

Institut Mines-Telecom

Support Vector Machine

Florence d'Alché-Buc, florence.dalche@telecom-paristech.fr

Outline

Motivation

SVM linéaires

Passage au cas non linéaire et noyaux

Support Vector Regression

Motivation SVM linéaires

Passage au cas non linéaire et noyaux Support Vector Regression

Outline

Motivation

SVM linéaires

Passage au cas non linéaire et noyaux

Support Vector Regression

Motivation

SVM linéaires Passage au cas non linéaire et noyaux Support Vector Regression

Construire un détecteur de spam

Apprendre à classer des messages

Echantillon d'apprentissage

 \longrightarrow

fonction de classification (un programme)

f:
$$\mathcal{X} \rightarrow \{-1,1\}$$

Classification binaire supervisée

Cadre probabiliste et statistique

Soit X un vecteur aléatoire de $\mathcal{X} = \mathbb{R}^p$

Y une variable aléatoire discrète $\mathcal{Y} = -1, 1$

Soit P la loi de probabilité jointe de (X,Y), loi fixée mais inconnue

Supposons que $S_{app} = \{(x_i, y_i), i = 1, ..., n\}$ soit un échantillon

i.i.d. tiré de la loi P

Classification binaire supervisée

Cadre probabiliste et statistique

- ▶ A partir de S_{app} , déterminer la fonction $f \in \mathcal{F}$ qui minimise $R(f) = \mathbb{E}_{P}[\ell(X, Y, f(X))]$
- étant une fonction de coût local qui mesure à quel point la vraie classe et la classe prédite par le classifieur sont différentes

Pb : la loi jointe n'est pas connue : on ne peut pas calculer R(f)

Apprentissage statistique - en pratique

Exemple de l'approche par régularisation

- \triangleright A la place de R(f), on minimise la somme de deux termes :
 - le risque empirique $R_n(f) = \frac{1}{n} \sum_i \ell(x_i, y_i, f(x_i))$
 - un terme régularisateur $\Omega(f)$ qui mesure la "complexité" de f.
- ▶ On cherche : $\hat{f} \in \arg\min_{f \in \mathcal{F}} R_n(f) + \lambda \Omega(f)$

Apprentissage statistique - en pratique

Exemple de l'approche par régularisation

- \blacktriangleright A la place de R(f), on minimise la somme de deux termes :
 - le risque empirique $R_n(f) = \frac{1}{n} \sum_i \ell(x_i, y_i, f(x_i))$
 - un terme régularisateur $\Omega(f)$ qui mesure la "complexité" de f.
- ▶ On cherche : $\hat{f} \in \arg\min_{f \in \mathcal{F}} R_n(f) + \lambda \Omega(f)$

NB : on cherche à obtenir un compromis entre une bonne adéquation aux données et une complexité limitée : $\Omega(f)$ est en général choisi pour renforcer la régularité de la fonction

Un problème de classification binaire supervisée de documents

- Définir
 - ▶ l'espace de représentation des messages

Un problème de classification binaire supervisée de documents

- Définir
 - l'espace de représentation des messages
 - la classe des fonctions de classification binaire considérées

Un problème de classification binaire supervisée de documents

- Définir
 - ▶ l'espace de représentation des messages
 - la classe des fonctions de classification binaire considérées
 - ▶ la fonction de perte à minimiser

Un problème de classification binaire supervisée de documents

- Définir
 - ▶ l'espace de représentation des messages
 - ▶ la classe des fonctions de classification binaire considérées
 - ▶ la fonction de perte à minimiser
 - ▶ l'algorithme de minimisation de cette fonction de coût

Un problème de classification binaire supervisée de documents

- Définir
 - l'espace de représentation des messages
 - la classe des fonctions de classification binaire considérées
 - la fonction de perte à minimiser
 - l'algorithme de minimisation de cette fonction de coût
 - ▶ une **méthode de sélection de modèle** et une mA(c)thode d'estimation des performances du classifieur

Fonctions de classification

Ce que vous connaissez déjà

- Perceptron
- Régression logistique linéaire
- k-plus-proches voisins
- Arbre de décision . . .

