lbfgs: Efficient L-BFGS and OWL-QN Optimization in R

Antonio Coppola Harvard University Brandon M. Stewart Harvard University

Abstract

This vignette introduces the **lbfgs** package for R, which consists of a wrapper built around the libLBFGS optimization library written by Naoaki Okazaki. The **lbfgs** package implements both the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) and the Orthant-Wise Quasi-Newton Limited-Memory (OWL-QN) optimization algorithms. The L-BFGS algorithm solves the problem of minimizing an objective, given its gradient, by iteratively computing approximations of the inverse Hessian matrix. The OWL-QN algorithm finds the optimum of an objective plus the L_1 norm of the problem's parameters, and can be used to train log-linear models with L_1 regularization. The package offers a fast and memory-efficient implementation of these optimization routines, which is particularly suited for high-dimensional problems. The **lbfgs** package compares favorably with other optimization packages for R in microbenchmark tests.

Keywords: optimization, optim, L-BFGS, OWL-QN, R.

1. Introduction

In this vignette we demonstrate how to use the **lbfgs** R package.¹ While the **optim** function in the R core package **stats** provides a variety of general purpose optimization algorithms for differentiable objectives, there is no comparable general optimization routine for objectives with a non-differentiable penalty. Non-differentiable penalties such as the L_1 norm are attractive because they promote sparse solutions (Hastie *et al.* 2009). However it is this same lack of smoothness which makes the gradient-based methods in **optim** inapplicable.

The **lbfgs** package addresses this issue by providing access to the Orthant-Wise Quasi-Newton Limited-Memory (OWL-QN) optimization algorithm of Andrew and Gao (2007) which allows for optimization of an objective with an L_1 penalty. The package uses the libLBFGS C++ library by Okazaki (2010), which itself is a port of the Fortran implementation by Nocedal (1980). In addition to OWL-QN the package provides an implementation of L-BFGS which complements optim. The linkage between R and C++ is achieved using **Rcpp** (Eddelbuettel 2013).

The package provides general purpose access to these two optimization algorithms which are suitable for large-scale applications with high-dimensional parameters. The objective and gradient can be programmed in R or directly in C++ for high performance.

In Section 2 we provide a brief summary of the L-BFGS and OWL-QN algorithms. In Section 3

¹We are extremely thankful to Dustin Tingley for his advice and support.

we proceed to describe the features of the package using applied examples with functions coded in R. In Section 4 we demonstrate how to achieve higher performance by coding objective and gradient functions in C++. Section 5 concludes.

2. Background

2.1. Notation

Throughout this vignette, we adopt notation from Andrew and Gao (2007). Let $f: \mathbb{R}^n \to \mathbb{R}$ be the objective function to be minimized. We also let the $||\cdot||$ operator denote the L_2 norm of a vector, and $||\cdot||_1$ denote the L_1 norm. $\mathbf{B_k}$ is the Hessian matrix (or its approximation) of f at x^k , and g^k if the gradient of f at the same point. We also let $\mathbf{H_k} = \mathbf{B_k}^{-1}$ be the inverse of the (approximated) Hessian matrix.

2.2. The L-BFGS Algorithm

The Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm (Liu and Nocedal 1989) is employed for solving high-dimensional minimization problems in scenarios where both the objective function and its gradient can be computed analytically. The L-BFGS algorithm belongs to the class of quasi-Newton optimization routines, which solve the given minimization problem by computing approximations to the Hessian matrix of the objective function. At each iteration, quasi-Newton algorithms locally model f at the point x^k using a quadratic approximation:

$$Q(x) = f(x^k) + (x - x^k)^T g^k + \frac{1}{2} (x - x^k)^T \mathbf{B_k} (x - x^k)$$

A search direction can then be found by computing the vector x^* that minimizes Q(x). Assuming that the Hessian is positive-definite, this is $x^* = x^k - \mathbf{H_k} g^k$. The next search point is then found along the ray defined by $x^k - \alpha \mathbf{H_k} g^k$. The procedure is iterated until the gradient is zero, with some degree of convergence tolerance.

