

Report No:CCISE160711804

FCC REPORT

(WIFI)

Applicant: SUN CUPID TECHNOLOGY(HK) LIMITED

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Hong Kong

Equipment Under Test (EUT)

Product Name: mobile phone

Model No.: A3

Trade mark: NUU

FCC ID: 2ADINNUUA3

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 04 Aug., 2016

Date of Test: 05 Aug., to 31 Aug., 2016

Date of report issued: 05 Sep., 2016

Test Result: PASS*

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	05 Sep., 2016	Original

Tested by: Mike DU Date: 05 Sep., 2016

Test Engineer

Reviewed by: Osep., 2016

Project Engineer

3 Contents

			Page
1	cov	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
		T SUMMARY	
4			
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT ANDMODE	
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	8
	5.7	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS ANDMEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	19
	6.5	POWER SPECTRAL DENSITY	28
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	Radiated Emission Method	62
7	TES	T SETUP PHOTO	70
R	FUT	CONSTRUCTIONAL DETAILS	71

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	SUN CUPID TECHNOLOGY(HK) LIMITED
Address of Applicant:	16/F,CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Hong Kong
Manufacturer:	Sun cupid (Shen Zhen) Electronic Ltd
Address of Manufacturer:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7

5.2 General Description of E.U.T.

Product Name:	mobile phone
Model No.:	A3
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-0.2dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	Model: HJ-0501000E1-US Input: AC100-240V 50/60Hz 0.2A Output: DC 5.0V, 1A

Page 5 of 71

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

5.3 Test environment andmode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure: 1010 mbar				
Test mode:				
Operation mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b,6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE160711804

Report No: CCISE160711804

testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Report No: CCISE160711804

5.7 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Conducted Emission:						
Item	Toot Equipment	Manufacturer	Model No.	Inventory	Cal. Date	Cal. Due date
iteiii	Test Equipment	Manufacturer	woder No.	No.	(mm-dd-yy)	(mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Project No.:CCISE1607118

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively forfixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBiprovided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFiantenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is-0.2dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.4: 2014				
TestFrequencyRange:	150kHz to 30MHz				
Class / Severity:	Class B	Class B			
Receiver setup:	RBW=9kHz, VBW=30kH	RBW=9kHz, VBW=30kHz			
Limit:	Frequency range	Limit (dBuV)		
	(MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the loga				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), whichprovides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test setup:		Reference Plane			
	AUX Equipment Test table/Insula Remark E.U.T. Equipment Under LISN: Line Impedence State Test table height=0.8m	E.U.T EMI Receiver	ilter — AC power		
Test Instruments:	Refer to section 5.6 for d	letails			
Test mode:	Refer to section 5.3 for d	letails			
Test results:	Passed				

Measurement Data:

Neutral:

Trace: 13

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : mobile phone Model : A3

: WIFI mode Test Mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Peter

emark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.166	44.88	0.13	10.77	55.78	65.16	-9.38	QP
2	0.166	24.42	0.13	10.77	35.32	55.16	-19.84	Average
3	0.214	20.41	0.16	10.76	31.33	53.05	-21.72	Average
2 3 4 5 6 7 8 9	0.219	39.83	0.16	10.76	50.75	62.88	-12.13	QP
5	0.270	16.56	0.18	10.75	27.49	51.12	-23.63	Average
6	0.377	31.22	0.22	10.72	42.16	58.34	-16.18	QP
7	0.668	16.22	0.32	10.77	27.31	46.00	-18.69	Average
8	1.229	30.21	0.26	10.90	41.37	56.00	-14.63	QP
9	1.449	14.44	0.26	10.92	25.62	46.00	-20.38	Average
10	1.980	28.59	0.26	10.96	39.81	56.00	-16.19	QP
11	29.216	29.83	0.31	10.87	41.01	60.00	-18.99	QP
12	29.216	15.62	0.31	10.87	26.80	50.00	-23.20	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Line:

Trace: 15

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

EUT : mobile phone Model : A3

Test Mode : WIFI mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Peter

•							
	Read	LISN	Cable		Limit	Over	
Freq	Level	Factor	Loss	Level	Line	Limit	Remark
MHz	dBu∀	dB	₫B	dBu₹	dBu∜	<u>dB</u>	
0.162	25.70	0.14	10.77	36.61	55.34	-18.73	Average
0.166	41.89	0.14	10.77	52.80	65.16	-12.36	QP
0.214	36.90	0.15	10.76	47.81	63.05	-15.24	QP
0.214	19.71	0.15	10.76	30.62	53.05	-22.43	Average
0.270	15.07	0.16	10.75	25.98	51.12	-25.14	Average
0.327	29.89	0.18	10.73	40.80	59.53	-18.73	QP
1.197	27.31	0.28	10.89	38.48	56.00	-17.52	QP
1.388	11.37	0.29	10.91	22.57	46.00	-23.43	Average
22.416	12.47	0.35	10.90	23.72	50.00	-26.28	Average
22.775	29.30	0.35	10.89	40.54	60.00	-19.46	QP
28.755	28.34	0.34	10.87	39.55	60.00	-20.45	QP
28.908	16.03	0.34	10.87	27.24	50.00	-22.76	Average
	MHz 0.162 0.166 0.214 0.270 0.327 1.197 1.388 22.416 22.775 28.755	Freq Level MHz dBuV 0.162 25.70 0.166 41.89 0.214 36.90 0.214 19.71 0.270 15.07 0.327 29.89 1.197 27.31 1.388 11.37 22.416 12.47 22.775 29.30 28.755 28.34	MHz dBuV dB 0.162 25.70 0.14 0.166 41.89 0.14 0.214 36.90 0.15 0.214 19.71 0.15 0.270 15.07 0.16 0.327 29.89 0.18 1.197 27.31 0.28 1.388 11.37 0.29 22.416 12.47 0.35 22.775 29.30 0.35 28.755 28.34 0.34	MHz dBuV dB dB 0.162 25.70 0.14 10.77 0.166 41.89 0.14 10.77 0.214 36.90 0.15 10.76 0.214 19.71 0.15 10.76 0.270 15.07 0.16 10.75 0.327 29.89 0.18 10.73 1.197 27.31 0.28 10.89 1.388 11.37 0.29 10.91 22.416 12.47 0.35 10.90 22.775 29.30 0.35 10.89 28.755 28.34 0.34 10.87	MHz dBuV dB dB dBuV 0.162 25.70 0.14 10.77 36.61 0.166 41.89 0.14 10.77 52.80 0.214 36.90 0.15 10.76 47.81 0.214 19.71 0.15 10.76 30.62 0.270 15.07 0.16 10.75 25.98 0.327 29.89 0.18 10.73 40.80 1.197 27.31 0.28 10.89 38.48 1.388 11.37 0.29 10.91 22.57 22.416 12.47 0.35 10.90 23.72 22.775 29.30 0.35 10.89 40.54 28.755 28.34 0.34 10.87 39.55	MHz dBuV dB dB dBuV dBuV 0.162 25.70 0.14 10.77 36.61 55.34 0.166 41.89 0.14 10.77 52.80 65.16 0.214 36.90 0.15 10.76 47.81 63.05 0.214 19.71 0.15 10.76 30.62 53.05 0.270 15.07 0.16 10.75 25.98 51.12 0.327 29.89 0.18 10.73 40.80 59.53 1.197 27.31 0.28 10.89 38.48 56.00 1.388 11.37 0.29 10.91 22.57 46.00 22.416 12.47 0.35 10.90 23.72 50.00 22.775 29.30 0.35 10.89 40.54 60.00 28.755 28.34 0.34 10.87 39.55 60.00	MHz dBuV dB dB dBuV dBuV dB 0.162 25.70 0.14 10.77 36.61 55.34 -18.73 0.166 41.89 0.14 10.77 52.80 65.16 -12.36 0.214 36.90 0.15 10.76 47.81 63.05 -15.24 0.214 19.71 0.15 10.76 30.62 53.05 -22.43 0.270 15.07 0.16 10.75 25.98 51.12 -25.14 0.327 29.89 0.18 10.73 40.80 59.53 -18.73 1.197 27.31 0.28 10.89 38.48 56.00 -17.52 1.388 11.37 0.29 10.91 22.57 46.00 -23.43 22.416 12.47 0.35 10.90 23.72 50.00 -26.28 22.775 29.30 0.35 10.89 40.54 60.00 -19.46 28.755 28.34 0.34

