Solving the neutron transport equation within a diffusive regime

Jack Blake, Ivan Graham and Alastair Spence

Mathematical Sciences, Bath University, Bath, UK, BA2 7AY

25th June, 2013

The problem

An important problem in nuclear physics is that of efficiently solving the neutron transport equation. This equation governs the behaviour of neutrons within a nuclear fission reactor. It is used to model reactors for testing and simulation purposes.

$$\Omega \cdot \nabla \psi(x,\Omega) + \sigma_T \psi(x,\Omega) = \frac{\sigma_S}{2} \int_{-1}^1 \psi(x,\Omega') d\Omega' + q(x,\Omega)$$

The problem

An important problem in nuclear physics is that of efficiently solving the neutron transport equation. This equation governs the behaviour of neutrons within a nuclear fission reactor. It is used to model reactors for testing and simulation purposes.

$$\mu \frac{\partial}{\partial x} \psi(x, \mu) + \sigma_T \psi(x, \mu) = \frac{\sigma_S}{2} \int_{-1}^1 \psi(x, \mu') d\mu' + q(x)$$

The problem

An important problem in nuclear physics is that of efficiently solving the neutron transport equation. This equation governs the behaviour of neutrons within a nuclear fission reactor. It is used to model reactors for testing and simulation purposes.

$$\mu \frac{\partial}{\partial x} \psi(x, \mu) + \sigma_T \psi(x, \mu) = \frac{\sigma_S}{2} \int_{-1}^1 \psi(x, \mu') d\mu' + q(x)$$

Boundary conditions:
$$\begin{array}{ll} \psi(a,\mu)=0, & \mu>0 \\ \psi(b,\mu)=0, & \mu<0 \end{array}$$
 , with $\begin{array}{ll} x\in[a,b] \\ \mu\in[-1,1] \end{array}$

Note: $\sigma_T = \sigma_S + \sigma_A$

Operator notation and source iteration Introduce

$$\mathcal{T}(\cdot) \equiv \mu \frac{\partial}{\partial x}(\cdot) + \sigma_{\mathcal{T}}(\cdot)$$
 and define $\phi(x) = \frac{1}{2} \int_{-1}^{1} \psi(x, \mu) d\mu$.

 ϕ is called the scalar flux. The transport equation is then

$$\mathcal{T}\psi=\sigma_{\mathcal{S}}\phi+q.$$

Operator notation and source iteration Introduce

$$\mathcal{T}(\cdot) \equiv \mu \frac{\partial}{\partial x}(\cdot) + \sigma_{\mathcal{T}}(\cdot)$$
 and define $\phi(x) = \frac{1}{2} \int_{-1}^{1} \psi(x, \mu) d\mu$.

 ϕ is called the scalar flux. The transport equation is then

$$\mathcal{T}\psi=\sigma_{\mathcal{S}}\phi+q.$$

Define source iteration as follows

$$\mathcal{T}\psi^{(i+1)} = \sigma_S \phi^{(i)} + q$$
$$\phi^{(i+1)} = \frac{1}{2} \int_{-1}^{1} \psi^{(i+1)} d\mu$$

This basic iterative method is a contraction, with the difference between successive iterations bounded as (F. Scheben, 2011)

$$\left\|\phi^{(i+1)} - \phi^{(i)}\right\|_{2} \leq \frac{\sigma_{S}}{\sigma_{T}} \left\|\phi^{(i)} - \phi^{(i-1)}\right\|_{2}.$$

What is a diffusive regime?

For a full definition, see E.W. Larsen et al., 1987.

We can encapsulate the relevant conditions in a variable ϵ s.t.: " ϵ small" \Rightarrow "diffusive regime"

What is a diffusive regime?

For a full definition, see E.W. Larsen et al., 1987.

We can encapsulate the relevant conditions in a variable ϵ s.t.: " ϵ small" \Rightarrow "diffusive regime"

One condition requires $\sigma_S >> \sigma_A$. To satisfy this we scale as follows

$$\sigma_T \equiv \frac{1}{\epsilon}, \quad \sigma_A \equiv \epsilon, \quad \sigma_S \equiv \left[\frac{1}{\epsilon} - \epsilon\right], \quad \text{and} \quad q(x) \equiv \epsilon Q(x)$$

What is a diffusive regime?