In high dimensional settings even storing the Hessian matrix can be prohibitively expensive. The L-BFGS algorithm avoids storing the sequential approximations of the Hessian matrix which allows it to generalize well to the high-dimensional setting. Instead, L-BFGS stores curvature information from the last m iterations of the algorithm, and uses them to find the new search direction. More specifically, the algorithm stores information about the spatial displacement and the change in gradient, and uses them to estimate a search direction without storing or computing the Hessian explicitly. We refer interested readers to Nocedal and Wright (2006) for additional details.

2.3. The OWL-QN Algorithm

The L-BFGS method cannot be applied to problems with an objective function of the form $r(x) = C \cdot ||x||_1 = C \cdot \sum_i |x_i|$, such as LASSO regression or L_1 -penalized log-linear models, given the non-differentiability of the objective function at any point where at least one of the parameters is zero. The OWL-QN algorithm developed by Andrew and Gao (2007), modifies the L-BFGS algorithm to allow for L_1 penalties.

The algorithm exploits the fact that L_1 -regularized objective functions will still be differentiable in any given orthant of the function space. At each iteration, the algorithm chooses an orthant within which to evaluate the function by estimating the sign of each of its parameters. The algorithm then constructs a quadratic approximation to the function in the given orthant using a regular L-BFGS procedure, and searches in the direction of the minimum of the approximation within the same orthant. For further details regarding OWL-QN, we refer the interested reader to the original article by Andrew and Gao (2007).

3. The lbfgs package

The **lbfgs** package provides a general-purpose library for numerical optimization with L-BFGS and OWL-QN. As such, its syntax and usage closely mirror those of other popular packages for numerical optimization in \mathbb{R}^2 While there are many alternatives for smooth unconstrained optimization, most optimization methods including an L_1 penalty are limited to end-user regression functions rather than general optimization frameworks. These functions can be more efficient than **lbfgs** for the particular problems they solve, but they do not allow easy extension or modification.

The following list provides brief comparisons between lbfsg and several other packages:

- optim(x): The lbfgs package can be used as a drop-in replacement for the L-BFGS-B method of the optim (R Development Core Team 2008) and optimx (Nash and Varadhan 2011), with performance improvements on particular classes of problems, especially if lbfgs is used in conjuction with C++ implementations of the objective and gradient functions. In addition, the possibility of introducing L_1 penalization of the objective function allows for solution vectors with much higher sparsity, as most of the otherwise quasi-zero parameters are driven to zero.
- penalized: The penalized package (Goeman et al. 2012) fits generalized linear models with both L_1 (lasso and fused lasso) and L_2 (ridge) penalizations. However, penalized does not permit general optimization of L_1 regularized functions.
- glmnet: The glmnet package (Friedman et al. 2010) fits a regularization path for lasso and elastic-net generalized linear models using extremely fast cyclical coordinate descent algorithms coded in Fortran. As in the previous case, however, glmnet cannot perform general-purpose optimization.

We also note that the **mlegp** package also makes use of the **libLBFGS** library but does not provide general purpose access to the optimization functions (?).

3.1. Package API

Explain the use of the lbfgs function. explain what generally the parameters are emphasizing the differences with what one would expect from optim. explain what's returned. Don't forget to mention things like search strategies, how the penalty is scaled etc. Note also when doing penalization you may wish to scale the variable to be zero mean and unit variance. This is

²See for example the [Optimization Taskview]

done automatically by glmnet and its worth highlighting the stylistic difference of this type of package from that. Very little is done for the user and that's okay but they have to be aware.

3.2. Simple test functions

We begin by using **lbfgs** to minimize a suite of simple test functions, and benchmarking the package against the L-BFGS-B **optim** method.

