aleph-comandos-beta.sty

Proyecto Alephsub0 Andrés Merino* Daniel Lara**

2023-12-22 Versión beta-2.0.3

Resumen

aleph-comandos-beta.sty es un paquete creado para recopilar varios comandos de uso común entre los colegas de Andrés Merino, dentro de su proyecto personal Alephsub0 (https://www.alephsub0.org/).

Índice

1.	Introducción	2
2.	Uso	3
3.	Comandos	3
	3.1. Comandos de función	3
	3.2. Conjuntos	3
	3.3. Operadores	4
	3.4. Operadores como comandos	5
	3.5. Abreviaciones	6
	3.6. Comandos desplegados	6
	3.7. Abreviaciones de operadores lógicos	7
	3.8. Delimitadores	7
	3.9. Sucesiones	8
	3.10. Comentarios	8
	3.11. Vectores	8
4.	Comandos específicos	9
	4.1. Comandos genéricos	9
	4.2. Comandos para Topología	9
	4.3. Comandos para Teoría de Probabilidades	9

^{*}Escuela de Ciencias Físicas y Matemáticas, Pontificia Universidad Católica del Ecuador

^{**}Facultad de Ciencias, Escuela Politénica Nacional

	4.4.	Comar	ndos para Análisis Funcional	9
	4.5.	Comar	ndos para Teoría de la Medida	10
		4.5.1.	Espacios de medida	10
		4.5.2.	Espacios de Lebesgue	10
	4.6.	Proble	emas	10
5.	Reg	istro de	e cambios	10
6.	Imp	lement	ación	12
	6.1.	Identif	ficación	12
	6.2.	Paque	tes	12
	6.3.	Comar	ndos de función	12
	6.4.	Conju	ntos	12
	6.5.	Opera	dores	13
	6.6.	Opera	dores como comandos	15
	6.7.	Abrev	iaciones	15
	6.8.	Comai	ndos desplegados	16
	6.9.	Abrev	iaciones de operadores lógicos	16
	6.10.	. Delimi	itadores	17
	6.11.	. Sucesi	ones	17
	6.12.	. Comer	ntarios	18
	6.13.	. Vector	es	18
	6.14.	. Forma	to	18
7.	Con	nandos	específicos	18
	7.1.	Comar	ndos para Topología	18
	7.2.	Comai	ndos para Teoría de Probabilidades	18

1. Introducción

El paquete aleph-comandos-beta. sty es parte del conjunto de clases y paquetes creados por Andrés Merino dentro de su proyecto personal Alephsub0. Este paquete está basado en el paquete comandosEPN. sty del mismo autor y se cambió su nombre para continuar con el mantenimiento del mismo dentro del proyecto Alephsub0.

El paquete provee de una variedad de comandos generados por Juan Carlos Trujillo, Jonathan Ortiz y Andrés Merino, que facilitan la escritura matemática.

A partir de la versión beta-2.x se incorporan herramientas para la escritura de textos en áreas relacionados a áreas como Topología, Teoría de la Medida y Análisis Funcional. Estas herramientas se irán incorporando en futuras versiones de manera continua durante el 2023 y 2024. Para sugerencias en este aspecto puedes contactarte a la siguiente dirección: daniel.lara01@epn.edu.ec

2. Uso

Para cargar la clase se utiliza: \usepackage{aleph-comandos-beta}.

3. Comandos

3.1. Comandos de función

\funcion El comando \funcion tiene 5 argumentos en el formato

 $\fine ion {\langle nombre \rangle} {\langle dominio \rangle} {\langle conjunto de llegada \rangle} {\langle variable \rangle} {\langle ley de asignación \rangle}, con esto, la función genera$

$$f: A \longrightarrow B$$

$$x \longmapsto f(x)$$

\func El comando \func tiene 3 argumentos en el formato \func $\{\langle nombre \rangle\}\{\langle dominio \rangle\}\{\langle conjunto de llegada \rangle\}$, con esto, la función genera

