SBML Model Report

Model name: "Bertram2007_IsletCell_Oscillations"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Ishan Ajmera¹ and Catherine Lloyd² at September 29th 2011 at 10:13 p.m. and last time modified at April eighth 2016 at 5:08 p.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	11
events	0	constraints	0
reactions	0	function definitions	0
global parameters	151	unit definitions	0
rules	94	initial assignments	0

Model Notes

This is the model described in the article:

Interaction of glycolysis and mitochondrial respiration in metabolic oscillations of pancreatic islets.

¹EMBL-EBI, ajmera@ebi.ac.uk

²The University of Auckland, The Bioengineering Institute, c.lloyd@aukland.ac.nz

Bertram R, Satin LS, Pedersen MG, Luciani DS, Sherman A. <u>Biophys J.</u> 2007 Mar 1;92(5):1544-55. Pubmed ID: 17172305, doi: 10.1529/biophysj.106.097154.

Abstract:

Insulin secretion from pancreatic beta-cells is oscillatory, with a typical period of 2-7 min, reflecting oscillations in membrane potential and the cytosolic Ca(2+) concentration. Our central hypothesis is that the slow 2-7 min oscillations are due to glycolytic oscillations, whereas faster oscillations that are superimposed are due to Ca(2+) feedback onto metabolism or ion channels. We extend a previous mathematical model based on this hypothesis to include a more detailed description of mitochondrial metabolism. We demonstrate that this model can account for typical oscillatory patterns of membrane potential and Ca(2+) concentration in islets. It also accounts for temporal data on oxygen consumption in islets. A recent challenge to the notion that glycolytic oscillations drive slow Ca(2+) oscillations in islets are data showing that oscillations in Ca(2+), mitochondrial oxygen consumption, and NAD(P)H levels are all terminated by membrane hyperpolarization. We demonstrate that these data are in fact compatible with a model in which glycolytic oscillations are the key player in rhythmic islet activity. Finally, we use the model to address the recent finding that the activity of islets from some mice is uniformly fast, whereas that from islets of other mice is slow. We propose a mechanism for this dichotomy.

This model was taken from the CellML repository and automatically converted to SBML. The original model was: **Bertram, Satin, Pedersen, Luciani, Sherman, 2007 version 02** The original CellML model was created and curated by:

Catherine May Lloyd

c.lloyd(at)auckland.ac.nz

The University of Auckland, Bioengineering Institute

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
Compartment	Compartment		3	1	litre	Ø	

3.1 Compartment Compartment

This is a three dimensional compartment with a constant size of one litre.

Name Compartment

4 Species

This model contains eleven species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Vm	Vm	Compartment	$\text{mol} \cdot l^{-1}$		\Box
n	n	Compartment	$\text{mol} \cdot l^{-1}$		\Box
G6P	G6P	Compartment	$\text{mol} \cdot l^{-1}$		\Box
FBP	FBP	Compartment	$\text{mol} \cdot l^{-1}$		\Box
NADHm	NADHm	Compartment	$\text{mol} \cdot l^{-1}$		\Box
delta_psi	delta_psi	Compartment	$\text{mol} \cdot l^{-1}$		\Box
Cam	Cam	Compartment	$\text{mol} \cdot l^{-1}$		\Box
ADPm	ADPm	Compartment	$\text{mol} \cdot l^{-1}$		\Box
adp	adp	Compartment	$\text{mol} \cdot l^{-1}$		\Box
С	c	Compartment	$\text{mol} \cdot l^{-1}$		\Box
Caer	Caer	Compartment	$\text{mol} \cdot l^{-1}$		\Box

