## LECTURE 24

Recall from last time the following definition:

**Definition 6.9**: Suppose that  $f: S \to \mathbb{R}$  is a function and that  $x_0 \in S$  is a limit point of S. We say that f is differentiable at  $x_0 \in S$  if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists. If f is differentiable at  $x_0$  then we write  $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$  and we call the number  $f'(x_0)$  the derivative of f at  $x_0$ . If every point of S is a limit point of S (for example if S is an interval) then we say f is differentiable on S if f is differentiable at  $x_0$  for all  $x_0 \in S$ .

We give some examples:

**Example 1**: Let c be a real number and let  $f: \mathbb{R} \to \mathbb{R}$  be defined by f(x) = c for all  $x \in \mathbb{R}$ . Then f is differentiable on  $\mathbb{R}$  and  $f'(x_0) = 0$  for all  $x_0 \in \mathbb{R}$ . This is extremely easy to prove: if  $x \neq x_0$  then

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{0}{x - x_0} = 0,$$

hence

$$\frac{f(x) - f(x_0)}{x - x_0} \to 0$$
 as  $x \to x_0 0$ .

**Example 2**: Let  $f: \mathbb{R} \to \mathbb{R}$  be defined by f(x) = x for all  $x \in \mathbb{R}$ . Then f is differentiable on  $\mathbb{R}$  and  $f'(x_0) = 1$  for all  $x_0 \in \mathbb{R}$ . Again, this is extremely easy to prove: if  $x \neq x_0$  then

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x - x_0}{x - x_0} = 1$$

and hence

$$\frac{f(x) - f(x_0)}{x - x_0} \to 1$$
 as  $x \to x_0$ .

**Example 3**: Let  $f: [-1,1) \to \mathbb{R}$  be defined by f(x) = |x| for  $x \in [-1,1)$ . Then f is differentiable at  $x_0$  for all  $x_0 \in [0,1) \setminus \{0\}$ . If  $x_0$  then

$$\frac{f(x) - f(x_0)}{x - x_0} = \begin{cases} -1 & \text{if } -1 \le x < 0, \\ 1 & \text{if } 0 < x < 1 \end{cases}$$

from which it follows that (f(x) - f(0))/(x - 0) does not have a limit as  $x \to 0$ . Hence f is not differentiable at  $x_0 = 0$ . Note that f is differentiable at  $x_0 = 1$ .

**Example 4**: Let  $f: \mathbb{R} \to \mathbb{R}$  be defined by  $f(x) = \begin{cases} x^2 & \text{if } x \notin \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{Q} \end{cases}$ . Then f is differentiable at  $x_0 = 0$ , but it is not differentiable at any  $x_0 \neq 0$ . To see the differentiability at  $x_0 = 0$ , note that if  $x \neq 0$ , then

$$\frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x} = \begin{cases} x & \text{if } x \notin \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{Q}. \end{cases}$$

It is easy to see that in this case

$$\frac{f(x) - f(0)}{x - 0} \to 0 \quad \text{as } x \to 0.$$

Hence f is differentiable at  $x_0 = \text{with } f'(0) = 0$ . But if  $x_0 \neq 0$  then f is not differentiable at  $x_0$ . Suppose for instance that  $x_0 \in \mathbb{Q}$ . Then

$$\frac{f(x) - f(x_0)}{x - x_0} = \begin{cases} \frac{x^2}{x - x_0} & \text{if } x \notin \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{Q} \end{cases}$$

It is clear that  $\frac{f(x)-f(x_0)}{x-x_0}$  does not have a limit as  $x \to x_0$ . For example let  $(a_n)$  be a sequence of irrational numbers such that  $a_n \to 0$  (for example  $a_n = \sqrt{2}/n$ ). Then  $x_n = x_0 + a_n$  is a sequence of irrational numbers such that  $x_n \to x_0$ . But  $\frac{f(x_n)-f(x_0)}{x_n-x_0} = a_n + 2x_0 + x_0/a_n^2$  which does not converge to any real number. The proof that f is not differentiable at  $x_0$  if  $x_0 \notin \mathbb{Q}$  is similar.

