5.2.7 Splitting the Pirate Loot

3-Partition Problem

Partition a set of integers into three subsets with equal sums.

Input: A sequence of integers $v_1, v_2, ..., v_n$.

Output: Check whether it is possible to partition them into three subsets with equal sums, i.e., check whether there exist three disjoint sets $S_1, S_2, S_3 \subseteq \{1, 2, ..., n\}$ such that $S_1 \cup S_2 \cup S_3 = \{1, 2, ..., n\}$ and

$$\sum_{i \in S_1} v_i = \sum_{j \in S_2} v_j = \sum_{k \in S_3} v_k.$$

Three pirates are splitting their loot consisting of n items of varying value. Can you help them to evenly split the loot?

Input format. The first line contains an integer n. The second line contains integers $v_1, v_2, ..., v_n$ separated by spaces.

Output format. Output 1, if it possible to partition $v_1, v_2, ..., v_n$ into three subsets with equal sums, and 0 otherwise.

Constraints. $1 \le n \le 20$, $1 \le v_i \le 30$ for all i.

Sample 1.

Input:

4 3 3 3 3

Output:

0

Sample 2.

Input:

1 30

Output:

0

Sample 3.

Input:

13

1 2 3 4 5 5 7 7 8 10 12 19 25

Output:

1

1 + 3 + 7 + 25 = 2 + 4 + 5 + 7 + 8 + 10 = 5 + 12 + 19.