Summary: ML Analysis of Diabetic Patient Data and Associated Factors

- Public dataset of females at least 21 years old of Pima Indian Heritage
 - Note: may not be generalizable given specific population of interest
- \bullet 8 attributes, 1 explanatory variable \rightarrow Had or did not have diabetes for 768 patients
 - Missing, unreasonable or flawed data excluded completely in univariate analysis
 - Improvement: multiple-chain imputation for inexplicable values
- Supervised Classification Learning (Split the data into 70% training, 30% testing)
 - Multivariate Logistic Regression
 - Naive Bayesian Model
 - K-Nearest Neighbors Model
 - Random Forest Algorithm with Feature Selection -- most successful, ~91% accuracy
- Conclusion:
 - Strongest indicative factors for onset of diabetes: insulin and glucose levels -- on the contrary,
 blood pressure and diabetes pedigree does not seem to have significance
 - Would be better to have longitudinal variables -- dataset limitation

Statistics Final Project:

Diabetes

Why Diabetes?

Diabetes is a chronic disorder of carbohydrate metabolism involving insulin. Symptoms include elevated sugar in the urine and the blood, excessive urination, thirst, hunger, weakness, weight loss, and itching. (NHIS)

Diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and lower limb amputation. Between 2000 and 2016, there was a 5% increase in premature mortality from diabetes. In 2019, diabetes was the ninth leading cause of death with an estimated 1.5 million deaths directly caused by diabetes. (WHO)

About the Dataset

https://www.kaggle.com/datasets/mathchi/diabetes-data-set

The diagnostic, binary-valued variable investigated is whether the patient shows signs of diabetes according to World Health Organization criteria (i.e., if the 2 hour post-load plasma glucose was at least 200 mg/dl at any survey examination or if found during routine medical care).

Selected from a larger database:

- Constraints
 - All patients are females at least 21 years old of Pima Indian Heritage
 - the population lives near Phoenix, Arizona, USA

Attributes

Sample Size: 768

Number of Attributes or Dependent/Response variables: 8 (quantitative)

- 1) Number of times pregnant
- 2) Plasma glucose concentration a 2 hours in an oral glucose tolerance test
- 3) Diastolic blood pressure (mm Hg)
- 4) Triceps skin fold thickness (mm)**
- 5) 2-Hour serum insulin (mu U/ml)
- 6) Body mass index (weight in kg/(height in m)^2)
- 7) Diabetes pedigree function
- 8) Age (years)

Explanatory/Class variable: (0 - tested negative for diabetes or 1 - tested positive for diabetes)

**Triceps and subscapular skinfold thicknesses provide an index of body fat and midarm muscle circumference provides a measure of muscle mass and helps determine a person's body composition and body fat percentage

Sample of 15 subjects from the dataset

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	(
2	8	183	64	0	0	23.3	0.672	32	
3	1	89	66	23	94	28.1	0.167	21	(
4	0	137	40	35	168	43.1	2.288	33	
5	5	116	74	0	0	25.6	0.201	30	(
6	3	78	50	32	88	31.0	0.248	26	
7	10	115	0	0	0	35.3	0.134	29	(
8	2	197	70	45	543	30.5	0.158	53	
9	8	125	96	0	0	0.0	0.232	54	
10	4	110	92	0	0	37.6	0.191	30	(
11	10	168	74	0	0	38.0	0.537	34	
12	10	139	80	0	0	27.1	1.441	57	(
13	1	189	60	23	846	30.1	0.398	59	
14	5	166	72	19	175	25.8	0.587	51	
10:									

Filtering and Visualization of data

Analysis Steps

- Inference: Determining association between attributes and outcome using Logistic Regression
- Machine Learning: Naive Bayesian Model Training

