Transformações entre modelos Parte 1

Profa. Carla Diacui Medeiros Berkenbrock

Departamento de Ciência da Computação Centro de Ciências Tecnológicas - CCT carla.berkenbrock@udesc.br

https://www.udesc.br/colabora

Transformações entre modelos

Aula de hoje...

- Modelos de dados
 - Modelo Conceitual
 - Modelo Lógico
- Transformação entre Modelos
 - Passos para a Transformação ER para relacional
- Relacionamentos 1:1
- Relacionamentos 1:n
- Relacionamentos n:n

Modelos de Banco de Dados

Modelo de dados

Modelo para organização dos dados de um banco de dados

Descrição sobre os tipos de informações que estão armazenadas em um banco de dados

 Exemplo: Informações sobre produtos (código, preço e descrição)

O modelo pode variar de acordo com a intenção de quem está modelando os dados. Por exemplo:

- Modelo utilizado para explicar a um usuário leigo sobre a organização de um BD
- Modelo usado por um técnico para otimizar o desempenho de um BD

Modelos de Banco de Dados

Existem modelos para diferentes níveis de abstração de representação de dados

- Modelo conceitual independente de implementação em SGBD
- Modelo lógico dependente de SGBD
- Modelos físico
 - organização dos arquivos de dados em disco (organização seqüencial, uso de índices hashing ou B-trees, ...)
 - não são manipulados por usuários ou aplicações que acessam o BD

Modelo Conceitual

Modelo Conceitual =

Modelo de dados abstrato, que descreve a estrutura de um banco de dados de forma independente de um SGBD particular

Técnica mais difundida: Modelo Entidade-Relacionamento (ER)

Diagrama ER

Modelo Lógico

Modelo Lógico =

Modelo de que representa a estrutura de dados de um banco de dados conforme vista pelo usuário do SGBD

O modelo lógico mais amplamente utilizado: modelo relacional

Alunos matrícula nome anolngresso curso Cursos código nome

Projeto Lógico de BD

Projeto Lógico =

Transformação de um modelo lógico que implementa, a nível de SGBD relacional, os dados representados abstratamente no modelo ER

Visão Geral do Projeto Lógico de BD

- Um determinado modelo ER pode ser implementado através de diversos modelos relacionais
- Diferentes modelos podem resultar em diferentes desempenhos
- Algumas regras, baseadas na experiência de alguns autores podem ser aplicadas
- Contudo, o modelo relacional inicial pode ser refinado até que ele atinja um modelo satisfatório

Transformação ER para relacional

Objetivos básicos:

- Bom desempenho de instruções de consulta e alteração do BD - diminuir número de acesso a disco
- Simplificar o desenvolvimento e a manutenção de aplicações

Até pouco tempo atrás era grande a preocupação em reduzir o espaço de armazenameto do BD...

Transformação ER para relacional

Principios por traz das regras de tradução:

- Evitar junções: ter os dados necessários a uma consulta em uma única linha
 - dados de uma linha armazenados contiguamente em disco
 - quando possível, preferivel ter dados necessários a consulta em uma única linha

Diminuir o número de chaves

 SGBD normalmente cria índice para chave primária, o que ocupa espaço em disco

Evitar campos opcionais

- SGBD usualmente não desperdiçam espaço quando o campo esta vázio
- Problema ocorre quando a obrigatoriedade deve ser feita pelos programas

Transformação ER para relacional

Cliente (CodCliente, Nome, NomeContato, Endereço, Telefone)

ou:

Cliente (<u>CodCliente</u>, Nome, NomeContato)

ClienteEnder (<u>CodCliente</u>, Endereço, Telefone)

CodCliente referencia Cliente

© Carlos A. Heuser

Passos para a Transformação ER para relacional

- 1 Tradução inicial de entidades e respectivos atributos
- 2 Tradução de relacionamentos e respectivos atributos
- Tradução de generalizações/especializações

Implementação inicial de entidades

- Cada entidade é convertida em uma tabela
- Cada atributo da entidade define uma coluna dessa tabela
- Atributos identificadores da entidade correspondem a chave primária da tabela

Tradução inicial

Passos que seguem podem fundir tabelas

Entidades - Implementação inicial

© Carlos A. Heuser

Entidades - Implementação inicial

Nomes e atributos de tabelas:

- Não aconselhável transcrever nomes de atributos para nomes de colunas
 - Conveniente manter nomes de colunas curtos
 - Nomes de colunas em SGBD relacional não deve conter brancos
 - Nomes compostos de diversas palavras devem ser evitados
- Nomes de colunas não necessitam manter o nome da tabela
 - Exemplo: Preferível usar nome a usar nomePess ou nomePessoa
 - SQI permite Pessoa.nome
 - Exceção: chave primária
- Recomendação em padronizar abreviaturas (Exemplo: cod, id, no ou num)

Relacionamento - relacionamento identificador

© Carlos A. Heuser

Relacionamento - relacionamento identificador

Relacionamento - Tabela Própria

Relacionamento do tipo n:n

Relacionamento - Tabela Própria

Uma das entidades que participa do relacionamento tem cardinalidade máxima 1

Modelos de dados

Relacionamento - Fusão de Tabelas

Relacionamento do tipo 1:1

@Carlos A. Heuser

Relacionamentos 1:1

Tino do	Regra de implementação		
Tipo de relacionamento	Tabela própria	Adição de coluna	Fusão de tabelas
(0,1) (0,1)	±	✓	×
(0,1) (1,1)	Ŧ	±	✓
(1,1)	Ŧ	Ŧ	✓

Convenção:

✓ - alternativa preferida

± - pode ser usada – 1ª opção

∓ - pode ser usada - 2ª opção

x - não cabe

Relacionamentos 1:1 - Ambas entidades tem participação opcional

Relacionamentos 1:1 - Ambas entidades tem participação opcional

```
adição de colunas:
           Mulher(identM, nome, idenH, data, regime)
                 identH referencia Homem
           Homem(identH, nome)
tabela propria:
           Mulher(<u>identM</u>, nome)
           Homem(identH, nome)
           Casamento(identM, identH, data, regime)
                 identM referencia Mulher
                 identH referencia Homem
fusão de tabelas(qual a chave primária?)
           Casamento(identM, nomeM, identH, nomeH, data,
```

regime)

Relacionamentos 1:1 - Ambas entidades tem participação opcional

Solução por fusão de tabelas é inviável

chave primária artificial

Solução por adição de colunas é melhor

- Menor número de junções
 - Menos número de chaves

Solução por tabela própria aceitável

Relacionamentos 1:1

Tino do	Regra de implementação		
Tipo de relacionamento	Tabela própria	Adição de coluna	Fusão de tabelas
(0,1) (0,1)	±	✓	×
(0,1) (1,1)	Ŧ	±	✓
(1,1) (1,1)	Ŧ	Ŧ	✓

Convenção:

√ - alternativa preferida

± - pode ser usada - 1ª opção

∓ - pode ser usada – 2ª opção

× - não cabe

Relacionamentos 1:1 - Uma entidade opcional, outra obrigatória

Relacionamentos 1:1 - Uma entidade opcional, outra obrigatória

```
fusão de tabelas
```

Correntista(codCorrent, nome, codCartao, dtExp)

adição de colunas:

Correntista(codCorrent, nome)

 ${\sf Cartao}(\underline{{\sf codCorrent}})$

codCorrent referencia Correntista

tabela propria:

Correntista(codCorrent, nome)

Cartao(codCartao, dtExp)

 ${\sf CartaoCorrentista}(\underline{{\sf codCartao}}, \allowbreak {\sf codCorrent})$

codCorrent referencia Correntista codCartao referencia Cartao

Relacionamentos 1:1 - Uma entidade opcional, outra obrigatória

Solução por fusão de tabelas é melhor em termos de número de junções e número de chaves

Solução por adição de colunas é aceitável

Solução por tabela própria é a pior solução

- maior número de junções
- maior número de índices
- nenhuma tem problema de campos opcionais

Relacionamentos 1:1 - Uma entidade opcional, outra obrigatória

Tipo do	Regra de implementação		
Tipo de relacionamento	Tabela própria	Adição de coluna	Fusão de tabelas
(0,1) (0,1)	±	✓	×
(0,1) (1,1)	Ŧ	±	✓
(1,1)	Ŧ	Ŧ	✓

Convenção:

√ - alternativa preferida

± - pode ser usada – 1ª opção

∓ - pode ser usada − 2ª opção

x - não cabe

Relacionamentos 1:1 - Ambas as entidades são obrigatórias

©Carlos A. Heuser

Relacionamentos 1:1 - Ambas as entidades são obrigatórias

fusão de tabelas

Conferencia(codConf, nome, dtlnstComOrg,EndComOrg)

Nenhuma das demais alternativas atende plenamente!

 Tabelas teriam mesma chave e relação 1 para 1 entre as suas linhas

Relacionamentos 1:1 - Ambas as entidades são obrigatórias

Tipo do	Regra de implementação		
Tipo de relacionamento	Tabela própria	Adição de coluna	Fusão de tabelas
(0,1) (0,1)	±	✓	×
(0,1) (1,1)	Ŧ	±	✓
(1,1) (1,1)	Ŧ	Ŧ	✓

Convenção:

✓ - alternativa preferida

x - não cabe

± - pode ser usada – 1ª opção

∓ - pode ser usada - 2ª opção

© Carlos A. Heuser

Relacionamentos 1:n

Tino do	Regra de implementação		
Tipo de relacionamento	Tabela própria	Adição de coluna	Fusão de tabelas
(0,1) (_,n)	±	✓	×
(1,1) (_,n)	×	✓	×

Convenção:

✓ - alternativa preferida

± - pode ser usada - 1ª opção

x - não cabe

Relacionamentos 1:n - caso 1

©Carlos A. Heuser

Relacionamentos 1:n - Discussão do caso 1

Solução por adição de colunas é melhor em termos de número de junções e número de chaves

Solução por tabela própria é aceitável

- é melhor em relação a campos opcionais
- perde em relação a junções e número de chaves

Relacionamentos 1:n - caso 2

Tino do	Regra de implementação		
Tipo de relacionamento	Tabela própria	Adição de coluna	Fusão de tabelas
(0,1) (_,n)	±	✓	×
(1,1) (_,n)	×	✓	×

Convenção:

✓ - alternativa preferida

± - pode ser usada – 1ª opção

x - não cabe

Relacionamentos 1:n - caso 2

©Carlos A. Heuser

Relacionamentos 1:n - Discussão do caso 2

Solução por adição de colunas é melhor do que tabela própria em termos de número de junções e número de chaves

Solução por fusão de tabelas não se aplica

• implicaria em redundância de dados

Relacionamentos 1:n

Tino do	Regra de implementação		
Tipo de relacionamento	Tabela própria	Adição de coluna	Fusão de tabelas
(0,1) (_,n)	±	✓	×
(1,1) (_,n)	×	✓	×

Convenção:

✓ - alternativa preferida

± - pode ser usada – 1ª opção

× - não cabe

© Carlos A. Heuser

Relacionamentos n:n

Tino do	Regra de implementação		
Tipo de relacionamento	Tabela própria	Adição de coluna	Fusão de tabelas
(_n) (_,n)	✓	×	×

Convenção:

√ - alternativa preferida

× - não cabe

© Carlos A. Heuser

Relacionamento - Tabela Própria

Atividade 1

Considere as seguintes alternativas de implementação de um BD relacional:

Alternativa 1

Aluno(codAl, nome, codCurso, endereco)

Alternativa 2

Aluno(<u>codAl</u>, nome, codCurso) EnderecoAluno(<u>codAl</u>, endereco) codAl referencia Aluno

Discuta qual das alternativas é preferível, considerando os princípios que baseiam as regras de tradução de diagramas ER

Atividade 2

(POSCOMP 2008) Considere o projeto lógico do banco de dados representado pelo modelo E-R abaixo.

Diga de que tabelas e campos ele resulta (obs: campos chave estão sublinhados):

- A) ARTISTAS (cod-art, nome, gênero) PARTICIPANTES (cod-art, cod-disco) DISCOS (cod-disco, título, data) PRODUÇÃO (cod-grav, cod-disco, estúdio) GRAVADORA (cod-grav, nome-grav)
- B) ARTISTAS (cod-art, nome, gênero) PARTICIPANTES (cod-art, cod-disco) DISCOS (cod-disco, título, data, cod-grav, estúdio) GRAVADORA (cod-grav, nome-grav)
- C) ARTISTAS (cod-art, nome, gênero) PARTICIPANTES (cod-art, cod-disco) DISCOS (cod-disco, título, data, cod-grav, nome-grav, estúdio)
- D) ARTISTAS (cod-art, nome, gênero) DISCOS (cod-disco, título, data, cod-art) PRODUCÃO (cod-grav, cod-disco, estúdio) GRAVADORA (cod-grav, nome-grav)
- E) ARTISTAS (cod-art, nome, gênero) DISCOS (cod-disco, título, data, cod-grav, estúdio, cod-art) GRAVADORA (cod-grav, nome-grav)

Modelos de dados

FIM

Profa. Carla Diacui Medeiros Berkenbrock carla.berkenbrock@udesc.br