5 Parameters

This model contains 151 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
cm	cm	0000258	5300.000		Ø
Ik	Ik		0.000		
gK	gK	0000009	2700.000		
$\mathtt{n}_{-}\mathtt{infinity}$	n_infinity	1.5	50710358059757 · 10	$)^{-4}$	
tau_n	tau_n		20.000		
Ica	Ica		-2927.842		\Box
gCa	gCa	0000009	1000.000		
$\mathtt{m}_{-}\mathtt{infinity}$	$m_{-}infinity$		0.034		
Ikca	Ikca		466.296		
gkCa	gkCa	0000009	300.000		
kd	kd	0000009	0.500		
Ikatp	Ikatp		2433.430		\Box
${\tt gkATP}$	$gkATP_{-}$		16000.000		
katpo	katpo		0.010		
topo	topo		110.234		\Box
bottomo	bottomo		10871.926		\Box
mgadp	mgadp		187.605		\Box
adp3m	adp3m		153.495		\Box
atp4m	atp4m		68.150		\Box
JGPDH	JGPDH	7.3	34846922834953 · 10	$)^{-4}$	
kGPDH	kGPDH	0000009	5 · 10	$)^{-4}$	
F6P	F6P		90.300		
JPFK	JPFK		0.374		\Box
JPFK_ms	JPFK_ms	3.7	4364085279847 · 10	$)^{-4}$	\Box
bottom1	bottom1	0000009	1.000		
weight1	weight1	0000009	1.000		$ \overline{\mathbf{Z}} $
topa1	topa1	0000009	0.000		
k1	k1	0000009	30.000		$\overline{\mathbf{Z}}$
k2	k2	0000009	1.000		$\overline{\mathbf{Z}}$
k3	k3	0000009	50000.000		$ \overline{\mathbf{Z}} $
k4	k4	0000009	220.000		$ \overline{\mathscr{A}} $
VmaxPFK	VmaxPFK	0000009	5.000		$\overline{\mathbf{Z}}$
weight2	weight2		8444.405		
topa2	topa2		0.000		\Box
bottom2	bottom2		8445.405		\Box
topa3	topa3		0.163		\Box
weight3	weight3		0.163		

Id	Name	SBO	Value	Unit	Constant
bottom3	bottom3		8445.568		
f13	f13	0000009	0.020		
f43	f43	0000009	20.000		$\overline{\mathbf{Z}}$
f23	f23	0000009	0.200		$\overline{\mathbf{Z}}$
f42	f42	0000009	20.000		$\overline{\mathbf{Z}}$
f41	f41	0000009	20.000		$\overline{\mathbb{Z}}$
weight4	weight4		68.856		
topa4	topa4		69.020		\Box
bottom4	bottom4		8514.424		
weight5	weight5		2.160		
topa5	topa5		69.020		
bottom5	bottom5		8516.584		
weight6	weight6		911.996		
topa6	topa6		69.020		
bottom6	bottom6		9428.580		
weight7	weight7		1.761		
topa7	topa7		70.781		
bottom7	bottom7		9430.341		
weight8	weight8		37.182		
topa8	topa8		107.963		
bottom8	bottom8		9467.524		
weight9	weight9		16.667		
topa9	topa9		107.963		
bottom9	bottom9		9484.190		
weight10	weight10		7037.004		\Box
topa10	topa10		107.963		
bottom10	bottom10		16521.194		\Box
weight11	weight11		135.902		
topa11	topa11		243.865		\Box
bottom11	bottom11		16657.095		\Box
weight12	weight12		2869.018		
topa12	topa12		3112.883		\Box
bottom12	bottom12		19526.114		
weight13	weight13		36.000		
topa13	topa13		3112.883		\Box
bottom13	bottom13		19562.114		\Box
weight14	weight14		759.996		
topa14	topa14		3112.883		\Box
bottom14	bottom14		20322.110		
weight15	weight15		1467.736		
topa15	topa15		3112.883		
bottom15	bottom15		21789.846		

