CS 161 Software Projects

Instructor: Dominic Abucejo

Spring 2025 MH 225

Agenda

- HW #4
- New topics (Databases)
- Team/Group Meetings (~25 minutes)

Back-End Data Repository Issues

- □ Redundancy and inconsistency
 - Multiple copies of data (good for backup)
 - Different versions that don't match (bad)
 - Consistent updates and deletions
- Access
 - How to access data
 - Timeliness
- Disparity
 - Data stored in multiple and scattered locations
 - Data stored in different formats and media

Back-End

Back-End Data Repository Issues, cont'd

Concurrency

Handle multiple clients accessing and updating the data simultaneously.

Security

Prevent unauthorized accesses and updates.

□ Integrity

- Data values must meet constraints.
 - Example: Minimum and maximum value ranges
- Data values must agree with each other.
 - Example: Medical records for a male patient should not include pregnancy data.

Data Modeling

- A data model is a diagram that shows what data an application works with and how the data is used.
 - Model data that will be persisted (written to and read from a data repository).
 - In the Model-View-Controller architecture, generally only the model objects are persisted.
- □ For databases, objects are called entities.
 - Model entities and their relationships to each other.
 - Similar to classes and their relationships.

Data Modeling, cont'd

Conceptual data model

- A high-level user-oriented description of the data.
 - entities
 - relationships among the entities
 - who will use the data (access control)
 - how it will be used (use cases)

Logical data model

A diagram showing names, attributes, keys, and relations.

Data Modeling, cont'd

Physical data model

- A configuration specification or a script to build the repository.
- Used by repository developers and maintainers.

Conceptual Data Model Example

 Student, teacher, and class entities and their attributes.

- Student
 - □ id
 - name
 - which teachers
- Teacher
 - □ id
 - name
 - which classes taught

- Class
 - class code
 - subject name
 - class room number

Conceptual Data Model Example, cont'a

- Sample queries (derived from use cases)
 - What teachers does this student have?
 - What classes does this teacher teach?
 - Who is the teacher of this class?
 - Which students are in this class?
 - Which students are in each of the classes taught by this teacher?

The Relational Data Model

- Data element: values that are stored in the repository (i.e., the database)
 - Values are typed.
 - A value can be null.
- Entity: a group of data elements that together are meaningful for a person or an application
 - Similar to objects.
 - Each data element is the value of an attribute of the entity.

The Relational Data Model, cont'd

- Table: a conceptual two-dimensional structure that contains entities of a particular type.
 - AKA relation
- Each row (AKA record) contains the attribute values of one entity.
- Each column (AKA field) holds an attribute value.
- □ Table ⇔ relation
- □ Row ⇔ entity
- □ Rows and columns ⇔ records and fields

Logical Data Model

Initial version

Each table has a primary key (PK) field whose value in each record uniquely identifies that record.

Student

ld	Name	Teacher_id_1	Teacher_id_2	Teacher_id_3
1001	Doe, John	7003	7012	7008
1005	Novak, Tim	7012	7008	null
1009	Klein, Leslie	null	null	null
1014	Jane, Mary	7051	null	null
1021	Smith, Kim	7003	7012	7051

PK

Teacher

	ld	Name	Class_code	Subject	Room
	7003	Rogers, Tom	926	Java programming	101
_	7008	Thompson, Art	908	Data structures	114
l	7012	Lane, John	951	Software engineering	210
l	7012	Lane, John	974	Operating systems	109
1	7051	Flynn, Mabel	931	Compilers	222

Student

- name
- which teachers
- Teacher
 - ic
 - name
 - which classes taught
- Class
 - class code
 - subject name
 - class room number

John Lane teaches two classes.

PK

Normalization

- Relational tables need to be normalized.
 - Improve the stability of the model.
 - More resilient to change.
 - Faster record insertions and updates.
 - Improve data quality.
- There are six normal forms, but we will only consider the first two.
 - Each normal form includes the lower normal forms.
 - Example: A database in second normal form is also in first normal form.

First Normal Form (1NF)

- Separate multi-valued data elements.
 - Break the name fields into last name and first name fields.

