Assignment -3. * steochastic gradient descent optimizes Jample (i) 3.4 0.4 0.8 4.6 -> Manual Steps: [7,y], m=1, c=-1, n=01, epochs= 2 Step2: ite = 1 sample = 1 Step3: 3E = - (y; -m (7);) - c) x; Step4: = - (3.4 - 1 (0.2)+1)0-2 DE = - (y;-m(n;)-c) - - (3.4 - 2 (0.2) + 1)

Steps:
$$\Delta m = -4 \left(\frac{\partial E}{\partial m} \right)$$

= $(-0.3)(-0.84)$

= $(-0.4)(-4.2)$

= $(-0.4)(-4.2)$

= $(-0.4)(-4.2)$

= $(-0.4)(-4.2)$

= $(-0.4)(-4.2)$

= $(-0.4)(-4.2)$

= $(-0.4)(-4.2)$

= $(-0.4)(-4.2)$

= $(-0.4)(-4.2)$

= $(-0.4)(-4.2)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $(-0.4)(-0.84)$

= $($

3teps:
$$\Delta m = -(0.1)(-1.58)$$

= 0.158
 $\Delta c = -(0.4)(-3.95)$
= 0.395
Heps: $m = \Delta.094 + 0.458$
= $\Delta.242$
 $c = -0.58 + 0.395$
= -0.485
Heps: $Jample = 3$
Steps: $Jample = 3$
Steps: $Jample = 3$
 $Jample = 3$

Jtep3: Jample = 1

Jtep4:
$$\frac{\partial F}{\partial m} = -(y; -m(\pi;) - c), x;$$

= $-(3.4 - (3.242)(0.2) + 0.265)0.2$

= $-(3.4 - (0.24) + 0.265)0.2$

= $-(3.34)(0.2)$

= -0.66
 $\frac{\partial F}{\partial c} = -(3.4 - (0.24) + 0.285)$

= -3.34

Step5: $\Delta m = -(0.1)(-0.66)$

= 0.066
 $\Delta c = -(0.1)(-3.34)$

= 0.334

Step6: $m = 1.242 + 0.066$

= 2.334
 $c = -0.485 + 0.334$

= 0.244

Jtep4: Jample = 2
Jtep8: if
$$(2>2)$$

Next
else
Step4.
Jep4: $\frac{\partial E}{\partial m} = -(3.8 - (4.3)(0.4))$
 $= -(3.8 - 0.52 - 0.44)$
 $= -(3.44)(0.4)$
 $= -(3.44)(0.4)$
 $= -(3.44)$
Step5; $\Delta m = -(3.44)$
 $= -(3.44)$
 $\Delta m = -(3.44)$
 $\Delta m = -(3.44)$
 $\Delta m = -(3.44)$

Scanned by TapScanner

Steps, m = 1.3 + 0.125m = 1.425c = 0.24 + 0.324 C = 0-454 sample = 3 Step7. if (3>2) steps: 1+=2+1=3 step9) next 1.425 0.454,