Algorithms Review

Introduction

- Insertion Sort Analysis
 - Proving correctness using loop-invariants
 - RAM model of computation
 - We discussed how we are normally only interested in growth of running time:
 - **»** Best-case linear in O(n), worst-case quadratic in $O(n^2)$
- Divide and Conquer
 - General Method
 - Merge Sort
- Analysis of divide-and-conquer algorithms
 - Recurrence Equation
 - Merge Sort Analysis
 - » Proof by Picture of Recursion Tree、 Telescoping、 Induction
 - » Θ(nlgn) for all cases

Asymptotic Growth

- Asymptotic Growth
 - O-notation
 - Ω -notation
 - Θ-notation
- Recurrences
 - Substitution method
 - Recursion-tree method
 - Master method

Heap Sort

- Heaps
- MAX-HEAPIFY
- BUILD-MAX-HEAP
- HEAPSORT

• Priority Queues

- MAXIMUM(S)
- EXTRACT-MAX(S)
- INCREASE-KEY(S,x,k)
- INSERT(S, x)
- Applications

- QuickSort
 - Divide and Conquer
 - PARTITION
 - Analysis of QuickSort
 - **»** Worst case $\Theta(n^2)$
 - » Expected running time: Θ(n lgn)
 - Randomized quicksort
- The best worst-case running time for comparison sorting
 - Decision-tree Model
 - Theorem. Any comparison sorting algorithm requires $\Omega(n \lg n)$ comparisons in the worst case

Sorting in linear time

Counting sort

- How if there are 17 elements not greater than x in A?
 - » Put the *last one* in position 17, the *penultimate one* in position 16,...
- If k = O(n), then counting sort takes O(n) time.

Radix sort

- Sort on least-significant digit first with auxiliary stable sort.
- $\Theta(d T(n))$, if we use counting sort and d is constant, $\Theta(n)$

Bucket sort

- Divide the interval [0,1) into n equal-sized subintervals, or bucket, and then distribute the n input number into the buckets.
- $\Theta(n)$ under uniform distribution

Medians and Order Statistics

- Order Statistics
 - Expected linear time selection
 - **» Main idea: PARTITION**
 - **»** Worst-case $\Theta(n^2)$
 - Worst-case linear time selection
 - » Generate a good pivot recursively.

Other D&C

Square Matrix Multiplication

Simple Divide and Conquer algorithm

```
\rightarrow \Theta(n^3)
```

Strassen's algorithm

» 8 recursive multiplications of $n/2 \times n/2$ matrices to only 7.

```
\rightarrow \Theta(n^{lg7})
```

The maximum-subarray problem

- Stock Investing Problem
- Divide and Conquer algorithm
 - » 3 sub-problems, one of which is not recursive
 - $\gg \Theta(nlgn)$

Dynamic Programming

Assembly Lines

$$f_{1}[j] = \begin{cases} e_{1} + a_{1,1} & \text{if } j = 1\\ \min(f_{1}[j-1] + a_{1,j}, f_{2}[j-1] + t_{2,j-1} + a_{1,j}) & \text{if } j \geq 2 \end{cases}$$

$$f_{2}[j] = \begin{cases} e_{2} + a_{2,1} & \text{if } j = 1\\ \min(f_{2}[j-1] + a_{2,j}, f_{1}[j-1] + t_{1,j-1} + a_{2,j}) & \text{if } j \geq 2 \end{cases}$$

Matrix-chain multiplication

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k \le j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \} & \text{if } i \le j \end{cases}$$

- Elements of DP Algorithms
 - Optimal Substructure
 - Overlapping Subproblem
 - Reconstructing an optimal solution

Dynamic Programming

- Memoization
- Longest Common Subsequence

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- Max Sum
 - b[j]=max(b[j-1]+a[j], a[j]), 1 <= j <= n.

- Activity-selection problem
 - Optimal Substructure
 - Greedy algorithm
- Elements of the greedy strategy
 - Greedy-choice property and Optimal substructure
 - Fractional Knapsack Problem
 - 0-1 Knapsack Problem (dynamic programming)
- Huffman codes

Single-source shortest paths

- Single-source shortest paths
 - Nonnegative edge weights
 - » Dijkstra's algorithm: O(E+VlgV)
 - General
 - **»** Bellman-Ford: O(VE)

All-pairs shortest paths

- All-pairs shortest paths (similar to matrix multiply)
 - $\ d^{(m)}_{ij} = min_k \{ d^{(m-1)}_{ik} + a_{kj} \}$
 - (min,+) multiplication
 - Improved matrix multiplication algorithm.
- Floy-Warshall algorithm
 - $c_{ij}^{(k)} = \min_{k} \{c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)}\}$
- Johnson's algorithm
 - Graph reweighting
 - » $h: V \rightarrow R$, reweight $(u,v) \in E$ by $w_h(u,v) = w(u,v) + h(u) h(v)$.
 - Algorithm:
 - » Find a function h: V → R, such that $w_h(u,v) ≥ \theta$ for all (u,v) ∈ E by using Bellman-Ford
 - » using w_h from Run Dijkstra's algorithms each vertex $u \in V$
 - » For each $(u,v) \in V^*V$, compute $\delta(u,v) = \delta_h(u,v) h(u) + h(v)$

Back Tracking

- Back Tracking Paradigm
 - A design technique, like divide-and-conquer.
 - Useful for optimization problems and finding feasible solutions.
 - Constraints
 - **» Explicit Constraints**
 - **» Implicit Constraints**
 - General Method
 - » Identify space state tree → Generate problem state → Is solution state? → Is answer state?
 - » Searching in DFS way
- N Queen problem
 - Algorithm
 - Bound function

Branch and Bound Algorithms

- General Method
- Least Cost Search
 - $\hat{c}(X)$: $\hat{c}(X) = f(h(X)) + \hat{g}(X)$

Computability

- Computability
 - Undecidable Problem
 - » Hilbert's 10th Problem.
 - » Post's Correspondence Problem.
 - **»** Halting Problem.
 - NP-Complete
 - » P, EXP, NP, NP-Complete
 - **»** SAT is the first NP-Complete problem
 - » Other NP-Complete problems: 3-color, TSP, ...

Sample Problem

- Answer T/F for the following:
 - Because inserting a key into a binary heap requires (*lgn*) time in the worst case, building a heap of size *n* from scratch requires (*nlgn*) time in the worst case.
- Single Choice
 - The worst-case running time of Insertion Sort is ()

A. $\Theta(n^2)$

B. $\Theta(nlgn)$

C. $\Theta(n)$

D. $\Theta(n^3)$

- Evaluate the following recursions
 - T(n) = T(7n/8) + n

Sample Problem

- Find a maximum-length common subsequence of X and Y with sequence $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$.
- Comprehensive
 - Strategy?
 - Sorting?
- Design?