

SEQUENCE LISTING

<110> German, Michael S.
Lin, Joseph

<120> PRODUCTION OF PANCREATIC ISLET CELLS
AND DELIVERY OF INSULIN

<130> UCSF-129CIP

<150> 09/535,145
<151> 2000-03-24

<150> 60/128,180
<151> 1999-04-06

<160> 19

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 5340
<212> DNA
<213> Homo Sapiens

<400> 1

ggatccctcg tggccagggt	tcccttcaag gtgcttagcc	aggtcaggag gccctagaga	60
agcatggttt ggattttctt	tcccagacca aaaaagctcc	aagttgttc tctcccagtt	120
tctaacttgc agttaataaa	atcaggcaag gctggcctat	gaggcagaca agtgtgaaga	180
aggagaagga ggaggagaag	gagaaggaga aagaagaaga	aggaggagaa gaagaagaag	240
aagaagaaga agaaggaggag	gaggaggagg aggaggagga	agcagcagca gcagcagcag	300
cttgaatgga cagtggttcc	ccttgccctag aaaatgggac	cattatttct tttctaattct	360
gacccccaga ctcaggactt	cctctatttt ctgcattttt	gggtctcttg ttttgccttg	420
aaaaaaaaatg ttttctccca	aatcaaggag cagtagctgg	tgcaaggaa aatctagggc	480
taggagtctt aagatatgac	ttctatgtgg ttctgataga	acttgctggg tgaccttgag	540
agagtcaactc cccctctctg	ggccttgatt ttttcatctt	taaagaaggc ctc当地attcc	600
cattcttatg agaagaagac	aagctccttag tgagtggta	cctaaggagg cagctgcagc	660
aaaatgctaa cctgacagtc	ccagatggc ccttatttg	ttctgaccct ggtctcaggc	720
ttcatttccc cacagcaagg	gaaggagct gtc当地cacagag	caccagctaa gatcagcagg	780
accgcgccac acccccggcc	agtcctagag cccccctctc	gctggtcct gagcatacca	840
ccctcttctt tggagggaaaa	tttgccttccca agcagcctag	gccc当地taagag gctatcacta	900
gggcagactc acagacctac	ctcatccct caccacccc	tacagtc当地 aagtccggc	960
ctgtcccttc ctgcagttc	cgggagactc agatatctg	gacctgctag aaagagaagc	1020
tttcctcgcc taaggagact	taaaaccggga tacttaaacc	tcccgccctcg gcttcttcct	1080
ccaggcacga ccgggtcaag	agagagaagc ggaagctgca	accctctact ctgagtgacc	1140
ggaagcagaa gaccacggga	tgtcccaggc gggacaaga	ggagggctg ggaagaaaag	1200
gagggatgat gagttcagag	tcccttttggaa aagtttcca	gagagccta ccaggaccaa	1260
cccaaggggc tggggaaagtc	cctgccttgc gctctctgt	cgatgcccga gtgatgcaga	1320
ggcaggggggc tggagcaggt	gactgctggc agctgctgtc	tgtctgtat tggaccggag	1380
gactaagggg agaaaaagtt	tatcagcttccca tccca	tgcacgtgt gtagttcaa	1440
aagacacgag ggggaggggc	acagcagctc tgcttccca	cgcccttggga gactgaagtg	1500

