

MOBILE PHONES MARKET SHARE IN INDIA

KARUN PRAMOD	21BCE1185
DHANUSH S R	21BCE1204
ARUN VIGNESH P.I	21BCE1362

COURSE: PROBABILITY AND STATISTICS

COURSE CODE: BMAT202P

FACULTY: DR. HANNAH GRACE G

SEMESTER: WINTER SEMESTER 2022-2023

ABSTRACT

This analysis aims to investigate the market share and customer satisfaction levels of different mobile phone brands in India. The study will focus on the top-selling brands in India and will use a mixed-methods approach that includes both quantitative and qualitative data collection methods. The analysis will use data from Kaggle , to provide a comprehensive overview of the mobile phone market in India. The findings of this analysis will provide valuable insights into the factors that influence customers' purchasing decisions and their overall satisfaction levels with different mobile phone brands in India. These insights can help mobile phone companies in India to identify areas for improvement and make informed decisions to better meet the needs and preferences of Indian consumers.

To provide a comprehensive overview of the mobile phone market in India, this analysis will use data from various sources, including market research reports, online customer reviews, and social media sentiment analysis. The analysis will examine factors such as brand awareness, brand loyalty, product features, price, and customer service to understand the factors that influence customers' purchasing decisions and their overall satisfaction levels with different mobile phone brands in India

INTRODUCTION

Mobile phones have become an integral part of everyday life in India. With a population of over 1.3 billion people, India is one of the largest mobile phone markets in the world. In recent years, the demand for mobile phones has been growing rapidly, fueled by the availability of affordable smartphones and low-cost data plans. As a result, the mobile phone market in India has become highly competitive, with numerous local and international brands vying for a share of the market.

The mobile phone market in India is highly diverse, with a range of brands offering different features and price points to cater to different segments of the population. Some of the top-selling brands in India include Samsung, Xiaomi, Vivo, Oppo, Realme, and Apple. Each brand has its unique strengths and weaknesses, and the preferences of Indian consumers vary widely depending on factors such as age, income, location, and lifestyle.

<u>OBJECTIVE</u>

This analysis aims to investigate the market share and customer satisfaction levels of different mobile phone brands in India. The study will focus on the top-selling brands in India, including both local and international brands, and will use a mixed-methods approach that includes both quantitative and qualitative data collection methods.

The findings of this analysis will provide valuable insights into the mobile phone market in India and the factors that shape consumer behavior. By understanding the preferences and needs of Indian consumers, mobile phone companies can make informed decisions to improve their products and services, enhance customer satisfaction, and gain a competitive advantage in this highly dynamic market. Overall, this analysis will contribute to a deeper understanding of the mobile phone market in India and its significance for the global mobile phone industry.

TABLE OF CONTENTS

ANALYSIS OF INDIAN MOBILE PHONE BRANDS 2017-2022	6
IMPORTING AND READING DATASET	7
MEAN AND STANDARD DEVIATION	7.
MEDIAN	8
PERCENTAGE MARKET SHARE IN INDIA	8
PROBABILITY OF INDIAN BRANDS SELLING	9
COEFFICIENT OF CORRELATION BETWEEN INDIAN AND FOREIGN MOBILE PHONE	
BRANDS	9
SALES ANALYSIS DURING COVID 19 PHASE	9
TOTAL SALES DURNING COVID 19 PHASE	10
PROBABILITY OF SELLING DURING COVID 19 PHASE	10
PROBABILITY OF SELLING DURING COVID 19 PHASE (CURVE)	10
PERCENTAGE SALES DURING COVID 19 PHASE	10
COEFFICIENT OF CORRELATION DURING COVID 19 PHASE	11
PIE CHART	11
INDIAN BRANDS VS FOREIGN BRANDS	11
PERCENTAGE MARKET SHARE AMONG INDIAN BRANDS	11.
REGRESSION BETWEEN INDIAN AND FOREIGN MOBILE PHONE BRANDS	12
ANALYSIS OF LEADING INDIAN MOBILE PHONE BRAND, MICROMAX	13
MEAN AND STANDARD DEVIATION FROM 2017-2022	13
PROBABILITY DISTRIBUTION CURVE FOR SALES IN SPECIFIC YEARS	14
OVERALL MARKET SHARE OF MICROMAX	16
COEFFICENT OF CORRELATION WITH OTHERS	16
REGRESSION OF MICROMAX ~ OTHER BRANDS	16
HYPOTHESIS TESTING – 1	17
HYPOTHESIS TESTING – 2	18
ANALYSIS OF FOREIGN MOBILE PHONE BRANDS 2017-2022	19
IMPORTING DATASET	20
MEAN, MEDIAN, STANDARD DEVIATION	20
PERCENTAGE MARKET SHARE	21
PROBABILITY MARKET SHARE	22
SALES DURING COVID 19	22
NO OF FOREIGN BRANDS PHONES SOLD	23
PROBABILITY SALES	23.
PROBABILITY SALES MONTHLY WISE CURVE	23

