У нас цепь с катушкой индуктивности и конденсатором.

Мгновенные значений напряжений и токов на элементах электрической цепи

Катушка индуктивности (идеальная индуктивность) - $u_L = L \frac{di_L}{dt}$ где L=1 ΓH , $u_L = \frac{di_L}{dt}$ Конденсатор (идеальная емкость) - $i_C = C \frac{du_C}{dt}$, $u_C = \frac{1}{C} \int i_C dt$ где C=1 Φ , $u_C = \int i_C dt$

Для нашей цепи, содержащей катушку индуктивности L и конденсатор C, при ее подключении к источнику с напряжением и можно записать $u = \frac{di}{dt} + \int i \, dt$. Подставив в

значение тока через конденсатор $i_C = C \frac{du_C}{dt}$ получим линейное дифференциальное

уравнение второго порядка относительно $u_C - \frac{d^2 u_C}{dt^2} + u_C = u$

Соответственная электрической схеме задача Коши - $\frac{d^2 u_C}{dt^2} + u_C = 0$

Ссылка где обсуждается данная схема- https://www.ups-info.ru/for_partners/library/teoreticheskie_osnove_ilektrotehniki_dlya_ibp_ups_/perehodnee_protsesse_v_lineyneh_ilektricheskih_tse/

Решение задачи Коши:

Представим уравнение $\frac{d^2u_C}{dt^2} + u_C = 0$ в виде y'' + y = 0 где $y = u_c$. Наши начальные

условия - y(0)=1 - в начальный момент времени конденсатор заряжен до 1 В и y'(0)=0 ток в цепи отстутствует.

Соответственное характеристическое уравнение - $k^2 + 1 = 0$. Корни Уравнения - $k_1 = 1$ $k_2 = -1$

Общее решение нашего уравнения - $y = C_1 e^{k_1 x} + C_2 e^{k_2 x} = C_1 e^x + C_2 e^{-x}$ и его производная - $y' = C_1 e^x - C_2 e^{-x}$

Константы C_1 и C_2 соответствующие начальным условиям:

Подставляем первое начальное условие в общее решение и второе в его производную: $C_1 + C_2 = 1$, $C_1 - C_2 = 0$. Решение системы - $C_1 = C_2 = 0.5$

Общее решение - $y = \frac{e^x - e^{-x}}{2}$ что показано в диаграмме ниже, у экспоненциально

возрастает. Показана диаграмма для промежутка $x \in [0...20]$ а не $x \in [0...100]$ иначе данные будут слишком большие. Отдельная Программа тут не требуется но её не сложно сделать в браузере на PHP например.

Ссылка где обсуждается решение Задачи Коши - https://www.youtube.com/watch? v=5mzGZF27FbU

Фаил со всеми данными — Zadacha Koshi.ods

