Optimization Methods in Machine Learning Lecture 10: Newton method and Interior Point Method for SVM

Katya Scheinberg

Lehigh University

Spring 2016

Newton method

Slides from L. Vandenberghe http://www.ee.ucla.edu/vandenbe/ee236c.html

Newton step

$$\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

interpretations

• $x + \Delta x_{\rm nt}$ minimizes second order approximation

$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

• $x + \Delta x_{\rm nt}$ solves linearized optimality condition

$$\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$

Quadratic Approximation Model

- The problem we deal with is f(x)
- The quadratic approximation model is

$$q(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k) (x - x_k)$$

- Newton Step. $\Delta x_k = -\nabla^2 f(x_k)^{-1} \nabla f(x_k)$
- $\bullet \ x_{k+1} = x_k + \Delta x_k$
- Damped Newton step: not the full step.
- If full step is not good, use line search.

Convergence Analysis

• Assumption:

$$\|\nabla^2 f(x) + \nabla^2 f(y)\|_2 \le L\|y - x\|_2$$

- f is strongly convex with constant m
- We want Hessian to be Lipschitz continuous.
- There exists constants $\eta \in (0, m^2/L)$ and $\gamma > 0$ such that
 - if $\|\nabla f(x^k)\|_2 \ge \eta$, then

$$f(x^{k+1}) - f(x^k) \le -\gamma$$

• if $\|\nabla f(x^k)\|_2 < \eta$, then

$$\frac{L}{2m^2} \|\nabla f(x^{k+1})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^k)\|_2\right)^2 \qquad \text{(fast converge stage)}$$

where m is the smallest eigenvalue of $\nabla^2 f(x)$ for all x.

Self-concordant

- Newton method is invariant under linear transformation! But the convergence analysis isn't!!
- To have a better analysis, self-concordant functions have been introduced.
- In optimization, a self-concordant function is a function $f: \mathbb{R} \to \mathbb{R}$ such that

$$|f'''(x)| \le 2f''(x)^{\frac{3}{2}}$$

• $f: \mathbb{R}^n \to \mathbb{R}$ is self-concordant if

$$g(t) = f(x + t\nu)$$

is self-concordant for all $x \in \text{dom} f, \nu \in \mathbb{R}^n$

• Examples: linear, convex quadratic, logarithm.

Interior Point Method

• Rewrite the quadratic model

$$\min \begin{array}{c} \frac{1}{2}x^TQx + c^Tx \\ Ax = b \\ x > 0 \end{array} \Rightarrow \min \begin{array}{c} \frac{1}{2}x^TQx + c^Tx - \mu \sum_{i=1}^n \ln x_i \\ Ax = b \end{array}$$

• KKT conditions are:

$$Ax = b$$

$$-Qx + A^{T}y + s = c$$

$$Xs = \mu e$$

$$X, s > 0$$

where $X = \operatorname{diag}(x)$

Interior Point Method

• Given (x, y, s), find the Newton step $(\Delta x, \Delta y, \Delta s)$,

$$A(x + \Delta x) = b$$
$$-Q(x + \Delta x) + A^{T}(y + \Delta y) + s + \Delta s = c$$
$$s\Delta X + X\Delta s + Xs = \mu e$$

• Then we have

$$S\Delta x + X\Delta s = \mu e - Xs$$

$$A\Delta x = b - Ax = r_p$$

$$-Q\Delta x + A^T \Delta y + \Delta s = c - Qx - A^T y - s = r_d$$

Interior Point Method

• Augmented system

$$A\Delta x = r_p$$

$$A^T \Delta y - (X^{-1}S + Q)\Delta x = r_d - X^{-1}(\mu e - Xs)$$

• Eventually, we have the following Normal Equation

$$A(X^{-1}S + Q)^{-1}A^T\Delta y = r$$

• Important: $A(X^{-1}S+Q)^{-1}A^T$ is positive definite if A is full row rank.

Optimality conditions for SVM

Consider dual form of SVM as following:

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - e^{T} \alpha$$
s.t.
$$y^{T} \alpha = 0$$

$$0 < \alpha < c$$

Now consider KKT conditions:

$$\alpha_{i}s_{i} = 0$$
 $i = 1, 2, ..., n$
 $(c - \alpha_{i})\xi_{i} = 0$ $i = 1, 2, ..., n$
 $y^{T}\alpha = 0$ $-Q\alpha + y\beta + s - \xi = -e$
 $0 \le \alpha \le c$
 $s \ge 0, \xi \ge 0$

