РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра математического моделирования и искусственного интеллекта

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 5

Дисциплина: Интеллектуальный анализ данных

Студент: Легиньких Галина

Группа: НФИбд-02-21

Москва 2024

Вариант № 6 (Wine Data Set)

Название файла: wine.data

Ссылка: http://archive.ics.uci.edu/ml/datasets/Wine

Класс: cultivar (столбец No 1)

Метод отбора признаков – рекурсивное исключение признаков (RFE)

Модели классификации:

наивный байесовский классификатор

классификатор логистической регрессии

классификатор логистической регрессии с полиномиальной зависимостью (degree=2)

Кривая для визуализации - PR-кривая

Выполнение

1. Считайте заданный набор данных из репозитария UCI, включая указанный в индивидуальном задании столбец с метками классов.

Считала заданный набор данных.

Out[20]:

	Cultivar	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proantho
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
5	1	14.20	1.76	2.45	15.2	112	3.27	3.39	0.34	
6	1	14.39	1.87	2.45	14.6	96	2.50	2.52	0.30	
7	1	14.06	2.15	2.61	17.6	121	2.60	2.51	0.31	
8	1	14.83	1.64	2.17	14.0	97	2.80	2.98	0.29	
9	1	13.86	1.35	2.27	16.0	98	2.98	3.15	0.22	
4										•

2. Если среди меток класса имеются пропущенные значения, то удалите записи с пропущенными метками класса. Если столбец с метками классов содержит более двух классов, то объедините некоторые классы, чтобы получить набор для бинарной классификации с примерно равным количеством точек в положительном и отрицательном классах. Если один из классов является преобладающим (мажоритарным), то объедините все прочие классы в другой класс.

Среди меток класса нет пропущенных значений. Среди признаков тоже.

```
In [21]: import numpy as np
         wine = wine.replace('?', np.NaN) # заменим '?' на np.NaN
         print('Число пропущенных значений:')
         for col in wine.columns:
             print("NaN in", col,"=", wine[col].isna().sum())
        Число пропущенных значений:
        NaN in Cultivar = 0
        NaN in Alcohol = 0
        NaN in Malic acid = 0
        NaN in Ash = 0
        NaN in Alcalinity of ash = 0
        NaN in Magnesium = 0
        NaN in Total phenols = 0
        NaN in Flavanoids = 0
        NaN in Nonflavanoid phenols = 0
        NaN in Proanthocyanins = 0
        NaN in Color intensity = 0
        NaN in Hue = 0
        NaN in OD280/OD315 of diluted wines = 0
        NaN in Proline = 0
```

Столбец с меткой класса содержит более двух классов.

```
In [22]: len(wine['Cultivar'].unique())
```

Out[22]: 3

Посмотрим сколько в каждом классе значений.

```
In [23]: wine['Cultivar'].value_counts()
```

Out[23]: Cultivar 2 71 1 59

3 /18

Name: count, dtype: int64

Класс 2 является преобладающим (мажоритарным), а классы 1 и 3 можно объединить в один новый класс для достижения бинарной классификации. Теперь объединим классы 1 и 3 в новый класс, скажем, "0", а класс 2 останется как "1".

```
In [24]: wine['Cultivar'] = wine['Cultivar'].apply(lambda x: 1 if x == 2 else 0)
    wine['Cultivar'].value_counts()
```

Out[24]: Cultivar 0 107 1 71

Name: count, dtype: int64

3. Если какие-либо числовые признаки в наборе были распознаны неверно, то преобразуйте их в числовые. Удалите из набора признаки с текстовыми (категориальными) значениями. Если в оставшихся числовых признаках имеются пропущенные значения, то замените их на средние значения для положительного и отрицательного классов.

