VISUALISING SOLID SHAPES

BACK

Front

Side

Square and a Rectangular field with measurements as given in the figure have the same perimeter. Which field has a larger area?

Sol.

Perimeter of Square = Perimeter of Rectangle

$$4 \times \mathbf{side} = 2 (1 + b)$$

Hint:

To find: Breadth

80 m

$$\therefore \qquad \boxed{4 \times 60} = 2 (80 + b)$$

120

$$\frac{240}{2} = 80 + b$$

$$120 = 80 + b$$

$$b = 120 - 80$$

Wellmow,

Reimeter of Equare 1= 4 2 (sideb)

Q.1

For each of the given solid, the three views are given.

Identify for each solid the corresponding top, front and side views

Identify for each solid the corresponding top, front and side views

Top

Front

Side

Side

For each given solid, identify the top view, side view & front view.

For each given solid, identify the top view, side view & front view.

4. Draw the front view, side view and top view of the given objects:

Sr No	Object	Front view	side view	Top view
а				
b				

4. Draw the front view, side view and top view of the given objects:

Sr No	Object	Front view	side view	Top view
O	5kg			
đ		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

4. Draw the front view, side view and top view of the given objects:

Sr No	Object	Front view	side view	Top view
e	000	00	0	
f				

Can a polygon have for its faces:
i. 3 Triangles ?

Sol. No, a polyhedron cannot have 3 triangles for its faces.

- 1. Can a polygon have for its faces:
- i. 3 Triangles?
- Sol. No, a polyhedron cannot have 3 triangles for its faces
- ii. 4 triangles
- Sol. Yes, a polyhedron can have four triangles which is known as pyramid on triangular base.
- iii. a square and four triangles
- Sol. Yes, a polyhedron has its faces a square and four triangles which makes a pyramid on square base.

- 2. Is it possible to have a polyhedron with any given number of faces? (Hint: Think of a pyramid)
- Sol. It is possible, only if the number of faces are greater than or equal to 4.

3. Which are prisms among the following:

Sol. Figure (ii) unsharpened pencil and figure (iv) a box are prisms.

- 4. How are prisms and cylinders alike?
- Sol. A prism becomes a cylinder as the number of sides of its base becomes larger and larger.
- ii. How are pyramids and cones alike?
- Sol. A pyramid becomes a cone as the number of sides of its base becomes larger and larger.

- 5. Is a square prism same as a cube? Explain.
- Sol. No, it can be a cuboid also.

Verify Euler's formula for these solids.

Sol.
$$F = 7$$
, $V = 10$, $E = 15$

L.H.S = R.H.S.

Verify Euler's formula for these solids.

Sol.
$$F = 9$$
, $V = 9$, $E = 16$

$$R.H.S = L.H.S$$

Using Euler's formula, find the unknown:

Faces	8	5	20
Vertices	6	ş	12
Edges	12	9	5

Sol. In first column, F = ?, V = 6 and E = 12
Using Euler's formula,

$$\mathbf{F} + \mathbf{V} - \mathbf{E} = 2$$

$$\therefore \mathbf{F} + \mathbf{6} - \mathbf{12} = \mathbf{2}$$

$$\mathbf{F} - \mathbf{6} = \mathbf{2}$$

$$\mathbf{F} = \mathbf{2} + \mathbf{6}$$

$$\mathbf{F} = \mathbf{8}$$

Hence there are 8 faces.

Verify Euler's formula for these solids.

Faces	8	5	20
Vertices	6	ъ	12
Edges	12	9	

Sol. In second column, F = 5, V = ? and E = 9 Using Euler's formula,

$$\mathbf{F} + \mathbf{V} - \mathbf{E} = 2$$

$$5 + V - 9 = 2$$

$$V - 4 = 2$$

$$V = 2 + 4$$

Hence there are 6 vertices.

Verify Euler's formula for these solids.

Faces	8	5	20
Vertices	6	6	12
Edges	12	9	30

Sol. In third column, F = 20, V = 12 and E = ? Using Euler's formula, we see F + V - E = 2

$$\mathbf{F} + \mathbf{V} - \mathbf{E} = 2$$

$$\therefore$$
 20 + 12 - E = 2

$$32 - E = 2$$

$$\mathbf{E} = \mathbf{32} - \mathbf{2}$$

Hence there are 30 edges.

Can a polyhedron have 10 faces, 20 edges and 15 vertices?

Sol.
$$F = 10$$
, $V = 15$ and $E = 20$

Then, we know Using Euler's formula,

$$L.H.S = 5$$

$$\therefore$$
 R.H.S = 2

$$L.H.S \neq R.H.S$$

Euler's Formula F + V - E = 2

Polyhedron having 10 faces, 20 edges and 15 vertices does not exist

