Discrete Optimization - ADM2

Lecturer
PROF. DR. TOM McCORMICK

Teaching Assistants
SVENJA GRIESBACH AND SARAH MORELL

Student Assistant Christos Pavlidis

> Notes Simon Cyrani

 $\begin{array}{c} {\rm Version} \\ {\rm git:~a49e7b5} \\ {\rm compiled:~Monday~23^{rd}~May,~2022\,09:57} \end{array}$

Abstract

The following lecture notes are my personal (and therefore unofficial) write-up for 'Discrete Optimization' aka 'ADM II', which took place in summer semester 2022 at Technische Universität Berlin. I do not guarantee correctness, completeness, or anything else. Importantly, note that I willfully changed some specific notations, reordered some material, and left out parts that I didn't found worth typing down.

If you miss something, feel free to contribute in the repository!

Contents

Summary of lectures		3
Ι	Lecture notes	4
1	Introduction	4
	1.1 IP is "hard"	5
	1.2 Representation of IPs	8
	1.3 Complexity	8
2	Hardness	9
3	Complexity differences between IP and LP	17
	3.1 Optimization vs. Separation	17
	3.2 Certificate construction	20
	3.3 Non-linearity in LP	24
4	Approaches to IP	26
	4.1 Integer-optimal solutions in LP	27
	4.2 Integer-optimal solutions in LP for <i>some</i> RHSs	33
II	Appendix	40
\mathbf{A}	Exercise sheets	40
	1. exercise sheet	40
	2. exercise sheet	40
	3. exercise sheet	41
	4. exercise sheet	42
	5. exercise sheet	43
Index		45
Image attributions		46
Literature		46

Summary of lectures

Lecture 1 (Di 19 Apr 2022) Definitions for ILP. Binary LP. Disaggregation.	4
Lecture 2 (Do 21 Apr 2022) Further intuition why IP is hard. Big- \mathcal{O} notation	6
Lecture 3 (Di 26 Apr 2022) Hardness. Decision problems.	9
Lecture 4 (Do 28 Apr 2022) NP-complete. Problems in NPC. Reductions. Weakly vs. strongly.	12
Lecture 5 (Di 03 May 2022) co-NP. Ellipsoid method. Separation vs. optimization. Polar of polyhedrons.	15
Lecture 6 (Do 05 May 2022) Representation of polyhedra. Theorem of the Alternative and applications. Non-linearity in LP.	19
Lecture 7 (Di 10 May 2022) Convex duality. IP solving strategies. Integrality of LPs. Totally unimodular matrices. Network matrices.	24
Lecture 8 (Do 12 May 2022)	30
Fun	
Lecture 9 (Di 17 May 2022) Fun	33
Lecture 10 (Do 19 May 2022) Fun	37

Part I

Lecture notes

Lecture 1 Di 19 Apr 2022

1 Introduction

In ADM1 we often already worked with Integer Programming and just assumed everything is fine. In this course however, we want to find out how Integer Programming actually works, why it is generally "hard", and under which circumstances it is "easy".

Definition 1.1 (Flavors of IP). First of all, we want to define different variants of **Integer Programming**:

- Pure Integer Programming assumes all variables are integer.
- Mixed Integer Programming also allows some variables to be real.
- Binary Integer Programming, also called 0-1-Integer-Programming, restricts the integer variables to $\mathbb{B} := \{0, 1\}$. Mixed variants are also possible.

Question 1.2. Why is IP harder than LP? Naively, one would assume this should *not* be the case, because our search space is smaller (at most countably infinite)!

Let's solve the IP in ADM1-style - suppose

$$\begin{aligned} \max_{x} & w^{T}x \\ \text{s.t.} & x \in Q = \{x \in \mathbb{Z}^{n} \colon Ax \leq b\} \end{aligned}$$

For simplicity, assume Q is bounded. Then the set of feasible points in Q is finite, and therefore we can consider the polytope

$$conv(Q) = \{ x \in \mathbb{R}^n \mid A'x \leqslant b' \}$$

for suitable A' and b'. Notice all vertices must be in Q and thus are integral. As a consequence, it is sufficient to solve the LP

$$\max_{x} \quad w^{T} x$$

s.t.
$$A' x \le b'.$$

Warning. Computing A', b' is non-trivial! In fact, computing the **integer hull** conv(Q) is what makes IP hard.

1.1 IP is "hard"

We can gather more evidence that IP must be hard.

Theorem 1.3. Every logical statement can be expressed with integer programming.

Proof. It suffices to show that for variables $x_1, x_2, y \in \mathbb{B}$ we can find IPs that model \land, \lor, \lnot .

• $y = x_1 \wedge x_2$ can be modeled as

$$y \leqslant x_1$$

$$y \leqslant x_2$$

$$y \geqslant x_1 + x_2 - 1$$

• $y := x_1 \vee x_2$ can be modeled as

$$y \geqslant x_1$$

$$y \geqslant x_2$$

$$y \leqslant x_1 + x_2$$

• $y := \neg x$ can be modeled as

$$y = 1 - x$$

Theorem 1.4. IP can model (finite) unions of polyhedra, e.g. non-convex problems.

Proof. Consider

$$P := \bigcup_{i=1}^{k} \underbrace{\left\{ x \mid A_i x \leqslant b_i \right\}}_{P_i}$$

and introduce auxiliary binary variables

$$y_i := \begin{cases} 1, & \text{if } x \in P_i, \\ 0, & \text{if we don't care.} \end{cases}$$

Now, assume $M \in \mathbb{R}$ large enough (**Big-**M method), such that

$$P_i \subseteq \overline{P} := \{x \mid A_i x \leqslant b_i + M \cdot \mathbf{1}\}$$

1 INTRODUCTION

for all i. Thus, we can construct following IP:

$$\min_{x} \quad w^{T} x$$
s.t.
$$A_{i}x \leq b_{i} + (1 - y_{i})M \cdot \mathbf{1}, \quad i = 1, \dots, k,$$

$$\sum_{i} y_{i} = 1$$

This forces exactly one y_i to 1, resulting that $x \in P_i$ and $x \in \overline{P}$ is sufficient. We call this method **righthandside Big-**M, short RHS. Further information can be found in [Wol99, Ch. 1].

Note. It's also possible to handle M as a symbolic value, but this makes other things more complicated.

Problem. Finding M big enough can make LP hard to solve, because of matrix-inversions getting numerically unstable.

Alternative proof of Theorem 1.4. Assume that we can bound each $x \in P_i$ by u_i , i.e. $x \leq u_i$ (note that this is basically a hidden big-M!). Now we can disaggregate x for each P_i as its own private $x_i \in \mathbb{R}^k$, and analogously introduce $y_i \in \mathbb{B}$ to restrict ourselves to one polyhedron:

$$\min_{x} \quad w^{T} x$$
s.t.
$$A_{i}x_{i} \leq y_{i}b_{i}, \quad i = 1, \dots, k,$$

$$x_{i} \leq y_{i}u_{i}, \quad i = 1, \dots, k,$$

$$\sum_{i=1}^{n} y_{i} = 1,$$

$$\sum_{i=1}^{n} x_{i} = x,$$

$$x, x_{i} \geq 0$$

Again, exactly one y_i is equal to 1, forcing the other x_j to be equal to 0, and thus setting x to x_i . We call this method **upper bound on** x **Big-**M, short UBX.

Remark 1.5. In general, it cannot be said if RHS or UBX is better. Even though RHS only introduces n new variables as opposed to UBX's nk variables, UBX's disaggregated formulation often is tighter in the sense that the LP relaxation is closer to the integer hull.

Lecture 2 Do 21 Apr 2022

Theorem 1.6. IP can approximate any objective function infinitely good.

Proof. First, consider a **piecewise linear** objective function f with (not necessarily equidistant) breakpoints a_1, \ldots, a_k .

Figure 1: A piecewise linear function

Defining the intervals $I_i := [a_i, a_{i+1}]$ for each segment of f, we can introduce binary variables y_i such that

$$y_i = \begin{cases} 1, & \text{if } x \in I_i, \\ 0, & \text{otherwise} \end{cases}$$

Note that for $x \in I_i$, x is a convex combination of a_i, a_{i+1} . Therefore, we can express x as a linear combination of all breakpoints a_i , with the additional constraint that all except 2 scalars must be 0. By linearity, this also holds for f(x). Translating into IP:

$$\min_{\lambda} \quad \sum_{i} \lambda_{i} f(a_{i})$$
s.t.
$$\lambda_{1} \leq y_{1},$$

$$\lambda_{k} \leq y_{k-1},$$

$$\lambda_{i} \leq y_{i-1} + y_{i}, \quad i = 2, \dots, k-1,$$

$$\sum_{i} y_{i} = 1$$

One can show this already suffices to model any cost function: For suitable choices of breakpoints we can approximate any function by piecewise linear functions. Details can be found in [Orl93, Ch. 14] or [Wol99, Ch. 1].

