SUR CERTAINES CLASSES DE SUITES DANS LES ESPACES DE BANACH, ET LE THÉORÈME DE DVORETZKY-ROGERS.

par Alexandre Grothendieck (São Paulo, Paris).

1. Introduction. Notations et rappels sur les produits tensoriels topologiques.

Un théorème remarquable de Dvoretzky-Rogers [3] affirme qu'un espace de Banach où toute suite sommable est absolument som mable, est forcément de dimension finie. J'ai retrouvé ce résultat par une méthode complètement différente [5,Chap.2, fin du nº. 2]. Ces deux méthodes ont des champs d'application très différents. Nous allons développer ici quelques résultats intéressants de nature métrique qui se démontrent à l'aide du lemme fondamental de [3], et dont quelques-uns ont été signalée dans [5].

Je suppose connue la signification des symboles & et introduits dans [4] et son résumé [5]; cependant, dans ces travaux, j'emploie encore le signe & au lieu de & (ce dernier est plus suggestif pour la dualité entre les opérations 🖄 . et se prète d'ailleurs mieux à une extension systématique du formalisme tensoriel-topologique). Pour simplifier, nous consi dérons uniquement des espaces de Banach, dans toute la suite. ESF est le complété de ESF (produit tensoriel algébrique ordinaire de E et F) pour une norme, notée |u|, telle que le dual de E&F soit exactement l'espace B(E,F) des formes bilinéaires continues sur EXF, muni de sa norme usuelle. Il s'ensuit aisément que pour tout espace de Banach G, il y a correspondance biunivoque canonique, préservant les normes naturelles, entre applications bilinéaires continues de ExF dans G, et applications linéaires continues de ESF dans G. ESF est l'adhérence de E&F dans B(E',F'), quand on interprète E&F espace de formes bilinéaires sur .E' X F'. La norme induite E&F par B(E',F') est notée |u|, ou ||u|| (suivant l'usage général pour la norme d'une forme bilinéaire). Le dual de sera noté B^(E,F), c'est un espace de formes bilinéaires contiSoient E_1,F_1 des espaces de Banach (i=1,2), u_1 une application linéaire continue de E_1 dans F_1 , alors $u_1 \otimes u_2$ est une application linéaire de $E_1 \otimes E_2$ dans $F_1 \otimes F_2$, qui est continue pour les normes $\widehat{\otimes}$, et aussi pour les normes $\widehat{\otimes}$. Par prolongement par continuité, on obtient donc une application linéaire continue $u_1 \widehat{\otimes} u_2$ de $E_1 \widehat{\otimes} E_2$ dans $F_1 \widehat{\otimes} F_2$, et une application linéaire continue $u_1 \widehat{\otimes} u_2$ de $E_1 \widehat{\otimes} E_2$ dans $F_1 \widehat{\otimes} F_2$. On a d'ailleurs

$$|\mu_1 \otimes u_2|| \leq |\mu_1|| \|u_2||$$
 $||\mu_1 \otimes u_2|| \leq ||\mu_1|| \|\mu_2||$.

Mais en général, $u_1 \otimes u_2$ n'est pas continue pour les normes induites par $E_1 \otimes E_2$ et $F_1 \otimes F_2$ (en particulier, prenant pour u et v les applications identiques $E \longrightarrow E$ et $F \longrightarrow F$, cela revient alors à dire qu'en général $E \otimes F \neq E \otimes F$!).

Proposition 1. Soient E_1,F_1 (i=1,2) des espaces de Ranach, u_1 une application linéaire continue de E_1 dans F_1 . Supposons que E_1' ou E_2' satisfasse à la condition d'approximation métrique. Pour que $u_1 \otimes u_2$ soit continue et de norme $\leq M$ pour les normes induites par $E_1 \otimes E_2$ et $F_1 \otimes F_2$, (i.e. se prolonge en une application linéaire continue de norme $\leq M$ de $E_1 \otimes E_2$ dans $F_1 \otimes F_2$) il faut et il suffit que l'application $u_1' \otimes u_2'$ de $F_1' \otimes F_2'$ dans $E_1' \otimes E_2'$ satisfasse à la condition analogue.

Soit en effet $v = u_1 \otimes u_2$, si v définit une application linéaire de norme $\leq M$: $E_1 \otimes E_2 \longrightarrow F_1 \otimes F_2$, alors sa transposée v' peut être considérée comme une application linéaire de norme $\leq M$ du dual $B(F_1,F_2)$ de $F_1 \otimes F_2$ dans le dual $B(E_1,E_2)$ de $E_1 \otimes E_2$. Sur $F_1' \otimes F_2'$, v' se réduit à $u_1' \otimes u_2'$, appliquant $F_1' \otimes F_2'$ dans $E_1' \otimes E_2'$, et comme les normes sur ces espaces, envisagées dans l'énoncé, sont celles induites par $B(F_1,F_2)$ resp. par $B'(E_1,E_2)$ (voir ci-dessus), $u_1' \otimes u_2'$ a bien la propriété annoncée dans l'énoncé. La réciproque se démontre de façon exactement symétrique.

2. Rappels sur certaines classes de suites.

Si $1 \le p < +\infty$, on désigne par \underline{L}^p l'espace des suites scalaires de puissance p.ème intégrable, muni de sa norme usuelle $\|(\lambda_1)\|_p = (\sum_i |\lambda_i|^p)^{1/p}$ qui en fait un espace de Banach. Pour $p = \infty$, \underline{L}^∞ désigne l'espace des suites scalaires bornées, muni de la norme $\|(\lambda_1)\|_{\infty} = \sup_i |\lambda_i|$, qui en fait un espace de Banach. \underline{C}_0 désigne le sous-espace fermé de \underline{L}^∞ formé des suites qui tendent vers 0, espace muni de la norme induite. Plus généralement, si \underline{E} est un espace de Banach, et $1 \le p < +\infty$, on désigne par $\underline{L}^p_{\underline{E}}$ l'espace des suites (x_1) dans \underline{E} telles que la suite des normes soit dans \underline{L}^p , muni de la norme $\|(x_1)\|_p = (\sum_i \|x_i\|_p^p)^{1/p}$, qui en fait un espace de Banach $[2, \operatorname{Chap.4}]$, de même \underline{L}^∞ désigne l'espace de Banach des suites bornées dans \underline{E} , muni de la norme $\|(x_1)\|_{\infty} = \sup_i \|x_i\|_p^p$ des suites dans \underline{E} , muni de la norme \underline{L}^∞ des suites des suites dans \underline{E} , muni de la norme \underline{L}^∞ des suites des suites dans \underline{E} , muni de la norme \underline{L}^∞ des suites des suites dans \underline{E} , qui tendent vers 0.

Soit toujours B un espace de Banach, et 1≤p≤+∞. Une suite (x,) dans E est dite scalairement de puissance p.ème intégrable (ou aussi scalairement bornée, dans le cas p=+00) si quel que soit $x' \in E'$, la suite $(\langle x, x' \rangle)$ est dans ℓ^p . Désignons alors par ux' cet élément de QP, u est donc une applica tion de E' dans LP, manifestement linéaire, et de plus continue en vertu du théorême du graphe fermé (car continue pour la topolo gie sur lp de la convergence suivant les coordonées, qui est sé parée et moins fine que la topologie normée naturelle de &P).Sup posant alors p>1, la transposée de u définit une application linéaire continue de $\underline{\underline{L}}^{p'}(\frac{1}{p}+\frac{1}{p},=1)$ dans E*. Comme on voit aussitôt que u'e = x_i ((e_i) désignant la "base canonique p^i), et que l'espace vectoriel engendré par les e_i dans est bense (car p'< +00), on voit que u'(Lp') CE. On peut préciser l'application linéaire continue v: Qp' -> E ainsi définie par la suite (x,) scalairement de puissance p.ème intégrable: Pour tout $\lambda = (\lambda_1) \in \underline{\ell}^p$, $(\lambda_1 x_1)$ est une suite sommable

dans E, et $\sum_{i} \lambda_{i} x_{i} = v \lambda$. En effet (th. d'Orlicz) on sait que dire que ($\lambda_{i}x_{i}$) est sommable revient à dire que pour toute su<u>i</u> te $(\mu_i) \in \underline{\ell}^{\infty}$, la suite $(\mu_i \lambda_i x_i)$ est sommable dans E pour la topologie faible, i.e. il existe un x EE (somme de cette suite) tel que $\langle x,x'\rangle = \sum_{i} \langle \lambda_{i} \mu_{i} x_{i},x' \rangle$ pour tout $x' \in E'$. Or il suffit de prendre $x = v((\mu_1, \lambda_1))$, comme on constate aussitôt, et cela montre en même temps, en faisant | | = l pour tout i, que $\sum \lambda_i x_i = v((\lambda_i))$. De plus, on a une réciproque: Si 1 , toute application linéaire continue <math>v de Q^p dans E est dépar une suite (x,) dans E scalairement de puissance p.ème intégrable, bien déterminée par v. En effet, les x, sont bien déterminés par x, = ve; d'ailleurs, comme la suite (e,) dans P' est manifestement ecalairement de puissance p.ème intégrable (le dual de $\underline{\ell}^p$ ' étant $\underline{\ell}^p$) il en est de même de son image (x_i) dans E par l'application v. D'autre part, v coincide avec l'application $(\lambda_1) \rightarrow \sum \lambda_1 x_1$ sur les e_1 , donc sur l'espace vectoriel fermé engendré par les e, qui n'est autre que Lp'lui même (car p' <00). En résumé, nous avons obtenu la

Proposition 2. Soit E un espace de Banach, et $1 , <math>1 \le p' < +\infty$, 1/p + 1/p' = 1. L'espace $L(\underline{L}^p', E)$ des applications linéaires continues de \underline{L}^p' dans E s'identifie à l'espace des suites (x_1) dans E scalairement de puissance p.ème intégrables: à v correspond la suite $(x_1) = (ve_1)$, à (x_1) l'application $v((\lambda_1)) = \sum \lambda_1 x_1$ (le deuxième membre est une série sommable dans B).