PERCENTAGE SALES	24
COEFFICENT OF CORRELATION BETWEEN FOREIGN AND INDIAN MOBILE PHONE BRANDS	24
PIE CHARTS	24
FOREIGN VS INDIAN	25
AMONG FOREIGN	25
REGRESSION BETWEEN FOREIGN AND INDIAN BRANDS	26
ANALYSIS OF SAMSUNG IN INDIAN MARKET	27
IMPORTING DATASET	28
MEAN SALES OF SAMSUNG	28
PERCENTAGE SALES OF SAMSUNG	28
OVERALL PROBABILITY DISTRIBUTION	29
PROBABILITY DISTRIBUTION OF SAMSUNG DURING COVID 19	29
COEFFICIENT OF CORRELATION WITH OTHER BRANDS	30
OVERALL INDIAN MARKET SHARE OF SAMSUNG	30
REGRESSIONS	30
LINEAR REGRESSION BETWEEN SAMSUNG AND OTHERS	30
MULTIPLE REGRESSION BETWEEN SAMSUNG , APPLE AND MICROMAX	31
CONCLUSION	32
BIBILIOGRAPHY	32

SOURCE CODE

INDIAN MOBLIE PHONE BRANDS ANALYSIS

IMPORTING AND READING DATASET

```
library(readxl)
values<-read_excel("D:\\Dhanush Folder\\VIT\\VIT courses\\SEM4 Courses - WINTER SEM 22-23\\PROBABILITY N STATISTICS\\LAB PROJECT\\datasets\\pbmsi_values.xlsx")
head(values)
```

MEAN AND STANDARD DEVIATION

```
indian_mean = c(round(mean(total_indian[1:12])),
        round(mean(total_indian[13:24])),
        round(mean(total_indian[25:36])),
        round(mean(total_indian[37:48])),
        round(mean(total_indian[49:60])),
        round(mean(total_indian[61:72])))
indian_sd = c(round(sd(total_indian[1:12])),
       round(sd(total_indian[13:24])),
       round(sd(total_indian[25:36])),
       round(sd(total_indian[37:48])),
       round(sd(total_indian[49:60])),
       round(sd(total_indian[61:72])))
mean_sd_indian = rbind(indian_mean, indian_sd)
mean_sd_indian
barplot(mean_sd_indian, main="meand n sd for indian brands 2017 - 2022",
    col = c("orange", "green"), beside = TRUE, xlab = "2017-2022")
legend("topright",c("mean","sd"),fill = c("orange","green"))
```

OP:

Mean n sd for indian brands 2017 - 2022

2017-2022

MEDIAN

OP:

the median sales of indian brands 2017 - 2022

PERCENTAGE MARKET SHARE IN INDIA

indian_percentage_2017 = (sum(total_indian[1:12]) / sum(values\$`total num`[1:17]))*100 indian_percentage_2017

indian_percentage = c((sum(total_indian[1:12]) / sum(values\$`total num`[1:12]))*100,
(sum(total_indian[13:24]) / sum(values\$`total num`[13:24]))*100,
(sum(total_indian[25:36]) / sum(values\$`total num`[25:36]))*100,
(sum(total_indian[37:48]) / sum(values\$`total num`[37:48]))*100,
(sum(total_indian[49:60]) / sum(values\$`total num`[49:60]))*100,
sum(total_indian[61:72]) / sum(values\$`total num`[61:72]))*100)

