第4节 高考中椭圆常用的二级结论(★★★)

强化训练

1. (2023 • 北京丰台模拟 • ★) 已知椭圆 $C: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 的左、右两个顶点分别为 A, B,点 P 是椭圆 C 上 异于 A, B 的任意一点,则直线 PA, PB 的斜率之积为 . .

答案: $-\frac{3}{4}$

解析: 涉及椭圆上的点与左、右顶点的连线斜率,直接用内容提要3的第三定义斜率积结论计算,

由题意,
$$k_{PA} \cdot k_{PB} = -\frac{b^2}{a^2} = -\frac{3}{4}$$
.

2. $(2023 \cdot \text{甘肃武威模拟} \cdot \star \star)$ 若椭圆 $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 的焦点为 F_1 , F_2 , 点P在椭圆上,且 $\angle F_1 P F_2 = 90^\circ$,

则 ΔPF_1F_2 的面积为 ()

(A) 9 (B) 12 (C) 15 (D) 18

答案: A

解析:给出 $\angle F_1PF_2$,直接用 $S_{\Delta PF_1F_2}=b^2\tan\frac{\theta}{2}$ 求面积,

由题意, $\theta = 90^{\circ}$,所以 $S_{\Delta PF_1F_2} = b^2 \tan \frac{\theta}{2} = 9 \tan 45^{\circ} = 9$.

3. (★★) 椭圆 $\frac{x^2}{\epsilon} + \frac{y^2}{2} = 1$ 的左、右焦点分别为 F_1 , F_2 , 点 P 在椭圆上,则 $|PF_1| \cdot |PF_2|$ 的取值范围为_____.

答案: [2,6]

解析: 涉及焦半径 $|PF_1|$ 和 $|PF_2|$, 可用焦半径公式来算,

由题意, $a = \sqrt{6}$, $b = \sqrt{2}$, $c = \sqrt{a^2 - b^2} = 2$, 椭圆的离心率 $e = \frac{\sqrt{6}}{3}$,

设 $P(x_0, y_0)(-\sqrt{6} \le x_0 \le \sqrt{6})$,则 $|PF_1| = \sqrt{6} + \frac{\sqrt{6}}{3}x_0$, $|PF_2| = \sqrt{6} - \frac{\sqrt{6}}{3}x_0$, 所以 $|PF_1| \cdot |PF_2| = 6 - \frac{2}{3}x_0^2 \in [2, 6]$.

4. (★★★)设 F_1 , F_2 是椭圆 $\frac{x^2}{4}$ + $\frac{y^2}{2}$ =1的左、右焦点, P是椭圆在第一象限上的一点,且∠ F_1PF_2 =60°, 则点 P 的坐标为____.

答案: $(\frac{2\sqrt{6}}{2}, \frac{\sqrt{6}}{2})$

解析:给出 $\angle F_1PF_2$,可由焦点三角形面积公式 $S=c|y_P|=b^2\tan\frac{\theta}{2}$ 来建立方程求点P的纵坐标,

由题意,a=2, $b=\sqrt{2}$, $c=\sqrt{a^2-b^2}=\sqrt{2}$,设 $P(x_0,y_0)(x_0>0,y_0>0)$,

则 $S_{\Delta F_1 P F_2} = c |y_0| = c y_0 = b^2 \tan \frac{\angle F_1 P F_2}{2}$,所以 $\sqrt{2} y_0 = 2 \tan 30^\circ$,解得: $y_0 = \frac{\sqrt{6}}{2}$,

又点 P 在椭圆上,所以 $\frac{x_0^2}{4} + \frac{y_0^2}{2} = 1$,从而 $x_0 = \sqrt{4 - 2y_0^2} = \frac{2\sqrt{6}}{3}$,故点 P 的坐标为 $(\frac{2\sqrt{6}}{3}, \frac{\sqrt{6}}{3})$.

5. (2022・全国模拟・★★★) 已知 P 是椭圆 $C: \frac{x^2}{8} + \frac{y^2}{4} = 1$ 在第一象限上的动点, F_1 , F_2 分别是其左、

右焦点,O 是坐标原点,则 $\frac{|OP|}{|PF_1|-|PF_2|}$ 的取值范围是_____.

答案: $(\frac{\sqrt{2}}{2}, +\infty)$

解析:要求目标的范围,先设变量表示它.由于有 $|PF_1|$ 和 $|PF_2|$,故考虑设P的坐标,用焦半径公式算它们,

由题意,
$$a = 2\sqrt{2}$$
 , $e = \frac{\sqrt{2}}{2}$, 设 $P(x_0, y_0)(0 < x_0 < 2\sqrt{2})$,

则由焦半径公式,
$$|PF_1| = 2\sqrt{2} + \frac{\sqrt{2}}{2}x_0$$
, $|PF_2| = 2\sqrt{2} - \frac{\sqrt{2}}{2}x_0$,

又
$$|OP| = \sqrt{x_0^2 + y_0^2}$$
,所以 $\frac{|OP|}{|PF_1| - |PF_2|} = \frac{\sqrt{x_0^2 + y_0^2}}{\sqrt{2}x_0} = \sqrt{\frac{x_0^2 + y_0^2}{2x_0^2}}$ ①,

