

Practicum of Attacking and Defense of Network Security 2025.04

Outline

- Classic cryptography
- Modern cryptography
 - Symmetric-key cryptography
 - Public-key cryptography
- TLS
- Steganography

Classic cryptography

Affine Cipher

- gcd(a, n) = 1
- n is the size of the alphabet
- $EK(m) = (a*m + b) \mod n$
- $DK(c) = a^{-1}(c-b) \mod n$

Substitution Cipher Ref.

When a =1, Affine Cipher is Caesar cipher

Modular Inverse

- How to compute a^-1 (mod n)?
- Tools available
 - sympy.invert in sympy
 - inverse_mod in Sage

```
import sympy
print sympy.invert(11,26) ##output : 19

from Crypto.Util.number import inverse
print inverse(11,26) ##output : 19

import gmpy2
print gmpy2.invert(11,26) ##output : 19
```

Exercise - Affine Cipher

- Ciphertext =ifpmluglesecdlqp_rclfrseljpkq
- for each letter of cipher text its position in the alphabet is the position of the original letter multiplied by 4 and shifted by 15 character shift over alphabet is cyclic, so 'z' shifted by 1 is '_' and '_' shifted by 1 is 'a' alphabet consists of letters from 'a' to 'z' and symbol '_' letter 'a' has position 0, symbol '_' has position 26 (following 'z') please find the flag

```
hint : ord('a') chr(97) >> 97 >> a
```

Solution

```
import string

s = string.ascii_lowercase # a-z s += '_'
d = {}
for c in range(len(s)): d[s[(c*4 +
    15)%27]] = s[c]
ciphertext = 'ifpmluglesecdlqp_rclfrseljpkq' s1 = "
for x in ciphertext: s1 += d[x]
print(s1) # flag_is_every_haxor_love_math
```

Solution with sympy

```
import sympy
original = 'abcdefghijklmnopqrstuvwxyz_'
encrypted = 'ifpmluglesecdlqp_rclfrseljpkq'
def main():
  result = "
  a = sympy.invert(4,27)
  for e in encrypted:
     result += original[((original.index(e)-15) * a) % 27]
  print(result)
if___name___== '_main_':
  main()
```

Rail Fence Cipher

A kind of transposition ciphers

- Example:
- m = WE ARE DISCOVERED. FLEE AT ONCE
- c = WECRL TEERD SOEEF EAOCA IVDEN

```
W . . . E . . . C . . . R . . . L . . . T . . . E . E . R . D . S . O . E . E . F . E . A . O . C . . . A . . . I . . . V . . . D . . . E . . . N . .
```

Exercise - Rail Fence Cipher

Ciphertext:
AaY--rpyfneJBeaaX0n-,ZZcs-uXeeSVJ-sh2tioaZ}slrg,-ciE-anfGt.-eCIyss-TzprttFliora{GcouhQIadctm0ltt-FYluuezTyorZ-

Flag : SharifCTF{flag_is_here}

Solution


```
!/usr/bin/env python3
FENCES =1
CIPHERTEXT ="AaY--rpyfneJBeaaX0n-,ZZcs-uXeeSVJ-sh2tioaZ}slrq,-ciE-anfGt.-eCIyss-TzprttFliora{GcouhQIadctm0ltt-FyluuezTyorZ-"
n =len(CIPHERTEXT)
while True:
 FENCES +=1
 Mat =[[] for i in range(FENCES)]
 Msg = ["]*n
 j = 0
 d = +1
 for i in range(0, n):
   Mat[j].append(i)
   j +=d
   if j = 0 or j = FENCES - 1:
     d = -d
 I = 0
 for j in range(0, FENCES):
   for i in range(0, len(Mat[j])):
     Msg[Mat[j][i]] =CIPHERTEXT[l]
     I +=1
 m =".join(Msg)
 if m.find('SharifCTF{') !=-1:
   break
print("Number of fences:", FENCES)
print("Plaintext:", m)
```

