

Blacklist Ecosystem Analysis Update: 2014

Leigh Metcalf, Jonathan M. Spring CERT® Division, Software Engineering Institute Carnegie Mellon University netsa-contact@cert.org Publication CERTCC-2014-82

December 2014

Executive Summary

This report compares the contents of 85 different Internet blacklists, also known as threat intelligence feeds or threat data feeds, to discover patterns in shared entries. It is an update to a 2013 report that compared 25 such Internet blacklists [1]. The methods and motivations of this report are similar to those employed in the earlier report. However, this update provides an expanded scope by increasing the number of lists and the duration of the investigation by another year. This report does not contain the same depth of detail as the 2013 report, especially where details have not changed. See the prior report at http://url.sei.cmu.edu/BL-13.

Lists are compared directly and indirectly, based on data type. Direct intersection comparison is straightforward; the list contents are compared temporally to determine if any list consistently published shared indicators before another list. Indirect comparison analyzes, for example, whether the existing intersection is random or has a pattern.

These multiple methods indicate a range for how often a list provides an indicator with unique information and value to computer network defense (CND). Domain-name-based indicators are unique to one list between 96.16% and 97.37% of the time. IP-address-based indicators are unique to one list between 82.46% and 95.24% of the time.

These 2014 results support our 2013 results and conclusions, and are generally consistent. Namely, there is surprisingly little overlap between any two blacklists. Though there are exceptions to this pattern, the intersection between the lists remains low, even after expanding each list to a larger neighborhood of related indicators. Few lists consistently provide content before certain other lists, but more often there is no intersection at all. When there is an intersection, many times there is no pattern to which list came first.

These results suggest that each blacklist describes a distinct sort of malicious activity. The lists do not appear to converge on one version of all the malicious indicators for the Internet. Network defenders should be advised, therefore, to obtain and evaluate as many lists as practical, since it does not appear that any new list can be rejected out-of-hand as redundant. The results also indicate that there is no global ground truth to be acquired, no matter how many lists are merged. Therefore, the study supports the assertion that blacklisting is not a sufficient defense; an organization needs other defensive measures to add depth, such as gray listing, behavior analysis, criminal penalties, speed bumps, and organizationspecific white lists.

This analysis provides a collective view of the whole ecosystem of blocking network touch points and blacklists. Many practitioners lament the fatigue of playing "whack-a-mole" against very resilient adversary resources. This tacit knowledge must be formalized before a better collective strategy can be enacted. The blacklist ecosystem supports this tacit knowledge and formalizes a part of it: since lists are largely distinct, "whack-a-mole" is inevitable and impossible. Without convergence, practitioners are left to do the best they can with the extensive but fragmentary blacklist data that is available.

Blacklist ecosystem analysis is one aspect of a larger body of work to quantify strategic cybersecurity issues. The blacklist ecosystem is intimately related to the low cost of domains and infrastructure to adversaries [2], the poor state of repair of consumer devices connected to the Internet that permits abuse [3], the challenges of modeling the interaction between the user and the adversary [4], and the challenges of designing effective and instructive observations in information security [5].

1 Motivation

The 2013 blacklist ecosystem report started quite a few conversations. It was clear the community wanted an expanded analysis to verify and solidify the results. Beyond this aim, the motivation remains largely the same and this section is adapted from the prior work [1]. Almost every organization engaged in cybersecurity uses blacklists, but effectiveness is impossible to quantify. Blacklist ecosystem analysis cannot evaluate individual list effectiveness; however, practitioners can learn plenty from quantifiable properties of the ecosystem of blacklists and the interrelationships among lists.

Although there are quite a few organizations that provide blacklists, there is little information about how various lists are produced. This secrecy is justified because most providers are engaged in a battle of wits with adversaries. Disclosure of the precise procedure of generating the lists risks of the quality of the lists. However, this secrecy does not benefit the operational analyst who must decide which lists to apply on which network access control points and is often left making semi-educated guesses about the providence and usefulness of a list in a particular situation. We previously identified this interaction between the (list) architect, user, and adversary as requiring further study [4], and the blacklist ecosystem helps to inform that broader effort.

From an operational point of view, the question is quite practical. Network defenders need to know which lists they should use to defend their networks. Evaluating individual lists is not generally possible because there is no global ground truth about maliciousness. Ecosystem-wide views of blacklist interaction is informative for the practitioner. If no lists overlap, and few mimic one another, then the strategy would appear to be to acquire all lists, as they all contain unique value.

Blacklist interrelation affects the information security evaluation and baseline creation as well. Academic and industry papers often rate performance of a particular task according to its agreement with some blacklist or lists. If all lists were equal or generation methods open, this method would be acceptable. However, because each list is different and largely non-overlapping, the ability to alter results by the choice of list leaves the evaluation process open to manipulation, as an author can choose the list that offers the best agreement.

2 Method

List acquisition and comparison methods are largely the same as in the prior report [1]. Basic results include reverse counts, list size measurements, and pairwise intersections. Notable results reported here include which lists appear to be following other lists. Methods for these processes are described in this section.

List acquisition includes all the unique indicators in a list from March 16, 2013 to June 30, 2014 (essentially 2Q2013-2Q2014), or 15 months. List acqui-

sition for the 2013 blacklist report ended on March 31, 2013; therefore, this new data analysis creates a consecutive date range of 30 months of blacklist content analysis.

List acquisition has potential inconsistencies. For example, our list acquisition was not constant. Lists were acquired at certain time points, and each list could not be acquired at exactly the same time. This asynchrony makes determining who listed what first difficult; therefore, we worked in units of days when determining "at the same time" and treated anything on the same day as equivalent. In some cases, list providers limited downloads to once per day; whereas, others encouraged two or three daily downloads. If an indicator was listed only in between downloads, it would not be observed. We judged that these inconsistencies are not relevant to the granularity at which we are comparing the lists.

Comparison across such large time windows has certain potential pitfalls, especially for IP addresses based on how they are used on the Internet. Over time, IP addresses are reassigned and reused due to features such as NAT, DHCP, BGP, and IP address stewardship or assignment changes from the regional Internet registries (RIRs).

We expect that these mechanisms have a real impact on measurement over more than one year. All of these technical features have the effect of apparently and erroneously increasing the intersection between lists. The increase in intersection is because the same identifier is used by multiple machines, and the lists may be detecting activity from a machine for each identifier it has. Alternatively, if an identifier is shared by multiple machines, two lists may detect distinct behavior from distinct machines, but appear to intersect because those machines share an identifier. These impacts generally serve to make the reverse count analysis an upper bound for how much intersection there is between lists. We account for the effect of this overestimation analytically in Section 4.

2.1 Reverse Counts

The method used for counting how many indicators are unique to one list, two lists, three lists, etc., is straightforward. Each comparable indicator (i.e., all the IP addresses) is tagged with how many lists contained it. The number of lists per indicator is counted; call it n. The reported result is the number of indicators on n lists for n = 1 up to the maximum n observed.

2.2 List Counts

List counts are the total number of unique indicators observed on the list at any time during the observation period. Each list is given an anonymized numeric identifier and labeled either LI for a list of IP addresses or LD for a list of domain names. This naming convention is used wherever lists must be referred to individually. Each list's identifier is the same throughout the report.

2.3 Pairwise Intersection Counts

Each possible pairing of lists is generated and the cardinality of the intersection between the two sets is reported. With 18 domain-name-based lists, there are $\binom{18}{2}$ or 162 pairings. With 67 IP-address-based lists there, are $\binom{67}{2}$ or 2244 pairings.

2.4 Following

For lists that had intersections of greater than 1000 elements, we performed a one-sample t-test to determine whether it seemed that one list was consistently publishing elements before another list. We calculated this determination on the granularity of one calendar day, not per second. Due to our collection delays, a

coarser granularity is necessary to reduce the effects caused by collection idiosyncrasies and to isolate genuine effects.

If neither list followed the other, we would expect any intersection to be essentially random, with as many elements discovered first by list 1 as by list 2. If each list were to find as many earlier as later, the average difference between shared element discovery times would be 0. Therefore, we hypothesize the average mean of the deltas to be 0, and we can test this result to calculate the probability it is true, based on the sample. If we can reject this null hypothesis of a 0 mean, we have reason to believe that one list is following the other.

The t-test is calculated as follows. For each shared element between the lists, a time delta t_{Δ} is calculated as $t_{\Delta} = t_1 - t_2$, where t_1 and t_2 are the times list 1 and list 2 published the element, respectively. Over all shared elements, this difference creates a list of deltas t_{Δ}^1 through t_{Δ}^n , where n is the number of shared elements; call this set T_{Δ} . The t-test is set to test that the mean of T_{Δ} is 0, so we set $\mu_0 = 0$. We calculate \bar{x} as the mean of T_{Δ} and s as the standard deviation of T_{Δ} . The value of the t-test for each list pairing is calculated as in Equation 1:

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \tag{1}$$

The p-value is calculated by the standard single-value, two-tailed t-test based on the degrees of freedom n-1. The result is the probability p that the experimental results are observed by chance even though the null hypothesis is true if we repeated the same experiment. There is only one blacklist ecosystem, so we must test certainty this way rather than repeating the measurement. We discuss what it means for the null hypothesis to be false ($\bar{x} \neq 0$) in Section 4.

A summary goal is to report on the number of indicators involved in a nonzero-mean relationship between two lists. We are unaware of a precedent for what should be considered a reasonable p-value in science of security work such as this. Initially we tested a p-value of 0.01. At this value, we failed to reject the null hypothesis for 2 of 21 domain-name-based intersections and 54 of 859 IP-address-based intersections; i.e. most results were significant. However, after inspecting the results we feared this choice of P risked a high type I error (α) . When summarizing the results, we set a more aggressive p-value for certainty that the mean was nonzero: 2.2×10^{-16} . This p-value is the lowest real value that R reports for the test, so the threshold is as aggressive as possible. However, since we cannot re-run the test this year (there is only one blacklist ecosystem), the results should be considered as exploratory analysis rather than a formal hypothesis test.

We only considered pairwise intersections with more than 1,000 elements to ensure that the sample was robust and to help control for anomalous small intersections. The indicators from any pairwise intersection that pass this test have some non-random relationship. Each pairwise intersection provides indicators; we report on the total unique indicators involved in any such potential following relationship by reporting the cardinality of the union of the set of indicators involved in any pairwise intersection passing this test.

3 Results

The results presented in this section are more concise than the results from the 2013 report. This conciseness is partly because the results are largely compatible with prior results and so do not need to be repeated. Furthermore, since the number of lists analyzed increased by over three-fold to 85, we cannot report as many detailed results and need to focus more on summarizing the results in meaningful ways.

For example, we checked to see if any of the blacklisted IP addresses were known sinkhole IP addresses. This information would essentially invalidate the indicator as an indicator of malicious activity, since sinkholes are operated by network defenders who clean up and collect intelligence on threats. Only one list out of 67, LI_3, contained any sinkhole IP addresses and that list contained only 10.

All the reported results are meant to inform the extent of uniqueness of black lists. The reverse counts indicate how frequently indicators were on multiple lists. List counts give a sense of the variety of lists involved. Pairwise intersections provide a more detailed look at how large the intersection is between each pair of lists, demonstrating that a few lists overlap quite a lot. The analysis of "following" attempts to quantify these pairwise interactions to determine whether there is a reliable cause or predictable ordering of which list produces an indicator first, or if the two lists just happen to be listing the same indicators essentially randomly.

3.1 Reverse Counts

For domain names, 30,784,571 total unique indicators were observed during the 15-month observation period. There were 29,602,108 indicators observed on exactly one list. There were 1,182,463 domain names observed on multiple lists, or 3.84% of all observed domain-name indicators. Of the indicators that appeared on multiple lists, 780,162 indicators appeared on exactly two lists, or 66% of the indicators that appeared more than once. Table 1 displays the complete results for how often domain-name indicators appeared on multiple lists.

# Lists	Count	Ratio
1	29602108	0.96158910
2	780162	0.02534263
3	163768	0.00531981
4	94065	0.00305559
5	67677	0.00219841
6	41195	0.00133817
7	21702	0.00070496
8	9401	0.00030538
9	3420	0.00011109
10	920	0.00002989
11	138	0.00000448
12	14	0.00000045
13	1	0.00000003

Table 1: Reverse count of the number of times each domain is on domain-based blacklists. (Out of 30784571 total domains on 18 lists, over 96% were unique to one list over 15 months.)

For IP addresses, 121,921,509 total unique IP address indicators were observed during the 15-month observation period. There were 100,532,890 indicators observed on exactly one list. There were 21,388,619 IP address indicators observed on more than one list, or 17.54%, with almost half of those (10,412,833) occurring on exactly two lists. Table 2 displays the complete results for how often IP-address indicators appeared on multiple lists.

3.2 List Counts

The size of the lists surveyed varies widely. Some lists have over ten million indicators, some have less than a thousand, and most are in between. The list names are anonymized and given a random identifier; LD indicates a list of domains, whereas LI indicates a list of IP addresses. Results are based on the number of unique identifiers observed over the 15-month observation period, regardless of how long the identifier was on the list. Table 3 provides the sizes of all lists

# Lists	Count	Ratio
1	100532890	0.82457058
2	10412833	0.08540604
3	3699338	0.03034196
4	2153492	0.01766294
5	1407801	0.01154678
6	986683	0.00809277
7	716422	0.00587609
8	531285	0.00435760
9	392986	0.00322327
10	288769	0.00236848
11	211412	0.00173400
12	153286	0.00125725
13	111568	0.00091508
14	81692	0.00067004
15	60492	0.00049616
16	45576	0.00037381
17	33681	0.00027625
18	25552	0.00020958
19	19157	0.00015713

# Lists	Count	Ratio
20	14568	0.00011949
21	11246	0.00009224
22	8514	0.00006983
23	6662	0.00005464
24	5309	0.00004354
25	3990	0.00003273
26	2798	0.00002295
27	1674	0.00001373
28	995	0.00000816
29	429	0.00000352
30	208	0.00000171
31	102	0.00000084
32	59	0.00000048
33	18	0.00000015
34	8	0.00000007
35	7	0.00000006
36	4	0.00000003
37	2	0.00000002
38	1	0.00000001

Table 2: Reverse count of the number of times each IP address is on IP-address-based blacklists. (Out of 121921509 total IP addresses on 67 lists, over 82% were unique to one list over 15 months.)

of domain-name-based indicators. Table 4 provides the sizes of all lists of IP-address-based indicators.

List	Unique Entries
LD_1	411871
LD_2	24103937
LD_3	55110
LD_4	83884
LD_5	73351
LD_6	47790
LD_7	67025
LD_8	3498
LD_9	499358

List	Unique Entries
LD_10	251044
LD_11	2802602
LD_12	1442233
LD_13	173
LD_14	2738773
LD_15	61424
LD_16	2559
LD_17	178632
LD_18	61088

Table 3: Unique entries over the observation period for each list of domains.

3.3 Pairwise Intersections

The results for the pairwise intersections of all lists is quite long. Table 5 and Table 6 present these results in the Appendix. The lists are anonymized following the same pattern as described in Section 3.2.

3.4 Following

The dataset is not clean enough to conclude with certainty that one list follows another. However, where two lists intersect, we can tell whether or not the lists appear independent of one another. Our "following" test fails to reject the null hypothesis if the temporal intersection features between lists appears dependent

List	Unique Entries
LI_1	22250
LI_2	62884574
LI_3	3738277
LI_4	863
LI_5	72644
LI_6	16024
LI_7	18878208
LI_8	10378
LI_9	615914
LI_10	5858
LI_11	51309
LI_12	3024492
LI_13	551965
LI_14	134890
LI_15	2355
LI_16	3462
LI_17	6795
LI_18	60403
LI_19	4432
LI_20	10975
LI_21	5738359
LI_22	160605
LI_23	1142022
LI_24	2702
LI_25	119353
LI_26	40051
LI_27	1448865
LI_28	597228
LI_29	58707
LI_30	3794
LI_31	1746662
LI_32	10756
LI_33	3705188
LI_34	44729

List	Unique Entries
LI_35	32612
LI_36	8565
LI_37	13463
LI_38	32294176
LI_39	2093
LI_40	359251
LI_41	351799
LI_42	3552898
LI_43	522814
LI_44	171776
LI_45	776793
LI_46	444116
LI_47	246350
LI_48	11145061
LI_49	9638563
LI_50	4309163
LI_51	689524
LI_52	703105
LI_53	4200727
LI_54	2342
LI_55	58097
LI_56	25068
LI_57	4201662
LI_58	4514
LI_59	1752202
LI_60	53189
LI_61	1261
LI_62	25418
LI_63	255558
LI_64	4418
LI_65	8048
LI_66	4027
LI_67	3955

Table 4: Unique entries over the observation period for each list of domains.

on the lists' interaction. This interaction may be due to following or to some other hidden variable that is influencing one list to consistently list an indicator before another.

The total number of unique domain names in a set that failed the hypothesis test of a zero mean for the pairwise intersection is 809,394, or 68.45% of the 1,182,463 indicators that appeared on multiple lists. There were 17 pairwise intersections of domain-name-based lists that contributed to this total, out of 21 total pairwise list intersections with more than 1,000 elements.

The total number of unique IP addresses in a set that failed the hypothesis test of a zero mean for the pairwise intersection is 5,803,501, or 27.13% of the 21,388,619 indicators that appeared on multiple lists. There were 648 pairwise intersections of IP-address-based lists that contributed to this total, out of 859 total pairwise list intersections with more than 1,000 elements.

4 Conclusion

There are many common blacklists that describe indicators of malicious activity for the Internet. These lists do not intersect to a large degree. Therefore, it appears that these lists do not converge on one set of malicious indicators. For comprehensive detection, it is best to consider all the lists together than to rely on an intersection.

