What are celestial bodies made of?

Remote Sensing of celestial rocks:

Prediction of the chemical structure from spectral analysis

The team

Erica Espinosa

Mattia Gentile

Davide Lo Piccolo

Sophie Retif

RESEARCH QUESTION

Aim of the study:

Understand, through remote sensing, the composition of celestial rocky bodies' surface which are not physically reachable.

Why not using **EMISSIVITY** and **REFLECTANCE** of those bodies at different wavelengths?

The idea is to use data collected on Earth to understand the relationship between chemical compositions of rocks and spectral properties. Thanks to such relationship we aim to build a prediction model to detect the compositions of celestial bodies.

Some examples of spectra

Emissivity for the SRP rocks @ 150°

Reflectance for the B6 blend at two different temperatures

DATASET

FEATURES

Christiansen feature

FEATURES

- Christiansen feature
- Transparency feature

FEATURES

- Christiansen feature
- Transparency feature
- First derivative

Functional boxplot and outliergram

The sample B600 collected in SRP at temperature 600°C looks suspicious. But is it?

ANALYSIS

ANALYSIS

Temperature effect

Multivariate approach:

- Mean
- Median
- L^2 norm of the differences between quartiles

ANALYSIS

Temperature effect

Functional approach:

Highlights which intervals in the curves makes the groups different from each other

Generalized Additive Models

REGRESSION

	Emissivity	Reflectance
SiO_2	CF + s(CFval) + s(TF) + s(TFval) $R_{adj} = 0.977 \;\; Deviance \; expl = 0.988$	s(CF) + s(TFval) $R_{adj} = 0.995 \;\; Deviance \; expl = 0.996$
$Na_2O + K_2O$	CF + s(CFval) + s(TF) + s(TFval) $R_{adj} = 0.835 \; Deviance \; expl = 0.924$	s(CF) + s(TFval) $R_{adj} = 0.945 \;\; Deviance \; expl = 0.979$

CF = Christiansen feature, TF = Transparency feature

True values vs fitted values

REGRESSION

SILICA: Real values vs fitted values by the GAM (at each temperature)

ALCALI: Real values vs fitted values by the GAM (at each temperature)

TAS diagram

A very important tool for classification of minerals based on their chemical composition

REGRESSION

Green dots correspond to real position of our samples, while red crosses are our estimates for each temperature

Leave-one-out cross validation

REGRESSION

Alcali from reflectance

Silica from emissivity

SIlica from reflectance

Leave-one-out cross validation

Silica from emissivity, are we overfitting?

REGRESSION

CONFORMAL PREDICTION

Not only pointwise prediction -> 0.95% prediction intervals. True values (red dots) are always contained in the intervals.

DID WE REACH OUR GOAL?

- Q: Can we obtain informations about the chemical composition of rocky celestial bodies throught remote sensing?
- Q: Is it worth to invest in this field of research?

Q: How could the results be improved?

- A: Yes, emissivity and reflectance curves contain very significant indicators for this kind of tasks.
- A: Of course yes, both because of the importance of this study and because the results we obtained are promising.
- A: Because of the scarcity of data, we could not use all informative features we identified. For future studies a larger amount of data would be required.

References

Vetere F. P., Bisolfati M., Pisello A., Maturilli A., Morgavi D., Pauselli C., iezzi G., Lustrino M. & Perugini D. «*Retrieving magma composition from TIR spectra: implications for terrestrial planets investigrations*» (2019).

Cooper B.L., Salisbury W., Killen R.M. & Potter A.E. «Midinfrared spectral features of rocks and their powders» (2002).

This presentation has been realized using resources from PoweredTemplate.com.

Special thanks to Dott. Matteo Fontana for his precious assistance