Satelit

Kategorie programování mikrořadičů

22. až 24. června 2018

Soutěž v programování – 32. ročník

Celostátní kolo 2017/2018

Úloha simuluje přípravu a řízení satelitu. Příprava probíhá v režimu TEST, řízení v režimu RUN. Oba režimy se přepínají pomocí spínače. Vaším úkolem je napsat program, který se skládá z částí (modulů), jež zprostředkovávají funkce přípravy a řízení satelitu.

Režim TEST

V tomto režimu:

- svítí zelená LED
- jsou načítána data z akcelerometru (modul Orientace)
- je měřena teplota pomocí čidla DS18B20 (modul Teplota)
- je měřeno napětí solární baterie (modul Solar)
- je měřeno palubní napětí (modul Paluba)
- získaná data jsou zobrazována na LCD displeji (modul Displej)
- jsou ovládána serva (modul Servo)

Režim RUN

V tomto režimu jsou vybraná data odesílána ve formě UDP paketů do řídícího střediska. Komunikace probíhá buď přes Ethernet nebo WiFi (podle vašeho vybavení). Každý soutěžící má přidělenu individuální IP a MAC adresu, kterou použije pro komunikaci ve finální verzi programu, který bude odevzdávat. Během ladění si každý soutěžící může simulátor řídícího střediska pustit na svém počítači a připojit se k němu přímo. Simulátor řídícího střediska je dostupný na adrese https://soutez.github.io/2018/finale/mcu/.

Dále v režimu RUN:

- nesvítí žádná LED
- paket je odeslán vždy, když je satelit kontaktován řídícím střediskem, a to na IP adresu řídícího střediska
- satelit přijímá z řídícího střediska UDP packety sloužící k ovládání serv
- v tomto režimu musí program fungovat i při odpojení kontrolních led, joysticku a LCD displeje

Modul Orientace

V tomto modulu vyřešte načítání dat z akcelerometru tak, aby byla v režimu TEST k dispozici pro průběžnou aktualizaci zobrazení na displeji, nebo v režimu RUN byla poslední

platná data připravena k odeslání do řídícího střediska. Modul nezajišťuje žádné zpracování dat.

Modul Teplota

V tomto modulu vyřešte načítání dat z teplotního čidla DS18B20. Načtenou 16 bitovou hodnotu přepočítejte na teplotu. Oba údaje předejte modulu Displej. Přepočet musí fungovat v celém teplotním rozsahu čidla.

Modul Solar

V tomto modulu vyřešte měření napětí solárního článku. Změřené napětí vyjádřete v mV tak, aby byl údaj v režimu TEST k dispozici pro průběžnou aktualizaci zobrazení na displeji, nebo v režimu RUN byl poslední platný údaj připraven k odeslání do řídícího střediska.

Modul Paluba

V tomto modulu vyřešte měření palubního napětí, které je simulováno výstupem z potenciometru. Změřené napětí vyjádřete v mV tak, aby byl údaj v režimu TEST k dispozici pro průběžnou aktualizaci zobrazení na displeji, nebo v režimu RUN byl poslední platný údaj připraven k odeslání do řídícího střediska. Pokles napětí pod 2 V bude signalizovat blikání červené ledky přibližně 0,5 s svítí, 0,5 s nesvítí. Pokud napětí poklesne pod 1,5 V změní se frekvence blikání červené ledky přibližně na 0,2 s svítí, 0,2 s nesvítí.

Modul Displej

V tomto modulu budete zobrazovat telemetrická data

- z akcelerometru jako 8 bitová hexadecimální čísla ve formátu X = Y = Z =
- z čidla DS18B20 jako načtená 16 bitová hexadecimální čísla a jejich vyjádření ve °C zaokrouhleno na celé stupně směrem dolů ve formátu Senzor = Teplota =°C
- napětí solární baterie v mV ve formátu Us = mV
- palubní napětí v mV ve formátu Up = mV

Teplota, napětí solární baterie a palubní napětí se zobrazují v desítkové soustavě.

Data zobrazujte v tomto pořadí: akcelerometr, teplota, napětí solární baterie, palubní napětí. Vlastní zobrazení vytvořte podle typu displeje, který máte k dispozici.

Pro čtyřřádkový displej zobrazte každou ze čtyř položek na samostatný řádek.

Pro dvouřádkový displej zobrazte tyto čtyři položky tak, že se na displeji budou posouvat směrem vzhůru. Pořadí je třeba dodržet. Rychlost posuvu musí umožňovat pohodlné čtení.

Pro jednořádkový displej zobrazte tyto čtyři položky tak, že se na displeji budou střídat. Pořadí je třeba dodržet. Rychlost střídání musí umožňovat pohodlné čtení.

