Machine Learning

Manel Martínez Ramón

Department of Electrical and Computer Engineering
The University of New Mexico

August, 2020

Some definitions of machine learning

Computational intelligence is intended to give machines the ability to learn from what they can observe of the surrounding environment, and then act as a consequence of what they learned.

What do we mean by machine? Any man-made device or system of devices:

- ► Robots;
- ► Cars;
- ► Home appliances;
- ► The electrical grid;
- ► The communicatios systems;
- ► Medical systems;
- **.**..

In general, any thing that can hold a processor (computer) inside and that is wanted to be autonomous.

Some definitions of machine learning

OK, but what in the world is *learning*?

▶ Learning can be viewed as a process where the input consists of any available data, from which information is extracted, and then knowledge is inferred from this information.

Some definitions of machine learning

OK, but what in the world is *learning*?

Learning can be viewed as a process where the input consists of any available **data**, from which **information** is extracted, and then **knowledge** is inferred from this information.

OK, but how a machine can learn?

- ▶ They do not take decisions from OUR knowledge.
- ▶ They learn from data, fed to them in form of numbers

- ▶ We represent each feature in a dimension of a space.
- ▶ We construct an algorithm that learns to split the points in the space depending on their class.

OK, but how a machine can learn?

- ▶ They do not take decisions from OUR knowledge.
- ▶ They learn from data, fed to them in form of numbers

- ▶ We represent each feature in a dimension of a space.
- ▶ We construct an algorithm that learns to split the points in the space depending on their class.

OK, but how a machine can learn?

- ▶ They do not take decisions from OUR knowledge.
- ▶ They learn from data, fed to them in form of numbers

- ▶ We represent each feature in a dimension of a space.
- We construct an algorithm that learns to split the points in the space depending on their class.

OK, but how a machine can learn?

- ▶ They do not take decisions from OUR knowledge.
- ▶ They learn from data, fed to them in form of numbers

- ▶ We represent each feature in a dimension of a space.
- ▶ We construct an algorithm that learns to split the points in the space depending on their class.

An example

► The machine takes the height and width of each subject.

► The features are represented as a vector in the space.

$$\mathbf{x} = \left(\begin{array}{c} height \\ width \end{array}\right)$$

An example

We keep adding samples...

When we have a bunch of them, we an observe a structure in the space.

This is what the learning machine needs to discover.

An example

We keep adding samples...

When we have a bunch of them, we an observe a structure in the space.

This is what the learning machine needs to discover.

It can be done with a simple linear function.

Lesson outcomes

Main elements of this lesson:

- ▶ A definition of machine learning, with a definition of the processs data-information-knowledge.
- ▶ An example of learning machine, feature extraction, classification and associated notation.