130. Пусть

$$\lim_{n\to\infty}x_ny_n=0.$$

Следует ли отсюда, что либо $\lim_{n\to\infty} x_n = 0$, либо $\lim_{n\to\infty} y_n = 0$? Рассмотреть пример: $x_n = \frac{1+(-1)^n}{2}$, $y_n = \frac{1-(-1)^n}{2}$ ($n=1, 2, \ldots$).

131. Доказать, что

a)
$$\lim_{n\to\infty} x_n + \lim_{n\to\infty} y_n \le \lim_{n\to\infty} (x_n + y_n) \le \lim_{n\to\infty} x_n + \lim_{n\to\infty} y_n$$

И

6)
$$\lim_{n\to\infty} x_n + \overline{\lim}_{n\to\infty} y_n \leqslant \overline{\lim}_{n\to\infty} (x_n + y_n) \leqslant \overline{\lim}_{n\to\infty} x_n + \overline{\lim}_{n\to\infty} y_n.$$

Построить примеры, когда в этих соотношениях имеют место строгие неравенства.

132. Пусть $\dot{x}_n \geqslant 0$ и $y_n \geqslant 0$ ($n=1, 2, \ldots$). Доказать,

a)
$$\lim_{n\to\infty} x_n \cdot \lim_{n\to\infty} y_n \leqslant \lim_{n\to\infty} (x_n y_n) \leqslant \lim_{n\to\infty} x_n \cdot \lim_{n\to\infty} y_n$$

H

6)
$$\lim_{n\to\infty} x_n \cdot \overline{\lim} y_n \leqslant \overline{\lim}_{n\to\infty} (x_n y_n) \leqslant \overline{\lim}_{n\to\infty} x_n \cdot \overline{\lim}_{n\to\infty} y_n$$
.

Построить примеры, когда в этих соотношениях имеют место строгие неравенства.

133. Доказать, что если $\lim_{n\to\infty} x_n$ существует, то, какова бы ни была последовательность y_n $(n=1, 2, \ldots)$, имеем:

a)
$$\overline{\lim}_{n\to\infty} (x_n + y_n) = \lim_{n\to\infty} x_n + \overline{\lim}_{n\to\infty} y_n$$

И

6)
$$\overline{\lim}_{n\to\infty} (x_n y_n) = \lim_{n\to\infty} x_n \cdot \overline{\lim}_{n\to\infty} y_n \qquad (x_n \ge 0).$$

134. Доказать, что если для некоторой последовательности x_n ($n=1, 2, \ldots$), какова бы ни была последовательность y_n ($n=1, 2, \ldots$), имеет место по меньшей мере одно из равенств:

a)
$$\overline{\lim}_{n\to\infty} (x_n + y_n) = \overline{\lim}_{n\to\infty} x_n + \overline{\lim}_{n\to\infty} y_n$$