模块一 同角三角函数关系与诱导公式

重点知识回顾

一、三角函数定义

- 1. 如图 1,设 P(x,y) 为角 α 终边与单位圆 $x^2+y^2=1$ 的交点,则 $\sin\alpha=y$, $\cos\alpha=x$, $\tan\alpha=\frac{y}{x}$.
- 2. 如图 2, 设 P(x,y) 为角 α 终边上一点, $r = |OP| = \sqrt{x^2 + y^2}$,则 $\sin \alpha = \frac{y}{r}$, $\cos \alpha = \frac{x}{r}$, $\tan \alpha = \frac{y}{x} (x \neq 0)$.

二、同角三角函数基本关系

- 1. 平方关系: $\sin^2 \alpha + \cos^2 \alpha = 1$;
- 2. 商数关系: $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$.

三、诱导公式:奇变偶不变,符号看象限

- (1) 公式一: $\sin(\alpha + 2k\pi) = \sin \alpha$, $\cos(\alpha + 2k\pi) = \cos \alpha$, $\tan(\alpha + 2k\pi) = \tan \alpha$, 其中 $k \in \mathbb{Z}$.
- (2) 公式二: $\sin(\pi + \alpha) = -\sin \alpha$, $\cos(\pi + \alpha) = -\cos \alpha$, $\tan(\pi + \alpha) = \tan \alpha$.
- (3) 公式三: $\sin(-\alpha) = -\sin \alpha$, $\cos(-\alpha) = \cos \alpha$, $\tan(-\alpha) = -\tan \alpha$.
- (4) 公式四: $\sin(\pi \alpha) = \sin \alpha$, $\cos(\pi \alpha) = -\cos \alpha$, $\tan(\pi \alpha) = -\tan \alpha$.
- (5) 公式五: $\sin(\frac{\pi}{2} \alpha) = \cos \alpha$, $\cos(\frac{\pi}{2} \alpha) = \sin \alpha$.
- (6) 公式六: $\sin(\frac{\pi}{2} + \alpha) = \cos \alpha$, $\cos(\frac{\pi}{2} + \alpha) = -\sin \alpha$.

第1讲 三角函数的定义(★★)

内容提要

若题干给出角的终边上某点的坐标,或给出角的终边所在直线的方程,考虑用定义求三角函数值.

典型例题

【例题】已知角 α 的终边经过点P(3,-4),则 $\cos \alpha = ($

(A)
$$-\frac{4}{5}$$
 (B) $-\frac{3}{5}$ (C) $\frac{4}{5}$ (D) $\frac{3}{5}$

(B)
$$-\frac{3}{5}$$

(C)
$$\frac{4}{5}$$

(D)
$$\frac{3}{5}$$

答案: D

解析: 由题意, r = |OP| = 5, 所以 $\cos \alpha = \frac{x}{r} = \frac{3}{5}$.

【变式 1】已知角 α 的顶点是原点,始边为x 轴的正半轴,终边是射线 y=2x(x>0) ,则 $\sin\alpha=$, $\tan\alpha=$.

答案: $\frac{2\sqrt{5}}{5}$, 2

解析:给出角的终边,可在终边上取一点,再由该点利用定义求三角函数值,

如图,可在 α 的终边上取一点P(1,2),则 $|OP| = \sqrt{5}$,所以 $\sin \alpha = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$, $\tan \alpha = \frac{2}{1} = 2$.

【变式 2】角 θ 的顶点为坐标原点,始边为x轴的正半轴,若P(4,y)是角 θ 终边上一点,且 $\sin\theta = -\frac{2\sqrt{5}}{5}$, 则 y = .

答案: -8

解析:给出角终边上的一点的坐标,联想到三角函数的定义,所以先用定义计算 $\sin \theta$,

如图,
$$\sin\theta = \frac{y}{|OP|} = \frac{y}{\sqrt{16 + y^2}}$$
, 又 $\sin\theta = -\frac{2\sqrt{5}}{5}$,所以 $\frac{y}{\sqrt{16 + y^2}} = -\frac{2\sqrt{5}}{5}$,

由上式可看出v<0,平方后可求得v=-8.

