Homework Guidelines for Series

Students are allowed to use any test for convergence/divergence on any homework exercise, for any section of the textbook. Students can use the following to determine whether a series converges, or not:

✓ Alternating Series Test	✓ Integral Test	✓ Direct Comparison Test		
✓ Root Test	✓ Ratio Test	✓ Limit Comparison Test		
✓ Geometric Series Test	✓ p-series Test	✓ Limit of the <i>n</i> -th term		
✓ Limit of the <i>n</i> -th partial sums (Telescoping Series)				

Students must quote which test(s) they are using to prove convergence/divergence, along with the necessary setup/conditions to apply the test(s).

From the AP Course Exam and Description:

"Justifications require that you give mathematical reasons, and that you <u>verify the needed conditions under which relevant theorems</u>, properties, definitions, or tests are applied. Your work will be scored on the correctness of your method, as well as your answers. <u>Answers without supporting work will usually not receive credit.</u>"

receive credit.	C1-4- W1-
Insufficient Work	Complete Work
$\sum_{n=1}^{\infty} \frac{1}{n^2 + 6n + 13} \sim \sum_{n=1}^{\infty} \frac{1}{n^2}$	$\sum_{n=1}^{\infty} \frac{1}{n^2 + 6n + 13} \sim \sum_{n=1}^{\infty} \frac{1}{n^2}$
Converges	$\lim_{n \to \infty} \frac{\left(\frac{1}{n^2}\right)}{\left(\frac{1}{n^2 + 6n + 13}\right)} = \lim_{n \to \infty} \frac{n^2 + 6n + 13}{n^2} = 1$
	Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent <i>p</i> -series with $p=2$
	By the Limit Comparison Test, $\sum_{n=1}^{\infty} \frac{1}{n^2 + 6n + 13}$ also converges.
$\sum_{n=3}^{\infty} \frac{n^2}{e^n} \longleftrightarrow \int_{3}^{\infty} \frac{x^2}{e^x} dx$	$\sum_{n=3}^{\infty} \frac{n^2}{e^n} \leftrightarrow \int_{3}^{\infty} \frac{x^2}{e^x} dx$
$\int_{3}^{\infty} \frac{x^2}{e^x} dx =$	$\int_{3}^{\infty} \frac{x^{2}}{e^{x}} dx = \lim_{b \to \infty} \int_{3}^{b} x^{2} e^{-x} dx$
$\left[-(\infty)^2 e^{-(\infty)} - 2(\infty) e^{-(\infty)} - 2e^{-(\infty)} \right]$	$= \lim_{b \to \infty} \left[-x^2 e^{-x} - 2x e^{-x} - 2e^{-x} \right]_3^b$
Finite. Series Converges	$= \lim_{b \to \infty} \left[\left[-\frac{x^2}{e^x} - 2\frac{x}{e^x} - \frac{2}{e^x} \right] - \left[-x^2 e^{-x} - 2x e^{-x} - 2e^{-x} \right] \right)$
	$= 0 - \left[-(3)^2 e^{-3} - 2(3)e^{-3} - 2e^{-3} \right] = \frac{17}{e^3}$
	Therefore since $\int_{3}^{\infty} \frac{x^2}{e^x} dx$ converges,
	$\sum_{n=3}^{\infty} \frac{n^2}{e^n}$ converges by the Integral Test

Insufficient Work	Complete Work
$\sum_{n=1}^{\infty} \frac{1}{n^2 + 6n + 13} < \sum_{n=1}^{\infty} \frac{1}{n^2}$	$\sum_{n=1}^{\infty} \frac{1}{n^2 + 6n + 13} < \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ for all } n \ge 1$
Series Converges	Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent <i>p</i> -series with $p=2$
	$\sum_{n=1}^{\infty} \frac{1}{n^2 + 6n + 13}$ converges
	by the Direct Comparison Test
$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} n e^{-n}$	$\sum_{n=1}^{\infty} (-1)^{n+1} n e^{-n} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{e^{n}}$
Series Converges	Since $\frac{n}{e^n}$ is monotonically decreasing and $\lim_{n\to\infty} \frac{n}{e^n} = 0$,
	$\sum_{n=1}^{\infty} (-1)^{n+1} n e^{-n}$ converges by the Alternating Series Test.
$\sum_{n=1}^{\infty} \frac{1+2^n}{3^n}$ Geometric Series, Converges	$\sum_{n=1}^{\infty} \frac{1+2^n}{3^n} = \sum_{n=1}^{\infty} \frac{1}{3^n} + \sum_{n=1}^{\infty} \frac{2^n}{3^n}$
	$= \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n + \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$
	$\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n \text{ is a Geometric Series, } r = \frac{1}{3} \text{ , therefore } \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$ converges
	$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n \text{ is a Geometric Series, } r = \frac{2}{3}, \text{ therefore } \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$ converges.
	Since $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$ and $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$ converge, therefore $\sum_{n=1}^{\infty} \frac{1+2^n}{3^n}$
	converges. ***
	$\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n = \frac{\text{first term}}{1 - \text{common ratio}} = \frac{\left(\frac{1}{3}\right)}{1 - \left(\frac{1}{3}\right)}$
	$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n = \frac{\text{first term}}{1 - \text{common ratio}} = \frac{\left(\frac{2}{3}\right)}{1 - \left(\frac{2}{3}\right)}$

