■ (State spaces)

- $\operatorname{def}(S,A)$ is state space
 - $:\leftrightarrow$ (i) S, A are countable sets;
 - (ii) $A \subseteq (S \rightarrow S)$;
 - (iii) $id \in A$;
 - (iv) forall $f, g \in A$, $g \circ f \in A$.
- -- An element $s \in S$ is called a "(valid) state", while $f \in A$ is a "(valid) action".
- -- Conditions (iii) and (iv) together say that "zero or more valid actions performed sequentially is still a valid action".
- -- For example, $S=\mathbb{N}$ and $A=\{n\mapsto n+i\mid i\in\mathbb{N}\}$ (trivially bijective to \mathbb{N}) form the state space of a simple counting app.

(Products of state spaces)

- (S,A) is state space,
- (T,B) is state space,
- $\mathsf{def}\ (S,A)\times (T,B)\ :=\ (\{(s,t)\mid s\in S,\ t\in T\},\{(s,t)\mapsto (f(s),g(t))\mid f\in A,\ g\in B\})\,.$
- \Rightarrow $(S,A)\times(T,B)$ is state space.
- -- Check axioms.
- -- Corollary: for any finite index set I, if (forall $i \in I$, (S_i, A_i) is state space), then so is the iterated product $\prod_{i \in I} (S_i, A_i)$.
- -- Remark: this simply means that it is possible to "decompose" a state space into a product of independent parts.

(Joinability)

- (S,A) is state space,
- $\operatorname{\mathsf{def}}\ (S,A)$ is joinable by $\wedge: S \times S \to S$
 - $:\leftrightarrow$ exists partial order < on S such that
 - (i) (S, \leq) is semilattice;
 - (ii) forall $s \in S$ and $f \in A$, $s \le f(s)$;
 - (iii) forall $s, t \in S$, $s \wedge t$ is the join (least upper bound) of s and t.
- -- Notation: if there is no ambiguity, I will simply say "(S,A) is joinable (state space)" and use " \wedge " for the join operation.
- -- Remark: the join operation " \wedge " takes whole s as input. In practice, we seldom want to send the whole application state s over network...

(Products of joinable state spaces)

- (S,A) is joinable,
- (T,B) is joinable,
- \Rightarrow $(S,A) \times (T,B)$ is joinable by $(s_1,t_1), (s_2,t_2) \mapsto (s_1 \wedge s_2, t_1 \wedge t_2)$.
- -- Check axioms (using partial order $(s_1,t_1) \leq (s_2,t_2) : \leftrightarrow s_1 \leq s_2$ and $t_1 \leq t_2$).
- -- Corollary: for any finite index set I, if (forall $i \in I$, (S_i, A_i) is joinable), then so is the iterated product $\prod_{i \in I} (S_i, A_i)$.
- -- Remark: to join is to join independent parts separately.

■ (Delta- and gamma-joinability)

(S,A) is joinable,

 $\operatorname{\mathsf{def}}\ (S,A)$ is delta-joinable by $\Delta: S \times A \times A \to S$

- $:\leftrightarrow$ forall $s\in S$ and $f,g\in A$, $\Delta(s,f,g)=f(s)\wedge g(s)$.
- -- "Three-way merge" using common ancestor and changes.
- -- For many data structures, such Δ can be implemented more efficiently than \wedge . However, this will require storing the state snapshot s in some form.

 $\operatorname{\mathsf{def}}\ (S,A)$ is gamma-joinable by $\Gamma:S imes A o S$

- $:\leftrightarrow$ forall $s\in S$ and $f,g\in A$, $\Gamma(f(s),g)=f(s)\wedge g(s)$.
- -- "Asymmetric merge" using "our" state and "their" changes.
- -- For some data structures, such Γ is possible to implement. If this is true, then there is no need to retain older state snapshots. A history of actions is still needed.
- -- Remark: it is easy to see that joinability implies delta- and gamma-joinability (simply implement Δ and Γ by first applying changes and then joining), so the two definitions are mathematically "meaningless". Practically, however, it is possible to have more efficient direct implementations for Δ and Γ . (In mathematics, we think "extensionally" equal functions to be "the same"; in programming, it makes sense to consider their "intensional" difference.)

■ (LWW-registers are gamma-joinable)

X is totally ordered set, -- The set of possible values.

 $S:=(\mathbb{R}\cup\{-\infty,+\infty\}) imes X$, -- The set of timestamped values.

 $A:=\{s\mapsto \max\{s,(t,x)\}\mid t\in\mathbb{R}\cup\{-\infty,+\infty\},\;x\in X\}$, -- The set of timestamped actions. def $\mathrm{Reg}(X):=(S,A)$.

- $\Rightarrow \operatorname{Reg}(X)$ is gamma-joinable by $(s,f)\mapsto f(s)$.
- -- Easy to check (using the "natural" total order on S).

■ (LWW-graphs are gamma-joinable)

V,E are finite sets, -- Index sets of vertices and edges.

X,Y are totally ordered sets, -- Sets of possible values on vertices and edges.

 $\operatorname{def} \operatorname{Graph}(V, E, X, Y) := \prod_{v \in V} \operatorname{Reg}(X \cup \{\bot\}) \times \prod_{e \in E} \operatorname{Reg}(Y \cup \{\bot\}).$

- \Rightarrow Graph(V, E, X, Y) is gamma-joinable.
- -- By previous results (products of joinable state spaces are joinable, so are gamma-joinable; although more efficient implementation exists).
- -- Remark: a LWW-graph is just a product of many LWW-registers. A special value \bot is used to indicate absence of a particular vertex or edge. In case an edge has a normal value but one of its endpoints has value \bot (i.e. marked as absent), the edge is disregarded.