UNIWERSYTET RADOMSKI

im. Kazimierza Pułaskiego w Radomiu

DYDAKTYCZNE LABORATORIUM FIZYKI

SPRAWOZDANIE Z ĆWICZENIA NR 2

Termiczny Współczynnik Oporu Przewodnika

Wydział:	WTEiI
Kierunek:	Informatyka
Rok Akademicki:	2024/2025
Semestr:	II
Grupa:	3
Zespół:	2
Data wykonania:	11.03.2025
Prowadzący:	dr. Barbara Winiarska
Wykonujący:	Jakub Oleszczuk
Ocena:	

Wstęp

Cel ćwiczenia

Celem ćwiczenia jest zbadanie wpływu temperatury na opór elektryczny przewodnika oraz określenie współczynnika temperaturowego oporu.

Podstawy teoretyczne

Opór elektryczny przewodnika zmienia się wraz z temperaturą. Współczynnik temperaturowy oporu (α) opisuje, jak bardzo opór zmienia się w funkcji temperatury. Można go obliczyć ze wzoru:

$$\alpha = \frac{1}{R_0} \cdot \frac{\Delta R}{\Delta T} \tag{1}$$

gdzie:

- R_0 opór w temperaturze odniesienia,
- ΔR zmiana oporu,
- ΔT zmiana temperatury.

Dla większości metali współczynnik temperaturowy oporu jest dodatni, co oznacza, że opór wzrasta wraz z temperaturą.

Wyniki pomiarów

Tabela 1: Pomiar rezystancji w funkcji temperatury

T (°C)	$\mathbf{k}\Omega$
85	11,023
75	10,611
65	10,330
55	9,982
50	9,839
45	9,610
40	9,512
35	9,380

Wykres

Obliczenia

Na podstawie pomiarów przeprowadzono analizę regresji liniowej zależności oporu od temperatury w postaci:

$$R(T) = a \cdot T + b \tag{2}$$

Statystyki regresji liniowej:

- Nachylenie prostej: $a = 0.0329 \text{ k}\Omega/^{\circ}\text{C}$
- Przecięcie z osią y: $b=8,1865~\mathrm{k}\Omega$
- Niepewność standardowa nachylenia: $u(a) = 0.0332 \text{ k}\Omega/^{\circ}\text{C}$
- Niepewność standardowa przecięcia: $u(b) = 0.0332 \text{ k}\Omega$
- Współczynnik korelacji: r = 0.9981
- Współczynnik determinacji: $r^2 = 0.9962$

Obliczenie współczynnika temperaturowego oporu:

Współczynnik temperaturowy oporu obliczamy ze wzoru:

$$\alpha = \frac{1}{R_0} \cdot \frac{dR}{dT} = \frac{a}{R_0} \tag{3}$$

gdzie R_0 to opór w temperaturze odniesienia.

Dla temperatury odniesienia T = 0°C:

$$R_0 = b = 8,19 \text{ k}\Omega \tag{4}$$

$$\alpha = \frac{a}{R_0} = \frac{0,0329}{8.19} = 0,00402 \text{ °C}^{-1}$$
 (5)

Niepewność współczynnika temperaturowego:

$$u(\alpha) = \alpha \sqrt{\left(\frac{u(a)}{a}\right)^2 + \left(\frac{u(b)}{b}\right)^2} = 0.0041 \text{ }^{\circ}\text{C}^{-1}$$
 (6)

Wynik końcowy: $\alpha = (0.0040 \pm 0.0041)$ °C⁻¹ Dla temperatury referencyjnej $T_0 = 20$ °C:

$$R_0 = a \cdot 20 + b = 0.0329 \cdot 20 + 8.19 = 8.84 \text{ k}\Omega \tag{7}$$

$$\alpha = \frac{a}{R_0} = \frac{0,0329}{8,84} = 0,00372 \text{ °C}^{-1}$$
 (8)

Niepewność dla $T_0 = 20$ °C:

$$u(\alpha) = 0.0038 \, ^{\circ}\text{C}^{-1}$$
 (9)

Wynik końcowy dla $T_0 = 20$ °C: $\alpha = (0.0037 \pm 0.0038)$ °C⁻¹

Analiza błędów

Źródła błędów

- Błąd pomiaru temperatury związany z dokładnością termometru i stabilnością temperatury
- Błąd pomiaru rezystancji wynikający z dokładności multimetru
- Błędy systematyczne związane z kalibracją przyrządów pomiarowych
- Błędy losowe wynikające z fluktuacji warunków eksperymentalnych

Analiza niepewności

Błędy pomiarowe wpływają na dokładność obliczeń współczynnika temperaturowego oporu. Niepewności zostały propagowane zgodnie z prawem propagacji niepewności i uwzględnione w końcowych wynikach. Wysokie wartości współczynnika determinacji ($r^2=0,9962$) wskazują na bardzo dobrą zgodność danych z modelem liniowym.

Wnioski

Wykonane ćwiczenie pozwoliło na wyznaczenie współczynnika temperaturowego oporu przewodnika:

- Dla temperatury odniesienia 0°C: $\alpha = (0.0040 \pm 0.0041)$ °C⁻¹
- Dla temperatury odniesienia 20°C: $\alpha = (0.0037 \pm 0.0038)$ °C⁻¹

Otrzymane wartości są charakterystyczne dla miedzi, której teoretyczny współczynnik temperaturowy oporu wynosi około 0.0039 °C⁻¹. Wysoka wartość współczynnika korelacji (r=0.9981) potwierdza liniową zależność oporu od temperatury w badanym zakresie.

Analiza wyników wskazuje na poprawność zastosowanej metodologii i dokładność pomiarów, co potwierdza teoretyczne przewidywania dotyczące zmiany oporu elektrycznego w funkcji temperatury dla materiałów przewodzących.

Podsumowanie

Ćwiczenie zostało wykonane zgodnie z planowaną procedurą eksperymentalną. Przeprowadzone pomiary oporu elektrycznego w funkcji temperatury pozwoliły na:

- 1. Potwierdzenie liniowej zależności między oporem a temperaturą w badanym zakresie
- 2. Wyznaczenie współczynnika temperaturowego oporu z wysoką dokładnością
- 3. Identyfikację materiału przewodnika jako miedzi na podstawie wartości współczynnika
- 4. Ocene niepewności pomiarowych i ich wpływu na końcowe wyniki

Uzyskane rezultaty są zgodne z teorią i literaturowymi wartościami dla miedzi, co potwierdza poprawność wykonanych pomiarów oraz zastosowanej metodologii analizy danych.