Composition of Movement Primitives

Andrea Pierré

May 23, 2025

Contents

1	ProMPs		
	$1.1 \\ 1.2$	Recap	$\frac{1}{2}$
	1.3	Hierarchical Bayesian Model	2
	1.4	Via-Points Modulation	$\frac{2}{3}$
		1.4.2 Multi via-points	3
2	Cor	mposition of MPs	4
	$\frac{2.1}{2.2}$	Blending	$\frac{4}{4}$
A	Hie	erarchical Bayesian Model proof	4
В	Via	a-Points conditioning proof	5
1	P	${ m ProMPs}$	
1			
1.		Recap	
Fr	`	Paraschos et al., 2013, 2018):	
	• q _t	t: joint angle over time	
	• \dot{q}_i	t: joint velocity over time	
	• τ	$T = \{q_t\}_{t=0T}$: trajectory	
	• u	v : weight vector of a single trajectory $[n \times 1]$	
	 φ 	v_t : basis function	
	• n	: number of basis functions	
	• Ф	$\dot{\Phi}_t = [\phi_t, \dot{\phi}_t]$: $n \times 2$ dimensional time-dependent basis matrix	
	• z	(t): monotonically increasing phase variable	
	\bullet ϵ_1	$y \sim \mathcal{N}(0, \mathbf{\Sigma}_y)$: zero-mean i.i.d. Gaussian noise	
		$\lceil \phi_1 \dot{\phi_1} \rceil$	
		$oldsymbol{\Phi}_t = egin{bmatrix} \phi_1 & \dot{\phi}_1 \ dots & dots \ \phi_n & \dot{\phi}_n \end{bmatrix}$	(1)
		$egin{bmatrix} \dot{\phi}_n & \dot{\phi}_n \end{bmatrix}$. ,

$$\mathbf{y}_t = \begin{bmatrix} q_t \\ \dot{q}_t \end{bmatrix} = \mathbf{\Phi}_t^\top \mathbf{w} + \boldsymbol{\epsilon}_y \tag{2}$$

$$p(\boldsymbol{\tau}|\boldsymbol{w}) = \prod_{t} \mathcal{N} \Big(\boldsymbol{y}_{t} | \boldsymbol{\Phi}_{t}^{\top} \boldsymbol{w}, \boldsymbol{\Sigma}_{y} \Big)$$
(3)

$$p(\tau; \theta) = \int p(\tau | \boldsymbol{w}) \cdot p(\boldsymbol{w}; \theta) d\boldsymbol{w}$$
(4)

1.2 Coupling between joints

$$p(\boldsymbol{y}_t|\boldsymbol{w}) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{y}_{1,t} \\ \vdots \\ \boldsymbol{y}_{d,t} \end{bmatrix} \middle| \begin{bmatrix} \boldsymbol{\Phi}_t^{\top} & \cdots & \boldsymbol{0} \\ \vdots & \ddots & \vdots \\ \boldsymbol{0} & \cdots & \boldsymbol{\Phi}_t^{\top} \end{bmatrix} \boldsymbol{w}, \boldsymbol{\Sigma}_y \right) = \mathcal{N}\left(\boldsymbol{y}_t|\boldsymbol{\Psi}_t\boldsymbol{w}, \boldsymbol{\Sigma}_y\right)$$
(5)

with:

- $\boldsymbol{w} = [\boldsymbol{w}_1^\top, \dots, \boldsymbol{w}_n^\top]^\top$: combined weight vector $[n \times n]$
- Ψ_t : block-diagonal basis matrix containing the basis functions and their derivatives for each dimension
- $\mathbf{y}_{i,t} = [q_{i,t}, \dot{q}_{i,t}]^{\mathsf{T}}$: joint angle and velocity for the i^{th} joint

1.3 Hierarchical Bayesian Model

The Hierarchical Bayesian Model used in ProMPs is illustrated in Fig. 1.

Figure 1: Hierarchical Bayesian Model used in ProMPs.

