SEMAINE 12

SUITES ET SÉRIES DE FONCTIONS

EXERCICE 1:

- 1. Soit la fonction $\varphi: x \mapsto 2x(1-x)$. Montrer que la suite de fonctions (φ^n) , où $\varphi^n = \varphi \circ \varphi \circ \cdots \circ \varphi$ représente l'itérée n-ième de φ , converge uniformément sur tout compact de]0,1[vers la fonction constante $\frac{1}{2}$.
- **2.** Soit I un segment inclus dans]0,1[. Montrer que toute fonction f continue de I vers \mathbb{R} est limite uniforme sur I d'une suite de fonctions polynômes à coefficients entiers relatifs.

On pourra commencer par traiter le cas où f est constante sur I.

Source : Antoine CHAMBERT-LOIR, Stéfane FERMIGIER, Vincent MAILLOT, Exercices de mathématiques pour l'agrégation, Analyse 1, ISBN 2-225-84692-8

1. Soit K un compact inclus dans]0,1[. Alors il existe α avec $0 < \alpha < \frac{1}{2}$ tel que $K \subset [\alpha, 1-\alpha]$. Pour tout entier naturel n, on a alors $\varphi^n(K) \subset \varphi^n([\alpha, 1-\alpha])$.

Une étude rapide de φ (faire un dessin) montre la symétrie $\varphi(1-x)=\varphi(x)$ pour tout $x\in[0,1]$ et le fait que, sur l'intervalle $\left[0,\frac{1}{2}\right]$ (qui est stable par φ), l'application φ est continue et strictement croissante. On en déduit que $\varphi([\alpha,1-\alpha])=\left[\varphi(\alpha),\frac{1}{2}\right]$ puis, par une récurrence immédiate, $\varphi^n([\alpha,1-\alpha])=\left[\varphi^n(\alpha),\frac{1}{2}\right]$ pour tout $n\in\mathbb{N}^*$.

Enfin, la suite $(\varphi^n(\alpha))$, à valeurs dans $\left]0,\frac{1}{2}\right[$, est croissante (car, sur cet intervalle, stable par φ , on a $\varphi(x) \geq x$), majorée donc convergente, et il est alors immédiat que sa limite est $\frac{1}{2}$.

De $\varphi^n(K) \subset \left[\varphi^n(\alpha), \frac{1}{2}\right]$ avec $\lim_{n \to \infty} \varphi^n(\alpha) = \frac{1}{2}$, on déduit que la suite de fonctions (φ^n) converge uniformément sur K vers la fonction constante $\frac{1}{2}$.

2. • Montrons d'abord le résultat dans le cas où f est constante (f=C) sur I :

 \triangleright si $C = \frac{1}{2}$, c'est la question **1.** puisque les fonctions φ^n sont des polynômes à coefficients entiers relatifs :

 \triangleright on en déduit le résultat pour $C=\frac{1}{2^p}$ pour tout $p\in {\rm I\! N}$ par récurrence sur p en utilisant le résultat suivant :

 $si\ (f_n) \to f\ uniform\'ement,\ (g_n) \to g\ uniform\'ement,\ et\ si\ les\ fonctions\ f_n\ et\ g_n\ sont\ uniform\'ement\ born\'ees,\ alors\ (f_ng_n) \to fg\ uniform\'ement\ (d\'emonstration\ \'evidente)\ ;$

 \rhd on en déduit alors le résultat lorsque C est un nombre dyadique, c'est-à-dire de la forme $\frac{q}{2^p}$ avec $q\in {\bf Z}$ et $p\in {\rm I\!N}.$

⊳ on montre enfin que c'est vrai pour C réel quelconque, puisque les nombres dyadiques sont denses dans \mathbb{R} . Pour tout entier naturel p, on peut encadrer le réel C entre ses valeurs approchées dyadiques à 2^{-p} près par défaut et par excès, qui sont les nombres $u_p = 2^{-p} E(2^p C)$ et $v_p = u_p + 2^{-p}$.

• Soit $f: I \to \mathbb{R}$ continue. On sait (théorème de Weierstrass) qu'on peut approcher f uniformément sur I par des fonctions polynômes (à coefficients réels!) : si on se donne $\varepsilon > 0$, il existe un polynôme P à coefficients réels tel que $\|f - P\|_{\infty} \leq \frac{\varepsilon}{2}$ (où $\|\cdot\|_{\infty}$ représente

la norme de la convergence uniforme sur $\mathcal{C}(I,\mathbb{R})$). Notons $P(x)=\sum_{k=0}^d a_k x^k$. Pour tout

$$k \in [0, d]$$
, soit $Q_k \in \mathbf{Z}[X]$ tel que $||Q_k - a_k||_{\infty} \le \frac{\varepsilon}{2(d+1)}$ et posons $Q(x) = \sum_{k=0}^d Q_k(x)x^k$.

