Závěrečná paralympiáda starších LMFS 2021

1. Antireflexní brýle (15 bodů)

Tomáš má brýle ze skla s indexem lomu 1.52, ale odrážejí podle něj příliš mnoho světla. Aplikoval na ně tedy vrstvu MgF_2 o indexu lomu 1.38, aby mezi světlem odraženým rozhraním vzduch- MgF_2 a světlem odraženým rozhraním MgF_2 -sklo došlo k destruktivní interferenci. Jak silnou vrstvu má zvolit, aby úplně odstranil odrazy kolmo dopadajícího zeleného světla?

2. Ponorky (9 bodů)

Při honu za vlajkou se jedna z ponorek poněkud vymkla kontrole, ponořila se do nádrže Josefův důl a dále hledala vlajku. Když to konečně na dně v hloubce 10 metrů vzdala, začala svítit baterkou o záchranu. Jak blízko musí připlout Pobřežní hlídka, aby ji našla? Uvažujte, že David Hasselhoff má oči přímo nad dokonale klidnou hladinou a spočítejte vzdálenost od bodu na hladině přímo nad ponorkou.

3. Ponorky Reloaded (8 bodů)

Při záchraně ponorky ve vodě ztratila Pamela Anderson své tmavě oranžové plavky. Požádala Víťu o pomoc, a oba hledají oranžové plavky na dně. Víťa ovšem zapomněl, že světlo při přechodu do prostředí s jiným indexem lomu mění vlnovou délku a nezamyslel se, kterou barvu tedy má hledat, a vyhlíží stejnou tmavě oranžovou. Když se mu to nepodařilo, bylo to protože hledal špatnou barvu, nebo protože se příliš soustředil na něco jiného? Důkladně zdůvodněte!

4. Ponorky Revolutions (10 bodů)

Plavky sežral josefodolský delfín a plave přehradou rychlostí $v=4840~\rm m\cdot s^{-1}$. Nad přehradou je 20 obručí rozmístěných lineárně po 100 km do výšky 2000 km. Kolik z nich dokáže delfín proskočit?

5. Chrastí posměšně zápalkami (8 bodů)

Ondra se dívá z přístavu v Bregenz přes Bodamské jezero a vyhlíží městské zahrady v Kostnici, které jsou 45.81 km daleko. Jak musí být nejméně vysoký, aby je měl šanci zahlédnout alespoň s velmi výkonným dalekohledem? Uvažujte, že Ondra stojí 5 metrů nad hladinou jezera, a stejně vysoko jsou i zahrady.

6. Jasný bod na stínítku (8 bodů)

Víťa si z AliExpressu objednal laser neznámé barvy a potřebuje zjistit jeho vlnovou délku. Sestavil tedy Youngův experiment se štěrbinami $d=0.5~\rm cm$ od sebe a stínítkem $a=5~\rm m$ za štěrbinami. Změřil, že první interferenční maximum je od středního pruhu vzdáleno $p=0.05~\rm cm$. Určete vlnovou délku světla.

7. V Tomášově stínu (10 bodů)

Tomáš stojí v Bedřichovské přehradě tak, že celé jeho nohy o délce 90 cm jsou v ní ponořené. Jak dlouhý stín vrhají jeho nohy na dno přehrady, jestliže sluneční paprsky dopadají na vodní hladinu pod úhlem 60° od kolmice? Změní se délka stínu jeho nohou, když vyleze na souš, a jak?

8. π érh the Ferhma (12 bodů)

Světelný paprsek na cestě z bodu A do bodu B proniká rozhraním dvou prostředí o různých indexech lomu. Je natolik chytrý, že se na rozhraní zlomí tak, aby cestu urazil za co nejkratší čas. Vyjádřete výsledek pomocí úhlů ke kolmici a srovnejte se Snellovým zákonem.

9. Slizoun (12 bodů)

Tomáš plave přes Bedřichovskou přehradu a vyvíjí stálý výkon P=11 W. Brzdí ho hydrodynamický odporný odpor ve tvaru $F_d=\rho v^2 C_d A/2$, kde A=0.25 m² je plocha průřezu idealizovaného Tomáše, v je jeho rychlost, ρ je hustota vody a C_d je koeficient, který se díky postupnému obalování těla slizem během 10 minut lineárně v čase sníží z 1.1 na nulu. Jak daleko za tu dobu doplave? Uvažujte, že jeho "plavecká síla" a Stokesova síla jsou po celou dobu v rovnováze.

10. Fotony (8 bodů)

Na zemské oběžné dráze kolem Slunce má sluneční elektromagnetické záření hustotu $1361~\mathrm{W\cdot m^{-2}}$. Kolik kilogramů EM záření dopadne na Zemi za rok?

Užitečné konstanty

Indexy lomu: vakuum 1, vzduch 1.00026, voda 1.33

Vlnové délky ve vzduchu: zelená $532~\mathrm{nm},~\mathrm{tmav}$ ě oranžová $600~\mathrm{nm}$

Hustota vody: $10^3 \text{ kg} \cdot \text{m}^{-3}$

Poloměr Země: 6378 km, hmotnost Země: $5.972 \cdot 10^{24} \text{ kg}$

Gravitační konstanta: $6.674 \cdot 10^{-11} \text{ m}^3 \cdot \text{kg}^{-1} \cdot \text{s}^{-2}$