Multivariate Regression: Introduction and Ceteris Paribus

EC420 MSU

Justin Kirkpatrick Last updated January 18, 2021

This lecture

Goal:

- 1. Introduce two-variable (multivariate) regression
- 2. Motivate use of multivariate regression
- 3. Relate concepts from single variable to multivariate
- 4. Refine concept of ceteris paribus
- 5. Concept of "partialing out"
- 6. Extend multivariate from two to K variables
- 7. Specification errors
 - Irrelevant variables and omitted variables

What is multivariate regression?

Multivariate regression is the estimation of the PRF:

$$E[Y|X_1, X_2] = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

Where we previously had PRF:

$$E[Y|X] = \beta_0 + \beta_1 x$$

The SRF for two variables is:

$$\hat{y}=\hat{eta}_0+\hat{eta}_1x_1+\hat{eta}_2x_2$$

We still have one error term, u

$$y_i = eta_0 + eta_1 x_{i,1} + eta_2 x_{i,2} + u_i$$

And we estimate $\hat{eta}=\{\hat{eta}_0,\hat{eta}_1,\hat{eta}_2\}$ the same way.

Examples

• We want to explain country-level *life expectancy* as a function of *gdp per capita* and *population growth*.

$$LifeExp_i = eta_0 + eta_1 gdppc_i + eta_2 popgrowth_i + u_i$$

 We want to explain mortality rate with number of cigarettes smoked and average daily caloric intake

$$Mortality_i = eta_0 + eta_1 cigarettes_i + eta_2 calories_i + u_i$$

• We want to explain wage with education and ability:

$$Wage_i = eta_0 + eta_1 educ_i + eta_2 ability_i + u_i$$

Ceteris Paribus - all else held equal

$$Wage_i = eta_0 + eta_1 educ_i + eta_2 ability_i + u_i$$

We interpret eta_1 as "the effect of educ on the expectation of wage, all else held equal"

What other random variables are we holding equal:

- ability
- *u* too!

This means:

$$eta_1 = rac{\Delta Wage}{\Delta educ}$$
 when $rac{\Delta Wage}{\Delta ability} = rac{\Delta Wage}{\Delta u} = 0$ all else held equal

And a similar interpretation for eta_2

We interpret eta_2 as "the effect of experience on the expectation of wage, all else held equal"

This means:

$$eta_2=rac{\Delta Wage}{\Delta ability}$$
 when $rac{\Delta Wage}{\Delta educ}=rac{\Delta Wage}{\Delta u}=0$ all else held equal

Does this require that $\frac{\Delta educ}{\Delta experience}$ be zero?

Nope. But we are measuring the effect of one while holding the other equal to zero.

We can interpret β_0 as:

 $eta_0 = E[wage]$ when educ and ability and u=0

This is because:

$$E[wage|educ,ability] = eta_0 + eta_1 educ + eta_2 ability$$

or, in general notation

$$E[Y|x_1,x_2] = eta_0 + eta_1 x_1 + eta_2 x_2$$

A slightly different interpretation, and unique to the β_0 .

What if we should use two variables, but we only use one?

We could run the regression $wage_i=eta_0+eta_1educ_i+u_i$, but we probably think $ability_i$ also affects wages.

What if we don't observe $ability_i$?

- ullet Just because we don't observe it doesn't mean it isn't affecting $wage_i$
- It is present in the error term.
- ullet Let's make a new variable called $ilde u = \delta_1 abilit y_i + u_i$

$$wage_i = eta_0 + eta_1 educ_i + \underbrace{\delta_1 ability_i + u_i}_{ ilde{u}_i}$$

- Note: usually the \sim over a coefficient or variable (like ilde u) will indicate it is related to, but different from, the non- \sim version.
- ullet δ_1 is just the effect of ability on wage

We can naively write this as a single variable regression:

$$wage_i = eta_0 + eta_1 educ_i + ilde{u}_i$$

But wait!

