Reconnaissance de formes et logique floue

- 1. <u>Sous ensembles flous et variables</u> <u>linguistiques</u>
 - 2. Théorie des possibilités
 - 3. Théorie des croyances

1. Sous ensembles flous et variables linguistiques

Motivations

Jia Deng, Jonathan Krause, Alex Berg, Li Fei-Fei. Hedging Your Bets: Optimizing Accuracy-Specificity Trade-offs in Large Scale Visual Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

Hedging Your Bets:

Optimizing Accuracy-Specificity Trade-offs in Large Scale Visual Recognition

Jia Deng^{1,2}, Jonathan Krause¹, Alexander C. Berg³, Li Fei-Fei¹ Stanford University¹, Princeton University², Stony Brook University³

Abstract

As visual recognition scales up to ever larger numbers of categories, maintaining high accuracy is increasingly difficult. In this work, we study the problem of optimizing accuracy-specificity trade-offs in large scale recognition, motivated by the observation that object categories form a semantic hierarchy consisting of many levels of abstraction. A classifier can select the appropriate level, trading off specificity for accuracy in case of uncertainty. By optimizing this trade-off, we obtain classifiers that try to be as specific as possible while guaranteeing an arbitrarily high accuracy. We formulate the problem as maximizing information gain while ensuring a fixed, arbitrarily small error

Figure 1. Conventional classifier versus our approach.

1.1 Bref historique

- ► 1965: **Concept** introduit par Pr. Lotfi Zadeh (Berkeley):
- « Fuzzy set theory »: Définition des sous-ensembles flous et opérateurs associés
 - ⇒ Base formelle pour le traitement des

incertitudes (doutes sur la validité),

imprécisions (vague, flou, général, ambigu),

et incomplétudes (absence des connaissances ou partielles).

Interface entre l'information **numérique** (quantitatif) et l'information **symbolique** (qualitatif).

- ➤ 1970 : **premières applications.** Systèmes experts, aide à la décision en médecine, commerce...
- ➤ 1974 : **première application industrielle**. Régulation floue d'une chaudière à vapeur réalisée par Mamdani.

- Longtemps universitaire.
- ➤ 1985 : les premiers, les japonais introduisent des produits grand public « **Fuzzy Logic Inside** ».

1.2 Sous-ensembles flous

Objectifs:

- Modélisation des *catégories mal définies*

```
(« jeune », « loin »...)
```

- Situation *intermédiaire* entre le tout et le rien

```
(« presque vrai »)
```

- Passage *progressif* d'une propriété à une autre

```
(« tiède » à « chaud »)
```

- Utilisation de *valeurs approximatives*

```
(« environ 12 ans », « entre 1000 et 1500 personnes »)
```

- *Incertitude* sur la propriété

```
(« je crois que la voiture était blanche »)
```

- Éviter l'utilisation arbitraires de *limites rigides* à des classes

```
(« 1,78m » est grand mais pas « 1,775m »)
```

Différence entre probabilité et imprécision (ex J. Bezdek)

A : on pourra s'en tirer avec quelques problèmes intestinaux non mortels...

B : on a 10% de risque que le liquide soit très nocif et absolument pas buvable (potable ou « pas potable » du tout)

1.2.1 Définition d'un sous ensemble flou

Soit Ω un **ensemble de référence** (univers du discours)

Un **sous-ensemble** « **classique** » A de Ω est défini par une **fonction caractéristique** χ_A qui prend la valeur 0 pour les éléments de Ω n'appartenant pas à A et 1 pour ceux qui appartiennent à A.

Notation:

$$\chi_{A}(x):\Omega\rightarrow\{0,1\}$$

$$\chi_A(x) = 1 \text{ si } x \in A \text{ et } \chi_A(x) = 0 \text{ si } x \notin A$$

Un **sous-ensemble** « **flou** » A de Ω est défini par une fonction d'appartenance qui associe à chaque élément x de Ω , le degré $\mu_A(x)$ (compris entre 0 et 1) avec lequel x appartient à A.

$$\mu_{A}\left(x\right):\Omega\rightarrow\left[0,1\right]$$

Autre notation (représentation de A)

$$A = \sum_{x \in \Omega} \frac{\mu_A(x)}{x} \quad \text{si } \Omega \text{ est fini},$$

$$A = \int \frac{\mu_A(x)}{x} dx \quad \text{si } \Omega \text{ est infini}.$$

⇒ Un sous ensemble flou est totalement déterminé par sa fonction d'appartenance

Exemple d'ensemble flou

Limite de la logique booléenne

un patient atteint d'hépatite présente généralement les symptômes suivants :

- − le patient a une forte fièvre,
- sa peau présente une coloration jaune,
- il a des nausées.