有两个变量,可利用椭圆方程消元, y_0^2 只出现一次,故消 y_0^2 ,

因为
$$P$$
在椭圆 C 上,所以 $\frac{x_0^2}{8} + \frac{y_0^2}{4} = 1$,故 $y_0^2 = 4 - \frac{x_0^2}{2}$,

代入①得
$$\frac{|OP|}{|PF_1|-|PF_2|} = \sqrt{\frac{x_0^2 + 4 - \frac{x_0^2}{2}}{2x_0^2}} = \sqrt{\frac{8 + x_0^2}{4x_0^2}} = \sqrt{\frac{1}{4}(1 + \frac{8}{x_0^2})},$$

因为
$$0 < x_0 < 2\sqrt{2}$$
,所以 $0 < x_0^2 < 8$,从而 $\frac{1}{4}(1 + \frac{8}{x_0^2}) > \frac{1}{2}$,

故
$$\sqrt{\frac{1}{4}(1+\frac{8}{x_0^2})} > \frac{\sqrt{2}}{2}$$
,即 $\frac{|OP|}{|PF_1|-|PF_2|}$ 的取值范围是($\frac{\sqrt{2}}{2}$,+ ∞).

6. $(2022 \cdot 广西模拟 \cdot ★★)$ 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左焦点为 F,过 F 作倾斜角为 45° 的直线与椭圆 C 交于 A,B 两点,若点 M(-3,2) 是线段 AB 的中点,则椭圆 C 的离心率是(

(A)
$$\frac{\sqrt{3}}{3}$$
 (B) $\frac{1}{2}$ (C) $\frac{2}{5}$ (D) $\frac{\sqrt{5}}{5}$

答案: A

解析: 涉及弦AB的中点,考虑中点弦斜率积结论,先计算直线OM和直线AB的斜率,

由题意,
$$k_{OM} = \frac{2-0}{-3-0} = -\frac{2}{3}$$
, $k_{AB} = \tan 45^{\circ} = 1$,所以 $k_{OM} \cdot k_{AB} = -\frac{2}{3}$,

由中点弦斜率积结论, $k_{OM} \cdot k_{AB} = -\frac{b^2}{a^2}$,所以 $-\frac{b^2}{a^2} = -\frac{2}{3}$,故 $2a^2 = 3b^2 = 3(a^2 - c^2)$,整理得: $\frac{c^2}{a^2} = \frac{1}{3}$,

所以椭圆 C 的离心率 $e = \frac{c}{a} = \frac{\sqrt{3}}{3}$.

- 7. (2023•黑龙江哈尔滨模拟•★★)阿基米德是古希腊著名的数学家、物理学家,他利用"逼近法"得 到椭圆的面积除以圆周率 π 等于椭圆的长半轴长与短半轴长的乘积. 已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的右 焦点为F(3,0),过F作直线l交椭圆于A,B两点,若弦AB的中点为M(2,-1),则椭圆的面积为()
- (A) $36\sqrt{2}\pi$ (B) $18\sqrt{2}\pi$ (C) $9\sqrt{2}\pi$ (D) $6\sqrt{2}\pi$

答案: C

解析:分析可发现关键是求a和b,条件中有弦中点,故用中点弦结论可建立一个方程,

如图,由中点弦斜率积结论, $k_{AB} \cdot k_{OM} = -\frac{b^2}{a^2}$,又 $k_{AB} = k_{FM} = \frac{-1-0}{2-3} = 1$, $k_{OM} = \frac{-1-0}{2-0} = -\frac{1}{2}$,

所以 $1 \times (-\frac{1}{2}) = -\frac{b^2}{a^2}$,故 $a^2 = 2b^2$ ①,

还差 1 个方程,可由右焦点坐标来建立,因为右焦点为F(3,0),所以 $a^2-b^2=3^2=9$ ②,

联立①②解得: $a=3\sqrt{2}$, b=3, 由题意, $\frac{S}{-}=ab$, 故椭圆的面积 $S=\pi ab=9\sqrt{2}\pi$.

8. $(2023 \cdot \text{重庆模拟} \cdot \star \star \star \star)$ 已知点 A(-5,0),B(5,0),动点 P(m,n)满足直线 PA,PB 的斜率之积为 $-\frac{16}{25}$,

则 $4m^2 + n^2$ 的取值范围是()

- (A) [16,100] (B) [25,100] (C) [16,100)
- (D) (25,100)

答案: C

解析:看到PA,PB的斜率积为 $-\frac{16}{25}$,想到基于椭圆第三定义的斜率积结论,

由题意,点P在以A,B为左、右顶点的椭圆上,所以a=5,又 $k_{PA}\cdot k_{PB}=-\frac{b^2}{a^2}=-\frac{16}{25}$,所以 $b^2=16$,

故点 P(m,n) 在椭圆 $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 上且不与 A, B 重合,所以 $\frac{m^2}{25} + \frac{n^2}{16} = 1 (m \neq \pm 5)$,

可由此式反解出 n^2 ,代入 $4m^2 + n^2$ 消去n,故 $n^2 = 16 - \frac{16}{25}m^2$,

所以 $4m^2 + n^2 = 4m^2 + 16 - \frac{16}{25}m^2 = \frac{84}{25}m^2 + 16$ ①,

因为 $m \neq \pm 5$,所以-5 < m < 5,故 $0 \le m^2 < 25$,结合①可得 $16 \le 4m^2 + n^2 < 100$.