【变式 3】已知角 α 的终边经过点 $P(\sin 47^{\circ}, \cos 47^{\circ})$,则 $\sin(\alpha - 13^{\circ}) = ($

(A)
$$\frac{1}{2}$$
 (B) $\frac{\sqrt{3}}{2}$ (C) $-\frac{1}{2}$ (D) $-\frac{\sqrt{3}}{2}$

$$\frac{\sqrt{3}}{2}$$

(C)
$$-\frac{1}{2}$$

(D)
$$-\frac{\sqrt{3}}{2}$$

答案: A

解法 1:给出角终边上的一点的坐标,联想到三角函数的定义,先用定义计算 $\sin \alpha$ 和 $\cos \alpha$,

因为 $|OP| = \sqrt{\sin^2 47^\circ + \cos^2 47^\circ} = 1$,所以 $P \neq \alpha$ 的终边与单位圆的交点,故 $\sin \alpha = \cos 47^\circ$, $\cos \alpha = \sin 47^\circ$,

所以 $\sin(\alpha - 13^\circ) = \sin\alpha\cos13^\circ - \cos\alpha\sin13^\circ = \cos47^\circ\cos13^\circ - \sin47^\circ\sin13^\circ = \cos(47^\circ + 13^\circ) = \cos60^\circ = \frac{1}{2}$.

解法 2:将所给的点 P的坐标用诱导公式转换成三角函数定义的格式 $P(\cos\alpha,\sin\alpha)$,可直接求出 α ,

因为 $\sin 47^\circ = \sin(90^\circ - 43^\circ) = \cos 43^\circ$, $\cos 47^\circ = \cos(90^\circ - 43^\circ) = \sin 43^\circ$,

所以点 P 的坐标可化为($\cos 43^{\circ}$, $\sin 43^{\circ}$),如图,结合三角函数定义可得 α 的终边与 43° 的终边重合,

从而 $\alpha = k \cdot 360^{\circ} + 43^{\circ} (k \in \mathbb{Z})$, 故 $\sin(\alpha - 13^{\circ}) = \sin(k \cdot 360^{\circ} + 43^{\circ} - 13^{\circ}) = \sin 30^{\circ} = \frac{1}{2}$.

【反思】当条件给出终边 α 上的点的坐标时,可用定义求出 $\sin \alpha$, $\cos \alpha$, $\tan \alpha$.

【变式 4】角 α 与角 β 均以x轴正半轴为始边,它们的终边关于x轴对称,若 $\sin \alpha = \frac{\sqrt{5}}{5}$,则 $\cos(\alpha - \beta) = 0$

答案: $\frac{3}{5}$

解法 1: 先画出图形,用三角函数定义分析 α 与 β 的三角函数值的关系,

如图, α 和 β 的终边关于 x 轴对称, 所以它们与单位圆的交点 $P \setminus Q$ 也关于 x 轴对称,

设P(x,y),则Q(x,-y),由三角函数定义, $\cos\alpha = \cos\beta = x$, $\sin\alpha = y$, $\sin\beta = -y$,所以 $\sin\beta = -\sin\alpha$,

故 $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta = \cos^2 \alpha - \sin^2 \alpha = 1 - 2\sin^2 \alpha = \frac{3}{5}$.

解法 2: 也可以先根据终边的对称性,找到 α 和 β 的等量关系,

因为 α 和 β 的终边关于x轴对称,所以 β 与 $-\alpha$ 的终边重合,从而 $\beta = -\alpha + k \cdot 360^{\circ} (k \in \mathbb{Z})$,

故 $\cos(\alpha - \beta) = \cos[\alpha - (-\alpha + k \cdot 360^{\circ})] = \cos(2\alpha - k \cdot 360^{\circ}) = \cos 2\alpha = 1 - 2\sin^{2}\alpha = \frac{3}{5}$.

