A Formal Verification of Reversible Primitive Permutations

Giacomo Maletto

1. The definition

1.1 Reversible computing

Reversible computing is a model of computation in which every process can be run backwards. Simply put, in a reversible setting any program takes inputs and gives outputs (like usual), but can also go the other way around: provided the output it can reconstruct the input. In a mathematical sense, every function is expected to be invertible.

Why do we care about such a thing?

Firstly, having a programming language in which every function (or even a subset of functions) is reversible could lead to interesting and practical applications.

But we can also imagine reversible computers, in which the underlying architecture is inherently reversible: Toffoli gates provides a way to do so. The opposite of reversibility is loss of information, which (for thermodynamic reasons) leads to loss of energy and heat dissipation. This means that a non-reversible gate dissipates energy each time information is discarded, while in principle a reversible computer wouldn't.

Lastly, reversible computing is directly related to quantum computing, as each operation in a quantum computer must be reversible.

1.2 Reversible Primitive Permutations

In the article I decided to formalize, the authors focus on providing a functional model of reversible computation. They develop an inductively defined set of functions, called **Reversible Primitive Permutations** or **RPP**, which are expressive enough to represent all Primitive Recursive Functions (we talk about what this means in section?). Here is the definition that we will use:

Definition 1 (Reversible Primitive Permutations). The class of **Reversible Primitive Permutations** or RPP is the smallest subset of functions $\mathbb{Z}^n \to \mathbb{Z}^n$ satisfying the following conditions:

• The *n*-ary **identity** $\mathsf{Id}_n(x_1,\ldots,x_n)=(x_1,\ldots,x_n)$ belongs to RPP, for all $n\in\mathbb{N}$.

$$\begin{bmatrix} x_1 \\ \vdots \\ \dot{x_n} \end{bmatrix} \mathsf{Id}_n \begin{bmatrix} x_1 \\ \vdots \\ \dot{x_n} \end{bmatrix}$$

The meaning of these diagrams should be fairly obvious: if the values on the left of a function are provided as inputs to that function, we get the values on the right as outputs.

• The **sign-change** Ne(x) = -x belongs to RPP.

$$x$$
 Ne $-x$

• The successor function Su(x) = x + 1 belongs to RPP.

$$x$$
 Su $x+1$

• The **predecessor function** Pr(x) = x - 1 belongs to RPP.

$$x \quad \mathsf{Pr} \quad x-1$$

• The swap Sw(x, y) = (y, x) belongs to RPP.

$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 Sw $\begin{bmatrix} y \\ x \end{bmatrix}$

• If $f: \mathbb{Z}^n \to \mathbb{Z}^n$ and $g: \mathbb{Z}^n \to \mathbb{Z}^n$ belongs to RPP, then the **series** composition $(f;g): \mathbb{Z}^n \to \mathbb{Z}^n$ belongs to RPP and is such that:

$$(f \circ g)(x_1, \dots, x_n) = g(f(x_1, \dots, x_n)) = (g \circ f)(x_1, \dots, x_n).$$

We remark that $f \circ g$ means that f is applied first, and then g, in opposition to the standard functional composition (denoted by \circ).

• If $f: \mathbb{Z}^n \to \mathbb{Z}^n$ and $g: \mathbb{Z}^m \to \mathbb{Z}^m$ belongs to RPP, then the **parallel** composition $(f||g): \mathbb{Z}^{n+m} \to \mathbb{Z}^{n+m}$ belongs to RPP and is such that:

$$(f||g)(x_1,\ldots,x_n,y_1,\ldots,y_m)=(f(x_1,\ldots,x_n),g(y_1,\ldots,y_m)).$$

• If $f: \mathbb{Z}^n \to \mathbb{Z}^n$ belongs to RPP, then then finite iteration $\mathsf{lt}[f]: \mathbb{Z}^{n+1} \to \mathbb{Z}^{n+1}$ belongs to RPP and is such that:

$$\mathsf{lt}[f](x, x_1, \dots, x_n) = (x, (\overbrace{f \circ \dots \circ f})(x_1, \dots, x_n))$$

where $\downarrow (\cdot) : \mathbb{Z} \to \mathbb{N}$ is defined as

$$\downarrow x = \begin{cases} x, & \text{if } x \ge 0 \\ 0, & \text{if } x < 0 \end{cases}.$$

This means that the function f is applied $\downarrow x$ times to (x_1, \ldots, x_n) .