Vigenère Cipher

GRASS = Plainttext CRYPT = Key EACDZ = Ciphertext

Tools

- Known key
 - Python pycipher library
 - online Vigenère cipher
 - o CAP4
- Unknown key
 - Vigenère Cipher Codebreaker
 - <u>Vigenere Solver</u>

```
Vigenere
                                                                                  A|ABCDEFGHIJKLMNOPQRSTUVWXYZ{}
k: 3333333333333
                                                                                  B|BCDEFGHIJKLMNOPQRSTUVWXYZ{}A
p: SECCON{??????????????????????????????????
                                                                                  C|CDEFGHIJKLMNOPQRSTUVWXYZ{}AB
c: LMIG}RPEDOEEWKJIQIWKJWMNDTSR}TFVUFWYOCBAJBQ
                                                                                  D|DEFGHIJKLMNOPQRSTUVWXYZ{}ABC
                                                                                  E|EFGHIJKLMNOPQRSTUVWXYZ{}ABCD
k=key, p=plain, c=cipher, md5(p)=f528a6ab914c1ecf856a1d93103948fe
                                                                                  F|FGHIJKLMNOPQRSTUVWXYZ{}ABCDE
                                                                                  G|GHIJKLMNOPQRSTUVWXYZ{}ABCDEF
                                                                                  H|HIJKLMNOPQRSTUVWXYZ{}ABCDEFG
                                                                                  I|IJKLMNOPQRSTUVWXYZ{}ABCDEFGH
Hint:
                                                                                  J|JKLMNOPORSTUVWXYZ{}ABCDEFGHI
      len(key)=12
                                                                                  K|KLMNOPORSTUVWXYZ{}ABCDEFGHIJ
     alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ{}'
                                                                                  L|LMNOPQRSTUVWXYZ{}ABCDEFGHIJK
                                                                                  M|MNOPORSTUVWXYZ{}ABCDEFGHIJKL
      md5(plaintext) = f528a6ab914c1ecf856a1d93103948fe
                                                                                  N|NOPORSTUVWXYZ{}ABCDEFGHIJKLM
      flag will be SECON{.....}
                                                                                  O|OPQRSTUVWXYZ{}ABCDEFGHIJKLMN
                                                                                  P|PORSTUVWXYZ{}ABCDEFGHIJKLMNO
                                                                                  O|ORSTUVWXYZ{}ABCDEFGHIJKLMNOP
                                                                                  R|RSTUVWXYZ{}ABCDEFGHIJKLMNOPO
                                                                                  S|STUVWXYZ{}ABCDEFGHIJKLMNOPQR
                                                                                  T|TUVWXYZ{}ABCDEFGHIJKLMNOPORS
                                                                                  U|UVWXYZ{}ABCDEFGHIJKLMNOPORST
                                                                                  V|VWXYZ{}ABCDEFGHIJKLMNOPQRSTU
                                                                                  W|WXYZ{}ABCDEFGHIJKLMNOPQRSTUV
                                                                                  X|XYZ{}ABCDEFGHIJKLMNOPQRSTUVW
                                                                                  Y|YZ{}ABCDEFGHIJKLMNOPQRSTUVWX
                                                                                  Z|Z{}ABCDEFGHIJKLMNOPQRSTUVWXY
                                                                                  {|{}ABCDEFGHIJKLMNOPQRSTUTYWXYZ
                                                                                  }|}ABCDEFGHIJKLMNOPQRSTUVWXYZ{
```

