运用离差最大化方法进行多指标决策与排序*

王应明 厦门大学自动化系,361005

摘 要 本文以工业经济效益的综合评价和排序为应用背景,提出了 一种多指标决策与排序的新方法—— 离差最大化方法。 该方法能够自动确定各评价指标间的加权系数,且概念清楚、涵义明确,排序结果准确,可信,不具有主观随意性。

主题词 多属性决策,经济效益分析, 多指标排序。

Using the Method of Maximizing Deviations to Make Decision for Multiindicies

Wang Yingming
Department of Automation, Xiamen University, 361005

Abstract: This paper takes the synthesizing evaluation of industrial economic benefits based on some examples and proposes a new method named maximizing deviations method for multi-indices decisions. The new method can automatically determine the weight coefficients among the multiindice and also can obtain the exact and reliable evaluation results without subjectivities.

Keywords Multiindices decisions, Multiindicies ranking, Economic benefit Evaluations, Maximizing deviations method.

1 引 言

经济研究中经常会碰到经济效益的综合评价和排序问题,经济效益的综合评价和排序本质上是一个多指标决策问题,也称多属性决策、多准则决策、有限方案多目标决策等。 有关多指标决策与排序的理论,目前虽已取得了不少研究成果,提出了不少方法,但还很不完善,尤其是方法研究还有待于进一步的探索。本文从离差最大化角度探讨了多指标决策与排序的方法问题,提出了一种全新的离差最大化决策方法,并成功地应用于经济效益的综合评价和排序,取得了比较满意的评价结果。该离差最大化决策方法概念清楚、涵义明确、算法简单,具有一定的推广和实用价值。

2 多指标离差最大化决策方法原理

设多指标决策与排序问题的方案集为 4=

 $\{A_1,A_2,\cdots,A_n\}$,指标集 (也称目标集、属性集)为 $G=\{G_1,G_2,\cdots,G_n\}$,方案 A_i 对指标 G 的属性值 (指标值)记为 y_{ij} ($i=1,2,\cdots,n$; $j=1,2,\cdots,m$),矩阵 $Y=(y_{ij})_{i \in m}$ 表示方案集 A 对指标集 G 的"属性矩阵",俗称"决策矩阵"。通常,指标有"效益型"指标、"成本型"指标、"固定型"指标和"区间型"指标之区别。所谓效益型指标是指属性值愈大愈好的指标,如资金产值率、资金利税率、全员劳动生产率等;所谓成本型指标是指属性值愈小愈好的指标,如流动资金占用额、流动资金周转天数等;所谓固定型指标是指属性值既不能太大又不能太小,而以稳定在某个固定值为最佳的一类指标;家用电器稳压器的稳压性能指标就属于这类指标;所谓区间型指标是指属性值以落在某个固定区间内为最佳的一类指

收稿日期: 1997年 7月 30日 ?1994-2019 China Academic Journal Electronic Publishing House. All rights reserved. http://ww

^{*} 国家自然科学青年基金资助课题

标,国家标准中规定的等级划分通常都属于这类指标。根据指标类型的不同,对指标集 *G*可作如下划分,即令

$$G = \bigcup_{i=1}^{4} \mathsf{K}_{i} \; \boldsymbol{\coprod} \; \mathsf{K}_{i} \cap \; G_{j} = \; \circlearrowleft \; i, j = \; 1, \, 2, \, 3, \, 4, i \neq \; j$$

式中 K_i (i=1,2,3,4)分别为效益型指标集、成本型指标集、固定型指标集和区间型指标集: O为空集。

一般而言,不同的评价指标往往具有不同的量纲和量纲单位,为了消除量纲和量纲单位的不同所带来的不可公度性,决策之前首先应将评价指标无量纲化处理。然而,评价指标类型不同,无量纲化处理方法也将不同.

