Tarea 3

Edgar Robles

1. Estabilidad de puntos

1.1. ¿Qué se puede deducir de la estabilidad de estos puntos críticos?

En corto: uno de los dos puntos debe ser estable y el otro debe ser inestable. Tomemos dos puntos, $x, y \in \mathbb{R}$ tal que x < y, f(x) = 0 y $f'(x) \neq 0$, es decir, dos puntos críticos hiperbólicos. Además, ya que solo hay dos puntos críticos hiperbólicos, $\forall z \in]x, y[, f(z) \neq 0$. Hay dos casos:

Caso 1: f'(x) > 0

Notemos que en este caso x sería un punto inestable. Al ser f creciente en x, existe un $\varepsilon > 0$ tal que $f(\varepsilon) > f(x) = 0$.

Supongamos a modo de contradicción que f(c) < 0 para algún $c \in]x,y[$. Por el teorema del valor intermedio, existe un $u \in]\varepsilon,c[$ tal que f(u)=0, pero tenemos una contradicción ya que $\forall u \in]x,y[,f(u)\neq 0$. Es decir, f(u)>0 cuando x< u< y.

Supongamos a modo de contradicción que f'(y) > 0, eso significaría que para algún $\delta > 0$, f es creciente en $[y - \delta, y + \delta]$, es decir, $f(y - \delta) < f(y) = 0$ pero $f(y - \delta) > 0$ ya que $y - \delta \in]x, y[$. Ya que $f'(y) \neq 0$ solo queda la posibilidad de que f'(y) < 0, es decir, que g es estable.

Caso 2: f'(x) < 0

Notemos que en este caso x sería un punto estable. Al ser f decreciente en x, existe un $\varepsilon > 0$ tal que $f(\varepsilon) < f(x) = 0$.

Supongamos a modo de contradicción que f(c) > 0 para algún $c \in]x, y[$. Por el teorema del valor intermedio, existe un $u \in]\varepsilon, c[$ tal que f(u) = 0, pero tenemos una contradicción ya que $\forall u \in]x, y[, f(u) \neq 0$. Es decir, f(u) < 0 cuando x < u < y.

Supongamos a modo de contradicción que f'(y) < 0, eso significaría que para algún $\delta > 0$, f es decreciente en $[y - \delta, y + \delta]$, es decir, $f(y - \delta) > f(y) = 0$ pero $f(y - \delta) < 0$ ya que $y - \delta \in]x, y[$. Ya que $f'(y) \neq 0$ solo queda la posibilidad de que f'(y) > 0, es decir, que y es inestable.

- (a) Caso 1: la función $1-x^2$ con sus puntos de estabilidad.
- (b) Caso 2: la función $1+x^2$ con sus puntos de estabilidad.

Figura 1: Los dos ejemplos de la pregunta 1.1.

(a) La función f definida en el problema (b) La función g definida en el problema 1.2 que tiene un punto no hiperbólico y 1.2 que tiene un punto no hiperbólico y uno hiperbólico inestable.

Figura 2: Los contrajeemplos del problema 1.2

Con esto podemos concluir de que uno de los puntos es estable y el otro inestable. Como un ejemplo de cada uno de los casos, consideremos $f(x) = 1 - x^2$ para el caso 1 y $f(x) = 1 + x^2$ para el caso 2.

1.2. ¿Cómo cambia la pregunta anterior si un punto crítico no es hiperbólico?

Si un punto crítico no es hiperbólico, el punto crítico hiperbólico puede ser cualquier cosa.

Considere

$$f(x) = \begin{cases} -1 & \text{para } x < 0\\ \sin(x) - 1 & \text{para } 0 < x < 2\pi\\ x - 2\pi - 1 & \text{para } x > 2\pi \end{cases}$$

Esta función se puede ver en la figura 2. Como se puede notar, esta función tiene dos puntos cuando es cero: $\pi/2$ y $2\pi+1$ La derivada en el primero es

 $cos(\pi/2) = 0$ y en el segundo es 1.

De la misma manera, puedo construir otra función:

$$g(x) = \begin{cases} 1 & \text{para } x < 0 \\ 1 - \sin(x) & \text{para } 0 < x < 2\pi \\ 2\pi + 1 - x & \text{para } x > 2\pi \end{cases}$$

En este caso, los puntos críticos son lo mismos, $\pi/2$ y $2\pi+1$. En este caso, la derivada tiene de valores $cos(\pi/2)=0$ y -1 respectivamente, es decir que una es no hiperbólica y la otra es estable.