3.2. Conjuntos

A continuación se detallan las definiciones de conjuntos:

Comando	Resultado	Conjunto
\N	\mathbb{N}	Números naturales
\Nbb	\mathbb{N}	Números naturales
\Z	${\mathbb Z}$	Números enteros
\Zbb	${\mathbb Z}$	Números enteros
\ Q	$\mathbb Q$	Números racionales
\Qbb	$\mathbb Q$	Números racionales
\R	${\mathbb R}$	Números reales
\Rbb	${\mathbb R}$	Números reales
\reales	${\mathbb R}$	Números reales
\C	${\Bbb C}$	Números complejos
\Cbb	${\Bbb C}$	Números complejos
\Ibb	${\rm I\hspace{1em}I}$	Números irracionales
\K	\mathbb{K}	Campo
\Kbb	K	Campo
\Pbb	${\mathbb P}$	Primos
\Pol	${\cal P}$	Polinomios
\M	\mathcal{M}	Matrices

A pesar de las definiciones para matrices y polinomios, la notación recomendada es:

• $\mathbb{R}_n[x]$: para polinomios de grado menor igual que n a coeficientes reales en la variable x;

• $\mathbb{R}^{n \times m}$: para matrices de orden $n \times m$ a coeficientes reales.

\Mat Para este último se define el comando \Mat con dos argumentos obligatorios y uno opcional, con la siguiente sintaxis:

 $\Mat[\langle coeficiente \rangle] \{\langle no. filas \rangle\} \{\langle no. columnas \rangle\},\$ con esto, el comando genera

$$\mathbb{R}^{3\times 1}$$

$$\mathbb{R}^{3\times 1}$$

$$\mathbb{Q}^{3\times 1}$$

3.3. Operadores

A continuación se detallan las definiciones de operadores matemáticos:

-		
Comando	Resultado	Operador
\dom	dom	Dominio
\Dom	Dom	Dominio
\rec	rec	Recorrido
\Rec	Rec	Recorrido
\img	img	Imagen
\Img	Img	Imagen
\rg	rg	Rango de una matriz
\rang	rang	Rango de una matriz
\adj	adj	Matriz adjunta
\cof	cof	Matriz de cofactores
\proy	proy	Proyección
\norm	norm	Componente normal
\inte	int	Interior de un conjunto
\sin	sen	Seno
\arccsc	arc csc	Arcocosecante
\arccot	arc cot	Arcocotangente
\arcsec	arc sec	Arcosecante
\arcsen	arc sen	Arcoseno
\arcsin	arc sen	Arcoseno
\spn	span	Espacio generado
\gen	gen	Espacio generado
\im	Im	Parte imaginaria
\re	Re	Parte real
\graf	graf	Gráfico de una función
\sgn	sgn	Signo
\CVA	CVA	Conjunto de valores admisibles
\sol	Sol	Conjunto solución
\Sol	Sol	Conjunto solución
\Cis	Cis	Operador cis ($\cos +i \operatorname{sen}$)
\cis	Cis	Operador cis ($\cos +i \operatorname{sen}$)

Comando	Resultado	Operador
\diam	diam	Diámetro
\Var	Var	Varianza
\Tr	tr	Traza
\tr	tr	Traza
\mcd	mcd	Máximo común divisor
\mcm	mcm	Mínimo común múltiplo
\dive	div	Divergencia
\rot	rot	Rotacional
\partes	${\cal P}$	Partes de un conjunto

3.4. Operadores como comandos

\cl El comando \cl tiene 1 argumento en el formato \cl{\langle conjunto \rangle}, con esto, el comando genera

 $\c A$

\norma El comando \norma tiene 1 argumento en el formato \norma $\{\langle vector \rangle\}$, con esto, el comando genera

Si el argumento se lo deja vacío, este genera:

 $\norma{}\} \qquad \qquad \boxed{\|\cdot\|}$

\prodinner El comando \prodinner tiene dos argumentos en el formato \prodinner{\langle vector 1 \rangle} {\langle vector 2 \rangle}, \quad con esto, el comando genera

