Конспект лекций по матанализу

Горбунов Леонид при участии и редакторстве @keba4ok на основе лекций Любарского Ю. И.

13 сентября 2021г.

Содержание

Теория меры
Алгебраические структуры подмножеств
Вводим меру
Простые функции
Элементарный интеграл
Включаем бесконечность
Произведение мер
Счётная аддитивность (она же σ -аддитивность)
Счётно-аддитивные структуры
Внешняя мера
Теорема Лебега-Каратеодори
Борелевские множества и мера Лебега
Измеримость
Небольшое отступление.
Измеримые функции
Интеграл Лебега и теоремы Леви
Интеграл как функция множеств
Другие предельные переходы под знаком интеграла
Теоремы Тонелли и Фубини
Пространства суммируемых функций
Свёртка

Теория меры

Алгебраические структуры подмножеств

Пусть нам дано множество $\mathcal X$ произвольной природы и система его подмножеств $\mathfrak A$.

Определение 1. \mathfrak{A} - *полукольцо множеств*, если для любых $A, B \in \mathfrak{A}$ их пересечение $A \cap B$ тоже лежит в \mathfrak{A} , а их разность $A \setminus B$ представляется в виде конечного объединения попарно дизъюнктных множеств из \mathfrak{A} .

Примечание 1. Легко понять, что любое полукольцо содержит пустое множество.

Определение 2. \mathfrak{A} - *кольцо множеств*, если для любых $A, B \in \mathfrak{A}$ их пересечение $A \cap B$, объединение $A \cup B$ и разность $A \setminus B$ лежат в \mathfrak{A}

Примечание 2. Легко понять, что тогда и $A\triangle B$ лежит в \mathfrak{A} . Тогда если на элементах кольца множеств определить операции сложения $+ := \triangle$ и умножения $\times := \cap$, то оно превратится в алгебраическое кольцо.

Определение 3. $\mathfrak A$ - *алгебра множеств*, если оно кольцо, и для любого $A \in \mathfrak A$ множество $X \backslash A$ тоже лежит в $\mathfrak A$

Утверждение 1. Пусть $\mathfrak{A} \subseteq \mathcal{P}(X)$ и $\mathfrak{B} \subseteq \mathcal{P}(Y)$ - полукольца. Тогда $\mathfrak{A} \times \mathfrak{B} \subseteq \mathcal{P}(X \times Y)$ - тоже полукольцо.

Утверждение 2. Пусть множества $A, B_1, ... B_n$ принадлежат какому-то полукольцу. Тогда $A \setminus (B_1 \cup ... \cup B_n)$ представляется в виде объединения конечного числа элементов этого полукольца.

Доказательство. $A \setminus (B_1 \cup ... \cup B_n) = (A \setminus B_1) \cap ... \cap (A \setminus B_n) = (\bigsqcup_{i=1}^{k_1} C_{1,i}) \cap ... \cap (\bigsqcup_{i=1}^{k_n} C_{n,i}) = \bigsqcup_{i_1,...i_n} (C_{1,i_1} \cap ... \cap C_{n,i_n})$. В последнем выражении все множества попарно дизъюнктны, так как если бы, например, $(C_{1,i_1} \cap ... \cap C_{n,i_n}) \cap C_{1,j_1} \cap ... \cap C_{n,j_n} \ni x$, то для каждого k от 1 до $n \ x \in C_{k,i_k} \cap C_{k,j_k}$, что возможно только при $i_k = j_k$, но для всех k это равенство быть верным не может.

Пример(ы) 1. $P(\mathbb{R}) = \{[a,b)|a,b,\in\mathbb{R}\cup\{\pm\infty\}\}$ - полукольцо ячеек $P(\mathbb{R}^n) = \{[a_1,b_1)\times...\times[a_n,b_n)|a_i,b_i,\in\mathbb{R}\cup\{\pm\infty\}\}$ - тоже полукольцо ячеек, только многомерных

Вводим меру

Пусть $\mathfrak X$ - множество произвольной природы, $\mathfrak A\subseteq \mathcal P(\mathfrak X)$.

Определение 4. Функция $\mu: \mathfrak{A} \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$ называется *мерой*, если для любых попарно дизъюнктных множеств $A_1, \dots A_k \in \mathfrak{A}$ и таких, что $\bigsqcup_{i=1}^k A_i \in \mathfrak{A}$, верно равенство $\mu(\bigsqcup_{i=1}^k A_i) = \sum_{i=1}^k \mu(A_i)$

Примечание 3. Данное свойство называется аддитивностью

Пример(ы) 2.

- $\mathfrak X$ дискретное пространство, и для любого $x \in \mathfrak X$ $\mu(x)=1.$ Тогда $\mu(A)=\sum_{x\in A}1$
- \mathfrak{X} дискретное пространство, и для любого $x \in \mathfrak{X}$ $\mu(x) = p_x$, причём $\sum_{x \in \mathfrak{X}} p_x = 1$. Тогда мы получаем в точности вероятностное пространство.

- $\mathfrak{X}=\mathbb{R}, \mathfrak{A}$ полукольцо конечных ячеек. Тогда $\mu([a,b))=b-a$ мера.
- То же, что и в предыдущем примере, только теперь $\mu([a,b)) = f(b) f(a)$, где f монотонно возрастающая функция.

Утверждение 3. Мера, определённая на полукольце, монотонна: если $A, B \in \mathfrak{A}$, и $B \subseteq A$, то $\mu(B) \leq \mu(A)$.

Доказательство.
$$\mu(A) = \mu(B) + \mu(A \backslash B) = \mu(B) + \mu(\bigsqcup_{i=1}^n C_i) = \mu(B) + \sum_{i=1}^n \mu(C_i) \ge \mu(B)$$

Простые функции

Определение 5. Пусть $\mathfrak A$ - полукольцо, и $A \in \mathfrak A$. Определим функцию-индикатор (или характеристическую функцию):

$$\chi_A(x) = \begin{cases} 1, \text{ если } x \in A, \\ 0, \text{ если } x \notin A \end{cases}$$

Определение 6. Простая функция - это функция вида $f(x) = \sum_{i=1}^n a_i \chi_{A_i}(x)$, где $A_i \in \mathfrak{A}$ и $a_i \in \mathbb{R}$

Примечание 4. Сумма и произведение простых функций - простые функции.

Элементарный интеграл

Пусть мы имеем $\mathfrak A$ - полукольцо, μ - меру и f - простую функцию (всё пока что конечно). Можем тогда ввести следующее понятие:

Определение 7. Элементарным интегралом называется

$$\int f(x)dx = \sum a_i \mu(A_i)$$

Утверждение 4. Определение корректно.

Примечание 5. Я не понял, что тут рассказывает Юрий Ильич, поэтому доказательство найдено в других источниках. Суть просто в попарном подразбиении и перегуппировке.

Доказательство. Пусть $f = \sum \alpha_i \cdot \chi(a_i) = \sum \beta_j \cdot \chi(b_j)$, рассмотрим тогда $c_{ij} = a_i \cap b_j$.

$$\sum \mu(a_j) \cdot \alpha_j = \sum \mu(c_{ij}) \cdot \alpha_i = \sum \mu(c_{ij}) \cdot \beta_j = \sum \mu(b_j)\beta_j$$

Утверждение 5 (Техническое замечение).

$$\int \chi_A = \mu(A).$$

Утверждение 6. Рассмотрим свойства интеграла:

• Линейность. Если у нас есть две простые функции: f и g, а также два числа: $\alpha, \beta \in \mathbb{R}$, тогда

$$\int \alpha f + \beta g = \alpha \int f + \beta \int g.$$

• Монотонность. Пусть f и g - простые функции, а также $f \leq g$. Тогда

$$\int f \le \int g.$$

Примечание 6. Для доказательства практически всего нужно просто рассмотреть дизъюнктное подразбиение данных функций.

Включаем бесконечность

Пусть у нас, по прежнему, имеется кольцо, и простая функция f. Выделим тогда у неё положительную и отрицательную часть (f^+ и f^-). Такие, что положительная часть во всех положительных значениях остаётся таковой, а при отрицательных - обнуляется. Почти аналогично с отрицательной, только мы рассмотриваем модуль того, что останется. Таким образом,

$$f = f^+ - f^-.$$

Определим тогда $I_+(f) = \int f_+$, и аналогично I_- . Мы хотим определить интеграл от функции, как $I_+(f) - I_-(f)$. Но нам мешает то, что обе эти функции могут быть бесконечными. Так что в случае, когда оба интеграла равны бесконечности, у нас ничего не получится, и этот случай мы попросу запрещаем. И рассмотриваем мы теперь только функции, который могут быть бесконечны максимум в одну сторону.

Примечание 7. Монотонность и линейность останутся при данном определении (последнее, конечно, опять таки при конечности хотя бы одного из интегралов).

Произведение мер

Пусть \mathfrak{A} , \mathfrak{B} - полукольца с мерами μ и ν соответственно. Определим функцию $\lambda:\mathfrak{A}\times\mathfrak{B}:\mathbb{R}_{>0}\cup\{+\infty\}$ по правилу $\lambda(A\times B)=\mu(A)\nu(B)$

Утверждение 7. λ - мера на полукольце $\mathfrak{A} \times \mathfrak{B}$, т.е. для любых попарно дизъюнктных $C_1, \ldots C_n, C_i = A_i \times B_i$ и таких, что $\bigsqcup_{i=1}^n C_i = C = A \times B \in \mathfrak{A} \times \mathfrak{B}$, верно равенство $\lambda(\bigsqcup_{i=1}^n C_i) = \sum_{i=1}^n \lambda(C_i)$

Доказательство. По определению мер $\lambda(\bigsqcup_{i=1}^n C_i) = \mu(A)\nu(B), \sum_{i=1}^n \lambda(C_i) = \sum_{i=1}^n \mu(A_i)\nu(B_i),$ поэтому мы будем доказывать равенство $\mu(A)\nu(B) = \sum_{i=1}^n \mu(A_i)\nu(B_i).$ Так как все C_i попарно дизьюнктны, верно равенство $\chi_C(x,y)\sum_{i=1}^n \chi_{C_i}(x,y).$ Зафиксируем x, тогда функцияниндикатор $\chi_{C_i}(x,y)$ на $\mathfrak{A} \times \mathfrak{B}$ превращается в функцию индикатор $\chi_{A_i}(x)\chi_{B_i}(y)$ на \mathfrak{B} . Проинтегрируем равенство по y, получим: $\chi_A(x)\nu(B) = \sum_{i=1}^n \chi_{A_i}\nu(B_i).$ Интегрируя теперь по x, получаем $\mu(A)\nu(B) = \sum_{i=1}^n \mu(A_i)\nu(B_i),$ что и требовалось.

