

Latent Space Diffusion Models of Cryo-EM Structures

Fan Xiao (樊箫)

Yau Mathematical Sciences Center, Tsinghua University

June, 2024

Background of cryo-EM

► Formultion of cryo-EM:

$$X_i = \mathsf{CTF}_i * (P_i^\phi \circ V) + N_i \quad i = 1, 2...N$$

Background of CryoDRGN

Background of CryoDRGN

Background of Diffusion Model

Suppose that $x_0 \sim q_{\text{data}}(x_0)$, the reverse process is defined as a Markov chain:

$$p_{\theta}(\mathbf{x}_{0:T}) := p(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t})$$
$$p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}) := \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_{t}, t))$$

► The forward process is fixed to a Markov chain that gradually adds Gaussian noise to the data:

$$q\left(\mathbf{x}_{1:T} \mid \mathbf{x}_{0}\right) := \prod_{t=1}^{T} q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right)$$

$$q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) := \mathcal{N}\left(\mathbf{x}_{t}; \sqrt{1-\beta_{t}}\mathbf{x}_{t-1}, \beta_{t}\mathbf{I}\right)$$

▶ Define $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t := \prod_{s=1}^t \alpha_s$, we have

$$q\left(\mathbf{x}_{t} \mid \mathbf{x}_{0}\right) = \mathcal{N}\left(\mathbf{x}_{t}; \sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}, (1 - \bar{\alpha}_{t})\mathbf{I}\right)$$

maximize the ELBO:

$$\mathbb{E}_{q}\left[\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{T}\mid\mathbf{x}_{0}\right)\|p\left(\mathbf{x}_{T}\right)\right)}_{L_{T}}+\underbrace{\sum_{t>1}\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{t-1}\mid\mathbf{x}_{t},\mathbf{x}_{0}\right)\|p_{\theta}\left(\mathbf{x}_{t-1}\mid\mathbf{x}_{t}\right)\right)}_{L_{t-1}}-\log p_{\theta}\left(\mathbf{x}_{0}\mid\mathbf{x}_{1}\right)\right]}_{L_{0}}$$

Here

$$q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}\right) = \mathcal{N}\left(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}_{t}\left(\mathbf{x}_{t}, \mathbf{x}_{0}\right), \tilde{\beta}_{t} \mathbf{I}\right)$$

where
$$\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t,\mathbf{x}_0) := \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1-\bar{\alpha}_t}\mathbf{x}_0 + \frac{\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t}\mathbf{x}_t$$
 and $\tilde{\beta}_t := \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t}\beta_t$

Suppose that $p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \sigma_t^2 \mathbf{I})$, we can write

$$L_{t-1} = \mathbb{E}_q \left[\frac{1}{2\sigma_t^2} \left\| \tilde{\boldsymbol{\mu}}_t \left(\mathbf{x}_t, \mathbf{x}_0 \right) - \boldsymbol{\mu}_{\theta} \left(\mathbf{x}_t, t \right) \right\|^2 \right] + C$$

We choose the paramerization

$$\boldsymbol{\mu}_{\theta}\left(\mathbf{x}_{t},t\right) = \frac{1}{\sqrt{\alpha_{t}}}\left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1-\bar{\alpha}_{t}}}\boldsymbol{\epsilon}_{\theta}\left(\mathbf{x}_{t},t\right)\right)$$

► The equation smplifies to

$$\mathbb{E}_{\mathbf{x}_{0},\boldsymbol{\epsilon}}\left[\frac{\beta_{t}^{2}}{2\sigma_{t}^{2}\alpha_{t}\left(1-\bar{\alpha}_{t}\right)}\left\|\boldsymbol{\epsilon}-\boldsymbol{\epsilon}_{\theta}\left(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{t}}\boldsymbol{\epsilon},t\right)\right\|^{2}\right]$$

Simplified variational bound:

$$L_{\mathsf{simple}}\left(\theta\right) := \mathbb{E}_{t,\mathbf{x}_{0},\epsilon}\left[\left\|\boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}\left(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}}\boldsymbol{\epsilon}, t\right)\right\|^{2}\right]$$

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \mathrm{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \left\ \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon_t t) \right\ ^2$	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: $\mathbf{for} \ t = T, \dots, 1 \ \mathbf{do}$ 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I}) \ \text{if} \ t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for
6: until converged	6: return \mathbf{x}_0

▶ Define $\beta(\frac{t}{T}) = T\beta_t$, as $T \to \infty$, the forward process of DDPM converges to the following SDE:

$$d\mathbf{x} = -\frac{1}{2}\beta(t)\mathbf{x}dt + \sqrt{\beta(t)}d\mathbf{w}$$

► For a general forward SDE:

