Cryptography: Birthday Paradox

Yiheng Lin, Zhihao Jiang

1

1

Theorem 1.1. Let $S = \{1, 2, \dots, N\}$. For n times, uniformly randomly draw one element from set S with replacement. Let x_t be the element we draw at time t. Then $\forall p > 0$, there exists a constant C_1 such that when $n \geq C_1 \sqrt{N}$, we have

$$Pr[\exists 1 \leq i, j \leq n, i \neq j \text{ such that } x_i = x_j] > p$$

.

Proof. Let X denote the event that $\exists i, j \leq t, i \neq j$ such that $x_i = x_j$, then we have

$$Pr[\bar{X}] = \frac{N(N-1)\cdots(N-n+1)}{N^n}$$

$$= \prod_{i=1}^{n-1} (1 - \frac{i}{N})$$

$$\leq \prod_{i=1}^{n-1} exp(-\frac{i}{N})$$

$$= exp(-\frac{n(n-1)}{2N})$$
(1)

Let $C_1 = \sqrt{-2ln(1-p)} + 1$. Then when $n \ge C_1\sqrt{N}$, we have

$$n(n-1) > (1 + \sqrt{-2ln(1-p) \cdot N})(\sqrt{-2ln(1-p) \cdot N}) > 2ln(2) \cdot N$$
 (2)

Which is equivalent to $-\frac{n(n-1)}{2N} < ln(1-p)$. Thus use (1) we have

$$Pr[\bar{X}] \le exp(-\frac{n(n-1)}{2N}) < 1 - p$$

So we have

2

Lemma 1.1. For positive integer n < N, we have

$$\sum_{i=1}^{n-1} \ln(1 - \frac{i}{N}) > -\frac{n^2}{N}$$

Proof. Notice that $\forall x \in [1 - \frac{i+1}{N}, 1 - \frac{i}{N}] \ (0 \le i \le n)$, we have $ln(x) < ln(1 - \frac{i}{N})$. Thus

$$\frac{1}{N}ln(1-\frac{i}{N}) \ge \int_{1-\frac{i+1}{N}}^{1-\frac{i}{N}}ln(x)dx$$

Thus we have

$$\frac{1}{N} \sum_{i=1}^{n-1} \ln(1 - \frac{i}{N}) \ge \int_{1 - \frac{n}{N}}^{1} \ln(x) dx$$

$$= (x \ln(x) - x)|_{1 - \frac{n}{N}}^{1}$$

$$= -\frac{n}{N} - (1 - \frac{n}{N}) \ln(1 - \frac{n}{N})$$

$$> -\frac{n}{N} - (1 - \frac{n}{N})(-\frac{n}{N})$$

$$= -\frac{n^{2}}{N^{2}}$$
(3)

Thus

$$\sum_{i=1}^{n-1} \ln(1 - \frac{i}{N}) > -\frac{n^2}{N}$$

Theorem 1.2. Let $S = \{1, 2, \dots, N\}$. For n times, uniformly randomly draw one element from set S with replacement. Let x_t be the element we draw at time t. Then $\forall p > 0$, there exists a constant C_2 such that when $n \leq C_2 \sqrt{N}$, we have

$$Pr[\exists 1 \leq i, j \leq n, i \neq j \text{ such that } x_i = x_j] < p$$

.

Proof. Let X denote the event that $\exists i, j \leq t, i \neq j$ such that $x_i = x_j$.

Use Lemma 1.1, we have

$$Pr[\bar{X}] = \frac{N(N-1)\cdots(N-n+1)}{N^n}$$

$$= \prod_{i=1}^{n-1} (1 - \frac{i}{N})$$

$$= exp(\sum_{i=1}^{n-1} ln(1 - \frac{i}{N}))$$

$$> exp(-\frac{n^2}{N})$$
(4)

Let $C_2 = \sqrt{-ln(1-p)}$. Then when $n \leq C_2 \sqrt{N}$, we have

$$exp(-\frac{n^2}{N}) \ge 1 - p$$

So $Pr[\bar{X}] > 1 - p$, thus

2

Theorem 2.1. Let $S = \{1, 2, \dots, N\}$. Let $D_1 : S \to R^+ \cup \{0\}$ be a discrete probability distribution over S. For n times, randomly draw one element from set S according to distribution D_1 with replacement. Let x_t be

the element we draw at time t. Let D_0 be the uniform distribution over S, which satisfies $\forall i \in S, D_0(i) = \frac{1}{N}$. Then we have

$$Pr_{D_0^n}[\exists 1 \leq i, j \leq n, i \neq j \text{ such that } x_i = x_j] \geq Pr_{D_0^n}[\exists 1 \leq i, j \leq n, i \neq j \text{ such that } x_i = x_j]$$

