Estimación de máxima verosimilitud en modelos gráficos gaussianos

Autor: Daniel Brito Sotelo

Tutor: Bojan Mihaljevic

Grado en Matemáticas, Facultad de Ciencias

Julio 2022

- Introduction to our problem
- Recurrent neural network approach

- Binary classification of stock yearly return
- Conclusions

ip

Grafos de independencia

Definición: Independencia condicional

$$X \perp \!\!\! \perp Y|Z \Longleftrightarrow f_{XYZ}(x,y,z) = f_{X|Z=z}(x)f_{Y|Z=z}(y)$$

Definición: Grafo de independencia

Un grafo de independencia para una variable aleatoria $X=(X_1,\ldots,X_n)$ es un grafo no dirigido G=(V,E) en el que si $(X_i,X_j)\not\in E$ entonces $X_i\perp\!\!\!\perp X_j|X\setminus\{X_i,X_j\}$.

Ejemplo

En este grafo tenemos:

- $X_1 \perp \!\!\! \perp Y_1 | (X_2, Y_2, Z)$
- $X_2 \perp \!\!\! \perp Y_2 | (X_1, Y_1, Z)$
- $X_1 \perp \!\!\!\perp Y_2 | (X_2, Y_1, Z)$

Propiedades de Markov

Propiedades de Markov

Dado un grafo de independencia G tenemos las siguientes propiedades

- Por pares: X_i y X_j disjuntos entonces $X_i \perp \!\!\! \perp X_j | X \setminus \{X_i, X_j\}$.
- Local: Para X_i , siendo X_N sus vecinos, entonces $X_i \perp \!\!\! \perp X \backslash X_N | X_N$.
- Global: Si el grafo se puede separar en 3 conjuntos disjuntos de vértices X_A, X_B, X_C donde X_A y X_B están separados por X_C, entonces X_A ⊥⊥ X_B|X_C.

Teorema

Dado un grafo de independencia *G* las propiedades de Markov son equivalentes.

Ejemplo

Aplicando las propiedades de Markov

- Local: $X_1 \perp \!\!\! \perp (Y_1, Y_2) | (X_2, Z)$
- Global: $(X_1, X_2) \perp \!\!\! \perp (Y_1, Y_2)|Z$

Matriz de precisión

Definición: Distribución normal multivariante

 $X \sim N_n(\mu, \Sigma)$ sí y sólo si la densidad de X es

$$f_X(x) = |\Sigma|^{-1/2} (2\pi)^{-\frac{n}{2}} e^{-\frac{1}{2}(x-\mu)^t \Sigma^{-1}(x-\mu)}$$

Distribución condicionada $X_a|X_b \sim N_{|X_b|}(\mu_{a|b}, \Sigma_{a|b})$ con

- $\bullet \ \mu_{a|b} = \mu_a + \Sigma_{ab} \Sigma_{bb}^{-1} (x_b \mu_b).$
- $\Sigma_{a|b} = \operatorname{Var}(X_a|X_b) = \Sigma_{aa} + \Sigma_{ab}\Sigma_{bb}^{-1}\Sigma_{ba}$.

Distribución marginal: $X_a \sim N_{|X_a|}(\mu_a, \Sigma_{aa})$.

Definición

La matriz de covarianzas de un vector aleatorio $X = (X_a, X_b)$ es

$$\Sigma = \mathrm{Var}(X_a, X_b) = \begin{bmatrix} \mathrm{Var}(X_a) & \mathrm{Cov}(X_a, X_b) \\ \mathrm{Cov}(X_b, X_a) & \mathrm{Var}(X_b) \end{bmatrix} = \begin{bmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{bmatrix}.$$

Matriz de precisión

Definición

La matriz de precisión de $X \sim N_n(\mu, \Sigma)$ es $D = \Sigma^{-1}$.

Teorema

Dado un vector aleatorio $X = (X_a, X_b)$ su matriz de precisión es

$$D = \begin{bmatrix} \operatorname{Var}(X_a|X_b)^{-1} & -\operatorname{Var}(X_a|X_b)^{-1} \operatorname{Cov}(X_a,X_b) \operatorname{Var}(X_b)^{-1} \\ -\operatorname{Var}(X_b|X_a)^{-1} \operatorname{Cov}(X_b,X_a) \operatorname{Var}(X_a)^{-1} & \operatorname{Var}(X_b|X_a)^{-1} \end{bmatrix}.$$

Corolario

Los elementos de la matriz de precisión cumplen

$$d_{ii} = \operatorname{Cov}(X_i, X_i | X \setminus \{X_i, X_i\}) \text{ para } i \neq j.$$

Por tanto si $d_{ii} = 0$ tenemos que $X_i \perp \!\!\! \perp X_i | X \setminus \{X_i, X_i\}$.

Modelo gráfico gaussiano

Definición

Dado un vector $X \sim N_n(\mu, \Sigma)$ diremos que satisface un modelo gráfico gaussiano con grafo de independencia G = (V, E) si $d_{ij} = 0$ cuando $(i, j) \not\in E$.

