Ripley's K Function

Mickey Smith

Spatial Point Patterns

K function

K function tests for CSR

Application to Cell and Release Points

References

Ripley's K Function

Mickey Smith

April 21, 2012

Spatial Point Patterns

Ripley's K Function

Mickey Smith

Spatial Point Patterns

K function

K function tests for CSR

Application to Cell and Release

- A data set consisting of point locations, (s₁, s₂, ..., sₙ), in some study area R.
- Each vector s_i consists of spatial coordinates and is called an "event."
- ▶ "points"
- regularity, randomness, or clustering

First order vs. Second order effects

Ripley's K Function

Mickey Smith

Spatial Point Patterns

K functio

K function tests for CSR

Application to Cell and Release Points

- First order effects relate to variation in the mean value of the process in space.
- Second order effects result from the spatial correlation of events. (spatial dependence)
- Iron shavings on paper example.

Intensity, $\lambda(s)$

Ripley's K Function

Mickey Smith

Spatial Point Patterns

K function

K function tests for CSR

Application to Cell and Release Points

References

Defined as the mean number of events per unit area at the point s.

$$\lambda(s) = \lim_{ds \to 0} \left\{ \frac{E[Y(ds)]}{ds} \right\}$$

- **ds** is a small region around event **s**.
- ds is the area of ds.
- $ightharpoonup Y(\cdot)$ is the number of events in a region.
- ► Second order intensity exists in a limit form also but a better characterization of second order properties is Ripley's K function.

K function

Ripley's K Function

Mickey Smith

Spatial Point Patterns

K function

K function tests for CSR

Application to Cell and Release Points

References

Provides a more effective summary of spatial dependence over a wide range of scales.

Need to assume our process to be homogeneous or isotropic over such scales.

 $\lambda K(h) = E(\text{number of events within distance } h \text{ of an arbitrary event})$

▶ Again where the intensity, λ , is the mean number of events per unit area, assumed constant throughout \mathcal{R} .

Derivation of Estimated K function, K(h)

Ripley's K Function

Mickey Smith

K function

Points

▶ The expected number of events in \mathcal{R} is λR , where the area of \mathcal{R} is R.

Using the definition of the K function,

$$\lambda K(h) = E(\# \text{ of events within distance } h$$
 of an arbitrary event)

$$\lambda R \cdot \lambda K(h) = \lambda R \cdot E(\# \text{ of events within distance } h$$
 of an arbitrary event) $\lambda^2 RK(h) = E(\# \text{ of ordered pairs of events at most hapart})$

$$\lambda^2 RK(h) = E(\# \text{ of ordered pairs of events at most h apart}).$$

Indicator Function

Ripley's K Function

Mickey Smith

Spatial Point Patterns

K function

K function tests for CSR

Application to Cell and Release Points

Roforoncos

Let d_{ij} be the distance between the *i*th and *j*th observed event in \mathcal{R} .

$$I_h(d_{ij}) = \left\{ egin{array}{ll} 1 & \textit{if} & d_{ij} \leq h \\ 0 & \textit{otherwise} \end{array}
ight.$$

- ► Thus $\sum_{i\neq j} \sum_{h(d_{ij})} I_h(d_{ij})$ is the observed number of such ordered pairs.
- ▶ Therefore a suitable estimate of K(h) is given by

$$\widehat{K}(h) = \frac{1}{\lambda^2 R} \sum_{i \neq j} I_h(d_{ij})$$

Edge Effect

Ripley's K Function

Mickey Smith

Spatial Point Patterns

K function

K function tests for CSR

Application to Cell and Release Points

References

▶ Consider a circle centered on event i, passing through the point j. Let w_{ij} be the proportion of the area of this circle which lies within \mathcal{R} .

$$\widehat{K}(h) = \frac{1}{\lambda^2 R} \sum_{i \neq j} \frac{I_h(d_{ij})}{w_{ij}}$$

Estimation of Intensity

Ripley's K Function

Mickey Smith

Spatial Point Patterns

K function

K function tests for CSF

Application to Cell and Release

References

Lastly we must estimate λ with the obvious choice

$$\hat{\lambda} = \frac{n}{R}$$

where n is the number of events in \mathcal{R} .

$$\widehat{K}(h) = \frac{R}{n^2} \sum_{i \neq j} \frac{I_h(d_{ij})}{w_{ij}}$$

Graphical Notion of K function

Ripley's K Function

Mickey Smith

Spatial Point Patterns

K function

K function tests for CSF

Application to Cell and Release Points

Doforoncoc

▶ Imagine that an event is "visited" and that around this event we create circles of radius h, then count number of events within the circle.

Complete Spatial Randomness (CSR) and $\widehat{L}(h)$

Ripley's K Function

Mickey Smith

Spatial Poin Patterns

K functio

K function tests for CSR

Application to Cell and Release Points

- ► The standard model for CSR is that events follow a homogeneous Poisson process over the study area.
- ▶ Under CSR, the expected number of events within a distance h of a randomly chosen event would be $\lambda \pi h^2$.
- ▶ Thus, under CSR, $K(h) = \pi h^2$
- ▶ One could simply compare $\widehat{K}(h)$ to πh^2 , or plot $\widehat{K}(h) \pi h^2$ against h, but in practice we consider the $\widehat{L}(h)$.

$$\widehat{L}(h) = \sqrt{\frac{\widehat{K}(h)}{\pi}} - h$$

$\widehat{L}(h)$

Ripley's K Function

Mickey Smith

Spatial Point

K functio

K function tests for CSR

Application to Cell and Release

References

 Positive peaks indicate clustering and negative troughs indicate regularity.

Simulation Envelopes

Ripley's K Function

Mickey Smith

Spatial Point

K function

K function tests for CSR

Application to Cell and Release Points

- First we simulate $\widehat{L}^s(h)$ under CSR.
- Our envelopes will then be percentiles of $\widehat{L}^s(h)$ according to some α level.

What are we interested in?

Ripley's K Function

Mickey Smith

Spatial Point Patterns

K function

K function tests for CSR

Application to Cell and Release Points

- ► Application has events (release points), and a volume (cell).
- K function considers event to event distances.
- ▶ Interested in how release points are arranged about cell boundary.

Modification of K function

Ripley's K Function

Mickey Smith

Spatial Poin

K function

K function tests for CSR

Application to Cell and Release Points

- Consider a distance h from the cell boundary and count number of events.
- ▶ Visit each cell boundary point and consider circles with radius *h* and count number of events within each circle.
- Consider cell boundary as an edge.

References

Ripley's K Function

Mickey Smith

Spatial Poir Patterns

K functio

K function tests for CSF

Application to Cell and Release Points

- ▶ Bailey, Trevor C., and Anthony C. Gatrell. Interactive Spatial Data Analysis. Harlow: Longman, 1995. Print.
- Cressie, Noel A. C. Statistics for Spatial Data. New York: Wiley, 1993. Print.