UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

GRUPY AUTOMORFIZMOV LINEÁRNYCH KÓDOV

Diplomová práca

2022 Bc. Branislav Boráň

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

GRUPY AUTOMORFIZMOV LINEÁRNYCH KÓDOV

Diplomová práca

Študijný program: Aplikovaná informatika

Študijný odbor: 2511 Aplikovaná informatika Školiace pracovisko: Katedra algebry a geometrie

Školiteľ: doc. RNDr. Róbert Jajcay, DrSc.

Bratislava, 2022

Bc. Branislav Boráň

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta:

Branislav Boráň

Študijný program:

aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)

Študijný odbor:

informatika

Typ záverečnej práce:

diplomová anglický

Jazyk záverečnej práce: Sekundárny jazyk:

slovenský

Názov:

Automorphism groups of linear codes and linear codes with prescribed

automorphism groups

Grupy automorfizmov lineárnych kódov a lineárne kódy s predpísanou grupou

automorfizmov

Anotácia:

Lineárne kódy sú podpriestory konečnorozmerných vektorových priestorov nad konečnými poľami. Majú preto bohaté grupy automorfizmov, ktoré zároveň obsahujú množstvo informácií o uvažovanom kóde. Určenie úplnej grupy automorfizmov kódu je výpočtovo náročná úloha. Namiesto určenia grupy automorfizmov pre daný kód sa preto uvažuje obrátená úloha zostrojenia kódu s predpísanou grupou automorfizmov. Cieľom práce je preskúmať oba smery

tejto interakcie.

Ciel':

Cieľom navrhovanej problematiky je poskytnúť študentovi výpočtovo zložitý problém vyžadujúci dôkladné porozumenie štruktúry uvažovaných objektov

ako aj programátorské a organizačné schopnosti.

Literatúra:

R. Hill, A first course in coding theory, Oxford University Press, 1993

S. Roman, Coding and information theory, Springer, 1992

R. Jajcay, P. Potocnik and Stephen E. Wilson, Half-cyclic, dihedral and half-

dihedral codes.

J. of Applied Mathematics and Computing 64 (2020), 691-708.

Kľúčové

slová:

lineárny kód, grupa automorfizmov, konečné pole

Vedúci:

doc. RNDr. Róbert Jajcay, DrSc.

Katedra:

FMFI.KAG - Katedra algebry a geometrie

Vedúci katedry:

doc. RNDr. Pavel Chalmovianský, PhD.

Dátum zadania:

09.12.2020

Dátum schválenia: 10.12.2020

prof. RNDr. Roman Ďurikovič, PhD.

garant študijného programu

študent	vedúci práce

•	
1	V

Čestne prehlasujem, že túto diplomovú prácu som vypracoval samostatne len s použitím uvedenej literatúry a za pomoci konzultácií u môjho školiteľa.

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Bratislava, 2022

Bc. Branislav Boráň

Poďakovanie

Chcel by som sa v prvom rade poďakovať môjmu školiteľovi doc. RNDr. Róbertovi Jajcayovi, DrSc. za odbornú pomoc a usmernenia pri písaní tejto práce, za materiály, cenné rady, ktoré mi veľmi pomohli pri riešení tejto diplomovej práce. V neposlednom rade chcem tiež poďakovať všetkým mojím kamarátom a celej mojej rodine za podporu počas môjho štúdia.

Abstrakt

Táto práca sa venuje problematike xxxxxxxxx. Súčasťou tejto práce je prehľad existujúcich riešení a ich krátke zhodnotenie. Ďalej je tu xxxxx. Čo sa tu rieši.

Kľúčové slová: automorfizmus grúp,

Abstract

english abstract

Keywords: Automorphism groups, \dots

Obsah

1	Úvo	od		1						
2	Mo	tivácia		2						
3 Analýza problému										
	3.1	Lineár	ny kód	3						
		3.1.1	Generujúca matica lineárneho kódu	3						
		3.1.2	Kontrolná matica lineárneho kódu	4						
		3.1.3	LDPC kódy	4						
		3.1.4	Kvázicyklický kód	4						
	3.2	Grafov	vá reprezentácia LDPC kódov	5						
		3.2.1	Základné pojmy	5						
		3.2.2	Automorfizmus grafu	6						
		3.2.3	Klietky	7						
4	Náv	rh rie	šenia	11						
	4.1	Gener	ovanie a skúmanie incidenčných matíc, grúp automor-							
	fizmov z klietok									
		4.1.1	Klietka je zadaná	11						
		4.1.2	Generovanie klietky	12						

OBSAH ix

	4.2	Gener	ovanie a skúmanie klietok, grúp automorfizmov z inci-							
		denčn	ých matíc	12						
		4.2.1	Incidenčná matica je zadaná	12						
		4.2.2	Generovanie incidenčnej matice	12						
5	Výs	sledky		13						
	5.1	Gener	ovanie a skúmanie incidenčných matíc, grúp automor-							
		fizmov	zo zadaných klietok	13						
		5.1.1	Petersenov graf - $cage(3,5)$	13						
		5.1.2	Heawoodov graf - $cage(3,6)$	15						
		5.1.3	McGeeho graf - $cage(3,7)$	17						
		5.1.4	Tutte - Coxeterov graf - $cage(3,8)$	19						
		5.1.5	Balabanov graf - $cage(3, 10)$	22						
		5.1.6	Robertsonov graf - $cage(4,5)$	26						
		5.1.7	Hoffman - Singletonov graf - $cage(7,5)$	28						
		5.1.8	Generovanie klietky a následné skúmanie incidenčných							
			matíc, grúp automorfizmov	33						
		5.1.9	cage(6,4)	33						
	5.2	Gener	ovanie a skúmanie klietok, grúp automorfizmov zo zada-							
		ných incidenčných matíc								
	5.3	Gener	ovanie incidenčných matíc a následné skúmanie klietok,							
		grúp a	automorfizmov	36						
6	Záv	er		37						

$\mathbf{\acute{U}vod}$

XXXXXX

Motivácia

XXXXXX

Analýza problému

3.1 Lineárny kód

Lineárny kód (n,k) je k-rozmerný lineárny podpriestor priestoru F_n^2 . F_n^2 je priestor n-rozmerných vektorov, kde koordináty berieme z poľa F^2 . k-rozmerný lineárny podpriestor obsahuje práve k lineárne nezávislých vektorov. Ak by sme zobrali k takých vektorov, potom tieto vektory generujú daný k-rozmerný podpriestor a hovoríme, že tvoria bázu podpriestoru. Ak je splnená vlastnosť modulo 2 (q) súčtu 2 kódových slov je kódové slovo, tak vieme nájsť Generačnú maticu lineárneho kódu.