ABCDEFGHIJKLMNOPQRSTUVWXYZ{}

Solution

#!/usr/bin/env python3

```
from re import match
from hashlib import md5 as md5_
from itertools import product
md5 = lambda x: md5_(x.encode()).hexdigest()
TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZ{}"
ENCRYPT, DECRYPT = 1, -1
def vigenere(string, key, mode=ENCRYPT, table=TABLE):
  L = len(key)
  key = [ table.index(i) for i in key ]
  string = [ table.index(i) for i in string ]
  cipher = [ (v + mode * key[i % L]) % len(table) for i, v in enumerate(string) ]
  return ".join(table[i] for i in cipher)
        = ".....??????"
plaintext = "SECCON{.....}"
ciphertext = "LMIG}RPEDOEEWKJIQIWKJWMNDTSR}TFVUFWYOCBAJBQ"
md5 hash = "f528a6ab914c1ecf856a1d93103948fe"
known key = "
for idx, char in enumerate('SECCON{'):
  for k in TABLE:
     if vigenere(char, k) == ciphertext[idx]:
       known_key += k
       break
print('known_key = %s' % known_key)
for poss in product(TABLE, repeat=len(key) - len(known_key)):
  try_key = known_key + ".join(poss)
  decrypted = vigenere(ciphertext, try_key, DECRYPT)
  if match(r'SECCON\{[A-Z]{35}\\}', decrypted) and \
    md5(decrypted) == 'f528a6ab914c1ecf856a1d93103948fe':
     print('key = %s, plaintext = %s' % (try_key, decrypted))
     exit()
```

One-Time Pad

Identical

One-Time Pad

- Plain text : This is an example
- Key: MASKLNSFLDFKJPQ
- This is an example \rightarrow 1978 188 180 134 23 0 12 15 114
- MASKLNSFLDFKJPQ \rightarrow 120 18 10 11 13 185 113 5 109 15 16
- PLUS: 31 7 26 28 19 31 18 18 15 26 5 22 24 26 20
- Mod 26: 570 2 195 18 18 150 5 22 24 0 20
- Ciphertext : FHACTFSSPAFWYAU

Modern cryptography

Recommended key length

Date	Security Strength	Symmetric Algorithms	Factoring Modulus	Discrete Logarithm Key Group		Elliptic Curve	Hash (A)	Hash (B)
Legacy (1)	80	2TDEA	1024	160	1024	160	SHA-1 (2)	
2019 - 2030	112	(3TDEA) ⁽³⁾ AES-128	2048	224	2048	224	SHA-224 SHA-512/224 SHA3-224	
2019 - 2030 & beyond	128	AES-128	3072	256	3072	256	SHA-256 SHA-512/256 SHA3-256	SHA-1 KMAC128
2019 - 2030 & beyond	192	AES-192	7680	384	7680	384	SHA-384 SHA3-384	SHA-224 SHA-512/224 SHA3-224
2019 - 2030 & beyond	256	AES-256	15360	512	15360	512	SHA-512 SHA3-512	SHA-256 SHA-512/256 SHA-384 SHA-512 SHA3-256 SHA3-384 SHA3-512 KMAC256

RC4

- RC4 is a stream cipher that is roughly divided into two parts by byte encryption
- Including initialization algorithm (KSA) and pseudo-random sub-cipher generation algorithm (PRGA)
 - 1. Generate S box according to Key
 - 2. Generate pseudo-random key stream based on S box
 - 3. xor bitwise encrypted plaintext
- Only XOR operation and S box so the encryption and decryption process is reversible

RC4

Ref.

Key-scheduling algorithm (KSA)

- The secret key participates in the generation of the S box
- Initialize the S box with a length of 256. The first for loop loads 0
 to 255 non-repetitive elements into the S box and generates a
 temporary array T. The second for loop scrambles the S box
 according to the key
- i make sure that every element of Sbox is processed
- j make sure that the scramble of Sbox is random

Key-scheduling algorithm (KSA)

```
def RC4_init(self,k):
  Sbox=[]*255
  T=[]*256
  for i in range(256):
     Sbox.append(i) #initialize sbox
    T.append(ord(k[i%len(k)])) #make 256 bits key
  i=0
  for i in range(256):
    i = (i + Sbox[i] + T[i]) \% 256
     Sbox[i],Sbox[j]=Sbox[j],Sbox[i]
                                     # swap Sbox
  return Sbox
```

Pseudo-random generation algorithm (PRGA)