Ce cours : une nouvelle classe de fonctions

- les machines à vecteurs de support aussi appelées séparateurs à vaste marge
- ▶ Variantes : linéaire, non linéaire
- ► Extenstion à la régression

Outline

Motivation

SVM linéaires

Passage au cas non linéaire et noyaux

Support Vector Regression

Motivation SVM linéaires

Passage au cas non linéaire et noyaux Support Vector Regression

Outline

Motivation

SVM linéaires

Passage au cas non linéaire et noyaux

Support Vector Regression

Séparateur linéaire

Définition

Soit
$$\mathbf{x} \in \mathbb{R}^p$$

$$f(\mathbf{x}) = \operatorname{signe}(\mathbf{w}^T \mathbf{x} + b)$$

L'équation : $\mathbf{w}^T \mathbf{x} + b = 0$ définit un hyperplan dans l'espace euclidien \mathbb{R}^p

Exemple : données d'apprentissage en 3D et séparateur linéaire

Cas de données linéairement séparables

Exemple en 2D : quelle droite choisir?

Critère de marge

Critère de marge

Notion de marge géométrique

- Pour séparer les données, on considère un triplet d'hyperplans :
 - \vdash H: $\mathbf{w}^T \mathbf{x} + b = 0$, H_1 : $\mathbf{w}^T \mathbf{x} + b = 1$, H_{-1} : $\mathbf{w}^T \mathbf{x} + b = -1$
- ▶ On appelle marge géométrique, $\rho(\mathbf{w})$ la plus petite distance entre les données et l'hyperplan H, ici donc la moitié de la distance entre H_1 et H_{-1}
- Un calcul simple donne : $\rho(\mathbf{w}) = \frac{1}{||\mathbf{w}||}$.

Nouvelle fonction de coût à optimiser

Comment déterminer w et b?

- \blacktriangleright Maximiser la marge $\rho(\mathbf{w})$ tout en séparant les données de part et d'autre de H_1 et H_{-1}
- Séparer les données bleues $(y_i = 1)$: $\mathbf{w}^T \mathbf{x}_i + b > 1$
- ▶ Séparer les données rouges $(y_i = -1)$: $\mathbf{w}^T \mathbf{x}_i + b < -1$

17/53 March, 2015

SVM linéaire : cas séparable

Optimisation dans l'espace primal

minimiser
$$\frac{1}{2} \|\mathbf{w}\|^2$$
 sous la contrainte $y_i(\mathbf{w}^T \mathbf{x}_i + \mathbf{b}) \ge 1, \ i = 1, \dots, n.$

Référence

Boser, B. E.; Guyon, I. M.; Vapnik, V. N. (1992). "A training algorithm for optimal margin classifiers". Proceedings of the fifth annual workshop on Computational learning theory - COLT '92. p. 144.

Programmation quadratique sous contraintes inégalités

Problème du type (attention les notations changent!)

 \blacksquare un problème d'optimisation (\mathcal{P}) est défini par

minimiser sur
$$\mathbb{R}^n$$
 $J(\mathbf{x})$
avec $h_i(\mathbf{x}) = 0, 1 \le i \le p$
 $g_i(\mathbf{x}) \le 0, 1 \le j \le q$

- rappel de vocabulaire :
 - les h_i sont les **contraintes d'égalité** (notées h(x) = 0)
 - les g_i sont les **contraintes d'inégalité** (notées $\mathbf{g}(\mathbf{x}) \leq 0$)
 - l'ensemble des contraintes est

$$\mathcal{C} = \{\mathbf{x} \in \mathbb{R}^n | h_i(\mathbf{x}) = 0, 1 \le i \le p \text{ et } g_j(\mathbf{x}) \le 0, 1 \le j \le q\}$$

ensemble des points admissibles ou réalisables

Programmation quadratique sous contraintes inégalités

Lagrangien

20/53 March, 2015

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i} \alpha_i (1 - y_i (\mathbf{w}^T \mathbf{x}_i + \mathbf{b}))$$
$$\forall i, \alpha_i > 0$$

Conditions de Karush-Kunh-Tucker

En l'extremum, on a

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \mathbf{w} - \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} = 0$$

$$\nabla_{b} \mathcal{L}(b) = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\forall i, [y_{i}(\mathbf{w}^{T} \mathbf{x}_{i} + b) - 1] \leq 0$$

$$\forall i, \alpha_{i} \geq 0$$

$$\forall i, \alpha_{i}[y_{i}(\mathbf{w}^{T} \mathbf{x}_{i} + b) - 1] = 0$$

Obtention des α_i : résolution dans l'espace dual

$$\mathcal{L}(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$

- ► Maximiser \mathcal{L} sous les contraintes $\alpha_i \geq 0$ et $\sum_i \alpha_i y_i = 0, \forall i = 1, ..., n$
- ► Faire appel à un solveur quadratique

SVM linéaires ou Optimal Margin Hyperplan

Supposons que les multiplicateurs de Lagrange α_i soient déterminés :

Equation d'un SVM linéaire

$$f(\mathbf{x}) = \operatorname{signe}(\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}^{T} \mathbf{x} + b)$$

Pour classer une donnée \mathbf{x} , ce classifier combine linéairement les valeurs de classe y_i des données support avec des poids du type $\alpha_i \mathbf{x}_i^T \mathbf{x}$ dépendant de la ressemblance entre \mathbf{x} et les données support au sens du produit scalaire.

