

=====

Sequence Listing was accepted.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2008; month=8; day=18; hr=12; min=11; sec=44; ms=779;]

=====

Application No: 10586348 Version No: 1.0

Input Set:**Output Set:**

Started: 2008-08-15 16:52:32.577
Finished: 2008-08-15 16:52:35.615
Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 38 ms
Total Warnings: 13
Total Errors: 5
No. of SeqIDs Defined: 18
Actual SeqID Count: 18

Error code	Error Description		
E 320	Wrong Nucleic Acid Designator,	gg	in SEQID (1)
E 320	Wrong Nucleic Acid Designator,	ac	in SEQID (1)
E 320	Wrong Nucleic Acid Designator,	cc	in SEQID (1)
E 320	Wrong Nucleic Acid Designator,	cg	in SEQID (1)
W 213	Artificial or Unknown found in <213>	in SEQ ID (4)	
W 213	Artificial or Unknown found in <213>	in SEQ ID (5)	
W 213	Artificial or Unknown found in <213>	in SEQ ID (6)	
W 213	Artificial or Unknown found in <213>	in SEQ ID (7)	
W 213	Artificial or Unknown found in <213>	in SEQ ID (8)	
W 213	Artificial or Unknown found in <213>	in SEQ ID (9)	
W 213	Artificial or Unknown found in <213>	in SEQ ID (10)	
W 213	Artificial or Unknown found in <213>	in SEQ ID (11)	
W 213	Artificial or Unknown found in <213>	in SEQ ID (12)	
W 213	Artificial or Unknown found in <213>	in SEQ ID (13)	
W 213	Artificial or Unknown found in <213>	in SEQ ID (14)	
W 402	Undefined organism found in <213>	in SEQ ID (17)	
E 320	Wrong Nucleic Acid Designator,	gg	in SEQID (17)
W 402	Undefined organism found in <213>	in SEQ ID (18)	

SEQUENCE LISTING

<110> ALVES, ALEXANDRA M.C.R.
RECORD, ERIC
LOMASCOLO, ANNE
SIGOILLOT, JEAN-CLAUDE
ASTHER, MARCEL
WOSTEN, HAN A.B.

<120> METHOD FOR OVERPRODUCING A SPECIFIC RECOMBINANT PROTEIN
WITH *P. CINNABARINUS* MONOKARYOTIC STRAINS

<130> 0508-1167

<140> 10586348
<141> 2008-08-15

<150> PCT/FR05/000093
<151> 2005-01-14

<150> FR 04/00366
<151> 2004-01-15

<160> 18

<170> PatentIn Ver. 3.3

<210> 1
<211> 3330
<212> DNA
<213> *Pycnoporus cinnabarinus*

<220>
<221> CDS
<222> (128)..(310)

<220>
<221> CDS
<222> (368)..(436)

<220>
<221> CDS
<222> (490)..(610)

<220>
<221> CDS
<222> (664)..(777)

<220>
<221> CDS
<222> (833)..(896)

<220>
<221> CDS
<222> (960)..(1055)

<220>
 <221> CDS
 <222> (1114)..(1270)

<220>
 <221> CDS
 <222> (1334)..(1531)

<220>
 <221> CDS
 <222> (1592)..(1648)

<220>
 <221> CDS
 <222> (1705)..(1911)

<220>
 <221> CDS
 <222> (1968)..(2255)

<400> 1

ctgcagacat	ctggagcgcc	tgttttccc	ctagtataaa	tgtatgtctgt	ccgcagggcc	60	
ttgaagaccc	ctcgagtccc	acttgagttt	taggttaggac	ctgtccacca	aaccctctt	120	
tctgatc	atg tcg	agg ttc	cag tcc	ctc ttc	ttc gtc	ctc gtc tcc	169
	Met Ser Arg	Phe Gln	Ser Leu	Phe Phe	Phe Val	Leu Val Ser	
1	5			10			

ctc acc gct gtg gcc aac gca gcc ata ggg cct gtg gcg gac ctg acc 217
 Leu Thr Ala Val Ala Asn Ala Ala Ile Gly Pro Val Ala Asp Leu Thr
 15 20 25 30