- After the array S is initialized, the input key is no longer used
- Operate by byte Locate an element in the S box through a certain algorithm and XOR with the input byte to get the ciphertext
- The S box is also changed in the loop

Pseudo-random generation algorithm (PRGA)

```
 \begin{array}{l} \text{def RC4\_crypt(self,m):} \\ \text{c=''} \\ \text{i=j=0} \\ \text{S=self.Sbox} \\ \text{for n in range(len(m)):} \\ \text{i = (i + 1) \% 256} \\ \text{j = (j + S[i]) \% 256} \\ \text{S[i],S[j]=S[j],S[i]} \quad \#\text{swap Sbox} \\ \text{t = (S[i] + S[j]) \% 256} \quad \#\text{generate random index} \\ \text{c+='\%02x'\%(ord(m[n])^S[t])} \quad \#\text{plain text Xor random index} \\ \text{return c} \\ \end{array}
```


LAB

- <u>dbgprint</u>: Xor +RC4
- Biforst: modified RC4
- <u>malware link</u>(password:infected)
- Tool : <u>findcrypt</u>

Openssl

- openssl des-ecb —e —in xxx.txt —out yyy.out —k password (DES encrypt)
- openssl des-ecb –d –in yyy.out –out xxx.txt –k password (DES decrypt)
- openssl des-ede3 –d –in yyy.out –out xxx.txt –k password (*TDES encrypt*)
- openssl aes-128-ecb –d –in yyy.out –out xxx.txt –k password (AES decrypt)

AES

- Symmetric block cipher
- AES128 = 128-bit key, 10 rounds
- AES192 = 192-bit key, 12 rounds
- AES256 = 256-bit key, 14 rounds

- Subbytes:
 - Arbitrary Substitution (output similar to Scytale cipher)
- Shiftrows:
 - Rotational substitution(similar to ROT13)
- Mixcolumns:
 - Permutation (similar to the Column Shift example)
- Addroundkey:
 - An XOR function: Resaults in a new key for each round
- Repeat up to 14 time total

Subbytes:

Arbitrary Substitution (output similar to Scytale

cipher)

Ref.

Shiftrows:

Rotational substitution(similar to ROT13)

Ref.

- Mixcolumns:
 - Permutation (similar to the Column Shift example)

- Addroundkey:
 - An XOR function: Resaults in a new key for each round

Ref.

ECB

Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption

ECB

▶ 較大的圖案,如果以 block 作單位,單獨經過 128 bit block 加密後, 仍然可以可以看出原圖的樣貌。

CBC

Cipher Block Chaining (CBC) mode encryption

Exercise - AES

Encrypted with AES in ECB mode. All values base64 encoded

ciphertext =
I300ryGVTXJVT803Sdt/KcOGlyPStZkeIHKapRjzwWf9+p7fIWkBnCW
u/IWls+5S

key = iyq1bFDkirtGqiFz7OVi4A==

- First decode the key from base64 to hex.
 - Key in base64 : iyq1bFDkirtGqiFz7OVi4A==
 - Key in Hex: 8B2AB56C50E48ABB46AA2173ECE562E0
- Then copy the ciphertext to a file and run the following openssl command.
 - openssl enc -d -aes-128-ecb -in aesecbcipher.txt -out aesecbplain.txt -nopad -nosalt -K 8B2AB56C50E48ABB46AA2173ECE562E0 -iv 0 -base64
- cat the aesecbplain.txt file.
 - cat aesecbplain.txt
 - flag{do_not_let_machines_win_2d4975bc}______

```
import base64
from Crypto.Cipher import AES

key = base64.b64decode("6v3TyEgjUcQRnWuIhjdTBA==")
ciphertext =
base64.b64decode("rW4q3swEuIOEy8RTIp/DCMdNPtdYopSRXKSLYnX9NQe8z+LMsZ6Mx/x8pwGwofdZ")
crypter = AES.new(key, AES.MODE_ECB)
plaintext = crypter.decrypt(ciphertext).decode("utf-8")

print(plaintext)
```

Exercise - AES

We encrypted a flag with AES-ECB encryption using a secret key, and got the hash:

`e220eb994c8fc16388dbd60a969d4953f042fc0bce25dbef573cf522 636a1ba3fafa1a7c21ff824a5824c5dc4a376e75`

However, we lost our plaintext flag and also lost our key and we can't seem to decrypt the hash back :(.

