

Stochastic Processes

Stopping Times, Wald's Lemma, Strong Independence Property, Properties of Stopping Times, Markov Chains (Intro)

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

04 March 2025

Wald's Lemma

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Lemma (Wald's Lemma [Wal45])

Let $\{X_n\}_{n=1}^{\infty}$ be an IID process w.r.t. \mathscr{F} , with $\mathbb{E}|X_1|<+\infty$.

For each $n \in \mathbb{N}$, let

$$S_n = \sum_{i=1}^n X_i.$$

If τ is a stopping time w.r.t. the process $\{X_n\}_{n=1}^{\infty}$, with $\mathbb{E}|\tau|<+\infty$, then

$$\mathbb{E}[S_{ au}] = \mathbb{E}\left[\sum_{i=1}^{ au} X_i
ight] = \mathbb{E}[au] \cdot \mathbb{E}[X_1].$$

$$\mathbb{E}[S_{\tau}] = \mathbb{E}\left[\sum_{i=1}^{\tau} X_i\right]$$

$$egin{array}{lcl} \mathbb{E}[\mathcal{S}_{ au}] & = & \mathbb{E}\left[\sum_{i=1}^{ au} X_i
ight] \ & = & \mathbb{E}\left[\sum_{i=1}^{\infty} X_i \, \mathbf{1}_{\{ au \geq i\}}
ight] \end{array}$$

$$\mathbb{E}[S_{\tau}] = \mathbb{E}\left[\sum_{i=1}^{\tau} X_{i}\right]$$

$$= \mathbb{E}\left[\sum_{i=1}^{\infty} X_{i} \mathbf{1}_{\{\tau \geq i\}}\right]$$

$$\stackrel{(a)}{=} \sum_{i=1}^{\infty} \mathbb{E}\left[X_{i} \mathbf{1}_{\{\tau \geq i\}}\right]$$

$$\mathbb{E}[S_{\tau}] = \mathbb{E}\left[\sum_{i=1}^{\tau} X_{i}\right]$$

$$= \mathbb{E}\left[\sum_{i=1}^{\infty} X_{i} \mathbf{1}_{\{\tau \geq i\}}\right]$$

$$\stackrel{(a)}{=} \sum_{i=1}^{\infty} \mathbb{E}\left[X_{i} \mathbf{1}_{\{\tau \geq i\}}\right]$$

$$= \sum_{i=1}^{\infty} \mathbb{E}[X_{i}] \cdot \mathbb{E}\left[\mathbf{1}_{\{\tau \geq i\}}\right]$$

$$\mathbb{E}[S_{\tau}] = \mathbb{E}\left[\sum_{i=1}^{\tau} X_{i}\right]$$

$$= \mathbb{E}\left[\sum_{i=1}^{\infty} X_{i} \mathbf{1}_{\{\tau \geq i\}}\right]$$

$$\stackrel{(a)}{=} \sum_{i=1}^{\infty} \mathbb{E}\left[X_{i} \mathbf{1}_{\{\tau \geq i\}}\right]$$

$$= \sum_{i=1}^{\infty} \mathbb{E}[X_{i}] \cdot \mathbb{E}\left[\mathbf{1}_{\{\tau \geq i\}}\right]$$

$$= \mathbb{E}[X_{1}] \cdot \sum_{i=1}^{\infty} \mathbb{E}\left[\mathbf{1}_{\{\tau \geq i\}}\right]$$

$$\mathbb{E}[S_{\tau}] = \mathbb{E}\left[\sum_{i=1}^{\tau} X_{i}\right]$$

$$= \mathbb{E}\left[\sum_{i=1}^{\infty} X_{i} \mathbf{1}_{\{\tau \geq i\}}\right]$$

$$\stackrel{(a)}{=} \sum_{i=1}^{\infty} \mathbb{E}\left[X_{i} \mathbf{1}_{\{\tau \geq i\}}\right]$$

$$= \sum_{i=1}^{\infty} \mathbb{E}[X_{i}] \cdot \mathbb{E}\left[\mathbf{1}_{\{\tau \geq i\}}\right]$$

$$= \mathbb{E}[X_{1}] \cdot \sum_{i=1}^{\infty} \mathbb{E}\left[\mathbf{1}_{\{\tau \geq i\}}\right] \stackrel{(b)}{=} \mathbb{E}[X_{1}] \cdot \mathbb{E}\left[\sum_{i=1}^{\infty} \mathbf{1}_{\{\tau \geq i\}}\right]$$

