The Characteristic Equation

Let A be the 2×2 matrix defined below, then $\{\lambda : (A - \lambda I)\mathbf{x} = \mathbf{0} \text{ and } \mathbf{x} \neq \mathbf{0}\}$ is the set of all eigenvalues of A. That is, the set of all scalars λ that satisfy the matrix equation $(A - \lambda I)\mathbf{x} = \mathbf{0}$, where \mathbf{x} is a nontrivial solution to $(A - \lambda I)\mathbf{x} = \mathbf{0}$, is the set of all eigenvalues of A. Recall that by the Invertible Matrix Theorem, a matrix $A - \lambda I$ is invertible if and only if the matrix equation $(A - \lambda I)\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$ and, hence, each λ in $\{\lambda : (A - \lambda I)\mathbf{x} = \mathbf{0} \text{ and } \mathbf{x} \neq \mathbf{0}\}$ can be identified by finding each λ such that the matrix $A - \lambda I$ is non-invertible because, if $A - \lambda I$ is non-invertible, then $(A - \lambda I)\mathbf{x} = \mathbf{0}$ has a nontrivial solution.

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \qquad A - \lambda I = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] - \left[\begin{array}{cc} \lambda & 0 \\ 0 & \lambda \end{array} \right] = \left[\begin{array}{cc} a - \lambda & b \\ c & d - \lambda \end{array} \right]$$

Observe that the matrix $A - \lambda I$ fails to be invertible when $\det(A - \lambda I) = 0$, and hence the eigenvalues of A are scalars λ that satisfy $\det(A - \lambda I) = 0$ and, since $\det(A - \lambda I) = (a - \lambda)(d - \lambda) - bc$, it follows that the eigenvalues of A are scalars λ that satisfy $(a - \lambda)(d - \lambda) - bc = 0$. Thus, $\det(A - \lambda I)$ can be used to transform the matrix equation $(A - \lambda I)\mathbf{x} = \mathbf{0}$ into the scalar equation $\det(A - \lambda I) = 0$ in λ , called the *characteristic equation* of A, which can then be used to explicitly define $\{\lambda : (A - \lambda I)\mathbf{x} = \mathbf{0} \text{ and } \mathbf{x} \neq \mathbf{0}\}$, the set of all eigenvalues of A.

Fact (Characteristic Equation)

A scalar λ is an eigenvalue of an $n \times n$ matrix A if and only if λ satisfies the characteristic equation $\det(A - \lambda I) = 0$.

Example. Find the characteristic equation of the matrix A defined below.

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

First notice that A is upper triangular, so $det(A - \lambda I)$ is defined as follows.

$$\det(A - \lambda I) = \det \begin{bmatrix} 5 - \lambda & -2 & 6 & -1 \\ 0 & 3 - \lambda & -8 & 0 \\ 0 & 0 & 5 - \lambda & 4 \\ 0 & 0 & 0 & 1 - \lambda \end{bmatrix} = (5 - \lambda)(3 - \lambda)(5 - \lambda)(1 - \lambda)$$

Therefore, the characteristic equation of A is $(5 - \lambda)(3 - \lambda)(5 - \lambda)(1 - \lambda) = 0$, $(5 - \lambda)^2(3 - \lambda)(1 - \lambda) = 0$, $(\lambda - 5)^2(\lambda - 3)(\lambda - 1) = 0$ or, by expanding the product, the characteristic equation of A is $\lambda^4 - 14\lambda^3 + 68\lambda^2 - 130\lambda + 75 = 0$.

The Characteristic Polynomial

If A is an $n \times n$ matrix, then $\det(A - \lambda I)$ is a polynomial $p(\lambda)$ with $\deg(p) = n$ called the **characteristic polynomial** of A and, if a scalar λ is an eigenvalue of A, then the algebraic multiplicity of λ is the number of times λ appears as a root of $p(\lambda) = 0$. That is, the algebraic multiplicity of an eigenvalue λ is the power m of the term λ^m or $(c - \lambda)^m$ in $p(\lambda) = 0$, where c is a constant.

Example. Let $p(\lambda) = \lambda^6 - 4\lambda^5 - 12\lambda^4$ be the characteristic polynomial of a 6×6 matrix A. Find each eigenvalue of A and it's multiplicity.

Observe that $p(\lambda) = \lambda^6 - 4\lambda^5 - 12\lambda^4 = \lambda^4(\lambda^2 - 4\lambda - 12) = \lambda^4(\lambda - 6)(\lambda + 2)$, and hence by the characteristic equation $\lambda^4(\lambda - 6)(\lambda + 2) = 0$, it follows that the eigenvalues of A are $\lambda_1 = 0$, $\lambda_2 = 6$, and $\lambda_3 = -2$ with multiplicities 4, 1, and 1, respectively.

Matrix Similarity

Two $n \times n$ matrices A and B are similar if there exists an invertible $n \times n$ matrix P such that $P^{-1}AP = B$ and $A = PBP^{-1}$, where the matrix transformation $A \mapsto P^{-1}AP$ is called a similarity transformation.

Theorem (Similar Matrices)

If the $n \times n$ matrices A and B are similar, then A and B have the same characteristic polynomial $p(\lambda)$ and hence also have the same eigenvalues $\lambda_1, \ldots, \lambda_p$, which have the same multiplicities.

Proof. Observe that if A and B are similar, then there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$, and thus the matrix $B - \lambda I$ can be expressed by $B - \lambda I = P^{-1}AP - \lambda P^{-1}P = P^{-1}(AP - \lambda P) = P^{-1}(A - \lambda I)P$ and, by the multiplicative property of determinants $\det(AB) = \det(A) \cdot \det(B)$, it follows that $\det(B - \lambda I)$ can be expressed by the following.

$$\det(B - \lambda I) = \det\left[P^{-1}(A - \lambda I)P\right] = \det\left(P^{-1}\right) \cdot \det(A - \lambda I) \cdot \det(P)$$

Observe that since $\det(P^{-1}) \cdot \det(P) = \det(P^{-1}P) = \det(I) = 1$, it follows from the preceding equation that $\det(B - \lambda I) = \det(A - \lambda I)$ and, therefore, the matrices A and B have the same characteristic polynomial and eigenvalues, which have the same multiplicities.