Although IP address movement and reassignment can be estimated for the Internet as a whole, we cannot reliably estimate the probability that any single IP address was reassigned. These mechanisms inflate the amount of intersection by some factor. Such an effect does not compromise our conclusions because the relevant aspect of our conclusion is how little intersection there is between the lists. The unknown intersection inflation factor reduces our confidence in the measurement to a sure upper limit on the intersection. This limit is sufficient to demonstrate that the intersection is relatively small. This relatively small intersection is consistent with recent results about small overlap among open-source cyber-intelligence indicators as well [6].

Competition among lists vendors appears to also inflate the amount of genuine intersection among lists. If an indicator was involved in a pairwise intersection that passed our "following" test, there is some interaction between the two lists in the pair. This interaction may be one list explicitly copying the other list, and therefore always appearing later. In general, the test indicates only that there is some other factor we have not accounted for making the lists related in a predictable way. This result can be used to estimate how many indicators an organization would need to acquire for "complete" coverage; random factors such as the inflationary Internet features, like DHCP and NAT listed above, should not usually cause this "following" behavior.

The indicators from "following" relationships appear to be duplicate; all others may genuinely be useful at the time of release. If this reasoning holds, which requires some further research to be sure, then only 809,394 domains (2.63% of total) and 5,803,501 IP addresses (4.76% of total) are actually duplicative. All others would be necessary to acquire as complete a view as possible.

The naive reverse counts do not account for any inflationary Internet features. Our "following" test is likely too strict and undercounts the duplicative results from lists because of the low p-value used in the test and the artificial limit of testing only intersections with at least 1,000 indicators. Therefore, we believe the genuine result is somewhere in the range created by the two methods.

The range of unique value to CND from an indicator on domain-name-based lists is narrower than that for IP-address-based lists, but both ranges indicate highly unique indicators. Domain-name-based indicators from an average list do not provide unique value to CND between 2.63% and 3.84% of the time. That is, between 96.16% and 97.37% of domain-name-based indicators are uniquely provided by a single source. IP-address-based indicators from an average list do not provide unique value to CND between 4.76% and 17.54% of the time. This wider range for IP-address-based lists is expected because there are fewer IP addresses than domain names, and because IP addresses are more commonly reused. Therefore, the large majority of the time, any list's indicator will provide unique information and value to CND.

From a practical point of view, one might surmise that each list, or perhaps a pair of related lists, is describing and following a specific type of malicious behavior. Each of these malicious behaviors is a particular kind of malicious behavior, but is identified differently from other sorts of malicious behavior. We cannot compare one list to another list to determine how well it identifies any particular behavior, because each list is idiosyncratically following a different kind of behavior. This, in turn, means that there is no thorough or convenient way to evaluate the performance of any of these lists, since each list is a one-of-a-kind authority on the particular type of activity it detects.

A further difficulty with this situation is that there is no ready taxonomy or terminology for describing precisely what activity a malicious actor is performing. Attempts to categorize a list as following a particular malicious activity will run into terminology and communication issues between researchers. The best way to determine what malicious activity a list is following is to know what algorithm the list uses; however, as stated above, list population algorithms are understandably almost never shared. This leaves both the academic and operational cybersecurity community with few resources to evaluate efficacy.

This problem is especially acute for academic researchers attempting to prove their method is accurate by comparing their results to known lists. Most lists do not intersect—and if they do intersect, they do so haphazardly—so what a researcher considers to be a "good" rate of intersection to prove a research method accurate may be meaningless. Further, it is important to consider which lists are used as benchmarks, since so few common public lists intersect.

The CND take-away from this analysis is that any one list, or any ten lists, cannot provide a comprehensive description of all malicious indicators. Every list the defender can obtain and use will probably continue to provide new, non-overlapping defense to the network. Though the defender must evaluate the quality of new identifiers, any new list can provide useful identifiers of malicious activity not already contained in the defender's list.

A CND analyst or architect can also conclude that blacklists are insufficient for adequate network defense. If blocking is so fragile, it is too easy to avoid. Other established methods of CND should be prioritized and put into production as appropriate, such as gray lists, behavioral analysis, web proxy content analysis, and white lists.

These blacklist results likewise challenge threat intelligence analysts. Existing blacklists should be used to examine new threats with caution. Investigations certainly cannot rely only on blacklists for the detection of ongoing activity. Reputation and context of larger units of the Internet become increasingly important to get a better idea of what behavior is suspicious. For this task, processes, such as intelligent indicator expansion, are useful [7].

Acknowledgements

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by Department of Homeland Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of Department of Homeland Security or the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon®, CERT® and CERT Coordination Center® are registered marks of Carnegie Mellon University.

DM-0002026

References

- [1] L. B. Metcalf and J. M. Spring, "Everything you wanted to know about blacklists but were afraid to ask," Software Engineering Institute, CERT Coordination Center, Pittsburgh, PA, Tech. Rep. CERTCC-2013-39, 2013. [Online]. Available: http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=83438
- [2] J. Spring, "Modeling malicious domain name take-down dynamics: Why eCrime pays," in *IEEE eCrime Researchers Summit*. Anti-Phishing Working Group, September 17, 2013. [Online]. Available: http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=88265
- [3] C. Hallenbeck, C. King, J. Spring, and P. Vixie, "Abuse of customer premise equipment and recommended actions," in *Black Hat USA* 2014. Las Vegas, Nevada: UBM, Aug 7, 2014. [Online]. Available: http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=312647
- [4] J. M. Spring, "Toward realistic modeling criteria of games in internet security," *Journal of Cyber Security & Information Systems*, vol. 2, no. 2, pp. 2–11, 2014. [Online]. Available: http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=312713
- [5] E. Hatleback and J. M. Spring, "Exploring a mechanistic approach to experimentation in computing," *Philosophy & Technology*, vol. 27, no. 3, pp. 441–459, 2014.
- [6] R. Trost, "Threat intelligence library a new revolutionary technology to enhance the soc battle rhythm!" in *Black Hat USA 2014*. Las Vegas, Nevada: UBM, Aug 7, 2014.
- [7] J. M. Spring, "A notation for describing the steps in indicator expansion," in *IEEE eCrime Researchers Summit*. Anti-Phishing Working Group, September 17, 2013. [Online]. Available: http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=73560

Appendix: Multi-page Results

Since this report increases the total number of lists analyzed from 25 to 85, we cannot support the same level of detail as the prior report. The combinatorics of the pairwise intersections alone run many tens of pages, whereas they occupied only a few pages in our 2013 report. Therefore, we limit the rote reporting to just the pairwise intersections between every pair of two lists with the same type of indicator (domains or IP addresses). Further detail would more likely drown the reader in detail rather than provide insights.

Pairwise Intersection Counts

Table 5: Pairwise intersections for lists of domains. (Percentage reported is of the smaller list of the two.)

Doma	in Lists	Intersect	% of Smaller
LD_1	LD_2	49	0.01
LD_1	LD_3	123	0.22
LD_1	LD_4	6044	7.21
LD_1	LD_5	13192	17.98
LD_1	LD_6	65	0.14
LD_1	LD_7	836	1.25
LD_1	LD_8	327	9.35
LD_1	LD_9	38802	9.42
LD_1	LD_10	27749	11.05
LD_1	LD_11	53168	12.91
LD_1	LD_12	32348	7.85
LD_1	LD_13	0	0.00
LD_1	LD_14	32973	8.01
LD_1	LD_15	7206	11.73
LD_1	LD_16	4	0.16
LD_1	LD_17	285	0.16
LD_1	LD_18	10691	17.50
LD_2	LD_3	266	0.48
LD_2	LD_4	228	0.27
LD_2	LD_5	283	0.39
LD_2	LD_6	9750	20.40
LD_2	LD_7	22	0.03
LD_2	LD_8	41	1.17
LD_2	LD_9	6257	1.25
LD_2	LD_10	1077	0.43
LD_2	LD_11	3096	0.11
LD_2	LD_12	1048	0.07
LD_2	LD_13	72	41.62
LD_2	LD_14	86669	3.16
LD_2	LD_15	140	0.23
LD_2	LD_16	264	10.32
LD_2	LD_17	15	0.01
LD_2	LD_18	249	0.41
LD_3	LD_4	90	0.16
LD_3	LD_5	379	0.69
LD_3	LD_6	119	0.25
LD_3	LD_7	8123	14.74
LD_3	LD_8	581	16.61
LD_3	LD_9	408	0.74
LD_3	LD_10	633	1.15
Doma	in Lists	Intersect	% of Smaller

Doma	in Lists	Intersect	% of Smaller
LD 3	LD_11	21598	39.19
LD_3	LD_12	24300	44.09
LD_3	LD_13	0	0.00
LD 3	LD 14	1183	2.15
LD_3	LD_14 LD_15	1334	2.42
LD_3 LD_3	LD_13 LD_16	9	0.35
LD_3 LD_3			0.33
_	LD_17	518	
LD_3	LD_18	651	1.18
LD_4	LD_5	9629	13.13
LD_4	LD_6	168	0.35
LD_4	LD_7	685	1.02
LD_4	LD_8	488	13.95
LD_4	LD_9	31829	37.94
LD_4	LD_10	31538	37.60
LD_4	LD_11	36496	43.51
LD_4	LD_12	22686	27.04
LD_4	LD_13	0	0.00
LD_4	LD_14	34926	41.64
LD_4	LD_15	5163	8.41
LD_4	LD_16	26	1.02
LD_4	LD_17	568	0.68
LD_4	LD_18	7963	13.04
LD_5	LD_6	199	0.42
LD_5	LD_7	1955	2.92
LD_5	LD_8	1218	34.82
LD_5	LD_9	59672	81.35
LD_5	LD_10	46846	63.87
LD_5	LD_11	71288	97.19
LD_5	LD_12	56766	77.39
LD_5	LD_13	0	0.00
LD_5	LD_14	51964	70.84
LD_5	LD_15	9123	14.85
LD_5	LD_16	17	0.66
LD_5	LD_17	513	0.70
LD_5	LD_18	20869	34.16
LD_6	LD_7	26	0.05
LD_6	LD_8	29	0.83
LD_6	LD_9	3394	7.10
LD_6	LD_10	700	1.46
LD_6	LD_11	894	1.87
LD_6	LD_12	566	1.18
LD_6	LD_13	51	29.48
LD_6	LD_14	21401	44.78
LD_6	LD_15	75	0.16
LD_6	LD_16	608	23.76
LD_6	LD_17	27	0.06
LD_6	LD_18	159	0.33
LD_7	LD_8	909	25.99
LD_7	LD_9	3400	5.07
LD_7	LD_10	3326	4.96
LD_7	LD_11	47226	70.46
LD_7	LD_12	52000	77.58
LD_7	LD_13	0	0.00
LD_7	LD_14	5030	7.50
LD_7	LD_15	2752	4.48
Doma	in Lists	Intersect	% of Smaller

	n Lists	Intersect	% of Smaller
LD_7	LD_16	6	0.23
LD_7	LD_17	677	1.01
LD_7	LD_18	1887	3.09
LD_8	LD_9	1257	35.93
LD_8	LD_10	1531	43.77
LD_8	LD_11	3459	98.89
LD_8	LD_11	2576	73.64
LD_8	LD_12 LD_13	0	0.00
LD_8	LD_13 LD_14	1404	40.14
LD_8	LD_14 LD_15	360	10.29
LD_8	LD_13 LD_16	300	0.12
LD_8		213	6.09
_	LD_17		
LD_8	LD_18	1151	32.90
LD_9	LD_10	164295	65.44
LD_9	LD_11	248132	49.69
LD_9	LD_12	161632	32.37
LD_9	LD_13	11	6.36
LD_9	LD_14	343949	68.88
LD_9	LD_15	33077	53.85
LD_9	LD_16	67	2.62
LD_9	LD_17	754	0.42
LD_9	LD_18	45675	74.77
LD_10	LD_11	198030	78.88
LD 10	LD 12	126006	50.19
LD 10	LD 13	1	0.58
LD_10	LD_14	227320	90.55
LD 10	LD_15	21646	35.24
LD 10	LD_16	142	5.55
LD 10	LD 17	1363	0.76
LD 10	LD_18	34391	56.30
LD 11	LD 12	637635	44.21
LD 11	LD_12	2	1.16
LD_11	LD_13	245637	8.97
LD_11	LD_15	41458	67.49
LD_11	LD_13 LD_16	184	7.19
LD_11 LD_11	LD_10 LD 17	5147	2.88
_	_		
LD_11	LD_18	52263	85.55
LD_12	LD_13	172026	0.58
LD_12	LD_14	172836	11.98
LD_12	LD_15	30508	49.67
LD_12	LD_16	89	3.48
LD_12	LD_17	2866	1.60
LD_12	LD_18	41572	68.05
LD_13	LD_14	38	21.97
LD_13	LD_15	0	0.00
LD_13	LD_16	0	0.00
LD_13	LD_17	0	0.00
LD_13	LD_18	0	0.00
LD_14	LD_15	27015	43.98
LD_14	LD_16	845	33.02
LD_14	LD_17	1318	0.74
LD_14	LD_18	38961	63.78
LD_15	LD_16	7	0.27
LD_15	LD_17	443	0.72
LD_15	LD_18	17879	29.27
Domai	n Lists	Intersect	% of Smaller

Domain Lists		Intersect	% of Smaller
LD_16	LD_17	7	0.27
LD_16	LD_18	18	0.70
LD_17	LD_18	429	0.70
Domai	n Lists	Intersect	% of Smaller

Table 6: Pairwise intersections for lists of domains. (Percentage reported is of the smaller list of the two.)

IP-Add	ress Lists	Intersect	% of Smaller
	LI_2	2432	0.00
LI_1	LI_3	10679	0.29
LI_1	LI_4	6	0.03
LI_1	LI_5	8493	11.69
LI_1	LI_6	7134	32.06
LI 1	LI_7	50	0.00
LI 1	LI_8	3	0.01
LI 1	LI_9	162	0.03
LI 1	LI_10	9	0.04
LI 1	LI_11	10	0.02
LI_1	LI 12	290	0.01
LI_1	LI_13	271	0.05
LI_1	LI_14	1	0.00
LI_1	LI_15	0	0.00
LI_1 LI_1	LI_15 LI_16	12	0.05
LI_1 LI_1	LI_10 LI_17	0	0.00
LI_1 LI_1	LI_17 LI_18	38	0.06
LI_1 LI_1	LI_18 LI_19	0	0.00
LI_I LI 1	LI_19 LI_20		
	LI_20 LI_21	0	0.00
LI_1		727	0.01
LI_1	LI_22	56	0.03
LI_1	LI_23	262	0.02
LI_1	LI_24	0	0.00
LI_1	LI_25	35	0.03
LI_1	LI_26	14	0.04
LI_1	LI_27	222	0.02
LI_1	LI_28	207	0.03
LI_1	LI_29	33	0.06
LI_1	LI_30	1	0.00
LI_1	LI_31	384	0.02
LI_1	LI_32	10	0.04
LI_1	LI_33	419	0.01
LI_1	LI_34	21	0.05
LI_1	LI_35	21	0.06
LI_1	LI_36	10	0.04
LI_1	LI_37	16	0.07
LI_1	LI_38	1114	0.00
LI_1	LI_39	9	0.04
 LI_1	LI_40	107	0.03
LI_1	LI_41	115	0.03
LI_1	LI 42	524	0.01
LI_1 LI_1	LI_42 LI_43	132	0.03
LI_1 LI_1	LI_43 LI_44	44	0.03
LI_1 LI_1	LI_44 LI 45	0	0.00
LI_I LI_1	LI_43 LI 46	153	0.00
LI_1 LI_1	LI_40 LI_47	96	0.03
ir-Audi	ress Lists	Intersect	% of Smaller

IP-Addr	ess Lists	Intersect	% of Smaller
LI 1	LI_48	1142	0.01
LI 1	LI 49	847	0.01
LI 1	LI_50	732	0.02
LI_1 LI_1	LI_50 LI_51	100	0.01
_			
LI_1	LI_52	28	0.00
LI_1	LI_53	652	0.02
LI_1	LI_54	4	0.02
LI_1	LI_55	0	0.00
LI_1	LI_56	25	0.10
LI_1	LI_57	848	0.02
LI_1	LI_58	0	0.00
LI_1	LI_59	419	0.02
LI_1	LI_60	128	0.24
LI_1	LI_61	0	0.00
LI_1	LI_62	23	0.09
LI_1	LI_63	61	0.02
 LI_1	LI_64	6	0.03
LI_1	LI_65	7	0.03
LI_1	LI_66	38	0.17
LI_1	LI_67	2	0.01
LI_1 LI_2	LI_3	172020	0.27
	LI_3 LI 4		
LI_2	_	24	0.00
LI_2	LI_5	4195	0.01
LI_2	LI_6	570	0.00
LI_2	LI_7	38798	0.06
LI_2	LI_8	163	0.00
LI_2	LI_9	337147	0.54
LI_2	LI_10	1223	0.00
LI_2	LI_11	341	0.00
LI_2	LI_12	1262183	2.01
LI_2	LI_13	431535	0.69
LI_2	LI_14	2147	0.00
LI_2	LI_15	44	0.00
LI_2	LI_16	627	0.00
LI_2	LI_17	2	0.00
LI_2	LI 18	44538	0.07
LI_2	LI_19	0	0.00
LI_2	LI_20	13	0.00
LI_2 LI_2		4744289	7.54
	LI_21		
LI_2	LI_22	139465	0.22
LI_2	LI_23	1002042	1.59
LI_2	LI_24	45	0.00
LI_2	LI_25	27055	0.04
LI_2	LI_26	10801	0.02
LI_2	LI_27	1261143	2.01
LI_2	LI_28	418279	0.67
LI_2	LI_29	38023	0.06
LI_2	LI_30	891	0.00
LI_2	LI_31	1488061	2.37
LI_2	LI_32	5016	0.01
LI_2	LI_33	3314532	5.27
 LI_2	LI_34	22929	0.04
 LI_2	LI_35	2484	0.00
LI_2	LI_36	785	0.00
LI_2	LI_37	10365	0.02
	ess Lists	Intersect	% of Smaller
/ 1001		111111111111111	, o or Simuloi

