```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Flatten,Dense
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split
```

▼ Task 1 : Read the dataset and do data pre-processing

```
df = pd.read_csv("/content/drug200.csv")
df.head()
```

Drug	Na_to_K	Cholesterol	ВР	Sex	Age	
DrugY	25.355	HIGH	HIGH	F	23	0
drugC	13.093	HIGH	LOW	М	47	1
drugC	10.114	HIGH	LOW	М	47	2
drugX	7.798	HIGH	NORMAL	F	28	3
DrugY	18.043	HIGH	LOW	F	61	4

df.tail()

Drug	Na_to_K	Cholesterol	BP	Sex	Age	
drugC	11.567	HIGH	LOW	F	56	195
drugC	12.006	HIGH	LOW	М	16	196
drugX	9.894	HIGH	NORMAL	М	52	197
drugX	14.020	NORMAL	NORMAL	М	23	198
druaX	11.349	NORMAL	LOW	F	40	199

df.describe(include='all')

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
count	200.000000	200	200	200	200.000000	200
unique	e NaN	2	3	2	NaN	5
top	NaN	М	HIGH	HIGH	NaN	DrugY
freq	NaN	104	77	103	NaN	91
mean	44.315000	NaN	NaN	NaN	16.084485	NaN
std	16.544315	NaN	NaN	NaN	7.223956	NaN
min	15.000000	NaN	NaN	NaN	6.269000	NaN
25%	31.000000	NaN	NaN	NaN	10.445500	NaN
50%	45.000000	NaN	NaN	NaN	13.936500	NaN
75%	58.000000	NaN	NaN	NaN	19.380000	NaN

df.isnull().sum()

Age	0
Sex	0
BP	0
Cholesterol	0
Na_to_K	0

```
Drug 0
dtype: int64
df.shape
```

(200, 6)

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):
# Column Non-Null Count Dtype
```

#	COTUMN	Non-Null Count	Dtype		
0	Age	200 non-null	int64		
1	Sex	200 non-null	object		
2	BP	200 non-null	object		
3	Cholesterol	200 non-null	object		
4	Na_to_K	200 non-null	float64		
5	Drug	200 non-null	object		
<pre>dtypes: float64(1), int64(1), object(4)</pre>					
memory usage: 9.5+ KB					

df['Drug'].value_counts()

```
DrugY 91
drugX 54
drugA 23
drugC 16
drugB 16
```

Name: Drug, dtype: int64

sns.boxplot(df)

<Axes: >

sns.heatmap(df.corr(),annot = True)

sns.heatmap(df.cov(),annot=True)


```
df.shape
     (200, 6)
label_encoder = LabelEncoder()
df['Sex'] = label_encoder.fit_transform(df['Sex'])
df['BP'] = label_encoder.fit_transform(df['BP'])
df['Cholesterol'] = label_encoder.fit_transform(df['Cholesterol'])
df['Drug'] = label_encoder.fit_transform(df['Drug'])
print(df.head())
            Sex BP Cholesterol Na_to_K Drug
        Age
    0
        23
               0
                  0
                                0
                                   25.355
                                               0
         47
                                    13.093
    2
        47
                                               3
                                0
                                    10.114
               1
                  1
    3
                  2
                                    7.798
         28
               0
                                0
                                               4
    4
         61
                                   18.043
# Scale numerical variables
scaler = StandardScaler()
df[['Age', 'Na_to_K']] = scaler.fit_transform(df[['Age', 'Na_to_K']])
# Separate features and labels
x = df[['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K']]
y = df['Drug']
#Split the dataset into training and testing sets
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,random_state=42)
print(X_train.shape)
print(y_test.shape)
```

(160, 5) (40,)

Task 2: Build the ANN model with (input layer, min 3 hidden layers & output layer)

