Runtime Analysis

	tinyArray	smallArray	mediumArray	largeArray	extraLargeArray
insert	49.712 μs	204.614 µs	274.148 µs	15.820305 ms	1.833510896 s
append	125.973 µs	133.002 µs	192.247 µs	809.209 μs	6.146255 ms

Looking at these results it is easy to see that the Append method would scale far better than the Insert method will. Because the Insert method forces the entire array to shift each time, the line will continue to grow exponentially and become significantly less efficient with increasing workload. It appears that with arrays where length <= 100 it would be better to use the insert method, but for scaling purposes the Append method is much more efficient.