2 - COMO FUNCIONA A SIMULAÇÃO (1)

Referencia principal:

Freitas, P. J. <u>Introdução à Modelagem e Simulação de Sistemas</u>, 2ª Ed., Visual Books, 2008, Cap. 2.

Tópicos

- ◆ Introdução
- ◆ Terminologia Básica Utilizada em Modelagem e Simulação de Sistemas
- Um Exemplo Simples

Introdução

◆ A idéia central deste capítulo é fornecer aos usuários da simulação a compreensão e o conhecimento mínimo necessário ao bom emprego desta técnica.

◆ Os tópicos aqui abordados, envolvem alguns conceitos que facilitam a execução de uma das tarefas mais penosas atribuídas aos usuários de programas de simulação: educar e fazer compreender a outras pessoas a metodologia e os benefícios advindos do uso deste técnica (Gogg e Mott, 1996).

Introdução

- ◆ Um modelo computacional (programa de computador) para a simulação de um sistema executa, seqüencialmente e de maneira repetitiva, um conjunto de instruções.
- ◆ Na medida da execução das instruções, os valores que determinadas variáveis podem assumir são alterados, uma vez que se modificam as condições que influenciam o comportamento do modelo.
- ◆ As variáveis mudam na medida em que o tempo simulado progride. Além disso, como se tratam (na maioria das vezes) de sistemas estocásticos, tais variáveis não tem seus valores antecipadamente determinados.

Introdução

◆ Para que o modelo computacional evolua dinamicamente, uma das soluções encontradas pelos pesquisadores foi construir programas orientados a eventos.

◆ A medida da passagem do tempo, determinados acontecimentos (eventos) provocam alterações em alguns elementos do programa (Variáveis de estado), os quais são responsáveis por informar a ocorrência de mudanças nas condições que envolvem o modelo.

Terminologia Básica Utilizada em Modelagem e Simulação de Sistemas

- Variáveis de Estado
- Eventos
- Entidades e Atributos
- Recursos e Filas de Recursos
- Atividades e Períodos de Espera
- ◆ Tempo (Real) Simulado e Tempo de Simulação

Variáveis de Estado

- ◆ Determinam o estado de um sistema.
- ◆ Constituem as informações necessárias à compreensão do que está ocorrendo no sistema (ou no modelo) num determinado instante no tempo.

Exemplo:

- ✓ <u>Fábrica</u>: o número de peças esperando para serem processadas na máquina (fila da máquina) ou ainda o estado da máquina, isto é, ocupada ou livre;
- ✓ <u>Banco</u>: número de clientes esperando na fila do caixa;
- ✓ <u>Servidor Web</u>: número de requisições aguardando na fila da CPU, número de atendidas, etc.

Eventos

- ◆ São acontecimentos, ocorrências, (programados ou não). Sua ocorrência provoca mudança de estado em um sistema.
- ◆ Toda mudança de estado é provocada pela ocorrência de um evento (pelo menos uma variável de estado se altera).

Exemplos

- ✓ <u>Chegada</u>: de peças, de clientes ou de tarefas, respectivamente, em cada um dos sistemas do exemplo anterior (fábrica, banco, servidor)
- ✓ <u>Início de processamento</u>: pela máquina, pelo caixa ou pela CPU, respectivamente, em cada um dos sistemas;
- ✓ <u>Saída</u>: de peças, clientes ou tarefas, respectivamente, em cada um dos sistemas.

Entidades e Atributos

- ◆ *Entidades*: representam objetos do modelo.
 - ✓ Dinâmicas, movimentam-se através do sistema;
 - Exemplos: Peças (que se movem pela fábrica); Clientes chegando e saindo da fila do caixa de um supermercado ou os tarefas que chegam e saem da CPU depois de processados.
 - Estáticas, servem a outras entidades.
 - Exemplos: Máquinas, caixa ou CPU.
- ◆ <u>Atributos</u>: características próprias das entidades. Entidades semelhantes possuem os mesmos atributos. Os valores dos atributos é que as diferenciam entre si.
 - ✓ Exemplos: Nome ou tipo de peça, cliente ou tarefa.