• If $f, g, h : \mathbb{Z}^n \to \mathbb{Z}^n$ belongs to RPP, then the **selection** $\mathsf{lf}[f, g, h] : \mathbb{Z}^{n+1} \to \mathbb{Z}^{n+1}$ belongs to RPP and is such that:

$$\mathsf{If}[f,g,h](x,x_1,\dots,x_n) = \begin{cases} (x,f(x_1,\dots,x_n)), & \text{if } x > 0\\ (x,g(x_1,\dots,x_n)), & \text{if } x = 0\\ (x,h(x_1,\dots,x_n)), & \text{if } x < 0 \end{cases}$$

We remark that the argument x which determines which among f, g and h must be used cannot be among the arguments of f, g and h, as that would break reversibility.

Remark 1. If we have two functions of different arity, for example $f: \mathbb{Z}^3 \to \mathbb{Z}^3$ and $g: \mathbb{Z}^5 \to \mathbb{Z}^5$, then we will still write $f \ \ g$ to mean the function with arity $\max(3,5) = 5$ given by $(f \| \mathsf{Id}_2) \ g$. In general, the arity of the "smaller" function

can be enlarged by a suitable parallel composition with the identity. The same goes for the arguments of the selection $\mathsf{If}[f,g,h]$.

1.3 Some examples

In order to get accustomed to this definition, let's see some examples.

Increment and decrement Let's try to imagine what addition should look like in RPP. Of course, addition is usually thought of as a function which takes two inputs and yields their sum: something like add(x,y) = x + y. But notice that this operation is not reversible: given only the output (the value x + y) it is impossible to obtain the original values (x,y). As we will see, every function in RPP is reversible, so we will not be able to define addition in this way.

Instead, we can define a function inc in RPP which, given $n \in \mathbb{N}$ and $x \in \mathbb{Z}$, yields

$$\begin{bmatrix} n \\ x \end{bmatrix}$$
 inc $\begin{bmatrix} n \\ x+r \end{bmatrix}$

If n is negative the output is just (n, x). The fact that the above diagram is only valid for $n \in \mathbb{N}$ might bother some of you; we'll explain later why it is so, and how we can also make it work for $n \in \mathbb{Z}$.

For now let's focus on the output: we don't just have x + n but also n, and indeed, given both n and x + n we can reconstruct n (obviously) and x (by (x + n) - n). As a matter of fact, the following function dec also belongs to RPP:

$$\begin{pmatrix} n \\ x \end{pmatrix} \det \begin{pmatrix} n \\ x-r \end{pmatrix}$$

and if we try to compose inc and dec we get this remarkable result:

$$\begin{bmatrix} n \\ x \end{bmatrix}$$
 inc $\begin{bmatrix} n \\ x+n \end{bmatrix}$ dec $\begin{bmatrix} n \\ x \end{bmatrix}$

and similarly for $dec \ \ \ inc.$ So indeed dec is the inverse of inc, and we can write $dec = inc^{-1}$.

But we haven't said how to actually define inc. Well, just like this:

$$inc = It[Su]$$

This means that we apply the successor function Su to the value x, for $\downarrow n$ times. If $n \in \mathbb{N}$ then $\downarrow n = n$, so we effectively add n to the value x. If instead n is negative then $\downarrow n = 0$ and nothing changes.

Can you guess how dec is defined?

In a very similar manner, using the predecessor function:

$$dec = It[Pr]$$

and as we will shortly see, finding the inverse is not something that we have to do by hand.

Multiplication and square We now turn our attention to multiplication. The elementary-school way to define multiplication is by repeated addition, and we can define mul exactly like that:

$$mul = It[inc].$$

As inc had arity 2, mul has arity 2+1=3. If $n,m\in\mathbb{N}$ and $x\in\mathbb{Z}$ then we have

$$\begin{bmatrix} n & m & n \\ m & m & m \\ x & x + n \cdot m \end{bmatrix}$$

because we're essentially "incrementing by m" n times; so in this case we preserve both inputs and increase a certain variable x.