Conclusion 1.7. Summarizing, following facts that hold for IP, but not LP, deliver an intuition why IP should be hard:

1. Consider a polyhedron $P = \{x \in \mathbb{R}^n \mid Ax = b\}$ and its integer hull Q. Even

though P can be "smooth" (e.g. cube), its integer hull can look more like a "disco ball" with many facets.

- 2. In real life, many problems can be modeled with decision variables. IP can handle this, see Theorem 1.3.
- 3. Additionally, IP also can handle non-convex problems, see Theorem 1.4 and Theorem 1.6.

1.2 Representation of IPs

For a given IP, a set Q of feasible points can be formulated by many polyhedra P.

Example 1.8. Consider

$$Q := \{0000, 1000, 0100, 0010, 0110, 0101, 0011\} \subseteq \mathbb{Z}^4.$$

Then we can give following representations P_i such that P_i is an integer hull of Q:

$$P_{1} = \{x \in \mathbb{R}^{4} \mid 93x_{1} + 49x_{2} + 37x_{3} + 29x_{4} \leq 111\}$$

$$P_{2} = \{x \in \mathbb{R}^{4} \mid 2x_{1} + x_{2} + x_{3} + x_{4} \leq 2\}$$

$$P_{3} = \{x \in \mathbb{R}^{4} \mid 2x_{1} + x_{2} + x_{3} + x_{4} \leq 2,$$

$$x_{1} + x_{2} \leq 1,$$

$$x_{1} + x_{3} \leq 1,$$

$$x_{1} + x_{4} \leq 1\}$$

One can show that $P_3 \subsetneq P_2 \subsetneq P_1$.

Example 1.9. A real-life example is the problem of placing facilities. Given n stores and m warehouses, decide which warehouse should be build at all, and which should deliver which store (for some cost function). Let $y_i \in \mathbb{B}$ denote if warehouse i should be opened, and x_{ij} if warehouse i should serve store j. Then

$$P_1 := \{x \mid \forall i : \sum_j x_{ij} \leqslant my_i\},$$

$$P_2 := \{x \mid \forall i, j : x_{ij} \leqslant y_i\}$$

both represent the condition to only serve stores from warehouses that are opened. Notice that $P_2 \subseteq P_1$ is tighter, but has $n \cdot m$ instead of n constraints.

1.3 Complexity

In order to define hardness, it is useful to define complexity first. We can use \mathbf{big} - \mathcal{O} for this. During the rest of the lecture, we had a recap on this. For details, refer to canonical

sources.

Lecture 3
Di 26 Apr 2022

2 Hardness

Prior, we only gave intuition why IP is "harder" than LP. In order to analyze IP more thoroughly, we now want to work towards a formal definition of hardness of problems. Basically, there are two types of problems for now:

Definition 2.1 (Problem types). We differentiate between

- decision problems, which can be answered by Yes or No only, and
- optimization problems, which seeks for a numerical value minimizing a certain (cost) function.

For the beginning, we can cheat and restrict ourselves to decision problems.

Example 2.2. Possible decision problems could be:

- 1. Does there exist a Hamiltonian cycle?
- 2. Is the LP feasible?

Question 2.3. How do we model an optimization problem as an decision problem?

Answer. We can simply introduce a parameter z which we use as a bound for the value we want to optimize.

Example 2.4. Possible reformulations of optimization problems are therefore:

- 1. Does there exist a feasible x with $c^T x \leq z$?
- 2. Does there exist a spanning tree with cost less than z?
- 3. Is there a clique with size less than z?

Definition 2.5. A clique C is a subset of nodes V of a graph G = (V, E) s.t. for all $i, j \in C$ it must hold true that $(i, j) \in E$.

Theorem 2.6. When we model an optimization problem as a decision problem, then there exist a oracle-polynomial way to solve the optimization problem using the decision problem as an oracle.

Algorithm 1: Oracle-polynomial algorithm for max-clique

```
Use binary search to find z^* in \mathcal{O}(\log n)
G' \leftarrow G = (V, E)
for i = 1, ..., n do
G'' \leftarrow G', but remove all edges incident to node i
if Call of decision oracle on G'', z^* is true then
G' \leftarrow G''
end
end
```

Theorem 2.7. Final $\overline{G} := G'$ is a max-clique.

Proof. The size of a max clique in G' never goes below z^* . Therefore, there exists a clique $C \subseteq \overline{G}$ with $|C| = z^*$. Suppose \overline{G} has more than z^* nodes. Then $i \in \overline{G} \setminus C$. But then the algorithm would have deleted this node!

Corollary 2.8. If we have an optimal oracle, then one can solve decision version in oracle-polynomial time using the optimal oracle.

Conclusion 2.9. Optimization and decision version differ only by a polynomial factor of complexity. Therefore, either both are easy or both are hard.

Definition 2.10 (Certificate). Given an instance of any problem with size n, a **certificate** is a binary-encoded string that is generated by some algorithm specific to the problem, taking the instance as input. We say the certificate is a **succinct certificate**, if its length is polynomial in the input size n.

Definition 2.11 (NP). We say a (decision) problem P lies in NP, if for all Yesinstances I there exists a succinct certificate C and a certificate checking algorithm A that confirms A(I, C) in polynomial time.

Theorem 2.12. Max-clique lies in NP

Proof. We use our clique C directly as the certificate.

Algorithm 2: Certificate checking for max-clique

```
\begin{array}{l} \textbf{if} \ |C| < z \ \textbf{then} \\ \quad | \ \text{return NO} \\ \textbf{end} \\ \textbf{else} \\ \quad | \ \textbf{for} \ i,j \in C \ \textbf{do} \\ \quad | \ \textbf{if} \ (i,j) \notin E \ \textbf{then} \\ \quad | \ | \ \text{return NO} \\ \quad | \ \textbf{end} \\ \quad | \ \textbf{end} \\ \textbf{end} \\ \textbf{return YES} \end{array}
```

Remark 2.13. Note that we don't care for No-instances! In order to verify them we would need to list all $\binom{n}{z}$ subsets (for max-clique), which is *not* polynomial.

Theorem 2.14. $P \subseteq NP$

Proof. Let $P \in \mathbf{P}$. Then there exists a polynomial algorithm A. Record the steps of A on an instance I and use this as a polynomial certificate.

Theorem 2.15. LP \in NP, using decision variant if there is any feasible x.

Proof. If feasible, there exists a basic feasible solution x^* . We verify by checking $Bx^* = b$. One can show that x^* has polynomial bits.

Let's also have a look at the canonical **NP** problem:

Definition 2.16 (Satisfiability problem, SAT). Consider n logical variables $v_1, ..., v_n$, allowing also the negated literals $\overline{v_i}$. Additionally, we have m clauses $C_1, ..., C_m$, which are subsets of the literals. Determining if there is an assignment such that the overall clause is true (i.e. each subclause has at least one true literal) is known as the **satisfiability problem**, for short SAT.

Example 2.17. A few examples:

- 1. $(v_1 \lor v_2 \lor v_3) \land (\overline{v_1} \lor \overline{v_2} \lor \overline{v_3})$ This instance is true for v = (110).
- 2. $(v_1 \vee v_2) \wedge (\overline{v_1} \vee v_2) \wedge (\overline{v_2} \vee v_3) \wedge (\overline{v_3} \vee \overline{v_4})$ One can check that this instance is always false.

Theorem 2.18. $SAT \in NP$

Proof. The satisfiability truth assignment is a succinct certificate.

Theorem 2.19 (Cook). If $P \in \mathbf{NP}$, then P has an oracle-polynomial algorithm with SAT as an oracle.

Proof. Suppose $P \in \mathbf{NP}$, then P has a non-deterministic Turing Machine with polynomial size. Encode the Turing Machine as a logical formula such that it is true iff P is a Yesinstance.

Lecture 4 Do 28 Apr 2022

We remind ourselves that IP can formulate logic, and therefore can encode SAT formulas.

Example 2.20. Translating from Example 2.17:

1.

$$x_1 + x_2 + x_3 \ge 1$$
$$(1 - x_1) + (1 - x_2) + (1 - x_3) \ge 1$$
$$x \in \mathbb{R}^{3}$$

2.

$$x_1 + x_2 \ge 1$$

$$(1 - x_1) + x_2 \ge 1$$

$$(1 - x_2) + x_3 \ge 1$$

$$(1 - x_2) + (1 - x_3) \ge 1$$

$$x \in \mathbb{B}^3$$

Definition 2.21 (Reduction). We say $P \propto Q$ ("P reduces to Q") if there exists a polynomial algorithm A such that

- 1. for all instances $I \in P$, A(I) is element of Q,
- 2. I is Yes-preserving, e.g. I is Yes-instance of P iff A(I) is Yes-instance of Q.

Definition 2.22 (NP-complete). A problem P is NP-complete, if

- 1. $P \in \mathbf{NP}$, and
- 2. for all $Q \in \mathbf{NP}$ it holds that $Q \propto P$.

We call the set of all **NP**-complete problems **NPC**.

Corollary 2.23. Using our new definition, it follows immediately from Theorem 2.19 that $SAT \in NPC$.

