and let d be any essexpansion yields

$$d+o(\alpha^2)$$
.

 $\phi(x^*)$, we see that $\phi a \in (0, \epsilon)$,

c semidefinite.

part (b).

1153

Proposition 1.1.3: (Second Order Sufficient Optimality Conditions): Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable in an lopen set S. Suppose that a vector $x^* \in S$ satisfies the conditions

$$\nabla f(x^*) = 0, \quad \nabla^2 f(x^*)$$
: positive definite.

Then, x^* is a strict unconstrained local minimum of f. In particular, there exist scalars $\gamma>0$ and $\epsilon>0$ such that

$$f(x) \ge f(x^*) + \frac{\gamma}{2} ||x - x^*||^2, \quad \forall x \text{ with } ||x - x^*|| < \epsilon.$$
 (1.4)

Proof: Let λ be the smallest eigenvalue of $\nabla^2 f(x^*)$. By Prop. A.20(b) of Appendix A, λ is positive since $\nabla^2 f(x^*)$ is positive definite. Furthermore, by Prop. A.18(b) of Appendix A, $d'\nabla^2 f(x^*)d \geq \lambda \|d\|^2$ for all $d \in \Re^n$. Using this relation, the hypothesis $\nabla f(x^*) = 0$, and the second order Taylor series expansion, we have for all d

$$f(x^* + d) - f(x^*) = \nabla f(x^*)'d + \frac{1}{2}d'\nabla^2 f(x^*)d + o(\|d\|^2)$$

$$\geq \frac{\lambda}{2}\|d\|^2 + o(\|d\|^2)$$

$$= \left(\frac{\lambda}{2} + \frac{o(\|d\|^2)}{\|d\|^2}\right)\|d\|^2.$$

It is seen that Eq. (1.4) is satisfied for any $\epsilon>0$ and $\gamma>0$ such that

$$\frac{\lambda}{2} + \frac{o(\|d\|^2)}{\|d\|^2} \geq \frac{\gamma}{2}, \qquad \forall \ d \ \ \text{with} \ \|d\| < \epsilon.$$

Q.E.D.

EXERCISES

1.1.1

For each value of the scalar β , find the set of all stationary points of the following function of the two variables x and y

$$f(x,y) = x^{2} + y^{2} + \beta xy + x + 2y.$$

Which of these stationary points are global minima?

1.1.2

In each of the following problems fully justify your answer using optimality conditions.

- (a) Show that the 2-dimensional function $f(x,y) = (x^2 4)^2 + y^2$ has two global minima and one stationary point, which is neither a local maximum nor a local minimum.
- (b) Find all local minima of the 2-dimensional function $f(x,y) = \frac{1}{2}x^2 + x\cos y$.
- (c) Find all local minima and all local maxima of the 2-dimensional function $f(x,y) = \sin x + \sin y + \sin(x+y)$ within the set

$$\{(x,y) \mid 0 < x < 2\pi, \ 0 < y < 2\pi\}.$$

- (d) Show that the 2-dimensional function $f(x,y) = (y-x^2)^2 x^2$ has only one stationary point, which is neither a local maximum nor a local minimum.
- (e) Consider the minimization of the function f in part (d) subject to no constraint on x and the constraint $-1 \le y \le 1$ on y. Show that there exists at least one global minimum and find all global minima.

1.1.3 Hes75

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Suppose that a point x^* is a local minimum of f along every line that passes through x^* ; that is, the function

$$q(\alpha) = f(x^* + \alpha d)$$

is minimized at $\alpha = 0$ for all $d \in \Re^n$.

- (a) Show that $\nabla f(x^*) = 0$.
- (b) Show by example that x^* need not be a local minimum of f. Hint: Consider the function of two variables

$$f(y,z) = (z - py^2)(z - qy^2),$$

where 0 ; see Fig. 1.1.5. Show that <math>(0,0) is a local minimum of f along every line that passes through (0,0). Furthermore, if p < m < q, then $f(y, my^2) < 0$ if $y \neq 0$ while f(0,0) = 0.

1.1.4

Use optimality conditions to show that for all x > 0 we have

$$\frac{1}{x} + x \ge 2.$$

1.1.2

In each of the following problems fully justify your answer using optimality conditions.

- (a) Show that the 2-dimensional function $f(x,y) = (x^2 4)^2 + y^2$ has two global minima and one stationary point, which is neither a local maximum nor a local minimum.
- (b) Find all local minima of the 2-dimensional function $f(x,y) = \frac{1}{2}x^2 + x\cos y$.
- (c) Find all local minima and all local maxima of the 2-dimensional function $f(x,y)=\sin x+\sin y+\sin(x+y)$ within the set

$$\{(x,y) \mid 0 < x < 2\pi, \ 0 < y < 2\pi\}.$$

- (d) Show that the 2-dimensional function $f(x,y) = (y-x^2)^2 x^2$ has only one stationary point, which is neither a local maximum nor a local minimum.
- (e) Consider the minimization of the function f in part (d) subject to no constraint on x and the constraint $-1 \le y \le 1$ on y. Show that there exists at least one global minimum and find all global minima.

1.1.3 [Hes75]

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Suppose that a point x^* is a local minimum of f along every line that passes through x^* ; that is, the function

$$g(\alpha) = f(x^* + \alpha d)$$

is minimized at $\alpha = 0$ for all $d \in \mathbb{R}^n$.

- (a) Show that $\nabla f(x^*) = 0$.
- (b) Show by example that x^* need not be a local minimum of f. Hint: Consider the function of two variables

$$f(y,z) = (z - py^2)(z - qy^2),$$

where 0 ; see Fig. 1.1.5. Show that <math>(0,0) is a local minimum of f along every line that passes through (0,0). Furthermore, if p < m < q, then $f(y,my^2) < 0$ if $y \neq 0$ while f(0,0) = 0.

1.1.4

Use optimality conditions to show that for all x > 0 we have

$$\frac{1}{x} + x \ge 2.$$

Sec. 1.1 Optimality Conditions

Figure 1.1.5. Three-dimensional graph of the function $f(y,z) = (z-py^2)(z-qy^2)$ for p=1 and q=4 (cf. Exercise 1.1.3). The origin is a local minimum with respect to every line that passes through it, but is not a local minimum of f.

1.1.5

Find the rectangular parallelepiped of unit volume that has the minimum surface area. Hint: By eliminating one of the dimensions, show that the problem is equivalent to the minimization over x > 0 and y > 0 of

$$f(x,y) = xy + \frac{1}{x} + \frac{1}{y}.$$

Show that the sets $\{(x,y)\mid f(x,y)\leq \gamma,\ x>0,\ y>0\}$ are compact for all scalars γ .

1.1.6 (The Weber Point of a Set of Points)

We want to find a point x in the plane whose sum of weighted distances from a given set of points y_1, \ldots, y_m is minimized. Mathematically, the problem is

minimize
$$\sum_{i=1}^{m} w_i \|x - y_i\|$$

subject to $x \in \Re^n$,

where w_1, \ldots, w_m are given positive scalars.

(a) Show that there exists a global minimum for this problem and that it can be realized by means of the mechanical model shown in Fig. 1.1.6.

- (b) Is the optimal solution always unique?
- (c) Show that an optimal solution minimizes the potential energy of the mechanical model of Fig. 1.1.6, defined as $\sum_{i=1}^{m} w_i h_i$, where h_i is the height of the *i*th weight, measured from some reference level.

Note: This problem stems from Weber's work [Web29], which is generally viewed as the starting point of location theory.

Figure 1.1.6. Mechanical model (known as the Varignon frame) associated with the Weber problem (Exercise 1.1.6). It consists of a board with a hole drilled at each of the given points y_i . Through each hole, a string is passed with the corresponding weight w_i attached. The other ends of the strings are tied with a knot as shown. In the absence of friction or tangled strings, the forces at the knot reach equilibrium when the knot is located at an optimal solution x^* .

1.1.7 (Fermat-Torricelli-Viviani Problem)

Given a triangle in the plane, consider the problem of finding a point whose sum of distances from the vertices of the triangle is minimal. Show that such a point is either a vertex, or else it is such that each side of the triangle is seen from that point at a 120 degree angle (this is known as the Torricelli point). Note: This problem, whose detailed history is traced in [BMS99], was suggested by Fermat to Torricelli who solved it. Viviani also solved the problem a little later and proved the following generalization: Suppose that x_i , i = 1, ..., m, are points in the plane, and x is a point in their convex hull such that $x \neq x_i$ for all i, and the angles $x_i x \bar{x}_{i+1}$, i < m, and $x_m \bar{x}_{x_1}$ are all equal to $2\pi/m$. Then x minimizes $\sum_{i=1}^{m} \|z - x_i\|$ over all z in the plane (show this as an exercise by using sufficient optimality conditions; compare with the preceding exercise). Fermat is credited with being the first to study systematically optimization problems in geometry.