Все признаки числовые. И прознаков нет пустых значений, это проверено выше.

```
In [25]: wine.dtypes
```

Out[25]:	Cultivar	int64
ouc[25].		
	Alcohol	float64
	Malic acid	float64
	Ash	float64
	Alcalinity of ash	float64
	Magnesium	int64
	Total phenols	float64
	Flavanoids	float64
	Nonflavanoid phenols	float64
	Proanthocyanins	float64
	Color intensity	float64
	Hue	float64
	OD280/OD315 of diluted wines	float64
	Proline	int64
	dtype: object	

4. Выполните стандартизацию признаков набора данных.

Выполнила стандартизацию признаков.

```
In [26]: from sklearn.preprocessing import StandardScaler
```

Out[26]:

0	Cultivar	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols
0	0	1.518613	-0.562250	0.232053	-1.169593	1.913905	0.808997	1.034819	-0.659563
1	0	0.246290	-0.499413	-0.827996	-2.490847	0.018145	0.568648	0.733629	-0.820719
2	0	0.196879	0.021231	1.109334	-0.268738	0.088358	0.808997	1.215533	-0.498407
3	0	1.691550	-0.346811	0.487926	-0.809251	0.930918	2.491446	1.466525	-0.981875
4	0	0.295700	0.227694	1.840403	0.451946	1.281985	0.808997	0.663351	0.226796
4									>

4. Используя метод отбора признаков, указанный в индивидуальном задании, определите и оставьте в наборе данных два наиболее значимых признака, принимающих более 10 различных значений.

У меня это метод рекурсивного исключения признаков (RFE).

```
In [27]: from sklearn.linear_model import LogisticRegression
    from sklearn.feature_selection import RFE

X = wine.drop(columns='Cultivar')
X = X.loc[:, X.nunique() > 10]
Y = wine['Cultivar']

model = LogisticRegression(max_iter=1000)
rfe = RFE(model, n_features_to_select=2)
fit = rfe.fit(X, Y)
```

Выбранные признаки: ['Color intensity', 'Proline']

```
In [28]: print("Число признаков: %d" % fit.n_features_)
print("Выбранные признаки: %s" % fit.support_)
selected_X = X.columns[rfe.support_]
print("Выбранные признаки:", selected_X)
print("Ранг признаков: %s" % fit.ranking_)
```

Число признаков: 2

Выбранные признаки: [False False Fa

Выбранные признаки: Index(['Color intensity', 'Proline'], dtype='object') Ранг признаков: [2 6 4 5 10 12 7 8 9 1 3 11 1]

На всякий случай еще раз проверю на количество уникальных значений.

```
In [29]: print('Color intensity -', len(wine['Color intensity'].value_counts())) # > 10
print('Proline -', len(wine['Proline'].value_counts())) # > 10
```

```
Color intensity - 132
Proline - 121
```

```
In [30]: wine_new = wine[['Cultivar', 'Proline', 'Color intensity']]
wine_new.head()
```

Out[30]:	Cultivar		Proline	Color intensity	
	0	0	1.013009	0.251717	
	1	0	0.965242	-0.293321	
	2	0	1.395148	0.269020	
	3	0	2.334574	1.186068	
	4	0	-0.037874	-0.319276	

6. Визуализируйте набора данных в виде точек на плоскости, отображая точки положительного и отрицательного классов разными цветами и разными маркерами. В качестве подписей осей используйте названия признаков, согласно описания набора данных. В подписи рисунка укажите название набора данных. Создайте легенду набора данных.

Пусть класс 1 будет -, а класс 0 будет +.

```
In [31]: import matplotlib.pyplot as plt
         # Настройки для визуализации
         plt.figure(figsize=(8, 6))
         colors = {0: 'red', 1: 'blue'}
         markers = {0: '*', 1: '^'}
         for clr in wine_new['Cultivar'].unique():
             xx = wine_new['Proline'].loc[wine_new['Cultivar'] == clr]
             yy = wine_new['Color intensity'].loc[wine_new['Cultivar'] == clr]
             plt.scatter(xx, yy, c=colors[clr], label=f'Class {clr}',
                         marker=markers[clr], alpha=0.5)
         # Настройки графика
         plt.axis('equal')
         plt.title('Wine Dataset: Color Intensity vs Proline')
         plt.xlabel('Proline')
         plt.ylabel('Color Intensity')
         plt.legend(title='Classes')
         plt.grid()
         plt.show()
```

Wine Dataset: Color Intensity vs Proline

7. Создайте модели классификации точек набора данных из двух признаков на базе классификаторов, указанных в индивидуальном задании. Используйте при обучении классификаторов разделение набора данных на обучающую и тестовую выборки в соотношении 70% на 30%.