Si $1 \le p \le \infty$, nous désignons par $\mathbf{M}_p((\mathbf{x}_1))$ la norme de l'application linéaire u de E' dans \underline{L}^p définie par une suite (\mathbf{x}_1) dans E scalairement de puissance p.ème intégrable; dans le cas $1 , c'est donc aussi la norme de l'application linéaire de <math>\underline{L}^p$ dans E qui correspond à cette suite (cette application n'étant autre que la transposée de u).

Supposent toujours $1 , l'espace <math>\underline{L}^p \otimes E$, adhérence dans $L(\underline{L}^p)$, E) du sous-espace $\underline{L}^p \otimes E$ formé des applications

linéaires continues de rang fini, s'identifie à un sous-espace vec toriel fermé de l'espace des suites dans E scalairement de puissance p.ème intégrable. (Mais on voit, en faisant $E = \mathcal{L}^p$ ', v = ap plication identique de \mathcal{L}^p ' sur E, application que n'est pas com pacte, donc non dans $\mathcal{L}^p \otimes E$ - qu'en général $\mathcal{L}^p \otimes E$ n'est pas identique à l'espace de toutes les suites dans E scalairement de pui ssance p.ème intégrable). En particulier, signalons que $\mathcal{L}^\infty \otimes E$ peut se caractériser comme l'espace des suites relativement compactes dans E (nous ne nous servirons pas de ce fait, très élémentaire). Plus intéressant est le

Corollaire. On a $c_0 \otimes E = c_0(E)$; cette identification préserve les normes naturelles.

Nous laissons la démonstration au lecteur (c'est aussi un cas particulier de [5, Chap.l,nº5,th.4]).

La prop.2 ne dit rien sur le cas p=1. Il est bien connu en effet qu'une suite scalairement sommable dans E n'est pas en général sommable (si E n'est pas réflexif), donc ne définit pas d'application linéaire de $\stackrel{\infty}{\underline{L}}^{\infty}$ dans E; et que les combinaisons linéaires des e_i n'étant pas denses dans $\stackrel{\infty}{\underline{L}}^{\infty}$, on ne peut pas non plus espérer obtenir toutes les applications linéaires continues de $\stackrel{\infty}{\underline{L}}^{\infty}$ dans E à l'aide des suites sommables dans E. (Voit corollaire qui suit pour la caractérisation des applications linéaires obtenues ainsi). On a cependant:

Froposition 3. L'espace L(co,E) s'identifie à l'espace des suites scalairement intégrables dans E.

Cette correspondance se précise et se démontre exactement comme dans la prop.2; on se sert essentiellement du fait que l'espace vectoriel fermé dans \underline{c}_0 engendré par les \underline{s}_1 est \underline{s}_0 lui-même. D'autre part, le sous-espace \underline{L}' $\underline{\otimes}$ E de $\underline{L}(\underline{c}_0,E)$ se précise ici de façon remarquable:

Corollaire. L¹ & E s'identifie à l'espace des suites sommables dans E. Ce dernier s'identifie donc aussi à l'espace des applications linéaires faiblement continues et compactes de l'espace des applications linéaires compactes de codans E, ou aussi à l'espace des applications linéaires compactes de codans E.

(Par topologie faible sur le, nous entendons sauf avis du contraire la topologie faible $\sigma(\underline{1}^{\bullet},\underline{1}^{1})$ du dual de $\underline{1}^{1}$). Cet énoncé est facile, et bien connu (je le démontre explicitement dans [4, Chap.1,53, n23]). Signalons d'ailleurs qu'une application linéaire faiblement continue de le dans E est automatiquement compacte en vertu du th. d'orlics (lui-même conséquence du fait bien connu que dans $\underline{1}^{1}$, une partie faiblement compacte est déjà compacte).

Proposition 4. Soit B un espace de Banach, et

1 & p < + **. Alors on a

1 ** p < + **. Alors on a

1 ** p < **.

Les deux applications d'incluisions sont de norme 61.

A toute $\lambda = (\lambda_i) \in \mathbb{L}^p$ et xEE faisons correspondre la suite $\lambda x = (\lambda_i x)$ dans E, on a évidenment $\|\lambda x\|_p \le \|\lambda\|_p \|x\|_p$ donc (A,x) - A.x est une application bilinéaire de norme 61 de LPXE dans LP, donc définit une application linéaire norme &1 de & pas dans & p (voir M2 1). D'autre part, toute (x,) & 2p est évidemment scalairement de puissance pointégra ble, et on a $M_p((x_1)) \leq |(x_1)|_p$. Ainsi l'application identique de 1º dans l'espace des suites scalairement de puissance p.ème intégrable dans E est de norme 41, et comme 1 0 est dense dans & p (p<+00), elle applique & dans l'adhérence & B de APSE dans l'espace des suites scalairement de puissance p.è me intégrable dans E. Enfin, en constate aussitôt que l'application composée des applications précédentes $\mathcal{L}^p \widehat{\bullet} E \to \mathcal{L}^p_R$ → LP & E est l'application camonique de LP & E dans LP & E (car c'est en effet l'identité sur le sous-espace dense 1º 8 B de AP & E), application dont on sait qu'elle est biunivoque (l'espace & satisfaisant la committion d'approximation). Par suite l'application : L' & E - LP est aussi biunivoque, ce qui achève la démonstration.

Il n'existe pas, pour p > 1, de caractérisation simple des suites dans B qui sont éléments de $2^p \otimes B$. Pour p = 1 on a cependant la

Proposition 5. On a $\ell^1 \otimes E = \ell_E^1$ pour tout espace de Banach E (isomorphisme canonique, préservant la norme).

C'est un cas particulier de [5,Chap.1, n23, th.3].

La proposition 4 ne dit rien sur le cas $p=+\infty$. La démonstration donnée vaut encore telle quelle pour l'inclusion $\underline{\mathbb{D}}^{\infty}$ $\widehat{\mathbb{C}}$ \mathbb{C}^{∞} mais la deuxième inclusion est remplacée par l'inclusion inverse $\widehat{\mathbb{C}}^{\infty}$ $\widehat{\mathbb{C}}$ (qui implique d'ailleurs la première). En effet, en vertu du théorème de Banach-Steinhaus, les su ites bornées ou scalairement bornées dans E sont les mêmes, et s'identifient donc aux éléments de $\widehat{\mathbb{L}}(\underline{\mathbb{D}}^1,E)$, d'où aussitôt l'inclusion annoncée. C'est d'ailleurs une inclusion stricte si E est de dimension infinie, car alors il existe des suites bornées dans E qui ne sont pas relativement compactes, donc non dans $\widehat{\mathbb{D}}^{\infty}$ $\widehat{\mathbb{C}}$ E. L'énoncé naturel qui correspond ici à la proposition 4 est

$$\underline{c}_0 \otimes \underline{E} \subset \underline{c}_0(\underline{E}) = \underline{c}_0 \otimes \underline{E}.$$

L'égalité est le corollaire de la proposition 2, tandis que la première inclusion n'est alors autre que l'inclusion générale F & E C F & E (valable si F satisfait à la condition d'approximation). c & E est donc un espace de certaines suites dans E ten dant vers 0, qu'on appelle suites nucléairement convergentes vers 0. On verra plus bas que si E est de dimension infinie, c'est la une classe strictement plus étroite que la classe c & E de toutes les suites qui convergent vers 0 dans E.