Recursos e Filas de Recursos

- ◆ <u>Recursos</u> são (em geral) considerados entidades estáticas. Fornecem serviços às entidades dinâmicas.
 - ✓ Pode ter vários estados. Ocupado, livre, bloqueado, falhado, indisponível, etc.
 - ✓ Pode servir uma ou mais entidades dinâmicas ao mesmo tempo, operando como um servidor paralelo.
 - ✓ Uma entidade dinâmica pode operar com mais de uma unidade de recurso ao mesmo tempo, ou com diferentes recursos ao mesmo tempo.
- Se uma entidade dinâmica não puder se apoderar de um recurso solicitado, ela deverá aguardar pelo mesmo na <u>Fila do</u> <u>Recurso</u>.
 - ✓ Filas podem ser gerenciadas.
 - ✓ A política de gerenciamento de filas mais comum é a FIFO (First In, First Out). Outras se aplicam (LIFO, Priority, etc.)

Atividades e Períodos de Espera

- ◆ *Atividade* período de tempo predeterminado.
 - ✓ Uma vez iniciada, seu final pode ser programado.
 - ✓ Sua duração poderá ou não ser constante.
 - ✓ Poderá resultar de uma expressão matemática, de uma distribuição de probabilidades, ou até mesmo ser dependente do estado do sistema
- Espera é um período de tempo sobre o qual não há controle, se o modelo contiver variáveis aleatórias. Uma vez iniciada, não se pode programar seu fim.
 - ✓ Exemplo: a espera causada por eventos inesperados. (quebras, chegadas de entidades com maior prioridade, etc.
- ◆ Todo início e final de uma atividade ou período de espera é causado por um evento (mudança de estado).

Tempo (Real) Simulado e Tempo de Simulação

- ◆ Cuidado com a relação entre o tempo (do sistema real) simulado e o tempo de simulação (tempo necessário à execução de um experimento no computador).
- ◆ Para modelos de certos sistemas, o tempo de simulação pode ser muito maior que o tempo simulado.
 - ✓ Por exemplo na simulação de um modelo de uma rede de computadores.,
 - ✓ Unidades de tempo admitidas para os eventos: milisegundos. Milhares de entidades e de processos.
- ◆ Por outro lado, tome-se um modelo de um terminal portuário.
 - ✓ Os eventos podem ocorrer na ordem de dias, ou semanas (tempo entre a chegada de dois navios). Simula-se meses ou anos de suas operações em apenas alguns segundos ou minutos de processamento.

Classificação dos Sistemas para Modelagem e Simulação

Classificação dos Modelos de Simulação

- Quanto ao emprego (processo decisório)
 - ✓ Modelos Voltados à Previsão
 - ✓ Modelos Voltados à Investigação
 - ✓ Modelos Voltados à Comparação
- Quanto à abrangência
 - ✓ Modelos Específicos
 - ✓ Modelos Genéricos
- Quanto à mudança de estado (dinâmica)
 - ✓ Modelos Discretos
 - ✓ Modelos Contínuos

Tipos de Modelos e o Processo Decisório

♦ Modelos Voltados à Previsão:

- ✓ A simulação pode ser usada para prever o estado de um sistema em algum ponto no futuro, baseado nas suposições sobre seu comportamento atual e de como continuará se comportando ao longo do tempo.
- ✓ Modelos de previsão do clima e modelos de previsão de demanda são exemplos clássicos.

Tipos de Modelos e o Processo Decisório

♦ Modelos Voltados à Investigação:

- ✓ Busca de informações e desenvolvimento de hipóteses sobre o comportamento de sistemas.
- ✓ As variáveis de resposta servem para construir e organizar as informação sobre a natureza do fenômeno ou sistema sob estudo.
- ✓ Os experimentos recaem sobre as reações do sistema (modelo) a estímulos normais e anormais
- ✓ Exemplos deste tipo de aplicação encontram-se na indústria química (busca de novos compostos), na indústria farmacêutica (novos remédios), na indústria automobilística (novas estruturas visando segurança de veículos), administração de sistemas de saúde.

