Sistemi konzistentne deljene memorije

Deljena memorija

Deljena memorija

MCS(Memory Consistency System)

Deljena memorija, na osnovi za slajnje poruka

Moguća implementacija:

Svaki procesor ima svoju sopstvenu kopiju deljene memorije

Sistem memorijske konzistentnosti održava konzistentnost deljene memorije

Svaki procesor ima isti pogled na deljenu memoriju

Izvršenja

$$x = 0$$

$$y = 0$$
write x=1
$$v_0(x,1)$$

$$y = 1$$

$$y = 0$$

$$v_0(x,1)$$

Sekvencijalni raspored: $w_0(x,1), r_0(x)$

$$x = 0$$
$$y = 0$$

sekvencijalni raspored:

$$w_0(x,1), r_0(x), w_0(y,1), r_0(y)$$

$$\begin{bmatrix}
 x = 0 \\
 y = 0
 \end{bmatrix}$$

$$p_0 \xrightarrow{w_0(x,1)} x = 1 \qquad r_0(y) \qquad 1$$

Paralelni događaji:
$$w_0(x,1) // w_1(y,1)$$

$$r_0(y) // r_1(x)$$

Uzročni događaji:

$$w_0(x,1) < r_0(y)$$
 (isti procesor)

$$w_0(x,1) < r_1(x)$$
 (validne operacije)

Svi uzročni događaji:

$$w_0(x,1) < r_0(y)$$
 $w_1(y,1) < r_0(y)$
 $w_0(x,1) < r_1(x)$ $w_1(y,1) < r_1(x)$

Validna sekvencijalna izvršenja: očuvavaju uzročnost događaja

$$w_0 w_1 r_0 r_1$$

$$w_1 w_0 r_0 r_1$$

$$w_0 w_1 r_1 r_0$$

$$w_1 w_0 r_1 r_0$$

$$\begin{array}{c}
x = 0 \\
y = 0
\end{array}$$

$$\begin{array}{c}
w_0(x,1) & x = 1 \\
p_0
\end{array}$$

Nisu validna: $w_0 r_0 w_1 r_1$ $r_1 w_0 w_1 r_0$

$$x = 0$$
$$y = 0$$

Sledeći primer

$$w_0(x,1) \qquad x=1 \qquad r_0(y) \qquad 1$$

Validna: $w_0 w_1 r_0 r_1$

 $w_1 w_0 r_0 r_1$

 $w_0 w_1 r_1 r_0$

 $w_1 w_0 r_1 r_0$

Nisu validna:

 $w_0 r_0 w_1 r_1$

 $r_1 \ w_0 \ w_1 \ r_0$

$$x = 0$$
$$y = 0$$

Sledeći primer

$$w_0(x,1) \qquad x=1 \qquad r_0(y) \qquad 0$$

Validna: $w_0 r_0 w_1 r_1 r_0 w_0 w_1 r_1$

Nisu validna: $w_0 w_1 r_0 r_1$ $w_1 w_0 r_0 r_1$ $w_0 w_1 r_1 r_0$ $w_1 w_0 r_1 r_0$

Mogućnost linearizacije (Linearizability)

Postoji validan sekvencijalni raspored takav da: događaji idu u redosledu realnog vremena u kom su izvršeni

$$w_0 w_1 r_0 r_1$$

$$w_1 w_0 r_0 r_1$$

$$w_0 w_1 r_1 r_0$$

$$w_1 w_0 r_1 r_0$$

$$x = 0$$
$$y = 0$$

Ne može se linearizovati

$$p_0 = \begin{cases} w_0(x,1) & x = 1 \\ p_0 & 0 \end{cases}$$

$$p_1$$
 $w_1(y,1)$ $y=1$ $r_1(x)$ 1

$$r_0 < w_1 \qquad w_1 < r_0 \qquad \qquad r_0 < r_0$$

Nemoguće!

$$x = 0$$
$$y = 0$$

Može se linearizovati

$$p_0 - \frac{w_0(x,1)}{|x|} \quad x = 1 \quad r_0(y)$$

$$w_0 w_1 r_0 r_1 \quad w_1 w_0 r_0 r_1 \quad w_0 w_1 r_1 r_0 \quad w_1 w_0 r_1 r_0$$

$$w_0 r_0 w_1 r_1$$

$$x = 0$$
$$y = 0$$

Ne može se linearizovati

$$p_0 - w_0(x,1) \qquad x = 1 \qquad r_0(y) \qquad 0$$

$$p_1$$
 $w_1(y,1)$ $y=1$ $r_1(x)$ 0

Nemoguće!

Želimo da implementiramo MCS (Memory Consistency System) koji se može linearizovati:

Svaki procesor posmatra događaje u nekom sekvencijalnom redosledu koji je rezultat linearizacije

MCS: omogućava linearizaciju

Algoritam za omogućavanje linearizacije

DOGAĐAJ READ za procesor P_i :

Kad se desi $r_i(x)$:

Totalno uređeno slanje svima $r_i(x)$

Nakon prijema poruke $r_j(x)$:

Ako i == j vrati lokalnu vrednost x

Algoritam za omogućavanje linearizacije

DOGAĐAJ WRITE za procesor p_i :

Kad se desi $w_i(x,v)$:

Totalno uređeno slanje svima $w_i(x,v)$

Nakon prijema poruke $w_j(x,v)$:

Postavi lokalnu vrednost x = v

(ako je i == j takođe potvrdi)

Primer izvršenja

 w_0 w_1 r_0 r_1

Nemoguće izvršenje

(izvršenje koje se ne može linearizovati)

Mreže za brojanje čije izvršenje se može linearizovati

Vreme prolaska tokena: $t_{exit}^a - t_{entry}^a$

(različito za različite tokene)

