

Buildings & Energy

Problématique

Application 02

03 **Data & Dashboard**

> **Visualisation** 04

Features

Conclusion & 06 **Améliorations**

Planning & 07 tâches

I-PROBLEMATIQUE

Ambitions de la ville de Seattle: Ville neutre en émissions de carbone en 2050.

- Objectif:
 - Minimiser la consommation d'énergie et les émissions de Co2
 - Relevés manuels minutieux effectués par nos agents en 2016.
 - Ces relevés sont très coûteux et il reste encore des bâtiments à mesurer

Données :

data - P#15 DevIA

Test:

- Application Flask + déploiement Azure Web Apps via GitHub + workflows
- Application Flask avec image Docker, déploiement Azure Container > Azure Apps

En production:

- Application Streamlit + déploiement en continu avec Heroku via GitHub

Demo

Follow link!

https://seattleapp-v1.herokuapp.com/

Présentation globale de la base de données :

- 3376 lignes / 46 colonnes
- 2 targets:

SiteEnergyUse(kBtu) : La quantité annuelle d'énergie consommée par la propriété à partir de toutes les sources d'énergie.

TOTAL GHGEmissions: La quantité totale d'émissions de gaz à effet de serre, y compris le dioxyde de carbone, le méthane et les gaz d'oxyde nitreux libérés dans l'atmosphère à la suite de la consommation d'énergie de la propriété, mesurée en tonnes métriques d'équivalent dioxyde de carbone.

Click!

II - PRÉSENTATION DES DONNÉES EN DÉTAIL

II- FEATURES ENGINEERING

En regardant les colonnes: 116 nombres de types d'usages dans la base. Nous avons créé de nouvelles colonnes :

Âge de bâtiment

Distance % seattle

convertir les différentes surfaces (Buildings et Parking) en pourcentage de la surface totale

GFABuildingRate

GFAParkingRate

Heatmap des corrélations linéaires

Distribution des années de construction des bâtiments

Distribution de l'âge des bâtiments

Distribution des emissions de CO2 relevées (2016)

Données de consommation d'énergie globales

Répartition des données de consommation d'énergie vs emissions de CO2

Répartition des données d'emissions de CO2 en fonction des coordonnées géographiques

Répartition des données d'emissions de CO2 en fonction des coordonnées géographiques

Répartition de la consommation d'énergie et emissions de CO2 en fonction du type de bâtiment

- Correlation
- VIF
- Hold out
- Des algorithmes linéaires et non linéaires
- RandomForest Regressor
- Les valeurs cibles des données ne sont pas la normalité : Log (TransformedTargetRegressor)
- Model tunning
- Evaluation: R2, MAE, ACCURACY

Score

Total GHG Emissions: 88% de Accuracy

SiteEnergyUse: 93% de Accuracy

 Notre modèle obtient une réussite d'environ 90% pour nos 2 cibles ce qui est suffisant pour une mise en production.

Améliorations

- Déploiement : obtenir les droits pour déployer sur Azure soit avec DevOps Starter (le plus rapide), soit une image Docker dans un groupe de ressources > container > app container > webapp
- Learning curves
- Name of features importances

2

Amani: EDA / feature engeering / modeling / App Streamlit / Déploiement Streamlit

Imen: EDA / feature engeering / modeling/ présentation/features important

Melody: Rétroplanning / Veille sur Machine learning Explainability / Application Flask

Véronique : Dashboard Power BI / Code Refactoring / Application / Déploiement

Rétroplanning

GitHub avec fichiers de production (Jupyter Notebook, .py, Power BI, veille) :

https://github.com/bonjourcerise/simplon_seattleenergy_v1/tree/main/files

Github avec fichiers de l'application (Streamlit) CI sur Heroku :

https://github.com/bonjourcerise/simplon_seattleenergy_vl

Application: https://seattleapp-v1.herokuapp.com

Merci pour votre attention!

Des questions?