La fonction Q est polynomiale à coefficients entiers relatifs et, de $|x| \le 1$ pour tout $x \in I$, on déduit par l'inégalité triangulaire que $||f - Q||_{\infty} \le \varepsilon$.

Le résultat reste vrai, par translation, sur tout segment de \mathbb{R} ne rencontrant pas \mathbb{Z} . Il est faux sur un segment I rencontrant \mathbb{Z} car, si $k \in I \cap \mathbb{Z}$, si (R_n) est une suite d'éléments de $\mathbb{Z}[X]$ convergeant uniformément vers f sur I, alors $f(k) = \lim_{n \to \infty} R_n(k)$ est nécessairement un entier relatif car les $R_n(k)$ sont tous des entiers relatifs.

EXERCICE 2:

Méthode de Laplace

On admettra que $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$.

Soit $f: [-1,1] \to \mathbb{R}$ une fonction strictement positive, de classe \mathcal{C}^2 , ayant en 0 un maximum global strict, et telle que f''(0) < 0.

a. Démontrer que

$$\exists a > 0 \quad \forall x \in [-1, 1] \qquad f(x) \le f(0) \cdot e^{-ax^2}$$
.

b. En déduire que

$$\int_{-1}^{1} (f(x))^n dx \underset{n \to +\infty}{\sim} \sqrt{\frac{2\pi}{n}} \cdot \frac{(f(0))^{n+\frac{1}{2}}}{\sqrt{|f''(0)|}}$$

(on pourra poser $u = x\sqrt{n}$).

c. Donner un équivalent, lorsque x tend vers $+\infty$, des expressions

$$g(x) = \int_0^{\frac{\pi}{2}} (\sin t)^x dt$$
 et $h(x) = \int_0^{\frac{\pi}{2}} e^{x \cos t} dt$.

a. Pour $x \in [-1, 1] \setminus \{0\}$, on a

$$f(x) \le f(0) \cdot e^{-ax^2} \iff \ln\left(\frac{f(x)}{f(0)}\right) \le -ax^2 \iff a \le -\frac{1}{x^2} \ln\left(\frac{f(x)}{f(0)}\right)$$
.

Or, la fonction $\varphi: x \mapsto -\frac{1}{x^2} \ln \left(\frac{f(x)}{f(0)} \right)$ est continue et à valeurs strictement positives sur chacun des intervalles [-1,0[et]0,1[. Du développement limité

$$\frac{f(x)}{f(0)} = 1 + \frac{f''(0)}{2f(0)} x^2 + o(x^2) ,$$

on déduit que $\ln\left(\frac{f(x)}{f(0)}\right) = \frac{f''(0)}{2f(0)} \, x^2 + o(x^2)$, donc $\lim_{x\to 0} \varphi(x) = -\frac{f''(0)}{2f(0)} > 0$. La fonction φ , ainsi prolongée, est continue et strictement positive sur le segment [-1,1], donc admet un minimum strictement positif m. Pour répondre à la question, on peut choisir a=m.

b. Posons
$$I_n = \int_{-1}^1 (f(x))^n dx = \frac{1}{\sqrt{n}} \int_{-\sqrt{n}}^{\sqrt{n}} \left(f\left(\frac{u}{\sqrt{n}}\right) \right)^n du$$
. Considérons alors

$$J_n = \frac{\sqrt{n}}{(f(0))^n} I_n = \int_{-\sqrt{n}}^{\sqrt{n}} \left(\frac{f\left(\frac{u}{\sqrt{n}}\right)}{f(0)} \right)^n du = \int_{\mathbb{R}} g_n$$

où, pour tout $n \in \mathbb{N}^*$, la fonction g_n est définie sur \mathbb{R} par

$$g_n(u) = \left(\frac{f\left(\frac{u}{\sqrt{n}}\right)}{f(0)}\right)^n$$
 si $u \in [-\sqrt{n}, \sqrt{n}], \quad g_n(u) = 0$ sinon.