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 9.2.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	Ма	aximum Conduct	Limit(dBm)	Result		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii((dbiii)	Nesult
Lowest	12.46	10.31	10.42	9.43		
Middle	13.18	10.64	10.55	9.33	30.00	Pass
Highest	13.27	10.24	10.49	9.83		

Test plot as follows:

Lowest channel

Middle channel

Middle channel

Middle channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH		6dB Emission	Limit(kHz)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(Kriz)	Nosuit
Lowest	10.24	15.28	15.36	35.52		
Middle	10.24	15.28	15.28	35.52	>500	Pass
Highest	10.24	15.28	15.28	35.52		
Test CH		99%Occupy	Limit(kHz)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	- Limit(Ki iz)	resuit
Lowest	13.92	16.56	17.84	36.00		
Middle	14.16	16.56	17.76	36.00	N/A	N/A
Highest	14.24	16.56	17.68	36.00		

Test plot as follows:

6dB EBW

Date: 6.AUG.2016 15:25:41

Lowest channel

Date: 6.AUG.2016 15:26:34

Middle channel

Date: 6.AUG.2016 15:27:32

Highest channel

Date: 6.AUG.2016 17:55:11

Lowest channel

Date: 6.AUG.2016 16:20:58

Middle channel

Date: 6.AUG.2016 16:23:19

Highest channel

Date: 6.AUG.2016 16:24:17

Lowest channel

Date: 6.AUG.2016 16:25:13

Middle channel

Date: 6.AUG.2016 16:29:12

Highest channel

Date: 6.AUG.2016 16:33:25

Lowest channel

Date: 6.AUG.2016 16:34:40

Middle channel

Date: 6.AUG.2016 16:35:39

Highest channel

99% OBW

Date: 6.AUG.2016 15:38:58

Lowest channel

Date: 6.AUG.2016 15:39:20

Middle channel

Date: 6.AUG.2016 15:39:43

Highest channel

Date: 6.AUG.2016 16:36:45

Lowest channel

Date: 6.AUG.2016 16:37:12

Middle channel

Date: 6.AUG.2016 16:37:52

Highest channel

Date: 6.AUG.2016 16:41:24

Lowest channel

Date: 6.AUG.2016 16:41:53

Middle channel

Date: 6.AUG.2016 16:42:25

Highest channel

Date: 6.AUG.2016 16:43:15

Lowest channel

Date: 6.AUG.2016 16:43:50

Middle channel

Date: 6.AUG.2016 16:44:18

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH		Power Spec	Limit(dBm)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Elithit(dBitt)	Nesuit
Lowest	3.53	-1.42	-2.30	-6.28		
Middle	3.84	-1.98	-1.95	-5.85	8.00	Pass
Highest	4.08	-1.60	-2.15	-5.79		

Test plot as follows:

Date: 15.AUG.2016 19:05:29

Lowest channel

Date: 15.AUG.2016 19:06:10

Middle channel

Date: 15.AUG.2016 19:06:46

Highest channel

Date: 15.AUG.2016 19:07:34

Lowest channel

Date: 15.AUG.2016 19:08:26

Middle channel

Date: 15.AUG.2016 19:08:55

Highest channel

Date: 15.AUG.2016 19:09:56

Lowest channel

Date: 15.AUG.2016 19:10:45

Middle channel

Date: 15.AUG.2016 19:11:30

Highest channel

Date: 15.AUG.2016 19:12:17

Lowest channel

Date: 15.AUG.2016 19:13:08

Middle channel

Date: 15.AUG.2016 19:13:39

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 13		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:			
	Spectrum Analyzer		
	E.U.T		
	Non-Conducted Table		
	Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013and KDB 558074v03r05 section 12.1						
TestFrequencyRange:	2.3GHz to 2.5GHz						
Test site:	Measurement Distance: 3m						
	Frequency Detector RBW VBW Remark						
Receiver setup:	Above 1GHz	Peak	1MHz	3MHz		Peak Value	
	Above Toriz	RMS	1MHz		3MHz Average Val		
Limit:	Frequenc		Limit (dBuV/m @3m)		Remark		
	Above 1GI	-17	54.00			Average Value	
			74.00 ed on the top of a rotating		Peak Value		
Test Procedure:	 the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average method as specified andthen reported in a data sheet. 						
Test setup:	150cm	AE EUT (Turntable)	Ground Reference Plane	m Antenna Pre- Pre- Pre- Pre- Pre- Pre- Pre- Pre-	Antenna Tov	wer	
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section	5.3 for deta	ils				
Test results:	Passed						

