CSE 6367: Computer Vision Edge Templates Template based Tracking and Recognition

Slide Courtesy: Dr. Vassilis Athitsos, University of Texas at Arlington

Contours

 A contour is a curve/line (typically not straight) that delineates the boundary of a region, or between regions.

Shapes Without Texture

· Letters/numbers.

· Contours.

Edge templates.

Detecting Shapes Without Texture

- Normalized correlation does not work well.
- Slight misalignments have a great impact on the correlation score.

- For each edge pixel in star1:
 - How far is it from the nearest edge pixel in star3?
- The average of all those answers is the directed chamfer distance from star1 to star3.

- For each edge pixel in star1:
 - How far is it from the nearest edge pixel in star3?
- The average of all those answers is the directed chamfer distance from star1 to star3.

- For each edge pixel in star1:
 - How far is it from the nearest edge pixel in star3?
- The average of all those answers is the directed chamfer distance from star1 to star3.

- For each edge pixel in star1:
 - How far is it from the nearest edge pixel in star3?
- The average of all those answers is the directed chamfer distance from star1 to star3.

- For each edge pixel in star3:
 - How far is it from the nearest edge pixel in star1?
- The average of all those answers is the directed chamfer distance from star3 to star1.

Directed Chamfer Distance

- Input: two sets of points.
 - red, green.
- c(red, green):
 - Average distance from each red point to nearest green point.

Directed Chamfer Distance

- Input: two sets of points.
 - red, green.
- c(red, green):
 - Average distance from each red point to nearest green point.
- c(green, red):
 - Average distance from each green point to nearest red point.

- Input: two sets of points.
 - red, green.
- c(red, green):
 - Average distance from each red point to nearest green point.
- c(green, red):
 - Average distance from each red point to nearest green point.

Chamfer distance:

C(red, green) = c(red, green) + c(green, red)

- On two stars:
 - 31 pixels are nonzero in both images.
- On star and crescent:
 - 33 pixels are nonzero in both images.
- Correlation scores can be misleading.

 Chamfer distance is much smaller between the two stars than between the star and the crescent.

Detecting Hands

Input image

Template.

- Problem: hands are highly deformable.
- Normalized correlation does not work as well.
- Alternative: use edges.

Detecting Hands

 Compute chamfer distance, at all windows, all scales, with template.

- Which version? Directed or undirected?
- We want small distance with correct window, large distance with incorrect windows.

 Chamfer distance from window to template: problems?

 Chamfer distance from window to template: problems?

 Clutter (edges not belonging to the hand) cause the distance to be high.

 Chamfer distance from template to window: problems?

- Chamfer distance from template to window: problems?
- What happens when comparing to a window with lots of edges?

- Chamfer distance from template to window: problems?
- What happens when comparing to a window with lots of edges? Score is low.

Choice of Direction

- For detection, we compute chamfer distance from template to window.
 - Being robust to clutter is a big plus, ensures the correct results will be included.
 - Incorrect detections can be discarded with additional checks.

Computing the Chamfer Distance

- Compute chamfer distance, at all windows, all scales, with template.
- Can be very time consuming.

Edge image e1

Distance transform d1

• For every pixel, compute distance to *nearest* edge pixel.

```
d1 = bwdist(e1);
```


Distance transform d1

t1

- If template t1 is of size (r, c):
 - Chamfer distance with a window (i:(i+r-1), (j:(j+c-1)) of e1 can be written as:

Distance transform d1

t1

- If template t1 is of size (r, c):
 - Chamfer distance with a window
 (i:(i+r-1), (j:(j+c-1)) of e1 can be written as:

```
window = d1(i:(i+r-1), j:(j+c-1));
sum(sum(t1 .* window))
```

Computing image of chamfer scores for one scale:

Edge image e1

Distance transform d1

Computing image of chamfer scores for one scale s

```
resized = imresize(image, s, 'bilinear');
resized_edges = canny(resized, 7);
resized_dt = bwdist(resized_edges);
chamfer_scores = imfilter(resized_dt, t1, 'symmetric');
figure(3); imshow(chamfer_scores, []);
```

How long does that take? Can it be more efficient?

Improving Efficiency

Distance transform d1

t1

 Which parts of the template contribute to the score of each window?

Improving Efficiency

Distance transform d1

t1

- Which parts of the template contribute to the score of each window?
- Just the nonzero parts.
- How can we use that?

Improving Efficiency

Distance transform d1

- Which parts of the template contribute to the score of each window? Just the nonzero parts.
- How can we use that?
 - Compute a list of non-zero pixels in the template.
 - Consider only those pixels when computing the sum for each window.

Results for Single Scale Search

What is causing the false result?

Results for Single Scale Search

- What is causing the false result?
 - Window with lots of edges.
- How can we refine these results?

Results for Single Scale Search

- What is causing the false result?
 - Window with lots of edges.
- How can we refine these results?
 - Skin color, or background subtraction