

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

Институт информационных технологий Кафедра Информационных систем

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ № 6 НА ТЕМУ:

« Освоение программных средств для работы с сертификатами открытых ключей »

по дисциплине

«Защита информации»

СТУДЕНТА 4 КУРСА бакалавриата ГРУППЫ ИДБ-20-02

ЕРДОГАН ДЕНИЗ ЕРДАЛОВИЧ

Направление: Профиль подготовки:	09.03.01 Информатика и вычислительная техника Информатика и вычислительная техника
Отчет сдан «»	2023 г.
Оценка	
Преподаватель	Симонов М.Ф.

1. Начать сеанс работы;

Для вызова утилит командной строки использовать командную строку Windows (Пуск | Программы | Microsoft Visual Studio 2005 | Visual Studio Tools | Visual Studio 2005 Command Prompt):

Найдём в поиске ОС Windows консоль "Developer Command Prompt for VS 2022" и откроем её:

Рисунок № 1 – Developer Command Prompt for VS 2022 (Windows 11)

Для завершения работы в режиме командной строки использовать команду exit;

2. Скопировать в свою индивидуальную папку на рабочей станции документ Microsoft Word «СИСТЕМНЫЕ ПРОГРАММЫ ДЛЯ РАБОТЫ С СЕРТИФИКАТАМИ» из указанного преподавателем места:

Скопируем необходимый файл на рабочую станцию:

Рисунок № 2 – скопированный файл на рабочей станции (Windows 11)

3. Открыть скопированный в п. 2 документ и ознакомиться с его разделом 1 «Создание сертификатов»:

Ознакомимся с требуемым по заданию разделом:

СИСТЕМНЫЕ ПРОГРАММЫ ДЛЯ РАБОТЫ С СЕРТИФИКАТАМИ

1. Создание сертификатов

Для создания сертификата требуется иметь секретный ключ его издателя. В состав операционной системы Windows входит сертификат издателя по умолчанию (например, Root Agency) и связанный с ним секретный ключ.

Самоподписанные (self-signed) сертификаты могут использоваться как в тестовых целях, так и в качестве доверенных корневых сертификатов. Подпись под таким сертификатом вычисляется с помощью секретного ключа, связанного с открытым ключом из создаваемого сертификата. Доверенные корневые сертификаты могут затем использоваться для удостоверения новых сертификатов.

Для создания самоподписанных сертификатов, а также сертификатов, удостоверенных с их помощью или с помощью имеющихся сертификатов издателей, может использоваться системная программа MakeCert, которая представляет собой утилиту командной строки. Формат строки вызова этой системной программы следующий:

MakeCert [базовые опции | расширенные опции] [имя выходного файла]

Имя выходного файла может быть опущено, если создаваемый сертификат не должен записываться в файл.

Опции, которые могут быть указаны при вызове утилиты MakeCert, разделяются на три группы:

- базовые опции, управляющие созданием и хранением созданного сертификата;
- расширенные опции, применимые к свойствам создаваемого сертификата, сертификатам издателей и связанным с ними секретным ключам и их хранению.

Большинство опций программы MakeCert доступны при использовании обозревателя Internet Explorer версии 4.0 и выше. В табл. 1 приведено описание базовых опций программы MakeCert.

Рисунок № 3 – раздел для ознакомления (Windows 11)

4. С помощью утилиты командной строки MakeCert выполнить следующее:

MakeCert – инструмент для создания сертификатов, исключительно ДЛЯ тестирования разрабатываемого предназначены приложения. Этот инструмент создает пару ключей (открытый и закрытый) для цифровой подписи и помещает её в файл сертификата.

4.1. Создать закрытый ключ ЭЦП и сертификат, подписанный удостоверяющим центром по умолчанию, поместив их в файлы с расширениями соответственно pvk и сег (имена владельцев сертификатов должны совпадать с фамилиями и инициалами студентов):

Самозаверяющий сертификат – это сертификат, подписанный приложением, которое создало его, т.е. *MakeCert*.

Создадим закрытый ключ ЭЦП и сертификат, подписанный удостоверяющим центром по умолчанию, поместив их в файлы с расширениями *.pvk и *.cer, соответственно. Для этого введем команду – "makecert -n "CN=ErdoganDE" -sv $C:\pro\deniz1.pvk\ C:\pro\ErdoganDE1.cer$ " (мы создаем сертификаты в отдельной папке на рабочей машине):

- -n (subjectName) задает имя субъекта. Согласно правилам, к имени субъекта добавляется префикс "CN = " для "Common Name";
- -sv (privateKeyFile) указывает файл, содержащий контейнер закрытого ключа. То есть закрытый ключ будет храниться не в сертификате, а в файле.

