# ECE-593, Winter-2024 Fundamentals of Pre-Silicon Validation

-Venkatesh Patil

# Project: Develop Specification, Implementation and Verification of Asynchronous FIFO

For this project your group will write the HLDS, Implement the Async-FIFO in SystemVerilog and Verify the design using UVM testbench architecture.



# Following activities needs to be completed by each group:

Use your google-doc as your work-pad and regularly update your progress.

### A. Tasks:

- Complete the Design Specification document (HLDS), based on the consumer demands. (I will provide the top-level specs)
  - a. This should include a schedule of your completion plan and ownership.
- 2. Implement and successfully compile the design based on requirements presented in HLDS.
- 3. Verify your implemented Async-FIFO design using various functional verification strategies:
  - a. Must include well established Verification Plan documentation.
  - b. 100% coverage goals for both code coverage and functional coverage by writing covergroups with different coverpoints and bins(i.e. for functional coverage), provide a detailed

- explanation.. If in any case you are not able to achieve, provide a detailed explanation.
- c. You must use SVA (SystemVerilog assertions) and covergroups with different coverpoints and bins.
- d. You must showcase the usage of targeted tests, constrained-random test.
- e. Before building up UVM test architecture, start with class based conventional testbench.

# B. Verification Plan to clearly include:

- a. Verification Requirements
  - i. Verification Levels
  - ii. Functions
  - iii. Specific test and methods used.
    - 1. Type of Verification
    - 2. Verification Strategy
    - 3. Abstraction Level
    - 4. Driving principles
    - 5. Checking methods
  - iv. Coverage
  - v. Scenarios
- b. Management Details
  - i. Tools and Methodologies
  - ii. Risks and Dependencies
  - iii. Resources
  - iv. Schedule

#### C. Deliverables:

- **a.** Your completed HLDS document. Must include groups members name and email. Acknowledgements, citations, references.
- b. Your completed Verification Plan (V-PLAN) document
- **c.** HDL codes for your implementation design, follow the good naming practices for each module, interfaces, packages.
- d. Test bench and other related codes
- **e.** Make separate directory for conventional/class based and UVM testbenches files.

- **f.** Ensure you rename your transcript-files according to what you are trying to show. All transcripts must be included.
- **g.** Include waveform snapshots of import events and clearly showcasing and highlighting them.

# Use Makefile for running simulations.

All the deliverables should be zipped into one file and submitted in Canvas. Please name the zipped file as: <team\_#>\_ece593w24\_final\_project.zip

## Spec and Group Assignments:

| Team Number   | Specification Option |
|---------------|----------------------|
| 1, 3, 5       | Α                    |
| 2, 4, 6       | В                    |
| 7, 9, 11      | С                    |
| 8. 10, 12, 18 | D                    |
| 13, 17        | E                    |
|               |                      |
| 15            | Multi-CPU System     |

| Option | Producer | Consumer | Write Idle | Read idle | Burst  |
|--------|----------|----------|------------|-----------|--------|
|        | Freq     | Freq     | Cycles     | Cycles    | Length |
|        | (Mhz)    | (Mhz)    |            |           |        |
| Α      | 250      | 100      | 0          | 2         | 150    |
| В      | 500      | 250      | 2          | 0         | 200    |
| С      | 500      | 500      | 0          | 4         | 450    |
| D      | 250      | 500      | 2          | 3         | 150    |
| E      | 750      | 250      | 0          | 2         | 500    |

**Producer Freq = Writing Frequency** 

Consumer Freq = Reading Frequency

Write Idle Cycle= Number of idle cycles between successive writes

Read Idle Cycle= Number of idle cycles between successive reads

Burst Length = Number of data items to be transferred

**Duty-cycle= Assume 50:50**