Áreas homogêneas no território do Estado de São Paulo sob um ponto de vista da organização agrária

Eden Gonçalves de Oliveira

1. Introdução. 2. A investigação estatística regional. 3. Delineamento de espaços homogêneos. 4. Metodologia. 5. A organização agrária do Estado de São Paulo. 6. A estrutura agrária do Estado de São Paulo.

1. Introdução

Cientistas sociais, desde muito tempo, têm-se preocupado com a problemática do delineamento sub-regional, segundo óticas especificadas.

As técnicas de delineamento sub-regional têm sido frequentemente fundamentadas no pressuposto de que existem áreas significativamente similares quanto à distribuição conjunta de especificadas variáveis — que podem traduzir características sociais, econômicas, culturais, demográficas, fisiográficas, etc.

A configuração de áreas homogêneas pode contribuir, por exemplo, para o planejamento social, para estudos que visem ao desenvolvimento econômico espacialmente equilibrado, para levantamentos amostrais e para a seleção de apropriados conjuntos de regiões que se analisam.

A necessidade destas configurações regionais manifesta-se em grande parte das investigações regionais.

A senda que se trilhou para a consecução do objetivo de estabelecerem-se as manchas territoriais requeridas, não obstante as limitações de modesta elaboração académica, ressalta, em matéria de análise regional, a utilização de técnica que contribui objetivamente para o atingimento do fim perseguido.

Após o exame das associações subjacentes, na distribuição conjunta das variáveis selecionadas com base na técnica da análise fatorial, procedeu-se a preliminar delineamento de áreas homogêneas tendo em vista a distribuição de um indicador de nível dessas variáveis selecionadas, estabelecido com base na técnica da análise de componentes principais, tendo-se alcançado o delineamento definitivo com o exame de um indicador de similitude estrutural para cada par de unidades territoriais pertencentes a uma mesma subárea preliminarmente delineada.

Na construção das manchas territoriais sob um ponto de vista da organização agrária foram utilizadas estatísticas de 1960.

A constatação de que as manchas de homogeneidade obtidas, sob um ponto de vista da organização agrária, foram fundamentalmente condicionadas pela estrutura agrária, municipal, induziu a que se procedesse também ao delineamento de áreas homogêneas segundo um ponto de vista da estrutura agrária, o que possibilitou profícuo confronto dos resultados atingidos num e noutro dos delineamentos espaciais procedidos.

2. A investigação estatística regional

Desde tempos imemoriais e para os fins mais diversos, como para atender a propósitos de estratégia de defesa ou para objetivos administrativos tem-se procedido a delineamentos sub-regionais.

Ainda que tais regionalizações tivessem sido freqüentemente processadas sem visarem a considerações de natureza puramente econômica, na realidade elas, muitas vezes, condicionaram marcantes consequências econômicas.

Estas regiões delineadas, o mais das vezes desigualmente providas de recursos disponíveis e de capacidade de inovação e de empreendimentos de suas populações, consignariam ritmos também desiguais de desenvolvimento.

O estudo de uma sequência de regionalizações tradicionais contribuiria aos propósitos do procedimento de análise das estruturas regionais.

A investigação espacial objetiva ao recolhimento e à sintetização dos elementos que as diversas disciplinas que procedem ao estudo do

espaço fornecem. Enfoca o espaço, visando à interpretação do conjunto dos fatores e de suas interrelações. Seu campo de aplicação é fundamentalmente o da planificação.

A investigação regional visa:

- a) ao estabelecimento de bases que possibilitem a que se proceda ao diagnóstico das condições vigentes nas diferentes partes do território considerado o que contribuiria, por exemplo, à orientação na adoção de medidas que visassem ao ordenamento espacial planificado da vida econômica, e
- b) ao estudo das relações entre a vida humana em suas várias manifestações e as forças que estruturam o espaço circundante.

Nos estudos dos subespaços em que se manifestam as forças estruturadoras regionais, colher-se-ão os elementos para a avaliação do reflexo do fator espacial na economia.

A investigação regional utiliza a chamada estatística regional que consiste na coleta e elaboração de dados estatísticos concernentes a unidades espaciais que constituem subconjuntos do território nacional.

O procedimento da investigação regional requer:

- a) que se classifiquem os dados de forma adequada para que possam emergir as possíveis intercorrelações entre fatores econômico-sociais e fatores do espaço considerado, e
- b) estabelecimento de métodos para a obtenção de dados substitutivos e elaboração de indicadores adequados.

Ao proceder-se à coleta dos dados estatísticos regionais é pois necessário atentar-se para a dimensão das unidades elementares de levantamento, localização dos fatos relevantes e para a exatidão dos dados individuais.

Os métodos adotados e a fixação dos objetivos, em consonância naturalmente com as possibilidades da estatística e a disponibilidade de recursos financeiros impõem limitações aos desígnios da investigação estatística regional.

O procedimento de entrevistas e a consulta de monografias específicas podem contribuir à complementação do material estatístico geral, eviden-

ciando expressões mais tênues ou mais ponderáveis dos fatos econômicosociais no espaço considerado, como também poderão contribuir para a elucidação de questões marginais relevantes que costumam ocorrer.

3. Delineamento de espaços homogêneos

Este capítulo tratará de formação das unidades espaciais, dos espaços homogêneos e dos métodos para o delineamento desses espaços homogêneos.

3.1 Formação das unidades espaciais

Uma delimitação de unidades espaciais estabelecidas com base na similitude de especificada estrutura, caracterizada por determinados elementos, pode ser procedida por meio da pesquisa da distribuição de fenômenos econômicos e sociais no espaço.

O estudo das estruturas regionais visa a evidenciar a interdependência da distribuição de fenômenos econômicos e sociais no espaço e a ação conjunta de fatores outros do mundo físico, social e econômico.

A investigação das estruturas regionais busca delinear estas unidades espaciais estruturais e também, além do procedimento da descrição das estruturas, busca analisá-las em sua origem, em sua formação e em seus condicionamentos econômicos e sociais.

Em realidade, a procura da localização dos problemas socioeconômicos suscita a necessidade do delineamento de subespaços adequados ao estudo das estruturas regionais; os métodos adotados no procedimento dessas delineações serão expostos adiante.

Os fundamentos da investigação estrutural não são postos em dúvida quando os fatos socioeconômicos são marcantemente condicionados por fatores do mundo físico. Quando porém o progresso técnico induz ao debilitamento das forças localizadoras naturais, os fundamentos da investigação estrutural são tornados questionáveis.

Mas, realmente, não importa para fins de estudo regional que a estrutura da região tenha sido plasmada, marcantemente, pela ação de fatores espaciais físicos ou pela ação de uma constelação de fatores exclusivamente socioeconômicos. A estrutura espacial é intrinsecamente importante, independentemente da natureza dos fatores de interação que condicionaram sua moldagem.

Portanto, do estudo das unidades espaciais a que a investigação regional empreende, emergem estruturas e relações que fundamentam a delineação de espaços econômicos.

A natureza e a atividade criadora do homem conjugam-se na configuração da fisionomia do espaço socioeconômico.

Requer-se discutir e estabelecer os procedimentos de delineação das sub-regiões, tendo-se em vista que a investigação das estruturas regionais visa fundamentalmente ao delineamento e à análise dos fatos socioeconômicos dentro destas sub-regiões.

O fim perseguido, os conceitos estabelecidos, a eleição de caracteres conjugam-se na fundamentação do delineamento das unidades regionais.

As sub-regiões, por sua vez, podem ser determinadas com base numa pluralidade de caracteres eleitos conforme o princípio da identidade e/ou o princípio da interdependência.

Para proceder-se aos delineamentos sub-regionais pode-se partir de configurações regionais preexistentes, objetivando-se caracterizar a estrutura econômico-social dessa unidade regional, tal como se procede, por exemplo, na tipificação, ou pode-se partir do estudo da dispersão espacial de especificadas variáveis, estabelecendo-se então subunidades homogêneas ou funcionais.

Na elaboração do método a ser adotado para o procedimento do delineamento sub-regional há que se ter em mente o elemento mais importante que condiciona a eleição do método, que é o objetivo da divisão territorial perseguida.

Distinguem-se basicamente dois tipos de divisões espaciais: divisões especiais e divisões gerais do espaço.

As divisões especiais são feitas para fins de uso de disciplinas particulares, ou ainda para a investigação de problema específico.

As divisões gerais do espaço são procedidas quando se objetiva ao delineamento de sub-regiões passíveis de serem consideradas unidades espaciais sob uma ótica mais ampla, no que concerne aos critérios considerados — estes espaços são adequados à investigação de problemas de caráter mais geral.

O empreendimento da determinação das unidades espaciais requer que as unidades territoriais sejam classificadas de acordo com o princípio da preponderância de uma só característica, ou segundo o princípio da similitude de uma constelação de características tidas como fundamentais.

Assim, na investigação regional decompor-se-á a região em sub-regiões, sub-regiões estas que serão analisadas e então agrupadas quer com base na manifestação de afinidade de caracteres, quer com base num outro conveniente critério que eventualmente seja eleito.

Resumindo, o procedimento da identificação de unidades espaciais homogêneas requer se estabeleçam o objeto e o princípio da divisão. Há que decidir-se se se agregarão unidades territoriais estruturalmente similares — ou seja, se se constituirão espaços homogêneos — ou se serão agrupadas unidades territoriais tomando-se por base a dependência mútua — ou seja, se se constituirão espaços funcionais.

Poder-se-ia ainda eleger para princípio da divisão do espaço, simultaneamente, a similitude estrutural e a dependência mútua.

3.2 Espaços homogêneos

A identidade ou similitude de uma característica ou de uma pluralidade de características estruturais fundamenta a constituição dos chamados espaços homogêneos. Esta concepção de homogeneidade, portanto, não requer uniformidade completa, mas requer que as dispersões relativas das variáveis especificadas, num espaço econômico, não ultrapassem limites que se imponham.

Região homogênca é uma região em que características pré-especificadas apresentam dispersão considerada não significativa para o fim perseguido.

Quando se aceita ser um conjunto fenomenológico representável por um só especificado indicador, o delineamento de sub-regiões homogêneas poderia ser procedido por meio do estabelecimento de intervalos de classes, em que cada classe representasse uma mesma situação qualitativa.

Quando se considera uma constelação de indicadores, a homogeneidade regional traduz somente a existência de similitude de situações.

A delineação de sub-regiões homogêneas, sob especificada ótica, contribui decisivamente à investigação destinada ao estudo do espaço.

Quando se agrupam unidades espaciais, com base em considerações acerca das relações de intercâmbio, dirigidas para um centro de gravitação econômica, constituem-se os chamados espaços funcionais.

O delineamento de regiões homogêneas ainda que importante no estudo do espaço, é insuficiente para a expressão do inter-relacionamento das sub-regiões interiormente homogêneas.

A caracterização de regiões polarizadas constitui mais um instrumento de investigação e sucede às investigações voltadas à homogeneidade.

A região polarizada é constituída por um núcleo (ou pólo) e uma constelação de núcleos-satélites (que mantêm com o pólo fluxo de trocas mais intenso e mais denso do que com os pólos vizinhos).

Assim a divisão do espaço em subespaços homogêneos contribui a que se configurem os níveis de desenvolvimento alcançados por cada subespaço; a região polarizada contribui à explicação do mecanismo de atingimento daqueles níveis e da evolução desses níveis numa perspectiva de médio prazo.

3.3 Métodos para o delineamento de espaços homogêneos

Ressaltem-se dois métodos para a delineação de espaços homogêneos: método do índice fixo e método da tipificação.

O método do índice fixo consiste na classificação das unidades espaciais com base na distribuição dos valores de um índice construído por meio de ponderação estatística de algumas selecionadas variáveis. Agregam-se unidades espaciais com valores semelhantes do indicador construído. Alguns métodos matemáticos contribuem a que se proceda à construção desses indicadores.

O método de tipificação consubstancia-se em propriedades estruturais características. Visa-se então à associação típica de caracteres em unidades espaciais diferentes. Uma unidade espacial pode ser uma região tipicamente industrial, outra unidade espacial pode ser uma sub-região de cultivo de cana-de-açúcar, etc.; cada uma destas características é condicionada por uma pluralidade de fatores. Nesta abordagem, considera-se em ordem de importância classificatória primeiramente a característica associada à atividade industrial, depois ao cultivo de cana-de-açúcar e assim por diante.