Появится окно, где необходимо задать пароль для закрытого ключа и подтвердить его:

Создание пароля закрытого ключа		\times
Ключ:	Subject Key	
<u>П</u> ароль:	•••	
П <u>о</u> дтверждение:	•••	
OK	Отсутствует Отмена	

Рисунок № 4 – создание пароля для закрытого ключа (Windows 11)

Если мы ничего не введём, то появится следующая форма:

Рисунок № 5 – уточнение при отсутствии пароля (Windows 11)

Если мы не подтвердим/неправильно подтвердим пароль, то появится следующая форма:

Рисунок № 6 – неправильное подтверждение пароля (Windows 11)

После нужно ввести созданный пароль закрытого ключа:

Рисунок № 7 – ввод созданного пароля закрытого ключа (Windows 11)

Если мы не введём пароль/неправильно введём пароль, то появится сообщение об шибки в консоли:

Рисунок № 8 – ошибка при вводе созданного пароля (Windows 11)

Иначе получим следующие сообщение:

Рисунок № 9 – успех при вводе созданного пароля (Windows 11)

После заходим в нашу папку и видим созданные файлы:

Рисунок № 10 – созданные сертификат и закрытый ключ (Windows 11)

4.2. Повторить п. 4.1, но поместить закрытый ключ и сертификат в хранилище сертификатов Му:

Повторим предыдущий пункт, но поместим закрытый ключ и сертификат в хранилище сертификатов My. Для этого введем команду - *«makecert -n "CN=ErdoganDE" —sv C:\pro\deniz2.pvk —ss My C:\pro\ErdoganDE2.cer*» в консоль. После установим пароль, введём его ещё раз.

• -*n* (subjectName) – задает имя субъекта. Согласно правилам, к имени субъекта добавляется префикс "CN = " для "Common Name";

Параметры -sr currentuser -ss My указывают, что сертификат нужно поместить в хранилище текущего пользователя в раздел My.

Все окна будут индентичны пункту выше.

По итогу сертификат успешно создался (чтобы открыть хранилище сертификатов, нужно вбить в командной строке поиска «Управление сертификатами пользователя», при этом My — это раздел личных сертификатов):

Рисунок № 11 – созданный сертификат в хранилище My (Windows 11)

4.3. С помощью созданных в п. 4.2 закрытого ключа и сертификата создать и удостоверить новый сертификат, поместив его в хранилище TrustedPeople:

Создадим и удостоверим новый сертификат, поместив его в хранилище TrustedPeople. Для того, чтобы это выполнить, введем в консоль команду – "makecert -is my -ic $C:\pro\ErdoganDE2.cer$ -ss TrustedPeople $C:\pro\ErdoganDE3.cer$ ".

Нам надо будет ввести пароль закрытого ключа, который мы создавали в предыдущем пункте:

Рисунок № 12 — создание нового сертификата в хранилище TrustedPeople (Windows 11)

Все окна при выполнении данного пункта аналогичны предыдущим.

Рассмотрим новый созданный сертификат в соответствующем хранилище:

Рисунок № 13 – удостоверенный сертификат в храналище TrustedPeople (Windows 11)

4.4. Создать закрытый ключ и самоподписанный сертификат, поместив их в хранилище СА:

Создадим закрытый ключ и самоподписанный сертификат, поместив их в хранилище CA. Для этого воспользуемся следующей командой — "makecert — sv $C:\pro\deniz4.pvk$ -r -ss CA $C:\pro\ErdoganDE4.cer$ ".

Снова задаём и подтверждаем пароль закрытого ключа.

В результате проделанных действий у нас появится новый сертификат вида:

Рисунок № 14 – самоподписанный сертификат (Windows 11)

4.5. Включить в отчет о лабораторной работе:

4.5.1. Сведения о назначении и основных функциях утилиты MakeCert:

Средство *MakeCert* создает сертификат "*X.509*", подписанный корневым ключом теста или другим указанным ключом, который привязывает Ваше имя к открытой части пары ключей. Сертификат сохраняется в файле, хранилище системных сертификатов или обоих местах.

Средство устанавливается в папку "bin" в пути установки пакета sdk Microsoft Windows.

Средство MakeCert использует следующий синтаксис команды:

- *MakeCert* [BasicOptionsExtendedOptions/] OutputFile:
- OutputFile это имя файла, в который будет записан сертификат.
 Выходной файл можно опустить, если сертификат не записывается в файл.

MakeCert включает базовые и расширенные параметры. Основные параметры используются при создании сертификатов чаще всего.

Дополнительные параметры обеспечивают более гибкое использование программы.