Machine Learning: k-Nearest Neighbors Model Training

Machine Learning: Random Forest Model Training

Filtering and visualization of data

- Implausible Values:
 - Removal of zeros e.g. bmi or insulin levels
 - Removal of outliers as a whole from each attribute/category
- Initially:
- Total number of positive diabetes (1): 268 individuals
- Total number of negative/no diabetes (0): 500 individuals
- Insulin and Skin Thickness had many missing values which may serve as a risk factor for inferences or associations

Distribution of Glucose and Outcome

Since much of the data can not be described using a normal probability distribution, we will use ML to describe and analyze more complicated distributions

Positive Diabetes: count 266.000000 142.319549 mean 29.599199 std min 78.000000 25% 119.000000 50% 140.000000 75% 167.000000 199.000000 max

Distribution of Blood Pressure and Outcome

Positive Diabetes: 246.000000 count 74.808943 mean 11.055338 std min 40.000000 25% 68.000000 50% 74.000000 75% 82.000000 104.000000 max

Negative Diabetes: 473.000000 count 70.714588 mean 11.088862 std 44.000000 min 25% 62.000000 50% 70.000000 78.000000 75% 100.000000 max

Distribution of Insulin and Outcome

**Flawed description of skewed distribution using normal distribution - original mode lost

Positive Diabetes: 116.000000 count 169.163793 mean std 70.789454 14.000000 min 25% 124.250000 50% 160.000000 75% 207.750000 360,000000 max

Negative Diabetes: count 254.000000 115.917323 mean 69.844697 std 15.000000 min 25% 64.250000 50% 100.000000 75% 151.000000 342,000000 max

Distribution of BMI and Outcome

Positive Diabetes: count 260.000000 34.916538 mean std 5.782866 min 22.900000 25% 30.800000 34.200000 50% 75% 38.425000 50.000000 max

Negative Diabetes: count 489.000000 30.761759 mean 6.390268 std 18.200000 min 25.600000 25% 50% 30.100000 35.300000 75% 47.900000 max

Distribution of Diabetes Pedigree Function and Outcome

1.0

DiabetesPedigreeFunction

Positive Diabetes: count 251.000000 0.485713 mean std 0.266836 0.088000 min 25% 0.259500 50% 0.422000 75% 0.676000 1.191000 max

Outcome

Negative Diabetes: count 488.000000 0.401090 mean 0.235553 std 0.078000 min 25% 0.223000 50% 0.325000 75% 0.546250 1.174000 max

Distribution of Age and Outcome

Note: outliers were not removed for this specific dataset

Positive Diabetes: count 268.000000 37.067164 mean std 10.968254 21.000000 min 25% 28.000000 50% 36.000000 75% 44.000000 70.000000 max

Negative Diabetes: count 500.000000 31.190000 mean 11.667655 std min 21.000000 25% 23.000000 50% 27.000000 75% 37.000000 81.000000 max

Distribution of Number of Pregnancies and Outcome

Caution: Zeros and Outliers were kept in the data set, but some zeros may be invalid

Positive Diabetes: 266.000000 4.781955 mean 3.626607 std min 0.000000 25% 1.250000 50% 4.000000 75% 8.000000 17.000000 max

Negative Diabetes: 500.000000 count 3.298000 mean 3.017185 std 0.000000 min 25% 1.000000 50% 2.000000 75% 5.000000 13.000000 max

Distribution of Skin Thickness and Outcome

Positive Diabetes: count 178.000000 32.460674 mean std 8.824793 min 7.000000 25% 27.000000 50% 32.000000 75% 39.000000 56.000000 max

Negative Diabetes: count 360.000000 27.144444 mean 9.889992 std 7.000000 min 19.000000 25% 50% 27.000000 33.000000 75% 54.000000 max

Step 2: Inference:

Determining Association between Attributes and Outcome

Step 1: Hypothesis Statement

Let β_1 be the true population linear regression slope between glucose and insulin

 H_0 : β_1 = 0 There is no association between glucose and insulin

 H_A : $\beta_1 \neq 0$ There is an association between glucose and insulin

Step 2: Assumptions and Conditions

- 1) Quantitative Data
 - a) Glucose: mmol/L Plasma glucose concentration a 2 hours in an oral glucose tolerance test
 - b) Insulin Level: mu U/ml
- 2) Linearity and Equal Variance
 - a) Straight Enough check original scatterplot and residual scatterplot

Conditions not satisfied! Fanning occurring -- not equal variance.

