Statistical Model of the Early Stage in Nucleus-Nucleus collisions

Maciej Lewicki

University of Wrocław Faculty of Physics and Astronomy Institute of Theoretical Physics

April 20, 2017

Outline

Acta Phys.Polon. B30 (1999) 2705 M. Gazdzicki, M. Gorenstein; "On the Early Stage of Nucleus–Nucleus Collisions"; arXiv:hep-ph/9803462v3 30 Oct 1998 circa 400 citations

- Brief introduction and motivation.
- Historical sketch.
- Model Asumptions.
- Comment on results.

Section 1

Introduction

Flashback

Ion+Ion and proton+proton collisions

4/29

Heavy Ion Collisions

Heavy Ion Collisions

or more general **High Energy Physics** focuses on studying matter under extreme energy densities. The main scientific objectives in HIC are:

- The investigation of a new state of matter: quark-gluon plasma (QGP).
- The study of color confinement and asymptotic freedom (or QCD in general).
- The study of the **origin of mass** of hadronic matter.

The work described in this presentation aims to uncover the properties of QGP by introducing a phenomenological model.

5/29

Heavy Ion Collisions

Heavy Ion Collisions

or more general **High Energy Physics** focuses on studying matter under extreme energy densities. The main scientific objectives in HIC are:

- The investigation of a new state of matter: **quark-gluon plasma** (QGP).
- The study of color confinement and asymptotic freedom (or QCD in general).
- The study of the **origin of mass** of hadronic matter.

The work described in this presentation aims to uncover the properties of QGP by introducing a phenomenological model.

A surprisingly simple model, which happens to surprisingly well reproduce experimental data.

Motivation

Baffling questions

- What is the nature of particle creation in strong interactions?
- What is the state of matter created in the collisions of two nuclei? How does it behave?

Under the lack of calculable theory, we need to rely on phenomenological approaches.

Statistical Model of the Early Stage (SMES) is the first of such models to introduce the deconfinement of hadrons in the early stage of the nuclei collisions.

Section 2

History

Brief historical sketch

1988	Strangeness enhancement in S+S collisions at 200A GeV (NA35) wrt. p+p collisions at the same energy.
1992	No strangeness enhancement in p+A collisions at 200 AGeV.
1994	Pion suppression in central A+A collisions at low energies.
1994	Pion enhancement in central S+S collisions at 200 AGeV.
1995	Pion saturation in central A+A collisions at SPS

Brief historical sketch

1995	Energy dependence of strangeness production in A+A collisions.
1996	Strangeness saturation in central A+A col lisions at SPS.
1997	Quantitative agreement: QGP and A+A results at SPS.
1996-8	J/ψ saturation in Pb+Pb collisions at 158 AGeV.

Section 3

Model

1 Particle creation is a **statistical process**. All microscopic states are equally probable, therefore:

$$P(\text{macrostate}) \propto \# \text{ of microstates}$$

In other formulation:

$$P \propto e^{S}$$

, where **S** is the entropy of the macroscopic state.

2 Particle production process does not produce net baryonic, flavour, nor electric charges. Thus only states with **total baryon**, **flavor**, **electric numbers equal to zero** are considered.

- 3 Properties of created state are dependent entirely on three parameters: system volume V, available energy E and a partition function. For large nuclei the thermodynamical approximation can be used: $E, V \rightarrow \epsilon$. The state properties can be given as equation of state (EoS).
- 4 Production volume is Lorentz contracted nucleus' volume:

$$V = \frac{V_0}{\gamma}$$

$$V_0=rac{4}{3}\pi r_0^3$$
 and $\gamma=\sqrt{s_{NN}/(2m_N)}.$

 $r_0=1.30$ in order to fit mean μ_B of nucleus $(=0.11 fm^{-3})$

Only a fraction of the total energy in A+A collision is transformed into the energy of created particles:

$$E = \eta(\sqrt{s_{NN}} - m_N)A$$

 $\eta = 0.67$ assumed independent on on E and A.

