Упражнения: Комбинаторни алгоритми

Задача 1. Пермутации

Изчислете броя на пермутациите за дадена стойност на N. Известно е, че броят на пермутациите е равен на факториела на N, т.е. N! = 1.2.3...N. Рекурсивната дефиниция е N!=N*(N-1).

Пример:

Функцията има ограничен обхват. Тя ще работи за числа N по-малки или равни на 12. За големи стойности на N се изисква използването на дълги числа (умножение на дълги числа).

Вход	Изход
1	1
2	2
3	6
4	24
5	120
6	720
7	5040 Последното число, което се побира в int
8	40320
9	362880
10	3628800
11	39916800
12	479001600 Последното число, което се побира в long int
13	6227020800
•••	•••
30	265252859812191058636308480000000
•••	

Подсказки:

```
Fac (k)
Begin
r:=1;
For i:=1 To κ Do r:=r*i;
Fac:=r;
End;
```

Задача 2. Сума нула

Нека са дадени числата a_1 , a_2 , ..., a_n . Да се поставят операции "+" и "-" между числата a_i и a_{i+1} , за i=1,2,..., n-1 така, че резултатьт след пресмятане на получения израз да бъде равен на 0.

Например, ако са дадени естествените числа от 1 до 8, то няколко възможни решения на задачата са:

```
1 + 2 + 3 + 4 - 5 - 6 - 7 + 8 = 0

1 + 2 + 3 - 4 + 5 - 6 + 7 - 8 = 0

1 + 2 - 3 + 4 + 5 + 6 - 7 - 8 = 0

1 + 2 - 3 - 4 - 5 - 6 + 7 + 8 = 0
```

От клавиатурата се въвежда цяло число n - броя на числата и след него n на брой числа.

Пример:

Вход	Изход
8	+1 +2 +3 +4 -5 -6 -7 +8 = 0
1 2 3 4 5 6 7 8	+1 +2 +3 -4 +5 -6 +7 -8 = 0
	+1 +2 -3 +4 +5 +6 -7 -8 = 0
	+1 +2 -3 -4 -5 -6 +7 +8 = 0
	+1 -2 +3 -4 -5 +6 -7 +8 = 0
	+1 -2 -3 +4 +5 -6 -7 +8 = 0
	+1 -2 -3 +4 -5 +6 +7 -8 = 0
	-1 +2 +3 -4 +5 -6 -7 +8 = 0
	-1 +2 +3 -4 -5 +6 +7 -8 = 0
	-1 +2 -3 +4 +5 -6 +7 -8 = 0

Подсказки:

Генерирайте всевъзможните вариации с повторение на n-1 елемента от втори клас, т.е. всевъзможните наредени (n-1)-орки, съставени от 0 и 1 (което отговаря на положителен и отрицателен знак пред съответното число). За всяка такава (n-1)-орка проверете дали е решение на задачата, като за целта пресметнете стойността на съответния израз.

Задача 3. Разбиване на число (като сума от числа)

По дадено естествено число n да се намерят всички възможни не наредени представяния (разбивания) на n като сума от естествени числа (не непременно различни). Така например, числото 5 може да се разбие по следните 7 начина:

```
5 = 5

5 = 4 + 1

5 = 3 + 2

5 = 3 + 1 + 1

5 = 2 + 2 + 1

5 = 2 + 1 + 1 + 1

5 = 1 + 1 + 1 + 1 + 1
```

От клавиатурата се въвежда едно цяло число п - числото за разбиване".

Пример:

Вход	Изход

7	6+1
	5+2
	5+1+1
	4+3
	4+2+1
	4+1+1+1
	3+3+1
	3+2+2
	3+2+1+1
	3+1+1+1+1
	2+2+2+1
	2+2+1+1+1
	2+1+1+1+1
	1+1+1+1+1+1

Подсказки:

Може да използвате рекурсивен алгоритъм:

- разбиване(0) = {}
- разбиване(n) = {k} + разбиване(n-k), където k = n, n-1,...,1.

Трябва да внимавате и да избегнете генериране на повтарящи се разбивания, като:

5 = 3 + 25 = 2 + 3

Всяко следващо събираемо е необходимо да бъде по-малко или равно на предходното. Рекурсивната функция, извършваща разбиването, има два аргумента: п (число за разбиване) и променлива, показваща колко пъти досега е било разбивано числото.

Задача 4. Разбиване на число (като произведение от числа)

По дадено естествено число n да се намерят всички възможни не наредени представяния (разбивания) на n като произведение от естествени числа (не непременно различни).

От клавиатурата се въвежда едно цяло число n.

Пример:

Вход	Изход
50	25 * 2
	10 * 5
	5 * 5 * 2

Подсказки:

Алгоритъмът, по който можете да реализирате разлагането, е аналогичен на този, който е описан в задача 3. Вместо devNum(n-k,cnt+1) ще извикваме рекурсивно devNum(n/k,cnt+1), при това не за всяко k, а само за тези, за които п % k == 0. Условието за продължаване на разбиването (цикъла for) ще бъде k > 1, а не k ≥ 1, т.е. дъното на рекурсията ще бъде k == 1, а не k == 0 (последното се обяснява лесно: 0 и 1 са именно идентитетите на операциите събиране и умножение).

Задача 5. Разбиване на числа (като сума от дадени числа)

Нека са дадени пощенски марки от 2, 5 и 10 лева . Трябва да се изпратим колет на стойност 20 лева. Всички възможности (общо 6 на брой) за образуване на тази сума са:

От клавиатурата последователно се въвеждат числата n - стойността на колета, т - броя на наличните марки, и т на брой числа - стойностите на марките. Всички числа са цели числа.

Пример:

Вход	Изход
20 3	5 + 5 + 5
2 5 10	5 + 5 + 3 + 2
	5 + 3 + 3 + 2 + 2
	5 + 2 + 2 + 2 + 2 + 2
	3 + 3 + 3 + 3 + 3
	3 + 3 + 3 + 2 + 2 + 2
	3 + 2 + 2 + 2 + 2 + 2 + 2

Подсказки:

Алгоритъмът за решаването на тази задача е подобен на този за разбиване на число като сума от естествени числа. Пазете числата, които можете да ползвате при разбиването, в масив given[gN]. Цикълът ще се изпълнява за р = 0,1,...,gN-1, като при рекурсивното извикване вместо с р, намалете п със съответната стойност на given[p].