$$\mathbb{E}[S_{\tau}] = \mathbb{E}\left[\sum_{i=1}^{\tau} X_{i}\right]$$

$$= \mathbb{E}\left[\sum_{i=1}^{\infty} X_{i} \mathbf{1}_{\{\tau \geq i\}}\right]$$

$$\stackrel{(a)}{=} \sum_{i=1}^{\infty} \mathbb{E}\left[X_{i} \mathbf{1}_{\{\tau \geq i\}}\right]$$

$$= \sum_{i=1}^{\infty} \mathbb{E}[X_{i}] \cdot \mathbb{E}\left[\mathbf{1}_{\{\tau \geq i\}}\right]$$

$$= \mathbb{E}[X_{1}] \cdot \sum_{i=1}^{\infty} \mathbb{E}\left[\mathbf{1}_{\{\tau \geq i\}}\right] \stackrel{(b)}{=} \mathbb{E}[X_{1}] \cdot \mathbb{E}\left[\sum_{i=1}^{\infty} \mathbf{1}_{\{\tau \geq i\}}\right] \stackrel{(c)}{=} \mathbb{E}[X_{1}] \cdot \mathbb{E}[\tau]$$

$$\mathbb{E}[S_{\tau}] = \mathbb{E}\left[\sum_{i=1}^{\tau} X_{i}\right]$$

$$= \mathbb{E}\left[\sum_{i=1}^{\infty} X_{i} \mathbf{1}_{\{\tau \geq i\}}\right]$$

$$\stackrel{(a)}{=} \sum_{i=1}^{\infty} \mathbb{E}\left[X_{i} \mathbf{1}_{\{\tau \geq i\}}\right]$$

$$= \sum_{i=1}^{\infty} \mathbb{E}[X_{i}] \cdot \mathbb{E}\left[\mathbf{1}_{\{\tau \geq i\}}\right]$$

$$= \mathbb{E}[X_{1}] \cdot \sum_{i=1}^{\infty} \mathbb{E}\left[\mathbf{1}_{\{\tau \geq i\}}\right] \stackrel{(b)}{=} \mathbb{E}[X_{1}] \cdot \mathbb{E}\left[\sum_{i=1}^{\infty} \mathbf{1}_{\{\tau \geq i\}}\right] \stackrel{(c)}{=} \mathbb{E}[X_{1}] \cdot \mathbb{E}[\tau]$$

(a), (b) follow from MCT & $\mathbb{E}|X_1| < +\infty$, (c)

(c) follows from $\mathbb{E}|\tau|<+\infty$

Monotone Convergence Theorem

Steps (a) and (b) in the proof of Wald's lemma may be justified using the monotone convergence theorem (MCT).

Monotone Convergence Theorem

Steps (a) and (b) in the proof of Wald's lemma may be justified using the monotone convergence theorem (MCT).

Theorem (Monotone Convergence)

Let $\{Y_n\}_{n=1}^{\infty}$ be a sequence of RVs such that

$$0 \le Y_1(\omega) \le Y_2(\omega) \le Y_3(\omega) \le \cdots \quad \forall \omega \in \Omega.$$

Suppose that $Y_n \stackrel{\text{pointwise}}{\longrightarrow} Y$. Then,

$$\mathbb{E}[Y] = \mathbb{E}\left[\lim_{n \to \infty} Y_n\right] = \lim_{n \to \infty} \mathbb{E}[Y_n].$$

• Justification for (a):

• Justification for (*a*):

$$- \ Y_n = \sum_{i=1}^n (X_i)_+ \mathbf{1}_{\{\tau \geq i\}}, \qquad Z_n = \sum_{i=1}^n (X_i)_- \mathbf{1}_{\{\tau \geq i\}}$$

- Justification for (*a*):
 - $Y_n = \sum_{i=1}^n (X_i)_+ \mathbf{1}_{\{\tau \ge i\}}, \qquad Z_n = \sum_{i=1}^n (X_i)_- \mathbf{1}_{\{\tau \ge i\}}$
 - For all $\omega \in \Omega$, we have

$$0 \leq Y_1(\omega) \leq Y_2(\omega) \leq Y_3(\omega) \leq \cdots, \qquad 0 \leq Z_1(\omega) \leq Z_2(\omega) \leq Z_3(\omega) \leq \cdots$$