对于效益型指标,一般可令

$$Z_{ij} = \frac{y_{ij} - y_j^{\min}}{y_j^{\max} - y_j^{\min}}, i = 1, 2, \dots, n, j \in K_1$$
 (2)

式中 $y_j^{\text{max}}, y_j^{\text{min}}$ 分别为 G_j 指标的最大值和最小值。对于成本型指标,令

$$Z_{ij} = \frac{y_i^{\max} - y_{i,j}}{y_j^{\max} - y_j^{\min}}, i = 1, 2, \cdots, n, j \in K_2 \quad (3)$$

式中 y_i^{\max} y_i^{\min} 意义同 (2) 式。

对于固定型指标,有

$$Z_{ij} = 1 - \frac{|y_{ij} - y_{ij}^*|}{\max_{i} |y_{ij} - y_{ij}^*|}, i = 1, 2, \dots, n, j \in K_3$$
(4)

式中 y_i^* 为 G_i 指标的最佳稳定值

对于区间型指标,令

$$Z_{ij} = \begin{cases} 1 - \frac{q_{1j} - y_{ij}}{\max\{q_{1j} - y_{ji}^{\min}, y_{j}^{\max} - q_{2j}\}}, y_{ij} < q_{1j} \\ 1 \quad y_{ij} \in [q_{1j}, q_{2j}], i = 1, 2, \dots, n, j \in K_{4} \\ 1 - \frac{y_{ij} - q_{2j}}{\max\{q_{1j} - y_{j}^{\min}, y_{j}^{\max} - q_{2j}\}}, y_{ij} > q_{2j} \end{cases}$$

式中 $[q_{ir}, q_{ij}]$ 为 G_i 指标的最佳稳定区间, y_j^{\max}, y_j^{\min} 意义同 (2)式。

记无量纲化处理后的决策矩阵为 $Z=(Z_{ij})_{k,m}$,显然, Z_{i} 总是愈大愈好。设评价指标间的加权向量为 $W=(W_{1},W_{2},\cdots,W_{m})^{T}>0$,并满足单位化约束条件

$$\sum_{j=1}^{m} W_j^2 = 1 \tag{6}$$

在加权向量 W 的作用下,构造加权规范化决策矩阵

$$C = \begin{bmatrix} G_{1} & G_{2} & \cdots & G_{m} \\ A_{1} & W_{1}Z_{11} & W_{2}Z_{12} & \cdots & W_{m}Z_{1m} \\ A_{2} & W_{1}Z_{21} & W_{2}Z_{22} & \cdots & W_{m}Z_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ A_{n} & W_{1}Z_{n1} & W_{2}Z_{n2} & \cdots & W_{m}Z_{nm} \end{bmatrix}$$
(7)

根据简单加性加权法 (SAW) ,各决策方案 A_i 的多指标综合评价值可表示为

$$D_{i}(W) = \sum_{j=1}^{m} Z_{ij} W_{j}, i = 1, 2, \cdots, n$$
 (8)

很显然, $D_i(W)$ 总是愈大愈好, $D_i(W)$ 愈大表明决策方案 A_i 愈优。因此,在加权向量 W已知的情况下,根据上述公式可以很容易地对各决策方案进行决策或排序。下面就来进一步讨论加权向量 W的确定方法。众所周知,如果 G_i 指标对所有决策方案而言均无差别 $(无差异),则 <math>G_i$ 指标对方案决策与排序将不起作用,这样的评价指标可令其权系数为 0,反之,如果 G_i 指标能使所有决策方案的属性值有较大差异,这样的评价指标对方案决策与排序将起重要作用,应该给予较大的权系数。 假设对于 G_i 指标而言,决策方案 A_i 与其他所有决策方案之离差用 $V_{ii}(W)$ 来表示,则可定义

$$V_{ij}(W) = \sum_{k=1}^{n} |W_j Z_{ij} - W_j Z_{kj}|$$

$$i = 1, 2, \dots, n, j = 1, 2, \dots, m$$
 (9)

今

$$V_{j}(W) = \sum_{i=1}^{n} V_{ij}(W) = \sum_{i=1}^{n} \sum_{k=1}^{n} |Z_{ij} - Z_{kj}| W_{j}$$

$$j = 1, 2, \dots, m$$
(10)

