中山大学2019随机信号练习题(1)

Ħ	考试形式:闭卷考试时间: <u>150</u> 分钟 满分: <u>100</u> _分
ţ	性名:
	一、填空题(共10小题,每小题1分,共10分)
1,	假设连续型随机变量的概率分布函数为 $F(x)$,则 $F(-\infty)=$, $F(+\infty)=$
	•
2,	如果一零均值随机过程的功率谱在整个频率轴上为一常数,则称该随机过程为
	,该过程的任意两个不同时刻的状态是。
3,	窄带正态噪声加正弦信号在信噪比远小于 1 的情况下的包络趋向
	分布,而相位则趋向分布。
4,	平稳随机信号通非线性系统的分析常用的方法是和
	与级数展开法。
5、	对随机过程 $X(t)$,如果 $K_X(t_1,t_2)=0$,则我们称 $X(t_1)$ 和 $X(t_2)$ 是。
	如果 $R_X(t_1,t_2)=0$,则我们称 $X(t_1)$ 和 $X(t_2)$ 是。如果
	$f_X(x_1,x_2,t_1,t_2) = f_X(x_1,t_1)f_X(x_2,t_2)$, 则称随机过程在 t_1 和 t_2 时刻的状态是
6、	平稳正态随机过程的任意维概率密度只由与来确
	定。
7、	典型的独立增量过程有与与。
8,	对于随机参量,如果有效估计存在,则其有效估计就是。
9、	对于无偏估计而言,总是大于等于某个量,这个量称为
	,达到这个量的估计称为。

二、选择题(共5小题,每小题2分,共10分)	
1 、 $X(t)$ 是均值为 m 方差为 σ^2 的平稳随机过程,下列表达式正确的有:()
(A) $E[X^2(t)] = \sigma^2$ (B) $R_X(0) = m^2 + \sigma^2$	
(C) $R_X(0) = m + \sigma^2$	
2、白噪声通过理想低通线性系统,下列性质正确的是:()	
(A) 输出随机信号的相关时间与系统的带宽成反比	
(B) 输出随机信号的相关时间与系统的带宽成正比	
(C) 系统带穿越窄 输出随机过程随时间变化越缓愠	

3、设平稳随机序列X(n)通过一个冲击响应为h(n)的线性系统,其输出用Y(n)表示,

(A) $E\{Y(n)\}=E\{X(n)\}\sum_{k=-\infty}^{+\infty}h(k)$ (B) $R_{XY}(m) = R_X(m) \otimes h(m)$ (D) $R_Y(m) = R_{YX}(m) \otimes h(-m)$

(D) 系统带宽越窄,输出随机过程随时间变化越剧烈

- (C) $R_{yx}(m) = R_{xy}(m)$
 - 4、 $\widehat{X}(t)$ 为X(t)的希尔伯特变换,下列表达正确的有: (
- (A) X(t)与 $\hat{X}(t)$ 的功率谱相等 (B) $R_X(\tau) = \hat{R}_X(\tau)$

那么,下列正确的有:(

10、纽曼-皮尔逊准则是:

(C) $\widehat{X}(t) = X(t) \otimes \frac{1}{\pi t}$ (D) $X(t) 与 \widehat{X}(t)$ 在同一时刻相互正交

5、对于一个二元假设检验问题,判决表达式为:如果 $T(z) > \gamma$,则判 H_1 成立,否则 判 H_0 成立。那么,虚警概率可表示为()

- (A) $P_F = \int_{Z_1} p(z \mid H_0) dz$ (B) $P_F = \int_{\gamma}^{\infty} p(T \mid H_0) dT$ (C) $P_F = \int_{-\infty}^{\gamma} T(z) p(z \mid H_0) dT$ (D) $P_F = \int_{Z_0} p(T(z) \mid H_0) dT$

三、判断题(共10小题,每小题1分,共10分)

1、X(t)为一个随机过程,对于任意一个固定的时刻 t_i , $X(t_i)$ 是一个确定值(

- 2、随机信号的均值计算是线性运算,而方差则不是线性运算。()
- 3、如果随机过程其时间平均和集合平均是依概率 1 相等的,则该随机过程具有遍历性。()
- 4、平稳随机信号在 $t=-\infty$ 时刻起加入物理可实现线性系统,其输出为平稳随机信号; 平稳随机信号在 $t=-\infty$ 时起加入物理不可实现线性系统, 其输出为非平稳随机信号。
 - 5、非线性变换不会增加新的频率分量而线性变换会增加新的频率分量。()
- 6、对于零均值的正态随机过程来说,两个时刻相互正交和相互独立是等价的。 ()
 - 7、随机信号的解析信号只存在正的功率谱。()
 - 8、窄带正态噪声的包络与相位在同一时刻相互正交。()
 - 9、如果对随机参量的估计是有效估计,那么这个估计必定是最大似然估计。()
 - 10、最小错误概率准则等价于最大后验概率准则。()

