

TEAM MEMBERS

E/16/089 Denuke Dissanayake

E/16/313 Maneesha Randeniya

E/16/360 Nipun Dewanarayana

SUPERVISORS

Prof. Roshan Ragel

Dr. Hasindu Gamaarachchi

BACKGROUND

- Nanopore sequencing is a unique, scalable technology that enables direct, real-time analysis of long DNA or RNA fragments.
- Monitoring changes to an electrical current as nucleic acids are passed through a protein nanopore.
- The resulting Electrical signal is decoded to provide the specific DNA or RNA sequence.
- Modern nanopore sequencers offer selective sequencing capability.

BACKGROUND

DTW ALGORITHM

- measures the **optimal alignment** between signals
- Time and Space complexity O(n²)
- starts by building the distance matrix.
- Next, finds the alignment path that runs through the cost matrix's low-cost areas

PROBLEM DEFINITION

- DTW algorithm has a computational complexity of O(n²) High Computational Demand.
- Because of the high computational demand, portable MinION sequencers **must connect to a large server** to do the analyses.
- Consequently, it will **reduce** the widespread adaptation of selective sequencing in a **portable setting**.
- It will require a **higher time** for the calculation

SOLUTION

- Implement the DTW algorithm using GPUs
- Optimise the DTW algorithm to Reduce the runtime

EXISTING CODE

- All calculations are done in the **CPU**
- Calculations are done in sequentially
- CPU DTW run time
 - Intel i7 10th Gen 16GB RAM ~27 sec
 - Kepler Workstation (CE Department) ~23 sec

PROPOSED METHOD

- Identifying the critical places requires parallelism.
- Use CUDA for GPU programming
- Use threads in GPU to parallelise the existing code

MILESTONES

- Identify the places that need to be parallelized.
- Implement a parallel mechanism using CUDA
- Apply Optimization techniques to algorithm

IDENTIFY THE PLACES TO PARALLELIZE

1. Calling the GPU Kernel

Execute the DTW calculation for multiple samples signals

2. Matching multiple references

Each sample compare with multiple reference signals

3. Calculate cost matrix

Calculation of the Cost matrix in the DTW algorithm

2. IMPLEMENT PARALLEL MECHANISM IN CUDA

- Get the data values to arrays
- Allocate the memory in GPU
- Copy arrays to GPU memory
- Execute the Kernel
 - One thread for one signal
- Copy the result back to CPU memory

CHALLENGES

- Mallocs inside GPU functions are not working (Do cudaMallocs separately and pass them to the functions).
- Debugging tools not working properly in the GPU kernel
- Restructureing the existing code.
- fprintf not supported inside the GPU kernel

THANK YOU