Distributed Data Processing

Gianluca Demartini
DATA7201 Data Analytics at Scale
Week 5

Last Week

- OLAP vs OLTP
- Architectures for Distributed Databases
- Big Table
- Hbase and Hive
- PIG

Week	Date	Lecture	Prac	Assessment
1	21-Feb	Introduction to DATA7201 - Data Analytics at Scale	-	
2	28-Feb	Supporting Infrastructures and Use Cases	-	
3	6-Mar	Storage Infrastructures for Large Data Volumes	Intro to Cluster and HDFS	
4	13-Mar	Analytics Queries for Large Data Volumes	PIG(1)	
5	20-Mar	Distributed Data Processing	PIG (2)	
6	27-Mar	Processing Large Data Streams	PySpark (1)	Quiz 1 Due (5)
Semester Break				
7	10-Apr	Processing Large Graph Data (1) + use cases	PySpark (2)	
8	17-Apr	Processing Large Graph Data (2) + use cases	Project support	
9	24-Apr	Recommender Systems	Project support	Quiz 2 Due (5)
10	1-May	Opinion Mining + use cases	Project support	
11	8-May	Health Data Analytics (guest speaker)	Project support	
12	15-May	Large Language Models?	Project support	Report Due (45)
13	22-May	Course Revision	-	Quiz 3 Due (5)

Lecture Outline

- Zookeeper
- Map/Reduce jobs
- Hadoop, YARN, and Spark
- Python (PySpark), R

The Hadoop Stack

Zookeeper - Motivation

- In the past: a single program running on a single computer with a single CPU
- Today: applications consist of independent programs running on a changing set of computers
- Difficulty: coordination of those independent programs
- Developers have to deal with coordination logic and application logic at the same time

Zookeeper

- A distributed configuration service, synchronization service, and naming registry for large distributed systems.
 - High availability through redundant services
 - Scalability
 - Fast for read intensive workload

Zookeeper design

- Client requests are processed in FIFO order
- ZooKeeper service is an ensemble of servers that use replication (high availability)
- (meta)Data is cached on the client side
 - ID of datanodes, instead of probing ZooKeeper every time.
 - What if data changes?
 - Polling?
 - Watch mechanism: clients can watch for an update of a given object

Zookeeper design

- ZooKeeper data is replicated on each server that composes the service
 - Recovery from master failures
- Clients connect to exactly one server to submit requests
 - read requests served from the local replica
 - write requests are processed by an agreement protocol (an elected server leader initiates processing of the write request)

MapReduce (MR)

- High-level programming model and implementation for large-scale parallel data processing
- Commodity hardware
- Fault-tolerant
- Divide & conquer: partition a large problem into smaller subproblems
 - Independent sub-problems can be executed in parallel by workers
 - Intermediate results from each worker are combined to get the final result

MR Data Model

• Files on HDFS!

• Each file a set of (key,value) pairs

- A map-reduce program:
 - Input: a set of (input key, value) pairs
 - Output: a set of (output key, value) pairs

k1 -> v1

k2 -> v2

k3 -> v3

MR: World count example

Term	#tf
the	2
dog	2
walks	1
around	2
walking	1
my	1

The Partitioner

- Responsible for dividing the intermediate key space and assigning intermediate key/value pairs to reducers
- Default key-to-reducer assignment:
 - hash(key) mod num_reducers

The Combiner

- Local aggregation of key/value pairs after map() and before the shuffle & sort phase (occurs on the same machine as map())
 - mini-reducer
- Instead of emitting 100 times (the,1), the combiner emits (the,100)
 - If it's too complex, it's not scaling-out
 - Has no access to other mapper's key/value pairs: avg does not work!
 - Most often, combiner code != reducer code

MR Phases

Combine: local aggregation of values with the same key Reducers can only start calling reduce() after all mappers are finished Shuffle: sorting of intermediate key/value pairs

MR: Sensors data

MR: Sensors data

MR: Sensors data

Sequential MR jobs

Other MR application examples

Reverse web-link graph

- *Map*: Input is node-outgoing links. Output each link with the target as a key.
- *Reduce*: Concatenate the list of all source nodes associated with a target.