Proof Strategy. In order to show a problem P is **NP**-complete we first describe a way to construct a succinct certificate, and state an algorithm that describes how we use the certificate to verify a Yes-instance is indeed a Yes-instance.

After that, we find a suitable problem Q, which is known to be **NP**-complete, and try to proof $Q \propto P$. We do this by converting each instance of Q into an instance of P in polynomial time, and verify that the conversion is Yes-preserving.

Theorem 2.24. SAT is as hard as 0-1-IP

Proof. We know 0-1-IP \in **NP**, and therefore 0-1-IP \propto SAT. It remains to show SAT \propto 0-1-IP: Let $I \in$ SAT with clauses $c_j = l_1, ..., l_k$. We convert each clause to the inequality $l_1 + ... + l_k \geqslant 1$ for binary l. As shown in Theorem 1.3, this encodes exactly the logic formula.

Definition 2.25 (3SAT). We define 3SAT as a variant of SAT where we only allow clauses with exactly 3 literals, e.g. $|C_j| = 3$.

Theorem 2.26. $3SAT \in NPC$

Proof. 3SAT \in **NP** follows directly from SAT \in **NP**. It remains to show SAT \propto 3SAT. Consider clause $C_j = (l_1 \vee ... \vee l_k)$ for k > 3. Add k - 3 new variables $y_{2,j}, ..., y_{k-2,j}$ and replace C_j with

$$(l_1 \lor l_2 \lor y_{2,j}) \land (\overline{y}_{2,j} \lor l_3 \lor y_{3,j}) \land \dots \land (\overline{y}_{k-2,j} \lor l_{k-1} \lor l_k)$$

One can figure out via proof tables and induction that this is indeed Yes-preserving. \Box

Definition 2.27 (Node cover, NC). Given graph G = (N, E), we say $C \subseteq N$ is a **node cover** if for every edge in E at least one of the nodes is in N. We define NC as the decision problem if there is a node cover of at most size z.

Theorem 2.28. $NC \in NPC$

Proof. We can easily check if for a given C, it is indeed a node cover in polynomial time. Therefore $NC \in NPC$. We want to reduce from 3SAT:

Figure 2: Schema of how to use triangle "gadgets" for a single clause C_i

Consider an instance of 3SAT and construct a graph as shown in Figure 2, e.g. for each variable v_i construct an edge between nodes v_i and \overline{v}_i , and for each clause C_j construct a triangle l_{1j}, l_{2j}, l_{3j} . Now, connect each node of the triangle with the corresponding literal in the clause (the orange edges). Using this construction, we want to proove that there is a node cover of size n + 2m iff the 3SAT instance is valid.

Suppose the 3SAT instance is feasible. We use the n nodes of the feasible labeling corresponding to the literals. Now, because the labelling is valid, at least one orange edge per triangle must be covered, by construction. Therefore, we can choose 2 additional nodes per triangle that cover the triangle and the remaining orange edges.

On the other side, suppose there is a node cover of size (at most) n+2m. Analoguous, each triangle must have at least 2 chosen nodes to cover each edge, and each literal-pair at least 1 node, meaning our bounds must actually be exact to not overshoot n+2m. Therefore, the node cover represents a valid truth assignment, which is also a valid labelling, because each clause has a remaining orange edge, which is covered by one of the literals.

Therefore, our reduction is Yes-preserving.

Remark 2.29. NC in bipartite graphs is in P.

Definition 2.30 (Independent set, IS). For a graph G = (N, E) we call $S \subseteq N$ a **independent set** (or **stable set**) if no edge has both nodes in S. The decision problem, called IS, if there is a independent set of size at least z.

Theorem 2.31. $IS \in NPC$

Proof. IS \in NP trivial. We can also easily show that C is a node cover iff $N \setminus C$ is stable.

Theorem 2.32. CLIQUE $\in \mathbf{NPC}$

Proof. CLIQUE \in NP trivial. We can also easily show that C is a clique in G = (N, E) iff C is stable in (N, \overline{E}) .

Definition 2.33 (Partition, PART). Given $a_1, ..., a_n \in \mathbb{Z}^+$. The decision problem if there is a set $S \subseteq \{1, ..., n\}$ such that

$$\sum_{i \in S} a_i = \sum_{i \notin S} a_i$$

is called **partition problem**, PART.

Theorem 2.34. PART \in NPC

Proof Sketch. We can show [Vyg18, Ch. 15.5]:

 $\mathsf{SAT} \varpropto 3\text{-dim match} \varpropto \mathsf{subset} \ \mathsf{sum} \varpropto \mathsf{PART}$

Remark 2.35. Still, PART has a pseudopolynomial algorithm using dynamic programming.

Definition 2.36. If a (numerical) problem is only **NP**-complete if it depends on the size of the numbers (e.g. polynomial in the unary bit model), we call it **weakly NP-complete**. Otherwise, we call it **strongly NP-complete**.

Definition 2.37 (3-partition, 3PART). Given the numbers $a_1, ..., a_{3k} \in \mathbb{Z}$. The problem, if we can partition these numbers in sets of 3 such that every set has the same value, is called **3-Partition**, or 3PART.

Theorem 2.38. 3PART is strongly NP-complete.

Remark 2.39. Only weakly NP-complete problems could have pseudopolynomial algorithms (except P = NP).

Lecture 5 Di 03 May 2022 **Definition 2.40 (NP-hard).** Consider an optimization problem P. Formally, we can't have $P \in \mathbf{NP}$, but because of Theorem 2.6 we can introduce the notion to call P NP-hard, if its decision variant is NP-complete.

Definition 2.41 (co-NP). We say $P \in \text{co-NP}$, if we have a succinct certificate for verifying No-instances.

Example 2.42. Given a matrix A. We call it totally unimodular, if every square submatrix has determinant 0 or 1. Deciding if A is totally unimodular is in $\mathbf{co}-\mathbf{NP}$, because giving a failing submatrix as a succinct certificate is easy.

Theorem 2.43. The decision version of LP is in co-NP.

Proof. The answer to the decision problem is No iff

- 1. the system is infeasible, or
- 2. the system is feasible, but the optimal cost is larger than the z we want.

Because both can be decided with the tools we have in polynomial time, LP is indeed in co-NP.

Definition 2.44 (co-NP-complete). Analoguous to Definition 2.22, we can also define co-NP-completeness, or co-NPC, for the "most difficult" problem in co-NP.

Remark 2.45. It holds that $co-NPC \cap NPC = \emptyset$, except P = NP. See [Vyg18].

Open Question 2.46. Is P = NP?

3 Complexity differences between IP and LP

Some 0-1-IPs are easy, such as bipartite matching, or the assignment problem, even though $IP \in \mathbf{NPC}$. In the following section, we want to give intuition, why there are different complexities in IP.

3.1 Optimization vs. Separation

Recall (Ellipsoid Algorithm). As discussed in ADM1, the **ellipsoid method** can be used to determine feasibility of LPs in polynomial time. One could also call the ellipsoid method a fancy "n-dimensional binary search". A rough draft how the algorithm worked:

- 1. Reduce optimization version to decision version and introduce bound $L = mn \cdot \log(\max \text{ abs. data})$
- 2. Volume-based argument: If the LP is feasible, there is a solution within the centered cube with length 2^L .
- 3. Volume is zero: Perturb the problem to $Ax \leq b + 2^{-L}$, which maintains feasibility, but now has positive volume.

For details, refer to the slides from ADM1.

Definition 3.1. Given a polyhedron P with an associated cost function. We want to introduce two distinct problem types:

- The optimization problem OPT denotes the problem of finding an optimal $x^* \in P$.
- The **separation problem SEP** denotes the problem of deciding if $x \in P$, or else stating a separating hyperplane.

Remark 3.2. The key step of the ellipsoid method is to find a hyperplane that

separates the current x from the considered polyhedron. Especially, if $SEP \in \mathbf{P}$, then $OPT \in \mathbf{P}$. The converse can also be proven.

Definition 3.3. Let \mathcal{Q} be the class of full-dimensional polytopes with 0 inside. We define the **polar** \mathcal{Q}^* for $\mathcal{Q} \in \mathcal{Q}$ as

$$Q^* := \{ y \in \mathbb{R}^n \mid \forall x \in Q \colon y^T x \leqslant 1 \}.$$

Theorem 3.4. Considering this class of polytopes, one can proove [Vyg18, Ch. 4, Thm. 4.22]:

- 1. Q^* is also a full-dimensional polytope with 0.
- 2. $(Q^*)^* = Q$
- 3. v is a vertex of Q iff $v^T y \leq 1$ is a facet of Q^*

Theorem 3.5. Suppose we can solve OPT on $Q \in \mathbf{P}$ with algorithm A. Then we can use A as an oracle to solve SEP on Q^* in polynomial time.

