

Jérémy Barrette – 1736976 Alexis Vailles – 1742139

Rapport TP #2 : Analyseur de protocole

Soumis à : Kadi, Mehdi INF3405 (01 – B1) – Réseaux informatiques Session Automne 2018

> École Polytechnique de Montréal Vendredi le 16 novembre 2018

6. Préparation de l'environnement de travail clients virtuel

6.1.

Windows7_A:

```
Administrator: C:\Windows\system32\cmd.exe
                                                                                                                                                                                                                                                                                                                 - - X
Windows IP Configuration
                                                                                                    · · · · · · : test-PC

      Host Name
      : test-PC

      Primary Dns Suffix
      :

      Node Type
      : Hybrid

      IP Routing Enabled
      : No

      WINS Proxy Enabled
      : No

      DNS Suffix Search List
      : localdomain

             Host Name
Ethernet adapter Local Area Connection:
            Connection-specific DNS Suffix :: localdomain
Description . . . . . : Intel(R) PRO/1000 MT Network Connection
Physical Address . . . . : 00-0C-29-65-90-B3
DHCP Enabled . . . . : Yes
           Connection—specific DNS Suffix : localdomain
Description : Intel(R) PRO/1000 MT Network Connection
Physical Address : 00-0C-29-65-90-B3
DHCP Enabled : Yes
Autoconfiguration Enabled : Yes
Link-local IPv6 Address : fe80::e54a:c9ec:c2e5:3fd6%10(Preferred)
IPv4 Address : 192.168.79.137(Preferred)
Subnet Mask : 255.255.255.0
Lease Obtained : Tuesday, November 06, 2018 9:56:24 AM
Lease Expires : Tuesday, November 06, 2018 10:25:59 AM
Default Gateway : 192.168.79.2
DHCP Server : 192.168.79.254
DHCPv6 IAID : 234884137
DHCPv6 Client DUID : 00-01-00-01-14-BF-D5-2A-00-0C-29-66-D9-90
             Tunnel adapter isatap.localdomain:
            Media State . . . . . . . : Media disconnected Connection-specific DNS Suffix . : localdomain Description . . . . . . . : Microsoft ISATAP Adapter Physical Address . . . . . : 00-00-00-00-00-00-00-E0
            Tunnel adapter Local Area Connection* 11:
             Media State .
                                                                                                                                                                 : Media disconnected
              Connection-specific DNS Suffix
            Teredo Tunneling Pseudo-Interface
00-00-00-00-00-00-00-E0
                                                                                                                                                                        No
Yes
Tunnel adapter 6TO4 Adapter:
            : Media disconnected
            Description Physical Address DHCP Enabled Adtress Enabled DHCP Enabled
                                                                                                                                                                        Microsoft 6to4 Adapter
00-00-00-00-00-00-00
                                                                                                                                                                       No
Yes
 C:\Users\Administrator>
```

Windows7_B:

8. Partie DHCP (Dynamic Host Configuration Protocol)

8.1.

← →	← ⇒ [三] [[] [] [] [] [] [] [] [] [
Packet	Source	Destination	Flags	Size	Relative Time	Protocol	Summary	Expert
19	3 0.0.0.0	🖳 IP Broadcast		346	0.000000	DHCP	C DISCOVER 192.168.79.137 test-PC	
23	192.168.79.254	192.168.79.137		346	1.049289	DHCP	R OFFER 192.168.79.137	
24	3 0.0.0.0	IP Broadcast		356	1.049545	DHCP	C REQUEST 192.168.79.137 test-PC	
25	3 192.168.79.254	3 192.168.79.137		346	1.049711	DHCP	R ACK	DHCP Low Lease Time (30 minutes,

Cette manipulation fonctionne comme suit :

- 1) Windows7_A découvre que l'adresse 192.168.79.137 est disponible (DISCOVER)
- 2) L'adresse est ensuite offerte à la machine (OFFER)
- 3) Windows 7_A fait la requête de l'adresse (REQUEST)
- 4) L'acquisition est ensuite confirmée (ACK).

