

US006340583B1

United States Patent Yan et al.

(10) Patent No.:

US 6,340,583 B1

(45) Date of Patent:

Jan. 22, 2002

ISOLATED HUMAN K			
 NUCLEIC ACID MOLI 	ECULE	S ENC	ODING
HUMAN KINASE PRO	TEINS,	AND 1	USES
THEREOF	v .		

(75) Inventors: Chunhua Yan, Boyds; Karen A.

Ketchum, Germantown; Valentina Di Francesco, Rockville; Ellen M. Beasley, Darnestown, all of MD (US)

(73) Assignce: PE Corporation (NY), Norwalk, CT (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/813,817

(22) Filed: Mar. 22, 2001

 (56) R

References Cited

PUBLICATIONS

GenEmbl Database, Accession No. D45906, Feb. 1999.*

Sambrook et al., Molecular Cloning Manual, 2nd edition, Cold Spring Harbor Laboratory Press, 1989.*

* cited by examiner

Primary Examiner—Rebecca E. Prouty
Assistant Examiner—M. Monshipouri
(74) Attorney, Agent, or Firm—Celera Genomics; Robert
A. Millman; Justin D. Karjala

(57) ABSTRACT

The present invention provides amino acid sequences of peptides that are encoded by genes within the human genome, the kinase peptides of the present invention. The present invention specifically provides isolated peptide and nucleic acid molecules, methods of identifying orthologs and paralogs of the kinase peptides, and methods of identifying modulators of the kinase peptides.

9 Claims, 41 Drawing Sheets

1	CCCAGGGCGC	CGTAGGCGGT	GCATCCCGTT	CGCGCCTGGG	GCTGTGGTCT
51	TCCCGCGCCT	GAGGCGGCGG	CGGCAGGAGC	TGAGGGGAGT	TGTAGGGAAC
101	TGAGGGGAGC	TGCTGTGTCC	CCCGCCTCCT	CCTCCCCATT	TCCGCGCTCC
151	CGGGACCATG	TCCGCGCTGG	CGGGTGAAGA	TGTCTGGAGG	TGTCCAGGCT
	GTGGGGACCA	CATTGCTCCA	AGCCAGATAT	GGTACAGGAC	TGTCAACGAA
251	ACCTGGCACG	GCTCTTGCTT	CCGGTGAAAG	TGATGCGCAG	CCTGGACCAC
301	CCCAATGTGC	TCAAGTTCAT	TGGTGTGCTG	TACAAGGATA	AGAAGCTGAA
351	CCTGCTGACA	GAGTACATTG	AGGGGGCAC	ACTGAAGGAC	TTTCTGCGCA
401	GTATGGATCC	CTTCCCTGG	CAGCAGAAGG	TCAGGTTTGC	CAAAGGAATC
<u>4</u> 51	GCCTCCGGAA	TGGACAAGAC	TGTGGTGGTG	GCAGACTTTG	GGCTGTCACG
501	GCTCATAGTG	GAAGAGAGGA	AAAGGCCCC	CATGGAGAAG	GCCACCACCA
551	AGAAACGCAC	CTTGCGCAAG	AACGACCGCA	AGAAGCGCTA	CACGGTGGTG
601	GGAAACCCCT	ACTIGATICS	CCCTGAGATG	CTGAACGGAA	AGAGCTATGA
651	TGAGACGGTG	GATATCTTCT	CCTTTGGGAT	CGTTCTCTGT	GAGATCATTG
701	GGCAGGTGTA	TECAGATCCT	GACTGCCTTC	CCCGAACACT	GGACTTTGGC
751	CTCAACGTGA	ACCITITCTG	GGAGAAGTTT	GTTCCCACAG	ATTGTCCCCC
201	GGCCTTCTTC	CCCTCCCC	CCATCTGCTG	CAGACTGGAG	CCTGAGAGCA
001	GACCAGCATT	CTCGAAATTG	GAGGACTCCT	TTGAGGCCCT	CTCCCTGTAC
001	CTGGGGGAGC	TEGGCATCCC	CTCCTCCA	GAGCTGGAGG	AGTTGGACCA
051	CACTGTGAGC	ATCCACTACC	CCTGACCG	GGACTCACCT	CCCTAGCCCT
1001	GGCCCAGCCC	CCTCCACIACC	CCTCTTCTAC	AGCCAGCATT	GCCCCTCTGT
1001	GCCCCATTCC	TOTTOTOAGO	AGGGCCGTCC	GGGCTTCCTG	TGGATTGGCG
1101	GAATGTTTAG	AACCACAACA	AACCATTCCT	ATTACCTCCC	CAGGAGGCAA
1101	GTGGGCGCAG		ATGTATCTCC	ACAGGTTCTG	GGGCCTAGTT
1201	ACTGTCTGTA	AATCCAATAC	TTCCCTCAAA	CCTGTGAAGA	AGAAAAAAAC
1201	CCCTGGCCTT	TCCCCCATAC	GGAATCTGTT	ACTCGAATCC	ACCCAGGAAC
1201	TCCCTGGCAG	TECATTETEE	CACCOTOTTG	CTTACACTAA	TCAGCGTGAC
1361	CTGGACCTGC	TOCCOLOGAT	CCCAGGGTGA	ACCTGCCTGT	GAACTCTGAA
1/1/1	GTCACTAGTC	CACCTCCCTC	CAGGAGGACT	TCAAGTGTGT	GGACGAAAGA
1401	AAGACTGATG	CAGCIGGGIG	TCTCAAAAAG	TCAGTGATGC	TCCCCCTTTC
1501	TACTCCAGAT	CCTCTCCTTC	CTCCACCAAG	GTTGAGGGAG	TAGGTTTTGA
1201	AGAGTCCCTT	AATATCTCCT	CLOCACCAC	AGGAGTTAGA	GAAAGGGCTG
1001	GCTTCTGTTT	ACCTECTOAC	TCCCTCTACC	CAGCCCAGGG	ACCACATCAA
1001	TGTGAGAGGA	ACCIGCICAC	TCATCTTTTC	ΔΔΔΥΤΤΔΔΤΔ	CTGGAGACTG
1701	GCTGAGAACT	TACCCACAAC	ATCCTTTCTC	ΤΟΤΙΘΑΔΑΓΑΔ	ACAGTCACAA
1701	GCACAGGAAG	ACCCTCCCC	ACTACAAACA	GCCCCTGCCC	TCTAGAAAGC
1/51	TCAGATCTTG	CCTTCTCTTA	ACTACACACA CTCATACTCC	CETECETTO	TTAGTCAGAT
1001	CCCTAAAACA	TTTTCCTAA	ACCTCCATCC	CTTCTCCACC	ACAGTGTGGC
1001	TTCTCACACC	CCTACACTCT	CACCCACCCC	ACTCCCACTC	TCAGCAATCT
1901	CTTCCTCTTC	CCTTCATCCC	AACCACTCCT	CACCCTTCAA	CATGCCTGGT
1951	TTACCCACCA	COTTOCCOTO	CCAACACCTC	CTCCCTTCAA	CTCAAAGCTG
2001	AUCHOCAGO	CONTACTO	CCCTCACCTC	CCCCATCTCA	CTTCTACCTC
2051	AGA I GC I GAG	AGAGATAGCT	COTTACCTC	TCCCCACCAT	CTTCTTCAGC
2101	CACATOTOCA	COTACTOCA	AACCTCCATC		CCTCCTGAGC GAGCTCTAGG
2151	CACATGIGCA	ACACTACA	TTTCCCTCTT	TAACTCTCT	ATCACCTTCC
2201	AACICIICAL	LALAALTAGA	AATCCCTTTC	IJIDIDANIJ AAATTATOO	ATGAGCTTGC
2251	ACCATATTIA	AIAAAIIGG	AAIGGGIIIG	EUUUIAIIAAA N.1)	AAAAAAAAA
2301	AAAAAAAA	AAAAAAAAAAA	(SEU IN IV	N. I)	

FIG.1A

	5'UTR: 1-228 Start Codon: 229 Stop Codon: 994 3'UTR: 997	
	CRA 1000682328847 /altid=gi 8051618 /def=ref NP_057952.1 LIM d 489 CRA 18000005015874 /altid=gi 5031869 /def=ref NP_005560.1 LIM 489 CRA 88000001156379 /altid=gi 7434382 /def=pir JC5814 LIM motif 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 180000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 180000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 180000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 180000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas 469 CRA 18000000000000000000000000000000000000	e-131 e-131 e-131 e-131 e-131 e-131 e-131
-	BLAST dbEST hits: Score gi 10950740 /dataset=dbest /taxon=96 104 gi 10156485 /dataset=dbest /taxon=96 97 gi 5421647 /dataset=dbest /taxon=9606 95 gi 10895718 /dataset=dbest /taxon=96 75 gi 13043102 /dataset=dbest /taxon=960 71 gi 519615 /dataset=dbest /taxon=9606 / 53 gi 11002869 /dataset=dbest /taxon=96 51	0.0 2 0.0 7 0.0 4 0.0 L e-149
	EXPRESSION INFORMATION FOR MODULATORY USE: library source: From BLAST dbEST hits: gi 10950740 teratocarcinoma gi 10156485 ovary gi 5421647 testis gi 10895718 nervous_normal gi 13043102 bladder gi 519615 infant_brain	

FIG.1B

gi|519615 infant brain gi|11002869 thyroid gland

From tissue screening panels: Fetal whole brain

```
1 MVQDCQRNLA RLLLPVKVMR SLDHPNVLKF IGVLYKDKKL NLLTEYIEGG
```

- 51 TLKDFLRSMD PFPWQQKVRF AKGIASGMDK TVVVADFGLS RLIVEERKRA
- 101 PMEKATTKKR TLRKNDRKKR YTVVGNPYWM APEMLNGKSY DETVDIFSFG
- 151 IVLCEIIGQV YADPDCLPRT LDFGLNVKLF WEKFVPTDCP PAFFPLAAIC
- 201 CRLEPESRPA FSKLEDSFEA LSLYLGELGI PLPAELEELD HTVSMQYGLT
- 251 RDSPP (SEQ ID NO:2)

FEATURES:

Functional domains and key regions:
[1] PDOC00004 PS00004 CAMP_PHOSPHO_SITE
cAMP- and cGMP-dependent protein kinase phosphorylation site

Number of matches: 2

- 1 108-111 KKRT
- 2 119-122 KRYT

[2] PDOC00005 PS00005 PKC PHOSPHO_SITE Protein kinase C phosphorylation site

Number of matches: 4

- 1 51-53 TLK
- 2 106-108 TTK
- 3 107-109 TKK
- 4 111-113 TLR

[3] PDOC00006 PS00006 CK2 PHOSPHO_SITE Casein kinase II phosphorylation site

Number of matches: 4

- 1 51-54 TLKD
- 2 76-79 SGMD
- 3 139-142 SYDE
- 4 212-215 SKLE

[4] PDOC00008 PS00008 MYRISTYL N-myristoylation site

Number of matches: 4

1 73-78 GIASGM

FIG.2A

```
2 77-82 GMDKTV
```

- 3 150-155 GIVLCE
- 4 158-163 GQVYAD

Membrane spanning structure and domains:

Helix Begin End Score Certainty

1 142 162 0.872 Putative

2 184 204 0.652 Putative

BLAST Alignment to Top Hit:

>CRA|1000682328847 /altid=gi|8051618 /def=ref|NP_057952.1| LIM domain kinase 2 isoform 2b [Homo sapiens] /org=Homo sapiens /taxon=9606 /dataset=nraa /length=617

Length = 617

Score = 485 bits (1235), Expect = e-136Identities = 241/265 (90%), Positives = 241/265 (90%), Gaps = 22/265 (8%)

Query: 13 LLPVKVMRSLDHPNVLKFIGVLYKDKKLNLLTEYIEGGTLKDFLRSMDPFPWQQKVRFAK 72 L VKVMRSLDHPNVLKFIGVLYKDKKLNLLTEYIEGGTLKDFLRSMDPFPWQQKVRFAK

Sbjct: 353 LTEVKVMRSLDHPNVLKFIGVLYKDKKLNLLTEYIEGGTLKDFLRSMDPFPWQQKVRFAK 412

Sbjct: 413 GIASGMAYLHSMCIIHRDLNSHNCLIKLDKTVVVADFGLSRLIVEERKRAPMEKATTKKR 472

Query: 111 TLRKNDRKKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIGQVYADPDCLPRT 170

TLRKNDRKKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIGQVYADPDCLPRT Sbjct: 473 TLRKNDRKKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIGQVYADPDCLPRT 532

Query: 171 LDFGLNVKLFWEKFVPTDCPPAFFPLAAICCRLEPESRPAFSKLEDSFEALSLYLGELGI 230

LDFGLNVKLFWEKFVPTDCPPAFFPLAAICCRLEPESRPAFSKLEDSFEALSLYLGELGI

Sbjct: 533 LDFGLNVKLFWEKFVPTDCPPAFFPLAAICCRLEPESRPAFSKLEDSFEALSLYLGELGI 592

Query: 231 PLPAELEELDHTVSMQYGLTRDSPP 255

PLPAELEELDHTVSMQYGLTRDSPP

Sbjct: 593 PLPAELEELDHTVSMQYGLTRDSPP 617 (SEQ ID NO:4)

Ummor co	arch results (Pfam):		5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		Score	E-value	N
Mode1	Description			2
DENNING	Eukaryotic protein kinase domain	100.1	1.1e-26	
000003	CEACOLL NECED	4.9	0.14	1
CE00031	CE00031 VEGFR		1	1
CF00204	CE00204 FIBROBLAST_GROWTH_RECEPTOR	4.7	_ 1	-
CEOUZEO	E00359 bone_morphogenetic_protein_receptor	1.8	7.9	1
CE00339	500223 Doug lifet brodelier to Droge III recebeer	1.5	2.5	1
CE00022	CE00022 MAGUK subfamily_d			- î
CE00207	CE00287 PTK Eph_orphan_receptor	-48.4	3.8e-05	T
CEUU20/	CEUUZO/ FIX Epit of phan I coopeon	-61.8	2.1e-05	1
CE00292	CE00292 PTK membrane_span	-01.0	2.10 00	•

CF00291	CE00291 PTK fgf receptor	-113.0	0.027	1
	E00286 PTK EGF receptor	-125.1	0.0021	1
CF00290	CE00290 PTK Trk family	-151.3	6.5e-05	1
	CE00288 PTK Insulin receptor	-210.4	0.014	1

Parsed for domains:

ranseu i	OF GOIRE L	15.					
Mode1	Domain	seq-f	seq-t_	hmm-f	hnon-t	score	<u>E-value</u>
PF00069	1/2	16	79	41	105	52.1	2.3e-13
CE00022	1/1	124	153	187	216	1.5	2.5
PF00069	2/2	81	156	129	182	48.0	3.1e-12
CE00031	1/1	129	156	1114	1141	4.9	0.14
CE00204	1/1	129	156	705	732	4.7	1
CE00359	1/1	79	157	287	356	1.8	7.9
CE00290	1/1	9	218	1	282 []	-151.3	6.5e-05
CE00287	1/1	1	218 [.	1	260 []	-48.4	3.8e-05
CE00291	1/1	1	218 [.	1	285 []	-113.0	0.027
CE00292	1/1	1	218 [.	1	288 []	-61.8	2.1e-05
CE00288	1/1	1	218 [.	1	269 []	-210.4	0.014
CE00286	1/1	6	218	1	263 []	-125.1	0.0021

FIG.2C

1	TCATCCTTGC	GCAGGGGCCA	TGCTAACCTT	CTGTGTCTCA	GTCCAATTTT
51	AATGTATGTG	CTGCTGAAGC	GAGAGTACCA	GAGGTTTTTT	TGATGGCAGT
101	GACTTGAACT	TATTTAAAAG	ATAAGGAGGA	GCCAGTGAGG	GAGAGGGGTG
151	CTGTAAAGAT	AACTAAAAGT	GCACTTCTTC	TAAGAAGTAA	GATGGAATGG
201	GATCCAGAAC	AGGGGTGTCA	TACCGAGTAG	CCCAGCCTTT	GTTCCGTGGA
251	CACTGGGGAG	TCTAACCCAG	AGCTGAGATA	GCTTGCAGTG	TGGATGAGCC
301	AGCTGAGTAC	AGCAGATAGG	GAAAAGAAGC	CAAAAATCTG	AAGTAGGGCT
351	GGGGTGAAGG	ACAGGGAAGG	GCTAGAGAGA	CATTTGGAAA	GTGAAACCAG
401	GTGGATATGA	GAGGAGAGAG	TAGAGGGTCT	TGATTTCGGG	TCTTTCATGC
451	TTAACCCAAA	GCAGGTACTA	AAGTATGTGT	TGATTGAATG	TCTTTGGGTT
501	TCTCAAGACT	GGAGAAAGCA	GGGCAAGCTC	TGGAGGGTAT	GGCAATAACA
551	AGTTATCTTG	AATATCCTCA	TGGTGGAAAG	TCCTGATCCT	GTTTGAATTT
601	TGGAAATAGA	AATCATTCAG	AGCCAAGAGA	TTGAATTGTT	GAGTAAGTGG
651	GTGGTCAGGT	TACAGACTTA	ATTTTGGGTT	AAAAAGTAAA	AACAAGAAAC
701	AAGGTGTGGC	TCTAAAATAA	TGAGATGTGC	TGGGGGTGGG	GCATGGCAGC
751	TCATAAACTG	ACCCTGAAAG	CTCTTACATG	TAAGAGTTCC	AAAAATATTT
801	CCAAAACTTG	GAAGATTCAT	TTGGATGTTT	GTGTTCATTA	AAATCTCTCA
851	CTAATTCATT	GTCTTGTCCA	CTGTCCGTAA	CCCAACCTGG	GATTGGTTTG
901	AGTGAGTCTC	TCAGACTTTC	TGCCTTGGAG	TTTGTGAGAG	AGATGGCATA
951	CTCTGTGACC	ACTGTCACCC	TAAAACCAAA	AAGGCCCCTC	TTGACAAGGA
1001	GTCTGAGGAT	TTTAGACCCA	GGAAGAATGA	GTGATGGGCA	TATATATATC
1051	CTATTACTGA	GGCATGAGAA	GAGTGGAATG	GGTGGGTTGA	GGTGGTGTTT
1101	TAAGGCCTCT	TGCCAGCTTG	TTTAACTCTT	CTCTGGGGAA	CGAGGGGGAC
1151	AACTGTGTAC	ATTGGCTGCT	CCAGAATGAT	GTTGAGCAAT	CTTGAAGTGC
1201	CAGGAGCTGT	GCTTTGTCTA	TTCATGGCCC	CTGTGCCTGT	GAAACAGGGT
1251	TCGGTGACTG	TCACTGTGCC	TGTGGCAGTC	TGTAGTTACC	CAGAGAGAAC
1301	AAAGCTGCAT	ACACAGAGCG	CACAAGGGAG	TCTTGTAACA	ACCTTGTCCT
1351	GCTTTCTAGG	GCTGAGTCAG	GTACCACAGC	TTGATCTCAG	CTGTCCTCTT
1401	TATTTCAAGA	AGTTGACATC	TGAGCCATAC	CAGGAGTATT	GTATTTTGTT
1451	TGAGGCCTCT	CTTTTTGGAG	GAACATGGAC	CGACTCTGTG	CTTTTGTCTA
1501	TGCTGGTCTC	TGAGCTCACA	CAACCCTTCA	CCCTCCTTTC	TCAGCCAGTG
1551	ATAGGTAAGT	CTTCCCTATC	TTGCAAGGCT	CAGCTCAAGT	GTCAGCTTCC
1601	TCTACAAAGA	CTTTCCTGGT	TCCCCTCATT	GGAGTGAACA	AGAGTTGACA
1651	TGGTAGAATG	GAAAGAGCAG	AAGCTTTAGA	ATGAGCCAGA	CCTGAGTATG
1701	AATGCTAGAT	CCACCACTTA	GCTAGTCAAC	CCTGCCCCCT	GCCTCAAGTT
1751	TTAATTTTCC	TATCCATTAA	GTGAATATAA	TAATACCTGT	GTCACAGGAT
1801	TATTTTGAGA	ATTAAATGAG	ATTAGGTCTA	TGAAAGCACC	TAGCAGAGTT
1851	CTTGGCATAT	AGGAGGCATT	CATTAAATAT	TTGTTCTTCC	CCTTTTATAC
1901	CCATTACTTT	TCTTTTTCTG	AACTAAAATA	ATACTTGGTT	CTATCTCTGA
1951	AATAACATCC	AAGTGAAAAA	TCAACAACAT	GAAAGAGCAG	TTCTTTTCCA
2001	GTGGATTTGC	TTCTTAAGGA	GCAGAGATTA	TGTAATCTAA	CAGCCTCCAA
2051	CATACAAAGA	GCTTTGTATC	TAGAACAGGG	GTCCCCAGCC	CCTGGACCGC
2101	CAACTGGTAC	GGGTCTGTAG	CCTGTTAGGA	ACCAGGCTGC	ACAGCAGGAG
2151	GTGAGCGGCG	GGCCAGTGAG	CATTGCTGCC	TGAGCTCTGC	CTCCTGTCAG
2201	ATCAGTGGTG	GCATTAGATT	CTCATAGGAG	TGTGAACCCT	ATTGTGAACT
2251	GCACATGCAA	GGGATCTGGG	TTGCATGCTC	CTTATGAGAA	TCTCACTAAT
2301	GGCTGATGAT	CTGAGTTGGA	ACAGTTTGAT	ACCAAAACCA	TCCCCCCGCC
2351	CCCCAACCCC	CAGCCTAGGG	TCCGTGGAAA	AATTGGCCCC	TGGTGCCAAA
2401	AAGGTTGAGG	ACTGCTGATC	TAGAGGACCA	ATTTATTCAA	TGTTGGTTGA
2451	GTAAATGAGC	TCTTGGATTA	GGTGATGGAA	AAATCTGAAA	AAACAGGGCT
01					

Jan. 22, 2002

	•				
	TTTGAGGAAT				
2551	TGGCTGTTGG	CTGGGAATAG	TCATAGGAAG	GGCTGACACT	GAAAAGAAGG
2601	AGATTGTGTT	CGTTTCTTCT	TCTCAGAGCT	ATAAGCAAAG	GCTGAAAGTT
2651	CTAGAAAAAG	GCAAGTTTTG	TTTCAGTAGA	AAAAAGGATA	ATCAGAACCA
2701	TTTTTAGAAA	ATGGAATGAG	ACTACTTTTG	AGGCCATGAG	TTCCTTGTCC
2751	CTGGAGAGAT	GAGCAGAGGT	TGGACAAGTG	CTTACCAGAG	ATCTTGTGGA
2801	GGCAGAAACT	GTGCATCTAG	CAGAGCATTG	GCCTAACCCT	TTCAAATGAG
2851	ATGCTGTTAA	CTCAGTCTTA	TTCTACATGG	TAGGAATCCT	GTCCCTTTGC
	CTCCTGCTAC				
2951	ATGTCTGGAG	GTGTCCAGGC	TGTGGGGACC	ACATTGCTCC	AAGCCAGATA
3001	TGGTACAGGA	CTGTCAACGA	AACCTGGCAC	GGCTCTTGCT	TCCGGTAGGT
	GGGCCTATCC				
3101	ATGTTCTGAT	GGAAAACACA	GAAACAAGCT	TCTGAGTTGA	GAATTTCAAT
3151	CTTAGGGTGG	GGAAAGGAAT	GTACCAAGGA	AGAGCTCATG	ACCAAACCTC
3201	AAGTGTGGCC	CCCCTGAACC	CAGGTTAAAT	TGGAAGAGCC	ATAAATGGGC
3251	CAGCTGGAGG	CAGGGTGGG	GGATGAGAGG	AGCCCTTTCC	AGGGTTGTCC
3301	CATATCCCTC	ACTITATGGG	TGAGGAAACT	GAGGCCCAGG	AAGAGTGACT
3351	TTCCTGTGGC	TGCACTACAG	ATTATGCAGG	TACTTCAAGA	GTTGTTTGTA
	TICTTATTTT				
	AGGGATTCTT				
	CACTGCAATC				
	CTGAGTAGCT				
3601	TATTTTAGTG	GAGACGGGGG	TTTCAACATG	TTGGTCAGGC	TGGTCTTGAA
3651	CTCCTGACCT	CAAATGATGC	ACCCACCTCG	ACCTCCCAAA	GTGCTGGAAT
3701	TACAGGCGTG	AACCACTGTG	CCCAGCCAAG	AGTIGITITI	AGTGTGGTTG
	GCAGAGCCAG				
	TTTGTTACTA				
	TATTATTAT				
3901	TACAGTGGTG	CGATCCCGGG	CTCACTGCAA	CCTCTGCCTC	CCGAGTTCAA
	GCAGTTCTCC				
	CACCACACCC				
4051	TGTTGACCAG	CCTCCTCTCC	AGCTCCTGAC	CTCAGGTAAG	TGCTAGAATC
	ACAGGCGTGA				
	CAGAGCCAGC				
4201	TGTTACTAGC	TITATTATAG	CTACATTATT	ATTATTATTG	TATTATTAT
	TGAGACAGAG				
4501	TTGGCTCACT	CCAACCTCTC	CCCCCAGT	TCAAGCAATT	CTCCTGCTTC
4301	AGCCCCCCTA	GTAGGTGGGA	CTCCAGGCAC	CTGCCACCAC	GCCCAGCTAA
4401	TTTTGTATT	TITACTACAC	CCCCCCCTTTC	ACCTTGTTGG	CCAGGCTGGT
					CCCAAAATGT
					ACATTATTTT
					ATCAGATTTG
					GATGGTAATA
4661	ATCTTCTTCA	CATTCAATCA	AATAATATAT	CCACTCTATC	CAGTACATGG
4701	TAGACACCCA	CTCAATCCTT	ATTCCTTCCT	CCCATCGGAT	TEGAATTETE
4701	AACCCTCCCA	ACTICICITY	ATATTCTTCA	CAACGTAAAA	TAGTTGAAAT
4/01	ADDUIDDDA	MOTIGICITI	ACTCCACTCC	ACACCITACA	TGGGCATGCC
40U1	TOCCCCCCAA	CTCTCAACT	CCTACCCCTC	TCCCTATATC	CTGAGAATGA
1001	CATACACTAC	CCACCCACCT	TETECTOTA	ATTCCACCTC	CTGCACATAG
4701	CTCTTCTTCT	AAAACATCCC	TOTOCTTATA	CCAACTAATT	GAGTTGACCT
4951	CICIIGIIGI	AAAACATUUU	igitaci IAIA	CCAAGTAATT	UAGII UACCI

	•				
5001	TTAAACACTT	GCCTCTTCCC	TGGGAACCAT	ATAGGGGATT	GGCCTGGAGA
5051	CGTCTGGCCT	CTGGAAGAGT	TGGAAAGCAG	CCATCATTAL	TATCCTTTCC
5101	TITCAGCTAT	AACTCAGAGC	TCTCAAGTCT	TTTCTGTGGA	TCTTALTGCC
5151	TTGGTTCTTG	CCCCTTTTAC	TCCCAGGGAA	GTTGATTCTG	TCTTTCTGT
5201	TCCATTTAGT	ATGACAGGAG	CAGAGAATGT	CAGAGCTGTA	AGGGACCTTA
5251	TAGTTAAAGC	CTTTGGCTGG	TCCTTTCATT	HATAGCIGG	GALTAATAAG
5301	TAACGTCAAA	ACCCAATGAG	TTCACAGATT	GGGTCTCGCC	ITGGCATGTA
5351	ACCCATATGT	TCATATTCTT	GCTGTTTTCC	TATGIGIAIG	AAIAIIIICI
5401	ATCCAAAATA	AGCAGGACAG	GGTAGAGCAA	GTTAATCIII	GGAATIICIG
5451	GATTCTCTTA	GAGCTAAAAA	ACTTCAGAAC	TAGAAGAAAC	CACCCACTAT
5501	ATGGTATAAC	CCATTCATAT	CACAGATGAG	GCCTGAAACC	AAAAAGACTI
5551	GCTCAGGCCA	TGGATGACAA	GAGCTGGCCC	TAGCACTGAA	CICIIGGGIC
5601	ATTTGTAGGT	CTAGTCAGAT	GCTAGCTTGT	TAGCTCTGTG	CGIGCGIGIG
5651	TGTGTGTGTG	TGTGTGTGTG	TGTGTGAGAT	AGAGACAGAA	AGATAACATA
5701	ΤΩΤΔΛΔΛΔΔΔ	TACATAAAGA	GGAAGTAGAC	ACGTTAGCAT	GGTAGATAAG
5751	AGTACAGGCA	GGCCAGGCGT	GGTGGCTCAC	GCCTGTAATC	CCAGCACTIT
5801	GGGAGGCCAA	GGCAGGTGGA	TCACCTGAGG	TCAGGAATIC	GAGALLAGLL
5851	TGACCAACAT	GGTGAAACCC	CATCTCTACT	AAATACAGAA	AAAAAIIAGC
5901	TTGGCATGGT	GGCACATGCC	TGTAATCCCA	GCTACTTGGG	AAGCTGAAGC
5951	AGGAGAATCG	CTTGAATCCG	GGAAGCAGAA	GTTGCAGTGA	GCCGAGATIG
6001	TGCCATTACA	GTCTAGCCTG	GGCAACAAGA	GGGAAACTCC	ATCGCAAAAA
6051	AACAACCACC	ACCAAGAGTA	CAGGCTATGG	AATGAGACTA	TGGTTTTAAA
6101	TCCTGGCTTT	GCAATITATT	AACTAGCCTT	AAGTGACTTC	CCTGAGCTTC
6151	AGGCACCAAT	CTGTAAAATG	AGGATAAGAA	TATTACTCAT	GCCACATGGT
6201	TGTTAGGGAG	GATTAAATGT	GATAACCTAT	ATAAAGTGGC	TAGCATAGCA
6251	TCTGACATAT	AGAAAACTCT	TAATAGGGCC	GGACGTGGTG	GCTTATGCCT
6301	GTAATCCTAG	CACTCTGGGA	GGCCGAGGCA	GAAGGATCGC	TTGAGCCCAT
6351	GAGCCCAGGA	GTTTGAGACC	AGCCTGGCCA	ACATGGCAAA	ACTCCACCTC
6/101	TACAAAAAAT	ΔΥΙΙΔΙΑΙΑΤΑΤ	TAGCCAGGCG	TGATGGCACA	CACCTGTAGT
6/151	CCCAGCTACT	TGGGAAGCTG	AGGAGCGATG	ATTACCTGAG	CCCAGGGATA
6501	TCAAGGCTGT	AGTGAGCTGT	GATCATGCCA	CTGTACTCCA	TCCAGCTGGG
6551	GGACAGAGTG	AAACCCCTGT	CTCAAAACAA	AACAAATGAA	AAAAAAAACC
6601	CTTAATAATC	AGTAACTGTC	ACTITATATT	ATGTTGTGAG	TGTGTGTCTA
6651	TATACACCTA	TATGTATACA	TITCTCTTAT	TACACATTCA	TTGGTGATCT
6701	CATCTCCACC	CCCAGGGATT	AAGGGCAACT	TTGAACTACC	CTGACACAAT
6751	CAACCCAAAT	ATCATTCCCG	TGGAGGAAGT	AGAGTATCTA	GGTTCTGTCT
6001	CANGCCAAAI	CCTTTACCTT	GAGGACAGAG	ACTCTAATCC	AGCTGTGCTG
6061	. CCTAGTTGCA	TOTOCTEACT	TCTGAGCTTT	CCCCTGGTAA	ATTCAAACTG
6001	AAGGAGCACA CATCTCACCA	CCCCCTCACA	TAGAGCCTGG	TAATTTGCCC	TGGGGAGAGT
6051	CATGICACGO	TCCATCTAAT	TTGACTTTTG	CCCCAGTTGG	AGGAAAATCT
7001	TOACIGICIII	CAACCATTCT	ATTIGICTO	CCCCAGAGAT	AACCTGGGTT
7001	TONGGOUNG	TEEEECATE	ACCTGAATGG	TCTTGTAAGA	TCTCTCCCAC
7101	CCCACCTTCC	CACTCTTTCT	CTCATCAATT	TAGAGTACCT	GAGTAGTGCA
7101	CCCCTCCTCC	CACCACCACT	CTCCCTCTĠT	GCTACTCAGA	GAAATTCATT
/15l	. GGCC1GC1GC	WAGGAGGAC 	TTCTTCTG	APPETORACION A	CTACAGTTAC
7201		, LUCTICUAGO ATCACTTTTO	, CIIGCICIIA • TTCTCCCTI	CCCCCAGTAC	CTTTGTTTTC
/251	AAIAAAGGAA	CATCACILIIC	CATATTEAAT	CCOCCAGIAC	CTGGGGTCCA
/301	LURGICACAC	CTCCCCTCAT	י מאואווטאאו	TATTACCCC	TTCTTCTGTC
/351	TOCACCCACA	, CICCOTOR!	TC1000117	AGCCTTCCG	CAGACCCTCA
740		N TOURTHATUU	, IGCCICIGII	GCTGGAACCT	CAGACTGTGC
/45]	שטוטוננאטנ	ACAACAGGAA	GUIACITAA	acidamico	J/10/10/10/10

7501	AATGGAGGCC	AGTGACAAAA	CTGAAAGTAG	CTCTGTCAGT	AATTGTGCTG
7551	GTGCGATTAG	GCAGCTGGCC	AGAATCTTTT	GGATCTCCTG	GACATATGGC
7601	TGACTAGTCC	TCCCAAGCCT	TCCCAACAGG	CCTCTTTTTT	
7651	TCTTTCTTT	тттсттс	ттсттст	TCTTTTTTTT	TTTTTTAG
7701	GCTAGTGAAG	TGAAATTGTG	GGAGTGGAAA	AGGAACAAAG	AAA I CGG I AA
7751	CTGGTAGTGA	TCAATTACTT	GTAAACACTÁ	TTGTACTTGG	ACCAGCCCAG
7001	TAGGCCTTTT	TTAAAACTCT	GAGTTACCTC	TCTTTCCTTT	CCTTGAGCAG
7051	TGCCATTAAT	TCTGTATCTG	GGGCAATCCT	TTCTGATGTT	CTCTGGACCT
7001	GGCTCTCTCT	CCTTAGGAGA	GGCCAGGAGA	GTAGCCAGAG	AGCATGTCAT
7051	TTGTAGCTGA	CCTTAGGAGA	TGGAGCTATC	AATGGTGACC	TGGCCTCTTG
7901	GCATGTTAGC	AACCCACACG	ACCTTGACAA	CTTTTTTGAT	GATTGTCCGT
8001	TCACCCTGAT	CAAACCTCTT	TCCCTTACCA	GGAGGGAAGA	AAAGCTACCC
8021	CTATTAGTCT	TOATCOCCCC	ACCETECETC	TCTATTGCTT	GACCTGGTTC
8101	TACCACCAT	TATCACAACC	AAAATCCACC	CCTCTTAAGG	CTCCTGGGAA
8121	CTAGCAGCAT	TATCAGAAGG	ACCATTCCAA	ACATAACACT	ATTTCACCTT
8201	CTTTCAGGAC	TICCITICIC	AGGATIGUAA	TACTCTCCCA	AACCCCTAAT
8251	TCACTTTTGA	AAAGCGGTTA	LIAATACCIA	CCAACACACAC	ATTTCCCCTA
8301	GCAGATAGAA	GACIGIGGIC	ACTGCATCAG	GCAACAGACC	CCTACCAACC
8351	AATTTAGTGA	CTCCAGGAAG	GCCAGTGAAG	AAA I AACACA	TTCTCTCATC
8401	AGAGACTGTG	TTGTAATATG	TIGGCTGACA	GCAGGGTACT	AACCAACCCT
8451	CTGAAAGCCA	CATTCATTTT	CTCTCCCCTC	AICCCCAICI	AAGCAAGCC I
8501	GGTAGAATCA	TAATTACAGT	AATAGGTACC	ACTIATIGAG	ACICIGIGE
8551	CAGACACCCT	CCTGAGCATA	CGACATGCAT	AGCACATTIA	ATTOOCAAA
8601	TGACTTAATA	AAATGTAGTA	CTAGTCTTAC	CTACTICGAG	AATAGGGAAA
8651	TGGAGGTTAC	TTGTTTAAAG	TCACAGAGCT	AATAGGTAGC	ATAGCTGAGA
8701	TITIGAACTCA	GGCATTCTTA	CTCCTTGCCT	GCAAGAGTCT	CHIGGCALIC
8751	TTGAATGCAA	GCATATTTCT	TAACCTCACT	GAGGCTCAGT	TICCICITAL
8801	ATAATATGGG	GTAAAGAGCC	CTCACCCTGC	CTGCCACACA	CIGGIAGIGI
8851	CAGATAACAT	TGAAGGGTGT	TAGTTTAAAG	GCTTCATGGA	CTCTATAATG
8901	TCAACAAAAG	TGCTGTTAAC	TTTCTTCTGG	GTCTCAGGCT	CCTGATGTAG
8951	AGTCAGTGGA	GCAACCCTGC	CATCTGCTGT	TATGCTGTTG	ATGTTGCTGC
9001	CACACTTACT	AACCTAAACC	TITGATTCTG	GCTGTGGCCT	TCTCCAGAAG
9051	GTGTTTACTC	ATTTGTCCAG	TTTATCTTT	AGGAAACAGC	CAGCCCGTAG.
9101	ATCATTAAGG	CTGGCTATTG	GACAGGGGGC	TGGGGCCTGC	CTGACAGAGG
0151	AAGGAAGGGC	AGACATCTGG	TTCTTCCTCT	GCCCCTACAA	GAGACTCCAG
9131	CCTGACCACA	GAGTGGTACT	CCTAGGATGT	AGCAGCAGCA	TATGAGCTTG
0251	AATGTGCCTT	AATCCTCCTC	TITACTITGA	GAAGAGAGAA	CTAAGGACCC
2231	ACAGATGTTT	CACAGCTTCT	ATAGGAGGCA	GAGGTAGAAA	AATGGAGAGA
0251	GATGAGGCCA	CACAGOTTOT	ACTGATATTA	ATTAAACGTT	GTATTAAGAA
3331	CCTCACTTAG	ATTATOTOATA	TOURTH	TAATAACCCT	GCAACCCCCA
9401	CCTTTTTTTG	ACAACACCCT	CTTCCTCTCT	TGTCCAGGCT	ACAGTGCACT
9451	CCITITIO	TACTTCACTC	CACTCTCAAC	CTCCTCAGCT	CAACCAATCC
9501	GGTACAATCA	TAGTICACIG	CAGIGICAAC	TACACCCCTC	CAAGCAATCC
9551	TCCCACCTCA	GCCTTGCAAG	CAGCIIGGAC	TACHOODIA	TAATACTATC
9601	TTGCCATTTT	HIHAHH	AAGTAGAAAC	AAGGICTIAT	CACCCTCCCA
9651	TTGCCCAGGC	TGGTCTTGAA	CTCCAGCGAT	CTCCTCCTCCC	CAGCCTCCCA
9701	AAGTGCTTGG	GATTACGGAA	GIAAGCCACI	AACOTTTOO	CTAACTTCTC
9751	CCATTTTATA	CTAAAACAGG	AAGGCCCAGA	AAGGIIIGGA	GIAACIIGIL
9801	CAGGGTCACA	CAGATGATAT	TTGAACTCAG	GICICCCIGG	CTCCCAAGAG
9851	AGTCTGCTTT	CCACTAGGAC	TCCCAGGAGA	AAAAAAAAA	AAAAAACAGT
9901	AGACTTGGAG	i acagaaaatc	: TGATTTGAGT	CTTAGTTGAG	CTAGGCTAAC
9951	TGTGTAACTG	TGGGCAAGTT	CCTTAGCCCC	TGTGAGCCTC	AGTTTCTTAT
			-100		

10001	CTGTAAAATG	TCATAAAAGA	AATCCATCTC	ATGGAGTAGT	TGTGATGATC
10051	AAGGACTCTG	AAAACATTAG	AATGGTTTAA	TGTGAAGGAT	TAGCAGCAGC
10101	ACATGGCAAC	ATTGTGCATC	TTATATTAAC	TATCCAAATA	TATCAAGCGT
10151	CATTTGCTAT	ATATAAAAGT	CATCAAATTA	GGCACTGTGG	GGGATACGGA
10201	GTTGGCATAC	TAGCCTGGCC	TCTTAATTAA	TTCATTAATT	AGCIIAIIIA
10251	TTTTTGAGAT	AGGTCTTGCT	CTATTGCCCA	GGCTGGAGTG	CAGIGGCAIG
10301	ATGATAGCTT	ACTATAGCCT	CAATCTCCCA	GGCTTAAACA	ATCCTCCTGA
10351	GTAGCTGGGA	CTACAGGCAC	ACACTACCAT	GCCCAGCTAA	АППППП
10401	ATTTTTTGTA	GAGACAGGGT	CTTGCTCTGT	TGCCCAGGCT	GGTCTCAAAC
10451	TCCTGGGCTC	GAGATCCTCC	CACCTGGGCC	TCACAAAGTG	TIGGGATIAC
10501	AGGTATGAGC	CACGGCACCT	GGCCTGGTCT	CTTAACTGGT	TCCCTAAGAC
10551	AGCTGGAAAT	AGAGAATGTC	ATGGAGCATT	CCTAACCATG	GGCTCCAGCC
10601	TGGCTTTCAT	TCTGTTTCTC	CCCTGAAACA	ACATTCCTTT	AGIAATATIC
10651	CGAATAACAG	CTTCATCAGT	CTGTCTACCG	ACCACTCTTC	AGGCTTCATC
10701	TTATATGACC	TCCCAAACTG	CACTAAGGGT	TGTATTAGAG	AAAAGTGGAT
10751	AAAGTTCGGA	GTCAGGCTGC	TTGAGCTTAA	ATGCCAGCTT	CACTTACCAG
10801	CCACCTGACC	ATGAGTCAGC	TGCTTAACCA	TTCTTTGCCA	CAGTTTCCTT
10851	GTCTATGAAA	AGGGAAATGG	CTCCCACCTC	AAAAAGTTGT	TAACATTAAA
10901	TTCAATCATG	TATTCAAAGT	CCTGAGCAGA	ATGTCTGGCC	ATGACTGGGA
10951	CTTAACAGAT	GTTAGCATTT	ATTATTAGTA	TCTGTCAGTC	TTGAAATGII
11001	CTCTTCCCTT	GGCTTTCATG	ACATTCCACA	CTCTCCTGGT	THETETIAL
11051	CTCTCTGGTA	ATACCTGTTT	GCTTATCCTT	CTTTGTCCAG	CTCTGGGATG
11101	TTACCATTCC	TTCAGGCGTG	CTGTTTTCTC	CTTAGGCAGT	CTIACACACA
11151	CTCATGACTT	CCTTCCATTG	TCCTCCACAC	ACTGATGACC	CTAVAVATUAG
11201	TATCTCCAGC	CTAAACCTTT	CCACTGAGTT	CTAGACCCAT	ATGTTGTACT
11251	ATCAACCTGG	CTTGTCCATT	TGAAIGICII	CCAGGCACTT	CAGACICICI
11301	TCTCTAGACT	TTGCTGGACT	TTCACTCTTC	CCCCTAAAAC	IGGCICCICI
11351	TCCACTGAAA	CATGTATGTC	ATTGAGAGGC	ACCACCATCC	ACCCAGIGCE
11401	TAAGCCAGAA	ACCTAGGAAT	CCTTGATACC	TGTTCTCTCT	CATCCTGCAT
11451	ATCCAAGCCT	ATCAGTTITA	TCTCTAAATT	ATATTTTGGT	AGGIIIACII
11501	стпсстпт	CTCCCACCAC	CACCCTGCTC	CAAGCTACCA	ACCOCCTAAT
11551	TGGATGTCTG	CAATAGCCTC	ATCTCCCACA	GCCACTCTGC	ACCCCCTAAT
11601	CTGTTCTCTA	TAGAGCAGTT	GGAAGGAGTG	ATTTTTGTTG	ACTOCACTOC
11651	TTTGTTTTAG	ACAGAGTCTC	ACTORGITOC	CCAAGGCTGG	AGIGUAGIGG
11701	CACAATTTCG	GCTCACTGCA	ACTICIGCCI	CCCGGGTTTA	CCCCATACCC
11751	CTGCCTCAGC	CICCCAAGIA	GCIGGGATIA	AGGCACCGGC	TCTTCCCCAA
11801	AGCTAATTTT	TATATTITIA	GTAGAGATGG	GGTTTTGCCA	CCCCCTCCCA
11851	GCTAGTCTCG	AACTCCTGAC	CICAAGIGAI	CCACCTGCCT	CAACCACTCA
11901	AAGTGCTGGG	ATTACAGGTG	IGAGCCACIG	CACCTGGCTG	ACTOTOTOTT
11951	TCTTAAAAAA	AAAAAAAAACA	AAAAAAAAA	TGACTGTGTC	CTTCCATAAA
12001	GTCTCTCCTA	CCTIGIATAC	TICCACAACT	TOOCTOACAC	CTTGGATAAA
12051	GACCAAAATC	CTTAACTTGG	CCAGGCGCGG	TGGCTCACAC	CACATTCACA
12101	AGCACTTTGG	GAGGCCGAGG	CAGGCAGATC	ATGAAGTCAA	ATACAAAAAT
12151	CCATCCTGGC	CAACATGGTG	AAACCCCATC	TCTACTAAAA	TOCCACCCTC
12201	TAGCTGGTCG	TGGTGGCGTG	IGCCIGIAGI	CCCAGCTACT	CTCACCCCAC
12251	AGGCAGGAGA	ATCACTTGAA	CCTGGGAGGC	AGAGGTTGCA	CCATCTCAAA
12301	ATCACGCCAC	IGCACTCCAG	CCIGGIGACA	GAGTAAGACT	TACACCCCTC
12351	AAAAAAAAAA	AAAAAAAAAA	TICCHAATI	TGGCCTACAG	CCCTCCACTT
12401	CGTAATGTGG	CCTCTCTCCA	CATCTCCACA	ACCTCCTGCT	CCCCTTTCTT
12451	CAGCCTCACC	ICICITCIGG	ACAGGCCCTC	CTTCTGACAA	GUUCIIIUII

