

Time Series

(ver. 1.5)

Oscar Torres-Reyna
Data Consultant
otorres@princeton.edu

DEI.

File Edit Data Tools 🚅 🔒 🗈 🖭 🗃 🛗 🔳 🖀 🗸 🙀 date1[4610] 🗿 Snapshots date1 date2 date3 date4 1-Jan-95 1/1/1995 19950101 199511 1/2/1995 19950102 199512 2-Jan-95 1/3/1995 199513 3-Jan-95 19950103 4-Jan-95 1/4/1995 19950104 199514 5-Jan-95 1/5/1995 19950105 199515 19950106 199516 6-Jan-95 1/6/1995 1/7/1995 19950107 199517 7-Jan-95 8-Jan-95 1/8/1995 19950108 199518 199519 9-Jan-95 1/9/1995 19950109 10-Jan-95 1/10/1995 19950110 1995110 11-Jan-95 1/11/1995 19950111 1995111 12-Jan-95 1/12/1995 19950112 1995112 13-Jan-95 1/13/1995 19950113 1995113 13 1995114 14-Jan-95 1/14/1995 19950114 15-Jan-95 1/15/1995 19950115 1995115 15 1995116 16-Jan-95 1/16/1995 19950116 17-Jan-95 1/17/1995 19950117 1995117 18-Jan-95 1/18/1995 19950118 1995118 19950119 1995119 19-Jan-95 1/19/1995 20-Jan-95 1/20/1995 19950120 1995120 21-Jan-95 1/21/1995 19950121 1995121 22-Jan-95 1/22/1995 19950122 1995122 23-Jan-95 1/23/1995 19950123 1995123 19950124 24-Jan-95 1/24/1995 1995124 25-Jan-95 1/25/1995 19950125 1995125 26 26-Jan-95 1/26/1995 19950126 1995126 27 27-Jan-95 1/27/1995 19950127 1995127 28-Jan-95 1/28/1995 19950128 1995128 28 29-Jan-95 1/29/1995 19950129 1995129 29 30 30-Jan-95 1/30/1995 19950130 1995130

If you have a format like 'date1' type

Date variable

```
----STATA 10.x/11.x:

gen datevar = date(date1, "DMY", 2012)

format datevar %td /*For daily data*/
----STATA 9.x:

gen datevar = date(date1, "dmy", 2012)

format datevar %td /*For daily data*/
```

If you have a format like 'date2' type

```
----STATA 10.x/11.x:

gen datevar = date(date2, "MDY", 2012)

format datevar %td /*For daily data*/
-----STATA 9.x:

gen datevar = date(date2, "mdy", 2012)

format datevar %td /*For daily data*/
```

If you have a format like 'date3' type

-----STATA 10.x/11.x:

```
tostring date3, gen(date3a)
gen datevar=date(date3a,"YMD")
format datevar %td    /*For daily data*/
-----STATA 9.x:
tostring date3, gen(date3a)
gen year=substr(date3a,1,4)
gen month=substr(date3a,5,2)
gen day=substr(date3a,7,2)
destring year month day, replace
gen datevar1 = mdy(month,day,year)
format datevar1 %td /*For daily data*/
```

If you have a format like 'date4' type

See http://www.princeton.edu/~otorres/Stata/

Date variable (cont.)

If the original date variable is **string** (i.e. color red):

```
gen week= weekly(stringvar, "wy")
gen month= monthly(stringvar, "my")
gen quarter= quarterly(stringvar, "qy")
gen half = halfyearly(stringvar, "hy")
gen year= yearly(stringvar, "y")

NOTE: Remember to format the date variable accordingly. After creating it type:
format datevar %t? /*Change 'datevar' with your date variable*/
Change "?" with the correct format: w (week), m (monthly), q (quarterly), h (half), y (yearly).
```

If the components of the original date are in different *numeric* variables (i.e. color black):

```
gen daily = mdy(month,day,year)
gen week = yw(year, week)
gen month = ym(year,month)
gen quarter = yq(year,quarter)
gen half = yh(year,half-year)
NOTE: Remember to format the date variable accordingly. After creating it type:
format datevar %t? /*Change 'datevar' with your date variable*/
Change "?" with the correct format: w (week), m (monthly), q (quarterly), h (half), y (yearly).
```

To extract days of the week (Monday, Tuesday, etc.) use the function dow()

```
gen dayofweek= dow(date)
```

Replace "date" with the date variable in your dataset. This will create the variable 'dayofweek' where 0 is 'Sunday', 1 is 'Monday', etc. (type help dow for more details)

To specify a range of dates (or integers in general) you can use the tin() and twithin() functions. tin() includes the first and last date, twithin() does not. Use the format of the date variable in your dataset.

```
/* Make sure to set your data as time series before using tin/twithin */
tsset date
regress y x1 x2 if tin(01jan1995,01jun1995)
regress y x1 x2 if twithin(01jan2000,01jan2001)
```

Date variable (example)

Time series data is data collected over time for a single or a group of variables. For this kind of data the first thing to do is to check the variable that contains the time or date range and make sure is the one you need: yearly, monthly, quarterly, daily, etc.

