

IEL – protokol k projektu

Roland Schulz xschul06

21. prosince 2019

Obsah

L	Příl	klad 1
	1.1	1. Krok - Zjednodušování
		1.1.1 Postup:
		1.1.2 Vzorečky:
	1.2	2. Krok
		1.2.1 Postup:
		1.2.2 Vzorečky:
	1.3	3. Krok
		1.3.1 Postup:
		1.3.2 Vzorečky:
	1.4	4. Krok
		1.4.1 Postup:
		1.4.2 Vzorečky:
	1.5	5. Krok
		1.5.1 Postup:
		1.5.2 Vzorečky:
	1.6	6. Krok - Seskládání obvodu nazpátek
		1.6.1 Postup:
		1.6.2 Vzorečky:
		1.6.3 Kontrola pomocí II. Kirchhoffova zákona:
	1.7	7. Krok
		1.7.1 Postup:
		1.7.2 Vzorečky:
		1.7.3 Kontrola pomocí I. Kirchhoffova zákona:
	1.8	8. Krok - Řešení
		1.8.1 Postup:
		1.8.2 Vzorečky:
	.	
		klad 2
	2.1	Předpoklad Théveninova teorému
	2.2	1. Krok - Zkratování zdroje napětí a zjednodušování zapojení s odpojeným rezistorem
		0.01 D

		2.2.2 Vzorečky:	8
	2.3	2. Krok	10
		2.3.1 Postup:	10
	2.4	3. Krok	10
		2.4.1 Postup:	10
		2.4.2 Vzorečky:	10
	2.5	4. Krok	11
		2.5.1 Postup:	11
		2.5.2 Vzorečky:	11
	2.6	5. Krok - Zjištění hodnoty odporu z obvodu předpokladu	11
		2.6.1 Postup:	11
		2.6.2 Vzorečky:	11
	2.7	6. Krok - Zjednodušování s odpojeným rezistorem a se zdrojem napětí pro zjištění napětí	
		z předpokladu	12
		2.7.1 Postup:	12
		2.7.2 Vzorečky:	12
	2.8	7. Krok	12
		2.8.1 Postup:	12
		2.8.2 Vzorečky:	12
	2.9	8. Krok	13
		2.9.1 Postup:	13
		2.9.2 Vzorečky:	13
	2.10	9. Krok	13
		2.10.1 Postup:	13
		2.10.2 Vzorečky:	13
	2.11	10. Krok - Aplikování na předpoklad	14
		2.11.1 Postup:	14
		2.11.2 Vzorečky:	14
n	DY4	1. 1.0	4 -
3		tlad 3	15
	3.1	1. Krok - Vyjádření uzlových proudů	16
	2.0		16
	3.2	2. Krok - Vyjádření proudů na rezistorech v obvodu	17 18
	ე.ქ ე /	3. Krok - Dosazení rovnic proudů odporů do rovnic uzlových proudů	18
	3.4	4. Krok - Řešení soustavy rovnic Cramerovým pravidlem k výpočtu napětí uzlů k reference řem vzlu	10
		renčnímu uzlu	19
4	Přík	$\operatorname{dad} 4$	20
-	- 111		_0
5	Přík	dad 5	21
6	Shri	nutí výsledků	22

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
A	80	120	350	650	410	130	360	750	310	190

1. Krok - Zjednodušování

Postup:

- 1. Spojíme U_1 a U_2 do jednoho zdroje U_{12} .
- 2. Převedeme zapojení z trojúhelníku na hvězdu.

Vzorečky:

- 1. $U_{12} = U_1 + U_2 = 200V$
- 2. $R_A = \frac{R_1 * R_2}{R_1 + R_2 + R_3} = 161.347518\Omega$ $R_B = \frac{R_1 * R_3}{R_1 + R_2 + R_3} = 101.773050\Omega$ $R_C = \frac{R_1 * R_2}{R_1 + R_2 + R_3} = 189.007092\Omega$

2. Krok

Postup:

- 1. Zjednodušení par. rezistorů R_7 a R_8 na R_{78} .
- 2. Zjednodušení ser. rezistorů R_B a R_4 na R_{B4} .

