Quantum Speed-ups for Semidefinite Programming

Fernando G.S.L. Brandão

MSR -> Caltech

based on joint work with

Krysta Svore

MSR

Faculty Summit 2016

Quantum Algorithms

Exponential speed-ups:

Simulate quantum physics, factor big numbers (Shor's algorithm), ...,

Polynomial Speed-ups:

Searching (Grover's algorithm: $N^{1/2}$ vs O(N)), ...

Heuristics:

Quantum annealing (adiabatic algorithm), machine learning, ...

Quantum Algorithms

Exponential speed-ups:

Simulate quantum physics, factor big numbers (Shor's algorithm), ...,

Polynomial Speed-ups:

Searching (Grover's algorithm: N^{1/2} vs O(N)), ...

Heuristics:

Quantum annealing (adiabatic algorithm), machine learning, ...

This Talk:

Solving Semidefinite Programming belongs here

... is an important class of convex optimization problems

$$\max \operatorname{tr}(CX)$$

$$\forall j \in [m], \qquad \operatorname{tr}(A_j X) \leq b_j$$

$$X \geq 0.$$

Input: n x n, r-sparse matrices C, A₁, ..., A_m and numbers b₁, ..., b_m

Output: X

... is an important class of convex optimization problems

$$\max \operatorname{tr}(CX)$$

$$\forall j \in [m], \qquad \operatorname{tr}(A_j X) \leq b_j$$

$$X \geq 0.$$

Input: n x n, r-sparse matrices C, A_1 , ..., A_m and numbers b_1 , ..., b_m Output: X

Some Applications: operations research (location probems, scheduling, ...), bioengineering (flux balance analysis, ...), approximating NP-hard problems (max-cut, ...), ...

... is an important class of convex optimization problems

$$\max \operatorname{tr}(CX)$$

$$\forall j \in [m], \qquad \operatorname{tr}(A_j X) \leq b_j$$

$$X \geq 0.$$

Input: $n \times n$, r-sparse matrices C, A_1 , ..., A_m and numbers b_1 , ..., b_m Output: X

Some Applications: operations research (location probems, scheduling, ...), bioengineering (flux balance analysis, ...), approximating NP-hard problems (max-cut, ...), ...

Algorithms Interior points: $O((m^2nr + mn^2)log(1/\epsilon))$

Multiplicative Weights: $O((mnr (\omega R)/\epsilon^2))$

"width" "size of solution"

... is an important class of convex optimization problems

$$\max \operatorname{tr}(CX)$$

$$\forall j \in [m], \qquad \operatorname{tr}(A_j X) \leq b_j$$

$$X \geq 0.$$

Input: $n \times n$, r-sparse matrices C, A_1 , ..., A_m and numbers b_1 , ..., b_m Output: X

Some Applications: operations research (location probems, scheduling, ...), bioengineering (flux balance analysis, ...), approximating NP-hard problems (max-cut, ...), ...

Algorithms Interior points: $O((m^2nr + mn^2)log(1/\epsilon))$

Multiplicative Weights: $O((mnr (\omega R)/\epsilon^2))$

Lower bound: No faster than $\Omega(nm)$, for constant ε , r, ω , R

$$\max \operatorname{tr}(CX)$$

$$\forall j \in [m], \quad \operatorname{tr}(A_j X) \le b_j$$

 $X > 0.$

Normalization:
$$||C||, ||A_j|| \leq 1$$

We assume:
$$A_1 = I, b_1 = R, b_i = 1, i \neq 1$$

Reduction optimization to decision:

$$\max \operatorname{tr}(CX)$$
 $\geq \alpha$ $\forall j \in [m], \quad \operatorname{tr}(A_j X) \leq b_j$ or $X \geq 0.$ $\leq \alpha + \delta$

SDP Duality

$$\max \operatorname{tr}(CX)$$

Primal:
$$\forall j \in [m], \quad \operatorname{tr}(A_j X) \leq b_j$$

$$\operatorname{tr}(A_j X) \le b_j$$

$$X \ge 0$$
.

