

- 1 Influence of tool geometry on reaction forces and strength of an inseparable joint produced on a prototype stand with the use of jaws
- 2

Nikodem Wróbel^{1,*}, Michał Rejek¹, Jolanta Królczyk², Mateusz Franka¹, Munish Kumar Gupta^{2,*}, Marcin

Sliwiński³, Grzegorz Krolczyk², Z Li²

¹PRO-ZAP" Grupa Introl, Mechanical Design Department, 63-400 Ostrów Wlkp., Grabowska 47a, Poland,

²Opole University of Technology, Faculty of Mechanical Engineering, 45-001 Opole, St. Mikołajczyka 5, Poland,

³ Zakład Mechaniczny Zalesie 63-400 Ostrów Wlkp., Lamki Zalesie 11, Poland

***Corresponding author: Munish Kumar Gupta**

10 **Abstract.** The article describes research on a new and innovative method of producing an
11 inseparable joint and testing its strength. The article shows a new approach in the
12 production of joints with the use of expansion jaws, used as a punch. The tool responds
13 with bending and pressing one part into the other, which results in their permanent
14 connection. In the tests, differentiation was introduced with regard to the height of the
15 applied force to the collar of the connection pipe. A novelty is also a solution based on a
16 complex, parameterized trajectory of the stamp movement consisting of horizontal and
17 vertical displacements. This paper presents the tests of the joints formed at the stand. The
18 article also presents the features of the produced joint by subjecting it to destructive
19 testing: the tensile strength test. The new approach described in this article has resulted
20 in a joint strength increase of approximately 30% using the innovative complex jaw
21 movement of the biaxial clinching process. A joint tensile strength close to 1000N was
22 achieved.

23 **Keywords.** Prototype stand, forces, fixed joints, non-detachable tight joints, crimp joints,
24 folded joints, molded joints

25 1. Introduction

26 The inseparable connections used in industry for the construction of components
27 of automotive air-conditioning systems, internal combustion engine cooling systems, or
28 the cooling of batteries or heating systems used to power engines and cabs of electric cars
29 require the use of reliable connectors [1], [2] . I determine that it is very necessary to
30 make high-quality joints without defects[3], [4] .

An important aspect is to choose the right method to be used to connect the elements to be joined together. It often depends on the space available for the operation[5], [6]. The joints made by the clinching operation allow for a secure connection of two elements with each other. This method allows the connection of various materials with each other without the risk of corrosion[7]–[9]. This linking uses an operation in which two elements are geometrically combined with partial deformation being caused by a punch and a die [10]–[12]. The presented methods use methods based on 1 step, but also on a two steps, which has been described by the following authors[13]. Another method is the kneading or forcing operation [14]. The advantage of the above-mentioned methods is that the surfaces of the joined materials are not damaged, thus limiting subsequent defects of the final products [15], which affects the economy of the product[16]. Despite of different method of welding aluminum alloy is still difficult to weld, especially thin wall material.[17]–[19]. Currently is known the CMT method of welding or laser welding but is still developing to increase the quality[20]. Other method like friction stir welding can be also alternative [21], adhesive joining or mechanical crimping, clinching[22]. Han et al. [23] was confronting two different methods, Resistance Spot Welding and Self-Pierce Riveting. The main conclusion was that process of mechanically joining parts was more stable than manufacturing inseparable joint with featured welding process. Clinched and crimped joints can be treated as an intermediate solution requiring additional technological operations or final solution. If they are treated as intermediate operations, the following operations should be done: gluing, welding or soldering [24]. The production of inseparable connections involves the necessity to transfer forces or moments to the connected system so it would be able to withstand forces destroying the joint during subsequent technological operations or when using the parts. Salamati et al.[25] investigated various of mechanical joining processes. The fields of this study among others are principles of the processing, applicable materials, process variants, joint mechanical behavior including static and dynamic performance. Weber et al. [26] was confronting different processes for joining by forming of profiles, sheet-, bulk-, and sheet-bulk-components. The study includes the achievable joining mechanisms as well as the significant process parameters influencing these mechanisms. Mori et al.[27] also analyzed joining processes, including cold welding, friction stir welding, self-pierce riveting, mechanical clinching and joining by forming. The comparisons of the processes of joining parts presented in the articles allows to get acquainted with the methods of

64 joining used in industry as well as their advantages and disadvantages. Briskham et al.
65 [28] investigated best mechanical properties of the joints manufactured by Self-Pierce
66 Riveting, Resistance Spot Welding and Spot Friction Joining. Highest destroying force in
67 studied cases was reached by joint formed by mechanical deformation. Developing
68 methods to increase the strength of the connection through a two-axis complex clinching
69 or crimping movement is a new approach, but the most desirable one, which should be
70 developed for various industries, not only for the automotive and aviation industries. The
71 described method of joining was proposed by Rejek and other authors. They describe the
72 joining of two components, in which the walls are first folded, and then the parts are
73 pressed against each other [29].