6 Large nucleus volume allows us to use the grand canonical approximation.

- **7** The most **elementary particles** are quarks and gluons.
 - Considered quarks: u,d,s,c and $\bar{u},\bar{d},\bar{s},\bar{c}$. Resulting internal degrees of freedom = 6 (3 colors \times 2 spins). $m_u = m_d = m_{\bar{u}} = m_{\bar{d}} = 0, \ m_s = m_{\bar{s}} = 175 \text{MeV},$ $m_c = m_{\bar{c}} = 1.5 \text{GeV}.$
 - ► Gluon internal degrees of freedom = 16 (8 colors × 2 spins).
- **EoS** for creation of quarks and gluons is assumed to be the ideal gas eq. modified by the Bag constant:

$$p = p^{id} - B$$
, $\epsilon = \epsilon^{id} + B$

Bag constant (=600 MeV/fm 3) accounts for strong interactions between quarks, gluons and QCD vacuum.

- In the freeze-out stage: the degrees of freedom are hadrons. Due to their finite proper volume hadrons can exist only at low energy density: $\epsilon < 0.1 \div 0.4 \, \text{GeV/fm}^3$.
- 10 At collision energies lower than the QGP treshold the early stage d.o.f. can be approximated by point-like colourless bosons (White state).

 The nonstrange d.o.f. are taken to be massless.

The internal number of d.o.f. in W-state is about 3 times lower than the internal d.o.f. for the QGP:

$$g_Q = g^b + \frac{7}{8}g^f = g^b + \frac{7}{8} \cdot 2_{q,\bar{q}} \cdot g_q, \quad g_q = 6n_f$$
 $g_Q = 2 \cdot 8 + \frac{7}{8} \cdot 2 \cdot 6 \cdot 3 \approx 48; \quad g_W = 48/3 = 16$

- Mass of the strange d.o.f. = 500 MeV (mass of the kaons).
- 12 The number of strange internal d.o.f. = 14 (fit to AGS data).
- The only process changing the entropy of the system during expansion, hadronization and freeze-out in an equilibration with the baryonic subsystem (absorption of π mezons or Δ 's).
- The total number of **s** and **s** quarks is conserved during expansion, hadronization and freeze-out.

Calculations

Simplified Model

EoS defined by in terms of the pressure function p = p(T):

$$s(T) = \frac{dp}{dT}, \quad \epsilon(T) = T\frac{dp}{dT} - p$$

The pressure of particle species j' is given by (ideal gas EoS, additive):

$$p^{j}(T) = \frac{g^{j}}{2\pi^{2}} \int_{0}^{\infty} k^{2} dk \frac{k^{2}}{3(k^{2} + m_{j}^{2})^{1/2}} \frac{1}{\exp{\frac{\sqrt{k^{2} + m_{j}^{2}}}{T}} \pm 1}$$

Simplified Model

Simplification: all **d.o.f** are massless. Then:

$$\label{eq:pj} p^j = \frac{\sigma^j}{3} T^4; \ \ \sigma_{bosons} = \pi^2 g^j/30, \ \ \sigma_{fermions} = \frac{7}{8} \pi^2 g^j/30.$$

with the effective d.o.f given by: $g = g^b + \frac{7}{8}g^f \rightarrow g_W \text{ and } g_Q$.

$$p(T) = \frac{\pi^2 g}{90} T^4 (-B), \ \epsilon(T) = \frac{\pi^2 g}{30} T^4 (+B), \ s(T) = \frac{\pi^2 g_W}{45} T^3,$$

First order phase transition at (Gibbs criterion):

$$p_W(T_C) = p_Q(T_C)$$

 T_C adjusted to AGS data = 200MeV sets the Bag constant.

$$T_{C} = \left[\frac{90B}{\pi^{2}(g_{Q} - g_{W})}\right]^{\frac{1}{4}}$$

Simplified Model

At $T = T_C$ there is a mixed phase:

$$\epsilon_{\text{mix}} = (1-\xi)\epsilon_{\text{W}}^{\text{C}} + \xi\epsilon_{\text{Q}}^{\text{C}}\,, \quad s_{\text{mix}} = (1-\xi)s_{\text{W}}^{\text{C}} + \xi s_{\text{Q}}^{\text{C}}$$

 ξ and $(1 - \xi)$ are relative volumes.

