

순환신경망 & 오토인코더

강필성 고려대학교 산업경영공학부 Bflysoft & WIGO AI LAB

AGENDA

- 01 순환 신경망: RNN
- 02 오토 인코더:Auto-Encoder

• 순서(sequence)가 없는 인공신경망 구조

• 순서(sequence)가 있는 인공신경망 구조

• 순서(sequence)가 있는 인공신경망 구조 (벡터 표현)

- 순서(sequence)가 있는 인공신경망 구조
 - ✔ 입력-출력에 따른 활용 사례

- NN structure with sequence
 - ✓ Input-Output structure

Machine translation/Dialog system

- NN structure with sequence
 - ✓ Input-Output structure

Text classification/Sentiment analysis

RNN Basics: Forward Path

• 기본 RNN(Vanilla RNN) 구조에서 정보의 흐름

√ f()와 g()는 활성 함수

RNN Basics: Gradient Vanishing/Exploding Problem

 $+\frac{\partial Cost}{\partial y} \times \frac{\partial y}{\partial \mathbf{h}_4} \times \frac{\partial \mathbf{h}_4}{\partial \mathbf{h}_3} \times \frac{\partial \mathbf{h}_3}{\partial \mathbf{h}_2} \times \frac{\partial \mathbf{h}_2}{\partial \mathbf{h}_1} \times \frac{\partial \mathbf{h}_1}{\partial \mathbf{W}_{xh}}$

10

RNN Basics: Gradient Vanishing/Exploding Problem

• RNN에서의 Backpropagation

$$\frac{\partial Cost}{\partial \mathbf{W}_{xh}} = \sum_{i=1}^{n} \left(\frac{\partial Cost}{\partial y} \cdot \frac{\partial y}{\partial \mathbf{h}_{n}} \cdot \left(\prod_{j=i}^{n-1} \frac{\partial \mathbf{h}_{j+1}}{\partial \mathbf{h}_{j}} \right) \cdot \frac{\partial \mathbf{h}_{i}}{\partial \mathbf{W}_{xh}} \right)$$

✔f()는 Tanh이고

$$\mathbf{h}_t = f(\mathbf{W}_{hh}\mathbf{h}_{t-1} + \mathbf{W}_{xh}\mathbf{x}_t + \mathbf{b}_x) = tanh(\mathbf{z}_t)$$

$$\frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_{t-1}} = \frac{\partial \mathbf{h}_t}{\partial \mathbf{z}_t} \times \frac{\partial \mathbf{z}_t}{\partial \mathbf{h}_{t-1}} = (1 - tanh^2(\mathbf{z}_t)) \times \mathbf{W}_{hh}$$

$$\frac{\partial \mathbf{h}_t}{\partial \mathbf{W}_{xh}} = \frac{\partial \mathbf{h}_t}{\partial \mathbf{z}_t} \times \frac{\partial \mathbf{z}_t}{\partial \mathbf{W}_{xh}} = (1 - tanh^2(\mathbf{z}_t)) \times \mathbf{x}_t$$

RNN Basics: Gradient Vanishing/Exploding Problem

• RNN에서의 Backpropagation

$$\frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_{t-1}} = \frac{\partial \mathbf{h}_t}{\partial \mathbf{z}_t} \times \frac{\partial \mathbf{z}_t}{\partial \mathbf{h}_{t-1}} = \boxed{(1 - tanh^2(\mathbf{z}_t))} \times \mathbf{W}_{hh}$$

- LSTM: Long Short-Term Memory
 - ✔ Gradient exploding/vanishing 문제를 해결하여 Long-term dependency 학습 가능

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Operation symbols

- LSTM: Long Short-Term Memory
 - ✓ LSTM의 구조가 복잡하여 다양한 diagram들이 존재

- LSTM: Long Short-Term Memory
 - ✓ LSTM의 구조가 복잡하여 다양한 diagram들이 존재

• Cell state

✔ LSTM 핵심 구성 요소, 아래 그림에서는 다이어그램의 상부를 관통하는 선(line)

- Step I: 지금까지의 cell state에 저장된 정보 중에서 얼마만큼을 망각(forget)할 것인지 결정
 - ✔ Forget gate: 이전 단계의 hidden state h_{t-1} 와 현 단계의 입력 x_t 으로부터 0과 I사이의 값을 출력 (Sigmoid 함수 사용)
 - I: 지금까지 cell state에 저장된 모든 정보를 보존
 - 0: 지금까지 cell state에 저장된 모든 정보를 무시

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- Step 2: 새로운 정보를 얼마만큼 cell state에 저장할 것인지를 결정
 - ✓ Input gate: 어떤 값을 업데이트 할 것인지 결정
 - 🗸 Tanh layer를 사용하여 새로운 cell state의 후보 $ilde{C}_t$ 을 생성

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- Step 3: 예전 cell state를 새로운 cell state로 업데이트
 - ✔ 예전 cell state를 얼마만큼 망각할 것인가를 계산한 forget gate 결과값과 곱함
 - ✔ 새로운 cell state 후보와 얼마만큼 보존할 것인가를 계산한 input gate 결과값을 곱함
 - ✓ 두 값을 더하여 새로운 cell state 값으로 결정