ctt acc aat gcc cag gtc agc ccc gat ggc ttc gct cgc gag gcc gtc 265
 Leu Thr Asn Ala Gln Val Ser Pro Asp Gly Phe Ala Arg Glu Ala Val
 35 40 45

gtg gtg aac ggt atc acc cct gcc cct ctc atc aca ggc aat aag 310
 Val Val Asn Gly Ile Thr Pro Ala Pro Leu Ile Thr Gly Asn Lys
 50 55 60

gtatgtatat gctgctcgtc cctcagagct acatacatct gatccacaat cgtttag 367

ggc gat cga ttc cag ctc aat gtc atc gac cag ttg aca aat cat acc 415
 Gly Asp Arg Phe Gln Leu Asn Val Ile Asp Gln Leu Thr Asn His Thr
 65 70 75

atg ttg aaa aca tct agt att gtaagggttc agttttccc gactaccatg 466
 Met Leu Lys Thr Ser Ser Ile
 80

ttattgacca tcaccactcg tag cat tgg cac ggc ttc cag caa ggc acg 519
 His Trp His Gly Phe Phe Gln Gln Gly Thr
 85 90

aac tgg gcc gat ggt ccc gcg ttc gtg aac cag tgt ccc atc gct tcg 567
 Asn Trp Ala Asp Gly Pro Ala Phe Val Asn Gln Cys Pro Ile Ala Ser
 95 100 105 110

ggc cac tcg ttc ttg tat gac ttt caa gtt ccc gac caa gca g 610
Gly His Ser Phe Leu Tyr Asp Phe Gln Val Pro Asp Gln Ala
115 120

gtacgaattc cgtacacgtt tcattgcgtc gcaactaaac ctcctttac tag gg 665
Gly
125

act ttc tgg tac cat agc cat ctc tcc acg caa tac tgc gat ggt ttg 713
Thr Phe Trp Tyr His Ser His Leu Ser Thr Gln Tyr Cys Asp Gly Leu
130 135 140

agg ggg cct ttc gtc gtc tac gac ccc aac gat cct cac gct agc ctg 761
Arg Gly Pro Phe Val Val Tyr Asp Pro Asn Asp Pro His Ala Ser Leu
145 150 155

tat gac att gat aac g gtgagcagat catggatatcg caaatattgcg tccacttatg 817
Tyr Asp Ile Asp Asn
160

cttcctggca tccag ac gac act gtc att acg ctg gct gat tgg tat cac 867
Asp Asp Thr Val Ile Thr Leu Ala Asp Trp Tyr His
165 170

gtt gct gcc aag ctc gga cct cgc ttc cc gtacgtgtca aatgtctacg 916
Val Ala Ala Lys Leu Gly Pro Arg Phe Pro
175 180

agagatctca catatacgcac tagactcact tcgctgatta cag a ttt ggc tcc gat 972
Phe Gly Ser Asp
185

tca acc ctt atc aat gga ctt ggt cga acc act ggc ata gca ccg tcc 1020
Ser Thr Leu Ile Asn Gly Leu Gly Arg Thr Thr Gly Ile Ala Pro Ser
190 195 200

gac ttg gca gtt atc aag gtc acg cag ggc aag cg gtaagtatgg 1065
Asp Leu Ala Val Ile Lys Val Thr Gln Gly Lys Arg
205 210 215

atggtcatca ctgcacattg gctctgatac atggccttgt ttccacag c tac cgc 1120
Tyr Arg

ttc cgc ttg gtg tcg ctt tct tgc gat ccg aac cat aca ttc agc att 1168
Phe Arg Leu Val Ser Leu Ser Cys Asp Pro Asn His Thr Phe Ser Ile
220 225 230

gat aat cac aca atg act ata att gag gcg gac tcg atc aac act caa 1216
Asp Asn His Thr Met Thr Ile Ile Glu Ala Asp Ser Ile Asn Thr Gln
235 240 245 250

ccc cta gag gtt gat tca atc cag att ttt gcc gcg cag cgc tac tcc 1264
Pro Leu Glu Val Asp Ser Ile Gln Ile Phe Ala Ala Gln Arg Tyr Ser
255 260 265

