QXD0013 - Sistemas Operacionais Introdução, Histórico e Conceitos

Thiago Werlley Bandeira da Silva¹

¹Universidade Federal do Ceará, Brazil

05/10/2021

Introdução

- Sistema Computacional
 - Processador(es)
 - Memória
 - Dispositivos de Entrada e Saída (E/S ou I/O)
- Alta complexidade
- Demanda por flexibilidade
- Custos (desenvolvimento, manutenção)
- Duas responsabilidades

Exemplo: Controlador de Disquete NEC-PD765

- 16 comandos
- 1 a 9 bytes no registrador
- Comandos
 - Leitura e Escrita
 - o Movimentação do braço
 - o Formatação de trilhas
 - o Inicialização, sinalização, reinicialização, recalibração
- Comandos read e write
 - 13 parâmetros em 9 bytes
 - Endereço do bloco de dados
 - Setores por trilha
 - Modo de gravação
 - Espaço livre entre setores
 - o 23 campos de status e erros em 7 bytes de retorno
- Controle do status do motor
 - atrasos de inicialização
 - desgastes do disco

Abstração de Hardware

- Chave para gerenciar complexidade
- Simplificação
 - Omissão de detalhes
- Abstração possível para o exemplo:
 - Sistema de arquivos
 - Abertura/Fechamento
 - Leitura/Escrita
- Aplicativos = Clientes do SO

Gerenciamento de Recursos

- Fornecer acesso controlado e ordenado aos recursos:
 - Processador
 - Dispositivos
 - Memória
- Multiplexação de recursos
 - o Tempo
 - Espaço

O que é um Sistema Operacional?

- Visão Top-Down
 - Máquina estendida
 - Fornece abstração do hardware
 - Interfaces para os programas
- Visão Botton-Up
 - Gerenciador de recursos
 - o Controle do hardware (CPU, memória, barramentos, etc.)
 - o Alocação e compartilhamento

Hardware

Hardware: CPU

- Modo núcleo (kernel)
 - o Acesso completo/direto ao hardware
 - o Pode executar qualquer instrução
 - Maior complexidade
- Modo usuário
 - Acesso ao hardware por meio do SO
 - Limitados a um subconjunto de instruções
 - Menor complexidade
- Chamada de sistema (chaveamento entre modos)
- Multithread e multinúcleo

Hardware: Memória

- Idealmente instantânea
- Camadas
- Memória principal: RAM, ROM, EEPROM, Flash
- Memória Virtual (MMU)

Hardware: I/O

- Duas partes:
 - Dispositivos
 - Controlador
- Padronização
- Driver: programa que conversa com o controlador
- Barramentos

Histórico - Primeiro computador

- Máquina Analítica
- Projetado por Charles Babbage (1792-1871)
- Inteiramente mecânico
- Ada Lovelace (Algoritmo)
- Nunca funcionou apropriadamente

Histórico - Primeira Geração (1945-1955)

- Primeiros computadores digitais
 - o John Atanasoff + Clifford Berry (Iowa)
 - Konrad Zuse (Berlim)
 - Colossus (Inglaterra)
 - o ENIAC (Pensilvânia)
- Válvulas: Baixa confiabilidade
- II Guerra Mundial
- Mesmo grupo projeta, constroi, programa, opera, mantem
- Cartões perfurados
- Operação totalmente manual

Histórico - Segunda Geração (1955-1965)

- Transistores
- Mainframes
- Aumento da confiabilidade
- Comercialização (alto custo)
- Sistema em lote (Batch): IBM 1401 e 7094
- SO: Fortran Monitor System (FMS), IBSYS

Histórico - Segunda Geração (1955-1965)

Histórico - Terceira Geração (1965-1980)

- Circuitos Integrados (CIs)
- Compatibilidade (famílias)
 - \circ 7094 + 1401 \Rightarrow System/360 (OS/360)
- Multiprogramação: aumento de ocupação da CPU
- Spooling
- Timesharing
 - CTSS (MIT)
 - \circ MULTICS (MIT + BellLabs + GE)
- Minicomputadores (linha PDP)
- Versão MULTICS para PDP: UNIX
 - o System V
 - o BSD
- UNIX ⇒ MINIX ⇒ Linux

Histórico - Quarta Geração (1980-presente)

- Cls em larga escala
- Computador Pessoal (microcomputador)
- Control Program for Microcomputers (CP/M)
- IBM PC ⇒ MS-DOS
- Lisa/Macintosh/Windows: GUI

Tipos de Sistemas Operacionais

- mainframes
- servidores
- multiprocessadores
- PCs
- computadores portáteis
- embarcados
- nós sensores
- tempo real
- smart cards

Conceitos: Processos

- Programa em execução
- Associado a cada processo
 - o Espaço de endereçamento (executável, dados do programa, pilha)
 - Recursos (registradores, arquivos)
- SO \rightarrow Gerenciador de processos
 - Criação e término
 - Alocação de CPU
- Processos Relacionados → Comunicação entre Processos
- Árvore de processos
- Sinalização

Conceitos: Processos

- Identificadores
 - o PID: Processo
 - o UID: Usuário
 - o GID: Grupo
- Classe quanto ao uso de recursos
 - o CPU-Bound
 - o IO-Bound
 - Memory-Bound

Conceitos: Espaço de Endereçamento

- Armazenar programas em execução
- SO simples: multiplexação temporal
- SO mais complexo: multiplexação espacial
- Mecanismos de proteção
- Normalmente menor que memória principal
- Caso maior → memória virtual
- ullet SO o abstração do espaço de endereçamento

Conceitos: Arquivos

- Abstração para acesso ao disco e dispositivos E/S
 - Acesso: processos diferentes
 - o Manipulação: por meio do descritor de arquivo
- Diretórios: agrupamento
- Cada processo: diretório de trabalho
- Montagem: associação entre sistemas de arquivos
- Pipe: conectar processos

Conceitos: Segurança

- Acesso a arquivos
- Exemplo: UNIX
 - o Código de 9 bits
 - 3 códigos de 3 bits (rwx)
 - Usuário proprietário
 - Usuários do mesmo grupo
 - Demais usuários

Kernel/Shell/GUI

• Kernel: Núcleo do SO

• Shell: Interpretador de comandos

• GUI: Interface gráfica

