Differenzialgleichungen

Definition:

Eine Gleichung, in der die Ableitungen einer Funktion y = y(x) einer Variablen bis zur n-ten Ordnung auftreten, heißt eine **gewöhnliche Differenzialgleichung (abgekürzt Dgl oder DGL)** n-ter Ordnung.

Wenn die Funktion $y = y(x_1, x_2, ..., x_m)$ von mehreren Variablen abhängt, dann spricht man von einer **partiellen Differenzialgleichung.**

Beispiele gewöhnlicher Differenzialgleichungen:

 $y' = a \cdot x$ mit den Lösungen $y(x) = \frac{1}{2}a \cdot x^2 + c$ für eine beliebige Konstante $c \in \mathbb{R}$.

 $y'=a\cdot y$ mit den Lösungen $y(x)=c\cdot e^{a\cdot x}$ für eine beliebige Konstante $c\in\mathbb{R}$.

y'' = 0 mit den Lösungen $y(x) = a \cdot x + b$ für eine beliebige Konstanten $a, b \in \mathbb{R}$.

 $y''+y=0 \quad \text{mit den L\"osungen} \quad y=a\cdot\sin x \;,\;\; y=b\cdot\cos x \;\; \text{oder allgemein} \quad y=a\cdot\sin x+b\cdot\cos x \;\; \text{f\"ur beliebige}$ Konstanten $a,b\in\mathbb{R}$.

y'' - y = 0 mit den Lösungen $y = a \cdot e^x$, $y = b \cdot e^{-x}$ oder allgemein $y = a \cdot e^x + b \cdot e^{-x}$ für beliebige Konstanten $a, b \in \mathbb{R}$.

I Die Differenzialgleichung 1. Ordnung

1. Differenzialgleichung 1. Ordnung mit trennbaren Variablen

Sie hat die Form $y' = f(x) \cdot g(y)$.

Lösungsverfahren: Wegen $y' = \frac{dy}{dx}$ wird die DGL umgeschrieben in die Form $\frac{1}{g(y)}dy = f(x)dx$, also

$$\boxed{\int \frac{1}{g(y)} dy = \int f(x) dx} .$$

Beispiele:

1. $y' = x \cdot y$. Durch Trennung der Variablen folgt $\frac{dy}{dx} = x \cdot y$, also $\int \frac{1}{y} dy = \int x \, dx$ (sofern $y \neq 0$) mit den

 $\text{L\"{o}sungen } \ln \mid y \mid = \frac{1}{2} \, x^2 + c \text{ , also } y = \pm e^{\frac{1}{2} x^2 + c} = \pm e^c \cdot e^{\frac{1}{2} x^2} = k \cdot e^{\frac{1}{2} x^2} \text{ . Da } y = 0 \text{ auch eine L\"{o}sung der DGL ist, }$

folgt die allgemeine Lösung zu $y=C\cdot e^{\frac{1}{2}x^2}$ mit einer beliebigen Konstanten $C\in\mathbb{R}$.

Die Konstante C lässt sich bestimmen, wenn z.B, ein <u>Anfangswert</u> gegeben ist, z.B. y(2) = 5. Dann gilt $5 = C \cdot e^2$, also $y = 5 \cdot e^{\frac{1}{2}x^2 - 2}$.

In der linken Grafik sind die Schaubilder sind für C = -2, -1, 0, 1, 2 gezeichnet.

Die beiden anderen Grafiken zeigen das **Richtungsfeld** der DGL $y' = x \cdot y$ ohne und mit den Schaubildern.

Allgemein wird beim Richtungsfeld der DGL y' = f(x,y) jedem Punkt (x,y) der Ebene ein Vektor der Steigung f(x,y), also vom Richtungsvektor $\begin{pmatrix} 1 \\ f(x,y) \end{pmatrix}$ zugeordnet.

Dem Richtungsfeld kann man den ungefähren Verlauf der Lösungen entnehmen, da die Pfeile Tangenten an die Lösungskurven sind.

2. $y'=y^2\cdot\cos x$. Durch Trennung der Variablen folgt $\int \frac{1}{y^2}\,dy = \int\cos x\,dx \quad (\text{sofern }y\neq 0\,) \text{ mit den Lösungen}$ $-\frac{1}{y}=\sin x+c \;, \text{ also }y=-\frac{1}{c+\sin x} \quad \text{mit einer beliebisen Konstanten }c\in\mathbb{R} \;. \text{ Außerdem ist }y=0 \;\text{eine Lösung der DGL.}$ Die Schaubilder sind für c=-2,-1,0,1,2 gezeichnet.

3. $y'=4x\cdot\sqrt{y}$ für $x\in\mathbb{R}$ und $y\geq0$. Durch Trennung der Variablen folgt $\int \frac{1}{\sqrt{y}}\,dy = \int 4x\,dx \ (\text{sofern }y\neq0\,) \ \text{mit den Lösungen} \ 2\sqrt{y}=2x^2+c \ \text{mit}$ $c\geq0$, also $y=\left(x^2+C\right)^2$ mit einer beliebigen Konstanten $C\geq0$. Außerdem ist y=0 eine Lösung der DGL.

Das linke Schaubild ist für C = 0, 0,5, 1 gezeichnet.

2. Lineare Differenzialgleichung 1. Ordnung

Definition: Eine Differenzialgleichung 1. Ordnung heißt **linear**, wenn sie in der Form $y' + f(x) \cdot y = g(x)$ darstellbar ist.

Eine lineare Differenzialgleichung 1. Ordnung heißt <u>homogen</u>, wenn g(x) = 0, d.h. wenn sie in der Form $y' + f(x) \cdot y = 0$ darstellbar ist. Falls $g(x) \neq 0$, dann heißt die DGL <u>inhomogen</u>.

Verfahren: Die lineare homogene DGL 1. Ordnung lässt sich durch Trennung der Variablen lösen:

Aus
$$y' + f(x) \cdot y = 0$$
 folgt $\frac{dy}{dx} = -f(x) \cdot y$.

 $\begin{aligned} \textbf{Fall 1: } \textbf{y} \neq \textbf{0:} & \text{ Es folgt } \frac{d\textbf{y}}{\textbf{y}} = -f(\textbf{x}) \, d\textbf{x} \implies \int \frac{1}{\textbf{y}} \, d\textbf{y} = -\int f(\textbf{x}) \, d\textbf{x} \implies \ln |\textbf{y}| + c_1 = -\int f(\textbf{x}) \, d\textbf{x} + c_2 & \text{mit } c_1, c_2 \in \mathbb{R} \\ & \Rightarrow \ln |\textbf{y}| = -\int f(\textbf{x}) \, d\textbf{x} + c & \text{mit } c \in \mathbb{R} \implies |\textbf{y}| = e^{-\int f(\textbf{x}) \, d\textbf{x} + c} \implies \textbf{y} = \pm e^c \cdot e^{-\int f(\textbf{x}) \, d\textbf{x}} = C \cdot e^{-\int f(\textbf{x}) \, d\textbf{x}} \\ & \in \mathbb{R} \setminus \{0\}. \end{aligned}$ $\text{mit einer Konstanten } \textbf{C} \in \mathbb{R} \setminus \{0\}.$

Fall 2: y = 0: y = 0 ist immer Lösung der homogenen DGL.

Insgesamt folgt:

Die **lineare homogene DGL 1. Ordnung** $y' + f(x) \cdot y = 0$ lässt sich durch Trennung der Variablen lösen. Alle Lösungen sind (die allgemeine Lösung ist) $y = C \cdot e^{-\int f(x) dx}$ mit einer Konstanten $C \in \mathbb{R}$.

 $\textbf{Beispiel:} \quad y' - \frac{1}{x^2} \cdot y = 0 \quad \text{mit} \quad x \neq 0 \quad \text{hat die L\"osungen} \quad y = C \cdot e^{\int \frac{1}{x^2} \, dx} = C \cdot e^{-\frac{1}{x}} \quad \text{mit einer Konstanten} \quad C \in \mathbb{R} \ .$

Oder ausführlich: $y' - \frac{1}{x^2} \cdot y = 0 \implies \frac{dy}{dx} = \frac{1}{x^2} \cdot y \implies \frac{dy}{y} = \frac{1}{x^2} dx$ für $y \neq 0$; außerdem ist y = 0 eine Lösung.

Durch Integration folgt $\ln |y| = -\frac{1}{x} + c$, also $|y| = e^{-\frac{1}{x} + c} = e^c \cdot e^{-\frac{1}{x}}$, d.h. $y = \pm e^c \cdot e^{-\frac{1}{x}}$. Insgesamt folgt

 $y = C \cdot e^{-\frac{1}{x}} \text{ mit } C \in \mathbb{R}$.

Probe: $y = C \cdot e^{-\frac{1}{x}} \implies y' = C \cdot e^{-\frac{1}{x}} \cdot \frac{1}{x^2}$. Eingesetzt in die DGL ergibt $y' - \frac{1}{x^2} \cdot y = C \cdot e^{-\frac{1}{x}} \cdot \frac{1}{x^2} - \frac{1}{x^2} \cdot C \cdot e^{-\frac{1}{x}} = 0$.

Und nun zur linearen inhomogenen DGL 1. Ordnung

Eine **lineare inhomogene DGL 1. Ordnung** der Gestalt $y' + f(x) \cdot y = g(x)$ wird folgendermaßen gelöst:

- 1. Bestimmung der allgemeinen Lösung $y_0(x) = C \cdot e^{-\int f(x) dx}$ der zugehörigen homogenen DGL durch Trennung der Variablen (oder nach dieser Formel). Dabei ist $C \in \mathbb{R}$ eine beliebige Konstante.
- 2. Jede Lösung y = y(x) einer inhomogenen linearen DGL der Gestalt $y' + f(x) \cdot y = g(x)$ hat die Form $y(x) = y_s(x) + y_0(x)$. Dabei ist $y_s(x)$ eine beliebige (spezielle, partikuläre) Lösung der gegebenen inhomogenen DGL und $y_0(x) = C \cdot e^{-\int f(x) dx}$ die allgemeine Lösung der zugehörigen homogenen DGL.

Diese eine Lösung $y_s(x)$ kann man durch **Variation der Konstanten** finden:

Die Integrationskonstante C wird durch eine Funktion K(x) ersetzt:

Der Ansatz $y_s(x) = K(x) \cdot e^{-\int f(x) dx}$ wird in die gegebene inhomogene DGL eingesetzt. Es ergibt sich eine DGL 1. Ordnung für die Funktion K(x), die sich dann durch Integration bestimmen lässt:

$$\underbrace{K'(x) \cdot e^{-\int f(x) \, dx} + K(x) \cdot e^{-\int f(x) \, dx} \cdot \left(-f(x)\right)}_{=y_*'(x)} + f(x) \cdot K(x) \cdot e^{-\int f(x) \, dx} = g(x) \text{ . Dies vereinfacht sich zu}$$

$$K'(x) \cdot e^{-\int f(x) \, dx} = g(x) \,, \, bzw. \ \, K'(x) \cdot y_0(x) = g(x) \,. \ \, \text{Es folgt} \ \, K(x) = \int \frac{g(x)}{y_0(x)} dx \,\,, \, also$$

 $y_s(x) = y_0(x) \cdot \int \frac{g(x)}{y_0(x)} dx$. Dabei kürzt sich die Konstante C in $y_0(x)$ weg.

Bemerkung: Die Eigenschaft Nr. 2. kennen wir von den linearen Gleichungssystemen, deren Lösungen die gleiche Form $\vec{x} = \overrightarrow{x_s} + \overrightarrow{x_0}$ besitzen.

Beweis von 2.

- 1. Es ist zu zeigen, dass $y(x) = y_s(x) + y_0(x)$ Lösung der inhomogenen DGL ist. Durch Einsetzen folgt $y' + f(x) \cdot y = (y_s(x) + y_0(x))' + f(x) \cdot (y_s(x) + y_0(x)) = (y_s'(x) + f(x) \cdot y_s(x)) + (y_0'(x) + f(x) \cdot y_0(x)) = g(x) + 0 = g(x)$.
- 2. Es sei nun y(x) irgendeine Lösung der inhomogenen DGL und $y_s(x)$ eine bekannte Lösung der inhomogenen DGL $y'+f(x)\cdot y=g(x)$. Dann gilt

Beispiel 1: $y' + \sin x \cdot y = \sin x$

- 1. Die allgemeine Lösung der zugehörigen homogenen DGL $y'+\sin x\cdot y=0$ folgt durch Trennung der Variablen zu $\frac{dy}{y}=-\sin x\,dx$, also $\ln|y|=\cos x+c$, und damit $y_0=\pm e^{\cos x+c}=C\cdot e^{\cos x}$ mit $C\in\mathbb{R}$ da auch y=0 eine Lösung ist
- 2. Variation der Konstanten: Den Ansatz $y = K(x) \cdot e^{\cos x}$ setzt man in die gegebene inhomogene DGL ein: $K'(x) \cdot e^{\cos x} + K(x) \cdot e^{\cos x} \cdot (-\sin x) + \sin x \cdot K(x) \cdot e^{\cos x} = \sin x$ vereinfacht sich zu $K'(x) \cdot e^{\cos x} = \sin x$, d.h. $K'(x) = \frac{\sin x}{e^{\cos x}} = e^{-\cos x} \cdot \sin x$. Alle Lösungen haben die Gestalt $K(x) = e^{-\cos x} + D$ mit einer Konstanten $D \in \mathbb{R}$. Damit folgt die Lösung unserer DGL zu $y(x) = K(x) \cdot e^{\cos x} = \left(e^{-\cos x} + D\right) \cdot e^{\cos x} = 1 + D \cdot e^{\cos x}$.
- 3. **Es hätte genügt**, eine einzige (genannt: spezielle) Lösung der inhomogenen DGL zu finden: Eine Lösung von $K'(x) = \frac{\sin x}{e^{\cos x}} = e^{-\cos x} \cdot \sin x$ ist $K(x) = e^{-\cos x}$, so dass $y_s(x) = K(x) \cdot e^{\cos x} = e^{-\cos x} \cdot e^{\cos x} = 1$. Insgesamt folgt nach obigem Satz Teil 3. $y(x) = y_s(x) + y_0(x) = 1 + C \cdot e^{\cos x}$. Die Schaubilder sind für C = -2, -1, 0, 1, 2 gezeichnet.

Zusatz 1: Bestimmung von $y_s(x)$ mit der angegebenen Formel:

$$y_s(x) = y_0(x) \cdot \int \frac{g(x)}{y_0(x)} dx = C \cdot e^{\cos(x)} \cdot \int \frac{\sin(x)}{C \cdot e^{\cos(x)}} dx = e^{\cos(x)} \cdot \int e^{-\cos(x)} \cdot \sin(x) dx = e^{\cos(x)} \cdot e^{-\cos(x)} = 1.$$

- **Zusatz 2:** Die gegebene DGL $y' + \sin x \cdot y = \sin x$ lässt sich auch direkt durch Trennung der Variablen lösen: Aus $y' = (1-y) \cdot \sin x$, also $\frac{dy}{1-y} = \sin x \, dx$. Durch Integration folgt $-\ln |1-y| = -\cos x + c$, d.h. $|1-y| = e^{\cos x c} = e^{-c} \cdot e^{\cos x}$. Wegen $1-y = \pm e^{-c} \cdot e^{\cos x}$ folgt die allgemeine Lösung $y(x) = 1 + C \cdot e^{\cos x}$.
- **Zusatz 3:** Mit der Anfangsbedingung y(0) = 0 folgt $C = -\frac{1}{e}$, also $(x) = 1 e^{-1 + \cos x}$. Mit der Anfangsbedingung y(0) = 1 folgt C = 0, also y(x) = 1. Mit der Anfangsbedingung $y(\pi/2) = 0$ folgt C = -1, also $y(x) = 1 e^{\cos x}$. In der Abbildung sind die drei Schaubilder dargestellt:

Beispiel 2:
$$y' + 3 \cdot \frac{y}{x} = 2 - x^2$$
 für $x \ne 0$

- $\text{1. Die allgemeine L\"osung der zugeh\"origen homogenen DGL} \quad y'+3\cdot\frac{y}{x}=0 \quad \text{folgt aus} \quad \frac{dy}{y}=-3\frac{dx}{x} \text{ , also}$ $\ln|y|=-3\ln|x|+c \text{ , und damit } y_0(x)=\pm e^{-3\ln|x|+c}=\pm e^c \cdot e^{-3\ln|x|}=\pm e^c \left(e^{\ln|x|}\right)^{-3}=\pm e^c \cdot |x|^{-3}=\frac{C}{x^3} \quad \text{mit } \quad C\in\mathbb{R} \text{ .}$
- 2. Variation der Konstanten: Den Ansatz $y = \frac{K(x)}{x^3}$ setzt man in die gegebene inhomogene DGL ein:

 $\frac{K'(x) \cdot x^3 - K(x) \cdot 3x^2}{x^6} + 3\frac{K(x)}{x^4} = 2 - x^2 \text{ vereinfacht sich zu } K'(x) \cdot x - 3 \cdot K(x) + 3 \cdot K(x) = 2x^4 - x^6, \text{ d.h.}$

 $K'(x) = 2x^3 - x^5$. Eine (spezielle) Lösung hat die Gestalt $K(x) = \frac{1}{2}x^4 - \frac{1}{6}x^6$. Damit haben wir eine spezi-

elle Lösung unserer inhomogenen DGL gefunden: $y_S(x) = \frac{K(x)}{x^3} = \frac{\frac{1}{2}x^4 - \frac{1}{6}x^6}{x^3} = \frac{1}{2}x - \frac{1}{6}x^3$.

