به نام خدا

آزمایش شماره ۹

اعضای تیم:

عسل مسكين ٢٥١١٠٦٥١١

ثنا بابایان ونستان ۱۱۰۵۸۸۹

اندازه گیری جریان, توان و ولتاژ در وضعیتی که در مدار سیم پیچ ثانویه مصرف کننده نباشد.

همانطور که از رسم منحنی ها معلوم است و ابستگی جریان و تو ان به و لتاژ خطی است. این موضوع هم قابل پیش بینی بود چون اگر تر انسفور ماتور را با یک جفتت سلف تزویج شده به ضریب تزویج ۱ و دو مقاومت در نظر بگیریم چون از حلقه ر استی جریان نمس گذرد, منبع آمپدانسی ناشی از L_1 و L_1 مشاهده می کنیم که ثابت است که این ناشی از ثابت بودن فرکانس است. به دلیل این ثابت بودن فرکانس منبع, اندازه فازور منبع تغییر می کند و تقسیم بر اندازه آمپدانس می شود تا دامنه جریان به دست آید. همچنین می دانیم از جریان از تقسیم فازور و لتاژ به آمپدانس به دست می آید. بنابر این ضریب تناسب جریان و و لتاژ , ادمیتانس سری سلف و مقاومت است که ثابت می ماند, پس یک خط داریم.

$$N_1 = 250$$
, $N_2 = 500$

V ₁ (V)	15	20	25	30
I ₁ (mA)	148.9	172.4	194.3	213.8
P ₁ (W)	0.99	1.63	2.41	3.16
V ₂ (V)	29.97	38.74	48.91	57.79

े।ब्रह्मा०	104".+ rd+". = 17,0
(10.17.01×19,9V+	12. Tr. 01x 12. 17 + (14 - Tr. 0) + 31, 12. 17. 07) + 34, 12 - 37)
•	(10-17-0) 4 (7 77, 0 4 (78 - 75 0) 4 (7 47 0) 7
1, 174	
m ۽ اُتيب	31, NYY
VY NY Z	

اندازه گیری جریان و و انتار در وضعیتی که در مدار سیم پیچ ثانویه مصرف کننده باشد. $N_1 = 500$, $N_2 = 250$, $V_1 = 30(V)$

I ₂ (mA)	250	500	750	1000
P ₂ (W)	3.31	5.98	7.78	7.68
I ₁ (mA)	172.2	296.7	436.3	550.5
P ₁ (W)	4.31	7.34	9.69	10.28

Subject.	19.40"+ NO.4	01 2 m		
Date. - YVOX NY	1 - KOX 494,U+	11,2 1 54,44 + 61	19 x 09.19 2 1	1864
	71478777			
Cuir	2M= 98691			***************************************
	NY) => 11		- NOV. 10	
		با با دام برادر نار	٥٠٠٠ ١٩٤١ وقود	5.66.4. 1

اختلاف توان ها ی اندازه گیری شده P_1 و P_2 مربوط به چه نوع تلفاتی در ترانسفورماتور هستند؟

در ترانسفورماتور ایده آل,توان اولیه و ثانویه با هم برابرند,اما در اینجا به دلیل وجود تلفات,توان ثانویه از اولیه کمتر است.با افزایش جریان,مقدار این تلفات به ترتیب ۱ و ۱/۳۶ و ۱/۹۱ و ۲/۶ و ات است که سیر صعودی دارد.دلیل آن می تواند تلفات مس که ناشی از وجود مقاومت در سیم پیچ است و با توان دوم جریان رابطه دارد,مرتبط دانست به طوری که با افزایش جریان,این مقدار افزایش می باید.تلفات هیسترنیس و ابسته به فرکانس است که در این آزمایش فرکانس ثابت است.جریان فوکو هم داریم چرا که با افزایش جریان,میدان و شار افزایش یافته و جریان فوکو هم افزایش می باید.پراکندگی شار هم داریم چرا که اگر همیشه درصدی از شار مغناطیسی در خمیدگی هسته مسیر خود را عوض می کند و باعث تلفات می شود. هرچقدر جریان را بیشتر کنیم,شار بیشتر شده و مقداری از آن هم که منحرف می شود افزایش خواهد یافت و نهایتا باعث افزایش تلفات می شود.

سیم پیچ ثانویه در وضعیت اتصال کوتاه

 $N_1 = 500$, $N_2 = 250$, $V_1 = 30(V)$

I ₁ = 74.2(mA)	$P_1 = 0.94(W)$
---------------------------	-----------------

 $N_1 = 500$, $N_2 = 250$

$I_1 = 550.5 (mA)$	$V_1 = 21.8(V)$	$P_1 = 2.26(W)$

مجموع توانهاي اندازه گيري شده در حالت اتصال باز و اتصال كوتاه:

0.94 + 2.26 = 3.2

اختلاف توان ورودي وخروجي در آخرين ستون جدول ٢:

10.28 - 7.68 = 2.6

دلایلی برای اختلاف آن داریم.

اتلاف انرژی که ما اندازه می گیریم,تنها ناشی از ترانسفورماتور نیست,بلکه سیم های ما و همین طور دستگاه های اندازه گیری مقاومتی دارند که باعث اتلاف انرژی می شود.

خطاهای دستگاه اندازه گیری که با دقت ۱ ولت است,بنابراین اختلاف های کوچک در توان قابل اندازه گیری نیست.یعنی تلفات در هر دو قسمت اتصال باز و کوتاه وجود دارد.هرچند طراح آزمایش فرض کرده است که در قسمت اول که مدار باز است تلفات مس نداریم ولی این یک تقریب است و در حال اول بر خلاف انتظار تلفات مس مربوط به سیم پیچ اولیه داریم و در قسمت دوم که اتصال کوتاه است تلفات هیسترزیس,جریان فوکو و جریان فلوی پراکندگی داریم.