Vecteurs "supports"

Les données d'apprentissage

 \mathbf{x}_i telles que $\alpha_i \neq 0$ sont sur l'un ou l'autre des hyperplans H_1 ou H_{-1} . Seules ces données dites *vecteur de support* comptent dans la définition de $\mathbf{w} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i$

NB : b est obtenu en choisissant une donnée support $(\alpha_i \neq 0)$

Cas réaliste : SVM linéaire dans le cas données non séparables

Introduire une variable d'écart ξ_i pour chaque donnée :

Problème dans le primal

$$\min_{\mathbf{w},b,\xi} \qquad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$
 sous les contraintes
$$y_i(\mathbf{w}^T \mathbf{x}_i + \mathbf{b}) \ge 1 - \xi_i \ i = 1, \dots, n.$$

$$\xi_i > 0 \ i = 1, \dots, n.$$

Cas réaliste : SVM linéaire dans le cas données non séparables

Cas réaliste : SVM linéaire dans le cas données non séparables

Problème dans le dual

$$\sum_{i} \alpha_{i} y_{i} \ i = 1, \dots, n.$$

Conditions KKT

Soit α^* la solution du problème dual :

$$\begin{aligned} \forall i, [y_{i}f_{w^{*},b^{*}}(x_{i}) - 1 + \xi_{i}^{*}] &\leq 0 \\ \forall i, \alpha_{i}^{*} &\geq 0 \\ \forall i, \alpha_{i}^{*}[y_{i}f_{w^{*},b^{*}}(x_{i}) - 1 + \xi_{i}^{*}] &= 0 \\ \forall i, \mu_{i}^{*} &\geq 0 \\ \forall i, \mu_{i}^{*} &\leq i \\ \forall i, \alpha_{i}^{*} + \mu_{i}^{*} &= C \\ \forall i, \xi_{i}^{*} &\geq 0 \\ \mathbf{w}^{*} &= \sum_{i} \alpha_{i}^{*}y_{i}\mathbf{x}_{i} \\ \sum_{i} \alpha_{i}^{*}y_{i} &= 0 \end{aligned}$$

Différents cas de figure

Soit α^* la solution du problème dual :

- ▶ si $\alpha_i^* = 0$, alors $\mu_i^* = C > 0$ et donc, $\xi_i^* = 0$: x_i est bien classé
- ▶ si $0 < \alpha_i^* < C$ alors $\mu_i^* > 0$ et donc, $\xi_i^* = 0$: x_i est tel que : $y_i f(x_i) = 1$
- ▶ si $\alpha_i^* = C$, alors $\mu_i^* = 0$, on ne peut rien déduire sur ξ_i

NB : on calcule b^* en utilisant un i tel que $0 < \alpha_i^* < C$

Cas réaliste : SVM linéaire dans le cas données non séparables

Quelques remarques

- ▶ certaines données support peuvent donc être de l'autre côté des hyperplans H₁ ou H₁
- ► C est un hyperparamètre qui contrôle le compromis entre la complexité du modèle et le nombre d'erreurs de classification du modèle

SVM: approche par régularisation

Optimisation dans l'espace primal

$$\min_{\mathbf{w},b} \quad \sum_{i=1}^{n} (1 - y_i(\mathbf{w}^T \mathbf{x}_i + b))_+ + \lambda \frac{1}{2} \|\mathbf{w}\|^2$$

 $\mathsf{Avec}: (z)_+ = \mathit{max}(0,z)$

 $f(\mathbf{x}) = \operatorname{signe}(h(\mathbf{x}))$

Fonction de coût : $L(\mathbf{x}, y, h(\mathbf{x})) = (1 - yh(\mathbf{x}))_+$

yh(x) est appelée marge du classifieur

Outline

Motivation

SVM linéaires

Passage au cas non linéaire et noyaux

Support Vector Regression

Support Vector Machine : le cas non linéaire

Le problème de l'hyperplan de marge optimale ne fait intervenir les données d'apprentissage qu'à travers de produits scalaires.