Id	Name	SBO	Value	Unit	Constant
weight16	weight16		1549.270		
topa16	topa16		4662.153		
bottom16	bottom16		23339.116		
topb	topb		1467.736		
lambda	lambda	0000009	0.060		
JPDH	JPDH	0000009	0.452		
p1	p1	0000009	400.000		
p2	p2	0000009	1.000		\square
p3	p3	0000009	0.010		
JGPDHbas	JGPDHbas	0000009	5 · 10	$)^{-4}$	
J0	JO		0.447		
p4	p4	0000009	0.600		
p5	p5	0000009	0.100		
p6	p6	0000009	177.000		
p7	p7	0000009	5.000		
NADm	NADm		9.600		\Box
NADmtot	NADmtot	0000009	10.000		
Cmito	Cmito	0000009	1.800		$\overline{\mathbf{Z}}$
JHres	JHres		5.213		
p8	p8	0000009	7.000		
p9	p9		0.100		$\overline{\mathbf{Z}}$
p10	p10	0000009	177.000		$ \overline{\checkmark} $
p11	p11	0000009	5.000		$ \overline{\mathbf{Z}} $
JF1F0	JF1F0		1.129		
p13	p13		10.000		
p14	p14		190.000		$\overline{\mathbf{Z}}$
p15	p15	0000009	8.500		$ \overline{\mathbf{Z}} $
p16	p16	0000009	35.000		$ \overline{\mathbf{Z}} $
JHatp	JHatp		3.387		
$\mathtt{JGK_ms}$	JGK_ms		4 · 10	$)^{-4}$	\Box
JGK	JGK	0000009	0.400		
JHleak	JHleak		0.298		
p17	p17	0000009	0.002		
p18	p18	0000009	-0.030		
JANT	JANT		1.124		
p19	p19	0000009	0.350		
p20	p20	0000009	2.000		
FRT	FRT	0000009	0.037		$ \overline{\mathbf{Z}} $
RATm	RATm		0.351		
Juni	Juni		0.158		\Box
p21	p21	0000009	0.040		
p22	p22	0000009	1.100		$\overline{\mathbf{Z}}$

Id	Name	SBO	Value	Unit	Constant
JNaCa	JNaCa		0.162		
p23	p23	0000009	0.010		
p24	p24	0000009	0.016		$ \overline{\mathbf{Z}} $
fmito	fmito	0000009	0.010		$ \overline{\mathbf{Z}} $
Jmito	Jmito		0.004		
ATPm	ATPm		3.900		
Amtot	Amtot	0000009	15.000		\square
Jhyd	Jhyd		0.080		
khyd	khyd	0000009	5 · 10	0^{-5}	\square
khydbas	khydbas	0000009	5 · 10	0^{-5}	
atp	atp		1363.000		
atot	atot	0000009	2500.000		\square
fcyt	fcyt	0000009	0.010		\square
Jmem	Jmem		0.001		
kPMCA	kPMCA	0000009	0.100		\square
alpha	alpha	0000009	4.5 · 10	0^{-6}	\square
Cbas	Cbas	0000009	0.050		
Jleak	Jleak		0.069		
pleak	pleak	0000009	2 · 10	0^{-4}	\mathbf{Z}
JSERCA	JSERCA		0.068		
kSERCA	kSERCA	0000009	0.400		\square
Jer	Jer	9.6	5999999999995 - 10	0^{-4}	
fer	fer	0000009	0.010		\square
VcVer	Vc_Ver	0000009	31.000		
gamma	gamma	0000009	0.001		
kappa	kappa	0000009	0.001		$\overline{\mathbb{Z}}$
delta	delta		0.073		
VK	VK	0000009	-75.000		
VCa	VCa	0000009	25.000		$\overline{\mathbf{Z}}$
AMP	AMP	0000009	500.000		$ \mathcal{I} $

6 Rules

This is an overview of 94 rules.

