Better than Chance: the importance of null models

http://users.soe.ucsc.edu/~karplus/papers/
better-than-chance-sep-11.pdf

Kevin Karplus karplus@soe.ucsc.edu

Biomolecular Engineering Department University of California, Santa Cruz

13 Sept 2011

Outline of Talk

- What is a protein?
- 4 The folding problem and variants on it.
- & What is a null model (or null hypothesis) for?
- Example 1: is a conserved ORF a protein?
- Example 2: is residue-residue contact prediction better than chance?
- Example 3: how should we remove composition biases in HMM searches?

What is a protein?

- There are many abstractions of a protein: a band on a gel, a string of letters, a mass spectrum, a set of 3D coordinates of atoms, a point in an interaction graph,
- For us, a protein is a long skinny molecule (like a string of letter beads) that folds up consistently into a particular intricate shape.
- The individual "beads" are amino acids, which have 6 atoms the same in each "bead" (the *backbone* atoms: N, H, CA, HA, C, O).
- The final shape is different for different proteins and is essential to the function.
- The protein shapes are important, but are expensive to determine experimentally.

Folding Problem

The *Folding Problem*:

If we are given a sequence of amino acids (the letters on a string of beads), can we predict how it folds up in 3-space?

MTMSRRNTDA ITIHSILDWI EDNLESPLSL EKVSERSGYS KWHLQRMFKK ETGHSLGQYI RSRKMTEIAQ KLKESNEPIL YLAERYGFES QQTLTRTFKN YFDVPPHKYR MTNMQGESRF LHPLNHYNS

Fold-recognition problem

The Fold-recognition Problem:

Given a sequence of amino acids *A* (the *target* sequence) and a library of proteins with known 3-D structures (the *template* library),

figure out which templates *A* match best, and align the target to the templates.

- 4 The backbone for the target sequence is predicted to be very similar to the backbone of the chosen template.
- Progress has been made on this problem, but we can usefully simplify further.

Remote-homology Problem

The *Homology Problem*: Given a target sequence of amino acids and a library of protein *sequences*, figure out which sequences *A* is similar to and align them to *A*.

- No structure information is used, just sequence information. This makes the problem easier, but the results aren't as good.
- This problem is fairly easy for recently diverged, very similar sequences, but difficult for more remote relationships.

Scoring (Bayesian view)

- A model M is a computable function that assigns a probability P(A | M) to each sequence A.
- & When given a sequence A, we want to know how likely the model is. That is, we want to compute something like P(M | A).
- & Bayes Rule:

$$P(M \mid A) = P(A \mid M) \frac{P(M)}{P(A)}.$$

 \triangle Problem: P(A) and P(M) are inherently unknowable.

Null models

Standard solution: ask how much more likely *M* is than some *null hypothesis* (represented by a *null model N*):

$$\frac{\frac{P(M \mid A)}{P(N \mid A)}}{\frac{P(N \mid A)}{P(N \mid A)}} = \frac{\frac{P(A \mid M)}{P(A \mid N)}}{\frac{P(M)}{P(N)}} \cdot \frac{\frac{P(M)}{P(N)}}{\frac{P(N)}{P(N)}}.$$
posterior odds

Test your hypothesis

Thanks to Larry Gonick The Cartoon Guide to Statistics

Scoring (frequentist view)

- We believe in models when they give a large score to our observed data.
- & Statistical tests (p-values or E-values) quantify how often we should expect to see such good scores "by chance".
- These tests are based on a null model or null hypothesis.

Small p-value to reject null hypothesis

Thanks to Larry Gonick The Cartoon Guide to Statistics

Statistical Significance (2 approaches)

Markov's inequality For any scoring scheme that uses

$$\ln \frac{P(\operatorname{seq} \mid M)}{P(\operatorname{seq} \mid N)}$$

the probability of a score better than T is less than e^{-T} for sequences distributed according to N.

Parameter fitting For "random" sequences drawn from some distribution other than N, we can fit a parameterized family of distributions to scores from a random sample, then compute P and E values.

Null models

- A P-values (and E-values) often tell us nothing about how good our hypothesis is.
- & What they tell us is how bad our null model (null hypothesis) is at explaining the data.
- & A badly chosen null model can make a very wrong hypothesis look good.

xkcd

Example 1: long ORF

- A colleague found an ORF in an archæal genome that was 388 codons long and was wondering if it coded for a protein and what the protein's structure was.
- & We know that short ORFs can appear "by chance".
- So how likely is this ORF to be a chance event?

Null Model 1a: no selection

- **G+C** content bias. (GC is 35.79%, AT is 64.21%.)
- Probability of start codon
 ATG = 0.321*0.321*0.179 = 0.01845
- Probability of stop codon
 TAG= 0.1845, TGA=0.01845, TAA=0.0331, so p(STOP)=0.06999
- (ATG, 387 codons without stop) = $p(ATG)(1 p(STOP))^{387} = 1.18e 14$
- & E-value in double-strand genome (6e6 bases) $\approx 7.05e 08$.
- & We can easily reject this null hypothesis!

Null Model 1b: codon (3-mer) bias

- Count 3-mers in double-stranded genome.
- Probability of ATG start codon: 0.01567
- Probability of stop codon: 0.07048
- ATG, 387 codons without stop) = $p(ATG)(1 p(STOP))^{387} = 8.15e 15$
- **♣** E-value in genome $\approx 4.87e 08$.
- We can easily reject this null hypothesis!

