

دانشگاه تهران پردیس دانشکده های فنی دانشکده مهندسی کامپیوتر

بهبود مدلهای پیشبینی پیوند مبتنی بر ویژگیهای پنهان با استفاده از قوانین انجمنی

پایاننامه جهت دریافت درجه کارشناسی ارشد در رشته مهندسی کامپیوتر گرایش نرمافزار

> نگارش: مسعود هاشمیان

استاد راهنما: دکتر ناصر یزدانی

مرداد ماه ۱۳۹٦

دانشگاه تهران پردیس دانشکده های فنی دانشکده مهندسی کامپیوتر

بهبود مدلهای پیش بینی پیوند مبتنی بر ویژگیهای پنهان با استفاده از قوانین انجمنی

پایاننامه جهت دریافت درجه کارشناسی ارشد در رشته مهندسی کامپیوتر گرایش نرمافزار

> نگارش: مسعود هاشمیان

استاد راهنما: دکتر ناصر یزدانی

مرداد ماه ۱۳۹٦

دانشگاه تهران پردیس دانشکدههای فنی دانشکده مهندسی برق و کامپیوتر

گواهی دفاع از پایاننامه کارشناسی ارشد

سماره	به ش		هیأت داوران پایاننامه کار شنا سی ار شد آقای / خانم
تاريخ	را در	. گرایش	دانشــجوييدر رشــته
		•••••	با عنوان
	به حروف	به عدد	
			با نمره نهایی
	ارزیابی کرد.		و درجه

امضاء	دانشگاه یا مؤسسه	مرتبه	نام و نام خانوادگی	مشخصات هيئت داوران	رديف
		دانشگاهی			
				استاد راهنما	
				اســتاد راهنمای دوم (حســب	١
				مورد)	
				استاد مشاور	۲
				استاد داور داخلی	٣
				استاد مدعو	٤
				ن مای نده کمی ته تحصیلات	٥
				تکمیلی دانشکده / گروه	

نام و نام خانوادگی معاون آموزشی و تحصیلات تکمیلی پردیس دانشکدههای فنی: تاریخ و امضاء: نام و نام خانوادگی معاون تحصیلات تکمیلی و پژوهشی دانشکده / گروه: تاریخ و امضاء:

تعهدنامه اصالت اثر باسمه تعالى

اینجانب مسعود ها شمیان تائید می کنم که مطالب مندرج در این پایاننامه حاصل کار پژوهشی اینجانب است و به د ستاوردهای پژوهشی دیگران که در این نو شته از آنها استفاده شده است مطابق مقررات ارجاع گردیده است. این پایاننامه قبلاً برای احراز هیچ مدرک هم سطح یا بالاتر ارائه نشده است.

کلیه حقوق مادی و معنوی این اثر متعلق به دانشکده فنی دانشگاه تهران می باشد.

نام و نام خانوادگی دانشجو:

امضای دانشجو:

تقدیم به پدر، مادرم و همسر عزیزم

چکیده

یادگیری ما شین برای رابطههای بین دادههایی حجیمی که روزانه تو سط بازیابی اطلاعات، محا سبات زیست شناسی، پردازش زبان طبیعی و ... نولید می شوند مسالهی سختی تبدیل شده است. روشهای زیادی برای کار با این دادهها معرفی شده است که پایگاههای دانش بزرگی را تحلیل و روابط موجود در آنها را استخراج می کند. یک د سته از این روشها روشهای مبتنی بر ویژگیهای پنهان است که مساله را وارد یک فضای برداری چند بعدی کرده و پس از آن سعی می کنند با تعداد پارامتر کم مساله را حل کنند. قدرت این روشها در سادگی آموزش مدل، تعداد پارامتر کمی که نیاز است آموزش دیده شوند و کار روی پایگاههای دانش با مقیاس زیاد است. این مدل ها روابط موجود بین موجودیتها را به خوبی تشخیص داده و پس از آموزش به دستهبندی خوبی از این موجودیتها دست پیدا می کنند اما در مورد پیوندهای بین موجودیتها اینطور نیست و روابط بین پیوندها بخوبی تشخیص داده نمی شود. در این پژوهش قصد داریم به کمک قوانین انجمنی روابط بین پیوندها را نیز تشخیص دهیم و در آموزش مدل دخیل کنیم و همچنین چارچوبی ارائه دهیم که به کمک آن بتوان نقاط ضعف و قوت روشهای موجود را بررسی کرد.

واژههای کلیدی: یادگیری ماشین، پیش بینی پیوند، ویژگیهای پنهان، فضای برداری، قوانین انجمنی

فهرست مطالب

1	فصل ۱: مقدمه
	١-١- تعريف مسئله
	٢-١- روش انجام پژوهش
۴	١-٣- كاربردهاى پژوهش
۵	۱-۴- ساختار پایاننامه
	فصل ۲: پیشینه پژوهش
Υ	۲-۱- زمینههای تحقیق
Υ	۱-۱-۲ شبکههای همگون و ناهمگون
٩	٢-١-٢ پيش.بيني پيوند
1 •	۳-۱-۲ فرض جهانباز و فرض جهانبسته
11	۴-۱-۲ گرادیان نزولی تصادفی (SGD)
17	۲-۲- روشهای مبتنی بر ویژگیهای پنهان
14	۲–۳– تقسیمبندی دادههای پایگاه دانش
18	۲-۴- مراحل اَموزش روشهای مبتنی بر ویژگیهای پنهان
١٧	٢-٢-١ مرحلهى آموزش
1Y	۲-۴-۲ مرحلهی ارزیابی
19	۲-۴-۲ مرحلهی آزمون:
۲۰	۲-۵- بررسی روشهای موجود
۲.	۲–۵–۱ و شرهای خطر

71	۲-۵-۲ روشهای دوخطی – رسکال
79	۲-۵-۳ روشهای ادراک چندلایهای
٣١	۲-۵-۲ شبکههای عصبی تنسور
٣٣	۲–۵–۵ روشهای فاصلهی پنهان
٣٣	۶-۵-۲ مدل Structured embedding
٣۵	۳-۵-۲ مدل TransE
٣٩	۸-۵-۲ مدل TransHTransH
۴۲	فصل ۳: قوانین انجمنی
۴۲	۳-۱- معیارهای اطمینان
۴۳	۳-۱-۱- معيار پشتيباني قانون:
FF	٣-١-٢- معيار پوشش سر
FF	٣-١-٣ معيار اطمينان استاندارد
۴۸	٣-١-۴- معيار اطمينان با فرض نيمه كامل
۴۹	٣-٢- الگوريتم ها
۵۲	٣-٣- قوانين هدف
۵۳	۳-۳-۳ قانون R-subsumption
۵۳	۳-۳-۳ قانون R- equivalence
۵۴	۳-۳-۳- قانون 2-hope translation
۵۴	۴-۳-۳- قانون Triangle alignment
۵۵	۳-۳-۵ قانون Specific R-subsumption
۸۶	011.0.0 F W

ΔΥ	فصل ۴: روش پیشنهادی
ΔΥ	۱-۴ چالشها
ΔΥ	۲-۴- عملکرد روشهای موجود
۵۸	٣-٢-۴ روش رسكال
۵۸	۴-۲-۲- روش NTN
۵۹	۳-۲-۴ روش Structured Embedding
۶۰	۴-۲-۴ روش TransE
۶۰	۵-۲-۴ روش TransH:
۶۱	٣-۴- نقاط قوت و ضعف روشهای موجود
۶۸	۴-۴- بررسی عمل کرد روشها در یک نگاه
Υ١	۵-۴ استفاده از قوانین انجمنی برای بهبود نتایج
٧٢	۱-۵-۴ قانون R-subsumtion
Y7	۲-۵-۴ قانون R-equiv alence
YY	۳-۵-۴ قانون تعدی (2-hope translation)
٧۴	۴-۵-۴- قانون Triangle alignment
ν۴	۵-۵-۵- قانون Specefic R-subsumption
Υ۵	فصل ۵: ارزیابی
٧۵	۵-۱- مقدمه
٧۵	۵-۲- آزمایشها
	۵-۳- جمع بندی

۸٧	فصل ۶: نتیجه گیری
۸٧	8-۱- نتیجه گیری
۸۸	۶–۲– کارهای آینده
۹۱	فصل ۷: مراجع
۹۲	فصل ۸: واژهنامه انگلیسی به فارسی
9٣	فصل ٩: واژەنامە فارسى بە انگلىسى

فهرست اشكال

۸	شکل ۱ شبکهی همگون
٩	شکل ۲ شبکه ناهمگون
١٠.	شکل ۳ پیشبینی پیوند در شبکه ناهمگون
۱۳	شکل ۴ کاربرد قوانین انجمنی در پیشبینی پیوند
۱۶.	شکل ۵ نحوهی تقسیم پایگاه دانش freebase15k به سه قسمت آموزش، ارزیابی و آزمون
	شكل ۶ نمونهى سوال و پاسخ از مدل
۲٠,	شکل ۷ نحوهی مقایسهی ویژگیها در روشهای خطی
۲١.	شکل ۸ نحوهی نگاشت ویژگیها در روشهای دوخطی
	شكل ٩ تبديل ماتريس به تنسور در روش RESCAL
۲٧.	شکل ۱۰ تقسیم رابطهی رسکال به دو لایه
٣٠	شكل ١١ روش ER-MLP
سط	شکل ۱۲ افزایش فا صلهی دو موجودیت که رابطه ی k' بین آنها برقرار نیست پس از نگا شت تو
	بردار انتقال 'k در روش Structred Embedding
ردار	شکل ۱۳ کاهش فاصلهی دو موجودیت که رابطهی k' بین آنها برقرار است پس از نگاشت توسط ب
	انتقال 'k در روش Structred Embedding
٣۶.	شکل ۱۴ بازنمایی شبکهی ناهمگون در فضای برداری
۴٠.	شكل ١٥-ب روش TransH
	شكل ١۶-الف روش TransE
48.	شكل ١٧ نمونه گراف ناهمگون با دو نوع رابطه
۴٧.	شکل ۱۸ حقیقتهایی که در گراف نمونه موجود تیست
	شکل ۱۹ حالت ناشناس برای پیوندهایی که اطلاعی در مورد آن نداریم
49	شکل ۲۰ نحوهی استخراج قوانین انجمنی از حقیقتهای پایگاه دانش
۶٣.	شکل ۲۱ بازنمایی بردار ۵۰ هزار موجودیت که به روش TransE آموزش دیده شده است
۶۴.	شکل ۲۲ بازنمایی قسمتی از موجودیتها که در مورد ژانر مجموعههای تلوزیونی هستند
۶۵.	شکل ۲۳ بازنمایی قسمتی از موجودیتها که در مورد ایالتهای آمریکا هستند
	شکل ۲۴ بازنمایی قسمتی از موجودیتها که در مورد نام سریالهای تلوزیونی آمریکا هستند
	شـکل ۲۵ بازنمایی بردار روابط پایگاه دانش freebase15k که توسـط روش TransE آموزش د
	شده است
	شکل ۲۶ بزرگنمای قسمتی از بردارهای روابط موجود در پایگاه دانش freebase15k

٧٠	شکل ۲۷ درصد hit@10 در روشهای مورد بررسی
&hit −راســت تاثير اعمال قانون -R	010 بر R-Subsumption بر 10
ΥΥ	Subsumption بر رتبهی میانگین
می میانگین - چپ تاثیر اعمال قانون	شکل ۲۹-راست تاثیر اعمال قانون SR-Subsumption بر رتب
٧٨	SR-Subsumption بر 10 @hit
hit -راســت تاثير اعمال قانون -R	شـــکل ۳۰-چپ تاثیر اعمال قانون R-equvalence بر 10 @
٧٩	equvalence بر رتبهی میانگین
@hit -را ست تاثير اعمال قانون -2	شکل ۳۱–چپ تاثیر اعمال قانون 2-hope translation بر
٨٠	hope translation بر رتبهی میانگین
hit@10 -راسـت تاثير اعمال قانون	شــکل ۳۲-چپ تاثیر اعمال قانون Triangle alignment بر 0
۸۲	Triangle alignment بر رتبدی میانگین
- راست تاثیر اعمال همهی قانون <i>های</i>	شکل ۳۳-چپ تاثیر اعمال همهی قانون های هدف بر 10 @hit
۸۳	هدف بر رتبهی میانگین

فهرست جداول

14	۱ تقسیمبندی پایگاههای دانش	جدول ۱
۴٣	۱ نمونهی پایگاه دانش متشکل از دو رابطه	مِدول آ
۵۵	۲ قوانین انجمنی هدف	جدول "
۶۲.	α نمونهی سوال از مدل α TransE و ده پاسخ اول	مِدول لا
۶٩	۶ تعداد پارامترهای هر روش	عدول ع
٧.	۱ مقدار رتبهی میانگین و hit@10 در روشهای مورد بررسی	عدول ا
٧۶	/ تعداد قوانین استخراج شده روی freebase15k به تفکیک قوانین هدف	مدول ۱
۸٣	$^{ m a}$ نتایج اعمال قوانین انجمنی هدف بر روی معیار $^{ m a}$ $^{ m bi}$ روشهای مورد بررسی $^{ m a}$	عدول ۱
۸۴	۱۰ نتایج اعمال قوانین انجمنی هدف بر روی معیار رتبهی میانگین روشهای مورد بررسی	عدول ٠

فصل 1: مقدمه

در سالهای اخیر شاهد رشد بسیار زیادی در شبکههای اجتماعی بودهایم و مطالعات زیادی روی این شبکهها انجام گرفته است. دادههای شبکههای اجتماعی یکی از ابزارهای محبوب برای مدل کردن رابطه و رفتار افراد و جامعه یا گروهی که در آن عضو هستند به شمار می رود. این دادهها معمولا به صورت گرافی نمایش داده می شود که در آن گرهها افراد و لبهها روابط بین این افراد می باشد.

همچنین یادگیری ماشین مدت زیادی است که در علوم کامپیوتر جایگاه خود را پیدا کرده و به عنوان ابزار قدرمتندی برای کمک به انسان در زمینههای مختلف محسوب می شود و ماشین را بیش از پیش در خدمت انسان در آورده است.

در روشهای اولیه یادگیری ماشین، عمدتا از دادهها و متنهای خام در زمینه ی یادگیری استفاده می شد. اخیرا از طرف برخی شرکتها و موسسات بزرگ، همچون گوگل، ایبیام، مایکروسافت و ... پایگاههای دانشی معرفی شده است که انجام راهکارهای مختلف یادگیری ما شین را ساده تر و کاربردی تر کرده است. در این پایگاههای دانش اطلاعات مورد نیاز برای عملیاتهای مختلف یادگیری به صورت منظم و نیمه منظم موجود است و دغدغه ی نرمال کردن و رفع خطا و استخراج حقایق را به مقدار زیادی کم کرده است. این پایگاههای دانش عمدتا به صورت یک شبکه از موجودیتها و روابط بین آنها که می توان آن را به صورت یک گراف داده نمایش داده به این صورت که گرهها موجودیتها و یالهای بین گرهها نشانگر روابط بین آنها باشد، که این یالها می توانند از یک نوع باشند یعنی گراف نشانگر یک شبکه تک رابطه ای باشد (همگون) یا هر یال با یک برچسب، نشانگر نوع رابطه باشد و شبکه نشانگر یک گراف چند رابطه ای (ناهمگون) باشد.

یکی از مسائل بنیادی و اساسی در یادگیری ماشین روی شبکههای اجتماعی، پیشبینی پیوند در شبکههای همگون و ناهمگون است به این معنی که از اطلاعات موجود در گراف دانش استفاده کرده و وجود یا عدم وجود یک یال را پیشبینی کرد، یا به عبارت دیگر مسالهی پیشبینی پیوند این است که نمایی از یک شبکه به ما داده می شود و ما مایل هستیم که بدانیم در آینده نزدیک، احتمالا چه تراکنشهایی میان اعضای فعلی شبکه روی می دهد و یا اینکه کدام یک از تراکنشهای موجود را از دست می دهیم.

این راهکار در زمینه های مختلف یادگیری ماشین مورد استفاده قرار می گیرد و کاربرد گستردهای در زندگی انسان پیدا کرده است. برای مثال از این راهکار در سیستمهای تو صیه گردشگاههای اینترنتی، سیستمهای تشخیص پزشکی، جواب گویی به سوال و ... استفاده می شود.

اکثر مطالعات انجام شده در این زمینه روی شبکههای تکرابطهای بوده است. به این معنا که روابط بین موجودیتها از یک نوع است و این روابط به صورت دوتاییهای مرتب مورد استفاده قرار می گیرند. برای مثال اگر در یک شبکه اجتماعی رابطه را دوستی بین افراد در نظر بگیریم یالهای گراف شبکه به صورت «الف، ب» خواهد بود به این معنی که شخص الف با شخص ب رابطه دو ستی دارد.

پایگاههای دانشی که اخیرا معرفی شدهاند عمدتا دادهها را به صورت دادههای چند رابطهای ذخیره می کنند و اطلاعات بیشتری از یک رابطه دوتایی بلی یا خیر به ما می دهند. منظور از دادههای چند رابطهای گراف جهتداری است متشکل از موجودیتها و روابط بین آنها که بصورت «مبدا h، مقصد t» نمایش داده می شود، به این معنی که یک رابطه r بین موجودیتهای h و t وجود دارد. برای مثال سهتایی «تهران، واقع در، ایران» این اطلاع را به ما می دهد که استان تهران داخل کشور ایران قرار دارد. در این نوع پایگاه دانش هم انواع مختلف موجودیت وجود دارد و هم انواع مختلف رابطه بین موجود یت ها. پایگاه های دانشی مانند و FreeBase ، Graph Google Knowledge وجود دارند که شامل تعداد زیادی نمونه چندرابطهای می باشند و تعداد زیادی موجودیت و روابط بین آنها را می توان در آنها یافت و از آن برای یادگیری مدل استفاده کرد.

۱-۱- تعریف مسئله

روشهای مختلفی برای حل مساله ی پیشبینی پیوند در پایگاههای دانش ناهمگون ارائه شده است که از رویکردهای مختلفی سعی به حل این مساله می کنند از جمله روشهای آماری، روشهای ویژگی های ویژگی های گراف و ...، تمرکز ما در این مقاله بر روی روش های پیشبینی پیوند مبتنی بر ویژگیهای پنهان خواهد بود.

