Untertürkheimer Straße 6-10. **RSC-Laboratory**

D-66117 Saarbrücken

Phone: +49 (0) 681-598-0 Fax: -9075

Accredited testing-laboratory

DAR registration number: DAT-P-176/94-D1

Federal Motor Transport Authority (KBA) DAR registration number: KBA-P 00070-97

Recognized by the Federal Communications Commission Anechoic chamber registration no.: 90462 (FCC) Anechoic chamber registration no.: 3462C-1 (IC) **Certification ID: DE 0001 Accreditation ID: DE 0002**

Accredited Bluetooth® Test Facility (BQTF)
The Bluetooth word mark and logos are owned by the Bluetooth SIG,

Inc. and any use of such marks by Cetecom ICT is under license

Test report no. : 1-1041-03-06/09 Type identification: NA08A01

: Aisin AW Co., Ltd Applicant FCC ID : **XEMNA08A01** IC Certification No: 8192A-NA08A01 Test standards : RSS - 210 Issue 7

47 CFR Part 15

2009-04-27 Page 1 of 62

Test report no.: 1-1041-03-06/09

Table of contents

1	1 General information	3
	1.1 Notes	
	1.2 Testing laboratory	
	1.3 Details of applicant	
	1.4 Application details	
2	••	
-		
3		
	3.1 Details of manufacturer	
	3.1.1 Test item	
	3.1.2 Additional EUT information For IC Canada (appendix 2)	
	3.1.3 RF Technical Brief Cover Sheet acc. To RSS-102	
	3.1.4 EUT operating modes	
	3.1.5 Extreme conditions testing values	
4	4 Summary of Measurement Results and list of all performed test cases	10
5	5 RF measurement testing	11
	5.1 Description of test set-up	11
	5.1.1 Radiated measurements	1
	5.1.2 Conducted measurements	1
	5.2 Referenced documents	
	5.3 Additional comments	
	5.4 Antenna gain	
	5.5 Carrier frequency separation §15.247(a)(1)	
	5.6 Number of hopping channels §15.247(a)(1)	
	5.7 Time of occupancy (dwell time) §15.247(a)(1)(iii)	
	5.8 Power Spectral density (Hybrid system in Inquiry mode/Page scan) §15.247(e)	
	5.9 Spectrum Bandwidth of a FHSS System / 20dB Bandwidth §15.247(a)(1)	
	5.10 Maximum output power (conducted) § 15.247 (b)(1)	
	5.11 Max. peak output power (radiated) § 15.247 (b)(1)	
	5.12 Band-edge compliance of conducted emissions §15.247 (d)	
	5.13 Band-edge compliance of radiated emissions §15.205	
	5.14 Spurious Emissions - conducted (Transmitter) § 15.247 (c)(1)	
	5.15 Spurious Emissions > 30 MHz- radiated (Transmitter) § 15.247 (c)(1)	
	5.17 Spurious Emissions < 30 MHz - Transmitter radiated § 15.209	
	5.17 Spurious Emissions < 30 MHz - 1 ransmitter radiated § 15.209	
6		
7	7 Photographs of the Test Set-up	52
Q	R Photographs of the FUT	5.6

Test report no.: 1-1041-03-06/09

1 General information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 3.1.1. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

Test laboratory manager:

2009-05-27 Joerg Warken

Date Name Signature

2009-05-27 Jakob Reschke

Date Name Signature

Technical responsibility for area of testing:

2009-05-27 Michael Berg

Date Name Signature

2009-04-27 Page 3 of 62

Test report no.: 1-1041-03-06/09

1.2 Testing laboratory

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 - 10

66117 Saarbrücken

Germany

Phone: + 49 681 5 98 - 0

Fax: + 49 681 5 98 - 9075

e-mail: info@ICT.cetecom.de

Internet: http://www.cetecom-ict.de

State of accreditation: The test laboratory (area of testing) is accredited according to

DIN EN ISO/IEC 17025

DAR registration number: DAT-P-176/94-D1

Accredited by: Federal Motor Transport Authority (KBA)

DAR registration number: KBA-P 00070-97

Testing location, if different from CETECOM ICT Services GmbH:

Name : Street : Town : Country : Phone : Fax :

1.3 Details of applicant

Name: Aisin AW Co., Ltd

Street: 6-18 Harayama, Oka-Cho Town: Okazaki, Aichi 444-8564

Country: JAPAN

Telephone: + 81 564 57 0500 Fax: + 81 564 57 0773

Contact: Mingchao Ye

E-mail: i31152_ye@aisin-aw.co.jp

Telephone: + 81 564 57 0822

1.4 Application details

Date of receipt of order: 2009-02-18

Date of receipt of test item: 2009-04-14

Date of start test: 2009-04-14

Date of end test 2009-04-20

Persons(s) who have been present during the test: -/-

2009-04-27 Page 4 of 62

Test report no.: 1-1041-03-06/09

2 Test standard/s

47 CFR Part 15 2008-07 Title 47 of the Code of Federal Regulations; Chapter I-

Federal Communications Commission

subchapter A - general, Part 15-Radio frequency devices

RSS - 210 Issue 7 2007-06 Spectrum Management and Telecommunications - Radio

Standards Specification

Low-power Licence-exempt Radiocommunication Devices (All

Frequency Bands): Category I Equipment

2009-04-27 Page 5 of 62

Test report no.: 1-1041-03-06/09

3 Technical tests

3.1 Details of manufacturer

Name:	Aisin AW Co, Ltd	
Street:	6-18 Harayama, Oka-Cho	
Town:	Okazaki, Aichi 444-8564	
Country:	JAPAN	

3.1.1 Test item

Kind of test item	:	Car Navigation System (with GPS and Bluetooth supporting EDR)
Type identification	:	NA08A01
S/N serial number	:	BT MAC: 001BFB51D6C4
HW hardware status	:	V-689 1A
SW software status	:	V571100B
Frequency Band [MHz]	:	ISM 2.400 - 2.483,5
Type of Modulation	:	FHSS
Number of channels	:	79
Antenna	:	Integrated antenna
Power Supply	:	12.00 V DC by Power Supply
Temperature Range	:	-/- °C to -/- °C

