Zbiór wskazówek do projektu 2.

ZADANIE 1: Przeprowadzić symulację dyskretnego, jednorodnego łańcucha Markowa $\{X_n\}$ o danej macierzy prawdopodobieństw przejść, gdzie dane są dwa stany początkowe.

ZADANIE 2: Przeprowadzić symulację procesu narodzin i śmierci $\{Y_t\}$ o odpowiednich intensywnościach oraz $Y_0 = 1$.

ZADANIE 3: Przeprowadzić symulację procesu Poissona $\{Z_t\}$ o intensywnościach $\lambda_n=1$ i $\mu_n=0$ oraz $Z_0=0$.

W zadaniu 1:

 \land (można) krótko opisać metodę generowania łańcucha $\{X_n\}$,

- narysować przykładową trajektorię,

∧ krótko opisać własności trajektorii, np. długość pozostawania w poszczególnych stanach,

- oszacować funkcje wartości średniej i wariancji procesów $X^{(1)}$ i $X^{(2)}$ na podstawie odpowiednio dużej liczby trajektorii,

∧ narysować wykresy wartości średniej i wariancji, porównać z wartościami teoretycznymi średniej i wariancji rozkładu stacjonarnego (jeżeli taki istnieje), zbadać zbieżność obu wykresów,

∧ porównać odpowiednie wykresy dla różnych stanów początkowych,

- wyznaczyć w sposób analityczny rozkłady stacjonarne (tzn. wektory $\pi \in \mathbf{R}^4$ takie, że $A \cdot \pi = \pi$),

∧ (można) wstawić odpowiednie obliczenia, które doprowadziły do żądanego rezultatu,

 \land (można) zinterpretować otrzymane rozkłady stacjonarne (np. jak długo dany proces pozostaje w konkretnych stanach)

– zbadać zbieżność rozkładów $X_n^{(1)}$ i $X_n^{(2)}$ dla dużych n do rozkładu stacjonarnego.

 \wedge porównać rozkłady $X_n^{(1)}$ i $X_n^{(2)}$ między sobą oraz z osobna $X_n^{(1)}$ z rozkładem stacjonarnym i $X_n^{(2)}$ z rozkładem stacjonarnym,

∧ (można) powołać się na odpowiednie twierdzenie, które gwarantuje przy odpowiednich założeniach zbieżność do rozkładu stacjonarnego.

W zadaniu 2:

- oszacować funkcje wartości średniej i wariancji procesu Y (dotyczy wszystkich grup),
- wyznaczyć (o ile istnieją) w sposób analityczny rozkłady stacjonarne (dotyczy tych grup, gdzie $\lambda_0 > 0$),
- wyznaczyć przybliżone prawdopodobieństwo ruiny w funkcji czasu (dotyczy tych grup, gdzie $\lambda_0 = 0$),

 \land zinterpretować wykres (np. czy p-stwo ruiny zbiega do 1 przy $t \to \infty$)

- wyznaczyć przybliżony rozkład Y dla kilku t i zbadać jego asymptotyczne zachowanie (dotyczy wszystkich grup).

 \land sprawdzić, czy Y_t dla dużych t zbiega do jakiegoś stanu stacjonarnego z 2. punktu badź

 \wedge (jeżeli Y_t nie ma nietrywialnego rozkładu stacjonarnego) sprawdzić, czy Y_t jest zbieżne, czy też $Y_t \to \infty$ z prawdopodobieństwem większym od zera.

W zadaniu 3:

- oszacować funkcje wartości średniej i wariancji procesu ${\cal Z},$
- ∧ porównać z wartościami teoretycznymi,
- sprawdzić, że $Z_t/t \to 1$ prawie na pewno przez narysowanie kilku trajektorii procesu Z_t/t ,
- \wedge przedstawić 5-6 trajektorii Z_t/t na jednym wykresie z zaznaczoną asymptotą y=1,
- (dla chętnych) sprawdzić testem χ^2 , czy Z_1 ma rozkład Poissona z $\lambda=1.$