第三章

交换机端口配置与生成树协议配置

- 交换机端口配置
- 生成树协议介绍
- 生成树协议配置

交换机端口配置

- 端口速率
- 端口工作模式
- 端口类型
- 端口流量控制
- 端口聚合
- 端口镜像

端口速率配置

- 交换机端口所支持的速率
 - 标准以太网 —— 10Mbps
 - 快速以太网 —— 100Mbps
 - 干兆以太网 —— 1000Mbps
- 自协商的结果

	标准以太网	快速以太网	干兆以太网
标准以太网	10M	10M	10M
快速以太网	10M	100M	100M
干兆以太网	10M	100M	1000M

• 端口速率配置命令(端口为三元组)

[H3C-GigabitEthernet1/0/1] speed { 10 | 100 | 1000 | auto }

端口工作模式配置

- 交换机端口所支持的工作模式
 - 全双工(Full-duplex)
 - 连接计算机时
 - 不使用 CSMA/CD
 - 半双工(Half-duplex)
 - 连接 Hub时
 - 使用 CSMA/CD
- 端口工作模式配置命令:
- [H3C-GigabitEthernet1/0/1] duplex { full | half | auto}

端口类型配置

- 端口类型
 - MDI (Medium Dependent Interface , 介质相关接口)
 - MDI-X 或 MII (Medium Independent Interface , 介质无关接口) MDI MDI-X

发	1	1	收
发	2	2	收
收	3	3	发
收	6	6	发

端口类型配置(续)

- 路由器和PC机一般都使用MDI接口,以太网交换机一般都使用MDI-X接口
- 同端口类型相连使用交叉网线,异端口类型相连使用直连网线。

端口类型配置(续)

- H3C交换机可以智能识别网线类型和对端MDI / MDI-X 端口 类型
- 端口类型配置命令
 - [H3C-GigabitEthernet1/0/1] mdix-mode { normal | cross | automdix }
 - normal: MDI-X 端口
 - cross: MDI 端口
 - automdix : 自适应

流量控制配置

- 流量控制目标
 - 减轻或避免大量以太网帧在交换机端口发生拥塞
- 流量控制原理
 - Half-duplex:使用后退压力(Backpressure)技术,即模拟产生冲突信号(Jam Signal)
 - Full-duplex:向对端设备发送PAUSE帧
- 流量控制配置命令
 - [H3C-GigabitEthernet1/0/1] flow-control
 - [H3C-GigabitEthernet1/0/1] undo flow-control

注:H3C系列交换机所有端口在缺省情况下都禁用了流量控制功能

端口聚合配置 — 概述

- 端口聚合(Port Aggregation),也称为端口捆绑或链路聚合(Link Aggregation)。
- 指两个交换机之间通过两个或多个端口并行连接,以获得更高的带宽。
- 端口聚合是目前很多品牌交换机都支持的一种高级特性。

端口聚合配置 — 实现原理

为了保证帧的按序传送,必须将同一会话的帧分配到同一端口 进行发送

端口聚合配置 — 相关命令

• 静态聚合命令

创建聚合接口,并进入聚合接口视图

[h3c]interface bridge-aggregation interface-number

• *interface-number*:聚合端口,系列取值范围为1-1024(不同版本数值有差别,见配置手册)

将以太网接口加入聚合组(首先进入以太网接口视图)

- [H3C-GigabitEthernet1/0/1] port link-aggregation group number (注:此处number与聚合端口的数值一致)
- 例:将以太网端口GigabitEthernet1/0/1 加入聚合端口22。
 - [H3C] interface bridge-aggregation 22
 - [H3C] interface GigabitEthernet1/0/1
 - [H3C-GigabitEthernet1/0/1] port link-aggregation group 22

端口聚合配置 — 相关命令(续)

- 清除端口聚合(删除聚合端口)
 - [H3C-Bridge-Aggregation1] shutdown
 - [H3C-Bridge-Aggregation1]quit
 - [H3C]undo interface Bridge-Aggregation 1 (如不能 执行,请输入undo link-aggregation group agg-id)
- 显示端口聚合的信息
 - [H3C] display link-aggregation summary

端口镜像配置 — 概述

- 镜像分为两种:端口镜像和流镜像。
- 端口镜像是指将某些指定端口(出或入方向)的数据流量映射到监控端口,以便集中使用数据捕获软件进行数据分析。
- 流镜像是指按照一定的数据流分类规则对数据进行分流,然后将属于指定流的所有数据映射到监控端口,以便进行数据分析。

