Carbono

El C es la fuente principal para los compuestos orgánicos, ya que cuenta con propiedades únicas. El ciclo del C evidencia su importancia en la naturaleza. Muy comúnmente se encuentra como grafito y rara vez como diamante.

Excepciones: Donde el carbono forma compuestos inorgánicos - CO, CO₂, carbonato, bicarbonato y cianuro.

Características de los Orgánicos: Tienen mayor variedad de reactividad formando una infinidad de compuestos pero su velocidad de reacción es menor a los inorgánicos. También son menos resistentes al calor y poseen mayor facilidad para ser polimerizados, oxidados o reducidos.

Estructura: Posee un número atómico de 6 por lo que su configuración electrónica es: 1s² 2s² 2p² Pero debido a que es más estable cuando está enlazado con 4 enlaces ocurre el <mark>salto electrónico</mark>, donde se mueven los electrones desde el orbital 2s al 2p (tetravalencia).

Tetravalencia: Puede formar 4 enlaces covalentes, por lo tanto solo se une a moléculas con electronegatividad similar como H, N, O, Halógenos, etc.

Hibridación: Explica la formación de orbitales híbridos a partir de los originales es una de las teorías que sustenta a la estereoquímica que es el estudio de la distribución tridimensional de los átomos en una molécula, en el caso del Carbono tenemos 3 tipos de hibridación.

 $s\rho^3$ formado por un orbital s y 3 orbitales ρ (ρ_x , ρ_y , ρ_z)

Es el más común, el carbono aprovecha su 108.70 pm tetravalencia formando 4 enlaces simples (4 σ) (saturado) con una geometría tetraédrica con enlaces de 109,5° (ej: metano).

 $s\rho^2$ formado por un orbital s y 2 orbitales ρ (ρ_x , ρ_y)

H 121.3° H 1 carbono forma un enlace doble (insaturado, σ 108.7 pm con π) con otro y 2 enlaces simples (2 σ) con H formando geometría trigonal plana con enlaces de 120° (ej: eteno).

 $s\rho$ formado por un orbital s y el orbital ρ_x

Carbono en Cadenas Hidrocarbonadas: Pueden clasificarse dependiendo del número de C que estén unidos a este por enlace apolar.

- **Primario (1°)**: Posee solo un C unido a él, usualmente se ubican en los extremos.
- Secundario (2°): Poseen 2 C unidos a él y corresponden a un eslabón en la cadena.
- Terciario (3°): Poseen 3 C unidos a él, normalmente son los que poseen ramificaciones o radicales.
- Cuaternario (4°): Poseen 4 C unidos a él por lo tanto no presentan H ya que sus 4 enlaces están ocupados.

Clasificación de Hidrocarburos por tipo de Cadena

Aciclicos, cíclicos y aromáticos

	Hidrocarburos acíclicos	
Cadenas abiertas lineales	Se disponen en:	Cadenas abiertas ramificadas
Éstas pueden ser:		
Saturadas los átomos se unen por enlaces simples	Insaturadas los átomos se unen por enlaces dobles o triples	
Alcanos (enlaces simples) fórmula general; CnH2n+2	Alquenos (enlaces dobies) fórmula general: CnH2n	Alquinos (enlaces triples) fórmula general: CnH2n-n
Butano H H H H	Propileno o propeno H CH ₃	Acetileno o etino
н—с—с—с—н	c=c H	н—с≡с—н

	Hidrocarburos cíclicos		
Se disponen en cadenas cerradas formando ciclos y se pueden clasificar en:			
Cicloalcanos unidos por enlaces simples	Cicloalquenos unidos por enlaces dobles	Cicloalquinos unidos por enlaces triples	
Ciclopropano	Ciclohexeno CH ₂	Ciclopentino	
H ₂ C — CH ₂	H ₂ C CH ₂	CH ₂ CH ₂ C-CH ₂	