IP-Addr	ess Lists	Intersect	% of Smaller
	LI_38	4996421	7.95
LI_2	LI_39	459	0.00
LI_2	LI_40	326681	0.52
LI_2	LI_41	306717	0.49
LI_2	LI_41 LI 42	2910147	4.63
LI_2 LI_2	LI_42 LI 43	400116	0.64
	_		
LI_2	LI_44	80052	0.13
LI_2	LI_45	73	0.00
LI_2	LI_46	318311	0.51
LI_2	LI_47	188167	0.30
LI_2	LI_48	9146038	14.54
LI_2	LI_49	6680645	10.62
LI_2	LI_50	3666567	5.83
LI_2	LI_51	625296	0.99
LI_2	LI_52	49680	0.08
LI_2	LI_53	3696190	5.88
LI_2	LI_54	1279	0.00
LI_2	LI_55	13417	0.02
LI_2	LI_56	16639	0.03
LI_2	LI_57	3254065	5.17
LI_2	LI_58	0	0.00
LI_2	LI_59	1083324	1.72
LI_2	LI_60	13267	0.02
LI_2	LI_61	605	0.00
LI_2	LI_62	12906	0.02
LI_2	LI_63	232722	0.37
LI_2	LI_64	886	0.00
LI_2	LI_65	2717	0.00
 LI_2	LI_66	414	0.00
 LI_2	LI_67	1502	0.00
LI_3	LI_4	569	0.02
LI_3	LI_5	42838	1.15
LI_3	LI_6	10917	0.29
LI_3	LI_7	6457	0.03
LI_3	LI_8	82	0.00
LI 3	LI_9	11358	0.30
LI_3	LI_10	656	0.02
LI_3	LI_11	1432	0.04
LI_3	LI_12	28060	0.75
LI_3	LI_13	14747	0.39
LI_3	LI_13	128	0.00
LI_3	LI_14 LI_15	150	0.00
LI_3 LI_3	LI_15 LI_16	253	0.01
LI_3	LI_10 LI_17	4	0.00
LI_3	LI_17 LI_18	2244	0.06
LI_3	LI_10 LI_19	10	0.00
LI_3 LI_3	LI_19 LI_20	41	0.00
LI_3 LI_3	LI_20 LI_21	50107	0.87
LI_3 LI_3	LI_21 LI_22	3726	0.10
LI_3 LI_3	LI_22 LI_23		0.10
LI_3 LI_3	LI_23 LI_24	12205 1	0.33
LI_3 LI_3	LI_24 LI_25	5075	0.00
LI_3 LI_3	LI_25 LI_26	3685	0.14
LI_3 LI_3			
LI_3 LI_3	LI_27	11774 10533	0.32 0.28
	LI_28 ess Lists	10533	% of Smaller
ir-Audi	CSS LISTS	Intersect	70 OI SIIIAIIEI

IP-Addr	ess Lists	Intersect	% of Smaller
	LI_29	3112	0.08
LI_3	LI_30	276	0.01
LI_3	LI_31	24464	0.65
LI_3 LI_3	LI 32	1125	0.03
LI_3 LI_3	LI_32 LI_33	27032	0.03
_	_		
LI_3	LI_34	1105	0.03
LI_3	LI_35	988	0.03
LI_3	LI_36	626	0.02
LI_3	LI_37	862	0.02
LI_3	LI_38	86978	0.27
LI_3	LI_39	272	0.01
LI_3	LI_40	3623	0.10
LI_3	LI_41	5021	0.13
LI_3	LI_42	18993	0.51
LI_3	LI_43	10557	0.28
LI_3	LI_44	1691	0.05
LI_3	LI_45	2	0.00
LI_3	LI_46	8996	0.24
LI_3	LI_47	5696	0.15
LI_3	LI_48	76497	0.69
LI_3	LI 49	52594	0.55
LI_3	LI_50	45608	1.06
LI_3	LI_51	4664	0.12
LI_3	LI_52	1840	0.05
LI_3	LI_53	24696	0.59
LI_3	LI_54	292	0.01
LI_3	LI_55	12	0.00
LI_3	LI_56	585	0.02
LI_3	LI_57	56236	1.34
LI_3 LI_3	LI_58	1	0.00
LI_3 LI_3	LI_59	46103	1.23
LI_3 LI_3	LI_60	3069	0.08
LI_3 LI_3	LI 61	125	0.00
LI_3 LI_3	LI_62	1894	0.05
LI_3 LI_3	LI 63	1832	0.05
LI_3 LI 3	LI_03 LI_64	226	0.03
_	LI_65		0.01
LI_3		521	0.01
LI_3	LI_66	282	
LI_3	LI_67	246	0.01
LI_4	LI_5	12	0.02
LI_4	LI_6	10	0.06
LI_4	LI_7	2	0.00
LI_4	LI_8	3	0.03
LI_4	LI_9	2	0.00
LI_4	LI_10	0	0.00
LI_4	LI_11	0	0.00
LI_4	LI_12	4	0.00
LI_4	LI_13	10	0.00
LI_4	LI_14	0	0.00
LI_4	LI_15	0	0.00
LI_4	LI_16	0	0.00
LI_4	LI_17	0	0.00
LI_4	LI_18	1	0.00
LI_4	LI_19	0	0.00
LI_4	LI_20	0	0.00
IP-Addr	ess Lists	Intersect	% of Smaller

IP-Addr	ess Lists	Intersect	% of Smaller
LI_4	LI_21	7	0.00
LI_4	LI_22	2	0.00
LI_4	LI_23	2	0.00
LI_4	LI_24	0	0.00
LI_4	LI_25	0	0.00
LI_4	LI_26	1	0.00
LI_4	LI_27	5	0.00
LI_4	LI_28	3	0.00
LI_4	LI_29	0	0.00
LI_4	LI_30	0	0.00
LI_4	LI_31	6	0.00
LI_4	LI_32	0	0.00
LI_4	LI_33	5	0.00
LI_4	LI_34	0	0.00
LI_4 LI_4	LI_35	21	0.06
LI_4 LI_4	LI_36	2	0.02
LI_4 LI_4	LI_37	1	0.01
LI_4 LI_4	LI_37 LI_38	7	0.00
LI_4 LI_4	LI_38 LI_39	0	0.00
LI_4 LI_4	LI_39 LI_40	0	0.00
LI_4 LI_4		5	
	LI_41		0.00
LI_4	LI_42	19	0.00
LI_4	LI_43	1	0.00
LI_4	LI_44	0	0.00
LI_4	LI_45	0	0.00
LI_4	LI_46	6	0.00
LI_4	LI_47	2	0.00
LI_4	LI_48	16	0.00
LI_4	LI_49	11	0.00
LI_4	LI_50	13	0.00
LI_4	LI_51	2	0.00
LI_4	LI_52	1	0.00
LI_4	LI_53	6	0.00
LI_4	LI_54	0	0.00
LI_4	LI_55	0	0.00
LI_4	LI_56	0	0.00
LI_4	LI_57	14	0.00
LI_4	LI_58	0	0.00
LI_4	LI_59	11	0.00
LI_4	LI_60	5	0.01
LI_4	LI_61	0	0.00
LI_4	LI_62	0	0.00
LI_4	LI_63	1	0.00
LI_4	LI_64	0	0.00
LI_4	LI_65	1	0.01
LI_4	LI_66	1	0.02
LI_4	LI_67	0	0.00
LI_5	LI_6	9998	13.76
LI_5	LI_7	137	0.00
LI_5	LI_8	6	0.01
LI_5	LI_9	321	0.05
LI_5	LI_10	11	0.02
LI_5	LI_11	37	0.05
LI_5	LI_12	874	0.03
LI_5	LI_13	695	0.13
IP-Addr	ess Lists	Intersect	% of Smaller

IP-Addı	ress Lists	Intersect	% of Smaller
LI_5	LI_14	2	0.00
LI_5	LI_15	2	0.00
LI_5	LI_16	26	0.04
LI_5	LI_17	1	0.00
LI_5	LI_18	141	0.19
LI_5	LI_19	0	0.00
LI_5	LI_20	0	0.00
LI_5	LI_21	1739	0.03
LI_5	LI_22	97	0.06
LI_5	LI_23	604	0.05
LI_5	LI_24	0	0.00
LI_5	LI_25	138	0.12
LI_5	LI_26	39	0.05
LI_5	LI_27	385	0.03
LI_5	LI_28	821	0.14
LI_5	LI_29	109	0.15
LI_5	LI_30	2	0.00
LI_5	LI_31	902	0.05
LI_5	LI_32	18	0.02
LI_5	LI_33	730	0.02
LI_5	LI 34	35	0.05
LI_5	LI 35	53	0.07
LI_5	LI_36	18	0.02
LI_5	LI_37	22	0.03
LI_5	LI_38	2285	0.01
LI_5 LI_5	LI_39	13	0.02
LI_5 LI_5	LI_40	168	0.02
LI_5 LI_5	LI_40 LI_41	208	0.06
LI_5 LI_5	LI_42	1109	0.03
LI_5 LI_5	LI_42 LI_43	314	0.06
LI_5 LI_5	LI_43 LI_44	148	0.09
LI_5 LI_5	LI_44 LI_45	0	0.00
LI_5 LI_5	LI_45 LI_46	282	0.06
LI_5 LI_5	LI_40 LI_47	177	0.07
LI_5 LI_5	LI_47 LI_48	2466	0.07
LI_5 LI_5	LI_48 LI 49	2021	0.02
_	LI_49 LI_50	1615	0.02
LI_5		243	
LI_5	LI_51		0.04 0.00
LI_5 LI_5	LI_52	32 1420	
	LI_53	1430	0.03
LI_5	LI_54	7	0.01
LI_5	LI_55	0	0.00
LI_5	LI_56	43	0.06
LI_5	LI_57	2026	0.05
LI_5	LI_58	0	0.00
LI_5	LI_59	978	0.06
LI_5	LI_60	103	0.14
LI_5	LI_61	5	0.01
LI_5	LI_62	55	0.08
LI_5	LI_63	63	0.02
LI_5	LI_64	11	0.02
LI_5	LI_65	12	0.02
LI_5	LI_66	14	0.02
LI_5	LI_67	11	0.02
LI_6	LI_7	41	0.00
IP-Addı	ress Lists	Intersect	% of Smaller

	ess Lists	Intersect	% of Smaller
LI_6	LI_8	4	0.03
LI_6	LI_9	93	0.02
LI_6	LI_10	10	0.06
LI_6	LI_11	12	0.02
LI_6	LI_12	138	0.00
LI_6	LI_13	135	0.02
LI_6	LI_14	1	0.00
LI_6	LI_15	1	0.01
LI_6	LI_16	11	0.07
LI_6	LI_17	0	0.00
LI_6	LI_18	15	0.02
LI_6	LI_19	0	0.00
LI_6	LI_20	0	0.00
LI_6	LI_21	361	0.01
LI_6	LI_22	25	0.02
LI_6	LI_23	103	0.01
LI_6	LI 24	0	0.00
LI_6	LI_25	29	0.02
LI_6	LI_26	10	0.03
LI_6	LI_27	104	0.01
LI_6	LI_28	94	0.02
LI_6	LI_29	15	0.03
LI_6	LI_30	1	0.01
LI 6	LI_31	214	0.01
LI 6	LI_32	7	0.04
LI_6	LI_33	179	0.00
LI_6	LI_34	11	0.02
LI_6	LI_35	27	0.08
LI_6	LI_36	11	0.07
LI_6	LI_37	6	0.04
LI_6	LI_38	443	0.00
LI_0 LI 6	LI 39	10	0.06
LI_0 LI 6	LI_40	46	0.00
LI_6	LI_40 LI_41	51	0.01
LI_6	LI 42	196	0.01
LI_6	LI 43	77	0.01
LI_6	LI_43 LI_44	19	0.01
LI_6	LI_44 LI_45	0	0.01
LI_6	LI_45 LI_46	74	0.00
LI_6	LI_40 LI_47	61	0.02
LI_6 LI 6		624	
_	LI_48		0.01
LI_6	LI_49	425	0.00
LI_6	LI_50 LI_51	394	0.01
LI_6	LI_51 LI_52	27	0.00
LI_6		24	0.00
LI_6	LI_53	255	0.01
LI_6	LI_54	2	0.01
LI_6	LI_55	0	0.00
LI_6	LI_56	15	0.06
LI_6	LI_57	524	0.01
LI_6	LI_58	0	0.00
LI_6	LI_59	267	0.02
LI_6	LI_60	54	0.10
LI_6	LI_61	2	0.01
LI_6	LI_62	20	0.08
IP-Addr	ess Lists	Intersect	% of Smaller

IP-Add	ress Lists	Intersect	% of Smaller
LI_6	LI_63	21	0.01
LI_6	LI_64	1	0.01
LI_6	LI_65	3	0.02
LI_6	LI_66	23	0.14
LI_6	LI_67	3	0.02
LI_0 LI_7	LI_8	37	0.00
LI_7	LI_9	6323	0.03
LI_7	LI_10	7	0.00
LI_7	LI_11	44	0.00
LI_7	LI_12	14439	0.08
LI_7	LI_13	2781	0.01
LI_7	LI_14	625	0.00
LI_7	LI_15	11	0.00
LI_7	LI_16	0	0.00
LI_7	LI_17	0	0.00
LI_7	LI_18	268	0.00
LI_7	LI_19	0	0.00
LI_7	LI 20	0	0.00
LI_7	LI_21	16150	0.09
LI_7 LI_7	LI_22	333	0.00
LI_7 LI_7	LI_23	3874	0.02
LI_7 LI_7	LI_23 LI_24		
		12	0.00
LI_7	LI_25	778	0.00
LI_7	LI_26	1816	0.01
LI_7	LI_27	1061	0.01
LI_7	LI_28	1407	0.01
LI_7	LI_29	487	0.00
LI_7	LI_30	3	0.00
LI_7	LI_31	3873	0.02
LI_7	LI_32	269	0.00
LI_7	LI_33	8636	0.05
LI_7	LI 34	70	0.00
LI_7	LI_35	31	0.00
LI_7	LI_36	53	0.00
LI_7	LI_37	27	0.00
LI 7	LI 38	5650	0.02
LI_7 LI_7	LI_30	249	0.00
LI_7 LI_7	LI_39 LI_40	445	0.00
LI_7 LI_7			
LI_/ LI_7	LI_41	500	0.00
LI_/	LI_42	6001	0.03
LI_7	LI_43	1859	0.01
LI_7	LI_44	754	0.00
LI_7	LI_45	0	0.00
LI_7	LI_46	342	0.00
LI_7	LI_47	624	0.00
LI_7	LI_48	25012	0.13
LI_7	LI_49	9139	0.05
LI_7	LI_50	9090	0.05
LI_7	LI_51	236	0.00
LI_7	LI_52	14360	0.08
LI_7	LI_53	6266	0.03
LI_7	LI_54	277	0.00
LI_7 LI_7	LI_55	639	0.00
LI_7 LI_7	LI_56	11	0.00
LI_7 LI_7	LI_50 LI_57	13752	0.00
	ress Lists		% of Smaller
ır-Audi	iess Lists	Intersect	70 OI SIIIaiier

IP-Addr	ess Lists	Intersect	% of Smaller
LI_7	LI_58	0	0.00
LI_7	LI_59	8663	0.05
LI_7	LI_60	318	0.00
LI_7	LI_61	1	0.00
LI_7	LI_62	182	0.00
LI_7	LI_63	61	0.00
LI_7	LI_64	24	0.00
LI_7 LI_7	LI_65	50	0.00
LI_7 LI_7	LI_66	52	0.00
LI_7 LI_7	LI_67	12	
		4	0.00
LI_8	LI_9	-	0.00
LI_8	LI_10	0	0.00
LI_8	LI_11	9	0.02
LI_8	LI_12	24	0.00
LI_8	LI_13	26	0.00
LI_8	LI_14	186	0.14
LI_8	LI_15	5	0.05
LI_8	LI_16	1	0.01
LI_8	LI_17	0	0.00
LI_8	LI_18	5	0.01
LI_8	LI_19	0	0.00
LI_8	LI_20	0	0.00
LI_8	LI_21	38	0.00
LI_8	LI_22	1	0.00
LI_8	LI_23	2	0.00
LI_8	LI_24	6	0.06
LI_8	LI_25	2	0.00
LI_8 LI_8	LI_25 LI_26	1	
		22	0.00
LI_8	LI_27		0.00
LI_8	LI_28	5	0.00
LI_8	LI_29	0	0.00
LI_8	LI_30	0	0.00
LI_8	LI_31	30	0.00
LI_8	LI_32	0	0.00
LI_8	LI_33	19	0.00
LI_8	LI_34	1	0.00
LI_8	LI_35	133	0.41
LI_8	LI_36	0	0.00
LI_8	LI_37	0	0.00
LI_8	LI_38	79	0.00
LI_8	LI_39	0	0.00
LI_8	LI_40	3	0.00
LI_8	LI_41	4	0.00
LI_8	LI_42	36	0.00
LI_8	LI_43	5	0.00
LI_8	LI_44	1	0.00
LI_8	LI_45	2	0.00
LI_8	LI_46	8	0.00
LI_8	LI_47	5	0.00
LI 8	LI_48	81	0.00
LI_8	LI_49	56	0.00
LI_8	LI_50	46	0.00
LI_8	LI_50 LI_51	3	0.00
LI_8 LI_8	LI_51 LI_52	1	0.00
LI_8 LI_8	LI_52 LI_53	28	0.00
	ess Lists	Intersect	% of Smaller
II -Auul	Coo Lists	mersect	of Sinaner

