科技部補助

大專學生研究計畫研究成果報告

執行計畫學生: 游博鈞

學生計畫編號: MOST 103-2815-C-006-072-E

研究期間: 103年07月01日至104年02月28日止,計8個月

指導教授: 趙儒民

處理方式: 本計畫可公開查詢

執 行 單 位: 國立成功大學系統及船舶機電工程學系(所)

中華民國 104年03月30日

目錄

第一章	緒論1
1.1	台灣之離岸風電發展1
1.2	離岸風機登機系統2
1.3	研究動機與目標3
第二章	系統硬體介紹4
2.1	系統概論4
2.2	主控制器5
	2.2.1 主要規格與架構5
	2.2.2 基本使用電路7
	2.2.3 開發環境8
2.3	機械手臂9
2.4	振盪器11
2.5	加速規11
第三章	機械手臂系統12
3.1	運動學12
	3.1.1 正向運動學12
	3.1.2 逆向運動學15
3.2	控制程式18

3.3	繪圖	圖結果	20
第四章	運重	動補償系統	22
4.1	主重	動震動控制	22
	4.1.1	概述	.22
	4.1.2	位移計算	23
	4.1.3	運動補償目標	24
4.2	訊号	烷分析	24
	4.2.1	傅立葉變換	24
	4.2.2	資料擷取與訊號處理	25
4.3	控制	制程式	28
4.4	運重	動補償結果	30
	4.4.1	機器手臂周期運動	30
	4.4.2	末端穩定情形	31
第五章	結身	果與討論	.32
宏老 資:	料		34

圖目錄

置	1-1 福海離岸風力發電計畫地理位置圖	.2
圖	1-2 Houlder 和 BMT Group 離岸風機登機系統	.3
圖	2-1 系統配置圖	.4
圖	2-2 myRIO 主控制器	.5
圖	2-3 myRIO 內部硬體配置	.6
圖	2-4 myRIO MXP 連接埠	.7
圖	2-5 伺服馬達接線電路圖	.7
圖	2-6 LabVIEW 專案開發管理	.8
圖	2-7 LabVIEW 圖形化開發環境	.8
圖	2-8 Lynxmotion AL5B 機械手臂	.9
圖	2-9 PWM ≥ Duty Cycle	10
圖	2-10 馬達轉角與脈波寬度對應	10
圖	2-11 LDS V455 Shaker	11
圖	2-12 PCB 352B 加速規	11
圖	3-1 機械手臂座標示意圖	13
圖	3-2 機械手臂座標參數示意圖	13
圖	3-3 程式流程圖	18
圖	3-4 控制程式人機介面	19
圖	3-5 方形繪圖狀況	20
圖	3-6 方形繪圖成果	20
圖	3-7 圓形繪圖狀況	21
圖	3-8 圓形繪圖成果	21

圖	4-1 主動噪音控制示意圖	. 22
圖	4-2 積分流程	.23
圖	4-3 加速度、速度、位移示意圖	.23
圖	4-4 船體六自由度運動	. 24
圖	4-5 旋波訊號	. 25
圖	4-6 高斯白雜訊	.26
圖	4-7 結合之訊號	.26
圖	4-8 經 FFT 之振幅圖	.26
圖	4-9 經 FFT 之相位圖	.27
置	4-10 程式流程圖	.28
置	4-11 程式迴圈說明	. 29
圖	4-12 運動平衡人機介面	.29
圖	4-13 機械手臂 2Hz 運動 FFT	.30
昌	4-14 2Hz 運動補償之結果	.31

表目錄

表	1-1 2010~2030 年「千架海陸風力機」目標規劃[1]	1
表	2-1 myRIO 主要規格	6
表	3-1 D-H 參數定義表	14

第一章 緒論

1.1 台灣之離岸風電發展

台灣四面環海位處於熱帶與亞熱帶氣候區,海底地形及海洋環境相當特殊,擁有世界一級的離岸風場與豐富海洋資源。離岸風力長期而言是提升台灣自主能源、減少化石能源依賴、降低二氧化碳排放重點方向,亦是台灣下一世代產業發展的重要契機。行政院亦於101年2月8日核定「千架海陸風力機」計畫,規劃海域2015-2030年完成600架。

表 1-1 2010~2030 年「千架海陸風力機」目標規劃[1]