• The Rosenbrock function: We define the Rosenbrock function (Rosenbrock 1960) mapping \mathbf{R}^2 to \mathbf{R} as $f(x,y) = 100 \cdot (y-x^2)^2 + (1-x)^2$. The function has a global minimum at (0,0) that lies within a long, flat valley. We define the function and its gradient as \mathbf{R} objects, and then run the optimization routine using both **lbfgs** and **optim**. Note that the functions must accept all variables as a single numeric vector:

```
> objective <- function(x) {</pre>
  100 * (x[2] - x[1]^2)^2 + (1 - x[1])^2
> gradient <- function(x) {</pre>
  c(-400 * x[1] * (x[2] - x[1]^2) - 2 * (1 - x[1]),
    200 * (x[2] - x[1]^2)
> out.lbfgs <- lbfgs(objective, gradient, c(-1.2, 1))
> out.optim <- optim(c(-1.2, 1), objective, gradient, method="L-BFGS-B")
The results are the following:
> out.lbfgs$value
[1] 3.545445e-13
> out.lbfgs$par
[1] 1.000001 1.000001
> out.optim$value
[1] 2.267577e-13
> out.optim$par
[1] 0.9999997 0.9999995
```

The results are essentially the same, but **lbfgs** achieves better running speeds in a microbenchmark ³ test done using the **microbenchmark** package (Mersmann 2013):

```
> microbenchmark(out.lbfgs <- lbfgs(objective, gradient, c(-1.2, 1), invisible=1), out.optim <- optim(c(-1.2, 1), objective,
```

³All microbenchmark test were performed on a machine running OS X, Version 10.9.3, with a 2.9 GHz Intel Core i7 processor, and 8 GB 1600 MHz DDR3 memory.

```
gradient, method="L-BFGS-B"))
```

```
expr min 1q median uq max neval out.1bfgs <- 1bfgs(...) 288.673 298.2110 303.8770 320.326 561.389 100 out.optim <- optim(...) 389.958 402.1195 411.6735 432.590 691.975 100
```

• Booth's function: Booth's function is $f(x,y) = (x+2y-7)^2 + (2x+y-5)^2$. The function has a global minimum at (1,3). The code and microbenchmark test are as follows:

```
> objective <- function(x){
  (x[1] + 2*x[2] - 7)^2 + (2*x[1] + x[2] - 5)^2
> gradient <- function(x){
  c(10*x[1] + 8*x[2] -34, 8*x[1] + 10*x[2] - 38)
7
> microbenchmark(out.lbfgs <- lbfgs(objective, gradient, c(-1.2, 1),
        invisible=1), out.optim <- optim(c(-1.2, 1), objective,
        gradient, method="L-BFGS-B"))
                    expr
                                        1q
                                               median
                                                                    max neval
                             min
                                                             uq
out.lbfgs <- lbfgs(...)</pre>
                          82.089
                                   93.2145
                                              95.3865 104.4565 242.969
                                                                           100
                                  92.0895
out.optim <- optim(...)</pre>
                          85.198
                                             100.8360 116.9355 320.429
                                                                           100
```

3.3. A Logistic Regression with L-BFGS

In the following example we use **lbfgs** on the Leukemia example in Friedman *et al.* (2010), with data originally due to Golub *et al.* (1999). As in Friedman *et al.* (2010) we use logistic regression for the purposes of cancer classification based on gene expression monitoring in a microarray study. The dataset contains both a vector \vec{y} of binary values specifying the cancer class for 72 leukemia patients, and a 72×3571 matrix \vec{X} specifying the levels of expressions of 3571 genes for the 72 different patients. In the vector \vec{y} , 0 corresponds to patients with acute lymphoblastic leukemia (ALL), and 1 to patients with acute myeloid leukemia (AML). First, we load the data to the R workspace:

```
> data(Leukemia)
> X <- Leukemia$x
> y <- Leukemia$y</pre>
```

The likelihood function and its gradient for the standard logit setup with a ridge penalty are specified as follows:

```
> likelihood <- function(par, X, y, prec) {
  Xbeta <- X %*% par
  -(sum(y * Xbeta - log(1 + exp(Xbeta))) - .5 * sum(par^2*prec))</pre>
```

```
}
}
spradient <- function(par, X, y, prec) {
  p <- 1/(1 + exp(-X %*% par))
  -(crossprod(X,(y - p)) - par * prec)
}</pre>
```

