Creating supermatrices and phylogenetic datasets with SuperCRUNCH

Daniel Portik

Postdoctoral Researcher University of Arizona

Phylogenetic Data Workflows

Handful of tools available for assembling phylogenetic data

Phylogenetic Data Workflows

Handful of tools available for assembling phylogenetic data

Each has great features!

PhyLoTa (Sanderson et al. 2008)

PHLAWD (Smith et al. 2009)

phyloGenerator (Pearse & Purvis 2013)

SUMAC (Freyman, 2015)

SUPERSMART (Antonelli et al. 2017)

PhylotaR (Bennett et al. 2018)

PyPHLAWD (Smith & Walker 2018)

Phylogenetic Data Workflows

Common limitations for my work needs

- Sequences fetched using GenBank release database
- Reliance on NCBI Taxonomy for identifying sequences
- Automated clustering of whole sequence sets
- Black-box methods for sequence filtering and selection

SuperCRUNCH FOR PHYLOGENETIC DATA

- Bioinformatic toolkit for phylogenetic data
- Allows ANY fasta-formatted sequence data to be used
- Targeted searches based on list of taxa and genes
- Transparent methods for orthology-filtering and sequence selection, including detailed output files
- Can be used to assemble traditional supermatrices as well as population-level datasets
- Can process large sequence capture datasets (UCE's)

SuperCRUNCH Workflow

SuperCRUNCH Workflow

Sequence Data

Taxon List

Gene List

Sequence Data

Taxon List

Gene List

NCBI/GenBank sequences

and/or

Locally generated sequences

Sequence Data

Taxon List

Gene List

NCBI/GenBank sequences

and/or

Locally generated sequences

Fasta format:

>KP820543.1 Callisaurus draconoides voucher R45 aryl hydrocarbon receptor (anr) gene, partial cds CACAATGAGAAAGCCTTGATAAACCGTGATCGGACTTTGCCACTCGTTGAAGAAATAGATGAGAGCT...

>KP820544.1 Urosaurus ornatus voucher UWBM7587 aryl hydrocarbon receptor (anr) gene, partial cds
TAAAATCTCCTTTGAAAGGAACCTTTTTGTGGACACCAGGGATGAATTAGGTAATGTAATGGCCAGA...

Sequence Data

Taxon List

Gene List

NCBI/GenBank sequences

and/or

Locally generated sequences

Fasta format:

> Unique Identifier Taxon Label

Description

>KP820543.1 Callisaurus draconoides voucher R45 aryl hydrocarbon receptor (anr) gene, partial cds CACAATGAGAAAGCCTTGATAAACCGTGATCGGACTTTGCCACTCGTTGAAGAAATAGATGAGAGCT...

>KP820544.1 Urosaurus ornatus voucher UWBM7587 aryl hydrocarbon receptor (anr) gene, partial cds TAAAATCTCCTTTGAAAGGAACCTTTTTGTGGACACCAGGGATGAATTAGGTAATGTAATGGCCAGA...

Sequence Data

Taxon List

Gene List

Text file with species and subspecies labels

Callisaurus draconoides crinitus
Callisaurus draconoides draconoides
Callisaurus draconoides inusitanus
Cophosaurus texanus
Holbrookia maculata
Uma exsul
Uma inornata
Uma notata
Uma paraphygas
Uma rufopunctata
Uma scoparia

Sequence Data

Taxon List

Gene List

Text file with species and subspecies labels

List Sources

Callisaurus draconoides crinitus Callisaurus draconoides draconoides Callisaurus draconoides inusitanus Cophosaurus texanus

Holbrookia maculata

Uma exsul

Uma inornata

Uma notata

Uma paraphygas

Uma rufopunctata

Uma scoparia

- Taxonomic Databases
- NCBI Taxonomy Browser
- Directly from sequences (via SuperCRUNCH)

Sequence Data

Taxon List

Gene List

Tab-delimited text file with search terms

- Search terms include a gene abbreviation and description
- Can include any number and combination of genes (mtDNA, nuclear, seq-cap)
- Tetrapod 5k UCE set and other example files on github