3. Die allgemeine Lösung unserer inhomogenen DGL lautet somit: $y(x) = \frac{1}{2}x - \frac{1}{6}x^3 + \frac{C}{x^3}$, $c \in \mathbb{R}$.

Zusatz: Mit der Anfangsbedingung y(1) = 0 folgt die Lösung $y(x) = \frac{1}{2}x - \frac{1}{6}x^3 - \frac{1}{3x^3}$

Beispiel 3: $2 \cdot y' - 3 \cdot y = 5 \cdot e^x$ Dies ist eine lineare DGL mit den <u>konstanten Koeffizienten</u> 2 und -3.

- 1. Die allgemeine Lösung der zugehörigen homogenen DGL folgt aus $\frac{1}{y}$ dy $=\frac{3}{2}$ dx , also $y_0 = C \cdot e^{\frac{3}{2}x}$.
- 2. Den Ansatz $y = K(x) \cdot e^{\frac{3}{2}x}$ setzt man in die gegebene inhomogene DGL ein:

$$2 \cdot \left(K'(x) \cdot e^{\frac{3}{2}x} + K(x) \cdot \frac{3}{2} e^{\frac{3}{2}x} \right) - 3 \cdot K(x) \cdot e^{\frac{3}{2}x} = 5 \cdot e^x. \text{ Dies vereinfacht sich zu } 2 \cdot K'(x) \cdot e^{\frac{3}{2}x} = 5 \cdot e^x \text{ , also }$$

$$K'(x) = \frac{5}{2}e^{-\frac{1}{2}x} \text{ . Eine spezielle L\"osung ist } K(x) = -5 \cdot e^{-\frac{1}{2}x} \text{ , also } y_s(x) = K(x) \cdot e^{\frac{3}{2}x} = -5 \cdot e^x \text{ .}$$

3. Die allgemeine Lösung der inhomogenen DGL lautet $y(x) = y_s(x) + y_0(x) = -5 \cdot e^x + C \cdot e^{\frac{3}{2}x}$ mit $C \in \mathbb{R}$.

Zusatz: Mit der Anfangsbedingung y(0) = -1 folgt $y(x) = -5 \cdot e^x + 4 \cdot e^{\frac{3}{2}x}$

3. Lösen einer Differenzialgleichung durch Substitution

Wir betrachten drei Typen von Differenzialgleichungen:

Typ I: y' = f(ax + by + c)

Die Substitution u = u(x) = ax + by + c führt auf $u'(x) = a + b \cdot f(u)$

Typ 2: $y' = f\left(\frac{y}{x}\right)$

Die Substitution $u = u(x) = \frac{y}{x}$ führt auf $u' = \frac{f(u) - u}{x}$

Typ 3: $y' + g(x) \cdot y = h(x) \cdot y^n$ für $n \ne 1$. Auch Bernoulli DGL genannt. Die Substitution $u = u(x) = y^{1-n}$

 $\text{f\"{u}hrt auf } u' + (1-n) \cdot g(x) \cdot u = (1-n) \cdot h(x) \text{ , denn aus } y = u^{\frac{1}{1-n}} \text{ folgt } y' = \frac{1}{1-n} u^{\frac{n}{1-n}} \cdot u' \text{ . Eingesetzt in } u' = \frac{1}{1-n} u^{\frac{n}{1-n}} \cdot u' \text{ .}$

 $\begin{array}{ll} \text{die DGL folgt} & \frac{1}{1-n} u^{\frac{n}{1-n}} \cdot u' + g(x) \cdot u^{\frac{1}{1-n}} = h(x) \cdot u^{\frac{n}{1-n}} \text{. Nach Multiplikation mit } (1-n) \cdot u^{-\frac{n}{1-n}} \text{ ergibt} \\ \text{sich die angegebene Gleichung} & u' + (1-n) \cdot g(x) \cdot u = (1-n) \cdot h(x) \text{.} \end{array}$

Verfahren: Man löst zuerst die Substitutionsgleichung nach y auf, differenziert dann diese Gleichung und ersetzt y(x) und y'(x) durch u(x) und u'(x).

Beispiel 1:

 $y' = 4 \cdot (x + y - 2)^2$, wobei y = y(x) gilt.

Die <u>Substitution</u> u = u(x) = x + y - 2 liefert y = u(x) - x + 2, also y' = u' - 1, so dass unsere DGL $u' = 1 + 4u^2$ lautet.

Diese DGL ist nicht linear, so dass das Verfahren $y = y_S + y_0$ nicht angewandt werden kann.

Zum Glück lassen sich die Variablen trennen zu $\frac{1}{1+4u^2}du=dx$.

Die Integration liefert $\frac{1}{2}\arctan(2u) = x + c$, da $\arctan'(x) = \frac{1}{1+x^2}$, also $\arctan(a \cdot u)' = \frac{1}{1+(a \cdot u)^2} \cdot a$. Es folgt

 $2u = \tan(2x + 2c)$ und damit $u = \frac{1}{2}\tan(2x + C)$.

Durch die <u>Resubstitution</u> y = u - x + 2 folgen die Lösungen $y = 2 - x + \frac{1}{2} \tan(2x + C)$.

Probe: Einerseits ist $y' = -1 + \frac{1}{2} \cdot \left(1 + (\tan(2x + C))^2\right) \cdot 2 = -1 + 1 + (\tan(2x + C))^2 = (\tan(2x + C))^2$, andererseits ist $4 \cdot (x + y - 2)^2 = 4 \cdot \left(x + 2 - x + \frac{1}{2}\tan(2x + C) - 2\right)^2 = \left(\tan(2x + C)\right)^2$.

Beispiel 2:

$$x^2 \cdot y' = y \cdot (x + 2y)$$
. wobei $y = y(x)$ gilt.

Nach Division durch x^2 folgt $y' = \frac{y}{x} \cdot \left(1 + 2\frac{y}{x}\right)$. Mit der <u>Substitution</u> $u = \frac{y}{x}$ folgt $y = x \cdot u$, also mit der Produktregel $y' = u + x \cdot u'$. Dies wird in die DGL eingesetzt: $u + x \cdot u' = u + 2u^2$ und eine **Variablentrennung** ist möglich: $\frac{du}{u^2} = \frac{2\,dx}{x}$. Integration liefert $-\frac{1}{u} = 2\ln|x| + c$, und damit $u = -\frac{1}{2\ln|x| + c}$. Die **Resubstitution** $y = u \cdot x$ liefert die Lösungen $y = -\frac{x}{2\ln|x| + c}$.

$$\begin{aligned} \text{Probe:} \quad & \text{Einerseits folgt mit der Quotientenregel} \quad & x^2 \cdot y' = x^2 \cdot \left(-\frac{2 \ln |x| + c - x \cdot \frac{2}{x}}{(2 \ln |x| + c)^2} \right) = x^2 \cdot \frac{-2 \ln |x| - c + 2}{(2 \ln |x| + c)^2} \,, \\ & \text{andererseits ist} \quad & y \cdot (x + 2y) = -\frac{x}{2 \ln |x| + c} \cdot \left(x - 2 \frac{x}{2 \ln |x| + c} \right) = x^2 \cdot \frac{1}{2 \ln |x| + c} \cdot \left(-1 + \frac{2}{2 \ln |x| + c} \right) = \\ & = x^2 \cdot \left(-\frac{1}{2 \ln |x| + c} + \frac{2}{(2 \ln |x| + c)^2} \right) = x^2 \cdot \frac{-2 \ln |x| - c + 2}{(2 \ln |x| + c)^2} \,. \end{aligned}$$

Beispiel 3:

 $y' + \frac{1}{x}y = x^2 \cdot y^3$, wobei y = y(x) gilt und in obiger Bezeichnung $g(x) = \frac{1}{x}$, $h(x) = x^2$ und n = 3 ist.

Die Substitution $u = y^{-2}$ führt auf $y = \pm \frac{1}{\sqrt{u}}$, also $y' = \mp \frac{1}{2u^{3/2}} \cdot u'$.

 $\text{Eingesetzt: } \mp \frac{1}{2u^{3/2}} \cdot u' + \frac{1}{x} \cdot \left(\pm \frac{1}{\sqrt{u}} \right) = x^2 \cdot \left(\pm \frac{1}{\sqrt{u}} \right)^3 \text{. Multipliziert man diese Gleichung im Fall des oberen Vorschung im Fall des oberen Vor$

zeichens mit -1, so folgt <u>für beide Vorzeichen</u> $u'-2\frac{u}{x}=-2x^2$. Dies ist eine <u>lineare DG</u>.

 $Zur \ \underline{homogenen\ DGL};\ u'-2\frac{u}{x}=0 \ \text{ führt auf } \ \frac{du}{u}=\frac{2}{x}dx \ \text{ mit } \ \ln \mid u\mid =2\ln \mid x\mid +c \ \text{, also } u=C\cdot x^2 \ .$

Die <u>Variation der Konstanten</u> führt auf den Ansatz $u(x) = K(x) \cdot x^2$ mit $u'(x) = K'(x) \cdot x^2 + K(x) \cdot 2x$. Dies wird in die inhomogene DGL eingesetzt: $K'(x) \cdot x^2 + K(x) \cdot 2x - 2 \cdot \frac{K(x) \cdot x^2}{x} = -2x^2$ vereinfacht sich zu K'(x) = -2x mit einer Lösung K(x) = -2x, so dass $u_s(x) = K(x) \cdot x^2 = -2x^3$ eine spezielle Lösung der inhomogenen DGL

 $u'-2\frac{u}{x}=-2x^2$ ist. Die allgemeine Lösung folgt zu $u(x)=C\cdot x^2-2x^3$. Durch Resubstitution folgt

$$y = \pm \frac{1}{\sqrt{u}} = \pm \frac{1}{\sqrt{C \cdot x^2 - 2x^3}} = \pm \frac{1}{\sqrt{x^2 \left(C - 2x\right)}} = \pm \frac{1}{\mid x \mid \cdot \sqrt{\left(C - 2x\right)}} \text{ , folglich } y = \pm \frac{1}{x \cdot \sqrt{\left(C - 2x\right)}} \text{ .}$$

Probe für das obere Vorzeichen:

Einerseits ist
$$y' + \frac{1}{x}y = \frac{3x - C}{x^2 \cdot (C - 2x)^{3/2}} + \frac{1}{x} \cdot \frac{1}{x \cdot (C - 2x)^{1/2}} = \frac{3x - C + C - 2x}{x^2 \cdot (C - 2x)^{3/2}} = \frac{1}{x \cdot (C - 2x)^{3/2}}$$

andererseits ist
$$x^2 \cdot y^3 = x^2 \cdot \frac{1}{x^3 \cdot (C - 2x)^{3/2}} = \frac{1}{x \cdot (C - 2x)^{3/2}}$$
.

II Die Differenzialgleichung 2. Ordnung

Definition: Eine Differenzialgleichung der Gestalt $y'' + a \cdot y' + b \cdot y = g(x)$ mit $a, b \in \mathbb{R}$ heißt lineare Differenzialgleichung 2. Ordnung mit konstanten Koeffizienten.

1. Die lineare homogene Differenzialgleichung 2. Ordnung mit konstanten Koeffizienten

Sie hat die Gestalt
$$(*)$$
 $y'' + a \cdot y' + b \cdot y = 0$ mit $a, b \in \mathbb{R}$.

Eigenschaften der Lösungen einer linearen homogenen Differenzialgleichung (*) 2. Ordnung mit konstanten Koeffizienten:

1. Wenn y(x) eine Lösung von (*) ist, dann auch $C \cdot y(x)$ für beliebiges $C \in \mathbb{R}$.

Denn $(C \cdot y)'' + a \cdot (C \cdot y)' + b \cdot C \cdot y = C \cdot (y'' + a \cdot y' + b \cdot y) = C \cdot 0 = 0$

2. Wenn $y_1(x)$ und $y_2(x)$ Lösungen von (*) sind, dann auch $y(x) = C_1 \cdot y_1(x) + C_2 \cdot y_2(x)$ für beliebige $C_1, C_2 \in \mathbb{R}$.

$$\begin{split} & \text{Denn } \left(C_1 \cdot y_1(x) + C_2 \cdot y_2(x) \right)'' + a \cdot \left(C_1 \cdot y_1(x) + C_2 \cdot y_2(x) \right)' + b \cdot \left(C_1 \cdot y_1(x) + C_2 \cdot y_2(x) \right) = \\ & = C_1 \cdot \left(y_1''(x) + a \cdot y_1'(x) + b \cdot y_1(x) \right) + C_2 \cdot \left(y_2''(x) + a \cdot y_2'(x) + b \cdot y_2(x) \right) = C_1 \cdot 0 + C_2 \cdot 0 = 0 \ . \end{split}$$

3. Wenn $y(x) = u(x) + i \cdot v(x)$ eine komplexwertige Lösung von (*) ist, dann sind auch der Realteil u(x) und der Imaginärteil v(x) für sich reellwertige Lösungen von (*).

$$\begin{split} & \text{Denn } & \theta = \left(u(x) + i \cdot v(x)\right)'' + a \cdot \left(u(x) + i \cdot v(x)\right)' + b \cdot \left(u(x) + i \cdot v(x)\right) = \\ & = u''(x) + a \cdot u'(x) + b \cdot u(x) + i \cdot \left(v''(x) + a \cdot v'(x) + b \cdot v(x)\right) \text{ und folglich } & u''(x) + a \cdot u'(x) + b \cdot u(x) = 0 \text{ und } \\ & v''(x) + a \cdot v'(x) + b \cdot v(x) = 0 \text{ .} \end{split}$$

Wir haben gesehen, dass die allgemeine Lösung einer DGL 1. Ordnung eine wählbare Konstante enthält. Eine DGL 2. Ordnung enthält 2 wählbare Konstanten.

Beispiele: y''(x) = 0 hat die Lösungen $y(x) = C_1 \cdot x + C_2$.

$$y''(x) = ax + b$$
 hat die Lösungen $y(x) = \frac{1}{6}a \cdot x^3 + \frac{1}{2}b \cdot x^2 + C_1 \cdot x + C_2$.

Um die beiden Konstanten C_1 und C_2 zu bestimmen, benötigt man 2 Vorgaben. Meist gibt man den Funktionswert und die Ableitung an einer Stelle x_0 vor: $y(x_0) = y_0$ und $y'(x_0) = m_0$.

Die Frage ist nun, auf welche Weise erhält man alle Lösungen einer DGL der Gestalt (*)?

Wir wissen, dass mit $y_1(x)$ und $y_2(x)$ auch $y(x) = C_1 \cdot y_1(x) + C_2 \cdot y_2(x)$ Lösungen von (*) sind.

Unter welcher Voraussetzung an $y_1(x)$ und $y_2(x)$ erhält man in $y(x) = C_1 \cdot y_1(x) + C_2 \cdot y_2(x)$ **alle** Lösungen der DGL (*)? y(x) enthält ja schon die beiden verlangten Parameter.

Es sei $y(x) = C_1 \cdot y_1(x) + C_2 \cdot y_2(x)$ und die Anfangsbedingungen $y(x_0) = y_0$ und $y'(x_0) = m_0$ beliebig vorgegeben,

$$\text{d.h.} \ \begin{vmatrix} C_1 \cdot y_1(x_0) + C_2 \cdot y_2(x_0) = y_0 \\ C_1 \cdot y_1^{\ \prime}(x_0) + C_2 \cdot y_2^{\ \prime}(x_0) = m_0 \end{vmatrix} \qquad \text{bzw.} \ \begin{vmatrix} y_1(x_0) \cdot C_1 + y_2(x_0) \cdot C_2 = y_0 \\ y_1^{\ \prime}(x_0) \cdot C_1 + y_2^{\ \prime}(x_0) \cdot C_2 = m_0 \end{vmatrix}.$$

Dies ist ein lineares Gleichungssystem bestehend aus 2 Gleichungen mit den beiden Unbekannten C_1 und C_2 . Aus der Theorie der linearen Gleichungssysteme wissen wir, dass dieses lineare Gleichungssystem für beliebiges y_0 und m_0 genau eine Lösung besitzt, wenn die Determinante der Koeffizientenmatrix ungleich Null ist:

$$\begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y_1^{\prime}(x_0) & y_2^{\prime}(x_0) \end{vmatrix} = y_1(x_0) \cdot y_2^{\prime}(x_0) - y_2(x_0) \cdot y_1^{\prime}(x_0) \neq 0.$$

Definition: Zwei Lösungen $y_1(x)$ und $y_2(x)$ einer linearen homogenen Differenzialgleichung 2. Ordnung mit konstanten Koeffizienten (*) $y'' + a \cdot y' + b \cdot y = 0$ heißen **linear unabhängige Lösungen** oder **Basislösungen** der DGL (*), wenn es mindestens ein x_0 gibt, so dass die **Wronski-Determinante**

$$\boxed{ W \big(y_1(x), y_2(x) \big) = \begin{vmatrix} y_1(x) & y_2(x) \\ y_1^{'}(x) & y_2^{'}(x) \end{vmatrix} = y_1(x) \cdot y_2^{'}(x) - y_2(x) \cdot y_1^{'}(x)} \text{ ungleich Null ist.}$$

Jósef Maria Hoëné-Wronski, (1776 – 1853), polnischer Philosoph und Mathematiker.