12501	CATTCTGCTC	CCTCTGCCTA	GAATGCCCCC	TTACTCTGTT	CACTTAACTC
12551	CTGCTTATCG	TTTAGATCTT	TACCTGGATG	GCTCAGAGAA	ATATAGAAGI
12601	AATTCCTCAC	CCTGAAAAAT	AGGTTAGGTC	CCTGTTTTAT	GTTTTCATAG
12651	ACCTTTCCTT	TGAGGCTTTT	TITAAAAAAG	TAGTTTTAAT	CTCACATITA
12701	TTCATGTGAT	CATCTCCTTA	ATGATATCTT	AAGACCTCTA	ATAGAACAAT
12751	TTGGTCATGG	ACTGTGGGGT	TTTTGCCCCCT	CATTGIGICA	GCAC I GAGCA
12801	TATTGTTGGC	ATAGGAGGA	TATTTGTTGA	ATGAATTGCT	AGAGGTGGCC
12851	AAGAGATATG	ATGTAAGTCA	GGCTTTTCCC	TGCCCTTCCC	CTTCCCCTTC
12901	CCCACATCCT	TCCTATAGCA	GCCACCGTGG	CTGCAGTTAC	TGTAAATGGC
12951	AAGACGGAAT	CAGTTCCGGA	CATTGGGTTG	TTTTAGAAAA	TTGCCTGCAA
13001	GTGTCAGGGT	GATAAGTTAA	AGCTTTGTCT	TTTGCCCTCA	GAGGAGCTAT
13051	CCCATAGTGA	GTAGAAGCCA	GAGAAGCTGA	CCCCAGGAGT.	CCTTCTTTCC
13101	AGCAGCAGGT	CTTGAGCTGC	ACTTCTCTGT	AGCTACAATC	CAGGCAGGAA
13151	CAAGCCCTAG	GTACCTCCGG	AGAGGAGGGC	AAGAGAGGAA	GAATGAGTTC
13201	AGCTACTCTA	GCCACCAAAC	TGATTATGAA	TTGCCCTGAA	ATCTGAAAAA
13251	TTTCAATTCC	AATCGTAAGT	TIGITITGIT	TCATTTTGTT	TTCTTAAATT
13301	GTATATTTGA	AAGATGGCAT	TAACTAAAGA	TATATATTCA	ATATAGAGIG
13351	GAAAAAATGG	AATACTTGCA	TAGTATCTTT	TACTTATAGG	TGATTTATGA
13401	TGGGGAGTGG	GGTGGATAGG	TTGGCAGTTC	CCCCAAGAAG	TTGGAAATGA
13451	AGTTTGTCCT	CTGTGAGTTG	AACTAATTAG	ATCCACAAGT	AATGAAAGCA
13501	GTATTGTGTT	GTAGTTAAGA	GCACACTCTA	GAACCAGATT	GCTTAGTTTC
13551	AAATCCTGGT	TCTGCCTTTT	ATTATCTGTG	TACTTTGGGC	AAGTTACTTG
13601	CCCTTTGTGT	GCTTCATTTT	TCTCATCTAG	AAAATGGAGA	GGCCAGGCGT
13651	AGTGGCTCAT	GCCTATAATC	CCAGCACTTT	GGGAGGCCGA	GGCGGGCAGA
13701	TCACCTGAGG	TGAGAAGTTC	AAGACCAGCC	TGGCCAACAT	GGTGAAACCC
13751		AAAATACAAA	AATTAGCCAG	GCATGATGGC	GGGTGCCTGT
13801	AATCCCAGCT	ACCCAGGAGC	CTGAGGCGGG	AGAAACACTT	GAACCTGGAA
13851	GGCAGAGGTT	GTAGTGAGCC	AGGATTGCAC	CACTGCACTC	CAGCCTGGGT
13901	GACAAGAGCT	AGACTCAGTC	TAAAAAAAA	AAAAAAAAAC	AAACTGGAGA
13951	TACAGGCTGG	GTGCAGGGCT	TACACTTATA	ATATCAGCAC	TTTGGGAGGC
14001	CTAGGCGGGA	GGATTGCTTG	AACTCAGGAG	TTTCAAGATC	AGTCTGGGTA
1/051	ACAGAGCAAG	ACCTCATCCC	CACAAAAAAT	CAAAAATTTA	GCCAGGCATG
1/101	GTGGCTCATG	CCTGTGGTCC	CAGCTACTCA	GGAGGCTGAG	GCGAGAGGAT
1/151	TGCTTGAGCC	CAGGAGGTTG	AGGCTGCAGT	GAACCATGAC	TGCACCACTA
14101	CATGCCAGCC	TECATEACAG	ACCAAGACCC	TATCTCAAAA	AAAAAAAAA
14201	AAAGAAACGA	CCCACCCCC	TTTCCTCACG	CCAGTAATCC	CAGCACTITG
14201	GGAGGCCAAG	CCACCTCCAT	CACTTGAGGT	CAGGAGATCG	AGACTAGCCT
14301	GGCCAACATG	CTCAAACCCC	ATCTCAACTG	ΔΔΔΔΤΔΓΔΔΑ	AATTAGCCAG
14331	GCATGGTGGC	ATCCTCCTCT	ACTOCOACOT	ACTCACTTGG	AGGCTGAGGC
14401	ACGAGAATCG	CTTCAACCCA	CCVCCCCCC	CTTCCACTTGG	GCCAACATCA
14401	TGTCACTGCA	CTCCACCCTC	CCACACACACAC	CCACACTCTC	TCTCAATAAA
14501	TAAATAAACA	TAAAATAAAA	TAAAATAAAA	TAAAATAAAA	TAAAAAATA
14551	TAAATAAACA TGGAGGCCAG	TARRATARAA	CCCTCACCCA	TOTANTOCOA	CCACTTTCCC
14601	LOGAGGUUAG	CAGGCACGG	CAACCTCACC	ACATCCACAC	CATCCTCCCT
14651	AGGCCGAGGG	AACCOCCTCT	CTACTAGAGA	TACACAAAAT	TACCCACCCA
14/01	AACACAGTGA	AACCTOTACT	CCCTCCTACT		ACCC ACCACA
14/51	TGGTGGCAGG	CACCIGIAGI	COACCETTOCA	CHUUMUUULIU	AUGUAGAGA
14801	ATGGCGTGAA	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ACACCA ACAC	TOTOTOTOA	MICGCGCCAC
14851	TGCAGTCCAG	CC TGGGCGAC	ADADUAADAU	CCTCTAATCC	CACCACTTTC
14901	AAAAATGGAG	00000000	CACCTCACCT	CACCACTTCC	ACACCACCOT
14951	GGAGGTCGAG	GUGGGGGA I	CACCIGAGGI	CAUUAUTICC	AGACCAGCC I

15001	GGCCAACATG	GTGAAACCTT	GTCTCTACTA	AAATTACAAA	AATTAGCCAG
15051	GCACGATGGC	AGGCACCTGT	AATCCCAGCT	ACTTAGGAGA	CTAAGGCAGG
15101	AGAATAGCTT	GAACCTGGGA	GATGGAGGTT	GCAGTGTGCT	GAGATCGCGC
15151	CACTGCCCTC	CAGTAGAGTG	AGATTCCGTC	TCAAAAAAAA	AAAAAAAGAA :
15201	GAAATGGAGA	TACAAACTTA	CTACCTACCT	CCTTACAACC	TACCCTCACA
15251	GTATTACTGT	GAATAAAAGT	GTGTGTAGCA	CTGGGAACAC	TATTCACAGA
15301	GCACTCATGA	ATGTTTGTTC	TTTGTTATTA	GTTACTAGAG	AGGCAAATGT
15351	CTGCCAGGGC	TGAATAATAT	GTGTGAATTG	GTGATTGTCG	CACATATOTA
15401	AAGAAGTAGT	TATTTTTTC	AATTAAAACT	TAGTTTAAAA	ACCAATATAA
15451	GGCCGAGCGC	AGTGGCTCAC	ACCTGTAATC	CCAGCACTTT	GGGAGGCCGA
15501	GGTGGGCAGA	TCATTTGAGG	TCAGGAGTTC	GAGACTAGCC	IGGCCAACAT
15551	GGTGAAACCC	TGTCTCTGCT	AAAAAAAAA	AAAAAGTACA	AAAA I IAGUU
15601	AGGCATGATG	GCAGGTCCCT	GTAATCCCAG	CTACTTGGGA	GGCCGAGGCA
15651	GGAGAATTGC	TTGAACCCAG	GAGGTGGAGG	TTGTAGTGAG	CCGAGIIIGI
15701	GCCACTGCAC	TTCAGCCTGG	GTGACAGAGG	GAGACACTGT	CICAAAAAAA
15751	AAAAAAAAA	ACCAAAACCA	AIAIAAIAAA	TAAGTGGCCA	CACATAAACA
15801	AGAAAGTGAA	AAGTTAGTGA	AGCAAAACTA	GTACTGTATT	CAGATAAAGA
15851	TGCTGAATCT	AGATTTGGTC	ACCAGAATAG	GGTCCTTTGT	TTCACTCCCT
15901	GCTAGTTTGG	CTGACTCACC	ACTUCCAGGA	TGAAATTTCT	COTTOTOATO
15951	ACTCATTTCC	CTITATTIIA	AGTCCATGCT	CACAGAGCAA	CTCCAACTAC
16001	CCTAATTCAG	CTTCCTGGGA	TACTTAATAA	CAGGAAGGGT	LIGGAAGIAG
16051	TACCTGTATA	GGGGATATGA	GIGITCIGAT	TTTAATAGTC	CACAATCTCT
16101	TGTACAGAGG	GIIIGAIAAA	IGGITAGGIC	AGAACCATCA	CAGAAIGICI
16151	ACACCICIII	GGACATTAGG	AAGGTCAAAA	ACCTGAAAGG	CAACACTTCT
16201	GGCCTAGATT	AGGGICATIC	ACCAAGAAAA	CATCAGCCTT	CTTCCTCCTT
16251	CIGGGIGGIC	CACCAGICAA	CCITCUITG	ATCACACCTC	TOCTCACCTA
16301	GCTTCTTTAA	GCATTGACCT	GIAAIGGGIA	TGGAATTTTT	CATTTAATCC
16351	ACTCCTTCCT	TTTACAGAGG	AAGAAGTIGA	AGCCCAGAGA	CATITITECAC
16401	CTTGCCTAAG	ATCACACGCA	GATTITUGI	TAACCAGGGT	TACACATTTC
16451	GIGIICCCIG	CCAGACGAGG	GCITTITICC	TTGAATTGCC	ACCATCTCCC
16501	TIGAGATATC	CGAAGCATTI	TICCCAGIGU	AGCCTGGAGA	AGGATGTCCC
16551	TGTCAACACA	GCAILIGITA	CICAAIGIIA	GACATTCAAT	CCAATTCCAT
16601	GIAICAIGGA	GCAACAGIGG	AIGALIAICI	ATAAGGGGTT	TAAAATCACA
16651	GCTTATGTGC	TIACAGCCCA	CACCACAAAC	TATCAGCTGT	CTCTTACTCA
16/01	AGGCAGTAGA	GATGTGGCCC	CAGGACAAAG	GCATACTCTG	CCCAACTCTA
16/51	ACACTAGIIG	GULAGLAAAT	ATTCACACAC	CATATACACG	AACTAAACAT
16801	GACTITAGGC	ATTACACATTA	ATTUAGAGAG	CCAAACTGGC	AATCACTCCT
16851	CAGCATICIC	ITIGGCATT	CAGCILIGUG	TTCTGTTAAA	ACTCTTTACC
16901	IGCTTAAATA	CCICIGATAG	TOOTSTOCK	CCTGTAGGCA CTACTCTCTT	CCACCATTCT
16951	CIAGCAGACI	CTAATTCCTC	CCCATATCTC	CONTOCACTA	CACCATTACAC
1/001	GGCCTCCTGT	CIAATIGCIG	CCATACCATA	CCATGCACTA	CTCACTCCAT
1/051	ACCIGCICAG	CGITATATGA	GCCCACATA	CTCTTTATGC	CICAGIGCAI
1/101	IIGCACAIGI	ACTOTOGOAA	TACCATCCCA	CCTGTTACTG	ACCACCCCC
1/151	AGCCIATIAG	AGICIGCCAA	CTCCCCACCA	TCTTCTGTGG	TOTTOTOTOT
1/201	CGCCAAATCC	ACCCATACCT	CTUCULALUA	ATCAGAGACT	TOTATTTOAC
1/251	IIGHAHCI	CHUGHAN	ATCACTCT	CICAGITATA	TCCATTTCAG
1/301	CTCCACCCCT	ATCTACTTC	TOTTTOTATO	CCVCVCCLLV	TTCTCCAAGT
1/351	TACAATOTAG	AILIAGIIIG	CACTCTTTCC	TOCOTONATO	GCAAAGTGCC
17401	TOWACCACTO	TTTCCACACT	TCAATAAACT	CCATCCACTA	ATGTATTTGT TGCACCATTA
1/451	TUAACUACTO	ITTUUACACACT			IUUNUUNIIN
			100	,	

Sheet 13 of 41

17501	CCATCTCTTC	GCTCTACAAT	ATTCTTTTAG	GCAAGAGCTT	ATCTTTTGAG
17551	GTGATAAGAT	AAGCTCAAAC	TTATGTAGAC	TAAGACCTCA	GICIGIAAAI
17601	GTC ATCCCTA	AGTCTTAAAC	CATCAAAACC	AGGGCCTCAA	GGAA I GGCA I
17651	CCCTTCTCCA	ACTGTAGCAA	CCTGCTGTGC	HALLIGUL	GIGILLION
17701	TTTTCCCCC	ΛΛΛΛΩΟΤΔΩΔ	GTCCCTTCIC	CCA I GGGCAG	GC GGAAGI
17751	GTGCTAACAA	ATTCTTTCTC	CATACIGCII	ALGATTALAA	AAAAAAACCCI
17001	CACCATCTCA	TGCCAGACTT	GAGTTAAGGT	IGITILLIT	IGIGIGICAG
17951	CTGTATTCTG	GTCATGACTT	CCTGATGATG	CCCTATAGAG	AIIIIGCIGA
17901	GATCAGAGGG	TGCTCCACTG	CCATCAGTAG	CACTGACTCT	IGCAGAAGCA
17051	CCCTTTCTCA	ACTTCCCTAA	TGTCATCCCL	CACGIIIGII	IGIIIGAAAAI
18001	TIGTTITAGT	TCCAGAGATA	GCACTTTCAT	GGAATGACGC	TATCTTCTAG
19051	AATCACTTTT	\Box	TGAGTTGGAG	ICICGCIGIG	CUCAUUC
10101	CCACTCCACT	CCCACAATCT	CAGCTCACTG	CAATCTCCAC	
10101	CAACTGATTC	CCCTGCCTCA	GCCTCCCGAG	GAGCTGTTAC	TACAGGCGCA
10131	TOACCOCACT	CCTGGCTAAT	TTTATGTGTT	TTAGTAGAGA	CGGGGTTTCA
10251	CCCTCTTCCC	CACCATCCTC	TOGATOTOGT	GACTITIGIGA	ICIGCCIGCI
10201	TCACCCTCCC	AAAGTGCTGG	GATTACAGGT	GTGAGTCACC	GCGCCTGGCC
10301	TAGAATCACC	TTTTTATACC	ATAACGTGAG	CACCACTGCC	GCGTCACCAA
10331	CCANACACAC	AGGCAGCTAC	TGTGGGGTTA	CAAATGGGTA	AGAGTGGCAC
10401	CACCAACCTC	AAAGTCTCTA	CTTAGCCAAG	GCTTAACAAA	ATGTCAATCA
10501	CANACATTI	ATTATTAAG	CTACGTTCAG	GATAAGAAGA	TGAACAAGCT
18501	ATCTGTACAT	TCATTTTCTC	GTTTGTAACA	AGGTAATGAT	AGTGATCTAT
10551	CCTCCCTCCC	TCTGAGGGTT	ATTGTGAGAA	TAAAATGAAA	TCAAGTGGAA
10001	AACCACTTAG	CAAAAGAAA	AGCATTGGTT	TTCAATTGTT	AGTGTGGATC
10701	ACAAACACTC	CCCCTTCTTT	AAAATGCAGA	TTCTTAGCCC	CAGTCTCAGC
10/01	CATTCTCATT	CTCTATATCT	CAACTGGGAC	TCAGGAATCT	TGATTITCAA
18/51	CAACCTCACC	ACACCCTCCA	ATCCTCCTAT	TCCTTTAGTT	ACACTTTCAG
18801	CAAGCIGACC	AUAUUUUIUUA AAAATAAAA	TCCCAACAAT	AAAATAGTTA	TTTGAGGCAG
18851	AAATATTACT	44441CA441C	ACTCCAAACA	CTTGGGTCAA	ACTCCAGCTT
18901	TOTOACTTCC	TACACCTCTC	ACAMATTONA	GCAACCTTCT	CTGTGAACCT
18951	TACTTCCCTC	ACCAACCIGIG	CTCCTCACCT	CCTGCTGTAC	TCCATTGATG
19001	ACTORCOACA	TAACCCTCCC	TCCCACTCC	CCAAACCTTT	GCTCTCTTAA
19051	ACTUACCACA	ACCCTCCTAC	ATCTCCTCA	GGTGCTGTCT	TCTCCTCCTT
19101	CICCITIAC	, AGCCICCIAC	ALVECTOR	TTCTCCTCTG	GGAAGGGTTC
19151	. ITTUCAGGU	, CIGUIUIGAU	ACADEMITE ACACATA	AGGAAGGACC	CTGTGGCCAT
19201	. CTICAATGIE	: ILILLAAGLA	AACTACCTCA	ACCCACCCAC	TAGGTACTGT
19251	AICIGICIAI	CACCAGAICA	CCCCATACCA	AGGCAGGCAC	GATGCCTAGT
19301	CAGIGUUCAG	LAIAGGCCIG	ACCCCCATCA	GGTGTCCACA	TAGCACTAGA
19351	AAAGAAACC	AIGAIICAGG	ACCCCCATGA	TGAGCAACTA	ACAGAGGGCT
19401	ACAGIGATA	A TAACTAATGI	11A1AA1GC	TCTTCAGTTT	TCACCAATAT
1945]	L TITGTACTC/	A ICAICIAGII	ACCOUNTEDAT	AACAACCTCT	TTTATCCAAG
19501	L AGCACAAGC/	A GGACAAGGGA	ACCACTCAA	\	TTTATCCAAG
19551	LTTTATGCTG	GGGAAGGG	AGUAUTGAA	ነ ነ <i>ነ</i> ውውውውውን • ልቦርተርተለርርለ	AGTTTTCTGA
1960	L GCTCAAATC	CATGCCCTTT	CUICAAIGIG	AGCICIAGCA	AGGTATTCAG
1965	GAATCCTGC	CICIACAGIIC	AGAGCCICA	A MINGLINGO	ATGTTGAGTT
1970	L CTTGTATCT	ATTITICIA	ATTOCCTOR	, CACATICITA NAATOOAAOA	CTGTCTGGAT
1975	L ATCAGGAAA	AGITTATCA/	AIGCCIGIGO	AMMICCAMUM	TAAGGTCTCA
1980	l tgatgagta	a cccagtgaav	ALAIGAAGIL	, AAGILIAALI	AGTCACTACT
1985	L ATTTCACTA	TGCTGACTC(IGATGATCAC	3 UIUUIIIIUI	AAGTGCTTAC
1990	1 TGTCCACTT	A TTCCATCAT	J IGCCTAGAA	I IIAIGIGAAG	GAATCAAAGC
1995	l aaaaggatc				TCCTTTTTGA

		ACTTACCTAT	CTCCATTITT	ATTTCATCAA TACATCCCCA
2000T	AAACTGGGCC	AGTIAGCIAT	ATOCAACATT	ATTTCATGAA TACATCCCCA
20051	GCGCCTGGTA	TATAGTAGAT	ATGGAACATT	ACACTTTGGA GATATTGCAC
20101	CCATTCTCCA	GITTCTCCAA	AGTIACTAAC	AATGGTTCCA TCACTGTGCC
20151	AACATATTTT	CTTTTTCAA	TATALIGGGA	AATAATTCTC CCAGTCTGAA
20201	AATCTGAACA	CATTTCATGT	GACTIGGIAI	CCTCATATGT CTTGGGCTTC
20251	CAATTCTCCA	TTCCTAGTTT	CAAGTTCATG	AACIGIAAAA CAAAGGAIIA
20301	GACTAAATCT	CTAAAGTTCT	ATCCAGATGC	CAAATTCTTT TCTCTTTCCA
20351	TGATACCTAA	GATAGATGCC	AAATATTGTC	TTTTACCIGG IGITIGIGAA
20401	CATGACATCA	CATTACAGGA	GTAGCAGATA	CIAAACICIC ACICIGIAAA
20451	ACACTGACTG	AGTTCCATGA	GCCAGATACT	GAAGTGAGCT IGIICACAIA
20501	TGTTCTCATT	TAATGCTCAT	AACCCTGTGA	AGCTGGGAAT TGCTGGGACA
20551	TTTTATTTAT	TTATTTATTG	AGACGGAGTC	TGGCTCTGTC ACCTAGGCTG
20551	GTGTGCAATG	GCATGATCTT	GGCTCACCGC	AACCTCCGCC TCCCGGGTTC
20651	AACCCATTCT	CTTGCCTCAG	CCTCCGCAGT	AGCTGGGATT ACGGGGCACA
20001	CACCACCACA	TCCACCTAAT	TITGTATIII	TAGCAGAGAT GGAGTTTCTC
20/01	CATCTTCCCC	A C C T T C C T C A	CCAACACTTG	ACCTCAAGTG ATCTGCCTGC
20/51	CATGITGGCC	CAAACTCCTC	CCATTACAGG	CATGAGCCAC CATGCCTGCC
20801	CICAGCCICC	CAAAGIGCIG	CATCACTCCT	CCTATAATCT ACAAACTGAT
20851	CGGGACCCTT	GIIIIAGAAG	COCACCAAAC	GCTATAATGT AGAAAGTGAT
20901	TTGGAAGAGG	GGAGGAGTGG	GGCACGAAAG	ATGGTTAGTA GATGGGGGTG
20951	GTAATGCTTA	CCTTICAGIA	HIGGAGGCI	TCGGAGTCCT CAAAAATTCT
21001	CTTCCTTGAT	TGGAGTCCTC	CCAGCCAATA	GAGGGCTTCA CACAAACAGT
21051	TTCTTGGGTT	TTGAATTGTT	TGACCAGAGC	TITCTTCCGA CAAAAGGTTG
21101	GGGTGATTCA	TTCACTTACC	ACACCTTGCC	TGAACATTCA CTTGGGGCTG
21151	CCGGTTATGA	AGGCTATTGT	TCTCCAGCCT	GTCACAGACG CITIGAAGAC
21201	CTGTGCCTCA	GCTGGTTCTA	AGGAGTCAGT	TTGTTCAGCT CCGTGCCAGG
21251	TTTCCAACTT	ATGAAATGTG	CTGGAGATTA	ACACCTCTCC TGCCATTTTA
21201	TOCCTACTAT	AATTGCCAGT	CAAAGGATTC	CTGCAGIIGC CICIGGCAGC
21301	CATAACTGAT	GAATGTTCTG	CCAGCTGCTC	TGAGGACCTA GAAGAGCAGT
21/01	TTTCTATCCA	GGACCAGTTT	CCAAGGGTGG	GAGGGTGAAA TATATCCTCC
21401	ACTETEACAT	TTCATCTCCC	AGTGATGGGT	GGCTTGGGCC CTTTGAAGTT
21401	CCCTCTCACC	AACCACACAC	TTEGETETEA	GCAGCCAGCA GCTTATCACA
21201	TOTOCTCATO	AATCCTTCAA	ACCTTCCTCC	TGAAGTCTGA ATTTTTGGAG
Z1221	CTCAAATCCA	TTCCACCTCC	CACCCCCTTC	TGCTTCAACT CAGGACATGG
51001	GICAAAIGGA	CTTCCTCTTC	CACCCCCACC	CAGTTTTCAT GGCATTGAGA
21651	JUUDAAUAUU I	GITCUICIC	ACCCACCCAC	CAACTCCTTT CTAAGAGGAG
21/01	. IGICCICICA	CHAILCCC	TOCACCOTCC	CAAGTCCTTT GTAAGAGGAG
21/51	. IAGGGGGAGA	GGAGAGCGCC	COTTOCALCAC	TGCTCACATT CCTAGACACC
21801	. GACTCACTGA	GCCCGTCGCC	GCTGGAACAG	CAGAGCTGTG TGAAATGTCA
21853	. Agaggagtta	TGCTCATAGG	CICCUIGGCC	TCAGTCTCTT TGTGGCTTGC
21901	ATATTCTTCC	ATTAGTACTG	TGITCATCAC	ATGGAAATCA GAGGGTACAA
21951	. TTAAAAGATA	ATTTGCTAGT	CCCAGACTTA	ATTTGGGGCC CCCTTCTTGC
22001	CTGATTGAAT	TACAGGGGAA	CATAATAGAT	TITIGGIGAG AAATAGIIGI
22051	CTGTGTGGCT	GGGAGAAAGA	TTGCTCCCAG	CTCTCCAGCT GGGCAGCCC1
22101	TTCAGTATCC	CGTATGTTAT	TTCCCCACTT	CCAGCCCACC TCACCTCCTC
22151	TGTGGCCCTT	GTGTGTCCCC	TCGGCTAGGA	TCCTGACCTC CTGCTCAAGA
22201	GTTTAAACTO	: AACTTGAGAC	: CCAAGGAAAA	TAGAGAGCCC TCTGCAACCI
2220.	CATAGGGGT	AAAAATGTTG	ATGCTGGGAG	CTATTTAGAG ACCTAACCAA
2220	CC17000016	GAGAGAGTGA	CTTGCTAAAG	GCCACATAGC TAGCCCACAG
2225	L GGCCCAGACA	· AATACTOTO	ΔΤΕΔΤΔΤΤΛΔ	TGGCTAACAT TTATCAACCT
2235.	LIAGIIGIAAC	, AMINGIUITA	. TCCCVVCCCC	TTACATGCAG TGCATTGTCG
2240.	LIPAIGIGIC	, CLAGACTITE	CCCTCTCCCC	CCAGGCTGAG CTTTGGTATA
2245.	LCATICAAACC	, CAGACAGICI		COMUNICIONA CITICALINIA

22501	GCATGGTAGA	ACGTTGTCTA	TAATGTCTAG	TCTGGGTTCA	AATCCTGGCT
22551	TCACTTCTCA	CATTTACAGC	TGAGTGACCT	CAGGCAAGTG	ATTIAACCIC
22601	CCTGTACCTC	AGTTGCTTTA	TCTGTAAAGA	GAAAAA ICAC	AGCACTGTGG
22651	AATAGTGGGG	GTTAAAATTC	ATTCATACAA	GTAGTGCTGC	AAGCAATGIT
22701	TAATACAGGG	TGAGCACCTG	TTCAGTGCTT	CCTTCTTCTG	GUIGUUIUIG
22751	GGGCTAGAGT	GTGGTGTCTT	CGTGGTATAG	ATAGATAGAT	Albbullbaul
22801	ΤΟΤΘΟΔΟΔΔΑ	CACCAAGAGC	TGTTCTTCAC	TATTAGAGGT	AGTAAACAGA
22851	CTCCTTCACC	TOTATAGATTO	TAGAACAGAG	GCCGGCAAGC	IAIGGCCCAI
22901	TECCTATTIT	AATACGGCCT	GTGATTGATT	GATTTTTTT	HCHILIGA
22051	CACAGAGTTT	CACTCTTGTT	GCCCAGGCTG	GAAIGCAAIG	GUAUGAAUTU
22001	AGCTCACCGC	AACCTCTGCC	TCCTGGGTTC	AAGCGATTCT	CCIGICICAG
22051	CCTCTCGAGT	AGCTGGGATT	ACAGGCATGT	GCCACCACGC	CIGGCIAATI
23101	TTTGTATTTT	TAGTAGAGAC	AGGGTTTCTC	CAIGIIGGIC	AGGCTAGTCT
22151	CGAACTTCCA	ACCTCAGGTG	ATCTGCCCGC	CTCAGCCTTC	CAAAGIGCIG
23201	GGATTACAGG	CGTGAGCCAC	CATGACTGGC	CTGATIGACI	GALLILLIA
23201	CTACACATAC	GGTCTTGGTT	TGTTACCCAG	GCTGGTCTCA	AACTTCTGGC
23201	TTCAAGCAGT	CCTCCCTCCT	TGGCCTCTCG	AATGCTGGGA	TTATAGGCAT
22361	CACCCACTAT	GCCTGGCCTA	TATGACCTGT	GATTTTTAAT	GGTTAGGGGA
23331	ΛΛΛΛΑΔΩΓΑΔ	AAGAATGCTT	TGTGACATGT	GGAAATTACA	TGAAACTCAA
22401	ATATCACTCT	CCCACCCTGG	GCAACAAAGT	GAGACCCTGT	CTCTACAAAA
22501	AATAAAAAAA	AATAAGCCAG	GGCCGGGCGC	AGTGGCTCAC	ACCTATAATC
20001	TCACCACTTT	CCCVCCCCC	GGCAAGTGGA	TCACCTGAGG	TCAGGAGTTC
23331	AACACCACCC	TCACCAATAT	GGTGAAACCC	TGTCTGTACT	AAAAACACAA
23001	AAGACCAGCC	ACCATCCTCC	CATCCCCCTG	TAGTCCCAGC	TACTTGGGAG
23051	AAAT TAGCCG	CACAATTCCT	TCAACCTCCC	AGGCGGAGGT	TGCAGTGAGC
23/01	GCTGAGACAA	MAGAATIGUT	CCACCCTCCC	CAACAGAGCG	AGACTCCGAC
23/51	CAAGATUGUG	ACCCACACAC	ACACACACAC	CAACAGAGCG	ACCCTGGGTA
23801	ACACGCACGC	ALGUALACAC	ACACACATOC	ACACACACAC	TACCTACCAC
23851	IGGIGGCCAG	CAUGIGIGGI	TTCACACTAC	ACTGGAGGCT	CTTTATACCA
23901	GATCACTIGA	GCTIAGGTGG	CACTCTCACA	AATGAACCAT	ANACANANA
23951	CTGCACTITA	GCCAGGGCAA	CAGIGIGAGA	CTGAATCTCT	CCAACATACC
24001	AAAAAAAAGA	AAAAAAICII	TUCATAGIA	AATATCTGTT	CCTATAATCA
24051	CATGTCCCTT	AGILIAIGII	ITATATATA	CTGCTTTTGC	CCTAACATAT
24101	CACAATTGAG	TGGCCACGAC	AGICIGIAIG	GCCTGCAGAG	CCTCTACACA
24151	TTGCTCTCTG	GCCCTITACA	GAAAAAGIGC	CTTGACCTGT	TCATCCCACC
24201	CATATGTACC	AGGTTTGAAA	CTCAGCCTCA	CAGCTGGGTG	ATCACTTCAC
24251	CATCTGTAGT	CCCAGCTACT	CTGGAGGCTG	AGGTGAGAGG	ATCACTIGAG
24301	TCCAGAAGGT	CGAGGTCAAG	ATTGTAGTGA	GCCATGATGG	CATCACCGCA
24351	CTCCAGCCTG	i agtgacagag	AGAGACCCTG	ACTCAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
24401		. ሶልሶሶሶፐሶልሶሶ	ACTIATOAGO	TALLIGICLE	GAGAATAGTG
24451	ACATAACCCC	TCAGAACCTA	TTTCCTAATC	TGTTAAATGA	GGCTGATGAC
24501	GTTTCCTCCT	: TTTACTGGCA	. ATTTAAACA I	GATGGATAAT	AAATUCTAAU
24551	CACTTAACAC	AGGGCCTAGA	AGATATTAAC	TGCTCAATAA	ATGGTAGCTT
24601	CTTAACAGTA	TTCAAACCCA	TGTGCTCTTA	TCACATGCAT	TGTTGTCCCT
24651	GTGTCCAGTT	GGTGGAATGG	GAAAAGGCTC	CCTTGTAACC	CCATCTACCA
24701	TCTTTATCAG	ACTITICATE	CATGGTTCAC	: AGTAAGAGAT	AGAAGCTGCA
24751	CGGTGACTTC	: TGGCTCTTTA	CAATGGTGAG	CGGTGTGTGC	CTGGTAAGGG
24801	AGAGCTGATG	TCACTGCCCC	: AAATCCAGTA	, GTGAGATCTG	AGTGTTCTGG
24851	TTTCCTCCAG	CAGCCTTGCT	TTTTCCTTTA	, caatcctgca	GGCAGGGAGA
24901	CAAGGGCTTT	CTACATGGTA	∖ GGCTCTGGTT	TGGTCATCGT	CACAACTGGG
24951	GGCTGTTCAG	GTGGGCTCCC	ATTCCAGATA	CCTAGGCTTA	TCAATCCCTT
,,,			-10 0 1		

_, ,,,	o i da loi lada		1000000		
27451	CTGGACAGGG	GGAAGGGGGA	AGGGAACTGG	TCCTCAATGC	TGACTCTACC
27401	CCATGTGGTT	TTGTGGAATG	ACCGGACCCT	GGTAGATTGC	TGGGAAGTGT
27351	CTGCCGGGAT	ACTAGTCAGG	TGGCCAGGCC	CTGGGCAGAA	AAGCAGTGTA
27301	CGACTTTTCC	CTTCTGGCTT	CTCTAAGCTA	GGTCCAGTGC	CCAGATCTTG
27251	GCAGCCTGTT	GTTCCAAAAA	GGCTGCCTCC	CCCTCACCAG	TGGTCCTGGT
27201	TGAATGGAGC	CATTCCAGGC	TAGGGTGGGG	TTTGTTTTCA	TTCTTTGGGA
27151	CACCTCCCAT	AGAAACTCCC	CAGGGGGTTT	CTGGCCCTCT	GGGTCCCTTC
	ATGTGGAAAC				
27001	AGGCCTAAGT	ACCTCCACCA	CCTCTCTCTCT	CTCCCCCTTC	TCAGAGGGAG
270731	TTAGAGTGTT	CCTCACCTCC	TECECTONECT	ותאטאט ו טטאָ	CTCACTCCCT
26901	TTGCTGGGGA	AACACCTCCC	CCACTCCTTC	TARCACTCCCAG	CCAATCCCCT
26851	CACATTTGCC	TOTOCOCTTO	AACCCCTTCT	CACCTCCAC	GTGAATGTAG
26801	TGGGCAGGTT GCCTGGTACA	CACTACCCAC	CTTATAAACC	TTTCTTCTCT	TAATGCCACG
	TTACCTGCGG				
	TTCCGGGGGG				
	AAGGAGCCTC				
	AAGGAACTTC				
	GAGGTACCCC				
20501	CTGCCGGGCA	CATTATOTO	TOCANCTOCT	CARCECARCO	ATATACCCAC
	GAGGGTGGTC				
20401	TTGGTCTCCG	AGITUUUUU	TOCTTOTO	TTACTCCTT	ACCATCCCTT
20331	TTACTTGTCA	ACTTCCCCTC	TOCATOTOTO	CTCCCCCCCTC	CTCCTCACAC
26301	ACGGATTTGC	AGCIGAGCCI	ACTTCACCTC	CACACACCTC	TTTCCCTCAC
	CCCCGGGCCT				
20201	AGGGAGAGGT	CTCATCOTCO	CCATCTACAC	DADAJJDAJD	CCACTCACAC
	TGCTGGGGGC				
	TTCTGAGAAC				
20051	AGCCTCCACA	TACCCACCAC	TITUTUGGAG	CATCACCCCC	TOTOGONATO
26001	TCTTTCTTAG	CIAGICACCG	GCCCC IGC IC	AAGAATGUUA	CCCCTCACC
25951	CCTCATTCAG	GGGTGGGACT	GAAGAAGAAG	MACAATCCCA	CTCTCTCTCT
25901	CAACCACACA	CCTCGGTTCT	GCGGGAGCCC	COTACCTO	CACCACCCCT
25851	CAGCCCAGCT	CCACCCCTTG	CCTGCAAGGT	CTOCTOCTOC	ACAGC IGC IC
25801	GCTCAATTGG	TCCCAGTTAT	IGICIGCAGC	GCCTGCCTGC	ACACCTCCTC
	ATATGTTCAC	ACTCTATCCT	GCCTIGCCCT	TCCCTGAGCT	ACCOTOCATO
25701	GAATTACTGT	CCTGTAGGCA	GCTCCTCTGC	TOOGTON	CACCATOCAC
25651	CTTCCTGGAC	CTGGCATCCT	CTGCTTTTTT	THITTCCA	CCTCCAAGCA
25601	GCTCTCTGGA	CCTGTCTCTC	CTACCAGAGG	ICCCCCCGTC	IGGIGTGGCT
25551	TGGGAGCCCT	AGTGCCAGGA	CAGAACAGAT	GGCAGCTCAG	AGCTAGGATG
	TTGGTCAGCT				
25451	TTCCTTATTT	GCAACACAGC	CCTGCCCTGG	AGTGGAAGTG	GCACCTCCCA
25401	GTTTGCCACA	TGGAGACACA	TCAGGTGTAG	GTTAATACTC	IGGGCCTTGT
25351	GTAGAGTGGG	AATAATTCCT	GTCTCAGAGA	AATAAAAGAG	TGCATATAGT
	TTGACCTTGA				
25251	GAGTCACATG	AGCCTACATT	TAAATTCCAG	CCCTGCCACT	GACTCCCTTT
25201	CTCCTTAAAG	AGCCAGAATG	AAGCCTGGTA	GTGGGAGAGC	TCCAGCTCTA
	GAGTAACCTG				
25101	CAATGGATGG	TGTTCTGCAT	GTGAACACTC	AGTGAATAGT	GAGTGAATGA
25051	AGCATGGTTA	TCACAGGACA	AGTAGAAGAA	GCTCCACTGT	CCACTGAGGC
25001	TTGGCACCCC	AGGCCTTTTT	CTCCCTCATG	CCCCATTITT	CAGTTTGAAA

27501	AAGCGCCCTG	CTAGACACTT	TATCCTTTAA	TCTCTCAACA	GCCTAAAGAG
27551	ATTATATATC	CCCATTTTAC	AGATGAGGCA	ACCAGTTTCA	ACAGAGTTAA
27601	CATATGGAGC	CTCACTGGGC	AGCTTTTTCT	GTCTTCCTGA	CTTTCTCTCA
27651	TCCTTCAGGG	GCCTGCAGGT	TIGITITATI	CTCCTAGTGG	AGAGGAAATT
07701	CTCAGGTTTG	TTTTCTCTC	CTACCACACA	CTAAAAAAA	CCATACTTTC
2//01	CICAGGIIIG	TOTAL	COTCACATTC	TTTTCTAAAC	ACCCAATCCA
2//51	CCTGACTTGT	IGAAGGIGIG	GUIGAGATIG	ITTCTAAAG	AGCCAATGGA
27801	AATTGATCTT	GAGTTTAGGA	GAAAGCIIII	ACATGTGGAA	TIAAGATGCC
	AAGTGTTGAA				
27901	GGGAAGGCAG	CTTAGGAGAA	GGGTTGTTCC	TTTAGGAGCC	AGGAACTATA
27951	CCCCTTTTAC	CCTTGGAGAG	GCAGGGAAGC	CAGGGAGGAC	ACAACTTCTC
28001	AGGAAGAGGA	GAAGCTAGAG	CAGATAGTGA	ACTCTCAACC	TGAACCTTTA
28051	AGGGCCAGAC	CACTAATGCC	ACCCAAGTCC	ACCTGCCGTT	TGTCTTGTTC
20101	TGTCCCAGGC	TTTCTCCACA	ACCTGATCTT	CTTGCCCCTA	CCCCCAAGCT
20101	CCGTTTGCCC	ACCTACACTC	TOCOCCOTAC	TCACTCACTT	TCCTACACAT
58121		AGCIAGAGIC	ACCCACATT	CCTCAACTCA	CTTCTCAACA
28201	TCTTCCCTTC	CCCAAATAAG	AGGCCACATT	CCTGAAGTCA	CITCIGAAGA
28251	GATAGCTGCC	ACACAGGGCT	CTTTCCCCCC	AGGGAGGAC	CACCCAGACC
28301	CTCTGCTCTC	CCAGGTATCC	GTTACCACAT	CACTACCTGG	TCAGAAAGCT
28351	GTTTCTGCCA	TTAGCCCCTC	CCTCTTTTAT	TATAGGATAT	CCTCAAGGGC
28401	TCCTCTTTGG	GCCTCAGTTT	CATCCTTGGC	AGAAAGTAGA	AGCTAGACTT
28451	CTTGGGCTCC	TGAACAGGGT	CCTTGCTGGA	TTCTGTGAAA	CAAATTAAGT
28501	TCTTGACCCT	AGGCCTCTGG	GGGAGTACAA	AGTCTATGGG	AGTTCTGGGG
20561	CTGTGGTTGC	AACCAAACTC	ACCCAACCAG	ATTCCATGGG	GACATGATCA
20221	GGCGTGACAT	CTCACCCACC	VACACCCVC	AACCCAATCA	AGAATACAAC
20001	TTOTOTOTO	CATACACCCC	TOCOTOACAC	CCCATACATA	CTCACCACAC
28651	TTCTGTGTCC	CATACACCCC	IGCC IGACAG	GLCATACATA	CTCCAGCAGAG
28701	AATGCACTGT	CHICCIACC	ACACTAGCGT	GAGGAGTGAG	CIGCAATTAC
28751	CACTGTGCTT	CCAAGTAAGA	AAATACCTCA	AATTGGAATT	TACAAAAGAG
	GTAAATTAGG				
28851	TATAGAATTT	CACTTAATGT	CCAATACTGA	TITAATGAGC	TTGGGTTTAC
28901	ACATTATCTC	TTGAAGAAAA	CAAATGAACC	TTTGTGTTCC	AAAGCAATCC
	ATGTTTAAAG				
20001	CTTTGGCAGG	TCCCTTACCT	CCTCTGGGAC	TCTTTTCCTT	ATCTGAAAAA
	TGAAGGACTT				
29031	TCCTCACACC	CACACAACCT	CTTTTCCATT	ATTTCCCAAA	TAATCCACCC
29101	TCCTCAGAGG	CACACAAGCI	CITTICCATI	ATTACTECAAA	ACTACACTCT
	CCTGTCTTTA	ACTGUAGTAU	AAC TACACAA	AATACTIGAA	ACACTTATE
29201	TCCTGGTTTT	IGGTIGGAAC	TGAATCAGTG	CACTCTAGCA	ACACITATII
29251	CTTGCTGTTC	GTAGGCTTCA	TTATGTGTTT	GGTTAATTTT	HAAAACAAC
29301	AATAACATAT	TCCATAATAA	TTACAGCTTA	ATTGGCAGAC	TGTTTCAGTC
29351	TATAGGATCT	GCAGGAAGGA	GGAGTAATAA	AGGGATTTTT	GACTGAGCTC
29401	TTATGGAACA	GAGTCTCTCT	AGGCCCCTGT	CATATCTGCC	CTTCTGGGCC
29451	CTGGGGAAAA	GTTGGCATCC	CCAGTTGTGG	TGCTCTCCAG	GTGCCCTCAG
20501	GCTGTGGTGG	ACCCACCTTC	CCATTCTCTC	CTTCAGCCCA	CTCAATTCAG
20551	AGGCTAGGGG	CTCANACANC	CTTCTCTACA	ACTECCTETT	CACTGGGAGG
	TTAAGGGATG				
29051	TGCTTTAACA	IGIGIAAAIC	CACIGCAAIA	TTOTOTOTOAAC	AATTTCCATC
29/01	ATAAGGTTGA	GAATTIACCT	GIAAACAIII	I I U I U I U AAU	MAIIIUUAIU
29751	TAAGTGAGGG	CTGGGCCTCT	ATCTIATCTC	ACTIGGCTIC	TUTUAGUAUA
29801	GCACCTTGCC	TGCTTGTTCT	TACACATCCT	AGATGCACAG	TAACTATTIC
29851	CTAATTATTA	GAAATCTATT	AGAATCAATT	GATTTCAGCT	GGGCTTGGTG
29901	GCTCCTTCCT	GTAATCCCAG	CACTTTGGGA	GGCTAAGGCT	GGAGGATCAC
29951	CTGAGTCCAG	GAGTTTAAGA	CCAGCCTGGG	CAACATAGGG	AGACCCTGTC