IP-Addr	ess Lists	Intersect	% of Smaller
LI_8	LI_54	0	0.00
LI_8	LI_55	0	0.00
LI_8	LI_56	1	0.00
LI_8	LI_57	51	0.00
LI_8	LI_58	0	0.00
LI_8	LI_59	32	0.00
LI_8	LI_60	2	0.00
LI_8	LI_61	2	0.02
LI_8	LI_62	3	0.01
LI_8	LI_63	2	0.00
LI_8	LI_64	0	0.00
LI_8	LI_65	120	1.16
LI_8	LI_66	0	0.00
LI_8	LI_67	0	0.00
LI_9	LI_10	2249	0.37
LI_9	LI_11	3949	0.64
LI_9	LI_12	248862	8.23
LI_9	LI_13	109384	17.76
LI_9	LI_13	21	0.00
LI_9	LI_15	16	0.00
LI_9	LI_15 LI_16	62	0.01
LI_9 LI_9	LI_10 LI_17	1528	0.25
LI_9 LI_9	LI_17 LI_18	22499	3.65
LI_9 LI_9	LI_18 LI_19	239	0.04
LI_9 LI 9	LI_19 LI 20	2425	0.04
_	_		
LI_9	LI_21	327380	5.71
LI_9	LI_22	44879	7.29
LI_9	LI_23	161897	14.18
LI_9	LI_24	0	0.00
LI_9	LI_25	21948	3.56
LI_9	LI_26	11076	1.80
LI_9	LI_27	163850	11.31
LI_9	LI_28	55136	8.95
LI_9	LI_29	13081	2.12
LI_9	LI_30	1125	0.18
LI_9	LI_31	198301	11.35
LI_9	LI_32	4498	0.73
LI_9	LI_33	249807	6.74
LI_9	LI_34	9579	1.56
LI_9	LI_35	5196	0.84
LI_9	LI_36	59	0.01
LI_9	LI_37	7413	1.20
LI_9	LI_38	66213	0.20
LI_9	LI_39	583	0.09
LI_9	LI_40	76582	12.43
LI_9	LI_41	70296	11.41
LI_9	LI_42	176472	4.97
LI_9	LI_43	66023	10.72
LI_9	LI_44	30511	4.95
LI_9	LI_45	18403	2.37
LI_9	LI_46	89675	14.56
LI_9	LI_47	57824	9.39
LI_9	LI_48	327213	2.94
LI_9	LI_49	306793	3.18
LI_9	LI_50	318692	7.40
IP-Addr	ess Lists	Intersect	% of Smaller

IP-Addr	ess Lists	Intersect	% of Smaller
	LI_51	70070	10.16
LI_9	LI 52	19823	2.82
LI_9	LI 53	241447	5.75
LI_9	LI 54	515	0.08
LI_9	LI_55	6302	1.02
LI_9 LI_9	LI_55 LI_56		1.02
	_	7661	
LI_9	LI_57	288828	6.87
LI_9	LI_58	1306	0.21
LI_9	LI_59	207420	11.84
LI_9	LI_60	1852	0.30
LI_9	LI_61	550	0.09
LI_9	LI_62	6706	1.09
LI_9	LI_63	35104	5.70
LI_9	LI_64	1073	0.17
LI_9	LI_65	1743	0.28
LI_9	LI_66	40	0.01
LI_9	LI_67	910	0.15
LI_10	LI_11	2475	4.82
LI_10	LI_12	4307	0.14
LI_10	LI_13	1892	0.34
LI_10	LI_14	1	0.00
LI_10	LI_15	0	0.00
LI_10	LI_16	16	0.27
LI_10	LI_17	109	1.60
LI_10 LI_10	LI_18	1796	2.97
LI_10 LI_10	LI_10 LI_19	130	2.22
	LI_19 LI_20	1250	11.39
LI_10			
LI_10	LI_21	3180	0.06
LI_10	LI_22	727	0.45
LI_10	LI_23	1462	0.13
LI_10	LI_24	0	0.00
LI_10	LI_25	3048	2.55
LI_10	LI_26	1925	4.81
LI_10	LI_27	1518	0.10
LI_10	LI_28	2363	0.40
LI_10	LI_29	565	0.96
LI_10	LI_30	579	9.88
LI_10	LI_31	2451	0.14
LI_10	LI_32	334	3.11
LI_10	LI_33	3669	0.10
LI_10	LI_34	1101	2.46
LI_10	LI_35	1493	4.58
LI_10	LI_36	2	0.02
LI_10	LI_37	531	3.94
LI_10	LI_38	3293	0.01
LI_10	LI_39	113	1.93
LI_10	LI_40	1016	0.28
LI_10	LI_41	1582	0.45
LI_10	LI_42	1163	0.03
LI_10	LI_43	695	0.13
LI_10	LI_44	284	0.17
LI_10	LI_45	0	0.00
LI_10	LI_46	4259	0.96
LI_10	LI_47	1845	0.75
LI_10	LI_48	3417	0.03
	ess Lists	Intersect	% of Smaller
11001	11000		, o or ornarior

IP-Addr	ess Lists	Intersect	% of Smaller
LI_10	LI_49	3958	0.04
LI_10	LI_50	3496	0.08
LI_10	LI_51	677	0.10
LI_10	LI_52	196	0.03
LI 10	LI_53	1350	0.03
LI_10	LI_54	16	0.27
LI_10	LI_55	0	0.00
LI_10	LI_56	1106	4.41
LI_10	LI_57	2712	0.06
LI_10	LI_58	81	1.38
LI_10	LI 59	5419	0.31
LI_10	LI_60	61	0.11
LI_10	LI_61	62	1.06
LI_10	LI_62	977	3.84
LI_10	LI_63	402	0.16
LI_10 LI_10	LI_64	477	8.14
LI_10 LI_10	LI_65	369	4.58
LI_10 LI_10	LI_66	1	0.02
LI_10 LI_10	LI_67	124	2.12
LI_10 LI_11	LI_07 LI_12	11548	0.38
LI_11 LI_11	LI_12 LI_13	1784	0.38
LI_11 LI_11	LI_13 LI_14	1704	0.00
LI_11 LI_11	LI_14 LI_15	2	0.00
	LI_13 LI_16	60	0.00
LI_11			3.32
LI_11	LI_17	1705 3453	
LI_11	LI_18		5.72
LI_11	LI_19	744	1.45
LI_11	LI_20	4510	8.79
LI_11	LI_21	7184	0.13
LI_11	LI_22	263	0.16
LI_11	LI_23	441	0.04
LI_11	LI_24	0	0.00
LI_11	LI_25	9662	8.10
LI_11	LI_26	3961	7.72
LI_11	LI_27	1459	0.10
LI_11	LI_28	11869	1.99
LI_11	LI_29	407	0.69
LI_11	LI_30	1330	2.59
LI_11	LI_31	3945	0.23
LI_11	LI_32	204	0.40
LI_11	LI_33	8340	0.23
LI_11	LI_34	2319	4.52
LI_11	LI_35	5666	11.04
LI_11	LI_36	1	0.00
LI_11	LI_37	312	0.61
LI_11	LI_38	9424	0.03
LI_11	LI_39	75	0.15
LI_11	LI_40	128	0.04
LI_11	LI_41	1818	0.52
LI_11	LI_42	888	0.03
LI_11	LI_43	825	0.16
LI_11	LI_44	97	0.06
LI_11	LI_45	0	0.00
LI_11	LI_46	28030	6.31
LI_11	LI_47	2855	1.16
IP-Addr	ess Lists	Intersect	% of Smaller

	ess Lists	Intersect	% of Smaller
LI_11	LI_48	19276	0.17
LI_11	LI_49	14510	0.15
LI_11	LI_50	10556	0.24
LI_11	LI_51	340	0.05
LI_11	LI_52	379	0.05
LI_11	LI_53	406	0.01
LI_11	LI_54	75	0.15
LI_11	LI_55	0	0.00
LI_11	LI_56	2913	5.68
LI_11	LI_57	5679	0.14
LI_11	LI_58	1062	2.07
LI_11	LI_59	44398	2.53
LI_11	LI_60	16	0.03
LI_11	LI_61	26	0.05
LI_11	LI_62	1691	3.30
LI_11	LI_63	77	0.03
LI_11	LI_64	1407	2.74
LI_11	LI_65	763	1.49
LI_11	LI_66	1	0.00
LI_11	LI_67	263	0.51
LI_12	LI 13	218259	7.22
LI_12	LI_14	116	0.00
LI_12	LI_15	14	0.00
LI_12	LI_16	239	0.01
LI 12	LI_17	1962	0.06
LI_12	LI_18	40293	1.33
LI 12	LI_19	725	0.02
LI 12	LI_20	6921	0.23
LI 12	LI_21	1004748	17.51
LI 12	LI_22	95368	3.15
LI 12	LI_23	361310	11.95
LI 12	LI_24	3	0.00
LI 12	LI 25	32540	1.08
LI 12	LI_26	20811	0.69
LI 12	LI_27	395036	13.06
LI 12	LI 28	108401	3.58
LI_12	LI_29	24529	0.81
LI_12	LI_30	2739	0.09
LI_12	LI_31	549735	18.18
LI_12	LI_32	6451	0.21
LI_12 LI_12	LI_33	813568	21.96
LI_12 LI_12	LI_34	16503	0.55
LI_12	LI_35	10795	0.36
LI_12 LI_12	LI_36	146	0.00
LI_12 LI_12	LI_37	9088	0.30
LI_12 LI_12	LI_38	196078	0.61
LI_12 LI_12	LI_39	719	0.02
LI_12 LI_12	LI_40	116362	3.85
LI_12 LI_12	LI_40 LI_41	119465	3.95
LI_12 LI_12	LI_41 LI_42	510633	14.37
LI_12 LI_12	LI_42 LI_43	171680	5.68
LI_12 LI_12	LI_43 LI_44	71129	2.35
LI_12 LI_12	LI_45	52239	1.73
LI_12 LI_12	LI_45 LI_46	154242	5.10
LI_12 LI_12	LI_40 LI_47	102132	3.38
	ess Lists	Intersect	% of Smaller
II -Muul	COO LISTS	musect	70 OI SIIIAIIEI

	ess Lists	Intersect	% of Smaller
LI_12	LI_48	1024271	9.19
LI_12	LI_49	902780	9.37
LI_12	LI_50	870699	20.21
LI_12	LI_51	183097	6.05
LI_12	LI_52	95785	3.17
LI_12	LI_53	704200	16.76
LI_12	LI_54	878	0.03
LI_12	LI_55	12834	0.42
LI_12	LI_56	9033	0.30
LI_12	LI_57	749907	17.85
LI_12	LI_58	1737	0.06
LI_12	LI_59	477200	15.78
LI_12	LI_60	3187	0.11
LI_12	LI_61	680	0.02
LI_12	LI_62	11122	0.37
LI_12	LI_63	72238	2.39
LI_12	LI 64	2264	0.07
LI_12	LI_65	4544	0.15
LI_12	LI_66	81	0.00
LI_12	LI_67	2076	0.07
LI_13	LI_14	21	0.00
LI_13	LI_15	33	0.01
LI_13	LI_16	75	0.01
LI_13	LI_17	2210	0.40
LI 13	LI 18	25026	4.53
LI_13	LI_19	90	0.02
LI_13	LI_20	1289	0.23
LI_13	LI_21	352374	6.14
LI 13	LI_21 LI_22	55494	10.05
LI 13	LI_23	164963	14.44
LI 13	LI_23	0	0.00
LI 13	LI_25	15129	2.74
LI 13	LI_26	10401	1.88
LI_13 LI_13	LI_27	161655	11.16
LI 13	LI_27 LI_28	62284	10.43
LI 13	LI_20 LI 29	15820	2.87
LI_13 LI_13	LI_30	1197	0.22
LI_13 LI_13	LI_30 LI_31	209225	11.98
LI_13 LI_13	LI_31 LI_32	4379	0.79
LI_13 LI_13	LI_32 LI_33	268740	7.25
LI_13 LI_13	LI_33 LI_34	8748	1.58
LI_13 LI_13	LI_34 LI_35	3063	0.55
LI_13 LI_13	LI_35 LI_36	96	0.33
LI_13 LI_13	LI_30 LI_37	7110	1.29
LI_13 LI_13	LI_37 LI_38		0.25
LI_13 LI_13	LI_38 LI_39	79709	
LI_13 LI_13		581	0.11
LI_13 LI_13	LI_40	68886	12.48
LI_13 LI_13	LI_41	66219	12.00
LI_13 LI_13	LI_42	216363	6.09
LI_13 LI_13	LI_43	78032	14.14
LI_13 LI_13	LI_44	28165	5.10
	LI_45	30	0.00
LI_13	LI_46	81620	14.79
LI_13	LI_47	56547	10.24
LI_13	LI_48	392226	3.52
IP-Addi	ess Lists	Intersect	% of Smaller

IP-Addr	ess Lists	Intersect	% of Smaller
LI_13	LI_49	327963	3.40
LI_13	LI_50	328767	7.63
LI_13	LI_51	85781	12.44
LI_13	LI_52	379	0.05
LI_13	LI_53	267151	6.36
LI_13	LI_54	557	0.10
LI_13	LI_55	114	0.02
LI_13	LI_56	4723	0.86
LI_13	LI_50 LI_57	301610	7.18
LI_13	LI_57 LI_58	2134	0.39
	LI_58 LI_59	205088	11.70
LI_13		203088	0.37
LI_13	LI_60		
LI_13	LI_61	572	0.10
LI_13	LI_62	6097	1.10
LI_13	LI_63	31977	5.79
LI_13	LI_64	681	0.12
LI_13	LI_65	2170	0.39
LI_13	LI_66	48	0.01
LI_13	LI_67	944	0.17
LI_14	LI_15	9	0.01
LI_14	LI_16	2	0.00
LI_14	LI_17	0	0.00
LI_14	LI_18	1	0.00
LI_14	LI_19	0	0.00
LI_14	LI_20	0	0.00
LI_14	LI_21	209	0.00
LI_14	LI_22	6	0.00
LI_14	LI_23	35	0.00
LI_14	LI_24	394	0.29
LI_14	LI_25	2	0.00
LI_14	LI_26	1	0.00
LI_14	LI_27	44	0.00
LI_14	LI_28	16	0.00
LI_14	LI_29	1	0.00
LI_14	LI_30	0	0.00
LI_14	LI_31	45	0.00
LI_14	LI_32	0	0.00
LI_14	LI_33	135	0.00
LI_14	LI_34	3	0.00
LI_14	LI_35	7	0.01
LI_14	LI_36	0	0.00
LI_14	LI_37	2	0.00
LI_14	LI_38	1094	0.00
LI_14	LI_39	0	0.00
LI_14	LI_40	10	0.00
LI_14	LI_41	11	0.00
LI_14	LI_42	117	0.00
LI_14	LI_43	11	0.00
LI_14	LI_44	8	0.00
LI_14	LI_45	22	0.00
LI_14	LI_46	9	0.00
LI_14	LI_47	8	0.00
LI_14	LI_48	384	0.00
LI_14	LI_49	314	0.00
LI_14	LI_50	155	0.00
	ess Lists	Intersect	% of Smaller

LI_14	IP-Addr	ess Lists	Intersect	% of Smaller
LL_14	LI 14	LI 51	22	0.00
LI_14				
LI_14	_			
LI_14				
LI_14				
LI_14		_		
LI_14				
LI_14				
LI_14	_			
LI_14		_		
LI_14		_		
LI_14		_		
LI_14				
LI_14				
LI_14				
LI_14 LI_67 0 0.00 LI_15 LI_16 6 0.17 LI_15 LI_17 0 0.00 LI_15 LI_18 3 0.01 LI_15 LI_19 0 0.00 LI_15 LI_20 0 0.00 LI_15 LI_21 44 0.00 LI_15 LI_22 3 0.00 LI_15 LI_23 9 0.00 LI_15 LI_23 9 0.00 LI_15 LI_25 2 0.00 LI_15 LI_25 2 0.00 LI_15 LI_26 2 0.01 LI_15 LI_28 10 0.00 LI_15 LI_28 10 0.00 LI_15 LI_28 10 0.00 LI_15 LI_31 34 0.00 LI_15 LI_33 21 0.00 LI_15 LI_33 21 0.00 LI				
LI_15 LI_16 6 0.17 LI_15 LI_17 0 0.00 LI_15 LI_18 3 0.01 LI_15 LI_19 0 0.00 LI_15 LI_20 0 0.00 LI_15 LI_21 44 0.00 LI_15 LI_22 3 0.00 LI_15 LI_23 9 0.00 LI_15 LI_24 0 0.00 LI_15 LI_25 2 0.00 LI_15 LI_26 2 0.01 LI_15 LI_28 10 0.00 LI_15 LI_28 10 0.00 LI_15 LI_29 2 0.00 LI_15 LI_30 1 0.03 LI_15 LI_31 34 0.00 LI_15 LI_33 21 0.00 LI_15 LI_34 4 0.01 LI_15 LI_34 4 0.01 LI_1	_			
LI_15 LI_17 0 0.00 LI_15 LI_18 3 0.01 LI_15 LI_19 0 0.00 LI_15 LI_20 0 0.00 LI_15 LI_21 44 0.00 LI_15 LI_22 3 0.00 LI_15 LI_23 9 0.00 LI_15 LI_25 2 0.00 LI_15 LI_26 2 0.01 LI_15 LI_26 2 0.01 LI_15 LI_28 10 0.00 LI_15 LI_28 10 0.00 LI_15 LI_29 2 0.00 LI_15 LI_30 1 0.03 LI_15 LI_31 34 0.00 LI_15 LI_33 21 0.00 LI_15 LI_33 21 0.00 LI_15 LI_34 4 0.01 LI_15 LI_35 2 0.01 LI_	_			
LI_15 LI_19 0 0.00 LI_15 LI_19 0 0.00 LI_15 LI_20 0 0.00 LI_15 LI_21 44 0.00 LI_15 LI_22 3 0.00 LI_15 LI_23 9 0.00 LI_15 LI_24 0 0.00 LI_15 LI_25 2 0.00 LI_15 LI_26 2 0.01 LI_15 LI_27 7 0.00 LI_15 LI_28 10 0.00 LI_15 LI_29 2 0.00 LI_15 LI_30 1 0.03 LI_15 LI_31 34 0.00 LI_15 LI_33 21 0.00 LI_15 LI_33 21 0.00 LI_15 LI_34 4 0.01 LI_15 LI_35 2 0.01 LI_15 LI_38 20 0.00 LI_				
LI_15 LI_19 0 0.00 LI_15 LI_20 0 0.00 LI_15 LI_21 44 0.00 LI_15 LI_22 3 0.00 LI_15 LI_23 9 0.00 LI_15 LI_25 2 0.00 LI_15 LI_26 2 0.01 LI_15 LI_27 7 0.00 LI_15 LI_28 10 0.00 LI_15 LI_29 2 0.00 LI_15 LI_30 1 0.03 LI_15 LI_31 34 0.00 LI_15 LI_33 21 0.00 LI_15 LI_33 21 0.00 LI_15 LI_35 2 0.01 LI_15 LI_35 2 0.01 LI_15 LI_36 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_39 0 0.00 LI_		_		
LI_15 LI_20 0 0.00 LI_15 LI_21 44 0.00 LI_15 LI_22 3 0.00 LI_15 LI_23 9 0.00 LI_15 LI_25 2 0.00 LI_15 LI_26 2 0.01 LI_15 LI_26 2 0.01 LI_15 LI_28 10 0.00 LI_15 LI_28 10 0.00 LI_15 LI_29 2 0.00 LI_15 LI_30 1 0.03 LI_15 LI_31 34 0.00 LI_15 LI_33 21 0.00 LI_15 LI_33 21 0.00 LI_15 LI_33 21 0.00 LI_15 LI_34 4 0.01 LI_15 LI_35 2 0.01 LI_15 LI_38 20 0.00 LI_15 LI_38 20 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 <td>_</td> <td>LI_18</td> <td></td> <td></td>	_	LI_18		
LI_15 LI_21 44 0.00 LI_15 LI_22 3 0.00 LI_15 LI_23 9 0.00 LI_15 LI_24 0 0.00 LI_15 LI_25 2 0.00 LI_15 LI_26 2 0.01 LI_15 LI_28 10 0.00 LI_15 LI_29 2 0.00 LI_15 LI_30 1 0.03 LI_15 LI_31 34 0.00 LI_15 LI_32 0 0.00 LI_15 LI_33 21 0.00 LI_15 LI_33 21 0.00 LI_15 LI_35 2 0.01 LI_15 LI_35 2 0.01 LI_15 LI_36 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_38 20 0.00 LI_15 LI_38 20 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 <td>_</td> <td></td> <td></td> <td></td>	_			
LI_15 LI_22 3 0.00 LI_15 LI_23 9 0.00 LI_15 LI_24 0 0.00 LI_15 LI_25 2 0.00 LI_15 LI_26 2 0.01 LI_15 LI_27 7 0.00 LI_15 LI_28 10 0.00 LI_15 LI_29 2 0.00 LI_15 LI_30 1 0.03 LI_15 LI_31 34 0.00 LI_15 LI_32 0 0.00 LI_15 LI_33 21 0.00 LI_15 LI_33 21 0.00 LI_15 LI_35 2 0.01 LI_15 LI_36 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_38 20 0.00 LI_15 LI_38 20 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_43 9	_	LI_20		0.00
LI_15 LI_23 9 0.00 LI_15 LI_24 0 0.00 LI_15 LI_25 2 0.00 LI_15 LI_26 2 0.01 LI_15 LI_27 7 0.00 LI_15 LI_28 10 0.00 LI_15 LI_29 2 0.00 LI_15 LI_30 1 0.03 LI_15 LI_31 34 0.00 LI_15 LI_32 0 0.00 LI_15 LI_33 21 0.00 LI_15 LI_33 21 0.00 LI_15 LI_35 2 0.01 LI_15 LI_35 2 0.01 LI_15 LI_36 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_38 20 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_43 9 0.00 LI_15 LI_45 0				0.00
LI_15 LI_24 0 0.00 LI_15 LI_25 2 0.00 LI_15 LI_26 2 0.01 LI_15 LI_27 7 0.00 LI_15 LI_28 10 0.00 LI_15 LI_29 2 0.00 LI_15 LI_30 1 0.03 LI_15 LI_31 34 0.00 LI_15 LI_32 0 0.00 LI_15 LI_32 0 0.00 LI_15 LI_33 21 0.00 LI_15 LI_33 21 0.00 LI_15 LI_35 2 0.01 LI_15 LI_35 2 0.01 LI_15 LI_36 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_38 20 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_43 9 0.00 LI_15 LI_45 0				0.00
LI_15 LI_25 2 0.00 LI_15 LI_26 2 0.01 LI_15 LI_27 7 0.00 LI_15 LI_28 10 0.00 LI_15 LI_29 2 0.00 LI_15 LI_30 1 0.03 LI_15 LI_31 34 0.00 LI_15 LI_32 0 0.00 LI_15 LI_33 21 0.00 LI_15 LI_33 21 0.00 LI_15 LI_35 2 0.01 LI_15 LI_35 2 0.01 LI_15 LI_36 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_38 20 0.00 LI_15 LI_39 0 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_43 9 0.00 LI_15 LI_44 1 0.00 LI_15 LI_45 0		LI_23		0.00
LI_15 LI_26 2 0.01 LI_15 LI_27 7 0.00 LI_15 LI_28 10 0.00 LI_15 LI_29 2 0.00 LI_15 LI_30 1 0.03 LI_15 LI_31 34 0.00 LI_15 LI_32 0 0.00 LI_15 LI_33 21 0.00 LI_15 LI_34 4 0.01 LI_15 LI_35 2 0.01 LI_15 LI_36 0 0.00 LI_15 LI_37 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_38 20 0.00 LI_15 LI_39 0 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_44 1 0.00 LI_15 LI_45 0			0	0.00
LI_15 LI_27 7 0.00 LI_15 LI_28 10 0.00 LI_15 LI_29 2 0.00 LI_15 LI_30 1 0.03 LI_15 LI_31 34 0.00 LI_15 LI_32 0 0.00 LI_15 LI_33 21 0.00 LI_15 LI_35 2 0.01 LI_15 LI_35 2 0.01 LI_15 LI_36 0 0.00 LI_15 LI_37 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_38 20 0.00 LI_15 LI_39 0 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_44 1 0.00 LI_15 LI_45 0 0.00 LI_15 LI_48 93				0.00
LI_15 LI_28 10 0.00 LI_15 LI_29 2 0.00 LI_15 LI_30 1 0.03 LI_15 LI_31 34 0.00 LI_15 LI_32 0 0.00 LI_15 LI_33 21 0.00 LI_15 LI_34 4 0.01 LI_15 LI_35 2 0.01 LI_15 LI_36 0 0.00 LI_15 LI_36 0 0.00 LI_15 LI_37 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_38 20 0.00 LI_15 LI_39 0 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_44 1 0.00 LI_15 LI_45 0 0.00 LI_15 LI_48 93				
LI_15 LI_29 2 0.00 LI_15 LI_30 1 0.03 LI_15 LI_31 34 0.00 LI_15 LI_32 0 0.00 LI_15 LI_33 21 0.00 LI_15 LI_34 4 0.01 LI_15 LI_35 2 0.01 LI_15 LI_36 0 0.00 LI_15 LI_37 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_38 20 0.00 LI_15 LI_38 20 0.00 LI_15 LI_39 0 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_44 1 0.00 LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_48 93 <td></td> <td></td> <td></td> <td>0.00</td>				0.00
LI_15 LI_30 1 0.03 LI_15 LI_31 34 0.00 LI_15 LI_32 0 0.00 LI_15 LI_33 21 0.00 LI_15 LI_34 4 0.01 LI_15 LI_35 2 0.01 LI_15 LI_36 0 0.00 LI_15 LI_37 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_38 20 0.00 LI_15 LI_39 0 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_44 1 0.00 LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 <td></td> <td>LI_28</td> <td></td> <td>0.00</td>		LI_28		0.00
LI_15 LI_31 34 0.00 LI_15 LI_32 0 0.00 LI_15 LI_33 21 0.00 LI_15 LI_34 4 0.01 LI_15 LI_35 2 0.01 LI_15 LI_36 0 0.00 LI_15 LI_37 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_39 0 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_43 9 0.00 LI_15 LI_45 0 0.00 LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_50 58 <td></td> <td></td> <td>2</td> <td>0.00</td>			2	0.00
LI_15 LI_32 0 0.00 LI_15 LI_33 21 0.00 LI_15 LI_34 4 0.01 LI_15 LI_35 2 0.01 LI_15 LI_36 0 0.00 LI_15 LI_37 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_39 0 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_43 9 0.00 LI_15 LI_45 0 0.00 LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0				
LI_15 LI_33 21 0.00 LI_15 LI_34 4 0.01 LI_15 LI_35 2 0.01 LI_15 LI_36 0 0.00 LI_15 LI_37 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_39 0 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_43 9 0.00 LI_15 LI_45 0 0.00 LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_48 93 0.00 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 <td>LI_15</td> <td></td> <td></td> <td>0.00</td>	LI_15			0.00
LI_15 LI_34 4 0.01 LI_15 LI_35 2 0.01 LI_15 LI_36 0 0.00 LI_15 LI_37 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_39 0 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_43 9 0.00 LI_15 LI_44 1 0.00 LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_48 93 0.00 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_52 0	LI_15			0.00
LI_15 LI_35 2 0.01 LI_15 LI_36 0 0.00 LI_15 LI_37 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_39 0 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_44 1 0.00 LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_47 13 0.01 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00	LI_15	LI_33	21	0.00
LI_15 LI_36 0 0.00 LI_15 LI_37 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_39 0 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_44 1 0.00 LI_15 LI_45 0 0.00 LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_47 13 0.01 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00	LI_15	LI_34	4	0.01
LI_15 LI_37 0 0.00 LI_15 LI_38 20 0.00 LI_15 LI_39 0 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_44 1 0.00 LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_47 13 0.01 LI_15 LI_48 93 0.00 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00	LI_15		2	0.01
LI_15 LI_38 20 0.00 LI_15 LI_39 0 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_44 1 0.00 LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_47 13 0.01 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00	LI_15	LI_36	0	0.00
LI_15 LI_39 0 0.00 LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_44 1 0.00 LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_47 13 0.01 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00	LI_15	LI_37	0	0.00
LI_15 LI_40 0 0.00 LI_15 LI_41 7 0.00 LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_44 1 0.00 LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_47 13 0.01 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00	LI_15	LI_38	20	0.00
LI_15 LI_41 7 0.00 LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_44 1 0.00 LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_47 13 0.01 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00	LI_15	LI_39	0	0.00
LI_15 LI_42 12 0.00 LI_15 LI_43 9 0.00 LI_15 LI_44 1 0.00 LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_47 13 0.01 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00	LI_15	LI_40	0	0.00
LI_15 LI_43 9 0.00 LI_15 LI_44 1 0.00 LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_47 13 0.01 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00	LI_15	LI_41		0.00
LI_15 LI_44 1 0.00 LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_47 13 0.01 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00	LI_15	LI_42	12	0.00
LI_15 LI_45 0 0.00 LI_15 LI_46 16 0.00 LI_15 LI_47 13 0.01 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00	LI_15	LI_43	9	0.00
LI_15 LI_46 16 0.00 LI_15 LI_47 13 0.01 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00	LI_15	LI_44	1	0.00
LI_15 LI_47 13 0.01 LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00	LI_15	LI_45	0	0.00
LI_15 LI_48 93 0.00 LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00	LI_15	LI_46	16	0.00
LI_15 LI_49 56 0.00 LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00	LI_15	LI_47	13	0.01
LI_15 LI_50 58 0.00 LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00				0.00
LI_15 LI_51 0 0.00 LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00		LI_49		0.00
LI_15 LI_52 0 0.00 LI_15 LI_53 34 0.00				0.00
LI_15 LI_53 34 0.00				0.00
			0	0.00
IP-Address Lists Intersect % of Smaller				
	IP-Addr	ess Lists	Intersect	% of Smaller

IP-Addr	ess Lists	Intersect	% of Smaller
LI_15	LI_54	0	0.00
LI_15	LI_55	0	0.00
LI_15	LI_56	0	0.00
LI_15	LI_50 LI_57	92	0.00
LI_15 LI_15	LI_57 LI_58	0	0.00
		40	
LI_15	LI_59		0.00
LI_15	LI_60	0	0.00
LI_15	LI_61	1	0.04
LI_15	LI_62	4	0.02
LI_15	LI_63	4	0.00
LI_15	LI_64	1	0.02
LI_15	LI_65	0	0.00
LI_15	LI_66	0	0.00
LI_15	LI_67	1	0.03
LI_16	LI_17	9	0.13
LI_16	LI_18	45	0.07
LI_16	LI_19	1	0.02
LI_16	LI_20	42	0.38
LI_16	LI_21	742	0.01
LI_16	LI_22	10	0.01
LI_16	LI_23	153	0.01
LI_16	LI_24	1	0.03
LI_16	LI_25	78	0.07
LI_16	LI_26	24	0.06
LI_16	LI_27	311	0.02
LI_16	LI_28	85	0.01
LI_16	LI_29	21	0.04
LI_16	LI_30	8	0.21
LI_16	LI_31	388	0.02
LI_16	LI_32	0	0.00
LI_16	LI_33	557	0.01
LI_16	LI_34	51	0.11
LI_16	LI_35	59	0.18
LI_16	LI_36	1	0.01
LI_16	LI_37	7	0.05
LI_16	LI_38	235	0.00
LI_16	LI_39	1	0.03
LI_16	LI_40	22	0.01
LI_16	LI_41	52	0.01
LI_16	LI_42	159	0.00
LI_16	LI_43	36	0.01
LI_16	LI_44	11	0.01
LI_16	LI_45	0	0.00
LI_16	LI_46	187	0.04
LI_16	LI_47	115	0.05
LI_16	LI_48	625	0.01
LI_16	LI_49	872	0.01
LI_16	LI_50	588	0.01
LI_16	LI_51	103	0.01
LI_16	LI_51 LI_52	9	0.00
LI_16	LI_53	563	0.01
LI_16	LI_54	2	0.06
LI_16	LI_55	1	0.00
LI_16	LI_56	41	0.16
LI_16	LI_50 LI_57	498	0.01
	ess Lists	Intersect	% of Smaller
11001	11000		, o or ornarior

	ess Lists	Intersect	% of Smaller
LI_16	LI_58	9	0.20
LI_16	LI_59	519	0.03
LI_16	LI_60	2	0.00
LI_16	LI_61	1	0.03
LI_16	LI_62	513	2.02
LI_16	LI_63	6	0.00
LI_16	LI_64	10	0.23
LI_16	LI_65	8	0.10
LI_16	LI_66	0	0.00
LI_16	LI_67	8	0.20
LI_10 LI_17	LI_07 LI_18	351	0.58
LI_17 LI_17	LI_18 LI_19	129	1.90
		1527	13.91
LI_17	LI_20		
LI_17	LI_21	919	0.02
LI_17	LI_22	2	0.00
LI_17	LI_23	31	0.00
LI_17	LI_24	0	0.00
LI_17	LI_25	1781	1.49
LI_17	LI_26	674	1.68
LI_17	LI_27	8	0.00
LI_17	LI_28	3268	0.55
LI_17	LI_29	19	0.03
LI_17	LI_30	134	1.97
LI_17	LI_31	22	0.00
LI 17	LI 32	3	0.03
LI_17	LI_33	1521	0.04
LI_17	LI_34	76	0.17
LI 17	LI_35	1467	4.50
LI 17	LI_36	1	0.01
LI 17	LI_37	1	0.01
LI 17	LI_38	1625	0.01
LI 17	LI 39	0	0.00
LI 17	LI 40	2	0.00
LI 17	LI_41	110	0.03
LI 17	LI 42	25	0.00
LI_17 LI_17	LI_42 LI 43	179	0.03
LI_17 LI_17	LI_43 LI_44	_	0.00
LI_17 LI_17	LI_44 LI_45	2 0	
LI_17 LI_17			0.00
LI_17 LI_17	LI_46	3144	0.71
	LI_47	282	0.11
LI_17	LI_48	1149	0.01
LI_17	LI_49	544	0.01
LI_17	LI_50	576	0.01
LI_17	LI_51	5	0.00
LI_17	LI_52	36	0.01
LI_17	LI_53	13	0.00
LI_17	LI_54	30	0.44
LI_17	LI_55	0	0.00
LI_17	LI_56	14	0.06
LI_17	LI_57	436	0.01
LI_17	LI_58	4148	61.04
LI_17	LI_59	6392	0.36
LI_17	LI_60	0	0.00
LI_17	LI_61	4	0.06
LI_17	LI_62	200	0.79
IP-Addr	ess Lists	Intersect	% of Smaller