\prodinner{x}{y} $\langle x, y \rangle$

Si los argumentos se los deja vacíos, el comando genera:

\conjugado El comando \conjugado tiene 1 argumento en el formato \conjugado $\{\langle n\'umero \rangle\}$, con esto, el comando genera

\conjugate{z} \overline{z}

\parcial El comando \parcial tiene dos argumentos en el formato \parcial $\{\langle función \rangle\}\{\langle variable \rangle\}$, con esto, el comando genera

\derivada El comando \derivada tiene dos argumentos en el formato \derivada $\{\langle funci\'on \rangle\}\{\langle variable \rangle\}$, con esto, el comando genera

Para más comandos útiles con respecto a derivadas, se puede utilizar el paquete cool (https://ctan.org/pkg/cool).

3.5. Abreviaciones

A continuación se detallan las abreviaciones que sirven únicamente en modo matemático.

Comando	Resultado	Operador
\setminus	\	Diferencia de conjuntos pequeña
\sset	\subseteq	Contenencia de conjuntos con igual
\emptyset	Ø	Conjunto vacío
\vepsilon	${m \epsilon}$	Épsilon
\texty	. у .	Texto "y" con espacio doble
\yds	. у .	Texto "y" con espacio
\texto	. о .	Texto "o" con espacio doble
\ods	. о .	Texto "o" con espacio
\siysolosi	. si y solo si .	Texto "si y solo si" con espacio
\ssi	. si y solo si .	Texto "si y solo si" con espacio
\degre	0	Grados
\grad	0	Grados

3.6. Comandos desplegados

\dlim El comando \dlim funciona como una abreviación de \displaystyle\lim

$$\begin{array}{c|c} \mathbf{x \to a} \ f(\mathbf{x}) \end{array}$$

\Lim El comando \Lim funciona como una abreviación de \displaystyle\lim

\Lim_{x \to a} f(x)
$$\left| \lim_{x \to a} f(x) \right|$$

\dsum El comando \dsum funciona como una abreviación de \displaystyle\sum

$$\int_{i=0}^{n} x_i \int_{i=0}^{n} x_i$$

\Sum El comando \dsum funciona como una abreviación de \displaystyle\sum

$$\sum_{i=0}^{n} x_i$$

\Binom El comando \Binom funciona como una abreviación de \displaystyle\binom

$$\begin{tabular}{ll} $$ \Binom\{n\}\{k\} $ \end{tabular}$$

\dint El comando \dint funciona como una abreviación de \displaystyle\int

\Int El comando \dint funciona como una abreviación de \displaystyle\int

3.7. Abreviaciones de operadores lógicos

A continuación se detallan las abreviaciones de operadores lógicos que sirven únicamente en modo matemático.

Comando	Resultado	Operador
\Di	\iff	Doble implicación
\dimp	\Leftrightarrow	Doble implicación
\Dimp	\iff	Doble implicación
\imp	\Rightarrow	Implicación
\Imp	\Longrightarrow	Implicación
\qDimp	\longleftrightarrow .	Doble implicación
\qImp	\longrightarrow .	Implicación
\qland	. ^ .	Conjunción con espacio
\andm	. ^ .	Conjunción con espacio
\qlor	. ∨ .	Disyunción con espacio
\orm	. V .	Disyunción con espacio
\V	\mathbb{V}	Tautología
\F	${\rm I}\!{\rm F}$	Contradicción

3.8. Delimitadores

Para delimitadores, se utilizan las siguientes abreviaciones

Comando	Acción
\r	\right
\1	\left

Estos comandos no se pueden utilizar a la par con el paquete mmacells.