30001 TCTACAAAAA ATAAAAAATT AGCCAGGCAT GGTGGTGTGC ACCTGTAGTC 30051 CCAGCTACTC AGGAGGCTGA GGCAGGAGGA TCTCTTGAGC CTGGGAGGTC 30101 AGACTACAGT GAGCAATGAT TGTGCCACTG CACTCCAGCC TGGGTGACAG 30151 AGTAAGACTC TGTCTCTTAA AAAAAAAAA AAAAAAGTTG ATTTCTATTT 30201 GGATAGATAA ATAATTCATT TTAGGACCTT TCTTTTTCAC TTACAGAAAT 30251 CTGTTTCATT CTGGGCTGAG AAGCAGGTCC ATATTGCTAG GCATAGGAGA 30301 AAAAGGGGTC TGTCTGCATT TGCCCTTGGT GGTCTCAAAT TGGGGAGGGA 30351 AAGAAATGAA CACTTACTGG CTACCTTCTG TGAGCCAGGC ATCATGCAAG 30401 ACATCTGTAC ATAATTTAAT TCTCATAACC CCATAAGATA TTATTAGCAA 30451 TGTACAAGTG AGGAAACTGA GGCTCAGAGT CATGAAGTAA CTGGCCTTGG 30501 GTGACACAGA TGGTAAATGG CAGAGAAGGA ATATGGATCC AGGTCTTGAA 30551 AGAGAAAATC TCAACTGATT ATCTTTTTTA AAAAACTCAT ATGTTCTCTG 30601 CTGACTCAAA AGGTCTCTGT GTGGATCTGG GTTGACCCAC TGAACTGACC 30651 ATCAGGGTTC CATGCACTTT GTATCTGCCC AAGCCCTCAG AACCCCTCAG 30701 TAATGTTTTG GAAGATGAGT TTTGGAGGTT GTCCTTAGGC ATAGCCTCAG 30751 CGTATGTAGG CCTCTAGGTG ATCTCCCCTA ACCTGAGGAT TTCAGCTCAA 30801 TTCACTCTGG CTCCTCAGGA CAGTGGGATG ACTGGTTCAG ACCTCAGCTT 30851 TACCACCTCC CAGCTGGGTA CTCTTCTACC TACAGCCAGG GCAGATTTTG 30901 ACTITCACTI GAAACTICCA AAAATTGAAA GGTAGAAAAA CAGCCTTGGC 30951 TTTGGGAAGA ACGTATGATG TCCATGGCCT CTAAGCATCT GAGGTGGGAC 31001 ATGTTCGAGT AGCACCTTAC AGTTCCAAAG TGTGTTCTGG GTTCTTTGTT 31051 TAAAAGAACA GAGACTGCTG GGGAATTGAA CACTGTGAAG TATATGAAGG 31101 AGGAGAATTG TGCTATTTAA CATTCAGTAC TTGGGCTAAA GGAGAAGCAT 31151 CACGAAGTGT TAACACTCAA AGGGTCTTGA GCTGTCAGGG CTCCAGCTTC 31201 CTTATTTTCA CAGGTGAGAA TCCTGAGGCT CAGCTGTTGA GATGTGCTGT 31251 CTCACTCCGG TGACATAGTA CAGTGGATGT GGCTTTGCAG CCAAGCACAC 31301 ATAGCTTCAC ATTCCAGCTC CATCAATTAT GTATTGGGCA GCTTTGCAGA 31351 ATGATTTGAC TITAACTCTG CTTTTCAGTC TTCTGTAAAA CAGGGATAAT 31401 CCTGCTACCG TAGGGTTGTC AGGATTAGAG ATAATATAAA TAAGGTACCT 31451 CATATAGGAC CTGGATTATG GCTGGCATTC AATAAATAGT AGCTGTTAAT 31501 TGATAGCTAA GCTAGAACTC TGAAGTCTAC CATGGCAACT TCTTAAGTGG 31551 TCTGAGAACC CAGTTGTGTT CTGTGGCAAA ACACAGCTTA GGGATCCATA 31601 CCCAGCCCTC CTGTCAGCTG TTCACCTTCC AGTTCTTCAG AGACATGTGT 31651 GGCAGTGACT TTGGCCACAT AGCTGGCTGT GCCCTTTAAA GGCATTCCTT 31701 GACACAGATA TGTGGACTGG TGACGTTGCT CTCCAGCCAG GTGTTCTTCC 31751 CAGCAGGCTG GCCTGGCTGT CTCCTGCATG CCTGTACTTG TTTGTCTCCC 31801 TGCTCCCTCT CCTGGGCCTG GCCAGAGCTA CTTGCAGCAA ACAAAAGCAG 31851 GATATTGGCA ATGGAAAGGA GGGTGTGTTC TGGTGCTCCC ATGCCCTGCG 31901 GCGCACATAC CATTGCAAGG GCGTAACAGA GCCCAGGCCT GCATTTGGGT 31951 GCAAATAAGT CTGCACACAG AAGAAAAGAA GGACCTGGTG ACCAGGAGCC 32001 ATGGAACCCT TGTGCTCCCC TACCTGGGCT ACTGGTTCTT GCCACTCCTA 32051 CCATTTTCAG TITGGAAATA TITGTTAAGG CTTTGCTCTT CCAGGTCCTT 32101 TGCTTGGTGC TGAGTCTACC AAGAGTAAGT GGGATGCTGT TTTTGTCCTC 32151 AGGGAGCTAA CAGTCTAGTG AAGAAGAAAG ATGGTTGCCC AGGAACTTCT 32201 AAGTCAGAAG GCAGGAGGCA AGAAGGAAGC CCCTGCTCCT ACTGCCAGCC 32251 CTCTGTTGGG CACCCCATAG TTCTTCAGAA CCACATTTAA TCCTCACTGC 32301 AGGCCAGGCA TAGTGGCTCA CACCTGTAAT CGCAGCACTT CGGGAGGCCA 32351 AGGCGGGCAG ATCACTTGAG GTCGGGAGTT CGAGACCAGC CTCACCAACA 32401 TGGGGAAACC CCGTCTCTAC TAAAAATAGA AAAATTAGCC GGGTGTGGTG 32451 GCATGCGCCA GTAATCCCAG CTACTCAGGA GGCTGAGGTG GGAAAATCAC

32501	TTGAACTCGG	GAAGCAGAGG	TTGCAGTGAG	CCGAGATTGT	GCCACTGCAC
22551	TCCAGCCTGG	GCGATAAGAG	CAAAATICCA	TUTUAAAAAA /	4444404444
32601	AAGAAAAAAT	CCTCACTGCT	ACCTTGAAAG	TAGGTGATGA (LATIBULATI
22651	TCACAAATGA	GAAGTGAAGG	GGCTAGCCCA	AGA I CACITA (ו אאאו טעו טב
32701	GGTGGTGCTA	AGATTAGAAC	CTCAGATCAT	CTAGGGAAAA	ACACAGATAT
32751	GCACAGAGTT	AAGGGGACCC	AGGGTATIGE	TTGTCCTCTT	GITTLACAGG
32801	TGGGGAAACA	ACCCAGAGAG	GGAAAGGGGC	TTGTCCAAGG	LAATTIAGUA
32851	CCCAAGAACT	TGAACCCATA	TCTCTCTCCCT	CCTCATTTAG	AGUICAICC
32901	ACATGTATCT	TATATTGAGA	GGAGTGTGAG	CCACATACCA	AGAACAGICI TTCACACCCA
32951	TCCCCTCTGC	CTCCAACCTC	ACTGTGCAGI	TTTGAGACAC	CCCCTTCCAT
33001	TACTCTTCAT	GCCATACCCA	GCCCTTAAGA	CCCTGAAGTT	CTCTTTCTTC
33051	AAGACAAGTA	GGAAAAGCTA	TAGGGTAAAA	ATAGCCATCA	ATTOTOACCO
33101	AGCACCCAGG	AGGAATTGGG	CACTCCAGAA	AGATAAAGGG	CATTCCTCCC
33151	ACTTGCTTCT	CTAGACTTCC	CTAGCTCAGC	TGCTTCAACT	TOACTOTOCO
33201	CCTCTTCTCT	ACCTCCCGCA	GTGCTCAGAA	GTAGTAGAAC	TOTOMOTO
33251	CTCTCACCTT	GCATIGITGA	GITTATTA	GACTITCTCT	TTTATCTTT
33301	TTCATAAGCT	CATGAAAGGI	GAAGTAGGGT	GCCCTGTGTA	TOCOAAAACC
33351	ATATCTGCAG	TGCTTAGCAA	GITATAATAA	TGCACTTGCC	TCTTTCTACT
33401	CTTTCTCTCA	TACATTAGCT	TATTOLICILI	TCACATTGGC	TAACACAACT
33451	AATAGGATGC	TATTAGTIAI	111CAATGAG	AGAAAGCTAC	CCATTACATT
33501	TGTCCAGCTA	GTGACAGTAA	GIGGCIGATA	AAGTGAGCTG	ACTATATTEE
33551	GTCATCATCT	TTAATAGAAG	TIAACACATA	CTGAGTTTCT	CTTCCTCTCT
	GTCTTTTTT		ALLILLI	GAGACGGAAT	CAACCTCCCC
33651	TGTCCAGGCT	GGAACGCAGT	GGTGCAATTT	TGGGTCACCA	TACCTCCCAC
33701	TTCCCAGGII	CAAGCGATIC	TCC IGCC ICA	GCCTCCTGAG	TTACTACACA
33751	TACCAGTGCA	CGCCACCACG	CCCGGCTAAT	TTTTGTATTT	CACCTTCTCA
	CAGGGTTTCA	CCAIGITGGC	LAGGUIGGIU	TTGAACTCCT	CTCACCCACC
33851	TCTGCCCGCC	TCAGCCTCCC	AAAGTGCTGG	GATTACAGGT	ACCTACCTAC
33901	GCGCCCTGCC	TATATTAGGA	CTITIAIAIA	AGCTATCTCT	CTCACCCAGG
33951	CTAGCTAGCT	ATAAIGITT	OTOOLOTCAC	GTCTGACTCT	ACCTCCTCCC
34001	CTGGAGTGCA	GIGGCGIGAL	CACCCTCCC	TGCAACCTCC	ATTATAGGTG
34051	TICCAGIGAI	ICICCIGCUI	ATTITIOTA	AGTAGCTAG	ACCACCTTTC
34101	CATGCCACCA	CGCCCAGCTA	AIIIIIIIIA	TTTTTAGTAG	TEATCLACCE
34151	ACCAIGITGG	CCAGGCTGGT	TOCCATTATA	TGACTTCAAG	ACTETECCCA
34201	GCCTCGGCCT	CCCAAAGIGC	TACATATTAT	AGCATTAAT	TTTCACAGCA
34251	GCTGCTCTCT	AIAIIIIIAA	AACTACCCCA	TTCCATTAAT	ATATCTTGCC
34301	GITCATTIA	TAGATGAGGA	AJJUUDATJAA .	GAGAAGTAAA	ACCAAGCAAT
34351	CAAGATGATG	I I AAL I AGIAA	ACAATCTCCC	CAAGATTCAA	CCTCCAAGGC
34401	GIICAAACCI	AUDAADUIIU	AGAATGIGGO	CACTGTGGAA	AGAGATGGCA
34451	CITGACAACA	ACCCACCA	HADDAADAAA TOOATTOTOO	CTAGAAGGAA	CCAACCTCAG
34501	IGGGC I CAGC	AGGCCAGGGA	CTCCACCTAA	GTGTGTGTTG	
34551	AAGGGAGGAA	A GAGGIIGICI	TACCCACCTC	GTCCTGAGAA	AACCCACAC
34601	IIIIGAGAGG	IGGAGUTTUA	TAGCCAGGTC	ATTAGGGGAG	ACACGGGGTC
34651	IAGATITIT			TTTTTTTAG	AGTGATCCTC
34/01	COACCTCAC	CTCCCAAACT	1 010110AAC1	CCTGGGCTCA GAGGCATCAG	CCACCCCCCC
34/51	CACCACCT	, LILLLAAAGI	41 14000110 1014041214	TACACAGTGC	TAATAGAATG
34801	. CAGCGAGC IA	4	, AIGIACAICI TTYATTITA	OTTARARARA A	AAATATATAG
34851		I IUUUUAAIAI	-	CTACATACCT	TTCACATAGA
34901	AAAAGIIGAV	A AAAIGIAGII	TCCCACTTC	TATATATCTC	TCTCCCTCCT
3495	LICAIGAIL				,0,000,001
				ı <i>1</i> 1	

35001	ATCTGTATAC	TATTTATTTT	TTATTTTTGC	TGAACTATTT	CAGAGTAACT
35051	TAAAGGCATC	TTGATTTTAC	CCTTGAACAG	TTCAATATGT	TTCTGCTAAG
35101	AATTCTCCTA	TATAAGTCAG	ATATCATTAC	ATCTAAGAAA	ATTCACGGCA
35151	ATTTTACAAT	TATTATAATA	AGTCCAAATC	CATATTTCCT	CAGTTGTTCC
35201	AAAAAATGTT	CATGGCTGTT	TCCTTTTTTA	ATCTAAATTT	GAATCCAAGT
35251	TTGAGGCATT	GTATTTGGTT	GCTGTGTCTC	TAGGGTTTTT	AAAATCTGTG
35301	CCTTTTCTTC	TCCCCATGAC	TTTTTAGAAG	AGTCAAGACC	GGTTATTCTT
35351	ATAGAATAAC	CCACATTCTA	GATTTGCCTG	ATTAGTTTTT	TTATACTTAA
35401	CGTATTTTTG	GCAAGAACAT	TACATTGGTA	ACGCTGTTGG	TGATGGGTCA
35451	GTTTTGAAGA	GTGGAGATGA	TTAAACTGCT	TTTGTTCATT	GAAGTATCTG
35501	TCAAGACCAG	AGATCCTTAA	CTGGTGCCAT	AAATAGGTTT	CAGAGAATCC
35551	TTTATATATA	CACCCTGTCC	CCCACCTAAA	TTATATACAC	ATCTICTITA
35601	TATATTCATT	TTTCTAGGGG	AGGCTTCTTG	GCTTTTATCA	AATTCTCAGA
35651	GGGCCCCAAG	ACCCAAAGAG	GTTATGAAAC	ACTAGTCTGT	CCACTGAGGC
35701	AGGCAACACA	GAGCTGGTTT	CTGGGGCCTT	GTTCAGTCTG	AACCAGCTTC
35751	CCTTGGGGAG	ATAGCACAAG	GCTGTAACTT	TGCCCCATCT	TGGCTTTGGA
35801	TCAAAGAGGA	CTGTCCATTT	TGTTGTCATA	CCTAGGAACC	AGGGACAGCT
35851	TATGTGGCCT	GGTTCCAGGG	ATCCAGGAGA	ATTICAGIIC	TIGICTIGCC
35901	TTTCAGGTGT	TCAGAATGCC	AGGATTCCCT	CACCAACTGG	IACTATGAGA
35951	AGGATGGGAA	GCTCTACTGC	CCCAAGGACT	ACTGGGGGAA	GITIGGGGAG
36001	TTCTGTCATG	GGTGCTCCCT	GCTGATGACA	GGGCCTTTTA	IGGIGAGIGA
36051	ATCCCTTCAT	ATCTGCCCCT	CTTGGTCTTC	AGAGICCATI	GACAGIGUII
	CCAGTTCCCT	GTGGCCTGTT	AAICIIIIAG	TOTTICCATC	AUCCAGGGCA
36151	TCTCCCTTTA	TTTATTCATT	CATTCAACTA	GCAGGTATCA	ATTGAGCACC
	TACTAAGTGA	AAGGTAAGAT	CCTICCCICA	AAGACTTAAT	AGIIGAACGI
36251	TGGGAGTGGG	AGGAGAGGCA	GGCAGAGAGG	AGACACAATA	TACTTACCTT
36301	AGGACCTCCA	AGGAGAGTGT	TACAGGCIGA	GAGGAGGATA	CCACACACAC
36351	GTCTTTAGGG	AATCAGAAAA	GGAGACTCTG	GAATAGGCTG	CATACTCACA
36401	GGGCTACCTC	CTATACCTGC	TCTGGACAAA	CGACTITAAG	CATAGIGACA
36451	GATTTGCCAA	CCCIGIATIG	GAAGAACTGA	1CTTTTTAG	TTTTCTCCAC
36501	TACTTCTGGG	GATTICITET	CATAACTGAG	ACCETACETE	CCAACCTCTA
36551	TCTCAGAAAT	GACAGGAGGI	ACCAATCTGA	CACTICCTIT	TTCCACCTCA
36601	GGGCAGAGAG	TGAAAGAGTG	GATTIGACG	ACTCATAACT	CACTTCCTTC
36651	TTCACCCACC	CUIGICUICA	CICCAGCAAC	TCACACCTCC	CTCCCCACTT
36/01	CTCCCTTTGT	ACACCCTTCT	TTOCCTOTAT	CACCTCCAAC	CTCATCATTC
36751	CAAGTACCAC	CCAGAGIGCI	CTCCTCCACC	ATCCCACCCT	CTACTCCTAA
36801	AGGATGGGGA	IGCATATGCA	CIGGIGCAGC	ATAACACTCC	CTCCCCCCCA
36851	GATAGTGGTC	CHIGICIAL	TOOCCACAAC	CACTCTTACC	CTACTCACAC
36901	GGGACAGTGG	CAGGGTGAGT	1 GGGCAGAAG	ACCACCTCTT	TAACTTCTAA
36951	CATIGGATIC	TTACCACAGC	AGIGUIUTTA	ACCAGCICII	TAACTTGTAA
3/001	GCAGAATGAT	TACACATGI	CICIACCCII	CTCCCACCCA	CTCTTCAACC
3/051	ATGTCTTCAC	ICIGCCCIGC	TO A A CA CCC	AJDDADDDID	ACCCTCTCCA
37101	ACGATCCCAG	AACATTAAAG	I CAAAGACCC	COCCCCATC	ACCCTGTCCA
3/151	ACCACCTIGG	IIGATAAAAG	AAGTCAGCCT	AACCTACACT	GAATAGAATA
3/201	GTACAAGGGC	AAGGITCICA	TIGIGAGICA	TUNDA I DUNA	TATACCACTT
3/251	CAGACCATCT	LACCUCAACC	CAGGCCAGTG	CACCCCACCC	TCACAACCCA
3/301	GCTGCAGATC	TOTOLOGICA	CACCTACAAT	CATCACAAAC	TGAGAACCCA
3/351	GGUICCICAL	TO THANK CANCE	CTTARACCCA	CATCCTCCAC	AGGGTGGTAG
3/401	IGAGACTATG	GGTACTGTTG	TACCATCTTA	TTCCCCCCTC	TGGTTGCTGG TGCCCTCTCC
3/451	GGGGCTTCTG				Idocololo
		Г	10 2 1	E	

37501	CCAGTGGGAA	GTGCCACAAT	GAGGTGGTGC	TGGCACCCAT	GTTTGAGAGA
37551	CTCTCCACAG	AGTCTGTTCA	GGAGCAGCTG	CCCTACTCTG	TCACGCTCAT
37601	CTCCATGCCG	GCCACCACTG	AAGGCAGGCG	GGGCTTCTCC	GIGICCGIGG
37651	AGAGTGCCTG.	CTCCAACTAC	GCCACCACTG	TGCAAGTGAA	AGAGTAAGTA
37701	TTTTGAGAAC	CCTTCAGCAG	GGGTTCTTGA	GCAGAGICIG	TAAATGGGCC
37751	TCAGAGGGCT	TAGACCTCCA	AAGTCTCATG	CAGAACTCCC	THAILCICA
37801	TCTCATATCT	TTCTCCTGGA	CCCCACTATG	CTGTAACCGT	ACCTGGGCCT
37851	TGGCACTTAC	TGTTCTCTCT	GCCCAGGCTA	CTTCCTACCC	GATACTTAAG
37901	GCAAGAATCA	CTCACCTTTC	AGGTGTCAGG	TTTCAGGTCA	TGTTTGCTCT
37951	TTGAAATCAT	CTGGCTTGAT	TATGTGTATT	AGTTGTTTAT	CTICIATCCC
38001	CTCCACTAGA	ATGTAAATTC	CAGAAGAAAC	TIGCIGICII	ATTCAGTGCT
38051	GCATGCCCAG	GGCTTGGAAG	AGTACCTGGC	ATATAGTAGG	AGTTGATTGA
38101	TTATTATTTT	GTCAGTCGAG	AGAATGAATG	GAGAAAATGT	GGTCCATGGC
38151	CCAAAAGAAG	TTAAGACCCT	ATCCTAGATT	CAGGCCAGAG	ACCAGATGGA
38201	GAAAGAGTCT	GTGTCTATCT	AATACCAGTA	ATGTCGTACC	TCTGGCCGCT
38251	TACCATGTAA	ATATTGATTG	TGTATCTACC	ATGTGTTGGA	CACTAGGCTA
38301	GTGCTTGCAC	AGCAGGTGAA	AGATACTAGA	GTTTGGGAAG	TCAGGAGGAG
38351	CTAAGGTCTG	TTCTACAACC	TTATTAGATG	AAGAGGAGAG	GGAATIGIGI
38401	TCAGGGCAGA	GGGAGAAGCA	TTTCTCCAAA	AGTAGGAGTC	TTAATCATGI
38451	CTGATGTAGG	TTGAGTGTGG	CCAGAAAAGG	GGCTGTTAAG	TATAGAGGGC
38501	CTGGATTATG	AAAATCCAGC	AGATCCATTG	AGAGIIIAAG	CAGCAAGGIG
38551	TTGTGACCAA	GTTAACATTT	TAGAAGGATC	ACTGGTATGG	AGGIIGGAII
38601	GGAGAGGGGA	AAGCCTAAAG	GTATAGAGAC	TAGTTAGGAA	GCTATIGIAG
38651	GCTGGGCATG	GTGGTTCATG	CCTGTAATCT	CAGCACTTTG	GGAGGCTGAG
38701	GTGGGAGGAT	TGCTTGAGGC	CAGGAGTTGA	AGACCAACCT	GGCCAACATA
38751	GCAAGACCCC	GTCTCTGTTT	TTCTTAATTA	AAAGAAAAGT	CCAGACGTAG
38801	ACATAGTGGC	TCACGCCTGT	AATGCCAGCA	CTTTGGGAGG	CCAAGGTGGG
38851	CAGATTGCTT	GAGGTCAAGA	GTTTGGGATT	AGGCCAGGCG	CAGTGGCTCA
38901	CGCCTGTAAT	CCCAGCACTT	TGGGAGGCCG	AGGTGGGCGG	ATCACAAGGT
38951	CAGGAGATCA	AGACCATCCT	GGCTAACACA	ATGAAACCCC	GTCTCTACTA
39001	AAAGTACAAA	AATTAGCCGG	GCATGGTGGC	GGACGCCTGT	AGTCCCAGCT
39051	ACTCGGGAGG	CTGAGGCAGG	AGAATGGCGT	GAACCTAGGA	GGCGGAGCTI
39101	GCTGTGAGCA	GAGATCACGC	CACTGCACTC	CAGCCTGAGC	GACAGAGCGA
39151	GACTCCATCT	CAAAAAAAAA	AAAGAGTTTG	GGATTAGCCT	GGCCAACATG
39201	GCAAAACCCC	ATCTCTACAA	AAAGTACAAA	AAAATTAGCT	GGGIAIGGIG
39251	GTGCGCGCCT	GTAATCCCAG	TTACTCAGGA	GGCTGAGGCA	TGAGAATTGC
39301	TTGAGCCTGG	GAGGTGGAGG	TTGCAGTGAG	CCCAGATCAT	GCCAC I GCAC
39351	TCCAGCCTGG	ATGACAGAGT	AAGATGCCAT	CTCAAATAAA	AATTAAAAAC
39401	AAAGTTTAAA	AAAAAAAATAG	AAGCTATTAC	CGTGATCCAG	GTAAGAGATG
39451	TGAATAACTA	CAATGATGGA	AAGAAGGCAG	AGTTCTTAGA	GATGGGAGTA
39501	GGAGAGATGA	GGGAACTCCA	GATTGGGAAG	ATGATGTTCA	AGTTTCTGGC
39551	TTAGGCCACA	GGGTGAGTGG	CAATTCCCTT	CACTGAGATG	GGGCATCCTG
39601	GAAAAGGTGT	TGCCTTTCTG	TGTGGGTATC	CTGGGCCCCT	TAGGGGCCAC
39651	TGGTGGCCTG	GGACCTGGTA	AACCTTCCCT	GCACAAGCAG	AATTGGTCAA
39701	GCAGGTTTTT	AGGACATCTT	TACCCTGCCT	CAACTCTTGT	CTGGCCCAGG
39751	GTCAACCGGA	TGCACATCAG	TCCCAACAAT	CGAAACGCCA	TCCACCCTGG
39801	GGACCGCATC	CTGGAGATCA	ATGGGACCCC	CGTCCGCACA	CTTCGAGTGG
39851	AGGAGGTAGA	GTGTGTGTCT	AATCTGTCTT	GTGAGGGTGG	GACATGGAAC
39901	AGATCCTCTC	GGAAATCAGG	CTGTAGCCTT	TACCTTTTCC	TACCCCCAGC
39051	CCATCTCTTT	GTCTTAGCAT	TGAGCCTGTG	ACCACTGGTG	ACCTATTTCA
07301	CONTOTOTIC				
		L.	_ , , , , , , , , , , , , , , ,		

40001	GCGTAACAGG	TTCCCAGGGT	AGCAGGGATG	GTTGATGGAC	GGGAGAGCTG
40051	ACAGGATGCC	AGGCAGAGGG	CACTGTGAGG	CCACTGGCAG	CTAAAGGCCA
40101	CCATTAGACA				
40151		GGCCTGGGAT			
40201					
40251	TGTTGATTGA	ACATGACCCC	GTCTCCCAAC	GCCTGGACCA	GCTGCGGCTG
40301	GAGGCCCGGC	TCGCTCCTCA	CATGCAGAAT	GCCGGACACC	CCCACGCCCT
40351	CAGCACCCTG	GACACCAAGG	AGAATCTGGA	GGGGACACTG	AGGAGACGTT
40401	CCCTAAGGTG	CCACCTCCCA	CCCTGGCTCT	GTTCTGTCCT	ATGTCTGTCT
40451	CTCGGATGAA	GCTGAGCTGG	CTTTCAGAAG	CCTGCAGAGT	TAGGAAAGGA
40501	ACCAGCTGGC	CAGGGACAGA	CTATGAGGAT	TGTGCTGACC	CAGCTGCCCC
	TGTGGGGATC				
40601	CAGGTTTCCT	TAGAAACCTG	AGAGTCAGTC	TCTGTCCACT	GAACTCCTAA
40651	GCTGGACAGG	AGGCAGTGAT	GCTAAACCCT	GAAGGCCAAC	ATGGCCTATG
	GAGAAAGCAT				
	TAAATTGTGT				
40801	GTTTTTTTA	GACTTGAGGG	ACCAACAACC	CCCAAACCCC	AGATTCTGCC
	AGGTCCATGG				
40901	GACTTACAGA	AAAGAAGTCA	AGAGCACTGG	CTCCCAGGCA	GAAATACTGA
40951	TACCCTACTG	GGGCTTCAGG	CTGAGCTCCT	CCCTTCACAA	ATCACTTCAT
	CTCTCTGAGC				
	GGCTGTCTCA				
41101	TGTATAGTGC	TGCCATAGGG	ACAGTGTTCA	GTAAACGTGA	CACATTCTTA
	GTATCACTAA				
41201	ATCCCAACAC	TCTGGGAGGC	CTAGGTCGGA	GGATGGCTTG	AACACAGGAG
41251	TTTGAGACCA	GCCTGAGCAA	CATAGTGAGA	CACTGTCTCT	ACAAAAAAA
41301	AATAATAA	ATAATTGTTT	TTAATTAGAT	GGGCAGGGCA	CTGTGGCTCA
	CACCTGTAAT				
41401	GCCAGGAGTT	CAGGAGCAGC	CTGGGCCACA	TTCCTGTCTC	TACAAAGAAT
41451	AAAAAAGTTA	ACTGGGCATG	GTGGCACATG	CCTGTAATCC	CAGCTACTCA
41501	AGAGGCTGAG	GAGGAGGATT	GCCTGAGCCC	AGGAGTTCAA	GACTGCAGTG
41551	AGCCTTGATC	ACACCACTGT	ACTACAGCTT	GGGCAACAGA	GTGAGACCTT
41601	GTCTCCAAAA	AAAAAAGTTT	GIIIIIII	ATCCACTCTC	CTCACCAAAC
	AAACTGAGTA				
41701	CCTCTCATTA	AAGTGCTGCC	CTCACTCCCA	TTGCCTCTTG	GCCTTGGTCA
41751	GTATGATGAA	ATTAGTGGGA	GGCAGGGCAA	CAGAGGCAG	GGAAGAGCTA
	GAAATCCATG				
	AGAGCCACCA				
	GCATGGTCAG				
	GGTCGGGACA				
	AAGTAAAGCA				
	TGCAGTGCTG				
	TAACAGTCAT				
	TAGTGACTTT				
	AGGAAACATG				
	TTTGCTGGCC				
42301	GGCCGAGGCG	GGCAAATCAC	TTGAGGTCAG	GAGTTTGAGA	CCAGCCTGGC
42351	CAACATGGTG	AAACCCTATC	TCTACTAAAA	ATACAATAAT	TAGGCTGGGC
	GCAGTGGCTC				
42451	AATCACAAGG	TCAGGAGTTT	GAGACTAGCC	TGGCCAATAT	GGTGAAACCC
		-	1004	-	

	42501	CATCTCTACT	AAAAATACAA	AAATTAGGGC	CGGGTGTGGT	GGCTCACGCC
	42551	TGTAATCCCA	GCACTTAGGG	AGGCCGAGAC	AGATGGATCG	CGAGATCAGG
	42601	AGTTCGAGAC	CAACCTAGCC	AACATGGTGA	AACCCCATCT	CTACTAAAAA
	42651	AATACAAAAA	TTATTCGGTT	GTGGTGGCAC	ACGCCTGTAA.	TCCCAGCTAC
	42701	TTGGGAGGCT	GAGGCAGGAG	AATCTCTTGA	ACCTGGGAGG	CAGAGGTTGC
	42751	AGTGAGTGGA	GATCCCGCCG	TTGCACTCCA	GCCTGGGCGA	CAGAGTGAGA
	42801	CTCCATCAAA	AAAAAAAAA	AAAAAAAAA	AAATTAGCCG	GGCGTGGTGG
	42851	CGTGCACCTA	TACTCCCAGC	TACTTGGGAG	GCTGAGGCAG	GAGAATCGCT
	42901	TGAACCTGGA	AGGCGGAGGT	CGCAGTGAGC	CGAGATCGTG	CCATTGCACT
		TCAGCCTGGG				
	43001	AATAACTAGC	CGGGCCTGGT	GGCACATGCC	TGTAGTCCCA	GTTACTCAGG
	43051	AGGCGGAGGC	ATGAGACTCA	GGTGAACTAG	GGAGACAGAG	GTTGCAGTGA
	43101	GCCAAGATCA	CACCACTGCA	CTCCAGCCTG	GTTGACAGAG	CGAGACTCTG
	43151	TCTCAAAAAA	AAAAAAATCC	CATTTGCTCA	TTTTTTGGAT	ACTAGTATAA
	43201	CTATCACTCT	AAACCAGTTA	GTACTTAAAT	CAAGCAGATA	TGGGAGATGG
	43251	TGAATTACCA	TCTACAGTGT	TGTCATATAT	GTCACATACT	GAGCATTATC
	43301	AGCTAGTAGA	ATCTAGTTAA	TTGTTCTATG	TGTGATGTAT	GCAGAGTTCC
	43351	CATTITGAAT	GTGTTTTTAC	TATGCTTAAA	TAAATGACTG	ATGTCAGCAA
	43401	CCCCAAAATG	ATACATCTGA	TGTAAGAGCC	CCTGTTCCCC	AATAATAACA
	43451	TCTAAACTAT	AGACATTGGA	ATGAACAGGT	GCCCCTAAGT	TTCCTCCCTC
	43501	CAGGGTTTCT	TGGCCGGTCT	CTGAGGACTA	CACATCCCTA	CTCCCGTCTT
	43551	TCCTCATCTT	CAGGCGCAGT	AACAGTATCT	CCAAGTCCCC	TGGCCCCAGC
	43601	TCCCCAAAGG	AGCCCCTGCT	GTTCAGCCGT	GACATCAGCC	GCTCAGAATC
	43651	CCTTCGTTGT	TCCAGCAGCT	ATTCACAGCA	GATCTTCCGG	CCCTGTGACC
	43701	TAATCCATGG	GGAGGTCCTG	GGGAAGGGCT	TCTTTGGGCA	GGCTATCAAG
		GTGAGCGCAG				
,	43801	ACTGTCTTTC	GGGGATTTCT	CATCACTTGG	CCCCACCCCA	CACCATGCAG
		GATGCCAGGC				
	43901	CACCCCCACC	CAGGCCACCT	AAGGTCAATG	TTGCTGTTAC	AGTGAGCTTG
	43951	TGGACCTGGA	GATCCAGGTT	GGGTTGAGCT	GTGCCTGTGG	CCCTCCTGCC
		TCCAGTCAGT				
	44051	GCTACAAGGA	GCACACAGGG	GAATGGCTCC	TGCCTCCCTG	GTGAACAGTC
	44101	TCAGGGACTA	ACCTCTCTCT	TTCTCTCCTC	CTCCTCCTCT	TCTGCTGAGA
		ACTGGGAGGG				
	44201	GGCTGGAGAG	CTCACCCCCG	ATCCACCCAG	CTCCCTGGTG	CATGTCTTTG
	44251	GCACTGACCT	TCCTGCCCCC	AGACTTCTGT	TCACTCAGGA	GACTCACTTC
	44301	TATGCCAAAT	GACCAGAGCC	CCTGCTTGGC	TTGGCAGCAT	CCCCTCCTGC
	44351	CTTCTTCCCC	ACTTCCCTTT	TCTGGGTTCT	TGCCTGTCCT	CTGTGCATGC
		CCAGCTCTCC				
	44451	CACGCTGCAT	CTTCCACACA	TGAACTCTGT	CATTCTGACC	CGGCTCAGTG
	44501	TGCCCTCCAA	GGGATGGGAT	GGCCAGCTGC	ATAGATTTTC	TCAAACAGTT
	44551	CTCCAGAACT	TCCTCTGGTC	TCAGCACCAT	TAACAGTCAC	CCTCCCTGTA
	44601	GGTGACACAC	AAAGCCACGG	GCAAAGTGAT	GGTCATGAAA	GAGTTAATTC
	44651	GATGTGATGA	GGAGACCCAG	AAAACTTTTC	TGACTGAGGT	AAGAAGATGG
	44701	AGGGGGCCCG	GGAGGTTGGT	GTCACCATTG	GAAGAGAGAA	GACCTTACAA
	44751	ATAATGGCTT	CAAGAGAAAA	TACAGTTTGG	AATTACTGTC	TTAAAGACTA
,	44801	AGCAGAAAAG	AGCCCTAGAG	GAATATCCCA	CTCCCTCTAA	ATTACAGCGT
	44851	AATTATTTGT	TCAATGAACA	CTTACTAAAA	GCAACACAAA	CAGGGTACAA
		GGGATGCAGT				
	44951	GGATGATGGA	CATGAAAACA	CTCCAATTTA	GTACAACTCA	ATGTTATAAT
					_	

47501		ATTAAGGTAG			
47551		GAATGGAGAG			
47601		GTTACGAGTG			
47651		TAGCCGTGAT			
		GCTGTTCTGT			
		CTCCATGAGA			TAGTCACCTA
		AAGGGCAGC			
47851		GGGTGTCTCA			TTTGAGCAGG
47901		AAAAGGCTGG			
47951		CATAGGAAAG			
48001		GCAGGCAGGT			
48051		GAGCAGCTCC			
48101		GAGCAAGGAG		TACATTTGCA	
		GCTCCTGAGA		TCAGTGGTGG	
		ACAAACAAAT			
		GTTTAGACAG			
		ACAGAGCTAG			
		TCCAAAGTGG			
		CTGGATCTAA			
		GGTTTTCTGA			
		GCCACTGTGC			
		AGGGAAGCAG			
		GGCCATAGGA			
		TGGGCATGGC			
		GGTCTAGTTG			
		GGCCTATTTG			
		ACTGCCTCAT			
		GTCCTATCCT			
		CTGGCTAGAG			
		GCTTCTTCCA			
49001		GACATAATTT			CTTTGAAATA
		AAGGGACTTC			
49101					
		TTTTACAGTG			
49201		AATTTACAGG			
		TGTGGTGGTT		•	
49301		GGGTGTCTAC			
		ATCTTCATTC			
		TCTCCCCCAA			
		TATCCTGGTT			
		AGGGAAAAAC			
		AGTCCCTGAG			
		TGTGGGCTGG			
		ATGCCAAGTG			
		GAGTCTCATT			
		ACTGCAGCCT			
		CAGTAGCTAG			
		TTTTTTTTT			
		GCTGGTCTTG			
49951	TUBLETCECA	AAGTTCTGGG	ATTACAGGIG	GAAGCCACCG	ושטנוושטננו

		GAGTGTGTCT				
	50051	ACCTTTTCTC	CCCTTCTCAG	TGGCTTCTCT	TGCCTATGCT	TCCTCCCCAG
	50101	GGCCAGGTTT	GAGAACATCC	CCATGAAGTC	CTGACCTGTC	TTTTATCCTA
	50151	CCAGGACAAG	ACTGTGGTGG	TGGCAGACTT	TGGGCTGTCA	CGGCTCATAG
	50201	TGGAAGAGAG	GAAAAGGGCC	CCCATGGAGA	AGGCCACCAC	CAAGAAACGC
	50251	ACCTTGCGCA	AGAACGACCG	CAAGAAGCGC	TACACGGTGG	TGGGAAACCC
	50301	CTACTGGATG	GCCCCTGAGA	TGCTGAACGG	TGAGTCCTGA	AGCCCTGGAG
		GGGACACCCG				
		GAATTCCAGG				
		GATATTTTC				
	50501	GGGGGCTGGG	AACTGATCAG	TGTCCCATCA	TGGGGGATAA	GGTGAGTTCT
		GACTGTGGCA				
		CAGCTTTAGC				
		GGTGGATAAT				
		CAGGGTTGTG				
		TGAGGCCCAG				
		TGGCAGAGGC				
		AGTTTCATCC				
		CCTACGGCTG				
		TGTGGGGTGT				
		TTAGATTGAC				
					GAGCTATGAT	
		ATATCTTCTC				
		GCCATGCCCG				TCGGAACTGG
		GGCATCTCCT				
•		GGGTTTTATG				
		CATTGGTCTT				
		CTCACTTCGT				
		CAACCTCTGC				
		TAGCTGGGAC			•	
		TTAGTAGAGA				TTGAACTCCG
		GACCTCAGGT				
		GGCGTGAGCT				
		AGGAAACTGA				
	51701				GGGCAAGAGA	
		GGCTGTCTAG				
		AAGTAGAAGT				
		TGGACAGAGT				
		AGGTGACAGC				
		TGTAATTCCT				
		GGTTAGGATA				
		AGTTTCACTC				
		CTGCAGCCTC				
		AAGTAGCTGG				
		TTTTCAGTAG				
		CCTGACCTCA				
		CAGGCATGAG				
		TIGITITCTT				
		TGCCAGAGGG				
		ATCTGGCACA				
	JE-1JI	THUIGUOTOR			a tortariory to	auriada irida

52501	ATGAGTGGAA	GCTAGGAGCA	GATGCTGATT	TGGAACACTT	GGCTTCTGCA
52551	GTGAAGCCCC	TTCTTAGTCC	TCTTCAGTAA	CCCAGCTCTC	AGTGGATACA
52601	GGTCTGGATT	AGTAAGATTT	GGAGAGATGA	TTGGGGATTG	GGGAGAGCTC
52651	TCTAACCTAT	TTTACCACCT	CCTCTTCTGC	CATTCTTCCT	GTCCACATCC
52701	CCAGCATCCC	TTTCCCTTGC -	CAAGTATCTG	TGGCCTCTGT	AGTCCTTTGT
52751	AAACAGCTGT	CTTCTTACCC	TACAGATCAT	TGGGCAGGTG	TATGCAGATC
52801	CTGACTGCCT	TCCCCGAACA	CTGGACTTTG	GCCTCAACGT	GAAGCTTTTC
52851	TGGGAGAAGT	TTGTTCCCAC	AGATTGTCCC	CCGGCCTTCT	TCCCGCTGGC
52901	CGCCATCTGC	TGCAGACTGG	AGCCTGAGAG	CAGGTTGGTA	TCCTGCCTTT
52951	TTCTCCCAGC	TCACAGGGTC	CTGGGACGTT	TGCCTCTGTC	TAAGGCCACC
53001	CCTGAGCCCT	CTGCAAGCAC	AGGGGTGAGA	GAAGCCTTGA	GGTCAAGAAT
53051	GTGGCTGTCA	ACCCCTGAGC	CATCTGACAA	CACATATGTA	CAGGTTGGAG
53101	AAGAGAGAGG	TAAAGACATA	GCAGCAAGTA	ATCTGGATAG	GACACAGAAA
53151	CACAGCCATT	AAAAGAAAGT	TTAAAAGAAG	GAAATTCACC	CAAACCATTT
53201	GAATACAGTA	AGTGTATTCA	TCTTTCGATA	TTCCCCTGTC	CATATCTACA
53251	CATATACTTT	TTTTTATAGT	AAATAGTTCT	GTATTTTGCC	CTGCATTTCC
53301	CTTGTGTTTA	CTATCCAGTC	TTCCTGTTTA	TCATTTTTGT	CGACAACATG
53351	AAATTCTATT	GAGAGACTGT	CTGAACATAT	TGTAATGTAG	ATGTTCAGGT
53401	TTTTCCAGTT	TCTCTTTACA	ATAGGTATTT	AACTACAGTG	AGCAGTTTTA
53451	TGCATTTAGC	TAATTTCTCC	TTTGAGGAAG	TATTTTCAAA	ATTACCTTTA
53501	TTCTTCTCAG	GTAATAATTT	CATTATTACC	AAAGTTACCC	TAGGTCTTTT
53551	CAAGTGTGTG	GTTAAAAAAC	GAGAATCTGG	CTGGGCGCGA	TGGCTCACAC
53601	CTGTAATCCC	AGCACTTTGG	GAGGCTGAGG	CTGGTGGATC	ACCTGAGGTC
53651	TGGAGTTCGA	GACCAGCCTG	GCCAACATGG	TGAAACCCCA	TCTCTACTAA
53701	AAATACAAAA	CTTAGCCAGG	CATGGTGGCA	GGTGCCTGTA	ACCCCAGCTA
53701	CTTGGGAGGC	TGAGGCAGGA	GAATTGCTTG	AACCCAGGGG	CGGAGGTTGC
E2001	AGTGAGCCGA	TATCACCCCA	TTCCACTCCA	GCCTCGGCAA	CAAGAGTGAA
23001	ACTCTGTCTC	AAAAATGCCC	TTCTTTTCCT	GCCATCAAAA	ATCATGTTTC
23031	TTTTAAAAAC	AACTTCAAAC	ATTACCAAAG	TTTATAGCAC	AGGAAATACG
22301	TCTTCTGTAA	TCTCCCTTAA	CCAATATATC	CCTCAACATT	CTCCTCACCC
22321	CCAACTCCAC	CCTCCCACCA	TAACCACTTC	GGACATAATC	ΤΤΤΔΤΤΤΔΔΑ
24001	AATGGTTTCC	CCATACAGAA	VCCCUTTCC	CGCCGCAGC	CCCGCCGCG
54051	CCCCCACCCC	ACAAACCCCC	CCCCCATCCC	CGGCGGCAGC	GCGGGGCGCG
54101	ACCAGGCCAG	CCCCCCCCCC	TCCCCATCCT	CCACCTCCCT	CTCGGGCGCG
54151	ACCAGGCCAG	CCCTCCCCC	CCACCCCCCC	ACCTA ACCTC	AGCCAGCCGG
54201	CCCCCCTCAC	CCACCCCCC	CCACAACCAC	CCCCCCCCACC	CGCGCACGTG
54251	CGGGCGCACC	CCCCCCTCCC	CCACACCCC	ACCCCCCCCC	CCCCCCCCTT
54301	GCCCCGGAGG	000000000	CCACCCCACC	CACTCCCCC	CAACCACCATT
54351	GCATCTACTT	TCACACCCCC	CCCCCCCCCC	CCACCACACA	CAAGGACCAC
54401	GCATCTACTT	TLAGAGULLU	しししししむむむしし	ACCCA ACCTC	TOAACTACACA
54451	ATCACCCAA	GAGGGCCCAG	AACCACCTCA	ACCTACACCA	ACCATCAAGT
54501	ATGALCUCAA	GGAGC I ACGG	AAGCACCICA	ACCIAGAGGA	GTGGATCCTG
54551	GAGCAGCTCA	CGCGCCTCTA	CGACTGCCAG	CAAGAGGAGA	TCTCAGAACT
54601	AGAGATTGAC	GIGGAIGAGC	ICC IGGACAT	GGAGAGIGAC	GATGCCTGGG
54651	CTTCCAGGGT	CAAGGAGCTG	CIGGITGACI	GITACAAACC	CACAGAGGCC
54701	TTCATCTCTG	GCCTGCTGGA	CAAGATCCGG	GCCATGCAGA	AGCTGAGCAC
54751	ACCCCAGAAG	AAGTGAGGGT	CCCCGACCCA	GGCGAACGGT	GGCTCCCATA
54801	GGACAATCGC	ACCCCCCGA	CCTCGTAGCA	ACAGCAATAC	CGGGGGACCC
54851	TGCGGCCAGG	CCTGGTTCCA	IGAGCAGGGC	TCCTCGTGCC	CCTGGCCCAG
54901	GGGTCTCTTC	CCCTGCCCCC	TCAGTTTTCC	ACTIFICAT	TTTTTATTG
54951	TTATTAAACT	GATGGGACTT	TGTGTTTTTA	TATIGACICT	GCGGCACGGG
			_	_	

