Tareas de tercer parcial-Topología

Alumnos:

Arturo Rodriguez Contreras - 2132880

Jonathan Raymundo Torres Cardenas - 1949731

Praxedis Jimenes Ruvalcaba

Erick Román Montemayor Treviño - 1957959

Alexis Noe Mora Leyva

Everardo Flores Rivera - 2127301

25 de mayo de 2025

- 1 Sea Y subespacio de X con U, V separación en Y. Entonces $\overline{U} \cap V = \emptyset$ y $U \cap \overline{V} = \emptyset$ Demostraremos que $\overline{U} \cap V = \emptyset$ suponiendo lo contrario, esto es que existe x tal que $x \in \overline{U} \cap V$, si $x \in U$ llegamos a una contradicción ya que $U \cap V = \emptyset$. Si $x \in U'$ entonces se cumple que para toda A vecindad de x, $(A - \{x\}) \cap U \neq \emptyset$
- de X, entonces h(C) es componente de YSea C_x una componente conexa de X, esto es hay un X tal que $C_x = \bigcup \{C \subset X | x \in C\}; C$ conexo. Entonces por continuidad se tiene lo siguiente $h(C_x) = h(\bigcup C) = \bigcup h(C)$, el cual es conexo por la invariante de la conexidad, ademas es el conjunto de todos los conexos que tienen

a h(x) por ser homeomorfismo.

Sean X, Y esp. top. $y h: X \to Y$ un homeomorfismo. Demostrar que si C es componente

3 Sea Y \subset X un subespacio de un esp. top. X. Y es compacto en X ssi toda cubierta abierta para Y por abiertos de X contiene una subcolección finita de abiertos en Y que lo cubren. (\Rightarrow) Sea Y compacto y $A = \{A_{\alpha}\}_{\alpha} \in J$ una cubierta de Y de abiertos de X. Entonces $\{A_{\alpha} \cap$

 $Y|\alpha \in J$ tambien es una cubierta de Y por conjuntos abiertos en Y bajo la topologia del

subespacio; como Y es compacto, existe una subcolección finita de dicha colección.

(\Leftarrow) Ahora $A = \{A_{\alpha}\}$ es una cubierta de de Y de abiertos en X y por hipótesis existe una subcubierta finita $\{A_{\alpha_1}, ..., A_{\alpha_n}\}$. Entonces $\{A_{\alpha_1} \cap Y, ..., A_{\alpha_n} \cap Y\}$ es recubrimiento finito de Y con abiertos en Y.

4 La compacidad es una invariante topologica bajo continuidad.

Sea $B = \{B_{\alpha}\}_{{\alpha} \in J}$ una cubierta de f(X) por abiertos de Y, como f es continua entonces la colección $A = \{f^{-1}(B_{\alpha})\}_{{\alpha} \in J}$ es una cubierta de X de abiertos en X. Por ser X compacto, $\{f^{-1}(B_{\alpha})\}_{{\alpha}=1}^n$ es subcubierta finita de X. Entonces $\{B_{\alpha}\}_{{\alpha}=1}^n$ es subcubierta finita de f(X).

5 Sea $f: X \to Y$, con Y compacto y T_2 . f es continua en X ssi el conjunto $G_f = \{(x, f(x)) : x \in X\}$ es cerrado en $X \times Y$.

 (\Rightarrow)

Demostraremos que $A = (X \times Y) - G_f$ es abierto en $X \times Y$. Sea $(x_0, y_0) \in A$ esto es que $y_0 \neq f(x_0)$, como Y es Hausdörff, existen abiertos disjuntos U,V tales que $f(x_0) \in U$ y $y_0 \in V$. Como f es continua $W = f^{-1}(U) \times V$ es vecindad de (x_0, y_0) . Veamos que no intersecta a G_f , su poniendo que hay un $(x, y) \in W \cap G_f$ entonces y = f(x) por ser elemento de G_f y se sigue que $f(x) = y \in U \land y \in V$ lo cual es una contradicción ya que U,V son disjuntos. Por tanto, $(x_0, y_0) \in f^{-1}(U) \times V \subset A$, entonces A es abierto por caracterización de abiertos. (\Leftarrow)

Sea $x_0 \in X$ y sea V una vecindad de $f(x_0)$. Entonces por hipotesis tenemos que, $K = G_f \cap (X \times (Y - V))$ es cerrado en $X \times Y$, ahora como Y es compacto, la proyección en X como $\pi_1(K)$ es cerrada en X por teorema. Sea $U = X - \pi_1(K)$, veremos que U es vecindad de x_0 tal que $f(U) \subset V$. Primero $x_0 \in U$ ya que $f(x_0) \notin Y - V$. Sea $x \in U$ y supongamos que $f(x) \notin V$. Entonces $(x, f(x)) \in K$, entonces $\pi_1(x, f(x)) = x \in \pi(K)$, contradiciendo que $x \in U$. Por lo tanto se cumple la afirmación y f es continua.

