设树有 N 个节点。

令 S(u) 表示以节点 u 为根时,树中所有节点的深度之和。 考虑树中任意两个相邻的节点 u 和 v。我们想比较 S(u) 和 S(v)。

当我们把根从 u 移动到 v 时:

- 1. 原来以 v 为根的子树(当 u 是 v 的父节点时)中的所有节点,它们的深度都减少了1。设这个子树的大小(节点数)为 size(v)。这些节点对深度和的贡献总共减少了 size(v)。
- 2. 树中其余的 N-size(v) 个节点(即如果断开 u-v 边,与 u 在同一个连通分量的所有节点),它们的深度都增加了1。这些节点对深度和的贡献总共增加了 N-size(v)。

因此,
$$S(v) = S(u) - size(v) + (N - size(v))$$

 $S(v) = S(u) + N - 2 \cdot size(v)$

现在,**假设存在一个最优的根** r_{opt} ,它使得 $S(r_{opt})$ 最大,并且 r_{opt} 不是 叶子节点。 这意味着 r_{opt} 的度数 $degree(r_{opt}) \geq 2$ (**假设** N>2。如果 N=1 或 N=2,则所有节点都是叶子节点,猜想显然成立)。

因为 r_{opt} 是最优根,所以对于 r_{opt} 的任何一个邻居节点 x,都必须满足 $S(x) \leq S(r_{opt})$ 。 根据上面的公式, $S(x) = S(r_{opt}) + N - 2 \cdot size(x \text{ wrt } r_{opt})$,其中 $size(x \text{ wrt } r_{opt})$ 是当 r_{opt} 为根时,以 x 为根的子树的大小。

所以, $S(r_{opt}) + N - 2 \cdot size(x \text{ wrt } r_{opt}) \leq S(r_{opt})$

 $N - 2 \cdot size(x \text{ wrt } r_{opt}) \leq 0$

 $N \leq 2 \cdot size(x ext{ wrt } r_{opt})$

 $size(x ext{ wrt } r_{opt}) \geq N/2$

这个结论必须对 r_{opt} 的所有邻居都成立。

设 r_{opt} 的邻居为 x_1, x_2, \ldots, x_k ,其中 $k = degree(r_{opt}) \geq 2$ 。

那么对于所有的 $i \in \{1,\dots,k\}$,都有 $size(x_i \ {
m wrt} \ r_{opt}) \geq N/2$ 。

这些以 x_i 为根的子树(当 r_{opt} 为父节点时)是互不相交的。它们所包含的节点总数是 N-1 (即除了 r_{opt} 自身以外的所有节点)。

所以, $\sum_{i=1}^{k} size(x_i \text{ wrt } r_{opt}) = N - 1$ 。

矛盾。假设不成立。

这个矛盾的根源在于假设了最优根 r_{opt} 不是一个叶子节点(并且 N>2)。 因此,对于 N>2 的情况,最优根必须是一个叶子节点。

综上所述,猜想"满足题目要求的点只在度为1的节点上"成立。