Si le patient à 38,9°C de température

Logique classique

Le patient n'a pas de forte fièvre

⇒ Le patient n'a pas d'hépatite.

Logique floue

Le patient a une forte fièvre à 48%

⇒ Le patient a une hépatite à *x* %.₁₁

1.2.2 Caractéristiques d'un sous ensemble flou

Support de A : ensemble des éléments de Ω qui appartiennent au moins un peu à A (fonction d'appartenance non nulle).

support(A) =
$$\{x \in \Omega / \mu_A(x) \neq 0\}$$

Hauteur de A : plus fort degré avec lequel un élément de Ω appartient à A.

$$h(A) = \sup_{x \in \Omega} \{ \mu_A(x) \}$$

Noyau de A : ensemble des éléments de Ω qui appartiennent de façon absolu (avec un degré à 1) à A.

$$noyau(A) = \{x \in \Omega / \mu_A(x) = 1\}$$

On note $F(\Omega)$ l'ensemble de tous les sous ensembles flous de Ω_{12}

Exemple de sous ensemble flou

Cardinalité de A : $|A| = \sum_{x \in \Omega} \mu_A(x)$

Notion de nombre flou

Un **nombre flou** est assimilé à un sous-ensemble flou A dont la fonction d'appartenance est normale et convexe.

- μ_A est une fonction d'appartenance *convexe* ssi :

$$\forall (x,y) \in \Omega \times \Omega \text{ et } \forall z \in [x,y], \mu_A(z) \ge \min(\mu_A(x), \mu_A(y))$$

- μ_A est une fonction d'appartenance *normale* ssi : h(A)=1

1.2.3 Opérations sur les sous ensemble flous

L'utilisation de sous ensembles flous pour décrire des classes imparfaitement localisées dans Ω conduit à caractériser les points de Ω communs ou étrangers à différentes classes.

Égalité

Deux sous-ensembles flous A et B sont égaux si leurs fonctions d'appartenance prennent la même valeur en tout point de Ω

$$\forall x \in \Omega, \mu_A(x) = \mu_B(x)$$

Inclusion $A \in F(\Omega)$ est inclus dans $B \in F(\Omega)$ (noté $A \subseteq B$) si tout élément x de Ω qui appartient, même de façon modérée, à A, appartient à B avec au moins un degré aussi grand.

$$\forall x \in \Omega, \mu_A(x) \leq \mu_B(x)$$

Intersection

L'intersection de deux sous ensembles A et B de Ω est le sous ensemble flou constitué des éléments x de Ω affectés du plus petit des deux degrés d'appartenance donnés par μ_A et μ_B . Elle est définie comme l'élément $C = A \cap B$ de $F(\Omega)$.

$$\forall x \in \Omega, \mu_C(x) = \min(\mu_A(x), \mu_B(x))$$

Union

L'union de deux sous ensembles A et B de Ω est le sous ensemble flou constitué des éléments x de Ω affectés du plus grand des deux degrés d'appartenance donnés par μ_A et μ_B .

Elle est définie comme l'élément $C = A \cup B$ de $F(\Omega)$.

$$\forall x \in \Omega, \mu_C(x) = \max(\mu_A(x), \mu_B(x))$$

Remarque:

De manière identique à la théorie des ensembles classiques, ces définitions conduisent aux propriétés suivantes :

- associativité de ∩ et ∪
- commutativité de ∩ et ∪
- $A \cup \emptyset = A \text{ et } A \cup \Omega = \Omega$
- $-A \cap \emptyset = \emptyset$ et $A \cap \Omega = A$
- $-A \cap B \subseteq A \subseteq A \cup B$
- $-A \cap (B' \cup B'') = (A \cap B') \cup (A \cap B'')$
- $-A \cup (B' \cap B'') = (A \cup B') \cap (A \cup B'')$