For a full definition, see E.W. Larsen et al., 1987.

We can encapsulate the relevant conditions in a variable ϵ s.t.: " ϵ small" \Rightarrow "diffusive regime"

One condition requires $\sigma_S >> \sigma_A$. To satisfy this we scale as follows

$$\sigma_T \equiv \frac{1}{\epsilon}, \quad \sigma_A \equiv \epsilon, \quad \sigma_S \equiv \left[\frac{1}{\epsilon} - \epsilon\right], \quad \text{and} \quad q(x) \equiv \epsilon Q(x)$$

SPOILER:

$$-\frac{1}{3}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\phi + \phi = Q + O(\epsilon^2).$$

(boundary conditions: ?)

Implications for source iteration

Looking back to the contraction inequality, we note

$$\|\phi^{(i+1)} - \phi^{(i)}\|_{2} \le \frac{\sigma_{S}}{\sigma_{T}} \|\phi^{(i)} - \phi^{(i-1)}\|_{2}$$
$$= [1 - \epsilon^{2}] \|\phi^{(i)} - \phi^{(i-1)}\|_{2}$$

thus a small ϵ has the potential to cause very slow convergence. How can we improve on this?

Implications for source iteration

Looking back to the contraction inequality, we note

$$\|\phi^{(i+1)} - \phi^{(i)}\|_{2} \le \frac{\sigma_{S}}{\sigma_{T}} \|\phi^{(i)} - \phi^{(i-1)}\|_{2}$$
$$= \left[1 - \epsilon^{2}\right] \|\phi^{(i)} - \phi^{(i-1)}\|_{2}$$

thus a small ϵ has the potential to cause very slow convergence. How can we improve on this?

We want to work with a pair of coupled equations for ψ and ϕ in block operator form, and for this the following will be convenient:

$$\mathcal{P}(\cdot) \equiv \frac{1}{2} \int_{-1}^{1} (\cdot) d\mu, \quad \Sigma(\cdot) \equiv \left[\frac{1}{\epsilon} - \epsilon \right] (\cdot).$$

Then
$$\phi(x) \equiv \mathcal{P}\psi(x,\mu)$$

Working from the transport equation in block operator form

$$\left(\begin{array}{cc} \mathcal{T} & -\Sigma \\ -\mathcal{P} & \mathcal{I} \end{array} \right) \left(\begin{array}{c} \psi \\ \phi \end{array} \right) = \left(\begin{array}{c} \epsilon Q \\ 0 \end{array} \right)$$

Working from the transport equation in block operator form

$$\left(\begin{array}{cc} \mathcal{I} & 0 \\ \mathcal{P}\mathcal{T}^{-1} & \mathcal{I} \end{array} \right) \left(\begin{array}{cc} \mathcal{T} & -\Sigma \\ -\mathcal{P} & \mathcal{I} \end{array} \right) \left(\begin{array}{c} \psi \\ \phi \end{array} \right) = \left(\begin{array}{cc} \mathcal{I} & 0 \\ \mathcal{P}\mathcal{T}^{-1} & \mathcal{I} \end{array} \right) \left(\begin{array}{c} \epsilon Q \\ 0 \end{array} \right)$$

where \mathcal{T}^{-1} is defined in F.Scheben, 2011, for the 1D case.

Working from the transport equation in block operator form

$$\begin{pmatrix} \mathcal{I} & 0 \\ \mathcal{P}\mathcal{T}^{-1} & \mathcal{I} \end{pmatrix} \begin{pmatrix} \mathcal{T} & -\Sigma \\ -\mathcal{P} & \mathcal{I} \end{pmatrix} \begin{pmatrix} \psi \\ \phi \end{pmatrix} = \begin{pmatrix} \mathcal{I} & 0 \\ \mathcal{P}\mathcal{T}^{-1} & \mathcal{I} \end{pmatrix} \begin{pmatrix} \epsilon Q \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} \mathcal{T} & -\Sigma \\ 0 & \mathcal{I} - \mathcal{P}\mathcal{T}^{-1}\Sigma \end{pmatrix} \begin{pmatrix} \psi \\ \phi \end{pmatrix} = \begin{pmatrix} \epsilon Q \\ \epsilon \mathcal{P}\mathcal{T}^{-1}Q \end{pmatrix}$$

where \mathcal{T}^{-1} is defined in F.Scheben, 2011, for the 1D case.

