Deep Learning - Foundations and Concepts

Chapter 1. The Deep Learning Revolution

nonlineark@github

February 10, 2025

Outline

1 The Impact of Deep Learning

2 A Tutorial Example

Medical diagnosis

Figure: Examples of skin lesions

Medical diagnosis

- Training set: 129K lesion images labelled as either malignant or benign.
- Training:
 - A deep neural network with 25M adjustable parameters.
 - First trained on a much larger data set of 1.28M images of everyday objects, and then *fine-tuned* on the data set of lesion images.
 - This is an example of transfer learning.
- This is an example of a supervised learning problem.
- This is also an example of a classification problem, compare with regression problems where the output consists of one or more continuous variables.

Protein structure

Figure: 3D shape of a protein called T1044/6VR4

Image synthesis

Figure: Synthetic face images

Large language models

- Autoregressive language models can generate language as output.
- This is an example of self-supervised learning.

Synthetic data

Figure: Plot of a training data set

Synthetic data

Problem

Given input variables
$$x=\begin{pmatrix} x_1\\x_2\\ \vdots\\x_N \end{pmatrix}$$
 and target variables $t=\begin{pmatrix} t_1\\t_2\\ \vdots\\t_N \end{pmatrix}$, predict

the value of \hat{t} for some new value of \hat{x} .

Linear models and error function

Problem'

Find
$$w=\begin{pmatrix}w_0\\w_1\\\vdots\\w_M\end{pmatrix}$$
, such that the linear model $y(x;w)=\sum_{j=0}^M w_j x^j$ has the smallest error, as defined by $E(w)=\frac{1}{2}\sum_{n=1}^N (y(x_n;w)-t_n)^2.$

Linear models and error function

Differentiate E(w), we see that:

$$DE(w) = \sum_{n=1}^{N} (y(x_n; w) - t_n) X_n^T$$

$$= \sum_{n=1}^{N} w^T X_n X_n^T - \sum_{n=1}^{N} t_n X_n^T$$

$$= w^T X^T X - t^T X$$

where
$$X_n = \begin{pmatrix} 1 \\ x_n \\ \vdots \\ x_n^M \end{pmatrix}$$
, and $X = \begin{pmatrix} X_1 & X_2 & \dots & X_N \end{pmatrix}^T$.

Let $DE(w^*) = 0$, we have $w^* = (X^T X)^{-1} X^T t$.

Model complexity and regularization

Model complexity and regularization

There are several ways to control the *over-fitting* phenomenon:

- Limit the number of parameters in a model according to the size of the available training set.
- Regularization: Add a penalty term to the error function to discourage the coefficients from having large magnitudes.

$$\tilde{E}(w) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n; w) - t_n)^2 + \frac{\lambda}{2} ||w||^2$$

Model complexity and regularization

Figure: Root-mean-square error vs. $\log \lambda$

Model selection

- Hyperparameter: Values are fixed during the minimization of the error function, e.g., M and λ .
- Training set, validation set and test set:
 - Training set: Determine the coefficients w.
 - Validation set: Select the model having the lowest error.
 - Test set: Sometimes over-fitting to the validation set can occur, keep aside a third test set to evaluate the performance of the selected model.
- Cross-validation