端口镜像配置 — 相关命令

- 创建本地镜像组
 - [H3C] mirroring-group group-id local
- 为本地镜像组配置源端口(被镜像端口)
 - mirroring-group group-id mirroring-port interface-list {
 both | inbound | outbound }
 - inbound 表示仅对本端口接收的报文进行监控; outbound 表示仅对本端口发送的报文进行; 监控both 表示同时对本端口接收和发送的报文进行监控
- 配置目的端口(镜像端口)
 - [H3C] mirroring-group group-id monitor-port interfacetype interface-number
 - 注意:目的端口上要关闭生成树协议,端口视图下执行"undo stp enable"。

生成树协议 (Spanning Tree Protocol,STP)

- 起因和历史
- 概述
- 术语
- BPDU消息与消息交换
- 生成树的构造
- 总结

生成树协议 — 起因

Loop的危险:

- 如右图,考虑被两个 Bridges连接起来的 两个局域网
- 假设主机n要发送帧 F, 并且两个Bridges 的MAC地址表中都没 有包含F目的地址的 表项

生成树协议 — 历史

• In 1980s, Radia Perlman发明了生成树协议来避免在局域网中产生环。

- Radia Perlman 于1988年在MIT 获得计算机博士学位。
- 她目前工作于Sun Microsystems, Inc.
- 她有一本很有名的书:《
 Interconnections, Second Edition: Bridges, Routers, Switches, and Internetworking Protocols》

Algorhyme - Peom of spanning tree algorithm

I think that I shall never see, a graph more lovely than a tree. A tree whose crucial property, is loop-free connectivity. A tree that must be sure to span, so packet can reach every LAN. First, the root must be selected. By ID, it is elected. Least-cost paths from root are traced. In the tree, these paths are placed. A mesh is made by folks like me, then bridges find a spanning tree. --- By Radia Perlman

生成树协议 — 概述

- 基本思想:
 - 生成树没有环。
 - Bridge之间通过不断 地交换控制帧来动态 的构造生成树。
- 这个控制帧被称为:
 Configuration Bridge
 Protocol Data Unit
 (Configuration BPDU)

生成树协议 — 术语

- Bridge ID: 每个Bridge的唯一标识(Priority + MAC Address)。
- Port ID: Bridge上每个端口的唯一标识。 (Port Priority + Port Index)
- Root Bridge: 具有最小Bridge ID的Bridge。在生成树协议中,将 把这个Bridge当作是生成树的Root.
- Root Path Cost: 到达Root Bridge的最短路径的长度,单位一般为hop数。
- Root Port: 到达Root Bridge的最短路径的出发端口。
- Designated Bridge: 对于一个LAN而言,通往Root Bridge最短路 径上的所经由的第一个Bridge。如果两个Bridge有相同长度的最短 路径,那么取Bridge ID较小的那一个。
- Designated Port: 如果Bridge B是LAN L的Designated Bridge, 那 么Bridge B与LAN L相连的端口就称为Bridge B对于LAN L的 Designated Port.

生成树协议 — 概述(举例)

生成树协议 — BPDU格式

生成树协议 — BPDU的交换

• 每个Bridge都周期性的向与自己相连的LAN上发送如下的 BPDU:

生成树协议 — "better" 关系

给定两个 BPDU M1与M2:

ID R1 C1 ID B1 ID P1

M1

ID R2 C2 ID B2 ID P2

M2

我们说 M1 is better than M2, if (R1 < R2),
Or (R1 == R2) and (C1 < C2),
Or (R1 == R2) and (C1 == C2) and (B1 < B2),
Or (R1 == R2) and (C1 == C2) and (B1 == B2) and (P1 < P2)

生成树协议 – 初始化

- 在协议运行之初,每个Bridge都认为自己是Root Bridge.
- 于是每个Bridge都向与它相连的LAN上发送如下形式的 BPDU:

В	0	В	Р
---	---	---	---

生成树协议 — 更新BPDU

- 每个Bridge把它所收到的所有BPDU和它自己所发送的 BPDU相比较.
- 若一个发送如下BPDU M1的Bridge B1

M1 R1 C1 B1 P1

收到一个Better BPDU M2,满足 R2 < R1:

M2 R2 C2 B2 P2

那么Bridge B1 就把自己的 BPDU 更新为:

R2 C2+1 B1 P1

生成树协议 - 更新BPDU(续)