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + \mathbf{G}(t)d\mathbf{w}$$

there exists a probability flow ODE corresponding to its backward form:

$$d\mathbf{x} = \left\{ \mathbf{f}(\mathbf{x}, t) - \frac{1}{2} \mathbf{G}(t) \mathbf{G}(t)^{\top} \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) \right\} dt$$

Background of SMLD

▶ In SMLD, the process $\{\mathbf{x}(t)\}_{t=0}^{1}$ is given by the following SDE:

$$d\mathbf{x} = \sqrt{\frac{d\left[\sigma^2(t)\right]}{dt}} d\mathbf{w}$$

▶ The probability flow ODE is formulated as:

$$d\mathbf{x} = -\dot{\sigma}(t)\sigma(t)\nabla_{\mathbf{x}}\log p(\mathbf{x};\sigma(t))dt$$

Train a denoiser

$$D_{\theta}(x;\sigma)(\nabla_{\mathbf{x}} \log p(\mathbf{x};\sigma) \approx s_{\theta} = (D_{\theta}(\mathbf{x};\sigma) - \mathbf{x})/\sigma^2)$$
 with:

$$\arg\min_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{x} \sim p_{\mathsf{data}}(\mathbf{x}), \sigma \sim p(\sigma), \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma^2)} \left[\lambda(\sigma) \| D_{\boldsymbol{\theta}}(\mathbf{x} + \mathbf{n}, \sigma) - \mathbf{x} \|_2^2 \right]$$

Model Outview

► First train a cryoDRGN model, then freeze the parameters and train the diffusion model in latent space

Result

Dataset	D	N	Å/pix.	$ \mathbf{z} $	Architecture	Epochs
 Linear1d	128	50k	6	8	256×3	25
Circular1d	128	100k	6	8	256×3	25
<i>Ribosome</i> (EMPIAR-10076)[42]	256	87,328	1.6375	10	1024×3	50
Covid (Walls et al. [25])	256	$276,\!549$	1.640625	8	1024×3	25

Diffusion Model

- Network Arhitecture: ResNet Architecture with 16 hidden layers, using 128 hidden dimensions per layer
- ► Training Algorithm: adam
- ▶ Batch size:1024
- ➤ Sampling: use an adaptive step-size Runge-Kutta solver for the Probability Flow ODE
- Regularize Sampling:

$$\begin{split} d\mathbf{x} &= \underbrace{-\dot{\sigma}(t)\sigma(t)\nabla_{\mathbf{x}}\log p(\mathbf{x};\sigma(t))dt}_{\text{Probability Flow ODE; see Eq. (2)}} \\ &- \underbrace{\beta(t)\sigma^2(t)\nabla_{\mathbf{x}}\log p(\mathbf{x};\sigma(t))dt}_{\text{Langevin diffusion component}} + \sqrt{2\beta(t)}\sigma(t)d\omega_t, \end{split}$$

Diffusion model prior can model the latent distribution of data

Dataset	Latent Diffusion Model Prior	Standard Gaussian VAE Prior
circular1d linear1d	0.015 0.015	0.82 0.86
unearra covid	0.015	0.19
ribosome	0.015	0.58

Figure 3: *circular1d* volumes viewed as isosurface contour. **A**: Ground truth volumes. **B**: 20 volumes sampled from diffusion model prior. **C**: 20 volumes sampled from standard Gaussian VAE prior.

▶ Run Langevin Dynamics in the latent space

$$\hat{\mathbf{z}}_{n+1} = \hat{\mathbf{z}}_n - \frac{\hat{\mathbf{z}}_n}{2} \Delta t + \sqrt{\Delta t} \mathcal{N}(\mathbf{0}, \mathbf{I})$$

(c) Ribosome (d) Covid 17 / 22

Diffusion Inteporlation

- Given z_A and z_B in the latent space, encode $\hat{z}_{AB}(y)=(1-y)\hat{z}_A+y\hat{z}_B$, then decode $\hat{z}_{AB}(y)$ back to $z_{AB}(y)$
- ▶ Use the Probability FLow ODE to sample

Diffusion Inteporlation

 Diffusion model has learnt a sharp transition in its Probability Flow ODE

Figure 4: Conformational state interpolation with the diffusion model prior for *linear1d*; Also see Fig. 8.

Diffusion Inteporlation

 Diffusion model has learnt a sharp transition in its Probability Flow ODE

Figure 4: Conformational state interpolation with the diffusion model prior for *linear1d*; Also see Fig. 8.

Future work

- Conditional Generative Modeling
 - Build on classifier and classifier-free guidance technique
- Coupling with Atomic Models
 - Combined with future version of CryoDRGN
- Molecular Simulation
- End-to-end Training and Hierarchical Models
 - End-to-end training of cryoDRGN together with the latent diffusion model
 - Learn one diffusion model to capture the main data clusters and another to capture the intra-cluster variation

Thank you!