Задача 4. lower bound

Источник: основная*
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Функция bsearch из стандартной библиотеки языка С обладает большим недостатком: если в массиве нет того элемента, который мы ищем, то функция не возращает абсолютно никакой информации. Это означает, что в некоторых случаях она бесполезна, например при решении задачи «Поиск ближайшего».

Гораздо полезнее функция lower_bound из стандартной библиотеки языка C++. Эта функция запускается для отсортированного массива A и элемента X, и возвращает номер первого элемента в массиве, который больше или равен X. Если такого элемента нет, то функция возвращает длину массива N. Иными словами, функция возвращает, сколько элементов в массиве A строго меньше заданного X.

В данной задаче вам предлагается реализовать **lower_bound** на языке C аналогично тому, как реализована функция **bsearch**. Это означает, что должны выполняться следующие требования:

- 1. Функция должна быть применима к массиву элементов любого типа. Это означает, что она должна принимать размер одного элемента в байтах и нетипизированные указатели, аналогично qsort и bsearch.
- 2. Функция должна поддерживать задание критерия сравнения для элементов. Это означает, что она должна принимать компаратор в виде указателя на функцию (можно без контекста).
- 3. Функция должна брать информацию только из своих параметров/аргументов. Иными словами, внутри неё нельзя обращаться к глобальным и статическим переменным.

Данную функцию нужно применить к двум заданным массивам: один состоит из целых чисел, а другой — из строк. Обратите внимание, что изначально массивы не отсортированы — вам следует применить к ним qsort.

Формат входных данных

Входные данные задаются в таком порядке: сначала массив целых чисел, затем массив строк, затем запросы для массива целых чисел, и, наконец, запросы для массива строк.

В первом блоке записано одно целое число N_1 — длина массива целых чисел $(1 \leqslant N_1 \leqslant 10^5)$. Далее записаны элементы этого массива: N_1 целых чисел, каждое по абсолютной величине не превышает 10^{15} .

Во втором блоке записано одно целое число N_2 — длина массива строк ($1 \leqslant N_2 \leqslant 10^5$). Далее записаны элементы этого массива: N_2 непустых строк из маленьких букв латинского алфавита, длиной не более 31 символа каждая.

В третьем блоке записано целое число Q_1 — количество запросов для массива целых чисел $(1 \leq Q_1 \leq 10^5)$. В остальных Q_1 строках записаны целые числа, определяющие запросы на поиск, каждое число не превышает 10^{15} по абсолютной величине.

В четвёртом блоке записано целое число Q_2 — количество запросов для массива строк $(1 \leqslant Q_2 \leqslant 10^5)$. В остальных Q_2 строках записаны строки-запросы, состоящие из маленьких букв латинского алфавита, длиной от 1 до 31 символа.

Формат выходных данных

В выходные данные нужно вывести сначала результаты применения lower_bound для запросов на массиве целых чисел, а затем результаты применения для запросов на массиве строк. Первый блок результатов должен содержать Q_1 целых чисел в диапазоне от 0 до N_1 , каждое число в отдельной строке. Второй блок результатов должен содержать Q_2 целых чисел в диапазоне от 0 до N_2 , каждое число в отдельной строке.

Пример

input.txt	output.txt
5	2
-100000000	2
300000000	4
500000000	2
-100000000	4
300000000	4
5	5
a	0
hello	0
a	3
ba	5
a	
8	
300000000	
299999999	
300000001	
0	
500000000	
400000000	
700000000	
-700000000	
3	
a	
Ъ	
hi	

Пояснение к примеру

Массив целых чисел в отсортированном виде выглядит как: -G, -G, 3G, 3G, 5G (для краткости обозначим $G=10^9$). Первый запрос в точности равен 3G, он впервые встречается под индексом 2 в массиве. Второй запрос чуть меньше 3G, и в массиве отсутствует, так что нужно вернуть индекс первого элемента больше него, а это 2. Третий запрос чуть больше 3G, и в массиве также отсутствует. В массиве всего 4 числа меньше запрашиваемого, так что ответ равен 4. Последние два запроса показывают, что нужно возращать, когда запрашиваемое число больше или меньше всего массива.

Массив строк в отсортированном виде выглядит так: a, a, a, ba, hello. Для запроса a ответ равен 0, т.к. элементов меньше в массиве нет. Для запроса b ответ равен 3, т.к. все три строки a меньше него, а строка ba больше него. Запрос hi больше всего массива, так что ответ равен длине массива.