Vzorečky:

1.
$$R_{78} = \frac{R_7 * R_8}{R_7 + R_8} = 117.8\Omega$$

2.
$$R_{B4} = R_B + R_4 = 231.77305\Omega$$

Postup:

1. Zjednodušení ser
. rezistorů R_{B4} a R_5 na R_{B45} .

Vzorečky:

1. $R_{B45} = R_{B4} + R_5 = 591.77305\Omega$

4. Krok

Postup:

1. Zjednodušení par. rezistorů R_{B45} a R_{C6} na $R_{B45C6}.$

Vzorečky:

1. $R_{B45C6} = \frac{R_{B45} * R_{C6}}{R_{B45} + R_{C6}} = 363.003854\Omega$

Postup:

- 1. Zjednodušení ser. rezistorů $R_{B45C6},\ R_{78}$ a R_A na $R_{EKV}.$
- 2. Vypočtení celkového proudu obvodem.

Vzorečky:

- 1. $R_{EKV} = R_A + R_{B45C6} + R_7 = 642.151371\Omega$
- $2. \ I = \frac{U_{12}}{R_{EKV}} = 0.311453A$

6. Krok - Seskládání obvodu nazpátek

Postup:

1. Výpočet napětí na R_A , R_{RB45C6} a R_{78} .

Vzorečky:

Kontrola pomocí II. Kirchhoffova zákona:

$$U_{12} = U_{R_{B45C6}} + U_{R_{78}} + U_{R_A}$$

Postup:

1. Vyjádření proudu na rezistorech R_{C6} a $R_{B45}.\,$

Vzorečky:

1.
$$I_{R_{B45}} = \frac{U_{R_{B45C6}}}{R_{B45}} = 0.191051A$$

$$I_{R_{C6}} = \frac{U_{R_{B45C6}}}{R_{C6}} = 0.120402A$$

Kontrola pomocí I. Kirchhoffova zákona:

$$I = I_{R_{B45}} + I_{R_{C6}}$$

8. Krok - Řešení

Postup:

- 1. Vyjádření napětí U_{R_5} .
- 2. Vyjádření proudu I_{R_5} .

Vzorečky:

7

1.
$$U_{R_5} = I_{R_{R45}} * R_5 = 68.778252V$$

2.
$$I_{R_5} = I_{R_{B45}} = \frac{U_{R_5}}{R_5} = 0.191051A$$

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1[\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
E	250	150	335	625	245	600	150
U +=	R ₁	R ₂	R ₃	R_4	R ₆	$\bigcup_{V=6}^{1} U_{R6}$	

Předpoklad Théveninova teorému

1. Krok - Zkratování zdroje napětí a zjednodušování zapojení s odpojeným rezistorem

Postup:

Vzorečky:

- 1. Zjednodušení ser. rezistorů R_1 a R_2 na R_{12} . 1. $R_{12}=R_1+R_2=485\Omega$

- 2. Zkratování napěťového zdroje.
- 3. Odpojení rezistoru ${\cal R}_6$

Postup:

1. Roztáhnutí obvodu.

3. Krok

Postup:

1. Zjednodušení par. rezistorů R_{12} a R_3 na R_{123}

Vzorečky:

1. $R_{123} = \frac{R_{12} * R_3}{R_{12} + R_3} = 273.085586\Omega$

Postup:

Vzorečky:

1. Zjednodušení ser
. rezistorů R_{123} a R_4 na
 R_{1234}

1.
$$R_{1234} = R_{123} + R_4 = 518.085586\Omega$$

5. Krok - Zjištění hodnoty odporu z obvodu předpokladu

Postup:

Vzorečky:

1. Zjednodušení par. rezistorů R_{1234} a R_5 na R_{12345}

1.
$$R_i = R_{12345} = \frac{R_{1234} * R_5}{R_{1234} + R_5} = 278.021070\Omega$$