74 After the literature analysis, it was noticed that there were no issues related to
75 clinched connections made by means of a complex jaw movement. It is especially
76 important in cases where it is necessary to apply force in a relatively small space that
77 allows for the proper joint to be made. The solution described in the article below makes
78 it possible to obtain greater connection strength with the use of the same tool and no need
79 to increase access at the site of the jaw attack.

80 2. Materials and methods

81 The designed and manufactured tooling is capable of biaxial and parametric
82 production of inseparable joints. It is dedicated to the production of clinched, crimped or
83 bending joints. The connection is made by punches with a die, jaws or cones. The
84 investigated connection case before the manufacturing operation is shown in Fig. 1.a. It
85 consists of a pipe and a connection pipe made of the material 6060, described in tables 1
86 and 2[30] .

87 **Table 1.** Chemical composition of the aluminum alloy 6060 T4 according to the EN-573-3:
88 1994

Si [%]	Fe [%]	Cu [%]	Mn [%]	Mg [%]	Cr [%]	Zn [%]	Ti [%]	Other		Al. [%]
								Each [%]	Total [%]	
0,30- 0,60	0,10- 0,30	0,10	0,10	0,35- 0,60	0,05	0,15	0,10	0,05	0,15	The rest

Table 2. Mechanical properties of the Aluminum alloy 6060 T4 in accordance with EN 755-2: 2008

Alloy	Temper	Wall thickness [mm]	Tensile strength R_m [MPa]	Yield point $R_{p0,2}$ [MPa]	Elongation		Hardness Brinell HBS
					A50mm % min	A % min	
6060	T4	>25	120	60	14	160	45

92 The joint has been designed in such a way as to best match both elements with each
93 other. While still maintaining the possibility to be made by a complex two-axis movement
94 of the forming tool. In the described case, the joint will be produced by expansion jaws
95 with a new shape of the forming surface. The lower edge of the tool is mapped above the
96 intersection edge of the pipe and connection pipe shown in (Fig. 2.b).

Fig. 1. View of the pipe with a connection pipe:

a) joint components, b) marked edge to be mapped on tool.

In order to manufacture the tested connection between the pipe and the connection pipe, the forming jaws will be moving diverge in four directions for the vertical plane and one in the vertical direction according to the force of gravity. The joined parts during the crimping operation must be pressed down. The resulting joint strength is also dependent on the fit of the parts. Crimping method of the connection is schematically shown in three steps in Fig. 2. In the described case, the jaws were made of Inconel Vascomax C350 martensitic steel. Allowing to achieve high loads. The tools were hardened to 58-60 HRC.

107

108 **Fig. 2.** Theoretical diagram of the joint formation: 1st phase - before the jaws enter (no
109 contact with parts) (a); 2nd phase - contact with parts (b); 3rd phase - jaws entering the
110 material (c); 4th phase vertical movement of the jaws consistent with gravity force.

111 **2.1. Stand and socket concept**

112 Designing stands requires an analysis of the functions of the tooling or the machine
113 that it is to fulfill. Concept considerations most often lie between the proper quality of the
114 manufactured joint and the production cost of the machine and joint. A prototype
115 stand was designed for the production of the joint, the design of which was granted a
116 patent number: 426083 (22) 2018 06 26. The joints described previously were made at
117 the stand, which is based on plate-and-column structure. Design of the stand makes it
118 possible to work in two vertical axes at the same time. Each axis is equipped with a servo
119 drive and an external force sensor that monitors the response forces achieved in the
120 production of the joint. The displacements generated by servomotors are measured with
121 an optical encoder mounted in the motor. This solution enables parametric setting of the
122 point where the jaws attack the connection pipe. The zero point is of attacking height of
123 jaws is assumed on the mapping edge between the pipe and the connection pipe. This
124 stand allows for the repeatable production of joints and it is flexible to adapt to parts of
125 various dimensions.

126 The relatively small area where the desired amount of force or torque should be
127 applied to make the joint gives limited access to the application of wedges to the jaws.
128 Surfaces of wedges are responsible for transmitting the vertical force to the jaw, which
129 moves in the horizontal direction. Achieved transmission ratio in the system is 1:19.
130 Figure 3 shows the view of the station with elements of actors and sensors.

131 Servo motors from Beckhoff were used as actors. Their nominal torque is 10Nm
132 and the speed of 2300 rpm. The sensory and measurement systems are based on the
133 following elements:

134 • CL 16m 30kN force sensor with a CL 10D 4-20mA transducer and a resolution of 0.5%,

135 • CL 21RS 30kN force sensor with CL transducer 10D 4-20mA and 0.5% resolution.