**Proposition 6.10**: Let  $f: S \to \mathbb{R}$  be a function and let  $x_0 \in S$  be a limit point of S. If f is differentiable at  $x_0$  then f is continuous at  $x_0$ .

**Proof**: We will show that  $\lim_{x\to x_0} f(x) = f(x_0)$ . Since  $x_0$  is a limit point of S this suffices to prove that f is continuous at  $x_0$ . If  $x \neq x_0$  we have

$$f(x) = \frac{f(x) - f(x_0)}{x - x_0}(x - x_0) + f(x_0).$$

Since f is differentiable at  $x_0$  we have  $\frac{f(x)-f(x_0)}{x-x_0} \to f'(x_0)$  as  $x \to x_0$ . Therefore, by the Limit Laws,

$$f(x) = \frac{f(x) - f(x_0)}{x - x_0}(x - x_0) + f(x_0) \to f'(x_0)(x_0 - x_0) + f(x_0) = f(x_0) \quad \text{as } x \to x_0.$$

Therefore f is continuous at  $x_0$ .

**Note**: the *converse* to Proposition 6.10 is definitely not true! Continuity at a point does not imply differentiability at a point. The classic example is f(x) = |x|, this (as we have observed above) is not differentiable at  $x_0 = 0$ , but it is continuous at  $x_0 = 0$ .

**Proposition 6.11**: Suppose that  $f, g: S \to \mathbb{R}$  are functions and that  $x_0 \in S$  is a limit point of S. If f and g are differentiable at  $x_0$  then

(1) for all  $c, d \in \mathbb{R}$ , cf + dg is differentiable at  $x_0$  with

$$(cf + dg)'(x_0) = cf'(x_0) + dg'(x_0),$$

(2)  $f \cdot g$  is differentiable at  $x_0$  with

$$(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0),$$

(3) if  $g(x) \neq 0$  for all  $x \in S$  then f/g is differentiable at  $x_0$  and

$$(f/g)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}.$$

**Proof**: The proofs of all of these statements are standard applications of the limit laws. For instance we prove (2): we have

$$\frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \left(\frac{f(x) - f(x_0)}{x - x_0}\right) \cdot g(x) + f(x_0) \cdot \left(\frac{g(x) - g(x_0)}{x - x_0}\right)$$

$$\to f'(x_0)g(x_0) + f(x_0)g'(x_0) \quad \text{as } x \to x_0$$

by the limit laws (Proposition 6.6), where we have used the fact that  $\frac{f(x)-f(x_0)}{x-x_0} \to f'(x_0)$ ,  $g(x) \to g(x_0)$  and  $\frac{g(x)-g(x_0)}{x-x_0} \to g'(x_0)$  as  $x \to x_0$  (to conclude that  $g(x) \to g(x_0)$  as  $x \to x_0$  we need Proposition 6.10 — differentiability implies continuity).

Next we want to prove the Chain Rule. It will be convenient to reformulate what it means for a function to be differentiable at  $x_0$  as follows.

**Lemma 6.12:** Suppose  $f: S \to \mathbb{R}$  is a function and  $x_0 \in S$  is a limit point of S. Then f is differentiable at  $x_0$  with  $f'(x_0) = c$  if and only if there exists a function  $R_f: S \to \mathbb{R}$  such that (i)  $R_f(x_0) = 0$ , (ii)  $\lim_{x \to x_0} R_f(x) = 0$  and (iii)  $f(x) = f(x_0) + c(x - x_0) + R_f(x)(x - x_0)$  for all  $x \in S$ .