Test	What to show for convergence	What to show if the series does not converge
n th term test	This test is not used to show convergence.	$\lim_{n\to\infty} (a_n) \neq 0$
Geometric Series	Rewrite series to be of the form $\sum ar^n$	Rewrite series to be of the form $\sum ar^n$
	Identify the value of <i>r</i>	Identify the value of <i>r</i>
	State " $\sum ar^n$ converges because this is a Geometry	State " $\sum ar^n$ does not converge because this is a
	series with $ r < 1$ "	Geometry series with $ r \ge 1$ "
Telescoping Series	Write the general expression for the n^{th} partial sum	Write the general expression for the n^{th} partial sum
	Demonstrate $\lim_{n\to\infty} S_n = k$ for some finite value k .	Demonstrate $\lim_{n\to\infty} S_n$ DNE
	State "The series converges because $\lim_{n\to\infty} S_n = k$ "	State" The series does not converge because $\lim_{n\to\infty} S_n$
	<i>1.</i> /	does not converge."
p-series	Identify that the series is of the form $\sum \frac{1}{n^p}$	Identify that the series is of the form $\sum \frac{1}{n^p}$
	State: "The series converges since this is a <i>p</i> -series with	State: "The series does not converge since this is a <i>p</i> -
	<i>p</i> > 1"	series with $p > 1$ "
	Given $\sum a_n$, define a series $\sum b_n$	Given $\sum a_n$, define a series $\sum b_n$
Limit Comparison Test	Show that $\lim_{n\to\infty} \left[\frac{a_n}{b_n} \text{ or } \frac{b_n}{a_n} \right]$ is finite and positive.	Show that $\lim_{n\to\infty} \left[\frac{a_n}{b_n} \text{ or } \frac{b_n}{a_n} \right]$ is finite and positive.
	Justify that $\sum b_n$ converges	Justify that $\sum b_n$ does not converge
	State "Since $\sum b_n$ converges and $\lim_{n\to\infty} \left[\frac{a_n}{b_n} \text{ or } \frac{a_n}{b_n} \right]$ is	State "Since $\sum b_n$ does not converge and
	finite, $\sum a_n$ converges by the Limit Comparison Test."	$\lim_{n\to\infty} \left[\frac{a_n}{b_n} \text{ or } \frac{a_n}{b_n} \right] \text{ is finite, } \sum a_n \text{ does not converge by } $
		the Limit Comparison Test."
Direct Comparison Test	Given $\sum a_n$, define a series $\sum b_n$	Given $\sum a_n$, define a series $\sum b_n$
	Show that $a_n \le b_n$ for sufficiently large n .	Show that $b_n \le a_n$ for sufficiently large n .
	Justify that $\sum b_n$ converges	Justify that $\sum b_n$ does not converge
	State "Since $\sum a_n \leq \sum b_n$, by the Direct Comparison	State "Since $\sum b_n \leq \sum a_n$, by the Direct Comparison
	Test, $\sum a_n$ converges."	Test, $\sum a_n$ does not converge."

Test	What to show for convergence	What to show if the series does not converge
Integral Test	Given $\sum_{n=k}^{\infty} a_n$, rewrite the sum as the integral $\int_{k}^{\infty} f(x) dx$	Given $\sum_{n=k}^{\infty} a_n$, rewrite the sum as the integral $\int_{k}^{\infty} f(x) dx$
	and demonstrate that $\int_{k}^{\infty} f(x)dx$ converges.	and demonstrate that $\int_{k}^{\infty} f(x)dx$ does not converge.
	State "Since $\int_{k}^{\infty} f(x) dx$ converges, $\sum_{n=k}^{\infty} a_n$ converges by	State "Since $\int_{k}^{\infty} f(x) dx$ does not converge, $\sum_{n=k}^{\infty} a_n$ does
	the Integral Test."	not converge by the Integral Test."
Alternating Series Test	Given $\sum (-1)^n a_n$ or $\sum (-1)^{n+1} a_n$, show that	Given $\sum (-1)^n a_n$ or $\sum (-1)^{n+1} a_n$, show that
	$\lim_{n\to\infty} a_n = 0$	$\lim_{n\to\infty} a_n \neq 0$
	State "Since the sum is an Alternating Series whose terms decrease in absolute value to zero, the series converges."	State "Since the sum is an Alternating Series and $\lim_{n\to\infty} a_n \neq 0$, the series does not converge."
Ratio Test	Given $\sum a_n$ demonstrate that $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right < 1$	Given $\sum a_n$ demonstrate that $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right > 1$
	State "Since $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right < 1$, the series converges by the	State "Since $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right < 1$, the series does not converge
	Ratio Test."	by the Ratio Test."
Root Test	Given $\sum a_n$ demonstrate that $\lim_{n\to\infty} \sqrt[n]{ a_n } < 1$	Given $\sum a_n$ demonstrate that $\lim_{n\to\infty} \sqrt[n]{ a_n } > 1$
	State "Since $\lim_{n\to\infty} \sqrt[n]{ a_n } < 1$, the series converges by the	State "Since $\lim_{n\to\infty} \sqrt[n]{ a_n } > 1$, the series does not
	Root Test."	converges by the Root Test."