ttc gtg gtaggtcgta ggctcctgtc atcaagtttg cagacattct tagatacacc		1320
Phe Val		
tttttcaatg cag ctg gat gtc agc cag ccg gtg gat aac tac tgg atc		1369
Leu Asp Ala Ser Gln Pro Val Asp Asn Tyr Trp Ile		
270	275	280
cgc gca aac cct gcc ttc gga aac aca ggt ttt gct ggt gga atc aat		1417
Arg Ala Asn Pro Ala Phe Gly Asn Thr Gly Phe Ala Gly Gly Ile Asn		
285	290	295
tct gcc atc ctg cgt tat gat ggc gca ccc gag atc gag cct acg tct		1465
Ser Ala Ile Leu Arg Tyr Asp Gly Ala Pro Glu Ile Glu Pro Thr Ser		
300	305	310
gtc cag act act cct acg aag cct ctg aac gag gtc gac ttg cat cct		1513
Val Gln Thr Thr Pro Thr Lys Pro Leu Asn Glu Val Asp Leu His Pro		
315	320	325
ctc tcg cct atg cct gtg gtacgtgtct caaagaacct cgatcactaa		1561
Leu Ser Pro Met Pro Val		
330		
gtgcatgtca actcatatgg tgcatgacag cct ggc agc ccc gag ccc gga ggt		1615
Pro Gly Ser Pro Glu Pro Gly Gly		
335	340	
gtc gac aag cct ctg aac ttg gtc ttc aac ttc gtgagtaactg gcgcgcctcc		1668
Val Asp Lys Pro Leu Asn Leu Val Phe Asn Phe		
345	350	
gtagcacacg ttcaaaaaa gcctgataacc atgcag aac ggc acc aac ttc ttc		1722
Asn Gly Thr Asn Phe Phe		
355		
atc aac gac cac acc ttt gtc ccg ccg tct gtc cca gtc ttg cta caa		1770
Ile Asn Asp His Thr Phe Val Pro Pro Ser Val Pro Val Leu Leu Gln		
360	365	370
375		
atc ctc agt ggg gcg cag gcg gct cag gac ctg gtc ccg gag ggc agc		1818
Ile Leu Ser Gly Ala Gln Ala Ala Gln Asp Leu Val Pro Glu Gly Ser		
380	385	390
gtg ttc gtt ctt ccc agc aac tcg tcc att gag ata tcc ttc cct gcc		1866
Val Phe Val Leu Pro Ser Asn Ser Ser Ile Glu Ile Ser Phe Pro Ala		
395	400	405
act gcc aat gcc cct gga ttc ccc cat ccg ttc cac ttg cac ggt		1911
Thr Ala Asn Ala Pro Gly Phe Pro His Pro Phe His Leu His Gly		
410	415	420
gtacgtctgc cttccccctcg tctaaaggcg gagtcgatat ctgactccca tcacag cac		1970
His		
gcc ttc gct gtc gtc cgg agc gcc ggg agc agc gtc tac aac tac gac		2018