Sequence Data

Taxon List

Gene List

Tab-delimited text file with search terms

Label Abbreviation

CMOS; C-MOS

CXCR4 CXCR4

CMOS

DLL1 DLL1;DLL

DNAH3 DNAH3

ECEL1; ECEL

ENC1 ENC1

EXPH5 EXPH5

FSHR FSHR

Description

oocyte maturation factor

chemokine C-X-C motif receptor 4; C-X-C ...

distal-less

dynein axonemal heavy chain 3; dynein ax...

endothelin converting; endothelin conver...

ectodermal neural cortex 1

exophilin; exophilin 5; exophilin-5; exoph...

follicle stimulating hormone; follicle-s...

SuperCRUNCH Workflow

Optional assessment and cleaning step

Optional assessment and cleaning step

Bad Records

A.porcus mitochondrial
Calumma sp.
Jp 2016507218-a/5
Unverified calotes

Optional assessment and cleaning step

Good records, but need to be corrected

Optional assessment and cleaning step

SuperCRUNCH Workflow

Use BLASTn to identify and extract target sequence

Input Sequence Reference Sequences

800 bp

Use BLASTn to identify and extract target sequence

'Simple' Records

'Complex' Records

Use BLASTn to identify and extract target sequence

'Simple' Records

'Complex' Records

- Single gene
- Same region obtained
- Minor length variation

- Single gene
- Same region obtained
- Minor length variation

- Often multiple genes
- Variation in region obtained
- Major length variation

Use BLASTn to identify and extract target sequence

'Simple' Records

1,200 bp

- Single gene
- Same region obtained
- Minor length variation

Automatic selection of reference sequences

- Often multiple genes
- Variation in region obtained
- Major length variation

Requires a user-supplied reference sequences

'Simple' Records

Automatic selection of reference sequences

'Complex' Records

Automatic selection of reference sequences

'Complex' Records

Supply validated reference sequences

Sequence Similarity Filtering

- Ability to specify BLAST algorithm for searches
 - blastn, megablast, dc-megablast

Sequence Similarity Filtering

- Ability to specify BLAST algorithm for searches
 - blastn, megablast, dc-megablast
- Detailed outputs provide complete transparency
 - sequences discarded, info for extracted sequences

Sequence Similarity Filtering

- Ability to specify BLAST algorithm for searches
 - blastn, megablast, dc-megablast
- Detailed outputs provide complete transparency
 - sequences discarded, info for extracted sequences

'Simple' Records

	Original	Extracted	Coordinates
Record	Length	Length	Used
GU432436.1	772	772	[0, 771]
GU432437.1	753	753	[0, 752]
GU432438.1	773	773	[0, 772]
GU432439.1	749	749	[0, 748]
JF818222.1	719	717	[2, 718]

'Complex' Records

Original	Extracted	Coordinates
Length	Length	Used
510	510	[0, 509]
508	508	[0, 507]
17,388	1,575	[1,060, 2,634]
17,344	1,574	[1,061, 2,634]
3,700	1,473	[1,014, 2,486]
3,693	1,470	[1,010, 2,479]
1,071	41	[1,030, 1,070]
1,085	84	[1,001, 1,084]
	Length 510 508 17,388 17,344 3,700 3,693 1,071	Length Length 510 510 508 508 17,388 1,575 17,344 1,574 3,700 1,473 3,693 1,470 1,071 41

SuperCRUNCH Workflow

- What additional filters should be applied to sequences?
- If multiple sequences are available for a species, how do we choose?

- What additional filters should be applied to sequences?
- If multiple sequences are available for a species, how do we choose?

Example from Iguania dataset:

1,426 species

66 loci

58,642 sequences

13,419 sequences

- What additional filters should be applied to sequences?
- If multiple sequences are available for a species, how do we choose?

