9. Fourierova transformace

Násobení polynomů může mnohým připadat jako poměrně (algoritmicky) snadný problém. Asi každého hned napadne "hloupý" algoritmus – vezmeme koeficienty prvního polynomu a vynásobíme každý se všemi koeficienty druhého polynomu a příslušně u toho sečteme i exponenty (stejně jako to děláme, když násobíme polynomy na papíře). Pokud stupeň prvního polynomu je n a druhého m, strávíme tím čas $\Omega(mn)$. Pro m=n je to kvadraticky pomalé. Na první pohled se může zdát, že rychleji to prostě nejde (přeci musíme vždy vynásobit "každý s každým"). Ve skutečnosti to ale rychleji fungovat může, ale k tomu je potřeba znát trochu tajemný algoritmus FFT neboli $Fast\ Fourier\ Transform$.

Trochu algebry na začátek

Celé polynomy označujeme velkými písmeny, jednotlivé členy polynomů příslušnými malými písmeny (př.: polynom W stupně d má koeficienty $w_0, w_1, w_2, \ldots, w_d$).

Libovolný polynom P stupně (nejvýše) d lze reprezentovat jednak jeho koeficienty, tedy čísly p_0, p_1, \ldots, p_d , druhak i pomocí hodnot:

Lemma: Polynom stupně nejvýše dje jednoznačně určeň svými hodnotami vd+1různých bodech.

 $D\mathring{u}kaz$: Polynom stupně d má maximálně d kořenů (indukcí – je-li k kořenem P, pak lze P napsat jako (x-k)Q kde Q je polynom stupně o jedna menší, přitom polynom stupně 1 má jediný kořen); uvážíme-li dva různé polynomy P a Q stupně d nabývající v daných bodech stejných hodnot, tak P-Q je polynom stupně maximálně d, každé z $x_0\ldots x_d$ je kořenem tohoto polynomu \Rightarrow spor, polynom stupně d má d+1 kořenů $\Rightarrow P-Q$ musí být nulový polynom $\Rightarrow P=Q$.

Povšimněme si jedné skutečnosti – máme-li dva polynomy A a B stupně d a body x_0,\ldots,x_n , dále polynom $C=A\cdot B$ (stupně 2d), pak platí $C(x_j)=A(x_j)\cdot B(x_j)$ pro $j=0,1,2,\ldots,n$. Toto činí tento druhý způsob reprezentace polynomu velice atraktivním pro násobení – máme-li A i B reprezentované hodnotami v $n\geq 2d+1$ bodech, pak snadno (v $\Theta(n)$) spočteme takovou reprezentaci C. Problémem je, že typicky máme polynom zadaný koeficienty, a ne hodnotami v bodech. Tím pádem potřebujeme nějaký hodně rychlý algoritmus (tj. rychlejší než kvadratický, jinak bychom si nepomohli oproti hloupému algoritmu) na převod polynomu z jedné reprezentace do druhé a zase zpět.

Idea, jak by měl algoritmus pracovat:

- 1. Vybereme $n \ge 2d + 1 \text{ bodů } x_0, x_1, \dots, x_{n-1}$.
- 2. V těchto bodech vyhodnotíme polynomy A a B.
- 3. Nyní již v lineárním čase získáme hodnoty polynomu C v těchto bodech: $C(x_i) = A(x_i) \cdot B(x_i)$
- 4. Převedeme hodnoty polynomu C na jeho koeficienty.

Je vidět, že klíčové jsou kroky 2 a 4. Celý trik spočívá v chytrém vybrání oněch

bodů, ve kterých budeme polynomy vyhodnocovat – zvolí-li se obecná x_j , tak se to rychle neumí, pro speciální x_j ale ukážeme, že to rychle jde.

Vyhodnocení polynomu metodou Rozděl a panuj (algoritmus FFT):

Mějme polynom P stupně $\leq d$ a chtějme jej vyhodnotit v n bodech. Vybereme si body tak, aby byly spárované, čili $\pm x_0, \pm x_1, \ldots, \pm x_{n/2-1}$. To nám výpočet urychlí, protože pak se druhé mocniny x_j shodují s druhými mocninami $-x_j$.