3.1.1 Generujúca matica lineárneho kódu

Generujúca matica lineárneho kódu (G) je zostrojená z bázy lineárneho kódu tak, že riadky matice predstavujú prvky bázy. Riadky generujúcej matice sú lineárne nezávislé vektory dĺžky n. Nech \vec{m} je vstup (nekódované slovo), \vec{v} je výstup (kódované slovo), C je označenie lineárneho kódu, potom platí:

$$C = \{ \vec{m} \times G : \vec{m} \in F_2^k \}, \quad \vec{v} = \vec{m} \times G$$
(3.1)

3.1.2 Kontrolná matica lineárneho kódu

V k-rozmernom linearnom kóde (C) v F_n^2 potom existuje n-k lineárne nezávislých vektorov \vec{v} takých, že každé kódové slovo je kolmé na všetky tieto vektory. Keď týchto n-k vektorov zoberieme ako riadky matice, dostaneme kontrolnú maticu lineárneho kódu H. Ľubovoľný vektor \vec{v} je kódovým slovom práve vtedy, ak platí:

$$C = \{ \vec{v} \in F_2^n : H \times \vec{v}^T = 0 \}$$
 (3.2)

3.1.3 LDPC kódy

LDPC kódy (z angl. low density parity check code) sú lineárne samoopravné kódy, ktoré jednak umožňujú prenos dát rýchlosťou blízkou kapacite kanálu a zároveň pre ne existujú vysoko účinné dekódovacie algoritmy. Kódy majú veľmi riedku kontrolnú maticu, pomocou ktorej sa dajú opraviť chyby v kódových slovách. Ich kontrolná matica obsahuje menej ako 1% jednotiek. Hlavnou nevýhodou väčšiny LDPC kódov je vysoká časová náročnosť ich kódovacieho algoritmu. Výhodou je paralelizmus pri dekódovaní a jednoduché výpočtové operácie. Dekódovacie výpočty sú rozdelené do 2 množín uzlov a to do kontrolných uzlov a premenných uzlov. Uzol na jednej strane je spojený s uzlom na druhej strane, čo umožňuje paralelné výpočty na každej strane.

3.1.4 Kvázicyklický kód

Lineárny kód (C) je kvázicyklický kód, ak existuje kontrolná matica H, ktorá má tvar:

$$H = (H_0|H_1|...|H_{n_0}^{-1}) (3.3)$$

 H_i sú cyklické matice. Ak sú LDPC kvázicyklické, nazývame ich QC-

LDPC kódy.

3.2 Grafová reprezentácia LDPC kódov

Matica LDPC je reprezentovaná Tannerovým grafom. Matica môže byť tiež reprezentovaná nebipartitným grafom alebo grafom vzdialenosti, v ktorom riadky matice predstavujú vrcholy a stĺpce matice reprezentujú hrany grafu. Stĺpec je potom množina hrán formujúca kompletný graf medzi vrcholmi spojenými v stĺpci. Nasledujúci obrázok ilustruje grafovú reprezentáciu matice LDPC kódu odvodenú z grafu vzdialenosti:

Obr. 3.1: Vztah medzi grafom a maticou [Mal07]

Graf vzdialenosti je formovaný cestami hrán alebo vrcholov Cyklus dĺžky g v grafe korešponduje s cyklom dĺžky 2g v maticovej forme.

3.2.1 Základné pojmy

• Dĺžka kódu - špecifikuje dimenzie $(M \times N)$ kontrolnej matice H. M predstavuje počet riadkov matice a N je počet stĺpcov.

• Kódová váha a rate (R) - predstavuje počet bitov (informácií) nad celkovým počtom prenesených bitov. Rate možno vyjadriť vzťahom:

$$R = (N - M)/N \tag{3.4}$$

- Minimálna Hammingová (kódová) vzdialenosť $minHW(\vec{u}, \vec{v})$ Nech sú vektory \vec{u} a \vec{v} kódové slová. Minimálna Hammingová vzdialenosť 2 vektorov $\vec{u} \in F_n^2$ a $\vec{v} \in F_n^2$ je počet koordinátov, na ktorých sa vektory \vec{u} a \vec{v} líšia.
- Obvod (g) ovplyvňuje dekódovanie LDPC kódu. V grafovej reprezentácií LDPC kódu sa jedná o najmenší cyklus v grafe. Jeho dĺžku zrátavame iba pomocou vrcholov alebo hrán. V matici LDPC kódu je dĺžka obvodu 2g, pretože cyklus alternuje medzi riadkami a stĺpcami z čoho vyplýva, že cyklus grafu reprezentuje iba polovicu maticového kódu.
- Moorov graf Pravidelný graf stupňa d a parametra k vo forme stromu vyhľadávania do šírky začínajúceho z ľubovoľného vrcholu V, ktorého počet vrcholov vieme dostať ako:

$$1 + d\sum_{i=0}^{k-1} (d-1)^i \tag{3.5}$$

• Rád grafu - Predstavuje počet vrcholov daného grafu

3.2.2 Automorfizmus grafu

Automorfizmus grafu je permutácia ϕ všetkých vrcholov grafu, ktorá zachováva jeho štruktúru takým spôsobom, že akékoľvek 2 vrcholy U a V susedia

iba vtedy a len vtedy ak platí, že $\phi(U)$ susedí s $\phi(V)$. Zjednodušene môžme povedať, že sa jedná o bijektívne zobrazenie, pri ktorom sa každý vrchol grafu a každá hrana zobrazí na iný vrchol a hranu, hovoríme tiež, že ide o jeho obraz. Množina všetkých automorfizmov grafu G tvorí grupu automorfizmov Aut(G). Moorové grafy vlastnia grupu automorfizmov, ktorá prechodne pôsobí na vrcholy daného grafu.

