	Ser
				65				70						75
Thr	Ser	Arg	Leu	Leu	Ser	Val	Gly	Gly	Glu	Ala	Phe	Ser	Gly	Gly
					80			85						90
Thr	Ser	Thr	Phe	Thr	Val	Thr	Ala	His	Arg	Ala	Gln	His	Glu	Leu
				95				100						105
Asn	Cys	Ser	Leu	Gln	Asp	Pro	Arg	Ser	Gly	Arg	Ser	Ala	Asn	Ala
				110				115						120
Ser	Val	Ile	Leu	Asn	Val	Gln	Phe	Lys	Pro	Glu	Ile	Ala	Gln	Val
				125				130						135
Gly	Ala	Lys	Tyr	Gln	Glu	Ala	Gln	Gly	Pro	Gly	Leu	Leu	Val	Val
				140				145						150
Leu	Phe	Ala	Leu	Val	Arg	Ala	Asn	Pro	Pro	Ala	Asn	Val	Thr	Trp
				155				160						165

Ile Asp Gln Asp Gly Pro Val Thr Val Asn Thr Ser Asp Phe Leu
 170 175 180
 Val Leu Asp Ala Gln Asn Tyr Pro Trp Leu Thr Asn His Thr Val
 185 190 195
 Gln Leu Gln Leu Arg Ser Leu Ala His Asn Leu Ser Val Val Ala
 200 205 210
 Thr Asn Asp Val Gly Val Thr Ser Ala Ser Leu Pro Ala Pro Gly
 215 220 225
 Pro Ser Arg His Pro Ser Leu Ile Ser Ser Asp Ser Asn Asn Leu
 230 235 240
 Lys Leu Asn Asn Val Arg Leu Pro Arg Glu Asn Met Ser Leu Pro
 245 250 255
 Ser Asn Leu Gln Leu Asn Asp Leu Thr Pro Asp Ser Arg Ala Val
 260 265 270
 Lys Pro Ala Asp Arg Gln Met Ala Gln Asn Asn Ser Arg Pro Glu
 275 280 285
 Leu Leu Asp Pro Glu Pro Gly Gly Leu Leu Thr Ser Gln Gly Phe
 290 295 300
 Ile Arg Leu Pro Val Leu Gly Tyr Ile Tyr Arg Val Ser Ser Val
 305 310 315
 Ser Ser Asp Glu Ile Trp Leu
 320

<210> 73
 <211> 843
 <212> DNA
 <213> Homo Sapien

<400> 73
 cggggacgga agcggccct gggcccagg ggctggagcc gggccgggc 50
 gatgtggagc gcgggccgca gcggggctgc ctggccggtg ctgttgggc 100
 tgctgctggc gctgttagtg ccggcggtg gtgccgcaa gaccggtgcg 150
 gagctcgtga cctcgccgtc ggtgctgaag ctgctcaata cgccaccacg 200
 cgtcggctg cactcgcacg acatcaaata cggatccggc agcggccagc 250
 aatcggtgac cggcgtagag gcgtcgacg acgccaatag ctactggcgg 300
 atcccgccgcg gctcgaggg cgggtgccccg cgccggtccc cggtgcgctg 350
 cgggcaggcg gtgaggctca cgcattgtct tacggcaag aacctgcaca 400
 cgcaccacctt cccgtcgccg ctgtccaaca accaggaggt gagtgccctt 450
 gggaaagacg gcgaggcgca cgacctggac ctatggacag tgcgctgctc 500

tggacagcac tgggagcgtg aggctgctgt gcgcattccag catgtggca 550
cctctgttt cctgtcagtc acgggtgagc agtatggaag ccccatccgt 600
gggcagcatg aggtccacgg catgcccagt gccaacacgc acaatacg 650
gaaggccatg gaaggcatct tcataagcc tagtgtggag ccctctgcag 700
gtcacgatga actctgagtg tgtggatgaa tgggtggatg gaggggtggca 750
gttggggcgt ctgcaggcc actcttggca gagactttgg gttttaggg 800
gtcctcaagt gccttgtga ttaaagaatg ttgtctatg aaa 843