Chaque fonction g_n est continue par morceaux sur \mathbb{R} . Pour $u \in [-\sqrt{n}, \sqrt{n}]$, on a $g_n(u) = e^{h_n(u)}$, où

$$h_n(u) = n \cdot \ln \left(\frac{f\left(\frac{u}{\sqrt{n}}\right)}{f(0)} \right) .$$

Pour tout $u \in \mathbb{R}^*$ fixé, le développement limité de f à l'ordre deux en zéro permet d'écrire, lorsque n tend vers $+\infty$:

$$\frac{f\left(\frac{u}{\sqrt{n}}\right)}{f(0)} = 1 + \frac{f''(0)}{2f(0)} \cdot \frac{u^2}{n} + o\left(\frac{1}{n}\right) ,$$

d'où
$$\ln\left(\frac{f\left(\frac{u}{\sqrt{n}}\right)}{f(0)}\right) \underset{n\to+\infty}{\sim} \frac{f''(0)}{2f(0)} \cdot \frac{u^2}{n}$$
 et $\lim_{n\to+\infty} g_n(u) = \exp\left(\frac{f''(0)}{2f(0)}u^2\right)$. Enfin, la

majoration de la question **a.** donne $g_n(u) \leq e^{-au^2}$, la fonction $u \mapsto e^{-au^2}$ étant intégrable sur \mathbb{R} . On peut donc appliquer le théorème de convergence dominée :

$$\lim_{n \to +\infty} J_n = \lim_{n \to +\infty} \int_{\mathbb{R}} g_n = \int_{-\infty}^{+\infty} \exp\left(\frac{f''(0)}{2f(0)}u^2\right) du = \sqrt{2\pi \frac{f(0)}{|f''(0)|}}$$

en utilisant $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$. Cela fournit bien l'équivalent demandé pour I_n .

Remarque. Le lecteur vérifiera sans peine que, sous les mêmes hypothèses, on a

$$\int_0^1 (f(x))^n dx \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}} \cdot \frac{(f(0))^{n+\frac{1}{2}}}{\sqrt{|f''(0)|}}.$$

c. Dans l'intégrale g(x), poser $t=\frac{\pi}{2}(1-u)$: on obtient $g(x)=\frac{\pi}{2}\int_0^1 \left(\cos\frac{\pi u}{2}\right)^x du$. On applique la méthode de Laplace avec $f(u)=\cos\frac{\pi u}{2}$ et cela donne $g(x)\sim\sqrt{\frac{\pi}{2x}}$ (lorsque x est un entier naturel, on reconnaît les intégrales de Wallis).

De la même façon, on obtient $h(x) \sim \sqrt{\frac{\pi}{2x}} e^x$.

EXERCICE 3:

Définitions:

a. Soit $\mathcal{A}(n)$ une assertion dépendant d'un entier naturel non nul n. On appelle **probabilité de** l'évènement $\mathcal{A}(n)$ le nombre, s'il existe

$$\lim_{n \to \infty} \frac{1}{n} \operatorname{Card} \left\{ k \in [1, n] \mid \mathcal{A}(k) \text{ est vrai} \right\}.$$

b. Une suite (x_n) de réels est dite **équirépartie modulo** 1 si, pour tous réels a et b avec $0 \le a < b \le 1$, la probabilité de l'évènement $x_n - E(x_n) \in [a, b[$ est égale à b - a.

Énoncé:

1. Soit (x_n) une suite réelle telle que, pour tout entier relatif m non nul, on ait

$$\sum_{k=1}^{n} e^{i2\pi m x_k} = o(n) \quad \text{lorsque } n \to +\infty \ .$$

Montrer que (x_n) est équirépartie modulo 1.

- **2.** Soit d un entier, $d \in [1, 9]$.
 - Quelle est la probabilité pour que l'écriture décimale du nombre 2^n commence par le chiffre d?

Source : Antoine CHAMBERT-LOIR, Stéfane FERMIGIER, Vincent MAILLOT, Exercices de mathématiques pour l'agrégation, Analyse 1, ISBN 2-225-84692-8

1. Pour toute fonction $f: \mathbb{R} \to \mathbb{C}$, continue par morceaux et 1-périodique, et pour tout entier naturel n non nul, posons $S_n(f) = \frac{1}{n} \sum_{k=1}^n f(x_k)$.