Ala Phe Ala Val Val Arg Ser Ala Gly Ser Ser Val Tyr Asn Tyr Asp			
425	430	435	
aac ccg atc ttc cgc gac gtc gtc agc acc ggc cag ccc ggc gac aac			2066
Asn Pro Ile Phe Arg Asp Val Val Ser Thr Gly Gln Pro Gly Asp Asn			
440	445	450	455
gtc acg att cgc ttc gag acc aat aac cca ggc ccg tgg ttc ctc cac			2114
Val Thr Ile Arg Phe Glu Thr Asn Asn Pro Gly Pro Trp Phe Leu His			
460	465	470	
tgc cac att gac ttc cac ctc gac gca ggc ttt gct gta gtc atg gcc			2162
Cys His Ile Asp Phe His Leu Asp Ala Gly Phe Ala Val Val Met Ala			
475	480	485	
gag gac act ccg gac acc aag gcc gcg aac cct gtt cct cag gcg tgg			2210
Glu Asp Thr Pro Asp Thr Lys Ala Ala Asn Pro Val Pro Gln Ala Trp			
490	495	500	
tcg gac ttg tgc ccc atc tat gat gca ctt gac ccc agc gac ctc			2255
Ser Asp Leu Cys Pro Ile Tyr Asp Ala Leu Asp Pro Ser Asp Leu			
505	510	515	
ttagcgggat tgttactgtg acctgggtgtg gggggaaacat gtcgagggtt ttcatcgatc			2315
agggactttc aagggtggca taatatacct cacggcctgg atgactcgga cagcgtgtgg			2375
gcgtgggtgt aactctgctt gatgttggaaa aaaggatttt atgtagaaca atttatgagc			2435
aatcagcaat caataggatt gtgtcggttt cgacgaaatg tcttgctcc ctgacattac			2495
ttttgtgcga gaaatgggtc catgatacac atcattggac tctcaataacc aagaaggatt			2555
acccatgtca atacccaaga tcatgtcttc gctgtccgca atggctctcat gttgcgttga			2615
gcagatcgca gtacgttcaa aagcgattag tattacatgc aacatgcaac atttggaaagg			2675
gggcgtcgac aggttcagct cgccgtcagtc ggccaagtag cgaccttgc cgcaactgc			2735
gttaacctga acgtatgctt cagaactccg tcggatcgaa gagcgatcgat gtacgttccg			2795
ggatagatcc attgatcccc gctctggtcg ggcgtgcga tggcccccggc cgtcaccggc			2855
agcttcgcga tcgcgtttt cctaggggcg aggccgtgta cccgcgtgta cgagacgagc			2915
tgcttgcgtt ggtggggcga aggcccgaag gagccactca cgaagagcaa tgcgacgtaa			2975
tccgaggttag ccttgcgtt gtttagtcaca cgacggaga acgtgtcgag cggcgtcgagg			3035
tcgaggaagg cggcgctt ctgaccgcgc tgtacgaggt cgaaatcga atacgtcgat			3095
ggcggtcctc caaagtccgt gacgttggtc gcattggccg ccgcgcctgg agctgccaa			3155
gagaaatcga aggtgggtgaa gtgcagtcca aagccaaatt cgtagaccgg cgtgccgggt			3215
taccacttgt atgtacgccc cgggttcgac ggcgttggc gaagggtcat gtcaagtcatc			3275
gaaacctgtat cagcgttagat ggctgggtat tgggtatgg gcaggcgtcc tgcag			3330

<210> 2

<211> 518

<212> PRT

<213> *Pycnoporus cinnabarinus*

<400> 2

Met Ser Arg Phe Gln Ser Leu Phe Phe Val Leu Val Ser Leu Thr			
1	5	10	15

Ala Val Ala Asn Ala Ala Ile Gly Pro Val Ala Asp Leu Thr Leu Thr			
20	25	30	

Asn Ala Gln Val Ser Pro Asp Gly Phe Ala Arg Glu Ala Val Val Val			
35	40	45	

Asn Gly Ile Thr Pro Ala Pro Leu Ile Thr Gly Asn Lys Gly Asp Arg
50 55 60

Phe Gln Leu Asn Val Ile Asp Gln Leu Thr Asn His Thr Met Leu Lys
65 70 75 80

Thr Ser Ser Ile His Trp His Gly Phe Phe Gln Gln Gly Thr Asn Trp
85 90 95

Ala Asp Gly Pro Ala Phe Val Asn Gln Cys Pro Ile Ala Ser Gly His
100 105 110

Ser Phe Leu Tyr Asp Phe Gln Val Pro Asp Gln Ala Gly Thr Phe Trp
115 120 125

Tyr His Ser His Leu Ser Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro
130 135 140

Phe Val Val Tyr Asp Pro Asn Asp Pro His Ala Ser Leu Tyr Asp Ile
145 150 155 160

Asp Asn Asp Asp Thr Val Ile Thr Leu Ala Asp Trp Tyr His Val Ala
165 170 175

Ala Lys Leu Gly Pro Arg Phe Pro Phe Gly Ser Asp Ser Thr Leu Ile
180 185 190

Asn Gly Leu Gly Arg Thr Thr Gly Ile Ala Pro Ser Asp Leu Ala Val
195 200 205

Ile Lys Val Thr Gln Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser Leu
210 215 220