aaaggaacgc ttgagccag	yagttcgaga ccatcctggg	caacaaagc	gaccgcccc	1560
tcaccccata caaaataaaa	atacaataa attagccggg	cacagtggcg	catgcctgt	1620
gtctcagcta ctgggaaggc	tgaagtggga ggatagctt	agcccaggag	atcaaggctg	1680
cagttagctg tgattgcacc	actgcagtcc agcctggcg	acagaaggag	accgttttt	1740
ggttttgtt gttcgttaa	aaaaaaaaag aagcaagago	tcactgtgaa	ctcctggttc	1800
cttcctcccc tcctcacact	tcccagaact cttcctgtca	cggttctgg	ccagaacgc	1860
gggatactat ctacaagctg	tagtaggctt gtagtaatgg	aatgtccgct	tgaggggtcc	1920
ccgcacagcc aaccccgcc	tctggagtgg gatctatggg	ggtggggttc	taagcgcctc	1980
tggggagtgt gaggttagcat	ctcagggtgt ggcagaggct	cggacacccc	aaaaaggctt	2040
gtgaatggaa gggacatagg	caggatctct ctcagtgtat	tcccctgtct	tccaggatga	2100
agagaggcag taaaaacacca	ggagagcagg gcgtccttta	gaattcctgg	acccttctcc	2160
aggctgctag tcaggacaat	gagctcggtt ttgtctttgc	cactatcttc	ctgtgcgatt	2220
tcagacaagc caccccttc	actaagccta aatttccccca	tgtgtaacgt	gcaggcattg	2280
tacccttagag gcatcaaagt	ccccctccagg acagatgtca	aggaaaagata	gcttaggagc	2340
aaagccgtct gaggtggcct	gaccagagcc acacgaggct	cttctcaactg	ggcgaggctc	2400
ttttaggaac cgagagttgc	tgggaccctag cccgcctcg	agagagcaaa	cagagcggcg	2460
ctccctccc ccgacccccc	ccctttgtcc ggaatccagc	tgtgctcggt	gggaggagcg	2520
ggctcgctg gcgcggcccc	agggccccgg cgctgattgg	ccgggtggcgc	gggcagcagc	2580
cgggcaggca cgctcctggc	ccggggcgaag cagataaaagc	gtgccaaggg	gcacacgact	2640
tgctgctcaag	gaaatccctg cggctcaacc	gccgcgcctc	gagagagac	2700
cctcgaccc catttcctt	tcttttctcc tttggggctg	gggcaactcc	caggcggggg	2760
cgcctgcagc tcagctgaac	ttggcgtacca gaagcccgt	gagctcccc	cggccctcgc	2820
tgctcatcgc tcttattct	tttgcgcctgg tagaaaggta	atattttggag	gcctcccgagg	2880
gacgggcagg ggaaagaggg	atccctctgac ccagcggggg	ctgggaggat	ggctgttttt	2940
gtttttccc acctagcctc	ggaatcgccg actgcgcgt	gacggactca	aacttaccct	3000
tccctctgac cccgcgtag	gatgacgcct	caaccctcgg	gtgcgcac	3060
acccgtgaga cggagcggtc	cttcccaga	gcctcggaaag	acgaagtgc	3120
tccgcggccgc ccagccccc	tcgcacacgg	ggaaactgcg	cagaggcgg	3180
tgccgagggg ccccgaggaa	gctccggca	cgccgcgggg	gacgcagccg	3240
gagttggcac tgagcaagca	gcgacggagt	cgccgaaaga	aggccaacga	3300
aatcgaatgc acaaccaa	ctcggactg	gacgcctgc	gcgggtgcct	3360
ccagacgacg cgaagctcac	caagatcgag	acgcgtcgct	tcgcccacaa	3420
gcfgctgactc aaacgcgtcg	catagcggac	cacagcttgc	acgcgcgttgc	3480
ccgcactgcg gggagctggg	cagcccaggc	ggttcccccg	gggactgggg	3540
tccccagctc cccaggctgg	cagcctgagt	cccgcgcgt	cgctggagga	3600
ctgctggggg ccacctttc	cgccctgc	agcccaggca	gtctggctt	3660
ctgtgaaagg acctgtctgt	cgctggctg	tgggtgtaa	gggttaaggga	3720
gccgggagcc gttagagggt	gccgacggcg	gcgcctca	aaagcacttgc	3780
ttctccctgg ctgacccctg	gccggccca	gctccacggg	ggcggcaggc	3840
ccccggccct ccgagccgc	ccaacgcacg	caacccttgc	tgctgcccgc	3900
cattgcaaaag tgcgtcatt	ttaggcctcc	tctctgcac	cacccataa	3960
agaataactag aatggtagca	ctacccggcc	ggagccgccc	acgcgtttgc	4020
cctcaactaa gtctgtctgc	ctctcagtt	cttaccaccc	ctcctccaa	4080
ccaatgtttg gtctctcagc	gtttactccc	cttgccttgc	tccaaagacg	4140
gctctactcc caatcaggc	cgggatttca	gggcgcctca	ctctgcctta	4200
ggcgaccctc tgcctctcc	tcgtgcactt	ttcggagcca	ttggccctccc	4260
accaggctgt gaactggaa	agcgctagcc	cgcccgaggga	gcacgtcccc	4320
cgaactgcgc ctgaaacgt	agctgcgt	caggtgcctg	gagcaccgc	4380
ttttaaatct gttttaaat	tatatgtatc	ctttgaaat	caattttgt	4440
tatatggccc ctccctgtt	ttacacattt	gtatttatta	atgagatttc	4500
aaagcctata tttggatat	tagattattt	aggattgt	ggtgcacatt	4560
aaaaaaaaatg gaccttcaag	aagccttggc	aagatgactc	cattgtgtgt	4620
agggccacag tcactacagc	tgaggaagag	cacttctgtc	caaagagagg	4680
tttctggagg tctggctag	agccaggcga	gattgggtt	ggagagctgg	4740
agtaattatt ggtccagtc	cctttttct	atatagggca	atgactccctc	4800

gagtggttta gaagaaagac aaggctccaa ctaggacaac tgactctca tgctggccc 4860
 tttccccaaac tccaccagcc tagctttaga gcaactgtt gttgcacttg ggaagggt 4920
 acagaataaa ttcaattgca gagtcagagt cctcggaaac acggctggc tgggcattcct 4980
 aggaattttc ccaaggtgct tagaggccta gcaaattcccc tgagcatatt ttactcccc 5040
 ggcactgagg tggctgtgtc gtgaactcct tgaactgagc agccaggagc aaagaagggt 5100
 gagcgtctgg ctggaatatc cagcaacgcc ccctccctca tcacctggca gccttgattg 5160
 aaaacttatt aagaaaactgt tcaaggttc cagccacacc atgtcttta ctggcaaggt 5220
 ggaataggac tggtcagca tgagcactga aatctgtccc aggagtgcc a tagagcacc 5280
 actacatgac ttcagggacc cctaggacct cagagaatat ggtctaagct gtaaggatcc 5340

<210> 2
 <211> 214
 <212> PRT
 <213> Homo Sapiens

<400> 2
 Met Thr Pro Gln Pro Ser Gly Ala Pro Thr Val Gln Val Thr Arg Glu
 1 5 10 15
 Thr Glu Arg Ser Phe Pro Arg Ala Ser Glu Asp Glu Val Thr Cys Pro
 20 25 30
 Thr Ser Ala Pro Pro Ser Pro Thr Arg Thr Arg Gly Asn Cys Ala Glu
 35 40 45
 Ala Glu Glu Gly Gly Cys Arg Gly Ala Pro Arg Lys Leu Arg Ala Arg
 50 55 60
 Arg Gly Gly Arg Ser Arg Pro Lys Ser Glu Leu Ala Leu Ser Lys Gln
 65 70 75 80
 Arg Arg Ser Arg Arg Lys Lys Ala Asn Asp Arg Glu Arg Asn Arg Met
 85 90 95
 His Asn Leu Asn Ser Ala Leu Asp Ala Leu Arg Gly Val Leu Pro Thr
 100 105 110
 Phe Pro Asp Asp Ala Lys Leu Thr Lys Ile Glu Thr Leu Arg Phe Ala
 115 120 125
 His Asn Tyr Ile Trp Ala Leu Thr Gln Thr Leu Arg Ile Ala Asp His
 130 135 140
 Ser Leu Tyr Ala Leu Glu Pro Pro Ala Pro His Cys Gly Glu Leu Gly
 145 150 155 160
 Ser Pro Gly Gly Ser Pro Gly Asp Trp Gly Ser Leu Tyr Ser Pro Val
 165 170 175
 Ser Gln Ala Gly Ser Leu Ser Pro Ala Ala Ser Leu Glu Glu Arg Pro
 180 185 190
 Gly Leu Leu Gly Ala Thr Ser Ser Ala Cys Leu Ser Pro Gly Ser Leu
 195 200 205
 Ala Phe Ser Asp Phe Leu
 210

