The problem is being resolved by including multiple machine learning models for classification and then comparing their performance. Below, I tried to include additional models like **Logistic Regression**, **Support Vector Machine (SVM)**, **K-Nearest Neighbors (KNN)**, and **Gradient Boosting**. After training these models, we evaluated them using a classification report and confusion matrix.

Step 1: Prepare the Data for Classification

Since we're focusing on classification, we'll binarize the target variable (energy consumption) into two classes: *low and high consumption*.

Step 2: Train and Evaluate Multiple Machine Learning Models

Code to implement and evaluate the models:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.model_selection import train_test_split
# Simulate GIS Data
gis_data = pd.DataFrame({
  'Building_ID': range(1, 101),
  'Building_Footprint': np.random.uniform(50, 200, 100), # in square meters
  'Building_Height': np.random.uniform(5, 50, 100), # in meters
  'Roof_Type': np.random.choice(['Flat', 'Gabled', 'Hipped'], 100)
})
# Simulate Drone Data
drone data = pd.DataFrame({
  'Building_ID': range(1, 101),
```

```
'Solar_Potential': np.random.uniform(100, 500, 100), #kWh/year
  'Shape_Complexity': np.random.randint(1, 10, 100) # Arbitrary complexity score
})
# Simulate Historical Energy Data
historical_data = pd.DataFrame({
  'Building_ID': range(1, 101),
  'Annual_Energy_Consumption': np.random.uniform(5000, 15000, 100), #kWh/year
  'Peak_Demand': np.random.uniform(1, 5, 100) # kW
})
# Merge datasets based on Building_ID
data = pd.merge(gis_data, drone_data, on='Building_ID')
data = pd.merge(data, historical_data, on='Building_ID')
# Feature engineering
data['Footprint_Height_Ratio'] = data['Building_Footprint'] / data['Building_Height']
data['Energy_Intensity'] = data['Annual_Energy_Consumption'] / data['Building_Footprint']
# Convert categorical variables to numerical
data = pd.get_dummies(data, columns=['Roof_Type'], drop_first=True)
# Features and target
X = data.drop(columns=['Building_ID', 'Annual_Energy_Consumption'])
y = pd.cut(data['Annual_Energy_Consumption'], bins=[0, 7500, 15000], labels=[0, 1])
# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize models
models = {
```

```
'Logistic Regression': LogisticRegression(),
  'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42),
  'Support Vector Machine': SVC(),
  'K-Nearest Neighbors': KNeighborsClassifier(n_neighbors=5),
  'Gradient Boosting': GradientBoostingClassifier(n_estimators=100, random_state=42)
}
# Train and evaluate each model
for name, model in models.items():
  model.fit(X_train, y_train)
  y_pred = model.predict(X_test)
  # Print the classification report
  print(f"Classification Report for {name}:")
  print(classification_report(y_test, y_pred))
  # Confusion Matrix
  cm = confusion_matrix(y_test, y_pred)
  # Plot Confusion Matrix
  plt.figure(figsize=(8, 6))
  sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
  plt.title(f'{name} Confusion Matrix')
  plt.xlabel('Predicted')
  plt.ylabel('True')
  plt.show()
```

VISUALIZED RESULTS OF 5 MACHINE LEARNING CLASSIFIERS

Classification Report for Logistic Regression:

	precision	recall	f1-score	support
0	0.75	0.50	0.60	6
1	0.81	0.93	0.87	14
accuracy			0.80	20
macro avg	0.78	0.71	0.73	20
weighted avg	0.79	0.80	0.79	20

Logistic Regression Confusion Matrix

Classification Report for Random Forest:

	precision	recall	f1-score	support
0	0.50	0.50	0.50	6
1	0.79	0.79	0.79	14
accuracy			0.70	20
macro avg	0.64	0.64	0.64	20
weighted avg	0.70	0.70	0.70	20

Classificatio	n Report for	Support	Vector Machine:	
	precision	recall	f1-score	support
0	0.00	0.00	0.00	6
1	0.70	1.00	0.82	14
accuracy			0.70	20
macro avg	0.35	0.50	0.41	20
weighted avg	0.49	0.70	0.58	20

	Classification Report for K-Nearest Neighbors:			
support	f1-score	recall	precision	
6	0.55	0.50	0.60	0
14	0.83	0.86	0.80	1
20	0.75			accuracy
20	0.69	0.68	0.70	macro avg
20	0.74	0.75	0.74	weighted avg

support	_		n Report for precision	Classification
6	0.50	0.50	0.50	0
14	0.79	0.79	0.79	1
20	0.70			accuracy
20	0.64	0.64	0.64	macro avg
20	0.70	0.70	0.70	weighted avg

Model Accuracy Comparison chart

