Задача А. Разбор утверждения

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

На вход вашей программе дается утверждение в следующей грамматике:

```
      ⟨Файл⟩
      ::=
      ⟨Выражение⟩

      ⟨Выражение⟩
      ::=
      ⟨Дизъюнкция⟩ | ⟨Дизъюнкция⟩ '->' ⟨Выражение⟩

      ⟨Дизъюнкция⟩
      ::=
      ⟨Конъюнкция⟩ | ⟨Дизъюнкция⟩ '&' ⟨Отрицание⟩

      ⟨Конъюнкция⟩
      ::=
      ⟨Отрицание⟩ | ⟨Конъюнкция⟩ '&' ⟨Отрицание⟩

      ⟨Отрицание⟩
      ::=
      '!' ⟨Отрицание⟩ | ⟨Переменная⟩ | '(' ⟨Выражение⟩ ')'

      ⟨Переменная⟩
      ::=
      ('A'...'Z') {'A'...'Z' | '0'...'9' | '''}*
```

Имена переменных не содержат пробелов. Между символами оператора '->' нет пробелов. В остальных местах пробелы могут присутствовать. Символы табуляции и возврата каретки должны трактоваться как пробелы. Символ апострофа ('') имеет код 39.

Вам требуется написать программу, разбирающую утверждение и строящую его дерево разбора, и выводящую полученное дерево в единственной строке без пробелов в следующей грамматике:

Формат входных данных

В единственной строке входного файла дано утверждение в грамматике из условия. Размер входного файла не превышает 100 КБ.

Формат выходных данных

В единственной строке выходного файла выведите дерево разбора утверждения без пробелов.

Математическая логика (онлайн-курс) ИТМО, осень 2021

Задача В. Истинность высказываний

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Как известно, формула классического исчисления высказываний может быть:

- 1. невыполнимой нет значений переменных, при которых формула истинна;
- 2. одновременно выполнимой и опровержимой то есть, существуют такие значения переменных, что формула истинна (формула выполнима), и такие значения, что формула ложна (формула к тому же ещё и опровержима);
- 3. общезначимой при всех значениях переменных формула истинна.

По данной на вход формуле определите, какой из вариантов имеет место.

Формат входных данных

На вход подаётся формула классического исчисления высказываний с не более чем 16 различными переменными, состоящая из не более чем 256 символов, заданная в грамматике из первой задачи.

Формат выходных данных

Выведите одну из трёх строк:

- 1. Unsatisfiable, если формула невыполнима;
- 2. Satisfiable and invalid, если формула выполнима и опровержима;
- 3. Valid, если формула общезначима.

стандартный ввод	стандартный вывод
A&! A	Unsatisfiable
A->!B123	Satisfiable and invalid
((PPP->PPP')->PPP)->PPP	Valid

Задача С. Теорема о дедукции

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

На вход вашей программе даётся корректное доказательство высказывания β в контексте $\gamma_1, \gamma_2, \dots, \gamma_n, \alpha$. Требуется перестроить его в доказательство $\gamma_1, \gamma_2, \dots, \gamma_n \vdash \alpha \to \beta$.

Формат входных данных

На вход дается доказательство утверждения в соответствии со следующей грамматикой:

```
\langle \text{Контекст} \rangle '|-' \langle \text{Выражение} \rangle '\n' \{\langle \text{Строка} \rangle\}^+
       (Файл)
                  ::=
                 ::= \langle Bыражение\rangle [', '\{\langle Bыражение\rangle]\}^*
  (Контекст)
     (Строка)
                 (Выражение)
                 ::= (Выражение) '&' (Выражение)
                        ⟨Выражение⟩ '|' ⟨Выражение⟩
                        ⟨Выражение⟩ '->' ⟨Выражение⟩
                        '!' (Выражение)
                        '(' (Выражение) ')'
                        (Переменная)
                       (A'...'Z') \{A'...'Z' | O'...'9' | S''\}^*
(Переменная)
                ::=
```

Операторы '&' и '|' левоассоциативны. Оператор '->' правоассоциативен. Операторы в порядке уменьшения приоритета: '!', '&', '|', '->'. Коды символов: код апострофа ('') — 39, код вертикальной черты ('|') — 124.

Имена переменных не содержат пробелов. Между символами одного оператора нет пробелов ('->' и '|-'). В остальных местах пробелы могут присутствовать. Символы табуляции и возврата каретки должны трактоваться как пробелы.

Формат выходных данных

Формат выходного файла совпадает с форматом входного файла.

```
стандартный ввод
A | -A
Α
                                                      стандартный вывод
|- A -> A
A \rightarrow A \rightarrow A
A \rightarrow (A \rightarrow A) \rightarrow A
(A \rightarrow A \rightarrow A) \rightarrow (A \rightarrow (A \rightarrow A) \rightarrow A) \rightarrow A \rightarrow A
(A \rightarrow (A \rightarrow A) \rightarrow A) \rightarrow A \rightarrow A
A -> A
                                                       стандартный ввод
AI-B->B->B
B->B->B
                                                      стандартный вывод
|- A -> B -> B
B -> B -> B
(B \rightarrow B \rightarrow B) \rightarrow A \rightarrow B \rightarrow B \rightarrow B
A -> B -> B -> B
```

Математическая логика (онлайн-курс) ИТМО, осень 2021

стандартный ввод	
A -A->A	
$A \rightarrow A \rightarrow A$	
A A	
A->A	
<u> </u>	
стандартный вывод	
- A -> A -> A	
A -> A -> A	
(A -> A -> A) -> A -> A -> A	
A -> A -> A -> A	
A -> A -> A	
$A \rightarrow (A \rightarrow A) \rightarrow A$	
(A -> A -> A) -> (A -> (A -> A) -> A -> A	
(A -> (A -> A) -> A -> A	
A -> A	
(A -> A) -> (A -> A -> A -> A -> A	
(A -> A -> A -> A) -> A -> A	

A -> A -> A

Задача D. Теорема Гливенко

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 15 секунд Ограничение по памяти: 512 мегабайт

На вход вашей программе дается **корректное** доказательство утверждения α в классическом исчислении высказываний. Вам требуется построить корректное доказательство утверждения $\neg \neg \alpha$ в интуиционистском исчислении высказываний.

