

Logistics

- The quiz is closed book, closed notes, and calculator free. No form of collaboration or help is allowed.
- The quiz is **45 minutes** long. This time includes downloading, working on, and submitting a quiz **in a PDF format via Gradescope**.
- The quiz will be available starting from **5:00 PM until midnight** on scheduled week day (Thursday).
- The quiz have **20 points** in total.
- There is no extension or quiz retake.
- Show your full work to receive a full credit on each problem.
- 1. [5 points] Sketch the region in \mathbb{R}^3 represented by the inequality

$$x^2 + y^2 \le 9$$
 = 3^2
 $x^2 + y^2 \le 9$ = 3^2
 $x^2 + y^2 \le 9$ is a cylinder with radius 3.
 $x^2 + y^2 \le 9$ is a scalar
 $x^2 + y^2 \le 9$ = 3^2
 $x^2 + y^2 \le 9$ is a cylinder with radius 3.

2. [5 points] Find a unit vector that has the same direction as the given vector -3i + 6j + 2k.

$$\mathcal{V} = -3i + 6j + 2k = 2 - 3 \cdot 6 \cdot 2$$
Then $191 = \sqrt{9 + 36 + 4} = \sqrt{49} = 7$

$$\mathcal{X} = \frac{9}{191} = \frac{-3i + 6j + 2k}{7} = \frac{-3}{7}i + \frac{6}{7}j + \frac{2}{7}k = \frac{2}{7}i + \frac{3}{7}i + \frac{3}{7}$$

3. **[5 points]**

- (a) Determine whether the given vectors $\langle -5, 4, -2 \rangle$ and $\langle 3, 4, -1 \rangle$ are orthogonal. (Fully justify your answer)
- (b) For vectors a = 2j 4k and b = -i + 3j + k find the cross product $a \times b$.

(a)
$$x = \langle -5, 4, -2 \rangle$$
 $x = \langle 3, 4, -1 \rangle$
 $x \perp x$ if and only if $x \cdot x = 0$
 $x \perp x$ if and only if $x \cdot x = 0$
 $x \perp x = -5 \cdot 3 + 4 \cdot 4 + (-2) \cdot (-1) = -15 + 16 + 2 = 18 - 15 = 3$

Hence, $x = x \cdot x =$

4. **[5 points]**

- (a) Find an equation of the plane that goes through the point (5,3,5) and has a normal vector i + 4j + k.
- (b) Use intercepts to sketch the plane from part (a).

(a) In general form for the plane that goes through
$$P(x_0,y_0,t_0)$$
 and is 11 to $v = (\alpha_1\beta_1c)$ has an equation:

$$\alpha(x-x_0) + \beta(y-y_0) + c(z-t_0) = 0$$
Thus, $v = (1, 1, 1)$

$$P(5,3,5)$$

$$1(x-5) + 4(y-3) + 1 \cdot (z-5) = 0$$

$$x-5 + 4y-12 + 2 - 5 = 0$$

$$x + 4y + 2 = 22$$

