Uwaga organizacyjna:

Obrona projektów odbędzie się na ostatnich zajęciach. Wykonane prace należy przesłać do mnie tydzień przed ostatnimi zajęciami. Otrzymanie email zawsze potwierdzę, w przypadku braku otrzymania potwierdzenia w ciągu jednego dnia, proszę o ponowne wysłanie pracy.

Uwagi do projektów:

- każdy symulator powinien umożliwiać użytkownikowi zbudowanie sieci komórkowej o dowolnym rozmiarze N×N(dla N≤20)
- użytkownik musi mieć możliwość uruchomienia symulacji z samodzielnie wybranymi wartościami wszystkich parametrów symulacji
- wartości badanych w symulacji wielkości muszą być zaprezentowane na wykresach
- wartość ziarna dla generatora liczb pseudolosowych musi być ustawiana przez użytkownika
- razem z aplikacją proszę o przesłanie sprawozdania z przeprowadzonych symulacji zawierającego wykaz wartości użytych parametrów oraz wyników symulacji

Projekt 1

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem "wybuchu". Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 2

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem "autostrady". Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 3

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniającym model "autostrady" i statyczny. Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 4

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniającym model "wybuchu" i statyczny. Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 5

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem "wybuchu". Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Policzyć w jakim stopniu wykorzystywane są wszystkie kanały.

Projekt 6

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem "autostrady". Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Policzyć w jakim stopniu wykorzystywane są wszystkie kanały.

Projekt 7

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniającym model "wybuchu" i statyczny. Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Policzyć w jakim stopniu wykorzystywane sa wszystkie kanały.

Projekt 8

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniającym model "autostrady" i statyczny. Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Policzyć w jakim stopniu wykorzystywane są wszystkie kanały.

Projekt 9

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem "wybuchu". Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Jaka jest minimalna liczba kanałów potrzebna do świadczenia usługi wszystkim abonentom.

Projekt 10

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniającym model "wybuchu" i stacjonarny. Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Jaka jest minimalna liczba kanałów potrzebna do świadczenia usługi wszystkim abonentom.

Projekt 11

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniającym model "autostrady" i stacjonarny. Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Jaka jest minimalna liczba kanałów potrzebna do świadczenia usługi wszystkim abonentom.

Projekt 12

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem "autostrady". Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Jaka jest minimalna liczba kanałów potrzebna do świadczenia usługi wszystkim abonentom.

Projekt 13

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem "wybuchu". Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi *p* i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez zapożyczenie *borrowing from the richest.* Policzyć średnią liczbę zablokowanych abonentów.

Projekt 14

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem "autostrady". Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez zapożyczenie borrowing from the richest. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 15

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniający model "autostrady" i stacjonarny. Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez zapożyczenie *borrowing from the richest.* Policzyć średnią liczbę zablokowanych abonentów.

Projekt 16

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniający model "wybuchu" i stacjonarny. Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez zapożyczenie *borrowing from the richest.* Policzyć średnią liczbę zablokowanych abonentów.

Projekt 17

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem "wybuchu". Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi *p* i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez zapożyczenie *borrowing first available.* Policzyć średnią liczbę zablokowanych abonentów.

Projekt 18

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem "autostrady". Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi *p* i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez zapożyczenie *borrowing first available*. Policzyć średnia liczbe zablokowanych abonentów.

Projekt 19

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniającym model "autostrady" i stacjonarny. Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi *p* i jest zgodne z rozkładem

Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez zapożyczenie *borrowing first available*. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 20

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniającym model "wybuchu" i stacjonarny. Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez zapożyczenie *borrowing first available*. Policzyć średnią liczbę zablokowanych abonentów.

Proiekt 21

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem "wybuchu". Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez zapożyczenie ze zwrotem. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 22

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem "autostrady". Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez zapożyczenie ze zwrotem. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 23

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniającym model "autostrady" i stacjonarny. Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez zapożyczenie ze zwrotem. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 24

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniającym model "wybuchu" i stacjonarny. Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez zapożyczenie ze zwrotem. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 25

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem "wybuchu". Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez dynamiczną alokację kanałów. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 26

Zaimplementować symulator zdarzeń dyskretnych. Abonenci poruszają się w sieci zgodnie z modelem "autostrady". Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez dynamiczną alokację kanałów. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 27

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniającym model "autostrady" i stacjonarny. Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez dynamiczną alokację kanałów. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 28

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniającym model "wybuchu" i stacjonarny. Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez dynamiczną alokację kanałów. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 29

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem "wybuchu". Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez hybrydowe systemy alokacji kanałów. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 30

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem "autostrady". Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez hybrydowe systemy alokacji kanałów. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 31

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniającym model "autostrady" i stacjonarny. Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać problem braku wolnych kanałów poprzez hybrydowe systemy alokacji kanałów. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 32

Zaimplementować symulator zdarzeń dyskretnych. Każda stacja bazowa posiada identyczną liczbę przydzielonych kanałów. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniającym model "wybuchu" i stacjonarny. Prawdopodobieństwo rozpoczęcia rozmowy przez abonenta w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Rozwiązać

problem braku wolnych kanałów poprzez hybrydowe systemy alokacji kanałów. Policzyć średnią liczbę zablokowanych abonentów.

Projekt 33

Zaimplementować symulator zdarzeń dyskretnych. Abonenci poruszają się w sieci zgodnie z modelem "wybuchu". Prawdopodobieństwo nadejścia rozmowy w jednostce czasu wynosi *p* i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Schemat rozmieszczenia stacji raportujących i nie raportujących jest identyczny przez cały okres symulacji. Musi istnieć możliwość wyboru nowego rozmieszczenia w każdej symulacji. Policzyć średni koszt wyszukania abonenta.

Projekt 34

Zaimplementować symulator zdarzeń dyskretnych. Abonenci poruszają się w sieci zgodnie z modelem hybrydowym tzn. uwzględniającym model "wybuchu" i stacjonarny. Prawdopodobieństwo nadejścia rozmowy w jednostce czasu wynosi p i jest zgodne z rozkładem Poissona. Długość trwania rozmów jest zmienna losową o rozkładzie normalnym. Schemat rozmieszczenia stacji raportujących i nie raportujących jest identyczny przez cały okres symulacji. Musi istnieć możliwość wyboru nowego rozmieszczenia w każdej symulacji. Policzyć średni koszt wyszukania abonenta.

Projekt 35

Zaimplementować algorytm genetyczny rozwiązujący problem rozmieszczenia stacji raportujących i nie raportujących.