МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ

"ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Розрахунково-графічна робота

з дисципліни

«Дискретна математика»

Виконав:

студент групи КН-112

Весна Ігор

Викладач:

Мельникова Н.І.

Варіант 8 ІНДИВІДУАЛЬНІ ЗАВДАННЯ

Завдання № 1

Виконати наступні операції над графами: 1) знайти доповнення до першого графу, 2) об'єднання графів, 3) кільцеву сумму G1 та G2 (G1+G2), 4) розмножити вершину у другому графі, 5) виділити підграф А - що скадається з 3-х вершин в G1 б) добуток графів.

1)Доповнення G1\G2:

2)об'єднання графів:

3) Кільцева сума:

4)Розщепити вершину у другому графі: Розщепимо вершину 7

5) Виділити підграф А,що складається з V={3,4,7} в G1 і знайти стягнення A в G1 G1

Стягуємо 7 в 3

Стягуємо 3,7 в 4

Стягуємо 3,7,4 в 2

6)Добуток графів

Завдання № 2

Скласти таблицю суміжності для графа.

Таблиця суміжності:

	1	2	3	4	5	6	7	8	9
1	0	1	0	0	0	0	1	1	0
2	1	0	1	1	0	1	1	0	1
3	0	1	0	1	0	0	0	1	0
4	0	1	1	0	1	0	0	1	0
5	0	0	0	1	0	1	1	1	0
6	0	1	0	0	1	0	1	1	0
7	1	1	0	0	0	1	0	1	0
8	1	0	1	1	1	1	1	0	0
9	0	1	0	0	0	0	0	0	0

Завдання № 3

Для графа з другого завдання знайти діаметр. Найдовший шлях від V5 до V9 і V8 до V9 Діаметр = 3

Завдання № 4

Для графа з другого завдання виконати обхід дерева вглиб (варіант закінчується на непарне число) або вшир (закінчується на парне число). Обхід вшир:

Номер	Номер вершини	Черга
0	-	-
1	1	1
2	2	12
3	8	128
4	7	1287
5	-	287
6	3	2873
7	4	28734
8	9	287349
9	6	2873496
10	-	873496
11	5	8734965
12	-	734965
13	-	34965
14	-	4965
15	-	965
16	-	65
17	-	5
18	-	-

```
#include(queue)
  using namespace std;
⊟class n {
 public:
       int val;
pint matrix[v][v] = {
     (0, 1, 1, 1, 0, 1, 1, 0),
{1, 0, 1, 1, 0, 0, 1, 1},
      {0, 0, 0, 0, 0, 1, 7, 0},
      {1, 0, 0, 0, 1, 0, 1, 0},
       {1, 1, 1, 1, 1, 1, 0, 0},
       {0,1,0,0,0,0,0,0,0}
⊟void bfs(n* verh, n s) {
       queue<n> que;
       for (1 = 0; 1 < v; 1++) {
    verh[1].st = 0;
       verh[s.val].st = 1;
      que.push(s);
while (!que.empty()) {
    u = que.front();
            que.pop();
            cout << u.val+1 << " ";
for (i = 0; i < v; i++) {
                 if (matrix[i][u.val]) {
```

```
verh[s.val].st = 1;
      que.push(s);
      while (!que.empty()) {
           u = que.front();
            que.pop();
           cout << u.val+1 << ";
for (i = 0; i < v; i++) {
    if (matrix[i][u.val]) {</pre>
                       if (verh[i].st == 0) {
                            verh[i].st = 1;
                            que.push(verh[i]);
           u.st = 2;
mint main() {
      n verh[v];
       n start;
           verh[i].val = i;
       5 = 65;
      start.val = s - 65;
cout << "bfs: ";
bfs(verh, start);
       cout << endl;
```

Завдання № 5

Знайти двома методами (Краскала і Прима) мінімальне остове дерево графа.

Метод Краскала V= $\{1,3\}$ E= $\{(1,3)\}$

V={1,2,5,7,9}

$$V = \{1,2,5,7,9\}$$

$$E = \{(1,3),(2,7),(3,5)\}$$

 $V = \{1,3,5,2,7\} E = \{(1,3),(3,5),(5,2),(2,7)\}$

 $V = \{1,2,7,9,5,4,6\} \ E = \{(1,3),(3,5),(5,2),(2,7),(4,6),(3,6)\}$

{(4,7)} - цикл

 $V = \{1,2,7,9,5,4,6,10\} \ E = \{(1,3),(3,5),(5,2),(2,7),(4,6),(3,6),(6,10)\}$

 $V = \{1,2,7,9,5,4,6,10,11\} \ E = \{(1,3),(3,5),(5,2),(2,7),(4,6),(3,6),(6,10),(10,11)\}$

 $V = \{1,2,7,9,5,4,6,10,11,8\}$ $E = \{(1,3),(3,5),(5,2),(2,7),(4,6),(3,6),(6,10),(10,11),(11,8)\}$

 $V = \{1,2,7,9,5,4,6,10,11,8,9\}$ $E = \{(1,3),(3,5),(5,2),(2,7),(4,6),(3,6),(6,10),(10,11),(11,8),(7,9)\}$

Вага=26

Метод Прима:

$$V=\{1,3\} \to \{(1,3)\}$$

 $V=\{1,3,5\}$ E={(1,3),(3,5)}

 $V={1,3,5,2} E={(1,3),(3,5),(5,2)}$

 $V={1,3,5,2,7} E={(1,3),(3,5),(5,2),(2,7)}$

 $V = \{1,3,5,2,7,6\} E = \{(1,3),(3,5),(5,2),(2,7),(3,6\}$

 $V = \{1,3,5,2,7,6,4\} E = \{(1,3),(3,5),(5,2),(2,7),(3,6),(6,4)\}$

 $V = \{1,3,5,2,7,6,4,10\} E = \{(1,3),(3,5),(5,2),(2,7),(3,6),(6,4),(6,10)\}$

 $V = \{1,3,5,2,7,6,4,10\} E = \{(1,3),(3,5),(5,2),(2,7),(3,6),(6,4),(6,10)\}$

 $V = \{1,3,5,2,7,6,4,10,11,8\}$ $E = \{(1,3),(3,5),(5,2),(2,7),(3,6),(6,4),(6,10),(10,11),(11,8)\}$

 $V = \{1,3,5,2,7,6,4,10,11,8,9\}$ $E = \{(1,3),(3,5),(5,2),(2,7),(3,6),(6,4),(6,10),(10,11),(11,8),(7,9)\}$

Weight=26.

```
if (check) { check = false; continue; }

if (min == 0 && matrix[tops[j] - 1][a] > 0) {
    min = matrix[tops[j] - 1][a];
    k = rebra[count - 1][0] = tops[j]; t = rebra[count - 1][1] = a + 1;
    continue;
}

if (matrix[tops[j] - 1][a] > 0 && matrix[tops[j] - 1][a] < min) {
    min = matrix[tops[j] - 1][a];
    k = rebra[count - 1][0] = tops[j]; t = rebra[count - 1][1] = a + 1;
}

matrix[k - 1][t - 1] = 0; matrix[t - 1][k - 1] = 0;

tops[count] = t;
    count++;
    min = 0;
}

for (int j = 0; j < v - 1; j++) {
    cout << rebra[j][0] << " " << rebra[j][1] << endl;
}

return 0;
}</pre>
```

```
05160000000
 0002010000
 0002300000
 0000230000
 2200007700
 0 3 2 0 0 0 5 0 3 0
 1030000440
 0007500004
 0007040007
 0000340004
 0000004740
 5
2
7
4
6 10
7 9
10 11
11 8
```

Завдання № 6

Розв'язати задачу комівояжера для повного 8-ми вершинного графа методом «іди у найближчий», матриця вагів якого має вигляд:

	1	2	3	4	5	6	7	8
1	00	7	3	5	4	6	7 2 1	3
2	7	90	6	1	5	1	1	2
3	3	6	90	5	1	7	5	5
4	5	1	5	90	3	3	2	3
5	4	5	1	3	90	2	2	3
6							5	
7	2	1	5	2	2	5	90	5
8	3	2	5	3	3	7	5	

Почнемо з 1-ої вершини:

1

Найближча до 1-ої вершина - 7

1 - > 7

Довжина шляху: 2

найближча до 7-ої вершини - 2

1->7->2

Довжина шляху: 2+1

найближча до 2-ої вершини - 4

1->7->2->4

Довжина шляху: 2+1+1

найближча до 4-ої вершини - 5

1->7->2->4->5

Довжина шляху: 2+1+1+3

найближча до 5-ої вершини - 3

1->7->2->4->5->3

Довжина шляху: 2+1+1+3+1

найближча до 3-ої вершини - 8

1->7->2->4->5->8

Довжина шляху: 2+1+1+3+1+5

найближча до 8-ої вершини - 6

1->7->2->4->5->3->6

Довжина шляху: 2+1+1+3+1+5+7

Всі вершини пройдені, повертаємось у початкову

1->7->2->4->5->3->8->6->1

Довжина шляху: 2+1+1+3+1+5+7+6=26.