Luckily we encrypted a bunch of other flags with the same key. Can you recover the lost flag using this?

```
e220eb994c8fc16388dbd60a969d4953f042fc0bce25dbef573cf522636a1ba3fafa1a7c21ff824a5824c5dc4a376e75e220e
b994c8fc16388dbd60a969d4953f042fc0bce25dbef573cf522636a1ba3fafa1a7c21ff824a5824c5dc4a376e75
block1: e220eb994c8fc16388dbd60a969d4953
block2: f042fc0bce25dbef573cf522636a1ba3
block3: fafa1a7c21ff824a5824c5dc4a376e75
abctf{looks_like_gospel_feebly}
e220eb994c8fc16388dbd60a969d4953 <-- // abctf{looks_like
                                     // gospel feebly}
6d896bd7d6da9c4ce3eac5e4832c2f64
abctf(verism_evg_you_can_break_ajugas)
528c30c67c57968fa131684d07c1fa9c
                                   // abctf{verism_evg
f042fc0bce25dbef573cf522636a1ba3 <-- // _you_can_break_a
c0bd6ceeec8e817f1be7b09a9a8b0fb8
abctf{amidin_ogees}
5f0ec66748ad4e9c512616572dd9197b
fafa1a7c21ff824a5824c5dc4a376e75 <-- // es}
```

so now we just put the three plaintext blocks together to obtain the key: abctf{looks_like_you_can_break_aes}

```
block1 e220eb994c8fc16388dbd60a969d4953 abctf looks_like
```

block2 f042fc0bce25dbef573cf522636a1ba3 __you_can_break_a

block3 fafa1a7c21ff824a5824c5dc4a376e75 es

Padding Oracle Attack

- Decrypt any given ciphertext without knowing the key and IV.
- Padding Oracle Attack attacks generally need to meet the following conditions
 - Encryption algorithm using PKCS5 Padding. Of course, the way OAEP is filled in asymmetric encryption may also be affected.
 - The grouping mode is CBC mode.
- Attacker ability
 - An attacker can intercept messages encrypted by the above encryption algorithm.
 - The attacker can interact with the padding oracle (the server): the client sends the ciphertext to the server, and the server will use some kind of return information to inform the client whether the padding is normal.

Padding

1 I	- 1/4	4	5	6	7	8	1	2	3	4	5	6	7	8
	G		T						-	-	J	U	•	0
	-		I		Γ						<u> </u>	, v		
	G	0x05	0x05	0x05	0x05	0x05		57						
A	N	A	N	A	<i>17</i> ,									
A	N	A	N	A	0x02	0x02								
		1,1			72 18				3 30		0 t 3	. so		(X) /
v	0	С	A	D	0									
v	0	С	A	D	0	0x01								
					100						ut.			(1)
L	A	N	Т	A	I	N								
L	A	N	т	A	I	N	0x08	0x08	0x08	0x08	0x08	0x08	0x08	0x08
			A											
A	S	S	I	0	N	F	R	Ū	I	Т				15 V
A	s	s	I	0	N	F	R	U	I	Т	0x04	0x04	0x04	0x04
	A V V L L A	A N V O V O L A L A	A N A V O C V O C L A N L A N A S S	A N A N V O C A V O C A L A N T L A N T	A N A N A V O C A D V O C A D L A N T A L A N T A	A N A N A 0x02 V O C A D O O O C A D O O O C A D O O C A D O O C A D D O C A D O C A D D O C A D O C A D D O C D D O C A D D O C D D O C A D D O C D D D O C D D O C D D O C D D O C D D O C D D O C D D O C D D O C D	A N A N A 0x02 0x02 V O C A D O V O C A D O 0x01 L A N T A I N L A N T A I N 0x08 0x08 0x08 A S S I O N F R U I	A N A N A Ox02 Ox02 V O C A D O Ox01 L A N T A I N Ox08 Ox08 Ox08 A S S I O N F R U I T	A N A N A Ox02 Ox02	A N A N A Ox02 Ox02	A N A N A 0x02 0x02			