L'hypothèse est que, pour tout $m \in \mathbf{Z}^*$, en notant $e_m : x \mapsto e^{2i\pi mx}$, on a

$$\lim_{n \to +\infty} S_n(e_m) = 0 = \int_{[0,1]} e_m \ .$$

Par linéarité, et comme $S_n(e_0)=1=\int_{[0,1]}e_0$, on a donc $\lim_{n\to+\infty}S_n(f)=\int_{[0,1]}f$ pour toute fonction $f\in \mathrm{Vect}\{e_m\; ;\; m\in \mathbf{Z}\}$, c'est-à-dire pour tout polynôme trigonométrique 1-périodique.

Soit alors $g: \mathbb{R} \to \mathbb{C}$, continue et 1-périodique. Le théorème de Weierstrass trigonométrique permet d'approcher g uniformément par des polynômes trigonométriques 1-périodiques : si on se donne $\varepsilon > 0$, on peut trouver $f \in \mathrm{Vect}\{e_m \; ; \; m \in \mathbf{Z}\}$ tel que $\|g - f\|_{\infty} \leq \frac{\varepsilon}{3}$; on a alors $|S_n(g) - S_n(f)| \leq \frac{\varepsilon}{3}$ pour tout $n \in \mathbb{N}^*$ et $\left| \int_{[0,1]} g - \int_{[0,1]} f \right| \leq \int_{[0,1]} |g - f| \leq \frac{\varepsilon}{3}$; soit N un entier tel que $\left| S_n(f) - \int_{[0,1]} f \right| \leq \frac{\varepsilon}{3}$ pour tout $n \geq N$. Par l'inégalité triangulaire, on a alors $\left| S_n(g) - \int_{[0,1]} g \right| \leq \varepsilon$ pour tout $n \geq N$.

On a donc $\lim_{n\to+\infty} S_n(g) = \int_{[0,1]} g$ pour toute fonction continue et 1-périodique.

Soient a et b avec 0 < a < b < 1, soit χ la fonction 1-périodique coı̈ncidant sur [0,1] avec la fonction caractéristique de l'intervalle [a,b[. Pour tout ε avec $0 < \varepsilon < \min \left\{a,1-b,\frac{b-a}{2}\right\}$, soient φ_{ε} et ψ_{ε} les fonctions 1-périodiques et continues définies comme suit sur l'intervalle [0,1]:

- la fonction φ_{ε} est nulle sur [0,a] et sur [b,1], vaut 1 sur $[a+\varepsilon,b-\varepsilon]$, et est affine sur chacun des intervalles $[a,a+\varepsilon]$ et $[b-\varepsilon,b]$;
- la fonction ψ_{ε} est nulle sur $[0, a \varepsilon]$ et sur $[b + \varepsilon, 1]$, vaut 1 sur [a, b], et est affine sur chacun des intervalles $[a \varepsilon, a]$ et $[b, b + \varepsilon]$ (faire un dessin !!).

Pour tout $\varepsilon > 0$, on a $\varphi_{\varepsilon} \le \chi \le \psi_{\varepsilon}$, donc $S_n(\varphi_{\varepsilon}) \le S_n(\chi) \le S_n(\psi_{\varepsilon})$ pour tout $n \in \mathbb{N}^*$. Soit par ailleurs N un entier tel que, pour tout $n \ge N$, on ait

$$\left|S_n(\varphi_{\varepsilon}) - \int_{[0,1]} \varphi_{\varepsilon} \right| \leq \varepsilon \quad \text{et} \quad \left|S_n(\psi_{\varepsilon}) - \int_{[0,1]} \psi_{\varepsilon} \right| \leq \varepsilon .$$
Comme
$$\int_{[0,1]} \varphi_{\varepsilon} = \int_{[0,1]} \chi - \varepsilon \quad \text{et} \quad \int_{[0,1]} \psi_{\varepsilon} = \int_{[0,1]} \chi + \varepsilon, \text{ pour tout } n \geq N, \text{ on a}$$

$$\left|S_n(\varphi_{\varepsilon}) - \int_{[0,1]} \chi \right| \leq 2\varepsilon \quad \text{et} \quad \left|S_n(\psi_{\varepsilon}) - \int_{[0,1]} \chi \right| \leq 2\varepsilon .$$

On a donc les inégalités

$$\left(\int_{[0,1]} \chi\right) - 2\varepsilon \le S_n(\varphi_{\varepsilon}) \le S_n(\chi) \le S_n(\psi_{\varepsilon}) \le \left(\int_{[0,1]} \chi\right) + 2\varepsilon ,$$

d'où $\left|S_n(\chi) - \int_{[0,1]} \chi\right| \leq 2\varepsilon$ pour $n \geq N$, donc $\lim_{n \to \infty} S_n(\chi) = \int_{[0,1]} \chi = b - a$, ce qui prouve que la suite (x_n) est équirépartie modulo 1 (je laisse le lecteur méticuleux examiner les cas a = 0 ou b = 1).