8.2.

Les opérations DHCP effectuées en broadcast sont les opérations DISCOVER et REQUEST. Ces opérations doivent être faites en broadcast parce que l'ordinateur cherche à contacter les serveurs DHCP disponibles sans les connaître préalablement. Il émet donc en broadcast et c'est aux serveurs de détecter le message pour y répondre.

8.3.

On ne peut pas utiliser le TCP pour toutes les requêtes DHCP, car il n'est pas possible d'effectuer de broadcast sur le TCP

8.4.

La séquence d'encapsulation est Ethernet, IP, BOOTP, IP et DHCP

```
Ethernet: D=Ethernet Broadcast S=VMware:A2:73:A1

S=0.0.0.0 D=IP Broadcast

Src=bootpc Dst=bootps

G42-277]

BOOTP: Operation=1 Boot Request Hardware Address Type=1 H.

Character Broadcast

D=Ethernet Broadcast S=VMware:A2:73:A1

S=0.0.0.0 D=IP Broadcast

Src=bootpc Dst=bootps

Department Broadcast S=VMware:A2:73:A1

DDP: Src=bootpc Dst=bootps

Department Broadcast S=VMware:A2:73:A1
```

(La capture d'écran pour cette question a été fournie par une autre équipe car nous n'avions pas accès aux postes de polytechnique lorsque nous avons réalisé que la capture que nous avions était incorrecte)

8.5.

Le rôle du DHCP offer est d'envoyer une offre DHCP au client.

8.6.

Il s'agit du champ 284, sa valeur est de 02.

8.7.

Destination: 00:0C:29:65:90:B3 => correspond au poste physique Windows7_A

Source: 00:50:56:EB:88:6F => correspond au serveur DHCP

8.8.

Adresse de la source : 192.168.79.254 => appartient au serveur DHCP

8.9.

L'entête Ethernet est présente sur les octets 0 à 13, donc elle occupe un espace de 14 octets.

8.10.

La valeur du champ Protocol Type est de 0x0800. Cette valeur signifie que c'est le protocole IP qui est utilisé.

8.11.

Le champ *IP Address Lease Time* correspond au temps que la machine a avant de devoir revalider son adresse avec le serveur DHCP. Il s'agit du temps dont elle dispose pour faire une requête de cette adresse, sinon elle en changera à la fin du délai.

8.12.

Le champ *Client IP Addr Given By Srvr* désigne l'adresse prêtée par le serveur DHCP. Son utilité est d'informer le client de sa nouvelle IP adresse.

8.13.

Il s'agit de l'entête de la trame IP.

8.14.

La longueur observée est de 20 octets.

8.15.

Il s'agit du protocole UDP:

8.16.

L'entête UDP est présente sur les octets 34 à 41, donc elle occupe un espace de 8 octets.

8.17.

La machine Windows 7 doit revalider son adresse IP avec le serveur DHCP au bout de 1800 secondes, soit 30 minutes.

9. Partie ARP (Address Résolution Protocol)

9.1.

Le protocole ARP a pour but d'associer une adresse IP à une adresse de niveau 2, comme une adresse MAC.

9.2.

9.3.

On remarque que l'adresse IP de Windows7 B est maintenant dans le ARP de Windows7 A.

9.4.

Packet	Source	Destination	Flags	Size	Relative Time	Protocol	Summary
1	WMware:65:90:B3	Ethernet Broadcast		64	0.000000	ARP Request	192.168.79.136 = ?
2	WMware:23:61:22	WMware:65:90:B3		64	0.000228	ARP Response	VMware:23:61:22 = 192.168.79.136
5	WMware:65:90:B3	WMware:23:61:22		64	0.000514	ARP Response	VMware:65:90:B3 = 192.168.79.137

On observe dans la colonne *size* que la longueur des trames est de 64 octets.

9.5.

La valeur numérique est de 0x806. Cette valeur signifie que c'est le protocole IP ARP qui est utilisé.

