Solid Mechanics - Zak Olech - 9/24/2019

Variables (Alphbetical By Variable)

a	Constant; distance
A, B, C,	Forces; reactions
A, B, C, \ldots	Points
A , α	Area
b	Distance; width
c	Constant; distance; radius
C	Centroid
C_1 , C_2 ,	Constants of integration
C_P	Column stability factor
d	Distance; diameter; depth
D	Diameter
e	Distance; eccentricity; dilatation
E	Modulus of elasticity
f	Frequency; function
F	Force
F.S.	
G	Modulus of rigidity; shear modulus
h	Distance; height
Н	Force
H, J , K	Points
, ,,,,,,,	Moment of inertia
I_{xy} ,	Product of inertia

7	Polar moment of inertia	
J	Polar moment of mertia	
k	Spring constant; shape factor; bulk	
	modulus; constant	
K	Stress concentration factor; torsional	
	spring constant	
l	Length; span	
L	Length; span	
L_e	Effective length	
m	Mass	
M	Couple	
M, M_x, \ldots	Bending moment	
M_D	Bending moment, dead load (LRFD)	
M_L	Bending moment, live load (LRFD)	
M_U	Bending moment, ultimate load (LRFD)	
n	Number; ratio of moduli of elasticity;	
	normal direction	

Force; concentrated load

Dead load (LRFD)

Live load (LRFD)

Pressure

P

P_U	Ultimate load (LRFD)
q	Shearing force per unit length; shear
	flow
Q	Force
Q	First moment of area
r	Radius; radius of gyration
\mathbf{R}	Force; reaction
R	Radius; modulus of rupture
S	Length
S	Elastic section modulus
t	Thickness; distance; tangential
	deviation
\mathbf{T}	Torque
T	Temperature
u, v	Rectangular coordinates
u	Strain-energy density
U	Strain energy; work
\mathbf{v}	Velocity
\mathbf{V}	Shearing force
V	Volume; shear
w	Width; distance; load per unit length
W , W	Weight, load

${f V}$	Shearing force
V	Volume; shear
w	Width; distance; load per unit length
\mathbf{W} , W	Weight, load
x, y, z	Rectangular coordinates; distance;
, 5,	displacements; deflections
\overline{x} , \overline{y} , \overline{z}	Coordinates of centroid
Z	Plastic section modulus
α , β , γ	Angles
α	Coefficient of thermal expansion;
	influence coefficient
γ	Shearing strain; specific weight
γ_D	Load factor, dead load (LRFD)
γ_L	Load factor, live load (LRFD)
δ	Deformation; displacement
ϵ	Normal strain
heta	Angle; slope
λ	Direction cosine
ν	Poisson's ratio
ho	Radius of curvature; distance; density
σ	Normal stress
au	Shearing stress
ϕ	Angle; angle of twist; resistance factor
ω	Angular velocity

Conversion Factors

$$1hp = 550ft*lb/s = 6600 in*lb/s$$

(1)

General

SI Prefixes

Multiplication Factor	Prefix [†]	Symbol
$1\ 000\ 000\ 000\ 000 = 10^{12}$	tera	Т
$1\ 000\ 000\ 000 = 10^9$	giga	G
$1\ 000\ 000 = 10^6$	mega	M
$1\ 000 = 10^3$	kilo	k
$100 = 10^2$	hecto‡	h
$10 = 10^{1}$	deka‡	da
$0.1 = 10^{-1}$	deci‡	d
$0.01 = 10^{-2}$	centi‡	c
$0.001 = 10^{-3}$	milli	m
$0.000\ 001 = 10^{-6}$	micro	μ
$0.000\ 000\ 001 = 10^{-9}$	nano	n
$0.000\ 000\ 000\ 001 = 10^{-12}$	pico	р
$0.000\ 000\ 000\ 000\ 001 = 10^{-15}$	femto	p f
$0.000\ 000\ 000\ 000\ 000\ 001 = 10^{-18}$	atto	a