3.2.3 Klietky

Na konštrukciu LDPC kódov môžme využiť grafy vzdialenosti. Tieto grafy delíme na pravidelné s vrcholmi rovnakého stupňa (Moorové grafy) a nepravidelné s vrcholmi rôznych stupňov. Klietka cage(k,g) je k-pravidelný graf obvodu g s najmenším možným počtom vrcholov m. Výpočet minimálneho počtu vrcholov pre klietku sa líši podľa toho, či je jej obvod párny alebo nepárny:

• g - nepárne:

$$m = 1 + \sum_{i=0}^{(g-3)/2} k(k-1)^i = \frac{k(k-1)^{(g-1)/2} - 2}{k-2}$$
 (3.6)

 \bullet g - párne:

$$m = 2\sum_{i=0}^{(g-2)/2} k(k-1)^i = \frac{2(k-1)^{g/2} - 2}{k-2}$$
(3.7)

Takéto dolné ohraničenie počtu vrcholov m je tiež nazývané ako Moorové ohraničenie a označuje sa tiež M(k,g). Pre klietku ako Moorov graf platí:

$$d = k \tag{3.8}$$

Aj keď neexistuje jednotná konštrukcia klietok, existuje niekoľko známych klietok pre stupeň vrchola k a obvod g. Ukážeme si niektoré z nich:

• Petersenov graf - cage(3,5):

Obr. 3.2: Petersenov graf [EJ11]

Petersenov graf má rád 10. Automorfizmus grúp je izomorfný k Sym(5). Graf je vrcholovo tranzitívny.

• Heawoodov graf - cage(3,6):

Obr. 3.3: Heawoodov graf [EJ11]

Heawoodov graf má rád 14 a počet grúp automorfizmov je 336. Graf je vrcholovo tranzitívny.

• McGeeho graf - cage(3,7):

Obr. 3.4: McGeeho graf [EJ11]

McGeeho graf má rád 24 a počet grúp automorfizmov je 32. Graf nie je vrcholovo tranzitívny.

• Tutte-Coxeterov graf - cage(3, 8):

Obr. 3.5: Tutte-Coxeterov graf [EJ11]

Tutte-Coxterov graf má rád 30 a počet grúp automorfizmov je 1440. Graf je vrcholovo tranzitívny.

- Balabanov graf cage(3,11): Balabanov graf má 112 vrcholov a počet grúp automorfizmov je 64. Graf nie je vrcholovo tranzitívny.
- Bensonov graf cage(3,12): Bensonov graf má 126 vrcholov a počet grúp automorfizmov je 12096. Graf je vrcholovo tranzitívny.
- Robertsonov graf cage(4,5):

Obr. 3.6: Robertsonov graf [EJ11]

• ďalšie známe klitky: cage(4,7) - Exoo, McKay, a Nadonov graf, cages(5,5): počet grúp automorfizmov je 20,30 a 120, cage(7,5) - Hoffman - Singletonov graf, cage(7,6) - O'Keefe a Wongov graf

Návrh riešenia

Problematiku riešime v programe Sage [sag], ktorý je založený na programovacom jazyku Python. Zvolili sme ho, pretože ponúka veľké množstvo vopred naimplementovaných funkcií, ktoré nám podstatne uľahčia prácu s grafmi, maticami a grupami automorfizmov. Využili sme online aplikáciu CoCalc [coc], ktorá nám umožňuje vytvárať Sage projekty priamo na internete. CoCalc prevádzkuje prostredie Ubuntu Linux, s ktorým je možné komunikovať cez terminál a taktiež poskytuje prístup k ďalším možnostiam Linuxu.

4.1 Generovanie a skúmanie incidenčných matíc, grúp automorfizmov z klietok

4.1.1 Klietka je zadaná

Uvažujeme známe klietky a na základe nich vieme vygenerovať incidenčnú maticu a zistiť grupu automorfizmov. Tieto známe klietky vieme rozdeliť do 2 kategórií. V prvej kategórií využijeme tie grafy, ktoré má už Program Sage naimplementované. V druhej kategórií uvažujeme generovanie na základe zo-

znamu susedností jednotlivých vrcholov. Tieto dáta sme získali zo stránky p. Exooa a bolo ich potrebné spracovať do vhodnej grafovej štruktúry.

4.1.2 Generovanie klietky

Uvažujeme existujúce klietky, ktoré je potrebné zostrojiť spoločne s grafom, na základe nich potom vygenerujeme incidenčnú maticu a zistíme grupu automorfizmov. Pre vygenerovanú klietku vieme zistiť všetky potrebné informácie ako v predošlom prípade. Generovanie ja zatiaľ experimentálne ja zatiaľ experimentálne na základe dostupných metód jazyka Sage.

4.2 Generovanie a skúmanie klietok, grúp automorfizmov z incidenčných matíc

4.2.1 Incidenčná matica je zadaná

Uvažujeme známe incidenčné matice, ktoré je potrebné zostrojiť, na základe nich potom vygenerujeme klietku a zistíme grupu automorfizmov.

4.2.2 Generovanie incidenčnej matice

Uvažujeme existujúce incidenčné matice, ktoré je potrebné zostrojiť, na základe nich potom vygenerujeme klietku a zistíme grupu automorfizmov. Generovanie ja zatiaľ experimentálne na základe dostupných metód jazyka Sage.

Výsledky

- 5.1 Generovanie a skúmanie incidenčných matíc, grúp automorfizmov zo zadaných klietok
- 5.1.1 Petersenov graf cage(3,5)

Obr. 5.1: Petersenov graf 2D [coc]

Obr. 5.2: Petersenov graf 3D [coc]

• minimálny počet vrcholov: 10

 $\bullet\,$ rozmer minimálnej matice kódu: $10\times15\,$

• obvod cyklu v matici: 10

• minimálny počet hrán: 15

- cykly v grafe: 6 cyklov [[1, 6, 8, 5, 0], [4, 9, 6, 8, 5, 0], [7, 9, 6, 8, 5], [4, 3, 8, 5, 0], [1, 2, 3, 8, 5, 0], [7, 2, 3, 8, 5]]
- hrany v grafe: 15 hrán $[(0,1,None),(0,4,None),(0,5,None),(1,2,None),(1,6,None),(2,3,None),\\(2,7,None),(3,4,None),(3,8,None),(4,9,None),(5,7,None),(5,8,None),\\(6,8,None),(6,9,None),(7,9,None)]$
- počet grúp automorfizmov: 120
- matica lineárneho kódu:

[1	1	1	0	0	0	0	0	0	0	0	0	0	0	0]
[1	0	0	1	1	0	0	0	0	0	0	0	0	0	0]
[0	0	0	1	0	1	1	0	0	0	0	0	0	0	0]
[0	0	0	0	0	1	0	1	1	0	0	0	0	0	0]
[0	1	0	0	0	0	0	1	0	1	0	0	0	0	0]
[0	0	1	0	0	0	0	0	0	0	1	1	0	0	0]
[0	0	0	0	1	0	0	0	0	0	0	0	1	1	0]
[0	0	0	0	0	0	1	0	0	0	1	0	0	0	1]
[0	0	0	0	0	0	0	0	1	0	0	1	1	0	0]
[0	0	0	0	0	0	0	0	0	1	0	0	0	1	1]