4.5.2. Протокол работы в режиме командной строки, полученный при выполнении п.п. 4.1-4.4 (с помощью системного меню окна командной строки и буфера обмена):

Рассмотрим протокол работы вышепроделанных пунктов:

Рисунок № 15 – протокол работы в режиме консоли (Windows 11)

- 5. С помощью утилиты из состава пакета Microsoft Office SelfCert (в версии Microsoft Office 2003 и старше вызов этой программы возможен через меню Пуск | Программы | Microsoft Office | Средства Microsoft Office | Цифровой сертификат для проектов VBA) выполнить следующее:
 - 5.1. Создать самоподписанный сертификат для субъекта с именем, совпадающим с фамилией и инициалами студента:

Создадим самоподписанный сертификат с помощью программы selfcert.exe из пакета Microsoft Office. Для этого перейдём по следующему пути $\Pi yc\kappa$ -> Microsoft Office -> Cpedcmbo cosdahus uudpobbix cepmudukamob dns npoekmob VBA.

Зададим имя сертификата:

Рисунок № 16 – окно создания цифрового сертификата (Windows 11)

Если не ввести название сертификата, то появится следующие сообщение:

Рисунок № 17 – отсутствие названия сертификата (Windows 11)

После нажмём "OK", появится следующее окно об успешном создании сертификата:

Рисунок № 18 — сообщение о создании нового цифрового сертификата (Windows XP)

Рассмотрим созданный нами сертификат:

Рисунок № 19 – самоподписанный сертфиикат (Windows 11)

5.2. Включить в отчет о лабораторной работе:

5.2.1. Сведения о хранилище сертификатов, в которое помещается самоподписанный сертификат:

Самоподписанный сертификат помещается в логическое хранилище *Му* (Личные). В этом хранилище располагаются следующие типы сертификатов:

- Сертификаты, связанные с закрытыми ключами, к которым имеется доступ;
- Сертификаты, которые были выданы вам либо компьютеру или службе, для которых вы выполняете управление сертификатами.
 - 5.2.2. Копии экранных форм, полученных при выполнении п. 5.1;
- 6. Ознакомиться с разделом 2 «Создание списка доверенных сертификатов» скопированного в п. 2 документа:

Ознакомимся со вторым разделом скопированного файла:

2. Создание списка доверенных сертификатов

Утилита MakeCTL предназначена для создания списков доверенных сертификатов (CTL). Созданный список кодируется и сохраняется в хранилище сертификатов или файле.

Входом утилиты MakeCTL является массив хранилищ сертификатов. Вычисляются хеш-значения всех сертификатов в этих хранилищах, которые и включаются в CTL.

Хранилища сертификатов могут быть заданы следующими способами:

- сохраненным ранее файлом хранилища;
- файлом в формате PKCS #7;
- файлом с закодированным сертификатом;
- именем системного хранилища.

Формат командной строки при вызове утилиты MakeCTL:

MakeCTL [/u subjectUsageID] [/s [/r registryLocation]]

хранилище сертификатов 1 [/s [/r registryLocation]]

хранилище сертификатов 2 ... [/s [/r registryLocation]]

хранилище сертификатов N имя выходного файла.stl

Здесь subjectUsageID — идентификатор объекта для назначения создаваемого CTL (по умолчанию этот список состоит из сертификатов корневых удостоверяющих центров, предназначенных для подписания кода, что задается константой szOID_TRUSTED_CODESIGNING_CA_LIST, определенной в файле Wintrust.h как 1.3.6.1.4.1.311.2.2.1), registryLocation — указатель на размещение в реестре системного хранилища сертификатов (по умолчанию currentUser, т.е. используется раздел HKEY_CURRENT_USER, но возможно и задание localMachine для указания на раздел HKEY LOCAL MACHINE).

Опция /s указывает на то, что используется системное хранилище сертификатов. Может быть дополнительно указана опция /? для получения

•••

Рисунок № 20 – второй раздел скопированного документа (Windows 11)

- 7. С помощью мастера списка доверия сертификатов, автоматически активизируемого при вызове утилиты командной строки MakeCTL без параметров, выполнить следующее:
 - 7.1. Создать файл со списком доверенных сертификатов, созданных при выполнении п.п. 4-5 и предназначенных для подписывания кода:

Создадим файл со списком доверенных сертификатов, созданных при выполнении п.п. 4-5 и предназначенных для подписывания кода.

Для этого запустим утилиту *MakeCTL* от имени администратора:

Рисунок № 21 – мастер списков доверия сертификатов (Windows 11)

В следующем окне выбираем назначение «Подписывание кода». Также по желанию можно указать префикс, идентифицирующий этот список, и задать срок действия:

Мастер списков доверия сертификатов	×
Назначения для списка доверия сертификатов Можно указать идентификацию и срок действия этого списка отзыва (CTL). Необходимо также указать его назначение.	
Введите префикс, идентифицирующий этот список (необязательно): Для подписывания кода	
Срок действия (необязательно): 33 месяцев 33 дней Назначения:	
Проверка подлинности сервера Проверка подлинности клиента Подписывание кода Защищенная электронная почта	
Добавить назначение	
< <u>Н</u> азад Д <u>а</u> лее > Отмена	