年度	2010	2015	2020	2025	2030
陸域風力	519	866	1200	1200	1200
(MW)	(268 架)	(350 架)	(450 架)	(450 架)	(450 架)
海域風力	0	>15	600	1800	3000
(MW)		(4 架)	(120 架)	(360 架)	(600 架)
小計	519	881	1800	3000	4200
	(268 架)	(354 架)	(570 架)	(810 架)	(1050 架)

資料來源:經濟部能源局

在示範風場方面,永傳能源與台灣國際造船公司及世紀鋼鐵結構股份有限公司,共同參與位於彰化海域的「福海離岸風力發電計畫」[2], 其預計最高將有 260MW 的裝置容量。

圖 1-1 福海離岸風力發電計畫地理位置圖

資料來源:永傳能源

1.2 離岸風機登機系統

離岸風機登機系統(Turbine Access System, TASTM)是一安裝在運輸船上的人員運輸機械平台系統。由於離岸風機架設完畢後,需要工程師和技術人員定期登機設定和維護,又離岸風場的海象難以預測與掌控,如何克服海況並增加人員登機的安全性是相當重要的。

Houlder 和 BMT Group 共同開發之第一代登機系統[3](圖 1-2),利用動作感知元件(Motion Reference Unit)來量測船體運動,並使用三組油壓系統來即時反向補償船隻的縱移、縱搖和橫搖的運動,使運輸平台保持在穩定的高度。

圖 1-2 Houlder 和 BMT Group 離岸風機登機系統

離岸風機登機系統,能夠為機組人員在較惡劣的海向下,提供安全 且穩定的平台,使風險最小化、經濟利益最大化,讓每位機組人員都能 安全且迅速的登上離岸風機,進行營運和維護。因此開發出本系統,能 有效降低離岸風電的營運成本,應是未來我國在離岸風電發展上必要的 一環。

1.3 研究動機與目標

我國在海事工程上,雖具有測勘查船、海床鑽探平台、挖泥船等船種,但在運輸技術員和工程師的船種上,因缺乏離岸工程的經驗,目前尚無有搭載離岸風機登機系統的船隻。而在離岸風機架設完畢後,都需要技術人員定期登機設定和維護,因此開發登機系統,增進後勤事務的效率和品質是必需的。

唯目前 Houlder 和 BMT Group 開發的登機系統,為準確量測船體運動,採用了價格較為昂貴的動作感知元件來做量測。故在本次的計畫中,吾人先以低成本之加速規取代動作感知元件,並結合模型機器手臂來完成主動式震動抑制系統。期望能透過此系統來反向平衡外界造成的週期性運動,並熟悉資料擷取和分析的方法,和控制系統軟體之撰寫。

第二章 系統硬體介紹

2.1 系統概論

在本計畫中,吾人使用美商國家儀器(National Instruments, NI)之學 生專案開發嵌入式系統裝置 myRIO 作為系統之機電整合平台,並以 NI LabVIEW 完成系統之控制軟體和人機介面撰寫。

圖 2-1 系統配置圖

圖 2-1 為本計畫之系統架構,主要可分為三個部分:電腦監控人機介面、myRIO 控制器、AL5B 機械手臂與振盪器(Shaker)。電腦監控人機介面能即時監控使用者所需資訊及欲傳送之命令,並透過 Wi-Fi 無線網路與 myRIO 控制器溝通。而 myRIO 控制器則負責系統較繁雜的運算,如運動回饋和訊號截取分析等工作,並傳送 PWM 訊號控制機械手臂。透過這樣的架構,能將資源做較有效的分配,降低系統的不穩定性。

在運動回饋的部分,吾人使用了LDS V455 振盪器來模擬外界的運

動環境,接著藉由 myRIO 內建之加速規,擷取加速度訊號並做快速傅立葉分析,經過二次積分得到位移資訊,再以逆向運動學得到機械手臂的轉角,達成運動回饋的補償。最後再以機械手臂末端夾持之加速規,驗證其運動補償的效果。

2.2 主控制器

2.2.1 主要規格與架構

圖 2-2 myRIO 主控制器

此專案使用的 myRIO 控制器[4],為美商國家儀器公司(National Instruments, NI)於 2013 年推出之產品,讓學生能在短時間內設計工程系統,並實際驗證之。其配備了 FPGA 和 Real-Time 處理器以及多組數位類比 I/O,並能以 LabVIEW 撰寫控制程式,不僅穩定性和效能極高且對外的擴充整合也相當方便,故選為此專案的主控制器,其主要規格(表 2-1 myRIO 主要規格表 2-1)和硬體配置(圖 2-3)如下:

表 2-1 myRIO 主要規格

處理器	Xilinx Z-7010 667MHz Core2
類比輸入	10 組通道,取樣率 500kS/s
類比輸出	6 組通道,12bits 解析度
數位 I/O	40 組通道,可用於 PWM 控制、
	SPI 與 I ² C 通訊

圖 2-3 myRIO 內部硬體配置

資料來源:National Instrument myRIO

2.2.2 基本使用電路

圖 2-4 myRIO MXP 連接埠

圖 2-5 伺服馬達接線電路圖

圖 2-4 框選處為此專案使用到的針腳,針腳(27、29、31)是用來產生控制伺服馬達的 PWM 訊號,針腳(28、30)則是接地。透過 FPGA,我們能以 LabVIEW 將基礎的數位 I/O 轉變為具有 PWM 邏輯的針腳,客制化自己需要的功能。另外雖然 myRIO 配有 5V 的電源供應,但有100mA 的電流限制,且為了讓伺服馬達有更大的扭力,吾人另外使用了

電源供應器,供應 6V 的電源給伺服馬達使用。

2.2.3 開發環境

圖 2-6 LabVIEW 專案開發管理

圖 2-6 為 LabVIEW 在開發專案時相當方便的管理工具,可以在一個視窗內看到所有的程式,且能在不同目標快速切換,大大提升開發的效率。

圖 2-7 LabVIEW 圖形化開發環境

圖 2-7為 LabVIEW 之開發介面,左側為人機介面區(Front Panel),右側為程式區(Block Diagram)。圖型化的介面不僅較易於開發,人機介面和程式區的相互呼應,也讓 UI 設計更加容易。而其資料流(Data Flow)的邏輯,也能讓不具有軟體背景的開發者快速上手。

2.3 機械手臂

圖 2-8 Lynxmotion AL5B 機械手臂

圖 2-8 是 Lynxmotion 一具有夾爪的四自由度的機械手臂,由四顆 伺服馬達來控制機械手臂的轉角位置,達成不同的姿態。而這四顆伺服馬達,皆是固定扭矩,用 PWM 訊號直接調變馬達位置,快速完成使用者指令。以下將概略介紹 PWM 訊號調變。

脈寬調變訊號(Pulse Width Modulation)是將訊號編碼於脈波寬度上的一種技術,此技術以數位的方式來模擬類比訊號,並廣泛應用在資料傳輸上。由於數位訊號只存在 High 與 LOW 電位的變化,相較於類比訊號比較不會受到雜訊干擾。

PWM 訊號中,脈波寬度在整個週期所占的比例稱為工作週期(Duty

cycle),是指位於邏輯高準位(logic high level)的波型在整個週期中占所的比例。以下圖為例,表示固定周期,而 Duty cycle 為 10%、50%及 90%的比例,且相同時間下 10%所暫的工作期間時間最短暫。

圖 2-9 PWM 之 Duty Cycle

而一般市售的伺服馬達,大多是以 PWM 訊號來做調變,利用 Duty Cycle 的寬度來控制伺服馬達的旋轉角度。以此機械手臂的第一顆馬達 HS-485 為例,便是以 600us~2400us 的脈波寬度來控制 0°~180°的轉角,如圖 2-10 所示。

圖 2-10 馬達轉角與脈波寬度對應

資料來源:ServoCity

2.4 振盪器

圖 2-11 LDS V455 Shaker

資料來源: Brüel & Kjær Sound & Vibration Measurement

為了先在實驗室驗證運動回饋的理論,吾人使用了LDS V455 振盪器(Shaker)來模擬船體受到波浪所產生的運動。其運動活塞能在垂直方向依輸入訊號產生不同振幅和頻率的震動。

2.5 加速規

此專題使用了兩個加速規,一是 myRIO 內建的三軸加速規,和機械手臂一起固定在木板上,用以量測整個系統受到的加速度。另一則是夾持在機械手臂末端的 PCB 352B 單軸加速規(圖 2-12),用以量測手臂末端受到的加速度,藉以驗證運動補償的效果。

圖 2-12 PCB 352B 加速規

資料來源:PCB Piezotronics

第三章 機械手臂系統

3.1 運動學

運動學討論的是在不考慮力及慣性的情況下所造成的位移、速度和加速度。而在機器人學中,可分為正向運動學和逆向運動學。正向運動學為給定各關節轉角後可得到手臂末端的位置,而逆向運動學則為給定手臂末端欲到達位置和旋轉量後,反求得各關節之轉角。

