CS 383C

Fall 2008

Solutions to Homework 3

Lecturer: Inderjit Dhillon Date Due: Sept 24, 2008

Keywords: Singular Value Decomposition, Projectors, QR Factorization, Gram Schmidt Orthogonalization

1. Problem 5.3

(a)
$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$
, $\Sigma = \begin{bmatrix} 10\sqrt{2} & 0 \\ 0 & 5\sqrt{2} \end{bmatrix}$, $V = \begin{bmatrix} -0.6 & 0.8 \\ 0.8 & 0.6 \end{bmatrix}$.

(b)

(c) $||A||_1 = \max_i ||a_i||_1 = 16$, $||A||_2 = \sigma_1 = 10\sqrt{2}$, $||A||_\infty = \max_i ||a_i^*||_1 = 15$.

(d)
$$A^{-1} = V\Sigma^{-1}U^* = \begin{bmatrix} 0.05 & -0.11\\ 0.10 & -0.20 \end{bmatrix}$$

(e)
$$\lambda_1 = 1.5 + \frac{\sqrt{391}}{2}i, \lambda = 1.5 - \frac{\sqrt{391}}{2}i$$

(f) det(A) = 100

(g) Area of an ellipse with semi-axis lengths a and b is given by πab . The matrix A maps the unit L_2 ball in \mathbb{R}^2 to an ellipse with semi-axis lengths σ_1 , and σ_2 . So, Area=100 π .

2. Problem 5.4

Given $A = U\Sigma V^T$. Let $B = \begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix}$, and let $\mathbf{z} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$ be an eigenvector of matrix B. Thus, $B\mathbf{z} = \lambda \mathbf{z} \implies A^* \mathbf{y} = \lambda \mathbf{x} & A\mathbf{x} = \lambda \mathbf{y}$.

Now $Av_i = \sigma_i u_i$, where σ_i is the *i*-th singular value and u_i is the *i*-th column vector of matrix U. Similarly, $A^*u_i = \sigma_i v_i$. Therefore, $z = \begin{bmatrix} v_i \\ u_i \end{bmatrix}$ is seen to be an eigenvector of B with eigenvalue σ_i . Normalize z

to have $\|z\|_2 = 1$ by dividing by $\sqrt{2}$ (note that u_i and v_i are orthonormal). Similarly, $\frac{1}{\sqrt{2}} \begin{bmatrix} v_i \\ -u_i \end{bmatrix}$ is an eigenvector of matrix B with eigenvalue $-\sigma_i$. Thus, the eigenvalue decomposition of matrix B is given by:

$$B = \frac{1}{2} \left[\begin{array}{cc} V & V \\ U & -U \end{array} \right] \left[\begin{array}{cc} \Sigma & 0 \\ 0 & -\Sigma \end{array} \right] \left[\begin{array}{cc} V^* & U^* \\ V^* & -U^* \end{array} \right]$$

You can check that the matrix $Q = \frac{1}{\sqrt{2}} \begin{bmatrix} V & V \\ U & -U \end{bmatrix}$ is orthonormal.

3. Problem 6.2

If we denote the coordinates of vector x by x_j (where $j=1,\ldots,m$), then the j^{th} coordinate of Ex is $\frac{1}{2}(x_j+x_{m+1-j})$. Therefore the j^th coordinate of E^2x is $\frac{1}{2}\left(\frac{1}{2}(x_j+x_{m+1-j})+\frac{1}{2}(x_{m+1-j}+x_j)\right)=Ex$, meaning that E is a projector. The elements of (the matrix of) E are the coordinates of the Ee_i vectors, that is we have $\frac{1}{2}$ on both the diagonal and the anti-diagonal, and 0 elsewhere. The only exception is the element at intersection of the diagonal and anti-diagonal odd E values, where a 1 will show up. Since $E=E^*$, the projector is orthogonal (by Theorem 6.1 of the Textbook).

4. Problem 7.5

(a) \Longrightarrow Follows directly from part (b)

 \leftarrow Follows directly from Theorem 7.2

(b) Claim: $\operatorname{rank}(A) \geq k$, where $0 \leq k \leq n$ (Note that although the Problem asks for $0 \leq k < n$ only, we prove the claim for a more general case which can be used for solving part (a))

Proof: We prove by induction on the number of columns in matrix A. Let $A = [a_1, a_2, \ldots, a_n]$, $\hat{Q} = [q_1, q_2, \ldots, q_n]$, and r_{ij} is the (i, j) - th element of \hat{R} .

