材料科学基础实验报告

实验	名称	۲: _	实验四	碳钢剂	卒火、	回火后的组	组织观	1察与6	更度分析
学	号:	223	801070	姓	名:	杨雨燃	班	级:	22材物
合作	者:		无	桌	号:				
指导	教师	ĵ : _	杨玉华						
实验	日期]:							

【实验目的】

- 1. 了解碳钢的淬火、回火过程。
- 2. 观察和研究碳钢经不同淬火、回火处理后显微组织的特点,分析冷却条件、淬火温度及回火条件对其组织形态与硬度的影响,并了解淬火、回火的应用领域。

【实验原理】

(一) 淬火

淬火是将钢奥氏体化后以大于临界冷却速度的速度进行冷却,获得马氏体或下贝氏体组织的热处理工艺。其主要目的是为了获得马氏体,提高试样的硬度和强度。

1、淬火温度的选择:

2、保温时间:保温的目的是使钢件热透,使奥氏体充分转变为均匀化。计算公式为:

$$\tau = \alpha KD$$

式中, α 为加热系数; K为装炉系数; D为有效尺寸, mm。

- 3、淬火冷却介质:钢在加热获得奥氏体后要选用适当的冷却介质进行冷却,获得马氏体组织。常用的冷却介质有油、水、盐水、碱水等,其冷却能力依次增加,但是这些冷却介质都存在不同的缺点。
 - 4、淬火后的组织:

低碳钢淬火后能观察到一束束接近相互平行的细条状马氏体群;

中碳钢淬火将得到细针状马氏体和板条状马氏体的混合组织;

高碳钢,如共析钢和过共析钢在等温淬火后可得到贝氏体组织;亚共析钢淬火后能观察 到板条状或针的状马氏体组织,共析钢和过共析钢在淬火后亦得到马氏体组织。

(二)回火

回火是将经过淬火的试样加热到临界点 A_1 以下的适当温度,保持一定时间后,采用适当的冷却方式进行冷却的热处理工艺。主要是消除内应力,获得所要求的力学性能以提高尺寸和稳定性。

①回火马氏体:低温回火后,颜色要比淬火马氏体深些,呈暗黑色的针状组织。具有高的强度和硬度,同时韧性和塑性也较淬火马氏体有明显改善。

②回火屈氏体:中温回火后,在铁素体基体上弥散分布着微小粒状的渗碳体组织,渗碳体则呈细小的颗粒状,在光学显微镜下呈暗黑色不易分辨清楚。具有较好的强度和硬度,以及非常高的弹性性能。

③回火索氏体:高温回火后,由颗粒状渗碳体和多边形的铁素体组成的组织。具有强度、 韧性和塑性较好的综合机械性能。

【实验仪器】

箱式电阻加热炉,洛氏硬度计,砂纸,抛光机,金相显微镜。热处理试样: 45钢及T12钢。

【实验过程】

1、4人一组,45钢(2个)、T8(1个)及T12钢(1个),(对应下表中相应的热处理工艺方法)

试样号码	钢号	热处理工艺	浸蚀剂	建议放大倍数
1	45	淬火,油冷	4%硝酸酒精	200~500
2	45	淬火,水冷	4%硝酸酒精	200~500
3	45	淬火+中温回火	4%硝酸酒精	200~500
4	45	淬火+高温回火	4%硝酸酒精	200~500

- 2、制定热处理工艺参数,可参考以下工艺参数。 $\tau = \alpha KD$
- (1. 45 钢淬火工艺:加热温度为 $860 \pm 10^{\circ}$ C,根据试样有效尺寸计算保温时间,保温后用长柄铁钳夹出放入淬火油中冷却。
- (2. 45 钢淬火工艺:加热温度为 $860 \pm 10^{\circ}$ C,根据试样有效尺寸计算保温时间,保温后用长柄铁钳夹出放入 \mathbf{n} 个进行冷却。
- (3. 45 钢淬水+中温回火工艺:加热温度为 $860 \pm 10^{\circ}$ C,根据试样有效尺寸计算保温时间,保温后出炉进行水淬。随后放入炉中加热至 400° C,保温 1 个小时后出炉空冷。
- (4. 45 钢淬水+高温回火工艺:加热温度为 $860 \pm 10^{\circ}$ C,根据试样有效尺寸计算保温时间,保温后出炉进行水淬。随后放入炉中加热至 600° C,保温 1 个小时后出炉空冷。
- 3、利用硬度计对所有热处理后的试样进行硬度测试,每个试样至少三个试验点,再取一个平均值,分析热处理工艺对其硬度的影响。按照下表选用硬度计。(硬度测试须在金相磨制观察前完成)

试验时应按下表选用压头和总试验力。

刻 度符号	压 头	总试验力 N(kgf)	标注硬度 符 号	允许测量 范 围
В	ø1.588 毫米钢球	980.7(100)	HRB	20—100
С	120° 金钢石	1471(150)	HRC	20-70
A	120° 金钢石	588.4(60)	HRA	20—88

A标尺:用于测定硬度超过 70HRC 的金属(如碳化钨、硬质合金等),也可测定硬的薄板材料以及表面层淬硬的材料。

C标尺:用于测定经过热处理的钢制品硬度。

B标尺:用于测定较软的或中等硬度的金属以及未经淬硬的钢制品。

- 4、根据拟定的热处理工艺对试样进行相应的热处理工艺处理,然后利用金相砂纸对热处理后的试样进行磨制、抛光,并用4%的硝酸酒精进行腐蚀制得金相试样。利用金相显微镜对其进行显微组织观察,分析热处理工艺对其组织的影响。
- 5、实验结束后,汇总各小组实验数据,根据实验数据分析冷却方法及回火温度对碳钢性能(硬度)的影响,画出回火温度同硬度的关系曲线,并阐明硬度变化的原因。

【实验数据】

不同热处理试样的硬度值

材料及热处理状态	测得硬度数据 (HRC)
45钢经860℃加热、油淬	
45钢经860℃加热、水淬	
45钢经860℃加热、水淬、400℃回火	
45钢经860℃加热、水淬、600℃回火	