Ejemplo

Una variable $X=(X_1,X_2,X_3,X_4)$ que satisface este modelo gráfico gaussiano tendrá una matriz de precisión de la forma

$$D = \begin{bmatrix} d_{11} & 0 & 0 & 0 \\ 0 & d_{22} & d_{23} & 0 \\ 0 & d_{32} & d_{33} & d_{34} \\ 0 & 0 & d_{43} & d_{44} \end{bmatrix}.$$

Definición: logverosimilitud normal multivariante

Para $X \sim N_n(\mu, \Sigma)$ su logverosimilitud $I(\mu, D)$ cumple

$$I(\mu,D) \propto \frac{N}{2} \log |D| - \frac{N}{2} \mathrm{tr}(DS) - \frac{N}{2} (\bar{x} - \mu)^t D(\bar{x} - \mu),$$

donde S es la matriz de covarianzas muestrales. Como los modelos gráficos no nos imponen restricciones sobre la media μ podemos considerarla igual a la media muestral \bar{x} y reescribir

$$I(D) \propto \frac{N}{2} \log |D| - \frac{N}{2} \mathrm{tr}(DS).$$

o equivalentemente para la matriz Σ

$$I(\Sigma) \propto -\frac{N}{2} \log |\Sigma| - \frac{N}{2} \mathrm{tr}(\Sigma^{-1}S).$$

Nos interesa, dado un modelo gráfico gaussiano con grafo de independencia *G* hallar la matriz de covarianzas que, cumpliendo las restricciones de independencias condicionadas del grafo, maximice la logverosimilitud.

Podemos enfocar la maximización de la verosimilitud como un problema de optimización convexa,

Proposición

 $\mathit{I}(\mathit{D}) \propto \log |\mathit{D}| - \operatorname{tr}(\mathit{DS})$ es cóncava para todo $\mathit{D} \in \mathbb{S}^n_{\succ 0}.$

Dual

El problema dual asociado es

maximizar
$$\log |\Sigma| + n$$

sujeto a $\sigma_{ij} = s_{ij} \ \forall (i,j) \in E \ \acute{o} \ i = j$.

Podemos aplicar el descenso de coordenadas sobre el problema dual

- Tomamos coordenada σ_{ij} .
- Maximizamos la verosimilitud en esa dirección.

Algorithm 1 Descenso de coordenadas para la estimación de Σ por máxima verosimilitud

Entrada: S, G = (V, E) grafo de independencia, tolerancia **Salida:** Estimación de máxima verosimilitud de Σ

- 1: $\tilde{\Sigma} \leftarrow S$
- 2: repeat
- 3: for $(i,j) \not\in E$ do

- 4: end for
- 5: $\tilde{\Sigma} \leftarrow \Sigma$
- 6: **until** $\|\Sigma \tilde{\Sigma}\|_1 <$ tolerancia

Queremos dar una solución cerrada para el paso de optimización

$$\begin{aligned} & \underset{\Sigma \in \mathbb{S}^n_{\succ 0}}{\text{maximizar}} & \log |\Sigma| + n \\ & \text{sujeto a} & \Sigma_{uv} = \tilde{\Sigma}_{uv} \ \forall (u,v) \neq (i,j) \end{aligned}$$

Solución cerrada

Usando el complemento de Schur $\Sigma \setminus R$ con $R = V \setminus \{i, j\}$ obtenemos que

$$\sigma_{ij} = \Sigma_{iR} \Sigma_{RR}^{-1} \Sigma_{Rj},$$

maximiza la logverosimilitud en cada paso del algoritmo.

Podemos dar un algoritmo análogo que itere sobre la matriz de precisión.

Algorithm 2 Descenso de coordenadas para la estimación de D por máxima versomilitud

Entrada:S, G = (V, E) grafo de independencia, tolerancia **Salida:** Estimación de máxima verosimilitud de D

- 1: $\tilde{D} \leftarrow I_n$
- 2: repeat
- 3: for $(i,j) \in E$ do

- 4: end for
- 5: $\tilde{D} \leftarrow D$
- 6: **until** $||D \tilde{D}||_1 <$ tolerancia

La solución cerrada de la maximización

$$\label{eq:maximizar} \begin{split} & \underset{D \in \mathbb{S}^n_{\succ 0}}{\text{maximizar}} & \log |D| - \operatorname{tr}(DS) \\ & \text{sujeto a } & D_{uv} = \tilde{D}_{uv} \; \forall (u,v) \neq (i,j), (i,i), (j,j), (j,i). \end{split}$$

Solución cerrada

Usando de nuevo el complemento de Schur obtenemos

$$D_{AA} = S_{AA}^{-1} + D_{AR}D_{BB}^{-1}D_{RA}$$

donde $A = \{i, j\}$ y $R = V \setminus \{i, j\}$.

Podemos plantear el problema de la existencia del estimador de máxima verosimilitud como la completación positiva definida de la matriz parcial S_G , resultado de aplicar la proyección del grafo a la matriz S.

