HIGH UTILITY GRADUAL ITEMSETS MINING

FONGUE ASSONDJI Priscile Audrey

Computer Science student at University of Yaounde I Field: Data Science

WoCC23, Polytechnique-Yaoundé, 2023

Overview

- Introduction
- Definitions
- State of art
- High utility gradual itemsets mining
- Experimental results
- 6 Conclusion and outlook

- 1 Introduction
- 2 Definitions
- State of art
- 4 High utility gradual itemsets mining
- 6 Experimental results
- 6 Conclusion and outlook

Introduction

Accumulation of large volume of data

Extracting knowledge

Supermarkets

Profitability analysis

- 1 Introduction
- 2 Definitions
- State of art
- 4 High utility gradual itemsets mining
- 6 Experimental results
- 6 Conclusion and outlook

Definitions

Let $I = \{i_1, ..., i_n\}$ a set of items and $\Delta = \{T_1, ..., T_m\}$ a quantitative transaction database where $T_z \subseteq I$.

Gradual item (Lonlac et al., 2020)

It is an item in the form of i^* , from an attribute i and a variation $* \in \{\geq, \leq\}$ or $\{+, -\}$ of the values of i.

Gradual itemset or gradual pattern, (Lonlac et al., 2020)

It is a non-empty set of gradual items denoted by $M = \{i_1^{*1}, ..., i_k^{*k}\}$.

Support of a gradual itemset (Di-jorio et al.,2009; Lonlac et al.,2020)

Let M be a pattern with $\{L_1,...L_m\}$.

$$\mathsf{Supp}(\mathsf{M}) = \frac{Max_{1 \leq i \leq m}(|L_i|)}{|\Delta|}$$

$$\mathsf{Sup}(\{i_1^{*1},...,i_k^{*k}\},\Delta)) = \frac{\Delta(\{i_1^{*1},...,i_k^{*k}\})}{|\Delta|(|\Delta|-1)/2}$$

Example

Hostel	Town	Pop.(10 ³)	Dist. from centre	Price
h_1	Paris	2.1	0.3	82
h ₂	New York	8.0	5	25
h ₃	New York	8.0	0.2	135
h ₄	Ocala	0.04	0.1	60

Table: Example of database [Di-jorio et al, 2009] (Δ)

$$minsup = 50\%$$

Ordered database:

- $\{Dist^+\}: (h_1, h_3)$
- $\{Prix^+\}: (h_1, h_3)$
- {Prix⁺Dist⁺} :(h₁, h₃)
- {Pop⁺, Dist⁻, Prix⁺}: (h₁, h₃)

$$(h_1[pop] \le h_3[pop], h_1[Dist] \ge h_3[Dist], h_1[Prix] \le h_3[Prix])$$

Unordered database:

• $\{Pop^+, Prix^+\}$: (h_4, h_1, T_3)

Concept of utility

TID	Transaction
T_0	(a,1),(b,5),(c,1),(d,3),(e,1)
T_1	(b,4),(c,3),(d,3),(e,1)
T_2	(a,1),(c,1),(d,1)
<i>T</i> ₃	(a,2),(c,6),(e,2)
T_4	(b,2),(c,2),(e,1)

Table: G	uantitative)	database
----------	--------------	----------

Item	External utility value
а	5
b	2
С	1
d	2
е	3

Table: External utility values

Concept of utility (Liu et al., 2005)

D: Quantitative database; I: set of items; $T_c \subseteq I$

Utility of an item, Utility of an itemset

- $u(i, T_c) = p(i) * q(i, T_c)$
- $u(i,D) = \sum_{T_c \in g(i)} u(i,T_c)$
- $u(X,T_c) = \sum_{i \in X} u(i,T_c)$
- $u(X,D) = \sum_{T_c \in g(X)} u(X, T_c)$

Concept of utility (Liu et al., 2005)

D: Quantitative database; I: set of items; $T_c \subseteq I$

Utility of an item, Utility of an itemset

- $u(i, T_c) = p(i) * q(i, T_c)$
- $u(i,D) = \sum_{T_c \in g(i)} u(i,T_c)$
- $u(X, T_c) = \sum_{i \in X} u(i, T_c)$
- $u(X,D) = \sum_{T_c \in g(X)} u(X, T_c)$

High utility itemset

An itemset (a pattern) ${\bf X}$ is said to be a *high utility itemset* iff ${\tt u}({\tt X},{\tt D}) \geq {\bf minutil}$

TWU(Transaction-weighted utilization)

- $TU(T_c) = \sum_{x \in T_c} u(x, T_c)$
- TWU(X) = $\sum_{T_c \in g(X)} TU(T_c)$

