

编译原理

实验二: 自底向上的语法分析LR(1)

规格严格, 功夫到家

编译程序的总体结构

01 实验目的 02 实验内容 03 实验原理 04 实验步骤

实验目的

- 1. 深入了解语法分析程序实现原理及方法。
- 2. 理解LR(1)分析法是严格的从左向右扫描和自底向上的语法分析方法。

实验学时数:8学时。

- 1. 利用LR(1)分析法,设计语法分析程序,结合文法对输入单词符号串 (实验一的输出)进行<mark>语法分析;</mark>
- 2. 输出推导过程中所用产生式序列并保存在输出文件中。

注:实验二不应该更改实验一的输出

LR语法分析器的总体结构

分析器的四种动作

- ✓ 移进
- ✓ 归约
- ✓ 接受
- ✓ 出错

定义文法

定义描述程序设计语言语法的文法,并编写拓广文法

02 实验内容

```
P -> S_list;
S list -> S Semicolon S list;
S list -> S Semicolon;
S -> D id;
D -> int;
S \rightarrow id = E;
S -> return E;
E \rightarrow E + A;
E -> E - A;
E -> A;
A -> A * B;
A \rightarrow B;
B -> (E);
B -> id;
B -> IntConst;
```

• 对文法进行拓广的目的是为了对某些右部含有开始符号的文法,在归约过程中能分清是否已归约到文法的最初开始符。

构造LR(1)分析表

02 实验内容

生成分析表步骤:

- 1. Windows环境安装编译工作台,下载链接: https://gitee.com/hitsz-cslab/Compiler/releases/tag/2022F.0.1
- 2. 创建一个语法文件,按照文件模板填写;
- 3. 点击菜单"生成"——"生成分析表";

参考文法的LR(1)分析表——包括ACTION和GOTO

	LR1分	析表																	
2	.1.15.—1—																_		4
		ACTION												GOTO					1
4		id	()	+	_	*	=			IntConst	Semicolon	\$	E	S_list		В	D D	+
5		shift 4							shift 5	shift 6					1	2	+	3	4
6	1											110. =	accept				+	-	+
7	2											shift 7					-	-	+
8		shift 8						1.0.0									-	-	+
9	4		• .					shift 9									-	-	1
10		reduce D ->									1:0.45			1.0				1.0	1
11			shift 14						1:0. =	1:0:0	shift 15		1 0.1	10			11	12	
12		shift 4							shift 5	sniit o		reduce S ->	reduce S_li	st ->	16	2	+	3	4
13	8		shift 14								shift 15	reduce 5 -/	, р 1а	17				10	Ł
14			Shiit 14		shift 18	-h:f+ 10					shiit io	reduce S ->		17			11	12	+
15	10 11				reduce E ->		-\-l:f+ 20					reduce E ->					+	-	+
16 17	12						->reduce A ->	D				reduce A ->					+	_	t
18	13						-> reduce R ->					reduce B ->					+	_	t
19		shift 24	shift 25		reduce b /	reduce b	/reduce b /	Iu			shift 26	reduce b /	, Iu	21		-	22	22	t
20	15		51111 6 23		roduce B =	roduce B	->reduce B ->	IntConc	+		51111 6 20	reduce B ->	IntConst	21			22	23	t
21	16				reduce b /	reduce b	/reduce b /	111000115	L				reduce S_li	e+ ->	S Somio	olon		liet	t
22	17				shift 18	chift 19						reduce S ->		36 /	D Dewic	0101		1150	t
23		shift 13	shift 14		51111 0 10	51111 0 15					shift 15	reduce b /	Tu - E			٠.	27	12	t
24		shift 13	shift 14								shift 15						28		t
25		shift 13	shift 14								shift 15							29	t.
26	21		DIIII C II	shift 30	shift 31	shift 32					DITT TO								t
27	22				reduce E ->		->shift 33												1
28	23						->reduce A ->	В											1
29	24						->reduce B ->												1
30	25	shift 24	shift 25								shift 26			34			22	23	1
31	26			reduce B -	reduce B ->	reduce B	->reduce B ->	IntCons	t										L
32	27				reduce E ->	reduce E	->shift 20					reduce E ->	E + A						T
33	28				reduce E ->	reduce E	->shift 20					reduce E ->	E - W						Т
34	29				reduce A ->	reduce A	->reduce A ->	A * B				reduce A ->	A * B						П
35	30				reduce B ->	reduce B	->reduce B ->	(E)				reduce B ->	(E)						
36	31	shift 24	shift 25								shift 26						35	23	П
37		shift 24	shift 25								shift 26						36	23	1
38	33	shift 24	shift 25								shift 26							37	1
39	34			shift 38	shift 31	shift 32													1
40	35				reduce E ->												+	_	J
41	36				reduce E ->												_		1
42	37						->reduce A ->												
43	38			reduce B -	reduce B ->	reduce B	->reduce B ->	(E)											1

