Splines

1 Considerando a função f(x) dada pela tabela

x_i	5.0	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6.0
f_i	0.0639	0.0800	0.0988	0.1203	0.1442	0.1714	0.2010	0.2331	0.2673	0.3036	0.3414
qual	o valor	aproxima	ado da fu	ınção no	ponto x	= 5.45					

a) usando uma 'spline' cúbica sem considerar derivadas nos extremos?

$$s_3(x) =$$

$$f(5.45) \approx s_3(5.45) =$$

b) usando uma 'spline' cúbica completa?

$$s_3(x) =$$

$$f(5.45) \approx s_3(5.45) =$$

2 De uma tabela de logaritmos obteve-se o seguinte quadro de valores.

$$x_i$$
 1 1.5 2 3 3.5 $\ln(x_i)$ 0 0.4055 0.6931 1.0986 1.2528

a) Usando uma função 'spline' cúbica sem usar derivadas nos extremos, calcule uma aproximação a $\ln(2.5)$.

$$s_3(x) =$$

$$f(2.5) \approx s_3(2.5) =$$

b) Repita a alínea anterior, mas agora usando uma 'spline' cúbica completa.

$$s_3(x) =$$

$$f(2.5) \approx s_3(2.5) =$$

3 Foram registados os consumos de combustível $f(x_i)$, de um automóvel a arrancar em determinados instantes, x_i (em segundos).

a) Usando uma função 'spline' cúbica sem usar derivadas nos extremos, calcule o consumo no instante de tempo $x_i=5$ s.

$$s_3(x) =$$

$$f(5) \approx s_3(5) =$$

b) Repita a alínea anterior, mas agora usando uma 'spline' cúbica completa.

$$s_3(x) =$$

$$f(5) \approx s_3(5) =$$

Resolução

.1 Começa-se por introduzir a tabela de pontos na forma de dois vetores $x \in f$.

```
>> x=[5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6];
>> f=[0.0639 0.08 0.0988 0.1203 0.1442 0.1714 0.201 0.2331 0.2673 0.3036 0.3414];
```

a) Para determinar splines, usa-se o comando spline do MATLAB.

```
>> s3=spline(x,f);
>> s=s3.coefs
s =
    0.0345
              0.1246
                         0.1482
                                    0.0639
    0.0345
              0.1350
                         0.1742
                                    0.0800
   -0.1727
              0.1454
                         0.2022
                                    0.0988
    0.3562
              0.0936
                         0.2261
                                    0.1203
   -0.3521
              0.2004
                         0.2555
                                    0.1442
    0.1521
              0.0948
                         0.2850
                                    0.1714
   -0.1562
              0.1404
                         0.3085
                                    0.2010
    0.0727
              0.0936
                         0.3319
                                    0.2331
   -0.1345
              0.1154
                         0.3528
                                    0.2673
   -0.1345
              0.0750
                         0.3718
                                    0.3036
```

Uma vez que o ponto interpolador é 5.45, o segmento de interesse é o quinto, que corresponde à quinta linha da matriz s. O ponto inicial desse segmento é 5.4. Assim, $s_3^5(x) = -0.3521(x - 5.4)^3 + 0.2004(x - 5.4)^2 + 0.2555(x - 5.4) + 0.1442$.

Para determinar o valor da spline num ponto, usa-se o comando spline, mas indicando esse ponto como terceiro argumento de entrada.

b) Para se usar uma spline cúbica completa, têm se se reservar o segundo e penúltimo ponto, que não serão usados na spline. No entanto, serão usados para determinar uma aproximação às derivadas nos extremos.

```
>> d0=(f(2)-f(1))/(x(2)-x(1));
>> dn=(f(11)-f(10))/(x(11)-x(10));
>> s3=spline(x([1,3:9,11]),[d0 f([1,3:9,11]) dn]);
>> s=s3.coefs
s =
    0.2962
              0.0083
                         0.1610
                                    0.0639
   -0.3444
              0.1860
                         0.1998
                                    0.0988
    0.4025
              0.0827
                         0.2267
                                   0.1203
   -0.3656
              0.2034
                         0.2553
                                   0.1442
    0.1600
              0.0937
                         0.2850
                                   0.1714
   -0.1743
              0.1417
                         0.3086
                                    0.2010
    0.1373
              0.0894
                         0.3317
                                   0.2331
   -0.2328
              0.1306
                         0.3537
                                   0.2673
```