The early stage energy density:

$$\epsilon = \frac{\mathsf{E}}{\mathsf{V}} = \frac{\eta \rho_0 (\sqrt{\mathsf{s}_{\mathsf{NN}}} - 2\mathsf{m}_{\mathsf{N}}) \sqrt{\mathsf{s}_{\mathsf{NN}}}}{2\mathsf{m}_{\mathsf{N}}}$$

The entropy density:

$$s_{\mathsf{W}}(\epsilon) = \frac{4}{3} \left(\frac{\pi^2 g_{\mathsf{W}}}{30} \right)^{\frac{1}{4}} \epsilon^{\frac{3}{4}}$$

$$s_{Q}(\epsilon) = \frac{4}{3} \left(\frac{\pi^{2} g_{Q}}{30} \right)^{\frac{1}{4}} (\epsilon - B)^{\frac{3}{4}}$$

Simplified Model

Entropy density in the mixed phase:

$$s_{min}(\epsilon) = \frac{\epsilon_Q^C s_W^C - \epsilon_W^C s_Q^C}{4B} + \frac{s_Q^C - s_W^C}{4B} \epsilon \equiv a\epsilon + b$$

The total entropy per wounded nucleon produced in A+A collisions:

$$\frac{\mathsf{S}}{\mathsf{2A}_p} = \frac{\mathsf{V}\,\mathsf{s}}{\mathsf{2A}_p} = \frac{\mathsf{m}_\mathsf{N}\mathsf{s}}{\rho_\mathsf{0}\sqrt{\mathsf{s}_\mathsf{NN}}}$$

Pure W-state:

$$\left(\frac{\mathsf{S}}{2\mathsf{A}_p}\right)_{\mathsf{W}} = \mathsf{C} \mathsf{g}_{\mathsf{W}}^{1/4} \, \mathsf{F}$$

Pure Q-state:

$$\left(\frac{\rm S}{2{\rm A}_p}\right)_Q = {\rm C} g_Q^{1/4} \, {\rm F} \left(1 - \frac{3m_N B}{2\eta \rho_0 {\rm F}^4}\right) \label{eq:spectrum}$$

$$C=rac{2}{3}\left(rac{\pi^2 m_N}{15
ho_0}
ight)^{1/4}\eta^{3/4}$$
 and Fermi variable: $F=rac{(\sqrt{s_{NN}}-2m_N)^{3/4}}{(\sqrt{s_{NN}})^{1/4}}$

Simplified Model

Section 4

Results

Main Results

Assumptions validation

- It was tested, that the grand canonical approximation is applicable for Si+Al collisions (AGS) and produces credible estimations of entropy and strangeness.
- Another tested set of data are S+S collisions (SPS). The model reproduced well the charm production.

Main Results

Consequences

- Entropy, strangeness and charm yields per participating nucleon should be independent of the size of colliding nuclei.
- Model predicts 3 seperate regions of states produced in the early stage: pure W-state (low energies), pure Q-state (high energies) and a mixed state in the intermediate energy region.
 - For chosen parameters the mixed phase emerges at $p_{LAB}=30 \div 65$ AGeV
- The transistion from W-state to Q-state should manifest itself as a rapid increase of pion multiplicity and non-monotonic energy dependence of the strangeness to pion ratio.

Comparison with data

Early stage entropy (unit of pion entropy):

$$\langle S_{\pi} \rangle = \langle \pi \rangle + \kappa \left\langle K + \bar{K} \right\rangle + \alpha \left\langle N_{P} \right\rangle$$

Total strangeness production as ratio to pions:

$$E_s = rac{\langle \Lambda
angle + \left\langle K + ar{K}
ight
angle}{\langle \pi
angle}$$

Results - "step"

26/29

Results - "kink"

 $\langle \pi \rangle \langle W \rangle$

Results - "horn"

Thank you for your attention!

