# Unsupervised Learning - Dimensionality reduction.

- A very brief introduction to unsupervised learning
- Dimensionality reduction:
  - Principal Component Analysis (PCA)
  - Kernelizing PCA
  - Other non-linear dimensionality reduction techniques

# Unsupervised Learning (cont'd).

- Until now, we focused on supervised learning (e.g. regression and classification):
  - We have access to labeled data: we observe both features for each object  $\mathbf{x}_1, \dots, \mathbf{x}_m$  and the corresponding target variable  $y_1, \dots, y_m$ . The goal is to predict the target from the features.
- In unsupervised learning, we only have access to unlabeled data, i.e. the features  $\mathbf{x}_1, \dots, \mathbf{x}_m$ , and we want to discover interesting things about the data (i.e. identify the underlying structure of the data).

# Unsupervised Learning (cont'd).

- Unsupervised learning is more subjective than supervised learning (no simple goal, such as prediction in supervised learning).
- But of growing importance:
  - Easier to obtain unlabeled data than labeled data.
  - One of the next challenges of ML:
    - \* Overwhelming amount of unlabeled data available
    - \* Human don't need so many labeled examples to learn: few labeled examples and large amount of unlabeled data is often enough (semi-supervised learning)...

## **Unsupervised Learning.**

- Examples of unsupervised learning tasks:
  - Density estimation: estimate the distribution of the data (e.g. fit a Gaussian to the data, or a mixture of Gaussians). Closely related to generative models (e.g. GANs)...
  - Clustering: identify groups of similar objects (for e.g. market segmentation, data exploration). For example k-means is a very popular clustering algorithm:
  - Dimensionality reduction: find a low-dimensional representation of the data (e.g. to reduce the complexity of learning algorithm, data visualization).
- $\Rightarrow$  We focus on dimensionality reduction in this lecture.

## What is dimensionality reduction?

- Dimensionality reduction (or embedding) techniques:
  - Assign instances to real-valued vectors, in a space that is much smaller-dimensional (even 2D or 3D for visualization).
  - Approximately preserve similarity/distance relationships between instances.
- Some techniques:
  - Linear: Principal components analysis
  - Non-linear
    - \* Kernel PCA
    - \* Independent components analysis
    - \* Self-organizing maps
    - \* Locally linear embeddings
    - \* Multi-dimensional scaling
    - \* Autoencoders
    - \* ...









#### Remarks

- All dimensionality reduction techniques are based on an implicit assumption that the data lies along some *low-dimensional manifold*
- This is the case for the first three examples, which lie along a 1-dimensional manifold despite being plotted in 2D
- In the last example, the data has been generated randomly in 2D, so no dimensionality reduction is possible without losing information
- The first three cases are in increasing order of difficulty, from the point of view of existing techniques.

# Simple Principal Component Analysis (PCA)

- ullet Given: m instances, each being a length-n real vector.
- Suppose we want a 1-dimensional representation of that data, instead of n-dimensional.
- Specifically, we will:
  - Choose a line in  $\mathbb{R}^n$  that "best represents" the data.
  - Assign each data object to a point along that line.



### **Reconstruction error**

- Let the line be represented as  $\mathbf{b} + \alpha \mathbf{v}$  for  $\mathbf{b}, \mathbf{v} \in \mathbb{R}^n$ ,  $\alpha \in \mathbb{R}$ . For convenience assume  $\|\mathbf{v}\| = 1$ .
- Each instance  $\mathbf{x}_i$  is associated with a point on the line  $\hat{\mathbf{x}}_i = \mathbf{b} + \alpha_i \mathbf{v}$ .
- We want to choose  $\mathbf{b}$ ,  $\mathbf{v}$ , and the  $\alpha_i$  to minimize the total reconstruction error over all data points, measured using Euclidean distance:

$$R = \sum_{i=1}^{m} \|\mathbf{x}_i - \hat{\mathbf{x}}_i\|^2$$

## A constrained optimization problem!

$$\begin{array}{ll} \min & \sum_{i=1}^m \|\mathbf{x}_i - (\mathbf{b} + \alpha_i \mathbf{v})\|^2 \\ \text{w.r.t.} & \mathbf{b}, \mathbf{v}, \alpha_i, i = 1, \dots m \\ \text{s.t.} & \|\mathbf{v}\|^2 = 1 \end{array}$$

