Ajuste de datos

Análisis estadístico de datos

2021

Ajuste de la eficiencia

- 1. Considerar una variable aleatoria k que sigue una distribución binomial con un número de pruebas de Bernoulli n=30 y probabilidad de éxito o eficiencia p. Calcular la función de verosimilitud L(p), el estimador de máxima verosimilitud \hat{p} , la verosimilitud máxima L_{max} , el cociente de verosimilitudes $\lambda(p)$ y la función de costo $J_1(p)$ para los casos:
 - k = 0
 - 0 < k < n
 - k = n
- 2. Graficar la función de costo $J_1(p)$ para los tres casos anteriores
- 3. En un experimento se midieron los 20 datos de la tabla 3 que contiene la variable independiente x (columna 1), el número de pruebas de Bernoulli n (columna 2) y el número de éxitos k (columna 3). Los datos se proveen además en el archivo eficiencia.dat. Graficar los datos usando el eje horizontal para la variable independiente x y el eje vertical para el estimador de la eficiencia calculado a partir de k y n.

x	n	k	x	n	k
0.05	30	0	0.55	30	18
0.10	30	0	0.60	30	15
0.15	30	0	0.65	30	19
0.20	30	3	0.70	30	20
0.25	30	3	0.75	30	26
0.30	30	2	0.80	30	24
0.35	30	8	0.85	30	26
0.40	30	5	0.90	30	29
0.45	30	4	0.95	30	30
0.50	30	11	1.00	30	30

4. El modelo a ajustar es la función sigmoide,

$$s(x; a, b) = \frac{1}{1 + \exp(-(x - a)/b)},$$

con a y b los parámetros del ajuste. En base al modelo s(x) y a la función de costo $J_1(p)$ escribir el código para la función de costo del ajuste $J(\theta)$ con $\theta = (a, b)$.

- 5. Minimizar el costo del ajuste $J(\theta)$ usando como semilla inicial a=0.5 y b=0.1. Calcular los estimadores de máxima verosimilitud y los errores de los parámetros a y b. Calcular la correlación entre los estimadores de a y b.
- 6. Calcular el χ^2 del ajuste y calcular su p
valor
- 7. Graficar el ajuste junto a los datos
- 8. Calcular y graficar la banda de error del ajuste considerando que

$$\begin{split} &\frac{\partial s}{\partial a} = -s \left(1-s\right) \left(\frac{1}{b}\right) \\ &\frac{\partial s}{\partial b} = -s \left(1-s\right) \left(\frac{x-a}{b^2}\right). \end{split}$$