• 若一个发送如下BPDU M1的Bridge B1

M1 R1 C1 B1 P1

收到一个Better BPDU M2,满足C2 <= C1 - 2:

M2 R1 C2 B2

那么Bridge B1 就把自己的 BPDU 更新为:

R1 C2+1 B1 P1

生成树协议 — 树的构造

- 对于每一个Bridge:
 - 收到 Better BPDU 的 并且到达Root Bridge路径最短的那个
 Port 被认为是该Bridge的 Root Port. (注:如果该Bridge自己的BPDU为 Best,则无 Root Port.)
 - 对于该Bridge上的一个Port X所连接的LAN L, 如果该Bridge 自己的BPDU比所有从Port X收到的其它的BPDU都好,那么该Bridge 就认为自己是LAN L的Designated Bridge,并且认为Port X是自己对于LAN L的Designated Port.
- 在决定了Root Port和Designated Port后,每个Bridge都认为:
 - 它的Root Port在生成树上
 - 它的所有Designated Ports在生成树上。
 - 它的所有其它Port都不在生成树上。

生成树协议 — 树的构造(续)

- 如右图,每个Bridge 都计算出了自己的 Root Port和 Designated Port
- 作由Designated
 Port到Root Port的
 连线和由Designated
 Port到LAN的连线,
 就得到了局域网上的
 生成树。

生成树协议 – 帧转发规则

- 每个Bridge只接受从 Root Port 或 Designated Port 收到的数据帧。
- 每个Bridge只在 Root Port 或者 Designated Port 上转发数据帧
- 这样就避免了环路的出现。

生成树协议 — 端口状态

IETF RFC 1493

IEEE 802.1D

端口状态	端口能力
Disabled	不收发任何报文
Blocking	不接收或转发数据,接收但不发送 BPDUs,不进行地址学习
Listening	不接收或转发数据,接收并发送 BPDUs,不进行地址学习
Learning	不接收或转发数据,接收并发送 BPDUs,进行地址学习
Forwarding	接收并转发数据,接收并发送 BPDUs,进行地址学习

Discarding

Learning Forwarding

生成树协议 — 举例

注:某些Bridge可能被闲置,例如B3 和 B6。

生成树协议 — 演变

- 生成树协议(STP)
 - 1990年, Radia Perlman的STP被IEEE标准化为 IEEE Std 802.1D
 - 缺点:需要等待计时器超时,网络恢复连通速度慢
 - 消失于IEEE Std 802.1D 2004 Edition
- 快速生成树协议(RSTP, Rapid STP)
 - 出现于IEEE Std 802.1D 2001 Edition
 - 一 优点:无需等待计时器超时,增加了用于主动通知的TCN(Topology Change Notification)消息,完全兼容STP
 - 目前的交换机一般都实现RSTP
- 多生成树协议(MSTP, Multiple STP)
 - 出现于IEEE Std 802.1s 2002 Editionzai
 - 用于VLAN的生成树协议
 - 在S3900系列和S3610交换机上实现的是MSTP

STP, RSTP, MSTP的基本思想和过程相同,都遵照了当初 Radia Perlman的想法

生成树协议 - 总结

计算机网络领域最优美的协议之一

- 动态算法
 - 能适应网络拓扑结构的改变
- 分布式算法
 - 每个Bridge独立的作出自己对Root Port和Designated Port的决定。
- 消息交换简单
 - 周期性的相邻Bridge之间BPDU交换
- 消息处理简单
 - 仅决定 "better" 关系即可

生成树协议配置

- 启动/关闭生成树协议
- 设定网桥的优先级
- 设定端口的优先级
- 设定端口的开销
- 设定端口的Forward Delay
- 显示生成树协议信息

启动/关闭生成树协议(V5系统)

- 在H3C系列交换机(Comware V5系统)中,生成树协议缺省为关闭状态。可以用下述命令来改变生成树的状态:
 - stp { enable | disable }
 - undo stp
- 适用视图
 - 系统视图、以太网端口视图
- 参数
 - enable:用来开启设备或端口的STP。
 - disable:用来关闭设备或端口的STP。
- stp { enable | disable } 命令用来开启/关闭设备或端口上的STP。
- 当在系统视图下用来配置设备STP 时, undo stp 命令用来恢复设备的STP 为缺省状态;在以太网端口视图下使用undo stp 命令,配置的效果和系统 视图下一样,也是将设备的STP恢复为缺省状态。

启动/关闭生成树协议(V7系统)