$$\min b.y$$

$$\sum_{j=1}^{m} y_j A_j \ge C$$
$$y \ge 0.$$

thm There is a quantum algorithm for solving SDPs running in time $\tilde{O}(n^{1/2} m^{1/2} r \delta^{-2} R^2)$

thm There is a quantum algorithm for solving SDPs running in time $\tilde{O}(n^{1/2} m^{1/2} r \delta^{-2} R^2)$

Input: n x n matrices r-sparse C, A_1 , ..., A_m and numbers b_1 , ..., b_m Output: Samples from $y/||y||_2$ and $||y||_2$ Q. Samples from X/tr(X) and tr(X)

$$\begin{array}{ll} \text{Primal:} & \text{Dual:} \\ \max \operatorname{tr}(CX) & \min b.y \\ \forall j \in [m], & \operatorname{tr}(A_jX) \leq b_j & \sum_{j=1}^m y_j A_j \geq C & \overset{\geq}{\text{or}} \\ X \geq 0. & j \geq 0. & \leq \alpha + \delta \end{array}$$

thm There is a quantum algorithm for solving SDPs running in time $\tilde{O}(n^{1/2} m^{1/2} r \delta^{-2} R^2)$

Input: n x n matrices r-sparse C, A_1 , ..., A_m and numbers b_1 , ..., b_m Output: Samples from $y/||y||_2$ and $||y||_2$ Q. Samples from X/tr(X) and tr(X)

Oracle Model: We assume there's an oracle that outputs a chosen non-zero entry of C, A_1 , ..., A_m at unit cost:

$$|j,k,l,z
angle o |j,k,l,z \oplus (A_j)_{kf_{jk}(l)}
angle \qquad f_{jk}:[r] o [n]$$
 choice of A_i row k / non-zero element

thm There is a quantum algorithm for solving SDPs running in time $\tilde{O}(n^{1/2} m^{1/2} r \delta^{-2} R^2)$

```
Classical lower bound At least time \Omega(\max(n, m)) for r, \delta, R = \Omega(1). Reduction from Search
```

Quantum lower bound At least time $\Omega(\max(n^{1/2}, m^{1/2}))$ for r, δ , $R = \Omega(1)$. Reduction from Search

Ex.

```
\Omega(\max(m)): b_i = 1, C = I

i) A_j = I for all j (obj = 1)

ii) A_i = 2I for random j in [m] and A_k = I for k \neq j (obj = 1/2)
```

thm There is a quantum algorithm for solving SDPs running in time $\tilde{O}(n^{1/2} m^{1/2} r \delta^{-2} R^2)$

thm 2 There is a quantum algorithm for solving SDPs running in time $\tilde{O}(T_{Gibbs} m^{1/2} r \delta^{-2} R^2)$

$$T_{Gibbs} := \max_{\|\nu\|_{\infty} \le 10 \log(n)/\delta^2} \text{Time} \left(\exp(\nu_0 C + \sum_i \nu_i A_i)/Z \right)$$

If Gibbs states can be prepared quickly (e.g. by quantum metropolis), larger speed-ups possible

The quantum algorithm is based on a classical algorithm for SDP due to Arora and Kale (2007) based on the multiplicative weight method

Let's review their method

The Oracle

$\mathsf{ORACLE}(\rho)$

Searches for a vector y s.t.

i)
$$y \in D_{\alpha} := \{y : y \ge 0, \ b.y \le \alpha\}$$

ii)
$$\sum_{j=1}^{\infty} \operatorname{tr}(A_j \rho) y_j - \operatorname{tr}(C \rho) \ge 0$$

Dual:
$$\min b.y$$

$$\sum_{j=1}^m y_j A_j \ge C$$

$$y \ge 0.$$

Width of SDP

$$\omega := \max_{y \in D_{\alpha}} \left\| \sum_{j} y_{j} A_{j} - C \right\| \le \alpha \max_{j} \|A_{j}\| + \|C\|$$

$$\le \alpha + 1$$

Arora-Kale Algorithm

Let
$$\rho^1 = I/n$$
, $\varepsilon = \frac{\delta \alpha}{2\omega R}$, $\varepsilon' = -\ln(1-\varepsilon)$, $T = \frac{8\sqrt{2}R^2 \ln(n)}{\delta^2 \sqrt{2}}$