Счётная аддитивность (она же σ -аддитивность)

Определение 8. Пусть даны $\mathcal{D} \subseteq \mathcal{P}(X)$ - набор подмножеств множества X, и функция $\mu: \mathcal{D} \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$. Эта функция называется *счётно-аддитивной* (или σ -аддитивной), если для любого не более чем счётного набора попарно дизъюнктных множеств $\{B_i\}$ таких, что их объединение $B = \coprod B_i$ лежит в \mathcal{D} , верно равенство $\mu(B) = \sum \mu(B_i)$

Пример(ы) 3. • $\mathcal{D} = \mathcal{P} X$, и для любого $B \in \mathcal{D}\mu(B) = |B|$ - считающая функция

• Вероятностное пространство

- $X = \mathbb{R}, \mathcal{D} = P(\mathbb{R}), \mu([a,b)) = b a$
- Модификация предыдущего примера: $\mu([a,b)) = f(b) f(a)$, где f монотонно возрастающая непрерывная функция
- $X = \mathbb{R}$, $\mathcal{D} = \{ \langle a, b \rangle | a, b \in \mathbb{R} \cup \{\pm \infty\} \}$, f просто монотонно возрастающая функция. Тогда мера $\mu(\langle a, b \rangle) = f(b) f(a)$ не будет счётно-аддитивной. Но если мы определим меру так:

$$-\mu([a,b)) = \lim_{x \to b_{-}} f(x) - \lim_{y \to a_{-}} f(y)$$

$$-\mu([a,b]) = \lim_{x \to b_{+}} f(x) - \lim_{y \to a_{-}} f(y)$$

$$-\mu((a,b]) = \lim_{x \to b_{+}} f(x) - \lim_{y \to a_{+}} f(y)$$

$$-\mu((a,b)) = \lim_{x \to b_{-}} f(x) - \lim_{y \to a_{+}} f(y)$$

то она уже будем счётно-аддитивной.

Утверждение 8. Не существует "универсальной меры т.е. функции $\mu: \mathcal{P}(\mathbb{R}) \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$, обладающей следующими свойствами:

- $\mu(\emptyset) = 0$
- \bullet μ счётноаддитивна
- $\mu([0,1]) = 1$
- Для любых $A \subseteq \mathbb{R}$ и $x \in \mathbb{R}$ верно равенство $\mu(A+x) = \mu(A)$

Доказательство. Предположим противное: такая функция существует. Определим на \mathbb{R} бинарное отношение $a \sim b \iff a-b \in \mathbb{Q}$. Легко видеть, что это отношение эквивалентности. Воспользуемся аксиомой выбора и выберем по одному представителю из каждого класса так, чтобы они все лежали на отрезке [0,1]. Образуем из них множество A. С одной стороны, $\mu(A) = \mu([0,1]) - \mu([0,1] \setminus A) \geq 1 < \infty$. Рассмотрим множества $A_q = \{A+q\}$ для всех $q \in [0,1] \cap \mathbb{Q}$. Они попарно не пересекаются, их мера равна мере A, а их объединение лежит в отрезке [-1,2]. Тогда $[0,1] \cap \mathbb{Q} \mid \cdot \mu(A) = \sum_{q \in [0,1] \cap \mathbb{Q}} \mu(A_q) = \mu(\bigsqcup_{q \in [0,1] \cap \mathbb{Q}} A_q) \leq \mu([-1,2]) < \infty$, откуда $\mu(A) = 0$. Но $\bigsqcup_{\lambda \in \mathbb{Q}} A_\lambda = \mathbb{R}$ $\implies \infty = \mu(\mathbb{R}) = \sum_{\lambda \in \mathbb{Q}} \mu(A_\lambda) = \sum_{\lambda \in \mathbb{Q}} 0 = 0$, противоречие.

Определение 9. Мера μ , определённая на полукольце (кольце, алгебре и т.д.) $\mathfrak{A} \subseteq \mathcal{P}(X)$, называется регулярной, если для любого $A \in \mathfrak{A}$:

- $\mu(A) = \inf_{G \in \mathfrak{A}, A \subseteq G, G \text{ otkphitoe}} \mu(G)$
- $\mu(A) = \sup_{K \in \mathfrak{A}, K \subseteq A, K \text{ KOMFLAKT}} \mu(K)$

Теорема 1. Регулярная мера μ , определённая на кольце, счётноаддитивна.

Доказательство. Пусть $\{A_i\}$ - попарно дизъюнктные элементы кольца, и $A = \bigsqcup A_i \in \mathfrak{A}$. Хотим доказать, что $\mu(A) = \sum \mu(A_i)$.

В одну сторону это практически очевидно: для любого натурального n $A_1 \cup ... \cup A_n \subseteq A$ $\Longrightarrow \sum_{i=1}^n \mu(A_i) = \mu(A_1 \cup ... \cup A_n) \le \mu(A)$. Переходя к пределу по n, получаем неравенство в одну сторону.

Теперь докажем, что для любого $\epsilon > 0$ верно неравенство $\sum \mu(A_i) \ge \mu(A) - 2\epsilon$, откуда и будет следовать неравенство во вторую сторону. Для этого выберем компакт $K \subseteq A$ такой, что $\mu(K) \ge \mu(A) - \epsilon$, а для каждого A_i - такое G_i , что $\mu(G_i) \le \mu(A_i) + \frac{\epsilon}{2^i}$. Так как $\bigsqcup A_i = A \supset K$, то и $\bigcup G_i \supset K$, а тогда можно выбрать конечное подпокрытие G_{i_1} , ... G_{i_s} . В итоге $\mu(K) \le \sum_{j=1}^s \mu(G_{i_j}) \le \sum_{j=1}^s \mu(A_i) + \frac{\epsilon}{2^{i_j}} < \sum_{j=1}^\infty \mu(A_i) + \epsilon \implies \sum \mu(A_i) \ge \mu(K) - \epsilon \ge \mu(A) - 2\epsilon$, что и требовалось.

Счётно-аддитивные структуры

Определение 10. Непустое $\mathfrak{A} \subseteq \mathcal{P}(X)$ называется σ -алгеброй, если для любого не более чем счётного набора множеств $\{A_i\}$ их объединение и пересечение и $X \setminus A_i$ также лежат в \mathfrak{A}

Примечание 8. $\emptyset = A \cap (X \setminus A), X = A \cup (X \setminus A), A \setminus B = A \cap (X \setminus B)$ также лежат в \mathfrak{A} .

Примечание 9. Если $\{A_i\}_{i\in I}$ - произвольный набор σ -алгебр над каким-то множеством, то $\bigcap_{i\in I} A_i$ - тоже σ -алгебра.

Определение 11. Пусть $\mathcal{D} \subseteq \mathcal{P}(X)$. σ -алгебра, порождённая \mathcal{D} - это наименьшая σ -алгебра, содержащая \mathcal{D} . мы будем обозначать её $\overline{\mathcal{D}}$

Утверждение 9. Для любого $\mathcal{D} \subseteq \mathcal{P}(X)$ порождённая sigma-алгебра существует и единственна.

Доказательство. Хотя бы одна σ -алгебра, содержащая \mathcal{D} , существует: это просто $\mathcal{P}(X)$. Но тогда если $\{A_i\}_{i\in I}$ - все такие σ -алгебры, то $\bigcap_{i\in I}A_i$ - наименьшая.

Утверждение 10. Любое открытое и замкнутое множество на прямой содержится в $\overline{P(\mathbb{R})}$

Доказательство. Заметим, что интервал (a,b) представляется в виде счётного объединения ячеек $\bigcup_{n\in\mathbb{N}}[a+\frac{1}{n},b)$, а любое открытое подмножество прямой является объединением не более чем счётного объединения попарно непересекающихся открытых интервалов и лучей. Если же какое-то A замкнуто, то $\mathbb{R}\setminus A$ открыто и представляется в виде $\bigcup P_i$, $P_i \in P(\mathbb{R})$. Тогда $A = X\setminus (\bigcup P_i) = \bigcap (X\setminus P_i)$ тоже представимо в виде не более, чем счётного объединения элементов из $P(\mathbb{R})$, а потому лежит в $\overline{P(\mathbb{R})}$.

Утверждение 11. Пусть $\mathfrak{A} \subseteq \mathcal{P}(X)$ - алгебра, и известно, что для любых $\{E_i\}_{i=1}^{\infty} \in \mathfrak{A}$, $\bigcap_{i=1}^{\infty} E_i$ также принадлежит \mathfrak{A} . Тогда A - σ -алгебра.

Доказательство. Надо проверить, что если $\{F_i\}_{i=1}^{\infty} \in \mathfrak{A}$, то $\bigcup_{i=1}^{\infty} F_i$ также принадлежит \mathfrak{A} . Но $\bigcup_{i=1}^{\infty} F_i = X \setminus (\bigcap (X \setminus F_i))$, т.е. лежит в \mathfrak{A} .

Примечание 10. Можно доказать и в обратную сторону (т.е. из счётного объединения вывести счётное пересечение), причём дополнительно можно наложить условие попарной дизъюнктности рассматриваемых множеств - доказательство будет аналогичным (только во втором случае придётся ввести новую последовательность множеств $\{G_i\}$, определённую по индукции $G_1 = E_1, G_k = E_k \setminus (E_1 \cup ... \cup E_{k-1})$)

Внешняя мера

Определение 12. Пусть $\mathfrak{A} \subseteq \mathcal{P}(X)$ - полукольцо с (конечно-аддитивной) мерой μ . Определим функцию $\mu^* : \mathcal{P}(X) \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$ по правилу $\mu^*(A) = \inf(\sum \mu(A_i) | \{A_i\} \in \mathfrak{A}, \bigcup A_i \supset A)$ (т.е. инфимум по всем покрытиям множества A элементами полукольца) и назовём её внешней мерой.

Утверждение 12.

- 1. $\mu^*(A) \le \mu(A)$
- 2. Монотонность: если $A \subseteq B$, то $\mu^*(A) \le \mu^*(B)$
- 3. Счётная полуаддитивность: Если $\{A_i\} \in \mathfrak{A}$, и $\bigcup A_i \in \mathfrak{A}$ то $\mu^*(\bigcup A_i) \leq \sum \mu^*(A_i)$

4. Если μ - счётно-аддитивна, то $\mu_{\mathfrak{A}}^* = \mu$

Доказательство.