136 In order to collect the obtained results, a PC computer with a PLC was used. This
137 system allows you to collect 4-20mA current signals from force sensors and two 18-bit
138 optical encoders responsible for tracking jaw displacement. The joint has been
139 manufactured using a specially designed tooling that allows the proper transfer of the
140 necessary forces to the system in order to produce the joint. The tooling is also designed
141 in the concept of biaxial force application. It is possible to control the jaws in the
142 horizontal direction of the X and Y axis and the vertical Z axis for the entire system (Fig.3).

143

144 **Fig. 3.** Stand view used in the production of the joint view of the tooling for making the
145 joint

146

147

148

149 **2.2. Methodology of the experiment**

150 Eighteen sets of parts were produced for the tests. The described experiment was
151 prepared on the basis of samples characterized by one set of diameters. The goal of the
152 research was to find a parameter that gives the greatest effect in the form of tensile
153 strength of the joint. The cross-section of the joint in the 3d view is shown in Figure 4
154 together with the measurement table in Table 3.

155

156

157 **Fig. 4.** Joint view with characteristic dimensions.

158

Table 3. Measurement result of the joint

No	Case	\varnothing A [mm]	\varnothing B [mm]	\varnothing C [mm]	D [mm]	E [mm]
1	A	30 h11	13 H8/h7	10,5	5	1,5

159 The preparation of the joints was based on a tool in the form of one set of jaws, with a
160 forming surface on which vertical grooves used for crimping were made. The jaws have
161 been divided into two groups, high and low, so as to best reflect the inner edge of the tube
162 opening. The experiment was divided into two main groups of joints, the first criterion is
163 the position of the jaws, which relates to the attacking height of the jaws on the collar of
164 connection pipe noted by "LP" shown in Fig 5. The tests took the height of the jaws attack
165 on the collar marked as two parameters "00" for which the distance LP is 5mm and "+05",
166 where the LP is 5.5mm. This means that the difference in force application was 0.5mm.
167

168

169 **Fig. 5.** View of the forming jaws for manufacturing the joint.

170 Diversification was also made in motion, the joints were made with single movement of
 171 the forming jaws, i.e. diverged only horizontally in 4 directions, and with a complex
 172 movement, where jaws after the horizontal movement, performed downward working
 173 movement of 0.3 mm and 0.5 mm (table 4).

174 **Table 4.** Design of experiment.

Parameter „L _p “	„+05“				„00“	
	Type of motion		Type of motion		Type of motion	
Type of motion	1 axis movement	2 axis movement	1 axis movement	2 axis movement	1 axis movement	2 axis movement
Jaws movement value	0,3mm	0,3mm	0,5mm	0,5mm	0,5mm	0,5mm
Vertical movement	N/D	0,1mm	N/D	0,2mm	N/D	0,1mm
Case	1	2	3	4	5	6
Tensile strength test	X	X	X	X	X	X

175

176

177 The joints were made under constant sensor control in the form of a displacement
 178 and force sensor. The results are represented by graphs showing the exact reaction forces
 179 needed to produce a given joint. Manufactured samples were subjected to tensile strength
 180 tests. The strength of the joint was tested on the same stand, based on servomotors and
 181 sensors, which was dedicated to monitor joint formation. In order to perform the test,
 182 internal threads were made in the connection pipes, while the pipes were gripped by
 183 socket with mapped shape of pipe.

184

185

186 3 FEA analysis

187 The finite element analysis method was performed for all samples presented in Table
188 4, using Solidworks Simulation software with an addition that allows the testing of
189 materials behaving as a nonlinear. With this type of consideration, it is possible to
190 determine the most advantageous shape of the forming tools without the need for costly
191 and time-consuming tests. Due to the axially symmetrical nature of the sample, an analysis
192 was carried out for its quarter, which allowed to reduce the number of elements to be
193 calculated, and at the same time to increase the accuracy for the tested sample. The
194 material that was used on the analyzed parts was 6060 T4 aluminum, for which a strength
195 graph, shown in Fig. 6, was made and implemented to the program as a model for
196 calculations.

197
198

Fig. 6. Stress – Strain Curve for aluminum 6060 T4.

199 The program automatically retrieves all information from the graph except for the
200 Poisson's ratio which has been set at 0.33. The type of model that has been established for
201 the calculations of these samples is the Von Mises method, which is the best equivalent
202 for this type of test, and the plot itself starts with an assumed yield strength to render the
203 parts non-linear. The program calculates the steps using the formula below:

$$\sigma = \sqrt{0,5 * ((\sigma_x - \sigma_y)^2 - (\sigma_y - \sigma_z)^2 - (\sigma_z - \sigma_x)^2) + 3 * (\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2)} \quad (1)$$

205 The material for the jaws analyzed in the program is K490, for which the values are
 206 given in Table 5, as the jaws themselves are not tested, they were considered rigid so as
 207 not to interfere with the results of the analysis. The simulation lasted 1 or 2 seconds,
 208 depending on the number of movements. 1s was assumed for a single move, while the
 209 double movement was tested for 2s, respectively, the horizontal movement lasted 1s, and
 210 then the vertical movement for 1s. The Newton-Raphson iteration method was adopted.
 211 The iterations that have been accepted for testing are shown in Fig. 7.a, Fig. 7.b and Fig.
 212 7.c, they describe the possible contact between the parts of the assembly. The degrees of
 213 freedom in the space of the test samples were also limited according to the actual test (Fig.
 214 7.d). The friction coefficient was set at 0.05.

