Solution to exam in MAT3400/4400, Linear analysis with applications. Exam date Monday, December 6, 2010.

Problem 1. The *n*-th Fourier coefficient of $f(x) = x^2$ on $[-\pi, \pi]$ is (for $n \neq 0$)

$$c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 e^{-inx} dx$$

$$= \frac{1}{2\pi} \left[-\frac{x^2 e^{-inx}}{in} \right]_{-\pi}^{\pi} + \frac{1}{\pi i n} \int_{-\pi}^{\pi} x e^{-inx} dx = \frac{1}{\pi i n} \int_{-\pi}^{\pi} x e^{-inx} dx$$

$$= \frac{1}{\pi i n} \left[-\frac{x}{i n} e^{-inx} \right]_{-\pi}^{\pi} + \frac{1}{\pi (in)^2} \int_{-\pi}^{\pi} e^{-inx} dx$$

$$= \frac{1}{\pi n^2} (\pi e^{-in\pi} + \pi e^{in\pi}) = 2 \frac{(-1)^n}{n^2}.$$

We have $c_0(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{\pi^2}{3}$. The Fourier series is

$$\sum_{n \in \mathbb{Z}} c_n(f)e^{inx} = c_0(f) + \sum_{n=1}^{\infty} c_n(f)e^{inx} + \sum_{n=1}^{\infty} c_{-n}(f)e^{-inx}$$

$$= \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \left(2\frac{(-1)^n}{n^2}e^{inx} + 2\frac{(-1)^n}{n^2}e^{-inx}\right)$$

$$= \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}\cos nx.$$

If we let \bar{f} be the extension of f to a 2π periodic function on \mathbb{R} , then at every $x_0 \in (2k+1)\mathbb{Z}$ for $k \in \mathbb{Z}$ we have $\bar{f}(x_0+) = \bar{f}(x_0-) = \pi^2$, so \bar{f} is continuous on \mathbb{R} . Note that f has a derivative at all points in $(-\pi,\pi)$. At $x_0 = \pi$ we compute that $f'(x_0+) = 2\pi$ and $f'(x_0-) = -2\pi$. We conclude from the corollary about pointwise convergence that the Fourier series is pointwise convergent at every $x \in \mathbb{R}$ with sum f(x). In fact, since f' is piecewise continuous on $(-\pi,\pi)$, it follows from the theorem on uniform convergence that the Fourier series of f is uniformly convergent on $[-\pi,\pi]$ with limit f.

For (c), let x = 0 in (b). Since f(0) = 0, the pointwise convergence of the Fourier series of f implies that $\frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = 0$. Then

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2} = \frac{\pi^2}{12}.$$

Problem 2.

Let a < b be real numbers and κ a continuous function on $[a, b] \times [a, b]$ with values in $\mathbb C$ such that $\kappa(x, y) = \overline{\kappa(y, x)}$ for all x, y. Let H be the

Hilbert space $L^2([a,b],d\lambda)$, where λ is Lebesgue measure and the inner product is given by $\langle f,g\rangle=\int_a^b\overline{f(y)}g(y)dy$. Let K denote the self-adjoint, compact integral operator

$$(Kf)(x) = \int_{a}^{b} \kappa(x, y) f(y) dy.$$

We know from the spectral theorem for compact self-adjoint operators that the eigenvalues of K are real and (if they form an infinite set) form a sequence $\{\lambda_j\}_{j\geq 1}$ converging to zero. Moreover, there is an orthonormal sequence $\{e_j\}_{j\geq 1}$ where e_j is eigenvector corresponding to λ_j , and $Kf = \sum_j \lambda_j \langle e_j, f \rangle e_j$ for all $f \in H$. Let $M = \sup\{|\kappa(x,y)| \mid x,y \in (a,b)\}$.

For (a), note that for any $x \in [a, b]$ we have

$$(Ke_j)(x) = \int_a^b \kappa(x, y)e_j(y)dy = \int_a^b \overline{\kappa(y, x)}e_j(y)dy = \langle \kappa(\cdot, x), e_j \rangle.$$

But $\kappa(\cdot, x) \in L^2[a, b]$ because $\|\kappa(\cdot, x)\|^2 = \int_a^b |\kappa(y, x)|^2 dy \leq M^2(b - a)$. Bessel's inequality says that $\sum_{j \geq 1} |\langle \kappa(\cdot, x), e_j \rangle|^2 \leq \|\kappa(\cdot, x)\|^2$. Therefore

$$\sum_{j=1}^{\infty} |(Ke_j)(x)|^2 \le ||\kappa(\cdot, x)||^2 \le M^2(b-a).$$

Let $f_n(x) = \sum_{j=1}^n |(Ke_j)(x)|^2$. Then $\{f_n\}$ is a non-decreasing sequence of non-negative measurable functions. By the monotone convergence theorem,

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b (\lim_n f_n(x)) dx.$$

Now $\int_a^b f_n(x) dx = \sum_{j=1}^n \int_a^b |\lambda_j|^2 |e_j(x)|^2 dx = \sum_{j=1}^n \lambda_j^2 ||e_j||^2 = \sum_{j=1}^n \lambda_j^2$. Since $\lim_n f_n(x) \leq M^2(b-a)$, we conclude that $\sum_{j=1}^\infty \lambda_j^2 \leq M^2(b-a)^2$.

Problem 3. We have Lu = -u'' on $\mathcal{D}(L) = \{f \in C^2[0,1] \mid f(0) = 0, f'(1) = 0\} \subset L^2[0,1]$. A number α is eigenvalue for L if $Lu = \alpha u$, equivalently $u'' + \alpha u = 0$. The characteristic equation is $r^2 + \alpha = 0$. The discriminant is -4α .

Case 1: $\alpha < 0$. Write $a = \sqrt{-\alpha} > 0$. Then there are two real solutions a and -a. The equation $u'' + \alpha u = 0$ has solutions of the general form $u(x) = Ae^{ax} + Be^{-ax}$. To have $u \in \mathcal{D}(L)$ implies A + B = 0 and $Ae^a - Be^{-a} = 0$, from which we get A = B = 0, so u can't be an eigenvector. This shows no $\alpha < 0$ is an eigenvalue.

Case 2: $\alpha = 0$. Then r = 0, so the solutions are of form u(x) = A + Bx, and $u \in \mathcal{D}(L)$ is only possible for u = 0.

Case 3: $\alpha > 0$. Now the solutions of $r^2 + \alpha = 0$ are $i\sqrt{\alpha}$ and $-i\sqrt{\alpha}$, so $u(x) = A\cos\sqrt{\alpha}x + B\sin\sqrt{\alpha}x$. Then $u \in \mathcal{D}(L)$ gives A = 0, so $u(x) = B\sin\sqrt{\alpha}x$. We look for u(x) non-trivial, so u'(1) = 0 gives $\cos\sqrt{\alpha} = 0$. Thus $\sqrt{\alpha} = \frac{\pi}{2}, \frac{3\pi}{2}, \ldots$ We obtain $\alpha_n = (n - \frac{1}{2})^2\pi^2$,

 $n=1,2,\ldots$ for the eigenvalues of L. A normalized eigenvector for α_n is $u_n(x)=\sqrt{2}\sin((n-\frac{1}{2})\pi x)$.

Since 0 is not an eigenvalue, it follows that $\ker L = 0$. So L is injective.

Problem 4. Suppose K is a compact, self-adjoint operator on H such that $ker(K) = \{0\}$.

We know from the spectral theorem that if $\{\lambda_n\}_{n\geq 1}$ are the eigenvalues of K, there is an orthonormal sequence $\{e_n\}_{n\geq 1}$ where e_n is eigenvector corresponding to λ_n , and $x=\sum_j \langle e_j,x\rangle e_j$ for all $x\in H$ (since $\ker(K)=\{0\}$).

Since $\ker(K) = \{0\}$, the value 0 is not an eigenvalue, so $\lambda_n \neq 0$ for all n. Then we can let $A_n x = \sum_{m=1}^n \lambda_m^{-1} \langle e_m, x \rangle e_m$. Then A_n is of finite rank because it has range equal to $\operatorname{span}\{e_m \mid m=1,\ldots,n\}$. We have

$$A_n Kx = \sum_{m=1}^n \lambda_m^{-1} \langle e_m, Kx \rangle e_m = \sum_{m=1}^n \lambda_m^{-1} \lambda_m \langle e_m, x \rangle e_m,$$

which converges to x when $n \to \infty$. Similarly,

$$KA_n x = \sum_{j=1}^{\infty} \lambda_j \langle e_j, A_n x \rangle e_j = \sum_{m=1}^n \lambda_m \lambda_m^{-1} \langle e_m, x \rangle e_m,$$

which converges to x as $n \to \infty$.