802.11b

Test channel:Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : mobile phone : A3 : 802.11b-L Mode Model Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C

Test Engineer: Mike REMARK

MAK	K :								
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
•	MHz	dBu∜	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2336.730	21.57	23.67	6.53	0.00	51.77	74.00	-22.23	Peak
2	2336.730	11.59	23.67	6.53	0.00	41.79	54.00	-12.21	Average
3	2390.000	20.83	23.68	6.63				-22.86	
4	2390, 000	12.79	23, 68	6, 63	0.00	43, 10	54,00	-10.90	Average

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : mobile phone Model : A3

Test mode : 802.11b-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Mike

REMARK

			Antenna Factor				Limit Line	Over Limit	Remark	
-	MHz	dBu₹	$\overline{-dB/m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	(= 2 = 1 = 1 = 1 = 1	-
1	2341.160	20.18	23.67	6.53	0.00	50.38	74.00	-23.62	Peak	
2	2341.160	10.12	23.67	6.53	0.00	40.32	54.00	-13.68	Average	
3	2390.000	16.18	23.68	6.63				-27.51		
4	2390.000	8.27	23.68	6.63	0.00				Average	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: mobile phone EUT Model : A3 : 802.11b-H Mode Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike

REMARK

	Freq		Antenna Factor				Limit Line	CA 11 Z S L S E 1 Z S	Remark	
	MHz	dBu∜	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>		
,	2483.500 2483.500					50.16 41.67				

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : mobile phone

Model : A3

Test mode : 802.11b-H Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike

REMARK

	7. OTA.		Antenna Factor					Over Limit	Remark
-	MHz	—dBu₹	<u>dB</u> /m	<u>dB</u>	ā	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500			6.85 6.85				-23.07 -14.93	Peak Average
100	2493.562 2493.562	200000000000000000000000000000000000000		6.86 6.86	0.00	53.08	74.00	-20.92	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g Test channel:Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: mobile phone EUT

Model : A3

: 802.11g-L Mode Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Mike

REMARK

	8. S		Antenna Factor						Remark
-	MHz	dBu∜	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	<u>dB</u>	
33000	2390.000 2390.000								

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

: 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : mobile phone Model : A3

Test mode : 802.11g-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK

CIIICULU									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	—dBu∜		dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1	2336.841	19.70	23.67	6.53	0.00	49.90	74.00	-24.10	Peak
2	2336.841	9.86	23.67	6.53	0.00	40.06	54.00	-13.94	Average
3	2390.000	19.77	23.68	6.63	0.00			-23.92	
4	2390,000	9.05	23, 68	6, 63	0.00				Average

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : mobile phone : A3 Model

Test mode : 802.11g-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5 C Huni:55%

Test Engineer: Mike REMARK :

MV.	K :									
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
9	MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
	2483.500	26.99	23.70	6.85	0.00	57.54	74.00	-16.46	Peak	
133	2483 500	11 38	23 70	6 85	0.00	41 93	54 00	-12 07	Average	

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : mobile phone

Model : A3

Test mode : 802.11g-H Mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C
Test Engineer: Mike
REMARK : Huni:55%

TARME	. :	D 1		C-11-	D		T	^	
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
8 <u>*</u>	MHz	dBu∀	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	2483.500	18.26	23.70	6.85	0.00	48.81	74.00	-25.19	Peak
2	2483.500	8.30	23.70	6.85	0.00	38.85	54.00	-15.15	Average
3	2489.650	19.90	23.70	6.86	0.00			-23.54	
4	2489.650	9.97	23.70	6.86	0.00				Average

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel:Lowest

Horizontal:

: 3m chamber Site

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : mobile phone

Model : A3 : 802.11n20-L Mode Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni: 55%

Test Engineer: Mike REMARK :

m	v :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	$\overline{dB/m}$	dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
	2390.000	28.67	23.68	6.63	0.00	58.98	74.00	-15.02	Peak
2	2390.000	15.74	23.68	6.63	0.00	46.05	54.00	-7.95	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

: 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : mobile phone

Model : A3

Test mode : 802.11n20-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C

Test Engineer: Mike

REMARK

		Antenna						
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark
MHz	dBu∀	$\overline{dB/m}$	dB	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	dB	
2390.000								Peak

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : mobile phone

Model : A3

Test mode : 802.11n20-H Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Mike

REMARK

шина		Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
-	MHz	dBu∜	dB/m	dB	<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	2483.500	24.89	23.70	6.85	0.00	55.44	74.00	-18.56	Peak
2	2483,500	12.88	23.70	6.85	0.00	43.43	54.00	-10.57	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : mobile phone

Model : A3
Test mode : 802.11n20-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huns

Test Engineer: Mike

REMARK

TU :								
	Read	Antenna	Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∀	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2483.500	20.89	23.70	6.85	0.00	51.44	74.00	-22.56	Peak
2483,500	10.32	23.70	6.85	0.00	40.87	54.00	-13.13	Average

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : mobile phone

: A3 Model

Test mode : 802.11n40-L Mode Power Rating : AC120V/60Hz

Environment Temp: 25.5°C

Test Engineer: Mike REMARK :

ши		Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor						
,	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000	29.33	23.68	6.63	0.00	59.64	74.00	-14.36	Peak
2	2390.000	18.15	23.68	6.63	0.00	48.46	54.00	-5.54	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : mobile phone

Model : A3

: 802.11n40-L Mode Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Mike

REMARK

4114									
	Freq		Antenna Factor						
_	MHz	dBu∜	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBu√/m	<u>d</u> B	
	2390.000								
	2390.000	15.10	23.00	0.00	0.00	43.41	54.00	-10.09	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : mobile phone

Model : A3

Test mode : 802.11n40-H Power Rating : AC120V/60Hz Environment : Temp:25.5°C : 802.11n40-H Mode

Huni:55%

Test Engineer: Mike

REMARK

	Frea	Read. Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
2			<u>dB</u> /m							-
	2483.500 2483.500	29.04 17.58	23.70 23.70	6.85 6.85	0.00 0.00	59.59 48.13	74.00 54.00	-14.41 -5.87	Peak Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : mobile phone

: A3 Model

Test mode : 802.11n40-H Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni

Test Engineer: Mike REMARK Huni:55%

III	v :									
	V		Antenna						Panaula	
	rreq	rever	Factor	LOSS	ractor	rever	Line	Limit	Remark	
	MHz	dBu∜	dB/m	dB	₫B	dBuV/m	dBuV/m	dB		
1	2483.500	24.54	23.70	6.85	0.00	55.09	74.00	-18.91	Peak	
2	2483.500	13.12	23.70	6.85	0.00	43.67	54.00	-10.33	Average	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11					
	In any 100 kHz bandwidth outside the frequency band in which the					
Limit:	spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmittercomplies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Project No.:CCISE1607118

Test plot as follows:

Test mode: 802.11b

Date: 15.AUG.2016 19:33:01

30MHz~25GHz

Date: 15.AUG.2016 19:35:10

Date: 15.AUG.2016 19:34:33

Test mode: 802.11g

Lowest channel

Date: 15.AUG.2016 19:39:17

30MHz~25GHz

Date: 15.AUG.2016 19:38:04

Date: 15.AUG.2016 19:38:40

Test mode: 802.11n(H20)

Date: 15.AUG.2016 19:40:10

30MHz~25GHz

Date: 15.AUG.2016 19:40:50

Date: 15.AUG.2016 19:41:28

Test mode: 802.11n(H40)