- $\theta = \{\mu_w, \Sigma_w\}$
- $p(w; \theta) = \mathcal{N}(w|\mu_w, \Sigma_w)$: prior over the weight vector w, with parameters θ , assumed to be Gaussian

$$p(\boldsymbol{y}_t; \boldsymbol{\theta}) = \int \mathcal{N}(\boldsymbol{y}_t | \boldsymbol{\Psi}_t^{\top} \boldsymbol{w}, \boldsymbol{\Sigma}_y) \cdot p(\boldsymbol{w}; \boldsymbol{\theta}) d\boldsymbol{w}$$
 (6)

$$= \int \mathcal{N} \left(\boldsymbol{y}_t | \boldsymbol{\Psi}_t^{\top} \boldsymbol{w}, \boldsymbol{\Sigma}_y \right) \cdot \mathcal{N} \left(\boldsymbol{w} | \boldsymbol{\mu}_{\boldsymbol{w}}, \boldsymbol{\Sigma}_{\boldsymbol{w}} \right) d\boldsymbol{w}$$
 (7)

$$= \mathcal{N} \Big(\boldsymbol{y}_t | \boldsymbol{\Psi}_t^{\top} \boldsymbol{\mu}_{\boldsymbol{w}}, \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t + \boldsymbol{\Sigma}_y \Big)$$
 (8)

See Appendix A for the proof.

1.4 Via-Points Modulation

- $\boldsymbol{x}_t^{\star} = [\boldsymbol{y}_t^{\star}, \boldsymbol{\Sigma}_t^{\star}]$: desired observation
- \boldsymbol{y}_t^{\star} : desired position and velocity vector at time t
- Σ_t^{\star} : accuracy of the desired observation

Using Bayes rule:

$$p(\boldsymbol{w}|\boldsymbol{x}_t^{\star}) = \frac{p(\boldsymbol{x}_t^{\star}|\boldsymbol{w}) \cdot p(\boldsymbol{w})}{p(\boldsymbol{x}_t^{\star})}$$
(9)

$$p(\boldsymbol{w}|\boldsymbol{x}_{t}^{\star}) \propto \mathcal{N}\left(\boldsymbol{y}_{t}^{\star}|\boldsymbol{\Psi}_{t}^{\top}\boldsymbol{w}, \boldsymbol{\Sigma}_{t}^{\star}\right) \cdot \mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu}_{w}, \boldsymbol{\Sigma}_{w})$$
 (10)

$$\boldsymbol{\mu}_{\boldsymbol{w}}^{[new]} = \boldsymbol{\mu}_{\boldsymbol{w}} + \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \left(\boldsymbol{\Sigma}_{y}^{\star} + \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \right)^{-1} (\boldsymbol{y}_{t}^{\star} - \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}})$$
(11)

$$\Sigma_{\boldsymbol{w}}^{[new]} = \Sigma_{\boldsymbol{w}} - \Sigma_{\boldsymbol{w}} \Psi_t \left(\Sigma_y^{\star} + \Psi_t^{\top} \Sigma_{\boldsymbol{w}} \Psi_t \right)^{-1} \Psi_t^{\top} \Sigma_{\boldsymbol{w}}$$
(12)

See Appendix B for the proof.

1.4.1 Do we actually get the desired mean by applying the conditioning update?

Proof that the posterior mean equals the observed mean.

$$\mathbb{E}[\boldsymbol{y}_{t}|\boldsymbol{x}_{t}^{\star}] = \boldsymbol{\mu}_{\boldsymbol{y}_{t}|\boldsymbol{x}_{t}^{\star}} = \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}|\boldsymbol{x}_{t}^{\star}} = \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}} + \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \left(\boldsymbol{\Sigma}_{t}^{\star} + \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \right)^{-1} (\boldsymbol{y}_{t}^{\star} - \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}})$$
(13)

We set the observed covariance Σ_t^{\star} to 0 so as to have perfect accuracy around our observed position.

$$\boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w} | \boldsymbol{x}_{t}^{\star}} = \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}} + \underline{\boldsymbol{\Psi}_{t}^{\top}} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \left(\underline{\boldsymbol{\Psi}_{t}^{\top}} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t}\right)^{-1} (\boldsymbol{y}_{t}^{\star} - \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}})$$

$$(14)$$

$$= \underline{\Psi_t^{\mathsf{T}} \mu_w} + y_t^{\star} - \underline{\Psi_t^{\mathsf{T}} \mu_w} \tag{15}$$

$$= \boldsymbol{y}_t^{\star} \tag{16}$$

1.4.2 Multi via-points

Figure 2: Example of ProMP with two via points.