Inverted index

- *Map*: Input is words for a document. Emit word-document pairs
- *Reduce*: for the same word, sort the document IDs that contain this word; emits a pair.

Other MR application examples

- Reverse web-link graph
 - Map
 - I: Outgoing links of each node (A -> B, C -> B, B -> D)
 - O: Target as key and link as value (B,A)(B,C)(D,B)
 - Reduce
 - Concat all nodes for a target (B, (A,C)) (D, (B))

Other MR application examples

Inverted Index

- Map
 - I: words for a document (d1,"The lazy fox") (d2,"The brown fox")
 - O: word-document pairs (The,d1)(lazy,d1)(fox,d1)(The,d2)(brown,d2)(fox,d2)
- Reduce
 - For each distinct word, sort doc ids with the word
 - (the, (d1,d2)) (lazy, (d1)) (fox, (d1,d2)) (brown, (d2))

Hadoop Design

- Centralized master
- "Pull" based communication model
 - Reduce tasks fetch files from mappers
 - Provides cheaper fault recovery and room for dynamic scheduling of tasks

MR Job Management

- Worker failure:
 - Master pings workers periodically
 - If worker down, then master reassigns the task to another worker
- Choice of M and R:
 - Larger is better for load balancing
 - Limitation: master needs O(M×R) memory

Job Scheduling

- Number of tasks (e.g., Map or Reduce operations from multiple users)
 can exceed number of tasks that can run concurrently on the cluster
- Scheduler maintains task queue and tracks progress of running tasks
- Waiting tasks are assigned nodes as they become available

 Scheduler starts tasks on node that holds a particular block of data needed by the task, if possible ("move code to data")

Job Scheduling

- FIFO (first-in-first-out) scheduler
- Consider Job priorities
 - Next job to be executed is the one with highest priority
- Fair scheduling
 - Every user receives a fair share of the cluster
 - Jobs run in parallel getting a share of the resources

Hadoop 2 - YARN

- YARN (Hadoop 2.x, used in production at Yahoo!)
- Cluster management technology
- The "operating system" on top of HDFS
- Map/Reduce is an application on top

YARN

By hortonworks.com

Hadoop 1 versus 2

Hadoop 3

- Multiple Namenodes
- Better replica storage management (more scalable, less storage needed)
- Disk balancing for data storage
- Improved job scheduling (preemption)

Apache TEZ

- Complex execution of tasks
- Built on top of YARN

- More efficient, Better data flow decisions
 - As compared to M/R over Hadoop

Spark

- Generalizes MapReduce while retaining its scheduling and fault tolerance benefits
- Main addition: efficient data sharing
 - Scheduler aims to put jobs where the data is
- Enables more applications
 - Iterative algorithms
 - Interactive queries
 - Stream processing

Spark implementation

• https://www.safaribooksonline.com/library/view/learning-spark/9781449359034/ch04.html

Figure 1-1. The Spark stack

Spark in Python

PySpark package

Word Count M/R in Spark with Python

Take first element of the input

```
Input file
          lines = spark.read.text(sys.argv[1]).rdd.map(lambda r: r[0])
36
          counts = lines.flatMap(lambda x: x.split(' ')) \
37
                           .map(lambda x: (x, 1)) \
38
                           .reduceByKey(add) 
39
                                                                  Split lines using
          output = counts.collect()
                                                                  empty spaces to
40
                                               Count each word
                                                                  get a list of words
                                               as appearing 1 time
            Store results.
             Because of lazy evaluation
             it only computes the data now
                                        Add as reduce function: sum of all word values
```

Transformations

- Map(function): Return a new distributed dataset formed by passing each element of the source through a function
- FlatMap(function): each input item can be mapped to 0 or more output items (instead of one as for map)
- reduceByKey(function): When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for each key are aggregated using the given reduce function, which must be of type (V,V) => V.

