Caches: Memory Coherence and Consistency

On this Lesson

- Difference between memory coherence and consistency
- Mechanisms for dealing with memory coherence and consistency
 - Snooping
 - Directory-based

Coherence vs. Consistency

- In a mutiltiprocessing system the main memory is shared by many processors with local caches.
- At a given time a memory block could be allocated in the local cache of several processors.
- When any change in a shared memory block is updated in each of the copies on the local cache of the sharing processors, the memory system is said to be coherent.
- When every change in a shared memory block is updated in each of the copies on the local cache of the sharing processors, in the same order, the memory system is said to be consistent.

Source of Memory Inconsistency

- In addition to the accesses generate by the CPU, the main memory of a microprocessor is also accessed by external devices through a mechanism known as Direct Memory Access (DMA).
- Due to this DMA mechanisms the data in main memory is not always consistent with corresponding data in the cache.
- This problem arises under two circumstances:
 - An external device writes a memory block that has a copy in the cache, but the cache copy is not updated
 - An external device reads a memory block that has a copy in the cache that was written by the CPU, but not updated in main memory.
- The primary memory or the cache needs to be refreshed when a data inconsistency arises

Old Mechanisms for Memory Consistency

- Write-back
 - Memory is refreshed with a victim block that has been written in the cache
- Write-through
 - Memory is refreshed every time a cache block is written

Snooping for Memory Coherence Mechanism

- Used for uniprocessing systems as well as multiprocessors systems
- The cache is notified when any external device attempts to access a block of primary memory that has a copy in the cache.
- The action taken depends on the type of access (read/write) and the type of snooping mechanism.
- There are two types of snooping mechanisms
 - Write- invalidate
 - Write-update

Snooping Write-Invalidate

Write Access:

- The external device writes on a primary memory block
- Its corresponding block in the cache is invalidated

Read Access:

- An external device attempts to read a block in primary memory
- Its corresponding block in the cache is written back into primary memory if it was written in the cache
- Access to the external device is then granted

Snooping Write-Update

Write Access:

- The external device writes a block of primary memory
- The corresponding block of the cache is replaced with the new block placed by the external device in primary memory

Read Access:

- An external device attempts to read a block in primary memory
- Its corresponding block in the cache is written back into primary memory if it was written in the cache
- Access to the external device is then granted

Directory-Based Memory Coherence Mechanism

- Is the mechanism mostly used in large shared-memory multiprocessing systems.
- Coherence is maintain through a directory of shared memory blocks.
- Local caches must ask permission to the directory to access blocks from main memory.
- When a shared memory block is changed in main memory, the directory either invalidates or updates the copies in local caches.

Snooping vs. Directory-Based Coherence

- Snooping
 - Faster
 - Does not scale well because memory accesses are broadcast to all local caches
- Directory-Based
 - Slower
 - Scales better because memory accesses are only sent to the local caches sharing the memory block

Lesson Outcomes

- Understand the difference between memory coherence and consistency
- Understand the snooping and directory-based memory coherence mechanisms