Classic Algorithms: Search

Advanced Analysis of Algorithms – COMS3005A

Steve James

Steven.James@wits.ac.za

Course notes

Current plan

- Analyse various classical algorithms and problems
- Introduce problem
- Discuss naïve approach
- Look at possible improvements:
 - Algorithmic improvements
 - Assumptions about the data
 - Better data structures
- Consider correctness, complexity and optimality

Search

Given a list of numbers, find a particular key

- Assumptions See notes for when Key is
 Key is in the list not in list

 - Key appears exactly once
- Linear search Les Eucky

Basic linear search

Algorithm 1 linearSearch(myList, n, key)

Input: myList, n, key where myList is an array with n entries (indexed 0...(n-1)), and key is the item sought.

Output: index the location of key in myList.

- $01 \quad index \leftarrow 0$
- 02 While $key \neq myList[index]$
- $03 \qquad index \leftarrow index + 1$
- 04 Return index

Correctness

• If the key is in the list, will linear search find it?

Yes

Sketch proof:
Yes.

 See notes for inductive proof (especially when key may not be in list)

Complexity

10 21 42 29 92 61

- Measure in terms of comparisons
- Best case
 - Key is 10 1 comparison

- Worst case:
 - Key is 61 length of list comparisons

Average complexity

10 21 42	29	92	61
----------	----	----	----

- Key could be any number in list
- All numbers equally likely:
 - $P(index \ i \ is \ key) = \frac{1}{n}$
- Number comparisons if key is at index i
 - i + 1
- So average work is $\frac{1}{n}\sum_{i}(i+1) = O(n)$

Optimality

- Is there a better algorithm out there?
 - i.e. given the same assumptions, can some algorithm perform fewer comparisons? Lower bound on comparisons to solve the problem
- Answer: No, linear is optimal
 - For an unordered list, any correct algorithm must check O(n) values.
 - Adversarial argument: algorithm must check elements, but could be in any order
 - Adversary could construct a list so that the key is always the last value checked!

Binary search

- Assume list is sorted
- Use this to divide the problem → limit search space

```
Algorithm 3 bisectionSearch(myList,n,key)

Input: myList, n, key where myList is an array with n entries (indexed 0 \dots (n-1)), and key is the item sought.

The values stored in myList are such that myList[0] \leq myList[1] \leq \dots \leq myList[n-2] \leq myList[n-1]

Output: mid the location of key in myList.

01 low \leftarrow 0

02 high \leftarrow n-1

03 mid \leftarrow \lfloor (low + high)/2 \rfloor

04 While key \neq myList[mid]

05 If key < myList[mid]

06 Then high \leftarrow mid - 1

07 Else low \leftarrow mid + 1

08 mid \leftarrow \lfloor (low + high)/2 \rfloor

09 return mid
```

Correctness

 If the key is in the sorted list, will binary search find it?

Yes, by the rules of arithmetic

See notes for slightly longer discussion!

Complexity

10 21 29 42 61 92 99

- Measure in terms of comparisons
- Best case
 - Key is 42 1 comparison

- Worst case:
 - Key is last number checked (e.g. 10)

Worst case complexity

10 21 29	42	61	92	99
----------	----	----	----	----

- For list of length n, binary search will do at most $g(n) = 1 + g(\lfloor n/2 \rfloor)$ comparisons
- We also have the boundary condition g(1) = 1
- Solve this recurrence equation with ansatz!
- Solution: $g(n) = \lfloor \lg(n) \rfloor + 1$

Optimality

- Is there a better algorithm out there?
 - i.e. given the same assumptions, can some algorithm perform fewer comparisons?
- Answer: No, binary search on sorted list is optimal
 - See discussion in notes
- To-do: read analysis of linear + binary search for when key may not be in list

Classic Algorithms: Sort I

Advanced Analysis of Algorithms – COMS3005A

Steve James

Steven.James@wits.ac.za

Course notes

Current plan

- Analyse various classical algorithms and problems
- Introduce problem
- Discuss naïve approach
- Look at possible improvements:
 - Algorithmic improvements
 - Assumptions about the data
 - Better data structures
- Consider correctness, complexity and optimality

Sorting

• Given list of numbers, arrange them in ascending order

- Brute force:
 - Max sort
 - Selection sort
 - Bubblesort
- Decrease and conquer:
 - Insertion sørt
- Divide and conquer:
 - Wergesort
 - Quicksort

Selection sort

- Start at first position
- Scan remaining list, find smallest value
- Swap current value with smallest
- Move to next position and repeat

Max Sort

- Opposite of selection sort
 - Find max value and place at end. Repeat

```
Algorithm 1 \max Sort(myList, n)
Input: myList, n where myList is an array with n entries (indexed 0, 1, \ldots n-1)
Output: myList where the values in myList are such that
myList[0] \le myList[1] \le \ldots \le myList[n-2] \le myList[n-1]
                                                                                                                                                              \frac{1}{(n-2)^{\frac{1}{2}}} = \frac{(n-1)^{\frac{1}{2}}}{(n-1)^{\frac{1}{2}}} = \frac{(n-1
01 For i from n-1 down to 1
02
                                  maxPos \leftarrow i
                                  For j from 0 to i-1
03
                                                  If myList[j] > myList[maxPos]
04
05
                                                                 Then
                                                                               maxPos \leftarrow j
06
                                   swop(myList[maxPos], myList[i])
07
08 Return myList
```

Correctness

- Yes, will sort list
- Induction: will work for list of length 2
- Assume it works for length k-1
- Then for length *k*:
 - First run of outer loop will place max value at last position (k-1)
 - This leaves us an unsorted sublist from 0 to k-2 (i.e. a sublist of length k-1
 - Induction hypothesis is that max sort will work on this sublist correctly
 - QED

Bubblesort

 Instead of swapping one element each time, do a bunch of swaps as we scan through!

```
Algorithm 3 bubbleSort(myList, n)

Input: myList, n where myList is an array with n entries (indexed 0...n-1)

Output: myList where the values in myList are such that

myList[0] \le myList[1] \le ... \le myList[n-2] \le myList[n-1]

01 For i from n-1 down to 1

02 For j from 0 to i-1

03 If myList[j] > myList[j+1]

04 Then

05 Swop(myList[j], myList[j+1])

06 Return myList
```

Complexity

- Amount of work done is $O(n^2)$
 - But what about best, worst case?
- If list is unsorted?
 - $O(n^2)$
- If list is already sorted?
 - $O(n^2)$
- If list is in reverse order?
 - $O(n^2)$
- So best, worst, average case is all the same!
 - Can we do better?
- Yes! Keep track if we have done no swaps. If not, list must be sorted, so stop!
 - Best case is now O(n)

Optimality

- Max sort, selection sort, bubblesort are all $O(n^2)$
 - This is not optimal. Why?
- Intuition: Given a list of n numbers, there are n! ways to arrange them.
 - Sorting is about finding the arrangement amongst these that is sorted!
 - Recall that each comparison gives us a binary output
 - If algorithm takes f(n) steps, then it cannot distinguish more than $2^{f(n)}$ cases
 - So we need $2^{f(n)} \ge n! \Rightarrow f(n) \ge \lg(n!)$
 - n! grows like n^n (Stirling's approx) $\Rightarrow f(n) \ge \lg(n^n) = n\lg(n) \Rightarrow f(n) \in \Omega(n\lg(n))$
- In next section, we will see sorts that are optimal!