The next step is to verify it is in the correct format. In the example below the time variable is stored in "date" but it is a string variable not a date variable. In Stata you need to convert this string variable to a date variable.* A closer inspection of the variable, for the years 2000 the format changes, we need to create a new variable with a uniform format. Type the following:

use http://dss.princeton.edu/training/tsdata.dta

gen date1=substr(date, 1, 7)

gen datevar=quarterly(date1,"yq")

format datevar %tq

browse date date1 datevar

For more details type

help date

^{*}Data source: Stock & Watson's companion materials

From daily/monthly date variable to quarterly

use "http://dss.princeton.edu/training/date.dta", clear

*Quarterly date from daily date

gen datevar=date(date2,"MDY", 2012) /*Date2 is a string date variable*/

format datevar %td

gen quarterly = qofd(datevar)

format quarterly %tq

*Quarterly date from monthly date

gen month = month(datevar)

gen day=day(datevar)

gen year=year(datevar)

gen monthly = ym(year, month)

format monthly %tm

gen quarterly1 = qofd(dofm(monthly))

format quarterly1 %tq

	date2	datevar	quarterly	monthly	quarterly1
1	1/1/1995	01jan1995	1995q1	1995m1	1995q1
2	1/2/1995	02jan1995	1995q1	1995m1	1995q1
3	1/3/1995	03jan1995	1995q1	1995m1	1995q1
4	1/4/1995	04jan1995	1995q1	1995m1	1995q1
5	1/5/1995	05jan1995	1995q1	1995m1	1995q1
6	1/6/1995	06jan1995	1995q1	1995m1	1995q1
7	1/7/1995	07jan1995	1995q1	1995m1	1995q1
8	1/8/1995	08jan1995	1995q1	1995m1	1995q1
9	1/9/1995	09jan1995	1995q1	1995m1	1995q1
10	1/10/1995	10jan1995	1995q1	1995m1	1995q1
11	1/11/1995	11jan1995	1995q1	1995m1	1995q1
12	1/12/1995	12jan1995	1995q1	1995m1	1995q1
13	1/13/1995	13jan1995	1995q1	1995m1	1995q1

browse date2 datevar quarterly monthly quarterly1

From daily to weekly and getting yearly

use "http://dss.princeton.edu/training/date.dta", clear

gen datevar = date(date2, "MDY", 2012)
format datevar %td
gen year= year(datevar)
gen w = week(datevar)
gen weekly = yw(year,w)

format weekly %tw

browse

	date2	datevar	year	W	week1y
1	1/1/1995	01jan1995	1995	1	1995w1
2	1/2/1995	02jan1995	1995	1	1995w1
3	1/3/1995	03jan1995	1995	1	1995w1
4	1/4/1995	04jan1995	1995	1	1995w1
5	1/5/1995	05jan1995	1995	1	1995w1
6	1/6/1995	06jan1995	1995	1	1995w1
7	1/7/1995	07jan1995	1995	1	1995w1
8	1/8/1995	08jan1995	1995	2	1995w2
9	1/9/1995	09jan1995	1995	2	1995w2
10	1/10/1995	10jan1995	1995	2	1995w2
11	1/11/1995	11jan1995	1995	2	1995w2
12	1/12/1995	12jan1995	1995	2	1995w2
13	1/13/1995	13jan1995	1995	2	1995w2

* From daily to yearly
gen year1 = year(datevar)
* From quarterly to yearly
<pre>gen year2 = yofd(dofq(quarterly))</pre>
* From weekly to yearly
<pre>gen year3 = yofd(dofw(weekly))</pre>

	datevar	quarterly	week1y	year1	year2	year3
1	01jan1995	1995q1	1995w1	1995	1995	1995
2	02jan1995	1995q1	1995w1	1995	1995	1995
3	03jan1995	1995q1	1995w1	1995	1995	1995
4	04jan1995	1995q1	1995w1	1995	1995	1995
5	05jan1995	1995q1	1995w1	1995	1995	1995
6	06jan1995	1995q1	1995w1	1995	1995	1995
7	07jan1995	1995q1	1995w1	1995	1995	1995
8	08jan1995	1995q1	1995w2	1995	1995	1995
9	09jan1995	1995q1	1995w2	1995	1995	1995
10	10jan1995	1995q1	1995w2	1995	1995	1995
11	11jan1995	1995q1	1995w2	1995	1995	1995
12	12jan1995	1995q1	1995w2	1995	1995	1995
13	13jan1995	1995q1	1995w2	1995	1995	1995