Vremena ulaska su proizvoljna, pošto tokeni nailaze u proizvoljnim trenutcima

U izvršenjima koja se mogu linearizovati:

Ako
$$t_{exit}^a < t_{entry}^b$$
 onda $v_a < v_b$

Naime: novi tokeni uzimaju veće vrednosti

Brojač sa jednom deljenom promenljivom se može linearizovati

Distribuirani brojač Deljena promenljiva

Proste mreže za broja. se <u>ne mogu</u> linearizovati

Postoje izvršenja takva da je: $t_{exit}^a < t_{entry}^b$ i $v_a > v_b$

$$t_{exit}^a < t_{entry}^b$$

$$V_a > V_b$$

token se ne pomera na izlaz

$$\overset{\circ}{\bullet} V_a = 1$$

Još dva tokena nailaze

$$\overset{\circ}{\bullet} V_a = 1$$

Još dva tokena nailaze

$$\overset{\mathbf{a}}{\bullet} \mathbf{v}_a = \mathbf{1}$$

$$\overset{\mathbf{a}}{\bullet} \mathbf{v}_a = \mathbf{1} \qquad \overset{\mathbf{b}}{\bullet} \mathbf{v}_b = \mathbf{0}$$

$$t_{exit}^a < t_{entry}^b$$
 $V_a > V_b$

Narušavanje mogućnosti linearizacije!

Mreže za brojanje koje se mogu linearizovati

Predpost. da ima *n* procesa koji mogu da izdaju tokene

U bilo kom trenutku vremena ima najviše // tokena u mreži za brojanje

Jedan sloj

Beskonačna dužina

Kosa mreža

Mreža za brojanje koja se može linearizovati

regularna

mreža za brojanje + kosa mreža

Token prvo ulazi u mrežu za brojanje a zatim u kosu mrežu

Mreža za brojanje

Kosa mreža

Token prvo dobija vrednost od mreže za brojanje

Mreža za brojanje

Token ulazi u kosu mrežu Ulazni indeks je vrednost v

Token prolazi kroz kosu mrežu i rezultantna vrednost je izlazni indeks

Primer izvršenja

Token ostaje ovde

Važi da je:
$$t_{exit}^a < t_{entry}^b$$
 i $v_a' = 0 < 3 = v_b'$

Mogućnost linearizacije je očuvana

Formalno ćemo pokazati da kosa mreža zadovoljava mogućnost lienarizacije

Prvo se dokazuje potreban uslov

Broj tokena

Za bilo koju mrežu za brojanje:

ako je broj tokena na svakoj ulaznoj žici isti (na primer C), onda će bilo koja žica imati taj isti broj tokena

Broj tokena

Za bilo koju mrežu za brojanje: ako je broj tokena na svakoj ulaznoj žici ograničen sa C onda će bilo koja žica imati najviše C tokena

Teorema:

Kosa mreža očuvava mogućnost linearizacije

Dokaz:

Dokaz je indukciom na tokene koji uđu na k žica

Indukciona osnova

Kosa mreža očuvava mogućnost linearizacije za token koji ulazi na žici O

Trivijalno tačno.

Indukciona hipoteza:

Predpost. da kosa mreža očuvava mogućnost linearizacije za sve tokene koji ulaze do žice k-1

Indukcioni korak:

Pokazaćemo da kosa mreža očuvava mogućnost linearizacije za sve tokene koji ulaze na prvih k žica

Predpost. da postoje dva tokena a i b koji narušavaju mogućnost linearizacije:

$$t_{exit}^a < t_{entry}^b$$

$$V_a' > V_b'$$

Postoje dva moguća slučaja:

$$t_{exit}^a < t_{entry}^b$$
 $V_a' > V_b'$

Token a ulazi prvi i zato mora biti

Nemoguće!!!

(pošto ni jedan drugi token ne ulazi u balanser)

pod-slučaj: token a izlazi na južnoj žici nekog balansera

$$t_{exit}^a < t_{entry}^b$$
 $V_a' > V_b'$

Pošto bi svi ovi balanseri morali biti iskorišćeni od tokena koji su ušli pre nego je token a izašao

$$t_{exit}^a < t_{entry}^b \qquad v_a' > v_b'$$

Token a mora izaći sa severne žice svakog balansera

Tvrdnja:

Bar $v'_a = k - (n-1)$ tokena mora preći kombinovanu mrežu pre nego je token a ušao u kosu mrežu (različiti od a)

Ukupno tokena kad token a dobije svoju vrednost V_a od prve mreže za brojanje

Tokeni u kombinovanoj mreži

Tokeni već izašli iz kombinovane mreže $x \ge k$ važi jer inače mreža za brojanje ne bi brojala

$$x_1 \le n-1$$
 važi jer postoji najviše n-1 procesa (isključujući a)

$$X = X_1 + X_2 \Rightarrow$$

$$X_2 = X - X_1 \ge k - (n-1)$$

Mora biti da je bar k-(n-1) tokena (iz skupa x_2) primilo vrednosti, od prve mreže za brojanje, koje su manje od k

Ovo važi, jer inače kada bi zaustavili izvršenje sa tokenom a prva mreža za brojanje ne bi dala sve vrednosti između 1 i k

Zato, postoji bar jedan takav token (na primer token y) za koji je: $v'_{v} = k - n$

Pošto se, na osnovu indukcione hipoteze, mreža može linearizovati u prvih k-1 žica: $v'_y < v'_b$ (b ulazi posle y)

$$V_y' < V_b'$$
 i $V_a' > V_b'$

$$V_a' > V_b'$$

Nemoguće!!!

