Math 213A F23 Homework 13 Solutions

Dhruv Goel

November 2023

If you find any errors, or have any comments or questions, please send them to me via e-mail at this e-mail address.

Q1. Prove that there is no nonconstant analytic function $f: \Delta \to \Delta$ with zeroes at the points $z_n = 1 - 1/(n+1)$, $n = 1, 2, 3 \dots$ (Hint: consider $f(0)/B_n(0)$, where $B_n(z)$ is a Blaschke product with zeroes at z_1, \dots, z_n .)

Proof. Suppose $f: \Delta \to \Delta$ is a nonconstant analytic function such that $f(z_n) = 0$ for all $n \ge 1$. If f has a zero of order $m \ge 0$ at z = 0, then we may write $f(z) = z^m f_1(z)$ for some function f_1 holomorphic on Δ with $f_1(0) \ne 0$; then, by a repeated application of the Schwarz Lemma, f_1 still maps Δ to Δ , has zeroes at the z_n , and satisfies $f_1(0) \ne 0$, so replacing f by f_1 , we may assume that $f(0) \ne 0$.

As suggested, let

$$B_n(z) := \prod_{k=1}^n \frac{z - z_k}{1 - \overline{z}_k z}.$$

Since each Blaschke factor is an automorphism of Δ preserving S^1 , it follows that $B_n : \Delta \to \Delta$ is proper: that

$$\lim_{r \to 1^{-}} \inf_{z \in S^{1}(r)} |B_{n}(z)| = 1.$$

Since $|f(z)| \leq 1$ on Δ , it follows from the Maximum Principle applied to the holomorphic function $f(z)/B_n(z)$ on Δ (how?), that for all $z \in \Delta$,

$$\left| \frac{f(z)}{B_n(z)} \right| \le 1,$$

i.e.

$$|f(z)| \le |B_n(z)|.$$

Plugging in z = 0 gives us

$$|f(0)| \le (-1)^n \frac{1}{n+1},$$

and since this is true for each $n \ge 1$, we conclude that f(0) = 0, which is a contradiction.

Remark 1. Alternatively, one can show using Jensen's Formula that a sequence of points (z_n) in Δ is the set of zeroes of some nonconstant bounded holomorphic function on Δ iff $\sum_{1}^{\infty} (1-|z_n|) < \infty$ (see [1, §15.21-23]), so the above problem is equivalent to the divergence of the harmonic series.

Q2. State and prove a necessary and sufficient condition for a meromorphic 1-form $\omega = \omega(z) dz$ on \mathbb{C} to be the logarithmic derivative, $\omega = d \log f = f'(z)/f(z) dz$ of a meromorphic function f(z).

Solution. A meromorphic 1-form is the logarithmic derivative of a meromorphic function iff it has only simple poles with integer residues. Clearly, this is necessary because if f(z) is meromorphic in a neighborhood of $\alpha \in \mathbb{C}$, then the function f'(z)/f(z) has polar part

$$\frac{\operatorname{ord}(f,\alpha)}{z-\alpha} + \mathcal{O}(1)$$

at α . Conversely, if ω has only simple poles with integer residues, then picking any base point $p \in \mathbb{C}$ which is not a pole of ω , we may define

$$f(z) := \exp\left(\int_{p}^{z} \omega\right),$$

where the integral is taken along any path avoiding the poles of ω . Since the residues of ω are integers, it follows that the integral $\int_p^z \omega$ is independent of the path up to $2\pi i \mathbb{Z}$, i.e. well-defined as an element of $\mathbb{C}/2\pi i \mathbb{Z}$, and hence f(z) is a well-defined holomorphic function away from the poles of ω . It remains to show that f extends to a meromorphic function around any simple pole α of ω . It suffices to show this when $\alpha=0$, so suppose we can write

$$\omega(z) = \frac{m}{z} + g(z)$$

for some g(z) holomorphic in a neighborhood of 0 and $m \in \mathbb{Z}$. Then it follows for any $p \neq 0$ sufficiently close to zero, we have

$$f(z) = \exp\left(\int_{p}^{z} \left(\frac{m}{w} + g(w)\right) dw\right)$$
$$= \exp\left(m \log\left(\frac{z}{p}\right) + \int_{p}^{z} g(w) dw\right)$$
$$= \left(\frac{z}{p}\right)^{m} \exp\left(\int_{p}^{z} g(w) dw\right),$$

where log denotes some local branch (the choice of which is irrelevant because $m \in \mathbb{Z}$). This tells us that f(z) extends to a meromorphic function in a neighborhood of 0, completing the proof.

