Mixing *n*-step MIR Inequalities

Sujeevraja Sanjeevi¹ Kiavash Kianfar¹

¹Industrial and Systems Engineering Texas A&M University

INFORMS 2011 - Charlotte, NC November 10, 2010

Outline

- Introduction
 - Mixing inequalities
 - *n*-step MIR inequalities
- Mixed n-step MIR inequalities
 - *n*-mixing set
 - general MIPs
 - Special structure MIPs

1-Mixing set [Günlük and Pochet, 2001]

$$Q^{m,1} = \{(y^1, \ldots, y^m, v) \in \mathbb{Z}^m \times \mathbb{R}_+ : \alpha_1 y^i + v \ge \beta_i, i = 1, \ldots, m\}$$

- Multi-constraint set
- Each constraint has 1 integer variable
- substructure in lot-sizing, facility location, network design **MIPs**

MIR inequalities

Constraint i:

$$\alpha_1 y^i + v \geq \beta_i$$

Define
$$\beta^{(1)} := \beta - \alpha_1 |\beta/\alpha_1|$$

MIR inequality associated with constraint i:

$$v \ge \beta_i^{(1)} \left(\left\lceil \frac{\beta_i}{\alpha_1} \right\rceil - y^i \right)$$

Mixing inequalities

- For $K \subseteq \{1, ..., m\}$, WLOG let $K = \{1, ..., k\}$ such that $\beta_{i-1}^{(1)} < \beta_{i}^{(1)}, i = 2, \ldots, k.$
- MIR inequalities for constraints in K "mixed" to get mixing inequalities.

$$\begin{aligned} v &\geq \sum_{i=1}^{k} \left(\beta_{i}^{(1)} - \beta_{i-1}^{(1)} \right) \left(\left\lceil \frac{\beta_{i}}{\alpha_{1}} \right\rceil - y^{i} \right) \\ v &\geq \sum_{i=1}^{k} \left(\beta_{i}^{(1)} - \beta_{i-1}^{(1)} \right) \left(\left\lceil \frac{\beta_{i}}{\alpha_{1}} \right\rceil - y^{i} \right) + \left(\alpha_{1} - \beta_{k}^{(1)} \right) \left(\left\lceil \frac{\beta_{1}}{\alpha_{1}} \right\rceil - y^{1} - 1 \right). \end{aligned}$$

Mixing inequalities

- Mixing inequalities describe convex hull of $Q^{m,1}$.
- Valid inequalities for:
 - Single capacity lot-sizing
 - Single capacity facility location
 - Capacitated network design
 - Multiple knapsack
 - Simplex tableau

Variants of $Q^{m,1}$

- Two divisible coefficients
- Two non-divisible coefficients
- n divisible coefficients
- Mixing set with flows
- Mixing sets linked by bidirected paths

n-step MIR inequalities [Kianfar and Fathi, 2009]

n-step MIR inequalities [Kianfar and Fathi, 2009]

Developed for general set $\{(x,s) \in \mathbb{Z}_+^{|J|} \times \mathbb{R}_+ : \sum_{j \in J} a_j x_j + s \ge b\}$ Special case:

$$Q^{1,n} = \{(y_1,\ldots,y_n,v) \in \mathbb{Z} \times \mathbb{Z}_+^{n-1} \times \mathbb{R}_+ : \sum_{j=1}^n \alpha_j y_j + v \geq \beta\}.$$

Define recursive remainder $\beta^{(j)} = \beta^{(j-1)} - \alpha_j \lfloor \beta^{(j-1)}/\alpha_j \rfloor$, where $\beta^{(0)} := \beta$

Assume $\alpha_j \left[\beta^{(j-1)} / \alpha_j \right] \leq \alpha_{j-1}$, $j = 2, \ldots, n$.

n-step MIR inequalities

n-step MIR inequality for $Q^{1,n}$:

$$v \geq \beta^{(n)} \left(\prod_{l=1}^n \left\lceil \frac{\beta^{(l-1)}}{\alpha_l} \right\rceil - \sum_{j=1}^n \prod_{l=j+1}^n \left\lceil \frac{\beta^{(l-1)}}{\alpha_l} \right\rceil y_j \right).$$

Define integer-valued linear function $\phi: \mathbb{Z}^n \to \mathbb{Z}$

$$\phi(y) := \prod_{l=1}^{n} \left| \frac{\beta_i^{(l-1)}}{\alpha_l} \right| - \sum_{j=1}^{n} \prod_{l=j+1}^{n} \left| \frac{\beta_i^{(l-1)}}{\alpha_l} \right| y_j \quad \text{for } i \in K$$

Compact form:

$$v \geq \beta^{(n)}\phi(y)$$

Generalized mixing set

$$Q^{m,n} = \left\{ (y,v) \in (\mathbb{Z} \times \mathbb{Z}_+^{n-1})^m \times \mathbb{R}_+ : \sum_{j=1}^n \alpha_j y_j^i + v \geq \beta_i, i = 1, \dots, m \right\}$$

Assumed condition: $\alpha_j \left[\beta_i^{(j-1)} / \alpha_j \right] \leq \alpha_{j-1}, j = 2, \dots, n.$

n-step MIR inequality associated with constraint *i*:

$$v \geq \beta_i^{(n)} \phi^i(y^i)$$

where
$$y^{i} = (y_{1}^{i}, y_{2}^{i}, ..., y_{n}^{i}).$$

Mixed *n*-step MIR inequalities

For $K \subseteq \{1, ..., m\}$, let $K = \{1, ..., k\}$ such that

$$\beta_{i-1}^{(n)} \leq \beta_i^{(n)}, i = 2, \ldots, k.$$

Mixed n-step MIR inequalities generated by K:

$$v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)} \right) \phi^{i}(y^{i}),$$

$$v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)} \right) \phi^{i}(y^{i}) + \left(\alpha_{n} - \beta_{k}^{(n)} \right) \left(\phi^{1}(y^{1}) - 1 \right).$$

Sanjeevi and Kianfar (TAMU)

Properties

- Valid for $Q^{m,n}$.
- Facet-defining for $Q^{m,n}$.
- Validity conditions always hold when $\alpha_n |\alpha_{n-1}| ... |\alpha_2| \alpha_1$.
- Multi-row valid inequalities for general MIPs.
- New valid inequalities for special structure MIPs.