Proposition 6. Soit E un espace de Banach, soient $1 \le p, q \le +\infty$, soit r défini par 1/r = 1/p + 1/q, on suppose $1 \le r \le +\infty$. Soit $\lambda = (\lambda_1) \in Q^q$, alors l'application $(x_1) \to (\lambda_1 x_1)$ est une application linéaire de norme $\le ||(\lambda_1)||_1$ de $Q^p \otimes E$ dans $Q^p \otimes E$, de $Q^p \otimes E$ dans $Q^p \otimes E$, enfin de l'espace des suites scalairement de puissance p.ème-intégrables dans E, dans l'espace de suites scalairement de puissance r.ème intégrables dans E.

Pour le cas P et Pr, il suffit d'appliquer les dé-

finitions, et l'inégalité de Hölder classique. Notons maintenant qui si u désigne l'application linéaire de L^p dans L^r définie par $u((\mu_1)) = (\lambda_1 \mu_1)$, application qui est de norme $\leq ||\lambda||_q$ en vertu de l'inégalité de Hölder, alors $u \oplus 1$ est une application linéaire de norme $\leq ||u||$ de $L^p \oplus E$ dans $L^r \oplus E$, et $u \oplus 1$ une application linéaire de norme $\leq ||u||$ de $L^p \oplus E$ dans $L^r \oplus E$. Il suffit maintenant de noter que ces applications transforment une suite (x_1) en la suite $(\lambda_1 x_1)$, ce qui est immédiat par passage à la limite, car c'est manifestement vrai pour $(x_1) \in L^p \oplus E$. Le dernier cas envisagé dans la proposition peut se traiter de façon analogue, en considérant l'application $v \to vou'$ de $L(L^p,E)$ dans $L(L^r,E)$, mais c'est aussi une conséquence immédiate des définitions, compte tenu de l'inégalité de Hölder classique.

Corollaire. Si $(\lambda_1) \in \underline{l}^{\infty}$, alors la multiplication par (λ_1) est une opération linéaire de norme $\leq \|(\lambda_1)\|_{\infty}$ dans les espaces $\underline{l}^p \otimes E$, $\underline{l}^p \otimes E$, $\underline{l}^p \otimes E$ et dans l'espace des suites dans E scalairement de puissance p.ème intégrables.

Pour finir, rappelons une proposition bien connue:

Proposition 7. Soit H un espace de Hilbert. Alors on a

L1 & H C L2

l'application d'inclusion étant de norme &1.

Donnons la démonstration pour être complet. Soient d'abord $x_1, x_2 \in H$, alors on a

$$\|\mathbf{x}_1\|^2 + \|\mathbf{x}_2\|^2 \le \frac{\lambda_1}{\lambda_1}, \frac{\sup_{z=\pm 1}}{\lambda_2 = \pm 1} \|\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2\|^2$$

car on a $||\lambda_1 x_1 + \lambda_2 x_2||^2 = \lambda_1^2 ||x_1||^2 + \lambda_2^2 ||x_2|| + 2\lambda_1 \lambda_2 \Re \langle x_1, x_2 \rangle$, et il suffit de prendre $\lambda_1 = 1$ et $\lambda_2 = \pm 1$ de telle façon que $\lambda_2 \Re \langle x_1, x_2 \rangle \geqslant 0$. Prouvons alors par récurrence sur n que si $\langle x_1 \rangle$ est une suite de n éléments dans H, on a encore

(1)
$$\sum_{i=1}^{n} \|\mathbf{x}_{i}\|^{2} \leq \sup_{\lambda_{i} = \pm i} \|\sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i}\|^{2}.$$

Bn effet, d'après l'hypothèse de récurrence il existe des $\lambda_1 \stackrel{+}{=} 1$ ($1 \le i \le n-1$) tels que $\sum_{i=1}^{n-1} \|x_i\|^2 \le \|x\|^2$, où $x = \sum_{i=1}^{n-1} \lambda_i x_i$, d'au tre part il existe deux nombres, égaux à +1 ou -1, dont on peut d'ailleurs supposer le premier égal à +1 (sinon on multiplie par ce nombre), soient donc 1 et λ_n , tels que $\|x\|^2 + \|x_n\|^2 \le \|x\| + \|x_n\|^2$ ($\|x\| + \|x_n\|^2$) On aura alors $\sum_{i=1}^{n} \|x_i\|^2 \le \|x\|^2 + \|x_n\|^2 \le \|x\|^2$

 $\leq \|\sum_{i=1}^{L} \lambda_i x_i\|^2$, ce qui prove (1) dans le cas général. Il s'ensuit qu'on a $\|(x_1)\|_2 \leq M_1((x_1))$ pour toute suite dans H dont tous les termes sauf un nombre fini sont nuls, d'où aussitôt, par passage à la limite, la même inégalité pour toute $(x_1) \in \mathcal{L}^1 \otimes H$.

Considérons la transposée de l'application d'inclusion de la prop.7, son obtient une application linéaire de norme ≤ 1 du dual de \mathcal{Q}_{H}^2 , qui est \mathcal{Q}_{H}^2 comme il est bien connu (1), dans le dual $B^{\wedge}(\mathcal{Q}_{H}^1, H)$ de $\mathcal{Q}_{H}^1 \otimes H$. Cette applications applique $\mathcal{Q}_{H}^2 \otimes H$ dans $\mathcal{Q}_{H}^2 \otimes H$ donc elle applique en fait $\mathcal{Q}_{H}^2 \otimes H$ dans l'adhérence de $\mathcal{Q}_{H}^2 \otimes H$ dans \mathcal{Q}_{H}^2

Corollaire 1. Soit H. un espace de Hilbert. Alors on a $\underbrace{\ell^2_{H} \subset \underline{c}_{O} \otimes H}$

l'application d'inclusion étant de norme &1.

Corollaire 2. Soit H un espace de Hilbert, $1 \le p \le 2$, soit q tel que 1/q = 1/p - 1/2 (donc $2 \le q \le +\infty$). Alors on a $\mathbb{L}^p \overset{\circ}{\otimes} H \subset \mathbb{L}^q_H$

l'application d'inclusion étant de norme \$1.

⁽¹⁾ De façon générale, on voit facilement, grâce à l'inégalité de Hölder, que pour $1 \le p < +\infty$, le dual de $\frac{p}{k}$ est $\frac{p}{k}$, (l'accouplement étant évidemment donné par $(x_1),(x_1') = \sum (x_1,x_1')$.

En effet, soit $(x_i) \in \mathcal{L}^p \otimes H$. Pour toute suite $(a_i) \in \mathcal{L}^p$ telle que $\|(a_i)\|_p$, ≤ 1 , on a en vertu de prop. 6: $(a_ix_i) \in \mathcal{L}^1 \otimes H$, $M_1((a_ix_i)) \leq M_p((x_i)) = M_p$. Donc d'après prop. 7 on a, en posant $c_i = \|x_i\|$ pour simplifier: $\sum |a_i|^2 c_i^2 \leq M_p^2$. Par suite, posant $|b_i| = |a_i|^2$, on voit que pour toute suite (b_i) de la boule unité de $\mathcal{L}^{p'/2}$, on a $\sum |b_i| c_i^2 \leq M_p^2$, donc (c_i^2) est dans \mathcal{L}^r , où 1/r + 2/p' = 1, et y a une norme $\leq M_p$, i.e. (c_i) est dans \mathcal{L}^q , où q=2r, et y a une norme $\leq M_p$. Le q ainsi défini dans l'énoncé, comme on constate aussitôt, ce qui achève la démonstration.

Du corollaire précédent on déduit, par la méthode usuelle de dualité, le résultat suivant (qui inclut le corollaire 1):

Soit q' tel que 1/q' = 1/p' + 1/2 (donc $1 \le q' \le 2$). Alors on

Fd, CFb, ® H

l'application d'inclusion étant de norme . 61.

Nous verrons au nº 4 que les inclusions de la proposition 7 et ses corollaires sont, dans un sens évident, les meilleures possibles.

3. Compléments sur les suites sommables.

Le résultat que nous donnons íci, intéressant en lui-mê me, nous servira au nº 6. Rappelons qu'uns application linéaire u: $E \to F$ est dite application intégrale si la forme bilinéaire correspondante $\langle ux,y' \rangle$ sur $E \times F'$ est intégrale (voir nº 1), et on appelle alors norme intégrale de u la norme de l'élément de $B^*(E,F')$ qui lui correspond. Une suite $\{x_i\}$ dans E est di te intégrale, si elle est bornée, et si l'application linéaire de $\underline{\ell}^1$ dans E qui lui correspond est intégrale, i.e. définit un élément de $B^*(\underline{\ell}^1,E')$, dont la norme est appelée norme intégrale de la suite $\{x_i\}$.

Théorème 1. L'application identique de 1 dans c est intégrale, et a une norme intégrale &1.

