Metabolic Integration and Organ Specialization

张梦杰

98061 @tongji.edu.cn

65986853

• 办公室: 医学楼辅楼405

Outline

- 1. introduction
- 2. What underlying principle relates ATP coupling to the thermodynamics of metabolism?
- 3. Is there a good index of cellular energy status?
- 4. How is overall energy balance regulated in cells?
- 5. How is metabolism integrated in a multicellular organism?
- 6. What regulates our eating behavior?
- 7. Can you really live longer by eating less?

1. Introduction

Metabolism consists three interconnected functional block:

- Catabolism
- Anabolism

macromolecular synthesis and growth

2.What Underlying Principle Relates ATP Coupling to the Thermodynamics of Metabolism?

- Reaction stoichiometry the number of each kind of atom in a reaction
- Obligate coupling stoichiometry the required coupling of electron carriers , reduction of NAD+ and FAD
- 3 Evolved coupling stoichiometry the number of ATP that pathways have evolved to consume or produce

1 Reaction stoichiometry

The number of atom remains the same on both sides of the equation

$$6 CO_2 + 6 H_2O \rightarrow C_6H_{12}O_6 + 6 O_2$$

2 Obligate coupling stoichiometry

- Cellular respiration is an oxidation-reduction process, and the oxidation of glucose is coupled to the reduction of NAD+ and FAD
- ◆ (a) $C_6H_{12}O_6 + 10 \text{ NAD}^+ + 2 \text{ FAD} + 6 H_2O \rightarrow 6 CO_2 +$ $10 \text{ NADH} + 10 \text{ H}^+ + 2 \text{ FADH}_2$ (b) $10 \text{ NADH} + 10 \text{ H}^+ + 2 \text{ FADH}_2 + 6 O_2 \rightarrow 12 \text{ H}_2O +$ $10 \text{ NAD}^+ + 2 \text{ FAD}$

Total:
$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

3 Evolved coupling stoichiometry

 The coupled formation of ATP by oxidative phosphorylation

$$C_6H_{12}O_6 + 6O_2 + 30 ADP + 30 Pi \rightarrow$$
 $6CO_2 + 30 ATP + 6H_2O$

Eukaryotes: 32 or 30 ATP

ATP coupling stoichiometry determines the K_{eq} for metabolic

• The energy release (ATP hydrolysis) $\rightarrow \Delta G>0$ reaction \rightarrow the overall free energy for the coupled process is negative ($\Delta G<0$)

- The cell maintains a high [ATP]/([ADP][Pi]) ratio
 - ATP serves as the driving force for biochemical events

ATP
$$\rightarrow$$
 ADP + Pi

glucose + phosphate \rightarrow glucose-6-phosphate

 $\Delta G^{\circ}'= -31kJ/mol$

glucose + ATP \rightarrow glucose-6-phosphate + ADP

 $\Delta G^{\circ}'= -17kJ/mol$
 $\Delta G^{\circ}'= -17kJ/mol$
 $\Delta G^{\circ}'= -17kJ/mol$

Living cells break down energy-yielding molecules to generate ATP

3. Is there a good index of cellular energy status?

Energy transduction and storage in the adenylate

Energy charge relates the ATP levels to the total adenine nucleotide pool

Energy charge =
$$\frac{[ATP] + \frac{1}{2} [ADP]}{[ATP] + [ADP] + [AMP]}$$

• In living cell, E.C. \rightarrow 0.80-0.95

0.4

0

0

0.2

In living cell , E.C. \rightarrow 0.80-0.95

Energy charge

0.6

0.8

1.0

Key enzymes are regulated by Energy charge

- Regulatory enzymes respond in reciprocal fashion to adenine nucleotides
 - PFK-1 stimulated by AMP and inhibited by ATP

Responses of regulatory enzymes to variation in energy charge

4. How is Overall Energy Balance Regulated in Cells?

AMP-activated protein kinase (AMPK) is the cellular

energy sensor

ATP inhibits AMPK

AMP actives AMPK

5. How Is Metabolism Integrated in a Multicellular Organism?

- The major fuel depots in animals:
 - Glycogen in live and muscle
 - > TGs in adipose tissue
 - > Protein, mostly in skeletal muscle
- The usual order of preference for use:
 - glycogen > triacylglycerol > protein
- The tissues of the body work together to maintain energy homeostasis

Brain

Brain

- Brain has two metabolic features
 - high respiratory metabolism- 20 % of oxygen consumed
 - no fuel reserves-Uses glucose as a fuel (120g per day)
- In fasting conditions
 - use β-hydroxybutyrate, converting it to acetyl-CoA
- **Generate ATP** to maintain the membrane potentials essential for transmission of nerve impulses

2 Acetyl-CoA

Muscle

Muscle

- Skeletal muscles -- 30% of O₂ consumption at rest
- Muscle contraction occurs when a motor nerve impulse causes Ca²⁺ release
- Muscle fuels glucose, fatty acids, and ketone bodies
- Rest muscle contains 2% glycogen and 0.08%

phoshpocreatine

Phosphocreatine Provide an Energy Reserve in Muscle

Muscle Protein Degradation

- During fasting or excessive activity, aa are degraded to pyruvate, → Ala
- Ala → liver → pyruvate
- This is a fuel of last resort for the fasting or exhausted organism

Heart

- The activity of heart muscle constant & rhythmic
- A completely aerobic organ & rich in mitochondria
- Prefers fatty acid as fuel
- Continually nourished with oxygen and free fatty acid, glucose, or ketone bodies as fuel