What is the inverse mul^{-1} ? Does it perform division? Well, the truth is rather disappointing:

$$\begin{array}{c|c} n & n \\ m & \text{mul}^{-1} & m \\ x & x - n \cdot m \end{array}$$

We will see a way to calculate division in RPP, but this is not it.

We're now ready to define the function square which is used to calculate the square of a number:

square =
$$(Id_1||Sw)$$
 $\frac{1}{9}$ inc $\frac{1}{9}$ mul $\frac{1}{9}$ dec $\frac{1}{9}$ $(Id_1||Sw)$.

That might look like a very complicated expression; thankfully we can make use of diagrams to show what each step does. Given $n \in \mathbb{N}$ and $x \in \mathbb{Z}$ we have

so we add the result $n \cdot n$ to a variable x; we also require an additional value initialized to 0. We will make frequent use of variables initially set to 0 and which come back to 0 after the calculation; these are traditionally called **ancillary arguments** or **ancillaes**, from the latin term used to describe female house slaves in ancient Rome.

You might be wondering what would happen if n < 0 or the ancilla was different from 0. The truth is, we don't really care. We will often specify the behaviour of these functions given some initial values, and we won't need to know what happens for different initial values because we'll never use those functions in other ways.

1.4 Calculating the inverse

Earlier we hinted at the fact that every function in RPP is invertible and the inverse belongs to RPP; furthermore, we don't need to perform the calculation manually, case by case. In other words, there is an effective procedure which produces the inverse $f^{-1} \in \mathsf{RPP}$ given any $f \in \mathsf{RPP}$.

Proposition 1 (The inverse f^{-1} of any f). Let $f: \mathbb{Z}^n \to \mathbb{Z}^n$ belong to RPP. Then the inverse $f^{-1}: \mathbb{Z}^n \to \mathbb{Z}^n$ exists, belongs to RPP and, by definition, is

- $\operatorname{Id}_n^{-1} = \operatorname{Id}_n$
- $Ne^{-1} = Ne$
- $Su^{-1} = Pr$
- $Pr^{-1} = Su$
- $Sw^{-1} = Sw$
- $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$
- $(f||g)^{-1} = f^{-1}||g^{-1}||$
- $lt[f]^{-1} = lt[f^{-1}]$
- $If[f,g,h]^{-1} = If[f^{-1},g^{-1},h^{-1}]$

Then $f \, \S \, f^{-1} = \operatorname{Id}_n \, and \, f^{-1} \, \S \, f = \operatorname{Id}_n$.

Proof. By induction on the definition of f.

Well, that was rather succint.

We invite the reader to check that every listed inverse does indeed make sense; for example, the function $\mathsf{lt}[f](x,y_1,\ldots,y_n)$ applies $\downarrow x$ times the function f to the argument (y_1,\ldots,y_n) . If we want to "undo" this effect we just need to apply $\downarrow x$ times f^{-1} to the same argument, so $\mathsf{lt}[f]^{-1} = \mathsf{lt}[f^{-1}]$.

Of course, that reasoning only works if in turn f is also invertible and $f^{-1} \in \mathsf{RPP}$. This is the reason that the proof is by induction: given an arbitrary RPP , if we unfold one step of the definition we get one of the cases listed. We apply the appropriate step and then by inductive hypothesis we can assume that in turn its sub-terms are invertible.

Notice that in this way, if we try to calculate inc^{-1} we really do get dec , as we had hoped for.

Since RPP is inductively defined, any proposition involving RPP functions can be proven using induction. Not only that, but any function which has for an argument a generic RPP can be defined recursively, and indeed we can also see $(\cdot)^{-1}$: RPP \to RPP as a recursive function. Now that we delve into the Lean theorem prover we will see that induction and recursion can be seen as really the same thing, and that's just one of many similarities between functions and proofs.

