Unterlagen für die Lehrkraft

Zentrale Prüfungen 2018 – Mathematik

Anforderungen für den Mittleren Schulabschluss (MSA)

Prüfungsteil I

Aufgaben 1 bis 5

Auf-	Kriterien	Beispiellösung	Punkte
gabe	Der Prüfling		
1a)	ordnet die Zahlen der Größe nach.	$-0.7 < -\frac{1}{7} < \frac{7}{100} < 0.17$	2
1b)	wählt einen geeigneten Ansatz und vergleicht beide Werte.	$\frac{25}{30}$ = 83,3 %; Miriam hat nicht recht, da 83 % mehr sind als 65 %.	1 1
	wählt einen anderen Lösungsweg, der	sachlich richtig ist. (2)	
2a)	gibt die Wahrscheinlichkeit an.	$P = \frac{1}{8}$	2
	wählt einen anderen Lösungsweg, der	sachlich richtig ist. (2)	
2b)	bestimmt die Wahrscheinlichkeit.	$P = \frac{8}{16} + \frac{6}{16} = \frac{14}{16} = \frac{7}{8}$	2
	wählt einen anderen Lösungsweg, der sachlich richtig ist. (2)		
3a)	wählt einen geeigneten Ansatz und berechnet die Oberfläche.	$0 = 4 \cdot \pi \cdot r^{2}$ = $4 \cdot \pi \cdot 6^{2} = 452,389 \dots \approx 452 \text{ [cm}^{2}\text{]}$	2
	wählt einen anderen Lösungsweg, der sachlich richtig ist. (2)		
3b)	trifft eine begründete Entscheidung.	Sina hat nicht recht. Wenn der Radius verdoppelt wird, z. B. von 6 cm auf 12 cm, dann vervierfacht sich die Oberfläche.	2
	wählt einen anderen Lösungsweg, der sachlich richtig ist. (2)		
4)	wählt ein geeignetes Lösungsverfahren und löst das LGS.	Lösen mit dem Additionsverfahren I $3x + 4y = 22$ II $5x - 4y = -6$	1
		I+II $8x = 16 \mid : 8$ x = 2 in I einsetzen: $3 \cdot 2 + 4 y = 22$	1
		y = 4	1
	wählt einen anderen Lösungsweg, der sachlich richtig ist. (3)		
5a)	gibt den Wert für b an.	b = 3	1

Prüfungsteil II

Aufgabe II.1: Fuldatalbrücke

Auf-	Kriterien	Beispiellösung	Punkte
gabe	Der Prüfling		
a)	wählt einen geeigneten Ansatz und berechnet die Zeitspanne.	$t = \frac{s}{v} t = \frac{2.4}{4} = 0.6 \text{ [h]}$	1 2
		$0.6 \cdot 60 = 36 \text{ [min]}$	_
		Die beiden kommen nach 36 Minuten am Bahnhof an.	
	wählt einen anderen Lösungsweg, de	er sachlich richtig ist. (3)	
b)	entscheidet sich begründet für den richtigen Abschnitt.	Auf der Teilstrecke Gießen-Marburg ist der Zug am schnellsten.	1
		Die Geschwindigkeit entspricht der Steigung, die dort am größten ist.	2
	wählt einen anderen Lösungsweg, de	r sachlich richtig ist. (3)	
c)	zeichnet den Verlauf der Zugfahrt für den Güterzug ein.	Baunatal 200 175 150 125 100 125 100 75 Gießen 75 Frankfurt 0 8:00 8:30 9:00 9:30 10:00 Uhrzeit	2
	entnimmt der Grafik den Strecken- abschnitt, auf dem sich die Züge begegnen, und gibt die ungefähre Uhrzeit an.	Die Züge begegnen sich zwischen Marburg und Treysa gegen 9:20 Uhr.	2
	wählt einen anderen Lösungsweg, der sachlich richtig ist. (4)		

