Relazioni e funzioni

Dati n insiemi A_n , una relazione R di arità n è un insieme nella forma

$$R := \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i, i = 1, 2, \dots, n\}.$$

Dunque, $R \subseteq A_a \times A_2 \times ... \times A_n$. Poiché sono insiemi, valgono le usuali operazioni $(\subset, \subseteq, =, \cap, \cup)$. Proprietà:

Proprietà	Λ	U
Idempotenza	$R \cap R = R$	$R \cup R = R$
Commutatività	$R \cap S = S \cap R$	$R \cup S = S \cup R$
Associatività	$(R \cap S) \cap T = R \cap (S \cap T)$	$(R \cup S) \cup T = R \cup (S \cup T)$
Distributività	$R \cap (S \cup T) = (R \cap S) \cup (R \cap T)$	$R \cup (S \cap T) = (R \cup S) \cap (R \cup T)$

Il prodotto tra due relazioni $R\subseteq A_1\times A_2$ e $S\subseteq A_2\times A_3$ è definito come

$$R \cdot S := \{(a_1, a_3) \mid \exists \ a_2 \in A_2 : (a_1, a_2) \in R \land (a_2, a_3) \in S\}.$$

Il prodotto tra relazioni è associativo, compatibile con l'inclusione $(R \subseteq T \subseteq A_1 \times A_2 \land S \subseteq V \subseteq A_2 \times A_3 \implies R \cdot S \subseteq T \cdot V)$, ma non è commutativo.

Relazione inversa: $R^{-1} := \{(a_2, a_1) \mid (a_1, a_2) \in R\}$. Proprietà:

- $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$,
- $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$,
- $R \cdot (S \cap T) = (R \cdot S) \cap (R \cdot T)$,
- $R \cdot (S \cup T) = (R \cdot S) \cup (R \cdot T)$,
- $(R \cdot S)^{-1} = S^{-1} \cdot R^{-1}$,
- $R \subseteq S \implies R^{-1} \subseteq S^{-1}$.

La potenza di una relazione binaria $R \subseteq A \times A$ è definita come

$$R^{n} := \begin{cases} I_{A} & \text{se n} = 0 \\ R \cdot R^{n-1} & \text{se n} > 0 \end{cases} \quad \text{dove } n \in \mathbb{N}.$$

La restrizione $B\subseteq A$ di una relazione $R\subseteq A\times A$ è definita come

$$R|_B := R \cap (B \times B).$$

Proprietà:

- $R|_{\varnothing} = \varnothing$,
- $R|_B \cup R|_C \subseteq R|_{B \cup C}$,
- $R|_B \cap R|_C = R|_{B \cap C}$.

Proprietà di una relazione:

Serialità

Strutture algebriche

Semigruppo Una struttura algebrica nella forma (A, +), dove + è un'operazione associativa sull'insieme A;

Semigruppo commutativo Un semigruppo con l'aggiunta della proprietà commutativa.

Monoide Un semigruppo con l'aggiunta di un'elemento neutro (scrittura: (A, +, u));

Gruppo Un monoide che presenta l'inverso per ogni elemento dell'insieme;

Gruppo abeliano Un gruppo che presenta la proprietà commutativa.

Anello Una struttura nella forma (A, +, *, u), dove

• (A, +, u) forma un gruppo abeliano;

- (A,*) forma un semigruppo;
- * è distributiva rispetto a +;

Anello con unità Un anello con un monoide al posto del semigruppo;

Anello commutativo Un anello dove il semigruppo è commutativo;

Corpo Un anello dove $(A \setminus \{u\}, *)$ forma un gruppo;

Campo Un corpo dove $(A\backslash\{u\},*)$ forma un gruppo abeliano.