Remark 2. The condition that ω have at most simple poles is necessary. For instance, the above recipe yields for $\omega(z) = z^{-2}$ the function $f(z) = \exp(-z^{-1})$ (up to constants), which has an essential singularity at z = 0.

Q3. Suppose $f \in \mathcal{S}$ satisfies f(iz) = if(z). Show that $f(\Delta)$ contains $B(0, 1/\sqrt{2})$.

Proof. It suffices to show that there is a $g \in \mathcal{S}$ such that $f(z)^4 = g(z^4)$; then it would follow from the Koebe 1/4 Theorem that if w is not in the image of f, then w^4 is not in the image of g, so that $|w^4| \ge 1/4 \Rightarrow |w| \ge 1/\sqrt{2}$.

It remains to produce such a g. There are many ways to do this: one can use covering space theory as shown on a previous solution set, or argue directly using the Taylor coefficients a_n of f as follows. Writing $f(z) = z + a_2 z^2 + \cdots$ as usual, the condition f(iz) = if(z) tells us that if $n \not\equiv 1 \pmod{4}$, then $a_n = 0$, so

$$f(z) = z(1 + a_5z^4 + a_9z^8 + \cdots).$$

Since f converges on Δ , we have by the Cauchy-Hadamard Formula that $\overline{\lim} |a_n|^{1/n} \leq 1$, and this same bound tells us that the function

$$h(z) := \sum_{n=0}^{\infty} a_{4n+1} z^n = 1 + a_5 z + a_9 z^2 + \cdots$$

converges on Δ as well. It remains to define

$$g(z) := zh(z)^4.$$

The relation $f(z)^4 = g(z^4)$ follows by construction; and g(0) = 0 and g'(0) = 1 are clear. To show that g is univalent, suppose g(z) = g(w) for $z, w \in \Delta$. Pick any $z_0, w_0 \in \Delta$ such that $z = z_0^4$ and $w = w_0^4$. Then

$$f(z_0)^4 = g(z_0^4) = g(z) = g(w) = g(w_0^4) = f(w_0)^4,$$

so that for some $k \in \{0, 1, 2, 3\}$ we have

$$f(z_0) = i^k f(w_0) = f(i^k w_0),$$

where in the last step we have used f(iz) = if(z). Since $f \in \mathcal{S}$, it follows that $z_0 = i^k w_0$, so that z = w as needed.

Remark 3. The bound $1/\sqrt{2}$ is optimal: the image of $f(z) = z \cdot (1-z^4)^{-1/2}$ doesn't contain (1+i)/2, or any other fourth root of -1/4 (why?).

Remark 4. The same technique shows for any $n \ge 1$ that if $f \in \mathcal{S}$ satisfies $f(\zeta_n z) = \zeta_n f(z)$, then $f(\Delta)$ contains $B(0, 2^{-2/n})$, and again this bound is optimal, as shown by $f(z) = z \cdot (1 - z^n)^{-2/n}$.

Q4. Let f(z) be an entire function such that f(z) is never zero and $f^{-1}(1)$ is finite. Prove that f is constant.

Solution. Since f(z) is never zero, we may write $f(z) = \exp(g(z))$ for an entire function g(z). Since $f^{-1}(1) = g^{-1}(2\pi i \mathbb{Z})$ is finite, g misses infinitely many values in $2\pi i \mathbb{Z}$, and hence in particular is constant, by Picard's Little Theorem. Therefore, f is constant too.

Q5. Where are the 9 flexes of the cubic curve $V \subset \mathbb{CP}^2$ defined by $x^3 + y^3 = 1$? How many of these are real?

Solution. The flexes of a smooth projective curve $V \subset \mathbb{CP}^2$ defined by the vanishing of a homogenous polynomial $F \in \mathbb{C}[X,Y,Z]$ are located at the points of intersection of V with the variety defined by the vanishing of the Hessian determinant

$$\operatorname{Hess}(F) := \det \begin{bmatrix} \partial^2 F/\partial X^2 & \partial^2 F/\partial X\partial Y & \partial^2 F/\partial X\partial Z \\ \partial^2 F/\partial X\partial Y & \partial^2 F/\partial Y^2 & \partial^2 F/\partial Y\partial Z \\ \partial^2 F/\partial X\partial Z & \partial^2 F/\partial Y\partial Z & \partial^2 F/\partial Z^2 \end{bmatrix}.$$

