Voice Recognition Project Team #3

ECE 411 Practicum Mark Musil, Rawan Abdo, Samantha Fink, Amanda Voegtlin

Overview of Problem

- Adolescents want to secure small items in their home but can not find anywhere to do so.
- Must be secure enough for small keepsakes, diaries, etc.
- Not a high security system.
- Must be secure and trendy.

Project Choice Decision Matrix

	Option 1 - Voice Activated Lock Box	Option 2 - Theremin Lock	Option 3 - Ocarina Lock	Option 4 - Rhythm Lock
Doability (Hardware)	8	7	8	4
Doability (Software)	5	5	7	6
Affordability	8	6	6	5
Interest	9	5	8	5
Prior Experience	7	5	6	4
Sum	37	28	35	24
Rank	1	3	2	4
Status	Chosen	No	No	No

Concept of Operation - Voice Activated Lockbox

- 1. Locked state: Solenoid keeps lid closed.
- 2. User input: Password spoken into microphone
- 3. Device output: Solenoid retracts and box is open
- 4. User input: Close box, press reset switch, solenoid engages lock.

User Input: "Shore"

Level 0 Block Diagram

ECE 411: Team #3
Voice Recognizer Block Diagram: Level 0

Module	Password proteched lock box						
	User voice						
	USB power (5V)						
Inputs	Servo power/solenoid power (5V wall wart)						
	LED activation: blue power LED indicates that product is powered.						
	Servo activation: servo motor activates to rotate arm and allow box to be open unimpeded.						
	-OR-						
Outputs	Solenoid activation: solenoid plunger slides into solenoid body.						
	Allows user to place keepsakes in locked box. Box unlocks when correct passphrase is						
Functionality	spoken.						

Level 1 Block Diagram

Overview of Schematic - Full Picture

Overview of Schematic - Power

Overview of Schematic - Programming Interface

Overview of Schematic - Inputs

Overview of Schematic - Processor

Overview of Schematic - Outputs

Overview of Layout - Full Picture

Overview of Layout - Power

Overview of Schematic - Programming Interface

Overview of Schematic - Inputs

Overview of Schematic - Processor

Overview of Schematic - Outputs

Functionality Flowchart

IP Used

- CAD
 - o EagleCAD was used for the schematic and layout design
- Firmware
 - An open source library called "μSpeech" (written by Arjo Chakravarty) is used to analyze the phonemes from the user input.

Bill of Materials

PCB Version: 1.0 BOM Version: 1.0

P/DNP = Place/ Do not place component Comments: All components are SMD unless otherwise noted