1.5 First steps with Lean

In this section we take a look at some of Lean's basic features. You don't have to understand every detail - just enought to have a vague sense of what it's like to define stuff in Lean.

In Lean we primarily do three things:

- 1. define data structures
- 2. define functions
- 3. prove theorems about data structures and functions

What sets Lean apart from your average functional programming language (like Haskell) is the third item on the list. Now we will instead focus on the first and second points.

You don't have to understand every detail of what will follow - a vague understanding of what's going on would be sufficient. The curious reader can run and play with most of the following snippets of code in the online editor https://leanprover-community.github.io/lean-web-editor/.

A simple example of a type Data is defined using the inductive keyword. Here is the typical example of data structure:

```
inductive weekday
| monday
| tuesday
| wednesday
| thursday
| friday
| saturday
| sunday

This defines a type called weekday. Days of the week like monday, tuesday, etc. are elements of the type weekday. We can see this using the #check command:
-- opening the scope weekday (you can ignore this)
open weekday

#check tuesday -- this outputs "weekday"
and we write this as
```

tuesday : weekday

Everything in Lean has a type. For example, natural numbers have type \mathbb{N} :

```
#check 3 -- N
```

Even type themselves have a type¹. Lean's type system is very expressive, and makes it possible to work with complex math in Lean.

We can define functions over the type ${\tt weekday}$ - for example, the function ${\tt next}$:

```
-- Special characters like 
ightarrow will abound.
-- In VS Code and the Lean Web Editor,
-- arrows can be inserted by typing \to and hitting
-- the space bar.
\operatorname{\mathtt{def}} next : weekday \to weekday
| monday
              := tuesday
| tuesday
             := wednesday
| wednesday := thursday
| thursday := friday
| friday
              := saturday
| saturday := sunday
sunday
              := monday
#reduce next wednesday -- this outputs "thursday"
\# check \ next \ -- \ next \ has \ type \ "weekday 
ightarrow \ weekday"
```

This function is defined by cases: if we have monday, output tuesday, if we have tuesday, output wednesday, and so on.

(Almost) every expression-like next (next thursday) or 3*5+2-have a corresponding reduced form (respectively saturday and 17) which can be displayed using the #reduce command, and is obtained by repeatedly applying functions to their arguments, until the full computation is carried out. In this sense, things like next wednesday and next (next tuesday) (or 2+2 and 1+3) are definitionally equivalent, because they're reduced to the same expression.

An important remark on notation: in math it is customary to call functions by enclosing arguments in parenthesis and separating them with commas, i.e. f(x,y,z). Languages like Lean follow a different convention: the arguments are simply written after the function name, like $\mathbf{f} \mathbf{x} \mathbf{y} \mathbf{z}$. So in our case, what we would write as $\mathsf{next}(\mathsf{next}(\mathsf{thursday}))$ is instead written next (next thursday) (writing next next thursday would be wrong because it would mean that the first argument to next is the function next itself, not next thursday). This leads to no ambiguity and often helps reducing clutter.

¹Types in Lean have a role similar to sets in math. Standard math axioms (like ZFC) dictates that everything is a set, including sets themselves. This basic notion can lead to some contradictory statements, like the famous Russell's paradox (let's consider the set of all sets that do not contain themselves; does this set contain itself?) and if one is not careful in defining types of types, the same thing could happen with type theory. But in fact, type theory was invented in the beginning of the 20th century by Bertrand Russell precisely to avoid Russell's paradox. The approach used in Lean is to define a cumulative hierarchy of universes, so that it's impossible to invoke objects like "the type of all types" or a type having itself as an element.