Modul Servo

V tomto modulu vyřešte ovládání obou serv v obou režimech. V režimu TEST jsou serva ovládána napětím z joysticku. Středová poloha ovladače odpovídá středové poloze serva. Plná výchylka ovladače odpovídá výchylce serva o přibližně 45°. To platí na obě strany. Změna polohy serva musí na změnu polohy ovladače reagovat neprodleně. V režimu RUN jsou serva ovládána daty zaslanými z řídícího střediska. Data jsou požadovaným úhlem výchylky od středové polohy a jsou tedy v rozsahu 0 až ±45. Výchylka serva se nesmí měnit až do dalšího požadavku na změnu polohy.

Komunikace

UDP packet z řídícího střediska je ve formátu ?S1 s1 ?S2 s2

Kde

- s₁ je číslo v rozsahu 0 až ±45, tedy požadovaná výchylka serva 1
- s₂ je číslo v rozsahu 0 až ±45, tedy požadovaná výchylka serva 2

UDP packet s telemetrickými údaji je ve formátu ?X= 0xxx ?Y= 0xyy ?Z= 0xzz ?T= ±ttt ?S= ssss ?P= pppp

Kde

- xx je načtená hodnota akcelerometru osy X jako 8 bitové hexadecimální číslo
- yy je načtená hodnota akcelerometru osy Y jako 8 bitové hexadecimální číslo
- zz je načtená hodnota akcelerometru osy Z jako 8 bitové hexadecimální číslo
- ±## je změřená hodnota teploty ve °C zaokrouhlená na celé stupně směrem dolů
- ssss je napětí solárního článku v mV
- pppp je palubní napětí v mV

Teplota, napětí solární baterie a palubní napětí se zobrazují v desítkové soustavě.

Pro komunikaci nastavte port 4000.

Příklad UDP packetu z řídícího střediska je

```
?S1 +20 ?S2 -35
```

Příklad UDP packetu s telemetrickými údaji je

```
?X= 0xFA ?Y= 0x19 ?Z= 0xFF ?T= -038 ?S= 0498 ?P= 2189
```

Každý soutěžící svůj Satelit připojí s následující individuální IP a MAC adresou.

Jedná se o síť oddělenou od Internetu, určenou jen pro testování vašich řešení.

Soutěžící	IP adresa	MAC adresa
WiFi AP	192.168.0.98	SSID: dlink1 (nezabezpečená, bez hesla)
Porota (řídící středisko)	192.168.0.100	
Soutěžící 400	192.168.0.102	0x02, 0x12, 0x13, 0x10, 0x15, 0x11
Soutěžící 401	192.168.0.104	0x02, 0x12, 0x13, 0x10, 0x15, 0x22
Soutěžící 402	192.168.0.106	0x02, 0x12, 0x13, 0x10, 0x15, 0x33
Soutěžící 403	192.168.0.108	0x02, 0x12, 0x13, 0x10, 0x15, 0x44
Soutěžící 404	192.168.0.110	0x02, 0x12, 0x13, 0x10, 0x15, 0x55
Soutěžící 405	192.168.0.112	0x02, 0x12, 0x13, 0x10, 0x15, 0x66
Soutěžící 406	192.168.0.114	0x02, 0x12, 0x13, 0x10, 0x15, 0x77
Soutěžící 407	192.168.0.116	0x02, 0x12, 0x13, 0x10, 0x15, 0x88
Soutěžící 408	192.168.0.118	0x02, 0x12, 0x13, 0x10, 0x15, 0x99
Soutěžící 409	192.168.0.120	0x02, 0x12, 0x13, 0x10, 0x25, 0x11
Soutěžící 410	192.168.0.122	0x02, 0x12, 0x13, 0x10, 0x35, 0x11
Soutěžící 411	192.168.0.124	0x02, 0x12, 0x13, 0x10, 0x45, 0x11
Soutěžící 412	192.168.0.126	0x02, 0x12, 0x13, 0x10, 0x55, 0x11
Soutěžící 413	192.168.0.128	0x02, 0x12, 0x13, 0x10, 0x65, 0x11
Soutěžící 414	192.168.0.130	0x02, 0x12, 0x13, 0x10, 0x75, 0x11
Soutěžící 415	192.168.0.132	0x02, 0x12, 0x13, 0x10, 0x85, 0x11
Soutěžící 416	192.168.0.134	0x02, 0x12, 0x13, 0x10, 0x95, 0x11
Soutěžící 417	192.168.0.136	0x02, 0x12, 0x13, 0x11, 0x15, 0x11
Soutěžící 418	192.168.0.138	0x02, 0x12, 0x13, 0x12, 0x15, 0x11
Soutěžící 419	192.168.0.140	0x02, 0x12, 0x13, 0x13, 0x15, 0x11