

Exact Solutions > Ordinary Differential Equations > Second-Order Linear Ordinary Differential Equations > Mathieu Equation

34.
$$y_{xx}'' + (a - 2q\cos 2x)y = 0$$
.

Mathieu equation.

1°. Given numbers a and q, there exists a general solution y(x) and a characteristic index μ such that

$$y(x+\pi) = e^{2\pi\mu}y(x).$$

For small values of q, an approximate value of μ can be found from the equation:

$$\cosh(\pi \mu) = 1 + 2\sin^2(\frac{1}{2}\pi\sqrt{a}) + \frac{\pi q^2}{(1-a)\sqrt{a}}\sin(\pi\sqrt{a}) + O(q^4).$$

If $y_1(x)$ is the solution of the Mathieu equation satisfying the initial conditions $y_1(0) = 1$ and $y'_1(0) = 0$, the characteristic index can be determined from the relation:

$$\cosh(2\pi\mu) = y_1(\pi).$$

The solution $y_1(x)$, and hence μ , can be determined with any degree of accuracy by means of numerical or approximate methods.

The general solution differs depending on the value of $y_1(\pi)$ and can be expressed in terms of two auxiliary periodical functions $\varphi_1(x)$ and $\varphi_2(x)$ (see Table 1).

TABLE 1
The general solution of the Mathieu equation expressed in terms of auxiliary periodical functions $\varphi_1(x)$ and $\varphi_2(x)$

Constraint	General solution $y = y(x)$	Period of φ_1 and φ_2	Index
$y_1(\pi) > 1$	$C_1 e^{2\mu x} \varphi_1(x) + C_2 e^{-2\mu x} \varphi_2(x)$	π	μ is a real number
$y_1(\pi) < -1$	$C_1 e^{2\rho x} \varphi_1(x) + C_2 e^{-2\rho x} \varphi_2(x)$	2π	$\mu = \rho + \frac{1}{2}i, i^2 = -1,$ $\rho \text{ is the real part of } \mu$
$ y_1(\pi) < 1$	$(C_1 \cos \nu x + C_2 \sin \nu x)\varphi_1(x) +$ $+ (C_1 \cos \nu x - C_2 \sin \nu x)\varphi_2(x)$	π	$\mu = i\nu$ is a pure imaginary number, $\cos(2\pi\nu) = y_1(\pi)$
$y_1(\pi) = \pm 1$	$C_1\varphi_1(x) + C_2x\varphi_2(x)$	π	$\mu = 0$

 2° . In applications, of major interest are periodical solutions of the Mathieu equation that exist for certain values of the parameters a and q (those values of a are referred to as eigenvalues). The most important solutions are listed in Table 2.

The Mathieu functions possess the following properties:

$$ce_{2n}(x, -q) = (-1)^n ce_{2n}\left(\frac{\pi}{2} - x, q\right), ce_{2n+1}(x, -q) = (-1)^n se_{2n+1}\left(\frac{\pi}{2} - x, q\right),$$

$$se_{2n}(x, -q) = (-1)^{n-1} se_{2n}\left(\frac{\pi}{2} - x, q\right), se_{2n+1}(x, -q) = (-1)^n ce_{2n+1}\left(\frac{\pi}{2} - x, q\right).$$

Selecting a sufficiently large m and omitting the term with the maximum number in the recurrence relations (indicated in Table 20), we can obtain approximate relations for the eigenvalues a_n (or b_n)

TABLE 2

Periodical solutions of the Mathieu equation $ce_n = ce_n(x,q)$ and $se_n = se_n(x,q)$ (for odd n, the functions ce_n and se_n are 2π -periodical, and for even n, they are π -periodical); certain eigenvalues $a = a_n(q)$ and $b = b_n(q)$ correspond to each value of the parameter q; $n = 0, 1, 2, \ldots$