La condition donnée par l'énoncé comme condition suffisante d'équirépartition modulo 1 est aussi une condition nécessaire : c'est le critère de Weyl.

2. L'écriture décimale du nombre 2^n commence par le chiffre d si et seulement si

$$\exists p \in \mathbb{N} \qquad d \cdot 10^p \le 2^n < (d+1) \cdot 10^p ,$$

c'est-à-dire si et seulement si (en notant log le logarithme décimal)

$$\exists p \in \mathbb{N}$$
 $p + \log(d) \le \log(2^n)$

ou encore si et seulement si $\log(d) \leq \log(2^n) - E(\log(2^n)) < \log(d+1)$. Or, la suite (x_n) , avec $x_n = \log(2^n) = n \log(2) = n \frac{\ln 10}{\ln 2}$ est équirépartie modulo 1 car elle vérifie le critère de Weyl :

le nombre $a = \log 2 = \frac{\ln 10}{\ln 2}$ est irrationnel car, si on avait $a = \frac{p}{q}$, cela entraı̂nerait $2^q = 10^p$, soit $2^{q-p} = 5^p$ ce qui est absurde, alors, pour tout $m \in \mathbf{Z}^*$, la suite (s_n) définie par $s_n = \sum_{k=1}^n e^{2i\pi mx_k} = e^{2i\pi ma} \frac{1 - e^{2i\pi mna}}{1 - e^{2i\pi ma}}$ est bornée, donc est "o(n)".

La probabilité pour que l'écriture décimale de 2^n commence par le chiffre d est donc $p = \log(d+1) - \log(d) = \log\left(1 + \frac{1}{d}\right)$. C'est la **loi de Benford**.

EXERCICE 4:

Une fonction continue partout et dérivable nulle part

Soit g la fonction 1-périodique vérifiant

$$\forall x \in \left[-\frac{1}{2}, \frac{1}{2} \right] \qquad g(x) = |x|.$$

Pour tout $n \in \mathbb{N}$, on définit la fonction g_n par

$$g_n(x) = 10^{-n} g(10^n x)$$
.

Montrer que la fonction $f = \sum_{n=0}^{+\infty} g_n$ est continue sur \mathbb{R} , mais n'est dérivable en aucun point.

Pour prouver la non-dérivabilité de f en un point x, on étudiera des taux d'accroissement $\delta_n = \frac{f(x+h_n) - f(x)}{h_n}$, avec $h_n = \varepsilon_n \cdot 10^{-n}$ où $\varepsilon_n \in \{-1,1\}$.

• Remarquons que

$$g(x) = d(x, \mathbf{Z}) = \left| E\left(x + \frac{1}{2}\right) - x \right|.$$

La fonction g est continue et bornée : $0 \le g(x) \le \frac{1}{2}$, d'où, pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$, $0 \le g_n(x) \le \frac{1}{2} \cdot 10^{-n}$. Les fonctions g_n sont continues sur \mathbb{R} et la série $\sum g_n$ converge normalement, ce qui assure la continuité sur \mathbb{R} de la fonction somme f.

• Soit x un réel.

Pour tout $k \in \mathbb{N}$, la fonction g_k est 10^{-k} -périodique. Si $h_n = \varepsilon_n \ 10^{-n}$ avec $\varepsilon_n = \pm 1$, on a donc $g_k(x + h_n) = g_k(x)$ pour tout $k \ge n$. Donc

$$\delta_n = \frac{1}{h_n} \sum_{k=0}^{+\infty} \left[g_k(x + h_n) - g_k(x) \right] = \frac{1}{h_n} \sum_{k=0}^{n-1} \left[g_k(x + h_n) - g_k(x) \right]$$
$$= \varepsilon_n \sum_{k=0}^{n-1} 10^{n-k} \left[g(10^k x + \varepsilon_n 10^{k-n}) - g(10^k x) \right].$$