Max. power radiated: 4.09 dBm EIRP Max. power conducted: 2.85 dBm

FCC ID: XEMNA08A01 IC: 8192A-NA08A01

2009-04-27 Page 6 of 62

Test report no.: 1-1041-03-06/09

3.1.2 Additional EUT information For IC Canada (appendix 2)

IC Registration Number:	8192A-NA08A01
Model Name:	NA08A01
Manufacturer (complete Address):	Aisin AW Co, Ltd
	6-18 Harayama, Oka-Cho
	Okazaki, Aichi 444-8564
	JAPAN
Tested to Radio Standards Specification (RSS) No.:	RSS-210 Issue 7
Open Area Test Site Industry Canada Number:	IC 3462C-1
Frequency Range (or fixed frequency) [MHz]:	2400 – 2483.5 MHz
RF: Power [W] (max):	GFSK:
	Rad. EIRP: 1.23 mW
	Conducted: 1.35 mW
	Pi/4 DQPSK:
	Rad. EIRP: 3.56 mW
	Conducted: 1.89 mW
Antenna Type:	Integrated antenna
Occupied Bandwidth (99% BW) [kHz]:	GFSK: 920
	Pi/4 DQPSK: 1244
Type of Modulation:	GFSK, Pi/4 DQPSK
Emission Designator (TRC-43):	GFSK: 920KFXD
	Pi/4 DQPSK: 1M24GXD
Transmitter Spurious (worst case) [μV/m in 3m]:	165
Receiver Spurious (worst case) [µV/m in 3m]:	153

ATTESTATION:

I attest that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned departmental standard(s), and that the radio equipment identified in this application has been subject to all applicable test conditions specified in the departmental standards and all of the requirements of the standards have been met.

Signature:

Test engineer: Joerg Warken

Date: 2009-04-27

2009-04-27 Page 7 of 62

Test report no.: 1-1041-03-06/09

3.1.3 RF Technical Brief Cover Sheet acc. To RSS-102

All Fields must be completed with the requested information or the following codes: N/A for Not Applicable, N/P for Not Performed or N/V for Not Available. Where applicable, check appropriate box.

1. COMPANY NUMBER:	8192A
2. MODEL NUMBER:	NA08A01
3. MANUFACTURER:	Aisin AW Co, Ltd
4. TYPE OF EVALUATION:	(c) RF Evaluation
 Evaluated against exposure limits: Gene Duty cycle used in evaluation: 99 % Standard used for evaluation: RSS-102 I Measurement distance: 0.20 m RF value: 0.007 V/m □ A/m □ W/m ⊠ Measured □ Computed □ Calculated ⊠ 	Issue 2 (2005-11)

Declaration of RF Exposure Compliance

ATTESTATION:

I attest that the information provided in this test report are correct; that a Technical Brief was prepared and the information it contains is correct; that the device evaluation was performed or supervised by me; that applicable measurement methods and evaluation methodologies have been followed and that the device meets the SAR and/or RF exposure limits of RSS-102.

Name: Jörg Warken Title: Senior Engineer

Company: Cetecom ICT Services GmbH

2009-04-27 Page 8 of 62

Test report no.: 1-1041-03-06/09

3.1.4 EUT operating modes

EUT operating mode no.*)	Description of operating modes	Additional information
Op. 0	Normal mode	Normal temperature and power source conditions
Op. 1 low temperature, low power source conditions		low temperature, low power source conditions
Op. 2		low temperature, high power source conditions
Op. 3		high temperature, low power source conditions
Op. 4		high temperature, high power source conditions

^{*)} EUT operating mode no. is used to simplify the test plan

3.1.5 Extreme conditions testing values

Description	Shortcut	Unit	Value
Nominal Temperature	T_{nom}	°C	22
Nominal Humidity	H_{nom}	%	52
Nominal Power Source	V _{nom}	V	12.00

Type of power source: **DC by Power Supply**

Deviations from these values are reported in chapter 2

2009-04-27 Page 9 of 62

Test report no.: 1-1041-03-06/09

4 Summary of Measurement Results and list of all performed test cases

\boxtimes	No deviations from	m the technical	specifications y	were ascertained
-------------	--------------------	-----------------	-------------------------	------------------

☐ There were deviations from the technical specifications ascertained

TC identifier	Description	verdict	date	Remark
RF-Testing	FCC Part 15 §15.247 - CANADA RSS-210	PASS	2009-04-20	-/-

Test Specification Clause	Test Case	Modulation	Pass	Fail	N/A	Not performed
3.7		GEGIA	3.7			
None	Antenna Gain	GFSK	Yes			
§15.247(a1)	Carrier frequency separation	GFSK	Yes			
§13.247(a1)	Carrier frequency separation	GISH	103			
§15.247(a1)	Number of hopping channels	GFSK	Yes			
3-2-12-17 (31-7)						
§15.247(a)(1)(iii)	Time of occupancy (dwell time)		Yes			
§15.247(e)	Power Spectral density (Hybrid				Yes	
	system in Inquiry mode/Page scan)					
§15.247(a)(1)	Spectrum Bandwidth of a FHSS	GFSK	Yes			
	System / 20dB Bandwith	Pi/4 DQPSK	Yes			
		8 DPSK	na			
0.15.047.(1.)(1.)	100	CEGIA	N/			
§ 15.247 (b)(1)	Maximum output power	GFSK Pi/4 DQPSK	Yes Yes			
	(conducted)	8 DPSK	na			
		ODISK	IIu			
§ 15.247 (b)(1)	Max. peak output power (radiated)	GFSK	Yes			
8 (-)(-)		Pi/4 DQPSK	Yes			
		8 DPSK	na			
§ 15.247 (d)	Band-edge compliance of	GFSK P:// POPGY	Yes			
	conducted emissions	Pi/4 DQPSK 8 DPSK	Yes na			
		6 DI SK	Ha			
§ 15.205	Band-edge compliance of radiated	GFSK	Yes			
3 13.203	emissions	Pi/4 DQPSK	Yes			
		8 DPSK	na			
§ 15.247 (d)	Spurious Emission - conducted	Pi/4 DQPSK	Yes			
	(Transmitter)					
§ 15.247 (d)	Spurious Emission - radiated	Pi/4 DQPSK	Yes			
	(Transmitter) >30 MHz					
0.45.400		GEGT	**			
§ 15.109	Spurious Emissions - radiated	GFSK	Yes			
	(Receiver)					
0.45.200		GEGIA			3.7	
§ 15.209	Spurious Emissions - radiated	GFSK			Yes	
	(Transmitter) <30 MHz					
8 15 107/207	Conducted Emissions 20 MH	GFSK	Yes			
§ 15.107/207	Conducted Emissions <30 MHz	ULSK	ies			

2009-04-27 Page 10 of 62

5 RF measurement testing

5.1 Description of test set-up

5.1.1 Radiated measurements

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 25 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63.2-1996 clause 15 and ANSI C63.4-2003 clause 4.1.5. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63-4-2003 clause 4.2.

Antennas are confirmed with ANSI C63.2-1996 item 15.