Setting as time series: tsset

Once you have the date variable in a 'date format' you need to declare your data as time series in order to use the time series operators. In Stata type:

tsset datevar

. tsset datevar

time variable: datevar, 1957q1 to 2005q1

delta: 1 quarter

If you have **gaps** in your time series, for example there may not be data available for weekends. This complicates the analysis using lags for those missing dates. In this case you may want to create a continuous time trend as follows:

```
gen time = _n
```

Then use it to set the time series:

tsset time

In the case of *cross-sectional time series* type:

```
sort panel date
by panel: gen time = _n
xtset panel time
```

Filling gaps in time variables

Use the command tsfill to fill in the gap in the time series. You need to tset, tsset or xtset the data before using tsfill. In the example below:

tset quarters

tsfill

	quarters	unemp	срі	interest	gdp
1	2000q1	4	170	5.85	.55
2	2000q3	4	173	6.52	.134
3	2000q4	3.9	174	6.4	.631
4	2001q1	4.2	176	5.31	.284
5	2001q4	5.5	177	1.82	959
6	2002q1	5.7	178	1.73	0585
7	2002q2	5.8	180	1.75	.0205
8	2002q3	5.7	180	1.75	.651
9	2003q1	5.8	183	1.25	816
10	2003q3	6.1	184	1.01	.312
11	2003q4	5.9	185	.98	.628

	quarters	unemp	cpi	interest	gdp
1	2000q1	4	170	5.85	.55
2	2000q2				
3	2000q3	4	173	6.52	.134
4	2000q4	3.9	174	6.4	.631
5	2001q1	4.2	176	5.31	.284
6	2001q2				
7	2001q3				
8	2001q4	5.5	177	1.82	959
9	2002q1	5.7	178	1.73	0585
10	2002q2	5.8	180	1.75	.0205
11	2002q3	5.7	180	1.75	.651
12	2002q4				
13	2003q1	5.8	183	1.25	816
14	2003q2				
15	2003q3	6.1	184	1.01	.312
16	2003q4	5.9	185	.98	.628

Subsetting tin/twithin

With tsset (time series set) you can use two time series commands: tin ('times in', from a to b) and twithin ('times within', between a and b, it excludes a and b). If you have yearly data just include the years.

. list datevar unemp if tin(2000q1, 2000q4)

	datevar	unemp
173.	2000q1	4. 033333
174.	2000q2	3. 933333
175.	2000q3	4
176.	2000q4	3. 9

. list datevar unemp if twithin(2000q1, 2000q4)

	datevar	unemp
174.	2000q2	3. 933333
175.	2000q3	4

```
/* Make sure to set your data as time series before using tin/twithin */
tsset date
regress y x1 x2 if tin(01jan1995,01jun1995)
regress y x1 x2 if twithin(01jan2000,01jan2001)
```

Merge/Append

See

http://dss.princeton.edu/training/Merge101.pdf

Lag operators (lag)

Another set of time series commands are the lags, leads, differences and seasonal operators. It is common to analyzed the impact of previous values on current ones.

To generate values with past values use the "L" operator

```
generate unempL1=L1.unemp
generate unempL2=L2.unemp
list datevar unemp unempL1 unempL2 in 1/5
```

- . generate unempL1=L1.unemp
 (1 missing value generated)
- . generate unempL2=L2.unemp
 (2 missing values generated)
- . list datevar unemp L1 unempL2 in 1/5

	datevar	unemp	unempL1	unempL2
1. 2. 3. 4. 5.	1957q1 1957q2 1957q3 1957q4 1958q1	3. 933333 4. 1 4. 233333 4. 933333 6. 3	3. 933333 4. 1 4. 233333 4. 933333	3. 933333 4. 1 4. 233333

In a regression you could type:

regress
$$y \times L1.x L2.x$$

regress $y \times L(1/5).x$

or

Lag operators (forward)

To generate forward or lead values use the "F" operator

```
generate unempF1=F1.unemp
generate unempF2=F2.unemp
list datevar unemp unempF1 unempF2 in 1/5
```

- . generate unempF1=F1.unemp
 (1 missing value generated)
- . generate unempF2=F2. unemp(2 missing values generated)
- . list datevar unemp unempF1 unempF2 in 1/5

	datevar	unemp	unempF1	unempF2
1. 2. 3. 4.	1957q1 1957q2 1957q3 1957q4	3. 933333 4. 1 4. 233333 4. 933333	4. 1 4. 233333 4. 933333 6. 3	4. 233333 4. 933333 6. 3 7. 366667
5.	1958q1	6. 3	7. 366667	7. 333333

In a regression you could type:

regress $y \times F1.x F2.x$ regress $y \times F(1/5).x$

Lag operators (difference)