<210> 74
<211> 221
<212> PRT
<213> Homo Sapien

<400> 74

Met	Trp	Ser	Ala	Gly	Arg	Gly	Ala	Ala	Trp	Pro	Val	Leu	Leu	
1				5			10					15		
Gly	Leu	Leu	Leu	Ala	Leu	Leu	Val	Pro	Gly	Gly	Gly	Ala	Ala	Lys
	20				25							30		
Thr	Gly	Ala	Glu	Leu	Leu	Val	Thr	Cys	Gly	Ser	Val	Leu	Lys	Leu
	35					40						45		
Asn	Thr	His	His	Arg	Val	Arg	Leu	His	Ser	His	Asp	Ile	Lys	Tyr
		50					55					60		
Gly	Ser	Gly	Ser	Gly	Gln	Gln	Ser	Val	Thr	Gly	Val	Glu	Ala	Ser
	65				70							75		
Asp	Asp	Ala	Asn	Ser	Tyr	Trp	Arg	Ile	Arg	Gly	Gly	Ser	Glu	Gly
	80					85						90		
Gly	Cys	Pro	Arg	Gly	Ser	Pro	Val	Arg	Cys	Gly	Gln	Ala	Val	Arg
	95					100						105		
Leu	Thr	His	Val	Leu	Thr	Gly	Lys	Asn	Leu	His	Thr	His	His	Phe
	110						115					120		
Pro	Ser	Pro	Leu	Ser	Asn	Asn	Gln	Glu	Val	Ser	Ala	Phe	Gly	Glu
	125						130					135		
Asp	Gly	Glu	Gly	Asp	Asp	Leu	Asp	Leu	Trp	Thr	Val	Arg	Cys	Ser
	140						145					150		
Gly	Gln	His	Trp	Glu	Arg	Glu	Ala	Ala	Val	Arg	Phe	Gln	His	Val
	155						160					165		
Gly	Thr	Ser	Val	Phe	Leu	Ser	Val	Thr	Gly	Glu	Gln	Tyr	Gly	Ser
	170						175					180		
Pro	Ile	Arg	Gly	Gln	His	Glu	Val	His	Gly	Met	Pro	Ser	Ala	Asn
	185						190					195		

Thr His Asn Thr Trp Lys Ala Met Glu Gly Ile Phe Ile Lys Pro
200 205 210

Ser Val Glu Pro Ser Ala Gly His Asp Glu Leu
215 220

<210> 75

<211> 1049

<212> DNA

<213> Homo Sapien

<400> 75

gttgctatgt tgccaggct ggtcttgaag tgccttgacc tcctaaagt 50
ttggaaccac agacgtgagc cactccaccc agcctaaaac ttcatcttct 100
ttggatgaga tgaacacttt taacaagaga acaggactct atataaatcg 150
ctgtgggctc accacctcta aggaggagca ctgactgaag acagaaaaat 200
tgatgaactg aagaagacat ggtccattat gccttacaaa cttacacagt 250
gctttggaa ttccaaagta ctcagtggag agaggtgttt caggagccgt 300
agagccagat cgtcatcatg tctgcattgt ggctgctgct gggcctcctt 350
gccctgatgg acttgtctga aagcagcaac tggggatgct atggaaacat 400
ccaaagcctg gacacccctg gagcatctt gggattgga agacgtcacg 450
gcctgaacta ctgtggagtt cgtcattctg aaaggctggc taaaatagac 500
atgccataacc tcctgaaata tcaacccatg atgaaaccca ttggccaaaa 550
gtactgcatg gatcctgccg tgcattgtgg tgtcttgcc aggaagtctc 600
ccggtgacaa aattctggtc aacatggcg ataggactag catggtgtag 650
gaccctggct ctcaagctcc cacatcctgg attagttagt ctcaggttc 700
ccagacaact gaagttctga ctactagaat caaagaaatc cagaggaggt 750
ttccaacctg gaccctgac cagtacctga gaggtggact ctgtcctac 800
agtgggggtg ctggctatgt ccgaagcagc caggacctga gctgtgactt 850
ctgcaatgat gtcattgcac gagccaagta cctcaagaga catggcttct 900
aacatcttagt atgaaaccca agaccatgat cacatatgca gcctcaaattg 950
ttacacagat aaaactagcc aaggcacct gtaactggga atctgagttt 1000
gacctaaaag tcattaaaat aacatgaatc ccattaaaaa aaaaaaaaaa 1049