Satz: Die allgemeine Lösung der DGL (*) lässt sich als Linearkombination $y(x) = C_1 \cdot y_1(x) + C_2 \cdot y_2(x)$ zweier linear unabhängiger Lösungen $y_1(x)$ und $y_2(x)$ darstellen.

- $\begin{aligned} & \text{\textbf{Beispiel 1: }} y'' + y = 0 \text{ . Wir wissen, dass } y_1(x) = \sin x \text{ und } y_2(x) = \cos x \text{ L\"osungen dieser DGL sind. Die } \\ & \text{Wronski-Determinante ist } W\left(\sin x, \cos x\right) = \begin{vmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{vmatrix} = -\sin^2 x \cos^2 x = -1 \text{ sogar ungleich} \\ & \text{Null f\"ur alle } x \in \mathbb{R} \text{ . Also hat die allgemeine L\"osung der DGL } y'' + y = 0 \text{ die Gestalt} \\ & y(x) = C_1 \cdot \sin x + C_2 \cdot \cos x \text{ mit } C_1, C_2 \in \mathbb{R} \text{ .} \end{aligned}$
- **Beispiel 2:** y'' y = 0. $y_1(x) = e^x$ und $y_2(x) = e^{-x}$ sind Lösungen dieser DGL. Die Wronski-Determinante ist $W\left(e^x, e^{-x}\right) = \begin{vmatrix} e^x & e^{-x} \\ e^x & -e^{-x} \end{vmatrix} = -1 1 = -2$ sogar ungleich Null für alle $x \in \mathbb{R}$. Also hat die allgemeine Lösung der DGL y'' y = 0 die Gestalt $y(x) = C_1 \cdot e^x + C_2 \cdot e^{-x}$ mit $C_1, C_2 \in \mathbb{R}$.
- **Beispiel 3:** y'' + y' = 0. $y_1(x) = 1$ und $y_2(x) = e^{-x}$ sind Lösungen dieser DGL. Die Wronski-Determinante ist $W\left(1,e^{-x}\right) = \begin{vmatrix} 1 & e^{-x} \\ 0 & -e^{-x} \end{vmatrix} = -e^{-x}$ sogar ungleich Null für alle $x \in \mathbb{R}$. Also hat die allgemeine Lösung der DGL y'' + y' = 0 die Gestalt $y(x) = C_1 + C_2 \cdot e^{-x}$ mit $C_1, C_2 \in \mathbb{R}$.
- **Beispiel 4:** y''-y'=0. $y_1(x)=1$ und $y_2(x)=e^x$ sind Lösungen dieser DGL. Die Wronski-Determinante ist $W\Big(1,e^x\Big)=\begin{vmatrix} 1&e^x\\0&e^x\end{vmatrix}=e^x$ sogar ungleich Null für alle $x\in\mathbb{R}$. Also hat die allgemeine Lösung der DGL y''-y'=0 die Gestalt $y(x)=C_1+C_2\cdot e^x$ mit $C_1,C_2\in\mathbb{R}$.

Heinz Göbel 24.09.2022 Seite 8 von 27

Die allgemeine Lösung der linearen homogenen Differenzialgleichung 2. Ordnung

mit konstanten Koeffizienten (*) $y'' + a \cdot y' + b \cdot y = 0$

Wir beginnen mit dem Ansatz $y=e^{\lambda \cdot x}$. Dann gilt $y'=\lambda \cdot e^{\lambda \cdot x}$ und $y''=\lambda^2 \cdot e^{\lambda \cdot x}$. In (*) eingesetzt folgt $\left(\lambda^2+a\cdot\lambda+b\right)\cdot e^{\lambda \cdot x}=0$ für alle betrachteten Werte von x. Da $e^{\lambda \cdot x}>0$ für alle $x\in\mathbb{R}$. folgt die

charakteristische Gleichung $\lambda^2 + a \cdot \lambda + b = 0$

mit den Lösungen
$$\lambda_{1/2} = -\frac{a}{2} \pm \sqrt{\frac{a^2}{4} - b} = \frac{-a \pm \sqrt{a^2 - 4 \cdot b}}{2}$$

 $D = a^2 - 4b$ heißt auch <u>Diskriminante</u> der quadratischen Gleichung.

Fall 1: $D = a^2 - 4b > 0$

Zu den beiden verschiedenen reellen Lösungen λ_1 und λ_2 der charakteristischen Gleichung gibt es die beiden Lösungen $y_1(x) = e^{\lambda_1 x}$ und $y_2(x) = e^{\lambda_2 x}$. Die Wronski-Determinante entscheidet, ob diese beiden Lösungen linear unabhängig sind, also ob sie eine Basis bilden:

$$W\!\left(e^{\lambda_1 x},e^{\lambda_2 x}\right) = \begin{vmatrix} e^{\lambda_1 x} & e^{\lambda_2 x} \\ \lambda_1 e^{\lambda_1 x} & \lambda_2 e^{\lambda_2 x} \end{vmatrix} = (\lambda_2 - \lambda_1) \cdot e^{(\lambda_1 + \lambda_2) x} \neq 0 \;, \; \; \text{da} \; \; \lambda_1 \neq \lambda_2 \; \; \text{und} \; \; e^{(\lambda_1 + \lambda_2) x} > 0 \; \; \text{gilt.}$$

 $\label{eq:continuous} \text{Die } \underline{\text{allgemeine L\"osung}} \text{ der DGL (*) ist die Linearkombination } \boxed{y(x) = C_1 \cdot e^{\lambda_1 x} + C_2 \cdot e^{\lambda_2 x}} \text{ mit } C_1, C_2 \in \mathbb{R} \ .$

Beispiel: y'' + y' - 6y = 0, d.h. a = 1 und b = -6, also $a^2 - 4b = 25 > 0$.

Die charakteristische Gleichung $\lambda^2 + \lambda - 6 = 0$ hat die Lösungen $\lambda_1 = 2$ und $\lambda_2 = -3$.

Die allgemeine Lösung lautet also $y(x) = C_1 \cdot e^{2x} + C_2 \cdot e^{-3x}$ mit $C_1, C_2 \in \mathbb{R}$.

Probe: $y'' + y' - 6y = 4C_1 \cdot e^{2x} + 9C_2 \cdot e^{-3x} + 2C_1 \cdot e^{2x} - 3C_2 \cdot e^{-3x} - 6C_1 \cdot e^{2x} - 6C_2 \cdot e^{-3x} = 0$.

Fall 2: $D = a^2 - 4b = 0$

Die charakteristische Gleichung besitzt nur die eine Lösung $\lambda = -\frac{a}{2}$, so dass nur die eine Lösung $y = e^{-\frac{a}{2}x}$ der

DGL (*) folgt. Allgemein ist auch $y = C \cdot e^{-\frac{a}{2}x}$ mit $C \in \mathbb{R}$ eine Lösung von (*).

Durch <u>Variation der Konstanten</u> bekommen wir die allgemeine Lösung: Mit dem Ansatz $y = K(x) \cdot e^{-\frac{a}{2}x}$ folgt $y' = K'(x) \cdot e^{-\frac{a}{2}x} - \frac{a}{2} \cdot K(x) \cdot e^{-\frac{a}{2}x}$ und $y'' = K''(x) \cdot e^{-\frac{a}{2}x} - a \cdot K'(x) \cdot e^{-\frac{a}{2}x} + \frac{a^2}{4} \cdot K(x) \cdot e^{-\frac{a}{2}x}$.

Eingesetzt in die DGL (*) folgt:

$$K''(x) \cdot e^{-\frac{a}{2}x} - a \cdot K'(x) \cdot e^{-\frac{a}{2}x} + \frac{a^2}{4} \cdot K(x) \cdot e^{-\frac{a}{2}x} + a \cdot \left(K'(x) \cdot e^{-\frac{a}{2}x} - \frac{a}{2} \cdot K(x) \cdot e^{-\frac{a}{2}x}\right) + b \cdot K(x) \cdot e^{-\frac{a}{2}x} = 0 \ .$$

Zusammengefasst: $\left(K''(x) - \frac{1}{4}(a^2 - 4b) \cdot K(x)\right) \cdot e^{-\frac{a}{2}x} = 0$.

Wegen $a^2 - 4b = 0$ und $e^{-\frac{a}{2}x} > 0$ folgt die DGL K''(x) = 0. Sie hat die Lösungen $K(x) = C_1 \cdot x + C_2$.

Lösungen der DGL (*) sind somit $y(x) = (C_1 \cdot x + C_2) \cdot e^{-\frac{a}{2} \cdot x}$

Dabei handelt es sich um eine Linearkombination von $y_1(x) = e^{-\frac{a}{2} \cdot x}$ und $y_2(x) = x \cdot e^{-\frac{a}{2} \cdot x}$. Diese beiden Lösungen sind linear unabhängig, denn für die Wronski-Determinante gilt

$$W\!\left(e^{\frac{a}{2}\cdot x}, x\cdot e^{\frac{-a}{2}\cdot x}\right) = \begin{vmatrix} e^{\frac{a}{2}\cdot x} & x\cdot e^{\frac{a}{2}\cdot x} \\ e^{\frac{a}{2}\cdot x} & x\cdot e^{\frac{a}{2}\cdot x} \\ -\frac{a}{2}\cdot e^{\frac{a}{2}\cdot x} & \left(1-\frac{a}{2}\,x\right)\cdot e^{\frac{-a}{2}\cdot x} \end{vmatrix} = e^{-a\cdot x} \neq 0 \; .$$

Die <u>allgemeine Lösung</u> der DGL (*) lautet also $y(x) = (C_1 \cdot x + C_2) \cdot e^{-\frac{a}{2} \cdot x}$ mit $C_1, C_2 \in \mathbb{R}$.

Beispiel: y'' - 2y' + y = 0, d.h. a = -2 und b = 1, also $a^2 - 4b = 0$.

Die charakteristische Gleichung lautet $\lambda^2 - 2\lambda + 1 = 0$ mit der einzigen Lösung $\lambda = 1$.

Die allgemeine Lösung lautet folglich $y(x) = (C_1 \cdot x + C_2) \cdot e^x$ mit $C_1, C_2 \in \mathbb{R}$.

 $y'' - 2y' + y = (C_1 \cdot x + 2C_1 + C_2) \cdot e^x - 2(C_1 \cdot x + C_1 + C_2) \cdot e^x + (C_1 \cdot x + C_2) \cdot e^x = 0$ Probe:

Fall 3: $D = a^2 - 4b < 0$

Die beiden Lösungen $\lambda_{1/2} = -\frac{a}{2} \pm \sqrt{\frac{a^2}{4} - b} = \frac{-a \pm \sqrt{a^2 - 4 \cdot b}}{2}$ sind komplex, haben also die Gestalt

 $\boxed{\lambda_{1/2} = \alpha \, \pm \, i \, \omega} \quad \text{mit} \quad \alpha \in \mathbb{R} \quad \text{und} \quad \omega \in \mathbb{R}^+ \, . \, \, \text{Die beiden zugehörigen Lösungen sind dann} \quad y_1(x) = e^{\lambda_1 x} = e^{(\alpha + i\omega)x}$

und $\;\;y_2(x)=e^{\lambda_2 x}=e^{(\alpha-i\omega)x}$. Ihre Wronski-Determinante ist

 $W\left(e^{(\alpha+i\omega)x},e^{(\alpha-i\omega)x}\right) = \begin{vmatrix} e^{(\alpha+i\omega)x} & e^{(\alpha-i\omega)x} \\ (\alpha+i\omega)e^{(\alpha+i\omega)x} & (\alpha-i\omega)e^{(\alpha-i\omega)x} \end{vmatrix} = -2i\omega e^{2\alpha x} \neq 0 \text{ , also haben wir zwei linear unabhänden}$

gige Lösungen gefunden. Die allgemeine komplexe Lösung lautet damit

 $y(x) = C_1 \cdot e^{(\alpha + i\omega)x} + C_2 \cdot e^{(\alpha - i\omega)x} \text{ mit } C_1, C_2 \in \mathbb{C}.$

Mit Hilfe der Eulerschen Formeln $e^{ix} = \cos x + i \cdot \sin x$ folgt:

$$\begin{aligned} y(x) &= C_1 \cdot e^{(\alpha + i\omega)x} + C_2 \cdot e^{(\alpha - i\omega)x} = C_1 \cdot e^{\alpha x} \cdot \left(\cos(\omega x) + i \cdot \sin(\omega x)\right) + C_2 \cdot e^{\alpha x} \cdot \left(\cos(-\omega x) + i \cdot \sin(-\omega x)\right) = \\ &= \left(C_1 + C_2\right) e^{\alpha x} \cdot \cos(\omega x) + i \cdot \left(C_1 - C_2\right) e^{\alpha x} \cdot \sin(\omega x) \;. \end{aligned}$$

Da bei einer komplexwertigen Lösung der Realteil und der Imaginärteil für sich Lösungen sind, haben wir die allgemeine reelle Lösung von (*) $y'' + a \cdot y' + b = 0$

$$y(x) = e^{\alpha \cdot x} \cdot (K_1 \cdot \sin(\omega x) + K_2 \cdot \cos(\omega x))$$
 mit $K_1, K_2 \in \mathbb{R}$

Die charakteristische Gleichung $\lambda^2 + a \cdot \lambda + b = 0$

hat die Lösungen $\lambda_{1/2} = \alpha \pm i \omega$

Begründung der Eulerschen Formel:

1. Möglichkeit: Es sei $f(x) = \frac{\cos x + i \cdot \sin x}{e^{ix}}$ für alle $x \in \mathbb{R}$.

Denn für beliebiges $x \in \mathbb{R}$ ist $e^{ix} \cdot e^{-ix} = e^0 = 1$. Somit kann e^{ix} nie Null sein, also existiert f(x).

$$\text{Es folgt} \quad f'(x) = \frac{(-\sin x + i \cdot \cos x) \cdot e^{ix} - (\cos x + i \cdot \sin x) \cdot i \cdot e^{ix}}{e^{2ix}} = \frac{-\sin x + i \cdot \cos x - i \cdot \cos x + \sin x}{e^{ix}} = 0 \ .$$

Also muss f(x) = c eine Konstante sein. Zur Bestimmung von c setzen wir x = 0: $f(0) = \frac{\cos 0 - i \cdot \sin 0}{c^0} = 1$.

Also ist
$$f(x) = \frac{\cos x + i \cdot \sin x}{e^{ix}} = 1$$
 für alle $x \in \mathbb{R}$.

2. Möglichkeit: Die Taylor-Entwicklung (Brook Taylor, 1685 –1731, britischer Mathematiker) einer Funktion f an der Stelle $x = x_0$ lautet $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$ sofern die unendliche Reihe konvergiert. So folgt zum Beispiel für $x_0 = 0$ und erstaunlicherweise für alle $x \in \mathbb{R}$ $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$, $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$.

Somit folgt
$$e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} + i \cdot \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \cos x + i \cdot \sin x$$
.

Beispiel: y'' - 4y' + 20y = 0, d.h. a = -4 und b = 20, also $a^2 - 4b = -64$.

Die charakteristische Gleichung lautet $\lambda^2 - 4\lambda + 20 = 0$ mit den Lösungen $\lambda_{1/2} = 2 \pm 4i$.

Die allgemeine Lösung lautet folglich $y(x) = (K_1 \cdot \sin(4x) + K_2 \cdot \cos(4x)) \cdot e^{2x}$ mit $K_1, K_2 \in \mathbb{R}$. Die Probe stimmt:

$$\begin{split} -4e^{2x} \cdot & \left[\left(3K_1 + 4K_2 \right) \cdot \sin(4x) + \left(3K_2 - 4K_1 \right) \cdot \cos(4x) \right] - 4 \cdot 2e^{2x} \cdot \left[\left(K_1 - 2K_2 \right) \cdot \sin(4x) + \left(K_2 + 2K_1 \right) \cdot \cos(4x) \right] + \\ & + 20 \cdot e^{2x} \left[K_1 \cdot \sin(4x) + K_2 \cdot \cos(4x) \right] = 0 \, . \end{split}$$

Eine physikalische Anwendung

Eine Kugel der Masse m und Radius r hängt an einer Feder der Federkonstanten D und befindet sich in Ruhe. Nun wird die Kugel um die Strecke s_0 nach oben gehoben und zur Zeit t=0 aus der Ruhe heraus losgelassen, so dass sie sich nach unten bewegen kann.

a. Die Bewegung erfolgt reibungsfrei: Nach Robert Hooke (englischer Universalgelehrter 1635–1703) gilt für die Rückstellkraft \vec{F} das lineare Kraftgesetz $\vec{F} = -D \cdot \vec{s}$ mit der Auslenkung \vec{s} . Das Minus-Zeichen zeigt an, dass \vec{F} und \vec{s} entgegengesetzt gerichtet sind. Nach Isaac Newton (1643–1727) gilt $\vec{F} = m \cdot \vec{a} = m \cdot \vec{s}$, so dass $m \cdot \vec{s}(t) = -D \cdot \vec{s}(t)$. Dabei bedeutet $\vec{s}(t)$ die zweite Ableitung von $\vec{s}(t)$ nach t. Da es sich um eine eindimensionale Bewegung handelt, kann man s(t) mit Vorzeichen versehen und somit die Vektorpfeile weglassen. Dann lautet die dazugehörige DGL $\left| \vec{s}(t) + \frac{D}{m} \cdot s(t) = 0 \right|$.