```
# Define the model architecture
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(5,)))
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(5, activation='softmax'))
x = df.iloc[:,0:5]
y = df.iloc[:,5:]
print(x)
print(y)
          Age Sex BP Cholesterol Na to K
              0
   0
     -1.291591
                0
                          0 1.286522
                          0 -0.415145
      0.162699
      0.162699
                         0 -0.828558
   2
              1
                1
   3
     -0.988614
              0
                2
                          0 -1.149963
   4
      1.011034
              0
                 1
                          0 0.271794
   195 0.708057
                         0 -0.626917
              0
                 1
   196 -1.715759
              1
                 1
                          0 -0.565995
   197 0.465676
                          0 -0.859089
   198 -1.291591
                 2
                          1 -0.286500
              1
   199 -0.261469
                          1 -0.657170
   [200 rows x 5 columns]
      Drug
   a
        a
   1
        3
   2
   3
        4
   4
        0
   195
        3
   196
        3
   197
   198
        4
   199
   [200 rows x 1 columns]
# Compile the model
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam',metrics=['accuracy'])
y_train_encoded = label_encoder.fit_transform(y_train)
y_test_encoded = label_encoder.transform(y_test)
\verb|model.fit(x_train, y_train_encoded, epochs=20, batch_size=20, validation_data=(x_test, y_test_encoded))|
   Epoch 1/20
   8/8 [===========] - 2s 48ms/step - loss: 1.5276 - accuracy: 0.4563 - val_loss: 1.4343 - val_accuracy: 0.5750
   8/8 [===========] - 0s 8ms/step - loss: 1.1038 - accuracy: 0.6687 - val_loss: 1.0544 - val_accuracy: 0.6000
   Epoch 4/20
   8/8 [========== ] - 0s 8ms/step - loss: 0.8836 - accuracy: 0.7000 - val_loss: 0.8803 - val_accuracy: 0.7000
   Epoch 5/20
   Epoch 6/20
   Epoch 7/20
   Epoch 8/20
   8/8 [==========] - 0s 10ms/step - loss: 0.3550 - accuracy: 0.9187 - val_loss: 0.4465 - val_accuracy: 0.8750
   Epoch 9/20
   8/8 [===========] - 0s 8ms/step - loss: 0.2504 - accuracy: 0.9187 - val_loss: 0.3313 - val_accuracy: 0.8750
   Fnoch 11/20
   Epoch 12/20
   8/8 [==========] - 0s 10ms/step - loss: 0.1818 - accuracy: 0.9438 - val_loss: 0.2641 - val_accuracy: 0.9000
```

