AI & CHATBOT

Aula 18 - Disponibilização de Modelos

Prof. Henrique Ferreira

Modelos via Servidor Flask

Disponibilizando um modelo prétreinado

- Após construirmos um modelo de IA (por exemplo, ao treinar um algoritmo de Aprendizado de Máquina), podemos estar interessados em usá-lo na nossa aplicação;
- Há várias formas de fazer isso mas a ideia básica é usar um backend para chamar o modelo, por exemplo, executando um script em Python no servidor;
- Podemos usar o backend em Node-RED (NodeJS) ou em Python (Flask) para fazer isso;

- Primeiro precisamos exportar o Modelo Treinado.
- Se o modelo foi criado usando o Scikit-Learn, podemos exportá-lo no formato Joblib ou Pickle
- Gere um modelo como visto na aula prática de classificação (6° passo, produção):

A etapa de "salvar/baixar" o modelo pronto é chamada de **Persistência do Modelo**. Quando usamos um modelo pronto, é comum dizer que estamos usando um **modelo pré-treinado**.

```
1 import pickle
```

Pickle é um formato de arquivo de objeto python serializado na memória permanente. Ele é análogo ao JSON para dicionários ou o CSV para tabelas, mas ele funciona para objetos python, ou seja, é muito mais abrangente!

```
# vamos salvar em bytes (flag wb) para ser mais cross-platform (acessível a vários sistemas)
with open('meu_modelo_serializado.pickle', 'wb') as f:
pickle.dump(lda, f)
```

Pronto! Nosso modelo está salvo. Se quisermos usá-lo em um código em Python, podemos simplesmente carregá-lo:

- O Flask é um framework web em Python que nos ajuda a criar um "software servidor" para o backend da nossa aplicação de IA;
- Instale o Flask no seu Python usando o pip:

```
Flask 3.0.0

pip install Flask
```

• Exemplo de um Hello World em Flask:

```
from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():
    return "Olá mundo!"

if __name__ == "__main__":
    app.run()
```


Vamos criar um script em Python para disponibilizar o modelo.

```
from flask import Flask, request, jsonify
import numpy as np
import pickle

app = Flask(__name__)

# Modelo de exemplo - substitua isso pelo seu modelo treinado
# Aqui estamos carregando o modelo ja treinado que está no arquivo Jobbib
with open('C:/Users/Ferreira/Desktop/modelo_treinado_gafesp.pickle', 'rb')
modelo = pickle.load(f)
as f:
```

Estamos carregando o arquivo do modelo de IA prétreinado aqui. Troque pelo caminho do seu arquivo..

Vamos criar um script em Python para disponibilizar o modelo.

```
Rota para receber os dados e fazer previsões
                                                                Variáveis de entrada
13
    @app.route('/prever', methods=['GET'])
                                                                do problema de
    def prever():
14
                                                                classificação gaf_esp
15
        # Obter parâmetros da solicitação GET
                                                                visto em aula
        parametro1 = float(request.args.get('comp abd'))
16
17
        parametro2 = float(request.args.get('comp ant'))
18
19
        # Fazer previsões usando o modelo (substitua por suas próprias lógicas)
20
        entrada = np.array([[parametro1, parametro2]])
        resultado = modelo.predict(entrada)
21
22
23
        # Retornar o resultado como JSON
24
        return jsonify({'previsao': resultado.tolist()})
25
                                                                   Saída do modelo
26
    if
                == ' main ':
         name
27
        # Executar o aplicativo Flask
28
        app.run (debug=True)
```


Executando o servidor Flask:

No navegador, acesse o http://127.0.0.1:5000 com a composição da query:

http://127.0.0.1:5000/prever?comp_abd=1.0&comp_ant=2.0

http://127.0.0.1:5000/prever?comp_abd=1.0&comp_ant=2.0

A resposta será a predição do modelo quando comp_abd=1 e comp_ant=2

Você pode alterar o script para ter outras rotas, outras variáveis de entrada, ou gerar um resposta JSON mais elaborada.

Modelos via Node-RED

Importando um Modelo do Teachable Machine

 O Teachable Machine é uma ferramenta do Google para ensinar sobre Machine Learning e Reconhecimento de Imagens:

https://teachablemachine.withgoogle.com/

Teachable Machine

Train a computer to recognize your own images, sounds, & poses.

A fast, easy way to create machine learning models for your sites, apps, and more – no expertise or coding required.