Der Ansatz $s(t) = e^{\lambda \cdot t}$ führt auf $\left(\lambda^2 + \frac{D}{m}\right) \cdot e^{\lambda \cdot t} = 0$ für alle Zeiten t. Daraus folgt $\lambda = \pm i \sqrt{\frac{D}{m}}$. Somit lautet die Lösung $s(t) = s_0 \cdot \cos\left(\sqrt{\frac{D}{m}} \cdot t\right)$. In der Physik schreibt man gerne $s(t) = s_0 \cdot \cos\left(\omega_0 \cdot t\right)$ mit der Kreisfrequenz $\omega_0 = \sqrt{\frac{D}{m}} = \frac{2\pi}{T_0}$. Dabei ist T_0 die Schwingungsdauer.

b. Die Feder samt Kugel befinde sich nun in einer Flüssigkeit. Nach Stokes (irischer Mathematiker und Physiker, 1819–1903) wirkt auf eine Kugel vom Radius r, die sich mit der Geschwindigkeit $v=\dot{s}$ in einer Flüssigkeit der Viskosität η bewegt, die Reibungskraft $F_R=6\pi\eta r\,v$. F_R und v sind entgegengesetzt gerichtet. Dann wirkt

 $\text{auf die Kugel die Kraft } \vec{F} = -6\pi\eta r \, \vec{v} - D\vec{s} \ \text{ lautet die dazugehörige DGL } \left[\ddot{\vec{s}}(t) + \frac{6\pi\eta r}{m} \cdot \dot{\vec{s}}(t) + \frac{D}{m} \cdot \vec{s}(t) = 0 \right].$

Der Ansatz $s(t) = e^{\lambda \cdot t}$ führt auf $\left(\lambda^2 + \frac{6\pi\eta r}{m} \cdot \lambda + \frac{D}{m}\right) \cdot e^{\lambda \cdot t} = 0$ für alle Zeiten t. Daraus folgt

 $\lambda_{1/2}=-\frac{3\pi\eta r}{m}\pm\sqrt{\left(\frac{3\pi\eta r}{m}\right)^2-\frac{D}{m}}$. Man unterscheidet jetzt drei Fälle, siehe oben.

 $\textbf{Fall 1:} \ \left(\frac{3\pi\eta r}{m}\right)^2 - \frac{D}{m} > 0 \ . \ Dann \ lautet \ die \ L\"{o}sung \ \ s(t) = C_1 \cdot e^{\lambda_1 \cdot t} + C_2 \cdot e^{\lambda_2 \cdot t} \ \ und$

 $v(t)=\dot{s}(t)=C_1\cdot\lambda_1\cdot e^{\lambda_1\cdot t}+C_2\cdot\lambda_2\cdot e^{\lambda_2\cdot t}\,. \label{eq:vt} \mbox{ Mit den Anfangsbedingungen } s(0)=s_0 \mbox{ und } \dot{s}(0)=0 \mbox{ ergibt sich } C_1+C_2=s_0 \mbox{ und } C_1\cdot\lambda_1+C_2\cdot\lambda_2=0 \;.$

$$Also \ C_1 = -\frac{\lambda_2}{\lambda_1 - \lambda_2} \cdot s_0 \ \ und \ \ C_2 = \frac{\lambda_1}{\lambda_1 - \lambda_2} \cdot s_0 \ .$$

 $\begin{tabular}{ll} \textbf{Zahlenbeispiel:} & \textbf{Kugelmasse} & m=0,001 kg \text{ , Kugelradius } & r=0,3 m \text{ , maximale Auslenkung } & s_0=0,1 m \text{ , Viskositit von Wasser } & \eta=0,001 Ns/m^2 & \textbf{ und Federkonstante } & D=0,005 N/m \text{ . Dann folgt} \\ & s(t)=0,1317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-4,558 s^{-1} \cdot t} & \textbf{ , t in Sekunden. (Oberes rotes Schaubild)} \\ & s(t)=0,1317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-4,558 s^{-1} \cdot t} & \textbf{ , t in Sekunden. (Oberes rotes Schaubild)} \\ & s(t)=0,1317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-4,558 s^{-1} \cdot t} & \textbf{ , t in Sekunden. (Oberes rotes Schaubild)} \\ & s(t)=0,1317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-4,558 s^{-1} \cdot t} & \textbf{ , t in Sekunden. (Oberes rotes Schaubild)} \\ & s(t)=0,1317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-4,558 s^{-1} \cdot t} & \textbf{ , t in Sekunden. (Oberes rotes Schaubild)} \\ & s(t)=0,1317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-4,558 s^{-1} \cdot t} & \textbf{ , t in Sekunden. (Oberes rotes Schaubild)} \\ & s(t)=0,1317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-4,558 s^{-1} \cdot t} & \textbf{ , t in Sekunden. (Oberes rotes Schaubild)} \\ & s(t)=0,1317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-4,558 s^{-1} \cdot t} & \textbf{ , t in Sekunden. (Oberes rotes Schaubild)} \\ & s(t)=0,1317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-4,558 s^{-1} \cdot t} & \textbf{ , t in Sekunden. (Oberes rotes Schaubild)} \\ & s(t)=0,1317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-4,558 s^{-1} \cdot t} & \textbf{ , t in Sekunden. (Oberes rotes Schaubild)} \\ & s(t)=0,1317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0,0317 \, m \cdot e^{-1,097 s^{-1} \cdot t} & -0$

Fall 2: Man verwendet nun eine andere Feder, sodass $\left(\frac{3\pi\eta r}{m}\right)^2 - \frac{D}{m} = 0$. Dies ist erfüllt für $D = 0,00799 \, N/m$. Dann ist $\lambda = -2,8274 \, s^{-1}$ und die allgemeine Lösung $s(t) = \left(C_1 \cdot t + C_2\right) \cdot e^{\lambda \cdot t}$. Mit den Anfangsbedingungen $s(0) = s_0$ und $\dot{s}(0) = 0$ ergibt sich $C_2 = s_0$ und $C_1 + C_2 \cdot \lambda = 0$, also $C_1 = -C_2 \cdot \lambda$. Mit den in Fall 1 gegebenen

Werten, außer für D, folgt $s(t) = (0,2827\,t+0,1)\cdot e^{-2,8274s^{-1}\cdot t}$, t in Sekunden, s(t) in Meter. (Unteres blaues Schaubild)

Fall 3: Man verwendet nun eine andere Feder, sodass $\left(\frac{3\pi\eta r}{m}\right)^2 - \frac{D}{m} < 0$, d.h. für $D > 0,00799 \, \text{N/m}$. Es ergibt sich die Lösung (t in Sekunden, s(t) in Meter)

$$s(t) = s_0 \cdot e^{-\frac{3\pi\eta r}{m} \cdot t} \cdot cos \Bigg(\sqrt{\frac{D}{m} - \left(\frac{3\pi\eta r}{m}\right)^2} \cdot t \Bigg). \ \ In \ der \ Physik \ schreibt \ man \ gerne$$

$$s(t) = s_0 \cdot e^{-\delta \cdot t} \cdot cos \left(\sqrt{\omega_o^2 - \delta^2} \cdot t \right). \ Dabei \ bestimmt \ \delta = \frac{3 \, \pi \, \eta \, r}{m} \ den \ Grad \ der$$

Dämpfung, $\omega_0 = \frac{D}{m} = \frac{2\pi}{T_0}$ ist die Kreisfrequenz der ungedämpften Schwingung

2. Die lineare inhomogene DGL 2. Ordnung mit konstanten Koeffizienten

 $\boxed{ (**) \quad y'' + a \cdot y' + b \cdot y = g(x) } \quad \text{mit } a, b \in \mathbb{R} \ .$

Satz: Die allgemeine Lösung der DGL (**) hat die Gestalt $y(x) = y_s(x) + y_0(x)$. Dabei ist $y_s(x)$ eine spezielle Lösung der inhomogenen DGL und $y_0(x)$ die allgemeine Lösung der zugehörigen homogenen DGL.

Fall 1: g(x) = c, wobei c eine Konstante ist.

a.
$$y'' = c$$
, d.h. $\mathbf{a} = \mathbf{0}$ und $\mathbf{b} = \mathbf{0}$. Die allgemeine Lösung ist
$$y(x) = \frac{1}{2}c \cdot x^2 + C_1 \cdot x + C_2$$
, wobei $y_s(x) = \frac{1}{2}c \cdot x^2$ und $y_0(x) = C_1 \cdot x + C_2$

b.
$$y'' + a \cdot y' = c$$
 mit $a \neq 0$ und $b = 0$.

Eine spezielle Lösung ist
$$y_s(x) = \frac{c}{a} \cdot x$$
.

Die allgemeine Lösung der homogenen DGL folgt mit Hilfe der charakteristischen Gleichung $\lambda^2 + a \cdot \lambda = 0 \text{ mit den beiden Lösungen } \lambda_1 = 0 \text{ und } \lambda_2 = -a \text{ zu } y_0(x) = C_1 \cdot e^{0 \cdot x} + C_2 \cdot e^{-a \cdot x} \text{ ; siehe Seite } \lambda_1 = 0 \text{ siehe Seite } \lambda_2 = -a \text{ zu } y_0(x) = C_1 \cdot e^{0 \cdot x} + C_2 \cdot e^{-a \cdot x} \text{ ; siehe Seite } \lambda_2 = -a \text{ zu } y_0(x) = 0 \text{ siehe Seite } \lambda_1 = 0 \text{ siehe Seite } \lambda_2 = -a \text{ zu } y_0(x) = 0 \text{ siehe Seite } \lambda_1 = 0 \text{ siehe Seite } \lambda_2 = -a \text{ zu } \lambda_2 = -a \text{ zu } \lambda_3 = 0 \text{ siehe Seite } \lambda_3 = 0 \text$

7 Fall 1:
$$D = a^2 - 4b > 0$$
. Also ist $y(x) = \frac{c}{a}x + C_1 + C_2 \cdot e^{-a \cdot x}$.

c.
$$y'' + a \cdot y' + b \cdot y = c$$
 mit $b \neq 0$.

Eine spezielle Lösung ist
$$y_s(x) = \frac{c}{b}$$
.

Die allgemeine Lösung der homogenen DGL ist oben behandelt.

Fall 2: $g(x) = c \cdot x + d$, wobei c, d Konstanten sind.

a. $y'' = c \cdot x + d$, d.h. a = 0 und b = 0. Die allgemeine Lösung ist

$$y(x) = \frac{1}{6}c \cdot x^3 + \frac{1}{2}d \cdot x^2 + C_1 \cdot x + C_2, \text{ wobei } y_s(x) = \frac{1}{6}c \cdot x^3 + \frac{1}{2}d \cdot x^2 \text{ und } y_0(x) = C_1 \cdot x + C_2$$

b. $y'' + a \cdot y' = c \cdot x + d$ mit $a \neq 0$ und b = 0.

Eine spezielle Lösung ist $y_s(x) = \frac{c}{2a} \cdot x^2 + \left(\frac{d}{a} - \frac{c}{a^2}\right) \cdot x$.

Die allgemeine Lösung der homogenen DGL ist oben behandelt.

c. $y'' + a \cdot y' + b \cdot y = c \cdot x + d$ mit $b \neq 0$.

Eine spezielle Lösung ist $y_s(x) = \frac{c \cdot x + d}{b} - \frac{a \cdot c}{b^2}$

Die allgemeine Lösung der homogenen DGL ist oben behandelt.

Satz: Es sei $p_n(x)$ ein Polynom vom Grad n. Dann besitzt die DGL $y'' + a \cdot y' + b \cdot y = p_n(x)$ eine spezielle Lösung der Gestalt:

$$y_s(x) = \begin{cases} q_n(x) & \text{für} & b \neq 0 \\ x \cdot q_n(x) & \text{für} & a \neq 0 \text{ und } b = 0 \text{ .} \\ x^2 \cdot q_n(x) & \text{für} & a = b = 0 \end{cases}$$
 Dabei sind die $q_n(x)$ Polynome vom Grad n.

Beispiel 1:
$$b \neq 0$$
: $y'' - 5 \cdot y' + 4 \cdot y = 2x^2 + 3x - 1$

Ansatz: $y_s(x) = u \cdot x^2 + v \cdot x + w$. Es folgt $y_s'(x) = 2u \cdot x + v$ und $y_s''(x) = 2u$.

Eingesetzt in die DGL: $4u \cdot x^2 + (4v - 10u) \cdot x + (2u + 4w - 5v) = 2x^2 + 3x - 1$ für alle Werte x.

Die Koeffizienten müssen jeweils gleich sein. Das ergibt 4u=2, 4v-10u=3 und 2u+4w-5v=-1.

Es folgt
$$u = \frac{1}{2}$$
, $v = 2$ und $w = 2$ und damit $y_s(x) = \frac{1}{2} \cdot x^2 + 2 \cdot x + 2 = \frac{1}{2} \cdot (x+2)^2$.

Die allgemeine Lösung lautet damit $y(x) = C_1 \cdot e^x + C_2 \cdot e^{4x} + \frac{1}{2} \cdot (x+2)^2$.

Beispiel 2:
$$a \neq 0$$
 und $b = 0$: $y'' - y' = -x^2 + x - 1$.

Ansatz: $y_s(x) = x \cdot (u \cdot x^2 + v \cdot x + w) = u \cdot x^3 + v \cdot x^2 + w \cdot x$. Es folgt $y_s'(x) = 3u \cdot x^2 + 2v \cdot x + w$ und $y_s''(x) = 6u \cdot x + 2v$.

Eingesetzt in die DGL: $-3u \cdot x^2 + (6u - 2v) \cdot x + (2v - w) = -x^2 + x - 1$ für alle $x \in \mathbb{R}$. Die Koeffizien-

ten müssen jeweils gleich sein: -3u = -1, 6u - 2v = 1 und 2v - w = -1. Das ergibt $u = \frac{1}{3}$, $v = \frac{1}{2}$

und
$$w = 2$$
, also $y_s(x) = \frac{1}{3} \cdot x^3 + \frac{1}{2} \cdot x^2 + 2x$.

Die allgemeine Lösung lautet damit $y(x) = \frac{1}{3} \cdot x^3 + \frac{1}{2} \cdot x^2 + 2x + C_1 \cdot e^x + C_2$.

Beispiel 3:
$$a = 0$$
 und $b = 0$: $y'' = -6 \cdot x^2 + 4 \cdot x - 1$.

$$\text{Durch Integration folgt:} \quad y_s(x) = -\frac{1}{2}x^4 + \frac{2}{3}x^3 - \frac{1}{2}x^2 \; , \; \text{also} \quad y(x) = -\frac{1}{2}x^4 + \frac{2}{3}x^3 - \frac{1}{2}x^2 + C_1x + C_2 \; .$$

<u>Die allgemeine Lösung der linearen (homogenen) Differenzialgleichung</u> höherer Ordnung mit konstanten Koeffizienten

- **Beispiel 1:** y'''-6y''+11y'-6y=0. Der Ansatz $y=e^{\lambda\cdot x}$ führt auf die charakteristische Gleichung $\lambda^3-6\lambda^2+11\lambda-6=0$. Sie hat die Lösungen $\lambda_1=1$, $\lambda_2=2$, $\lambda_3=3$. Damit lautet die allgemeine Lösung der DGL $y(x)=C_1e^x+C_2e^{2x}+C_3e^{3x}$ mit C_1 , C_2 , $C_3\in\mathbb{R}$.
- $\begin{aligned} \textbf{Beispiel 2:} & \quad y^{(4)} + y''' 2y'' = 0 \text{. Der Ansatz} \quad y = e^{\lambda \cdot x} \quad \text{führt auf die charakteristische Gleichung} \\ & \quad \lambda^4 + \lambda^3 2\lambda^2 = 0 \text{. Sie hat die Lösungen} \quad \lambda_{1/2} = 0 \text{, } \lambda_3 = 1 \text{, } \lambda_4 = -2 \text{. Damit lautet die allgemeine} \\ & \quad \text{Lösung der DGL} \quad y(x) = C_1 + C_2 x + C_3 e^x + C_4 e^{-2x} \quad \text{mit} \quad C_1, C_2, C_3, C_4 \in \mathbb{R} \text{.} \end{aligned}$
- $\label{eq:beispiel3a:} \textbf{Beispiel 3a:} \quad y^{(6)} y^{(5)} 3y^{(4)} + 5y''' 2y'' = 0 \text{.} \text{ Der Ansatz} \quad y = e^{\lambda \cdot x} \quad \text{führt auf die charakteristische Gleichung} \\ \lambda^6 \lambda^5 3\lambda^4 + 5\lambda^3 2\lambda^2 = 0 \text{.} \text{ Sie hat die Lösungen} \quad \lambda_{1/2} = 0 \text{,} \quad \lambda_{3/4/5} = 1 \text{,} \quad \lambda_6 = -2 \text{.} \text{ Damit lautet} \\ \text{die allgemeine Lösung der DGL} \quad y(x) = C_1 + C_2 x + C_3 e^x + C_4 x e^x + C_5 x^2 e^x + C_6 e^{-2x} \quad \text{mit} \quad C_i \in \mathbb{R} \text{,} \\ i = 1, \dots, 6 \text{.} \end{aligned}$
- $\begin{aligned} \text{\textbf{Beispiel 3b:}} \quad & y^{(6)} y^{(5)} 3y^{(4)} + 5y''' 2y'' = a \text{ . Die allgemeine L\"osung der DGL lautet} \\ & y(x) = -\frac{1}{4}a\,x^2 + C_1 + C_2x + C_3e^x + C_4x\,e^x + C_5x^2e^x + C_6e^{-2x} \;\; \text{mit} \;\; C_i \in \mathbb{R} \;, \; i = 1, \dots, 6 \;. \end{aligned}$
- $\begin{aligned} \text{\textbf{Beispiel 3c:}} \quad & y^{(6)} y^{(5)} 3y^{(4)} + 5y''' 2y'' = a + bx \; . \; \; \text{Die allgemeine L\"osung der DGL lautet} \\ & y(x) = \bigg(\frac{1}{4} a \frac{5}{8} b \bigg) x^2 \frac{1}{12} b \, x^3 + C_1 + C_2 x + C_3 e^x + C_4 x \, e^x + C_5 x^2 e^x + C_6 e^{-2x} \; \; \text{mit} \; \; C_i \in \mathbb{R} \; , \\ & i = 1, \dots, \; 6 \; . \end{aligned}$

Systeme linearer Differenzialgleichungen

Definition: Ein System von zwei linearen Differenzialgleichungen 1. Ordnung mit konstanten Koeffizienten hat die Gestalt:

$$\begin{vmatrix} y_1' & = & a_{11} \cdot y_1 & + & a_{12} \cdot y_2 & + & g_1(x) \\ y_2' & = & a_{21} \cdot y_1 & + & a_{22} \cdot y_2 & + & g_2(x) \end{vmatrix} .$$
 Dabei sind $y_1 = y_1(x)$ und $y_2 = y_2(x)$ Funktionen von x .

