Multi-criteria hierarchical clustering

N.A.V. Doan, J. Rosenfeld, Y. De Smet

1 Definitions

- \mathcal{A} : the set of n alternatives $\mathcal{A} = \{a_1, a_2, \dots, a_n\}$ (notation: a_i or a_j , $i, j = 1, 2, \dots, n$)
- \mathcal{F} : the set of m criteria $\mathcal{F} = \{f_1, f_2, \dots, f_m\}$ (notation: $f_k, k = 1, 2, \dots, m$)
- \mathcal{R} : the set of l clusters $\mathcal{R} = \{r_1, r_2, \dots, r_l\}$ (notation: $r_h, h = 1, 2, \dots, l$)

2 Input data

• \mathcal{W} : the set of m weights for the criteria: $\mathcal{W} = \{w_1, w_2, \dots, w_m\}$ (notation: $w_k, k = 1, 2, \dots, m$)

3 Decision variables

- $c_{ih} = \begin{cases} 1 & \text{if } a_i \in r_h \\ 0 & \text{otherwise} \end{cases}, \quad c_{ih} \in \{0, 1\}$
- \bullet Big M

4 Equations

$$\max z = \pi - \pi$$
s.t.
$$\phi(a_i) = \phi^+(a_i) - \phi^-(a_i) \qquad \text{(netflow)}$$

$$\phi^+(a_i) = \frac{1}{n-1} \sum_{j=1, j \neq i}^n \sum_{k=1}^m w_k \beta_{ijk} \qquad \text{(positive flow)}$$

$$\beta_{ijk} \ge \frac{f_k(a_i) - f_k(a_j)}{M} \qquad \text{(linearization Note 1)}$$

$$\beta_{ijk} < \frac{f_k(a_i) - f_k(a_j)}{M} + 1$$

$$\beta_{ijk} \in \{0, 1\}$$

$$c_{ik} \in \{0, 1\} \qquad \text{(decision variables)}$$

5 Notes

1.
$$\beta_{ijk} = \begin{cases} 1 & \text{if } f_k(a_i) > f_k(a_j) \\ 0 & \text{otherwise} \end{cases}$$
, $\beta_{ijk} \in \{0, 1\}$

2. Big
$$M$$
 chosen so that $\frac{f_k(a_i) - f_k(a_j)}{M} \in]-1;1[$