% market share of indian brands 2017-2022

PROBABILITY OF INDIAN BRANDS SELLING

indian_probability = c(indian_percentage/100)

barplot(indian_probability, main="probability indian brand getting sold in 2017-2022", ylab='probability', names.arg =c(2017,2018,2019,2020,2021,2022),col = "pink")

probability indian brand getting sold in 2017-2022

COEFFICIENT OF CORRELATION BETWEEN INDIAN AND FOREIGN MOBILE PHONE BRANDS

```
foreign_v = values$`total num` - indian_v
```

cor.test(indian_v,foreign_v, method = "pearson")

Pearson's product-moment correlation

data: indian_v and foreign_v t = -12.68, df = 72, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.8904840 -0.7438524

sample estimates:

cor

-0.8310911

SALES ANALYSIS DURING COVID 19 PHASE

TOTAL SALES DURNING COVID 19 PHASE

```
indian_v = values$Micromax + values$`Reliance Digital` + values$Karbonn + values$Xolo + values$Lava + values$Lyf
```

```
indian_c19 = sum(indian_v[39:53])
```

indian_c19

```
+ values$Lyf
> indian_c19 = sum(ind
> indian_c19
[1] 14442
```

PROBABILITY OF SELLING DURING COVID 19 PHASE

```
indian_p_c19 = sum(indian_v[39:53]) / sum(values$`total num`[39:53])
```

indian_p_c19

```
[1] 14442
> indian_p_c19 = sum(indian_v[39:53]) / sum(values$`total num`[39:53])
> indian_p_c19
[1] 0.01280728
> |
```

PROBABILITY OF SELLING DURING COVID 19 PHASE (CURVE)

 $indian_p_c19 = indian_v[39:53] / values$`total num`[39:53]$

indian_p_c19

plot(indian_p_c19 , main = "Probability during covid 19 phase" ,ylim = c(0,0.1) ,xlab = "march 2020 - may2021",ylab = 'percentage',col = "pink",type = 'l',lwd = 2.0)

Probability during covid 19 phase

PERCENTAGE SALES DURING COVID 19 PHASE

indian_p_c19 = (indian_v[39:53] / values\$`total num`[39:53]) * 100

indian_p_c19

 $plot(indian_p_c19 \ , main = "Percentage during covid 19 \ phase" \ , ylim = c(0,10) \ , xlab = "march 2020 - may 2021" \ , ylab = "Percentage" \ , col = "pink" \ , type = 'l' \ , lwd = 2.0)$

Percentage during covid 19 phase

COEFFICIENT OF CORRELATION DURING COVID 19 PHASE

cor.test(indian_v[39:53],foreign_v[39:53], method = "pearson")

```
Pearson's product-moment correlation

data: indian_v[39:53] and foreign_v[39:53]

t = -0.8156, df = 13, p-value = 0.4294

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:
    -0.658474   0.328790

sample estimates:
    cor
    -0.2206334
```

PIE CHART

INDIAN BRANDS VS FOREIGN BRANDS

pie(foreign_vs_indian, vec_name,col=c('blue','green'),main="Foreign brands vs indian brands")

Foreign brands vs indian brands

PERCENTAGE MARKET SHARE AMONG INDIAN BRANDS

```
sum(values$Xolo),
sum(values$Lava),
sum(values$Lyf))
```

vs_indian_names = c('Micromax','Reliance Digital','Karbonn','Xolo','Lava','Lyf')

pie(vs_indian,vs_indian_names,main="indian brands market share in indis 2017 to 2022")

indian brands market share in indis 2017 to 2022

REGRESSION BETWEEN INDIAN AND FOREIGN MOBILE PHONE BRANDS

 $\label{eq:reg} $$ reg = Im(foreign_v \sim indian_v)$$ plot(indian_v , foreign_v , main="the linear regressinon btw foreign and indian brands") $$ abline(reg , col='blue', lwd = 2.0) $$$

the linear regressinon btw foreign and indian brands

ANALYSIS OF LEADING INDIAN MOBILE PHONE BRAND, MICROMAX

MEAN AND STANDARD DEVIATION FROM 2017-2022

tot_17 = sum(values\$`total num`[1:12]) # 648200 ,num of phones sold in the year 2017