9.6.

Requête:

```
Packet Info
   - 😭 Packet Number:
                     0x00000000
   .... 🗑 Flags:
   .... 🗑 Status:
                     0x00000000
  .... 🗑 Packet Length:
                     64
  Timestamp:
                      11:23:43.273005000 11/06/2018
Ethernet Header
                   FF:FF:FF:FF:FF:FF Ethernet Broadcast [0-5]

      Source:
      00:0C:29:65:90:B3 VMware:65:90:B3 [6-11]

      → Protocol Type:
      0x0806 IP ARP [12-13]

  Source:
ARP - Address Resolution Protocol
  ..... TEthernet (10Mb) [14-15]
  .... 🗑 Protocol:
                      0x0800 IP [16-17]
  .... 9 Protocol Addr Length: 4 [19]
  --- 😚 Operation:
                  1 ARP Request [20-21]
  Sender Hardware Addr: 00:0C:29:65:90:B3 VMvare:65:90:B3 [22-27]
  Target Internet Addr: 192.168.79.136 [38-41]
Extra bytes

    Number of bytes: (18 bytes) [42-59]

FCS - Frame Check Sequence
  - ⊕ FCS:
                      0x1984015E Calculated
```

Réponse:

```
Packet Number: 2
  Packet Length: 64
Timestamp: 11:2
                    11:23:43.273233000 11/06/2018
🚊 🚏 Ethernet Header
  ARP - Address Resolution Protocol
  ..... Hardware: 1 Ethernet (10Mb) [14-15]
                    0x0800 IP [16-17]
  .... 🕤 Protocol:
  .... Tardware Addr Length: 6 [18]
  💮 Protocol Addr Length: 4 [19]
  → 😭 Operation: 2 ARP Response [20-21]
  Sender Hardware Addr: 00:0C:29:23:61:22 VMvare:23:61:22 [22-27]
  Sender Internet Addr: 192.168.79.136 [28-31]
  Target Hardware Addr: 00:0C:29:65:90:B3 VMvare:65:90:B3 [32-37]
  Target Internet Addr: 192.168.79.137 [38-41]
Extra bytes
  ■ Number of bytes: (18 bytes) [42-59]
FCS - Frame Check Sequence
  ---- ( FCS:
             0x5FA7F9FD Calculated
```

Une requête est un broadcast (pas de target), tandis que qu'une réponse est un message spécifique à une adresse connue.

9.7.

Le nœud de la source de la première réponse ARP correspond à Windows7_B, qui répond au broadcast de Windows7_A.

9.8.

Le nœud de la destination de la première réponse ARP correspond à Windows7_A, qui est contacté par Windows7_B.

9.9.

```
□ Packet Info
    Packet Number: 1
   --- → Flags:
                         0x00000000
   --- 

Status:
                         0x00000000
   → Packet Length: 64

→ Timestamp: 11:
                           11:23:43.273005000 11/06/2018
🖃 🚏 Ethernet Header
   Destination: FF:FF:FF:FF:FF:Ethernet Broadcast [0-5]

Source: 00:0C:29:65:90:B3 VMvare:65:90:B3 [6-11]

Protocol Type: 0x0806 IP ARP [12-13]
ARP - Address Resolution Protocol
   Hardware: 1 Ethernet (10Mb) [14-15]

Protocol: 0x0800 IP [16-17]
   --- 

→ Hardware Addr Length: 6 [18]
   ---- Trotocol Addr Length: 4 [19]
   → 😭 Operation: 1 ARP Request [20-21]
   Sender Hardware Addr: 00:0C:29:65:90:B3 VMvare:65:90:B3 [22-27]
   Sender Internet Addr: 192.168.79.137 [28-31]
   Target Internet Addr: 192.168.79.136 [38-41]
🚊 🚏 Extra bytes

    Number of bytes: (18 bytes) [42-59]

FCS - Frame Check Sequence
                           0x1984015E Calculated
```

La séquence est : l'encapsulation Ethernet d'abord, et directement les informations ARP ensuite.

