1 Splay-деревья. Операция Splay

Splay-depeso представляет из себя самонастраивающуюся (self-adjusting) форму бинарного дерева поиска, выполняющую базовые операции над деревьями (такие как search, insert, delete) за амортизированное время $O(\log n)$.

Рассмотрим некоторое дерево и вершину x в нём. Введём операцию $\mathrm{Splay}(x)$, которая представляет из себя последовательность шагов zig, zig-zig и zig-zag (см. рис. 1), причём после применения данной операции вершина x становится корнем дерева. Заметим, что шаг zig может быть лишь последним шагом и выполняться не более одного раза.

Рис. 1: Шаг операции Splay(x). (a) zig: оканчивающий единичный поворот. (b) zig-zig: два единичных поворота. (c) zig-zag: двойной поворот.

2 Амортизационный анализ

Присвоим каждому элементу i вес w(i) – произвольное положительное число; назовём размером s(x) вершины x сумму всех весов элементов в поддереве с корнем x (вершина x входит в это поддерево); назовём рангом r(x) вершины x величину $\log s(x)$. Наконец, потенциалом $\Phi(t)$ дерева t назовём сумму всех рангов всех вершин дерева t.

Введём амортизированное время работы операции $a=t+\Phi'-\Phi$, где t – истинное время работы операции, Φ' – потенциал дерева после выполнения операции, а Φ – потенциал до операции. С таким определением мы можем вычислять общее время работы m операций, пользуясь следующей формулой:

$$\sum_{i=1}^{m} t_i = \sum_{i=1}^{m} (a_i + \Phi_{i-1} - \Phi_i) = \sum_{i=1}^{m} a_i + \Phi_0 - \Phi_m,$$
(1)

где t_i и a_i есть истинное и амортизированное время i-ой операции соответственно, Φ_0 – начальный потенциал, Φ_i – потенциал после i-ой операции.

Лемма 1. (Access lemma) Амортизированное время работы операции Splay(x) для дерева с корнем t не превосходит $3(r(t) - r(x)) + 1 = O(\log(s(t)/s(x)))$

Доказательство. Рассмотрим один шаг операции Splay (x) (т.е. или zig, или zig-zig, или zig-zag). Пусть s и s', r и r' – размер и ранг до и после очередного шага соответственно. Утверждается, что амортизированное время шага zig не превосходит 3(r'(x) - r(x)) + 1, а для шагов zig-zig и zig-zag не превосходит 3(r'(x) - r(x)). Пусть вершина y является родителем вершины x. Покажем заявленную оценку, например, для шага zip:

$$1 + r'(x) + r'(y) - r(x) - r(y)$$
 так как только x и y могут изменить ранг
$$\leq 1 + r'(x) - r(x)$$
 так как $r(y) \geq r'(y)$
$$\leq 1 + 3(r'(x) - r(x))$$
 так как $r'(x) \geq r(x)$.

Осталось заметить, что, просуммировав все оценки и сократив всё необходимое, получится оценка 3(r'(x)-r(x))+1=3(r(t)-r(x))+1, где r и r' – ранги уже до и после всей операции Splay соответственно.

Теорема 2. (Balance theorem) Рассмотрим splay-дерево на n вершинах, κ которому выполняется m обращений κ элементам. Тогда общее время работы есть $O((m+n)\log n + m)$

Доказательство. Положим $W = \sum_{i=1}^{n} w(i)$. Нетрудно заметить, что после последовательности обращений общая потеря в потенциале не превосходит $\sum_{i=1}^{n} \log (W/w(i))$ в силу того, что размер вершины с элементом i не превосходит W и хотя бы w(i).

Присвоим каждому элементу вес 1/n; отсюда имеем W=1. Значит амортизированное время запросов не превосходит $3 \log n + 1$ по предыдущей лемме; и при этом потеря в потенциале не превосходит $n \log n$. Отсюда из 1 теорема верна.

Заметим, что если выполняется достаточно много запросов к дереву (а именно в случае, когда m > n), то общее время работы есть $O(m \log m)$. Другими словами, splay-дерево такое же эффективное, как и любая форма равномерно сбалансированного дерева.

3 Операции, обновляющие splay-дерево

- access(i,t): выполняется поиск элемента i, начиная с корня t, спускаясь вниз по дереву. Если в процессе поиска достигается вершина x, содержащая i, то выполняется Splay(x) и возвращается указатель на x. Если по итогу оказывается, что i нет в дереве, то выполняется Splay(x), где x последняя достигнутая в процессе поиска вершина.
- $join(t_1, t_2)$: данная операция объединяет деревья t_1, t_2 в одно дерево, предполагая, что любой элемент из дерева t_1 строго меньше любого элемента из дерева t_2 . Для этого выполняется access наибольшого элемента элемента в дереве t_1 (т.е. просто выполняется спуск в самый правый листочек). После access'а корнем дерева t_1 является наибольший элемент этого дерева, т.е. корень не имеет правого ребёнка; соответсвенно можно правым ребёнком сделать корень дерева t_2 .

• split(i,t): данная операция строит деревья t_1, t_2 так, что t_1 содержит все элементы из t, не превосходящие элемента i, а t_2 содержит все элементы из t, строго большие элемента i. Для этого выполняется access(i,t); после чего уничтожается одно из двух ребер, исходящих из корня, в зависимости от того, корень содержит элемент, больший или небольший чем i.

Рис. 2: Реализация join и split. (a) $join(t_1, t_2)$. (b) split(i, t).

- insert(i,t): выполняется split(i,t); после чего полученные деревья t_1,t_2 делаем поддеревьями новой вершины, содержащей элемент i (операция insert выполняется при условии, что элемента i нет в дереве t).
- delete(i,t): выполняется access(i,t); после чего дерево t заменяется joinом его левых и правых поддеревьев (операция delete выполняется при условии, что элемент i присутствует в дереве t).

Рис. 3: Реализация insert и split. (a) insert(i,t). (b) delete(i,t).