Selecione a opção Image Project

Selecione a opção seguida de Standard image model

- Treine um classificador de imagens usando sua Webcam ou dados do seu computador;
- Lembre-se de rotular adequadamente cada conjunto de imagens;

TM + Node-RED

• Instale a lib do Teachable Machine no Node-RED:

TM + Node-RED

• Os passos para utilização do nó estão em:

https://flows.nodered.org/node/node-red-contrib-teachable-machine

Local Mode				
Download all three files from the generated URL and save them locally in a folder maintaning the original filenames.				
Select Local Mode and write down the absolute path of the folder that contain the three downloaded files in the node configuration. Make sure it ends with a / noting it is a folder.				
Properties				
■ Mode	Local			
% URI	/Users/bonastreyair/Desktop/model/			
Output	Best prediction \$			
Image	save original image in msg.image.			
Name Name	Name			

Comunicando dois servidores

- Vamos fazer nossos Servidor Flask comunicar-se com o Servidor Node-RED;
- Primeiro, vamos aprender a configurar o nó http request.
- Monte o seguinte fluxo:

 No nó de inject escolha a opção JSON e crie um dicionário com as variáveis que nosso modelo de IA espera receber:


```
Edit inject node > JSON editor
    Edit JSON
                                  Visual editor
                "comp_abd": 10,
                "comp ant": 10
```

No nó de http request

Coloque o IP e a rota do servidor Flask

Coloque para receber a msg.payload como parâmetro de query do GET

Troque o tipo de retorno para vir formatado como objeto JSON

- Injete a mensagem. Você deverá ver a resposta do modelo de IA no menu de debug do Node-RED
- Na prática, seu servidor Node-RED comunicou-se com seu servidor Flask que está disponibilizando o modelo de IA.

node: debug 5

msg.payload : Object

▼object

comp abd: 10

comp_ant: 10

node: debug 6

msg.payload : Object

▼object

▼previsao: array[1]

0: "Esperança"

Integrando modelo preditivo de IA e chatbots

 Com o servidor Flask rodando, vamos integrar um serviço de chatbot usando o Node-RED:

O nosso bot no Watson Assistant será configurado como:

Intenções

Entidades

<u>@sys-number</u> Extracts numbers expressed as digits or written as numbers. (21)

• O nosso bot no Watson Assistant será configurado como:

• Criando os nós de diálogo para capturar as variáveis de interesse:

Comprimento do Abdomen	Customize 📫	
Node name will be shown to customers for disambiguation descriptive.	n so use something Settings	
If assistant recognizes		
@sys-number		
Then set context		
The conversation_start node should be used to set contex	t. Learn more	
Variable	Value	
\$comp_abd	"@sys-number"	

Perceba que o teste no try it do WA não veremos o resultado do modelo, já que este está sendo chamado pelo nosso servidor Node-RED:


```
msg.payload: Object
 ▶ { output: object, user id: "8437a955-58ef-
44b3-9e6c-be847d...", context: object,
session id: "8437a955-58ef-44b3-9e6c-be847d..."
28/10/2023, 00:55:07 node: debug 1
msg.payload : Object
 ▶ { output: object, user id: "8437a955-58ef-
44b3-9e6c-be847d...", context: object,
session id: "8437a955-58ef-44b3-9e6c-be847d..."
28/10/2023, 00:55:09 node: debug 1
msg.payload: Object
 ▶ { output: object, user_id: "8437a955-58ef-
44b3-9e6c-be847d...", context: object,
session id: "8437a955-58ef-44b3-9e6c-be847d..."
28/10/2023, 00:55:10 node: debug 2
msg.payload: Object
 ▶ { comp abd: 4, comp ant: 6 }
28/10/2023, 00:55:11 node: debug 4
msg.payload : Object
 ▶ { content: "Este inseto é um(a): Gafanhoto",
chatId: 1297157419, type: "message" }
```

Certo, vamos classificar um inseto. Qual o comprimento do abdômen?

E qual o comprimento da antena? 00:55

Este inseto é um(a): Gafanhoto 00:55

Agora é com você!

Teste seu conhecimento do assunto realizando exercícios extras

Exercício

- 1. Faça um bot de Telegram que gere um filtro de imagem. O bot deve receber uma imagem e retornar a imagem filtrada (use uma técnica de segmentação, como vista no exemplo 3 de agrupamento).
- 2. Faça um bot de Telegram que classifique imagens;

Dica: em ambos será necessário adaptar o servidor Flask e o fluxo de integração no Node-RED.

Copyright © 2023 Slides do Prof. Henrique Ferreira - FIAP

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).