GEOMETRÍA DE CURVAS Y SUPERFICIES.

Curso 2016-17.

Universidad Autónoma de Madrid. Departamento de Matemáticas.

Hoja 4: superficies, primeros pasos

Un **reglado** de una superficie S es una descomposición (si existe) de S en rectas, semirrectas o segmentos. Estos elementos rectilíneos se llaman **reglas** y los suponemos disjuntos dos a dos. Decimos que S es una **superficie reglada** si admite al menos un reglado.

★1. Llamamos parametrización de revolución a cualquiera que se escriba de la manera siguiente:

$$\mathbf{X}(u,\theta) \equiv (r(u)\cos\theta, r(u)\sin\theta, z(u)), \tag{1}$$

para algún camino suave (r(u), z(u)) (llamado **perfil**) en el semiplano $\{r \geq 0\} \subset \mathbb{R}^2_{rz}$.

(a) Si S es la imagen de (1), demuestra que los **meridianos** (cortes de S con los semiplanos verticales de borde el eje z) son <u>copias</u> del perfil y se deducen unos de otros por rotaciones espaciales alrededor del eje z. Demuestra que los **paralelos** (cortes de S con los planos $\{z=\text{cte}\}$) son *circunferencias coaxiales*, con eje común el eje z.

- (b) Tomamos una curva catenaria puesta en el semiplano rz como $\{r = \cosh z\}$. Al rotarla alrededor del eje z engendra una superficie que se llama catenoide. Construye una parametrización del catenoide.
- (c) Considera la siguiente parametrización:

$$\Phi(u,\theta) \equiv (u^3 \cos \theta, u^3 \sin \theta, 1 - u^2), (u,v) \in \mathbb{R}^2.$$

¿Es Φ una función \mathcal{C}^{∞} ? Haz un dibujo de un meridiano y un dibujo de $\Phi(\mathbb{R}^2)$.

◄2. El helicoide es una superficie que puede darse por la siguiente parametrización:

$$\mathbf{X}(u,v) \equiv (u\cos v, u\sin v, v) , (u,v) \in \mathbb{R}^2.$$
 (2)

Comprueba que esta parametrización es regular e inyectiva, y que da lugar a un reglado del helicoide. ¿Es (2) una parametrización de revolución?

*3. Dadas constantes a, b, c > 0, demuestra que la aplicación lineal $(x, y, z) \longmapsto (ax, by, cz)$ lleva la esfera unidad biyectivamente al eplipsoide de ecuación $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. Aprovecha esto para construir una parametrización del elipsoide, a partir de la parametrización de revolución de la esfera.

Haz lo mismo con otras cuádricas, poniéndolas como imágenes de superficies de revolución.

- 4. Se llama toro a la superficie de revolución que resulta de rotar alrededor del eje z una circunferencia situada en el plano xz y disjunta con ese eje. Construye una parametrización del toro.
- 5. Sean $S = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}$ la esfera unidad y N = (0, 0, 1) el polo norte. La parametrización estereográfica es la aplicación $\phi(u, v) : \mathbb{R}^2 \to \mathbb{R}^3$ definida de la manera siguiente:

La recta que une (u, v, 0) con el polo norte corta a la esfera en dos puntos: uno es el polo norte, el otro es $\phi(u, v)$.

Haz un dibujo. Calcula ϕ y demuestra que es una parametrización regular, que parametriza $S\setminus\{N\}$ biyectivamente, y que la inversa $\phi^{-1}:S\setminus\{N\}\to\mathbb{R}^2$, llamada **proyección estereográfica desde el polo norte**, está dada por $S\setminus\{N\}\ni(x,y,z)\longmapsto(u,v)=\frac{(x,y)}{1-z}$.

Sea $S = \{(x, y, z) : x^2 + y^2 = z^2 + 1\}$ un hiperboloide de una hoja. Demuestra que las parametrizaciones:

$$\mathbf{X}(t,\theta) \equiv \left(\sqrt{1+t^2}\cos\theta, \sqrt{1+t^2}\sin\theta, t\right),$$

$$\Phi(u,v) \equiv \left(\cos v - u\sin v, \sin v + u\cos v, u\right),$$

cumplen $\mathbf{X}(\mathbb{R}^2) \subseteq S \subseteq \mathbf{X}(\mathbb{R}^2)$ y $\Phi(\mathbb{R}^2) \subseteq S \subseteq \Phi(\mathbb{R}^2)$. Explica por qué \mathbf{X} exhibe S como superfice de revolución, mientras que Φ la exhibe como superficie reglada.

