Limits Day 2

What is $\lim_{x \to 1^{-}} f(x)$?

$$\lim_{x \to 1^{-}} f(x) = 4$$

What is $\lim_{x \to 1^+} f(x)$?

$$\lim_{x \to 1^+} f(x) = -1$$

 $\lim_{x\to 1} f(x)$ is undefined, because $\lim_{x\to 1^-} f(x) \neq \lim_{x\to 1^+} f(x)$

A new problem: asymptotes

Consider the following function: $f(x) = \frac{1}{x^2}$

At x = 0, the function is undefined. But, there is not a clear value that it "approaches" there; how do we take the limit?

A new problem: asymptotes

Consider the following function: $f(x) = \frac{1}{x^2}$

We say that x = 0 is a vertical **asymptote**. A vertical asymptote is a value at which the function "blows up" around.

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

Concept Question

True or False:
$$\lim_{x \to 0} \frac{1}{x} = \infty$$

False!
$$\lim_{x\to 0} \frac{1}{x}$$
 = undefined because

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty \qquad \qquad \lim_{x \to 0^+} \frac{1}{x} = \infty$$

Determining Asymptotes

If we are trying to evaluate

$$\lim_{x \to a} f(x)$$

and

$$f(a) = \frac{1}{0}$$

then we say that a is a vertical asymptote.

If
$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$
 then $\lim_{x \to a} f(x) = \pm \infty$.

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = \infty \to \lim_{x \to a} f(x) = \infty$$

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = -\infty \to \lim_{x \to a} f(x) = -\infty$$

$$\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x) \to \lim_{x \to a} f(x) = \text{undefined}$$

Note that $\frac{1}{\theta}$ is NOT an indeterminant form!

Constructing Graphs

In groups of 3, create 3 functions that have the desired limits

$$1.\lim_{x\to 3} f(x) = \infty$$

$$2. \lim_{x \to 3^{-}} g(x) = -\infty \text{ and } \lim_{x \to 3^{+}} g(x) = \infty$$

3.
$$\lim_{x\to 0^+} h(x) = -\infty$$
 and $h(x)$ is not a fraction

Constructing Graphs Example 1
$$\lim_{x \to 3} f(x) = \infty$$

$$f(x) = \frac{1}{(x-3)^2}$$

Constructing Graphs Example 2
$$\lim_{x \to 3^{-}} g(x) = -\infty \qquad \lim_{x \to 3^{+}} g(x) = \infty$$

$$g(x) = \frac{1}{(x-3)}$$

Constructing Graphs

$$\lim_{x \to 0^+} h(x) = -\infty$$
$$h(x) = \log(x)$$

A New Idea: What if $x \to \infty$?

Sometimes we care about understanding what happens to the value of a function for *arbitrarily large inputs*. Generally, one of two things will happen:

- 1. The function *diverges to* $\pm \infty$
- 2. The function converges to some exact value.

We'll look at some examples now.

A simple diverging graph

$$f(x) = x$$

A simple diverging graph

$$f(x) = x$$

What happens as $x \to \infty$? $\lim_{x \to \infty} f(x) = \infty$!

Some more diverging functions

What are some more functions that diverge as $x \to \infty$?

- $f(x) = x^2$
- $f(x) = \log(x)$
- $\bullet \ f(x) = e^x$

Concept Question

True or False: If $\lim_{x \to \infty} f(x) = \infty$, then $\lim_{x \to \infty} c \cdot f(x) = \infty$ for any constant number c

True!: constants do not change the *behavior* of a function, only its specific values.

This makes it easy to evaluate limits with a bunch of constants in the function by ignoring them. I.e.

$$\lim_{x \to \infty} c \cdot f(x) = c \cdot \lim_{x \to \infty} f(x)$$

Rational Expressions

Consider the following limit

$$\lim_{x \to \infty} \frac{x^3 + 3x - 10}{2x^2}$$

How do we think about evaluating this?

On top, as x gets arbitrarily large, really only the x^3 term matters since it's much larger than the other two. So this limit should really be the same as

$$\lim_{x \to \infty} \frac{x^3}{2x^2}$$

Rational Expressions

$$\lim_{x \to \infty} \frac{x^3}{2x^2} = \frac{1}{2} \lim_{x \to \infty} \frac{x^3}{x^2}$$

As x grows arbitrarily large, x^3 grows much, much, much faster than x^2 .

Since the numerator of the fraction is getter larger than the denominator, we get that

$$\lim_{x \to \infty} \frac{x^3}{2x^2} = \infty$$

Thus,

$$\lim_{x \to \infty} \frac{x^3 + 3x - 10}{2x^2} = \infty$$

What does grows faster mean?

