1. This question is about the equation

$$-\nabla^2 u = f \text{ on } \Omega, \quad \frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega, \tag{1}$$

where Ω is a polygonal domain with boundary $\partial\Omega$.

(a) Let V be a continuous Lagrange finite element space defined on a triangulation of Ω . Describe how the finite element discretisation of (1) using V results in a matrix-vector equation

$$A\mathbf{u} = \mathbf{b}.\tag{2}$$

[10 marks]

Solution: **SEEN**

First we develop the weak form by multiplying by a test function v, integrating by parts and removing the boundary integral due the Neumann boundary condition. The finite element discretisation is then: find $u \in V$ such that

$$\int_{\Omega} \nabla v \cdot \nabla u \, \mathrm{d} x - \int_{\Omega} v f \, \mathrm{d} x = 0, \quad \forall v \in V.$$

Let $\{\phi_i(x)\}_{i=1}^N$ be the nodal basis for V. Then expansion of v and u in the basis leads to

$$\sum_{i=1}^{N} v_i \left(\sum_{j=1}^{N} \int_{\Omega} \phi_i(x) \phi_j(x) \, \mathrm{d} x u_j - \int_{\Omega} \phi_i(x) f \, \mathrm{d} x \right) = 0,$$

but the v coefficients are arbitrary, so we have (2) with

$$A_{ij} = \int_{\Omega} \nabla \phi_i \cdot \nabla \phi_j \, \mathrm{d} x, \, x_i = u_i, b_i = \int_{\Omega} \phi_i f \, \mathrm{d} x.$$

(b) (i) Show that the matrix A satisfies

$$A\mathbf{1} = \mathbf{0},\tag{3}$$

where 1 is the vector with all entries equal to 1, and 0 is the zero vector.

[2 marks]

Solution: **UNSEEN**

$$(A\mathbf{1})_i = \int_{\Omega} \nabla \phi_i(x) \sum_{j=1}^N \nabla \phi_j(x) \cdot 1 \, \mathrm{d} \, x = \int_{\Omega} \nabla \phi_i(x) \underbrace{\nabla (1)}_{=0} \, \mathrm{d} \, x = 0.$$

(ii) Explain why this means that A is not invertible.

[1 marks]

Solution: **UNSEEN**

A is not invertible because it has a zero eigenvalue i.e. a nullspace.

(c) (i) Describe how to add an extra condition to Equation 1, and correspondingly to your finite element formulation, so that this issue is removed.

[2 marks]

Solution: SEEN

We add an extra condition, that

$$\bar{u} = \int_{\Omega} u \, \mathrm{d} \, x = 0.$$

Then, we replace V with \mathring{V} which is the subspace of V such that $\bar{u}=0$ for all $u\in V$.

(ii) Using the "mean estimate",

$$||u - \bar{u}||_{L^2(\Omega)} \le C|u|_{H^1(\Omega)},$$

where $u \in V$ and \bar{u} is the mean value of u, explain why Equation (3) cannot hold after modification.

[5 marks]

Solution: **UNSEEN**

Let A be the new matrix after reformulating with \mathring{V} instead of V, under some basis. By contradiction: let \mathbf{x}_0 be a non-zero vector such that $A\mathbf{X}_0 = \mathbf{0}$. Then there exists a corresponding non-zero $u \in \mathring{V}$ such that

$$\int_{\Omega} \nabla v \cdot \nabla u \, \mathrm{d} \, x = 0, \quad \forall v \in V.$$

Taking v = u, we have

$$0 = \int_{\Omega} |\nabla u|^2 \, \mathrm{d} \, x := |u|_{H^1(\Omega)}^2.$$

Since u is non-zero, we have $||u||_{L^2} > 0$. Since $u \in \mathring{V}$, we have $\bar{u} = 0$. Hence we have

$$||u - \bar{u}||_{L^2(\Omega)} = ||u||_{L^2(\Omega)} > 0.$$

This contradicts the mean estimate.

- 2. (a) Consider the finite element (K, P, N), where
 - * K is a triangle with vertices (z_1, z_2, z_3) .
 - $\ast\ P$ is the space of polynomials of degree 1 or less,
 - * $N = (N_1, N_2, N_3)$, where $N_i(p) = p(z_i)$, i = 1, 2, 3.

Show that N determines P.

[10 marks]

Solution: SEEN

We make use of the result that if p(x) is a degree k polynomial that vanishes on the line defined by L(x) = 0 and L is a non-degenerate affine polynomial, then p(x) = L(x)q(x) where q is a polynomial of degree k-1.