- Justification for (*a*):
 - $Y_n = \sum_{i=1}^n (X_i)_+ \mathbf{1}_{\{\tau \ge i\}}, \qquad Z_n = \sum_{i=1}^n (X_i)_- \mathbf{1}_{\{\tau \ge i\}}$
 - For all $\omega \in \Omega$, we have

$$0 \leq Y_1(\omega) \leq Y_2(\omega) \leq Y_3(\omega) \leq \cdots, \qquad 0 \leq Z_1(\omega) \leq Z_2(\omega) \leq Z_3(\omega) \leq \cdots$$

- Also, we have

$$Y_n \stackrel{\text{pointwise}}{\longrightarrow}$$

- Justification for (*a*):
 - $Y_n = \sum_{i=1}^n (X_i)_+ \mathbf{1}_{\{\tau \ge i\}}, \qquad Z_n = \sum_{i=1}^n (X_i)_- \mathbf{1}_{\{\tau \ge i\}}$
 - For all $\omega \in \Omega$, we have

$$0 \leq Y_1(\omega) \leq Y_2(\omega) \leq Y_3(\omega) \leq \cdots, \qquad 0 \leq Z_1(\omega) \leq Z_2(\omega) \leq Z_3(\omega) \leq \cdots$$

- Also, we have

$$Y_n \stackrel{\text{pointwise}}{\longrightarrow}$$

- Justification for (a):
 - $Y_n = \sum_{i=1}^n (X_i)_+ \mathbf{1}_{\{\tau \ge i\}}, \qquad Z_n = \sum_{i=1}^n (X_i)_- \mathbf{1}_{\{\tau \ge i\}}$
 - For all $\omega \in \Omega$, we have

$$0 \leq Y_1(\omega) \leq Y_2(\omega) \leq Y_3(\omega) \leq \cdots, \qquad 0 \leq Z_1(\omega) \leq Z_2(\omega) \leq Z_3(\omega) \leq \cdots$$

Also, we have

$$Y_n \stackrel{\text{pointwise}}{\longrightarrow} \sum_{i=1}^{\infty} (X_i)_+ \mathbf{1}_{\{\tau \geq i\}}, \qquad Z_n \stackrel{\text{pointwise}}{\longrightarrow} \sum_{i=1}^{\infty} (X_i)_- \mathbf{1}_{\{\tau \geq i\}}$$

Using MCT,

$$\mathbb{E}\left[\sum_{i=1}^{\infty}(X_i)_+ \mathbf{1}_{\{\tau \geq i\}}\right] =$$

- Justification for (a):
 - $Y_n = \sum_{i=1}^n (X_i)_+ \mathbf{1}_{\{\tau \ge i\}}, \qquad Z_n = \sum_{i=1}^n (X_i)_- \mathbf{1}_{\{\tau \ge i\}}$
 - For all $\omega \in \Omega$, we have

$$0 \leq Y_1(\omega) \leq Y_2(\omega) \leq Y_3(\omega) \leq \cdots, \qquad 0 \leq Z_1(\omega) \leq Z_2(\omega) \leq Z_3(\omega) \leq \cdots$$

Also, we have

$$Y_n \stackrel{\text{pointwise}}{\longrightarrow} \sum_{i=1}^{\infty} (X_i)_+ \mathbf{1}_{\{\tau \geq i\}}, \qquad Z_n \stackrel{\text{pointwise}}{\longrightarrow} \sum_{i=1}^{\infty} (X_i)_- \mathbf{1}_{\{\tau \geq i\}}$$

Using MCT,

$$\mathbb{E}\left[\sum_{i=1}^{\infty}(X_i)_+ \mathbf{1}_{\{\tau \geq i\}}\right] =$$

- Justification for (a):
 - $Y_n = \sum_{i=1}^n (X_i)_+ \mathbf{1}_{\{\tau > i\}}, \qquad Z_n = \sum_{i=1}^n (X_i)_- \mathbf{1}_{\{\tau > i\}}$
 - For all $\omega \in \Omega$, we have

$$0 \leq Y_1(\omega) \leq Y_2(\omega) \leq Y_3(\omega) \leq \cdots, \qquad 0 \leq Z_1(\omega) \leq Z_2(\omega) \leq Z_3(\omega) \leq \cdots$$

Also, we have

$$Y_n \stackrel{\text{pointwise}}{\longrightarrow} \sum_{i=1}^{\infty} (X_i)_+ \mathbf{1}_{\{\tau \geq i\}}, \qquad Z_n \stackrel{\text{pointwise}}{\longrightarrow} \sum_{i=1}^{\infty} (X_i)_- \mathbf{1}_{\{\tau \geq i\}}$$