- 在5820V2系列交换机中,出厂配置启动时,全局生成树协议处于开启状态。可以用下述命令来改变生成树的状态:
 - stp global enable
 - undo stp global enable
 - 适用视图-系统视图
- 在以太网端口视图下使能或关闭生成树协议
 - stp enable
 - undo stp enable

设定网桥的优先级

• 网桥ID由两部分组成:

Bridge Priority + Bridge MacAddress

- 如果网络中的所有交换机都在缺省配置下,根据BPDU比较原则,MAC地址最小的交换机被选为根桥,但是该交换机未必是理想的根桥,可以通过命令配置Bridge Priority将合适的交换机推举为根桥
 - [H3C] stp priority bridge-priority
 - bridge-priority:用来标识所设定的bridge 优先级, 该值是不连续的,范围为0~61440,步长为4096。 缺省情况下,交换机的优先级为32768。
 - [H3C] undo stp priority // 恢复为缺省值

设定端口的优先级

- 根据BPDU比较原则,有时候需要比较端口ID
- 端口ID由两部分组成:
 - Port Priority + Port Index
 - 其中端口优先级部分是可配置的
- 命令格式为
 - [H3C-GigabitEthernet1/0/1] stp port priority port-priority
 port-priority: 用来标识所设定的优先级,该值是不连续的,范围为0~240,步长为16。缺省情况下,端口优先级为128。
 - [H3C-GigabitEthernet1/0/1] undo stp port priority

设定端口的开销(legacy标准)

- 从本网桥到根桥的路径上所有经过端口的端口开销之和为"根路径开销",可以通过命令来改变端口开销的值
 - [H3C-GigabitEthernet1/0/1] stp cost cost
 - *cost*:用来标识所设定的路径开销值,范围1~200000。缺省情况下,网桥根据与端口相连的链路速率而直接得到端口的路径开销。
 - [H3C-GigabitEthernet1/0/1] undo stp cost

表1-2 端口路径开销与链路速率对照表

链路速率	推荐值	推荐取值范围	值域
10Mbit/s	2000	200~20000	1~200000
100Mbit/s	200	20~2000	1~200000
1Gbit/s	20	2~200	1~200000
10Gbit/s	2	2~20	1~200000

设定端口的Forward Delay

- Forward Delay: 端口转换为 Forwarding 状态所需等待的时间
 - 过长的Forward Delay会导致生成树的收敛太慢;
 - 过短的Forward Delay可能会在拓扑改变的时候,引入暂时的环路。(原来的主链路端口尚未阻塞,备份链路即开始转发)

设定端口的Forward Delay (续)

- [H3C] stp timer forward-delay *centiseconds*
 - centiseconds: 厘秒,缺省为1500
- [H3C] undo stp timer forward-delay

Table 17-1—RSTP Timer and Transmit Hold Count parameter values

Parameter	Recommended or Default value	Permitted Range	Compatibility Range
Migrate Time (17.13.9)	3.0	a	a
Bridge Hello Time (17.13.6)	2.0	a	1.0-2.0
Bridge Max Age (17.13.8)	20.0	6.0-40.0	6.0-40.0
Bridge Forward Delay (17.13.5)	15.0	4.0-30.0	4.0-30.0
Transmit Hold Count (17.13.12)	6	1-10	1-10

All times are in seconds. -1 Not applicable, value is fixed.

显示生成树协议信息

- [任意视图] display stp [interface interface_list]
 - interface interface_list:以太网端口列表,表示多个以 太网端口,表示方式为
 - interface_list = { interface_type interface_num [to
 interface_type interface_num] } & <1-10>
 - "&<1-10>" 表示前面的参数最多可以输入10次。
- 本命令用来显示当前STP 的状态信息或统计信息。根据该命令的输出信息,可以帮助用户确认STP 配置是否正确。
- 【例】显示设备上以太网端口Ethernet1/0/1 的STP 信息。
 - <H3C> display stp interface Ethernet1/0/1

做实验注意事项

- 做实验前,请在用户视图下使用 "reset savedconfiguration" 命令和 "reboot" 命令将设备的配置清空, 以免前一个实验留下的配置对本次实验产生影响。
- 请关闭PC机上的防火墙
- 使用交换机做STP实验时,请首先在系统视图下执行以下命令:
 - stp mode rstp stp pathcost-standard legacy
- 故障诊断:
 - 检查接线是否正确
 - 检查指示灯是否亮(PC机网卡灯,交换机的端口灯)
 - 检查配置是否正确 (PC机:ipconifg,交换机:display)