55001	CCCTTTAATA	AAGCGAGGTA	GGGTACGCCT	TTGGTGCAGC	TCAAAAAAA
55051	TAAAAAAAA	GATTTCCAGC	GGTCCACATT	AGAGTTGAAA	TTTTCTGGTG
55101	GGAGAATCTA	TACCTTGTTC	CTTTATAGGC	CAAGGACCGC	AGTCCTTCAG
55151	TAACACCAGT	GTAAAAGCTT	GAGGAGAAAT	TGTGAAGCTA	CACAGTATTT
55201	GTTTTCTAAT	ACCTCTTGTC	ATTCTAAATA	TCTTTAATTT	TAAAAAATTA
55251	ATATATATAC	AGTATTGAAT	GCCTACTGTG	TGCTAGGTAC	AGTTCTAAAC
	ACTTGGGTTA				
	TAGATTCTAG				
55401	ACTATATTGA	ATATTAGAAT	GTGGCAGATG	CTATGGAAAA	AGAGTCAAGA
55451	CAAGTAAAGA	CGATTGTTCA	GGGTACCAGT	TGCAATTTTA	AATATGGTCG
55501	TCAGAGCAGG	CCTCACTGAG	GTGACATGAC	ATTTAAGCAT	AAACATGGAG
55551	GAGGAGGAGT	AAGCCTGAGC	TGTCTTAGGC	TTCCGGGGCA	GCCAAGCCAT
	TTCCGTGGCA				
55651	ATTTTCTCTA	AGATATGGGA	GGGAAGTTTT	TCTCCTATTG	TTTTTAAGTA
55701	TTAACTCCAG	CTAGTCCAGC	CTTGTTATAG	TGTTACCTAA	TCTTTATAGC
55751	AAATATATGA	GGTACCGGTA	ACATTATGCC	CATTTCTCAC	AGAGGCACTA
55801	CTAGGTGAAG	GAGTTTGCCT	GACGTTATAC	AACCAGGAAG	TAGCTGAGCC
55851	TAGATCCCTT	CCACCCACCC	CATGGCCCTG	CTCATGTTCC	ACCTGCCTCT
	AATTTACCTC				
55951	TTTGAGGCCC	TCTCCCTGTA	CCTGGGGGAG	CTGGGCATCC	CGCTGCCTGC
56001	AGAGCTGGAG	GAGTTGGACC	ACACTGTGAG	CATGCAGTAC	GGCCTGACCC
	GGGACTCACC				
56101	CAGCCAGCAT	TGCCCCTCTG	TGCCCCATTC	CTGCTGTGAG	CAGGGCCGTC
56151	CGGGCTTCCT	GTGGATTGGC	GGAATGTTTA	GAAGCAGAAC	AAGCCATTCC
56201	TATTACCTCC	CCAGGAGGCA	AGTGGGCGCA	GCACCAGGGA	AATGTATCTC
56251	CACAGGTTCT	GGGGCCTAGT	TACTGTCTGT	AAATCCAATA	CTTGCCTGAA
	AGCTGTGAAG				
	TACTCGAATC				
	GCTTACACTA				
	AACCTGCCTG				
56501	TTCAAGTGTG	TGGACGAAAG	AAAGACTGAT	GGCTCAAAGG	GTGTGAAAAA
	GTCAGTGATG				
56601	GGTTGAGGGA	GTAGGTTTTG	AAGAGTCCCT	TAATATGTGG	TGGAACAGGC
	CAGGAGTTAG				
56701	CCAGCCCAGG	GACCACATCA	ATGTGAGAGG	AAGCCTCCAC	CTCATGTTTT
	CAAACTTAAT				
	GTCTGAAACA				
	AGGCCCTGCC				
	GGGTGGGCTC				
56951	GGTTCTGGAG	GACAGTGTGG	CTTGTCACAG	GCCTAGAGTC	TGAGGGAGGG
	GAGTGGGAGT				
57051	TCACCCTTCA	ACATGCCTGG	TTTAGGCAGC	AGCTTGGGCT	GGGAAGAGGT
57101	GGTGGCAGAG	TCTCAAAGCT	GAGATGCTGA	GAGAGATAGC	TCCCTGAGCT
57151	GGGCCATCTG	ACTTCTACCT	CCCATGTTTG	CTCTCCCAAC	TCATTAGCTC
	CTGGGCAGCA				
	CTTGGCTCCC				
	TCTAAGTGTC				
	GGGGTATTAA				
57401	AAAGGAGAGT	GGTTGCTGTT	AATATTATCT	IAICIATTGG	GIGGIAIGIG
57451	AAATATTGTA	CATAGACCTG	ATGAGTTGTG	GGACCAGATG	ICAICTCTGG
				_	

```
57501 TCAGAGTTTA CTTGCTATAT AGACTGTACT TATGTGTGAA GTTTGCAAGC
57551 TTGCTTTAGG GCTGAGCCCT GGACTCCCAG CAGCAGCACA GTTCAGCATT
57601 GTGTGGCTGG TTGTTTCCTG GCTGTCCCCA GCAAGTGTAG GAGTGGTGGG
57651 CCTGAACTGG GCCATTGATC AGACTAAATA AATTAAGCAG TTAACATAAC
57701 TGGCAATATG GAGAGTGAAA ACATGATTGG CTCAGGGACA TAAATGTAGA
57751 GGGTCTGCTA GCCACCTTCT GGCCTAGCCC ACACAAACTC CCCATAGCAG
57801 AGAGTTTTCA TGCACCCAAG TCTAAAACCC TCAAGCAGAC ACCCATCTGC
57851 TCTAGAGAAT ATGTACATCC CACCTGAGGC AGCCCCTTCC TTGCAGCAGG
57901 TGTGACTGAC TATGACCTTT TCCTGGCCTG GCTCTCACAT GCCAGCTGAG
57951 TCATTCCTTA GGAGCCCTAC CCTTTCATCC TCTCTATATG AATACTTCCA
58001 TAGCCTGGGT ATCCTGGCTT GCTTTCCTCA GTGCTGGGTG CCACCTTTGC
58051 AATGGGAAGA AATGAATGCA AGTCACCCCA CCCCTTGTGT TTCCTTACAA
58101 GTGCTTGAGA GGAGAAGACC AGTTTCTTCT TGCTTCTGCA TGTGGGGGAT
58151 GTCGTAGAAG AGTGACCATT GGGAAGGACA ATGCTATCTG GTTAGTGGGG
58201 CCTTGGGCAC AATATAAATC TGTAAACCCA AAGGTGTTTT CTCCCAGGCA
58251 CTCTCAAAGC TTGAAGAATC CAACTTAAGG ACAGAATATG GTTCCCGAAA
58301 AAAACTGATG ATCTGGAGTA CGCATTGCTG GCAGAACCAC AGAGCAATGG
58351 CTGGGCATGG GCAGAGGTCA TCTGGGTGTT CCTGAGGCTG ATAACCTGTG
58401 GCTGAAATCC CTTGCTAAAA GTCCAGGAGA CACTCCTGTT GGTATCTTTT
58451 CTTCTGGAGT CATAGTAGTC ACCTTGCAGG GAACTTCCTC AGCCCAGGGC
58501 TGCTGCAGGC AGCCCAGTGA CCCTTCCTCC TCTGCAGTTA TTCCCCCCTTT
58551 GGCTGCTGCA GCACCACCCC CGTCACCCAC CACCCAACCC CTGCCGCACT
58601 CCAGCCTTTA ACAAGGGCTG TCTAGATATT CATTITAACT ACCTCCACCT
58651 TGGAAACAAT TGCTGAAGGG GAGAGGATTT GCAATGACCA ACCACCTTGT
58701 TGGGACGCCT GCACACCTGT CTTTCCTGCT TCAACCTGAA AGATTCCTGA
58751 TGATGATAAT CTGGACACAG AAGCCGGGCA CGGTGGCTCT AGCCTGTAAT
58801 CTCAGCACTT TGGGAGGCCT CAGCAGGTGG ATCACCTGAG ATCAAGAGTT
58851 TGAGAACAGC CTGACCAACA TGGTGAAACC CCGTCTCTAC TAAAAATACA
58901 AAAATTAGCC AGGTGTGGTG GCACATACCT GTAATCCCAG CTACTCTGGA
58951 GGCTGAGGCA GGAGAATCGC TTGAACCCAC AAGGCAGAGG TTGCAGTGAG
59001 GCGAGATCAT GCCATTGCAC TCCAGCCTGT GCAACAAGAG CCAAACTCCA
59051 TCTCAAAAAA AAAAA (SEQ ID NO:3)
```

FEATURES:

Start: 3000 3000-3044 Exon: 3045-45393 Intron: 45394-45525 Exon: Intron: 45526-45761 45762-45818 Exon: Intron: 45819-50154 50155-50329 Exon: Intron: 50330-51076 51077-51132 Exon: Intron: 51133-52775 52776-52933 Exon: Intron: 52934-55922 Exon: 55923-56064 56065 Stop:

FIG.3-24

CHROMOSOME MAP POSITION: Chromosome 22

ALLELIC	VARIANTS	(SNPs):
---------	----------	---------

DNA	, , , , , , , ,		
Position	Major	Minor	Domain
941	A	T	Beyond ORF(5')
2612	G	Α	Beyond ORF(5')
5080	G	Α	Intron
6599	-	A C	Intron
6983	C .	G	Intron
9885	Α	- '	Intron
12538	G	T	Intron
17707	T	C	Intron
18219	•	Α	Intron
19670	С	T	Intron
21153	G	T	Intron .
24566	С	•	Intron
26604	G	Α	Intron
27255	С	G	Intron
27399	Т	С	Intron
28088	G	Α	Intron
28734	G	Α	Intron
29246	•	T	Intron
29490	G.	A	Intron
29934	T	C	Intron
34480	A	G · · ·	Intron
38812	T	С	Intron
40731	C	G	Intron
41303	T	Α	Intron
41305	-	Α	Intron
41457	G	С	Intron
43168	Α.	- T	Intron
43357	T	G	Intron
45664	T	С	Intron
47549	Α	′C	Intron
47908	С	Α	Intron
52267	С	Α	Intron
54654	T	· C	Intron
54679	C .	G	Intron
54693	Α	C .	Intron
54706	T	C C	Intron
54712	T	С	Intron
54799	T	Č	Intron
54819	G	Α	Intron
55499	С	T	Intron
56825	С	A	Beyond ORF(3')
58871	Ť	Á	Beyond ORF(3')

Context:

FIG.3-25

DNA <u>Position</u> 941

GAGTAAGTGGGTGGTCAGGTTACAGACTTAATTTTGGGTTAAAAAGTAAAACAAGAAAC AAGGTGTGGGTGGGTGGGTGTGGGAGCTCATAAACTG AAGGTGTGGCTCTAAAATAATGAGATGTCCAAAAAATATTTCCAAAACTTGGAAGATTCAT TTGGATGTTTGTTCATTAAAATCTCTCACTAATTCATTGTCTTGTCCACTGTCCGTAA CCCAACCTGGGATTGGTTTGAGTGAGGTCTCTCAGACTTTCTGCCTTGGAGTTTGTGAGAG [A, T]

TGAGTTGGAACAGTTTGATACCAAAACCATCCCCCCGCCCCCCAACCCCCAGCCTAGGGT
CCGTGGAAAAATTGGCCCCTGGTGCCAAAAAGGTTGAGGACTGATCTAGAGGACCAA
TTTATTCAATGTTGGTTGAGTAAATGAGCTCTTGGATTAGGTGATGGAAAAATCTGAAAA
AACAGGGCTTTTTGAGGAATAGGAAAAGGCAGTAACATGTTTAACCCAGAGAGAAGTTTCT
GGCTGTTGGCTGGGAATAGTCATAGGAAGGGCTGACACTGAAAAGAAGGAGATTTGTTC
[G,A]

TTTCTTCTCAGAGCTATAAGCAAAAGGCTGAAAGTTCTAGAAAAAAGGCAAGTTTTGTT
TCAGTAGAAAAAAGGATAATCAGAACCATTTTTAGAAAAATGGAATGAGACTACTTTTGAG
GCCATGAGTTCCTTGTCCCTGGAGAGATGAGCAGAGGTTGGACAAGTGCTTACCAGAGAT
CTTGTGGAGGCAGAAACTGTGCATCTAGCAGAGCATTGGCCTAACCCTTTCAAATGAGAT
GCTGTTAACTCAGTCTTATTCTACATGGTAGGAATCCTGTCCCTTTGCCTCCTGCTACTT

ACAACGTAAAATAGTTGAAATTTGTTGGTGGAAAGAAGACAGTCCACTCCAGAGGCTGG
ATGGGCATGCCTGGCCCCCAAGGTCTGAAGTGGTAGGGCTGTGCCTATATCCTGAGAATG
AGATAGACTAGGCAGGCACCTTGTGCTGTAGATTCCAGCTCCTGCACATAGCTCTTGTTG
TAAAACATCCCTGTGCTTATACCAAGTAATTGAGTTGACCTTTAAACACTTGCCTCTTCC
CTGGGAACCATATAGGGGATTGGCCTGGAGACGTCTGGCCTCTGGAAGAGTTGGAAAGCA
[G, A]
CCATCATTATTATCCTTTCCTTTCAGCTATAACTCAGAGCTCTCAAGTCTTTTCTGTGA
TCTTATTGCCTTGGTTCTTGCCCCTTTTACTCCCAGGGAAGTTGATTCTGTCTTTTCTGT
TCCATTTAGTATGACAGGAGCAGAGAATGTCAGAGCTGTAAGGGACCTTATAGTTAAAGC
CTTTGGCTGGTCCTTTCATTTTATAGCTGGGACTAATAAGTAACGTCAAAACCCCAATGAG
TTCACAGATTGGGTCTCGCCTTGGCATGTAACCCATATGTTCATATTCTTGCTGTTTTCC

FIG.3-26

6983

CACATTCATTGGTGATCTGATGTGGAGCCCCAGGGATTAAGGGCAACTTTGAACTACCCT GACACAATCAAGCCAAATATCATTCCCGTGGAGGAAGTAGAGTATCTAGGTTCTGTCTCC TAGTTGCAGCTTTACCTTGAGGACAGAGACTCTAATCCAGCTGTGCTGAAGGAGCACATC TCCTGACTTCTGAGCTTTCCCCTGGTAAATTCAAACTGGATGTCACGGCGCCCCTCAGATA GAGCCTGGTAATTTGCCCTGGGGAGAGTGACTGTCTTTTGGATCTAATTTGACTTTTGCC [C,G]

CAGTTGGAGGAAAATCTTCAGGGCTAGGAAGGATTGTATTTGTCTGACCCCAGAGATAAC CTGGGTTTTGAGGAACATGGGGCATCAACCTGAATGGTCTTGTAAGATCTCTCCCACGCC AGCTTGCCAGTGTTTCTCTGATGAATTTAGAGTACCTGAGTAGTGCAGGCCTGCTGGGAG GAGGACTCTCCCTCTGTGCTACTCAGAGAAATTCATTCTTCAAGGCCCCCTTCCAGCCTT GCTCTTACCCAGCTGGGCTACAGTTACAATAAAGGAAATGACTTTTCTTCTCCCCTTCCC

9885

GGCGTGCCACCACACCTTGCCATTTTTTTTTTATTTTAAGTAGAAACAAGGTCTTATTAAT
ACTATGTTGCCCAGGCTGGTCTTGAACTCCAGCGATCCTCCCCCAGCCTCCCAAAGT
GCTTGGGATTACGGAAGTAAGCCACTGTGCCTGGCCAGTGCAACCCCCATTTTATACTAA
AACAGGAAGGCCCAGAAAGGTTTGGAGTAACTTGTCCAGGGTCACACAGATGATATTTGA
ACTCAGGTCTCCCTGGCTCCCAAGAGAGTCTGCTTTCCACTAGGACTCCCAGGAGAAAAA

12538

17707

19670 GACCCCCATGATGAGCAACTATAGCACTAGAACAGTGATAATAACTAATGTTTATAATGC
ATCTTCAGTTTACAGAGGGCTTTTGTACTCATCATCTAGTTTAGTTCCTGCAACAACCTC
TTGAGGAATATAGCACAAGCAGGACAAGGGAAGCCCAGAGATGTTAAATAATTTATCCAA
GTTTATGCTGCTGGGAAGGGCAGCACTGAAATTAAAAGAAAAAGTTTTCTGAGCTCAAATC
CCATGCCCTTTCCTCAATGTGAGCTCTAGCAAGGTATTCAGGAATCCTGCCTCTACAGTT
[C,T]
AGAGCCTCAAATTGCTGGGTATGTTGAGTTCTTGTATCTGATTTTTCTAGATTTCCTGCC
CACATTCTTACTGTCTGGATATCAGGAAAGAGTTTATCAAATGCCTGTGGAAATCCAAGA
TAAGGTCTCATGATGAGTAACCCAGTGAAAACATGAAGTCAAGTCTAACTAGTCACTACT
ATTTCACTACTGCTGACTCCTGATGATCAGGCACTCCTTTTCTAAGTGCTTACTGTCCACTTA
TTCCATCATCTGCCTAGAATTTATGTGAAGGAATCAAAGCAAAAGGATCATAAGGCTTCC

GGACCCTTGTTTTAGAAGGATGACTGCTGCTATAATGTAGAAAGTGATTTGGAAGAGGGG
AGGAGTGGGGCACGAAAGATGGTTAGTAGATGGGGGTGGTAATGCTTACCTTTCAGTATT
TGGAGGCTTCGGAGTCCTCAAAAATTCTCTTCCTTGATTGGAGTCCTCCCAGCCAATAGA
GGGCTTCACACAAACAGTTTCTTGGGTTTTGAATTGTTTGACCAGAGCTTTCTTCCGACA
AAAGGTTGGGGTGATTCATTCACTTACCACACCCTTGCCTGAACATTCACTTGGGGCTGCC
[G, T]
GTTATGAAGGCTATTGTTCTCCAGCCTGTCACAGACGCTTTGAAGACCTGTGCCTCAGCT
GGTTCTAAGGAGTCAGTTTGTTCAGCTCCGTGCCAGGTTTCCAACTTATGAAATGTGCTG
GAGATTAACACCTCTCCTGCCATTTTATCCCTACTATAATTGCCAGTCAAAGGATTCCTG
CAGTTGCCTCTGGCAGCCATAACTGATGAATGTTCTGCCAGCTGCTCTGAGGACCTAGAA
GAGCAGTTTTCTATCCAGGACCAGTTTCCAAGGGTGGGAGGGTGAAATATATCCTCCAGT

GATGTCACTGCCCCAAATCCAGTAGTGAGATCTGAGTGTTCTGGTTTCCTCCAGCAGCCCT

FIG.3-28

Jan. 22, 2002

26604

GATTTGCAGCTGAGCCTGTCTATCTGGTGTGGGAAGAAGATGGGGAAGTTACTTGTCAGTC CCGGCTTACTTCACCTCCAGAGACCTGTTTCGGTGAGTTGGTCTCCGAGTTCCCCTCTCC ATCTCTCCTGGCCCCTGGTCCTGAGAGGAGGGTGGTCTCCCTAAATCTCCTTCTCACTTA GTCCTTTACCATCGGTTCTGCCGGGCAGAAGCCAGCGGAGGTTATACCCAAGGAGAATCG [G.A]

AACTTCTTAGGGAGCTCCAGCTCCCCTTCTATCCCAGACAAACCTGAAGGAGCCTCCAAA AGATGCCACTGACCTGCCCATTGTAGATGTTACTGCTTCCGGGGGGAATAGCCCAAATAG GTCCCAACAAGCAGGATGGGCAGGTTTTGCCAAACTGTGGAAACTGGCAAGTCCTGGGTG

27255

TGGGGAAAGACCTGGGCGAGTGCTTCTAAGACTGGAGCAATGGGCTTTAGAGTGTTCCTG AGCTGCTGGGCCAGCCCCCACACCTCCTCAGTCCCTAGGCCTAAGTACCTCCACGAGCCT GCTCATTGCCCCACTCCACCTCCCATAGAAACTCCCCAGGGGGTTTCTGGCCCTCTGGGT

CTGTTGTTCCAAAAAGGCTGCCTCCCCCTCACCAGTGGTCCTGGTCGACTTTTCCCTTCT GGCTTCTCTAAGCTAGGTCCAGTGCCCAGATCTTGCTGCCGGGATACTAGTCAGGTGGCC AGGCCCTGGGCAGAAAAGCAGTGTACCATGTGGTTTTTGTGGAATGACCGGACCCTGGTAG CTACCAAGCGCCCTGCTAGACACTTTATCCTTTAATCTCTCAACAGCCTAAAGAGATTAT

27399

AGATGTGGAAACTCTACCTCTAACCTGGCTTTCTTTGCTCATTGCCCCACTCCACCTCCC ATAGAAACTCCCCAGGGGGTTTCTGGCCCTCTGGGTCCCTTCTGAATGGAGCCATTCCAG GCTAGGGTGGGGTTTGTTTTCATTCTTTGGGAGCAGCCTGTTGTTCCAAAAAGGCTGCCT CCCCCTCACCAGTGGTCCTGGTCGACTTTTCCCTTCTGGCTTCTCTAAGCTAGGTCCAGT GCCCAGATCTTGCTGCCGGGATACTAGTCAGGTGGCCAGGCCCTGGGCAGAAAAGCAGTG [T,C]

ACCATGTGGTTTTGTGGAATGACCGGACCCTGGTAGATTGCTGGGAAGTGTCTGGACAGG GGGAAGGGGAAGGGAACTGGTCCTCAATGCTGACTCTACCAAGCGCCCTGCTAGACACT TTATCCTTTAATCTCTCAACAGCCTAAAGAGATTATATATCCCCATTTTACAGATGAGGC AACCAGTTTCAACAGAGTTAACATATGGAGCCTCACTGGGCAGCTTTTTCTGTCTTCCTG ACTITCTCTCATCCTTCAGGGGGCTGCAGGTTTGTTTTCTTCTCCTAGTGGAGAGAAAT

28088

AAGAGCCAATGGAAATTGATCTTGAGTTTAGGAGAAAGCTTTTACATGTGGAATTAAGAT GCCAAGTGTTGAAGTAGCCACATTTCAGGTCCTCATTAATTTCTCTTAATCCTGGGAAGG CAGCTTAGGAGAAGGGTTGTTCCTTTAGGAGCCAGGAACTATACCCCTTTTACCCTTGGA GAGGCAGGGAAGCCAGGGAGGACACACTTCTCAGGAAGAGGAGAAGCTAGAGCAGATAG TGAACTCTCAACCTGAACCTTTAAGGGCCAGACCACTAATGCCACCCAAGTCCACCTGCC

TTTGTCTTGTTCTGTCCCAGGCTTTCTGGAGAACCTGATCTTCTTGCCCCCTACCCCCAAG TCCCCAAATAAGAGGCCACATTCCTGAAGTCACTTCTGAAGAGATAGCTGCCACACAGGG CTCTTTCCCCCCAGGGAGGGACCACCCAGACCCTCTGCTCTCCCAGGTATCCGTTACCAC AAGTAGAAGCTAGACTTCTTGGGCTCCTGAACAGGGTCCTTGCTGGATTCTGTGAAACAA
ATTAAGTTCTTGACCCTAGGCCTCTGGGGGAGTACAAAGTCTATGGGAGTTCTGGGGCTG
TGGTTGCAAGGAAAGTGACGCAACCAGATTCCATGGGGACATGATCAGGCGTGACATGTG
AGGGAGGAAGAAGGGAACAGGGAATGAAGAATACAACTTCTGTGTCCCATACACCCCTGC
CTGACAGGCCATACATACTCAGCAGAGAATGCACTGTCTTTCCTACCACACTAGCGTGAG
[G, A]
AGTGAGCTGCAATTACCACTGTGCTTCCAAGTAAGAAAATACCTCAAATTGGAATTTACA
AAAGAGGTAAATTAGGGAGTGGCTTTTGTCGGACATCTTTAAAGCATTTTTCTTTTATA
GAATTTCACTTAATGTCCAATACTGATTTAATGAGCTTGGGTTTACACATTATCTCTTGA
AGAAAACAAATGAACCTTTGTGTTCCAAAGCAATCCATGTTTAAAGGGAAAAAATTATGC
ATAACTCTGCCCAGCTTCACAGTAACCTTTGGCAGGTGCCTTAGGTCCTCTGGGACTCTT

29246 AATCCATGTTTAAAGGGAAAAAATTATGCATAACTCTGCCCAGCTTCACAGTAACCTTTG
GCAGGTGCCTTAAGGTCCTCTGGGACTCTTTTCCTTATCTGAAAAATGAAGGACTTGGATC
AGGTGAATGGTTCCCAGCTCTGCAACTTATGTGGCTCCTCAGAGGCACACAAGCTCTTTT
CCATTATTTGCCAAATAATGGAGGCCCTGTCTTTAACTGCAGTACAACTACACAAAATAC
TTGAAACTACAGTCTTCCTGGTTTTTGGTTGGAACTGAATCAGTGCACTCTAGCAACACT
[-.T]
ATTTCTTGCTGTTCGTAGGCTTCATTATGTGTTTTGGTTAATTTTTTAAAACAACAACAATAAC

ATTTCTTGCTGTTCGTAGGCTTCATTATGTGTTTGGTTAATTTTTTAAAACAACAATAAC
ATATTCCATAATAATTACAGCTTAATTGGCAGACTGTTTCAGTCTATAGGATCTGCAGGA
AGGAGGAGTAATAAAGGGATTTTTGACTGAGCTCTTATGGAACAGAGTCTCTCTAGGCCC
CTGTCATATCTGCCCTTCTGGGCCCTGGGGAAAAGTTGGCATCCCCAGTTGTGGTGCTCT
CCAGGTGCCCTCAGGCTGTGGTGGAGGGAGCTTCCCCATTCTCCCTTCAGCCCACTCAAT

29490 AACTACAGTCTTCCTGGTTTTTGGTTGGAACTGAATCAGTGCACTCTAGCAACACTTATT
TCTTGCTGTTCGTAGGCTTCATTATGTGTTTGGTTAATTTTTTAAAACAACAACAATAACATA
TTCCATAATAATTACAGCTTAATTGGCAGACTGTTCAGTCTATAGGATCTGCAGGAAGG
AGGAGTAATAAAGGGATTTTTGACTGAGCTCTTATGGAACAGAGTCTCTCTAGGCCCCTG
TCATATCTGCCCTTCTGGGCCCCTGGGGAAAAGTTGGCATCCCCAGTTGTGGTGCTCTCCA
[G, A]
GTGCCCTCAGGCTGTGGTGGAGGGAGCTTCCCATTCTCTCCTTCAGCCCACTCAATTCAG
AGGCTAGGGGCTGAAAGAAGCTTCTCTACAACTGGCTGTTCACTGGGAGGTTAAGGGATG
ACCATCCAGCCAGGCCTTCCTCAGGACATGGGAGGCCTTATGCTTTAACATGTGTAAATC
CACTGCAATAATGACTGGTTCTTTTACCCCATAAGGTTGAGAAATTTACCTGTAAACATTT
TTGTCTGAAGAATTTGGATGTAAGTGAGGGCTTGGGCCTCTATCTTATCTCACTTGGCTTC

CTGACTTCAAGTGATCCACCCGCCTCGGCCTCCCAAAGTGCTGGGATTATAAGCATAAGC
CACTGTGCCCAGCTGCTCTCTATATTTTTAATACATATTTTCCATTAATTTTCACAGC
AGTTCATTTTATAGATGAGGAAACTAGGCCAGAGAAGTAAAATATCTTGCCCAAGATGAT
GTAACTAGTAAGTGGCAGGATCAAGATTCAAACCAAGCAATGTTCAAACCTCTTGGAAGC
AAGAATGTGGCCACTGTGGAAGGTGCAAGGCCTTGACAACAAGAATAGGGAAAAAGAAGGA
[A, G]
CTAGAAGGAAAGAGATGGCATGGCTCAGCAGGCCAGGAGCTCTTAGCTGTGTGTTTG
GGAAGCTCAGAAGGGAAGAAGAGGTTGTCTGTCAGGAACACCCAGAC

TTGTGAGGGGTAGAGGAGAGGAGAGACAAGGGATGTTAGGATAATGAAGGAATGTTTTG
TTTTTGTTTTTTGAGATGGAGTTCACTCTGTCACCCAGGCTGGAGTGCAGAGGT
GCAATCTTGGCTCACTGCAGCCTCCGCCTCCCAGGTTCAAGCAATCCTCCTGCCTCAGCC
TCCCAAGTAGCTGGGACTACAGGTGTGCGCCACCACGCCTGGCTAATTTTTGTATTTTCA
GTAGAGACAGGGTTTCGCCATATTGGCCAGGCTGGTCTCAAATGCCTGACCTCAGGTGAT
[C,A]
CACCCGCTTCAGCCTCCCAAAGTGCTGAGATTACAGGCATGAGCTACCGTGCCTGGCCAT
GAAGGAAGATTTGTTTTAAAAAAATTGTTTTCTTTAATATTAATTGAACACCTCTGTTCAG
AGCACTGGGCTGGTGCCAGAGGGTTTCAGAACACAGACCAGCACCCTCATAGAGCC
TTAATCTGGCACACACACACACACACAGCCACAAGGAGACAAGGCAGGCAGGGTAGGATGAGTG
GAAGCTAGGAGCAGAGTGCTGATTTGGAACACTTCGCTTCTCACGTGAAGCCCCTTCTTAG

54706

58871 CGTCACCCACCCAACCCCTGCCGCACTCCAGCCTTTAACAAGGGCTGTCTAGATATT
CATTITAACTACCTCCACCTTGGAAACAATTGCTGAAGGGGAGAGGATTTGCAATGACCA
ACCACCTTGTTGGGACGCCTGCACACCTGTCTTTCCTGCTTCAACCTGAAAGATTCCTGA
TGATGATAATCTGGACACAGAAGCCGGGCACGGTGGCTCTAGCCTGTAATCTCAGCACTT
TGGGAGGCCTCAGCAGGTGGATCACCTGAGATCAAGAGTTTGAGAACAGCCTGACCAACA
[T,A]

FIELD OF THE INVENTION

The present invention is in the field of kinase proteins that are related to the serine/threonine kinase subfamily, recombinant DNA molecules, and protein production. The present invention specifically provides novel peptides and proteins that effect protein phosphorylation and nucleic acid molecules encoding such peptide and protein molecules, all of which are useful in the development of human therapeutics and diagnostic compositions and methods.

BACKGROUND OF THE INVENTION

Protein Kinases

Kinases regulate many different cell proliferation, 20 differentiation, and signaling processes by adding phosphate groups to proteins. Uncontrolled signaling has been implicated in a variety of disease conditions including inflammation, cancer, arteriosclerosis, and psoriasis. Reversible protein phosphorylation is the main strategy for controlling activities of eukaryotic cells. It is estimated that more than 1000 of the 10,000 proteins active in a typical mammalian cell are phosphorylated. The high energy phosphate, which drives activation, is generally transferred from adenosine triphosphate molecules (ATP) to a particular 30 protein by protein kinases and removed from that protein by protein phosphatases. Phosphorylation occurs in response to extracellular signals (hormones, neurotransmitters, growth and differentiation factors, etc), cell cycle checkpoints, and environmental or nutritional stresses and is roughly analo- 35 gous to turning on a molecular switch. When the switch goes on, the appropriate protein kinase activates a metabolic enzyme, regulatory protein, receptor, cytoskeletal protein, ion channel or pump, or transcription factor.

The kinases comprise the largest known protein group, a 40 superfamily of enzymes with widely varied functions and specificities. They are usually named after their substrate, their regulatory molecules, or some aspect of a mutant phenotype. With regard to substrates, the protein kinases may be roughly divided into two groups; those that phos- 45 phorylate tyrosine residues (protein tyrosine kinases, PTK) and those that phosphorylate serine or threonine residues (serine/threonine kinases, STK). A few protein kinases have dual specificity and phosphorylate threonine and tyrosine residues. Almost all kinases contain a similar 250-300 50 amino acid catalytic domain. The N-terminal domain, which contains subdomains I-IV, generally folds into a two-lobed structure, which binds and orients the ATP (or GTP) donor molecule. The larger C terminal lobe, which contains subdomains VI A-XI, binds the protein substrate and carries out 55 the transfer of the gamma phosphate from ATP to the hydroxyl group of a serine, threonine, or tyrosine residue. Subdomain V spans the two lobes.

The kinases may be categorized into families by the different amino acid sequences (generally between 5 and 60 100 residues) located on either side of, or inserted into loops of, the kinase domain. These added amino acid sequences allow the regulation of each kinase as it recognizes and interacts with its target protein. The primary structure of the kinase domains is conserved and can be further subdivided 65 into 11 subdomains. Each of the 11 subdomains contains specific residues and motifs or patterns of amino acids that

2

are characteristic of that subdomain and are highly conserved (Hardie, G. and Hanks, S. (1995) *The Protein Kinase Facts Books*, Vol I:7-20 Academic Press, San Diego, Calif.).

The second messenger dependent protein kinases primarily mediate the effects of second messengers such as cyclic AMP (cAMP), cyclic GMP, inositol triphosphate, phosphatidylinositol, 3,4,5-triphosphate, cyclic-ADPribose, arachidonic acid, diacylglycerol and calcium-calmodulin. The cyclic-AMP dependent protein kinases (PKA) are important members of the STK family. Cyclic-AMP is an intracellular mediator of hormone action in all prokaryotic and animal cells that have been studied. Such hormoneinduced cellular responses include thyroid hormone secretion, cortisol secretion, progesterone secretion, glyco-15 gen breakdown, bone resorption, and regulation of heart rate and force of heart muscle contraction. PKA is found in all animal cells and is thought to account for the effects of cyclic-AMP in most of these cells. Altered PKA expression is implicated in a variety of disorders and diseases including cancer, thyroid disorders, diabetes, atherosclerosis, and cardiovascular disease (Isselbacher, K. J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, New York, N.Y., pp. 416-431, 1887).

Calcium-calmodulin (CaM) dependent protein kinases are also members of STK family. Calmodulin is a calcium receptor that mediates many calcium regulated processes by binding to target proteins in response to the binding of calcium. The principle target protein in these processes is CaM dependent protein kinases. CaM-kinases are involved in regulation of smooth muscle contraction (MLC kinase), glycogen breakdown (phosphorylase kinase), and neurotransmission (CaM kinase I and CaM kinase II). CaM kinase I phosphorylates a variety of substrates including the neurotransmitter related proteins synapsin I and II, the gene transcription regulator, CREB, and the cystic fibrosis conductance regulator protein, CFTR (Haribabu, B. et al. (1995) EMBO Journal 14:3679-86). CaM II kinase also phosphorylates synapsin at different sites, and controls the synthesis of catecholamines in the brain through phosphorylation and activation of tyrosine hydroxylase. Many of the CaM kinases are activated by phosphorylation in addition to binding to CaM. The kinase may autophosphorylate itself, or be phosphorylated by another kinase as part of a "kinase

Another ligand-activated protein kinase is 5'-AMP-activated protein kinase (AMPK) (Gao, G. et al. (1996) J. Biol Chem. 15:8675-81). Mammalian AMPK is a regulator of fatty acid and sterol synthesis through phosphorylation of the enzymes acetyl-CoA carboxylase and hydroxymethylglutaryl-CoA reductase and mediates responses of these pathways to cellular stresses such as heat shock and depletion of glucose and ATP. AMPK is a heterotimeric complex comprised of a catalytic alpha subunit and two non-catalytic beta and gamma subunits that are believed to regulate the activity of the alpha subunit. Subunits of AMPK have a much wider distribution in non-lipogenic tissues such as brain, heart, spleen, and lung than expected. This distribution suggests that its role may extend beyond regulation of lipid metabolism alone.

The mitogen-activated protein kinases (MAP) are also members of the STK family. MAP kinases also regulate intracellular signaling pathways. They mediate signal transduction from the cell surface to the nucleus via phosphorylation cascades. Several subgroups have been identified, and each manifests different substrate specificities and responds to distinct extracellular stimuli (Egan, S. E. and Weinberg, R. A. (1993) Nature 365:781-783). MAP kinase signaling

pathways are present in mammalian cells as well as in yeast. The extracellular stimuli that activate mammalian pathways include epidermal growth factor (EGF), ultraviolet light, hyperosmolar medium, heat shock, endotoxic lipopolysaccharide (LPS), and pro-inflammatory cytokines such as 5 tumor necrosis factor (TNF) and interleukin-1 (IL-1).

PRK (proliferation-related kinase) is a serum/cytokine inducible STK that is involved in regulation of the cell cycle and cell proliferation in human megakaroytic cells (Li, B. et al. (1996) J. Biol. Chem. 271:19402-8). PRK is related to the polo (derived from humans polo gene) family of STKs implicated in cell division. PRK is downregulated in lung tumor tissue and may be a proto-oncogene whose deregulated expression in normal tissue leads to oncogenic transformation. Altered MAP kinase expression is implicated in a variety of disease conditions including cancer, inflammation, immune disorders, and disorders affecting growth and development.

The cyclin-dependent protein kinases (CDKs) are another group of STKs that control the progression of cells through the cell cycle. Cyclins are small regulatory proteins that act by binding to and activating CDKs that then trigger various phases of the cell cycle by phosphorylating and activating selected proteins involved in the mitotic process. CDKs are unique in that they require multiple inputs to become activated. In addition to the binding of cyclin, CDK activation requires the phosphorylation of a specific threonine residue and the dephosphorylation of a specific tyrosine

Protein tyrosine kinases, PTKs, specifically phosphory-late tyrosine residues on their target proteins and may be divided into transmembrane, receptor PTKs and nontransmembrane, non-receptor PTKs. Transmembrane protein-tyrosine kinases are receptors for most growth factors. Binding of growth factor to the receptor activates the transfer of a phosphate group from ATP to selected tyrosine side chains of the receptor and other specific proteins. Growth factors (GF) associated with receptor PTKs include; epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor.

Non-receptor PTKs lack transmembrane regions and, instead, form complexes with the intracellular regions of cell surface receptors. Such receptors that function through non-receptor PTKs include those for cytokines, hormones (growth hormone and prolactin) and antigen-specific receptors on T and B lymphocytes.

Many of these PTKs were first identified as the products of mutant oncogenes in cancer cells where their activation 50 was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs, and it is well known that cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity (Carbonneau H and Tonks NK (1992) Annu. Rev. 55 Cell. Biol. 8:463–93). Regulation of PTK activity may therefore be an important strategy in controlling some types of cancer.

LIM Domain Kinases

The novel human protein, and encoding gene, provided by the present invention is related to the family of serine/threonine kinases in general, particularly LIM domain kinases (LIMK), and shows the highest degree of similarity to LIMK2, and the LIMK2b isoforn (Genbank gi8051618) in particular (see the amino acid sequence alignment of the protein of the present invention against LIMK2b provided in

FIG. 2). LIMK proteins generally have serine/threonine kinase activity. The protein of the present invention may be a novel alternative splice form of the art-known protein provided in Genbank gi805161; however, the structure of the gene provided by the present invention is different from the art-known gene of gi8051618 and the first exon of the gene of the present invention is novel, suggesting a novel gene rather than an alternative splice form. Furthermore, the protein of the present invention lacks an LIM domain relative to gi8051618. The protein of the present invention does contain the kinase catalytic domain.

Approximately 40 LIM proteins, named for the LIM domains they contain, are known to exist in eukaryotes. LIM domains are conserved, cystein-rich structures that contain 2 zinc fingers that are thought to modulate protein-protein interactions. LIMK1 and LIMK2 are members of a LIM subfamily characterized by 2 N-terminal LIM domains and a C-terminal protein kinase domain. LIMK1 and LIMK2 mRNA expression varies greatly between different tissues. The protein kinase domains of LIMK1 and LIMK2 contain a unique sequence motif comprising Asp-Leu-Asn-Ser-His-Asn in subdomain VIB and a strongly basic insert between subdomains VII and VIII (Okano et al., J. Biol. Chem. 270 (52), 31321-31330 (1995)). The protein kinase domain present in LIMKs is significantly different than other kinase domains, sharing about 32% identity.

LIMK is activated by ROCK (a downstream effector of Rho) via phosphorylation. LIMK then phosphorylates cofilin, which inhibits its actin-depolymerizing activity, thereby leading to Rho-induced reorganization of the actin cytoskeleton (Maekawa et al., Science 285: 895-898, 1999).

The LIMK2a and LIMK2b alternative transcript forms are differentially expressed in a tissue-specific manner and are generated by variation in transcriptional initiation utilizing alternative promoters. LIMK2a contains 2 LIM domains, a PDZ domain (a domain that functions in protein-protein interactions targeting the protein to the submembranous compartment), and a kinase domain; whereas LIMK2b just has 1.5 LIM domains. Alteration of LIMK2a and LIMK2b regulation has been observed in some cancer cell lines (Osada et al., Biochem. Biophys. Res. Commun. 229: 582–589, 1996).

For a further review of LIMK proteins, see Nomoto et at, Gene 236 (2), 259-271 (1999).

Kinase proteins, particularly members of the serine/ threonine kinase subfamily, are a major target for drug action and development. Accordingly, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown members of this subfamily of kinase proteins. The present invention advances the state of the art by providing previously unidentified human kinase proteins that have homology to members of the serine/ threonine kinase subfamily.

SUMMARY OF THE INVENTION

The present invention is based in part on the identification of amino acid sequences of human kinase peptides and proteins that are related to the serine/threonine kinase subfamily, as well as allelic variants and other mammalian orthologs thereof. These unique peptide sequences, and nucleic acid sequences that encode these peptides, can be used as models for the development of human therapeutic argets, aid in the identification of therapeutic proteins, and serve as targets for the development of human therapeutic agents that modulate kinase activity in cells and tissues that express the kinase. Experimental data as provided in FIG. 1

indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

DESCRIPTION OF THE FIGURE SHEETS

FIG. 1 provides the nucleotide sequence of a cDNA molecule that encodes the kinase protein of the present invention. (SEQ ID NO:1) In addition, structure and functional information is provided, such as ATG start, stop and tissue distribution, where available, that allows one to readily determine specific uses of inventions based on this molecular sequence. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

FIG. 2 provides the predicted amino acid sequence of the kinase of the present invention. (SEQ ID NO:2) In addition structure and functional information such as protein family, function, and modification sites is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence.

FIG. 3 provides genomic sequences that span the gene encoding the kinase protein of the present invention. (SEQ ID NO:3) In addition structure and functional information, 25 such as intron/exon structure, promoter location, etc., is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence. As illustrated in FIG. 3, SNPs were identified at 42 different nucleotide positions.

DETAILED DESCRIPTION OF THE INVENTION

General Description

The present invention is based on the sequencing of the human genome. During the sequencing and assembly of the human genome, analysis of the sequence information revealed previously unidentified fragments of the human genome that encode peptides that share structural and/or 40 sequence homology to protein/peptide/domains identified and characterized within the art as being a kinase protein or part of a kinase protein and are related to the serine/ threonine kinase subfamily. Utilizing these sequences, additional genomic sequences were assembled and transcript 45 and/or cDNA sequences were isolated and characterized. Based on this analysis, the present invention provides amino acid sequences of human kinase peptides and proteins that are related to the serine/threonine kinase subfamily, nucleic acid sequences in the form of transcript sequences, cDNA 50 sequences and/or genomic sequences that encode these kinase peptides and proteins, nucleic acid variation (allelic information), tissue distribution of expression, and information about the closest art known protein/peptide/domain that has structural or sequence homology to the kinase of the 55 present invention.

In addition to being previously unknown, the peptides that are provided in the present invention are selected based on their ability to be used for the development of commercially important products and services. Specifically, the present peptides are selected based on homology and/or structural relatedness to known kinase proteins of the serine/threonine kinase subfamily and the expression pattern observed. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The art has clearly established the commercial importance of

members of this family of proteins and proteins that have expression patterns similar to that of the present gene. Some of the more specific features of the peptides of the present invention, and the uses thereof, are described herein, particularly in the Background of the Invention and in the annotation provided in the Figures, and/or are known within the art for each of the known serine/threonine kinase family or subfamily of kinase proteins.

Specific Embodiments

Peptide Molecules

The present invention provides nucleic acid sequences that encode protein molecules that have been identified as being members of the kinase family of proteins and are related to the serine/threonine kinase subfamily (protein sequences are provided in FIG. 2, transcript/cDNA sequences are provided in FIG. 1 and genomic sequences are provided in FIG. 3). The peptide sequences provided in FIG. 2 2, as well as the obvious variants described herein, particularly allelic variants as identified herein and using the information in FIG. 3, will be referred herein as the kinase peptides of the present invention, kinase peptides, or peptides/proteins of the present invention.

The present invention provides isolated peptide and protein molecules that consist of, consist essentially of, or comprise the amino acid sequences of the kinase peptides disclosed in the FIG. 2, (encoded by the nucleic acid molecule shown in FIG. 1, transcript/cDNA or FIG. 3, genomic sequence), as well as all obvious variants of these peptides that are within the art to make and use. Some of these variants are described in detail below.

As used herein, a peptide is said to be "isolated" or "purified" when it is substantially free of cellular material or free of chemical precursors or other chemicals. The peptides of the present invention can be purified to homogeneity or other degrees of purity. The level of purification will be based on the intended use. The critical feature is that the preparation allows for the desired function of the peptide, even if in the presence of considerable amounts of other components (the features of an isolated nucleic acid molecule is discussed below).

In some uses, "substantially free of cellular material" includes preparations of the peptide having less than about 30% (by dry weight) other proteins (i.e., contaminating protein), less than about 20% other proteins, less than about 10% other proteins, or less than about 5% other proteins. When the peptide is recombinantly produced, it can also be substantially free of culture medium, i.e., culture medium represents less than about 20% of the volume of the protein preparation.

