Problem Description

- Problem: train a computer vision model to solve a more complicated task
- Solution: add more layers

Original Network

Adapted Network with more layers

Impact of Deeper Networks

- Expectation: more layers, more parameters, improved performance
- Reality:
 - deeper networks harder to train
 - reduced performance (degradation problem)

Source: Kaiming He, Xiangyu Zhang, Shaoquing Ren, Jian Sun "Deep Residual Learning for Image Recognition" https://arxiv.org/pdf/1512.03385.pdf

Adapted Network with more layers

Impact of Deeper Networks

- Expectation: more layers, more parameters, improved performance
- Reality:
 - deeper networks harder to train
 - reduced performance (degradation problem)

Adapted Network with more layers

Skip Connections

- also called Shortcut Connections or residual connections
- useful technique for improving performance and generalization
- allow gradient signal to bypass one or more layers
- often used in networks with deep architectures
- purpose:
 - overcome vanishing gradient problem
 - overcome overfitting
 - help network learn more easily
 - improve performance
- useful in different applications
 - image classification
 - language translation
 - speech recognition

Impact on Performance

Source: Kaiming He, Xiangyu Zhang, Shaoquing Ren, Jian Sun "Deep Residual Learning for Image Recognition" https://arxiv.org/pdf/1512.03385.pdf

Resnet in comparison to other models

Source: Canziani, Culurciello, Paszke: "An Analysis of Deep Neural Network Models For Practical Applications" https://arxiv.org/pdf/1605.07678.pdf