Multimodal Detection of Information Disorder from Social Media

Kirchknopf Armin

University of Applied Sciences St. Pölten, Austria armin.kirchknopf@fhstp.ac.at

Slijepčević Djordje

University of Applied Sciences St. Pölten, Austria djordje.slijepcevic@fhstp.ac.at Zeppelzauer Matthias

Institute of Creative Media Technologies Institute of Creative Media Technologies Institute of Creative Media Technologies University of Applied Sciences St. Pölten, Austria matthias.zeppelzauer@fhstp.ac.at

CBMI'21 (Content-Based Multimedia Indexing) 211012 Chia-Chun Ho

Outline

Introduction

Related Work

Proposed Approach

Experiments

Conclusion

Comments

Fake news detection

- Like the U.S. presidential election in 2016 the public has become aware of impact that fake news have on public opinion.
- Due to the ever-increasing amount of data, automated analysis approaches are necessary to assist the detection and verification of fake news.
- In context of this paper, focus on fake news in terms of information disorder as defined by Wardle.

Information disorder

- Three types of information disorder can be distinguished:
 - Misinformation
 - Refers to misleading content produced without a specific intent.
 - Disinformation
 - Refers to purposely generated and potentially harmful content.
 - Malinformation
 - Harmful content including hate speech and harassment.

Contribution

- An end-to-end learnable modular approach which combine multiple heterogeneous modalities for the detection of information disorder.
- Proposed a multi-stream network architecture that learns from four heterogeneous input modality, as well as metadata information.

Title:
The chickens
hovering above the
ground as well

Title:
My walgreens offbrand
mucinex was engraved with
the letters mucinex but in a
different order

Contribution

- Propose to fuse these four structurally different modalities at multiple levels to optimally account for the information contained in each modality.
- Investigate which modality is most important for the detection of information disorder and whether a combined multimodal analysis is beneficial in contrast to mono-modal processing.
- This approach leads to 2 conclusions:
 - All modalities can provide useful clues for the detection of fake news.
 - Proposed multilevel hierarchical information fusion allows to successfully capture information from all modalities.

Related Work

of fake news detection

Author	Textual Content	Visual Content	Metadata
RNN Ma et al. (2018) [3]	X		
4tance Mohtarami et al. (2018) [4]	X		
1mage Lago et al. (2019) [5]		X	
C41 Ruchansky et al. (2017) [10] C15M	X		X
40014 Pm~ Zubiaga et al. (2017) [9]	X		X
Dong et al. (2018) [8] with	X		X
EANN Wang et al. (2018) [7] [7]	X	X	
4portate Singhal et al. (2019) [6]	X	X	
r/fakeddre Nakamura et al. (2020) [2]	X	X	
r~√ Jin et al. (2017) [12]	X	X	X
5AM ► Cui et al. (2019) [11]	X	X	X
רשליי Papadopoulou et al. (2019) [13]	X	X	X
	'	'	

Architectural Overview

- Information disorder is a semantically complex concept that manifests itself in different modalities.
- Assume that the fusion of information from multiple modalities is important to solve this task.

Architectural Overview

- Proposed an approach for information disorder detection based on four input modalities:
 - Primary textual content
 - Secondary information
 - Visual content of the posting
 - Available metadata info.

Architectural Overview

- A particular challenge is to fuse the information from these different types of input.
- Differ not only structurally but also in dimensionality.
 - Text vs. image
 - High-dimensional visual embedding vs. low-dimensional abstract data in case of metadata

Proposed Approach Textual Content

- The first stream takes the actual content of a social media posting as input.
- e.g. the title and, if available, its body.

Proposed Approach Comments

- Second stream processes textual information related to the posting.
- e.g. the comments available for the post.
- To keep the representation simple and comparable to the first stream, concatenate all available comments to obtain one consolidated input.

Process of textual modalities

- Both textual modalities capture different perspectives on the actual content and are modeled in separate branches.
- Use a similar processing chain for both textual modalities.
- A BERT model is used to obtain separate text embeddings for the two inputs.