Etapas da aplicação do método da tipificação:

- a) configuração das características típicas que distinguem unidades espaciais contíguas;
- b) construção de índices que meçam as características selecionadas (para cada unidade espacial preliminarmente selecionada), e
- c) subdivisão da região em sub-regiões com característica combinação dos indicadores selecionados.

A análise de regressão múltipla e análise de covariância podem contribuir preciosamente para a determinação das unidades espaciais que se persigam e para a análise das estruturas regionais.

4. Metodologia

4.1 Introdução

Dois instrumentos são freqüentemente utilizados no estudo da estrutura das matrizes de covariância (ou de correlação) — o da análise de componentes principais, iniciada com Pearson (1901) ¹ e Hotelling (1933) ² e o da análise fatorial, iniciada com Galton em 1888 ³ — mas que visam a objetivos diferentes.

A metodologia da análise de componentes principais foi apresentada por K. Pearson para fins de ajustamento de hiperplanos, por intermédio da técnica dos mínimos quadrados, tendo sido posteriormente sugerida por Hotelling para fins de análise das estruturas de correlação.

A metodologia da análise fatorial baseia-se na construção de funções em que cada variável observada é expressa como combinação linear de um pequeno número de variáveis (fatores comuns) e de uma variável latente (fator específico), de forma que os fatores comuns gerem as covariâncias entre as variáveis observadas, contribuindo os fatores específicos apenas para a composição da variância de cada variável observada.

A formação de unidades homogêneas será procedida a partir do estudo da distribuição de caracteres cujas aglomerações fundamentarão a formação das unidades espaciais.

Onde a aglomeração de caracteres configurar-se claramente, as unidades espaciais correspondentes poderão ser reunidas, constituindo uma unidade sob o ponto de vista considerado.

A delimitação de espaços homogêneos será empreendida por meio da construção de um indicador, cujo valor será calculado para cada uma das unidades espaciais em estudo; destas unidades, aquelas para as quais

¹ Pearson, K. On lines and planes of closest fit to a system of points in space. Phil. Mag. 2,6th series, 1903. p. 557-72.

² Hotelling, H. Analysis of a complex of statistical variables into principal components. *Journal Educational Psychology*, v. 24. p. 417-41, 1933.

^{*} Galton, F. Co-relations and their measurement, chiefly from anthropometric data. Proceedings of the Royal Society, v. 45, p. 135-40, 1888.

o indicador assumir valores considerados não significativamente diferentes serão agrupadas, visando-se à união do maior número possível de unidades espaciais similares.

As regiões homogêneas que serão delineadas terão contornos que dependem da finalidade objetivada e dos meios e técnicas utilizados.

As etapas do delineamento sub-regional serão assim estabelecidas:

- a) seleção do nível das unidades espaciais a serem estudadas e combinadas. O nível das unidades territoriais a serem estudadas é limitado pela disponibilidade de estatísticas;
- b) seleção de tipos de características e, dentro de cada tipo, das características específicas em relação às quais se procederá ao delineamento de sub-regiões homogêneas. Características climáticas, geográficas, históricas, demográficas, culturais, políticas, econômicas e outras podem ser escolhidas, e
- c) construção de dois indicadores da distribuição das características selecionadas:
- de nível das características (denotado S)
- de similitude estrutural (denotado R)

Desde que uma constelação de características seja considerada no delineamento regional em questão, requer-se a instituição de uma função que condense as estatísticas consideradas ao nível de cada unidade espacial em estudo.

A construção do indicador S será feita por meio de combinação linear das variáveis selecionadas no item anterior, devidamente ponderadas com base no método de componentes principais.

A construção do indicador R será procedida visando-se à quantificação das dispersões relativas observadas para o conjunto das características selecionadas, no confronto de cada par de unidades territoriais consideradas.

4.2 Indicador de nível das variáveis

Sejam X_1, X_2, \ldots, X_p as variáveis selecionadas, definidas sobre cada uma das N unidades espaciais preliminarmente consideradas, e, em relação às quais, objetiva-se a configuração das manchas territoriais de homogeneidade.

Denote-se por x_{ij} o valor assumido pela j-ésima variável na i-ésima unidade espacial (i = 1, 2, ..., N).

Represente-se em forma matricial as observações,

$$X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ & \dots & & & & \\ xN_1 & xN_2 & \dots & xN_p \end{bmatrix}$$

Denote-se por Z_j a variável reduzida de X_j .

Construa-se indicador S como uma combinação linear das variáveis $Z_1,\ Z_2,\ \dots\ Z_p,$ então

Denote-se por D_S^2 a variância de S, e por r_{kj} o coeficiente de correlação entre Z_k e Z_j , logo

$$D_S^2 = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{p1} \\ & & & & \\ & & & & \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1p} \\ r_{21} & r_{22} & \dots & r_{2p} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Determine-se a_1 impondo-se que D_S^2 seja máximo condicionado a $a_1 a_1 = 1$; denote-se por m_1 o multiplicador de Lagrange correspondente.

Conclui-se que os coeficientes a_{i1} sejam tais que $(C - m_1 I)$ $a_1 = 0$, em que I é a matriz identidade pxp.

A fim de que este sistema admita solução diferente da trivial imponha-se que $|C-m_1I|=O$.

Tem-se que m_1 é uma raiz característica da matriz de correlação, e a_1 é o vetor próprio que lhe é associado.

As considerações anteriores conduzem a que $m_1 \equiv a_1^{\prime} C a_1 \equiv D_S^2$

Assim m_1 deve ser a maior das raízes características de C.

A importância da componente principal obtida é medida pela proporção da variância total que lhe é atribuída: m_1/tr C.

O sinal algébrico e a magnitude de a_{i1} indicam o sentido e a importância da contribuição de *i*-ésima variável à primeira componente.

4.3 Indicador de similitude estrutural

Sejam X_1, X_2, \ldots, X_p as variáveis selecionadas, definidas sobre cada uma das N unidades espaciais preliminarmente consideradas.

Denote-se por x_{ij} o valor assumido pela *j*-ésima variável na *i*-ésima unidade espacial (i = 1, 2, ..., N).

O indicador R de similitude estrutural de duas especificadas unidades espaciais U e V será assim definido:

$$R = R(U, V) = (2/p) \left[|x_{u1} - x_{v1}| / (|x_{u1}| + |x_{v1}|) + |x_{u2} - x_{v2}| / (|x_{u2}| + |x_{v2}|) + \dots + |x_{up} - x_{vp}| / (|x_{up}| + x_{vp}|) \right]$$

4.4 Exploração preliminar do problema

Eleja-se para objetivo da divisão espacial perseguida o delineamento do território do Estado de São Paulo em áreas homogêneas, sob uma ótica da organização agrária.

As etapas estabelecidas para a consecução do objetivo especificado serão:

4.4.1 Seleção de grupos de características agrárias

Três grupos de características foram selecionados: estrutura agrária, forma de utilização da terra e modo de utilização da terra.

Cada um destes grupos foi analisado através do estudo das variáveis seguintes:

a) estrutura agrária

Y (1), percentual da área total dos estabelecimento com menos de 100 ha na área total dos estabelecimentos.

- Y (2), área média dos estabelecimentos.
- Y (3), percentual das terras arrendadas na área total dos estabelecimentos.
- Y (4), população ocupada agrícola por unidade de área de estabelecimento;
- b) forma de utilização da terra
- Y (5), percentual da área de lavouras na área total dos estabelecimentos.
- Y (6), percentual da área de pastagens na área total dos estabelecimentos.
- Y (7), percentual da área total dos estabelecimentos na área municipal, e
- c) modo de utilização
- Y (8), número de tratores por unidade de área total cultivada.
- Y (9), número de arados por unidade de área total cultivada.
- 4.4.2 A construção das matrizes de correlação das variáveis
- 4.4.3 Análise fatorial da matriz de correlação das variáveis selecionadas
- 4.4.4 Construção do indicador **S** para cada grupo com base na técnica de componentes principais da matriz de correlação de cada grupo de características
- O indicador S correspondente a cada grupo de características foi denotado:
- Y (12), indicador S da estrutura agrária.
- Y (13), indicador S da forma de utilização da terra.
- Y (14), indicador S do modo de utilização da terra.
- 4.4.5 Construção da matriz de correlação dos indicadores Y (12), Y (13), Y (14)
- 4.4.6 Construção do indicador S com base na técnica de componentes principais da matriz de correlação referida em 4.5
- 4.4.7 Estudo da distribuição do indicador S

A formação de classes será procedida com base na distribuição do indicador S.

Tem-se observado que muitos fenômenos apresentam distribuição de caracteres em que se delineiam aglomerações envolvidas por zonas de

baixa densidade. Neste caso, fica estabelecido que as classes serão delimitadas de forma que as aglomerações se situem sempre no centro da classe e que os limites das classes sejam fixados nas zonas intermediárias de densidade mais baixa.

Com base neste critério, de constituição de classes, procede-se para cada grupo de características selecionadas ao estabelecimento preliminar das manchas territoriais.

4.4.8 Estudo da distribuição do indicador R

- a) no universo, e
- b) em cada subuniverso delimitado em 4.7.
- 4.4.9 Estudo da similitude estrutural de unidades espaciais dentro de cada região homogênea delineada em 4.7, com base nos valores do indicador R
- 4.4.10 Delineamento de regiões homogêneas sob o ponto de vista da organização agrária
- 4.4.11 Delineamento de regiões homogêneas sob o ponto de vista da estrutura agrária

5. A organização agrária do Estado de São Paulo

5.1 Variáveis selecionadas

Como aplicação do desenvolvimento da metodologia apresentada, uma abordagem da organização agrária nos municípios do Estado de São Paulo será agora empreendida com base no comportamento das seguintes variáveis que caracterizam:

5.1.1 A estrutura agrária

- a) percentual da área total dos estabelecimentos com menos de 100 ha na área total dos estabelecimentos;
- b) área média dos estabelecimentos;
- c) percentual das terras arrendadas na área total dos estabelecimentos, e
- d) população ocupada agrícola por unidade de área de estabelecimento.

5.1.2 A forma de utilização da terra

- a) percentual da área de lavouras na área total dos estabelecimentos;
- b) percentual da área de pastagens na área total dos estabelecimentos, e
- c) percentual da área total dos estabelecimentos na área municipal.

5.1.3 O modo de utilização da terra

- a) número de tratores por unidade de área total cultivada, e
- b) número de arados por unidade de área total cultivada.

Os quadros 1, 6, 11, 16 e 21 apresentam as variáveis selecionadas. Os quadros 2, 7, 12, 17 e 22 apresentam a matriz de correlação das variáveis selecionadas.

Os quadros 3, 4 e 5 apresentam a matriz de fator, a matriz de fator retida (após a rotação) e as comunalidades obtidas a partir da matriz de correlação mostrada no quadro 2.

Os quadros 8, 9, 13, 14, 18, 19, 23 e 24 apresentam características das correspondentes matrizes de correlação, como: valores-próprios, vetores-próprios.

Os quadros 10, 15, 20 e 25 apresentam os valores da função de decisão (indicador S) em cada unidade territorial em estudo.

A classificação dos municípios do Estado de São Paulo, adotada neste trabalho, está descrita no anexo 1.

5.2 Associações subjacentes

A fim de se apreenderem as associações subjacentes das variáveis selecionadas no estado em estudo, com base na distribuição conjunta dessas variáveis, utilizou-se a técnica da análise fatorial — procedeu-se à análise fatorial da matriz de correlações das variáveis cujas associações se pretendia fossem configuradas.

Através de reiterados ensaios em computadores eletrônicos, Kaiser 4 estabeleceu critério prático para determinação do número de fatores comuns necessários à explicação das correlações entre as variáveis.

A recomendação de Kaiser, após considerar significância estatística, condições algébricas necessárias, etc. — é de que o número de fatores comuns seja igual ao número de valores próprios da matriz de correlação maiores do que 1.

⁺ Harman, H. H. Modern actor analysis. Chicago. University of Chicago Press, P. 363, 1960.

Esse critério foi adotado neste estudo.

