Nome: Eduardo Paz Putti

Disciplina: Mecânica dos Sólidos

Curso: Engenharia de Controle e Automação

Campus: IFSC Chapecó

Data: 01/08/2024

Metodologia Ativa de Aprendizagem Baseada em Projetos Projeto: Manipulador de cargas com sistema de gravidade zero

Questão 4.1: Quais são os principais equipamentos de movimentação de carga utilizados na indústria? Quais as aplicações mais indicadas para esses equipamentos?

R:

4.1.1. Empilhadeiras

São dispositivos de movimentação de carga usados para elevar e transportar mercadorias dentro de um estoque. Possibilitam a movimentação de pesos que variam de 1.000 a 16.000 kg, sem exigir esforço humano. Possuindo três principais tipos: retráteis, as patoladas e as contrabalançadas.

4.1.2. Transpaletes

Usados no transporte horizontal de cargas, diferenciando das empilhadeiras. Existem dois tipos comuns de transpaletes: manuais e elétricas.

4.1.3. Comboios

Os comboios são alinhados e posicionados na parte traseira de um veículo. Eles são aplicados em contextos onde é necessário movimentar quantidades maiores de carga com um número menor de veículos. Devido à sua flexibilidade, os comboios são frequentemente utilizados como equipamentos de movimentação de carga em pequenas e médias empresas, podendo substituir empilhadeiras em ambientes maiores. Seu principal benefício é o baixo custo, tornando-os uma escolha comum em empresas de menor porte.

4.1.4. Guindastes

Os guindastes são frequentemente utilizados para movimentar cargas pesadas, tanto na indústria quanto na construção civil. Os tipos mais comuns de guindastes incluem a grua e a multiangular.

4.1.5. Transelevadores

Esses equipamentos são utilizados para movimentar cargas verticalmente e são comuns em sistemas de armazenamento automático de paletes. O grande diferencial deles está na automatização dos deslocamentos e na capacidade de cargas mais pesadas.

4.1.6 Pontes rolantes

São empregadas para manipular produtos dentro de uma área delimitada. Elas facilitam a elevação e transferência de cargas, sendo especialmente úteis no transporte de itens volumosos ou pesados. Produtos como materiais a granel se beneficiam desse equipamento.

4.1.7 Esteiras transportadoras

São úteis em espaços maiores, em que otimizar o tempo na identificação e transporte de mercadorias é essencial. Elas proporcionam agilidade, segurança e rapidez ao processo, além de eliminar a necessidade de intervenção humana no transporte e carregamento das mercadorias.

4.1.8 Monovias

Elas abrem espaço para o deslocamento de materiais pesados com segurança e agilidade, que não seriam possíveis de serem movimentados por humanos. Tem capacidade de movimentar materiais em armazéns com menor espaço ou com maior movimentação de pessoas.

4.1.9. Transportador de roletes

Podendo ser feito por conta da gravidade ou da energia elétrica, são mais comuns em indústrias de bebidas, assim como em fábricas menores e no varejo. Esse tipo de equipamento de movimentação de carga contínua permite deslocar diferentes materiais usando roletes, são conectados a uma esteira e levam os materiais de um lugar a outro.

Questão 5.1: Realize um benchmarking para conhecer os diferentes tipos de manipuladores de carga com gravidade zero existentes no mercado.

Nome do	EG2-DL-L-G2-MBH	Liftronic Pro - Linear	MagaDartner	
Produto	EGZ-DL-L-GZ-MBH	Lillionic Pro - Linear	MegaPartner	
Foto				
Marca	MTZ	INDEVA	DALMEC	
Preço	Não Informado	Não Informado	Não Informado	
Capacidade de carga	Até 40 Kg	Até 208 Kg	Até 1500 Kg	
Número de Links	Duplo Link	Single Link	Single Link	
Tipo de Poste	Poste em L	Poste em L	Poste em L	
Material	Fabricado em Aço	Fabricado em Aço	Fabricado em Aço	
Fixação ou Movimentação pelo solo	Cart com movimentação e regulagem de altura	Fixo no solo	Fixo no solo	
Opinião dos autores	Usando o novo Ergo Gravity você poderá aumentar sua	A versão Linear é a melhor solução para alcançar cargas	Manipulador com dispositivo de pega por ventosas	