For
$$t = 1, \ldots, T$$

1.
$$y^t \leftarrow \mathsf{ORACLE}(\rho^t)$$

2.
$$M^t = \sum_{j=1}^{t} (y_j^t A_j - C + \omega I)/2\omega$$

3.
$$W^{t+1} = \exp\left(-\varepsilon'\left(\sum_{\tau=1}^t M^\tau\right)\right)$$

4.
$$\rho^{t+1} = W^{t+1}/\text{tr}(W^{t+1})$$

Output:
$$\overline{y} = \frac{\delta \alpha}{R} e_1 + \frac{1}{T} \sum_{t=1}^{T} y^t$$

Why Arora-Kale works?

Since
$$y_t \in D_{\alpha} := \{y : y \ge 0, b.y \le \alpha\}$$

$$\overline{y}.b \le \frac{\delta \alpha}{R} b_1 + \frac{1}{T} \sum_{i=1}^T y^t.b \le (1+\delta)\alpha$$

Must check \overline{y} is feasible

From Oracle,
$$\operatorname{tr}\left(\left(\sum_{j=1}^m y_j^t A_j - C\right) \rho^t\right) \geq 0$$

We need:
$$\lambda_{\min}\left(\left(\sum_{j=1}^{m}\left(\frac{1}{T}\sum_{t=1}^{T}y_{j}^{t}\right)A_{j}-C\right)\right)\geq0$$

Matrix Multiplicative Weight

MMW (Arora, Kale '07) Given n x n matrices M^t and $\varepsilon < \frac{1}{2}$,

$$\frac{1}{T} \sum_{t=1}^{T} \operatorname{tr}(M^{t} \rho^{t}) \leq \left(\frac{1+\varepsilon}{T}\right) \lambda_{n} \left(\sum_{t=1}^{T} M^{t}\right) + \frac{\ln(n)}{T\varepsilon}$$

with
$$\rho^t = \frac{\exp(-\varepsilon'(\sum_{\tau=1}^{t-1} M^\tau))}{\operatorname{tr}(\ldots)}$$
 and $\varepsilon' = -\ln(1-\varepsilon)$

 λ_n : min eigenvalue

- 2-player zero-sum game interpretation:
- Player A chooses density matrix X^t
- Player B chooses matrix 0 < M^t<I
 Pay-off: tr(X^t M^t)

" $X^t = \rho^t$ strategy almost as good as global strategy"

Arora-Kale Algorithm

Let
$$\rho^1 = I/n$$
, $\varepsilon = \frac{\delta \alpha}{2\omega R}$, $\varepsilon' = -\ln(1-\varepsilon)$, $T = \frac{8\sqrt{2}R^2 \ln(n)}{\delta^2 \sqrt{2}}$

For
$$t = 1, \ldots, T$$

1.
$$y^t \leftarrow \mathsf{ORACLE}(\rho^t)$$

2.
$$M^t = \sum_{j=1}^{t} (y_j^t A_j - C + \omega I)/2\omega$$

3.
$$W^{t+1} = \exp\left(-\varepsilon'\left(\sum_{\tau=1}^t M^\tau\right)\right)$$

4.
$$\rho^{t+1} = W^{t+1}/\text{tr}(W^{t+1})$$

Output:
$$\overline{y} = \frac{\delta \alpha}{R} e_1 + \frac{1}{T} \sum_{t=1}^{T} y^t$$

Arora-Kale Algorithm

Let
$$\rho^1 = I/n$$
, $\varepsilon = \frac{\delta \alpha}{2\omega R}$, $\varepsilon' = -\ln(1-\varepsilon)$, $T = \frac{8\sqrt{2}R^2 \ln(n)}{\delta^2 q^2}$