mean_mm_17 = round(mean(values\$Micromax[1:12])) # mean sales of micromax in 2017 is 3431

mean_mm_18 = round(mean(values\$Micromax[13:24])) # mean sales of micromax in 2018 is 2124

mean_mm_19 = round(mean(values\$Micromax[25:36])) # mean sales of micromax in 2019 is 1150

mean_mm_20 = round(mean(values\$Micromax[37:48])) # mean sales of micromax in 2020 is 526

mean_mm_21 = round(mean(values\$Micromax[49:60])) # mean sales of micromax in 2021 is 261

mean_mm_22 = round(mean(values\$Micromax[61:72])) # mean sales of micromax in 2022 is 85

mean_mm = c(mean_mm_17 , mean_mm_18 , mean_mm_19 , mean_mm_20 , mean_mm_21 ,
mean_mm_22)

barplot(mean_mm, col='orange',xlab = '2017-2022',ylab='number of phones sold',main="mean sales of micromax from 2017-2022")

mean salesof micromax from 2017-2022


```
sd_mm_17 = sd(values$Micromax[1:12])
sd_mm_18 = sd(values$Micromax[13:24])
sd_mm_19 = sd(values$Micromax[25:36])
sd_mm_20 = sd(values$Micromax[37:48])
sd_mm_21 = sd(values$Micromax[49:60])
sd_mm_22 = sd(values$Micromax[61:72])
```

sd_mm = c(sd_mm_17 , sd_mm_18 , sd_mm_19 , sd_mm_20 , sd_mm_21 , sd_mm_22)

barplot(sd_mm , col='orange',xlab = '2017-2022',ylab='std',main="standard deviation of micromax sales 2017-2022")

standard deviation of micromax sales 2017-2022

PROBABILITY DISTRIBUTION CURVE FOR SALES IN SPECIFIC YEARS

barplot(pdc,main="probability distribution curve of micromax in 2017",col="orange")

probability distribution curve of micromax in 2017

barplot(msdf\$Micromax[60:72]/100,main="probability distribution curve of micromax in 2022",col="orange")

probability distribution curve of micromax in 2022

barplot(msdf\$Micromax[39:54]/100,main="probability distribution curve for micromax during COVID-19 phase",col="orange")

probability distribution curve for micromax during COVID-19 phase

barplot(msdf\$Micromax/100,main="Overall probability distribution curve for micromax from 2017 to 2022",col='orange')

Overall probability distribution curve for micromax from 2017 to 2022

barplot(msdf\$Micromax,main="% market share of micromax from 1/2017 - 2/2023",col = "orange")

% market share of micromax from 1/2017 - 2/2023

OVERALL MARKET SHARE OF MICROMAX

```
total\_mm = 91044
```

```
ts_b=c(1033890, 101074, 1088018 ,91044, 471939 ,132675, 153131, 224202, 116048, 85438, 102827, 7467, 7707, 4685, 3920, 32351, 22991, 1193274)
```

Overall_n_mm = sum(ts_b) - total_mm

vec = c(total_mm , Overall_n_mm)

mm_vs_overall = c('Micromax', 'Others')

pie(vec,mm_vs_overall,col=c('orange','blue'),main="Overall market share of micromax from 2017-2022")

Overall market share of micromax from 2017-2022

COEFFICENT OF CORRELATION WITH OTHERS

```
Ovr_n_mm = values$`total num` - values$Micromax
```

cor.test(values\$Micromax , Ovr_n_mm,method = 'pearson')

Pearson's product-moment correlation

```
data: values$Micromax and Ovr_n_mm
t = -11.93, df = 72, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    -0.8796157 -0.7205831
sample estimates:
        cor
    -0.8149057</pre>
```

REGRESSION OF MICROMAX ~ OTHER BRANDS

```
#regression
```

```
plot(Ovr_n_mm , values$Micromax,xlab='Others brands',ylab='Micromax',)
reg1 = Im(values$Micromax ~ Ovr_n_mm)
abline(reg1,col='orange')
```