Außerdem dürfen a_{12} und a_{21} nicht zugleich Null sein, da es sich sonst um zwei voneinander unabhängige Differenzialgleichungen handelt.

$$\text{Andere Schreibweise:} \quad \begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} g_1(x) \\ g_2(x) \end{pmatrix} \quad \text{bzw.} \quad \begin{bmatrix} \vec{y}' = A \cdot \vec{y} + \vec{g}(x) \end{bmatrix} \quad \text{mit} \quad \begin{pmatrix} a_{12} \\ a_{21} \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Definition: Unter der **Ordnung** eines Differenzialgleichungssytems versteht man die Summe der Ordnungen der einzelnen Differenzialgleichungen.
Obiges System hat also die Ordnung 2.

Definition: Obiges Differenzialgleichungssytem heißt **homogen**, falls für die beiden Störfunktionen $g_1(x) = 0$ und $g_2(x) = 0$ gilt, andernfalls heißt es **inhomogen**.

$$y_1 = a_{11} \cdot y_1 + a_{12} \cdot y_2$$

 $y_2' = a_{21} \cdot y_1 + a_{22} \cdot y_2$

Mit dem Ansatz $\vec{y} = \begin{pmatrix} K_1 \\ K_2 \end{pmatrix} \cdot e^{\lambda \cdot x}$, wobei K_1 , K_2 und λ reelle Zahlen sind, folgt durch Einsetzen in das System:

$$\begin{array}{lclcrcl} \lambda \cdot K_1 \cdot e^{\lambda x} & = & a_{11} \cdot K_1 \cdot e^{\lambda x} & + & a_{12} \cdot K_2 \cdot e^{\lambda x} \\ \lambda \cdot K_2 \cdot e^{\lambda x} & = & a_{21} \cdot K_1 \cdot e^{\lambda x} & + & a_{22} \cdot K_2 \cdot e^{\lambda x} \end{array}.$$

Man kürzt mit $e^{\lambda x}$ und sortiert nach K_1 und K_2 und erhält

$$\boxed{ \begin{bmatrix} (a_{11} - \lambda) \cdot K_1 & + & a_{12} \cdot K_2 & = & 0 \\ a_{21} \cdot K_1 & + & (a_{22} - \lambda) \cdot K_2 & = & 0 \end{bmatrix} }.$$

Dies ist ein homogenes LGS für die beiden Unbekannten K_1 und K_2 .

Es gibt nur dann nichttriviale Lösungen für K₁ und K₂, falls die Determinante des LGS gleich Null ist. Dies führt auf die charakteristische Gleichung $(a_{11}-\lambda)\cdot(a_{22}-\lambda)-a_{12}\cdot a_{21}=0$. Und ausmultipliziert:

$$\lambda^2 - \operatorname{Sp}(A) \cdot \lambda + \det(A) = 0.$$

Wir unterscheiden drei Fälle:

Fall 1: $\lambda_1 \neq \lambda_2$ und reell

Dann ist $|\{e^{\lambda_1 x}, e^{\lambda_2 x}\}|$ eine **Fundamentalbasis** des homogenen Systems und die Lösungen y_1 und y_2 lassen sich als Linearkombinationen dieser beiden Funktionen darstellen.

Fall 2: $\lambda_1 = \lambda_2$ und reell

Dann ist $\left\{e^{\lambda x}, x \cdot e^{\lambda x}\right\}$ eine **Fundamentalbasis** des homogenen Systems und die Lösungen y_1 und y_2 lassen sich als Linearkombinationen dieser beiden Funktionen darstellen.

Fall 3: $\lambda_{1/2} = \alpha \pm i \cdot \omega$, also konjugiert komplex und verschieden

$$Dann \ gilt \qquad e^{\lambda_{i}x} = e^{(\alpha + i\omega)x} = e^{\alpha x} \cdot e^{i\omega x} = e^{\alpha x} \cdot (\cos\omega x + i \cdot \sin\omega x)$$

und
$$e^{\lambda_2 x} = e^{(\alpha - i\omega)x} = e^{\alpha x} \cdot e^{i\omega x} = e^{\alpha x} \cdot (\cos \omega x - i \cdot \sin \omega x), \text{ da } \cos(-\omega x) = \cos \omega x \text{ und } \sin(-\omega x) = -\sin \omega x.$$

Durch Addition bzw. Subtraktion der beiden Gleichungen erhält man für das homogene System eine Fundamentalbasis $\{e^{\alpha x} \cdot \cos \omega x, e^{\alpha x} \cdot \sin \omega x\}$.

Beispiel 1a:
$$y_1' = y_1 - y_2 \ y_2' = -4y_1 - 2y_2$$

$$\text{Der Ansatz} \quad \vec{y} = \begin{pmatrix} K_1 \\ K_2 \end{pmatrix} \cdot e^{\lambda \cdot x} \quad \text{führt auf} \quad \begin{pmatrix} (1-\lambda) \cdot K_1 & - & K_2 & = & 0 \\ -4K_1 & + & (-2-\lambda) \cdot K_2 & = & 0 \end{pmatrix} \quad \text{mit der charakteristischen Gleichung}$$

$$0 = \begin{vmatrix} 1 - \lambda & -1 \\ -4 & -2 - \lambda \end{vmatrix} = \lambda^2 + \lambda - 6 \text{ und den Lösungen } \lambda_1 = 2 \text{ und } \lambda_2 = -3.$$

Also hat y_1 die Gestalt $y_1 = C_1 \cdot e^{2x} + C_2 \cdot e^{-3x}$ mit beliebigen Konstanten $C_1, C_2 \in \mathbb{R}$.

Man hätte auch für y, mit diesem Ansatz beginnen können.

y₂ erhält man aus der ersten Differenzialgleichung zu

$$y_2 = y_1 - y_1' = C_1 \cdot e^{2x} + C_2 \cdot e^{-3x} - 2C_1 \cdot e^{2x} + 3C_2 \cdot e^{-3x} = -C_1 \cdot e^{2x} + 4C_2 \cdot e^{-3x} \ .$$

Eine andere Schreibweise:
$$\vec{y} = C_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{2x} + C_2 \begin{pmatrix} 1 \\ 4 \end{pmatrix} e^{-3x}$$
 .

Zusatz: Lösen eines Anfangswertproblems, z.B. $y_1(0) = 1$ und $y_2(0) = 9$.

Die beiden Gleichungen führen auf $C_1 + C_2 = 1$ und $-C_1 + 4C_2 = 9$ mit den Lösungen $C_1 = -1$ und $C_2 = 2$,

so dass
$$\vec{y} = -\begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{2x} + 2 \begin{pmatrix} 1 \\ 4 \end{pmatrix} e^{-3x} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{2x} + \begin{pmatrix} 2 \\ 8 \end{pmatrix} e^{-3x}$$
.

Beispiel 1b:
$$y_1' = 2y_1$$
 . Der Ansatz $\vec{y} = \begin{pmatrix} K_1 \\ K_2 \end{pmatrix} \cdot e^{\lambda \cdot x}$ führt aus

den Lösungen $\lambda_1 = 2$ und $\lambda_2 = -3$.

Da hier nur die zweite Gleichung beide Funktionen enthält, lässt sich nur y2 als Linearkombination beider Basis-Lösungen darstellen: $y_2 = C_1 \cdot e^{2x} + C_2 \cdot e^{-3x}$. Dann folgt y_1 aus der zweiten Differenzialgleichung zu $y_1 = -\frac{3}{5}y_2 - \frac{1}{5}y_2' = -\frac{3}{5} \cdot \left(C_1 \cdot e^{2x} + C_2 \cdot e^{-3x}\right) - \frac{1}{5} \cdot \left(2C_1 \cdot e^{2x} - 3C_2 \cdot e^{-3x}\right) = -C_1 e^{2x}.$

Andere Schreibweise:
$$\vec{y} = C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{2x} + C_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-3x}$$
.

Zusatz: Lösen eines Anfangswertproblems, z.B. $y_1(0) = 1$ und $y_2(0) = 0$.

Die beiden Gleichungen führen auf $-C_1 = 1$ und $C_1 + C_2 = 0$ mit den Lösungen $C_1 = -1$ und $C_2 = 1$, so dass

$$\vec{y} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{2x} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-3x} .$$

Beispiel 2a:
$$y_1' = y_1 - y_2 \ y_2' = y_1 + 3y_2$$
.

Der Ansatz
$$\vec{y} = \begin{pmatrix} K_1 \\ K_2 \end{pmatrix} \cdot e^{\lambda \cdot x}$$
 führt auf $\begin{pmatrix} (1-\lambda) \cdot K_1 & - & K_2 & = & 0 \\ K_1 & + & (3-\lambda) \cdot K_2 & = & 0 \end{pmatrix}$ mit der charakteristischen Gleichung

$$0 = \begin{vmatrix} 1 - \lambda & -1 \\ 1 & 3 - \lambda \end{vmatrix} = \lambda^2 - 4\lambda + 4 \text{ und der einzigen L\"osung } \lambda = 2.$$

Also hat y_1 die Gestalt $y_1 = C_1 \cdot e^{2x} + C_2 \cdot x \cdot e^{2x}$ mit beliebigen Konstanten $C_1, C_2 \in \mathbb{R}$.

Man hätte auch für y₂ mit diesem Ansatz beginnen können.

y, erhält man aus der ersten Differenzialgleichung zu

$$y_2 = y_1 - y_1' = C_1 \cdot e^{2x} + C_2 \cdot x \cdot e^{2x} - \left(2C_1 \cdot e^{2x} + C_2 \cdot e^{2x} + 2C_2 \cdot x \cdot e^{2x}\right) = \left(-C_1 - C_2 - C_2 x\right) \cdot e^{2x}.$$

Andere Schreibweise:
$$\vec{y} = \left(C_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} + C_2 \begin{pmatrix} x \\ -1 - x \end{pmatrix}\right) e^{2x}$$
.

Beispiel 2b:
$$y_1' = 2y_1 \\ y_2' = 3y_1 + 2y_2$$
.

Der Ansatz
$$\vec{y} = \begin{pmatrix} K_1 \\ K_2 \end{pmatrix} \cdot e^{\lambda \cdot x}$$
 führt auf $\begin{pmatrix} (2-\lambda) \cdot K_1 \\ 3K_1 \end{pmatrix} + (2-\lambda) \cdot K_2 = 0$ mit der charakteristischen Gleichung

$$0 = \begin{vmatrix} 2 - \lambda & 0 \\ 3 & 2 - \lambda \end{vmatrix} = \lambda^2 - 4\lambda + 4 \quad \text{und der einzigen L\"osung } \lambda = 2 \; .$$

Da hier nur die zweite Gleichung beide Funktionen enthält, lässt sich nur y₂ als Linearkombination beider Basis-Lösungen darstellen: $y_2 = (C_1 + C_2 x) \cdot e^{2x}$.

y, folgt dann aus der zweiten Differenzialgleichung zu

$$y_1 = -\frac{2}{3}y_2 + \frac{1}{3}y_2' = -\frac{2}{3} \cdot \left((C_1 + C_2 x) \cdot e^{2x} \right) + \frac{1}{3} \cdot \left(C_2 e^{2x} + 2(C_1 + C_2 x) \cdot e^{2x} \right) = \frac{1}{3}C_2 e^{2x} \,. \quad \text{Oder wenn man } C_2 \text{ durch and } C_2 = -\frac{1}{3}C_2 e^{2x} \,.$$

$$3C_2$$
 ersetzt: $y_1 = C_2 e^{2x}$, $y_2 = (C_1 + 3C_2 x) \cdot e^{2x}$. Andere Schreibweise: $\vec{y} = \left(C_1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 3x \end{pmatrix}\right) e^{2x}$.

Beispiel 3:
$$y_1' = 3y_1 - 4y_2 \ y_2' = 2y_1 - y_2$$
.

Der Ansatz
$$\vec{y} = \begin{pmatrix} K_1 \\ K_2 \end{pmatrix} \cdot e^{\lambda \cdot x}$$
 führt auf $\begin{pmatrix} (3-\lambda) \cdot K_1 & -4K_2 & =0 \\ 2K_1 & +(-1-\lambda) \cdot K_2 & =0 \end{pmatrix}$ mit der charakteristischen Gleichung

$$0 = \begin{vmatrix} 3 - \lambda & -4 \\ 2 & -1 - \lambda \end{vmatrix} = \lambda^2 - 2\lambda + 5 \text{ und den Lösungen } \lambda_1 = 1 + 2i \text{ und } \lambda_2 = 1 - 2i \text{, so dass } \alpha = 1 \text{ und } \omega = 2 \text{ gilt.}$$

Also hat y_1 die Gestalt $y_1 = (C_1 \cdot \sin 2x + C_2 \cdot \cos 2x) \cdot e^{1 \cdot x} = (C_1 \cdot \sin 2x + C_2 \cdot \cos 2x) \cdot e^x$ mit beliebigen Konstanten C_1 , $C_2 \in \mathbb{R}$.

Man hätte auch für y_2 mit diesem Ansatz beginnen können.

y, erhält man aus der ersten Differenzialgleichung zu

$$\begin{split} y_2 &= \frac{3}{4}y_1 - \frac{1}{4}y_1^{'} = \frac{3}{4} \left(C_1 \cdot \sin 2x + C_2 \cdot \cos 2x \right) \cdot e^x - \frac{1}{4} \left(\left(2C_1 \cdot \cos 2x - 2C_2 \cdot \sin 2x \right) \cdot e^x + \left(C_1 \cdot \sin 2x + C_2 \cdot \cos 2x \right) \cdot e^x \right) = \\ &= \frac{1}{2} e^x \cdot \left(\left(C_1 + C_2 \right) \cdot \sin 2x + \left(C_2 - C_1 \right) \cdot \cos 2x \right). \end{split}$$

$$\text{Andere Schreibweise:} \quad \vec{y} = \left(C_1 \begin{pmatrix} \sin 2x \\ \frac{1}{2} \sin 2x - \frac{1}{2} \cos 2x \end{pmatrix} + C_2 \begin{pmatrix} \cos 2x \\ \frac{1}{2} \sin 2x + \frac{1}{2} \cos 2x \end{pmatrix} \right) e^x \,.$$

Beispiel 4:
$$3y_1' - y_2' = 7y_1 - y_2$$

 $y_1' + y_2' = -3y_1 - 3y_2$

Durch Addition \oplus + \oplus und durch \oplus -3 \oplus erhält man das System $y_1' = y_1 - y_2 = y_1 - y_2$ von Beispiel 1a. $y_2' = -4y_1 - 2y_2$

Lösung des inhomogenen Systems $y_{1}^{'} = a_{11} \cdot y_{1} + a_{12} \cdot y_{2} + g_{1}(x) \cdot y_{2}^{'} = a_{21} \cdot y_{1} + a_{22} \cdot y_{2} + g_{2}(x)$

Die beiden Koeffizienten a_{12} und a_{21} dürfen nicht zugleich Null sein, da es sich sonst um zwei voneinander unabhängige Differenzialgleichungen handelt. Außerdem dürfen bei einem inhomogenen System die beiden Funktionen $g_1(x)$ und $g_2(x)$ nicht identisch Null sein.

Satz: Die Lösung dieses inhomogenen Systems hat die Gestalt: Allgemeine Lösung des homogenen Systems + eine beliebige (spezielle) Lösung des inhomogenen Systems.

Beim Finden einer Lösung hilft die folgende Tabelle:

Störfunktion g(x)	Lösungsansatz
Polynom vom Grad n	Polynom vom Grad n
$A \cdot \sin \omega x$, $B \cdot \cos \omega x$	$C_1 \cdot \sin \omega x + C_2 \cdot \cos \omega x$
$A \cdot e^{bx}$	$C \cdot e^{bx}$

Beispiel 1a:
$$y_1' = y_1 - y_2 + 2 \ y_2' = -4y_1 - 2y_2 - 3x$$

Das zugehörige homogene System haben wir oben in Beispiel 1a gelöst.