6.1 Rule Ik

Rule Ik is an assignment rule for parameter Ik:

$$Ik = gK \cdot [n] \cdot ([Vm] - VK) \tag{1}$$

6.2 Rule n_infinity

Rule $n_{infinity}$ is an assignment rule for parameter $n_{infinity}$:

n_infinity =
$$\frac{1}{1 + \exp\left(\frac{(16 + [Vm])}{5}\right)}$$
 (2)

6.3 Rule m_infinity

Rule m_infinity is an assignment rule for parameter m_infinity:

$$m_{infinity} = \frac{1}{1 + \exp\left(\frac{(20 + [Vm])}{12}\right)}$$
(3)

6.4 Rule Ica

Rule Ica is an assignment rule for parameter Ica:

$$Ica = gCa \cdot m_infinity \cdot ([Vm] - VCa)$$
(4)

6.5 Rule Ikca

Rule Ikca is an assignment rule for parameter Ikca:

$$Ikca = gkCa \cdot \frac{[c]^2}{[c]^2 + kd^2} \cdot ([Vm] - VK)$$
 (5)

6.6 Rule mgadp

Rule mgadp is an assignment rule for parameter mgadp:

$$mgadp = 0.165 \cdot [adp] \tag{6}$$

6.7 Rule topo

Rule topo is an assignment rule for parameter topo:

$$topo = 0.08 \cdot \left(1 + \frac{2 \cdot mgadp}{17}\right) + 0.89 \cdot \left(\frac{mgadp}{17}\right)^{2}$$
 (7)

6.8 Rule adp3m

Rule adp3m is an assignment rule for parameter adp3m:

$$adp3m = 0.135 \cdot [adp] \tag{8}$$

6.9 Rule JGPDH

Rule JGPDH is an assignment rule for parameter JGPDH:

$$JGPDH = kGPDH \cdot [FBP]^{\frac{1}{2}}$$
 (9)

6.10 Rule F6P

Rule F6P is an assignment rule for parameter F6P:

$$F6P = 0.3 \cdot [G6P] \tag{10}$$

6.11 Rule topa2

Rule topa2 is an assignment rule for parameter topa2:

$$topa2 = topa1 \tag{11}$$

6.12 Rule weight3

Rule weight3 is an assignment rule for parameter weight3:

$$weight3 = \frac{F6P^2}{k3} \tag{12}$$

6.13 Rule topa3

Rule topa3 is an assignment rule for parameter topa3:

$$topa3 = topa2 + weight3 \tag{13}$$

6.14 Rule weight5

Rule weight5 is an assignment rule for parameter weight5:

$$weight5 = \frac{[FBP]}{k2} \tag{14}$$

6.15 Rule weight7

Rule weight7 is an assignment rule for parameter weight7:

weight7 =
$$\frac{[FBP] \cdot F6P^2}{k2 \cdot f23 \cdot k3}$$
 (15)

6.16 Rule weight9

Rule weight9 is an assignment rule for parameter weight9:

weight9 =
$$\frac{AMP}{k1}$$
 (16)

6.17 Rule weight11

Rule weight11 is an assignment rule for parameter weight11:

$$weight11 = \frac{AMP \cdot F6P^2}{k1 \cdot k3 \cdot f13}$$
 (17)

6.18 Rule weight13

Rule weight13 is an assignment rule for parameter weight13:

weight13 =
$$\frac{AMP \cdot [FBP]}{k1 \cdot k2}$$
 (18)

6.19 Rule weight15

Rule weight15 is an assignment rule for parameter weight15:

weight15 =
$$\frac{\text{AMP} \cdot [\text{FBP}] \cdot \text{F6P}^2}{\text{k1} \cdot \text{k2} \cdot \text{f23} \cdot \text{f13} \cdot \text{k3}}$$
(19)

6.20 Rule topb

Rule topb is an assignment rule for parameter topb:

$$topb = weight15 (20)$$

6.21 Rule JO

Rule J0 is an assignment rule for parameter J0:

$$JO = \frac{\frac{p4 \cdot [\text{NADHm}]}{p5 + [\text{NADHm}]}}{1 + \exp\left(\frac{[\text{delta_psi}] - p6}{p7}\right)}$$
(21)