Example from Iguania dataset:

1,426 species

66 loci

58,642 sequences

13,419 sequences

426.941.590.086.091.766.797.665.819.027.414.303.769.493.004.175.161.067.612.739.804.543.200.225.182.323.549.827.313.258.790.810.403.584.768.416.770.835.213.996.198.117.363.132.678.180.852.868.614.265.036167,115,116,206,452,903,240,810,448,638,340,423,170,159,510,377,667,838,928,644,400,326,345,259,425,132,817,446,024,738,134,949,167,451,283,577,159,233,975,368,043,845,814,970,551,368,290,958,170,688,277,159,233,975,368,043,845,814,970,551,368,290,958,170,688,277,159,233,975,368,043,845,814,970,551,368,290,958,170,688,277,159,233,975,368,043,845,814,970,551,368,290,958,170,688,277,159,233,975,368,043,845,814,970,551,368,290,958,170,688,277,159,233,975,368,043,845,814,970,551,368,290,958,170,688,277,159,233,975,368,043,845,814,970,551,368,290,958,170,688,277,159,233,975,368,043,845,814,970,551,368,290,958,170,688,277,159,233,975,368,043,845,814,970,551,368,290,958,170,688,277,159,233,975,368,043,845,814,970,551,368,290,958,170,688,277,159,233,975,368,043,845,814,970,551,368,290,958,170,688,277,159,233,975,368,043,845,814,970,551,368,290,958,170,688,277,159,233,975,368,290,958,170,688,277,159,233,975,368,290,958,170,958,290,958,170,958,290,958,170,958,290,958,290,958,270,958,290,958,115,968,163,767,179,583,344,819,955,808,675,706,120,716,127,841,902,671,038,574,563,295,380,997,234,275,716,641,319,398,960,753,493,111,865,915,581,185,681,256,447,657,684,292,147,851,091,848,904,031,905, 743,512,039,854,864,363,591,482,911,795,007,361,078,822,903,918,055,129,139,648 1443,597,898,652,623,512,504,393,469,374,222,619 268,592,490,285,076,675,903,171,062,614,102,4 ,018,473,530,880,562,167,592,704,337,066,145, Combinations: 4.27×10^{3155} 099,704,181,444,231,441,940,523,100,514,159,5 313,660,517,535,733,182,220,861,208,603,283,84 243.533.960.207.533.795.459.840.031.908.098.8 0.668.833.309.884.075.222.723.937.766.841.654. 763,378,019,946,453,740,819,825,184,254,388,2 185,909,718,356,128,563,576,741,832,452,217, 039,774,129,294,356,391,386,509,669,049,875,269,970,555,806,547,033,373,002,920,883,491,852,594,682,169,157,866,564,351,032,258,048,265,399,602,201,896,472,493,979,381,128,488,445,956,987,213,348,288,691

- What additional filters should be applied to sequences?
 - Minimum length (defined by user)
- If multiple sequences are available for a species, how do we choose?

- What additional filters should be applied to sequences?
 - Minimum length (defined by user)
- If multiple sequences are available for a species, how do we choose?
 - 1) Sort by length, select longest sequence
 - 2) Sort by length, test translation (for protein-coding)
 - 3) Random

- What additional filters should be applied to sequences?
 - Minimum length (defined by user)
- If multiple sequences are available for a species, how do we choose?
 - 1) Sort by length, select longest sequence
 - 2) Sort by length, test translation (for protein-coding)
 - 3) Random

Species-level Data

One sequence per species per gene

Population-level Data

All sequences per species per gene

SuperCRUNCH Workflow

Multiple Sequence Alignment

Locus	Correct Direction	Direction Adjusted
UCE-1003	66	5
UCE-1005	62	5
UCE-1012	57	11
UCE-1013	15	4

Multiple Sequence Alignment

Multiple Sequence Alignment

SuperCRUNCH Workflow

Relabel sequence records

Relabel sequence records

Original Labels

```
>JN881132.1 Daboia russelii activity-dependent neuroprotector...
```

>KU765220.1 Sceloporus undulatus voucher ADL182 activity-depe...