Рисунок № 22 – установка параметров сертификата (Windows 11)

Если мы не выберим назначение списка, то появится следующие сообщение:

Рисунок № 23 – отсутствие назначение списка (Windows 11)

Выбираем созданные ранее самоподписанные сертификаты:

Рисунок № 24 – выбор сапомисных сертификатов (Windows 11)

Если мы не выберим сертификат, то появится следующие сообщение:

Рисунок № 25 – отсутствие выбора сертификата (Windows 11)

Выбираем хранилище, куда сохранится список доверенных сертификатов:

Рисунок № 26 – выбор хранилища для сертификатов (Windows 11)

Задаём имя и описание для нового списка:

Ластер списков доверия сертификатов	×
Имя и описание Имя и описание списка доверенных сертификатов (СТL) помогает отличить его	
от других списков.	
Введите понятные имя и описание для нового списка.	
Понятное имя:	
Для подписывания кода	
<u>О</u> писание:	
	_
< <u>Н</u> азад Д <u>а</u> лее > Отмена	

Рисунок № 27 – установление имени и описания (Windows 11)

Подтверждаем выбранные ранее настройки:

Рисунок № 28 – подтверждение настроек (Windows 11)

Получаем сообщение об успешном завершении:

Рисунок № 29 – сообщение об завершении процесса (Windows 11)

Как видно, список доверия сертификатов успешно создан:

Рисунок № 30 — список доверенных сертификатов — подписывание кода (Windows 11)

Рассмотрим подробнее список сертификатов:

Список доверия сертис	рикатов	×
Общие Список довери	Я	
Список сертификатов:		
	Отпечаток 40 e7 c5 ed 17 a5 9a fb 35 5b 66 23 9c e6 f9 53 0a 3a d2 a3 2a c7 c4 e8 4a 29 af 89	
Элемент списка серт	ификатов Значение	
Значение:		
	Просмотр сертификата	
	ОК	

Рисунок № 31 – информация о списке доверенных сертификатов (Windows 11)

7.2. Создать другой файл со списком доверенных сертификатов, созданных при выполнении п.п. 4-5 и предназначенных для шифрования файлов:

Создадим другой файл со списком доверенных сертификатов, созданных при выполнении п.п. 4-5 и предназначенных для шифрования файлов. Для этого повторим проделанный ранее шаги в предыдущем пункте, но с небольшими поправками в установке назначения:

Рисунок № 32 – установление назначения списка сертификатов 0

Рассмотрим сам список сертификатов:

Рисунок № 33 — цифровая подпись для списка сертификатов - шифрование файлов (Windows 11)

7.3. Включить в отчет о лабораторной работе:

7.3.1. Сведения о назначении, способах получения и хранения списков отозванных сертификатов:

Списки отозванных сертификатов применяются для того, чтобы установить, был ли сертификат пользователя или удостоверяющего центра отозван в связи с компрометацией ключей. Важное свойство COC — он содержит информацию только о сертификатах, срок действия которых не истёк.

Через утилиту CertMgr можно отображать информацию, копировать, удалять, экспортировать и импортировать сертификаты CTL и CRL из хранилища.

Если программа MakeCTL не установлена, то скопировать ее из папки с описаниями лабораторных работ;

- 7.3.2. Включить в электронную версию отчета копии экранных форм, полученных при выполнении п. 7;
- 8. Ознакомиться с разделом 3 «Вычисление и проверка электронной цифровой подписи» скопированного в п. 2 документа:

Ознакомимся с необходимой главой:

3. Вычисление и проверка электронной цифровой подписи

Утилита SignTool с командой sign предназначена для вычисления электронной цифровой подписи под файлом. Если файл уже содержит ЭЦП, то подпись будет вычислена заново. Формат командной строки при вызове утилиты SignTool с командой sign:

SignTool sign [опции] имя файла

Утилита SignTool с командой sign поддерживает три группы опций:

- опции, влияющие на выбор сертификата (табл. 3);
- опции, относящиеся к секретному ключу (табл. 4);
- опции, относящиеся к создаваемой ЭЦП (табл. 5);
- другие опции (табл. 6).