The language "substantially free of chemical precursors or other chemicals" includes preparations of the peptide in which it is separated from chemical precursors or other chemicals that are involved in its synthesis. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of the kinase peptide having less than about 30% (by dry weight) chemical precursors or other chemicals, less than about 20% chemical precursors or other chemicals, less than about 10% chemical precursors or other chemicals, or less than about 5% chemical precursors or other chemicals.

The isolated kinase peptide can be purified from cells that naturally express it, purified from cells that have been altered to express it (recombinant), or synthesized using known protein synthesis methods. Experimental data as

provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. For example, a nucleic acid molecule encoding the kinase peptide is cloned into an expression vector, the expression vector introduced into a host cell and the protein expressed in the host cell. The protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Many of these techniques are described in detail below.

Accordingly, the present invention provides proteins that consist of the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genornic sequences provided in FIG. 3 (SEQ ID NO:3). The amino acid sequence of such a protein is provided in FIG. 2. A protein consists of an amino acid sequence when the amino acid sequence is the final amino acid sequence of the protein.

The present invention further provides proteins that consist essentially of the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). A protein consists essentially of an amino acid sequence when such an amino acid sequence is present with only a few additional amino acid residues, for example from about 1 to about 100 or so additional residues, typically from 1 to about 20 additional residues in the final protein.

The present invention further provides proteins that com- 30 prise the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/ cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). A protein comprises an amino acid sequence 35 when the amino acid sequence is at least part of the final amino acid sequence of the protein. In such a fashion, the protein can be only the peptide or have additional amino acid molecules, such as amino acid residues (contiguous encoded sequence) that are naturally associated with it or heterolo- 40 gous amino acid residues/peptide sequences. Such a protein can have a few additional amino acid residues or can comprise several hundred or more additional amino acids. The preferred classes of proteins that are comprised of the kinase peptides of the present invention are the naturally 45 occurring mature proteins. A brief description of how various types of these proteins can be made/isolated is provided

The kinase peptides of the present invention can be attached to heterologous sequences to form chimeric or 50 fusion proteins. Such chimeric and fusion proteins comprise a kinase peptide operatively linked to a heterologous protein having an amino acid sequence not substantially homologous to the kinase peptide. "Operatively linked" indicates that the kinase peptide and the heterologous protein are 55 fused in-frame. The heterologous protein can be fused to the N-terminus or C-terminus of the kinase peptide.

In some uses, the fusion protein does not affect the activity of the kinase peptide per se. For example, the fusion protein can include, but is not limited to, enzymatic fusion 60 proteins, for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions, MYC-tagged, HI-tagged and Ig fusions. Such fusion proteins, particularly poly-His fusions, can facilitate the purification of recombinant kinase peptide. In certain host cells (e.g., mammalian 65 host cells), expression and/or secretion of a protein can be increased by using a heterologous signal sequence.

A chimeric or fusion protein can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different protein sequences are ligated together in-frame in accordance with conventional techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see Ausubel et al., Current Protocols in Molecular Biology, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST protein). A kinasc peptide-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the kinase peptide.

As mentioned above, the present invention also provides and enables obvious variants of the amino acid sequence of the proteins of the present invention, such as naturally occurring mature forms of the peptide, allelic/sequence variants of the peptides, non-naturally occurring recombinantly derived variants of the peptides, and orthologs and paralogs of the peptides. Such variants can readily be generated using art-known techniques in the fields of recombinant nucleic acid technology and protein biochemistry. It is understood, however, that variants exclude any amino acid sequences disclosed prior to the invention.

Such variants can readily be identified/made using molecular techniques and the sequence information disclosed herein. Further, such variants can readily be distinguished from other peptides based on sequence and/or structural homology to the kinase peptides of the present invention. The degree of homology/identity present will be based primarily on whether the peptide is a functional variant or non-functional variant, the amount of divergence present in the paralog family and the evolutionary distance between the orthologs.

To determine the percent identity of two amino acid sequences or two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and nonhomologous sequences can be disregarded for comparison purposes). In a preferred embodiment, at least 30%, 40%, 50%, 60%, 70%, 80%, or 90% or more of the length of a reference sequence is aligned for comparison purposes. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are: identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

The comparison of sequences and determination of percent identity and similarity between two sequences can be accomplished using a mathematical algorithm. (Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A. M., and Griffin, H. G.,

eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (Devereux, J., et al., Nucleic Acids Res. 12(1):387 15 (1984)) (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. 20 Myers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

The nucleic acid and protein sequences of the present 25 invention can further be used as a "query sequence" to perform a search against sequence databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (J. Mol. 30 Biol. 215:403-10 (1990)). BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to the nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to the proteins of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (Nucleic Acids Res. 25(17):3389-3402 (1997)). When utilizing BLAST and gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.

Full-length pre-processed forms, as well as mature processed forms, of proteins that comprise one of the peptides 45 of the present invention can readily be identified as having complete sequence identity to one of the kinase peptides of the present invention as well as being encoded by the same genetic locus as the kinase peptide provided herein. The gene encoding the novel kinase protein of the present 50 residues Ser and Thr; exchange of the acidic residues Asp invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

Allelic variants of a kinase peptide can readily be iden- 55 tified as being a human protein having a high degree (significant) of sequence homology/identity to at least a portion of the kinase peptide as well as being encoded by the same genetic locus as the kinase peptide provided herein. Genetic locus can readily be determined based on the 60 genomic information provided in FIG. 3, such as the genomic sequence mapped to the reference human. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is 65 supported by multiple lines of evidence, such as STS and BAC map data. As used herein, two proteins (or a region of

the proteins) have significant homology when the amino acid sequences are typically at least about 70-80%, 80-90%, and more typically at least about 90-95% or more homologous. A significantly homologous amino acid sequence, according to the present invention, will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under stringent conditions as more fully described below.

FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

Paralogs of a kinase peptide can readily be identified as having some degree of significant sequence homology/ identity to at least a portion of the kinase peptide, as being encoded by a gene from humans, and as having similar activity or function. Two proteins will typically be considered paralogs when the amino acid sequences are typically at least about 60% or greater, and more typically at least about 70% or greater homology through a given region or domain. Such paralogs will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under moderate to stringent conditions as more fully described below.

Orthologs of a kinase peptide can readily be identified as having some degree of significant sequence homology/ identity to at least a portion of the kinase peptide as well as being encoded by a gene from another organism. Preferred orthologs will be isolated from mammals, preferably primates, for the development of human therapeutic targets and agents. Such orthologs will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under moderate to stringent conditions, as more fully described below, depending on the degree of relatedness of the two organisms yielding the proteins.

Non-naturally occurring variants of the kinase peptides of 40 the present invention can readily be generated using recombinant techniques. Such variants include, but are not limited to deletions, additions and substitutions in the amino acid sequence of the kinase peptide. For example, one class of substitutions are conserved amino acid substitution. Such substitutions are those that substitute a given amino acid in a kinase peptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu, and Ile; interchange of the hydroxyl and Glu; substitution between the amide residues Asn and Gln; exchange of the basic residues Lys and Arg; and replacements among the aromatic residues Phe and Tyr. Guidance concerning which amino acid changes are likely to be phenotypically silent are found in Bowie et al., Science 247:1306-1310 (1990).

Variant kinase peptides can be fully functional or can lack function in one or more activities, e.g. ability to bind substrate, ability to phosphorylate substrate, ability to mediate signaling, etc. Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions. FIG. 2 provides the result of protein analysis and can be used to identify critical domains/ regions. Functional variants can also contain substitution of similar amino acids that result in no change or an insignificant change in function. Alternatively, such substitutions may positively or negatively affect function to some degree.

Non-functional variants typically contain one or more non-conservative amino acid substitutions, deletions, insertions, inversions, or truncation or a substitution, insertion, inversion, or deletion in a critical residue or critical region.

Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham et al., Science 244:1081-1085 (1989)), particularly using the results provided in FIG. 2. The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as kinase activity or in assays such as an in vitro proliferative activity. Sites that are critical for binding partner/substrate binding can also be determined by struc- 15 tural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al., J. Mol. Biol. 224:899-904 (1992); de Vos et al. Science 255:306-312 (1992)).

The present invention further provides fragments of the 20 kinase peptides, in addition to proteins and peptides that comprise and consist of such fragments, particularly those comprising the residues identified in FIG. 2. The fragments to which the invention pertains, however, are not to be construed as encompassing fragments that may be disclosed 25 publicly prior to the present invention.

As used herein, a fragment comprises at least 8, 10, 12, 14, 16, or more contiguous amino acid residues from a kinase peptide. Such fragments can be chosen based on the 30 ability to retain one or more of the biological activities of the kinase peptide or could be chosen for the ability to perform a function, e.g. bind a substrate or act as an immunogen. Particularly important fragments are biologically active fragments, peptides that are, for example, about 8 or more amino acids in length. Such fragments will typically comprise a domain or motif of the kinase peptide, e.g., active site, a transmembrane domain or a substrate-binding domain. Further, possible fragments include, but are not limited to, domain or motif containing fragments, soluble 40 peptide fragments, and fragments containing immunogenic structures. Predicted domains and functional sites are readily identifiable by computer programs well known and readily available to those of skill in the art (e.g., PROSITE analysis). The results of one such analysis are provided in FIG. 2.

Polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids. Further, many amino acids, including the terminal amino acids, may be modified by natural modifications, or by chemical modification techniques well known in the art. Common modifications that occur naturally in kinase peptides are described in basic texts, detailed monographs, and the research literature, and they are well known to those of skill in the art (some of these features are 55 identified in FIG. 2).

Known modifications include, but are not limited to, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide 60 derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma carboxylation, 65 glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pro-

teolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.

Such modifications are well known to those of skill in the art and have been described in great detail in the scientific literature. Several particularly common modifications, glycosylation, lipid attachment, sulfation, gammacarboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts, such as Proteins-Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993). Many detailed reviews are available on this subject, such as by Wold, F., Posttranslational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, New York 1-12 (1983); Seifter et al. (Meth. Enzymol. 182: 626-646 (1990)) and Rattan et al. (Ann. N.Y. Acad. Sci. 663:48-62 (1992)).

Accordingly, the kinase peptides of the present invention also encompass derivatives or analogs in which a substituted amino acid residue is not one encoded by the genetic code, in which a substituent group is included, in which the mature kinase peptide is fused with another compound, such as a compound to increase the half-life of the kinase peptide (for example, polyethylene glycol), or in which the additional amino acids are fused to the mature kinase peptide, such as a leader or secretory sequence or a sequence for purification of the mature kinase peptide or a pro-protein sequence.

Protein/Peptide Uses

The proteins of the present invention can be used in substantial and specific assays related to the functional information provided in the Figures; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its binding partner or ligand) in biological fluids; and as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state). Where the protein binds or potentially binds to another protein or ligand (such as, for example, in a kinase-effector protein interaction or kinase-ligand interaction), the protein can be used to identify the binding partner/ligand so as to develop a system to identify inhibitors of the binding interaction. Any or all of these uses are capable of being developed into reagent grade or kit format for commercialization as commercial products.

Methods for performing the uses listed above are well processes, such as processing and other post-translational 50 known to those skilled in the art. References disclosing such methods include "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

The potential uses of the peptides of the present invention are based primarily on the source of the protein as well as the class/action of the protein. For example, kinases isolated from humans and their human/mammalian orthologs serve as targets for identifying agents for use in mammalian therapeutic applications, e.g. a human drug, particularly in modulating a biological or pathological response in a cell or tissue that expresses the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. A large percentage of pharmaceutical agents are being developed that modulate the activity of kinase proteins, particularly members of the serine/threonine kinase subfamily (see Background of the Invention). The structural and functional information provided in the Background and Figures provide specific and substantial uses for the molecules of the present invention, particularly in combination with the expression information provided in FIG. 1. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Such uses can readily be determined using the information provided herein, that which is known in the art, 15 and routine experimentation.

The proteins of the present invention (including variants and fragments that may have been disclosed prior to the present invention) are useful for biological assays related to kinases that are related to members of the serine/threonine 20 kinase subfamily. Such assays involve any of the known kinase functions or activities or properties useful for diagnosis and treatment of kinase-related conditions that are specific for the subfamily of kinases that the one of the present invention belongs to, particularly in cells and tissues that express the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In 30 addition, PCR-based tissue screening panels indicate expression in fetal brain.

The proteins of the present invention are also usefull in drug screening assays, in cell-based or cell-free systems. Cell-based systems can be native, i.e., cells that normally 35 express the kinase, as a biopsy or expanded in cell culture. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. In binant host cells expressing the kinase protein.

The polypeptides can be used to identify compounds that modulate kinase activity of the protein in its natural state or an altered form that causes a specific disease or pathology associated with the kinase. Both the kinases of the present 45 invention and appropriate variants and fragments can be used in high-throughput screens to assay candidate compounds for the ability to bind to the kinase. These compounds can be further screened against a functional kinase to determine the effect of the compound on the kinase activity. 50 Further, these compounds can be tested in animal or invertebrate systems to determine activity/effectiveness. Compounds can be identified that activate (agonist) or inactivate (antagonist) the kinase to a desired degree.

Further, the proteins of the present invention can be used 55 to screen a compound for the ability to stimulate or inhibit interaction between the kinase protein and a molecule that normally interacts with the kinase protein, e.g. a substrate or a component of the signal pathway that the kinase protein normally interacts (for example, another kinase). Such 60 assays typically include the steps of combining the kinase protein with a candidate compound under conditions that allow the kinase protein, or fragment, to interact with the target molecule, and to detect the formation of a complex between the protein and the target or to detect the biochemi- 65 cal consequence of the interaction with the kinase protein and the target, such as any of the associated effects of signal

transduction such as protein phosphorylation, cAMP turnover, and adenylate cyclase activation, etc.

Candidate compounds include, for example, 1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam et al., Nature 354:82-84 (1991); Houghten et al., Nature 354.84-86 (1991)) and combinatorial chemistry-derived molecular libraries made of D- and/or L-configuration amino acids; 2) phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang et al., Cell 72:767-778 (1993)); 3) antibodies (e.g., polyclonal, monoclonal, humanized, antiidiotypic, chimeric, and single chain antibodies as well as Fab, F(ab')2, Fab expression library fragments, and epitopebinding fragments of antibodies); and 4) small organic and inorganic molecules (e.g., molecules obtained from combinatorial and natural product libraries).

One candidate compound is a soluble fragment of the receptor that competes for substrate binding. Other candidate compounds include mutant kinases or appropriate fragments containing mutations that affect kinase function and thus compete for substrate. Accordingly, a fragment that competes for substrate, for example with a higher affinity, or a fragment that binds substrate but does not allow release, is encompassed by the invention.

The invention further includes other end point assays to identify compounds that modulate (stimulate or inhibit) kinase activity. The assays typically involve an assay of events in the signal transduction pathway that indicate kinase activity. Thus, the phosphorylation of a substrate, activation of a protein, a change in the expression of genes that are up- or down-regulated in response to the kinase protein dependent signal cascade can be assayed.

Any of the biological or biochemical functions mediated by the kinase can be used as an endpoint assay. These include all of the biochemical or biochemical/biological events described herein, in the references cited herein, incorporated by reference for these endpoint assay targets, an alternate embodiment, cell-based assays involve recom- 40 and other functions known to those of ordinary skill in the art or that can be readily identified using the information provided in the Figures, particularly FIG. 2. Specifically, a biological function of a cell or tissues that expresses the kinase can be assayed. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain.

Binding and/or activating compounds can also be screened by using chimeric kinase proteins in which the amino terminal extracellular domain, or parts thereof, the entire transmembrane domain or subregions, such as any of the seven transmembrane segments or any of the intracellular or extracellular loops and the carboxy terminal intracellular domain, or parts thereof, can be replaced by heterologous domains or subregions. For example, a substratebinding region can be used that interacts with a different substrate then that which is recognized by the native kinase. Accordingly, a different set of signal transduction components is available as an end-point assay for activation. This allows for assays to be performed in other than the specific host cell from which the kinase is derived.

The proteins of the present invention are also useful in competition binding assays in methods designed to discover compounds that interact with the kinase (e.g. binding partners and/or ligands). Thus, a compound is exposed to a kinase polypeptide under conditions that allow the compound to bind or to otherwise interact with the polypeptide. Soluble kinase polypeptide is also added to the mixture. If the test compound interacts with the soluble kinase 5 polypeptide, it decreases the amount of complex formed or activity from the kinase target. This type of assay is particularly useful in cases in which compounds are sought that interact with specific regions of the kinase. Thus, the soluble polypeptide that competes with the target kinase region is designed to contain peptide sequences corresponding to the region of interest.

To perform cell free drug screening assays, it is sometimes desirable to immobilize either the kinase protein, or fragment, or its target molecule to facilitate separation of complexes from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.

Techniques for immobilizing proteins on matrices can be used in the drug screening assays. In one embodiment, a fusion protein can be provided which adds a domain that 20 allows the protein to be bound to a matrix. For example, glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtitre plates, which are then combined with the cell lysates (e.g., 35Slabeled) and the candidate compound, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads are washed to remove any unbound label, and the matrix immobilized and radiolabel determined 30 directly, or in the supernatant after the complexes are dissociated. Alternatively, the complexes can be dissociated from the matrix, separated by SDS-PAGE, and the level of kinase-binding protein found in the bead fraction quantitated from the gel using standard electrophoretic techniques. For 35 example, either the polypeptide or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin using techniques well known in the art. Alternatively, antibodies reactive with the protein but which do not interfere with binding of the protein to its target molecule can be 40 derivatized to the wells of the plate, and the protein trapped in the wells by antibody conjugation. Preparations of a kinase-binding protein and a candidate compound are incubated in the kinase protein-presenting wells and the amount of complex trapped in the well can be quantitated. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the kinase protein target molecule, or which are reactive with kinase protein and compete with the target molecule, as well 50 as enzyme-linked assays which rely on detecting an enzymatic activity associated with the target molecule.

Agents that modulate one of the kinases of the present invention can be identified using one or more of the above assays, alone or in combination. It is generally preferable to 55 use a cell-based or cell free system first and then confirm activity in an animal or other model system. Such model systems are well known in the art and can readily be employed in this context.

Modulators of kinase protein activity identified according 60 to these drug screening assays can be used to treat a subject with a disorder mediated by the kinase pathway, by treating cells or tissues that express the kinase. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant 65 and fetal brain, and thyroid gland. These methods of treatment include the steps of administering a modulator of

kinase activity in a pharmaceutical composition to a subject in need of such treatment, the modulator being identified as described herein.

In yet another aspect of the invention, the kinase proteins can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693/1696; and Brent WO94110300), to identify other proteins, which bind to or interact with the kinase and are involved in kinase activity. Such kinase-binding proteins are also likely to be involved in the propagation of signals by the kinase proteins or kinase targets as, for example, downstream elements of a kinase-mediated signaling pathway. Alternatively, such kinase-binding proteins are likely to be kinase inhibitors.

The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNAbinding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a kinase protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified 25 protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, in vivo, forming a kinase-dependent complex, the DNAbinding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the kinase protein.

This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a kinase-modulating agent, an antisense kinase nucleic acid molecule, a kinase-specific antibody, or a kinase-binding partner) can be used in an animal or other model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal or other model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.

The kinase proteins of the present invention are also useful to provide a target for diagnosing a disease or predisposition to disease mediated by the peptide. Accordingly, the invention provides methods for detecting the presence, or levels of, the protein (or encoding mRNA) in a cell, tissue, or organism. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The method involves contacting a biological sample with a compound capable of interacting with the kinase protein such that the interaction can be detected. Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.

One agent for detecting a protein in a sample is an antibody capable of selectively binding to protein. A bio-

logical sample includes tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject.

The peptides of the present invention also provide targets for diagnosing active protein activity, disease, or predisposition to disease, in a patient having a variant peptide, particularly activities and conditions that are known for other members of the family of proteins to which the present one belongs. Thus, the peptide can be isolated from a biological sample and assayed for the presence of a genetic 10 mutation that results in aberrant peptide. This includes amino acid substitution, deletion, insertion, rearrangement, (as the result of aberrant splicing events), and inappropriate post-translational modification. Analytic methods include altered electrophoretic mobility, altered tryptic peptide 15 digest, altered kinase activity in cell-based or cell-free assay, alteration in substrate or antibody-binding pattern, altered isoelectric point, direct amino acid sequencing, and any other of the known assay techniques useful for detecting mutations in a protein. Such an assay can be provided in a 20 single detection format or a multi-detection format such as an antibody chip array.

In vitro techniques for detection of peptide include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence using a detection reagent, such as an antibody or protein binding agent. Alternatively, the peptide can be detected in vivo in a subject by introducing into the subject a labeled anti-peptide antibody or other types of detection agent. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Particularly useful are methods that detect the allelic variant of a peptide expressed in a subject and methods which detect fragments of a peptide in a sample.

The peptides are also useful in pharmacogenomic analysis. Pharmacogenomics deal with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Eichelbaum, M. (Clin. Exp. Pharmacol. Physiol. 40 23(10-11):983-985 (1996)), and Linder, M. W. (Clin. Chem. 43(2):254-266 (1997)). The clinical outcomes of these variations result in severe toxicity of therapeutic drugs in certain individuals or therapeutic failure of drugs in certain individuals as a result of individual variation in metabolism. 45 Thus, the genotype of the individual can determine the way a therapeutic compound acts on the body or the way the body metabolizes the compound. Further, the activity of drug metabolizing enzymes effects both the intensity and duration of drug action. Thus, the pharmacogenomics of the individual permit the selection of effective compounds and effective dosages of such compounds for prophylactic or therapeutic treatment based on the individual's genotype. The discovery of genetic polymorphisms in some drug metabolizing enzymes has explained why some patients do 55 not obtain the expected drug effects, show an exaggerated drug effect, or experience serious toxicity from standard drug dosages. Polymorphisms can be expressed in the phenotype of the extensive metabolizer and the phenotype of the poor metabolizer. Accordingly, genetic polymorphism may 60 lead to allelic protein variants of the kinase protein in which one or more of the kinase functions in one population is different from those in another population. The peptides thus allow a target to ascertain a genetic predisposition that can affect treatment modality. Thus, in a ligand-based treatment, 65 polymorphism may give rise to amino terminal extracellular domains and/or other substrate-binding regions that are

more or less active in substrate binding, and kinase activation. Accordingly, substrate dosage would necessarily be modified to maximize the therapeutic effect within a given population containing a polymorphism. As an alternative to genotyping, specific polymorphic peptides could be identified.

The peptides are also useful for treating a disorder characterized by an absence of, inappropriate, or unwanted expression of the protein. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Accordingly, methods for treatment include the use of the kinase protein or fragments.

Antibodies

The invention also provides antibodies that selectively bind to one of the peptides of the present invention, a protein comprising such a peptide, as well as variants and fragments thereof. As used herein, an antibody selectively binds a target peptide when it binds the target peptide and does not significantly bind to unrelated proteins. An antibody is still considered to selectively bind a peptide even if it also binds to other proteins that are not substantially homologous with the target peptide so long as such proteins share homology with a fragment or domain of the peptide target of the antibody. In this case, it would be understood that antibody binding to the peptide is still selective despite some degree of cross-reactivity.

As used herein, an antibody is defined in terms consistent with that recognized within the art: they are multi-subunit proteins produced by a mammalian organism in response to an antigen challenge. The antibodies of the present invention include polyclonal antibodies and monoclonal antibodies, as well as fragments of such antibodies, including, but not limited to, Fab or F(ab')₂, and Fv fragments.

Many methods are known for generating and/or identifying antibodies to a given target peptide. Several such methods are described by Harlow, Antibodies, Cold Spring Harbor Press, (1989).

In general, to generate antibodies, an isolated peptide is used as an immunogen and is administered to a mammalian organism, such as a rat, rabbit or mouse. The full-length protein, an antigenic peptide fragment or a fusion protein can be used. Particularly important fragments are those covering functional domains, such as the domains identified in FIG. 2, and domain of sequence homology or divergence amongst the family, such as those that can readily be identified using protein alignment methods and as presented in the Figures.

Antibodies are preferably prepared from regions or discrete fragments of the kinase proteins. Antibodies can be prepared from any region of the peptide as described herein. However, preferred regions will include those involved in function/activity and/or kinase/binding partner interaction. FIG. 2 can be used to identify particularly important regions while sequence alignment can be used to identify conserved and unique sequence fragments.

An antigenic fragment will typically comprise at least 8 contiguous amino acid residues. The antigenic peptide can comprise, however, at least 10, 12, 14, 16 or more amino acid residues. Such fragments can be selected on a physical property, such as fragments correspond to regions that are located on the surface of the protein, e.g., hydrophilic regions or can be selected based on sequence uniqueness (see FIG. 2).

Detection on an antibody of the present invention can be facilitated by coupling (i.e., physically linking) the antibody

to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acctylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin, examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ³⁵S or ³H.

Antibody Uses

The antibodies can be used to isolate one of the proteins of the present invention by standard techniques, such as affinity chromatography or immunoprecipitation. The antibodies can facilitate the purification of the natural protein from cells and recombinantly produced protein expressed in host cells. In addition, such antibodies are useful to detect the presence of one of the proteins of the present invention in cells or tissues to determine the pattern of expression of 25 the protein among various tissues in an organism and over the course of normal development. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant 30 brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. Further, such antibodies can be used to detect protein in situ, in vitro, or in a cell lysate or supernatant in order to evaluate the abundance and pattern of expression. Also, such antibodies can be used to assess abnormal tissue distribution or abnormal expression during development or progression of a biological condition. Antibody detection of circulating fragments of the full length protein can be used to identify turnover.

Further, the antibodies can be used to assess expression in disease states such as in active stages of the disease or in an individual with a predisposition toward disease related to the protein's function. When a disorder is caused by an inappropriate tissue distribution, developmental expression, level of expression of the protein, or expressed/processed form, the antibody can be prepared against the normal protein. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. If a disorder is characterized by a specific mutation in the protein, antibodies specific for this mutant protein can be used to assay for the presence of the specific mutant protein.

The antibodies can also be used to assess normal and aberrant subcellular localization of cells in the various tissues in an organism. Experimental data as provided in FIG. 1 indicates expression in humans in teralocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The diagnostic uses can be applied, not only in genetic testing, but also in monitoring a treatment on modality. Accordingly, where treatment is ultimately aimed at correcting expression level or the presence of aberrant sequence and aberrant tissue distribution or developmental expression, antibodies directed against the protein or relevant fragments can be used to monitor therapeutic efficacy.

Additionally, antibodies are useful in pharmacogenomic analysis. Thus, antibodies prepared against polymorphic

proteins can be used to identify individuals that require modified treatment modalities. The antibodies are also useful as diagnostic tools as an immunological marker for aberrant protein analyzed by electrophoretic mobility, isoelectric point, tryptic peptide digest, and other physical assays known to those in the art.

The antibodies are also useful for tissue typing. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Thus, where a specific protein has been correlated with expression in a specific tissue, antibodies that are specific for this protein can be used to identify a tissue type.

The antibodies are also useful for inhibiting protein function, for example, blocking the binding of the kinase peptide to a binding partner such as a substrate. These uses can also be applied in a therapeutic context in which treatment involves inhibiting the protein's function. An antibody can be used, for example, to block binding, thus modulating (agonizing or antagonizing) the peptides activity. Antibodies can be prepared against specific fragments containing sites required for function or against intact protein that is associated with a cell or cell membrane. See FIG.

2 for structural information relating to the proteins of the present invention.

The invention also encompasses kits for using antibodies to detect the presence of a protein in a biological sample. The kit can comprise antibodies such as a labeled or labelable antibody and a compound or agent for detecting protein in a biological sample; means for determining the amount of protein in the sample; means for comparing the amount of protein in the sample with a standard; and instructions for use. Such a kit can be supplied to detect a single protein or epitope or can be configured to detect one of a multitude of epitopes, such as in an antibody detection array. Arrays are described in detail below for nuleic acid arrays and similar methods have been developed for antibody arrays.

Nucleic Acid Molecules

The present invention further provides isolated nucleic acid molecules that encode a kinase peptide or protein of the present invention (cDNA, transcript and genomic sequence). Such nucleic acid molecules will consist of, consist essentially of, or comprise a nucleotide sequence that encodes one of the kinase peptides of the present invention, an allelic variant thereof, or an ortholog or paralog thereof.

As used herein, an "isolated" nucleic acid molecule is one that is separated from other nucleic acid present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. However, there can be some flanking nucleotide sequences, for example up to about 5KB, 4KB, 3KB, 2KB, or 1KB or less, particularly contiguous peptide encoding sequences and peptide encoding sequences within the same gene but separated by introns in the genomic sequence. The important point is that the nucleic acid is isolated from remote and unimportant flanking sequences such that it can be subjected to the specific manipulations described herein such as recombinant expression, preparation of probes and primers, and other uses specific to the nucleic acid sequences.

Moreover, an "isolated" nucleic acid molecule, such as a transcript/cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by

recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. However, the nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.

For example, recombinant DNA molecules contained in a vector are considered isolated. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of the isolated DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.

Accordingly, the present invention provides nucleic acid molecules that consist of the nucleotide sequence shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule consists of a nucleotide sequence when the nucleotide sequence is the complete nucleotide sequence of the nucleic acid molecule.

The present invention further provides nucleic acid molecules that consist essentially of the nucleotide sequence shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule consists essentially of a nucleotide sequence when such a nucleotide sequence is present with only a few additional nucleic acid residues in the final nucleic acid molecule.

The present invention further provides nucleic acid molecules that comprise the nucleotide sequences shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule comprises a nucleotide sequence when the nucleotide sequence is at least part of the final nucleotide sequence of the nucleic acid molecule. In such a fashion, the nucleic acid molecule can be only the nucleotide 40 sequence or have additional nucleic acid residues, such as nucleic acid residues that are naturally associated with it or heterologous nucleotide sequences. Such a nucleic acid molecule can have a few additional nucleotides or can comprises several hundred or more additional nucleotides. A 45 brief description of how various types of these nucleic acid molecules can be readily made/isolated is provided below.

In FIGS. 1 and 3, both coding and non-coding sequences are provided. Because of the source of the present invention, humans genomic sequence (FIG. 3) and cDNA/transcript sequences (FIG. 1), the nucleic acid molecules in the Figures will contain genomic intronic sequences, 5' and 3' non-coding sequences, gene regulatory regions and non-coding intergenic sequences. In general such sequence features are either noted in FIGS. 1 and 3 or can readily be identified using computational tools known in the art. As discussed below, some of the non-coding regions, particularly gene regulatory elements such as promoters, are useful for a variety of purposes, e.g. control of heterologous gene expression, target for identifying gene activity modulating compounds, and are particularly claimed as fragments of the genomic sequence provided herein.

The isolated nucleic acid molecules can encode the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature peptide (when the mature form has more than one peptide chain, for instance). Such sequences may play a role in processing of

a protein from precursor to a mature form, facilitate protein trafficking, prolong or shorten protein half-life or facilitate manipulation of a protein for assay or production, among other things. As generally is the case in situ, the additional amino acids may be processed away from the mature protein by cellular enzymes.

As mentioned above, the isolated nucleic acid molecules include, but are not limited to, the sequence encoding the kinasc peptide alone, the sequence encoding the mature peptide and additional coding sequences, such as a leader or secretory sequence (e.g., a pre-pro or pro-protein sequence), the sequence encoding the mature peptide, with or without the additional coding sequences, plus additional non-coding sequences, for example introns and non-coding 5' and 3' sequences such as transcribed but non-translated sequences that play a role in transcription, mRNA processing (including splicing and polyadenylation signals), ribosome binding and stability of mRNA. In addition, the nucleic acid molecule may be fused to a marker sequence encoding, for example, a peptide that facilitates purification.

Isolated nucleic acid molecules can be in the form of RNA, such as mRNA, or in the form DNA, including cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The nucleic acid, especially DNA, can be double-stranded or single-stranded. Single-stranded nucleic acid can be the coding strand (sense strand) or the non-coding strand (antisense strand).

The invention further provides nucleic acid molecules that 30 encode fragments of the peptides of the present invention as well as nucleic acid molecules that encode obvious variants of the kinase proteins of the present invention that are described above. Such nucleic acid molecules may be naturally occurring, such as allelic variants (same locus), paralogs (different locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis. Such non-naturally occurring variants may be made by mutagenesis techniques, including those applied to nucleic acid molecules, cells, or organisms. Accordingly, as discussed above, the variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions.

The present invention further provides non-coding fragments of the nucleic acid molecules provided in FIGS. 1 and 3. Preferred non-coding fragments include, but are not limited to, promoter sequences, enhancer sequences, gene modulating sequences and gene termination sequences. Such fragments are useful in controlling heterologous gene expression and in developing screens to identify genemodulating agents. A promoter can readily be identified as being 5' to the ATG start site in the genomic sequence provided in FIG. 3.

A fragment comprises a contiguous nucleotide sequence greater than 12 or more nucleotides. Further, a fragment could at least 30, 40, 50, 100, 250 or 500 nucleotides in length. The length of the fragment will be based on its intended use. For example, the fragment can encode epitope bearing regions of the peptide, or can be useful as DNA probes and primers. Such fragments can be isolated using the known nucleotide sequence to synthesize an oligonucleotide probe. A labeled probe can then be used to screen a cDNA library, genomic DNA library, or mRNA to isolate nucleic acid corresponding to the coding region. Further, primers can be used in PCR reactions to clone specific regions of gene.

A probe/primer typically comprises substantially a purified oligonucleotide or oligonucleotide pair. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 20, 25, 40, 50 or more consecutive nucleotides.

Orthologs, homologs, and allelic variants can be identified using methods well known in the art. As described in the Peptide Section, these variants comprise a nucleotide sequence encoding a peptide that is typically 60-70%, 70-80%, 80-90%, and more typically at least about 90-95% or more homologous to the nucleotide sequence shown in the Figure sheets or a fragment of this sequence. Such nucleic acid molecules can readily be identified as being able to hybridize under moderate to stringent conditions, to the nucleotide sequence shown in the Figure sheets or a 15 fragment of the sequence. Allelic variants can readily be determined by genetic locus of the encoding gene. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is 20 supported by multiple lines of evidence, such as STS and BAC map data.

FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences encoding a peptide at least 60-70% homologous to each other typically remain hybridized to each other. The conditions can be such that sequences at least about 60%, at least about 70%, or at least about 80% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. One example of stringent hybridization conditions are hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45C, followed by one or more washes in 0.2xSSC, 0.1% SDS at 50-65C. Examples of moderate to low stringency hybridization conditions are well known in the art.

Nucleic Acid Molecule Uses

The nucleic acid molecules of the present invention are useful for probes, primers, chemical intermediates, and in biological assays. The nucleic acid molecules are useful as a hybridization probe for messenger RNA, transcript/cDNA and genomic DNA to isolate full-length cDNA and genomic clones encoding the peptide described in FIG. 2 and to isolate cDNA and genomic clones that correspond to variants (alleles, orthologs, etc.) producing the same or related peptides shown in FIG. 2. As illustrated in FIG. 3, SNPs were identified at 42 different nucleotide positions.

The probe can correspond to any sequence along the entire length of the nucleic acid molecules provided in the Figures. Accordingly, it could be derived from 5' noncoding regions, the coding region, and 3' noncoding regions. 60 However, as discussed, fragments are not to be construed as encompassing fragments disclosed prior to the present invention.

The nucleic acid molecules are also useful as primers for PCR to amplify any given region of a nucleic acid molecule 65 and are useful to synthesize antisense molecules of desired length and sequence.

The nucleic acid molecules are also useful for constructing recombinant vectors. Such vectors include expression vectors that express a portion of, or all of, the peptide sequences. Vectors also include insertion vectors, used to integrate into another nucleic acid molecule sequence, such as into the cellular genome, to alter in situ expression of a gene and/or gene product. For example, an endogenous coding sequence can be replaced via homologous recombination with all or part of the coding region containing one or more specifically introduced mutations.

The nucleic acid molecules are also useful for expressing antigenic portions of the proteins.

The nucleic acid molecules are also useful as probes for determining the chromosomal positions of the nucleic acid molecules by means of in situ hybridization methods. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

The nucleic acid molecules are also useful in making vectors containing the gene regulatory regions of the nucleic acid molecules of the present invention.

The nucleic acid molecules are also useful for designing ribozymes corresponding to all, or a part, of the mRNA produced from the nucleic acid molecules described herein.

The nucleic acid molecules are also useful for making vectors that express part, or all, of the peptides.

The nucleic acid molecules are also useful for constructing host cells expressing a part, or all, of the nucleic acid molecules and peptides.

The nucleic acid molecules are also useful for constructing transgenic animals expressing all, or a part, of the nucleic acid molecules and peptides.

The nucleic acid molecules are also useful as hybridization probes for determining the presence, level, form and distribution of nucleic acid expression. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. Accordingly, the probes can be used to detect the presence of, or to determine levels of, a specific nucleic acid molecule in cells, tissues, and in organisms. The nucleic acid whose level is determined can be DNA or RNA. Accordingly, probes corresponding to the peptides described herein can be used to assess expression and/or gene copy number in a given cell, tissue, or organism. These uses are relevant for diagnosis of disorders involving an increase or decrease in kinase protein expression relative to normal results.

In vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detecting DNA includes Southern hybridizations and in situ hybridization.

Probes can be used as a part of a diagnostic test kit for identifying cells or tissues that express a kinase protein, such as by measuring a level of a kinase-encoding nucleic acid in a sample of cells from a subject e.g., mRNA or genomic DNA, or determining if a kinase gene has been mutated. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by

virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain.

Nucleic acid expression assays are useful for drug screening to identify compounds that modulate kinase nucleic acid expression.

The invention thus provides a method for identifying a compound that can be used to treat a disorder associated with nucleic acid expression of the kinase gene, particularly biological and pathological processes that are mediated by the kinase in cells and tissues that express it. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The method typically includes assaying the ability of the compound to modulate the expression of the kinase nucleic acid and thus identifying a compound that can be used to treat a disorder characterized by undesired kinase nucleic acid expression. The assays can be performed in cell-based and cell-free systems. Cell-based assays include cells naturally expressing the kinase nucleic acid or recombinant cells genetically engineered to express specific nucleic acid sequences.

The assay for kinase nucleic acid expression can involve direct assay of nucleic acid levels, such as mRNA levels, or on collateral compounds involved in the signal pathway. Further, the expression of genes that are up- or down-regulated in response to the kinase protein signal pathway can also be assayed. In this embodiment the regulatory regions of these genes can be operably linked to a reporter gene such as luciferase.

Thus, modulators of kinase gene expression can be iden- 30 tified in a method wherein a cell is contacted with a candidate compound and the expression of mRNA determined. The level of expression of kinase mRNA in the presence of the candidate compound is compared to the level of expression of kinase mRNA in the absence of the candi-35 date compound. The candidate compound can then be identified as a modulator of nucleic acid expression based on this comparison and be used, for example to treat a disorder characterized by aberrant nucleic acid expression. When expression of mRNA is statistically significantly greater in 40 the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of nucleic acid expression. When nucleic acid expression is statistically significantly less in the presence of the candidate compound than in its absence, the candidate compound is 45 identified as an inhibitor of nucleic acid expression.

The invention further provides methods of treatment, with the nucleic acid as a target, using a compound identified through drug screening as a gene modulator to modulate kinase nucleic acid expression in cells and tissues that 50 express the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, 55 PCR-based tissue screening panels indicate expression in fetal brain. Modulation includes both up-regulation (i.e. activation or agonization) or down-regulation (suppression or antagonization) or nucleic acid expression.

Alternatively, a modulator for kinase nucleic acid expression can be a small molecule or drug identified using the screening assays described herein as long as the drug or small molecule inhibits the kinase nucleic acid expression in the cells and tissues that express the protein. Experimental data as provided in FIG. 1 indicates expression in humans in 65 teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

The nucleic acid molecules are also useful for monitoring the effectiveness of modulating compounds on the expression or activity of the kinase gene in clinical trials or in a treatment regimen. Thus, the gene expression pattern can serve as a barometer for the continuing effectiveness of treatment with the compound, particularly with compounds to which a patient can develop resistance. The gene expression pattern can also serve as a marker indicative of a physiological response of the affected cells to the compound. Accordingly, such monitoring would allow either increased administration of the compound or the administration of alternative compounds to which the patient has not become resistant. Similarly, if the level of nucleic acid expression falls below a desirable level, administration of the compound could be commensurately decreased.

The nucleic acid molecules are also useful in diagnostic assays for qualitative changes in kinase nucleic acid expression, and particularly in qualitative changes that lead to pathology. The nucleic acid molecules can be used to detect mutations in kinase genes and gene expression products such as mRNA. The nucleic acid molecules can be used as hybridization probes to detect naturally occurring genetic mutations in the kinase gene and thereby to determine whether a subject with the mutation is at risk for a disorder caused by the mutation. Mutations include deletion, addition, or substitution of one or more nucleotides in the gene, chromosomal rearrangement, such as inversion or transposition, modification of genomic DNA, such as aberrant methylation patterns or changes in gene copy number, such as amplification. Detection of a mutated form of the kinase gene associated with a dysfunction provides a diagnostic tool for an active disease or susceptibility to disease when the disease results from overexpression, underexpression, or altered expression of a kinase protein.

Individuals carrying mutations in the kinase gene can be detected at the nucleic acid level by a variety of techniques. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data. Genomic DNA can be analyzed directly or can be amplified by using PCR prior to analysis. RNA or cDNA can be used in the same way. In some uses, detection of the mutation involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g. U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al., Science 241:1077-1080 (1988); and Nakazawa et al., PNAS 91:360-364 (1994)), the latter of which can be particularly useful for detecting point mutations in the gene (see Abravaya et al., Nucleic Acids Res. 23:675-682 (1995)). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. Deletions and insertions can be detected by a change in size of the amplified product compared to the normal

genotype. Point mutations can be identified by hybridizing amplified DNA to normal RNA or antisense DNA sequences.

Alternatively, mutations in a kinase gene can be directly identified, for example, by alterations in restriction enzyme 5 digestion patterns determined by gel electrophoresis.

Further, sequence-specific ribozymes (U.S. Pat. No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site. Perfectly matched sequences can be distinguished from mismatched sequences by nuclease cleavage digestion assays or by differences in melting temperature.

Sequence changes at specific locations can also be assessed by nuclease protection assays such as RNase and S1 protection or the chemical cleavage method. Furthermore, sequence differences between a mutant kinase gene and a wild-type gene can be determined by direct DNA sequencing. A variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve, C. W., (1995) Biotechniques 19:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al., Adv. Chromatogr. 36:127-162 (1996); and Griffin et al., Appl. Biochem. Biotechnol. 38:147-159 (1993)).

Other methods for detecting mutations in the gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA duplexes (Myers etal., Science 230:1242 (1985)); Cotton et al., PNAS 85:4397 (1988); Saleeba et al., Meth. Enzymol. 21 7:286-295 (1992)), electrophoretic mobility of mutant and wild type nucleic acid is compared (Orita et al., PNAS 86:2766 (1989); Cotton et al., Mutat. Res. 285:125-144 (1993); and Hayashi et al., Genet. Anal. Tech. Appl. 9:73-79 (1992)), and movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (Myers et al., Nature 313:495 (1985)). Examples of other techniques for detecting point mutations include selective oligonucleotide hybridization, selective amplification, and selective primer extension.

The nucleic acid molecules are also useful for testing an individual for a genotype that while not necessarily causing the disease, nevertheless affects the treatment modality. Thus, the nucleic acid molecules can be used to study the relationship between an individual's genotype and the individual's response to a compound used for treatment (pharmacogenomic relationship). Accordingly, the nucleic acid molecules described herein can be used to assess the mutation content of the kinase gene in an individual in order 50 membrane, filter, chip, glass slide, or any other suitable solid to select an appropriate compound or dosage regimen for treatment. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located 55 1675-1680) and Schena, M. et al. (1996; Proc. Natl. Acad. outside the ORF and in introns, may affect gene transcrip-

Thus nucleic acid molecules displaying genetic variations that affect treatment provide a diagnostic target that can be used to tailor treatment in an individual. Accordingly, the 60 production of recombinant cells and animals containing these polymorphisms allow effective clinical design of treatment compounds and dosage regimens.

The nucleic acid molecules are thus useful as antisense constructs to control kinase gene expression in cells, tissues, 65 and organisms. A DNA antisense nucleic acid molecule is designed to be complementary to a region of the gene

involved in transcription, preventing transcription and hence production of kinase protein. An antisense RNA or DNA nucleic acid molecule would hybridize to the mRNA and thus block translation of mRNA into kinase protein.

Alternatively, a class of antisense molecules can be used to inactivate mRNA in order to decrease expression of kinase nucleic acid. Accordingly, these molecules can treat a disorder characterized by abnormal or undesired kinase nucleic acid expression. This technique involves cleavage by means of ribozymes containing nucleotide sequences complementary to one or more regions in the mRNA that attenuate the ability of the mRNA to be translated. Possible regions include coding regions and particularly coding regions corresponding to the catalytic and other functional activities of the kinase protein, such as substrate binding.

The nucleic acid molecules also provide vectors for gene therapy in patients containing cells that are aberrant in kinase gene expression. Thus, recombinant cells, which include the patient's cells that have been engineered ex vivo and returned to the patient, are introduced into an individual where the cells produce the desired kinase protein to treat the

The invention also encompasses kits for detecting the presence of a kinase nucleic acid in a biological sample. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. For example, the kit can comprise reagents such as a labeled or labelable nucleic acid or agent capable of detecting kinase nucleic acid in a biological sample; means for determining the amount of kinase nucleic acid in the sample; and means for comparing the amount of kinase nucleic acid in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect kinase protein nRNA or DNA.