For
$$t = 1, \ldots, T$$

1.
$$y^t \leftarrow \mathsf{ORACLE}(\rho^t)$$

- How to implement the Oracle?
- 3. $W^{t+1} = \exp\left(-\varepsilon'\left(\sum_{\tau=1}^{\infty} M^{\tau}\right)\right)$
- 4. $\rho^{t+1} = W^{t+1}/\text{tr}(W^{t+1})$

Output:
$$\overline{y} = \frac{\delta \alpha}{R} e_1 + \frac{1}{T} \sum_{t=1}^{T} y^t$$

Implementing Oracle by Gibbs Sampling

 $\mathsf{ORACLE}(\rho)$ Searches for a vector y s.t.

$$y \in D_{\alpha} := \{y : y \ge 0, \ b.y \le \alpha\}$$

ii)
$$\sum_{j=1} \operatorname{tr}(A_j \rho) y_j - \operatorname{tr}(C \rho) \ge 0$$

Implementing Oracle by Gibbs Sampling

Searches for (non-normalized) probability distribution *y* satisfying two linear constraints:

$$\operatorname{tr}(BY) \le \alpha, \ \operatorname{tr}(AY) \ge \operatorname{tr}(C\rho)$$

$$Y = \sum_{i} y_{i} |i\rangle\langle i|, B = \sum_{i} b_{i} |i\rangle\langle i|, A = \sum_{i} \operatorname{tr}(A_{i}\rho)|i\rangle\langle i|$$

claim: We can take Y to be Gibbs: There are constants N, x, y s.t.

$$Y = N \exp(xA + yB)$$

Jaynes' Principle

(Jaynes 57) Let ho be a quantum state s.t. $\operatorname{tr}(
ho M_i) = c_i$

Then there is a Gibbs state of the form $\exp\left(\sum_i \lambda_i M_i\right)/\mathrm{tr}(...)$

with same expectation values.

Drawback: no control over size of the λ_i 's.

Finitary Jaynes' Principle

(Lee, Raghavendra, Steurer '15) Let
$$ho$$
 s.t. $\operatorname{tr}(
ho M_i) = c_i$

Then there is a
$$\sigma := \frac{\exp\left(\sum_i \lambda_i M_i\right)}{\operatorname{tr}(...)}$$

with
$$|\lambda_i| \leq 2\ln(n)/\varepsilon$$

with
$$|\lambda_i| \leq 2\ln(n)/arepsilon$$
 s.t. $|\mathrm{tr}(M_i\sigma) - c_i| \leq arepsilon$

(Note: Used to prove limitations of SDPs for approximating constraints satisfaction problems)

Implementing Oracle by Gibbs Sampling

Claim There is a Y of the form $Y = N \frac{\exp(xA + yB)}{\operatorname{tr}(...)}$

with x, y < $log(n)/\epsilon$ and N < α s.t.

$$\operatorname{tr}(BY) \le \alpha + N\varepsilon, \ \operatorname{tr}(AY) \ge \operatorname{tr}(C\rho) - N\varepsilon$$

$$Y = \sum_{i} y_{i} |i\rangle\langle i|, B = \sum_{i} b_{i} |i\rangle\langle i|, A = \sum_{i} \operatorname{tr}(A_{i}\rho)|i\rangle\langle i|$$

N <
$$\alpha$$
: $y \in D_{\alpha} := \{y : y \ge 0, b.y \le \alpha\}$

$$\sum_{i} y_{i} \le Ry_{1} + \sum_{i>1} y_{i} \le \alpha$$

Implementing Oracle by Gibbs Sampling

Claim There is a Y of the form
$$Y = N \frac{\exp(xA + yB)}{\operatorname{tr}(...)}$$

with x, y < $log(n)/\epsilon$ and N < α s.t.

$$\operatorname{tr}(BY) \le \alpha + N\varepsilon, \ \operatorname{tr}(AY) \ge \operatorname{tr}(C\rho) - N\varepsilon$$

