Technische Informatik

Teil 3:

Grundlagen Rechnerarchitekturen

Inhalt

3.1 Prozessoren

- Grundlegende Begriffe
- Prozessortypen
- Architekturen
- Steuerwerk und Programm
- Rechenwerk und Register

3.2 Programm- und Datenspeicher

- Speicheraufbau
- Speicherbausteine

3.3 Datenübertragung

- Fehlerursachen
- Fehlererkennung
- Fehlerkorrektur

3.1 Prozessoren

- Grundlegende Begriffe
- Prozessortypen
- Architekturen
- Steuerwerk und Programm
- Rechenwerk und Register

Grundlegende Begriffe

- Computer, Digitalrechner
 - Maschine, die Probleme für den Menschen lösen kann
- Prozessor, CPU (Central Processing Unit)
 - zentrale Verarbeitungseinheit eines Digitalrechners
 - führt die (ihr gegebene) Befehlsseguenz (Programm) aus
 - besteht aus elektronischen Schaltungen, die oft nur grundlegende (einfache) Befehle nachbilden, wie
 - Addiere zwei Zahlen
 - Prüfe eine Zahl, ob sie null ist
 - Lese eine Zahl aus dem Computerspeicher
 - Beispiele

Intel 80x86, Intel Core i x, Motorola 68000, Motorola XSP56001, Atmel ATmega8

- Maschinensprache, Befehlssatz
 - elementare Befehle des Prozessors

3.1 Prozessoren

- Grundlegende Begriffe
- Prozessortypen
- Architekturen
- Steuerwerk und Programm
- Rechenwerk und Register

Prozessortypen

- Beispiele

Тур	typischer Einsatz	Beispiel	
Mikroprozessoren (μ-Prozessor, μP)	Standard-PC's	Intel Xeon	
Mikrocontroller (μ-Controller, μC)	Automation, Steuerungen	Atmel ATmega8	
Digitale Signalprozessoren (DSP)	Telekommunikation, Multimedia	Texas Instruments C6670	
Field Programmable Gate Array (FPGA)	Messtechnik	Xilinx Artix-7	
Application-Specific Instruction-set Processor (ASIP)			

- Entscheidungskriterien für eine Prozessorauswahl

Ausgereiftheit Rechenperformance (Takt, HW-Units) Support Speicher (intern, extern) Schnittstellen Leistungsaufnahme Kosten langfristige Verfügbarkeit Robustheit (Temperatur)

Mikroprozessoren

(μ-Prozessor, μP)

- zentrale Verarbeitungseinheit (Central Processing Unit, CPU) eines Computers
- Aufgaben
 - Ausführung von Programmen / Verarbeitung der Daten
 - Steuern des Speicherzugriff
 - Verwaltung der Hardware / Ansprechen der Peripherie
- Merkmale
 - Daten- und Adressbus sowie Steuerleitungen für Speicher und Peripherie sind aus dem Chip herausgeführt
- Einsatzbereiche
 - Verarbeitung von Daten in hoher Geschwindigkeit
 - z.B. im Personal Computer

Mikrocontroller

(μC, μ-Controller, MCU)

- Prozessor + Peripherie auf einem Chip
 - Daten-/Programmspeicher, ggf. EEPROM
 - Schnittstellen (CAN, USB, ser, I²C, PWM, A/D, Digital IO)
 - Timer, Watchdog, interner Oszillator

- [1980] Intel MCS-51 Familie (8Bit), wie der Intel 8051
- oder basierend auf (älteren) Mikroprozessorkernen
 - [1976] Intel MCS-48 Familie (8Bit), wie der Intel 8048 basierend auf den [1974] Intel 8080 (8Bit)

Vorteile

- sehr viele Varianten nach Leistung/Ausstattung verfügbar
- geringe Kosten und Leistungsaufnahme

NICROCH!

