Line Bundles on Elliptic Curve

Presenter: David Zhu

Mentor: Danny Chupin

A Mirror Symmetry Story

- -Originated as physics phenomenon observed by string theorists.
- -Kontsevich(1994): Homological Mirror Symmetry

$$D^b(Coh(M)) \approx Fk^0(M')$$

Algebraic Geometry \Leftrightarrow Symplectic Geomtry

-For elliptic curves, holomorphic line bundles generate $D^b(Coh(M))$.

What Are Holomorphic Line Bundles?

Definition: Given a topological space B, which we call the base space, a holomorphic line bundle over B is a topological space E, together with a **holomorphic** map $\pi: E \to B$ that satisfies the following

- 1. For each $x \in B$, the fiber $\pi^{-1}(x)$ has the structure of a **1**-dimensional **complex vector space**.
- 2. For each $x \in B$, there is an open neighborhood U of x and a fiber-preserving **biholomorphism** $\phi: \pi^{-1}(U) \to U \times \mathbb{C}$ such that

$$\phi|_{\pi^{-1}(p)}:\pi^{-1}(p)\to \{p\}\times\mathbb{C}$$

is a vector space isomorphism for every $P \in U$.

We may extend the definition in multiple ways: fiber bundles; smooth vector bundles; holomorphic vector bundles.

Real Line Bundles over S^1

The trivial bundle

The mobius strip

What Is an Elliptic Curve?

We define an elliptic curve E_{τ} to be the Riemann surface given by

$$E_{\tau} := \mathbb{C}/\Lambda \cong \mathbb{C}/1\mathbb{Z} \oplus \tau\mathbb{Z}$$

where Λ is a lattice generated by $\langle 1, \tau \rangle$.

Line Bundles on E_{τ}

The trick is to consider $E_{\tau} \cong \mathbb{C}^{\times}/\tau\mathbb{Z}$, where we quotient out the one \mathbb{Z} -action first and identify $\mathbb{C}/1\mathbb{Z}$ $\cong \mathbb{C}^{\times}$. Then, then quotient map $q: \mathbb{C}^{\times} \to \mathbb{C}^{\times}/\tau\mathbb{Z} \cong E_{\tau}$ is a natural fiber bundle, where the fibers over a point are the orbit of the $\tau\mathbb{Z}$ -action on any lift of that point. The action is free and transitive.

Principal G-Bundle

Definition: A principal G-bundle, where G denotes any topological group, is a fiber bundle $\pi: P \to B$ together with a continuous right action $P \times G \to P$, such that G preserves the fibers of P and acts freely and transitively. In particular. Each fiber is homeomorphic to G itself.

In our case, the principal \mathbb{Z} -bundle over the base space $E_{\tau} \cong \mathbb{C}^{\times}/\mathbb{Z}$, is the fiber bundle $q: \mathbb{C}^{\times} \to \mathbb{C}^{\times}/\mathbb{Z}$ with the prescribed \mathbb{Z} -action.

What Can We Do About it?

Goal: Build line bundles over E_{τ} given a principal \mathbb{Z} -bundle over E_{τ} .

Here is a general idea: \mathbb{C}^{\times} is a fiber bundle that has fiber \mathbb{Z} over E_{τ} . We want to replace the fibers with vector space \mathbb{C} (with structures).

A somewhat natural thing to do is starting with $\mathbb{C}^{\times} \times \mathbb{C}$. We know that \mathbb{Z} acts principally on \mathbb{C}^{\times} . Thus, we can hope that an appropriate \mathbb{Z} -action on the product will lead to $\mathbb{C}^{\times} \times \mathbb{C}$ descending to line bundle after quotienting the \mathbb{Z} -action.

Associated Bundle to a Principal Bundle

Choose any \mathbb{Z} -action on \mathbb{C} : $\rho: \mathbb{Z} \to Aut(\mathbb{C})$. Then on the product $\mathbb{C}^{\times} \times \mathbb{C}$, we have a " \mathbb{Z} -equivariant" action $\mathbb{Z} \to Aut(\mathbb{C}^{\times} \times \mathbb{C})$: given $k \in \mathbb{Z}$, the action is given by

$$(c_1, c_2) \cdot k = (c_1 \cdot k, k^{-1} \cdot c_2)$$

Then we can define the associated line bundle $\mathbb{C}^{\times} \times_{\mathbb{Z}} \mathbb{C}$ by the quotient map:

$$\pi_{\mathbb{Z}}: \mathbb{C}^{\times} \times \mathbb{C}/\mathbb{Z} \to \mathbb{C}^{\times}/\mathbb{Z} \cong E_{\tau}$$
$$[c_{1}, c_{2}] \mapsto q(c_{1})$$

Some checks

- Is the map well-defined?
- What do the fibers look line?
- Is it a vector bundle? (is local-trivalisation satisfied?)
- Is the complex structures we want on $\mathbb C$ preserved?

$$\pi_{\mathbb{Z}} : \mathbb{C}^{\times} \times \mathbb{C}/\mathbb{Z} \to \mathbb{C}^{\times}/\mathbb{Z} \cong E_{\tau}$$

$$[c_{1}, c_{2}] \mapsto q(c_{1})$$

Some Food For Thought...

- How do we construct others?
- How do we know when we have found them all?
- How do we define morphisms in our category?

Thank you!