Trabalho Prático - Matemática das Coisas

Universidade do Minho

Eduardo Fernando Cruz Henriques [A93186]

Novembro, 2022

Licenciatura em Engenharia Informática

1 Introdução

Neste trabalho prático irei aplicar os conhecimentos que adquiri na área do cálculo, da álgebra e da programação ao longo deste semestre para resolver um problema criado por mim.

Neste caso, o problema que escolhi foi:

- -descobrir um método para criar uma função a partir de um conjunto de pontos(a função terá que passar nesses pontos);
- -analisar o tamanho de cada arco da função;
- -obter a distância total percorrida, assumindo que os arcos da função formam um caminho;

O software usado neste projeto foi o FreeMat e também usei o mecanismo de conhecimento computacional Wolfrom Alpha. É de notar que, por exemplo, viajar do ponto (0,0) para o ponto (0,1) ou o ponto(0, -1) significa que foi percorrido 1 km.

2 Resolução

2.1 Apresentação do problema e metodologia usada

O problema que criei tem base numa situação hipotética onde um robô terá de passar por vários pontos para reabastecer o seu combustível e entregar mercadorias até chegar ao seu destino, mas devido à maneira de como foi construído, nunca poderá andar em linha reta. O seu percurso terá de ser sempre efetuado no trajeto de uma curva.

Assumimos que o terreno é plano e que, num gráfico, qualquer ponto com coordenadas reais(x,y) é válido para o robô seguir. Ou seja, poderá ir para um ponto (-20,-20) por exemplo. De acordo com estas condições, apresento os pontos por onde o robô tem que passar(posição inicial do robô é (0,0):

Irei usar um sistema de equações lineares que será resolvido com o método da Eliminação de Gauss usando pivotação parcial para obter os valores que serão usados para criar uma função polinomial. Também irei usar integrais para calcular o comprimento aproximado dos arcos da função que for gerada.

2.2 Resolução

A função polinomial resultante será do tipo:

$$y = ax^7 + bx^6 + cx^5 + dx^4 + ex^3 + fx^2 + gx + h$$

onde as letras a,b,...,h serão obtidas pela resolução de um sistema de 8 equações lineares (porque dei 8 pontos no problema inicial). Irei dar um exemplo de como obter uma das linhas deste sistema e usarei os mesmo método para os restantes.

É necessário manter a ordem dos pontos do enunciado para resolver o sistema corretamente, mas o ponto (0,0) é um mau exemplo para demonstrar a equação.

O exemplo que que vou dar é o ponto (0.5, 1.6):

$$0.5^7 + 0.5^6 + 0.5^5 + 0.5^4 + 0.5^3 + 0.5^2 + 0.5^1 + 1 = 1.6$$

Usando esta lógica para os restantes pontos obtemos o seguinte sistema:

0	0	0	0	0	0	0	1]	a		$\begin{bmatrix} 0 \end{bmatrix}$
0.007812	0.015625	0.03125	0.0625	0.125	0.25	0.5	1	b		1.60
0.295090	0.35130	0.41821	0.49787	0.59270	0.7056	0.84	1	c		2.0
3.58318	2.98598	2.48832	2.0736	1.728	1.44	1.2	1	d	l _	1.86
8.17215	6.05344	4.48403	3.32151	2.46038	1.8225	1.35	1	e	=	1.95
17.0859375	11.390625	7.59375	5.0625	3.375	2.25	1.5	1	f		1.86
61.2220032	34.012224	18.89568	10.4976	5.832	3.24	1.8	1	g		0.92
128	64	32	16	8	4	2	1	h		

Que também pode ser escrito da seguinte maneira:

0	0	0	0	0	0	0	1	0
0.007812	0.015625	0.03125	0.0625	0.125	0.25	0.5	1	1.60
0.295090	0.35130	0.41821	0.49787	0.59270	0.7056	0.84	1	2.0
3.58318	2.98598	2.48832	2.0736	1.728	1.44	1.2	1	1.86
8.17215	6.05344	4.48403	3.32151	2.46038	1.8225	1.35	1	1.95
17.08594	11.39063	7.59375	5.0625	3.375	2.25	1.5	1	1.86
61.22200	34.01222	18.89568	10.4976	5.832	3.24	1.8	1	0.92
128	64	32	16	8	4	2	1	0

E, quando é resolvido usando a Eliminação de Gauss com Pivotagem Parcial (EGPP), nos dá os valores:

$$\begin{vmatrix} a \\ b \end{vmatrix} = \begin{vmatrix} -12.1848 \\ 102.7056 \\ -348.7127 \\ 605.7161 \\ -562.2871 \\ 259.4908 \\ -42.9127 \\ h \end{vmatrix}$$

Colocando estes valores na fórmula inicial e traçando o gráfico, obtemos:

Que traça um dos caminhos possíveis que o robô tomou, apesar de não ser o caminho ótimo. Necessitamos de criar pontos intermédios entre as paragens para combustível para tornar o caminho mais eficiente.

Agora iremos calcular o comprimento do arco da função que criamos entre os pontos x = 0 km e x = 2.0 km para determinar a distância que o robô percorreu.

A fórmula para calcular o comprimento o arco de uma função entre a e b é:

$$\int_a^b \sqrt{1 + [f'(x)]^2 dx}$$

onde:

- a = 0;
- b = 2;
- f(x) é a função traçada acima;

Esta fórmula não pode ser usada quando a função é não derivável em pelo menos um dos pontos do intervalo [a,b]. Como a função do gráfico acima é polinomial, é contínua e derivável em todo o seu domínio.

Vamos começar por derivar a função que traçamos. A função f(x):

$$y = -12.1848x^7 + 102.7056x^6 - 348.7127x^5 + 605.7181x^4 - 562.2871x^3 + 259.4908x^2 - 42.9127x + 0$$

Irá-se tornar em f'(x):

$$y = -85.2936x^6 + 616.2336x^5 - 1743.5635x^4 + 2422.8724x^3 - 1686.8613x^2 + 518.9816x - 42.9127$$

Colocando os valores na fórmula, teremos de resolver o seguinte integral para obter a distância:

$$\int_0^2 \sqrt{1 + (-85.2936x^6 + 616.2336x^5 - 1743.5635x^4 + 2422.8724x^3 - 1686.8613x^2 + 518.9816x - 42.9127)^2} \ dx$$

Resolvi este integral usando o Wolfrom Alpha, devido ao suporte reduzido do FreeMat para computar integrais de funções neste contexto.

No final, obtive o seguinte resultado:

O robô percorreu aproximadamente 9.75 km no caminho que sugeri com a resolução do problema para entregar todas as mercadorias.

Eduardo Fernando Cruz Henriques [A93186]; Trabalho Prático - Matemática das Coisas

7

3 Conclusão

Após realizar este trabalho, consegui expandir o meu nível de conhecimento de métodos matemáticos, assim como melhorar a minha capacidade de resolução de problemas e adquirir conhecimentos sobre o software FreeMat e sobre a área de programação em geral.

Deixo em baixo um anexo para um repositório do GitHub com os ficheiros que usei para a resolução do trabalho, e as fontes que usei para adquirir informação dos métodos que usei.

Repositório: https://github.com/EduardoHenriques/Matematica-Das-Coisas

4 Bibliografia

- Documentação do software FreeMat: https://sourceforge.net/projects/freemat/files/FreeMat4/FreeMat-4.1.pdf/download
- Website WolfromAlpha: https://www.wolframalpha.com/
- Artigo sobre a resolução de sistemas de equações lineares:https://pt.scribd.com/document/110707326/Solutionof-Linear-Systems-of-Equations-in-Matlab-Freemat-Octave-and-Scilab-by-www-freemat-info
- Artigo sobre o cálculo da distância de um arco de uma função entre dois pontos: https://www.mathsisfun.com/calculus/arclength.html