Table of Contents

Question 2A

Write in the data vector d associated with this data

```
% Site location in latitude and longitude. Converted to theta and phi
siteLat = [-85.00; 85.00; 85.00; 37.80; 51.50; 30.00; 40.70; -23.5;
 -33.90;
    -31.95; -33.90];
siteLon = [180.00; 0.00; 116.40; -122.40; -0.13; 31.20; -74.00;
 -46.60;
    18.42; 115.90; 151.20];
theta = 90 - siteLat;
                                % theta in degrees
phi = siteLon;
                                % phi in degrees
N = length(theta);
% Elements of the magnetic field in nT
X = -[-11489.98; 4299.58; 28149.16; 22271.61; 19513.26; 31272.19;
 20512.93;
    16604.76; 9202.13; 23415.41; 24400.95];
Y = [9038.53; 7.02; -3373.34; 5685.59; -241.62; 2841.33; -4781.95;
 -5766.60;
    -4666.18; -549.91; 5652.931;
Z = -[-56215.10; 55749.08; 46548.43; 42496.19; 44814.76; 30123.66;
 46697.48;
    -14384.17; -23644.95; -53993.09; -50885.50];
% Data vector containing all the magnetic field
d = [X; Y; Z]
d =
   1.0e+04 *
```

```
1.1490
-0.4300
-2.8149
-2.2272
-1.9513
-3.1272
-2.0513
-1.6605
-0.9202
-2.3415
-2.4401
0.9039
0.0007
-0.3373
0.5686
-0.0242
0.2841
-0.4782
-0.5767
-0.4666
-0.0550
0.5653
5.6215
-5.5749
-4.6548
-4.2496
-4.4815
-3.0124
-4.6697
1.4384
2.3645
5.3993
 5.0885
```

Question 2C

Evaluate the elements of this G matrix

```
% Columns of G
G1 = [sind(theta); zeros(N,1); 2*cosd(theta)];
G2 = [-cosd(theta).*cosd(phi); -sind(phi); 2*sind(theta).*cosd(phi)];
G3 = [-cosd(theta).*sind(phi); cosd(phi); 2*sind(theta).*sind(phi)];
G = [G1 G2 G3]
G =
    0.0872 -0.9962
                             0
    0.0872
            -0.9962
    0.0872
             0.4429
                       -0.8923
    0.7902
             0.3284
                        0.5175
```

0.6225	-0.7826	0.0018
0.8660	-0.4277	-0.2590
0.7581	-0.1797	0.6268
0.9171	0.2740	-0.2897
0.8300	0.5292	0.1762
0.8485	-0.2311	0.4760
0.8300	-0.4888	0.2687
0	0	-1.0000
0	0	1.0000
0	-0.8957	-0.4446
0	0.8443	-0.5358
0	0.0023	1.0000
0	-0.5180	0.8554
0	0.9613	0.2756
0	0.7266	0.6871
0	-0.3160	0.9488
0	-0.8996	-0.4368
0	-0.4818	-0.8763
-1.9924	-0.1743	0
1.9924	0.1743	0
1.9924	-0.0775	0.1561
1.2258	-0.8468	-1.3343
1.5652	1.2450	-0.0028
1.0000	1.4815	0.8972
1.3042	0.4179	-1.4575
-0.7975	1.2602	-1.3326
-1.1155	1.5750	0.5245
-1.0584	-0.7413	1.5266
-1.1155	-1.4547	0.7997

Question 2D

```
Calculate G'G, G'd, (G'G)^-1
```

1.7842 invGtG = 0.0367 -0.0041 0.0063 -0.0041 0.0517 0.0021 0.0063 0.0021 0.0558

Question 2E

Find the least squares solution for the l=1 model parameters

```
% b is the vector g01 g11 h11 in nT
b = G\d

b =
    1.0e+04 *
    -2.8253
    -0.3976
    0.4480
```

Question 2F

```
IFRP2020 = [-29404.58; -1450.9; 4652.5];
```

Question 2G

Do your results depend on the available data distribution?

```
figure(1)
plot(siteLon, siteLat,'*')
set(gcf,'color','w');
xlabel('Longitude (degrees)','FontSize',15)
ylabel('Latitude (degrees)','FontSize',15)
title('Data Distribution','FontSize',20)
```


Question 2h

f = 1/(298.257);

Published with MATLAB® R2020a