Title

D. Zack Garza

Tuesday 25th August, 2020

Contents

1 Tuesday, August 25

1

1 Tuesday, August 25

Let $k = \bar{k}$ and R a ring containing ideals I, J.

Definition 1.0.1 (Radical).

Recall that the radical of I is defined as

$$\sqrt{I} = \left\{ r \in R \mid r^k \in I \text{ for some } k \in \mathbb{N} \right\}.$$

Example 1.1.

Let $I = (x_1, x_2^2) \subset \mathbb{C}[x_1, x_2]$, so $I = \{f_1x_1 + f_2x_2 \mid f_1, f_2 \in \mathbb{C}[x_1, x_2]\}$. Then $\sqrt{I} = (x_1, x_2)$, since $x_2^2 \in I \implies x_2 \in \sqrt{I}.$

Given $f \in k[x_1, \dots, x_n]$, take its value at $a = (a_1, \dots, a_n)$ and denote it f(a). Set $\deg(f)$ to be the largest value of $i_1 + \cdots + i_n$ such that the coefficient of $\prod x_i^{i_j}$ is nonzero.

Example 1.2. $deg(x_1 + x_2^2 + x_1 x_2^3 = 4)$

Definition 1.0.2 (Affine Variety).

1. Affine *n*-space $\mathbb{A}^n = \mathbb{A}^n_k$ is defined as $\{(a_1, \dots, a_n) \mid a_i \in k\}$.

Remark: not k^n , since we won't necessarily use the vector space structure (e.g. adding

points).

2. Let $S \subset k[x_1, \dots, x_n]$ to be a set of polynomials. $\left\{x \in \mathbb{A}^n \mid f(x) = 0\right\} \subset$. Then define V(S) =