Teoria da Computação Simplificação de Gramáticas Livres de Contexto

Prof. Jefferson Magalhães de Morais

Simplificação de GLC

- Tem por objetivo tornar a gramática mais simples ou de prepará-las para posteriores aplicações.
- É importante notar que, qualquer que seja a transformação efetuada, a linguagem gerada deverá ser sempre a mesma.

Simplificação de GLC

Não reduzem o poder de expressão das GLC

- São importantes para:
 - Construção e otimização de algoritmos
 - Demonstrações de teoremas

Simplificando GLC

- São simplificações:
 - exclusão de símbolos inúteis
 - variáveis ou terminais não-usados
 - para gerar palavras de terminais
 - exclusão de produções vazias da forma A → ε
 - se ε pertence à linguagem,
 - é incluída uma produção vazia específica
 - exclusão de produções da forma A → B
 - substituem uma variável por outra
 - não adicionam qualquer informação de geração de palavra

Eliminação de Símbolos Inúteis

- Símbolos Inúteis : um símbolo (terminal ou não-terminal) é inútil se ele não aparece na derivação de nenhuma sentença.
- Podendo ser:
 - **Estéril**: se não gera nenhuma sequência de terminais pertencente a uma sentença
 - Inalcançável:se não aparece em nenhuma forma sentencial da gramática.

Determinação do conjunto de símbolos férteis

- Qualquer variável gera palavra de terminais
 - gera um novo conjunto de variáveis
 - inicialmente, considera todas as variáveis que geram terminais diretamente (ex: A → a)
 - a seguir, são adicionadas as variáveis que geram palavras de terminais indiretamente (ex:B → Ab)

Determinação do conjunto de símbolos férteis

- Pode ser efetuada através do seguinte algoritmo:
 - Construir o conjunto N0 = Ø e fazer i = 1
 - Repetir

```
Ni = Ni-1 \cup { A | A \rightarrow \alpha \in P e \alpha \in (Ni-1 \cup T)* }
i = i + 1
```

- até que Ni = Ni-1
- Ni é o conjunto de símbolos férteis.
- Se o símbolo inicial não fizer parte do conjunto de símbolos férteis, a linguagem gerada pela gramática é vazia.

- Retirar os símbolos estéreis da gramática: G = ({S,A,B,C,D}, {a,b,c,d}, P, S)
 - P: S \rightarrow a A
 A \rightarrow a | b B
 - $B \rightarrow b \mid dD$ $C \rightarrow cC \mid c$
 - $D \rightarrow dD$

- Solução
 - NO = Ø
 - $N1 = \{A,B,C\}$
 - N2 = {S,A,B,C}
 - $N3 = \{S,A,B,C\} = N2$
- Conjunto de símbolos férteis: {S,A,B,C}
- Gramática simplificada:
 - G' = ({S,A,B,C}, {a,b,c}, P', S)
 - P':
 - $S \rightarrow a A$
 - A → a | b B
 - $B \rightarrow b$
 - $C \rightarrow cC \mid c$

Determinação do conjunto de símbolos alcançáveis

- Qualquer símbolo é atingível a partir do símbolo inicial
 - analisa as produções da gramática a partir do símbolo inicial
 - inicialmente, considera exclusivamente o símbolo inicial
 - após, as produções da gramática são aplicadas e os símbolos referenciados adicionados aos novos conjuntos

Determinação do conjunto de símbolo alcançáveis

- Pode ser efetuada através do seguinte algoritmo:
 - Construir o conjunto V0 = {S} (S = símbolo inicial) e
 fazer i = 1
 - Repetir
 - Vi = { X | existe algum A $\rightarrow \alpha$ X β e A \in Vi-1 e α , β \in (N U T)*} U V i-1
 - i = i + 1
 - até que Vi = Vi-1
 - Vi é o conjunto de símbolos alcançáveis.