- This is a quadratic objective with quadratic constraint
- Suppose we fix a  ${\bf v}$  satisfying the condition, and find the best  ${\bf b}$  and  $\alpha_i$  given this  ${\bf v}$
- So, we solve:

$$\min R = \min_{\alpha, \mathbf{b}} \sum_{i=1}^{m} \|\mathbf{x}_i - (\mathbf{b} + \alpha_i \mathbf{v})\|^2$$

where R is the reconstruction error

# Solving the optimization problem (II)

• We write the gradient of R wrt to  $\alpha_i$  and set it to 0:

$$\frac{\partial R}{\partial \alpha_i} = 2\|\mathbf{v}\|^2 \alpha_i - 2\mathbf{v}\mathbf{x}_i + 2\mathbf{b}\mathbf{v} = 0 \Rightarrow \alpha_i = \mathbf{v} \cdot (\mathbf{x}_i - \mathbf{b})$$

where we used  $\|\mathbf{v}\|^2 = 1$ .

• We write the gradient of R wrt b and set it to 0:

$$\nabla_{\mathbf{b}}R = 2m\mathbf{b} - 2\sum_{i=1}^{m}\mathbf{x}_{i} + 2\left(\sum_{i=1}^{m}\alpha_{i}\right)\mathbf{v} = 0 \Rightarrow m\mathbf{b} = \sum_{i=1}^{m}\mathbf{x}_{i} - \sum_{i=1}^{m}\alpha_{i}\mathbf{v}$$

• From above:

$$\sum_{i=1}^{m} \alpha_i \mathbf{v} = \left(\sum_{i=1}^{m} \mathbf{v}^{\top} (\mathbf{x}_i - \mathbf{b})\right) \mathbf{v} = \mathbf{v} \mathbf{v}^{\top} \left(\sum_{i=1}^{m} \mathbf{x}_i - m \mathbf{b}\right)$$

# Solving the optimization problem (III)

• Combining the previous two equations we get:

$$(\mathbf{I} - \mathbf{v}\mathbf{v}^{\top})m\mathbf{b} = (\mathbf{I} - \mathbf{v}\mathbf{v}^{\top})\sum_{i=1}^{m} \mathbf{x}_{i}$$

• This is satisfied when:

$$\mathbf{b} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i$$

- This means that the line goes through the mean of the data
- By substituting  $\alpha_i = \mathbf{v}^{\top}(\mathbf{x}_i \mathbf{b})$ , we get:

$$\hat{\mathbf{x}}_i = \mathbf{b} + \alpha_i \mathbf{v} = \mathbf{b} + \mathbf{v} \mathbf{v}^{\top} (\mathbf{x}_i - \mathbf{b})$$

 This means that instances are projected orthogonally on the line to get the associated point.

# **Example data**



# Example with $\mathbf{v} \propto (1, 0.3)$



## Finding the direction of the line

• Substituting  $\hat{\mathbf{x}}_i = \mathbf{b} + \mathbf{v}\mathbf{v}^{\top}(\mathbf{x}_i - \mathbf{b})$ , we want to solve:

$$\min_{\mathbf{v}} \sum_{i=1}^{m} \| (\mathbf{I} - \mathbf{v} \mathbf{v}^{\top}) (\mathbf{x}_i - \mathbf{b}) \|^2 \quad \text{s.t. } \| \mathbf{v} \|^2 = 1$$

• Using the fact that  $\|(\mathbf{I} - \mathbf{v}\mathbf{v}^{\top})(\mathbf{x}_i - \mathbf{b})\|^2 = \|\mathbf{x}_i - \mathbf{b}\|^2 - \|\mathbf{v}\mathbf{v}^{\top}(\mathbf{x}_i - \mathbf{b})\|^2$  (since  $\|\mathbf{v}\|^2 = 1$ ) this is equivalent to

$$\max_{\mathbf{v}} \sum_{i=1}^{m} \|\mathbf{v}\mathbf{v}^{\top}(\mathbf{x}_i - \mathbf{b})\|^2 \quad \text{s.t. } \|\mathbf{v}\|^2 = 1$$

which (using  $\|\mathbf{v}\mathbf{v}^{\top}(\mathbf{x}_i - \mathbf{b})\|^2 = (\mathbf{v}^{\top}(\mathbf{x}_i - \mathbf{b}))^2$ ) can be rewritten into

$$\max_{\mathbf{v}} \sum_{i=1}^{m} \mathbf{v}^{\top} (\mathbf{x}_i - \mathbf{b}) (\mathbf{x}_i - \mathbf{b})^{\top} \mathbf{v} \quad \text{s.t. } \|\mathbf{v}\|^2 = 1$$

# Finding the direction of the line (cont'd)

We want to solve

$$\max_{\mathbf{v}} \sum_{i=1}^{m} \mathbf{v}^{\top} (\mathbf{x}_i - \mathbf{b}) (\mathbf{x}_i - \mathbf{b})^{\top} \mathbf{v} \quad \text{s.t. } \|\mathbf{v}\|^2 = 1$$

• The Lagrangian is:

$$L(\mathbf{v}, \lambda) = \mathbf{v}^{\top} \left( \sum_{i=1}^{m} (\mathbf{x}_i - \mathbf{b}) (\mathbf{x}_i - \mathbf{b})^{\top} \right) \mathbf{v} + \lambda - \lambda \|\mathbf{v}\|^2$$

- Let  $\mathbf{S} = \sum_{i=1}^{m} (\mathbf{x}_i \mathbf{b})(\mathbf{x}_i \mathbf{b})^{\top}$  be an n-by-n matrix, which we will call the scatter matrix
- Setting  $\nabla_{\mathbf{v}} L = 0$ , the solution of the problem must satisfy

$$\mathbf{S}\mathbf{v} = \lambda\mathbf{v}$$

## Optimal choice of v

- Recall: an *eigenvector*  ${\bf u}$  of a matrix  ${\bf A}$  satisfies  ${\bf A}{\bf u}=\lambda{\bf u}$ , where  $\lambda\in\mathbb{R}$  is the *eigenvalue*.
- ullet Fact: the scatter matrix,  ${f S}$ , has n non-negative eigenvalues and n orthogonal eigenvectors.
- The equation obtained for v tells us that it should be an eigenvector of S.
- ullet The  ${f v}$  that maximizes  ${f v}^{ op}{f S}{f v}$  is the eigenvector of  ${f S}$  with the largest eigenvalue

### What is the scatter matrix

• S is an  $n \times n$  matrix with

$$\mathbf{S}_{k,l} = \sum_{i=1}^{m} (\mathbf{x}_i(k) - \mathbf{b}(k))(\mathbf{x}_i(l) - \mathbf{b}(l))$$

• Hence,  $S_{k,l}$  is proportional to the *estimated covariance* between the kth and lth dimension in the data.

### **Recall: Covariance**

• Covariance quantifies a *linear relationship* (if any) between two random variables X and Y.

$$Cov(X, Y) = E\{(X - E(X))(Y - E(Y))\}$$

ullet Given m samples of X and Y, covariance can be estimated as

$$\frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_X)(y_i - \mu_Y) ,$$

where  $\mu_X = (1/m) \sum_{i=1}^m x_i$  and  $\mu_Y = (1/m) \sum_{i=1}^m y_i$ .

• Note: Cov(X, X) = Var(X).

# **Covariance example**



# Example with optimal line: $\mathbf{b} = (0.54, 0.52)$ , $\mathbf{v} \propto (1, 0.45)$



### **Remarks**

- The line  $\mathbf{b} + \alpha \mathbf{v}$  is the *first principal component*.
- The variance of the data along the line  $\mathbf{b} + \alpha \mathbf{v}$  is as large as along any other line.
- b, v, and the  $\alpha_i$  can be computed easily in polynomial time.

#### **G**eneralization to d dimensions

- More generally, we can create a d-dimensional representation of our data by projecting the instances onto a hyperplane  $\mathbf{b} + \alpha^1 \mathbf{v}_1 + \ldots + \alpha^d \mathbf{v}_d$ .
- If we assume the  $\mathbf{v}_j$  are of unit length and orthogonal, then the optimal choices are:
  - b is the mean of the data (as before)
  - The  $\mathbf{v}_j$  are orthogonal eigenvectors of  $\mathbf{S}$  corresponding to its d largest eigenvalues.
  - Each instance is projected orthogonally on the hyperplane.

# **PCA**: overall algorithm

- 1. Center the data  $\tilde{\mathbf{x}}_i = \mathbf{x}_i \mathbf{b}$  where  $\mathbf{b} = \frac{1}{m} \sum_i \mathbf{x}_i$ .
- 2. (Optional step: normalize the data.)
- 3. Compute the top d (unit-norm) eigenvectors of  $\mathbf{S} = \sum_i \tilde{\mathbf{x}}_i \tilde{\mathbf{x}}_i^{\top}$ . (observe that  $\mathbf{S} = \tilde{\mathbf{X}}^{\top} \tilde{\mathbf{X}}$  where  $\tilde{\mathbf{X}} \in \mathbb{R}^{m \times n}$  is the centered data matrix)
- 4. Put these eigenvectors into a matrix  $\mathbf{U} \in \mathbb{R}^{n \times d}$ .
- 5. The PCA projection of any point x is given by
  - $* \ \mathbf{U}^{ op}(\mathbf{x} \mathbf{b}) \in \mathbb{R}^d$  in the latent space.
  - $* \mathbf{b} + \mathbf{U}\mathbf{U}^{\top}(\mathbf{x} \mathbf{b}) \in \mathbb{R}^n$  in the ambient space.

#### **Remarks**

- b, the eigenvalues, the  $v_j$ , and the projections of the instances can all be computed in polynomial time.
- The magnitude of the  $j^{th}$ -largest eigenvalue,  $\lambda_j$ , tells you how much variability in the data is captured by the  $j^{th}$  principal component
- So you have feedback on how to choose d!
- ullet When the eigenvalues are sorted in decreasing order, the proportion of the variance captured by the first d components is:

$$\frac{\lambda_1 + \dots + \lambda_d}{\lambda_1 + \dots + \lambda_d + \lambda_{d+1} + \dots + \lambda_n}$$

• So if a "big" drop occurs in the eigenvalues at some point, that suggests a good dimension cutoff

# **Example:** $\lambda_1 = 0.0938, \lambda_2 = 0.0007$



The first eigenvalue accounts for most variance, so the dimensionality is 1

**Example:**  $\lambda_1 = 0.1260, \lambda_2 = 0.0054$ 



The first eigenvalue accounts for most variance, so the dimensionality is 1 (despite some non-linear structure in the data)

## **Example:** $\lambda_1 = 0.0884, \lambda_2 = 0.0725$



- Each eigenvalue accounts for about half the variance, so the PCAsuggested dimension is 2
- Note that this is the *linear* dimension
- The true "non-linear" dimension of the data is 1 (using polar coordinates)

# **Example:** $\lambda_1 = 0.0881, \lambda_2 = 0.0769$



- Each eigenvalue accounts for about half the variance, so the PCA-suggested dimension is 2
- In this case, the non-linear dimension is also 2 (data is fully random)
- Note that PCA cannot distinguish non-linear structure from no structure
- This case and the previous one yield a very similar PCA analysis

#### Remarks

- Outliers have a big effect on the covariance matrix, so they can affect the eigenvectors quite a bit
- A simple examination of the pairwise distances between instances can help discard points that are very far away (for the purpose of PCA)
- If the variances in the original dimensions vary considerably, they can "muddle" the true correlations. There are two solutions:
  - Work with the correlation (covariance rescaled to (-1,1)) of the original data, instead of covariance matrix (which provides one type of normalization)
  - Normalize the input dimensions individually (possibly based on domain knowledge) before PCA
- PCA is most often performed using Singular Value Decomposition (SVD)
- In certain cases, the eigenvectors are meaningful; e.g. in vision, they can be displayed as images ("eigenfaces")

### **Eigenfaces example**





- A set of faces on the left and the corresponding eigenfaces (principal components) on the right
- Note that faces have to be centred and scaled ahead of time
- The components are in the same space as the instances (images) and can be used to reconstruct the images

### **Uses of PCA**

- Pre-processing for a supervised learning algorithm, e.g. for image data,
  robotic sensor data
- Used with great success in image and speech processing
- Visualization
- Exploratory data analysis
- Removing the linear component of a signal (before fancier non-linear models are applied)

# **Difficult example**



- PCA will make no difference between these examples, because the structure on the left is not linear
- Are there ways to find non-linear, low-dimensional manifolds?

#### Making PCA non-linear

- Suppose that instead of using the points  $\mathbf{x}_i$  as is, we wanted to go to some different feature space  $\phi(\mathbf{x}_i) \in \mathbb{R}^N$
- E.g. using polar coordinates instead of cartesian coordinates would help us deal with the circle
- In the higher dimensional space, we can then do PCA
- The result will be non-linear in the original data space!
- Similar idea to support vector machines

## PCA in feature space (I)

- Suppose for now that the data is centered in feature space, i.e.  $\sum_{i=1}^{m} \phi(\mathbf{x}_i) = \mathbf{0}$
- The scatter matrix is:

$$\mathbf{S} = \sum_{i=1}^m \phi(\mathbf{x}_i) \phi(\mathbf{x}_i)^{\top} = \mathbf{\Phi}^{\top} \mathbf{\Phi} \in \mathbb{R}^{N \times N} \quad \text{where } \mathbf{\Phi}_{i,:} = \phi(\mathbf{x}_i)^{\top}$$

• The eigenvectors are:

$$\mathbf{S}\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i}, \quad j = 1, \dots N \quad (N \text{ is the dim. of the feature space})$$

• We want to avoid explicitly going to feature space - instead we want to work with *kernels and the Gram matrix*  $\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^{\top} \in \mathbb{R}^{m \times m}$ :

$$\mathbf{K}_{i,j} = K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_j)^{\top} \phi(\mathbf{x}_k)$$

## PCA in feature space (II)

ullet Let  $\mathbf{v} \in \mathbb{R}^N$  be any eigenvector of the scatter matrix. We have

$$\lambda \mathbf{v} = \mathbf{S} \mathbf{v} = \mathbf{\Phi}^{\top} \mathbf{\Phi} \mathbf{v} = \sum_{i=1}^{m} \phi(\mathbf{x}_i) \phi(\mathbf{x}_i)^{\top} \mathbf{v}$$

⇒ The eigenvectors can be written as a linear combinations of features:

$$\mathbf{v} = \sum_{i=1}^{m} \frac{1}{\lambda} (\phi(\mathbf{x}_i)^{\top} \mathbf{v}) \ \phi(\mathbf{x}_i) = \sum_{i=1}^{m} (\mathbf{a})_i \phi(\mathbf{x}_i) = \mathbf{\Phi}^{\top} \mathbf{a}$$

• Finding an eigenvector  $\mathbf{v}$  of the scatter matrix is equivalent to finding the vector of coefficients  $\mathbf{a} \in \mathbb{R}^m$  (since  $\mathbf{v} = \mathbf{\Phi}^{\top} \mathbf{a}$ )!

## PCA in feature space (III)

ullet By substituting  ${f v}={f \Phi}^{ op}{f a}$  back into the eigenvector equation we get:

$$\mathbf{S}\mathbf{v} = \lambda\mathbf{v} \quad \Rightarrow \quad \mathbf{\Phi}^{\top}\mathbf{\Phi}\mathbf{v} = \mathbf{\Phi}^{\top}\mathbf{\Phi}\mathbf{\Phi}^{\top}\mathbf{a} = \lambda\mathbf{\Phi}^{\top}\mathbf{a} \quad \Rightarrow \quad \mathbf{\Phi}^{\top}\mathbf{K}\mathbf{a} = \lambda\mathbf{\Phi}^{\top}\mathbf{a}$$

ullet A small trick: multiplying by  $\Phi$  to the left gives us

$$\mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}} \mathbf{K} \mathbf{a} = \lambda \mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}} \mathbf{a} \quad \Rightarrow \quad \mathbf{K}^2 \mathbf{a} = \lambda \mathbf{K} \mathbf{a}$$

• We can remove a factor of K from both sides of the matrix (this will only affect eigenvectors with eigenvalues 0, which will not be principle components anyway):

$$\mathbf{K}\mathbf{a} = \lambda \mathbf{a}$$

 $\Rightarrow$  For any eigenvector  $\mathbf{v}$  of the scatter matrix (in feature space), the corresponding vector of coefficients  $\mathbf{a}$  is an eigenvector of the Gram matrix (with the same eigenvalue)!

## PCA in feature space (IV)

- ullet We know that  ${f a}$  is an eigenvector of  ${f K}$  but we don't know its norm yet...
- Remember that the eigenvector v of S must be of norm 1, this implies a dual normalization condition for the vector a:

$$\|\mathbf{v}\|^2 = \mathbf{v}^{\mathsf{T}}\mathbf{v} = 1 \Rightarrow \mathbf{a}^{\mathsf{T}}\mathbf{\Phi}\mathbf{\Phi}^{\mathsf{T}}\mathbf{a} = \mathbf{a}^{\mathsf{T}}\mathbf{K}\mathbf{a} = 1$$

- Plugging this into  $\mathbf{K}\mathbf{a} = \lambda \mathbf{a}$  we get  $\|\mathbf{a}\|^2 = \frac{1}{\lambda}$ .
  - ightarrow We can rescale a unit-norm eigenvector  ${f z}$  of  ${f K}$  to obtain  ${f a}=\frac{1}{\sqrt{\lambda}}{f z}$ .
- As before, for a new point  $\mathbf{x}$ , let  $\mathbf{k}_{\mathbf{x}} \in \mathbb{R}^m$  be defined by  $(\mathbf{k}_{\mathbf{x}})_i = K(\mathbf{x}, \mathbf{x}_i)$ . The projection of  $\mathbf{x}$  onto the jth principal components is:

$$\phi(\mathbf{x})^{\top} \mathbf{v}_j = \phi(\mathbf{x})^{\top} \mathbf{\Phi}^{\top} \mathbf{a}_j = \mathbf{k}_{\mathbf{x}}^{\top} \mathbf{a}_j$$

where  $\mathbf{v}_j$  is the jth eigenvector of  $\mathbf{S}$  and  $\mathbf{a}_j$  is the scaled jth eigenvector of  $\mathbf{K}$ !

#### Normalizing the feature space

- ullet In general, the features  $\phi(\mathbf{x}_i)$  may not have mean 0
- We want to work with  $\tilde{\phi}(\mathbf{x}_i) = \phi(\mathbf{x}_i) \frac{1}{m} \sum_{k=1}^m \phi(\mathbf{x}_k)$
- The corresponding kernel matrix entries are given by:

$$\tilde{\mathbf{K}}_{i,j} = \tilde{K}(\mathbf{x}_i, \mathbf{x}_j) = \tilde{\phi}(\mathbf{x}_i)^{\top} \tilde{\phi}(\mathbf{x}_j)$$

• After some algebra, we get:

$$\tilde{\mathbf{K}} = \mathbf{K} - \mathbf{O}_{1/m}\mathbf{K} - \mathbf{KO}_{1/m} + \mathbf{O}_{1/m}\mathbf{KO}_{1/m}$$

and

$$\tilde{\mathbf{k}}_{\mathbf{x}} = \mathbf{k}_{\mathbf{x}} - \mathbf{O}_{1/m} \mathbf{k}_{\mathbf{x}} - \mathbf{K} \mathbf{1}_{1/m} + \mathbf{O}_{1/m} \mathbf{K} \mathbf{1}_{1/m}$$

where  $\mathbf{O}_{1/m}$  (resp.  $\mathbf{1}_{1/m}$ ) is the matrix (resp. vector) with all elements equal to 1/m.

#### Kernel PCA: overall algorithm

- 1. Pick a kernel and build the Gram matrix  $\mathbf{K} \in \mathbb{R}^{m \times m}$ .
- 2. Compute the Gram matrix of the centered the data in the feature space:

$$\tilde{\mathbf{K}} = \mathbf{K} - \mathbf{O}_{1/m}\mathbf{K} - \mathbf{KO}_{1/m} + \mathbf{O}_{1/m}\mathbf{KO}_{1/m}$$

- 3. Compute the top d eigenvalues and (unit-norm) eigenvectors of  $\mathbf{K}$ .
- 4. Put the eigenvectors into a matrix  $\mathbf{U} \in \mathbb{R}^{n \times d}$  and the corresponding eigenvalues in a diagonal matrix  $\mathbf{D} \in \mathbb{R}^{d \times d}$ .
- 5. The PCA projection of any point x is given by

$$\hat{\mathbf{x}} = \mathbf{D}^{-1/2} \mathbf{U}^{\top} \tilde{\mathbf{k}}_{\mathbf{x}}$$

where  $\tilde{\mathbf{k}}_{\mathbf{x}}$  is defined as in the previous slide. (Note that multiplying by  $\mathbf{D}^{-1/2}$  corresponds to rescaling the unit-norm eigenvectors of  $\tilde{\mathbf{K}}$  to get the vectors of coefficients  $\mathbf{a}_{i}$ ).

#### Representation obtained by kernel PCA

- Each  $y_j = \phi(\mathbf{x})^\top \mathbf{v}_j = \mathbf{a}_j^\top \mathbf{k}_{\mathbf{x}}$  is the coordinate of  $\phi(\mathbf{x})$  along one of the feature space axis  $\mathbf{v}_j$
- Since the  $\mathbf{v}_j$ 's are orthogonal, the projection of  $\phi(\mathbf{x})$  onto the space spanned by the top d eigenvectors is:

$$\Pi \phi(\mathbf{x}) = \sum_{j=1}^{d} y_j \mathbf{v}_j = \sum_{j=1}^{d} (\mathbf{a}_j^{\top} \mathbf{k}_{\mathbf{x}}) \mathbf{\Phi}^{\top} \mathbf{a}_j$$

• The reconstruction error in feature space can be evaluated as:

$$\|\phi(\mathbf{x}) - \Pi\phi(\mathbf{x})\|^2$$

This can be re-written by expanding the norm; we obtain dot-products which can all be replaced by kernels

ullet Note that the error will be 0 on the training data if enough  ${f v}_j$  are retained

#### Alternative reconstruction error measures

- An alternative way of measuring performance is by looking at how well kernel PCA preserves distances between data points
- In this case, the Euclidian distance in kernel space between points  $\phi(\mathbf{x}_i)$  and  $\phi(\mathbf{x}_j)$ ,  $d_{ij}$ , is:

$$\|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\|^2 = K(\mathbf{x}_i, \mathbf{x}_i) + K(\mathbf{x}_j, \mathbf{x}_j) - 2K(\mathbf{x}_i, \mathbf{x}_j)$$

- The distance  $\hat{d}_{ij}$  between the projected points in kernel space is defined as above, but with  $\phi(\mathbf{x}_i)$  replaced by  $\Pi\phi(\mathbf{x}_i)$ .
- ullet The average of  $d_{ij} \hat{d}_{ij}$  over all pairs of points is a measure of reconstruction error
- Note that reconstruction error in the original space of the  $\mathbf{x}_i$  is very difficult to compute, because it requires taking  $\Pi\phi(\mathbf{x})$  and finding its pre-image in the original feature space, which is not always feasible (though approximations exist)

#### **Example: Two concentric spheres**

two concentric spheres data



- Colours are used for clarity in the picture, but the data is presented unlabelled
- We want to project form 3D to 2D

<sup>&</sup>lt;sup>1</sup>Wang, 2012

## **Example: Two concentric spheres - PCA**



Note that PCA is unable to separate the points from the two spheres

<sup>&</sup>lt;sup>2</sup>Wang, 2012

# Example: Kernel PCA with Polynomial Kernel (d = 5)



- Points from one sphere are much closer together, the others are scattered
- The projected data is not linearly separable

<sup>&</sup>lt;sup>3</sup>Wang, 2012

# Example: Kernel PCA with Gaussian Kernel ( $\sigma = 20$ )



- Points from the two spheres are really well separated
- Note that the choice of parameter for the kernel matters!
- Validation can be used to determine good kernel parameter values

<sup>&</sup>lt;sup>4</sup>Wang, 2012

#### **Example: De-noising images**

Original data



Data corrupted with Gaussian noise



Result after linear PCA



Result after kernel PCA, Gaussian kernel



#### **PCA** vs Kernel **PCA**

- Kernel PCA can give a good re-encoding of the data when it lies along a non-linear manifold
- ullet The kernel matrix is  $m \times m$ , so kernel PCA will have difficulties if we have lots of data points
- In this case, we may need to use dictionary methods to pick a subset of the data
- For general kernels, we may not be able to easily visualize the image of a point in the input space, though visualization still works for simple kernels

#### **Locally Linear Embedding**

- $\mathbf{x}_1, \cdots, \mathbf{x}_m \in \mathbb{R}^n$  lies on a k-dimensional manifold.
- ⇒ Each point and its neighbors lie close to a *locally linear* patch of the manifold.
  - We try to reconstruct each point from its neighbors:

$$\min_{\mathbf{W}} \sum_{i} \|\mathbf{x}_{i} - \sum_{j} \mathbf{W}_{i,j} \mathbf{x}_{j}\|^{2}$$

s.t.  $\mathbf{W1} = \mathbf{1}$  and  $\mathbf{W}_{i,j} = 0$  if  $\mathbf{x}_j \notin neighbors(\mathbf{x}_i)$ 

- $\Rightarrow$  For each point the weights are invariant to rotation, scaling and translations: the weights  $\mathbf{W}_{i,j}$  capture intrinsic geometric properties of each neighborhood.
  - These local properties of each neighborhood should be preserved by the embedding:

$$\min_{\mathbf{z}_1, \dots, \mathbf{z}_m \in \mathbb{R}^k} \sum_i \|\mathbf{z}_i - \sum_j \mathbf{W}_{i,j} \mathbf{z}_j\|^2$$

# **PCA** vs Locally Linear Embedding



[Saul, L. K., & Roweis, S. T. (2000). An introduction to locally linear embedding.]