Definibilidad de $\mathbb N$ en $(\mathbb Q,+,*,0,1)$

Enrique Acosta Jaramillo

Teorema (Julia Robinson, 1949). \mathbb{N} es definible en $\mathcal{Q}=(\mathbb{Q},+,*,0,1),$ es decir:

existe una fórmula $\phi(x)$ de primer orden con una variable libre sobre el lenguaje $L=\{+,*,0,1\}$ tal que

$$\mathcal{Q} \models \phi[r] \Leftrightarrow r \in \mathbb{N}$$

Decidibilidad

Son decidibles:

- La teoría de campos algebraicamente cerrados de característica de una característica fija.
- $Th(\mathbb{C}, +, *, 0, 1) = \{ \phi \mid \mathbb{C} \models \phi \}$
- $Th(\mathbb{R}, +, *, 0, 1)$

Son indecidibles:

- Teoría de Grupos
- La teoría vacía (el cálculo de predicados) sobre el lenguaje de la aritmética.
- $Th(\mathbb{C},+,*,0,1,exp)$
- ullet AP^1 (Axiomática de Peano de primer orden)
- Cualquier teoría que extienda a AP^1
- $Th(\mathcal{N})$, la teoría de los naturales $\mathcal{N} = (\mathbb{N}, +, *, 0, 1).$

Se desconoce la decidibilidad de:

■ $Th(\mathbb{R}, +, *, 0, 1, exp)$ (Propuesto por Tarski 19..)

Indecidibilidad de $Th(\mathcal{N})$

Axiomática de Peano

- $\bullet \ x + (y+z) = (x+y) + z$
- $\bullet \ x + y = y + x$
- $\bullet \ x + 0 = x$
- x * (y + z) = (x * y) + (x * z)
- $\bullet \ x * y = y * x$
- $\bullet \ x * 1 = x$
- $\bullet (x+z=y+z) \longrightarrow x=y$
- $\neg (0 = x + 1)$
- \bullet Inducción: Para toda $\phi(x,\overline{y})$ el axioma

$$\forall \overline{y} \{ \phi(0, \overline{y}) \land \forall x [\phi(x, \overline{y}) \to \phi(x+1, \overline{y})] \longrightarrow \forall x \phi(x, \overline{y}) \}$$

Teorema. Toda extensión consistente de AP^1 es indecidible.

Consecuencias

- Incompletitud de Gödel: Toda extensión consistente y recursivamente axiomatizable de AP^1 es incompleta.
- AP^1 es indecidible y incompleta.
- $Th(\mathcal{N})$ es indecidible.
- $Th(\mathcal{N})$ no es recursivamente axiomatizable.

Consecuencias de la indecidibilidad de $Th(\mathcal{N})$

Teorema

Sea \mathcal{M} una estructura en el lenguaje de la aritmética con $\mathcal{N} \leq \mathcal{M}$. Si \mathbb{N} es definible en \mathcal{M} entonces $Th(\mathcal{M})$ es indecidible.

Demostración. Sea $\phi(x)$ la fórmula que define \mathbb{N} en \mathcal{M} . Para cada sentencia θ sobre L sea $\theta^{\phi(x)}$ su relativización. Entonces,

$$\mathcal{N} \models \theta \Leftrightarrow \mathcal{M} \models \theta^{\phi(x)}$$

luego si $Th(\mathcal{M})$ fuera decidible, $Th(\mathcal{N})$ sería decidible.

Consecuencias:

- Si \mathbb{N} es definible en $\mathcal{Q} = (\mathbb{Q}, +, *, 0, 1)$ entonces $Th(\mathcal{Q})$ es indecidible y no es recursivamente axiomatizable.
- $Th(\mathbb{Z}, +, *, 0, 1)$ es indecidible.
- N y Z no son definibles en $(\mathbb{C}, +, *, 0, 1)$ ni en $(\mathbb{R}, +, ., 0, 1)$.
- $Th(\mathbb{C}, +, *, 0, 1, exp)$ es indecidible.

Motivación

La fórmula $\phi(x)$ buscada debe cumplir que si $\mathcal{Q} \models \phi[n/d]$ entonces d=1.

El problema:

No hay forma aparente de extraer el nominador y denominador de un racional en primer orden. Inclusive si esto se puede hacer, no hay forma de hablar de primos si uno ni siquiera tiene a los naturales (eso es lo que se está tratando de hacer!).