Base Case (n = 1): In this case $A = a_1 = q_1 r_{11}$. Thus clearly rank(A) = 1 if $r_{11} \neq 0$ else A = 0, thus rank(A) = 0.

Induction step: Lets assume the claim for n = p - 1. Now $A = [B \ a_p]$, where B is a $m \times (p - 1)$ matrix.

Let $B = \hat{Q}_{p-1}\hat{R}_{p-1}$. Then $A = \begin{bmatrix} B & a_p \end{bmatrix} = \begin{bmatrix} \hat{Q}_{p-1} & q_p \end{bmatrix} \begin{bmatrix} \hat{R}_{p-1} & r_p \\ \mathbf{0} & r_{pp} \end{bmatrix}$, where q_p is an orthonormal vector to Q_{p-1} , r_p is a (p-1) dimensional vector, is a valid QR factorization of A. Thus:

$$A = [B \ a_p] = [\hat{Q}_{p-1}\hat{R}_{p-1} \quad \hat{Q}_{p-1}\mathbf{r}_p + r_{pp}q_p] = \hat{Q}\hat{R}$$
(1)

Now let k diagonal entries of \hat{R} are nonzero. There are two possible cases:

- i. Case 1: $r_{pp} \neq 0$. In this case only k-1 of the diagonal entries of \hat{R}_{p-1} are nonzero. Using induction hypothesis, $\operatorname{rank}(B) \geq k-1$. Also $a_p = \hat{Q}_{p-1} r_p + r_{pp} q_p$ with $r_{pp} \neq 0$ and q_p does not lie in the span of columns of \hat{Q}_{p-1} . Therefore, a_p does not lie in the span of columns of \hat{Q}_{p-1} , which implies a_p does not lie in the span of columns of B. Hence, $\operatorname{rank}(A) = \operatorname{rank}(B) + 1 \geq k$.
- ii. Case 2: $r_{pp} = 0$. In this case k of the diagonal entries of \hat{R}_{p-1} are nonzero. Thus $\operatorname{rank}(B) \geq k$. So trivially, $\operatorname{rank}(A) \geq k$.

5. Gram-Schmidt Process

First we follow the steps of Algorithm 7.1. In the first iteration of the main loop we get that $r_{11} = fl(1+\epsilon^2) = 1$, and so $q_1 = v_1$ (the final value). In the second iteration we calculate $r_{12} = v_1^*v_2 = 1$ (exactly), and we get $(0, -\epsilon, \epsilon, 0)^*$ when updating v_2 . The normalization step produces a very good approximation to $(0, -1/\sqrt{2}, 1/\sqrt{2}, 0)$, note that the fact that ϵ is small does not pose a problem. In the third iteration similarly to the above we calculate $r_{13} = 1$ and $r_{23} = 0$ exactly, and end up with a very good approximation of: $(0, -1/\sqrt{2}, 0, 1/\sqrt{2})$ for q_3 . As we see q_2 and q_3 are clearly not close to be orthogonal, their inner product is near 0.5.

Next, we follow the Modified Gram-Schmidt algorithm in which the calculation of r_{ij} is replaced with: $r_{ij} = q_i^* v_j$. In the first two iterations of the main loop the calculations are the same as above. In the third iteration however we still get $r_{13} = 1$, but $r_{23} = \epsilon/\sqrt{2}$ or actually a very good approximation of it in floating point arithmetic. (Note that the elements of q_2 were already approximations to $1/\sqrt{2}$ and $-1/\sqrt{2}$. The fact that r_{23} is small, poses no problem of forming q_3 as $(0, -\epsilon/\sqrt{6}, -\epsilon/\sqrt{6}, 0)$ and normalizing it to: $(0, -1/\sqrt{6}, -1/\sqrt{6}, 0)$. (Again these will be very good approximations but not the nearest floating point numbers necessarily, but that error is immaterial for this analysis.) Finally, we can verify that $q_2^*q_3$ is very close to 0 this time, while the other dot products are about $\epsilon/\sqrt{2}$ and $\epsilon/\sqrt{6}$.

Note that q_1 and q_2 are not numerically orthogonal to each other as much as we would like them to be. For example when $\epsilon = 10^{-10}$ the dot product will be near $-7 \cdot 10^{-11}$.