强化训练

1. (2022・宁夏模拟・★★) 已知角 θ 的终边上有一点P(-4a,3a)(a>0),则 $2\sin\theta+\cos\theta=$ ()

(A)
$$-\frac{2}{5}$$

(B)
$$\frac{2}{5}$$

(A)
$$-\frac{2}{5}$$
 (B) $\frac{2}{5}$ (C) $-\frac{2}{5}$ 或 $\frac{2}{5}$ (D) 不确定

答案: B

解析: 先由三角函数定义求出 $\sin\theta$ 和 $\cos\theta$,由题意, $\left|OP\right|=\sqrt{(-4a)^2+(3a)^2}=5|a|=5a$,

所以
$$\sin\theta = \frac{3a}{|OP|} = \frac{3}{5}$$
, $\cos\theta = \frac{-4a}{|OP|} = -\frac{4}{5}$,故 $2\sin\theta + \cos\theta = \frac{2}{5}$.

2. $(2022 \cdot 安徽模拟 \cdot \star \star)$ 已知角 α 终边上一点 $P(m,4)(m \neq 0)$,且 $\cos \alpha = \frac{m}{5}$,则 $\tan \alpha = ...$

答案: $\pm \frac{4}{3}$

解析:根据点P的坐标,求出 $\cos \alpha$,建立方程解m,再求 $\tan \alpha$,

由题意,
$$\cos \alpha = \frac{m}{\sqrt{m^2 + 16}} = \frac{m}{5}$$
,解得: $m = \pm 3$,所以 $\tan \alpha = \frac{4}{m} = \pm \frac{4}{3}$.

3. (2022 •潍坊二模 •★★) 已知角 α 的顶点为坐标原点,始边与 x 轴的非负半轴重合,点 A(x,2), B(x,4)在 α 的终边上,且 $x_1-x_2=1$,则 tan $\alpha=()$

$$(B) \ \frac{1}{2}$$

(A) 2 (B)
$$\frac{1}{2}$$
 (C) -2 (D) $-\frac{1}{2}$

答案: C

解法 1: 只要求出 x_1 或 x_2 ,就可以用三角函数定义求得 $\tan \alpha$,已知条件中已经有 $x_1-x_2=1$ 这一个方程了, 可用 $A \setminus B$ 的坐标把 $\tan \alpha$ 表示出来,再建立一个 x_1 和 x_2 的方程,求解 x_1 或 x_2 ,

由题意, $\tan \alpha = \frac{2}{x_1}$, $\tan \alpha = \frac{4}{x_2}$, 所以 $\frac{2}{x_1} = \frac{4}{x_2}$, 故 $x_2 = 2x_1$, 代入 $x_1 - x_2 = 1$ 可得 $x_1 = -1$, 故 $\tan \alpha = \frac{2}{x_1} = -2$.

解法 2: 题干给出 $A \times B$ 两点的坐标,以及 $x_1 - x_2 = 1$,想到两点连线的斜率公式,于是先画图看看,

如图,由图可知 $\tan \alpha$ 等于直线 AB 的斜率,所以 $\tan \alpha = \frac{2-4}{x_1-x_2} = \frac{-2}{x_1-x_2}$,又 $x_1-x_2=1$,所以 $\tan \alpha = -2$.

4. (2022・湛江期末・★★★) 如图,角 α 的始边与x 轴的非负半轴重合,终边与单位圆交于点 $A(x_1,y_1)$, 角 $\beta = \alpha + \frac{2\pi}{3}$ 的始边与角 α 的始边重合,且终边与单位圆交于点 $B(x_2, y_2)$,记 $f(\alpha) = y_1 - y_2$,若 α 为锐角, 则 $f(\alpha)$ 的取值范围是(

- (A) $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ (B) $\left(-\frac{1}{2}, \frac{3}{2}\right)$ (C) $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ (D) $\left(-\frac{\sqrt{3}}{2}, \frac{3}{2}\right)$

答案: D

解析:给出角的终边与单位圆的交点坐标,想到用三角函数的定义把 $\sin \alpha$, $\sin \beta$ 都表示出来,

由三角函数定义, $\sin \alpha = y_1$, $\sin \beta = \sin(\alpha + \frac{2\pi}{3}) = y_2$,