Nucleic Acid Arrays

The present invention further provides nucleic acid detection kits, such as arrays or microarrays of nucleic acid molecules that are based on the sequence information provided in FIGS. 1 and 3 (SEQ ID NOS:1 and 3).

As used herein "Arrays" or "Microarrays" refers to an array of distinct polynucleotides or oligonucleotides synthesized on a substrate, such as paper, nylon or other type of support. In one embodiment, the microarray is prepared and used according to the methods described in U.S. Pat. No. 5,837,832, Chee et al., PCT application W095/11995 (Chee et al.), Lockhart, D. J. et al. (1996; Nat. Biotech. 14: Sci. 93: 10614-10619), all of which are incorporated herein in their entirety by reference. In other embodiments, such arrays are produced by the methods described by Brown et al., U.S. Pat. No. 5,807,522.

The microarray or detection kit is preferably composed of a large number of unique, single-stranded nucleic acid sequences, usually either synthetic antisense oligonucleotides or fragments of cDNAs, fixed to a solid support. The oligonucleotides are preferably about 6-60 nucleotides in length, more preferably 15-30 nucleotides in length, and most preferably about 20-25 nucleotides in length. For a certain type of microarray or detection kit, it may be preferable to use oligonucleotides that are only 7-20 nucleotides in length. The microarray or detection kit may contain oligonucleotides that cover the known 5', or 3', sequence, sequential oligonucleotides which cover the full length sequence; or unique oligonucleotides selected from particular areas along the length of the sequence. Polynucleotides used in the microarray or detection kit may be oligonucleotides that are specific to a gene or genes of interest.

In order to produce oligonucleotides to a known sequence for a microarray or detection kit, the gene(s) of interest (or an ORF identified from the contigs of the present invention) is typically examined using a computer algorithm which starts at the 5' or at the 3' end of the nucleotide sequence. Typical algorithms will then identify oligomers of defined length that are unique to the gene, have a GC content within a range suitable for hybridization, and lack predicted secondary structure that may interfere with hybridization. In certain situations it may be appropriate to use pairs of oligonucleotides on a microarray or detection kit. The "pairs" will be identical, except for one nucleotide that preferably is located in the center of the sequence. The 20 second oligonucleotide in the pair (mismatched by one) serves as a control. The number of oligonucleotide pairs may range from two to one million. The oligomers are synthesized at designated areas on a substrate using a light-directed chemical process. The substrate may be paper, nylon or 25 other type of membrane, filter, chip, glass slide or any other suitable solid support.

In another aspect, an oligonucleotide may be synthesized on the surface of the substrate by using a chemical coupling procedure and an ink jet application apparatus, as described 30 in PCT application W095/251116 (Baldeschweiler et al.) which is incorporated herein in its entirety by reference. In another aspect, a "gridded" array analogous to a dot (or slot) blot may be used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum 35 system, thermal, UV, mechanical or chemical bonding procedures. An array, such as those described above, may be produced by hand or by using available devices (slot blot or dot blot apparatus), materials (any suitable solid support), and machines (including robotic instruments), and may contain 8, 24, 96, 384, 1536, 6144 or more oligonucleotides, or any other number between two and one million which lends itself to the efficient use of commercially available instrumentation.

In order to conduct sample analysis using a microarray or detection kit, the RNA or DNA from a biological sample is 45 made into hybridization probes. The mRNA is isolated, and cDNA is produced and used as a template to make antisense RNA (aRNA). The aRNA is amplified in the presence of fluorescent nucleotides, and labeled probes are incubated with the microarray or detection kit so that the probe 50 sequences hybridize to complementary oligonucleotides of the microarray or detection kit. Incubation conditions are adjusted so that hybridization occurs with precise complementary matches or with various degrees of less complementarity. After removal of nonhybridized probes, a scanner 55 is used to determine the levels and patterns of fluorescence. The scanned images are examined to determine degree of complementarity and the relative abundance of each oligonucleotide sequence on the microarray or detection kit. The biological samples may be obtained from any bodily fluids (such as blood, urine, saliva, phlegm, gastric juices, etc.), cultured cells, biopsies, or other tissue preparations. A detection system may be used to measure the absence, presence, and amount of hybridization for all of the distinct sequences simultaneously. This data may be used for largescale correlation studies on the sequences, expression 65 patterns, mutations, variants, or polymorphisms among samples.

Using such arrays, the present invention provides methods to identify the expression of the kinase proteins/peptides of the present invention. In detail, such methods comprise incubating a test sample with one or more nucleic acid molecules and assaying for binding of the nucleic acid molecule with components within the test sample. Such assays will typically involve arrays comprising many genes, at least one of which is a gene of the present invention and or alleles of the kinase gene of the present invention. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

Conditions for incubating a nucleic acid molecule with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid molecule used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or array assay formats can readily be adapted to employ the novel fragments of the Human genome disclosed herein. Examples of such assays can be found in Chard, T, An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, Fla. Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice

Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing nucleic acid extracts or of cells are well known in the art and can be readily be adapted in order to obtain a sample that is compatible with the system utilized.

and Theory of Enzyme Immunoassays: Laboratory Tech-

niques in Biochemistry and Molecular Biology, Elsevier

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the nucleic acid molecules that can bind to a fragment of the Human genome disclosed herein; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound nucleic acid.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers, strips of plastic, glass or paper, or arraying material such as silica. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not crosscontaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the nucleic acid probe, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound probe. One skilled in the art will readily recognize that the previously unidentified kinase gene of the present invention can be routinely identified using the sequence information disclosed herein can be readily incorporated into one of the established kit formats which are well known in the art, particularly expression arrays.

Vectors/host Cells

The invention also provides vectors containing the nucleic acid molecules described herein. The term "vector" refers to a vehicle, preferably a nucleic acid molecule, which can transport the nucleic acid molecules. When the vector is a nucleic acid molecule, the nucleic acid molecules are covalently linked to the vector nucleic acid. With this aspect of the invention, the vector includes a plasmid, single or double stranded phage, a single or double stranded RNA or DNA viral vector, or artificial chromosome, such as a BAC, 10 PAC, YAC, OR MAC.

A vector can be maintained in the host cell as an extrachromosomal element where it replicates and produces additional copies of the nucleic acid molecules. Alternatively, the vector may integrate into the host cell 15 genome and produce additional copies of the nucleic acid molecules when the host cell replicates.

The invention provides vectors for the maintenance (cloning vectors) or vectors for expression (expression vectors) of the nucleic acid molecules. The vectors can 20 function in prokaryotic or eukaryotic cells or in both (shuttle

Expression vectors contain cis-acting regulatory regions that are operably linked in the vector to the nucleic acid ecules is allowed in a host cell. The nucleic acid molecules can be introduced into the host cell with a separate nucleic acid molecule capable of affecting transcription. Thus, the second nucleic acid molecule may provide a trans-acting factor interacting with the cis-regulatory control region to allow transcription of the nucleic acid molecules from the vector. Alternatively, a trans-acting factor may be supplied by the host cell. Finally, a trans-acting factor can be produced from the vector itself It is understood, however, that in some embodiments, transcription and/or translation of the nucleic acid molecules can occur in a cell-free system.

The regulatory sequence to which the nucleic acid molecules described herein can be operably linked include promoters for directing mRNA transcription. These include, but are not limited to, the left promoter from bacteriophage λ, the lac, TRP, and TAC promoters from E. coli, the early 40 and late promoters from SV40, the CMV immediate early promoter, the adenovirus early and late promoters, and retrovirus long-terminal repeats.

In addition to control regions that promote transcription, expression vectors may also include regions that modulate 45 transcription, such as repressor binding sites and enhancers. Examples include the SV40 enhancer, the cytomegalovirus immediate early enhancer, polyoma enhancer, adenovirus enhancers, and retrovirus LTR enhancers.

In addition to containing sites for transcription initiation 50 and control, expression vectors can also contain sequences necessary for transcription termination and, in the transcribed region a ribosome binding site for translation. Other regulatory control elements for expression include initiation and termination codons as well as polyadenylation signals. The person of ordinary skill in the art would be aware of the numerous regulatory sequences that are useful in expression vectors. Such regulatory sequences are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989).

A variety of expression vectors can be used to express a nucleic acid molecule. Such vectors include chromosomal, episomal, and virus-derived vectors, for example vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, includ- 65 ing yeast artificial chromosomes, from viruses such as baculoviruses, papovaviruses such as SV40, Vaccinia

viruses, adenoviruses, poxviruses, pseudorabies viruses, and retroviruses. Vectors may also be derived from combinations of these sources such as those derived from plasmid and bacteriophage genetic elements, e.g. cosmids and phagemids. Appropriate cloning and expression vectors for prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989)

The regulatory sequence may provide constitutive expression in one or more host cells (i.e. tissue specific) or may provide for inducible expression in one or more cell types such as by temperature, nutrient additive, or exogenous factor such as a hormone or other ligand. A variety of vectors providing for constitutive and inducible expression in prokaryotic and eukaryotic hosts are well known to those of ordinary skill in the art.

The nucleic acid molecules can be inserted into the vector nucleic acid by well-known methodology. Generally, the DNA sequence that will ultimately be expressed is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction enzymes and then ligating the fragments together. Procedures for restriction enzyme digestion and ligation are well known to those of ordinary skill in the art.

The vector containing the appropriate nucleic acid molmolecules such that transcription of the nucleic acid mol- 25 ecule can be introduced into an appropriate host cell for propagation or expression using well-known techniques. Bacterial cells include, but are not limited to, E. coli, Streptomyces, and Salmonella typhimurium. Eukaryotic cells include, but are not limited to, yeast, insect cells such as Drosophila, animal cells such as COS and CHO cells, and plant cells.

As described herein, it may be desirable to express the peptide as a fusion protein. Accordingly, the invention provides fusion vectors that allow for the production of the peptides. Fusion vectors can increase the expression of a recombinant protein, increase the solubility of the recombinant protein, and aid in the purification of the protein by acting for example as a ligand for affinity purification. A proteolytic cleavage site may be introduced at the junction of the fusion moiety so that the desired peptide can ultimately be separated from the fusion moiety. Proteolytic enzymes include, but are not limited to, factor Xa, thrombin, and enterokinase. Typical fusion expression vectors include pGEX (Smith et al., Gene 67:31-40 (1988)), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., *Gene* 69:301-315 (1988)) and pET 11 d (Studier et al., Gene Expression Technology: Methods in Enzymology 185:60-89 (1990)).

Recombinant protein expression can be maximized in host bacteria by providing a genetic background wherein the host cell has an impaired capacity to proteolytically cleave the recombinant protein. (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 119-128). Alternatively, the sequence of the nucleic acid molecule of interest can be altered to provide preferential codon usage for a specific host cell, for example E. coli. (Wada et al., Nucleic Acids 60 Res. 20:2111-2118 (1992)).

The nucleic acid molecules can also be expressed by expression vectors that are operative in yeast. Examples of vectors for expression in yeast e.g., S. cerevisiae include pYepSec1 (Baldari, et al., EMBO J. 6:229-234 (1987)), pMFa (Kurjan et al., Cell 30:933-943(1982)), pJRY88 (Schultz et al., Gene 54:113-123 (1987)), and pYES2 (Invitrogen Corporation, San Diego, Calif.).

The nucleic acid molecules can also be expressed in insect cells using, for example, baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al., Mol. Cell Biol. 3:2156-2165 (1983)) and the 5 pVL series (Lucklow et al., Virology 170:31-39 (1989)).

In certain embodiments of the invention, the nucleic acid molecules described herein are expressed in mammalian cells using mammalian expression vectors. Examples of mammalian expression vectors include pCDM8 (Seed, B. 10 yeast, mammalian cells, and other cells under the control of Nature 329:840(1987)) and pMT2PC (Kaufman et al., EMBO J. 6:187-195 (1987)).

The expression vectors listed herein are provided by way of example only of the well-known vectors available to those of ordinary skill in the art that would be useful to express the nucleic acid molecules. The person of ordinary skill in the art would be aware of other vectors suitable for maintenance propagation or expression of the nucleic acid molecules described herein. These are found for example in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

The invention also encompasses vectors in which the nucleic acid sequences described herein are cloned into the vector in reverse orientation, but operably linked to a regulatory sequence that permnits transcription of antisense RNA. Thus, an antisense transcript can be produced to all, or to a portion, of the nucleic acid molecule sequences described herein, including both coding and non-coding regions. Expression of this antisense RNA is subject to each of the parameters described above in relation to expression of the sense RNA (regulatory sequences, constitutive or inducible expression, tissue-specific expression).

The invention also relates to recombinant host cells containing the vectors described herein. Host cells therefore 35 include prokaryotic cells, lower eukaryotic cells such as yeast, other eukaryotic cells such as insect cells, and higher eukaryotic cells such as mammalian cells.

The recombinant host cells are prepared by introducing the vector constructs described herein into the cells by 40 techniques readily available to the person of ordinary skill in the art. These include, but are not limited to, calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, lipofection, and other techniques such as those found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).

Host cells can contain more than one vector. Thus, different nucleotide sequences can be introduced on different vectors of the same cell. Similarly, the nucleic acid molecules can be introduced either alone or with other nucleic acid molecules that are not related to the nucleic acid molecules such as those providing trans-acting factors for expression vectors. When more than one vector is introduced into a cell, the vectors can be introduced independently, co-introduced or joined to the nucleic acid molecule vector.

In the case of bacteriophage and viral vectors, these can be introduced into cells as packaged or encapsulated virus 60 by standard procedures for infection and transduction. Viral vectors can be replication-competent or replicationdefective. In the case in which viral replication is defective, replication will occur in host cells providing functions that complement the defects.

Vectors generally include selectable markers that enable the selection of the subpopulation of cells that contain the

recombinant vector constructs. The marker can be contained in the same vector that contains the nucleic acid molecules described herein or may be on a separate vector. Markers include tetracycline or ampicillin-resistance genes for prokaryotic host cells and dihydrofolate reductase or neomycin resistance for eukaryotic host cells. However, any marker that provides selection for a phenotypic trait will be effective.

While the mature proteins can be produced in bacteria, the appropriate regulatory sequences, cell-free transcription and translation systems can also be used to produce these proteins using RNA derived from the DNA constructs described herein.

Where secretion of the peptide is desired, which is difficult to achieve with multi-transmembrane domain containing proteins such as kinases, appropriate secretion signals are incorporated into the vector. The signal sequence can be endogenous to the peptides or heterologous to these peptides.

Where the peptide is not secreted into the medium, which is typically the case with kinases, the protein can be isolated from the host cell by standard disruption procedures, including freeze thaw, sonication, mechanical disruption, use of lysing agents and the like. The peptide can then be recovered and purified by well-known purification methods including ammonium sulfate precipitation, acid extraction, anion or cationic exchange chromatography, phosphocellulose chromatography, hydrophobic-interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography, or high performance liquid chromatography.

It is also understood that depending upon the host cell in recombinant production of the peptides described herein, the peptides can have various glycosylation patterns, depending upon the cell, or maybe non-glycosylated as when produced in bacteria. In addition, the peptides may include an initial modified methionine in some cases as a result of a hostmediated process.

Uses of Vectors and Host Cells

The recombinant host cells expressing the peptides described herein have a variety of uses. First, the cells are useful for producing a kinase protein or peptide that can be further purified to produce desired amounts of kinase protein or fragments. Thus, host cells containing expression vectors are useful for peptide production.

Host cells are also useful for conducting cell-based assays involving the kinase protein or kinase protein fragments, such as those described above as well as other formats known in the art. Thus, a recombinant host cell expressing a native kinase protein is useful for assaying compounds that stimulate or inhibit kinase protein function.

Host cells are also useful for identifying kinase protein mutants in which these functions are affected. If the mutants naturally occur and give rise to a pathology, host cells containing the mutations are useful to assay compounds that have a desired effect on the mutant kinase protein (for example, stimulating or inhibiting function) which may not be indicated by their effect on the native kinase protein.

Genetically engineered host cells can be further used to produce non-human transgenic animals. A transgenic animal is preferably a mammal, for example a rodent, such as a rat or mouse, in which one or more of the cells of the animal include a transgene. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal in one or more cell types or tissues of the transgenic animal. These animals are useful for studying the function of a kinase protein and identifying and evaluating modulators of kinase protein activity. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, and amphibians.

A transgenic animal can be produced by introducing nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. Any of the kinase protein nucleotide sequences can be introduced as a transgene into the genome of a non-human animal, such as a mouse.

Any of the regulatory or other sequences useful in expression vectors can form part of the transgenic sequence. This includes intronic sequences and polyadenylation signals, if not already included. A tissue-specific regulatory sequence (s) can be operably linked to the transgene to direct expression of the kinase protein to particular cells.

Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such 20 as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al, U.S. Pat. No. 4,873,191 by Wagner et al. and in Hogan, B., Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of transgenic mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals 30 carrying the transgene. Moreover, transgenic animals carrying a transgene can further be bred to other transgenic animals carrying other transgenes. A transgenic animal also includes animals in which the entire animal or tissues in the animal have been produced using the homologously recombinant host cells described herein.

In another embodiment, transgenic non-human animals can be produced which contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, see, e.g., Lakso et al. PNAS 89:6232-6236 (1992). Another example of a recombinase system is the FLP recombinase system of S. cerevisiae (O'Gorman et al. Science 251:1351-1355 (1991). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recom-

binase and a selected protein is required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. et al. Nature 385:810–813 (1997) and PCT International Publication Nos. WO 97/07668 and WO 97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and induced to exit the growth cycle and enter G. phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyst and then transferred to pseudopregnant female foster animal. The offspring born of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.

Transgenic animals containing recombinant cells that express the peptides described herein are useful to conduct the assays described herein in an in vivo context. Accordingly, the various physiological factors that are present in vivo and that could effect substrate binding, kinase protein activation, and signal transduction, may not be evident from in vitro cell-free or cell-based assays. Accordingly, it is useful to provide non-human transgenic animals to assay in vivo kinase protein function, including substrate interaction, the effect of specific mutant kinase proteins on kinase protein function and substrate interaction, and the effect of chimeric kinase proteins. It is also possible to assess the effect of null mutations, that is, mutations that substantially or completely eliminate one or more kinase protein functions.

All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the above-described modes for carrying out the invention which are obvious to those skilled in the field of molecular biology or related fields are intended to be within the scope of the following claims.

240

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 4

<210> SEQ ID NO 1
<211> LENGTH: 2320
<212> TYPE: DNA
<213> ORGANISM: Human

<400> SEQUENCE: 1

cccagggcgc cgtaggcggt gcatcccqtt cgcgcctggg gctgtggtct tcccgcgcct 60

gaggcggcgg cggcaggagc tgaggggagt tgtagggaac tgaggggagc tgctgtgtcc 120
cccgcctcct cctccccatt tccgcgctcc cgggaccatg tccgcgtgg cgggtgaaga 180

tgtctggagg tgtccaggct gtggggacca cattgctcca agccagatat ggtacaggac

tgtcaacgaa acctggcacg gctcttgctt ccggtgaaag tgatgcgcag cctggaccac 300 cccaatgtgc tcaagttcat tggtgtgctg tacaaggata agaagctgaa cctgctgaca 360 gagtacattg aggggggcac actgaaggac tttctgcgca gtatggatcc gttcccctgg 420 cagcagaagg tcaggtttgc caaaggaatc gcctccggaa tggacaagac tgtggtggtg 480 gcagactttg ggctgtcacg gctcatagtg gaagagaga aaagggcccc catggagaag 540 gccaccacca agaaacgcac cttgcgcaag aacgaccgca agaagcgcta cacggtggtg 600 ggaaacccct actggatggc ccctgagatg ctgaacggaa agagctatga tgagacggtg 660 gatatettet cetttgggat egttetetgt gagateattg ggcaggtgta tgcagateet gactgccttc cccgaacact ggactttggc ctcaacgtga agcttttctg ggagaagttt 780 840 gttcccacag attgtccccc ggccttcttc ccgctggccg ccatctgctg cagactggag cetgagagea gaccageatt etegaaattg gaggaeteet ttgaggeeet etecetgtae 900 ctgggggagc tgggcatccc gctgcctgca gagctggagg agttggacca cactgtgagc atgragtarg gortgarceg ggartracet cortageret ggerragere cetgragggg 1020 ggtgttctac agccagcatt gcccctctgt gccccattcc tgctgtgagc agggccgtcc 1080 gggcttcctg tggattggcg gaatgtttag aagcagaaca aaccattcct attacctccc 1140 caggaggcaa gtgggcgcag caccagggaa atgtatctcc acaggttctg gggcctagtt 1200 actgtctgta aatccaatac ttgcctgaaa gctgtgaaga agaaaaaaac ccctgqcctt 1260 1320 tgggccagga ggaatctgtt actcgaatcc acccaggaac tccctggcag tggattgtgg gaggetettg ettacactaa teagegtgae etggacetge tgggeaggat eccagggtga 1380 acctgcctgt gaactctgaa gtcactagtc cagctgggtg caggaggact tcaagtgtgt ggacgaaaga aagactgatg gctcaaaggg tgtgaaaaag tcagtgatgc tccccctttc 1500 tactccagat cctgtccttc ctggagcaag gttgagggag taggttttga agagtccctt aatatgtggt ggaacaggcc aggagttaga gaaagggctg gcttctgttt acctgctcac 1620 tggctctagc cagcccaggg accacatcaa tgtgagagga agcctccacc tcatgttttc aaacttaata ctggagactg gctgagaact tacggacaac atcctttctg tctgaaacaa acagtcacaa gcacaggaag aggctggggg actagaaaga ggccctgccc tctagaaagc tragatottg gottotgtta otratactog ggtgggctco ttagtragat gcotaaaaca 1860 ttttgcctaa agctcgatgg gttctggagg acagtgtggc ttgtcacagg cctagagtct gagggagggg agtgggagtc tcagcaatct cttggtcttg gcttcatggc aaccactgct caccetteaa catgoetggt ttaggeagea gettgggetg ggaagaggtg gtggeagagt ctcaaagctg agatgctgag agagatagct ccctgagctg ggccatctga cttctacctc 2100 ccatgtttgc teteccaact cattagetee tgggcageat cetectgage cacatgtgca ggtactggaa aacctccatc ttggctccca gagctctagg aactcttcat cacaactaga 2220 tttgcctctt ctaagtgtct atgagcttgc accatattta ataaattggg aatgggtttg 2280 2320

Met Val Gln Asp Cys Gln Arg Asn Leu Ala Arg Leu Leu Pro Val

<210> SEQ ID NO 2

<211> LENGTH: 255

<212> TYPE: PRT

<213> ORGANISM: Human

<400> SEQUENCE: 2

											-	con	tin	ıed		
1				5					10					15		
Lув	Val	Met	Arg 20	Ser	Leu	Asp	His	Pro 25	Asn	Val	Leu	Lys	Phe 30	Ile	Gly	
Val	Leu	Tyr 35	Lys	Авр	Lys	Lув	Leu 40	Asn	Leu	Leu	Thr	Glu 45	Tyr	Ilė	Glu	٠.
Gly	Gly 50	Thr	Leu	Lys	Авр	Phe 55	Leu	Arg	Ser	Met	Авр 60	Pro	Phe	Pro	Trp	
Gln 65	Gln	Lys	Val	Arg	Phe 70	Ala	Lys	Gly	Ile	Ala 75	Ser	Gly	Met	Asp	Lув 80	-
Thr	Val	Val	Val	Ala 85	Asp	Phe	Gly	Leu	Ser 90	Arg	Leu	Ile	Val	Glu 95	Glu	
Arg	Lys	Arg	Ala 100	Pro	Met	Glu	Lys	Ala 105	Thr	Thr	Lys	Lys	Arg 110	Thr	Leu	
Arg	Lys	Asn 115	Asp	Arg	Lув	Lys	Arg 120	Tyr	Thr	Val	Val	Gly 125	naA	Pro	Tyr	
Trp	Met 130		Pro	Glu	Met	Leu 135	Asn	Gly	Lys	Ser	Tyr 140	Asp	Glu	Thr	Val	
Asp 145		Phe	Ser	Phe	Gly 150	Ile	Val	Leu	Сув	Glu 155	Ile	Ile	Gly	Gln	Val 160	
Tyr	Ala	Asp	Pro	Asp 165		Leu	Pro	Arg	Thr 170	Leu	Asp	Phe	Gly	Leu 175	Asn	
Val	Lys	Leu	Phe 180	Trp	Glu	Lys	Phe	Val 185	Pro	Thr	Asp	Cys	Pro 190	Pro	Ala	
Phe	Phe	Pro 195		Ala	Ala	Ile	Cys 200	Сув	Arg	Leu	Glu	Pro 205	Glu	Ser	Arg	00
Pro	Ala 210		Ser	Lys	Leu	Glu 215	Asp	Ser	Phe	Glu	Ala 220	Leu	Ser	Leu	Tyr	
Let 225		Glu	Leu	Gly	11e 230	Pro	Leu	Pro	Ala	Glu 235	Leu	Glu	Glu	Leu	Asp 240	
Hi	The	· Val	Şer	Met 245		Tyr	Gly	Leu	Thr 250	Arg	Asp) Ser	Pro	255		
<21 <21	l1> I l2> I	ENGT	D NO H: 5 DNA	9065												,
		_	NCE:													
															tatgtg	
															taaaag	
															ttette	
															agccttt atgagco	
															gtgaag	
															gagagag	
															tatgtg	
															agggtai	
-9				,,	•		•	•	-							

ggcaataaca agttatcttg aatatcctca tggtggaaag tcctgatcct gtttgaattt

tggaaataga aatcattcag agccaagaga ttgaattgtt gagtaagtgg gtggtcaggt

tacagactta attttgggtt aaaaagtaaa aacaagaaac aaggtgtggc tctaaaataa

600

660

720

•				-contir	ued	
tgagatgtgc	tgggggtggg	gcatggcagc	tcataaactg	accctgaaag	ctcttacatg	780
taagagttcc	aaaaatattt	ccaaaacttg	gaagattcat	ttggatgttt	gtgttcatta	840
aaatctctca	ctaattcatt	gtcttgtcca	ctgtccgtaa	cccaacctgg	gattggtttg	900
agtgagtctc	tcagactttc	tgccttggag	tttgtgagag	agatggcata	ctctgtgacc	960
actgtcaccc	taaaaccaaa	aaggcccctc	ttgacaagga	gtctgaggat	tttagaccca	1020
ggaagaatga	gtgatgggca	tatatatatc	ctattactga	ggcatgagaa	gagtggaatg	1080
ggtgggttga	ggtggtgttt	taaggcctct	tgccagcttg	tttaactctt	ctctggggaa	1140
cgagggggac	aactgtgtac	attggctgct	ccagaatgat	gttgagcaat	cttgaagtgc	1200
caggagctgt	gctttgtcta	ttcatggccc	ctgtgcctgt	gaaacagggt	tcggtgactg	1260
tcactgtgcc	tgtggcagtc	tgtagttacc	cagagagaac	aaagctgcat	acacagagcg	1320
cacaagggag	tcttgtaaca	accttgtcct	gctttctagg	gctgagtcag	gtaccacage	1380
ttgatctcag	ctgtcctctt	tatttcaaga	agttgacatc	tgagccatac	caggagtatt	1440
gtattttgtt	tgaggcctct	ctttttggag	gaacatggac	cgactctgtg	cttttgtcta	1500
tgctggtctc	tgagctcaca	caacccttca	ccctcctttc	tcagccagtg	ataggtaagt	1560
cttccctatc	ttgcaaggct	cagctcaagt	gtcagcttcc	tctacaaaga	ctttcctggt	1620
tececteatt	ggagtgaaca	agagttgaca	tggtagaatg	gaaagagcag	aagctttaga	1680
atgagccaga	cctgagtatg	aatgctagat	ccaccactta	gctagtcaac	cctgccccct	1740
gcctcaagtt	ttaattttcc	tatccattaa	gtgaatataa	taatacctgt	gtcacaggat	1800
tattttgaga	attamatgag	attaggtcta	tgaaagcacc	tagcagagtt	cttggcatat	1860
aggaggcatt	cattaaatat	ttgttcttcc	ccttttatac	ccattacttt	tctttttctg	1920
aactaaaata	atacttggtt	ctatctctga	aataacatcc	aagtgaaaaa	tcaacaacat	1980
gaaagagcag	ttcttttcca	gtggatttgc	ttcttaagga	gcagagatta	tgtaatctaa	2040
cagcctccaa	catacaaaga	gctttgtatc	tagaacaggg	gtccccagcc	cctggaccgc	2100
caactggtac	gggtctgtag	cctgttagga	accaggetge	acagcaggag	gtgagcggcg	2160
ggccagtgag	cattgctgcc	tgagctctgc	ctcctgtcag	atcagtggtg	gcattagatt	2220
ctcataggag	tgtgaaccct	attgtgaact	gcacatgcaa	gggatctggg	ttgcatgctc	2280
cttatgagaa	tctcactaat	ggctgatgat	ctgagttgga	acagtttgat	accaaaacca	2340
tececeegee	CCCCAACCCC	cagcctaggg	tccgtggaaa	aattggcccc	tggtgccaaa	2400
aaggttgagg	actgctgatc	tagaggacca	atttattcaa	tgttggttga	gtaaatgagc	2460
			aaacagggct			2520
agtaacatgt	ttaacccaga	gagaagtttc	tggctgttgg	ctgggaatag	tcataggaag	2580
ggctgacact	gaaaagaagg	agattgtgtt	cgtttcttct	tctcagagct	ataagcaaag	2640
gctgaaagtt	ctagaaaaag	gcaagttttg	tttcagtaga	aaaaaggata	atcagaacca	2700
tttttagaaa	atggaatgag	actacttttg	aggccatgag	ttccttgtcc	ctggagagat	2760
gagcagaggt	tggacaagtg	cttaccagag	atcttgtgga	ggcagaaact	gtgcatctag	2820
cagagcattg	gcctaaccct	ttcaaatgag	atgctgttaa	ctcagtctta	ttctacatgg	2880
taggaatcct	gtccctttgc	ctcctgctac	tttgggcctc	tcaacctctt	ggttttgtgt	2940
gcaggtgaag	atgtctggag	gtgtccaggc	tgtggggacc	acattgctcc	aagccagata	3000
tggtacagga	ctgtcaacga	aacctggcac	ggctcttgct	tccggtaggt	gggcctatcc	3060
tcccatcttt	accagtgtac	tatgggccaa	gcactatttc	atgttctgat	ggaaaacaca	3120

44

-continued

gaaacaagct totgagttga gaatttoaat ottagggtgg ggaaaggaat gtaccaagga 3180 agageteatg accasacete aagtgtggee eeeetgaace caggttasat tggaagagee 3240 3300 ataaatgggc cagctggagg cagggtgggg ggatgagagg agccctttcc agggttgtcc catatecete aetttatggg tgaggaaaet gaggeecagg aagagtgaet tteetgtgge 3360 attittattit attittattit attittatgag agggattott gotgttgccc aggotggagt 3480 gcagtggtgc aatctcggct cactgcaatc tctgcctgct gggttcaagt gatttttctg 3540 ccttagcttc ctgagtagct gagatgacag gcacctgcca ccatgcgcag ctaatttttg 3600 tattttagtg gagacggggg tttcaacatg ttggtcaggc tggtcttgaa ctcctgacct 3660 canatyatyc acceaecteg aceteceana gtgctggant tacaggegtg anceaetgtg 3720 cccagccaag agttgttttt agtgtggttg gcagagccag ctcttccttc accacaggat gcctccctag gttcctactt tttgttacta gcttttatta tagctatatt attattatta 3840 ttattattat tattattatt attattgaga cagagteteg etetgtegee caggetggtg tacagtggtg cgatcccggg ctcactgcaa cctctgcctc ccgagttcaa gcagttctcc 3960 tgcctcagcc ccccgagtag gtgggactac aggcgcctgc caccacaccc ggctaatttt tgtattttta gtagagacgg ggtttcacct tgttgaccag gctggtctgg agctcctgac 4080 ctcaggtaag tgctagaatc acaggcgtga accactgcgc ccagccaaga gttgttttta gtgtggttgg cagagccage tetteeteac cacaggttge etcectaggt tectaetttt 4200 tgttactagc tttattatag ctacattatt attattattg ttattattat tgagacagag totogetetg tegeceagge tggtgtacag tgatgtgate ttggeteact geaacetetg 4320 ccccccgagt tcaagcaatt ctcctgcttc agccccccta gtaggtggga ctccaggcac ctgccaccac gcccagctaa tttttgtatt tttagtagag gcggggtttc accttgttgg 4440 ccaggotggt ctcaaactcc tgacctcagg tgatccgcct gcctcggcct cccaaaatgt tgggattaca ggcatgagcc accgcgccct gcctatagct acattattt tgtaggcagc 4560 tragtttott aaaaattata ragacttraa atragatttg ttootgotgt otgaggotra gtttcttcat ctggaaaatg gatggtaata atcttgttga gattgaatga aataatatat 4680 gcagtgtatc cagtacatgg tagacaccca gtgaatggtt attocttcct cccatcggat tggaattete aagggtggga acttgtettt atattettea caaegtaaaa tagttgaaat 4800 ttgttggtgg aaagaagagc agtccactcc agaggctgga tgggcatgcc tggcccccaa ggtctgaagt ggtagggctg tgcctatatc ctgagaatga gatagactag gcaggcacct 4920 4980 tgtgctgtag attccagete etgcacatag etettgttgt aaaacateee tgtgettata ccaagtaatt gagttgacct ttaaacactt gcctcttccc tgggaaccat ataggggatt 5040 ggcctggaga cgtctggcct ctggaagagt tggaaagcag ccatcattat tatcctttcc 5160 tttcagctat aactcagagc tctcaagtct tttctgtgga tcttattgcc ttggttcttg 5220 ccccttttac tcccagggaa gttgattctg tcttttctgt tccatttagt atgacaggag cagagaatgt cagagctgta agggacctta tagttaaagc ctttggctgg tcctttcatt ttatagctgg gactaataag taacgtcaaa acccaatgag ttcacagatt gggtctcgcc ttggcatgta acccatatgt tcatattctt gctgttttcc tatgtgtatg aatattttct 5400 atccaaaata agcaggacag ggtagagcaa gttaatcttt ggaatttctg gattctctta 5460

agctaaaaa acttcagaac tagaagaaac cacccactat atggtataac ccattcatat	5520
acagatgag gcctgaaacc aaaaagactt gctcaggcca tggatgacaa gagctggccc	5580
agcactgaa ctcttgggtc atttgtaggt ctagtcagat gctagcttgt tagctctgtg	5640
egtgegtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgagat agagacagaa agataacata	5700
igtacacaaa tacataaaga ggaagtagac acgttagcat ggtagataag agtacaggca	5760
ggccaggegt ggtggctcac gcctgtaatc ccagcacttt gggaggccaa ggcaggtgga	5820
tcacctgagg tcaggaattc gagaccagcc tgaccaacat ggtgaaaccc catctctact	5880
aaatacagaa aaaaattage ttggeatggt ggeacatgee tgtaateeca getaettggg	5940
aagctgaagc aggagaatcg cttgaatccg ggaagcagaa gttgcagtga gccgagattg	6000
tgccattaca gtctagcctg ggcaacaaga gggaaactcc atcgcaaaaa aacaaccacc	6060
accaagagta caggotatgg aatgagacta tggttttaaa tootggottt gcaatttatt	6120
aactageett aagtgaette eetgagette aggeaceaat etgtaaaatg aggataagaa	6180
tattactcat gccacatggt tgttagggag gattaaatgt gataacctat ataaagtggc	6240
tagcatagca tctgacatat agaaaactot taatagggcc ggacgtggtg gcttatgcct	6300
gtaatootag cactotggga ggoogaggoa gaaggatogo ttgagoocat gagoocagga	6360
gtttgagacc agcctggcca acatggcaaa actccacctc tacaaaaaat acaaaaatat	6420
tagocaggog tgatggcaca cacctgtagt cocagctact tgggaagctg aggagogatg	6480
attacctgag cccagggata tcaaggctgt agtgagctgt gatcatgcca ctgtactcca	6540
tocagotggg ggacagagtg aaacccotgt otcaaaacaa aacaaatgaa aaaaaaaacc	6600
cttaataatc agtaactgtc actttatatt atgttgtgag tgtgtgtcta tatacaccta	6660
tatgtataca tttctcttat tacacattca ttggtgatct gatgtggagc cccagggatt	6720
aagggcaact ttgaactacc ctgacacaat caagccaaat atcattcccg tggaggaagt	6780
agagtatota ggttotgtot cotagttgca gotttacott gaggacagag actotaatoo	6840
agctgtgctg aaggagcaca tctcctgact tctgagcttt cccctggtaa attcaaactg	6900
gatgtcacgg cgccctcaga tagagcctgg taatttgccc tggggagagt gactgtcttt	6960
tggatctaat ttgacttttg ccccagttgg aggaaaatct tcagggctag gaaggattgt	7020
atttgtctga ccccagagat aacctgggtt ttgaggaaca tggggcatca acctgaatgg	7080
tottgtaaga tototoccac gocagottgc cagtgtttct ctgatgaatt tagagtacct	7140
gagtagtgca ggcctgctgg gaggaggact ctccctctgt gctactcaga gaaattcatt	7200
cttcaaggcc cccttccagc cttgctctta cccagctggg ctacagttac aataaaggaa	7260
atgacttttc ttotcccctt cccccagtac ctttgttttc ctagtcacag ggtggggctg	7320
gatattgaat ggagaaattg ctggggtcca tcctaaactc ctcccctcat ctctccctta	7380
cattacccca ttcttctgtc tgcagccaca tccataatcc tgcctctgtt agccttccga	7440
cagaccetea ggtgcccagg acaacaggaa gctacttaaa gctggaacct cagactgtgc	7500
aatggaggcc agtgacaaaa ctgaaagtag ctctgtcagt aattgtgctg gtgcgattag	7560
gcagctggcc agaatctttt ggatctcctg gacatatggc tgactagtcc tcccaagcct	7620
teccaacagg cetettttt tteettttt tetttettt tttttettt tttttette	7680
tettttttt tttttttag getagtgaag tgaaattgtg ggagtggaaa aggaacaaag	7740
aaatcggtaa ctggtagtga tcaattactt gtaaacacta ttgtacttgg accagcccag	7800
taggcctttt ttaaaactct gagttacctc totttocttt cottgagcag tgccattaat	7860

ctgtatctg gggcaatcct ttctgatgtt ctctggacct ggctctctct ccttaggaga	7920
	7980
	8040
attgtccgt tcaccctgat caaaggtgtt tggcttagga ggagggaaga aaagctaccc	8100
	8160
	8220
aggattgcaa acataagact atttgagctt tcacttttga aaagcggtta ctaataccta	8280
tactetggga aagggetaat geagatagaa gaetgtggte aetgeateag geaacagaee	8340
atttccgcta aatttagtga ctccaggaag gccagtgaag aaataacaca cgtagcaacc	8400
agagactgtg ttgtaatatg ttggctgaca gcagggtact ttctgtgatg ctgaaagcca	8460
cattcatttt ctctcccctc atccccatct aagcaagcct ggtagaatca taattacagt	8520
aataggtacc acttattgag tactctgtgc cagacaccct cctgagcata cgacatgcat	8580
agcacattta atcettacaa tgacttaata aaatgtagta ctagtettac ctacttegag	8640
aatagggaaa tggaggttac ttgtttaaag tcacagagct aataggtagc atagctgaga	8700
tttgaactca ggcattctta ctccttgcct gcaagagtct cttggcattc ttgaatgcaa	8760
gcatatttct taacctcact gaggetcagt tteetettat ataatatggg gtaaagagee	8820
ctcaccctgc ctgccacaca ctggtagtgt cagataacat tgaagggtgt tagtttaaag	8880
getteatgga etetataatg teaacaaaag tgetgttaac tttettetgg gteteagget	8940
cotgatgtag agtcagtgga gcaaccotgo catotgotgt tatgotgttg atgttgctgo	9000
cacacttact aacctaaacc tttgattctg gctgtggcct tctccagaag gtgtttactc	9060
attigtocag titatotitt aggaaacago cagooogtag atcattaagg otggotattg	9120
gacagggggc tggggcctgc ctgacagagg aaggaagggc agacatctgg ttcttcctct	9180
goccotacaa gagactocag cotgaccaca gagtggtact cotaggatgt agcagcagca	9240
decectacaa gagactecag eetgactaca gagasgacte tetactttga gaagagagaa ctaaggacce	9300
	9360
acagatgttt cacagcttct ataggaggca gaggtagaaa aatggagaga gatgaggcca	9420
gagatagata actgatatta attaaacgtt gtattaagaa cctcacttag attatctgat	9480
tcaatcttca taataaccct gcaaccccca cctttttttg agaacagggt cttgctctgt	9540
tytecagget acagtycaet ggtacaatea tagtteaetg cagtyteaac etectgaget	9600
caagcaatcc teccacetea geettgeaag cagettggae tacaggegtg ceaccacace	9660
ttgccatttt tttttatttt aagtagaaac aaggtcttat taatactatg ttgcccagge	9720
tggtcttgaa ctccagcgat cctcctgccc cagcctccca aagtgcttgg gattacggaa	9780
gtaagccact gtgcctggcc agtgcaaccc ccattttata ctaaaacagg aaggcccaga	9840
aaggtttgga gtaacttgtc cagggtcaca cagatgatat ttgaactcag gtctccctgg	9900
ctcccaagag agtctgcttt ccactaggac tcccaggaga aaaaaaaaaa	9960
agacttggag acagaaaatc tgatttgagt cttagttgag ctaggctaac tgtgtaactg	10020
tgggcaagtt ccttagcccc tgtgagcctc agtttcttat ctgtaaaatg tcataaaaga	
aatocatoto atggagtagt tgtgatgato aaggactotg aaaacattag aatggtttaa	10080
tgtgaaggat tagcagcagc acatggcaac attgtgcatc ttatattaac tatccaaata	10140
tatcaagcgt catttgctat atataaaagt catcaaatta ggcactgtgg gggatacgga	10200

