o Calculs d'intégrales : exercices

Exercice 1

Un encadrement de l'intégrale $I = \int_{1}^{6} f(x) dx$ est :

A.
$$0 \leqslant I \leqslant 4$$

C.
$$5 \le I \le 10$$

B. 1 ≤
$$I$$
 ≤ 5

D.
$$10 \leqslant I \leqslant 15$$

Exercice 2 Calculer les intégrales suivantes :

$$A = \int_{1}^{2} (5x^{4} - 3x^{3} + 2x^{2} - 3x + 5) dx$$

$$B = \int_{1}^{2} \frac{1}{x^{3}} dx$$

$$C = \int_{0}^{2} \frac{3x + 1}{3x^{2} + 2x + 1} dx$$

$$D = \int_{0}^{3} \frac{1}{\sqrt{2x + 3}} dx$$

$$E = \int_{0}^{1} e^{-5x + 1} dx$$

Exercice 3 En utilisant une intégration par partie, calculer les intégrales suivantes :

$$A = \int_0^{\pi} x \cos(x) dx$$

$$B = \int_{-\frac{1}{2}}^{\frac{1}{2}} x e^{-2x}$$

$$C = \int_1^e \ln(t) dt$$

$$D = \int_1^e \ln(t)^2 dt$$

$$E = \int_1^e \frac{\ln(x)}{x} dx$$

Exercice 4 On considère la fonction F définie sur $[1; +\infty[$ par :

$$F(x) = \int_{1}^{x} \frac{\ln(t)}{1 + t^{2}} dt$$

- 1. Montrer que F est dérivable sur $[1; +\infty[$ et préciser l'expression de F'(x) pour $x \in [1; +\infty[$.
- **2.** En déduire le sens de variation de F.
- **3.** Vérifier que, pour $t \ge 1$, on a :

$$\frac{\ln(t)}{(1+t)^2} \le f(t) \le \frac{\ln(t)}{t^2}$$

4. Pour $x \ge 1$, on pose:

$$I(x) = \int_1^x \frac{\ln(t)}{t^2} dt$$

Calculer I(x).

5. Pour $x \ge 1$, on pose:

$$J(x) = \int_{1}^{x} \frac{\ln(t)}{(1+t)^{2}} dt$$

En utilisant l'égalité:

$$\forall t \ge 1, \ \frac{1}{t(t+1)} = \frac{1}{t} - \frac{1}{t+1}$$

calculer J(x).

6. Déduire de ce qui précède que, pour $x \ge 1$, on a :

$$\ln(2) + \ln\left(\frac{x}{x+1}\right) - \frac{\ln(x)}{x+1} \le F(x) \le 1 - \frac{\ln(x)}{x} - \frac{1}{x}$$

7. On admet que F(x) converge en $+\infty$ vers l. Sans calculer l, vérifier que :

$$\ln(2) \le l \le 1$$

8. On définit sur $[1; +\infty[$ la fonction G par :

$$G(x) = F\left(\frac{1}{x}\right) - F(x)$$

Calculer G'(x) pour $x \ge 1$.

- **9.** Vérifier que, pour tout $x \ge 1$, G(x) = 0.
- **10.** En déduire une relation que vérifie la fonction F.

Exercice 5 On considère la suite (I_n) définie pour tout entier naturel n non nul, par :

$$I_n = \int_1^e (\ln(t))^n dt$$

- **1.** Montrer que, pour tout entier naturel n non nul, on a $I_n \ge 0$.
- **2.** Montrer que la suite (I_n) est décroissante.
- **3.** Que peut-on en déduire pour la suite (I_n) ?
- **4.** Calculer I_1 .
- **5.** *Démontrer que, pour tout entier naturel n non nul :*

$$I_{n+1} = e - (n+1)I_n$$

En déduire les valeurs de I_2 et de I_3 .

- **6.** Conjecturer, à l'aide d'une calculatrice, la limite l de la suite (I_n) en l'infini.
- 7. En raisonnant par l'absurde, montrer que l = 0.

