ООО «Модульные Системы Торнадо»

Разработка управляющей программы для модели 3-осевого манипулятора, подключенной к мобильному учебному комплексу №2 (Case 2)

Учебное пособие (предварительное издание)

СОДЕРЖАНИЕ

BI	ВЕДЕНИЕ	3
1.	Учебное автоматизированное рабочее место разработчика	. 3
	Модель технологического объекта	
3.	Подключение модели объекта к кейсу УСО	5
	Постановка задачи на разработку технологической программы	

ВВЕДЕНИЕ

В учебном пособии описаны технические и программные средства, входящие в состав учебного рабочего места разработчика технологических программ, описан порядок проверки работоспособности этих средств, поставлена задача по разработке управляющей программы, даны рекомендации по ее реализации и тестированию с использованием сред разработки ISaGRAF и InTouch.

1. Учебное автоматизированное рабочее место разработчика

Учебное автоматизированное рабочее место (APM-У) разработчика технологических программ состоит из персонального компьютера (ПК) и переносного кейса УСО (кейса с устройствами сопряжения с объектом), к которому могут подключаться реальные технологические объекты и/или их действующие модели.

В кейсе УСО смонтированы:

- кабель питания ~220B с вилкой (евростандарт);
- автомат включения питания;
- вторичный источник питания FPower (AC/DC: вход ~220B, выход =24B);
- коммутатор сети Ethernet;
- модули УСО серии MIRage-N;
- кабель для сопряжения модулей УСО с моделью технологического объекта.

В кейсе УСО также смонтирован кабель Ethernet, предназначенный для подключения коммутатора Ethernet или непосредственно к порту адаптера Ethernet персонального компьютера учебного APM, или к розетке локальной сети Ethernet, соединяющей все учебные APM.

Для проверки взаимодействия через сеть Ethernet между ПК и установленными в кейсе модулями УСО рекомендуется использовать команду «ping» в режиме «командной строки». IP-адреса ПК и модулей УСО приведены в Приложениях. Там же приведен пример применения команды «ping».

На ПК установлены и настроены следующие программные средства:

- программы тестирования модулей УСО;
- среда ISaGRAF для разработки технологических программ;
- среда исполнения технологических программ (ядро ISaGRAF);
- SCADA-система InTouch для разработки и исполнения программ визуализации, реализующих человеко-машинный интерфейс технологической программы с оператором-технологом.

2. Модель технологического объекта

Модель 3-осевого манипулятора

3-осевой робот с захватным устройством имеет 3 степени свободы:

Вал 1: Вращение на 180°

Вал 2: вперед / назад 90 мм

Вал 3: вверх / вниз 150 мм

Модель включает:

4 реверсных двигателя постоянного тока 24 В,

4 механических концевых выключателя,

2 датчика импульсов.

Внешний вид модели представлен на рисунке 2.1.

Рисунок 2.1. Внешний вид модели 3-осевого манипулятора

3. Подключение модели объекта к кейсу УСО

В таблице 3.1 представлено подключение датчиков и исполнительных механизмов модели к каналам модулей УСО.

Таблица 3.1

Разъем модели	Назначение	Клемма FPower	Канал NDIO-L	Код сигнала
1	питание 24V, +	20 (+)		
2	питание 24V, +	22 (+)		
3	питание 24V, –	21 (-)		
4	питание 24V, –	23 (–)		
5	Датчик I1 (счетчик импульсов захвата)		1 (ввод)	CH001DI01XB01
6	Датчик I2 (захват открыт)		2 (ввод)	CH001DI02XB01
7	Датчик I3 (крайнее правое положение горизонтального движения)		3 (ввод)	CH001DI03XB01
8	Датчик I4 (счетчик импульсов горизонтального движения влево)		4 (ввод)	CH001DI04XB01
9	Датчик I5 (верхнее положение вертикального движения)		5 (ввод)	CH001DI05XB01
10	Датчик I6 (крайнее положение кругового движения по часовой стрелке)		6 (ввод)	CH001DI06XB01
15	Мотор Q1 (захват открыт)		13 (вывод)	CH001DO01YB01
16	Мотор Q2 (захват закрыт)		14 (вывод)	CH001DO02YB01
17	Мотор Q3 (движение по горизонтали вперед)		15 (вывод)	CH001DO03YB01
18	Мотор Q4 (движение по горизонтали назад)		16 (вывод)	CH001DO04YB01
19	Мотор Q5 (движение по вертикали вниз)		17 (вывод)	CH001DO05YB01
20	Мотор Q6 (движение по вертикали вверх)		18 (вывод)	CH001DO06YB01
21	Мотор Q7 (круговое движение по часовой стрелке)		19 (вывод)	CH001DO07YB01
22	Мотор Q8 (круговое движение против часовой стрелки)		20 (вывод)	CH001DO08YB01

Для проверки подключения рекомендуется использовать приложение «ndio24», предназначенное для поканальной проверки модуля MIRage-NDIO-L. С его помощью можно проверить срабатывание датчиков и исполнительных механизмов модели.

