Das Problem Exakte Lösung Das FPTAS

FPTAS für das Restricted Shortest Path-Problem

Rasmus Diederichsen Sebastian Höffner

Universität Osnabrück

4. Dezember 2015

Inhalt

- 1 Das Problem
- 2 Exakte Lösung Algorithmus Laufzeit Terminierung
- 3 Das FPTAS
 Test für Grenzen von *OPT*

Problemstellung

Gegeben

- azyklischer Graph G = (V, E)
- $(u, v) \in E$ hat gewicht c und Verzögerung t

Single Source Shortest Path

Berechne vom Startknoten aus alle nach Kosten kürzesten Wege zu allen anderen ▶ Dijkstra

All Pairs Shortest Path

Kürzeste Wege zwischen allen Knotenpaaren ▶ Floyd

Das Problem

Gegeben

- azyklischer Graph G = (V, E)
- $(u, v) \in E$ hat gewicht c und Verzögerung t

Restricted Shortest Path

Finde nach Kosten kürzesten Weg von a nach b mit Verzögerung $\leq T$. **NP**-schwer.

Exakte Lösung

Algorithmus

Dynamische Programmierung (ähnlich wie Knapsack). Kanten (i,j) mit i < j, da azyklisch.

Algorithmus

$$g_1(c) = 0$$
, Für $c = 0, ..., OPT$, $g_j(0) = \infty$, Für $j = 2, ..., n$, $g_j(c) = \min \left\{ g_j(c-1), \min_{k \mid c_{kj} \le c} \left\{ g_k(c-c_{kj}) + t_{kj} \right\} \right\}$ Für $j = 2, ..., n$; $c = 1, ..., OPT$

Exakte Lösung

Laufzeit

$$g_1(c) = 0$$
, Für $c = 0, ..., OPT$, $g_j(0) = \infty$, Für $j = 2, ..., n$, $g_j(c) = \min \left\{ g_j(c-1), \min_{k \mid c_{kj} \le c} \left\{ g_k(c-c_{kj}) + t_{kj} \right\} \right\}$ Für $j = 2, ..., n$; $c = 1, ..., OPT$

- $\mathcal{O}(OPT \cdot n \cdot Aufwand pro(c, j))$
 - ▶ Pro (c,j) evtl. alle Vorgänger betrachten
 - $\mathcal{O}(n^2OPT) = \mathcal{O}(|E|OPT)$
- Pseudopolynomiell

Exakte Lösung

Terminierung

Man weiß
$$OPT = \min \{c \mid g_n(c) \leq T\}$$

• Setze *OPT*, sobald erstes c mit $g_n(c) \leq T$ gefunden.

Das FPTAS

Test für Grenzen von OPT

Wir suchen zunächst Verfahren, dass untere und obere Schranken für *OPT* findet.

• Wünsch-dir-was: Polynomieller Algorithmus TEST(k), sodass

$$TEST_{magic}(k) = \begin{cases} 1 & \text{falls } OPT \ge k \\ 0 & \text{falls } OPT < k \end{cases}$$

- ▶ Binäre Suche auf 0, . . . , UB
- Leider NP-schwer

Das FPTAS

Test für Grenzen von OPT

 $TEST_{magic}(k)$ kann nicht existieren, also schwächer:

Eigenschaften von TEST(k)

$$TEST(k) = egin{cases} 1 & ext{falls } OPT \geq k \ 0 & ext{falls } OPT < k(1+\epsilon) \end{cases}$$

TEST(K)

- Skaliere und runde Kantengewichte als $\hat{c}_{ij} = \lfloor \frac{c_{ij}(n-1)}{k\epsilon} \rfloor$
- Wende exakten Algorithmus an, bis $g_n(c) \leq T$ gefunden ist für $c < \frac{n-1}{\epsilon}$ oder $c \geq \frac{n-1}{\epsilon}$.