Chryseobacterium.balustinum_5_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S.

Enterobacter.sp._5_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S., Heu, S. an

Time

Pantoea.agglomerans.2_5_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S., He

Bacillus.pumilus_5_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S., Heu, S. an 0.4 0.3 ogdo 0.25 model Gompertz model Logistic model 0.1

600

400

Time

0.0

Ö

200

Time

Pseudomonas.fluorescens.1_5_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S.

Pseudomonas.fluorescens.2_5_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S.

Acinetobacter.clacoaceticus.1_5_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.

Acinetobacter.clacoaceticus.2_5_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.

Stenotrophomonas.maltophilia.1_5_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung,

Stenotrophomonas.maltophilia.2_5_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung,

Klebsiella.pneumonia_5_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S., Heu,

Pectobacterium.carotovorum.subsp..Carotovorum.Pcc2_5_TSB_Bae, Y.M., Zhe

Pantoea.agglomerans..RDA.R._5_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.

Time

Stenotrophomonas.maltophilia..RDA.R._5_TSB_Bae, Y.M., Zheng, L., Hyun, J.E.

400

Time

600

200

Ö

Bacillus.pumilus..RDA.R._5_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S.,

Enterobacter.sp._15_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S., Heu, S. a

Bacillus.pumilus_15_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S., Heu, S. a

Pseudomonas.fluorescens.1_15_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S

Pseudomonas.fluorescens.2_15_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S.

Acinetobacter.clacoaceticus.1_15_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K

Stenotrophomonas.maltophilia.1_15_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung

Stenotrophomonas.maltophilia.2_15_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung

Time

Dickeya.zeae_15_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S., Heu, S. and

Pectobacterium.carotovorum.subsp..Carotovorum.Pcc2_15_TSB_Bae, Y.M., Zher

Time

Stenotrophomonas.maltophilia..RDA.R._15_TSB_Bae, Y.M., Zheng, L., Hyun, J.E

0.0

Bacillus.pumilus..RDA.R._15_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S., H

Clavibacter.michiganensis..RDA.R._15_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jul

Time Enterobacter.sp._25_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S., Heu, S. a

Time

Bacillus.pumilus_25_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S., Heu, S. a

Clavibacter.michiganensis_25_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S.

Pseudomonas.fluorescens.1_25_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S.

Pseudomonas.fluorescens.2_25_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S.

Acinetobacter.clacoaceticus.1_25_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K

Stenotrophomonas.maltophilia.1_25_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung

Stenotrophomonas.maltophilia.2_25_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung

Klebsiella.pneumonia_25_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S., Heu

Dickeya.zeae_25_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S., Heu, S. and

Dickeya.zeae..RDA.R._25_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S., He

Clavibacter.michiganensis..RDA.R._25_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Ju

Enterobacter.sp._35_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S., Heu, S. a

Bacillus.pumilus_35_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S., Heu, S. a

Clavibacter.michiganensis_35_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S.

Pseudomonas.fluorescens.1_35_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S.

Pseudomonas.fluorescens.2_35_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S.

Acinetobacter.clacoaceticus.1_35_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K

Stenotrophomonas.maltophilia.1_35_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung

Klebsiella.pneumonia_35_TSB_Bae, Y.M., Zheng, L., Hyun, J.E., Jung, K.S., Heu

Tetraselmis tetrahele_5_ESAW_Bernhardt, J.R., Sunday, J.M. and O...Connor,

Tetraselmis tetrahele_8_ESAW_Bernhardt, J.R., Sunday, J.M. and O...Connor,

Tetraselmis tetrahele_32_ESAW_Bernhardt, J.R., Sunday, J.M. and O...Connor,

Staphylococcus spp._2_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and Pr

Staphylococcus spp._4_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and F

Staphylococcus spp._7_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and P.