- ullet We think E[ability|educ]>0
 - \circ Then this violates the assumption that $E[ilde{u}|X]=0$

Because

1.
$$rac{\Delta ilde{u}}{\Delta ability} = \delta_1
eq 0$$

2.
$$\frac{\Delta ability}{\Delta educ} \neq 0$$

$$\Rightarrow \frac{\Delta \tilde{u}}{\Delta e duc} \neq 0$$

Bias

Recall that we could show $E[\hat{eta}_1]=eta_1$ if and only if E[u|X]=0.

Looking at $ilde{u}_i = \delta_1 ability_i + u_i$, we can see why $E[ilde{u}|educ]
eq 0$

• Thus, β_1 in the single-variable regression was **biased**.

Adding in ability as a second variable fixes this:

$$wage_i = eta_0 + eta_1 educ_i + eta_2 ability_i + u_i$$

because u_i does not change with educ or ability.

Now,
$$E[u|X_1,X_2]=E[u|educ,ability]=0$$

Multivariate regression allows us to account for the effect of both ability and educ

$$wage = eta_0 + eta_1 educ + eta_2 ability + u$$

And we can calculate the change in wage from any change in ability and educ using the SRF:

$$\Delta \widehat{wage} = \widehat{eta_1} \Delta educ + \widehat{eta_2} \Delta ability$$

This also means our assumption is now:

$$E[u|educ, wage] = 0$$

Which we write in general as:

$$E[u|x_1,x_2]=0$$

Which is to say that we think we've got everything that could potentially be correlated with x_1 and x_2 out of the error term.

Since we want to work with some sample data (wage2.dta from Wooldridge), let's replace ability with experience, which is in the dataset....

When we estimate $wage_i=eta_0+eta_1educ_i+eta_2experience_i+u_i$, we are fitting a plane:

When we estimate $wage_i=eta_0+eta_1educ_i+eta_2experience_i+u_i$, we are fitting a plane:

The best fit is no longer a line, but a *plane* with a slope in the educ and the exper axis of eta_1 and eta_2

Fitted values from a regression on the data in the previous slide where $eta_{educ}=76.22$ and $eta_{exper}=17.64$.

How do we estimate $\hat{\beta}$?

Remember our two assumptions that let us derive $\hat{\beta}_1$ and $\hat{\beta}_0$:

$$E[u]=0,\quad E[u|x]=0$$

Now, we want to estimate $\hat{eta} = \{\hat{eta}_0, \hat{eta}_1, \hat{eta}_2\}$

• And we have two x's: x_1 and x_2 .

$$E[u] = 0, \quad E[u|x_1] = 0, \quad E[u|x_2] = 0$$

We have **three** moment conditions, and three unknowns to estimate. We can do that!

These three moment conditions give us the following to start with:

$$egin{aligned} E[y_i-eta_0-eta_1x_1-eta_1x_2] &= E[u] = 0 \ \ E[x_1(y_i-eta_0-eta_1x_1-eta_1x_2)] &= E[x_1u] = 0 \ \ E[x_2(y_i-eta_0-eta_1x_1-eta_1x_2)] &= E[x_2u] = 0 \end{aligned}$$

But don't worry, we won't derive them directly from this, but that's how we would do it.

Let's talk notation for a second:

- ullet I will use eta as the coefficients we are estimating (\hat{eta})
- ullet When talking about the right hand side (the covariates), I'll either call them $x_1, \ldots x_2, \cdots$
 - \circ Or sometimes just using the variable names: $wage = eta_0 + eta_1 educ$
 - \circ Or sometimes with subscripts: $y=eta_0+eta_{educ}x_{educ}+u$
- ullet And sometimes, if we want to emphasize that two regressions are wholly different, I will use δ or γ instead of eta
- ullet u and v will represent errors in two different regressions

Partialing out

Imagine if we had two x's, x_{temp} and x_{rain} that both had an effect on y, but were closely related.

We could look at eta_{temp} in

$$y = eta_0 + eta_{temp} x_{temp} + u$$

And eta_{rain} in

$$y=eta_0+eta_{rain}x_{rain}+u$$

We learned from the previous section that eta_{temp} is biased when x_{rain} is in the error term u, and vice versa.

That is, eta_{temp} is going to "pick up some of the effect" of x_{rain} .