9 kHz - 150 kHz: Quasi Peak measurement, 200 Hz Bandwidth, passive loop antenna. 150 kHz - 30 MHz: Quasi Peak measurement, 9 kHz Bandwidth, passive loop antenna. 30 MHz - 200 MHz: Quasi Peak measurement, 120 kHz Bandwidth, bi-conical antenna 200MHz - 1GHz: Quasi Peak measurement, 120 kHz Bandwidth, log periodic antenna >1GHz: Average, RBW 1MHz, VBW 10 Hz, waveguide horn

All measurements are done in accordance with the Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems DA 00-705 and Appendix A "BLUETOOTH APPROVALS"

The EUT is powered by an external power supply with nominal voltage. The signalling is performed from outside the chamber with a signalling unit (CMU200 or other) by air link using signalling antenna.

5.1.2 Conducted measurements

The EUT's RF signal is coupled out by the antenna connector which is supplied by the manufacturer. The signal is first 10dB attenuated before it is power divided (~6dB loss per branch). One of the signal paths is connected to the communication base Station (CMU200 or other), the other one is connected to the spectrum analyzer. The specific losses for both signal paths are first checked within a calibration. The measurement readings on the signalling unit/spectrum analyzer are corrected by the specific test set-up loss. The attenuator, power divider, signalling unit and the spectrum analyzer are impedance matched on 50 Ohm.

2009-04-27 Page 11 of 62

Test report no.: 1-1041-03-06/09

5.2 Referenced documents

None

5.3 Additional comments

None

5.4 Antenna gain

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

	low channel mid channel		high channel
	2402 MHz	2441 MHz	2480 MHz
Conducted power [dBm] Measured, GFSK modulation	-1.48	-0.87	1.29
Radiated power [dBm] Measured, GFSK modulation	0.90	0.80	0.60
Gain [dBi] Calculated	2.38	1.67	-0.69

2009-04-27 Page 12 of 62

Test report no.: 1-1041-03-06/09

5.5 Carrier frequency separation §15.247(a)(1)

Modulation: GFSK

Plot 1 of 1:

Result: Channel separation is: ~ 1 MHz

Limits:

Under normal test conditions only	Minimum 25 kHz or 20 dB Bandwidth of the hopping
	system

2009-04-27 Page 13 of 62

5.6 Number of hopping channels §15.247(a)(1)

Modulation: GFSK

Plot 1 of 2:

Plot 2 of 2:

Result: The number of hopping channels is: 79

Limits:

Under normal test conditions only	at least 15 non-overlapping channels
-----------------------------------	--------------------------------------

2009-04-27 Page 14 of 62

Test report no.: 1-1041-03-06/09

5.7 Time of occupancy (dwell time) §15.247(a)(1)(iii)

For Bluetooth devices:

The dwell time of 0.4 s within a 31.6 second period in data mode is independent from the packet type (packet length). The calculation for a 31.6 second period is a follows:

Dwell time = time slot length * hop rate / number of hopping channels *31.6 s

Example for a DH1 packet (with a maximum length of one time slot) Dwell time = $625 \mu s * 1600 1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

For multi-slot packet the hopping is reduced according to the length of the packet. Example for a DH5 packet (with a maximum length of five time slots) Dwell time = $5 * 625 \mu s * 1600 * 1/5 * 1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

This is according the Bluetooth Core Specification V 1.1 & V 1.2 & V2.0 (+ critical errata) for all Bluetooth devices. Therefore, all Bluetooth devices comply with the FCC dwell time requirement in the data mode.

This was checked during the Bluetooth Qualification tests.

The Dwell time in hybrid mode is approximately 2.6 ms (in a 12.8s period)

2009-04-27 Page 15 of 62

Test report no.: 1-1041-03-06/09

5.8 Power Spectral density (Hybrid system in Inquiry mode/Page scan) §15.247(e)

Plot 1 of 1:

Not applicable

Result: Power density: -dBm/Hz = -dBm/3 kHz

Correction factor from dBm/Hz to dBm / 3 kHz is +34,8 dB

Limits:

Under normal test conditions only	For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission
-----------------------------------	---

2009-04-27 Page 16 of 62

5.9 Spectrum Bandwidth of a FHSS System / 20dB Bandwidth §15.247(a)(1)

Plot 1: GFSK

Plot 2: GFSK

2009-04-27 Page 17 of 62

Test report no.: 1-1041-03-06/09

Plot 3: GFSK

Plot 4: Pi/4 DQPSK

2009-04-27 Page 18 of 62

Test report no.: 1-1041-03-06/09

Plot 5: Pi/4 DQPSK

Plot 6: Pi/4 DQPSK

2009-04-27 Page 19 of 62

Test report no.: 1-1041-03-06/09

Result:

Modulation	20 (B BANDWIDTH [k	Hz]
Frequency [MHz]	2402	2441	2480
GFSK	914	920	920
Pi/4 DQPSK	1238	1244	1232
8DPSK	na	na	na
Measurement uncertainty		±1kHz	

RBW / VBW as provided in the "Measurement Guidelines" (DA 00-705, March 30, 2000) RBW: $10\ kHz$ / VBW $10\ kHz$

Limits:

Under normal test conditions only	GFSK < 1000 kHz
	Pi/4 DQPSK < 1500
	8DPSK < 1500

Page 20 of 62 2009-04-27

5.10 Maximum output power (conducted) § 15.247 (b)(1)

Plot 1: GFSK

Plot 2: GFSK

2009-04-27 Page 21 of 62

Test report no.: 1-1041-03-06/09

Plot 3: GFSK

Plot 4: Pi/4 DQPSK

2009-04-27 Page 22 of 62

Test report no.: 1-1041-03-06/09

Plot 5: Pi/4 DQPSK

Plot 6: Pi/4 DQPSK

2009-04-27 Page 23 of 62

Test report no.: 1-1041-03-06/09

Results:

Modulation	Max.	peak output power [dBm]
Frequency [MHz]	2402	2441	2480
GFSK	-1.48	-0.87	1.29
Pi/4 DQPSK	2.19	2.77	2.48
8DPSK	na	na	na
Measurement uncertainty		±2dB	

RBW / VBW: 3 MHz

Limits:

Under normal test conditions only, for frequency range 2400-2483.5 MHz	Max. 1.0 Watt
--	---------------

2009-04-27 Page 24 of 62

Test report no.: 1-1041-03-06/09

5.11 Max. peak output power (radiated) § 15.247 (b)(1)

Modulation: GFSK

Results:

Test co	nditions	Max. pe	eak output power EIRF	P[dBm]
Frequenc	ey [MHz]	2402	2442	2480
T _{nom}	V _{nom}	0.90	0.80	0.60
Measuremen	t uncertainty		±3dB	

Modulation: Pi/4 DQPSK

Results:

Test co.	nditions	Max. pe	eak output power EIRF	P[dBm]
Frequenc	cy [MHz]	2402	2442	2480
T _{nom}	V _{nom}	4.09	4.03	3.95
Measuremen	t uncertainty		±3dB	

Modulation: 8 DPSK

Results:

Test co	nditions	Max. pe	eak output power EIRF	P[dBm]
Frequenc	ey [MHz]	2402	2442	2480
T _{nom}	V _{nom}	na	na	na
Measuremen	nt uncertainty		±3dB	

RBW / VBW: 3 MHz

Measured at a distance of 3m

Limits:

Under normal test conditions only, for frequency	Max. 1.0 Watt
range 2400-2483.5 MHz	

2009-04-27 Page 25 of 62

5.12 Band-edge compliance of conducted emissions §15.247 (d)

Modulation: GFSK

Plot 1 of 4 (hopping off, lowest frequency):

Plot 2 of 4 (hopping on, lowest frequency):

2009-04-27 Page 26 of 62

Plot 3 of 4 (hopping off, highest frequency):

Plot 4 of 4 (hopping on, highest frequency):

Results:

SZENARIO	DELTA VALUE [DB]
hopping off, lowest frequency	> 20 dB
hopping on, lowest frequency	> 20 dB
hopping off, highest frequency	> 20 dB
hopping on, highest frequency	> 20 dB
Measurement uncertainty	±1,5dB

2009-04-27 Page 27 of 62

Test report no.: 1-1041-03-06/09

Modulation: Pi/4 DQPSK

Plot 1 of 4 (hopping off, lowest frequency):

Plot 2 of 4 (hopping on, lowest frequency):

2009-04-27 Page 28 of 62

Plot 3 of 4 (hopping off, highest frequency):

Plot 4 of 4 (hopping on, highest frequency):

Results:

SZENARIO	DELTA VALUE [DB]
hopping off, lowest frequency	> 20 dB
hopping on, lowest frequency	> 20 dB
hopping off, highest frequency	> 20 dB
hopping on, highest frequency	> 20 dB
Measurement uncertainty	±1,5dB

2009-04-27 Page 29 of 62

Test report no.: 1-1041-03-06/09

Limits:

Under normal test conditions only

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

2009-04-27 Page 30 of 62

5.13 Band-edge compliance of radiated emissions §15.205

Modulation: GFSK

Plot 1: Band edge compliance and far away emissions (highest channel)

Date: 17.APR.2009 11:29:15

Modulation: Pi/4 DQPSK

Plot 1: Band edge compliance and far away emissions (highest channel)

Date: 17.APR.2009 11:33:08

2009-04-27 Page 31 of 62

5.14 Spurious Emissions - conducted (Transmitter) § 15.247 (c)(1)

Modulation: GFSK

Plot 1 of 3: lowest channel

Plot 2 of 3: middle channel

2009-04-27 Page 32 of 62

Test report no.: 1-1041-03-06/09

Plot 3 of 3: highest channel

Result & Limits:

Emission Limitation							
f [MHz]	amplitude of emission [dBm]		limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results		
2402		-1.49		30 dBm		Operating frequency	
No critical peaks found			-20 dBc				
2441		-1.04		30 dBm		Operating frequency	
No critical peaks found							
				-20 dBc			
2480		1.00		30 dBm		Operating frequency	
N	lo critical peaks	found					
				-20 dBc			
Measurement uncertainty				± 3dB			

F < 1 GHz: RBW: 100 kHz VBW: 100 kHz F > 1 GHz: RBW: 1 MHz VBW: 1 MHz

2009-04-27 Page 33 of 62

Test report no.: 1-1041-03-06/09

Modulation: Pi/4 DQPSK

Plot 1 of 3: lowest channel

Plot 2 of 3: middle channel

2009-04-27 Page 34 of 62

Test report no.: 1-1041-03-06/09

Plot 3 of 3: highest channel

Result & Limits:

sion r n] 6	limit max. allowed emission power 30 dBm	actual attenuation below frequency of operation [dB]	results Operating frequency	
sion r n] 6	max. allowed emission power 30 dBm	below frequency of		
3	30 dBm	operation [dB]	Operating frequency	
			Operating frequency	
	20 dRa			
	20 dBo			
	-20 dBC			
3	30 dBm		Operating frequency	
l				
-	-20 dBc			
	20. ID			
	30 dBm		Operating frequency	
l				
	-20 dBc			
	± 3dB			
		-20 dBc 30 dBm -20 dBc 30 dBm -20 dBc	30 dBm -20 dBc 30 dBm -20 dBc ± 3dB	

F < 1 GHz: RBW: 100 kHz VBW: 100 kHz F > 1 GHz: RBW: 1 MHz VBW: 1 MHz

Under normal test conditions only

In any 100 kHz bandwidth outside the frequency band at least 20dB below the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see §15.205(c)).

Note: For emissions that fall into restricted bands you find the radiated emissions later in the report.

2009-04-27 Page 35 of 62

Test report no.: 1-1041-03-06/09

5.15 Spurious Emissions > 30 MHz- radiated (Transmitter) § 15.247 (c)(1)

Modulation: Pi/4 DQPSK

Plot 1: 0.03 - 1 GHz vertical/horizontal (lowest channel)

Common Information

EUT: NA08A01 Serial Number: NZAA000228

Test Description: FCC part 15 class B @ 10 m
Operating Conditions: BT TX CH 1 (2402 MHz)

Operator Name: Lang
Comment: DC: 14 V

Scan Setup: STAN_Fin [EMI radiated]

Hardware Setup: Electric Field (NOS)

Level Unit: $dB\mu V/m$

Subrange	Detectors	IF Bandwidth	Meas. Time	Receiver	
30 MHz - 1 GHz	OuasiPeak	120 kHz	15 s	Receiver	

Final Result 1

i iiiai ixes	ait i									
Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	Comment
51.985100	21.7	15000.000	120.000	100.0	V	209.0	13.4	8.3	30.0	
351.658400	21.2	15000.000	120.000	227.0	Н	277.0	16.4	14.8	36.0	
399.613850	20.0	15000.000	120.000	400.0	Н	317.0	17.3	16.0	36.0	
671.640800	19.5	15000.000	120.000	336.0	Н	48.0	22.2	16.5	36.0	
799.223650	34.4	15000.000	120.000	100.0	Н	59.0	24.3	1.6	36.0	
911.093350	25.6	15000.000	120.000	319.0	Н	306.0	25.7	10.4	36.0	

2009-04-27 Page 36 of 62

Test report no.: 1-1041-03-06/09

Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]

Subrange 1

Antenna Tower:

Frequency Range: 30 MHz - 2 GHz

Receiver: Receiver [ESCI 3]

@ GPIB0 (ADR 20), SN 100083/003, FW 4.32

Signal Path: without Notch

FW 1.0

Antenna: VULB 9163

SN 9163-295, FW ---

Correction Table (vertical): VULP6113 Correction Table (horizontal): VULP6113 Correction Table: Cable_EN_1GHz (0109)

