PRÁCTICA 3: DISEÑO Y SIMULACIÓN DE UN ROBOT PLANAR CON AUTODESK INVENTOR

Miguel Ferrer Castellá Mayo 2024

Índice

L.	Introducción	3
2.	Diseño	3
3.	Simulación	4
1.	Elección del Motor-Reductor	6
5.	Simulación de travectorias	8

1. Introducción

Se ha utilizado el software Autodesk Inventor durante esta práctica para diseñar y simular un robot planar. En la primera sesión, se construyeron y ensamblaron las piezas siguiendo las pautas proporcionadas. En la segunda sesión, se realizó una simulación de una trayectoria dinámica basada en curvas de velocidad predeterminadas, y se realizó una investigación de mercado para determinar los motores y reductores apropiados para cada articulación.

2. Diseño

Se han producido cinco componentes distintos en total: base, tres eslabones y una herramienta. Estos componentes se han creado siguiendo las instrucciones de la práctica, y cada uno de ellos se ha creado como un archivo único en formato.ipt utilizando el programa Autodesk Inventor.

Figura 1: Base.

Figura 2: Herramienta.

Figura 3: Eslabones

Figura 4: Ensamblaje de piezas que forman el robot planar.

3. Simulación

Después de haber realizado el ensamble de todas las piezas, se comenzará con la simulación dinámica. Primeramente, se establecerá la posición inicial del robot como la siguiente:

Figura 5: Posición inicial del robot planar.

Ahora se establecerá gravedad en la simulación en el eje que corresponde y después se establecerán las curvas de velocidad siguientes para cada articulación:

Figura 6: Representación de la gravedad en el robot.

Figura 7: Curvas de velocidad de las articulaciones 1,2 y 3 correspondientemente.

Una vez establecidas todas las curvas de velocidad se realizará la simulación con el resultado siguiente:

Figura 8: Trayectoria

Figura 9: Posición, velocidad y momento en Z de las articulaciones 1,2 y 3 correspondientemente.

4. Elección del Motor-Reductor

En esta sección, debe elegir el motor de corriente directa y un reductor planetario compatible basándose en los valores de par final, que se pueden obtener multiplicando los valores de par del eje Z de la simulación de Inventor por el factor de seguridad. Además, se considerará la velocidad máxima que deben tener las articulaciones y que los diámetros deben ser idénticos para que el motor y el reductor funcionen de manera óptima.

DATOS DE PARTIDA						
Articulación	Par nominal requerido (mNm)	Factor de seguridad	Par final (mNm)	Veloc. final (rpm)		
1	124,35	3	373,05	30 rpm		
2	38,74	3	116,22	40 rpm		
3	7,76	3	23,28	50 rpm		

Figura 10: Datos de partida obtenidos de la simulación de Inventor

Después de conseguir el par final, elegiremos el reductor. Dividiremos el par final obtenido entre el producto de la reducción y la eficiencia del reductor planetario para determinar el par motor mínimo necesario. Ahora debemos elegir un motor cuyo par sea similar (igual o superior) al del apartado anterior y cuya velocidad nos permita obtener una velocidad final igual o algo superior a la de la Figura 10. La siguiente ecuación se utiliza para determinar la velocidad final proporcionada por el conjunto motor-reductor:

$$V_{\text{final}} = \frac{V_{\text{motor}}}{\text{reducción}} \tag{1}$$

Para calcular el par final del conjunto se empleará la ecuación siguiente:

$$\tau_{\rm final} = \tau_{
m motor} \cdot {
m reducci\'on} \cdot {
m eficiencia}$$

(2)

MOTOR				
Motor	Par motor	Veloc. motor		
A-max 26 Ø26 mm 4,5W	4,53	3880		
A-max 19 Ø19 mm 1,5W	1,33	6370		
RE 13 Ø13 mm 0,75W	0,511	6900		

Figura 11: Datos de los motores.

REDUCTOR				
Reductor	Reducción	Efic. reductor		
GPX 26 Ø26 mm, 3 etapas	111	0,75		
GPX 19 HP Ø19 mm, 3 etapas	138	0,65		
GP 13A Ø13 mm	131	0,75		

Figura 12: Datos de los reductores.

	SELECCIÓN FINAL						
Selección Motor		Reductor	Par final (mNm)	Veloc. Final (rpm)			
Articulación 1	A-max 26 Ø 26 mm 4,5W	GPX 26 Ø26 mm, 3 etapas	377,12	34,95			
Articulación 2	A-max 19 Ø19 mm 1,5W	GPX 19 HP Ø19 mm, 3 etapas	119,30	46,16			
Articulación 3	RE 13 Ø13 mm 0,75W	GP 13A Ø13 mm	50,21	52,67			

Figura 13: Tabla de elección de los motores y reductores donde se indican los pares y velocidades finales del conjunto.

Figura 14: Selección de motor DC y reductor planetario del catálogo de Maxon Motor para la articulación 1.

Figura 15: Selección de motor DC y reductor planetario del catálogo de Maxon Motor para la articulación 2.

Figura 16: Selección de motor DC y reductor planetario del catálogo de Maxon Motor para la articulación 3.

5. Simulación de trayectorias

Se ha diseñado una trayectoria adicional partiendo de la posición inicial previamente establecida. A continuación, se mostrarán imágenes de las curvas de velocidad actualizadas de cada articulación, los valores de posición, velocidad y par actualizados, así como la posición en la que queda el robot después de completar la trayectoria.

Figura 17: Trayectoria 1.

Figura 18: Curvas de velocidad de las articulaciones 1,2 y 3 correspondientemente.

Figura 19: Posición, velocidad y momento en Z de las articulaciones 1,2 y 3 correspondientemente.