در روشهای مبتنی بر ویژگیهای پنهان، با استفاده از ویژگیهایی که در موجودیتها و روابط بین آنها وجود دارد سعی می شود میزان ارتباط بین موجودیتها را تشخیص دهیم و به این صورت وجود یک پیوند را تایید یا رد کنیم. برای مثال اگر دو شخص با هم همکار ه ستند، به احتمال زیادی ویژگیهای مشترکی دارند، مثلا هر دو اهل یک شهر هستند، هر دو در یک رشتهی دانشگاهی تحصیل کردهاند، خصوصیات اخلاقی یکسانی دارند و در رابطهی همکار بودن به هیچ یک از این ویژگیها به طور مستقیم ا شاره نشده است و این ویژگیها به طور ضمنی در این موجودیتها قرار دارند که با استفاده از آن می توانیم وجود یا عدم وجود رابطهی همکار بودن را حدس بزنیم. پس هر موجودیت می تواند تعداد زیادی ویژگی پنهان دا شته با شد که رابطهها به این ویژگیها وزن می دهند، مثلا در رابطه ی همکاری احتمال اینکه رشتهی تحصیلی دو شخص در همکار شدن آنها تاثیرگذار با شد بیشتر از ویژگی رشتهی تحصیلی در این رابطه بیشتر از ویژگی رشتهی تحصیلی در این رابطه بیشتر از ویژگی رشتهی تحصیلی در این رابطه بیشتر از ویژگی رشته به ست.

روشهای زیادی برای حل مساله ی پیشبینی پیوند مبتنی بر ویژگیهای پنهان ارائه شده است. همه ی این روشها از یک روال ثابتی برای حل مساله استفاده می کنند و هر کدام با نوآوریهایی که داشته ند بهبودهایی در نتایج بدستآمده حاصل کرده اند. این روشها در بخش $-\Delta$ - به طور کامل معرفی خواهند شد.

در این پژوهش قصد داریم که با استفاده از قوانین انجمنی موجود در پایگاههای دانش به دو هدف برسیم،

۱. بهبود نتایج در روشهای معرفی شده ی موجود: در ادامه پنج روش از روشهای معروف مبتنی بر ویژگیهای پنهان که به حل مساله ی پیشبینی پیوند پرداختهاند را انتخاب می کنیم و در بخش ۴-۲- نشان می دهیم که استفاده از قوانین انجمنی در فرایند

آموزش این پنج روش باعث بهبود در نتایج این روشها خواهد شد.

۲. ارائه ی چارچوبی برای سنجش نقاط ضعف و قوت روشهای ارائه شده: همچنین با د ستهبندی کردن قوانین انجمنی در بخش ۳-۳- نشان میدهیم که با اعمال جداگانه ی دستههای مختلف قوانین انجمنی میتوانیم میزان قدرت و ضعف روشها را در قانونهای مختلف بررسی کنیم که با برطرف کردن نقاط ضعف میتوان روشهای قوی تری ارائه کرد.

۱-۲- روش انجام پژوهش

برای دستیابی به اهدافی که در بخش قبل مطرح شد، همانطور که اشاره شد از قوانین انجمنی استفاده خواهیم کرد. در روشهای معرفی شده فقط از روابط موجود در پایگاه دانش در فرایند آموزش استفاده شده است. مثلا اگر در پایگاه دانش داشته باشیم که «علی، پدر، حسن» به این معنی که علی پدر حسـن اسـت میتوانیم به این نتیجه برسـیم که «حسـن، فرزند، علی» و از آن در فرایند آموزش استفاده کنیم اما در این روشها این روابط مورد استفاده قرار نگرفتهاند. در این پژوهش قصد داریم که اینگونه قوانین را به کمک روشهایی که در بخش ۳-۲- توضیح داده میشوند از پایگاه دانش استخراج کنیم و به کمک معیارهای کیفیت که در بخش ۳-۱- معرفی میشـوند قوانینی که کیفیت مناسـب دارند را انتخاب کنیم و در فرایند آموزش از آنها اسـتفاده کنیم، نحوه ی اسـتفاده از این قوانین در مدلهای موجود در بخش ۳-۳- توضیح داده شده است.

۱-۳- کاربردهای پژوهش

مسائل پیشبینی پیوند در زمینههای زیادی قابل به کارگیری هستند و همین امر باعث شده است که در سالهای گذشته بسیار مورد توجه و تحقیق قرار بگیرند. به عنوان مثال در ادامه تعدادی از این کاربردها را مطرح خواهیم کرد:

• پیشبینی پیوندهای احتمالی در شبکههای اجتماعی، برای مثال در شبکههای اجتماعی بین کاربران و مطالب ثبت شده، نظرات و ... بررسی شود که روابطی مانند دوستی، پسندیدن و

نپسندیدن، روابط فامیلی و ... وجود دارد یا خیر.

- استفاده بهعنوان سیستمهای توصیه گر، برای مثال کاربران و کالاها یا اشیاء موجودیتها هستند و خریدن، امتیاز دادن، بررسی کردن و ... رابطهها هستند که می توان از بررسی این روابط و موجودیتها اطلاعاتی نظیر کاربر x کالای y را خواهد خرید یا خیر یا اینکه کالای y به تعداد بالا فروش خواهد رفت یا خیر بدست آورد.
- استفاده در سیستمهای تشخیص پزشکی، برای مثال شبکه ی بین بیماران، بیماریها، داروها و ... را در نظر بگیرید، با بررسی دقیق این شبکه می توان علل و درمانهای بیماریها را به کمک ماشین بدست آورد.

علاوه بر کاربردهایی که در بالا برای پیشبینی پیوند اشاره شد، از روش ارائه شده در این پژوهش می توان برای کامل تر کردن پایگاههای داده نیز استفاده کرد، به این صورت که روابطی که از قوانین انجمنی استخراج شده از پایگاه دانش بدست می آید و کیفیت لازم را دارد را نیز به پایگاه دانش اضافه کنیم و آن را کامل تر کنیم.

۱-۴- ساختار پایان نامه

ادامه ی این پایان نامه به این صورت است که در فصل ۲ پیشینه پژوهش و زمینههای تحقیق را شرح می دهیم که توضیح می دهیم که از چه ابزاری برای انجام این پژوهش استفاده شده است و همچنین روشهای مختلف حل این مساله را توضیح می دهیم. در فصل ۳ مروری داریم بر قوانین انجمنی و معیارهایی برای سنجش کیفیت قوانین معرفی می کنیم و نحوه ی استخراج قانون ها از پایگاههای دانش را توضیح می دهیم و در انتهای این فصل پنج قانون هدفی که قصد استفاده از آنها داریم را توضح می دهیم. در فصل ۴ روش پیشنهادی برای بهبود روشهای مبتنی بر ویژگی پنهان را شرح می دهیم و نحوه ی اعمال آن بر روی همه ی متدهای معرفی شده در فصل ۲ را توضیح می دهیم. در فصل ۵ آزمایشها و نتایج آزمایشهای انجام شده را آورده ایم و نهایتا در فصل ۶ نتیجه گیری انجام شده و کارهایی که در آینده برای بهبود بیشتر این روشها قابل انجام هست را توضیح می دهیم.

فصل ۲: پیشینه پژوهش

در این بخش به معرفی روشهای موجود که به حل مساله ی پیشبینی پیوند در شبکههای ناهمگون می پردازند، خواهیم پرداخت. روشهایی با راهکارهای مختلفی در حوزههای مختلف تلاش به حل این مساله کردهاند. این روشها می توانند به سه دسته ی مختلف تقسیم می شوند: ۱- روشهای مبتنی بر ویژگیهای پنهان. در ادامه ویژگیهای گراف ۲- روشهای مدل تصادفی مارکوف ۳- روشهای مبتنی بر ویژگیهای پنهان. در ادامه توضیح مختصری در مورد هر دسته از روشها می دهیم.

- در روشهای مبتنی بر ویژگیهای گراف از روی ویژگیهای ساختاری گراف دادهها استفاده میشود مانند دستهبندی گرهها، دستهبندی نوع یالها، تعداد گرههای مشابه و ...
- روشهای مدل تصادفی مارکوف که در آن دید بالایی از گراف داده نداشته و سعی میکنیم مساله را به صورت محلی حل کنیم به این صورت که روابط هر موجودیت را با موجودیتهای اطراف آن بررسی میکنیم و جوابهای محلی را بدست میآوریم.
- روشهای مبتنی بر ویژگیهای پنهان که در این روشها هر موجودیت و نوع رابطه بین آنها به صورت برداری از ویژگیهای پنهان تعریف میشود که ویژگیهای پنهان نام دارد. برای مثال ویژگیهایی که یک موجودیت میتواند داشته باشد، محل به وجود آمدن آن، سن آن، جاندار یا بیجان بودن آن و ... است.

همانطور که در بخش ۲-۱-۲-گفتیم تمرکز ما در این تحقیق روی روشهای مبتنی بر ویژگیهای پنهان است. در ادامه این روشها را به صورت کامل توضیح داده و تعدادی از آنها را به طور مختصر معرفی کرده و نحوه ی کار آنها را توضیح میدهیم و نتایج بهدست آمده از آنها را توضیح میدهیم.

۱-۲ زمینههای تحقیق

در این بخش مطالبی راجع به مباحث پایهای که در ادامه تحقیق از آنها استفاده شده است را مطرح خواهیم کرد.

۱-۱-۲ شبکههای همگون و ناهمگون

در سالهای اخیر شبکههای اجتماعی پی شرفت زیادی دا شته است و در زمینههای مختلفی شبکه سازی شده است. عمدتا در این شبکهها روابط خاصی مدنظر و قابل استخراج است، مثل روابط دوستی، همکاری و سکه اگر گراف این گونه شبکهها را رسم کنیم در این گرافها یالها از یک نوع است و نشانگر یک رابطه ی خاص است. مثلا گرافی هست که همه ی گرههای آن انسانها هستند و یالهای بین گرهها نشان دهنده ی وجود یا عدم وجود دوستی بین اشخاص است. این گونه شبکهها که در آنها یال و گرهها از یک نوع است را شبکههای همگون مینامیم [X]. در شکل ۱ یک نمونه شبکه همگون که در آن اشخاص و رابطه ی دوستی بین آنها به تصویر کشیده شده است را مشاهده می کنیم.

شکل ۱ شبکهی همگون

اما همانطور که در مقدمه نیز اشاره شد، اخیرا شبکههای بزرگتر و پیچیده تری معرفی شده است که فقط یک نوع رابطه را پوشیش نمی دهد و روابط مختلفی را بین موجودیتهای مختلف در بر می گیرد، به این شبکهها به علت یکسان نبودن نوع روابط و موجودیتها شبکههای ناهمگون می گوییم، همچنین به خاطر وجود دانشی که در این شبکهها نهفته و قابل استخراج است، آن را پایگاه دانش نیز می نامیم. در شکل ۲ یک قسمت کوچک از یک شبکهی ناهمگون را مشاهده می کنیم که موجودیتهای آن از دو نوع انسان و شهر هستند و روابط موجود در این شبکه از دو نوع «والد بودن» و «متولد شهر سبودن» است.

-

¹ Knowledgbase

شكل ٢ شبكه ناهمگون

۲-۱-۲ پیشبینی پیوند

یکی از روشهای یادگیری ماشین که در زمینههای مختلف به کمک انسان آمده است و کارهای انسانی را تسهیل کرده است پیشبینی پیوند است. در پیشبینی پیوند یک گراف از روابط بین موجودیتها به عنوان ورودی مساله دریافت می کنیم و وجود یا عدم وجود یک یال بین دو موجودیت را پیشبینی می کنیم. در شکل ۳ یک گراف از یک شبکهی ناهمگون را مشاهده می کنیم. مسالهی پیشبینی لینک تلاش می کند که بررسی کند که رابطهی «تولد» بین گرههای «علی» و «تهران» قرار دارد یا خیر. این پیشبینی عمدتا از روی دیگر روابط مرتبط بین موجودیتها انجام می شود و با بررسی شباهتها و معیارهایی که در ادامهی این پژوهش تو ضیح خواهیم داد تصمیم می گیریم که این پیوند برقرار هست یا خیر.

شکل ۳ پیشبینی پیوند در شبکه ناهمگون

راهکارهای مختلفی برای حل این مساله مطرح شده است که به طور کلی می توان این راهکارها را به سـه دسـتهی ۱ - روشهای مبتنی بر ویژگیهای گراف؛ ۲ - روشهای مدل تصـادفی مارکوف؛ و ۳ -روشهای مبتنی بر ویژگیهای پنهان تقسیم کرد که در این پژوهش تمرکز ما روی دستهی سوم یعنی روشهای مبتنی بر ویژگیهای پنهان خواهد بود و در بخش ۲-۴- این روشها را به تفصیل توضیح خواهیم داد.

۲-۱-۳ فرض جهانباز ٔ و فرض جهانبسته ٔ

فرضهای جهان باز و جهان بسته در سیستم رسمی منطق ٔ برای بازنمایی دانش ٔ مورد استفاده قرار می گیرد. در فرض جهان بسته در نظر می گیریم که اگر دادهای در پایگاه دانش نبود، آن داده را غلط

¹ Open world assumption (OWA)

² Closed world assumption (CWA)

³ Formal system of logic

⁴ Knowledge representation

فرض می کنیم [x] . برای مثال اگر در پایگاه دانش حقیقت (x, r, y) که به معنی این است که x با y رابطه x را دارد وجود نداشته باشد، می توانیم در نظر بگیریم که این حقیقت اشتباه است و مطمئنیم که x با y رابطه x ندارد.

اما در فرض جهانباز اینگونه نیست و اگر حقیقتی در پایگاه دانش وجود نداشته باشد نمی توانیم با اطمینان بگوییم که آن حقیقت اشتباه است، و ممکن است صحیح باشد [X]. وجود این فرض از کامل نبودن پایگاههای دانش ناشی می شود که وقتی نمی توانیم همه ی اطلاعات موجود در مورد موضوع مربوط به پایگاه دانش را جمع آوری و در آن قرار دهیم پس نمی توانیم در مورد حقیقت هایی که در پایگاه دانش نیست نظری بدهیم و این حقیقت را ناشناس در نظر می گیریم.

۲-۱-۲- گرادیان نزولی تصادفی ۲-۱-۲

گرادیان نزولی تصادفی یک راهکار ساده و در عین حال موثر برای مسائل کمینهسازی یا بیشینه سازی یک تابع هدف است که به صورت مجموع یک تابع مشتق پذیر نوشته می شود. در کل SGD سعی می کند نقطه ی کمینه یا بیشینه را به کمک تکرار پیدا کند. این روش می تواند به صورت دستهای روی پایگاههای دانش بزرگ اعمال شود که مشکل حافظه برای عملیات یادگیری روی پایگاههای دانش بزرگ که در حافظه ی اصلی جا نمی گیرند را حل می کند. همچنین دستهای بودن این روش این قابلیت را به ما می دهد که دادههای جدیدی که به صورت برخط به مجموعه اضافه می شوند را نیز بتوانیم وارد فرایند آموزش کنیم و نیاز به اجرای مجدد همهی مراحل آموزش نباشد. نکته روش گرادیان تصادفی نزولی این است که نیاز نیست در هر تکرار کل مجموعه داده مورد بررسی قرار بگیرد و این روش با یک یا چند نمونه از مجموعهی داده در هر تکرار قابل اجرا است.

بروزرسانی پارامتر بصورت زیر انجام میپذیرد که در آن Q تابع هدف، w پارامتری که با تغییر آن قصد داریم تابع هدف را بهینه کنیم و η نرخ یادگیری است.

$$w = w - \eta \nabla E[Q(w)] = w - \eta \sum_{i=1}^{n} \frac{\nabla Q_i(w)}{n}$$

٠

¹ unknown

² Stochastic gradient descent

۲-۲- روشهای مبتنی بر ویژگیهای پنهان

روشهای مبتنی بر ویژگیهای پنهان از جدید ترین راهکارهایی است که در حوزهی پیشبینی پیوند روی پایگاه های دانش موجود معرفی شده است. همانطور که در بخش قبل گفتیم این روش از ویژگیهایی که در نگاه اول از پایگاه دانش برداشت نمی شود استفاده می کند که ویژگیهای پنهان نام دارند. در همهی روشهای مبتنی بر ویژگی پنهان این ویژگیها را به صــورت برداری تعریف میکنیم که هر مولفه از این بردار نشان دهندهی یک ویژگی میباشد.

برای مثال در رابطهی دوستی فاکتورهایی تاثیر گذار هستند و اگر در پایگاه دانش همهی رابطههای دو ستی موجود را برر سی کنیم به یک بردار از فاکتورها می ر سیم که بردار رابطه ی دو ستی را تشکیل می دهد. مثلا فاکتورهایی مانند شهر محل زندگی، سن، دانشگاه، رشتهی دانشگاهی، جنسیت، مذهب و ... در شکل گیری رابطهی دوستی می تواند موثر باشد، اما اینکه هر کدام از این روابط چقدر در ایجاد رابطهی دو ستی تاثیر دارند و اهمیت هر کدام چقدر ا ست و این میزان اهمیت را چگونه در ت شخیص این رابطه تاثیر دهیم به مدل یادگیری بستگی دارد که در ادامه در معرفی هر یک از روشها به صورت كامل توضيح داده خواهد شد.

برای مثال برای اینکه بررسی کنیم شخص X بازیکن فوتبال خوبی هست یا خیر از دیگر روابط موجود Xاستفاده می کنیم و میزان ارتباط این شخص را با معیارهای بازیکن خوب فوتبال بودن بررسی می کنیم. در مثال شکل ۴ شخص x هم برای توپ طلا نامزد شده و هم توپ طلا را دریافت کرده و از اطلاعات دیگر پایگاه دانش میدانیم که توپ طلا به بهترین بازیکن فوتبال هر سال داده می شود. پس شخصی که این جایزه را دریافت کرده بازیکن فوتبال خوبی است.

شکل ۴ کاربرد قوانین انجمنی در پیشبینی پیوند

روشهای زیادی برای مدلهای مبتنی بر ویژگیهای پنهان معرفی شده است، روشهایی که در این تحقیق مورد مطالعه و بررسی قرار گرفته این به صورت زیر دستهبندی میشوند.

- روشهای خطی
- روشهای دو خطی
- RESCAL o
- روشهای ادراک چندلایهای
- Neural Tensor Network (NTN) o
 - روشهای فاصلهی پنهان
 - Structured Embedding o
- Translating Embedding (TransE) o
- Translating on Hyperplane (TransH) o

در ادامه ابتدا پایگاه دانش Freebase که مطالعات روی آن انجام می گیرد و نحوه ی تقسیم بندی آن را توضیح خواهیم داد. سپس روش کلی آموزش مدلهای مبتنی بر ویژگیهای پنهان را شرح می دهیم و در ادامه روشهایی که در بالا نام برده شدند را توضیح داده و نقاط قوت و ضعف آنها را بررسی می کنیم و نتایج بدست آمده از هریک از این روشها را نیز بررسی خواهیم کرد و در فصل بعد تلاش بر بهبود این روشها خواهیم کرد.