Proof. Suppose $Q^* \in \mathcal{Q}^*$, and we want to separate y^0 . Use A to solve OPT on Q with objective function $\max(y^0)^T x$ to get $x^* \in Q$. This yields two cases:

- $(y^0)^T x^* \leq 1$: Then this holds for all $x \in Q$, and thus $y^0 \in Q^*$ by definition.
- $(y^0)^T x^* > 1$: Consider hyperplane $(x^*)^T y$. From $x^* \in Q$ it follows that for all $y \in Q^*$, that $(x^*)^T y \leq 1$, but $(x^*)^T y^0 > 1$. Thus, we found a separating hyperplane.

Theorem 3.6. SEP \in **P** for \mathcal{Q} iff OPT \in **P** for \mathcal{Q}

Proof. Using what we proven so far:

$$\begin{array}{ccc} \mathsf{OPT} \in \mathbf{P} \ \mathrm{for} \ \mathcal{Q} & \stackrel{3.5}{\Longrightarrow} \ \mathsf{SEP} \in \mathbf{P} \ \mathrm{for} \ \mathcal{Q}^* \\ \stackrel{\mathrm{Ellips.}}{\Longrightarrow} \mathsf{OPT} \in \mathbf{P} \ \mathrm{for} \ \mathcal{Q}^* & \stackrel{3.5}{\Longrightarrow} \ \mathsf{SEP} \in \mathbf{P} \ \mathrm{for} \ (\mathcal{Q}^*)^* = \mathcal{Q} \\ \stackrel{\mathrm{Ellips.}}{\Longrightarrow} \mathsf{OPT} \in \mathbf{P} \ \mathrm{for} \ \mathcal{Q} \end{array}$$

Conclusion 3.7. There is a close relationship between OPT and SEP:

Lecture 6 Do 05 May 2022

Theorem 3.8 (Minkowski). For a polyhedron P it holds $x \in P$ iff there exist vertices $v_1, ..., v_k$ and rays $r_1, ..., r_l$, such that

$$\sum_{i} \lambda v_{i} + \sum_{j} \mu_{j} r_{j} = x$$
$$\sum_{i} \lambda_{i} = 1$$
$$\lambda, \mu \geqslant 0.$$

Minkowski's Theorem is also known as Resolution Theorem.

Proof. See ADM1.

Definition 3.9. We have different variants of representing a polyhedron P:

- The **H-representation** (from "hyperplane") is given by $P = \{x \mid Ax \leq b\}$.
- The V-representation (from "vertex") is given by Theorem 3.8.

Conclusion 3.10. Depending on the representation we have, we have different ways to solve OPT and SEP:

	H-representation	V-representation
OPT	LP Simplex/Ellipsoid	Brute Force
SEP	Brute Force	LP (Exercise 4.1)

Example 3.11. Consider the *n*-cube $C^n := \{x \in \mathbb{R}^n \mid -1 \leq x_i \leq 1\}$. It has 2n facets, but 2^n vertices.

Now, consider the polar of C^n , which can be shown to be the *n*-octahedron O^n . Remember the intuition, that the polar exchanges vertices with facets. Indeed it holds that now, we have 2^n facets, but only 2n vertices.

Figure 4: 2-cube vs. 2-octahedron

Figure 5: 3-cube vs. 3-octahedron

Information. Polymake is a tool for converting programmatically between H-representation and V-representation.

3.2 Certificate construction

Question 3.12. Consider the problem of finding a solution x to a linear or integer system. How do we construct succinct certificates of feasibility and infeasibility?

In order to answer this question, we will have to look at different kinds of systems each on their own. For the following theorems, we will consider two different systems every time, and show that the solutions can be used as the certificate we seek for.

Theorem 3.13. Exactly one of the following systems is feasible:

$$Ax = b$$
 vs. $y^T A = 0$ $y^T b = 1$

In particular, the left system delivers a certificate of feasibility, whereas the right a certificate of infeasibility.

Proof. Suppose both are feasible. Then we have solutions y^0, x^0 , and can construct following contradiction:

$$Ax^{0} = b$$

$$\Leftrightarrow \underbrace{(y^{0})^{T} A}_{0} x^{0} = (y^{0})^{T} b = 1$$

It remains to prove at least one system is feasible. We can use **Gaussian Elimination** for that: Gaussian Elimination either yields a solution x^0 we can use as a succinct certificate for feasibility, or determine it is infeasible by yielding the row multiplier y^0 in order to generate $0^T x = 1$ as a succinct certificate of infeasibility.

Warning. Gaussian Elimination is *not* polynomial in its natural variant because of numbers generated during the algorithm. Nonetheless, if careful and using certain tricks, Gaussian Elimination is polynomial.

Remark 3.14. Theorems stating that exactly one of two systems have a solution are called **Theorem of the Alternative**.

Theorem 3.15 (Farkas' Lemma). Exactly one of the following systems is feasible:

$$Ax \le b$$
 vs. $y^T A = 0$
$$y^T b < 0$$

$$y \ge 0$$

In particular, the left system delivers a certificate of feasibility, whereas the right a certificate of infeasibility.

Proof. Suppose both are feasible. Analoguous to previous proof we can see the contradiction:

$$Ax^{0} \leq b$$

$$\Leftrightarrow \underbrace{(y^{0})^{T} A}_{0} x^{0} \leq (y^{0})^{T} b < 0$$

At least one system is feasible, which we can see by using the Ellipsoid Method to get a feasible x as a feasibility certificate for $Ax \leq b$. Otherwise, $Ax \leq b$ is infeasible. In that case we can use Phase 1 of the Simplex Method to generate $0^T x \leq z$ (for some $z \in \mathbb{Z}^-$) and use the extracted row multipliers y as an infeasibility certificate. Note that this y solves the right system.

Conclusion 3.16. We already knew from Theorem 2.15 and Theorem 2.43, that previous feasibility problems both lie in $\mathbf{NP} \cap \mathbf{co} - \mathbf{NP}$. Thus, we found that Gaussian Elimination is the suspected polynomial algorithm.

Definition 3.17 (Diophantine equations). An equation of the form Ax = b, for $x \in \mathbb{Z}^n$, is called **diophantine equation**.

Theorem 3.18. Exactly one of following systems is feasible:

$$Ax = b$$
 vs. $y^T A \in \mathbb{Z}^n$ $y^T b \notin \mathbb{Z}$

In particular, the left system delivers a certificate of feasibility, whereas the right a certificate of infeasibility.

Proof. Suppose both are feasible. Then

$$Ax^{0} = b$$

$$\Leftrightarrow \underbrace{(y^{0})^{T} A}_{\mathbb{Z}^{n}} \underbrace{x^{0}}_{\mathbb{Z}^{n}} = \underbrace{(y^{0})^{T} b}_{\notin \mathbb{Z}}$$

We can use the **Hermite Normal Form** algorithm to show that at least one system is feasible. Note that the Hermite Normal Form can be calculated in polynomial time. \Box

Problem. IP is defined as finding $x \in \mathbb{Z}^n$ for $Ax \leq b$. We have already shown that IP \in **NPC** (see Theorem 2.24), meaning that certificates cannot be calculated in polynomial time (unless P = NP).

Conclusion 3.19. Summing everything up, we can summarize our findings for calculation of feasibility certificates in following table:

	continuous	integer
=	Gaussian Elim./Phase 1	Hermite Normal Form
\leq	Linear Programming	not possible

The problem with integer inequality systems is its missing duality, e.g. there is no way of generating succinct certificates for verifying infeasibility, making it impossible to use the Theorem of the Alternative.

Remark 3.20. If we have an LP in standard form, we can also formulate a Theorem

of the Alternative using Farkas' Lemma:

$$Ax = b Ax \le b$$

$$x \ge 0 \iff -Ax \le -b$$

$$-x \le 0$$

3.15 VS.

$$(y^{1})^{T}A - (y^{2})^{T}A - (y^{3})^{T} = 0 \qquad y^{T}A \geqslant 0$$

$$(y^{1})^{T}b - (y^{2})^{T}b < 0 \iff y^{T}b < 0$$

$$y^{1}, y^{2}, y^{3} \geqslant 0 \qquad y \text{ free }$$

Note for the last equivalence that we used $y=y^1-y^2$ with $y^1,y^2\geqslant 0$, and interpreted y^3 as slack.

Theorem 3.21 (Gourdan's Theorem). Exactly one of following systems is feasible:

$$Ax < 0$$
 vs. $y^T A = 0$ $y \ge 0$ $y \ne 0$

Proof. Consider a feasible x such that $Ax^0 < 0$. Then we can scale and get x^0 such that $Ax \le -1$, and, again, using Theorem 3.15, yields our other system. Note that $y^T(-1) < 0$ is equivalent to $\sum y_i > 0$, implying with $y \ge 0$ that $y \ne 0$.

Note. We can also check that both systems cannot be feasible:

$$Ax^{0} < 0$$

$$\Leftrightarrow \underbrace{(y^{0})^{T} A}_{0} x^{0} < \underbrace{(y^{0})^{T} 0}_{0},$$

which is a contradiction.