Version Changes: Initial BOM

Qty	Value	Parts	P/DN P	Mfg	Mfg Part #	Device Description	Distributor	Dist. Part #	Price per unit	Ext. Price
1	PWR-GRN	LED1	P	EPL-PSU	Unknown	Through hole Green LED	EPL	n/a	0.25	0.25
1	FUNC ORNG	LED2	P	EPL-PSU	Unknown	Through hole Orange LED	EPL EPL EPL	n/a	0.25	0.25
1	NOFUNC_RED	LED3	P	EPL-PSU	Unknown	Through hole Red LED	EPL	n/a	0.25	
1	WARN_YELL	LED4	P	EPL-PSU	Unknown	Through hole Yellow LED	EPL	n/a	0.25	0.25
2	MIC_ON, RESET1	Buttons	P	Panasonic	667-EVQ-Q2K01W	Tactile button 6mm square	Mouser	667-EVQ-Q2K01W	0.3	0.6
8	100nF	C4, C6, C8, C12	Р	Murata	GRM31C5C2A104JA01L	100nF 100VDC 5% 1206 Capacitor	Mouser	81- GRM31C5C2A104JA1L	0.71	5.68
2	10k	R4, R8	P	Welwyn	WIN-T1206LF-03-1002-B	10k 1% 250mW 1206 resistor	Mouser	66- WINT1206LF031002B	0.59	1.18
1	10uF	C5, C7	P	Murrata	GCJ31CC71E106MA15L	10uF 25VDC 20% 1206 Capacitor	Mouser	81- GCJ31CC71E106MA5I 344-	0.94	0.94
1	16MHz	Q1	Р	NDK	NX3225SA-16.000000MHZ-T1	16MHz Surface Mount 10ppm	Mouser	NX3225SA16MHZT1	0.92	0.92
2	18pF	C1, C2	P	Murata	GRM31A7U3D180JW31D	18pF 2kVDC 5% 1206 Capacitor	Mouser	GRM31A7U3D180JW1 D	0.74	1.48
4	1k	R3, R5, R6, R7	P	KOA Speer	RN73H2BTTD1001F100	1k 1% 250mW 1206 resistor	Mouser	660- RN73H2BT1001F100	0.44	1.76
1	1uF	C3	P	KEMET	C1206X105M3RACTU	1uF 25VDC 20% 1206 Capacitor	Mouser	80-C1206X105M3R	1.36	1.36
2	22	R1, R2	P	Welwyn	WCR1206-22RFI	22 1% 250mW 1206 resistor	Mouser	756-WCR1206-22RFI	0.1	0.2
1	5.5x2.1mm Barrel	J 1	Р	Adam Tech.	Unknown	Barrel Jack Female 5.5mm jack, 2.1mm center pole diameter	Sparkfun	PRT-12748	1.5	
1	ATMEGA32U4-AU	U\$1	P	Microchip	ATMEGA32U4-AU	ATMEGA32U4-AU	Mouser	556-ATMEGA32U4-AU	4.12	4.12
1	USB-A	X1	P	CUI NLPOWER-CN	UJ2-AH-1-SMT-TR	USB-A	Mouser	490-UJ2-AH-1-SMT-TR	1.28	
1	DC Wall Wart	N/A	DNP	NLPOWER-CN	SFE-5V2AD	DC Wall wart 5.5mmx2.1mm 5v, 2A	Sparkfun	TOL-12889	5.95	
1	USB-A Cable 2 pack	N/a	DNP	DTOL	Unknown	USB-A Male to Male 4ft cable	Amazon	link	8.2	8.2
1	120 Pack cables	N/A	DNP	Elegoo	Unknown	MI to MI, Fm to MI, Fm to Fm Connector	Amazon	link	6.98	6.98
1	Misc Connectors EP	N/A	DNP	EPL-PSU	Unknown	Miscellaneous Headers from EPL Store	EPL	n/a	3	3
1	PCB	N/A	DNP	Oshpark	Unknown	Printed Circuit Board	Oshpark	n/a	11.45	11.45
**********								Total Cost On	e Board	57.6

Test Plan #1: Initial Power Up of Practicum Project

Objective: to test if board is powered up. The board should be connected to the board and the solenoid should be in the locking position.

Test Procedure: Plug USB connector to laptop to see if blue light is on. If light is on board is powered up.

If light does not turn on:

- Probe the board and check connections.
- Run simple test code (LED blink) to determine if coding issue.

Test Plan #2: Prototype System (Arduino Uno)

Objective: To test the phoneme recognition. When microphone is powered, solenoid should activate when user speaks password ("shore") into microphone.

Test procedure: Make sure blue light is on. Say the specified word.

If solenoid is not activated:

- Try repeating the word
- Modify the phoneme sum and other indicators.
- Use debugger that is provided in the arduino uno to figure out why it is not unlocking.

Gantt Chart

Task ID	D Work Breakdown Structure	Planned Start	Planned Finish	Actual Start	Actual Finish	Workload (Hours) (Plan Actual)		Progress	2018/11/26						
														1	
1	Solder board together	2018/11/21	2018/11/27	2018/11/24	2018/11/28	6	6	100.0%	=	=		1	1		
2	Troubleshoot Hardware	2018/11/27	2018/11/28	2018/11/29	2018/11/29	16	18	100.0%		=	=	ľ	1	1	
3	Install software	2018/11/28	2018/11/29	2018/11/29	2018/11/30	16	22	100.0%			=	=	I.	F	
4	Recalibrate code	2018/11/30	2018/12/01	2018/12/01	2018/12/04	16	18	100.0%					=	=	
5	Build enclosure	2018/12/01	2018/12/01	2018/12/04	2018/12/04	4	5	100.0%				1		=	
6	Final touches	2018/12/02	2018/12/02	2018/12/05	2018/12/06	8	8	95.0%		I I				1	

What is left to do?

- Increasing the accuracy of the phoneme recognition.
 - This can be done by using a different microphone or a faster processor.
- Reinforcing mechanical strength of the lock and chest.
- Catering aesthetic to the target market's preferences.

What have we learned as a team?

- We learned how to communicate and **split up work** accordingly.
- It is critical to **record all purchases** so that individuals are reimbursed fairly
- Success and failure should come in **equal amounts** for the best team cohesion

What have we learned individually?

- Amanda:
- Mark: Test points should be at every node for ease of debugging.
- Rawan:
- Sam: how to use EAGLE (for schematics and PCB routing), new soldering techniques.

The End Questions?