Word2Vec 단어의 분산 표현

Feat. ELMo, BERT, ERNIE

컴퓨터에게 '단어'의 의미를 어떻게 알려줄까?

단어 표현의 고전 방식

One-hot encoding

Vocabulary:

Man, woman, boy, girl, prince, princess, queen, king, monarch

	1	2	3	4	5	6	7	8	9
man	1	0	0	0	0	0	0	0	0
woman	0	1	0	0	0	0	0	0	0
boy	0	0	1	0	0	0	0	0	0
girl	0	0	0	1	0	0	0	0	0
prince	0	0	0	0	1	0	0	0	0
princess	0	0	0	0	0	1	0	0	0
queen	0	0	0	0	0	0	1	0	0
king	0	0	0	0	0	0	0	1	0
monarch	0	0	0	0	0	0	0	0	1

Each word gets a 1x9 vector representation

Look-up table

문서 표현의 고전 방식

- BOW(Bag-of-Words)
 - 단어가 문서에 존재한다 or 안한다

$$d_{binary}^1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

• 단어가 문서에 n번 존재한다 - TF(Term Frequency)

$$d_{tf}^{1} = \begin{bmatrix} 3 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

• 단어에 중요도를 할당하고 문서에 등장한 단어 중요도의 가중합을 구한다 - TF-IDF(Term Frequency Inverse Document Frequency)

고전 방식의 한계점

• Sparse vector여서 생기는 한계

- 1. Vocab 수가 많아지면 벡터값이 너무 커져서 메모리면에서 비효율적 !
- 2. 두 단어의 벡터끼리 내적을 하게 되면 0이 되어서 유사도를 구할 수 없다!

 $\overrightarrow{woman} \cdot \overrightarrow{man} = 0$

행렬곱을 통한 차원 축소

• 차원축소 목적으로 행렬을 "학습" 시키자

단어의 벡터 공간에서의 표현

- 비슷한 의미의 단어에게 비슷한 벡터값을 부여하자!
- 비슷한 의미의 단어들끼리 뭉치게!

단어의 벡터 공간에서의 표현

• 친구를 보면 그 사람을 알 수 있다

- 단어의 주변을 보면 그 단어를 안다
 - 새로운 디자인의 선이 __ 하다.
 - 야, 부엌 좀 __히 하자.
 - 깜빡하고 책상 위를 __하게 치우지 않았다.

단어의 벡터 공간에서의 표현

• 단어의 의미는 해당 단어의 주위 문맥이 담고 있다

- 두 단어의 문맥이 비슷하면 "의미적"으로 유사한 단어
- 문맥은 정해진 구간(window)내의 단어 즉, 좌우 1~8단어들

• Mikolov et al. 2013 (논문 발표)

- Skip-Gram
 - window size: 2

Input Output

center word	context words
[1,0,0,0,0,0,0]	[0,1,0,0,0,0,0] [0,0,1,0,0,0,0]
[0,1,0,0,0,0,0]	[1,0,0,0,0,0,0] [0,0,1,0,0,0,0] [0,0,0,1,0,0,0]
[0,0,1,0,0,0,0]	[1,0,0,0,0,0,0] [0,1,0,0,0,0,0] [0,0,0,1,0,0,0] [0,0,0,0,1,0,0]
[0,0,0,1,0,0,0]	[0,1,0,0,0,0,0] [0,0,1,0,0,0,0] [0,0,0,0,1,0,0] [0,0,0,0,0,1,0]
[0,0,0,0,1,0,0]	[0,0,1,0,0,0,0] [0,0,0,1,0,0,0] [0,0,0,0,0,1,0] [0,0,0,0,0,0,1]
[0,0,0,0,0,1,0]	[1,0,0,1,0,0,0] [0,0,0,0,1,0,0] [0,0,0,0,0,0,1]
[0,0,0,0,0,0,1]	[0,0,0,0,1,0,0] [0,0,0,0,0,1,0]

- Skip-Gram (iter-1)
 - window size: 2

INPUT: "I"

OUTPUT: "like"

- Skip-Gram (iter-2)
 - window size: 2

INPUT: "I"

OUTPUT: "playing"

INPUT

man girl boy

0 0 0 0 0 1 0

INPUT

Index = 7

2 7 8

tf.nn.embedding_lookup(W, index)

이렇게 하면 왜..?

왜 비슷한 문맥의 단어끼리

비슷한 벡터를 갖는 걸까?

데이터

sweet, orange, juice sweet, orange, juice sweet, apple, juice sweet, orange, juice sweet, apple, juice

INPUT	OUTPUT
orange	sweet
orange	juice
orange	sweet
orange	juice
orange	sweet
orange	juice

데이터

학습 트릭

• Softmax를 모든 vocab에 대해서 계산하는건 비용이 큼

128 x 30,000 = 3,840,000 파라미터 계산!!

학습 트릭

Sampled Softmax

tf.nn.sampled_softmax_loss

30,000 다 계산하지 말고 일부분만 계산!!

학습 트릭

Negative Sampling

tf.nn.nce_loss

- 문맥 안에 있는 단어들은 clean
- 문맥 밖에 있는 단어들을 noise로 간주
- 중심단어와 어떤 단어가 입력 받았을 때 그 단어가 noise인지 clean인지 분류하는 이진분류방법

여전한 한계점

- 신조어 및 학습에서 보지 못한 단어에 대한 처리 한계
 - <unk> 토큰으로 통일하기 때문에 서로 다른 단어가 동일한 벡터를 갖게 됨
 - 이를 해결하기 위해 "FastText", "Subword Tokenizer"와 같은 기법이 등장
- 동음이의어에 대한 처리 한계
 - 과일에서의 "apple"과 회사에서의 "apple"에 대해서 구분을 못함
 - 이를 해결하기 위해 "ELMo", "BERT", "ERNIE", "XLNet" .. 등등 요새 대세인 주변 문맥에 따라 단어 벡터가 달라지는

"Contextualized Word Embedding" 기법 등장

요즘 트렌드

- "ELMo", "BERT", "ERNIE" 의 등장으로 자연어처리 분야는 pre-trained language 모델의 시대가 열렸다
- 이 모델들(ELMo제외)은 Transformer 모델을 기반으로 한다

