Current role: Ph.D. Researcher

https://wqlevi.github.iowq.levi@gmail.com

EDUCATION

•Max Planck Institute for Biological Cybernetics

Germany, Oct 2019-now

Ph.D. researcher, Advisors: Prof. Dr. Klaus Scheffler, PD. Dr. Gabriele Lohmann

•Eberhard Karl Universität Tübingen

Germany, Oct 2019-now

Ph.D. Candidate, Graduate Training Center of Neuroscience

•Hong Kong Polytechnique University

Hong Kong, Sep 2017-Mar 2019

MSc., Mechanical Engineering in Aeronautical Engineering

China Can 0019 June 0017

•Qing Hai University

China, Sep 2013-June 2017

BSc., Mechanical Engineering

GPA: 3.7/4.0

GPA: 3.0/4.0

TECHNICAL SKILLS AND INTERESTS

Languages: Chinese(Native), Cantonese(Fluent), English(Fluent), German(Basic)

Developer Tools: C/C++, Python, Matlab, Rust, Julia, VIM, Git, IATEX

Frameworks: PyTorch, JAX, Caffe, distributed training

Areas of Interest: Generative models, stability of GAN, Score-matching models, Computational fluid dynamics,

Optimal transport, Graph neural networks

PROJECTS

•Brain MRI surface rendering from volume using implicit neural representation (Deep Learning)

2023

Render brain surface from MRI volumes without using ground truth mesh in training

- Implicit representation used for rendering the surface of the brain MRI
- Training without paired mesh ground truth, which is required in other works

•Stable GAN training for super-resolution on volumetric MRI data (Deep Learning)

2021

We use super-resolution strategy to generate high-resolution MRI volumes, with the most indistinguishable details

- Stability in GAN dynamics, efficient convergence with small training sample size
- $\overline{\text{Our GAN model achieved best perceptual quality in both spatial and frequency domain, with a \underline{\text{frequency-informed}} \\ \text{discriminator}$
- The best generalizability in OOD data than any other SR models for medical images

•Flexible segmentation network for brain MRI on various resolutions (Deep Learning)

2021

A neural network model, trained on 3T MRI data using domain adaption, to segment 9.4T MRI data

- SOTA segmentation accuracy on 9.4T MRI data
- Benchmarking existing ML based segmentation method as well as traditional segmentation tools for 9.4T MRI data

•Inductively coupled wireless MR detector for improving focal SNR (Neuroscience)

2020

A wireless MRI coil with enhanced SNR for animal experiments in 14.1T scanner

- Developed wireless MR detector that allows flexible experiment design, e.g. concurrently optogenetic recording with MRI under ROI of the coil
- Analysis of laminar BOLD fMRI signal functional activity in somatosensory cortex

•Laminar-specific functional connectivity mapping with multi-slice fMRI (Neuroscience)

2020

Multi-regional line-scanning fMRI paired with optical calcium signal recording, in 14.1T scanner

- Multi-slice BOLD fMRI is recorded concurrently with local neuronal calcium signal, via an optical fiber
- Neuro-vascular coupling studied in both task-evoked and spontaneous recording of brain states in rats

•Automated vision-based micro-surgical task execution through a robotic multi-arm system (Robotics) 2018 The vision system adopted a segmentation network trained on RGB-D images

•Computational fluid analysis on indoor ventilation system (Thermodynamics)

2017

RECENT PUBLICATIONS (SEE ALL PUBLICATIONS)

1. DISGAN: Wavelet-informed discriminator guides GAN to MRI image Super-resolution with noise cleaning ICCV Workshop on Computer Vision for Automated Medical Diagnosis 2023 Wang, Q.; Mahler, L.; Steiglechner, J.; Birk, F.; Scheffler, K.; Lohmann, G.	2023
2. A Three-Player GAN for Super-Resolution in Magnetic Resonance Imaging MICCAI Workshop on Machine Learning for Clinial Neuroimaging 2023 Wang, Q.; Mahler, L.; Steiglechner, J.; Birk, F.; Scheffler, K.; Lohmann, G.	2023
3. Pretraining is All You Need: A Multi-Atlas Enhanced Transformer Framework for Autism Spectrum Disorder Classification MICCAI Workshop on Machine Learning for Clinial Neuroimaging 2023 Mahler, L.; Wang, Q.; Steiglechner, J.; Birk, F.; Heczko, S.; Scheffler, K.; Lohmann, G.	2023
4. Super resolution for ultra-high fields MR images augmentation improving 9T MR image segmentation Medical Imaging with Deep Learning(MIDL) 2022, Zürich Wang, Q.; Steiglechner, J.; Scheffler, K.; Lohmann, G.	2022
5. Focal fMRI signal enhancement with implantable inductively coupled detectors NeuroImage Chen, Y.; Wang, Q.; Choi, S.; Zeng, H.; Takahashi, K.; Qian, C.; Yu, X.	2022 Joint first au