Western New England University College of Engineering ECE Department Microwave Engineering EE 414 Spring 2024 Design Project #6 Due: May 09, 2024

maine. <u>miu</u>	taia Satya Surya Laksiiiii vasuki Siva Sriiivas					
#Id - 620094,						
	Email – sn620094@wne.edu					
- 2						
References:						
-						
-						

Design Project #6

Task	Score	Max
1		100
2		200
3		100
4		100
5		100
6		100
7		100
8		200
9		200
Total		1200

Design a transition between a 50 Ω microstrip transmission line and a 50 Ω coaxial transmission line (SMA connector). The transition should be well matched at 5 GHz ($|S_{11}| \le -25$ dB). Assume that the microstrip transmission lines are to be realized using a 1.27 mm thick Duroid 6010 substrate ($\varepsilon_r = 10.7$, $\tan \delta = 0.0023$, $\sigma_c = 5.8 \times 10^{+7}$ S/m , and t = 18 μ m). In addition, assume that the coaxial transmission line is an SMA connector. An SMA connector employs Teflon ($\varepsilon_r = 2.1$) as the dielectric, an inner radius of 0.635 mm ($r_i = 0.635$ mm), and an outer radius of 2.032 mm ($r_o = 2.032$ mm).

- 1. Employing HFSS, simulate the junction formed by connecting a 50 Ω microstrip transmission line and a 50 Ω coaxial transmission line (SMA connector). Employ a frequency range of 3 GHz to 7 GHz (25 MHz step size). In addition, assume that the maximum number of passes is 35 and the maximum delta S is 0.001
 - Determine a value for S_{11} and S_{21} at a frequency of 5 GHz.
 - Plot S_{11} on a Smith Chart.
 - Plot $|S_{11}|$, in dB, over the range of -40 dB to 0 dB.
 - Plot $|S_{21}|$, in dB, over the range of -2 dB to 0 dB.
- 2. Using the results from Task (1), design an impedance matching network employing a shunt stub to match a 50 Ω microstrip transmission line to the 50 Ω coaxial transmission line.
- 3. Convert the matching network employing ideal transmission lines to microstrip transmission lines. In addition, employ a transmission line at each port with an electrical length of 45°. Determine a value for the width, spacing (if appropriate), and length of each transmission line. Add the MTEE_ADS Element (Libra Microstrip T-Junction) element and the MLEF Element (Microstrip Line Open-End Effect). This version will be called MStrip V1.
- 4. Using ADS, simulate MStrip V1. Employ a frequency range of 3 GHz to 7 GHz (25 MHz step size).
 - Determine a value for S_{11} and S_{21} at a frequency of 5 GHz.
 - Plot S_{11} on a Smith Chart.
 - Plot $|S_{11}|$, in dB, over the range of -40 dB to 0 dB.
 - Plot $|S_{21}|$, in dB, over the range of -2 dB to 0 dB.

- 5. Tune MStrip V1. Determine a value for the width, spacing, and length of each transmission line. Note, set the length of d_{p_1} to a very small value. This version will be called MStrip V2.
 - Determine a value for S_{11} and S_{21} at a frequency of 5 GHz.
 - Plot S_{11} on a Smith Chart.
 - Plot $|S_{11}|$, in dB, over the range of -40 dB to 0 dB.
 - Plot $|S_{21}|$, in dB, over the range of -2 dB to 0 dB.
- 6. Set d_{p1} back to its original value. This version will be called MStrip V3. Using ADS, simulate MStrip V3. Employ a frequency range of 3 GHz to 7 GHz (25 MHz step size)
 - Determine a value for S_{11} and S_{21} at a frequency of 5 GHz.
 - Plot S_{11} on a Smith Chart.
 - Plot $|S_{11}|$, in dB, over the range of -40 dB to 0 dB.
 - Plot $|S_{21}|$, in dB, over the range of -2 dB to 0 dB.
- 7. Using HFSS, simulate the matched transition from a 50 Ω microstrip transmission line to a 50 Ω coaxial transmission line (V3). Employ a frequency range of 3 GHz to 7 GHz (25 MHz step size). De-embed the Port 1 such that length between the stub and the reference plane for Port 1 is d_{p1} .
 - Determine a value for S_{11} and S_{21} at a frequency of 5 GHz.
 - Plot S_{11} on a Smith Chart.
 - Plot $|S_{11}|$, in dB, over the range of -40 dB to 0 dB.
 - Plot $|S_{21}|$, in dB, over the range of -2 dB to 0 dB.
- 8. Summarize the results for the ideal transmission line matching network, the ADS matching network (V3), and the HFSS matching network (V3).
 - On the same graph, plot $|S_{11}|$ in dB, for the three cases. Employ a frequency range of 3 GHz to 7 GHz and a range of -40 dB to 0 dB for $|S_{11}|$.
 - On the same graph, plot $|S_{21}|$ in dB, for the three cases. Employ a frequency range of 3 GHz to 7 GHz and a range of -2 dB to 0 dB for $|S_{21}|$.
- 9. Present the results from the design project into a well-organized presentation.