۲-۳- تقسیمبندی دادههای پایگاه دانش

برای آموزش دادن مدلهای نام برده شده در بخش قبل از پایگاه دانش ۴۳eebase که قسمتی از گراف دانش تولید شده توسط گوگل است استفاده می کنیم. در این پایگاه دانش ۸۰ میلیون موجودیت، ۲۰ هزار نوع رابطه مختلف و ۱٫۲ میلیارد حقیقت وجود دارد. حقیقتهایی که در این پایگاه دانش وجود دارد به صورت سه تایی مرتب

(subject, predicate, object)

مشخص شدهاند به این صورت که موجودیت subject رابطهی predicate دارد با موجودیت object. به این صورت که موجودیت SPO گفته می شود. برای مثال یک نمونه حقیقت موجود در این پایگاه دانش به صورت:

(Barack Obama, place of birth, Hawai)

است که بیانگر حقیقت «باراک اوباما متولد هاوایی است» میباشد.

این پایگاه دانش شامل تعداد زیادی حقیقت است که عملیات آموزش روی آن هزینه ی زیادی از نظر زمان و منابع خواهد داشت. برای سادگی و تسریع کار از یک نمونه ی نرمال کوچک این پایگاه دانش به نام Freebase 15k استفاه می کنیم که در آن ۱۴۹۵۱ موجودیت، ۱۳۴۵ رابطه ی مختلف و ۹۲۲۱۳ حقیقت وجود دارد.

جدول ۱ تقسیمبندی پایگاههای دانش

پایگاه دانش	موجوديتها	رابطهها	آموزش	ارزیابی	آزمون

FB15K	14,901	1,740	484,147	۵٠,٠٠٠	۵۹,۰۷۱
FB1M	1 × 1 • 8	۲۳,۳ ۸ ۲	1700 × 1.5	۵٠,٠٠٠	177,4.4

روشهای مبتنی بر ویژگیهای پنهان به صورت تکراری انجام میشوند و نیاز است در هر تکرار بررسی کنیم که به آستانهی مناسب برای قطع تکرار الگوریتم رسیدهایم یا خیر. همچنین پس از انجام عملیات آموزش نیاز است که مدل آموزش دیده را آزمایش کنیم و میزان دقت آن را بدست آوریم.

برای انجام عملیات آموزش، بررسی کیفیت آموزش در هر مرحله و بررسی کیفیت کلی آموزش به سه دسته مختلف از داده نیاز داریم.

- دادههای آموزش: قسمت عمده ی دادهها برای عملیات آموزش استفاده می شود که الگوریتم اصلی هر روش روی آن اعمال می شود و سعی می کنیم پارامترهایی که همان ویژگیهای پنهان هستند را تنظیم کنیم.
- دادههای ارزیابی: قسمتی از داده که دادههای ارزیابی نام دارند برای بررسی میزان بهبود یا تخریب مدل در هر تکرار استفاده میشوند، این دادهها کاملا از دادههای آموزش جدا هستند و در مرحلهی آموزش اصلا به مدل نشان داده نمیشود و مدل تحت تاثیر این دادهها قرار نمیگیرد. در انتهای هر مرحله به کمک این دادهها بررسی میشود که تغییراتی که روی پارامترهای این مدل انجام شده است باعث بهتر یا بدتر شدن این مدل شده است، در صورتی که بهبودی مشاهده شود تغییرات انجام شده در این مرحله نگه داشته میشود و به سراغ مراحل بعدی میرویم اما اگه نتایج بدتر شده باشد پارامترها را به مقادیر قبلی برگردانده و مرحلهی بعدی را شروع میکنیم.

دادههای آزمون: قسمت دیگری از داده که دادههای آزمون نام دارند برای بررسی کیفیت عملکرد
 کلی مدل به کار میروند. این دادهها نیز کاملا از دادههای آمورش تفکیک شدهاند و در زمان
 آموزش روی مدل تاثیری نمی گذارند و کلا در هیج یک از مراحل آموزش استفاده نمیشوند و
 تنها پس از آموزش مدل استفاده میشوند تا کیفیت مدل آموزش دیده شده را بررسی کنند.
 در این تحقیق پایگاه دانش Freebase15k به صورت شکل ۵ تقسیم و استفاده شده است، به این
 صورت که برای قسمت آموزش ۴۸۳٬۱۴۲ حقیقت استفاده کردهایم، برای قسمت ارزیابی ۵۰ هزار حقیقت استفاده کردهایم.

شکل ۵ نحوهی تقسیم پایگاه دانش freebase15k به سه قسمت آموزش، ارزیابی و آزمون

۲-۲- مراحل آموزش روشهای مبتنی بر ویژگیهای پنهان

همانطور که در بخش قبل گفته شد پایگاه دانش را به سه قسمت آموزش، ارزیابی و آزمون تقسیم می کنیم. نحوه ی آموزش کلی همه ی روشهای مبتنی بر ویژگیهای پنهان در سه مرحله انجام می شود:

۱- مرحله ی آموزش ۱-مرحله ی ارزیابی ۳- مرحله ی آزمون. مراحل آموزش و ارزیابی به صورت تکراری و معمولا با تکرار بالا انجام می شوند و در هر تکرار بررسی می شود که بهبودی اتفاق افتاده است یا خیر، اگه بهبودی داشتیم نتایج این مرحله تکرار را نگه داشته و مرحله ی تکرار بعدی را شروع می کنیم و اگر بهبودی اتفاق نیافتاده بود تنایج این مرحله را تاثیر نمی دهیم و مرحله ی تکرار بهدی را شروع می کنیم.

در ادامه این سه مرحله را توضیح می دهیم.

۲-۴-۲ مرحلهی آموزش

همانطور که قبل تر تو ضیح داده شد آموزش به صورت تکراری انجام می شود و در هر تکرار الگوریتم آموزش روش مورد نظر، روی قسمتی یا همه ی داده های مجموعه ی آموزش انجام می شود. در این قسمت سعی می شود که پارامترهای همه ی ویژگی ها جهت دهی شده و آموزش ببینند تا کمترین خطا در پاسخ به سوالاتی که از مدل پرسیده می شود را داشته باشند.

۲-۴-۲ مرحلهی ارزیابی

پس از هر تکرار مدل آموزش دیده شده را روی دادههای ارزیابی اجرا میکنیم و معیارهایی که برای بررسی کیفیت مدل در نظر گرفتهایم را بدست میآوریم و از روی آن میزان بهبود مدل در این تکرار را بررسی میکنم.

برای مثال فرض کنید که حقیقت زیر در مجموعه دادههای ارزیابی وجود دارد و در مرحلهی آموزش مدل این حقیقت مشاهده نشده است:

(WALL-E, has_genre, Fantasy)

این حقیقت به این معناست که «ژانر فیلم WALL-E فانتزی است». در مرحلهی ارزیابی موجودیت اول یا آخر این حقیقت را حذف می کنیم و قسمت حذف شده را از مدل سوال می پرسیم و انتظار داریم که قسمت حذف شده را حدس بزند. سوالی که از این مدل پرسیده می شود به این صورت است:

(WALL-E, has_genre, ?)

به این معنی که «ژانر فیلم وال ای چیست؟».

در مدلهای مبتنی بر ویژگیهای پنهان پاسخ به اینگونه سوالات به صورت مجموعهی مرتب شده ی همه موجودیتها با پاسخ این سوال را بررسی می کند و به عنوان پاسخ به ما می دهد. برای مثال پاسخ به سوال بالا به صورت شکل ۶ می باشد.

(WALL-E, has_genre, Fantasy)

WALL-E has the genre?! (WALL-E, has_genre,?)

- 1- Animations
- 2- Computer Animation
- 3- Comedy film
- 4- Adventure film
- 5- Science Fiction
- 6- Fantasy
- 7- Stop motion
- 8- Satire

. . .

شکل ۶ نمونهی سوال و پاسخ از مدل

همانطور که میبینیم مدلی که این سوال از آن پرسیده شده پاسخ درست را در ششمین حدس به ما داده است. در مرحله ی ارزیابی نیاز به معیارهایی داریم که بررسی کنیم که مدل با توجه به این معیارها بهبود داشته یا خیر. در این تحقیق از دو معیار زیر استفاده شده است:

- رتبهی میانگین (Mean rank): میانگین رتبهی جوابهای درستی که مدل داده است.
- حدس زیر ۱۰: درصد سوالاتی که پاسخ درست مدل به آن زیر رتبه ی ۱۰ بوده است که در ادامه به آن hit@10 می گوییم.

همانطور که قبل تر توضیح داده شد ۵۰هزار حقیقت در دسته ی ارزیابی وجود دارد، ما پس از هر تکرار الگوریتم دو معیار بالا را به دست آورده و میزان بهبود مدل را اندازه می گیریم. پس از پرسیدن این ۵۰ هزار سوال میانگین رتبهای که جوابهای درست داشته معیار اول را به ما می دهد و درصد سوالاتی که جواب درست آن زیر رتبه ی ۱۰ بوده است معیار دوم را به ما می دهد.

۲-۴-۳ مرحلهی آزمون:

پس از انجام کامل مراحل آموزش و ارزیابی و متوقف شدند الگوریتم از دادهای آزمون که در بخش 7 - توضیح دادیم استفاده می کنیم و کیفیت مدل را بررسی می کنیم. در این بخش هم مانند بخش ارزیابی دادهها به مدل در حال آموزش نشان داده نشده و برای مدل جدید هستند. در این مرحله هم یک قسمت از هر حقیقت موجود در دادههای آزمون را حذف کرده و آن را از مدل سوال می پرسیم، دقیقا به مانند مرحله ی ارزیابی. پس از پرسیدن سوالات دو معیار رتبه ی میانگین و 10 (hit 0) با بدست می آوریم که این دو معیار نشان دهنده ی میزان کیفیت و دقت روش است.

$-\Delta$ - بررسی روشهای موجود $-\Delta$

در ادامه نحوهی عملکرد روشهای موجود را توضیح داده و بررسی می کنیم.

۲-۵-۱ روشهای خطی

همانطور که در بخش 7-7 گفتیم در روشهای مبتنی بر ویژگیهای پنهان موجودیتها و رابطهها به صورت بردارهایی در یک فضای n بعدی تبدیل میشوند که به کمک معیارهای مختلف شباهت، رابطه ی بین دو موجودیت را بدست میآوریم. در روشهای خطی در زمان آموزش و برر سی میزان شباهت بردارها را به صورت خطی با یکدیگر مقایسه می کنیم، به این صورت که هر اندیس از بردار موجودیت اول را با اندیس متناظر آن در بردار رابطه یا موجودیت دیگر بررسی می کنیم، شکل γ .

شکل ۷ نحوهی مقایسهی ویژگیها در روشهای خطی

با توجه به نتایج ضعیفی که روشهای این دسته در آموزش مدل و پیشبینی پیوند بدست آورده اند به این روشها نمی پردازیم و به همین معرفی اکتفا می کنیم.

۲-۵-۲ روشهای دوخطی – رسکال

روش RESCAL [] یکی از روشهای ویژگیهای پنهان رابطهای است که حقیقتهای پایگاه دانش را به صورت تراکنشهای بین جفت ویژگیهای پنهان در نظر می گیرد. یعنی بر خلاف روشهای خطی هر ویژگی پنهان از هر بردار را با همهی ویژگیهای پنهان دیگر بردار بررسی می کند، به صورت شکل ۸. به همین دلیل این روش را روش دوخطی نیز مینامیم.

شکل ۸ نحوهی نگاشت ویژگیها در روشهای دوخطی

در این روش امتیاز هر سهتایی را از رابطه ی (۱-۲) بدست می آوریم که در آن H_e تعداد ابعاد بردار در نظر گرفته شده برای موجودیت ها است (تعداد ویژگیهای پنهان هر موجودیت). W_k یک بردار وزن با ابعاد $H_e^*H_e$ است که هر اندیس W_a نشانگر این است که ویژگی پنهان W_a و W_a در رابطه W_a با هم کنش می کنند.

-

¹ Relational latent factor

$$f_{ijk}^{RESCAL} := e_i^T W_k e_j = \sum_{a=1}^{He} \sum_{b=1}^{He} w_{abk} e_{ia} e_{jb}$$
 (Y-1)

همانطور که در رابطه ی (۱-۲) مشاهده می شود در این روش هر رابطه به یک ماتریس تبدیل شده و هر موجودیت به یک بردار، اگر حقیقت (a, k, b) به این معنی که موجودیت (a, k, b) را با (a, k, b) در نظر بگیریم و بخواهیم بررسی کنیم که این رابطه برقرار هست یا خیر، احتمال وجود این رابطه را از روی امتیازی که تابع امتیاز (۱-۲) به ما می دهد بدست می آوریم. این امتیاز به این صورت محاسبه می شود که بردار موجودیت (a, k, b) به ما می دهد بدست می آوریم. این امتیاز به این صورت محاسبه می شود که بردار موجودیت (a, k, b) در ماتریس مربوط به (a, k, b) خرب شده و پس از آن در بردار (a, k, b) خرب می شود که نتیجه ی آن یک مقدار حقیقی است که امتیاز این حقیقت را به ما می دهد.

در ادامه به برخی از نکات مورد توجه این مدل به صورت موردی اشاره می کنیم.

آموزش رابطهای از طریق بازنمایی مشتر \mathbf{Z}^{\prime} : در رابطه \mathbf{Z}^{\prime} هر موجودیت به صورت یک بردار بازنمایی شده است بدون توجه به اینکه در قسمت اول حقیقت می آید یا قسمت دوم آن. همچنین این موجودیتها برای همه ی رابطه ها یک بازنمایی مشتر \mathbf{Z}^{\prime} دارند و در هر رابطه نیاز به تعریف جدید ندارند. برای مثال موجودیت \mathbf{Z}^{\prime} و قسمت اول حقیقت \mathbf{Z}^{\prime} با رابطه ی \mathbf{Z}^{\prime} مثال موجودیت \mathbf{Z}^{\prime} در قسمت اول حقیقت \mathbf{Z}^{\prime} با رابطه ی آمده است و همین موجودیت در رابطه ی \mathbf{Z}^{\prime} با رابطه ی قبوان موجودیت دوم در رابطه ی \mathbf{Z}^{\prime} فاهر شده است. هر دو تابع امتیاز \mathbf{Z}^{\prime} او \mathbf{Z}^{\prime} و \mathbf{Z}^{\prime} ازنمایی برای موجودیت \mathbf{Z}^{\prime} استفاده می کنند. بنابراین همه ی پارامترها به صورت مشتر \mathbf{Z}^{\prime} آموزش دیده می شوند و این بازنمایی مشتر \mathbf{Z}^{\prime} باعث می شود که اطلاعات روی همه ی

_

¹ Relational Learning

² Shared representations

 $^{^{\}mathbf{3}}$ jointly

حقیقتها به وسیلهی بازنمایی موجودیتها و ماتریس وزندار رابطهها پخش شوند و بتوانیم وابستگیهای جهانی در دادهها را تشخیص دهیم[1].

ارتباط معنایی بردارها 7 : خاصیت بازنمایی مشترک در این روش کمک میکند که میزان شباهت موجودیتها در فضای رابطهای 7 نیز بدست بیاید. برای مثال موجودیتهایی که با رابطههای مشابه به موجودیتهای مشابه متصل هستند به یکدیگر شبیه هستند. به عنوان نمونه اگر بازنمایی 7 و 7 باید مقادیر نزدیک به هم داشته باشند پس موجودیتها با تعداد به هم باشد، تابع امتیاز 7 و 7 باید مقادیر نزدیک به هم داشته باشند پس موجودیتها با تعداد زیادی رابطه مشترک بازنمایی یکسانی خواهند داشت. این خصوصیت میتواند در بازنمایی 7 و خوشه بندیهای با مقیاس بالای 8 موجودیتها روی دادههای رابطهای مورد استفاده قرار گیرد.[63,64,1]

ارتباط با عاملبندی تنسور f این روش شباهت زیادی به روشهای استفاده شده در سیستمهای توصیه گر [66] و عاملبندی تنسور سنتی دارد] f [67]. خرب ماتریس که در معادله f بازنمایی است که همه می امتیازات f امی تواند به صورت f و عاملبندی است و سطر f امی از ماتریس f و عامل بازنمایی موجودیت f و ماتریس f و در خود جا داده است و سطر f ام از ماتریس f و ادر خود جا داده است و سطر f ام از ماتریس f

¹ global dependency

² Semantic embeddings

³ relational domain

⁴ resulotion

⁵ large-scale hierarchical clustering

⁶ Tensor factorization

است که برداری از ویژگیهای پنهان این موجودیت است. در شکل ۹ این تبدیل ماتریس به تنسور نمایش داده شده است.[1]

شکل ۹ تبدیل ماتریس به تنسور در روش RESCAL

برازش مدل: اگر بخواهیم از یک مدل آماری استفاده کنیم، پارامترهای این روش می توانند به صورت $(SGD)^{\dagger}$ کمدل کمینه سازی برمبنای گرادیان $(SGD)^{\dagger}$ تخمین زده شوند مانند گرادیان نزولی تصادفی $(SGD)^{\dagger}$ این روش می توانیم به صورت یک روش بر مبنای امتیاز حل کرد که می تواند از پارامترهای مدل را به صورت بسیار بهینه ای تخمین بزند: با توجه به ساختار تنسور که در بالا توضیح دادیم و همچنین با توجه به تنک بودن داده های موجود، نشان می دهیم که روش رسکال می تواند به کمک توالی $(SGD)^{\dagger}$ ای با توجه به تنک بودن داده های موجود، نشان می دهیم که روش رسکال می تواند به کمک توالی $(SGD)^{\dagger}$ به صورت تحلیلی می توان نشان داد که در این بروزرسانی های بسته ی کار آمد محاسبه شود $(SGD)^{\dagger}$. به صورت تحلیلی می توان نشان داد که در این

¹ gradient-based minimization

² stochastic gradient descent

³ sequence

⁴ efficient close-form update

راهکار با هر بروزرسانی در E و W_k به صورت خطی با تعداد موجودیتها N_c تعداد رابطهها N_c تعداد حقیقتهای مشاهده شده توسط مدل رشد می کند. [64]

پیشبینی مجزا: در رابطه ی (۱-۲) احتمال وجود یک رابطه از روی یک ضرب ماتریسی ساده از مرتبه ی پیشبینی مجزا: در رابطه ی (۱-۲) احتمال وجود یک رابطه از روی یک ضرب ماتریسی ساده از مرتبه ی $O(H_e^2)$ بدست می آید. بنابراین، زمانی که پارامترهای مدل تخمین زده شدند، پیچیدگی محاسبات برای پیشبینی امتیاز یک حقیقت فقط به تعداد ویژگیهای پنهان وابسته است و مستقل از اندازه ی کل گراف است. با این حال به لطف بازنمایی مشترک که قبل تر توضیح داده شده، این مدل می تواند در زمان تخمین پارامترها، وابستگیهای جهانی بین موجودیتها و رابطهها را فهمیده و در فرایند آموزش تاثیر دهد. [1]

نتایج یادگیری رابطهای: رسکال در زمینههای مختلف مدلهای یادگیری مدرن مورد استفاده قرار گرفته است. برای مثال در [63] نشان داده شده است که رسکال موفق شده در پیشبینی رابطه نتایج نزدیک یا بهتر روی چندین مجموعه داده ی معیار نسبت به روشهای [70] Markov Logic Networks و Bayesian Clustered Tensor و the Infinite (Hidden) Relational model [71, 72] و Head of the Infinite (Hidden) Relational model و [71, 72] بدست آورد. همچنین رسکال برای پیشبینی پیوند روی کل پایگاه دانش مانند Factorization [73] مورد استفاده قرار گرفته است [64, 74]. فارق از پیشبینی پیوند، رسکال در روشهای یادگیری رابطهای تصادفی (SRL) مانند بازنمایی موجودیتها و خوشهبندی بر مبنای پیوند موفقی در دستهبندی نویسندگان، پیوند موفقی در دستهبندی نویسندگان،

¹ state-of-the-art

² stocastic relational learning

³ entity resulotion

⁴ link-based clustring

ناشران و سالنهای انتشار روی مجموعه دادههای ناشران داشته است [63,65]. علاوه بر این، ارتباط معنایی موجودیتها که در این روش محاسبه شد در ایجاد طبقهبندی به کمک خوشهبندی سلسله مراتبی روی دادههای دستهبندی نشده به کار برده شده است [75].

