DISCRETE MATHEMATICS (离散数学)

云南大学数学系 李建平

Chapter 9 Semigroups and Groups

- 9.1 Binary Operations Revisited
- 9.2 Semigroups
- 9.3 Products and Quotients of Semigroups
- 9.4 Groups
- 9.5 Products and Quotients of Groups

9.1 BINARY OPERATIONS REVISITED

A **binary operation** on a set A is an everywhere defined function $f: A \times A \rightarrow A$. Observe the following properties that a binary operation must satisfy:

- 1. Since $Dom(f)=A\times A$, f assigns element f(a,b) of A to each ordered pair(a,b) in $A\times A$. That is, the binary operation must be defined for each ordered pair of elements of A.
 - 2. Since a binary operation is a function, only one

element of A is assigned to each ordered pair.

Thus we can say that a binary operation is a rule that assigns to each ordered pair of elements of A a unique element of A.

It is customary to denote binary operations by a symbol such as *, instead of f, and to denote the element assigned to (a,b) by a*b [instead of *(a,b)]. If a and b are elements in A, then $a*b\in A$, and this property is often described by saying that A is **closed** under the operation *.

EXAMPLE 1 Let A = Z. Define a*b as a+b. Then * is a binary operation on Z.

EXAMPLE 5

Let A = Z. Define a*b as $\max\{a,b\}$. Then * is a binary operation.

EXAMPLE 6

Let A = P(S), for some set S. If V and W are subsets of S, define V * W as $V \cup W$. Then * is a binary operation on A. Moreover, if we define V * W as $V \cap W$, then * is another binary operation on A.

EXAMPLE 7

Let M be the set of all $n \times n$ Boolean matrices for a fixed n. Define A * B as $A \vee B$. Then * is a binary operation. This is also true of $A \wedge B$.

Tables

If $A = \{a_1, a_2, \dots, a_n\}$ is a finite set, we can define a binary operation of A by means of a table as shown in Figure 9.1. The entry in position i, j denotes the element $a_i * a_j$.

Figure 9.1

If $A = \{a,b\}$, we shall determine the number of binary operations that can be defined on A. Every binary operation * on A can be described by a table

*	a	b
a		
b		

Since every blank can be filled in with the element a or b, we conclude that there are

 $2 \cdot 2 \cdot 2 \cdot 2 = 2^4$ or 16 ways to complete the table.

Thus, there are 16 binary operations on A.

Properties of Binary Operations

A binary operation on a set A is said to be commutative (交換) if

$$a*b=b*a$$

for all elements a and b in A

A binary operation that is described by a table is commutative if and only if the entries in the table are symmetric with respect to the main diagonal.

A binary operation * on a set A is said to be

associative (结合) if

$$a*(b*c) = (a*b)*c$$

for all elements a, b, and c in A.

EXAMPLE 16

Let * be a binary operation on a set A, and suppose that * satisfies the following properties for any a, b, and c in A.

- 1. a = a * a Idempotent property (幂等)
- 2. a*b=b*a Commutative property
- 3. a*(b*c)=(a*b)*c Associative property

Define a relation \leq on A by

 $a \le b$ if and only if a = a * b

Show that (A, \leq) is a poset, and for all a, b in A, GLB(a,b) = a * b.

Solution: By the definition of the binary on the set A.

9.2 SEMIGROUPS (半群)

A **semigroup** is a nonempty set S together with an associative binary operation * defined on S. We shall denote the semigroup by (S,*) or S. We also refer to a*b as the **product** of a and b.

The semigroup (S,*) is said to be commutative if * is a commutative operation.

EXAMPLE 2

The set P(S), where S is a set, together with the operation of union is a commutative semigroup.

EXAMPLE 6

$$\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$$

So that \cdot is an associative binary operation, and (A^*,\cdot) is a semigroup. The semigroup (A^*,\cdot) is called the **free semigroup** (自由半群) generated by A.