Завдання № 7

За допомогою алгоритму Дейкстри знайти найкоротший шлях у графі між парою вершин V0 і V * .

8)

Найкоротший шлях:

8)


```
if (a[minindex][i] > 0)
                    temp = min + a[minindex][i];
                    if (temp < d[i])</pre>
                      d[i] = temp;
               v[minindex] = 0;
          } while (minindex < 10000);
          printf("\nShortest distants: \n");
for (int i = 0; i < SIZE; i++)</pre>
          printf("%3d", d[i]);
int ver[SIZE];
          ver[0] = end + 1;
          int weight = d[end];
          while (end != begin index)
             for (int i = 0; i < SIZE; i++)</pre>
               if (a[end][i] != 0)
                 int temp = weight - a[end][i];
                 if (temp == d[i])
                   weight = temp;
                    end = i;
ver[k] = i + 1;
          printf("\nOutput of the shortest way:");
printf("\nOutput of the shortest way:");
```

Завдання № 8

Знайти ейлеровий цикл в ейлеровому графі двома методами: а) Флері; б) елементарних циклів.

8)

Метод флері:

1

22


```
#include(vector)
   #define v 12
using namespace std;
{0,0,0,0,0,1,0,0,0,0,0,1},
         {0,0,1,0,1,0,0,0,0,0,0,0,0},
         {0,1,0,1,0,0,0,1,0,0,0,1},
        {1,0,1,0,0,0,1,0,0,1,0},

{0,1,0,0,0,0,0,0,1,0,1,0},

{1,0,1,0,0,0,0,0,1,0,1,0},

{0,1,0,0,0,0,1,0,1,0,1,0,1},
         {0,0,1,0,1,0,1,0,0,0,1,0}
    int temp[v][v];
 ⊡int findstartvr() {
          frindstartvr() {
  for (int i = 0; i < v; i++) {
    int stp = 0;
    for (int j = 0; j < v; j++) {
        if (temp[i][j])
    }
}</pre>
                            stp++;
                if (stp % 2 != 0)
          return 0;
 ⊡bool most(int u, int vr) {
         int stp = 0;
for (int i = 0; i < v; i++)
    if (temp[vr][i])</pre>
```


26

1->9->8->7->4->11->12->4->6->5->11->6->7->11->10->9->12->10->8->1->4->5->12->2->3->12->1

метод елементарних циклів:

Знайдено всі елементарні цикли, ось результат їх поєднання:


```
int** arr = new int* [n];
for (int i = 0; i < n; i++) {
    arr[i] = new int[n];
}
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        cin >> arr[i][j];
    }
}
vector<int> V;
vector<int> WAS;
cout << endl;
int count, p, q, sum;
count = 1;
for (p = 0; p < n; p++) {
    sum = 0;
    for (q = 0; q < n; q++)
    {
        sum += arr[p][q];
    }
    if (sum % 2) count = 0;
}
cout << endl;
if (count) {
    for (int j = 0; j < n; j++) {
        Inf = 999;
        Find(&v, arr, n, j, j);
        for (int i = 1; i <= vcon.size(); i++) {
            cout << endl;
            vcon.clear();
    }
}
else
    cout << "tikai z sela\n";
cout << endl;
return 0;</pre>
```

```
Enter number of porks: 12
000100011001
0010000000001
0100000000001
 00011100011
 00101000011
 00110100010
 00101010010
 00000101100
 00000010101
000000011011
 00111100101
1111100011110
1 4 5 12 1
4 1 8 7 4
 4 1 12 5
 4 5 11 6
 4 1 8 7
8 1 4 7 8
 1 4 12 9
10 8 1 9 10
11 4 1 12 11
12 1 4 5 12
```

Завдання №9

Спростити формули (привести їх до скороченої ДНФ).

8.
$$(y \cdot x \cdot \overline{y}) \lor x \lor (y \cdot x \cdot \overline{x})$$

Скорочена ДНФ (англ. Reduced disjunctive normal form) - форма запису функції, що володіє наступними властивостями:

- 1) будь-які два доданки відрізняються як мінімум в двох позиціях,
- 2) жоден з Кон'юнктів не міститься в іншому.
- Отже,
 - 1.(y*(-y))=0;
 - 2.-(x*(-x)) = 1;
 - 3.y*1=y;

- 4.x*0=0;
- $5.0 \lor x \lor y=x \lor y$;

Відповідь : $x \lor y$;