1 Несобственные интегралы двух типов. Критерий Коши сходимости несобственного интеграла.

1. Пусть функция f определена на промежутке $[a,+\infty)$ и $\forall b \in [a,+\infty)$ $f \in \Re[a,b]$. Предел

$$\lim_{b \to +\infty} \int_{a}^{b} f(x) dx,$$

если он существует и конечен, называют несобственным интегралом первого рода и обозначают символом

$$\int_{a}^{+\infty} f(x)dx$$

Аналогично определяется интеграл

$$\int_{-\infty}^{b} f(x)dx$$

2. Пусть функция f определена на промежутке [a,B), неограничена в окрестности точки B и $\forall b \in [a,B)$ $f \in \Re[a,b]$. Предел

$$\lim_{b \to B-0} \int_a^b f(x) dx,$$

если он существует и конечен, называют несобственным интегралом второго рода и обозначают символом

$$\int_{a}^{B} f(x)dx$$

3. Критерий Коши сходимости несобственного интеграла: Несобственный интеграл $\int_a^w f(x) dx$ сходится \iff

$$\forall \epsilon > 0 \quad \exists B \in [a, w) \quad \forall b_1, b_2 \in (B, w) \left| \int_{b_1}^{b_2} f(x) dx \right| < \epsilon$$

Доказательство:

В силу определения несобственного интеграла его сходимость равносильна существованию предела функции $F(b)=\int_a^b f(x)dx$ при $b\to w,\quad b\in [a,w),$ а

$$\int_{b_1}^{b_2} f(x)dx = \int_a^{b_2} f(x)dx - \int_a^{b_1} f(x)dx = F(b_2) - F(b_1).$$

Осталось записать условие критерия Коши существования предела функции F при $b \to w$.

2 Абсолютная сходимость несобственного интеграла. Признаки абсолютной сходимости несобственных интегралов.

- 1. Говорят, что несобственный интеграл $\int_a^w f(x) dx$ абсолютно сходится, если сходится интеграл $\int_a^w |f(x)| dx$.
- 2. Если $f(x)\geqslant 0 \quad \forall x\in [a,w).$ Тогда интеграл $\int_a^w f(x)dx$ сходится \iff функция

$$F(b) = \int_{a}^{b} f(x)dx, \quad b \in [a, w),$$

ограничена.

Доказательство:

Если $f(x) \geqslant 0 \quad \forall x \in [a,w)$, то функция $F(b) = \int_a^b f(x) dx$ неубывает на [a,w) и поэтому она имеет предел при $b \to w, \quad b \in [a,w), \iff$ она ограничена.

3. Признак мажорации:

Если $0\leqslant f(x)\leqslant g(x)\quad \forall x\in [a,w)$ и интеграл $\int_a^w g(x)dx$ сходится, то интеграл $\int_a^w f(x)dx$ тоже сходится.

Доказательство:

Если интеграл $\int_a^w g(x)dx$ сходится, то функция

$$G(b) = \int_a^b g(x)dx, \quad b \in [a, w),$$

ограничена. Согласно свойству монотонности несобственного интеграла

$$0 \leqslant F(b) = \int_a^b f(x)dx \leqslant \int_a^b g(x)dx = G(b),$$

и, следовательно, функция F также ограничена. В силу предыдущей теоремы интеграл $\int_a^w f(x) dx$ сходится.

4. Пусть
$$\forall x \in [a, w)$$
 $f(x) \geqslant 0$, $g(x) > 0$ и $\lim_{x \to w} \frac{f(x)}{g(x)} = A$, $0 < A < +\infty$.

Тогда интегралы $\int_a^w f(x)dx$ и $\int_a^w g(x)dx$ одновременно сходятся или расходятся.

Доказательство:

Возьмём $\epsilon = A/2 > 0$. $\exists c \in [a,w)$ такая что $\forall x \in [c,w)$

$$\left| \frac{f(x)}{g(x)} - A \right| < A/2,$$

то есть

$$\frac{A}{2}g(x) < f(x) < \frac{3}{2}Ag(x), \quad x \in [c,w).$$

Остаётся воспользоваться признаком мажорации и свойством:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

3 Признаки условной сходимости несобственных интегралов. Несобственные интегралы с несколькими особенностями.

Утверждение: Если существует интеграл $\int_a^w g^{'}(x)F(x)dx=A$ и существует конечный предел $\lim_{b\to w}g(b)F(b)=B$, то существует несобственный интеграл

$$\int_{a}^{w} f(x)g(x)dx = B - g(a)F(a) - A.$$

1. Признак Дирихле:

Пусть функции $f,g,g^{'}$ непрерывны на $[a,w),\quad F(b)=\int_a^b f(x)dx$ ограничена на [a,w), функция g(x), монотонно убывая, стремится к 0 при $x\to w.$ Тогда интеграл $\int_a^w f(x)g(x)dx$ сходится.

Доказательство:

Очевидно, что $\lim_{b\to w}g(b)F(b)=0.$ Поскольку $g^{'}(x)\leq 0,$ то

$$\lim_{b \to w} \int_{a}^{b} \left| g'(x) \right| dx = -\lim_{b \to w} g'(x) dx = -\lim_{b \to w} \left[g(b) - g(a) \right] = g(a),$$

то есть, интеграл $\int_a^w |g^{'}(x)| dx$ сходится. Так как функция F ограничена, то согласно признаку мажорации интеграл $\int_a^w |g^{'}(x)F(x)| dx$ сходится, и, следовательно, интеграл $\int_a^w g^{'}(x)F(x)dx$ сходится. Осталось воспользоваться предыдущим утверждением.