An example of an inductive type Right now you could be wondering why we used the keyword inductive to define weekday, when there's *clearly* no induction going on at all in its construction. First of all, it depends on what you mean by induction; but it is true that that was a particularly simple case. As an example of a more overtly inductive object, we can define the natural numbers like this:

```
inductive Nat
| Zero
| Succ (n : Nat)
```

The name Nat and subsequent objects are capitalized in order to avoid conflict with the definition of nat already present in Lean. We can read this definition as "every element of the type Nat is either Zero or Succ n where n : Nat", which is basically the Peano definition of natural numbers. Some examples of elements of this type:

open Nat

```
-- all these outputs "Nat"

#check Zero -- represents 0

#check Succ Zero -- represents 1

#check Succ (Succ Zero) -- represents 2

#check Succ (Succ (Succ Zero)) -- represent 3
```

Functions over Nat have the possibility of being truly recursive: for example, we can recursively define addition Add m n by induction over n.

```
if n = Zero then Add m Zero = m
if n = Succ n' for some n' : Nat,
then Add m (Succ n') = Succ (Add m n').
```

Note that by definition each element of Nat can be either Zero or Succ n' for some n': Nat, so the two cases considered cover all possibilities. Written in Lean,

It may have struck you that the type of Add is not Nat \times Nat \to Nat but instead Nat \to Nat \to Nat. This is known as currying, and it's not as strange as it might look like at first. Consider this: we can think of Add as a function which takes a pair (m,n): Nat \times Nat and outputs Add m n: Nat, as is standard in mathematics. But we can also think of it as a function which takes just m: Nat and outputs the function Add m: Nat \to Nat, which in turn given n: Nat outputs Add m n: Nat. We can think of Add m as a partially applied function, which becomes fully applied when it is given another argument n. From this

point of view, Add is a function of type Nat \rightarrow (Nat \rightarrow Nat) which is the same as Nat \rightarrow Nat \rightarrow Nat because in Lean the arrow \rightarrow is right associative.

In a certain sense, currying makes functions conceptually simpler; all functions are single variable, it's just that some return other functions.

Syntax and semantics Let's now ask ourselves: how can we define in a satisfactory way the class of functions RPP in Lean, using just types and functions? We'd like to be able to do proofs by induction over RPP, like in proposition 1, so we'll need to define an inductive type.

The key is thinking about RPP not as a class of functions, but as a small programming language. In this sense, we can write down "programs" like our square function

```
(Id_1||Sw) ; inc ; mul ; dec ; (Id_1||Sw)
```

but we should not view it only as a function belonging to $\mathbb{Z}^3 \to \mathbb{Z}^3$, but also as the sentence " $(Id_1||Sw)$; inc; mul; dec; $(Id_1||Sw)$ " which can then be interpreted as the mathematical function belonging to $\mathbb{Z}^3 \to \mathbb{Z}^3$.

We thus separate between the *syntax* and the *semantics* of our language.

- The syntax are the rules which governs how to assemble well-structured sentences. For example, the selection symbol If should be followed by three other RPP functions; if we write If[Su, Pr]; Ne we get a non-valid sentence.
- The semantics is the meaning we give to (well-structured) sentences in our case, they are interpreted as functions $\mathbb{Z}^n \to \mathbb{Z}^n$.

A possible way to define RPP functions in Lean is

- define the type RPP which has for elements syntactically-correct sentences of RPP
- define a function evaluate : RPP $\to (\mathbb{Z}^n \to \mathbb{Z}^n)$ which assigns to each RPP-sentence its intended meaning, namely a function $\mathbb{Z}^n \to \mathbb{Z}^n$.

Note that this is not the only way in which this task can be accomplished; we will discuss other methods at the end of this chapter.

We thus define the type RPP as follows:

```
inductive RPP
| Id (n : N)
| Ne
| Su
| Pr
| Sw
| Co (f g : RPP)
| Pa (f g : RPP)
| It (f : RPP)
| If (f g h : RPP)
```

and also introduce custom notation:

```
-- the numbers 50 and 55 denote the precedence -- simply put, Ne ;; Su \parallel Pr is interpreted as -- Ne ;; (Su \parallel Pr), not (Ne ;; Su) \parallel Pr infix ';; ' : 50 := Co infix '\parallel' : 55 := Pa
```

so it's now possible to write expressions like

```
#check It Su ;; ((Id 1) f If Sw Pr Su) -- RPP
```

Remember that by remark 1, it makes sense to consider the series composition of functions of different arity, as long as we give them the meaning specified in the remark.

