Exercise to MGE-01-Coordinate Systems Prof. Dr. C. Stachniss Department of Photogrammetry Institute of Geodesy and Geoinformation

Exercise: Transformations, Quaternions, and Homogeneous Representation (Fall 2020)

Hand out on: Tue, 15.09.2020

Meeting for questions: Tue, 29.09.2020 or Thu, 29.10.2020 (via zoom)

Early correction deadline: Tue, 13.10.2020 (via e-mail at federico.magistri@igg.uni-bonn.de)

Official deadline: Thu, 12.11.2020 (via e-campus)

\mathbf{A} Translation and Rotation

1. Consider a point p with coordinates $p = [-0.8, 1.3, -0.5]^T$, provide the coordinates of the transformed points p', p'', p''', p'''' after applying the following transformation:

- (a) translation \mathcal{I}_t with translation vector $\mathbf{t} = [1.1, -0.4, -0.6]^T$
- (b) rotation $\mathcal{R}_{y}(\phi)$ with $\phi = -30^{\circ}$
- (c) rotation $\mathcal{R}_z(\phi_1)$ followed by $\mathcal{R}_x(\phi_2)$ with $\phi_1 = 60^\circ$ and $\phi_2 = -45^\circ$
- (d) translation \mathcal{T}_t as in (a) followed by a rotation $\mathcal{R}_y(\phi)$ as in (b)
- 2. Convert the following rotation

$$\mathcal{R} = \begin{bmatrix} 0 & -1 & 0\\ \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{bmatrix}$$

using the following representation:

- (a) Euler-Angles with the first rotation around the x-axis, second around y and third around z
- (b) Axis-Angle in the minimal form
- 3. Check if the following matrices are true rotation matrices

$$\mathcal{M}_1 = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ \frac{1}{4} & \frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{4} & \frac{3}{4} & \frac{1}{2} \end{bmatrix}$$

$$\mathcal{M}_{1} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ \frac{1}{4} & \frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{4} & \frac{3}{4} & \frac{1}{2} \end{bmatrix} \qquad \mathcal{M}_{2} = \begin{bmatrix} 0 & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\\ -\frac{\sqrt{2}}{2} & \frac{1}{2} & -\frac{1}{2}\\ \frac{\sqrt{2}}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \qquad \mathcal{M}_{3} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{4} & \frac{1}{2}\\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{1}{4}\\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

$$\mathcal{M}_3 = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{4} & \frac{1}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{1}{4} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

В Quaternions

- 4. Given the quaternions $\mathbf{q}_1 = [0,1,2,1]^T$ and $\mathbf{q}_2 = [3,1,2,2]^T$
 - (a) compute the quaternion resulting by the sum of \mathbf{q}_1 and \mathbf{q}_2
 - (b) compute the inverse of \mathbf{q}_2
 - (c) compute \mathbf{q}_1 times the inverse of \mathbf{q}_2
- 5. Given a rotation $\mathcal{R}_x(\phi)$ with $\phi = 70^\circ$ in euclidean form
 - (a) compute the quaternion \mathbf{q}_1 that represent such rotation
 - (b) given a point χ with euclidean coordinates $\boldsymbol{x} = [-2, 1, -1]^T$, apply the rotation \mathbf{q}_1 to the point χ in quaternion form
 - (c) apply to point χ the transformation resulting from \mathbf{q}_1 followed by $\mathbf{q}_2 = [-1, 2, 0, 1]^T$

C Homogeneous Representation

6. Given the points χ_1 and χ_2 with their coordinates

$$m{x}_1 = \left[egin{array}{c} -2 \ 1 \end{array}
ight] \qquad m{x}_2 = \left[egin{array}{c} 2 \ 3 \end{array}
ight]$$

and the line ℓ_1

$$l_1: y = 1 + 4x.$$

determine the homogeneous representation of:

- (a) l_1 , χ_1 and χ_2
- (b) line ℓ_2 passing through χ_1 and χ_2
- (c) the intersection point of l_1 and l_2
- (d) determine if χ_3 with coordinates $\boldsymbol{x}_3 = [0,2]^T$ lies on $\boldsymbol{\ell}_2$
- 7. Given a point χ with coordinates $\boldsymbol{x} = [1, -1, 2]^T$, compute and apply the following transformations in homogeneous representation:
 - (a) translation \mathcal{T}_t with translation vector $\boldsymbol{t} = [1, 0, -2]^T$
 - (b) rotation $\mathcal{R}_z(\phi)$ with $\phi = 20^\circ$
 - (c) the rigid body transformation resulting from (a) and (b)
 - (d) the transformation given by \mathcal{H}_1 followed \mathcal{H}_2 with:

$$\mathcal{H}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -1 \\ 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \qquad \mathcal{H}_2 = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$