CLASSIFIER-FREE DIFFUSION GUIDANCE

Diffusion

Classifier guidance

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow \text{sample from } \mathcal{N}(0, \mathbf{I}) for all t from T to 1 do \mu, \Sigma \leftarrow \mu_{\theta}(x_t), \Sigma_{\theta}(x_t) x_{t-1} \leftarrow \text{sample from } \mathcal{N}(\mu + s\Sigma \nabla_{x_t} \log p_{\phi}(y|x_t), \Sigma) end for return x_0
```

Algorithm 2 Classifier guided DDIM sampling, given a diffusion model $\epsilon_{\theta}(x_t)$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow sample from \mathcal{N}(0,\mathbf{I}) for all t from T to 1 do \hat{\epsilon} \leftarrow \epsilon_{\theta}(x_t) - \sqrt{1 - \bar{\alpha}_t} \, \nabla_{x_t} \log p_{\phi}(y|x_t) x_{t-1} \leftarrow \sqrt{\bar{\alpha}_{t-1}} \left( \frac{x_t - \sqrt{1 - \bar{\alpha}_t} \hat{\epsilon}}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t-1}} \hat{\epsilon} end for return x_0
```

Results

Conditional	Guidance	Scale	FID	sFID	IS	Precision	Recall
X	X		26.21	6.35	39.70	0.61	0.63
X	1	1.0	33.03	6.99	32.92	0.56	0.65
X	1	10.0	12.00	10.40	95.41	0.76	0.44
/	X		10.94	6.02	100.98	0.69	0.63
1	1	1.0	4.59	5.25	186.70	0.82	0.52
✓	1	10.0	9.11	10.93	283.92	0.88	0.32

Table 4: Effect of classifier guidance on sample quality. Both conditional and unconditional models were trained for 2M iterations on ImageNet 256×256 with batch size 256.

Model	FID	sFID	Prec	Rec	Model	FID	sFID	Prec	Rec
LSUN Bedrooms 256	×256				ImageNet 128×128				
DCTransformer [†] [42]	6.40	6.66	0.44	0.56	BigGAN-deep [5]	6.02	7.18	0.86	0.35
DDPM [25]	4.89	9.07	0.60	0.45	LOGAN [†] [68]	3.36			
IDDPM [43]	4.24	8.21	0.62	0.46	ADM	5.91	5.09	0.70	0.65
StyleGAN [27]	2.35	6.62	0.59	0.48	ADM-G (25 steps)	5.98	7.04	0.78	0.51
ADM (dropout)	1.90	5.59	0.66	0.51	ADM-G	2.97	5.09	0.78	0.59
LSUN Horses 256×25	56				ImageNet 256×256				
StyleGAN2 [28]	3.84	6.46	0.63	0.48	DCTransformer [†] [42]	36.51	8.24	0.36	0.67
ADM	2.95	5.94	0.69	0.55	VQ-VAE-2 ^{†‡} [51]	31.11	17.38	0.36	0.57
ADM (dropout)	2.57	6.81	0.71	0.55	IDDPM [‡] [43]	12.26	5.42	0.70	0.62
					SR3 ^{†‡} [53]	11.30			
LSUN Cats 256×256					BigGAN-deep [5]	6.95	7.36	0.87	0.28
DDPM [25]	17.1	12.4	0.53	0.48	ADM	10.94	6.02	0.69	0.63
StyleGAN2 [28]	7.25	6.33	0.58	0.43	ADM-G (25 steps)	5.44	5.32	0.81	0.49
ADM (dropout)	5.57	6.69	0.63	0.52	ADM-G	4.59	5.25	0.82	0.52
ImageNet 64×64					ImageNet 512×512				
BigGAN-deep* [5]	4.06	3.96	0.79	0.48	BigGAN-deep [5]	8.43	8.13	0.88	0.29
IDDPM [43]	2.92	3.79	0.74	0.62	ADM	23.24	10.19	0.73	0.60
ADM	2.61	3.77	0.73	0.63	ADM-G (25 steps)	8.41	9.67	0.83	0.47
ADM (dropout)	2.07	4.29	0.74	0.63	ADM-G	7.72	6.57	0.87	0.42

Figure 6: Samples from BigGAN-deep with truncation 1.0 (FID 6.95, left) vs samples from our diffusion model with guidance (FID 4.59, middle) and samples from the training set (right).