	produtividade evitando problemas comuns de manufatura causados por esforço excessivo e fadiga	pesadas e volumosas em uma área de trabalho com teto baixo	reguláveis para a elevação de chapas em aço e sucessivo posicionamento em uma máquina de dobra.
Link de referência	https://www.mtzbrasil. com.br/newpage1	https://www.indevagro up.pt/products/versao- pro-linear-do-manipula dor-liftronic/	https://www.dalmec.co m/pt-br/manipuladores -industriais-para-paine is/

Questão 5.2: Pesquise no site do INPI quais patentes de invenção (PI) ou de modelo de utilidade (MU) são encontradas relacionadas ao seu projeto.

R:

5.2.1-(PI0004861-5 A / 2002)

"Braço Telescópico para Manuseio de Cargas Pesadas" é um equipamento desenvolvido para deslocar cargas pesadas, facilitando e agilizando esse trabalho. Ele consiste em um braço mecânico instalado em uma plataforma, projetado com técnicas de movimentação hidráulica. O braço é composto por uma base giratória, um cotovelo de articulação e um conjunto de lanças cilíndricas. Na extremidade, há uma cabeça articulável onde os volumes da carga são acomodados. Esse braço mecânico realiza movimentos giratórios em torno de sua base e também movimentos de subida e descida dos volumes. Um sistema hidráulico permite o alongamento e retração de suas partes, tornando o manuseio de cargas mais eficiente, sem esforço manual.

Em suma, essa patente de invenção restringe como o braço anti gravidade pode ser, uma vez que, ela apresenta detalhadamente uma invenção de um braço giratório que busca diminuir o peso de cargas.

5.2.2 -(PI 8207949-8 A2/ 1981)

Mais especificamente, a presente invenção diz respeito aos problemas de mover helicóptero e outras aeronaves da posição de contenção inicial, por meios mecânicos ou outros após a aterrissagem em um convés de vôo do navio, para um hangar ou área segura de carregamento, e, quando necessário, prover seu movimento de retorno para a posição de decolagem - ambas operações podendo ocorrer em mau tempo e com consequente movimento violento do navio.

Para tanto, essa patente de invenção restringe como o braço anti gravidade pode ser ao descrever uma invenção que é usado para carregar altas cargas usando de princípios da mecânica, similares ao aplicado ao gravitron.

5.2.3 -(PI 8004571-5)

Essa patente de invenção limita o gravitron, propondo formas características para um movimentador de carga, por mais que esse determinado P.I. seja voltado a máquinas de movimentação de carga por caçamba, ainda é importante notar a sua formulação e suas restrições, uma vez que muitos gravitrons optam por um formato de cart, que pode se aproximar dessa patente.

Questão 5.3: O manipulador de carga pode colaborar com a aplicação de quais normas regulamentadoras (NR's)?

R:

NR 1 - Disposições Gerais:

Estabelece as disposições gerais sobre segurança e saúde no trabalho. O uso de manipuladores de carga pode ser parte das medidas para garantir um ambiente de trabalho seguro.

NR 11 - Transporte, Movimentação, Armazenagem e Manuseio de Materiais:

Essa norma trata das condições de segurança no transporte, movimentação, armazenagem e manuseio de materiais. Os manipuladores de carga podem ajudar a cumprir essas exigências ao facilitar o manuseio seguro de cargas pesadas.

NR 12 - Segurança no Trabalho em Máquinas e Equipamentos:

Essa norma regulamenta o uso seguro de máquinas e equipamentos. O manipulador de carga de gravidade zero deve ser utilizado conforme as diretrizes desta norma para garantir a segurança dos operadores.

NR 17 - Ergonomia:

O uso de manipuladores de carga de gravidade zero pode reduzir o esforço físico exigido dos trabalhadores, melhorando a ergonomia e reduzindo o risco de lesões musculoesqueléticas.