Además, para delimitar intervalos mediante la notación de corchetes abiertos se utilizan las siguientes abreviaciones

Comando	Acción
\rop	\right[
\lop	\left]
\rcl	\right]
\lcl	\left[

\open Finalmente, en intervalos, se utilizan los comandos \open, \open1, \openr y \close, \openl todos con un argumento obligatorio bajo la misma sintaxis que es

 $\operatorname{\operatorname{Vopenr}} \operatorname{\operatorname{Vopen}} \{\langle extremos \rangle\},$

\close obteniendo

 $\open{a,b}$

 $\sigma = [a,b]$

 $\langle penr{a,b} | [a,b[$

 $\cline{a,b}$

3.9. Sucesiones

\suc El comando \suc tiene un argumento obligatorio (nombre de la sucesión) y uno opcional (índice, por defecto, n) en el formato

 $\scalebox{$\scalebox$

 $\sc(x_n)$

 $(x_n)_{n\in\mathbb{N}}$

o

 $\sc [k] {x_k}$

 $(x_k)_{k\in\mathbb{N}}$

\sucl El comando \sucl es igual al anterior, pero genera llaves para las sucesiones.

 \sum_{x_n}

 $\{x_n\}_{n\in\mathbb{N}}$

o

 $\left[k\right]\left\{x_k\right\}$

 $\overline{\{x_k\}_{k\in\mathbb{N}}}$

3.10. Comentarios

comentario El comando \comentario tiene un argumento en el formato \comentario $\{comentario\}$, con esto, el comando genera

\comentario{Texto comentado}

Texto comentado

3.11. Vectores

A continuación se detallan los comandos usados para vectores canónicos

Comando	Resultado
\veci	i
\vecj	j
\veck	k

4. Comandos específicos

En esta sección se encuentran detallados los comandos para áreas específicas

4.1. Comandos genéricos

\distancia

El comando \distancia funciona como una abreviación para la notación de la distancia entre dos conjuntos o un punto y un conjunto. Tiene dos argumentos en el formato

 $\distancia{\langle conjunto 1 \rangle} {\langle conjunto 2 \rangle},$

con esto, el comando genera

4.2. Comandos para Topología

A continuación se encuentran comandos útiles para la escritura en Topología

\topologia

El comando \topologia tiene 1 argumento en el formato \topologia $\{\langle conjunto \rangle\}$,

con esto, la función genera

$$(X, \tau_X)$$

\cociente

El comando \cociente tiene 1 argumento en el formato \cociente $\{\langle conjunto \rangle\}$, con esto, la función genera

$$X/\sim$$

4.3. Comandos para Teoría de Probabilidades

A continuación se detallas los comandos usados para los distintos tipos de convergencia en Teoría de Probabilidades

Resultado
\xrightarrow{Lp}
\xrightarrow{P}
\xrightarrow{CS}
\xrightarrow{v}
\xrightarrow{d}

4.4. Comandos para Análisis Funcional

A continuación se detallan los comandos usados para los distintos espacios utilizados en Análisis Funcional. El argumento es opcional y se utiliza para indicar el conjunto sobre el cual se está trabajando. Por defecto el espacio es Ω .

Comando	Resultado
\Ck	$C^k(\Omega)$
\Cko	$C^k_o(\Omega)$
\Ckc	$C^k_c(\Omega)$
\Cinf	$C^{\infty}(\Omega)$
$\$ Ccinf	$C_c^{\infty}(\Omega)$
\Dinf	$D^{\infty}(\Omega)$

4.5. Comandos para Teoría de la Medida

4.5.1. Espacios de medida

A continuación se detallan los comandos usados para los distintos espacios de medida. Para el caso de los espacios con la sigma álgebra de Borel estos poseen la opción para indicar el conjunto sobre el que están definidos, por defecto este es *X*

Resultado
(X, \mathscr{A})
(Y,\mathscr{B})
$(X, \mathcal{B}or(X))$
\mathcal{B} or(X)
$(X, \mathcal{B}or(X))$

4.5.2. Espacios de Lebesgue

A continuación se detallan los comandos usados para los distintos espacios de Lebesgue. El primer argumento es opcional y se utiliza para indicar el conjunto sobre el cual se está trabajando mientras que el segundo argumento es obligatorio y se utiliza para indicar el exponente de la norma. No obstante, en el caso del espacio $L^1_{\rm loc}(\Omega)$ solo se solicita, de manera opcional, el conjunto sobre el cual se está trabajando.