۲-۵-۳ روشهای ادراک چندلایهای ٔ

می توانیم رسکال را به صورت مدلی که برای هر حقیقت یک بازنمایی تولید می کند و از روی این بازنماییها وجود یا عدم وجود این حقیقتها را پیشبینی می کند تفسیر کنیم. به طور خاص می توانیم رسکال را به صورت رابطههای (۲-۲) و (۳-۲) بازنویسی کنیم.

$$f_{ijk}^{RESCAL} := w_k^T \emptyset_{ij}^{RESCAL} \tag{(Y-Y)}$$

$$\emptyset_{i,i}^{RESCAL} = e_i \otimes e_i \tag{Y-Y}$$

در روابط (۲-۱) ضرب داخلی e_i و e_i که در محاسبه ی مجموع امتیازها شرکت می کردند را از مجموع بیرون کشیده و به صورت ضرب خارجی نوشتیم. بنابراین رسکال بازنمایی جفت موجودیت i و i را به صورت ضرب تنسور ویژگیهای پنهان این دو موجودیت بدست آورده است. می توان احتمال وجود حقیقت x_{ijk} را از روی ضرب داخلی بازنمایی جفت موجودیتها x_{ijk} و ماتریس وزندار رابطه x_{ijk}

² hierarchical clusterings

¹ taxonomies

³ uncategorized data via

⁴ Multi-layer perceptrons

بدست آورد. این تقسیمبندی رابطهی رسکال در شکل ۱۰ به تصویر کشیده شده است. توضیح بیشتر در مورد ایجاد بازنمایی پنهان به وسیلهی ضرب تنسور در [88, 89, 90] آمده است.

شکل ۱۰ تقسیم رابطهی رسکال به دو لایه

از آنجایی که ضرب تنسور تراکنش بین همهی جفت موجودیتها را مدل میکند، وقتی تعداد ویژگیهای پنهان زیاد باشد، رسکال در این راهکار به تعداد زیادی پارامتر نیاز پیدا خواهد کرد. این موضوع می تواند باعث مشکل در مقیاس پذیری روش روی پایگاههای دانش بزرگ با تعداد زیاد رابطه شود.

در ادامه ی این بخش به روشهای ادراک چندلایه ای که به شبکههای عصبی پیشخورا نیز معروف هستند می پردازیم. این راهکار این امکان را به ما می دهد که مدلهای جایگزینی برای ساختن بازنمایی حقیقتها در نظر بگیریم و همچنین بتوانیم از توابع غیر خطی در پیش بینی وجود پیوندها استفاده کنیم.

¹ feedforward neural networks

مدل 'E-MLP:

در ابتدا مدل Entity-MLP را معرفی می کنیم. تابع امتیاز این مدل به صورت معادلات (۴–۲) و (۵–(7-8) و (۲–۶) محاسبه می گردد.

$$f_{ijk}^{E-MLP} := w_k^T g(h_{ijk}^a) \tag{Y-Y}$$

$$h_{ijk}^a = A_k^T \emptyset_{ij}^{E-MLP} \tag{(7-8)}$$

$$\emptyset_{ij}^{E-MLP} = [e_i; e_j] \tag{Y-9}$$

u بردار $g(u)=[g(u_1),g(u_2),\dots]$ یک تابع g است که بر روی تک تک المانهای بردار $g(u)=[g(u_1),g(u_2),\dots]$ اعمال می شود. که می تواند یک تابع غیر خطی باشد، مانند g(u)=tanh(u)

در این روابط ha یک لایه ی مخفی 7 اضافه شده است که ماتریس وزن دار دیگر روی بازنمایی موجودیتها اعمال می کند. در اصل ما در رابطه ی + دو موجودیت e_{i} و e_{i} ترکیب کردیم و هیچ کنشی بین این دو موجودیت محاسبه و تأثیر داده نشده است، بنابراین نیاز به یک ماتریس وزن دار برای محاسبه ی تاثیر این دو موجودیت نیاز بود و h_{a} وارد معادله شد.

² hidden layer

¹ Entity-MLP

بزرگترین تفاوتی که این روش با روشهای ضرب تنسور مانند رسکال دارد این است که در اینجا بجای محاسبه ی همه ی تراکنشهای ممکن بین دو موجودیت، فقط تراکنشهای موجود در A_k مورد بررسی قرار می گیرد. این راهکار به طور قابل ملاحضهای تعداد پارامتری که باید آموزش دیده شوند را کاهش می دهد.

روش 'ER-MLP:

یکی از اشکالات روش E-MLP این است که باید برای هر رابطهی ممکن، یک بردار W_k و یک ماتریس کلی از اشکالات روش ER-MLP معرفی شده A_k تعریف شود، که تعداد پارامترها را زیاد می کند. برای حل این مشکل روش ER-MLP معرفی شده است که در این روش رابطه را نیز به صورت برداری در کنار موجودیتها در نظر می گیریم، و بجای ماتریس Ak می توانیم از یک بردار ثابت C استفاده کنیم. بنابراین روابط ER-MLP به صورت C ماتریس C و C-۲) خواهند بود.

$$f_{ijk}^{ER-MLP} \coloneqq w^T g(h_{ijk}^c) \tag{Y-Y}$$

$$h_{ijk}^c = C^T \emptyset_{ijk}^{ER-MLP} \tag{Y-A}$$

$$\emptyset_{ijk}^{ER-MLP} = [e_i; e_j; r_k] \tag{7-9}$$

-

¹ Entity-Relation-MLP

C توجه کنید که در این روش از یک بردار وزن دار جهانی برای همه روابط استفاده شده است و بردار تعریف شده مستقل از رابطه rk است که باعث کاهش تعداد پارامترهای مساله می گردد. نحوه یکار روش ER-MLP در شکل ۱۱ نمایش داده شده است.

شكل ۱۱ روش ER-MLP

در [91] نشان داده شده است که روشهای MLP کلماتی که قرابت معنایی دارند را به درستی نزدیک به یکدیگر تشخصی میدهند در حالی که برای چنین کاربردی آموزش دیده نشده اند. همچنین در [28] این ویژگی نشان داده شده است، برای مثال به کمک MLP مسالهی نزدیک ترین همسایه برای بازنمایی پنهان چندین رابطه ی انتخاب شده از پایگاه دانش Freebase را حل کرده اند. در نتایج می توان مشاهده کرد که روابطی که ارتباط معنایی دارند نزدیک به یکدیگر قرار گرفتهاند.

٠

¹ semantically similar

² nearst neighbors

۲-۵-۲- شبکههای عصبی تنسورا

در [92] با ترکیب روشهای ادراک چند لایهای (MLP) و روشهای دوخطی (Bilinear) روش جدیدی به نام شبکههای عصبی تنسور (NTN) معرفی شده است. روابط محاسبهی تابع امتیاز این روش به صورت (۲-۱۰) و (۲-۱۲) و (۲-۱۲) است.

$$f_{ijk}^{NTN} := w_k^T g([h_{ijk}^a; h_{ijk}^b]) \tag{Y-Y-Y}$$

$$h_{ijk}^a := A_k^T[e_i; e_j] \tag{Y-YY}$$

$$h_{ijk}^b := [e_i^T B_k^1 e_j \cdots e_i^T B_k^{H_b} e_j]$$
 (Y-)Y)

 h_{ijk}^b ... موجودیتها نگاشت شده است. که در آن میزان رابطه ی بین جفت موجودیتها نگاشت شده است. B_k در اینجا B_k یک تنسور است، که در آن میزان رابطه ی بین جفت موجودیتها از مدلهای MLP هست و هم به کمک یک تابع وزن دار میزان کنش جفت موجودیتها را مشخص می کند مانند آنچه در روش رسکال توضیح دادیم.

با توجه به معادلههای معرفی شده در (7-17) و (7-17) و (7-17) مشخص است که این روش مشکلات E-MLP مقیاس پذیری که در هر دو روش E-MLP و E-MLP و جود داشت را دارد. همچنین در

٣١

¹ Neural tensor networks

² bilinear hidden layer

[28] نشان داده شده است که این روش به بیشبرازش میل می کند (حداقل روی مجموعه دادههایی که در این مقالات استفاده شده است)[1].

¹ overfit

$^{-}$ ح $^{-}$ روشهای فاصلهی پنهان $^{+}$

کلاس دیگری از مدلها، مدلهای فاصله ی پنهان هستند (که در تحلیل شبکههای اجتماعی به مدلهای فضای پنهان معروف هستند) که احتمال وجود رابطه بین بین موجودیتها را از فاصله ی بین بازنمایی پنهان پنهان آنها در فضا می سنجد به این صورت که: موجودیتها با یکدیگر رابطه دارند اگر بازنمایی پنهان آنها با یک معیار فاصله نزدیک به هم باشد [۱].

در [96] مدلی برای دادههای تک-رابطهای برای اولین بار راهکاری در این زمینه معرفی شده است. $f\left(e_i.e_j\right) = \int de_i \cdot e_j = \int de_i \cdot e_j \cdot e_j \cdot e_i \cdot e_j \cdot e_$

۶-۵-۲ مدل Structured embedding

در [93] مدلی به نام (Structured Embedding (SE) معرفی شده که در آن ایدهای که در بند قبل توضیح داده شد برای دادههای چند-رابطهای * گسترش داده شده است. در این روش تابع امتیاز برای حقیقتهای X_{ijk} به صورت (۲-۱۳) مدل شده است.

¹ Latent distance models

² uni-relational data

³ Euclidean distance

⁴ multi-relational

$$f_{ijk}^{SE} := - \| A_k^s e_i - A_k^o e_j \|_1 = - \| h_{ijk}^a \|_1$$
 (Y-1Y)

در رابطه ی (۲-۱۳) A_k از ماتریسهای مربوط به موجودیتهای اول و دوم A_k^o اتشکیل شده است. ماتریسهای و A_k^o A_k^o بازنمایی ویژگیهای پنهان موجودیتها را به فضای مخصوص به رابطه ی است. ماتریسهای و میکند. این انتقال به صورتی آموزش دیده میشود که جفت رابطههایی که برقرار هستند، نسبت به جفت رابطههایی که برقرار نیستند به یکدیگر نزدیکتر باشند.

در شکل ۱۲ مشاهده می شود که در صورتی که بین دو موجودیت i و i رابطه ی i برقرار باشد، پس از نگاشت این دو موجودیت توسط ماتریسهای نگاشت و A_k^s A_k^o این دو موجودیت به یکدیگر نزدیکتر شده اند. همینطور در شکل ۱۳ مشاهده می شود که در صورتی که رابطه ی i بین دو موجودیت i و i برقرار نباشد، پس از نگاشت این دو موجودیت توسط ماتریسهای نگاشت i و i کمو موجودیت در فاصله ی بیشتری از یکدیگر قرار می گیرند.

k' افزایش فاصلهی دو موجودیت که رابطهی 'k بین آنها برقرار نیست پس از نگاشت توسط بردار انتقال 'Structred Embedding

k' انتقال بردار انتقال بردار است پس از نگاشت توسط بردار انتقال ۱۳ کاهش فاصلهی دو موجودیت که رابطهی k' بین آنها برقرار است پس از نگاشت توسط بردار انتقال در روش Structred Embedding

یکی از نکات منفی که در این روش به چشم میخورد یادگیری ماتریسهای وزندار جدا برای موجودیتهای اول و دوم است، که باعث افزایش تعداد پارامتر مورد نیاز برای آموزش است.

۲-۵-۲ مدل TransE۱

در [94] مدلی برای حل مشکل تعداد پارامتر زیاد در روش SE مطرح شده است که بجای اینکه از ماتریسهای Ako و Ako برای تاثیر دادن رابطهها استفاده شود، رابطه را یک بردار همانند بردار موجودیتها در نظر گرفته شده و به عنوان یک آفست در کنار موجودیت اول در محاسبات از آن استفاده می کند. [1] به طور خاص امتیاز حقیقت xijk از رابطهی (۲-۱۴) بدست می آید.

$$f_{ijk}^{TransE} := -d(e_i + r_k.e_j) \tag{Y-19}$$

-

¹ Translation Embedding

در این روش رابطهها به صورت یک بردار انتقال استفاده می شوند، به این صورت که فقط روی موجودیت اول اعمال می شوند و در صورت وجود رابطه بین این دو موجودیت، موجودیت اول را به موجودیت دوم نزدیک می کنند. در شکل + یک گراف را مشاهده می کنیم که در آن روابط فرزندی و مکان تولد بین ۶ موجودیت نمایش داده شده است. در شکل ۱۳ یک مثال از اعمال روش TransE روی این گراف را مشاهده می کنیم. مشاهده می شود که موجودیتها بردارهایی ثابت در نظر گرفته شده اند و بردارهای رابطه به صورت یک بردار انتقال به تصویر کشیده شده است که موجودیتها را به هدفهای مورد نظر نزدیک می کنند.

مثلا اگر «علی» را توسط بردار «فرزند» منتقل کنیم به موجودیت «فاطمه» نزدیک میشود که حقیقت (علی، فرزند، فاطمه) را تشکیل میدهد. اما اگر همین موجودیت را توسط بردار رابطهی «متولد» منتقل کنیم، به موجودیت «تهران» نزدیک میشود که حقیقت (علی، متولد، تهران) را تشکیل میدهد.

شکل ۱۴ بازنمایی شبکهی ناهمگون در فضای برداری

روش TransE این مساله را به صورت یک مسالهی کمینه سازی حل می کند به این صورت که سعی e_1 می کند فاصله یم مجموع بردارهای موجودیت اول و رابطه e_1+r را با موجودیت دوم e_2 کمینه کند.

همانطور که قبل تر گفتیم تابع امتیاز در این روشها یک تابع فاصله است، پس در اینجا هدف کاهش فاصله بین e_1 و e_2 است که بصورت (۲-۱۵) نوشته می شود.

$$d(e_1 + r. e_2) = ||e_1 + r - e_2|| \tag{Y-10}$$

برای رسیدن به نتیجه ی بهینه نوآوری دیگری که در این روش معرفی شده است این است که تابع کمینهسازی را به گونهای تغییر داده است که فاصله ی نمونه های اشتباه را نیز زیاد کرده است.

در زمانی آموزش پارامترها علاوه بر در نظر گرفتن این نکته که باید تابع فاصله ی نمونههای مثبت موجود در پایگاه دانش کمینه شود، سعی شده تا فاصله ی نمونههای منفی را نیز افزایش دهد. از انجایی که پایگاههای دانش مورد استفاده از فرض جهانباز پیروی می کنند وقتی حقیقت (e_1, r, e_2) در پایگاه دانش موجود نیست نمی توانیم نتیجه بگیریم که این سه گانه غلط است و آن را نمونه ی منفی تلقی کنیم.

در این روش برای ساختن نمونههای منفی، نمونههای مثبت مورد استفاده قرار گرفتهاند به این صورت که یکبار موجودیت اول حذف شده و یک موجودیت تصادفی جای آن قرار داده شده است و یکبار موجودیت دوم حذف شده و یک موجودیت تصادفی جای آن قرار گرفته است، به این صورت به ازای هر نمونهی مثبت دو نمونهی منفی نیز تولید شده است (رابطهی $\Upsilon-1$). در رابطهی $(\Upsilon-1)$ مشاهده می شود که علاوه بر کاهش فاصلهی موجودیتهای مثبت، یک جریمه هم برای نمونههای منفی در نظر گرفته شده است و منفی اضافه شده است.

 $S' = \{(\text{sub'}, \text{rel. obj}) | \text{sub'} \in \varepsilon\} \cup \{(\text{sub. rel. obj'} | \text{obj'} \in \varepsilon\}$

$$\sum_{pos} \sum_{neq \in S'} [\gamma + ||s + r - o||_2^2 - ||s' + r - o'||_2^2]$$
(Y-)Y)

در این روش نیز مانند روش رسکال از SGD استفاده شده است که هم امکان آموزش به کمک نمونهبرداری دستهای از افراهم می کند و هم از مشکل گیر کردن در نقاط بهینه کامل این روش در الگوریتم ۱ آمده است.

```
    input: Training set S = {(sub,rel,obj)}, margin γ, learning rate λ
    initialize r ← uniform(- 6/√k, 6/√k) for each rel

 3:
                             \mathbf{r} \leftarrow \boldsymbol{\ell} / \|\boldsymbol{\ell}\| for each \boldsymbol{\ell}
                             \mathbf{e} \leftarrow \text{uniform}(-\frac{6}{\sqrt{l}}, \frac{6}{\sqrt{k}}) for each entity ent(sub or obj)
 4:
 5: loop
            \mathbf{e} \leftarrow \mathbf{e} / \|\mathbf{e}\| for each entity ent
 6:
 7:
            S_{batch} \leftarrow sample(S, b) //sample minibatch of size b
             T_{batch} \leftarrow \emptyset //initialize set of pairs
 8:
 9:
            for (sub,rel,obj) \in S_{batch} do
                 (sub',rel,obj') \leftarrow sample(S'(sub,rel,obj)) //sample negative triplet
10:
                 T_{batch} \leftarrow T_{batch} \cup \{((sub,rel,obj),(sub',rel,obj'))\}
11:
12:
            end for
            Update embeddings w.r.t. \sum_{T_{barch}} \nabla \left[ \gamma + ||\mathbf{s} + \mathbf{r} - \mathbf{o}||_2^2 - ||\mathbf{s'} + \mathbf{r} - \mathbf{o'}||_2^2 \right]_+
13:
14: end loop
```

الگوريتم ١ الگوريتم روش TransE

Batch Sampling

² local optimom

TransH¹ مدل –۸−۵-۲

در بخش قبل مشاهده کردیم که TransE روش مناسبی را ارائه داد با تعداد پارامتر کم و مقیاسپذیر که قادر به آموزش مدل است. در [] روشی معرفی شده است که به بررسی برخی از نگاشتها مانند یک به چند، چند به یک، چند به چند و انعکاسی پرداخته است. در این روش رابطهها به صورت یک ابرصفحه و یک بردار انتقال روی آن در نظر گرفته می شود، از همین رو به این روش روش انتقال روی ابر صفحه یا به اختصار TransH گفته می شود.

