Exercise

Inverse Kinematics

Task 1. Given is the kinematics shown above, a so-called simplified Stanford manipulator. The kinematics consists of two rotatory axes q_1 and q_2 as well as a translational axis q_3 .

a) Solve the inverse kinematic problem for the manipulator, based on the forward transformation:

$${}^{0}\underline{T}_{3} = \begin{bmatrix} C_{q_{1}} & -S_{q_{1}}C_{q_{2}} & S_{q_{1}}S_{q_{2}} & lC_{q_{1}} + (h_{2} + h_{3} + q_{3})S_{q_{1}}S_{q_{2}} \\ S_{q_{1}} & C_{q_{1}}C_{q_{2}} & -C_{q_{1}}S_{q_{2}} & lS_{q_{1}} - (h_{2} + h_{3} + q_{3})C_{q_{1}}S_{q_{2}} \\ 0 & S_{q_{2}} & C_{q_{2}} & h_{1} + (h_{2} + h_{3} + q_{3})C_{q_{2}} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