As configurações fatoriais obtidas, assim como características dessas configurações são apresentadas nos quadros 3, 4 e 5, tendo-se chegado às seguintes conclusões:

- a) o comportamento da variável percentual da área de lavouras na área total dos estabelecimentos está associado:
- positivamente, ao comportamento das variáveis percentual das terras arrendadas na área total dos estabelecimentos, população ocupada agrícola por unidade de área de estabelecimento;
- negativamente, ao comportamento da variável área média dos estabelecimentos;
- b) o comportamento da variável percentual da área total dos estabelecimentos na área municipal está associado negativamente ao comportamento da variável percentual da área total dos estabelecimentos com menos de 100 ha na área total dos estabelecimentos, e
- c) o comportamento da variável percentual das áreas de pastagens na área total dos estabelecimentos está negativamente associado ao comportamento das variáveis: número de tratores por unidade de área total cultivada e número de arados por unidade de área total cultivada.

5.3 Manchas territoriais

O comportamento dos indicadores S e R, referidos ao grupo de variáveis Y (12), Y (13) e Y (14), fundamentou a construção das manchas perseguidas.

5.3.1 Distribuição do indicador S

Os valores de S distribuíram-se entre — 1,75 e 1,60 unidades.

Foram estabelecidas cinco classes de homogeneidade.

As subáreas delineadas serão assim designadas:

Subárea A, para
$$S < -0.90$$
 Subárea B, para $-0.90 \le S < -0.40$ Subárea C, para $-0.40 \le S < 0.10$ Subárea D, para $0.10 \le S < 0.55$ Subárea E, para $0.55 \le S$

Definiu-se ainda uma área, denominada H, que não constitui uma área homogênea, mas que foi estabelecida somente para congregar os municípios que não foram enquadrados em qualquer das áreas acima definidas por insuficiência de disponibilidade de dados ou porque, após terem sido classificados numa das áreas acima definidas, com base nos valores do indicador S, rejeitou-se a hipótese de similitude estrutural com base nos valores de R associados aos municípios considerados.

5.3.2 Distribuição do indicador R

Após o malogro de reiteradas tentativas de ajustamento dos diversos modelos teóricos probabilísticos à descrição do fenômeno — distribuição de R — estabeleceu-se, por amostragem com base no método da analogia, a separatriz de 95% da distribuição. Com base no valor crítico assim estabelecido, procedeu-se ao exame do valor de R, para cada par de unidades territoriais, dentro de cada área homogênea preliminarmente delineada, testando-se para cada um daqueles pares a hipótese Ho de similitude estrutural (nível de significância de 5%).

As seguintes unidades espaciais foram relacionadas na subárea H:

Unidade número 29 (que pertencia à subárea A)

Unidades de números 7-46-86-109-152-166-180-235-239-252-255-303-314-316-321-322-326-329-332-335-346-358-359-372-476-483 (que pertenciam à subárea C)

Unidades de números 41 - 199 - 306 - 408 - 461 - 470 (que pertenciam à subárea D)

Unidades de números 11 e 50 (que pertenciam à subárea E).

5.4 Áreas homogêneas do Estado de São Paulo sob uma ótica da organização agrária

A análise do comportamento das variáveis indicadoras da estrutura agrária, da forma de utilização da terra e de seu modo de utilização, dentro de cada região homogênea estabelecida, evidenciou que a constituição destas áreas homogêneas foi fundamentalmente condicionada pelo comportamento da variável indicadora da estrutura agrária municipal.

As áreas homogéneas identificadas estão representadas no mapa 1.

Para fins de caracterização das áreas delineadas, os valores da variável Y (12) (indicador da estrutura agrária municipal) foram classificados em:

nível baixo nível médio inferior nível médio (média aritmética) nível médio superior nível alto

5.4.1 Subárea A

Número de municípios: 29 Superfície estadual: 6.6%Indicador S: S < -0.90

Características: variável Y (12), nível baixo

Observação: a variável Y (14) assume nos municípios desta subárea valores, freqüentemente, os mais baixos consignáveis em toda a região Unidades territoriais: 30-61-88-156-168-185-212-214-217-221-223-227-230-236-240-241-242-249-260-265-267-268-305-341-342-356-367-383-497.

5.4.2 Subárea B

Número de municípios: 95 Superfície estadual: 20,9%

Indicador S: $-0.90 \le S < -0.40$

Características: variavel Y (12), nível médio inferior

Unidades territoriais: 1-3-4-5-6-8-14-17-19-20-21-24-28-44-62-80-95-107-113-141-143-150-151-161-162-181-182-192-208-209-211-215-218-219-224-226-229-231-232-234-238-250-251-256-259-260-262-264-269-270-271-274-275-277-280-284-286-287-288-291-292-294-300-301-307-320-330-331-343-349-353-354-363-365-368-369-374-376-378-379-381-384-387-421-437-444-449-450-451-452-472-489-496-503.

5.4.3 Subárea C

Número de municípios: 173

Superfície estadual: 38,3%

IndicadorS: $-0.40 \le S < 0.10$

Característica: variável Y (12), nível médio

Unidades territoriais: 9 - 10 - 12 - 13 - 15 - 16 - 23 - 25 - 26-27 - 31 - 32 - 33 - 35 - 36 - 37 - 42 - 43 - 48 - 51 - 53 -54 - 55 - 58 - 59 - 63 - 64 - 65 - 66 - 67 - 68 - 70 - 71 - 72-74 - 75 - 76 - 77 - 81 - 84 - 87 - 90 - 97 - 98 - 100 - 101 -113 - 114 - 120 - 125 - 131 - 132 - 133 - 139 - 144 - 148 - 149-153 - 155 - 157 - 159 - 160 - 163 - 165 - 169 - 170 - 173 -174 - 176 - 179 - 183 - 184 - 187 - 188 - 189 - 190 - 191 - 193-194 - 203 - 204 - 205 - 206 - 207 - 210 - 216 - 220 - 222 -225 - 228 - 237 - 245 - 248 - 257 - 258 - 266 - 272 - 273 - 278-279 - 281 - 282 - 283 - 285 - 289 - 296 - 298 - 308 - 311 -312 - 317 - 318 - 319 - 323 - 324 - 325 - 327 - 333 - 336 - 337-339 - 344 - 345 - 347 - 348 - 350 - 351 - 352 - 355 - 357 -360 - 364 - 366 - 370 - 371 - 373 - 375 - 377 - 380 - 382 - 385-386 - 393 - 395 - 397 - 399 - 401 - 403 - 410 - 411 - 412 -413 - 424 - 436 - 439 - 441 - 442 - 443 - 447 - 453 - 454 - 455-456 - 464 - 469 - 478 - 482 - 490 - 493 - 499 - 502 - 504

5.4.4 Subárea D

Número de municípios: 92 Superfície estadual: 17,5% Indicador S: $0.10 \le S < 0.55$

Característica: variável Y (12), nível médio superior

Unidades territoriais: 34 - 49 - 52 - 56 - 57 - 60 - 69 - 73 - 78 - 79 - 82 - 83 - 89 - 91 - 93 - 96 - 103 - 106 - 111 - 119 - 121 - 123 - 124 - 127 - 128 - 129 - 130 - 135 - 136 - 137 - 138 - 140 - 142 - 145 - 146 - 147 - 158 - 171 - 172 - 175 - 186 - 195 - 196 - 197 - 198 - 201 - 202 - 233 - 244 - 246 - 247 - 254 - 263 - 276 - 295 - 297 - 299 - 302 - 304 - 313 - 328 - 334 - 338 - 340 - 361 - 362 - 389 - 392 - 394 - 396 - 404 - 405 - 406 - 407 - 409 - 418 - 428 - 430 - 435 - 438 - 445 - 448 - 462 - 465 - 474 - 477 - 479 - 480 - 485 - 498 - 501.

5.4.5 Subárea E

Número de municípios: 73 Superfície estadual: 11,1%Indicador S: S > 0.55

Característica: Variável Y (12), nível alto

Unidades territoriais: 2-18-38-45-47-85-92-94-99-102-104-105-108-110-115-116-118-122-126-134-164-177-200-243-253-290-293-310-315-388-390-391-398-400-402-414-415-416-417-419-420-422-423-425-426-427-429-431-432-433-434-440-446-457-458-459-460-463-466-467-468-471-475-481-484-486-487-488-491-492-494-495-500.

5.4.6 Subárea H

Número de municípios: 42 Superfície estadual: 5,6%

Características: municípios não enquadráveis nos padrões anteriores, ou municípios não analisados por insuficiência de informação estatística; esta não constitui uma subárea homogênea.

Unidades territoriais: 7 - 11 - 22 - 29 - 39 - 40 - 41 - 46 - 50 - 86 - 109 - 117 - 152 - 166 - 167 - 178 - 180 - 199 - 235 - 239 - 252 - 255 - 303 - 306 - 314 - 316 - 321 - 322 - 326 - 329 - 332 - 335 - 346 - 358 - 359 - 372 - 408 - 461 - 470 - 473 - 476 - 483.

6. A estrutura agrária do Estado de São Paulo

6.1 Variáveis selecionadas

Completando-se o desenvolvimento da aplicação de nossa metodologia, empreende-se agora também uma abordagem da estrutura agrária desses mesmos municípios do Estado de São Paulo.

O enfoque da estrutura agrária dos municípios do Estado de São Paulo foi procedido com base no comportamento das seguintes variáveis:

a) percentual da área total dos estabelecimentos com menos de 100 ha na área total dos estabelecimentos;

- b) área média dos estabelecimentos;
- c) percentual das terras arrendadas na área total dos estabelecimentos, e
- d) população ocupada agrícola por unidade de área de estabelecimento.

Os quadros 6, 7, 8, 9, 10 e 11 são concernentes a essas variáveis selecionadas.

6.2 Manchas territoriais

As componentes do vetor-próprio 1, quadro 9, são os coeficientes utilizados na construção do indicador S. Os valores assumidos pelo indicador S em cada uma das unidades territoriais arroladas estão representados no quadro 11.

O estudo da distribuição do indicador R foi procedido por meio de amostra aleatória simples.

6.2.1 Distribuição do indicador S

Os valores de S distribuíram-se entre - 8,0 e 11,0 unidades.

Tendo em vista o critério estabelecido para a constituição de classes, foram configuradas sete classes de homogeneidade.

As áreas serão assim designadas:

Subárea
$$\overline{A}$$
, para $S < -1,3$
Subárea \overline{B} , para $-1,3 \leqslant S < -0,8$
Subárea \overline{C} , para $-0,8 \leqslant S < -0,2$
Subárea \overline{D} , para $-0,2 \leqslant S < 0,3$
Subárea \overline{E} , para $0,3 \leqslant S < 1,0$
Subárea \overline{F} , para $1,0 \leqslant S < 1,7$
Subárea \overline{G} , para $1,7 \leqslant S$

Definiu-se ainda uma área, denotada \overline{H} , que não se caracteriza como área homogênea, mas que foi estabelecida apenas com o objetivo de congregar os municípios que não puderam ser classificados em nenhuma das subáreas acima referidas, por insuficiência de disponibilidade de dados ou porque, após terem sido inseridos numa das subáreas definidas, com base nos valores do indicador S, rejeitou-se a hipótese de similitude estrutural com base nos valores de R associados aos municípios considerados.

6.2.2 Distribuição do indicador R

O fenômeno investigado foi a distribuição do indicador R sobre o território do Estado de São Paulo.

A adequação de especificado modelo teórico probabilístico (log-normal a dois parâmetros) para descrever o fenômeno está discutida no anexo 2, em que se apresenta também o estabelecimento da separatriz de 95% da distribuição de R.

Com base no valor crítico (separatriz de 95% da distribuição de R), procedeu-se ao exame do valor de R para cada par de unidades territoriais, dentro de cada área homegênea preliminarmente delineada, testando-se para cada um daqueles pares a hipótese Ho de similitude estrutural (nível de significância de 5%).

Deste estudo resultou que alguns municípios foram transferidos para a subárea H, em face de ter-se rejeitado a hipótese de similitude estrutural formulada.

Assim, foram transferidas para a subárea H as seguintes unidades territoriais:

Unidade número 221 (que pertencia à subárea \overline{A})
Unidade número 322 (que pertencia à subárea \overline{C})
Unidade de número 89 (que pertencia à subárea \overline{E})
Unidades de números 18, 92 e 164 (que pertenciam à subárea \overline{G}).

6.3 Áreas homogêneas do Estado de São Paulo sob uma ótica da estrutura agrária

Para fins de caracterização das subáreas delineadas, os valores das variáveis Y (1), Y (2), Y (3) e Y (4) foram classificados em:

```
nível baixo (N. B.)
nível médio inferior (N. M. I.)
nível médio (N. M.). (média aritmética)
nível médio superior (N. M. S.)
nível alto (N. A.)
```

As áreas homogéneas identificadas estão representadas no mapa II.

