Complex Analysis: Midterm Definitions

Author: Shun (@shun4midx)

Remark

I only will include definitions that are useful for me, i.e. things that I still find useful after learning this course for 7 weeks. Otherwise, there will be too many definitions.

Power Series

Analytic Polynomial

Analytic Polynomial

If $P(x,y) = \alpha_0 + \alpha_1(x+iy) + \cdots + \alpha_N(x+iy)^N = \sum_{k=0}^N \alpha_k z^k$ for some $\alpha_k \in \mathbb{C}$, then it is an analytic polynomial.

Cauchy-Riemann Equations

For P(x,y)=u(x,y)+iv(x,y), the Cauchy-Riemann equations are: $u_x=v_y$ and $u_y=-v_x$. Another way to view it is $P_y=iP_x$.

Radius of Convergence

Cauchy Product

Given
$$P_1(z) = \sum a_k z^k$$
, $R = R_1$; $P_2(z) = \sum b_k z^k$, $R = R_2$. Then, $P_1 P_2 = \sum c_k z^k$, where $c_k = \sum_{p=0}^k a_p b_{k-p}$, and $R \ge \min(R_1, R_2)$

Analytic Functions

Analytic Functions

Analytic

f is **analytic** at z if f is **differentiable in a neighborhood** of z. Similarly, f is **analytic** on a set S if f is **diff at all points** of some open set containing S.

Line Integrals

Smooth Curves

Smooth

The curve z(t) = x(t) + iy(t) is said to be **smooth** if $z'(t) \neq 0$ except at *finitely many points*.

Line Integral

Say C is a **smooth** curve in \mathbb{C} , where z(t) = x(t) + iy(t). Then, $\int_C f(z)dz = \int_a^b f(z(t))dz = \int_a^b f(z(t))z'(t)dt$

Smoothly Equivalent

Let C_1 and C_1 be **smooth curves** in \mathbb{C} , where $C_1: z(t), a \leq t \leq b$ and $C_2: w(t), c \leq t \leq d$. C_1 and C_2 are said to be **smoothly equivalent** if \exists 1-1 \mathcal{C}^1 mapping $\lambda: [c,d] \to [a,b]$, s.t. $w(t) = z(\lambda(t))$.

As this is an equivalence relation, we denote **smoothly equivalent** with $C_1 \sim_{sim} C_2$

Rectangle Theorem

Simple Closed Curve

- A curve is **closed** if its internal and terminal points coincide
- C is a simple closed curve with $t \in [a,b]$ if $z(t_1) = z(t_2)$ with $t_1 < t_2$ implies $t_1 = a$ and $t_2 = b$
- The boundary of a rectangle is the simple closed curve in the counterclockwise direction

Liouville's Theorem

Convex Set

We say S is a **convex set** in \mathbb{C} if $\forall x, y \in S$, $tx + (1 - t)y \in S$ $\forall t \in [0, 1]$.

Note, this implies $x_1, \ldots, x_N \in S \Leftrightarrow \sum_{i=1}^N a_i x_i \in S \ \forall \sum_{i=1}^N a_i = 1 \text{ and } a_i \geq 0$

Saddle Points

C-analytic

A function is **C-analytic** on a region D if it is analytic on D and **continuous** on D

Saddle Point

 z_0 is a **saddle point** of an analytic function f on a region D if z_0 is a saddle point on the real valued function g(x,y) = |f(x,y)|. In other words, \mathbf{g} is **differentiable** and $g_x(z_0) = g_y(z_0) = 0$ but z_0 is **NOT a local extremum**.

Schwarz Lemma

$B_{\alpha}(z)$

Define $B_{\alpha}(z) = \frac{z-\alpha}{1-\bar{\alpha}z}$, for $|\alpha| < 1$. Then,

- 1. $B_{\alpha}(\alpha) = 0$
- 2. $B_{\alpha}(z)$ is **ana on D**, and it is **conti on** $\bar{\mathbf{D}}$.
- 3. $|B_{\alpha}(z)|^2|_{z=1}=1$, so by max modulus thm, $|B_{\alpha}(z)| \leq 1$ on D

Morera's Theorem

Converges Uniformly on Compacta

Let $\{f_n\}$ and f be defined on an open set D. We say that f_n converges uniformly on compacta if $f_n \to f$ uniformly on every compact subset $K \subseteq D$.

Regular Analytic

A curve $\gamma:[a,b]\to\mathbb{C}$ is called a **regular analytic** arc if γ is an **analytic map, 1–1** on [a,b] with $\gamma'\neq 0$

Simply Connected Domain

Simply Connected (Book)

We say S is **simply connected** if it is **path connected** and for any conti maps f_1 : $[0,1] \rightarrow S$ with $f_0(0) = f_1(0)$ and $f_0(1) = f_1(1)$, \exists conti F: $[0,1] \times [0,1] \rightarrow S$, s.t. $F(t,0) = f_0(t)$, $F(t,1) = f_1(t)$.

Simply Connected (Lecture)

For a region $D \subseteq \mathbb{C}$, D is simply connected if $(\mathbb{C} \cup \{\infty\}) \setminus D$ is path connected

Holomorphic Simply Connected (HSC)

D is hsc if $\forall f$: and on D, $\int_{\Gamma} f dz = 0$ for all simple closed curve $\Gamma \subseteq D$

Singularity

Deleted Neighborhood

A **deleted neighborhood** of z is an open set of $\{z \mid 0 < |z - z_0| < \delta\}$

Definition of Singularities

Say z_0 is a **singularity** of f, we can classify it as follows:

- 1. If $\exists g$ that is **ana** at z_0 and f(z) = g(z) in some **deleted nbd** of z_0 , we say f has a **removable singularity**
- 2. If for $z \neq z_0$, f can be written as $f(z) = \frac{A(z)}{B(z)}$, where A and B are analytic at z_0 , $A(z_0) \neq 0$, $B(z_0) = 0$, we say f has a **pole** at z_0 . In particular, if B has a zero of order k at z_0 , then we say z_0 is a pole of f of order k
- 3. If f has neither a removable singularity nor a pole at z_0 , then we call z_0 an **essential singularity** of f