Using MCT,

$$\mathbb{E}\left[\sum_{i=1}^{\infty}(X_i)_+ \mathbf{1}_{\{\tau \geq i\}}\right] = \sum_{i=1}^{\infty} \mathbb{E}\Big[(X_i)_+ \mathbf{1}_{\{\tau \geq i\}}\Big], \quad \mathbb{E}\left[\sum_{i=1}^{\infty}(X_i)_- \mathbf{1}_{\{\tau \geq i\}}\right] = \sum_{i=1}^{\infty} \mathbb{E}\Big[(X_i)_- \mathbf{1}_{\{\tau \geq i\}}\Big]$$

 $-\mathbb{E}|X_1|<+\infty \implies \mathsf{RHS}$ quantities are finite $\implies (a)$

Example

• Suppose $X_1, X_2, \cdots \overset{\text{i.i.d.}}{\sim}$ Geometric (0.5). For each $n \in \mathbb{N}$, let $S_n = \sum_{i=1}^n X_i$. Let τ be defined as

$$au\coloneqq\infigg\{n\geq 1: \mathcal{S}_n=33igg\}.$$

Determine $\mathbb{E}[\tau]$.

Example

• Suppose $X_1, X_2, \cdots \overset{\text{i.i.d.}}{\sim} \mathcal{N}(1, 1)$. For each $n \in \mathbb{N}$, let $S_n = \sum_{i=1}^n X_i$. Let τ be defined as

$$au\coloneqq\infigg\{n\geq 1: \mathcal{S}_n=rac{\pi}{2}igg\}.$$

Determine $\mathbb{E}[\tau]$.

Strong Independence Property

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Lemma (Strong Independence Property)

Let $\{X_n\}_{n=1}^{\infty}$ be an independent process w.r.t. \mathscr{F} .

Let τ be a stopping time w.r.t. $\{X_n\}_{n=1}^{\infty}$. Then,

$$(X_1,\ldots,X_{\tau}) \perp (X_{\tau+1},X_{\tau+2},\ldots).$$

Properties of Stopping Times

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $\{\mathcal{G}_t : t \in \mathcal{T}\}$ be a filtration w.r.t. \mathscr{F} .

Lemma (Properties of Stopping Times)

Let τ_1, τ_2 be two stopping times w.r.t. the filtration $\{\mathcal{G}_t : t \in \mathcal{T}\}$.

- 1. $\min\{\tau_1, \tau_2\}$ is a stopping time.
- 2. If $\mathcal{T} = \mathbb{R}_+$, then

 $au_1 + au_2$ is a stopping time.

$$\{\min\{\tau_1,\tau_2\}>t\}=$$

$$\{\min\{\tau_1,\tau_2\} > t\} = \{\tau_1 > t\} \cap \{\tau_2 > t\}$$

$$\{\min\{\tau_1,\tau_2\} > t\} = \{\tau_1 > t\} \cap \{\tau_2 > t\} \in \mathcal{G}_t,$$

$$\{\min\{ au_1, au_2\} > t\} = \{ au_1 > t\} \cap \{ au_2 > t\} \in \mathcal{G}_t,$$

$$\{ au_1 + au_2 \le t\} = \bigcup_{\substack{q \in \mathcal{Q}: \\ 0 \le q \le t}} \{ au_1 \le q \le t - au_2\}$$

$$\begin{aligned}
\{\min\{\tau_{1}, \tau_{2}\} > t\} &= \{\tau_{1} > t\} \cap \{\tau_{2} > t\} \in \mathcal{G}_{t}, \\
\{\tau_{1} + \tau_{2} \le t\} &= \bigcup_{\substack{q \in \mathcal{Q}: \\ 0 \le q \le t}} \{\tau_{1} \le q \le t - \tau_{2}\} \\
&= \bigcup_{\substack{q \in \mathcal{Q}: \\ 0 \le q \le t}} \{\tau_{1} \le q\} \cap \{\tau_{2} \le t - q\}
\end{aligned}$$

Markov Chain

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Markov Chain)

A process $\{X_t : t \in \mathcal{T}\}$ is called a Markov chain if for any $t \in \mathcal{T}$,

$$(X_s: s < t) \perp \!\!\! \perp (X_s: s > t) \mid X_t,$$

References

Abraham Wald.

Some generalizations of the theory of cumulative sums of random variables. *The Annals of Mathematical Statistics*, 16(3):287–293, 1945.