## JESENSKI ISPITNI ROK IZ DIGITALNE LOGIKE

## Grupa B

| 1 | Napon napajanja digitalnog sklopa je 5 V. Frekvencija takta je 100 MHz. Ako je poznato da          |
|---|----------------------------------------------------------------------------------------------------|
|   | ugradnjom većeg hladnjaka dozvoljenu disipaciju sklopa možemo udvostručiti, na kojoj               |
|   | maksimalnoj frekvenciji signala takta može raditi taj sklop ako napon napajanja spustimo na 3,3 V? |
|   | Ponuđeni odgovori zaokruženi su na jednu decimalu.                                                 |

a) 459,1 MHz

c) 229,6 MHz

e) 200 MHz

b) 150 MHz

d) 918,3 MHz

- f) ništa od navedenoga
- 2 Koji se od navedenih produkata može koristiti za ocjenu dobrote integriranog sklopa?
  - a) umnožak napona napajanja i frekvencije takta
  - b) umnožak vremena kašnjenja i disipirane snage
  - c) umnožak disipirane snage i napona napajanja
  - d) umnožak vremena kašnjenja i broja tranzistora
  - e) umnožak napona napajanja i broja osnovnih sklopova
  - f) ništa od navedenoga

3 Koju funkciju obavlja sklop na slici?



- a)  $f(A,B,C,D) = \sum m(0,1,5,7,10,15)$
- b)  $f(A, B, C, D) = \prod M(0,1,2)$
- c)  $f(A,B,C,D) = \prod M(1,3,7,10)$
- d)  $f(A,B,C,D) = \sum m(0,2,4,8)$
- e)  $f(A, B, C, D) = \sum m(0,1,2)$
- f) ništa od navedenoga
- Koliko je binarnih dekodera 2/4 potrebno za ostvarivanje dekoderskog stabla 6/64?
  - a) 7
- b) 15
- c) 21
- d) 6
- e) 33
- f) ništa od navedenoga
- U nekom digitalnom sustavu dekadske znamenke prikazuju se kôdom BCD  $(n_3n_2n_1n_0; n_3)$  je bit najveće težine). Uporabom jednog dekodera 4/16 s invertiranim izlazima i jednog NI-sklopa potrebno je ostvariti sklop koji će na izlazu dati 1 ako je na ulaz dovedena dekadska znamenka koja veća od 1 i djeljiva s 3. Adresni ulazi dekodera su  $a_3a_2a_1a_0$ , te je dovedeno  $a_3=n_0$ ,  $a_2=n_1$ ,  $a_1=n_2$ , a<sub>0</sub>=n<sub>3</sub> (skicirajte!). Koje izlaze dekodera je potrebno spojiti na ulaze NI-sklopa?
  - a) 3, 6, 12

c) 6, 9, 12

e) 0, 1, 2, 13, 14, 15

b) 0, 3, 6, 9

- d) 4, 5, 7, 8, 10, 11
- f) ništa od navedenoga
- Koji je rezultat zbrajanja BCD brojeva 001100010010 i 001101111000 ako je rezultat zbrajanja 6 izražen u XS-3 kodu?
  - a) 00110101111101011
- c) 110101011000
- e) 101010101111

- b) 011010010001
- d) 100111000011
- f) ništa od navedenoga
- Oktalni broj 362465<sub>8</sub> zapisan kao heksadekadski glasi:
  - a) 722A4
- b) 1E535
- c) 231FE
- d) 1A3FB
- e) FE3BC
- f) ništa od navedenoga
- 8 Koliko minimalnih oblika ima  $f(a,b,c,d)=\sum m(0,1,2,3,4,7,8,9,11,12,14,15)$  u zapisu sume produkata?
  - a) 3
- b) 4
- c) 1
- d) 5
- e) 2 f) ništa od navedenoga