Moments

Moment of Inertia

Area Moment of Inertia for Rectangular Section

$$I_x = bh^3/12 (2)$$

Chapter 1 - Concept of stress

Axial Loading: Normal Stress

$$\sigma = \frac{P}{A} \tag{3}$$

Transverse Forces and Shearing Stress

$$\tau_{\text{ave}} = \frac{P}{A} \tag{4}$$

Single and Double Shear

Single Shear

$$\tau_{\text{avg}} = \frac{P}{A} = \frac{F}{A} \tag{5}$$

Double Shear

$$\tau_{\text{avg}} = \frac{P}{A} = \frac{F/2}{A} = \frac{F}{2A} \tag{6}$$

Bearing Stress

$$\sigma_b = \frac{P}{A} = \frac{P}{td} \tag{7}$$

Method of Solution

- 1. Clear and precise statement of problem
- 2. Draw one or several free-body diagrams; used to write equilibrium equations
- 3. Think SMART, Strategy, Modeling, Analysis, and Reflect

Stresses on an Oblique Section

$$\sigma = \frac{P}{A_0} \cos^2 \theta \tag{8}$$

$$\tau = \frac{P}{A_0} \sin\theta \cos\theta \tag{9}$$

Stress Under General Loading

Factor of Safety

Factor of safety = F.S. =
$$\frac{\text{ultimate load}}{\text{allowable load}}$$
 (10)

Chapter 2 - Stress and Strain -Axial Loading

Normal Strain

$$\epsilon = \frac{\delta}{L} \tag{11}$$

Hooke's Law and Modulus of Elasticity

$$\sigma = E\epsilon \tag{12}$$

Elastic Deformation Under Axial Loading

$$\delta = \frac{PL}{AE} \tag{13}$$

$$\delta = \Sigma = \frac{P_i L_i}{A_i E_i} \tag{14}$$

Problems with Temperature Change

$$\delta_T = \alpha(\Delta T)L \tag{15}$$

$$\epsilon_T = \alpha \Delta T \tag{16}$$

Lateral Strain and Poisson's Ratio

$$v = -\frac{\text{lateral strain}}{\text{axial strain}} \tag{17}$$

Multiaxial Loading

$$\bar{\epsilon}_x = \frac{\sigma_x}{F} \tag{18}$$

$$\sigma_y = \sigma_x = -\frac{v\sigma_x}{F} \tag{19}$$

Generalized Hooke's law for multiaxial loading

$$\sigma_x = +\frac{\sigma_x}{E} - \frac{v\sigma_y}{E} - \frac{v\sigma_z}{E}$$

$$\sigma_y = -\frac{\sigma_x}{E} - \frac{v\sigma_y}{E} - \frac{v\sigma_z}{E}$$
(20)

$$\sigma_y = -\frac{\sigma_x}{E} - \frac{v\sigma_y}{E} - \frac{v\sigma_z}{E} \tag{21}$$

$$\sigma_z = -\frac{\sigma_x}{E} - \frac{v\sigma_y}{E} + \frac{v\sigma_z}{E} \tag{22}$$

Dilation

$$e = \frac{1 - 2v}{E}(\sigma_x + \sigma_y + \sigma_z) \tag{23}$$

Bulk Modulus

p: Hydrostatic Pressure

$$e = -\frac{p}{h} \tag{24}$$

k: bulk modulus of the material

$$k = \frac{E}{3(1 - 2v)} \tag{25}$$

Shearing Strain: Modulus of Rigidity

$$\tau_{xy} = G\gamma_{xy} \tag{26}$$

$$\tau_{yz} = G\gamma yz \tag{27}$$

$$\tau_{zx} = G\gamma_{zx} \tag{28}$$

$$\frac{E}{2G} = 1 + v \tag{29}$$

Stress Concentrations

$$K = \frac{\sigma_{\text{max}}}{\sigma_{\text{avg}}} \tag{30}$$

Chapter 3 - Torsion

General

Deformation in Circular Shafts

$$\gamma = \frac{\rho\phi}{L} \tag{31}$$

$$\gamma_{max} = \frac{c\phi}{L} \tag{32}$$

$$\gamma = \frac{\rho}{c} * \gamma_{max} \tag{33}$$

Shearing Stresses in Elastic Range

$$\tau = -\frac{\rho}{c}\tau_{max} \tag{34}$$

$$\tau_{max} = \frac{Tc}{J} \tag{35}$$

(36)