Adipose tissue

- Amorphous tissue widely distributed
- Consist of adipocytes
- ~65% of the weight of adipose tissue is triacylglycerol
- Breakdown controlled via hormone-sensitive lipase
- Lack glycerol kinase; cannot recycle the glycerol of TGs

Pontus et al. A PGC1-a-dependent myokine that drives **brown-fat-like** development of white fat and thermogenesis. Nature (2012)

Liver

- Metabolic center
- The nutrients \rightarrow intestines \rightarrow *via* the portal vein
 - → liver
- Liver activity centers around glucose-6-phosphate
- Fatty acid turnover
- Cholesterol synthesis
- Detoxification organ

Liver

The well-fed state: the lipogenic liver

The fasting state: the glucogenic liver

Metabolic conversions of G-6-P in the liver

6. What Regulates Our Eating Behavior? Are you hungry?

- The hormones control eating behavior
 - Ghrelin, produced in the stomach, liver
 - Move to brain and act on neurons within the arcuate nucleus region of the hypothalamus

Two subset neurons in hypothalamus (下丘脑)

- NPY(neuropeptide Y)/ AgRP(Agouti-related peptide) producing neurons -- stimulating
- 2. Melanocortin producing neurons (POMC) -- inhibiting 黑皮质素

The hormones are divided:

- Short-term regulator: determine individual meal
- Ghrelin and cholecystokinin (CCK) are short-胆囊收缩素
 term regulators of eating behavior
- Ghrelin -- appetite-stimulating hormone produced in the stomach
- CCK -- appetite-suppressing signal-小肠粘膜细胞分泌-刺激下丘脑产生饱腹感

- > Long-term regulator: stablize body fat deposit
- AgRP (agouti-related peptide)
- Block the activity of melanocortin-producing neurons
- NPY
- an appetite-stimulating hormone, increases food intake
- Melanocortin 黑皮质素
- Inhibit the neurons initiating eating behavior
- Including α and β -MSH (melanocyte-stimulating hormone)

- Insulin and leptin are long-term regulators of eating behavior
 - Insulin stimulates fat cells to make leptin
 - Leptin (1994, 167aa) appetite suppressing
 - Gut hormone PYY₃₋₃₆ inhibits eating by acting on the NPY/AgRP-producing neurons

Lack Leptin to cause obesity

hypothalamic AMPK respond to hormones

- Leptin inhibits AMPK-- appetite-suppressing
- Gherlin and NPY activate hypothalamic AMPK
 - AMPK phosphorylates (inhibits) acetyl-CoA carboxylase
 - malonyl-CoA levels decreased
 - Low [malonyl-CoA] is associated with increased food intake

Eating Disorders: Obesity

Leptin KO

POMC(α-MSH) KO---Color Change

MC4R (α-MSH receptor, KO---Height Boost

Excess MC4R

ARE YOU FAT OR LEAN?

BMI: (Body Mass Index)

$$BMI = \frac{mass (kg)}{(height(m))^2}$$

People with BMI above ? are obese?

A: 25

B: 30 **√**

C: 35

	WHO标准	亚洲标准	中国标准	肥胖相关疾病发病危险性
偏瘦	<18.5			低(但其它疾病危险性增加)
正常	18.5-24.9	18. 5-22. 9	18. 5-23. 9	平均水平
超重	≥25.0	≥23. 0	≥24.0	略微增加
偏胖	25.0~29.9	23.0~24.9	24.0~27.9	增加
肥胖	30.0~34.9	25.0~29.9	≥28.0	中度增加
重度肥胖	35.0~39.9	≥30.0	≥32.0	严重增加
极重度肥胖	≥40 . 0			极度增加

Guinness World Records of BMI

Lowest BMI

Highest BMI

俄裔摩纳哥**人瓦莱丽娅 莱维汀**, 1.73m, 27kg, BMI:

美国华盛顿州的焦 米诺克, 1.85m, 635kg, BMI:

9

185.5

7. Can You Really Live Longer by Eating Less?

- Caloric restriction leads to longevity
- ➤ Mutations in the SIR2 Decrease Life Span
 - Deletion of SIR2 (silent information regulator 2)
 abolishes the ability of caloric restriction to lifespan
 in yeast and roundworms
 - SIR2 gene in longevity
 - The human analogous to SIR2 is SIRT1

Sirtuins -- NAD+-dependent protein deacetylases 去乙酰化酶

- The NAD+/NADH controls sirtuin deacetylase activity
- Nicotinamide (烟酰胺) & NADH inhibit sirtuin activity
- NAD⁺ ↑, sirtuin activity ↑

SIRT1 is a Key Regulator in Caloric Restriction

- SIRT1 participates in the transcriptional regulation of adipogenesis through interaction with PPARg (peroxisome proliferator-activator receptor- g)
- PPARg activates adipogenesis genes
- SIRT1 binding to PPARg represses adipogenesis genes, leading to loss of fat stores

Resveratrol (白藜芦醇) in Red Wine is a Potent Activator of Sirtuin Activity

French people enjoy longevity despite a high-fat diet.

Resveratrol may be the basis of this "French paradox".

Metformin & longevity

- · 什么是能荷? 为何说ATP处于能量代谢的中心?
- · AMPK如何调控机体能量代谢?
- 大脑、肌肉、心脏、脂肪组织和肝脏中代谢特点是什么?
- 饮食行为如何被调控的?
- 为何限制饮食可以长寿?