Relabel sequence records

Original Labels

```
>JN881132.1 Daboia russelii activity-dependent neuroprotector...
>KU765220.1 Sceloporus undulatus voucher ADL182 activity-depe...
```

Species

```
>Daboia_russelii
```

>Sceloporus_undulatus

Relabel sequence records

Original Labels

```
>JN881132.1 Daboia russelii activity-dependent neuroprotector...
```

>KU765220.1 Sceloporus undulatus voucher ADL182 activity-depe...

Species

>Daboia_russelii

>Sceloporus_undulatus

Accession

>JN881132.1

>KU765220.1

Relabel sequence records

Original Labels

```
>JN881132.1 Daboia russelii activity-dependent neuroprotector...
```

>KU765220.1 Sceloporus undulatus voucher ADL182 activity-depe...

Species

>Daboia_russelii

>Sceloporus_undulatus

Accession

>JN881132.1

>KU765220.1

Species + Accession

>Daboia_russelii_JN881132.1

>Sceloporus_undulatus_KU765220.1

- Relabel sequence records
- Trim alignments

- gappyout

- noallgaps

- Relabel sequence records
- Trim alignments
- Convert to nexus, phylip format

- Relabel sequence records
- Trim alignments
- Convert to nexus, phylip format
- Concatenate alignments

Requires Species Labeling

>Daboia_russelii

>Sceloporus_undulatus

Missing Data Options

?

Outputs

Fasta or phylip

Partitions file

Loci per taxon

SuperCRUNCH Workflow

SuperCRUNCH Workflow

Benchmarking: Time

- Dataset dependent, but reasonable!
- Bottleneck is always sequence alignment

	Population level	Traditional Supermatrix	Genomic (UCE's)
File Size	52 MB	13.3 GB	205 MB
Sequences	82,557	8,785,378	338,942
Taxa	3	1,426	123
Genes	4	70	5,041
Total time	~2.5 min	~4.5 hours	~10.5 hours

Comparison to PyPHLAWD

- PyPHLAWD uses GenBank release database and Taxonomy Browser to fetch starting sequences
- Default is automated clustering of all sequences (requires follow-up identification and processing)
- A 'baited analysis' can target specific loci, requires reference sequences

Comparison to PyPHLAWD

- Compared supermatrix construction for Iguania, large clade of squamate reptiles (~1900 species)
- Targeted 68 loci
 - 61 nuclear used automatic reference selection
 - 7 mtDNA loci used validated reference sequences

Three analyses:

SuperCRUNCH

NCBI direct-download

SuperCRUNCH

PyPHLAWD database

PyPHLAWD

PyPHLAWD database

Comparison to PyPHLAWD

	Loci	Taxa	Sequences
SuperCRUNCH NCBI direct-download	66	1,426	13,419
SuperCRUNCH PyPHLAWD database	66	1,358	12,654
PyPHLAWD PyPHLAWD database	65	1,069	10,397

- PyPHLAWD was comparable for nuclear loci
- PyPHLAWD failed to find 62% (2,125) of mtDNA seqs.

- PyPHLAWD was comparable for nuclear loci
- PyPHLAWD failed to find 62% (2,125) of mtDNA seqs

References

Sequences must be highly similar to bait to pass filter Entire sequence is kept or discarded (no extraction)

Looking for Testers!

Pre-Print

https://doi.org/10.1101/538728

Download

https://github.com/dportik/SuperCRUNCH

Documentation

https://github.com/dportik/SuperCRUNCH/wiki

Tutorials & Data

https://osf.io/bpt94/

Benchmarking

		Population level	Genomic (UCE's)	Supermatrix
	File Size	52 MB	205 MB	13.3 GB
	Sequences	82,557	338,942	8,785,378
	Taxa	3	123	1,426
	Genes	4	5,041	70
Gene and Taxon Filtering		5s	2hr 40min	34min
Sequence Similarity Filtering		8s		1hr 10min
Sequence Selection		1s	7min	7min
Sequence Alignment		2min	7hr 10min	2hr 40min
Post-Alignment Tasks		2s	21min	7s
	Total cpu time	~2.5 min	~10.5 hours	~4.5 hours