STROKE DEVELOPMENT PREDICTOR

Project 4 Presentation by Meme, Emily, Sherry and Hiam

February 19th, 2022

• 15 million people worldwide suffer a stroke.

- A stroke occurs when blood supply to parts of the brain is interrupted or reduced, which prevents brain tissue from getting it's needed nutrients.
- It is commonly seen amongst those with high blood pressure, diabetes, obesity, and smokers of age 40 years and above mostly.⁽²⁾

BREAKDOWN

Front-End Demo

Conclusions

Limitations & Future Considerations

Resources

Project Scope

. . .

Choose the most
Optimized
Supervised
Classification
Machine Learning
Model

Create an
Interactive
Application where
User Input is Used
for Model
Testing/Prediction

ARCHITECTURE OF PROCESS

EXPLORING OUR FEATURES

Understanding the features and outputs provided

000

000

03 Looking into features correlation

1dentifying and analyzing our target Feature vs labelled Features

000

. . .

Cleaning the data and Loading on MongoDB Atlas

TARGET FEATURE COUNT: STROKE

stroke:

0 4861 1 249

Name: stroke, dtype: int64

CATEGORICAL FEATURES VS STROKE (1)

CATEGORICAL FEATURES VS STROKE (2)

CORRELATION

DATA CLEANING

DATA LABELING

	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	29.035926	never smoked	1
1	Male	80.0	0	1	Yes	Private	Rural	105.92	32.500000	never smoked	1
2	Female	49.0	0	0	Yes	Private	Urban	171.23	34.400000	smokes	1
3	Male	81.0	0	0	Yes	Private	Urban	186.21	29.000000	formerly smoked	1
	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0		age 61.0					Residence_type		bmi 29.035926	smoking_status	stroke
0	0	1	0	0				202.21			stroke
	0	61.0	0	0	1	3 2	0	202.21 105.92	29.035926	2	stroke 1 1

MODELS EXPLORED

Support Vector Machine (SVM)

• • •

K-Nearest Neighbor (KNN)

. . .

Random Forest Classifier (RF)

• • •

Decision
Tree
Classifier
(DT)

FIRST MODEL IMPLEMENTATION

		precision	recall	f1-score	support
SVM	0	0.96 0.00	1.00	0.98 0.00	962 45
0)	accuracy macro avg weighted avg	0.48 0.91	0.50 0.96	0.96 0.49 0.93	1007 1007 1007
		precision	recall	f1-score	support
Z Z X	0	0.96 0.20	1.00	0.98 0.04	962 45
×	accuracy macro avg weighted avg	0.58 0.92	0.51 0.95	0.95 0.51 0.93	1007 1007 1007
est		precision	recall	f1-score	support
Random Forest	0	0.94 0.98	0.98 0.93	0.96 0.96	507 500
Rando	accuracy macro avg	0.96	0.96	0.96 0.96	1007 1007
	weighted avg	0.96	0.96	0.96	1007
9		precision	recall	f1-score	support
Decision Tree	0	0.94	0.90	0.92 0.92	978 957
Decis	accuracy macro avg weighted avg	0.92 0.92	0.92	0.92 0.92 0.92	1935 1935 1935

FIRST MODEL IMPLEMENTATION

nrecision

recall f1-score support

		precision	recall	T1-score	support
_	0	0.96	1.00	0.98	962
SVM	1	0.00	0.00	0.00	45
0)	accuracy	27 122	12 (272)	0.96	1007
	macro avg	0.48	0.50	0.49	1007
	weighted avg	0.91	0.96	0.93	1007
		precision	recall	f1-score	support
	0	0.96	1.00	0.98	962
Z Z Z	1	0.20	0.02	0.04	45
\prec	accuracy			0.95	1007
	macro avg	0.58	0.51	0.51	1007
	weighted avg	0.92	0.95	0.93	1007
t;		precision	recall	f1-score	support
Ğ					
Ö	0	0.94	0.98	0.96	507
Random Forest	1	0.98	0.93	0.96	500
opc	accuracy			0.96	1007
a	macro avg	0.96	0.96	0.96	1007
Œ	weighted avg	0.96	0.96	0.96	1007
		precision	recall	f1-score	support
ree	0	0.94	0.90	0.92	978
\vdash					
Decision Tree	1	0.90	0.94	0.92	957
<u>Ci.</u>	accuracy			0.92	1935
Ö	macro avg	0.92	0.92	0.92	1935
_	weighted avg	0.92	0.92	0.92	1935
		5시 등 기	100 C		1000000