**Proof**:  $(\Rightarrow)$  Suppose that f is differentiable at  $x_0$  and that  $f'(x_0) = c$ . Define  $R_f: S \to \mathbb{R}$  by

$$R_f(x) = \begin{cases} \frac{f(x) - f(x_0)}{x - x_0} - c & \text{if } x \in S, x \neq x_0, \\ 0 & \text{if } x = c \end{cases}$$

Then  $R_f(x_0) = 0$  and for  $x \in S \setminus \{x_0\}$ ,  $R_f(x) \to 0$  since f is differentiable at  $x_0$  with  $f'(x_0) = c$ . ( $\Leftarrow$ ) Suppose there exists a function  $R_f \colon S \to \mathbb{R}$  satisfying (i), (ii) and (iii) above. If  $x \in S \setminus \{x_0\}$  then

$$\frac{f(x) - f(x_0)}{x - x_0} = c + R_f(x) \to c$$
 as  $x \to x_0$ 

since  $R_f(x) \to 0$  as  $x \to x_0$  by hypothesis. Therefore f is differentiable at  $x_0$  with  $f'(x_0) = c$ .

**Note**: This lemma implies that close to  $x_0$  the function f approximated by the linear function  $f(x_0) + c(x - x_0)$ .

**Exercise**: Prove that a function  $f: S \to \mathbb{R}$  is differentiable at a limit point  $x_0 \in S$  if and only if  $f(x) - f(x_0) = \phi(x)(x - x_0)$  for all  $x \in S$ , where  $\phi: S \to \mathbb{R}$  is continuous at  $x_0$ .

**Theorem 6.13 (Chain Rule)**: Suppose that  $f: S \to \mathbb{R}$  is differentiable at a limit point  $x_0 \in S$ ,  $f(S) \subset T$ ,  $g: T \to \mathbb{R}$  is differentiable at the limit point  $f(x_0) \in T$ . Then the composite function  $g \circ f: S \to \mathbb{R}$  is differentiable at  $x_0$  and

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0).$$

**Proof**: Since g is differentiable at  $f(x_0)$  there exists a function  $R_g: T \to \mathbb{R}$  satisfying  $R_g(f(x_0)) = 0$ ,  $\lim_{y \to f(x_0)} R_g(y) = 0$ , and

$$g(y) = g(f(x_0)) + g'(f(x_0))(y - f(x_0)) + R_g(y)(y - f(x_0))$$

for all  $y \in T$ . Since f is differentiable at  $x_0$  there exists a function  $R_f: S \to \mathbb{R}$  such that  $R_f(x_0) = 0$ ,  $\lim_{x \to x_0} R_f(x) = 0$  and

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + R_f(x)(x - x_0)$$

for all  $x \in S$ . Therefore,

$$g(f(x)) = g(f(x_0)) + g'(f(x_0))(f'(x_0)(x - x_0) - R_f(x)(x - x_0)) + R_g(f(x))(f'(x_0)(x - x_0) + R_f(x)(x - x_0))$$

and so

$$g(f(x)) = g(f(x_0)) + g'(f(x_0))f'(x_0)(x - x_0) + R_{g \circ f}(x)(x - x_0)$$

where we have defined

$$R_{g \circ f}(x) = R_g(f(x))f'(x_0) - g'(f(x_0))R_f(x) + R_g(f(x))R_f(x)$$

for all  $x \in S$ . Then  $R_{q \circ f}(x_0) = R_g(f(x_0))f'(x_0) - g'(f(x_0))R_f(x_0) + R_g(f(x_0))R_f(x_0) = 0$  and

$$R_{q \circ f}(x) \to R_q(f(x_0))f'(x_0) - g'(f(x_0))R_f(x_0) + R_q(f(x_0))R_f(x_0)$$
 as  $x \to x_0$ 

where we have used the limit laws (Proposition 6.6), the fact that f is continuous at  $x_0$  (Proposition 6.10), the fact that  $R_f$  is continuous at  $x_0$ , the fact that  $R_g$  is continuous at  $f(x_0)$  and the fact that the composite function  $R_g \circ f$  is continuous at  $x_0$  (Theorem 4.5). Therefore, the function  $R_{g \circ f} \colon S \to \mathbb{R}$  satisfies (i), (ii) and (iii) of Lemma 6.12. Therefore, by Lemma 6.12, the function  $g \circ f$  is differentiable at  $x_0$  and  $(g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$ .