O segmento de interesse passa a ser o quarto, que corresponde à quarta linha. O ponto inicial do segmento continua a ser 5.4.

```
s_3^4(x) = -0.3656(x - 5.4)^3 + 0.2034(x - 5.4)^2 + 0.2553(x - 5.4) + 0.1442.
>> xx = spline(x([1,3:9,11]),[d0 f([1,3:9,11]) dn],5.45)
xx = 0.1574
f(5.45) \approx s_3^4(5.45) = 0.1574.
.2 >> x = [1 1.5 2 3 3.5];
>> f = [0 0.4055 0.6931 1.0986 1.2528];
a) >> s3 = spline(x,f);
>> s = s3.coefs
s =
```

O segmento de interesse é o terceiro e o ponto inicial do intervalo é 2.

$$s_3^3(x) = 0.0189(x-2)^3 - 0.1120(x-2)^2 + 0.4986(x-2) + 0.6931.$$
 >> xx=spline(x,f,2.5)

XX =

0.9168

 $\ln(2.5) \approx s_3^3(2.5) = 0.9168.$

b) A função é conhecida, por isso pode calcular-se a derivada nos extremos.
$$f'(x) = \frac{1}{x}$$
.

```
>> d0=1/1;
>> dn=1/3.5;
>> s3=spline(x,[d0 f dn]);
>> s=s3.coefs
s =
    0.1695
             -0.4628
                         1.0000
    0.0603
             -0.2085
                         0.6644
                                    0.4055
                         0.5011
    0.0225
             -0.1181
                                    0.6931
    0.0052
             -0.0506
                         0.3324
                                    1.0986
```

Mais uma vez, o segmento de interesse é o terceiro e o ponto inicial do intervalo 2.

$$s_3^3(x) = 0.0225(x-2)^3 - 0.1181(x-2)^2 + 0.5011(x-2) + 0.6931.$$

XX =

0.9169

$$ln(2.5) \approx s_3^3(2.5) = 0.9169.$$

```
a) >> s3=spline(x,f);
  >> s=s3.coefs
  s =
                 0.0027
      -0.0091
                            0.9998
                                            0
      -0.0091
                -0.0000
                            1.0001
                                       0.1000
       0.0454
                -0.0027
                            0.9998
                                       0.2000
      -0.1724
                 0.0109
                            1.0006
                                       0.3000
                -0.0408
       0.6444
                            0.9976
                                       0.4000
      -2.4051
                 0.1525
                            1.0088
                                       0.5000
       0.0822
                -0.5691
                            0.9671
                                       0.6000
      -0.0317
                 0.1710
                           -0.2271
                                       0.6000
       0.0448
                -0.1148
                           -0.0586
                                       0.6000
      -0.4803
                 0.2882
                            0.4616
                                       0.6000
      -0.4803
                 0.0000
                            0.5192
                                       0.7000
```

O segmento de interesse é o oitavo e o ponto inicial deste intervalo é 3.6.

$$s_3^8 = -0.0317(x - 3.6)^3 + 0.1710(x - 3.6)^2 - 0.2271(x - 3.6) + 0.6.$$

xx =

0.5300

$$f(5) \approx s_3^8(5) = 0.53.$$

 Reservam-se o segundo e penúltimo pontos para o cálculo da aproximação das derivadas nos extremos.

```
>> s3=spline(x([1,3:10,12]),[d0 f([1,3:10,12]) dn]);
>> s=s3.coefs
```

0	1.0000	0.0011	-0.0054
0.2000	0.9998	-0.0021	0.0429
0.3000	1.0006	0.0107	-0.1717
0.4000	0.9976	-0.0408	0.6438
0.5000	1.0088	0.1524	-2.4035
0.6000	0.9672	-0.5687	0.0821
0.6000	-0.2283	0.1702	-0.0314
0.6000	-0.0540	-0.1121	0.0434
0.6000	0.4444	0.2782	-0.3478

O segmento de interesse é o sétimo e o ponto inicial do intervalo é 3.6.

$$s_3^7 = -0.0314(x - 3.6)^3 + 0.1702(x - 3.6)^2 - 0.2283(x - 3.6) + 0.6.$$

XX =

0.5279