- $1. \ A$ это одно из покрытий самого себя.
- $2. \ B$ это одно из покрытий множества A.
- 3. Обозначим $A = \bigcup A_i$. Если для какого-то i $\mu^*(A_i) = \infty$, то неравенство очевидно, поэтому далее считаем, что все $\mu^*(A_i) < \infty$. Зафиксируем произвольное $\epsilon > 0$. Для каждого A_n существует покрытие $\{B_{n_k}\}_{k\geq 1}$ элементами полукольца, для которого $\mu^*(A_i) > \sum_{k\geq 1} \mu(B_{n_k}) \frac{\epsilon}{2^n}$. Тогда $\bigcup_{n,k} B_{n_k}$ покрытие A, и $\mu^*(A) \leq \sum_{n,k} \mu(B_{n_k}) < \sum_{k\geq 1} \mu(A_i) + \epsilon$. Значит, $\mu^*(A) \leq \sum_{n,k} \mu(A_i)$, что и требовалось.
- 4. Введём вспомогательную функицю $\overline{\mu}$, которая определяется так же, как и μ^* , только теперь мы на каждое рассматриваемое покрытие дополнительно наложили ограничение попарной дизъюнктности составляющих его множеств. Докажем для начала, что $\overline{\mu} = \mu *$. То, что $\overline{\mu}(A) \ge \mu^*(A)$, очевидно - во втором случае инфимум берётся по большему множеству. Зафиксируем теперь $\epsilon > 0$ и будем доказывать, что $\overline{\mu}(A) \leq \mu^*(A) + \epsilon$. Для этого рассмотрим покрытие A такими множествами $\{A_i\} \in \mathfrak{A}, \text{ что } \sum \mu(A_i) \leq \mu^*(A) + \epsilon. \text{ Определим последовательность множеств } \{B_i\}$ по правилу $B_1:=A_1$ и $B_k=A_k\backslash (A_1\cup...A_{k-1})$ при k>1. Все B_i , во-первых, попарно дизъюнктны, а во-вторых, представляются в виде конечного объединения попарно дизъюнктных элементов полукольца (см. утверждение из раздела "алгебраические структуры подмножеств"). Для определённости, пусть $B_i = \bigsqcup_i B_{i,j}$. Тогда $\{C_{i,j}\}$ покрытие множества А попарно непересекающимися элементами полукольца, откуда мы заключаем, то $\overline{\mu}(A) \leq \sum_{i,j} \mu(C_{i,j}) = \sum \mu(A_i) \leq \mu^*(A) + \epsilon$. В последнем равенстве мы воспользовались счётной аддитивностью меры μ и тем, что $\bigsqcup_{i,j} C_{i,j} = \bigcup A_i \supset A$ Вернёмся к исходному утверждению. Пусть $A \in \mathfrak{A}$. Так как A - само себе дизъюнктное покрытие, то $\overline{\mu}(A) \leq \mu(A)$. С другой стороны, для любого $\epsilon > 0$ существует покрытие A попарно дизъюнктными элементами полукольца $\{A_i\} \in \mathfrak{A}$, для которого $\sum \mu(A_i) \leq \overline{\mu}(A) + \epsilon$. Собирая два последних предложения вместе и пользуясбь счётной аддитивностью μ , получаем: $\mu(A) = \sum \mu(A \cap A_i) \leq \sum \mu(A_i) \leq \overline{\mu}(A) + \epsilon$. Так как это выполнено для любого $\epsilon > 0$, то $\mu(A) \leq \overline{\mu}(A) = \mu^*(A)$. Но всегда верно обратное неравенство $\mu(A) \ge \mu^*(A)$, откуда мы и получаем требуемое равенство мер.

Теорема Лебега-Каратеодори

Определение 13. Пусть X - множество произвольной природы. Монотонную и счётнополуаддитивную функцию $\gamma: \mathcal{P}(X) \to \mathbb{R}_{\geq 0} \cup \{\infty\}$, такую, что $\gamma(\emptyset) = 0$, мы назовём *пред*мерой на множестве X.

Определение 14. Множество $E \subseteq X$ называется γ -измеримым, если для любого $A \subseteq X$ верно равенство $\gamma(A) = \gamma(A \cap E) + \gamma(A \setminus E)$ или, что равносильно, $\gamma(A) = \gamma(A \cap E) + \gamma(A \cap E^c)$

Примечание 11. Внешняя мера - это предмера

Теорема 2. Теорема Лебега-Каратеодори

Пусть γ - предмера на множестве X, и $\Sigma \subseteq \mathcal{P}(X)$ - набор всех γ - измеримых подмножеств. Тогда:

1. Σ - σ -алгебра

- 2. $\gamma_{1\Sigma}$ счётно-аддитивная мера на Σ .
- 3. Пусть $\mathfrak A$ полукольцо на X, и μ (конечно) аддитивная мера на нём. Если мы определим $\gamma := \mu^*$, то $\Sigma \supset \overline{\mathfrak A}$.

Доказательство.

• Сначала докажем, что Σ - это (обычная) алгебра. $\gamma(A) = \gamma(A) + \gamma(\emptyset) = \gamma(A \backslash \emptyset) + \gamma(A \cap \emptyset) \implies \emptyset \in \Sigma$. Аналогично, $X \in \Sigma$. Если $E \in \Sigma$, то $E^c \in \Sigma$ - следует из симметричного определения измеримой функции. Так как $A \cup B = X \backslash ((X \backslash A) \cap (X \backslash B))$, то достаточно проверить только, что если E_1 , $E_2 \in \Sigma$, то $E_1 \cap E_2 \in \Sigma$. Хотим: $\gamma(A) = \gamma(A \cap (E_1 \cap E_2)) + \gamma(A \backslash (E_1 \cap E_2))$. Воспользуемся теперь определением γ -измеримого множества и подставим туда различные пары множеств:

$$\begin{cases} \gamma(A) = \gamma(A \cap E_1) + \gamma(A \backslash E_1), & \text{- подставили пару } (A, E_1) \\ \gamma(A \cap E_1) = \gamma(A \cap E_1 \cap E_2) + \gamma((A \cap E_1) \backslash E_2) & \text{- подставили пару } (A \cap E_1, E_2) \\ \gamma(A \backslash (E_1 \cap E_2)) = \gamma(A \backslash E_1) + \gamma((A \cap E_1) \backslash E_2) & \text{- подставили пару } (A \backslash (E_1 \cap E_2), E_1) \end{cases}$$

Выражая $\gamma(A \cap E_1)$ из первого уравнения во второе, получаем равенство $\gamma(A) = \gamma(A \cap E_1 \cap E_2) + \gamma(A \setminus E_1) + \gamma((A \cap E_1) \setminus E_2)$, но правая часть по третьему равенству равна в точности $\gamma(A \cap E_1 \cap E_2) + \gamma(A \setminus (E_1 \cap E_2))$. Мы доказали, что множество $E_1 \cap E_2$ тоже γ -измеримо.

- Теперь покажем, что $\gamma_{\uparrow \Sigma}$ аддитивна. Пусть $E_1, E_2 \in \Sigma$ - дизъюнктные множества. Тогда $\gamma(E_1 \cup E_2) = \gamma((E_1 \cup E_2) \setminus E_2) + \gamma((E_1 \cup E_2) \cap E_2) = \gamma(E_1) \cap \gamma(E_2)$, что и требовалось.
- Следующий шаг доказать, что Σ это σ -алгебра. Мы помним, что достаточно доказывать утверждение про объединение попарно дизъюнктных множеств: если $\{E_i\} \in \Sigma$ попарно дизъюнктны, то $E = \bigsqcup E_i \in \Sigma$, т.е. что для любого $A \subseteq X$ верно равенство $\gamma(A) = \gamma(A \cap E) + \gamma(A \setminus E)$. Как и раньше, нам достаточно вместо равенства доказать неравенство в обе стороны. Неравенство $LHS \leq RHS$ верно в силу полуаддитивности γ . Будем доказывать неравенство в обратную сторону. Сразу отметим, что если $\gamma(A) = \infty$, то оно верно, поэтому далее мы считаем, что $\gamma(A) < \infty$. Для любого натурального n: $\gamma(A) = \gamma(A \cap \bigcup_{i=1}^n E_i) + \gamma(A \setminus \bigcup_{i=1}^n E_i) \geq \gamma(A \cap \bigcup_{i=1}^n E_i) + \gamma(A \setminus E)$. Докажем, что для любого натурального n верно соотношение $\gamma(A \cap \bigcup_{i=1}^n E_i) = \sum_{i=1}^n \gamma(A \cap E_i)$. Переход практически очевиден, поэтому сосредоточим наше внимание на базе: $\gamma(A \cap (E_1 \cup E_2)) = \gamma(A \cap E_1) + \gamma(A \cap E_2)$. Но это ни что иное, как определение измеримости для пары $(A \cap (E_1 \cup E_2), E_1)$.

Комбинируя результаты двух последних абзацев, получаем неравенство $\gamma(A) \geq \sum_{i=1}^n \gamma(A \cap E_i) + \gamma(A \setminus E)$. Так как $\gamma(A) < \infty$, мы можем перейти к пределу по n и получить неравенство $\gamma(A) \geq \sum_{i=1}^{\infty} \gamma(A \cap E_i) + \gamma(A \setminus E) \geq \gamma(A \cap E) + \gamma(A \setminus E)$ (в последнем переходе мы воспользовались счётной полуаддитивностью γ).

• $\gamma_{|\Sigma}$ - счётно-аддитивная функция. Пусть есть счётный набор $\{E_i\} \subseteq \Sigma$ попарно дизъюнктных множеств. Мы уже доказали, что $E = \bigsqcup E_i \in \Sigma$. Хотим доказать, что $\sum_{i=1}^{\infty} = \gamma(E)$. Неравенство $LHS \ge RHS$ выполняется в силу полуаддитивности, поэтому мы будем доказывать неравенство $LHS \le RHS$. Для любого натурального n верно соотношение $\gamma(E) = \gamma(E \cap (E_1 \cup ... \cup E_n)) + \gamma(E \setminus (E_1 \cup ... \cup E_n))$

 $... \cup E_n)) \ge \gamma(E \cap (E_1 \cup ... \cup E_n)) = \sum_{i=1}^n \gamma(E_i)$. переходя к пределу по n, получаем требуемое неравенство.