SparkR

- Connect your R program to a Spark cluster from Rstudio
- SparkR package

```
library(SparkR, lib.loc = c(file.path(Sys.getenv("SPARK_HOME"), "R", "lib")))
sparkR.session(master = "local[*]", sparkConfig = list(spark.driver.memory = "2g"))
```

 convert a local R data frame into a SparkDataFrame (using "as.DataFrame()")

SparkR Machine Learning

SparkR supports the following machine learning algorithms currently:

Classification

- spark.logit:Logistic Regression
- spark.mlp: Multilayer Perceptron (MLP)
- spark.naiveBayes: Naive Bayes
- spark.svmLinear: Linear Support Vector Machine
- spark.fmClassifier: Factorization Machines classifier

Regression

- spark.survreg: Accelerated Failure Time (AFT) Survival Model
- spark.glm or glm: Generalized Linear Model (GLM)
- spark.isoreg: Isotonic Regression
- spark.lm: Linear Regression
- spark.fmRegressor: Factorization Machines regressor

Tree

- spark.decisionTree: Decision Tree for Regression and Classification
- spark.gbt: Gradient Boosted Trees for Regression and Classification
- spark.randomForest: Random Forest for Regression and Classification

Clustering

- spark.bisectingKmeans: Bisecting k-means
- spark.gaussianMixture: Gaussian Mixture Model (GMM)
- spark.kmeans: K-Means
- spark.lda: Latent Dirichlet Allocation (LDA)
- spark.powerIterationClustering (PIC): Power Iteration Clustering (PIC)

Collaborative Filtering

• spark.als: Alternating Least Squares (ALS)

Frequent Pattern Mining

- spark.fpGrowth:FP-growth
- spark.prefixSpan:PrefixSpan

Statistics

• spark.kstest: Kolmogorov-Smirnov Test

SparkSQL

- Query structured data as a distributed dataset (RDD) in Spark
- Load and query data from a variety of sources
 - Hive table
 - JSON files
- Hive queries
- Spark SQL DataFrames

SparkSQL – Example commands

```
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val df = sqlContext.read.json("employee.json")

df.show()
df.select("name").show()
```

df.groupBy("age").count().show()

As a Python library (https://spark.apache.org/docs/2.4.0/api/python/pyspark.sql.html) https://www.tutorialspoint.com/spark_sql/spark_sql_quick_guide.htm

System comparison (so far)

- Query/Analysis languages
 - SQL, Pig, R (sparkR), Python (pyspark), SparkSQL
- Databases
 - Relational DB systems (e.g., Oracle)
 - OLAP: Hive
 - Column-stores
 - OLTP: HBase
- Data
 - HDFS / GFS

Summary

- Zookeeper
- Map/Reduce jobs
- Hadoop, YARN, and Spark
- Python (PySpark), R

References

- ZooKeeper: Wait-free coordination for Internet-scale systems. Hunt et al., USENIX 2010
- MapReduce: Simplified Data Processing on Large Clusters. Jeffrey Dean and Sanjay Ghemawat. OSDI 2004. Sec. 1 4.

What's next (Part II)

- Data Streams (week 6)
 - Apache Storm and Apache Kafka
 - Spark Streaming
- Graph data / network data (weeks 7-8)
 - (Social) Network data analytics at scale
 - Modularity, community detection
 - Link Analysis

Scenarios

- Scenario Assumptions
 - What is the data we expect?
 - Who are the users? What do they know?
 - What are the queries we expect?
 - What is the timeline?

Scenarios - Which tool is best for which use case?

- Data generated by the Large Hadron Collider is stored and analysed by researchers
- All pages crawled from the Web are stored by a search engine and served to clients via its search interface
- 3. Data generated by the Australian taxation office is used to send warning letters to tax payers ("you are late with your taxes")

Options

- A. Relational DBMS
- B. Hadoop (HDFS, M/R, PIG, HBase etc.)
- C. Spark (HDFS, RDDs, MLLib, etc.)
- D. Streaming solution (Storm, Kafka, SparkStreaming, etc.)
- E. Graph data solution (Pregel, Giraph, Spark GraphX, etc.)