Talking about arity, how do we deal with it? In order to define evaluate and give meaning to RPP, we must be able to define a concept of arity, otherwise we'll have trouble with parallel composition of two functions $\mathbf{f} \parallel \mathbf{g}$ - the arity of \mathbf{f} must be known, otherwise it's impossible to tell what to apply \mathbf{g} to.

Luckily, we can reconstruct the arity of an RPP just by looking at its symbolic representation:

Note that f.arity is the same as (arity f). This is a recursive function: there are 5 base cases and in the other 4 the value of arity is reconstructed from smaller sub-terms.

Integers and lists We're almost ready to define evaluate. What we don't know yet is how to represent and work with integer tuples, \mathbb{Z}^n .

The good news is that integers are already defined in Lean. Here is their definition:

```
inductive int
| of_nat (n : N)
| neg_succ_of_nat (n : N)
```

The value of_nat n represents the natural number n: N as an integer, while neg_succ_of_nat n represents the negative number -(n+1). Of course it's not the definition we've just seen that gives this meaning to the ints; rather, it's the functions defined on them (like addition, subtraction etc.).

Immediately after the definition, some notation is introduced:

- \bullet \mathbb{Z} stands for int
- in a context in which an integer is expected, if instead a natural number is supplied, the function of_nat will be automatically applied on the natural number. This convenient feature is called coercion.
- for every n : N, -[1+ n] stands for neg_succ_of_nat n. This notation is almost never used.

```
notation '\mathbb{Z}' := int instance : has_coe nat int := \langle \text{int.of_nat} \rangle notation '-[1+ ' n ']' := int.neg_succ_of_nat n As an example of a function from \mathbb{Z} to \mathbb{Z}, this is negation: def neg : \mathbb{Z} \to \mathbb{Z} | (of_nat n) := neg_of_nat n | -[1+ n] := succ n
```

We're interested not just in integers, but in tuples of integers. We can implement the concept of a tuple in many ways, but a particularly simple one is through the use of lists, a very common data structure in computer science.

Let's consider lists of natural numbers, i.e. the type list \mathbb{N} . This is a list of 5 elements:

```
open list
#reduce [4, 5, 7, 2, 5] -- outputs "[4, 5, 7, 2, 5]"
The first element of a list is the head
#reduce head [4, 5, 7, 2, 5] -- "4"
while the other elements are the tail.
#reduce tail [4, 5, 7, 2, 5] -- "[5, 7, 2, 5]"
Given n : \mathbb{N} and 1 : list \mathbb{N} we can obtain a new list cons n : l (also written
as n :: 1) such that head (n :: 1) = n and head (n :: 1) = 1
#reduce cons 2 [4, 5, 7, 2, 5] -- [2, 4, 5, 7, 2, 5]
#reduce 2 :: [4, 5, 7, 2, 5] -- the same thing
and ultimately, every list can be obtained by starting with nil, the empty list,
and repeatedly using cons.
#reduce nil -- the empty list
#reduce [] -- alternative notation
#reduce cons 4 (cons 5 (cons 7 (cons 2 (cons 5 nil))))
             -- [4, 5, 7, 2, 5]
#reduce 4 :: 5 :: 7 :: 2 :: 5 :: []
             -- alternative notation
```

This might suggest a definition of lists of naturals: a list_nat is either the empty list nil_nat, or cons_nat hd tl where hd : N and tl : list_nat are respectively the head and tail of the list:

```
inductive list_nat
| nil_nat
| cons_nat (hd : N) (tl : list_nat)
```

There's nothing special about using natural numbers. We can use the same procedure to define lists of integers:

```
inductive list_int
| nil_int
| cons_int (hd : Z) (tl : list_int)
```

but having to define different types of lists for each type of element is pretty cumbersome. Instead, we can define lists for a generic type T using *dependent types*:

```
inductive list (T : Type*)
| nil
| cons (hd : T) (tl : list)
```

Rather than having list_nat, list_int... we use list \mathbb{N} , list \mathbb{Z} ... list α where α is any type.