 $\text{Figs.} f(\alpha) = y_1 - y_2 = \sin \alpha - \sin(\alpha + \frac{2\pi}{3}) = \sin \alpha - (\sin \alpha \cos \frac{2\pi}{3} + \cos \alpha \sin \frac{2\pi}{3}) = \frac{3}{2} \sin \alpha - \frac{\sqrt{3}}{2} \cos \alpha = \sqrt{3} \sin(\alpha - \frac{\pi}{6}),$

因为 α 为锐角,所以 $0 < \alpha < \frac{\pi}{2}$,从而 $-\frac{\pi}{6} < \alpha - \frac{\pi}{6} < \frac{\pi}{3}$,故 $-\frac{1}{2} < \sin(\alpha - \frac{\pi}{6}) < \frac{\sqrt{3}}{2}$,所以 $f(\alpha) \in (-\frac{\sqrt{3}}{2}, \frac{3}{2})$.

5. (2022・湖北武昌区模拟・★★) 已知角 α 的始边与 x 轴非负半轴重合,终边上一点 $P(\sin 3,\cos 3)$,若 $0 \le \alpha \le 2\pi$, \emptyset $\alpha = ($

- (A) 3 (B) $\frac{\pi}{2}$ -3 (C) $\frac{5\pi}{2}$ -3 (D) $3-\frac{\pi}{2}$

答案: C

解析:给出终边上一点,先把三角函数的定义式写出来,

因为 $\sin^2 3 + \cos^2 3 = 1$,所以点P在单位圆上,故 $\begin{cases} \cos \alpha = \sin 3 \\ \sin \alpha = \cos 3 \end{cases}$

接下来把右侧的函数名化为和左侧一致,就可以找到 α 的终边,再化到 $[0,2\pi]$ 上即可选答案,

因为 $\sin 3 = \cos(\frac{\pi}{2} - 3)$, $\cos 3 = \sin(\frac{\pi}{2} - 3)$, 所以 $\begin{cases} \cos \alpha = \cos(\frac{\pi}{2} - 3) \\ \sin \alpha = \sin(\frac{\pi}{2} - 3) \end{cases}$, 故 α 与 $\frac{\pi}{2} - 3$ 有相同的终边,如图,

所以 $\alpha = \frac{\pi}{2} - 3 + 2k\pi(k \in \mathbb{Z})$,因为 $0 \le \alpha \le 2\pi$,所以 k = 1, $\alpha = \frac{5\pi}{2} - 3$.

6. $(2022 \cdot$ 湖北模拟 • ★★★)(多选)已知角 α 的终边经过点 $P(8,3\cos\alpha)$,则()

(A) $\sin \alpha = \frac{1}{3}$ (B) $\cos 2\alpha = \frac{7}{9}$ (C) $\tan \alpha = \pm \frac{\sqrt{2}}{4}$ (D) $\cos \alpha = \frac{2\sqrt{2}}{3}$

答案: ABD

解析:看到角终边上的点,想到三角函数的定义,这里用正切来建立关于 α 的方程比较方便,

由题意, $\tan \alpha = \frac{3\cos \alpha}{8}$,所以 $\frac{\sin \alpha}{\cos \alpha} = \frac{3\cos \alpha}{8}$, 故 $3\cos^2 \alpha = 8\sin \alpha$,将 $\cos^2 \alpha$ 换成 $1-\sin^2 \alpha$,可化同名,

从而 $3-3\sin^2\alpha=8\sin\alpha$,解得: $\sin\alpha=\frac{1}{3}$ 或 -3 (舍去),

接下来求 $\cos\alpha$,开平方是取正还是取负?可由所给的点P的坐标来判断,

因为点 P 横坐标为正数,所以 α 必在第一或第四象限,故 $\cos \alpha > 0$,所以 $\cos \alpha = \sqrt{1-\sin^2 \alpha} = \frac{2\sqrt{2}}{3}$,

从而 $\cos 2\alpha = 1 - 2\sin^2 \alpha = \frac{7}{9}$, $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\sqrt{2}}{4}$, 故选项 A、B、D 正确.