10
Prüfungen
Zentrale

	wählt einen anderen Lösungsweg, de beschreibt die Veränderung der Parameter. wählt einen anderen Lösungsweg, de	Liegt der Scheitelpunkt im Ursprung, so sind die beiden Parameter $e = 0$ und $f = 0$. Der Streckungsfaktor d bleibt erhalten, da die Parabel nur verschoben wird.	2
	beschreibt die Veränderung der	r sachlich richtig ist. (3) Liegt der Scheitelpunkt im Ursprung, so sind die beiden Parameter $e = 0$ und $f = 0$. Der Streckungsfaktor d bleibt erhalten, da die	_
	wählt einen anderen Lösungsweg, de	· · · · · ·	
		Jans za akzeptieren.)	
		$f(0) = 0$, also $d = -\frac{20}{50^2} \approx -0.008$ (Eine Begründung durch Punktproben ist ebenfalls zu algentieren)	1
		Der Scheitelpunkt der Parabel liegt bei (50/20). Daraus ergibt sich: $f(x) = d \cdot (x - 50)^2 + 20$; für d ergibt sich:	2
	wählt einen anderen Lösungsweg, de	5 , ,	
-	interpretiert das Ergebnis.	Max hat mit seiner Aussage recht, der Höhen- unterschied beträgt ca. 17,7 cm.	1
	wählt einen geeigneten Ansatz und berechnet die Länge der Strecke $u.$	In dem rechtwinkligen Dreieck gilt: $\sin 7.1^{\circ} = \frac{u}{1435}$ $u = 177,368 \dots \approx 17,7 \text{ [cm]}$	2

Aufgabe II.2: Kaffee

Auf-	Kriterien	Beispiellösung	Punkte
gabe			
	Der Prüfling		
a)	berechnet den Prozentwert.	$165:100\cdot 5 = 8,25$	2
		Jeder Bundesbürger trinkt durchschnittlich	
		8,25 l Kaffee aus Pappbechern.	
	wählt einen anderen Lösungsweg, der s		
b)		$34 \cdot 82\ 000\ 000 : 365 : 24 = 318\ 264, \dots$	1
	stätigt den Wert durch eine Rechnung.	≈ 320 000	1
	wählt einen anderen Lägunggwag der	Karin hat recht.	1
- c)	wählt einen anderen Lösungsweg, der s	· · · · · · · · · · · · · · · · · · ·	1
c)	erfasst die geometrische Situation.	Länge Sporthalle: 45 m = 4500 cm, Breite Sporthalle: 27 m = 2700 cm	1
		Durchmesser eines Bechers: 7 cm	
	berechnet die Anzahl der Becher.	Anzahl der Becher in der Länge:	2
	der der randum der demen	4500 : 7 = 642	_
		Anzahl der Becher in der Breite:	
		2700:7=385	
		Anzahl der Becher auf der Fläche:	
		$642 \cdot 385 = 247\ 170$	
	interpretiert das Ergebnis.	247 170 < 320 000	1
		Der Boden reicht nicht aus.	
15	wählt einen anderen Lösungsweg, der s	Y	2
d)	berechnet das Volumen mithilfe der Formel.	$V = (3,5^2 + 3 \cdot 3,5 + 3^2) \cdot \frac{\pi \cdot 8,5}{3}$	2
	l'Office.	$= 282,612 \dots [cm^3]$	
	rundet sinnvoll und wandelt die Ein-	$282,612 \dots [cm^3] \approx 280 [ml]$	1
	heit um.		
	wählt einen anderen Lösungsweg, der s		
e)	wählt einen geeigneten Ansatz und be-		1
	rechnet das Volumen des Zylinders.	$V = \pi \cdot r^2 \cdot h$ $V = \pi \cdot (2.25)^2 \cdot 9.5 = 292.056 \text{[cm]}^3$	1
	bostimmt die prozentuale Abweichung	$V = \pi \cdot (3.25)^2 \cdot 8.5 = 282,056 \dots \text{[cm}^3\text{]}$	1
	bestimmt die prozentuale Abweichung und beurteilt das Ergebnis.		
	und beartent dus Ergebins.	Die Abweichung beträgt weniger als 1 %.	1
		Karin hat recht.	
		(Die Berechnung mit dem angegebenen Wert	
ļ		280 ml ist ebenfalls zu akzeptieren.)	
	wählt einen anderen Lösungsweg, der s		4
f)	wählt die richtige Funktionsgleichung.	(i)	1
	begründet seine Entscheidung.	Dargestellt ist eine Exponentialfunktion. Der Startwert ist 80 und der Wachstumsfaktor	2
		ist kleiner als 1.	
	wählt einen anderen Lösungsweg, der sachlich richtig ist. (3)		
<u> </u>			18
L		Juliline Aulguse II.2	

	_	,
•	•	-
	2	=
	₫	2
	ζ	Э,
	2	
	Ξ	3
•	Ξ	Ξ
	Ξ	3
	ጘ	-
-	-	-
	٥	٥
	7	3
	Ľ	
	ŧ	=
	F	-
	a	ŗ
	`	1