Polynom P rozložíme na dvě části, první obsahuje členy se sudými exponenty, druhá s lichými:

$$P(x) = (p_0x^0 + p_2x^2 + \dots + p_{d-2}x^{d-2}) + (p_1x^1 + p_3x^3 + \dots + p_{d-1}x^{d-1})$$

se zavedením značení:

$$P_s(t) = p_0 t^0 + p_2 t^1 + \dots + p_{d-2} t^{\frac{d-2}{2}}$$

$$P_l(t) = p_1 t^0 + p_3 t^1 + \ldots + p_{d-1} t^{\frac{d-2}{2}}$$

bude $P(x) = P_s(x^2) + xP_l(x^2)$ a $P(-x) = P_s(x^2) - xP_l(x^2)$. Jinak řečeno, vyhodnocvání polynomu P v n bodech se nám smrskne na vyhodnocení P_s a P_l v n/2 bodech – oba jsou polynomy stupně nejvýše d/2 a vyhodnocujeme je v x^2 (využíváme rovnosti $(x_i)^2 = (-x_i)^2$).

Příklad:
$$3 + 4x + 6x^2 + 2x^3 + x^4 + 10x^5 = (3 + 6x^2 + x^4) + x(4 + 2x^2 + 10x^4).$$

Teď nám ovšem vyvstane problém s oním párováním – druhá mocnina přece nemůže být záporná a tím pádem už v druhé úrovni rekurze body spárované nebudou. Z tohoto důvodu musíme použít komplexní čísla – tam druhé mocniny záporné býti mohou.

Komplexní intermezzo

Základní operace

- Definice: $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$
- Sčítání: $(a + bi) \pm (p + qi) = (a \pm p) + (b \pm q)i$. Pro $\alpha \in \mathbb{R}$ je $\alpha(a + bi) = \alpha a + \alpha bi$.
- Komplexní sdružení: $\overline{a+b} = a-b$ i. $\overline{\overline{x}} = x$, $\overline{x \pm y} = \overline{x} \pm \overline{y}$, $\overline{x \cdot y} = \overline{x} \cdot \overline{y}$, $x \cdot \overline{x} \in \mathbb{R}$.
- Absolutní hodnota: $|x| = \sqrt{x \cdot \overline{x}}$, takže $|a + b\mathbf{i}| = \sqrt{a^2 + b^2}$. Také $|\alpha x| = |\alpha| \cdot |x|$.
- Dělení: $x/y = (x \cdot \overline{y})/(y \cdot \overline{y})$.

Gaußova rovina a goniometrický tvar

- Komplexním číslům přiřadíme body v \mathbb{R}^2 : $a + bi \leftrightarrow (a, b)$.
- |x| je vzdálenost od bodu (0,0).
- |x|=1 pro čísla ležící na jednotkové kružnici (komplexní jednotky). Pak platí $x=\cos\varphi+\mathrm{i}\sin\varphi$ pro nějaké $\varphi\in[0,2\pi)$.

2

2010-02-12

- Pro libovolné $x \in \mathbb{C}$: $x = |x| \cdot (\cos \varphi(x) + \mathrm{i} \sin \varphi(x))$. Číslu $\varphi(x) \in [0, 2\pi)$ říkáme argument čísla x, někdy značíme argx.
- Navíc $\varphi(\overline{x}) = -\varphi(x)$.

Exponenciální tvar

- Eulerova formule: $e^{i\varphi} = \cos \varphi + i \sin \varphi$.
- Každé $x \in \mathbb{C}$ lze tedy zapsat jako $|x| \cdot e^{\mathbf{i} \cdot \varphi(x)}$.
- Násobení: $xy = (|x| \cdot e^{\mathbf{i} \cdot \varphi(x)}) \cdot (|y| \cdot e^{\mathbf{i} \cdot \varphi(y)}) = |x| \cdot |y| \cdot e^{\mathbf{i} \cdot (\varphi(x) + \varphi(y))}$. (absolutní hodnoty se násobí, argumenty sčítají)
- Umocňování: $x^{\alpha} = \left(|x| \cdot e^{\mathbf{i} \cdot \varphi(x)}\right)^{\alpha} = |x|^{\alpha} \cdot e^{\mathbf{i} \alpha \varphi(x)}$.
- Odmocňování: $\sqrt[n]{x}=|x|^{1/n}\cdot e^{\mathrm{i}\cdot\varphi(x)/n}$. Pozor – odmocnina není jednoznačná: $1^4=(-1)^4=\mathrm{i}^4=(-\mathrm{i})^4=1$.