Einsatzbereiche

- in fast allen elektronischen Geräten vorhanden
- einfache Steueraufgaben (ursprünglich), aber zunehmend auch komplexere Aufgaben
- "Embedded Processing" (minimale Ressourcen)

Beispiele

°C, bar, Lux Messwerterfassung und Kalibrierung

Steuerung/Regelung von Prozessen Klimasteuerung

Motorsteuerungen Drehzahlregelung

Kommunikation über Schnittstellen Gateway/Verteiler

Digitale Signalprozessoren (DSP)

Merkmale

- mehrere Daten- und Adressbusse und mehrere Rechenwerke ⇒ gleichzeitiges Ausführen mehrerer Rechenoperationen pro Taktzyklus
- HW-Optimierungen für rechenintensive, regelmäßige arithmetische Operationen (Beispiele - Korrelation, FFT, Matrizenoperationen)
- ausschließlich Harvard-Architektur ⇒ Programm- und Datenspeicher sind (physisch) getrennt

Vorteile

- hohe Rechenperformance bei geringer Stromaufnahme
- optimiert für Signalverarbeitungsaufgaben bei hohen Datenraten (Multimedia, Kommunikationstechnik,...)

Einsatzbereiche

- Systeme, in denen strömende (große) Datenmengen schnell verarbeiten werden sollen
- "Embedded Processing" (komplexe Aufgaben)

Beispiele

- Digitale Filter, Frequenzanalyse
- Mobiltelefon (Echokompensation)
- Spracherkennung und Sprachsynthese
- Radar-/Sonarverarbeitung
- Soundkarte, Digitalkamera
- Datencodierung/-decodierung
- (medizinische) Bildverarbeitung

Ein paar Zahlen ...

	Device	Hersteller	Busbreite	ROM	EEPROM	SRAM	Fmax	ADC	Strom
			[Bit]	[Kbytes]	[Kbytes]	[Bytes]	[MHz]		[mA]
1	C515	Infineon	8	64		256	10	1	19
2	ATmega8	Atmel	8	8	0,5	1024	16	8	15
3	ATmega328P	Atmel							
4	ATmega2560	Atmel	8	256	4	8000	16	16	20
5	C167	Infineon	16	128		4000	25	16	77
6	AT91SAM7S256	Atmel	32	256		64000	55	8	33
7	ADSP-BF561	Analog	32	64		256000	1200		800

2: 8-Bit μC, 10 Bit ADC

4: leistungsstarker 8-Bit μ C

5: Nachfolger des C166 (Ersatz für 8051)

6: ARM7-Architektur

7: Dual Core DSP

- Vergleich μ -Controller vs. DSP

Eigenschaften	μC	DSP
einfache Steuerungsaufgaben		
komplexe Signalverarbeitung		
Rechenperformance		
Leistungsaufnahme		
Ausgereiftheit		
Kosten		

- je nach Anforderung oft "Arbeitsteilung"
 - Datenverarbeiter (Mikroprozessor oder DSP)
 - Datenübersetzer (µController)

Beispiel AVR Flash Mikrocontroller der Firma

Einordnung

- "Familie" von Flash-µC's mit kompatiblem Befehlssatz, aber unterschiedlichen Varianten von Peripherie/Speicher
- Schwerpunkt dieser Veranstaltung: ATmega

Merkmale

- Flash-Speicher für Programme (Firmware)
- SRAM für flüchtige Daten, EEPROM für nichtflüchtige Daten
- 32 Arbeitsregister (8-Bit)
- Arithmetisch-Logische-Einheit (ALU) f
 ür 8(16)-Bit Daten
- Schnittstellen zur Ein/Ausgabe digitaler/analoger Daten
- Timer zur Messung von Zeiten
- RISC-Struktur (die meisten Befehle in einem Taktzyklus)
- Taktfrequenz bis zu 20MHz

Smartphone Samsung Galaxy S5

Smartphone Samsung Galaxy S5

Back View

Quelle: www.techinsights.com/teardown.com/samsung-galaxy-S5-teardown

Zusammenfassung

Lernziele

Sie können

- Kriterien für die Auswahl eines Prozessors angeben;
- verschiedene Prozessortypen benennen und exemplarisch deren Haupteigenschaften und Einsatzgebiete zuordnen

Kontrollfragen

- Grenzen Sie die Prozessortypen μC und μP voneinander ab.
- Gibt es mehr Mikrocontroller oder mehr Mikroprozessoren?