215

216 **Table 5.** Properties of the K490 material, used for jaws.

Properties of steel K490					
Chemical composition					
C [%]	Cr [%]	Mo [%]	V [%]	W [%]	Nb [%]
1,4	6,4	1,5	3,7	3,5	+
Mechanical properties					
Young modulus [Mpa]	Density [kg/m ³]	Poisson modulus	Tensile Strength [Mpa]	Yield Point [Mpa]	Specific heat capacity [J/kg*K]
223000	7790	0,28	2436	2098	450

217

218

219 **Fig. 7.** Fixing in space and contact interactions of the FEM model:
220 a), b) c) contact iterations, d) considered degrees of freedom

221 The data of the mesh and the mesh plotted on the model was divided are shown in
222 Fig. 8. According to which the model was divided into a mesh of 1.5 mm, with compaction
223 in the area of the deformed part of 0.5 mm. In this way, 10,540 elements were the subject
224 of the analysis.

225
226 **Fig. 8.** Mesh on the analysis parts and properties of the mesh during FEA.

227 The results for all analyzes are presented in Table 7. The presented results are in line
228 with the expectations and correspond to the implemented displacement, hence it can be
229 assumed that the analysis was carried out correctly. Fig 9 shows how the sample will
230 behave after reaching the assumed displacement, and where the greatest stresses are to
231 be expected, and thus the forces necessary for the desired deformation. Thanks to the
232 analysis carried out in this way, it is easy to determine the most advantageous shape of
233 the tool, to determine to which values the increase in displacement does not damage the
234 sample.

235 **Table 7.** Result of analysed samples

236

Parameter "Lp"	"+05"				"00"	
Case	1	2	3	4	5	6
Max Von Mises Stress [MPa]	60,827	68,793	96,047	108,946	162,881	165,348

237

238

Fig. 9. Visualisation of deformation on Solidworks.

239 4. Results and discussion

240 The research was based on analysis of two different methods of producing a joint
 241 with different values of parameters characterizing a given method of joint production. In
 242 all analyzed cases, the same type of forming jaws were used to produce a fixed connection
 243 of two parts.

244 In first case, the parameter defining the height of the force application took the value
 245 of 5.5 mm and was defined as "+05". On the other hand, the parameter characterizing the
 246 jaws movement was 0.3 mm. The speed of movement in the radial direction was 1.83 mm
 247 / s. The reaction forces recorded on the sensor in form of flat cylinder reached a maximum
 248 value in the direction of the vertical axis of 1.1 kN. After conversion to radial movement,
 249 this value was 21.05 kN for a total of 4 jaws (Fig. 10.a). The strength of the tested joint
 250 was 307N, the value occurred after destruction of the joint (Fig. 10.b).

251

252

253 **Fig. 10.** Obtained data for joint produced by jaws with single movement, height LP "+05",
254 movements of forming jaws 0.3mm: a) Values of the reaction forces, b) the
255 strength of the joint in the tensile test,

256

257 The second analyzed case was manufactured with complex motion, divided into two
258 stages. In the first phase, and then vertical movement was 0.1 mm downwards at a speed
259 of 35 mm / s. Second displacement was done to additionally form the material and
260 increase the strength of the joint. The first stage of force increase was slightly higher, as
261 for the group described previously, has reached value of 23.24 kN. For the second stage a
262 decrease in force was observed, which can be connected with the beginning of vertical
263 movement and increase of force for the ring sensor (Fig. 11.a). Manufacturing the joint by
264 a complex movement allowed to increase the strength. The connection of two parts was
265 destroyed at the value of 408 N (Fig. 11.b).