Tipos de Modelos e o Processo Decisório

◆ Modelos Voltados à Comparação:

- ✓ Avaliar os efeitos de mudanças sobre as variáveis de controle.
 - Na indústria em geral, é comum a busca por melhores soluções de *layout*, ou a determinação do melhor tamanho de lote de fabricação.
 - Em sistemas logísticos, considere, por exemplo, em um terminal portuário as opções de tamanho de tanques de armazenagem e frotas de caminhões transportadores, visando a minimização da espera dos navios para a atracação e descarregamento.

17

Tipos de Modelos: Abrangência

Modelos Específicos

✓ Utilizados em situações específicas e únicas, mesmo considerando um baixo volume de recursos financeiros envolvido no processo decisório.

Exemplo

✓ Sistemas de fabricação único, como um SFM.

Tipos de Modelos: Abrangência

Modelos Genéricos

Modelos que são usados periodicamente por longos períodos. Necessitam ser flexíveis e robustos.

Exemplo

✓ Modelos sobre aplicações orçamentarias, baseadas em desempenho e projeções simuladas do futuro;

Tipos de Modelos: dinâmica da mudança de estado

◆ Modelos Discretos e Modelos Contínuos

- ✓ Estes conceitos estão associados a idéia de sistemas que sofrem mudanças de forma discreta ou contínua ao longo do tempo.
- ✓ Os termos corretamente atribuídos são:
 - modelos de mudança discreta e
 - modelos de mudança contínua.
- ✓ A caracterização de um modelo é dada em função da maneira com que ocorrem as mudanças nas variáveis de estado do sistema.

Modelos de Mudança Discreta ou Discretos

◆ Nestes modelos, as variáveis de estado mantém-se inalteradas ao longo de intervalos de tempo e mudam seus valores somente em momentos bem definidos, também conhecidos como *tempo de ocorrência do evento*.

Exemplo Simulado

Modelos de Mudança Contínua ou Contínuos

- ◆ Nestes modelos, as variáveis de estado podem mudar continuamente ao longo do tempo.
 - ✓ Por exemplo, imaginemos um modelo que descreva um sistema composto de uma caixa d'água com seu conteúdo escoando por um furo na sua base.
 - ✓ Como variáveis de estado, poderíamos utilizar seu volume ou o seu nível de água.
- ◆ Intuitivamente, podemos imaginar que qualquer das duas variáveis de estado estará variando continuamente ao longo do tempo simulado.

Modelos de Mudança Contínua ou Contínuos

Exemplo Simulado

Processo Experimental com Modelos de Simulação

Representação esquemática de um modelo de sistema

Um Exemplo Simples para Começar

- ♦ Sistemas de Fila Simples
 - ✓ Posto de lavação de automóveis.

Informações:

- ✓ Dependendo do dia da semana e da hora escolhida, é possível que, ao chegar ao posto, um cliente encontre o mesmo ocupado.
- ✓ Prevendo tal situação, o proprietário criou um área de espera na qual os clientes podem aguardar (por ordem de chegada) pelo momento de serem atendidos.

- Algumas das dúvidas do proprietário:
 - ✓ Será que a área de espera disponível (para no máximo quatro automóveis) é suficiente?
 - ✓ Será que o tempo de serviço é aceitável?
 - ✓ Será que a produtividade do operador é adequada?

- ◆ Sistema de fila simples: alternativas de tratamento:
 - ✓ Achometria;
 - ✓ Modelagem analítica (teoria das filas);
 - ✓ Modelagem e simulação.

- ◆ Informações básicas necessárias:
 - ✓ Com que freqüência ocorrem chegadas de carros para serem servidos?
 - ✓ Qual o tempo necessário para completar o serviço?

- ◆ Informações do proprietário sobre as manhãs de sábado:
 - ✓ Primeira situação:
 - "carros chegam mais ou menos a cada 10 min."
 - "tempo de lavação é de "aproximadamente 15 min.".
 - ✓ Se verdade → congestionamento
 - ✓ Segunda situação:
 - "as vezes é ao contrário
 - o operador leva cerca de 10 min. para lavar
 - e os carros demoram um pouco mais de 10 min. para chegar".
 - ✓ Se verdade → equilíbrio, sistema balanceado.