Let $p \in P$ such that $N_i(p) = 0$, i = 1, 2, 3. Let L_1 be a non-degenerate affine polynomial that vanishes on the line joining z_1 and z_2 . Then the restriction of p to L_1 vanishes at 2 points and therefore is zero everywhere on L_1 by the fundamental theorem of algebra. Thus $p(x) = L_1(x)q(x)$ where q is a degree 0 polynomial, i.e. $p(x) = cL_1(x)$. We also have that $p(z_3) = 0$, and $L_1(x)$ does not vanish at z_3 , so c = 0 i.e. p = 0 everywhere, hence N determines P.

- (a) Consider the finite element (K', Q, N'), where
 - * K' is a square with vertices (z_1, z_2, z_3, z_4) (enumerated clockwise around the square, starting at the bottom left).
 - $*~Q = \mathsf{Span}\{P, xy\}$, where P is the space of polynomials of degree 1 or less.
 - * $N' = (N_1, N_2, N_3, N_4)$, where $N_i(p) = p(z_i)$, i = 1, 2, 3, 4.

Show that N' determines Q.

[10 marks]

Solution: **SEEN SIMILAR**

We make use of the result that if p(x) is a degree k polynomial that vanishes on the line defined by L(x) = 0 and L is a non-degenerate affine polynomial, then p(x) = L(x)q(x) where q is a polynomial of degree k-1.

Let $p \in P$ such that $N_i(p) = 0$, i = 1, 2, 3, 4. Let L_1 be a non-degenerate affine polynomial that vanishes on the line joining z_1 and z_2 . Restricted to L_1 , p is a degree 1 polynomial, since all elements of R are constant on L_1 . Hence, $p(x) = L_1(x)q_1(x)$, where $q_1(x)$ has degree 1. Similarly, let L_2 be the non-degenerate affine polynomials vanishing on the line joining z_2 and z_3 . The restriction of q_1 to that line vanishes at two points and is therefore equal to zero everywhere on that line, and hence $p(x) = cL_1(x)L_2(x)$. However, $p(z_4) = 0$, so c = 0 i.e. p := 0 i.e. Q determines N'.

- 3. Consider the interval [a,b], with points $a=x_0,x_1,x_2,\ldots,x_{n-1},x_n=b$. Let $\mathcal T$ be a subdivision (i.e. a 1D mesh) of the interval [a,b] into subintervals $I_k=[x_k,x_{k+1}]$, $k=0,\ldots,N-1$. Consider the following three elements.
 - 1. (K, P, N) where $K = I_k$, P are polynomials of degree ≤ 3 , and $N = (N_1, N_2, N_3, N_4)$ with $N_1[u] = u(x_k)$, $N_2[u] = u(x_{k+1})$, $N_3[u] = \int_{x_k}^{x_{k+1}} u \, \mathrm{d} x$, $N_4[u] = u'((x_{k+1} + x_k)/2)$.
 - 2. (K, P, N) where $K = I_k$, P are polynomials of degree ≤ 3 , and $N = (N_1, N_2, N_3, N_4)$ with $N_1[u] = u(x_k)$, $N_2[u] = u(x_{k+1})$, $N_3[u] = u'(x_k)$, $N_4[u] = u'(x_{k+1})$.
 - 3. (K, P, N) where $K = I_k$, P are polynomials of degree ≤ 3 , and $N = (N_1, N_2, N_3, N_4)$ with $N_1[u] = u((x_{k+1} + x_k)/2)$, $N_2[u] = u'((x_{k+1} + x_k)/2)$, $N_3[u] = u''((x_{k+1} + x_k)/2)$, $N_4[u] = u'''((x_{k+1} + x_k)/2)$.
 - (a) Which of the three elements above are suitable for the following variational problem? Find $u \in H^1([a,b])$ such that

$$\int_a^b uv + u'v' \, \mathrm{d} \, x = \int_a^b fv \, \mathrm{d} \, x, \quad \forall v \in H^1([a,b]).$$

Justify your answer.

[10 marks]

Solution: SEEN SIMILAR

This equation requires the finite element space to be in $H^1([a,b])$ which requires C^0 finite elements. Elements 1 and 2 can be used to make C^0 elements, because you can assign N_1 and N_2 to vertices a and b respectively in both cases, so vertex-assigned nodal variables determine the value of the function there. Element 3 cannot be used, as there is no C^1 geometric decomposition for it (all four nodal variables to determine values at a and b in both cases).