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

• Step 4: 출력 값을 결정

- ✔ 이전 hidden state 값과 현재의 입력 값을 이용하여 output gate 값을 산출
- ✔ Output gate 값과 현재의 cell state 값을 결합하여 현재의 hidden state 값을 계산

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

• LSTM 요약

$$f_{t} = \sigma (W_{f} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma (W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$\tilde{C}_{t} = \tanh(W_{C} \cdot [h_{t-1}, x_{t}] + b_{C})$$

$$C_{t} = f_{t} * C_{t-1} + i_{t} * \tilde{C}_{t}$$

$$o_{t} = \sigma (W_{o} [h_{t-1}, x_{t}] + b_{o})$$

$$h_{t} = o_{t} * \tanh(C_{t})$$

RNN: GRU

GRU: Gated Recurrent Unit

$$z_t = \sigma\left(W_z\cdot[h_{t-1},x_t]
ight)$$
 Update gate $r_t = \sigma\left(W_r\cdot[h_{t-1},x_t]
ight)$ Reset gate $\tilde{h}_t = anh\left(W\cdot[r_t*h_{t-1},x_t]
ight)$ $h_t = (1-z_t)*h_{t-1}+z_t*\tilde{h}_t$

- ✓ LSTM을 단순화한 구조, 실제 활용에서는 LSTM과 GRU의 성능 차이는 미비함
- ✓ 별도의 Cell state가 존재하지 않음
- ✓ LSTM의 forget gate와 input gage를 하나의 update gate로 결합
- ✔ Reset gate를 통해 망각과 새로운 정보 업데이트 정도를 결정

RNN Variations: Bidirectional RNN

- Bidirectional RNN: 양방향 순환신경망
 - ✔ 정보의 입력을 시간의 순방향과 역방향 관점에서 함께 처리

RNN Variations: Bidirectional RNN

Deep-Bidirectional RNN

✔ RNN의 hidden layer가 꼭 한 층일 필요가 있나? 더 쌓아보자!

$$\vec{h}_{t}^{(i)} = f(\vec{W}^{(i)} h_{t}^{(i-1)} + \vec{V}^{(i)} \vec{h}_{t-1}^{(i)} + \vec{b}^{(i)})$$

$$\dot{h}_{t}^{(i)} = f(\vec{W}^{(i)} h_{t}^{(i-1)} + \vec{V}^{(i)} \dot{h}_{t+1}^{(i)} + \vec{b}^{(i)})$$

$$y_{t} = g(U[\vec{h}_{t}^{(L)}; \dot{h}_{t}^{(L)}] + c)$$

Attention

✔ 어느 시점 정보가 RNN의 최종 출력 값에 영향을 미치는지를 알려줄 수 있는 메커니즘

Source: (Raffel and Ellis, 2016)

- 두 가지 대표적 Attention 메커니즘
 - ✓ Bahadanau attention (Bahdanau et al., 2015)
 - Attention scores are <u>separated trained</u>, the current hidden state is a function of the context vector and the previous hidden state
 - ✓ Luong attention (Luong et al., 2015)
 - Attention scores are <u>not trained</u>, the new current hidden state is the simple tanh of the weighted concatenation of the context vector and the current hidden state of the decoder

- Luong Attention
 - ✔ Decoder의 새로운 hidden state는
 - Weighted concatenation of the context vector와
 - Current hidden state of the decoder를
 - Concatenation한 뒤 Tanh함수를 적용한 것

$$\tilde{\mathbf{h}}_t = tanh(\mathbf{W}_{\mathbf{c}}[\mathbf{c}_t; \mathbf{h}_t])$$

■ 이 hidden state가 RNN의 출력을 결정하는 softmax에 입력으로 투입

$$p(y_t|y_{y< t}, x) = \operatorname{softmax}(\mathbf{W_s}\tilde{\mathbf{h}}_t)$$

Luong attention

✓ A variable-length alignment vector:

$$\mathbf{a}_{t}(s) = \operatorname{align}(\mathbf{h}_{t}, \overline{\mathbf{h}}_{s})$$

$$= \frac{exp\left(\operatorname{score}(\mathbf{h}_{t}, \overline{\mathbf{h}}_{s})\right)}{\sum_{s'} exp\left(\operatorname{score}(\mathbf{h}_{t}, \overline{\mathbf{h}}'_{s})\right)}$$

✓ score is referred as a context-based function:

$$score(\mathbf{h}_{t}, \overline{\mathbf{h}}_{s}) = \begin{cases} \mathbf{h}_{t}^{T} \overline{\mathbf{h}}_{s}, & dot \\ \mathbf{h}_{t}^{T} \mathbf{W}_{\mathbf{a}} \overline{\mathbf{h}}_{s}, & general \\ \mathbf{v}_{a}^{T} tanh(\mathbf{W}_{\mathbf{c}}[\mathbf{c}_{t}; \mathbf{h}_{t}]), & concat \end{cases}$$