Staphylococcus spp._10_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Staphylococcus spp._15_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Staphylococcus spp._20_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Staphylococcus spp._2_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Staphylococcus spp._4_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Staphylococcus spp._7_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Staphylococcus spp._10_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. an

Staphylococcus spp._15_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. a

Staphylococcus spp._20_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. a

Staphylococcus spp._2_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Staphylococcus spp._4_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Staphylococcus spp._7_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Staphylococcus spp._10_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G. a

Staphylococcus spp._15_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G. a

Staphylococcus spp._20_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G.

Pseudomonas spp._2_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and Pre

Pseudomonas spp._4_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and Pr

Pseudomonas spp._7_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and Pr

Pseudomonas spp._10_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and P

Pseudomonas spp._15_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Pseudomonas spp._20_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Pseudomonas spp._2_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. and F

Time

Pseudomonas spp._7_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. and I

Pseudomonas spp._10_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Pseudomonas spp._15_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Pseudomonas spp._20_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. and 800 -400 model PopBio Gompertz model Logistic model minAIC= 73.6409643100123 Logistic minBIC= 73.9587304767316 Logistic 0

40

Time

50

60

20

10

30

Pseudomonas spp._2_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Pseudomonas spp._4_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Pseudomonas spp._10_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G. a

Pseudomonas spp._15_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G. a

Aerobic Psychotropic._2_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Aerobic Psychotropic._4_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Aerobic Psychotropic._7_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Aerobic Psychotropic._10_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Aerobic Psychotropic._15_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Aerobic Psychotropic._20_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Aerobic Psychotropic._2_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Aerobic Psychotropic._4_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Aerobic Psychotropic._7_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Aerobic Psychotropic._10_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. a

Aerobic Psychotropic._15_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. a

Aerobic Psychotropic._20_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. a

Aerobic Psychotropic._2_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G.

Aerobic Psychotropic._4_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G.

Aerobic Psychotropic._7_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G. a

Aerobic Psychotropic._10_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G.

Aerobic Psychotropic._15_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G.

Aerobic Psychotropic._20_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G.

Aerobic Mesophilic._2_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and Pre

Aerobic Mesophilic._4_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and Pr

Aerobic Mesophilic._10_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and P. 500 model Gompertz model Logistic model minAC= 110.670213036492 MinBIC= 111.880553408468 Logistic Logistic 0

120

160

PopBio

40

80

Time

Aerobic Mesophilic._15_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and F

Aerobic Mesophilic._20_Raw Chicken Breast_Galarz, L.A., Fonseca, G.G. and F

-200

Time

Aerobic Mesophilic._4_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Aerobic Mesophilic._7_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. and 2000 1000 model Gompertz model Logistic model minAIC= 171.5 1537646931 minBIC= 174.067766965392 Logistic Logistic

200

Time

300

PopBio

Ö

100

Aerobic Mesophilic._15_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Aerobic Mesophilic._20_Salted Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Aerobic Mesophilic._2_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Aerobic Mesophilic._4_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G. an

Aerobic Mesophilic._7_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G. and

Aerobic Mesophilic._10_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G. a

Aerobic Mesophilic._15_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G. a

Aerobic Mesophilic._20_Cooked Chicken Breast_Galarz, L.A., Fonseca, G.G. ar

Spoilage_8_Vacuum Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991. Growth

Escherichia coli_8_Vacuum Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991. (

Spoilage_10_Vacuum Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991. Grow

Escherichia coli_10_Vacuum Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991

Time

Spoilage_10_C02 Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991. Growth of

Escherichia coli_10_C02 Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991. Gr

Spoilage_12_Vacuum Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991. Grov

Escherichia coli_12_Vacuum Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991

Salmonella Typhimurium_12_Vacuum Beef Striploins_Gill, C.O. and DeLacy, K.M.

Spoilage_12_C02 Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991. Growth of

Escherichia coli_12_C02 Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991. Gro

Salmonella Typhimurium_12_C02 Beef Striploins_Gill, C.O. and DeLacy, K.M., 19

Spoilage_15_Vacuum Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991. Grow 15000 10000 5000 model Gompertz model Logistic model minAIC= 62.3213500121555 minBIC= 60.7591016618919 0 --5000

Time

3

PopBio

Escherichia coli_15_Vacuum Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991

Salmonella Typhimurium_15_Vacuum Beef Striploins_Gill, C.O. and DeLacy, K.M.

