Intercepts of the Quadratic

Case1: △>0 $d_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2}$ computes the d-intercepts of multiplicity 1.

Given a quadratic $k(d) = a d^2 + b d + c$ compute its discriminant \triangle :

$$d_{1,2} = \frac{1}{2a}$$
 computes the d-intercepts of muttiplicity 1.
 $k(0) = c$ computes the single k-intercept.
Example 1.

 $k(d) = -2d^2 + 2d + 24$ compute its discriminant \triangle :

 $\triangle = \sqrt{b^2 - 4ac}$

△=**196**>**0**

Example 2.

Example 3.

∆=0

$$d_{1,2}=4,-3$$
 $k(0)=24$ k-intercept.

k_intercept

-100

-150

Case2:
$$\Delta=0$$

$$d_{1,2}=\frac{-b\pm\sqrt{b^2-4\,ac}}{2a}=\frac{-b\pm0}{2a}=\frac{-b}{2a} \text{ single d-intercept of multiplicity 2.}$$

$d_{1,2} = -5, -5$

 $k(d) = -2 d^2 - 20 d - 50$ compute its discriminant \triangle :

 $k(d) = 9 d^2 + 162 d + 810$ compute its discriminant \triangle : $\triangle = -2916 < 0$ k(0) = 810 k-intercept.