Taking $F = X^3 + Y^3 - Z^3$ yields

$$\operatorname{Hess}(F) = \det \begin{bmatrix} 6X & 0 & 0 \\ 0 & 6Y & 0 \\ 0 & 0 & -6Z \end{bmatrix} = -216XYZ.$$

Therefore, the flexes of V are given by its intersection with the "coordinate axes" X = 0, Y = 0 and Z = 0. These are the six finite points $(\omega^k, 0)$ and $(0, \omega^k)$ for k = 0, 1, 2, where $\omega = \zeta_3 = e^{2\pi i/3}$, and the three points at infinity given by in homogenous coordinates by $[1 : -\omega^k : 0]$ for k = 0, 1, 2. Of these, three are real, namely (1, 0), (0, 1) and the point at infinity [1 : -1 : 0], as is geometrically clear as well: see Figure 1.

Figure 1: A Desmos graph of the (real points of the) curve $x^3 + y^3 = 1$.

Remark 5. As observed on a previous problem set, not all the 9 flexes of a smooth cubic curve $V \subset \mathbb{CP}^2$ can be real, as a consequence of the Sylvester-Gallai Theorem. In fact, for a smooth cubic V defined over \mathbb{R} , there are always exactly three real flexes; see [2, §2.1-2.2].

Q6. Let L be the length in the hyperbolic metric of the closed geodesic γ on $X = \hat{\mathbb{C}} \setminus \{0, 1, \infty\}$ that makes a figure 8 around 0 and 1. Show that $L = \log(17 + 2\sqrt{2})$. (Hint: show that γ corresponds to a matrix of trace 6 in $\pi_1(X) = \Gamma(2)$.)

Solution. We present two solutions:

(a) Given any local isometry $Y \to X$ of Riemannian manifolds, geodesics in X lift locally to geodesics in Y.¹ Therefore, to calculate the length of this geodesic, it suffices to find a lift to \mathbb{H} under the universal covering map $\lambda: \mathbb{H} \to X$ and compute its length. Here we can choose the basepoint $i \in \mathbb{H}$ and $1/2 \in X$, and then the lift of this geodesic is the part of the circle $|z-1| = \sqrt{2}$ from z = i to z = (12+i)/5; see Figure 2. On a previous problem set, we showed that the length of the geodesic $c + re^{i\theta}$ from θ_1 to θ_2 for $c \in \mathbb{R}, r \in \mathbb{R}_+$ and $0 < \theta_1 < \theta_2 < \pi$ is given by

$$L = \log(\csc\theta - \cot\theta)|_{\theta_1}^{\theta_2}.$$

Taking $c = 1, r = \sqrt{2}, \ \theta_1 = \tan^{-1}(1/7)$ and $\theta_2 = 3\pi/4$, we get $L = \log(17 + 2\sqrt{2})$ as needed.²

Figure 2: A lift of the geodeisc to \mathbb{H} . The region $\lambda^{-1}(\mathbb{H})$ is shaded in yellow, and the red, blue, and green arrows denote the preimages of the corresponding real segements $(0,1), (1,\infty)$, and $(-\infty,0)$ respectively. The points marked in solid black dots form the $\Gamma(2)$ orbit of i, those in solid pink dots the orbit of $1 + \sqrt{2}i$, and those in pink crosses the orbit of $(1 + \sqrt{2}i)/3$.

$$\frac{1}{2}L = \log \frac{\sqrt{2} + 1}{\sqrt{2} - 1},$$

which gives the same answer.

¹This is because the geodesic equations are differential equations—they are local in nature. A local isometry of Riemmannian manifolds without boundary $Y \to X$ is a covering map whenever Y is complete and X is connected (so certainly in our case where $Y = \mathbb{H}$ and $X = \mathbb{C} \setminus \{0, 1\}$), although we don't need this result here.

