Started on Monday, 10 April 2017, 4:58 AM

State Finished

Completed on Monday, 10 April 2017, 5:00 AM

Time taken 1 min 57 secs

Grade 49.00 out of 100.00

Question 1

Correct

Mark 15.00 out of 15.00

$$H(j\omega) = \frac{110(j\omega)}{(j\omega+10)(j\omega+100)}$$

E.1a_9ed

a) What is the zero of this function?

$$z_1 = \boxed{0}$$

b) What are the two poles of this function?

$$p_1 = \boxed{10}$$
 (lower frequency)

$$p_2 = 100$$
 (higher frequency)

c) What is the gain K after putting this function in Standard Form?

a)
$$z_1 = 0$$

b)
$$p_1 = 10$$
 $p_2 = 100$

c)
$$K = 0.110$$

Correct

Marks for this submission: 15.00/15.00.

Partially correct

Mark 3.40 out of 17.00

P14.33b_6ed

Given

$$H(s) = \frac{s}{s+50}$$

Create the straight-line amplitude and phase Bode plot.

What is the amplitude corner frequency and the value of A_{dB} at 1 rad/sec?

$$\omega_{c} = \begin{bmatrix} 50 \\ \checkmark \end{bmatrix}$$
 rad/sec
$$A_{dB} \text{ at 1 rad/sec} = \begin{bmatrix} 3 \\ \end{aligned}$$
 $\star dB$

What are the three phase inflection frequencies?

$$\omega_{\rm c}$$
 = 50 rad/sec A_{dB} at 1 rad/sec = -33.979 dB

90° for ω ≤ 5 rad/sec

 45° for ω = 50 rad/sec

 0° for $\omega \ge 500$ rad/sec

Partially correct

Marks for this submission: 3.40/17.00.

Correct

Mark 17.00 out of 17.00

P14.33c_6ed

Given

$$H(s) = \frac{s}{s+3,000}$$

Create the straight-line amplitude and phase Bode plot.

What is the amplitude corner frequency and the value of A_{dB} at 1 rad/sec?

$$\omega_c = \boxed{3000}$$
 rad/sec
$$A_{dB} \text{ at 1 rad/sec} = \boxed{-69.55}$$
 dB

What are the three phase inflection frequencies?

90° for
$$\omega \le \boxed{300}$$
 rad/sec
45° for $\omega = \boxed{3000}$ rad/sec
0° for $\omega \ge \boxed{30000}$ rad/sec

$$\omega_{\rm c}$$
 = 3,000 rad/sec A_{dB} at 1 rad/sec = -69.5454 dB

90° for ω ≤ 300 rad/sec

 45° for $\omega = 3,000$ rad/sec

 0° for $\omega \geq$ 30,000 rad/sec

Correct

Marks for this submission: 17.00/17.00.

Not answered

Mark 0.00 out of 17.00

P14.33d_6ed

Given

$$H(s) = \frac{3,000}{s+3,000}$$

Create the straight-line amplitude and phase Bode plot.

What is the amplitude corner frequency and the value of A_{dB} at 1 rad/sec?

$$\omega_{c} =$$
 \times rad/sec

 A_{dB} at 1 rad/sec = \times dB

What are the three phase inflection frequencies?

$$0^{\circ}$$
 for $\omega \leq$ x rad/sec -45° for $\omega =$ x rad/sec -90° for $\omega \geq$ x rad/sec

45° for
$$\omega$$
 = 3,000 rad/sec

$$0^{\circ}$$
 for $\omega \geq 30{,}000$ rad/sec

Partially correct

Mark 13.60 out of 17.00

P14.33e_6ed

Given

$$H(s) = \frac{100}{s+125}$$

Create the straight-line amplitude and phase Bode plot.

What is the amplitude corner frequency and the value of A_{dB} at 1 rad/sec?

$$\omega_{\rm c} = \boxed{125}$$
 rad/sec

 $A_{\rm dB}$ at 1 rad/sec = $\boxed{-3}$ X dB

What are the three phase inflection frequencies?

$$\omega_{\rm c}$$
 = 125 rad/sec $A_{\rm dB}$ at 1 rad/sec = -1.9382 dB

 0° for $\omega \leq 12.5$ rad/sec

-45° for ω = 125 rad/sec

-90° for $\omega \ge$ 1,250 rad/sec

Partially correct

Marks for this submission: 13.60/17.00.

Incorrect

Mark 0.00 out of 17.00

P14.33a_6ed

Given

$$H(s) = \frac{50}{s+50}$$

Create the straight-line amplitude and phase Bode plot.

What is the amplitude corner frequency?

$$\omega_{\rm c} = 35.35$$
 × rad/sec`

What are the three phase inflection frequencies?

-45° for
$$\omega = 0$$
 x rad/sec

$$-90^{\circ}$$
 for $\omega \ge 90$ × rad/sec

$$\omega_{\rm c}$$
 = 50 rad/sec

 0° for $\omega \leq 5$ rad/sec

-45° for ω = 50 rad/sec

-90° for $\omega \geq$ 500 rad/sec

Incorrect

Marks for this submission: 0.00/17.00.