Comando	Resultado
	$L^p(\Omega)$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$L^p_{ m loc}(\Omega)$ $L^1_{ m loc}(\Omega)$
\Lloc	$L^1_{\mathrm{loc}}(\Omega)$

4.6. Problemas

Cualquier problema, por favor reportarlo a mat.andresmerino@gmail.com

5. Registro de cambios

beta-2.0.3 Daniel Lara (2023-12-18)

Agregado

Abreviación para espacios de funciones localmente integrables

Cambiado

Actualización de la documentación y formato de versionamiento

beta-2.0.2 Daniel Lara (2023-12-18)

Agregado

Abreviaciones para distancias entre conjuntos o punto-conjunto

beta-2.0.1 Daniel Lara (2023-12-10)

Agregado

- Abreviaciones para espacios funcionales
- Abreviaciones para espacios métricos y de medida

beta-2.0 Daniel Lara (2023-02-14)

Agregado

- Abreviaciones para espacios topológicos y convergencia en Teoría de Probabilidades
- 1.1. Andés Merino (2021-06-07) Se elimina el uso del paquete etex
- **1.1** Andés Merino (2020-08-17)

Arreglado

■ Se incluye un condicional para definir el comando \C que tenía problemas con Beamer y XeLaTeX + hyperref

Agregado

- Comandos con espacios como \qDimp y \qImp
- 1.0 Andés Merino (2019-12-17) Primera versión del paquete aleph-comandos
- 0.1 Andés Merino (2018-02-27) Primera versión parquete comandos-EPN

6. Implementación

6.1. Identificación

Dado que esta clase utiliza el comando \RequirePackage, no funciona con versiones antiguas de \LaTeX 2 ϵ .

```
1 \NeedsTeXFormat{LaTeX2e}[2009/09/24]
```

El paquete se identifica con su fecha de lanzamiento y su número de versión.

```
2 \ProvidesPackage{aleph-comandos-beta}[2023/12/19 b2.0.3]
```

6.2. Paquetes

Son necesarios los siguientes paquetes para utilizar los comandos.

```
3 \RequirePackage{ifthen}
4 \RequirePackage{calc}
5 \RequirePackage{amsmath,amssymb}
6 \RequirePackage{xcolor}
7 \RequirePackage{mathrsfs}
```

6.3. Comandos de función

Función completa

```
8 \newcommand{\funcion}[5]{%
9
      {\setlength{\arraycolsep}{2pt}
      \begin{array}{r0{\,}ccl}
10
11
          #1\colon & #2 & \longrightarrow & #3\\
                  & #4 & \longmapsto & \displaystyle#5
12
13
      \end{array}
14
      }
15 }
Función dom-img
16 \newcommand{\func}[3]{ #1\colon #2 \rightarrow #3}
```

6.4. Conjuntos

```
Números naturales
```

```
17 \newcommand{\N}{\mathbb{N}}
18 \newcommand{\Nbb}{\mathbb{N}}
Números enteros
19 \newcommand{\Z}{\mathbb{Z}}
20 \newcommand{\Zbb}{\mathbb{Z}}
Números racionales
21 \newcommand{\Q}{\mathbb{Q}}
22 \newcommand{\Qbb}{\mathbb{Q}}
```

Números reales

- 23 $\mbox{newcommand}(R){\mathbb{R}}$
- $24 \neq \{\mathbb{R}\}\$
- 25 \newcommand{\reales}{\mathbb{R}}

Números complejos

- 26 \@ifundefined{C}
- 27 {\newcommand{\C}{\mathbb{C}}}
- 28 {\renewcommand{\C}{\mathbb{C}}}
- 29 $\mbox{\command{\Cbb}{\mbox{\command{Cbb}}}}$

