Q Detectores Especializados

Triple Capa de Protección

1. ML Detector

- Análisis de patrones de tráfico de red
- Modelo entrenado con datos reales

2. Behavior Detector

- Monitoreo de comportamientos sospechosos
- Análisis de actividad de procesos
- Detección de patrones anómalos

3. Network Detector

Monitores del Sistema

Vigilancia Continua 24/7

- File Monitor
 - Archivos creados/modificados
 - Actividad de escritura sospechosa
- Network Monitor
 - Conexiones entrantes/salientes
 - Tráfico de datos en tiempo real
 - Análisis de patrones de comunicación
- **Process Monitor**
 - Procesos en ejecución

Resultados y Métricas

Rendimiento del Sistema

✓ Sistema Operativo:

• CPU Usage: 14.0%

• RAM Usage: 58.3%

• Conexiones activas: 108 monitoreadas

• Estado: V FUNCIONANDO AL 100%

© Capacidades de Detección:

- Tiempo real Detección instantánea
- Bajo consumo Recursos optimizados
- Alta precisión 73 78% de aciertos

Versión de Producción

Sistema Listo para Despliegue

Executables Disponibles:

```
# Instalación simple
cd ANTIVIRUS_PRODUCTION
pip install -r requirements.txt

# Ejecución
python simple_launcher.py
```

Estructura Optimizada:

- 350MB total Solo archivos esenciales
- Modelos ML incluidos y optimizados
- Configuración lista para usar

X Tecnologías Utilizadas

Stack Tecnológico Robusto

A Backend:

- Python 3.11+ Lenguaje principal
- scikit-learn Machine Learning
- ONNX Runtime Optimización de modelos
- psutil Monitoreo del sistema

Data Science:

- pandas Manipulación de datos
- numpy Cálculos numéricos
- ioblib Serialización de modelos

Web Dashboard (Bonus)

Interfaz de Monitoreo

- Características del Dashboard:
 - Visualización de logs en tiempo real
 - Métricas del sistema y detecciones
 - Historial de amenazas detectadas
 - Configuración remota del antivirus

Despliegue:

```
# API REST disponible
cd web_api
python main.py
# Dashboard en http://localhost:8000
```

© Demo en Vivo

¡Veamos el Sistema en Acción!

Proceso de Demostración:

- 1. Arranque del sistema anti-keylogger
- 2. **Monitoreo** en tiempo real
- 3. Simulación de actividad sospechosa
- 4. **Detección** y alertas
- 5. **Logs** y reportes generados

Nota: Demo realizada en entorno controlado para fines educativos

Casos de Uso Reales

Aplicaciones Prácticas

im Empresas:

- Protección de datos corporativos
- Monitoreo de estaciones de trabajo
- Compliance y auditoría

1 Usuarios Domésticos:

- Protección de información personal
- Seguridad en banca online
- Privacidad familiar

Logros Alcanzados

¿Qué hemos conseguido?

- **✓** Tecnológicos:
 - Sistema ML funcional al 73.78% de precisión
 - Arquitectura modular y escalable
 - Optimización ONNX para producción
 - Monitoreo multicapa integrado

✓ Prácticos:

- Executable listo para despliegue
- Configuración plug-and-play
- Dashboard web operativo

Limitaciones Actuales

Áreas de Mejora Identificadas

Técnicas:

- Precisión Objetivo 85%+ para producción
- Falsos positivos Refinamiento necesario
- Datasets Más datos de entrenamiento
- Features Análisis de comportamiento expandido

Operacionales:

- Instalación Simplificar proceso
- Interfaz GUI más intuitiva
- Documentación Manual de usuario

Próximos Pasos

Roadmap de Desarrollo

- **©** Corto Plazo (1-3 meses):
 - Mejorar precisión del modelo ML
 - Interfaz gráfica para usuarios finales
 - Sistema de actualizaciones automáticas
 - Testing automatizado completo
- Largo Plazo (6+ meses):
 - Deep Learning con redes neuronales
 - Detección de malware general
 - Integración cloud y sincronización

Valor y Aplicabilidad

¿Por qué es importante este proyecto?

* Académico:

- Aplicación práctica de Machine Learning
- Integración de múltiples tecnologías
- Experiencia en ciberseguridad
- Metodología de desarrollo completa

Profesional:

- Portfolio de proyecto completo
- Experiencia en ML aplicado
- Conocimiento en seguridad informática

Aspectos Técnicos Avanzados

Detalles de Implementación

Pipeline de ML:

```
Raw Network Data → Feature Extraction →
Model Prediction → Risk Assessment →
Action Trigger → Logging & Alerts
```

Arquitectura de Software:

- Patrón Facade Interfaz simplificada
- Observer Pattern Monitores en tiempo real
- Strategy Pattern Detectores intercambiables
- Factory Pattern Creación de componentes

Reconocimientos

Agradecimientos y Créditos

E Fuentes de Inspiración:

- Papers académicos sobre detección de malware
- Datasets públicos de ciberseguridad
- Comunidad open source de Python
- Documentación técnica de ONNX y scikit-learn

% Herramientas Utilizadas:

- VS Code Desarrollo
- **Git** Control de versiones
- Railway Despliegue cloud

? Preguntas y Respuestas

¡Momento de Interacción!

Temas de Discusión:

- Aspectos técnicos del machine learning
- Implementación y arquitectura
- Aplicaciones y casos de uso
- Mejoras y evolución futura
- Experiencias durante el desarrollo

Contacto:

- GitHub: proyecto-Anti-keylogger
- Documentación: Ver carpeta MD's Explicativos/

Sistema Anti-Keylogger con ML

- ✓ Lo que hemos visto:
 - Problema real de ciberseguridad
 - Solución innovadora con ML
 - Implementación completa y funcional
 - Resultados medibles y prometedores
 - Futuro prometedor del proyecto

@ Mensaje Final:

"La ciberseguridad no es solo sobre proteger datos, es sobre proteger vidas digitales y preservar la confianza en la tecnología"