Example

Utility calculation

- $u(a, T_2) = 5 * 1 = 5$
- $u({a,c}, T_2) = u(a, T_2) + u(c, T_2) = 5 * 1 + 1 * 1 = 6$
- $u(\{a,c\},D) = u(\{a,c\},T_0) + u(\{a,c\},T_2) + u(\{a,c\},T_3) = u(a,T_0) + u(c,T_0) + u(a,T_2) + u(c,T_2) + u(a,T_3) + u(c,T_3) = 5*1 + 1*1 + 5*1 + 1*1 + 5*2 + 1*6 = 28$

Transaction-weighted utilization, Transaction utility

- $TU(T_1) = 2*4 + 1*3 + 2*3 + 3*1 = 20$
- $TWU({c, d}) = TU(T_0) + TU(T_1) + TU(T_2) = 25 + 20 + 8 = 53$

Applications: Retail, Finance.

- 1 Introduction
- Definitions
- 3 State of art
- 4 High utility gradual itemsets mining
- 6 Experimental results
- 6 Conclusion and outlook

State of art

Gradual itemset mining algorithms

- Algorithms consider different semantics of graduality (temporality, seasonality, emergence, etc...)
 depending on the data model to extract other variants of gradual itemsets.
- Advantage: suitable for real world applications where quantitative data are used
- Limit: They are inadequate for searching gradual itemsets that generate a high profit.

High utility itemsets algorithms

- There are two phases and one phase algorithms to extract high utility itemsets
- Advantage: allow the expression of other interests of the user on the patterns
- Limit: Most of the algorithms does not handle itemsets with negative item values from a large database.

How to offer the user itemsets whose utility varies considerably with time?

- 1 Introduction
- Definitions
- State of art
- 4 High utility gradual itemsets mining
- 6 Experimental results
- 6 Conclusion and outlook

High utility gradual itemsets mining

Problem definition

"Given a quantitative database and external utilities [Zida et al, 2017] of the different attributes, find gradual itemsets whose utility is higher than a utility threshold".

High utility gradual itemset

$$U(I, \Delta) = \sum_{(T_x, T_y) \in \Delta(I) \land q(i, T_x) \neq q(i, T_y) \forall i \in I} [U(I, T_y) - U(I, T_x)]$$

Figure: General scheme for extracting high-utility gradual patterns

Example of database

a:: Thon; b:: Tilapia; c:: Carp

Tid item	a	b	С
T_1	3	7	4
T_2	2	5	8
T_3	4	5	2
T_4	1	6	9

Table: Quantitative database (D)

Tid item	а	b	С
(T_1, T_2)	-1	-2	4
(T_1, T_3)	1	-2	-2
(T_1, T_4)	-2	-1	5
(T_2, T_3)	2	0	-6
(T_2, T_4)	-1	1	1
(T_3, T_4)	-3	1	7

Table: encoded database $(D')^a$

 $^{^{\}it a}$ we are in temporality context

$\begin{array}{l} \textbf{Approach 1}: \text{ extraction with separation of positive and} \\ \text{negative (} \textbf{HUGI-Merging)} \end{array}$

Example of extraction

D'	Transactions
1	(a-, -1); (b-, -2); (c+, 4)
2	(a+, 1); (b-, -2); (c-, -2)
3	(a-, -2); (b-, -1); (c+,5)
4	(a+, 2); (b, 0); (c-, -6)
5	(a-, -1); (b+, 1); (c+, 1)
6	(a-, -3); (b+, 1); (c+, 7)

D'1	Transactions
1	(c+ , 4)
-2	(a+, 1)
3	(c+, 5)
4	(a+, 2)
5	(b+, 1), (c+, 1)
6	(b+, 1), (c+, 7)

D'2	Transactions
1	(a-, -1), (b-, -2)
2	(b-, -2), (c-, -2)
3	(a-, -2), (b-, -1)
4	(c-, -6)
5	(a-, -1)
6	(a-, -3)

Figure: Division of the DB: D'1, D'2

Exemple of extraction

In D'2, we obtain:

•
$$U({a-}) = -7 \rightarrow TID$$
: [1,3,5,6]

•
$$U({c-}) = -8 \rightarrow TID: [2,4]$$

•
$$U(\{a-,b-\}) = -6 \rightarrow : [1,3]$$

In D'1, we obtain:

•
$$U({c+}) = 17 \rightarrow TID: [1,3,5,6]$$

•
$$U(\{b+, c+\}) = 10 \rightarrow TID$$
: [5,6]

After merging, we obtain:

•
$$U({a-, c+}) = 10$$

•
$$U(\{ a-, b+, c+\}) = 6$$

•
$$U({a-, b-, c+}) = 3$$

$$U({\bf b-c+})=6$$

Approach 2: Extraction with a single database (HUGI)

Figure: Process of extracting gradual high utility itemsets with a single database

The obtained itemsets

U ((X)	>	minutil
~ ,		_	

itemset	Utility
b+ a- c+	6
b+c+	10
a- c+	10
b- c+	6
c+	17

Table: mixed positive itemsets (case 1)

· / –	
itemset	Utility
C-	-8
b- a-	-6
a-	-7

Table: mixed negative itemsets (case 2)

$U(X) \leq -minutil \text{ or } U(X) \geq minutil$

itemset	Utility		
C-	-8		
b+ a- $c+$	6		
b+c+	10		
b- a-	-6		
b- c+	6		
a-	-7		
a- c+	10		
c+	17		

Table: Gradual high utility itemsets (case 3)

- 1 Introduction
- Definitions
- State of art
- 4 High utility gradual itemsets mining
- **6** Experimental results
- 6 Conclusion and outlook

Example of real high utility gradual itemsets

Dataset

Domain : supermarket

Number of instances: 1000

Number of items: 45

minUtil: 60000

Number of patterns mined: 7 patterns

itemset	utility	itemset	utility
$\{Breakfastfoods^{\geq}, SideDishes^{\geq}, Dairy^{\geq}, snackFoods^{\geq}\}$	60125	$\{Candy \ge \}$	60680
$\{BakingGoods \leq \}$	-64900	$\{Hygiene^{\geq}\}$	61220
$\{Dairy^{\geq}, Snack foods^{\geq}\}\$	61806	$\{Dairy^{\geq}\}$	83205

Figure: Patterns extracted

Data and working environment

- <u>Dataset</u>: **Order** > 34555,16383
- External utilities: between 5 et 20
- Environment: intel Core i7-8750H
 2.2GHz CPU, 8Go of RAM, processor
 12 cores.
- Utility threshold: from 0.1 to 1
- <u>Librairies</u>: Efficient_apriori, numpy, Matplotlib, Subprocess, pandas

- HUGI>
- HUGI
- HUGI< & >
- HUGI-Merging
- T-Gpatterns

Time vs minUtil

Number of patterns vs minUtil

Memory usage vs minUtil

Figure: Comparative evaluation of HUGI et HUGI-Merging sur le dataset *Order*

Time vs minutil

Number of patterns vs minUtil

Memory usage vs minUtil

Figure: Comparative evaluation of HUGI et HUGI-Merging sur le dataset *Order*

Time vs minUtil

Number of patterns vs minUtil

Memory usage vs minUtil

Figure: Comparative evaluation of HUGI and HUGI-Merging on the dataset Order

21375 -0 - AP2: HUGI H 17815 T-Opattern 10699 7126 Utility Threshold

Time vs minUtil

Number of patterns vs minUtil

Memory usage vs minUtil

Figure: Comparative evaluation of HUGI et HUGI-Merging sur le dataset Order

- 1 Introduction
- 2 Definitions
- State of art
- 4 High utility gradual itemsets mining
- 6 Experimental results
- 6 Conclusion and outlook

Conclusion

- Search for high-utility gradual patterns
- Use of an existing high-utility pattern mining algorithm
- Proposal of two high-utility gradual pattern mining algorithms: HUGI and HUGI-Merging.
- Experimentation on a real data set

Outlook

- Combine support threshold and utility threshold to extract frequent gradual patterns of high utility
- Using idea to make recommendation
- Find a complete merging algorithm
- Find measures to assess the quality of extracted patterns
- Improve execution time on larger datasets

Some references

Lisa Di jorio, Anne Laurent, Maguelonne Teisseire (2009)

Mining Frequent Gradual itemsets from large databases

International Symposium on Intelligent Data Analysis, 297 - 308.

Jerry Lonlac, Engelbert Mephu Nguifo(2020)

A novel Algorithm for searching frequent gradual patterns from an ordered dataset *Intelligent Data Analysis* 24(5), 1029 – 1042.

Philippe Fournier-Viger, Jerry Chun-wei Lin, Tin Truong-chi, Roger Nkambou (2019)

A Survey of High Utility Itemset Mining

High Utility Pattern Mining, 1 – 45.

Souleymane Zida , Philippe Fournier-Viger , Jerry Chun-Wei Lin ,Cheng-Wei Wu , Vincent S. Tseng (2017)

EFIM: A Highly Efficient Algorithm for High-Utility Itemset Mining

Advances in Artificial Intelligence and Soft Computing, 530 – 546.

Thanks for your great attention!