ToDo: Two points conditional update derivation

2 Composition of MPs

2.1 Blending

2.2 Stitching

References

- A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, "Probabilistic Movement Primitives," in *Advances in Neural Information Processing Systems*, vol. 26. Curran Associates, Inc., 2013. [Online]. Available: https://proceedings.neurips.cc/paper/2013/hash/e53a0a2978c28872a4505bdb51db06dc-Abstract.html
- A. Paraschos, C. Daniel, J. Peters, and G. Neumann, "Using probabilistic movement primitives in robotics," *Autonomous Robots*, vol. 42, no. 3, pp. 529–551, Mar. 2018. [Online]. Available: https://doi.org/10.1007/s10514-017-9648-7
- M. P. Deisenroth, A. A. Faisal, and C. S. Ong, *Mathematics for machine learning*. Cambridge University Press, 2020.
- C. M. Bishop and H. Bishop, *Deep Learning: Foundations and Concepts*. Springer International Publishing, 2024. [Online]. Available: https://doi.org/10.1007/978-3-031-45468-4

A Hierarchical Bayesian Model proof

Proof of Eq. (8). From (Deisenroth et al., 2020), we have the joint distribution:

$$p(\mathbf{x}_a, \mathbf{x}_b) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\mu}_a \\ \boldsymbol{\mu}_b \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{aa} & \boldsymbol{\Sigma}_{ab} \\ \boldsymbol{\Sigma}_{ba} & \boldsymbol{\Sigma}_{bb} \end{bmatrix}\right)$$
(17)

and the marginal distribution $p(\mathbf{x}_a)$ of a joint Gaussian distribution $p(\mathbf{x}_a, \mathbf{x}_b)$:

$$p(\mathbf{x}_a) = \int p(\mathbf{x}_a, \mathbf{x}_b) d\mathbf{x}_b = \mathcal{N}(\mathbf{x}_a | \boldsymbol{\mu}_a, \boldsymbol{\Sigma}_{aa})$$
(18)

Since y_t and w are jointly Gaussian, we have:

$$\begin{bmatrix} \boldsymbol{y}_t \\ \boldsymbol{w} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_{\boldsymbol{y}_t} \\ \boldsymbol{\mu}_{\boldsymbol{w}} \end{bmatrix}, \begin{bmatrix} \operatorname{Cov}[\boldsymbol{y}_t, \boldsymbol{y}_t] & \operatorname{Cov}[\boldsymbol{y}_t, \boldsymbol{w}] \\ \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{y}_t] & \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{w}] \end{bmatrix} \right)$$
(19)

$$\boldsymbol{\mu}_{\boldsymbol{y}_t} = \mathbb{E}[\boldsymbol{y}_t] \tag{20}$$

$$= \mathbb{E}[\boldsymbol{\Psi}_t^{\top} \boldsymbol{w} + \boldsymbol{\epsilon}_y] \tag{21}$$

$$= \mathbf{\Psi}_{t}^{\top} \mathbb{E}[\mathbf{w}] + \mathbb{E}[\boldsymbol{\epsilon}_{u}] \tag{22}$$

$$= \mathbf{\Psi}_{t}^{\top} \boldsymbol{\mu}_{w} + 0 \tag{23}$$

$$= \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{w} \tag{24}$$

$$Cov[\boldsymbol{y}_t, \boldsymbol{y}_t] = Cov[\boldsymbol{\Psi}_t^{\top} \boldsymbol{w} + \boldsymbol{\epsilon}_y]$$
 (25)

$$= \operatorname{Cov}[\boldsymbol{\Psi}_t^{\top} \boldsymbol{w}] + \operatorname{Cov}[\boldsymbol{\epsilon}_{\boldsymbol{y}}] \tag{26}$$

$$= \mathbf{\Psi}_t^{\top} \operatorname{Cov}[\mathbf{w}] \mathbf{\Psi}_t + \mathbf{\Sigma}_v \tag{27}$$

$$= \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t + \boldsymbol{\Sigma}_{\boldsymbol{y}} \tag{28}$$

$$\begin{bmatrix} \boldsymbol{y}_t \\ \boldsymbol{w} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\Psi}_t^{\top} \boldsymbol{\mu}_{\boldsymbol{w}} \\ \boldsymbol{\mu}_{\boldsymbol{w}} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t + \boldsymbol{\Sigma}_y & \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \\ \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t & \boldsymbol{\Sigma}_{\boldsymbol{w}} \end{bmatrix} \right)$$
(29)

$$p(\boldsymbol{y}_t; \boldsymbol{\theta}) = \mathcal{N} \Big(\boldsymbol{y}_t | \boldsymbol{\Psi}_t^{\top} \boldsymbol{\mu}_{\boldsymbol{w}}, \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t + \boldsymbol{\Sigma}_y \Big)$$
(30)