Working from the transport equation in block operator form

$$\left(\begin{array}{cc} \mathcal{I} & \mathbf{0} \\ \mathcal{P}\mathcal{T}^{-1} & \mathcal{I} \end{array} \right) \left(\begin{array}{cc} \mathcal{T} & -\Sigma \\ -\mathcal{P} & \mathcal{I} \end{array} \right) \left(\begin{array}{c} \psi \\ \phi \end{array} \right) = \left(\begin{array}{cc} \mathcal{I} & \mathbf{0} \\ \mathcal{P}\mathcal{T}^{-1} & \mathcal{I} \end{array} \right) \left(\begin{array}{c} \epsilon Q \\ \mathbf{0} \end{array} \right)$$

$$\Rightarrow \qquad \left(\begin{array}{cc} \mathcal{T} & -\Sigma \\ 0 & \mathcal{I} - \mathcal{P}\mathcal{T}^{-1}\Sigma \end{array}\right) \left(\begin{array}{c} \psi \\ \phi \end{array}\right) = \left(\begin{array}{c} \epsilon Q \\ \epsilon \mathcal{P}\mathcal{T}^{-1}Q \end{array}\right)$$

where \mathcal{T}^{-1} is defined in F.Scheben, 2011, for the 1D case.

Diffusion Approximation Theorem:

$$\frac{1}{\epsilon^2} (\mathcal{I} - \mathcal{P} \mathcal{T}^{-1} \Sigma) \phi = -\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{3} \frac{\mathrm{d}}{\mathrm{d}x} \phi \right) + \phi + O(\epsilon^2)$$

Heuristic proof

We know $\mathcal{T}=\frac{1}{\epsilon}\left(\mathcal{I}+\epsilon\mu\frac{\partial}{\partial x}\right)$, where \mathcal{I} is the identity operator. Expand:

$$\mathcal{T}^{-1} = \epsilon \left(\mathcal{I} - \epsilon \mu \frac{\partial}{\partial x} + \epsilon^2 \mu^2 \frac{\partial^2}{\partial x^2} - \dots \right)$$

Heuristic proof

We know $\mathcal{T}=\frac{1}{\epsilon}\left(\mathcal{I}+\epsilon\mu\frac{\partial}{\partial x}\right)$, where \mathcal{I} is the identity operator. Expand:

$$\mathcal{T}^{-1} = \epsilon \left(\mathcal{I} - \epsilon \mu \frac{\partial}{\partial x} + \epsilon^2 \mu^2 \frac{\partial^2}{\partial x^2} - \dots \right)$$

Using this expansion

$$\mathcal{P}\mathcal{T}^{-1}\Sigma = \epsilon \mathcal{P}\left(\mathcal{I} - \epsilon \mu \frac{\partial}{\partial x} + \epsilon^2 \mu^2 \frac{\partial^2}{\partial x^2} - \dots\right) \left[\frac{1}{\epsilon} - \epsilon\right]$$
$$= \left[1 - \epsilon^2\right] \left(\mathcal{P} - \epsilon \frac{\partial}{\partial x} \mathcal{P}\mu + \epsilon^2 \frac{\partial^2}{\partial x^2} \mathcal{P}\mu^2 - \dots\right).$$

Note that $\mathcal{P}\mu=$ 0, $\mathcal{P}\mu^2=\frac{1}{3}$ and $\mathcal{P}\phi=\phi$,