Teorema (Julia Robinson). La fórmula

$$\phi(x): \exists x_1 \exists x_2 \exists x_3 (7x^2 + 2 = x_1^2 + x_2^2 + x_3^2)$$

define en $\mathcal Q$ a los racionales cuyo denominador exacto no es divisible por 2, es decir, para $r\in\mathbb Q,\, r=n/d$ con mcd(n,d)=1

$$\mathcal{Q} \models \phi[r] \Leftrightarrow 2 \not\mid d.$$

Teorema (Gauss-Legendre). $n \in \mathbb{N}$ es suma de tres cuadrados racionales si y solo si n NO es de la forma $4^m(8k+7)$ $m,k \in \mathbb{N}$.

$$\phi(x): \exists x_1 \exists x_2 \exists x_3 (7x^2 + 2 = x_1^2 + x_2^2 + x_3^2)$$

Demostración. $Q \models \phi[n/d]$ si y solo si existen $x_1, x_2, x_3 \in \mathbb{Q}$ tales que

$$7(n/d)^2 + 2 = x_1^2 + x_2^2 + x_3^2$$

si y solo si existen $x_1, x_2, x_3 \in \mathbb{Q}$ tales que

$$7n^2 + 2d^2 = x_1^2 + x_2^2 + x_3^2,$$

luego es suficiente ver que $7n^2 + 2d^2$ es suma de cuarto cuadrados racionales si y solo si d es impar.

• Si d es impar,

$$7n^2 + 2d^2 \equiv \pmod{8} \begin{cases} 1 & n \text{ impar} \\ 2,6 & n \text{ par} \end{cases}$$

en ambos casos n no es de la forma $4^m(8k+7)$ pues todo entero de la forma $4^m(8k+7) \equiv 7,0,4 \pmod 8$ luego es suma de tres cuadrados racionales.

• Si d es par,

 $4 \not | 7n^2 + 2d^2$ y además $7n^2 + 2d^2 \equiv 7 \pmod{8}$ luego no es suma de cuatro cuadrados racionales.

Formas cuadráticas sobre $\mathbb Q$

Definición. Sea D un anillo, una $forma\ cuadrática$ $sobre\ D$ es una función de la forma

$$f(x_1, \dots, x_n) = \sum_{1 \le i \le j \le n} a_{ij} x_i x_j.$$

con $a_{ij} \in D$.

Teorema. Dada una forma cuadrática $f(x_1, \ldots, x_n)$ sobre un campo F de característica distinta de 2, la ecuación

$$f(x_1, \dots, x_n) = a$$

tiene solución en F^n si y solo si tiene solución NO TRIVIAL en F^{n+1} la ecuación

$$f - ax_{n+1}^2 = 0.$$

Teorema (Hasse-Minkowski). La ecuación

$$a_1 x_1^2 + \ldots + a_n x_n^2 = 0$$

con $a_1, \ldots, a_n \in \mathbb{Z}$ tiene solución no trivial en \mathbb{Q}^n si y solo si tiene solución no trivial en \mathbb{R} y tiene solución no trivial ni divisible por p en \mathbb{Z} módulo p^n para todo primo p y todo $n \geq 1$.

El principio de Hasse

Teorema (Hasse-Minkowski, enunciado de Hasse,1923). Sea $f(x_1, \ldots, x_n)$ una forma cuadrática sobre \mathbb{Q} . La ecuación

$$f(x_1,\ldots,x_n)=0$$

tiene solución no trivial en \mathbb{Q} si y solo si tiene solución no trivial en \mathbb{R} y en \mathbb{Q}_p (el campo de los números p-ádicos) para todo primo p.

Teorema. Dada una forma cuadrática $f(x_1, \ldots, x_n)$ sobre \mathbb{Q}_p con determinante $d \neq 0$, la ecuación

$$f(x_1,\ldots,x_n)=0$$

tiene solución no trivial (en \mathbb{Q}_p) si y solo si

 $\diamond n = 2 : -d$ es un cuadrado (en \mathbb{Q}_p).

 $\diamond n = 3 : c_p(f) = 1.$

 $\diamond n = 4 : c_p(f) = 1$ cuando d es un cuadrado.

 $\diamond n \geq 5.$

Nota. Si d=0, existe una solución no trivial.

 $c_p(f)$ es una función de los coeficientes de f en $\{-1,1\}$.

