Homework 7 - Búsqueda local

Claudia Lizeth Hernández Ramírez

24 de noviembre de 2021

1. Introducción

La tarea se trata de maximizar algúna variante de la función bidimensional ejemplo, g(x,y), con restricciones tipo $-3 \le x, y \le 3$, con la misma técnica del ejemplo unidimensional. La posición actual es un par x,y y se ocupan dos movimientos aleatorios, $\triangle x$ y $\triangle y$, cuyas combinaciones posibles proveen ocho posiciones vecino, de los cuales aquella que logra el mayor valor para g es seleccionado. Dibujado en tres dimensiones, g(x,y).

2. Desarrollo

Comencé trabajando con el código base[3] al cual se le realizaron varios cambios para lograr el objetivo de la tarea. Dentro de las modificaciones que se implementaron estan: cambiar la función y hacerla bidimensional con otros intervalos de trabajo, se agregó un ciclo FOR para variar el paso con el que se mueven los puntos rojos y otro ciclo FOR para las repeticiones.

La función con la que trabaje es:

$$f(x,y) = (x^2) - 8 * x - 10 * (5 * sin(x)) - (y^2) * (5 * sin(y))$$
(1)

Las restricciones de mi función son : $-5 \le x$, $y \le 5$.

Figura 1: Visualización gráfica de la función (1).

Listing 1: Código proyección del plano xy.

```
g <- function(x,y) {
    return(((x^2) - 8 * x - 10 * (5 * sin(x)) - (y^2) * (5 * sin(y)) ))
}
x <- seq(-5, 5, 0.25)
y <- x
z <- outer(x, y, g)
dimnames(z) = list(x, y)
library(reshape2)
d = melt(z)
names(d) = c("x", "y", "z")
library(lattice)
png("p7_flat_2.png", width = 500, height = 500)
levelplot(z ~ x * y, data = d, col.regions = cm.colors(100))
graphics.off()</pre>
```

Listing 2: Código gráfica 3D.

```
\begin{array}{l} g &\leftarrow \text{function}(x,\ y) \ \{ \\ \text{return}(((x^2) - 8 * x - 10 * (5 * \sin(x)) - (y^2) * (5 * \sin(y)) )) \\ \} \\ x &\leftarrow \text{seq}(-5,\ 5,\ 0.25) \\ y &\leftarrow x \\ z &\leftarrow \text{outer}(x,\ y,\ g) \\ \text{png}("p7\_3d.\,\text{png"},\ \text{width}=700,\ \text{height}=700) \\ \text{persp}(x,\ y,\ z,\ \text{shade}=0.2,\ \text{col}=\text{cm.}\,\text{colors}\,(800)\ ,\ \text{theta}=40,\ \text{phi}=30) \\ \text{graphics.}\,\text{off}() \end{array}
```

Listing 3: Código para obtener los puntos.

```
datos <- data.frame()
g \leftarrow function(x,y) {
  return (((x^2) - 8 * x - 10 * (5 * \sin(x)) - (y^2) * (5 * \sin(y))))
x < -seq(-5, 5, 0.25)
y <- x
z \leftarrow outer(x, y, g)
low < -5
high < -5
pasos \leftarrow seq(0.25, 4, 0.25)
repe = 1:30
replicas <- 50 #Cuantos puntitos
for (step in pasos) {
  for (reply in repe) { #hacer repeticiones del experimento
    replica <- function(t) {
      curr \leftarrow c(runif(1, low, high), runif(1, low, high))
      best <- curr
      for (tiempo in 1:t) {
       [\ldots]
```

El código completo se encuentra en mi repositorio[1].

En base a otro código visto en clase[4] generé las imágenes para mi gif[2].

Almacené la información generada con mi código en un data frame, de donde posteriormente extraje los datos para generar mi boxplot y realizar pruebas estadísticas.

