Solution of Math 2033 Homework 1

(D (a) To show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$, let $x \in A \cap (B \cup C)$. Then $x \in A$ and $(x \in B)$ or $x \in C$. If $x \in B$, then $x \in A \cap B$. If $x \in C$, then $x \in A \cap C$. Hence $x \in A \cap B$ or $x \in A \cap C$. So we get $x \in (A \cap B) \cup (A \cap C)$. This means $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

Next, to show (ANB) U(ANC) CAN(BUC), let x E(ANB) U (ANC).

Then XEANB or XEANC. In both cases, XEA. In both cases, XEB or XEC, which gives XEBUC. So we get XEAN (BUC). This means (ANB) U (ANC) E AN (BUC).

Combining the Conclusions of the two paragraphs, An (BUC) = (ANB)U(ANC)

(b) To show $X \cdot (Y \cup Z) \subseteq (x \cdot Y) \cap (x \cdot Z)$, let $x \in X \cdot (Y \cup Z)$, Then $x \in X$ and $x \notin (Y \cup Z)$. So $x \in X$. Also,

 $X \notin (Y \cup Z) \Leftrightarrow \land (x \in Y \cup Z) \Leftrightarrow \land (x \in Y \text{ or } x \in Z) \Leftrightarrow x \notin Y \text{ and } x \notin Z$

Then XEX and X & Y and X & Z. Hence, X EX Y and X EX. Z.

So we get x (X-Y) n (X,Z). This means X (YUZ) E (X,Y) n (X,Z).

Next to show $(X \cdot Y) \cap (X \cdot Z) \subseteq X \cdot (Y \cup Z)$, let $x \in (X \cdot Y) \cap (X \cdot Z)$. Then $x \in X \cdot Y$ and $x \in X \cdot Z$. In both Cases, $x \in X$. Also $x \notin Y$ and $X \notin Z$. By the box above, $x \notin (Y \cup Z)$. So we get $x \in X \cdot (Y \cup Z)$.

This means (X)) A(X) = X, (YUZ).

Combining, we get X \ (YUZ) = (X \ Y) \ (X \ Z).

(2) We will prove the statement for every $N \in \mathbb{N} = \{1, 2, 3, \dots\}$, $P(n) \rightarrow S$ contains an element a_n such that \forall $m \in \mathbb{N}$ and m < n, we have $a_n \neq a_m$)

Case n = 1. Sinfinite \Rightarrow $S \neq \emptyset$ (empty set has O elements, $O < \infty$)

Then there exists an element a_1 in S. There is n_0 $m \in \mathbb{N}$ and m < 1.

Suppose Case n is true. Then $A = \{a_m : m \in \mathbb{N} \text{ and } m \leq n\}$ has n elements.

Since $n < \infty$, A_n is a finite subset of S. Then $A_n < S$. We get $S \land A_n \neq \emptyset$. Then there exists an element a_{n+1} in $S \land A_n$. For every $m \in \mathbb{N}$ and m < n+1, $a_m \in A_n$ and $a_{n+1} \in S \land A_n$. So $a_{n+1} \neq a_m$.

The function $f : \mathbb{N} \Rightarrow \{a_m : m \in \mathbb{N}\}$ defined by $f(n) = a_n$ for $n \in \mathbb{N}$ is S urjective $\{a_n = f(n)\}$ and injective $\{m \neq n\}$ $f(m) = a_m \neq a_n = f(n)$.

So Contains the Countably infinite set $\{a_m : m \in \mathbb{N}\}$.

So every element of T is in at least one of the interval $[\frac{1}{k+1}, \frac{1}{k}]$.

If $x_1, x_2, ..., x_n$ are in T and $[\frac{1}{k+1}, \frac{1}{k}]$, then $1 > x_1 + ... + x_n^2 \ge \frac{1}{k+1} > \frac{1}{k}$.

From this we get $1 > \frac{n}{(k+1)^2}$. So $n < (k+1)^2$.

Let $T_k = T \cap [\frac{1}{k+1}, \frac{1}{k}]$, then T_k has less their $(k+1)^2$ elements.

So T_k is a finite set. ..., $T = \bigcup_{k=1}^{\infty} T_k$ is countable by the Countable union theorem.