CBC Decryption

Cipher Block Chaining (CBC) mode decryption

https://web.engr.oregonsta te.edu/~rosulekm/crypto/p adding.html

Chacha20

- modified from salsa
- stream cipher
- 256-bit key
- 64-bit nonce
- 64-bit block counter
- Outputs a 64-byte block of key stream and increments block counter in each invocation
- Plaintext is XOR'ed with the key stream

Exercise - chacha20

- Betaflash let's go in Cuba and dance amigo!!
- Flag format: CTF{sha256}
- {'honce": 'dcfu+qXOX30=", "ciphertext":
 - "nT0/C209haz3XQs6JcvrEhkbRXnzZiyR87vI82VDvfaQh9eajLNIzkG51TnZg81g7IEPd3UJElZz8xhCMlVb/cXHJO9h",
 - "key": "Fidel_Alejandro_Castro_Ruz_Cuba!"}

RSA Algorithm: Components

- Trapdoor Secrets
 - o $n = p \cdot q$ where p,q are large primes
- Public Key
 - (n, e)
 - e is relative prime to (p-1)(q-1)
 - \circ 1< e < ϕ n)
- Private Key
 - o (n, d)
 - o $d = e^{-1} \mod (n)$ is the multiplicative inverse of e
- Encryption / Digital Signature Verification
 - c = m^e mod n where m is plaintext and c is ciphertext
- Decryption / Digital Signature Production
 - \circ m = c^d mod n

RSA Algorithm: Rationale

```
Why it is secure ? 
 Knowing p, q and e,one can easily compute : n = p \cdot q
 \mathfrak{C}(n) = (p-1)(q-1)
 d = e^{-1} \mod \mathfrak{C}(n)
 Without knowing p and q, but knowing n and e,one cannot compute : \mathfrak{C}(n) or d
```

RSAtool

- install
 - o git clone https://github.com/ius/rsatool.git
 - o cd rsatool
 - python rsatool.py -h
- create the private key
 - o python rsatool.py -f PEM -o private.pem -p 1234567 -q 7654321

Openssl

openssl genrsa -out rsa_privatekey.pem -passout pass:password -des3
 1024

(generate RSA private key)

- openssl rsa -in rsa_privatekey.pem -passin pass:password -pubout out rsa_publickey.pem (generate RSA piblic key)
- openssl rsautl -encrypt -pubin -inkey rsa_publickey.pem -in xxx.txt -out yyy.txt

(use public key to encrpt)

openssl rsautl -decrypt -inkey rsa_privatekey.pem -in yyy.txt -out xxx.txt
 (use private key to decrypt)

python libary

- primefac
- gmpy
- gmpy2
- pycrypto

Exercise - RSA

- RSA encryption/decryption is based on a formula that anyone can find and use, as long as they know the values to plug in.
 Given the encrypted number 150815, d =1941, and N =435979, what is the decrypted number?
- Hint: decrypted =(encrypted) ^d mod N

In [1]: (150815 ** 1941)%435979

Out[1]: 133337

Exercise - RSA

N:

 $374159235470172130988938196520880526947952521620932362050308663243595788308583992\\ 12088135936525894972381991175819801320264466648924798731402516967092627321336723702\\ 018858774271601731432019135066676254103923824198493447318865661061591847467396333199\\ 240875004745125320515843645281435456428300369666694595090854919717540458053313214\\ 2111356931324330631843602412540295482841975783884766801266552337129105407869020730\\ 226041538750535628619717708838029286366761470986056335230171148734027536820544543\\ 25180109323080918622294080671822163884581652173860184308374610337497412057551941879\\ 7642878012234163709518203946599836959811$

e: 3

ciphertext (c):