2. Признак Абеля:

Пусть функции $f,g,g^{'}$ непрерывны на [a,w), интеграл $\int_{a}^{w}f(x)dx$ сходится, функция g монотонна и ограничена на [a,w). Тогда $\int_{a}^{w}f(x)g(x)dx$ сходится.

3. Несобственные интегралы с несколькими особенностями:

Если оба предела интегрирования являются особенностями того или другого из изученных типов, то полагают по определению

$$\int_{w_1}^{w_2} f(x)dx := \int_{w_1}^{c} f(x)dx + \int_{c}^{w_2} f(x)dx,$$

где c — произвольная точка промежутка (w_1, w_2) .

При этом предполагается, что каждый из интегралов в правой части равенства сходится.

В том случае, когда подынтегральная функция не ограничена в окрестности одной из внутренних точек w отрезка интегрирования [a,b] полагают

$$\int_{a}^{b} f(x)dx := \int_{a}^{w} f(x)dx + \int_{w}^{b} f(x)dx,$$

требуя, чтобы оба стоящих справа интеграла сходились. Наконец, если на промежутке интегрирования имеется несколько (конечное число) тех или иных особенностей, лежащих внутри промежутка или совпадающих с его концами, то неособыми точками промежуток разбивают на конечное число таких промежутков, в каждом из которых имеется только одна особенность, а интеграл вычисляют как сумму интегралов по отрезкам разбиения.

4 Числовой ряд, сумма ряда, сходящийся числовой ряд. Критерий Коши сходимости числового ряда. Необходимое условие сходимости числового ряда.

1-3. Пусть (a_n) числовая последовательность. Определим новую последовательноть (S_n) , где

$$S_n = \sum_{k=1}^n a_k, \quad n \in N.$$

Числовым рядом $\sum a_n$ называют последовательность (S_n) . Если в \overline{R} существует предел $\lim_{n\to\infty}S_n=S$, то $S\in\overline{R}$ называют суммой ряда и обозначают

$$S = \sum_{n=1}^{\infty} a_n$$

Если число S конечное, то ряд называют сходящимся.

4. Говорят, что ряд $\sum a_n$ удовлетворяет условию Коши, если

$$\forall \epsilon > 0 \quad \exists n_{\epsilon} \in N \quad \forall n \ge n_{\epsilon} \quad \forall p \in N \quad \left| \sum_{k=n+1}^{n+p} a_k \right| < \epsilon$$

5. Критерий Коши сходимости числового ряда:

Ряд $\sum a_n$ сходится тогда и только тогда, когда он удовлетворяет условию Коши.

Доказательсво:

Используя критерий Коши сходимости последовательности, имеем: ряд $\sum a_n$ сходится \iff (S_n) сходится \iff (S_n) фундаментальна, т.е.

$$\forall \epsilon > 0 \quad \exists n_{\epsilon} \in N \quad \forall n \geq n_{\epsilon} \quad \forall p \in N \quad |S_{n+p} - S_n| < \epsilon$$

Осталось заметить, что

$$S_{n+p} - S_n = \sum_{k=1}^{n+p} a_k = \sum_{k=1}^n a_k = \sum_{k=n+1}^{n+p} a_k.$$

6. Необходимое условие сходимости ряда:

Если ряд $\sum a_n$ сходится, то $\lim_{n\to\infty} = 0$

Доказательство:

Пусть ряд $\sum a_n$ сходится и его сумма равна числу $S \in R$. тогда

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = S - S = 0$$

- 5 Теорема об арифметических действиях над сходящимися рядами. Абсолютная сходимость числовых рядов, связь со сходимостью.
- 1. Теорема об арифметических действиях над сходящимися рядами:

Пусть ряды $\sum a_n$, $\sum b_n$ сходятся и $\sum_{n=1}^{\infty} a_n = A$, $\sum_{n=1}^{\infty} b_n = B$, $\lambda \in R$. Тогда ряды $\sum (a_n + b_n)$ и $\sum \lambda a_n$ сходятся и

$$\sum_{n=1}^{\infty} (a_n + b_n) = A + B, \quad \sum_{n=1}^{\infty} \lambda a_n = \lambda A.$$

Доказательство:

$$\sum_{n=1}^{\infty} (a_n + b_n) = \lim_{n \to \infty} \sum_{n=1}^{n} (a_k + b_k) = \lim_{n \to \infty} (\sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k) = \lim_{n \to \infty} \sum_{k=1}^{n} a_k + \lim_{n \to \infty} \sum_{k=1}^{n} b_k = A + B.$$

$$\sum_{n=1}^{\infty} \lambda a_n = \lim_{n \to \infty} \sum_{k=1}^n \lambda a_k = \lim_{n \to \infty} (\lambda \sum_{k=1}^n a_k) = \lambda \lim_{n \to \infty} \sum_{k=1}^n a_k = \lambda A.$$

- 2. Ряд $\sum a_n$ называют абсолютно сходящимся, если сходится ряд $\sum |a_n|$.
- 3. Теорема о сходимости абсолютно сходящегося ряда:

Если ряд сходится абсолютно, то он сходится.

Доказательство:

В силу свойств модуля

$$\left| \sum_{k=n+1}^{n+p} a_k \right| \le \sum_{k=n+1}^{n+p} \left| a_k \right|,$$

и остаётся воспользоваться критерием Коши сходимости числового ряда.