Date: 15.AUG.2016 19:42:15

30MHz~25GHz

Date: 15.AUG.2016 19:42:55

Date: 15.AUG.2016 19:43:35

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Se	ection 15.2	209 an	nd 15.205			
Test Method:	ANSI C63.10:201	13					
TestFrequencyRange:	9kHz to 25GHz						
Test site:	Measurement Dis	stance: 3n	m				
Receiver setup:	Frequency	Detecto	tor	RBW	V	BW	Remark
·	30MHz-1GHz	Quasi-pe	eak	120KHz	300)KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz		ИHz	Peak Value	
	RMS 1MHz 3MHz						Average Value
Limit:							Remark
							uasi-peak Value
	88MHz-216MHz 43.5 Qua						
	216MHz-960MHz 46.0 Quasi-peal						
	960MHz-1GH	Z		54.0			uasi-peak Value
	Above 1GHz 54.0 Average						
T / D	1. The EUT wa	o placed (on the	74.0	otina	table 0	Peak Value
Test Procedure:	1GHz)/1.5m chamber.Th position of th 2. The EUT wa antenna, wh tower. 3. The antenna the ground th Both horizon make the me 4. For each sus case and the meters and the meters and the find the m 5. The test-rec SpecifiedBa 6. If the emissi the limitspec of the EUT w have 10dB r	(above 10 e table was ne highest is set 3 moi ichwas moi height is o determinatal and versasurements aximum resident woon level of iffied, then wouldbe renargin woon iche margin woon iche woon	GHz) a as rota as rota at radiat the radiat and the rota	above the grated 360 degation. away from the don the top of the t	meter value s of the mode stoppe the me by	at a 3 r todeter erferent variable to four of the fine ante arrange hts from egrees tect Furdle. e was 1 ed and emissione us	meter rmine the ace-receiving e-height antenna meters above field strength. enna are set to ed to its worst in 1 meter to 4 to 360 degrees

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

EUT : mobile phone

Model

: A3 : Wifi Mode Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: Mike REMARK:

Huni:55%

v_{MMM}									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜		dB	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	41.277	29.97	17.09	1.24	29.89	18.41	40.00	-21.59	QP
2	46.340	29.50	17.08	1.28	29.85	18.01	40.00	-21.99	QP
2	104.170	35.23	10.54	1.99	29.50	18.26	43.50	-25.24	QP
4	173.814	41.53	9.60	2.68	29.02	24.79	43.50	-18.71	QP
5	282.985	35.58	12.23	2.89	28.48	22.22	46.00	-23.78	QP
6	316.589	33.61	13.21	2.99	28.49	21.32	46.00	-24.68	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

EUT : mobile phone

: A3
Test mode : Wifi Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Mike
REMARK :

	_		Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark
_	MHz	dBu∜	$\overline{-dB}/\overline{m}$	dB	<u>dB</u>	dBuV/m	dBu√/m	<u>d</u> B	
1	42.007	42.83	17.20	1.24	29.88	31.39	40.00	-8.61	QP
1 2 3	112.920	45.37	10.77	2.09	29.44	28.79	43.50	-14.71	QP
3	127.665	42.74	12.18	2.26	29.34	27.84	43.50	-15.66	QP
4 5	149.486	40.68	10.70	2.51	29.22	24.67	43.50	-18.83	QP
5	304.610	40.04	12.83	2.95	28.46	27.36	46.00	-18.64	QP
6	494.199	33.87	16.72	3.57	28.94	25.22	46.00	-20.78	QP

Above 1GHz

Test mode: 80	02.11b		Test char	Test channel: Lowest			ık	
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	i olai.
4824.00	44.59	36.12	10.60	40.22	51.09	74.00	-22.91	Vertical
4824.00	45.41	36.12	10.60	40.22	51.91	74.00	-22.09	Horizontal
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	34.62	36.12	10.60	40.22	41.12	54.00	-12.88	Vertical
4824.00	35.46	36.12	10.60	40.22	41.96	54.00	-12.04	Horizontal