Exercice 6 L'exercice est constitué de deux parties indépendantes.

Partie I

Pour tout entier n supérieur ou égal à 1, on désigne par f_n la fonction définie sur [0; 1] par :

$$f_n(x) = x^n e^x$$

On note C_n la courbe représentative de la fonction f_n dans un repère $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$ du plan. On désigne par (I_n) la suite définie pour tout entier n supérieur ou égal à 1 par :

$$I_n = \int_0^1 x^n e^x \, \mathrm{d}x.$$

1. a. On désigne par F_1 la fonction définie sur [0;1] par :

$$F_1(x) = (x-1)e^x$$
.

Vérifier que F_1 *est une primitive de la fonction* f_1 .

- **b.** Calculer I_1 .
- **2.** À l'aide d'une intégration par parties, établir la relation pour tout n supérieur ou égal à 1,

$$I_{n+1} = e - (n+1)I_n$$
.

- **3.** Calculer I_2 .
- 4. On considère la fonction mystere écrite dans le langage Python:

from math import e # la constante d'Euler e

```
def mystere(n):
    a = 1
    L = [a]
    for i in range(1,n):
        a = e - (i + 1)*a
        L.append(a)
    return L
```

À l'aide des questions précédentes, expliquer ce que renvoie l'appel mystere (5).

Partie II

1. Sur le graphique ci-dessous, on a représenté les courbes C_1 , C_2 , C_3 , C_{10} , C_{20} et C_{30} .

- **a.** Donner une interprétation graphique de I_n .
- **b.** Quelle conjecture peut-on émettre sur la limite de la suite (I_n) ?
- 2. Montrer que pour tout n supérieur ou égal à 1,

$$0 \leqslant I_n \leqslant e \int_0^1 x^n \, \mathrm{d}x.$$

3. En déduire $\lim_{n\to+\infty} I_n$.

Exercice 7 On considère la suite (I_n) définie par $I_0 = \int_0^{\frac{1}{2}} \frac{1}{1-x} dx$ et pour tout entier naturel n non nul

$$I_n = \int_0^{\frac{1}{2}} \frac{x^n}{1 - x} \, dx.$$

- **1.** *Montrer que* $I_0 = \ln(2)$.
- **2.** *a.* Calculer $I_0 I_1$.
 - **b.** En déduire I_1 .

- **3.** a. Montrer que, pour tout entier naturel n, $I_n I_{n+1} = \frac{\left(\frac{1}{2}\right)^{n+1}}{n+1}$.
 - **b.** Proposer un algorithme permettant de déterminer, pour un entier naturel n donné, la valeur de I_n .
- **4.** Soit n un entier naturel non nul.

On admet que si x appartient à l'intervalle $\left[0\,;\,\frac{1}{2}\right]$ alors $0\leqslant\frac{x^n}{1-x}\leqslant\frac{1}{2^{n-1}}$.

- **a.** Montrer que pour tout entier naturel n non nul, $0 \le I_n \le \frac{1}{2^n}$.
- **b.** En déduire la limite de la suite (I_n) lorsque n tend vers $+\infty$.
- **5.** Pour tout entier naturel n non nul, on pose

$$S_n = \frac{1}{2} + \frac{\left(\frac{1}{2}\right)^2}{2} + \frac{\left(\frac{1}{2}\right)^3}{3} + \dots + \frac{\left(\frac{1}{2}\right)^n}{n}.$$

- **a.** Montrer que pour tout entier naturel n non nul, $S_n = I_0 I_n$.
- **b.** Déterminer la limite de S_n lorsque n tend vers $+\infty$.

Exercice 8 Partie A

Soit la fonction f définie et dérivable sur $[1; +\infty[$ telle que, pour tout nombre réel x supérieur ou égal à 1,

$$f(x) = \frac{1}{x} \ln(x).$$

On note C la courbe représentative de f dans un repère orthonormé.