				-6011011	iueu	
gttggcatac	tagcctggcc	tcttaattaa	ttcattaatt	agcttattta	ttttgagat	10260
aggtcttgct	ctattgccca	ggctggagtg	cagtggcatg	atgatagctt	actatageet	10320
caatctccca	ggcttaaaca	atcctcctga	gtagctggga	ctacaggcac	acactaccat	10380
gcccagctaa	tttttttta	attttttgta	gagacagggt	cttgctctgt	tgcccaggct	10440
ggtctcaaac	tcctgggctc	gagatectec	cacctgggcc	tcacaaagtg	ttgggattac	10500
aggtatgagc	cacggcacct	ggcctggtct	cttaactggt	tccctaagac	agctggaaat	10560
agagaatgtc	atggagcatt	cctaaccatg	ggctccagcc	tggctttcat	tctgtttctc	10620
ccctgaaaca	acattccttt	agtaatattc	cgaataacag	cttcatcagt	ctgtctaccg	10680
accactcttc	aggetteate	ttatatgacc	tcccaaactg	cactaagggt	tgtattagag	10740
aaaagtggat	aaagttcgga	gtcaggctgc	ttgagcttaa	atgccagctt	cacttaccag	10800
ccacctgacc	atgagtcagc	tgcttaacca	ttctttgcca	cagtttcctt	gtctatgaaa	10860
agggaaatgg	ctcccacctc	aaaaagttgt	taacattaaa	ttcaatcatg	tattcaaagt	10920
cctgagcaga	atgtctggcc	atgactggga	cttaacagat	gttagcattt	attattagta	10980
totgtcagtc	ttgaaatgtt	ctcttccctt	ggctttcatg	acattccaca	ctctcctggt	11040
tttctcttac	ctctctggta	atacctgttt	gcttatcctt	ctttgtccag	ctctgggatg	11100
ttaccattcc	ttcaggcgtg	ctgttttctc	cttaggcagt	cttacacaca	ctcatgactt	11160
ccttccattg	tcctccacac	actgatgacc	ctaaaatcag	tatctccagc	ctaaaccttt	11220
ccactgagtt	ctagacccat	atgttgtact	atcaacctgg	cttgtccatt	tgaatgtctt	11280
ccaggcactt	cagactetet	tctctagact	ttgctggact	ttcactcttc	cccctaaaac.	11340
tggctcctct	tccactgaaa	catgtatgtc	attgagaggc	accaccatcc	acccagtgcc	11400
taagccagaa	acctaggaat	ccttgatacc	tgttctctct	catcctgcat	atccaagcct	11460
atcagtttta	tctctaaatt	atattttggt	aggtttactt	ctttcctttt	ctcccaccac	11520
caccctgctc	caagctacca	tcatctcacc	tggatgtctg	caatagcctc	atctcccaca	11580
gccactctgc	accccctaat	ctgttctcta	tagagcagtt	ggaaggagtg	atttttgttg	11640
titgttttgt	tttgttttag	acagagtete	actctgttcc	ccaaggctgg	agtgcagtgg	11700
cacaatttcg	gctcactgca	acttctgcct	cccgggttta	agcaattctc	ctgcctcagc.	11760
ctcccaagta	gctgggātta	aggcaccggc	ccccataccc	agctaattt	tatattttta	11820
gtagagatgg	ggttttgcca	tgttggccaa	gctagtctcg	aactcctgac	ctcaagtgat	11880
ccacctgcct	cggcctccca	aagtgctggg	attacaggtg	tgagccactg	cacctggctg	11940
gaaggagtga	tcttaaaaaa	aaaaaaaaca	aaaaaaaact	tgactgtgtc	actctgtgtt	12000
gtctctccta	ccttgtatac	ttccacaact	tcccagtgtt	cttggataaa	gaccasastc	12060
cttaacttgg	ccaggcgcgg	tggctcacac	ctatcatctc	agcactttgg	gaggccgagg	12120
caggcagato	: atgaagtcaa	gagattgaga	ccatcctggc	caacatggtg	aaaccccatc	12180
tctactaaaa	atacaaaaat	tagctggtcg	tggtggcgtg	tgcctgtagt	cccagctact	12240
tgggaggctg	aggcaggaga	atcacttgas	cctgggaggc	agaggttgca	gtgagcccag	. 12300
atcacgccac	tgcactccag	cctggtgaca	ı gagtaagact	ccatctcaaa	. aaaaaaaaaa	12360
					ceteteteca	12420
					acaggeeete	12480
					ttactctgtt	12540
cacttaacto	ctgcttatcq	tttagatctt	tacctggatg	gctcagagae	a atatagaagt	12600

aatteeteae eetgaaaaat aggttaggte eetgttttat gtttteatag acettteett 12660 tgaggctttt tttaaaaaag tagttttaat ctcacattta ttcatgtgat catctcctta 12720 atgatatett aagaceteta atagaacaat ttggteatgg actgtggggt ttttgeecet 12780 cattgtgtca gcactgagca tattgttggc ataggaggga tatttgttga atgaattgct 12840 agaggtggcc aagagatatg atgtaagtca ggcttttccc tgcccttcc cttccccttc 12900 cccacatcct tcctatagca gccaccgtgg ctgcagttac tgtaaatggc aagacggaat 12960 cagttccgga cattgggttg ttttagaaaa ttgcctgcaa gtgtcagggt gataagttaa 13020 agetttgtct tttgccctca gaggagctat cccatagtga gtagaagcca gagaagctga 13080 ccccaggagt ccttctttcc agcagcaggt cttgagctgc acttctctgt agctacaatc 13140 caggcaggaa caagccctag gtacctccgg agaggagggc aagagaggaa gaatgagttc 13200 agctactcta gccaccaaac tgattatgaa ttgccctgaa atctgaaaaa tttcaattcc 13260 aatogtaagt tigittigit toattiigit tiottaaatt giatatiiga aagaiggoat 13320 taactaaaga tatatattca atatagagtg gaaaaaatgg aatacttgca tagtatcttt 13380 tacttatagg tgatttatga tggggagtgg ggtggatagg ttggcagttc ccccaagaag 13440 ttggaaatga agtttgtcct ctgtgagttg aactaattag atccacaagt aatgaaagca 13500 gtattgtgtt gtagttaaga gcacactota gaaccagatt gcttagtttc aaatcctggt 13560 totgcctttt attatctgtg tactttgggc aagttacttg ccctttgtgt gcttcatttt 13620 teteatetag aaaatggaga ggecaggegt agtggeteat geetataate ceageaettt 13680 gggaggccga ggcgggcaga tcacctgagg tgagaagttc aagaccagcc tggccaacat 13740 ggtgaaaccc tgtctctaca aaaatacaaa aattagccag gcatgatggc gggtgcctgt 13800 aatcccagct acccaggagc ctgaggcggg agaaacactt gaacctggaa ggcagaggtt 13860 gtagtgagcc aggattgcac cactgcactc cagcctgggt gacaagagct agactcagtc 13920 taaaaaaaaa aaaaaaaaac aaactggaga tacaggctgg gtgcagggct tacacttata 13980 atatcagcac tttgggaggc ctaggcggga ggattgcttg aactcaggag tttcaagatc 14040 agtotgggta acagagcaag acctdatoco cacaaaaaat caaaaattta gocaggcatg 14100 gtggctcatg cctgtggtcc cagctactca ggaggctgag gcgagaggat tgcttgagcc 14160 caggaggttg aggctgcagt gaaccatgac tgcaccacta catgccagcc tggatgacag 14220 agcaagaccc tatctcaaaa aaaaaaaaaa aaagaaacga gccaggcgcg tttgctcacg 14280 ccagtaatcc cagcactttg ggaggccaag gcaggtggat cacttgaggt caggagatcg 14340 agactagect ggccaacatg gtgaaacece ateteaactg aaaatacaaa aattagecag 14400 gcatggtggc atgeteetgt agreecaget acteaettgg aggetgagge acgagaateg 14460 cttgaaccca ggaggcggag gttgcagtgg gccaacatca tgtcactgca ctccagcctg 14520 taaaataaaa taaaaaaata tggaggccag caggcacggt ggctcacgca tgtaatccca 14640 gcactttggg aggccgaggg gggcggatca caaggtcagg agatcgagac catcctggct 14700 aacacagtga aaccgcgtct ctactaaaaa tacacaaaat tagccaggca tggtggcagg 14760 cacctgtagt ccctgctact caggaggctg aggcaggaga atggcgtgaa cccgggaggc 14820 ggagettgea gtgagetgag ategegeeae tgeagteeag cetgggegae agageaagae 14880 tetgteteaa aaaaaaaaa aaaaatggag gttgggegeg gtggetegeg cetgtaatee 14940

cagcactttg ggaggtcgag gcgggcggat cacctgaggt caggagttcc agaccagcct 15000 ggccaacatg gtgaaacctt gtctctacta aaattacaaa aattagccag gcacgatggc 15060 aggcacctgt aatcccagct acttaggaga ctaaggcagg agaatagctt gaacctggga 15120 gatggaggtt gcagtgtgct gagatcgcgc cactgccctc cagtagagtg agattccgtc 15180 tcaaaaaaaa aaaaaaagaa gaaatggaga tacaaactta ctacctacct ccttacaacc 15240 tacceteaca gtattactgt gaataaaagt gtgtgtagca etgggaacac tattcacaga 15300 gcactcatga atgtttgttc tttgttatta gttactagag aggcaaatgt ctgccagggc 15360 tgaataatat gtgtgaattg gtgattgtcg cacatatcta aagaagtagt tattttttc 15420 aattaaaact tagtttaaaa accaatataa ggccgagcgc agtggctcac acctgtaatc 15480 ccagcacttt gggaggccga ggtgggcaga tcatttgagg tcaggagttc gagactagcc 15540 aggcatgatg gcaggtccct gtaatcccag ctacttggga ggccgaggca ggagaattgc 15660 ttgaacccag gaggtggagg ttgtagtgag ccgagtttgt gccactgcac ttcagcctgg 15720 taagtggcca gcaatgaaac agaaagtgaa aagttagtga agcaaaacta gtactgtatt 15840 cagataaaga tgctgaatct agatttggtc accagaatag ggtcctttgt ggcaacctgg 15900 gotagtttgg ctgactcacc actgccagga tgaaatttct ttcagtggct actcatttcc 15960 ctttatttta agtccatgct cacagagcaa ccttctgatg cctaattcag cttcctggga 16020 tacttaataa caggaagggt ctggaagtag tacctgtata ggggatatga gtgttctgat 16080 tttaatagtc aattcataag tgtacagagg gtttgataaa tggttaggtc agaaccatca 16140 cagaatgtct acacctcttt ggacattagg aaggtcaaaa acctgaaagg ccaaaagcta 16200 ggcctagatt agggtcattc accaagaaaa catcagcctt gaagagttct ctgggtggtc 16260 caccagteaa cetteetttg ateacacete etteetegtt gettetttaa geattgacet 16320 gtaatgggta tggaattttt tgctcaccta actccttcct tttacagagg aagaagttga 16380 agcccagaga gatttaatgg cttgcctaag atcacacgca gattttctgt taaccagggt 16440 gatttttcag gtgttccctg ccagacgagg gctttttcc ttgaattgcc tagagatttc 16500 ttgagatatc cgaagcattt ttcccagtgc agcctggaga aggatgtccc tgtcaacaca 16560 gcatttgtta ctcaatgtta gacattcaat tttctaatta gtatcatgga gcaacagtgg 16620 atgattatct ataaggggtt gcaattccat gcttatgtgc ttacagccca tatagacaaa 16680 tateagetgt taaaatgaca aggeagtaga gatgtggeee caggacaaag geatactetg 16740 ctgttagtga acactagttg gccagcaaat ttcacatggg catatacacg gccaactgta 16800 gactttaggc atttataccc attcagagag ccaaactggc aactaaagat cagcattctc 16860 tttggcattt cagetttgeg ttetgttaaa aateaetget tgettaaata cetetgatag 16920 ctcttcactg cctgtaggca actctttagc ctagcagact tggtctttag tgctctgccc 16980 ctactctctt ccaccattct ggcctcctgt ctaattgctg cccatatgtg ccatgcacta 17040 gagettacag acctgeteag egttatatga geataceata etetttatge eteagtgeat 17100 ttgcacatgt tgttccttca ggccagaatg cctgttactg cctggcaatc agcctattag 17160 agtotgocaa taccatocca tottotgtgg aggagcocco ogcoaaatoc acccatacot 17220 ctccccacca atcagagact tottctctct ttgttattct cttcgttatt ctcttcatac 17280 ctcagttata tccatttcag tatttgttta cacatctagc atcactctta gagtgtgaaa 17340

ttctccaagt gtggagccgt atctagtttg tctttgtatc ccagagctta gcaaagtgcc 17400 tagaatgtag tgggtgetca gagtgtttge tgggtgaatg atgtatttgt tgaacgacte 17460 tttggacact tgaataaagt ccatccagta tgcaccatta ccatctcttc gctctacaat 17520 attettttag geaagagett atettttgag gtgataagat aageteaaac ttatgtagac 17580 taagacctca gtctgtaaat gtcatcccta agtcttaaac catcaaaacc agggcctcaa 17640 ggaatggcat gccttctgca actgtagcaa cctgctgtgc ttattttgcc gtgtttttca 17700 tttttccccc aaaagctaga gtcccttctc ccatgggcag tgctggaagt gtgctaacaa 17760 attetttete catactgett acgattacaa aaaaaaceet cagcatetea tgecagaett 17820 gagttaaggt tgttttcttt tgtgtgtcag ctgtattctg gtcatgactt cctgatgatg 17880 ccctatagag attttgctga gatcagaggg tgctccactg ccatcagtag cactgactct 17940 tgcagaagca ccgtttctga agttggctaa tgtcatccct cacgtttgtt tgtttgaaat 18000 ttgttttagt tocagagata gcactttcat ggaatgacgc tatcttctag aatcactttt 18060 tttttttttt tgagttggag tctcgctgtg tcgccaggct ggagtgcagt ggcacaatct 18120 cageteactg caatetecae etteegggtt caagtgatte ecetgeetea geeteecgag 18180 gagetgttae tacaggegea cacceccact cetggetaat tttatgtgtt ttagtagaga 18240 eggggtttea eegtgttgge eaggatggte tegateteet gaetttgtga tetgeetget 18300 teagectece amagtgetgg gattacaggt gtgagtcace gegeetggee tagamteace 18360 tttttatacc ataacgtgag caccactgcc gcgtcaccaa ggaaagagag aggcagctac 18420 tgtggggtta caaatgggta agagtggcac caggaaggtg aaagtctcta cttagccaag 18480 gcttaacaaa atgtcaatca ccaaacattt atttattaag ctacgttcag gataagaaga 18540 tgaacaagct atctgtacat tcattttctc gtttgtaaca aggtaatgat agtgatctat 18600 cctgcctgcc tctgagggtt attgtgagaa taaaatgaaa tcaagtggaa aagcacttag 18660 gaaaaagaaa agcattggtt ttcaattgtt agtgtggatc agaaacactg gggcttgttt 18720 aaaatgcaga ttcttagccc cagtctcagc gattctgatt ctgtatatct gaagtgggac 18780 traggaatot tgattttcaa caagotgaco agagggtoca atgotgotat tootttagtt 18840 acactttcag aaatattact gtaaatcaaa tggcaagaat aaaatagtta tttgaggcag 18900 ttttagtatg ttggacctgg agtccaaaga cttgggtcaa actccagctt tgtcagttcc 18960 tagacctgtg accttamaca gcamaccttct ctgtgmacct tagttccctc aggmacggct 19020 ctggtcacct cctgctgtac tccattgatg actcaccaca taaggctccc tgggagtccc 19080 ccaaaccttt getetettaa eteettttae ageeteetae ateteetgea ggtgetgtet 19140 totoctoctt titocaggoc otgototgac acagcatica titotoctotg ggaagggttc 19200 cttcaatgtg tctccaagca catcacaccc aggaaggacc ctgtggccat atctgtctat 19260 caccagatca aactacqtga aggcaggcac taggtactgt cagtgcccag cataggcctg 19320 geocatacca ggtgtecaca gatgeetagt aaagaaacct atgatteagg acceecatga 19380 tgagcaacta tagcactaga acagtgataa taactaatgt ttataatgca tcttcagttt 19440 acagaggget titgtactca teatetagti tagticetge aacaacetet tgaggaatat 19500 agcacaagca ggacaaggga agcccagaga tgttaaataa tttatccaag tttatgctgc 19560 tgggaagggc agcactgaaa ttaaaagaaa agttttctga gctcaaatcc catgcccttt 19620 ceteaatgtg agetetagea aggtatteag gaateetgee tetacagtte agageeteaa 19680

attgctgggt	atgttgagtt	cttgtatctg	atttttctag	atttcctgcc	cacattctta	19740
ctgtctggat	atcaggaaag	agtttatcaa	atgcctgtgg	aaatccaaga	taaggtctca	19800
tgatgagtaa	cccagtgaaa	acatgaagtc	aagtctaact	agtcactact	atttcactac	19860
tgctgactcc	tgatgatcag	ctccttttct	aagtgcttac	tgtccactta	ttccatcatc	19920
tgcctagaat	ttatgtgaag	gaatcaaagc	aaaaggatca	taaggettee	tttttccagt	19980
atgttttcc	tcctttttga	aaactgggcc	agttagctat	ctccattttt	atttcatgaa	20040
tacatcccca	gcgcctggta	tatagtagat	atggaacatt	acactttgga	gatattgcac	20100
ccattctcca	gtttctccaa	agttactaac	aatggttcca	tcactgtgcc	aacatatttt	20160
ctttttcaa	tatattggga	aataattctc	ccagtctgaa	aatctgaaca	catttcatgt	20220
gacttggtat	cctcatatgt	cttgggcttc	caattctcca	ttcctagttt	caagttcatg	20280
aactgtaaaa	caaaggatta	gactaaatct	ctaaagttct	atccagatgc	casattcttt	20340
tototttcca	tgatacctaa	gatagatgcc	aaatattgtc	ttttacctgg	tgtttgtgaa	20400
catgacatca	cattacagga	gtagcagata	ctaaactctc	actctgtaaa	acactgactg	20460
agttccatga	gccagatact	gaagtgagct	tgttcacata	tgttctcatt	taatgctcat	20520
aaccctgtga	agctgggaat	tgctgggaca	ttttatttat	ttatttattg	agacggagtc	20580
tggctctgtc	acctaggctg	gtgtgcaatg	gcatgatctt	ggctcaccgc	aacctccgcc	20640
tcccgggttc	aagcgattct	cttgcctcag	cctccgcagt	agctgggatt	acggggcaca	20700
caccaccaca	tccagctaat	tttgtattt	tagcagagat	ggagtttctc	catgttggcc	20760
aggttggtca	cgaacacttg	acctcaagtg	atctgcctgc	ctcagcctcc	caaagtgctg	20820
ggattacagg	catgagccac	catgcctgcc	cgggaccctt	gttttagaag	gatgactgct	20880
gctataatgt	agaaagtgat	ttggaagagg	ggaggagtgg	ggcacgaaag	atggttagta	20940
gatgggggtg	gtaatgctta	cctttcagta	tttggaggct	toggagtoct	caaaaattct	21000
cttccttgat	tggagtcctc	ccagccaata	gagggcttca	cacaaacagt	ttcttgggtt	21060
ttgaattgtt	tgaccagago	tttcttccga	caaaaggttg	gggtgattca	ttcacttacc	21120
acaccttgco	tgaacattca	cttggggctg	ccggttatga	aggctattgt	tetecageet	21180
gtcacagacg	ctttgaagac	ctgtgcctca	gctggttcta	aggagtcagt	ttgttcagct	21240
ccgtgccagg	tttccaactt	atgaaatgtg	ctggagatta	acacctctcc	tgccatttta	21300
tccctactat	aattgccagt	caaaggatto	ctgcagttgc	ctctggcago	cataactgat	21360
gaatgttctg	ccagctgctc	: tgaggaccta	gaagagcagt	tttctatcca	ggaccagttt	21420
ccaagggtgg	g gagggtgaaa	tatatcctcc	agtgtgacat	ttcatctccc	: agtgatgggt	21480
ggcttgggc	ctttgaagtt	ggctctgagg	aaccacacac	ttgggtctga	gcagccagca	21540
					atttttggag	21600
gtcaaatgg	ttccacctgg	gaggggctto	: tgcttcaact	: caggacatgo	ggagaaggct	21660
gttcctctt	cagggggagg	cagttttcat	ggcattgage	tgtcctctce	cttattcccc	21720
acccaccca	caagtoott	gtaagaggag	tagggggag	ggagagcgc	tgcagcctcc	21780
tgctcacat	t cctagacaco	gactcactg	gcccgtcgc	gctggaacaq	g cagagetgtg	21840
tgaaatgtc	a agaggagtta	tgctcatag	ctccctggc	tcagtctct1	tgtggcttgc	21900
atattette	c attagtacto	g tgttcatcac	atggaaatca	a gagggtaca	a ttaaaagata	21960
atttgctag	t cccagactta	atttggggc	cccttcttg	ctgattgaat	t tacaggggaa	22020
cataataga	t ttttggtgag	g aaatagttg	t ctgtgtggc	gggagaaag	ttgctcccag	22080

ctctccagct gggcagccct ttcagtatcc cgtatgttat ttccccactt ccagcccacc 22140 teacetecte tgtggecett gtgtgteece teggetagga teetgacete etgeteaaga 22200 gtttaaactc aacttgagac ccaaggaaaa tagagagccc tetgcaacct cataggggtg 22260 aaaaatgttg atgctgggag ctatttagag acctaaccaa ggcccagaca gagagagtga 22320 cttgctaaag gccacatagc tagcccacag tagttgtaac aatagtctta atgatattaa 22380 tggctaacat ttatcaacct ttaatgtgtc ccagactttg tgccaagggc ttacatgcag 22440 tgcattgtcg cattcaaacc cagacagtct ggctctgggc ccaggctgag ctttggtata 22500 gcatggtaga acgttgtcta taatgtctag tetgggttca aateetgget teaettetea 22560 catttacage tgagtgacet caggeaagtg atttaacete cetgtacete agttgettta 22620 totgtaaaga gaaaaatoac agcactgtgg aatagtgggg gttaaaattc attcatacaa 22680 gtagtgctgc aagcaatgtt taatacaggg tgagcacctg ttcagtgctt ccttcttctg 22740 getgeetetg gggetagagt gtggtgtett egtggtatag atagatagat atggetgage 22800 totgcacaaa caccaagago tgttottoac tattagaggt agtaaacaga gtggttgago 22860 totgtggttc tagaacagag geoggcaage tatggeccat tgeetatttt aataeggeet 22920 gtgattgatt gatttttttt ttctttttga gacagagttt cactcttgtt gcccaggctg 22980 gaatgcaatg gcacgaactc agetcaccgc aacctetgec teetgggtte aagegattet 23040 cetgteteag cetetegagt agetgggatt acaggeatgt gecaccaege etggetaatt 23100 tttgtatttt tagtagagac agggtttctc catgttggtc aggctagtct cgaacttcca 23160 acctcaggtg atctgcccgc ctcagccttc caaagtgctg ggattacagg cgtgagccac 23220 catgactggc ctgattgact gattttttta gtagagatag ggtcttggtt tgttacccag 23280 gotggtotca aacttotggo ttoaagcagt cotcoctcot tggcototog aatgotggga 23340 ttataggcat gagccactat gcctggccta tatgacctgt gatttttaat ggttagggga 23400 aaaaaagcaa aagaatgctt tgtgacatgt ggaaattaca tgaaactcaa atatcagtgt 23460 cccagcctgg gcaacaaagt gagaccctgt ctctacaaaa aataaaaaa aataagccag 23520 ggccgggcgc agtggctcac acctataatc tcagcacttt gggaggccga ggcaagtgga 23580 teacetgagg teaggagtte aagaceagee tgaceaatat ggtgaaacee tgtetgtact 23640 aaaaacacaa aaattageeg ageatggtgg catgegeetg tagteecage tacttgggag 23700 gctgagacaa gagaattgct tgaacctggg aggcggaggt tgcagtgagc caagatcgcg 23760 acactacact gcagcctggg caacagagcg agactccgac acacgcacgc acgcacacac 23820 acacacaca acacacaca acgctgggta tggtggccag cacgtgtggt cccaggatgc 23880 actggagget taggtaggag gateaettga gettaggtgg ttgagaetae aatgaaceat 23940 gtttatacca etgeaettta geeagggeaa eagtgtgaga etgaatetea aaagaaaaaa 24000 aaaaaaaaga aaaaaatett teeataagta aatatetgtt ggaacatage catgteeett 24060 agtttatgtt ttatatatgg ctgcttttgc cctataatga cacaattgag tggccacgac 24120 agtotgtatg gcctgcagag cctaagatat ttgctctctg gccctttaca gaaaaagtgc 24180 cttgacctgt gctctagagc catatgtacc aggtttgaaa ctcagcctca cagctgggtg 24240 tgatggcacg catctgtagt cccagctact ctggaggctg aggtgagagg atcacttgag 24300 tccagaaggt cgaggtcaag attgtagtga gccatgatgg catcaccgca ctccagcctg 24360 agtgacagag agagaccetg actcaaaaaa aaaaaaacaa aaaaaaaaaa caccetcacc 24420

				-conti	iuea	
acttatcage	tatttgtctt	gagaatagtg	acataacccc	tcagaaccta	tttcctaatc	24480
tgttaaatga	ggctgatgac	gtttcctcct	tttactggca	atttaaacat	gatggataat	24540
aaatgctaag	cacttaacac	agggcctaga	agatattaac	'tgctcaataa	atggtagctt	24600
cttaacagta	ttcaaaccca	tgtgctctta	tcacatgcat	tgttgtccct	gtgtccagtt	24660
ggtggaatgg	gaaaaggctc	ccttgtaacc	ccatctacca	tctttatcag	actttcctgc	24720
catggttcac	agtaagagat	agaagctgca	cggtgacttc	tggctcttta	caatggtgag	24780
cggtgtgtgc	ctggtaaggg	agagctgatg	tcactgcccc	aaatccagta	gtgagatctg	24840
agtgttctgg	tttcctccag	cagccttgct	ttttccttta	caatcctgca	ggcagggaga	24900
caagggcttt	ctacatggta	ggctctggtt	tggtcatcgt	cacaactggg	ggctgttcag	24960
gtgggctccc	attccagata	cctaggctta	tcaatccctt	ttggcacccc	aggccttttt	25020
ctccctcatg	ccccatttt	cagtttgaaa	agcatggtta	tcacaggaca	agtagaagaa	25080
gctccactgt	ccactgaggc	caatggatgg	tgttctgcat	gtgaacactc	agtgaatagt	25140
gagtgaatga	gagtaacctg	ggctccatcc	tatttgcaga	gagctttgga	aaagattttt	25200
ctccttaaag	agccagaatg	aagcctggta	gtgggagagc	tccagctcta	gagtcacatg	25260
agcctacatt	taaattccag	ccctgccact	gactcccttt	ttgaccttga	gtgagttacc	25320
taatctctct	gtacctcact	tttcttgtct	gtagagtggg	aataattcct	gtctcagaga	25380
aataaaagag	tgcatatagt	gtttgccaca	tggagacaca	tcaggtgtag	gttaatactc	25440
tgggccttgt	ttccttattt	gcaacacagc	cctgccctgg	agtggaagtg	gcacctccca	25500
ttggtcagct	cttgaggctg	tecceaggae	aggcagaggg	agggaatgaa	tgggagccct	25560
agtgccagga	cagaacagat	ggcagctcag	agctaggatg	gctctctgga	cctgtctctc	25620
ctaccagagg	tecececgte	tggtgtggct	cttcctggac	ctggcatcct	ctgcttttt	25680
ttttttcca	cctccaagca	gaattactgt	cctgtaggca	gctcctctgc	ttgaggacat	25740
ctggggccag	atatgttcac	actctatcct	gccttgccct	tccctgagct	caggatggac	25800
gctcaattgg	tcccagttat	tgtctgcagc	gcctgcctgc	agcctcgatc	cagcccagct	25860
ccaccccttg	cctgcaaggt	ctgtttccta	acagctgctc	caaccacaca	cctcggttct	25920
gcgggagccc	ctcctcttcc	tccctccctc	cctcattcag	gggtgggact	gaagaagaag	25980
gctaacttga	cagcagcgct	tctttcttag	ctagtcaccg	gcccctgctc	aagaatgcca	26040
gtgtgtgtgt	agcctccaca	gagaggtcgt	tttctcggag	tccagagggg	ccgcctgagc	26100
ttctgagaac	tagggaggag	ccatcccagc	catgageeee	tgtgggaatc	tgctgggggc	26160
caagtggcct	ggagtcctca	ggctcccgca	gctgctccgg	agggagaggt	gageteaggg	26220
cagcctgcct	gcagccagag	gtgccgggag	ccccgggcct	gtcatggtgg	ccatctacag	26280
ccggcctgag	gcagtcacag	acggatttgc	agctgagcct	gtctatctgg	tgtgggaaga	26340
agatggggag	ttacttgtca	gtcccggctt	acttcacctc	cagagacctg	tttcggtgag	26400
ttggtctccg	agttcccctc	tccatctctc	ctggcccctg	gtcctgagag	gagggtggtc	26460
tocotamato	tccttctcac	ttagtccttt	accatcggtt	ctgccgggca	gaagccagcg	26520
gaggttatac	ccaaggagaa	teggeettgt	gaggtacccc	cattatgtcc	tggaagtggt	26580
gagggaggg	atatacccag	aaggaacttc	ttagggagct	ccagetecee	ttctatccca	26640
gacaaacctg	aaggagcctc	caaaagatgc	cactgacctg	cccattgtag	atgttactgc	26700
ttccgggggg	aatagcccaa	atagagtgct	gtttccagct	ctcacatgtc	ttacctgcgg	26760
gccatgctgc	ctgcccagga	atttgtccca	acaagcagga	tgggcaggtt	ttgccaaact	26820

gtggaaactg gcaagtcctg ggtgtgggta gcctggtaca cagtaggcac cttataaacg 26880 tttgttctct taatggcagg cacatttgcc tctggccttg aagggcttct gagctcccag 26940 gtgaatgtag ttgctgggga aagacctggg cgagtgcttc taagactgga gcaatgggct 27000 ttagagtgtt cetgagetge tgggeeagee eccaéacete etcagtecet aggeetaagt 27060 acctccacga gcctctctct gtggggcttc tcagagggag atgtggaaac tctacctcta 27120 acctggcttt ctttgctcat tgccccactc cacctcccat agaaactccc cagggggttt 27180 ctggccctct`gggtcccttc tgaatggagc cattccaggc tagggtgggg tttgttttca 27240 ttetttggga geageetgtt gtteeaaaaa ggetgeetee eesteaceag tggteetggt 27300 cgacttttcc cttctggctt ctctaagcta ggtccagtgc ccagatcttg ctgccgggat 27360 actagtcagg tggccaggcc ctgggcagaa aagcagtgta ccatgtggtt ttgtggaatg 27420 accggaccct ggtagattgc tgggaagtgt ctggacaggg ggaaggggga agggaactgg 27480 tecteaatge tgactetace aagegeeetg etagacaett tateetttaa teteteaaca 27540 godtanagag attatatato occattitad agatgaggoa accagtitoa acagagtina 27600 catatggage etcactggge agettittet gtetteetga etttetetea teetteaggg 27660 ggctgcaggt ttgttttctt ctcctagtgg agaggaaatt ctcaggtttg ttttcctctc 27720 ctagcagaga gtaaaaaaag ggatagtttg cctgacttgt tgaaggtgtg gctgagattg 27780 ttttctaaag agccaatgga aattgatctt gagtttagga gaaagctttt acatgtggaa 27840 ttaagatgcc aagtgttgaa gtagccacat ttcaggtcct cattaatttc tcttaatcct 27900 gggaaggcag cttaggagaa gggttgttcc tttaggagcc aggaactata ccccttttac 27960 ccttggagag gcagggaagc cagggaggac acaacttctc aggaagagga gaagctagag 28020 cagatagtga acteteaace tgaacettta agggecagae cactaatgee acceaagtee 28080 acctgccgtt tgtcttgttc tgtcccaggc tttctggaga acctgatctt cttgccccta 28140 cccccaagct ccgtttgccc agctagagtc tggggggtac tgactgactt tcgtagacat 28200 tottocotto cocaaataag aggocacatt cotgaagtoa ottotgaaga gatagotgoo 28260 acacaggget etttececce agggagggac cacceagace etetgetete ecaggtatee 28320 gttaccacat cactacctgg tcagaaagct gtttctgcca ttagcccctc cctcttttat 28380 tataggatat cctcaagggc tcctctttgg gcctcagttt catccttggc agaaagtaga 28440 agctagactt cttgggctcc tgaacagggt ccttgctgga ttctgtgaaa caaattaagt 28500 tettgacect aggeetetgg gggagtacaa agtetatggg agttetgggg etgtggttge 28560 aaggaaagtg acgcaaccag attccatggg gacatgatca ggcgtgacat gtgagggagg 28620 aagagggagc aagggaatga agaatacaac ttctgtgtcc catacacccc tgcctgacag 28680 gccatacata ctcagcagag aatgcactgt ctttcctacc acactagcgt gaggagtgag 28740 ctgcaattac cactgtgctt ccaagtaaga aaatacctca aattggaatt tacaaaagag 28800 gtaaattagg gagtggcttt tgtcggacat ctttaaagca tttttctttt tatagaattt 28860 cacttaatgt ccaatactga tttaatgagc ttgggtttac acattatctc ttgaagaaaa 28920 caaatgaacc tttgtgttcc aaagcaatcc atgtttaaag ggaaaaaatt atgcataact 28980 ctgcccagct tcacagtaac ctttggcagg tgccttaggt cctctgggac tcttttcctt 29040 atctgaaaaa tgaaggactt ggatcaggtg aatggttccc agctctgcaa cttatgtggc 29100 tcctcagagg cacacaagct cttttccatt atttgccaaa taatggaggc cctgtcttta 29160

actgcagtac aactacacaa aatacttgaa actacagtct tcctggtttt tggttggaac 29220 tgaatcagtg cactctagca acacttattt cttgctgttc gtaggcttca ttatgtgttt 29280 ggttaatttt ttaaaacaac aataacatat tccataataa ttacagctta attggcagac 29340 tgtttcagtc tataggatct gcaggaagga ggagtaataa agggattttt gactgagctc 29400 ttatggaaca gagtctctct aggcccctgt catatctgcc cttctgggcc ctggggaaaa 29460 gttggcatcc ccagttgtgg tgctctccag gtgccctcag gctgtggtgg agggagcttc 29520 ccattctctc cttcagccca ctcaattcag aggctagggg ctgaaagaag cttctctaca 29580 actggctgtt cactgggagg ttaagggatg accatccagc caggccttcc tcaggacatg 29640 ggagggctta tgctttaaca tgtgtaaatc cactgcaata atgactggtt cttttacccc 29700 ataaggttga gaatttacct gtaaacattt ttgtctgaag aatttggatg taagtgaggg 29760 ctgggcctct atcttatctc acttggcttc tctcagcaca gcaccttgcc tgcttgttct 29820 tacacatcct agatgcacag taactatttc ctaattatta gaaatctatt agaatcaatt 29980 gatttcagct gggcttggtg gctccttcct gtaatcccag cactttggga ggctaaggct 29940 ggaggatcac ctgagtccag gagtttaaga ccagcctggg caacataggg agaccctgtc 30000 tctacaaaaa ataaaaaatt agccaggcat ggtggtgtgc acctgtagtc ccagctactc 30060 aggaggotga ggcaggagga totottgago otgggaggto agactacagt gagcaatgat 30120 aaaaaagttg atttctattt ggatagataa ataattcatt ttaggacctt tctttttcac 30240 ttacagaaat ctgtttcatt ctgggctgag aagcaggtcc atattgctag gcataggaga 30300 aaaaggggtc tgtctgcatt tgcccttggt ggtctcaaat tggggaggga aagaaatgaa 30360 cacttactgg ctaccttctg tgagccaggc atcatgcaag acatctgtac ataatttaat 30420 tctcataacc ccataagata ttattagcaa tgtacaagtg aggaaactga ggctcagagt 30480 catgaagtaa ctggccttgg gtgacacaga tggtaaatgg cagagaagga atatggatcc 30540 aggictigaa agagaaaatc tcaactgatt atctttttta aaaaactcat atgttctctg 30600 ctgactcaaa aggtctctgt gtggatctgg gttgacccac tgaactgacc atcagggttc 30660 catgcacttt gtatctgccc aagccctcag aacccctcag taatgttttg gaagatgagt 30720 tttggaggtt gtccttaggc atagcctcag cgtatgtagg cctctaggtg atctccccta 30780 acctgaggat ttcagctcaa ttcactctgg ctcctcagga cagtgggatg actggttcag 30840 acctcagett taccacetee cagetgggta etettetace tacagecagg geagattttg 30900 actiticacti gaaacticca aaaatigaaa ggtagaaaaa cagcciiggc iitigggaaga 30960 acgtatgatg tocatggcct ctaagcatct gaggtgggac atgttcgagt agcaccttac 31020 agttccaaag tgtgttctgg gttctttgtt taaaagaaca gagactgctg gggaattgaa 31080 cactgtgaag tatatgaagg aggagaattg tgctatttaa cattcagtac ttgggctaaa 31140 ggagaagcat cacgaagtgt taacactcaa agggtcttga gctgtcaggg ctccaqcttc 31200 cttattttca caggtgagaa tcctgaggct cagctgttga gatgtgctgt ctcactccgg 31260 tgacatagta cagtggatgt ggctttgcag ccaagcacac atagettcac attccagete 31320 catcaattat gtattgggca gctttgcaga atgatttgac tttaactctg cttttcagtc 31380 ttctgtaaaa cagggataat cctgctaccg tagggttgtc aggattagag ataatataaa 31440 taaggtacct catataggac ctggattatg gctggcattc aataaatagt agctgttaat 31500 tgatagctaa gctagaactc tgaagtctac catggcaact tcttaagtgg tctgagaacc 31560

cagttgtgtt ctgtggcaaa acacagctta gggatccata cccagccctc ctgtcagctg 31620 ttcaccttcc agttcttcag agacatgtgt ggcagtgact ttggccacat agctggctgt 31680 geoetttaaa ggeatteett gacacagata tgtggaetgg tgaegttget etecagecag 31740 gtgttcttcc cagcaggctg gcctggctgt ctcctgcatg cctgtacttg tttgtctccc 31800 tgctccctct cctgggcctg gccagagcta cttgcagcaa acaaaagcag gatattggca 31860 atggaaagga gggtgtgttc tggtgctccc atgccctgcg gcgcacatac cattgcaagg 31920 gogtaacaga goccaggoot goatttgggt goaaataagt otgoacacag aagaaaagaa 31980 ggacctggtg accaggagec atggaaccet tgtgetecee tacctggget actggttett 32040 gecactecta ccattttcag tttggaaata tttgttaagg ctttgetett ccaggteett 32100 tgcttggtgc tgagtctacc aagagtaagt gggatgctgt ttttgtcctc agggagctaa 32160 cagictagtg aagaagaaag atggttgccc aggaacttct aagtcagaag gcaggaggca 32220 agaaggaage coetgeteet actgecagee etetgttggg caccecatag ttetteagaa 32280 ccacatttaa tcctcactgc aggccaggca tagtggctca cacctgtaat cgcagcactt 32340 cgggaggcca aggcgggcag atcacttgag gtcgggagtt cgagaccagc ctcaccaaca 32400 tggggaaacc ccgtctctac taaaaataga aaaattagcc gggtgtggtg gcatgcgcca 32460 gtaatcccag ctactcagga ggctgaggtg ggaaaatcac ttgaactcgg gaagcagagg 32520 ttgcagtgag ccgagattgt gccactgcac tccagcctgg gcgataagag caaaattcca 32580 teteaaaaaa aaaaagaaaa aagaaaaaat eeteactget acettgaaag taggtgatga 32640 cattgccatt tcacaaatga gaagtgaagg ggctagccca agatcactta ggtggtaaat 32700 ggtggtgcta agattagaac ctcagatcat ctagggaaaa acacagatat gcacagagtt 32760 aaggggaccc agggtattgt ttgtcctctt gtttcacagg tggggaaaca acccagagag 32820 ggaaaggggc ttgtccaagg caatttagca cccaagaact tgaacccata tctctctcct 32880 cctcatttag agctcatccc acatgtatct tatattgaga ggagtgtgag ccacatacca 32940 agaacagtet teceetetge etecaacete actgtgeagt titgagacae ticacageca 33000 tactetteat gecataceca gecettaaga eeetgaagtt eeeetteeat aagacaagta 33060 ggaaaagcta tagggtaaaa atagccatca gtgtttgttg agcacccagg aggaattggg 33120 cactecagaa agataaaggg atteteaggg acttgettet etagaettee etageteage 33180 tgcttcaact cattcctgcc cctcttctct acctcccgca gtgctcagaa gtagtagaac 33240 tcactgtggc ctctcacctt gcattgttga gttttattta gactttctct tcctcaactc 33300 ttcataaget catgaaaggt gaagtagggt geeetgtgta tttatetttt atatetgeag 33360 tgcttagcaa gttataataa tgcacttgcc tggcaaaagg ctttctctca tacattagct 33420 tatttcctct tcacattggc tctttgtagt aataggatgc tattagttat tttcaatgag 33480 agaaagctac taagagaagt tgtccagcta gtgacagtaa gtggctgata aagtgagctg 33540 ccattacatt gtcatcatct ttaatagaag ttaacacata ctgagtttct actatattgg 33600 gtotttttt tttttttt tttttttta gagacggaat cttgctctgt tgtccaggct 33660 ggaacgcagt ggtgcaattt tgggtcacca caacctccgc ttcccaggtt caagcgattc 33720 tectgeetea geeteetgag tagetgggae taccagtgea egeeaceaeg eeeggetaat 33780 ttttgtattt ttagtagaga cagggtttca ccatgttggc caggctggtc ttgaactcct 33840 gacettgtga tetgecegee teageeteee aaagtgetgg gattacaggt gtgagecace 33900

				-conti	nued	
gegeeetgee	tatattagga	cttttatata	agctatctct	agctagctag	ctagctagct	33960
ataatgttt	ttgagacaga	gtctgactct	gtcacccagg	ctggagtgca	gtggcgtgat	34020
ctcgactcac	tgcaacctcc	acctcctggg	ttccagtgat	tetectgeet	cagcctcccg	34080
agtagctggg	attataggtg	catgccacca	cgcccagcta	attttttgta	tttttagtag	34140
accaggtttc	accatgttgg	ccaggctggt	ctcgaactcc	tgacttcaag	tgatccaccc	34200
gcctcggcct	cccaaagtgc	tgggattata	agcataagcc	actgtgccca	gctgctctct	34260
atattttaa	tacatattat	ttccattaat	tttcacagca	gttcatttta	tagatgagga	34320
aactaggcca	gagaagtaaa	atatcttgcc	caagatgatg	taactagtaa	gtggcaggat	34380
caagattcaa	accaagcaat	gttcaaacct	cttggaagca	agaatgtggc	cactgtggaa	34440
ggtgcaaggc	cttgacaaca	agaataggga	aaagaaggaa	ctagaaggaa	agagatggca	34500
tgggctcagc	aggccaggga	gctcttagct	gtgtgtgttg	ggaagctcag	aagggaggaa	34560
gaggttgtct	gtgcaggtaa	gtcctgagaa	cacaccagac	ttttgagagg	tggagcttca	34620
tagccaggtc	attaggggag	aagggagcta	tagattttt	tttttttt	ttttttt	34680
tttttttag	agacggggtc	ttactatgtt	gcccaggctg	gtcttgaact	cctgggctca	34740
agtgatcctc	ccacctcagc	ctcccaaagt	gctgggatta	gaggcatcag	ccaccccgcc	34800
cagcgagcta	tggatctaac	atgtacatct	tacacagtgc	taatagaatg	ttgggtttct	34860
tccccaatat	tttattttga	aaaaaaattc	aaatatatag	aaaagttgaa	aaatgtagtt	34920
caaagaacac	ctacatacct	ttcacataga	ttcatgattt	gttaatgtta	tgccactttg	34980
tatatatctc	tctccctcct	atctgtatac	ttttatttat	ttatttttgc	tgaactattt	35'040'
cagagtaact	taaaggcatc	ttgattttac	ccttgaacag	ttcaatatgt	ttctgctaag	35100
aattctccta	tataagtcag	atatcattac	atctaagaaa	attcacggca	attttacaat	35160
ataatattat	agtocaaato	catatttcct	cagttgttcc	aaaaaatgtt	catggctgtt	35220
tcctttttta	atctaaattt	gaatccaagt	ttgaggcatt	gtatttggtt	gctgtgtctc	35280
tagggtttt	aaaatctgtg	ccttttcttc	tccccatgac	tttttagaag	agtcaagacc	35340
ggttattctt	atagaataac	ccacattcta	gatttgcctg	attagttttt	ttatacttaa	35400
cgtattttg	gcaagaacat	tacattggta	acgctgttgg	tgatgggtca	gttttgaaga	35460
gtggagatga	ttaaactgct	tttgttcatt	gaagtatctg	tcaagaccag	agatoottaa	35520
ctggtgccat	aaataggttt	cagagaatcc	tttatatata	caccctgtcc	cccacctaaa	35580
ttatatacac	atcttcttta	tatattcatt	tttctagggg	aggettettg	gcttttatca	35640
aattctcaga	gggccccaag	acccaaagag	gttatgaaac	actagtctgt	ccactgagge	35700
aggcaacaca	gagetggttt	ctggggcctt	gttcagtctg	aaccagcttc	ccttggggag	35760
atagcacaag	gctgtaactt	tgccccatct	tggctttgga	tcaaagagga	ctgtccattt	35820
tgttgtcata	cctaggaacc	agggacagct	tatgtggcct	ggttccaggg	atccaggaga	35880
atttcagttc	ttgtcttgcc	tttcaggtgt	tcagaatgcc	aggattccct	caccaactgg	35940
tactatgaga	aggatgggaa	gctctactgc	cccaaggact	actgggggaa	gtttggggag	36000
ttctgtcatg	ggtgctccct	gctgatgaca	gggcctttta	tggtgagtga	atcccttcat	36060
atctgcccct	cttggtcttc	agagtccatt	gacagtgctt	ccagttccct	gtggcctgtt	36120
aatcttttag	tctttccatc	agccagggca	tctcccttta	tttattcatt	cattcaacta	36180
gcaggtatca	attgagcacc	tactaagtga	aaggtaagat	ccttccctca	aagacttaat	36240
agttgaacgt	tgggagtggg	aggagaggca	ggcagagagg	agacacaata	tagttggata	36300

					_	
aggacctcca	aggagagtgt	tacaggctga	gaggaggata	tacttaggtt	gtctttaggg	36360
aatcagaaaa	ggagactctg	gaataggctg	gcagagagag	gggctacctc	ctatacctgc	36420
tctggacaaa	cgactttaag	catagtgaca	gatttgccaa	ccctgtattg	gaagaactga	36480
tctttttag	tggggatgat	tacttctggg	gatttcttct	cataactgag	accaaaacag	36540
ttttgtgcag	tctcagaaat	gacaggaggt	accaatctga	cacttccttt	ggaagctcta	36600
gggcagagag	tgaaagagtg	gattttgacg	ggggccttgc	ttggaggtca	ttcacccacc	36660
cctgtcctca	ctccagcaac	agtgataact	cacttccttc	ctccctttgt	acacccttct	36720
ccccacctgc	tcacaggtgg	ctggggagtt	caagtaccac	ccagagtgct	ttgcctgtat	36780
gagctgcaag	gtgatcattg	aggatgggga	tgcatatgca	ctggtgcagc	atgecaccet	36840
ctactggtaa	gatagtggtc	ctttgtctat	cctctcccat	ataagagtgg	ctggcgggga	36900
gggacagtgg	cagggtgagt	tgggcagaag	gagtgttagg	gtagtcagag	cattggattc	36960
ttaccacage	agtgctctta	accagctctt	taacttgtaa	gcagaatgat	ttacacatgt	37020
ctctaccctt	tttccttacc	aaccttgaaa	atgtcttcac	tctgccctgc	aatcctccca	37080
gtgggaggca	ctcttcaagg	acgateccag	aacattaaag	tcaaagaccc	cttagagctc	37140
accctgtcca	accaccttgg	ttgataaaag	aagtcagcct	ggggcccatg	gaatagaata	37200
gtacaagggc	aaggttctca	ttgtgagtca	aaggtagagt	gaagagaacc	cagaccatct	37260
caccccaacc	caggccagtg	tttttccaaa	tataccactt	gctgcagatc	tagctcagca	37320
ccccagtcc	cagcccaccc	tgagaaccca	ggctcctcat	tctgagcagc	cagctagaat	37380
catgacaaag	agggtggtag	tgagactatg	ggtactgttg	cttaaagcca	catggtgcag	37440
tggttgctgg	ggggcttctg	tgtgggacto	: tagcatctta	ttcccccctg	tgccctctcc	37500
ccagtgggaa	gtgccacaat	gaggtggtg	: tggcacccat	gtttgagaga	ctctccacag	37560
agtetgttea	ggagcagctg	ccctactctq	tcacgctcat	ctccatgccg	gccaccactg	37620
aaggcaggc	gggettetee	gtgtccgtgg	g agagtgcctg	ctccaactac	gccaccactg	37680
tgcaagtgaa	agagtaagta	ttttgagaac	ccttcagcag	gggttcttga	gcagagtctg	37740
taaatgggco	tcagagggct	tagacctcca	a agtctcatg	cagaactccc	tttattctca	37800
teteatatet	ttctcctgg	cccactate	g ctgtaaccgt	acctgggcct	tggcacttac	37860
tgttctctct	geceaggeta	cttcctacco	gatacttaag	gcaagaatca	ctcacctttc	37920
aggtgtcag	g tttcaggtca	tgtttgctc	t ttgaaatcat	: ctggcttgat	tatgtgtatt	37980
agttgttta	t cttctatcc	ctccactage	a atgtaaatto	cagaagaaac	ttgctgtctt	38040
attcagtgc	t gcatgccca	ggcttggaa	g agtacctgg	atatagtagg	agttgattga	38100
			g gagaaaatgi			38160
ttaagaccc	t atcctagati	caggccaga	g accagatgg	a gaaagagtct	gtgtctatct	
aataccagt	a atgtcgtac	totggccgc	t taccatgta	a atattgatto	; tgtatctacc	
					a gtttgggaag	
					g ggaattgtgt	
					t ctgatgtagg	
					g ammatccage	
					t tagaaggatc	
actggtatg	g aggttggat	t ggagagggg	a aagcctaaa	g gtatagaga	c tagttaggaa	38640