در این روش موجودیتها همچون روش قبل به صورت یک بردار از ویژگیهای پنهان تعریف میشوند ولی رابطهها به صورت دو بردار تعریف میشوند، یک بردار برای انتقال فضای مساله به ابرصفحه آن رابطه و دیگری بردار انتقالی است که در روش TransE نیز داشتیم و موجودیتهای اول و دوم را به یکدیگر وصل می کرد. در روش قبل هدف این بود که دو موجودیت مشارکت کننده در یک حقیقت درست به وسیلهی بردار انتقال رابطه به یکدیگر وصل شوند و اگر حقیقت صحیح نیست انتظار داشتیم که این اتصال برقرار نباشد. در این روش نیز هدف به همین صورت است با این تفاوت که این انتقال برای هر رابطه روی یک ابرصفحه انجام میشود که نگاشتی از موجودیتهای اول و دوم در آن قرار دارد. به کمک این روش ساده می توانیم نگاشتهای یک به چند، چند به یک، چند به چند و انعکاسی را نیز در عملیات آموزش تاثیر دهیم در حالی که پیچیدگی و هزینهی این روش کمی مانند روش TransE در نظر گرفت.

¹ Translating on Hyperplanes

شکل ۱۵-ب روش TransH

شكل ۱۶-الف روش TransE

همانطور که در شکل ۱۶-الف روش TransE مشاهده می شود روش TransE بردارهای h و t را به کمک بردار t به یکدیگر متصل می کرد اما در روش TransH همانطور که در شکل ۱۵-ب روش TransH نشان داده شده است ابتده بردارهای t و t به صفحهی مربوط به رابطهی مورد نظر منتقل شده اند و توسط بردار t که بردار رابطه است به یکدیگر متصل می شوند.

مقادیر h_{\perp} و t_{\perp} به صورت معادلهی (r-1) بدست می آیند که در آن w_r بردار انتقال به ابرصفحهی مربوط به رابطهی r است و r معادل بردار r در ابرصفحهی رابطه است.

$$h_{\perp} = h - w_r^T h w_r. \qquad t_{\perp} = t - w_r^T t w_r \tag{Y-1A}$$

پس تابع امتیاز این روش به صورت زیر خواهد بود:

$$f_r(h,t) = ||(h - w_r^T h w_r) + d_r - (t - w_r^T t w_r)||_2^2$$
 (Y-19)

در این روش نیز مانند روش TransE برای کمینه کردن خطا از حقیقتهای صحیح و غلط و یک فاصله بین آنها استفاده می شود که قصد دارد فاصله ی بین بردار h+r حقیقتهای صحیح را با t کم فاصله بین آنها استفاده می فاصله را در حقیقتهای غلط زیاد کند. انتخاب حقیقتهای غلط در این روش بمانند روش قبل است اما در این روش بجای استفاده از تابع امتیاز f_r که در معادله ی f_r مطرح کردیم از تابع امتیاز f_r که در f_r که در f_r معرفی کردیم استفاده می کنیم و تابع کمینه سازی به صورت (۲-۲۰) خواهد شد.

$$f_r = \sum_{(h.r.t) \in \Delta} \sum_{(h'.r'.t') \in \Delta'_{(h.r.t)}} [f_r(h.t) + \gamma - f_{r'}(h'.t')]_+$$
 (Y-Y-)

فصل ۳: قوانین انجمنی

در این فصل به معرفی قوانین انجمنی پرداخته و توضیح میدهیم چگونه از این قوانین برای بهبود مدلهایی که در فصل قبل معرفی شد استفاده میکنیم. در ابتدا برای سنجش کیفیت قوانین انجمنی معیارهای اطمینان را تعریف میکنیم، در ادامه نحوهی استخراج این قوانین از پایگاه دانش را توضیح میدهیم و در انتها نیز قوانین هدفی که قصد استفاده از آنها برای بهبود مدل داریم را مشخص میکنیم.

۱-۳ معیارهای اطمینان

برای اینکه بتوانیم به قانونهایی که استخراج کردهایم اعتماد کنیم و از آنها در آموزش مدلها استفاده کنیم، نیاز به یک معیار اطمینان داریم. معیارهای رایج برای اندازه گیری دقت یک قانون میزان پشتیبانی قانون 1 ، پوشش سر 2 و معیار اطمینان استاندار 2 است.

¹ support rule

² head coverage

³ Standard confidence

۳-۱-۱- معیار پشتیبانی قانون:

این معیار برای میزان اهمیت یک قانون استفاده می شود و به این صورت تعریف می شود: تعداد قوانین یافت شده در پایگاه دانش که یک حقیقت را نتیجه می دهند. برای مثال در (۱-۳) قانون R معرفی شده است که مشخص می کند هر شخص X که در شهر Y زندگی می کند، در آن شهر متولد شده است. به تعداد دفعاتی که این دو حقیقت در پایگاه دانش اتفاق بیافتد و قانون R را نقض نکند، پشتیبان این قانون گفته می شود.

R: livesIn(x, y)
$$\Rightarrow$$
 wasBornIn(x, y) (\forall -1)

این معیار به صورت رابطهی (۲۱-۳) تعریف می شود.

$$supp(\overrightarrow{B} \Rightarrow r(x,y)) := \#(x,y) : \exists z_1, ..., z_m : \overrightarrow{B} \land r(x,y)$$
 (Y-Y)

در رابطه ی (۲-۳)، R مجموعه ای از حقیقت ها است که حقیقت r(x,y) را نتیجه میدهد، به تعداد باری که این اتفاق می افتد معیار پشتیبانی قانون گفته می شود. در جدول ۲ نمونه ی پایگاه دانش متشکل از دو رابطه و ۵ حقیقت وجود دارد. قانون (7-1) را در نظر بگیرید، میزان پشتیبان قانون R در این جدول برابر ۱ است، بخاطر وجود حقیقت R نظر بگیرید، میزان پشتیبان قانون R در این جدول برابر ۱ است، بخاطر وجود حقیقت R نادود R که از قانون R پیروی می کنند R ایندود R نادود R نادود

جدول ۲ نمونهی پایگاه دانش متشکل از دو رابطه

livesIn	wasBorIn	
(Adam, Paris)	(Adam, Paris)	
(Adam, Rome)	(Carl, Rome)	
(Bob, Zurich)		

۲-۱-۳ معیار پوشش سر

معیار پشتیبان قانون یک مقدار مطلق است و برای تعریف کردن یک آستانه برای این معیار نیاز است تا اندازه ی پایگاه دانش را نیز بدانیم. مثلا اگر پشتیبان یک قانون در یک پایگاه دانش با ۲۰۰۰ حقیقت ۵۰۰ با شد معده بسیار بزرگی است اما اگر در یک پایگاه دانش با چندین میلیون حقیقت ۵۰۰ با شد عدد قابل توجه ی نیست. برای حذف این وابستگی معیار پوشش سر را به صورت زیر معرفی می کنیم.

$$hc(\overrightarrow{B}\Rightarrow r(x,y)):=\frac{supp(\overrightarrow{B}\Rightarrow r(x,y))}{size(r)} \tag{4-4}$$

$$size(r) := \#(x', y') : r(x', y')$$

در این معیار بررسی می شود که چند درصد از r(x,y) هایی که اتفاق افتاده است بخاطر وجود زنجیره قانون B بوده است. در جدول ۲ مقدار معیار پوشش سر بخاطر وجود (Carl, Rome) برابر با AMIE.

۳-۱-۳ معیار اطمینان استاندارد

معیارهای قبل اهمیت قانون را بررسی می کردند و فقط پیشبینیهای درست از قانون را در نظر می گرفتند، و پیشبینیهای غلطی که این قانون تولید می کند را در نظر نمی گیرند. پس ما به معیاری نیاز داریم که کیفیت قانون را نیز بررسی کند.

در این معیار میزان پشتیبان هر قانون را بر تعداد باری که قسمت بدنه ی این قانون در پایگاه دانش در در این معیاری داشته باشیم برای اینکه بدانیم در

چند درصد مواقع که قسمت بدنهی این قانون برقرار بوده است منجر به تولید قسمت نتیجه شده است.

$$conf(\overrightarrow{B} \Rightarrow r(x,y)) := \frac{supp(\overrightarrow{B} \Rightarrow r(x,y))}{\#(x,y) : \exists z_1, ..., z_m : \overrightarrow{B}}$$
 (Y-5)

رابطه ی بالا به زبان ساده برابر است با تعداد رخداد قانون بخش بر تعداد دفعاتی که می توانست رخ دهد. برای مثال در پایگاه دانش معرفی شده در جدول ۲ معیار اطمینان استاندارد برابر $\frac{1}{3}$ است. زیرا wasBornIn(Adam, Paris) به عنوان نمونه ی مثبت در نظر گرفته شده و wasBornIn(Adam, Rome) و wasBornIn(Adam, Rome) که در پایگاه دانش وجود ندار ند نمونه ی منفی ۲ در نظر گرفته شده است. که معیار اطمینان استاندارد برابر می شود با تعداد نمونه ی مثبت یعنی ۱ بخش بر تعداد کل نمونه ها یعنی ۳.

این معیار در پایگاههای دانش فرض جهانبسته معیار خوبی است و به خوبی دقت قانون استخراج شده را مشخص می کند زیرا همانطور که در مثال بالاتر هم مشاهده کردیم، عدم وجود یک نمونه ی مثبت از حقیقت در پایگاه دانش دلیلی بر غلط بودن آن حقیقت بوده است. اما همانطور که در بخش ۲-۱-۳ اشاره کردیم فضای این مساله فرض جهانباز است و حقیقتهایی که در این پایگاههای دانش وجود ندارند لزوما غلط نیستند[AMIE]. برای درک بیشتر این موضوع به مثال زیر دقت کنید:

به گراف ارا نه شده در شکل ۱۷ دقت کنید. در این گراف رابطه های افقی رابطه ی ازدواج (marriedTo) و روابط عمودی رابطه ی داشتن فرزند (hasChild) را مشخص می کنند. در این گراف قصد داریم که قانون R با تعریف زیر را بررسی کنیم:

$$hasChild(y.x).marriedTo(y.z) => hasChild(z.x)$$
 (Y-f)

-

¹ positive example

² negative example

این قانون به این معنا ست که اگه شخص y فرزندی به نام x دا شته با شد و همین شخص با شخص دیگری به نام z ازدواج کرده باشد، میتوان نتیجه گرفت که شخص z هم فرزندی به نام x دارد.

شکل ۱۷ نمونه گراف ناهمگون با دو نوع رابطه

اگر بخواهیم معیار اطمینان استاندارد در این گراف را بررسی کنیم، مشاهده می شود که این قانون ۲بار در این گراف صدق کرده است در حالی که می توانست + بار اتفاق بیافتد. در شکل ۱۸ دفعاتی که این قانون باید اتفاق می افتاده است و اتفاق نیافتاده است نمایش داده شده و به عنوان نمونه ی منفی در نظر گرفته شده است. با این اوصاف معیار اطمینان استاندارد قانون + در گراف معرفی شده برابر + می شود.

Standard Confidence =
$$\frac{\sup(B => r(x,y))}{\#(x,y):B} = 2/4 = 0.5$$
 (Y-V)

شکل ۱۸ حقیقتهایی که در گراف نمونه موجود تیست

اما همانطور که تو ضیح دادیم عدم وجود حقایق در پایگاههای دانش فرض جهانباز دلیل بر غلط بودن این حقیقتها نیست. برای مثال فرض کنید که در گراف معرفی شده یک گره ی گره داشته باشیم که رابطه ی ازدواج دا شته با شد با گره ی A و رابطه ی فرزندی دا شته با شد با گره ی A پس می دانیم که رابطه ی فرزندی بین گره ی A و A برقرار نیست اما در مورد وجود و عدم وجود این رابطه بین A و A اطلاعی نداشته باشیم (شکل ۱۹).

شکل ۱۹ حالت ناشناس برای پیوندهایی که اطلاعی در مورد آن نداریم

پس معیار اطمینان استاندارد برای پایگاههای دانش جهانباز معیار مناسبی نیست و نیاز به تعریف معیار بهتری داریم. در [AMIE] معیار اطمینان با فرض نیمه کامل (PCA-Confidence) را معرفی کرده است.

۲-۱-۳ معیار اطمینان با فرض نیمه کامل

در این معیار سعی شده نمونههایی که در پایگاه دانش وجود ندارند و در معیار اطمینان استاندارد آنها را نمونه ی غلط در نظر می گرفتیم را در اینجا بیشتر بررسی کنیم و با احتمال بهتری غلط بودن یا نبودن آن را مشخص کنیم.

در این معیار اگر حقیقت r(x,y) در پایگاه دانش موجود نبود، بر سی می شود که y وجود دارد که برای آن حقیقت r(x,y) برقرار باشد یا خیر، اگر وجود داشته باشد در نظر می گیرد که r(x,y) غلط بوده و در غیر این صورت این حقیقت را ناشناخته فرض می کند.

$$conf_{pca}(\overrightarrow{B}\Rightarrow r(x,y)):=\frac{supp(\overrightarrow{B}\Rightarrow r(x,y))}{\#(x,y):\exists z_1,...,z_m,y':\overrightarrow{B}\wedge r(x,y')} \tag{Υ-$$A)}$$

به مثال جدول ۲ برگردیدم، در این جدول wasBornIn(Adam,Paris) را یک نمونه ی مثبت در نظر می گیریم اما اینکه نظر می گیریم و wasBornIn(Adam,Rome) را یک نمونه ی منفی در نظر می گیریم اما اینکه livesIn (Bob, Zurich) داریم و در مورد محل تولد آن اطلاعی نداریم دلیل نمی شود که این نمونه را یک نمونه ی منفی در نظر بگیریم زیرا ممکن است bob اصلا متولد نشده با شد. پس در این مثال مقدار $\frac{1}{2}$ PCA-Confidence می شود.

یا در گرافی که در شکل ۱۹ معرفی شده است، در معیار اطمینان استاندارد هر دو رابطه ی بین (B,C) و (E,G) را غلط در نظر گرفتیم، اما در اینجا داریم که C مادری به نام B' دارد و می توانیم مطمئن شویم که رابطه ی فرزندی بین C و C برقرار نیست و این رابطه را غلط در نظر بگیریم. اما برای رد رابطه ی C و C هیچ مدر کی نداریم و این رابطه را غلط در نظر نمی گیریم بلکه ناشناخته در نظر رابطه یا در نظر نمی گیریم بلکه ناشناخته در نظر

¹ Partial Completeness Assumption

می گیریم و از آن در فرومول PCA-confidence استفاده نمی کنیم. پس PCA-Confidence می گیریم و از آن در فرومول این مثال برابر با X است.

٣-٢- الگوريتمها

برای استخراج قوانین انجمنی از الگوریتمهای معرفی شده در [] استفاده شده است که در ادامه توضیح مختصری در مورد بخشی از این الگوریتمها خواهیم داد.

نحوهی استخراج قوانین در شکل ۲۰ نشان دادهشده است که هر مرحله را در ادامه توضیح خواهیم داد.

شکل ۲۰ نحوهی استخراج قوانین انجمنی از حقیقتهای پایگاه دانش

به ازای هر حقیقت این روند یک بار تکرار میشود:

- ۱- حقیقت انتخاب شده را در نظر می گیریم. در این مثال حقیقت (Y, hasChild, X) در نظر گرفته شده است.
- Y تمامی روابطی که بین یکی از موجودیتها و موجودیت دیگری وجود دارد را بررسی میکنیم. در این مثال روابط موجود برای موجودیت اول یعنی Y نمایش داده شده است. برای مثال روابط ازدواج و والد بودن با این موجودیت مورد بررسی قرار گرفته است.
- ۳- همه ی روابطی که در مرحله ی ۲ کاندید شده بودن را در کنار Y قرار می دهیم و یک زنجیر از قوانین را ایجاد می کنیم. زنجیر ایجاد شده در این قسمت به صورت رابطه ی ازدواج بین X و Y و رابطه ی داشتن فرزند بین X و X است.
- ۴- در این قسمت همه ی روابطی که بین موجودیت اضافه شده به زنجیر و موجودیت اول را بررسی می کنیم یعنی روابط بین Z و X. روابط کاندید در این مثال روابط "داشتن فرزند" و "ناظر بودن" است.
- در این مرحله روابطی که کاندید شدهاند را بررسی میکنیم و معیارهای اطمینان و اهمیت که در بخش قبل معرفی کردیم را برای آنها بدست میآوریم، در صورتی که به معیارها مقدار قابل قبولی داشته باشند قانون تولید شده را ذخیره میکنیم و در غیر این صورت از آن رد می شویم.
- پس از بررسی همهی روابط کاندید تولید شده در بخش ۴ کل زنجیر تولید شده را به مرحلهی ۱ ارسال می کنیم و با اضافه کردن یک حقیقت دیگر به ابتدا یا انتهای آن روند رشد زنجیر را تا آستانهی تعریف شده ادامه می دهیم.

به کمک الگوریتم معرفی شده در بالا همهی قانونهای ممکن در پایگاه دانش با توجه به معیارهای کیفیت و اهمیت استخراج خواهند شد. اما با توجه به اندازهی بزرگ پایگاههای دانش مورد استفاده این روش برای بررسی همهی حالتهای ممکن بسیار وقت گیر خواهد بود، پس بهتر است در

مرحله ی ۲ و ۴ که به انتخاب کاندید می پردازیم بجای بررسی همه ی حقیقتهای موجود در پایگاه داده یک عملیات هرس روی کاندیدها با توجه به همرخدادی با حقیقت موجود انجام شود و همه ی حقیقتها مورد بررسی قرار نگیرند.

