```
#importing necessary libraries
import tensorflow as tf
from tensorflow import keras
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random
%matplotlib inline
#import dataset and split into train and test data
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
     Downloading data from <a href="https://storage.googleapis.com/tensorflow/tf-keras-datasets/mn">https://storage.googleapis.com/tensorflow/tf-keras-datasets/mn</a>
     11490434/11490434 [============= ] - 1s Ous/step
#to see length of training dataset
len(x_train)
     60000
```

to see length of testing dataset

len(x_test)

```
#shape of training dataset 60,000 images having 28*28 size
x_train.shape

(60000, 28, 28)

#shape of testing dataset 10,000 images having 28*28 size
x_test.shape

(10000, 28, 28)
```

```
x_train[0]
                      0],
                 0,
                      0,
                                                             80, 156, 107, 253, 253,
              [ 0,
                            0,
                                 0,
                                       0,
                                             0,
                                                  0,
                                                        0,
                                43, 154,
              205,
                     11,
                            0,
                                             0,
                                                        0,
                                                              0,
                                                                   0,
                                                                         0,
                                                                               0,
                 0,
                      0],
                      0,
                                                                         1, 154, 253,
                                                   0,
                                                        0,
                                                                   14,
                0,
                            0,
                                 0,
                                       0,
                                             0,
                                                              0,
               90,
                                             0,
                                                        0,
                                                              0,
                                                                    0,
                                                                         0,
                 0,
                      0],
                      0,
                                       0,
                                                   0,
                                                              0,
                 0,
                            0,
                                  0,
                                             0,
                                                        0,
                                                                    0,
                                                                         0, 139, 253,
              190,
                      2,
                                             0,
                                       0,
                                                        0,
                                                              0,
```

	ر -	ر ر -	leed_lot ward.ipyrib - Colaboratory										
Γ		0,		0.	0.	0.	0,	0.	0.	0.	0.	11.	190,
		70,					-	_	-	-	-	-	-
_		, o, 0],		٠,	٠,	٠,	٠,	٠,	٠,	٠,	٠,	٠,	Ο,
Г	0,	0,		а	a	a	а	0,	0,	a	0,	0,	35,
_		225,								0,		-	
		-	-	100,	, ⊥	0,	υ,	0,	υ,	υ,	υ,	υ,	Ο,
-	0,	0],		•	0	0	•	•	•	0	0	0	•
_	0,	-	-	-	0,	-	-	_	-	0,	-	-	0,
		240,	-	253,	119,	25,	0,	0,	0,	0,	0,	0,	0,
	0,	0],											
[0,				0,				-			-	0,
	0,			253,	253,	150,	27,	0,	0,	0,	0,	0,	0,
	0,	0],											
[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,	16,	93,	252,	253,	187,	0,	0,	0,	0,	0,	0,
	0,	0],											
[0,			0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
-	0,				249,					-	-	-	-
	0,	0],	-	- ,	,	,	,	. ,	- ,	- ,	- ,	- ,	,
[•	0,		a.	0,	a.	a.	0,	a.	0,	a.	a.	0,
L	0,	46,		-		-		-	-	0,			-
	-	40, 0],		100,	233,	233,	207,	ر ک	0,	0,	0,	0,	0,
г	0,	_		0	0,	0	0	0,	0	0,	a	a	39,
_	-								-	-	-	-	-
Т		229,		253,	253,	250,	182,	0,	0,	0,	0,	0,	0,
-	0,	0],		•	0	0	0	•	0	0	2.4		224
_	0,				0,				-	0,	-	-	-
		253,		253,	201,	78,	0,	0,	0,	0,	0,	0,	0,
	0,	0],											
[0,	0,	0,	0,	0,	0,	0,	0,	23,	66,	213,	253,	253,
2	53,	253,	198,	81,	2,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0],											
[0,	0,	0,	0,	0,	0,	18,	171,	219,	253,	253,	253,	253,
1	95,	80,	9,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0],											
[0,	0,	0,	a	55,	172	226	253	253	253	253	244	122
	11,	0,						2 <i>)</i> 5,					
			0,	0,	0,	0,	θ,	υ,	υ,	0,	0,	0,	0,
г	0,	0],		0	126	252	252	252	212	125	122	1.0	0
[0,	0,	0,		136,								0,
	0,	0,		0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
_	0,	0],											
[0,	0,	0,	0,			0,					-	0,
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0],											
[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,	0,	0,			0,	0,	0,			0,	0,
	0,	0],											
[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
-	0,	0,			ø,		ø,				ø,	-	0,
	0,	-	-	ype=u		- ,	- ,	- ,	- ,	- ,	- ,	- ,	-,
	- ,	~]]	,	, , , ,									

#to see how first image look
plt.matshow(x_train[0])