Odmocniny z jedničky

- Je-li nějaké $x \in \mathbb{C}$ n-tou odmocninou z jedničky, musí platit: |x| = 1, takže $x = e^{\mathrm{i}\varphi}$ pro nějaké φ . Proto $x^n = e^{\mathrm{i}\varphi n} = \cos \varphi n + \mathrm{i}\sin \varphi n = 1$. Platí tedy $\varphi n = 2k\pi$ pro nějaké $k \in \mathbb{Z}$.
- Z toho plyne: $\varphi = 2k\pi/n$ (pro k = 0, ..., n-1 dostáváme různé n-té odmocniny).
- Obecné odmocňování: $\sqrt[n]{x} = |x|^{1/n} \cdot e^{i\varphi(x)/n} \cdot u$, kde $u = \sqrt[n]{1}$.
- Je-li x odmocninou z 1, pak $\overline{x} = x^{-1}$ je totiž $1 = |x \cdot \overline{x}| = x \cdot \overline{x}$.

Primitivní odmocniny

Definice: x je primitivní k-tá odmocnina z $1 \equiv x^k = 1 \land \forall j : 0 < j < k \Rightarrow x^j \neq 1$.

Tuto definici splňují například čísla $\omega=e^{2\pi\mathrm{i}/k}$ a $\overline{\omega}=e^{-2\pi\mathrm{i}/k}$. Platí totiž, že $\omega^j=e^{2\pi\mathrm{i}/k}$, což je rovno 1 právě tehdy, je-li j násobkem k (jednotlivé mocniny čísla ω postupně obíhají jednotkovou kružnici). Analogicky pro $\overline{\omega}$.

Ukažme si několik pozorování fungujících pro libovolné číslo ω , které je primitivní k-tou odmocninou z jedničky (někdy budeme potřebovat, aby navíc k bylo sudé):

- Pro $0 \le j < l < k$ je $\omega^j \ne \omega^l$, neboť $\omega^l/\omega^j = \omega^{l-j} \ne 1$, protože l-j < k a ω je primitivní.
- $\omega^{k/2}=-1$, protože $(\omega^{k/2})^2=1$, a tedy $\omega^{k/2}$ je druhá odmocnina z 1. Takové odmocniny jsou dvě: 1 a -1, ovšem 1 to být nemůže, protože ω je primitivní.
- $\omega^j=-\omega^{k/2+j}$ přímý důsledek předchozího bodu, pro nás ale velice zajímavý: $\omega^0,\omega^1,\ldots,\omega^{k-1}$ jsou po dvou spárované.
- ω^2 je k/2-tá primitivní odmocnina z 1 dosazením.

Konec intermezza

Vraťme se nyní k algoritmu. Z poslední části komplexního intermezza se zdá, že by nemusel být špatný nápad zkusit vyhodnocovat polynom v mocninách n-té primitivní odmocniny z jedné (tedy za $x_0, x_1, \ldots, x_{n-1}$ z původního algoritmu

zvolíme $\omega^0, \omega^1, \dots, \omega^{n-1}$). Aby nám vše vycházelo pěkně, zvolíme n jako mocninu dvojky.

Celý algoritmus bude vypadat takto:

 $FFT(P, \omega)$

Vstup: p_0, \ldots, p_{n-1} , koeficienty polynomu P stupně nejvýše n-1, a ω , n-tá primitivní odmocina z jedné.

Výstup: Hodnoty polynomu v bodech $1, \omega, \omega^2, \dots, \omega^{n-1}$, čili čísla $P(1), P(\omega), P(\omega^2), \dots, P(\omega^{n-1})$.

- 1. Pokud n=1, vrátíme p_0 a skončíme.
- 2. Jinak rozdělíme P na členy se sudými a lichými exponenty (jako v původní myšlence) a rekurzivně zavoláme FFT (P_s, ω^2) a FFT (P_l, ω^2) P_l i P_s jsou stupně max. n/2-1, ω^2 je n/2-tá primitivní odmocnina, a mocniny ω^2 jsou stále po dvou spárované (n je mocnina dvojky, a tedy i n/2 je sudé; popř. n=2 a je to zřejmé).
- 3. Pro $j = 0, \ldots, n/2 1$ spočítáme:
- 4. $P(\omega^j) = P_s(\omega^{2j}) + \omega^j \cdot P_l(\omega^{2j}).$
- 5. $P(\omega^{j+n/2}) = P_s(\omega^{2j}) \omega^j \cdot P_l(\omega^{2j}).$

Časová složitost: $T(n) = 2T(n/2) + \Theta(n) \Rightarrow \text{složitost } \Theta(n \log n)$, jako MergeSort.

Máme tedy algoritmus, který převede koeficienty polynomu na hodnoty tohoto polynomu v různých bodech. Potřebujeme ale také algoritmus, který dokáže reprezentaci polynomu pomocí hodnot převést zpět na koeficienty polynomu. K tomu nám pomůže podívat se na náš algoritmus trochu obecněji.

