TOP SECRET

USSR

Ref. No:

Issued:

/11/5/1961

Copy No: 25th

INFORMATION ABOUT THE WORK OF CAMP-2 (1945)

1111

From: NEW YORK

To: MOSCOW

No: 28

8 Jan. 45

To VIKTOR. [1] .

SAMERE [KALIER] [11] has arrived in TYRE [TIR] [111] on leave. He has confirmed his agreement to help us. In addition to the information passed to us through WMSF [OSA] [1V] he has given us a hand-written plan of the lay-out of Camp-2 and facts known to him about the work and the personnel. The basic task of the camp is to make the mechanism which is to serve as the detonator. Experimental work is being cerried out on the construction of a tube [TRURA][a] of this kind and experiments are being tried with explosive [VV][b] -

[13 groups unrecoverable]

is still

[17 groups unrecovered]

gave you for

[91 groups unrecovered]

TYRE in six months time

[32 groups unrecoverable]

LIBERAL[V] to WATE O'SA

[16 groups unrecovered]

Telegraph your opinion.

No. 23 8th James

ANTON[vi]

Distribution

[Notes and Comments overleaf]

TOP SECRET

2

Notes: [a] TRUBA literally means "tube" or "pipe". The diminutive TRUBKA can mean "fuse".

[b] VV expands to VZRIVChATOE VEShohESTVO, explosive.

Comments: [1] VIKTOR : Lt. Gen. P. M. FITIN.

[11] CALIBRE : David GREENGLASS

[111] TIRE : NEW YORK.

[iv] WASP : Ruth GREENGLASS

[v] LIBERAL : Julius ROSENBERG

[vi] ANTON : Leonid Romanovich KVASNIKOV, engineer for ANTORG.

.t.r

graph of the graph was been

THE PERSON OF THE PROPERTY OF THE PARTY OF T

STREET STREET

 $\mathcal{L}(x) = \frac{1}{2\pi i} \left(\frac{1}{2\pi i} \left(\frac{1}{2\pi i} - \frac{1}{2\pi i} \right) + \frac{1}{2\pi i} \left(\frac{1}{2\pi i} \right) \right)$

1 11375 33 33

i automoti

 $\int_{\mathbb{R}^{n}} dx \, \int_{\mathbb{R}^{n}} \frac{dx}{dx} \, dx = \frac{1}{n} \frac{dx}{dx}$

Could be seen to the second

1 45