HYPOTHESIS TESTING - 1

If in total micromax production from 2017 to 2022 14% had some defect or problem .

in other indian brands from 2017 to 2022 22% had some defects or problems

is the differnce between the proportion significant of 5%LOS

CODE:

```
#hypotheses testing of micromax with other indian brands
Ovr_ib_n_mm = sum(values$`Reliance Digital`+values$Karbonn +values$Xolo +values$Lava+values$Lyf)
mean(values$Micromax)
percentage_others_defect = 0.22 # 22%
percentage_mm_defect = 0.13 #13%
P = (sum(values$Micromax)*percentage_mm_defect+
Ovr_ib_n_mm*percentage_others_defect)/(sum(values$Micromax + Ovr_ib_n_mm))
Q= 1-P
zcal = (percentage_mm_defect -
percentage_others_defect)/(P*Q*(1/sum(values$Micromax)+1/Ovr_ib_n_mm))^1/2
zcrit = qnorm(1-0.05/2)
if(abs(zcal)<abs(zcrit)){print("H0 is accpeted") }else{print("H0 is rejected")}
 > Ovr_ib_n_mm = sum(values$`Reliance Digital`+values$Karbonn +values$Xolo +values$Lava+values$Lyf)
       mean(values$Micromax)
  [1] 1230.324
       percentage_others_defect = 0.22 # 22%
       percentage_mm_defect = 0.13 \#13\%
       P = (sum(values\$Micromax)*percentage\_mm\_defect+ \ Ovr\_ib\_n\_mm*percentage\_others\_defect)/(sum(values\$Micromax)*percentage\_mm\_defect+ \ Ovr\_ib\_n\_mm*percentage\_others\_defect)/(sum(values\$Micromax)*percentage\_mm\_defect+ \ Ovr\_ib\_n\_mm*percentage\_others\_defect)/(sum(values\$Micromax)*percentage\_others\_defect+ \ Ovr\_ib\_n\_mm*percentage\_others\_defect+ \ Ovr\_ib\_n\_mm*percen
 romax + Ovr_ib_n_mm))
> Q= 1-P
      zcal = (percentage\_mm\_defect - percentage\_others\_defect)/(P*Q*(1/sum(values$Micromax)+1/0vr_ib_n\_mm))
 > zcrit = qnorm(1-0.05/2)
       if(abs(zcal)<abs(zcrit)){print("H0 is accpeted") }else{print("H0 is rejected")}
] "H0 is rejected"</pre>
  [1]
```

```
HYPOTHESIS TESTING – 2
#hypotheses testing, ------
# if the mean sales of micromax for the year 2022 is somevalue
# in a sample{january, feburary} the mean sales of micromax for the year 2023 is somevalue
# At 0.05 significance level , can we reject the null hypotheses that the mean sales of micromax
#will not differ from last year
#mean_mm_22
#sd_mm_22
mean_mm_23 = 64
z = ( mean_mm_23 - mean_mm_22)/(sd_mm_22 / sqrt(128))
alpha = 0.05
zhalfalpha = qnorm(1-(alpha/2))
if(z<abs(zhalfalpha)){print("H0 is accpeted")}else{print("H0 is rejected")}
> if(z<abs(zhalfalpha)){print("H0 is accpeted")}else{print("H0 is rejected")}</pre>
[1] "HO is accpeted"
```


IMPORTING DATASET

```
library(readxl)
values <- read_excel("C:\\arun\\Probability\\pbmsi_values.xlsx")
head(values)</pre>
```

MEAN, MEDIAN, STANDARD DEVIATION

```
foreign_mean = c(round(mean(foreign[1:12])),
        round(mean(foreign[13:24])),
        round(mean(foreign[25:36])),
        round(mean(foreign[37:48])),
        round(mean(foreign[49:60])),
        round(mean(foreign[61:72])))
foreign_sd = c(round(sd(foreign[1:12])),
       round(sd(foreign[13:24])),
       round(sd(foreign[25:36])),
       round(sd(foreign[37:48])),
       round(sd(foreign[49:60])),
       round(sd(foreign[61:72])))
mean_sd_foreign = rbind(foreign_mean , foreign_sd )
mean_sd_foreign
barplot(mean_sd_foreign, main="meannsd for foreign brands 2017 - 2022",
    col = c("darkblue","lightblue"),beside = TRUE,xlab = "2017-
2022",names.args=c(2017,2018,2019,2020,2021,2022))
```

mean n sd for foreign brands 2017 - 2022

2017-2022

PROBABILITY MARKET SHARE

barplot(foreign_prob_17_22, main="Probability market share of foreign brands 2017-2022",ylab='probability',

names.arg =c(2017,2018,2019,2020,2021,2022),col = "red",ylim=c(0,1))

