	Kod ucznia								
			-			-			
	Dzi	eń		Mies	iąc		Ro	k	
pieczątka WKK	DATA URODZENIA UCZNIA								

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH

ETAP WOJEWÓDZKI

Drogi Uczniu,

witaj na III etapie konkursu matematycznego. Przeczytaj uważnie instrukcję i postaraj się prawidłowo odpowiedzieć na wszystkie pytania.

- Arkusz liczy 15 stron i zawiera 18 zadań. Na ostatniej stronie znajduje się karta odpowiedzi.
- Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny.
 Jeżeli zauważysz usterki, zgłoś je Komisji Konkursowej.
- Zadania <u>czytaj uważnie</u> i ze zrozumieniem.
- Odpowiedzi wpisuj czarnym lub niebieskim długopisem bądź piórem.
- Dbaj o czytelność pisma i precyzję odpowiedzi.
- Prawidłowe odpowiedzi wskazuj zaznaczając wybraną kratkę w następujący sposób:
- W zadaniach od 1 do 10 prawidłową odpowiedź zaznacz na karcie odpowiedzi wybierając jedną z podanych odpowiedzi i zaznacz kratkę z odpowiadającą jej literą.
- Jeżeli w zadaniach od 1 do 10 się pomylisz, błędne zaznaczenie otocz kółkiem i zamaluj kratkę z inną odpowiedzią.
- Rozwiązania zadań od 11 do 18 zapisz w wyznaczonych miejscach.
- Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym.
- Obok każdego numeru zadania podano maksymalną liczbę punktów możliwą do uzyskania za jego rozwiązanie.
- Pracuj samodzielnie.
- Nie używaj kalkulatora.

Powodzenia!

Czas pracy:

90 minut

Liczba punktów możliwych do uzyskania:

40

Zadanie 1. (0-1)

Iloczyn dwóch tysięcy dziewiętnastu liczb naturalnych jest równy 2019. Jaka jest największa wartość sumy tych liczb? Wybierz właściwa odpowiedź spośród podanych.

A. 2019

B. 2693

C. 4037

D. 4038

Zadanie 2. (0-1)

Adam zjada pizzę w ciągu 20 minut, Ewa zjada taką samą pizzę w ciągu 30 minut. Ile czasu zajmie im zjedzenie takiej pizzy, zakładając, że będą ją jedli równocześnie? Wybierz właściwa odpowiedź spośród podanych.

A. 50 minut

B. 25 minut

C. 15 minut

D. 12 minut

Zadanie 3. (0-1)

Dane sa liczby:

I.
$$3^{12} + 3^{14}$$

II. III.
$$2 \cdot 5^{10} + 5^{10}$$
 $3 \cdot 7^{10} - 7^{10}$

III.
$$3 \cdot 7^{10} - 7^1$$

Która z podanych liczb jest liczbą parzystą? Wybierz właściwą odpowiedź spośród podanych.

A. Tylko I.

B. Tylko I i II.

C. Tylko I, III i IV

D. Tylko IV.

Zadanie 4. (0-1)

W torebce sa cukierki o trzech różnych smakach. Ile cukierków trzeba wyjać z torebki, aby wśród nich były na pewno co najmniej cztery cukierki o tym samym smaku?

Wybierz właściwa odpowiedź spośród podanych.

A. 9

B. 10

C. 12

D. 13

Zadanie 5. (0-1)

W grupie liczącej 200 osób 65% uczy się języka angielskiego, 45% uczy się języka niemieckiego, a 20% uczy się obu tych języków.

Wybierz właściwa odpowiedź spośród podanych.

Ile osób z tej grupy nie uczy się żadnego z wymienionych języków?

A. 0

B. 5

C. 10

D. 20

Zadanie 6. (0-1)

Dokończ zdanie. Wybierz właściwa odpowiedź spośród podanych.

Iloczyn
$$\left(\frac{1-\sqrt{13}}{3}\right)^{2019} \cdot \left(\frac{1+\sqrt{13}}{2}\right)^{2019}$$
 jest

A. liczbą całkowitą dodatnią.

B. liczbą całkowitą ujemną.

C. ułamkiem właściwym dodatnim.

D. ułamkiem właściwym ujemnym.

Zadanie 7. (0-1)

Funkcja f każdej liczbie naturalnej dodatniej przyporządkowuje n – tą cyfrę po przecinku w rozwinięciu dziesiętnym ułamka $\frac{3}{11}$.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Następująca suma f(1) + f(2) + f(3) + ... + f(2019) jest równa

A. 6057

B. 9083

C. 9088

D. 18171

Zadanie 8. (0-1)

Księżyce Hipokratesa wielokąta wpisanego w okrąg, to figury geometryczne ograniczone łukami tego okręgu oraz półokręgami, których średnice są bokami wielokąta. Na rysunku przedstawione są księżyce Hipokratesa kwadratu.