Time

Escherichia coli_15_C02 Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991. Gr

Salmonella Typhimurium_15_C02 Beef Striploins_Gill, C.O. and DeLacy, K.M.,

Spoilage_20_Vacuum Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991. Grow

Escherichia coli_20_Vacuum Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991

Salmonella Typhimurium_20_Vacuum Beef Striploins_Gill, C.O. and DeLacy, K.

Spoilage_20_C02 Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991. Growth of

Escherichia coli_20_C02 Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991. Gr

Salmonella Typhimurium_20_C02 Beef Striploins_Gill, C.O. and DeLacy, K.M., 1

Spoilage_30_Vacuum Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991. Grow

Escherichia coli_30_Vacuum Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991

Spoilage_30_C02 Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991. Growth of

Escherichia coli_30_C02 Beef Striploins_Gill, C.O. and DeLacy, K.M., 1991. Gro

Salmonella Typhimurium_30_C02 Beef Striploins_Gill, C.O. and DeLacy, K.M., 1

Serratia marcescens_6_Pasteurised Skim Milk_Phillips, J.D. and Griffiths, M.W.,

Serratia marcescens_6_UHT Skim Milk_Phillips, J.D. and Griffiths, M.W., 1987.

Serratia marcescens_10_Pasteurised Skim Milk_Phillips, J.D. and Griffiths, M.V.

Serratia marcescens_10_UHT Skim Milk_Phillips, J.D. and Griffiths, M.W., 1987

Serratia marcescens_15_Pasteurised Skim Milk_Phillips, J.D. and Griffiths, M.V.

Serratia marcescens_15_UHT Skim Milk_Phillips, J.D. and Griffiths, M.W., 1987

Serratia marcescens_6_Pasteurised Full-fat Milk_Phillips, J.D. and Griffiths, M.V.

Serratia marcescens_6_UHT Full-fat Milk_Phillips, J.D. and Griffiths, M.W., 198

Serratia marcescens_10_Pasteurised Full-fat Milk_Phillips, J.D. and Griffiths, M

Serratia marcescens_10_UHT Full-fat Milk_Phillips, J.D. and Griffiths, M.W., 19

Serratia marcescens_15_Pasteurised Full-fat Milk_Phillips, J.D. and Griffiths, N

Serratia marcescens_15_UHT Full-fat Milk_Phillips, J.D. and Griffiths, M.W., 198

Serratia marcescens_6_Pasteurised Double Cream_Phillips, J.D. and Griffiths, M.

Serratia marcescens_6_UHT Double Cream_Phillips, J.D. and Griffiths, M.W., 19

Serratia marcescens_10_UHT Double Cream_Phillips, J.D. and Griffiths, M.W.,

Serratia marcescens_15_Pasteurised Double Cream_Phillips, J.D. and Griffiths,

Serratia marcescens_15_UHT Double Cream_Phillips, J.D. and Griffiths, M.W.,

Arthrobacter sp. 77_0_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continu

Arthrobacter sp. 77_7_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continuit 500 model Gompertz model Logistic model minAIC= 144.612821611041 minBIC= 146.872619040887 Logistic Logistic 0

300

400

PopBio

100

0

200

Time

Arthrobacter sp. 77_20_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Contin

Time

Arthrobacter sp. 77_37_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continuity

Arthrobacter sp. 88_0_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continuit

Arthrobacter sp. 88_7_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continuit

Arthrobacter sp. 88_20_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continue

Arthrobacter sp. 88_30_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continuous

Arthrobacter sp. 88_37_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continuity

Arthrobacter sp. 62_0_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continu

Arthrobacter sp. 62_7_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continu