				-contin	ued	
gctattgtag	gctgggcatg	gtggttcatg	cctgtaatct	cagcactttg	ggaggctgag	38700
			agaccaacct			38760
			ccagacgtag			38820
			cagattgctt			38880
aggccaggcg	cagtggctca	cgcctgtaat	cccagcactt	tgggaggccg	aggtgggcgg	38940
atcacaaggt	caggagatca	agaccatcct	ggctaacaca	atgaaacccc	gtctctacta	39000
aaagtacaaa	aattagccgg	gcatggtggc	ggacgcctgt	agtcccagct	actcgggagg	39060
ctgaggcagg	agaatggcgt	gaacctagga	ggcggagctt	gctgtgagca	gagatcacgc	39120
cactgcactc	cagcctgagc	gacagagcga	gactccatct	caaaaaaaaa	aaagagtttg	39180
ggattagcct	ggccaacatg	gcaaaacccc	atctctacaa	aaagtacaaa	aaaattagct	39240
gggtatggtg	gtgcgcgcct	gtaatcccag	ttactcagga	ggctgaggca	tgagaattgc	39300
ttgagcctgg	gaggtggagg	ttgcagtgag	cccagatcat	gccactgcac	tccagcctgg	39360
atgacagagt	aagatgccat	ctcaaataaa	aattaaaaac	aaagtttaaa	aaaaaaatag	39420
aagctattac	cgtgatccag	gtaagagatg	tgaataacta	caatgatgga	aagaaggcag	39480
agttcttaga	gatgggagta	ggagagatga	gggaactcca	gattgggaag	atgatgttca	39540
agtttctggc	ttaggccaca	gggtgagtgg	caattccctt	cactgagatg	gggcatcctg	39600
gaaaaggtgt	tgcctttctg	tgtgggtatc	ctgggcccct	taggggccac	tggtggcctg	39660
ggacctggta	aaccttccct	gcacaagcag	aattggtcaa	gcaggttttt	aggacatctt	39720
taccctgcct	caactcttgt	ctggcccagg	gtcaaccgga	tgcacatcag	tcccaacaat	39780
cgaaacgcca	tccaccctgg	ggaccgcatc	ctggagatca	atgggacccc	cgtccgcaca	39840
cttcgagtgg	aggaggtaga	gtgtgtgtct	aatctgtctt	gtgagggtgg	gacatggaac	39900
agatectetg	ggaaatcagg	ctgtagcctt	taccttttcc	tacccccagc	ccatctcttt	39960
gtcttagcat	tgagcctgtg	accactggtg	acctatttca	gcgtaacagg	ttcccagggt	40020
agcagggatg	gttgatggac	gggagagctg	acaggatgcc	aggcagaggg	cactgtgagg	40080
ccactggcag	ctaaaggcca	ccattagaca	agttgagcac	tggccacact	gtgcctgagt	40140
catctgggtt	ggccatgggt	ggcctgggat	ggggcagcct	gtgggagctt	tatactgctc	40200
ttggccacag	gtggaggatg	caattagcca	gacgagccag	acacttcage	tgttgattga	40260
acatgaccc	gtctcccaac	gcctggacca	gctgcggctg	gaggcccggc	tegetectea	40320
catgcagaat	gccggacacc	cccacgccct	cagcaccctg	gacaccaagg	agaatctgga	40380
			ccacctccca			40440
atgtctgtct	ctcggatgaa	getgagetgg	ctttcagaag	cctgcagagt	taggaaagga	40500
accagctggc	cagggacaga	ctatgaggat	tgtgctgacc	cagctgcccc	tgtggggatc	40560
acagtttaca	gccagagcct	gtgcggaccc	agctgtctgc	caggtttcct	tagaaacctg	40620
agagtcagtc	tetgtecact	gaactcctaa	gctggacagg	aggcagtgat	gctaaaccct	40680
			ggagctcaga			40740
			: tgaaaacaat			40800
			: cccaaacccc			40860
			: caagtaggga			40920
			taccctactg			40980
cccttcacas	atcacttcat	ctctctgago	ctgtttctgc	atctgtgaca	taagatggta	41040

agataaaggt	ggctgtctca	ccaattatgt	aaggattaaa	tgtggaaaag	gacataaagt	41100
tgtatagtgc	tgccataggg	acagtgtica	gtaaacgtga	cacattetta	gtatcactaa	41160
gaatcaggtt	cttggccagg	caccgtggct	catgcctgta	atcccaacac	tctgggaggc	41220
ctaggtcgga	ggatggcttg	aacacaggag	tttgagacca	gcctgagcaa	catagtgaga	41280
cactgtctct	acaaaaaaaa	aataataata	ataattgttt	ttaattagat	gggcagggca	41340
ctgtggctca	cacctgtaat	cccagcactt	tgggaggcca	aggccggagg	attgcttgag	41400
gccaggagtt	caggagcagc	ctgggccaca	ttcctgtctc	tacaaagaat	aaaaaagtta	41460
actgggcatg	gtggcacatg	cctgtaatcc	cagctactca	agaggctgag	gaggaggatt	41520
gcctgagccc	aggagttcaa	gactgcagtg	agccttgatc	acaccactgt	actacagett	41580
gggcaacaga	gtgagacctt	gtctccaaaa	aaaaaagttt	gtttttttt	atccactctc	41640
ctcaccaaac	aaactgagta	agttagagcc	ctctcagctg	gcatgtgttg	gaaacagtgc	41700
cctctcatta	aagtgctgcc	ctcactccca	ttgcctcttg	gccttggtca	gtatgatgaa	41760
attagtggga	ggcagggcaa	cagagggcag	ggaagagcta	gaaatccatg	gcctggaaaa	41820
gggaagattt	gggagtggcc	aggtatctgt	agagccacca	tgcagaggag	gggggcagct	41880
agccttgtgt	gctctggtgg	gcatqgtcag	caggaggcag	agcaaaagga	caagggtaag	41940
taaacctgta	ggtcgggaca	agccaagagc	catccagcgt	cagteetete	tgggtagccc	42000
aagtaaagca	ggagcatacc	ccagagagaa	agttcgcagg	gctgttcacc	tgcagtgctg	42060
tggacttcaa	ccttcttgtt	ccttcttcag	taagtgaaaa	taacagtcat	tgaccatgac	42120
tattatcgac	cgcttttgaa	aatgtaaaca	tagtgacttt	attgctgtaa	aaatcatacg	42180
tgtttatcat	cttaaaattc	aggaaacatg	gacaggtaca	aagatgtgca	aaatatcatc	42240
caaaatccca	tttgctggcc	aggcacggtg	gctcacgcct	gtaatcccag	cacattggga	42300
ggccgaggcg	ggcaaatcac	ttgaggtcag	gagtttgaga	ccagcctggc	caacatggtg	42360
aaaccctatc	tctactaaaa	atacaataat	taggctgggc	gcagtggctc	acgcctataa	42420
tcccagcact	ttgggaggcc	gaggtgggcg	aatcacaagg	tcaggagttt	gagactagcc	42480
tggccaatat	ggtgaaaccc	catctctact	aaaaatacaa	aaattagggc	cgggtgtggt	42540
ggeteaegee	tgtaatccca	gcacttaggg	aggccgagac	agatggatcg	cgagatcagg	42600
agttcgagac	caacctagcc	aacatggtga	aaccccatct	ctactaaaaa	aatacaaaaa	42660
ttattcggtt	gtggtggcac	acgcctgtaa	toccagotac	ttgggaggct	gaggcaggag	42720
aatctcttga	acctgggagg	cagaggttgc	agtgagtgga	gatecegeeg	ttgcactcca	42780
gcctgggcga	cagagtgaga	ctccatcaaa	**********	aaaaaaaaa	aaattagccg	42840
ggcgtggtgg	cgtgcaccta	tactcccagc	tacttgggag	gctgaggcag	gagaatcgct	42900
tgaacctgga	aggcggaggt	cgcagtgagc	cgagatcgtg	ccattgcact	tcagcctggg	42960
cgacagagcg	agactctgtc	tcaaaaataa	taataataac	aataactagc	cgggcctggt	43020
ggcacatgcc	tgtagtccca	gttactcagg	aggeggagge	atgagactca	ggtgaactag	43080
ggagacagag	gttgcagtga	gccaagatca	caccactgca	ctccagcctg	gttgacagag	43140
cgagactctg	tctcaaaaaa	aaaaaaatcc	catttgctca	ttttttggat	actagtataa	43200
ctatcactct	aaaccagtta	gtacttaaat	caagcagata	tgggagatgg	tgaattacca	43260
tctacagtgt	tgtcatatat	gtcacatact	gagcattatc	agctagtaga	atctagttaa	43320
ttgttctatg	tgtgatgtat	gcagagttcc	cattttgaat	gtgtttttac	tatgcttaaa	43380

				-conti	lueu		
taaatgactg	atgtcagcaa	ccccaaaatg	atacatctga	tgtaagagcc	cctgttcccc	43440	
aataataaca	tctaaactat	agacattgga	atgaacaggt	gcccctaagt	ttcctccctc	43500	
cagggtttct	tggccggtct	ctgaggacta	cacatcccta	ctcccgtctt	tcctcatctt	43560	
caggcgcagt	aacagtatct	ccaagtcccc	tggccccagc	tccccaaagg	agcccctgct	43620	
gttcagccgt	gacatcagcc	gctcagaatc	ccttcgttgt	tccagcagct	attcacagca	43680	
gatcttccgg	ccctgtgacc	taatccatgg	ggaggtcctg	gggaagggct	tctttgggca	43740	
ggctatcaag	gtgagcgcag	gcaacaattg	ctttgctctt	ctgcccccag	tccctctgtc	43800	
actgtctttc	ggggatttct	catcacttgg	ccccacccca	caccatgcag	gatgccaggc	43860	
ctccttcctg	gctttgggtg	ttggtgtgag	aggtatcctt	cacccccacc	caggccacct	43920	
aaggtcaatg	ttgctgttac	agtgagcttg	tggacctgga	gatccaggtt	gggttgagct	43980	
gtgcctgtgg	ccctcctgcc	tccagtcagt	gggtgtttgt	taggtgcctg	cagacctcag	44040	
taccgggcat	gctacaagga	gcacacaggg	gaatggctcc	tgcctccctg	gtgaacagtc	44100	
tcagggacta	acctctctct	ttctctcctc	ctcctcctct	tctgctgaga	actgggaggg	44160	
ggggtcaggt	aagacgtgtg	tctcagcttg	ggggcagcag	ggctggagag	ctcacccccg	44220	
atccacccag	ctccctggtg	catgtctttg	gcactgacct	tectgeecce	agacttctgt	44280	
tcactcagga	gactcacttc	tatgccasat	gaccagagcc	cctgcttggc	ttggcagcat	44340	
cccctcctgc	cttcttcccc	acttcccttt	totgggttot	tgcctgtcct	ctgtgcatgc	44400	
ccagctctcc	aggaaagagg	gtttgcttcc	gtgtgagtcc	catgttgctc	cacgctgcat	44460	
cttccacaca	tgaactctgt	cattctgacc	cggctcagtg	tgccctccaa	gggatgggat	44520	
ggccagctgc	atagattttc	tcaaacagtt	ctccagaact	tectetggte	tcagcaccat	44580	
taacagtcac	cctccctgta	ggtgacacac	aaagccacgg	gcaaagtgat	ggtcatgaaa	44640	
gagttaattc	gatgtgatga	ggagacccag	aaaacttttc	tgactgaggt	aagaagatgg	44700	
agggggcccg	ggaggttggt	gtcaccattg	gaagagagaa	gaccttacaa	ataatggctt	44760	
caagagaaaa	tacagtttgg	aattactgtc	ttaaagacta	agcagaaaag	agccctagag	44820	
gaatatccca	ctccctctaa	attacagcgt	aattatttgt	tcaatgaaca	cttactaaaa	44880	
gcaacacaaa	cagggtacaa	gggatgcagt	aacaaaagat	acagggttca	gaagagetet	44940	
caggttatga	ggatgatgga	catgaaaaca	ctccaattta	gtacaactca	atgttataat	45000	
cctcacctga	acgccctgct	aagggagcct	ggaggggagc	tccctgagca	ctcacactcc	45060	
ttgggcattt	acagtttca	ctacccctcc	cangttactt	catggagtaa	cttaagttgg	45120	
ggacacctgt	ggtctgggta	ttgccctcca	agccacttgg	ccactcccac	cccagttctc	45180	
ccaatgcagt	: tccaagggta	aggcctatga	agccatctcc	atctatatgg	tggtggtctt	45240	
ccctcatcct	gatcttagtg	ccctgtcata	tcacaagata	ggaggtagga	gatacaggtg	45300	
gtaacacttg	; tcaagctgat	teettggagg	gaagaggtaa	ggaagacagt	gagaagttaa	45360	
ccaccagctt	tccttggctt	ccccacccc	: caggtgaaag	tgatgcgcag	cctggaccac	45420	
cccaatgtg	tcaagttcat	tggtgtgctg	, tacaaggata	agaagctgaa	cctgctgaca	45480	
gagtacatto	aggggggcac	actgaaggac	tttctgcgca	gtatggtgag	cacaccaccc	45540	
catagtetee	aggageettg	gtgggttgto	agacacctat	gctatcacta	ccctaggagc	45600	
ttaaagggc	a gaggggccct	getttgeete	caaaggacca	tgctgggtgg	g gactgagcat	45660	
acatagggag	g gcttcactgg	gagaccacat	tgacccatgg	ggcctggaco	acgagtggga	45720	
cagggctcae	a cagoototga	aaatcattco	ccattctgca	ggatccgtto	ccctggcagc	45780	

agaaggtcag gtttgccaaa ggaatcgcct ccggaatggt gagtcccacc aacaaacctg 45840 ccagcagggc gagagtaggg agaggtgtga gaattgtggg cttcactgga aggtagagac 45900 cccttcctat gcaacttgtg tgggctgggt cagcagctat tcattgagtt tgtctgtgtc 45960 actgamactg accccagcca actgttctca gttcacagcc ctgttttcam agmattmcac 46020 atototaaag gcaaacaggg cacggacaag gcaaactgga gaggcaaact gtagcotgag 46080 atggcctggg cttgccatca caggtattca ggtgctgagg gcccttagac caactagagc 46140 acctcactgc ctaggaaatc aatgaagggg aaatgagttc tagcggagcc ctgaaggatc 46200 agaattggat aaagttotta ttggcagaga ggcaccagga ttgaagtgac aggagcaaag 46260 acctgggagg aaagaggaga aaatcatcta tttcacctgg aaacaaatga ttccaagcat 46320 agaaataata acagotgaca agtactgagt gooctotata tgotaggoac tgggotgagg 46380 gattaacatg catgtgcatg tttattcctc atgacaacct tggtttccag ataagctgga 46440 ctggaaaggg acagagetgg gatectggge taatcagtet ggtegecaag cetgagaett 46500 tagccactgc cottcacatg ggggtccatg aaaatagtag tagtotggaa cagtttgggg 46560 gtacatcaag gtcgctgtgt tttaagctat ggagtctgga ctataggaga caaatgtaaa 46620 agagtttttt ggttgactgg ctttttggtt tttttgtttg tttgtttgtt tgtttgtttg 46680 tttgtttgtt ttttcctgtt tctggggctt gaatcaggaa ggaggttttt ttgttgttgt 46740 tgttttgaga aaggatattg ctctgttgcc cagactggag tgcagtggca cgatcatggc 46800 teactacage ttegacetee tgggeteaag caateeteet geettageet cecaagtage 46860 tggactacag gtgtgtacca ccacacctaa ttttttgaat tttttttct tttttttt 46920 tttttttttt ggtagagaca ggttctcact ttgttgccca ggcctgaatc tcaaactcct 46980 gggeteaage attecteetg ectegeeete ceaaagtgtt gggattacag ttgtgageea 47040 ccatgcccgg caggaaaaga tttttaagca agaaagctta agagctgtgg tttttccaaa 47100 atgagtotgg gotggoacag tggotoatgo otgtaatooc agcacttttt tgggaggoog 47160 aggtgagtgg atcacttgag gtcaggagtt tgagaccagc ctggccaact ggtgaaaccc 47220 ctgtttctac taaagaaaaa aatgcaaaaa ttagctgggc gtggtggtgc acgcctgtag 47280 teccagetae teaggaggee gaggeaggag aatagettga acetgggagg cagaagttge 47340 agtgagccaa gatcacacca ctgcattcca gcctgggtga cagagtgaga cttcatctca 47400 aaaaaaaaaa aaaagagaga ctgatatggt tagtacattg gggtggaatg cggagggtcc 47460 agggaatgga gccctgcata gggggctaat gaaacatttc agatttctga attaaggtag 47520 tggctgtggg gacaggagcc tgggaggcag ggtggagtca gaatggagag actggttggc 47580 aatgagggaa caggaggagg aggaggagga gttacgagtg gcttgaggtg tcacttacca 47640 gacatttggg ggatggggga tagccgtgat tgttgagcaa ctggtttggg aagagctagc 47700 attgatccct gctgttctgt gctagcagaa cctatcagca tcttctgggc aggaaactgg 47760 ctccatgaga ctggcttagg gagaggctgc tagtcaccta atctgcagag aaggggcagc 47820 tggagetgtg ggacagaaga ggcatecatg tagetggtgg gggtgtetea gettgtgaag 47880 aggagatggc tttgagcagg gctgacactg aaaaggctgg aagaaaaaa cagacacaca 47940 agagtotoag gatoaggtag cataggaaag ttgtggacag totttgagga gcactocoto 48000 aggcaggcag gcaggcaggt catgagctat agcgattcag gaagagctcc ctgggtgtgt 48060 gagcagetee aggageetaa gggatgaaag tagtattgea gggggetgga gagcaaggag 48120

				-concin	ueu	
tggctccttc	tacatttgca	agggaaggag	aaaggaagtt	gctcctgaga	gtggtaagag	48180
tcagtggtgg	aggcctggag	aggagacata	acaaacaaat	ttgttgacaa	acattttggt	48240
aggaaggggg	agagcttaaa	gtttagacag	tggggaaggt	ggagtcttag	aggaggtgaa	48300
tgtctgaaag	acagagctag	ctggagcaag	aagtcacttc	tctgttgcag	gcaggaagga	48360
tccaaagtgg	ctcaagccag	agattgggag	agtggggagg	agggagcagc	ctggatctaa	48420
gtaaaatggg	tagaggtgga	gggggtgctg	caacggccag	ggttttctga	agttggggac	48480
attaggagag	agctgtgagg	gctttggcca	gccactgtgc	tagtgattgg	tgaaccaaag	48540
gatgggcagg	agatggcagc	agggaagcag	aggaagtcca	ggcttcctgt	tggtattggg	48600
acaagggaga	ggccatagga	ggccctggcc	ctgttgtcca	ggttgggttc	tgaagctggg	48660
tgggcatggc	ctggtaggag	agcatctatg	gcgcccaatt	ccagattcag	ggtctagttg	48720
atttgctggc	cctgtagcct	cagctcatgc	ttctgttcca	ggcctatttg	cactctatgt	48780
gcatcatcca	ccgggatctg	aactcgcaca	actgcctcat	caagttggta	tgtcccactg	48840
ctctgggcct	ggcctccagg	gtcctatcct	tcctggcttc	cttgtcacaa	aggaggctga	48900
cttgtcccct	ctggctagag	ggcagaggtg	ttgcctagga	gctcctatct	ttcccttcct	48960
gcttcttcca	atgcccttct	ctgtcctctg	ggageteega	gacacacaca	gacataattt	49020
caccttctct	cattagcaac	ctttgaaata	atttgattag	aagggacttc	agaagtttgt	49080
tgactatatg	tagaaaaccc	tgtcatttta	cctgcttttg	ccccatagta	gtcttgtaaa	49140
acagttcatt	gctgacccca	ttttacagtg	gtggcacctg	aagcctcagc	ctgaggccac	49200
cgagctagta	aatttacagg	gaccagtttg	agaccagcat	tcctcccact	gcccctcagc	49260
tgtggtggtt	acaatgttgt	ttgtcttact	gacttgctat	ctggcttcct	gggtgtctac	49320
cggctggccc	tggctctgcc	ctctagaccc	acaccacgca	atcttcattc	ctttcccaca	49380
tgactgccct	gtagctattc	aaagagcttg	tetececcaa	gtctccccat	ctactgcctc	49440
caccttgcct	ttttctgtct	tatcctggtt	ctagccactg	cctgaaatca	ttttaggaat	49500
aagacaggac	agggaaaaac	aaaagcaacc	ccctgtccca	cctctgagtt	ccactctcca	49560
agtccctgag	cctcacctcc	agggctccag	tggctctgcc	atgaacccac	tgtgggctgg	49620
gagtctgctg	tgcacagata	ccagaccctc	agaaacacaa	atgccaagtg	tgtctgtttt	49680
tttgttttgt	tttgttttgt	tttttagatg	gagtctcatt	ctgtttccca	ggctggagtg	49740
cagtggtgca	atcttggctt	actgcagcct	ctacctcccg	ggttctagtg	attgttctgc	49800
ttcagcctcc	cagtagctag	gactacaggc	gtgtgccacc	acgcccaget	aattttttt	49860
	tgtatttta					49920
aactcctgac	ctcaggtgat	teaccegect	tggcctccca	aagttctggg	attacaggtg	49980
gaagccaccg	tgcctggcct	gagtgtgtct	atttgataga	gctttctgct	ctgattctcc	50040
cttgctatac	accttttctc	cccttctcag	tggcttctct	tgcctatgct	tecteccag	50100
ggccaggttt	gagaacatcc	ccatgaagtc	ctgacctgtc	ttttatccta	ccaggacaag	50160
actgtggtgg	tggcagactt	tgggctgtca	cggctcatag	tggaagagag	gaaaagggcc	50220
	aggccaccac					50280
	tgggaaaccc					50340
	gggacacccg					50400
	ggaggcctgt					50460
ccttgccagg	tggggcctca	cgatttagct	cctgagctca	gggggctggg	aactgatcag	50520

tgtcccatca	tgggggataa	ggtgagttct	gactgtggca	tttgtgcctc	agggatcgct	50580
aagagctcag	gctattgtcc	cagctttagc	cttctctctc	catggtgaga	actgaagtgt	50640
ggtgccctct	ggtggataat	gctcaaacca	accagagatg	ctggttggga	ttcttgaaat	50700
cagggttgtg	aggcctcaga	aatggtctga	atacaatcca	ttttggagtc	tgaggcccag	50760
agaagttcag	tgaattgcct	aggagcatac	agctgcctaa	tggcagaggc	tagatgaacc	50820
ctagtctggt	tcttttccac	tttaacgtgc	agtttcatcc	taggcagtgt	tatgttataa	50880
gggctctcca	aggcagttca	cctacggctg	aggaaggact	attttcaggt	ggtgtctgcg	50940
caggacagcc	tgtggggtgt	ccctacagaa	cctgttctag	ccctagttct	tagctgtggc	51000
ttagattgac	cctagaccca	gtgcagagca	ggtaagggat	gtaaacttaa	cagtgtgctc	51060
tcctgtgttc	cccaaggaaa	gagctatgat	gagacggtgg	atatcttctc	ctttgggatc	51120
gttctctgtg	aggtgagctc	tggcaccaag	gccatgcccg	aggcagcagg	cctagcagct	51180
ctgccttccc	teggaactgg	ggcatctcct	cctagggatg	actagcttga	ctaaaatcaa	51240
catgggtgta	gggttttatg	gtttataacg	catctgcaca	tctttgccac	gttcgtgttt	51300
cattggtctt	aagagaagga	ctggcagggt	ttttttgttt	tagatggagc	ctcacttcgt	51360
tgcccaggct	ggagtgcagt	ggcacaatct	gggctcactg	caacctctgc	ctictgggtt	51420
caagtgattc	tectgectea	gcctcccaag	tagctgggac	taccggcaca	caccaccatg	51480
cccggctaat	ttttgtattt	ttagtagaga	cagggtttca	ccatgttggc	caggctggtc	51540
ttgaactccg	gacctcaggt	gatecgeetg	cctcagcctc	taaaagtgct	ggaattaata	51600
ggcgtgagct	acctcgcccg	gccaggtttt	tttttttt	tttttagttg	aggaaactga	51660
ggcttggaag	agggcagtgg	cttgcacatg	gtcgataagg	ggcagatgag	actcagaatt	51720
ccagaaggaa	gggcaagaga	ctgttcatgt	ggctgtctag	ctagctcttg	ggccaaatgt	51780
agcccttctc	agttcccttc	aagtagaagt	agccactcta	ggaagtgtca	gccctgtgcc	51840
aggtaccacg	tggacagagt	gaggaatctt	ggaaagattc	ctacctttag	gagtttagtc	51900
aggtgacagc	atatctcagc	gactcaaaca	cacacacatt	caaagccttc	tgtaattcct	51960
acaaagttgt	gaggggtaga	ggagaggaga	gacaagggat	ggttaggata	atgaaggaat	52020
gttttgttt	tgtttttgtt	tttgagatgg	agtttcactc	tgtcacccag	gctggagtgc	52080
agaggtgcaa	tcttggctca	ctgcagcctc	cgcctcccag	gttcaagcaa	tectectgee	52140
tcagcctccc	aagtagctgg	gactacaggt	gtgcgccacc	acgcctggct	aatttttgta	52200
ttttcagtag	agacagggtt	tegecatatt	ggccaggctg	gtctcaaatg	cctgacctca	52260
		ctcccaaagt				52320
					tgaadacctc	52380
		tgccagaggg				52440
		cacacacagc				52500
		gatgctgatt				52560
		cccagctctc				52620
		gggagagete				52680
		ccagcatccc				52740
		cttcttaccc				52800
ctgactgcct	tccccgaaca	ctggactttg	gcctcaacgt	gaagcttttc	tgggagaagt	52860

				VU		
ttgttcccac	agattgtccc	ccggccttct	tecegetgge	cgccatctgc	tgcagactgg	52920
agcctgagag	caggttggta	tcctgccttt	ttctcccagc	tcacagggtc	ctgggacgtt	52980
tgcctctgtc	taaggccacc	cctgagccct	ctgcaagcac	aggggtgaga	gaagccttga	53040
ggtcaagaat	gtggctgtca	acccctgagc	catctgacaa	cacatatgta	caggttggag	53100
aagagagagg	taaagacata	gcagcaagta	atctggatag	gacacagaaa	cacagccatt	53160
aaaagaaagt	ttaaaagaag	gaaattcacc	caaaccattt	gaatacagta	agtgtattca	53220
tctttcgata	ttcccctgtc	catatctaca	catatacttt	tttttatagt	aaatagttct	53280
gtattttgcc	ctgcatttcc	cttgtgttta	ctatccagtc	ttcctgttta	tcatttttgt	53340
cgacaacatg	aaattctatt	gagagactgt	ctgaacatat	tgtaatgtag	atgttcaggt	53400
ttttccagtt	tctctttaca	ataggtattt	aactacagtg	agcagtttta	tgcatttagc	53460
taatttctcc	tttgaggaag	tattttcaaa	attaccttta	ttcttctcag	gtaataattt	53520
cattattacc	aaagttaccc	taggtctttt	caagtgtgtg	gttaaaaaac	gagaatctgg	53580
ctgggcgcga	tggctcacac	ctgtaatccc	agcactttgg	gaggctgagg	ctggtggatc	53640
acctgaggtc	tggagttcga	gaccagcctg	gccaacatgg	tgaaacccca	tctctactaa	53700
aaatacaaaa	cttagccagg	catggtggca	ggtgcctgta	accccagcta	cttgggaggc	53760
tgaggcagga	gaattgcttg	aacccagggg	cggaggttgc	agtgagccga	tatcacgcca	53820
ttgcactcca	gcctcggcaa	caagagtgaa	actctgtctc	aaaaatgggg	ttcttttcct	53880
gccatcaaaa	atcatgtttc	ttttaaaaac	aagttcaaac	attaccasag	tttatagcac	53940
aggaaatacg	tcttctgtaa	tctcccttaa	ccaatatatc	cctcaacatt	ctcctcaccc	54000
ccaactccac	cctcccagga	taaccagttg	ggacataatc	tttatttaaa	aatggtttcc	54060
ggatagagaa	agcgcttcgg	cggcggcagc	cccggcggcg	gccgcagggg	acaaagggcg	54120
ggcggatcgg	cggggaggg	gcggggcgcg	accaggccag	gcccgggggc	teegeatget	54180
gcagctgcct	ctcgggcgcc	cccgccgccg	ccctcgccgc	ggagccggcg	agctaacctg	54240
agccagccgg	cgggcgtcac	ggaggcggcg	gcacaaggag	gggccccacg	cgcgcacgtg	54300
gccccggagg	ccgccgtggc	ggacagcggc	accgcggggg	gcgcggcgtt	ggcggccccg	54360
geceeggee	ccaggccagg	cagtggcggc	caaggaccac	gcatctactt	teagageeee	54420
ccccggggcc	gcaggagagg	gcccgggctg	ggcggatgat	gagggcccag	tgaggcgcca	54480
agggaaggto	accatcaagt	atgaccccaa	ggagctacgg	aagcacctca	acctagagga	54540
gtggatcctg	gagcagctca	cgcgcctcta	cgactgccag	gaagaggaga	tctcagaact	54600
agagattgac	gtggatgagc	toctggacat	ggagagtgac	gatgcctggg	cttccagggt	54660
caaggagetg	ctggttgact	gttacaaacc	cacagaggcc	ttcatctctg	gcctgctgga	54720
					ccccgaccca	54780
ggcgaacggt	ggctcccata	ggacaatcgc	tacccccga	cctcgtagca	acagcaatac	54840
cgggggacco	tgcggccagg	cctggttcca	tgagcagggc	tectegtgee	cctggcccag	54900
gggtctcttc	ceetgeece	tcagttttcc	acttttggat	ttttttattg	ttattaaact	-54960
gatgggactt	: tgtgtttta	tattgactct	gcggcacggg	ccctttaata	aagcgaggta	55020
gggtacgcct	ttggtgcago	tcaaaaaaaa	aaaaaaaaat	gatttccago	ggtccacatt	55080
agagttgaaa	ttttctggtg	ggagaatcta	taccttgttc	ctttataggo	caaggaccgc	55140
agteetteag	; taacaccagt	gtaaaagctt	gaggagaaat	tgtgaagcta	cacagtattt	55200
gttttctaat	acctcttgto	attctaaata	tctttaattt	attaaaaaat	atatatatac	55260

agtattgaat	gcctactgtg	tgctaggtac	agttctaaac	acttgggtta	cagcagcgaa	55320
caaaataaag	gtgcttaccc	tcatagaaca	tagattctag	catggtatct	actgtatcat	55380
acagtagata	caataagtaa	actatattga	atattagaat	gtggcagatg	ctatggaaaa	55440
agagtcaaga	caagtaaaga	cgattgttca	gggtaccagt	tgcaatttta	aatatggtcg	55500
tcagagcagg	cctcactgag	gtgacatgac	atttaagcat	asacatggag	gaggaggagt	55560
aagcctgagc	tgtcttaggc	ttccggggca	gccaagccat	ttccgtggca	ctaggagcct	55620
ggtgtttccg	attccacctt	tgataactgc	attttctcta	agatatggga	gggaagtttt	55680
tctcctattg	ttttaagta	ttaactccag	ctagtccagc	cttgttatag	tgttacctaa	55740
tctttatagc	aaatatatga	ggtaccggta	acattatgcc	catttctcac	agaggcacta	55800
ctaggtgaag	gagtttgcct	gacgttatac	aaccaggaag	tagctgagcc	tagatccctt	55860
ccacccaccc	catggccctg	ctcatgttcc	acctgcctct	aatttacctc	ttttccttct	55920
agaccagcat	tctcgaaatt	ggaggactcc	tttgaggccc	tctccctgta	cctgggggag	55980
ctgggcatcc	cgctgcctgc	agagctggag	gagttggacc	acactgtgag	catgcagtac	56040
ggcctgaccc	gggactcacc	tccctagccc	tggcccagcc	ccctgcaggg	gggtgttcta	56100
cagccagcat	tgcccctctg	tgccccattc	ctgctgtgag	cagggccgtc	egggetteet	56160
gtggattggc	ggaatgttta	gaagcagaac	aagccattcc	tattacctcc	ccaggaggca	56220
agtgggcgca	gcaccaggga	aatgtatctc	cacaggttct	ggggcctagt	tactgtctgt	56280
aaatccaata	cttgcctgaa	agctgtgaag	aagaaaaaaa	cccctggcct	ttgggccagg.	56340
aggaatctgt	tactcgaatc	cacccaggaa	ctccctggca	gtggattgtg	ggaggctctt	56400
gcttacacta	atcagcgtga	cctggacctg	ctgggcagga	teccagggtg	aacctgcctg	56460
tgaactctga	agtcactagt	ccagctgggt	gcaggaggac	ttcaagtgtg	tggacgaaag	56520
aaagactgat	ggctcaaagg	gtgtgaaaaa	gtcagtgatg	ctccccttt	ctactccaga	56580
tectgtectt	cctggagcaa	ggttgaggga	gtaggttttg	aagagtccct	taatatgtgg	56640
tggaacaggc	caggagttag	agaaagggct	ggcttctgtt	tacctgctca	ctggctctag	56700
	gaccacatca					56760
	ggctgagaac					56820
agcacaggaa	gaggctgggg	gactagaaag	aggccctgcc	ctctagaaag	ctcagatctt	56880
	actcatactc					56940
	ggttctggag		41			57000
	ctcagcaatc					57060
	tttaggcagc					57120
	gagagatagc					57180
	tcattagctc					57240
	cttggctccc		•			57300
	tatgagettg					57360
	ggtggttgta					57420
	tatctattgg					57480
	tcatctctgg					57540
gtttgcaagc	ttgctttagg	gctgagccct	ggactcccag	cagcagcaca	gttcagcatt	57600

gtgtggctgg	ttgtttcctg	gctgtcccca	gcaagtgtag	gagtggtggg	cctgaactgg	57660
gccattgatc	agactaaata	aattaagcag	ttaacataac.	tggcaatatg	gagagtgaaa	57720
acatgattgg	ctcagggaca	taaatgtaga	gggtctgcta	gccaccttct	ggcctagccc	57780
acacaaactc	cccatagcag	agagttttca	tgcacccaag	tctaaaaccc	tcaagcagac	57840
acccatctgc	tctagagaat	atgtacatcc	cacctgaggc	agccccttcc	ttgcagcagg	57900
tgtgactgac	tatgaccttt	tectggeetg	gctctcacat	gccagctgag	tcattcctta	57960
ggagccctac	cctttcatcc	tctctatatg	aatacttcca	tagcctgggt	atcctggctt	58020
gettteetca	gtgctgggtg	ccacctttgc	aatgggaaga	aatgaatgca	agtcacccca	58080
ccccttgtgt	tțccttacaa	gtgcttgaga	ggagaagacc	agtttcttct	tgcttctgca	58140
tgtgggggat	gtcgtagaag	agtgaccatt	gggaaggaca	atgctatctg	gttagtgggg	58200
ccttgggcac	aatataaatc	tgtaaaccca	aaggtgtttt	ctcccaggca	ctctcaaagc	58260
ttgaagaatc	caacttaagg	acagaatatg	gttcccgaaa	aaaactgatg	atctggagta	58320
cgcattgctg	gcagaaccac	agagcaatgg	ctgggcatgg	gcagaggtca	tctgggtgtt	58380
cctgaggctg	ataacctgtg	gctgaaatcc	cttgctaaaa	gtccaggaga	cactcctgtt	58440
ggtatcttt	cttctggagt	catagtagtc	accttgcagg	gaacttcctc	agcccagggc	58500
tgctgcaggc	agcccagtga	cccttcctcc	tctgcagtta	ttcccccttt	ggctgctgca	58560
gcaccacccc	cgtcacccac	Cacccaaccc	ctgccgcact	ccagccttta	acaagggctg	58620
tctagatatt	cattttaact	acctccacct	tggaaacaat	tgctgaaggg	gagaggattt	58680
gcaatgacca	accaccttgt	tgggacgcct	gcacacctgt	ctttcctgct	tcaacctgaa	58740
agattcctga	tgatgataat	ctggacacag	aagccgggca	cggtggctct	agcctgtaat	58800
ctcagcactt	tgggaggcct	cagcaggtgg	atcacctgag	atcaagagtt	tgagaacagc	58860
ctgaccaaca	tggtgaaacc	ccgtctctac	taaaaataca	aaaattagcc	aggtgtggtg	58920
gcacatacct	gtaatcccag	ctactctgga	ggctgaggca	ggagaatcgc	ttgaacccac	58980
aaggcagagg	ttgcagtgag	gcgagatcat	gccattgcac	tccagcctgt	gcaacaagag	59040
ccaaactcca	tctcaaaaaa	aaaaa				59065

<210> SEQ ID NO 4

<211> LENGTH: 265

<212> TYPE: PRT <213> ORGANISM: Human

<400> SEQUENCE: 4

Leu Thr Glu Val Lys Val Met Arg Ser Leu Asp His Pro Asn Val Leu 1 5 10 15

Lys Phe Ile Gly Val Leu Tyr Lys Asp Lys Lys Leu Asn Leu Leu Thr \$20\$

Glu Tyr Ile Glu Gly Gly Thr Leu Lys Asp Phe Leu Arg Ser Met Asp 35 40 45

Ser His Asn Cys Leu Ile Lys Leu Asp Lys Thr Val Val Val Ala Asp 85 90 95

Phe Gly Leu Ser Arg Leu Ile Val Glu Glu Arg Lys Arg Ala Pro Met 100 \$105\$

Glu Lys Ala Thr Thr Lys Lys Arg Thr Leu Arg Lys Asn Asp Arg Lys 115 Thr Val Val 120 Thr Leu Arg Lys 125 Lys Arg Tyr Thr Val Val 130 Ser Tyr Asp Glu Thr Val Asp Ile Phe Ser Phe 145 Ser Tyr Asp Glu Thr Val 155 Thr Val 155 Ser Phe 160 Lleu Asn Gly Lys Ser Tyr Asp Glu Thr Val 155 Ser Phe 160 Lleu Val Leu Cys Glu Ile Ile Gly Gln Val 170 Tyr Ala Asp Pro Asp Cys 175 Leu Pro Arg Thr Leu Asp Phe 185 Ser Val 185 Ser Val 185 Ser Val 190 Ser Pro Glu 190 Lys Phe Val 195 Ser Pro Thr Asp 200 Ser Arg 200 Ser Leu 210 Ser Leu 220 Ser Leu 220 Ser Leu 220 Leu Glu 220 Leu Gl														-						
130 Leu Asn Gly Lys Ser Tyr Asp Glu Thr Val Asp Ile Phe Ser Phe Gly 145 Ile Val Leu Cys Glu Ile Ile Gly Gln Val Tyr Ala Asp Pro Asp Cys 165 Leu Pro Arg Thr Leu Asp Phe Gly Leu Asn Val Lys Leu Phe Trp Glu 180 Lys Phe Val Pro Thr Asp Cys Pro Pro Ala Phe Phe Pro Leu Ala Ala 205 Ile Cys Cys Arg Leu Glu Pro Glu Ser Arg Pro Ala Phe Ser Lys Leu 210 Glu Asp Ser Phe Glu Ala Leu Ser Leu Tyr Leu Gly Glu Leu Gly Ile 225 Tyr Gly Leu Thr Arg Asp Ser Pro Pro	Glu	Lys		Thr	Thr	Lys	Lys		Thr	Leu	Arg	Lув			Arg	Lys				
145	Lys			Thr	Val	Val		Asn	Pro	Tyr				Pro	Glu	Met				
Leu Pro Arg Thr Leu Asp Phe Gly Leu Asn Val Lys Leu Phe Trp Glu 190 Lys Phe Val Pro Thr Asp Cys Pro Pro Ala Phe Phe Pro Leu Ala Ala 205 Ile Cys Cys Arg Leu Glu Pro Glu Ser Arg Pro Ala Phe Ser Lys Leu 210 Glu Asp Ser Phe Glu Ala Leu Ser Leu Tyr Leu Gly Glu Leu Gly Ile 225 Pro Leu Pro Ala Glu Leu Glu Glu Leu Asp His Thr Val Ser Met Gln 255 Tyr Gly Leu Thr Arg Asp Ser Pro Pro			Gly	Lys	Ser		Asp	Glu	Thr	Val		Ile	Phe	Ser	Phe					
Lys Phe Val Pro Thr Asp Cys Pro Pro Ala Phe Phe Pro Leu Ala Ala 205 Ile Cys Cys Arg Leu Glu Pro Glu Ser Arg Pro Ala Phe Ser Lys Leu 210 Glu Asp Ser Phe Glu Ala Leu Ser Leu Tyr Leu Gly Glu Leu Gly Ile 225 Pro Leu Pro Ala Glu Leu Glu Glu Leu Asp His Thr Val Ser Met Gln 255 Tyr Gly Leu Thr Arg Asp Ser Pro Pro	Ile	Val	Leu	Cys		Ile	Ile	Gly	Gln		Tyr	Ala	Asp	Pro		Сув				
195 200 205 Ile Cys Cys Arg Leu Glu Pro Glu Ser Arg Pro Ala Phe Ser Lys Leu 210 215 220 Glu Asp Ser Phe Glu Ala Leu Ser Leu Tyr Leu Gly Glu Leu Gly Ile 225 230 235 240 Pro Leu Pro Ala Glu Leu Glu Glu Leu Asp His Thr Val Ser Met Gln 245 250 255 Tyr Gly Leu Thr Arg Asp Ser Pro Pro	Leu	Pro	Arg		Leu	Asp	Phe	Gly		Asn	Val	Lys	Leu		Trp	Glu				
210 215 220 Glu Asp Ser Phe Glu Ala Leu Ser Leu Tyr Leu Gly Glu Leu Gly Ile 225 230 240 Pro Leu Pro Ala Glu Leu Glu Glu Leu Asp His Thr Val Ser Met Gln 245 250 255 Tyr Gly Leu Thr Arg Asp Ser Pro Pro	Lys	Phe		Pro	Thr	Asp	Сув		Pro	Ala	Phe	Phe			Ala	Ala				
225 230 235 240 Pro Leu Pro Ala Glu Leu Glu Glu Leu Asp His Thr Val Ser Met Gln 245 250 255 Tyr Gly Leu Thr Arg Asp Ser Pro Pro	Ile		Сув	Arg	Leu	Glu		Glu	Ser	Arg	Pro		Phe	Ser	Lys	Leu				
245 250 255 Tyr Gly Leu Thr Arg Asp Ser Pro Pro		-	Ser	Phe	Glu		Leu	Ser	Leu	Tyr		Gly	Glu	Leu	Gly					
	Pro	Leu	Pro	Ala		Leu	Glu	Glu	Leu		His	Thr	Val	Ser		Gln				
	Tyr	Gly	Leu		Arg	Авр	Ser	Pro												

That which is claimed is:

1. An isolated nucleic acid molecule consisting of a 30 sequence set forth in SEQ ID NO:1. nucleotide sequence selected from the group consisting of:

- (a) a nucleotide sequence that encodes an amino acid sequence shown in SEQ ID NO:2;
- sequence of SEQ ID NO:1;
- (c) a nucleic acid molecule consisting of the nucleic acid sequence of SEQ ID NO:3; and
- (d) a nucleotide sequence that is completely complementary to a nucleotide sequence of (a)-(c).
- 2. A nucleic acid vector comprising a nucleic acid molecule of claim 1.

3. A host cell containing the vector of claim 2.

4. A process for producing a polypeptide comprising culturing the host cell of claim 3 under conditions sufficient 45 sequence. for the production of said polypeptide, and recovering the peptide from the host cell culture.

- 5. An isolated polynucleotide consisting of a nucleotide
- 6. An isolated polynucleotide consisting of a nucleotide sequence set forth in SEQ ID NO:3.
- 7. A vector according to claim 2, wherein said vector is (b) a nucleic acid molecule consisting of the nucleic acid 35 selected from the group consisting of a plasmid, virus, and
 - 8. A vector according to claim 2, wherein said isolated nucleic acid molecule is inserted into said vector in proper orientation and correct reading frame such that the protein of SEQ ID NO:2 may be expressed by a cell transformed with said vector.
 - 9. A vector according to claim 8, wherein said isolated nucleic acid molecule is operatively linked to a promoter