Ser Cys Asp Pro Asn His Thr Phe Ser Ile Asp Asn His Thr Met Thr
225 230 235 240

Ile Ile Glu Ala Asp Ser Ile Asn Thr Gln Pro Leu Glu Val Asp Ser
245 250 255

Ile Gln Ile Phe Ala Ala Gln Arg Tyr Ser Phe Val Leu Asp Ala Ser
260 265 270

Gln Pro Val Asp Asn Tyr Trp Ile Arg Ala Asn Pro Ala Phe Gly Asn
275 280 285

Thr Gly Phe Ala Gly Gly Ile Asn Ser Ala Ile Leu Arg Tyr Asp Gly
290 295 300

Ala Pro Glu Ile Glu Pro Thr Ser Val Gln Thr Thr Pro Thr Lys Pro
305 310 315 320

Leu Asn Glu Val Asp Leu His Pro Leu Ser Pro Met Pro Val Pro Gly
325 330 335

Ser Pro Glu Pro Gly Gly Val Asp Lys Pro Leu Asn Leu Val Phe Asn
340 345 350

Phe Asn Gly Thr Asn Phe Phe Ile Asn Asp His Thr Phe Val Pro Pro
355 360 365

Ser Val Pro Val Leu Leu Gln Ile Leu Ser Gly Ala Gln Ala Ala Gln
370 375 380

Asp Leu Val Pro Glu Gly Ser Val Phe Val Leu Pro Ser Asn Ser Ser
385 390 395 400

Ile Glu Ile Ser Phe Pro Ala Thr Ala Asn Ala Pro Gly Phe Pro His
405 410 415

Pro Phe His Leu His Gly His Ala Phe Ala Val Val Arg Ser Ala Gly
420 425 430

Ser Ser Val Tyr Asn Tyr Asp Asn Pro Ile Phe Arg Asp Val Val Ser
435 440 445

Thr Gly Gln Pro Gly Asp Asn Val Thr Ile Arg Phe Glu Thr Asn Asn
450 455 460

Pro Gly Pro Trp Phe Leu His Cys His Ile Asp Phe His Leu Asp Ala
465 470 475 480

Gly Phe Ala Val Val Met Ala Glu Asp Thr Pro Asp Thr Lys Ala Ala
485 490 495

Asn Pro Val Pro Gln Ala Trp Ser Asp Leu Cys Pro Ile Tyr Asp Ala
500 505 510

Leu Asp Pro Ser Asp Leu
515

<210> 3
<211> 2527
<212> DNA
<213> Pycnoporus cinnabarinus

<400> 3

agatctccga accagaaatg cgattgcgtt caggccaat taagaataaa gctgcgtcag 60
ggcagcgacg tatctgtatc catcattgac tcaccggcat cggcgtcaac accaaagcaa 120
gctcgccccca cccataggcg tgcaccggcc ggcgtgcgcc attgaggtac atgagcgggg 180
cgaaaagtccg ccattggtag ccctgtcgta gacgcgcggc gatgaaaacgt ttcccaccat 240
tgggaagaaaa cgtctgcggc ccatcatccc ttcacccggat gacaaggcgg cgtcgcgcct 300
ttgccgcaga ggccggcggg cgacatgcac agcgaaggc 360
caatcagtgg gtgtcttacg cccgcacatg ggtcgggag cgtaggcgcc ctcccataag 420
gcggcaagca tcatgtatgct ctccgattcg ggaagcctgg tgcgtatgtc gagagactct 480
ctccgagaga ccagtgtgcg caacgttcct ggcctgaaag actttaaagt gagtgttagaa 540
gggcgagcag aggacatca tggattgca ggaaccatcg gcatcctcag cctggaaagg 600
atggctcttg gtagacattc gcggaaagggt tccttagatgt gagcgggctt cttggatgtat 660
catgtcgtaa cttttctga cctcggtt ggtacgcatg gcaggattga gcattacgg 720
atgcctccccca ttcataaacg ataaccctt cttcaggtt ggtcatctcc atagagcggc 780
acgctctcaa ggcctaggct attcacacct cttcgcac acccctattc acgggtctg 840
taaggaacga cttgtcatgg gatcacatga agtgcagcat actgttcggc ggtctcgac 900

tacagacgct agtacggaa gtcgacatcc aagcgttcag tcaccacatg gcaaaaaagc 960
tgcaccatac tcttatggt gagttgttcg tgagtggat acagtcatc atgaggaaat 1020
gcccacccgga tagggtgtgg cggccgcaat attcatcgcc tggcaatagt cgatgtgcgt 1080
cttgttcaa tgaatatcat gggcacatg tggagacggt