Arthrobacter sp. 62_20_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continu 800 model PopBio 400 Gompertz model Logistic model minAIC= 91.9558018492953 minBIC= 92.7447001586402 Logistic Logistic 0

90

120

60

Time

30

0

Arthrobacter sp. 62_30_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continu 750 model Gompertz model Logistic model 250 -

min/BIS=-476751240233513886332 Lloopetic

600

400

200

Time

0

Arthrobacter sp. 62_37_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continuity

Arthrobacter aurescens_7_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Conf

Arthrobacter aurescens_20_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Con

Arthrobacter aurescens_30_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Co

Arthrobacter aurescens_37_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Con

Arthrobacter citreus_0_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continui 40 model Gompertz model Logistic model minAIC= 74.877942@33095 minBIC= 37.4341719417706 Logistic Logistic 0

300

400

PopBio

-40

100

200

Time

Arthrobacter citreus_7_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continui 200 model 100 -Gompertz model Logistic model minAIC= 82.8426479343782 minBIC= 84.0529883063544 Logistic Logistic 0

200

Time

300

100

PopBio

0

Arthrobacter citreus_20_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continu 500 model Gompertz model Logistic model minAIC= 103.627261725987 minBIC= 103.945027892707 Logistic Logistic 0

150

200

100

Time

PopBio

50

Ö

Arthrobacter citreus_30_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continu

Arthrobacter citreus_37_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continu 500 model Gompertz model Logistic model minAIC= 97.3652148168363 minBIC= 98.1541131261812 Logistic Logistic 0

150

200

50

0

100

Time

Arthrobacter globiformis_0_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continued agar.

Arthrobacter globiformis_7_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Con

Arthrobacter globiformis_20_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Co

Arthrobacter globiformis_30_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Co

Arthrobacter globiformis_37_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Co

Arthrobacter simplex_0_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continu 400 model Gompertz model Logistic model 200 0

400

Time

600

200

PopBio

Arthrobacter simplex_7_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Continu 400 model 90 200 -Gompertz model Logistic model 0

100

Ö

200

300

Time

400

500

Arthrobacter simplex_20_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Contir 400 300 model PopBio Gompertz model Logistic model 100 minAIC= 73.6535545848562 Logistic minBIC= 73.4371951810774 Logistic 0

150

200

250

50

0

100

Time

Arthrobacter simplex_30_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Contir 400 300 model Gompertz model Logistic model 100 minAIC= 84.2777781344897 Logistic minBIC= 84.595544301209 Logistic

200

100

Time

0

Arthrobacter simplex_37_TGE agar_Roth, N.G. and Wheaton, R.B., 1962. Contir 600 400 model Gompertz model Logistic model 200 minAIC= 61.9888179319132 minBIC= 62.3860256403124 Gompertz Gompertz

150

200

PopBio

0

0

50

100

Time

Lactobacillus plantarum_12_MRS broth_Silva, A.P.R.D., Longhi, D.A., Dalcanto

Lactobacillus plantarum_16_MRS broth_Silva, A.P.R.D., Longhi, D.A., Dalcant

Lactobacillus plantarum_20_MRS broth_Silva, A.P.R.D., Longhi, D.A., Dalcant

Lactobacillus plantarum_30_MRS broth_Silva, A.P.R.D., Longhi, D.A., Dalcanto

Weissella viridescens_4_MRS broth_Silva, A.P.R.D., Longhi, D.A., Dalcanton,

Weissella viridescens_8_MRS broth_Silva, A.P.R.D., Longhi, D.A., Dalcanton, I

Weissella viridescens_12_MRS broth_Silva, A.P.R.D., Longhi, D.A., Dalcanton,

Weissella viridescens_16_MRS broth_Silva, A.P.R.D., Longhi, D.A., Dalcanto

Weissella viridescens_20_MRS broth_Silva, A.P.R.D., Longhi, D.A., Dalcanton,

Lactobacillus sakei_4_MRS broth_Silva, A.P.R.D., Longhi, D.A., Dalcanton, F.

