In the SQL editor, enter the following query:

-- Perform basic data cleaning

-- Drop any rows with missing values.

DELETE FROM climate

WHERE column_0 IS NULL OR area IS NULL OR item IS NULL OR year IS NULL OR average_rain_fall_mm_per_year IS NULL OR pesticides_tonnes IS NULL OR avg_temp IS NULL OR hg_ha_yield IS NULL;

-- Convert all of the columns to numeric values.

ALTER TABLE climate

ALTER COLUMN column_0 SET DATA TYPE DECIMAL(10,2);

ALTER TABLE climate

ALTER COLUMN average_rain_fall_mm_per_year SET DATA TYPE DECIMAL(10,2);

ALTER TABLE climate

ALTER COLUMN pesticides_tonnes SET DATA TYPE DECIMAL(10,2);

ALTER TABLE climate

ALTER COLUMN avg_temp SET DATA TYPE DECIMAL(10,2);

-- Perform basic data transformation

-- Calculate the average pesticide use for each crop.

SELECT item, AVG(pesticides_tonnes) AS average_pesticide_use

FROM climate

GROUP BY item;

-- Identify the crops with the highest and lowest average yields.

SELECT item, AVG(hg_ha_yield) AS average_yield From climate GROUP BY item ORDER BY average_yield DESC LIMIT 10;

SELECT item, AVG(hg_ha_yield) AS average_yield FROM climate GROUP BY item ORDER BY average_yield ASCLIMIT 10;

-- Calculate the trend in average temperature over time.
SELECT year, AVG(avg_temp) AS average_temperature
FROM climate GROUP BY year ORDER BY year;

-- Calculate the correlation between pesticide use and average yield.

SELECT CORR(pesticides_tonnes, hg_ha_yield) AS correlation_coefficient from climate;

-- Identify the crops that are most and least sensitive to changes in pesticide use.

Calculate the percentage change in average yield for each crop for every 10% increase in pesticide use

delta_yield = (hg_ha_yield - LAG(hg_ha_yield, 1) OVER (PARTITION BY item ORDER BY year)) / LAG(hg_ha_yield, 1) OVER (PARTITION BY item ORDER BY year) * 100;

Calculate the average percentage change in yield for each crop

average_delta_yield = delta_yield.groupby('item').mean();

Sort the crops by average percentage change in yield average_delta_yield.sort_values(ascending=False,

inplace=True);

Print the crops that are most and least sensitive to changes in pesticide use

print('Crops that are most sensitive to changes in pesticide use:')

print(average_delta_yield.head(10))

print('Crops that are least sensitive to changes in pesticide
use:')
print(average delta yield.tail(10))

SELECT item, AVG(delta_yield) AS average_delta_yieldFROM (SELECT item, (hg_ha_yield - LAG(hg_ha_yield, 1) OVER (PARTITION BY item ORDER BY year)) / LAG(hg_ha_yield, 1) OVER (PARTITION BY item ORDER BY year) * 100 AS delta_yield FROM climate) AS delta_yield_table GROUP BY item ORDER BY average_delta_yield DESC LIMIT 10;

SELECT item, AVG(delta_yield) AS average_delta_yield

FROM (SELECT item,(hg_ha_yield - LAG(hg_ha_yield, 1)

OVER (PARTITION BY item ORDER BY year)) /

LAG(hg_ha_yield, 1) OVER (PARTITION BY item ORDER BY year) * 100 AS delta_yield

FROM climate) AS delta_yield_table

GROUP BY item ORDER BY average_delta_yield ASC

LIMIT 10;