6.3.1 Subárea A

Número de municípios 37 Superfície estadual: $8,1_{0}^{er}$ Indicador S: S < -1,3

Características: variável Y (1), nível baixo

variável Y (2), nível alto variável Y (3), nível baixo variável Y (4), nível baixo

Unidades territoriais: 1 - 30 - 44 - 61 - 88 - 95 - 156 - 161 - 162 - 168 - 185 - 212 - 214 - 223 - 227 - 230 - 236 - 240 - 241 - 242 - 249 - 252 - 260 - 265 - 267 - 268 - 292 - 300 - 305 - 341 - 342 - 356 - 367 - 383 - 384 - 497.

6.3.2 Subárea B

Número de municípios: 60 Superfície estadual: 12,7%

Indicador S: $-1.3 \le S < -0.8$

Características: variável Y (1), nível baixo

variável Y (2), nível médio superior

variável Y (3), nível baixo variável Y (4), nível baixo

Observação: Os níveis das variáveis Y (1), Y (3) e Y (4) são freqüentemente mais altos em municípios pertencentes a esta subárea do que nos municípios da subárea \overline{A} .

Unidades territoriais: 3-4-5-6-8-14-19-24-28-113-143-147-150-154-181-201-211-217-218-219-224-226-229-231-232-234-238-250-251-269-270-271-274-275-280-284-285-286-287-288-301-307-331-349-353-364-368-369-374-376-378-379-381-421-437-444-449-496-503.

6.3.3 Subárea C

Número de municípios: 140 Superfície estadual: 33,1%

Indicador *S*: $-0.8 \le S < -0.2$

Características: variável Y (1), nível médio inferior

variável Y (2), nível médio

variável Y (3), nível médio inferior variável Y (4), nível médio inferior

Unidades territoriais: 9-16-17-20-21-23-26-27-29-31-36-37-42-43-46-49-51-52-54-57-58-62-65-66-67-68-70-74-80-87-90-93-98-100-107-114-125-131-133-137-138-139-141-144-149-151-152-155-157-159-165-166-179-180-182-184-187-188-189-190-191-192-193-202-203-205-206-208-210-215-220-222-225-228-248-255-256-258-259-261-264-266-273-277-278-279-281-282-291-294-296-303-309-312-314-316-317-318-319-320-323-325-329-330-332-335-336-339-340-343-344-347-348-351-352-354-358-363-365-366-370-371-372-373-375-380-382-385-387-424-442-447-450-451-452-455-456-472-489-502.

6.3.4 Subárea D

Número de municípios: 107

Superfície estadual: 22,4%

Indicador S: $-0.2 \leq S < 0.3$

Características: variável Y (1), nível médio

variável Y (2), nível médio inferior

variável Y (3), nível médio

variável Y (4), nível médio inferior

Observação: os níveis da variável Y (4), são freqüentemente mais elevados em unidades territoriais pertencentes a esta subárea \overline{C} .

Unidades territoriais: 7 - 10 - 11 - 12 - 13 - 15 - 25 - 32 - 33 - 35 - 41 - 48 - 53 - 55 - 63 - 64 - 71 - 72 - 75 - 76 - 77 - 81 - 84 - 86 - 97 - 101 - 109 - 112 - 120 - 132 - 136 - 146 - 148 - 153 - 158 - 160 - 163 - 169 - 170 - 172 - 173 - 174 - 176 - 183 - 194 - 199 - 204 - 207 - 216 - 233 - 235 - 237 - 239 - 245 - 254 - 257 - 263 - 272 - 283 - 289 - 297 - 298 - 302 - 308 - 311 - 321 - 324 - 326 - 327 - 333 - 337 - 345 - 346 - 350 - 355 - 357 - 359 - 360 - 377 - 386 - 393 - 395 - 397 - 399 - 403 - 406 - 410 - 411 - 412 - 413 - 435 - 436 - 439 - 441 - 443 - 453 - 454 - 464 - 469 - 476 - 478 - 482 - 483 - 490 - 493 - 499 - 504.

6.3.5 Subárea E

Número de municípios: 74

Superfície estadual: 12,0%

Indicador S: $0.3 \le S < 1.0$

Características: variável Y (1), nível médio superior

variável Y (2), nível médio inferior

variável Y (3), nível médio superior

variável Y (4), nível médio superior

Observação: os níveis da variável Y (2) são freqüentemente mais baixos nas unidades territoriais pertencentes a esta subárea do que naquelas que pertencem à subárea \overline{D} .

Unidades territoriais: 34 - 35 - 56 - 59 - 60 - 69 - 73 - 78 - 79 - 82 - 83 - 91 - 96 - 103 - 106 - 111 - 119 - 121 - 123 - 124 - 127 - 128 - 129 - 130 - 140 - 142 - 145 - 171 - 175 - 186 - 195 - 196 - 197 - 198 - 213 - 244 - 246 - 247 - 253 - 276 - 295 - 299 - 304 - 306 - 313 - 328 - 334 - 338 - 361 - 362 - 389 - 392 - 394 - 396 - 401 - 404 - 405 - 407 - 409 - 418 - 430 - 438 - 445 - 448 - 461 - 462 - 465 - 474 - 477 - 479 - 480 - 498 - 501.

6.3.6 Subárea F

Número de municípios: 41

Superfície estadual: 7,8%

Indicador S: $1.0 \leq S < 1.7$

Características: variável Y (1), nível médio superior

variável Y (2), nível baixo

variável Y (3), nível médio superior

variável Y (4), nível médio superior

Observação: os níveis das variáveis Y (1) e Y (3) são freqüentemente mais altos nas unidades territoriais pertencentes a esta subárea do que naquelas que pertencem à subárea \overline{E}

Unidades territoriais: 2-47-85-102-104-105-108-126- 177-200-290-293-310-315-400-408-414-417-419-423-425-428-429-433-434-440-446-459-460- 463-468-470-475-485-488-491-492-494-500.

6.3.7 Subárea G

Número de municípios: 32

Superfície estadual: $3.6\frac{6}{70}$

Indicador S: $S \geqslant 1.7$

Características: variável Y (1), nível alto

variável Y (2), nível baixo

variável Y (3), nível alto

variável Y (4), nível alto

Observação: os níveis da variável Y (2) são freqüentemente mais baixos em unidades territoriais desta subárea do que naquelas pertencentes à subárea \overline{F}

Unidades territoriais: 38 - 50 - 94 - 99 - 110 - 115 - 116 - 118 - 122 - 134 - 243 - 388 - 390 - 391 - 398 - 402 - 415 - 416 - 420 - 422 - 426 - 427 - 431 - 432 - 457 - 458 - 467 - 471 - 481 - 484 - 487 - 495.

6.3.8 Subárea H

Número de municípios: 13 Superfície estadual: 0.9%

Características: municípios não enquadráveis nos padrões anteriores, ou municípios não analisados por insuficiência de informações estatísticas; esta subárea não constitui território homogêneo

Unidades territoriais: 18 - 22 - 39 - 40 - 89 - 92 - 117 - 164 - 167 - 178 - 221 - 322 - 473.

7. Conclusões

A conjugação das áreas delineadas sob um ponto de vista da organização agrária com aquelas delineadas sob um ponto de vista da estrutura agrária, contribui para a configuração de algumas das características fundamentais das subáreas homogêneas, a que se aludirá.

Foram delineados cinco tipos de áreas homogêneas no território do Estado de São Paulo sob o ponto de vista da organização agrária, denotadas A, B, C, D e E.

É assinalável, em relação ao âmbito estadual, a alta participação da área de pastagens na área total dos estabelecimentos nos municípios de A e B, e da área de lavouras na área total dos estabelecimentos de D e E.

— A subárea C é, em superfície, a mais extensa das subáreas homogéneas delineadas — ocupa 38.3% da superfície estadual.

A quase totalidade dos municípios de C é constituída de municípios que pertencem às subáreas homogêneas \overline{C} ou \overline{D} .

Assim, tem-se que uma característica dessa subárea é o fato de sua estrutura agrária, configurada pela variável W=(Y(1), Y(2), Y(3)) e Y(4), ser tal que esta variável assim se comporta:

No que concerne às características da forma de utilização da terra, também as correspondentes variáveis nesta subárea oscilam na faixa de seu respectivo nível médio estadual.

— A subárea B é, em superfície, a segunda das subáreas homogêneas delineadas — ocupa 20.9% da superfície estadual.

A quase totalidade dos municípios de B é constituída de unidades territoriais que pertencem às subáreas \overline{B} ou \overline{C} .

Tem-se que uma característica das unidades territoriais desta subárea é o fato de sua variável W, associada à estrutura agrária, comportar-se de uma das seguintes formas:

ou

— A subárea D é, em superfície, a terceira das subáreas homogêneas — ocupa 17.5% da superfície estadual.

Elevada proporção dos municípios de D pertence a \overline{E} .

Uma característica desta subárea é o seguinte comportamento da variável W referida:

- A subárea E é, em superfície, a quarta das subáreas homogêneas delineadas - ocupa 11,1% da superfície estadual.

Elevada proporção dos municípios de E pertence a \overline{F} ou \overline{G} ou \overline{H} . A característica das unidades territoriais desta subárea é o comportamento de sua variável W:

OH

ou, ainda, estrutura agrária não enquadrável em nenhuma das áreas homogêneas delineadas sob um ponto de vista da estrutura agrária configurada.

A subárea A é, em superfície, a menor das subáreas homogêneas delineadas — ocupa 6.6% da superfície estadual.

Elevada proporção dos municípios da subárea A é constituída por municípios pertencentes à \overline{A} .

A característica das unidades territoriais desta subárea é o seguinte comportamento da variável W: (N.B., N.A., N.B., N.A.)

No capítulo 5 foi apresentada uma visão panorâmica das associações das variáveis que foram selecionadas para a descrição da organização agrária no Estado de São Paulo.

Nestas considerações conclusivas far-se-á referência à conformidade do sentido das associações entre as variáveis selecionadas para a caracterização da estrutura agrária, no âmbito das subáreas homogêneas delineadas, com o sentido das associações dessas mesmas variáveis na distribuição conjunta das variáveis caracterizadoras da organização agrária no âmbito do território estadual.

O exame da distribuição conjunta das variáveis selecionadas para caracterizar a organização agrária do Estado de São Paulo, revelará que as variáveis percentual de terras arrendadas na área total dos estabelecimentos, população ocupada agrícola por unidade de área de estabelecimento estão positivamente associadas, mas negativamente associadas à variável área média dos estabelecimentos.

O sentido das associações das variáveis caracterizadoras da estrutura agrária acima referido, foi marcantemente preservado nas subáreas B, D e E.

Nos municípios pertencentes à subárea C, as variáveis caracterizadoras da estrutura agrária municipal assumiram valores nas faixas de seus

correspondentes níveis médios estaduais. Enquanto que na subárea A, a menor das subáreas homogêneas delineadas, a variável população ocupada agrícola por unidade de área de estabelecimento manifestou-se associada negativamente à variável percentual das terras arrendadas na área total dos estabelecimentos, contrastando com o sentido dessas associações configurado no âmbito estadual, na distribuição conjunta das variáveis selecionadas para um retratamento da organização agrária do Estado de São Paulo.

Referências bibliográficas

Boustedt, O. & Ranz, H. Metcdología de la investigación regional. Alemanha. Academia de Investigación Espacial y Planificación Regional de Hanover, 1965.

Caldas, E. C. e Loureiro, M. S. Regiões homogêneas no Continente Português. Lisboa. Fundação Gulbenkian. 1966.

Galton, F. Co-relations and their measurement, chiefly from anthropometric data. Proceeding of the Royal Society, v. 45, 1888

Hagood, M. J. An examination of the use of factor analysis in the problem of subregional delineation. Rural Sociology, v. 6, sep. 1941.

_____. Statistical methods for delineation of regions applied to data on agriculture and population. Social Forces, v. 21, mar. 1943.

Harman, H. Modern factor analysis. Chicago. University of Chicago Press, 1960.

Hotelling, H. Analysis of a complex of statistical variables into principal components. *Journal Educational Psychology*, v. 24, 1933.

Instituto Brasileiro de Geografia. Censo agrícola de São Paulo. Rio de Janeiro. IBGE, 1960.

