

Calcolo Differenziale

Eugenio Montefusco

08. Ancora sulle funzioni

La funzione

Definizione.

Sia $A \subseteq \mathbb{R}$ un insieme non vuoto e $f : A \to \mathbb{R}$ una legge che ad ogni $x \in A$ fa corrispondere un unico elemento $f(x) \in \mathbb{R}$ diremo che la coppia (f, A) è una funzione a valori reali.

La funzione

Definizione.

Sia $A \subseteq \mathbb{R}$ un insieme non vuoto e $f : A \to \mathbb{R}$ una legge che ad ogni $x \in A$ fa corrispondere un unico elemento $f(x) \in \mathbb{R}$ diremo che la coppia (f, A) è una funzione a valori reali.

Inoltre diremo che A è il dominio della funzione.

La funzione

Definizione.

Sia $A \subseteq \mathbb{R}$ un insieme non vuoto e $f : A \to \mathbb{R}$ una legge che ad ogni $x \in A$ fa corrispondere un unico elemento $f(x) \in \mathbb{R}$ diremo che la coppia (f, A) è una funzione a valori reali.

Inoltre diremo che A è il dominio della funzione.

E che $f(A) = \{y : y = f(x) \mid \forall x \in A\}$ è l'immagine di f.

Definizione.

Sia $f: A \longrightarrow \mathbb{R}$ una funzione a valori reali, diremo che f è iniettiva se

$$x \neq y$$
 implica $f(x) \neq f(y)$

Definizione.

Sia $f: A \longrightarrow \mathbb{R}$ una funzione a valori reali, diremo che f è iniettiva se

$$x \neq y$$
 implica $f(x) \neq f(y)$

Definizione.

Sia $A \subseteq IR$ una funzione a valori reali, diremo che f è suriettiva se

$$\forall y \in \mathbb{R}$$
 $\exists x \in A$ tale che $y = f(x)$

Definizione.

Sia $f: A \longrightarrow IR$ una funzione a valori reali, diremo che f è invertibile se

$$\forall y \in \mathbb{R}$$
 $\exists ! x \in A$ tale che $y = f(x)$

Definizione.

Sia $f: A \longrightarrow \mathbb{R}$ una funzione a valori reali, diremo che f è invertibile se

$$\forall y \in \mathbb{R}$$
 $\exists ! x \in A$ tale che $y = f(x)$

Osservazione.

Sia $f:A \longrightarrow \mathbb{R}$ una funzione a valori reali, se "restringiamo" una funzione f iniettiva al suo insieme immagine otteniamo una funzione invertibile

$$f: A \longrightarrow f(A)$$
 $f^{-1}: f(A) \longrightarrow A$

Un esempio

Osservazione.

Una funzione $f: A \longrightarrow \mathbb{R}$ strettamente monotona, ristretta alla sua immagine, è una funzione invertibile

$$f: A \longrightarrow f(A)$$

$$f: A \longrightarrow f(A)$$
 allora esiste $f^{-1}: f(A) \longrightarrow A$

Osservazione.

Una funzione $f:A\longrightarrow \mathbb{R}$ strettamente monotona, ristretta alla sua immagine, è una funzione invertibile

$$f: A \longrightarrow f(A)$$
 allora esiste $f^{-1}: f(A) \longrightarrow A$

Si noti che

$$f(x) > f(y)$$
 se e solo se $x > y$

Osservazione.

Una funzione $f:A\longrightarrow \mathbb{R}$ strettamente monotona, ristretta alla sua immagine, è una funzione invertibile

$$f: A \longrightarrow f(A)$$
 allora esiste $f^{-1}: f(A) \longrightarrow A$

Si noti che

$$f(x) > f(y)$$
 se e solo se $x > y$

$$f(x) > f(y)$$
 se e solo se $f^{-1}(f(x)) > f^{-1}(f(y))$

Osservazione.

Una funzione $f:A\longrightarrow \mathbb{R}$ strettamente monotona, ristretta alla sua immagine, è una funzione invertibile

$$f: A \longrightarrow f(A)$$
 allora esiste $f^{-1}: f(A) \longrightarrow A$

Si noti che

$$f(x) > f(y)$$
 se e solo se $x > y$

$$f(x) > f(y)$$
 se e solo se $f^{-1}(f(x)) > f^{-1}(f(y))$

da cui

$$w > z$$
 se e solo se $f^{-1}(w) > f^{-1}(z)$

$$y = f(x) = e^x + x$$

$$y = f(x) = e^x + x$$

$$y = f^{-1}(x) = ?$$

Definizione.

Sia $f:A\longrightarrow I$ e $g:I\longrightarrow \mathbb{R}$ due funzioni a valori reali,

Definizione.

Sia $f: A \longrightarrow I$ e $g: I \longrightarrow \mathbb{R}$ due funzioni a valori reali, allora possiamo costruire la funzione composta

Definizione.

Sia $f: A \longrightarrow I$ e $g: I \longrightarrow \mathbb{R}$ due funzioni a valori reali, allora possiamo costruire la funzione composta

$$g \circ f : A \longrightarrow I \longrightarrow J$$

 $x \longmapsto f(x) \longmapsto g(f(x))$

Osservazione.

Siano $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ due funzioni strettamente monotone,

Osservazione.

Siano $f,g: \mathbb{R} \longrightarrow \mathbb{R}$ due funzioni strettamente monotone, allora la loro composizione è una funzione strettamente monotona.

Osservazione.

Siano $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ due funzioni strettamente monotone, allora la loro composizione è una funzione strettamente monotona.

Supponiamo che f sia crescente e g decrescente, allora

$$x > y$$
 implica $f(x) > f(y)$

Osservazione.

Siano $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ due funzioni strettamente monotone, allora la loro composizione è una funzione strettamente monotona.

Supponiamo che f sia crescente e g decrescente, allora

$$x > y$$
 implica $f(x) > f(y)$

$$f(x) > f(y)$$
 implica $g(f(x)) < g(f(y))$

cioè $g \circ f$ è decrescente.

Un esempio

Siano
$$f(x) = -x^2$$
 e $g(x) = e^x$, la loro composizione è la funzione $y = e^{-x^2}$

Un esempio

Siano $f(x) = -x^2$ e $g(x) = e^x$, la loro composizione è la funzione $y = e^{-x^2}$

La funzione seno

Studiamo $y = \sin(x)$

La funzione seno

Studiamo $y = \sin(x)$

La funzione seno

Studiamo $y = \sin(x)$

Si noti che $\sin^{-1}(\sin(x)) = x$ solo se $x \in (-\pi/2, \pi/2)$ e che $\sin(\sin^{-1}(x)) = x$ solo per $x \in (-1, 1)$.

La funzione coseno

Studiamo $y = \cos(x)$

La funzione coseno

Studiamo $y = \cos(x)$

Si noti che $f^{-1}(f(x)) = x$ solo se $x \in (0, \pi)$ e che $f(f^{-1}(x)) = x$ solo per $x \in (-1, 1)$.

La funzione tangente

Studiamo
$$y = tan(x) = \frac{sin(x)}{cos(x)}$$

La funzione tangente

Studiamo
$$y = \tan(x) = \frac{\sin(x)}{\cos(x)}$$

Si noti che $f^{-1}(f(x)) = x$ solo se $x \in (-\pi/2, \pi/2)$ e che $f(f^{-1}(x)) = x$ solo per $x \in \mathbb{R}$!

Protagonisti

Gottfried Wilhelm von Leibniz

1646 - 1716

Protagonisti

Leonhard Euler

1707 - 1783