Par définition, il revien au même de dire que la Yorme

bilinéaire $u(\lambda,\mu) = \sum \lambda_i \mu_i$ sur $\ell^1 \times \ell^1$ a une norme intégrale ≤1. Soit G la partie de la boule unité du dual 2 de 2 formée des $x' = (x_1)$ tels que $|x_1| = 1$ pour tout i. G, muni de la topologie induite par la topologie faible, et de la multiplica tion naturelle, est un groupe abélien compact (isomorphe au produit d'une suite de groupes tous isomorphes au groupe multiplicatif G des scalaires de norme 1). Soit µ la mesure de Haar de G, normée par la condition $\mu(1) = 1$. L'application $x' \rightarrow x' \otimes x'$ de G dans le dual $B^{(\underline{l}^1,\underline{l}^1)}$ applique G dans la boule unité, et est faiblement continue (car étant bornée, il suffit de vérifier qu'elle est continue pour la topologie de la convergence sim ple sur $\ell^1 \times \ell^1$, ce qui est en effet trivial). On peut donc consi dérer l'intégrale faible $v = \int x' \otimes x' d\mu(x')$, qui est un élément de la boule unité de $B^{(\underline{\ell}^1,\underline{\ell}^1)}$. Je dis que ce n'est autre que u. Pour ceci, il suffit de vérifier que u(e, e,) = v(e, e,) pour tout (i,j), i.e. qu'on a

(1)
$$\langle e_1 \otimes e_j, \int x' \otimes x' d\mu(x') \rangle = \int \langle e_1, x' \rangle \langle e_j, x' \rangle d\mu(x') = \delta_{ij}$$

Or pour tout i, $x' \rightarrow \langle e_i, x' \rangle$ est une application continue multiplicative de G dans le groupe multiplicatif des scalaires de norme l, donc un caractère de G, et deux indices i distincts donnent des caractères distincts. Par suite la félation (1) résulte de la relation d'orthogonalité des caractères. Cela achève la démonstration du th.l. - Bien entendu, si on répugne à utiliser la meusre de Haar sur un produit infini, on peut commencer par prouver que $u_n(\lambda,\mu) = \sum_i \lambda_i \mu_i$ est une forme de norme intégrable \mathcal{L} 1 (car donnée par une intégrale sur G_0^n , qui est soit un tore à n dimensions - cas des scalaires complexes - soit un groupe fini - cas des scalaires réels-), puis passer à la limite sur n.

Gerollaire 1. Soit E un espace de Banach. Alors

L'é E C e & E, l'application d'inclusion étant de norme 41.

Toute suite scalairement intégrable (x₁) dans E est intégrale,
et de norme intégrale & M₁((x₁)).

Soit (x_i) une suite scalairement intégrable dans E, en vertu de prop.3 elle s'identifie à une application linéaire continue de \underline{c}_0 dans E, de norme $M_1((x_i))$, qui en vertu du th.1 induit donc une application de norme intégrale $\leq M_1((x_i))$ de $\underline{\ell}^1$ dans E (il est en effet immédiat que la composée vu d'une application linéaire intégrale u et d'une application linéaire continue v est intégrale, et a une norme intégrale $\leq \|v\| \|u\|_{\Lambda}$, où $\|u\|_{\Lambda}$ désigne la norme intégrale de u). Cela signifie par définition que la suite (x_i) a une norme intégrale $\leq M_1((x_i))$, et prouve la deuxième partie du corollaire. Par raison de continuité, il en résulte que $\underline{\ell}^1 \otimes E$ est contenu dans l'adhérence de $\underline{\ell}^1 \otimes E$ dans $\underline{B}^{\wedge}(\underline{\ell}^1, E^{\vee})$, donc dans l'adhérence $\underline{c}_i \otimes E$ de $\underline{c}_i \otimes E$, et que l'application identique $\underline{\ell}^1 \otimes E \longrightarrow \underline{c}_i \otimes E$ est de norme ≤ 1 .

Corollaire 2. Soit B un espace de Banach, (x_1) une suite scalairement intégrable dans B, (x_1') une suite scalairement intégrable dans B', alors $(\langle x_1, x_1' \rangle)$ est une suite sommable, et

$$\sum |\langle x_i, x_i \rangle| \leq M_1((x_i)) M_1((x_i)).$$

Cela résulte aussitôt du corollaire 1, et du Lemme. Soit (x_i) une suite scalairement intégrable dans B, et (x_i^*) une suite intégrale dans B', alors $\sum |\langle x_i, x_i^* \rangle| \leq MN, \text{ où } M = M_1((x_i^*)) \text{ et où } N \text{ est la norme intégrale de } (x_i^*).$

Il suffit en effet de prouver que $|\sum \lambda_i \langle x_i, x_i^* \rangle| \leqslant MN$ pour toute suite (λ_i) dans la boule unité de \underline{c}_0 , dont toutes les coordonnées λ_i sauf un nombre fini sont nulles. Or $\lambda_i \langle x_i, x_i^* \rangle = \langle \lambda_i x_i, x_i^* \rangle$ et $(\lambda_i x_i)$ est une suite sommable dans E, $M_1((\lambda_i x_i)) \leqslant M$, et $\sum \langle \lambda_i x_i, x_i^* \rangle$ est le produit scalaire de $(\lambda_i x_i) \in \mathcal{L}^1 \otimes E$ avec l'élément (x_i^*) du dual $B^{\wedge}(\underline{\ell}^1, E)$ de $\ell^1 \otimes E$, d'où aussitôt la conclusion.

Cas particulier du corollaire 2:

Corollaire 3. Soit $(a_{ij}) \in \underline{\ell}^1 \otimes \underline{\ell}^1$ la matrice d'une forme bilinéaire continue sur $c_0 \times c_0$, de norme M, alors $\sum |a_{ii}| \leq M$.

Soit A l'application linéaire continue de \underline{c}_0 dans $\underline{\ell}^1$ qui correspond à (a_{ij}) , on a alors $a_{ij} = \langle Ae_i, e_j \rangle$, en particulier $a_{i1} = \langle Ae_i, e_i \rangle$. Or (e_i) est une suite scalairement intégrable dans \underline{c}_0 , et $M_1((e_i)) = 1$, (c'est celle qui, dans la correspondance signalée dans prop. 3, correspond à l'application identique de \underline{c}_0 dans $\underline{R} = \underline{c}_0$), et (Ae_i) est une suite scalairement intégrable dans $\underline{\ell}^1$, $M_1((Ae_i)) = M$, de sorte qu'il suffit d'appliquer le corollaire 2.

Remarques. 1. Il est immédiat à priori que tous les énoncés précédents (th.1 et ses corollaires) sont strictement équi valents.

- 2. Ces résultats restent manifestement valables of on remplace $\underline{\mathbb{Q}}^1$ et \underline{c}_0 par les espaces analogues $\underline{\mathbb{Q}}^1(I)$ et $\underline{c}_0(I)$, construits sur un ensemble d'indices I quelconque (qui peut étre non dénombrable, ou au contraire fini). Il en est de même de toutes les réflexions de cet article (en remplaçant de même les $\underline{\mathbb{Q}}^p$ par $\underline{\mathbb{Q}}^p(I)$).
- 3. Dans le corollaire 3, la relation $(a_{ij}) \in \underline{\ell}^1 \otimes \underline{\ell}^1$ semble imposer une res triction inessentielle, mais on notera que toute forme bilinéaire continue sur $\underline{c} \times \underline{c}_0$ appartient à $\underline{\ell}^1 \otimes \underline{\ell}^1$ (i.e. est compacte). Cela signifie aussi que, si on pose $\underline{E} = \underline{\ell}^1$, alors toute suite scalairement intégrable dans \underline{E} est som mable (ou encore que toute application linéaire continue de \underline{c}_0 dans \underline{E} est compacte). Mais c'est là un fait bien connu, vrai plus généralement chaque fois que dans \underline{E} toute suite de Cauchy faible converge faiblement (comme on constate facilement). On sait p.ex. qu'un espace \underline{L}^1 construit sur une mesure quelconque satis fait à cette dernière condition.
- 4. Le théorème 1 étant "auto-dual", on ne peut malheu reusement plus le transformer par dualité:
- 5. Du théorème 1 on déduit facilement l'énoncé suivant, qui le contient: Soient E_1 , F_1 des espaces de Banach, en nombre fini pour simplifier l'énoncé (soit $1 \le i \le n$), soit $E = \bigcap_i E_i = n$ ni de la norme $\|x\| = \sup_i \|x_i\|$, et $F = \bigcap_i F_i = \min_i n$ de la norme