266

267 **Fig. 11.** Obtained data for joint produced by jaws with single movement, height LP "+05",
268 movements of forming jaws 0.3mm and vertical movement 0.1mm: a) Values of
269 the reaction forces, b) the strength of the joint in the tensile test,

270
271 The third analyzed case concerned a joint made with a single movement with the
272 parameter defining the height of the force applied by the value of 5.5 mm, defined as
273 "+05". Radial movement of the jaws was 0.5 mm per side. The speed of movement in the
274 radial direction was 1.83 mm / s. The reaction forces registered on the sensor reached the
275 maximum value in the direction of the vertical axis, equal to 1.17 kN. After conversion to
276 radial movement, this value was 22.41 kN for a total of 4 jaws (Fig 12.a). The strength of
277 the tested joint for this case reached value of 599 N, the higher force has destroyed joint
278 (Fig. 12.b).
279

a)

b)

280 **Fig. 12.** Obtained data for joint produced by jaws with single movement, height LP "+05",
 281 movements of forming jaws 0.5mm: a) Values of the reaction forces, b) the
 282 strength of the joint in the tensile test,

283

284 In the fourth case, the joint produced with the parameter determining the height of the
 285 force applied by a value of 5.5 mm, defined as "+05", and the parameter characterizing
 286 the distance of the jaws by the value of 0.5 mm, was tested using complex motion. In the
 287 second phase of the movement, the jaws made a vertical movement of 0.2 mm downwards
 288 at a speed of 35 mm / s. The first stage of force increase was higher than for the group
 289 described previously, as it amounted to 26.50 kN, then a decrease in force was observed,
 290 denoting the beginning of vertical movement, and its increase for the ring sensor installed
 291 in the external system (Fig. 13.a). Performing the compound movement allowed to
 292 increase the strength of the joint, as it failed to deteriorate until the value of 925 N (Fig.
 293 13.b).

294

295

a)

b)

296 **Fig. 13.** Obtained data for joint produced by jaws with single movement, height LP "+05",
 297 movements of forming jaws 0.5mm and vertical movement 0.2mm: a) Values of
 298 the reaction forces, b) the strength of the joint in the tensile test,

299

300 The fifth analyzed case concerned a joint made with a straight movement with the
 301 parameter specifying the height of the force application of 5.0 mm, defined as "+00". On

302 the other hand, the parameter characterizing the distance between the jaws spreading
303 was 0.5mm. The speed of movement in the radial direction was 1.83 mm / s. The reaction
304 forces recorded on the "button" sensor reached the maximum value in the direction of the
305 vertical axis, equal to 1.60 kN. After conversion to radial movement, the value was 30.67
306 kN for a total of 4 jaws (Fig. 14.a). With regard to the strength of the tested joint, its
307 complete failure occurred for the value of 810 N (Fig. 14.b).

310 **Fig. 14.** Obtained data for joint produced by jaws with single movement, height LP "+00",
311 movements of forming jaws 0.5mm: a) Values of the reaction forces, b) the
312 strength of the joint in the tensile test,

314 The last case concerned a joint produced with the parameter defining the height of the
315 force applied by the value of 5.0 mm, ie "+00", and the parameter characterizing the
316 distance of the jaws spread by the value of 0.5 mm, using compound motion. In the second
317 phase of the movement, the jaws made a vertical movement of 0.1 mm downwards at a
318 speed of 35 mm / s. The first stage of increasing the force was similar to the group
319 described previously, as it amounted to 30.79 kN, then a decrease in the force was
320 observed, denoting the beginning of vertical movement, and its increase for the ring
321 sensor installed in the external system (Fig. 15.a). Completed motion allowed to increase
322 the strength of the joint, as it failed to deteriorate until the value of 1014 N (Fig. 15.b).

a)

b)

324 **Fig. 15.** Obtained data for joint produced by jaws with single movement, height LP "+00",
 325 movements of forming jaws 0.5mm and vertical movement 0.1mm: a) Values of
 326 the reaction forces, b) the strength of the joint in the tensile test.

327

328 By summarizing the values of the resultant reaction forces and the strength of joints
 329 produced with the same spreading jaws with the use of different parameters
 330 characterizing the given method of making the joint, the impact of the amount of force
 331 applied to the system on the occurring reaction forces and joint strength was found. For
 332 the first case, where the joint was produced by the basic method, the lowest value of
 333 reaction forces was observed, however, the joint strength was also the lowest among the
 334 tested cases. For the second case, with a 10% increase in the reaction forces and the
 335 application of the method with complex movement of expanding jaws, a 33% increase in
 336 the strength of the joint was noted. During further tests, the parameter characterizing the
 337 jaw spreading distance was increased from 0.3 mm to 0.5 mm, which in the case of straight
 338 jaw movement resulted in an increase in reaction forces by 6% compared to the first case
 339 and an increase in the joint strength by 95% compared to the first case. The fourth case
 340 concerned the use of the method of complex movement of expanding jaws with the
 341 parameters characterizing the jaw opening path of 0.5 mm for horizontal movement and
 342 0.2 mm for vertical movement, thus there was an 18% increase in reaction forces and a
 343 54% increase in joint strength compared to the third case . Relating the obtained data to
 344 the first case, a 26% increase in reaction forces was observed with a simultaneous 201%
 345 increase in joint strength. In subsequent cases, the influence of the LP parameter on the
 346 reaction forces during the production of the joint and the strength of the joint were

347 investigated. Compared to the previous cases, the height of the force application was
 348 changed from 5.5 mm to 5.0 mm, which resulted in a straight movement increase of the
 349 reaction forces by 37% and the joint strength by 35% compared to the third case. Relative
 350 to the base case, the reaction forces increased by 46%, but the joint strength increased by
 351 264%. On the other hand, in the case of complex motion with the LP parameter equal to
 352 "00", the height of the application of forces equal to 5.0 mm and vertical motion of 0.1 mm,
 353 an increase in reaction forces by 16% and joint strength by 10% was observed compared
 354 to the fourth case. In relation to the first case, the reaction forces increased by 46% and
 355 the joint strength by 230%. The obtained research results are presented in Table 8.