Partialing out

So, would $ilde{eta}_{temp}$ in the following (correct) specification equal eta_{temp} from the previous slide?

$$y = { ilde{eta}}_0 + { ilde{eta}}_{temp} x_{temp} + { ilde{eta}}_{rain} x_{rain} + { ilde{u}}$$

No!

Once we include both variables, we will get a different estimate for $\tilde{\beta}$ than before since each effect is isolated (ceteris paribus)

So, to calculate the correct $\tilde{\beta}_{temp}$, we need estimates that take the effect of $\tilde{\beta}_{rain}$ into consideration.

This is called partialing out.

One way we can estimate unbiased β_{temp} is the following way:

First, estimate the regression of x_{temp} on x_{rain}

$$x_{temp} = \delta_0 + \delta_{rain} x_{rain} + v$$

Couple of things:

- x_{temp} is on the left hand side.
- We are "explaining temperature with rainfall"
- ullet Using δ to show that these are different coefficients

That error term, $oldsymbol{v}$ has an interpretation

- ullet v is the temp that is **not explained by** rain
- ullet $\delta_{rain}x_{rain}$ is the temp that **is** explained by rain

Of course, we have a sample analog for v, the SRF residuals:

$$\hat{v} = x_{temp} - (\hat{\delta}_{\,0} + \hat{\delta}_{\,rain} x_{rain})$$

Remember, v still varies along with x_{temp} , but it is not correlated at all with x_{rain} .

Now, if we want to get the correct value for β_{temp} in the full regression:

$$y = \gamma_0 + \gamma_1 \hat{v} + u$$

- ullet We do not use x_{rain} directly.
- ullet We use \hat{v} and leave x_{rain} out.
- ullet \hat{v} is correlated with x_{temp} , but not with x_{rain}
- ullet Put another way, \hat{v} contains only the part of x_{temp} that is not correlated with x_{rain} .

One can show that
$$\gamma_1 = { ilde eta}_{temp}$$

One can show that $\gamma_1 = \tilde{\beta}_{temp}$, the unbiased estimate.

That is, we get the (unbiased) coefficient one would get from regressing

$$y = { ilde eta}_0 + { ilde eta}_{temp} x_{temp} + { ilde eta}_{rain} x_{rain} + { ilde u}_0$$

by first "partialing" x_{rain} out of x_{temp} then regressing what is left on y.

Similarly, one can do the same for x_{rain} :

$$x_{rain} = \kappa_0 + \kappa_1 x_{temp} + w$$

Then use the residuals, \hat{w} , in a regression:

$$y = \alpha_0 + \alpha_1 \hat{w} + \epsilon$$

And
$${ ildeeta}_{rain}=lpha_1$$

Since $\hat{\tilde{\beta}}_{rain}=\hat{\alpha}_1=\frac{Cov(y,\hat{w})}{Var(\hat{w})}$, we can say that β_{rain} is the effect of x_{rain} once we've taken out the effect of x_{temp} and vice versa.

Since we get the same \hat{eta}_1 if we

- ullet Partial out the effect of x_2 and run a single variable regression, or
- Run a two-variable regression

Then we can think of the $\tilde{\beta}_1$ in:

$$y={ ildeeta}_0+{ ildeeta}_1x_1+{ ildeeta}_2x_2+{ ilde u}_1$$

As the effect of x_1 on y after partialing x_2 out of x_1 , and vice versa.

Multivariate regression automatically partials out each of the $x^{\prime}s$.

Let's compare a simple and multiple regression estimates

$$ullet \ y = { ildeeta}_0 + { ildeeta}_1 x_1 + { ildeeta}_2 x_2 + { ilde u}_1$$

$$\bullet \ \ y = \beta_0 + \beta_1 x_1 + u$$

How will $\tilde{\beta}_1$ differ from β_1 ?