Ejemplo

Dado el grafo y la siguiente matriz de covarianzas muestral S su proyección será la matriz parcial

$$S = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 2 & 0 \\ 3 & 2 & 1 & 3 \\ 1 & 0 & 3 & 1 \end{bmatrix} \Longrightarrow S_G = \begin{bmatrix} 1 & * & * & * \\ * & 1 & 2 & * \\ * & 2 & 1 & 3 \\ * & * & 3 & 1 \end{bmatrix}$$

Umbral de observaciones

Definición

El umbral de observaciones del estimador de máxima verosimilitud dado un grafo G, UMV(G) se define como el número mínimo de observaciones N tal que el estimador de máxima verosimilitud de Σ existe con probabilidad uno.

Una condición necesaria para la existencia del estimador es que todas las submatrices de $S_{\rm G}$ completamente definidas sean definidas positivas.

Teorema

Si el número de observaciones N es mayor que el número de variables n entonces el estimador de máxima verosimilitud existe con probabilidad uno, por tanto

$$UMV(G) \leq n$$

Nos interesa dar una cota inferior para el umbral de observaciones.

Cota inferior Umbral de observaciones

Definición

Dado un grafo G un clique es un subgrafo completo de G, denotamos por $\omega(G)$ el tamaño del mayor clique de G.

Teorema

 $UMV(G) \geq \omega(G)$

Ejemplo

Veamos que $UMV(G) \neq 1$. Dada una muestra $X_1 = (1, 2, 3, 4)$, la provección de la matriz de covarianzas muestral será

$$S_{G} = \begin{bmatrix} 1 & 2 & x_{13} & 4 \\ 2 & 4 & 6 & x_{24} \\ x_{13} & 6 & 9 & 12 \\ 4 & x_{24} & 12 & 16 \end{bmatrix}$$

Cota inferior Umbral de observaciones

Definición

Dado un grafo G un clique es un subgrafo completo de G, denotamos por $\omega(G)$ el tamaño del mayor clique de G.

Teorema

 $UMV(G) \geq \omega(G)$

Ejemplo

La submatriz en azul tiene determinante $0 \Longrightarrow$ no es definida positiva.

$$S_G = \begin{bmatrix} 1 & 2 & x_{13} & 4 \\ 2 & 4 & 6 & x_{24} \\ x_{13} & 6 & 9 & 12 \\ 4 & x_{24} & 12 & 16 \end{bmatrix}$$

Cota superior Umbral de observaciones

Definición

Un grafo G es cordal si cada camino de tamaño 4 o mayor tiene una triangulación.

Teorema

Si el grafo G es cordal se tiene $UMV(G) = \omega(G)$.

Definici<u>ón</u>

La cobertura cordal de un grafo G = (V, E) es el grafo cordal $G^+ = (V, E^+)$ que cumple $E \subset E^+$. La cobertura cordal mínima de G es la cobertura cordal G^+ con menor $\omega(G^+)$.

Usando estos resultados podemos dar una cota superior para el umbral de observaciones.

Teorema

Sea G grafo y G^* cobertura cordal mínima $UMV(G) \leq \omega(G^*)$.

Figura: Grafo original G

Figura: cobertura cordal mínima G* de G

Ejemplo

Los cliques están marcados en rojo en ambos grafos, por lo que

$$2 = \omega(G) \le UMV(G) \le \omega(G^*) = 3$$

Tomamos el conjunto de datos *carcass* del paquete *gRbase*, con variables *Fat11*, *Meat11*, *Fat12*, *Meat12*, *LeanMeat*. Su grafo de independencia es

Resultado

G cordal y
$$\omega(G) = 4 \Rightarrow UMV(G) = 4$$
.

Usando la función *ggmfit* obtenemos la estimación de máxima verosimilitud de la matriz de precisión.

	Fat11	Meat11	Fat12	Meat12	LeanMeat
Fat11	0.368	0.020	-0.261	-0.045	0.090
Meat11	0.020	0.128	-0.065	-0.084	-0.046
Fat12	-0.261	-0.065	0.480	0.047	0.143
Meat12	-0.045	-0.084	0.047	0.079	0.000
LeanMeat	0.090	-0.046	0.143	0.000	0.251

- WHITTAKER, J. Graphical Models in Applied Multivariate Statistics. Wiley, Chichester, 1990.
- GRONE, R., JOHNSON, C., SÁ, E., WOLKOWICZ, H. Positive definite completions of partial Hermitian matrices. Linear Algebra and Its Applications, vol. 58, 109-124. 1984.
- 3. UHLER, C. Geometry of maximum likelihood estimation in Gaussian graphical models. The Annals of Statistics, vol. 40, no. 1, 2012.
- BOYD, S., VANDENBERGHE, L. Convex optimization. Cambridge University Press, Cambridge, 2009.
- HøJSGAARD, S., EDWARDS, D., LAURITZEN, S. Graphical Models with R Springer, 2012.