Exercice 1 Soient A, B, C trois sous-ensembles de l'ensemble X. Montrer que :

- 1. $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.
- 2. $(X \setminus A) \cap (X \setminus B) = X \setminus (A \cup B)$.
- 3. Si $A \subset B$ alors $A \cap (X \setminus B) = \emptyset$.
- 4. Si $A \cap B = A \cap C$ et $A \cup B = A \cup C$ alors B = C.
- 5. Soient $(E_i)_{i\in I}$ et $(F_j)_{j\in J}$ deux familles d'ensembles. Montrer la formule de distributivité suivante : $(\bigcup_{i\in I} E_i) \cap (\bigcup_{j\in J} F_j) = \bigcup_{(i,j)\in I\times J} (E_i\cap F_j)$.

Exercice 2 Les applications suivantes sont-elles injectives, surjectives, bijectives?

$$f: \left\{ \begin{array}{l} \mathbb{N} \to \mathbb{N} \\ n \mapsto n+1 \end{array} \right., \, g: \left\{ \begin{array}{l} \mathbb{Z} \to \mathbb{Z} \\ n \mapsto n+1 \end{array} \right., \, h: \left\{ \begin{array}{l} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x,y) \mapsto (x+y,x-y) \end{array} \right., \, k: \left\{ \begin{array}{l} \mathbb{R} \setminus \{1\} \to \mathbb{R} \\ x \mapsto \frac{x+1}{x-1} \end{array} \right..$$

Exercice 3 Soit A, B deux ensembles non vides. Montrer qu'il existe $f: A \to B$ injective si et seulement si il existe $g: B \to A$ surjective.

Exercice 4 1. Donner une bijection explicite de \mathbb{N} vers \mathbb{Z} .

2. Donner une bijection explicite de \mathbb{N} vers \mathbb{N}^2 .

Exercice 5 Soit $f: X \to Y$, $g: Y \to Z$ deux applications. Montrer que

- 1. pour chaque sous-ensemble $C \subset Z$ on a : $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))$.
- 2. pour toute famille de sous-ensembles $\{C\}_{i\in I}$ de Y on a

$$f^{-1}(\bigcap_{i \in I} C_i) = \bigcap_{i \in I} f^{-1}(C_i), \quad f^{-1}(\bigcup_{i \in I} C_i) = \bigcup_{i \in I} f^{-1}(C_i) \quad \text{et} \quad g(\bigcup_{i \in I} C_i) = \bigcup_{i \in I} g(C_i)$$

- 3. Soit $A \subset X$ et $B \subset Y$. Montrer que $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$. A-t-on $f(X \setminus A) = Y \setminus f(A)$?
- 4. f est injective si et seulement si pour toute partie A de X, $f^{-1}(f(A)) = A$.
- 5. f est surjective si et seulement si pour toute partie B de Y, $f(f^{-1}(B)) = B$.

Exercice 6 Soit f une application d'un ensemble E dans lui-même. On désigne par S la famille des parties S de E qui vérifient $f^{-1}(f(S)) = S$.

- 1. A étant une partie de E, démontrer que $f^{-1}(f(A))$ est un élément de S.
- 2. Démontrer que toute réunion d'éléments de \mathcal{S} est encore un élément de \mathcal{S} .
- 3. Si S est un élément de S et A une partie de E disjointe de S, montrer que S et $f^{-1}(f(A))$ sont disjointes.
- 4. Si $S \subset T$ sont deux éléments de S, montrer que $T \setminus S$ est dans S.

Exercice 7 On considère quatre ensembles A, B, C et D et les applications $f: A \to B$, $g: B \to C$, $h: C \to D$. Montrer que :

- 1. si $g \circ f$ est injective alors f est injective.
- 2. si $g \circ f$ est surjective surjective alors g est surjective.
- 3. si $g \circ f$ et $h \circ g$ sont bijectives alors f, g et h sont bijectives.

Exercice 8 Soit X un ensemble, et $\mathcal{P}(X)$ l'ensemble des parties de X. Montrer qu'il n'y a pas de surjection de X sur $\mathcal{P}(X)$. (Indication : soit f une telle surjection, que dire de l'ensemble $Y = \{x \in X, x \notin f(x)\}$?)

Exercice 9 On note $\mathcal{P}(\mathbb{N})$ l'ensemble des parties de \mathbb{N} .

- 1. Construire une surjection de $\mathcal{P}(\mathbb{N})$ sur [0,1].
- 2. Construire une injection de $\mathcal{P}(\mathbb{N})$ dans [0,1].

Exercice 10 Soit A et B deux ensembles, f une injection de A dans B et g une injection de B dans A. On se propose de montrer le résultat suivant (théorème de Cantor-Bernstein) : il existe une bijection de A vers B.

- 1. On note A_p l'ensemble des éléments de A qui peuvent s'écrire $(g \circ f)^n(x)$ pour un $n \in \mathbb{N}$ et un x de A n'ayant pas d'antécédent par g. On note A_i l'ensemble des éléments de A qui peuvent s'écrire $(g \circ f)^n(g(x))$ pour un $n \in \mathbb{N}$ et un x de B n'ayant pas d'antécédent par f. Montrer que A_p et A_i sont disjoints.
- 2. On note B_p et B_i les parties de B définies de façon analogue. Montrer que f induit une bijection de A_p sur B_i , et que g induit une bijection de B_p sur A_i .
- 3. On note A_{∞} le complémentaire de $A_p \cup A_i$ dans A, et B_{∞} le complémentaire de $B_p \cup B_i$ dans B. Montrer que f induit une bijection de A_{∞} sur B_{∞} .
- 4. Conclure.