Campos

- $30 \mbox{ } \mbox{\mbox{$1$}} \mbox{\mbox{$1$}}$
- $31 \mbox{ \newcommand{\Kbb}{\mbox{\mbox{\mbox{Kbb}}}}}$

Primos

 $32 \neq \{Pbb} {\mathbf{P}}$

Polinomios

33 $\mbox{Pol}{\mathcal{P}}$

Matrices

 $34 \mode \{M}{\mode \{M}\}$

Matrices 2

 $35 \mbox{ } 1^{41}{3][R]{#1^{#2}times #3}}$

Números irracionales

 $36 \mod{\lbb}{\mod}{I}$

6.5. Operadores

Dominio

- 37 \DeclareMathOperator{\dom}{dom}
- 38 \DeclareMathOperator{\Dom}{Dom}

Recorrido

- $39 \DeclareMathOperator{rec}{rec}$
- 40 \DeclareMathOperator{\Rec}{Rec}

Imagen

- 41 \DeclareMathOperator{\img}{img}
- 42 \DeclareMathOperator{\Img}{Img}

Rango de una matriz

- 43 \DeclareMathOperator{\rg}{rg}
- 44 \DeclareMathOperator{\rang}{rang}

Matriz adjunta

45 \DeclareMathOperator{\adj}{adj}

Matriz de cofactores

 $46 \verb|\DeclareMathOperator{\cof}{cof}|$

Espacio generado

47 \DeclareMathOperator{\gen}{gen}

Proyección

48 \DeclareMathOperator{\proy}{proy}

Componente normal

49 \DeclareMathOperator{\norm}{norm}

Interior de un conjunto

50 \DeclareMathOperator{\inte}{int}

Trigonométricas

51 \renewcommand{\sin}{\sen}

Trigonométricas inversa

- 52 \let\arctan\relax
- 53 \DeclareMathOperator{\arctan}{arc\,tan}
- 54 \DeclareMathOperator{\arccsc}{arc\,csc}
- 55 \DeclareMathOperator{\arccot}{arc\,cot}
- 56 \DeclareMathOperator{\arcsec}{arc\,sec}
- 57 \DeclareMathOperator{\arcsen}{arc\,sen}
- 58 \let\arccos\relax
- 59 \DeclareMathOperator{\arccos}{arc\,cos}
- 60 \let\arcsin\relax
- 61 \DeclareMathOperator{\arcsin}{arc\,sen}

Espacio generado

62 \DeclareMathOperator{\spn}{span}

Parte real y parte imaginaria

- $63 \verb|\DeclareMathOperator{\lim}{Im}|$
- $64 \label{lem:condition} 64 \label{lem:condition} \end{condition} Re \label{lem:condition}$

Gráfico de una función

 $65 \verb|\DeclareMathOperator{\graf}{graf}|$

Operador signo

 $66 \label{lem:condition} 66 \label{lem:condition} \end{condition} \{ sgn \} \{ sgn \}$

Conjunto de valores admisible

67 \DeclareMathOperator{\CVA}{CVA}

Conjunto solución

- 68 \DeclareMathOperator{\Sol}{Sol}
- $69 \verb|\DeclareMathOperator{\sol}{Sol}|$

Operador cis (cos + i sen)