Null Model 2: reverse of gene

- ORF is on the opposite strand of a known 560-codon thermosome gene!
- What is the probability of this long an ORF, on opposite strand of known gene?
- Generative model: simulate random codons using the codon bias of the organism, take reverse complement, and see how often ORFs 388-long or longer appear.
- $\stackrel{\blacktriangleleft}{\mathbf{L}}$ Taking 100,000 samples, we get estimates of P-value $\approx 1.5e-05$
- $\stackrel{\blacktriangleleft}{\$} \approx 3000$ genes, giving us an E-value ≈ 0.045
- 4 Hard to reject null!

Null Model 2 histogram

Null Model 3

- & Same sort of simulation, but use codons that code for the right protein on the forward strand.
- & P-value and E-value ≈ 0.0025 for long ORFs on the reverse strand of genes coding for this protein.

Protein or chance ORF?

Not a protein

- + A tblastn search with the sequence revealed similar ORFs in many genomes.
- All are on opposite strand of homologs of same gene.
- "Homologs" found by tblastn often include stop codons.
- There is no evidence for a TATA box upstream of the ORF.
- No strong evidence for selection beyond that explained by known gene.

Conclusion: it is rather unlikely that this ORF encodes a protein.

Example 1b: another ORF

pae0037: ORF, but probably not protein gene in *Pyrobaculum aerophilum*

- A Promoter on wrong side of ORF.
- ligh GC content (need local, not global, null)
- & Strong RNA secondary structure.

Example 2: contacts

- Is residue-residue contact prediction better than chance?
- Early predictors (1994) reported results that were 1.4 to 5.1 times "better than chance" on a sample of 11 proteins.
- But they used a uniform null model:

P(residue i contacts residue j) = constant.

4 A better null model:

$$P(\text{residue } i \text{ contacts residue } j) = P(\text{contact } | \text{ separation} = |i-j|).$$

P(contact|separation)

Using CASP definition of contact, CB within 8 Å, CA for GLY.

Can get accuracy of 100%

- & By ignoring chain separations, the early predictors got what sounded like good accuracy (0.37–0.68 for L/5 predicted contacts)
- & But just predicting that i and i+1 are in contact would have gotten accuracy of 1.0 for even more predictions.
- More recent work has excluded small-separation pairs, with different authors choosing different thresholds.
- \triangle CASP uses separation ≥ 6 , ≥ 12 , and ≥ 24 , with most focus on ≥ 24 .

Separation as predictor

If we predict all pairs with given separation as in contact, we do much better than uniform model.

sep	P(contact i-j = sep)	$P(\text{contact} i-j \ge \text{sep})$	"better than chance"
6	0.0751	0.0147	4.96
9	0.0486	0.0142	3.42
12	0.0424	0.0136	3.13
24	0.0400	0.0116	3.46

Evaluating contact prediction

Two measures of contact prediction:

Accuracy:

$$\frac{\sum \chi(i,j)}{\sum 1}$$

Weighted accuracy:

$$\frac{\sum \chi(i,j) / P\left(\text{contact} \mid \text{separation} = |i-j|\right)}{\sum 1}$$

= 1 if predictions no better than chance, independent of separations for predicted pairs.

CASP7 Contact prediction

- Use mutual information between columns of thinned alignment (≤ 50% identity)
- & Compute e-value for mutual info (correcting for small-sample effects).
- Compute rank of e-value within protein.
- Feed log(e-value), log(rank), contact potential, joint entropy, and separation along chain for pair, and amino-acid profile, predicted burial, and predicted secondary structure for window around each residue of pair into a neural net.

Now doing better

 $separation \geq 9$ Predictions/residue taken separately for each protein.

Contacts per residue

We can also use our null model to predict the number of contacts per residue (which is not a constant).

Example 3: HMM

- Hidden Markov models assign a probability to each sequence in a protein family.
- A common task is to choose which of several protein families (represented by different HMMs) a protein belongs to.

Standard Null Model

Null model is an i.i.d (independent, identically distributed) model.

$$P(A \mid N, len(A)) = \prod_{i=1}^{len(A)} P(A_i)$$
.

$$P(A \mid N) = P(\text{sequence of length len}(A))$$

$$\prod_{i=1}^{\text{len}(A)} P(A_i).$$

Composition as source of error

- When using the standard null model, certain sequences and HMMs have anomalous behavior. Many of the problems are due to unusual composition—a large number of some usually rare amino acid.
- For example, metallothionein, with 24 cysteines in only 61 total amino acids, scores well on any model with multiple highly conserved cysteines.

Composition examples

Metallothionein Isoform II (4mt2)

Kistrin (1kst)

Composition examples

Kistrin (1kst)

Trypsin-binding domain of Bowman-Birk Inhibitor (1tabl)

Reversed model for null

- & We avoid this (and several other problems) by using a reversed model M^r as the null model.
- \clubsuit The probability of a sequence in M^r is exactly the same as the probability of the reversal of the sequence given M.
- This method corrects for composition biases, length biases, and several subtler biases.

Helix examples

Tropomyosin (2tmaA)

Colicin Ia (1cii)

Flavodoxin mutant (1vsgA)

Improvement from reversed model

Fold recognition results

Take-home messages

- Base your null models on biologically meaningful null hypotheses, not just computationally convenient math.
- Generative models and simulation can be useful for more complicated models.
- Picking the right model remains more art than science.

Web sites

```
These slides: http://users.soe.ucsc.edu/~karplus/papers/better-than-chance-sep-11.pdf
```

Reverse-sequence null: Calibrating E-values for hidden Markov models with reverse-sequence null models.

Bioinformatics, 2005. 21(22):4107–4115;
doi:10.1093/bioinformatics/bti629

Archæal genome browser: http://archaea.ucsc.edu

UCSC bioinformatics degree info:

http://www.bme.ucsc.edu/programs/