Complément

On définit le complément C_{A} d'un élément A de $F(\Omega)$ en considérant qu'un élément x de Ω appartient d'autant plus à C_A qu'il appartient peu à A. $\forall x \in \Omega, \mu_{C_A}(x) = 1- \mu_A(x)$

On retrouve:

$$C_{(A \cap B)} = C_A \cup C_B$$
$$C_{(A \cup B)} = C_A \cap C_B$$

$$C^{(A \cap B)} = C^{A} \cup C^{B}$$

$$C_{C_A} = A$$

Mais **contrairement aux sous ensembles classiques**, on peut avoir également : $C_A \cap A \neq \emptyset$ et $C_A \cup A \neq \Omega$

$$A \cap C_A \neq \emptyset$$
 i.e. il peut exister $x/\mu_{A \cap C_A}(x) \neq 0$

$$A \cup C_A \neq \Omega$$
 i.e. il peut exister $x / \mu_{A \cup C_A}(x) \neq 1$

Produit cartésien

Considérons deux sous-ensembles flous A de Ω_1 et B de Ω_2 Le produit cartésien $C = A \times B$ est défini sur $\Omega_3 = \Omega_1 \times \Omega_2$ $\forall x \in \Omega_1$ et $\forall y \in \Omega_2$ $\mu_C(z) = \min(\mu_A(x), \mu_B(y))$ et $z \in \Omega_3$

Principe d'extension

Fonction étendue

Soit un sous-ensemble flou A de X, et une application ϕ de X vers Y, le principe d'extension permet de définir un sous-ensemble flou B de Y associé à A par ϕ .

$$\forall y \in Y, \mu_B(y) = \begin{cases} \sup_{\{x \in X/y = \varphi(x)\}} \mu_A(x) & \text{si } \varphi^{-1}(y) \neq \emptyset \\ 0 & \text{sinon} \end{cases}$$

B est l'image de A par l'application φ

Exemple

X={chat, guépard, tigre, panthère} (félidés)

Y={rapide, lente, normale} (mesures des vitesses)

Fonction ϕ associe une vitesse à un félidé : $\phi(\text{chat}) = \text{lente}$, $\phi(\text{guépard}) = \text{rapide}$, $\phi(\text{tigre}) = \text{normale}$, $\phi(\text{panthère}) = \text{normale}$

Nouveau félidé défini de façon floue : lion = 0.7/chat + 0.1/tigre + 0.2/panthère

Qu'elle est la mesure de la vitesse d'un lion ?

$$\begin{split} &\mu_{Y}(lente) = max(\mu_{lion}(chat)) = 0.7 \\ &\mu_{Y}(normale) = max(\mu_{lion}(tigre), \ \mu_{lion}(panthère)) = max(0.1,0.2) = 0.2 \\ &\mu_{Y}(rapide) = \mu_{lion}(guépard) = 0 \end{split}$$

Le lion est plutôt lent mais peu atteindre des vitesses normales.

1.2.4 Intersection et union floue: T-norme et T-conorme

> T-norme ou norme triangulaire

L'intersection T de deux sous ensembles flous est définie par une opération binaire sur l'intervalle unité :

T:
$$[0,1]\times[0,1]\rightarrow[0,1]$$

 $\forall x \in \Omega$, $T(\mu_A(x), \mu_B(x)) = \mu_{A\cap B}(x)$

Pour qu'une fonction T soit une T-norme elle doit satisfaire les axiomes suivants : \forall (a,b,c) \in [0,1]³

- a₁) Condition de *fermeture* :
- a₂) **Commutative**:
- a₃) **Monotone**:
- a₄) **Associative**:

1.2.4 Intersection et union floue: T-norme et T-conorme

> T-norme ou norme triangulaire

L'intersection T de deux sous ensembles flous est définie par une opération binaire sur l'intervalle unité :

T:
$$[0,1] \times [0,1] \rightarrow [0,1]$$

 $\forall x \in \Omega$, $T(\mu_A(x), \mu_B(x)) = \mu_{A \cap B}(x)$

Pour qu'une fonction T soit une T-norme elle doit satisfaire les axiomes suivants : \forall (a,b,c) \in [0,1]³