Модели классификации:

наивный байесовский классификатор

классификатор логистической регрессии

классификатор логистической регрессии с полиномиальной зависимостью (degree=2)

```
In [32]: from sklearn.model_selection import train_test_split

X = wine_new[['Proline', 'Color intensity']]
Y = wine_new['Cultivar']
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=42)
X_train.shape, y_train.shape, X_test.shape, y_test.shape
```

Out[32]: ((124, 2), (124,), (54, 2), (54,))

Наивный байесовский классификатор

```
In [33]: from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
```

```
nb_model = GaussianNB()
nb_model.fit(X_train, y_train)
y_pred_nb = nb_model.predict(X_test)
nb_accuracy = accuracy_score(y_test, y_pred_nb)
print(f'Наивный байесовский классификатор accuracy: {nb_accuracy:.2f}')
```

Наивный байесовский классификатор accuracy: 0.91

Классификатор логистической регрессии

```
In [34]: from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
y_pred_log = log_reg.predict(X_test)
log_reg_accuracy = accuracy_score(y_test, y_pred_log)
print(f'Логистическая регрессия accuracy: {log_reg_accuracy:.2f}')
```

Логистическая регрессия accuracy: 0.93

Классификатор логистической регрессии с полиномиальной зависимостью (degree=2)

```
In [35]: from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline

poly_model = make_pipeline(PolynomialFeatures(degree=2), LogisticRegression(max_iter=1000))
poly_model.fit(X_train, y_train)
y_pred_poly = poly_model.predict(X_test)
poly_accuracy = accuracy_score(y_test, y_pred_poly)
print(f'Логистическая регрессия с полиномиальной зависимостью accuracy: {poly_accuracy:.2f}')
```

Логистическая регрессия с полиномиальной зависимостью accuracy: 0.91

8. Визуализируйте для каждого из классификаторов границу принятия решения, подписывая оси и рисунок и создавая легенду для меток классов набора данных в соответствии с требованиями п. 6.

```
In [36]: from matplotlib.colors import ListedColormap
         classifiers = {
             'Наивный байесовский классификатор': GaussianNB(),
             'Логистическая регрессия': LogisticRegression(),
             'Логистическая регрессия с полиномиальной зависимостью': make_pipeline(PolynomialFeatures
         }
         # Обучение классификаторов
         for clf in classifiers.values():
             clf.fit(X_train, y_train)
         def plot_decision_boundary(model, axis):
             x0, x1 = np.meshgrid(np.linspace(axis[0], axis[1], 200),
                                   np.linspace(axis[2], axis[3], 200))
             zz = model.predict(np.c_[x0.ravel(), x1.ravel()]).reshape(x0.shape)
             plt.imshow(zz, interpolation="nearest", extent=axis, aspect="auto", origin="lower",
                        cmap=ListedColormap(['#C71585', '#00FFFF']), alpha=0.2)
         # Визуализация для каждого классификатора
         for name, clf in classifiers.items():
            plt.figure(figsize=(7, 6))
```

```
plot_decision_boundary(clf, axis=[X['Proline'].min() - 2, X['Proline'].max() + 2,
                                   X['Color intensity'].min() - 2, X['Color intensity'].m
plt.scatter(X[Y == 0]['Proline'], X[Y == 0]['Color intensity'],
            marker='*', color='red', label='Класс 0', alpha=0.6)
plt.scatter(X[Y == 1]['Proline'], X[Y == 1]['Color intensity'],
            marker='^', color='blue', label='Класс 1', alpha=0.6)
# Настройки графика
plt.title(f'Границы принятия решений: {name}')
plt.xlabel('Proline')
plt.ylabel('Color Intensity')
plt.axis('equal')
plt.xlim(X['Proline'].min() - 1, X['Proline'].max() + 1)
plt.ylim(X['Color intensity'].min() - 1, X['Color intensity'].max() + 1)
plt.legend()
plt.grid(True)
plt.show()
```