Como se puede ver, como hay dos funciones que tienen puntos estables e inestables, no podemos concluir nada de las funciones basado en lo anterior.

1.3. ¿Puede suceder que ambos puntos críticos sean no hiperbólicos?

Sí, considere la función

$$f(x) = \begin{cases} \sin(x) - 1 & \text{para } 0 < x < 4\pi \\ -1 & \text{sino} \end{cases}$$

En esta función, f(x) = 0 en dos puntos, $\pi/2$ y $5\pi/2$. En este caso, $f'(\pi/2) = cos(\pi/2) = 0$ y $f'(5\pi/2) = cos(5\pi/2) = 0$.

2. Script de bifurcaciones

El programa fue enviado por correo.

3. Gráficos de las ED

Los gráficos se pueden ver en la figura 3. Para la primera función se puede notar en la gráfica 3a que el λ lo único que hace es desplazar el gráfico. Derivando con respecto a x podemos ver que $f_x(x,\lambda)=1-\frac{1}{1+x}$. Esta función es positiva cuando x<0 y negativa cuando x>0, dándonos los puntos donde la función es estable e inestable. La bifurcación entonces se puede ver cuando $f(x,\lambda)=0=\lambda+x-\ln(1+x)$, el punto (0,0) es el más obvio que cumple eso y se puede ver que cumple los criterios para ser un punto de silla en la tabla.

Para la segunda, se tiene que $x^*=0$ es un punto crítico fijo, ya que $f(0,\lambda)=0-\lambda(0)(1-0)=0$ para todo λ . Para ver como varía este punto con respecto a lambda derivamos por λ , es decir, $\frac{\partial f}{\partial \lambda}=1-\lambda(1-2x)$. Esto nos dice que si $f_{\lambda}=0$ entonces $\lambda=\frac{1}{1-2x}$ evaluamos en $x^*=0$ y nos da que $\lambda=1$ o sea, varía alrededor de 1. Específicamente $\lambda>1$ nos da que $f_{\lambda}>0$ y x^* es inestable y $\lambda<1$ nos da lo opuesto. En la tabla evaluamos las condiciones de un punto

transcrítico en (0,1). El cálculo de los valores propios de D^2f se da por:

$$\begin{vmatrix} f_{xx} - \Lambda & f_{x\lambda} \\ f_{\lambda x} & f_{\lambda \lambda} - \Lambda \end{vmatrix} = \begin{vmatrix} 2\lambda - \Lambda & 1 - 2x \\ 1 - 2x & -\Lambda \end{vmatrix} = -2\Lambda\lambda + \Lambda^2 - (1 - 2x)^2 = \Lambda^2 - 2\Lambda - 1,$$

cuando evaluamos con x=0 y $\lambda=1$. Esta ecuación nos da las respuestas $\Lambda=1-\sqrt{2}$ y $\Lambda=1+\sqrt{2}$. La función $f(x,\lambda)=x-\lambda x(1-x)=0$ cuando x=0 o $x=\frac{\lambda-1}{\lambda}$. Sustituyendo esto en la derivada, $f_x(0,\lambda)=1-\lambda$, que es positiva, o inestable cuando $\lambda>1$ y estable cuando $\lambda<1$. Con $f_x(\frac{\lambda-1}{\lambda},\lambda)=1-\lambda-2(1-\lambda)=\lambda-1$ que es positiva cuando $\lambda<1$ y negativa cuando $\lambda>1$.

Como se puede ver en el gráfico 3c, cuando $\lambda = 0$ este solo tiene un punto crítico, mientras que cuando $\lambda > 0$ y $\lambda < 0$ este tiene dos puntos críticos. En la tabla podemos ver que el criterio para el tridente se cumple en (0,0).

		n de Bifurcaciones	
Tipo de Bifurcación	Condición	Ecuación Normal	Forma del Diagrama
Punto de Silla	$f(0,0) = 0 + 0 - \ln(1) = 0$ $f_x(0,0) = 1 - \frac{1}{1+0} = 0$ $f_{xx}(0,0) = \frac{1}{(1+0)^2} = 1 \neq 0$ $f_{\lambda}(0,0) = 1 \neq 0$	$x' = \lambda + x - \ln(1+x)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Transcrítica	$f(0,1) = 0 - 1(0)(1 - 0) = 0$ $f_x(0,1) = 1 - 1(1 - 2(0)) = 0$ $f_\lambda(0,1) = 0(1 - 0) = 0$ $f_{xx}(0,1) = -1(-2) = 0$ $D^2 f \text{ tiene de valores propios}$ $1 - \sqrt{2} < 0 \text{ y } 1 + \sqrt{2} > 0$	$x' = x - \lambda x (1 - x)$	0.5 - 0.5
Tridente	$f(0,0) = 0(0) + 4(0)^{3} = 0$ $f_{x}(0,0) = 0 + 12(0^{2}) = 0$ $f_{\lambda}(0,0) = 0$ $f_{x\lambda}(0,0) = 1 \neq 0$ $f_{xxx}(0,0) = 24 \neq 0$	$x' = \lambda x + 4x^3$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Figura 3: Las funciones de la pregunta 3 para diferentes valores de λ