Формат входных данных

Во входном файле задано доказательство утверждения α в классическом исчислении высказываний. Размер входного файла не превышает 5 КБ.

Доказательство утверждения даётся в соответствии со следующей грамматикой:

```
⟨Файл⟩
                         \langle \text{Контекст} \rangle '|-' \langle \text{Выражение} \rangle '\n' \langle \text{Строка} \rangle^*
   (Контекст)
                         ⟨Выражение⟩ [', ' ⟨Выражение⟩]*
                        ⟨Выражение⟩ '\n'
     (Строка)
                  ::=
(Выражение)
                  ::=
                        «Выражение» '&' «Выражение»
                         ⟨Выражение⟩ '|' ⟨Выражение⟩
                        ⟨Выражение⟩ '->' ⟨Выражение⟩
                        '!' (Выражение)
                        '(' (Выражение) ')'
                        (Переменная)
                       (A'...'Z') \{A'...'Z' | O'...'9' | S''\}^*
(Переменная)
                 ::=
```

Операторы '&' и '|' левоассоциативны. Оператор '->' правоассоциативен. Операторы в порядке уменьшения приоритета: '!', '&', '|', '->'.

Имена переменных не содержат пробелов. Между символами одного оператора нет пробелов ('->' и '|-'). В остальных местах пробелы могут присутствовать. Символы табуляции и возврата каретки должны трактоваться как пробелы.

Формат выходных данных

Файл должен содержать корректное доказательство утверждения $\neg \neg \alpha$ в интуиционистском исчислении высказываний в том же контексте, что доказательство α во входном файле.

```
стандартный ввод
A I - A
Α
                                                      стандартный вывод
A |- !!A
Α
(A \rightarrow (!A \rightarrow A))
(!A \rightarrow A)
(!A \rightarrow (!A \rightarrow !A))
((!A \rightarrow (!A \rightarrow !A)) \rightarrow ((!A \rightarrow (!A \rightarrow !A) \rightarrow !A)) \rightarrow (!A \rightarrow !A)))
((!A -> ((!A -> !A) -> !A)) -> (!A -> !A))
(!A \rightarrow ((!A \rightarrow !A) \rightarrow !A))
(!A \rightarrow !A)
((!A \rightarrow A) \rightarrow ((!A \rightarrow !A) \rightarrow !!A))
((!A \rightarrow !A) \rightarrow !!A)
!!A
```

Математическая логика (онлайн-курс) ИТМО, осень 2021

Замечание

В классическом исчислении высказываний используются следующие схемы аксиом:

- $\alpha \to \beta \to \alpha$ (1)
- $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$ (2)
- $\alpha \to \beta \to \alpha \& \beta$ (3)
- $\alpha \& \beta \to \alpha$ (4)
- (5) $\alpha \& \beta \to \beta$
- $\alpha \to \alpha \vee \beta$ (6)
- $\beta \to \alpha \vee \beta$ (7)
- $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$ $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$ (8)
- (9)
- (10)

В интуиционистском исчислении высказываний 10-я схема аксиом заменяется на:

(10)
$$\alpha \to \neg \alpha \to \beta$$

Задача Е. Полнота исчисления высказываний

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 15 секунд Ограничение по памяти: 512 мегабайт

На вход вашей программе дается утверждение α в грамматике из предыдущих заданий. От вас требуется найти:

- Набор гипотез Γ_1 со следующими свойствами:
 - Γ_1 состоит только из переменных
 - $-\Gamma_1 \vdash \alpha$

В этом случае вам нужно вывести доказательство $\Gamma_1 \vdash \alpha$.

- Если такого набора гипотез не нашлось, то нужно найти наименьший набор гипотез Γ_2 :
 - Γ_2 состоит только из отрицаний переменных
 - $-\Gamma_2 \vdash \neg \alpha$

В этом случае вам нужно вывести доказательство $\Gamma_2 \vdash \neg \alpha$.

• Если и такого набора гипотез не нашлось, то выведите «: (».

Если среди предыдущих случаев существует несколько подходящих наборов гипотез (а если такие наборы есть, то их всегда бесконечно много), то требуется вывести любой подходящий набор наименьшего размера.

Формат входных данных

Во входном файле задано утверждение α . Размер входного файла не превышает 50 байт. Количество различных переменных, входящих в α , не превосходит 3.

Формат выходных данных

Если требуемого набора гипотез не существует, в единственной строке выведите «: (». Иначе выведите требуемое в условии доказательство, используя грамматику из предыдущих заданий.

стандартный ввод	
! A	
стандартный вывод	
:(
стандартный ввод	
A -> A & B	
стандартный вывод	
B - A -> A & B	
В	
B -> A -> B	
A -> B	
A -> B -> A & B	
(A -> B) -> (A -> B -> A & B) -> A -> A & B	
(A -> B -> A & B) -> A -> A & B	
A -> A & B	