四、计算题(共1小题,每小题10分,共10分)

已知平稳随机过程 X(t) 的功率谱密度为 $G_X(\omega) = \frac{14\omega^2 + 14}{\omega^4 + 5\omega^2 + 4}$,

- (1)、求出该随机过程的均值与方差;
- (2)、相关时间 τ_0 (提示: $e^{-\alpha|\tau|} \leftrightarrow \frac{2\alpha}{\alpha^2 + \omega^2}$)。

五、计算题(共1小题,每小题8分,共8分)

考虑随机过程 $X(t) = a\cos(\Omega t + \theta)$, 其中 a 为常数, θ 在 $(0,2\pi)$ 上均匀分布, Ω 是随机变量,其概率密度 $f(\omega)$ 为偶函数,证明 X(t) 的功率谱密度为 $\pi a^2 f(\omega)$ 。

六、计算题(共1小题,每小题10分,共10分)

已知平稳随机过程X(t)的自相关函数如右图所示。

计算:

(1)、功率谱密度 $G_{\mathbf{x}}(\omega)$;

(2)、噪声等效通能带 $\Delta\omega_{a}$ 。

七、计算题(共1小题,每小题10分,共10分)

设线性滤波器输入为 X(t)=s(t)+n(t), 其中 n(t)的功率谱密度为 $G_n(\omega)=N_0/2,-\infty<\omega<\infty$ 的白噪声,s(t)为与 n(t)统计独立的矩形脉冲

$$s(t) = \begin{cases} A & 0 \le t \le T, A 为常数\\ 0 & 其它 \end{cases}$$

- 求: (1)、利用匹配滤波器时,输出端的最大信噪比为多少?
 - (2)、如果不用匹配滤波器,而用滤波器为 $h(t) = \begin{cases} e^{-\alpha t} & 0 \le t \le T \\ 0 &$ 其它 比为多少,你认为 α 的最佳值应该是多少?

八、计算题(共1小题,每小题10分,共10分)

设一质点在一线段上随机游动,线段的两端设有反射壁,假定质点只能停留在 a1=-L, a2=0, a3=L 三个点上,且只在时间 t=T, 2T, ... 发生位置的游动,游动的规则如下: 如果游动前质点在 a2 位置上,则下一时刻向左、向右移动的概率均为 1/2; 若游动前质点在 a1 位置,则下一时刻或以概率 1/2 向 a2 移动,或以概率均为 1/2 停留在原地;若游动前质点在 a3 位置,则下一时刻或以概率 1/2 向 a2 移动,或以概率均为 1/2 停留在原地; 若游动前质点在 a3 位置,则下一时刻或以概率 1/2 向 a2 移动,或以概率均为 1/2 停留在原地。

- (1)、试画出一步状态转移图;
- (2)、列出一步状态转移矩阵;
- (3)、求该链稳态时(平稳)的概率分布列。

九、计算题(共1小题,每小题10分,共10分)

设有如下两种假设,观测次数为 N 次,

$$H_0$$
 $z_k = n_k$ $k=1, 2, \dots, N$

$$H_1$$
 $z_k = 2 + n_k$

其中 n_k 服 从均值为 0 方差为 σ^2 的正态分布,假设 $p(H_0)=0.5$, $p(H_1)=0.5$,求

- (1)、最小错误概率准则下的判决表达式;
- (2)、虚警概率 P_F 与检测概率 P_D (结果由误差函数表示)。

十、计算题(共1小题,每小题12分,共12分)

设 $z(t) = s \cos \omega_0 t + n(t)$,通过取样对幅度 s 作线性估计。设 z(t) 在 $\omega_0 t = 0$, $\omega_0 t = \pi/3$ 处取样,并设:

 $E[s] = 0, E[n_1 n_2] = 0, E[s^2] = 2, E[sn] = 0, E[n_1] = E[n_2] = 0, E[n_1^2] = E[n_2^2] = 1$ \Re :

- (1)、线性最小均方估计 \hat{s}_{lms} ;
- (2)、线性最小均方估计的均方误差。