| 18 | Bistabil čiji su ulazi $X$ i $Y$ ima jednadžbu promjene stanja $Q^{n+1} = X + Q^n \cdot Y$ . Bistabil opisane funkcionalnosti potrebno je ostvariti uporabom bistabila JK. Minimalni oblici funkcija za ulaze $J$ i $K$ tada će biti:                                                                                                                                                                                                                                                                                                    |                              |                                 |                                                  |                    |                                              |                        |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------|--------------------------------------------------|--------------------|----------------------------------------------|------------------------|--|--|
|    | a) $J = X + g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $Q^n$ ; $K = \overline{X} +$ | $\overline{Y} + \overline{Q}^n$ | b) $J = X + Y$                                   | K = X              | c) $J = X \cdot Y$ ;                         | $K = \overline{X}$     |  |  |
|    | d) $J = X$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $K = \overline{X + Y}$       |                                 | e) $J = Q^n$ ;                                   | $K = \overline{X}$ | f) ništa od navedenoga                       |                        |  |  |
| 19 | Zadan je sinkroni sekvencijski sklop (na slici) koji se sastoji od 3 bistabila T i ROM-a 8x3. Na ulaze ROM-a dovode se izlazi bistabila kako je prikazano, a na ulaze bistabila dovode se izlazi ROM-a. Kako treba programirati ROM, počevši od najniže memorijske lokacije, a da sklop prolazi kroz sljedeća stanja: $0\rightarrow2\rightarrow5\rightarrow7\rightarrow3\rightarrow6$ . Potrebno je osigurati siguran start prelaskom u stanje 0. Bit $d_2$ smatrati bitom najveće težine.                                               |                              |                                 |                                                  |                    |                                              |                        |  |  |
|    | a) 2,1,7,5,4,5<br>b) 1,2,7,5,4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,6,4                        | c) 0,1                          | 1,3,7,0,1,5,6<br>0,1,2,3,5,0,1                   |                    | e) 1,1,0,5,2,2,7,3<br>f) ništa od navedenoga |                        |  |  |
| 20 | Sinkroni sekvencijski sklop sastoji se od dva bistabila ( $B_1$ je tipa $T$ , a $B_0$ tipa $D$ ). Na ulaze bistabila dovode se sljedeće funkcije: $T_1 = \overline{Q_1}\overline{Q_0} + Q_1Q_0$ , $D_0 = Q_1 \oplus Q_0$ . Ima li sklop siguran start? Ako su zadana sljedeća vremena: $t_{db}$ =10ns, $t_{setup}$ =10ns, $t_{hold}$ =10ns, $t_{dLS}$ =10ns a sklop se ostvaruje samo uporabom bistabila te logičkih sklopova I, ILI i NE, kolika će biti maksimalna frekvencija signala takta uz koju će sklop i dalje raditi ispravno? |                              |                                 |                                                  |                    |                                              |                        |  |  |
|    | a) Ima siguran start, f=25 MHz b) Ima siguran start, f=10 MHz c) Ima siguran start, f=14,3 MHz d) Nema siguran start, f=14,3 MHz e) Nema siguran start, f=25 MHz f) ništa od navedenoga                                                                                                                                                                                                                                                                                                                                                  |                              |                                 |                                                  |                    |                                              | Z                      |  |  |
| 21 | Asinkrono binarno brojilo unaprijed ostvareno je uporabom bistabila T koji imaju dodatne ulaze za brisanje $C_d$ . Dodatni ulazi su spojeni zajedno te se koriste za skraćivanje ciklusa brojila. Ako ciklus sadrži 20 stanja, a ulazi za brisanje se aktiviraju logičkom razinom 1, koju funkciju treba ostvarivati sklop koji upravlja tim ulazima?                                                                                                                                                                                    |                              |                                 |                                                  |                    |                                              |                        |  |  |
|    | a) $Q_4 \overline{Q}_3 \overline{Q}_2 Q_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $Q_{1}Q_{0}$                 | c) $\overline{Q}_{a}$           | $_{1}\overline{Q}_{3}\overline{Q}_{2}Q_{1}Q_{0}$ |                    | e) $Q_4\overline{Q}_3Q_2\overline{Q}_1$      | $\overline{Q}_0$       |  |  |
|    | b) $Q_4\overline{Q}_3\overline{Q}_2Q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Q_1\overline{Q}_0$          | d) $\overline{Q}$               | $_{4}Q_{3}Q_{2}Q_{1}Q_{0}$                       |                    | f) ništa od na                               | f) ništa od navedenoga |  |  |
| 22 | Analogno-digitalni pretvornik s postepenim približavanjem (tj. brojeći ADC) radi s taktom od 1kHz. Napon od 0V je ekvivalent broju 0, a napon od 7,6V broju 38. Koliko vremena treba pretvorniku da napon od 2,4V pretvori u broj?                                                                                                                                                                                                                                                                                                       |                              |                                 |                                                  |                    |                                              |                        |  |  |
|    | a) 76 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b) 24 ms                     | c) 38 ms                        | d) 12 ms                                         | e) 6 ms            | f) ništa od                                  | d navedenoga           |  |  |
| 23 | Na raspolaganju je 2½D memorija s 256 fizičkih riječi, pri čemu je duljina logičke riječi 4 bita. Ako se na pristupni MUX/DEMUX dovode 3 bita, koliki je kapacitet memorije (izražen u bitovima)?                                                                                                                                                                                                                                                                                                                                        |                              |                                 |                                                  |                    |                                              |                        |  |  |
|    | a) $2^{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b) 2 <sup>13</sup>           | c) $2^{15}$                     | d) $2^{10}$                                      | e) $2^{14}$        | f) ništa od                                  | d navedenoga           |  |  |

Ako se rješavaju, sljedeća dva zadatka moraju biti riješena u unutrašnjosti košuljice, kako je napisano uz svaki od zadataka; u suprotnom, rješenje se neće priznati. Zadatci se boduju jednako kao i prethodni zadatci (ali nema negativnih bodova). Zadatak mora imati prikazan postupak te konačno rješenje.

## Zadatak 24. Riješiti na unutrašnjosti košuljice, s lijeve strane.

Neka je dek12e dekoder 1/2 s ulazom za omogućavanje. Napišite VHDL model tog sklopa.

## Zadatak 25. Riješiti na unutrašnjosti košuljice, s desne strane.

Na raspolaganju je model poluzbrajala HA:

```
ENTITY HA IS PORT(
   a, b: IN std_logic;
   s, cout: OUT std_logic);
END HA;
```

Koristeći tu komponentu (i po potrebi osnovne logičke sklopove), nacrtajte shemu potpunog zbrajala FA. Na temelju te sheme napišite odgovarajući strukturni VHDL model.

**Napomena**: boduje se samo napisani VHDL model, no VHDL model bez nacrtane sheme nosi 0 bodova.