Obr. 5.3: Matica Petersenovho grafu [coc]

5.1.2 Heawoodov graf - cage(3,6)

Obr. 5.4: Heawoodov graf 2D [coc]

Obr. 5.5: Heawoodov graf 3D [coc]

• minimálny počet vrcholov: 14

 \bullet rozmer minimálnej matice kódu: 14×21

• obvod cyklu v matici: 12

• minimálny počet hrán: 21

cykly v grafe: 8 cyklov
[[1, 10, 11, 12, 13, 0], [8, 9, 10, 11, 12, 13], [3, 4, 9, 10, 11, 12],
[5, 4, 9, 10, 11, 12, 13, 0], [5, 6, 11, 12, 13, 0], [8, 7, 6, 11, 12, 13],
[1, 2, 7, 6, 11, 12, 13, 0], [3, 2, 7, 6, 11, 12]]

hrany v grafe: 21 hrán
[(0,1,None), (0,5,None), (0,13,None), (1,2,None), (1,10,None), (2,3,None),
(2,7,None), (3,4,None), (3,12,None), (4,5,None), (4,9,None), (5,6,None),
(6,7,None), (6,11,None), (7,8,None), (8,9,None), (8,13,None),
(9,10,None), (10,11,None), (11,12,None), (12,13,None)]

• počet grúp automorfizmov: 336

• matica lineárneho kódu:

[1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
[1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0]
[0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0]
[0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0]
[0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0]
[0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0]
[0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1]
[0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1]

Obr. 5.6: Matica Heawoodovho grafu [coc]

5.1.3 McGeeho graf - cage(3,7)

Obr. 5.7: McGeeho graf 2D [coc]

Obr. 5.8: McGeeho graf 3D [coc]

• minimálny počet vrcholov: 22

• rozmer minimálnej matice kódu: 22×33

• obvod cyklu v matici: 14

• minimálny počet hrán: 33

cykly v grafe: 13 cyklov
[[23, 16, 15, 14, 13, 12, 0], [20, 19, 18, 17, 16, 15, 14, 13], [1, 2, 19, 18, 17, 16,
15, 14, 13, 12, 0], [3, 2, 19, 18, 17, 16, 15], [7, 6, 18, 17, 16, 15, 14], [23, 22, 5, 6, 18, 17, 16],
[20, 21, 22, 5, 6, 18, 17, 16, 15, 14, 13], [10, 9, 21, 22, 5, 6, 18, 17],
[1, 8, 9, 21, 22, 5, 6, 18, 17, 16, 15, 14, 13, 12, 0], [7, 8, 9, 21, 22, 5, 6], [3, 4, 5, 6,
18, 17, 16, 15], [11, 4, 5, 6, 18, 17, 16, 15, 14, 13, 12], [11, 10, 17, 16, 15, 14, 13, 12]]

hrany v grafe: 36 hrán
[(0,1,None), (0,12,None), (0,23,None), (1,2,None), (1,8,None), (2,3,None),
(2,19,None), (3,4,None), (3,15,None), (4,5,None), (4,11,None), (5,6,None),
(5,22,None), (6,7,None), (6,18,None), (7,8,None), (7,14,None), (8,9,None),
(9,10,None), (9,21,None), (10,11,None), (10,17,None), (11,12,None),

 $(12, 13, None), (13, 14, None), (13, 20, None), (14, 15, None), (15, 16, None), \\ (16, 17, None), (16, 23, None), (17, 18, None), (18, 19, None), (19, 20, None), \\ (20, 21, None), (21, 22, None), (22, 23, None)]$

- počet grúp automorfizmov: 32
- matica lineárneho kódu:

Obr. 5.9: Matica McGeeho grafu [coc]

5.1.4 Tutte - Coxeterov graf - cage(3,8)

Obr. 5.10: Tutte-Coxeterov graf 2D [coc]

Obr. 5.11: Tutte-Coxeterov graf 3D [coc]

• minimálny počet vrcholov: 30

 \bullet rozmer minimálnej matice kódu: 30×45

• obvod cyklu v matici: 16

• minimálny počet hrán: 45

• cykly v grafe: 16 cyklov [[1,22,23,24,25,26,27,28,29,0],[20,21,22,23,24,25,26,27],[16,15,14,21,22,23,24,25],[7,8,15,14,21,22,23,24,25,26,27,28],[11,10,9,8,15,14,21,22,23,24], [20,19,10,9,8,15,14,21],[17,18,19,10,9,8,15,14,21,22,23,24,25,26,27,28,29,0], [6,5,18,19,10,9,8,15,14,21,22,23],[3,4,5,18,19,10,9,8,15,14,21,22,23,24,25,26], [13,4,5,18,19,10,9,8,15,14],[1,2,9,8,15,14,21,22], [3,2,9,8,15,14,21,22,23,24,25,26],[12,13,14,21,22,23,24,25,26,27,28,29], [7,6,23,24,25,26,27,28],[12,11,24,25,26,27,28,29],[17,16,25,26,27,28,29,0]]

hrany v grafe: 45 hrán
[(0,1,None), (0,17,None), (0,29,None), (1,2,None), (1,22,None), (2,3,None),
(2,9,None), (3,4,None), (3,26,None), (4,5,None), (4,13,None), (5,6,None),

```
(5, 18, None), (6, 7, None), (6, 23, None), (7, 8, None), (7, 28, None), (8, 9, None), \\ (8, 15, None), (9, 10, None), (10, 11, None), (10, 19, None), \\ (11, 12, None), (11, 24, None), (12, 13, None), (12, 29, None), \\ (13, 14, None), (14, 15, None), (14, 21, None), \\ (15, 16, None), (16, 17, None), (16, 25, None), (17, 18, None), (18, 19, None), \\ (19, 20, None), (20, 21, None), (20, 27, None), (21, 22, None), (22, 23, None), \\ (23, 24, None), (24, 25, None), (25, 26, None), (26, 27, None), \\ (27, 28, None), (28, 29, None)]
```

- počet grúp automorfizmov: 1440
- matica lineárneho kódu:

Obr. 5.12: Matica Tutte - Coxeterovho grafu [coc]