²One can also employ the symmetry of the situation to their advantage to take $\theta_1 = \pi/4$ and $\theta_2 = 3\pi/4$ to get the half length

(b) Fixing basepoints $x \in X$ and $\tilde{x} \in \mathbb{H}$ related by $\pi(\tilde{x}) = x$, the covering map π gives us an isomorphism

$$\rho: \pi_1(X, x) \to \Gamma(2)$$

given by the following recipe: given a class $[\gamma] \in \pi_1(X, x)$ represented by a loop $\gamma : [0, 1] \to X$ with $\gamma(0) = \gamma(1) = x$, lift γ to a path $\tilde{\gamma} : [0, 1] \to \mathbb{H}$ with $\tilde{\gamma}(0) = \tilde{x}$; then ρ takes $[\gamma]$ to the unique $T \in \Gamma(2)$ such that $\tilde{\gamma}(1) = T\tilde{x}$. Given a closed geodesic γ containing x, we can parametrize γ to give us a class $[\gamma] \in \pi_1(X, x)$; then the element $\rho[\gamma] \in \Gamma(2)$ is hyperbolic.³ A different choice of parametrization yields a conjugate element in $\Gamma(2)$, and this gives us a well-defined map

 $\rho: \{\text{closed geodesics in } X \text{ through } x\} \to \{\text{hyperbolic conjugacy classes in } \Gamma(2)\}.$

The key here is:

Theorem 0.0.1. This map ρ is a bijection, and the length L of a geodesic γ is related to the trace of $\rho[\gamma]$ by

$$\operatorname{Tr} \rho[\gamma] = 2 \cosh(L/2). \tag{1}$$

Proof. An inverse map can be constructed as follows: given a hyperbolic conjugacy class in $\Gamma(2)$, pick a representative T. Now T has two fixed points in $\Gamma(2)$; by conjugating this representative if needed, we may assume that the geodesic connecting these two points passes through \tilde{x} . Then the image of this geodesic in \mathbb{H} under π is a closed geodesic in X through x; it is then easy to see that these maps give inverse bijections. Finally, to see the last claim, note that the length L of γ is the distance in \mathbb{H} between z and $\rho[\gamma]z$ for any $z \in \mathbb{H}$. Since $\rho[\gamma]$ is hyperbolic, we may conjugate it so it looks like $z \mapsto \lambda z$ for some $\lambda \in \mathbb{R}_+$ i.e. has a matrix representative of the form $\begin{bmatrix} \lambda^{1/2} & 0 \\ 0 & \lambda^{-1/2} \end{bmatrix}$. Then (1) follows from the equations $\operatorname{Tr} \rho[\gamma] = \lambda^{1/2} + \lambda^{-1/2}$ and $L = |\log \lambda|$. The verification of all the omitted details is left to the reader.

Let's carry this program out explicitly in our case. Take x=1/2 and $\tilde{x}=i$ as before. Then you can check that under the homomorphism

$$\rho: \pi_1(X, 1/2) \to \Gamma(2)$$

described above, the loop around 0 (made of arcs labelled 1 and 2 in Figure 2) lifts to the geodesic $|z-1|=\sqrt{2}$ between i and i + 2 and hence maps to the matrix

$$T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix},$$

whereas the loop around 1 (made of arcs labelled 3 and 4 in Figure 2) lifts to the geodesic $|z+1| = \sqrt{2}$ between i and (2+i)/5 and hence maps to the matrix

$$S = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}.^4$$

Then the geodesic making a figure 8 corresponds to the concatenation of these, and corresponds to the matrix

$$\rho[\gamma] = ST = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix},$$

³This follows from the classification of isometries of \mathbb{H} ; see the section in the notes dates 11/23/23 preceding Theorem 2.25.

⁴Already, this gives the fascinating result that $\Gamma(2)$ is a free group on two generators generated by T and S.

which has trace 6. Therefore, the length L of this geodesic is given by

$$6 = 2\cosh(L/2),$$

which yields

$$L = 2\log(3 + 2\sqrt{2}) = \log(17 + 2\sqrt{2})$$

as needed.

Q7. Prove that $\lambda(i/2) = 12\sqrt{2} - 16$. (Hint: Letting $X_{\tau} = \mathbb{C}/(\mathbb{Z} \oplus \tau \mathbb{Z})$, [the value] $\lambda(\tau)$ is the cross-ratio of the critical values (suitably ordered) of any degree two map $f_{\tau}: X_{\tau} \to \hat{\mathbb{C}}$. For the square torus $\tau = i$, choose f_i so its critical values are the roots of $z^4 + 1 = 0$. Then one can choose $f_{i/2}(z) = (f_i(z) + f_i(z)^{-1})/2$, and find that is critical values are $\{-1, -1/\sqrt{2}, 1/\sqrt{2}, 1\}$.)