با اعمال این الگوریتم روی پایگاه دانش Freebase 15k که شامل حدود ۵۰۰هزار حقیقت است، تعداد ۴۱۱۹۶ قانون استخراج شد. در ادامه چند مثال از این قانونها را بررسی می کنیم.

در قانون زیر داریم که اگر b یک تیم فوتبال باشد که بازیکنی به نام a داشته باشد، می توانیم نتیجه بگیریم که تیم فعلی بازیکن a تیم b است. معیار اطمینان a در این مثال a است که مقدار قابل اعتمادی است.

?b /sports/soccer/team/player ?a

 $\hat{\mathbf{U}}$

?a /soccer/current_team/team ?b

در مثال دیگر داریم که اگر بازیگر سینمای a جایزه b را برنده شده باشد، نتیجه می گیریم که این بازیگر برای جایزه b نامزد شده است.

?b /award/awards_won ?a

Û

?a /award/award_nomination/nominated_for ?b

_

¹ Pruning

قوانین پیچیده تری نیز استخراج شده است که بدنه ی قانون از چند حقیقت تشکیل شده است که یک نمونه از این قوانین به صورت زیر است. در این قانون داریم که اگر a یک موسسه ی آموزشی باشد که در مکان d قرار دارد و داشته باشیم که d در مکان d واقع شده است، می توانیم نتیجه بگیریم که موسسه ی آموزشی a نیز در مکان d قرار دارد. علی رقم پیچید گیای که این قانون نسبت به دو قانون قبلی دارد، اما معیار اطمینان d این قانون d بوده و بسیار قابل اعتماد است و می توانیم از آن در آموزش مدل ها استفاده کنیم.

?a /educational_institution/located_in ?f

?f /location/location/containedby ?b

Û

?a /location/location/containedby ?b

در بخش بعدی انواع این قوانین را بررسی کرده و توضیح خواهیم داد که چگونه از این قوانین در بهبود مدلهای مبتنی بر ویژگیهای پنهان استفاده خواهیم کرد.

٣-٣- قوانين هدف

در بخش قبل مشاهده شد که چگونه قوانین از پایگاههای دانش استخراج میشوند و چند نمونه از این قوانین را مرور کردیم. در این بخش ۵دستهبندی از قوانینی که استخراج میشوند را معرفی میکنیم و در ادامه بررسیهای انجام شده روی روشهای موجود را روی این دستهبندیها اعمال میکنیم و نقاط قوت وضعف هر روش را نسبت به این دستهبندیها میسنجیم.

_

¹ rule body

۱-۳-۳ قانون ۱-۳-۳

این قانون به صورت زیر تعریف می شود، به این معنی که اگر x و y رابطه ی r را باهم داشته باشند، رابطه ی r نیز بین آنها برقرار است.

$$r(x, y) => r'(x, y)$$

برای مثال اگر در پایگاه دانش رابطه ی پدر بودن را داشته باشیم، می توانیم از آن رابطه ی والد بودن را نتیجه بگیریم، مثلا اگر حقیقت «علی، پدر، حسن» به معنی «علی پدر حسن است» را داشته باشیم، می توانیم نتیجه بگیریم که حقیقت «علی، والد، حسن» نیز حقیقت درستی است.

۳-۳-۳ قانون R-equivalence

این قانون رابطه شبیه به قانون قبلی است با این تفاوت که رابطهی برگشت نیز بین دو طرف قانون برقرار است.

$$r(x, y) \leq r'(x, y)$$

این قانون در آمورش مدلها کمک بسیاری می تواند بکند زیرا ماهیت این قانون به این صورت است که روابط یکسان (روابطی که به دو صورت در پایگاه دانش استفاده شده اند اما یک معنی می دهند) را شناسایی می کند، برای نمونه مثالی که در بخش قبل زدیم، دو رابطهی located_in و مناسایی می کند، برای نمونه مثالی که در بخش قبل زدیم، دو رابطهی contained_by و contained_by که اگر حقیقت (x, contained_by, y) را داشته باشیم، حقیقت (x, contained_by, y) را داشته باشیم، حقیقت (x, contained_by, y) را نیز داریم و در عملیات آموزش روش از یکی از این دو مفهوم استفاده کنیم که باعث کاهش تعداد روابط موجود در پایگاه دانش و در نتیجه کاهش پیچیدگی مساله می شود.

2-hope translation قانون -٣-٣-٣

این قانون، همان قانون تعدی است، به این صورت که اگر x و y رابطه x را باهم داشته باشند و همچنین y و y نیز رابطه y را داشته باشند، می توانیم نتیجه بگیریم که y و y نیز با یکدیگر در ارتباطند.

$$r_1(x, y), r_2(y, z) \Rightarrow r'(x, z)$$

نمونهای از این قانون را در مورد مناطق جغرافیایی در بخش قبل مشاهده کردیم. مثلا میدانیم که شهر تهران در کشور ایران و کشور ایران در منطقه ی خاورمیانه قرار دارد، پس میتوانیم نتیجه بگیریم که شهر تهران در منطقه ی خاورمیانه قرار دارد.

۳-۳-۳ قانون Triangle alignment

این قانون نیز مانند قانون قبلی در سمت بدنه ی قانون دو حقیقت را بررسی می کند و از روی آنها حقیقت جدید را نتیجه می گیرد.

$$r(x, z), r(y, z) => r'(x, y)$$

مشاهده می شود که در این قانون اشتراک موجودیتهای دوم مد نظر قرار گرفته است و در صورتی که دو حقیقت در موجودیت دوم مشترک باشند بررسی می شود که بین موجودیتهای اول نیز رابطهای برقرار است یا خیر. برای مثال اگر داشته باشیم که X و هم X و هم X فرزندی به نام X داشته باشند، می توان نتیجه گرفت که X و شوهر هستند.

۵-۳-۳ قانون Specific R-subsumption

این قانون حالت کامل تری از قانون اول یعنی R-sub است به این صورت که بجز بررسی رابطه ها، ویژگی های موجودیت اول را نیز بررسی می کند. برای مثال در قانون اول داشتیم اگر شخصی پدر X باشد می توان نتیجه گرفت که آن شخص والد X نیز هست، اما عکس این قضیه را نمی توان نتیجه گرفت، یعنی نمی توان نتیجه گرفت که اگر شخصی والد X است پس پدر X است زیرا ممکن است مادر X باشد. در این قانون یک ویژگی از موجودیت اول نیز بررسی می شود.

$$r_1(x, y), r_2(x, v) => r'(x, y)$$

مثلا اگر داشته باشیم که شخصی والد X است و جنسیت آن شخص مذکر است، می توان نتیجه گرفت که آن شخص پدر X است و اگر جنسیت مونث داشت مادر X است.

در جدول ۳ قوانین معرفی شده به اختصار آمدهاند.

جدول ۳ قوانین انجمنی هدف

Body rule		Target rule	name
$\mathbf{r}(\mathbf{x},\mathbf{y})$	=>	r'(x, y)	R-subsumption
$\mathbf{r}(\mathbf{x},\mathbf{y})$	<=>	r'(x, y)	R-equivalence
r1(x, y), r2(y, z)	=>	r'(x, z)	2-hope translation
r(x, z), r(y, z)	=>	r'(x, y)	Triangle alignment
r1(x, y), r2(x, v)	=>	r'(x, y)	Specific R-sub

۳-۴- جمعبندی

متن

فصل 4: روش پیشنهادی

متن

۱-۴- جالشها

متن

۲-۴- عملکرد روشهای موجود

در این بخش نتایج بدست آمده از روشهای معرفی شده در بخش قبل را مورد بحث و بررسی قرار می در این بخش نتایج بدست آمده از روشهای معرفی شده در برسی و بهبود قرار گرفتهاند ۱- روش RESCAL از روشهای که در این پایان نامه مورد بررسی و بهبود قرار گرفتهاند ۱- روش TransE و روشهای دوخطی ۲- روش NTN از روشهای ادراک چندلایهای $^{-}$ روش Rase از روشهای فاصله ی پنهان هستند.

در ادامه آزمایشاتی روی این α روش انجام شده است و این روشها از نظر مقیاسپذیری و میزان کیفیت خروجی که به کمک معیارهای رتبه ی میانگین و α α hit α محاسبه می شود مورد بررسی قرار گرفتهاند. همه ی این آزمایشات روی پایگاه دانش Freebase15k انجام شده است که شامل حدود α همودیت، α ۱۳۰۰ رابطه و در مجموع α مرجودیت است. تقسیمبندی دادههای آموزش، ارزیابی و آزمون به شکلی که در بخش α – α – توضیح داده شد انجام شده است.

۲-۲-۴ روش رسکال

تعداد پارامترها: در این روش برای هر موجودیت یک بردار d بعدی و برای هر رابطه یک ماتریس وزن دار d^*d بعدی در نظر گرفتیم. پس تعداد پارامترهایی که در این روش نیاز است که آموزش دهیم از مرتبه ی $O(n_e d + n_r d^2)$ است. در آزمایشات تعداد ابعادی که بهترین نتیجه را بدست می دهد d=250 است. اگر ابعاد مساله را ۲۵۰ در نظر بگیر باید به تعداد d=250 است. اگر ابعاد مساله را d=250 در d=250 در d=250 است. اگر ابعاد مساله را d=250 در نظر d=250 است. اگر ابعاد مساله را d=250 در نظر بگیر باید به تعداد d=250 است.

کیفیت خروجی: پس از اعمال مدل آموزش دیده ی رسکال روی مجموعه داده ی آزمون ۵۰هزار حقیقتی، میزان ۴۲٫۱٪ پاسخهای داده شده توسط این مدل زیر رتبه ی ۱۰ بوده (10 @hit) و میانگین رتبه ی کل پاسخهایی که داده شده (mean rank) ۶۸۳ است.

۲-۲-۴ روش NTN

کیفیت خروجی: مقدار 10 hit @ 10 در این روش ۲۷٪ و میانگین رتبه ی همه ی پاسخهای این روش ۱۹۴ است. همانطور که در معرفی این روش گفته شد این روش به سرعت به بیشبرازش میل میکند و تاثیر این امر در میزان 10 hit @ 10 مشخص است اما میانگین رتبه این روش به میزان خوبی از روش رسکال بهتر است که نشان می دهد روش رسکال برای سوالاتی که به میزان کافی نمونه ی آموزش ندیده است و نتایج خیلی پرتی بدست می دهد ولی برای ۲۰٫۱٪ حقیقت که روابط بین آنها به خوبی آموزش دیده شده است و پاسخهای درست در ۱۰ پاسخ اول بوده است.

۳-۲-۴ روش Structured Embedding

 d^*d بعدی آموزش در این روش برای هر موجودیت یک بردار d^*d برای هر رابطه دو ماتریس d^*d بعدی آموزش دیده می شود، یکی برای انتقال موجودیت اول و دیگری برای انتقال موجودیت دوم. بنابراین تعداد پارامتر این روش از مرتبه ی $O(n_ed+2n_rd^2)$ است. برای آموزش این مدل نیز بردارهایی بنابراین تعداد پارامتر این روش از مرتبه ی $O(n_ed+2n_rd^2)$ است. برای آموزش این مدل نیز بردارهایی با اندازه d=50 کفایت می کند و برای آموزش این مدل باید حدود d=50 کفایت می کند و برای آموزش این مدل باید حدود d=50 کفایت می کند و برای آموزش این مدل باید حدود d=50 کفایت می کند و برای آموزش این مدل باید حدود d=50

کیفیت خروجی: در این روش 10 @hit برابر با ۳۹٫۸٪ است و مقدار میانگین رتبه ۱۶۲ بوده است. مشاهده می شود که علی رقم کاهش بسیار زیادی که در تعداد پارامترهای مساله نسبت به دو روش قبل داشته ایم، نتیجه ی خوبی حاصل شده است و در معیار 10 @hit با روش رسکال و در معیار میانگین رتبه با روش MTN رقابت می کند.

۲-۲-۴ روش TransE

کیفیت خروجی: این روش علیرقم کاهش چشم گیری که در تعداد پارامترها داشت و مقیاس پذیری بسیار بالایی که ایجاد کرده است، در نتایج بدست آمده نیز بهتر از روشهای معرفی شده ی قبلی کار کرده است. در این روش 10 @hit برابر ۴۵٫۱٪ و میانگین رتبه برابر ۱۲۵ است که مشاهده می شود در این روش هم جوابهای درست بسیار بیشتر بوده و هم دادههای پرت بسیار کمتر شده است و جواب سوالها به جوابهای منطقی نزدیک تر شده است.

-۵-۲-۴ روش TransH:

تعداد پارامتر: همانطور که در بخش .Error! Reference source not found دیدیم این روش از نظر عملیات آموزش بسیار شبیه به روش TransE است و در تعداد پارامترهایی که باید آموزش

داده شود فقط یک بردار انتقال به ابرصفحهی مربوط به رابطه را بیشتر دارد که به ازای هر رابطه $O(n_e k)$ و باید آموزش دیده شوند از مرتبه عملیات آموزش اضافه می کند، پس پارامترهایی که باید آموزش دیده شوند از مرتبه $+2n_r k$ و بایگاه دانش $+2n_r k$ حدود $+2n_r k$ و خواهد بود $+2n_r k$ ($+2n_r k$ این روش افزایش $+2n_r k$ این روش افزایش $+2n_r k$ ($+2n_r k$ این روش افزایش $+2n_r k$ و بارامترهای مساله نداشته اما نتایج بسیار دقیق تری بدست آورده است.

کیفیت خروجی: این روش با درنظر گرفتن روابط پیچیده تری مانند روابط یک به چند و چند به چند و چند به چند و چند به یک و بازگشتی توانسته است که دقت بهتری نسبت به روشهای نام برده شده ی قبلی به دست آورد و بدون افزایش غیر منطقی تعداد پارامترها نسبت به روش TransE به مقدار 10 @Hit برابر با ۶۴٫۴٪ و میانگین رتبه ی ۸۷ برسد.

۴-۳- نقاط قوت و ضعف روشهای موجود

در این بخش به بررسی نقاط قوت و نقاط ضعف روشهای موجود می پردازیم. در بخش ۴-۲- به تفصیل در مورد مقیاس پذیری و معیارهای کیفیت روشها صحبت شد، در این بخش میزان همبستگی و ارتباط موجودیتها و رابطهها را بررسی می کنیم که چه مقدار این همبستگی و ارتباطها در مدلهای آموزش دیده شده در ک شده است.

روشهایی که معرفی شدند در بهترین حالت تا ۶۴٫۴٪ دقت در یافتن پاسخ در ۱۰ جواب اول (hit@10) را داشتند. نمونههایی از این سوال و ۱۰ جواب اول مدل TransE برای آن را در جدول ۴ مشاهده می کنیم.

جدول ۴ نمونهی سوال از مدل TransE و ده پاسخ اول

Lil Wayne born in?!	New Orleans, Atlanta, Austin, St.			
(Lil Wayna born in 2)	Louis, Toronto, New York City,			
(Lil_Wayne, born_in, ?)	Wellington, Dallas, Puerto Rico			
WALL-E has the genre?!	Animations, Computer Animation,			
(WALL-E, has_genre, ?)	Comedy film, Adventure film,			
(WILL E, has_genre, :)	Science Fiction, Fantasy, Stop			
	motion, Satire, Drama			

همانطور که مشاهده می شود جوابهایی که داده شده است همبستگی خوبی دارند، برای مثال در نمونه یا است متولد نمونه یا اول که از مدل پرسیده شده است Wayne که یک خواننده ی آمریکایی است متولد کجاست، تمام ۱۰ جواب اول همانطور که انتظار می رود ایالتهای مختلف آمریکا هستند و پاسخ اول یعنی New Orleans جواب درست می باشد و جوابها منطقی هستن و مدل TransE این رابطه که پاسخ سوال "متولد کجا است؟" باید یک شهر باشد را خوب فهمیده است. همینطور در مثال دوم وقتی سوال اینکه "ژانر یک فیلم چیست؟" از مدل پرسیده شده است، جوابها همبستگی خوبی دارند و جواب پرت داخل آنها نیست.

برای مشاهده ی بهتر این موضوع، پس از آموزش دیدن مدل TransE ، بردارهای ۵۰بعدی ۵هزار موجودیت را به وسیله ی ابزار tnse] در شکل ۲۱ و در دو بعد نمایش دادیم.

شکل ۲۱ بازنمایی بردار ۵۰ هزار موجودیت که به روش TransE آموزش دیده شده است

در این شکل مشاهده می شود که موجودیتها به صورت جزیرههای کوچک دور هم جمع شدهاند و به نظر می رسد که تشکیل این جزیرهها تصادفی نبوده باشد، زیرا در صورت تصادفی بودن انتظار داشتیم موجودیتها در صفحه پخش شوند.

برای مطمئن شدن از این فرض چند جزیره را در شکل ۲۲ و شکل ۲۳ و شکل ۲۴ بزرگنمایی کردهایم.

شکل ۲۲ بازنمایی قسمتی از موجودیتها که در مورد ژانر مجموعههای تلوزیونی هستند

در شکل ۲۲ مشاهده می شود که عمده ی موجودیتهایی که در این جزیره قرار گرفتهاند ژانر فیلمهای سینمایی هستند، مانند درام ٔ علمی تخیلی ٔ طنز 7 و ...

¹ Drama

² Science fiction

³ Comedy

شکل ۲۳ بازنمایی قسمتی از موجودیتها که در مورد ایالتهای آمریکا هستند

در شکل ۲۳ مشاهده می شود که ایالتهای آمریکا یک جزیره را تشکیل دادهاند، مانند آریزونا، کالیفورنیا، تگزاس و ...

شکل ۲۴ بازنمایی قسمتی از موجودیتها که در مورد نام سریالهای تلوزیونی آمریکا هستند

در شکل ۲۴ مشاهده میشود که نام سریالهای تلوزیونی یک جزیره را تشکیل دادهاند.

در مثالهایی که گفته شد، مشخص است که رابطهی بین موجودیتها به خوبی در این روشها درک شده است و یک همبستگی بین بردارهای آموزش دیده شده وجود دارد.

میدانیم که رابطه ها هم مانند موجودیت ها می توانند ارتباطات و همبستگی های خود را داشته باشند. برای مثال رابطه ی "پدر بودن" نزدیک تر است به رابطه ی "فرزندی" نسبت به رابطه ی "نویسنده ی کتاب" بودن و انتظار داریم بردارها و ماتریسهای آموزش دیده شده برای رابطه ها این همبستگی ها را درک کرده باشد و در فاصله ی کمی از یکدیگر قرار گرفته باشند و همان دسته بندی و جزیره شدنی که برای موجودیت ها اتفاق افتاده بود را اینجا نیز شاهد باشیم.