Comprueba que la reflexión $(x, y, z) \mapsto (x, -y, z)$ lleva S a sí misma, pero cambia el reglado de S definido por Φ a otro reglado distinto (Por lo tanto, este hiperboloide es una superficie reglada de dos maneras diferentes).

- 7. Parametriza la silla $\{z = xy\}$ como un grafo, y comprueba que todas las líneas coordenadas son rectas (por lo tanto, la silla es reglada de dos maneras diferentes).
- 8. Llamamos cilindro generalizado, o simplemente cilindro, a cualquier superficie reglada cuyas reglas son todas paralelas entre sí. Demuestra que una superficie es un cilindro si y sólo si admite parametrizaciones de la forma siguiente:

$$\Phi(u,\lambda) \equiv \alpha(u) + \lambda \mathbf{w}$$
,

siendo $\alpha(u)$ un camino en \mathbb{R}^3 y $\mathbf{w} \in \mathbb{R}^3$ un vector constante no nulo.

×9. Llamamos cono generalizado, o simplemente cono, a una superficie reglada cuyas reglas (debidamente prolongadas) pasan todas por un punto llamado vértice. Demuestra que una superficie es un cono de vértice p₀ si y sólo si admite parametrizaciones de la forma:

$$\Phi(u,\lambda) \equiv \lambda \alpha(u) + \mathbf{p}_0,$$

siendo $\alpha(u)$ un camino en la esfera unidad de \mathbb{R}^3 .

- 10. Sea $S \subset \mathbb{R}^3$ una superficie cuyos planos tangentes afines pasan todos por un punto \mathbf{p} . Demuestra que S está contenida en un cono de vértice \mathbf{p} . Indicación: estudia el corte de S con los planos que pasan por \mathbf{p} y usa el ejercicio 12 (a) de la hoja 1.
- ** 11. Sea $\alpha(s): J \to \mathbb{R}^3$ curva espacial birregular, parametrizada por arco. Se llama superficie tangencial de α a la superficie reglada cuyas reglas son las tangentes afines de α . Demuestra que admite la siguiente parametrización:

$$\Phi(s, u) \equiv \alpha(s) + u \mathbf{t}_{\alpha}(s) , \quad (s, u) \in J \times \mathbb{R} .$$

Hay valores (s,u) en los que Φ no es regular ¿cuáles son?

- b) Demuestra que en todos los puntos regulares de una regla $\{s = s_0\}$ el plano tangente afín de esta superficie coincide con el plano osculador afín de α en $s = s_0$.
- 12. Sean S una superficie cerrada simple. Demuestra que dado cualquier vector unitario \mathbf{u} existe un punto $\mathbf{p} \in S$ tal que \mathbf{u} es normal unitaria del plano tangente $T_{\mathbf{p}}S$.

Indicación: dado u, considera la función altura $S \to \mathbb{R}$ dada por $S \ni \mathbf{p} \longmapsto \mathbf{u} \cdot \mathbf{p}$.

REPASO SUPERFICIES

intersección bolo abjerto $S \subset \mathbb{R}^3$ VpeS, $\exists V$ entorno abjerto de p en \mathbb{R}^3 tol que $V \cap S$ es abjerto de S y

existe: X: U abto. $C \mid \mathbb{R}^2 \longrightarrow V \cap S$ parametri X en homeomorfismo y además $DX(u_1v)$ tiene rango constante Z, e.d., G Jacobiana Xu y Xv son lin. indep.