Suppose that  $f:[a,b] \to \mathbb{R}$  is continuous. Then f([a,b]) = [c,d] for some real numbers c and d (this is an exercise using the Intermediate Value Theorem, the fact that f attains it maximum and minimum on [a,b] and the fact that f restricts to a continuous function on any subinterval of [a,b]).

**Note**: in fact if I is an interval of one of the following forms: (a, b),  $(a, \infty)$ ,  $(-\infty, b)$  or  $\mathbb{R}$ , and f is continuous and 1-1, then f(I) is an interval of one of these same forms (not necessarily of the same form as I — for example the exponential function  $\exp: \mathbb{R} \to (0, \infty)$  sends the interval  $\mathbb{R}$  to the interval  $(0, \infty)$ ). The assumption that f is 1-1 cannot be relaxed here.

If  $f: [a, b] \to \mathbb{R}$  is continuous and 1-1, then f is either strictly increasing or strictly decreasing as follows easily from the Intermediate Value Theorem. We see this as follows. Since f is 1-1 we must have f(a) < f(b) or f(a) > f(b). Without loss of generality we may suppose that f(a) < f(b) (otherwise we apply the following argument to -f). If a < x < y < b then a moments reflection shows that f(a) < f(x) < f(y) < f(b) (why?); hence f is strictly increasing.

Thus for a continuous, 1-1 function  $f:[a,b] \to \mathbb{R}$ , we have that f is either strictly increasing or strictly decreasing, f([a,b]) = [c,d], and hence the inverse function  $f^{-1}:[c,d] \to [a,b]$  is defined.

**Proposition 6.14**: Suppose that  $f:[a,b] \to \mathbb{R}$  is continuous and 1-1 with image f([a,b]) = [c,d]. Then  $f^{-1}:[c,d] \to \mathbb{R}$  is continuous.

**Proof**: Suppose without loss of generality that f is strictly increasing on [a,b] (otherwise we can apply the following argument to -f to conclude that -f is continuous and hence that f is continuous). Let  $y_0 \in [c,d]$  so that  $y_0 = f(x_0)$  for a unique  $x_0 \in [a,b]$ , since f is 1-1 with f([a,b]) = [c,d]. We will show that  $f^{-1}$  is continuous at  $y_0$ . Let  $\epsilon > 0$ . Suppose that  $y_0 \in (c,d)$ ; it follows that  $x_0 \in (a,b)$ . Without loss of generality we may suppose that  $x_0 - \epsilon, x_0 + \epsilon \in (a,b)$  (if not, then we can make  $\epsilon$  smaller).

Consider the following graph of a function:



Since f is strictly increasing we have  $f(x_0 - \epsilon) < f(x_0) < f(x_0 + \epsilon)$ . Let

$$\delta = \min \{ (f(x_0) - f(x_0 - \epsilon), f(x_0 + \epsilon) - f(x_0) \}$$

From looking at the picture, it is clear that if y belongs to the interval  $(y_0 - \delta, y_0 + \delta)$ , then  $f^{-1}(y)$  will belong to the interval  $(x_0 - \epsilon, x_0 + \epsilon)$ . More precisely,

$$|y - y_0| < \delta \iff f(x_0) - \delta < y < f(x_0) + \delta$$

Therefore, by the choice of  $\delta$ , if  $|y - y_0| < \delta$  then

$$f(x_0 - \epsilon) < f(x_0) - \delta < y < f(x_0) + \delta < f(x_0 + \epsilon).$$

Since f is strictly increasing on [a, b],  $f^{-1}$  is strictly increasing on [c, d] (why?) and hence

$$|y - y_0| < \delta \implies x_0 - \epsilon < f^{-1}(y) < x_0 + \epsilon.$$

Therefore

$$|y - y_0| < \delta \implies |f^{-1}(y) - f^{-1}(y_0)| < \epsilon.$$

Since  $\epsilon > 0$  was arbitrary, it follows that  $f^{-1}$  is continuous at  $y_0$ . The case where  $y_0 = c$  or  $y_0 = d$  is done similarly and is left as an exercise.