2205316413931134031046440767620541984801091216351222789180967130585669043554866325 9057708671503776118207467598152477785168994032290470667003967878523885113898930432 79713280998235746440322483431305358901578692935378439077796777060321410661

When encrypting with low encryption exponents (e.g., e = 3) and small values of the m, (i.e., $m < n^1/e$) the result of m^e is strictly less than the modulus n. In this case, ciphertexts can be easily decrypted by taking the e^t root of the ciphertext over the integers.

```
c \equiv m^e \mod n

m < \text{sqrt}[e]\{n\}

m = \text{sqrt}[e]\{c\}
```

Exercise - RSA

C:

607508702447641453265913870171643760321711341292492729986378754 8188620337158625

n:

16995743251555690273217604748218275023627813110906708466533535 245776011465591891

e: 65537

```
p = 166402962209062256362900394698423820317
```

q =102136061918194068640310910627905419563823

```
from Crypto.Util.number import inverse  p = 166402962209062256362900394698423820317 \\ q = 102136061918194068640310910627905419563823 \\ c = 6075087024476414532659138701716437603217113412924927299863787548188620337158625 \\ n = 16995743251555690273217604748218275023627813110906708466533535245776011465591891 \\ e = 65537 \\ phi = (q-1)^*(p-1) \\ d = inverse(e, phi) \\ print (hex(pow(c,d,n))[2:-1]).decode('hex')
```

Exercise - RSA (take home)

• <u>Exercise</u>

Exercise - Decrypt_RSA (take home)

The following two files are given for you.

1.flag.txt

2.public-key.pem

Enjoy decrypting !!!

File Link: <u>link</u>

SSL / TLS overview

- Goal: building a secure end-to-end channel
 - SSL =Secure Sockets Layer (predecessor)
 - TLS =Transport Layer Security (standard)
 - HTTPS =HTTP over SSL/TLS
- Security requirements
 - Confidentiality
 - Integrity
 - Authentication (mostly server authentication, client authentication in TLS is rare)

SSL Server Test

TLS Handshake

TLS Handshake: Client Hello & Server Hello

- Client announces the highest supported protocol version and supported cryptographic algorithms in decreasing order of preference
- Server responses with strongest protocol version and algorithm supported by both client and server
- The exchange is in plaintext

Cipher Suite

- Cipher suite = key exchange, cipher spec
- Key exchange methods
 - RSA, encrypt key with receiver's public key
 - Fixed Diffie-Hellman, public key certificate contains public DH key
 - Ephemeral Diffie-Hellman, public key is used to sign temporary DH key
 - Anonymous Diffie-Hellman, DH without authentication

Cipher spec

- Cipher Algorithm (RC4, RC2, DES, 3DES, DES40, IDEA, AES)
- MAC Algorithm (HMAC-MD5, HMAC-SHA1, HMAC-SHA256/384)
- Hash size (0 or 16 for MD5, 20 for SHA-1)

Cipher Suites

# TLS 1.2 (suites in server-preferred order)	
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xc030) ECDH secp256r1 (eq. 3072 bits RSA) FS	256
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02f) ECDH secp256r1 (eq. 3072 bits RSA) FS	128
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028) ECDH secp256r1 (eq. 3072 bits RSA) FS WEAK	256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (0xc027) ECDH secp256r1 (eq. 3072 bits RSA) FS WEAK	128
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) ECDH secp256r1 (eq. 3072 bits RSA) FS WEAK	256
TLS_RSA_WITH_AES_256_GCM_SHA384 (0x9d) WEAK	256
TLS_RSA_WITH_AES_256_CBC_SHA (0x35) WEAK	256
TLS_RSA_WITH_3DES_EDE_CBC_SHA(0xa) WEAK	112

