

HD UHD 4/8k

Low resolution (240x180)

Joint Filtering of Intensity Images and Neuromorphic Events for High-Resolution Noise-Robust Imaging

Boxin Shi²

Oliver Cossairt¹ Aggelos Katsaggelos¹ Zihao W. Wang^{1*} Peiqi Duan^{2*} Tiejun Huang² *Equation contrubution ²Peking University ¹Northwestern University

RGB cam event cam

30/60FPS High speed (1us latency) ~60dB HDR (120dB)

Low power (10mW) >1W

Less noisy noisy

How does event camera work?

Proposal: RGB + Event hybrid camera

camera

Event camera view

calibration

RGB camera view

Captured data: regular frame-rate images and events

Guided Event Filtering (GEF): a unifying framework

Input

an intensity image a stream of events

Motion model

Assuming events are generated by moving edges

建筑工程,建筑建筑

Motion compensation

Step 1: Motion compensation by Joint Contrast Maximization

- maximizes the contrast of the histogram jointly formed by the image and events
- registers events with image edges
- estimates optical flow robust to event noise

Step 2: Joint/guided image filtering

- extracts mutual structure from image and events
- recursively upsamples by 2x, until 8x

Filter output

Guided event upsampling

(d) 2 × (f) 8 \times (a) Img+events (b) Q^e (e) 4× (c) 1×

Applications

GEF can improve performance for event-based algorithms

#1: video frame synthesis

w/o GEF

w/ GEF

#2: image motion deblur

Blurry image

deblur w/o GEF

w/ GEF

#3: HDR image reconstruction

LDR image

HDR w/o GEF

w/ GEF

#4: corner detection and tracking