6.22 Rule NADm

Rule NADm is an assignment rule for parameter NADm:

$$NADm = NADmtot - [NADHm]$$
 (22)

6.23 Rule JPDH

Rule JPDH is an assignment rule for parameter JPDH:

$$JPDH = \frac{p1}{p2 + \frac{[NADHm]}{NADm}} \cdot \frac{[Cam]}{p3 + [Cam]} \cdot (JGPDH + JGPDHbas) \tag{23}$$

6.24 Rule JHres

Rule JHres is an assignment rule for parameter JHres:

$$JHres = p8 \cdot \frac{[NADHm]}{p9 + [NADHm]} \cdot \frac{1}{1 + exp\left(\frac{[delta.psi] - p10}{p11}\right)}$$
(24)

6.25 Rule JGK_ms

Rule JGK_ms is an assignment rule for parameter JGK_ms:

$$JGK_{-}ms = kappa \cdot JGK$$
 (25)

6.26 Rule JHleak

Rule JHleak is an assignment rule for parameter JHleak:

$$JHleak = p17 \cdot [delta_psi] + p18$$
 (26)

6.27 Rule Juni

Rule Juni is an assignment rule for parameter Juni:

$$Juni = (p21 \cdot [delta_psi] - p22) \cdot [c]^2$$
(27)

6.28 Rule JNaCa

Rule JNaCa is an assignment rule for parameter JNaCa:

$$JNaCa = p23 \cdot \frac{[Cam]}{[c]} \cdot exp(p24 \cdot [delta_psi])$$
 (28)

6.29 Rule Jmito

Rule Jmito is an assignment rule for parameter Jmito:

$$Jmito = JNaCa - Juni$$
 (29)

6.30 Rule ATPm

Rule ATPm is an assignment rule for parameter ATPm:

$$ATPm = Amtot - [ADPm]$$
 (30)

6.31 Rule JF1F0

Rule JF1F0 is an assignment rule for parameter JF1F0:

$$JF1F0 = \frac{p16 \cdot p13}{p13 + ATPm} \cdot \frac{1}{1 + exp\left(\frac{p14 - [delta_psi]}{p15}\right)}$$
(31)

6.32 Rule JHatp

Rule JHatp is an assignment rule for parameter JHatp:

$$JHatp = 3 \cdot JF1F0 \tag{32}$$

6.33 Rule RATm

Rule RATm is an assignment rule for parameter RATm:

$$RATm = \frac{ATPm}{[ADPm]}$$
 (33)

6.34 Rule JANT

Rule JANT is an assignment rule for parameter JANT:

$$JANT = p19 \cdot \frac{RATm}{RATm + p20} \cdot exp(0.5 \cdot FRT \cdot [delta_psi])$$
 (34)

6.35 Rule atp

Rule atp is an assignment rule for parameter atp:

$$atp = atot - [adp] (35)$$

6.36 Rule atp4m

Rule atp4m is an assignment rule for parameter atp4m:

$$atp4m = 0.05 \cdot atp \tag{36}$$

6.37 Rule bottomo

Rule bottomo is an assignment rule for parameter bottomo:

bottomo =
$$\left(1 + \frac{\text{mgadp}}{17}\right)^2 \cdot \left(1 + \frac{\text{adp3m}}{26} + \frac{\text{atp4m}}{1}\right)$$
 (37)

6.38 Rule katpo

Rule katpo is an assignment rule for parameter katpo:

$$katpo = \frac{topo}{bottomo}$$
 (38)

6.39 Rule Ikatp

Rule Ikatp is an assignment rule for parameter Ikatp:

$$Ikatp = gkATP_{-} \cdot katpo \cdot ([Vm] - VK)$$
(39)

