- D 42 Au 2 Retelo

 Algoritmo serial/sequencial: executa em 1

 inico piocessador.

 Algoritmo paralelo: executa em 2 ou mais

 plucessadores.

 Para *** Elgoritmo paralelo existe um

 elgoritmo sequencial que realiza a mesma

 tarefa

 E importante entender a solução sequencial

 para desenvolver uma solução paralela
- 1 De se mpenho
 - Desempenho de um algoritmo paralelo

 deve ser superior com relação à versão

 sequencial para o mesmo phoblema

 Desempenho = tempo de execução.
 - Tempo total de execução = tempo de compotação + tempo ocioso + tempo de so municação.

- (3) Tempa de execução
 - de E/S e catalos do programa
 - Tempo ocioso (ou tempo de sinctonização): dedicado a sinctonização): dedicado placessos mais lentos
 - -o Tempo de comunicação = latéricia + transmissão
 - Desotes)
 Desotes)
 Desotes)
 Desotes)
 Desotes)
 Desotes
 Desotes
 -
- a Projeto de elgoritmos perdelos
 - 2 enfoques comuns:
 - -0 Paralelismo de dados: os dados são particiona dos, cede subconjunto de dedos é essociado a um placesso, cada placesso executa os mes mos comandos sobre seu conjunta de dados - Patalelismo de controle: o problema é dividido em tarefas (etapas) independentes, cadatatefa e 2>50 c/2 do 20m um plocesso, cada processo

executs commands diferentes

Detelelismo de de des

-o Implementado mais facilmente que o paralelismo de controle

- Não é prejudicado por dependência entre operações.

-o Fecil escelabilidade

+ Requet pouce comunicação ente processos

. ... \$4 6 Petelelismo de contide

Dificil de implementat

- Dificulta escalabilidade

- Exige muitz comunicação entre processos.

O paralelismo de dados é mais comum, potém à maidria dos algoritmos paralelos envolve es des abordagens (dados e controle)

DEDETON (F

p = número de processos (processadores) ou threads n = temanho do problema

- Avaliação de algoritmos sequenciasis utiliza enalise assintática (O, SL)

- Análise assimtática não costuma ser apropriada para caracterizar desempenho de algoritmos paralelos

8) Granulatidade

Granulatidade G(n) expressa à relação entre a quantidade de computação e a quantidade de comunicação em um algoritmo paralelo

Tp: tempo de computação/processamento Tc: tempo de comunicação

9			
	Agramulatidade	de um phoble	2773 & Inverse
	mente propor do ploblem		de palale lismo
	Nº de subptoblemes	Computação Comunicação Pouca Alta Grande Baixo	Granulatidade Paralelismo
	Boizo	Grande Boixo	Grosso Zy Baizo
	Problems	Granularidade fina	Granularidade grassa
10	Speedup (Acelehar 30)	

10 Speedup (Aceletação)

-o T(n): Lempo de exercição de um Egotitmo sequencial, depende spenas do tamanho do pichlema to de processadores utilizados.

-o T(n,p) = Lempo Lotal de execução, desde quen do o primeiro processador começa a execução zté o último processador completar a execução de última instrução.

~ Speedup:

$$S(n,p) = \frac{T(n)}{T(n,p)}$$

- De forma getal. O(S(n,p)≤p

- Quando S(n,p)=p temos speedup linear

speedup linear é algo tato devido a soblecatga da maioria das soluções paralelas

13 Tipos de speedup

- de paralelização muito alta)
- -o 1<5(n,p)<p, sublinear, comportamente getal
- S(n,p)=p, linear, ideal (não existe subjectatga)
- S(n,p)>p, supralinear, situação possível.
- Exemplo de Speedup supralinear: Algoritmo de busco

(13) Eficiencia

→ Eficiêncie E(n,p) é à medida de utilização dos processos em um algoritmo para lelo em relação ao algoritmo seguencial.

 $E(n,p) = \frac{S(n,p)}{P} = \frac{T(n)}{P.T(n,p)}$

· Tipos de eficiencis ~ E (n/p) < I, slow down - I (E (nip) < 1, sublinear $\rightarrow E(n,p)=1$ linear $\rightarrow E(n,p)>1$, supralinear

(14) Tomadas de tempo

- Avaliação de desempenho de agoritmos/ programas/implementações paralelas devem ser realizades com tomadas de tempo

- Pata se obtet tomadas de tempo confiaveis deve-se considerar as etapas:

- (1) Getentit o méximo de exclusividade na utilização do processador
- (2) Sinchonizar os processos no inicio do código (3) Efetuar tomada de tempo (start)
- (4) Sinctonizat os processos no final do código (5) Efetuar tomada de tempo (finish)

(6) Calculat o tempo transcortido (finish - start)

Lei de Almdahl

Distribulada por Gene Amdahl em 1967

Distribulada por

Speedup máximo pela Lei de Amdahl
$$S(n,p) = \frac{T_s}{(1-f)T_s + f.T_s/p}$$

$$S(n,p) = \frac{1}{(1-f) + f/p}$$
Fator de Speedup

(18) Lei de Gustarfson (1988)

- A principal deficiencia da Lei de Amdhal é que não considera o Lamonho do probleman.

 DA Lei de Gustanf son rezvalia a Lei de Amdahh sob o ponto de vista da escalabilidade
 - Secolabilidade ocorre quando é possível
 manter constante a eficiência E(n,p)
 incrementando o tamanho do problema
 n ao mesmo tempo que o nomero de
 processos p é incrementado

19 Thobalho (W) e Sobrecatga (To)

Trabalho de um elgoritmo serial/sequencial
W(n) = T(n)

-o Trabalho de um Egoritmo paralelo

W(n,p) = p.T(n,p)

- Sobiecarga de um algoritamo paralelo To (n,p) = W(n,p) - W(n) = pT(n,p) - T(n)

- Cficiéncia

 $E(n,p) = \frac{1}{T_0(n,p)+1}$ T(n)

20 Lei de Gustafson

& Speedup:

S(n,p) = p - (1-f)(p-1)

Nos obtimos enos o conceito de escalabilide de (Lei de Gustafson) tem eberto novos horizantes eo uso de paralismo massivo