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{\mathsf{T}} \mathbf{x}_{j}$$
 sous les contraintes
$$0 \leq \alpha_{i} \leq C \ i = 1, \dots, n.$$

$$\sum_{i} \alpha_{i} y_{i} \ i = 1, \dots, n.$$
Passage au cas non linéaire et novaux

Support Vector Regression

Remarque 1 : apprentissage

Si je transforme les données à l'aide d'une fonction ϕ (non linéaire) et si je sais calculer les produits scalaires $\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$, je peux apprendre une fonction de séparation non linéaire.

$$\max_{\alpha} \qquad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}_{j})$$
sous les contraintes $0 \leq \alpha_{i} \leq C \ i = 1, \dots, n.$

$$\sum_{i} \alpha_{i} y_{i} \ i = 1, \dots, n.$$

Pour classer une nouvelle donné \mathbf{x} , je n'ai besoin que de savoir calculer $\phi(\mathbf{x})^T \phi(\mathbf{x}_i)$.

Astuce du noyau

Si je remplace $\mathbf{x}_i^T\mathbf{x}_j$ par l'image par une fonction $k:k(\mathbf{x}_i,\mathbf{x}_j)$ telle qu'il existe un espace de caractérisques $\mathcal F$ et une fonction de caractéristique (feature map) $\phi:\mathcal X\to\mathcal F$ et $\forall (\mathbf{x},\mathbf{x}')\in\mathcal X, k(\mathbf{x},\mathbf{x}')=\phi(\mathbf{x})^T\phi(\mathbf{x}')$, alors je peux appliquer le même algorithme d'optimisation (résolution dans le dual) et j'obtiens :

$$f(\mathbf{x}) = \operatorname{signe}(\sum_{i=1}^{n} \alpha_i y_i k(\mathbf{x}_i, \mathbf{x}) + b)$$

Des telles fonctions existent et sont appelées noyaux.

Kernel trick and feature map 1/2

Kernel trick and feature map 2/2

Kernel trick and feature map 2/2

$$h(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i \phi(\mathbf{x})^T \phi(\mathbf{x}_i) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}, \mathbf{x}_i),$$

avec $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ un noyau positif défini.

Noyaux

Définition

Soit \mathcal{X} un ensemble. Soit $\mathbf{k}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, une fonction symétrique. La fonction k est appelée *noyau* positif défini si et seulement si quel que soit le sous-ensemble fini $\{\mathbf{x}_1,\ldots,\mathbf{x}_m\}$ de \mathcal{X} et le vecteur colonne \mathbf{c} de \mathbb{R}^m .

$$\mathbf{c}^T K \mathbf{c} = \sum_{i,j=1}^m c_i c_j k(x_i, x_j) \geq 0$$

Théorème de Moore-Aronzajn

Théorème de Moore-Aronzajn

Soit K un noyau positif défini. Alors, il existe un unique espace de Hilbert \mathcal{F} pour lequel k est un noyau reproduisant :

$$\forall x \in \mathcal{X}, \langle f(\cdot), k(\cdot, x) \rangle_{\mathcal{F}} = f(x)$$

And especially we have : $\langle k(\cdot, x), k(\cdot, x') \rangle_{\mathcal{F}} = k(x, x')$

Théorème de Moore-Aronzajn

Théorème de Moore-Aronzajn

Soit K un noyau positif défini. Alors, il existe un unique espace de Hilbert \mathcal{F} pour lequel k est un noyau reproduisant :

$$\forall x \in \mathcal{X}, \langle f(\cdot), k(\cdot, x) \rangle_{\mathcal{F}} = f(x)$$

And especially we have : $\langle k(\cdot, x), k(\cdot, x') \rangle_{\mathcal{F}} = k(x, x')$

NB :Cela veut dire qu'on peut toujours choisir $\phi(x) = k(\cdot, x)$ Important : un noyau peut admettre plusieurs fonctions de caractérisques et espaces correspondants mais un seul est RKHS (espace de Hilbert à noyau reproduisant).