حال همین مساله را در بردارهای آموزش دیده شده بررسی می کنیم. برای بررسی این امر در شکل ۲۵ بردارهای همه رابطههای استفاده شده در Freebase 15k را در دو بعد به نمایش در آوردهایم. همانطور که در شکل مشخص است، برای رابطهها اتفاق جزیرهای شدن که در بازنمایی موجودیتها اتفاق افتاده بود، به وجود نیامده است و بردارها روی صفحه بخش است. به نظر می رسد که در بردارهای آموزش دیده برای رابطهها این همبستگی و ارتباط وجود ندارد.

_

¹ Scatterd

شکل ۲۵ بازنمایی بردار روابط پایگاه دانش freebase15k که توسط روش TransE آموزش دیده شده است

برای بررسی بیشتر این موضوع چند قسمت از بازنمایی این بردارها را در شکل ۲۶ بزرگنمایی کردهایم. همانطور که پیشبینی کرده بودیم رابطههایی که در کنار هم قرار گرفتهاند هیچ ارتباط و همبستگیای با یکدیگر ندارند و کاملا در صفحه پخش شدهاند و به نظر میرسد که این مدلها نتوانستهاند در این قسمت قوی عمل کنند و رابطهها را درک کنند. در فصل بعد روی این مساله تمرکز میکنیم و سعی میکنیم به مساله را در آموزش مدلها دخیل کنیم و همبستگی بین رابطهها را نیز به مدل بفهمانیم و انتظار داریم نتیجهی بهتری در معیارهای کیفیت بگیریم.

شکل ۲۶ بزرگنمای قسمتی از بردارهای روابط موجود در پایگاه دانش freebase15k

۴-۴ بررسی عمل کرد روشها در یک نگاه

در این قسمت روشهای موجود را ...

در جدول Δ تعداد پارامترهایی که هر یک از روشهای بالا برای آموزش دیدن نیاز دارند، آورده شده است، همانطور که مشاهده می شود روشهای Rescal و RTN تعداد پارامتر خیلی زیادی باید آموزش دهند و به مشکل مقیاس پذیری بر خواهند خورد و روی پایگاه دانشهای بزرگ خیلی کند خواهند بود. در مقابل روشهای SE و TransH و TransH با ایدههایی که برای کاهش تعداد پارامترهای مساله پیاده سازی کردن این تعداد را بسیار کاهش داده و مقیاس پذیری خوبی دارند، به صورتی که مدل بیاده سازی کردن این تعداد را بسیار کاهش داده و مقیاس پذیری خوبی دارند، به صورتی که مدل بیاده سازی بایگاه دانش Δ Freebase 1M برابر با Δ به جواب رسیده است در صورتی که روشهای RESCAL و RTN روی این پایگاه دانش به جواب نمی رسند، که این موضوع بر عدم مقیاس پذیری روشهای RESCAL و RTN تاکید می کند.

جدول ۵ تعداد پارامترهای هر روش

Method	#Params	On FB15K
RESCAL	$O(n_e d + \frac{n_r d^2}{n_r})$	88M (d=250)
MLP (NTN)	$O(n_e d + \frac{n_r d^3}{n_r^3})$	165M (d=50)
SE	$O(n_e d + \frac{2n_r d^2}{})$	8M (d=50)
TransE	$O(n_e d + n_r d)$	0.8M (d=50)

در جدول ۶ میزان 10 @Hit و میانگین رتبهی هر یک از روشهای معرفی شده نمایش داده شده است که در که در این جدول مشاهده میشود که روش NTN در 10 @hit نتیجهی مطلوبی نگرفته است که در معرفی این روش اشاره کردیم که این روش به سرعت به بیشبرازش میل می کند و همین امر باعث شده است که پاسخهای درستی در مورد مساله نداشته باشد.

نکتهی مهم دیگری که در این جدول دیده می شود کارایی خوب روشهای SE و TransE هست که علاوه بر کاهش پارامتری که داشته اند، هم از نظر hit@10 و هم از نظر میانگین رتبه نتایج خوبی داشته اند.

در روش RESCAL نیز مقدار 10 hit فوب بوده است اما رتبه ی میانگین مقدار بسیار بالایی نسبت به روشهای دیگر داشته که نشان از این دارد که علی رقم اینکه بسیاری از روابط را درست فهمیده است و نتایج خوبی در آنها گرفته است، اما بسیاری از روابط را نیز اصلا درک نکرده و پاسخهایی که به سوالات در مورد این روابط داده است جوابهای تقریبا تصادفی ای داشته است و رتبههای پرتی گرفته اند که باعث شده میانگین رتبه ی این روش چنین افزایشی داشته باشد.

جدول ۶ مقدار رتبهی میانگین و 10@hit در روشهای مورد بررسی

	Hit@10	Mean
RESCAL	42.1%	683
SE	39.8%	162
NTN	27%	164
TransE	45.1%	125

شکل ۲۷ درصد 10@hit در روشهای مورد بررسی

$-\Delta$ استفاده از قوانین انجمنی برای بهبود نتایج

در این فصل به طور کامل قوانین انجمنی و چگونگی استخراج آنها را شرح دادیم و پنج قانون هدف نیز مشخص کردیم که به کمک آنها تصمیم داریم مدلهای موجود مبتنی بر ویژگی پنهان را بهبود دهیم. در این بخش به چگونگی انجام این بهبود می پردازیم.

در برخی از روشهای معرفی شده در بخش $-\Delta$ - ابتدا همه ی این قانونها را روی حقیقتهای مجموعه ی آموزش اعمال کردیم و حقایق جدید بدست آمده را دوباره به پایگاه دانش اضافه کردیم و سپس از پایگاه دانش جدید که بزرگتر، کامل تر و دقیق تر شده است استفاده کردیم.

اما در روشهای TransE و TransH این قوانین را مستقیما وارد فرایند آموزش کردیم. به این صورت که پایگاه دانش را گسترش ندادیم و با همان حدود ۵۰۰هزار حقیقت اولیه عملیات آموزش را شروع کردیم اما در حین آموزش از این قوانین استفاده کردیم تا نتایج دقیق تری بگیریم که در ادامه به این موضوع خواهیم پرداخت که این قوانین چگونه استفاده شدهاند.

عدم اعمال این قوانین روی پایگاه دانش باعث شد که هم مسالهی پیشپرداز برای اعمال قوانین روی پایگاه دانش را نداشته باشیم و هم مساله را با پایگاه دانش کوچکتری شروع کنیم که در دو مرحله باعث کاهش زمان محاسبات می شود.

در ادامه توضیحات استفاده از این قوانین را روی روش TransE میدهیم. در روش TransE هدف کاهش فاصله و بین بردار موجودیت اول + بردار رابطه و بردار موجودیت دوم بود که برای حقیقت r(e1,e2) این رابطه را به صورت زیر مینوشتیم.

$$\| \mathbf{e}_1 + \mathbf{r} - \mathbf{e}_2 \|$$

۱-۵-۴ قانون ۱-۵-۴

برای قانون R-subsumption که به صورت r(x,y) = r'(x,y) است در عملیات آموزش هرجا عملیات کمینه سازی روی حقیقت r(x,y) انجام گرفت آن را روی روابط همارز آن که از این قانون عملیات کمینه سازی روی حقیقت r(x,y) انجام می دهیم، یعنی روابط r'(x,y) پس در کمینه سازی ها علاوه بر کمینه کردن رابطه ی ||x+r'-y|| رابطه ی ||x+r-y|| رابطه ی ||x+r'-y|| را نیز کمینه می کنیم.

۲-۵-۴ قانون ۲-۵-۴

در قانون R-equivalence که همانند رابطه ی قبل است با این تفاوت که قانون برگشت پذیر نیز هست، r(x,y) <= r'(x,y) می توان بصورت بالا عمل کرد و هر قسمت (سمت چپ و راست قانون) از این قانون در حقیقتها دیده شد قسمت دیگر را نیز در معادله ی کمینه سازی قرار دهیم. اگر معیار اطمینان این قانون بالا باشد، عملا اتفاقی که می افتد این است که رابطه های r و r به یک شکل آموزش دیده می شوند و به یک صورت عمل خواهند کرد، که با توجه به هم معنا بودن رابطه های مثل دیده می شوند و به یک صورت این اتفاق منطقی ای خواهد بود و از آن امید بهبود در مدل ها را داریم.

(2-hope translation) قانون تعدى –۳-۵-۴

قانون تعدی یا 2-hope translation که به صورت

$$r_1(e_1, e_2)$$
, $r_2(e_2, e_3) \Rightarrow r'(e_1, e_3)$

تعریف می شود، نسبت به قانونهای قبلی پیچیدگی محاسباتی بیشتری خواهد داشت، زیرا پس از پیدا کردن دو حقیقت در سمت بدنه ی قانون قادر به اعمال قانون خواهیم بود. پس در هر مرحله از آموزش که به یکی از حقیقتهای سمت چپ قانون رسیدیم، عملیات جستجو برای حقیقت دیگر را شروع می کنیم و در صورت پیدا شدن حقیقت دوم این قانون را اعمال می کنیم. (عملیات جستجو برای حقیقت دوم به صورت موازی انجام می پذیرد و باعث کاهش سرعت آموزش نخواهد شد.)

پس از یافتن هر دو حقیقتِ سمتِ بدنهیِ قانون یعنی $r_1(e_1, e_2)$ و $r_1(e_1, e_2)$ برای اعمال قانون در $r_2(e_2, e_3)$ و $r_1(e_1, e_2)$ برای عمال عنی عبارت $r_2(e_1, e_3)$ نیز انجام دهیم یعنی عبارت $r_2(e_1, e_3)$ نیز انجام دهیم یعنی عبارت $r_2(e_1, e_3)$ نیز کمینه کنیم.

از طرفی روابط را در روش TransE به صورت یک بردار انتقال در نظر گرفتیم پس انتظار داریم که مجموع انتقالی که بردارهای r_1 و r_2 ایجاد می کنند برابر باشد با انتقال بردار r_1 یعنی:

$$r_1 + r_2 = r'$$

پس از عکس این رابطه نیز می توانی استفاده کنیم و اگر جایی به قانون r را مشاهده کردیم در کنار کمینه کردن مقدار

$$\| e_1 + r' - e_3 \|$$

مقدار مجموع دو بردار دیگر را نیز کمینه کنیم:

$$\| \mathbf{e}_1 + \mathbf{r}_1 + \mathbf{r}_2 - \mathbf{e}_3 \|$$

۳-۵-۴ قانون -۴-۵-۴

در این قانون نیز مانند قانون قبل می توان عمل کرد و با پیدا کردن هر یک از حقیقتهای موجود در بدنه ی قانون، دومین حقیقت را جستجو کرد و در صورت پیدا کردن آن، علاوه بر کمینه سازی که روی خود حقیقت بدست آمده از قانون نیز اعمال کنیم.

$$r_1(e_1, e_3), r_2(e_2, e_3) \Longrightarrow r'(e_1, e_2)$$

$$\parallel e_1 + r_1 - e_3 \parallel, \parallel e_2 + r_2 - e_3 \parallel \Longrightarrow \parallel e_1 + r' - e_2 \parallel$$

۵-۵-۵-قانون Specefic R-subsumption

در این قانون همچون دو قانون قبل باید دو حقیقت که در سمت بدنه ی قانون آمدهاند را یافته و پس از آن نتیجه ی قانون را در عملیات آموزش تاثیر دهیم. این قانون را به این صورت تاثیر می دهیم که اگر دو قانون را در عملیات آموزش تاثیر دهیم داشت، علاوه بر کمینه کردن فاصله ی بین این دو حقیقت عبارت نتیجه ی این قانون را نیز در عملیات کمینه سازی شرکت می دهیم به صورت حقیقت عبارت نتیجه ی این قانون را نیز در عملیات کمینه سازی شرکت می دهیم به صورت

$$|| x + r' - y ||$$

فصل ۵: ارزیابی

۵-۱-۵ مقدمه

در فصل قبل قوانین انجمنی و نحوه ی استخراج، و چگونگی استفاده از آنها را توضیح دادیم. در این فصل این قوانین انجمنی را وارد عملیات آموزش کرده و نتایج بدستآمده را بررسی و مقایسه می کنیم. در بخش 6-7 به تشریح آزمایشها و نتایج بدستآمده می پردازیم و آزمایشها را به تفکیک قوانین هدف که در بخش 7-7 مطرح شد توضیح می دهیم. بخش 6-7 را به بررسی نتایج و مقایسه آنها و جمع بندی این فصل اختصاص می دهیم و در فصل بعد نتیجه گیری خواهیم داشت و کارهایی که در آینده می توان برای بهبود بیشتر نتایج انجام داد را معرفی می کنیم.

۵-۲- **آزمایشها**

در این تحقیق هدف فقط بهبود نتایج روشهای مبتنی بر ویژگیهای پنهان نبوده و به دنبال ارائهی چارچوبی هستیم که به کمک آن بتوانیم قدرت و نقاط قوت و ضعف روشها را نیز مشخص کنیم. برای ارائهی این چارچوب از بخشبندیای که در بخش ۳-۳- روی قوانین انجمنی داشتیم استفاده می کنیم. و بررسی می کنیم که هر یک از این دسته قوانین چه مقدار توسط مدل درک شدهاند و خوب جواب می دهند.

برای انجام آزمایشها باید پایگاه دانش و قوانین انجمنی که میخواهیم عملیات آموزش را روی آنها انجام دهیم را مشخص کنیم. پایگاه دانش استفاده شده همان پایگاه دانش Freebase15k است که در بخش ۲-۳- معرفی شد (حدود ۶۰۰ هزار حقیقت، ۱۵هزار موجودیت و ۱۳۰۰ رابطه) است. در ادامه قوانین انجمنی را روی این پایگاه دانش اجرا میکنیم و قوانین بدست آمده را دستهبندی میکنیم.

Freebase 15k همانطور که در بخش $^{-4}$ اشاره شد، پس از اجرای قوانین انجمنی روی پایگاه دانش $^{-4}$ استفاده در $^{-4}$ قانون استخراج شد اما همه ی این قانونها از نظر معیار کیفیت و اطمینان، شرایط استفاده کردی عملیات آموزش را ندارند، نیاز است تا قوانین باکیفیت را مشخص کنیم و فقط از آنها استفاده کنیم. برای مشخص کردن قوانین با کیفیت با آزمون و خطا به معیار اطمینان $^{-4}$ برابر $^{-4}$ و پوشش سر برای مشخص کردن قوانین که معیار اطمینان بالای $^{-4}$ و پوشش سر بیش از $^{-4}$ داشتند را انتخاب و در عملیات آموزش شرکت دادیم. پس از اعمال این محدودیتها تعداد قوانین کاندید بدستآمده برابر با $^{-4}$ قانون شد. این قوانین را بر اساس تقسیمبندیهای بخش $^{-4}$ دستهبندی کردیم که این دستهبندی در جدول $^{-4}$ مشخص شده است.

جدول ۷ تعداد قوانین استخراج شده روی freebase15k به تفکیک قوانین هدف

Rules					
name	rule	#rule			
R-Subsumption	r(x, y) => r'(x, y)	1177			
R-Equivalence	$r(x, y) \leq r'(x, y)$	٧٨٢			
2-hope	$r1(x, y), r2(y, z) \Rightarrow r'(x, z)$	۸١٠			
Triangle alignment	r(x, z), r(y, z) => r'(x, y)	990			
SR-Subsumption	$r_1(x, y), r_2(x, v) \Longrightarrow r'(x, y)$	YY9			

All rules	4198

همانطور که قبل تر هم اشاره شد تصمیم داریم که علاوه بر بهبود نتایج یک چارچوب برای سنجش کیفیت روشها نیز ارائه دهیم، برای این کار طبق آنچه در بخش ۲-۴-گفته شد این قوانین را به صورت دستهای به روشهای آموزش اضافه می کنیم و نتایج را مشاهده می کنیم و در آخر نیز همهی قوانین را باهم به روشها اضافه می کنیم و میزان بهبود انجام شده توسط این قانونها را در روشهای مختلف بررسی می کنیم.

در نمودار شکل ۲۸-چپ معیار 10 @hit و در نمودار شکل ۲۸-راست

معیار میانگین رتبه برای روشهای معرفی شده در $-\Delta$ -، قبل و بعد از اضافه کردن قوانین استخراج شده در دستهی R-Subsumption را مشاهده می کنیم.

شکل ۲۸-چپ تاثیر اعمال قانون R-Subsumption بر 10@hit است تاثیر اعمال قانون R-Subsumption بر رتبهی میانگین

در نمودارها مشاهده می شود که اضافه کردن قوانین R-subsumption در هیچ یک از معیارها تاثیر چندان چشم گیری نداشه و بهبودهای جزئی روی نتایج روشها داشته است. این مساله نشانگر این است

که هر 4 روش معرفی شده در فهمیدن قوانین 8 R-subsumption مشکلی نداشتهاند و در زمان آموزش این روابط توسط مدل شناسایی و در 2 شده است.

SR-راست تاثیر اعمال قانون SR-Subsumption بر رتبهی میانگین - چپ تاثیر اعمال قانون -SR بر رتبهی میانگین - چپ تاثیر اعمال قانون -SR Subsumption

در نمودارهای شکل ۲۹-راست و شکل ۲۹-چپ نتایج معیارهای کیفیت روشهای آموزش را قبل و بعد R- و نتایج معیارهای کدن قوانین SR-subsumption مشاهده می کنیم. این قانونها نیز مانند قانونهای SR-subsumption تاثیر چندانی در معیارهای SR- SR

می توان نتیجه گرفت که مدلهای مبتنی بر ویژگیهای پنهان در کل قوانینی که به طور مستقیم از روی یکدیگر نتیجه گرفته می شوند را به خوبی درک می کنن و مدل آموزش دیده این روابط رو به خوبی تشخصی می دهد و در پاسخ به سوالات به اشتباه نمی افتد.

شکل ۳۰-چپ تاثیر اعمال قانون R-equvalence بر 10@hit بر رتبهی میانگین R-equvalence بر رتبهی میانگین

در نمودارهای شکل ۳۰-چپ و شکل ۳۰-راست مشاهده می شود اضافه کردن قوانین R-equvalence در نمودارهای شکل ۳۰-پپ و شکل ۳۰-راست مشاهده می شود اضافه کردن قوانین RESCAL تاثیر چندانی روی نتایج شده است و بهبود نتایج شده است.

همانطور که در بخش ۳-۳-۲ عنوان کردیم این قوانین به کشف روابطی میپردازند که به دو صورت بیان شدهاند ولی معنای یکسانی دارند، مانند روابط located_in و contained_by هر دو معنی قرار داشتن یک مکان در مکان دیگر را دارد اما به دو صورت بیان شده است. اینجا مشاهده میشود که تعداد زیاد این چنین رابطهها در پایگاه دانش و عدم شناسایی آنها توسط مدلهای آموزش تاثیر منفیای در نتایج داشته است که با اضافه کردن قوانین R-equvalence این مشکل رفع شده و بهبود نسبتا خوبی حاصل شده است.