Check: Use an F-test:

Let s_1^2 = variance of glucose Let s_2^2 = variance of insulin

 H_0 : The samples have equal variances. $s_1^2 = s_2^2$ H_A : The samples do not have equal variances. $s_1^2 \neq s_2^2$

Test statistic:

$$F = s_1^2 / s_2^2 = (30.535641)^2 / (118.775855)^2 \sim 0.0661$$

Numerator df: n_1 - 1 = 391 Denominator df: n_2 - 1 = 392

F distribution calculator: P(F \leq 0.061) \sim 0

Therefore we have a low P-value and reject the null Hypothesis. There is convincing statistical evidence that the variances are not equal.

Original scatterplot with zeros removed

Residual plot with zeros removed

Hypothesis Statement

Is there an association between the attributes and diabetes, or only certain ones?

 H_0 : There is no association between the attributes and diabetes

H_Δ: There is an association between attributes and diabetes

What is the Logistic Regression Model?

- 3 types: Binomial, Multinomial, Ordinal
- Binomial
 - Predicts two classes (0 or 1)
- Sigmoid used to represent data

Y-variable: either 0 or 1

Logistic Regression for OUR Dataset

- Wanted to see if our data follows a logistic predictive curve
- We knew the data was not linear

 We were interested in finding an equation that could model the distribution of our dataset logistically

Confidence interval

p-value

Multiple Logistic Regression

Assumption and Conditions:

- Linearity of natural log of odds can be proven through high accuracy of regression
- 2) No Outliers yes, were removed
- At least one or more independent variables, but does not need to be all independent
- No Multicollinearity yes, no attributes had a simple correlation e.g. glucose vs insulin

	coef	std err	z	P> z	[0.025	0.975]
Pregnancies	0.1299	0.049	2.655	0.008	0.034	0.226
Glucose	0.0174	0.005	3.765	0.000	0.008	0.026
BloodPressure	-0.0484	0.009	-5.123	0.000	-0.067	-0.030
SkinThickness	0.0284	0.015	1.898	0.058	-0.001	0.058
Insulin	0.0019	0.001	1.598	0.110	-0.000	0.004
BMI	-0.0365	0.022	-1.669	0.095	-0.079	0.006
DiabetesPedigreeFunction	0.4636	0.344	1.347	0.178	-0.211	1.138
Age	0.0005	0.016	0.031	0.976	-0.031	0.032

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
Pregnancies	0.1291	0.0374	3.4489	0.0006	0.0557	0.2024
Glucose	0.0215	0.0040	5.4447	0.0000	0.0138	0.0293
BloodPressure	-0.0507	0.0089	-5.6868	0.0000	-0.0682	-0.0332
SkinThickness	0.0299	0.0149	2.0073	0.0447	0.0007	0.0592
BMI	-0.0313	0.0215	-1.4537	0.1460	-0.0734	0.0109

Multiple Logistic Regression

- To identify which variables influence the outcome, we will look at the p-value of each variable. We expect the p-value to be less than 0.05(alpha risk)
 - Determined an association between Glucose,
 Blood Pressure and Pregnancies for Diabetes
 - b. Accuracy: 77%

Flaws: Not able to obtain complex relationships and relies on linearity of natural log of data, excludes dependent influential variables

Confusion Matrix: 229 33 Type 1 error 59 Type 2 error 71 Power

Final:

	coef	std err	z	P> z	[0.025	0.975]
Pregnancies	0.1405	0.037	3.826	0.000	0.069	0.212
Glucose	0.0210	0.004	5.709	0.000	0.014	0.028
BloodPressure	-0.0525	0.007	-7.449	0.000	-0.066	-0.039

	precision	recall	fl-score	support
0	0.80	0.87	0.83	262
1	0.68	0.55	0.61	130
accuracy			0.77	392
macro avg	0.74	0.71	0.72	392
weighted avg	0.76	0.77	0.76	392
36 335				

Steps 3 - 5: MACHINE LEARNING!!!