To generate the difference between current a previous values use the "D" operator

```
generate unempD1=D1.unemp /* D1 = y_t - y_{t-1} */ generate unempD2=D2.unemp /* D2 = (y_t - y_{t-1}) - (y_{t-1} - y_{t-2}) */ list datevar unemp unempD1 unempD2 in 1/5
```

- . generate unempD1=D1.unemp
 (1 missing value generated)
- . generate unempD2=D2.unemp
 (2 missing values generated)
- . list datevar unemp unempD1 unempD2 in 1/5

datevar	unemp	unempD1	unempD2
1957q1	3. 933333	166666	•
$1957\overline{q}3$	4. 233333	. 1333332	0333333
1957q4 1958q1	4. 933333 6. 3	. 7000003 1. 366667	. 5666671 . 6666665
	1957q1 1957q2 1957q3 1957q4	1957q1 3. 933333 1957q2 4. 1 1957q3 4. 233333 1957q4 4. 933333	1957q1 3. 933333

In a regression you could type:

regress y x D1.x

Lag operators (seasonal)

To generate seasonal differences use the "S" operator

```
generate unempS1=S1.unemp /* S1 = y_t - y_{t-1} */ generate unempS2=S2.unemp /* S2 = (y_t - y_{t-2}) */ list datevar unemp unempS1 unempS2 in 1/5
```

- . generate unempS1=S1. unemp (1 missing value generated)
- . generate unempS2=S2. unemp
 (2 missing values generated)
- . list datevar unemp unempS1 unempS2 in 1/5

	datevar	unemp	unempS1	unempS2
1.	1957q1	3. 933333		•
2.	1957q2	4. 1	. 1666665	
3.	1957q3	4. 233333	. 1333332	. 2999997
4.	1957q4	4. 933333	. 7000003	. 8333335
5.	1958q1	6. 3	1. 366667	2. 066667

In a regression you could type:

regress $y \times S1.x$

Correlograms: autocorrelation

To explore autocorrelation, which is the correlation between a variable and its previous values, use the command corrgram. The number of lags depend on theory, AIC/BIC process or experience. The output includes autocorrelation coefficient and partial correlations coefficients used to specify an ARIMA model.

corrgram unemp, lags(12)

. corrgram unemp, lags(12)

LAG	AC PAC	Q	Prob>Q -1 Prob>Q [Autoco	0 1-1 orrelation] [Par	0 1 tial Autocor]
2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 0. 10 0. 11 0.	9641 0. 9650 8921 -0. 6305 8045 0. 1091 7184 0. 0424 6473 0. 0836 5892 -0. 0989 5356 -0. 0384 4827 0. 0744 4385 0. 1879 3984 -0. 1832 3594 -0. 1396 3219 0. 0745	182. 2 339. 02 467. 21 569. 99 653. 86 723. 72 781. 77 829. 17 868. 5 901. 14 927. 85 949. 4	0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000		
AC shows that the correlation between the current value of unemp and its value three quarters ago is 0.8045. AC can be use to define the q in MA(q) only in stationary series	PAC shows that the correlation between current value of une its value three quarte is 0.1091 without the of the two previous I. PAC can be used to d the p in AR(p) only in stationary series	the the mp and coners ago eque effect sign ags. as efine value rej	ex-Pierce' Q statistic tests e null hypothesis that all rrelation up to lag k are ual to 0. This series show mificant autocorrelation shown in the Prob>Q lue which at any k are less an 0.05, therefore jecting the null that all lags e not autocorrelated.	Graphic view of AC which shows a slow decay in the trend, suggesting non- stationarity. See also the ac command.	Graphic view of PAC which does not show spikes after the second lag which suggests that all other lags are mirrors of the second lag. See the pac command.

Correlograms: cross correlation

The explore the relationship between two time series use the command xcorr. The graph below shows the correlation between GDP quarterly growth rate and unemployment. When using xcorr list the independent variable first and the dependent variable second. type

xcorr gdp unemp, lags(10) xlabel(-10(1)10,grid)

. xcorr gdp unemp, lags(10) table

LAG	CORR	-1 0 1 [Cross-correlation]
- 10	- 0. 1080	1
- 9	- 0. 1052	
- 8	- 0. 1075	
- 7	- 0. 1144	
- 6	- 0. 1283	<u> </u>
- 5	-0.1412	_
- 4	- 0. 1501	_
- 3	- 0. 1578	_
- 2	- 0. 1425	_
- 1	- 0. 1437	_
0	- 0. 1853	_
1	- 0. 1828	
$\overline{2}$	- 0. 1685	
1 2 3 4 5 6	- 0. 1177	
4	- 0. 0716	
5	- 0. 0325	
6	- 0. 0111	
7	- 0. 0038	
7 8	0. 0168	
9	0. 0393	
10	0. 0419	

At lag 0 there is a negative immediate correlation between GDP growth rate and unemployment. This means that a drop in GDP causes an immediate increase in unemployment.