Definice: Diskrétní Fourierova transformace (DFT) je zobrazení $f: \mathbb{C}^n \to \mathbb{C}^n$, kde

$$y = f(x) \equiv \forall j \ y_j = \sum_{k=0}^{n-1} x_k \cdot \omega^{jk}$$

(DFT si lze mimo jiné představit jako funkci vyhodnocující polynom s koeficienty x_k v bodech ω^j). Takovéto zobrazení je lineární a tedy popsatelné maticí Ω s prvky $\Omega_{jk} = \omega^{jk}$. Chceme-li umět převádět z hodnot polynomu na koeficienty, zajímá nás inverze této matice.

Jak najít inverzní matici?

Značme $\overline{\Omega}$ matici, jejíž prvky jsou komplexně sdružené odpovídajícím prvkům $\Omega,$ a využijme následující lemma:

Lemma:

$$\Omega \cdot \overline{\Omega} = n \cdot E.$$

Důkaz:

$$(\Omega \cdot \overline{\Omega})_{jk} = \sum_{l=0}^{n-1} \omega^{jl} \cdot \overline{\omega^{lk}} = \sum_{l=0}^{n-1} \omega^{jl} \cdot \overline{\omega^{lk}} = \sum_{l=0}^{n-1} \omega^{jl} \cdot \overline{\omega^{lk}} = \sum_{l=0}^{n-1} \omega^{l(j-k)}.$$

2010-02-12

- Pokud j = k, pak $\sum_{l=0}^{n-1} (\omega^0)^l = n$.
- Pokud $j \neq k$, použijeme vzoreček pro součet geometrické řady s kvocientem $\omega^{(j-k)}$ a dostaneme $\frac{\omega^{(j-k)n}-1}{\omega^{(j-k)}-1}=\frac{1-1}{\neq 0}=0$ ($\omega^{j-k}-1$ je jistě $\neq 0$, neboť ω je n-tá primitivní odmoncina a j-k < n).

Našli jsme inverzi:
$$\Omega(\frac{1}{n}\overline{\Omega}) = \frac{1}{n}\Omega \cdot \overline{\Omega} = E$$
, $\Omega_{jk}^{-1} = \frac{1}{n}\overline{\omega^{jk}} = \frac{1}{n}\omega^{-jk} = \frac{1}{n}(\omega^{-1})^{jk}$, (připomínáme, ω^{-1} je $\overline{\omega}$).

Vyhodnocení polynomu lze provést vynásobením Ω , převod do původní reprezentace vynásobením Ω^{-1} . My jsme si ale všimli chytrého spárování, a vyhodnocujeme polynom rychleji než kvadraticky (proto FFT, jakože fast, ne jako fuj). Uvědomíme-li si, že $\overline{\omega} = \omega^{-1}$ je také n-tá primitivní odmocnina z 1 (má akorát úhel s opačným znaménkem), tak můžeme stejným trikem vyhodnotit i zpětný převod – nejprve vyhodnotíme A a B v ω^j , poté pronásobíme hodnoty a dostaneme tak hodnoty polynomu $C = A \cdot B$, a pustíme na ně stejný algoritmus s ω^{-1} (hodnoty C vlastně budou v algoritmu "koeficienty polynomu"). Nakonec jen získané hodnoty vydělíme n a máme chtěné koeficienty.

Výsledek: Pro $n=2^k$ lze DFT na \mathbb{C}^n spočítat v čase $\Theta(n\log n)$ a DFT $^{-1}$ taktéž.

Důsledek: Polynomy stupně n lze násobit v čase $\Theta(n \log n)$: $\Theta(n \log n)$ pro vyhodnocení, $\Theta(n)$ pro vynásobení a $\Theta(n \log n)$ pro převedení zpět.

Použití FFT:

- Zpracování signálu rozklad na siny a cosiny o různých frekvencích ⇒ spektrální rozklad.
- Komprese dat například formát JPEG.
- Násobení dlouhých čísel v čase $\Theta(n \log n)$.

Paralelní implementace FFT

Zkusme si průběh algoritmu FFT znázornit graficky (podobně, jako jsme kreslili hradlové sítě). Na levé straně obrázku se nachází vstupní vektor x_0,\ldots,x_{n-1} (v nějakém pořadí), na pravé straně pak výstupní vektor y_0,\ldots,y_{n-1} . Sledujme chod algoritmu pozpátku: Výstup spočítáme z výsledků "polovičních" transformací vektorů x_0,x_2,\ldots,x_{n-2} a x_1,x_3,\ldots,x_{n-1} . Černé kroužky přitom odpovídají výpočtu lineární kombinace $a+\omega^k b$, kde a,b jsou vstupy kroužku a k nějaké přirozené číslo závislé na poloze kroužku. Každá z polovičních transformací se počítá analogicky z výsledků transformace velikosti n/4 atd. Celkově výpočet probíhá v $\log_2 n$ vrstvách po $\Theta(n)$ operacích.

Jelikož operace na každé vrstvě probíhají na sobě nezávisle, můžeme je počítat paralelně. Náš diagram tedy popisuje hradlovou síť pro paralelní výpočet FFT v čase $\Theta(\log n \cdot T)$ a prostoru $\mathcal{O}(n \cdot S)$, kde T a S značí časovou a prostorovou složitost výpočtu lineární kombinace dvou komplexních čísel.

Cvičení: Dokažte, že permutace vektoru x_0, \ldots, x_{n-1} odpovídá bitovému zrcadlení,

5

2010-02-12

Příklad průběhu algoritmu na vstupu velikosti 8

tedy že na pozici b shora se vyskytuje prvek x_d , kde d je číslo b zapsané ve dvojkové soustavě pozpátku.

Nerekurzivní FFT

Obvod z předchozího obrázku také můžeme vyhodnocovat po hladinách zleva doprava, čímž získáme elegantní nerekurzivní algoritmus pro výpočet FFT v čase $\Theta(n \log n)$ a prostoru $\Theta(n)$:

- 1. Vstup: $x_0, ..., x_{n-1}$
- 2. Pro $j=0,\dots,n-1$ položíme $y_k \leftarrow x_{r(k)},$ kde r je funkce bitového zrcadlení.
- 3. Předpočítáme tabulku $\omega^0, \omega^1, \dots, \omega^{n-1}$.
- $4. b \leftarrow 1 \quad (\text{velikost bloku})$
- 5. Dokud b < n, opakujeme:
- 6. Pro $j=0,\dots,n-1$ s krokem 2b opakujeme: (začátek bloku)
- 7. Pro k = 0, ..., b-1 opakujeme: (pozice v bloku)
- 8. $\alpha \leftarrow \omega^{nk/2b}$
- 9. $(y_{j+k}, y_{j+k+b}) \leftarrow (y_{j+k} + \alpha \cdot y_{j+k+b}, y_{j+k} \alpha \cdot y_{j+k+b}).$
- 10. $b \leftarrow 2b$
- 11. $V \acute{y} stup: y_0, \ldots, y_{n-1}$

FFT v konečných tělesech

Nakonec dodejme, že Fourierovu transformaci lze zavést nejen nad tělesem komplexních čísel, ale i v některých konečných tělesech, pokud zaručíme existenci primitivní n-té odmocniny z jedničky. Například v tělese \mathbb{Z}_p pro prvočíslo $p=2^k+1$ platí $2^k=-1$, takže $2^{2k}=1$ a $2^0,2^1,\ldots,2^{2k-1}$ jsou navzájem různá, takže číslo 2 je primitivní 2k-tá odmocnina z jedné. To se nám ovšem nehodí pro algoritmus FFT, jelikož 2k bude málokdy mocnina dvojky.

Zachrání nás ovšem algebraická věta, která říká, že multiplikativní grupa $^{\langle 1 \rangle}$ libovolného konečného tělesa je cyklická, tedy že všechny nenulové prvky tělesa lze zapsat jako mocniny nějakého čísla g (generátoru). Například pro $p=2^{16}+1=65\,537$ je jedním takovým generátorem číslo 3. Jelikož mezi čísly g^1,g^2,\ldots,g^{p-1} se musí každý nenulový prvek tělesa vyskytnout právě jednou, je g primitivní 2^k tou odmocninou z jedničky, takže můžeme počítat FFT pro libovolný vektor, jehož velikost je mocnina dvojky menší nebo rovná 2^k .

 $^{^{\}langle 1 \rangle}$ To je množina všech nenulových prvků tělesa s operací násobení.

 $^{^{(2)}}$ Bližší průzkum našich úvah o FFT dokonce odhalí, že není ani potřeba těleso. Postačí libovolný komutativní okruh, ve kterém existuje příslušná primitivní odmocnina z jedničky, její multiplikativní inverze (ta ovšem existuje vždy, protože $\omega^{-1}=\omega^{n-1}$) a multiplikativní inverze čísla n. To nám poskytuje ještě daleko více volnosti než tělesa, ale není snadné takové okruhy hledat.