analogue. On sait qu'on a un isomorphisme vectoriel-topologique $\mathbb{E} \widehat{\otimes} F = \prod_{i,j} \mathbb{E}_i \widehat{\otimes} \mathbb{E}_j$. Je dis alors que si $u \in \mathbb{E} \widehat{\otimes} F$ appartient à la "diagonale" $\sum_{i} \mathbb{E}_i \widehat{\otimes} F_i$ de $\mathbb{E} \widehat{\otimes} F$, on a $|u|_{\Lambda} = \sup_{i} |u_{ii}|_{\Lambda}$ (où u_{ii} est la composante de u suivant $\mathbb{E}_i \widehat{\otimes} F_i$). Démonstration: Il suffit de prouver $|u|_{\Lambda} \leq \sup_{i} |u_{ii}|_{\Lambda} = \mathbb{M}$, donc que $\Lambda \in \mathbb{B}(\mathbb{E},F)$ implique $|\langle u,\Lambda \rangle| \leq \mathbb{M} |\Lambda||$. Mais on peut écrire $\Lambda = (\Lambda_{ij})$, où $\Lambda_{ij} \in \mathbb{B}(\mathbb{E}_i,F_j)$, alors $|\langle u,\Lambda \rangle| = |\sum_{i} \langle u_{ii},\Lambda_{ii}\rangle| \leq \mathbb{M} \sum_{i} |\Lambda_{ii}||$, il suffit donc de prouver $\sum_{i} ||\Lambda_{ii}|| \leq ||\Lambda||$ (qui n'est donc qu'une autre forme du résultat annoncé). Mais pour ceci on est ramené aussitôt au cas où tous les \mathbb{E}_i , \mathbb{F}_i sont de dimension 1, ce qui n'est autre que le cas envisagé dans le corollaire 3.

6. L'application d'inclusion du th.l est de norme usuel le égale à 1, donc de norme intégrale ≥1, donc en fait de norme intégrale 1. Énoncé analogue pour l'application d'inclusion du corollaire 1 (pourvu que E ≠ 0 !). De façon générale, la plupart des inégalités sur les normes d'applications d'inclusion données dans ce travail, sont en fait des égalités, comme on vérifie trivialement sur chaque cas.

4. Le lemme fondamental.

Rappelons le lemme fondamental de [3]:

Lemme. Soit E un espace de Banach de dimension finie n. On peut trouver des points $x_i \in E$ $(1 \le i \le n)$ tels que $||x_i|| = 1$ et que pour tout $1 \le r \le n$, et tout $(\lambda_i) \in \ell^2(r)$, on ait

(1)
$$\left\|\sum_{i=1}^{r} \lambda_{i} \mathbf{x}_{i}\right\| \leq \left\|\mathbf{x}_{r}\right\| \left(\lambda_{i}\right)\right\|_{2}$$

(2)
$$M_{r} = 1 + \frac{1}{n} (1^{2} + 2^{2} + \dots + (r-1)^{2})^{\frac{1}{2}} \le 1 + r \sqrt{r} / 3n.$$

Nous désignons par $\frac{L^2}{r}$ l'espace R^r muni de la norme $\|(\lambda_1)\|_2 = (\sum |\lambda_1|^2)^{1/2}$. Dans [3], ce lemme est prouvé avec une valeur un peu moins bonne de M_r , mais l'essentiel de la dé-

monstration n'est pas changé: en considère un ellipsoïde de volume maximum contenu dans la boule unité de E, et la norme hilbertienne correspondante, notée $\|x\|_2$ pour la distinguer de $\|x\|$; donc

puis on montre qu'il existe des points x linéairement indépendants tels que l'om ait

(4)
$$|x_1| = ||x_1||_2 = 1$$

et que la projection orthegenale y_i de x_i sur l'espace engendré par x_1, \ldots, x_{i-1} satisfasse à

(5)
$$||y_1||_2^2 \le \frac{1-1}{n}$$

(c'est là la partie profonde de la démonstration). Posons alors $z_1 = x_1 - y_1$; les z_1 sont donc des vecteurs orthogonaux deux à deux $||z_1||_2 \le 1$, et on a, pour $1 \le r \le n$, $(\lambda_1) = \frac{1}{2}(r)$;

$$\|\sum_{i=1}^{r} \lambda_{i} \mathbf{x}_{i}\| \leqslant \|\sum_{i=1}^{r} \lambda_{i} \mathbf{z}_{i}\| + \|\sum_{i=1}^{r} \lambda_{i} \mathbf{y}_{i}\|$$

or en vertu de (3):

$$\left\| \sum_{i=1}^{r} \lambda_{i} z_{i} \right\| \leqslant \left\| \sum_{i=1}^{r} \lambda_{i} z_{i} \right\|_{2} = \left(\sum_{i=1}^{r} \lambda_{i}^{2} \| z_{i} \|_{2}^{2} \right)^{\frac{1}{2}} \leqslant \left(\sum_{i=1}^{r} \lambda_{i}^{2} \right)^{\frac{1}{2}}$$

et en vertu de (5):

$$\begin{aligned} \|\sum_{i=1}^{r} \lambda_{i} y_{i}\| &\leq \sum_{i=1}^{r} |\lambda_{i}| \|y_{i}\| \leq (\sum_{i=1}^{r} \lambda_{i}^{2})^{\frac{1}{2}} (\sum_{i=1}^{r} \|y_{i}\|^{2})^{\frac{1}{2}} \leq \\ &\leq \frac{1}{n} (\sum_{i=1}^{r} \lambda_{i}^{2})^{\frac{1}{2}} (\sum_{i=1}^{r} (i-1)^{2})^{\frac{1}{2}} \end{aligned}$$

d'où les inégalités (1) et (2).

Corollaire. Soit E un espace de Banach de dimension infinie, soit k>l et r un entier >0: Alors on peut trouver des éléments x_i de E ($1 \le i \le r$) de norme 1, tels que $M_2((x_i)) \le k$.

Soit en effet n un entier assez grand que 1+r√r/3n ≤

¿k, soit F sun sous-espace vectoriel de dimension n dans E.
Il suffit alors d'appliquer le lemme à F. Du corollaire précédent, on conclut le résultat suivant (dont nous déduirons tous les autres):

Théorème 2. Soit E un espace de Banach de dimension infinie, (a_i) une suite de nombres tendant vers 0, $0 \le a_i < 1$ pour tout 1. Alors il existe une suite (x_i) dans E, élément de la poure unité de (x_i) telle que $||x_i|| = a_i$ pour tout 1.

Posons

(6)
$$1 - 2\alpha = \sup_{i} a_{i}$$

on a 1-2 < 1, i.e. < > 0, car $a_1 \rightarrow 0$ et $a_1 < 1$. Pour tout entier k > 1, soit $a_1 < 1$. The finding tell que

(7)
$$1 > 1_k = \text{implique } a_1 \leq \alpha/2^k$$

on peut supposer la suite des x_i strictement croissante. En ver tu du corollaire du lemme, on peut trouver pour tout k des éléments y_i $(i_{k-1} + 1 \le i \le i_k)$ de norme égale à 1, telle que $M_2((y_i)) \le 1/(1-\alpha)$. Posons $x_i = a_i y_i$, on aura donc $||x_i|| = a_i$, et de plus, pour $k \ge 2$, en vertu de (7) et du corollaire de la proposition 6:

(8)
$$M_2(x_k) \leqslant \frac{\alpha}{2^{k-1}} \frac{1}{1-\alpha} \quad (k \geqslant 2)$$

où on désigne par X_k la suite dans E nulle pour les indices $\leq i_{k-1}$ et les indices $> i_k$, et égale à x_i pour $i_{k-1}+1 \leq i \leq i_k$. Désignant de même par X_1 la suite dans E nulle pour les indices $> i_1$, et égale à x_i pour $i \leq i_1$, on obtient en vertu de (6) et du corollaire de prop. 6:

(9)
$$M_2(x_1) \le (1-2\alpha) \frac{1}{1-\alpha}$$
.

De (8) et (9) résulte que (x_1) est`une suite abolument sommable dans $\underline{\mathbb{I}}^2 \overset{\bullet}{\otimes} \mathbb{E}$, dont la somme X a une norme $M_2(X) \leqslant \frac{1}{1-\alpha}(1-2\alpha+\alpha\sum_{k=2}^{\infty}\frac{1}{2^{k-1}})=1$. Mais manifestement on a $X=(x_1)$,

ce qui achève la démonstration.

Remarque. La condition $a_1 \rightarrow 0$ dans le théorème 2 est essentielle, puisque $L^2 \otimes E \subset \underline{c}_0 \otimes E$. On peut même dire que si on ne suppose pas $a_1 \rightarrow 0$, il ne sera pas possible en général (même si (a_1) est bornée) de trouver une suite scalairement de carré intégrable (x_1) dans E, telle que $||x_1|| = a_1$. Il en est ainsi quand on sait à l'avance que toute suite scalairement de carré intégrable dans E est déjà dans $L^2 \otimes E$, i.e. que toute application linéaire continue de L^2 dans E est compacte. Comme une application linéaire continue de L^2 dans E est de toutes façons faiblement compacte (L^2 étant réflexif), il suffit que dans E toute partie faiblement compacte soit compacte, ce qui est par exemple le cas pour $E = L^1$, comme il est bien connu.

