offer and the man is the man in the man in the man in the state of the

1

2

7.

CLAIMS

What is claimed is:

1	1.	A retroreflective article comprising:
2		a) a microporous substrate containing a plurality of pores which
3		are less than 0.5 μ m in diameter; and
4		b) a layer of reflective material located on the surface of the
5		substrate such that said layer at least partially obscures a plurality of the
6		pores of the substrate.
1	2.	A retroreflective article, as set forth in claim 1, additionally comprising
2		a protective coating material layer, overlying said layer of metal.
1	3.	A retroreflective article, as set forth in claim 2, wherein said protective
2		coating material is selected from the group consisting of polyurethanes,
3		polymethylmethacrylate and copolymers thereof, styrene-acrylonitriles,
4		polystyrene, polycarbonate, organosiloxanes, amorphous polyolefins,
5		evaporative dielectric coatings and other transparent materials.
1	4.	A retroreflective article as set forth in claim 1, wherein said substrate
2		contains a plurality of pores which have diameters which are less than
3		the wavelength of visible light.
1	5.	A retroreflective article, as set forth in claim 1, wherein said substrate
2		is comprised of a nanoporous polymeric film.
1	6.	A retroreflective article, as set forth in claim 4, wherein said substrate
2		is in the form of a fabric.

A retroreflective article, as set forth in claim 5, wherein said substrate

selected from the group consisting of polyethylene,

- polytetrafluoroethylene, polypropylene, polyethylene terephthalate, polymethylmethacrylate and polyacetates.
- 8. A retroreflective article, as set forth in claim 1, wherein said reflective material layer is selected from the group consisting of metals and dielectric coatings.
- 9. A retroreflective article, as set forth in claim 8, wherein said metals are selected from the group consisting of aluminum, chromium, nickel, silver and gold.
- 1 10. A retroreflective article, as set forth in claim 9, wherein said reflective material is aluminum.
- 1 11. A retroreflective article, as set forth in claim 10, wherein said reflective 2 material layer has a thickness of between about 0.001 to about 0.0001 3 inches (about 0.025 to about 0.0025 mm).
- 1 12. A retroreflective article, as set forth in claim 1, wherein an optical performance enhancing characteristic has been introduced into said article.
- 1 13. A retroreflective article, as set forth in claim 12, wherein said optical performance enhancing characteristic is a repeating corner cube design.
- 1 14. A retroreflective article, as set forth in claim 1, additionally comprising 2 an adhesive layer located on the side of said substrate opposite to the 3 side on which said reflective material layer is deposited.
- 1 15. A retroreflective article, as set forth in claim 1, affixed to a carrier substrate member via said adhesive layer.

- A method for the production of a reflective article comprising the steps 1 16. 2 of: 3 a) providing a substrate which contains pores which have a diameter of less than 0.5 μ m; and 4 5 b) applying a layer of reflective material to the substrate in such 6 a way that said layer at least partially obscures a plurality of the pores 7 of the substrate. 1 17. The method, as set forth in claim 16, further comprising the step of 2 applying a protective layer to said reflective article, overlying said layer 3 of metal. 1 18. The method, as set forth in claim 17, wherein said protective coating 2 material is selected from the group consisting of polyurethanes, polymethylmethacrylate and copolymers thereof, styrene-acrylonitriles, 3 polystyrene, polycarbonate, organosiloxanes, amorphous polyolefins, 5 evaporative dielectric coatings and other transparent materials. 1 19. The method, as set forth in claim 16, wherein said reflective material is 2 selected from the group consisting of metals and dielectrics. 1 20. The method, as set forth in claim 19, wherein said metal layer is selected 2 from the group consisting of aluminum, chromium, nickel, silver and 3 gold.
- 1 21. The method, as set forth in claim 20, wherein said metal is aluminum 2 and is applied in a layer that is between about 0.001 to about 0.0001

3 inches (about 0.0254 to about 0.00254 mm) thick.

GT 5350 18

- The method, as set forth in claim 16, further comprising the step of processing said article to introduce optical performance enhancing characteristics.
- The method, as set forth in claim 22, wherein said step of processing to introduce optical performance enhancing characteristics comprises embossing said article using calendar rolls or flat plates.
- 1 24. The method, as set forth in claim 23, wherein said step of processing 2 includes heating said calendar rolls.
- The method, as set forth in claim 23, wherein said step of processing to introduce optical performance enhancing characteristics includes introducing a repeating corner cube design into said reflective layer.