- a_1) Condition de *fermeture* : T(a,1)=T(1,a)=a
- a_2) **Commutative** : T(a,b)=T(b,a)
- a_3) *Monotone* : $b \le c \Rightarrow T(a,b) \le T(a,c)$
- a_4) **Associative**: T(a,T(b,c))=T(T(a,b),c)

Les **T-normes** les plus utilisées sont les suivantes : \forall (a,b) \in [0,1]²

L'intersection standard :
$$i(a,b) = min(a,b)$$

Le produit algébrique :
$$i(a,b) = a \times b$$

La différence bornée :
$$i(a,b) = max(0, a + b - 1)$$

L'intersection drastique :
$$i(a,b) = \begin{cases} a \text{ si } b=1 \\ b \text{ si } a=1 \\ 0 \text{ sinon} \end{cases}$$

$$\forall$$
(a,b) \in [0,1]² on a:

$$i_{drastique}(a,b) \le max(0,a+b-1) \le a \times b \le min(a,b)$$

>T-conorme ou conorme triangulaire

L'union S de deux sous ensembles flous est définie par une opération binaire sur l'intervalle unité :

S:
$$[0,1] \times [0,1] \rightarrow [0,1]$$

 $\forall x \in \Omega$, $S(\mu_A(x), \mu_B(x)) = \mu_{A \cup B}(x)$

Pour qu'une fonction S soit une T-conorme elle doit satisfaire les axiomes suivants : \forall (a,b,c) \in [0,1]³

- a₁) Condition de *fermeture* :
- a₂) **Commutative**:
- a₃) **Monotone**:
- a_A) **Associative**:

>T-conorme ou conorme triangulaire

L'union S de deux sous ensembles flous est définie par une opération binaire sur l'intervalle unité :

S:
$$[0,1] \times [0,1] \rightarrow [0,1]$$

 $\forall x \in \Omega$, $S(\mu_{\Delta}(x), \mu_{B}(x)) = \mu_{\Delta \cup B}(x)$

Pour qu'une fonction S soit une T-conorme elle doit satisfaire les axiomes suivants : \forall (a,b,c) \in [0,1]³

- a_1) Condition de *fermeture* : S(a,0)=S(0,a)=a
- a_2) **Commutative** : S(a,b)=S(b,a)
- a_3) *Monotone* : $b \le c \Rightarrow S(a,b) \le S(a,c)$
- a_4) **Associative**: S(a,S(b,c))=S(S(a,b),c)

Les **T-conormes** les plus utilisées sont les suivantes : \forall (a,b) \in [0,1]²

L'union standard :
$$u(a,b) = max(a,b)$$

Le somme algébrique :
$$u(a,b) = a+b-a\times b$$

La somme bornée :
$$u(a,b) = min(1, a + b)$$

L'union drastique :
$$u(a,b) = \begin{cases} a \text{ si } b=0 \\ b \text{ si } a=0 \\ 1 \text{ sinon} \end{cases}$$

$$\forall$$
(a,b) \in [0,1]² on a:

$$\max(a,b) \le a+b-a \times b \le \min(1, a+b) \le u_{\text{drastique}}(a,b)$$

Récapitulatif des principales Norme et Co-norme Triangulaires

Dualité si S(a,b) = 1 - T(1-a, 1-b) et T(a,b) = 1 - S(1-a, 1-b)

Nom	T-norme (intersec.)	T-conorme (union)	Négation
Zadeh	min(x,y)	max(x,y)	1 – ×
Probabiliste	×y	x + y - xy	1 – ×
Lukasiewicz	max(x + y - 1,0)	min(x + y,1)	1 – ×
Hamacher γ > 0	$\frac{xy}{\gamma + (1-\gamma)(x+y-xy)}$	$\frac{x+y-xy-(1-\gamma)xy}{1-(1-\gamma)xy}$	1 – x
Weber	$\begin{cases} x \text{ si } y = 1 \\ y \text{ si } x = 1 \\ 0 \text{ sinon} \end{cases}$	$\begin{cases} x & \text{si } y = 0 \\ y & \text{si } x = 0 \\ 1 & \text{sinon} \end{cases}$	1 – ×

