Week 2 Video 2

Diagnostic Metrics, Part 1

Different Methods, Different Measures

- Today we'll focus on metrics for classifiers
- Later this week we'll discuss metrics for regressors

And metrics for other methods will be discussed
 later in the course

Metrics for Classifiers

- One of the easiest measures of model goodness is accuracy
- Also called agreement, when measuring inter-rater reliability

of agreements

total number of codes/assessments

 There is general agreement across fields that accuracy is not a good metric

 Let's say that my new Kindergarten Failure Detector achieves 92% accuracy

□ Good, right?

Non-even assignment to categories

- Accuracy does poorly when there is non-even assignment to categories
 - Which is almost always the case
- □ Imagine an extreme case
 - 92% of students pass Kindergarten
 - My detector always says PASS
- □ Accuracy of 92%
- But essentially no information

Kappa

Kappa

(Agreement – Expected Agreement)
(1 – Expected Agreement)

	Detector Off-Task	Detector On-Task
Data Off-Task	20	5
Data On-Task	15	60

	Detector Off-Task	Detector On-Task
Data Off-Task	20	5
Data On-Task	15	60

What is the percent agreement?

	Detector Off-Task	Detector On-Task
Data Off-Task	20	5
Data On-Task	15	60

- What is the percent agreement?
 - 80%

	Detector Off-Task	Detector On-Task
Data Off-Task	20	5
Data On-Task	15	60

What is Data's expected frequency for on-task?

	Detector Off-Task	Detector On-Task
Data Off-Task	20	5
Data On-Task	15	60

- What is Data's expected frequency for on-task?
 - 75%

	Detector Off-Task	Detector On-Task
Data Off-Task	20	5
Data On-Task	15	60

• What is Detector's expected frequency for on-task?

	Detector Off-Task	Detector On-Task
Data Off-Task	20	5
Data On-Task	15	60

- What is Detector's expected frequency for on-task?
 - 65%

	Detector Off-Task	Detector On-Task
Data Off-Task	20	5
Data On-Task	15	60

What is the expected on-task agreement?

	Detector Off-Task	Detector On-Task
Data Off-Task	20	5
Data On-Task	15	60

- What is the expected on-task agreement?
 - 0.65*0.75= 0.4875

	Detector Off-Task	Detector On-Task
Data Off-Task	20	5
Data On-Task	15	60 (48.75)

- What is the expected on-task agreement?
 - 0.65*0.75= 0.4875

	Detector Off-Task	Detector On-Task
Data Off-Task	20	5
Data On-Task	15	60 (48.75)

 What are Data and Detector's expected frequencies for off-task behavior?

	Detector Off-Task	Detector On-Task
Data Off-Task	20	5
Data On-Task	15	60 (48.75)

- What are Data and Detector's expected frequencies for offtask behavior?
 - 25% and 35%

	Detector Off-Task	Detector On-Task
Data Off-Task	20	5
Data On-Task	15	60 (48.75)

What is the expected off-task agreement?

	Detector Off-Task	Detector On-Task
Data Off-Task	20	5
Data On-Task	15	60 (48.75)

- What is the expected off-task agreement?
 - 0.25*0.35= 0.0875

	Detector Off-Task	Detector On-Task
Data Off-Task	20 (8.75)	5
Data On-Task	15	60 (48.75)

- What is the expected off-task agreement?
 - 0.25*0.35= 0.0875

	Detector Off-Task	Detector On-Task
Data Off-Task	20 (8.75)	5
Data On-Task	15	60 (48.75)

What is the total expected agreement?

	Detector Off-Task	Detector On-Task
Data Off-Task	20 (8.75)	5
Data On-Task	15	60 (48.75)

- What is the total expected agreement?
 - 0.4875 + 0.0875 = 0.575

	Detector Off-Task	Detector On-Task
Data Off-Task	20 (8.75)	5
Data On-Task	15	60 (48.75)

• What is kappa?

	Detector Off-Task	Detector On-Task
Data Off-Task	20 (8.75)	5
Data On-Task	15	60 (48.75)

- What is kappa?
 - (0.8 0.575) / (1-0.575)
 - 0.225/0.425
 - 0.529

So is that any good?

	Detector Off-Task	Detector On-Task
Data Off-Task	20 (8.75)	5
Data On-Task	15	60 (48.75)

- What is kappa?
 - (0.8 0.575) / (1-0.575)
 - 0.225/0.425
 - 0.529

Interpreting Kappa

- □ Kappa = 0
 - Agreement is at chance
- □ Kappa = 1
 - Agreement is perfect
- □ Kappa = negative infinity
 - Agreement is perfectly inverse
- □ Kappa > 1
 - You messed up somewhere

Kappa<0

□ This means your model is worse than chance

- Very rare to see unless you're using cross-validation
- Seen more commonly if you're using cross-validation
 - It means your model is junk

0<Kappa<1

■ What's a good Kappa?

There is no absolute standard

0<Kappa<1

- For data mined models,
 - Typically 0.3-0.5 is considered good enough to call the model better than chance and publishable
 - In affective computing, lower is still often OK

Why is there no standard?

- Because Kappa is scaled by the proportion of each category
- When one class is much more prevalent
 - Expected agreement is higher than
- If classes are evenly balanced

Because of this...

- Comparing Kappa values between two data sets, in a principled fashion, is highly difficult
 - □ It is OK to compare Kappa values within a data set
- A lot of work went into statistical methods for comparing Kappa values in the 1990s
- No real consensus
- Informally, you can compare two data sets if the proportions of each category are "similar"

Quiz

	Detector Insult during Collaboration	Detector No Insult during Collaboration
Data Insult	16	7
Data No Insult	8	19

• What is kappa?

A: 0.645

B: 0.502

C: 0.700

D: 0.398

Quiz

	Detector Academic Suspension	Detector No Academic Suspension
Data Suspension	1	2
Data No Suspension	4	141

• What is kappa?

A: 0.240

B: 0.947

C: 0.959

D: 0.007

Next lecture

- □ ROC curves
- □ A'
- Precision
- Recall