3.3 Non-linearity in LP

Consider an LP with lower and upper bounds and its dual:

Note that we can write the dual constraint as

$$\lambda^T - \mu^T = c^T - y^T A,$$

allowing an interpretation of λ^T as the positive part of $c^T - y^T A$, and μ^T as the negative part. Reformulating thus yields

$$\max_{y,\lambda,\mu} b^T y + l^T (c^T - y^T A)^+ - u^T (c^T - y^T A)^-$$
s.t. y free

Note that now, the system doesn't seem to have any constraints left, but clearly this cannot be true. In fact, $c^T - y^T A$)⁺ and $c^T - y^T A$)⁻ are piecewise linear only! Therefore, in order to get a valid LP - this is exactly what the original formulation did.

As can be seen in the plot, the cost function is concave!

Lecture 7 Di 10 May 2022

Note that the function isn't smooth, but still we can define a notion for its gradient:

Definition 3.22. We call the set of possible "derivatives" in a point of a function the **subdifferential**.

Let's visualize using previous example. Let's also consider the implications for optimal solutions from complementary slackness:

Figure 6: Exemplary dual and primal cost function in jth component with subset of subdifferentials in red

- For $\lambda_j > 0$ follows that $c_j > (y^T A)_j$ ("expensive"), and by CS $x_j = l_j$.
- For $\mu_j > 0$ follows that $c_j < (y^T A)_j$ ("cheap"), and by CS $x_j = u_j$.
- For $c_j = (y^T A)_j$ ("neutral") follows by CS that $l_j \leq x_j \leq u_j$.

Definition 3.23 (Kilter diagram). We can visualize variable-constraint pairs of complementary slackness with a **Kilter diagram**.

Example 3.24. Again, using our system, we can draw the primal and dual Kilter diagram:

Fact 3.25 (Convex duality). If term j of the primal objective is $f_j(x_j)$ for convex f_j , then term j of the dual objective is $-f_j^{\bullet}(y_j)$, such that y_j is the dual of x_j . We're using f^{\bullet} as the **convex conjugate** of f, which has the property that $(f^{\bullet})^{\bullet} = f$.

Now, consider some piecewise linear convex function with slopes m_i and breakpoints b_i .

We can express values on this function with following LP:

$$\min_{x} \quad m_1 x_{j,1} + m_2 x_{j,2} + m_3 x_{j,3} + \dots$$
s.t.
$$0 \leqslant x_{j,i} \leqslant b_i - b_{i-1}, \quad i = 1, \dots,$$

$$x_j = x_{j,1} + x_{j,2} + x_{j,3}$$

Note that this forces the LP to use as much of $x_{j,i}$ as possible before moving to the next component.

Conclusion 3.26. Piecewise linear convex problems don't need IP.

Note. In fact, IP is only needed for non-convex/non-concave functions, see [Orl93, Ch. 14].

4 Approaches to IP

Even though IP is **NP**-complete, we still want to solve them as they model many real-world problems. For certain cases, though, we can use tricks to make calculation easier:

- 1. If the IP only has integer vertices for all b, we can just use LP.
- 2. If the IP only has integer vertices for a single useful b, we can at least use LP for this b, and might derive useful information anyway.
- 3. We could get a direct combinatorial algorithm that doesn't use LP, using OPT-SEP-duality.
- 4. For a fixed (small) dimension, we can solve IP in polynomial time.
- 5. If we are only interested in *good* solutions, we could use approximation algorithms and heuristics.

- 6. Alternatively, solve the relaxed LP and round to an IP solution.
- 7. We can relax "bad" constraints and variables.
- 8. Just use Cutting Planes.

4.1 Integer-optimal solutions in LP

Recall. In ADM1 we proved that there are combinatorial problems that can be solved using LP nonetheless, e.g. Max-Flow, Min-Cut, Bipartite Matching, Min-Cost-Flow etc.

Question 4.1. Why do exactly these problems have the property of integer vertices?

Given an optimal vertex solution $x^* = (x_B^*, 0) = (B^{-1}b, 0)$ with basis B to an LP. By Cramer's Rule, it holds for all $j \in B$, that

$$x_j^* = \underbrace{\det(B_1, B_2, ..., b_j, ..., B_n)}_{\text{det}(B)}.$$

Thus, if $|\det(B)| = 1$, then x^* is integer.

Definition 4.2 (Totally unimodular). A matrix A is **totally unimodular**, if for all square submatrices B of A it holds that $det(B) \in \{-1, 0, 1\}$.

Note. Obiviously, A itself must consist only of $\{-1,0,1\}$ entries in order to be totally unimodular.

Theorem 4.3. Given A is totally unimodular. Then all optimal vertices x^* are integer for all righthandside b's. Conversely, if all vertices of $\{x \mid Ax \leq b, x \geq 0\}$ are integer for all righthandside b, then A is totally unimodular.

Proof. See [Wol99, Thm 2.5 III 1.2].

Definition 4.4. Let G = (N, A) be a directed graph, T a spanning tree of G, and $S \subseteq A$. We construct a matrix $D \in \mathbb{R}^{|N-1|,|S|}$, such that every column corresponds to an arc $(u, v) \in S$, and every row to an arc in T. Consider the undirected (unique) path from u to v in T. We set in each column every entry to 1, where we used the arc as supposed, to -1, if we used the arc backwards, and 0 otherwise. Then D is called a **tree-path**, or **network matrix**.

Example 4.5. Given following graph:

Then a network matrix of this graph is given by

Theorem 4.6. Any network matrix M is totally unimodular.

Proof. Every submatrix of a network matrix M is again a network matrix (deleting a row contract the arc of T). Thus it suffices to show that every square network matrix M_s has $\det(M_s) \in \{-1,0,1\}$. We prove by induction over dimension d of M_s .

For d=1 this is clear. Thus, consider the statement true for some d. Let node l be a leaf of the spanning tree T, and consider row $l \to k$. Using a case distinction:

- 0 arcs in S hit l. Then row $l \to k$ is 0, and thus $\det(M_s) = 0$.
- Exactly 1 arc in S hits l. Then row $l \to k$ is a unit vector, and block decomposition yields

$$\det(M_s) = \det\begin{pmatrix} \frac{\pm 1 & 0 & \cdots & 0}{*} \\ \vdots & & M_s' \\ \vdots & & M_s' \end{pmatrix} = \pm \det(M_s')$$

• Otherwise, there are at least 2 arcs in S that hit l. Let $l \to i$ and $l \to j$ be two of them. Then we can subtract column $l \to i$ from $l \to j$ and zero out the first entry of $l \to j$. Additionally, the column now is the incidence vector of

 $i \to j$, by uniqueness of tree paths. As a consequence, our matrix is still a network matrix. Therefore, iteratively applying this step until a single 1 remains let us use previous case, noting that column subtraction only negates the determinant.

Corollary 4.7. A node-arc incidence matrix of a directed graph is totally unimodular.

Proof. Add root r and for every node i arcs $r \to i$. Because every column has form $[0, \ldots, -1, \ldots, -1, \ldots, 0]$, this corresponds to $i \to r \to j$.

Corollary 4.8. A node-edge incidence matrix of a bipartite graph is totally unimodular.

Proof. Add root r, for every $i \in L$ arcs $i \to r$, and for every $j \in R$ arcs $r \to j$. Note that columns refer to $i \to r \to j$

Remark 4.9. Not all node-edge incidence matrices are totally unimodular! For example

with det
$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = 2$$

Definition 4.10. A 0-1-matrix A has the **consecutive ones-property** if the 1's in each row do not have any 0's between them, i.e. 0001111100.

Corollary 4.11. A matrix A with consecutive ones-property is totally unimodular.

Proof. Suppose T is a line of connected nodes. For each row, construct an arc from the first 1 to the last 1. Then A is a network matrix for this graph.

4 APPROACHES TO IP

Note that there are totally unimodular matrices that aren't network matrices. Furthermore, it's also possible to combine totally unimodular matrices to get new ones.

Theorem 4.12. Let A_1, A_2 be two totally unimodular matrices. Then

$$\begin{pmatrix} A_1 & 0 \\ \hline 0 & A_2 \end{pmatrix}$$

is also totally unimodular.

Theorem 4.13 (Seymour). The set of totally unimodular matrices is fully defined by

- all network matrices,
- two additional 5×5 matrices, and
- three different composition operations, e.g. Theorem 4.12.

Conclusion 4.14. Network problems are the easiest IPs.

Definition 4.15. Given a graph G=(N,E) and cost vector $c \in \mathbb{R}^E$. Finding a spanning tree T such that c(T) is minimal is called **Minimal Spanning Tree** problem, short MST.

Lecture 8 Do 12 May 2022

Content lec08

Recall. In ADM1 we learned that we can use **Kruskal's algorithm** to find a MST in polynomial time. Kruskal sorted the edges and added edges in this order if it wouldn't create a cycle.

On the other hand, there is also an LP formulation:

$$\begin{aligned} \min_{x} \quad c^{T}x \\ \text{s.t.} \quad x(\gamma(K)) \leqslant |K| - 1, \quad K \subsetneq N, \\ x(E) &= n - 1, \\ x \geqslant 0 \end{aligned}$$

Tom doesn't like the LP formulation, though, because

- 1. "min" and "≤" just feel wrong,
- 2. rather than $x(\gamma(K))$, we should use $x(S) \leq ?$ for $S \subseteq E$.