Soit m_n l'unique entier relatif tel que 10^{n-1} x appartienne à l'intervalle $I_n = \left[\frac{m_n}{2}, \frac{m_n+1}{2}\right[$. Alors l'un au moins des deux nombres 10^{n-1} $x-\frac{1}{10}$ et 10^{n-1} $x+\frac{1}{10}$ appartient aussi à l'intervalle I_n (la différence entre ces deux nombres vaut $\frac{1}{5} < \frac{1}{2}$). Fixons alors $\varepsilon_n \in \{-1,1\}$ de façon que 10^{n-1} $x+\frac{\varepsilon_n}{10} \in I_n$. Alors, pour tout $k \in [0,n-1]$, les nombres 10^k x et 10^k $x+\varepsilon_n 10^{k-n}$ appartiennent à l'intervalle $\left[\frac{m_n}{2\times 10^{n-1-k}}, \frac{m_n+1}{2\times 10^{n-1-k}}\right[$, qui est inclus dans un intervalle de la forme $\left[\frac{p}{2}, \frac{p+1}{2}\right[$ avec $p \in \mathbf{Z}$. Or, dans un tel intervalle, la fonction g est affine de pente 1 ou -1, donc

$$10^{n-k} \left[g(10^k \ x + \varepsilon_n \ 10^{k-n}) - g(10^k \ x) \right] \in \{-1, 1\}$$

et δ_n , somme de n entiers appartenant à $\{-1,1\}$, est un entier relatif de même parité que n.

On a $\lim_{n\to+\infty} h_n = 0$ et la suite de terme général $\delta_n = \frac{f(x+h_n) - f(x)}{h_n}$ ne peut pas converger, ce qui contredit la dérivabilité de la fonction f au point x.

EXERCICE 5:

Soit la série de fonctions $\sum_{n\in\mathbb{N}} f_n$, où

$$f_0(x) = \frac{1}{x}$$
 et $\forall n \in \mathbb{N}^*$ $f_n(x) = \frac{2x}{x^2 - n^2}$.

On note f la fonction somme de cette série.

a. Montrer que f est définie sur $\mathbb{R} \setminus \mathbf{Z}$, qu'elle est impaire, 1-périodique et qu'elle vérifie

$$\forall x \in \mathbb{R} \setminus \frac{1}{2} \mathbf{Z}$$
 $2f(2x) = f(x) + f\left(x + \frac{1}{2}\right)$. (*)

- b. Montrer que la fonction $g: x \mapsto f(x) \pi \cot \pi x$ est prolongeable en une fonction continue sur \mathbb{R} .
- c. En considérant le maximum de |g| sur [0,1], montrer que g est nulle sur \mathbb{R} .
- d. En déduire, pour tout $x \in \mathbb{R} \setminus \mathbf{Z}$,

$$\frac{\pi^2}{\sin^2 \pi x} = \frac{1}{x^2} + \sum_{n=1}^{+\infty} \left(\frac{1}{(x-n)^2} + \frac{1}{(x+n)^2} \right) .$$

a. La convergence simple de la série $\sum f_n$ sur $\mathbb{R} \setminus \mathbf{Z}$ est immédiate.

Chacune des fonctions f_n est impaire, donc f est impaire.

Il est commode de noter que, pour $n \in \mathbb{N}^*$, on a $f_n(x) = \frac{1}{x+n} + \frac{1}{x-n}$. En notant alors S_n la somme partielle d'ordre n de la série $\sum f_n$, on a $S_n(x) = \sum_{k=-n}^n \frac{1}{x+k}$, d'où

$$S_n(x+1) = S_n(x) + \frac{1}{x+n+1} - \frac{1}{x-n}$$

donc f est 1-périodique (faire tendre n vers $+\infty$).

Pour prouver (*), remarquer de même que

$$\forall x \in \mathbb{R} \setminus \frac{1}{2} \mathbf{Z} \qquad 2 S_{2n}(2x) = S_n(x) + S_n\left(x + \frac{1}{2}\right) - \frac{1}{x + n + \frac{1}{2}}.$$

b. Soit $a \in \left]0, \frac{1}{2}\right[$. Sur [a, 1-a], pour $n \geq 1$, la majoration $|f_n(x)| = -f_n(x) \leq \frac{2}{n^2 - (1-a)^2}$ prouve que la série $\sum f_n$ converge normalement sur [a, 1-a]. Les fonctions f_n étant continues sur cet intervalle, il en est de même de f, qui est donc continue sur]0,1[, et donc sur $\mathbb{R} \setminus \mathbf{Z}$ par périodicité. La fonction $x \mapsto \pi \cot \pi x$ est aussi définie et continue sur $\mathbb{R} \setminus \mathbf{Z}$, donc g aussi.