6.40 Rule weight2

Rule weight2 is an assignment rule for parameter weight2:

$$weight2 = \frac{atp^2}{k4} \tag{40}$$

6.41 Rule bottom2

Rule bottom2 is an assignment rule for parameter bottom2:

$$bottom2 = bottom1 + weight2 (41)$$

6.42 Rule bottom3

Rule bottom3 is an assignment rule for parameter bottom3:

$$bottom3 = bottom2 + weight3$$
 (42)

6.43 Rule weight4

Rule weight4 is an assignment rule for parameter weight4:

weight4 =
$$\frac{(\text{F6P} \cdot \text{atp})^2}{\text{k3} \cdot \text{k4} \cdot \text{f43}}$$
 (43)

6.44 Rule topa4

Rule topa4 is an assignment rule for parameter topa4:

$$topa4 = topa3 + weight4 (44)$$

6.45 Rule bottom4

Rule bottom4 is an assignment rule for parameter bottom4:

$$bottom4 = bottom3 + weight4 (45)$$

6.46 Rule topa5

Rule topa5 is an assignment rule for parameter topa5:

$$topa5 = topa4 (46)$$

6.47 Rule bottom5

Rule bottom5 is an assignment rule for parameter bottom5:

$$bottom5 = bottom4 + weight5 (47)$$

6.48 Rule weight6

Rule weight6 is an assignment rule for parameter weight6:

$$weight6 = \frac{[FBP] \cdot atp^2}{k2 \cdot f42 \cdot k4}$$
 (48)

6.49 Rule topa6

Rule topa6 is an assignment rule for parameter topa6:

$$topa6 = topa5 (49)$$

6.50 Rule bottom6

Rule bottom6 is an assignment rule for parameter bottom6:

$$bottom6 = bottom5 + weight6$$
 (50)

6.51 Rule topa7

Rule topa7 is an assignment rule for parameter topa7:

$$topa7 = topa6 + weight7 (51)$$

6.52 Rule bottom7

Rule bottom7 is an assignment rule for parameter bottom7:

$$bottom7 = bottom6 + weight7 (52)$$

6.53 Rule weight8

Rule weight8 is an assignment rule for parameter weight8:

weight8 =
$$\frac{[FBP] \cdot F6P^2 \cdot atp^2}{k2 \cdot f23 \cdot f42 \cdot f43 \cdot k3 \cdot k4}$$
 (53)

6.54 Rule topa8

Rule topa8 is an assignment rule for parameter topa8:

$$topa8 = topa7 + weight8 (54)$$

6.55 Rule topa9

Rule topa9 is an assignment rule for parameter topa9:

$$topa9 = topa8 (55)$$

6.56 Rule bottom8

Rule bottom8 is an assignment rule for parameter bottom8:

$$bottom8 = bottom7 + weight8$$
 (56)

6.57 Rule bottom9

Rule bottom9 is an assignment rule for parameter bottom9:

$$bottom9 = bottom8 + weight9 (57)$$

6.58 Rule weight10

Rule weight10 is an assignment rule for parameter weight10:

$$weight10 = \frac{AMP \cdot atp^2}{k1 \cdot k4 \cdot f41}$$
 (58)

6.59 Rule topa10

Rule topa10 is an assignment rule for parameter topa10:

$$topa10 = topa9 (59)$$

6.60 Rule bottom10

Rule bottom10 is an assignment rule for parameter bottom10:

$$bottom 10 = bottom 9 + weight 10 (60)$$

6.61 Rule topa11

Rule topa11 is an assignment rule for parameter topa11:

$$topa11 = topa10 + weight11 \tag{61}$$

6.62 Rule bottom11

Rule bottom11 is an assignment rule for parameter bottom11:

$$bottom11 = bottom10 + weight11$$
 (62)

6.63 Rule weight12

Rule weight12 is an assignment rule for parameter weight12:

weight12 =
$$\frac{AMP \cdot F6P^2 \cdot atp^2}{k1 \cdot f13 \cdot f41 \cdot f43 \cdot k3 \cdot k4}$$
 (63)