We can circumvent this problems with following LP, for w = M - c, and some magic

function r:

$$\min_{W} \quad w^{T} x$$
s.t. $x(S) \le r(S), \quad S \subseteq E,$

$$x \ge 0$$

Let's have a closer look at r(S), and define it as the maximum number of edges we can choose in S without creating a cycle.

Let's also define cc(S) as the number of connected components in (N, S).

Theorem 4.16. For a graph
$$G = (N, E)$$
 it holds that $r(S) = n - cc(S)$.

Proof. Let $C_1, ..., C_k$ be node sets of connected components of (N, S), meaning cc(S) = k. Note that $\sum_i |C_i| = n$. Furthermore, we can choose at most $|C_i| - 1$ acyclic edges per component C_i by choosing any spanning tree. Thus,

$$r(S) = \text{maximum acyclic edges in } (N, S)$$

$$= \sum_{i} (\text{maximum acyclic edges in } C_i)$$

$$= \sum_{i} |C_i| - 1 = n - k = n - cc(S).$$

Example 4.17. Consider following graph:

Figure 7: A graph with S colored orange For the drawn S, it holds cc(S)=2, namely $\{1,2,3,4\}$ and $\{5\}$, and thus r(S)=1

We can construct the dual of our new LP:

5 - 2 = 3.

$$\begin{aligned} & \min_{y_S} & r(S)y_S \\ & \text{s.t.} & \sum_{S: e \in S} y_S \geqslant w_e, & \forall e \in E, \\ & u \geqslant 0 \end{aligned}$$

Warning. Our original LP had 2^n constraints, which means our dual has 2^n variables. Even the data r(S) cannot be written down in polynomial time!

This means we need to think about r(S) a little bit more. Consider a set R and edge $e \in E$ with $R \subseteq S \subseteq S + e$. The so-called **marginal cost** of adding e to R is $r(R + e) - r(R) \in \{0,1\}$. Same goes for S.

Definition 4.18. Let r(S) be a generic function defined on $S \subseteq M$ of some set M. If the marginal costs are non-decreasing for $R \subseteq S$, if we add the same edge, i.e.

$$r(S+e) - r(S) \leqslant r(R+e) - r(R),$$

then we call r submodular.

Theorem 4.19. Our acyclic-r(S) is submodular.

Proof. It suffices to show that r(S+e)-r(S)=1 and r(R+e)-r(R)=0 cannot happen. Note that the connected components of R are subsets of connected components of S. Thus, if we add an edge e that connects two connected components, it also connects two components of R. By Theorem 4.16, this is the only way r(S) increases by one, but also forces r(R) to increase.

There is also an equivalent definition of submodularity:

Theorem 4.20. A function $r: \mathcal{P}(M) \to \mathbb{R}$ is submodular iff for all $S, R \subseteq E$

$$r(S) + r(R) \ge r(S \cap R) + r(S \cup R).$$

Proof. See homework.

reference homework

Now let's try to derive Kruskal from our LP:

Theorem 4.21. Suppose x^*, y^* are optimal in their corresponding LP. Among the dual optimal solution let y^* be the one with $y^* = \sum_{S \subset E} (y_S)^2$ (notice the square!).

Then for $R, S \subseteq E$, if $y_R^*, y_S^* > 0$, it follows that either $R \subseteq S$ or $S \subseteq R$. We call this property **nested**.

Proof. Assume $y_R^*, y_S^* > 0$, but are not nested. Let $\varepsilon = \min(y_R^*, y_S^* 0) > 0$ and

$$y_Q' = \begin{cases} y_Q^* - \varepsilon, & \text{if } Q = R \lor Q = S, \\ y_Q^* + \varepsilon, & \text{if } Q = R \cup S \lor Q = R \cap S, \\ y_Q^*, & \text{otherwise.} \end{cases}$$

Then y' is still feasible, because the ε cancel out, since $R \cup S$ and $R \cap S$ must be new sets, and every edge is either in all four sets, no set, or exactly one of R, S and $R \cup S, R \cap S$ each. The choice of ε ensures $y' \ge 0$.

Now have a look how the objective function changes and consider the difference given by:

$$\varepsilon(\underbrace{r(R \cap S) + r(R \cup S) - r(R) - r(S)}_{\leqslant 0 \text{ by submodularity}})$$

We cannot get cheaper though, because we were already optimal. Therefore, y' is also an optimal dual solution, but

$$\sum_{S} (y_S')^2 < \sum_{S} (y_S^*)^2$$

is a contradiction! (One can check this by tedious calculations.)

Consider $\mathcal{J} := \{ S \subseteq E \mid y_S^* > 0 \}$, and build a chain

$$S_1 \subseteq ... \subseteq_m, |S_i| = i.$$

If this is not possible, add some $y_S^* = 0$ sets. Thus, using this S as a basis yields

which has continuous ones property (and thus being totally unimodular by Corollary 4.11), and is an upper triangular matrix, meaning the resulting equation system is easy to solve.

Lecture 9 Di 17 May 2022

Content lec09

4.2 Integer-optimal solutions in LP for some RHSs

$$x(S) = x(S') + x_{e_k} = x(S') + r(S_k) - r(S_{k-1})$$

$$\leq r(S') + r(S_k) - r(S_{k-1})$$

$$\leq r(S)$$

Note. Assume non-degenerate vertices of submodular polyhedron and their permutations. Then there are n! vertices.

Consider permutation. Then y_S^* is dual feasible, and $y_{S_i}^* = w_i - w_{i-1}$, and $y_{S_i}^* \geqslant 0$. Now, $\sum_{S:e \in S} y_S^* \geqslant w_e$. This shows for all $e \in E$: $\sum_{S:e \in S} y_S^* = w_e$.

Definition 4.22 (Matroid). Given a set $\mathcal{J} \subseteq \{S \subseteq E\}$. If also

- 1. $\emptyset \in \mathcal{J}$, 2. $S \in \mathcal{J}, R \subseteq S \Rightarrow R \in \mathcal{J}$, and 3. $R, S \in \mathcal{J}, |R| < |S| \Rightarrow \exists e \in S \backslash R : R + e \in \mathcal{J}$,

then \mathcal{J} is a matroid. If only properties (1) and (2) hold, we call it a independence system. Property (3) is also called extensibility.

Definition 4.23 (Matroid). Let $S \subseteq E$. If

$$r(S) = \max_{I \in \mathcal{J}, I \subseteq S} |I|$$

Also r(e) = 0

Theorem 4.24. For all matroids, r(S) is submodular.

Proof. It suffices to show $R \subseteq S \subseteq S + e$, or

$$\underbrace{r(S+e)-r(S)}_{0.1} \leqslant \underbrace{r(R+e)-r(R)}_{0.1}.$$

The only bad case is r(S+e)-r(S)=1 and r(R+e)-r(R)=0. Suppose r(R)=1 $|I_1|, I_1 \in \mathcal{J}, I_1 \subseteq R. \text{ Set } k = r(S) - r(R) \geqslant 0.$

From $R \subseteq S$ it follows from extensibility that (for $K \subseteq S \setminus R$) there is a $K \subseteq E$ with |K| = k such that

$$r(S) = r(R) + k = |I_1| + |K|, I_2 = I_1 \cup K, r(S) = |I_2|$$

Also, from r(S + e) > r(S) it follows from extensibility, that there is $f \in I_2$ such that $I_2 + f \in \mathcal{J}$. We see that f = e, otherwise it follows from $I_2 + f \subseteq S$ that $r(S) > |I_2|$, which is a contradiction.

Summarizing, we see $I_2 + e \in \mathcal{J}$. From property (2) follows that $I_1 + e \in \mathcal{J}$. Also $I_1 + e \subseteq R + e$, which implies $r(R + e) = r(R) + 1 = |I_1| + 1$. This contradicts our initial assumption!

Corollary 4.25. Greedy works for any matroid.

Theorem 4.26. If Greedy works for all w on an independence system, then it is a matroid.

Let (E, \mathcal{J}) be an independence system. Then extensibility states, that additionally all maximal independent subsets of S have the same size, and are thus maximum.

Example 4.27. Note the difference of *maximal* and *maximum*! Given following graph:

Then the yellow edges form only a maximal matching, while the orange edges a maximum (and maximal) matching.

Define

$$\rho(S) = \min\{|I| \mid I \subseteq S, I \in \mathcal{J}, I \text{ maximal}\}.$$

Especially, for matroids $\rho(S) = r(S)$.

We want to prove a stronger theorem, though:

Theorem 4.28. If we apply Greedy to an independence system (E, \mathcal{J}) , then it holds

$$\min_{S\subseteq E} \frac{\rho(S)}{r(S)} \leqslant \frac{\text{greedy obj. value}}{\text{optimal obj. value}} \leqslant 1$$

Additionally, the worst case is attainable.