Au voisinage de zéro, on a π cotan $\pi x = \frac{1}{x} + O(x)$. De plus,

$$f(x) = \frac{1}{x} + 2x \sum_{n=1}^{+\infty} \frac{1}{x^2 - n^2}$$
,

cette dernière série de fonctions convergeant normalement sur tout intervalle $[-1+\alpha,1-\alpha]$ avec $0<\alpha<1$ grâce à la majoration

$$\left| \frac{1}{x^2 - n^2} \right| = \frac{1}{n^2 - x^2} \le \frac{1}{n^2 - (1 - \alpha)^2}$$
.

On en déduit (continuité de la somme en zéro)

$$f(x) = \frac{1}{x} - \frac{\pi^2}{3}x + o(x) = \frac{1}{x} + O(x)$$

au voisinage de 0, donc g(x) = O(x) en zéro ; elle est donc prolongeable par continuité en zéro, avec g(0) = 0. Etant 1-périodique, elle est prolongeable par continuité sur \mathbb{R} .

c. La fonction $x \mapsto \pi$ cotan πx est impaire, 1-périodique et vérifie la propriété (*) (vérification facile). Il en est donc de même de la fonction g. Mais g est continue sur [0,1], donc |g| admet un maximum M sur ce segment, atteint en un point x_0 . La relation (*) donne alors

$$2M = 2|g(x_0)| = \left| g\left(\frac{x_0}{2}\right) + g\left(\frac{x_0 + 1}{2}\right) \right| \le \left| g\left(\frac{x_0}{2}\right) \right| + \left| g\left(\frac{x_0 + 1}{2}\right) \right| \le 2M.$$

Il en résulte que $\left|g\left(\frac{x_0}{2}\right)\right|=M$, puis, par une récurrence immédiate, que, pour tout $n\in\mathbb{N}$, $\left|g\left(\frac{x_0}{2^n}\right)\right|=M$. La continuité de g en zéro donne alors M=|g(0)|=0. La fonction g est nulle sur [0,1] et, par périodicité, sur \mathbb{R} tout entier. Finalement,

$$\forall x \in \mathbb{R} \setminus \mathbf{Z}$$
 $\pi \cot \pi x = \frac{1}{x} + \sum_{n=1}^{+\infty} \frac{2x}{x^2 - n^2}$.

d. Il suffit de dériver terme à terme, ce qui est autorisé par la convergence normale de la série des dérivées sur tout intervalle [a, 1-a] avec $0 < a < \frac{1}{2}$, puis par la périodicité.

EXERCICE 6:

On rappelle que $\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$.

1. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une application continue et bornée, avec $f(0) \neq 0$. Donner un équivalent de

$$a_n = \int_0^{+\infty} \frac{e^{-nt} f(t)}{\sqrt{t}} dt$$

lorsque n tend vers $+\infty$.

Dans la suite de l'exercice, f est une fonction de \mathbb{R}_+ vers \mathbb{R} , de classe \mathcal{C}^{∞} et bornée. Pour tout $n \in \mathbb{N}^*$, on pose

$$a_n = \int_0^{+\infty} \frac{e^{-nt} f(t)}{\sqrt{t}} dt.$$

- **2.** Pour tout $n \in \mathbb{N}^*$, on pose $c_n = \int_1^{+\infty} \frac{e^{-nt} f(t)}{\sqrt{t}} dt$. Montrer que, pour tout réel α strictement positif, c_n est négligeable devant $\frac{1}{n^{\alpha}}$ lorsque n tend vers $+\infty$.
- **3.** En déduire, pour tout $p \in \mathbb{N}$, le développement asymptotique de a_n :

$$a_n = \sqrt{\pi} \sum_{k=0}^{p} \frac{(2k)!}{2^{2k} (k!)^2} f^{(k)}(0) \cdot \frac{1}{n^{k+\frac{1}{2}}} + o\left(\frac{1}{n^{p+\frac{1}{2}}}\right) .$$

Pour cela, on appliquera l'inégalité de Taylor-Lagrange à f sur [0,1] et on en déduira une estimation de $b_n = \int_0^1 \frac{e^{-nt} f(t)}{\sqrt{t}} dt$.