Design Project 6

By: Nittala Satya Surya Lakshmi Vasuki Siva Srinivas #Id – 620094 #Email – sn620094@wne.edu

HFSS V0

Name	Value	Unit	Evaluated V	Туре	
h	1.27	mm	1.27mm	Design	
W	1.13555	mm	1.13555mm	Design	
Α	12.7	mm	12.7mm	Design	
В	7 *h		8.89mm	Design	
ds	2.54	mm	2.54mm	Design	
Lm	10	mm	10mm	Design	
С	ds+Lm		12.54mm	Design	
ri	0.635	mm	0.635mm	Design	
LC	10	mm	10mm	Design	
ro	2.032	mm	2.032mm	Design	
rp	2*ri		1.27mm	Design	
d0	го		2.032mm	Design	
t	18	um	18um	Design	
dp1	Lm-d0		7.968mm	Design	

S Parameter Chart 1

	Values	dB
S_{11}	0.311<-177.139°	-10.148
S_{21}	0.949<-51.545°	-0.456

S-Parameters vs. Frequency

m2 freq=5.000 GHz S(1,1)=0.003 / 103.228 impedance = Z0 * (0.999 + j0.006)

S-Parameters vs. Frequency

HFSS V3

Properties	1	P	>
------------	---	----------	---

Name	Value	Unit	Evaluated V	Туре
h	1.27	mm	1.27mm	Design
W	1.13555	mm	1.13555mm	Design
Α	12.7	mm	12.7mm	Design
В	7*h		8.89mm	Design
ds	2.54	mm	2.54mm	Design
Lm	10	mm	10mm	Design
С	ds+Lm		12.54mm	Design
ri	0.635	mm	0.635mm	Design
LC	10	mm	10mm	Design
ro	2.032	mm	2.032mm	Design
rp	2*ri		1.27mm	Design
d0	го		2.032mm	Design
t	18	um	18um	Design
dp1	Lm-d0		7.968mm	Design
d1	2.2066	mm	2.2066mm	Design
d2	2.03009	mm	2.03009mm	Design
dpx	2.75828	mm	2.75828mm	Design
dp1_new	0.87*d1		1.919742mm	Design
d1_new	dp1_new		1.919742mm	Design

	0.0000		0.0000	. .
d1	2.2066	mm	2.2066mm	Design
d2	2.03009	mm	2.03009mm	Design
dpx	2.75828	mm	2.75828mm	Design
dp1_new	0.87*d1		1.919742mm	Design
d1_new	dp1_new		1.919742mm	Design

S(1,1) Setup1 : Sweep

	S_{11}	dB	S_{21}	dB
M Strip(V1)	0.056<-124.813°	-25.055	0.993<-163.753°	-0.058
M Strip(V2)	0.003<+103.228°	-50.036	0.996<-113.469°	-0.031
M Strip(V3)	0.001<-76.111°	-56.753	0.995<-158.135°	-0.042
HFSS(V3)	0.0371<-31.7°	-28.6112	0.99407<+30.2°	-0.0516

On the same graph, plot $|S_{11}|$ in dB, for the three cases. Employ a frequency range of 3 GHz to 7 GHz and a range of -40 dB to 0 dB for $|S_{11}|$.

On the same graph, plot $|S_{21}|$ in dB, for the three cases. Employ a frequency range of 3 GHz to 7 GHz and a range of -2 dB to 0 dB for $|S_{21}|$.

Appendices

- MATLAB
- HFSS
- ADS

THE END