 $(r(u)) = (r(u) \cos \theta, r(u) \sin \theta, Z(u)) \text{ esto es una PARAMETRIZACIÓN } DE$ REVOLUCIÓN para algún camino suave (r(u), Z(u)) (perfil) en el semiplano $\{r > 0 \}$ $(r(u), Z(u)) \subset IRyZ$ $paralelo \longrightarrow (r(u), Z(u)) \subset IRyZ$ $(r(u), Z(u)) \subset IRyZ$ $(r(u), Z(u)) \subset IRyZ$ $(r(u), Z(u)) \subset IRYZ$ $(u) = (r(u) \cos \theta, r(u) \sin \theta, Z(u)) \text{ MERIDIANO,}$ (r(u), 0, Z(u)) = (r(u), 0, Z(u)) por (r(u), z(u)) = (r(u), z(u)) = (r(u), z(u)) por (r(u), z(u)) = (r(u), z(u)) = (r(u), z(u)) por (r(u), z(u)) = (r(u), z(u)) = (r(u), z(u)) por (r(u), z(u)) = (r(u), z(u)) = (r(u), z(u)) por (r(u), z(u)) = (r(u), z(u)) = (r(u), z(u)) por (r(u), z(u)) = (r(u), z(u)) = (r(u), z(u)) por (r(u), z(u)) = (r(u), z(u)) = (r(u), z(u)) por (r(u), z(u)) = (r(u),

Los paralelos se dotienen escogiendo u = cte.

So (plano z = cte = c) $\Rightarrow z(u) = c$ $\Rightarrow u = c'$ z(u) = cte.

Lo está parametrizado por $\theta \mapsto (r(c')\cos\theta, r(c')\sin\theta, c)$ que esta viran ferencia en el plano Z=C centrada en (0,0,c)

$$u \mapsto (\underbrace{\cosh u}, \underbrace{u})$$

=>
$$\chi(u,\theta) = (coshu cos\theta, coshu seuθ, u) \chi(u)$$

parametrización catenoide

parametrización helicoide:
$$X(u,v) = (u\cos v, u \sin v, v)$$
 $(u,v) \in \mathbb{R}^2$ iregular?

$$X_u(u,v) = \frac{\partial X}{\partial u}(u,v) = (\cos v, \sin v, 0)$$
 Hay que ver que son $X_v(u,v) = \frac{\partial X}{\partial v}(u,v) = (-u \sin v, u \cos v, 1)$ linealments independientes

$$\begin{vmatrix} \cos v & \sin v \\ -u \sin v & u \cos v \end{vmatrix} = u \implies Si \quad u \neq 0 \quad son \quad lin. indep.$$

para
$$u=0$$
: $|senv| = 0$ $\Leftrightarrow v=Krt$ $|senv| = 0$ $|senv|$

para
$$u=0 \wedge V=K\Pi$$
:
$$\begin{vmatrix} \cos V & 0 \\ -u \sin V & 1 \end{vmatrix} = \cos V = 0 \iff V = \frac{\Pi}{2} + K\Pi$$

$$K \in \mathcal{H}$$

cinvectiva? \rightarrow pa casita crack circulatorial de la forma $\alpha(u) = \frac{1}{2} (u\cos C, u\sin C, c) = u(\cos C, \sin C, c) + (0,0,0)$, es deur, son rectas, y todo punto $\chi(u,v)$ está en una de esas rectas.

[9.] Cono de vértice $P_0 \iff \overline{\Phi}(u,\lambda) = \lambda \alpha(u) + P_0$ con d: ICIR -> 1R3 camino en la esfera unidad. $\alpha(t) \in S^{2}(1) \iff ||\alpha(t)|| = 1 \ \forall t$ Dado pes, p= Q(ū, l) la recta $\beta_{\bar{u}}(\lambda) = \lambda \propto (\bar{u}) + p_0$ pasa por $p(p = \beta_{\bar{u}}(\bar{\lambda}))$ y esta contenida en la superficie. Esto prueba que J define una superficie reglada. Es claro que todas las rectas pasau por ρ_0 (poniendo $\lambda=0$). Esto prueba que Φ define un cono. traslación Po (⇒) Traslado 5 de modo que su vértice sea el origen (e.d., traslación por -Po). Consideramos x: I → IR3 una parametrización de la intersección S N 5 (1), Esfera de radio 1 centrada en 0. Entonces, por definición de cono, la recta $\lambda \mapsto \lambda x(u)$ está continida en S para todo $u \in I$. Entonces $\Phi(u,\lambda) = \lambda x(u)$ parametriza el cono trasladado.

Para obtener la parametrización del cono inicial deshago la traslación, i.e., sumo Po.