<210> 76

<211> 194

<212> PRT

<213> Homo Sapien

<400> 76
Met Ser Ala Leu Trp Leu Leu Leu Gly Leu Leu Ala Leu Met Asp
1 5 10 15

Leu Ser Glu Ser Ser Asn Trp Gly Cys Tyr Gly Asn Ile Gln Ser
20 25 30

Leu Asp Thr Pro Gly Ala Ser Cys Gly Ile Gly Arg Arg His Gly
35 40 45

Leu Asn Tyr Cys Gly Val Arg Ala Ser Glu Arg Leu Ala Glu Ile
50 55 60

Asp Met Pro Tyr Leu Leu Lys Tyr Gln Pro Met Met Gln Thr Ile
65 70 75

Gly Gln Lys Tyr Cys Met Asp Pro Ala Val Ile Ala Gly Val Leu
80 85 90

Ser Arg Lys Ser Pro Gly Asp Lys Ile Leu Val Asn Met Gly Asp
95 100 105

Arg Thr Ser Met Val Gln Asp Pro Gly Ser Gln Ala Pro Thr Ser
110 115 120

Trp Ile Ser Glu Ser Gln Val Ser Gln Thr Thr Glu Val Leu Thr
125 130 135

Thr Arg Ile Lys Glu Ile Gln Arg Arg Phe Pro Thr Trp Thr Pro
140 145 150

Asp Gln Tyr Leu Arg Gly Gly Leu Cys Ala Tyr Ser Gly Gly Ala
155 160 165

Gly Tyr Val Arg Ser Ser Gln Asp Leu Ser Cys Asp Phe Cys Asn
170 175 180

Asp Val Leu Ala Arg Ala Lys Tyr Leu Lys Arg His Gly Phe
185 190

<210> 77
<211> 899
<212> DNA
<213> Homo Sapien

<400> 77
ttgaaaatct actcttatcag ctgctgtggc tgccaccatt ctcaggaccc 50
tcgccatgaa agcccttatg ctgctcaccc tgtctgttct gctctgctgg 100
gtctcagctg acattcgctg tcactcctgc tacaagggtcc ctgtgctgg 150
ctgtgtggac cggcagtccct gccgcctgga gccaggacag caatgcctga 200
caacacatgc ataccttggt aagatgtggg ttttctccaa tctgcgttgt 250
ggcacacccag aagagccctg tcaggaggcc ttcaacccaa ccaaccgcaa 300

gctgggtctg acatataaca ccacactgctg caacaaggac aactgcaaca 350
gcgcaggacc ccggcccaact ccagccctgg gccttgcctt ccttacctcc 400
ttggctggcc ttggcctctg gctgctgcac tgagactcat tccattggct 450
gcccttcctc ccacactgcct tggcctgagc ctctctccct gtgtctctgt 500
atcccctgac tttacagaat cgtctctccc tagctccat ttctttaatt 550
aaacactgtt ccgagtggtc tcctcatcca tccttccac ctcacaccct 600
tcactctcct tttctgggt cccttccac ttccctccag gacctccatt 650
ggctcctaga agggctcccc actttgcctc ctatactctg ctgtccctta 700
cttgaggagg gattgggatc tggcctgaa atggggcttc tgtgttgtcc 750
ccagtgaagg ctcccacaag gacctgatga cctcactgta cagagctgac 800
tccccaaacc caggtccca tatgtacccc atccccata ctcacctctt 850
tccatttga gtaataaaatg tctgagtcg gaaaaaaaaaaa aaaaaaaaaa 899