Lactobacillus sakei_8_MRS broth_Silva, A.P.R.D., Longhi, D.A., Dalcanton, F. a

Lactobacillus sakei_12_MRS broth_Silva, A.P.R.D., Longhi, D.A., Dalcanton, F.

Lactobacillus sakei_20_MRS broth_Silva, A.P.R.D., Longhi, D.A., Dalcanton, F

Lactobacillus sakei_30_MRS broth_Silva, A.P.R.D., Longhi, D.A., Dalcanton, F.

Oscillatoria agardhii Strain 97_15_Z8_Sivonen, K., 1990. Effects of light, temperatu

Oscillatoria agardhii Strain 97_20_Z8_Sivonen, K., 1990. Effects of light, temperatu

Oscillatoria agardhii Strain 97_25_Z8_Sivonen, K., 1990. Effects of light, temperatu

Oscillatoria agardhii Strain 97_30_Z8_Sivonen, K., 1990. Effects of light, temperatu

Oscillatoria agardhii StrainCYA 128_15_Z8_Sivonen, K., 1990. Effects of light, temporary

Oscillatoria agardhii StrainCYA 128_20_Z8_Sivonen, K., 1990. Effects of light, tem

Oscillatoria agardhii StrainCYA 128_25_Z8_Sivonen, K., 1990. Effects of light, tempositi agardhii StrainCYA 128_25_Z8_Sivonen, K., 1990. Effects of light, tempositi agardhii StrainCYA 128_25_Z8_Sivonen, K., 1990. Effects of light, tempositi agardhii StrainCYA 128_25_Z8_Sivonen, K., 1990. Effects of light, tempositi agardhii StrainCYA 128_25_Z8_Sivonen, K., 1990. Effects of light, tempositi agardhii StrainCYA 128_25_Z8_Sivonen, K., 1990. Effects of light, tempositi agardhii StrainCYA 128_25_Z8_Sivonen, K., 1990. Effects of light, tempositi agardhii StrainCYA 128_25_Z8_Sivonen, K., 1990. Effects of light, tempositi agardhii StrainCYA 128_25_Z8_Sivonen, K., 1990. Effects of light, tempositi agardhii StrainCYA 128_25_Z8_Sivonen, K., 1990. Effects of light, tempositi agardhii StrainCYA 128_25_Z8_Sivonen, K., 1990. Effects of light, tempositi agardhii StrainCYA 128_25_Z8_Sivonen, K., 1990. Effects of light, tempositi agardhii StrainCYA 128_25_Z8_Sivonen, Effects of light, tempositi agardhii StrainCYA 128_25_Z8_Sivonen, Effects of light agardhii StrainCYA 128_25_Z8_Z8_Sivonen, Effects of light agardhi

Oscillatoria agardhii StrainCYA 128_30_Z8_Sivonen, K., 1990. Effects of light, tem

Pseudomonas sp._15_APT Broth_Stannard, C.J., Williams, A.P. and Gibbs, P.

Pseudomonas sp._12_APT Broth_Stannard, C.J., Williams, A.P. and Gibbs, P.

Pseudomonas sp._8_APT Broth_Stannard, C.J., Williams, A.P. and Gibbs, P.A.

Pseudomonas sp._6_APT Broth_Stannard, C.J., Williams, A.P. and Gibbs, P.A.

Pseudomonas sp._4_APT Broth_Stannard, C.J., Williams, A.P. and Gibbs, P.A.

Pseudomonas sp._2_APT Broth_Stannard, C.J., Williams, A.P. and Gibbs, P.A.

Lactobaciulus plantarum_20_MRS_Zwietering, M.H., De Wit, J.C., Cuppers, H.

Lactobaciulus plantarum_25_MRS_Zwietering, M.H., De Wit, J.C., Cuppers, H. 20000 model Gompertz model Logistic model 10000 minAIC= 1658.08626126617 Logistic minBIC= 1668.0408067451 Logistic

PopBio

10

20

30

Time

40

50