Password Attacks

- Dictionary Files
 - kali linux
 - /usr/share/wordlists/
- Key-space Brute Force
 - crunch

```
root@kali:~# crunch 6 6 0123456789ABCDEF -o crunch1.txt
Crunch will now generate the following amount of data: 117440512 bytes
112 MB
0 GB
0 TB
0 PB
Crunch will now generate the following number of lines: 16777216
100%
root@kali:~# wc -l crunch1.txt
16777216 crunch1.txt
```

John-the-ripper

- Wordlist
 - O john -wordfile: <dict> <crackfile>
- Single Crack
 - O john -single <crackfile>
- Incremental Mode
 - O john -incremental:Alpha <crackfile>

Hashcat

- Wordlist
 - O hashcat -m 1800 <shadow_file> <dict>
- Brute Force
 - O hashcat -m 1800 -a 3 <shadow_file> ?1?1?1?1 --force

Steganography

1st 5 bits = color, contrast, etc.

JPEG/PNG/etc.

1 byte = 1 pixel

Last 3 bits = Insignificant subtleties the human eye cannot discern

Byte:10101 010

Replace these bits...

The right picture has a 60kb text file hidden in it with a tool called steghide.

File Hidden

76

Exercise - Stego

Exercise1

binwalk example.jpg dd if=example.jpg bs=1 skip=1972141 of=foo.zip

Exercise2

Foremost -v X.png

- Exercise3
- Exercise4(take home) hint : png filter
- <u>Exercise5</u> (take home) hint: png file, change palette
- <u>Exercise6</u>(take home) hint: LSB and brute force

fcrackzip

Example7

fcrackzip -b -c 'aA1!' -u -l 1-6 00000192.zip

PASSWORD FOUND!!!!: pw == RH4

Stego - Online tools

- https://aperisolve.fr/
- https://tools.miku.ac/

Solution

- Exercise1 : supa_secret_flagzor
- Exercise2 : ABCTF{PNG_S0_C00l}
- Exercise3: 6307834008eb8edbe18c7a20ee4a909d
- Exercise4 : pctf{keep_doge_alive_2014}
- Exercise5:DrgnS{WhenYouGazeIntoThePNGThePNGAlsoGazezIntoYou}
- Exercise6 : LSB_is_ubiquitous

Malware Decryption LAB

- <u>dbqprint</u>: Xor +RC4
- Biforst: modified RC4
- yty:Xor+Base64
- Loadinfo:AES+Base64
- malware link(pass:infected)
- Tool : <u>findcrypt</u>

Crypto - Useful Tools

- SageMath Mathematics software system
- Pycrypto The Python Cryptography Toolkit
- Sympy Python library for symbolic mathematics
- Yafu Automated integer factorization
- FeatherDuster An automated, modular cryptanalysis tool
- Hash Extender A utility tool for performing hash length extension attacks
- PkCrack A tool for Breaking PkZip-encryption
- RSACTFTool A tool for recovering RSA private key with various attack
- RSATool Generate private key with knowledge of p and q
- XORTool A tool to analyze multi-byte xor cipher

Steganography - Useful Tools

- Convert Convert images b/w formats and apply filters
- Exif Shows EXIF information in JPEG files
- Exiftool Read and write meta information in files
- Exiv2 Image metadata manipulation tool
- binwalk
- foremost
- fcrackzip
- ImageMagick Tool for manipulating images
- Outguess Universal steganographic tool
- Pngtools For various analysis related to PNGs
- Steganabara Tool for stegano analysis written in Java
- Stegbreak Launches brute-force dictionary attacks on JPG image
- stegextract Detect hidden files and text in images
- Steghide Hide data in various kind of images
- Stegsolve Apply various steganography techniques to images
- Zsteg PNG/BMP analysis

Resouces

- <u>可汗学院公开课</u>
- <u>深入浅出密码学——常用加密技术原理与应用</u>
- https://cryptopals.com/
- 加密與解密