• Достаточно показать, что $\mathfrak{A} \subseteq \Sigma$. Пусть $E \in \mathfrak{A}$. Надо доказать, что для любого $A \subseteq X$ $\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \backslash E)$. Опять-таки, в силу полуаддитивности μ^* достаточно доказать только неравенство $\mu^*(A) \geq \mu^*(A \cap E) + \mu^*(A \backslash E)$ и, как и в пункте 3, нетривиальным будет только случай $\mu^*(A) < \infty$. Для любого $\epsilon > 0$ докажем, что $\mu^*(A) + \epsilon \geq \mu^*(A \cap E) + \mu^*(A \backslash E)$, из этого будет следовать требуемое. Можно выбрать $\{C_i\}_{i\geq 1}$ - такое покрытие A попарно дизъюнктными элементами полукольца, что $\sum \mu(C_j) \leq \mu^*(A) + \epsilon$. Тогда $\{C_i \cap E\}_{i\geq 1} \subseteq \mathfrak{A}$ - покрытие $A \cap E$, откуда $\mu^*(A \cap E) \leq \sum_{i\geq 1} \mu(C_i \cap E)$. Также $C_i \backslash E = \bigcup_{j=1}^{n_i} D_{i,j}$ - конечное объединение попарно дизъюнктных элементов полукольца, а тогда $\{D_{i,j}\}$ - покрытие $A \backslash E \Longrightarrow \mu^*(A \backslash E) \leq \sum_{i,j} \mu(D_{i,j}) = \sum_{i\geq 1} \mu(C_i \backslash E)$. Складывая два последних неравенства, получаем, что $\mu^*(A \cap E) + \mu^*(A \backslash E) \leq \sum_{i\geq 1} (\mu(C_i \cap E) + \mu(C_i \backslash E)) = \sum_{i\geq 1} \mu(C_i) \leq \mu^*(A) + \epsilon$.

Борелевские множества и мера Лебега

Определение 15. Пусть $P(\mathbb{R}^n)$ - полукольцо ячеек с естественной мерой μ (которая, как мы помним, счётно-аддитивна). Множества, измеримые относительно внешней меры μ^* , образуют σ -алгебру (будем обозначать её Σ) и называются измеримыми по Лебегу, а μ^* от них обозначается буквой λ и называется мерой Лебега.

Определение 16. Рассмотрим $\mathfrak{B} = \overline{P(\mathbb{R}^n)}$ - σ -алгебра, натянутая на полукольцо ячеек $P(\mathbb{R}^n)$. Она состоит из всевозможных счётных объединений и пересечений элементов $P(\mathbb{R}^n)$ и называется Борелевской σ -алгеброй. Эта алгебра содержит, например, все открытые множества (так как любое открытое множество в \mathbb{R}^n можно представить в виде дизъюнктного объединения ячеек).

Примечание 12. Любое измеримое по Борелю множество также измеримо и по Лебегу (в силу п.3 теоремы Лебега-Каратеодори), но обратное неверно.

Примечание 13. Мощность Борелевской алгебры - континуум, так как все её элементы получаются из изначального континуального набора $P(\mathbb{R}^n)$ применением счётного числа пересечений и объединений.

Утверждение 13. Пусть γ - предмера на X. Если $E\subseteq X$, и $\gamma(E)=0$, то E - γ -измеримо. Как следствие, любое подмножество γ -измеримого и имеющего предмеру ноль множества также измеримо.

Доказательство. Пусть $A \subseteq X$ - произвольное подмножество. Пользуясь монотонностью и полуаддитивностью предмеры, напишем цепочку неравенств: $\gamma(A \setminus E) \le \gamma(A) \le \gamma(A \cap E) + \gamma(A \setminus E) \le \gamma(E) + \gamma(A \setminus E) = \gamma(A \setminus E)$. Значит, все неравенства обращаются в равенство, и $\gamma(A) = \gamma(A \cap E) + \gamma(A \setminus E)$.

- **Пример(ы) 4.** 1. Отрезок в \mathbb{R}^n , где $n \geq 2$, измерим (так как замкнут) и имеет меру Лебега, равную нулю, так как его можно зажать в прямоугольники сколь угодно малого объёма. По утверждению выше всего его подмножества, коих $2^{\text{КОНТИНУУМ}}$ штук, также измеримы. Значит, в \mathbb{R}^n множество измеримых по Лебегу функций имеет мощность $2^{\text{КОНТИНУУМ}}$ (больше не может, так как $|\mathbb{R}^n| = |\mathbb{R}|$).
 - 2. На плоскости надо действовать хитрее. То же рассуждение пройдёт, если мы придумаем какое-нибудь континуальное множество, имеющее меру ноль. Утверждается, что нам подойдёт Канторово множество.

Утверждение 14. Канторово множество имеет мощность континуум, измеримо по Борелю (а, значит, и по Лебегу) и имеет меру Лебега, равную нулю.

Доказательство. Первое утверждение следует из того, что число из отрезка [0,1] принадлежит Канторову множеству, если и только если оно записывается в троичной записи с помощью цифр 0 и 2 (по модулю обработки предельных случаев вида 0,22222...).

Второе утверждение верно, так как мы получили Канторово множество путём выкидывания из отрезка [0,1] счётного числа открытых интервалов.

Посчитаем меру дополнения к Канторову множеству. Мы имеем один отрезок длины $\frac{1}{3}$, два отрезка длины $\frac{1}{9}$, ... 2^{k-1} отрезков длины $\frac{n}{3^k}$. Сумма их длин (мер) равна единице (несложно просуммировать ряд), а тогда мера Канторова множества равна $\lambda([0,1]) - \sum_{k=1}^{\infty} \frac{2^{k-1}}{3^k} = 1 - 1 = 0$

Определение 17. Мера на полукольце $\mathfrak{A} \subseteq \mathcal{P}(X)$ называется σ -конечной, если исходное множество X представляется в виде счётного объединения $\bigcup A_n$, где $A_i \in \mathfrak{A}$, и $\mu(A_i) < \infty$.

Примечание 14. Мера Лебега является σ -конечной.

Измеримые по Борелю множества устроены просто, однако измеримых по Лебегу множеств, как мы увидели, значительно больше, и про их структуру мы пока ещё ничего не знаем. Но это ситуация поправимая, ведь существует

Утверждение 15. Белов называл его гордым словосочетанием *«теорема о структуре измеримых множеств»*

Пусть $A \in \Sigma$ - (измеримое по Лебегу) множество. Тогда оно представимо в виде разности $B \setminus E$, где $B \in \mathfrak{B}$, а $\lambda(E) = 0$

Доказательство. Для начала рассмотрим случай $\lambda(A) < \infty$. Для произвольного $\epsilon > 0$ рассмотрим покрытие A попарно дизъюнктными элементами полукольца ячеек $\{c_j\}$ такое, что $\lambda(A) = \mu^*(A) + \epsilon \ge \sum \mu(C_j)$ (здесь мы пользуемся конечностью $\lambda(A)$). Если $C^\epsilon = \bigcup C_j$, то $\mu(C^\epsilon) = \sum \mu(C_j) \le \lambda(A) + \epsilon$. $D = \bigcap C^\epsilon \in \mathfrak{B}$ (хоть написано объединение по всем $\epsilon > 0$, достаточно рассмотреть счётную подпоследовательность, стремящуюся к нулю). $\mu(D) = \lim_{\epsilon \to 0} \mu(C^\epsilon) = \lambda(A)$. Также $A \subseteq D$. Тогда $\lambda(A \setminus A) = \mu^*(D \setminus A) = 0$ (в этом месте мы воспользовались измеримостью A - в произвольном случае мы не могли бы использовать аддитивность mu^*). Положим теперь B = D, $E = A \setminus D$ и получим требуемое. Чтобы свести случай $\lambda(A) = \infty$ к предыдущему, достаточно рассмотреть по отдельности множества $A \cap A_i$ (они также измеримы и имеют конечную меру Лебега в силу σ -конечности последней), объединить соответствующие им B_i и E_i и воспользоваться тем, что объединение счётного числа множеств меры ноль также имеет меру ноль (по счётной аддитивности λ).

Что на самом деле произошло? Мы придумали счётно-аддитивную функцию λ на Борелевских множествах, а потом продлили её на Σ . Но единственно ли это продолжение? Ответ положительный.

Утверждение 16. Пусть $P(\mathbb{R}^n)$ - полукольцо ячеек, Σ - измеримые по Лебегу подмножества, λ - мера Лебега, и Δ ($\mathfrak{B}\subseteq\Delta\subseteq\Sigma$) - какая-то другая σ -алгебра со своей мерой ν такая, что $\nu_{|\mathfrak{B}}=\lambda_{|\mathfrak{B}}$. Тогда $\nu_{|\Delta}=\lambda_{|\Delta}$

Доказательство. Во-первых, $\nu(E) = 0 \iff \lambda(E) = 0$, так как множество нулевой меры получается аппроксимацией Борелевскими множествами нулевой меры.

Во-вторых, если
$$A \in \Delta$$
, то можно найти $E \in \Delta$ такое, что $\mu(E) = \nu(E) = 0$, и $A \sqcup E \in \mathfrak{B}$. Но тогда $\mu(A) = \mu(A \sqcup E) - \mu(E) = \nu(A \sqcup E) - \nu(E) = \nu(A)$.

Утверждение 17.

- Мера Лебега инвариантна относительно сдвига. А именно, если $E \in \Sigma$, и $r \in \mathbb{R}^n$, то $\lambda(E+r)=\lambda(E)$
- Пусть μ какая-то счётно-аддитивная мера на \mathfrak{B} , инвариантная относительно сдвига. Тогда $\mu = c\lambda$ для некоторой константы c.

Доказательство.

Для полуинтервалов это очевидно, а если $\{X_i\}$ - покрытие E, то $\{X_i+r\}$ - покрытие E+r.

• Для простоты ограничимся одномерным случаем, хотя в случае произвольной размерности доказательство будет таким же. Пусть $c = \mu([0,1))$. Тогда $\mu(a,b) = c(b-a)$. Действительно, если $b-a = \frac{p}{q} \in \mathbb{Q}$, то $\mu(a,b) = \mu(0,\frac{p}{q}) = p \cdot \mu(0,\frac{1}{q}) = \frac{c}{q}$. А если $b-a \notin \mathbb{Q}$, то можно приблизить рациональными. Значит, на полуинтервалах меры λ и $c \cdot \mu$ совпадают, а, значит, они совпадают везде, так как мера продолжается единственным образом.

Измеримость.

На прошлой лекции у нас было множество X, в котором есть $\mathfrak{A}\subset 2^X$ - полукольцо, а также полуаддитивная мера $\mu:\mathfrak{A}\to\overline{\mathbb{R}_+}$, и мы научились

- определить сигма-алгебру $\Sigma \subset \mathfrak{A}$ измеримых множеств относительно μ ;
- продолжить меру до сигма-аддитивной на \mathfrak{A} ;
- доказывать единственность этого продолжения;
- и если исходное $\mu|_{\mathfrak{A}}$ σ -аддитивно, то продолжение совпадает с исходной на \mathfrak{A} .