Listing 4: Código Boxplot.

```
datos$Paso = as.factor(datos$Paso)
ggplot(datos, aes(x= Paso, y= Minimo, fill= Paso, )) +
  geom_boxplot(fill = cm.colors(16))+
  labs(x = "Paso", y = "Valor_minimo")
```

Listing 5: Código pruebas estadísticas.

```
#Estadisitica —
#con p menor a 0.05 se rechaza hipotesis nula H0
#H0: los datos proceden de una distribucion normal
#H1: los datos no proceden de una distribucion normal
tapply(datos$Minimo, datos$Paso, shapiro.test) #Shapiro

datos%% #Datos individuales
group_by(Paso) %%
summarise(

promedio = mean(Minimo, na.rm = TRUE),
desviacion_std = sd(Minimo, na.rm = TRUE),
varianza = sd(Minimo, na.rm = TRUE);
mediana = median(Minimo, na.rm = TRUE),
rango_intercuartil = IQR(Minimo, na.rm = TRUE)

kruskal.test(Minimo ~ Paso, data = datos) #Kruskal
pairwise.wilcox.test(datos$Minimo, datos$Paso) #Wilcox
```


Figura 2: Busqueda local de la función (1) a p =0.25.

Figura 3: Busqueda local de la función (1) a p =3.50.

3. Estadística

Figura 4: Valor mínimo de puntos rojos por paso.

Cuadro 1: Resultados obtenidos de prueba de normalidad de Shapiro.

Combinación	W value	P value	¿Se acepta H0?
0.25	0.8080	9.2×10^{-05}	no
0.50	0.9389	0.0851	sí
0.75	0.8864	0.0039	no
1.00	0.9672	0.4668	sí
1.25	0.9248	0.0359	no
1.50	0.9761	0.7159	sí
1.75	0.9722	0.6035	sí
2.00	0.9835	0.9089	sí
2.25	0.8756	0.0022	no
2.50	0.9339	0.0627	sí
2.75	0.3460	1.7×10^{-10}	no
3.00	0.9448	0.1227	sí
3.25	0.5086	6.6×10^{-09}	no
3.50	0.6749	6.8×10^{-07}	no
3.75	0.6306	1.7×10^{-07}	no
4.00	0.5631	2.6×10^{-08}	no

Cuadro 2: Información individual de los datos.

Carga	Participantes	Promedio	Desv. Std.	Varianza	Mediana	Rango Intercuartil
0.25	30	36.50	3.52	12.40	34.70	3.22
0.50	30	51.70	0.25	0.06	51.80	0.31
0.75	30	51.10	0.59	0.35	51.20	0.78
1.00	30	50.80	0.54	0.29	50.90	0.78
1.25	30	50.00	0.86	0.75	50.20	1.56
1.50	30	49.90	0.75	0.56	50.00	1.21
1.75	30	49.40	1.07	1.15	49.60	1.36
2.00	30	49.40	1.24	1.54	49.50	1.64
2.25	30	49.00	1.80	3.26	49.30	1.86
2.50	30	49.10	1.37	1.88	49.30	1.41
2.75	30	50.30	6.46	41.70	49.30	1.52
3.00	30	49.60	1.72	2.95	50.10	2.18
3.25	30	66.70	35.30	1248	51.30	1.57
3.50	30	82.60	45.10	2031	52.00	84.00
3.75	30	123.0	42.60	1812	148.0	63.40
4.00	30	129.0	39.80	1583	148.0	10.80

Cuadro 3: Resultados obtenidos de prueba Kruskal-Wallis.

Chi cuadrada	DF	Р
308.88	15	2.2×10^{-16}

Cuadro 4: Diferencias entre grupos.