Remember that we are letting x get arbitrarily large. Let's look at a table of values

	\boldsymbol{x}	x^3	x^2	x^3-x^2
				•••
	10	1000	100	900
•	11	1331	121	1210
•	12	1728	144	1584
•	13	2197	169	2028
•	14	2744	196	2548
			•••	

The difference between the numerator and denominator is increasing (at an increasing rate!), meaning the fraction gets larger and larger.

$$\lim_{x \to \infty} \frac{x^3}{x}$$

$$\lim_{x \to \infty} \frac{\log(x)}{x}$$

$$\lim_{x\to\infty}\frac{e^x}{x}$$

$$\lim_{x \to \infty} \frac{x^3}{\log(x)}$$

$$\lim_{x \to \infty} \frac{x^2 + 2x}{x^5 \log(x)}$$

$$\lim_{x \to \infty} \frac{x^2 + \log(x)}{x \log(x)}$$

$$\lim_{x \to \infty} \frac{x^3}{x} = \infty$$

$$\lim_{x \to \infty} \frac{\log(x)}{x}$$

$$\lim_{x\to\infty}\frac{e^x}{x}$$

$$\lim_{x \to \infty} \frac{x^3}{\log(x)}$$

$$\lim_{x \to \infty} \frac{x^2 + 2x}{x^5 \log(x)}$$

$$\lim_{x \to \infty} \frac{x^2 + \log(x)}{x \log(x)}$$

$$\lim_{x \to \infty} \frac{x^3}{x} = \infty$$

$$\lim_{x \to \infty} \frac{\log(x)}{x} \neq \infty$$

$$\lim_{x\to\infty}\frac{e^x}{x}$$

$$\lim_{x \to \infty} \frac{x^3}{\log(x)}$$

$$\lim_{x \to \infty} \frac{x^2 + 2x}{x^5 \log(x)}$$

$$\lim_{x \to \infty} \frac{x^2 + \log(x)}{x \log(x)}$$

$$\lim_{x \to \infty} \frac{x^3}{x} = \infty$$

$$\lim_{x \to \infty} \frac{\log(x)}{x} \neq \infty$$

$$\lim_{x \to \infty} \frac{e^x}{x} = \infty$$

$$\lim_{x \to \infty} \frac{x^3}{\log(x)}$$

$$\lim_{x \to \infty} \frac{x^2 + 2x}{x^5 \log(x)}$$

$$\lim_{x \to \infty} \frac{x^2 + \log(x)}{x \log(x)}$$

$$\lim_{x \to \infty} \frac{x^3}{x} = \infty$$

$$\lim_{x \to \infty} \frac{\log(x)}{x} \neq \infty$$

$$\lim_{x \to \infty} \frac{e^x}{x} = \infty$$

$$\lim_{x \to \infty} \frac{x^3}{\log(x)} = \infty$$

$$\lim_{x \to \infty} \frac{x^2 + 2x}{x^5 \log(x)}$$

$$\lim_{x \to \infty} \frac{x^2 + \log(x)}{x \log(x)}$$

$$\lim_{x \to \infty} \frac{x^3}{x} = \infty$$

$$\lim_{x \to \infty} \frac{\log(x)}{x} \neq \infty$$

$$\lim_{x \to \infty} \frac{e^x}{x} = \infty$$

$$\lim_{x \to \infty} \frac{x^3}{\log(x)} = \infty$$

$$\lim_{x \to \infty} \frac{x^2 + 2x}{x^5 \log(x)} \neq \infty$$

$$\lim_{x \to \infty} \frac{x^2 + \log(x)}{x \log(x)}$$

$$\lim_{x \to \infty} \frac{x^3}{x} = \infty$$

$$\lim_{x \to \infty} \frac{\log(x)}{x} \neq \infty$$

$$\lim_{x \to \infty} \frac{e^x}{x} = \infty$$

$$\lim_{x \to \infty} \frac{x^3}{\log(x)} = \infty$$

$$\lim_{x \to \infty} \frac{x^2 + 2x}{x^5 \log(x)} \neq \infty$$

$$\lim_{x \to \infty} \frac{x^2 + \log(x)}{x \log(x)} = \infty$$

Wrapping Up

- If we are taking a limit of $\frac{p(x)}{q(x)}$, if p(x) grows faster than q(x), then the function diverges (the limit as $x \to \infty$ is ∞).
 - Some more examples include $\frac{x}{\log(x)}$ and $\frac{e^x}{x^c}$ for any value of c!
- Next time we will explore graphs that **converge** to a specific value as $x \to \infty$!