Formas cuadráticas módulo p^n

Definición. Sea $f(x_1, \ldots, x_n)$ una forma cuadrática sobre \mathbb{Z} . Se dice que f representa cero módulo p^n si

$$f(x_1,\ldots,x_n)=0$$

tiene solución no trivial ni divisible por p en $\mathbb Z$ módulo $p^n.$

Teorema. Si p es un primo impar y $a,b,c,d\in\mathbb{Z}$ con $p\nmid abcd$ entonces

$$\diamond ax^2 + by^2 + cz^2$$

representa cero módulo p^n para todo n y las siguientes representan cero módulo p^n para todo n si y solo si

$$\Rightarrow ax^2 + by^2: \qquad (-ab \mid p) = 1.$$

$$\Rightarrow ax^2 + by^2 + pcz^2 + pdw^2 : (-ab | p) = 1 \text{ o } (-cd | p) = 1.$$

Teorema. Si $a, b, c, d \in \mathbb{Z}$ son impares entonces

$$\diamond ax^2 + by^2 + cz^2 + 2dw^2$$

representa cero módulo 2^n para todo n y las siguientes representan cero módulo 2^n para todo n excepto cuando

$$\Rightarrow ax^2 + by^2 + cz^2 : \qquad a \equiv b \equiv c \pmod{4}.$$

$$\Rightarrow ax^2 + by^2 + cz^2 + dw^2 : \quad a \equiv b \equiv c \equiv d \pmod{4}$$

$$a + b + c + d \equiv 4 \pmod{8}.$$

Los lemmas de Julia Robinson

Lema. Sean $n \in \mathbb{N}$, $n \neq 0$ y p primo $p \equiv 3 \pmod{4}$. Existen $x, y, z \in \mathbb{Q}$ tales que

$$x^2 + y^2 - pz^2 = n$$

si y solo si al escribir n en la forma $n=st^2$ con s "squarefree" se cumplen las dos condiciones siguientes

- a. $s \not\equiv p \pmod{8}$
- b. si s = pk entonces $(k \mid p) = -1$.

Lema. Sean $n \in \mathbb{N}$, $n \neq 0$ y p,q primes impares con $p \equiv 1 \pmod{4}$ y $(q \mid p) = -1$. Existen $x, y, z \in \mathbb{Q}$ tales que

$$x^2 + qy^2 - pz^2 = n$$

si y solo si al escribir n en la forma $n=st^2$ con s "squarefree" se cumplen las dos condiciones siguientes

- a. Si s = pk entonces $(k \mid p) = 1$.
- b. Si s = qk entonces (k | q) = 1.

Los lemmas de Julia Robinson

Lema (Julia Robinson). Sean $r \in \mathbb{Q}$ y p primo $p \equiv 3 \pmod{4}$.

$$x^2 + y^2 - pz^2 = pr^2 + 2$$

tiene solución $(x, y, z) \in \mathbb{Q}^3$ si y solo si el denominador exacto de r no es divisible por 2 ni por p.

Lema (Julia Robinson). Sean $r \in \mathbb{Q}$ y p,q primos impares con $p \equiv 1 \pmod{4}$ y $(q \mid p) = -1$.

$$x^2 + qy^2 - pz^2 = qpr^2 + 2$$

tiene solución $(x, y, z) \in \mathbb{Q}^3$ si y solo si el denominador exacto de r no es divisible por p ni por q.

La fórmula $\phi(x)$

Definiendo

$$\sigma(q, p, x) : \exists y \exists z \exists w (y^2 + qz^2 = qpx^2 + pw^2 + 2)$$

las hipótesis de existencia de los lemas anteriores se pueden reescribir como

$$Q \models \sigma[1, p, r] \quad y \quad Q \models \sigma[q, p, r].$$

La fórmula:

$$\phi(x): \forall p \forall q \Big\{ \Big[\sigma(q,p,0) \land \forall r \Big(\sigma(q,p,r) \rightarrow \sigma(q,p,r+1) \Big) \Big] \rightarrow \sigma(q,p,x) \Big\}$$

Teorema. $\phi(x)$ define a \mathbb{Z} en $\mathcal{Q} = (\mathbb{Q}, +, *, 0, 1)$, es decir,

$$Q \models \phi[r] \Leftrightarrow r \in \mathbb{Z}.$$

Corolario. \mathbb{N} es definible en \mathcal{Q} y por lo tanto $Th(\mathcal{Q})$ es indecidible.