Pre-Optimization

Accuracy: **95.70%**Recall: **93.40%**F1-Score: **95.59%**

Optimization Methods (1)


```
from imblearn.over_sampling import SMOTE
#Define indpendent and dependent variables - and remove the variable to be predicted
X = en_dataset.drop('stroke', axis=1)
y = en_dataset['stroke']
smote = SMOTE()
X,y = smote.fit_resample(X,y)
```

```
0 4837
1 197
Name: stroke, dtype: int64

1 4837
0 4837
Name: stroke, dtype: int64
```

KNeighborsClassifier(metric='manhattan', n_neighbors=2)

Optimization Methods (2)

Scaling Data

Stratify

```
sc = StandardScaler()
X_train_scaled = sc.fit_transform(X_train)
X_test_scaled = sc.transform(X_test)
```

```
# split into train test sets
X train, X test, y train, y test = train test split(X, y, test size=0.20, random state=42)
print(Counter(y train))
print(Counter(y test))
# Not balanced when the test size is 0.5 this is imbalanced data
# Counter({0: 4794, 1: 306})
 # Counter({0: 2391, 1: 159})
 # Counter({0: 2403, 1: 147})
# split into train test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42, stratify=y)
print(Counter(y train))
print(Counter(y test))
# Balanced when test_size is 50%
# Counter({0: 4794, 1: 306})
# Counter({0: 2397, 1: 153})
# Counter({0: 2397, 1: 153})
```

Final Optimization RFC Model

Attempt #2 - Optimization Method: Stratify							
	precision	recall	f1-score	support			
0	0.93	0.97	0.95	504			
1	0.97	0.93	0.95	503			
accuracy			0.95	1007			
macro avg	0.95	0.95	0.95	1007			
weighted avg	0.95	0.95	0.95	1007			

Attempt #3 - Optimization Methods: **SMOTE** + **StandardScaler**

Attempt #4 - Optimization Methods: SMOTE + StandardScaler + Stratify

Attempt #5 - Optimization Methods: **SMOTE** + **GridSearchCV** + **Stratify**

	precision	recall	f1-score	support
0 1	0.96 0.93	0.93 0.96	0.95 0.95	968 967
accuracy macro avg weighted avg	0.95 0.95	0.95 0.95	0.95 0.95 0.95	1935 1935 1935

Post-Optimization

Accuracy: **95.0%** Recall: **96.0%**

F1-Score: **95.0%**

Front End Demo

Click on the title to discover the app

Limitations & Future Considerations

Limitations & Future Considerations

...

000

Ol Limited Model Types
Tested

02 SMOTE Optimization Usage

000

03 Stroke Data Features

O4 Low Correlation
Amongst Features

Conclusions

• • •

- All Models reached above 90% accuracy score
- RFC: 95%
- Best Choice:
 - Higher Accuracy
 - Recall
 - Individual Features of Input

Resources

Resources

Data set Link: https://www.kaggle.com/fedesoriano/stroke-prediction-dataset

- (1) http://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html
- (2) https://www.cdc.gov/stroke/about.htm
- (3) https://avinetworks.com/glossary/anomaly-detection/
- (4) https://scikit-learn.org/stable/supervised_learning.html#supervised_learning
- (5) https://towardsdatascience.com/gridsearchcv-for-beginners-db48a90114ee
- (6) https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
- (7) https://scikit-learn.org/stable/supervised_learning.html
- (8) https://realpython.com/flask-by-example-part-l-project-setup/