Step #1

Do not laugh at notations; invent them, they are powerful. In fact, mathematics is, to a large extent, invention of better notations.

Richard Feynman

Hello to Big-Oh

If f and g are complex-valued functions, we say "f is big-Oh of g", and write f = O(g), to mean that there is a constant $C \ge 0$ such that $|f| \le C|g|$ for all indicated (or implied) values of the variables. We refer to C as the "implied constant". For instance,

$$x = O(x^2)$$
 on $[1, \infty)$, with $C = 1$ an acceptable implied constant,

while

$$x \neq O(x^2)$$
 on [0, 1].

As a more complicated example,

$$\log(1+x) = x - \frac{1}{2}x^2 + O(x^3)$$
 on $[-9/10, 9/10]$,

meaning: there is a function E(x) with $\log(1+x) = x - \frac{1}{2}x^2 + E(x)$ on [-9/10, 9/10] with $E(x) = O(x^3)$ on [-9/10, 9/10]. You can prove this using the Maclaurin series for $\log(1+x)$. (Really; try it!)

1.1. Basic properties

- (a) For any constant c, we have $c \cdot O(g) = O(g)$. Note. Interpret this to mean: "If f = O(g), then $c \cdot f = O(g)$." Parts (b)–(e) should be interpreted similarly.
- (b) $O(g) \cdot O(h) = O(gh)$,
- (c) O(f) + O(g) = O(|f| + |g|),

(d) If f = O(g) then O(f) + O(g) = O(g),

(e) If
$$f = O(g)$$
 and $g = O(h)$, then $f = O(h)$.

1.2. Prove: $\log(1+x) = x + O(x^2)$ for all $x \ge 0$. Is the same estimate true on $(-0.99, \infty)$? on $(-1, \infty)$?

1.3. We say that f(x) = O(g(x)) "as $x \to \infty$ " or "for all large x" if $\exists x_0$ such that f(x) = O(g(x)) on (x_0, ∞) . Prove: If $\lim_{x\to\infty} g(x) = 0$, then as $x\to\infty$,

$$\frac{1}{1 + O(g(x))} = 1 + O(g(x)), \quad e^{O(g(x))} = 1 + O(g(x)),$$
and
$$\log(1 + O(g(x))) = O(g(x)).$$

Note. Interpret the first claimed equation to mean that if f(x) = O(g(x)) as $x \to \infty$, then 1/(1+f(x)) = 1 + O(g(x)), as $x \to \infty$. Similarly for the others.

1.4. As $x \to \infty$,

$$\left(1 + \frac{1}{x}\right)^x = e - \frac{e}{2x} + O\left(\frac{1}{x^2}\right).$$

1.5. If f and g are positive-valued, then $(f+g)^2 \le 2(f^2+g^2)$. More generally, for any real $\kappa > 0$, we have $(f+g)^{\kappa} = O_{\kappa}(f^{\kappa} + g^{\kappa})$. Here and elsewhere, a subscripted parameter indicates that you are allowed to choose your implied constant to depend on this parameter.

Asymptotic Analysis

1.6. For $n \in \mathbb{Z}^+$, define

$$a_n = \frac{1}{n} - \int_n^{n+1} \frac{\mathrm{d}t}{t}.$$

Interpret a_n as an area and explain, from this geometric perspective, how to see that $\sum_{n=1}^{\infty} a_n$ converges.

1.7. There is a real number γ (the "Euler-Mascheroni constant") such that for all positive integers N,

$$0 \ge \sum_{n \le N} \frac{1}{n} - (\log(N+1) + \gamma) \ge -\frac{1}{N+1}.$$

1.8. For all real $x \ge 1$: $\sum_{n \le x} \frac{1}{n} = \log x + \gamma + O(1/x)$.

Ingenuity

1.9. (NEWMAN) Let $a_1 = 1$, and let $a_{n+1} = a_n + \frac{1}{a_n}$, for all $n \in \mathbb{Z}^+$. Then $a_n = \sqrt{2n} + O(n^{-1/2} \log n)$, as $n \to \infty$.

Step #2

Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we have reason to believe that it is a mystery into which the human mind will never penetrate.