Achometria

- ♦ Bom senso + imaginação para "adivinhar" o futuro.
- ◆ Embora *desaconselhável*, esta é uma das técnicas de apoio a decisão mais utilizadas (*a mais econômica?*).
- Dados (fonte: proprietário).
 - Frequência com que os automóveis chegam ao posto (TEC);
 - ✓ Tempo necessário para efetuar os serviços (TS).

Situação	TEC - Tempo entre Chegadas	TS - Tempo de Serviço
A	± 10 min	≅ 15 min
В	≥ 10 min	± 10 min

Tempos adaptados das afirmações do proprietário

Achometria

◆ Na situação A:

- ✓ os automóveis chegam mais rápidos do que podem ser servidos;
- ✓ alta a possibilidade de ocorrerem congestionamentos.
- Considerando este possível cenário, as decisões poderiam ser, por exemplo:
 - aumentar a área de espera (alugando um terreno vizinho, por exemplo);
 - contratar mais um empregado e comprar mais um elevador hidráulico;
 - ambas as medidas acima.

Achometria

◆ Situação B:

- ✓ O sistema apresenta uma certa folga (tempo de atendimento é menor do que os tempos decorridos entre as chegadas;
- ✓ Raramente ocorrerão filas de espera.
- ✓ Neste caso, a decisão do proprietário seria não tomar nenhuma medida.

Achometria (problemas)

- ◆ *A verdade* (não captada pelo método) sobre o comportamento do sistema deve, provavelmente, se encontrar entre os dois extremos.
- Poucas informações adicionais podem ser obtidas.
- ◆ Falta de elementos para o exercício da previsão e da avaliação.

Emprego de Modelagem Analítica

(Teoria das Filas)

- Conjunto de fórmulas matemáticas, as quais permitem calcular a maioria das respostas desejadas pelo proprietário, tais como:
 - ✓ tempo médio dos serviços,
 - ✓ tamanho médio da fila na área de espera,
 - ✓ tempo médio de espera,
 - ✓ proporção de ocupação do operador, etc..

Emprego da Teoria das Filas

- → Mesmas informações são necessárias (TEC e TS).
 Fonte:
 - ✓ das estimativas do proprietário;
 - ✓ amostragem realizada no sistema.

Emprego da Teoria das Filas

- ◆ Tipo de sistema → Modelo e fórmulas
- ◆ No caso do nosso exemplo, podemos considerar o sistema como sendo do tipo M/M/1.
 - ✓ M: Processo Marcoviano (Poisson) nas chegadas e serviços
 - ✓ 1: N° de servidores

As fórmulas que serão aqui adotadas são as seguintes:

Número Médio de Carros no Sistema

$$L = \frac{\lambda}{\mu - \lambda}$$

Tempo Médio Despendido no Sistema $W = \frac{1}{\mu - \lambda}$

$$W = \frac{1}{\mu - \lambda}$$

Taxa Média de Ocupação do Servidor $\rho = \frac{\lambda}{u}$

$$\rho = \frac{\lambda}{\mu}$$

- ♦ λ é a taxa de chegadas (carros/ unidade de tempo). Processo de Poisson. Por exemplo: 5 carros/hora.
- μ é a taxa de serviço. (carros servidos/unidade de tempo). Por exemplo: 6 carros/hora.
- Fórmulas são válidas apenas para situações em que: $\lambda < \mu$

◆ Situação A da tabela não pode ser tratada

Situação	TEC - Tempo entre Chegadas	TS - Tempo de Serviço
\mathbf{A}	$\pm10~\mathrm{min}$	$\cong 15 \text{min}$
В	≥ 10 min	$\pm~10~\mathrm{min}$

- ✓ Os dados informam que em média chegam ao sistema 6 carros a cada hora, isto é, $\lambda = 6$.
- ✓ Quanto a taxa µ de atendimento, o valor adotado é de 4 a cada hora.
- ✓ Logo, $\lambda > \mu$.