Durch Einsetzen in das System folgt $\begin{array}{rcl} a & = & ax+b-Ax-B+2 \\ A & = & -4ax-4b-2Ax-2B-3x \end{array} . \ \ Durch \ Umformen \ folgt$

 $(a-A)\cdot x-a+b-B+2=0$ $(-4a-2A-3)\cdot x-A-4b-2B=0$. Da diese Gleichungen für alle $~x\in \mathbb{R}~$ gelten müssen, folgt

$$a-A = 0$$
 $a = -1/2$
 $-a+b-B+2 = 0$ $b = -3/4$
 $-4a-2A-3 = 0$ mit der Lösung $A = -1/2$
 $A = -1/2$
 $A = -1/2$

Damit lautet eine inhomogene Lösung $\begin{array}{rcl} y_1 & = & -\frac{1}{2}x & - & \frac{3}{4} \\ y_2 & = & -\frac{1}{2}x & + & \frac{7}{4} \end{array}$ und die allgemeine Lösung des inhomogenen

 $y_1 = C_1 e^{2x} + C_2 e^{-3x} - \frac{1}{2}x - \frac{3}{4}$ Systems: $y_2 = -C_1 e^{2x} + 4C_2 e^{-3x} - \frac{1}{2}x + \frac{7}{4}$

Beispiel 1b:
$$y_1^{'} = 2y_1 + 2e^{-x} \ y_2^{'} = -5y_1 - 3y_2 + 2-3x$$

Das zugehörige homogene System haben wir oben in Beispiel 1b gelöst.

Durch Einsetzen folgt $\begin{array}{lll} a-c\cdot e^{-x} &=& 2ax+2b+2c\cdot e^{-x}+2e^{-x}\\ A-C\cdot e^{-x} &=& -5ax-5b-5c\cdot e^{-x}-3Ax-3B-3C\cdot e^{-x}+2-3x \end{array}, \quad \text{und durch Ordnen}$

Aus den 6 Gleichungen 2a = 0, 2b - a = 0, 3c + 2 = 0, -5a - 3A - 3 = 0, -5b - A - 3B + 2 = 0 und -5c - 2C = 0: a = b = 0, $c = -\frac{2}{3}$, A = -1, B = 1, $C = \frac{5}{3}$.

Und damit lautet eine spezielle inhomogene Lösung $y_1 = -\frac{2}{3}e^{-x}$ $y_2 = 1 - x + \frac{5}{3}e^{-x}$

Die allgemeine Lösung des inhomogenen Systems lautet dann

$$y_1 = C_1 \cdot e^{2x} + C_2 \cdot e^{-3x} - \frac{2}{3}e^{-x} \quad \text{und} \quad y_2 = \left(-C_1 - C_2 - C_2x\right) \cdot e^{2x} + 1 - x + \frac{5}{3}e^{-x} \ .$$

Das Einsetzungs- oder Eliminationsverfahren

Beispiel:
$$y_1' = y_1 - y_2 + 2 \ y_2' = -4y_1 - 2y_2 - 3x$$

Man löst die erste Gleichung nach y_2 auf, setzt es in die zweite Gleichung ein und erhält eine DGL zweiter Ordnung für y_1 . Oder man löst die zweite Gleichung nach y_1 auf, setzt es in die erste Gleichung ein und erhält eine DGL zweiter Ordnung für y_2 .

Aus der ersten Gleichung folgt $y_2 = y_1 + 2 - y_1'$ und durch Ableiten $y_2' = y_1' - y_1''$. Dies setzt man in die zweite Gleichung ein und erhält $y_1' - y_1'' = -4y_1 - 2 \cdot (y_1 + 2 - y_1') - 3x$, bzw. $y_1'' + y_1' - 6y_1 = 4 + 3x$.

Die allgemeine Lösung der homogenen DGL finden wir mit dem Ansatz $y=e^{\lambda \cdot x}$. Er führt auf $\lambda^2+\lambda-6=0$ mit den Lösungen $\lambda_1=2$ und $\lambda_2=-3$, so dass $y_1=C_1\cdot e^{2x}+C_2\cdot e^{-3x}$.

Eine spezielle Lösung der inhomogenen DGL findet man mit dem Ansatz $y_1 = u \cdot x + v$. Er führt durch Einsetzen auf $u - 6 \cdot (u \cdot x + v) = 4 + 3x$. Durch Koeffizientenvergleich folgt u - 6v = 4 und -6u = 3, so dass $u = -\frac{1}{2}$ und $v = -\frac{3}{4}$.

Also lautet die allgemeine Lösung $y_1 = C_1 \cdot e^{2x} + C_2 \cdot e^{-3x} - \frac{1}{2}x - \frac{3}{4}$.

Die Lösung für y_2 folgt aus der Gleichung $y_2 = y_1 + 2 - y_1'$ zu

$$y_2 = C_1 \cdot e^{2x} + C_2 \cdot e^{-3x} - \frac{1}{2}x - \frac{3}{4} + 2 - \left(2C_1e^{2x} - 3C_2e^{-3x} - \frac{1}{2}\right) = -C_1e^{2x} + 4C_2e^{-3x} - \frac{1}{2}x + \frac{7}{4}.$$

Beispiel eines homogenen DGL-Systems mit Gleichungen zweiter Ordnung

Ein Massenpunkt kann sich in der x-y-Ebene so bewegen, dass $\ddot{x}(t) = -\dot{y}(t)$ und $\ddot{y}(t) = \dot{x}(t)$. Außerdem sollen die Anfangsbedingungen x(0) = a, y(0) = 0, $\dot{x}(0) = 0$ und $\dot{y}(0) = a$ gelten.

1. Einsetzungs- oder Eliminationsverfahren

Aus $\ddot{y}(t) = \dot{x}(t)$ folgt $\ddot{x}(t) = \ddot{y}(t)$. Zusammen mit der ersten Gleichung folgt $\ddot{y}(t) + \dot{y}(t) = 0$. Mit der Substitution $u(t) = \dot{y}(t)$ folgt $\ddot{u}(t) + u(t) = 0$ mit der allgemeinen Lösung $u(t) = A \cdot \sin t + B \cdot \cos t$. Also $y(t) = C_1 + C_2 \cdot \sin t + C_3 \cdot \cos t$.

Mit Hilfe der zweiten DGL $\ddot{y}(t) = \dot{x}(t)$ folgt $\dot{x}(t) = \ddot{y}(t) = -C_2 \cdot \sin t - C_3 \cos t$. Also $x(t) = C_2 \cdot \cos t - C_3 \sin t + C_4$.

Aus x(0) = a folgt $C_2 + C_4 = a$; aus y(0) = 0 folgt $C_1 + C_3 = 0$.

Aus $\dot{x}(0) = 0$ folgt $C_3 = 0$; aus $\dot{y}(0) = a$ folgt $C_2 = a$.

Insgesamt also $C_1 = C_3 = C_4 = 0$ und $C_2 = a$, so dass $x(t) = a \cdot \cos t$ und $y(t) = a \cdot \sin t$.

Wegen $x(t)^2 + y(t)^2 = a^2 \cdot (\sin^2 t + \cos^2 t) = a^2$, bewegt sich der Massenpunkt auf einem Kreis vom Radius a um den Ursprung.

2. Durch Substitution

Durch die Substitution $u=\dot{x}$ und $v=\dot{y}$ geht unser System über in $\dot{u}(t)=-v(t)$ und $\dot{v}(t)=u(t)$. Der Ansatz $u=A\cdot e^{\lambda\cdot t}$ und $v=B\cdot e^{\lambda\cdot t}$ führt auf $\lambda\cdot A\cdot e^{\lambda\cdot t}=-B\cdot e^{\lambda\cdot t}$ und $\lambda\cdot B\cdot e^{\lambda\cdot t}=A\cdot e^{\lambda\cdot t}$, d.h. $\lambda\cdot A+B=0$. Es gibt nur dann nichttriviale Lösungen, falls die Determinante $-\lambda^2-1=0$ ist, also für $\lambda=\pm i$ ist.

$$\begin{split} \text{F\"ur} \quad \lambda = i \quad \text{folgt} \qquad u = A \cdot e^{i \cdot t} = A \cdot (\cos t + i \cdot \sin t) \quad \text{und} \\ \qquad v = -A \cdot i \cdot e^{i \cdot t} = -A \cdot i \cdot (\cos t + i \cdot \sin t) = A \cdot (\sin t - i \cdot \cos t) \;. \end{split}$$

$$\text{F\"ur} \quad \lambda = -i \quad \text{folgt} \qquad u = A \cdot e^{-i \cdot t} = A \cdot (\cos t - i \cdot \sin t) \quad \text{und} \\ \qquad v = A \cdot i \cdot e^{-i \cdot t} = A \cdot i \cdot (\cos t - i \cdot \sin t) = A \cdot (\sin t + i \cdot \cos t) \;. \end{split}$$

Durch Addition folgt $u = 2A \cdot \cos t$ und $v = 2A \cdot \sin t$.

Durch Subtraktion folgt $u = 2A \cdot i \cdot \sin t$ und $v = -2A \cdot i \cdot \cos t$.

Und damit $\dot{x}(t) = u(t) = C_1 \cos t + C_2 \sin t$ und $\dot{y}(t) = v(t) = C_1 \sin t - C_2 \cos t$, folglich $x(t) = C_1 \sin t - C_2 \cos t + C_3$ und $y(t) = -C_1 \cos t - C_2 \sin t + C_4$.

Aus
$$\dot{x}(0) = a$$
 folgt $-C_2 + C_3 = a$; aus $\dot{y}(0) = 0$ folgt $-C_1 + C_4 = 0$.
Aus $\dot{x}(0) = 0$ folgt $C_1 = 0$; aus $\dot{y}(0) = a$ folgt $-C_2 = a$.

Also sind $C_1 = C_3 = C_4 = 0$ und $C_2 = -a$, so dass die Lösung lautet $x(t) = a \cdot cost$ und $y(t) = a \cdot sint$.

Die Laplace-Transformation

Beispiel einer Transformation: Man bestimme das Produkt 1000·10000 ohne Kenntnis der Multiplikation.

$$\begin{array}{ccc}
1000 \cdot 10000 & \xrightarrow{\log_{10}} & \log_{10}(1000 \cdot 10000) \\
& & \downarrow \\
& \log_{10}(1000) + \log_{10}(10000) \\
& & \downarrow \\
100000000 & \xleftarrow{\exp_{10}} & 3 + 4 = 7
\end{array}$$

Mit der Funktion $f(x) = \log_{10}(x)$ wechselt man vom Raum der Multiplikation in den einfacheren Raum der Addition. Dort wird die Addition 3+4=7 durchgeführt, und mit diesem Ergebnis geht man mit der Umkehrfunktion $f^{-1}(x) = 10^x$ zurück in den Raum der Multiplikation und hat prompt das gesuchte Ergebnis.

Laplace (Pierre-Simon Marquis de Laplace, 1749 – 1827) hat eine Transformation entdeckt, mit der man Differenzialgleichungen zum Teil recht einfach lösen kann.

 $\text{Man betrachtet Funktionen } f:t \to f(t) \text{ für } t \geq 0 \text{ , bzw. } f:t \to \begin{cases} 0 & \text{für } t < 0 \\ f(t) & \text{für } t \geq 0 \end{cases}.$

Als Variable wird meist (die Zeit) t statt x verwendet.

Definition:
$$F(s) = \int_{0}^{\infty} e^{-s t} \cdot f(t) dt$$
 Symbolische Schreibweise: $F(s) = \mathcal{L}\{f(t)\}$

 $F(s) = \mathcal{L}\{f(t)\}\$ heißt die Laplace-Transformierte der Funktion f(t), falls das Integral existiert. Wir beschränken uns auf reelles s. Möglich wäre auch $s \in \mathbb{C}$.

Beispiele immer unter der Voraussetzung, dass F(s) existiert.

0. Es sei
$$f(t) = 0$$
 für $t \ge 0$. Dann gilt $\mathscr{L}\{0\} = F(s) = \int_{0}^{\infty} e^{-st} \cdot 0 dt = \int_{0}^{\infty} 0 dt = 0$.

$$1. \ \, \text{Es sei } f(t) = 1 \ \, \text{für } t \geq 0 \, . \ \, \text{Dann gilt } \, \mathscr{L}\{1\} = F(s) = \int\limits_0^\infty e^{-s \, t} \, \cdot 1 \, dt = -\frac{1}{s} \Big[e^{-s \, t} \, \Big]_{t=0}^{t=\infty} = -\frac{1}{s} \big(0 - 1 \big) = \frac{1}{s} \ \, \text{für } s > 0 \, .$$

- 2. Es sei f(t) = t für $t \ge 0$. Mit partieller Integration $\int f \cdot g = F \cdot g \int F \cdot g'$ (F=Stammfunktion von f) folgt $\mathscr{L}\{t\} = F(s) = \int_{s}^{\infty} e^{-st} \cdot t \, dt = \left[-\frac{1}{s} e^{-st} \cdot t \right]_{s=0}^{t=\infty} - \int_{s}^{\infty} -\frac{1}{s} e^{-st} \cdot 1 \, dt = \left[-\frac{1}{s} e^{-st} \cdot t - \frac{1}{s^2} e^{-st} \right]_{s=0}^{t=\infty} = \frac{1}{s^2} \text{ für } s > 0.$
- 3. Für $n \in \mathbb{N}_0 = \{0, 1, 2, 3, ...\}$ gilt $\left| \mathscr{L} \{t^n\} = \frac{n!}{s^{n+1}} \right|$ für s > 0. Beweis durch vollständige Induktion.
- 4. Linearität (Additionssatz) $|\mathcal{L}\{\lambda \cdot f(t) + \mu \cdot g(t)\} = \lambda \mathcal{L}\{f(t)\} + \mu \mathcal{L}\{g(t)\}$

$$\mathscr{L}\{\lambda\cdot f(t) + \mu\cdot g(t)\} = \int\limits_0^\infty e^{-s\,t}\cdot \left(\lambda\cdot f(t) + \mu\cdot g(t)\right)dt = \lambda\int\limits_0^\infty e^{-s\,t}\cdot f(t)\,dt + \mu\int\limits_0^\infty e^{-s\,t}\cdot g(t)\,dt = \lambda\,\mathscr{L}\{f(t)\} + \mu\,\mathscr{L}\{g(t)\}$$

- 5. $\mathscr{L}{f'(t)} = \int_{t=0}^{\infty} f'(t) \cdot e^{-st} dt = \left[f(t) \cdot e^{-st} \right]_{t=0}^{t=\infty} + s \int_{t=0}^{\infty} f(t) \cdot e^{-st} dt = 0 f(0) + s \cdot \mathscr{L}{f(t)} = s \cdot \mathscr{L}{f(t)} f(0)$
- 6. Nach 5. folgt $\mathcal{L}\{f''(t)\} = s \cdot \mathcal{L}\{f'(t)\} f'(0) = s \cdot (s \cdot \mathcal{L}\{f(t)\} f(0)) f'(0) = s^2 \cdot \mathcal{L}\{f(t)\} s \cdot f(0) f'(0)$ Und durch vollständige Induktion:

$$\mathscr{L}\{f^{(n)}(t)\} = s^n \cdot \mathscr{L}\{f(t)\} - s^{n-1} \cdot f(0) - s^{n-2} \cdot f'(0) - \dots - s \cdot f^{(n-2)}(0) - f^{(n-1)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} - \sum_{k=0}^{n-1} s^{n-1-k} \cdot f^{(k)}(0) = s^n \cdot \mathscr{L}\{f(t)\} -$$

- 7. $\mathscr{L}\lbrace e^{a\,t}\rbrace = \int_{0}^{\infty} e^{-s\,t} \cdot e^{a\,t} dt = \int_{0}^{\infty} e^{(a-s)\,t} dt = \frac{1}{a-s} \left[e^{(a-s)\,t} \right]_{t=0}^{t=\infty} = \frac{1}{a-s} (0-1) = \frac{1}{s-a} \quad \text{für } s > a.$
- 8. $\mathscr{L}\{\sin(a\,t)\}=\int_{t=0}^{\infty}e^{-s\,t}\sin(a\,t)\,dt=-\frac{1}{a^2+s^2}\Big[a\cdot e^{-s\,t}\cos(a\,t)+s\cdot e^{-s\,t}\sin(a\,t)\Big]_{t=0}^{t=\infty}=-\frac{1}{a^2+s^2}\Big(0-a\Big)=\frac{a}{a^2+s^2}\Big[a\cdot e^{-s\,t}\cos(a\,t)+s\cdot e^{-s\,t}\sin(a\,t)\Big]_{t=0}^{t=\infty}=-\frac{1}{a^2+s^2}\Big[a\cdot e^{-s\,t}\cos(a\,t)+s\cdot e^{-s\,t}\sin(a\,t)\Big]_{t=\infty}^{t=\infty}=-\frac{1}{a^2+s^2}\Big[a\cdot e^{-s\,t}\cos(a\,t)+s\cdot e^{-s\,t}\sin(a\,t)\Big]_{t=\infty}^{t=\infty}=-\frac{1}{a^2+s^2}\Big[a\cdot e^{-s\,t}\cos(a\,t)+s\cdot e^{-s\,t}\cos(a\,t)\Big]_{t=\infty}^{t=\infty}=-\frac{1}{a^2+s^2}\Big[a\cdot e^{-s\,t}\cos(a\,t)+s\cdot e^{-s\,t}\cos(a\,t)\Big]_{t=\infty}^{t=\infty$ $\mathscr{L}\{\cos(a\,t)\} = \int_{0}^{\infty} e^{-s\,t} \cos(a\,t) dt = -\frac{1}{a^2 + s^2} \left[s \cdot e^{-s\,t} \cos(a\,t) + a \cdot e^{-s\,t} \sin(a\,t) \right]_{t=0}^{t=\infty} = -\frac{1}{a^2 + s^2} \left(0 - s \right) = \frac{s}{a^2 + s^2}$
- 9. Die Ableitung der Laplace-Transformierten ist

$$\frac{d}{ds} \mathscr{L} \{f(t)\} = \frac{d}{ds} \int_{0}^{\infty} e^{-st} \cdot f(t) dt = \int_{0}^{\infty} \frac{d}{ds} \left(e^{-st} \cdot f(t)\right) dt = -\int_{0}^{\infty} e^{-st} \cdot t \cdot f(t) dt = -\mathscr{L} \{t \cdot f(t)\}.$$

Folgerung:
$$\mathcal{L}\{t \cdot f(t)\} = -\frac{d}{ds}\mathcal{L}\{f(t)\}$$
.

