PONTIFICIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE INFORMÁTICA

Linguagens Formais

Exercícios: Autômatos Finitos Determinísticos

- 1) Construa AFDs (Autômatos Finitos Determinísticos) que reconheçam as linguagens abaixo, com $\Sigma = \{0, 1\}$:
 - a) L = {00}
 - b) $L = \{00,11\}$
 - c) $L = \{001,011\}$
 - d) $L = \{00,11,001,011\}$
 - e) L = {1w0 | w ∈ {0,1}*}, ou seja, todos números binários que começam por 1 e terminam por 0.
 - f) L = {w | w ∈ {0,1}*-{ε}}, ou seja, todos números binários exceto a palavra vazia.
 - g) L = {w | w ∈ {0,1}* e |w| ≤ 3}, ou seja, todos números binários com no máximo 3 bits, inclusive a palavra vazia.
 - h) $L = \{10^{n}10^{m} \mid n,m > 0\}$
- Descreva com suas palavras a linguagem reconhecida pelo seguinte autômato:

- 3) Construa Autômatos Finitos Determinísticos para as seguintes linguagens:
 - a) L = {w ∈ {0,1}* / cada 0 em w é imediatamente seguido por 1}
 - b) $L = \{w \in \{0,1\}^* / \text{cada } 0 \text{ em } w \text{ \'e imediatamente precedido e imediatamente seguido por } 1\}$
 - c) $L = \{ w \in \{0,1\}^* / w \text{ tem 0101 como subpalavra} \}$
 - d) $L = \{0w001 / w \in \{0,1\}^*\}$

PONTIFICIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE INFORMÁTICA

Linguagens Formais

Exercícios: Autômatos Finitos Não Determinísticos

- 1) Construa AFNDs (Autômatos Finitos Não Determinísticos) que reconheçam as linguagens abaixo sobre $\Sigma = \{0, 1\}$:
- a) L1 = {w | w ∈ Σ* e w começa por 1 e termina por 0}.
- b) $L2 = \{w00 \mid w \in \Sigma^*\}$
- c) L3 = $\{x01y \mid x,y \in \Sigma^*\}$
- Construa um AFND que aceita o conjunto de todas as palavras sobre o alfabeto {0,1,...,9} tal que o dígito final já tenha aparecido antes na palavra.
- Construa um AFND-ε (Autômato Finito Não Determinístico com Movimento Vazio) que reconheça números decimais no seguinte formato:
 - a.Um sinal opcional de + ou -
 - b. Uma sequência de dígitos
 - c.Um ponto decimal
 - d.Uma sequência de dígitos
 - e.A sequência de dígitos b e d podem ser vazias, mas não ao mesmo tempo.
- 4) Converta o seguinte AFND para um AFD:

 $A = (\{p,q,r,s\},\{0,1\},\delta, p,\{s\})$

/// > 1 × 1 × 1 × 1 × 1				
δ	0	1		
р	{p,q}	{p}		
q	{r}	{r}		
r	{s}	Ø		
s	{s}	{s}		

Considere o seguinte AFND-ε (autômato finito não-determinístico com movimento vazio):

A=	({p,q,r	},{a,b,	,c},δ,	p, {r}
δ	3	a	b	С
р	Ø	{p}	{q}	{r}
q	{p}	{q}	{r}	Ø
r	{q}	{r}	Ø	{p}

- a) Compute o Fecho-ε para cada estado no autômato.
- b) A seguir, converta para o AFD correspondente.

PONTIFICIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE INFORMÁTICA Linguagens Formais

Exercícios: Expressões Regulares

- 1) Escreva expressões regulares (ER) para as seguintes linguagens:
 - a) Números binários onde cada 1 é imediatamente seguido por 0.
 - b) L = {w ∈ {0,1}* / w possua 11 como subpalavra}
 - c) Conjunto de palavras sobre (a,b,c) contendo ao menos um a e ao menos um b.
 - d) Conjunto de palavras sobre (0,1) tal que cada par de θs adjacentes aparece antes de qualquer par de 1s adjacentes.
 - e) Identificadores da linguagem Pascal que são compostos por uma letra (a...z) ou sublinhado
 (_) seguido por qualquer combinação de letras, sublinhados ou dígitos (θ...9).
- 2) Para cada uma das expressões regulares abaixo, qual a linguagem definida pela expressão?
 - a) 00
 - b) (0+1)*00(0+1)*
 - c) (0 + 10)*
 - d) $(0 + \epsilon)(1 + 10)$ *
 - e) (0 + 1)*011
 - f) 0*1*2*
 - g) 00*11*22*
 - h) dd^* , onde $d = \{0, ..., 9\}, \Sigma = d$
- 3) Converta as seguintes ER em AFN-ε, utilizando o algoritmo estudado:
 - a) 01*
 - b) (0+1)01
 - c) (0+1)*1(0+1)