Tower [EMCO 2090 Antenna Tower]

@ GPIB0 (ADR 8), FW REV 3.12

Turntable: Turntable [EMCO Turntable]

@ GPIB0 (ADR 9), FW REV 3.12

Plot 2: 1 - 12 GHz vertical/horizontal (lowest channel)

2009-04-27 Page 37 of 62

Test report no.: 1-1041-03-06/09

Plot 3: 12 - 25 GHz vertical/horizontal (valid for all channels)

2009-04-27 Page 38 of 62

Test report no.: 1-1041-03-06/09

Plot 4: 0.03 - 1 GHz vertical/horizontal (middle channel)

Common Information

EUT: NA08A01 Serial Number: NZAA000228

Test Description: FCC part 15 class B @ 10 m Operating Conditions: BT TX CH 39 (2441 MHz)

Operator Name: Lang
Comment: DC: 14 V

Scan Setup: STAN_Fin [EMI radiated]

Hardware Setup: Electric Field (NOS)

Level Unit: $dB\mu V/m$

Subrange	Detectors	IF Bandwidth	Meas. Time	Receiver	
30 MHz - 1 GHz	OuasiPeak	120 kHz	15 s	Receiver	

Final Result 1

Frequency	QuasiPeak	Meas.	Bandwidth	Antenna	Polarity	Turntable	Corr.	Margin	Limit	Comment
(MHz)	(dBµV/m)	Time	(kHz)	height		position	(dB)	(dB)	(dBµV/m)	
		(ms)		(cm)		(deg)				
42.025600	11.0	15000.000	120.000	107.0	V	84.0	13.5	19.0	30.0	
52.818700	18.4	15000.000	120.000	100.0	V	223.0	13.3	11.6	30.0	
99.935550	13.8	15000.000	120.000	360.0	V	-1.0	12.3	19.7	33.5	
693.112850	20.1	15000.000	120.000	200.0	Н	99.0	22.8	15.9	36.0	
799.236250	32.9	15000.000	120.000	100.0	Н	66.0	24.3	3.1	36.0	
949.238300	23.2	15000.000	120.000	400.0	Н	47.0	25.8	12.8	36.0	_
	42.025600 52.818700 99.935550 693.112850 799.236250	(MHz) (dBμV/m) 42.025600 11.0 52.818700 18.4 99.935550 13.8 693.112850 20.1 799.236250 32.9	(MHz) (dBμV/m) Time (ms) 42.025600 11.0 15000.000 52.818700 18.4 15000.000 99.935550 13.8 15000.000 693.112850 20.1 15000.000 799.236250 32.9 15000.000	(MHz) (dBμV/m) Time (ms) (kHz) 42.025600 11.0 15000.000 120.000 52.818700 18.4 15000.000 120.000 99.935550 13.8 15000.000 120.000 693.112850 20.1 15000.000 120.000 799.236250 32.9 15000.000 120.000	(MHz) (dBμV/m) Time (ms) (kHz) height (cm) 42.025600 11.0 15000.000 120.000 107.0 52.818700 18.4 15000.000 120.000 100.0 99.935550 13.8 15000.000 120.000 360.0 693.112850 20.1 15000.000 120.000 200.0 799.236250 32.9 15000.000 120.000 100.0	(MHz) (dBμV/m) Time (ms) (kHz) height (cm) 42.025600 11.0 15000.000 120.000 107.0 V 52.818700 18.4 15000.000 120.000 100.0 V 99.935550 13.8 15000.000 120.000 360.0 V 693.112850 20.1 15000.000 120.000 200.0 H 799.236250 32.9 15000.000 120.000 100.0 H	(MHz) (dBμV/m) Time (ms) (kHz) height (cm) position (deg) 42.025600 11.0 15000.000 120.000 107.0 V 84.0 52.818700 18.4 15000.000 120.000 100.0 V 223.0 99.935550 13.8 15000.000 120.000 360.0 V -1.0 693.112850 20.1 15000.000 120.000 200.0 H 99.0 799.236250 32.9 15000.000 120.000 100.0 H 66.0	(MHz) (dBμV/m) Time (ms) (kHz) height (cm) position (deg) (dB) 42.025600 11.0 15000.000 120.000 107.0 V 84.0 13.5 52.818700 18.4 15000.000 120.000 100.0 V 223.0 13.3 99.935550 13.8 15000.000 120.000 360.0 V -1.0 12.3 693.112850 20.1 15000.000 120.000 200.0 H 99.0 22.8 799.236250 32.9 15000.000 120.000 100.0 H 66.0 24.3	(MHz) (dBμV/m) Time (ms) (kHz) height (cm) position (deg) (dB) (dB) 42.025600 11.0 15000.000 120.000 107.0 V 84.0 13.5 19.0 52.818700 18.4 15000.000 120.000 100.0 V 223.0 13.3 11.6 99.935550 13.8 15000.000 120.000 360.0 V -1.0 12.3 19.7 693.112850 20.1 15000.000 120.000 200.0 H 99.0 22.8 15.9 799.236250 32.9 15000.000 120.000 100.0 H 66.0 24.3 3.1	(MHz) (dBμV/m) Time (ms) (kHz) height (cm) position (deg) (dB) (dB) (dB) (dBμV/m) 42.025600 11.0 15000.000 120.000 107.0 V 84.0 13.5 19.0 30.0 52.818700 18.4 15000.000 120.000 100.0 V 223.0 13.3 11.6 30.0 99.935550 13.8 15000.000 120.000 360.0 V -1.0 12.3 19.7 33.5 693.112850 20.1 15000.000 120.000 200.0 H 99.0 22.8 15.9 36.0 799.236250 32.9 15000.000 120.000 100.0 H 66.0 24.3 3.1 36.0

2009-04-27 Page 39 of 62

Test report no.: 1-1041-03-06/09

Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]

Subrange 1

Antenna Tower:

Frequency Range: 30 MHz - 2 GHz

Receiver: Receiver [ESCI 3]

@ GPIB0 (ADR 20), SN 100083/003, FW 4.32

Signal Path: without Notch

FW 1.0

Antenna: VULB 9163

SN 9163-295, FW ---

Correction Table (vertical): VULP6113 Correction Table (horizontal): VULP6113 Correction Table: Cable_EN_1GHz (0109)

Tower [EMCO 2090 Antenna Tower]

@ GPIB0 (ADR 8), FW REV 3.12

Turntable: Turntable [EMCO Turntable]

@ GPIB0 (ADR 9), FW REV 3.12

Plot 5: 1 - 12 GHz vertical/horizontal (middle channel)

2009-04-27 Page 40 of 62

Test report no.: 1-1041-03-06/09

Plot 6: 0.03 - 1 GHz vertical/horizontal (highest channel)