3.1.1 正向運動學

若欲得到機器人之正向運動學關係,則必須先建立卡氏座標和關節轉角的關係,而最常使用的方法即為 Denavit-Hartenberg 轉換矩陣,其透過一結合位移和旋轉向量的矩陣來推導各座標系之間的關係。

$$A_i^{i-1} = \begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i)\cos(\alpha_i) & \sin(\theta_i)\sin(\alpha_i) & a_i\cos(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i)\cos(\alpha_i) & -\cos(\theta_i)\sin(\alpha_i) & a_i\sin(\theta_i) \\ 0 & \sin(\alpha_i) & \cos(\alpha_i) & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3-1)

式(3-1)為由關節i轉換至i-1 的 D-H 轉換矩陣,各參數描述如下

 $a_i: Z_{i-1}$ 和 Z_i 的公垂線長(沿著 X_{i-1})

 α_i : z_{i-1} 旋轉到 z_i 的角度(沿著 x_i ,右手定則)

 $\theta_i: x_{i-1}$ 旋轉到 x_i 的角度(沿著 z_{i-1} ,右手定則)

 $d_i: X_{i-1}$ 和 X_i 的公垂線長(沿著 Z_{i-1})

而透過上述的定義,我們必須先決定機械手臂的各座標系位置,再 定義出各參數,進而推出轉換矩陣。

圖 3-1 機械手臂座標示意圖

圖 3-2 機械手臂座標參數示意圖

表 3-1 D-H 參數定義表

Joint i	α_i (°)	$a_i(cm)$	$d_i(cm)$	$ heta_i(^\circ)$
1	90	0	6.9	$\theta_1 + 90$
2	0	12.1	0	$\theta_2 + 90$
3	0	12.7	0	θ_3 – 90
4	0	8.6	0	θ_4 – 90

將上述參數代入式(3-1)後,我們便可以得到各關節之間的座標轉換 矩陣。

$$A_{1}^{0} = \begin{bmatrix} \cos(\theta_{1}) & 0 & \sin(\theta_{1}) & 0\\ \sin(\theta_{1}) & 0 & -\cos(\theta_{1}) & 0\\ 0 & 1 & 0 & d_{1}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3-2)

$$A_{2}^{1} = \begin{bmatrix} \cos(\theta_{2}) & -\sin(\theta_{2}) & 0 & a_{2}\cos(\theta_{2}) \\ \sin(\theta_{2}) & \cos(\theta_{2}) & 0 & a_{2}\sin(\theta_{2}) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3-3)

$$A_3^2 = \begin{bmatrix} \cos(\theta_3) & -\sin(\theta_3) & 0 & a_3\cos(\theta_3) \\ \sin(\theta_3) & \cos(\theta_3) & 0 & a_3\sin(\theta_3) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3-4)