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Factor Level Limit Lir		Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	44.15	36.32	10.64	40.15	50.96	74.00	-23.04	Vertical	
4874.00	44.52	36.32	10.64	40.15	51.33	74.00	-22.67	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	34.16	36.32	10.64	40.15	40.97	54.00	-13.03	Vertical	
4874.00	34.54	36.32	10.64	40.15	41.35	54.00	-12.65	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Pea	eak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	43.02	36.58	10.70	40.08	50.22	74.00	-23.78	Vertical	
4924.00	44.10	36.58	10.70	40.08	51.30	74.00	-22.70	Horizontal	
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	33.57	36.58	10.70	40.08	40.77	54.00	-13.23	Vertical	
4924.00	34.49	36.58	10.70	40.08	41.69	54.00	-12.31	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80)2.11g		Test char	nel: Lowest		Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	44.62	36.12	10.60	40.22	51.12	74.00	-22.88	Vertical		
4824.00	45.39	36.12	10.60	40.22	51.89	74.00	-22.11	Horizontal		
Test mode: 80	02.11g		Test channel: Lowest			Remark: Ave	age			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	34.65	36.12	10.60	40.22	41.15	54.00	-12.85	Vertical		
4824.00	35.61	36.12	10.60	40.22	42.11	54.00	-11.89	Horizontal		

Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	44.21	36.32	10.64	40.15	51.02	74.00	-22.98	Vertical
4874.00	44.57	36.32	10.64	40.15	51.38	74.00	-22.62	Horizontal
Test mode: 80)2.11g		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	34.19	36.32	10.64	40.15	41.00	54.00	-13.00	Vertical
4874.00	34.46	36.32	10.64	40.15	41.27	54.00	-12.73	Horizontal

Test mode: 80	Test mode: 802.11g		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	42.06	36.58	10.70	40.08	49.26	74.00	-24.74	Vertical	
4924.00	44.16	36.58	10.70	40.08	51.36	74.00	-22.64	Horizontal	
Test mode: 80	02.11g		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	33.46	36.58	10.70	40.08	40.66	54.00	-13.34	Vertical	
4924.00	34.52	36.58	10.70	40.08	41.72	54.00	-12.28	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test char	Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	LimitLine (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	44.51	36.12	10.60	40.22	51.01	74.00	-22.99	Vertical	
4824.00	45.32	36.12	10.60	40.22	51.82	74.00	-22.18	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	34.64	36.12	10.60	40.22	41.14	54.00	-12.86	Vertical	
4824.00	35.49	36.12	10.60	40.22	41.99	54.00	-12.01	Horizontal	

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	44.16	36.32	10.64	40.15	50.97	74.00	-23.03	Vertical	
4874.00	44.59	36.32	10.64	40.15	51.40	74.00	-22.60	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	34.18	36.32	10.64	40.15	40.99	54.00	-13.01	Vertical	
4874.00	35.03	36.32	10.64	40.15	41.84	54.00	-12.16	Horizontal	

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	43.12	36.58	10.70	40.08	50.32	74.00	-23.68	Vertical	
4924.00	44.16	36.58	10.70	40.08	51.36	74.00	-22.64	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	33.35	36.58	10.70	40.08	40.55	54.00	-13.45	Vertical	
4924.00	34.97	36.58	10.70	40.08	42.17	54.00	-11.83	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test char	Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	44.62	36.19	10.61	40.19	51.23	74.00	-22.77	Vertical	
4844.00	44.43	36.19	10.61	40.19	51.04	74.00	-22.96	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	34.60	36.19	10.61	40.19	41.21	54.00	-12.79	Vertical	
4844.00	35.37	36.19	10.61	40.19	41.98	54.00	-12.02	Horizontal	

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	44.19	36.25	10.64	40.17	50.91	74.00	-23.09	Vertical	
4874.00	44.62	36.25	10.64	40.17	51.34	74.00	-22.66	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	34.34	36.25	10.64	40.17	41.06	54.00	-12.94	Vertical	
4874.00	34.52	36.25	10.64	40.17	41.24	54.00	-12.76	Horizontal	

Test mode: 802.11n(H40)		Test channel: Highest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	43.03	36.51	10.69	40.10	50.13	74.00	-23.87	Vertical	
4904.00	44.14	36.51	10.69	40.10	51.24	74.00	-22.76	Horizontal	
Test mode: 80	02.11n(H40)		Test char	Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	33.59	36.51	10.69	40.10	40.69	54.00	-13.31	Vertical	
4904.00	34.54	36.51	10.69	40.10	41.64	54.00	-12.36	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.