10. Es gilt $\left| \mathcal{L} \left\{ \int_{0}^{t} f(u) du \right\} = \frac{1}{s} \mathcal{L} \left\{ f(t) \right\} \right|$.

Es sei G eine Stammfunktion von f. Dann gilt

$$\mathscr{L}\left\{\int\limits_0^t f(u)\,du\right\} = \mathscr{L}\left\{G(t) - G(0)\right\} = \mathscr{L}\left\{G(t)\right\} - \frac{1}{s}G(0) = \frac{s\cdot\mathscr{L}\left\{G(t)\right\} - G(0)}{s} = \frac{\mathscr{L}\left\{G'(t)\right\}}{s} = \frac{\mathscr{L}\left\{f(t)\right\}}{s} \;.$$

Da $s \cdot \mathcal{L} \{G(t)\} - G(0) = \mathcal{L} \{G'(t)\}$ nach 5. gilt.

- 1. Die lineare DGL 1. Ordnung mit konstanten Koeffizienten $y' + a \cdot y = g(t)$, wobei y = y(t).
- Man wendet auf beiden Seiten die Laplace-Transformation an und wechselt damit vom Originalbe-1. Schritt: reich in den Bildbereich: $\mathcal{L}\{y'+a\cdot y\}=\mathcal{L}\{g(t)\}$.
- Nun wird das Problem im Bildbereich gelöst. 2. Schritt: Wegen der Linearität folgt $\mathcal{L}\{y'\}+a\cdot\mathcal{L}\{y\}=G(s)$ mit der Abkürzung $G(s)=\mathcal{L}\{g(t)\}$.

Nach 5. ist
$$\mathscr{L}\{y'\} = s \cdot \mathscr{L}\{y\} - y(0)$$
, so dass sich $s \cdot \mathscr{L}\{y\} - y(0) + a \cdot \mathscr{L}\{y\} = G(s)$ ergibt. Diese Gleichung wird nach $\mathscr{L}\{y\}$ aufgelöst: $\mathscr{L}\{y\} = \frac{G(s) + y(0)}{s + a}$.

3. Schritt: Mit Hilfe der Rücktransformation \mathcal{L}^{-1} wechselt man zurück vom Bildbereich in den Originalbereich und erhält die gesuchte Lösung y(t).

$$\begin{array}{c} \text{Aufgabe im Originalbereich} \\ & & & \\$$

$$\begin{aligned} & \text{Beispiel 1: Bestimmen Sie die Lösung der DGL} \quad y' + 2y = t^2 - t + 4 \,, \text{ wobei } y = y(t) \,. \\ & \mathscr{L}\{y' + 2y)\} = \mathscr{L}\{t^2 - t + 4\} \text{ ergibt } \mathscr{L}\{y'\} + 2\mathscr{L}\{y\} = \mathscr{L}\{t^2\} - \mathscr{L}\{t\} + 4\mathscr{L}\{1\} \,, \text{ d.h.} \\ & s \cdot \mathscr{L}\{y\} - y(0) + 2\mathscr{L}\{y\} = \frac{2}{s^3} - \frac{1}{s^2} + \frac{4}{s} \,, \text{ bzw. } (s + 2) \cdot \mathscr{L}\{y\} = \frac{2}{s^3} - \frac{1}{s^2} + \frac{4}{s} + y(0) \,, \text{ also} \\ & \mathscr{L}\{y\} = \frac{2}{s^3(s + 2)} - \frac{1}{s^2(s + 2)} + \frac{4}{s(s + 2)} + \frac{y(0)}{(s + 2)} \,. \\ & \text{Laut Tabelle gilt } \mathscr{L}^{-1}\left\{\frac{1}{s^3(s + a)}\right\} = \frac{-2e^{-at} + a^2t^2 - 2at + 2}{2a^3} \,, \quad \mathscr{L}^{-1}\left\{\frac{1}{s^2(s + a)}\right\} = \frac{e^{-at} + at - 1}{a^2} \,, \\ & \mathscr{L}^{-1}\left\{\frac{1}{s(s + a)}\right\} = \frac{1 - e^{-at}}{a} \,, \quad \mathscr{L}^{-1}\left\{\frac{1}{s + a}\right\} = e^{-at} \,\text{ und natürlich } \mathscr{L}^{-1}\{\mathscr{L}\{y\}\} = y \,. \\ & \text{Damit folgt } y = 2\left(\frac{-2e^{-2t} + 4t^2 - 4t + 2}{16}\right) - \left(\frac{e^{-2t} + 2t - 1}{4}\right) + 4\frac{1 - e^{-2t}}{2} + y(0) \cdot e^{-2t} \,, \text{ und zusammengefasst } y = \frac{1}{2}t^2 - t + \frac{5}{2} + \left(y(0) - \frac{5}{2}\right)e^{-2t} \,, \text{ so dass } y = \frac{1}{2}t^2 - t + \frac{5}{2} + C \cdot e^{-2t} \,\text{ mit } C \in \mathbb{R} \,\text{ die allgemeine Lösung darstellt.} \end{aligned}$$

 $\begin{aligned} \textbf{Beispiel 2:} & \text{ Ein Ohmscher Widerstand R und ein Kondensator der Kapazität C sind in Reihe geschaltet und zur Zeit $t=0$ an die Wechselspannung $U_0(t)=\hat{U}_0\sin(\omega t)$ angeschlossen. Dann gilt die DGL $U_R(t)+U_C(t)=U_0(t)$, d.h. $R\cdot I(t)+U_C(t)=U_0(t)$. Aus $Q_C(t)=C\cdot U_C(t)$ folgt durch Differenziation $I(t)=C\cdot \dot{U}_C(t)$. Damit ergibt sich $RC\cdot \dot{U}_C(t)+U_C(t)=U_0(t)$, bzw. $&\dot{U}_C(t)+\frac{1}{RC}U_C(t)=\frac{\hat{U}_0}{RC}\sin(\omega t)$. Und in die Mathematik übersetzt: $y'+\frac{1}{RC}y=\frac{\hat{y}_0}{RC}\sin(\omega t)$. $&\dot{U}_C(t)+\frac{1}{RC}y+\frac{1}{RC$

$$U_{C}(t) = U_{C}(0) \cdot e^{-t/RC} + \hat{U}_{0} \frac{\sin(\omega t) + \omega RC \left(e^{-t/RC} - \cos(\omega t)\right)}{\omega^{2} R^{2} C^{2} + 1}.$$

Mit den Zahlenwerten $R = C = \hat{y}_0 = 1$, $\omega = 10$ und y(0) = 0.5ergibt sich das nebenstehende Schaubild, $U_{\rm C}(t)$ über t aufgetragen. Speziell $\hat{y}_0 = 0$: Dann wird der Kondensator der Spannung $U_C(0)$ über den Widerstand R entladen gemäß $y = y(0) \cdot e^{-t/RC}$ $\boldsymbol{U}_{C}(t) = \boldsymbol{U}_{C}(0) \cdot \boldsymbol{e}^{-t/RC}$. Dieses Schaubild ist gestrichelt eingetragen.

Man kann die Lösung noch etwas einfacher darstellen, wenn man die beiden $e^{-t/RC}$ zusammenfasst: $y = K \cdot e^{-t/RC} + \hat{y}_0 \frac{\sin(\omega t) - \omega RC \cos(\omega t)}{\omega^2 R^2 C^2 + 1}$

mit einer Konstanten K.

Beispiel 2': Ein Ohmscher Widerstand R und ein Kondensator der Kapazität C sind in Reihe geschaltet und zur Zeit t = 0 an die Wechselspannung $U_0(t) = \hat{U}_0 \sin(\omega t)$ angeschlossen. Dann gilt die Gleichung

$$U_{R}(t) + U_{C}(t) = U_{0}(t)$$
, d.h. $R \cdot I(t) + U_{C}(t) = U_{0}(t)$. Wegen $U_{C}(t) = \frac{1}{C}Q_{C}(t) = U_{C}(0) + \frac{1}{C}\int_{0}^{t}I(t)dt$

 $\label{eq:folgt} \text{folgt nach Division durch R:} \quad I(t) + \frac{U_{\text{C}}(0)}{R} + \frac{1}{RC} \int\limits_{-R}^{t} I(t) \, dt = \frac{1}{R} \, U_{\text{0}}(t) \, .$

Und in die Mathematik übersetzt: $y(t) + y_0 + \frac{1}{RC} \int_{-\infty}^{\infty} y(t) dt = \frac{\hat{y}_0}{R} \sin(\omega t)$ mit $y_0 = \frac{U_C(0)}{R}$.

$$\mathcal{L}\left\{y(t) + y_0 + \frac{1}{RC} \int_0^t y(t) dt\right\} = \mathcal{L}\left\{\frac{\hat{y}_0}{R} \sin(\omega t)\right\}, \text{ also}$$

$$\mathscr{L}\left\{y(t)\right\} + \mathscr{L}\left\{y_{0}\right\} + \frac{1}{RC}\mathscr{L}\left\{\int_{0}^{t} y(t) dt\right\} = \frac{\hat{y}_{0}}{R}\mathscr{L}\left\{\sin(\omega t)\right\}. \text{ Nach 10. folgt}$$

$$\mathscr{L}\left\{y(t)\right\} + \frac{y_0}{s} + \frac{1}{RC} \cdot \frac{1}{s} \mathscr{L}\left\{y(t)\right\} = \frac{\hat{y}_0}{R} \frac{\omega}{s^2 + \omega^2}$$
, und nach $\mathscr{L}\left\{y(t)\right\}$ aufgelöst:

$$\mathscr{L}\left\{y(t)\right\} = \frac{\hat{y}_0}{R} \frac{\omega}{(s^2 + \omega^2) \cdot \left(1 + \frac{1}{RC \cdot s}\right)} - \frac{y_0}{s \cdot \left(1 + \frac{1}{RC \cdot s}\right)} = \frac{\hat{y}_0}{R} \frac{\omega \cdot s}{(s^2 + \omega^2) \cdot \left(s + \frac{1}{RC}\right)} - \frac{y_0}{s + \frac{1}{RC}}.$$

Wegen
$$\mathscr{L}^{-1}\left\{\frac{s}{(s^2+a^2)\cdot(s+b)}\right\} = \frac{a\cdot\sin(at)+b\cdot\cos(at)-b\cdot e^{-bt}}{a^2+b^2}$$
 und $\mathscr{L}^{-1}\left\{\frac{1}{s+a}\right\} = e^{-at}$ folgt

$$y(t) = \frac{\hat{y}_0}{R} \frac{\omega^2 \cdot \sin(\omega t) + \omega / RC \cdot \cos(\omega t) - \omega / RC \cdot e^{-t/RC}}{\omega^2 + 1/(RC)^2} - y_0 \cdot e^{-t/RC} , \text{ bzw.}$$

$$\begin{split} y(t) &= \frac{\hat{y}_0}{R} \frac{\omega^2 \cdot \sin(\omega t) + \omega / RC \cdot \cos(\omega t) - \omega / RC \cdot e^{-t/RC}}{\omega^2 + 1/(RC)^2} - y_0 \cdot e^{-t/RC} \text{, bzw.} \\ I(t) &= \frac{\hat{U}_0}{R} \frac{\omega^2 \cdot \sin(\omega t) + \omega / RC \cdot \cos(\omega t) - \omega / RC \cdot e^{-t/RC}}{\omega^2 + 1/(RC)^2} - \frac{U_C(0)}{R} \cdot e^{-t/RC} \quad \text{mit} \quad I(0) = \frac{U_C(0)}{R} \text{, bzw.} \end{split}$$

$$I(t) = \hat{U}_0 \cdot \frac{\omega^2 R C^2 \cdot sin(\omega t) + \omega C \cdot cos(\omega t) - \omega C \cdot e^{-t/RC}}{\omega^2 R^2 C^2 + 1} - \frac{U_C(0)}{R} \cdot e^{-t/RC} \,.$$

Probe: Wegen $Q = C \cdot U_C$, muss man also $I = C \cdot \frac{d}{dt} U_c(t)$ mit $U_c(t)$ von Beispiel 2 nachprüfen. Und das stimmt!

2. Die lineare DGL 2. Ordnung mit konstanten Koeffizienten $y'' + a \cdot y' + b \cdot y = g(t)$, wobei y = y(t).

Beispiel 1: Bestimmen Sie die Lösung der DGL 2y'' - 5y' + 2y = -3 mit y = y(t).

$$2\mathcal{L}\lbrace y''(t)\rbrace - 5\mathcal{L}\lbrace y'(t)\rbrace + 2\mathcal{L}\lbrace y(t)\rbrace = -3\mathcal{L}\lbrace 1\rbrace$$
 ergibt

$$2 \cdot \left(s^2 \cdot \mathcal{L}\{y\} - s \cdot y(0) - y'(0)\right) - 5\left(s \cdot \mathcal{L}\{y\} - y(0)\right) + 2\mathcal{L}\{y\} = -\frac{3}{s} \quad \text{und nach } \mathcal{L}\{y\} \text{ aufgelöst}$$

Seite 23 von 27 Heinz Göbel 24.09.2022

$$\begin{split} \mathscr{L}\{y\} &= \frac{2s \cdot y(0) - 5y(0) + 2y'(0) - \frac{3}{s}}{2s^2 - 5s + 2} = \frac{2s \cdot y(0) - 5y(0) + 2y'(0) - \frac{3}{s}}{2\left(s - \frac{1}{2}\right) \cdot (s - 2)} = \\ &= y(0) \cdot \frac{s}{\left(s - \frac{1}{2}\right) \cdot (s - 2)} + \frac{2y'(0) - 5y(0)}{2} \cdot \frac{1}{\left(s - \frac{1}{2}\right) \cdot (s - 2)} - \frac{3}{2} \cdot \frac{1}{s \cdot \left(s - \frac{1}{2}\right) \cdot (s - 2)} \cdot \text{Und laut Tabelle} \\ &= y = y(0) \cdot \frac{-\frac{1}{2}e^{\frac{1}{2}t} + 2e^{2t}}{\frac{3}{2}} + \frac{2y'(0) - 5y(0)}{2} \cdot \frac{-e^{\frac{1}{2}t} + e^{2t}}{\frac{3}{2}} - \frac{3}{2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{1}{2} \cdot 2 \cdot \frac{3}{2}} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{1}{2} \cdot 2 \cdot \frac{3}{2}} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{1}{2} \cdot 2 \cdot \frac{3}{2}} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{1}{2} \cdot 2 \cdot \frac{3}{2}} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{1}{2} \cdot 2 \cdot \frac{3}{2}} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{1}{2} \cdot 2 \cdot \frac{3}{2}} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{1}{2} \cdot 2 \cdot \frac{3}{2}} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{1}{2} \cdot 2 \cdot \frac{3}{2}} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{1}{2} \cdot 2 \cdot \frac{3}{2}} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{3}{2} \cdot 2} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{3}{2} \cdot 2} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{3}{2} \cdot 2} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{3}{2} \cdot 2} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{3}{2} \cdot 2} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{3}{2} \cdot 2} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{3}{2} \cdot 2} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{3}{2} \cdot 2} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{3}{2} \cdot 2} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{3}{2} \cdot 2} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - \frac{3}{2}}{\frac{3} - 2e^{\frac{1}{2}t} + \frac{1}{2}e^{2t}}{\frac{3}{2} \cdot 2} = \frac{1}{s^2 \cdot 2} \cdot \frac{\frac{3}{2} - 2e^{$$

Beispiel 2: Bestimmen Sie die Lösung der DGL $y'' + 3y' + 2y = 10\sin(t)$ mit y = y(t).