Табл. 3

Опция	Описание опции
/a	Выбирается лучший из подходящих сертификатов (иначе
	ожидается, что существует один подходящий сертификат)
/с имя	Имя шаблона сертификата
/f имя	Имя файла с сертификатом (для PFX-файла, защищенного
	паролем требуется опция /р, а если файл не содержит личный
	ключ, то могут использоваться опции /csp и /k)
/і имя	Имя или часть имени издателя сертификата подписи
/ј имя	Имя файла с DLL, возвращающей массив атрибутов подписи
/јр параметр	Параметр (только один) для передачи в определенную
	предыдущей опцией DLL
/п имя	Имя или часть имени владельца сертификата подписи
/p <i>строка</i>	Пароль для PFX-файла с личным ключом
/г имя	Имя владельца корневого сертификата, удостоверяющего
	сертификат подписи
/s имя	Хранилище сертификатов, содержащее сертификат и
	секретный ключ создателя ЭЦП (по умолчанию Му)
/sm	Для поиска сертификата подписи используется хранилище в
	разделе реестра HKEY_LOCAL_MACHINE (иначе в
	HKEY_CURRENT_USER)
/sha1	Хеш-значение сертификата создателя ЭЦП
отпечаток	
/u <i>OID или</i>	Расширенное назначение ключа ЭЦП (по умолчанию "Code
строка	Signing" (1.3.6.1.5.5.7.3.3), т.е. подписание кода)
/uw	Назначение ключа ЭЦП – "Windows System Component
	Verification" (1.3.6.1.4.1.311.10.3.6), т.е. проверка компонент
	Windows)

Табл. 4

Рисунок № 35 – раздел для ознакомления (Windows 11)

SignTool — это средство командной строки, используемое для цифровой подписи пакета приложения или пакета приложений с помощью сертификата.

9. Включить в отчет о лабораторной работе:

9.1 Сведения о назначении и способах получения ЭЦП:

Электронная цифровая подпись – это закодированная информация о лице, как физическом, так и юридическом, которая необходима для его

идентификации при подаче документов в электронном виде. Также она позволяет защитить документ от редактирования сторонними лицами.

Её можно сделать с помощью SignTool.

9.2 Ответ на вопрос, какие возможности утилиты SignTool sign не поддерживаются мастером создания электронной цифровой подписи:

- Выбор лучшего из подходящих сертификатов;
- Выбор хранилища сертификатов;
- Установка назначения ключа ЭЦП;
- Поиск сертификата подписи в разделе реестра.

9.3 Ответ на вопрос, под файлами каких типов может быть вычислена ЭЦП с помощью утилиты SignTool signwizard:

- Файлы программ: *exe*, *dll*, *ocx*;
- *CAB*-файлы: *cab*;
- Файлы списков доверия сертификатов: stl;
- Файлы каталогов: *cat*.

10. Включить в отчет о лабораторной работе:

10.1 Сведения о способах проверки ЭЦП и получения ее параметров:

Для проверки истинности подписанного ЭЦП файла может использоваться утилита SignTool с командой verify. Синтаксис командной строки при вызове этой утилиты следующий:

SignTool verify [опции] имя подписанного файла

Для утилиты SignTool с командой verify можно указать до четырех опций:

- /q (при успешном завершении не генерируется никаких сообщений, а при ошибке минимальное количество сообщений);
- /v (отображение полной информации об истинности подписанного файла);
- /r имя (имя владельца корневого сертификата, удостоверяющего сертификат подписи);
- /tw (генерируется предупреждение, если подписанный файл не имеет отметки времени).

Утилита *SignTool* с командой *verify* определяет тип проверяемого подписанного файла автоматически. Если подпись корректна, то в командной строке выводится соответствующее сообщение, содержащее имя подписанного файла и результат его проверки, например:

SignTool verify my.stl

Successfully verified: my.stl

Если проверка подписи завершилась неудачно, то выводится сообщение о причинах ошибки, например:

SignTool Error: A certificate chain processed, but terminated in a root certificate which is not trusted by the trust provider.

SignTool Error: File not valid: my.stl.

10.2 Ответ на вопрос, как происходит добавление издателя сертификата к списку доверенных сертификатов издателей и на что это оказывает влияние (при ответе на этот вопрос могут потребоваться сведения, полученные при выполнении п.п. 12 и 13):

Путём импорта файла сертификата издателя в хранилище сертификатов "Доверенные издатели" (с помощью мастера импорта сертификата).

Сертификатами, которые являются доверенными издателями нельзя подписывать макросы.

11. Ознакомиться с разделом 4 «Управление сертификатами» скопированного в п. 2 документа:

Ознакомимся с необходимым разделом:

4. Управление сертификатами

Утилита CertMgr обеспечивает поддержку управления сертификатами, списками доверенных сертификатов (CTL) и списками отозванных сертификатов (CRL). К основным функциям этой системной программы относятся:

- отображение информации из сертификатов, СТL и CRL;
- копирование сертификатов, CTL и CRL из одного хранилища сертификатов в другое;

- удаление сертификатов, СТL и CRL из хранилища;
- экспорт (сохранение) закодированных сертификатов, СТL и CRL из хранилища в файл;
- импорт (загрузка) закодированных сертификатов, СТL и CRL из файла в хранилище сертификатов.

Формат командной строки при вызове утилиты CertMgr следующий: CertMgr [/add | /del | /put][опции] [/s [/г раздел реестра]] [входное имя] [/s [/г раздел реестра]] [выходное имя]

В табл. 7 приведено описание флагов операций, выполняемых утилитой CertMgr.

