正确 Correct!

/	恭喜! 您通过了!	下一项
~	1 / 1 分数	
1.		
If two t	asks are executing in parallel, which of the following statements is true?	
	They are using exactly the same hardware at the same time.	
	They are using different hardware, but running at the same time.	
正确		
Corr	ect!	
	Their executions are alternating in time.	
	One task executes immediately after the other finishes.	
~	1 / 1 分数	
2.		
wnat c	loes the von Neumann bottleneck state about computer architectures?	
	Power consumption is a limiting factor for performance.	
	Temperature is a performance bottleneck.	
	Clock frequency cannot be improved without considering temperature.	
	Memory access time is a performance bottleneck.	

3.				
What does Moore's law directly observe?				
	Power consumption doubles every 18 months.			
	Transistor density doubles every 2 years.			
正确				
Correct!				
	Processor power doubles every 2 years.			
	Transistor switching delay is cut in half every year.			
	1/1			
V	分数			
4.				
How is dynamic power consumption related to voltage swing?				
	Dynamic power is proportional to the square of the voltage swing.			
正确				
Correct!				
	Dynamic power is proportional to the cube of the voltage swing.			
	Dynamic power is proportional to the cabe of the voltage swing.			
	Dynamic power is proportional to the square root of the voltage swing.			
	Dynamic power is proportional to the capacitance.			

1 / 1 分数

5

Why can't Dennard Scaling continue forever?

- I. The speed of light limits the potential performance improvements.
- II. Voltage must remain above threshold voltage.
- III. Some noise margin must be maintained.
- / only.

ule 1/Quiznot III. 个问题	
// and ///, NOT /.	
<u>正</u> 确	
Correct!	
/, //, and ///.	
1 /1	
分数	
·	
Vhat factor limits clock rates in future designs?	
The speed of light.	
. Excessive power consumption.	
I. Excessive temperature.	
/only.	
/ and //, NOT ///.	
// and ///, NOT /.	
(i) I, II, and III.	
<u> </u>	
正确 Correct!	
Correct!	

1/1 分数

One benefit of concurrent execution on a single processor is that it can hide latency. What does this mean?

- When tasks execute in parallel, only the delay of the slowest task matters.
- One task can execute while another task is waiting on something.

正确

Correct!

Module 测验,7个问题	1 The concurrent execution time of two tasks is less than the sum of their sequential execution times.	(100%)
	Total latency is reduced because two tasks can execute at the same time.	
		_

