COMPUTAÇÃO GRÁFICA E INTERFACES

MIEI/FCT/UNL – Ano letivo 2015/2016 Teste 2 – 2015.12.14

Responda no próprio enunciado, que entregará. Em caso de engano e se o espaço para as respostas não for suficiente poderá usar o verso das folhas desde que feitas as devidas referências.

Não desagrafe as folhas!

A prova, com duração de **1H45**, é **sem consulta**!

1. (4 valores)

Assinale com V (Verdadeiro) ou F (Falso) as afirmações abaixo. Cada resposta errada desconta 25% da sua cotação.

No modelo de iluminação proposto por Phong, quando usado conjuntamente com a técnica de sombreamento de Phong:

201121 2011121121 2012	
A avaliação do modelo de iluminação é efetuada pelo vertex_shader.	
O vetor V , no caso da projeção ser paralela, poderia ser uma variável uniform .	
O vetor L , no caso da projeção ser paralela, poderia ser uma variável uniform .	
Se a iluminação for efetuda no referencial do mundo, será necessário passar a posição da câmara	
ao vertex shader sob a forma duma variável uniform .	

No mapeamento de texturas 2D a modelos geométricos compostos por polígonos:

Nos mapeamentos clássicos (orthogonal, esférico, etc.), pode dispensar-se a associação prévia de	
coordenadas de textura aos vértices do modelo.	
A utilização de mipmaps é útil quando as texturas sofrem o fenómeno de ampliação.	
O acesso aos texels da textura é efetuado no vertex shader.	
As coordenadas de textura (s e t) que se associam aos vertices têm que estar no intervalo [0,1].	
A técnica de bump maps permite modelar perturbações na superfície, as quais serão notórias na	
silhueta dos objetos.	

2. (5 valores)

a) Considerando apenas o modelo de reflexão difusa: $I_{rgb}=I_p$ K_d . $cos(\theta)$, indique, justificando em que condições, se um objeto de cor RGB(0,5, 1.0, 1.0) poderá ser percecionado com as seguintes cores:

a1) RGB(0,4, 0.4, 0.4)

a2) RGB(0.6, 0.4, 0.4)

Pág. 2/5	Nome Número
	resenta θ, naquele modelo? Dê a sua explicação em função dos vetores que considerar es, definidos para o ponto P onde se está a avaliar o modelo.
	apenas aplicar transformações geométricas ao objeto, em que circunstâncias a luz ercecionada por um observador, será maximizada?
d) Considere	agora apenas o modelo de reflexão especular I_{rgb} = $I_p.K_s.cos^{lpha}$ (ϕ). O que representa ϕ , neste
	lê a sua explicação em função dos vetores que considerar importantes, definidos para o de se está a avaliar o modelo.
	etivo da inclusão do expoente α ? Justifique, referindo a variação produzida pela utilização tes valores para aquele expoente.
3. (6 valor	es) P=[A,B,C,D,E,F,G,H,I,J] vai ser aplicado o algoritmo de FILL AREA (Scanline) para efetuar o
seu preenchi	mento. Sabe-se ainda que os pontos D e E têm a mesma ordenada $(y_D=y_E)$, assim como os

pontos G e H (y_G=y_H).

Nome

- a) Pinte, na figura, as regiões que ficariam preenchidas!
- b) Indique todas as entradas não vazias da tabela de arestas. Não se esqueça de identificar as entradas com os respetivos índices.

c) Indique a composição da tabela de arestas ativas imediatamente antes de se efetuar o preenchimento das fileiras de pixels para as seguintes linhas de varrimento:

 y_F :

y_D:

y_J:

d) Sabendo que os vértices do polígono possuem coordenadas inteiras, indique (sim/não) se os respetivos pixels seriam preenchidos pela aplicação do algoritmo. **Nota**: cada resposta errada subtrairá a sua cotação na totalidade!

A: _____; C: _____; D: _____; E: _____; G: _____; J: _____

Pág. 4/5	Nome	Número	

e) As arestas do mesmo polígono são posteriormente pintadas recorrendo ao algoritmo do ponto médio (ou ao seu equivalente, inventado por Bresenham). Indique um artefacto que poderá ser visualizado e que decorra apenas da aplicação do algoritmo referido?

f) Que simplificações na implementação do algoritmo de Fill Area poderiam ser efetuadas se apenas se tratassem triângulos e não polígonos genéricos? Detalhe a sua resposta!

4. (5 valores)

O excerto de código apresentado faz parte duma aplicação WebGL que modela uma grua, mais concretamente o seu braço. As primitivas estão representadas pelas invocações das funções draw_cylinder() e draw_cube(), cujos detalhes se omitem.

```
function draw telescopic arm()
                                                 function draw arm()
    multRotZ(-psi);
                                                     multRotY(theta):
    pushMatrix();
                                                     pushMatrix();
        multScale([1.2,1.2,1.2]);
                                                         multTranslation([0,1.5,0]);
                                                         multScale([2.5,1,2.5]);
        multRotX(90);
        draw_cylinder();
                                                         multTranslation([0,0.5,0]);
    popMatrix();
                                                         draw cylinder();
    pushMatrix();
                                                     popMatrix();
        multScale([1,5,1]);
                                                     pushMatrix();
                                                         multTranslation([0,2.5,0]);
        multTranslation([0,0.5,0]);
        draw_cube();
                                                         pushMatrix();
                                                             multScale([1,10,1]);
    popMatrix();
    pushMatrix();
                                                             multTranslation([0,0.5,0]);
        multTranslation([0,d,0]);
                                                             draw cube();
        multScale([0.7,5,0.7]);
                                                         popMatrix():
        multTranslation([0,0.5,0]);
                                                         pushMatrix();
                                                             multTranslation([0,10,0]);
        draw_cube();
    popMatrix();
                                                             draw_telescopic_arm();
}
                                                         popMatrix();
                                                     popMatrix();
                                                 }
```

Pág	. 5/5	Nome						Número)	
a)		aw_teles	copic_arm				aw_arm(). Not a n sub-grafo, o			
b)			fornecido, eferido pro	a que	não	seja	estritamente	necessária	para o	correto

c) Imagine que, na implementação dum determinado sistema, em cada nó do grafo de cena poderíamos ter associada uma sequência de transformações elementares, aplicadas sempre pela mesma ordem T.R.S (primeiro a mudança de escala e, no final a translação). Qual seria o número

Boa sorte!

mínimo de nós necessários para representar o mesmo modelo nesse sistema?

Resposta: _____ Nós.