$$\begin{split} \mathscr{L} \big\{ y''(t) \big\} + 3 \mathscr{L} \big\{ y'(t) \big\} + 2 \mathscr{L} \big\{ y(t) \big\} &= 10 \mathscr{L} \big\{ \sin(t) \big\} \quad \text{ergibt} \\ \Big(s^2 \cdot \mathscr{L} \big\{ y \big\} - s \cdot y(0) - y'(0) \Big) + 3 \Big(s \cdot \mathscr{L} \big\{ y \big\} - y(0) \Big) + 2 \mathscr{L} \big\{ y \big\} &= \frac{10}{s^2 + 1} \quad \text{und nach} \quad \mathscr{L} \big\{ y \big\} \quad \text{sortiert} \\ \Big(s^2 + 3s + 2 \Big) \mathscr{L} \big\{ y \big\} &= s \cdot y(0) + y'(0) + 3y(0) + \frac{10}{s^2 + 1} \,. \quad \text{Mit} \quad s^2 + 3s + 2 = (s + 1)(s + 2) \quad \text{folgt} \end{split}$$

$$\mathscr{L}\{y\} = y(0) \cdot \frac{s}{(s+1)(s+2)} + \left(y'(0) + 3y(0)\right) \cdot \frac{1}{(s+1)(s+2)} + \frac{10}{(s+1)(s+2)(s^2+1)}. \text{ Und laut Tabelle}$$

$$y(t) = y(0) \cdot \frac{1 \cdot e^{-t} - 2 \cdot e^{-2t}}{1 \cdot 2} + \left(y'(0) + 3y(0)\right) \cdot \frac{-e^{-t} + e^{-2t}}{1 \cdot 2} + 10 \cdot \left(\frac{1}{2}e^{-t} - \frac{1}{5}e^{-2t} + \frac{1}{10}\sin(t) - \frac{3}{10}\cos(t)\right).$$

Die letzte Klammer stammt aus einem größeren Tafelwerk bzw. von

einem Computeralgebrasystem. Mit den Anfangsbedingungen y(0) = 0 und y'(0) = 0 folgt $y(t) = 5e^{-t} - 2e^{-2t} + \sin(t) - 3\cos(t) \,.$

Beispiel 3: Bestimmen Sie die Lösung der DGL $y'' + (t-4) \cdot y' + (3-2t) \cdot y = 0$ mit y = y(t). Die Anfangsbedingungen sind y(0) = 0 und y'(0) = 1. Nach Laplace ergibt sich

$$\mathcal{L}\{y''(t)\} + \mathcal{L}\{t \cdot y'(t)\} - 4\mathcal{L}\{y'(t)\} + 3\mathcal{L}\{y(t)\} - 2\mathcal{L}\{y(t)\} = 0$$
, also

$$s^2 \cdot \mathscr{L} \big\{ y(t) \big\} - s \cdot y(0) - y'(0) - \left\{ \mathscr{L} \big\{ y(t) \big\} + s \cdot \frac{d}{ds} \mathscr{L} \big\{ y(t) \big\} \right\} - 4 \cdot \left\{ s \cdot \mathscr{L} \big\{ y(t) \big\} - y(0) \big\} + 3 \cdot \mathscr{L} \big\{ y(t) \big\} - 2 \left\{ -\frac{d}{ds} \mathscr{L} \big\{ f(t) \big\} \right\} = 0$$

Mit der Abkürzung $u(s) = \mathcal{L}\{y(t)\}$ und den beiden Anfangsbedingungen folgt die lineare inhomogene DGL $(2-s)\cdot u'(s) + (s^2-4s+2)\cdot u(s) = 1$.

Die zugehörige homogene DGL $(2-s) \cdot u'(s) + (s^2 - 4s + 2) \cdot u(s) = 0$ wird durch Trennung der Vari-

ablen gelöst:
$$\frac{1}{u(s)}du = \frac{s^2 - 4s + 2}{s - 2}ds$$
, bzw. nach Polynomdivision $\frac{1}{u(s)}du = \left(s - 2 - \frac{2}{s - 2}\right)ds$.

 $\text{Integration ergibt } \ln |u| = \frac{1}{2} s^2 - 2s - 2 \ln |s - 2| + c \text{ , so dass } u(s) = C \cdot \frac{1}{(s - 2)^2} \cdot e^{\frac{1}{2} s^2 - 2s} \text{ mit } C \in \mathbb{R} \text{ .}$

Eine Lösung der gegebenen inhomogenen DGL wird durch Variation der Konstanten gefunden:

Der Ansatz $u(s) = K(s) \cdot u_0(s)$ mit der homogenen Lösung $u_0(s) = \frac{1}{(s-2)^2} \cdot e^{\frac{1}{2}s^2 - 2s}$ führt dann auf

$$(2-s)\cdot (K'(s)\cdot u_0(s) + K(s)\cdot u_0'(s)) + (s^2 - 4s + 2)\cdot K(s)\cdot u_0(s) = 1.$$

Wegen
$$(2-s) \cdot u_0'(s) + (s^2 - 4s + 2) \cdot u_0(s) = 0$$
 folgt daraus $(2-s) \cdot K'(s) \cdot u_0(s) = 1$, d.h.

$$K'(s) = \frac{1}{2-s}(s-2)^2 \cdot e^{2s-\frac{1}{2}s^2} = (2-s) \cdot e^{2s-\frac{1}{2}s^2} \text{ . Mit einer Stammfunktion } K(s) = e^{2s-\frac{1}{2}s^2} \text{ erhalten wire stammfunktion } K(s) = e^{2s-\frac{1}{2}s^2}$$

eine inhomogene Lösung
$$u_i(s) = K(s) \cdot u_0(s) = e^{2s - \frac{1}{2}s^2} \cdot \frac{1}{(s-2)^2} \cdot e^{\frac{1}{2}s^2 - 2s} = \frac{1}{(s-2)^2}$$

Somit ist
$$\mathscr{L}\{y(t)\}=u(s)=\frac{1}{(s-2)^2}+C\cdot\frac{1}{(s-2)^2}\cdot e^{\frac{1}{2}s^2-2s}$$
 mit $C\in\mathbb{R}$ die allgemeine Lösung der

DGL
$$(2-s) \cdot u'(s) + (s^2 - 4s + 2) \cdot u(s) = 1$$
.

Wenn bei $\mathscr{L}\{y(t)\}=\int_{0}^{\infty}e^{-s\cdot t}\cdot y(t)\,dt\,der\,Wert\,von\,s\,gegen\,unendlich\,strebt,\,dann\,strebt\,der\,Faktor$ $e^{-s \cdot t} \text{ gegen Null, so dass } \lim_{s \to \infty} \mathscr{L} \{ \, y(t) \} = 0 \text{ gilt, falls } y(t) \text{ nicht zu stark wächst. Damit diese Bedin-leaves}$

gung erfüllt ist, muss C = 0 sein, so dass $\mathcal{L}\{y(t)\} = \frac{1}{(s-2)^2}$. Nach Rücktransformation folgt laut

Tabelle die endgültige Lösung $y(t) = t \cdot e^{2t}$.

3. Systeme linearer DGL 1. Ordnung mit konstanten Koeffizienten

Beispiel 1:
$$y_1' = y_1 - y_2 + 2 \\ y_2' = -4y_1 - 2y_2 - 3t$$
 mit $y_1 = y_1(t)$ und $y_2 = y_2(t)$.

Jede Gleichung wird nun für sich Laplace-transformiert.

$$s \cdot \mathcal{L}\{y_1\} - y_1(0) = \mathcal{L}\{y_1\} - \mathcal{L}\{y_2\} + \frac{2}{s}$$

s $S \cdot \mathcal{L}\{y_2\} - y_2(0) = -4 \cdot \mathcal{L}\{y_1\} - 2 \cdot \mathcal{L}\{y_2\} - \frac{3}{s^2}$ Dieses System hat die Lösungen

$$\mathcal{L}\left\{y_{1}\right\} = \frac{s}{(s-2)(s+3)} \cdot y_{1}(0) + \frac{1}{(s-2)(s+3)} \cdot \left(2y_{1}(0) - y_{2}(0) + 2\right) + \frac{4s+3}{s^{2}(s-2)(s+3)}$$

$$\mathcal{L}\left\{y_{2}\right\} = \frac{s}{(s-2)(s+3)} \cdot y_{2}(0) - \frac{1}{(s-2)(s+3)} \cdot \left(4y_{1}(0) + y_{2}(0)\right) + \frac{-11s+3}{s^{2}(s-2)(s+3)}$$

Die Rücktransformation liefert laut Tabelle oder Computeralgebrasystem

$$y_1(t) = \frac{-2e^{2t} - 3e^{-3t}}{-2 - 3} \cdot y_1(0) + \frac{-e^{2t} + e^{-3t}}{-2 - 3} \cdot \left(2y_1(0) - y_2(0) + 2\right) + \frac{11}{20}e^{2t} + \frac{1}{5}e^{-3t} - \frac{1}{2}t - \frac{3}{4} \quad \text{bzw.}$$

$$y_1(t) = \left(\frac{2}{5}y_1(0) + \frac{1}{5}\left(2y_1(0) - y_2(0) + 2\right) + \frac{11}{20}\right) \cdot e^{2t} + \left(\frac{3}{5}y_1(0) - \frac{1}{5}\left(2y_1(0) - y_2(0) + 2\right) + \frac{1}{5}\right) \cdot e^{-3t} - \frac{1}{2}t - \frac{3}{4} \text{ bzw.}$$

$$y_1(t) = \underbrace{\left(\frac{4}{5}y_1(0) - \frac{1}{5}y_2(0) + \frac{19}{20}\right)}_{\bullet} \cdot e^{2t} + \underbrace{\left(\frac{1}{5}y_1(0) + \frac{1}{5}y_2(0) - \frac{1}{5}\right)}_{\bullet} \cdot e^{-3t} - \frac{1}{2}t - \frac{3}{4}.$$

$$y_2(t) = \frac{-2e^{2t} - 3e^{-3t}}{-2 - 3} \cdot y_2(0) - \frac{-e^{2t} + e^{-3t}}{-2 - 3} \cdot \left(4y_1(0) + y_2(0)\right) - \frac{19}{20}e^{2t} - \frac{4}{5}e^{-3t} - \frac{1}{2}t + \frac{7}{4} \quad \text{bzw.}$$

$$y_2(t) = \left(\frac{2}{5}y_2(0) - \frac{1}{5} \cdot \left(4y_1(0) + y_2(0)\right) - \frac{19}{20}\right) \cdot e^{2t} + \left(\frac{3}{5}y_2(0) + \frac{1}{5} \cdot \left(4y_1(0) + y_2(0)\right) - \frac{4}{5}\right) \cdot e^{-3t} - \frac{1}{2}t + \frac{7}{4} \quad bzw.$$

$$y_2(t) = \underbrace{\left(-\frac{4}{5}y_1(0) + \frac{1}{5}y_2(0) - \frac{19}{20}\right)}_{-C} \cdot e^{2t} + \underbrace{\left(\frac{4}{5}y_1(0) + \frac{4}{5}y_2(0) - \frac{4}{5}\right)}_{4C} \cdot e^{-3t} - \frac{1}{2}t + \frac{7}{4}$$

Oben hatten wir für dieses System die vergleichbare Lösung

$$y_1(x) = C_1 e^{2x} + C_2 e^{-3x} - \frac{1}{2}x - \frac{3}{4}$$

 $y_2(x) = -C_1 e^{2x} + 4C_2 e^{-3x} - \frac{1}{2}x + \frac{7}{4}$

Beispiel 2: Der Kettenleiter in der Skizze enthält zwei gleiche Ohmsche Widerstände R und zwei gleiche Induktivitäten L.

 $\dot{I}_{1}(t) = -R/L \cdot I_{1}(t) + R/L \cdot I_{2}(t) + U(t)/L$ und umgeformt: $\dot{I}_2(t) = R / L \cdot I_1(t) - 2R / L \cdot I_2(t)$

Wir lösen aber jetzt ein rein mathematisches System mit $y_1(t)$, $y_2(t)$:

 $y_1' = y_1 - y_2 + 3$ $y_2' = -4y_1 - 2y_2 - 6$ Jede Gleichung wird nun für sich Laplace-transformiert.

$$s \cdot \mathcal{L}\{y_1\} - y_1(0) = \mathcal{L}\{y_1\} + \mathcal{L}\{y_2\} + \frac{3}{s}$$

$$s \cdot \mathcal{L}\{y_2\} - y_2(0) = -4 \cdot \mathcal{L}\{y_1\} - 2 \cdot \mathcal{L}\{y_2\} - \frac{6}{s}$$

Zur Vereinfachung wählen wir $y_1(0) = -3$ und $y_2(0) = 6$.

Dann hat dieses lineare Gleichungssystem die Lösungen

$$\mathscr{L}\{y_1\} = \frac{3(-s^2 - 3s + 4)}{s(s^2 + s - 6)} = \frac{3(-s^2 - 3s + 4)}{s(s - 2)(s + 3)} = -\frac{3s}{(s - 2)(s + 3)} - \frac{9}{(s - 2)(s + 3)} + \frac{12}{s(s - 2)(s + 3)} \quad \text{und}$$

$$\mathscr{L}\{y_2\} = \frac{6(s^2 - 1)}{s(s^2 + s - 6)} = \frac{6(s^2 - 1)}{s(s - 2)(s + 3)} = \frac{6s}{(s - 2)(s + 3)} - \frac{6}{s(s - 2)(s + 3)}.$$

Die Rücktransformation liefert:

$$\begin{split} y_1(t) = & \left(-\frac{6}{5}e^{2t} - \frac{9}{5}e^{-3t} \right) + \left(-\frac{9}{5}e^{2t} + \frac{9}{5}e^{-3t} \right) + \left(\frac{6}{5}e^{2t} + \frac{4}{5}e^{-3t} - 2 \right) = -\frac{9}{5}e^{2t} + \frac{4}{5}e^{-3t} - 2 \quad \text{und} \\ y_2(t) = & \left(\frac{12}{5}e^{2t} + \frac{18}{5}e^{-3t} \right) + \left(-\frac{3}{5}e^{2t} - \frac{2}{5}e^{-3t} + 1 \right) = \frac{9}{5}e^{2t} + \frac{16}{5}e^{-3t} + 1 \; . \end{split}$$

Originalfunktion	Bildfunktion
f(t)	$\mathcal{L}\lbrace f(t)\rbrace = F(s) = \int_{0}^{\infty} e^{-st} \cdot f(t) dt$
f'(t)	$s \cdot \mathcal{L}\{f(t)\} - f(0)$
f"(t)	$s^2 \cdot \mathcal{L}\{f(t)\} - s \cdot f(0) - f'(0)$
f'''(t)	$s^{3} \cdot \mathcal{L}\{f(t)\} - s^{2} \cdot f(0) - s \cdot f'(0) - f''(0)$
t^{n} für $n = 0, 1, 2,$	n!/s ⁿ⁺¹
$t^{n} \cdot f(t)$ für $n = 0, 1, 2,$	$(-1)^{n} \cdot \frac{d^{n}}{ds^{n}} \mathcal{L}\{f(t)\}$
$t^{n} \cdot f'(t)$ für $n = 1, 2, 3,$	$(-1)^n \cdot \left\{ n \cdot \frac{d^{n-1}}{ds^{n-1}} \mathscr{L} \{f(t)\} + s \cdot \frac{d^n}{ds^n} \mathscr{L} \{f(t)\} \right\}$
$e^{-a \cdot t}$, $t \cdot e^{-a \cdot t}$	$\frac{1}{s+a}, \frac{1}{(s+a)^2}$
$\frac{t^{n-1} \cdot e^{-a \cdot t}}{(n-1)!} \text{ für } n = 1, 2, 3,$	$\frac{1}{(s+a)^n}$
$\frac{1-e^{-at}}{a}$	$\frac{1}{s \cdot (s+a)}$
$\frac{e^{-at} + at - 1}{a^2}$	$\frac{1}{s^2 \cdot (s+a)}$
$-2e^{-at} + a^2t^2 - 2at + 2$	$\frac{1}{s^3 \cdot (s+a)}$
$ \begin{array}{c} 2a^3 \\ -e^{-at} + e^{-bt} \end{array} $	s ·(s+a)
	$\frac{1}{(s+a)\cdot(s+b)}$
$\frac{a-b}{a \cdot e^{-at} - b \cdot e^{-bt}}$	s
<u>a-b</u>	$(s+a)\cdot(s+b)$
$e^{-at} \cdot (b-c) + e^{-bt} \cdot (c-a) + e^{-ct} \cdot (a-b)$	s
$(a-b)\cdot(a-c)\cdot(b-c)$	$(s+a)\cdot(s+b)\cdot(s+c)$
$(1-at)\cdot e^{-at}$	$\frac{s}{(s+a)^2}$
$\frac{1}{2}(2t-at^2)\cdot e^{-at}$	<u>S</u>
=	$\overline{(s+a)^3}$
$\frac{\left((n-1)t^{n-2}-at^{n-1}\right)\cdot e^{-at}}{(n-1)!}$	$\frac{s}{(s+a)^n}$
(n-1)!	
$\frac{1}{2} \left(a^2 t^2 - 4a t + 2 \right) \cdot e^{-at}$	$\frac{s^2}{(s+a)^3}$
$\frac{1}{a}\sin(at)$	$\frac{1}{s^2 + a^2}$
cos(at)	$\frac{s}{s^2 + a^2}$
$\frac{1}{a}e^{-bt}\cdot\sin(at)$	$\frac{1}{a^2 + (s+b)^2}$
$e^{-bt} \cdot \cos(at)$	$\frac{s+b}{a^2+(s+b)^2}$
$a \cdot e^{-bt} - a \cdot \cos(at) + b \cdot \sin(at)$	
$\frac{a \cdot (a^2 + b^2)}{a \cdot (a^2 + b^2)}$	$\frac{1}{(s^2+a^2)\cdot(s+b)}$
$\frac{a \cdot t - \sin(at)}{a}$	1
a ³	$\overline{s^2 \cdot (s^2 + a^2)}$