# Post-Quantum Cryptography: SIKE

Reza Azarderakhsh

Florida Atlantic University

Founder and CEO

PQSecure Technologies





# Timeline of Quantum Computing Threat





## Post-Quantum Key-Exchange

Post-Quantum Signatures

Latticebased

Codebased

Isogenybased Latticebased

Hashbased

Multivariatebased

Zero-Knowledge based

## Open Questions about Post-Quantum Cryptography

- Design better post-quantum cryptosystems
- Improve classical and quantum attacks
- Pick parameter sizes
- Develop fast, efficient, and secure implementations
- Integrate them into the existing infrastructure

### SIKE Team







Microsoft Research

















## Architecture Selection for Cryptographic Design

#### **HW** only



- + Highly optimized for dedicated purpose (power consumption, execution time, security)
- Extra HW costs
- limited flexibility
- HW design effort/complexity

#### HW/SW



- + Good trade-off between optimization/costs (still fast but less design effort/complexity easier to handle)
- + Higher flexibility
- Not straight-forward to find optimal HW/SW partitioning
- Extra HW costs
- Less optimized than HW-only

#### SW only



- + Limited HW costs (code/data storage)
- + High flexibility
- + Minimal HW design effort/eases handling of complexity (programming)
- Not optimized (energy, consumption, performance)

## FPGAs: Field Programmable Gate Arrays

- FPGAs are composed of:
- Programmable logic cells
- A configurable routing matrix
- configurable Input/output cells
- Embedded memory blocks
- Small embedded multipliers
- etc.

18-bit×18-bit multiplier blocks





#### Inside a logic cell:

- Connections to the routing matrix
- Programmable lookup-tables
  - 4 inputs, 1 output
  - 6 inputs, 1 output
  - 6 inputs, 2 outputs
- optional registers
  - free pipelining
- more logic for fast carry-propagation

#### FPGAs vs. ASIC

- + prototyping
- + re-usability
- + short time to market
- + simpler design cycle
- + Programmable in the field
- + hardware/software co-design

- speed
- silicon footprint
- power and energy consumption
- low cost for high volumes
- better performance
- reconfigurability and redundancy



## Isogeny-Based Cryptography

- Isogeny-based cryptography is constructed on a set of curves.
- Given two curve E and  $E' = \phi(E)$  find  $\phi$ ?





## Supersingular Isomorphism Classes

- We are interested in the set of supersingular curves (up to isomorphism) over a specific field
- Prime  $p = 2^{e_A} \cdot 3^{e_B} \cdot f \pm 1$
- Elliptic curves over  $\mathbb{F}_{p^2}$ ,  $\#E = (p \mp 1)^2$
- Supersingular *j*-invariants:  $\#S_{p^2} \approx \left\lfloor \frac{p}{12} \right\rfloor$  (isogenous elliptic curves)



Prime 
$$p = 2^3 \cdot 3^2 - 1 = 71$$
,  $\#E = 72^2$ ,  $\#S_{p^2} = 7$ 

## Isogeny Graphs

Vertices: All isogenous elliptic curves over  $\mathbb{F}_{p^2}$ .

Edges: Isogenies of degree  $\ell$ 

With isogeny of degree  $\ell$ , we get a connected  $(\ell + 1)$ -regular graph.

Alice



2-isogeny graph



3-isogeny graph

## Public Parameters

#### Alice



$$P_A = (53, 55)$$
  
 $Q_A = (18, 27w + 44)$ 

$$E_0/\mathbb{F}_{p^2}$$
  $\{P_A, Q_A\} \in E_0[2^{e_A}]$   $\{P_B, Q_B\} \in E_0[3^{e_B}]$ 

$$E_0$$
:  $y^2 = x^3 + x$ 



$$P_B = (7w + 20, 31w + 50)$$
  
 $Q_B = (21w + 64, 38w + 13)$ 

## Secret Key

$$s_A \in [0, 2^{e_A})$$
$$s_B \in [0, 3^{e_B})$$

#### Alice



$$s_A = 6$$



$$s_B = 3$$

#### Alice



$$E_0: y^2 = x^3 + x$$



$$E_0: y^2 = x^3 + x$$

Public Key Generation

Eo terlos III PS X (SSIOS)