Suma pól księżyców Hipokratesa kwadratu o boku długości 4 cm jest równa

A. 4π cm²

B. $8\sqrt{2} \text{ cm}^2$

C. $12\pi \text{ cm}^2$

D. 16 cm^2

Zadanie 9. (0-1)

Na bokach rombu *ABCD* o boku długości *a* i kącie ostrym o mierze 60° zbudowano kwadraty.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Stosunek sumy pól zacieniowanych trójkątów do pola rombu ABCD jest równy

- **A.** 2:1
- **B.** 3 : 1
- **C.** 3 : 2
- **D.** 4 : 3

Zadanie 10. (0-1)

Na rysunku przedstawiona jest siatka czworościanu.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Objętość tego czworościanu jest równa

- **A.** $\frac{1}{3}a^3$
- **B.** $\frac{1}{4}a^3$
- **C.** $\frac{1}{8}a^3$
- **D.** $\frac{1}{24}a^3$

Zadanie 11. (0-3)

Uzasadnij, że

$$\sqrt{6 + 4\sqrt{2}} - \sqrt{3 - \sqrt{8}} = 3$$

Zadanie 12. (0-3)

Udowodnij, że liczba 3⁶⁴ –1 jest podzielna przez 80.

Zadanie 13. (0-4)

Dane są następujące trzy równania:

I.
$$3x + 4 = 2x + 9$$

II.
$$0.5x + 0.01 = 0.1x + 0.25$$

II.
$$3x + 4 = 2x + 9$$
 III. $0.5x + 0.01 = 0.1x + 0.25$ **III.** $-\frac{2}{3}x + \frac{1}{9} = -\frac{1}{3}x + \frac{4}{9}$

 ${\bf a}$) Zapisz za pomocą a i b ogólną postać tego typu równań, uzupełniając odpowiednimi wyrażeniami równość:

$$ax + \square = bx + \square$$
 i $a \neq b$.

i
$$a \neq b$$
.

b) Rozwiąż równania I, II i III

c) Rozwiąż równanie w postaci ogólnej.

Zadanie 14. (0-3)

Cena biletu na koncert wynosiła 25 zł. Gdy cenę obniżono okazało się, że na koncert przychodzi o 75% widzów więcej, a dochód ze sprzedaży biletów wrósł o 40%. Oblicz, ile kosztuje bilet po obniżce. **Zapisz obliczenia.**

Zadanie15. (0-4)

Punkty D, E i F leżą na bokach trójkąta prostokątnego ABC (rysunek poniżej). Czworokąt ADEF jest równoległobokiem.

Oblicz obwód równoległoboku ADEF oraz pole trójkąta DBE. Zapisz obliczenia.

Zadanie 16. (0-5)

Jeden z boków prostokąta ma długość 12 cm, a jego przekątna 13 cm. Przekątna dzieli prostokątna dwa trójkąty. W każdy z nich wpisujemy okrąg. Wykonaj odpowiedni rysunek. Oblicz odległość między środkami tych okręgów. **Zapisz obliczenia.**

Zadanie 17. (0-5)

Z jednego z wierzchołków dwunastokąta foremnego wpisanego w okrąg o promieniu r poprowadzono trzy przekątne o długościach a, b i c (rysunek poniżej).

Uzasadnij, że z odcinków o długościach a,b i c można zbudować trójkąt prostokątny.

Zadanie 18. (0-3)

Na rysunku przedstawiony jest sześcian i sześciokąt. Wierzchołki sześciokąta są środkami krawędzi sześcianu. Pole tego sześciokąta jest równe $27\sqrt{3}\,\mathrm{cm}^2$.

Oblicz długość krawędzi sześcianu. Zapisz obliczenia.

KARTA ODPOWIEDZI

Zadanie	A	В	C	D
1.				
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				

WYPEŁNIA KOMISJA

Zadanie	Liczba punktów
11.	
12.	
13.	
14.	
15.	
16.	
17.	
18.	

Liczba uzyskanych	
punktów za wszystkie	
zadania	