LINEAR MOTION

velocity, $v = \frac{\Delta x}{t}$ occeleration, $a = \frac{\Delta v}{t}$

Newton's 2^{nl} Law, $F_{Net} = m \cdot a$

Constant Acceleration $V_f = V_i + at$ $\Delta x = V_i t + \frac{1}{2} at^2$

Work, W=F·d Power, $P = \frac{W}{t}$

Kintic Energy, K= 12 my2

Potential Energy, U=mgh

Momentum, p= mv

Impuler, Ap= Fax: t

ELECTRICITY

Force due to a charge in con electric field

F= 4 E

Electric field control boy a Source Charge go

 $E = \frac{kq_0}{J^2}$, $k = 9 \times 10^9 \frac{Nm^2}{C^2}$

Electric potential energy

Ue=q:Ed [Joules]

Electric potential, [Volts] $V = \frac{Ue}{9} = E \cdot d$

ROTATIONAL MOTION

onaplar velocity, $\omega = \frac{\Delta \Theta}{t}$ angular acceleration, $d = \frac{\Delta \omega}{t}$ torque, $T = F \cdot J$ rotational inertia, INeutonis 2nd Law

Neutonic 2nd Law $T_{NET} = T \cdot d$ Constant angular acceleration $W_f = W_i + dt$ $\Delta \theta = W_i t + \frac{1}{2} dt^2$

Angular Momentum, L=Iw Linear velocity to angular velocity V=W·T

CIRCUITS

Ohm's Law V= I.R

Electric Power, P=IV P=I2R

Resistors in series

R = R, + R2

Resistors in parallel

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

MISCELLANEOUS

Weight, $F_g = mrg$ Newton's Law of Universal Gravitation $F_g = G_1 m_1 m_2$, $G = 6.67.10^{-11} \frac{Nm^2}{kg^2}$ Hooke's Law (spring force), F = kxSpring Potential Energy, $U_s = \frac{1}{2}kx^2$ Centripetal acceleration $a_c = \frac{V^2}{r}$ Centripetal form, $F_c = ma_c = mv^2$

HEAT and TEMPERATURE

Celcius to Fahrenheit Conversion $T_F = \frac{9}{5}T_c + 32$

Fahrenheit to Celzius Conversion

Pressure = Force Area

Heat to change temperature

Q = m Cp DTc Cp -> specific heat capacity

Heat to change phase (solid-liquid-gas)

(Latent Heat)

Q = m L_f L_f > latent heat of fusion

(ice to water)

WAVES + SOUND

frequency and period

$$f = \frac{1}{T} + T = \frac{1}{f}$$

spud of waves

$$\lambda = t \cdot y$$

Sped of waves on a string $V = \sqrt{\frac{F}{\mu}}$ $\mu = \frac{m}{L}$

standing waves on a string

	wave length	trequency
fundamental	λ=2L	f- XL
1st overtone	$\lambda = \frac{2L}{2}$	$f = \frac{2v}{2L}$
2 nd overtone	入= 当	f = 3V 2L