<210> 3
 <211> 1861
 <212> DNA
 <213> Mus musculus

<400> 3
 ggatccaaag gtgatattga acctggccaa gcaatagttt ctgagtagaa aggacttgag 60

cagggaccgt ctctggtcac tctgtcctct ttcccaggat ggagtca...gtgaaacat 120
 ggttgcacac acatttcctg acccaaccca tagtggcgga gagctggata gcactttgaa 180
 ctaatggcg ctcctccag ctgccagcca agaagacact tgactcctg atcgctggtt 240
 cattagaca agccgttcc ctctctgagc caaaagaccc catgttaat actcaaagaa 300
 gaggccttcc ttatatatat ataggcaccc ccaaacctcc ttcatgtac caagaaaggg 360
 tctggacaca tgccaaaaag aaagagggaaa aggcaaaagct ctccccagcg gccggacggg 420
 actttctgg ctggcgagg ctcttgagg aaccgagagt tgctggact gagcccgcga 480
 cgggggaggc gtggagtggg ggaacaaaca gagtgctgt cccctcccc gaccctgccc 540
 ctttgtccgg aatccagctg tgctctgcgg gtgggggttg tggggggagg agcgggctcg 600
 cgtggcgcaag cccctggcc ccctccgcgt attggcccggt ggtcaggca gcagccggc 660
 aggcacgctc ctggccgggg gcagagcaga taaagcgtgc cagggacac acgacttgca 720
 tgcagctcag aaatccctct gggtctcatc actgcagcag tggtcagta cctcctcgga 780
 gctttctac gactccaga cgcaattac tccaggcgag ggccctgca gtttagcaga 840
 acttcagagg gagcagagag gtcagctat ccactgctgc ttgacactga ccctatccac 900
 tgctgcttgt cactgactga cctgctgctc tctattctt tgagtggga gaacttaggta 960
 acaattcaga aactccaaag ggtggatgag gggcgcgcg ggtgtgtgt gggataactc 1020
 tggtcccccg tgcagtgacc tctaagttagtca aggctggcac acacacaccc tccattttt 1080
 cccaaaccgca ggtggcgcc tcatccctt gatgcgtca ccatccaagt gtcggcagag 1140
 acacaacaac ctttccccgg agcctcgac cacgaagtgc tcagttccaa ttccacccca 1200
 cctagccccca ctctcatacc tagggactgc tccgaagcag aagtgggtga ctgcccggg 1260
 acctcgagga agctcccgcc cegacgcca gggcgcaaca ggcccaagag cgagttggca 1320
 ctcagcaaac agcgaagaag cccgcgcaag aaggccaatg atcgggagcg caatcgcatg 1380
 cacaacctca actcggcgct ggtatgcgtc cgcgtgtcc tgcccaccc cccggatgac 1440
 gccaaactta caaagatcga gaccctgcgc ttgcggccaca actacatctg ggcactgact 1500
 cagacgctgc gcatacgcca ccacagctt tatggcccg agccccctgt gccctgtgga 1560
 gagctgggga gccccggagg tggctccaaac ggggacttggg gctctatcta ctcggcagtc 1620
 tcccaagccgg gtaacctgag ccccacggcc tcattggagg aattccctgg cctgcagggt 1680
 cccagctccc catcttatct gtcggggaa gcactgggtgt tctcagactt ctgtgaaga 1740
 gacctgtctg gctctgggtg gtgggtgcta gtggaaaggg aggggaccag agccgtctgg 1800
 agtgggaggt agtggaggct ctcaagcattc tcgcctcttc tggcttcac tacttggatc 1860
 c 1861