Alice



$$E_0: y^2 = x^3 + x$$
$$\phi_A: E_0 \to E_A$$





$$E_0: y^2 = x^3 + x$$
$$\phi_B: E_0 \to E_B$$

Public Key Generation

Alice





$$E_0: y^2 = x^3 + x$$
  
 $\phi_A: E_0 \to E_A$   
 $E_A: y^2 = x^3 + 22x + 35$ 



# Key Exchange





$${R_A, S_A} = {\phi_A(P_B), \phi_A(Q_B)}$$



$$E_B = E_0/\langle B \rangle$$

$${R_B, S_B} = {\phi_B(P_A), \phi_B(Q_A)}$$



$$E_0: y^2 = x^3 + x$$

$$\phi_A: E_0 \to E_A$$

$$E_A$$
:  $y^2 = x^3 + 22x + 35$ 



$$E_0$$
:  $y^2 = x^3 + x$ 

$$\phi_B: E_0 \to E_B$$

$$E_B: y^2 = x^3 + 63x + (55w + 16)$$









# SIKE Round 2 Key sizes

| NIST Level | Prime size<br>(bits) | Prime                | Public key<br>size (bytes) | Compressed PK size (bytes) |
|------------|----------------------|----------------------|----------------------------|----------------------------|
| 1          | 434                  | $2^{216}3^{137} - 1$ | 330                        | 196                        |
| 2          | 503                  | $2^{250}3^{159} - 1$ | 378                        | 224                        |
| 3          | 610                  | $2^{305}3^{192} - 1$ | 462                        | 273                        |
| 5          | 751                  | $2^{372}3^{239} - 1$ | 564                        | 331                        |

## Isogeny Graphs



$$p = 71 = 2^3 \cdot 3^2 - 1$$
  
nodes = 7



p = 2521nodes = 210 [CLG06]



SIKEp434  $\approx 2^{216} \cdot 3^{137} - 1$ nodes  $\approx 2^{430}$ 











- Get isogeny Kernel  $[\ell^{e-i-1}]R_i$
- Compute Isogenies  $\phi_i \coloneqq E_i / \langle [\ell^{e-i-1}] R_i 
  angle$
- Compute  $E_{i+1} = \phi_i(E_i)$
- Push points to new curve  $R_{i+1} = \phi_i(R_i)$

$$\phi = \phi_6 \cdot \phi_5 \cdot \phi_4 \cdot \phi_3 \cdot \phi_2 \cdot \phi_1 \cdot \phi_0$$