Relaxed KKT conditions

We want to solve this problem by interior point method, so we rewrite the KKT conditions as following:

$$\alpha_i s_i = \mu \qquad i = 1, 2, ..., n$$

$$(c - \alpha_i) \xi_i = \mu \qquad i = 1, 2, ..., n$$

$$y^T \alpha = 0$$

$$-Q\alpha + y\beta + s - \xi = -e$$

$$0 < \alpha < c$$

$$s > 0$$

$$\xi > 0$$

A Newton step of IPM

• Let $\mathcal{A} = diag(\alpha)$, $\mathcal{S} = diag(s)$ and $\Xi = diag(\xi)$

$$\begin{pmatrix} y^T & 0 \\ -(Q + \mathcal{A}^{-1}S + (C - \mathcal{A})^{-1}\Xi) & y \end{pmatrix} \begin{pmatrix} \Delta \alpha \\ \Delta \beta \end{pmatrix} = \\ \begin{pmatrix} -y^T \alpha \\ -e + Q\alpha - y\beta - \mathcal{A}^{-1}\mu e + (C - \mathcal{A})^{-1}\mu e \end{pmatrix}$$

• Doing some algebra, we have:

$$y^T (Q+D)^{-1} \Delta \beta = \gamma$$

where

$$D = \mathcal{A}^{-1}\mathcal{S} + (C - \mathcal{A})^{-1}\Xi$$

$$\gamma = -y^{T}\alpha + y^{T}(Q + D)^{-1}(-e + Q\alpha - y\beta - \mathcal{A}^{-1}\mu e + (C - \mathcal{A})^{-1}\mu e)$$

Kernel operation

• As we defined before

$$Q_{i,j} = y_i y_j \mathcal{K}(x_i, x_j) \tag{1}$$

where $\mathcal{K}(x_i, x_j)$ is kernel operation of x_i and x_j .

• Some examples for kernel operation:

Linear kernel: $\mathcal{K}(x_i, x_j) = x_i^T x_j$

Quadratic kernel: $\mathcal{K}(x_i, x_j) = [a + b(x_i^T x_j)]^2$

RBF kernel: $\mathcal{K}(x_i, x_j) = \exp(-\frac{\|x_i - x_j\|^2}{2\sigma})$

 \bullet Q is a Positive Semi-Definite (p.s.d) matrix.

Computation complexity

Back to SVM, consider Q.

• To solve the Newton system, we have to solve

$$y^T (Q+D)^{-1} \Delta \beta = \gamma$$

where

$$D = A^{-1}S + (C - A)^{-1}\Xi$$

$$\gamma = -y^{T}\alpha + y^{T}(Q + D)^{-1}(-e + Q\alpha - y\beta - A^{-1}\mu e + (C - A)^{-1}\mu e)$$

• Q is typically a dense matrix.

$$Q = Y^T X X^T Y$$

where Y is a $n \times 1$ and X is a $n \times d$, so rank of Q is at most d.

• We need $\mathcal{O}(n^3)$ operations to invert (Q+D).

Scherman-Morrison-Woodbury formula

- Let $Q = VV^T$.
- We can find $(Q+D)^{-1}$ as following

$$(Q+D)^{-1} = (VV^T + D)^{-1}$$

= $D^{-1} - D^{-1}V(I + V^TD^{-1}V)^{-1}V^TD^{-1}$

which needs $\mathcal{O}(nd^2)$ operations and $\mathcal{O}(nd)$ storage amount.

Reminder: Matrix calculus, Symmetric matrix

Definition

Matrix $M_{n\times n}$ is symmetric, if and only if $M=M^T$.

• Consider $Q_{n \times n}$ where n is size of training data. We can define Q as following

$$Q = Y^T X X^T Y$$

ullet Q is symmetric because:

$$Q^T = (Y^T X X^T Y)^T = Y^T X X^T Y = Q$$

• If a matrix is symmetric, its eigen values are real number.

Positive semi-definite and positive definite

Definition

Symmetric matrix $M_{n\times n}$ is positive semi-definite if for all $z_{n\times 1}$ we have:

$$z^T M z \ge 0$$

M is positive definite if $z^T M z > 0$ for all $z_{n \times 1}$.

• Q is positive semi-definite, because

$$z^T Q z = ^T Y^T X X^T Y z = (X^T Y z)^T (X^T Y z) = ||X^T Y z||^2 \ge 0$$

Definition

Symmetric matrix $M_{n\times n}$ is positive semi-definite if all of its eigenvalues are nonnegative.

Eigenvalue decomposition

Definition

Consider symmetric matrix $M_{n\times n}$. We have:

$$M = P\Lambda P^T$$

where Λ is a diagonal matrix that elements on its main diagonal corresponds to eigenvalues of M, and P is an orthogonal matrix. Columns of P correspond to eigenvectors of M.

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 & \lambda_n \end{bmatrix}$$

$$P = \begin{bmatrix} P_1 \mid P_2 \mid \dots \mid P_n \end{bmatrix}$$

Eigenvalue decomposition (continued)

Definition

Rank of a matrix is the number of linear independent columns or linear independent rows of the matrix.

• The rank of p.s.d. matrix is the number of positive eigen values.

$$Q = P\Lambda P^T = \sum_{i} \lambda_i P_i P_i^T$$

where $P_i P_i^T (i = 1, 2, ..., n)$ are rank-one matrices.