PARTIEL DE MATHEMATIQUES POUR INGENIEUR LP3 INFO

(Session 1)

Durée: 2h00

Ce sujet comporte trois (02) pages. La page 2 comporte la table des transformées de Laplace.

EXERCICE1

1) Du de développement en série de Fourier de $f(x) = x sur [-\pi; \pi]$, déduire la somme de la série :

$$\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1}$$

2) On désigne par f la fonction 2 π - périodique impaire définie par :

$$f(x) = \begin{cases} 1 - \cos x, & x \in [-\pi; \ \pi \ [\\ 0, & x = \pi \end{cases}$$

Déterminer la série de Fourier qui lui est associée.

EXERCICE 2

Résoudre les équations différentielles suivantes :

1)
$$y''(x) - \frac{5}{2}y'(x) + y(x) = -\frac{5}{2}\sin(x)$$
 avec $y(0) = 0$ et $y'(0) = 2$.

2)
$$y''(x) - 3y'(x) + 2y(x) = e^{-x}$$
 avec $y(0) = 1$ et $y'(0) = 0$.

3)
$$y''(x) + y'(x) - 2y(x) = e^{-2x}$$
 avec $y(0) = 0$ et $y'(0) = 0$.

Table des transformées de Laplace

f(t)	$F(p) = \int_0^{+\infty} f(t)e^{-pt}dt$ $\frac{1}{p}$ $n!$
U(t)	$\frac{1}{p}$
$t^n U(t), n \in \mathbb{N}$	$\frac{n!}{p^{n+1}}$
$t^{\alpha} U(t), \alpha > -1$	$\Gamma(\alpha+1)$
$e^{\alpha t}U(t)$	$\frac{p^{\alpha+1}}{\frac{1}{n-\alpha}}$
sin(at) U(t)	$\frac{p-a}{a}$ $\frac{a}{p^2+a^2}$
$\cos(at) \ U(t)$	$ \frac{p-\alpha}{a} $ $ \frac{p^2+a^2}{p^2+a^2} $ $ \frac{p}{p^2+a^2} $ $ \frac{a}{p^2-a^2} $ $ \frac{p}{p^2-a^2} $
$sh(at) \ U(t)$	$\frac{a}{p^2-a^2}$
$ch(at) \ U(t)$	$\frac{p}{p^2 - a^2}$
<u>Propriétés</u>	
f(t-a)	$e^{-ap}F(p)$
$e^{-at}f(t)$	F(p+a)
f(at)	$\frac{1}{a}F(\frac{p}{a})$
$\int_0^t f(s)ds$ $f'(t)$	$\frac{\frac{1}{a}F(\frac{p}{a})}{\frac{F(p)}{p}}$ $pF(p) - f(0^{+})$
f'(t)	$pF(p) - f(0^+)$
$f^{(n)}(t)$	$p^{n}F(p) - \sum_{k=1}^{n} p^{k-1}f^{(n-k)}(0^{+})$ $(-1)^{n}F^{(n)}(p)$
$t^n f(t)$	$(-1)^n F^{(n)}(p)$
$\frac{f(t)}{t}$	$\int_{p}^{+\infty} F(u) du$
f de période T	$\frac{1}{1-e^{-pT}}\int_0^T e^{-pt}f(t)dt$
$(f * g)(t) = \int_0^t f(s)g(t - s)ds$	F(p)G(p)
$Si \lim_{t \to 0} \lim_{ou + \infty} f(t) \text{ existe } \Rightarrow$	$\lim_{t \to +\infty} f(t) = \lim_{p \to 0} pF(p)$
	$\lim_{t \to 0} f(t) = \lim_{p \to +\infty} pF(p)$