- 1. Soit $M = \sup_{\mathbb{R}_+} |f|$ (on a M > 0) ; l'existence de a_n pour $n \in \mathbb{N}^*$ résulte de l'équivalence $\left|\frac{e^{-nt} f(t)}{\sqrt{t}}\right| \sim \frac{|f(0)|}{\sqrt{t}}$ en zéro et de la majoration $\left|\frac{e^{-nt} f(t)}{\sqrt{t}}\right| \leq M \frac{e^{-nt}}{\sqrt{t}}$ qui garantit l'intégrabilité sur $[1, +\infty[$.
 - En posant $nt = u^2$, on obtient $a_n = \frac{2}{\sqrt{n}} \int_0^{+\infty} e^{-u^2} f\left(\frac{u^2}{n}\right) du$. Pour tout $u \in \mathbb{R}_+$, on a $\lim_{n \to +\infty} e^{-u^2} f\left(\frac{u^2}{n}\right) = e^{-u^2} f(0)$ et la majoration $\left|e^{-u^2} f\left(\frac{u^2}{n}\right)\right| \leq M e^{-u^2}$ permet d'appliquer le théorème de convergence dominée :

$$\lim_{n \to +\infty} \int_0^{+\infty} e^{-u^2} f\left(\frac{u^2}{n}\right) du = f(0) \int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2} f(0) ,$$

ce qui conduit immédiatement à la conclusion $a_n \sim \sqrt{\frac{\pi}{n}} f(0)$.

2. Avec $M = \sup_{\mathbb{R}_+} |f|$, on obtient sans difficulté la majoration

$$|c_n| = \left| \int_1^{+\infty} \frac{e^{-nt} f(t)}{\sqrt{t}} dt \right| \le \frac{M}{n} e^{-n} ,$$

donc c_n est négligeable devant $\frac{1}{n^{\alpha}}$ pour tout $\alpha > 0$.

3. Appliquons l'inégalité de Taylor-Lagrange à f sur [0,1] :

$$\forall t \in [0,1]$$
 $\left| f(t) - \sum_{k=0}^{p} \frac{f^{(k)}(0)}{k!} t^k \right| \le \frac{M_{p+1}}{(p+1)!} t^{p+1}$

avec $M_k = \sup_{t \in [0,1]} |f^{(k)}(t)|$ pour tout $k \in \mathbb{N}$. Pour $t \in]0,1]$ et $n \in \mathbb{N}^*$, on multiplie par $\frac{e^{-nt}}{\sqrt{t}}$ et on intègre :

$$\left| b_n - \sum_{k=0}^p \frac{f^{(k)}(0)}{k!} J_k(n) \right| \le \frac{M_{p+1}}{(p+1)!} J_{p+1}(n) ,$$

en posant, pour tout $k \in \mathbb{N}$ et $n \in \mathbb{N}^*$, $J_k(n) = \int_0^1 t^{k-\frac{1}{2}} e^{-nt} dt$.

La majoration $0 \leq \int_1^{+\infty} t^{k-\frac{1}{2}} e^{-nt} dt \leq e^{-(n-1)} \cdot \int_1^{+\infty} e^{-t} t^{k-\frac{1}{2}} dt$ montre que, pour obtenir un développement asymptotique à la précision $o\left(\frac{1}{n^{p+\frac{1}{2}}}\right)$, les intégrales $J_k(n)$ peuvent être remplacées par les intégrales $I_k(n) = \int_0^{+\infty} t^{k-\frac{1}{2}} e^{-nt} dt$, la différence étant "négligeable" à la précision demandée, c'est-à-dire dans l'échelle de comparaison des $\frac{1}{n^{\alpha}}$ avec $\alpha > 0$. Un calcul simple, par récurrence sur k, montre que

$$I_k(n) = \frac{2}{n^{k+\frac{1}{2}}} \int_0^{+\infty} u^{2k} e^{-u^2} du = \frac{1}{n^{k+\frac{1}{2}}} \frac{(2k)!}{2^{2k}k!} \sqrt{\pi} ,$$

d'où le développement demandé pour b_n , puisque le "reste" est de l'ordre de $J_{p+1}(n)$ ou de $I_{p+1}(n)$, négligeable devant $\frac{1}{n^{p+\frac{1}{2}}}$ lorsque n tend vers $+\infty$. Enfin, $c_n=a_n-b_n$ étant aussi négligeable devant $\frac{1}{n^{p+\frac{1}{2}}}$ (question 2.), on trouve le même développement asymptotique pour a_n .