Proof. Consider $w_{e_1} \ge ... \ge w_{e_n}$ and $S_i := \{e_1, ..., e_i\}$. Let $G \subseteq E$ be a greedy solution and $G_k := G \cap S_k$. Let $O \subseteq E$ be an optimal solution and $O_k := G \cap S_k$.

Consider two cases:

- $e_i \in G$: Then $|G_i| = |G_{i-1}| + 1$
- $e_i \notin G$: Then $|G| = |G_{i-1}|$

Therefore, the greedy objective value is

$$\sum_{i} (|G_{i}| - |G_{i-1}|) w_{e_{i}} = \sum_{i} |G_{i}| (w_{e_{i}} - w_{e_{i+1}})$$

$$\geqslant \sum_{i} \rho(S_{i}) (w_{e_{i}} - w_{e_{i+1}})$$

$$\geqslant q \sum_{i} r(S_{i}) (w_{e_{i}} - w_{e_{i+1}})$$

$$\geqslant q \sum_{i} |O_{i}| (w_{e_{i}} - w_{e_{i+1}})$$

$$= q \sum_{i} (|O_{i}| - |O_{i-1}|) w_{e_{i}}$$

$$= q \cdot \text{ optimal obj. value}$$

Suppose our q is attained at S,

$$q = \frac{\rho(S)}{r(S)}.$$

Therefore there are $I_1, I_2 \subseteq S$ with $I_1, I_2 \subseteq \mathcal{J}$ such that $r(S) = |I_2|$ and $\rho(S) = |I_1|$. Choose

$$w_e = \begin{cases} 1, & e \in S \\ 0, & e \notin S \end{cases}.$$

graphic

Greedy solution will be I_1 , and optimal solution is I_2 . Therfore $q = \frac{I_1}{I_2}$ as proposed.

Proof for Theorem 4.26. For matroids, q = 1. Otherwise, q < 1.

Corollary 4.29. Greedy is a 2-approximation for matching.

Example 4.30. Other matroids are given by:

- 1. Uniform: $\mathcal{J}=\{S\mid |S|\leqslant k\}$ 2. Partition: E is partitioned into $P_1,...,P_k$. Then $I\in\mathcal{J}$ iff for all $i,|I\cap P_i|\leqslant 1$. $G=(N,A),\ P_i=\delta^+(\{i\})$ $G=(S\cup T,E),\ P_i=\{\delta(\{i\})\},i\in S$

$$G = (N, A), P_i = \delta^+(\{i\})$$

$$G = (S \cup T, E), P_i = \{\delta(\{i\})\}, i \in S$$

Example 4.31. Independence systems, that are *not* matroids, are for example:

- 1. Bipartite matching
- 2. Branching: $G = (N, A), B \subseteq A$ branching if acyclic, for all $i, \delta^- \leq 1$

Lecture 10 Do 19 May 2022

Content lec10

Definition 4.32 (Polymatroid rank function). A function $r: 2^E \to \mathbb{R}_0^+$ that satisfies

- 1. $r(\emptyset) = 0$, 2. $R \subseteq S \subseteq E \Rightarrow r(R) \leqslant r(S)$, and 3. is submodular,

is called a polymatroid rank function.

Theorem 4.33. Let r(S) be max-flow value when we put for all $j \mid inS, u_{sj} = 0$. Then r is submodular.

Proof. See homework .

homework

Theorem 4.34. Greedy works for polymatroids.

Theorem 4.35. Consider max-flow/min-cut on network N = (s, t, E), and define r(S) for all $S \subseteq E$ as the capacity of s + S. Then this r is submodular.

Proof. Considering $S + s, T + s, S \cap T + s, S \cup T + s$, then every edge occurs on both sides, except the ones from S+s to $T\S$, which immediately leads to

$$r(S) + r(T) \geqslant r(S \cap T) + r(S \cup T).$$

Notice though that $r(\emptyset) > 0$ and not monotone.

Let's compare Greedy vs. Monotonicity. If r is monotone, then $x_{e_i} = r(S_i) - r(S_{i-1}) \ge 0$. But if we don't care for $x \ge 0$, then we can apply Greedy.

$$x \text{ free } \Longrightarrow \sum_{S:e \in S} y_S = w_e$$

Notice that "=" was "≥", but our previous proof showed that we get equality anyway for the dual constraint.

Remark 4.36. Submodular LPs are *not* totally unimodular. Consider e.g. following submatrix of a submodular LP:

$$\begin{array}{cccc}
e_1 & e_2 & e_3 \\
e_1e_2 & 1 & 1 & 0 \\
e_1e_3 & 1 & 0 & 1 \\
e_2e_3 & 0 & 1 & 1
\end{array}$$

Still, we get only integer solutions, meaning submodular RHS's are special

Definition 4.37. We call a polyhedron **integral** if $P = P_I$, with P_I being the integer hull of P. Equivalently, all vertices of P are integral.

Theorem 4.38. If for all c such that an optimum exist holds that

$$z := \max\{c^T x \mid x \in P\} \in \mathbb{Z},$$

then P is integral.

Proof. Let v be any vertex of P. We know there is c such that $z_c = c^T v \in \mathbb{Z}$, but by assumption for any index i also $z_{c_i} = (c + e_i)^T v \in \mathbb{Z}$. Therefore, $(c + e_i)^T v - c^T v = v_i \in \mathbb{Z}$, and in particular $v \in \mathbb{Z}^n$

Definition 4.39. We call a system $Ax \leq b$ totally dual integral if for all c with an optimum to $\{c^T x \mid x \in P\}$ the corresponding y^* is integral.

Corollary 4.40. If $Ax \leq b$ is totally dual integral, and $b \in \mathbb{Z}^m$, then P is integral.

Proof. Recall that our z is also the optimal objective value of the dual. We know for all c with an optimum, that $y^* \in \mathbb{Z}^m$ for $b^T y^* = z \in \mathbb{Z}$. By Theorem 4.38, all primary vertices are integral.

Theorem 4.41. $x(S) \leq r(S)$ is totally dual integral.

Proof. Greedy says

$$y_S^* = \begin{cases} w_i - w_{i+1}, & \text{if } S = S_i, \\ 0, & \text{else} \end{cases} \in \mathbb{Z}^{2^E}$$

Conclusion 4.42. Note the difference:

"Totally unimodular" corresponds to integral polyhedra for all integer-RHS.

"Totally dual integral" corresponds to integral polyhedra for special RHS.

Consider again intersections of matroids.

Theorem 4.43. For submodular r_1, r_2 , given the primal LP

$$\max_{x} \quad w^{T}x$$
s.t.
$$x(S) \leqslant r_{1}(S),$$

$$x(S) \leqslant r_{2}(S),$$

$$x \geqslant 0$$

with its dual

$$\min_{y^{1}, y^{2}} \quad r_{1}^{T} y^{1} + r_{2}^{T} y^{2}$$
 s.t.
$$\sum_{S: e \in S} y_{S}^{1} + y_{S}^{2} \geqslant w_{e},$$

$$x(S) \leqslant r_{2}(S),$$

$$y^{1}, y^{2} \geqslant 0.$$

Then the primal is totally dual integral.

\square roof.

Part II

Appendix

A Exercise sheets

1. exercise sheet

Exercise 1.1. Did on paper.

2. exercise sheet

Exercise 2.1. An correct ordering is given by:

$$O(\varepsilon^n) \subseteq O(n^{\varepsilon-1}) \subseteq O(n^{-\varepsilon}) \subseteq O\left(\frac{\log n}{n^{\varepsilon}}\right)$$
 (1)

$$\subseteq O\left(\frac{1}{\log n}\right) \subseteq O\left(\frac{\log^2 n}{\log n}\right) \subseteq O\left(\frac{1}{\log^2 n}\right)$$
 (2)

$$\subseteq O\left(e^{\frac{1}{n}}\right) = O\left(1\right) = O\left(\left(1 - \frac{1}{n}\right)^n\right)$$
 (3)

$$\subseteq \mathcal{O}\left(\log n\right) \subseteq \mathcal{O}\left(\frac{n^{\varepsilon}}{\log n}\right) \subseteq \mathcal{O}\left(n^{\varepsilon}\right) \subseteq \mathcal{O}\left(n^{\varepsilon}\log n\right) \subseteq \mathcal{O}\left(n^{1-\varepsilon}\right) \tag{4}$$

$$\subseteq \mathcal{O}\left(\frac{n}{\log n}\right) \subseteq \mathcal{O}\left(n\log n\right) \subseteq \mathcal{O}\left(n^2\log n\right) \subseteq \mathcal{O}\left(n^e\log n\right) \subseteq \mathcal{O}\left(n^e\log n\right)$$
 (5)

$$\subseteq O(n^{\log n}) \subseteq O(e^n) \subseteq O((\log n)^n) \subseteq O(n!)$$
 (6)

These can mostly achieved by the fact that $n^x \in O(n^y)$ if $x \leq y$, and $(\log n) \cdot n^x \in O(n^y)$ if y > x, otherwise the other way around. Additionally, it is often useful to consider the logarithm of the functions we compare, because it maintains monotonocity.