<210> 78

<211> 125

<212> PRT

<213> Homo Sapien

<400> 78

Met	Lys	Ala	Leu	Met	Leu	Leu	Thr	Leu	Ser	Val	Leu	Leu	Cys	Trp
1				5					10				15	

Val	Ser	Ala	Asp	Ile	Arg	Cys	His	Ser	Cys	Tyr	Lys	Val	Pro	Val
				20					25				30	

Leu	Gly	Cys	Val	Asp	Arg	Gln	Ser	Cys	Arg	Leu	Glu	Pro	Gly	Gln
				35					40				45	

Gln	Cys	Leu	Thr	Thr	His	Ala	Tyr	Leu	Gly	Lys	Met	Trp	Val	Phe
				50					55				60	

Ser	Asn	Leu	Arg	Cys	Gly	Thr	Pro	Glu	Glu	Pro	Cys	Gln	Glu	Ala
				65				70				75		

Phe	Asn	Gln	Thr	Asn	Arg	Lys	Leu	Gly	Leu	Thr	Tyr	Asn	Thr	Thr
				80				85				90		

Cys	Cys	Asn	Lys	Asp	Asn	Cys	Asn	Ser	Ala	Gly	Pro	Arg	Pro	Thr
				95				100				105		

Pro	Ala	Leu	Gly	Leu	Val	Phe	Leu	Thr	Ser	Leu	Ala	Gly	Leu	Gly
				110				115				120		

Leu	Trp	Leu	Leu	His										
				125										

<210> 79

<211> 1977
<212> DNA
<213> Homo Sapien

<400> 79
acggggcgca gcggcagtga cgtagggttg ggcacggat ccgttgcggc 50
tgcagctctg cagtcgggcc gttcctcgc cgccgcccagg ggttagcggtg 100
tagctgcgca gcgtcgcgcg cgctaccgca cccaggttcg gcccgtaggc 150
gtctgcgcgc cggcgccat cttcatcgag cgccatggcc gcagcctgcg 200
ggccgggagc ggccgggtac tgcttgctcc tcggcttgca tttgtttctg 250
ctgaccgcgg gcccgcctt gggctggaac gaccctgaca gaatgttgc 300
gcgggatgta aaagctctta ccctccacta tgaccgctat accacctccc 350
gcaggctgga tccccatccca cagttgaaat gtgttgagg cacagctgg 400
tgtgattctt ataccccaa agtcatacag tgtcagaaca aaggctgg 450
tgggtatgat gtacagtggg aatgtaagac ggacttagat attgcataca 500
aatttggaaa aactgtggg agctgtgaag gctatgagtc ctctgaagac 550
cagtatgtac taagagggttc ttgtggcttg gagtataatt tagattatac 600
agaacttggc ctgcagaaac tgaaggagtc tggaaagcag cacggcttg 650
cctcttctc tgattattat tataagtgg cctcggcgga ttctgtAAC 700
atgagtggat tgattaccat cgtggtaactc cttggatcg ccttgttagt 750
ctataagctg ttccctgagtg acggcagta ttctcccca ccgtactctg 800
agtatccctcc atttcccac cgttaccaga gattcaccaa ctcagcagga 850
cctcctcccc caggctttaa gtctgagttc acaggaccac agaatactgg 900
ccatggtgca acttctgggtt ttggcagtgc ttttacagga caacaaggat 950
atgaaaattc aggaccaggg ttctggacag gcttggaaac tgggtggata 1000
ctaggatatt tgtttggcag caatagagcg gcaacaccct tctcagactc 1050
gtggtaactac ccgtcctatc ctccctcccta ccctggcagc tggaaatagg 1100
cttactcacc cttcatgga ggctcggca gctattcggt atgttcaaac 1150
tcagacacga aaaccagaac tgcatcagga tatggtgta ccaggagacg 1200
ataaagtaga aagttggagt caaacactgg atgcagaaat tttggatttt 1250
tcatcacttt ctcttagaa aaaaagtact acctgttaac aattggaaaa 1300
agggatatt caaaagttct gtgggttat gtccagtgtta gcttttgta 1350

