1 Prerequisite Definitions

Alphabets Σ , and Γ are finite nonempty sets of symbols.

A string is a finite sequence of zero or more symbols from an alphabet.

 Σ^* is the set of all strings over alphabet Σ .

 ε is the empty string and cannot be in Σ .

A problem is a mapping from strings to strings.

A decision problem is a problem whose output is yes/no (or often accept/reject).

A decision problem be thought of as the set of all strings for which the function outputs "accept".

A language is a set of strings, so any set $S \subseteq \Sigma^*$ is a language, even \emptyset . Thus, decision problems are equivalent to languages.

Regular Languages

L(M) is the language accepted by machine M.

A deterministic finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set of states,
- Σ is an alphabet,
- $\delta: Q \times \Sigma \to Q$ is a transition function describing its transitions and labels,
- $q_0 \in Q$ is the starting state, and
- $F \subseteq Q$ is a set of accepting states.

If δ is not fully specified, we assume an

A deterministic finite automaton M accepts input string $w = w_1 w_2 \dots w_n$ $(w_i \in \Sigma^*)$ if there exists a sequence of states $r_0, r_1, r_2, \dots, r_n$ $(r_i \in Q)$ such that

- $r_0 = q_0$,
- for all $i \in \{1,\ldots,n\}, r_i =$ $\delta(r_{i-1}, w_i)$, and
- $r_n \in F$.

 $r_0, r_1, r_2, \dots, r_n$ are the sequence of states visited during the machine's computation.

A non-deterministic finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, where

- Q, Σ, q_0, F are the same as a deterministic finite automaton's, and
- $\delta: O \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$.

A non-deterministic finite automaton accepts the string $w = w_1 w_2 \dots w_n$ $(w_i \in \Sigma^*)$ if there exist a string y = $y_1y_2...y_m \ (y_i \in (\Sigma \cup \{\varepsilon\})^*)$ and a sequence $r = r_0, r_1, \dots, r_n \ (r_i \in Q)$ such that

- $w = y_1 \circ y_2 \circ \cdots \circ y_m$ (i.e. y is w with some ε inserted).
- $r_0 = q_0$,
- for all $i = \{1, \ldots, m\}, r_i \in$ $\delta(r_{i-1},q_i)$, and
- $r_m \in F$.

The ε -closure for any set $S \subseteq Q$ is denoted E(S), which is the set of all states in Q that can be reachable by following any number of ε -transition.

Theorem 1. A non-deterministic finite automaton can be converted to an equivalent deterministic finite automa-

A regular language is any language accepted by some finite automaton. The set of all regular languages is called the *class of regular languages*.

Theorem 2. Regular languages are closed under

- Concatenation $L_1 \circ L_2 = \{x \circ y :$ $x \in L_1$ and $y \in L_2$. Note: $L_1 \not\subseteq$ $L_1 \circ L_2$.
- Union $L_1 \cup L_2 = \{x : x \in$ $L_1 \text{ or } x \in L_2$ \}.
- Intersection $L_1 \cap L_2 = \{x : x \in$ L_1 and $x \in L_2$ \}.
- Complement $\overline{L} = \Sigma^* \setminus L = \{x : x \notin A : x \in A : x$ L}.
- Star $L^* = \{x_1 \circ x_2 \circ \cdots \circ x_k : x_i \in$ *L* and $k \ge 0$ }.

R is a regular expression if R is

- $a \in \Sigma$,
- ε,
- Ø.
- $R_1 \cup R_2$, or $R_1 | R_2$,
- $R_1 \circ R_2$, or $R_1 R_2$,
- $\bullet R_1^{\star}$
- Shorthand: $\Sigma = (a_1 | a_2 | \dots | a_k)$, $a_i \in \Sigma$,

where R_i is a regular expression. Identities of Regular Languages

- $\bullet \emptyset \cup R = R \cup \emptyset = R$
- $\emptyset \circ R = R \circ \emptyset = \emptyset$
- $\varepsilon \circ R = R \circ \varepsilon =$
- $\varepsilon^{\star} = \varepsilon$
- $\emptyset^* = \emptyset$
- $\bullet \emptyset \cup R \circ R^* = R \circ R^* \cup \varepsilon = R^*$
- $(a|b)^* = (a^*|b^*)^* = (a^*b^*)^* =$ $(a^{\star}|b)^{\star} = (a|b^{\star})^{\star} = a^{\star}(ba^{\star})^{\star} =$ $b^*(ab^*)^*$

Theorem 3. Languages accepted by DFAs = languages accepted by NFAs = regular languages

Theorem 4. If L is a finite language, L is regular.

If a computation path of any finite automaton is longer than the number of states it has, there must be a cycle in that computation path.

Lemma 1 (Pumping Lemma). Every regular language satisfies the pumping condition.

Pumping condition: There exists an integer p such that for every string $w \in L$, with |w| > p, there exist strings $x, y, z \in \Sigma^*$ with $w = xyz, y \neq \varepsilon, |xy| \leq p$ such that for all i > 0, $xy^iz \in L$.

Negation of pumping condition: For all integers p, there exists a string $w \in L$, with $|w| \ge p$, for all $x, y, z \in \Sigma^*$ with $w = xyz, y \neq \varepsilon, |xy| \leq p$, there exists $i \ge 0, i \ne 1$ such that $xy^iz \notin L$.

Limitations of finite automata:

- Only read input once, left to right.
- Only finite memory.

implicit transition to an error state.

3 Context-Free Languages

A pushdown automaton is a 6-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, where

- Q is a finite set of states,
- Σ is its input alphabet,
- Γ is its stack alphabet,
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \rightarrow 2^{Q \times (\Gamma \cup \varepsilon)}$ is its transition function,
- $q_0 \in Q$ is its starting state, and

• $F \subseteq Q$ is a finite set of accepting states.

Suppose u, v, w are strings of variables and terminals, and there is a rule $A \to w$. From the string uAv, we can obtain uwv. We write $uAv \to uwv$, and say uAv yields uwv.

If $u_1 \to u_2 \to \cdots \to u_k$, then $u_1 \to^* u_k$, or u_1 derives u_k . There must be a finite number of arrows between u_1 and u_k .

Given a grammar G, the language derived by the grammar is $L(G) = \{w \in A \mid G \}$

 $\Sigma^*: S \to^* w$ and *S* is the start variable}

Context-free grammar: the lhs of rules is a single variable, rhs is any string of variables and terminals. A context-free language is one that can be derived from a context-free grammar. An example context-free grammar is $G = (V, \Sigma, R, \langle \texttt{EXPR} \rangle)$, where $V = \{\langle \texttt{EXPR} \rangle, \langle \texttt{TERM} \rangle, \langle \texttt{FACTOR} \rangle\}$, $\Sigma = \{a, +, \times, (,)\}$, and $R = \{\langle \texttt{EXPR} \rangle \rightarrow \langle \texttt{EXPR} \rangle + \langle \texttt{TERM} \rangle | \langle \texttt{TERM} \rangle, \langle \texttt{TERM} \rangle \rightarrow \langle \texttt{TERM} \rangle \times \langle \texttt{FACTOR} \rangle | \langle \texttt{FACTOR} \rangle, \langle \texttt{FACTOR} \rangle \rightarrow (\langle \texttt{EXPR} \rangle) \}$.

A *left-most derivation* is a sequence $S \rightarrow u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_k \rightarrow w$ where each step applies a rule to the left-most variable. A grammar is *ambiguous* when it has multiple left-most derivations for the same string.

Theorem 5. A language L is recognized by a pushdown automaton iff L is described by a context-free grammar.

Theorem 6. Context-free languages are closed under union, concatenation, star.