$$A_{2}^{1} = \begin{bmatrix} \cos(\theta_{2}) & -\sin(\theta_{2}) & 0 & a_{2}\cos(\theta_{2}) \\ \sin(\theta_{2}) & \cos(\theta_{2}) & 0 & a_{2}\sin(\theta_{2}) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3}^{2} = \begin{bmatrix} \cos(\theta_{3}) & -\sin(\theta_{3}) & 0 & a_{3}\cos(\theta_{3}) \\ \sin(\theta_{3}) & \cos(\theta_{3}) & 0 & a_{3}\sin(\theta_{3}) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4}^{3} = \begin{bmatrix} \cos(\theta_{4}) & -\sin(\theta_{4}) & 0 & a_{4}\cos(\theta_{4}) \\ \sin(\theta_{4}) & \cos(\theta_{4}) & 0 & a_{4}\sin(\theta_{4}) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4}^{0} = \begin{bmatrix} \cos(\theta_{4}) & -\sin(\theta_{4}) & 0 & a_{4}\cos(\theta_{4}) \\ \sin(\theta_{4}) & \cos(\theta_{4}) & 0 & a_{4}\sin(\theta_{4}) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4}^{0} = \begin{bmatrix} A_{1}^{0} A_{1}^{1} A_{2}^{2} A_{3}^{3} & \cos(\theta_{4}) & \cos(\theta_{4}) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{5}^{0} = \begin{bmatrix} A_{1}^{0} A_{1}^{1} A_{2}^{2} A_{3}^{3} & \cos(\theta_{4}) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{5}^{0} = \begin{bmatrix} A_{1}^{0} A_{1}^{1} A_{2}^{2} A_{3}^{3} & \cos(\theta_{4}) & \cos(\theta_{4}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{5}^{0} = \begin{bmatrix} A_{1}^{0} A_{1}^{1} A_{2}^{2} A_{3}^{3} & \cos(\theta_{4}) & \cos(\theta_{4}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{5}^{0} = \begin{bmatrix} A_{1}^{0} A_{1}^{1} A_{2}^{2} A_{3}^{3} & \cos(\theta_{4}) & \cos(\theta_{4}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{5}^{0} = \begin{bmatrix} A_{1}^{0} A_{1}^{0} A_{1}^{0} A_{3}^{0} & \cos(\theta_{4}) & \cos(\theta_{4}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{5}^{0} = \begin{bmatrix} A_{1}^{0} A_{1}^{0} A_{3}^{0} & \cos(\theta_{4}) & \cos(\theta_{4}) & \cos(\theta_{4}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{5}^{0} = \begin{bmatrix} A_{1}^{0} A_{1}^{0} & A_{2}^{0} & \cos(\theta_{4}) & \cos(\theta_{4}) & \cos(\theta_{4}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{7}^{0} = \begin{bmatrix} A_{1}^{0} A_{1}^{0} & A_{2}^{0} & A_{3}^{0} & \cos(\theta_{4}) & \cos(\theta_{4}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_4^0 = A_1^0 A_2^1 A_3^2 A_4^3 (3-6)$$

因此透過式(3-6),只要給定各轉角關節,便能很輕易地得到機械手 臂末端在卡氏座標的位置。

3.1.2 逆向運動學

而在實際應用中,常是給定末端端效器欲到達位置去反求各關節轉角。為了快速計算且避免無法收斂的狀況,吾人採用解析解之方式。由於此機械手臂有四個轉角,故至少須給定四個約束條件才能解出。因此除了給定末端端效器遇到達的x,y,z座標,吾人使末端端效器始終平行於水平面,如此便可解出四個轉角的解。以下為各轉角之解析解推導:

令末端端效器轉移矩陣(已知條件)為

$$T = \begin{bmatrix} n_x & t_x & b_x & p_x \\ n_y & t_y & b_y & p_y \\ n_z & t_z & b_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3-7)

又

$$T = A_1^0 A_2^1 A_3^2 A_4^3 (3-8)$$

將 A_1^0, A_4^3 移項

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} (A_1^0)^{-1} T (A_4^3)^{-1} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} A_2^1 A_3^2 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
(3-9)

(3-9)式左項等於

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} A_{01}^{-1} \begin{bmatrix} p_x - 8.6n_x \\ p_y - 8.6n_y \\ p_z - 8.6n_z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} A_{01}^{-1} \begin{bmatrix} p_x^* \\ p_y^* \\ p_z^* \\ 1 \end{bmatrix} = \begin{bmatrix} p_x^*c_1 + p_y^*s_1 \\ p_z^* - 6.9 \\ p_x^*s_1 - p_y^*c_1 \end{bmatrix}$$

(3-10)

(3-9)式右項等於

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} A_{12} A_{23} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 12.7c_{23} + 12.1c_2 \\ 12.7s_{23} + 12.1s_2 \\ 0 \end{bmatrix}$$
(3-11)

1. 解 θ_1

比較式(3-10)和式(3-11)可得

$$\begin{bmatrix} p_x^* c_1 + p_y^* s_1 \\ p_z^* - 6.9 \\ p_x^* s_1 - p_y^* c_1 \end{bmatrix} = \begin{bmatrix} 12.7 c_{23} + 12.1 c_2 \\ 12.7 s_{23} + 12.1 s_2 \\ 0 \end{bmatrix}$$

$$\theta_1 = \operatorname{atan2}(p_y^*, p_x^*)$$

2. 解 θ_{3}

$$\begin{cases} a = 12.7 \\ b = 12.1 \\ k_1 = p_x^* c_1 + p_y^* s_1 \\ k_2 = p_z^* - 6.9 \end{cases}$$

$$\begin{cases} k_1 = a\cos\theta_{23} + b\cos\theta_2\\ k_2 = a\sin\theta_{23} + b\sin\theta_2 \end{cases}$$