(b) Which of the three elements above are suitable for the following variational problem? Find $u \in H^2([a,b])$ such that

$$\int_{a}^{b} uv + u'v' + u''v'' \, dx = \int_{a}^{b} fv \, dx, \quad \forall v \in H^{2}([a, b]).$$

Justify your answer.

[10 marks]

Solution: SEEN SIMILAR

This equation requires the finite element space to be in $H^2([a,b])$ which requires C^1 finite elements. Element 2 can be used to make C^1 elements, because you can assign N_1, N_3 and N_2, N_4 to vertices a and b respectively in both cases, so vertex-assigned nodal variables determine the value of the function and the derivative there.

Elements 1 and 3 cannot be used because the value of the derivatives at a and b require three nodal variables for each, so a C^1 geometric decomposition is not possible.

4. (a) For $f \in L^2(\Omega)$, where Ω is some convex polygonal domain, the L^2 projection of f into a degree k Lagrange finite element space V is the function $u \in V$ such that

$$\int_{\Omega} uv \, \mathrm{d} \, x = \int_{\Omega} vf \, \mathrm{d} \, x, \quad \forall v \in V.$$

Show that u exists and is unique from this definition, with

$$||u||_{L^2} \le ||f||_{L^2}.$$

[5 marks]

Solution: SEEN SIMILAR

This variational problem has a bilinear form which is just the L^2 inner product. Hence it is trivially continuous and coercive with scaling constants equal to 1. From the Lax-Milgram theorem, the solution exists and is unique. Taking v=u, we have

$$||u||_{L^2}^2 = \langle u, f \rangle_{L^2} \le ||u||_{L^2} ||f||_{L^2},$$

from Cauchy-Schwarz, and dividing both sides by $||u||_{L^2}$ gives the result.

(b) Show that the L^2 projection is mean-preserving, i.e.

$$\int_{\Omega} u \, \mathrm{d} \, x = \int_{\Omega} f \, \mathrm{d} \, x.$$

[5 marks]

Solution: **UNSEEN**

Since V is a Lagrange finite element space of degree k, it contains the function v=1, from which we obtain the result.

(c) Show that the L^2 projection u into V of f is the minimiser over $v \in V$ of the functional

$$J[v] = \int_{\Omega} (v - f)^2 dx.$$

[5 marks]

Solution: **UNSEEN**

Method 1: solve by computing variational derivative,

$$\delta J[v; \delta v] = 2 \int_{\Omega} \delta v(v - f) \, \mathrm{d} \, x = 0, \quad \forall \delta v \in V,$$

which gives v = u.

Method 2: by contradiction. If u is not the minimiser, then there exists $v \in V$ with $J[v] \leq J[u]$. Then

$$\begin{split} J[v] &= \int_{\Omega} (v-f)^2 \, \mathrm{d} \, x = \int_{\Omega} ((v-u) + (u-f))^2 \, \mathrm{d} \, x, \\ &= \int_{\Omega} (v-u)^2 \, \mathrm{d} \, x + \underbrace{\int_{\Omega} 2(v-u)(u-f) \, \mathrm{d} \, x}_{=0} + \underbrace{\int_{\Omega} (u-f)^2 \, \mathrm{d} \, x,}_{=0} \\ &= \|v-u\|_{L^2}^2 + J[u], \end{split}$$

and we conclude that $||v-u||_{L^2}^2 \leq 0$, a contradiction.

(d) Hence, show that

$$||u - f||_{L^2(\Omega)} < Ch|f|_{H^1(\Omega)},$$

where h is the maximum triangle diameter in the triangulation used to construct V.

[5 marks]

Solution: SEEN SIMILAR

Since u minimises the functional J, we have

$$||u - f||_{L^{2}(\Omega)} = \sup_{||v||_{L^{2}(\Omega)} > 0} ||v - f||_{L^{2}(\Omega)},$$

$$\leq ||I_{h}f - f||_{L^{2}(\Omega)},$$

$$\leq Ch|f|_{H^{1}(\Omega)},$$

where I_h is the nodal interpolation operator into V, and we used the standard approximation result for I_h .

Mastery). We quote the following result from lectures. Let K_1 be a triangle with diameter 1, containing a ball B. There exists a constant C such that for $0 \le |\beta| \le k+1$ and all $f \in H^{k+1}(\Omega)$,

$$||D^{\beta}(f - Q_{k,B}f)||_{L^{2}(K_{1})} \le C||\nabla^{k+1}f||_{L^{2}(K_{1})},\tag{4}$$

where $Q_{k,B}$ is the degree-k ball-averaged Taylor polynomial of f.