Heuristic proof

We know $\mathcal{T} = \frac{1}{\epsilon} \left(\mathcal{I} + \epsilon \mu \frac{\partial}{\partial x} \right)$, where \mathcal{I} is the identity operator. Expand:

$$\mathcal{T}^{-1} = \epsilon \left(\mathcal{I} - \epsilon \mu \frac{\partial}{\partial x} + \epsilon^2 \mu^2 \frac{\partial^2}{\partial x^2} - \dots \right)$$

Using this expansion

$$\mathcal{P}\mathcal{T}^{-1}\Sigma = \epsilon \mathcal{P}\left(\mathcal{I} - \epsilon \mu \frac{\partial}{\partial x} + \epsilon^2 \mu^2 \frac{\partial^2}{\partial x^2} - \dots\right) \left[\frac{1}{\epsilon} - \epsilon\right]$$
$$= \left[1 - \epsilon^2\right] \left(\mathcal{P} - \epsilon \frac{\partial}{\partial x} \mathcal{P}\mu + \epsilon^2 \frac{\partial^2}{\partial x^2} \mathcal{P}\mu^2 - \dots\right).$$

Note that $\mathcal{P}\mu=0$, $\mathcal{P}\mu^2=\frac{1}{3}$ and $\mathcal{P}\phi=\phi$, so

$$\frac{1}{\epsilon^2} (\mathcal{I} - \mathcal{P} \mathcal{T}^{-1} \Sigma) \phi = \frac{1}{\epsilon^2} \left(\mathcal{I} - \mathcal{P} - \frac{\epsilon^2}{3} \frac{\partial^2}{\partial x^2} \mathcal{P} + \epsilon^2 \mathcal{P} + O(\epsilon^4) \right) \phi$$

$$= -\frac{1}{3} \frac{d^2}{dx^2} \phi + \phi + O(\epsilon^2).$$

Discretise

Transport equation in discrete block matrix form

$$\left(\begin{array}{cc} T & -\Sigma \\ -P & I \end{array}\right) \left(\begin{array}{c} \psi \\ \phi \end{array}\right) = \left(\begin{array}{c} \epsilon Q \\ 0 \end{array}\right)$$

Discretise

Transport equation in discrete block matrix form

$$\Rightarrow \qquad \left(\begin{array}{cc} T & -\Sigma \\ 0 & I - PT^{-1}\Sigma \end{array}\right) \left(\begin{array}{c} \psi \\ \phi \end{array}\right) = \left(\begin{array}{c} \epsilon Q \\ \epsilon PT^{-1}Q \end{array}\right)$$

Discretise

Transport equation in discrete block matrix form

$$\Rightarrow \qquad \left(\begin{array}{cc} T & -\Sigma \\ 0 & I - PT^{-1}\Sigma \end{array}\right) \left(\begin{array}{c} \psi \\ \phi \end{array}\right) = \left(\begin{array}{c} \epsilon Q \\ \epsilon PT^{-1}Q \end{array}\right)$$

- ► Form source iteration in block matrix form
- Subtract this from block matrix transport equation
- Conduct the same Gaussian elimination

$$\begin{pmatrix} T & -\Sigma \\ 0 & I - PT^{-1}\Sigma \end{pmatrix} \begin{pmatrix} \psi - \psi^{(i+1)} \\ \phi - \phi^{(i+1)} \end{pmatrix} = \begin{pmatrix} \Sigma(\phi^{(i+1)} - \phi^{(i)}) \\ PT^{-1}\Sigma(\phi^{(i+1)} - \phi^{(i)}) \end{pmatrix}$$

A quick numerical experiment

Iteration	$\ \phi - \phi^{(i)}\ _2$
	for $\epsilon=10^{-3}$
1	1.0e-004
2	1.8e-004
3	9.6e-005
4	4.9e-005
:	:
14	5.1e-008
15	2.6e-008
16	1.3e-008
17	6.4e-009

Source iteration would take roughly 5 million iterations for the same calculation.

Iterative Methods for Criticality Computations in Neutron Transport Theory.

PhD thesis, University of Bath, 2011.

Edward W Larsen, J.E Morel, and Warren F Miller Jr.
Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes.

Journal of Computational Physics, 69(2):283 – 324, 1987.