9.10.

Le champ contenant la réponse est le "Sender Hardware Addr" aux positions [22-27]. Il s'agit de l'adresse physique de l'envoyeur (Windows7_B) qui a été contacté par son adresse internet par Windows7_A.

```
ARP - Address Resolution Protocol
   Hardware:
                  1 Ethernet (10Mb) [14-15]
  Protocol:
                  0x0800 IP [16-17]
  Protocol Addr Length: 4 [19]
                  2 ARP Response [20-21]
  .... Sender Internet Addr: 192.168.79.136 [28-31]
 Target Internet Addr: 192.168.79.137 [38-41]
9.11.
Extra bytes
 ■ Number of bytes:
                  (18 bytes) [42-59]
FCS - Frame Check Sequence
 ● FCS:
                   0x5FA7F9FD Calculated
```

Il y a un espace d'octets vides additionnels (extra bytes) à la fin de la trame ARP.

Ce champ occupe 18/64 bytes = 28.125 %

Ce champ est nécessaire parce que la trame ARP ne fait 64 octets, soit la limite minimale d'une trame Ethernet.

10.1.

```
IP Header - Internet Protocol Datagram

    ∀ersion: 4 [14 Mask 0xF0]

                       5 (20 bytes) [14 Mask 0x0F]
    Header Length:
 in T Differentiated Services: $00000000 [15]
                          0000 00.. Default
    ..... 😭
                          .... ..00 Not-ECT
   Total Length:
                        60 [16-17]
   Identifier:
                        4475 [18-19]
 Fragmentation Flags: %000 [20 Mask 0xE0]
    ..... 😭

    Reserved

    .... 😭
                          .0. May Fragment
    ..... 😭
                           .. 0 Last Fragment
                       0 (0 bytes) [20-21 Mask 0x1FFF]
  ... 😭 Fragment Offset:
  … 🗑 Time To Live:
                       128 [22]
  ... 🗑 Protocol:
                        1 ICMP - Internet Control Message Protocol [23]
                     0x0000 Checksum invalid. Should be: 0x08E4 [24-25]
  ... 🕤 Header Checksum:
  ______ Dest. IP Address: 192.168.79.136 [30-33]
FT ICMP - Internet Control Messages Protocol
                8 Echo Request [34]
   … 🗑 ICMP Code:
                       0 [35]
  ... 🗑 ICMP Checksum:
                       0x4D55 [36-37]
                       0x0001 [38-39]
  .... 🗑 Identifier:
                       0x0600 [40-41]
   Sequence Number:
  ..... 🕤 ICMP Data Area:
                       (32 bytes) [42-73]
FCS - Frame Check Sequence
  FCS:
                        0xE1A1D43C Calculated
IP Header - Internet Protocol Datagram
    4 [14 Mask 0xF0]
    5 (20 bytes) [14 Mask 0x0F]
   Differentiated Services: $00000000 [15]
     .... 😭
                           0000 00.. Default
     ..... 😭
                            .... ..00 Not-ECT
   --- Total Length:
                         60 [16-17]
   4522 [18-19]
   Fragmentation Flags: $000 [20 Mask 0xE0]

    Reserved

                           .0. May Fragment
      .... 😭
     ..... 😭
                            .. 0 Last Fragment
                         0 (0 bytes) [20-21 Mask 0x1FFF]
    ... 🗑 Fragment Offset:
    ... 🗑 Time To Live:
                         128 [22]
    ... 🗑 Protocol:
                         1 ICMP - Internet Control Message Protocol [23]
    ..... 😭 Header Checksum:
                        0x08B5 [24-25]
    Dest. IP Address: 192.168.79.137 [30-33]
 internet Control Messages Protocol
                        O Echo Reply [34]
    - 😭 ICMP Type:
    ... 🗑 ICMP Code:
                         0 [35]
    .... 🗑 ICMP Checksum:
                        0x5555 [36-37]
    0x0001 [38-39]
                         0x0600 [40-41]
    ... 🗑 Sequence Number:
    ..... ⑤ ICMP Data Area:
                          (32 bytes) [42-73]
 FCS - Frame Check Sequence
   ⊕ FCS:
                          0x31CEF46E Calculated
```

Le champ est ICMP Type.