В дальнейшем будем использовать эти факты, обозначив тройку (X, Σ, μ) как *пространство*мера, причём обычно считают μ счётноаддитивной.

Определение 18. Пусть у нас есть (X, Σ, μ) и (Y, Δ, ν) . $f: X \to Y$ измеримо, если $\forall A \in \Delta$, $f^{-1}(A) \in \Sigma$.

Пример(ы) 5. Пусть X, Y - топологические пространства. Тогда там есть естественные σ -алгебры, «натянутые» на все открытые множества: B(X), B(Y) - Борелевские σ -алгебры. Тогда если $f: X \to Y$ - непрерывно, то и измеримо по Борелю.

Пусть у нас есть (Y, Δ, μ) и множество $\mathfrak{B} \subset \mathcal{P}(Y)$. Расширение, наименьшая сигмаалгебра, которая это \mathfrak{B} содержит - $\overline{\mathfrak{B}}$. Если она совпадает с Δ , то \mathfrak{B} - образующее множество в Δ . Это множество можно и желательно выбирать как можно меньше.

Пример(ы) 6. Пусть $X = \mathbb{R}^n$, $\Sigma = B(X)$, что можно выбрать поменьше? Можно рассмотреть *диадические разбиения*, то есть, все такие кубики, вершины которых лежат в двоично-рациональных точках. То есть, набор кубиков, устроеный как

$$\left[\frac{p_1}{2^k}, \frac{p_1+1}{2^k}\right) \times \left[\frac{p_2}{2^k}, \frac{p_2+1}{2^k}\right) \times \dots \times \left[\frac{p_n}{2^k}, \frac{p_n+1}{2^k}\right).$$

Обозначим это разбиение как D. Ясно, что любое открытое множество G в \mathbb{R}^n представимо в виде объединения $G = \bigcup D_i$ кубиков из D. Как следствие, D порождает Борелевскую σ -алгебру. При этом, если есть два кубика, то они либо не пересекаются, либо один находится внутри другого. Таким образом, можно считать, что все D_i попарно дизьюнктны.

Утверждение 18. Пусть G_1 и G_2 - области в \mathbb{R}^n , и $f:G_1\to G_2$ - гомеоморфизм, и дополнительно $f\in Lip(G_1)$. Пусть также есть измеримое по Лебегу множество $B\subset \Sigma_\lambda,\, B\subset G_1$, тогда f(B) тоже измеримо по Лебегу (Лебегово)

Доказательство. Воспользуемся тем, что B имеет вид $\tilde{B} \setminus E$, где $\tilde{B} \in B(\mathbb{R}^n)$, а $\lambda(E) = 0$. Тогда $f(B) = f(\tilde{B}) \setminus f(E)$. Уменьшаемое - борелевское, но тогда нужно доказать, что $\lambda(f(E)) = 0$, чтобы заключить, что f(E) измеримо, а, значит, тогда и f(B) будет измеримым. $\lambda(E) = 0 \iff$ внешняя мера множества E равна нулю, т.е. существует набор диадических кубиков такой, что их объединение содержит E, а сумма объёмов этих кубиков меньше ε . Тогда $f(E) \subset \bigcup f(Q_j)$, а diam $f(Q_j) \leq C(\operatorname{diam} Q_j)^n$ (где Q_j - кубики, C - константа липшицевости, делённая на n-ую степень отношения длины главной диагонали к стороне куба), а следовательно, $\lambda^*(f(E)) \leq \operatorname{Const} \cdot \varepsilon$. То есть, если гомеоморфизм липшицев, то образ измеримого измерим.

Небольшое отступление.

Давайте для простоты рассмотрим n=2. Тогда если у нас есть A, покрываемое кубиками, то существует его покрытие кубиками такое, что сумма их площадей $\sum (diamQ_j)^2$ конечна. Если мы рассмотрим отрезок на плоскости, то ситуация аналогична, только diam не во второй степени а в первой. И если мы обратим особое внимание на эти показатели степени (отображающие размерность), то это приведёт нас к хаусдорфовой (дробной) размерности:

Определение 19. Пусть $B \subset \mathbb{R}^n$, $\{Q_j\}$. Мы выбираем показатели s такие, что для любого $\varepsilon > 0$ можно выбрать семейство кубиков $\{Q_j\}$ со следующими свойствами:

- $B \subset \bigcup Q_j$.
- $diamQ_i < \varepsilon$
- $\sum (\operatorname{diam} Q_j)^s < \infty$.

Тогда $\inf\{s: \exists \text{ такое разбиение}\} = \dim_H(B)$ - Xаусдорфова размерность множества <math>B. Более того, после того, как размерность определена, $s_0 = \dim_H(B)$, можно говорить о мере $xaycdop\phi a: \mu_s(B) = \inf_{\text{по всем покрытиям } B} \{\sum (diam Q_i)^{s_0}\}.$

Измеримые функции.

Определение 20. Функция

$$f:(X,\Sigma,\mu)\to\mathbb{R}$$
 (или \mathbb{C}),

называется uзмеримой по Лебегу, если она измерима в вышеупомянутом смысле.

Определение 21. Пусть $f: X \to \mathbb{R}$, тогда

$$E_a(f) = \{ x \in X : f(x) < a \}$$

- множества Лебега.

Примечание 15. Множества $\{x \in X : f(x) > a\}, \{x \in X : f(x) \geq a\}$ и $\{x \in X : f(x) \leq a\}$ также иногда называются множествами Лебега.

Утверждение 19. $f: X \to \mathbb{R}$ измеримо тогда и только тогда, когда $E_a(f) \in X$ для любого a.

Доказательство. $[a,b) = E_b(f) \setminus E_a(f)$

Утверждение 20. Если у нас есть измеримые функции f_1 и f_2 , то их сумма $f_1 + f_2$ и произведение f_1f_2 тоже измеримы. Если X - метрическое пространство, и f_2 непрерывна, то $\frac{f_1}{f_2}$ также измерима там, где знаменатель не обращается в ноль.

Доказательство. Рассмотрим комбинацию отображений: $X \to \mathbb{R}^2 \to \mathbb{R}$, устроеную следующим образом: $x \mapsto (f_1(x), f_2(x)), (x, y) \mapsto x + y$. Оба этих отображения измеримы. Сквозное отображение сопоставляет точке x число $f_1(x) + f_2(x)$ и будет измеримым как композиция измеримых;

Утверждение 21. Пусть теперь $\{f_i\}_{i=1}^{\infty}$ - измеримые фукнции. Тогда их поточечный супремум $f(x) = \sup_i \{f_i(x)\}$ также измерим.

Доказательство. Выберем число $a \in \mathbb{R}$ и посмотрим на $E_a(f)$. Хотим доказать, что $E_a(f)$ измеримо по Борелю. Условие $x \in E_a(f)$ равносильно тому, что для любого $i, f_i(x) \leq a$, которое, в свою очередь, можно записать в виде $x \in \bigcap_i \{x | f_i(x) \leq a\}$. Значит, $E_a(f)$ в точности равно $\bigcap_i \{x | f_i(x) \leq a\}$. Каждое из написанных в фигурных скобках множеств измеримо, значит, и $E_a(f)$ тоже измеримо.

Примечание 16. Аналогично, измеримы фукнции $\inf_i \{f_i(x)\}$, $\limsup_{i \in I} f_i(x) = \inf_m \sup_{k>m} f_i(x)$ и $\lim_i f_i(x)$ (если существует).

Если мы захотим рассматривать функции $f: X \to [-\infty, \infty]$, то дополнительно в определении измеримости надо потребовать, чтобы $f^{-1}(\infty)$ и $f^{-1}(-\infty)$ были измеримы.

Интеграл Лебега и теоремы Леви

Пусть есть функция $f: X \to \mathbb{R}$.

- 1. Разобъём её на положительную и отрицательную части: $f = f_-f_-$, где, напомним, $f_+(x) = \max(f(x), 0)$ и $f_-(x) = -\min(f(x), 0)$ (заметим, что f_+ и f_- наотрицательные функци).
- 2. Если мы определим интеграл Лебега I(f) для неотрицательных функций, то сможем определить и для произвольной функции $g = g_+ g_-$: $I(g) = I(g_+) I(g_-)$ при условии, что хотя бы один из интегралов $I(g_+)$ и $I(g_-)$ меньше бесконечности. Если же оба интеграла равны бесконечности, то определить интеграл Лебега от функции g мы не можем.
- 3. Таким образом, наша текущая цель определить интеграл Лебега от неотрицательной измеримой функции $f: X \to \mathbb{R}$. Для этого мы будем пользоваться определёнными ранее простыми функциями.

Пусть $f(x) = \sum_{k=1}^n a_k \chi_{E_k}(x)$ - простая функция, E_k - измеримые множества. Для неё мы уже определяли $I(f) = \sum_{k=1}^n a_k \mu(E_k)$.

Идея: Приблизить произвольную функцию простыми.

Теорема 3. (Малая теорема Леви)

Даны неотрицательные простые функции f и $\{g_i\}_{i=1}^{\infty}$. Также $g_i(x) \leq g_{i+1}(x)$, и для почти любого x есть предел $\lim_{i \to \infty} g_i(x) = f(x)$. Тогда $\lim_{i \to \infty} I(g_i) = I(f)$

Доказательство. Предположим для простоты, что мера конечна.

 $f(x) = \sum_{k=1}^{n} a_k \chi_{E_k}(x)$, где E_k попарно дизъюнктны, а $g_i(x) = \sum_{j=1}^{n_i} b_j \chi_{\tilde{E_j}}(x)$. Для каждого $k \in [1, n]$ рассмотрим функцию $g_i \chi_{E_k}$. Она почти всюду сходится к $a_k \chi_{E_k}$ (при $i \to \infty$). Докажем, что $I(\chi_{E_k}g_i) \to I(a_k \chi_{E_k}) = a_k \mu(E_k)$.

Во-первых, $I(\chi_{E_k}g_i)$ возрастает при $i \to \infty$.

Во-вторых, $I(\chi_{E_k}g_i) \leq I(a_k\chi_{E_k})$, а тогда $\lim_{i\to\infty} I(\chi_{E_k}g_i) \leq I(a_k\chi_{E_k}) = a_k\mu(E_k)$, поэтому дальше мы будм доказывать неравенство в другую сторону. Для этого докажем, что $\lim_{i\to\infty} I(\chi_{E_k}g_i) \geq a_k\mu(E_k) - \epsilon$ для любого $\epsilon > 0$.

