Nama: Anindya Nafsitasari

NIM : L200150081

Kelas: B

1. Program daftar kode ASCII

```
| Second Print | Seco
```


2. Fungsi matematik dalam metode math

_	
acos()	Return the arc cosine (measured in radians) of x
acosh()	Return the hyperbolic arc cosine (measured in radians) of x
asin()	Return the arc sine (measured in radians) of x
asinh()	Return the hyperbolic arc sine (measured in radians) of x
atan()	Return the arc tangent (measured in radians) of x
atan2(y, x)	Return the arc tangent (measured in radians) of y/x Unlike atan(y/x), the signs of both x and y are considered
atanh(x)	Return the hyperbolic arc tangent (measured in radians) of x
ceil(x)	Return the ceiling of x as a float. This is the smallest integral value >= x
copysign(x, y)	Return x with the sign of y
cos(x)	Return the cosine of x (measured in radians)
cosh(x)	Return the hyperbolic cosine of x
degrees(x)	Convert angle x from radians to degrees
erf(x)	Error function at x
erfc(x)	Complementary error function at x
exp(x)	Return e raised to the power of x
expm1(x)	
Return exp(x)-1	This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x
fabs(x)	Return the absolute value of the float x
factorial(x) -> Integral	Find x!. Raise a ValueError if x is negative or non-integral
floor(x)	Return the floor of x as a float. This is the largest integral value <= x
fmod(x, y)	Return fmod(x, y), according to platform C. $x \% y$ may differ
frexp(x)	Return the mantissa and exponent of x, as pair (m, e). m is a float and e is an int, such that $x = m * 2.**e$. If x is 0, m and e are both 0. Else $0.5 \le abs(m) < 1.0$
fsum(iterable)	Return an accurate floating point sum of values in the iterable. Assumes IEEE-754 floating point arithmetic
gamma(x)	Gamma function at x
hypot(x, y)	Return the Euclidean distance, sqrt(x*x + y*y)
isinf(x) -> bool	Check if float x is infinite (positive or negative)
isnan(x) -> bool	Check if float x is not a number (NaN)
ldexp(x, i)	Return x * (2**i)
lgamma(x)	Natural logarithm of absolute value of Gamma function at x

log(x[, base])	Return the logarithm of x to the given base. If the base not specified, returns the natural logarithm (base e) of x
log10(x)	Return the base 10 logarithm of x
log1p(x)	Return the natural logarithm of 1+x (base e). The result is computed in a way which is accurate for x near zero
modf(x)	Return the fractional and integer parts of x. Both results carry the sign of x and are floats
pow(x, y)	Return x**y (x to the power of y)
radians(x)	Convert angle x from degrees to radians
sin(x)	Return the sine of x (measured in radians)
sinh(x)	Return the hyperbolic sine of x
sqrt(x)	Return the square root of x
tan(x)	Return the tangent of x (measured in radians)
tanh(x)	Return the hyperbolic tangent of x
trunc(x:Real) -> Integral	Truncates x to the nearest Integral toward 0. Uses thetrunc magic method