Determinação do conjunto de símbolo alcançáveis - Exemplo

- Simplificar a gramática G' do exemplo anterior, retirando os símbolos inalcançáveis.
- Solução:
 - $V0 = \{S\}$
 - V1 = {S, a, A}
 - V2 = {S, a, A, b, B}
 - V3 = {S, a, A, b, B} = V2
 - Conjunto de símbolos alcançáveis: {S, a, A, b, B}
 - Gramática simplificada:
 - G' = ({S,A,B}, {a,b}, P", S)
 - P": S → a A
 A → a | b B

$$B \rightarrow b$$

Transformação de uma GLC qualquer para uma GLC ε-Livre

- Variáveis que constituem produções vazias
 - A \rightarrow ϵ . variáveis que geram ϵ diretamente
 - B \rightarrow A. variáveis que geram ε indiretamente

Transformação de uma GLC qualquer para uma GLC ε-Livre

- Esta transformação sempre é possível e pode ser efetuada pelo seguinte algoritmo:
 - Reunir em um conjunto os não-terminais que derivam direta ou indiretamente a sentença vazia: Ne = {A | A ∈ N e A +→ ε}
 - Construir o conjunto de regras P' como segue:
 - incluir em P' todas as regras de P, com exceção daquelas da forma A → ε
 - para cada ocorrência de um símbolo Ne do lado direito de alguma regra de P, incluir em P' mais uma regra, substituindo este símbolo por ϵ . Isto é, para regra de P do tipo A $\rightarrow \alpha$ B β , B \in Ne e α , $\beta \in$ V* incluir em P' a regra A $\rightarrow \alpha$ β

Transformação de uma GLC qualquer para uma GLC ε-Livre

 Se S ∈ Ne, adicionar a P' as regras S' → S e S' → ε, sendo que N' ficará igual a N ∪ S'. Caso contrário trocar os nomes de S por S' e N por N'.

A nova gramática será definida por: G' = (N', T, P', S')

- Transformar as GLC abaixo, definidas pelo respectivo
- conjunto de regras de produção P, para GLC ε-Livres.
 - G = ({S, D, C}, {b,c,d,e}, P, S)
 - P: $S \rightarrow b D C e$ $D \rightarrow d D \mid \varepsilon$ $C \rightarrow c C \mid \varepsilon$
 - Solução:
 - Ne = {D, C}
 - P': S → b D C e | b C e | b D e | b e
 D → d D | d
 C → c C | c

- Transformar as GLC abaixo, definidas pelo respectivo conjunto de regras de produção P, para GLC ε-Livres.
 - G = ({S}, {a}, P, S)
 - P: S \rightarrow a S | ϵ
 - Solução:

$$Ne = {S}$$

$$P':S' \rightarrow S \mid \epsilon$$

$$S \rightarrow a S \mid a$$

Remoção de Produções Simples

- Produções simples são produções da forma A
 → B onde A e B ∈ N. Onde:
 - A pode ser substituída por B
 - não adiciona informação alguma em termos de geração de palavras

Remoção de Produções Simples

- Podem ser removidas de uma GLC através do seguinte algoritmo:
 - Transformar a GLC em uma GLC ε-livre, se necessário
 - Para todo não-terminal de N, construir um conjunto com os não-terminais que ele pode derivar, em um ou mais passos.
 Isto é, para todo A ∈ N, construir NA = { B | A *→ B }
 - Construir P' como segue:
 - se B →α ∈ P e não é uma produção simples, adicione a P' as produções: A → α para todo A | B ∈ NA
 - A GLC equivalente, sem produções simples, será definida por: G' = (N, T, P', S)

 Transformar as GLC abaixo em gramáticas equivalentes que não apresentem produções simples.

```
    G = ({S, A}, {a,b}, P, S)
    P: S → b S | A
    A → a A | a
    Solução:

            Ns = {A}
            NA = {}
            P': S → b S | a A | a
```

 Transformar as GLC abaixo em gramáticas equivalentes que não apresentem produções simples.

```
G = ( {S, A, B}, {a,b,c}, P, S )
     • P: S \rightarrow a S b \mid A
        A \rightarrow a A \mid B
     B \rightarrow b B c \mid b c

    Solução:

        Ns = \{A, B\}
        NA = \{B\}
        NB = \{\}
        P': S \rightarrow aSb \mid aA \mid bBc \mid bc
                 A \rightarrow aA \mid bBc \mid bc
                  B \rightarrow b B c \mid b c
```

Simplificações combinadas

- Considerando as simplificações de gramáticas LC, nem todas as combinações de simplificação atingem o resultado desejado. Recomenda-se a seguinte sequência de simplificação:
 - 1. Exclusão de produções vazias
 - 2. Exclusão de produções simples
 - 3. Exclusão de símbolos inúteis