Ejercicio 14

19 Septiembre 2019

La respuesta a este ejercicios debe ser un archivo de python que al ser ejecutado dentro de la terminal de binder resuelva cada uno de los punto planteados. Todas las integrales y derivadas se deben calcular numéricamente.

El archivo que se encuentra en https://github.com/ComputoCienciasUniandes/FISI2028-201920/blob/master/ejercicios/14/valores.txt contiene una secuencia de valores x_k . La densidad de probabilidad de cada uno de esos datos x_k está dada por.

$$\operatorname{prob}(x_k|\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\frac{x_k^2}{\sigma^2}\right]. \tag{1}$$

El objetivo de este ejercicio es encontrar el mejor valor de σ (dada la secuencia de valores x_k) y su incertidumbre asociada. Para esto vamos a utilizar estadística bayesiana.

• (20 puntos) Sabiendo que

$$\operatorname{prob}(\sigma|\{x_k\}) \propto L \times \operatorname{prob}(\sigma),$$
 (2)

donde

$$L = \operatorname{prob}(\{x_k\} | \sigma), \tag{3}$$

y asumiendo que

$$\operatorname{prob}(\sigma) = A,\tag{4}$$

para $1 < \sigma < 10$ y es cero para cualquier otro valor, haga una gráfica de $L \times \operatorname{prob}(\sigma)$ como función de σ . Guarde la gráfica como like.png.

El mejor valor de σ dados los $\{x_k\}$ lo vamos a llamar σ_0 . y lo vamos a definir como el valor que maximiza L:

$$\left. \frac{dL}{d\sigma} \right|_{\sigma_0} = 0.$$

- (20 puntos) Haga una gráfica de $\frac{dL}{d\sigma}$ v
s σ y guárdela como like_prime.png
- \bullet (20 puntos) Utilizando el método de Newton-Rhapson encuentre el valor de σ_0 e imprímalo en pantalla.

Vamos a llamar $\Delta \sigma_0$ la incertidumbre sobre σ_0 . En estadística bayesiana esta cantidad está dada por:

$$-\frac{d^2\operatorname{prob}(\sigma|\{x_k\})}{d\sigma^2}\bigg|_{\sigma_0}$$

- (20 puntos) Haga una gráfica de $\frac{d^2\mathrm{prob}(\sigma|\{x_k\})}{d\sigma^2}$ vs. σ y guárdela como like_prime_prime.png.
- (20 puntos) Imprima en pantalla el valor de $\Delta \sigma_0$.