5.1.5 Balabanov graf - cage(3, 10)

Obr. 5.13: Balabanov(10) graf 2D [\cos]

Obr. 5.14: Balabanov(10) graf 3D [coc]

• minimálny počet vrcholov: 62

 $\bullet\,$ rozmer minimálnej matice kódu: 62 × 93

• obvod cyklu v matici: 20

• minimálny počet hrán: 93

• cykly v grafe: 36 cyklov

[[69, 68, 67, 66, 65, 64, 63, 62, 61, 0], [60, 59, 42, 41, 40, 39, 68, 67, 66, 65, 64, 63, 62, 61],

[55, 56, 57, 58, 59, 42, 41, 40, 39, 68, 67, 66, 65, 64],

[33, 32, 31, 30, 29, 56, 57, 58, 59, 42, 41, 40, 39, 68, 67, 66],

[5, 4, 3, 32, 31, 30, 29, 56, 57, 58, 59, 42, 41, 40],

[18, 17, 4, 3, 32, 31, 30, 29, 56, 57],

[43, 26, 25, 16, 17, 4, 3, 32, 31, 30, 29, 56, 57, 58, 59, 42],

[28, 27, 26, 25, 16, 17, 4, 3, 32, 31, 30, 29],

[12, 11, 10, 9, 8, 27, 26, 25, 16, 17, 4, 3, 32, 31, 30, 29, 56, 57, 58, 59, 42, 41],

[2, 53, 52, 11, 10, 9, 8, 27, 26, 25, 16, 17, 4, 3],

[55, 54, 53, 52, 11, 10, 9, 8, 27, 26, 25, 16, 17, 4, 3, 32, 31, 30, 29, 56],

[38, 37, 54, 53, 52, 11, 10, 9, 8, 27, 26, 25, 16, 17, 4, 3, 32, 31,

30, 29, 56, 57, 58, 59, 42, 41, 40, 39, [15, 36, 37, 54, 53, 52, 11, 10, 9, 8, 27, 26, 25, 16],

[34, 35, 36, 37, 54, 53, 52, 11, 10, 9],

[60, 35, 36, 37, 54, 53, 52, 11, 10, 9, 8, 27, 26, 25, 16, 17, 4, 3, 32, 31, 30, 29, 56, 57, 58, 59],

[24, 51, 52, 11, 10, 9, 8, 27, 26, 25],

[50, 51, 52, 11, 10, 9, 8, 27, 26, 25, 16, 17, 4, 3, 32,

31, 30, 29, 56, 57, 58, 59, 42, 41, 40, 39, 68, 67, [18, 19, 10, 9, 8, 27, 26, 25, 16, 17],

[44, 45, 20, 19, 10, 9, 8, 27, 26, 25, 16, 17, 4, 3, 32, 31, 30,

29, 56, 57, 58, 59, 42, 41, 40, 39, 68, 67, 66, 65],

[1, 46, 45, 20, 19, 10, 9, 8, 27, 26, 25, 16, 17, 4, 3, 32, 31, 30, 29, 56, 57, 58, 59, 42, 41, 40,

39, 68, 67, 66, 65, 64, 63, 62, 61, 0, [7, 48, 47, 46, 45, 20, 19, 10, 9, 8],

[49, 48, 47, 46, 45, 20, 19, 10, 9, 8, 27, 26, 25, 16, 17, 4, 3, 32, 31, 30, 29, 56, 57, 58],

[13, 14, 47, 46, 45, 20, 19, 10, 9, 8, 27, 26, 25, 16, 17, 4, 3, 32, 31, 30],

[15, 14, 47, 46, 45, 20, 19, 10, 9, 8, 27, 26, 25, 16],

[22, 21, 20, 19, 10, 9, 8, 27, 26, 25, 16, 17, 4, 3, 32, 31],

[38, 21, 20, 19, 10, 9, 8, 27, 26, 25, 16, 17, 4, 3, 32, 31, 30, 29, 56, 57, 58, 59, 42, 41, 40, 39],

```
[33, 34, 9, 8, 27, 26, 25, 16, 17, 4, 3, 32],
[6, 7, 8, 27, 26, 25, 16, 17, 4, 3, 32, 31,
30, 29, 56, 57, 58, 59, 42, 41, 40, 39, 68, 67, 66, 65, 64, 63],
[23, 24, 25, 16, 17, 4, 3, 32, 31, 30, 29,
56, 57, 58, 59, 42, 41, 40, 39, 68, 67, 66, 65, 64, 63, 62],
[1, 2, 3, 32, 31, 30, 29, 56, 57, 58, 59, 42, 41, 40, 39, 68, 67, 66, 65, 64, 63, 62, 61, 0],
[23, 22, 31, 30, 29, 56, 57, 58, 59, 42, 41, 40, 39, 68, 67, 66, 65, 64, 63, 62],
[12, 13, 30, 29, 56, 57, 58, 59, 42, 41],
[69, 28, 29, 56, 57, 58, 59, 42, 41, 40, 39, 68],
[50, 49, 58, 59, 42, 41, 40, 39, 68, 67],
[44, 43, 42, 41, 40, 39, 68, 67, 66, 65],
[6, 5, 40, 39, 68, 67, 66, 65, 64, 63]]
```

• hrany v grafe: 105 hrán

```
[(0,1,None),(0,61,None),(0,69,None),(1,2,None),(1,46,None),(2,3,None),\\ (2,53,None),(3,4,None),(3,32,None),(4,5,None),(4,17,None),(5,6,None),\\ (5,40,None),(6,7,None),(6,63,None),(7,8,None),(7,48,None),(8,9,None),\\ (8,27,None),(9,10,None),(9,34,None),(10,11,None),(10,19,None),\\ (11,12,None),(11,52,None),(12,13,None),(12,41,None),(13,14,None),\\ (13,30,None),(14,15,None),(14,47,None),(15,16,None),(15,36,None),\\ (16,17,None),(16,25,None),(17,18,None),(18,19,None),(18,57,None),\\ (19,20,None),(20,21,None),(20,45,None),(21,22,None),(21,38,None),\\ (22,23,None),(22,31,None),(23,24,None),(23,62,None),(24,25,None),\\ (24,51,None),(25,26,None),(26,27,None),(26,43,None),(27,28,None),\\ (28,29,None),(28,69,None),(29,30,None),(29,56,None),(30,31,None),\\ (31,32,None),(32,33,None),(33,34,None),(33,66,None),(34,35,None),\\ (35,36,None),(35,60,None),(36,37,None),(37,38,None),(37,54,None),\\ (38,39,None),(39,40,None),(39,68,None),(40,41,None),(41,42,None),\\ (41,42,None),(41,42,None),\\ (41,42,None),(41,42,None),\\ (41,42,None),(41,42,None),\\ (41,42,None),\\ (41,42,None),\\ (41,42,None),\\ (41,42,None),\\ (41,42,None),\\
```

```
(42, 43, None), (42, 59, None), (43, 44, None), (44, 45, None), (44, 65, None), (45, 46, None), (46, 47, None), (47, 48, None), (48, 49, None), (49, 50, None), (49, 58, None), (50, 51, None), (50, 67, None), (51, 52, None), (52, 53, None), (53, 54, None), (54, 55, None), (55, 56, None), (55, 64, None), (56, 57, None), (57, 58, None), (58, 59, None), (59, 60, None), (60, 61, None), (61, 62, None), (62, 63, None), (63, 64, None), (64, 65, None), (65, 66, None), (66, 67, None), (67, 68, None), (68, 69, None)]
```

- počet grúp automorfizmov: 80
- matica lineárneho kódu:

Obr. 5.15: Matica Balabanovho(10) grafu [coc]

5.1.6 Robertsonov graf - cage(4,5)

Obr. 5.16: Robertsonov graf 2D [coc]

Obr. 5.17: Robertsonov graf 3D [coc]

• minimálny počet vrcholov: 17

 $\bullet\,$ rozmer minimálnej matice kódu: 17 × 34

• obvod cyklu v matici: 10

• minimálny počet hrán: 34

• cykly v grafe: 20 cyklov

```
 [[18, 14, 13, 12, 0], [4, 15, 14, 13, 12], [8, 15, 14, 13, 12, 0], \\ [1, 16, 15, 14, 13, 12, 0], [11, 16, 15, 14, 13, 12], [6, 17, 16, 15, 14, 13], \\ [18, 17, 16, 15, 14], [2, 9, 17, 16, 15, 14, 13], [8, 9, 17, 16, 15], \\ [10, 9, 17, 16, 15, 14], [11, 10, 14, 13, 12], [1, 5, 10, 14, 13, 12, 0], \\ [4, 5, 10, 14, 13, 12], [6, 5, 10, 14, 13], [8, 7, 6, 13, 12, 0], \\ [11, 7, 6, 13, 12], [2, 3, 7, 6, 13], [18, 3, 7, 6, 13, 12, 0], \\ [4, 3, 7, 6, 13, 12], [1, 2, 13, 12, 0]]
```

• hrany v grafe: 38 hrán

```
[(0,1,None),(0,8,None),(0,12,None),(0,18,None),(1,2,None),(1,5,None),\\(1,16,None),(2,3,None),(2,9,None),(2,13,None),(3,4,None),(3,7,None),\\(3,18,None),(4,5,None),(4,12,None),(4,15,None),(5,6,None),(5,10,None),\\(6,7,None),(6,13,None),(6,17,None),(7,8,None),(7,11,None),(8,9,None),\\(8,15,None),(9,10,None),(9,17,None),(10,11,None),(10,14,None),(11,12,None),\\(11,16,None),(12,13,None),(13,14,None),(14,15,None),(14,18,None),(15,16,None),\\(16,17,None),(17,18,None)]
```

- počet grúp automorfizmov: 24
- matica lineárneho kódu:

Obr. 5.18: Matica Robertsonovho grafu [coc]

5.1.7 Hoffman - Singletonov graf - cage(7,5)

Obr. 5.19: Hoffman - Singletonov graf 2D [coc]

Obr. 5.20: Hoffman - Singletonov graf 3D [coc]

• minimálny počet vrcholov: 50

• rozmer minimálnej matice kódu: 50×175

• obvod cyklu v matici: 10

• minimálny počet hrán: 175

• cykly v grafe: 126 cyklov [[45, 24, 22, 35, 0], [30, 21, 24, 22, 35, 0], [39, 21, 24, 22, 35], [2, 47, 21, 24, 22, 35, 0], [8, 47, 21, 24, 22, 35], [48, 47, 21, 24, 22], [44, 15, 47, 21, 24, 22], [25, 15, 47, 21, 24, 22, 35, 0], [36, 15, 47, 21, 24, 22, 35], [33, 15, 47, 21, 24], [31, 18, 15, 47, 21, 24, 22], [45, 18, 15, 47, 21, 24], [39, 18, 15, 47, 21], [3, 28, 18, 15, 47, 21, 24, 22, 35, 0], [23, 28, 18, 15, 47, 21], [27, 28, 18, 15, 47, 21, 24, 22], [8, 28, 18, 15, 47], [29, 28, 18, 15, 47, 21, 24], [46, 13, 28, 18, 15, 47], [44, 13, 28, 18, 15], [11, 13, 28, 18, 15, 47, 21, 24, 22, 35],

[30, 13, 28, 18, 15, 47, 21], [37, 13, 28, 18, 15, 47, 21, 24],

[25, 10, 13, 28, 18, 15], [41, 10, 13, 28, 18, 15, 47, 21, 24], [48, 10, 13, 28, 18, 15, 47],

[39, 10, 13, 28, 18], [43, 12, 10, 13, 28, 18, 15, 47, 21],

[45, 12, 10, 13, 28, 18], [14, 12, 10, 13, 28, 18, 15, 47],

```
[27, 12, 10, 13, 28], [36, 12, 10, 13, 28, 18, 15], [16, 34, 12, 10, 13, 28, 18], [8, 34, 12, 10, 13, 28],
[33, 34, 12, 10, 13, 28, 18, 15], [30, 34, 12, 10, 13],
[20, 34, 12, 10, 13, 28, 18, 15, 47, 21, 24, 22],
[44, 4, 34, 12, 10, 13],
[2, 4, 34, 12, 10, 13, 28, 18, 15, 47], [29, 4, 34, 12, 10, 13, 28],
[39, 4, 34, 12, 10], [31, 1, 4, 34, 12, 10, 13, 28, 18],
[46, 1, 4, 34, 12, 10, 13], [3, 1, 4, 34, 12, 10, 13, 28], [26, 1, 4, 34, 12, 10, 13, 28, 18, 15, 47, 21],
[41, 1, 4, 34, 12, 10], [36, 1, 4, 34, 12], [17, 49, 4, 34, 12, 10, 13, 28, 18, 15],
[23, 49, 4, 34, 12, 10, 13, 28], [45, 49, 4, 34, 12], [11, 49, 4, 34, 12, 10, 13], [48, 49, 4, 34, 12, 10],
[31, 5, 49, 4, 34, 12, 10, 13, 28, 18], [43, 5, 49, 4, 34, 12], [25, 5, 49, 4, 34, 12, 10],
[8, 5, 49, 4, 34], [37, 5, 49, 4, 34, 12, 10, 13], [46, 7, 5, 49, 4, 34, 12, 10, 13], [33, 7, 5, 49, 4, 34],
[40, 7, 5, 49, 4, 34, 12, 10, 13, 28, 18, 15, 47, 21, 24, 22, 35, 0], [27, 7, 5, 49, 4, 34, 12],
[39, 7, 5, 49, 4], [30, 9, 7, 5, 49, 4, 34],
[42, 9, 7, 5, 49, 4, 34, 12, 10, 13, 28, 18],
[36, 9, 7, 5, 49, 4, 34, 12], [48, 9, 7, 5, 49],
[29, 9, 7, 5, 49, 4], [44, 6, 9, 7, 5, 49, 4], [45, 6, 9, 7, 5, 49],
[26, 6, 9, 7, 5, 49, 4, 34, 12, 10, 13, 28, 18, 15, 47, 21], [8, 6, 9, 7, 5],
[32, 6, 9, 7, 5, 49, 4, 34, 12, 10], [17, 38, 6, 9, 7, 5, 49], [14, 38, 6, 9, 7, 5, 49, 4, 34, 12],
[37, 38, 6, 9, 7, 5], [20, 38, 6, 9, 7, 5, 49, 4, 34], [3, 38, 6, 9, 7, 5, 49, 4, 34, 12, 10, 13, 28],
[39, 38, 6, 9, 7], [31, 32, 10, 13, 28, 18], [23, 32, 10, 13, 28], [2, 32, 10, 13, 28, 18, 15, 47],
[33, 32, 10, 13, 28, 18, 15], [19, 32, 10, 13, 28, 18, 15, 47, 21, 24, 22, 35], [43, 42, 18, 15, 47, 21],
```

```
[2, 42, 18, 15, 47], [11, 42, 18, 15, 47, 21, 24, 22, 35], [41, 42, 18, 15, 47, 21, 24], \\ [20, 42, 18, 15, 47, 21, 24, 22], [40, 16, 18, 15, 47, 21, 24, 22, 35, 0], [37, 16, 18, 15, 47, 21, 24], \\ [19, 16, 18, 15, 47, 21, 24, 22, 35], [48, 16, 18, 15, 47], [26, 16, 18, 15, 47, 21], \\ [30, 17, 15, 47, 21], [41, 17, 15, 47, 21, 24], \\ [27, 17, 15, 47, 21, 24, 22], [19, 17, 15, 47, 21, 24, 22, 35],
```

```
[31, 14, 47, 21, 24, 22], [11, 14, 47, 21, 24, 22, 35], [29, 14, 47, 21, 24], [40, 14, 47, 21, 24, 22, 35, 0], [20, 46, 47, 21, 24, 22], [45, 46, 47, 21, 24], [19, 46, 47, 21, 24, 22, 35], [11, 26, 21, 24, 22, 35], [25, 26, 21, 24, 22, 35, 0], [27, 26, 21, 24, 22], [40, 23, 21, 24, 22, 35, 0], [20, 23, 21, 24, 22], [36, 23, 21, 24, 22, 35], [44, 43, 21, 24, 22], [3, 43, 21, 24, 22, 35, 0], [19, 43, 21, 24, 22, 35], [25, 29, 24, 22, 35, 0], [19, 29, 24, 22, 35], [2, 37, 24, 22, 35, 0], [36, 37, 24, 22, 35], [3, 33, 24, 22, 35, 0], [11, 33, 24, 22, 35], [8, 41, 24, 22, 35], [40, 41, 24, 22, 35, 0], [3, 48, 22, 35, 0], [2, 27, 22, 35, 0], [25, 20, 22, 35, 0], [40, 44, 22, 35, 0], [30, 31, 22, 35, 0]]
```

• hrany v grafe: 175 hrán

$$[(0, 2, None), (0, 3, None), (0, 25, None), (0, 30, None),$$

$$(0, 35, None), (0, 40, None), (0, 45, None), (1, 3, None),$$

$$(1, 4, None), (1, 26, None), (1, 31, None), (1, 36, None),$$

$$(1, 41, None), (1, 46, None), (2, 4, None), (2, 27, None),$$

$$(2, 32, None), (2, 37, None), (2, 42, None), (2, 47, None),$$

$$(3, 28, None), (3, 33, None), (3, 38, None), (3, 43, None),$$

$$(4, 44, None), (4, 49, None), (5, 7, None), (5, 8, None),$$

$$(5, 25, None), (5, 31, None), (5, 37, None), (5, 43, None),$$

$$(7, 9, None), (7, 27, None), (7, 33, None), (7, 39, None),$$

$$(7, 40, None), (7, 46, None), (8, 28, None), (8, 34, None),$$

$$(10, 39, None), (10, 41, None), (10, 48, None), (11, 13, None),$$

```
(11, 14, None), (11, 26, None), (11, 33, None), (11, 35, None),
(11, 42, None), (11, 49, None), (12, 14, None), (12, 27, None),
(12, 34, None), (12, 36, None), (12, 43, None), (12, 45, None),
(13, 28, None), (13, 30, None), (13, 37, None), (13, 44, None),
(13, 46, None), (14, 29, None), (14, 31, None), (14, 38, None),
(14, 40, None), (14, 47, None), (15, 17, None), (15, 18, None),
(15, 25, None), (15, 33, None), (15, 36, None), (15, 44, None),
(15, 47, None), (16, 18, None), (16, 19, None), (16, 26, None),
(16, 34, None), (16, 37, None), (16, 40, None), (16, 48, None),
(17, 19, None), (17, 27, None), (17, 30, None), (17, 38, None),
(17, 41, None), (17, 49, None), (18, 28, None), (18, 31, None),
(18, 39, None), (18, 42, None), (18, 45, None), (19, 29, None),
(19, 32, None), (19, 35, None), (19, 43, None), (19, 46, None),
(20, 22, None), (20, 23, None), (20, 25, None), (20, 34, None),
(20, 38, None), (20, 42, None), (20, 46, None), (21, 23, None),
(21, 24, None), (21, 26, None), (21, 30, None), (21, 39, None),
(21, 43, None), (21, 47, None), (22, 24, None), (22, 27, None),
(22, 31, None), (22, 35, None), (22, 44, None), (22, 48, None),
(23, 28, None), (23, 32, None), (23, 36, None), (23, 40, None),
(23, 49, None), (24, 29, None), (24, 33, None), (24, 37, None),
(24, 41, None), (24, 45, None), (25, 26, None), (25, 29, None),
(26, 27, None), (27, 28, None), (28, 29, None), (30, 31, None),
(30, 34, None), (31, 32, None), (32, 33, None), (33, 34, None),
(35, 36, None), (35, 39, None), (36, 37, None), (37, 38, None),
(38, 39, None), (40, 41, None), (40, 44, None), (41, 42, None),
(42, 43, None), (43, 44, None), (45, 46, None), (45, 49, None),
(46, 47, None), (47, 48, None), (48, 49, None)]
```

• počet grúp automorfizmov: 252000

• matica lineárneho kódu:

Obr. 5.21: Matica Hoffman - Singletonovho grafu [coc]

5.1.8 Generovanie klietky a následné skúmanie incidenčných matíc, grúp automorfizmov

5.1.9 cage(6,4)

Klietku vygenerujeme ako bipartitný graf. V Sage použijeme metódu DegreeSequenceBipartite(s,s), ktorá bude mať 2 rovnaké parametre s, pričom každý predstavuje zoznam vrcholov. Najskôr je potrebné si vypočítať minimálny počet vrcholov m klietky cage(6,4) a na základe výpočtu viem určiť parameter. Každý zoznam obsahuje m/2 vrcholov stupňa k a teda platí:

$$s = [k, k, k, k, k, k] \ len(s) = \frac{m}{2}$$
 (5.1)

Obr. 5.22: Cage(6,4) graf 2D [coc]

Obr. 5.23: Cage(6,4) graf 3D [coc]

• minimálny počet vrcholov: 12

 $\bullet\,$ rozmer minimálnej matice kódu: $12\times36\,$

• obvod cyklu v matici: 8

• minimálny počet hrán: 36

• cykly v grafe: 25 cyklov [[6,5,11,0],[7,5,11,0],[8,5,11,0],[9,5,11,0],[10,5,11,0],[6,4,11,0],

$$[7,4,11,0],[8,4,11,0],[9,4,11,0],[10,4,11,0],[6,3,11,0],[7,3,11,0],\\ [8,3,11,0],[9,3,11,0],[10,3,11,0],[6,2,11,0],[7,2,11,0],[8,2,11,0],\\ [9,2,11,0],[10,2,11,0],[6,1,11,0],[7,1,11,0],[8,1,11,0],[9,1,11,0],[10,1,11,0]]$$

• hrany v grafe: 36 hrán

```
[(0,6,None),(0,7,None),(0,8,None),(0,9,None),(0,10,None),(0,11,None),\\(1,6,None),(1,7,None),(1,8,None),(1,9,None),(1,10,None),(1,11,None),\\(2,6,None),(2,7,None),(2,8,None),(2,9,None),(2,10,None),(2,11,None),\\(3,6,None),(3,7,None),(3,8,None),(3,9,None),(3,10,None),(3,11,None),\\(4,6,None),(4,7,None),(4,8,None),(4,9,None),(4,10,None),(4,11,None),\\(5,6,None),(5,7,None),(5,8,None),(5,9,None),(5,10,None),(5,11,None)]
```

- počet grúp automorfizmov: 1036800
- matica lineárneho kódu:

Obr. 5.24: Matica klietky Cage(6,4) [coc]

- 5.2 Generovanie a skúmanie klietok, grúp automorfizmov zo zadaných incidenčných matíc
- 5.3 Generovanie incidenčných matíc a následné skúmanie klietok, grúp automorfizmov

Kapitola 6

Záver

XXXXXX

Literatúra

LITERATÚRA 39

```
[hona]
 [honb]
  [kim]
 [kraa]
 [krab]
  [kue]
[Mal07] Gabofestwe Alafang Malema. Low-Density Parity-Check Codes:
        Construction and Implementation. School of Electrical and Electro-
        nic Engineering, Faculty of Engineering, Computer and Mathemati-
        cal Sciences The University of Adelaide, Australia, 2007.
  [mih]
  [ope]
  [pia]
  [pla]
  [red]
  [sag] Sage. https://www.sagemath.org/.
  [sun]
  [tay]
  [thu]
  [tnt]
```

LITERATÚRA 40

[vie]

[wea]

[zhe]

Zoznam obrázkov

3.1	Vztah medzi grafom a maticou [Mal07]	5
3.2	Petersenov graf [EJ11]	8
3.3	Heawoodov graf [EJ11]	8
3.4	McGeeho graf [EJ11]	9
3.5	Tutte-Coxeterov graf [EJ11]	9
3.6	Robertsonov graf [EJ11]	10
5.1	Petersenov graf 2D [coc]	13
5.2	Petersenov graf 3D [coc]	14
5.3	Matica Petersenovho grafu [coc]	15
5.4	Heawoodov graf 2D [coc]	15
5.5	Heawoodov graf 3D [coc]	16
5.6	Matica Heawoodovho grafu [coc]	17
5.7	McGeeho graf 2D [coc]	17
5.8	McGeeho graf 3D [coc]	18
5.9	Matica McGeeho grafu [coc]	19
5.10	Tutte-Coxeterov graf 2D [coc]	19
5.11	Tutte-Coxeterov graf 3D [coc]	20
5.12	Matica Tutte - Coxeterovho grafu [coc]	21
5.13	Balabanov(10) graf 2D [coc]	22

ZOZNAM OBRÁZKOV	42
5.14 Balabanov(10) graf 3D [coc]	22
5.15 Matica Balabanovho(10) grafu [coc]	25
5.16 Robertsonov graf 2D [coc]	26
5.17 Robertsonov graf 3D [coc]	26
5.18 Matica Robertsonovho grafu [coc]	28
5.19 Hoffman - Singletonov graf 2D [coc]	28
5.20 Hoffman - Singletonov graf 3D [coc]	29
5.21 Matica Hoffman - Singletonovho grafu [coc]	33
5.22 $Cage(6,4)$ graf 2D [coc]	34
5.23 $Cage(6,4)$ graf 3D [coc]	34
5.24 Matica klietky Cage(6,4) [coc]	35