We can see how useful dependent types are by defining the function length which returns the number of elements of a list:

```
 \begin{array}{lll} \operatorname{def} \ \operatorname{length} \ \{\alpha \ : \ \operatorname{Type*}\} \ : \ \operatorname{list} \ \alpha \ \to \ \mathbb{N} \\ | \ [] & := \ 0 \\ | \ (a \ :: \ 1) \ := \ \operatorname{length} \ 1 \ + \ 1 \\ \end{array}
```

Note that we can use $\{\alpha : \text{Type*}\}\$ to refer to a generic type α . If instead we had stuck to list_nat, list_int... now we would have to define length_nat, length_int... separately for each type.

We will identity tuples of n elements \mathbb{Z}^n with lists in list \mathbb{Z} of length n. The function evaluate should take RPP-sentences and return functions $\mathbb{Z}^n \to \mathbb{Z}^n$, so in Lean we will define it as a function of type

```
RPP \to (list \mathbb{Z} \to \text{list } \mathbb{Z}) which in Lean is the same as RPP \to \text{list } \mathbb{Z} \to \text{list } \mathbb{Z}.
```

The evaluate function We are now ready to define evaluate (ev for short):

```
\textcolor{red}{\texttt{def}} \ \texttt{ev} \ : \ \texttt{RPP} \ \rightarrow \ \texttt{list} \ \mathbb{Z} \ \rightarrow \ \texttt{list} \ \mathbb{Z}
| (Id n)
                 1
                                              := 1
l Ne
                 (x :: 1)
                                              := -x :: 1
                                              := (x + 1) :: 1
| Su
                 (x :: 1)
                 (x :: 1)
| Pr
                                              := (x - 1) :: 1
| Sw
                 (x :: y :: 1)
                                              := y :: x :: 1
| (f ;; g)
                                              := ev g (ev f 1)
                 1
| (f || g)
                                             := ev f (take f.arity 1) ++
                 1
                                                 ev g (drop f.arity 1)
| (It f)
                                              := x :: ((ev f)^[\downarrow x] 1)
                 (x :: 1)
| (If f g h) (0 :: 1)
                                             := 0 :: ev g l
| (If f g h) (((n : \mathbb{N}) + 1) :: 1) := (n + 1) :: ev f l
| (If f g h) (-[1+ n] :: 1)
                                           := -[1+ n] :: ev h 1
                 1
                                              := 1
```

notation '<' f '>' := ev f

We will write <f> to mean the function of type list $\mathbb{Z} \to \text{list } \mathbb{Z}$ given by ev f.

Here's a case-by-case analysis:

- <Id n> 1 is the original list 1, unchanged.
- <Ne> (x :: 1) reduce to -x :: 1, which is same list but with the head of opposite sign.
- \bullet <Su> (x :: 1) reduce to the same list but with the head incremented by one.
- $\langle Pr \rangle$ (x :: 1) reduce to the same list but with the head decremented by one.
- <Sw> (x :: y :: 1) reduce the same list but with the first two elements swapped.
- $\langle f ; g \rangle$ 1 successively applies $\langle f \rangle$ and $\langle g \rangle$ to the list.
- <f || g> 1 applies <f> to the first f.arity elements of the list, applies <g> to the remaining elements of the list, and then joins the two parts through append (which is the (++) operator).
- $\langle \text{It } f \rangle$ (x :: 1) leaves the head unchanged and applies $\langle f \rangle$ to the tail $\downarrow x$ times, where $\downarrow x$ is defined as in definition 1.
- <If f g h> (0 :: 1) leaves the head unchanged and applies $\langle g \rangle$ to the tail.

- $\langle \text{If f g h} \rangle$ (((n : N) + 1) :: 1) is the case where the head is a positive number (a natural number plus 1), and as such leaves the head unchanged and applies $\langle f \rangle$ to the tail.
- \bullet <If f g h> (-[1+ n] :: 1) is the case where the head is a negative number, and as such leaves the head unchanged and applies <h> to the tail.
- \bullet In all cases not considered (for example, applying $<\!\text{Ne}\!>$ to an empty list) the whole list remains unchanged.

The reader is invited to compare this definition with the one given in definition 1.