Noyaux

Noyaux entre vecteurs

 $\forall \mathsf{x}, \mathsf{x}' \in \mathbb{R}^p$

- Noyau linéaire : $k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$
- Noyau polynomial : $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + c)^d$
- ▶ Noyau gaussien : $k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} \mathbf{x}'||^2)$

Support Vector Machine : séparateur non linéaire par noyau gaussien

Exemple: noyau polynomial

Exemple: noyau polynomial

Astuce du noyau

On remarque que $\phi(\mathbf{x}_1)^T\phi(\mathbf{x}')$ peut se calculer sans travailler dans \mathbb{R}^3

Je peux définir
$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}') = (\mathbf{x}^T \mathbf{x}')^2$$

Kernel design

- ▶ Use closure properties to build new kernels from existing ones
- Kernels can be defined for various objects :
 - **Structured objects**: (sets), graphs, trees, sequences, . . .
 - Unstructured data with underlying structure : texts, images, documents, signal, biological objects
- Kernel learning :
 - Hyperparameter learning : see Chapelle et al. 2002
 - Multiple Kernel Learning : given k_1, \ldots, k_m , learn a convex combination $\sum_{i} \beta_{i} k_{i}$ of kernels (see SimpleMKL Rakotomamonjy et al. 2008, unifying view in Kloft et al. 2010)

Quel noyau pour notre notre détecteur de spams?

On peut prendre soit :

- ▶ le noyau linéaire
- le noyau gaussien ou une de ses variantes
 - Connaissance a priori d'une matrice de similarité sémantique A entre mots
 - ► Appliquer A au vecteur **x** revient à faire apparaître des mots proches sémantiquement
 - $k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||A(\mathbf{x} \mathbf{x}')||^2)$
 - équivalent à : $k(\mathbf{x}, \mathbf{x}') = \exp[-\gamma (A(\mathbf{x} \mathbf{x}'))^T (A(\mathbf{x} \mathbf{x}'))]$
 - soit : $k(\mathbf{x}, \mathbf{x}') = \exp[-\gamma(\mathbf{x} \mathbf{x}')^T A^T A(\mathbf{x} \mathbf{x}')]$

Outline

Motivation

SVM linéaires

Passage au cas non linéaire et noyaux

Support Vector Regression

Régression

Cadre probabiliste et statistique

Soit X un vecteur aléatoire de $\mathcal{X} = \mathbb{R}^p$

Y une variable aléatoire continue $\mathcal{Y}=\mathbb{R}$

Soit P la loi de probabilité jointe de (X,Y), loi fixée mais inconnue

Supposons que $S_{app} = \{(x_i, y_i), i = 1, ..., n\}$ soit un échantillon

i.i.d. tiré de la loi P

Régression

Cadre probabiliste et statistique

- ▶ A partir de S_{app} , déterminer la fonction $f \in \mathcal{F}$ qui minimise $R(f) = \mathbb{E}_{P}[\ell(X, Y, f(X))]$
- étant une fonction de coût local qui mesure à quel point la vraie cible et la prédiction par le classifieur sont différentes

Pb : la loi jointe n'est pas connue : on ne peut pas calculer R(f)

Support Vector Regression

- Extend the idea of maximal soft margin to regression
- Impose an ϵ -tube : perte -insensible $|y'-y|_{\epsilon} = max(0,|y'-y|-\epsilon)$

Support Vector Regression

SVR in the primal space

Given C and
$$\epsilon$$
 $\min_{w,b,\xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (\xi_i + \xi_i^*)$ s.c. $\forall i = 1, \ldots, n, y_i - f(x_i) \le \epsilon + \xi_i$ $\forall i = 1, \ldots, n, f(x_i) - y_i \le \epsilon + \xi_i^*$ $\forall i = 1, \xi_i \ge 0, \xi_i^* \ge 0$ with $f(x) = w^T \phi(x) + b$

General case : ϕ is a feature map associated with a positive definite kernel k.

Solution in the dual

$$\begin{aligned} \min_{\alpha,\alpha^*} \sum_{i,j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) k(x_i, x_j) + \epsilon \sum_i (\alpha_i + \alpha_i^*) - \\ \sum_i y_i (\alpha_i - \alpha_i^*) \\ \text{s.c. } \sum_i (\alpha_i - \alpha_i^*) = 0 \text{ and } 0 \le \alpha_i \le C \text{ and } 0 \le \alpha_i^* \le C \\ w = \sum_{i=1}^n (\alpha_i - \alpha_i^*) \phi(x_i) \end{aligned}$$

Solution

$$f(x) = \sum_{i=1}^{n} (\alpha_i - \alpha_i^*) k(x_i, x) + b$$

Support Vector Regression: example in 1D

Identical machine parameters ($\varepsilon = 0.2$), but different amounts of noise in the data.

B. Schölkopf, Canberra, February 2002