5. Théorêmes d'existence dérivés.

Théorême 3. Soit E un espace de Banach de dimension infinie. Soit $1 \le p \le 2$, et q tel que 1/q = 1/p - 1/2 (donc $2 \le q \le +\infty$). Alors pour toute suite positive $(a_1) \in \underline{\mathbb{Q}}^q$ (resp. $(a_1) \in \underline{\mathbb{C}}_0$ si $q = +\infty$) on peut trouver une suite $(x_1) \in \underline{\mathbb{Q}}^p \otimes E$ telle que $||x_1|| = a_1$. On peut supposer $M_p((x_1)) \le ||(a_1)||_q + E$, où E > 0 est donné à l'avance.

Ce théorème est implicitement contenu dans [3], où il est seulement énoncé pour p=1, le cas le plus important (et où on ne donne pas la "meilleure constante possible"). Pour p=2,1'énoncé n'est autre que le th.2, on va donc supposer p<2. Nous laissons au lecteur la vérification très facile du fait suivant: Soit $1 \le q < +\infty$, $(a_1) \in \stackrel{Q}{L}^q$ et $\epsilon > 0$, alors il existe une suite de nombres λ_1 , $0 \le \lambda_1 \le 1$, tendant vers 0, telle que l'on ait $\|(a_1/\lambda_1)\|_q \le \|(a_1)\|_q + \epsilon$. Soit alors, avec les notations du théorème, $b_1 = a_1/\lambda_1$, soit (y_1) une suite élément de la boule unité de $\stackrel{Q}{L}^2 \otimes E$ telle que $\|y_1\| = \lambda_1$ pour tout i (théorème 2). Posons $x_1 = b_1 y_1$, alors on a $\|x_1\| = b_1 \|y_1\| = a_1$, d'autre part, en vertu de prop.6, on a $(x_1) \in \stackrel{Q}{L}^p \otimes E$, et $M_p((x_1)) \le \|(b_1)\|_q M_2((y_1)) \le \|(a_1)\|_q + \epsilon$, ce qui achève la démonstration.

Enonçons à nouveau, à cause de son intérêt, le cas p=1:

Corollaire 1. Soit is un espace de Banach de dimension infinie, et soit (a_i) une suite positive de carré sommable. Alors il existe une suite sommable (x_i) dans is telle que $||x_i|| = a_i$ pour tout i $(et \ on \ peut \ supposer \ M_1((x_i)) \le ||(a_i)||_2 + \mathcal{E})$.

Corollaire 2. Soit E un espace de Banach de dimension infinie, et soit 14p<+00, alors 2p / 2p oE, à fortiori il existe dans E des suites schlairement de puissance p.ème intégrables, qui ne sont pas de puissance p.ème intégrable.

En stret, si $1 \le p \le 2$, il suffit d'appliquer le théorème 3 en prenant une suite (a_1) qui est dans l^q et non l^p (ce qui est possible car on a évidemment $p \le q$). Si $2 \le p < +\infty$, soit (a_1) une suite qui est dans c et non dans l^p , alors il existe $(x_1) \le l^2$ telle que $\|x_1\| = a_1$ pour tout i. On a à fortiori $(x_1) \le l^p$ E, (puisque $l^2 \subset l^p$), mais (x_1) n'est pas de puissance p.ème intégrable. Pour $p = +\infty$, il est encore vrai que $l^\infty \ne l^\infty$ E, comme nous l'axons déjà signalé au ng 2, mais ici l'inclusion l^∞ E $\subset l^\infty$ est en sens inverse de l'inclusion corres pondante vue dans la prop.4. L'égalité c (E) = c ∞ E montre aus si que dans l'énoncé du corollaire 2, la valeur $p = +\infty$ apparait bien comme valeur exceptionnelle.

Nous transformons maintenant le théorême 3 par dualité: Théorême 4. Soit E un espace de Banach de dimension infinie. Soit $2 \le p' \le \infty$, et q' tel que $1/q' = 1/p' + 1/2(\frac{donc}{donc})$ $1 \le q' \le 2$. Soit (a_1) une suite positive qui n'est pas dans Q^q . Alors il existe une suite (x_1) dans E, telle que $||x_1|| = a_1$ pour tout 1, et qui n'est pas dans Q^p .

Soient p, q définis par $1/p + 1/p' = 1/q_{\infty} + 1/q' = 1$, on a alors 1/q = 1/p - 1/2, comme dans les notations de l'énoncé du th.3. Supposons que $||x_1|| = a_1$ pour tout i implique $(x_1) \in \stackrel{f}{\mathbb{Q}}^p \otimes E$, alors $||y_1|| \le a_1$ pour tout i implique encore $(y_1) \in \stackrel{f}{\mathbb{Q}}^p \otimes E$, en vertu du corollaire de la prop.6, car une telle suite (y_1) serait le produit d'une suite (x_1) , avec $||x_1|| = a_1$ pour tout i, par une suite bornée de scalaires (λ_1) (prendre

 $x_1 = \frac{a_1}{||y_1||} y_1$ et $\lambda_1 = \frac{|y_1||}{a_1}$ pour $y_1 \neq 0$, et $x_1 = 0$, $\lambda_1 = 0$ pour $y_i = 0$). Donc, si à toute suite $(x_i) \in \underline{c}$ $\otimes E$ (suite convergente vers O dans E) on fait correspondre la suite (a,x,), on obtient une application linéaire u de cosE dans prisE. Cette ap plication étant continue quand on munit le deuxième espace de la topologie de la convergence simple, topologie séparée et moins fine que sa topologie normée naturelle, sera aussi continue pour les topologies normées naturelles (en vertu du théorème du graphe fermé). Si v désigne l'application linéaire de c dans definie par la multiplication par la suite (a,) (suite qui en effet manifestement $\in \mathbb{Q}^{p'}$), alors sur $\underline{c}_{o}\otimes E$ on a $u=v\otimes \underline{1}$ (1 désignant l'application identique de E sur lui-même). Appli quant la prop. 1 du nº1, il en résulte que v'81, application 11 néaire de PoE' dans PoE', se prolonge par continuité en une application linéaire continue de l' & E' dans cas p' = + ∞ n'offre pas de difficulté, car en tous cas Lp est au moins un sous-espace du dual de Qp'). Comme v' est l'application $\ell^p \to \ell^1$ défini par multiplication par la (a_i) , on voit aussitôt que $v'\otimes \underline{1}$ transforme (x_i') en (a_ix_i') . On a donc pour tout $(x_i) \in \ell^p \otimes E'$: $\sum a_i ||x_i|| < +\infty$. Mais comme $(a_i) \notin \hat{\underline{\ell}}^q$, il existe une suite positive $(b_i) \in \underline{\ell}^q$ telle que $\sum a_i b_i = +\infty$, et en vertu du th.3 il existe dans l'espace de Banach de dimension infinie E' une suite $(x_i^*) \in l^p \check{\otimes} E'$, telle que $||x_i|| = b_i$ pour tout i, donc on a $\sum a_i ||x_i|| = +\infty$. Cela est absurde, et achève donc la démonstration. - Enonçons à nouveau les deux cas particuliers p' = 2, p' = +∞ d'où q' = 1 resp. q'=2:

Corollaire 1. Soit E un espace de Banach de dimension infinie.

- 1) Pour toute suite positive (u_1) qui n'est pas sommable, il existe une suite (x_1) dans E telle que $||x_1|| = \kappa_1$ pour tout i, qui n'est pas dans $\ell^2 \hat{\&} E$.
- 2) Pour toute suite positive (a1) qui n'est pas de carré sommable, il existe une suite (x1) dans E telle que.

||x₁|| = a₁ pour tout 1, et qui n'est pas dans & E; on peut supposer que cette suite dans E n'est pas intégrale (voir définition début du nº 3).

On doit seulement prouver le dernier complément apporté au deuxième énoncé. Or, si cette assertion était inexacte, on en conclurait comme plus haut que $(x_1) \rightarrow (a, x_1)$ est une application linéaire continue de $\underline{c}_0 \otimes E$ dans $B^{\wedge}(\underline{l}^1, E^i)$, et par raison de continuité elle appliquerait $c_0 \otimes E$ dans l'adhérence $\underline{c}_0 \otimes E$ de $\underline{c}_0 \otimes E$ dans $B^{\wedge}(\underline{l}^1, E^i)$ (voir n^2 1), et à fortiori dans $\underline{l}^{\otimes} \otimes E$, ce qui contredit la première moitié du corollaire 1, 2^2 .

Corollaire 2. Soit E un espace de Banach de dimension infinie, et soit $1 < p' < +\infty$. On a alors $Q^{p'} \otimes E \neq Q^{p'} (et \underline{meme} c_0(E) + Q^{p'} \otimes E \underline{si} p' = +\infty)$.