Табл. 7

Флаг операции	Описание
не задан	Отображение сертификатов, CTL и CRL
/add	Копирование сертификатов, CTL и CRL в хранилище сертификатов
/del	Удаление сертификатов, CTL и CRL из хранилища
/put	Экспорт сертификатов, СТL и CRL из хранилища в файл

Если флаг операции не задан, то отображаются все сертификаты, СТL и CRL из файла с сохраненным хранилищем или самого хранилища сертификатов, чье имя задается в качестве входного имени (выходное имя в этом случае не используется).

Если задан флаг операции /add, то входное имя — это имя хранилища сертификатов, содержащее сертификаты, СТL и CRL, которые будут добавлены в хранилище, чье имя задано как выходное имя. В качестве выходного имени может быть задано имя файла с сохраненным хранилищем. Если задана опция /7, то хранилище сохраняется в файле формата PKCS #7 (опция /7 не может применяться, если выходное имя указывает на системное хранилище сертификатов).

Если задан флаг операции /del, то входное имя определяет имя хранилища сертификатов, СТL и CRL, а выходное имя – имя хранилища, в которое будут помещены копии элементов входного хранилища, оставшихся в нем после удаления. Если выходное имя не задано, то модифицируется входное хранилище. В качестве выходного имени может быть указано имя файла с сохраненным хранилищем или (при задании опции /7) в формате РКСЅ #7. Опция /7 не применяется, если выходное имя указывает на системное хранилище сертификатов.

Если задан флаг операции /put, то входное имя — это имя хранилища сертификатов, закодированные элементы которого записываются в файл в формате X.509, задаваемый выходным именем (при указании опции /7 выходной файл имеет формат PKCS #7).

В табл. 8 приведено описание опций, которые могут быть указаны при вызове утилиты CertMgr.

•••

Рисунок № 36 – раздел для ознакомления (Windows 11)

12. С помощью утилиты командной строки CertMgr выполнить следующее:

12.1. Добавить списки доверенных сертификатов, созданных при выполнении п. 7 и подписанных при выполнении п.9, в системное хранилище Trust:

Добавим списки доверенных сертификатов, созданных при выполнении п. 7 в системное хранилище Trust. Для этого в консоли введем команду «certmgr -add -all -s MyErdoganDE1.cer -s trust» (-add – копирует файлы; -all –

выбирает все файлы; -*s* – указывает хранилище, где хранятся файлы 1 и куда их перемещать 2; MyErdoganDE1.cer и *trust* – названия хранилищ).

```
Microsoft Windows [Version 10.0.22631.2792]
(c) Корпорация Майкрософт (Microsoft Corporation). Все права защищены.

C:\Users\Deniz>certmgr -add -all -s MyErdoganDE1.cer -s trust

C:\Users\Deniz>
```

Рисунок № 37 – консоль с введённой командой (Windows 11)

Списки доверенных сертификатов переместились в системное хранилище *Trust* (Доверительные отношения в предприятии):

Рисунок № 38 – хранилище Trust (Windows 11)

12.2. Включить в отчет о выполнении лабораторной работы:

12.2.1. Сведения о назначении и основных функциях утилиты CertMgr:

Утилита CertMgr обеспечивает поддержку управления сертификатами, списками доверенных сертификатов (CTL) и списками отозванных сертификатов (CRL).

К основным функциям этой системной программы относятся:

- отображение информации из сертификатов, CTL и CRL;
- копирование сертификатов, CTL и CRL из одного хранилища;

- сертификатов в другое;
- удаление сертификатов, СТL и CRL из хранилища;
- экспорт (сохранение) закодированных сертификатов, CTL и CRL из хранилища в файл;
- импорт (загрузка) закодированных сертификатов, CTL и CRL из файла;
- в хранилище сертификатов.

Формат командной строки при вызове утилиты *CertMgr* следующий:

 $CertMgr\ [/add\ |\ /del\ |\ /put][onцuu]\ [/s\ [/r\ paздел\ peecmpa]]\ [\ входное\ имя\].$

- 12.2.2. Протокол работы в режиме командной строки, полученный при выполнении п. 12.1-12.2 (с помощью системного меню окна командной строки и буфера обмена);
- 13. С помощью менеджера управления сертификатами, автоматически активизируемого при вызове утилиты CertMgr без параметров, выполнить следующее:
- 13.1. Освоить способы отбора сертификатов с требуемым назначением:

Запустим менеджер управления сертификатов через командную строку, вызвав утилиту *CertMgr* без параметров:

Рисунок № 39 – менеджер управления сертификатов (Windows 11)

Для отбора сертификатов по назначения, нужно выбрать необходимое назначение в выпадающем списке:

Рисунок № 40 – назначение сертификата (Windows 11)

13.2. Освоить способы просмотра характеристик сертификатов:

Для просмотра характеристик сертификата можно дважды кликнуть ЛКМ по нужному сертификату или выбрать сертификат и нажать "Подробно":

Рисунок № 41 – характеристики сертификата (Windows 11)

13.3. На примере файлов с сертификатами, созданными при выполнении п. 4, освоить работу с мастером импорта сертификатов: Запустим мастер импорта сертификатов, нажав кнопку "*Импорт*":

Рисунок № 42 – мастер импортов сертификатов (Windows 11)

Выберим сертификат для импорта:

Рисунок № 43 – выбор сертификата для импорта (Windows 11)

Выберим место, куда будем импортировать сертификат:

Рисунок № 44 – выбор хранилища (Windows 11)

Проверим данные по импорту сертификата:

Рисунок № 45 – завершение работы с мастером импорта сертификатов (Windows 11)

После увидим сообщение об успешном импорте:

Рисунок № 46 – сообщение об успешном импорте (Windows 11)

Как видим сертификат успешно добавился в хранилище Му:

Рисунок № 47 – импортированный сертификат (Windows 11)

13.4. Освоить работу с мастером экспорта сертификатов:

Запустим мастер экспорта сертификатов, выбрав нужный сертификат и нажав кнопку "Экспорт":

Мастер экспорта сертификатов

Этот мастер помогает копировать сертификаты, списки доверия и списки отзыва сертификатов из хранилища сертификатов на локальный диск.

Сертификат, выданный центром сертификации, является подтверждением вашей личности и содержит информацию, необходимую для защиты данных или установления защищенных сетевых подключений. Хранилище сертификатов — это область системы, предназначенная для хранения сертификатов.

Для продолжения нажмите кнопку "Далее".

Рисунок № 48 – мастер экспорта сертфиикатов (Windows 11)

Выберем дополнительные пункты экспорта:

Рисунок № 49 – выбор экспортирования закрытого ключа (Windows 11)

Выберим формат экспортирования:

Рисунок № 50 – формат экспортируемого файла (Windows 11)

Введём имя экспортируемого файла:

Рисунок № 51 – ввод имени файла экспорта (Windows 11)

После увидим отчёт по экспорту:

Рисунок № 52 – завершение работы мастера экспорта сертификата (Windows 11)

Рисунок № 53 – сообщение об успешном экспорте (Windows 11)

Сертификат с именем «ExportFile» успешно экспортировался в указанный каталог:

Рисунок № 54 – экспортированный файл (Windows 11)

13.5. Освоить процедуру удаления сертификата, не удаляя их окончательно:

Для удаления сертификата нужно выбрать сертификат и нажать кнопку "Удалить". Далее появляется окно для подтверждения удаления:

Рисунок № 55 – окно удаления сертификата (Windows 11)

13.6. Включить в отчет о лабораторной работе ответы на вопросы: 13.6.1. Все ли возможности утилиты CertMgr поддерживаются менеджером сертификатов:

Нет. Например, менеджер сертификатов не поддерживает работу со списками доверенных сертификатов и списками отозванных сертификатов;

13.6.2. Как еще может быть начат диалог с менеджером сертификатов:

Двойным нажатием ЛКМ по файлу CertMgr.exe.

13.6.3. Как может быть получена информация о составе списка доверенных издателей сертификатов:

Нужно перейти во вкладку "Доверенные издатели" менеджера сертификатов;

13.6.4. Копии экранных форм, полученных при выполнении;

14. Ознакомиться с разделом 5 «Получение сертификата в удостоверяющем центре» скопированного в п. 2 документа:

Ознакомимся с необходимым разделом:

5. Получение сертификата в удостоверяющем центре

В операционных системах Microsoft Windows 2000/XP/2003 для управления сертификатами может быть использована *оснастка* (snap-in) «Сертификаты». Эта системная программа может быть добавлена в консоль управления Microsoft (Microsoft Management Console, MMC), которая может быть вызвана с помощью команды Пуск | Выполнить | те. Для добавления оснастки «Сертификаты» требуется использовать команду меню Консоль | Добавить / удалить оснастку. В появившемся диалоговом окне нужно нажать кнопку «Добавить» и в списке доступных оснасток выбрать «Сертификаты».

С помощью оснастки «Сертификаты» можно просматривать содержимое хранилищ сертификатов, просматривать, импортировать и экспортировать сертификаты (аналогично менеджеру сертификатов, рассмотренному в предыдущем разделе). Эти операции доступны с помощью команд меню оснастки и с помощью контекстного меню соответствующих объектов (хранилищ и сертификатов). Дополнительно доступна команда «Поиск сертификата» в одном или нескольких хранилищах, позволяющая искать нужные сертификаты по именам издателя или владельца, серийному номеру, хеш-значению и другим критериям.

