Question	Marking Guidance	Mark	Comments
8(a)	Cobalt has variable oxidation states	1	Allow exists as Co(II) and Co(III)
	(It can act as an intermediate that) lowers the activation energy	1	Allow (alternative route with) lower E_a
	$CH_3CHO + 2Co^{3+} + H_2O \rightarrow CH_3COOH + 2Co^{2+} + 2H^+$	1	Allow multiples; allow molecular formulae Allow equations with H ₃ O ⁺
	$\frac{1}{2}O_2 + 2Co^{2+} + 2H^+ \rightarrow 2Co^{3+} + H_2O$	1	•
8(b)(i)	$\left[\text{Co}(\text{H}_2\text{O})_6\right]^{2+} + 3\text{H}_2\text{NCH}_2\text{CH}_2\text{NH}_2 \rightarrow \left[\text{Co}(\text{H}_2\text{NCH}_2\text{CH}_2\text{NH}_2)_3\right]^{2+} + 6\text{H}_2\text{O}$	1	Do not allow en in equation, allow C ₂ H ₈ N ₂
	The number of particles increases / changes from 4 to 7	1	Can score M2 and M3 even if equation incorrect or missing provided number of particles increases.
	So the entropy change is positive / disorder increases / entropy increases	1	
8(b)(ii)	Minimum for M1 is 3 bidentate ligands bonded to Co Ligands need not have any atoms shown but diagram must show 6 bonds from ligands to Co, 2 from each ligand	1	Ignore all charges for M1 and M3 but penalise charges on any ligand in M2
	Minimum for M2 is one ligand identified as H ₂ NNH ₂	1	Allow linkage as -C-C- or just a line.
	Minimum for M3 is one bidentate ligand showing two arrows from separate nitrogens to cobalt	1	

8(c)	Moles of cobalt = $(50 \times 0.203)/1000 = \underline{0.01015}$ mol	1	Allow 0.0101 to 0.0102
	Moles of AgCI = 4.22/143.4 = 0.0294	1	Allow 0.029 If not AgCl (eg AgCl ₂ or AgNO ₃), lose this mark and can only score M1 , M4 and M5
	Ratio = CI^- to $Co = 2.9 : 1$ [$Co(NH_3)_6$] CI_3 (square brackets not essential)	1	Do not allow 3: 1 if this is the only answer but if 2.9:1 seen somewhere in answer credit this as M3
	Difference due to incomplete oxidation in the preparation	1	Allow incomplete reaction. Allow formation [Co(NH ₃) ₅ CI]CI ₂ etc. Some chloride ions act as ligands / replace NH ₃ in complex. Do not allow 'impure sample' or reference to practical deficiencies.