Common Information

EUT: NA08A01 Serial Number: NZAA000228

Test Description: FCC part 15 class B @ 10 m Operating Conditions: BT TX CH 78 (2480 MHz)

Operator Name: Lang
Comment: DC: 14 V

Scan Setup: STAN_Fin [EMI radiated]

Hardware Setup: Electric Field (NOS)

Level Unit: $dB\mu V/m$

Subrange	Detectors	IF Bandwidth	Meas. Time	Receiver	
30 MHz - 1 GHz	OuasiPeak	120 kHz	15 s	Receiver	

Final Result 1

QuasiPeak	Meas.	Bandwidth	Antenna	Polarity	Turntable	Corr.	Margin	Limit	Comment
(dBµV/m)	Time	(kHz)	height		position	(dB)	(dB)	(dBµV/m)	
	(ms)		(cm)		(deg)				
17.6	15000.000	120.000	98.0	٧	271.0	13.5	12.4	30.0	
19.2	15000.000	120.000	200.0	٧	109.0	13.3	10.8	30.0	
23.9	15000.000	120.000	198.0	Н	-3.0	18.8	12.1	36.0	
21.0	15000.000	120.000	198.0	Н	123.0	22.5	15.0	36.0	
33.3	15000.000	120.000	118.0	Н	54.0	24.3	2.7	36.0	
23.1	15000.000	120.000	218.0	٧	161.0	25.7	12.9	36.0	
	17.6 19.2 23.9 21.0 33.3	(dBμV/m) Time (ms) 17.6 15000.000 19.2 15000.000 23.9 15000.000 21.0 15000.000 33.3 15000.000	(dBμV/m) Time (ms) (kHz) 17.6 15000.000 120.000 19.2 15000.000 120.000 23.9 15000.000 120.000 21.0 15000.000 120.000 33.3 15000.000 120.000	(dBμV/m) Time (ms) (kHz) height (cm) 17.6 15000.000 120.000 98.0 19.2 15000.000 120.000 200.0 23.9 15000.000 120.000 198.0 21.0 15000.000 120.000 198.0 33.3 15000.000 120.000 118.0	(dBμV/m) Time (ms) (kHz) (cm) height (cm) 17.6 15000.000 120.000 98.0 V 19.2 15000.000 120.000 200.0 V 23.9 15000.000 120.000 198.0 H 21.0 15000.000 120.000 198.0 H 33.3 15000.000 120.000 118.0 H	(dBμV/m) Time (ms) (kHz) height (cm) position (deg) 17.6 15000.000 120.000 98.0 V 271.0 19.2 15000.000 120.000 200.0 V 109.0 23.9 15000.000 120.000 198.0 H -3.0 21.0 15000.000 120.000 198.0 H 123.0 33.3 15000.000 120.000 118.0 H 54.0	(dBμV/m) Time (ms) (kHz) height (cm) position (deg) (dB) 17.6 15000.000 120.000 98.0 V 271.0 13.5 19.2 15000.000 120.000 200.0 V 109.0 13.3 23.9 15000.000 120.000 198.0 H -3.0 18.8 21.0 15000.000 120.000 198.0 H 123.0 22.5 33.3 15000.000 120.000 118.0 H 54.0 24.3	(dBμV/m) Time (ms) (kHz) height (cm) position (deg) (dB) (dB) 17.6 15000.000 120.000 98.0 V 271.0 13.5 12.4 19.2 15000.000 120.000 200.0 V 109.0 13.3 10.8 23.9 15000.000 120.000 198.0 H -3.0 18.8 12.1 21.0 15000.000 120.000 198.0 H 123.0 22.5 15.0 33.3 15000.000 120.000 118.0 H 54.0 24.3 2.7	(dBμV/m) Time (ms) (kHz) height (cm) position (deg) (dB) (dB) (dBμV/m) 17.6 15000.000 120.000 98.0 V 271.0 13.5 12.4 30.0 19.2 15000.000 120.000 200.0 V 109.0 13.3 10.8 30.0 23.9 15000.000 120.000 198.0 H -3.0 18.8 12.1 36.0 21.0 15000.000 120.000 198.0 H 123.0 22.5 15.0 36.0 33.3 15000.000 120.000 118.0 H 54.0 24.3 2.7 36.0

2009-04-27 Page 41 of 62

Test report no.: 1-1041-03-06/09

Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]

Subrange 1

Antenna Tower:

Frequency Range: 30 MHz - 2 GHz

Receiver: Receiver [ESCI 3]

@ GPIB0 (ADR 20), SN 100083/003, FW 4.32

Signal Path: without Notch

FW 1.0

Antenna: VULB 9163

SN 9163-295, FW ---

Correction Table (vertical): VULP6113 Correction Table (horizontal): VULP6113 Correction Table: Cable_EN_1GHz (0109)

Tower [EMCO 2090 Antenna Tower]

@ GPIB0 (ADR 8), FW REV 3.12

Turntable: Turntable [EMCO Turntable]

@ GPIB0 (ADR 9), FW REV 3.12

Plot 7: 1 - 12 GHz vertical/horizontal (highest channel)

2009-04-27 Page 42 of 62

Test report no.: 1-1041-03-06/09

Results:

	SPURIOUS EMISSIONS LEVEL (dBμV/m)								
	2402 MHz			2441 MHz			2480 MHz		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
See table above for more details			See table above for more details			See table above for more details			
Measi	urement unce	ertainty			±3	dB			

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1 \text{GHz} : \text{RBW/VBW}: 1 \text{ MHz}$

<u>Limits:</u> § 15.247 (c)

In any 100 kHz bandwidth outside the frequency band at least 20dB below the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Limits: § 15.209

Frequency (MHz)	Field strength (dBµV/m)	Measurement distance (m)
30 - 88	30.0	10
88 - 216	33.5	10
216 - 960	36.0	10
above 960	54.0	3

2009-04-27 Page 43 of 62

Test report no.: 1-1041-03-06/09

5.16 Spurious Emissions - radiated (Receiver) § 15.109

Modulation: GFSK

Plot 1: 0.03 - 1 GHz vertical/horizontal (receiver)

Common Information

EUT: NA08A01 Serial Number: NZAA000228

Test Description: FCC part 15 class B @ 10 m

Operating Conditions: idle
Operator Name: Lang
Comment: DC: 14 V

Scan Setup: STAN_Fin [EMI radiated]

Hardware Setup: Electric Field (NOS)

Level Unit: dBµV/m

Subrange	Detectors	IF Bandwidth	Meas. Time	Receiver	
30 MHz - 1 GHz	OuasiPeak	120 kHz	15 s	Receiver	