6. Krok - Zjednodušování s odpojeným rezistorem a se zdrojem napětí pro zjištění napětí z předpokladu

Postup:

1. Zjednodušení ser
. rezistorů ${\cal R}_1$ a ${\cal R}_2$ na
 ${\cal R}_{12}.$

2. Vyjádření U_i .

Vzorečky:

1. $R_{12} = R_1 + R_2 = 485\Omega$

2. $U_i = U_{R_5} = R_5 * I_{45} = 75.539351V$

7. Krok

Postup:

1. Zjednodušení ser. rezistorů R_4 a R_5 na R_{45} .

2. Vyjádření napětí U_{45} na rezistoru R_{45}

3. Vyjádření proudu I_{45} na rezistoru R_{45} .

Vzorečky:

1. $R_{45} = R_4 + R_5 = 845\Omega$

2. $U_{45} = U_{345} = 106.384586V$

3. $I_{45} = \frac{U_{345}}{R_{45}} = 0.125899A$

Postup:

- 1. Zjednodušení par. rezistorů R_3 a R_{45} na R_{345} .
- 2. Vyjádření napětí U_{345} na rezistoru R_{R45} .

Vzorečky:

- 1. $R_{345} = \frac{R_3 * R_{45}}{R_3 + R_{45}} = 359.268707\Omega$
- 2. $U_{345} = I * R_{345} = 106.384586V$

9. Krok

Postup:

- 1. Zjednodušení ser
. rezistorů R_{12} a R_{345} na
 $R_{12345}. \label{eq:R12345}$
- 2. Vyjádření proudu I.

Vzorečky:

- 1. $R_{12345} = R_{12} + R_{345} = 844.268707\Omega$
- $2. \ \ I = \frac{U}{R_{12345}} = 0.296114A$

10. Krok - Aplikování na předpoklad

Postup:

- 1. Vyjádření proudu z obvodu předpokladu pomocí Ohmova zákona.
- 2. Vyjádření napětí z obvodu předpokladu pomocí Ohmova zákona.

Vzorečky:

1.
$$I = I_{R_6} = \frac{U_i}{R_i + R_6} = 0.176485A$$

2.
$$U_i = R_6 * I = 26.472768V$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí (U_A, U_B, U_C) .

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
В	150	0.7	0.8	49	45	61	34	34

1. Krok - Vyjádření uzlových proudů

Vyjádříme si proudy dle I. K.Z. na uzlech A-C vzhledem k referenčnímu uzlu D

$$A: +I_1 - I_{R_1} - I_{R_2} = 0$$

$$B: +I_{R_2} - I_{R_4} - I_{R_5} = 0$$

$$C: +I_{R_4} - I_{R_3} - I_{R_5} + I_{R_2} = 0$$

Převedení odporů na vodivosti pro snadnější výpočet

podle axiomu:

$$G_x = \frac{1}{R_x} \Omega^{-1}$$

2. Krok - Vyjádření proudů na rezistorech v obvodu

Vyjádření I_{R_1}

$$R_1 * I_{R_1} - U_A = 0$$

$$I_{R_1} = \frac{U_A}{R_1}$$

Vyjádření I_{R_2}

 $-R_2 * I_{R_2} + R_1 * I_{R_1} - U_B = 0$

 $-R_2 * I_{R_2} + R_1 * \frac{U_A}{R_1} - U_B = 0$

$$I_{R_2} = \frac{U_A - U_B}{R_2}$$

Vyjádření I_{R_3}

$$D_{I_{R_3}} \xrightarrow{R_2} C$$

$$R_3 * I_{R_3} - U_C = 0$$

$$I_{R_3} = \frac{U_C}{R_3}$$

Vyjádření I_{R_4}

$$R_4 * I_{R_4} + R_3 * I_{R_3} - U_B = 0$$

$$R_4*I_{R_4} + R_3*\frac{U_C}{R_3} - U_B = 0$$

$$I_{R_4} = \frac{U_B - U_C}{R_4}$$

Vyjádření I_{R_5}

$$U_{R_5} + U_B - U_C - U = 0$$

$$I_{R_5} * R_5 + U_B - U_C - U = 0$$

$$I_{R_5} = \frac{U + U_C - U_B}{R_5}$$

3. Krok - Dosazení rovnic proudů odporů do rovnic uzlových proudů

 \mathbf{A}

$$-I_1 = -G_1 * U_A - G_2(U_A - U_B) = -G_1 * U_A - G_2 * U_A + G_2 * U_B$$

$$-I_1 = -U_A(G_1 + G_2) + U_B * G_2 + U_C * 0$$

$$\mathbf{B:}$$

$$-G_5 * U = U_A * G_2 - U_B(G_2 + G_4 + G_5) + U_C(G_4 + G_5)$$

$$\mathbf{C:}$$

$$G_5 * U - I_2 = U_A * 0 + U_B(G_4 + G_5) - U_C(G_4 + G_3 + G_5)$$

4. Krok - Řešení soustavy rovnic Cramerovým pravidlem k výpočtu napětí uzlů k referenčnímu uzlu

$$\det A = \begin{bmatrix} -U_A(G_1 + G_2) & U_B * G_2 & U_C * 0 \\ U_A * G_2 & U_B(G_2 + G_4 + G_5) & U_C(G_4 + G_5) \\ U_A * 0 & U_B(G_4 + G_5) & U_C(G_4 + G_3 + G_5) \end{bmatrix}$$

$$\det A_{U_A} = \begin{bmatrix} -I_1 & U_B * G_2 & U_C * 0 \\ -G_5 * U & U_B(G_2 + G_4 + G_5) & U_C(G_4 + G_3) \\ G_5 * U - I_2 & U_B(G_4 + G_5) & U_C(G_4 + G_3 + G_5) \end{bmatrix}$$

$$\det A_{U_B} = \begin{bmatrix} -U_A(G_1 + G_2) & -I_1 & U_C * 0 \\ U_A * G_2 & -G_5 * U & U_C(G_4 + G_3 + G_5) \\ U_A * 0 & G_5 * U - I_2 & U_C(G_4 + G_3 + G_5) \end{bmatrix}$$

$$\det A_{U_C} = \begin{bmatrix} -U_A(G_1 + G_2) & U_B * G_2 & -I_1 \\ U_A * G_2 & U_B(G_2 + G_4 + G_5) & -G_5 * U \\ U_A * 0 & U_B(G_4 + G_5) & G_5 * U - I_2 \end{bmatrix}$$

$$U_A = \frac{\det A_{U_A}}{\det A} = 59.79709302325585V$$

$$U_B = \frac{\det A_{U_B}}{\det A} = 83.21279069767449V$$

$$U_C = \frac{\det A_{U_C}}{\det A} = 17.058720930232546V$$

Vyjádření napětí a proudu působících na rezistor R_4

$$U_{R_4} = U_B - U_C = 66.15406976744194V$$

$$I_{R_4} = \frac{U_{R_4}}{R_4} = 1.9457079343365276A$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{C_2} = U_{C_2} \cdot \sin(2\pi f t + \varphi_{C_2})$ určete $|U_{C_2}|$ a φ_{C_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$L_1 [mH]$	$L_2 [mH]$	C_1 [μ F]	C_2 [µF]	f [Hz]
Α	35	55	12	14	120	100	200	105	70

V obvodu na obrázku níže v čase $t=0[\mathbf{s}]$ sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

sk.	U[V]	C[F]	$R\left[\Omega\right]$	$u_C(0)$ [V]
E	40	30	40	11

Shrnutí výsledků

Příklad	Skupina	Výsledk	y
1	A	$U_{R5} = 68.7783V$	$I_{R5} = 0.1911A$
2	E	$U_{R6} = 26.4728V$	$I_{R6} = 0.1765A$
3	В	$U_{R4} = 66.1541V$	$I_{R4} = 1.9457A$
4	A	$ U_{C_2} =$	$\varphi_{C_2} =$
5	E	$u_C =$	