將兩式平方相加

$$k_1^2 + k_2^2 = a^2 + b^2 + 2ab\cos\theta_3$$

$$\frac{k_1^2 + k_2^2 - a^2 - b^2}{2ab} = \cos\theta_3$$

因須考慮 θ_3 的值域,故運用半角公式搭配 atan2 得到 θ_3

$$\tan(\frac{\theta_3}{2}) = \pm \sqrt{\frac{1 - \cos \theta_3}{1 + \cos \theta_3}}$$
$$\theta_3 = \pm 2 \tan 2(\sqrt{1 - \cos \theta_3}, \sqrt{1 + \cos \theta_3})$$

3. 解 θ_{2}

移項可得

$$\begin{cases} k_1 - b\cos\theta_2 = a\cos\theta_{23} \\ k_2 - b\sin\theta_2 = a\sin\theta_{23} \end{cases}$$

平方相加

$$k_1^2 + k_2^2 + b^2 - 2b(k_1c_2 + k_2s_2) = a^2$$

$$k_1c_2 + k_2s_2 = \frac{k_1^2 + k_2^2 + b^2 - a^2}{2b}$$

化為
$$k_1c_2 + k_2s_2 = k$$

運用萬能公式

$$t = \tan(\frac{\theta_2}{2}), \cos\theta_2 = \frac{1 - t^2}{1 + t^2}, \sin\theta_2 = \frac{2t}{1 + t^2}$$
$$k_1(1 - t^2) + 2k_2t = (1 + t^2)k$$
$$(k_1 + k)t^2 - 2k_2t + (k - k_1) = 0$$
$$t = \frac{k_2 \pm \sqrt{k_2^2 - k^2 + k_1^2}}{k_1 + k}$$
$$\theta_2 = 2\operatorname{atan2}(k_2 \pm \sqrt{k_2^2 - k^2 + k_1^2}, k_1 + k)$$

解θ₄

$$(A_{01}A_{12}A_{23})^{-1}T = A_{34} (3-12)$$

比較(3-12)左右兩式

左式(1,1)和(2,1)分別為

$$\begin{bmatrix} n_z \sin(\theta_2 + \theta_3) + n_x \cos(\theta_2 + \theta_3) \cos\theta_1 + n_y \cos(\theta_2 + \theta_3) \sin\theta_1 \\ n_z \cos(\theta_2 + \theta_3) - n_x \sin(\theta_2 + \theta_3) \cos\theta_1 - n_y \sin(\theta_2 + \theta_3) \sin\theta_1 \end{bmatrix}$$

右式(1,1)和(2,1)分別為

 $\begin{bmatrix}
\cos\theta_4 \\
\sin\theta_4
\end{bmatrix}$

運算後可得 θ_{4}

3.2 控制程式

為了驗證上述計算式,並測試機器人的運動姿態,吾人撰寫了一程式,有預先撰寫好的姿態、路徑、使用者輸入關節角度和輸入末端端效器位置四種模式。圖 3-3 為其程式流程圖。

圖 3-3 程式流程圖

圖 3-4 控制程式人機介面

要對機械手臂進行控制前,都必須先按 Connect 和 myRIO 做連線,然後再選按想使用的模式。在 Pose 模式中,包含 Initial 和 L 兩種姿勢; Path 中則是預先寫好的矩形和圓形路徑; Position 是使用者輸入末端效器想到達的位置; Angles 是輸入各馬達的轉角角度。

3.3 繪圖結果

圖 3-5 方形繪圖狀況

圖 3-6 方形繪圖成果

圖 3-7 圓形繪圖狀況

圖 3-8 圓形繪圖成果

由以上圖片可以看出,由於此機械手臂屬模型使用,步數的解析度 無法達到太高,若要畫出極度精準的圖形,仍要使用 XY 機械平台較為 合適。

第四章 運動補償系統

本章將介紹關於機械手臂運動補償的原理,以及感測系統的資料擷 取與訊號處理分析。並在最後以實驗結果驗證運動補償系統。

4.1 主動震動控制

4.1.1 概述

震動控制可分為被動和主動兩種,前者是用物理的方式將震動隔絕或減小,但此方法受限於材料與欲控制的頻率。後者則是從主動噪音控制(Active Noise Contorl, ANC)[5]衍生出的應用,基於波的疊加性,由一機電整合系統產生和欲消除波振幅相同、反相相位的波,藉此消除原有之震動或噪音,如圖 4-1。

