Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm ©МатБюро - Решение задач по математике, экономике, статистике

Задача по исчислению высказываний с решением

Доказать в исчислении высказываний (буквы обозначают произвольные формулы):

$$(\neg X \lor (Y \lor \neg Z)) \vdash (\neg (Z \to \neg X) \to \neg (Y \to \neg X))$$

Решение.

Согласно теореме дедукции $\frac{\Gamma, U \mathsf{p} V}{\Gamma \mathsf{p} U \to V}$ для доказательства данного высказывания

$$(\neg X \lor (Y \lor \neg Z)) \mid (\neg (Z \to \neg X) \to \neg (Y \to \neg X))$$

достаточно доказать следующее высказывание:

$$(\neg X \lor (Y \lor \neg Z)), \neg (Z \to \neg X) \mid \neg (Y \to \neg X),$$

в котором $\neg X \lor (Y \lor \neg Z)$ и $\neg (Z \to \neg X)$ являются гипотезами, а $\neg (Y \to \neg X)$ – высказыванием, которое необходимо вывести из этих гипотез.

Доказательство:

1	$\neg X \lor (Y \lor \neg Z)$	гипотеза
2	$\neg (Z \rightarrow \neg X)$	гипотеза
3	$\neg(Z \to \neg X) \equiv \neg(\neg Z \lor \neg X)$	определение дизъюнкции: $\neg A \rightarrow B \equiv A \lor B$ для $A = \neg Z$, $\neg A = Z$, $B = \neg X$
4	$\neg(\neg Z \vee \neg X) \equiv \neg \neg Z \& \neg \neg X$	закон де Моргана №1: ¬ $(A \lor B)$ ⊢(¬ A & ¬ B) для $A = ¬Z$, $B = ¬X$
5	$\neg\neg Z \& \neg\neg X \equiv Z \& X$	использована эквивалентность $\neg \neg A \equiv A$ для $A = Z$ и $A = X$
6	Z & X	гипотеза, эквивалентная (2)
7	$Z \& X \rightarrow X$	свойство конъюнкции №2: $A\&B \vdash B$ для $A = Z$, $B = X$
8	X	Modus Ponens $A, A \to B \vdash B$ для (6) и (7) при $A = Z \& X$, $B = X$
9	$(\neg Z \lor \neg X) \lor Y$	коммутативность и ассоциативность дизьюнкции (1)
10	$(\neg Z \lor \neg X) \lor Y \equiv (\neg \neg Z \to \neg X) \lor Y$	определение дизъюнкции для $A = \neg Z$, $B = \neg X$
11	$(\neg \neg Z \to \neg X) \lor Y \equiv (Z \to \neg X) \lor Y$	эквивалентность $\neg \neg A \equiv A$ для $A = Z$
12	$(Z \to \neg X) \lor Y \equiv \neg (Z \to \neg X) \to Y$	определение дизъюнкции для $A = (Z \rightarrow \neg X), B = Y$
13	$\neg (Z \to \neg X) \to Y$	гипотеза, эквивалентная (1)
14	Y	Modus Ponens для (2) и (13)

Задача скачана с сайта www.MatBuro.ru

Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm

©МатБюро - Решение задач по математике, экономике, статистике

15	Y & X	свойство конъюнкции №1 $A, B \vdash A \& B$ для (8) и (14) при $A = Y$, $B = X$
16	$Y \& X \equiv \neg (Y \to \neg X)$	определение конъюнкции $\neg (A \rightarrow \neg B) \equiv A \& B$ для $A = Y$, $B = X$
17	$\neg(Y \to \neg X)$	доказано

В результате доказано исходное утверждение

$$(\neg X \lor (Y \lor \neg Z)) \mid (\neg (Z \to \neg X) \to \neg (Y \to \neg X)).$$

Использованы:

определение дизъюнкции: $\neg A \rightarrow B \equiv A \lor B$;

определение конъюнкции: $\neg (A \rightarrow \neg B) \equiv A \& B$;

свойство конъюнкции №1: $A, B \vdash A\&B$;

свойство конъюнкции №2: $A\&B \vdash A$ и $A\&B \vdash B$;

закон де Моргана №1: $\neg (A \lor B) \vdash (\neg A \& \neg B)$;

эквивалентность: $\neg \neg A \equiv A$; Modus Ponens: $A, A \rightarrow B \vdash B$