It depends on the relationship between x_2 and x_1

$$x_2 = \delta_0 + \delta_1 x_1 + v$$

If we take $x_2 = \delta_0 + \delta_1 x_1 + v$ and substitute it into the first equation above:

$$egin{aligned} y &= { ildeeta}_0 + { ildeeta}_1 x_1 + { ildeeta}_2 (\delta_0 + \delta_1 x_1 + v) + { ilde u} \ \ y &= { ildeeta}_0 + { ildeeta}_2 \delta_0 + { ildeeta}_1 x_1 + { ildeeta}_2 \delta_1 x_1 + { ildeeta}_2 v + { ilde u} \ \ \ y &= { ildeareta}_0 + ({ ildeeta}_1 + { ildeeta}_2 \delta_1) x_1 + { ilde v} \end{aligned}$$

Therefore it is true that:

- $\hat{eta}_1 = \hat{\tilde{eta}}_1 + \hat{\tilde{eta}}_2 \hat{\delta}_1$
 - \circ In words: to whatever extent x_1 and x_2 are correlated (δ_1), our naive \hat{eta}_1 will include that correlation.

Knowing this, when would the simple regression estimate $\hat{\beta}_1$ equal the multiple regression (multivariate) estimate $\hat{\tilde{\beta}}_1$

Will this hold empirically?

Will $\hat{\beta}_1$ change when you add in $\hat{\beta}_2$?

	Model 1 Model 2		
(Intercept)	146.952	-272.528	
	(77.715)	(107.263)	
educ	60.214	76.216	
	(5.695)	(6.297)	
exper		17.638	
		(3.162)	

$$egin{aligned} wage &= eta_0 + eta_1 e duc + u \ wage &= ilde{eta}_0 + ilde{eta}_1 e duc + ilde{eta}_2 exper + ilde{u} \end{aligned}$$

Will this hold empirically?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	23.78	0.79	30.03	0
educ	-0.91	0.06	-15.63	0

$$exper = \delta_0 + \delta_1 educ + u$$

and

$$60.21 = 76.22 + (\underbrace{17.64}_{\hat{eta}_2} imes \underbrace{-.91}_{\hat{\delta}_1})$$

We can still use the same formula for R^2

$$R^2 = rac{SSE}{SST} = rac{\sum_{i=1}^{N}(\hat{y}_i - \hat{ar{y}})^2}{\sum_{i=1}^{N}(y_i - ar{y})^2}$$

This is because R^2 only uses the fit of the whole model, determined by how well \hat{y} fits.

Multiple regression is easily extended to many variables.

$$y=eta_0+eta_1x_1+eta_2x_2+\cdots+eta_kx_k+u$$

And multiple variables, we can extend the partialing out in the following manner:

- $x_1=\delta_0+eta_1x_2+eta_2x_3+\cdots+eta_kx_{k+1}+v$ \circ v is the part of x_1 that has had x_2,x_3,\cdots partialed out
- $y = \alpha_0 + \alpha_1 \hat{v}$
- β_1 = α_1

You can "partial out" multiple variables, leaving only variation that is uncorrelated with the other variables.

OLS is easily extended from 2 to >2 variables

We might be worried about two specification errors

- Including an irrelevant variable.
 - Suppose the "true model" is:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

And we estimate:

$$y = eta_0 + eta_1 x_1 + eta_2 x_2 + eta_3 x_3 + u$$

- \circ Then OLS is still an unbiased estimator, since *unbaisedness* holds regardless of the true value of the parameters, even if $eta_j=0$ for some j.
- Including an irrelevant variable will, however, impact the variance of the OLS estimator.

We might be worried about two specification errors

• Omitting a relevant variable.

$$y = { ildeeta}_0 + { ildeeta}_1 x_1 + u$$

- \circ We showed that $ilde{eta}_1=eta_1$ only when $eta_2=0$ or $\delta_1=0$.
- \circ Size and direction depend on the sign and size of $eta_2\delta_1$, which depends on the relationship of the omitted variable and the included variable, x_1 , and the outcome variable, y.
- With multiple regressors, the sign and size may not be clear.
- We can usually "sign the bias" if we
 - 1. have an idea of what is omitted,
 - 2. have an idea of how it's correlated with y, and
 - 3. have an idea of how it's correlated with one or more of x_1, x_2, \cdots, x_k