Proposed Approach Visual Content

- First the images are standardized to zero-mean by calculating the mean over the entire training set (per channel) and subtracting it.
- After normalizing them to [0,1], the images are passed to a pretrained CNN to obtain a feature representation.
- e.g., ResNet, VGG

Meta Information

- Contain social media metrics or categorical data.
- e.g. the number of comments, the number of likes/dislikes, the number of upvotes or other ranking information.

Meta Information

- First need to be normalized to a well-defined value range and then concatenated into a vector.
- Since no pre-defined encoder for such data exists, propose to train a lightweight multilayer perceptron (MLP) to represent the input data.
- Stack three dense layers and ReLU activation functions.

Fuse the information

- Individual processing streams produce representations of different dimension.
- Thus propose a hierarchical scheme to fuse the information of the different modalities.

Fuse the information

 This prevents that higherdimensional representations dominate the other lowerdimensional representations like the one obtained from the metadata.

Proposed Approach First level fusion

- Combines the textual and visual representations.
- These embedding vectors are designed to have all equal length (and thereby equal relevance in the fusion).

Proposed Approach First level fusion

- This allows the use of different fusion strategies like concatenation, element-wise maximum of input vectors and element-wise average over all input vectors.
- Since it is not clear, which of these fusion operations is most beneficial, evaluate them systematically in experiments.

First level fusion

- The fused information is then further compressed by a stack of dense layers.
- So that it matches the dimensionality of the representation obtained by the fourth stream.

Proposed Approach Second level fusion

- Two remaining representations are concatenated.
- Thereby, provide more influence to the metadata modality on the final detection (equal balance of content and metadata).

Proposed Approach Final decision

- Final decision is made by a densely connected layer with two output neurons indicating fake vs. non-fake information.
- And followed by a softmax layer to obtain normalized probabilities.

Experiments

Datasets

- Fakeddit dataset (LREC '20)
- The dataset contains Reddit postings with comments, with many of the postings contain text and images.
- Several metadata attributes like
 - up & downvotes of postings
 - the number of comments
 - up & downvote score for each comment
 - a score for the post itself

Title:
The chickens
hovering above the
ground as well

Title:
My walgreens offbrand
mucinex was engraved with
the letters mucinex but in a
different order

Experiments

Datasets

- Preprocess the data (similarly to r/ Fakeddit) by removing samples where not all modalities are available (e.g. text-only postings).
- Results in
 - 560622 samples for training
 - 58972 samples for validation
 - 58954 holdout samples for testing.

Title:
The chickens
hovering above the
ground as well

Title:
My walgreens offbrand
mucinex was engraved with
the letters mucinex but in a
different order

ExperimentsSetup

- Textual data
 - Fed into the pre-trained BERT model
 - Sequence length of BERT is pre-allocated by shortening the input sequences to an average length (calculated over the training set) to reduce training time.
- Image data
 - Scaled and normalized fed into Inception-v3.
 - To assess the influence of different image resolutions, resize the images to 256x256px and 768x768px.

ExperimentsSetup

- Metadata
 - Up & downvotes per post, its score and the count of comments.
 - To normalize the large value range of these attributes, z-standardize all metadata feature such as the count of comments and the score, except for the up & downvotes (already normalized between [0,1]).
 - The attributes are then provided to the three-layered MLP.

ExperimentsSetup

- Training
 - Each modality can also been trained individually.
 - Achieved the best results by pre-training each modality (steam) separately, and then training only the fusion and classification layers on top.

Experiments

Baseline

- Use benchmark of r/Fakeddit dataset provide (LREC'20).
- Compare different fusion variants to estimate the best strategy for information fusion.
- Evaluate all possible combinations of modalities and further evaluate each modality in isolation to investigate the influence and expressiveness of each modality.

Figure 4: Multimodal model for integrating text and image data for 2, 3, and 6-way classification. *n*, the hidden layer size, is tuned for each model instance through hyperparameter optimization.