- _____. Subsídios à regionalização. Rio de Janeiro. IBGE, 1968.
- _____. Divisão do Brasil em microrregiões homogêneas. Rio de Janeiro. IBGE, 1968.

Isard, W. Methods of regional analysis: an introduction to regional science. Massachusets. MIT, 1960.

Lawley, D. N. & Maxwell, A. E. Factor analysis as a statistical method. London. Butterworth e Co. (Publishers), Ltd., 1963.

Montello, J. Estatística para economistas. Rio de Janeiro. APEC, 1970.

Morrison, D. F. Multivariate statistical methods. Inc., Mc Graw-Hill, 1967.

Pearson, K. On lines and planes of closest fit to a system of points in space. Phil. Mag. 2, 6th Series, 1903.

Pereira, M., Galvão, A. Estácio F. & Almeida, R. Limiares de rendabilidade da exploração agrícola numa região do Nordeste. Lisboa. Fundação Calouste Gualbenkian, 1966.

Rochefort, M. O problema da regionalização do Brasil. Rio de Janeiro. Instituto de pesquisa econômico-social aplicada, 1967.

ANEXO I

CLASSIFICAÇÃO DOS MUNICÍPIOS DO ESTADO DE SÃO PAULO

ZONA DO LITORAL DE SÃO SEBASTIÃO

1 – Caraguatatuba Ilhabela São Sebastião Ubatuba

ZONA DO MÉDIO PARAÍBA

5 — Aparecida Areias Arujá Bananal Caçapava

10 - Cachoeira Paulista

Cruzeiro Guararema Guaratinguetá Igaratá

15 – Jacareí Lavrinhas 20 – Piquete Queluz Roseira Santa Isabel

25 – São José dos Campos

São José do Barreiro

Taubaté Tremembé Jacupiranga Juquiá Miracatu Patiquera-Açu

Silveiras

55 - Pedro de Toledo

Registro Sete Barras

ZONA DE SÃO JOSÉ DO RIO

PARDO

Águas da Prata

ZONA DO ALTO PARAÍBA

Cunha

30 – Jambeiro Lagoinha

Natividade da Serra

Paraibuna

Redenção da Serra

35 - Santa Branca

São Luiz do Paraitinga

Lorena

Monteiro Lobato

Pindamonhangaba

ZONA DA MANTIQUEIRA

Campos do Jordão Santo Antonio do Pinhal São Bento do Sapucaí

40 – Cubatão Guarujá Itanhaém Mongaguá Peruíbe

45 – Santos

São Vicente

ZONA DA BAIXADA DO RIBEIRA

Cananéia Eldorado Iguape

50 - Itariri

Bragança Paulista

Itapira

Itatiba

Jarinu

Joanópolis

Monte Alegre do Sul

Nazaré Paulista

Pedreira

Piracaia

Serra Negra

Socorro

ZONA DE SÃO PAULO

85 — Araçoiaba da Serra Caconde

60 – Divinolândia

Mococa

Pinhal

Santo Antonio do Jardim São João da Boa Vista

65 – São José do Rio Pardo São Sebastião do Grama Tapiratiba

Vargem Grande do Sul

ZONA DE BRAGANÇA

Águas de Lindóia

70 — Amparo Atibaia Bom Jesus dos Perdões Itapevi

Itaquaquecetuba

100 — Itu

Jundiaí Mairingue

Mairiporã

Mauá

105 – Mogi das Cruzes

Monte Mor

Pirapora do Bom Jesus

Poá

Porto Feliz

110 - Ribeirão Pires

Salesópolis

Barueri

Boituva

Cabreúva

Caieiras

Cajamar

90 - Campinas

Cotia

Diadema

Elias Fausto

Ferraz de Vasconcelos

95 - Franco da Rocha

Guarulhos

Indaiatuba

ZONA DO PARANAPIACABA

125 - Capão Bonito

Embu

Guapiara

Ibiúna

Itapecerica da Serra

130 - Piedade

Pilar do Sul

Ribeirão Branco

São Miguel Arcanjo

Taboão da Serra

135 - Tapiraí

ZONA DO ALTO RIBEIRA

ZONA DE PIRASSUNUNGA

Apiaí
Iporanga
Ribeira
Salto
Salto de Pirapora
Santana do Parnaíba

115 — Santo André São Bernardo do Campo São Caetano do Sul SÃO PAULO São Roque

120 — Sorocaba
Sumaré
Suzano
Valinhos
Vinhedo
Leme
Mogi-Guaçu
Mogi-Mirim
Pirassununga

150 – Porto Ferreira Santa Cruz da Conceição Santa Cruz das Palmeiras Santo Antonio de Posse Tambaú

ZONA DE RIO CLARO

155 — Americana Analândia Araras Cordeirópolis Corumbataí

160 – Cosmópolis

140 — Artur Nogueira Casa Branca Conchal

Aguaí

Descalvado Itobi

145 – Jaguatiúna Bofete

170 — Capivari Cerquilho Charqueada Conchas Laranjal Paulista

175 — Pereiras
Piracicaba
Porangaba
Rafard (5)
Rio das Pedras

180 — Santa Bárbara d'Oeste Santa Maria da Serra São Pedro Tietê

ZONA DOS CAMPOS GERAIS

.Angatuba

185 — Buri Cesário Lange Guareí Iracemápolis Itirapina Limeira Nova Odessa

165 – Rio Claro Santa Gertrudes

ZONA DE PIRACICABA

Águas de São Pedro Anhembi Sarapuí

195 - Tatuí

ZONA DE ITAPORANGA

Fartura Itaporanga Ribeirão Vermelho do Sul Taquarituba

200 – Taguaí

ZONA DE FRANCA

Buritizal Franca Guapuã Guará

205 – Igarapava Itirapuã Ituverava Patrocínio Paulista

Pedregulho

210 – Rifaina Itaberá Itaí

190 — Itapetininga Itapeva Itararé Paranapanema

215 — Brodósqui
Cajuru
Cássia dos Coqueiros
Cravinhos
Ipuã

220 — Jardinópolis Luiz Antonio Nuporanga Orlândia Ribeirão Preto

225 – Sales de Oliveira
 Santa Rita do Passa Quatro
 Santa Rosa de Viterbo
 Santo Antonio da Alegria
 São Joaquim da Barra

230 — São Simão Serra Azul Serrana Sertãozinho

ZONA DE ARARAQUARA

Araraquara

235 – Cândido Rodrigues São José da Bela Vista

ZONA DE RIBEIRÃO PRETO

Altinópolis Barrinha Batatais

240 — Pradópolis Rincão Santa Lúcia Taiaçu Taiúva

245 — Taquaritinga Vista Alegre do Alto

ZONA DE SÃO CARLOS E JAÚ

Barra Bonita Boracéia Brotas

250 —	Dois Córregos	ZONA	DE BARRETOS
	Dourado	280 -	Main
	Ibaté	200 —	Barretos
	Igaraçu do Tietê		Bebedouro
	Itapuí		Cajobi
255 -	Jaú		Torrinha
	Macatuba		
	Mineiros do Tietê	ZONA	DE BOTUCATU
	Pederneiras		
	Ribeirão Bonito		Agudos
260 —	São Carlos	285 -	Colômbia
	Guariba		Guaíra
	Jaboticabal		Guaraci
	Matão		1cém
	Monte Alto		Jaborandi
		290 -	Miguelópolis
	Arciópolis		Monte Azul Paulista
	Avaré		Morro Agudo
265 -	Botucatu		Nova Granada
	Cerqueira César		Olímpia
	Itatinga	295 -	Palestina
	Lençóis Paulista		Paraíso
	Pardinho		Paulo de Faria
970	Conta Dánhana da Dia Danda		Pirangi
270 -	Santa Bárbara do Rio Pardo		Pitangueiras
	São Manuel	300 —	
			Riolândia
ZONA	DE PIRAJU		Severínia
			Terra Roxa
	Bernardino de Campos		Viradouro
	Chavantes	70X4	DO RIO PRETO
	Ipauçu	ZONA	DO KIO IKLIO
275 -	Manduri	305 —	Adolfo
	Óleo		Alvares Florence
	Piraju		Américo de Campos
	Sarutaiá		Colina
	Timburi		Bálsamo

310 —	Borboleta Buritama Cardoso Cedral Cosmorama	340 —	Bariri Boa Esperança do Sul Bocaina Borborema Catanduva
315 —	Floreal Gastão Vidigal General Salgado Guapiaçu	345 —	Catiguá Fernando Prestes Ibirá Ibitinga
320 —	Jaci José Bonifácio Macaubal Magda	350 —	Irapuã Itajobi Itaju Itápolis
325 —	Mendonça Mirassol Mirassolândia	355 —	Nova Europa Novo Horizonte Pindorama
	Monte Aprasível Neves Paulista Nhandeara Nipoã		Sales Santa Adélia Tabapuã Sabino
330 —	Nova Aliança Planalto	385 —	
	Poloni Potirendaba	ZONA	DE BAURU
360 —	São José do Rio Preto Tabatinga Uchoa		Alto Alegre Arcalva Avaí
	Urupês Auriflama	365 —	Avanhandava Balbinos Barbosa
335 —	Tanabi Turiúba Valentim Gentil		Bauru Cabrália Paulista
ZONA	Votuporanga DE CATANDUVA	370 –	Calelândia Duartina Guaiçara
	Ariranha		Guarantã Lacanga

375 —		ZONA	DE MARÍLIA
	Lucianópolis		Adamantina
	Penapólis	405 —	Álvaro de Carvalho
	Pirajuí		Alvinlândia
	Piratininga		Tupã
380 —	Pongaí	435 -	Vera Cruz
	Presidente Alves		
	Promissão	ZONA	DE ASSIS
	Reginópolis		Assis
	Bastos		Campos Novos Paulista
	Flora Rica		Guaimbê
	Flórida Paulista		Herculândia
410 —	Gália	415 —	
	Garça	113	Inúbia Paulista
	Getulina		Irapuru
			Júlio Mesquita
ZONA	DE ARAÇATUBA		Junqueirópolis
201111	22	420 -	Lucélia
	Araçatuba		Lupércio
	Bento de Abreu		Mariápolis
	Bilac		Marília
	Biriguí		Ocauçu
200	Braúna	$425 \; -$	Oriente
330 —	Clementina		Osvaldo Cruz
	Coroados		Pacaembu
	Gabriel Monteiro		Parapuã
	Glicério		Pompéia
00 5		430 —	Quintana
395 —	Guaraçaí		Rinópolis
	Guararapes		Sagres Salmorão
	Lavínia		Samorao
	Luiziânia	ZONA	DE PRESIDENTE
	Mirandópolis	PRUD	
400 -	Piacatu		
	Rubiácea		Alfredo Marcondes
	Santópolis do Aguapeí		Álvares Machado
	Valparaíso		Anhumas

460 —	Caiabu Indiana Martinópolis	470 —	Santo Anastácio Santo Expedito Taciba
	Mirante do Paranapanema		Tarabaí
	Piquerobi Candido Mota Echaporã	ZONA	DE PEREIRA BARRETO
440 —	Florinea		Dolcinópolis
	Ibirarema	475 -	Estrela d'Oeste
	Iepê		Fernandópolis
	João Ramalho		Guarani d'Oeste
	Lutécia		Indiaporã
445 —	Maracaí		Jales
	Oscar Bressanc	480	Meridiano
	Ourinhos		
	Palmital Paragram Paulista	ZONA	DE ANDRADINA
450	Paraguaçu Paulista		A. J. Jina
450 —	Platina	100	Andradina
	Quatá Rancharia	490 —	Castilho
	Salto Grande		Dracena Monte Castelo
	Santa Cruz do Rio Pardo		Murutinga do Sul
455 _	São Pedro do Turvo		Nova Guataporanga
133 —	Ubirajara	105	• -
	Palmeira d'Oeste	495 —	Ouro Verde
	Pereira Barreto		Panorama Paulicéia
	Populina Populina		Santa Mercedes
	Santa Fé do Sul		São João de Pau d'Alho
485 —	Santa Albertina	:00	v
100	Sud Menucci	300 —	Tupi Paulista
	Três Fronteiras	70NA	DE PRESIDENTE
	Urânia		ESLAU
465 —	Pirapozinho	LITTO	
200	Presidente Bernardes		Caiuá
	Presidente Prudente		Marabá Paulista
	Regente Feijó		Presidente Epitácio
	Sandovalina	504 -	Presidente Venceslau

ANEXO 2

ESTUDO DA DISTRIBUIÇÃO DO INDICADOR R

1. Distribuição logaritmo-normal

Diz-se que a variável X tem distribuição logaritmo-normal se existirem constantes ν e λ (maiores que 0) tais que $Y = \log (\lambda X)/\nu$ tenha distribuição N(0,1).

