

Marius Rusu, Julia Sommer

Windows Subsystem for Linux

Proseminar Virtualisierte Systeme

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Daniel Kolb

Datum des Vortrags: 30.6.2018

Basic Architecture (1)

Implementation (1,2)

Linux instance

- o Unique per user
- Standard Linux shell
- Wrapped in Pico processes

Pico process

- Windows process address space
- o OS services removed
- System calls served by LXCore/LXSS

Pico process

System call

Implementation (1,2)

LXCore/LXSS

- Linux-compatible kernel interface
- No implemented Linux kernel code
- Translation from Linux system calls to Windows system calls

Windows Kernel

- Optimized for Linux system calls e.g. fork
- Execution of Linux operations

Pico System call process

Virtual Machine (4)

Virtual Machine

- Running different guest OS
- Fully isolated from host OS
- o Hypervisor: VMM

Virtual machine monitor (VMM)

- Hosting virtual machines
- Coordinating hardware access
- Handling traps

Traps

- Privileged operations
- Emulated by VMM

Container (4)

Container

- Running different applications
- Sharing host OS kernel
- Key component: Container engine

Container engine

- Deploying containerized applications
- Allocating cores and memory
- Ensuring isolation and security

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Comparison (3)

	WSL	VM	Container
Key Component	LXCore/LXSS	VMM	Container engine
Range of virtualization	Ubuntu bash	Any guest OS	Any guest process
Isolation from Host OS	Not isolated, cooperation	Completely isolated	Isolated
Parallel running units	Only one Linux instance	Multiple	Multiple
Isolation between running units	-	Completely isolated	Isolated, but sharing kernel
Sharing file sytem	Sharing with host OS	Not sharing with host OS	Not sharing with host OS or units
I/O Speed	Very slow	Fast	Very fast
Use of hardware resources	Very low	Very high	Low

References

- 1. Hammons, J.: Windows Subsystem for Linux Overview, https://blogs.msdn.microsoft.com/wsl/2016/04/22/windows-subsystem-for-linux-overview/, Online, accessed 18-April-2018; 19.32 Uhr, Apr. 2016
- 2. Microsoft: Drawbridge, https://www.microsoft.com/en-us/research/project/drawbridge/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fproject%20s%2Fdrawbridge%2F, Online, accessed 30-April-2018; 19.38 Uhr, Sept. 2011
- 3. Larabel, M.: Windows 10 WSL vs. Linux Performance For Early 2018, https://www.phoronix.com/scan.php?page=article&item=wsl-february-2018&num=2, Online, accessed 30-April-2018; 20.14 Uhr, Feb. 2018
- 4. Margaret, R.: containerization (container-based virtualization), https://searchservervirtualization.techtarget.com/definition/container-based-virtualization-operating-system-level-virtualization, Online, accessed 30-April-2018; 20.01 Uhr, 2014.