We bind a constant term to the X matrix, and define a numerical vector with origin parameters for the algorithm initialization:

```
> X1 <- cbind(1, X)
> init <- rep(0, ncol(X1))</pre>
```

Then we use both **lbfgs** and **optim** to run the regression with a penalty coefficient of 2:

In this particular case, **optim** outperforms **lbfgs**, but it is to be noted that this problem has a high number of parameters and a low number of observations:

```
expr min 1q median uq max neval optim.out <- optim(...) 84.57455 99.03664 102.7622 119.6641 189.1403 100 lbfgs.out <- lbfgs(...) 121.46801 138.16293 150.5174 192.3550 234.5430 100
```

Although both optim and **lbfgs** are using the same algorithm here there are subtle differences in the implementation. This underscores the importance of benchmarking performance for the individual application of interest.

3.4. A Poisson Regression with OWL-QN

Next, we use the OWL-QN method in **lbfgs** to perform a L_1 regularized Poisson regression comparing performance to **glmnet**. We emphasize that this could not be done directly with optim due to the presence of the L_1 penalty. We set up a simulated datset the simple data generating process given in the manual of **glmnet** (Friedman *et al.* 2010). First, we define the variables of interest:

```
> N <- 500
> p <- 20
> nzc <- 5
> x <- matrix(rnorm(N * p), N, p)
> beta <- rnorm(nzc)</pre>
```

```
> f <- x[, seq(nzc)] %*% beta
> mu <- exp(f)
> y <- rpois(N, mu)
> X1 <- cbind(1,x)
> init <- rep(0, ncol(X1))</pre>
```

We can perform a Poisson regression on this simulated data using glmnet:

```
> fit <- glmnet(x, y, family="poisson", standardize=FALSE)</pre>
```

We choose a value of the regularization parameter from the model fitted with **glmnet** as the OWL-QN penalty coefficient to obtain analogous results using **lbfgs**:

```
> C \leftarrow fit$lambda[25]*nrow(x)
```

To perform the same regression with **lbfgs**, we define the model's likelihood function and its gradient in R:

The microbenchmark test yields:

```
Unit: milliseconds

expr min lq median uq max neval

out <- lbfgs(...) 2.340520 2.441575 2.544409 2.952162 10.47467 100

fit <- glmnet(...) 9.959642 10.343768 10.694795 12.425912 18.21408 100
```

The **lbfgs** solution is a little over 4 times as fast. We emphasize that this is not strictly a fair comparison. **glmnet** is calculating the entire regularization path and thus is solving 100 problems of the type. Indeed using OWL-QN to calculate all 100 problems might take hundreds of times longer than **glmnet**. However, as noted in Friedman *et al.* (2010), **glmnet**'s reliance

on warm starts means that there is no straightforward method for optimizing with a single value of the regularization parameter. In GLMs it is often desirable to have the regularization path but in iterative algorithms the additional computation may be unnecessary.

For straightforward GLMs it would be difficult to find a solution faster than **glmnet**'s. **lbfgs** provides the additional flexibility of allowing user-defined functions and can provide significantly faster optimization at a single value of the regularization parameter.

4. Faster Performance: Objective and Gradient in C++

4.1. The Basics

The package supports the implementation of the objective and gradient functions in C++, which may yield significant speed improvements over the respective R implementations. The optimization routine's API accepts both R function objects and external pointers to compiled C++ functions. In order to be compatible with the lbfgs API, the C++ functions <u>must</u> return an object of type Rcpp::NumericVector, and take in either one or two objects of type SEXP. The first argument of type SEXP must be the pointer to an R numerical vector containing the values of the function's parameters. The second (optional) argument must be the pointer to an R environment holding all extra parameters to be fed into the objective and gradient functions. To perform optimization on the Rosenbrock function, we begin by defining the C++ implementations of the objective and of the gradient as character strings, using the Rcpp library:

```
> objective.include <- 'Rcpp::NumericVector rosenbrock(SEXP xs) {
 Rcpp::NumericVector x(xs);
 double x1 = x[0];
 double x2 = x[1];
  double sum = 100 * (x2 - x1 * x1) * (x2 - x1 * x1) + (1 - x1) * (1 - x1);
 Rcpp::NumericVector out(1);
 out[0] = sum;
 return(out);
}
> gradient.include <- 'Rcpp::NumericVector rosengrad(SEXP xs) {
 Rcpp::NumericVector x(xs);
 double x1 = x[0];
  double x2 = x[1];
  double g1 = -400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1);
  double g2 = 200 * (x2 - x1 * x1);
 Rcpp::NumericVector out(2);
 out[0] = g1;
 out[1] = g2;
  return(out);
}
```