Пример окна приложения «ndio24» представлен на рисунке 3.1.

Рисунок 3.1. Пример окна приложения «ndio-24» для тестирования модуля MIRage-NDIO-L

4. Постановка задачи на разработку технологической программы

В качестве лабораторной работы предлагается реализовать дистанционное и автоматическое управление производственной линией с учетом технологических защит и блокировок на языках стандарта IEC 1131-3 в среде разработки ISaGRAF с визуализацией технологического процесса в SCADA-системе InTouch.

Описание технологического процесса

Модель предназначена для захвата и перемещения заготовки в заданную точку пространства.

Захват следующей заготовки осуществляется после возврата манипулятора в исходное положение.

Датчики и исполнительные механизмы манипулятора представлены в таблице 3.1.

Технологические защиты и блокировки:

- Если сработал концевой выключатель захвата, то запрещается открытие захвата.
- Если счетчик импульсов движения захвата равен 2, то запрещается закрытие захвата.
- Если сработал концевой выключатель горизонтального движения, то запрещается движение крана назад.
- Если счетчик импульсов горизонтального движения равен 8, то запрещается движение крана вперед.
- Если сработал концевой выключатель вертикального движения, то запрещается движение крана вверх.
- После 4 с после того, как кран начал вертикальное движение вниз, срабатывает блокировка движения вниз.
- Если сработал концевой выключатель кругового движения, то запрещается движение крана по часовой стрелке.
- После 4 с после того, как кран начал круговое движение против часовой стрелки, срабатывает блокировка соответствующего кругового движения.

В ходе выполнения работы можно добавить собственные ТЗ и ТБ.

Алгоритм дистанционного управления и блокировок представлен на рисунке 4.1.

Алгоритм функционально-группового управления ($\Phi\Gamma Y$) — автоматического управления моделью — представлен на рисунке 4.2.

Рисунок 4.1. Алгоритм дистанционного управления и блокировок

Логика	Наименование	Команда Значение Состояние	Код
Алгоритм работы 3-осевого симулятора			
	Команда оператора «Автомат» Авария Дискретный датчик 1 Дискретный датчик 3	Есть Не сработала Сработал Сработал	CH001DI01XB01 CH001DI03XB01
8	Дискретный датчик 6	Сработал	CH001DI06XB01
	Закрытне захвата Блокнровка закрытия захвата	Включить Сработала	CH001DO02YB01
	Закрытие захвата Дискретный датчик 1	Выключить Не сработал	CH001DO02YB01 CH001DI01XB01
	Дискретный датчик 3 Дискретный датчик 6	Сработал Сработал	CH001DI03XB01 CH001DI06XB01
&	Блокировка закрытия захвата	Сработала	
	Двигатель вертикального движения вверх Блокировка вертикального	Включить Сработала	CH001DO06YB01
	движения вверх Двигатель вертикального движения вверх	Выключить	CH001DO06YB01
<u></u> _	Дискретный датчик 3	Сработал	CH001DI03XB01
	Дискретный датчик 5 Дискретный датчик 6	Сработал Сработал	CH001DI05XB01 CH001DI06XB01
*	Двигатель горизонтального движения вперед	Включить	CH001DO03YB01
_	Двигатель кругового движения против час. стрелки Блокировка горизонтального	Включить	CH001DO08YB01
	движения вперед Двигатель горизонтального	Сработала Выключить	CH001DO03YB01
	движения вперед Блокировка кругового движения против час. стрелки	Сработала	
•	Двигатель кругового движения	Выключить	CH001DO08YB01
H 7 c	против час. стрелки Дискретный датчик 5	Сработал	CH001DI05XB01
	Открытие захвата Блокировка открытия захвата	Включить Сработала	CH001DO01YB01
	Открытие захвата Дискретный датчик 5	Выключить Сработал Сработала	CH001DO01YB01 CH001DI05XB01
H 2 c	Блокировка открытия захвата	- Сравотили - Сравотили	
&	Двигатель кругового движения по час. стрелке	Включить	CH001DO07YB01
	Двигатель горизонтального движения назад	Включить	CH001DO04YB01
	Двигатель вертикального движения вниз Блокировка кругового	Включить Сработала	CH001DO05YB01
	движения по час. стрелке Двигатель кругового движения по час. стрелке Блокировка вертикального	Выключить Сработала	CH001DO07YB01
———	движения вниз Двигатель горизонтального движения назад	Выключить	CH001DO04YB01
Ţ	Блокировка вертикального движения вниз Двигатель вертикального	Сработала	CH001DO05YB01
	движения вниз	Выключить	2113311500311501

Рисунок 4.2. Алгоритм ФГУ