6.64 Rule topa12

Rule topa12 is an assignment rule for parameter topa12:

$$topa12 = topa11 + weight12 (64)$$

6.65 Rule bottom12

Rule bottom12 is an assignment rule for parameter bottom12:

$$bottom12 = bottom11 + weight12$$
 (65)

6.66 Rule topa13

Rule topa13 is an assignment rule for parameter topa13:

$$topa13 = topa12 \tag{66}$$

6.67 Rule bottom13

Rule bottom13 is an assignment rule for parameter bottom13:

$$bottom 13 = bottom 12 + weight 13$$
 (67)

6.68 Rule weight14

Rule weight14 is an assignment rule for parameter weight14:

weight14 =
$$\frac{AMP \cdot [FBP] \cdot atp^2}{k1 \cdot k2 \cdot f42 \cdot f41 \cdot k4}$$
 (68)

6.69 Rule topa14

Rule topa14 is an assignment rule for parameter topa14:

$$topa14 = topa13 (69)$$

6.70 Rule bottom14

Rule bottom14 is an assignment rule for parameter bottom14:

$$bottom 14 = bottom 13 + weight 14$$
 (70)

6.71 Rule topa15

Rule topa15 is an assignment rule for parameter topa15:

$$topa15 = topa14 \tag{71}$$

6.72 Rule bottom15

Rule bottom15 is an assignment rule for parameter bottom15:

$$bottom15 = bottom14 + weight15$$
 (72)

6.73 Rule weight16

Rule weight16 is an assignment rule for parameter weight16:

weight16 =
$$\frac{AMP \cdot [FBP] \cdot F6P^2 \cdot atp^2}{k1 \cdot k2 \cdot k3 \cdot k4 \cdot f23 \cdot f13 \cdot f42 \cdot f41 \cdot f43}$$
(73)

6.74 Rule topa16

Rule topa16 is an assignment rule for parameter topa16:

$$topa16 = topa15 + weight16 \tag{74}$$

6.75 Rule bottom16

Rule bottom16 is an assignment rule for parameter bottom16:

$$bottom16 = bottom15 + weight16 (75)$$

6.76 Rule JPFK

Rule JPFK is an assignment rule for parameter JPFK:

$$JPFK = \frac{VmaxPFK \cdot lambda \cdot topa16 + VmaxPFK \cdot topb}{bottom16}$$
 (76)

6.77 Rule JPFK_ms

Rule JPFK_ms is an assignment rule for parameter JPFK_ms:

$$JPFK_ms = kappa \cdot JPFK$$
 (77)

6.78 Rule Jhyd

Rule Jhyd is an assignment rule for parameter Jhyd:

$$Jhyd = (khyd \cdot [c] + khydbas) \cdot atp$$
 (78)

6.79 Rule Jmem

Rule Jmem is an assignment rule for parameter Jmem:

$$Jmem = (alpha \cdot Ica + kPMCA \cdot ([c] - Cbas))$$
(79)

6.80 Rule Jleak

Rule Jleak is an assignment rule for parameter Jleak:

$$Jleak = pleak \cdot ([Caer] - [c])$$
(80)

6.81 Rule JSERCA

Rule JSERCA is an assignment rule for parameter JSERCA:

$$JSERCA = kSERCA \cdot [c]$$
 (81)

6.82 Rule Jer

Rule Jer is an assignment rule for parameter Jer:

$$Jer = Jleak - JSERCA$$
 (82)

6.83 Rule delta

Rule delta is an assignment rule for parameter delta:

$$delta = \frac{3.9}{53.2} \tag{83}$$

6.84 Rule Vm

Rule Vm is a rate rule for species Vm:

$$\frac{d}{dt}Vm = \frac{(Ik + Ica + Ikca + Ikatp)}{cm}$$
(84)

