AMENDMENTS TO THE CLAIMS:

This listing of claims will replace prior versions and listings of claims in the application:

Claims 1-20 have been amended as follows: <u>Underlines</u> indicate insertions

and strikethrough indicate deletions.

Listing of claims:

 (Currently amended) A <u>compact</u> thrust load enhancement device for a rotor-bearing system, comprising:

a stator mounted on a rotation axis of the rotor-bearing system:

a rotor mounted on the rotation axis of the rotor-bearing system and separated

from said stator by a magnetic air gap on the rotation axis; and

at least one permanent magnet mounted on the rotation axis of the rotor-

bearing system; wherein said at least one permanent magnet is being fixed to a first one

of: i) said stator and ii) said rotor, and is being separated from a second one of: i) said

stator and ii) said rotor by said magnetic air gap;

wherein the rotor length needs not be modified to accommodate said thrust load

enhancement device, and a minimum volume of magnet is used; said at least one

permanent magnet, said stator, said rotor and said magnetic air gap forming a magnetic

circuit generating a compensation force between said rotor and said stator that opposes an

external force F_{ext} said compensation force being either attractive or repulsive depending

on said external force Fext.

2. (Currently amended) The compact thrust load enhancement device

according to claim 1, wherein the external force F_{ext} is caused by an action selected from

First Named Inventor: Lin Xiang Sun

center of gravity is low.

the group consisting of pressure and gravity in a vertical shaft configuration wherein a

3. (Currently amended) The compact thrust load enhancement device

according to claim 1, wherein said at least one permanent magnet is fixed to said stator;

said at least one permanent magnet being separated from said rotor by said magnetic air

gap.

(Withdrawn) The thrust load enhancement device according to claim 1.

wherein said at least one permanent magnet is fixed to said rotor, said at least one

permanent magnet being separated from said stator by said magnetic air gap.

(Withdrawn) The thrust load enhancement device according to claim 1.

wherein a first one of said at least one permanent magnet is fixed to said stator and a

second one of said at least one permanent magnet is fixed to said rotor, the magnetic air

gap separating said first permanent magnet from said rotor and said second permanent

magnet from said rotor respectively.

(Withdrawn) The thrust load enhancement device according to claim 5,

wherein said first one of said at least one permanent magnet and said second one of said

at least one permanent magnet respectively have poles of different polarity facing each

other to create an attractive compensation force between said rotor and said stator.

(Withdrawn) The thrust load enhancement device according to claim 5,

wherein said first one of said at least one permanent magnet and said second one of said

at least one permanent magnet respectively have poles of a similar polarity facing each

other to create an expulsion compensation force between said rotor and said stator.

PHDATA 3247727_1

First Named Inventor: Lin Xiang Sun

8. (Currently amended) The compact thrust load enhancement device

according to claim 1, further comprising a spacer to adjust said magnetic air gap.

9. (Currently amended)The <u>compact</u> thrust load enhancement device

according to claim 1, further comprising a piezoelectric actuator mounted in said stator.

10. (Withdrawn) The thrust load enhancement device according claim 5,

wherein said rotor and said stator are made in a material selected from the group

consisting of a soft magnetic material and a non-magnetic material.

11. (Currently amended) The compact thrust load enhancement device

according to claim 1, wherein said rotor is made of carbon steel and said stator is made of

mild steel.

12. (Currently amended) The compact thrust load enhancement device

according to claim 1, wherein the external force is selected in the group consisting of a

static force and a dynamic force.

13. (Currently amended) The compact thrust load enhancement device

according to claim 1, further comprising force measurement devices to measure the

compensation force.

14. (Currently amended) The compact thrust load enhancement device

according to claim 13, wherein said force measurement devices are selected from the

group consisting of strain gauges and piezoelectric elements.

15. (Currently amended) The compact thrust load enhancement device

according to claim 1, wherein said load enhancement device is located at one end of a

shaft of the rotor-bearing system.

PHDATA 3247727 1

First Named Inventor: Lin Xiang Sun

16. (Currently amended) The compact thrust load enhancement device

according to claim 1, wherein the thrust load is unidirectional from an external working load.

(Currently amended) The compact thrust load enhancement device

according to claim 1, wherein the thrust load is unidirectional from a rotor weight in a

vertical configuration.

17.

