

Unit 4 – DIGITAL ELECTRONICS

Introduction to Embedded Systems: Definition, Block Diagram of Embedded System

Department of Electronics and Communication.

Introduction to Embedded System

- Embedded means something that is attached to another thing
- ❖ A system is an arrangement in which all its unit assemble work together according to a set of rules

'An embedded system is a special-purpose system in which the computer is completely encapsulated by the device it controls'

Unlike a general-purpose computer, such as a personal computer, an embedded system performs pre-defined tasks, usually with very specific requirements

Introduction to Embedded System

- ❖ An embedded system can be thought of as a computer hardware system having software embedded in it
- An embedded system can be an independent system or it can be a part of a large system
- ❖ An embedded system is a microcontroller or microprocessor based system which is designed to perform a specific task
- ❖ For example, a fire alarm is an embedded system; it will sense only smoke

What is an Embedded Systems

An Embedded System is an integrated system including both hardware and software is not enough

An embedded system is a dedicated computer system, designed to work for single or few specific functions often within a larger system

Embedded Systems, therefore, are

- ❖ Built to function with little or no human intervention
- Specially designed keeping in consideration the tasks that need completion in the most efficient way

ELECTRONIC PRINCIPLES AND DEVICES Main Parts of an Embedded System

PESUNIVERSITY

An embedded system has three components

- It has hardware
- It has application software
- ❖ It has Real Time Operating system (RTOS) that supervises the application software and provide mechanism to let the processor run a process as per scheduling by following a plan to control the latencies

PESUNIVERSITY

Main Parts of an Embedded System

*RTOS defines the way the system works. It sets the rules during the execution of application program. A small scale embedded system may not have RTOS

An embedded system as a Microcontroller based, software driven, and reliable, real-time control system

Basic Structure an Embedded System

The following illustration shows the basic structure of an embedded system

Basic Structure an Embedded System

- ❖ Sensor It measures the physical quantity and converts it to an electrical signal which can be read by an observer or by any electronic instrument like an A2D converter. A sensor stores the measured quantity to the memory
- ❖ A-D Converter an analog-to-digital converter converts the analog signal sent by the sensor into a digital signal
- ❖ Processor & ASICs Processors process the data to measure the output and store it to the memory
- ❖ D-A Converter A digital-to-analog converter converts the digital data fed by the processor to analog data
- ❖ Actuator An actuator compares the output given by the D-A Converter to the actual (expected) output stored in it and stores the approved output

Features of an Embedded System

❖ Single-functioned – an embedded system usually performs a specialized operation and does the same repeatedly

For example: A pager always functions as a pager

- ❖ Tightly constrained All computing systems have constraints on design metrics, but those on an embedded system can be especially tight
 - Design metrics is a measure of an implementation's features such as its cost, size, power, and performance
 - It must be of a size to fit on a single chip, must perform fast enough to process data in real time and consume minimum power to extend battery life

Features of an Embedded System Continued...

❖ Reactive and Real time – Many embedded systems must continually react to changes in the system's environment and must compute certain results in real time without any delay

Consider an example of a car cruise controller; it continually monitors and reacts to speed and brake sensors. It must compute acceleration or deaccelerations repeatedly within a limited time; a delayed computation can result in failure to control of the car

- ❖ Microprocessors based It must be microprocessor or microcontroller based
- ❖ Memory It must have a memory, as its software usually embeds in ROM. It does not need any secondary memories in the computer

Features of an Embedded System Continued...

- Connected It must have connected peripherals to connect input and output
- devices
- **HW-SW systems** Software is used for more features and flexibility. Hardware is used for performance and security

THANK YOU

Department of Electronics and Communication