MA 109 D2 T1

Practice Assignment

Siddhant Midha

18 November 2022

Note to the student

- 1. This assignment is for the D2-T1 batch only.
- 2. This is a **practice** assignment, it carries no marks and is **not graded**.
- 3. It is **not** compulsary to submit this. The purpose is to give you more practice before the exams.
- 4. If you decide to submit, please do so in the third tutorial. It will be evaluated and given back by Tuesday 22/11/22.

A Proof Sample

Let us prove that the sequence $(a_n)_n$ defined as

$$a_n := \frac{5n}{n^2 + 3}$$

converges.

We claim¹ that a_n converges to 0. We show this through the $\epsilon - N$ definition.

Back of the envelope calculation: We need to show that

$$\mid \frac{5n}{n^2+3} - 0 \mid < \epsilon$$

We note,

$$\frac{5n}{n^2+3} < \frac{5n}{n^2}$$
$$< \frac{5}{n}$$

So, if we want to ensure that $\left|\frac{5n}{n^2+3}\right| < \epsilon$, it suffices to ensure $\frac{5}{n} < \epsilon$. Hence, it suffices to take $n > 5/\epsilon$. Now note that choosing any $N_0 > 5/\epsilon$ would work. For concreteness, we take

$$N_0(\epsilon) = |5/\epsilon| + 1$$

With this out of the way, we now give the proof.

Proof Let $\epsilon > 0$ be given. Choose $N_0(\epsilon) := |5/\epsilon| + 1 \in \mathbb{N}$. Now, note that, for any $n \in \mathbb{N}$

$$\left| \frac{5n}{n^2 + 3} - 0 \right| = \left| \frac{5n}{n^2 + 3} \right| < \frac{5n}{n^2} < \frac{5}{n}$$

Thus, for all $n \in \mathbb{N}$ we have,

$$\mid \frac{5n}{n^2+3} - 0 \mid < \frac{5}{n} \quad (*)$$

¹You do **not** have to justify how you made this claim.

Now let $n > N_0(\epsilon)$ be a natural number. Thus,

$$\begin{split} \frac{1}{n} &< \frac{1}{N_0(\epsilon)} \\ &< \frac{1}{\lfloor 5/\epsilon \rfloor + 1} \\ &< \frac{1}{5/\epsilon} \\ &< \frac{\epsilon}{5} \end{split}$$

Thus, we see that for $n > N_0(\epsilon)$ we have,

$$\frac{5}{n} < \epsilon \quad (**)$$

The inequalities (*) and (**) both hold for natural numbers n such that $n > N_0(\epsilon)$. Thus,

$$\mid \frac{5n}{n^2+3}-0 \mid <\epsilon \text{ whenever } n>N_0(\epsilon)$$

Hence, we are done.

That is, for any $\epsilon > 0$, we were able to find an $N \in \mathbb{N}$ such that n > N ensured that $|a_n - L| < \epsilon$. This is exactly what the definition demands – it throws an ϵ at you, and demands an $N_0(\epsilon)$ such that the standard conditions hold. This is why it is important to let ϵ be arbitrary in your proof. On the contrary, if you want to disprove convergence, then you need show that there exists at least one ϵ such that a suitable $N_0(\epsilon)$ cannot be found. Recall how we did this for $(-1)^n$.

The Assignment

1. Consider the sequence $(a_n)_n$ defined as,

$$a_n := \frac{3n^2 - 1}{10n + 5n^2}$$

Determine if it converges or not. If it does, find the limit. Use nothing but the $\epsilon-N$ definition.

- 2. For any sequence $(a_n)_n$, show the convergence of a_n implies the convergence of $b_n := |a_n|$. Does the converse hold?
- 3. Consider $f: \mathbb{R} \to \mathbb{R}$ defined as,

$$f(x) := x^2 + 2$$

Prove that f is continuous at x=2 by using the $\epsilon-\delta$ definition.

4. Formulate the definition of a finite limit at (positive) infinity. Using this, prove or disprove that

$$\lim_{x \to \infty} \frac{\sin\left(x^2 + 3x + 120\right)}{x^2}$$

exists.