Apply machine learning to Performance trend analysis

Araya Eamrurksiri

May 19, 2017

- Introduction
 - Motivation
 - Objectives
- 2 Data
 - Data sources
 - Data preprocessing
- Method
 - Markov switching model
 - Model selection
 - E-divisive method
 - Simulation study for model evaluation
- Results
 - Analysis I: Number of states
 - Analysis II: Number of switching coefficients
 - Comparison between the Markov switching model and the E-divisive method
- Conclusion
 - Future work

Motivation

- Many test cases are executed for testing software packages
- Evaluate how each software package performs for an updated software package
- Tool or algorithm that can reduce workload of manual inspection

- Detect the state of the CPU utilization (degrading, improving or steady state)
- Detect whether there is any change in the test environment that effects the CPU utilization

Software release

Data sources

Software package - treated as a time point in the time series

Figure: Several software packages that are launched in the timeline

 Test cases in QA capacity area on signaling capacity - treated as an observation in the dataset

- Sorted by software package version
- Filtered out test cases which are not executed properly
- Selected test case which has lowest value of the CPU utilization to represent a performance of a specific software package

In total, each dataset contains 64, 241, and 144 test cases, respectively

- Contains several local events
- Stores multiple values separated by a tab character
- Some local events are used as predictor variables
- Implement a function to split each element to columns

Response variable

TotCpu%: CPU utilization

Predictor vairalbes

- EventsPerSec
 - RrcConnectionSetupComplete
 - Paging
 - X2HandoverRequest
- Test environments
 - DuProdName: Product hardware name
 - Fdd/Tdd: Different standard of LTE 4G Technology
 - NumCells: Number of cells in the base station

Markov switching model [Hamilton, 1989] Assuming that S_t denote an unobservable state variable

Markov switching model

$$y_t = X_t \beta_{S_t} + \phi_{1,S_t} y_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma_{S_t}^2)$$

 y_t is the observed value of time series at time t X_t are the predictor variables of time series at time t β_{S_t} are the coefficients in state S_t , where $S_t = 1, 2, ..., k$ ϕ_{1,S_t} is an autoregression coefficient of the observed value at time t-1 in state S_t

The observation are drawn from the first order autoregressive model, AR(1).

Figure: Model structure

df

When applying the Markov switching model, we need to decide on

Number of states, k

Model selection

• Number of switching coefficients in the model

Based on the applied literature, the information criteria called the Bayesian Information Criterion is used to select these numbers

$$BIC = -2\ln(L(\hat{\theta})) + m \cdot \ln(T)$$

E-divisive method [James, 2016]

E-divisive method

- Non-parametric approach: more flexible as no assumption about the distribution is made
- Detects multiple change point locations based on a divisive hierarchical estimation algorithm
- Algorithm: recursively partition a time series, and perform a permutation test to find the statistical significance of an estimated change point.

Simulation study for model evaluation

• State of the CPU utilization is unknown

- State of the CPU utilization is unknown
- Simulated two datasets Dataset 1 and Dataset 2 with different switching between states

$$y_t = \begin{cases} 10 + 0.6X_{1,t} - 0.9X_{2,t} + 0.5y_{t-1} + \varepsilon_t^{(1)} & \text{Normal} \\ 2 + 0.8X_{1,t} + 0.2y_{t-1} + \varepsilon_t^{(2)} & \text{Bad} \\ -12 + 0.7X_{1,t} + 0.2X_{2,t} - 0.2y_{t-1} + \varepsilon_t^{(3)} & \text{Good} \end{cases}$$

 y_t is assumed to be a value of a CPU usage of the time series at time t

 $x_{1,t} \sim U[50,200]$ of the time series at time t $x_{2,t} \sim U[0,50]$ of the time series at time t $\varepsilon_t^{(1)} \sim N(0,1), \quad \varepsilon_t^{(2)} \sim N(2,0.5), \quad \text{and} \quad \varepsilon_t^{(3)} \sim N(1,1)$ Decide: Number of states

Hypothesis: Markov switching model with two or three states

- BIC is one criteria to select the appropriate model but model output and plot should also be taken into account
- Three-state model are chosen for further analysis
- Remark:
 Higher number of states k ≥ 4 are more likely to give worse results and were not considered

Analysis II: Number of switching coefficients

Decide: Number of switching coefficients in the model Hypothesis: test environments is possible to have non-switching effects

Software release L16A Model with Fdd/Tdd and Numcells are non-switching coefficients

Figure: The CPU utilization showing the periods where the observation is in the specific state.

Decide: Number of switching coefficients in the model Hypothesis: test environments is possible to have non-switching effects

Software release L16B

Figure: The CPU utilization showing the periods where the observation is in the specific state.

Decide: Number of switching coefficients in the model Hypothesis: test environments is possible to have non-switching effects

Software release I 17A

Figure: The CPU utilization showing the periods where the observation is in the specific state.

Simulated Dataset 1

Figure: The simulated Dataset 1 showing the estimated change point locations

Simulated Dataset 2

Figure: The simulated Dataset 2 showing the estimated change point locations

Comparison between the Markov switching model and the E-divisive method

Real data: Software release L16A

Comparison between the Markov switching model and the E-divisive method

Real data: Software release L16B

Comparison between the Markov switching model and the E-divisive method

Real data: Software release L17A

Concludeeeee

Larger dataset

Future work

- Effects of other variables
- Consider on the other performance metrics (e.g.,memory usage and latency)
- Use semi-supervised learning algorithm if some test cases are labeled with state

References

James D Hamilton (1989)

A new approach to the economic analysis of nonstationary time series and the business cycle $\,$

Econometrica: Journal of the Econometric Society, pages 357-384.

Josep A. Sanchez-Espigares and Alberto Lopez-Moreno (2014) MSwM: Fitting Markov Switching Models CRAN R

Nicholas A. James and David S. Matteson (2016) ecp: Nonparametric Multiple Change Point Analysis of Multivariate Data *CRAN R*.