1. Método de la Potencia y relativos

1. Demuestre el siguiente teorema.

Teorema (Convergencia del método de la potencia). Sea $A \in \mathbb{C}^{n \times n}$ una matriz semisimple. Si A tiene un valor propio dominante λ_1 con vector propio asociado v_1 , entonces la secuencia reescalada de vectores

$$q_j = \frac{A^j q}{\lambda_1^j}$$

cumple

$$||q_j - c_1 v_1|| \le C \left\| \frac{\lambda_2}{\lambda_1} \right\|^j, \quad j = 1, 2, 3, \dots$$

y por tanto $q_i \to c_1 v_1$ cuando $j \to \infty$.

- 2. Este ejercicio muestra que una matriz es semisimple si y solo si es diagonalizable. Demuestre las siguientes implicaciones:
 - a) Sea $A \in \mathbb{C}^{n \times n}$ semisimple, con vaps $\lambda_1, \ldots, \lambda_n$ y veps asociados v_1, \ldots, v_n . Sean $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ y V la matriz con columnas v_1, \ldots, v_n . Entonces $V^{-1}AV = D$.
 - b) Supongamos que $V^{-1}AV = D$, con D una matriz diagonal y V una matriz no singular. Entonces, los vaps de A son los elementos de la diagonal de D, y las columnas de V son n veps linealmente independientes de A.
- 3. Dado una matriz $A \in \mathbb{C}^{3\times 3}$ semisimple con valores propios $\lambda_1 = 4$, $\lambda_2 = 3i$, $\lambda_3 = 1$. Supongamos que $\vec{q} = \sum_{i=1}^{3} \alpha_i \vec{v}_i$ con $\alpha_i \neq 0$ (i = 1, 2, 3).
 - a) ¿A cuál eigenvector y con qué radio de convergencia converge el método de la potencia?
 - b) ¿A cuál eigenvector y con qué radio de convergencia converge el método de la potencia inversa?
 - c) ¿A cuál eigenvector y con qué radio de convergencia converge el método de la potencia inversa con shift $\rho = 3$?
 - d) Determine el intervalo I de shifts reales tal que el método de la potencia inversa con un shift $\rho \in I$ converge al vector propio v_2 .

(Pista: un dibujo del los eigenvalores ayuda.)

4. Suponga que usamos el método de la Potencia. Haz dos pasos (a mano) con los datos

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} \quad \mathbf{y} \quad \vec{q} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Solo estamos interesado en la última aproximación.

(Pista: Al final puedes normalizar y calcular la aproximación del eigenvalor.).

5. Suponga que usamos el método de la Potencia inversa. Haz dos pasos (a mano) con los datos

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \quad \mathbf{y} \quad \vec{q} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Solo estamos interesado en la última aproximación. ¿El método funciona? (Pista: Al final puedes normalizar y calcular la aproximación del eigenvalor.).

6. Dado la matriz y el vector inicial:

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \quad \mathbf{y} \quad \vec{q} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

decide y justifica cual de los siguientes métodos funciona

- Método de la Potencia
- Método de la Potencia inversa
- Método de la Potencia inversa con shift $\rho = 1$.
- 7. Otros ejercicios dejado en clase.

2. Método QR y lo demás

- 1. Sean $A, B \in \mathbb{C}^{n \times n}$ dos matrices similares $(B = S^{-1}AS)$. Demuestre que (λ, v) es eigenpar A si y sólo si $(\lambda, S^{-1}v)$ es eigenpar de B.
- 2. Escriba la demostración del Teorema de Schur con todos los detalles.

Teorema (Teorema de Schur). Sea $A \in \mathbb{C}^{n \times n}$. Entonces existe una matriz triangular superior $T \in \mathbb{C}^{n \times n}$ y una matriz unitaria $U \in \mathbb{C}^{n \times n}$ tal que

$$T = U^H A U$$
.

(Pista: Inducción sobre la dimensión de la matriz A.)

3. Demuestre el siguiente teorema.

Teorema (Teorema Espectral para matrices hermitianas). Sea $A \in \mathbb{C}^{n \times n}$ una matriz Hermite. Entonces existe una matriz diagonal real $D \in \mathbb{R}^{n \times n}$ y una matriz unitaria $U \in \mathbb{C}^{n \times n}$ tal que

$$D = U^*AU$$
.

Las columnas de U son eigenvectores de A, y las entradas de la diagonal de D son eigenvalores de A.

Argumenta también porque:

- Los eigenvalores de una matriz hermitiana son reales.
- Una matriz hermitiana es semisimple.

(Pista: puedes usar el Teorema de Schur.)

- 4. Comprobar que la secuencia de matrices A_j del algoritmo QR simple son similares unitarias. ¿Cuál es la transformación de similitud?
- 5. Aplica el algoritmo QR simple a la matriz real simétrica

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

Haz una sola iteración "a mano" (no uses Matlab).