则 $V_{J}(W)$ 表示对 G 指标而言,所有决策方案与其它决策方案之总离差。 根据前述分析,加权向量 W 的选择应使所有评价指标对所有决策方案之总离差最大。 为此,构造目标函数为

$$\max F(W) = \sum_{j=1}^{m} V_{j}(W)$$

$$= \sum_{j=1}^{m} \sum_{i=1}^{n} \sum_{k=1}^{n} |Z_{ij} - Z_{kj}| W_{j} \quad (11)$$

于是,求解加权向量 W 等价于求解如下最优化问题

$$\begin{cases} \max F(W) = \sum_{j=1}^{m} \sum_{i=1}^{n} \sum_{k=1}^{n} |Z_{ij} - Z_{kj}| W_{j} \\ \text{s. t. } \sum_{j=1}^{m} W_{j}^{2} = 1 \end{cases}$$
(12)

解此最优化模型 得到

$$W_{j}^{*} = \frac{\sum_{i=1}^{n} \sum_{k=1}^{n} |Z_{ij} - Z_{kj}|}{\sum_{j=1}^{m} \left[\sum_{i=1}^{n} \sum_{k=1}^{n} |Z_{ij} - Z_{kj}|\right]^{2}}, j = 1, 2, \dots, m$$

理论上恒可以证明 $W^* = (W_1^*, W_2^*, \dots, W_m^*)^T$ 为目 标函数 F(W)的唯一极大值点。由于传统的加权向 量一般都是满足归一化约束条件而不是单位化约 束条件 .因此 .在得到单位化加权向量 W' 之后 .为 了与人们的习惯用法相一致,还可以对 w' 进行归 一化处理,即令

$$W_j^* = W_j^* \sum_{j=1}^m W_j^*, j = 1, 2, \dots, m$$
 (14)

由此得到

$$\widetilde{W}_{j}^{*} = \frac{\sum_{i=1}^{n} \sum_{k=1}^{n} |Z_{ij} - Z_{kj}|}{\sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{k=1}^{n} |Z_{ij} - Z_{kj}|}, j = 1, 2, \dots, m$$
(15)

综上所述,多指标决策与排序的方法和步骤可 以归纳和概括为:

- (1) 根据评价指标类型构造规范化决策矩阵 $Z=(Z_{ii})_{n \leq m};$
- (2) 根据离差最大化方法计算最优加权向量 W^{\prime} .同时计算各决策方案 A_{\prime} 的多指标综合评价 $D_i(W^*)(i=1,2,\cdots,n);$
- (3) 根据各决策方案多指标综合评价值的大 小,对多指标决策与排序问题作出科学的评价比较 和排序分析。

3 应用举例

本文以《中国工业经济统计年鉴》1993年提供 的全国 16个省、直辖市主要工业经济效益指标的 统计资料[1]为基础数据进行经济效益的评价比较 和排序分析。 很显然,此类问题是一个典型的多指 标决策与排序问题,已知方案集为 $A=\{1,1,2,\dots,K\}$ 津,上海,江苏,…,山西},共有16个决策方案,指