Nachbereitung

- Vertiefung: [3] Mikrocontroller und Mikroprozessoren, Kapitel 1.1 Mikroprozessoren, Mikrocontroller, Signalprozessoren und SoC
- Aufgabe: Ergänzen Sie techn. Daten des ATmega328P [ILIAS]

3.1 Prozessoren

- Grundlegende Begriffe
- Prozessortypen
- Architekturen
- Steuerwerk und Programm
- Rechenwerk und Register

Architekturen

Aufbau / Funktionale Einheiten (auch an Tafel)

- Busse (Datenleitungen)
 - Beispiel am Zilog Z80

- Busse (Datenleitungen)
 - Beispiel am Zilog Z80

- Busse (Datenleitungen)
 - Beispiel am Zilog Z80

Von-Neumann-Architektur

Merkmale

- Befehle (Programm) und Daten (Variablen, Text, Bilder, ...) liegen im gemeinsamen Arbeitsspeicher
- Steuerwerk adressiert die gewünschten Befehle/Daten
- Befehle und auch Daten gelangen über den Bus zurück ins Steuer-/Rechenwerk

- 1. Befehl aus dem Speicher holen
- 2. Befehl dekodieren Welche Operation ist gemeint?
- 3. Befehl ausführen

Vorteile

- Programme lassen sich im Speicher wie Daten ändern
- einfache Architektur (nur 1 Datenbus notwendig)
- flexible Architektur (Größe des Speichers für Programm oder Daten je nach Anwendung variabel)

Nachteile

- ungewolltes Überschreiben des Programms (Sicherheit)
- "Von-Neumann-Flaschenhals"
 - Bus ist Engpass zwischen CPU und Speicher
 - Bus/Speicher bestimmen die Performance des Systems
 - Abhilfe: Datencaches

Einsatz

universelle Prozessoren in Heimcomputern, Spielekonsolen und PC's

Harvard-Architektur

- Merkmale
 - Befehle und Daten liegen in getrennten Speicherbereichen (i.d.R. separate Daten-/Befehlsbusse, oft auch separate Adressbusse)
 - Arten von Adressen
 - Befehlsadressen
 - Datenadressen
 - Portadressen (Peripherie)

Vorteile

- Zugriff auf Befehle/Programme erfolgt quasi parallel
- kein Überschreiben von Programmteilen durch SW-Fehler

Nachteile

- nicht benötigter Datenspeicher kann nicht als Programmspeicher genutzt werden
- Design/Verschaltung aufwendiger, da 2 Busse

Finsatz

- oft eingesetzt in Mikrocontroller für Steueraufgaben (Programmgröße liegt fest, wenige Daten zu bearbeiten)
- in Digitalsignalverarbeitungsprozessoren (DSP), wo Daten sehr schnell verarbeitet werden müssen
- PowerPC

Harvard-Architektur vs. Von-Neumann Architektur

- Harvard Architektur beschränkt sich heute auf Spezialaufgaben mit hoher Rechenleistung, wie z.B. Signalverarbeitung
- ursprünglicher Harvard Vorteil ⇒ hohe Geschwindigkeit wird in der von Neumann Architektur kompensiert durch
 - Einführung von mehreren Rechenwerken, (heute sogar mehreren Kernen) pro CPU
 - Pipelines zum Verringern der Dekodierzeit
 - synchrone RAM's und Caches zum Verringern der Datenholzeit
 - breite Datenbusse, breiter als die Verarbeitungsbreite (z.B. alle x86 Prozessoren ab dem Pentium mit 64 Bit Datenbus bei 32 Bit Verarbeitungsbreite)
- Mischformen mit Vorteilen beider Konzepte, viele moderne Prozessoren verwenden eine Mischform aus Von-Neumann und Harvard-Architektur

Zusammenfassung

Lernziele

Sie können

- den grundlegenden Aufbau und die funktionalen Einheiten eines Prozessors auflisten und deren Funktion erklären;
- die zwei grundlegenden Prozessorarchitekturen benennen, deren Eigenschaften bzw. Vor- und Nachteile anführen und, in einem gegebenen Prozessor-Blockschaltbild, die vorliegende Architektur identifizieren.

Kontrollfragen

- Nennen Sie den Hauptunterschied zwischen einer von-Neumann und einer Harvard-Architektur.
- Welche Prozessorarchitektur würden Sie in einem sicherheitskritischen Produkt (z.B. Luftfahrt) vorziehen?

Nachbereitung

- Vertiefung: [3] Mikrocontroller und Mikroprozessoren, Kapitel 2.3.1 Von-Neumann-Prinzip und Kapitel 2.3.2 Grundlegender Aufbau eines Mikroprozessors
- Aufgabe: Welche Prozessor-Architektur liegt der ATmega μC-Familie zu Grunde?