1.2.5 α-coupes associées à un sous ensemble flou

Pour toute valeur $\alpha \in [0,1]$ on définit la α -coupe A_{α} (ou sous ensemble de niveau α) d'un sous ensemble flou de A de Ω comme le sous-ensemble $A_{\alpha} = \{ x \in \Omega / \mu_A(x) \ge \alpha \}$ La fonction caractéristique χ_A associée est définie par :

$$\chi_{A_{\alpha}}(x)=1$$
 ssi $\mu_{A}(x) \geq \alpha$

Remarque: si $\alpha \geq \alpha'$ alors $A_{\alpha} \subseteq A_{\alpha'}$

Un sous ensemble flou A est **entièrement déterminé** par l'ensemble de toutes ses α -coupes A_{α} : $A = \sum_{i=1,n} \{A\alpha_i\}$

On retrouve pour A et B de $F(\Omega)$:

$$(A \cap B)_{\alpha} = A_{\alpha} \cap B_{\alpha}$$
$$(A \cup B)_{\alpha} = A_{\alpha} \cup B_{\alpha}$$
$$Si B \subseteq A alors B_{\alpha} \subseteq A_{\alpha}$$

Si on choisit α =0 alors $A_0 = \Omega$ avec $A_{0+} \rightarrow$ support

Si on choisit α =1 alors A_1 = noyau(A) qui peut éventuellement être vide.

Intérêt direct pour certaines applications

Fonction « mesurable » $f \Rightarrow$ scalaire F représentatif du sous ensemble flou ([DP87]) : $F(A) = \sum_{i=1,n} m(A_i) f(A_i)$

Avec
$$\forall$$
 Ai \subset A, $m(A_i) = \alpha_i - \alpha_{i-1}$ et $\Sigma_{i=1,n} m(A_i) = 1$

Calcul de **descripteurs** propres à un sous ensemble (comme l'entropie, le degré de symétrie) ou entre deux sous-ensembles flous :

Exemple (2D): orientation

$$f(A_i, B_j) = \frac{1}{\alpha + 1}$$

Exemple : distance entre régions floues

$$\tilde{D} = \sum_{i=1,4} \sum_{j=1,3} m(A_i) m(B_i) min\{d(p,p')|p \in A_i, p' \in B_j\} = 44 \text{ pixels}$$

Attention: à replacer dans [0,1]!

Exemple: segmentation floue d'images

Exemple : segmentation d'images médicales avec alpha-coupe

General Description

The fuzzy c-means algorithm is very similar to the k-means algorithm:

- Choose a number of clusters.
- •Assign randomly to each point **coefficients for being in the clusters**.
- •Repeat until the algorithm has converged (that is, the coefficients' change between two iterations is no more than *epsi*, the given sensitivity threshold) :
 - · Compute the centroid for each cluster (shown below).
 - For each point, compute its **coefficients of being in the clusters**.

Centroid

Any point x has a set of coefficients giving the degree of being in the kth cluster wk(x). With fuzzy c-means, the centroid of a cluster is the mean of all points,

weighted by their degree of belonging to the cluster:

$$c_k = rac{\sum_x w_k(x)^m x}{\sum_x w_k(x)^m}$$

1.4. Quelques exemples d'applications

Exemple 8 : Description linguistique de la position relative

- Évaluations successives de la position d'un objet qui se déplace par rapport à un autre (référent) ⇒ **Variable linguistique floue**
- Utilisation de **quantificateurs linguistiques** : Évaluation plus fine de la position spatiale

1023

perfectly to the RIGHT but strongly shifted DOWNWARD

Scene Description [MKW01] langage pseudo naturel

- A perfectly to the left
- B to the left, but a little above
- **C** loosely above-left
- perfectly above, but slightly shifted to the left.
- E perfectly to the right.

Scene Description (MKW01, SMK03)

Scene Description (Skubic et al. 2002)

User How many objects do you see?

Robot I am sensing 6 objects.

User What objects do you see?

Robot There are objects in front of me,

on my rear left, and on my right.

User Where is the nearest object

on your right?

Robot Object number 4 is mostly to

the right of me but somewhat

to the rear. It is very close.

User Object number 4 is the pillar.

Go to the pillar.