e.g., 
$$\phi$$
:  $E = E_0/\langle R_0 \rangle$ , ord $(R_0) = \ell^7$ 





























$$e = 7$$

$$\phi_0 \coloneqq E_0 / \langle [\ell^6] R_0 \rangle$$

$$E_1 = \phi_0(E_0)$$





$$e = 7$$

 $R_1 = \phi_0(R_0)$ Order of  $[\ell^5]R_1$  is  $\ell$ 





$$e = 7$$

$$\phi_1 \coloneqq E_1 / \langle [\ell^5] R_1 \rangle$$

$$E_2 = \phi_1(E_1)$$





$$e = 7$$

$$R_2 = \phi_1(R_1)$$
 Order of  $[\ell^3]R_2$  is  $\ell^2$ 









$$e = 7$$

$$\phi_2 \coloneqq E_2/\langle [\ell^4] R_2 \rangle$$

$$E_3 = \phi_2(E_2)$$





$$e = 7$$

 $R_3 = \phi_2(R_2)$ Order of  $[\ell^3]R_3$  is  $\ell$ 





$$e = 7$$

$$\phi_3 \coloneqq E_3/\langle [\ell^3] R_3 \rangle$$

$$E_4 = \phi_3(E_3)$$







$$R_4 = \phi_3(R_3)$$
  
Order of  $R_4$  is  $\ell^3$ 













$$e = 7$$

$$\phi_4 := E_4/\langle [\ell^2] R_2 \rangle$$

$$E_5 = \phi_4(E_4)$$











 $R_6$ 

 $[\ell^3]R_3$ 

 $[\ell^6]R_0$ 













$$\phi_6 \coloneqq E_6/\langle R_6 \rangle$$
$$E_7 = \phi_6(E_6)$$



High-level Hardware Architecture for SIDH Adder/Subtractor Mult Unit Mult 0 Mult 1 **Public SIDH** Program Controller Mult n-1 **Parameters** ROM  $E_{\mathbf{0}}$ ALU Round  $\phi_A(P_B)$ Memory  $\phi_A(Q_B)$ Unit Secret **TRNG** Keys Round  $\phi_B(P_A)$  $\rightarrow j(E_{AB})$  $\phi_B(Q_A)$ 

### Fast Kernel Computations

$$R = \ker(\phi) = \langle P + [s]Q \rangle$$



### Field Multiplication

- Field multiplication performs  $C = A \times B \mod p$
- Choice of modular multiplier is crucial: Montgomery multiplication
- Systolic Montgomery multiplier
  - PEs process various chunks of the results in parallel
  - For SIKE primes  $(2^{e_A} \cdot 3^{e_B} 1)$ ,  $p = 1 \dots \underbrace{111 \dots 111}_{e_A}$  and  $p' = -p^{-1} = 1 \pmod{2^w}$  where  $w \le e_A$

### **Coarsely Integrated Operand Scanning (CIOS):**

- Alternate between multiplication and reduction
- Shorter Critical Path: 1 Mult + 1 Addition
- More clock cycles (4×Number of words)

# Finely Integrated Operand Scanning (FIOS):

- Parallelize Multiplication and reduction
- Longer Critical Path: 1 Mult + 2 Additions
- Less clock cycles (3×Number of words)

# FIOS Design (Number of words = 4)



# FIOS Design (Number of words = 4)



# FIOS Design (Number of words = 4)



# Arithmetic over $\mathbb{F}_{p^2}$

Each of the  $\mathbb{F}_{p^2}$  arithmetic are built upon a series of  $\mathbb{F}_p$  arithmetic

| $\mathbb{F}_{p^2}$ | $\mathbb{F}_{m{p}}$                                     | ops          |
|--------------------|---------------------------------------------------------|--------------|
| a + b =            | $(a_0 + b_0, a_1 + b_1)$                                | 2 <i>A</i>   |
| a - b =            | $(a_0{-}b_0$ , $a_1-b_1)$                               | 2 <i>A</i>   |
| $a \times b =$     | $(a_0.b_0-a_1.b_1,(a_0+a_1).(b_0+b_1)-a_0.b_0-a_1.b_1)$ | 3M + 5A      |
| $a^2 =$            | $((a_0+a_1)(a_0-a_1), 2a_0a_1)$                         | 2M + 3A      |
| $a^{-1} =$         | $(a_0(a_0^2+a_1^2)^{-1}, -a_1(a_0^2+a_1^2)^{-1})$       | 4M + 2A + 1I |

### **KEY GENERATION (Bob)**

Bob's secret key  $s_B$ 

### Legend



### Legend



### Legend



### **KEY ENCAPSULATION (Alice)**

Alice's secret message m

Bob's public key  $pk_B$ 

### Legend



### Legend



#### Legend



### Legend



### Legend





**KEY DECAPSULATION (Bob)** 

ciphertext(*ct*)















## SIKE in FPGA

The host initializes any isogeny inputs x(P), x(Q), x(Q-P) and key k



# SIKE Round 2 Key sizes

| NIST Level | Prime (bits) |     | Compressed PK size (bytes) |
|------------|--------------|-----|----------------------------|
| 1          | 434          | 330 | 196                        |
| 2          | 503          | 378 | 224                        |
| 3          | 610          | 462 | 273                        |
| 5          | 751          | 564 | 331                        |