Valid inequalities for general MIPs

$$Y_m = \left\{ (x_1, \dots, x_N, s) \in \mathbb{Z}_+^N \times \mathbb{R}_+^m : \sum_{i \in I} a_{ij} x_j + s_i \ge b_i, i = 1, \dots, m \right\}$$

For $K \subseteq \{1, ..., m\}$, let $K = \{1, ..., k\}$ such that

$$b_{i-1}^{(n)} \leq b_i^{(n)}, i = 2, \ldots, k.$$

For parameters $(\alpha_1, \alpha_2, ..., \alpha_n)$ such that $\alpha_j \left\lceil b_i^{(j-1)}/\alpha_j \right\rceil \leq \alpha_{j-1}$,

$$j=2,\ldots,n$$
, define integer-valued linear function $\sigma^n_{\alpha,b}:\mathbb{R}^k \to \mathbb{R}$.

Valid inequalities for general MIPs

Let
$$a_j = (a_{1j}, a_{2j}, ..., a_{kj}), b = (b_1, b_2, ..., b_k).$$

Mixed n-step MIR inequality for Y_m :

$$\sum_{j\in J} \sigma_{\alpha,b}^n(a_j)x_j + \overline{s} \geq \sigma_{\alpha,b}^n(b)$$

where $\overline{s} \geq s_i$ for $i \in K$.

σ function

$$\sigma^2_{(25,10),(39,18)}(d_1,d_2)$$
 for $(d_1,d_2) \in [-25,25] \times [-16,16]$:

Lot-sizing with Multi-Capacity Modules (LMM)

- $T := \{1, ..., m\}$ time periods
- $(\alpha_1, \alpha_2, ..., \alpha_n)$ n available capacity module sizes
- ullet x_t production, s_t inventory, z_t^j number of modules of $lpha_j$
- d_t demand in period t

$$X^{LMM} = \left\{ (x, s, z) \in \mathbb{R}_+^m \times \mathbb{R}_+^m \times \mathbb{Z}_+^{m \times n} :
ight.$$
 $s_{t-1} + x_t = d_t + s_t, \qquad \qquad t \in T$ $x_t \leq \sum_{i=1}^n \alpha_i z_t^i, \qquad \qquad t \in T$

Valid inequalities for LMM

Mixing inequalities:

$$\begin{split} \overline{v} &\geq \sum\nolimits_{i=1}^{|I|} \left(b_{i}^{(n)} - b_{i-1}^{(n)} \right) \phi^{i}(y^{i}), \\ \overline{v} &\geq \sum\nolimits_{i=1}^{|I|} \left(b_{i}^{(n)} - b_{i-1}^{(n)} \right) \phi^{i}(y^{i}) + \left(\alpha_{n} - b_{|I|}^{(n)} \right) \left(\phi_{n}^{1}(y^{1}) - 1 \right) \end{split}$$

- \bullet \overline{v} linear function of inventory and production variables
- y^i linear functions of z^i_i variables
- b set of demands in a subset of T

generalize capacity constraints of the form $x_t \leq C_t z_t$ and divisible capacity modules

Valid inequalities for LMM

- generalize (k, I, S, I) inequalities (Pochet and Wolsey, 1993) to multi-capacity case
- ullet special case 1: capacity constraints of the form $x_t \leq C_t z_t$
- special case 2: $C_n |C_{n-1}| ... |C_1|$

Multi-capacity Facility Location (MFL)

P - set of facilities, Q - set of clients, $(\alpha_1, \alpha_2, ..., \alpha_n)$ - capacity modules for facilities

 x_{pq} - demand of client q satisfied by facility p

 u_p^{\prime} - number of capacity modules installed in facility p

$$\begin{split} X^{MFL} &= \Big\{ (x,u) \in \mathbb{R}_+^{n_P n_Q} \times \{0,1\}^{n_P n} : \\ &\sum\nolimits_{p \in P} x_{pq} = d_q, \qquad \qquad q \in Q \\ &\sum\nolimits_{q \in Q} x_{pq} \leq \sum\nolimits_{i=1}^n \alpha_j u_p^i, \qquad \qquad p \in P \quad \Big\}. \end{split}$$

Valid inequalities for MFL

$$\sum_{(p,q)\in T} x_{pq} \ge \sum_{i=1}^{n_l} \left(b_i^{(n)} - b_{i-1}^{(n)} \right) \phi^i(y^i),$$

$$\sum_{(p,q)\in T} x_{pq} \ge \sum_{i=1}^{n_l} \left(b_i^{(n)} - b_{i-1}^{(n)} \right) \phi^i(y^i)$$

$$+ \left(\alpha_n - b_{n_l}^{(n)} \right) \left(\phi_n^1(y^1) - 1 \right)$$

 b_i , y^i defined based on parameters and decision variables of MFL generalize valid inequalities of Aardal, Pochet and Wolsey, 1995

Future research

- Properties of mixing inequalities for general and special structure MIPs
- Other special structures
- Computational experiments

Thank you.