356

357 **Table 8.** Comparison of the obtained reaction forces during the production of the joint and
 358 strength of joints in a tensile test depending on the process parameters.

Case	LP "+0,5"; $s_{jh}=0,3;$ $s_{jv}=0;$	LP "+0,5"; $s_{jh}=0,3;$ $s_{jv}=0,1;$	LP "+0,5"; $s_{jh}=0,5;$ $s_{jv}=0;$	LP "+0,5"; $s_{jh}=0,5;$ $s_{jv}=0,2;$	LP "+0,0"; $s_{jh}=0,5;$ $s_{jv}=0;$	LP "+0,0"; $s_{jh}=0,5;$ $s_{jv}=0,1;$
Reaction forces during the production of the joint [kN]	21,1	23,2	22,4	26,5	30,7	30,8
Strength of joints in a tensile test [kN]	0,3	0,4	0,6	0,9	0,8	1,0

359 The analyzes show that the strength and reaction forces needed to produce the joint are
 360 influenced by the distance LP, which affects the angle formed between the flange wall of
 361 the rivet and the inner edge of the hole in the pipe. In fixed joints, there is a division
 362 according to the purpose of their implementation. The first group is for indirect
 363 connections, while the second group is for final connections. A distinction in the division
 364 is made due to the necessity to perform further operations in order for the combination
 365 of elements to meet the expected requirements. The presented diagrams make it possible
 366 to track the formation of a joint and to fully control its formation. The results obtained by
 367 simulating in Solidworks are reflected in the data recorded during the actual test. The
 368 discrepancies that can be seen when comparing the two graphs may result from the
 369 absorption of forces by the jaws and intermediate parts due to their deformation. These
 370 parts are not taken into account in the FEA analysis, which may cause some differences.

371 However, simulation effectively allows a full preview of the deformations that are
372 reflected in reality.

373 **6. Conclusions**

374 The conducted analyzes and tests allowed to present a new method of making joints based
375 on the complex movement of the jaws as the right way to increase their strength. of the
376 described product. The performed tests and studies allowed for the formulation of the
377 following conclusions:

378 1. The difference in the height of the force application point between the inflection point
379 and the jaw attack point differs by 0.5 mm, which is 10% of the difference in relation to
380 the L_p parameter. The energy consumption of the joint forming force for case 1 was lower
381 by 10% than for case 2 using composite motion. The joint 2 produced by the movement
382 of the jaws along two axes made it possible to increase the strength of the joint by 33%
383 compared to case 1, giving a force above 400N.

384 2. The ratio of the joint strength to the required forces to produce it in case 1 and 2 was
385 only 1% higher for the complex motion. The energy consumption of the joint forming
386 force for case 4 was greater by over 18% than for case 3 using composite motion. The
387 joint 4 produced by the movement of the jaws along two axes made it possible to increase
388 the strength of the joint by more than 50% compared to case 5, giving a force over 920N.

389 3. The ratio of the joint strength to the forces needed to produce it in case 3 and 4 was 3%
390 for both tests. The energy consumption of the joint forming force for case 5 was lower by
391 1% than for case 6 using complex motion. Which proves that at a low value of the L_p
392 parameter, jaws may slip when moving vertically.

393 4. The joints 6 produced on the basis of the movement of the jaws in two axes made it
394 possible to increase the strength of the joint by 25% compared to case 5, giving a force
395 above 1000N. The ratio of the joint strength to the forces needed to produce it in case 5
396 and 6 was 3% for both tests.

397 5. The greatest strength of the joint was achieved for case 6, however the percentage
398 increase in force was achieved for case 4 which was more than 50% compared to case 3.
399 The machine is equipped with 2 servo systems and external force and displacement
400 measuring systems, giving full possibility of process control. Finite element analysis in
401 Solidworks Simulation can be effectively used to compare the method or shape of forming
402 tools.

403 6. When comparing the reaction force graph from the actual test to the test carried out
404 with FEA, you can see the reflection of the results.