Figura 4: El potencial de la función de la pregunta 4.3.

4. Potencial de una ED

4.1. Demuestre que V(t) = V(x(t)) decrece a lo largo de las trayectorias de la ED.

Considere $\frac{dV(x(t))}{dt} = \frac{dV}{dx}\frac{dx}{dt} = -f(x)x' = -(f(x))^2$. Notemos que $-(f(x))^2 \le 0$ por lo que $\frac{dV}{dt} \le 0$.

4.2. Demuestre que los puntos mínimos (resp. máximos) locales de V corresponden a puntos críticos estables (resp. inestables) de la ED.

Sea x un punto mínimo de V, es decir que $\frac{dV}{dx}=0$ y $\frac{d^2V}{dx^2}>0$. Eso quiere decir que -f(x)=0 y -f'(x)>0 y por ende f(x)=0 y f'(x)<0 por lo que x sería un punto crítico hiperbólico estable.

De la misma manera, sea x un punto máximo de V, es decir que $\frac{dV}{dx} = 0$ y $\frac{d^2V}{dx^2} < 0$. Eso quiere decir que -f(x) = 0 y -f'(x) < 0 y por ende f(x) = 0 y f'(x) > 0 por lo que x sería un punto crítico hiperbólico inestable.

4.3. Grafique el potencial del sistema $x' = x^3 - x$. Encuentre los puntos críticos y su estabilidad del gráfico de V.

El potencial se da por la ecuación

$$\frac{dV}{dx} = -f(x) = x - x^3,$$

lo que quiere decir que

$$V = \int -f(x)dx = \int x - x^3 dx = \frac{x^2}{2} - \frac{x^4}{4} + C.$$

Teniendo esto en cuenta, podemos ver en la figura 4. Los puntos críticos se dan cuando $x^3 - x = 0$, es decir, $x(x^2 - 1) = x(x - 1)(x + 1) = 0$ o cuando x = 0, 1, -1. Esto se puede ver en el gráfico. Del gráfico podemos ver que 0 es un punto crítico estable, mientras que 1 y -1 son puntos críticos inestables.

- (a) El diagrama cuando $\alpha > 0$.
- (b) El diagrama cuando $\alpha < 0$.

Figura 5: El diagrama de bifurcación de la pregunta 5.

5. Política de pesca

5.1. Encuentre los puntos críticos y determine su estabilidad para todos los valor de E.

Tenemos $f(N) = \alpha N \ln \left(\frac{K}{N}\right) - mN = 0$. Esto se cumple cuando N = 0 o $\alpha \ln \left(\frac{K}{N}\right) - m = 0$. Esto nos deja con

$$N = Ke^{-\frac{m}{\alpha}}.$$

La estabilidad se da por $f'(N) = \alpha \ln\left(\frac{K}{N}\right) - \alpha - m$. Evaluando con N = 0 tenemos que f'(0) está indefinido. Sacando límites, $\lim_{x\to 0} f'(x) = \operatorname{sgn}(\alpha)\infty$. Por lo que es estable si $\alpha < 0$ e inestable si $\alpha > 0$.

En $N = Ke^{-\frac{m}{\alpha}}$ se tiene que $f'(N) = -\alpha$. Esto significa que N es estable cuando $\alpha > 0$ e inestable cuando $\alpha < 0$.

La estabilidad se mantiene con respecto a E.

5.2. Haga un análisis de bifurcaciones para el parámetro de esfuerzo E y grafique el diagrama de bifurcaciones.

El diagrama de bifurcaciones se puede ver en 3. El límite a ∞ o a $-\infty$ dependiendo del valor de α nos da algo parecido a una bifurcación, pero como la estabilidad no varía con E entonces no podemos hacer un análisis.