(Currently amended) The compact thrust load enhancement device

according to claim 1, wherein the external force is an unidirectional external static load

selected in the group consisting of a working load and a shaft weight in a vertical

configuration.

19 (Currently amended) The compact thrust load enhancement device

according to claim 1, wherein the rotor-bearing system is selected from the group

consisting of a magnetic bearing system, a hydrostatic bearing system, a hydrodynamic

bearing system, and a rolling element bearing system.

20. (Currently amended) A method for thrust load enhancement for a

high-speed rotor-bearing system comprising the steps of:

providing a stator on a rotation axis of the rotor-bearing system;

providing a rotor of an outer diameter similar to that of the bearing system on

the rotation axis of the rotor-bearing system separated on the rotation axis from the stator

by a magnetic air gap; and

providing at least one permanent magnet on the rotation axis separated from a

first one of: i) the stator and ii) the rotor, the at least one permanent magnet being

separated from a second one of: i) the stator and ii) the rotor by the magnetic air gap.

PHDATA 3247727 1

First Named Inventor: Lin Xiang Sun

whereby the length of the rotor needs not be modified during the above steps:

<u>and</u>

whereby the at least one permanent magnet, the stator, the rotor and the

magnetic air gap form a magnetic circuit that generates a compensation force between the

rotor and the stator, said compensation force being attractive or repulsive to oppose an

external force F_{ext} depending on the external force F_{ext} .

21. (Withdrawn) The method for thrust load enhancement according to

claim 25, wherein said steps of providing a stator and said step of providing a rotor

comprise providing a rotor and a stator made in a material selected from the group

consisting of a soft magnetic material and a non-magnetic material.

22. (Original) The method for thrust load enhancement according to claim

20, wherein said step of providing a stator comprises providing a stator made of mild steel

and said step of providing a rotor comprises providing a rotor made of carbon steel.

23. (Previously amended) The method for thrust load enhancement

according to claim 20, wherein said step of providing at least one permanent magnet

comprises mounting at least one permanent magnet on the stator, the magnetic air gap

separating the at least one permanent magnet from the rotor.

24. (Withdrawn) The method for thrust load enhancement according to

claim 20, wherein said step of providing at least one permanent magnet comprises

mounting at least one permanent magnet on the rotor, the magnetic air gap separating the

at least one permanent magnet from the stator.

PHDATA 3247727 1

First Named Inventor: Lin Xiang Sun

25. (Withdrawn) The method for thrust load enhancement according to

claim 20, wherein said step of providing at least one permanent magnet comprises fixing a

first permanent magnet to the stator and a second permanent magnet to the rotor, the

magnetic air gap separating the first permanent magnet from the rotor and the second

permanent magnet from the stator.

26. (Withdrawn) The method for thrust load enhancement according to

claim 25, wherein said steps of fixing a first permanent magnet to the stator and a second

permanent magnet to the rotor comprise arranging respective poles of different polarity

thereof facing each other to create an attractive compensation force between the rotor and

the stator.

27. (Withdrawn) The method for thrust load enhancement according to

claim 25, wherein said steps of fixing a first permanent magnet to the stator and a second

permanent magnet to the rotor comprises arranging respective poles of similar polarity

facing each other to create an expulsion compensation force between the rotor and the

stator.

28. (Previously amended) The method for thrust load enhancement

according to claim 20, further comprising a step of providing a spacer to adjust said

magnetic air gap.

29. (Previously presented) The method for thrust load enhancement

according to claim 20, further comprising the step of mounting a piezoelectric actuator in

the stator.

PHDATA 3247727 1

First Named Inventor: Lin Xiang Sun

30. (Previously presented) The method for thrust load enhancement according to claim 20, wherein the external force is selected from the group consisting of a

static force and a dynamic force.

 (Previously presented) The method for thrust load enhancement according to claim 20, further comprising the step of providing force measurement devices

according to claim 20, further comprising the step of providing force measurement devices

to measure the compensation force.

32. (Previously presented) The method for thrust load enhancement

according to claim 31, wherein said step of providing force measurement devices

comprises selecting devices from the group consisting of strain gauges and piezoelectric

elements.

33. (Previously presented) The method for thrust load enhancement

according to claim 20, wherein the rotor-bearing system is selected from the group consisting of a magnetic bearing system, a hydrostatic bearing system, a hydrodynamic

8

bearing system, and a rolling element bearing system.

PHDATA 3247727_1