Для любого $\delta > 0$ верно неравенство $I(\chi_{E_k}g_i) \geq (a_k - \delta)\mu\{x \in E_k : g_i > a_k - \delta\}$. Нужно доказать, что при достаточно больших i (и фиксированных δ и ϵ) $\mu\{x \in E_k : g_i > a_k - \delta\} \geq \mu(E_k) - \epsilon$, потому что в этом случае на искомый интеграл получится оценка $(a_k - \delta)(\mu(E_k) - \epsilon)$.

Но $\{x \in E_k : g_i(x) > a - \delta\} \subseteq \{x \in E_k : g_{i+1}(x) > a - \delta\}$, а их объединение $\bigcup_i \{x \in E_k : g_i(x) > a - \delta\}$ - это в точности множество тех точек x, где $\{g_i(x)\} \to f(x)$. Значит, $\lim_{i \to \infty} \mu \{x \in E_k : g_i(x) > a - \delta\} = \mu(E_k)$

Выберем n достаточно большим, чтобы $\mu(\{x \in E_k : g_n(x) > a_k - \delta\}) > \mu(E_k) - \epsilon$, а это нам и требовалось.

Лемма 1. Дана неотрицательная измеримая функция f. Тогда существует последовательность неотрицательных простых функций $\{f_i\}$, почти всюду монотонно возрастающих (no i) κ f.

Доказательство. Для начала разберём случай, когда функция f ограничена: 0 < f(x) < c. Рассмотрим разбиение $[0,c] = \bigcup_{0 \le i < c2^n} \underbrace{\left[\frac{i}{2^n},\frac{i+1}{2^n}\right]}_{I_n^i}$, а также множества $E_i^{(n)} = \{x: f(x) \in I_n^i\}$.

Возьмём теперь простую функцию $f_n(x) = \sum_{i=1}^{c \cdot 2^n} \frac{i}{2^n} \chi_{E_i^n(x)}$. Говоря иначе, мы нарезали область значений функции f, и в каждой "полосочке" огрубили функцию вниз. Тогда понятно, что Последовательность $\{f_n\}$ монотонно возрастает к f.

Если же функция f не ограничена, то для любого N разделим функцию на две области: там, где она меньше либо равна N и там, где она больше, чем N. Первая область приближается как в предыдущем абзаце, а на второй области мы оценим функцию как $N\chi_{\text{эта область}}$. Опять-таки, с ростом N получившаяся последовательность функций будет монотонно возрастать к f.

Определение 22. Дана неотрицательная измеримая функция $f: X \to \mathbb{R}$. Тогда величина $I(f) := \sup\{I(h), h - \text{простая функция, и } 0 \le h \le f\}$ называется *интегралом Лебега*

Утверждение 22. Свойства интеграла Лебега:

- Монотонность: Если $0 \le f_1 \le f_2$, то $I(f_1) \le I(f_2)$
- Аддитивность с простой функцией: f измеримая функция, и $0 \le \phi \le f$ простая функция. Тогда $I(f) = I(f \phi) + I(\phi)$.
- Неравенство Чебышёва: Даны неотрицательная измеримая функция f, вещественное число a и соответствующее множество Лебега $E_a = \{x : f(x) \ge a\}$. Тогда $f \ge a\chi(E_a)$, и $I(f) \ge I(a\chi(E_a)) = a \cdot \mu\{x : f(x) \ge a\}$.

Теорема 4. f и $\{f_n\}$ - измеримые неотрицательные функции на пространстве c конечной мерой. Известно, что $\{f_n\}$ почти всюду монотонно возрастает κ f. Тогда $I(f_n)$ монотонно возрастает κ I(f).

Доказательство. Ясно, что предел $\lim_{n\to\infty}I(f_n)$ существует и не превосходит I(f). Как и раньше, будем доказывать, что для любого $\epsilon>0$ верно неравенство $\lim_{n\to\infty}I(f_n)\geq I(f)-\epsilon$.

Можно выбрать простую $h \leq f$ так, чтобы выполнялось неравенство $I(f) - \epsilon < I(h)$, поэтому будем доказывать, что $\lim_{n \to \infty} I(f_n) \geq I(h)$.

Для каждого n обозначим через h_n простую функцию, приближающую f_n с погрешностью не более $\frac{1}{2^n}$: $I(f_n) - \frac{1}{2^n} \le I(h_n)$ и $h_n \le f_n$. Также пусть $\tilde{h_n} = \max_{i \le n} h_i$. Тогда $\tilde{h_n} \le f_n$ и $I(f_n) - \frac{1}{2^n} \le I(\tilde{h_n}) \le I(f)$, так как $h_i \le f_i \le f_n \le f$.

Заметим, что $\{h_n\}$ - возрастающая последовательность простых функций. Докажем, что она почти везде сходится к f.

Множество точек, где $\tilde{h_n}$ не сходится к f - это в точности $\bigcup_{\epsilon} \{x : \lim_{n \to \infty} h_n(x) < f(x) - \epsilon \}$. Хотим показать, что это объединение имеет меру ноль.

 $f(x) - \tilde{h_n}(x) = (f(x) - f_n(x)) + (f_n(x) - \tilde{h_n}(x))$. Если вдруг оказалось, что эта разность больше, чем ϵ , то одна из скобок больше, чем $\frac{\epsilon}{2}$.

 $\mu\{x: |f(x)-f_n(x)|>\frac{\epsilon}{2}\}\to 0$ при $n\to\infty$ - это утверждение мы доказали в малой теореме Леви для простых функций, но на самом деле не пользовались их простотой.

Чтобы оценить меру $\mu\{x:|f_n(x)-\tilde{h}_n(x)|>\frac{\epsilon}{2}\}$, применим неравенство Чебышёва: $\mu\{x:|f_n(x)-\tilde{h}_n(x)|>\frac{\epsilon}{2}\}\leq \frac{2}{\epsilon}I\left(f_n(x)-\tilde{h}_n(x)\right)\leq \frac{2}{\epsilon 2^n}\to 0$ при $n\to\infty$.

Значит, мера множества точек, где \tilde{h}_n не стремится к f, равна нулю.

Чтобы завершить доказательство, рассмотрим простые функции $g_n = \min\{\tilde{h}_n, h\}$. Они почти везде монотонно возрастают к h, потому что \tilde{h}_n почти везде возрастает к f, а $f \geq h$. Тогда по малой теореме Леви $I(g_n)$ монотонно возрастает к I(h). Имеем неравенство $I(f_n) \geq I(\tilde{h}_n) - \frac{1}{2^n} \geq I(g_n) - \frac{1}{2^n}$. Переходя к пределу по n, получаем, что $\lim_{n \to \infty} I(f_n) \geq \lim_{n \to \infty} I(g_n) = I(h) \geq I(f) - \epsilon$ - мы воспользовались малой теоремой Леви.

Схема доказательства:

- 1. Доказать в тривиальную сторону
- 2. Ослабить (с помощью ϵ) и заменить f на простую функцию h
- 3. Заменить f_n на простые h_n , чтобы они хорошо приближали интеграл.
- 4. (**Типичная идея**) Огранизовать монотонную последовательность: $\tilde{h}_n = \max_{1 \le i \le n} h_i$
- 5. Доказать, что \tilde{h}_n монотонно возрастают к f
- 6. Доказать, что $\min\{\tilde{h}_n,h\}$ монотонно возрастают к h
- 7. Предельный переход по простым функциям с помощью малой теоремы Леви

Утверждение 23. Продолжение свойств интеграла Лебега для положительных функций:

- Интеграл Лебега от функции f можно определить не как супремум по всем простым функция, а как предел интеграла простых функций, стремящихся к f
- ullet Линейность: Если $f_1,\,f_2$ измеримые неотрицательные, то $I(f_1+f_2)=I(f_1)+I(f_2)$
- Если I(f) = 0, то f = 0 почти везде.

Доказательство.

• Следствие теоремы Леви

к содержанию к списку объектов 17

- Пусть $\{\phi_n^1\}$ приближает $f_1, \{\phi_n^2\}$ приближает $f_2,$ тогда $\{\phi_n^1+\phi_n^2\}$ приближает f_1+f_2
- $\{x:f(x)>0\}=\bigcup_{\epsilon}\{x:f(x)>\epsilon\},$ а по неравенству Чебышёва $\mu\{x:f(x)>\epsilon\}\le\frac{1}{\epsilon}I(f)=0$

Определение 23. Множество E называется σ -конечным, если оно представляется в виде счётного объединения множеств конечной меры.

Утверждение 24. Пусть $f \ge 0$ - измерима, $I(f) < \infty$. Тогда её носитель $\sup(f) = \{x : f(x) \ne 0\}$ - σ -конечное множество.

Доказательство. $\mathrm{supp}(f) = \bigcup_{\epsilon} \{x: f(x) \geq \epsilon\}$, и по неравенству Чебышёва $\{x: f(x) \geq \epsilon\} \leq \frac{1}{\epsilon} I(f) < \infty$.

Интеграл как функция множеств

Пусть задана измеримая функция $f \geq 0$. Для любого измеримого множества $E \in \Sigma$ можно рассмотреть функцию от множества E, определённую по правилу $I(f, E) = I(f \cdot \chi_E)$

Теорема 5. Дана последовательность вложенных друг в друга множеств $\{E_i\}$, $E_{i+1} \subseteq E_i$, $\mu\{E_1\} < \infty$, $O(f, E_1) < \infty$ и $E = \bigcap_i E_i$. Тогда

$$I(f, E) = \lim_{i \to \infty} I(f, E_i)$$

Доказательство. Нам надо доказать, что $I(f \cdot \chi_E) = \lim_{i \to \infty} I(f \cdot \chi_{E_i})$. Хочется применить теорему Леви о монотонной сходимости, но вот незадача: функции монотонно убюывают, а нам нужно возрастание. Для этого мы каждое множество E_i заменяем на $F_i = E_1 \setminus E_i$, тогда $I(f, F_i) = I(f, E_1) - I(f, E_i)$, и можно применять теорему Леви.

Другие предельные переходы под знаком интеграла

Теорема Леви говорит нам, что если $f_n \nearrow f$, то $I(f_n) \nearrow I(f)$ (какой классный символ, почему я не узнал о его существовании раньше и писал слова «монотонно возрастает к»?). Но что, если последовательность f_n вообще не имеет предела?