Auf-	Kriterien	Beispiellösung	Punkte	
gabe	Der Prüfling			
a)	wählt einen geeigneten Ansatz.	$A_0 = \frac{1}{2} \cdot 10 \cdot h$	1	
		Durch die Höhe h entsteht ein rechtwinkliges Dreieck, in dem gilt: $h^2 = 10^2 - 5^2$	1	
	bestätigt die Größe des Flächenin- halts durch eine Rechnung.	$h = 8,660 \dots \text{cm}$ $A_0 = \frac{1}{2} \cdot 10 \cdot 8,660 \dots = 43,301 \dots$	1	
		$\approx 43,3 \text{ [cm}^2\text{]}$		
	wählt einen anderen Lösungsweg, der	sachlich richtig ist. (4)		
b)	begründet, dass der Flächeninhalt der schwarzen Fläche in jeder Figur auf $\frac{3}{4}$ abnimmt.	In Figur 1 sind 3 von 4 gleich großen Dreiecken schwarz.	1	
		Mit jeder weiteren Figur wird jedes schwarze Dreieck ebenso aufgeteilt.	1	
	wählt einen anderen Lösungsweg, der	sachlich richtig ist. (2)		
c)	wählt einen geeigneten Ansatz und bestimmt die gesuchte Figur.	gesucht ist n , so dass gilt: $A_n < 4 \text{ cm}^2$ Lösen durch systematisches Probieren: $n = 10 \text{ ergibt } 2,44 \text{ cm}^2$ $n = 7 \text{ ergibt } 5,78 \text{ cm}^2$ $n = 8 \text{ ergibt } 4,33 \text{ cm}^2$ $n = 9 \text{ ergibt } 3,25 \text{ cm}^2$	3	
		Der Flächeninhalt fällt in Figur 9 zum ersten Mal unter 4 cm².	1	
	wählt einen anderen Lösungsweg, der sachlich richtig ist. (4)			
d)	berechnet den fehlenden Wert und rundet auf drei Nachkommastellen.	$18,267:43,3=0,421870\approx 0,422$	2	
	wählt einen anderen Lösungsweg, der sachlich richtig ist. (2)			
e)	gibt eine geeignete Formel an.	=B3*C3 (Akzeptiert werden Formeln mit geeigneten Zellbezügen und einer angemessenen Term- struktur.)	2	
	wählt einen anderen Lösungsweg, der sachlich richtig ist. (2)			
f)	beschreibt die Entwicklung.	z. B.: "Der Flächeninhalt der schwarzen Dreiecke nimmt ab, tendiert gegen 0, wird aber nie einen Flächeninhalt von 0 aufweisen. Der der weißen Dreiecke nimmt weiter zu, wird aber nie zur kompletten Flächendeckung von hier 43,3 cm² führen."	3	
	wählt einen anderen Lösungsweg, der sachlich richtig ist. (3)			
Summe Aufgabe II.		17		

Umgang mit Maßeinheiten

Der	Der Pruffing gibt bei Ergebnissen angemessene Makeinneiten an:			
	nie	(0 Punkte)		
	selten	(1 Punkt)		
	oft	(2 Punkte)		
	immer	(3 Punkte)		

Darstellungsleistung

Der Prüfling stellt seine Bearbeitung nachvollziehbar und formal angemessen dar und arbeitet bei erforderlichen Zeichnungen hinreichend genau:

nie	(0 Punkte)
selten	(2 Punkte)
oft	(4 Punkte)
immer	(6 Punkte)

Übersicht über die Punkteverteilung			
Prüfungsteil I	18		
Prüfungsteil II Aufgabe 1		19	
	Aufgabe 2	18	
	Aufgabe 3	17	
Umgang mit Maßeinheit	3		
Darstellungsleistung		6	
Gesamtpunktzahl		81	

Notentabelle		
Punkte	Note	
70 – 81	sehr gut	
59 – 69	gut	
48 – 58	befriedigend	
36 – 47	ausreichend	
15 – 35	mangelhaft	
0 – 14	ungenügend	

Zentrale Prüfungen 10

Bewertungsbogen zur Prüfungsarbeit im Fach Mathematik

Anforderungen für den Mittleren Schulabschluss (MSA)

Name:	Klasse:
Schule:	

