MM April Problem 2070

Theophilus Pedapolu

12105. Proposed by Enrique Trevino, Lake Forest College, Lake Forest, IL Fix a prime p. For any integer $n \geq p$, let S_n be the number of ways of coloring p points using p distinct colors, each at least once, Characterize those p such that p is not a multiple of p^2 .

Solution

We claim that $S_n = \sum_{i=0}^p {p \choose i} (-1)^{p-i} i^n$. This follows directly from the inclusionexclusion principle. The total number of ways to color the points using pcolors is p^n . A coloring that uses only p-1 colors is subtracted once from the p^n total in the $-\binom{p}{p-1}n^{p-1}$ term. A coloring that uses only p-2 colors is subtracted twice in the $-\binom{p}{p-1}n^{p-1}$ term but is added back once in the $\binom{p}{p-2}n^{p-2}$ term. A coloring that uses only p-3 colors is subtracted three times in the $-\binom{p}{p-1}n^{p-1}$ term, added back three times in the $\binom{p}{p-2}n^{p-2}$ term and finally subtracted once in the $-\binom{p}{p-3}n^{p-3}$ term. Continuing the reasoning in this way, we can clearly see that all the colorings that use less that p distinct colors are subtracted once from the total p^n . Thus, we are left with only the colorings that use p distinct colors. However notice that $S(n,p) = \frac{1}{n!} \sum_{i=0}^{p} {p \choose i} (-1)^{p-i} i^n$, where S(n,p) is a Stirling number of the second kind. This is a well-known explicit formula [2] for Stirling numbers of the second kind. Therefore, $S_n = p!S(n,p)$. Since p is prime, p! only has one "p" in its prime factorization. The problem is thus reduced to finding n such that S(n,p) is not a multiple of p. If p is an odd prime, according to Theorem 5.2 in [1], S(n, p) is not a multiple of p only when $n \equiv 1 \pmod{n}$ p-1). If p=2, then S(n,p) is never even, as proved in the "Parity" section of [2]. The characterization, then, is all n congruent to 1 modulo p-1.

References

- [1] http://www.oyeat.com/papers/stirling9.pdf [2] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind