1

(11)

(12)

(13)

(14)

(15)

Assignment 2

Gunnam Sri Satya Koushik CS22BTECH11026

12.13.6.10 Question: How many times must a man toss a fair coin so that the probability of having at least one head is more than 90?

Answer: 4

Solution : Lets X,Y,n,p be defined as follows Since each toss either results in a heads or a tails

Parameter	Value	Description
X	$0 \le X \le n$	Heads count in n tosses
Y	$0 \le Y \le n$	Tails count in n tosses
n	$n \in N$	Number of tosses
D	p = 0.5	Probability of a tail

TABLE I

RANDOM VARIABLE DEFINITIONS.

 $n \ge \log_2 10$

 $n \ge 3.3219$

 $\frac{1}{2}^n \le 0.1$

 $2^n \ge 10$

n > 4

$$X + Y = n \tag{1}$$

Required n such that $X \ge 1$

$$\implies Y \le n - 1$$
 (2)

Also Y is a binomial random variable

$$Y = Bin(n, p) \tag{3}$$

$$\Pr(Y = k) = \binom{n}{r} p^k (1 - p)^{n - k} \tag{4}$$

Consider the cumulative distribution function of Y

$$F_Y(k) = \sum_{r=0}^{r=k} \Pr(Y = r)$$
 (5)

$$= \sum_{r=0}^{r=k} \binom{n}{r} p^r (1-p)^{n-r}$$
 (6)

Required n such that

$$F_Y(n-1) \ge 0.9 \tag{7}$$

$$\sum_{r=0}^{r=n-1} \binom{n}{r} \frac{1}{2}^n \ge 0.9 \tag{8}$$

$$\sum_{n=0}^{r=n} \binom{n}{r} \frac{1}{2}^n - \frac{1}{2}^n \ge 0.9 \tag{9}$$

$$1 - \frac{1}{2}^n \ge 0.9 \tag{10}$$