Final Result 1

i illai ivesi	uit i									
Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	Comment
41.357050	16.2	15000.000	120.000	118.0	V	83.0	13.5	13.8	30.0	
52.788550	15.5	15000.000	120.000	105.0	V	275.0	13.3	14.5	30.0	
399.620750	18.8	15000.000	120.000	124.0	V	145.0	17.3	17.2	36.0	
695.261850	20.2	15000.000	120.000	198.0	Н	208.0	22.9	15.8	36.0	
799.226050	33.7	15000.000	120.000	98.0	Н	59.0	24.3	2.3	36.0	
915.130350	23.2	15000.000	120.000	198.0	V	221.0	25.7	12.8	36.0	

2009-04-27 Page 44 of 62

Test report no.: 1-1041-03-06/09

Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]

Subrange 1

Antenna Tower:

Frequency Range: 30 MHz - 2 GHz

Receiver: Receiver [ESCI 3]

@ GPIB0 (ADR 20), SN 100083/003, FW 4.32

Signal Path: without Notch

FW 1.0

Antenna: VULB 9163

SN 9163-295, FW ---

Correction Table (vertical): VULP6113 Correction Table (horizontal): VULP6113 Correction Table: Cable_EN_1GHz (0109)

Tower [EMCO 2090 Antenna Tower]

@ GPIB0 (ADR 8), FW REV 3.12

Turntable: Turntable [EMCO Turntable]

@ GPIB0 (ADR 9), FW REV 3.12

Plot 2: 1 - 12 GHz vertical/horizontal (receiver)

2009-04-27 Page 45 of 62

Test report no.: 1-1041-03-06/09

Plot 3: 12 - 25 GHz vertical/horizontal (receiver)

Results:

	Spurious Emission	ons level [dBµV/m]	
f[MHz]	Detec	tor	Level [dBµV/m]
	No critical	peaks found	
		·	
Measurement uncertainty		±3 dB	

f < 1 GHz: RBW/VBW: 100 kHz See above plots $f \ge 1 GHz : RBW/VBW: 1 MHz$

Measurement distance see table

Limits: § 15.109

Frequency (MHz)	Field strength (dBµV/m)	Measurement distance (m)
30 - 88	30.0	10
88 - 216	33.5	10
216 - 960	36.0	10
above 960	54.0	3

2009-04-27 Page 46 of 62

Test report no.: 1-1041-03-06/09

5.17 Spurious Emissions < 30 MHz - Transmitter radiated § 15.209

Modulation: Pi/4 DQPSK

Measured at 3 m distance.

Values recalculated with 40 dB/decade according to FCC rules.

Plot 1:

Limits:

Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30 / 29.5 dBμV/m	30

2009-04-27 Page 47 of 62

Test report no.: 1-1041-03-06/09

5.18 Conducted Emissions < 30 MHz § 15.107/207

Not applicable

Limits:

Under normal test conditions only	See plots

2009-04-27 Page 48 of 62

Test report no.: 1-1041-03-06/09

6 Test equipment and ancillaries used for tests

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

All reported calibration intervals are calibrations according to the EN/ISO/IEC 17025 standard. These calibrations were performed from an accredited external calibration laboratory.

Additional to these calibrations the laboratory performed comparison measurements with other calibrated systems and performed a weekly chamber inspection.

All used devices are connected with a 10 MHz external reference.

According to the manufacturers' instruction is it possible to establish a calibration interval for the FSP unit of 24 month, if the device has an external 10 MHz reference.

Anechoic chamber A:

No.	Instrument/Ancillary	Manufacturer	Type	Serial-No.	Internal identification
	Radiated emission in cha	mber A			
A-1	Spectrum Analyzer	Rohde & Schwarz	ESU26	100037	300003555
A-2	Signal Generator	Rohde & Schwarz	SMR20B11	1104.0002.20	300003593
A-3	RF System Panel	Rohde & Schwarz	TS RSP		300003556
A-4	Relais Matrix	Rohde & Schwarz	PSN	860673/009	300001385
A-5	Horn Antenna	EMCO	3115	9709-5290	300000212
A-6	BilogLog. Antenna	Schwarzbeck	VULB 9163	02/00	300003696
A-7	Notch Filter GSM 900	Wainwright	WRCD 901.9/903.1EE	9	
A-8	Notch Filter GSM 1800	Wainwright	WRCD 1747/1748-5EE	1	
A-9	Notch Filter GSM 1900	Wainwright	WRCB 1879.5/1880.5EE	9	
A-10	Notch Filter GSM 850	Wainwright	WRCT 837-0.2/50-8EE	1	
A-11	Notch Filter UMTS	Wainwright	WRCD 1800/2000-	2	
			0.2/40-5EEK		
A-12	Notch Filter ISM 2400	Wainwright	WRCG 2400/2483-2375/	26	
			2505-50/10SS		
A-13	High Pass Filter 1.1 GHz	Wainwright	WHK 1.1/15G-10SS		
A-14	High Pass Filter 2.6 GHz	Wainwright	WHKX 2.6/18G-12SS		
A-15	High Pass Filter 7 GHz	Wainwright	WHKX 7.0/18G-8SS		
A-14	Amplifier	Miteq	AFS4-00201800-15-	US42-0050	300003204
			10P-6	2650-28-5A	
A-16	Controller	Inn co	CO 2000	2020507	
A-17	DC Power Supply	Hewlet Packard	HP6632A		300000924
A-18	Computer	F+W			300003303

Signalling Units:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last	Frequency	Next
		1			Calibration	(months)	Calibration
1	CBT	R&S	100313	300003516	03.09.2008	24	03.09.2010
2	CBT	R&S	100185	300003416	27.08.2008	24	27.08.2010
3	CMU-200	R&S	103992	300003231	04.06.2008	12	04.06.2009
4	CMU-200	R&S	106240	300003321	27.08.2008	24	27.08.2010
5	CMU-200	R&S	832221/0055	300002862	20.03.2008	24	20.03.2010

SRD Laboratory Room 002:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	System Controller PSM 12	R&S	835259/007	300002681-00xx	n.a.		
2	Memory Extension PSM-K10	R&S	To 1	300002681	n.a.		
3	Operating Software PSM-B2	R&S	To 1	300002681	n.a.		
4	19" Monitor		22759020-ED	300002681	n.a.		