Theorem 1

If a_1, a_2, \dots, a_n , $n \ge 3$, are arbitrary elements of a semigroup, then all products of the elements a_1, a_2, \dots, a_n that can be formed by inserting meaningful parentheses arbitrarily are equal.

If a_1, a_2, \cdots, a_n are elements in a semigroup (S, *), we shall write their product as

$$a_1 * a_2 * \cdots * a_n$$

omitting the parentheses.

An element e in a semigroup (S,*) is called an **identity** element (幺元素、单位元素) if

$$e * a = a * e = a$$

for all $a \in S$.

A **monoid** (含幺半群) is a semigroup (S,*) that has an identity.

Let (S,*) be a semigroup and T a subset of S. If T is closed under the operation *(that is, $a*b \in T$ whenever a and b are elelments of T), then (T,*) is called a subsemigroup of (S,*). Similarly, let (S,*)be a monoid with identity e, and let T be a nonempty subset of S . If T is closed under the operation * and $e \in T$, then (T,*) is called a submonoid (含幺子半群) of (S,*).

Suppose that (S,*) is a semigroup, and let $a \in S$. For $n \in Z^+$, we define the powers of a^n recursively as follows:

$$a^{1} = a, a^{n} = a^{n-1} * a, n \ge 2.$$

Moreover, if (S,*) is a monoid, we also define $a^0 = e$.

It can be shown that if m and n are nonnegative integers, then

$$a^m * a^n = a^{m+n}.$$

Isomorphism (同构) and Homomorphism (同态) Let (S,*) and (T,*) be two semigroups. A function

 $f:S \to T$ is called an **isomorphism** (同构) from (S,*) to (T,*) if it is a one-to-one correspondence from S to T, and if

$$f(a*b) = f(a)*'f(b)$$

for all a and b in S.

If f is an isomorphism from (S,*) to (T,*'), f exists and is a one-to-one correspondence from T to S. We now show that f^{-1} is an isomorphism from (T,*') to (S,*). Let a and b be any elements of T. Since f is onto, we can find elements a and b in S such that f(a) = a and f(b) = b. Then $a = f^{-1}(a)$ and

$b = f^{-1}(b')$. Now we have

$$f^{-1}(a'*b')$$
= $f^{-1}(f(a)*'f(b))$
= $f^{-1}(f(a*b))$
= $(f^{-1} \circ f)(a*b)$
= $a*b$
= $f^{-1}(a')*f^{-1}(b')$

Hence f^{-1} is an isomorphism.

We now say that the semigroup (S,*) and (T,*)

are **isomorphic** and we write $S \simeq T$.

To show that two semigroups (S,*) and (T,*') are isomorphic, we use the following procedure:

Step 1: Define a function $f: S \to T$ with dom(f) = S.

Step 2: Show that f is one-to-one.

Step 3: Show that f is onto.

Step 4: Show that f(a*b) = f(a)*'f(b).

EXAMPLE 18

Let $S = \{a,b,c\}$ and $T = \{x,y,z\}$. It easy to verify that the following operation tables give semigroup

structures for S and T, respectively.

*	a	b	$\boldsymbol{\mathcal{C}}$	*	$\boldsymbol{\mathcal{X}}$	y	$\boldsymbol{\mathcal{Z}}$	
a	a	b	$\boldsymbol{\mathcal{C}}$	\mathcal{X}	Z	$\boldsymbol{\mathcal{X}}$	У	
b	b	$\boldsymbol{\mathcal{C}}$	\boldsymbol{a}	y	\mathcal{X}	y	Z	
C	C	a	b	Z	y	\overline{z}	\overline{x}	

Let

$$f(a) = y$$
$$f(b) = x$$
$$f(c) = z$$

Replacing the elements in S by their images and rearranging the table, we obtain exactly the table for T. Thus S and T are isomorphic.