Can implement oracle by exhaustive searching over x, y, N for a Gibbs distribution satisfying constraints above

(only $\alpha \log^2(n)/\epsilon^3$ different triples needed to be checked)

Arora-Kale Algorithm

Let
$$\rho^1 = I/n$$
, $\varepsilon = \frac{\delta \alpha}{2\omega R}$, $\varepsilon' = -\ln(1-\varepsilon)$, $T = \frac{8\omega^2 R^2 \ln(n)}{\delta^2 \alpha^2}$

For
$$t = 1, \ldots, T$$

1.
$$y^t \leftarrow \mathsf{ORACLE}(\rho^t)$$

Using Gibbs Sampling

2.
$$M^t = \sum_{j=1}^{t} (y_j^t A_j - C + \omega I)/2\omega$$

3.
$$W^{t+1} = \exp\left(-\varepsilon'\left(\sum_{\tau=1}^t M^\tau\right)\right)$$

4.
$$\rho^{t+1} = W^{t+1}/\text{tr}(W^{t+1})$$

Again, it's Gibbs Sampling

Output:
$$\overline{y} = \frac{\delta \alpha}{R} e_1 + \frac{1}{T} \sum_{t=1}^{T} y^t$$

Quantum Speed-ups for Gibbs Sampling

(Poulin, Wocjan '09, Chowdhury, Somma '16) Given a r-sparse D x D Hamiltonian H, one can prepare $\exp(H)/tr(...)$ to accuracy ϵ on a quantum computer with $O(D^{1/2}r ||H|| polylog(1/\epsilon))$ calls to an oracle for the entries of H

Based on amplitude amplification

$$\sum_{i} |\psi_{i}\rangle|\psi_{i}\rangle \quad \to \quad \sum_{i} |\psi_{i}\rangle|\psi_{i}\rangle|E_{i}\rangle$$

$$\to \quad \sum_{i} e^{-E_{i}/2}|\psi_{i}\rangle|\psi_{i}\rangle|E_{i}\rangle|0\rangle + \dots$$

Let
$$\rho^1 = I/n$$
, $\varepsilon = \frac{\delta \alpha}{2\omega R}$, $\varepsilon' = -\ln(1-\varepsilon)$, $T = \frac{8\omega^2 R^2 \ln(n)}{\delta^2 \alpha^2}$

For
$$t = 1, \ldots, T$$

1.
$$y^t \leftarrow \mathsf{ORACLE}(\rho^t)$$

Use Gibbs Sampling

2.
$$M^t = \sum_{j=1}^{\infty} (y_j^t A_j - C + \omega I)/2\omega$$

3.
$$W^{t+1} = \exp\left(-\varepsilon'\left(\sum_{\tau=1}^t M^\tau\right)\right)$$

4.
$$\rho^{t+1} = W^{t+1}/\text{tr}(W^{t+1})$$

Again, Gibbs Sampling

Output:
$$\overline{y} = \frac{\delta \alpha}{R} e_1 + \frac{1}{T} \sum_{t=1}^{T} y^t$$

 \mathbf{L}

Problem: Mt is not sparse.

Solution: Sparsify it using operator Chernoff bound

2.
$$M^t = \sum_{j=1}^{m} (y_j^t A_j - C + \omega I)/2\omega$$

3.
$$W^{t+1} = \exp\left(-\varepsilon'\left(\sum_{\tau=1}^t M^\tau\right)\right)$$

4.
$$\rho^{t+1} = W^{t+1}/\text{tr}(W^{t+1})$$

Again, Gibbs Sampling

Output: $\overline{y} = \frac{\delta \alpha}{R} e_1 + \frac{1}{T} \sum_{t=1}^{T} y^t$

Sparsification

Suppose Z_1 , ..., Z_k are independent n x n Hermitian matrices s.t. $E(Z_i)=0$, $||Z_i||<\lambda$. Then

$$\Pr\left(\left\|\frac{1}{k}\sum_{i=1}^{k} Z_i\right\| \ge \varepsilon\right) \le n. \exp\left(-\frac{k\varepsilon^2}{8\lambda^2}\right)$$