IP-Addr	ess Lists	Intersect	% of Smaller
LI_17	LI_63	0	0.00
LI 17	LI_64	35	0.52
LI_17	LI_65	126	1.57
LI 17	LI_66	0	0.00
LI_17	LI_67	32	0.47
LI_18	LI_19	219	0.36
LI 18	LI_20	1967	3.26
LI 18	LI_21	48446	0.84
LI_18	LI_22	16230	10.11
LI 18	LI_23	33502	2.93
LI_18	LI_24	0	0.00
LI_18	LI_25	5677	4.76
LI_18	LI_26	3332	5.52
LI_18	LI_27	32011	2.21
LI_18	LI_28	15615	2.61
LI 18	LI_29	3607	5.97
LI_18	LI_30	1045	1.73
LI_18	LI_30 LI_31	39228	2.25
LI_18 LI_18	LI_31 LI_32	1029	1.70
	LI_32 LI_33	45935	1.70
LI_18			
LI_18	LI_34	3645	6.03
LI_18	LI_35	2943	4.87
LI_18	LI_36	5	0.01
LI_18	LI_37	2555	4.23
LI_18	LI_38	13817	0.04
LI_18	LI_39	186	0.31
LI_18	LI_40	13738	3.82
LI_18	LI_41	16099	4.58
LI_18	LI_42	36503	1.03
LI_18	LI_43	12610	2.41
LI_18	LI_44	6194	3.61
LI_18	LI_45	16	0.00
LI_18	LI_46	25672	5.78
LI_18	LI_47	21219	8.61
LI_18	LI_48	45997	0.41
LI_18	LI_49	47822	0.50
LI_18	LI_50	49189	1.14
LI_18	LI_51	24631	3.57
LI_18	LI_52	181	0.03
LI_18	LI_53	41667	0.99
LI_18	LI_54	167	0.28
LI_18	LI_55	5	0.01
LI_18	LI_56	2637	4.37
LI_18	LI_57	44395	1.06
LI_18	LI_58	327	0.54
LI_18	LI_59	41468	2.37
LI_18	LI_60	318	0.53
LI_18	LI_61	161	0.27
LI_18	LI_62	2585	4.28
LI_18	LI_63	7291	2.85
LI_18	LI_64	648	1.07
LI_18	LI_65	1087	1.80
LI_18	LI_66	4	0.01
LI_18	LI_67	340	0.56
LI_19	LI_20	365	3.33
	ess Lists	Intersect	% of Smaller
ii /iuui	-55 LISTS	1111015001	, of Sinding

	ess Lists	Intersect	% of Smaller
LI_19	LI_21	328	0.01
LI_19	LI_22	2	0.00
LI_19	LI_23	30	0.00
LI_19	LI_24	0	0.00
LI_19	LI_25	484	0.41
LI_19	LI_26	192	0.48
LI_19	LI_27	124	0.01
LI_19	LI_28	1566	0.26
LI_19	LI_29	16	0.03
LI_19	LI_30	82	1.85
LI_19	LI_31	20	0.00
LI_19	LI_32	0	0.00
LI_19	LI_33	507	0.01
LI_19	LI_33	22	0.05
LI_19 LI_19	LI_34 LI_35	386	1.18
LI_19 LI 19		1	0.01
LI_19 LI 19	LI_36	4	
_	LI_37		0.03
LI_19	LI_38	544	0.00
LI_19	LI_39	4	0.09
LI_19	LI_40	5	0.00
LI_19	LI_41	83	0.02
LI_19	LI_42	105	0.00
LI_19	LI_43	30	0.01
LI_19	LI_44	0	0.00
LI_19	LI_45	0	0.00
LI_19	LI_46	1139	0.26
LI 19	LI_47	82	0.03
LI 19	LI_48	1175	0.01
LI 19	LI_49	211	0.00
LI 19	LI_50	304	0.01
LI 19	LI_50 LI_51	2	0.00
LI_19	LI_51 LI_52	20	0.00
LI_19 LI_19	LI_52 LI_53	5	0.00
LI_19 LI 19	LI_55 LI_54	17	0.38
LI_19 LI 19	LI_54 LI_55		
_		1	0.00
LI_19	LI_56	2	0.01
LI_19	LI_57	146	0.00
LI_19	LI_58	53	1.17
LI_19	LI_59	2843	0.16
LI_19	LI_60	0	0.00
LI_19	LI_61	0	0.00
LI_19	LI_62	80	0.31
LI_19	LI_63	0	0.00
LI_19	LI_64	166	3.75
LI_19	LI_65	61	0.76
LI_19	LI_66	0	0.00
LI_19	LI_67	16	0.36
LI_20	LI_21	2001	0.03
LI_20	LI_22	13	0.01
LI_20	LI_23	122	0.01
LI_20	LI_24	0	0.00
LI_20 LI_20	LI_25	5644	4.73
LI_20 LI_20	LI_25 LI_26	2547	6.36
LI_20 LI_20	LI_20 LI_27	2347	0.30
LI_20 LI_20	LI_27 LI_28		
		6983	1.17
ir-Addi	ess Lists	Intersect	% of Smaller

IP-Addr	ess Lists	Intersect	% of Smaller
LI_20	LI_29	96	0.16
LI_20	LI_30	756	6.89
LI_20	LI_31	89	0.01
LI_20	LI_31 LI_32	12	0.11
LI_20 LI_20	LI_32 LI_33	5261	
			0.14
LI_20	LI_34	1359	3.04
LI_20	LI_35	4271	13.10
LI_20	LI_36	0	0.00
LI_20	LI_37	15	0.11
LI_20	LI_38	6218	0.02
LI_20	LI_39	4	0.04
LI_20	LI_40	8	0.00
LI_20	LI_41	594	0.17
LI_20	LI_42	175	0.00
LI_20	LI_43	159	0.03
LI_20	LI_44	7	0.00
LI_20	LI_45	0	0.00
LI 20	LI_46	8260	1.86
LI_20	LI_47	1141	0.46
LI_20	LI_48	2635	0.02
LI_20	LI_49	3528	0.04
LI_20	LI_50	3173	0.07
LI_20 LI_20	LI_50 LI_51	89	
			0.01
LI_20	LI_52	260	0.04
LI_20	LI_53	120	0.00
LI_20	LI_54	29	0.26
LI_20	LI_55	0	0.00
LI_20	LI_56	1330	5.31
LI_20	LI_57	609	0.01
LI_20	LI_58	1462	13.32
LI_20	LI_59	10883	0.62
LI_20	LI_60	0	0.00
LI_20	LI_61	15	0.14
LI_20	LI_62	1047	4.12
LI_20	LI_63	2	0.00
LI_20	LI_64	753	6.86
LI_20	LI_65	646	5.89
LI_20	LI_66	0	0.00
LI_20	LI_67	232	2.11
LI_21	LI_22	131273	2.29
LI_21	LI_23	788367	13.74
LI_21	LI_24	9	0.00
LI_21	LI_25	38502	0.67
LI_21	LI_26	22471	0.39
LI_21	LI_27	923938	16.10
LI_21		196249	3.42
	LI_28		
LI_21	LI_29	38328	0.67
LI_21	LI_30	1991	0.03
LI_21	LI_31	1190451	20.75
LI_21	LI_32	8024	0.14
LI_21	LI_33	2085562	36.34
LI_21	LI_34	30383	0.53
LI_21	LI_35	5691	0.10
LI_21	LI_36	292	0.01
LI_21	LI_37	11767	0.21
IP-Addr	ess Lists	Intersect	% of Smaller

IP-Addı	ress Lists	Intersect	% of Smaller
LI_21	LI_38	520526	1.61
LI_21	LI_39	1232	0.02
LI_21	LI_40	234308	4.08
LI_21	LI_41	223306	3.89
LI_21	LI_42	1483677	25.86
LI_21	LI_43	331289	5.77
LI_21	LI_43 LI_44	72589	1.26
	LI_44 LI_45	62	0.00
LI_21	LI_43 LI 46		4.91
LI_21	_	281920	
LI_21	LI_47	183179	3.19
LI_21	LI_48	3504426	31.44
LI_21	LI_49	2942441	30.53
LI_21	LI_50	2519426	43.91
LI_21	LI_51	403454	7.03
LI_21	LI_52	6643	0.12
LI_21	LI_53	2138216	37.26
LI_21	LI_54	1278	0.02
LI_21	LI_55	2329	0.04
LI_21	LI_56	15581	0.27
LI_21	LI_57	1987418	34.63
LI_21	LI_58	734	0.01
LI_21	LI_59	891606	15.54
LI_21	LI_60	6642	0.12
LI_21	LI_61	897	0.02
LI_21	LI 62	13359	0.23
LI_21	LI_63	137359	2.39
LI 21	LI_64	1689	0.03
LI 21	LI_65	4075	0.07
LI_21	LI_66	166	0.00
LI_21	LI_67	2627	0.05
LI_22	LI_23	79986	7.00
LI 22	LI_24	1	0.00
LI 22	LI_25	3143	1.96
LI_22	LI_26	2871	1.79
LI 22	LI_27	83615	5.77
LI 22	LI 28	25974	4.35
LI_22	LI_29	7068	4.40
LI_22	LI_30	633	0.39
LI 22	LI_31	102720	5.88
LI 22	LI_32	2564	1.60
LI 22	LI_33	123602	3.34
LI 22	LI_34	4720	2.94
LI_22	LI_35	800	0.50
LI_22	LI_36	31	0.02
LI_22	LI_37	4138	2.58
LI_22	LI_37 LI_38	24963	0.08
LI_22	LI_39	150	0.09
LI_22 LI_22	LI_39 LI_40	29993	8.35
LI_22 LI_22	LI_40 LI_41	30944	8.80
LI_22 LI_22	LI_41 LI_42	103035	2.90
LI_22 LI_22	LI_42 LI_43	35409	6.77
LI_22 LI_22	LI_43 LI_44	12897	7.51
LI_22 LI_22	LI_44 LI_45	23	0.00
LI_22 LI_22	LI_43 LI_46	45000	10.13
LI_22 LI_22	LI_46 LI_47	34499	14.00
	ress Lists	Intersect	% of Smaller
ır-Audl	CSS LISTS	mersect	70 of Sinamer

IP-Addı	ress Lists	Intersect	% of Smaller
LI_22	LI_48	129128	1.16
LI_22	LI_49	128450	1.33
LI_22	LI_50	134276	3.12
LI_22	LI_51	60500	8.77
LI_22	LI_52	66	0.01
LI_22	LI_53	114106	2.72
LI_22	LI_54	114	0.07
LI_22	LI_55	27	0.02
LI_22	LI_56	2535	1.58
LI_22	LI_57	116041	2.76
LI_22	LI_57 LI_58	2	0.00
LI_22	LI_59	92006	5.25
	LI_59 LI_60	804	0.50
LI_22			
LI_22	LI_61	175	0.11
LI_22	LI_62	3105	1.93
LI_22	LI_63	15228	5.96
LI_22	LI_64	225	0.14
LI_22	LI_65	1771	1.10
LI_22	LI_66	26	0.02
LI_22	LI_67	556	0.35
LI_23	LI_24	0	0.00
LI_23	LI_25	15252	1.34
LI_23	LI_26	9318	0.82
LI_23	LI_27	368045	25.40
LI_23	LI_28	79861	6.99
LI_23	LI_29	18554	1.62
LI_23	LI_30	996	0.09
LI_23	LI_31	436841	25.01
LI_23	LI_32	4273	0.37
LI_23	LI_33	604237	16.31
LI_23	LI_34	18521	1.62
LI_23	LI_35	1755	0.15
LI_23	LI_36	178	0.02
LI_23	LI_37	8172	0.72
LI_23	LI_38	126339	0.39
LI_23	LI_39	692	0.06
LI_23	LI_40	116537	10.20
LI_23	LI_41	98682	8.64
LI_23	LI_42	494687	13.92
LI_23	LI_43	118909	10.41
LI_23	LI_44	39012	3.42
LI_23	LI_45	41	0.00
LI_23	LI_46	149450	13.09
LI_23	LI_47	97572	8.54
LI_23	LI_48	856220	7.68
LI_23	LI_49	799453	8.29
LI_23	LI_50	767542	17.81
LI_23	LI_51	182453	15.98
LI_23	LI_52	864	0.08
LI_23	LI_53	665974	15.85
LI_23	LI_54	658	0.06
LI_23	LI_55	302	0.03
LI_23	LI_56	10159	0.89
LI_23	LI_57	622944	14.83
LI_23	LI_58	24	0.00
	ress Lists	Intersect	% of Smaller

IP-Addı	ress Lists	Intersect	% of Smaller
LI_23	LI_59	344201	19.64
LI_23	LI_60	3419	0.30
LI_23	LI_61	352	0.03
LI_23	LI_62	7259	0.64
LI_23	LI_63	45272	3.96
LI_23	LI_64	534	0.05
LI_23	LI_65	2154	0.19
LI_23	LI_66	94	0.01
LI_23	LI_67	1364	0.12
LI_24	LI_25	0	0.00
LI_24	LI_26	0	0.00
LI_24	LI_27	1	0.00
LI_24	LI_28	1	0.00
LI_24	LI_29	1	0.00
LI_24	LI_30	0	0.00
LI_24	LI_31	4	0.00
LI_24	LI_32	0	0.00
LI_24	LI_33	7	0.00
LI_24	LI_34	0	0.00
LI_24	LI_35	3	0.01
LI_24	LI_36	0	0.00
LI_24	LI_37	0	0.00
LI_24	LI_38	25	0.00
LI_24	LI_39	0	0.00
LI_24	LI_37	0	0.00
LI_24	LI_40 LI_41	0	0.00
LI_24	LI_42	2	0.00
LI_24	LI_42 LI_43	1	0.00
LI_24 LI_24	LI_43 LI_44	1	0.00
LI_24 LI_24	LI_44 LI_45	1	0.00
LI_24	LI_45 LI_46	0	0.00
LI_24 LI 24	LI_40 LI_47	0	0.00
LI_24 LI 24	LI_47 LI 48	8	0.00
LI_24 LI_24	LI_48 LI_49	11	0.00
LI_24 LI 24	LI_50	5	0.00
LI_24 LI_24	LI_50 LI_51	0	0.00
LI_24 LI_24	LI_51 LI_52	1	0.00
LI_24 LI_24	LI_52 LI_53	5	0.00
LI_24 LI_24	LI_53 LI_54	0	0.00
LI_24 LI_24	LI_55	0	
LI_24 LI_24	LI_55 LI_56		0.00
LI_24 LI_24		0	0.00
LI_24 LI_24	LI_57	5	0.00
LI_24 LI_24	LI_58	0	0.00
LI_24 LI_24	LI_59	1	0.00
LI_24 LI_24	LI_60	0	0.00
	LI_61	0	0.00
LI_24	LI_62	1	0.00
LI_24	LI_63	0	0.00
LI_24	LI_64	0	0.00
LI_24	LI_65	2	0.02
LI_24	LI_66	0	0.00
LI_24	LI_67	10000	0.00
LI_25	LI_26	10869	9.11
LI_25	LI_27	12320	0.85
LI_25	LI_28	17283	2.89
IP-Addı	ress Lists	Intersect	% of Smaller

	ess Lists	Intersect	% of Smaller
LI_25	LI_29	3494	2.93
LI_25	LI_30	1329	1.11
LI_25	LI_31	17718	1.01
LI_25	LI_32	1478	1.24
LI_25	LI_33	30026	0.81
LI_25	LI_34	3589	3.01
LI_25	LI_35	8389	7.03
LI_25	LI_36	22	0.02
LI_25	LI_37	1508	1.26
LI_25	LI_38	25684	0.08
LI_25	LI_39	163	0.14
LI_25	LI_40	7898	2.20
LI_25	LI_41	8077	2.30
LI_25	LI_42	9929	0.28
LI_25	LI_43	7058	1.35
LI_25	LI 44	1519	0.88
LI_25	LI 45	0	0.00
LI 25	LI_46	26957	6.07
LI_25	LI_47	11592	4.71
LI_25	LI_48	38854	0.35
LI_25	LI_49	35565	0.37
LI_25	LI_50	36564	0.85
LI_25	LI_50 LI_51	4100	0.59
LI_25	LI_51 LI_52	438	0.06
LI_25	LI_52 LI_53	16202	0.39
LI_25 LI_25	LI_55 LI_54	354	0.39
LI_25 LI_25	LI_54 LI_55	2	
	_		0.00
LI_25	LI_56	3736	3.13
LI_25	LI_57	34437	0.82
LI_25	LI_58	1545	1.29
LI_25	LI_59	55442	3.16
LI_25	LI_60	329	0.28
LI_25	LI_61	184	0.15
LI_25	LI_62	3203	2.68
LI_25	LI_63	2684	1.05
LI_25	LI_64	1352	1.13
LI_25	LI_65	1149	0.96
LI_25	LI_66	10	0.01
LI_25	LI_67	411	0.34
LI_26	LI_27	4409	0.30
LI_26	LI_28	8574	1.44
LI_26	LI_29	2258	3.85
LI_26	LI_30	848	2.12
LI_26	LI_31	8359	0.48
LI_26	LI_32	2107	5.26
LI_26	LI_33	16480	0.44
LI_26	LI_34	1722	3.85
LI_26	LI_35	3830	9.56
LI_26	LI_36	6	0.01
LI_26	LI_37	968	2.42
LI_26	LI_38	13274	0.04
LI_26	LI_39	174	0.43
LI_26	LI_40	2907	0.81
LI_26	LI_41	3220	0.92
LI_26	LI_42	4011	0.11
IP-Addr	ess Lists	Intersect	% of Smaller

	ess Lists	Intersect	% of Smaller
LI_26	LI_43	5050	0.97
LI_26	LI_44	1329	0.77
LI_26	LI_45	1	0.00
LI_26	LI_46	9069	2.04
LI_26	LI_47	4069	1.65
LI_26	LI_48	15682	0.14
LI_26	LI_49	12741	0.13
LI_26	LI_50	16660	0.39
LI_26	LI_51	1546	0.22
LI_26	LI_52	212	0.03
LI_26	LI_53	6031	0.14
LI_26	LI_54	222	0.55
LI_26	LI_55	4	0.01
LI_26	LI_56	1482	3.70
LI_26	LI_57	19652	0.47
LI_26	LI_58	626	1.56
LI_26	LI_59	28176	1.61
LI_26	LI_60	106	0.20
LI_26	LI_61	58	0.14
LI_26	LI_62	2507	6.26
LI_26	LI_63	887	0.35
LI_26	LI_64	563	1.41
LI_26	LI_65	562	1.40
LI_26	LI_66	4	0.01
LI_26	LI_67	250	0.62
LI_27	LI_28	86179	5.95
LI_27	LI_29	16530	1.14
LI_27	LI_30	880	0.06
LI 27	LI 31	593897	34.00
LI 27	LI 32	3515	0.24
LI_27	LI_33	716512	19.34
LI 27	LI 34	16823	1.16
LI_27	LI_35	1679	0.12
LI_27	LI_36	191	0.01
LI_27	LI_37	8099	0.56
LI_27	LI_38	106778	0.33
LI_27	LI_39	703	0.05
LI 27	LI_40	129163	8.91
LI_27	LI_41	128878	8.90
LI_27	LI_42	558779	15.73
LI_27	LI_43	131902	9.10
LI_27	LI_44	40482	2.79
LI_27	LI_45	47	0.00
LI_27	LI_46	178463	12.32
LI_27	LI_47	114158	7.88
LI_27	LI_48	1034071	9.28
LI_27	LI_49	1092504	11.33
LI_27	LI_50	985867	22.88
LI_27	LI_51	229191	15.82
LI_27	LI_52	524	0.04
LI_27	LI_53	794777	18.92
LI_27	LI_54	448	0.03
LI_27	LI_55	172	0.01
LI_27	LI_56	10766	0.74
LI_27	LI_57	819091	19.49
	ess Lists	Intersect	% of Smaller

