Unsupervised Learning: Dimension Reduction

by Prof. Seungchul Lee iSystems Design Lab http://isystems.unist.ac.kr/ UNIST

Table of Contents

- I. 1. Principal Component Analysis (PCA)
- II. 2. PCA Algorithm
 - I. 2.1. Pre-processing
 - II. 2.2. Maximize variance
 - III. 2.3. Minimize the sum-of-squared error
 - IV. 2.4. Dimension Reduction method $(n \rightarrow k)$
- III. 3. Python Codes
- IV. 4. PCA Example
- V. 5. PCA Visualization
 - I. 5.1. Eigenvalues
 - II. 5.2. Eigenvectors

1. Principal Component Analysis (PCA)

Motivation: Can we describe high-dimensional data in a "simpler" way?

- ightarrow Dimension reduction without losing too much information
- ightarrow Find a low-dimensional, yet useful representation of the data
- · Why dimensionality reduction?
 - insights into the low-dimensinal structures in the data (visualization)
 - Fewer dimensions ⇒ Less chances of overfitting ⇒ Better generalization
 - Speeding up learning algorithms
 - · Most algorithms scale badly with increasing data dimensionality
 - Less storage requirements (data compression)
 - Note: Dimensionality Reduction is different from Feature Selection
 - · .. although the goals are kind of the same
 - Dimensionality reduction is more like "Feature Extraction"
 - Constructing a small set of new features from the original features

idea: highly correlated data contains redundant features

high redundancy

- Each example x has 2 features $\{x_1,x_2\}$
- Consider ignoring the feature $oldsymbol{x}_2$ for each example
- Each 2-dimensional example x now becomes 1-dimensional $x=\{x_1\}$
- Are we losing much information by throwing away x_2 ?
- No. Most of the data spread is along x_1 (very little variance along x_2)

- Each example x has 2 features $\{x_1, x_2\}$
- Consider ignoring the feature \boldsymbol{x}_2 for each example
- Each 2-dimensional example x now becomes 1-dimensional $x=\{x_1\}$
- Are we losing much information by throwing away x_2 ?
- Yes, the data has substantial variance along both features (_i.e._ both axes)

- Now consider a change of axes
- Each example x has 2 features $\{u_1,u_2\}$
- Consider ignoring the feature u_2 for each example
- Each 2-dimensional example x now becomes 1-dimensional $x=\{u_1\}$
- No. Most of the data spread is along u_1 (very little variance along u_2)

- Data o projection onto unit vector \hat{u}_1
 - PCA is used when we want projections capturing maximum variance directions
 - Principal Components (PC): directions of maximum variability in the data
 - Roughly speaking, PCA does a change of axes that can represent the data in a succinct manner

- HOW?
 - 1. Maximize variance (most separable)
 - 2. Minimize the sum-of-squares (minimum squared error)

2. PCA Algorithm

2.1. Pre-processing

· Given data

$$x^{(i)} = egin{bmatrix} x_1^{(i)} \ dots \ x_n^{(i)} \end{bmatrix}, \qquad X = egin{bmatrix} \cdots & (x^{(1)})^T & \cdots \ \cdots & (x^{(2)})^T & \cdots \ dots \ dots \ \ddots & (x^{(m)})^T & \cdots \end{bmatrix}$$

- · Shifting (zero mean) and rescaling (unit variance)
 - 1. Shift to zero mean

$$egin{aligned} \mu &= rac{1}{m} \sum_{i=1}^m x^{(i)} \ x^{(i)} \leftarrow x^{(i)} - \mu \quad ext{(zero mean)} \end{aligned}$$

2. [optional] Rescaling (unit variance)

$$egin{aligned} \sigma_j^2 &= rac{1}{m-1} \sum_{i=1} m \Big(x_j^{(i)} \Big)^2 \ x_j^{(i)} &\leftarrow rac{x_j^{(i)}}{\sigma_j} \end{aligned}$$