◆ Situação B da tabela

- ✓ Considerando $\lambda \leq \mu$.
 - λ assume os valores 6 (60 mim/10 min), 5 e 4 carros por hora, respectivamente;
 - $\mu = 6$ carros por hora, teremos as seguintes respostas:

Resultados do emprego da Teoria das Filas

$\lambda \rightarrow$	U	J	4
L	-	5	2
W	-	1	0,5
ρ	1	0,833	0,5 0,666

Respostas do Modelo de Filas

Número Médio de Carros no Sistema \rightarrow $L = \frac{\lambda}{\mu - \lambda}$

$$L = \frac{\lambda}{\mu - \lambda}$$

Tempo Médio Despendido no Sistema →

$$W = \frac{1}{\mu - \lambda}$$

Taxa Média de Ocupação do Servidor $\rightarrow \rho = \frac{\lambda}{\mu}$

$$\rho = \frac{\lambda}{\mu}$$

Teoria das Filas - Exercício

 Considere o período de 1 hora, os dados da tabela abaixo e calcule os valores solicitados:

_		Cenario		<u> </u>
	Α	В	С	
Chegadas	4,00	3,33	6,00	(min/carro)
Serviço	3,00	3,00	3,00	_ (min/carro)

A taxa média de utilização (
$$\rho$$
); $\rho = \frac{1}{2}$

$$L = \frac{\lambda}{\mu - \lambda}$$

2. O número médio de clientes no sistema (L);

$$W = \frac{1}{\mu - \lambda}$$

- 3. O tempo médio para um cliente atendido deixar o sistema (W).
- 4. Considerando $P_n = (1 (\lambda/\mu)) \cdot (\lambda/\mu)^n$ a probabilidade de se encontrar n clientes no posto, calcule a probabilidade de termos zero, um, dois, três e quatro ou mais clientes num dado momento

Teoria das Filas – Solução do Exercício

Estatísticas de Desempenho

		Cenário		
	Α	В	С	
Chegadas	4,00	3,33	6,00	(min/carro)
Serviço	3,00	3,00	3,00	_ (min/carro)

			Cenário		
		Α	В	С	
λ	Chegadas:	15	18	10	Carros/hora
μ	Serviço	20	20	20	Carros/hora
	L	3,00	9,00	1,00	
	W	0,20	0,50	0,10	
	ρ	0,75	0,90	0,50	

Teoria das Filas – Solução do Exercício

Probabilidade do estado do sistema

	Cenário		<u>_</u>
Α	В	С	_
4,00	3,33	6,00	(min/carro)
3,00	3,00	3,00	_ (min/carro)
	•	A B 4,00 3,33	A B C 4,00 3,33 6,00

			Cenário		
		Α	В	С	
λ	Chegadas:	15	18	10	Carros/hora
μ	Serviço	20	20	20	Carros/hora

			Cenário	
X	P(x)	Α	В	С
0	P(0)	0,25	0,10	0,50
1	P(1)	0,19	0,09	0,25
2	P(2)	0,14	0,08	0,13
3	P(3)	0,11	0,07	0,06
> 4	P(x>=4)	0,32	0,66	0,06

43

- Observar diferenças mais "grosseiras" entre sistemas.
- Alguns problemas:
 - ✓ O emprego de valores médios (estimativas) podem levar a conclusões imprecisas, devido aos erros associados na obtenção das estimativas;
 - ✓ Uso do processo de *Poison* nas chegadas (o que é razoável) e no processo de atendimento ou serviços (o que pode ser totalmente inadequado).
 - ✓ As fórmulas são apropriadas quando se considera o resultado equivalente a um grande período de observações.
 - ✓ Torna-se extremamente complexa a possibilidade de analisar o comportamento dinâmico do sistema.

Emprego de Modelagem e Simulação

- ◆ Deve transmitir ao usuário a *sensação* de que o modelo sendo executado possui um comportamento semelhante ao do sistema real.
- ◆ O controle da execução deste modelo, permite ao analista a realização de experimentos.
- ◆ Experimentos possibilitam estimar e concluir a respeito do comportamento do modelo e, por inferência, sobre a conduta e desempenho do sistema sob estudo.

Simulação sem o uso de Computadores

- ◆ Simulações manuais → tabelas de simulação.
- ◆ Estrutura e conteúdo → tipo de modelo e resposta que se está buscando.
- ◆ Registro do comportamento dinâmico do sistema ao longo do tempo.

