Show that if A is Turing-recognizable and $A\leq_{\mathrm{m}}\overline{A},$ then A is decidable.

Step-by-step solution

Step 1 of 1

Proving decidability of language

Consider the Turing machine M which is use for recognizing the language A in such a way that A = A(M).

So, it can be said that language A is Turing-recognizable or even it can be said that it is recognizable.

A Turing machine is use for deciding the language A if A = A(M) and Turing machine M hold for each and every input.

So, it can be said that A is decidable if and only if Turing machine M is use for deciding A.

Suppose, $A \leq_m A$, then it is quite obvious $A \leq_m A$ also exists by using the same mapping reducibility function.

A is Turing recognizable then \overline{A} is also recognizable as follows:

Assume M is the recognizer for Turing Machine \overline{A} and N is the recognizer for A. F is the reduction function for A to \overline{A} .

N can be described as:

N is the recognizer and recognizes input or string w.

N = Input w:

- Compute F(w): F(w) function is mapping function that computes mapping reducibility between Turing Machines P and Q.
- Run *M* on input *F*(*w*) and output whatever *M* output.

As M is the recognizer for \overline{A} , now run the output F(w) on M to Find Mapping reducibility between Turing Machines A and \overline{A} .

This implies that \overline{A} is also Turing Recognizable.

If A and \overline{A} is Turing recognizable then it can be proved that $A \leq_m \overline{A}$ is also decidable.

A language is decidable if its components are Recognizable or co-recognizable as it is already proved that A and \overline{A} both are recognizable then consider P for deciding the language A.

Let $\overline{P_A}$ and $\overline{\overline{P_A}}$ is use for deciding that A and $\overline{\overline{A}}$ is recognizable.

- For any value of input x whether it is 1,2, 3 user need to simulate the value for P_A and $\overline{P_A}$ for the finite number of steps. If $x \in A$ then simulation is accepted and if there is the situation that $x \notin A$ then simulation is halted.
- ullet Run both the decider $P_{\mathcal{A}}$ and $\overline{P_{\mathcal{A}}}$ in parallel for the particular input x till either of them accepts.
- If $\overline{P_{i}}$ is accepted then accept it for the particular value of x and then halt. If $\overline{P_{i}}$ is accepted then reject the particular value of x and after that halt the Turing machine.

Running P_A and $\overline{P_A}$ in parallel means Turing Machine have 2 tapes 1 for simulating P_A and another for simulating $\overline{P_A}$ it continue until one of them accepts.

Now, it is quite obvious that input x is whether running on P_A or $\overline{P_A}$ so it must be accepted by one of them Turing Machine is halted whenever P_A or $\overline{P_A}$ accepts x. It accepts all strings in A and rejects all strings in A so P_A is decider for A and A is decidable.

As, for every input, Turing machine is halted for each and every input, then it can be said that $A \leq_m \overline{A}$ is decidable.

Comments (1)