Correlograms: cross correlation

xcorr interest unemp, lags(10) xlabel(-10(1)10,grid)

Interest rates have a positive effect on future level of unemployment, reaching the highest point at lag 8 (four quarters or two years). In this case, interest rates are positive correlated with unemployment rates eight quarters later.

xcorr interest unemp, lags(10) table

LAG	CORR	-1 0 1 [Cross-correlation]
- 10	0. 3297	
- 9	0. 3150	
- 8	0. 2997	
- 7	0. 2846	
- 6	0. 2685	
- 5	0. 2585	
- 4	0. 2496	
- 3	0. 2349	
- 2	0. 2323	
- 1	0. 2373	
0	0. 2575	
1	0. 3095	
2	0. 3845	
1 2 3 4 5	0. 4576	
4	0. 5273	
	0. 5850	
6	0. 6278	
7	0. 6548	
7 8	0.6663	
9	0. 6522	
10	0. 6237	

Lag selection

Too many lags could increase the error in the forecasts, too few could leave out relevant information*. Experience, knowledge and theory are usually the best way to determine the number of lags needed. There are, however, information criterion procedures to help come up with a proper number. Three commonly used are: Schwarz's Bayesian information criterion (SBIC), the Akaike's information criterion (AIC), and the Hannan and Quinn information criterion (HQIC). All these are reported by the command 'varsoc' in Stata.

. varsoc gdp cpi, maxlag(10)

Selection-order criteria Sample: 1959q4 - 2005q1

Number	of	obs	=	182

l ag	LL	LR	df	р	FPE	AI C	HQI C	SBI C
0 1 2 3 4 5 6 7 8	- 1294. 75 - 467. 289 - 401. 381 - 396. 232 - 385. 514 - 383. 92 - 381. 135 - 379. 062 - 375. 483 - 370. 817	1654. 9 131. 82 10. 299 21. 435* 3. 1886 5. 5701 4. 1456 7. 1585 9. 3311	4 4 4 4 4 4 4	0. 000 0. 000 0. 036 0. 000 0. 527 0. 234 0. 387 0. 128 0. 053	5293. 32 . 622031 . 315041 . 311102 . 288988* . 296769 . 300816 . 307335 . 308865 . 306748	14. 25 5. 20098 4. 52067 4. 50804	14. 2642 5. 2438 4. 59204 4. 60796 4. 56268* 4. 61769 4. 65956 4. 70929 4. 74246 4. 76369	14. 2852 5. 30661 4. 69672* 4. 75451 4. 7511 4. 84796 4. 93173 5. 02332 5. 09836 5. 16147
10	- 370. 585	. 46392	4	0. 977	. 319888	4. 53391	4. 83364	5. 27329

Endogenous: gdp cpi Exogenous: _cons

When all three agree, the selection is clear, but what happens when getting conflicting results? A paper from the CEPR suggests, in the context of VAR models, that AIC tends to be more accurate with monthly data, HQIC works better for quarterly data on samples over 120 and SBIC works fine with any sample size for quarterly data (on VEC models)**. In our example above we have quarterly data with 182 observations, HQIC suggest a lag of 4 (which is also suggested by AIC).

^{*} See Stock & Watson for more details and on how to estimate BIC and SIC

^{**} Ivanov, V. and Kilian, L. 2001. 'A Practitioner's Guide to Lag-Order Selection for Vector Autoregressions'. CEPR Discussion Paper no. 2685. London, Centre for Economic Policy Research. http://www.cepr.org/pubs/dps/DP2685.asp.

Having a unit root in a series mean that there is more than one trend in the series.

. regress unemp gdp if tin(1965q1, 1981q4)

Source	SS	df		MS		Number of obs	
Model Resi dual	36. 1635247 124. 728158	1 66		1635247 8982058		R-squared	= 0.0000 = 0.2248
Total	160. 891683	67	2. 4	4013684		Root MSE	= 1.3747
unemp	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
gdp _cons	4435909 7. 087789	. 1014 . 3672		-4. 37 19. 30	0. 000 0. 000	6460517 6. 354572	2411302 7. 821007

. regress unemp gdp if tin(1982q1, 2000q4)

Source	SS	df	MS		Number of obs F(1, 74)	
Model Resi dual	8. 83437339 180. 395848		8. 83437339 2. 43778172		F(1, 74) Prob > F R-squared Adj R-squared	= 0.0608 = 0.0467
Total	189. 230221	75	2. 52306961		Root MSE	= 1.5613
unemp	Coef.	Std. E	Err. t	P> t	[95% Conf.	Interval]
gdp _cons	. 3306551 5. 997169	. 1736 . 23635		0. 061 0. 000	0154377 5. 526211	. 6767479 6. 468126

Unit roots

Unemployment rate.

line unemp datevar

Unit root test

The Dickey-Fuller test is one of the most commonly use tests for stationarity. The null hypothesis is that the series has a unit root. The test statistic shows that the unemployment series have a unit root, it lies within the acceptance region.