	ess Lists	Intersect	% of Smaller
LI_27	LI_58	6	0.00
LI_27	LI_59	408989	23.34
LI_27	LI_60	3385	0.23
LI_27	LI_61	437	0.03
LI_27	LI_62	7015	0.48
LI_27	LI_63	86169	5.95
LI_27	LI_64	546	0.04
LI_27	LI_65	1678	0.12
LI_27	LI_66	99	0.01
LI_27	LI_67	1294	0.09
LI_28	LI_29	8804	1.47
LI_28	LI_30	1505	0.25
LI_28	LI_31	104666	5.99
LI_28	LI_32	2619	0.44
LI_28	LI_33	136764	3.69
LI_28	LI_34	6441	1.08
LI_28	LI_35	8408	1.41
LI_28	LI_36	137	0.02
LI_28	LI_37	4396	0.74
LI_28	LI_38	82625	0.26
LI_28	LI_39	435	0.07
LI_28	LI_40	37832	6.33
LI_28	LI_41	49694	8.32
LI_28	LI 42	121262	3.41
LI 28	LI 43	30266	5.07
LI_28	LI_44	11967	2.00
LI 28	LI_45	19	0.00
LI 28	LI_46	72910	12.21
LI 28	LI 47	30433	5.10
LI 28	LI 48	248243	2.23
LI 28	LI 49	250514	2.60
LI 28	LI 50	181813	4.22
LI 28	LI 51	43180	6.26
LI_28	LI_52	663	0.09
LI 28	LI 53	170473	4.06
LI 28	LI 54	504	0.08
LI_28	LI_55	117	0.02
LI_28	LI_56	4371	0.73
LI_28	LI_57	200779	4.78
LI_28	LI_57 LI_58	2491	0.42
LI_28	LI_59	153770	8.78
LI_28	LI_60	2398	0.40
LI_28	LI_61	196	0.03
LI_28	LI_61 LI_62	5293	0.89
LI_28	LI_63	23043	3.86
LI_28	LI_64	1578	0.26
LI_28	LI_65	1477	0.25
LI_28 LI_28	LI_65 LI_66	103	0.23
LI_28 LI_28	LI_67	830	0.02
LI_28 LI 29	LI_67 LI_30	272	0.14
LI_29 LI_29	LI_30 LI_31	21771	1.25
LI_29 LI_29	LI_31 LI_32	1261	2.15
LI_29 LI_29	LI_32 LI_33	28379	0.77
LI_29 LI 29	LI_33 LI_34	2460	4.19
LI_29 LI_29	LI_34 LI_35	353	0.60
	ess Lists	Intersect	% of Smaller
ir -Audī	CSS LISTS	mersect	70 of Smaller

IP-Address I	Lists	Intersect	% of Smaller
LI_29 LI_	_36	33	0.06
LI_29 LI_	_37	1619	2.76
LI_29 LI_	_38	11692	0.04
LI_29 LI_	_39	129	0.22
LI_29 LI	40	6504	1.81
LI_29 LI	41	8170	2.32
	42	20819	0.59
	43	9425	1.80
	_44	2617	1.52
	45	8	0.00
	46	11373	2.56
	_ _47	8300	3.37
	_48	36335	0.33
	49	34184	0.35
	_50	36646	0.85
	_51	10494	1.52
	_52	8	0.00
	_53	25488	0.61
	_54	289	0.49
	_55	0	0.00
	_56	1383	2.36
	_50 _57	34062	0.81
	_57 _58	18	0.03
	_56 _59	28032	1.60
	_59 _60	490	
		110	0.83 0.19
	_61		
	_62	880	1.50
	_63	2619	1.02
	_64	188	0.32
	_65	725	1.23
	_66	16	0.03
	_67	311	0.53
	_31	1176	0.07
	_32	82	0.76
	_33	2412	0.07
LI_30 LI_		432	0.97
	_35	960	2.94
	_36	3	0.04
	_37	130	0.97
	_38	1698	0.01
	_39	18	0.47
	_40	351	0.10
	_41	649	0.18
	_42	814	0.02
	_43	651	0.12
	_44	195	0.11
	_45	1	0.00
	_46	2248	0.51
	_47	905	0.37
	_48	1739	0.02
	_49	2598	0.03
	_50	2122	0.05
	_51	726	0.11
	_52	138	0.02
	_53	853	0.02
IP-Address I	Lists	Intersect	% of Smaller

IP-Addr	ess Lists	Intersect	% of Smaller
LI_30	LI_54	12	0.32
LI_30	LI_55	0	0.00
LI_30	LI_56	458	1.83
LI_30	LI_57	1676	0.04
LI_30	LI_58	112	2.48
LI_30	LI_59	3357	0.19
LI 30	LI 60	15	0.03
LI 30	LI_61	14	0.37
LI_30	LI_62	532	2.09
LI 30	LI_63	202	0.08
LI_30	LI_64	225	5.09
LI_30	LI_65	298	3.70
LI_30	LI_66	0	0.00
LI_30	LI_67	84	2.12
LI_31	LI_32	4238	0.24
LI_31	LI_33	991214	26.75
LI_31	LI_34	19614	1.12
LI_31	LI_35	2629	0.15
LI_31	LI_36	222	0.01
LI_31	LI_37	9914	0.57
LI_31	LI_38	172172	0.53
LI_31	LI_39	1151	0.07
LI_31	LI_40	129715	7.43
LI_31	LI 41	165732	9.49
LI_31	LI_42	744114	20.94
LI_31	LI_43	188383	10.79
LI_31	LI_44	51104	2.93
LI_31	LI_45	50	0.00
LI_31	LI_46	193158	11.06
LI_31	LI 47	126517	7.24
LI_31	LI_48	1285420	11.53
LI_31	LI 49	1289343	13.38
LI_31	LI_50	1251759	29.05
LI_31	LI_51	275039	15.75
LI_31	LI_52	1503	0.09
LI_31	LI_53	995433	23.70
LI_31	LI_54	714	0.04
LI_31	LI_55	525	0.03
LI_31	LI_56	9204	0.53
LI_31	LI_57	1053999	25.09
LI_31	LI_58	12	0.00
LI_31	LI_59	534141	30.48
LI_31	LI_60	4151	0.24
LI_31	LI_61	800	0.05
LI_31	LI_62	8360	0.48
LI_31	LI_63	93138	5.33
LI_31	LI_64	919	0.05
LI_31	LI_65	2830	0.16
LI_31	LI_66	116	0.01
LI_31	LI_67	1769	0.10
LI_31 LI_32	LI_33	6716	0.18
LI_32	LI_33	894	2.00
LI_32	LI_35	132	0.40
LI_32	LI_36	39	0.36
LI_32	LI_30 LI_37	1276	9.48
	ess Lists	Intersect	% of Smaller
11 / 1001	-35 - 1565	1111015000	, o or sindict

IP-Addı	ress Lists	Intersect	% of Smaller
LI_32	LI_38	4260	0.01
LI_32	LI_39	144	1.34
LI_32	LI_40	1835	0.51
LI_32	LI_41	2251	0.64
LI_32	LI_42	2956	0.08
LI_32	LI_43	2526	0.48
LI_32	LI_44	867	0.50
LI_32	LI 45	2	0.00
LI_32	LI_46	3338	0.75
LI_32	LI_47	2305	0.94
LI_32	LI 48	6202	0.06
LI_32	LI_49	5387	0.06
LI_32	LI_50	7793	0.18
LI_32	LI_51	2152	0.31
LI_32	LI_52	4	0.00
LI_32	LI_53	3725	0.09
LI_32	LI_54	19	0.18
LI_32	LI_55	1	0.00
LI_32	LI_56	575	2.29
LI_32	LI_57	7542	0.18
LI_32	LI_58	2	0.02
LI_32	LI_59	7432	0.42
LI_32	LI_60	219	0.41
LI_32	LI_61	49	0.46
LI_32	LI 62	441	1.74
LI_32	LI_63	846	0.33
LI 32	LI_64	34	0.32
LI 32	LI_65	198	1.84
LI 32	LI_66	26	0.24
LI 32	LI_67	120	1.12
LI_32 LI_33	LI_07 LI_34	20807	0.56
LI_33	LI_35	7881	0.21
LI 33	LI_33	200	0.01
LI_33	LI_37	10260	0.28
LI 33	LI_37	358476	1.11
LI 33	LI_30	721	0.02
LI_33	LI_39 LI_40	163882	4.42
LI_33	LI_40 LI 41	147810	3.99
LI_33	LI_41 LI_42	1168783	31.54
LI_33 LI_33	LI_42 LI_43	259785	7.01
LI_33 LI_33	LI_43 LI 44	62969	1.70
LI_33 LI_33	LI_44 LI 45	56	0.00
LI_33 LI_33	LI_43 LI_46	215170	5.81
LI_33 LI_33	LI_40 LI_47	148590	4.01
LI_33 LI_33	LI_47 LI_48		23.51
LI_33 LI_33	LI_48 LI 49	2620750	23.31
LI_33 LI_33	LI_49 LI_50	2096289	
LI_33 LI_33	LI_50 LI_51	1807757	41.95
LI_33 LI_33	LI_51 LI_52	371472	10.03
LI_33 LI_33	LI_52 LI_53	5131	0.14
LI_33 LI_33	LI_53 LI_54	1570612	37.39
LI_33 LI_33	LI_54 LI_55	851 1796	0.02
LI_33 LI_33	LI_55 LI_56	1786	0.05
LI_33 LI_33		11208	0.30
	LI_57	1388117	33.04
LI_33	LI_58	1316	0.04
IP-Addi	ress Lists	Intersect	% of Smaller

IP-Addı	ress Lists	Intersect	% of Smaller
LI_33	LI_59	675994	18.24
LI_33	LI_60	4589	0.12
LI_33	LI_61	725	0.02
LI_33	LI_62	11329	0.31
LI_33	LI_63	82769	2.23
LI_33	LI_64	1793	0.05
LI_33	LI_65	4019	0.11
LI_33	LI_66	109	0.00
LI_33	LI_67	2161	0.06
LI_34	LI_35	1265	2.83
LI_34	LI_36	26	0.06
LI_34	LI_37	1825	4.08
LI_34	LI_38	8315	0.03
LI_34	LI_39	124	0.28
LI_34	LI 40	4490	1.25
LI_34	LI 41	8251	2.35
LI_34	LI 42	16132	0.45
LI_34	LI_43	9143	1.75
LI_34	LI 44	1552	0.90
LI_34	LI 45	9	0.00
LI_34	LI_43 LI 46	17017	3.83
LI_34 LI_34	LI_40 LI 47	13557	5.50
LI_34 LI_34	LI_47 LI 48	25547	0.23
LI_34 LI_34	LI_48 LI 49	32375	0.23
LI_34 LI_34	LI_49 LI 50	32373	0.34
LI_34 LI_34	LI_50 LI_51	10574	1.53
LI_34 LI_34	LI_51 LI_52		
_	_	138	0.02
LI_34	LI_53	27131	0.65
LI_34	LI_54	43	0.10
LI_34	LI_55	2	0.00
LI_34	LI_56	4941	11.05
LI_34	LI_57	26896	0.64
LI_34	LI_58	57	0.13
LI_34	LI_59	20951	1.20
LI_34	LI_60	404	0.76
LI_34	LI_61	92	0.21
LI_34	LI_62	971	2.17
LI_34	LI_63	1992	0.78
LI_34	LI_64	480	1.07
LI_34	LI_65	345	0.77
LI_34	LI_66	14	0.03
LI_34	LI_67	397	0.89
LI_35	LI_36	5	0.02
LI_35	LI_37	225	0.69
LI_35	LI_38	8970	0.03
LI_35	LI_39	18	0.06
LI_35	LI_40	928	0.26
LI_35	LI_41	1641	0.47
LI_35	LI_42	1878	0.05
LI_35	LI_43	1194	0.23
LI_35	LI_44	418	0.24
LI_35	LI_45	1	0.00
LI_35	LI_46	9725	2.19
LI_35	LI_47	2136	0.87
LI_35	LI_48	6417	0.06
IP-Addı	ress Lists	Intersect	% of Smaller

	ess Lists	Intersect	% of Smaller
LI_35	LI_49	7178	0.07
LI_35	LI_50	6756	0.16
LI_35	LI_51	1001	0.15
LI_35	LI_52	305	0.04
LI_35	LI_53	1969	0.05
LI_35	LI_54	44	0.13
LI_35	LI_55	0	0.00
LI_35	LI_56	1269	3.89
LI_35	LI_57	4844	0.12
LI_35	LI_58	1327	4.07
LI_35	LI_59	17438	1.00
LI_35	LI_60	42	0.08
LI_35	LI_61	28	0.09
LI_35	LI_62	1498	4.59
LI_35	LI_63	440	0.17
LI_35	LI_64	876	2.69
LI_35	LI 65	1049	3.22
LI_35	LI_66	2	0.01
LI_35	LI_67	246	0.75
LI_36	LI_37	30	0.22
LI_36	LI_38	440	0.00
LI_36	LI_39	5	0.06
LI_36	LI_37 LI 40	97	0.03
LI_36	LI 41	93	0.03
LI_36	LI 42	285	0.03
LI_36	LI_42 LI_43	38	0.01
LI_36	LI_43 LI_44	31	0.02
LI_36	LI_44 LI 45	0	0.02
LI_36	LI_45 LI_46	123	0.03
LI_36	LI_40 LI_47	62	0.03
LI_36	LI_47 LI 48	491	0.03
LI_36	LI_48 LI 49	845	0.00
LI_36	LI_49 LI_50	302	0.01
LI_36	LI_50 LI_51	400	0.01
LI_36	LI_51 LI_52	400	0.00
LI_36	LI_32 LI_53	563	0.00
_	_		
LI_36 LI_36	LI_54	1	0.01
LI_36 LI_36	LI_55 LI_56	0	0.00
LI_36 LI_36		48	0.19
LI_36 LI_36	LI_57	326	0.01
LI_36	LI_58	1	0.01
LI_36	LI_59	206	0.01
LI_36	LI_60	3954	7.43
LI_36	LI_61	1	0.01
LI_36	LI_62	3	0.01
LI_36	LI_63	35	0.01
LI_36	LI_64	91	1.06
LI_36	LI_65	1	0.01
LI_36	LI_66	1614	18.84
LI_36	LI_67	11	0.13
LI_37	LI_38	3493	0.01
LI_37	LI_39	194	1.44
LI_37	LI_40	5617	1.56
LI_37	LI_41	6295	1.79
LI_37	LI_42	7861	0.22
IP-Addr	ess Lists	Intersect	% of Smaller

45

IP-Addı	ress Lists	Intersect	% of Smaller
LI_37	LI_43	3040	0.58
LI_37	LI_44	1954	1.14
LI_37	LI_45	6	0.00
LI_37	LI_46	7092	1.60
LI_37	LI_47	5755	2.34
LI_37	LI_48	11869	0.11
LI_37	LI_49	11392	0.12
LI_37	LI_50	11569	0.27
LI_37	LI_51	5450	0.79
LI_37	LI_52	2	0.00
LI_37	LI_53	9244	0.22
LI_37	LI_54	36	0.27
LI_37	LI_55	1	0.00
LI_37	LI_56	1525	6.08
LI_37	LI_57	11478	0.27
LI_37	LI_58	1	0.01
LI_37	LI_59	10170	0.58
LI_37	LI_60	216	0.41
LI_37	LI_61	79	0.59
LI_37	LI_62	955	3.76
LI_37	LI_63	2670	1.04
LI_37	LI_64	96	0.71
LI_37	LI_65	191	1.42
LI_37	LI 66	17	0.13
LI_37	LI_67	129	0.96
LI_38	LI_39	398	0.00
LI 38	LI_40	39035	0.12
LI_38	LI_40 LI 41	37071	0.11
LI_38	LI 42	320798	0.99
LI_38	LI_42 LI 43	60084	0.19
LI_38	LI_43 LI 44	12898	0.04
LI_38	LI_44 LI 45	21	0.00
LI_38	LI_43 LI 46	61684	0.19
LI_38	LI_40 LI_47	33384	0.10
LI_38	LI_47 LI 48	902506	2.79
LI_38	LI_40 LI 49	787953	2.44
LI_38	LI_50	394386	1.22
LI_38	LI_50 LI_51	63098	0.20
LI_38	LI_51 LI_52	11005	0.03
LI_38	LI_52 LI_53	367033	1.14
LI_38	LI_53 LI_54	539	0.00
LI_38	LI_55	2996	0.00
LI_38	LI_55 LI_56	5518	0.01
LI_38	LI_50 LI_57	384317	1.19
LI_38	LI_57 LI_58	1444	0.00
LI_38	LI_58 LI_59	188783	0.58
LI_38	LI_59 LI_60	5820	0.38
LI_38	LI_60 LI_61	355	
LI_38 LI_38			0.00
LI_38 LI_38	LI_62	5322	0.02
LI_38 LI_38	LI_63 LI_64	16072 1729	0.05
LI_38 LI_38			0.01
LI_38 LI_38	LI_65	2509	0.01
LI_38 LI_38	LI_66	244	0.00
LI_38 LI_39	LI_67	1229	0.00 0.58
	LI_40	2089	% of Smaller
IP-Addi	ress Lists	Intersect	% of Smaller