C:\Users\galin\AppData\Roaming\Python\Python312\site-packages\sklearn\base.py:493: UserWarnin
g: X does not have valid feature names, but GaussianNB was fitted with feature names
 warnings.warn(

Границы принятия решений: Наивный байесовский классификатор

C:\Users\galin\AppData\Roaming\Python\Python312\site-packages\sklearn\base.py:493: UserWarnin
g: X does not have valid feature names, but LogisticRegression was fitted with feature names
 warnings.warn(

C:\Users\galin\AppData\Roaming\Python\Python312\site-packages\sklearn\base.py:493: UserWarnin
g: X does not have valid feature names, but PolynomialFeatures was fitted with feature names
warnings.warn(

Границы принятия решений: Логистическая регрессия с полиномиальной зависимостью

9. Визуализируйте на одном рисунке кривые бинарной классификации, указанные в индивидуальном задании, для каждого из классификаторов, подписывая оси и рисунок. Используйте в качестве меток легенды для названия классификаторов.

```
from sklearn.metrics import precision_recall_curve, auc
In [37]:
         # Вычисление PR-кривых
         precision_nbc, recall_nbc, _ = precision_recall_curve(y_test, nb_model.predict_proba(X_test)[
         precision_log_reg, recall_log_reg, _ = precision_recall_curve(y_test, log_reg.predict_proba(X)
         precision_log_reg_poly, recall_log_reg_poly, _ = precision_recall_curve(y_test, poly_model.pre
         # Построение
         plt.figure(figsize=(8, 6))
         plt.plot(recall_nbc, precision_nbc, label='Наивный байесовский классификатор', c='b')
         plt.plot(recall_log_reg, precision_log_reg, label='Логистическая регрессия', c='r')
         plt.plot(recall_log_reg_poly, precision_log_reg_poly, label='Логистическая регрессия с полиног
         # Настройки графика
         plt.xlabel('Полнота')
         plt.ylabel('Точность')
         plt.title('PR-кривые')
         plt.legend(loc='lower left')
         plt.grid()
         plt.show()
```


10. Определите лучший из используемых методов бинарной классификации по показателю площади, ограниченной кривой из п. 9.

Как видно, наивный бфйесовкий классификатор считается лучшим из рассмотренных.

```
In [38]:

area_nbc = auc(recall_nbc, precision_nbc)

area_log_reg = auc(recall_log_reg, precision_log_reg)

area_log_reg_poly = auc(recall_log_reg_poly, precision_log_reg_poly)

# Выбод площадей под РК-кривой

print(f'Площадь под РК-кривой для Наивного байесовского классификатора: {area_nbc:.4f}')

print(f'Площадь под РК-кривой для Логистической регрессии: {area_log_reg:.4f}')

print(f'Площадь под РК-кривой для Логистической регрессии с полиномиальными зависимостями: {a

areas = {

    'Наивный байесовский классификатор': area_nbc,

    'Логистическая регрессия': area_log_reg,

    'Логистическая регрессия с полиномиальными зависимостями': area_log_reg_poly
}

best_classifier = max(areas, key=areas.get)

print(f'Лучший классификатор: {best_classifier} с площадью {areas[best_classifier]:.4f}')
```

Площадь под PR-кривой для Наивного байесовского классификатора: 0.9744
Площадь под PR-кривой для Логистической регрессии: 0.9731
Площадь под PR-кривой для Логистической регрессии с полиномиальными зависимостями: 0.9715
Лучший классификатор: Наивный байесовский классификатор с площадью 0.9744