В

<matplotlib.image.AxesImage at 0x7f6282b6e290>

#normalize the images by scaling pixel intensities to the range 0,1

```
x_train = x_train / 255
x_test = x_test / 255
```

x_train[0]

```
0.
                                     , 0.
[0.
             0.
                          0.
                                     , 0.
                                                  , 0.
0.
                                                  , 0.17647059.
0.
           , 0.
                        , 0.
                                     , 0.
0.72941176, 0.99215686, 0.99215686, 0.58823529, 0.10588235,
           , 0.
                        , 0.
                                     , 0.
           , 0.
0.
                        , 0.
                                    , 0.
                        , 0.
[0.
0.
            0.
                         0.
                                     , 0.
0.
           , 0.
                        , 0.
                                     , 0.
0.0627451 , 0.36470588, 0.98823529, 0.99215686, 0.73333333,
           , 0.
                        , 0.
                                    , 0.
0.
0.
           , 0.
                        , 0.
                                    , 0.
[0.
                        , 0.
                                                  , 0.
            0.
                                    , 0.
0.
0.
           , 0.
                                     , 0.
                        , 0.
                                                  , 0.
           , 0.
                        , 0.97647059, 0.99215686, 0.97647059,
0.25098039, 0.
                        , 0.
                                     , 0.
0.
           , 0.
                        , 0.
                                    , 0.
[0.
           , 0.
                        , 0.
                                                  , 0.
                                     , 0.
0.
                                     , 0.
           , 0.
                        , 0.
0.
                                                 , 0.18039216,
0.50980392, 0.71764706, 0.99215686, 0.99215686, 0.81176471,
0.00784314, 0.
                        , 0.
                                     , 0.
           , 0.
                        , 0.
0.
                                     ],
[0.
                                     , 0.
                        , 0.
0.
                                     , 0.
                        , 0.15294118, 0.58039216, 0.89803922,
0.99215686, 0.99215686, 0.99215686, 0.98039216, 0.71372549,
0.
           , 0.
                        , 0.
                                     , 0.
           , 0.
                       , 0.
0.
                                     ],
[0.
                        , 0.
                                    , 0.
                        , 0.
           , 0.
                                     , 0.
0.09411765, 0.44705882, 0.86666667, 0.99215686, 0.99215686,
0.99215686, 0.99215686, 0.78823529, 0.30588235, 0.
           , 0.
                        , 0.
                                     , 0.
0.
           , 0.
                        , 0.
0.
                                     ],
[0.
           , 0.
                        , 0.
           , 0.
                        , 0.
                                     , 0.09019608, 0.25882353,
0.
0.83529412, 0.99215686, 0.99215686, 0.99215686, 0.99215686,
```

```
0.77647059, 0.31764706, 0.00784314, 0. , 0.
0.
       , 0. , 0. , 0.
                 , 0.
0.
        , 0.
                           ],
       , 0. , 0. , 0.
[0.
    , 0.07058824, 0.67058824, 0.85882353, 0.99215686,
0.
0.99215686, 0.99215686, 0.99215686, 0.76470588, 0.31372549,
                       , 0.
0.03529412, 0.
            , 0.
                 , 0.
0.
    , 0.
                           , 0.
        , 0.
                 , 0.
0.
                           ],
             , 0.
                      , 0.
[0.
       , 0.
                                     , 0.21568627,
0.6745098 , 0.88627451, 0.99215686, 0.99215686, 0.99215686,
0.99215686, 0.95686275, 0.52156863, 0.04313725, 0.
    , 0. , 0.
                      , 0.
                          , 0.
0.
       , 0.
                 , 0.
        , 0.
                 , 0.
                           ],
0.
[0., 0., 0., 0., 0.533333333,
0.99215686,\ 0.99215686,\ 0.99215686,\ 0.83137255,\ 0.52941176,
0.51764706, 0.0627451, 0., 0., 0.
```

feed forward.ipynb - Colaboratory

```
# Model
inputs = keras.layers.Input(shape=(28, 28))
                                                                 #(?, 28, 28)
1 = keras.layers.Flatten()(inputs)
                                                                 #(?, 784)
                                                                 #(?, 512)
1 = keras.layers.Dense(512, activation=tf.nn.relu)(1)
outputs = keras.layers.Dense(10, activation=tf.nn.softmax)(1)
                                                                 #(?, 10) -> (?, 1)
```

New Section

```
model = tf.keras.models.Model(inputs, outputs)
model.summary()
```

Model: "model"

Layer (type)	Output Shape	Param #		
input_1 (InputLayer)	[(None, 28, 28)]	0		
flatten (Flatten)	(None, 784)	0		
dense (Dense)	(None, 512)	401920		
dense_1 (Dense)	(None, 10)	5130		

Total params: 407,050 Trainable params: 407,050 Non-trainable params: 0

```
model.compile(optimizer="adam",
                loss="sparse_categorical_crossentropy",
```

```
metrics=["accuracy"])
model.fit(x_train, y_train, epochs=5)
test_loss, test_acc = model.evaluate(x_test, y_test)
print("Test Loss: {0} - Test Acc: {1}".format(test_loss, test_acc))
```

```
n=random.randint(0,9999)
plt.imshow(x_test[n])
plt.show()
```



```
#we use predict() on new data
predicted_value=model.predict(x_test)
print("Handwritten number in the image is= %d" %np.argmax(predicted_value[n]))
```

```
history=model.fit(x_train, y_train,validation_data=(x_test,y_test),epochs=10)
```

```
test_loss,test_acc=model.evaluate(x_test,y_test)
print("Loss=%.3f" %test_loss)
print("Accuracy=%.3f" %test_acc)
```

n=random.randint(0,9999)
plt.imshow(x_test[n])

plt.show()

5 -10 -15 -20 -25 -0 5 10 15 20 25

```
#we use predict() on new data
predicted_value=model.predict(x_test)
print("Handwritten number in the image is= %d" %np.argmax(predicted_value[n]))
```

history.history??

```
dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])
```

```
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()
```



```
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()
```


Colab paid products - Cancel contracts here

✓ 0s completed at 11:05 PM

×