ttctattatt tgaggctaaa agttgatgtg tgacaaaata cttatgtgtt 1400
gtatgtcagt gtaacatgca gatgtatatt gcagtttg aaagtgatca 1450
ttactgtgga atgctaaaaa tacattaatt tctaaaacct gtgatgccct 1500
aagaagcatt aagaatgaag gtgttgtact aatagaaact aagtacagaa 1550
aatttcagtt ttaggtggtt gtagctgatg agtattacc tcataagagac 1600
tataatattc tatttggat tatattattt gatgttgct gttcttcaa 1650
catttaaatc aagctttgga ctaattatgc taatttgtga gttctgatca 1700
cttttgagct ctgaagctt gaatcattca gtggggaga tggccttctg 1750
gtaactgaat attaccttct gtagaaaaag gtggaaaata agcatctaga 1800
aggttggtgt gaatgactct gtgctggcaa aaatgcttga aacctctata 1850
tttcttcgt tcataagagg taaaggtcaa attttcaac aaaagtctt 1900
taataacaaa agcatgcagt tctctgtgaa atctcaaata ttgttgtaat 1950
agtctgttcc aatctaaaaa agaatca 1977

<210> 80

<211> 339

<212> PRT

<213> Homo Sapien

<400> 80

Met Ala Ala Ala Cys Gly Pro Gly Ala Ala Gly Tyr Cys Leu Leu
1 5 10 15

Leu Gly Leu His Leu Phe Leu Leu Thr Ala Gly Pro Ala Leu Gly
20 25 30

Trp Asn Asp Pro Asp Arg Met Leu Leu Arg Asp Val Lys Ala Leu
35 40 45

Thr Leu His Tyr Asp Arg Tyr Thr Thr Ser Arg Arg Leu Asp Pro
50 55 60

Ile Pro Gln Leu Lys Cys Val Gly Gly Thr Ala Gly Cys Asp Ser
65 70 75

Tyr Thr Pro Lys Val Ile Gln Cys Gln Asn Lys Gly Trp Asp Gly
80 85 90

Tyr Asp Val Gln Trp Glu Cys Lys Thr Asp Leu Asp Ile Ala Tyr
95 100 105

Lys Phe Gly Lys Thr Val Val Ser Cys Glu Gly Tyr Glu Ser Ser
110 115 120

Glu Asp Gln Tyr Val Leu Arg Gly Ser Cys Gly Leu Glu Tyr Asn
125 130 135

Leu Asp Tyr Thr Glu Leu Gly Leu Gln Lys Leu Lys Glu Ser Gly
140 145 150

Lys Gln His Gly Phe Ala Ser Phe Ser Asp Tyr Tyr Tyr Lys Trp
155 160 165

Ser Ser Ala Asp Ser Cys Asn Met Ser Gly Leu Ile Thr Ile Val
170 175 180

Val Leu Leu Gly Ile Ala Phe Val Val Tyr Lys Leu Phe Leu Ser
185 190 195

Asp Gly Gln Tyr Ser Pro Pro Tyr Ser Glu Tyr Pro Pro Phe
200 205 210

Ser His Arg Tyr Gln Arg Phe Thr Asn Ser Ala Gly Pro Pro Pro
215 220 225

Pro Gly Phe Lys Ser Glu Phe Thr Gly Pro Gln Asn Thr Gly His
230 235 240

Gly Ala Thr Ser Gly Phe Gly Ser Ala Phe Thr Gly Gln Gln Gly
245 250 255

Tyr Glu Asn Ser Gly Pro Gly Phe Trp Thr Gly Leu Gly Thr Gly
260 265 270

Gly Ile Leu Gly Tyr Leu Phe Gly Ser Asn Arg Ala Ala Thr Pro
275 280 285

Phe Ser Asp Ser Trp Tyr Tyr Pro Ser Tyr Pro Pro Ser Tyr Pro
290 295 300

Gly Thr Trp Asn Arg Ala Tyr Ser Pro Leu His Gly Gly Ser Gly
305 310 315

Ser Tyr Ser Val Cys Ser Asn Ser Asp Thr Lys Thr Arg Thr Ala
320 325 330

Ser Gly Tyr Gly Gly Thr Arg Arg Arg
335