	1	Our approach	X	X	X	X	Sum	95.2%	95.5%	
2	2	Our approach	x	X	x	X	Concat.	95.0%	95.2%	
	3	Our approach	x	x	x	X	Maximum	94.9%	95.1%	
	4	Our approach	х	X	х		Concat.	94.9%	95.0%	
:	5	Our approach		x	x	x	Concat.	91.2%	91.3%	
(6	Our approach	x		x	x	Concat.	92.8%	92.8%	
,	7	Our approach	x	x		X	Concat.	94.4%	94.5%	
	8	Our approach	х		х		Concat.	90.8%	91.0%	
9	9	Our approach	x	x			Concat.	85.9%	85.7%	
1	0	Our approach	x			x	Concat.	88.1%	88.2%	
1	.1	Our approach		x		x	Concat.	78.2%	78.2%	
1	2	Our approach			x	x	Concat.	81.1%	81.6%	
1	.3	Our approach		X	x		Concat.	88.0%	88.1%	
1	.4	Our approach	X				-	88.1%	88.1%	
1	.5	Our approach		x			-	86.7%	86.5%	
1	6	Our approach			x		-	81.0%	81.5%	
1	.7	Our approach				X	-	77.8%	77.3%	
1	.8	[2]	X				-	86.5%	86.4%	
1	9	[2]			x		_	80.4%	80.7%	

Visual

Content

data

Fusion

Strategy

Test

Acc.

Acc.

Textual

Content

Approach

Textual

Comments

• For individual modalities, observe that the most informative modality is the primary textual content, followed by secondary information (i.e. comments), the visual modality, and metadata.

		l	I	l	I		l	l
1	Our approach	х	X	х	Х	Sum	95.2%	95.5%
2	Our approach	x	x	x	X	Concat.	95.0%	95.2%
3	Our approach	x	x	x	X	Maximum	94.9%	95.1%
4	Our approach	х	X	х		Concat.	94.9%	95.0%
5	Our approach		x	x	X	Concat.	91.2%	91.3%
6	Our approach	x		x	X	Concat.	92.8%	92.8%
7	Our approach	x	x		X	Concat.	94.4%	94.5%
8	Our approach	х		х		Concat.	90.8%	91.0%
9	Our approach	x	x			Concat.	85.9%	85.7%
10	Our approach	x			X	Concat.	88.1%	88.2%
11	Our approach		x		X	Concat.	78.2%	78.2%
12	Our approach			x	X	Concat.	81.1%	81.6%
13	Our approach		x	x		Concat.	88.0%	88.1%
14	Our approach	Х				-	88.1%	88.1%
15	Our approach		x			-	86.7%	86.5%
16	Our approach			х		-	81.0%	81.5%
17	Our approach				x	-	77.8%	77.3%
18	[2]	X				-	86.5%	86.4%
19	[2]			x		_	80.4%	80.7%

Visual

Content

Meta-

data

Textual

Content

Approach

[2]

Textual

Comments

Fusion

Strategy

Maximum

Test

Acc.

89.1%

89.3%

• The text-only and image-only (rows 14, 16) configuration outperform the respective configurations of (rows 18-19), therefore, represent new performance baselines.

20

	**	Content	Comments	Content	data	Strategy	Acc.	Acc.
1	Our approach	X	X	х	Х	Sum	95.2%	95.5%
2	Our approach	x	x	x	x	Concat.	95.0%	95.2%
3	Our approach	X	x	X	x	Maximum	94.9%	95.1%
4	Our approach	X	X	X		Concat.	94.9%	95.0%
5	Our approach		X	X	x	Concat.	91.2%	91.3%
6	Our approach	x		x	X	Concat.	92.8%	92.8%
7	Our approach	x	X		X	Concat.	94.4%	94.5%
8	Our approach	X		х		Concat.	90.8%	91.0%
9	Our approach	х	X			Concat.	85.9%	85.7%
10	Our approach	x			X	Concat.	88.1%	88.2%
11	Our approach		x		X	Concat.	78.2%	78.2%
12	Our approach			X	X	Concat.	81.1%	81.6%
13	Our approach		X	x		Concat.	88.0%	88.1%
14	Our approach	X				-	88.1%	88.1%
15	Our approach		x			-	86.7%	86.5%
16	Our approach			x		-	81.0%	81.5%
17	Our approach				x	-	77.8%	77.3%
18	[2]	X				-	86.5%	86.4%
19	[2]			X		-	80.4%	80.7%
		I	I	i	i	l		

Maximum

89.1%

 By combining the two content modalities (text and images), baseline (row 20) yield a test accuracy of 89.1%.

