CS 310-0

Homework Assignment No. 3

Due Fri 1/28/2000

- 1. Let $f,g:\mathbb{R}^+\to\mathbb{R}^+$ be the functions $f(x)=1/x,\,g(x)=x+3$. Find $g\circ f,\,f\circ g,\,f^2,$ q^2 , $q \circ f^2$, $f \circ q \circ f$, $f^2 \circ q$, $f \circ q^2$, $q \circ f \circ q$, $q^2 \circ f$.
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = x^3 3x^2 + 2x$. Find $f^{-1}([0,\infty))$.
- 3. Let $f, g: \mathbb{R} \to \mathbb{R}$ be functions defined by f(x) = ax + b, g(x) = cx + d, where a, b, c, dare real constants. What relation must be satisfied by a, b, c, d if $f \circ g = g \circ f$?
- 4. Let $f: \mathbb{R} \to (0,1)$ be the function $f(x) = e^x/(1+e^x)$. Prove that f is a one-to-one correspondence. Find its inverse $f^{-1}:(0,1)\to\mathbb{R}$.
- 5. Let $f:A\to B$ be any function from a set A to another set B. For every $B'\subseteq B$, we denote $f^{-1}(B') = \{x \in A \mid f(x) \in B'\}$ the preimage set of B' by f. For any subsets $B_1, B_2 \subseteq B$ prove the following:

 - (a) $B_1 \subseteq B_2 \Rightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2)$. (b) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$.
 - (c) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.

 - (d) $f^{-1}(B_1 B_2) = f^{-1}(B_1) f^{-1}(B_2)$. (e) $f^{-1}(B_1 \triangle B_2) = f^{-1}(B_1) \triangle f^{-1}(B_2)$.
- 6. For each one of the following functions, determine if it is one-to-one (but not onto), onto (but not one-to-one), or a one-to-one correspondence. Justify the answer. If it is a one-to-one correspondence, find its inverse.
 - (a) $f: \mathbb{N} \to \mathbb{N}$, $f(x) = x^2$.
 - (b) $f: \mathbb{R}^+ \to \mathbb{R}^+, f(x) = x^2$.
 - (c) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$.
 - (d) $f: \mathbb{R} \to [0, 1), f(x) = x |x|$.
 - (e) $f: \mathbb{R} \to \mathbb{R}$, defined by cases in the following way:

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 2x + 1 & \text{if } x \in \mathbb{R} - \mathbb{Q} \end{cases}$$

7. Prove that the following is a one-to-one correspondence from \mathbb{N} to \mathbb{Z} :

$$f(n) = \frac{(-1)^n (n+1/2) - 1/2}{2}.$$

Find its inverse. Hint: rewrite f in the following way:

$$f(n) = \begin{cases} \cdots & \text{if } n = 2k \text{ for some } k \in \mathbb{N} \\ \cdots & \text{if } n = 2k+1 \text{ for some } k \in \mathbb{N} \end{cases}$$

8. Prove that the function $f: \mathbb{N}^2 \to \mathbb{N}$, $f(a,b) = (a+b)^2 + b$, is one-to-one. Is there a one-to-one correspondence from \mathbb{N}^2 to \mathbb{N} (or from \mathbb{N} to \mathbb{N}^2)?