```
Epoch 13/20
    8/8 [============== - - os 8ms/step - loss: 0.1692 - accuracy: 0.9438 - val loss: 0.2183 - val accuracy: 0.9250
    Epoch 14/20
    8/8 [===========] - 0s 8ms/step - loss: 0.1202 - accuracy: 0.9688 - val_loss: 0.1813 - val_accuracy: 0.9000
    Epoch 16/20
    8/8 [============ ] - 0s 11ms/step - loss: 0.1061 - accuracy: 0.9875 - val_loss: 0.1632 - val_accuracy: 0.9250
    Epoch 17/20
    8/8 [==========] - 0s 10ms/step - loss: 0.0917 - accuracy: 0.9750 - val_loss: 0.1426 - val_accuracy: 0.9250
    Epoch 18/20
    8/8 [==============] - 0s 10ms/step - loss: 0.0840 - accuracy: 0.9750 - val_loss: 0.1382 - val_accuracy: 0.9250
    Epoch 19/20
    Epoch 20/20
    8/8 [==========] - 0s 10ms/step - loss: 0.0633 - accuracy: 0.9812 - val_loss: 0.1088 - val_accuracy: 0.9500
    <keras.callbacks.History at 0x7fa4318fc490>
y_pred = model.predict(x_test)
y_pred
           [4.77323774e-04, 9.86557543e-01, 3.29303148e-04, 1.26218796e-02,
           1.38284076e-05],
           [1.26239341e-02, 8.35227408e-03, 7.18321680e-05, 5.05299389e-01,
           4.73652631e-01],
           [9.99876738e-01, 2.30531873e-06, 4.79095434e-07, 4.58031027e-05,
           7.48992970e-05],
           [4.47749766e-03, 9.65250671e-01, 4.88354824e-04, 2.97321938e-02,
           5.11882972e-05],
           [4.13611888e-05, 6.55233115e-03, 9.90925848e-01, 2.46071909e-03,
           1.97996615e-05],
           [9.99969780e-01, 1.18879626e-08, 1.35398803e-09, 4.27575287e-06,
           2.58900491e-05],
           [1.93605083e-04, 6.73294708e-04, 9.98399198e-01, 6.22513471e-04,
            1.11444700e-04],
           [2.72503087e-07, 4.23087236e-08, 5.76928905e-08, 3.90499807e-03,
           9.96094644e-01],
           [9.43804975e-04, 2.04935055e-02, 7.78236019e-04, 6.49481714e-01,
           3.28302771e-01],
           [9.99999940e-01, 2.47323065e-11, 5.76830337e-12, 2.05556283e-09,
           1.42746135e-08],
           [1.74128392e-03, 1.21899918e-02, 9.74617302e-01, 7.35693704e-03,
           4.09445167e-03],
           [1.09431325e-02,\ 4.27930281e-05,\ 7.84201175e-03,\ 4.76941392e-02,
           9.33477819e-01],
           [4.85268756e-05, 5.75254322e-04, 4.39714408e-03, 1.73598841e-01,
           8.21380317e-01],
           [9.99999940e-01, 5.10490044e-12, 8.72017194e-13, 1.14098925e-10,
           8.78420392e-10],
           [9.99999940e-01, 1.71382602e-12, 8.23305508e-13, 2.67156575e-10,
           4.48125803e-09],
           [9.99999940e-01, 2.26067580e-12, 3.28040302e-13, 4.84924566e-11,
           3.78847342e-10],
           [1.19902857e-03, 5.70465345e-03, 1.91556336e-03, 4.59326953e-01,
           5.31853914e-01],
           [5.00341157e-05, 1.13906211e-07, 5.05954212e-09, 4.10313532e-03,
           9.95846629e-01],
           [9.99999940e-01, 1.41064183e-09, 8.23568644e-11, 3.31224825e-09,
           6.58533272e-09],
           [3.59373614e-02, 1.31474990e-05, 3.20165454e-05, 1.29173081e-02,
           9.51100171e-01],
           [9.99996603e-01, 8.44012593e-09, 3.41800477e-09, 4.81045618e-07,
            2.86960312e-06],
           [6.26854307e-05, 1.15796879e-01, 8.22293514e-05, 8.61472785e-01,
           2.25852877e-02],
           [1.84965253e-01, 2.45325547e-02, 9.86454543e-04, 5.77957511e-01,
           2.11558163e-01],
           [9.99999821e-01, 1.58950364e-09, 1.53266233e-10, 4.14519938e-08,
           1.43860689e-07],
           [1.42232902e-05, 9.29070354e-01, 5.57741448e-02, 1.49999987e-02,
           1.41336219e-04],
           [9.99999940e-01, 1.81026461e-12, 7.30400441e-14, 1.08205216e-11,
           3.42230515e-11],
           [6.97014704e-02, 3.49381771e-05, 2.07613558e-02, 3.81239094e-02,
           8.71378303e-01],
           [4.38392814e-03, 9.32926357e-01, 1.03940554e-02, 5.10942787e-02,
           1.20139495e-03],
           [9.99995768e-01, 2.79096025e-06, 9.54093249e-09, 1.28936870e-06,
           1.68372466e-07],
```

comp = pd.DataFrame(y_test_encoded) # Creating a dataframe
comp.columns = ['Actual Value'] # Changing the column name

```
# Print the model summary
model.summary()
```

Model: "sequential"

Layer (type) Output Shape

dense (Dense)	(None,	64)	384		
dense_1 (Dense)	(None,	128)	8320		
dense_2 (Dense)	(None,	64)	8256		
dense_3 (Dense)	(None,	32)	2080		
dense_4 (Dense)	(None,	5)	165		
Total params: 19,205 Trainable params: 19,205 Non-trainable params: 0					

→ Task 3: Test the model with random data

```
# Generate random data for testing
random_data = np.random.rand(1, 5)
random_data
    array([[0.19134112, 0.80901969, 0.95135444, 0.350701 , 0.93702362]])
# Make predictions
predictions = model.predict(random_data)
predictions
    1/1 [=======] - 0s 76ms/step
    array([[9.9999952e-01, 7.5995299e-09, 1.8451682e-09, 9.8660905e-08,
            3.6800341e-07]], dtype=float32)
# Get the predicted drug class
predicted_class = np.argmax(predictions)
# Print the predicted class
print("Predicted Drug Class :", predicted_class)
Predicted Drug Class : 0
                                                          + Code -
                                                                   + Text
```