20

- Proposed approach using the same modalities (row 8) yields 91%.
 - Note that it's the best result obtained by using just two modalities.

	11	Content	Comments	Content	data	Strategy	Acc.	Acc.
1	Our approach	X	X	х	X	Sum	95.2%	95.5%
2	Our approach	x	X	x	X	Concat.	95.0%	95.2%
3	Our approach	X	X	X	X	Maximum	94.9%	95.1%
4	Our approach	х	х	X		Concat.	94.9%	95.0%
5	Our approach		X	X	X	Concat.	91.2%	91.3%
6	Our approach	X		X	X	Concat.	92.8%	92.8%
7	Our approach	X	X		X	Concat.	94.4%	94.5%
8	Our approach	х		х		Concat.	90.8%	91.0%
9	Our approach	x	X			Concat.	85.9%	85.7%
10	Our approach	x			X	Concat.	88.1%	88.2%
11	Our approach		X		X	Concat.	78.2%	78.2%
12	Our approach			X	X	Concat.	81.1%	81.6%
13	Our approach		X	x		Concat.	88.0%	88.1%
14	Our approach	х				-	88.1%	88.1%
15	Our approach		X			-	86.7%	86.5%
16	Our approach			X		-	81.0%	81.5%
17	Our approach				X	-	77.8%	77.3%
18	[2]	Х				-	86.5%	86.4%
19	[2]			X		_	80.4%	80.7%
20	[2]	X		X		Maximum	89.3%	89.1%

- Adding metadata (row 6) yields 92.8%
- Adding comments (row 4) pushes performance to approx. 95%.
- The fusion of all 4 modalities (row 1–3) surpasses even the 95%.
- Observe that all three fusion strategies yield similarly good results.

π	Approach	Content	Comments	Content	data	Strategy	Acc.	Acc.
1	Our approach	х	X	х	Х	Sum	95.2%	95.5%
2	Our approach	x	x	x	X	Concat.	95.0%	95.2%
3	Our approach	x	x	x	X	Maximum	94.9%	95.1%
4	Our approach	х	X	х		Concat.	94.9%	95.0%
5	Our approach		x	x	X	Concat.	91.2%	91.3%
6	Our approach	x		x	X	Concat.	92.8%	92.8%
7	Our approach	x	x		X	Concat.	94.4%	94.5%
8	Our approach	х		х		Concat.	90.8%	91.0%
9	Our approach	x	x	1		Concat.	85.9%	85.7%
10	Our approach	x			X	Concat.	88.1%	88.2%
11	Our approach		x		X	Concat.	78.2%	78.2%
12	Our approach			x	X	Concat.	81.1%	81.6%
13	Our approach		X	x		Concat.	88.0%	88.1%
14	Our approach	х				-	88.1%	88.1%
15	Our approach		x	1		-	86.7%	86.5%
16	Our approach			x		-	81.0%	81.5%
17	Our approach			1	X	-	77.8%	77.3%
18	[2]	х				-	86.5%	86.4%
19	[2]			x		-	80.4%	80.7%
20	[2]	_ v	1	v	1	Maximum	80 30%	QQ 10%

Textual Textual

Visual Meta-

- The improvement over the baseline has two reasons:
 - Use two additional modalities that are useful for the task
 - Fine-tune all input streams (include BERT models), which alone yields around 2% performance gain.

Conclusion

- Proposed a multimodal architecture for the detection of information disorder, which
 incorporates not only the content of a social media postings but also metadata and
 secondary content related to the post.
- The additional modalities improve performance, indicate that they contribute useful information.
- Evaluation result shows that multimodal processing is superior to mono-modal processing.
- The authors plan to integrate a social network graph connecting postings, comments, and users as additional modality.

Comments

of Multimodal Detection of Information Disorder

- Using various types of modalities to detection fake news.
- Effective fusion strategy with high-low dimensional representation.
- Related work are present clearly and in recent years (17–20).
- Baseline method only compared with approach of dataset provide.
- May can improve by integrating with social network graph.