- 70 \DeclareMathOperator{\Cis}{Cis}
- $71 \ensuremath Operator {\cis}{Cis}$

Diámetro

 $72 \ensuremath Operator {\diam} {\diam}$

```
Varianza
73 \DeclareMathOperator{\Var}{Var}
Traza
74 \DeclareMathOperator{\Tr}{tr}
75 \DeclareMathOperator{\tr}{tr}
Máximo común divisor
76 \DeclareMathOperator{\mcd}{mcd}
Mínimo común múltiplo
77 \DeclareMathOperator{\mcm}{mcm}
Divergencia
78 \DeclareMathOperator{\dive}{div}
Rotacional
79 \DeclareMathOperator{\rot}{rot}
Partes de un conjunto
80 \DeclareMathOperator{\partes}{\mathcal{P}}
6.6. Operadores como comandos
Clausura de un conjunto
81 \ensuremath{\cl}[1]{\overline{#1}}
Norma
82 \newcommand{\norma}[1]{%
      \left\{ \left( \frac{\#1}{\$} \right) \right\}
                    {\cdot}{#1}
84
      \right\|}
85
Producto interno
86 \newcommand{\prodinner}[2]{%
      \left\{ \frac{\#1}{\pi}\right\} 
87
                 {\cdot,\cdot}
88
89
                 \{#1, \, #2\}
      \right\rangle}
90
Conjugado
91 \newcommand{\conjugate}[1]{\overline{#1}}
Derivada parcial
92 \newcommand{\parcial}[2]{\dfrac{\partial #1 }{\partial #2}}
Derivada total
93 \newcommand{\derivada}[2]{\dfrac{d #1 }{d #2}}
```

6.7. Abreviaciones

Diferencia de conjuntos pequeña

```
94 \renewcommand{\setminus}{\smallsetminus}
Contenecia de conjuntos con igual
95 \newcommand{\sset}{\subseteq}
Conjunto vacío
96 \renewcommand{\emptyset}{\varnothing}
Épsilon
97 \newcommand{\vepsilon}{\varepsilon}
Texto "y" con espacio
98 \newcommand{\texty}{\qquad\text{y}\qquad}
99 \newcommand{\yds}{\quad\text{y}\quad}
Texto "o" con espacio
100 \mbox{ } \mbox{\command{\texto}{\quad\text{o}\quad}}
101 \newcommand{\ods}{\quad\text{o}\quad}
Texto "si y solo si" con espacio
102 \newcommand{\siysolosi}{\quad\text{si y solo si}\quad}
103 \newcommand{\ssi}{\quad\text{si y solo si}\quad}
Grados
104 \newcommand{\degre}{\ensuremath{^\circ}}
```

6.8. Comandos desplegados

```
Límite en formato desplegado
```

106 \newcommand{\dlim}{\displaystyle\lim}
107 \newcommand{\Lim}{\displaystyle\lim}

105 \newcommand{\grad}{\ensuremath{^\circ}}

Sumatoria en formato desplegado

108 \newcommand{\dsum}{\displaystyle\sum}
109 \newcommand{\Sum}{\displaystyle\sum}

Binomio en formato desplegado

110 \newcommand{\Binom}{\displaystyle\binom}

Integral en formato desplegado

111 \newcommand{\dint}{\displaystyle\int}
112 \newcommand{\Int}{\displaystyle\int}

6.9. Abreviaciones de operadores lógicos

Doble implicación

```
113 \newcommand{\Di}{\Longleftrightarrow}
114 \newcommand{\dimp}{\Longleftrightarrow}
115 \newcommand{\Dimp}{\Longleftrightarrow}
116 \newcommand{\qDimp}{\quad\Longleftrightarrow\quad}
```

```
Implicación
```

```
117 \mbox{newcommand{\Imp}{\Longrightarrow}}
```

118 \newcommand{\imp}{\Rightarrow}

119 \newcommand{\qImp}{\quad\Longrightarrow\quad}

Conectores con espacio

```
120 \mbox{ } \mbox{qland}{\quad \land \quad }
```

- 121 \newcommand{\qlor}{\quad \lor \quad }
- 122 \newcommand{\orm}{\quad \vee \quad }
- 123 \newcommand{\andm}{\quad \wedge \quad }

Tautología y contradicción

```
124 \verb|\newcommand{V}{\mbox{\mbb}{V}}|
```

 $125 \mbox{ } \mbox{mathbb{F}}$

6.10. Delimitadores

Intervalo abierto izquierda

 $126 \mbox{ } 126 \mbox{ } 126$

Intervalo cerrado izquierda

Intervalo abierto derecha

128 \newcommand{\rop}{\right[}

Intervalo cerrado derecha

129 \newcommand{\rcl}{\right]}

Izquierda

 $130 \mbox{ } \mbox{left}$

Derecha

131 \renewcommand{\r}{\right}

Intervalos

```
132 \newcommand{\open}[1]{\left]#1\right[}
```

- 133 $\newcommand{\operatorname{[1]}_{\left[1\right]}}$
- 134 \newcommand{\openr}[1]{\left[#1\right[}
- 135 \newcommand{\close}[1]{\left[#1\right]}