6 Hallar un espacio 1-num pero no 2-num.

Topología uniforme R omega

7 Un subespacio de un espacio 2-num es 2-num. Hallar un contraejemplo del teorema de Lindelof.

Sea X un es espacio 2-num y A subespacio de X. Entonces existe una base numerable \mathfrak{B} , entonces $\{B \cap A | B \in \mathfrak{B}\}$ es una base numerable para el subespacio A.

- 8 El producto finito de Lindelof no es Lindelof
- 9 Hallar un T_3 que no es T_4
- 10 Sea (X, τ_X) un espacio top. T_1 . Demostrar que X es normal ssi para cada $A \subset X$ cerrado y U abierto en X tal que $A \subset U$, existe V abierto en X tal que $A \subset \overline{V} \subset U$ $(\Rightarrow)X$ es normal

Sea $A \subset X$ cerrado en X y U vecindad abierta de X tal que $A \subset U$. Entonces X - U es cerrado (complemento de un abierto) y S.P.G. supongamos que es no vacío, entonces $\nexists a \in A$ y $a \in X - U$. Como X es normal, entonces existen V, W abiertos tales que $A \subset V$ y $X - U \subset W$. Supongamos que $\overline{V} \not\subset U$, entonces $\exists y \in \overline{V} \cap (X - U)$. Como $y \in X - U \to y \in W$, pero como es normal, entonces $W \cap V = \emptyset$, entonces $y \notin \overline{V}$, lo cual es una contradicción

 $\therefore \overline{V} \subset W$

- ... Si X es normal, entonces para cada cerrado A tal que $A\subset U$ con U abierto de X, existe abierto W tal que $A\subset \overline{V}\subset U$
- $(\Leftarrow)X$ es T_1 y para cada cerrado A tal que $A\subset U$ con U abierto de X, existe abierto W tal que $A\subset \overline{V}\subset U$

Sean $A \subset X$ y $C \subset X$ cerrados en X tales que $A \cap C = \emptyset$. Tenemos que X - C es abierto en X, entonces existe V abierto de X tal que $A \subset \overline{V} \subset X - C$, además $X - \overline{V}$ es abierto en X. Entonces $A \subset V$ y $C \subset X - \overline{V}$, donde $V \cap (X - \overline{V}) = \emptyset$

- ∴ existen abiertos disjuntos $V, (X \overline{V})$ que contienen respectivamente a los cerrados A y C ∴ X es normal
- 11 Si X es T_2 y compacto, entonces X es normal.

Primero demostraremos que si (X, τ) es Hausdörff y C es un compacto $C \subset X$ donde $x \in X$ pero $x \notin C$, entonces existen U y V, abiertos disjuntos tales que $x \in U$ y $C \subset V$ Sea $x \in U_y$ con U_y abierto de X. Como (X, τ) es Hausdörff, entonces $\forall y \in C \exists V_y$ tal que $y \in V_y$ y $U_y \cap V_y = \emptyset$. Entonces $\bigcup_{y \in C} V_y$ es una cubierta abierta de C, y como C es compacto, entonces existe una subcubierta numerable, digamos $V_{y_1}, V_{y_2}, ..., V_{y_n}$.

Sea
$$U = \bigcap_{j=1}^n U_{y_j}$$
 y $V = \bigcup_{j=1}^n V_{y_j}$

Entonces $x \in U$ y $C \subset V$. Para ver que en efecto U y V son disjuntos supongamos que no lo son, entonces $\exists w \in U \cap V$, entonces $w \in V_{y_j}$ para algún j y $w \in U_{y_i} \forall i \in [1, n]$, pero por Houdrörff y cómo se seleccionaron los abiertos: $U_j \cap V_j = \emptyset$, por lo que es una contradicción. Así que $U \cap V = \emptyset$

Con esto ya podemos probar lo que se indica en el inciso. Tomemos C_1 y C_2 cerrados de X donde (X,τ) es compacto y cerrado. Por teorema, obtenemos que C_1, C_2 son compactos al ser cerrados dentro de un compacto. Sea $x \in C_1$ pero $x \notin C_2$, entonces por lo que acabamos de probar antes, $\exists U_x \land V_x$ tales que $x \in U_x$ y $C_2 \subset V_x$ donde $U_x \cap V_x = \emptyset$. Pero C_1 también es compacto, así que existe una subcubierta finita tal que $C_1 \subset \bigcap_{j=1}^n U_{x_j} = U$ y sea $V = \bigcup_{j=1}^n V_{x_j}$ entonces $C_2 \subset V$ y $C_1 \subset U$, con $U \cap V = \emptyset$