圖 4-1 主動噪音控制示意圖

因此若我們能透過加速度訊號計算出機械手臂系統受到的震動,我 們便能夠讓機械手臂末端進行振幅相同、相位相反的運動,藉此達到抑 制震動的效果。

4.1.2 位移計算

由於加速規得到的是加速度的訊號,因此必需對其進行二次積分來 得到位移。現假設有一已知的弦波加速度訊號,如式(3-13)

$$A\cos(\omega_0 t + \theta) = A\cos(2\pi f_0 t + \theta) \tag{3-13}$$

A:振幅(Amplitude)

 f_0 :頻率(Frequency)

θ:相位(Phase)

經過下列流程,便可得到位移訊號:

圖 4-2 積分流程

圖 4-3 加速度、速度、位移示意圖

4.1.3 運動補償目標

圖 4-4 船體六自由度運動

圖 4-4 為船體的六自由度運動。由於此次採用的機械手臂的機構限制,故只針對 Z 軸方向的起伏(heave)來做補償,並使用震盪器來模擬起伏的狀況。

4.2 訊號分析

4.2.1 傅立葉變換

傅立葉變換可以將一時域訊號轉換到頻域來得到頻譜(Spectrum), 並藉著頻譜分析來得到訊號在各個頻率成分下的振幅(Amplitude)以及相位(Phase)[6]。式(3-14)為其變換公式

$$H(f) = \int_{-\infty}^{\infty} h(t)e^{-j2\pi ft}dt$$
 (3-14)

通常,傅立葉變換是頻率變量的一個複函數:

$$H(f) = R(f) + j\operatorname{Im}(f) = |H(f)|e^{j\theta(f)}$$

其中,R(f)是傅立葉變換的實部,Im(f)是傅立葉變換的虛部。

ig|H(f)ig|是h(t)的振幅譜,可從 $\sqrt{R^2(f)+ ext{Im}^2(f)}$ 得出 heta(f)是傅立葉變換的相角,可從 $an^{-1}[rac{ ext{Im}(f)}{R(f)}]$ 得出

但在電腦中的運算實是對訊號進行取樣後,在進行離散傅立葉變換(DFT)來得到其頻譜,式(3-15)為其變換公式

$$X_{k} = \sum_{n=0}^{N-1} x_{n} e^{-j2\pi k n/N}, k \in \mathbb{Z}$$
 (3-15)

另外為避免洩漏效應(Leakage Effect),需注意待量測頻率是否在 $\frac{f_s}{N_s}$ 頻率點上(f_s 為取樣頻率, N_s 為取樣點數)。

4.2.2 資料擷取與訊號處理

加速規擷取到的資料往往帶著雜訊,而為了將重要的加速度訊號和雜訊做分離,我們必須先對其訊號作頻譜分析。在此,吾人使用的是快速傅立葉變換法(FFT),來得到其頻譜。

以下模擬一弦波訊號 $A\cos(2\pi f_0 t + \theta)$ 和高斯白雜訊(Gaussian White Noise)結合,接著對其作頻譜分析。

圖 4-5 旋波訊號

圖 4-6 高斯白雜訊

圖 4-7 結合之訊號

圖 4-8 經 FFT 之振幅圖

圖 4-9 經 FFT 之相位圖

而從上二張圖中可發現,由於 FFT 是對一有限時間長度的訊號,經 過取樣後來做分析,而傅立葉轉換是由負無限大積分到正無限大,故兩者 圖形並不會一樣。增加取樣頻率或取樣點數,皆會有較好的效果,但須更 高速度硬體和擷取時間。

4.3 控制程式

在此模式中,結合了加速度規和機械手臂的應用,藉由加速度規的 訊號來量測環境的週期性運動,並使機械手臂末端做出反向平衡,對末 端端效器做運動補償,使其維持在一定的高度,減低晃動情形。

由於海浪的頻率大多屬低頻,故吾人設定的加速規取樣頻率為 500Hz,取樣 1000點,這樣能量測到的最小頻率間隔為 0.5Hz。圖 4-9 為程式的流程圖。

圖 4-10 程式流程圖

圖 4-10 為 RT 端程式主要架構,透過此種架構能有效的分配資源,而不會相互牽制,產生延遲的狀況。在 LoopA 中有一旗標,會在取樣完整執行完一次(1000 個取樣點)後,舉起旗標,如此一來 LoopC 透過讀取旗標,就能知道該時刻是取樣的起始點,在該時刻即時輸出計算好的運動平衡路徑,就能和 LoopA 的相位切齊,而不會有相位對不到的狀況。