PERCENTAGE MARKET SHARE

foreign_v = values\$`total num` - values\$Micromax - values\$`Reliance Digital`-values\$Karbonn - values\$Xolo - values\$Lava - values\$Lyf

 $foreign_p_17_22 = c((sum(foreign_v[1:12]) / sum(values\$`total num`[1:12]))*100,$

(sum(foreign_v[13:24]) / sum(values\$`total num`[13:24]))*100,

(sum(foreign_v[25:36]) / sum(values\$`total num`[25:36]))*100,

(sum(foreign_v[37:48]) / sum(values\$`total num`[37:48]))*100,

(sum(foreign_v[49:60]) / sum(values\$`total num`[49:60]))*100,

(sum(foreign_v[61:72]) / sum(values\$`total num`[61:72]))*100)

 $barplot(foreign_p_17_22, main="\% market share of foreign brands 2017-2022", ylab='percentage', \\ names.arg = c(2017,2018,2019,2020,2021,2022), col = "red", ylim=c(0,100))$

SALES DURING COVID 19

NO OF FOREIGN BRANDS PHONES SOLD

foreign_19= sum(foreign[39:53])

foreign_19

```
> foreign_19= sum(foreign[39:53])
> foreign_19
[1] 1113198
```

PROBABILITY SALES

```
foreign_p_c19 = sum(foreign_v[39:53]) / sum(values$`total num`[39:53]) *100
foreign_p_c19
> foreign_p_c19 =
> foreign_p_c19
[1] 98.71927
```

PROBABILITY SALES MONTHLY WISE CURVE

```
Covid 19 phase ranges from march 2020 to may 2021 foreign\_p\_c19 = sum(foreign\_v[39:53]) / sum(values\$`total num`[39:53]) *100 foreign\_p\_c19 = foreign\_v[39:53] / values\$`total num`[39:53] foreign\_p\_c19 \#c19\_xaxis = c('mar2020','apr2020','may2020','jun2020','jul2020','aug2020','sep2020','oct2020','nov2020','dec2020','jun2021','feb2021','mar2021','apr2021','may2021') plot(foreign\_p\_c19 , main = "Probability during covid 19 phase" ,ylim = c(0.95,1) ,xlab = "march 2020 - may2021",ylab = 'percentage',col = "pink",type = 'l',lwd = 3.5)
```

Probability during covid 19 phase

PERCENTAGE SALES

```
foreign\_p\_c19 = sum(foreign\_v[39:53]) / sum(values\$`total num`[39:53]) *100 foreign\_p\_c19 = (foreign\_v[39:53] / values\$`total num`[39:53]) *100 foreign\_p\_c19
```

```
\#c19\_xaxis = c('mar2020','apr2020','jun2020','jun2020','jul2020','aug2020','sep2020','oct2020','nov2020','dec2020','jan2021','feb2021','mar2021','apr2021','may2021')

plot(foreign\_p\_c19, main = "Present during covid 19 phase", ylim = c(0,100), xlab = "march 2020 - may2021", ylab = 'percentage', col = "pink", type = 'l', lwd = 3.5)
```


COEFFICENT OF CORRELATION BETWEEN FOREIGN AND INDIAN MOBILE PHONE BRANDS

PIE CHARTS

FOREIGN VS INDIAN

```
total_indian_v = sum(indian_v)

total_foreign_v = sum(foreign_v)

foreign_vs_indian = c(total_foreign_v, total_indian_v)

vec_name = c("Foreign","Indian")

pie(foreign_vs_indian , vec_name ,col=c('blue','green'),main="Foreign brands vs indian brands")
```