Figure 1: Selected samples from our best ImageNet 512×512 model (FID 3.85)

Problems

- requires training an extra classifier
- classifier must be trained on noisy data (can not use pretrained)
- may confuse an image classifier with a gradient-based adversarial attack

Discriminator Is it almost similar to Random noise Generator

Classifier-free guidance

Algorithm 1 Joint training a diffusion model with classifier-free guidance

```
Require: p_{\text{uncond}}: probability of unconditional training
```

- 1: repeat
- 2: $(\mathbf{x}, \mathbf{c}) \sim p(\mathbf{x}, \mathbf{c})$ > Sample data with conditioning from the dataset
- 3: $\mathbf{c} \leftarrow \emptyset$ with probability $p_{\text{uncond}} \triangleright \text{Randomly discard conditioning to train unconditionally}$
- 4: $\lambda \sim p(\lambda)$ \triangleright Sample log SNR value
- 5: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 6: $\mathbf{z}_{\lambda} = \alpha_{\lambda} \mathbf{x} + \sigma_{\lambda} \boldsymbol{\epsilon}$ > Corrupt data to the sampled log SNR value
- 7: Take gradient step on $\nabla_{\theta} \| \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) \boldsymbol{\epsilon} \|^2$ \triangleright Optimization of denoising model
- 8: **until** converged

Classifier-free guidance

Algorithm 2 Conditional sampling with classifier-free guidance

```
Require: w: guidance strength
Require: c: conditioning information for conditional sampling
Require: \lambda_1, \ldots, \lambda_T: increasing log SNR sequence with \lambda_1 = \lambda_{\min}, \lambda_T = \lambda_{\max}
  1: \mathbf{z}_1 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
  2: for t = 1, ..., T do
                \triangleright Form the classifier-free guided score at log SNR \lambda_t
  3: \tilde{\boldsymbol{\epsilon}}_t = (1+w)\boldsymbol{\epsilon}_{\theta}(\mathbf{z}_t,\mathbf{c}) - w\boldsymbol{\epsilon}_{\theta}(\mathbf{z}_t)
                Sampling step (could be replaced by another sampler, e.g. DDIM)
  4: \tilde{\mathbf{x}}_t = (\mathbf{z}_t - \sigma_{\lambda_t} \tilde{\boldsymbol{\epsilon}}_t) / \alpha_{\lambda_t}
            \mathbf{z}_{t+1} \sim \mathcal{N}(\tilde{\boldsymbol{\mu}}_{\lambda_{t+1}|\lambda_t}(\mathbf{z}_t, \tilde{\mathbf{x}}_t), (\tilde{\sigma}_{\lambda_{t+1}|\lambda_t}^2)^{1-v}(\sigma_{\lambda_t|\lambda_{t+1}}^2)^v) \text{ if } t < T \text{ else } \mathbf{z}_{t+1} = \tilde{\mathbf{x}}_t
  6: end for
  7: return \mathbf{z}_{T+1}
```

Details

Model	FID (↓)	IS (↑)
ADM (Dhariwal & Nichol, 2021) CDM (Ho et al., 2021)	2.07 1.48	- 67.95
-		
Ours	$p_{ m uncond} =$	0.1/0.2/0.5
w = 0.0	1.8 / 1.8 / 2.21	53.71 / 52.9 / 47.61
w = 0.1	1.55 / 1.62 / 1.91	66.11 / 64.58 / 56.1
w = 0.2	2.04 / 2.1 / 2.08	78.91 / 76.99 / 65.6
w = 0.3	3.03 / 2.93 / 2.65	92.8 / 88.64 / 74.92
w = 0.4	4.3 / 4 / 3.44	106.2 / 101.11 / 84.27
w = 0.5	5.74 / 5.19 / 4.34	119.3 / 112.15 / 92.95
w = 0.6	7.19 / 6.48 / 5.27	131.1 / 122.13 / 102
w = 0.7	8.62 / 7.73 / 6.23	141.8 / 131.6 / 109.8
w = 0.8	10.08 / 8.9 / 7.25	151.6 / 140.82 / 116.9
w = 0.9	11.41 / 10.09 / 8.21	161 / 150.26 / 124.6
w = 1.0	12.6 / 11.21 / 9.13	170.1 / 158.29 / 131.1
w = 2.0	21.03 / 18.79 / 16.16	225.5 / 212.98 / 183
w = 3.0	24.83 / 22.36 / 19.75	250.4 / 237.65 / 208.9
w = 4.0	26.22 / 23.84 / 21.48	260.2 / 248.97 / 225.1

Table 1: ImageNet 64x64 results (w = 0.0 refers to non-guided models).