Machine Learning Models

- Supervised Learning
- Classification
- Split the data into 70% training, 30% testing
- 4 Different Algorithms
- Standardized Data
- Iterative Optimization Approach
- Data Filtration
- 8 Features, 9th feature → class (0 and 1)
- Feature Selection

MACHINE LEARNING: Logistic Regression

Logistic Regression for OUR Dataset: FINAL MODEL

- Removed Zeros and Outliers from the dataset
- Found out that there was still 336 data entries
- Removed the data: <u>Link to Code Cell</u>
- Trained the model (again) on new data with outliers and zeros removed
 - Used even more repeated hyperparameter tuning
- Final Accuracy: 86.139%
- Graph on next slide
- Yes!! Satisfied!

Logistic Regression Model: FINAL MODEL

Maximum accuracy 0.8613861386138614 at random_state 1 = 2 at random_state 2 = 0 Model Accuracy vs Random State

Step 3: MACHINE LEARNING: Naive Bayesian Model

What is the Naive Bayesian Machine Learning Model?

Bayes Theorem:

- Supervised Learning
- Used for Classification
- Probabilistic Model based on Conditional Probabilities
- Assumption is that the features are independent
 - We proceeded with caution
- Example
 - Weather conditions
 - Series of conditional probabilities

	OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY GOLF
0	Rainy	Hot	High	False	No
1	Rainy	Hot	High	True	No
2	Overcast	Hot	High	False	Yes
3	Sunny	Mild	High	False	Yes
4	Sunny	Cool	Normal	False	Yes
5	Sunny	Cool	Normal	True	No
6	Overcast	Cool	Normal	True	Yes
7	Rainy	Mild	High	False	No
8	Rainy	Cool	Normal	False	Yes
9	Sunny	Mild	Normal	False	Yes
10	Rainy	Mild	Normal	True	Yes
11	Overcast	Mild	High	True	Yes
12	Overcast	Hot	Normal	False	Yes
13	Sunny	Mild	High	True	No

P(A B) =	P(B A)P(A)
I(A D) -	P(B)

Naive Bayesian Machine Learning Model for OUR Dataset

- Wanted to understand if we could predict outcome of 1(Diabetes) or 0(No Diabetes)
 - Using probabilistic relationships!
- The stronger the performance metrics the clearer it was for us to know that there were underlying connections

$$X = (x_1, x_2, x_3,, x_n)$$

$$P(y|x_1,...,x_n) = rac{P(x_1|y)P(x_2|y)...P(x_n|y)P(y)}{P(x_1)P(x_2)...P(x_n)}$$
 Constant denominator

$$P(y|x_1,...,x_n) \propto P(y) \prod_{i=1}^n P(x_i|y)$$

$$y = argmax_y P(y) \prod_{i=1}^n P(x_i|y)$$

Naive Bayesian for OUR Dataset: FINAL MODEL

- Removed Zeros and Outliers from the dataset
- Found out that there was still 336 data entries
- Removed the data: <u>Link to Code Cell</u>
- Trained the model (again) on new data with outliers and zeros removed
 - Used even more repeated hyperparameter tuning
- Final Accuracy: 87.129%
- Graph on next slide
- Yes!! Satisfied!

Naive Bayes Model: FINAL MODEL

□→ Maximum accuracy 0.8712871287128713 at random_state = 16

Step 4: MACHINE LEARNING: K-Nearest Neighbors Algorithm

What is the k Nearest Neighbors Machine Learning Model?