Leonhard Euler

Asymptotic Analysis

If f is strictly decreasing on [n, n+1], then $f(n) > \int_n^{n+1} f(t) dt > f(n+1)$ (draw a picture!). If f is strictly increasing, then the inequalities reverse. Use these observations to establish the following estimates.

2.10. For
$$s > 1$$
: $\frac{1}{s-1} < \sum_{n=1}^{\infty} n^{-s} < \frac{s}{s-1}$.

2.11. For
$$s > 1$$
 and $x \ge 1$: $\sum_{n > x} n^{-s} < x^{-s} + \frac{1}{s-1} x^{1-s} \le \frac{s}{s-1} x^{1-s}$.

2.12. For $x \ge 1$: $\log \lfloor x \rfloor! = x \log x - x + O(\log (ex))$. Why do we write ex and not x?

Infinitely Many Primes

Prove each statement and deduce the infinitude of primes.

2.13. (STIELTJES) If p_1, \ldots, p_k is any finite list of distinct primes, with product P, and ab is any factorization of P into positive integers, then a+b has a prime factor not among p_1, \ldots, p_k .

- **2.14.** (GOLDBACH) The "Fermat numbers" $2^{2^n} + 1$, for $n = 0, 1, 2, 3, \ldots$, are pairwise relatively prime.
- **2.15.** (PEROTT) For some constant c > 0, and each $N \in \mathbb{Z}^+$, the count of squarefree integers in [1, N] is

$$> N - \sum_{m \ge 2} N/m^2 \ge cN.$$

Thus, there are infinitely many squarefree integers.

2.16. (RAMANUJAN, PILLAI, ENNOLA, RUBINSTEIN) Let $\mathcal{P} = \{p_1, \dots, p_k\}$ be a set of k primes, where $k < \infty$. For each $x \geq 1$, the number of integers in [1, x] divisible by no primes outside of \mathcal{P} coincides with the number of nonnegative integer solutions e_1, \dots, e_k to the inequality

$$e_1 \log p_1 + \dots + e_k \log p_k \le \log x. \tag{*}$$

The number of such solutions is

$$\frac{(\log x)^k}{k! \prod_{i=1}^k \log p_i} + O_{\mathcal{P}}((\log (ex))^{k-1}).$$

Hint. Here is a way to start on the upper bound. To each nonnegative integer solution e_1, \ldots, e_k of (*), associate the $1 \times 1 \times \cdots \times 1$ (hyper)cube in \mathbb{R}^k having (e_1, \ldots, e_k) as its "leftmost" corner. Show that all of these cubes sit inside the k-dimensional (hyper)tetrahedron defined by ' $x_1 \log p_1 + \cdots + x_k \log p_k \leq \log (xp_1 \cdots p_k)$, all $x_i \geq 0$ '. What is the volume of that tetrahedron? How does this volume compare to the number of cubes? It might help to first assume that k=2 and draw some pictures.

Combinatorial Methods

2.17. For all $n \in \mathbb{Z}^+$, and all $0 \le r \le n$:

$$\binom{n}{0} - \binom{n}{1} + \dots + (-1)^r \binom{n}{r} = (-1)^r \binom{n-1}{r}.$$

- **2.18.** For a finite set A, and subsets A_1, \ldots, A_k of A, state and prove the "inclusion-exclusion formula" for $|A \setminus (A_1 \cup A_2 \cup \cdots \cup A_k)|$. Why is it called "inclusion–exclusion"?
- **2.19.** (LEGENDRE)

$$\pi(x) - \pi(\sqrt{x}) + 1$$

$$= \lfloor x \rfloor - \sum_{p_1 \le \sqrt{x}} \left\lfloor \frac{x}{p_1} \right\rfloor + \sum_{p_1 < p_2 \le \sqrt{x}} \left\lfloor \frac{x}{p_1 p_2} \right\rfloor - \sum_{p_1 < p_2 < p_3 \le \sqrt{x}} \left\lfloor \frac{x}{p_1 p_2 p_3} \right\rfloor + \dots$$

Ingenuity

2.20. (GOLDBACH) If $f(T) \in \mathbb{Z}[T]$ and f(n) is prime for all $n \in \mathbb{Z}^+$, then f(T) is constant.