405 **Funding:** This research was funded by [Regional Operational Programme for the
406 Wielkopolska Voivodeship financed by the Structural Funds of the European Union
407 and the State budget of Poland] grant number [RPWP.01.02.00-30-0046/16]. The
408 research leading to these results has received funding from the Norwegian Financial
409 Mechanism 2014-2021 under Project Contract No 2020/37/K/ST8/02748.

410 **Conflict of interests:** The authors declare that there is no conflict of interests regarding the
411 publication of this article.

412 **Data Availability:** All data that produce the results in this work can be requested from the
413 corresponding author.

414

415 References

416 [1] H. Zou, W. Wang, G. Zhang, F. Qin, C. Tian, and Y. Yan, "Experimental
417 investigation on an integrated thermal management system with heat pipe
418 heat exchanger for electric vehicle," *Energy Conversion and Management*, vol.
419 118, pp. 88–95, Jun. 2016, doi: 10.1016/j.enconman.2016.03.066.
420 [2] Z. Qi, "Advances on air conditioning and heat pump system in electric vehicles
421 - A review," *Renewable and Sustainable Energy Reviews*, vol. 38. Elsevier Ltd,
422 pp. 754–764, 2014. doi: 10.1016/j.rser.2014.07.038.
423 [3] R. W. Maruda, G. M. Krolczyk, P. Nieslony, S. Wojciechowski, M. Michalski, and
424 S. Legutko, "The influence of the cooling conditions on the cutting tool wear
425 and the chip formation mechanism," *Journal of Manufacturing Processes*, vol.
426 24, pp. 107–115, Oct. 2016, doi: 10.1016/j.jmapro.2016.08.006.
427 [4] G. M. Krolczyk, J. B. Krolczyk, S. Legutko, and A. Hunjet, "Utjecaj tehnologije
428 izrade na razinu vibracija stroja za usitnjavanje drva tijekom rada EFFECT OF

429 THE DISC PROCESSING TECHNOLOGY ON THE VIBRATION LEVEL OF THE
430 CHIPPER DURING OPERATIONS," 2012.

431 [5] N. Wróbel, M. Rejek, and G. Krolczyk, "Testing of crimp connections made on a
432 prototype stand," in *E3S Web of Conferences*, Oct. 2017, vol. 19. doi:
433 10.1051/e3sconf/20171903029.

434 [6] N. Wrobel, M. Rejek, G. Krolczyk, and S. Hloch, "Testing of tight crimped joint
435 made on a prototype stand," in *Lecture Notes in Mechanical Engineering*, 2018,
436 no. 201519, pp. 497–507. doi: 10.1007/978-3-319-68619-6_48.

437 [7] C. Chen, X. Han, S. Zhao, F. Xu, X. Zhao, and T. Ishida, "Comparative study on
438 two compressing methods of clinched joints with dissimilar aluminum alloy
439 sheets," *International Journal of Advanced Manufacturing Technology*, vol. 93,
440 no. 5–8, pp. 1929–1937, Nov. 2017, doi: 10.1007/s00170-017-0650-1.

441 [8] F. Lambiase, "Joinability of different thermoplastic polymers with aluminium
442 AA6082 sheets by mechanical clinching," *International Journal of Advanced
443 Manufacturing Technology*, vol. 80, no. 9–12, pp. 1995–2006, Oct. 2015, doi:
444 10.1007/s00170-015-7192-1.

445 [9] T. Pinger and E. M. Rückriem, "Investigation on the corrosion and mechanical
446 behavior of thin film batch galvanized thick plate components in clinch joints,"
447 *International Journal of Advanced Manufacturing Technology*, vol. 86, no. 1–4,
448 pp. 29–36, Sep. 2016, doi: 10.1007/s00170-015-8141-8.

449 [10] T. Jiang, Z. X. Liu, and P. C. Wang, "Quality inspection of clinched joints of
450 steel and aluminum," *International Journal of Advanced Manufacturing
451 Technology*, vol. 76, no. 5–8, pp. 1393–1402, Feb. 2015, doi: 10.1007/s00170-
452 014-6362-x.

453 [11] L'. Kaščák, E. Spišák, R. Kubík, and J. Majerníková, "The Evaluation of
454 Properties of Mechanically Clinched Joints Made of Ferrous and Non-Ferrous
455 Materials," *Advances in Science and Technology Research Journal*, vol. 12, no.
456 1, pp. 162–170, Mar. 2018, doi: 10.12913/22998624/85659.

457 [12] Q. Li *et al.*, "Research on the forming quality of clinched joint for dissimilar
458 sheet metal," *The International Journal of Advanced Manufacturing
459 Technology*, Jan. 2022, doi: 10.1007/s00170-021-08602-1.

460 [13] H. Peng, C. Chen, X. Ren, X. Ran, and X. Gao, "Research on the material flow
461 and joining performance of two-strokes flattening clinched joint," *Thin-Walled
462 Structures*, vol. 169, Dec. 2021, doi: 10.1016/j.tws.2021.108289.