Theorem 2

Let(S,*) and (T,*') be monoids with identities e and e', respectively. Let $f: S \to T$ be an isomorphism. Then f(e) = e'.

Let (S,*) and (T,*) be two semigroups. An everywhere-defined function $f:S \to T$ is called a **homomorphism** (同态) from (S,*) to (T,*) if f(a*b) = f(a)*'f(b)

for all a and b in S. If f is also onto, we say that T is a **homomorphic image** (同态像) of S.

Theorem 3

Let (S,*) and (T,*) be monoids with identities e and e', respectively. Let $f:S \to T$ be a homomorphism from (S,*) onto (T,*). Then f(e)=e'.

Theorem 4

Let f be a homomorphism from a semigroup (S,*) to a semigroup (T,*). If S is a subsemigroup of (S,*). Then $f(S') = \{t \in T | t = f(x) \text{ for some } s \in S'\}$, the image of S under f, is a subsemigroup of (T,*).

Theorem 5

If f is a homomorphism from a commutative semigroup (S,*) onto a semigroup (T,*), then (T,*) is also commutative.

9.3 PRODUCTS AND QUOTIENTS OF SEMIGROUPS

Theorem 1

If (S,*) and (T,*) are semigroups, then $(S\times T,*)$ is a semigroups, where * "is defined by $(s_1,t_1)*$ " $(s_2,t_2)=(s_1*s_2,t_1*'t_2)$.

If S and T are monoids with identities e_S and e_T , respectively, then $S \times T$ is a monoid with identity (e_S, e_T) .

An equivalence relation R on the semigroup (S,*) is called a **congruence relation** (同余关系) if

a R a' and b R b' imply (a*b) R (a'*b')

EXAMPLE 1

Consider the semigroup (Z,+) and the equivalence relation R on Z defined by

a R b if and only if $a \equiv b \pmod{2}$.

We know that this relation is a congruence relation (同余关系或合同关系).

Theorem 2

Let R be a congruence relation on the semigroup (S,*). Consider the relation \otimes from $S/R \times S/R$ to S/R in which the ordered pair([a],[b]) is, for a and b

in S, related to [a*b].

(a) \otimes is function from $S/R \times S/R$ to S/R, and as usual we denote \otimes ([a],[b]) by [a] \otimes [b]. Thus [a] \otimes [b] = [a*b].

(b) $(S/R, \otimes)$ is a semigroup.

We call S/R the quotient semigroup (商半群) or factor semigroup.

Theorem 3

Let R be a congruence relation on a semigroup (S,*) and $(S/R, \circledast)$ the corresponding quotient semigroup. Then the function $f_R: S \to S/R$ defined

by

$$f_R(a) = [a]$$

is an onto homomorphism, called the **natural homomorphism** (自然同态).

9.4 GROUPS (群)

A **group** (G,*) is a monoid, with identity e, that has the additional property that, for every element $a \in G$, there exists an element $a' \in G$ such that a*a'=a'*a=e. Thus a group is a set together with a binary operation * on G such that

- 1. For any elements a, b, and c in G,
 - (a*b)*c = a*(b*c)
- 2. There is a unique element *e* in *G* such that

a*e=e*a for any $a\in G$.

3. For every $a \in G$, there is an element $a' \in G$, called an inverse of a, such that

$$a * a' = a' * a = e.$$

Observe that if (G,*) is a group, then * is a binary operation, so G must be closed under *; that is $a*b \in G$ for any elements a and b in G.

We shall write the product a*b of the elements a and b in the group (G,*) simply as ab, and we shall also refer to (G,*) simply as G.

A group G is said to be **Abelian** if ab = ba for all

elements a and b in G.

EXAMPLE 4

Let *G* be the set of all nonzero real numbers and let

$$a*b = \frac{ab}{2}$$

Show that (G,*) is an Abelian group.

Theorem 1

Let G be a group. Each element a in G has only one inverse in G.

