Fizyka Zestaw 7

Jan Kwinta

2022-12-20

Zadanie 1. Okrag o promieniu R jest naładowany ze stałą gęstością liniową $\lambda>0$. W środku okregu umieszczono ładunek q<0, który może sie swobodnie poruszać. Czy środek okregu jest dla tego ładunku położeniem równowagi trwałej?

Obliczmy natężenie \vec{E} w środku okręgu całkując po kącie α .

$$dE_x = d\vec{E}\sin\alpha$$

$$dE_y = d\vec{E}\cos\alpha$$

$$dE_x = k\frac{\lambda R}{R^2}\sin\alpha d\alpha$$

$$E_x = \int_0^{2\pi} dE_x = -k\frac{\lambda}{R}\cos\alpha \Big|_0^{2\pi} = 0$$

Analogicznie dla E_y .

Otrzymujemy natężenie w środku okręgu równy zero, z czego wynika, że siła wypadkowa działająca na ładunek q jest równa $\vec{F}=\vec{E}\cdot q=0$, więc dla ładunku q jest on położeniem równowagi.

Zadanie 2. Przez miedziany przewodnik o przekroju S=1 mm² płynie prąd o natężeniu I=1A. Wyznaczyć (średnią) prędkość unoszenia elektronów w przewodniku, przyjmując, że na każdy atom miedzi przypada jeden elektron przewodnictwa. Masa atomowa miedzi wynosi $63.5 \frac{\rm g}{\rm mol}$, zaś jej gęstość jest równa $8.96 \frac{\rm g}{\rm cm^3}$. Liczba Avogadro wynosi $N_A=6.02\cdot 10^{23}$.

$$n = \frac{8.96 \cdot \frac{10^3}{10^{-6}}}{63.5 \cdot 10^3} \cdot 6.02 \cdot 10^{23} = 0.849 \cdot 10^{29} = 8.49 \cdot 10^{28}$$

$$v_d = \frac{I}{nSe} = \frac{1}{8.49 \cdot 10^{28} \cdot 10^{-6} \cdot (-1.6) \cdot 10^{-19}} \approx 7.36 \cdot 10^{-5} \frac{\mathbf{m}}{\mathbf{s}}$$

Zadanie 3. Dane są cztery oporniki o oporach $R_1=4\Omega$, $R_2=3\Omega$, $R_3=12\Omega$ i $R_4=6\Omega$ oraz ogniwo o sile elektromotorycznej $\epsilon=10\mathrm{V}$ i oporze wewnetrznym $r=1\Omega$ połączone jak na rysunku. Policzyć prądy I,I_1,I_2,I_3 i I_4 oraz opór zastępczy układu oporników.

Zadanie 6. Wyznaczyć opór zastępczy trzech oporników widocznych na rysunku, przyjmując, że opory przewodników, niezależnie od ich długości sa zaiedbywalnie małe.

Należy zauważyć, że układ można narysować na inne sposoby:

I następnie:

A to jest po prostu łączenie równoległe oporników, więc:

$$\frac{1}{R_Z} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Zadanie 7. Wyznaczyć zastepczą siłę elektromotoryczną ϵ_z i opór wewnętrzny r_z baterii identycznych ogniw połaczonych (a) równolegle i (b) szeregowo. Warunkiem równoważności z pojedynczym ogniwem jest to, by przy podłaczeniu zewnętrznego oporu R prąd płynacy przez ten opór miał to samo natężenie.

(a)

(b)

Zadanie 8. Wyznaczyć zastepczą siłę elektromotoryczną ϵ i opór wewnetrzny r baterii ogniw pokazanej na rysunku. $\epsilon_1=10$ V, $r_1=1\Omega$, $\epsilon_2=20$ V, $r_2=2\Omega$, $\epsilon_3=30$ V, $r_3=3\Omega$.

Zadanie 9. W chwili t=0 zamykamy kluczem K obwód (tzw. obwód RC) i łączymy ze sobą nienaładowany kondensator o pojemności C, opornik R oraz ogniwo o sile elektromotorycznej ϵ i zaniedbywalnym oporze wewnetrznym. Jak zależy od czasu nateżenie prądu płynącego w obwodzie oraz ładunek na okładce kondensatora?