عدم بهبود در روش RESCAL نیز به این دلیل است که این روش همانطور که در توضیح آن در بخش + توضیح دادیم همهی جفت ویژگیهای پنهان از دو موجودیت را با یکدیگر مقایسه و بررسی میکند و میتواند به مقدار خوبی این روابط یکسان را ببیند و در ماتریسهای رابطه قرار دهد.

2-hope translation بر 2-hope translation بر 2-hope translation شکل ۳۱ چپ تاثیر اعمال قانون 2-hope translation بر رتبهی میانگین

در نمودارهای شکل 8 -راست و شکل 8 -چپ با اضافه کردن قوانین RESCAL نیز که با اضافه هر دو معیار بهبود محسوسی دیده می شود. مشاهده می شود که در روش RESCAL نیز که با اضافه کردن قانونهای قبلی تغییر چندانی نکرده بود، با اضافه کردن این قانون بهبود بسیار زیادی داشته ایم و مقدار 8 (10 شهبود بسیار زیادی داشته ایم 8 (10 شهبود است که بهبود پخشم گیری است. همچنین در دیگر مدلها بهبودهای زیادی را داشته ایم، در روشهای 8 (20 سخت و 8 (31 سخت 8 (41 سخت 8 (42 سخت 8 (42 سخت 8 (43 سخت 8 (43 سخت 8 (44 سخت 8 (44 سخت 8 (45 سخت 8 (47 سخت 8 (47 سخت 8 (48 سخت 8 (49 سخت 8 (49 سخت 8 (50 سخت 8 (51 سخت 8 (60 سخت 8 (61 سخت 8 (61 سخت 8 (61 سخت 8 (62 سخت 8 (62 سخت 8 (63 سخت 8 (63 محسوب می شود.

می توانیم نتیجه بگیریم که هیچ یک از این مدلها قادر به شناسایی قوانین غیر مستقیم پیچیده نبوده است. در آزمایشهای قبلی دیدیم که قوانینی غیر مستقیم که با استنتاج از روی یک رابطه ساخته شده بودند (در قسمت بدنهی قانون فقط یک حقیقت وجود داشت) را مدلها بهتر درک کرده بودن و اضافه کردن قوانین مربوط به این آزمایشها تاثیر چندانی در نتیجه نداشت، اما اضافه کردن قوانین غیرمستقیم پیچیده تری مانند قانون از دو حقیقت استفاده شده

است) بهبودهای زیادی را در همهی مدلها اعمال کرده است. پس به کمک این قانونها توانستیم چند قدم جلوتر از آنچه مدلها قادر به دیدن آن بودند را به آنها نشان دهیم و قوانین پیچیدهی موجود در پایگاههای دانش را نیز در امر آموزش دخیل کنیم.

بهبود در معیار 10 hit شان میدهد که اضافه کردن این قوانین باعث شده که در جوابهای دقیق که به سوالات داده شده است بهبود داشته باشیم و تعداد جوابهایی صحیح که زیر ۱۰ کاندید اول بودند را افزایش دهیم و از طرفی بهبود در معیار میانگین رتبه نشان میدهد که در رابطههایی که مدل برای آنها درست آموزش ندیده است و جوابهای پرتی برای آنها در نظر گرفته است، اوضاع پاسخها بهتر شود.

به طور خاص یکی از دلایل بالا بودن معیار میانگین رتبه این است که برای برخی روابط حقیقتهای کمی در پایگاه دانش موجود است و مدلها از روی این تعداد کم رابطه قادر به شناسایی الگو برای پاسگویی به سوالات در مورد این حقیقتها و روابط نیستند. همین امر باعث می شود که پاسخهایی که به سوالات در مورد این حقیقتها می دهند به صورت تصادفی باشد و رتبههای پرتی بگیرد. این رتبههای پرت باعث افزایش زیادی در معیار میانگین رتبه می شود، در روش RESCAL این مساله را به خوبی مشاهده می کنیم که با وجود اینکه قریب به ۴۲٪ جوابها زیر رتبه ی ۱۰ قرار می گیرند اما میانگین رتبهای که برای این روش اعلام شده است ۴۸۳ است.

این مشکل عدم وجود تعداد نمونه ی کافی برای آموزش مدل را تا حدی می توان با اضافه کردن نمونههای غیر مستقیم موجود در پایگاه دانش حل کرد، به این معنی که برای خیلی از روابط نمونههایی وجود دارد که از روی بقیه ی حقایق درون پایگاه دانش می توان به آنها پی برد و از آنها استفاده کرد. در اینجا هم ما با اضافه کردن قانونهای که از به وسیله ی قانون تعدی قابل شناسایی بوده اند را به پایگاه دانش اضافه کرده ایم و در عملیات

آموزش تاثیر دادهایم و نهایتا نتایج خوبی نیز در پاسخ به سوالاتی که از مدل پرسیده میشود بدست آمده است.

شکل ۳۲-چپ تاثیر اعمال قانون Triangle alignment بر 10@hit مال تاثیر اعمال قانون alignment شکل ۳۲-چپ تاثیر اعمال قانون alignment بر رتبه میانگین

در نمودارهای شکل ۳۲-راست و شکل ۳۲-چپ نیز تاثیر استفاده از قوانین ۳۲-راست و شمان دلیل را مشاهده می کنیم که بهبودهای این نتایج نیز به مانند آزمایش قبل قابل قبول بوده است و همان دلیل پیچیدگی قانون که مدل قادر به درک آن نبوده است در این مورد هم صدق می کند و باعث بهبود نتایج شده است.

در ادامه نتایج اعمال کل قانونهایی که در قسمت ۳-۳- معرفی کردیم را روی مدلهای معرفی شده را بررسی می کنیم. نتایج بدست آمده در نمودارهای شکل ۳۳-چپ و شکل ۳۳-راست نشان داده شده است.

شکل ۳۳-چپ تاثیر اعمال همهی قانون های هدف بر 10@hit - راست تاثیر اعمال همهی قانون های هدف بر رتبهی میانگین

مشاهده می شود که اعمال همه ی قانون ها در کنار هم نیز باعث بهبود در نتایج همه ی روشهای معرفی شده، شده است و علاوه بر چارچوبی که برای سنجش نقاط قوت و ضعف روشها معرفی کردیم توانستیم در همه ی روشها بهبودهای قابل قبولی نیز اعمال کنیم.

۵-۳- جمع بندی

در جدول ۸ و جدول ۹ به وی داریم روی داریم داریم وی Error! Reference source not found.۹ جمعبندی داریم روی داریم روی روشهای معرفی شده که در بخش قبل به تفصیل توضیح داده شد و این نتایج امال قوانین روی روشهای معرفی شده که در بخش قبل به تفکیک معیار 10 (hit و میانگین رتبه در کنار هم قرار داده ایم.

جدول ۸ نتایج اعمال قوانین انجمنی هدف بر روی معیار 10 @hti وشهای مورد بررسی

Hit@10 on Freebase 15K (%)							
Method	orginal	R- Subsumption	R- Equivalence	2- hope	Triangle alignment	SR- Subsumption	all rules (~improve)

RESCAL	42.1	41.9	42.3	43.5	42.9	42.0	43.9 (1.8%)
NTN	27	-	-	1	-	-	-
SE	39.8	40.7	41.6	41.8	41.5	40.5	43.1 (3.3%)
TransE	45.1	46.2	47.3	47.9	46.9	46.1	50.8 (5.7%)
TransH	64.4	64.8	65.6	65.9	65.2	64.9	67.3 (2.9%)

جدول ۹ نتایج اعمال قوانین انجمنی هدف بر روی معیار رتبهی میانگین روشهای مورد بررسی

	Mean rank on Freebase 15K								
Method	orginal	R- Subsumption	R- Equivalence	2- hope	Triangle alignment	SR- Subsumption	all rules (~improve)		
RESCAL	683	660	649	517	572	644	484 (30%)		
NTN	164	-	-	-	-	-	-		
SE	162	153	141	138	144	156	135 (17%)		
TransE	125	121	116	114	116	122	109 (13%)		
TransH	87	87	82	81	83	87	79 (10%)		

نکاتی که در این جداول قابل توجه هستند:

- اعمال همهی قوانین روی هر چهار روش مورد آزمایش باعث بهبود قابل قبول نتایج گشته است.
- قوانین پیچیده تر مانند قانون 2-hope و قانون Triangle alignment که به طور مستقیم از روی داده های موجود در پایگاه دانش قابل برداشت نیستند توسط مدل ها به خوبی درک نشده اند و از نقاط ضعف روش ها به شمار می روند که در جدول مشاهده می کنیم اضافه کردن این قوانین بهبود خوبی در نتایج داشته است.
- قانون R-equivalence مانند دو قانون بند قبل قانون پیچیدهای نیست، اما به حل یکی از مشکلات اساسی پایگاههای دانش پرداخته است که وجود روابط مختلف با تعاریف یکسان است. این خاصیت این قانون که روابط یکسان را تشخیص و در عملیات آموزش تاثیر میدهد نیز باعث تاثیر خوبی در نتایج همهی روشها بجز روش RESCAL شده است که در بخش ۴-۱-دلیل عدم بهبود برای روش RESCAL را توضیح دادیم.
- قوانین ساده تر مانند R-subsumption و R-subsumption تقریبا توسط همه ی مدل ها به خوبی در ک شده است و اضافه کردن این قانون ها بهبود چندانی را در نتایج حاصل نکرده است.
- به طور خاص در روش RESCAL بهبود در معیار 10 hit@ نسبت به دیگر روشها کمتر بوده است (حدود ۱۰۸٪) اما بهبود در معیار میانگین رتبه مقدار زیادی بوده است و این معیار را از ۶۸۳ به ۶۸۴ (حدود ۳۰٪) کاهش داده است. این مساله نشان میدهد که روش RESCAL برای روابطی که به میزان کافی نمونه برای آموزش دیدن داشته است خوب عمل کرده و جواب حدود ۴۰٪ از سوالها را در رتبهی زیر ۱۰ پاسخ داده است، اما برای مواردی که به میزان کافی نمونه برای آموزش نداشته است خیلی بد عمل کرده و باعث شده است که میانگین رتبه به مقدار زیادی بالا برود. اضافه کردن قوانین انجمنی به این روش نیز تاثیر چندانی در ۱۵ hit@ 10 نداشته است و برای روابطی که نمونهی کافی از آنها موجود بوده است مفید

واقع نشده است، اما کاهش بسیار زیاد میانگین رتبهی پاسخها نشان میدهد که کمک بسیاری به روابطی که نمونهی کافی نداشتهاند شده است و جوابهای بیشتری به سمت منطقی شدن پیش رفته است.

• متاسفانه پیادهسازی روش NTN کامل نشده و نتایج اعمال این قوانین روی این روش را برای مقایسه در اختیار نداریم.

در این تحقیق ابتدا روشهای موجود در زمینه ی پیشبینی پیوند که از ویژگیهای پنهان استفاده می کردند معرفی شد و سپس با معرفی و استفاده از قوانین انجمنی سعی شد تا در این روشها بهبودهایی ایجاد شود. با توجه به نتایجی که مشاهده کردیم و نکاتی که گفته شد در کل دستآوردهای این تحقیق را می توان به صورت زیر خلاصه کرد:

- استفاده از قوانین انجمنی در بهبود روشهای مبتنی ویژگیهای پنهان
- ارایهی چارچوبی برای مقایسه و بررسی عملکرد و نقاط ضعف و قوت روشهای موجود مبتنی بر ویژگیهای پنهان که قابل گسترش به روشهای دیگر در زمینهی پیشبینی پیوند نیز هست.

فصل 6: نتیجه گیری

۱-۶- نتیجهگیری

در این پژوهش قصد داشتیم که روی نتایج پیشبینی پیوند در مدلهای مبتنی بر ویژگیهای پنهان به کمک قوانین انجمنی بهبودی داشته باشیم، از این رو به توضیح و تبیین این روشها پرداخته و نقاط قوت و ضعف آنها را بررسی کردیم و اقدام به رفع برخی ضعفهای موجود در این روشها نمودیم. از طرفی نیز این روشها برای کار با پایگاههای دانش بسیار بزرگ طراحی شدهاند و نباید محا سبات این روشها پیچیده و زمانبر با شند، که در بخش ++ تو ضیح داده شد که پیچیدگی هر یک از روشها به چه مقدار هست و هر کدام تا چه حد می توانند پاسخ گوی نیازهای پایگاه دانش باشند و در روش پیشنهادی این پژوهش نیز سربار زیادی روی محا سبات هیچ یک از روشها ا ضافه نشد و همه ی روشها در زمان معقولی به پاسخ می رسند.

همانطور که در بخش ۴-۲- گفته شد، روشهای مبتنی بر ویژگیهای پنهان به خوبی روابط بین موجودیتها را تشخیص داده و از آن برای پیشبینی پیوند بین موجودیتهای مختلف استفاده می کنند. در بخش ۴-۳- نشان داده شد که این روابط بین پیوندها به خوبی تشخیص داده نمی شود و بین بردار پیوندهای آموزش دیده شده هیچ گونه ارتباطی موجود نیست. در این پژوهش به کمک قوانین انجمنی و پنج قانون هدفی که انتخاب کردیم توانستیم که این ارتباط بین پیوندها را تا حدی برای مدل م شخص کنیم و به مدل کمک کنیم از روی دادههای موجود بتواند برای دادههای بیشتری استنتاج کند.

پس از اعمال این تغییر روی مدلهای معرفی شده در بخش 7-0 و انجام آزمایشها در بخش 0-7 مشاهده شد که در همه مدلها بهبودهایی حاصل شده است که نشان می دهد ارتباط بین پیوندها نیز ارتباط معناداری است و مشخص کردن آن به دستیابی به نتایج بهتر کمک می کند.

همچنین به کمک دستهبندیای که در بخش ۳-۳- روی قوانین انجمنی استخراج شده داشتیم و اعمال بخش بخش این قوانین روی روشهای موجود توانستیم چارچوبی ارائه دهیم که توسط آن بتوان مدلهای فعلی و مدلهایی که در آینده معرفی میشوند را بررسی کرده و نقاط ضعف و قوت این روشها را مشخص کنیم.

۶-۲- کارهای آینده

با روشهایی که معرفی کردیم توانستیم علاوه بر چارچوبی که برای سنجش کیفیت روشهای موجود و یافتن نقاط و قوت و ضعف این روشها معرفی کردیم، بهبودهایی در همهی روشهای معرفی شده داشته باشیم. اما با وجود بهبودهایی که داشتیم بهترین نتیجهای که بهترین روش به ما داده است مقدار با شیم. اما با وجود بهبودهایی که داشتیم بهترین نتیجهای که بهترین روش به ما داده است مقدار است مقدار فوب و قابل قبولی hit (10 برابر با ۶۷٫۳٪ است که برای استفادههای واقعی از این روشها مقدار خوب و قابل قبولی نیست. این عدد به این معناست که اگر ما سوالی از این مدل بپرسیم به احتمال ۳۳٪ جواب اشتباه می دهد و اگر جواب درست بدهد نیز باید این جواب درست را از بین ۱۰ جواب کاندید انتخاب کنیم. اینکه این ۱۰ جواب کاندید با یکدیگر در ارتباط هستند این نوید را می دهد که از این روشها در سیستمهای توصیه گر که لیستی از موارد را به کاربر توصیه می کند به خوبی قابل استفاده هستند، اما اگر بخواهیم از این مدلها برای پاسخ به سوالات استفاده کنیم بجای 10 (10 الله اعبارند و جوابهای در نظر بگیریم، زیرا فقط یک جواب صحیح مدنظر است و دیگر جوابها فاقد اعتبارند و جوابهای در ست به شدت کاهش پیدا می کند.

با این که این روشها در حال حاضر در آخرین تکنولوژیهای شرکتهای بزرگی مانند گوگل و IBM در حال استفاده هستند، اما این روشها هنوز باید بسیار دقیق تر شوند تا در کاربردهایی مثل پاسخگویی به سوالات نیز قابل استفاده باشند.

بهبودهایی که میتوان روی این مساله داد میتوانند از طریق راهکارهای زیر باشند:

- استفاده از روشی که در این تحقیق ارائه شده و یافتن نقاط ضعف روشها و انتخاب راهحل برای حل این ضعفها
- در این تحقیق فقط قوانین انجمنی با پیچیدگی ۱ و ۲ (قوانینی که در قسمت بدنهی خود دو حقیقت را بررسی می کردند) در نظر گرفته شدند، مطمئنا در ک قوانین با پیچیدگیهای بیشتر نیز برای مدلهای موجود سخت بوده و ممکن است نقاط ضعف این روشها باشند، پس اضافه کردن قوانین با پیچیدگی بیشتر از ۲ می تواند بهبودهایی را حاصل کند.
- راهکار دیگری برای پایین آوردن معیار میانگین رتبه، فیلتر کردن نتایج روشها است. میدانیم پاسخهایی که روشهای موجود به سوالات میدهند به صورت لیستی از جوابهای مرتب شده است که ممکن است جواب درست سوال مورد ۱۵۰م باشد. با بررسی جوابها مشخص میشود که خیلی از پاسخهایی که در ۴۹ پاسخ غلط وجود داشته کلا بی ارتباط با سوال است. مثلا سوال شده که «نویسندهی کتاب X چه شخصی است؟» و انتظار داریم جوابهای دریافتی نام اشخاص باشد، اما پاسخهایی از جنسهای دیگر مانند نام کشورها، وضعیتهای آب و هوا و ... در پاسخهای غلط پیش از پاسخ درست وجود دارد. برای حل این مشکل و فیلتر کردن پاسخهای بی ربط می توان از روشهای کشف جامعه استفاده کرد و موجودیتها را دستهبندی کرد، و به مدلها آموزش داد که جواب هر سوال باید از جنس چه مجموعه موجودیتی باشد و پس از دریافت پاسخها، پاسخهایی که در این مجموعه موجودیت نیستند را حذف کرد و سریعتر به جواب صحیح رسید.

¹ community detection

فصل ٧: مراجع

فصل 1: واژهنامه انگلیسی به فارسی

Open World Assumption

فرض جهان باز

فصل ۹: واژهنامه فارسی به انگلیسی

Oprn World Assumtion

فرض جهان باز

abstract

Keywords: Machine learning, link prediction, latent feature

University of Tehran

College of Engineering

Faculty of Electrical and Computer Engineering

Improvement in Link-prediction Model based on Latent Factor using Association Rules

A thesis submitted to the Graduate Studies Office
In partial fulfillment of the requirements for
The degree of M.Sc in
Software Engineering

By:

Masoud Hashemian

Supervisor:

Dr. Nasser Yazdani