Taller de geometría: Ejercicios de teoría.

Cristina Zuheros Montes.

07 Mayo 2016

Índice

- 1. Sean D el disco de Poincaré, $p,q\in D$, y $\alpha:[0,1]\to D$ una curva diferenciable a trozos tal que $\alpha(0)=p,\ \alpha(1)=q$ y $L(\alpha)=d(p,q)$. Probar que existe $f\in G$ tal que f(p)=0 y $f\circ\alpha$ es una reparametrización monótona de $\gamma_{f(q)}$.
- 2. Sean $\gamma:(a,b)\to D$ una geodésica y $f:(c,d)\to (a,b)$ una función diferenciable a trozos y monótona creciente. Probar que $\gamma\circ f:(c,d)\to D$ es una geodésica .

1. Sean D el disco de Poincaré, $p,q \in D$, \mathbf{y} $\alpha : [0,1] \to D$ una curva diferenciable a trozos tal que $\alpha(0) = p$, $\alpha(1) = q$ \mathbf{y} $L(\alpha) = d(p,q)$. Probar que existe $f \in G$ tal que f(p) = 0 \mathbf{y} $f \circ \alpha$ es una reparametrización monótona de $\gamma_{f(q)}$.

Solución

Vamos a usar los siguientes resultados:

Lema 1 Sea $p \in D$ y sea $\alpha : [0,1] \to D$ una curva diferenciable a trozos tal que $\alpha(0) = 0$ y $\alpha(1) = p$. Entonces:

$$(1)L(\alpha) \ge \log(\frac{1+|p|}{1-|p|})$$

Por tanto $d(0, p) = log(\frac{1+|p|}{1-|p|}).$

Además, si α verifica la igualdad 1, entonces α es una reparametrización de γ_p .

Lema 2 Si $f \in G$, $p, q \in D$, entonces d(f(p), f(q)) = d(p, q).

Lema 3 Si $\gamma:[0,1]\to D$ es diferenciable a trozos y $f\in G$, entonces: $L(\gamma)=L(f\circ\gamma)$.

Ahora sí, podemos pasar a demostrar el resultado:

Por hipótesis tenemos que $L(\alpha)=d(p,q)$, siendo $p,q\in D$. Consideramos $f\in G$. Estamos en condiciones de aplicar el lema 2, que nos lleva a que d(p,q)=d(f(p),f(q))=d(0,f(q)), pues por hipótesis f(p)=0.

Consideramos la función $f \circ \alpha : [0,1] \to D$ diferenciable a trozos (α es diferenciable a trozos y $f \in G$) verificando $(f \circ \alpha)(0) = f(p) = 0$ y $(f \circ \alpha)(1) = f(q) \in D$. Por el lema 1 tenemos que $d(0, f(q)) = log(\frac{1+|f(q)|}{1-|f(q)|})$. Luego tendremos la siguiente igualdad:

$$\mathcal{L}(\alpha) = log(\frac{1 + |f(q)|}{1 - |f(q)|})$$

Por otra parte, como $\alpha:[0,1]\to D$ es diferenciable a trozos, por el lema 3, se tiene que $L(f\circ\alpha)=\log(\frac{1+|f(q)|}{1-|f(q)|})$.

Como $f \circ \alpha$ verifica la igualdad 1 vista en el lema 1, tenemos que $f \circ \alpha$ es una reparametrización de $\gamma_{f(q)}$.

2. Sean $\gamma:(a,b)\to D$ una geodésica y $f:(c,d)\to (a,b)$ una función diferenciable a trozos y monótona creciente. Probar que $\gamma\circ f:(c,d)\to D$ es una geodésica .

Solución

Vamos a usar el siguiente resultado:

Propiedad 1 Si $f:[a,b] \to [c,d]$ es diferenciable con $f' \ge 0$, entonces $L(\gamma \circ f) = L(\gamma)$.

Para probar que $\gamma \circ f: (c,d) \to D$ es una geodésica tenemos que ver que $\forall s,t \in R$ verificando $c < s \le t < d$ se tiene que $d(\gamma \circ f(s), \gamma \circ f(t)) = L(\gamma \circ f|[s,t])$.

Por ser f monónota creciente se tiene que para $s, t \in [c, d]$ con $s \le t$ se verifica $f(s) \le f(t)$. Por tanto, tenemos $a < f(s) = s' \le f(t) = t' < b$.

Por ser γ geodésica, se tiene que $\forall s', t' \in R$ verificando $a < s' \le t' < b$ se verifica que $d(\gamma(s'), \gamma(t')) = L(\gamma[[s', t']])$.

Pretendemos adaptar la propiedad 1 usando el Teorema del cambio de variable, pues en nuestro caso f es diferenciable a trozos.

 $L(\gamma) = \inf \{ L(\alpha)/\alpha : (a,b) \to D \text{ con } \alpha(a) = p, \ \alpha(b) = q, \text{ donde } \alpha \text{ es diferenciable a trozos.} \} = \inf \{ L(\alpha \circ f)/\alpha \circ f : (c,d) \to D \text{ con } (\alpha \circ f)(c) = p, \ (\alpha \circ f)(d) = q, \text{ donde } \alpha \text{ es diferenciable a trozos.} \} = L(\gamma \circ f).$ Luego tendríamos que $\gamma \circ f$ es geodésica pues $\forall s, t \in R \ / \ c < s \le t < d$ se tiene que $d(\gamma \circ f(s), \gamma \circ f(t)) = L(\gamma \circ f)[s,t]$.