One way to deal with stochastic trends (unit root) is by taking the first difference of the variable (second test below).

. dfuller unemp, lag(5)

Number of obs Augmented Dickey-Fuller test for unit root 187 — Interpolated Dickey-Fuller — 10% Critical Test 1% Critical 5% Critical Unit root Statistic Val ue Val ue Val ue - 2. 597 - 3, 481 $\mathbf{Z}(\mathbf{t})$ - 2. 884 - 2. 574

MacKinnon approximate p-value for Z(t) = 0.0936

. dfuller unempD1, lag(5)

Augmented Dickey-Fuller test for unit root Number of obs = 186

		———— Interpolated Dickey-Fuller ————			
No unit root	Test	1% Critical	5% Critical	10% Critical	
140 driit 100t	Statistic	Statistic Value		Val ue	
	- 5. 303	-3.481	- 2. 884	- 2. 574	
$\mathbf{Z}(\mathbf{c})$	3. 303	- 3. 401	- 2. 004	- 2. 374	

MacKi nnon approximate p-value for Z(t) = 0.0000

Testing for cointegration

Cointegration refers to the fact that two or more series share an stochastic trend (Stock & Watson). Engle and Granger (1987) suggested a two step process to test for cointegration (an OLS regression and a unit root test), the EG-ADF test.

regress unemp gdp	Run an OLS regression
predict e, resid	Get the residuals
dfuller e, lags(10)	Run a unit root test on the residuals.

Augmented I	ickey-Fuller test	for unit root	Number of obs	= 181
	_		erpolated Dickey-Ful	
Unit root*	Test Statistic	1% Critical Value	5% Critical Value	10% Critical Value
 				
Z (t)	- 2. 535	- 3. 483	- 2. 885	- 2. 575

MacKinnon approximate p-value for Z(t) = 0.1071

Both variables are not cointegrated

See Stock & Watson for a table of critical values for the unit root test and the theory behind.

Granger causality: using OLS

If you regress 'y' on lagged values of 'y' and 'x' and the coefficients of the lag of 'x' are statistically significantly different from 0, then you can argue that 'x' Granger-cause 'y', this is, 'x' can be used to predict 'y' (see Stock & Watson -2007-, Green -2008).

1

. regress unemp L(1/4). unemp L(1/4). gdp

Source	SS	df	MS
Model Resi dual	373. 501653 12. 5037411	8 179	46. 6877066 . 069853302
Total	386. 005394	187	2. 06419997

Number of obs	=	188
F(8, 179)	=	668. 37
Prob > F	=	0.0000
R-squared	=	0.9676
Adj R-squared	=	0.9662
Root MSE	=	. 2643

unemp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
unemp						
L1.	1. 625708	. 0763035	21. 31	0.000	1. 475138	1. 776279
L2.	7695503	. 1445769	- 5. 32	0.000	- 1. 054845	484256
L3.	. 0868131	. 1417562	0.61	0. 541	1929152	. 3665415
L4.	. 0217041	. 0726137	0.30	0. 765	1215849	. 1649931
gdp						
L1.	. 0060996	. 0136043	0. 45	0.654	0207458	. 0329451
L2.	0189398	. 0128618	- 1. 47	0. 143	0443201	. 0064405
L3.	. 0247494	. 0130617	1.89	0.060	0010253	. 0505241
L4.	. 003637	. 0129079	0. 28	0. 778	0218343	. 0291083
_cons	. 1702419	. 096857	1. 76	0. 081	0208865	. 3613704

2

. test L1. gdp L2. gdp L3. gdp L4. gdp

- (1) L. gdp = 0
- (2) L2. gdp = 0
- (3) L3. gdp = 0
- (4) L4. gdp = 0

$$F($$
 4, 179) = 1.67
 $Prob > F =$ 0.1601

You cannot reject the null hypothesis that all coefficients of lag of 'x' are equal to 0. Therefore 'gdp' does not Granger-cause 'unemp'.

Granger causality: using VAR

The following procedure uses VAR models to estimate Granger causality using the command 'vargranger'

- 1
- . quietly var unemp gdp, lags(1/4)
- 2 . vargranger

Granger causality Wald tests

Equati on	Excl uded	chi 2	df Prob > chi 2
unemp unemp	gdp ALL	6. 9953 6. 9953	4 4 0. 136 4 0. 136
gdp gdp	unemp ALL	6. 8658 6. 8658	4 0. 143 4 0. 143

The null hypothesis is 'var1 does not Granger-cause var2'. In both cases, we cannot reject the null that each variable does not Granger-cause the other

Chow test (testing for known breaks)

The Chow test allows to test whether a particular date causes a break in the regression coefficients. It is named after Gregory Chow (1960)*.