#### Classical Key Size Comparison (in Bytes)

|                 | Level 1 | Level 3 | Level 5 |
|-----------------|---------|---------|---------|
| RSA             | 384     | 960     | 1920    |
| ECC             | 32      | 48      | 64      |
| SIKE            | 330     | 462     | 564     |
| SIKE Compressed | 196     | 273     | 331     |

- RSA and ECC are currently used but **NOT** quantum-safe
- Other Post-Quantum candidates have key lengths up to 10 times longer

# SIKE Operations

• Total number of  $\mathbb{F}_p$  arithmetic operations in SIKEp503

| $\mathbb{F}_{m{p}}$ | Keygen | Encapsulation | Decapsulation |
|---------------------|--------|---------------|---------------|
| Addition            | 31,882 | 43,127        | 51,620        |
| Multiplication      | 40,107 | 64,372        | 69,550        |
| Inversion           | 1      | 3             | 3             |

## SIKE in FPGA Area Results

 Area distribution of NIST level 5 SIKEp751 on Virtex-7 FPGA xc7vx690tffg1157-3



# SIKE: Results for NIST level 1

Target: High Performance Edge



Target: Resource-constrained IoT



## SIKE in FPGA

#### NIST-Round 1 Submission: Koziel and Azarderakhsh

#### Xilinx Virtex 7 FPGA

| NIST             | SIKE     | Area   |        |         |      | Freq Time (ms) |       |        |        |        |             |
|------------------|----------|--------|--------|---------|------|----------------|-------|--------|--------|--------|-------------|
| Level            | Prime    | #FFs   | LUTs   | #Slices | DSPs | BRAMs          | (MHz) | KeyGen | Encaps | Decaps | Total (E+D) |
| 5 (used to be 3) | SIKEp751 | 51,914 | 44,822 | 16,752  | 376  | 56             | 198   | 9.08   | 16.27  | 17.08  | 33.35       |

# SIKE in FPGA Improved

#### CHES 2019: Koziel, Azarderakhsh, Kermani, El Khatib, Ackie

#### Xilinx Virtex 7 FPGA

| NIST  | SIKE     |        | Area   |         |      |       | Freq  |        |        | Time (ms) |             |  |
|-------|----------|--------|--------|---------|------|-------|-------|--------|--------|-----------|-------------|--|
| Level | Prime    | #FFs   | LUTs   | #Slices | DSPs | BRAMs | (MHz) | KeyGen | Encaps | Decaps    | Total (E+D) |  |
| 2     | SIKEp503 | 26,971 | 25,094 | 9,514   | 264  | 34    | 171   | 3.74   | 7.07   | 6.6       | 13.6        |  |
| 5     | SIKEp751 | 50,390 | 45,893 | 17,530  | 512  | 43    | 167.4 | 7.42   | 13     | 13.9      | 26.9        |  |

### The case for SIKE

- The post-quantum landscape is uncharted territory:
  - The smallest scheme is the slowest, and the fastest scheme is the largest.
  - Compare with traditional cryptography, where the fastest scheme (ECC) is also the smallest.
- This situation introduces a new set of tradeoffs.
  - SIKE's advantages will become more pronounced over time.
  - SIKE's disadvantages will become less pronounced over time.
- Why not CSIDH?
  - CSIDH has sub-exponential quantum security, compared to SIDH/SIKE which has exponential quantum security.
  - Over time, CSIDH becomes less attractive compared to SIKE.

# The future of SIKE: Computational Costs

- Hardware gets faster over time.
- Software also gets faster over time.
- The above happens naturally, without effort or expenditure.
- An across-the-board performance increase reduces the performance penalty of SIKE (in absolute terms).
- We can also spend more money for faster hardware.
- Certain expenditures (e.g. hardware acceleration) provide good value per unit cost.

### The future of SIKE: Communication Costs

- As hardware and software gets faster, attacks get faster.
- Faster attacks require larger keys to counteract.
- An across-the-board key size increase enlarges the communication cost benefits of SIKE (in absolute terms).
- Variance in communication channels is much higher than variance in cycle counts. SIKE already wins today on desktop browsers when including variance.

### • Questions?





#### **Email:**

razarderakhsh@fau.edu