349:Machine Learning

k-Means Clustering

Reasons for k-Means Clustering

- Unsupervised ML task:
 Labels are expensive!
- Common use cases
 Social network analysis
 Anomaly detection
 Media recommendation
 Speaker recognition
 Many more ...

Raw data from Old Faithful
 Captures some phenomena
 How could you possibly use this?

· Raw data from Old Faithful

Captures some phenomena How could you possibly use this?

What is the underlying relationship?

· Raw data from Old Faithful

Captures some phenomena How could you possibly use this?

What is the underlying relationship?

· Raw data from Old Faithful

Captures some phenomena How could you possibly use this?

What is the underlying relationship?

- Raw data from Old Faithful
 - Captures some phenomena How could you possibly use this?
 - What is the underlying relationship?
- Distance Metric can be used to measure pair-wise relations

$$d(p_i, p_j) = \sqrt{\sum_{A} (p_{i,a} - p_{j,a})^2}$$
$$= \sqrt{(71 - 63)^2 + (2.4 - 3.8)^2}$$
$$= 8.13$$

· We start with unlabeled data

- We start with unlabeled data
 - 1. Randomly select means
 - 2. Calculate distance to means for every data point
 - 3. Assign class labels based upon shortest distance
 - 4. Update means and repeat

- We start with unlabeled data
 - 1. Randomly select means
 - 2. Calculate distance to means for every data point
 - 3. Assign class labels based upon shortest distance
 - 4. Update means and repeat

- We start with unlabeled data
 - 1. Randomly select means
 - 2. Calculate distance to means for every data point
 - 3. Assign class labels based upon shortest distance
 - 4. Update means and repeat

- We start with unlabeled data
 - 1. Randomly select means
 - 2. Calculate distance to means for every data point
 - 3. Assign class labels based upon shortest distance
 - 4. Update means and repeat until *convergence*

Assign class labels based upon distance to the means

$$c_i \equiv \underset{m}{\operatorname{arg\,min}} \|x_i - \mu_m\|_2$$

• Update the means:

$$\mu_{m,a} \equiv \frac{\sum_{c \in m} \mathbf{1} \cdot \mathbf{x}_{i,a}}{\sum_{c \in m} \mathbf{1}}$$

where:

a is the attribute, m is the class label, and $\mu=(a_1,a_2,\dots a_A) \text{ is a vector in the attribute-space}$

Back to Old Faithful Example

 The k-Means algorithm classifies Old Faithful data into two clusters:

But is this correct?

Old Faithful Example -- Revisited

 Normalizing data allows but attributes to be considered

$$x_{i}^{'} = \frac{x_{i} - \min(x)}{\max(x) - \min(x)}$$

 Soft decision is based on how much closer an observation is to one means versus others.

A hard-margin classifier assigns an atomic class label

A soft-margin classifier will assign a probability

Probability is assigned to each class using the softmax function

$$P(x_i \in m) = \operatorname{softmax}(z_{im}) = \frac{e^{z_{im}}}{\sum_{m} e^{z_{im}}}$$

where:

$$z_{im} = -\beta \|x_i - \mu_m\|_2$$

and β controls the **sharpness** of the distribution

 Resulting probability distribution is a Gaussian function of the distance between an observation and a mean

- Resulting probability distribution is a Gaussian function of the distance between an observation and a mean
- β is sometimes called the temperature

• Applying this to the previous example with $\beta = 1$

 Applying Soft k-Means to Old Faithful resolves ambiguity

Take Aways

- We learned how to classify unlabeled data k-Means clustering
- We formulated a Soft k-Means to handle uncertainty (and express confidence)

Precision vs Recall

Classifiers are often evaluated with an eye towards their being search engines. (e.g. labeling documents as either relevant or not to a search query). In this case people often use the following measures:

precision	$p = \frac{tp}{tp + fp}$
recall	$r = \frac{tp}{tp + fn}$
F-measure	$F = 2\frac{p \cdot r}{p + r}$

	• •	ac Giassii	ioation
Classification		True	False
	True	True positive (tp)	False positive (fp)
Machine's	False	False negative (fn)	True negative (tn)

True Classification

Confusion Matrix

Lets us see which things the classifier is mixing up. Helps direct improvement.

Correct Classification

Machine's Classification

	Dog	Coyote	Cactus	Road Runner
Dog	8	5	0	2
Coyote	2	5	0	2
Cactus	0	0	8	2
Road Runner	0	0	2	4