Electrolysis

Electrolysis of Molten Compounds

- A compound is heated until it _______ and an _______ is passed through it.
 For the circuit to be complete ______ must flow.
- The ______ electrode (anode) attracts _____ ions (anions) and takes electrons away from them.
- These flow through the external circuit to the ______ electrode.
- The ______ electrode (cathode) gives electrons to the _____ ions (cations) that it has attracted.
- As ions gain or lose electrons they become _____ or ____ and are discharged from the solution.

Metal ions are always _____

e.g. \mathcal{H}^+ $\mathcal{L}i^+$ $\mathcal{N}a^+$ $\mathcal{K}^ \mathcal{R}b^+$ what do the last 4 have in common? $\mathcal{P}b^{2+}$ $\mathcal{F}e^{2+}$ $\mathcal{M}g^{2+}$ $\mathcal{C}a^{2+}$ $\mathcal{S}r^{2+}$ what do the last 3 have in common?

Non-metal ions (except hydrogen, H) are_____

e.g.
$$\mathcal{F}$$
 Cl Br I what do these 4 ions have in common? O^2 S^2

Electrolysing Molten Compounds

What type of compounds electrolyse?

This can only happen if the compound decomposes to produce (charged particles) i.e. ionic compound made from a metal and part. The ions are then attracted to the (positive electrode) and the (negate electrode). Ionic compounds are usually solids. Electrolysis will ONLY take place when ionic compounds are molten to the ions must to the electrodes. Example 1 - Consider Sodium Chloride: Cathode: Metal ions electrons to become metal ions electrons to become metal ions or molecules. We call this type of equation a Predict the electrolytes: Electrolyte	Electrolysis is the	of a liquid by the pass	ing an electric current through it.
The ions are then attracted to the	• This can only happen if the compound	decomposes to produce	(charged particles) i.e. ionic compounds
electrode). • Ionic compounds are usually solids. Electrolysis will ONLY take place when ionic compounds are molten to the ions must to the electrodes. Example 1 - Consider Sodium Chloride: Cathode: Metal ions electrons to become metal or molecules. Molten sodium chloride We call this type of equation a lecomposition of the following molten electrolytes: Electrolyte	made from a metal and	part.	
• Ionic compounds are usually solids. Electrolysis will ONLY take place when ionic compounds are molten to the ions must to the electrodes. Example 1 - Consider Sodium Chloride: Cathode: Metal ions electrons to become metal of the sodium chloride Non-metal ions electrons to become or molecules. We call this type of equation a lecomposition of the following molten electrolytes: Electrolyte	• The ions are then attracted to the	(positive electrode) an	d the (negative
the ions must	electrode).		
### Texample 1 — Consider Sodium Chloride: Metal ions electrons to become metal of the sodium chloride	• Ionic compounds are usually solids. E	lectrolysis will ONLY take place า	vhen ionic compounds are molten becaus
Moten sodium chloride Metal ions electrons to become metal and sodium chloride Metal ions electrons to become or molecules. We call this type of equation a lecomposition of the following molten electrolytes: Description Des	the ions must	to the electrodes.	-
Anode: Non-metal ions electrons to become a or molecules. We call this type of equation a Predict th lecomposition of the following molten electrolytes: Electrolyte	Example 1 – Consider Sodium Chloride:	Cathode:	
Molten sodium chloride Mon-metal ions electrons to become a cor molecules. We call this type of equation a	<u> </u>	Metal ions	electrons to become metal atoms
Electrolyte positive ions (cations) negative ions (anions) sodium chloride $\mathcal{N}aCl$ sodium chloride $\mathcal{A}l_2O_3$ chloride	sodium chloride	Non-metal ions or molecules. We call this type of equa	tion a
Sodium chloride $NaCl$ $Sodium$ Sod			
$egin{array}{ c c c c c c c c c c c c c c c c c c c$			
KCl			
Half equations: Cathode Anode Al_2O_3 $Al^{\beta+} + e^{\cdot}$ Al $O^{2\cdot}$ O	$\mathcal{A}l_2O_3$ $\mathcal{A}l^{3+}$ + $\underline{}e^{i}$ $\mathcal{P}b\mathcal{B}r_2$ $\mathcal{P}bI_2$	_	

Electrolysis of Aqueous Solutions

small test tube

What difference does dissolving a compound in water make?

crocodile electrode Consider a sodium chloride solution clip (salty water) indicator paper Sometimes the ions from water are more attracted to the electrodes than the ions from the solute (dissolved compound) In the solution above, the ______ ions are attracted to the anode (+), _____ electrons and become _____ The ______ ions from water are attracted to the cathode (-) and form $\underline{\hspace{1cm}}$ molecules, \mathcal{H}_2 . Cathode: Anode: Example 2 Potassium sulfate, $K_2SO_{4(aq)}$ Cathode: Anode:

Summary

Example 3 KNO_{3(aq)}

Cathode:

Anode:

The following 3 solutions all produce hydrogen and oxygen when electrolysed:

Na ${\it Cl}_{(aq)}$ sodii	ım chloride	<u> </u>	
$\mathcal{K}_2 \mathcal{S} O_{4(aq)} pota$	ssium sulfate	oxygen + hydrogen	
$KNO_{3(aq)}$	potassium nitrate		
		J	

Purifying Copper using Electrolysis

Summary:

cardboard spacer copper (11) sulfate solution

Describe the changes in mass of the copper electrodes

- The cathode (negative electrode) _______
- The positive electrode (anode)

 mass
- The gain in mass of the negative electrode is

 the loss in mass of the positive electrode.

Negative electrode (cathode):

Breeze concerous juinous,

What factors affect the amount of copper produced during electrolysis?

- The amount of product made depends on the number of ______ transferred
- So the ______ the current the more electrons there are. Also, the _____ the time the greater the number of electrons transferred.

more time and higher current = _____ mass of pure copper

The relationship between charge transfer, current and time:

$$Q = It$$

$$Q = It$$

$$Q = C (coulombs)$$

$$I = A (amps)$$

$$t = s (seconds)$$

Example 1

- 0.96g of copper is deposited by a 0.5A current running for 100 minutes
- a) What is the total charge used up?
- b) How much charge would used in 200 minutes?
- c) How much charge would be used if we increased the current to 1.0A for 100mins?

Example 2

- 0.48g of copper is deposited by a 0.25A current running for 100 minutes
- a) How much copper is deposited by 1 coulomb of charge?

(hint: work out the total charge first and then divide the mass by the total number of coulombs)

b) 15 a currer	it of 0.25A ran for 5 hours how much copper would be deposited?
A couple of	harder challenges (you wont get these in a GCSE exam!)
c) If a curren	ut of 0.25A is used, how long would be needed to deposit 9.6g of copper? Give your answer in h utes (not just minutes)
-	5A was used for 60 minutes to produce 19.5g of lead from molten lead bromide. trode will produce the lead?
b) give the cl	iemical formula of the substance produced at the other electrode.
c) Calculate	the total charge used in the electrolysis
d) Calculate	how much lead 1 coulomb of charge could produce
f) What mas	s of lead would be produced if a current of 30 amps was used for 10 minutes?
e)Suggest tz prove it mat	vo different ways that you could exactly double the amount of lead being produced? (see if you c hematically)