Bilancia elettrostatica di Coulomb elaborazione dati

Ali Matteo, Broggi Diana, Cantarini Giulia

parte 1

r (m)		θ	$\bar{\theta} \text{ (deg)}$			
0.04	67	68	68	68	68	67.8 ± 0.2
0.07	34	35	33	35	34	34.2 ± 0.4
0.10	18	19	21	20	18	19.2 ± 0.6
0.13	10	9	10	11	11	10.2 ± 0.4
0.16	7	7	6	6	8	6.8 ± 0.4
0.19	6	5	5	5	4	5.0 ± 0.3

Tabella
1: tabella con i θ corretti

r(m)	θ (deg)
0.04	118.7 ± 0.4
0.07	37.2 ± 0.4
0.10	19.7 ± 0.6
0.13	10.3 ± 0.4
0.16	6.8 ± 0.4
0.19	5.0 ± 0.3

è stato usato il fattore di correzione : $\theta_{corretto}=\frac{\theta}{1-4(\frac{R}{r})^3}\pm\frac{\sigma_{\theta}}{1-4(\frac{R}{r})^3}$

$\theta_{corretto}$ in funzione di $\frac{1}{r^2}$

il coefficiente di correlazione lineare $r=\frac{\sum (x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum (x_i-\bar{x})^2\sum (y_i-\bar{y})^2}}$ per i dati riportati nel grafico di $\theta_{\left(\frac{1}{r^2}\right)}$ é: 0.9998 $\simeq 1$, dunque possiamo affermare che la relazione tra le due misure è lineare.

parte 2a

1/-	_	1/~	_	1/
v		v ·)		v

V (Volt)		$\bar{\theta} \ (\mathrm{deg})$				
2000	3	1	1	3	3	2.2 ± 0.4
2500	5	4	4	4	5	4.4 ± 0.2
3000	5	4	6	6	8	5.8 ± 0.5
3500	11	8	9	8	8	8.8 ± 0.4
4000	11	11	11	13	10	11.2 ± 0.4
4500	15	14	15	15	15	14.8 ± 0.1
5000	18	17	19	17	17	17.6 ± 0.3
5500	22	22	22	22	22	22.0 ± 0
6000	28	28	26	26	26	26.8 ± 0.4

distanza tra le sfere costante r=0.08m

•

Tabella 2: tabella con i θ corretti

V (Volt)	θ (deg)
2000	2.3 ± 0.4
2500	4.6 ± 0.2
3000	6.1 ± 0.5
3500	9.3 ± 0.5
4000	11.8 ± 0.4
4500	15.6 ± 0.2
5000	18.6 ± 0.3
5500	23.2 ± 0
6000	28.3 ± 0.4

 $\theta_{corretto}$ in funzione di $V_1 = V_2 = V$

il coefficiente di correlazione lineare per queste misure di θ e V^2 è

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} = 0.99925 \simeq 1$$

possiamo affermare che la relazione tra le due misure è lineare.

parte 2b

V_2 (Volt)		θ	$\bar{\theta} \text{ (deg)}$			
2000	9	8	9	7	8	8.2 ± 0.3
2500	11	12	12	9	11	11.0 ± 0.4
3000	13	14	13	14	14	13.6 ± 0.2
3500	15	17	15	15	15	15.4 ± 0.3
4000	18	18	17	17	19	17.8 ± 0.3
4500	20	21	20	20	19	20.0 ± 0.2
5000	24	23	22	22	22	22.6 ± 0.3
5500	23	24	23	24	23	23.4 ± 0.2
6000	28	27	26	27	27	27.0 ± 0.2

distanza tra le sfere costante r=0.08m, $V_1 = 6000V$

Tabella
3 : tabella con i θ corretti

V_2 (Volt)	θ (deg)
2000	8.7 ± 0.3
2500	11.6 ± 0.4
3000	14.4 ± 0.2
3500	16.3 ± 0.3
4000	18.8 ± 0.3
4500	21.1 ± 0.2
5000	23.9 ± 0.3
5500	24.7 ± 0.2
6000	28.5 ± 0.2

il coefficiente di correlazione lineare $r=\frac{\sum (x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum (x_i-\bar{x})^2\sum (y_i-\bar{y})^2}}$ per i dati riportati nel grafico di $\theta_{(V_2)}$ é: $0.997\simeq 1$, dunque possiamo affermare che la relazione tra le due misure è lineare.

