37. Критерий Колмогорова.

Status Con

Completed

Теорема Колмогорова

Пусть $X \sim F$, F - непрерывна. Если

$$d=\sup_{y}|F_{n}^{*}(y)-F(y)|$$

то для любого y>0 при $n o\infty$

$$\sqrt{n} \sup_{y} |F_n^*(y) - F(y)| \Rightarrow \mathcal{K}$$

 $\mathcal{K}(y)$ - функция Колмогорова, непрерывная, табулированная.

Смотрите на нее

Критерий Колмогорова

Проверяет, что распределение выборки равно некоторому известному.

Пусть $ec{X} \sim F$

$$H_0 = \{F = F_0\}$$

$$H_a=\{F
eq F_0\}$$

$$\Psi_n = \sqrt{n} \sup_y |F_n^*(y) - F(y)|$$

$$\delta = egin{cases} 0, & \Psi_n < c \ 1, & \Psi_n \geq c \end{cases}$$

где
$$\mathcal{K}(c) = 1 - \epsilon$$
.

Свойства

- 1. Критерий состоятельный
 - **б)** Если гипотеза H_1 неверна, то X_i имеют какое-то распределение \mathcal{F}_2 , отличное от \mathcal{F}_1 . По теореме Гливенко Кантелли $F_n^*(y) \stackrel{p}{\longrightarrow} F_2(y)$ для любого y при $n \to \infty$. Поскольку $\mathcal{F}_1 \neq \mathcal{F}_2$, найдется y_0 такое, что $|F_2(y_0) F_1(y_0)| > 0$. Но $\sup_y |F_n^*(y) F_1(y)| \geqslant |F_n^*(y_0) F_1(y_0)| \stackrel{p}{\longrightarrow} |F_2(y_0) F_1(y_0)| > 0.$ Умножая на \sqrt{n} , получим при $n \to \infty$, что $\rho(\mathbf{X}) = \sqrt{n} \sup_y |F_n^*(y) F_1(y)| \stackrel{p}{\longrightarrow} \infty$.
- 2. Критерий имеет асимптотический размер $1-\epsilon$.
- 3. Реально допустимый уровень значимости: $\epsilon^*=1-\mathcal{K}(\Psi_n)$.