2. Estimação dos parâmetros

Suponha-se que a variável aleatória X tem distribuição logaritmo-normal:

$$f_x(x) = 0 \text{ se } x < 0$$

= $1/(vx \sqrt{2\pi}) \cdot e^{(-\lg(\lambda x))^2/(2v^2)} \text{ se } x > 0$

Seja uma amostra x_1, x_2, \ldots, x_n por hipótese proveniente de um universo logaritmo-normal.

Construa-se a função:

$$L=L(x_1,\,x_2,\,\ldots,\,x_n;\,\lambda,\,\nu)=f(x_1;\,\lambda,\,\nu)\,f(x_2;\,\lambda,\,\nu)\,\ldots f(x_n;\,\lambda,\,\nu)$$

Ponha-se $M=\lg L$ e imponha-se que: $M_{\,\nu}'=M_{\,\lambda}'=0$
Logo, $\lg \hat{\lambda}=-\overline{\lg x}$ e $\hat{\nu}^2=$ var $(\lg x)$
para a amostra aleatória extraída: $\overline{\lg x}=-0.36048$

e var (1gx) = 0.21403

3. Teste de hipótese

Com base no teste estatístico D, Kolmogorov-Smirnov, que é definido como o maior dos valores absolutos da diferença entre duas distribuições de freqüências relativas acumuladas, uma de valores esperados, outra de valores observados, e considerado o nível de significância de 5%, não se rejeitou a hipótese Ho de que 1gR é N (— 0,36048, 0,21403).

4. Valor crítico T' (nível de significância de 5%) para o Teste de Similitude Estrutural

Ponha-se
$$T=(1gR+0.3048) / 0.46261$$

Quer-se que Pr $(T < t) = 0.95$ ou Pr $(R < 10^{0.1739}) = 0.95$, logo $T'=1.493$.

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Homegéneas

Analista Eden Gonçalves de Oliveira

Variáteis selecionadas

Y (1)

Y (2)

Y (3)

Y (4)

Y (5)

Y (6)

 \mathbf{Y} (7)

Y (8)

Y (9)

QUADRO 2

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Econon.ia Tese Delineamento de Regiões Homegêncas

Analista Eden Gonçalves de Oliveira

Coeficientes de correlação									
1.30000	0.29411	0.17397	0.20604	0.19614	-0.13992	0.25086	-0.03322	0.00635	
LINHA 2 -0.29441	1.00000	-0.24124	0.27671	-0.29358	0.11144	0.15407	0.02126	0.00067	
LINHA 3 0.17397	-0.24124	1.00000	0.26195	0.24620	-0.07428	0.00896	0.04158	-0.01400	
LINHA 4 0.20604	0.27671	0.26195	1.00000	0.38793	0.39083	-0.23896	0.01888	0.00367	
LINHA 5 0.18614	-0.29358	0.24620	0.38793	1.00000	-0.41396	0.12812	0.01524	0.09061	
LINHA 6 -0.13992	0.11144	-0.07128	- 0.39083	-0.11306	1.00000	0.32466	-0.10538	-0.03559	
LINHA 7 0.25086	0.15497	0.00896	0.23896	0.12812	0.32466	1.00000	-0.10481	0.01671	
LINHA 8 -0.03322	0.02126	0.04458	0.01888	0.01521	0.10538	0.10381	1.00000	0.03081	
LINHA 9 0.00035	0.00067	-0.04490	0.00367	0.99061	0.93559	0.01071	0.03081	1.00000	

154 R.B.E. 1/73

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Homogêneas

Analista Eden Gonçalves de Oliveira

		Matriz fato	r 3 fatores
VARIÁVEL 1 0.52367	0.09280	0.45105	. O jakorta
VARIÁVEL 2 0.58344	-0.19103	- 0.33426	
VARIÁVEL 3 0.46504	0.10697	0.16827	
VARJÁVEL 4 0.72851	0.00081	-0.06889	
VARIÁVEL 5 0.65450	0.42502	0.37776	
VARJÁVEL 6 0.63757	0.31833	0 39488	
VARIÁVEL 7 —0.38547	0.78543	-0.13753	
VARIÁVEL 8 0.07110	0.37005	0.3893 6	
VARIÁVEL 9 0.04589	0.02478	0.52794	

QUADRO 4

Fundação	Getulio Vargas
Centro de	Processamento de Dados
Escola de	Pós-Graduação de Economia
Tese Delir	eamento de Regiões Homogénea

vanrium a		Matriz fator retida	3 fatores
VARJÁVEL 1 0.46654	0.47707	0.20255	
VARIÁVEL 2 -0.64119	0.21961	û, 17109	
VARIÁVEL 3 0.62247	0.07410	C.131 3 3	
VARJÁVEL 4 0.61893	-0.25476	0.29577	
VARIÁVEL 5 0.72111	0.25263	—0 4097 5	
VARIÁVEL 6 →0.34057	0.33548	0.65971	
VARIÁVEL 7 0.02009	0.89091	0.16666	
VARIÁVEL 8 —0.17213	-0.15783	-0.48893	
VARIÁVEL 9 0.01934	0.23234	-0.47653	

Fundação Getulio Vargas Centro de Processamento de Dades Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Homogêneas

Analista Eden Gonçalves de Oliveira

nn	16	***	4 7	10	. 4	DES
. ()	.37		4/		, 4	110.5

VARIÁVEL	ORIGINAL	FINAL	DIFERENÇA
1	0.48629	0.48629	0.00000
2	0.48864	0.48864	0.00000
3	0.41021	0.41921	0.00000
4	0.53547	0.53547	0.00000
5	0.75172	0.75172	0.00000
6	0.66376	0.66376	0.00000
7	0.82191	0.82191	0.00000
s	0.29360	0.29360	0.00000
9	0.28144	0.28144	0.00000

QUADRO 6

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Econom.a Tese Delineamento de Regiões Homegêneas

Analista Eden Gonçalves de Oliveira

Variáreis selecionadas

Y (1)

Y (2)

Y (2)

Y (4)

QUADRO 7

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economía Tese Delineamento de Regiões Homegêneas

T INTERACT		Coeficientes de correlação					
LINHA 1 1.00000	-0.29441	0.17397	0.20603				
LINHA 2 -0.29441	1.00000	-0.21124	-0.27671				
LINHA 3 0.17397	-0.24124	1.00000	0.26195				
LINHA 4 0.20603	-0.27671	0.26195	1.00000				

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Homogêneas

Analista Eden Gonçalves de Oliveira

1.73029

Valores próprios

QUADRO 9

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Homogêneas

Analista Eden Gonçalves de Oliveira

VETORES-PRÓPRIOS 1 0.47419 -0.54037

0.47386

Vetores-próprios
0.50850

QUADRO 10

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Hemogêneas

			Função de	ecisão (CP)			
OBS. FD	OBS. FD	OBS. FD	OBS. FD	OBS. FD	OBS. FD	OBS. FD	OBS. FD
1 —1.402 9 —0.272 17 —0.749 25 —0.421 34 —0.612 44 —1.802 52 —0.237 60 —0.600 68 —0.453 76 —0.205 84 —0.067 92 10.923 100 —0.369 108 1.339 116 2.094 125 —0.362 133 —0.345 141 —0.591 149 —0.549 149 —0.549 149 —0.549 157 —0.448 165 —0.265 174 —0.104 183 —0.081 191 —0.357 199 —0.189 207 —0.057 215 —0.726 223 —2.607 231 —1.251 239 —0.161 247 —0.670	2 1.137 100.110 18 4.017 27 -0.362 35 -0.011 45 0.949 53 -9.069 61 -1.617 69 0.592 77 -0.955 85 1.226 93 -0.204 101 0.112 109 -0.094 118 2.040 126 1.454 124 0.300 150 -1.137 158 -0.016 166 -0.766 175 0.735 184 -0.332 192 -0.588 200 1.103 208 -0.776 216 0.082 224 -0.849 232 -0.849 232 -0.859 249 -0.849 232 -0.889 249 -0.298	3 -1.133 11 -0.150 19 -0.911 28 -0.843 26 -0.479 46 -0.378 62 -0.747 70 -0.231 78 0.703 86 0.079 94 5.285 102 1.206 110 3.240 119 0.542 127 0.542 139 0.785 143 -1.162 151 -0.730 159 -0.404 168 -2.542 176 -0.123 185 -2.066 193 -0.295 201 -0.994 217 -1.159 225 -0.652 233 0.072 241 -2.056 249 -1.505	OBS. FD 4	OBS. FD 5 —1.056 13 0.104 21 —0.652 30 —1.455 38 2.056 48 —0.060 56 0.418 61 0.041 72 0.225 80 —0.539 88 —4.731 196 0.793 104 1.098 112 —0.937 121 0.740 129 0.650 137 —0.794 145 0.688 153 —0.038 153 —0.038 154 —0.093 155 —0.093 157 —0.794 179 —0.416	6 —1.164 14 —0.814 23 —0.209 31 —0.224 41 —0.095 49 —0.561 57 —0.304 65 —0.516 673 0.780 81 0.099 89 0.957 97 —0.124 105 1 233 113 —0.914 122 2.203 130 0.885 138 —0.469 146 0.259 154 —1.296 162 —1.315 171 0.403 180 0.381 196 0.758 204 —0.166 212 —2.303 220 —0.442 223 —0.213 236 —3.163 244 0.469 255 —1.705	7 0.107 15 0.075 21 -0.948 22 0.037 42 -0.644 50 7.055 55 -0.337 66 -0.221 74 -0.308 106 0.497 114 -0.308 123 0.378 131 -0.410 139 -0.283 147 -0.942 155 -0.297 163 0.042 172 0.124 181 -1.117 189 -0.310 197 0.456 205 -0.446 221 0.335 221 -7.942 229 -1.067 227 -0.091 245 -0.016 253 0.779	S - 1.015 15 - 0.273 25 0.055 23 - 0.075 43 - 0.410 51 - 0.426 59 0.313 67 - 0.393 75 - 0.065 83 0.985 91 0.770 99 2.264 107 - 0.790 115 1.790 124 0.623 132 - 0.011 140 0.421 148 - 0.125 156 - 1.813 164 6.148 173 - 0.997 182 - 0.619 190 - 0.371 198 0.402 206 - 0.184 214 - 1.632 222 - 0.572 236 - 2.513 238 - 1.007 216 0.869 254 0.004
239 0.161 247 0.670 255 —0.368 263 0.048	210 -2.130 248 -0.298 256 -0.376 264 -0.783	241 —2.056 249 —1.505 257 —0.053 265 —1.798	242 —2.007 250 —0.877 258 —0.471 266 —0.390	243 1.750 251 -0.976 259 -0.783 267 -2.377	244 0.469 252 -1.705 260 -1.864 268 -1.537	245 —0.046 253 0.779 261 —0.572 269 —1.294	216 0.869 254 0.004 262 -1.438 270 -0.992
271 -0.957 279 -0.673 287 -1.198 295 0.807 303 -0.341 311 0.194 310 -0.349 327 0.059 335 -0.345 343 -0.650	2720.089 2801.280 2880.977 2960.260 304 -0.908 3120.320 3200.670 325 -0.619 3360.206 3140.251	273 —0.411 281 —0.419 259 —0.024 297 —0.250 305 —2.843 313 —0.717 321 —0.068 329 —0.284 337 —0.213 345 —0.989	274 —0.976 282 —0.567 290 —1.176 298 —0.180 306 —0.498 314 —0.221 322 —0.438 330 —0.557 338 —0.473 346 —0.126	275 -1.040 293 -0.050 291 -0.679 299 0.634 307 -0.941 315 1.406 323 -0.226 331 -1.180 339 -0.486 347 -0.343	276 0.397 284 -1.149 292 -1.468 300 -1.630 308 -0.179 316 -0.255 324 -0.014 332 -0.440 340 -0.469 348 -0.471	2770.601 285 -1.203 293 1.141 301 -0.823 309 -0.262 317 -0.485 325 -9.259 333 0.240 341 -1.958 349 -0.890	278 -0.439 286 -0.982 294 -0.698 302 0.211 310 1.376 318 -0.475 326 0.108 334 0.394 342 -2.016 350 -0.198