Proof. The function

$$g(w) := \int_0^w \frac{\mathrm{d}z}{\sqrt{1+z^4}}$$

is the Schwarz-Christoffel isomorphism from Δ to the square of side length 2g(1) with sides aligned along the co-ordinate axes, and takes the four roots of $z^4 + 1$ to the corners of this square. Therefore, the function h defined on Δ by

$$h(w) = \frac{1}{4g(1)}g(w) + \frac{1+i}{4}$$

gives the Riemann mapfrom Δ to the square $(0,1/2) \times (0,1/2)$ i, with again the four roots of $z^4+1=0$ mapped to the corners of the square. The inverse function to h(z), which we will call f_i , can be developed by Schwarz reflection to give a meromorphic function on the complex plane which is doubly periodic with respect to the square lattice $\mathbb{Z} \oplus \mathbb{Z}$ i, and hence can be written as $A \circ \wp_i$ for some Möbius transformation A. In particular, the critical points of f_i are located at the points of order 2, namely 0, 1/2, i/2, (1+i)/2, and the critical values of f_i are the roots of z^4+1 . See Figure 3.

Figure 3: The inverse functions h and f_i , where f_i has been developed by Schwarz reflection as shown.

The key claim is:

Lemma 0.0.2. For any $z \in \mathbb{C}$, we have $f_i(z + (i/2)) = 1/f_i(z)$.

Proof. Note that the identity $g(w) = \overline{g(\overline{w})}$ implies that $h(w) = \overline{h(\overline{w})} + (i/2)$, which translates to the identity

 $f_{\rm i}\left(z+rac{{
m i}}{2}
ight)=\overline{f_{
m i}(\overline{z})}.$

On the other hand, the construction of f_i by Schwarz reflection along the x-axis gives us the identity

 $f_{\rm i}(\overline{z}) = 1/\overline{f_{\rm i}(z)},$

and combining these identities gives the result.

It follows that the function $f_{i/2}(z) := (f_i(z) + f_i(z)^{-1})/2$ is meromorphic and doubly periodic for the lattice $\mathbb{Z} \oplus \mathbb{Z}(i/2)$. Next, the resulting map $f_{i/2} : X_{i/2} \to \hat{\mathbb{C}}$ again has degree 2; indeed, one half of the fundamental parallelogram $(0,1/2) \times (0,1/2)$ i maps isomorphically Δ under f_i , and hence to isomorphically to $\hat{\mathbb{C}} \setminus [-1,1]$ under $f_{i/2}$, which tells us that any point in $\hat{\mathbb{C}} \setminus [-1,1]$ has exactly two preimages under $f_{i/2}$, one each in the squares $(0,1/2) \times (0,1/2)$ i and $(1/2,1) \times (0,1/2)$ i. The critical values of $f_{i/2}$ (in the right order) are therefore given by

$$(e_0,e_1,e_2,e_3) = \left(f_{\mathrm{i}/2}(0),f_{i/2}\left(\frac{1}{2}\right),f_{\mathrm{i}/2}\left(\frac{\mathrm{i}}{4}\right),f_{i/2}\left(\frac{1}{2}+\frac{\mathrm{i}}{4}\right)\right).$$

It remains to compute these. It is clear from Figure 3 that

$$f_{i}(0) = \zeta_{8}^{5} \Rightarrow f_{i/2}(0) = -\frac{1}{\sqrt{2}} \text{ and } f_{i}(1/2) = \zeta_{8}^{7} \Rightarrow f_{i/2}\left(\frac{1}{2}\right) = \frac{1}{\sqrt{2}}.$$

Next, by symmetry (see Figure 3 again) it follows that

$$f_{i}\left(\frac{i}{4}\right) = -1$$

so that

$$f_{i/2}\left(\frac{\mathrm{i}}{4}\right) = -1.$$

Similarly, we have

$$f_{\mathrm{i}}\left(\frac{1}{2} + \frac{\mathrm{i}}{4}\right) = 1 \Rightarrow f_{\mathrm{i}/2}\left(\frac{1}{2} + \frac{\mathrm{i}}{4}\right) = 1.$$

Therefore, the critical values of $f_{i/2}$ (in the right order) are given by

$$(e_0, e_1, e_2, e_3) = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, -1, 1\right).$$

It follows that their cross-ratio is given by

$$\lambda\left(\frac{i}{2}\right) = \frac{e_1 - e_0}{e_3 - e_0} \cdot \frac{e_3 - e_2}{e_1 - e_2} = 12\sqrt{2} - 16$$

as needed.

References

- [1] W. Rudin, Real and Complex Analysis. McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Company, third ed., 1987.
- [2] J. H. Silverman and J. H. Tate, *Rational Points on Elliptic Curves*. Undergraduate Texts in Mathematics, Springer, second ed., 2015.