2.2. Maximize variance

ullet Find unit vector u such that maximizes variance of projections

Note: m pprox m-1 for big data

$$\begin{aligned} \text{variance of projected data} &= \frac{1}{m} \sum_{i=1}^m \left(u^T x^{(i)} \right)^2 = \frac{1}{m} \sum_{i=1}^m \left(x^{(i)^T} u \right)^2 \\ &= \frac{1}{m} \sum_{i=1}^m \left(x^{(i)^T} u \right)^T \left(x^{(i)^T} u \right) = \frac{1}{m} \sum_{i=1}^m u^T x^{(i)} x^{(i)^T} u \\ &= u^T \left(\frac{1}{m} \sum_{i=1}^m x^{(i)} x^{(i)^T} \right) u \\ &= u^T S u \qquad (S = \frac{1}{m} X^T X : \text{sample covariance matrix}) \end{aligned}$$

· In an optimization form

$$\begin{array}{ll} \text{maximize} & u^T S u \\ \text{subject to} & u^T u = 1 \end{array}$$

$$u^T S u = u^T \lambda u = \lambda u^T u = \lambda \quad ext{(Eigen analysis}: S u = \lambda u)$$

- \implies pick the largest eigenvalue λ_1 of covariance matrix S
- $\implies u=u_1$ is the $\lambda_1's$ corresponding eigenvector
- $\implies u_1$ is the first principal component (direction of highest variance in the data)

2.3. Minimize the sum-of-squared error

$$\begin{split} \frac{1}{m} \sum_{i=1}^{m} & \|e^{(i)}\|^2 = \frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2 - \frac{1}{m} \sum_{i=1}^{m} u^T x^{(i)} x^{(i)^T} u \\ &= \frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2 - u^T \left(\frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)^T}\right) u \end{split}$$

· In an optimization form

$$\implies ext{maximize } u^T \left(rac{1}{m} \sum_{i=1}^m x^{(i)} x^{(i)^T}
ight) u = ext{max } u^T S u$$

 \therefore minimize $error^2 = \text{maximize } variance$

2.4. Dimension Reduction method (n ightarrow k)

- 1. Choose top k (orthonormal) eigenvectors, $U = [u_1, u_2, \cdots, u_k]$
- 2. Project x_i onto span $\{u_1,u_2,\cdots,u_k\}$

$$z^{(i)} = egin{bmatrix} u_1^T x^{(i)} \ u_2^T x^{(i)} \ dots \ u_L^T x^{(i)} \end{bmatrix} \quad ext{or} \quad z = U^T x$$

· Pictorial summary of PCA

 $x^{(i)} o$ projection onto unit vector $u \implies u^T x^{(i)} =$ distance from the origin along u

3. Python Codes

In [3]:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d

%matplotlib inline

In [2]:

In [3]:

```
S = 1/(m-1)*X.T*X
S = np.asmatrix(S)

D, V = np.linalg.eig(S)

idx = np.argsort(-D)
D = D[idx]
V = V[:,idx]

print(D)
print(V)
```

```
[ 3.78868797 0.19209281]
[[ 0.88056479 -0.47392579]
[ 0.47392579 0.88056479]]
```

In [4]:

```
h = V[1,0]/V[0,0]
xp = np.arange(-6, 6, 0.1)
yp = h*xp

fig = plt.figure(figsize=(10, 6))
plt.plot(X[:,0], X[:,1], 'k.')
plt.plot(xp, yp, 'r', linewidth=4.0)
plt.axis('equal')
plt.show()
```


In [5]:

```
Z = X*V[:,1]

plt.figure(figsize=(10, 6))
plt.hist(Z, 51)
plt.show()
```


4. PCA Example

· multiple video camera records of spring and mass system

- source:
 - https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf
 (https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf)

In [6]:

%%html <center><iframe width="560" height="315" src="https://www.youtube.com/embed/Pkit-64g0eU" frameborder ="0" allowfullscreen> </iframe></center>

In [7]:

%%html <center><iframe width="560" height="315" src="https://www.youtube.com/embed/x4lvjVjUUqg" frameborder ="0" allowfullscreen> </iframe></center>

In [8]:

```
%%html
<center><iframe
width="560" height="315" src="https://www.youtube.com/embed/2t62WkNIqxY" frameborder
="0" allowfullscreen>
</iframe></center>
```


$$x^{(i)} = egin{bmatrix} x ext{ in camera 1} \ y ext{ in camera 2} \ x ext{ in camera 2} \ x ext{ in camera 3} \ y ext{ in camera 3} \end{bmatrix}, \qquad X = egin{bmatrix} dots & dots & dots & dots \ (x^{(1)}) & (x^{(2)}) & \cdots & (x^{(m)}) \ dots & dots & dots & dots \ \end{pmatrix}$$

In [4]:

```
from six.moves import cPickle

X = cPickle.load(open('./data_files/pca_spring.pkl','rb'))
X = np.asmatrix(X.T)

print(X.shape)
m = X.shape[0]
```

(273, 6)

In [5]:

```
plt.figure(figsize=(15, 7))
plt.subplot(131)
plt.plot(X[:,0], -X[:,1],'r')
plt.axis('equal')
plt.title('Camera 1')

plt.subplot(132)
plt.plot(X[:,2], -X[:,3],'b')
plt.axis('equal')
plt.title('Camera 2')

plt.subplot(133)
plt.plot(X[:,4], -X[:,5],'k')
plt.axis('equal')
plt.title('Camera 3')

plt.show()
```


In [6]:

```
X = X - np.mean(X,axis=0)

S = 1/(m-1)*X.T*X
S = np.asmatrix(S)

D, V = np.linalg.eig(S)

idx = np.argsort(-D)
D = D[idx]
V = V[:,idx]

print(D)
print(V)
```

```
[ 2.46033089e+04
                                 8.73851124e+01
                                                 8.19527660e+01
                  3.22747042e+02
  3.19467195e+01
                  7.42861585e+00]
[ 0.35632379  0.57286174  0.132303
                                   0.59881765 -0.40143215 0.0873404
51
[ \ 0.58419477 \ -0.22610057 \ -0.20325551 \ -0.47751523 \ -0.58153918 \ \ 0.0085780 ]
4]
 [ \ 0.08652315 \ -0.02671281 \ \ 0.75692234 \ -0.14177391 \ -0.06010869 \ -0.6286142 
2]
[ 0.4159798 -0.29900638 0.49374948 0.05637591 0.32442517
                                                         0.6207555
91
[-0.46389987 0.37746931 0.32963322 -0.45633202 -0.34660023 0.4530840
3]]
```

In [7]:

```
plt.figure(figsize=(10,6))
plt.stem(np.sqrt(D))
plt.show()
```


In [9]:

```
# relative magnitutes of the principal components

Z = X*V
xp = np.arange(0,m)/24

plt.figure(figsize=(10, 6))
plt.plot(xp, Z)
plt.yticks([])
plt.show()
```


In [10]:

```
## projected onto the first principal component
# 6 dim -> 1 dim (dim reduction)
# relative magnitute of the first principal component

Z = X*V[:,0]

plt.figure(figsize=(10, 6))
plt.plot(Z)
plt.yticks([])
plt.show()
```


Reference: John P Cunningham & Byron M Yu, Dimensionality reduction for large-scale neural recordings, Nature Neuroscience 17, 1500–1509 (2014)

5. PCA Visualization

5.1. Eigenvalues

- λ_1,λ_2 indicates variance along the eigenvectors, respectively.
 - The larger eigenvalue is, the more dominante feature (eigenvector) is

5.2. Eigenvectors

- given basis $\{\hat{x}_1,\hat{x}_2\}$ to transformed basis $\{\hat{u}_1,\hat{u}_2\}$

In [15]:

%%javascript

\$.getScript('https://kmahelona.github.io/ipython_notebook_goodies/ipython_notebook_to
c.js')