Определение 24. Далее мы будем обозначать I(f) через $\int f d\mu$

Теорема 6. Лемма Фату Пусть $\{f_n\}$ - последовательность неотрицательных измеримых функций. Тогда

$$\liminf_{n \to \infty} \int f_n d\mu \ge \int \liminf_{n \to \infty} f_n d\mu$$

 \mathcal{A} оказательство. $\liminf_{n\to\infty} f_n(x) = \sup_n \inf_{\substack{k\geq n \ g_n(x)}} f_k(x)$. Когда n возрастает, то инфимум бе-

рётся по всё меньшему множеству, и поэтому g_n становится всё больше. Значит, $g_n(x)$ возрастает, и по теореме Леви $\int \liminf_{n\to\infty} f_n d\mu = \int \lim_{n\to\infty} g_n d\mu = \lim_{n\to\infty} \int g_n d\mu$, что не больше, чем $\lim\inf_{n\to\infty} \int f_n d\mu$

Определение 25. Окончательное определение интеграла Лебега. Дана измеримая функция $f: X \to \overline{\mathbb{R}}$. Определим функции $f_+ = \max\{f,0\}$ и $f_- = \max\{-f,0\}$. Тогда f_+ и f_- измеримы и неотрицательны. Мы уже умеем определять $\int f_+ d\mu$ и $\int f_- d\mu$. Если оба эти интеграла равны бесконечности, то определить $\int f d\mu$ мы не можем, в противном же случае положим $\int f d\mu = \int f_+ d\mu - \int f_- d\mu$

Определение 26. Функция f называется *суммируемой*, если оба интеграла $\int f_+ d\mu$ и $\int f_- d\mu$ конечны или, что равносильно, конечен и $\int |f| d\mu$

Утверждение 25. Свойства интеграла Лебега, в большей степени повторяющие то, что уже было написано ранее:

- Монотонность: $f_1 \leq f_2 \implies \int f_1 d\mu \leq \int f_2 d\mu$
- Линейность для суммируемых функций: Если f_1 , f_2 суммируемые функции, то $\int (f_1 + f_2) d\mu = \int f_1 d\mu + \int f_2 d\mu$

Теорема 7. Теоремы о предельных переходах под знаком интеграла:

1. Монотонный предельный переход Пусть (X, Σ, μ) - пространство с мерой, $\{f_n\}$ - последовательность функций, $f_n \nearrow f$ почти всюду и $\int_X f_1 d\mu < \infty$. Тогда существует

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$$

- 2. То же самое, только теперь $f_n \searrow f$.
- 3. **Лемма Фату** Пусть (X, Σ, μ) пространство с мерой, $\{f_n\}$ последовательность неотрицательных измеримых функций, $u \int \inf_{k \geq 1} f_k d\mu < \infty$. Тогда

$$\liminf_{n \to \infty} \int f_n d\mu \ge \int \liminf_{n \to \infty} f_n d\mu$$

4. Теорема о мажсорируемой сходимости Пусть (X, Σ, μ) - пространство с мерой, $\{f_n\}$ - последовательность измеримых функций, почти всюду сходящаяся κ f (но, возможно, не монотонно). Предположим, есть суммируемая функция $g \geq 0$ такая, что $|f_n| < g$ u |f| < g. Тогда

$$\int f_n d\mu \to \int f d\mu$$

 $npu \ n \to \infty$

Доказательство.

- 1. Рассмотрим последовательность $g_n = f_n f_1$. Это неотрицательные функции, монотонно возрастающие к $f f_1$, а тогда по теореме Леви всё получается.
- 2. Рассмотрим последовательность $\{g_n\}$, $g_n = f f_n$. Она монотонно возрастает (хоть все эти функции и отрицательны), и $\int g_1 d\mu < \infty$, а тогда можно применить теорему о монотонной сходимости и получить, что

$$\lim_{n \to \infty} \int (f - f_n) d\mu = \int \lim_{n \to \infty} (f - f_n) d\mu = \int (f - f) d\mu = 0$$

- 3. Определяем функции g_i , как в оригинальном доказательстве, а потом рассматриваем функции $h_i = g_i g_1$ и применяем для них предыдущую версию леммы Фату.
- 4. Положим $h_n = |f_n f|$ и будем доказывать, что $\int h_n d\mu \xrightarrow[n \to \infty]{} 0$. Заметим, что написанный интеграл вообще существует, так как $h_n = |f_n f| < 2g$, а функция g суммируема.

Обозначим через $\tilde{h}_n = \sup_{j \geq n} h_j$. Верно неравенство $|\tilde{h}_n| \leq 2g$, и, как следствие, $\int \tilde{h}_n d\mu < \infty$. Более того, последовательность $\{\tilde{h}_n(x)\}$ поточечно и почти всюду стремится к нулю. Значит, $\lim_{n \to \infty} \int \tilde{h}_n d\mu = \int 0 d\mu = 0$. Но, разумеется, $0 \leq \lim_{n \to \infty} |f_n - f| = \lim_{n \to \infty} h_n \leq \lim_{n \to \infty} \tilde{h}_n = 0$, откуда $\lim_{n \to \infty} h_n = 0$, и мы получаем требуемое.

Примечание 17. Без требования конечности $\int f_1 d\mu$ (или $\int f_k d\mu$ для некоторого k) утверждение пункта 2 становится неверным. Пример:

$$f_n(x) = \begin{cases} 0 & \text{если } 0 \le x \le n \\ 1 & \text{если } x > n \end{cases}$$

Очевидно, что $\infty = \lim_{n \to \infty} \int f_n d\mu \neq \int \lim_{n \to \infty} f_n d\mu = 0$

Пусть задана неотрицательная суммируемая функция f. Для любого $E \in \Sigma$ можно определить $I_f(E) = \int_E f d\mu$. Легко проверить, что это σ -аддитивная мера.

Определение 27. Пусть μ , ν - две меры на одной и той же σ -алгебре пространства X. Мы говорим, что ν - абсолютью непрервна относительно μ , если для любого $\epsilon > 0$ существует $\delta > 0$ такое, что из того, что $\mu(E) < \delta$ следует, что $\nu(E) < \epsilon$. В частности, из того, что $\mu(E) = 0$, следует, что $\nu(E) = 0$.

 $Утверждение\ 26.$ Если μ - σ -конечная мера, то $I_f(E)$ абсолютно непрерывна относительно неё

Доказательство. Допустим, нет: существует $\epsilon > 0$ такое, что для любого $\delta > 0$ есть множество E_{δ} , $\mu\{E_{\delta}\} < \delta$ и $\int_{E_{\delta}} f d\mu > \epsilon$. Выберем последовательность $\{\delta_n\}$, $\delta_n = \frac{1}{2^n}$. Обозначим через E_n множество, соответствующее δ_n , т.е. такое, что $\mu(E_n) < \frac{1}{2^n}$ и $\int_{E_n} f d\mu > \epsilon$. Множества $\{E_n\}$ никак между собой не связаны, поэтому сделаем их монотонными: $\overline{E}_n = \bigcup_{k \geq n} E_k$. Из определения следует, что $\overline{E}_{k+1} \subset \overline{E}_k$, и $\chi_{\overline{E}_k} \searrow \chi_{\bigcap_k \overline{E}_n}$. Оценим меру множества \overline{E}_n : $\mu(\overline{E}_n) \leq \sum_{k=n}^{\infty} \frac{1}{2^k} \underset{n \to \infty}{\longrightarrow} 0$. Значит, $\mu(\bigcap_k \overline{E}_k) = 0$, и $\chi_{\bigcap_k \overline{E}_n} = 0$ почти всюду. Из всего вышесказанного следует, что $f\chi_{\overline{E}_n}$ монотонно убывает к $f\chi_{\bigcap_k \overline{E}_n} = 0$. Тогда можно поменять предел и интегрирование местами:

$$\lim_{n\to\infty}\int_{\overline{E}_n}fd\mu=\int_X\chi_{\overline{E}_n}fd\mu=\int_X\lim_{n\to\infty}\chi_{\overline{E}_n}fd\mu=0$$

. С другой стороны, для любого n есть неравенства

$$\epsilon < \int_{E_n} f d\mu \le \int_{\overline{E}_n} f d\mu$$

Противоречие.

Теоремы Тонелли и Фубини

Пусть $(\mathfrak{A}, \Sigma, \mu)$ и $(\mathfrak{B}, \Delta, \nu)$ - пространства с мерами. Можно построить полукольцо $R = \mathfrak{A} \times \mathfrak{B} = \{X \times Y | X \in \mathfrak{A}, Y \in \mathfrak{B}\}$ и определить на нём σ -аддитивную меру $\mu \otimes \mu(X \times Y) = \mu(X)\nu(Y)$. По теореме Лебега-Каратеодори в $\mathfrak{A} \times \mathfrak{B}$ есть σ -алгебра Θ множеств, измеримых относительно $\mu \otimes \nu$.

Пример(ы) 7. Пусть $\mathfrak{A} = \mathbb{R}^n$ с мерой Лебега λ_n , $\mathfrak{B} = \mathbb{R}^m$ с мерой Лебега λ_m . В \mathbb{R}^{m+n} есть мера Лебега λ_{m+n} , которая, конечно, совпадает с $\lambda_n \otimes \lambda_m$

Пусть $(\mathfrak{A}, \Sigma, \mu)$, $(\mathfrak{B}, \Delta, \nu)$ - пространства с мерами, $(\mathfrak{A} \times \mathfrak{B}, \Theta, \mu \otimes \nu)$ - их произведение. Если у нас есть функция $F(x,y): \mathfrak{A} \times \mathfrak{B} \to \mathbb{R}$, то она, с одной стороны, может быть измеримой относительно $\mu \otimes \nu$, а, с другой стороны, при фиксированном $x \in \mathfrak{A}$ быть измеримой относительно ν . Хотелось бы понять, как все эти махинации связаны между собой.

П

Теорема 8. Теорема Тонелли (пока что без доказательства)

Пусть $F:\mathfrak{A}\times\mathfrak{B}\to\mathbb{R}$ - неотрицательная измеримая функция, меры μ и ν σ -конечны. Тогда "всё можно":

- 1. При почти всех $x \in \mathfrak{A}$ функция $\phi_x(y) = F(x,y) : \mathfrak{B} \to \mathbb{R}$ измерима
- 2. При почти всех $y \in \mathfrak{B}$ функция $\psi_y(x) = F(x,y) : \mathfrak{A} \to \mathbb{R}$ измерима
- 3. $\Phi(x) = \int_{\mathfrak{B}} \phi_x(y) d\nu$ измерима
- 4. $\Psi(y) = \int_{\mathfrak{N}} \psi_y(x) d\mu$ измерима
- 5. $\int_{\mathfrak{A}} \Phi(x) d\mu = \int_{\mathfrak{B}} \Psi(y) d\nu = \int_{\mathfrak{A} \times \mathfrak{B}} F(x,y) d\mu \otimes \nu$ Альтернативная запись:

$$\int_{\mathfrak{A}} \Big(\int_{\mathfrak{B}} F(x,y) d\nu \Big) d\mu = \int_{\mathfrak{B}} \Big(\int_{\mathfrak{A}} F(x,y) d\mu \Big) d\nu = \int_{\mathfrak{A} \times \mathfrak{B}} F(x,y) d\mu \otimes \nu$$

Теорема 9. Теорема Фубини

F(x,y) - суммируемая (но уже, возможно, не положительная) относительно $\mu \otimes \nu$ функция. Тогда "всё можно"

Доказательство. $F(x,y) = F_{+}(x,y) - F_{-}(x,y)$. К каждому слагаемому применим теперь теорему Тонелли.