Mathieu functions	Recurrence relations for coefficients	Normalization conditions
$ce_{2n}(x,q) = \sum_{m=0}^{\infty} A_{2m}^{2n} \cos(2mx)$	$qA_2^{2n} = a_{2n}A_0^{2n};$ $qA_4^{2n} = (a_{2n}-4)A_2^{2n} - 2qA_0^{2n};$ $qA_{2m+2}^{2n} = (a_{2n}-4m^2)A_{2m}^{2n}$ $-qA_{2m-2}^{2n}, m \ge 2$	$(A_0^{2n})^2 + \sum_{m=0}^{\infty} (A_{2m}^{2n})^2$ $= \begin{cases} 2 & \text{if } n=0\\ 1 & \text{if } n \ge 1 \end{cases}$
$ce_{2n+1}(x,q) = \sum_{m=0}^{\infty} A_{2m+1}^{2n+1} \cos[(2m+1)x]$	$qA_3^{2n+1} = (a_{2n+1} - 1 - q)A_1^{2n+1};$ $qA_{2m+3}^{2n+1} = [a_{2n+1} - (2m+1)^2]$ $\times A_{2m+1}^{2n+1} - qA_{2m-1}^{2n+1}, m \ge 1$	$\sum_{m=0}^{\infty} \left(A_{2m+1}^{2n+1} \right)^2 = 1$
$ se_{2n}(x,q) = \sum_{m=0}^{\infty} B_{2m}^{2n} \sin(2mx), $ $ se_0 = 0 $	$qB_4^{2n} = (b_{2n} - 4)B_2^{2n};$ $qB_{2m+2}^{2n} = (b_{2n} - 4m^2)B_{2m}^{2n}$ $-qB_{2m-2}^{2n}, m \ge 2$	$\sum_{m=0}^{\infty} (B_{2m}^{2n})^2 = 1$
$\sec_{2n+1}(x,q) = \sum_{m=0}^{\infty} B_{2m+1}^{2n+1} \sin[(2m+1)x]$	$qB_3^{2n+1} = (b_{2n+1} - 1 - q)B_1^{2n+1};$ $qB_{2m+3}^{2n+1} = [b_{2n+1} - (2m+1)^2]$ $\times B_{2m+1}^{2n+1} - qB_{2m-1}^{2n+1}, m \ge 1$	$\sum_{m=0}^{\infty} \left(B_{2m+1}^{2n+1} \right)^2 = 1$

with respect to parameter q. Then, equating the determinant of the corresponding homogeneous linear system of equations for coefficients A_m^n (or B_m^n) to zero, we obtain an algebraic equation for finding $a_n(q)$ (or $b_n(q)$).

For fixed real $q \neq 0$, the eigenvalues a_n and b_n are all real and different, while:

$$\begin{array}{llll} \mbox{if} & q>0 & \mbox{then} & a_0 < b_1 < a_1 < b_2 < a_2 < \cdots; \\ \mbox{if} & q<0 & \mbox{then} & a_0 < a_1 < b_1 < b_2 < a_2 < a_3 < b_3 < b_4 < \cdots \\ \end{array}$$

The eigenvalues possess the following properties:

$$a_{2n}(-q) = a_{2n}(q), \quad b_{2n}(-q) = b_{2n}(q), \quad a_{2n+1}(-q) = b_{2n+1}(q).$$

The solution of the Mathieu equation corresponding to eigenvalue a_n (or b_n) has n zeros on the interval $0 \le x < \pi$ (q is a real number).

References

McLachlan, N. W., Theory and Application of Mathieu Functions, Clarendon Press, Oxford, 1947.

Bateman, H. and Erdélyi, A., Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York, 1955.

Abramowitz, M. and Stegun, I. A. (Editors), *Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables,* National Bureau of Standards Applied Mathematics, Washington, 1964.

Polyanin, A. D. and Zaitsev, V. F., *Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition*, Chapman & Hall/CRC, Boca Raton, 2003.

Mathieu Equation