(a) Let \mathcal{I}_{K_1} be the nodal interpolation operator on K_1 for the Lagrange finite element of degree k. Using the following stability estimate

$$\|\mathcal{I}_K u\|_{H^k(K_1)} \le C \|u\|_{H^k(K_1)},$$

when k > 1, together with the estimate in Equation (4), show that when $i \leq k$, we have

$$|\mathcal{I}_{K_1}u - u|_{H^i(K_1)} \le C_1|u|_{H^{k+1}(K_1)}.$$

[5 marks]

Solution: SEEN

$$\begin{aligned} |\mathcal{I}_{K_{1}}u - u|_{H^{i}(K_{1})}^{2} &\leq \|\mathcal{I}_{K_{1}}u - u\|_{H^{k+1}(K_{1})}^{2} \\ &= \|\mathcal{I}_{K_{1}}u - Q_{k,B}u + Q_{k,B}u - u\|_{H^{k+1}(K_{1})}^{2} \\ &\leq \|Q_{k,B}u - u\|_{H^{k+1}(K_{1})}^{2} + \|\mathcal{I}(u - Q_{k,B}u)\|_{H^{k+1}(K_{1})}^{2}, \\ &\leq \|Q_{k,B}u - u\|_{H^{k+1}(K_{1})}^{2} + C^{2}\|Q_{k,B}u - u\|_{H^{k+1}(K_{1})}^{2}, \\ &\leq (1 + C^{2})|u|_{H^{k+1}(K_{1})}^{2}. \end{aligned}$$

(b) Let K be a triangle with diameter d. When k > 1 and $i \le k$, show that

$$|\mathcal{I}_K u - u|_{H^i(K)} \le d^{k+1-i} C_1 |u|_{H^{k+1}(K)},$$

where C_1 is a constant that depends on the shape of K but not the size.

[5 marks]

Solution: **SEEN**

Consider the change of variables $x \to \phi(x) = x/d$. This map takes K to K_1 with diameter 1. Then

$$\int_{K} |D^{\beta} (I_{K}u - u)|^{2} dx = d^{-2|\beta|+1} \int_{K_{1}} |D^{\beta} (I_{K_{1}}u \circ \phi - u \circ \phi)|^{2} dx,$$

$$\leq C_{1}^{2} d^{-2|\beta+1} \sum_{|\alpha|=k+1} \int_{K_{1}} |D^{\alpha} u \circ \phi|^{2} dx,$$

$$\leq C_{1}^{2} d^{-2|\beta+2(k+1)} \sum_{|\alpha|=k+1} \int_{K} |D^{\alpha} u|^{2} dx,$$

$$= C_{1}^{2} d^{2(-|\beta|+k+1)} |u|_{H^{k+1}(K)}^{2},$$

and taking the square root gives the result.

(c) Let \mathcal{T} be a triangulation such that the minimum aspect ratio r of the triangles K_i satisfies r>0. Let V be the degree k Lagrange finite element space. Let $u\in H^{k+1}(\Omega)$. Let h be the maximum over all of the triangle diameters, assuming that with $0\leq h<1$. Show that for $i\leq k$ and i<2, the global interpolation operator satisfies

$$\|\mathcal{I}_h u - u\|_{H^i(\Omega)} \le C h^{k+1-i} |u|_{H^{k+1}(\Omega)}. \tag{5}$$

[5 marks]

Solution: SEEN

The Lagrange finite element space is C^0 , so the first derivatives of $I_h u$ are defined in the finite element sense. Then we may write (for i < 2)

$$\|\mathcal{I}_{h}u - u\|_{H^{i}(\Omega)}^{2} = \sum_{K \in \mathcal{T}} \|\mathcal{I}_{K}u - u\|_{H^{i}(K)}^{2},$$

$$\leq \sum_{K \in \mathcal{T}} C_{K} d_{K}^{2(k+1-i)} |u|_{H^{k+1}(K)}^{2},$$

$$\leq C_{\max} h^{2(k+1-i)} \sum_{K \in \mathcal{T}} |u|_{H^{k+1}(K)}^{2},$$

$$= C_{\max} h^{2(k+1-i)} |u|_{H^{k+1}(\Omega)}^{2},$$

where the existence of the $C_{\max} = \max_K C_K < \infty$ is due to the lower bound in the aspect ratio.

(d) Why does this estimate not hold for $i \geq 2$?

[5 marks]

Solution: **UNSEEN**

This is because the weak second derivatives of $I_h u$ are not in $L^2(\Omega)$, we only have $I_h u \in H^1(\Omega)$.