Fundamentals of Information Theory

Homework 3

Problem 1 (10 points)

(a) Find the entropy rate of the two-state Markov chain with transition matrix

$$P = \left[\begin{array}{cc} 1 - p_{01} & p_{01} \\ p_{10} & 1 - p_{10} \end{array} \right].$$

- (b) What values of p_{01} , p_{01} maximize the rate of part (a)?
- (c) Find the entropy rate of the two-state Markov chain with transition matrix

$$P = \left[\begin{array}{cc} 1 - p & p \\ 1 & 0 \end{array} \right].$$

(d) Find the maximum value of the entropy rate of the Markov chain of part (c). We expect that the maximizing value of p should be less than $\frac{1}{2}$, since the 0 state permits more information to be generated than the 1 state.

Problem 2 (10 points)

- (a) Are Shannon codes compact codes? Why?
- (b) Explain why you can obtain a prefix code according to the shannon coding algorithm?

Problem 3 (10 points) Consider the following method for generating a code for a random variable X which takes on m values $\{1, 2, ..., m\}$ with probabilities $p_1, p_2, ..., p_m$. Assume that the probabilities are ordered so that $p_1 \ge p_2 \ge ... \ge p_m$. Define

$$F_i = \sum_{k=1}^{i-1} p_k,$$

the sum of the probabilities of all symbols less than i. Then the codeword for i is the number $F_i \in [0,1]$ rounded off to l_i bits, where $l_i = \left\lceil \log \frac{1}{p_i} \right\rceil$.

(a) Show that the code constructed by this process is prefix-free and the average length satisfies

$$H(X) \le L < H(X) + 1$$

(b) Construct the code for the probability distribution (0.5, 0.25, 0.125, 0.125).

Problem 4 (10 points) Consider the random variable

$$X = \left(\begin{array}{ccccc} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ 0.49 & 0.26 & 0.12 & 0.04 & 0.04 & 0.03 & 0.02 \end{array}\right).$$

1

- (a) Find a binary Huffman code for X.
- (b) Find the expected codelength for this encoding.
- (c) Find a ternary Huffman code for X.

Problem 5 (10 points) Bad wine. One is given 6 bottles of wine. It is known that precisely one bottle has gone bad (tastes terrible). From inspection of the bottles it is determined that the probability p_i that the ith bottle is bad is given by $(p_1, p_2, \ldots, p_6) = (\frac{8}{23}, \frac{6}{23}, \frac{4}{23}, \frac{2}{23}, \frac{2}{23}, \frac{1}{23})$. Tasting will determine the bad wine. Suppose you taste the wines one at a time. Choose the order of tasting to minimize the expected number of tastings required to determine the bad bottle. Remember, if the first 5 wines pass the test you don't have to taste the last.

- (a) What is the expected number of tastings required?
- (b) Which bottle should be tasted first?

Now you get smart. For the first sample, you mix some of the wines in a fresh glass and sample the mixture. You proceed, mixing and tasting, stopping when the bad bottle has been determined.

- (c) What is the minimum expected number of tastings required to determine the bad wine?
- (d) What mixture should be tasted first?