- Supervised Machine learning Model
- Classification
- Splits Data based on clusters (0 No diabetes, 1 diabetes)
- Takes an incoming point and calculates the k nearest neighbors
 - Used Euclidean Distance
 - Classifies based on the most common class occurrence

k Nearest Neighbors for OUR Dataset

- We wanted to see if a kNN would be a better predictor of our model
- We had more freedom with this algorithm
 - Could tune the hyperparameter of K
- This would also show us that individuals with Diabetes or No Diabetes would have similar conditions
 - "Nearest neighbors"
- After repeated model training sessions
 - Found that it was very sensitive to changes in data/outliers

kNN for OUR Dataset: FINAL MODEL

- Removed Zeros and Outliers from the dataset
- Found out that there was still 336 data entries
- Removed the data: <u>Link to Code Cell</u>
- Trained the model (again) on new data with outliers and zeros removed
 - Used even more repeated hyperparameter tuning
- Final Accuracy: 90.099%
- Graph on next slide
- Yes!! Satisfied!

knn Model: FINAL MODEL

Step 5: MACHINE LEARNING: Random Forest Algorithm with Feature Selection

What is the Random Forest Machine Learning Algorithm?

- 1. Supervised Learning Model
- 2. Tree Model (Based on Nodes and Leaves)
- 3. Random Sampling
- 4. Steps of Random Forest

How might the Random Forest Model look for our Model?

We are training a lot more than just 6 trees!

Tally: Six 1s and Three 0s

Prediction: 1

Why did we decide to use Random Forests for our Dataset?

- One of the most common ML Algorithms!
- Predicts really well because it reduces a lot of variability
 - Each tree is independent of each other
 - Random sampling
 - As well as Optimization!!
- Has an inbuilt function known as Feature Selection
 - Allows us to see the most influential features in our dataset!

Random Forests for OUR Dataset: FINAL MODEL

- Removed Zeros and Outliers from the dataset
- Found out that there was still 336 data entries
- Removed the data: <u>Link to Code Cell</u>
- Trained the model (again) on new data with outliers and zeros removed
 - Used even more repeated hyperparameter tuning
- Model performed the best with ALL the features
 - No need to do a feature selection for this model
- Final Accuracy: 91.089%
- Graph on next slide
- Yes!! Satisfied!

Random Forests Model: FINAL MODEL

Maximum accuracy 0.9108910891089109 at N estimators = 64 at random_state = 16 Model Accuracy vs n-estimators vs random-state

Random Forests - Final Model Code

```
#The loop will break once the highest accuracy is achieved
for i in range (100):
  X_train, X_test, y_train, y_test = train_test_split(X_data_rf, Y_data_rf, test_size=0.3, random_state=16)
  scaler = StandardScaler()
  scaler.fit(X_train)
  X_train = scaler.transform(X_train)
  X test = scaler.transform(X test)
  rfc = RandomForestClassifier(n_estimators = 64)
  rfc.fit(X train, y train)
  y_pred_combo = rfc.predict(X_test)
  acc = metrics.accuracy score(y test, y pred combo)
  if (acc > 0.91):
    max accuracy = acc
    break
print(max_accuracy)
0.9108910891089109
```

```
[121] print(max_accuracy)

0.9108910891089109

metrics.accuracy_score(y_test, y_pred_combo_final)

0.9108910891089109
```

Confusion Matrix for Diabetes Prediction: FINAL MODEL

[0.71287129 0.01980198] [0.06930693 0.1980198]]

Conclusion

- 1. Random Forests with Tuned Feature Selection
- 2. KNN
- 3. Naive Bayesian
- 4. Logistic Regression

This is expected given the nature of Random Forests to prevent overfitting while also working well with high-dimensional data.

Future Improvements:

- 1) Consider varying confounding variables
- 2) More feature engineering and possible multiple imputations with chained equations as alternative method to account for missing or incorrect data

Thank You!