Многочлены над полем \mathbb{F}_p

Пусть p — простое число. Обозначим через \mathbb{F}_p множество (поле) остатков от деления на p. Через $0 \in \mathbb{F}_p$ будем обозначать нулевой остаток. Множество \mathbb{F}_p состоит из p элементов, которые можно умножать, складывать и вычитать. Более того, любой элемент $a \in \mathbb{F}_p$ можно поделить на любой $0 \neq b \in \mathbb{F}_p$. Сложение и умножение являются accoquamuehumu и kommymamuehumu операциями, ducmpubymuehocmb также выполняется.

Многочленом P(x) с коэффициентами в \mathbb{F}_p назовем формальное выражение $P(x) = a_0 + a_1 x + \ldots + a_k x^k + \ldots$, где x — формальная переменная, $a_0, \ldots, a_k, \ldots \in \mathbb{F}_p$ и только конечное число a_i ненулевые. Многочлены можно складывать и умножать, как обычно:

$$(a_0 + \ldots + a_k x^k + \ldots) \pm (b_0 + \ldots + b_k x^k + \ldots) = (a_0 \pm b_0) + (a_1 \pm b_1)x + \ldots + (a_k \pm b_k)x^k + \ldots$$
$$(a_0 + \ldots + a_k x^k + \ldots) \cdot (b_0 \ldots + b_k x^k + \ldots) = (a_0 \cdot b_0) + (a_1 b_0 + a_0 b_1)x + \ldots$$
$$\ldots + (a_k b_0 + a_{k-1} b_1 + \ldots + a_0 b_k)x^k + \ldots$$

Часто для краткости мы будем пропускать нулевые слагаемые и записывать многочлены в виде

$$P(x) = a_0 + a_1 x + \ldots + a_n x^n.$$

Множество многочленов с коэффициентами в \mathbb{F}_p мы будем обозначать через $\mathbb{F}_p[x]$.

Степенью многочлена $P(x) = a_0 + a_1 x + \ldots + a_k x^k + \ldots$ называется наибольшее целое d такое, что $a_d \neq 0$. Будем обозначать ее через $\deg P(x)$. У нулевого многочлена степень не определена.

Многочлены $P(x) \in \mathbb{F}_p[x]$ можно вычислять на остатках. Иными словами, если $P(x) = a_0 + a_1 x + \ldots + a_n x^n \in \mathbb{F}_p[x]$ и $c \in \mathbb{F}_p$ — остаток, то $P(c) = a_0 + a_1 c + \ldots + a_n c^n \in \mathbb{F}_p$ — также остаток.

- П Для многочленов $P(x), Q(x) \in \mathbb{F}_p[x]$ докажите, что
 - (a) $\deg(P(x) + Q(x)) \le \max(\deg P(x), \deg Q(x));$
 - (b) $deg(P(x) \cdot Q(x)) = deg P(x) + deg Q(x)$.
- [2] Пусть $P(x), Q(x) \in \mathbb{F}_p[x]$. Докажите по индукции по $\deg P(x)$, что многочлен P(x) можно поделить на Q(x) с остатком. А именно, что существуют многочлены $S(x), R(x) \in \mathbb{F}_p[x]$ такие, что $\deg R(x) < \deg Q(x)$ и P(x) = Q(x)S(x) + R(x).
- 3 Поделите с остатком многочлен P(x) на Q(x) в случае
 - (a) $P(x), Q(x) \in \mathbb{F}_{13}[x] : P(x) = x^7, Q(x) = x^2 1$
 - (b) $P(x), Q(x) \in \mathbb{F}_{11}[x] : P(x) = x^3, Q(x) = 6x^2 + x + 1$
 - (c) $P(x), Q(x) \in \mathbb{F}_7[x] : P(x) = x^7 + 2x + 1, Q(x) = x 3$

- [4] **Теорема Безу.** Дан остаток $a \in \mathbb{F}_p$. Докажите, что многочлен $P(x) \in \mathbb{F}_p[x]$ даёт остаток P(a) при делении на x-a.
- [5] Дан остаток $a \in \mathbb{F}_p$. Докажите, что многочлен $P(x) \in \mathbb{F}_p[x]$ делится на x-a тогда и только тогда, когда a является его корнем, то есть остаток P(a) нулевой.
- [6] (а) Пусть a_1, \ldots, a_k различные остатки. Докажите, что многочлен $P(x) \in \mathbb{F}_p[x]$ делится на произведение $(x-a_1) \cdot \ldots \cdot (x-a_k)$ тогда и только тогда, когда все a_i являются корнями P(x).
 - (b) Докажите, что у многочлена степени n > 0 над \mathbb{F}_p не более n различных корней.
- 7 Разложите на множители многочлены:
 - (a) $x^p x \in \mathbb{F}_p[x];$
 - (b) $x^p 2 \in \mathbb{F}_p[x];$
 - (c) $1 + x + \ldots + x^{p-1} \in \mathbb{F}_p[x]$.
- 8 **Теорема Виета.** Пусть различные остатки a_1, \ldots, a_n корни многочлена $b_n x^n + \ldots + b_1 x + b_0$. Докажите, что

$$a_1 + \ldots + a_n = -\frac{b_{n-1}}{b_n},$$

$$a_1 a_2 + a_1 a_3 + \ldots + a_{n-1} a_n = \frac{b_{n-2}}{b_n},$$

$$\vdots$$

$$a_1 a_2 \ldots a_n = (-1)^n \frac{b_0}{b_n}.$$

9 Петя выписал в тетрадку все наборы из трёх натуральных чисел $1 \le k \le p$. Затем он перемножил числа в каждой тройке, а результаты сложил. Какой остаток даёт получившееся число при делении на p?