1. α α : $J \longrightarrow \mathbb{R}^3$ por arco, birregular. La tangente afin de α en S es la recta $\lambda \mapsto \alpha(s) + \lambda t_{\alpha}(s) \Longrightarrow$ $\Rightarrow \overline{\Phi}(s,\lambda) = \alpha(s) + \lambda H_{\alpha}(s) , \quad (s,\lambda) \in \mathcal{J}_{X} \mathbb{R}$ c'Donde es ∮ regular? Calculamos los campos coordenados: $\Phi_s(s,\lambda) = \{t_{\alpha}(s) + \lambda K_{\alpha}(s) | \Pi_{\alpha}(s) \}$ dependientes arando $\lambda K_{\alpha}(s) = 0$ $\bar{\Phi}_{\lambda}(s,\lambda) = \mathcal{L}_{\alpha}(s)$ Como Ka(s) \$0 \forall SEJ, \$\Pi\$ es irregular chando \$\forall =0\$, es decir, en los puntos $\Phi(s,0) = \kappa(s)$ b) Plano tangente afin: $\Phi(s,\lambda) + span \Phi_s(s,\lambda)$, $\Phi_{\lambda}(s,\lambda)$ spand((x(s), Inx(s)) a) (parte del apartado) $X(t,\theta) = (\sqrt{1+t^2}\cos\theta, \sqrt{1+t^2}\sin\theta, t)$

6.
$$S = \int_{(x,y_1z)}^{(x,y_1z)} \in IR^3 : x^2 + y^2 - z^2 = 1$$
 $X(t,\theta) = (\sqrt{1+t^2}\cos\theta, \sqrt{1+t^2}\sin\theta, t)$
 $J(u,v) = (\cos v - u \sin v, \sin v + u \cos v, u)$
 $J(u,v) = (\cos v - u \sin v, \sin v + u \cos v, u)$
 $J(u,v) = (\cos v - u \sin v, \sin v + u \cos v, u)$
 $J(u,v) = (\cos v - u \sin v, \cos v, u)$
 $J(u,v) = (\cos v - u \sin v, \cos v, u)$
 $J(u,v) = (\cos v - u \sin v, \cos v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \sin v, u)$
 $J(u,v) = (\cos v - u \cos v, u)$
 $J(u,v) = (\cos v - u \cos v, u)$
 $J(u,v) = (\cos v - u \cos v, u)$
 $J(u,v) = (\cos v - u \cos v, u)$
 $J(u,v) = (\cos v - u \cos v, u)$
 $J(u,v) = (\cos v - u \cos v, u)$
 $J($

b) Keflexión $(x,y,z) \mapsto (x,-y,z)$ metiendo en la $((\Phi(u,v)) = (\cos v - u \sin v, - \sin v - u \cos v, u) \notin S$ ecuación implicita Nuevas rectas: $(\cos v_0, - \sin v_0, 0) + \lambda(-\sin v_0, -\cos v_0, 1)$

superficie cerrada simple unitario dado u demostrar que $\exists p / u$ vector normal unitario de $\exists p / u$ vector normal unitario de $\exists p / u$ vector normal unitario de $\exists p / u$ vector volumento $\exists p \in S$ u $\exists v \in T_p S$.

Compacto + cerrado $\Rightarrow \exists p \in S$ punto de mínimo $\forall v \in T_p S$.

por ser f continua y estar eu un compacto \Rightarrow \Rightarrow por ser f diferenciable, entonces $(\exists f)_p \equiv 0 \Rightarrow (\exists f)_p \cdot v = 0$ Método $\downarrow u \in T_p S$ $\downarrow u \in T_p S$

 $\begin{array}{ll}
P_{h}^{2}: \mathbb{R}^{3} \longrightarrow \mathbb{R} \\
P_{h}^{$

Tétodo 2

Dado $V \in T_pS$, $\exists x: (-\varepsilon, \varepsilon) \longrightarrow S$ con $\alpha(0) = P_0$, $\alpha'(0) = V$ $h(t) := f(\alpha(t)) = \langle u, \alpha(t) \rangle$ O es pto. de máximo de $h \Longrightarrow h'(0) = O$ $h'(t) = \langle u, \alpha'(t) \rangle \Longrightarrow h'(0) = \langle u, \alpha'(0) \rangle = \langle u, v \rangle = O$