463 [14] N. Wróbel, M. Rejek, and G. Królczyk, "Testing of beveled crimp connections
464 made on a prototype stand," *Archives of Mechanical Technology and Materials*,
465 vol. 38, no. 1, pp. 15–22, Jun. 2018, doi: 10.2478/amtm-2018-0003.

466 [15] C. Chen, X. Han, S. Zhao, F. Xu, X. Zhao, and T. Ishida, "Comparative study on
467 two compressing methods of clinched joints with dissimilar aluminum alloy
468 sheets," *International Journal of Advanced Manufacturing Technology*, vol. 93,
469 no. 5–8, pp. 1929–1937, Nov. 2017, doi: 10.1007/s00170-017-0650-1.

470 [16] X. He, "Recent development in finite element analysis of clinched joints,"
471 *International Journal of Advanced Manufacturing Technology*, vol. 48, no. 5–8,
472 pp. 607–612, May 2010, doi: 10.1007/s00170-009-2306-2.

473 [17] R. Kumar, S. Chattopadhyaya, S. Hloch, G. Krolczyk, and S. Legutko, "Wear
474 characteristics and defects analysis of friction stir welded joint of aluminium
475 alloy 6061-t6," *Eksplotacja i Niezawodnosć*, vol. 18, no. 1, pp. 128–135, 2016,
476 doi: 10.17531/ein.2016.1.17.

477 [18] J. Mucha, L. Kašyák, and E. Spišák, "ARCHIVES OF CIVIL AND MECHANICAL
478 ENGINEERING Joining the car-body sheets using clinching process with various
479 thickness and mechanical property arrangements."

480 [19] C. Chen, H. Zhang, Y. Xu, and J. Wu, "Investigation of the flat-clinching
481 process for joining three-layer sheets on thin-walled structures," *Thin-Walled*
482 *Structures*, vol. 157, Dec. 2020, doi: 10.1016/j.tws.2020.107034.

483 [20] X. Shi, X. Feng, J. Teng, K. Zhang, and L. Zhou, "Effect of laser shock peening
484 on microstructure and fatigue properties of thin-wall welded Ti-6Al-4V alloy,"
485 *Vacuum*, vol. 184, Feb. 2021, doi: 10.1016/j.vacuum.2020.109986.

486 [21] F. Yan, Y. C. Zhang, J. Shen, X. bin Fu, and S. Mi, "A new calculation method
487 of viscoplastic heat production generated by plastic flow of friction stir welding
488 process," *Materials Chemistry and Physics*, vol. 270, Sep. 2021, doi:
489 10.1016/j.matchemphys.2021.124795.

490 [22] J. Mucha, L. Kaščák, and E. Spišák, "The experimental analysis of forming and
491 strength of clinch riveting sheet metal joint made of different materials,"
492 *Advances in Mechanical Engineering*, vol. 2013, 2013, doi:
493 10.1155/2013/848973.

494 [23] L. Han, M. Thornton, and M. Shergold, "A comparative study between self-
495 piercing riveting and resistance spot welding of aluminium sheets for the
496 automotive industry."

497 [24] R. Pilawka and T. Spycharj, "KLEJE EPOKSYDOWE Z NANOCZĄSTKAMI DO
498 ŁĄCZENIA METALI," 2004.

499 [25] M. Salamati, M. Soltanpour, A. Fazli, and A. Zajkani, "Processing and tooling
500 considerations in joining by forming technologies; part A—mechanical joining,"
501 *International Journal of Advanced Manufacturing Technology*, vol. 101, no. 1–
502 4, pp. 261–315, Mar. 2019, doi: 10.1007/s00170-018-2823-y.

503 [26] F. Weber *et al.*, "Joining by forming – A selective review," *Journal of Advanced*
504 *Joining Processes*, vol. 3, Jun. 2021, doi: 10.1016/j.jajp.2021.100054.

505 [27] K. I. Mori, N. Bay, L. Fratini, F. Micari, and A. E. Tekkaya, "Joining by plastic
506 deformation," *CIRP Annals - Manufacturing Technology*, vol. 62, no. 2, pp.
507 673–694, 2013, doi: 10.1016/j.cirp.2013.05.004.

508 [28] P. Briskham, N. Blundell, L. Han, R. Hewitt, K. Young, and D. Boomer,
509 "Comparison of self-pierce riveting, resistance spot welding and spot friction
510 joining for aluminium automotive sheet," 2006.

511 [29] M. Rejek, N. Wróbel, J. Królczyk, and G. Królczyk, "Designing and testing cold-
512 formed rounded connections made on a prototype station," *Materials*, vol. 12,
513 no. 7, 2019, doi: 10.3390/ma12071061.

514 [30] "ALUMINIUM-ALLOY-EN-AW-6060_MATERIAL-DATA-SHEET_ALUMINCO".