	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00
0.50	2.0×10^{-15}							
0.75	2.0×10^{-15}	3.3×10^{-06}						
1.00	2.0×10^{-15}	6.7×10^{-11}	0.51					
1.25	2.0×10^{-15}	2.1×10^{-14}	2.6×10^{-05}	0.02				
1.50	2.0×10^{-15}	7.5×10^{-15}	9.7×10^{-07}	5.4×10^{-04}	1.00			
1.75	3.9×10^{-15}	7.5×10^{-15}	2.8×10^{-08}	4.9×10^{-06}	1.00	1.00		
2.00	7.5×10^{-15}	6.7×10^{-11}	$1,2 \times 10^{-06}$	$7,2 \times 10^{-05}$	1.00	1.00	1.00	
2.25	$3,3 \times 10^{-14}$	1.3×10^{-14}	1.2×10^{-07}	3.1×10^{-05}	0.64	1.00	1.00	1.00
2.50	$1,3 \times 10^{-14}$	$3,1 \times 10^{-11}$	$5,4 \times 10^{-09}$	4.2×10^{-07}	0.26	0.26	1.00	1.00
2.75	2.1×10^{-14}	5.5×10^{-11}	2.0×10^{-07}	6.5×10^{-06}	0.32	1.00	1.00	1.00
3.00	2.1×10^{-14}	4.2×10^{-08}	7.3×10^{-03}	0.36	1.00	1.00	1.00	1.00
3.25	3.9×10^{-15}	1.00	1.00	0.61	4×10^{-04}	1.4×10^{-04}	7.9×10^{-06}	$3,3 \times 10^{-05}$
3.50	7.5×10^{-15}	1.00	0.25	0.10	3.5×10^{-04}	1.4×10^{-04}	$2,4 \times 10^{-05}$	6.7×10^{-05}
3.75	3.9×10^{-15}	$8,3 \times 10^{-08}$	1.7×10^{-09}	6.3×10^{-10}	$1,2 \times 10^{-10}$	6.7×10^{-11}	4.6×10^{-11}	$1,2 \times 10^{-10}$
4.00	2.0×10^{-15}	1.1×10^{-05}	1.5×10^{-06}	1.8×10^{-07}	$1,3 \times 10^{-09}$	3.7×10^{-10}	2.0×10^{-11}	2.5×10^{-11}

Cuadro 5: Diferencias entre grupos. Continuación.

	2.25	2.50	2.75	3.00	3.25	3.50	3.75
0.50							
0.75							
1.00							
1.25							
1.50							
1.75							
2.00							
2.25							
2.50	1.00						
2.75	1.00	1.00					
3.00	1.00	1.00	1.00				
3.25	6×10^{-06}	4.4×10^{-06}	$1,3 \times 10^{-05}$	0.06			
3.50	2.5×10^{-05}	1.5×10^{-05}	4.8×10^{-05}	9.8×10^{-04}	1.00		
3.75	4.6×10^{-11}	3.7×10^{-11}	1.7×10^{-10}	1.4×10^{-10}	1.9×10^{-05}	0.06	
4.00	3.7×10^{-11}	4.6×10^{-12}	3.1×10^{-11}	1.3×10^{-09}	6.2×10^{-05}	0.05	1.00

4. Conclusión

Con base en la información presentada en la figura 4 y en las pruebas estadísticas, podemos concluir que el valor mínimo que alcanzarán los puntos rojos está fuertemente relacionada con la variación del paso. A un paso mayor, se alcanzará un mayor valor en la función.

De igual forma en las figuras 2 y 3 es evidente que a un paso = 3.50 las partículas alcanzan un nivel mayor con mayor rapidez, pues apenas en el paso 6 ya se logra apreciar un ordenamiento.

Referencias

- [1] Claudia Hernández. Codigo completo, 2021. URL https://github.com/claudiahr/Simulacion-AD2021/tree/main/HW7.
- [2] Claudia Hernández. Gif, 2021. URL https://github.com/claudiahr/Simulacion-AD2021/tree/main/HW7/gif.
- [3] Elisa Schaeffer. Codigo base, 2021. URL https://github.com/satuelisa/Simulation/blob/master/LocalSearch/replicas.R.
- [4] Elisa Schaeffer. Codigo imágenes, 2021. URL https://github.com/satuelisa/Simulation/blob/master/LocalSearch/minimize1D.R.