Figure 4: IS/FID curves over guidance strengths for ImageNet 64x64 models. Each curve represents a model with unconditional training probability $p_{\rm uncond}$. Accompanies Table 1.

Results

Figure 3: Classifier-free guidance on 128x128 ImageNet. Left: non-guided samples, right: classifier-free guided samples with w=3.0. Interestingly, strongly guided samples such as these display saturated colors. See Fig. 8 for more.

Model	$FID(\downarrow)$	IS (↑)		
BigGAN-deep, max IS (Brock et al., 2019)	25	253		
BigGAN-deep (Brock et al., 2019)	5.7	124.5		
CDM (Ho et al., 2021)	3.52	128.8		
LOGAN (Wu et al., 2019)	3.36	148.2		
ADM-G (Dhariwal & Nichol, 2021)	2.97	-		
Ours	T = 128/256/1024			
w = 0.0	8.11 / 7.27 / 7.22	81.46 / 82.45 / 81.54		
w = 0.1	5.31 / 4.53 / 4.5	105.01 / 106.12 / 104.67		
w = 0.2	3.7 / 3.03 / 3	130.79 / 132.54 / 130.09		
w = 0.3	3.04 / 2.43 / 2.43	156.09 / 158.47 / 156		
w = 0.4	3.02 / 2.49 / 2.48	183.01 / 183.41 / 180.88		
w = 0.5	3.43 / 2.98 / 2.96	206.94 / 207.98 / 204.31		
w = 0.6	4.09 / 3.76 / 3.73	227.72 / 228.83 / 226.76		
w = 0.7	4.96 / 4.67 / 4.69	247.92 / 249.25 / 247.89		
w = 0.8	5.93 / 5.74 / 5.71	265.54 / 267.99 / 265.52		
w = 0.9	6.89 / 6.8 / 6.81	280.19 / 283.41 / 281.14		
w = 1.0	7.88 / 7.86 / 7.8	295.29 / 297.98 / 294.56		
w = 2.0	15.9 / 15.93 / 15.75	378.56 / 377.37 / 373.18		
w = 3.0	19.77 / 19.77 / 19.56	409.16 / 407.44 / 405.68		
w = 4.0	21.55 / 21.53 / 21.45	422.29 / 421.03 / 419.06		

Table 2: ImageNet 128x128 results (w = 0.0 refers to non-guided models).

Figure 8: More examples of classifier-free guidance on 128x128 ImageNet. Left: non-guided samples, right: classifier-free guided samples with w=3.0.

Feature	Classifier-Guided	Classifier-Free Guidance
Need to train another model?	Yes, a classifier needs to be trained using noisy images.	Not really, for example, CLIP can be used directly for text-to-image tasks.
Need to retrain the diffusion model?	No, pre-trained diffusion models are usable as is.	Yes, diffusion needs to be retrained using this method.
Control over final output	Can control the generated category. The number of classes the classifier can identify is the number of classes you can control in generation.	Any (almost) condition can be controlled.

Sources

- https://arxiv.org/pdf/2207.12598
- 2. https://arxiv.org/pdf/2105.05233v4
- 3. https://github.com/openai/guided-diffusion
- 4. https://arxiv.org/pdf/2209.00796
- 5. https://erdem.pl/2023/11/step-by-step-visual-introduction-to-diffusion-models#diffusion-model-arc https://erdem.pl/2023/11/step-by-step-visual-introduction-to-diffusion-models#diffusion-model-arc https://erdem.pl/2023/11/step-by-step-visual-introduction-to-diffusion-models#diffusion-model-arc
- 6. https://medium.com/@kemalpiro/step-by-step-visual-introduction-to-diffusion-models-235942d2f1
 5c
- 7. https://medium.com/@baicenxiao/understand-classifier-guidance-and-classifier-free-guidance-in-di-ffusion-model-via-python-e92c0c46ec18
- 8. https://arxiv.org/pdf/2006.11239
- 9. https://theaisummer.com/diffusion-models/