<210> 4
 <211> 214
 <212> PRT
 <213> Mus musculus

<400> 4
 Met Ala Pro His Pro Leu Asp Ala Leu Thr Ile Gln Val Ser Pro Glu
 1 5 10 15
 Thr Gln Gln Pro Phe Pro Gly Ala Ser Asp His Glu Val Leu Ser Ser
 20 25 30
 Asn Ser Thr Pro Pro Ser Pro Thr Leu Ile Pro Arg Asp Cys Ser Glu
 35 40 45
 Ala Glu Val Gly Asp Cys Arg Gly Thr Ser Arg Lys Leu Arg Ala Arg
 50 55 60
 Arg Gly Gly Arg Asn Arg Pro Lys Ser Glu Leu Ala Leu Ser Lys Gln
 65 70 75 80
 Arg Arg Ser Arg Arg Lys Lys Ala Asn Asp Arg Glu Arg Asn Arg Met
 85 90 95
 His Asn Leu Asn Ser Ala Leu Asp Ala Leu Arg Gly Val Leu Pro Thr
 100 105 110
 Phe Pro Asp Asp Ala Lys Leu Thr Lys Ile Glu Thr Leu Arg Phe Ala
 115 120 125
 His Asn Tyr Ile Trp Ala Leu Thr Gln Thr Leu Arg Ile Ala Asp His

130 135 140
Ser Phe Tyr Gly Pro Glu Pro Pro Val Pro Cys Gly Glu Leu Gly Ser
145 150 155 160
Pro Gly Gly Gly Ser Asn Gly Asp Trp Gly Ser Ile Tyr Ser Pro Val
165 170 175
Ser Gln Ala Gly Asn Leu Ser Pro Thr Ala Ser Leu Glu Glu Phe Pro
180 185 190
Gly Leu Gln Val Pro Ser Ser Pro Ser Tyr Leu Leu Pro Gly Ala Leu
195 200 205
Val Phe Ser Asp Phe Leu
210

<210> 5
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide primer

<400> 5
tggagaactg tcaaagcgat ctg

23

<210> 6
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 6
cacatgccca gtttctattg gtc

23

<210> 7
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide primer

<400> 7
atcctgcgggt tgggaa

16

<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide primer

<400> 8
tggaagggtgt gtgtgtgccca g

21

FOURTY EIGHT

```
<210> 9
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide primer

<400> 9
gatctagaga ctttagaggtc actgc 25

<210> 10
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> H3-1

<400> 10
gatctctcga gagagcaaac agcgccggcgg 30

<210> 11
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> H3-2

<400> 11
ttattattat ttttagcaaac actggagaca g 31

<210> 12
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> H1

<400> 12
atctcttgc attatattt aaacgaaatc tatt 34

<210> 13
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> H2

<400> 13
ttaaacgaaa tctatattt attattttag caaa 34
```

FOLDED-DNA

<210> 14
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> H1P

<400> 14
gatctcgcca cgagccacaa ggattg 26

<210> 15
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> E1

<400> 15
gatctaaatt tccccatgtg taacgtgcag 30

<210> 16
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> N1

<400> 16
gatctggagc gggctcgctt ggcgccggccc cg 32

<210> 17
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> N2

<400> 17
gatctgccgg gcaggcacgc tcctggcccg g 31

<210> 18
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> N3/4

<400> 18
gatctaaagc gtgccaaggg gcacacgact g 31

<210> 19
<211> 75
<212> DNA
<213> Homo sapiens

<400> 19
cttgtaatta tttattaaac gaaatctatt tattattatt ttagcaaaca ctggagacag 60
gtggggcttt ctttt 75