借助LR分析表动态分析句子

- 1. 新建一个源文件,输入要分析的源代码;
- 2. 点击生成——动态分析;

举例: int a; int c; c = 3-a;

编译工作台动态分析源代码

10 01 实验目

动态分析结束生成完整的语法树

语法分析程序输出结果说明

02 实验内容

语法分析驱动程序有四个动作:移进、归约、接受、出错; 在每一次归约时,顺序输出归约所用到的产生式,故语法分析的输出是产生式序列。

举例: int a; int c; c = 3-a; D -> int S -> D id D -> int $S \rightarrow D id$ B -> IntConst A -> B 语法分析输出产生式列表 $E \rightarrow A$ B -> id $A \rightarrow B$ $E \rightarrow E - A$ $S \rightarrow id = E$ S_list -> S Semicolon S_list -> S Semicolon S_list S_list -> S Semicolon S_list P -> S_list

代码框架

编译器程序整体框架图

LR 驱动程序框架图

主程序流程说明

02 实验内容

语法分析过程描述:

- 1. 建立符号栈和状态栈, 初始化栈;
- 2. 根据状态栈栈顶元素和待读入的下一个token查询判断下一个待执行动作;
- 3. 如果是Shift,把Action的状态压入状态栈,对应的token压入符号栈;
- 4. 如果是Reduce,根据产生式长度,符号栈和状态栈均弹出对应长度个token和状态;产生式左侧的非终结符5. 压入符号栈,根据符号栈和状态栈栈顶状态获取Goto表的状态,压入状态栈;通知各个观察者;
- 6. 如果是Accept, 语法分析执行结束;
- 7. ProductionCollector观察者内部顺序记录归约所用到的产生式,语法分析结束输出到文件。

状态栈的初始状态可以用IrTable.getInit()获取

SyntaxAnalyzer

- tokenStack:Stack<Token>
- statusStack:Stack<Status>
- IrTable:LRTable
- + run(): void
- + callWhenInShift(....)
- + callWhenInReduce(Status

curStatus, Prodution production)

ProductionCollector

- reducedProductions: List<Production>
- + whenReduce(Status currentStatus, Production production)

Token

- kind:TokenKind
- text:String

Status

- index : int
- action :Map < TokenKind, Action>
- goto : Map < NonTerminal, Status >
- + getAction(Token token): Action
- + getGoto(NonTerminal nonTerminal)
- : Status

Action

- kind: ActionKind
- production : Production
- status : Status
- + getKind(): ActionKind
- + getProduction(): Production
- + getStatus() : Status

ActionKind

Reduce Shift

Accept Error

Production

- index : int
- head : NonTerminal
- body : List < Term >

+

04 实验步骤

实验总体步骤

- 1. 定义描述程序设计语言语法的文法,并编写拓广文法(框架已提供);
- 2. 构造LR(1)分析表(借助编译工作台完成,框架已提供csv格式的分析表);
- 3. 设计数据结构读入文法、LR(1)分析表; (框架已提供)
- 4. 设计符号栈和状态栈的数据结构;
- 5. 编写LR(1)主程序完成LR分析器移进、归约、出错、接受四个动作;
- 6. 输出产生式序列并保存在文件中。

同学们, 请开始实验