2009-04-27 Page 49 of 62

Test report no.: 1-1041-03-06/09

				1	1		
5	Mouse		LZE 0095/6639	300002681	n.a.		
6	Keyboard		G00013834L461	300002681	n.a.		
7	Spectrum Analyser FSIQ 26	R&S	835540/018	300002681-0005	10.01.2008	24	10.01.2010
8	Tracking Generator FSIQ-B10	R&S	835107/015	300002681	s.No.7		
10	RF-Generator SMIQ03 (B1 Signal)	R&S	835541/056	300002681-0002	26.08.2008	36	26.08.2011
11	Modulation Coder SMIQ-B20	R&S	To 10	300002681	s.No.10		
12	Data Generator SMIQ-B11	R&S	To 10	300002681	s.No.10		
13	RF Rear Connection SMIQ- B19	R&S	To 10	300002681	s.No.10		
14	Broadband horn antenna (1-18 GHz)	EMCO	9107-3696	300001604	16.04.2008	24	16.04.2010
15	Broadband horn antenna (1-18 GHz)	EMCO	9107-3697	300001605	21.08.2008	24	21.08.2010
16	Std gain horn antenna (18-26.5 GHz)	Narda	Model no. 638	300000486	n.a.		
17	Std gain horn antenna (18- 26.5 GHz)	Narda	Model no. 638	300000487	n.a.		
18	Sleeve dipole antenna Model 3126-880	ETS- Lindgren	00040887	3000000	n.a.		
19	Fast CPU SM-B50	R&S	To 10	300002681	s.No.10		
20	FM Modulator SM-B5	R&S	835676/033	300002681	s.No.10		
21	RF-Generator SMIQ03 (B2 Signal)	R&S	835541/055	300002681-0001	25.08.2008	36	25.08.2011
22	Modulation Coder SMIQ-B20	R&S	To 21	300002681	s.No.21		
23	Data Generator SMIQ-B11	R&S	To 21	300002681	s.No.21		
24	RF Rear Connection SMIQ- B19	R&S	To 21	300002681	s.No.21		
25	Fast CPU SM-B50	R&S	To 21	300002681	s.No.21		
26	FM Modulator SM-B5	R&S	836061/022	300002681	s.No.21		
27	RF-Generator SMP03 (B3 Signal)	R&S	835133/011	300002681-0003	26.08.2008	36	26.08.2011
28	Attenuator SMP-B15	R&S	835136/014	300002681	S.No.27		
29	RF Rear Connection SMP-B19	R&S	834745/007	300002681	S.No.27		
30	Power Meter NRVD	R&S	835430/044	300002681-0004	26.08.2008	24	26.08.2010
31	Power Sensor NRVD-Z1	R&S	833894/012	300002681-0013	26.08.2008	24	26.08.2010
32	Power Sensor NRVD-Z1	R&S	833894/011	300002681-0010	26.08.2008	24	26.08.2010
33	Rubidium Standard RUB	R&S		300002681-0009	27.08.2008	24	27.08.2010
34	Switching and Signal Conditioning Unit SSCU	R&S	338864/003	300002681-0006	Verified with par	th compensation	
35	Laser Printer HP Deskjet 2100	HP	N/A	300002681-0011	n.a.		
36	19" Rack	R&S	11138363000004	300002681	n.a.		
37	RF-cable set	R&S	N/A	300002681	n.a.		
39	IEEE-cables	R&S	N/A	300002681	n.a.		
40	Sampling System FSIQ-B70	R&S	835355/009	300002681	s.No.7		
41	RSP programmable attenuator	R&S	834500/010	300002681-0007	26.08.2008	24	26.08.2010
42	Signalling Unit	R&S	838312/011	300002681	n.a.		
43	NGPE programmable Power Supply for EUT	R&S	192.033.41	300002681			
44	Power Splitter 6005-3	Inmet Corp.	none	300002841	n.a.		
45	SMA Cables SPS-1151-985- SPS	Insulated Wire	different	different	n.a.		
46	CBT32 with EDR Signaling Unit	R&S					
47	Coupling unit	Narda	N/A		n.a.		
48	2xSwitch Matrix PSU	R&S	872584/021	300001329	n.a.		
49	RF-cable set	R&S	N/A	different	n.a.		
50	IEEE-cables	R&S	N/A		n.a.		
	ote: 3000002681-00xx invent			l	1	L	<u> </u>

Anechoic chamber F:

2009-04-27 Page 50 of 62

Test report no.: 1-1041-03-06/09

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	Control Computer	F+W	FW0502032	300003303	-/-	-/-	-/-
2	Trilog Antenna VULB 9163	Schwarzbeck	295	300003787	01.04.2008	24	01.04.2010
3	Amplifier - 0518C-138	Veritech Micro- wave Inc.	-/-	-/-	-/-	-/-	-/-
4	Switch - 3488A	HP		300000368	-/-	-/-	-/-
5	EMI Test receiver - ESCI	R&S	100083	300003312	31.01.2007	24	31.01.2009
6	Turntable Controller - 1061 3M	EMCO	1218	300000661	-/-	-/-	-/-
7	Tower Controller 1051 Controller	EMCO	1262	300000625	-/-	-/-	-/-
8	Tower - 1051	EMCO	1262	300000625	-/-	-/-	-/-
10	Ultra Notch-Filter Rejected band Ch. 62	WRCD	9	-/-	-/-	-/-	-/-

C.BER Bluetooth Rack Room AC2:

No	Equipment/Type	Manuf.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	System Controller with XP Prof. & C.BER Control Software	F&W	300003580	na	(Monus)	Cumorumon
2	GPIB to USB Converter	Agilent	300003426	na		
3	Spectrum Analyser FSIQ26	R&S	300002681-005	10.01.2008	24	10.01.2010
	Sampling System FSIQ-B70	R&S	300002681-005	s.No.3		
	Tracking Generator FSIQ-B10 for FSIQ26	R&S	300002681-005	s.No.3		
4	RF-Generator SMIQ03 (Interferer Signal)	R&S	300002681-001	25.08.2008	36	25.08.2011
	Modulation Coder SMIQ-B20	R&S	300002681-001	s.No.4		
	Data Generator SMIQ-B11	R&S	300002681-001	s.No.4		
	RF Rear Connection SMIQ-B19	R&S	300002681-001	s.No.4		
	Fast CPU SM-B50	R&S	300002681-001	s.No.4		
	FM Modulator SM-B5	R&S	300002681-001	s.No.4		
5	Rubidium Standard RUB	R&S	300002681-009	27.08.2008	24	27.08.2010
6	Switching Unit 3488A including 2 44476A cards	HP	300000926	Verified with path compensation		
	44472A VHF switch	HP	300000926	Verified with par	th compensation	
7	Signalling Unit: CBT with EDR	R&S	300003416	27.08.2008	24	27.08.2010
8	RF-cable set	different	no	Verified with path compensation		
9	IEEE-cables	R&S	no	na		
10	NGPE programmable Power Supply for EUT	R&S	40000078	27.08.2008	24	27.08.2010
11	Coupling Unit 4324-2	Narda	no	Verified with path compensation		
12	Climatic Chamber VT4002	Voetch	300003019	11.05.2007	24	11.05.2009
13	6 dB Attenuator 1W	Narda	no	Verified with path compensation		
14	DCBlocker 30 MHz to 12.75 GHz 1W	Narda	no	Verified with path compensation		

2009-04-27 Page 51 of 62