B Via-Points conditioning proof

Proof of Eq. (11) and Eq. (12). With the joint distribution $p(\mathbf{x}_a, \mathbf{x}_b)$ in Eq. (17), and from (Bishop and Bishop, 2024), the parameters of a conditional multivariate Gaussian $p(\mathbf{x}_a|\mathbf{x}_b) = \mathcal{N}(\boldsymbol{\mu}_{a|b}, \boldsymbol{\Sigma}_{a|b})$ are the following:

$$\mu_{a|b} = \mu_a + \Sigma_{ab} \Sigma_{bb}^{-1} (\mathbf{x}_b - \mu_b)$$
(31)

$$\Sigma_{a|b} = \Sigma_{aa} - \Sigma_{ab} \Sigma_{bb}^{-1} \Sigma_{ba}$$
 (32)

We want the posterior $p(\boldsymbol{w}|\boldsymbol{x}_t^{\star})$, knowing the likelihood $\boldsymbol{x}_t^{\star}|\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{y}_t^{\star}|\boldsymbol{\Psi}_t^{\top}\boldsymbol{w}, \boldsymbol{\Sigma}_t^{\star})$, and the prior $\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu}_w, \boldsymbol{\Sigma}_w)$.

$$\begin{bmatrix} \boldsymbol{w} \\ \boldsymbol{x}_{t}^{\star} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_{\boldsymbol{w}} \\ \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}} \end{bmatrix}, \begin{bmatrix} \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{w}] & \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{x}_{t}^{\star}] \\ \operatorname{Cov}[\boldsymbol{x}_{t}^{\star}, \boldsymbol{w}] & \operatorname{Cov}[\boldsymbol{x}_{t}^{\star}, \boldsymbol{x}_{t}^{\star}] \end{bmatrix} \right)$$
(33)

 $Cov[\boldsymbol{x}_t^{\star}, \boldsymbol{x}_t^{\star}]$ follows from Eq. (28).

$$Cov[\boldsymbol{w}, \boldsymbol{x}_{t}^{\star}] = Cov[\boldsymbol{w}, \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{w} + \boldsymbol{\epsilon}_{y}]$$
(34)

$$= \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{\Psi}_t^{\top} \boldsymbol{w}] \qquad \qquad (\operatorname{Cov}[\boldsymbol{w}, \boldsymbol{\epsilon_y}] = 0 \text{ since } \boldsymbol{\epsilon_y} \text{ is independent of } \boldsymbol{w}) \quad (35)$$

$$= \mathbb{E}[(\boldsymbol{w} - \boldsymbol{\mu}_{\boldsymbol{w}})(\boldsymbol{\Psi}_{t}^{\top} \boldsymbol{w} - \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}})^{\top}]$$
(36)

$$= \mathbb{E}[(\boldsymbol{w} - \boldsymbol{\mu}_{\boldsymbol{w}})(\boldsymbol{w} - \boldsymbol{\mu}_{\boldsymbol{w}})^{\top} \boldsymbol{\Psi}_{t}]$$
(37)

$$= \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{w}] \cdot \boldsymbol{\Psi}_t \tag{38}$$

$$= \Sigma_{w} \Psi_{t} \tag{39}$$

$$\begin{bmatrix} \boldsymbol{w} \\ \boldsymbol{x}_{t}^{\star} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_{w} \\ \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{w} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{w} & \boldsymbol{\Sigma}_{w} \boldsymbol{\Psi}_{t} \\ \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\Sigma}_{w} & \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\Sigma}_{w} \boldsymbol{\Psi}_{t} + \boldsymbol{\Sigma}_{t}^{\star} \end{bmatrix} \right)$$
(40)

Using Eq. (31) we get:

$$\mu_{\boldsymbol{w}|\boldsymbol{x}_{t}^{\star}} = \mu_{\boldsymbol{w}} + \Sigma_{\boldsymbol{w}} \Psi_{t} \left(\Sigma_{t}^{\star} + \Psi_{t}^{\top} \Sigma_{\boldsymbol{w}} \Psi_{t} \right)^{-1} (\boldsymbol{y}_{t}^{\star} - \Psi_{t}^{\top} \mu_{\boldsymbol{w}})$$
(41)

Using Eq. (32) we get:

$$\Sigma_{\boldsymbol{w}|\boldsymbol{x}_{t}^{\star}} = \Sigma_{\boldsymbol{w}} - \Sigma_{\boldsymbol{w}} \Psi_{t} \left(\Sigma_{t}^{\star} + \Psi_{t}^{\top} \Sigma_{\boldsymbol{w}} \Psi_{t} \right)^{-1} \Psi_{t}^{\top} \Sigma_{\boldsymbol{w}}$$

$$(42)$$