Polar Moment of Inertia Solid Shaft

$$J = \frac{1}{2}\pi c^4 \tag{37}$$

c = radius

Polar Moment of Inertia of a Hollow Shaft inner radius c1, outer radius c2

$$J = \frac{1}{2}\pi(c_2^4 - c_2^4) \tag{38}$$

Angle of Twist

$$\phi = \frac{TL}{JG} \tag{39}$$

$$\phi = \Sigma \frac{TL}{JG} \tag{40}$$

Statically Indeterminante Shafts

Transmission Shafts

Power P is transmitted as:

$$P = 2\pi f T \tag{41}$$

T is the torque exerted at each end of the shaft f the frequency (hz or s^{-1})

Stress Concentrations

$$\tau_{\text{max}} = K \frac{Tc}{I} \tag{42}$$

K = Stress concentration factorstress $\frac{T_c}{I}$ is computed for the smaller-diameter shaft

Fig. 3.28 Plot of stress concentration factors for fillets in circular shafts. (Source: W. D. Pilkev and D. F. Pilkey, Peterson's Stress Concentration Factors, 3rd ed., John Wiley & Sons, New York, 2008.)

Plastic Deformations

$$T = \int_0^c \rho \tau(2\pi d\rho) = 2\pi \int_0^c \rho^2 \tau d\rho \tag{43}$$

Modulus of Rupture

This is a ficticious value.

$$R_t = \frac{T_u c}{j} \tag{44}$$

Solid Shaft of Elastoplastic Material

Maximum Elastic Torque; Solid Circular Shaft, Radius c

$$\tau_y = \frac{1}{2}\pi c^3 \tau Y \tag{45}$$

Torque Related to ρ_y

$$T = \frac{4}{3}T_y(1 - \frac{1}{4}\rho\rho^3 yc^3) \tag{46}$$

Plastic Torque

$$T_p = \frac{4}{3}T_y \tag{47}$$

Plastic Torque Vs. Angle of Twist

$$T = \frac{4}{3}T_y(1 - \frac{1}{4}\frac{\phi^3 y}{\phi^3}) \tag{48}$$

Torsional Loading or Shaft Cross-Section Changes Along Length

$$\phi = \Sigma_i \frac{T_i L_i}{J_i G_i} \tag{49}$$

Thin-Walled Hollow Shafts Shear Flow

$$q = \tau t \tag{50}$$

Average Shearing Stress τ at any given point in cross section

$$\tau = \frac{T}{2tA} \tag{51}$$

Chapter 4 - Pure Bending

1 - Symmetric Members in Pure Bending

$$\epsilon_x = -\frac{y}{\rho} \tag{52}$$

 ρ - Radius of curvature of the neutral surface

 \dot{y} - Distance from neutral surface

2 - Stresses and Deformatoins in the Elastic Range

$$\sigma_x = -\frac{y}{2}\sigma_m \tag{53}$$

c - largest distance from the neutral axis to a point in the section

Elastic Flexture formula

$$\sigma_m = \frac{Mc}{I} \tag{54}$$

$$\sigma_x = -\frac{My}{I} \tag{55}$$

Eleastic Section Modulus

$$S = \frac{I}{c} \tag{56}$$

$$r_m = \frac{M}{S} \tag{57}$$

Curvature of Member

$$\frac{1}{\rho} = \frac{M}{EI} \tag{58}$$

Eccentric Axial Loading

$$\sigma_x = \frac{P}{A} - \frac{M_y}{I} \tag{59}$$

Unsymmetric Bending

$$\sigma_x = -\frac{M_z y}{I_z} + \frac{M_y z}{I_y} \tag{60}$$

General Eccentric Axial Loading

$$\sigma_x = \frac{P}{A} - \frac{M_z y}{I_z} + \frac{M_y Z}{I_y} \tag{61}$$

Curved Members

$$R = \frac{A}{\int \frac{dA}{r}} \tag{62}$$

$$\sigma_x = -\frac{My}{Ae(R-y)} \tag{63}$$

Additional Notes

Area, width, and moment of inertia for W shapes should be given on a test or found in appendix c of textbook.

c in this section is the largest distance from the neutral axis to a point in the section.