LDO DESIGN

PASS TRANSISTOR DESIGN

• I put the pass transistor in a feedback loop with the ideal amplifier and sweep W until it operates in saturation when Vin = 2v

Vref=1.2v

ILoad = 50mA

L=Lmin=0.5um

Vout = 1.8v

• I got W = 1400*20 um

vdsat	0.187436
vth	1,05642
id	0.050012
ibd	-2.8019e-10
ibs	-7.2801e-16
gbd	1,40002e-09
gbs	1,40548e-09
isub	8,63181e-16
igidl	0
igisl	0
igs	0
igd	0
igb	0
iges	0
iged	0
vbs	-5.17979e-07
vgs	1,26451
vďs	0.199998

ERROR AMPLIFIER DESIGN

• I assume the requirement as follows:

Av > 50 dB

GBW > 30 MHz

ICMR [0.8v - 1.6v]

SR = 20v/usec

Cl=1pf

Vdd = 2v

Power dissipation < 1mW

ERROR AMPLIFIER DESIGN

- 1- I1=I2=I3/2=Ibias/2, I4=I5=1.5*I3 and I6-9=I4-I1
- 2- From SR I got Ibias
- 3- From GBW I got W/L)1,2
- 4- From ICMR- I got W/L)3
- 5- From ICMR+ I got W/L)4,5
- 6- I got W/L)6-9 that handle worst-case currents of I5
- 7- I got W/L)10-14 using current ratios

ERROR AMPLIFIER DESIGN

Open loop results

@Vcm=1.2v

Adm = 55 dB

GBW= 47 MHz

Acm = -32 dB

- I put the error amplifier in the loop to check stability
- I first checked at 50mA load and 2v supply (worst case)
- The optimum values of Co was 4uF and RESR=1ohm
- Av= 57.7dB, GBW = 177
 KHz and PM = 80 deg

@ 50mA load and 2v supply

@ no load and 2v supply

@ 50mA load and 3.6v supply

@ NO load and 3.6v supply