Proof. Let X denote the event that $\exists i, j \leq t, i \neq j$ such that $x_i = x_j$. Let X_m denote the event that $\exists 1 \leq j$ $i, j \leq n, i \neq j$ such that $x_i = x_j = m$.

First, to change D_1 to D_0 , we can apply the following algorithm:

- 1. t := 1
- 2. While $D_t \neq D_0$:
- find $i, j \in S$ such that $D_t[i] < \frac{1}{N} < D_t[j]$
- let $D_{t+1}[j] := D_t[i] + D_t[j] \frac{1}{N}, D_{t+1}[i] := \frac{1}{N}, \forall k \neq i, j, D_{t+1}[k] := D_t[k]$
- 5. t + +
- 6. End While

Since the number of $\frac{1}{N}$ in D increases at each iteration, this algorithm will terminate in N steps. We only need to prove that

$$\forall t, Pr_{D_t^n}[X] \geq Pr_{D_{t+1}^n}[x]$$

Without losing generality, suppose when generate D_{t+1} from D_t , we choose i = 1, j = 2. Let Y be the number of times that the element we draw is in $\{1, 2\}$.

$$Pr_{D^{n}}[X] = Pr_{D^{n}}\left[\bigcup_{k=3}^{N} X_{k}\right] + (1 - Pr_{D^{n}}\left[\bigcup_{k=3}^{N} X_{k}\right])Pr_{D^{n}}(X_{1} \cup X_{2}|\bigcap_{k=3}^{N} \bar{X}_{k})$$

$$= Pr_{D^{n}}\left[\bigcup_{k=3}^{N} X_{k}\right] + (1 - Pr_{D^{n}}\left[\bigcup_{k=3}^{N} X_{k}\right])\sum_{i=0}^{\infty} Pr_{D^{n}}(Y = i|\bigcap_{k=3}^{N} \bar{X}_{k})Pr_{D^{n}}(X_{1} \cup X_{2}|Y = i)$$
(5)

The last equation holds because $\forall i, Pr_{D^n}(X_1 \cup X_2 | Y = i) = Pr_{D^n}(X_1 \cup X_2 | Y = i, \bigcap_{k=3}^N \bar{X_k}).$

Notice that

$$Pr_{D_t^n}(X_1 \cup X_2 | Y = 2) - Pr_{D_{t+1}^n}(X_1 \cup X_2 | Y = 2)$$

$$= \frac{1}{(D_t[1] + D_t[2])^2} (D_t[1]^2 + D_t[2]^2 - (\frac{1}{N})^2 - (D_t[1] + D_t[2] - \frac{1}{N})^2)$$

$$= -\frac{2}{(D_t[1] + D_t[2])^2} (D_t[1] - \frac{1}{N}) (D_t[2] - \frac{1}{N})$$

$$> 0$$
(6)

And for any distribution D over S we have

$$Pr_{D^n}(X_1 \cup X_2 | Y = i) = \begin{cases} 0 & i = 0, 1\\ 1 & i \ge 3 \end{cases}$$
 (7)

Thus

$$\forall i, Pr_{D_t^n}(X_1 \cup X_2 | Y = i) \ge Pr_{D_{t+1}^n}(X_1 \cup X_2 | Y = i)$$

Since we only adjust $D_t[0], D_t[1],$

$$Pr_{D_t^n}[\bigcup_{k=3}^{N} X_k] = Pr_{D_{t+1}^n}[\bigcup_{k=3}^{N} X_k]$$

$$\forall i, Pr_{D_t^n}(Y=i|\bigcap_{k=3}^N \bar{X_k}) = Pr_{D_{t+1}^n}(Y=i|\bigcap_{k=3}^N \bar{X_k})$$

So consider equation (6) and we get

$$Pr_{D_t^n}[X] \ge Pr_{D_{t+1}^n}[x]$$

Acknowledgement:

4