6.85 Rule n

Rule n is a rate rule for species n:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{n} = \frac{\text{n_infinity} - [\mathbf{n}]}{\text{tau_n}} \tag{85}$$

6.86 Rule G6P

Rule G6P is a rate rule for species G6P:

$$\frac{\mathrm{d}}{\mathrm{d}t}G6P = JGK_{ms} - JPFK_{ms}$$
(86)

6.87 Rule FBP

Rule FBP is a rate rule for species FBP:

$$\frac{d}{dt}FBP = JPFK_ms - 0.5 \cdot JGPDH$$
 (87)

6.88 Rule NADHm

Rule NADHm is a rate rule for species NADHm:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NADHm} = \mathrm{gamma} \cdot (\mathrm{JPDH} - \mathrm{JO}) \tag{88}$$

6.89 Rule delta_psi

Rule delta_psi is a rate rule for species delta_psi:

$$\frac{d}{dt}delta_psi = \frac{JHres - (JHatp + JANT + JHleak + JNaCa + 2 \cdot Juni)}{Cmito}$$
(89)

6.90 Rule Cam

Rule Cam is a rate rule for species Cam:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Cam} = \mathrm{fmito} \cdot \mathrm{Jmito} \tag{90}$$

6.91 Rule ADPm

Rule ADPm is a rate rule for species ADPm:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ADPm} = \mathrm{gamma} \cdot (\mathrm{JANT} - \mathrm{JF1F0}) \tag{91}$$

6.92 Rule adp

Rule adp is a rate rule for species adp:

$$\frac{d}{dt}adp = delta \cdot JANT + Jhyd \tag{92}$$

6.93 Rule c

Rule c is a rate rule for species c:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{c} = \mathrm{fcyt} \cdot (\mathrm{Jmem} + \mathrm{Jer} + \mathrm{delta} \cdot \mathrm{Jmito}) \tag{93}$$

6.94 Rule Caer

Rule Caer is a rate rule for species Caer:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Caer} = \mathrm{fer} \cdot \mathrm{Vc}_{-}\mathrm{Ver} \cdot \mathrm{Jer} \tag{94}$$

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

7.1 Species Vm

Name Vm

Initial amount -60 mol

Involved in rule Vm

One rule which determines this species' quantity.

7.2 Species n

Name n

Initial amount 0 mol

Involved in rule n

One rule which determines this species' quantity.

7.3 Species G6P

Name G6P

Initial amount 301 mol

Involved in rule G6P

One rule which determines this species' quantity.

7.4 Species FBP

Name FBP

Initial amount 2.16 mol

Involved in rule FBP

One rule which determines this species' quantity.

7.5 Species NADHm

Name NADHm

Initial amount 0.4 mol

Involved in rule NADHm

One rule which determines this species' quantity.

7.6 Species delta_psi

Name delta_psi

SBO:000009 kinetic constant

Initial amount 164 mol

Involved in rule delta_psi

One rule which determines this species' quantity.

7.7 Species Cam

Name Cam

Initial amount 0.2 mol

Involved in rule Cam

One rule which determines this species' quantity.

7.8 Species ADPm

Name ADPm

Initial amount 11.1 mol

Involved in rule ADPm

One rule which determines this species' quantity.

7.9 Species adp

Name adp

Initial amount 1137 mol

Involved in rule adp

One rule which determines this species' quantity.

7.10 Species c

Name c

Initial amount 0.17 mol

Involved in rule c

One rule which determines this species' quantity.

7.11 Species Caer

Name Caer

Initial amount 345 mol

Involved in rule Caer

One rule which determines this species' quantity.

A Glossary of Systems Biology Ontology Terms

SBO:0000009 kinetic constant: Numerical parameter that quantifies the velocity of a chemical reaction

SBO:0000258 capacitance: Measure of the amount of electric charge stored (or separated) for a given electric potential. The unit of capacitance id the Farad

SMLZLATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany