UNBALANCED TRANSPORTATION PROBLEM

Algorithm's

Jake input of cost, sorvice, destination as vectors

check if balanced / unbalanced (Demand == supply)

3 of unbalanced 3 balanced

Check:

if demand < supply -> create dummy destination else — Can't solve as demand-supply

Ex (balanced transpostation problem) 8 23 16 4324 2323 12 13 112 9 7

Ex (Unbelanced transportation problem)

	30	
5 o		
	25	4324
40		2323
	35	1122
70		
	у О	
	الم الم	

1 (reate dummy destination with cost o → Nonth-West Corner Rule:30 \Diamond \bigcirc \bigcirc

Ĵ	Minimum	Cost Ra	ule	[sow	ve](d	estinution
		50	30		<i>t</i> 1	
		40	25 35	h 3 2 3	23	8
		70	hO		2 2	Φ
		<u></u>	30 			
		0 36	25	0 35	6 25 46	0 15 30
	15/56			35		15
	45 40 40 70	30	25		25 15	15
) 2 1		
	if dest	neak		min=h		
			2)	min=1		

-1020

ps,