Student

ld	Name	Teach	er_id_1	Teach	ner_id_2	Teac	cher_id_3	_3
1001	Donelohn	John03	7003	7012	7012	7008	7008	Г
1005	NolcalqkTim	Tir7012	7012	7008	7008	null	null	Т
1009	KikileirLeslie	Lestie	null	null	null	null	null	Т
1014	JarandMary	Ma7951	7051	null	null	null	null	\top
1021	SenthurKim	Kin7003	7003	7012	7012	705	7051	Т

Database normalization is a database design principle for organizing data in an organized and consistent way

Teacher

ld	Name	Class_code	Subject	Room om
7003	Rollegers, TomTom	926 926	Java peogranogiagnming	101 101
7008	Thompspson Ant	908 908	Data Statistisms:tures	114 114
7012	Labene, John John	951951	Softw8odteageneegimperi	n@10 210
7012	Labene, John John	974974	Operating stistes yestems	109 109
7051	FlyFignn, MabeMab	el 93 1 93 1	Compuerapilers	222 222

First Normal Form, cont'd

Move repeating data elements to a new table.

Student_Teacher

Teacher id

7003 7012

7051

Student id

1001

1021

						1001
Stude	nt					1001
ld	Last	First	Teacher_id_1	Teacher_id_2	Te	acher_id_3
1001	Doe	John	7003	7012	70	กส 005

7008 7012 1005 Novak Tim 7012 7008 null 1005 7008 nul 1014 7051 1009 Klein Leslie null null nu 1 1021 7003 1014 7051 Jane Mary null 7051021 7012 Smith Kim 7003 7012

Teacher

ld	Last	First	Class_code	Subject	Room
7003	Rogers	Tom	926	Java programming	101
7008	Thompson	Art	908	Data structures	114
7012	Lane	John	951	Software engineering	210
7012	Lane	John	974	Operating systems	109
7051	Flynn	Mabel	931	Compilers	222

Problem!

Suppose Prof. Lane decides he doesn't want to teach Operating Systems anymore and we delete that row.

Teacher

ld	Last	First	Class_code	Subject	Room
7003	Rogers	Tom	926	Java programming	101
7008	Thompson	Art	908	Data structures	114
7012	Lane	John	951	Software engineering	210
7012	Lane	John	974	Operating systems	109
7051	Flynn	Mabel	931	Compilers	222

- What other information do we lose as a result?
 - We lose the fact that the class is taught in Room 109.
- The problem arises because the Teacher table really contains two separate sets of data: teacher data and class data.

Second Normal Form (2NF)

Keep related data together (cohesiveness).

How would you do this relation with a linking table?

Final Database Structure, cont'd

 John Doe takes Java programming, software engineering, and data structures.

Student

ld	Last	First
1001	Doe	John
1005	Novak	Tim
1009	Klein	Leslie
1014	Jane	Mary
1021	Smith	Kim

Teacher

ld	Last	First
7003	Rogers	Tom
7008	Thompson	Art
7012	Lane	John
7051	Flynn	Mabel

Student_Class

Student_id	Class_code
1001	926
1001	951
1001	908
1005	974
1005	908
1014	931
1021	926
1021	974
1021	931

Class

Code	Teacher_id	Subject	Room
908	7008	Data structures	114
926	7003	Java programming	101
931	7051	Compilers	222
951	7012	Software engineering	210
974	7012	Operating systems	109

Final Database Structure, cont'd

The Java Programming class has John Doe and Kim Smith.

Student

ld	Last	First
1001	Doe	John
1005	Novak	Tim
1009	Klein	Leslie
1014	Jane	Mary
1021	Smith	Kim

Teacher

ld	Last	First
7003	Rogers	Tom
7008	Thompson	Art
7012	Lane	John
7051	Flynn	Mabel

Student_Class

Student_ic	d Class_code
1001	926
1001	951
1001	908
1005	974
1005	908
1014	931
1021	926
1021	974
1021	931

Class

Code	Teacher_id	Subject	Room
908	7008	Data structures	114
926	7003	Java programming	101
931	7051	Compilers	222
951	7012	Software engineering	210
974	7012	Operating systems	109

Final Database Structure, cont'd

Mabel Flynn teaches compilers.

Student

ld	Last	First
1001	Doe	John
1005	Novak	Tim
1009	Klein	Leslie
1014	Jane	Mary
1021	Smith	Kim

Teacher

ld	Last	First	
7003	Rogers	Tom	
7008	Thompson	Art	
7012	Lane	John	
7051	Flynn	Mabel	

Student_Class

Student_id	Class_code
1001	926
1001	951
1001	908
1005	974
1005	908
1014	931
1021	926
1021	974
1021	931

Class

Code	Teacher_id	Subject	Room
908	7008	Data structures	114
926	7003	Java programming	101
931	7051	Compilers	222
951	7012	Software engineering	210
974	7012	Operating systems	109