2.21. (Reiner) If k is an integer larger than 1, then the sequence $\{2^{2^n} + k\}_{n=0}^{\infty}$ contains infinitely many composite terms.

Note. It is an open problem to prove this also when k=1.

Step #3

The worst thing you can do to a problem is solve it completely.

Daniel Kleitman

Asymptotic Analysis

The "Euler–Riemann zeta function" $\zeta(s)$ is defined, for s>1, by $\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}$.

3.22. Justify the "Euler product representation" of the Euler-Riemann zeta function: For s > 1,

$$\zeta(s) = \prod_{p \text{ prime}} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \dots \right) = \prod_p \frac{1}{1 - \frac{1}{p^s}}.$$

3.23. For
$$s > 1$$
: $\log \zeta(s) = \sum_{p} \sum_{k > 1} \frac{1}{kp^{ks}} = \sum_{p} \frac{1}{p^s} + O(1)$.

3.24. For
$$1 < s < 2$$
:
$$\sum_{p} \frac{1}{p^s} = \log \frac{1}{s-1} + O(1)$$
. It follows (why?) that $\sum_{p} \frac{1}{p}$ diverges. (EULER)

3.25. Find a sequence $\{c(n)\}_{n=1}^{\infty}$ with the property that

$$\zeta(s) \sum_{n=1}^{\infty} \frac{c(n)}{n^s} = 1$$

(for all s > 1), and describe c(n) in terms of the prime factorization of n. (We will see later that there is a unique such sequence $\{c(n)\}$.)

Combinatorial Methods

- **3.26.** (JORDAN, BONFERRONI) If one halts the inclusion-exclusion formula after an inclusion, one always overshoots (in the sense of obtaining an estimate at least as large as correct). If one stops after an exclusion, one always undershoots.
- **3.27.** Let \mathcal{A} be a set of positive integers. If $\sum_{a \in \mathcal{A}} \frac{1}{a}$ converges, then \mathcal{A} contains 0% of the positive integers, in the sense that

$$\lim_{x \to \infty} \left(\sum_{n \le x, n \in \mathcal{A}} 1 / \sum_{n \le x} 1 \right) = 0.$$

3.28. Let \mathcal{A} be a set of positive integers for which $\sum_{a \in \mathcal{A}} \frac{1}{a}$ diverges. List the elements of \mathcal{A} : $a_1 < a_2 < a_3 < \ldots$. Then there are infinitely many m for which $a_m < m(\log m)^{1.01}$. It follows that there are arbitrarily large values of x for which

$$\sum_{n \le x, n \in \mathcal{A}} 1 > x/(\log x)^{1.01}.$$

Can you think of other functions that can replace $x/(\log x)^{1.01}$ here?

Arithmetic Functions and the Anatomy of Integers

3.29. Suppose that f, g, h are arithmetic functions related by an identity $f(n) = \sum_{d|n} g(d)h(n/d)$, valid for all $n \in \mathbb{Z}^+$. Explain why

$$\sum_{n \leq x} f(n) = \sum_{a \leq x} g(a) \sum_{b \leq x/a} h(b) = \sum_{b \leq x} h(b) \sum_{a \leq x/b} g(a).$$

3.30. For $x \ge 1$: $\sum_{n \le x} \tau(n) = x \log x + O(x)$. (Thus, a number $n \le x$ has $\approx \log x$ divisors "on average".)

3.31. Large values of the divisor function

- (a) The numbers $n = 2^k$ all satisfy $\tau(n) > \log n$.
- (b) For every real A, there are infinitely many $n \in \mathbb{Z}^+$ with $\tau(n) > (\log n)^A$.
- **3.32.** For all $n \in \mathbb{Z}^+$: $\tau(n) \leq 2n^{1/2}$.

Ingenuity

3.33. For every $N \in \mathbb{Z}^+$, there is a $d \in \mathbb{Z}^+$ for which the following holds: There are at least N primes p for which p+d is also prime.