WU Xiaokun 吴晓堃

xkun.wu [at] gmail

Course Information

Short Intro

The objective of this course is to provide a complete introduction to algorithm design and complexity analysis techniques.

Previous

Description

The course aims at providing fundamental knowledge and existing techniques of algorithm design-related topics. It also aims at a laborating rigorous complexity and lysis for a better understanding of the design principles. The course should follow a programming-focused introductory computer science sequence.

The course will touch on the following topics:

- Basic concepts recap: tractability, asymptotic order, graphs.
- . Major algorithm design techniques: gree dy algorithms, divide and conquer, dynamic programming, network flow.
- Computational intractability: NP, NP-Complete, PSPACE.
- Dealing with intractable problems: identification of structured special cases, approximation algorithms, local search heuristics.
- Randon zed algorithms.

Keywords: algorithm design, complexity analysis.

Prerequisites

Required:

- Sufficient programming experience.
- Comfortable with mathematical proofs.

Recommended:

- Knowledge in computer science fundamentals: data structure, operating system, computer architecture, etc.
- As much knowledge of mathematics as possible.
- Insights in your own specific area of study.

Teaching plan

The course is organized into severa lin ajor parts and each contains different topics.

Introduction & basic concepts recap:

- · Computational Tractability
- Asymptotic Order of Growth
- Graphs

Major algorithm designtechniques:

- · Greedy algorithms,
- Divide and conquer.
- Dynamic programming.
- Network flow.

NP and PSPACE:

Computer Science-UG3/G Course Algorifun II Term 2022H Final Toa Credits 2 WU Staff Xiaolam 吳晓堃 Lecture 32 hours

- Reducibility
- P ≠ NP?
- · NP-Complete
- P ≠ PSPACE?
- PSPACE complete

Dealing with intractability:

- Identifix ation of structured special cases,
- Approximation algorithms.
- Local search heuristics,
- Randon ized algorithms.

Schedule

Tuesday S2-S5, Library 910.

Week:	Date	Lettre	Handouts
1	2022/10/11	htroduction	Stable Matching
2	2022/	Algorithm Analysis & Graphs	Tractability & Asymptotic Order, Graphs
3	2022/	Greedy Algorithm I	Coin Changing, IntervalS chechiling/Partitioning, Minimize Lateness, OptimalCache
4	2022/	Greedy Algorithm II	Dijkstra's Algorithm, Minimum Spanning Tree, Prim/Kinskal/Bonwka, Clustering, Min-cost Arbore scence, Huffman Codes
5	2022/	Divide and Computer I	Mergesort, Recurrence Relations, Counting Inversions, Randomized quicksort, Closest Pair of Points
6	2022/	Divide and Conquer II	Master Theorem, Integer/Matrix Multiplication, Convolutions & FFT
7	2022/	Dynamic Programming I	Weighted Interval Scheduling, Segn erted Least Squares, Subset Sums and Krapsacks
S	2022/	Dynamic Programming II	Sequence Alignment, Hirschberg/Bellman-Ford- Moore, Negative Cycle Detection
9	2022/	Network Flow I	Mac-Flow Min-Cut, Ford-Fulkerson, Augmenting Paths, Capacity-scaling/Shortest-augmenting/Dinitz, Simple unit-capacity Networks
10	2022/	Network Flow II	Bipartite Matching, Disjoint Paths, Circulations with Demands, Survey Design, Airline Scheduling, In age Segmentation, Project Selection, Tournament Elimination
11	2022/	htractability I	Polynomial-Time Reductions, Packing & Covering problem, Satisfiability Problem (raster & AT), Trave ling Salesman, Partitioning Problems, Graph Coloring, Numerical Problems
12	2022/	htractability II	P vs. NP , NP -complete, co- NP , NP -hard
13	2022/	Ecterding Tractability	Special cases (tree, planurity), Approximation (vertex cover, knapsack), Exponential Algorifuns (3-SAT, TSP)
14	2022/	PSPACE	Quantified 3-SAT (QSAT), Planning Problems, PS PACE complete
15	2022/	Approximation Algorithms	Load Balancing, Center Selection, Weighted Vertex Cover, Knapsack Problem
16	2022/	Local Search	Gradient Descent, Metropolis & Simulated Algorifium, Hopfield Neural Networks, Maximum - Cut, Nash Equilibria
S1	2022/	Randomized Algorithms	Contention Resolution, Global Min-Cut, Max 3- Satisfiability, Universal Hashing, Chemoff Bounds

Note: slides content are largely consistent with the official accompanying slides of Algorithm Design.

Evaluation

Attendance & participation: 20%

- Understanding of the topic: 40%
- Final project: 40%
 Honorable bonus: 10%

Finalreport [pdf]

release data: 2022/11/29
 collectfeedbacks: 1 week

due: 2022/12/31

Textbook

Not in andatory but recommended:

- Kleinberg & Tardos, Algorithm Design.
- Sedgewick & Wayne, Algorithms.
- . Commen et al., Introduction to Algorithms.

Resources

- It's possible to find PDF files from the web for all textbooks listed above.
- [Lecture Slides for Algorithm Design]¹
- [Course site for Algorithm]²
- . [LeetCode]
- [Course site][†]
- 1. https://www.cs.princeton.edu/-wayne/kleinberg-tardos/↔
- 2. https://algs4.cs.princeton.echuhan.e/←
- 3. https://leetcode.com/+3
- 4. https://clansvu.gthub.io/teach/Algorithm/2022Hhtml+