Applying to
$$M^t = \frac{\|y^t\|_1}{2\omega} \sum_{j=1}^m \overline{y}_j^t A_j - C/2\omega + I/2$$

Sampling j₁, ..., j_k from $\overline{y}^t = y^t/\|y^t\|_1$ with k = O(log(n)/ ε^2)

$$\left\| \frac{1}{k} \sum_{i=1}^{k} A_{j_i} - \sum_{j=1}^{m} \overline{y}_j^t A_j \right\| \le \varepsilon$$

Let
$$\rho^1 = I/n$$
, $\varepsilon = \frac{\delta \alpha}{2\omega R}$, $\varepsilon' = -\ln(1-\varepsilon)$, $T = \frac{8\omega^2 R^2 \ln(n)}{\delta^2 \alpha^2}$

For
$$t = 1, \ldots, T$$

1.
$$y^t \leftarrow \mathsf{ORACLE}(\rho^t)$$

Use Gibbs sampling

2.
$$M^t = \sum_{i=1}^t (y_j^t A_j - C + \omega I)/2\omega$$
 Sparsify by random sampling

3.
$$W^{t+1} = \exp\left(-\varepsilon'\left(\sum_{\tau=1}^t M^\tau\right)\right)$$

4.
$$\rho^{t+1} = W^{t+1}/\text{tr}(W^{t+1})$$

Again, Gibbs sampling

Output:
$$\overline{y} = \frac{\delta \alpha}{R} e_1 + \frac{1}{T} \sum_{t=1}^{T} y^t$$

Let
$$\rho^1 = I/n$$
, $\varepsilon = \frac{\delta \alpha}{2\omega R}$, $\varepsilon' = -\ln(1-\varepsilon)$, $T = \frac{8\omega^2 R^2 \ln(n)}{\delta^2 \alpha^2}$

For
$$t = 1, \ldots, T$$

Takes Õ(n^{1/2}r) time on a quantum computer

2.
$$M^t = \frac{(1-C+\omega I)/2\omega}{(1-C+\omega I)/2\omega}$$
 Sparsify by random sampling

3.
$$W^{t+1} = \exp\left(-\varepsilon'\left(\sum_{\tau=1}^t M^\tau\right)\right)$$

4.
$$\rho^{t+1} = W^{t+1}/\text{tr}(W^{t+1})$$

Again, Gibbs sampling

Output:
$$\overline{y} = \frac{\delta \alpha}{R} e_1 + \frac{1}{T} \sum_{t=1}^{T} y^t$$

Let
$$\rho^1 = I/n$$
, $\varepsilon = \frac{\delta \alpha}{2\omega R}$, $\varepsilon' = -\ln(1-\varepsilon)$, $T = \frac{8\omega^2 R^2 \ln(n)}{\delta^2 \alpha^2}$

For
$$t = 1, \ldots, T$$

1.
$$y^t \leftarrow \mathsf{ORACLE}(\rho^t)$$

Use Gibbs sampling

Needs to prepare: $\exp(\sum_i h_i |i><i|)/tr(...)$ with $h_i = x tr(A_i \rho^t) + y b_i$

Can do quantumly with $\tilde{O}(m^{1/2})$ calls to an oracle to h.

Each call to h consists in estimating the value of $tr(A_i \rho^t)$.

To estimate needs to prepare copies of ρ^t , which costs $\tilde{O}(n^{1/2}r)$

Overall: $\tilde{O}(n^{1/2}m^{1/2}r)$

ηg

 $\iota \longrightarrow \iota - \iota$

Conclusion and Open Problems

We showed quantum computers can speed-up the solution of SPDs

One application is to solve the Goesman-Williamson SDP for Max-Cut in time $\tilde{O}(|V|)$. Are there more applications?

- Can we improve the parameters?
- Can we find (interesting) instances where there are superpolynomial speed-ups?
- Quantum speed-up for interior-point methods?

Thanks!