2005 年全国硕士研究生招生考试试题

一、填空题(本题共6小题,每小题4分,满分24分)

- (1) 曲线 $y = \frac{x^2}{2x+1}$ 的斜渐近线方程为_____.
- (2) 微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解为_____.
- (4) 设 Ω 是由锥面 $z=\sqrt{x^2+y^2}$ 与半球面 $z=\sqrt{R^2-x^2-y^2}$ 围成的空间区域, Σ 是 Ω 的整个边界的外侧,则 $\int\limits_{\Sigma} x \mathrm{d}y \mathrm{d}z + y \mathrm{d}z \mathrm{d}x + z \mathrm{d}x \mathrm{d}y = ____.$
- (5) 设 $\alpha_1,\alpha_2,\alpha_3$ 均为3维列向量,记矩阵

$$A = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3), \boldsymbol{B} = (\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2 + 4\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_1 + 3\boldsymbol{\alpha}_2 + 9\boldsymbol{\alpha}_3).$$
 如果 $|\boldsymbol{A}| = 1$,那么 $|\boldsymbol{B}| = 1$.

(6) 从数 1,2,3,4 中任取一个数, 记为 X, 再从 1,…,X 中任取一个数, 记为 Y, 则 $P\{Y=2\}=0$

二、选择题(本题共8小题,每小题4分,满分32分)

- (7) 设函数 $f(x) = \lim_{n \to \infty} \sqrt[n]{1 + |x|^{3n}}, \text{则 } f(x)$ 在($-\infty$, $+\infty$) 内(
 - (A) 处处可导.

(B) 恰有一个不可导点.

(C) 恰有两个不可导点.

- (D) 至少有三个不可导点.
- (8) 设F(x) 是连续函数f(x) 的一个原函数," $M \Leftrightarrow N$ "表示"M的充分必要条件是N",则必有(
 - (A)F(x) 是偶函数 $\Leftrightarrow f(x)$ 是奇函数.
 - (B)F(x) 是奇函数 $\Leftrightarrow f(x)$ 是偶函数.
 - (C)F(x) 是周期函数 $\Leftrightarrow f(x)$ 是周期函数.
 - (D)F(x) 是单调函数 $\Leftrightarrow f(x)$ 是单调函数.
- (9) 设函数 $u(x,y) = \varphi(x+y) + \varphi(x-y) + \int_{x-y}^{x+y} \psi(t) dt$,其中函数 φ 具有二阶导数, ψ 具有一阶导数,则必有()

$$(A) \frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2}.$$

$$(B) \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}.$$

$$(C) \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y^2}.$$

$$(D) \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial x^2}.$$

- (10) 设有三元方程 $xy z \ln y + e^{xz} = 1$,根据隐函数存在定理,存在点(0,1,1) 的一个邻域,在此邻域内该方程()
 - (A) 只能确定一个具有连续偏导数的隐函数 z = z(x,y).
 - (B) 可确定两个具有连续偏导数的隐函数 y = y(x,z) 和 z = z(x,y).
 - (C) 可确定两个具有连续偏导数的隐函数 x = x(y,z) 和 z = z(x,y).
 - (D) 可确定两个具有连续偏导数的隐函数 x = x(y,z) 和 y = y(x,z).

(11) 设 λ_1 , λ_2 是矩阵A 的两个不同的特征值,对应的特征向量分别为 α_1 , α_2 ,则 α_1 ,A(α_1 + α_2) 线性无关的充分必要条件是()

 $(A)\lambda_1 \neq 0.$

 $(B)\lambda_2 \neq 0.$

 $(C)\lambda_1 = 0.$

 $(D)\lambda_2 = 0.$

- (12) 设 A 为 $n(n \ge 2)$ 阶可逆矩阵,交换 A 的第 1 行与第 2 行得矩阵 B, A^* , B^* 分别为 A, B 的伴随矩阵,则()
 - (A) 交换 A^* 的第 1 列与第 2 列得 B^* .
 - (B) 交换 A^* 的第1行与第2行得 B^* .
 - (C) 交换 A^* 的第 1 列与第 2 列得 $-B^*$.
 - (D) 交换 A^* 的第 1 行与第 2 行得 $-B^*$.
- (13) 设二维随机变量(X,Y) 的概率分布为

X	0	1
0	0. 4	a
1	b	0. 1

已知随机事件 $\{X = 0\}$ 与 $\{X + Y = 1\}$ 相互独立,则()

(A)a = 0.2, b = 0.3.