6.11. Sucesiones

Sucesiones

```
136 \end{suc} [2] [n] {\end{thmathbb}(\end{N})} \label{lem:linear_substitution} \\
```

Sucesiones con llaves

137 \newcommand{\sucl}[2][n]{\left\{#2\right\}_{#1\in\mathbb{\N}}}

6.12. Comentarios

Comentarios

138 \newcommand{\comentario}[1]{\textcolor{red}{#1}}

6.13. Vectores

Vectores canónicos

```
139 \newcommand{\veci}{\mathbf{i}} 140 \newcommand{\vecj}{\mathbf{j}} 141 \newcommand{\veck}{\mathbf{k}}
```

6.14. Formato

Formato

142 \allowdisplaybreaks

7. Comandos específicos

7.1. Comandos para Topología

```
Espacio Topológico
```

```
143 \newcommand{\topologia}[1]{\left(#1,\tau_{#1}\right)}
```

Conjunto cociente

144 \newcommand{\cociente}[1]{#1/\!\sim}

7.2. Comandos para Teoría de Probabilidades

```
Convergencia en Lp
```

```
145 \end{\localer} {\tt Lp}{\tt longrightarrow}\}
```

Convergencia en Probabilidad

```
146 \newcommand{\pconver}{\overset{P}{\longrightarrow}}
```

Convergencia casi segura

```
147 \newcommand{\csconver}{\overset{\small CS}{\longrightarrow}}
```

Convergencia vaga

```
148 \ensuremath{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver}{\vconver
```

Convergencia distribucion

149 \newcommand{\dconver}{\overset{\small d}{\longrightarrow}}

Espacio de funciones Ck

150 \newcommand{\Ck}[1][\Omega]{ $C^k(#1)$ }

```
Espacio de funciones Ck a soporte compacto
151 \newcommand{\Cko}[1][\Omega]{C^k_o(#1)}
152 \newcommand{\Ckc}[1][\Omega]{C^k_c(#1)}
 Espacio de funciones C infinito
153 \newcommand{\Cinf}[1][\Omega]{C^\infty(
154 #1)}
Espacio de funciones C infinito a soporte compacto
155 \newcommand{\Ccinf}[1][\Omega]{C^\infty_c(
156 #1)}
 Espacio de las funciones test
157 \newcommand{\Dinf}[1] [\Omega] {D^\infty(#1)}
 Espacio de funciones Lp
158 \mbox{ } \mbox{
 Espacio de las funciones localmente integrables con p=1
159 \newcommand{\Lloc}[1] [\Omega]{L^1_{\text{loc}}(\#1)}
 Espacio de las funciones localmente integrables con p
160 \end{\lploc} [2] [\Omega _{L^{\#2}_{\tilde{1}}} (\#1)}
 Espacio métrico
161 \newcommand{\emetrico}{(X,d)}
 Espacio medido
162 \mbox{newcommand{\emedido}{(X,\mathscr{A},\mu)}}
 Espacio medible A
163 \newcommand{\emedible}{(X,\mathscr{A})}
 Espacio medible B
164 \newcommand{\emedibleB}{(Y,\mathscr{B})}
 Espacio de Borel
165 \end{\text{\eborel}[1][X]{(\#1,\mathbb{B}\times\{or\}(X))}}
 Espacio Boreliano
166 \newcommand{\boreliano}[1][X]{\mathcal{B}\text{or}(#1)}
 Distancia entre dos conjuntos o entre un punto y un conjunto
167 \newcommand{\distancia}[2]{\text{dist}\left(#1,#2\right)}
```