Si p'> 2, il suffit de choisir une suite positive (a_1) qui est dans Q^p (resp. dans C si p'=+ ∞) et non dans Q^q (ce qui est possible, car alers q' < p'), et d'appliquer le th. 4. Si $1 < p' \le 2$, il suffit de choisir une suite positive (a_1) qui est dans Q^p et non dans Q^q , d'après le corollaire l'il existe alors une suite (x_1) dans E telle que $||x_1|| = a_1$ pour tout i $(d'où (x_1) \in Q^p)$ mais qui n'est pas dans $Q^q \in Q^q$ et à fortiori pas dans $Q^q \in Q^q$ mais qui n'est pas dans $Q^q \in Q^q$ se deduire du corollaire 2 du th. 3 par la méthode usuelle de dualité.

Remarques. 1) Pour aucun $1 \leqslant p \leqslant 2$, on no peut améliorer le théorème 3 en remplaçant l'exposant q par un exposant strictement plus grand, car si E est par exemple l'espace de Hilbert, on a vu (prop. 7, corollaire 2) que $L^p \otimes E \subset L^q_E$. De même, pour aucun $2 \leqslant p' \leqslant +\infty$, on ne peut améliorer le théorème 4 en remplaçant l'exposant q' par un exposant strictèment plus petit, comme il résulte aussitôt du corollaire 3 de prop. 7. On voit aussi trivialement que l'inégalité donnée dans le théorème 3 est la meilleure possible.

2) On pourrait songer à préciser le théorème 4 de façon

analogue que dans son corollaire 1, 2º, en remplaçant dans l'énon cé Q^p ' $\widehat{\otimes}$ E par B'(Q^p , E'). Mais pour p'<+ ∞ ce ne serait qu' une amélioration apparente, car Q^p étant alors réflexif, toute application linéaire intégrale de Q^p dans E provient déjà d' un élément de Q^p Q^p

6. Application à un problème général sur les produits tensoriels topologiques.

Soit E un espace de Banach, et $1 \le p < +\infty$, reprenons les inclusions du n^2 3, prop. 4:

$$(1) \qquad \underline{\underline{l}}^{p} \widehat{\otimes}_{E} \subset \underline{l}^{p} \subset \underline{l}^{p} \widecheck{\otimes}_{E}$$

et

$$c_{\infty} \otimes E \subset c_{\infty}(E) = c_{\infty} \otimes E$$

Proposition 8. Soit E un espace de Banach, soit F l'
espace L^p ($1 \le p < +\infty$) ou c_0 . Si l'application linéaire canonique $P \widehat{\otimes} E \longrightarrow P \widehat{\otimes} E$ est une application linéaire du premier espace sur le second, alors E est de dimension finie.

Il n'est pas difficile de déduire de la prop. 8 l'énoncé analogue quand F est une espace L^p $(1 \le p \le +\infty)$ de dimension infini construit sur une mesure quelconque, ou l'espace $\underline{C}(K)$ des fonctions continues sur un espace compacte K. En fait, il est extrêmement plausible que si E et F sont des espaces de Banach tels que l'application canonique $E\widehat{\otimes}F \longrightarrow E\widehat{\otimes}F$ soit une application du premier espace sur le second, alors E ou F est de dimension finie. Cette conjecture est un cas particulier d'une conjecture certainement beaucoup plus dure sur une caractérisati-

on des espaces nucléaires (si E et F sont des espaces localement convexes tels que l'application canonique E OF -> E OF soit un homomerphisme topologique, alors E ou F est-il nucléaire?). Nous allons donner un résultat dans cette voie, plus général que la prop. 8:

Proposition 9. Soient E et F deux espaces de Banach tels que l'application canonique E & F -> E & F soit une application biunivoque du premier espace sur le second. Si F est de dimension infinie, alors E satisfait aux conditions:

(Rappelons d'ailleurs que si E ou F satisfait condition d'approximation, l'application E@F -> E@F est auto matiquement biunivoque). En vertu du théorême des homomorphismes de Banach, l'application E OF -> EOF sera-même un isomorphisme vectoriel-topologique. Pour prouver (1), il suffit de prouver que toute $(x_i) \in \ell^2 \times E$ est une suite intégrale, i.e. que $\ell^2 \delta E \subset B^{(\ell^1,E')}$, car alors il résulte comme toujours du théorême du graphe fermé que l'application d'inclusion est continue, et par raison de continuité qu'elle applique même L'&E dans l'adhérence cosE de cosE dans B^(1,E'). Procédons par l'absurde, en supposant la suite $(x_1) \in \frac{\mathbb{N}^2}{\otimes} \mathbb{R}$ non intégrale. Alors il existe une suite $(x_1') \in \underline{\mathbb{N}^1} \otimes \mathbb{R}'$ telle que $\sum |\langle x_1, x_1' \rangle| = +\infty$. Sinon, en effet, $\sum \langle x_i, x_i^* \rangle$ serait, pour (x_i^*) variable L'SE', une forme linéaire, nécessairement continue en vertu du théorême de Banach-Steihaus (comme limite de la suite de formes linéaires continues $\varphi_n((x_i)) = \sum_{i=1}^n \langle x_i, x_i \rangle$ ce serait donc un élément du dual B^((1 .B') de L'&E', et on constate aussi tôt que ce n'est autre que (x,), contrairement à la supposition que cette suite n'est pas intégrale. - On peut d'ailleurs suppo- $\langle x_i, x_i' \rangle \geqslant 0$ pour tout i (en multipliant les x_i' par

des scalaires de norme 1 convenables). Comme $(\langle x_1, x_1' \rangle)$ n'est pas sommable par construction, il existe une suite $(a_1) \in \underline{c}_0$ telle qu'on ait encore $\sum a_1 \langle x_1, x_1' \rangle = +\infty$. D'après le théorème 2,ng 3, on peut trouver une suite $(y_1) \in \underline{l}^2 \otimes F$ avec $||y_1|| = a_1$ pour tout i. Soit pour tout i, $y_1' \in F'$ tel que $||y_1|| = 1$, $\langle y_1, y_1' \rangle = ||y_1'|| = a_1$. On a donc $\sum \langle x_1, x_1' \rangle \langle y_1, y_1' \rangle = +\infty$. Il va résulter du lemme plus bas que la suite $(x_1 \otimes y_1)$ est sommable dans $E \otimes F$, et la suite $(x_1' \otimes y_1')$ sommable dans $E' \otimes F'$. Comme par hypothèse $E \otimes F = E \otimes F$ (isomorphisme vectoriel-topologique), $(x_1 \otimes y_1)$ est aussi une suite sommable dans $E \otimes F$. Comme $E' \otimes F'$ est un sousespace normé du dual de $E \otimes F$, il résulte alors du n^2 , th.1, corollaire 2, que la suite $(\langle x_1 \otimes y_1, x_1' \otimes y_1' \rangle) = (\langle x_1, x_1' \rangle \langle y_1, y_1' \rangle)$ est sommable, ce qui est contradictoire et achève la démonstration de (1). — Il reste à reporter le

Lemme. Soit $1 \le p < +\infty$, et p' donné par 1/p+1/p'=1. Soient E et F deux espaces de Banach, soit $(x_1) \in \ell^p \delta E$, et soit (y_1) une suite dans F scalairement de puissance p'.ème intégrable. Alors $(x_1 \otimes y_1)$ est une suite sommable dans $E \delta F$.

(Ci-dessus, on appliquait ce lemme successivement pour p = p' = 2 et les espaces E et F, et pour p = 1, $p' = +\infty$ et les espaces E' et F'). Preuve du lemme: Posons $X = (x_1)$, $Y = (y_1)$, $u(X,Y) = (x_1 \otimes y_1)$. Supposons d'abord la suite X finie (i.e. tous les x_1 sauf un nombre fini nuls), alors u(X,Y) est une suite finie dans $E \otimes F$, prouvons $u(u(X,Y)) \leq u(X,Y) = u(X,Y)$ est la signifie aussi que si $u(X_1) = u(X_1) = u(X_1$

est une application linéaire continue, de norme $\leq M_p$, (Y), du sous espace dense de $\ell^p \otimes E$ formé des suites finies, dans l'espace $\ell^1 \otimes (E \otimes F)$ des suites sommables dans $E \otimes F$, et se prolonge donc par continuité en une application linéaire de norme $\leq M_p$, (Y) de $\ell^p \otimes E$ dans $\ell^1 \otimes (E \otimes F)$. On vérifie trivialement, par continuité, que cette application fait encore correspondre, $\ell^p \otimes E$ at $\ell^p \otimes E$ dans $\ell^p \otimes E$ dan

Pour prouver la formule (2) de la prop. 9, on voit aussitôt, en appliquant la prop. 1 du nº 1, qu'il revient au même de prouver l'inclusion $\ell^2 \otimes E' \subset \underline{c} \otimes E'$ pour E' (noter que toutes ces applications d'inclusion seront automatiquement continues, en vertu du théorême du graphe fermé). Dans le cas où sait que E' ou F' satisfait à la condition d'approximation mé trique, il suffit de noter qu'il résulte de prop. 1 que l'applica tion canonique E' & F' -> E' & P' est aussi un isomorphisme premier espace sur le second (faire, avec les notations de prop.l, $E_1 = E_2 = E$, $F_1 = F_2 = F$, u_1 et u_2 étant les applications iden tiques), et que par suite du résultat déjà obtenu, E' doit donc satisfaire à (1), ce qui achève alors la démonstration. Dans cas où on ne suppose pas que E' ou F' satisfasse à la condition d'approximation métrique, on doit répéter le raisonnement qui a prouvé (1), mais en permutant les rôles de E et E',F et F'.

