Foundations of machine learning Trees, forests, and causal trees

Maximilian Kasy

Department of Economics, Oxford University

Hilary term 2022

Agenda

- Regression trees: Splitting the covariate space.
- Random forests: Many trees.
 Using bootstrap aggregation to improve predictions.
- Causal trees: Predicting heterogeneous causal effects.
 Ground truth not directly observable, for cross-validation.

Takeaways for this part of class

- Trees partition the covariate space and form predictions as local averages.
- Iterative splitting of partitions allows us to be more flexible in regions of the covariate space with more variation of outcomes.
- Bootstrap aggregation (bagging) is a way to get smoother predictions, and leads to random forests when applied to trees.
- Things get more complicated when we want to predict heterogeneous causal effects, rather than observable outcomes.
- This is because we do not directly observe a ground truth that can be used for tuning.

Random forests

Causal trees

- Suppose we have i.i.d. observations (X_i, Y_i) and want to estimate g(x) = E[Y|X=x].
- Suppose we furthermore have a partition of the regressor space into subsets (R_1, \ldots, R_M) .
- Then we can estimate $g(\cdot)$ by averages in each element of the partition:

$$\hat{g}(x) = \sum_m c_m \cdot \mathbf{1}(x \in R_m) \ c_m = rac{\sum_i Y_i \cdot \mathbf{1}(X_i \in R_m)}{\sum_i \mathbf{1}(X_i \in R_m)}.$$

This is a regression analog of a histogram.

Recursive binary partitions

Constructing the partition

- How to choose the partition?
- Start with the trivial partition with one element.
- Greedy algorithm (CART): Iteratively split an element of the partition, such that the in-sample prediction improves as much as possible.
- That is: Given (R_1, \ldots, R_M) ,
 - For each R_m , m = 1, ..., M, and
 - for each X_j , $j = 1, \ldots, k$,
 - find the x_{j,m} that minimizes the mean squared error, if we split R_m along variable X_j at x_{j,m}.
 - Then pick the (m,j) that minimizes the mean squared error, and construct a new partition with M+1 elements.
 - Iterate.

Tuning and pruning

- Key tuning parameter: Total number of splits M.
- We can optimize this via cross-validation.
- CART can furthermore be improved using "pruning."
- Idea:
 - Fit a flexible tree (with large M) using CART.
 - Then iteratively remove (collapse) nodes.
 - To minimize the sum of squared errors, plus a penalty for the number of elements in the partition.
- This improves upon greedy search.
 It yields smaller trees for the same mean squared error.

Random forests

Causal trees

From trees to forests

- Trees are intuitive and do OK, but they are not amazing for prediction.
- We can improve performance a lot using either bootstrap aggregation (bagging) or boosting.

Bagging:

- Repeatedly draw bootstrap samples $(X_i^b, Y_i^b)_{i=1}^n$ from the observed sample.
- For each bootstrap sample, fit a regression tree $\hat{g}^b(\cdot)$.
- Average across bootstrap samples to get the predictor

$$\hat{g}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{g}^b(x).$$

- This is a technique for smoothing predictions.
 The resulting predictor is called a "random forest."
- Possible modification:
 Restrict candidate splits to a random subset of predictors in each tree-fitting step.

An empirical example (courtesy of Jann Spiess)

OLS.

Random forest

Random forests

Causal trees

Causal trees

• Suppose we observe i.i.d. draws of (Y_i, D_i, X_i) , and wish to estimate

$$\tau(x) = E[Y|D = 1, X = x] - E[Y|D = 0, X = x].$$

 Motivation: This is the conditional average treatment effect under an unconfoundedness assumption on potential outcomes,

$$(Y^0,Y^1)\perp D|X.$$

- This is relevant, in particular, for targeted treatment assignment.
- We might, for a given partition $\mathcal{R} = (R_1, \dots, R_M)$, use the estimator

$$\hat{\tau}(x) = \sum_{m} (c_m^1 - c_m^0) \cdot \mathbf{1}(x \in R_m)$$

$$c_m^d = \frac{\sum_{i} Y_i \cdot \mathbf{1}(X_i \in R_m, D_i = d)}{\sum_{i} \mathbf{1}(X_i \in R_m, D_i = d)}.$$

Targets for splitting and cross-validation

- Recall that CART uses greedy splitting.
 It aims to minimize in-sample mean squared error.
- For tuning, we proposed to use the out-of-sample mean squared error in order to choose the tree depth.
- Analog for estimation of $\tau(\cdot)$: Sum of squared errors (minus normalizing constant),

$$SSE(\mathscr{S}) = \sum_{i \in \mathscr{S}} \left((\tau_i - \hat{\tau}(X_i))^2 - \tau_i^2 \right),$$

where \mathscr{S} is either the estimation sample, or a hold-out sample for cross-validation. (The term τ_i^2 is added as a convenient normalization.)

• Problem: τ_i is not observed.

Targets continued

• Solution: We can rewrite $SSE(\mathcal{S})$,

$$SSE(\mathscr{S}) = \sum_{i \in \mathscr{S}} (\hat{\tau}(X_i, \mathscr{R}) \cdot (\hat{\tau}(X_i, \mathscr{R}) - 2\tau_i)).$$

- Suppose we split our sample into $(\mathcal{S}^1, \mathcal{S}^2)$, use \mathcal{S}^1 for estimation, and \mathcal{S}^2 for tuning. Let $\hat{\tau}_i(X, \mathcal{R})$ be the estimator based on sample \mathcal{S}^j .
- An estimator of $SSE(\mathcal{S}^2)$ (for tuning) is then given by

$$\widehat{SSE}(\mathscr{S}^2) = \sum_{i \in \mathscr{S}} (\hat{\tau}_1(X_i, \mathscr{R}) \cdot (\hat{\tau}_1(X_i, \mathscr{R}) - 2\hat{\tau}_2(X_i, \mathscr{R}))).$$

An analog to the in-sample sum of squared errors (for CART splitting) is given by

$$\widehat{SSE}(\mathscr{S}^1) = \sum_{i \in \mathscr{S}} \left(-\hat{\tau}_1(X_i, \mathscr{R})^2 \right).$$

- Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical learning, volume 1. Springer series in statistics Springer, Berlin, chapters 8 and 9.
- Athey, S. and Imbens, G. (2016). Recursive partitioning for heterogeneous causal effects. Proceedings of the National Academy of Sciences, 113(27):7353–7360.