数学分析习题:第4周

梅加强

http://math.nju.edu.cn/~meijq

2007.3

说明:只有习题是必须写在作业本上上交的,思考题做好后可以交给我, 但必须是严格独立完成的.

习题:

- 1. 设级数 $\sum_{n=0}^{\infty} a_n$ 的部分和为 S_n . 如果 $S_{2n} \to S$, 且 $a_n \to 0$, 则 $\sum_{n=0}^{\infty} a_n$ 收敛.
- 2. 用裂项法证明 $\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$ 收敛并求和.
- 3. 证明级数 $\sum_{n=0}^{\infty} \sin(n^2)$ 是发散的.
- 4. 证明, 如果级数 $\sum_{n=0}^{\infty} a_n^2$ 收敛, 则 $\sum_{n=0}^{\infty} \frac{a_n}{n}$ 也收敛.
- 5. 判断下列级数的敛散性:

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+n^2}}, \quad \sum_{n=1}^{\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n}), \quad \sum_{n=1}^{\infty} \frac{1}{n} \tan \frac{1}{n}, \quad \sum_{n=3}^{\infty} \frac{1}{(\log n)^{\log \log n}}.$$

6. 判断下列级数的敛散性:

$$(1) \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!}, \qquad (2) \sum_{n=1}^{\infty} \frac{n!}{n^n},$$

$$(2)\sum_{n=1}^{\infty}\frac{n!}{n^n},$$

(3)
$$\sum_{n=1}^{\infty} (\sqrt[n]{a} - 1)^p \ (a > 1),$$
 (4) $\sum_{n=1}^{\infty} \frac{n^2}{2^n},$

$$(4)\sum_{n=1}^{\infty}\frac{n^2}{2^n},$$

$$(5)\sum_{n=1}^{\infty} (1 - n\sin\frac{1}{n})^p,$$

$$(6) \sum_{n=1}^{\infty} (\frac{n}{2n+1})^n.$$

- 7. 设 $a_n > 0$, $S_n = a_1 + a_2 + \cdots + a_n$, 证明
 - (1) 级数 $\sum_{n=1}^{\infty} \frac{a_n}{S_n^2}$ 总是收敛的;
 - (2) 级数 $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{S_n}}$ 收敛当且仅当 $\sum_{n=1}^{\infty} a_n$ 收敛.
- 8. 设正项级数 $\sum_{n=1}^{\infty} a_n$ 发散, 试用积分法判别法证明 $\sum_{n=1}^{\infty} \frac{a_{n+1}}{S_n}$ 也发散, 其中 S_n 为 $\sum_{n=0}^{\infty} a_n$ 的部分和.
- 9. 判断下列级数的敛散性:

$$(1) \sum_{n=1}^{\infty} \frac{n!e^n}{n^{n+p}},$$

$$(1) \sum_{n=1}^{\infty} \frac{n! e^n}{n^{n+p}}, \qquad (2) \sum_{n=1}^{\infty} \frac{p(p+1)\cdots(p+n-1)}{n!} \cdot \frac{1}{n^q} \ (p>0, q>0),$$

$$(3) \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!}$$

$$(3) \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!}, \quad (4) \sum_{n=1}^{\infty} \frac{\sqrt{n!}}{(a+\sqrt{1})(a+\sqrt{2})\cdots(a+\sqrt{n})} \ (a>0).$$

10. (* 这一题这一周可以不做, 到下周再做) 判断下列级数的敛散性, 如果收 敛的话是条件收敛还是绝对收敛:

$$(1)\sum_{n=1}^{\infty}\frac{\sin(nx)}{n!},$$

$$(2)\sum_{n=1}^{\infty} (-1)^n \frac{\log n}{\sqrt{n}}$$

(3)
$$\sum_{n=1}^{\infty} (-1)^{n-1} (1 - \cos \frac{\pi}{\sqrt{n}}),$$
 (4) $\sum_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + x^2}),$

(4)
$$\sum_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + x^2}),$$

$$(5) \sum_{n=1}^{\infty} (-1)^n (\sqrt[n]{n} - 1),$$

(5)
$$\sum_{n=1}^{\infty} (-1)^n (\sqrt[n]{n} - 1),$$
 (6) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{x + \frac{1}{n}}}, x \in \mathbb{R}.$

思考题:

- 1. 设 $a_n > 0$, $S_n = a_1 + a_2 + \cdots + a_n$, 证明 (1) 当 $\alpha > 1$ 时, 级数 $\sum_{n=1}^{\infty} \frac{a_n}{S_n^{\alpha}}$ 总是收敛的;
 - (2) 当 $\alpha \le 1$ 时, 级数 $\sum_{n=1}^{\infty} \frac{a_n}{S_n^{\alpha}}$ 收敛当且仅当 $\sum_{n=1}^{\infty} a_n$ 收敛.
- 2. 设 $a_n > 0$, na_n 单调趋于 0, $\sum_{n=0}^{\infty} a_n$ 收敛. 证明 $n \log n \cdot a_n \to 0$.
- 3. 设 $a_n > 0$, $\sum_{n=1}^{\infty} \frac{1}{a_n}$ 收敛. 证明级数 $\sum_{n=1}^{\infty} \frac{n}{a_1 + a_2 + \dots + a_n}$ 也收敛.