On connait une classe importante d'espaces de Banach E qui satisfont à (2) $\mathbb{L}^1 \widetilde{\wedge} \mathbb{E} \subset \mathbb{L}^2 \widehat{\otimes} \mathbb{E}$: les espaces \mathbb{L}^1 construits sur une mesure quelconque, ainsi que je l'ai annoncé dans [6,th.1, cor.3]. Plus généralement, on en conclut que les espaces \mathbb{E} dont le dual est isomorphe à un facteur direct d'un espace \mathbb{L}^{∞} (ou, ce qui revient au même, dont le bidual est isomorphe à un facteur, direct d'un espace \mathbb{L}^1), espaces que j'appelle "espaces du type λ_0 ", satisfont encore à la même propriété. Signalons que les espaces de type λ_0 (ainsi que la catégorie duale) s'introduisent de fa-

con très naturelle dans la théorie des produits tensoriels topolo giques (que je développe dans le Séminaire Mathématique de l'Université de São Paulo, 1954). Il semble assez plausible que la propriété $L^1 \otimes E \subset L^2 \otimes E$ soit une caractérisation des espaces du type λ_0 . Dualement, l'inclusion $L^2 \otimes E \subset C_0 \otimes E$ est une propriété remarquable des espaces L^∞ et C(K), plus généralement des espaces "du type K_0 " (i.e. dont le dual est de type K_0), et il semble donc même que cette propriété soit caractéristique des espaces du type K_0 . S'il en était ainsi, un espace qui satisfait à la fois aux inclusions (1) et (2) de la prop. 9 serait à la fois k_0 et k_0 : il n'est pas difficile de voir que cela implique que k_0 est même de dimension finie (c'est par exemple une conséquence des résultats de [7]): Cela resoudrait donc en toute généralité la question abordée dans ce nº.

7. Surkane propriété remarquable des espaces de Hilbert. Le nº 4 nous apprend essentiellement qu'il existe "beau coup" d'applications linéaires continues d'un espace de Hilbert H donné dans un espace de Banach E de grande dimension. Il est fa cile d'en déduire l'énoncé suivant (équivalent au lemme de Dvoretzky-Rogers quant à l'essentiel): Soit n un entier > 0, et soit & > 0, alors il existe un entier N tel que pour tout espa ce de Banach E de dimension > N, on puisse trouver un sous-espace vectoriel F de dimension n, et une norme sur Rn comprise entre $\|(x_1)\|_2$ et $\|(x_1)\|_{\infty}$, fait donc de Rⁿ un espace de Ba nach F, enfin une application linéaire biunivoque de F sur F, de norme <1, dont l'application réciproque soit de norme <1+E. De façon plus imagée; E contient des sous-espaces qui sont, à près, isomorphes à Rⁿ muni d'une norme intermédiaire entre $||(x_1)||_2$ et $||(x_1)||_{\infty}$. Dans cet énoncé, peut-on même remplacer \mathbb{F}_1 par l'espace hilbertien $H = \ell^2(n)$, en d'autres termes, pour n et E donnés, tout espace de Banach E de dimension assez grande . contient il un sous-espace isomorphe à & près à l'espace H (espa ce de Hilbert de dimension n)? Si oui, cette propriété, exprimée

pour un espace H fixe de dimension n, et &> 0 variable, serait une nouvelle caractérisation métrique de l'espace de Hilbert de dimension n (car la réciproque se voit sans difficulté essentielle, en prenant dans l'énoncé souligné des espaces E qui sont des espaces de Hilbert). D'ailleurs, il ne serait pas difficile déduire une caractérisation métrique, ainsi qu'une caractérisation vectorielle-topologique, des espaces de Banach (de dimension finie ou infinie) isomorphes à un espace de Hilbert. Pour donner l'énoncé précis, assouplissons la notion de "dimension linéaire" de Bana ch, en disant que l'espace normé E a un type linéaire inférieur à celui d'un espace normé F, si on peut trouver un M > 0 tel que tout sous-espace de dimension finie E, de E soit isomorphe "h K près" à un sous-espace F, de F (î.e. il existe application linéaire biunivoque de E_1 sur F_1 , de norme ≤ 1 , dont l'application inverse a une norme &1+M); et que E a un type métrique inférieur à celui de F, si la condition précédente est satisfaite pour tout M > 0. On peut alors montrer que la conjecture envisagée ci-dessus implique qu'un espace de Banach H est isomorphe comme espace vectoriel-topologique (resp. comme espace normé) à un espace de Hilbert si et seulement si son type (resp. son type métrique) est inférieur à celui de n'importe quel espace de Banach de dimension infinie. En fait, bien entendu, la conjecture n'est pas nécessaire que pour "seulement si", (et lui est même équivalent).

On peut remarquer, à l'appui de notre conjecture, qu'en effet un espace de Hilbert a un type linéaire inférieur à celui de n'importe quel espace de Banach E de dimension infinie classique, en particulier pour $E = \underline{L}^p$ $(1 \le p < +\infty)$, espace \underline{L}^p de dimension infinie construit sur une mesure μ par ailleurs quelcon que. Dans le cas où μ est la mesure de Lebésgue sur le segment (0,1), on sait en effet qu'on peut trouver, grâce à la théorie des séries trigonométriques lacunais (voir p.ex. [8]), un sousespace fermé H de dimension infinie de \underline{L}^2 , dont la topologie

soit aussi celle induite par les espaces Lp (1≤p<+∞), d'où résulte que H, donc aussi tout espace de Hilbert, a un type liné aire inférigur à celui de Lp (pour 1 < p < + ∞). D'autre part,il n'est pas difficile de voir que pour 1 4 p <+ 00 donné, tous les espaces LP de dimension infinis, construits sur des mesures, ar bitraires, ont même type linéaire (et en particulier, ont même ty pe linéaire que Lp), de sorte que notre assertion sur les espaces de Hilbert est bien établie pour 14p<+0. Quant au cas p = $= +\infty$, il est bien connu que si on se fixe un espace $E = L^{\infty}$ de dimension infinie, tout espace de Banach de dimension finie (ou même seulement séparable) est isomorphe à un sous-espace normé de E (il suffit en effet de le montrer pour $E = l^{\infty}$), d'où résulte que tout espace de Banach a un type métrique (et à fortiori un ty pe linéaire) inférieur à celui de E. (La même chose se présente d'ailleurs si É est un espace C(K) de dimension infinie.comme on vérifie facilement). Cela achève donc de prouver nos assertions relatives au type linéaire d'un espace de Hilbert.

On fera attention cependant qu'il n'existe pas d'isomor phisme vectoriel-topologique de $\underline{\ell}^2$ dans $\underline{\ell}^p$, pour $1 \le p < +\infty$ [1, page 205]. Cela illustre donc la nécessité, dans certaines questions, d'élargir la notion de "dimension linéaire" de Banach comme nous venons de le faire.

Bibliographie.

- 1 S. Banach, Théorie des opérations linéaires, Varsovie 1932.
- 2 N. Bourbaki, Intégration, Chap.4, Act.Sc.Ind. Nº 1175, Paris, (Hermann)
- 3 A. <u>Dyoretzky-C.A.Rogers</u>, Absolute and unconditional convergence in normed linear spaces, Proc.Nat.Acad.Sc., vol.36, nº3, p. 192-197 (1950).
- 4 A. <u>Grothendieck</u>, Produits tensoriels topologiques et espaces nucléaires, a paraître au "Memoirs of the Amer.Math.Soc."
- 5 A. Grothendieck, Résumé des résultats essentiels dans la théorie des produits tensoriels topologiques, Ann. Inst. Fourier, t.4,p.73-112(1954).
- A. Grothendieck, Résultats nouveaux dans la théories des opé-
- rations linéaires, C.R.Acad.Sci., Paris,

 7 A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Can. Journal Math., vol.5, p.129-173(1953).
- 8 A. Zygmund, Trigonometrical Series, Varsovie 1935.