CIR++

Модель **CIR**++ [1] короткой процентной ставки непрерывного начисления является продолжением модели **Cox-Ingersoll-Ross** (1985) [2] и задается уравнениями:

$$dx(t) = \alpha(\theta - x(t))dt + \sigma\sqrt{x(t)}dW(t), \qquad (1)$$
$$r(t) = x(t) + \varphi(t),$$

гле

x(t)-моделируемый процесс, неоткалиброванная короткая ставка,

r(t)-короткая ставка,

 α -скорость возврата к среднему,

 θ -средний уровень ставок,

 σ -волатильность ставки,

W(t)—Винеровский процесс в риск-нейтральной Q-мере,

t-время; моделирование происходит с шагом dt в один месяц.

Дополнительное условие, накладываемое для обеспечения положительности короткой ставки:

$$2\alpha\theta > \sigma^2. \tag{2}$$

Детерминистическая функция от времени $\varphi(t)$ обеспечивает калибровку на текущую структуру форвардных ставок. Задача отражения текущей структуры форвардных ставок подразумевает согласованность ставок для всех времен исполнения, что и влечет введение сдвига как функции от времени.

CIR++ является результатом применения подхода детерминистического сдвига к модели CIR [2] и, учитывая текущую структуру рынка, обеспечивает возможность аналитической оценки облигаций и опционов на них, при этом обладая χ^2 распределением, более подходящим, чем нормальное, для описания типичной рыночной динамики. Кроме того, для практического применения важна возможность гарантии положительности реализаций короткой ставки, которую дают модели семейства CIR при соблюдении условия (2).

Вычисление параметров модели

Моделирование происходит с шагом в 1 месяц, в качестве прокси для короткой ставки используются значения кривой бескупонной доходности ОФЗ срочности 1 месяц в непрерывном исчислении, g(1/12):

$$g(t) = \beta_0 + (\beta_1 + \beta_2) \frac{\tau}{t} [1 - exp(-\frac{t}{\tau})] - \beta_2 exp(-\frac{t}{\tau}) + \sum_{i=1}^9 g_i exp(-\frac{(t - a_i)^2}{b_i^2}).$$
 (3)

Параметризация кривой ставок разных срочностей задается моделью Нельсона-Зигеля, параметры которой публикуются по рабочим дням на сайте Московской Биржи, где время t выражается в годах, g(t) — в базисных пунктах.

 Φ иксированные параметры a,b равны:

$$a_1 = 0, a_2 = 0.6, k = 1.6, a_{i+1} = a_i + a_2 k^{i-1}, i = 2, ..., 8$$

 $b_1 = a_2, b_{i+1} = b_i k, i = 2, ..., 8,$

Параметры модели (1) α и σ являются оценками максимального правдоподобия на историческом ряде одномесячных спот-ставок $g_{historical}(1/12)$. Калибровка производится в реальной мере Q_0 , в которой (1) имеет вид

$$dx(t) = (\alpha \theta - (\alpha + \lambda \sigma)x(t))dt + \sigma \sqrt{x(t)}dW_0(t),$$

где λ —рыночная цена риска.

Все дальнейшее моделирование справедливой цены и ее чувствительностей происходит в Q мере.

Определение параметров путем калибровки на исторический ряд ставок вместо калибровки на рыночную цену опционов сар/floor и свопционов обусловлено отсутствием на текущий момент ликвидных котировок на российском рынке в достаточном количестве. В дальнейшем рекомендуется переход на минимизацию ошибки вида $sum_s((V(s)_{market} - V(s)_{model})^2)$ по максимально широкому набору стабильно ликвидных рыночных инструментов s.

Определение детерминистического сдвига $\varphi(t)$

Модель CIR++ принадлежит к классу афинных моделей, то есть допускает представление цены бескупонной облигации в виде:

$$P(t,T) = \bar{A}(t,T)e^{-B(t,T)r(t)},$$

где \bar{A} и B имеют вид:

$$\bar{A}(t,T) = \frac{P^M(0,T)A(0,t)exp\{-B(0,t)x_0\}}{P^M(0,t)A(0,T)exp\{-B(0,T)x_0\}}A(t,T)e^{B(t,T)\varphi^{CIR}(t;\alpha)},$$

$$A(t,T) = \left[\frac{2hexp\{(\alpha+h)(T-t)/2\}}{2h + (\alpha+h)(exp\{(T-t)h\} - 1)}\right]^{2\alpha\theta/\sigma^2},$$

$$B(t,T) = \frac{2(exp\{(T-t)h\} - 1}{2h + (\alpha + h)(exp\{(T-t)h\} - 1)}, h = \sqrt{\alpha^2 + 2\sigma^2}$$

Калибровка модели (1) обеспечивает точное соответствие поведения модели текущей рыночной временной структуре дисконтирующих факторов. Для этого мы определяем детерминистический сдвиг $\varphi(t)$ как компенсирующую компоненту в терминах мгновенных форвардов:

$$\varphi(t) = \varphi^{CIR}(t;c) = f^{M}(0,t) - f^{CIR}(0,t;c),$$

$$f^{CIR}(0,t;c) = \frac{2\alpha\theta(exp\{th\} - 1)}{2h + (\alpha + h)(exp\{th\} - 1)} + x_0 \frac{4h^2exp\{th\}}{[2h + (\alpha + h)(exp\{th\} - 1)]^2},$$
(4)

 $c = (\alpha, \theta, \sigma)$ -вектор параметров.