6. Muestra que el algoritmo QR simple preserva la forma Hessenberg de las matrices A_i :

Proposición. Si A_{m-1} es Hessenberg no singular, entonces A_m también lo es.

(Pista: Muestra que el producto de una matriz Hessenberg y una triangular superior (en cualquier orden) da una matriz Hessenberg.

- 7. Comprobar que la secuencia de matrices A_j del algoritmo QR con shift dinámico son similares unitarias. ¿Cuál es la transformación de similitud?
- 8. Muestra que, dado un vector cualquiera $x=(x_1,x_2)\in\mathbb{R}^2$, hay un único ángulo $\theta\in[0,2\pi)$ tal que la rotación inversa de ángulo θ

$$Q_{\theta}^{T} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

aplica el vector x en un vector horizontal que apunta hacia la derecha, es decir:

$$Q_{\theta}^T x = \begin{pmatrix} y \\ 0 \end{pmatrix}, \quad y > 0.$$

Además, muestra que:

$$\cos \theta = \frac{x_1}{\|x\|_2}, \quad \sin \theta = \frac{x_2}{\|x\|_2}, \quad y = \|x\|_2.$$

- 9. Este ejercicio justifica la elección de $a_{n,n}$ como shift dinámico en el algoritmo QR con shift dinámico. Sea $A \in \mathbb{R}^{n \times n}$ una matriz en forma Hessenberg con entradas a_{ij} .
 - a) Ver que $\rho = a_{n,n}$ es el cociente de Rayleigh asociado al vector $\vec{e}_n = (0,0,\ldots,0,1)$.
 - b) Ver que el vector \vec{e}_n aproxima un vep de la matriz A^T cuando la entrada $a_{n,n-1}$ es pequeña.
- 10. Este ejercicio muestra que la elección del cociente de Rayleigh $\rho = a_{n,n}$ no siempre funciona (ni siquiera cuando A tiene vaps reales diferentes).

Considera la matriz

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
,

y aplica un paso del algoritmo QR con shift dinámico de Rayleigh.

¿Qué le pasa a la iteración del algoritmo? ¿A qué es debido? ¿Cómo lo resolverías?

2.1. Iteración de subespacios (Iteración Simultánea) y el algoritmo QR

- 11. Sea $A \in \mathbb{C}^{n \times n}$ una matriz.
 - a) Sea $v \in \mathbb{C}^n$ eigenvector de A. Muestre que el subespacio span $\{v\}$ es invariante por A.
 - b) Sea S_{λ} cualquier eigenespacio de A (de dimensión mayor o igual a 1). Muestra que S_{λ} es invariante por A.
 - c) Sea $v_1, v_2, \ldots, v_k \in \mathbb{C}^n$ cualquier conjunto de k eigenvectores de A asociados con los eigenvalores $\lambda_1, \lambda_2, \ldots, \lambda_k$. Muestra que span $\{v_1, v_2, \ldots, v_k\}$ es invariante por A.
 - d) Sea

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Encuentra los eigenespacios de A, y encuentra un espacio S que es invariante por A pero no es combinación lineal de eigenvectores de A.

- 12. Sean $A \in \mathbb{C}^{n \times n}$, $S \subset \mathbb{C}^n$, $AS = \{Ax \mid x \in S\}$.
 - a) Muestra que si S es un subespacio de \mathbb{C}^n , entonces AS es también es un subespacio de \mathbb{C}^n .
 - b) Muestra que $A^m S = A(A^{m-1}S)$.
 - c) Muestra que si $S = \text{span}\{x_1, \dots, x_k\}$, entonces $AS = \text{span}\{Ax_1, \dots, Ax_k\}$.
 - d) Suponga que $S \cap \text{Null}\{A\} = \{0\}$. Muestre que si $\{x_1, \dots, x_k\}$ forma una base de S, entonces $\{Ax_1, \dots, Ax_k\}$ forma una base de AS. Por tanto, $\dim(AS) = \dim(S)$.
- 13. Sea A semisimple con eigenpares (λ_i, v_i) , (i = 1, ..., n) ordenados tal que $|\lambda_i| \ge |\lambda_{i+1}|$. Además, existe k tal que $|\lambda_k| > |\lambda_{k+1}|$.
 - a) Muestra que la condición $|\lambda_k| > |\lambda_{k+1}|$ implica que $\text{Null}\{A\} \subseteq \mathcal{U}_k := \text{span}\{v_{k+1}, \dots, v_n\}$.
 - b) En general, muestra que Null $\{A^m\} \subseteq \mathcal{U}_k$ para todo m > 0.
 - c) Dado S de 12.d), concluye que A^mS tienen (al menos) dimensión k para todo m>0.
- 14. Sea q_1, \ldots, q_k una base de S. Concluye de los dos ejercicios anteriores que si $S \cap U_k = \{0\}$, entonces $A^m q_1, \ldots, A^m q_k$ forman una base de $A^m S$. Por tanto, podemos simplemente iterar una base de S para obtener bases para AS, A^2S , etc.