Les valeurs impliquées sont 8 (Echo Request) pour la requête et 0 (Echo Reply) pour la réponse.

10.2.

On utilise la version 4:

```
IP Header - Internet Protocol Datagram

Version:
4 [14 Mask 0xF0]

Header Length:
5 (20 bytes) [14 Mask 0x0F]
```

10.3.

Le *Time to Live* de 128. Il s'agit de la durée maximale de transit du paquet dans le réseau.

10.4.

```
Packet Info
   ... 🗑 Packet Number:
   .... 🗑 Flags:
                          0x00000000
   ... 🗑 Status:
                          0x00000000
   .... 🗑 Packet Length:
                         78
   ..... Timestamp:
                          11:23:44.274070000 11/06/2018
🚊 🚏 Ethernet Header
   Destination: 00:0C:29:23:61:22 VMvare:23:61:22 [0-5]
   ... Source:
                         00:0C:29:65:90:B3 VMvare:65:90:B3 [6-11]
   --- → Protocol Type: 0x0800 IP [12-13]
🖃 🚏 IP Header - Internet Protocol Datagram
    Version:
                          4 [14 Mask 0xF0]
    Header Length:
                         5 (20 bytes) [14 Mask 0x0F]
  Differentiated Services: $00000000 [15]
                            0000 00.. Default
     ..... 😭
                             .... ..00 Not-ECT
   .... 🗑 Total Length:
                         60 [16-17]
    Identifier:
                           4475 [18-19]
  Fragmentation Flags: %000 [20 Mask 0xE0]

    Reserved

     .... 😭
       9
                            .0. May Fragment
                            ..0 Last Fragment
   … 🗑 Time To Live:
   .... Protocol:
                         1 ICMP - Internet Control Message Protocol [23]
   Header Checksum: 0x0000 Checksum invalid. Should be: 0x08E4 [24-25]
   Source IP Address: 192.168.79.137 [26-29]
Dest. IP Address: 192.168.79.136 [30-33]
🖆 🚏 ICMP - Internet Control Messages Protocol
   .... 🕤 ICMP Type:
                        8 Echo Request [34]
   .... 🗑 ICMP Code:
                         0 [35]
                        0x4D55 [36-37]
   .... 😭 ICMP Checksum:
   .... 🗑 Identifier:
                         0x0001 [38-39]

    Sequence Number: 0x0600 [40-41]
```

La séquence d'encapsulation est une combinaison de protocole IP et Ethernet

11. Partie théorique

11.1.

Lien 4:

(Le commutateur n'envoie que vers l'adresse désirée)

Lien 5

A6:B7:C8:D9:E1:F2	A1:B2:C3:D4:E5:F6
132.207.29.102/24	132.207.29.103/24

Lien 6

A6:B7:C8:D9:E1:F2	A1:B2:C3:D4:E5:F6
132.207.29.102/24	132.207.29.103/24

11.2.

Lien 1:

A5:B6:C7:D8:E9:F1	A4:B5:C6:D7:E8:F9
132.207.29.102/24	132.207.30.102/24

Lien 2:

A4:B5:C6:D7:E8:F9	A3:B4:C5:D6:E7:F8
132.207.29.102/24	132.207.30.102/24

Lien 3:

A3:B4:C5:D6:E7:F8	A2:B3:C4:D5:E6:F7
132.207.29.102/24	132.207.30.102/24

Lien 4:

A2:B3:C4:D5:E6:F7	A1:B2:C3:D4:E5:F6
132.207.29.102/24	132.207.30.102/24

Lien 5:

A2:B3:C4:D5:E6:F7	A1:B2:C3:D4:E5:F6
132.207.29.102/24	132.207.30.102/24