标集 $G=\{G_1,G_2,\cdots,G_5\}$,其中 G_1 :全员劳动生产率 (元 人); G: 资金利税率 (%); G: 百元销售收入实 现利润(元); G_4 : 百元工业产值占用流动资金(元); G: 产值利税率 (%),共 5个评价指标,除百元工业 产值占用流动资金为成本型指标外,其余均为效益 型指标,各指标的原始数据如表 1所示。根据本文 提供的多指标离差最大化决策方法,通过模型运算 得到各个评价指标间的加权向量为 W = (0. 5372, 0. 4399, 0. 3843, 0. 4701, 0. 3864) ^T, J∃ — 化之后有 \tilde{W} = (0.2422, 0.1983, 0.1733, 0.2119, 0.1742) 7.在此加权向量作用下,各省、直辖市在 1992年度的工业经济效益综合评价值及其排序号 如表 1最后两列所示。从表 1中的评价结果可以看 出,北京作为我国的政治、经济和文化中心,其工业 经济效益水平也很不错.名列 16个省、直辖市之榜 首,显示出其雄厚的经济基础和实力;上海作为我 国的"第一大工业城市".其工业经济效益水平仅次 于北京,位于第2位:排名前10位的其他省市依次 是广东、浙江、福建、江苏、山东、湖北、天津和安徽, 其中绝大多数均为我国沿海开放省市,这充分反映 了改革开放以来,我国沿海地区省份经济发达、技 术先进、管理水平高、经济效益比较好,显示了比较 强劲的区位优势特点:江西、山西两省作为我国的 革命老区和内陆省份,由于经济基础薄弱技术落 后、管理水平跟不上,其工业经济效益综合评价值 分别排名第 16位和第 15位:辽宁省作为我国的重 工业基地省份,由于设备陈旧老化,资金匮乏、技改 措施跟不上等众多主客观因素的影响,其工业经济 效益综合评价值也很不理想。名列 16个省、直辖市 倒数第 3位。以上评价结论是仅就 1992年度而言 的,不排除个别省份排序的偶然性,但总的来讲,评 价结论与人们的直观判断和习惯认识基本一致,有 一定的可信度和决策参考价值。除此之外,笔者还 进行了大量的仿真评价与决策,限于篇幅,此处略。

(下转第 31页)

的发展运动规律,使读者对人工系统的运动规律有一清楚的认识,以便指导人工系统的伟大实践 提出的工程系统理论思想,只是对系统理论发 展趋势的一种尝试,尚属于探索阶段,进一步的完善有待以后完成。限于篇幅,文中只是提纲性的描述,未涉及较深的理论和大量的例证。

参考文献

- 1 赫伯特 A西蒙 . 人工科学 . 武夷山译 ,商务印书馆 , 1987
- 2 王越.简论系统科学与科学研究.火控雷达技术,1997(6): 1~6
- 3 曾国屏. 自组织的自然观. 北京大学出版社, 1996(11): 281

(上接第 26页)

表 1 1992年全国部分省、直辖市主要工业经济效益指标及其排序比较

权系数评	0. 2422	0. 1983	0. 1733	0. 2119	0. 1742	评价值	排
省市	全员劳动生产 率 (元 人)	资金利税率	百元销售收入 实现利润(元)	百元工业产值占用 流动资金 (元)	产值利税 率 (%)	D ₁ (W)	序号
北京	47177	16. 61	8. 89	31. 05	15. 77	0. 7821	1
天津	43323	9. 08	3. 65	29. 80	8. 44	0. 3285	9
上海	59023	13. 84	6. 06	26. 55	12. 87	0. 7402	2
江苏	46821	10. 59	3. 51	22. 46	7. 41	0. 4794	6
浙江	41646	13. 24	4. 64	24. 33	9. 33	0. 5412	4
安徽	26446	10. 16	2. 38	26. 80	9. 85	0. 2888	10
福建	38381	11. 97	4. 79	26. 45	10. 64	0. 4890	5
广东	57808	10. 29	4. 54	23. 00	9. 23	0. 5994	3
辽宁	28869	7. 68	2. 12	31. 08	9. 05	0. 1573	14
山东	38812	8. 92	3. 38	25. 68	8. 73	0. 3628	7
湖北	30721	10. 87	4. 15	30. 36	11. 44	0. 3517	8
湖南	24848	10. 77	2. 42	30. 71	11. 37	0. 2601	11
河南	26925	9. 34	3. 06	30. 11	10. 84	0. 2579	12
江西	23269	8. 25	2. 58	32. 57	8. 62	0. 1117	16
河北	28267	8. 13	3. 17	29. 25	9. 17	0. 2226	13
山西	21583	7. 41	4. 66	35. 35	11. 27	0. 1454	15

参考文献

1 国家统计局工业交通统计司.中国工业经济统计年鉴.中国统计出版社,1993