Homework 5 - Analytic number theory

Frank Thorne, thornef@mailbox.sc.edu

Due Friday, September 30

- 1. (0 points) Write down some random binary quadratic forms and some random matrices in $SL_2(\mathbb{Z})$, and compute their actions on your binary quadratic forms. Ponder and admire your results before throwing them in the wastebasket.
- 2. (5 points) Evaluate h(d) for d = -11, -15, -24, -163.
- 3. (5 points) Prove that the action of $SL_2(\mathbb{Z})$ leaves the discriminant unchanged.
- 4. (3 points) Prove directly (i.e., without using Gauss's theory) that the quadratic forms $2x^2 + xy + 3y^2$ and $2x^2 xy + 3y^2$ are not equivalent.
- 5. (3 points) Prove directly that the quadratic forms $x^2 + xy + y^2$ and $x^2 xy + y^2$ are equivalent.
- 6. (8 points; hints to be added later) (Gauss's reduction theory) Prove that every positive definite quadratic form with a, c > 0 is equivalent to a unique "reduced" form satisfying $-a < b \le a < c$ or $0 \le b \le a = c$.
- 7. (8 points) Prove that the number of automorphs of a binary quadratic form is: 6 if d = -3, 4 if d = -4, and 2 for any other negative d.
- 8. (5+ points) Using a computer, evaluate h(-d) for $1 < d < 10^6$, and describe and explain your results.
- 9. (???) Prove that h(d) > 1 if d < -163.