Пространства суммируемых функций

Пусть $(\mathfrak{A}, \Sigma, \mu)$ - пространство с мерой. Как обычно, на всякий случай считаем меру σ -конечной.

Определение 28. $L^1(\mathfrak{A}, \Sigma, \mu) = \{f : \int_{\mathfrak{A}} |f| d\mu < \infty\}$. Хотелось бы определить норму $||f||_{L^1} := \int_{\mathfrak{A}} |f| d\mu$, но вот незадача: норма может быть равна нулю, когда функция отлична от нуля на непустом множестве нулевой меры. Поэтому мы будем подразумевать, что наши функции определены с точностью до множества меры нуль, а, если быть точным, введём отношение эквивалентности $f \sim g \iff f - g = 0$ почти везде, и будем подразумевать не сами функции, а их классы.

Пример(ы) 8. $L^1(\mathbb{R}^n)$, $l^1 = L^1(\mathbb{Z}, \text{считающая мера})$, $L^1(0,1)$ - функции, сумируемые на отрезке [0,1].

Утверждение 27. $L^{1}(0,1)$ - нормированное пространство:

- 1. $||f|| \ge 0, f = 0 \iff ||f|| = 0$
- $2. ||\alpha f|| = |\alpha| \cdot ||f||$
- 3. $||f_1 + f_2|| \le ||f_1|| + ||f_2||$

Утверждение 28. $L^1(0,1)$ - полное пространство: если $\{f_n\}\in L^1$ - последовательность Коши, то существует $f\in L^1$ такая, что $||f_n-f||\to 0$ при $n\to\infty$

Доказательство. 1. Строим кандидата на функцию f.

Хочется рассмотреть ряд $f_1+(f_2-f_1)+(f_3-f_2)+...$ Если бы он сошёлся, то предельная функция нам бы подошла. К сожалению, он сходится не всегда. Но в силу того, что $\{f_n\}$ - последовательность Коши, можно выбрать подпоследовательность $\{f_{n_k}\}$ такую, что $||f_{n_k}-f_{n_{k+1}}|| \leq \frac{1}{2^k}$. Так как $\sum ||f_{n_k}-f_{n_{k+1}}|| < \infty$, мы можем переставить порядки сумирования и интегрирования: $\infty > \sum_k \int |f_{n_k}-f_{n_{k+1}}|d\mu = \int \sum_k |f_{n_k}-f_{n_{k+1}}|d\mu$. Значит, подынтегральный ряд сходится почти всюду. Определим $f(x) = \lim_{k \to \infty} f_{n_k}(x)$.

2. Доказываем, что найденная функция подходит, т.е. что $||f_n - f|| \to 0$ при $n \to \infty$. Применим неравенство треугольника: $||f_n - f|| = ||f_n - f_{n_k}|| + ||f_{n_k} - f||$. Если n и k достаточно велики, то первая норма мала из-за того, что $\{f_n\}$ - последовательность Коши, а вторая норма мала, так как $\{f_{n_k}\}$ приближают f.

Обозначим через $\mathfrak{C}_0(\mathbb{R})$ множество всех непрерывных функций из \mathbb{R} и \mathbb{R} с компактным носителем.

Утверждение 29. $\mathfrak{C}_0(\mathbb{R})$ плотно в $L^1(\mathbb{R})$

Доказательство.

ullet Для любой функции $f\in L^1(\mathbb{R})$ обозначим

$$f_N(x) = \begin{cases} 0 & \text{если } |x| \ge N \\ f(x) & \text{если } |x| < N \end{cases}$$

Все f_N - функции с компактным носителем, и $||f-f_N||=\int_N^\infty f d\mu \to 0$ при $n\to\infty$

- Мы умеем приближать f_N^+ и f_N^- , а, значит, и f_N , простыми функциями (которые тоже имеют компактный носитель), поэтому достаточно доказать утверждение лишь для них. А на самом деле даже только для характеристических, так как линейные комбинации последних это и есть простые функции.
- Пусть E измеримое множество, являющееся подмножеством какого-то конечного интервала. Его можно покрыть дизъюнктным набором интервалов $\{I_k\}$ причём таким, что $\mu(\bigcup I_k \backslash E) < \epsilon$. Тогда χ_E приближается функцией $\sum_k \chi_{I_k}$, а характеристическая функция интервала уж точно приближается непрерывной функцией.

Примечание 18. То же самое верно для функций из \mathbb{R}^n

Следствие 1. Пусть всё происходит на отрезке [0,1]. Тогда любую измеримую функцию f можно приблизить непрерывной. Но по теореме Вейерштрасса любую непрерывную функцию на [0,1] можно приблизить полиномом. Как следствие, любая измеримая функция на отрезке также приближается (по мере) полиномом.

Теорема 10. Теорема Мюнца Рассмотрим последовательность функций $\{t^{\lambda_n}\}$, где $0 = \lambda_0 < \lambda_1 < \lambda_2 < \dots$ Следующие утверждения эквивалентны:

- 1. Любую функцию $f \in C[0,1]$ можно равномерно приблизить «обобщёнными полиномами» $\sum_{k=0}^N \alpha_k t^{\lambda_k}$
- 2. Ряд $\sum_{k=1}^{\infty} \frac{1}{\lambda_k} = \infty$

Общий случай: Пусть $(\mathfrak{A}, \Sigma, \mu)$ - пространство с мерой, \mathfrak{A} - топологическое пространство. Предположим, \mathfrak{A} хаусдорфово, а мера μ регулярна (неформально говоря, любое множество E можно «снизу подпереть компактами» и «сверху подпереть открытыми множествами»; формальное определение см. в начале конспекта).

Утверждение 30. Непрерывные суммируемые функции плотны в $L^1(\mathfrak{A}, \Sigma, \mu)$

Для доказательства потребуется

Лемма 2. Лемма Урысона Пусть X - Хаусдорфово пространство, $K \subset G \subset X$, K - компакт, G - открытое. Тогда существует непрерывное отображение $f: X \to [0,1]$ такое, что $f_{\restriction_K} = 1$ и $f_{\restriction_{X \setminus G}} = 0$

Свёртка

Определение 29. Пусть $f, g \in L^1(\mathbb{R})$. Их свёрткой называется функция $h(t) = (f*g)(t) = \int_{\mathbb{R}} f(t-\tau)g(\tau)d\tau$. Очень похоже на умножение полиномов.

Утверждение 31. Свойства свёртки:

- 1. Коммутативность: f * q = q * f
- 2. Дистрибутивность: $f * (g_1 + g_2) = f * g_1 + f * g_2$
- 3. $||f * g|| \le ||f|| \cdot ||g||$

Доказательство.

- 1. Очевидно из определения
- 2. Очевидно из определения
- 3. $||f*g|| = \int_{\mathbb{R}} |\int_{\mathbb{R}} f(t-\tau)g(\tau)d\tau|dt \le \int_{\mathbb{R}} \int_{\mathbb{R}} |f(t-\tau)| \cdot |g(\tau)|d\tau dt \stackrel{\text{Тонелли}}{=} \int_{\mathbb{R}} \int_{\mathbb{R}} |f(t-\tau)| \cdot |g(\tau)|d\tau d\tau = \int_{\mathbb{R}} |g(\tau)| \int_{\mathbb{R}} |f(t-\tau)| \cdot dt d\tau = ||f|| \cdot ||g||$. Заметим, что заодно мы доказали существование свёртки.

Вопрос: Как себя ведёт функция из L^1 при сдвиге?

Утверждение 32. $f \in L^1$, тогда $||f(t) - f(t+\tau)|| \underset{\tau \to 0}{\longrightarrow} 0$

Доказательство. Если бы f была непрерывной и имела компактный носитель, то утверждение бы следовало из теоремы Кантора о равномерной непрерывности. Пусть теперь $f \in L^1(\mathbb{R}), \ \epsilon > 0$, хотим найти $\delta = \delta(\epsilon)$ такое, что при любом $\tau, \ |\tau| < \delta$, верно неравенство $||f(t) - f(t+\tau)|| < \epsilon$. Мы уже знаем, что функцию f можно приблизить непрерывной функцией с компактным носителем: $||g - f|| < \frac{\epsilon}{3}$. Тогда $||f(t) - f(t+\tau)|| \le ||f(t) - g(t)|| + ||g(t) - g(t+\tau)|| + ||g(t+\tau) - f(t+\tau)||$. Первое и третье слагаемые меньше, чем $\frac{\epsilon}{3}$, а второе слагаемое тоже будет маленьким, если τ достаточно мало (теорема Кантора о равномерной непрерывности).

Предметный указатель

```
\gamma-измеримое множество, 8
\sigma-аддитивная функция, 5
\sigma-алгебра, 7
\sigma-конечная мера, 11
\sigma-конечное множество, 17
Абсолютно непрерывная мера, 19
Алгебра множеств, 3
Борелевская \sigma-алгебра, 10
Внешняя мера, 7
Диадическое разбиение, 12
Измеримая по Лебегу функция, 13
Измеримость, 12
Интеграл
   элементарный, 4
Интеграл Лебега, 15
Кольцо множеств, 3
Лемма Урысона, 21
Лемма Фату, 17
Малая теорема Леви, 14
Mepa, 3
Мера Лебега, 10
Мера Хаусдорфа, 13
Множества, измеримые по Лебегу, 10
Неравенство Чебышёва, 15
Полукольцо множеств, 3
Полукольцо ячеек, 3
Порождённая \sigma-алгебра, 7
Предмера, 8
Произведение мер, 5
Простая функция, 4
Пространство-мера, 12
Регулярная мера, 6
Свёртка функций, 22
Суммируемая функция, 18
Счётная полуаддитивность, 7
Счётно-аддитивная функция, 5
Теорема Лебега-Каратеодори, 8
Теорема Мюнца, 21
Теорема Тонелли, 20
Теорема Фубини, 20
Теорема о мажорируемой сходимости, 18
Теорема о структуре измеримых множеств,
       11
Функция-индикатор, 4
Характеристическая функция, 4
Хаусдорфова размерность множества, 13
```