Deep Q Learning: From Paper to Code

What We Have Learned

Phew ...

Agents, Actions, Environments

Markov Decision Processes

State depends only on previous state and action

Markov Decision Process

Optimal Policies

$$v_{\pi}(s) = \sum_{a} \pi(a,s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

Bellman Equation

Recursive relationship between value functions

$$v_*(s) = \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')]$$

$$q_*(s,a) = \sum_{s',r} p(s',r|s,a)[r + \gamma \max_{a'} q_*(s',a')]$$

Q Learning

Model Free → **Q Learning**

Estimate p by playing

Off policy temporal difference learning method

Tabular Learning

Small number of states, actions

	Action 1	Action 2	Action n
State 1	Q(1,1)	Q(1,2)	Q(1,n)
State 2	Q(2,1)	Q(2,2)	Q(2,n)
State m	Q(m,1)	Q(m,2)	Q(m,n)

Deep Learning For Large State Spaces

Tables will not work

Deep neural networks

Simple DNN implementation failed!

Need For New Algorithm

Correlations ruin learning

Chasing a moving target

Code Clean Up

Argparse and inheritance

Up Next