QUADRO 10A

			QUAL)KO .	.UA						
Escola de Pós-	ulio Vargas cessamento de l Graduação de l ento de Regiõe	Economi:					Analis	a Eden Go	nçalve	s de	Oliveir
			Função-d	ecisão (CP)	-					
OBS. FD	OBS. FD	OBS. FD	OBS. FD	OBS.	FD	OBS.	FD	OBS. F	D O	BS.	FD
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	352	353 -0.805 361 0.312 369 -1.027 377 0.104 395 -0.324 392 0.168 491 0.417 409 0.859 417 1.485 425 1.218 433 1.227 441 0.182 449 -0.994 457 2.600 474 0.365 482 0.903 474 0.365 498 0.323	354 - 0.673 362 - 0.833 370 - 0.623 378 - 1.081 386 - 0.066 402 - 3.117 410 - 0.092 418 - 0.667 426 - 2.786 424 - 1.417 442 - 0.321 450 - 0.722 458 - 0.722 458 - 0.044 475 - 1.326 483 - 0.044 491 - 1.506	363 371 379 387 403 403 411 419 427 435 443 451 450 469 476 476 484 492	-0.122 -0.601 -0.333 -0.839 -0.788 -0.153 -0.071 1.663 2.652 0.274 0.141 -0.739 1.284 1.782 0.969 2.1196 1.159	356 364 372 330 388 395 404 412 420 428 436 444 452 469 468 477 485 493 501	-2.322 -0.899 -0.516 -0.459 2.307 0.598 0.442 -0.187 2.043 1.053 0.007 -0.928 -0.664 1.493 1.167 0.469 1.389 -0.147 0.518	365 —0. 373 —0. 381 —1. 389 0. 397 0. 405 0. 413 —0. 421 —1. 429 1. 445 0. 445 0. 460 —0. 478 —0. 486 1.	700 3 505 3 603 3 905 3 131 3 131 3 4498 4 035 4 0010 4 5521 4 010 4 314 4 140 4 090 4 472 4 4265 4	666 74 882 90 998 966 114 222 30 38 146 54 62 70 87 95	-0.482 -0.319 -1.123 -0.114 2.561 1.827 0.141 1.464 2.786 0.537 0.636 1.251 -0.131 0.810 1.067 0.863 2.682 2.473 -1.087
0010,139	·		QUA	DRO	11						
Escola de Pós	ulio Vargas cessamento de Graduação de tento de Regiõo	Econom a					Analis	a Eden Go	nçalve	s de	Oliveira
			Variáveis	selecion	nadas						
			Y	(5) (6) (7)							
	<u>-</u>	-	QUA	DRO	12						
Escola de Pós-	ulio Vargas cessamento de l Graduação de cento de Regiõe	Econom a	<u> </u>				Analis	a Eden Go	nçalve:	s de (Oliveira
			Coeficiente	de cor	relação						
LINHA 1 1.90000	- 0.4139	6 0.128	S10								
LINHA 2 -0.41306	1,00000										
LINHA 3 0.12816	0.32470										
-			QUA	DRO	13			· - -			
Escola de Pós-	ulio Vargas cessamento de Graduação de iento de Regiõe	Economia	-				Analist	a Eden Go	ngalve	s de	Oliveira

Valeres-próprios

1.46801

1.12492

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Homogêncas

Analista Eden Goncalves de Oliveira

VETORES-PRÓPRIOS 1 0,55816 -0.74543

-0.36439

VETORES-PRÓPRIOS 2 0.60464 0.06466

0.79386

Vetores-próprios

QUADRO 15

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Homogêneas

			F un ção-de	cisão (CP)			
OBS. FD	OBS. FD	OBS. FD	OBS. FD	OBS. FD	OBS. FD	OBS. FD	OBS. FD
1 1.343 9 -1 041 17 -1.462 26 -1.510 34 -1.410 44 1.600 65 -2.292 60 0.730 68 -1.092 84 0.171 92 3.436 100 -0.449 116 0.871 125 0.841 125 0.841 125 0.841 125 0.841 125 0.841 125 0.841 125 0.841 127 0.841 128 0.181 129 0.192 133 0.080 141 -1.667 149 0.192 157 1.923 165 -0.406 174 -0.376 173 -0.340	2 3.377 10 -2.550 18 -1.048 27 -1.055 35 -2.080 45 2.169 52 1.901 61 -0.942 69 -0.972 77 -0.916 85 0.882 93 1.080 101 0.609 109 0.609 118 2.346 126 1.998 134 1.579 142 0.859 150 -0.677 158 2.492 156 1.388 175 -0.573	3 1.668 11 —2.162 19 —0.444 28 —0.307 26 —1.224 46 2.720 54 1.133 70 —0.547 78 0.072 86 —0.174 94 2.651 102 1.036 110 2.555 119 1.079 127 0.985 145 —0.810 151 —1.724 159 —0.810 168 —2.389 176 0.533 185 —1.585	4 1.434 12 -0.866 20 -1.485 29 -0.676 37 0.894 47 1.830 55 1.601 63 0.467 71 0.194 79 -0.178 87 0.406 95 1.253 103 1.361 111 0.256 120 0.067 128 1.369 136 1.075 144 -0.786 152 0.009 160 -1.134 177 0.197 160 -0.124	5 —2.639 13 —1.578 21 —1.691 36 —2.120 38 0.156 48 1.240 56 1.587 64 —0.430 72 —0.072 80 —1.360 88 1.105 96 1 634 104 2.106 112 —0.696 129 1.354 137 —0.077 153 0.333 161 2.953 170 2.212 187 —0.004	\$\begin{array}{c} 3 & -1.951 \\ 14 & -1.285 \\ 23 & -1.662 \\ 31 & -1.749 \\ 41 & 2.555 \\ 49 & 1.604 \\ 57 & 1.397 \\ 65 & -0.537 \\ 73 & 0.845 \\ 89 & 0.938 \\ 97 & -0.498 \\ 105 & 2.419 \\ 113 & -1.799 \\ 122 & 2.490 \\ 123 & 1.312 \\ 124 & -0.843 \\ 154 & -0.843 \\ 154 & -0.843 \\ 162 & -1.102 \\ 171 & 0.467 \\ 188 & 2.327 \\ 188 & -0.964 \\ \end{array}	7 0.120 151.032 240.503 320.695 42 2.888 50 1.539 580.075 66 0.072 74 0.741 820.187 90 0.051 199 2.389 1060.074 114 0.456 123 0.445 131 0.094 1391.548 1471.282 155 1.107 163 1.463 172 1.633 1811.568	8 —1.452 16 —1.888 25 —1.628 23 —1.924 43 1.868 51 1.004 50 —0.886 67 —0.059 75 —0.706 83 —0.579 91 1.303 99 2.366 107 —0.513 115 2.048 1124 0.574 132 1.097 140 0.302 148 —0.323 156 —1.469 164 1.625 173 —1.283 182 —1.167
191 — 0.105 199 1.004 207 0 384 215 — 0.193 223 — 1.169 231 — 0.373 239 — 0.258 247 2.689 265 1.656 263 2.064 271 0 632 279 0.405 227 - 2.1°8 303 1.321 311 — 1.312 319 0.288 327 1.100 335 — 0.511 313 — 0.511	192 —1.152 200 0.938 208 —1.293 216 —0.138 224 0.481 232 0.517 240 1.711 248 0.645 256 1.740 264 —1.151 272 0.383 290 —1.852 288 0.178 293 0.114 304 0.496 312 -0.676 320 —1.122 328 —0.855 336 —1.603 344 0.573	193 — 0.768 201 — 1.130 209 — 1.209 217 — 4.386 225 0 203 233 2 383 241 — 0.598 249 — 1.226 257 — 0.882 265 — 1.805 273 1 7.63 281 — 1.035 280 1.077 297 0.638 305 — 1.728 313 0.514 321 — 0.762 329 — 0.229 337 0.318 345 0.940	194 — 0.355 202 — 0.879 210 0.326 215 0.181 226 — 0.055 234 — 0.085 242 0.371 250 — 1.391 255 — 0.455 266 — 0.656 274 1.134 282 0.133 290 0.555 298 — 0.578 306 — 0.421 314 — 0.936 322 — 1.723 330 — 1.225 338 0.280 346 — 0.305	195 - 0.472 203 -1.656 219 -0.765 219 -0.244 227 -1.714 225 -0.072 243 0.099 251 -0.548 259 -0.941 267 -1.411 275 -1.424 283 -0.420 291 -0.455 299 0.447 307 -1.491 315 -0.529 323 -0.802 331 -0.910 339 0.796 347 -0.846	196 — 0, 290 201 — 0, 558 212 — 1, 568 220 0, 919 228 — 2, 026 236 0, 084 244 — 0, 440 252 0, 230 268 — 0, 781 276 0, 410 284 — 0, 188 292 — 0, 150 300 1 384 308 — 0, 460 316 — 0, 771 324 0, 053 332 — 1, 328 340 — 0, 258 349 — 0, 258	197 0 758 205 -0 226 213 2 242 221 -0 230 229 -0 325 237 0 246 245 -0 097 253 3 827 261 -1 347 269 -1 1.455 277 -0 723 285 -1 282 293 -0 121 301 -1 1.69 309 0 512 317 -1 084 325 0 170 333 -0 761 341 -1 153 319 -0 331	198 0.987 206 -0.751 214 -1.075 222 -0.459 230 0.117 238 -0.757 246 0.757 254 2.074 262 -1.269 270 -2.196 278 0.814 296 -0.208 294 -0.835 302 1.095 310 0.398 318 -0.103 326 0.774 334 0.140 342 -1.192 350 -0.732

QUADRO 15A

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Homonéneas

Analista Eden Gonçalves de Oliveira

			Função-de	cisão (CP)			
351	252 -0.945 369 -0.370 368 -0.878 376 -1.099 384 -0.748 392 -0.285 400 0.318 408 -0.296 416 1.400 424 -0.866 432 1.836 440 0.555 440 0.555	253 - 0.548 361 - 0.325 269 - 0.692 377 - 0.391 385 - 0.585 393 - 1.932 401 - 1.284 409 - 0.568 417 - 2.133 425 - 1.600 433 - 0.107 441 - 0.588 449 - 1.047	351 -0.636 362 0.005 370 0.148 375 -0.507 386 -1.352 394 -0.403 402 2.522 410 0.395 418 1.820 426 1.894 434 0.373 442 -0.843 4450 -0.553	355 1.162 363 -1.467 371 0.186 379 -0.094 387 -0.633 395 -1.329 493 -1.963 411 1.928 419 1.643 427 1.082 435 1.289 443 -0.843 445 -0.784	3560.792 364 -1.517 3720.001 3800.300 385 1.505 4040.153 4120.011 429 0.579 4280.214 4360.473 4410.348 4521.545	357 -0.801 365 -1.252 373 0.393 381 -0.010 389 -9.253 397 -1.076 405 -0.260 413 1.386 421 0.909 429 0.577 437 -1.258 445 -0.127	358 0.167 366 9.600 374 -1.544 382 -1.570 390 1.586 398 0.901 406 1.199 414 -0.196 422 1.505 430 -0.118 438 0.735 449 -9.604 454 -0.604
455 —1.452 463 —1.128 471 —2.650 480 —0.314 488 —0.47 496 —0.579 504 —1 499	456 —1.671 494 —0.739 472 —i.782 481 —1.732 489 —1.749 497 —6.186	457 0 415 4650.561 474 0.560 4821.043 4901.270 498 0.865	458 1.894 466 9.785 475 0.575 483 —0.109 491 1.137 499 —0.917	459 —0.799 467 —0.613 476 —0.323 481 —0.713 402 —0.464 590 —1.368	469 0.419 468 0.424 477 0.318 4852.834 4930.392 5010.885	16i —0.267 409 —1.537 473 —1.569 486 —0.650 491 —1.662 502 —6.517	462 0.020 470 - 0 .767 479 0.492 487 1.868 495 1.414 503 - 0 .654

QUADRO 16

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Homogêneas

Analista Eden Gonçalves de Oliveira

Variáteis selecionadas

Y (S) Y (9)