- 1. Démontrer que la courbe $\mathscr C$ admet une asymptote horizontale.
- **2.** Déterminer la fonction dérivée f' de la fonction f sur $[1; +\infty[$.
- **3.** Étudier les variations de la fonction f sur $[1; +\infty[$.

Partie B

On considère la suite (u_n) définie par

$$u_n = \int_1^2 \frac{1}{x^{n+1}} \ln(x) dx$$
 pour tout entier naturel n.

- 1. Démontrer que $u_0 = \frac{1}{2}[\ln(2)]^2$.

 Interpréter graphiquement ce résultat.
- 2. Prouver que, pour tout entier naturel n et pour tout nombre réel x de l'intervalle [1; 2], on a

$$0 \leqslant \frac{1}{x^{n+1}} \ln(x) \leqslant \frac{1}{x^{n+1}} \ln(2).$$

3. En déduire que, pour tout entier naturel 1 n, on a

$$0 \leqslant u_n \leqslant \frac{\ln(2)}{n} \left(1 - \frac{1}{2^n} \right).$$

4. Déterminer la limite de la suite (u_n) .

Exercice 9 On considère la suite (u_n) définie pour tout entier naturel n par :

$$u_n = \int_0^n e^{-x^2} dx.$$

On ne cherchera pas à calculer u_n en fonction de n.

- **1.** a. Montrer que la suite (u_n) est croissante.
 - **b.** Démontrer que pour tout réel $x \ge 0$, on $a: -x^2 \le -2x + 1$, puis : $e^{-x^2} \le e^{-2x+1}$.

En déduire que pour tout entier naturel n, on $a: u_n < \frac{e}{2}$.

- **c.** Démontrer que la suite (u_n) est convergente. On ne cherchera pas à calculer sa limite.
- **2.** Dans cette question, on se propose d'obtenir une valeur approchée de u_2 . Dans le repère orthonormé $\left(0; \overrightarrow{i}, \overrightarrow{j}\right)$ ci-dessous, on a tracé la courbe \mathscr{C}_f représentative de la fonction f définie sur l'intervalle [0; 2] par $f(x) = e^{-x^2}$, et le rectangle OABC où A(2; 0), B(2; 1) et C(0; 1). On a hachuré le domaine \mathscr{D} compris entre la courbe \mathscr{C}_f , l'axe des abscisses, l'axe des ordonnées et la

On considère l'expérience aléatoire consistant à choisir un point M au hasard à l'intérieur du rectangle OABC.

On admet que la probabilité p que ce point appartienne au domaine est : $p = \frac{aire de \mathcal{D}}{aire de OABC}$.

1. tout entier naturel non nul semble plus correct

- **a.** Justifier que $u_2 = 2p$.
- **b.** On considère l'algorithme suivant :

```
Variables: N, C nombres entiers; X, Y, F nombres réels
L1
L2
      Entrée : Saisir N
      Initialisation: C prend la valeur 0
L3
L4
      Traitement:
      Pour k variant de 1 à N
L5
        X prend la valeur d'un nombre aléatoire entre 0 et 2
L6
        Y prend la valeur d'un nombre aléatoire entre 0 et 1
L7
        Si Y \leq e^{-x^2} alors
L8
            C prend la valeur C+1
L9
L10
        Fin si
L11
     Fin pour
L12
     Afficher C
     F prend la valeur C/N
L13
     Afficher F
L14
```

- i. Que permet de tester la condition de la ligne L8 concernant la position du point M(X; Y)?
- ii. Interpréter la valeur F affichée par cet algorithme.
- iii. Que peut-on conjecturer sur la valeur de F lorsque N devient très grand?
- *c.* En faisant fonctionner cet algorithme pour $N = 10^6$, on obtient C = 441138.

On admet dans ce cas que la valeur F affichée par l'algorithme est une valeur approchée de la probabilité p à 10^{-3} près.

En déduire une valeur approchée de u_2 à 10^{-2} près.