Step 1. Create a dummy variable where 1 if date > break date and 0 <= break date. Below we'll test whether the first quarter of 1982 causes a break in the regression coefficients.

Step 2. Create interaction terms between the lags of the independent variables and the lag of the dependent variables. We will assume lag 1 for this example (the number of lags depends on your theory/data)

```
generate break_unemp = break*11.unemp
generate break_gdp = break*11.gdp
```

Step 3. Run a regression between the outcome variables (in this case 'unemp') and the independent along with the interactions and the dummy for the break.

```
reg unemp 11.unemp 11.gdp break break_unemp break_gdp
```

Step 4. Run an F-test on the coefficients for the interactions and the dummy for the break

```
test break break_unemp break_gdp
```

. test break break_unemp break_gdp

- (1) break = 0
- (2) break_unemp = 0
- (3) break_gdp = 0

$$F(3, 185) = 1.14$$

 $Prob > F = 0.3351$

The null hypothesis is no break. If the p-value is < 0.05 reject the null in favor of the alternative that there is a break. In this example, we fail to reject the null and conclude that the first quarter of 1982 does not cause a break in the regression coefficients.

Testing for unknown breaks

The Quandt likelihood ratio (QLR test –Quandt,1960) or sup-Wald statistic is a modified version of the Chow test used to identify break dates. The following is a modified procedure taken from Stock & Watson's companion materials to their book *Introduction to Econometrics*, I strongly advise to read the corresponding chapter to better understand the procedure and to check the critical values for the QLR statistic. Below we will check for breaks in a GDP per-capita series (quarterly).

```
/* Replace the words in bold with your own variables, do not change anything else*/
/* The log file 'qlrtest.log' will have the list for QLR statistics (use Word to read it)*/
/* See next page for a graph*/
/* STEP 1. Copy-and-paste-run the code below to a do-file, double-check the quotes (re-type them if necessary)*/
log using glrtest.log
tset datevar
sum datevar
local time=r(max)-r(min)+1
local i = round(`time'*.15)
local f = round(`time'*.85)
local var = "gdp"
gen diff`var' = d.`var'
gen chow`var' = .
gen glr`var' = .
set more off
while `i'<=(`f') {
   gen di = (n > i')
   cap gen d_`var'1 = di*l1.`var'
   cap gen d `var'2 = di*12.`var'
   cap gen d `var'3 = di*13.`var'
   cap gen d `var'4 = di*14. `var'
   qui req diff`var' L(1/4).diff`var' di, r
   qui test di
   sca chow = r(F)
   cap replace chow`var' = r(F) in `i'
   qui req diff`var' L(1/4).diff`var' di d `var'1 d `var'2 d `var'3 d `var'4, r
   qui test di d_`var'1 d_`var'2 d_`var'3 d_`var'4
   sca qlr = r(F)
   cap replace qlr`var' = r(F) in `i'
   drop di d `var'1 d `var'2 d `var'3 d `var'4
   local i = `i' + 1
```

Testing for unknown breaks: graph

```
/* Replace the words in bold with your own variables, do not change anything else*/
/* The code will produce the graph shown in the next page*/
/* The critical value 3.66 is for q=5 (constant and four lags) and 5% significance*/
/* STEP 2. Copy-and-paste-run the code below to a do-file, double-check the quotes (re-type them if necessary)*/
sum glr`var'
local maxvalue=r(max)
gen maxdate=datevar if qlr`var'==`maxvalue'
local maxvalue1=round(`maxvalue',0.01)
                    /*Replace with the appropriate critical value (see Stock & Watson)*/
local critical=3.66
sum datevar
local mindate=r(min)
sum maxdate
local maxdate=r(max)
gen break=datevar if qlr`var'>=`critical' & qlr`var'!=.
dis "Below are the break dates..."
list datevar glr`var' if break!=.
levelsof break, local(break1)
twoway tsline qlr`var', title(Testing for breaks in GDP per-capita (1957-2005)) ///
   xlabel(`break1', angle(90) labsize(0.9) alternate) ///
   yline(`critical') ytitle(QLR statistic) xtitle(Time) ///
   ttext(`critical' `mindate' "Critical value 5% (`critical')", placement(ne)) ///
   ttext(`maxvalue' `maxdate' "Max QLR = `maxvalue1'", placement(e))
```

	Γ	
	datevar	ql rgdp
129.	1989q1	3. 823702
131.	1989q3	6. 285852
132.	1989q4	6. 902882
133.	1990q1	5. 416068
134.	1990q2	7. 769114
135.	1990q3	8. 354294
136 .	1990q4	5. 399252
137 .	1991q1	8. 524492
138.	1991q2	6. 007093
139.	$1991q^{2}3$	4. 44151
1.40	1001 4	4 040000
140.	1991q4	4. 946689
141.	1992q1	3. 699911
160 .	1996q4	3. 899656
161.	$1997\hat{\mathbf{q}}1$	3. 906271

Testing for unknown breaks: graph (cont.)