Then we assign two character strings with the bodies of two functions to generate external pointers to the objective and the gradient:

The external pointers to the objective and the gradient generated by the two pointer-assigners can then be supplied to the lbfgs routine:

```
> out.CPP <- lbfgs(objective(), gradient(), c(-1.2,1), invisible=1)</pre>
```

We define the same functions in R for comparison purposes:

```
> objective.R <- function(x) {
  100 * (x[2] - x[1]^2)^2 + (1 - x[1])^2
}
> gradient.R <- function(x) {
  c(-400 * x[1] * (x[2] - x[1]^2) - 2 * (1 - x[1]),
      200 * (x[2] - x[1]^2))
}</pre>
```

A microbenchmark comparison reveals significant speed improvements:

The results are the following, including also the optim routine as a benchmark (neval=100 for all runs):

```
Unit: microseconds
                  expr
                           min
                                     1q
                                          median
                                                                   max
                                                         ua
lbfgs(objective(), ...) 79.159 83.3620
                                         88.1875
                                                    93.8975
                                                               189.992
lbfgs(objective.R, ...) 275.400 285.6185 303.1600
                                                   316.7580
                                                              1393.450
optim(...)
                        366.45 382.2585 415.9205
                                                   485.3085
                                                              20537.39
```

4.2. Extra Parameters in C++ Implementations

Much like in the R case, the passing of extra parameters with C++ implementations of the objective and gradient is achieved through the use of R environments. The following is an example replicating the logistic regression example with C++ function implementations. As before, we set up the objective and gradient as character strings. We include the extra environment argument and obtain data by evaluating it using the Rcpp::Environment class. In order to perform matrix operations, we use the RcppArmadillo library (Eddelbuettel and Sanderson 2014):

```
> likelihood.include <- 'Rcpp::NumericVector lhood(SEXP xs, SEXP env){
  arma::vec par = Rcpp::as<arma::vec>(xs);
 Rcpp::Environment e = Rcpp::as<Rcpp::Environment>(env);
 arma::mat X = Rcpp::as<arma::mat>(e["X"]);
  arma::vec y = Rcpp::as<arma::vec>(e["y"]);
 double prec = Rcpp::as<double>(e["prec"]);
 arma::mat Xbeta = X * par;
  double sum1 = sum(y % Xbeta - log(1 + exp(Xbeta)));
  arma::mat sum2 = sum(pow(par, 2 * prec));
  arma::vec \ out = -(sum1 - 0.5 * sum2);
 Rcpp::NumericVector ret = Rcpp::as<Rcpp::NumericVector>(wrap(out));
 return ret;
}
> gradient.include <- 'Rcpp::NumericVector grad(SEXP xs, SEXP env){
  arma::vec par = Rcpp::as<arma::vec>(xs);
 Rcpp::Environment e = Rcpp::as<Rcpp::Environment>(env);
  arma::mat X = Rcpp::as<arma::mat>(e["X"]);
  arma::vec y = Rcpp::as<arma::vec>(e["y"]);
 double prec = Rcpp::as<double>(e["prec"]);
  arma::vec p = 1 / (1 + exp(-(X * par)));
  arma::vec\ grad = -((trans(X) * (y - p)) - par * prec);
 Rcpp::NumericVector ret = Rcpp::as<Rcpp::NumericVector>(wrap(grad));
 return ret;
}
```

Then we compile the functions and their pointer-assigners, taking care to map the functions' signatures correctly:

We then instantiate a new R environment with the required objects, and run the optimization routine:

```
> data(Leukemia)
> X <- Leukemia$x
> y <- Leukemia$y
> X1 <- cbind(1, X)
> init <- rep(0, ncol(X1))

> env <- new.env()
> env[["X"]] <- X1
> env[["y"]] <- y
> env[["prec"]] <- 1

> output <- lbfgs(likelihood.CPP(), gradient.CPP(), init, environment=env)</pre>
```

5. Conclusion

The **lbfgs** package provides a generic R interface for performing numerical optimization using the L-BFGS and OWL-QN algorithms. This vignette provides an overview of the package's features and usage. More detailed documentation regarding the package's functionality and API are available in the accompanying manual. We also encourage the interested reader to consult the relevant literature for greater detail regarding the L-BFGS and OWL-QN routines.

References

- Andrew G, Gao J (2007). Scalable Training of L1-Regularized Log-Linear Models, pp. 33–40. Association for Computing Machinery (ACM). ISBN 9781595937933. URL http://dx.doi.org/10.1145/1273496.1273501.
- Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer Science + Business Media. ISBN 978-1-4614-6867-7. URL http://dx.doi.org/10.1007/978-1-4614-6868-4.
- Eddelbuettel D, Sanderson C (2014). "RcppArmadillo: Accelerating R with High-Performance C++ Linear Algebra." Computational Statistics & Data Analysis, 71, 1054–1063. URL http://dx.doi.org/10.1016/j.csda.2013.02.005.
- Friedman J, Hastie T, Tibshirani R (2010). "Regularization Paths for Generalized Linear Models via Coordinate Descent." *Journal of Statistical Software*, **33**(1), 1–22. URL http://www.jstatsoft.org/v33/i01/.
- Goeman J, Meijer R, Chaturvedi N (2012). *penalized:* L1 (lasso and fused lasso) and L2 (ridge) Penalized Estimation in GLMs and in the Cox Model. URL http://cran.r-project.org/web/packages/penalized/index.html.
- Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, et al. (1999). "Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring." Science, 286(5439), 531–537. URL http://dx.doi.org/10.1126/science.286.5439.531.
- Hastie T, Tibshirani R, Friedman J, Hastie T, Friedman J, Tibshirani R (2009). The elements of statistical learning, volume 2. Springer.
- Liu DC, Nocedal J (1989). "On the Limited Memory BFGS Method for Large Scale Optimization." *Mathematical Programming*, **45**(1-3), 503–528. URL http://dx.doi.org/10.1007/BF01589116.
- Mersmann O (2013). *microbenchmark*: Sub Microsecond Accurate Timing Functions. URL http://cran.r-project.org/web/packages/microbenchmark/index.html.
- Nash JC, Varadhan R (2011). "Unifying Optimization Algorithms to Aid Software System Users: **optimx** for R." *Journal of Statistical Software*, **43**(9), 1–14. URL http://www.jstatsoft.org/v43/i09/.
- Nocedal J (1980). "Updating Quasi-Newton Matrices with Limited Storage." Mathematics of Computation, 35(151), 773–773. URL http://dx.doi.org/10.1090/S0025-5718-1980-0572855-7.
- Nocedal J, Wright SJ (2006). Numerical optimization. Springer. URL http://site.ebrary.com/id/10228772.
- Okazaki N (2010). libLBFGS: A Library of Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). URL http://www.chokkan.org/software/liblbfgs/.

R Development Core Team (2008). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Rosenbrock HH (1960). "An automatic method for finding the greatest or least value of a function." The Computer Journal, 3(3), 175–184.

Sklyar O, Murdoch D, Smith M, Eddelbuettel D, Francois R (2013). *inline:* Inline C, C++, Fortran Function Calls from R. URL http://cran.r-project.org/web/packages/inline/index.html.

Affiliation:

Antonio Coppola Department of Government Harvard University 1737 Cambridge St, Cambridge, MA, USA E-mail: acoppola@college.harvard.edu

Brandon M. Stewart
Department of Government
Harvard University
1737 Cambridge St, Cambridge, MA, USA
E-mail: bstewart@fas.harvard.edu

URL: http://scholar.harvard.edu/bstewart