QUADRO 17

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Hom gêneas

Analista Eden Gonçalves de Oliveira

Coeficientes de correlação

LINHA 1

1.00000

0.03081

LINHA 2 0.03081

1.00000

QUADRO 18

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Homogêneas

Analista Eden Gonçalves de Oliveira

Valores-próprios

1.03081

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Homogêneas

Analista Eden Gonçalves de Oliveira

Valores-próprios

VETORES-PRÓPRIOS 1 0.70710 9.70710

QUADRO 20

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Homogêneas

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Homogêneos

Analista Eden Gonçalves de Oliveira

						i	unção-de	ecisão ((OP)						
OBS	. FD	OBS.	FD	OBS.	FD	OBS.	FD	OBS.	FD	OBS.	FD	OBS.	FD	OBS.	FD
	-0.028		-0.046		-0.065		-0.032		-0.057		-0.028		-0.050		-0.018
	-0.029		-0.024		-0.042		-0.045		-0.064		-0.043		-0.080		-0.047
	-0.091		-0.079		-0.056		-0.061		-0.043		0.011		-0.059		-0.034
	-0.051		-0.039		-0.089		-0.041		-0.028		-0.042		-0.046		-0.048
	-0.031		-0.025		-0.030		-0.060		-0.069		− 0.064		-0.067		-0.050
391	-0.044	392	-0.025	393	0.049		-0.077		-0.041	396 -	-0.052		-0.101		-0.079
399	-0.084	400	-0.036	401	-0.038	402	-0.049	403 -	-0.087	404 -	-0.080	405 -	-0.069	406	-0.073
407	-0.015	408	0.004	409	-0.073	410	-0.081	411 -	-0.059	412 -	-0.052	413 -	-0.052	414	-0.060
415	-0.052	416	-0.062	417	-0.071	418	-0.056	419 -	-0.080	420 -	-0.057	421 -	-0.071	422	-0.038
423	-0.066	424	-0.053	425	-0.089	426	-0.093	427 -	-0.065	428 -	-0.097	429 -	-0.046	430	-0.048
431	-0.108	432	-0.071	433	0.057	434	-0.081	435 -	-0.071	436 -	-0.090	437 -	-0.082	438	-0.109
439	-0.056	440	-0.114	441	0.092	442	-0.047	443 -	-0.069	444 -	-0.085	445 -	-0.074	446	-0.061
447	-0.081	448	-0.068	449	-0.054	450	-0.073	451 -	-0.070	452 -	-0.051	453 -	-0.081	454	-0.061
	-0.073	456	-0.071		-0.018		-0.019		-0.064	460 -	-0.024	461	0.018	462	-0.055
	-0.004		-0.070		0.048		-0.020		-0.019		-0.017		-0.127		-0.008
	-0.041		-0.053		0.099		-0.089		0.026		-0.067		-0.044		-0.055
	-0.063		-0.031		- 0.095	483	0.006	484	0.430		-0.119		-0.092		-0.063
	-0.025		-0.046		0.073		-0.088		-0.055		-0.068		-0.076		-0.095
	-0.113		-0.116		0.068		-0.049		-0.056		-0.068		-0.070		-0.049
	-0.056	10.	0.110	100	0.000	200	0.010	500	5.000	0.01	2.000	032	0,010	-00	5.010
	0.000														

QUADRO 21

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Econom a Tese Delineamento de Regiões Homogêneas

Analista Eden Gonçalves de Oliveira

Variáreis selecionadas

 ${f Y}_{f Y}^{(12)}$

Y (14)

QUADRO 22

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Fernomia Tese Delineamento de Regiões Homogêneas

Analista Eden Gonçalves de Oliveira

Coeficientes de correlação

LINHA 1 1.00000 0.05093 -0.01162 LINHA 2 0.05093 1.00000 -0.00561 LINHA 3 -0.01162 -0.00561 1.00000

QUADRO 23

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Homogêneas

Analista Eden Gonçalves de Oliveira

Valores-proprios

1.05370

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Homogêneas

Analista Eden Gonçalves de Oliveira

Vetores-proprios

VETORES-PRÓPRIOS 1 0.69580 0.68305

OBS. FD

239

247

255

263

271 -0.496

287

295

303

311

319 -0.204

327

335

343 -0.493

1 - 0.678

-0.258

-0.22201

QUADRO 25

Função-decisão (CP)

OBS.

13 -0.098

FD

-0.793

OBS.

Я -0.798

252 -0.113

260 -1.125

268 -0.910

276

284

292

324

332

340

348 -0.290

0.897 244

-0.595

-0.431

0.332300

0.647 308 -0.165

0.669 316

-0.731

-0.235

-0.216

FD

14 - 0.563

OBS.

7 0.030

15

245

253

261

269 -0.831

285

301

309

317

325

349 -0.533

0.244

0.204 277 -0.408

0.660

0.827 293

-0.798

-0.223

-0.039

-0.370333

0.192341 -0.068

0.662254

-0.441

-0.287

0.559

0.559 302

0.136

-0.375

-0.161

0.034334

1.161342

FD

-0.447

-0.041

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Economia Tese Delineamento de Regiões Homogêneas

OBS.

2 0.820

10 -0.286

240

248 -0.147

256 -0.719

272 -0.055

280 -0.855

304

312

320

328

336

344 --0.125

0.028

0.519

-0.109

0.143264

-0.784288 -0.540

0.388 296

0.076

-0.259

-0.121

-0.032

-0.363

-1.039

-0.537

-0.166

0.482 305

-0.256 313

0.476321

0.226 329

-0 266 337

FD

OBS.

3 -0.511

11

241 -1172

249

257 -0.130

265 -1.125

273 -0.122

281

289

297

345

FD

14.980

OBS.

19

242

250

258 -0.317

266

274

306

0.335 282

0.031 290

0.144 298

1.675

0.381 314

0.059 322

-0.208330

0.099338

-0.013346

-0.927

-1.074

-0.606

-0.292267 -1.403

-0.469

-0.327

0.637

-0.176299

0.193 307

-0.225

0 398

0.424331

0.234

0.005347 -0.282 Analista Eden Gonçalves de Oliveira

FD

-0.073

OBS.

Q -0.682

16 -0.325

246

262

270

278

286 -0.572

294

310

318

325

350

0.479

0.119

-0.894

-0.726

-0.468

0.174

0.725

0.038

0.182

1.197

0.013

-0.296

-0.208

FD

0.200	10 0.200	11 11.000	12 0.011	10 -0.000	14 0.000	10 -0.010	10 -0.020
17 - 0.542	18 2.017	19 - 0.553	20 -0.502	21 - 0.508	23 - 0.225	24 - 0.576	25 - 0.186
26 - 0.371	27 - 0.307	28 -0.507	29 - 0.141	30 -0.981	31 - 0.284	32 - 0.067	33 - 0.218
34 0.184	35 —0.197	36 - 0.380	37 -0.100	38 1.067	41 0.105	42 -0.161	43 -0.129
44 -0.864	45 0.630	46 -0.395	47 0.881	48 0.025	49 0.382	50 3.816	51 - 0.186
52 0.262	53 0.070	54 -0.151	55 0.038	56 0.327	57 0.230	59 - 0.221	59 0.063
60 0.352	61 - 0.065	62 - 0.419	63 - 0.092	64 - 0.046	65 - 0.350	66 - 0.148	67 - 0.249
68 - 0.358	69 0.206	70 -0.200	71 0.064	72 0.078	73 0.441	74 -0.091	75 - 0.123
76 0.065	77 - 0.133	78 0.343	79 0.105	80 -0.423	81 0.003	82 0.126	83 0.443
840.059	85 0.680	86 -0.013	87 - 0.371	88 - 2.465	89 0.541	90 - 0.278	91 0.470
92 6.015	93 0.151	94 2.966	95 - 0.842	96 - 0.507	97 -0.140	98 - 0.041	99 1.343
100 -0.265	101 0.068	102 0.681	103 0.310	104 0.687	105 0.798	106 0.220	107 - 0.493
108 0.861	109 - 0.037	110 1.878	111 0.207	112 - 0.100	113 - 0.656	114 - 0.165	115 1.051
116 1.139	118 1.221	119 0.276	120 - 0.061	121 0.303	122 1.318	123 0.197	124 0.337
125 - 0.165	126 0.884	127 0.325	128 0.327	129 0.410	130 0.531	131 -0.246	132 0.040
133 -0.213	134 1.517	135 0.438	136 0.156	137 0.509	138 0.305	139 -0.002	140 0.208
141 - 0.475	142 0.187	143 - 0.717	144 0.005	145 0.322	146 0.156	147 0.367	148 0.005
149 - 0.314	150 - 0.690	151 - 0.553	152 - 0.265	153 - 0.032	154 - 0.772	155 - 0.111	156 - 1.108
157 - 0.131	158 0.140	159 — 0.311	160 0.093	161 - 0.626	162 - 0.817	163 0.094	164 3.345
165 - 0.208	166 - 0.342	168 - 1.564	169 - 0.150	170 0.082	171 0.211	172 0.150	173 - 0.184
174 0.021	175 0.310	176 - 0.062	177 0.816	179 - 0.093	180 - 0.072	181 - 0.746	182 - 0.452
183 - 0.019	184 - 0.280	185 - 1.251	186 0.303	187 - 0.307	188 - 0.291	189 - 0.218	190 - 0.296
191 - 0.232	192 - 0.434	193 - 0.246	194 0.034	195 0.245	196 0.343	197 0.261	198 0.248
199 0.135	200 0.619	201 0.388	202 0.283	203 -0.008	204 - 0.165	205 - 0.289	205 - 0.348
207 0.023	208 - 0.550	209 - 0.653	210 -0.268	211 -0 648	212 - 1.374	213 0.308	214 - 0.982
215 - 0.435	216 - 0.001	217 - 0.976	218 - 0.576	219 - 0.529	220 -0.202	221 -4.267	222 - 0.373
223 -1.506	224 - 0.451	225 - 0.366	226 -0.677	227 - 1.061	228 -0.299	229 → 0.626	230 - 1.362
231 - 0.727	232 -0.468	233 0.179	234 - 0.636	235 0.045	236 - 1.708	237 - 0.066	238 - 0.628

243

251

259 -0.523

275 -0.693

283 -0.095

291

315

323

339

Fundação Getulio Vargas Centro de Processamento de Dados Escola de Pós-Graduação de Econom a Tese Delineamento de Regiões Homogêneas

	-												
Função-decisão (CP)													
OBS	. FD	OBS.	FD	OBS.	FD	OBS.	FD	OBS.	FD	OBS.	FD	OBS. [FD	OBS. FD
359 367 375 383 391 399 407 415 423 431 439	0.154 1.271 0.581 1.335 -0.099	360 368 376 384 392 400 408 416 424 432 440	-0.352 -0.151 -0.578 -0.610 -0.845 0.201 0.694 0.534 0.979 -0.373 2.183 0.607	361 369 377 385 393 401 409 417 425 433 441	0.504 0.104 0.633 0.010 0.253 0.092 0.088 0.451 0.910 0.730 0.606 0.016	362 370 - 378 - 386 - 394 402 410 - 418 426 434 442 -	-0.441 0.430 -0.357 -0.648 -0.170 0.285 1.804 -0.057 0.452 1.580 0.743 -0.270	363 371 379 387 395 403 411 419 427 435 443	0.014 0.465 0.177 0.489 0.501 0.216 0.243 0.069 0.968 1.518 0.205 0.024	364 372 380 388 396 404 412 420 428 436 444	-0.303 1.299 0.198 0.186 -0.136 1.112 0.506 -0.063 -0.554	357 —0.192 365 —0.503 373 —0.274 381 —0.569 389 0.422 397 —0.068 405 0.208 413 0.014 421 —0.518 429 0.818 437 —0.670 445 0.162	3660.101 3740.748 3820.373 390 1.455 398 1.006 406 0.127 414 0.725 422 1.553 430 0.239 438 0.356 446 0.626
	-0.177 -0.253 0.762 2.037 0.155 0.677 -0.542 -0.222	448 455 464 472 481 489 497		449 457 465 474 482 490 498	0.642 1.372 0.318 0.199 0.112 0.072 0.199	458 466 475 483 -	-0.453 1.123 0.808 0.707 -0.023 0.897 -0.209	$\frac{459}{467}$	-0.487 0.584 0.954 -0.025 1.358 0.632 0.678	460 468 477 485	-0.504 0.785 0.612 0.235 0.489 -0.137 0.172	453 -0.052 461 0.107 469 -0.227 478 -0.201 486 0.696 494 0.758 502 -0.379	454 -0.141 462 0.394 470 0.470 479 0.457 487 1.525 495 1.383 503 -0.662