Report: CNN Model for CIFAR-10 Image Classification

1. Model Architecture

The model architecture consists of the following layers:

- **Input Layer:** 32x32 RGB images as input, with pixel values normalized between 0 and 1.
- Convolutional Layers:
 - Conv2D layer with 32 filters and a 3x3 kernel followed by ReLU activation.
 - MaxPooling2D layer with a 2x2 pool size.
 - o Conv2D layer with 64 filters and a 3x3 kernel followed by ReLU activation.
 - MaxPooling2D layer with a 2x2 pool size.
 - Conv2D layer with 64 filters and a 3x3 kernel followed by ReLU activation.
- Fully Connected Layers:
 - Flattening layer to convert the 3D feature maps to 1D.
 - o Dense layer with 64 units and ReLU activation.
 - Dense output layer with 10 units (for the 10 CIFAR-10 classes) and no activation (since softmax is applied in the loss function).

Model Summary:

- Total number of parameters: Approximately 470,000
- Optimizer: Adam
- Loss function: Sparse Categorical Crossentropy (used since the labels are integers)
- Evaluation metric: Accuracy

2. Training Results:

The training was conducted for 10 epochs. The results are as follows:

Training Metrics:

- Initial training accuracy (Epoch 1): 34.68%
- Final training accuracy (Epoch 10): 77.52%
- Initial training loss (Epoch 1): 1.7712
- Final training loss (Epoch 10): 0.6520

Validation Metrics:

- Initial validation accuracy (Epoch 1): 54.87%
- Final validation accuracy (Epoch 10): 70.46%
- Initial validation loss (Epoch 1): 1.2595
- Final validation loss (Epoch 10): 0.8848

Training & Validation Performance Overview:

Training Accuracy:

- The model starts with a training accuracy of 34.68% in Epoch 1.
- Over the course of training, the accuracy steadily improves and reaches **77.52**% by Epoch 10.
- This indicates that the model is learning the features of the dataset well and improving consistently.

Training Loss:

- The loss decreases from **1.7712** to **0.6520** by the end of training.
- This suggests that the model is minimizing the classification error during training.

Validation Accuracy:

- The validation accuracy started at 54.87% and improved to 70.46% by the final epoch.
- There is a consistent increase in validation accuracy, indicating that the model generalizes well to unseen data.

Validation Loss:

- The validation loss begins at **1.2595** and decreases to **0.8848** by the end of training.
- The decrease in validation loss reflects the model's improving performance in predicting the correct classes for unseen test data.

Training vs. Validation:

- The gap between training accuracy (77.52%) and validation accuracy (70.46%) in the last epoch is around 7%.
- This difference suggests that the model may be slightly overfitting but is still performing well on the test set.

3. Test Performance:

After training the model for 10 epochs, it was evaluated on the test set:

• Test Accuracy: 70.46%

• Test Loss: 0.8848

The model achieves an accuracy of **70.46%** on the test set, indicating that it can classify images from the CIFAR-10 dataset with reasonable accuracy. The loss value of **0.8848** suggests that the model still has room for improvement.

4. Confusion Matrix Analysis:

A confusion matrix provides insight into how well the model performed on individual classes. Based on the confusion matrix, you can analyze which classes are often misclassified. For example:

• If **cats** are often classified as **dogs** or **birds** classified as **airplanes**, this reflects the challenge of distinguishing between similar-looking categories.

Steps for Confusion Matrix Analysis:

- Compute the confusion matrix to check the misclassifications between the classes.
- Identify common patterns of misclassification, and if certain classes are being confused more frequently, consider improving the model by increasing complexity or augmenting the data.

5. Suggestions for Improvement:

1. Data Augmentation:

To further improve the model's generalization capabilities and combat overfitting, applying data augmentation techniques such as:

- Random flips (horizontal or vertical),
- Random rotations,
- Random crops, or
- Adding noise

These techniques would create a more diverse set of training examples, helping the model learn more robust features.

2. Model Tuning:

- **Increase Model Depth:** Add more convolutional layers or filters to allow the model to capture more complex patterns in the images.
- **Regularization:** Implement regularization techniques like **Dropout layers** to prevent overfitting by randomly "turning off" neurons during training.

• Learning Rate Adjustment: Use learning rate scheduling to dynamically adjust the learning rate during training for more efficient convergence.

3. Training for More Epochs:

• The model is still improving at the 10th epoch, so you can try training for more epochs (e.g., 20 or 30) to see if it continues to improve without overfitting.

6. Final Conclusion:

- The CNN model for CIFAR-10 image classification achieved a **training accuracy of 77.52%** and a **validation accuracy of 70.46%** after 10 epochs of training.
- While the model shows decent performance, there is a slight indication of overfitting due to the gap between training and validation metrics.
- With further model tuning, data augmentation, and possibly adding regularization techniques, the performance can be improved for better classification accuracy on unseen data.

Key Metrics Summary:

• Final Training Accuracy: 77.52%

• Final Training Loss: 0.6520

• Final Validation Accuracy: 70.46%

• Final Validation Loss: 0.8848

• Test Accuracy: 70.46%

• **Test Loss:** 0.8848