Midterm Exam #2

MATH 60061/70061: Mathematical Statistics I

November 9, 2020

This is a take-home exam. Please submit your answers as a **PDF** file to Blackboard by **11:59 p.m. on November 10**. Please show your work and write legibly. Your grade will be based on the correctness of your answers and the clarity with which you express them. Collaboration, copying, and cheating are not allowed.

Problems

- 1. (20 points) Let $Z \sim \mathcal{N}(0,1)$.
 - a. Show that

$$P(|Z| > r) \le \sqrt{\frac{2}{\pi}} \frac{e^{-r^2/2}}{r}$$

- b. Suppose X_1, \ldots, X_n are iid $\mathcal{N}(0,1)$ random variables. Bound $P(|\bar{X}_n| > r)$ using the above inequality, where \bar{X}_n is the sample mean. Compare to the Chebyshev's bound.
- 2. (20 points) The random variables X_1, \ldots, X_n are *exchangeable* if any permutation of any subset of them of k ($k \le n$) has the same distribution. Given P, let X_1, \ldots, X_n be iid Bern(P). Let $P \sim \text{Unif}(0,1)$.
 - a. Show that the marginal distribution of any *k* of the *X*'s is the same as

$$P(X_1 = x_1, ..., X_k = x_k) = \int_0^1 p^t (1-p)^{k-t} dp = \frac{t!(k-t)!}{(k+1)!},$$

where $t = \sum_{i=1}^{k} x_i$. Hence, X_1, \dots, X_n are exchangeable.

b. Show that, marginally,

$$P(X_1 = x_1, ..., X_n = x_n) \neq \prod_{i=1}^n P(X_i = x_i),$$

so X_1, \ldots, X_n are exchangeable but not iid.

- 3. (15 points) Let X_1, \ldots, X_n be iid Unif(0,1) random variables. Let $X_{(1)} < \cdots < X_{(n)}$ be the order statistics. Show that $X_{(1)}/X_{(n)}$ and $X_{(n)}$ are independent random variables.
- 4. (15 points) Let X_i , i = 1, 2, 3, be independent with $\mathcal{N}(i, i^2)$ distributions. For each of the following situations, use the X_i 's to construct a statistic with the indicated distribution.

- a. Chi-Squared distribution with 3 degrees of freedom.
- b. *t* distribution with 2 degrees of freedom.
- c. F distribution with 2 and 1 degrees of freedom.
- 5. (20 points) Let $\lambda_n = 1/n$ for $n = 1, 2, \dots$ Let $X_n \sim \text{Pois}(\lambda_n)$.
 - a. Show that X_n converges in probability to 0 as $n \to \infty$.
 - b. Show that $Y_n = nX_n$ converges in probability to 0 as $n \to \infty$.
- 6. (10 points) Suppose X_1, \ldots, X_n are iid $\mathcal{N}(\mu, \sigma^2)$ random variables, where $-\infty < \mu < \infty$ and $\sigma^2 > 0$. Define

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2,$$

where \bar{X}_n is the sample mean. Show that S_n^2 converges in probability to σ^2 , as $n \to \infty$.