(B)a = 0.4, b = 0.1.

(C)a = 0.3, b = 0.2.

(D)a = 0.1, b = 0.4.

(14) 设 $X_1, X_2, \dots, X_n (n \ge 2)$ 为来自总体N(0,1) 的简单随机样本, \overline{X} 为样本均值, S^2 为样本方差,则()

 $(A) n \overline{X} \sim N(0,1).$

 $(B) nS^2 \sim \chi^2(n).$

(C) $\frac{(n-1)\overline{X}}{S} \sim t(n-1)$.

(D) $\frac{(n-1)X_1^2}{\sum_{i=1}^n X_i^2} \sim F(1, n-1).$

三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤)

(15) (本题满分11分)

设 $D = \{(x,y) \mid x^2 + y^2 \le \sqrt{2}, x \ge 0, y \ge 0\}$, $[1 + x^2 + y^2]$ 表示不超过 $1 + x^2 + y^2$ 的最大整数, 计算二重积分 $\iint_{\Omega} xy[1 + x^2 + y^2] dxdy$.

(16)(本题满分12分)

求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \left[1 + \frac{1}{n(2n-1)} \right] x^{2n}$ 的收敛区间与和函数 f(x).

(17)(本题满分11分)

如图,曲线C的方程为y = f(x),点(3,2)是它的一个拐点,直线 l_1 与 l_2 分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分

$$\int_0^3 (x^2 + x) f'''(x) \, \mathrm{d}x.$$

(18) (本题满分12分)

已知函数 f(x) 在[0,1] 上连续,在(0,1) 内可导,且 f(0) = 0, f(1) = 1. 证明:

- (I) 存在 $\xi \in (0,1)$, 使得 $f(\xi) = 1 \xi$;
- (II) 存在两个不同的点 $\eta, \zeta \in (0,1)$, 使得 $f'(\eta)f'(\zeta) = 1$.
- (19)(本题满分12分)

设函数 $\varphi(y)$ 具有连续导数, 在围绕原点的任意分段光滑简单闭曲线 L 上, 曲线积分 $\oint_L \frac{\varphi(y) \, \mathrm{d} x + 2xy \, \mathrm{d} y}{2x^2 + y^4}$ 的值恒为同一常数.

(I)证明:对右半平面 x > 0 内的任意分段光滑简单闭曲线 C,有

$$\oint_C \frac{\varphi(y) \, \mathrm{d}x + 2xy \, \mathrm{d}y}{2x^2 + y^4} = 0;$$

- (\mathbb{I}) 求函数 $\varphi(y)$ 的表达式.
- (20) (本题满分9分)

已知二次型 $f(x_1,x_2,x_3) = (1-a)x_1^2 + (1-a)x_2^2 + 2x_3^2 + 2(1+a)x_1x_2$ 的秩为 2.

- (I) 求 a 的值;
- (II) 求正交变换 x = Qy, 把 $f(x_1, x_2, x_3)$ 化成标准形;
- (III) 求方程 $f(x_1,x_2,x_3) = 0$ 的解.
- (21) (本题满分9分)

已知 3 阶矩阵 \mathbf{A} 的第一行是 (a,b,c), a,b,c 不全为零, 矩阵 $\mathbf{B} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & k \end{pmatrix}$ (k 为常数), 且

AB = 0,求线性方程组Ax = 0的通解.

(22)(本题满分9分)

设二维随机变量(X,Y) 的概率密度为 $f(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 2x, \\ 0, & 其他. \end{cases}$

求:(I)(X,Y) 的边缘概率密度 $f_X(x)$, $f_Y(y)$;

(II) Z = 2X - Y 的概率密度 $f_Z(z)$.

(23)(本题满分9分)

设 X_1, X_2, \dots, X_n (n > 2) 为来自总体 N(0,1) 的简单随机样本, \overline{X} 为样本均值,记 $Y_i = X_i - \overline{X}$, $i = 1, 2, \dots, n$.

求:(I) Y_i 的方差 $D(Y_i), i = 1, 2, \dots, n;$

(Ⅱ)Y₁ 与 Y₂ 的协方差 Cov(Y₁,Y₂).