parte 3

	m (mg)	θ	(deg	$\bar{\theta} \text{ (deg)}$	
	20	28	22	26	25.3 ± 1.4
	40	43	52	40	45.0 ± 2.8
	50	71	61	53	61.7 ± 4
	70	86	91	99	92.0 ± 2.9
_	90	116	126	141	127.7 ± 5.6

 $\theta_{corretto}$ in funzione di V_2

 θ in funzione di m

da $mg = K_{tor}\theta$ ricavo il valore di K_{tor} in funzione del coefficiente angolare della retta θ_m .

$$B = \frac{N\sum\frac{x_iy_i}{\sigma_i} - \sum\frac{x_i}{\sigma_i}\sum\frac{y_i}{\sigma_i}}{N\sum\frac{x_i^2}{\sigma_i^2} - (\sum\frac{x_i}{\sigma_i})^2} \pm \sqrt{\frac{\sum\frac{1}{\sigma_i^2}}{\Delta}} = (1352328 \pm 51637)deg/Kg$$

$$A = \frac{\sum (\frac{x_i}{\sigma_i})^2 \sum (\frac{y_i}{\sigma_i})^2 - \sum \frac{x_i}{\sigma_i^2} \sum \frac{x_i y_i}{\sigma_i^2}}{N \sum \frac{x_i^2}{\sigma_i^2} - (\sum \frac{x_i}{\sigma_i})^2} \pm \sqrt{\frac{(\frac{x_i}{\sigma_i})^2}{\Delta}} = (-2.9 \pm 2.1) deg$$

 θ in funzione di m - interpolazione dati

$$\begin{vmatrix} K_{tor} = \frac{g}{B} \\ \sigma_{Ktor} = \frac{g}{B^2} \sigma_B \end{vmatrix} \Rightarrow K_{tor} = (7.25 \pm 0.28) \cdot 10^{-6} N/deg$$

calcolo di ε_0

$$\varepsilon_0 = \frac{K_{tor}\theta r^2}{4\pi a^2 V^2}$$

$$\sigma_{\varepsilon_0} = \sqrt{\left(\frac{\partial \varepsilon_0}{\partial K_{tor}} \sigma_{Ktor}\right)^2 + \left(\frac{\partial \varepsilon_0}{\partial \theta} \sigma_{\theta}\right)^2 + \left(\frac{\partial \varepsilon_0}{\partial r} \sigma_r\right)^2 + \left(\frac{\partial \varepsilon_0}{\partial a} \sigma_a\right)^2 + \left(\frac{\partial \varepsilon_0}{\partial V} \sigma_V\right)^2}$$

abbiamo considerato : $\sigma_r = 0.001m; \quad \sigma_a = 0.001m; \quad \sigma_V = 100Volt$

$$\begin{array}{c|c} & \varepsilon_0 \ (C^2/Nm^2) \\ \hline \text{parte 1} & (8.12 \pm 0.43) \cdot 10^{-12} \\ \hline \text{parte 2a} & (7.58 \pm 0.34) \cdot 10^{-12} \\ \hline \text{parte 2b} & (7.97 \pm 0.47) \cdot 10^{-12} \\ \hline \end{array}$$

La media pesata di questi 3 risultati è: $\varepsilon_0=7.84\cdot 10^{-12}\pm 2.3\cdot 10^{-13}.$ Abbiamo eseguito il test

$$t = \frac{|\varepsilon_{osservato} - \varepsilon_{atteso}|}{\sigma_{\varepsilon}}$$

per conoscere il numero di deviazioni standard che occupano la distanza della nostra stima dal valore vero di $8.85 \cdot 10^{-12}$; esso risulta $4.39 \rightarrow$ la probabilità che tale discrepanza sia dovuta sollo ad errori casuali è inferiore al 0.3 %.