Расчет мгновенного форварда по рынку $f^M(0,t)$ происходит по определению с использованием центральной производной функции g(t) рыночной форвардной кривой.

Симуляции Монте-Карло

Генерация путей ставок далее происходит посредством симуляций Монте-Карло. Каждый из путей используется для оценки выплат по контракту и, затем, дисконтирования реализации его денежных потоков в соответствующем сценарии.

Цена дериватива, таким образом, получается в результате усреднения по сценариям денежных потоков по симуляционным путям, дисконтированным по ним же к дате оценки:

$$PV = \frac{\sum_{i=1}^{S} \sum_{j=1}^{n} P_i(0, t_j) CF_i(t_j | r_i(t_1), ..., r_i(t_j))}{S}.$$

Дисконтные факторы получаются дискретизацией по реализованным симуляционным ставкам:

$$P_i(0, t_j) = exp\{-\sum_{k=1}^{j} r_i(t_k)\Delta t_k\}$$

В рамках модели делается предположение о том, что форвардная кривая является несмешенной оценкой ожидания будущих ставок, то есть что отсутствуют премии за ликвидность (увеличение ставок для дальних сроках как плата за отказ от ликвидности при долгосрочном вложении) и сегментация рынка (отличия природы ставок на коротком и дальнем конце кривой из-за разной структуры пулов участников рынка, и, соответственно, структуры спроса и предложения для разных сроков). Стоит отметить, что, в нашем случае, когда модель краткосрочной ставки может быть вычислена аналитически, альтернативой является переход в T—форвардную меру:

$$E\{exp[-\int_0^{t_j} r(s)ds]H(r(t_1),...,r(t_j))\} = P(0,T)E^T\{\frac{H(r(t_1),...,r(t_j))}{P(t_j,T)}\}$$
 (5)

 $P(t_i,T)$ определяются из $r(t_i)$ и используются для капитализации:

$$h_i := \sum_{j=1}^{n} \frac{H(r(t_1), ..., r(t_j))}{P(t_j, T)}$$

Цена дериватива получается путем дисконтирования выплат от конечной даты:

$$PV = P(0,T) \frac{\sum_{i=1}^{S} h_i}{S}.$$

Шаг Монте-Карло

При реализации модели сначала формируется афинная временная структура, затем запускаются симуляции Монте-Карло с калибровкой модели на рыночную форвардную кривую.

Симуляция происходит в схеме Эйлера с шагом Δs_i в 1 месяц. Для более точной аппроксимации можно уменьшать Δs_i , однако это достаточно быстро становится обременительным с вычислительной точки зрения. Кроме того, шаг симуляции ставки имеет смысл согласовывать с необходимой временной структурой моделей, далее использующих ее результаты. К примеру, моделирование дериватива с европейской структурой выплат, где интересны только значения на конец срока, оставляет простор для выбора шага. И наоборот, в случае зависимости выплат от ежедневных значений ставки для точной симуляции нужен шаг в 1 день.

Шаг Монте-Карло в Q-мере записывается как:

$$x(s_i + \Delta s_i) = x(s_i) + [\alpha \theta - \alpha x(s_i)] \Delta s_i + \sigma \sqrt{x(s_i)} (W_{s_i + \Delta s_i}^Q - W_{s_i}^Q),$$

$$W_{s_i + \Delta s_i}^Q - W_{s_i}^Q \sim N(0, \Delta s_i).$$

При симуляции в T-мере компонента $\alpha x(s_i)$ принимает вид $(\alpha + B(s_i, T)\sigma^2)x(s_i)$.

Долгосрочная ставка

Имея реализацию короткой ставки, можно получить аналитически модельную долгосрочную форвардную ставку в момент времени t для срока погашения T:

$$R(t,T) = \frac{\ln \frac{P^{M}(0,t)A(0,T)exp\{-B(0,T)x_{0}\}}{A(t,T)P^{M}(0,T)A(0,t)exp\{-B(0,t)x_{0}\}}}{T-t} - \frac{B(t,T)\varphi^{CIR}(t;\alpha) - B(t,T)r(t)}{T-t}$$
(6)

Литература

- 1. Damiano Brigo, Fabio Mercurio "Interest Rate Models Theory and Practice", 2006
- 2. John C. Cox, Jonathan E. Ingersoll, Jr., Stephen A. Ross "A Theory of the Term Structure of Interest Rates", 1985
- 3. Tomas Björk "Arbitrage Theory in Continuous Time", 2009
- 4. Claus Munk "Fixed Income Analysis: Securities, Pricing, and Risk Management", $2003\,$

Формулы

- 1 [1], (3.76),crp. 102
- 2 [1], (3.76),crp. 102
- 3— Методика расчета кривой бескупонной доходности Московской биржи
- 4 [1], (3.77), crp. 102
- 5 [1], (3.95), crp. 115
- 6 [1], ctp. 103