✓ Context vector

$$\mathbf{c}_t = \overline{\mathbf{h}}_s \mathbf{a}_t$$

RNN Procedure

How
Long Short-Term Memory (LSTM)
and
Recurrent Neural Networks (RNNs)
work

Brandon Rohrer

AGENDA

- 01 순환 신경망: RNN
- 02 오토 인코더:Auto-Encoder

Auto-Encoder

- Auto-Encoder (Auto-Associative Neural Network)
 - ✔ 입력과 출력이 동일한 인공 신경망 구조
 - Loss function:

$$l(f(\mathbf{x})) = \frac{1}{2} \sum_{k} (\widehat{x}_k - x_k)^2$$

Auto-Encoder

- Auto-Encoder (Auto-Associative Neural Network)
 - ✔ 반드시 입력 변수의 수보다 은닉 노드의 수가 더 적은 은닉 층이 있어야 함
 - 이 층에서 정보의 축약이 이루어짐

Auto-Encoder

- Auto-Encoder (Auto-Associative Neural Network) 예시
 - ✓ 숫자 2를 학습시키는 오토 인코더 → 5를 입력으로 제공하면 5가 산출되지 않을 가능성이 높음 (Loss가 큼)

Denoising Auto-Encoder

- Auto-Encoder를 포함한 인공신경망의 단점
 - ✔ 입력에 대한 약간의 변형(small perturbations)에도 모델이 민감하게 반응함
- 학습 과정에서 입력에 일부러 noise를 첨가해 보는 것은 어떨까?

Denoising Auto-Encoder

- 노이즈는 어떻게 주어야 하나?
 - ✓ 주로 Random Gaussian noise를 생성

- 앞서 예시한 Hand-written Digit은 입력 데이터를 이미지가 아닌 벡터로 사용 ✓ 16 by 16 행렬을 256차원의 vector로 취급하고 오토 인코더 학습
- CAE = 이미지 자체를 취급하는 오토인코더

https://blog.manash.me/implementing-pca-feedforward-and-convolutional-autoencoders-and-using-it-for-image-reconstruction-8ee44198ea55

• CAE = 이미지 자체를 취급하는 오토인코더

https://blog.manash.me/implementing-pca-feedforward-and-convolutional-autoencoders-and-using-it-for-image-reconstruction-8ee44198ea55

- CAE가 꼭 원본 이미지를 복원하는 목적으로만 사용되는 것은 아님
 - √ Image segmentation
 - 입력:이미지
 - 출력: 픽셀 단위의 범주 (도로, 자동차, 하늘, 인도 등)

https://github.com/arahusky/Tensorflow-Segmentation

- CAE가 꼭 원본 이미지를 복원하는 목적으로만 사용되는 것은 아님
 - √ Saliency detection
 - 입력: 이미지
 - 출력: 가장 집중해야 하는 중요한 영역

• CAE 고려사항: Decoder 학습 시 feature map의 크기를 어떻게 증가시킬 것인가?

Encoder 과정은 CNN의 forward path

• CAE 고려사항: Decoder 학습 시 feature map의 크기를 어떻게 증가시킬 것인가?

다시 어떻게 크기를 키우지?

Unpooling:

✓ Max pooling을 사용할 경우 해당 위치를 기억해 두었다가 그 정보를 사용

Max Pooling

Remember which element was max!

Max Unpooling

Use positions from pooling layer

1	2	
3	4	

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

Input: 4 x 4

Output: 2 x 2

Input: 2 x 2

Output: 4 x 4

Corresponding pairs of downsampling and upsampling layers

- Transpose convolution
 - ✔ Convolution과 같은 연산을 통해 feature map의 크기를 키우는 과정
 - Convolution

- Feature map: 3 by 3
- Padding: I
- Stride: I

- Feature map: 3 by 3
- · Padding: I
- Stride: 2

Transpose convolution

Convolution

• Feature map: 3 by 3

• Padding: 0

• Stride: I

Transpose Convolution

• Feature map: 3 by 3

• Padding: 0

• Stride: I

Feature map: 3 by 3

Padding: 0

• Stride: 2

- (주의) Transpose convolution에서 padding의 의미
 - ✔ Padding = I in convolution: feature map 주변에 0의 값을 갖는 pad를 Ipixel씩 덧댐
 - ✓ Padding = 0 in transpose convolution: feature map 주변에 0의 값을 갖는 pad를 (filter width(or height)-I) 만큼 덧대는 것 (3 by 3 filter size의 경우 2 pixels씩 덧댐)
 - ✓ Padding = I in transpose convolution: feature map 주변에 0의 값을 갖는 pad를 (filter width(or height)-I)-I 만큼 덧대는 것 (3 by 3 filter size의 경우 I pixel씩 덧댐)

- Feature map: 3 by 3
- Padding: 0
- Stride: 0

- Feature map: 3 by 3
- Padding: I
- Stride: 0

- Feature map: 3 by 3
- Padding: 0
- Stride: I

- Feature map: 3 by 3
- Padding: I
- Stride: I

• Transpose convolution과 Unpooling의 차이