IP-Addı	ress Lists	Intersect	% of Smaller
LI_39	LI_41	474	0.13
LI_39	LI 42	667	0.02
LI_39	LI_43	251	0.05
LI_39	LI_44	81	0.05
LI_39	LI 45	1	0.00
LI_39	LI_45 LI_46	603	0.14
LI_39	LI_47	531	0.22
LI_39	LI_48	1542	0.01
LI_39	LI_49	1255	0.01
LI_39	LI_50	1251	0.03
LI_39	LI_51	255	0.04
LI_39	LI_52	0	0.00
LI_39	LI_53	393	0.01
LI_39	LI_54	2	0.09
LI_39	LI_55	0	0.00
LI_39	LI_56	119	0.47
LI_39	LI_57	1377	0.03
LI_39	LI_58	0	0.00
LI_39	LI_59	1060	0.06
LI_39	LI_60	19	0.04
LI_39	LI_61	10	0.48
	LI_01 LI 62	97	0.38
LI_39	_		
LI_39	LI_63	142	0.06
LI_39	LI_64	14	0.32
LI_39	LI_65	17	0.21
LI_39	LI_66	1	0.02
LI_39	LI_67	17	0.43
LI_40	LI_41	60321	16.79
LI_40	LI_42	134760	3.79
LI_40	LI_43	30297	5.79
LI_40	LI_44	19492	5.43
LI 40	LI 45	14	0.00
LI 40	LI 46	62864	14.15
LI_40	LI_47	39524	11.00
LI 40	LI 48	275105	2.47
LI 40	LI 49	244359	2.54
LI_40 LI 40	LI_ 4 5	228493	5.30
LI_40 LI_40	LI_50 LI_51	44581	
	_		6.47
LI_40	LI_52	227	0.03
LI_40	LI_53	194778	4.64
LI_40	LI_54	233	0.06
LI_40	LI_55	76	0.02
LI_40	LI_56	5987	1.67
LI_40	LI_57	203219	4.84
LI_40	LI_58	1	0.00
LI_40	LI_59	116152	6.63
LI_40	LI_60	1697	0.47
LI_40	LI_61	161	0.04
LI_40	LI_62	5349	1.49
LI_40	LI_63	36027	10.03
LI_40	LI_64	273	0.08
LI_40	LI_65	214	0.06
LI_40 LI_40	LI_66	59	0.02
LI_40 LI_40	LI_67	409	0.02
LI_40 LI_41	LI_67 LI_42	114469	3.22
ir-Addi	ress Lists	Intersect	% of Smaller

IP-Addı	ress Lists	Intersect	% of Smaller
LI_41	LI_43	31895	6.10
LI_41	LI_44	18481	5.25
LI_41	LI_45	20	0.00
LI_41	LI_46	73760	16.61
LI_41	LI_47	44206	12.57
LI_41	LI_48	188783	1.69
LI_41	LI_49	260506	2.70
LI_41	LI_50	248764	5.77
LI_41	LI_51	53496	7.76
LI_41	LI_52	97	0.01
LI 41	LI_53	272602	6.49
LI 41	LI_54	445	0.13
LI 41	LI_55	33	0.01
LI 41	LI_56	6285	1.79
LI 41	LI_57	212465	5.06
LI 41	LI_58	92	0.03
LI 41	LI_59	126962	7.25
LI 41	LI_60	1646	0.47
LI 41	LI_61	445	0.13
LI 41	LI_62	4956	1.41
LI 41	LI_63	115353	32.79
LI 41	LI_64	556	0.16
LI 41	LI_65	829	0.24
LI 41	LI 66	56	0.02
LI 41	LI 67	983	0.28
LI_42	LI_43	205548	5.79
LI 42	LI 44	43317	1.22
LI 42	LI 45	50	0.00
LI 42	LI 46	173807	4.89
LI 42	LI 47	109862	3.09
LI 42	LI_48	2008079	18.02
LI 42	LI 49	1804397	18.72
LI 42	LI 50	1498415	34.77
LI_42	LI_50 LI_51	359818	10.13
LI 42	LI 52	4803	0.14
LI 42	LI 53	1407755	33.51
LI_42	LI_53	504	0.01
LI_42	LI_55	1822	0.05
LI_42 LI_42	LI_56	8922	0.25
LI_42 LI 42	LI_50 LI_57	1159783	27.60
LI_42 LI 42	LI_57 LI_58	137703	0.00
LI_42 LI 42	LI_58 LI_59	487705	13.73
LI_42 LI_42	LI_59 LI_60	5757	0.16
LI_42 LI_42	LI_61	392	0.01
LI_42 LI_42	LI_62	6923	0.19
LI_42 LI_42	LI_63	61912	1.74
LI_42 LI_42	LI_63 LI_64	610	0.02
LI_42 LI_42	LI_65	2235	0.02
LI_42 LI_42	LI_66	205	0.00
LI_42 LI_42	LI_66 LI_67	1282	0.01
LI_42 LI_43	LI_67 LI_44	15318	2.93
LI_43 LI_43	LI_44 LI_45	13318	0.00
LI_43 LI_43	LI_43 LI_46	46692	8.93
LI_43 LI_43	LI_46 LI_47	35692	6.83
LI_43 LI_43	LI_47 LI_48	387021	3.47
	ress Lists	Intersect	% of Smaller
ır-Audl	CSS LISTS	mersect	70 OI SIHAHEI

IP-Addr	ess Lists	Intersect	% of Smaller
LI 43	LI 49	319003	3.31
LI 43	LI 50	317971	7.38
LI 43	LI 51	71951	10.43
LI 43	LI_52	308	0.04
LI 43	LI_53	255870	6.09
LI 43	LI_53	257	0.05
LI 43	LI 55	109	0.02
LI 43	LI 56	2100	0.40
LI_43	LI_50 LI_57	267690	6.37
LI_43	LI_57 LI_58	110	0.02
LI_43	LI_59	161425	9.21
LI_43	LI_60	101423	0.20
LI_43	LI_61	258	0.05
LI_43	LI_62	2227	0.43
LI_43 LI_43	LI_63	14180	2.71
LI_43 LI 43	LI_63 LI_64	367	0.07
LI_43 LI 43	LI_65	1480	0.07
LI_43 LI_43	LI_65 LI_66	23	0.28
LI_43 LI_43		531	0.00
	LI_67		
LI_44	LI_45	3962	0.51
LI_44	LI_46	17643	3.97
LI_44	LI_47	13219	5.37
LI_44	LI_48	65809	0.59
LI_44	LI_49	64829	0.67
LI_44	LI_50	67499	1.57
LI_44	LI_51	19879	2.88
LI_44	LI_52	8405	1.20
LI_44	LI_53	56475	1.34
LI_44	LI_54	97	0.06
LI_44	LI_55	1081	0.63
LI_44	LI_56	1063	0.62
LI_44	LI_57	59524	1.42
LI_44	LI_58	2	0.00
LI_44	LI_59	40444	2.31
LI_44	LI_60	442	0.26
LI_44	LI_61	78	0.05
LI_44	LI_62	1835	1.07
LI_44	LI_63	10978	4.30
LI_44	LI_64	88	0.05
LI_44	LI_65	192	0.11
LI_44	LI_66	15	0.01
LI_44	LI_67	170	0.10
LI_45	LI_46	28	0.00
LI_45	LI_47	26	0.00
LI_45	LI_48	52	0.00
LI_45	LI_49	59	0.00
LI_45	LI_50	62	0.00
LI_45	LI_51	32	0.00
LI_45	LI_52	0	0.00
LI_45	LI_53	55	0.00
LI_45	LI_54	0	0.00
LI_45	LI_55	1	0.00
LI_45	LI_56	2	0.00
LI_45	LI_57	57	0.00
LI_45	LI_58	0	0.00
ir-Addi	ess Lists	Intersect	% of Smaller

IP-Addı	ress Lists	Intersect	% of Smaller
LI_45	LI_59	41	0.00
LI_45	LI_60	0	0.00
LI_45	LI_61	0	0.00
LI_45	LI_62	3	0.00
LI_45	LI_63	10	0.00
LI_45	LI_64	0	0.00
LI_45	LI_65	4	0.00
LI 45	LI_66	0	0.00
LI_45	LI_67	2	0.00
LI 46	LI_47	80022	18.02
LI_46	LI 48	322659	2.90
LI_46	LI 49	318302	3.30
LI_46	LI_50	305164	7.08
LI_46	LI_51	88615	12.85
LI_46	LI_52	640	0.09
LI_46	LI_53	243128	5.79
LI 46	LI_54	390	0.09
LI 46	LI_55	28	0.01
LI_46	LI_56	12123	2.73
LI_46	LI_57	265486	6.32
LI_46	LI_58	2364	0.53
LI_46	LI_59	226564	12.93
LI_46	LI_60	2239	0.50
LI 46	LI 61	583	0.13
LI 46	LI 62	6931	1.56
LI_46	LI_63	31184	7.02
LI_46	LI_64	2411	0.54
LI_46	LI_65	2321	0.52
LI_46	LI_66	66	0.01
LI 46	LI_67	1302	0.29
LI 47	LI 48	185497	1.66
LI 47	LI 49	185804	1.93
LI 47	LI 50	181295	4.21
LI_47	LI_51	64365	9.33
LI 47	LI_52	182	0.03
LI 47	LI 53	148125	3.53
LI 47	LI 54	242	0.10
LI_47	LI_55	40	0.02
LI_47	LI_56	7620	3.09
LI_47	LI_57	157920	3.76
LI_47	LI_58	245	0.10
LI_47	LI 59	115292	6.58
LI_47	LI_60	1092	0.44
LI 47	LI_61	386	0.16
LI_47	LI_62	4102	1.67
LI_47	LI_63	18243	7.14
LI_47	LI_64	722	0.29
LI_47	LI_65	1326	0.54
LI_47	LI_66	27	0.01
LI_47	LI_67	844	0.34
LI_48	LI_49	4281723	38.42
LI_48	LI_50	2945166	26.43
LI_48	LI_51	471317	4.23
LI_48	LI_52	12894	0.12
LI_48	LI_53	2569648	23.06
	ress Lists	Intersect	% of Smaller

IP-Addı	ress Lists	Intersect	% of Smaller
LI_48	LI_54	1299	0.01
LI 48	LI_55	4507	0.04
LI_48	LI_56	17402	0.16
LI_48	LI_57	2606536	23.39
LI_48	LI_58	784	0.01
LI_48	LI_59	1044110	9.37
LI_48 LI_48	LI_60	8229	0.07
LI_48 LI_48	LI_61	737	0.01
LI_48 LI_48	LI_61 LI_62	11318	0.10
LI_48 LI_48	LI_62 LI_63	73927	0.66
LI_48 LI 48	LI_63 LI_64		
_	_	2012	0.02
LI_48	LI_65	3404	0.03
LI_48	LI_66	261	0.00
LI_48	LI_67	1566	0.01
LI_49	LI_50	2886876	29.95
LI_49	LI_51	505538	5.25
LI_49	LI_52	5377	0.06
LI_49	LI_53	2430396	25.22
LI_49	LI_54	1173	0.01
LI_49	LI_55	1831	0.02
LI_49	LI_56	20524	0.21
LI_49	LI_57	2313811	24.01
LI_49	LI_58	396	0.00
LI_49	LI_59	898641	9.32
LI_49	LI_60	9818	0.10
LI_49	LI_61	881	0.01
LI_49	LI_62	11987	0.12
LI_49	LI_63	175759	1.82
LI_49	LI_64	2099	0.02
LI_49	LI_65	3445	0.04
LI_49	LI_66	491	0.01
LI_49	LI_67	2154	0.02
LI_50	LI_51	425481	9.87
LI_50	LI_52	4065	0.09
LI_50	LI_53	2120177	49.20
LI_50	LI_54	1182	0.03
LI_50	LI_55	1423	0.03
LI 50	LI_56	18659	0.43
LI_50	LI_57	1905638	44.22
LI 50	LI_58	463	0.01
LI_50	LI 59	859870	19.95
LI_50	LI_60	6711	0.16
LI_50	LI_61	887	0.02
LI_50	LI_62	11432	0.27
LI 50	LI_63	148904	3.46
LI_50	LI_64	1987	0.05
LI_50	LI_65	4324	0.10
LI_50	LI_66	157	0.00
LI_50	LI_67	2475	0.06
LI_50 LI_51	LI_52	101	0.01
LI_51	LI_53	402056	9.57
LI_51	LI_54	171	0.02
LI_51	LI_55	42	0.01
LI_51	LI_56	4918	0.71
LI_51	LI_57	334376	7.96
	ress Lists	Intersect	% of Smaller
1001			

IP-Addr	ess Lists	Intersect	% of Smaller
LI_51	LI_58	5	0.00
LI 51	LI 59	191003	10.90
LI_51	LI_60	5721	0.83
LI_51	LI_61	224	0.03
LI_51	LI_62	4179	0.61
LI_51	LI_63	25116	3.64
LI 51	LI_64	300	0.04
LI_51 LI_51	LI_04 LI 65	1588	0.23
LI_51 LI_51	_	293	
	LI_66		0.04
LI_51	LI_67	925	0.13
LI_52	LI_53	4636	0.11
LI_52	LI_54	0	0.00
LI_52	LI_55	19642	2.79
LI_52	LI_56	151	0.02
LI_52	LI_57	3492	0.08
LI_52	LI_58	36	0.01
LI_52	LI_59	1488	0.08
LI_52	LI_60	1	0.00
LI_52	LI_61	0	0.00
LI_52	LI_62	159	0.02
LI_52	LI_63	51	0.01
LI_52	LI 64	31	0.00
LI_52	LI_65	84	0.01
LI_52	LI_66	0	0.00
LI_52	LI_67	13	0.00
LI_52 LI_53	LI_54	995	0.02
LI_53	LI_55	1644	0.04
LI_53	LI_56	13978	0.33
LI_53	LI_57	1562798	37.19
LI_53	LI_58	5	0.00
LI_53	LI_59	667185	15.88
LI_53	LI_60	6581	0.16
LI_53	LI_61	480	0.01
LI_53	LI_62	9116	0.22
LI_53	LI_63	195567	4.66
LI_53	LI_64	706	0.02
LI_53	LI_65	2328	0.06
LI_53	LI_66	296	0.01
LI_53	LI_67	1963	0.05
LI_54	LI_55	0	0.00
LI_54	LI_56	27	0.11
LI_54	LI_57	1188	0.03
LI_54	LI_58	30	0.66
LI_54	LI_59	1106	0.06
LI_54	LI_60	32	0.06
LI_54	LI_61	0	0.00
			0.00
LI_54	LI_62	38	
LI_54	LI_63	223	0.09
LI_54	LI_64	10	0.23
LI_54	LI_65	4	0.05
LI_54	LI_66	0	0.00
LI_54	LI_67	12	0.30
LI_55	LI_56	0	0.00
LI_55	LI_57	1229	0.03
LI_55	LI_58	0	0.00
IP-Addr	ess Lists	Intersect	% of Smaller

	ess Lists	Intersect	% of Smaller
LI_55	LI_59	295	0.02
LI_55	LI_60	0	0.00
LI_55	LI_61	0	0.00
LI_55	LI_62	1	0.00
LI_55	LI_63	19	0.01
LI_55	LI_64	0	0.00
LI_55	LI_65	0	0.00
LI_55	LI_66	0	0.00
LI_55	LI_67	0	0.00
LI_56	LI_57	13279	0.32
LI_56	LI_58	9	0.04
LI_56	LI_59	14257	0.81
LI_56	LI_60	440	0.83
LI_56	LI_61	53	0.21
LI_56	LI_62	1133	4.46
LI_56	LI_63	2387	0.93
LI_56	LI 64	386	1.54
LI_56	LI_65	334	1.33
LI_56	LI_66	23	0.09
LI_56	LI_60 LI_67	296	1.18
LI_50 LI_57	LI_58	346	0.01
LI_57 LI_57	LI_58 LI_59	826382	19.67
LI_57 LI_57	LI_59 LI_60	6743	0.16
	LI_60 LI_61	914	0.10
LI_57			
LI_57	LI_62	11094	0.26
LI_57	LI_63	116981	2.78
LI_57	LI_64	1255	0.03
LI_57	LI_65	3635	0.09
LI_57	LI_66	176	0.00
LI_57	LI_67	2150	0.05
LI_58	LI_59	4308	0.25
LI_58	LI_60	0	0.00
LI_58	LI_61	4	0.09
LI_58	LI_62	176	0.69
LI_58	LI_63	0	0.00
LI_58	LI_64	28	0.62
LI_58	LI_65	108	1.34
LI_58	LI_66	0	0.00
LI_58	LI_67	28	0.62
LI_59	LI_60	3784	0.22
LI_59	LI_61	812	0.05
LI_59	LI_62	13251	0.76
LI_59	LI_63	60538	3.46
LI_59	LI_64	3283	0.19
LI_59	LI_65	5296	0.30
LI_59	LI_66	126	0.01
LI_59	LI_67	2479	0.14
LI_60	LI_61	16	0.03
LI_60	LI_62	92	0.17
LI_60	LI_63	670	0.26
LI_60	LI_64	166	0.31
LI_60	LI_65	15	0.03
LI_60	LI_66	1851	3.48
LI_60	LI_67	82	0.15
LI_61	LI_62	20	0.08
	ess Lists	Intersect	% of Smaller

IP-Addı	ress Lists	Intersect	% of Smaller
LI_61	LI_63	191	0.07
LI_61	LI_64	8	0.18
LI_61	LI_65	33	0.41
LI_61	LI_66	1	0.02
LI_61	LI_67	11	0.28
LI_62	LI_63	3299	1.29
LI_62	LI_64	241	0.95
LI_62	LI_65	352	1.38
LI_62	LI_66	1	0.00
LI_62	LI_67	143	0.56
LI_63	LI_64	139	0.05
LI_63	LI_65	109	0.04
LI_63	LI_66	22	0.01
LI_63	LI_67	508	0.20
LI_64	LI_65	125	1.55
LI_64	LI_66	37	0.84
LI_64	LI_67	84	1.90
LI_65	LI_66	0	0.00
LI_65	LI_67	111	1.38
LI_66	LI_67	4	0.10
IP-Address Lists		Intersect	% of Smaller