Aufgabe 1

Für jeden Knoten $u \in V$ speichern wir alle Kanten [u, v) in einer Hashtabelle, wobei die Tabelle selbst eine Länge in $b \times \text{outdeg}(u)$ für eine Konstante b besitzt und Konflikte mit Verkettung gelöst werden. Wenn die Hashfunktion zufällig aus einer c-universellen Familie gewählt wird, so ist die erwarte Länge der Kollisionslisten konstant.

Für die Ausgabe aller von u ausgehenden Kanten kann man durch die Hashtabelle und durch alle Kollisionslisten in Zeit $\Theta(\text{outdeg}(u))$ iterieren.

Um zu testen ob eine gegebene Kante [u, v] im Graphen enthalten ist, sucht man in der Hashtabelle von u durch die jeweilige Kollisionsliste. Da die erwartete Länge der Kollisionsliste konstant ist, erfolgt der Test in erwarteter konstanter Laufzeit.

Die Größe der Datenstruktur für die reinen Tabellen ohne Kollisionslisten ist b|E|, da jede Kante genau eine Tabelle um b vergrößert. Die Größe aller zusätzlichen Felder für die Kollisionslisten ist durch |E| beschränkt, da jede Kante nur in einer Kollisionsliste auftaucht aber jede Stelle ein Element enthält. Die gesamtgröße der Datenstruktur ist also (b+1)|E|+|V|, proportional zur Größe des Graphen.

Aufgabe 3

- ⇒ Existiert eine Kante, die von einem Knoten zu einem seiner Ahnen im lex-kleinsten-Wege-Baum führt, so bildet diese Kante mit dem gerichteten Baumpfad von dem Ahnen zum Knoten einen gerichteten Zyklus.
- \Leftarrow Existiert ein gerichteter Zyklus, so lässt sich der Knoten u im Zyklus bestimmen, der im lex-kleinsten-Wege-Baum den geringsten Rang besitzt. Der Vorgänger von u im Zyklus ist ein Nachfahre von u im lex-kleinsten-Wege-Baum, da er von u aus durch den Zyklus erreichbar ist und nicht bereits im lex-kleinsten-Wege-Baum auftaucht, da u der rangniedrigste Knoten aus dem Zyklus ist. Folglich ist die Kante die im Zyklus nach u führt eine Kante die von einem Knoten zu einem seiner Ahnen im lex-kleinsten-Wege-Baum führt.

Aufgabe 2

(a)

(b)

Knoten	Rang	$d[\cdot]$	$\pi[\cdot]$	$f[\cdot]$	
♦	0	0		19	(\diamond) \xrightarrow{a} (1) (7) \xrightarrow{t} (5)
1	1	1	♦	18	
2	2	2	1	17	$_{\mathrm{j}}$
3	3	3	2	16	
4	4	4	3	15	(2) (4) (6)
6	5	5	4	14	
5	6	6	6	9	
7	7	7	5	8	
8	8	10	6	13	(3) (8) $\stackrel{\text{W}}{\longrightarrow} (9)$
9	9	11	8	12	
	'				

Rang und d, f-Nummerierung lassen wir hier im augmentierten Graphen bei 0 beginnen, da die Werte dadurch den entsprechenden üblichen Werten im nicht augmentierten Graphen entsprechen.