KOMMUNIKATIONSFEHLER, VERKLEMMUNG UND DIVERGENZ BEI INTERFACE-AUTOMATEN KOLLOQUIUM ZUR BACHELORARBEIT

Ayleen Schinko

8. Februar 2016

INHALT

- Motivation
- Definitionen
- Verfeinerung bezüglich Kommunikationsfehler, Verklemmung und Divergenz

2 / 6 8. Februar 2016

MOTIVATION

- Modellierung von Systemen und deren Kommunikationsverhalten (Parallelkomposition)
- simulation parallel arbeitender Softwarekomponenten
- Kommunikationsfehler in Interface-Automaten nicht zulässig, deshalb Error-IO-Transitionssysteme als Abwandlung davon betrachtet
 - Kommunikationsfehler zwischen Komponenten
 - Verklemmung innerhalb einer Softwarekomponenten (keine Outputs mehr möglich)
 - Divergenz einer Softwarekomponenten (unendliche viele intere Aktionen)

DEFINITIONEN

DEFINITION (ERROR-IO-TRANSITIONSSYSTEME)

Ein Error-IO-Transitionssysteme (EIO) ist ein Tupel $S = (Q, I, O, \delta, q_0, E)$ mit den Komponenten:

- Q die Menge der Zustände,
- I,O die disjunkte Menge der (sichtbaren) Input- und Output-Aktionen,
- $\delta \subseteq Q \times (I \cup O \cup \{\tau\}) \times Q$ die Transitionsrelation,
- $q_0 \in Q$ der Startzustand,
- $E \subseteq Q$ die Menge der Error-Zustände.

Aktionsmenge von S: $\Sigma = I \cup O$

Signatur: Sig(S) = (I, O)

DEFINITION (PARALLELKOMPOSITION)

Zwei ElOs S_1, S_2 sind **komponierbar**, falls $O_1 \cap O_2 = \emptyset$ gilt. Die Parallelkomposition der ElOs S_1 und S_2 ist $S_{12} := S_1 || S_2 = (Q, I, O, \delta, q_0, E)$ mit den Komponenten:

$$Q = Q_1 \times Q_2,$$

•
$$I = (I_1 \backslash O_2) \cup (I_2 \backslash O_1)$$
,

•
$$O = O_1 \cup O_2$$
,

•
$$q_0 = (q_{01}, q_{02}),$$

•
$$\delta = \{((q_1, q_2), \alpha, (p_1, q_2)) \mid (q_1, \alpha, p_1) \in \delta_1,$$

 $\alpha \in (\Sigma_1 \cup \{\tau\}) \setminus \text{Synch}(S_1, S_2) \}$
 $\cup \{((q_1, q_2), \alpha, (q_1, p_2)) \mid (q_2, \alpha, p_2) \in \delta_2,$
 $\alpha \in (\Sigma_2 \cup \{\tau\}) \setminus \text{Synch}(S_1, S_2) \}$
 $\cup \{((q_1, q_2), \alpha, (p_1, p_2)) \mid (q_1, \alpha, p_1) \in \delta_1, (q_2, \alpha, p_2) \in \delta_2,$
 $\alpha \in \text{Synch}(S_1, S_2) \},$

 \bullet $E = \dots$

DEFINITION (PARALLELKOMPOSITION)

Zwei ElOs S_1, S_2 sind **komponierbar**, falls $O_1 \cap O_2 = \emptyset$ gilt. Die Parallelkomposition der ElOs S_1 und S_2 ist

 $S_{12} := S_1 || S_2 = (Q, I, O, \delta, q_0, E)$ mit den Komponenten:

$$Q = Q_1 \times Q_2,$$

•
$$I = (I_1 \backslash O_2) \cup (I_2 \backslash O_1)$$
,

•
$$O = O_1 \cup O_2$$
,

$$q_0 = (q_{01}, q_{02}),$$

•
$$\delta = \ldots$$
,

$$\bullet \quad E = (Q_1 \times E_2) \cup (E_1 \times Q_2)$$

$$\bigcup \left\{ (q_1, q_2) \mid \exists a \in O_1 \cap I_2 : q_1 \xrightarrow{a} \land q_2 \xrightarrow{a} \right\} \\
\bigcup \left\{ (q_1, q_2) \mid \exists a \in I_1 \cap O_2 : q_1 \xrightarrow{a} \land q_2 \xrightarrow{a} \right\}.$$

DEFINITION (PRUNING- UND FORTSETZUNGS-FUNKTION)

Für ein EIO S wird definiert:

- ullet prune : $\Sigma^* \to \Sigma^*, w \mapsto u$, mit $w = uv, u = \varepsilon \land u \in \Sigma^* \cdot I$ und $v \in O^*$,
- cont : $\Sigma^* \to \mathfrak{P}(\Sigma^*), w \mapsto \{wu \mid u \in \Sigma^*\},\$
- cont : $\mathfrak{P}(\Sigma^*) \to \mathfrak{P}(\Sigma^*), L \mapsto \bigcup \{\operatorname{cont}(w) \mid w \in L\}.$

Ayleen Schinko 8. Februar 2016 6 / 6