Time Series: white noise

White noise refers to the fact that a variable does not have autocorrelation. In Stata use the wntestq (white noise Q test) to check for autocorrelation. The null is that there is no serial correlation (type help wntestq for more details):

. wntestq unemp

If your variable is not white noise then see the page on correlograms to see the order of the autocorrelation.

Time Series: Testing for serial correlation

Breush-Godfrey and Durbin-Watson are used to test for serial correlation. The null in both tests is that there is no serial correlation (type help estat dwatson, help estat dubinalt and help estat bgodfrey for more details).

. regress unempd gdp

Source	SS	df	MS
Model Resi dual	. 205043471 24. 0656991	1 190	. 205043471 . 126661574
Total	24. 2707425	191	. 12707195

Number of obs	=	192
F(1, 190)	=	1.62
Prob > F	=	0. 2048
R-squared	=	0.0084
Adj R-squared	=	0.0032
Root MSE	=	. 3559

unempd1	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
gdp	015947	. 0125337	- 1. 27	0. 205	0406701	. 0087761
_cons	. 0401123	. 036596	1. 10	0. 274	0320743	. 1122989

estat dwatson

Durbin-Watson d-statistic (2, 192) = .7562744

estat durbinalt

Durbin's alternative test for autocorrelation

lags(p)	chi 2	df	Prob > chi 2
1	118. 790	1	0. 0000

HO: no serial correlation

estat bgodfrey

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi 2	df	Prob > chi 2
1	74. 102	1	0. 0000

HO: no serial correlation

Serial correlation

Time Series: Correcting for serial correlation

Run a Cochrane-Orcutt regression using the prais command (type help prais for more details)

. prais unemp gdp, corc

Iteration 0: rho = 0.0000 Iteration 1: rho = 0.9556 Iteration 2: rho = 0.9660 Iteration 3: rho = 0.9661 Iteration 4: rho = 0.9661

Cochrane-Orcutt AR(1) regression -- iterated estimates

_	Source	SS	df	MS	Number of obs = F(1, 189) =	191 2. 48
	Model Resi dual	. 308369041 23. 4694088		. 308369041 . 124176766	$\begin{array}{cccc} \operatorname{Prob} > F & = 0. \\ \operatorname{R-squared} & = 0. \end{array}$	1167 0130
_	Total	23. 7777778	190	. 125146199	Adj R-squared = 0. Root MSE = .3	

unemp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
gdp _cons	020264 6. 105931	. 0128591 . 7526023	- 1. 58 8. 11	0. 117 0. 000	0456298 4. 621351	. 0051018 7. 590511
rho	. 966115					

Durbin-Watson statistic (original) 0.087210 Durbin-Watson statistic (transformed) 0.758116

Useful links / Recommended books

- DSS Online Training Section http://dss.princeton.edu/training/
- UCLA Resources to learn and use STATA http://www.ats.ucla.edu/stat/stata/
- DSS help-sheets for STATA http://dss/online-help/stats-packages/stata/stata.htm
- Introduction to Stata (PDF), Christopher F. Baum, Boston College, USA. "A 67-page description of Stata, its key features and benefits, and other useful information." http://fmwww.bc.edu/GStat/docs/StataIntro.pdf
- STATA FAQ website http://stata.com/support/faqs/
- Princeton DSS Libguides http://libguides.princeton.edu/dss

Books

- Introduction to econometrics / James H. Stock, Mark W. Watson. 2nd ed., Boston: Pearson Addison Wesley, 2007.
- Data analysis using regression and multilevel/hierarchical models / Andrew Gelman, Jennifer Hill.
 Cambridge; New York: Cambridge University Press, 2007.
- Econometric analysis / William H. Greene. 6th ed., Upper Saddle River, N.J.: Prentice Hall, 2008.
- Designing Social Inquiry: Scientific Inference in Qualitative Research / Gary King, Robert O. Keohane, Sidney Verba, Princeton University Press, 1994.
- Unifying Political Methodology: The Likelihood Theory of Statistical Inference / Gary King, Cambridge University Press, 1989
- Statistical Analysis: an interdisciplinary introduction to univariate & multivariate methods / Sam Kachigan, New York: Radius Press, c1986
- Statistics with Stata (updated for version 9) / Lawrence Hamilton, Thomson Books/Cole, 2006