Prüfungsteil I

Aufgaben 1 bis 5

			Lösungsqualität			
Auf-	Anforderungen	maximal erreichbare Punktzahl	EK¹ Punktzahl	ZK¹ Punktzahl	DK¹ Punktzahl	
gabe	Der Prüfling					
1a)	ordnet die Zahlen	2				
1b)	wählt einen geeigneten	2				
	wählt einen anderen	(2)				
2a)	gibt die Wahrscheinlichkeit	2				
	wählt einen anderen	(2)				
2b)	bestimmt die Wahrscheinlichkeit.	2				
	wählt einen anderen	(2)				
3a)	wählt einen geeigneten	2				
	wählt einen anderen	(2)				
3b)	trifft eine begründete	2				
	wählt einen anderen	(2)				
4	wählt ein geeignetes	3				
	wählt einen anderen	(3)				
5a)	gibt den Wert	1				
5b)	zeichnet den Graphen.	2				
	Summe Prüfungsteil I	18				

Prüfungsteil II

Aufgabe II.1: Fuldatalbrücke

			Lösungsqualität			
Auf-	Anforderungen	maximal erreichbare Punktzahl	EK Punktzahl	ZK Punktzahl	DK Punktzahl	
gabe	Der Prüfling					
a)	wählt einen geeigneten	3				
	wählt einen anderen	(3)				
b)	entscheidet sich begründet	3				
	wählt einen anderen	(3)				
c)	zeichnet den Verlauf	2				
	entnimmt der Grafik	2				
	wählt einen anderen	(4)				
d)	wählt einen geeigneten	2				
	interpretiert das Ergebnis	1				
	wählt einen anderen	(3)				
e)	begründet, dass die	3				
	wählt einen anderen	(3)				
f)	beschreibt die Veränderung	3				
	wählt einen anderen	(3)				
	Summe Aufgabe II.1	19				

Aufgabe II.2: Kaffee

			Lösungsqualität			
Auf-	Anforderungen	maximal erreichbare Punktzahl	EK Punktzahl	ZK Punktzahl	DK Punktzahl	
gabe	Der Prüfling					
a)	berechnet den Prozentwert.	2				
	wählt einen anderen	(2)				
b)	wählt einen geeigneten	2				
	wählt einen anderen	(2)				
c)	erfasst die geometrische	1				
	berechnet die Anzahl	2				
	interpretiert das Ergebnis	1				
	wählt einen anderen	(4)				
d)	berechnet das Volumen	2				
	rundet sinnvoll und	1				
	wählt einen anderen	(3)				
e)	wählt einen geeigneten	2				
	bestimmt die prozentuale	2				
	wählt einen anderen	(4)				
f)	wählt die richtige	1				
	begründet seine Entscheidung	2				
	wählt einen anderen	(3)				
	Summe Aufgabe II.2	18				

■ M 2018 Nur für den Dienstgebrauch! Seite 7 von 8

 $^{^{1}}$ $\;$ EK = Erstkorrektur; ZK = Zweitkorrektur; DK = Drittkorrektur

Zentrale Prüfungen 10

Aufgabe II.3: Sierpinski-Dreiecke

			Lösungsqualität			
Auf-	Anforderungen	maximal erreichbare Punktzahl	EK Punktzahl	ZK Punktzahl	DK Punktzahl	
gabe	Der Prüfling					
a)	wählt einen geeigneten	2				
	bestätigt die Größe	2				
	wählt einen anderen	(4)				
b)	begründet, dass der	2				
	wählt einen anderen	(2)				
c)	wählt einen geeigneten	4				
	wählt einen anderen	(4)				
d)	berechnet den fehlenden	2				
	wählt einen anderen	(2)				
e)	gibt eine geeignete	2				
	wählt einen anderen	(2)				
f)	beschreibt die Entwicklung.	3				
	wählt einen anderen	(3)				
	Summe Aufgabe II.3	17	•	•		

	maximal erreichbare Punktzahl	EK Punktzahl	ZK Punktzahl	DK Punktzahl
Umgang mit Maßeinheiten	3			
Darstellungsleistung	6			

Festsetzung der Note

	maximal erreichbare Punktzahl	EK Punktzahl	ZK Punktzahl	DK Punktzahl
Prüfungsteil I:				
Aufgaben 1 bis 5	18			
Prüfungsteil II:				
Aufgabe 1	19			
Aufgabe 2	18			
Aufgabe 3	17			
Umgang mit Maßeinheiten	3			
Darstellungsleistung	6			
Gesamtpunktzahl	81			
Paraphe				

Die Prüfungsarbeit wird mit der Note	bewertet.				
Unterschriften, Datum:					