NR 18 - Condições e Meio Ambiente de Trabalho na Indústria da Construção:

Na construção civil, o uso de manipuladores de carga pode ajudar a cumprir as exigências de segurança na movimentação de materiais pesados e volumosos.

NR 35 - Trabalho em Altura:

Para operações que envolvem trabalho em altura, o manipulador de carga de gravidade zero pode ajudar a minimizar os riscos associados à movimentação de cargas.

Questão 5.4: Qual o princípio de funcionamento de um sistema de controle que poderia ser desenvolvido para um manipulador de carga com gravidade zero? Quais componentes seriam necessários para esse sistema?

R:

O princípio de funcionamento partiria da leitura de um sensor que interaja com o operador, comunicaria o controlador, que por meios de *software* comandaria os atuadores para responder a ação do operador.

Antes de projetar o sistema de controle, é necessário obter um modelo matemático do manipulador. Isso inclui parâmetros como momento de inércia, coeficiente de atrito e características da carga da planta, o objetivo final é determinar a equação de ativação do controlador.

Os componentes necessários podem ser divididos em grupos: atuadores (responsáveis por realizar o que o controlador está determinado, exemplo de motores e pistões), sensores (responsáveis por receber os comandos do operador, e conectar o controlador com o ambiente), controlador (responsável por tomar as decisões), fonte de alimentação, estrutura mecânica, meios de comunicação (responsáveis por comunicar as peças eletrônicas, podendo ser fios) e recursos de segurança (podendo ser atuadores voltados para a segurança do manejo do manipulador de carga).

Questão 5.5: Seguiremos com o projeto de um braço giratório com tirante, similar a Figura 2, mas o seu projeto deverá possuir um sistema de içamento com gravidade zero. Faça um desenho (croqui) em uma folha A4 com margem e legenda, indique a numeração dos componentes, e faça uma lista de peças no canto inferior sobre a legenda.

6	PONTÈIRA DE GRAVIDADE ZERO	1
5	FID DE VACUO	1
4	PINHÃO	6
3	CREMALHEIRA	2
2	BRAÇO TRIANUULAR	1
1	Base corpo	1
N2	TRATATA MENTO	Quant FOLDIA AH
PRO 01-02-2	EDUARDO P. BRAÇO GIRATORIO COM TIRANTE COM IÇAMENTO COM DRAVIDADE ZERO.	

Questão 6.1: Especifique a capacidade de carga do seu projeto (no máx. 1000 Kg), e as medidas do triângulo do seu braço.

R: Carga máxima de 60 Kg

Questão 6.2: Quais as reações nos apoios? Considere a pior situação, nesse caso, com a talha na extremidade do braço.

Questão 6.3: Supondo que o tirante seja fabricado com uma barra redonda maciça: a) Indique qual o fator de segurança que será adotado para essa aplicação. Justifique. b) Selecione um material e calcule qual deverá ser o diâmetro mínimo do tirante considerando o fator de segurança adotado. c) Consulte um catálogo de fornecedor e indique o diâmetro comercial que poderá ser fabricado esse tirante.

Questão 6.4: Considere que o braço giratório possuirá um eixo para articulação (giro) na parte superior e na inferior. Selecione o material e calcule qual deverá ser o diâmetro mínimo desse eixo de articulação para que ele não sofra cisalhamento.

Questão 6.5: Para o projeto do braço: (a) Faça o diagrama de força cortante e momento fletor para o braço, para conhecer as forças e os momentos internos ao longo do seu comprimento. Considere a pior situação, nesse caso, quando a carga estiver no centro do braço. (b) Selecione um perfil estrutural para o braço (consultando catálogo de fornecedor), de modo que atenda as tensões causadas pela flexão (tensão normal e cisalhante).

(6.5) b)

M = 600N. 2 = 600Mm

MAN = 2

MAN = 2

MAN = 2

MAN = 511 mm⁷

M = 600 - 6,69

M = 600 - 6,69