Theorem 2

Let G be a group and let a, b, and c be elements

of G. Then

- (a) ab = ac implies that b = c (left cancellation property, 左消去律).
- (b) ba = ca implies that b = c (right cancellation property, 右消去律).

Theorem 3

Let G be a group and let a and b be elements of G.

Then

- (a) $(a^{-1})^{-1} = a$.
- (b) $(ab)^{-1} = b^{-1}a^{-1}$.

Theorem 4

Let G be a group, and let a and b be elements of G. Then

- (a) The equation ax = b has a unique solution in G.
- (b) The equation ya = b has a unique solution in G.

If a group G has a finite number of elements, then its binary operation can be given by a table, which is generally called a **multiplication table**(乘法表). The multiplication table of a group $G = \{a_1, a_2, \dots, a_n\}$ under the binary operation must satisfy the following properties:

1. The row labeled by *e* must be

$$a_1, a_2, \cdots, a_n$$

and the column labeled by e must be

 a_1

 a_2

 a_n

2. From Theorem 4, it follows that each element b of the group must appear exactly once in each row and column of the table. Thus each row and column is a permutation of the elements a_1, a_2, \dots, a_n

of G, and each row (and each column) determines a different permutation.

If G is a group that has a finite number of elements, we say that G is a **finite group**, and the **order** of G is the number of elements |G| in G.

If G is a group of order 1, then $G = \{e\}$, and we have ee = e. $G = \{e, a\}$ be a group of order 2. Then we obtain a multiplication table (Table 9.1).

Table 9.1

	_	
T_{\frown}		
Ia		

	e	a
e	e	\boldsymbol{a}
a	a	

	e	\boldsymbol{a}
e	e	a
a	a	e

Next, let $G = \{e, a, b\}$ be a group of order 3. we can only complete the table as shown in Table 9.4.

Table 9.3

Tal	ble	Q	4

	e	a	b
e	e	a	b
a	a		
b	b		

	e	\overline{a}	b
e	e	\boldsymbol{a}	b
a	a	b	e
b	b	e	a

We next come to a group $G = \{e, a, b, c\}$ of order 4. It is not difficult to show that the possible multiplication table for G can be completed as shown in Tables 9.5 through 9.8.

Table 9.5

Table 9.6

	e	a	b	C
e	e	a	b	C
a	a	e	C	b
b	b	\boldsymbol{c}	e	\boldsymbol{a}
$\boldsymbol{\mathcal{C}}$	\boldsymbol{c}	b	a	e

	e	а	b	C
e	e	a	b	\mathcal{C}
a	a	e	\mathcal{C}	b
b	b	$\boldsymbol{\mathcal{C}}$	\boldsymbol{a}	e
$\boldsymbol{\mathcal{C}}$	C	b	e	a

Table 9.7

Table 9.8

	e	\boldsymbol{a}	b	\mathcal{C}
e	e	a	b	$\boldsymbol{\mathcal{C}}$
a	а	b	C	e
b	b	$\boldsymbol{\mathcal{C}}$	e	\boldsymbol{a}
\boldsymbol{c}	c	e	a	b

	e	\boldsymbol{a}	b	\mathcal{C}
e	e	a	b	\mathcal{C}
a	а	C	e	b
b	b	e	$\boldsymbol{\mathcal{C}}$	a
C	$\boldsymbol{\mathcal{C}}$	b	a	e

EXAMPLE 7

The set of all permutations of n elements is a group of order n! under the operation of composition. This group is called the **symmetric group** (对称群) **on** n **letters** and is denoted by S_n .

We next turn to a discussion of important subsets of a group. Let H be a subset of a group G such that

- (a) The identity e of G belongs to H.
- (b) If a and b belongs to H, then $ab \in H$.
- (c) If $a \in H$, then $a^{-1} \in H$.

Then H is called a **subgroup** of G. Part (b) says that H is a subsemigroup of G. Thus a subgroup of G can be viewed as a subsemigroup having properties (a) and (c).

Theorem 5

Let (G,*) and (G',*) be two groups, and let $f:G\to G'$ be a homomorphism from G to G'.

- (a) If e is the identity in G and e' is the identity in G', then f(e) = e'.
 - (b) If $a \in G$, then $f(a^{-1}) = (f(a))^{-1}$.
 - (c) If H is a subgroup of G, then

$$f(H) = \{ f(h) | h \in H \}$$

is a subgroup of G'.

The group with multiplication Table 9.5 is called the **Klein 4 group** and it is denoted by V, The one with multiplication Table 9.6, 9.7, or 9.8 is denoted by Z_4 .

9.5 PRODUCTS AND QUOTIENTS OF GROUPS

Theorem 1

If G_1 and G_2 are groups, then $G = G_1 \times G_2$ is a group with binary operation defined by

$$(a_1,b_1)(a_2,b_2) = (a_1a_2,b_1b_2).$$

Theorem 2

Let R be congruence relation on the group (G,*).

Then the semigroup (G/R, @) is a group, where the operation @ is defined on G/R by

[a] (b) = [a * b] (see Section 9.3)

Let H be a subgroup of a group G, and let $a \in G$. The left **coset** (左培集) of H in G determined by G is the set G is normal (正规的) if G if G is G is G if G if G is G if G if G is G if G

We note that if aH = Ha, it does not follow that, for $h \in H$ and $a \in G$, ha = ah. It does follows that ha = ah', where h' is some element in H.

9.6 Other Mathematical Structures

Rings

Let S be a nonempty set with two binary operations + and * such that (S,+) is an Abelian group and * is distributive over +. The structure (S,+,*) is called a ring if * is associative, i.e., (S,*) is a semigroup.

Moreover, if * is associative and commutative, then (S,+,*) is called a commutative ring. If (S,*) is a monoid, then (S,+,*) is a ring with identity.

The identity for * is denoted by 1; the identity for is denoted by 0.

Generally, we will refer to + and * as addition and multiplication even when they are not the usual operations with these names.

Example 1 Let S=Z, the set of all integers, and let + and * be the usual addition and multiplication of integers. Then (S,+,*) is a commutative ring with identity.

Theorem 1 Let R be a commutative ring with additive identity 0 and multiplicative identity 1. Then

- (1) For any x in R, 0*x=0;
- (2) For any x in R, $-x=(-1)^*x$.

Fields

Let (F,+,*) be a commutative ring with identity e. F is called a **field** if every nonzero element x in F has a multiplicative inverse.

Field Properties

The field (F,+,*) has two binary operations: an addition + and a multiplication *, and two special elements denoted as 0 and 1, so that for all x, y and z in F,

(1)
$$x+y=y+x$$
 (2) $x^*y=y^*x$

(3)
$$(x+y)+z=x+(y+z)$$
 (4) $(x^*y)^*z=x^*(y^*z)$

(5)
$$x+0 = x$$
 (6) $x*1 = x$

(7)
$$x^*(y+z)=(x^*y)+(x^*z)$$
 (8) $(y+z)^*x=(y^*x)+(z^*x)$

(9) For each x in F there is a unique element in F, denoted by -x, so that x+(-x)=0
 (10) For each x≠0 in F there is a unique element in F, denoted by x⁻¹, so that x*x⁻¹ = 1.

Theorem 2 The ring Z_n is a field when n is a prime.

- Theorem 3 (a) If $G=\{g_1,g_2,...,g_n\}$ is a finite Abelian group with identity denoted by e, and x is any element of G, then $x^n=e$;
- (b) (Fermat's Little Theorem) If p is a prime number, and GCD(a,p)=1, then a^{p-1}≡1 (mod p);
- © If p is a prime number, and a is any integer, then $a^p \equiv a \pmod{p}$.

THE END