Exercise 2.2. Analoguous to the lecture we can introduce constraints, such that $y_{ij} = x_i \wedge x_j$:

$$y_{ij} \leq x_i$$

$$y_{ij} \leq x_j$$

$$y_{ij} \geq x_i + x_j - 1$$

$$y_{ij} \in [0, 1]$$

Exercise 2.3. We can show that $f(x_1) = \max(c_1x_1, c_1p + c_2x_1 - c_2p)$ using a case distinction.

- $x_1 = p$: Trivial.
- $x_1 > p$: Consider $c_1 < c_2$. Multiplying by $x_1 p$ (which is positive) and rearranging yields $c_1x_1 < c_1p + c_2x_1 c_2p$.
- $x_1 < p$: Analoguous, but now $x_1 p$ is negative, which reverses the inequality.

As shown in ADM1, the maximum of linear functions can be written as an LP by introducing a helper variable as follows:

min
$$z + \sum_{i=2}^{n} c_i x_i$$
s.t.
$$Ax = b$$

$$l \le x_1 \le u$$

$$x_2, ..., x_n \le 0$$

$$z \ge c_1 x_1$$

$$z \ge c_1 p + c_2 x_1 - c_2 p$$

3. exercise sheet

- **Exercise 3.1.** 1. We can show easily that SPATH $\in \mathbf{P}$ by using the fact from ADM1, that breadth-first search started from s finds a shortest path to t in polynomial time. Therefore, if the shortest path has length $k^* \leq k$, we can return true, and false otherwise.
 - 2. We first show LPATH \in NP: Suppose an instance of LPATH is true, then there is a path of at least length k. Therefore, we can simply use this path as a succinct certificate and verify in polynomial time that the path is indeed valid.

It remains to show that we can reduce a NP-complete problem to LPATH. It suffices to show UHAMPATH \propto LPATH: Suppose we have an instance ((V,E),s,t) of UHAMPATH. We can simply reduce it to the problem of finding a path of at least length |V|-1 starting in s and ending in t, because every such path is indeed a hamiltonian path, because every vertex needs to be visited exactly once. Therefore, if there is a hamiltonian path, it is already a path of at least length |V|-1. For the other direction, if there is a path of at least length |V|-1, then it must visit every node exactly once in order to be a valid path.

This shows that the reduction is Yes-preserving.

Exercise 3.2. If DOUBLESAT is true, then we can choose any two valid assignments as a succinct certificate and easily verify their correctness in polynomial time.

It remains to show SAT \propto DOUBLESAT: Starting from our SAT-instance, we can simply introduce two new variables a, b and a new clause $a \vee b$. This construction is Yes-preserving, because if the original instance is infeasible, the new instance still has no assignments. On the other hand, if there is a valid assignment in the original, then we now have at least 3 valid instances for different assignments of a and b.

Exercise 3.3. We notice that $a \vee b$ is equivalent to $\neg a \Longrightarrow b$, and $\neg b \Longrightarrow a$. By doing this for all clauses, we can construct a graph with the literals as vertices, and the implications as directed edges. Now, checking for each literal pair $l, \neg l$ if both can reach one another by a directed path suffices to show feasibility:

If previous condition holds true, then by logic it must hold that a feasible assignment satisfies $l \Leftrightarrow \neg l$, which is impossible. On the other hand, if this is never the case, then there must be a feasible solution:

We can construct this solution by iteratively setting either l or $\neg l$ to true, depending if $l \implies \neg l$ holds, and then also set every implied variable to true. If we would encounter a variable r which is already false, then $\neg r$ must be true, and therefore all further implications would need to be true by construction. Because $l \implies r$, also $\neg r \implies \neg l$, meaning that l would be already false - contradiction! Therefore, our construction always works.

4. exercise sheet

Exercise 4.1. We're given an instance $(v^1, ..., v^k, x^0)$ as described. Iff $x_0 \in P$, then $x_0 \in \text{conv}(v^1, ..., v^k)$. Thus there exist $\lambda_1, ..., \lambda_k$ such that

$$\sum_{i=1}^{k} \lambda_i v^i = x_0$$

$$\sum_{i=1}^{k} \lambda_i = 1,$$

$$\lambda \ge 0$$

which we can find by LP. Otherwise, the system is found infeasible, and we know there must exist c with $c^T x \ge c^T x^0$. We first show it suffices that this property holds for all vertices.

Suppose $c^T v^i \ge c^T x^0$. Let $x = \sum_i \lambda_i' v^i \in P$. Then

$$c^{T}x = \sum_{i} \lambda'_{i} c^{T} v^{i}$$
$$\geqslant \sum_{i} \lambda'_{i} c^{T} x^{0}$$
$$= c^{T} x^{0}.$$

Note that we used $\lambda' \geqslant 0$ and $\sum_i \lambda'_i = 1$ in the second and third step. Using

$$c^T v^i \geqslant c^t x^0 \Leftrightarrow (v^i - x^0)^T \cdot c \geqslant 0,$$

this means we can find c with following constraints via LP:

$$(v^i - x^0)^T \cdot c \ge 0, \quad i = 1, ..., k.$$

Exercise 4.2. Not done yet.

Exercise 4.3. Not done yet.

5. exercise sheet

Exercise 5.1. TBD

Exercise 5.2. Let r be submodular as defined, and let $A, B \subseteq E$ be sets. We prove by induction over $n := |B - A| \in \mathbb{N}$ that

$$r(A) + r(B) \geqslant r(A \cup B) + r(A \cap B). \tag{7}$$

Suppose n = 0. Then $A \cup B = A$ and $A \cap B = B$, implying equality of (7).

Now, consider (7) to be true for sets $A, B \subseteq E$ such that |B - A| = n. Suppose $A, B \subseteq E$ with |B - A| = n + 1 > 0, and let $e \in B - A$. Notice that $A \cap B \subseteq A \subseteq E$ with $e \notin A$. Therefore, by applying rearranged submodularity, we get

$$r((A+e) \cap B) - r(A+e) \geqslant r(A \cap B) - r(A). \tag{8}$$

Additionally, |B - (A + e)| = n by choice of e, enabling us to use the (rearranged) induction step (7):

$$r(B) \geqslant r((A+e) \cup B) + r((A+e) \cap B) - r(A+e)$$

Knowing
$$(A + e) \cup B = A \cup B$$
, and applying (7) yields

$$r(B) \geqslant r(A \cup B) + r(A \cap B) - r(A),$$
 which was to be shown.

Exercise 5.3. TBD

\mathbf{Index}

Big-M method, 5 righthandside, 6	Nested, 32 Network matrix, 27
upper bound, 6	Node cover, 13
big-O, 8	NP, 10
	co-NP, 16
Certificate, 10	coNP-complete, 16
certificate	hard, 16
succinct, 10	NP-complete, 12
Clique, 9	strongly, 15
Consecutive ones-property, 29	weakly, 15
Convex conjugate, 25	, , , , , , , , , , , , , , , , , , ,
Cramer's Rule, 27	objective function
,	piecewise linear, 7
Diophantine equation, 22	
	partition, 15
Ellipsoid method, 17	3-partition, 15
Extensibility, 34	Polar, 18
	polyhedron
Farkas' Lemma, 21, 23	H-representation, 19
	V-representation, 19
Gaussian Elimination, 21	Polymatroid rank function, 37
Gourdan's Theorem, 23	problem types
II	decision, 9
Hermite Normal Form, 22	optimization, 9, 17
Independence system, 34	reduction, 12
Independent set, 14	Yes-preserving, 12
Integer hull, 4	Resolution Theorem, 19
Integer Programming, 4	Trestation Theorem, 10
binary, 4	Satisfiability problem, 11
mixed, 4	satisfiability problem
pure, 4	3-satisfiability, 13
Integral, 38	separation problem, 17
<i>-</i>	Stable set, 14
Kilter diagram, 25	Subdifferential, 24
Kruskal's algorithm, 30	Submodular, 32
Marginal cost, 32	Theorem of the Alternative, 21
Matroid, 34	Totally dual integral, 38
Minimal Spanning Tree, 30	Totally unimodular, 27
Minkowski's Theorem, 19	Tree-path, 27

Literature

- [Orl93] Ravindra K. Ahuja; Thomas L. Magnanti; James B. Orlin. Network flows: theory, algorithms, and applications. Prentice Hall, 1993. ISBN: 0-13-617549-X. URL: https://tu-berlin.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TUB_ALMA_DS21506259970002884&context=L&vid=TUB&lang=de_DE&search_scope=TUB_ALL&adaptor=Local%20Search%20Engine&tab=tub_all&query=any,contains,network%20flows%20ahuja&offset=0.
- [Vyg18] Bernhard Korte; Jens Vygen. Kombinatorische Optimierung. 3rd ed. Springer, 2018. ISBN: 978-3-662-57690-8. URL: https://link.springer.com/book/10. 1007/978-3-662-57691-5.
- [Wol99] George Nemhauser; Laurence Wolsey. Integer and Combinatorial Optimization. Wiley, 1999. ISBN: 978-0-471-82819-8. URL: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118627372.