К другим дополнительным возможностям оснастки «Сертификаты» относятся просмотр списков отозванных сертификатов и запрос сертификата в удостоверяющем центре. Для просмотра списка отозванных сертификатов (CRL) нужно выделить узел «Список отзыва сертификатов» в левой части

Рисунок № 56 – раздел для ознакомления (Windows 11)

15. С помощью оснастки «Сертификаты» выполнить следующее:

15.1. Освоить использование основных функций, доступных с помощью этой оснастки (просмотр хранилищ сертификатов, запрос, просмотр, импорт, экспорт, удаление и поиск сертификатов, просмотр списков отозванных сертификатов):

Нажимаем Win + R и выполняем команду certmgr.msc для того, чтобы запустить оснастку Cepmuфикаты или забить в командной строке поиска «Управление cepmuфикатами пользователя»:

Рисунок № 57 – оснастка сертификаты (Windows 11)

Оснастка «Сертификаты» применяется пользователями и администраторами в качестве основного средства просмотра и управления сертификатами для пользователя, компьютера или службы. С помощью оснастки «Сертификаты» пользователи могут запрашивать, обновлять, находить, просматривать, перемещать, копировать и удалять сертификаты.

Оснастка «Сертификаты» является гибким средством просмотра и управления сертификатами для пользователя, компьютера или службы. С ее помощью можно определять, какие сертификаты хранятся на компьютере, где именно они хранятся, а также их параметры конфигурации.

15.2. Включить в отчет о лабораторной работе ответы на вопросы:

15.2.1. При каких условиях возможен запрос сертификата с помощью оснастки «Сертификаты»:

Сертификат должен находится в хранилище сертификатов "Личные";

15.2.2. Какие дополнительные возможности имеет оснастка «Сертификаты» по сравнению с менеджером сертификатов (п.п. 12-13):

- Выполнение запроса к личным сертификатам;
- Выполнение запроса на создание нового сертификата;
- Перемещение сертификатов из одного хранилища в другое;
- Экспортировать список сертификатов в текстовый документ;

- Обновление существующих сертификатов;
- Наличие раздела "Справка".

15.2.3. Копии полученных при выполнении п. 15 экранных форм;

17. Включить в отчет о лабораторной работе ответы на контрольные вопросы:

Назовите основные свойства и типы устройств аутентификации:

Любая система аутентификации представляет собой совокупность элементов, выполняющих ту или иную роль в реализуемом ей сценарии. К таким элементам относятся:

- Субъект аутентификации лицо, проходящее процедуру аутентификации;
- Характеристика субъекта (фактор) отличительная черта, характеризующая субъект;
- Владелец системы аутентификации лицо, несущее ответственность и контролирующее работу системы;
- Механизм аутентификации принцип, по которому осуществляется проверка подлинности предоставленного субъектом фактора;
- Механизм предоставления прав механизм, обеспечивающий авторизацию, то есть предоставление тех или иных прав, приписанных данному субъекту, прошедшему проверку подлинности.

Типы систем аутентификации:

- Парольная аутентификация;
- Биометрическая аутентификация;
- Карточная аутентификация;
- Токенная аутентификация;
- Многофакторная аутентификация;
- Одноразовые пароли.

Как происходила непрямая аутентификация в ОС Windows NT:

В операционных системах $Windows\ NT$ для непрямой аутентификации используется система доменных имен (DNS). При входе в систему пользователь вводит свое имя и пароль. Затем операционная система отправляет запрос к DNS-серверу с указанием имени пользователя. DNS-сервер проверяет наличие записи в своей базе данных для указанного имени

пользователя и возвращает операционной системе ответ, подтверждающий или опровергающий подлинность введенного имени.

Если ответ положительный, операционная система выполняет аутентификацию пользователя и предоставляет ему доступ к системе.

Из каких шагов состоит стандартный вариант протокола SSL:

- SSL (Secure Socket Layer) это протокол безопасности, который обеспечивает шифрование данных между сервером и клиентом. Стандартный вариант протокола SSL включает в себя следующие шаги:
- Шаг 1: Установка соединения. Клиент и сервер устанавливают соединение и обмениваются информацией о протоколе, например, версиями SSL;
- Шаг 2: Обмен сертификатами. Сервер отправляет свой сертификат клиенту, а клиент проверяет его на достоверность;
- Шаг 3: Аутентификация. Клиент использует сертификат сервера для подтверждения его подлинности;
- Шаг 4: Шифрование. Данные, передаваемые между клиентом и сервером, шифруются с использованием ключа, полученного из сертификата сервера;
 - Шаг 5: Передача данных. Зашифрованные данные передаются по сети;
- Шаг 6: Расшифровка. На стороне получателя данные расшифровываются с использованием ключа из сертификата сервера;
- Шаг 7: Завершение соединения. Соединение закрывается, и клиент и сервер подтверждают, что данные были переданы без ошибок.