Tabelas de Simulação do Exemplo

◆ Na construção da tabela de simulação emprega-se valores semelhantes aos utilizados no modelo de Teoria das Filas para a situação B.

As principais diferenças entre as duas abordagens, ficam por conta do uso valores não determinísticos, para TEC e (TS).

Possíveis Valores de TEC e TS

- ◆ TEC = 10, 12 ou 15 min. (aleatório).
- ◆ TS = 9, 10 ou 11 min.. Também com probabilidade de 1/3 para cada um deles.

TEC					TS	
Tempos (min.)	10	12	15	9	10	11
Probabilidades	1/3	1/3	1/3	1/3	1/3	1/3

Sorteios de TEC e TS

- ◆ Urnas contendo papéis ou bolas com os possíveis valores.
- Sorteios com reposição.

Respostas Necessárias

- ◆ Ao final da simulação manual deve ser possível responder as questões básicas formuladas pelo proprietário do posto:
 - ✓ Tamanho da área de espera disponível é suficiente?
 - Estatística: número máximo de carros esperando na fila;
 - ✓ Como são os tempos de realização dos serviços?
 - Estatística: tempo despendido pelos clientes no sistema
 - ✓ Há necessidade de contratar um operador auxiliar?
 - Estatística: taxa de ocupação do operador.

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)

1 15

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15						

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11					

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15				

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0			

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26		

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12							

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27						

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10					

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10	27				

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10	27	0			

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10	27	0	37		

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10	27	0	37	10	

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10	27	0	37	10	1

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10	27	0	37	10	1
3	10	37	9	37	0	46	9	0

				_				
	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10	27	0	37	10	1
3	10	37	9	37	0	46	9	0
4	10	47	10	47	0	57	10	1
5	12	59	9	59	0	68	9	2
6	15	74	10	74	0	84	10	6
7	10	84	11	84	0	95	11	0
8	12	96	9	96	0	105	9	1
9	10	106	11	106	0	117	11	1
10	10	116	10	117	1	127	11	0
11	10	126	11	127	1	138	12	0
12	12	138	9	138	0	147	9	0
13	15	153	10	153	0	163	10	6
14	12	165	9	165	0	174	9	2
15	12	177	11	177	0	188	11	3
			150		2		152	38

Tabela 2.5: Simulação manual dos primeiros 15 clientes

Resultados

Tempo médio de espera na fila =
$$\frac{\sum \text{tempos de espera na fila}}{\text{Número total de clientes}} = \frac{2}{15} = 0,13 \, \text{min.}$$

Probabilidade de um cliente esperar na fila =
$$\frac{\text{Numero de clientes que esperaram}}{\text{Numero total de clientes}} = \frac{2}{15} = 0,13$$

Probabilidade do operador livre =
$$\frac{\sum \text{tempo livre do operadordo r}}{\text{Tempo total de simulação}} = \frac{38}{188} = 0,202$$

Mais Resultados

Tempo médio de servico =
$$\frac{\sum Tempo de servico}{Numero total de clientres} = \frac{150}{15} = 10,0 min$$

Tempo médio despendido no sistema =
$$\frac{\sum \text{tempos no sistema}}{\text{Número de clientes}} = \frac{152}{15} = 10,13 \text{ min.}$$

Respostas ao Proprietário

- ◆ Em média um cliente permanece em torno de 10 min. no posto;
- ◆ Em média, o operador estará ocupado cerca de 80% de seu tempo;
- ◆ O tempo médio na fila, 0,13 min. e o tempo médio de serviço, 10,00 min..
- → + importante → observar a dinâmica do sistema ao longo da simulação.

Tabela de Simulação - Exercício

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								

TEC					TS			
Tempos (min.)	10	11	12	9	10	11		
Probabilidades	1/3	1/3	1/3	1/3	1/3	1/3		

- ◆ Preencha a tabela acima (ver arq. "Tab. Exerc. Sim Manual.xls") a partir de sorteios para os valores de TEC e TS.
- Determine as mesmas estatísticas calculadas anteriormente