Foreign brands vs indian brands

AMONG FOREIGN

```
vs_foreign = c(sum(values$samsung) ,
        sum(values$Nokia),
        sum(values$Xiaomi),
        sum(values$Oppo),
        sum(values$Lenovo),
        sum(values$Apple),
        sum(values$Mobicel),
        sum(values$Motorola),
        sum(values$Huawei),
        sum(values$OnePlus),
        sum(values$Google),
        sum(values$othersss))
vec foreign name =
c('samsung','nokia','xiaomi','oppo','lenevo','apple','mobicel','motorola','huawei','oneplus','googl
e','others')
pie(vs_foreign,vec_foreign_name,main="Foreign brands market share in indis 2017 to 2022",)
```

Foreign brands market share in indis 2017 to 2022

REGRESSION BETWEEN FOREIGN AND INDIAN BRANDS

IMPORTING DATASET

```
getwd()
setwd("C:/Users/Karun/Desktop")
data=read.csv("percentage.csv",header=TRUE,sep=",")
data1=read.csv("values.csv",header=TRUE,sep=",")
print(data1)
```

MEAN SALES OF SAMSUNG FROM 2017-2022

PERCENTAGE SALES OF SAMSUNG FROM 2017-2022

barplot(data\$Samsung,main="% sales of Samsung phones from 2017-2023",col=" blue")

% sales of Samsung phones from 2017-2023

OVERALL PROBABILITY DISTRIBUTION OF SAMSUNG DURING

barplot(data\$Samsung/100,main="overall probability distribution curve for Samsung ",col="blue")

PROBABILTY DISTRIBUTION OF SAMSUNG DURING COVID-19

barplot(data\$Samsung[39:54]/100,main="probability distribution curve for Samsung during COVID-19 ",col="blue")

COEFFICIENT OF CORRELATION WITH OTHER BRANDS

others=data\$total.num-data\$Samsung cor.test(data\$Samsung,others,method="pearson")

OVERALL INDIAN MARKET SHARE OF SAMSUNG

slices=c(78.5,21.5)

countires=c("Others", "Samsung")

pie(slices, labels=countires, col=c("red", "blue"), main="Contribution of Samsung in the world market")

REGRESSIONS

LINEAR REGRESSION BETWEEN SAMSUNG AND OTHERS

plot(others,data\$Samsung,xlab="Other brands",ylab="Samsung")
reg1=lm(data\$Samsung~others)
abline(reg1,col="blue")

MULTIPLE REGESSION BETWEEN SAMSUNG, APPLE, MICROMAX

y=data\$Samsung

x1=data\$Micromax

x2=data\$Apple

RegModel= $Im(y^x1+x2)$

print(RegModel)

summary(RegModel)

install.packages("scatterplot3d")

library(scatterplot3d)

graph=scatterplot3d(y,x1,x2,xlab="Samsung",ylab="Micromax",zlab="Apple")

graph\$plane3d(RegModel)

Call: $lm(formula = y \sim x1 + x2)$

Coefficients:

(Intercept) x1 x2 27.3698 0.8898 -2.5002

CONCLUSION

- Indian Mobile Phone market(IMPM) is important to the world
- There are more than 40 mobile phone brands trying to sell and manufacture their products in India
- Nokia failed to embrace cutting edge technologies => losing the IMPM in late period of the last decade
- Chinese brands like Xiaomi,realm,vivo,Oppo are gaining in the Indian market in the late period of the last decade due to their price-quality ratio
- Indian Brands like Micromax etc.. Need to produce something different and user-friendly and have a good price-quality ratio to become apex in the home turf. For this, it should raise more funds.

BIBILIOGRAPHY

- https://www.kaggle.com/datasets/aakashshinde1507/mobile-vendor-market-share-india4-
 - 2017-to-2-2022
- https://www.r-project.org/about.html
- https://www.javatpoint.com/r-tutorial
- https://www.w3schools.com/r/
- https://www.geeksforgeeks.org/r-tutorial/
- https://www.tutorialspoint.com/r/index.htm
- https://www.youtube.com/watch?v=Q5g6lYUn6Q4
- https://www.datamentor.io/r-programming/bar-plot/