5.3. Determine la curva de rendimiento, grafíquela y encuentre el rendimiento máximo sostenible en este modelo.

Partimos de que

$$Y = mN^* = \alpha N^* \ln\left(\frac{K}{N^*}\right)$$

Figura 6: El gráfico del rendimiento.

Evaluando en $N^* = Ke^{-\frac{m}{\alpha}}$ tenemos que

$$Y = \alpha k e^{-\frac{m}{\alpha}} \frac{m}{\alpha} = k m e^{-\frac{m}{\alpha}}$$

En la figura 6 podemos ver el gráfico de rendimiento. Ahí se puede ver muy claramente el punto de rendimiento máximo sostenible, dado por

$$kqe^{-\frac{qE}{\alpha}} - \frac{k}{\alpha}q^2Ee^{-\frac{qE}{\alpha}} = 0$$

Despejando encontramos que

$$MSY = E = \frac{\alpha}{q}.$$

6. Aproximación de ED

6.1. Muestre que la ED se puede transformar en una ED adimensional de la forma $\epsilon \frac{d^2\phi}{d\tau^2} + \frac{d\phi}{d\tau} = -\sin\phi + \gamma\sin\phi\cos\phi$ para una escogencia adecuada de las variables adimensionales τ y γ

Considere la ecuación

$$mr\phi'' + b\phi' = -mq\sin\phi + mr\omega^2\sin\phi\cos\phi$$

Vamos a tomar una sustitución de tiempo dimensional $\tau=t/T$ para algún T. Usando la regla de la cadena podemos ver que

$$\frac{d\phi}{dt} = \frac{d\phi}{d\tau}\frac{d\tau}{dt} = \frac{d\phi}{d\tau}\frac{1}{T},$$

y además que

$$\frac{d^2\phi}{dt^2} = \frac{d\frac{d\phi}{dt}}{dt} = \frac{1}{T}\frac{d\frac{d\phi}{d\tau}}{dt} = \frac{1}{T}\frac{d\frac{d\phi}{d\tau}}{d\tau}\frac{d\tau}{dt} = \frac{1}{T^2}\frac{d^2\phi}{d\tau^2}.$$

Sustituyendo esto en la ecuación original se tiene que

$$\frac{mr}{T^2}\frac{d^2\phi}{d\tau^2} + \frac{b}{T}\frac{d\phi}{d\tau} = -mg\sin\phi + mr\omega^2\sin\phi\cos\phi,$$

dividimos todo entre mg para balancear las fuerzas en los términos de la izquierda:

$$\frac{r}{gT^2}\frac{d^2\phi}{d\tau^2} + \frac{b}{mgT}\frac{d\phi}{d\tau} = -\sin\phi + \frac{r\omega^2}{g}\sin\phi\cos\phi.$$

Finalmente, para que el segundo término que de como 1 tomamos $T=\frac{b}{mg}$, notemos que la dimensión de esto es de tiempo, haciendo τ una variable adimensional. Eso significa que,

$$\frac{m^2 gr}{b^2} \frac{d^2 \phi}{d\tau^2} + \frac{d\phi}{d\tau} = -\sin\phi + \frac{r\omega^2}{g} \sin\phi \cos\phi.$$

y con esto tenemos que $\frac{m^2gr}{b^2}$ es el ϵ del enunciado, adimensional y con $\gamma = \frac{r\omega^2}{g}$ tenemos que γ también es adimensional, por lo que la ecuación termina siendo

$$\epsilon \frac{d^2 \phi}{d\tau^2} + \frac{d\phi}{d\tau} = -\sin \phi + \gamma \sin \phi \cos \phi.$$

6.2. Justifique que $\epsilon \ll 1$ como una condición límite para ϵ .

Podemos decir que $\epsilon \ll 1$ ya que podemos verlo como $m^2gr \ll b^2$. Dado esto, podemos decir que esto se cumple cuando b es muy grande o m es muy pequeño, o bien una combinación de los dos. Mientras tanto, esto no afectaría ningún otro término de la ecuación, ya que el único otro término en la ecuación es $\gamma = \frac{r\omega}{g}$, que no contiene estos términos, ni ningún término que le afecta ninguno de los dos términos que estamos modificando. Por esta razón, podemos enviar $\epsilon \to 0$ sin afectar el término γ .

El planteamiento adimensional es necesario ya que no se puede enviar ningún término en particular en la ecuación original, ya que, por ejemplo, si enviamos $m \to 0$ este eliminaría casi todos los términos de la ecuación, mientras que si enviamos $r \to 0$ este afectaría los términos de ω y b.