圖 4-11 程式迴圈說明

圖 4-12 運動平衡人機介面

圖 4-11 是運動補償的人機介面,在使用者按下開始後,Measuring 即會亮起紅燈,警示使用者尚在計算中。而在開始平衡後,Ready 就會 亮起綠燈,告訴使用者可以開始使用。下方的圖表區則是即時的 FFT 分

析結果。

4.4 運動補償結果

4.4.1 機器手臂周期運動

為了確保機械手臂能準確執行週期性的運動,使運動補償能順利執行,吾人先將震盪器關閉,只單純讓機械手臂末端進行 2Hz 的弦波運動,並對其對 FFT 分析。

圖 4-13 機械手臂 2Hz 運動 FFT

圖 4-13 是夾持在機械手臂末端的加速規訊號,並對其作 FFT 分析。圖中可以發現,除了 2Hz 的運動頻率外,還有很多高頻的訊號。吾人認為是因為此機械手臂是由較低扭力的伺服機所驅動,故無論在運動或靜止時,都會有相當程度的震動產生。因此在觀察運動補償的效果時,也必須考慮此高頻振動造成的影響。

4.4.2 末端穩定情形

圖 4-14 2Hz 運動補償之結果

圖 4-14 是開啟了震盪器(2Hz)後,由夾持在機械手臂末端加速規作 FFT 的結果。圖中藍色的線是開啟了運動補償的結果,紅色則是尚未開啟的結果。由圖中可發現,欲平衡的 2Hz 運動,明顯下降到約一半的位置,但因機械手臂自身運動所伴隨的高頻振動也隨之出現。

第五章 結果與討論

此次專題的結論可分為兩部分,一是對機械手臂的控制,另一則是運動補償系統的實現。

在機械手臂的控制上,由於此機械手臂是由固定扭矩的伺服馬達所驅動,只能下達位置的指令,並無法對其速度或加速度做精確的控制。而目前大多的機械手臂都是以 Lagrange 動態方程式來對系統建模,使用 Jacobian 矩陣來得到馬達轉速和末端端效器速度的關係,並調變馬達的力矩來控制機械手臂。故未來若想做更精確的運動控制,應使用能改變力矩的馬達較為適當。

而運動補償系統的實現,則可以發現到應用主動式震動控制的確有 震動抑制的效果,也完成了一個有感測器、致動器和控制器的機電整合 系統。但機械手臂在運動時所造成的高頻振動,應是此機械手臂為簡易 型,扭矩不足所造成,若未來能換成有更大扭力或較為滑順的制動機 構,如油壓設備等,應會有更好的效果。

在建構運動補償系統所遇到的最大困難,是在切齊加速規和機械手 臂運動相位的部分。因其必須對程式執行時間有相當好的掌控,尤其是 這種須確保時效性的程式,否則相位沒有對齊,反而會增加系統的額外 運動。最後吾人採用的方法為偵測開始量測的時間點,讓機械手臂也在 同個時間點開始運動,並利用旗標在兩個迴圈溝通,藉此同步兩個迴 圈。

由於海浪的狀況並不一定是週期性的,未來若想讓系統有更好的效能與穩定性,應該先對海浪的狀況,進行觀察與資料建檔。並將所得到的數據對系統進行離線訓練,建構一個完善的資料庫,使用模糊控制或類神經的方法,讓系統能夠根據海況,調較自身的參數。

下述連結為所有成果的影片展示:

 $\underline{https://www.youtube.com/watch?v=} arpTIcAd2oQ\&feature=\underline{youtu.be}$

参考資料

- [1] 網頁"經濟部能源局-千架海陸風力機計畫", http://goo.gl/8jPK85
- [2] 網頁"永傳能源-福海離岸風力發電計畫", http://goo.gl/e9rNsW
- [3] 網頁"BMT-Turbine Access System", http://goo.gl/MiG4As
- [4] 網頁"NI myRIO", http://www.ni.com/myrio/
- [5] Kuo SM, Morgan DR, "Active noise control: a tutorial review", Proceedings of the IEEE, vol. 87, pp.943-973, 1999
- [6] E. Oran Brigham(1985),快速傅立葉變換, 復漢出版社