The p-Block Elements (Group 15, 16, 17 & 18)

CHAPTER

21

- In XeF₂, XeF₄, XeF₆ the number of lone pairs on Xe are respectively [2002]
 - (a) 2, 3, 1
- (b) 1,2,3
- (c) 4, 1, 2
- (d) 3, 2, 1.
- 2. In case of nitrogen, NCl₃ is possible but not NCl₅ while in case of phosphorous, PCl₃ as well as PCl₅ are possible. It is due to [2002]
 - (a) availability of vacant d orbitals in P but not in N
 - (b) lower electronegativity of P than N
 - (c) lower tendency of H-bond formation in P than N
 - (d) occurrence of P in solid while N in gaseous state at room temperature.
- 3. Number of sigma bonds in P_4O_{10} is [2002]
 - (a) 6
- (b) 7
- (c) 17
- (d) 16.
- **4.** Oxidation number of Cl in CaOCl₂ (bleaching power) is: [2002]
 - (a) zero, since it contains Cl₂
 - (b) -1, since it contains Cl^-
 - (c) + 1, since it contains ClO
 - (d) + 1 and 1 since it contains ClO⁻ and Cl⁻
- 5. What may be expected to happen when phosphine gas is mixed with chlorine gas?

[2003]

- (a) PCl₃ and HCl are formed and the mixture warms up
- (b) PCl₅ and HCl are formed and the mixture cools down
- (c) PH₃. Cl₂ is formed with warming up
- (d) The mixture only cools down
- 6. Concentrated hydrochloric acid when kept in open air sometimes produces a cloud of white fumes. The explanation for it is that [2003]
 - (a) oxygen in air reacts with the emitted HCl gas to form a cloud of chlorine gas
 - (b) strong affinity of HCl gas for moisture in air results in forming of droplets of liquid

- solution which appears like a cloudy smoke.
- (c) due to strong affinity for water, concentrated hydrochloric acid pulls moisture of air towards itself. This moisture forms droplets of water and hence the cloud
- (d) concentrated hydrochloric acid emits strongly smelling HCl gas all the time.
- 7. Which one of the following substances has the highest proton affinity? [2003]
 - (a) H₂S
- (b) NH₃
- (c) PH₂
- (d) H₂O
- 8. Which among the following factors is the most important in making fluorine the strongest oxidizing halogen? [2004]
 - (a) Hydration enthalpy
 - (b) Ionization enthalpy
 - (c) Electron affinity
 - (d) Bond dissociation energy
- 9. Excess of KI reacts with CuSO₄ solution and then Na₂S₂O₃ solution is added to it. Which of the statements is **incorrect** for this reaction?

[2004]

- (a) $Na_2S_2O_3$ is oxidised
- (b) CuI₂ is formed
- (c) Cu_2I_2 is formed
- (d) Evolved I₂ is reduced
- 10. Which one of the following statement regarding helium is **incorrect**? [2004]
 - (a) It is used to produce and sustain powerful superconducting magnets
 - (b) It is used as a cryogenic agent for carrying out experiments at low temperatures
 - (c) It is used to fill gas balloons instead of hydrogen because it is lighter and noninflammable
 - (d) It is used in gas-cooled nuclear reactors
- 11. The number of hydrogen atom(s) attached to phosphorus atom in hypophosphorous acid is [2005]

c-9	8		Chemistry					
	(a) three (b) one	19.						
	(c) two (d) zero		lone pairs associated with Xe? [2011RS]					
12.	The correct order of the thermal stability of		(a) XeF_4 (b) XeF_6					
	hydrogen halides (H–X) is [2005]		(c) XeF_2 (d) XeO_3					
	(a) $HI > HCI < HF > HBr$	20.	The molecule having smallest bond angle is:					
	(b) $HCl < HF > HBr < HI$		[2012]					
	(c) $HF > HCl < HBr > HI$		(a) NCl ₃ (b) AsCl ₃					
	(d) $HI < HBr > HCl < HF$	21.	(c) SbCl ₃ (d) PCl ₃ Which among the following is the most reactive?					
13.	Which of the following statements is true?	21.	JEE M 2015					
	[2006]		(a) I ₂ (b) IC1					
	(a) HClO ₄ is a weaker acid than HClO ₃		(c) Cl ₂ (d) Br ₂					
	(b) HNO ₃ is a stronger acid than HNO ₂	22.	Assertion: Nitrogen and oxygen are the main					
	(c) H_3PO_3 is a stronger acid than H_2SO_3		components in the atmosphere but these do no react to form oxides of nitrogen.					
	(d) In aqueous medium HF is a stronger acid							
4.4	than HCl		Reason: The reaction between nitrogen and					
14.	The increasing order of the first ionization		oxygen requires high temperature.					
	enthalpies of the elements B, P, S and F (Lowest first) is [2006]		[JEE M 2015]					
	(a) $B < P < S < F$ (b) $B < S < P < F$		(a) The assertion is incorrect, but the reason					
	(a) B 1 3 1 (b) B 3 1 1 1 (c) F < S < P < B (d) P < S < B < F		1s correct					
15.	What products are expected from the		(b) Both the assertion and reason are incorrect					
13.	disproportionation reaction of hypochlorous		(c) Both assertion and reason are correct, and the reason is the correct explanation for					
	acid? [2006]		the assertion					
	(a) HCl and Cl ₂ O (b) HCl and HClO ₃		(d) Both assertion and reason are correct, but					
	(c) HClO ₃ and Cl ₂ O (d) HClO ₂ and HClO ₄		the reason is not the correct explanation					
16.	Identify the incorrect statement among the fol-		for the assertion					
	lowing. [2007]	22	Which one has the highest boiling point?					
	(a) Br, reacts with hot and strong NaOH		[JEE M 2015]					
	solution to give NaBr and H ₂ O.		(a) Kr (b) Xe					
	(b) Ozone reacts with SO ₂ to give SO ₃ .		(c) He (d) Ne					
	(c) Silicon reacts with NaOH _(aq) in the pres-	24.	The pair in which phosphorous atoms have a					
	ence of air to give Na_2SiO_3 and H_2O .		formal oxidation state of +3 is: [JEE M 2016]					
	(d) Cl ₂ reacts with excess of NH ₃ to give N ₂		(a) Orthophosphorous and hypophosphoric acids					
	and HCl.		(b) Pyrophosphorous and pyrophosphoric					
17.	Regular use of the following fertilizers increases		acids					
	the acidity of soil? [2007]		(c) Orthophosphorous and					
	(a) Ammonium sulphate		pyrophosphorous acids (d) Pyrophosphorous and hymophosphoric					
	(b) Potassium nitrate		(d) Pyrophosphorous and hypophosphoric acids					
	(c) Urea	25.	The reaction of zinc with dilute and					
10	(d) Superphosphate of lime.		concentrated nitric acid, respectively, produces					
18.	Which one of the following reactions of xenon compounds is not feasible? [2009]		[2016]					
	· ,		(a) NO and N_2O (b) NO_2 and N_2O					
	(a) $3 \text{Xe F}_4 + 6 \text{H}_2 \text{O} \longrightarrow$		(c) N_2O and NO_2 (d) NO_2 and NO					
	$2 \text{ Xe} + \text{ Xe O}_3 + 12 \text{HF} + 1.5 \text{O}_2$	26.	The products obtained when chlorine gas reacts					
	(b) $2XeF_2 + 2H_2O \longrightarrow 2Xe + 4HF + O_2$		with cold and dilute aqueous NaOH are:					
	(c) $Xe F_6 + RbF \longrightarrow Rb[Xe F_7]$		[2017]					
	(d) $XeO_3 + 6HF \longrightarrow XeF_6 + 3H_2O$		(a) ClO^- and ClO_3^- (b) ClO_2^- and ClO_3^-					
	70 22		(c) Cl^- and ClO^- (d) Cl^- and ClO_2^-					

The p-Block Elements (Group 15, 16, 17 & 18)

c-99

Answer Key														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(d)	(a)	(d)	(d)	(d)	(a)	(b)	(d)	(b)	(c)	(c)	(c)	(b)	(b)	(b)
16	17	18	19	20	21	22	23	24	25	26				
(d)	(a)	(d)	(c)	(c)	(b)	(c)	(b)	(c)	(c)	(c)				

SOLUTIONS

3.

(d)

1. **(d)** In the formation of XeF₂, sp³d hybridisation occurs which gives the molecule a trigonal bipyramidal structure.

are available. Hence phosphorous can from pentahalides also but nitrogen can not form pentahalide due to absence of d-orbitals

Excited state configuration

In the formation of XeF₄, sp³d² hybridization occurs which gives the molecule an octahedral structure.

In the formation of XeF₆, sp³d³ hybridization occurs which gives the molecule a pentagonal bipyramidal structure.

2. (a) ${}_{7}N = 1s^2 2s^2 2p^3$; ${}_{15}P = 1s^2 2s^2 2p^6 3s^2 3p^3$ NOTE In phosphorous the 3d- orbitals

4. (d) $CaOCl_2$ — or it can also be written as

$$Ca(OCl)Cl$$
 x_1
 x_2

hence oxidation no of Cl in OCl⁻ is $-2 + x_2 = -1$

$$x_2 = 2 - 1 = +1$$

now oxidation no. of another Cl is -1 as it is present as Cl⁻.

5. (d) On mixing phosphine with chlorine gas PCl_5 and HCl forms. The mixture cools down.

$$PH_3 + 4Cl_2 \longrightarrow PCl_5 + 3HCl$$

- 6. (a) $4HCl + O_2 \rightarrow 2Cl_2 + 2H_2O$ air cloud of white fumes
- 7. (b) Among the given compounds, the NH₃ is most basic. Hence has highest proton affinity

c-100-

Chemistry

8. (d) The fluorine has low dissociation energy of F - F bond and reaction of atomic fluorine is exothermic in nature

9. **(b)** ${}^{-1}_{4} \text{KI} + 2\text{CuSO}_4 \rightarrow {}^{0}_{12} + \text{Cu}_2\text{I}_2 + 2\text{K}_2\text{SO}_4$ ${}^{0}_{12} + 2\text{Na}_2 {}^{2}_{2} {}^{O}_3 \rightarrow \text{Na}_2 {}^{+2.5}_{34} {}^{-1}_{06} + 2\text{NaI}$ In this CuI₂ is **not** formed.

10. (c) Helium is heavier than hydrogen although it is non-inflammable

11. (c) Hypophosphorous acid $H-O-P \to O$

Two H-atoms are attached to P atom.

12. (c) The H–X bond strength decreases from HF to HI. i.e. HF>HCl>HBr>HI. Thus HF is most stable while HI is least stable. This is evident from their decomposition reaction: HF and HCl are stable upto 1473K, HBr decreases slightly and HI dissociates considerably at 713K. The decreasing stability of the hydrogen halide is also reflected in the values of dissociation energy of the H–X bond

 $\begin{array}{cccc} H-F & H-Cl & H-Br & H-I \\ 135kcal \; mol^{-1} & 103kcal \; mol^{-1} & 87kcal \; mol^{-1} & 71kcal \; mol^{-1} \end{array}$

- 13. (b) The ${\rm HNO_3}$ is stronger than ${\rm HNO_2}$. The more the oxidation state of N, the more is the acid character.
- **14. (b)** The correct order of ionisation enthalpies is

MOTE On moving along a period ionization enthalapy increases from left to right and decreases from top to bottom in a group. But this trend breaks up in case of

atom having fully or half filled stable orbitals.

In this case P has a stable half filled electronic configuration hence its ionisation enthalapy is greater in comparision to S. Hence the correct order is B < S < P < F.

15. (b) During disproportionation same compound undergo simultaneous oxidation and reduction.

- **16. (d)** Chlorine reacts with excess of ammonia to produce ammonium chloride and nitrogen.
- 17. (a) $(NH_4)_2SO_4 + 2H_2O \longrightarrow 2H_2SO_4 + NH_4OH$ H_2SO_4 is strong acid and increases the acidity of soil.
- 18. (d) The products of the concerned reaction react each other forming back the reactants. $XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$.

The p-Block Elements (Group 15, 16, 17 & 18)

-c-101

Hence XeF₂ has maximum no. of lone pairs of electrons.

20. (c) All the members form volatile halides of the type

AX₃. All halides are pyramidal in shape. The bond angle decreases on moving down the group due to decrease in bond pair-bond pair repulsion.

21. (b) ICl Order of reactivity of halogens $Cl_2 > Br_2 > I_2$

But, the interhalogen compounds are generally more reactive than halogens (except F_2), since the bond between two dissimilar electronegative elements is weaker than the bond between two similar atoms i.e, X-X

- 22. (c) Nitrogen and oxgen in air do not react to form oxides of nitrogen in atmosphere because the reaction between nitrogen and oxygen requires high temperature.
- 23. (b) Xe. As we move down the group, the melting and boiling points show a regular increase due to corresponding increase in the magnitude of their van der waal forces of attraction as the size of the atom increases.
- **24. (c)** Phosphorous acid contain P in +3 oxidation state.

	Acid	Formula	Oxidation state of Phosphorus					
Pyropho	sphorous acid	$H_4P_2O_5$	+3					
Pyropho	sphoric acid	$H_4P_2O_7$	+5					
Orthoph	osphorous acid	H_3PO_3	+3					
Hypoph	osphoric acid	$H_4P_2O_6$	+4					
25. (c) Reaction of Zn with dil. HNO ₃								
$4Zn + 10HNO_3(dil) \longrightarrow 4Zn(NO_3)$								
	$5H_2O + N_2O$	<i>y</i>	. 3.2					
(Zn reacts differently with								
	dilute HNC							
	Reaction of Zn with conc. HNO ₃							
	$Zn + 4HNO_3(conc.) \longrightarrow Zn(NO_3)_2 +$							
	$2H_2O + 2NO_2$	ŕ	3, 2					
26. (c)	$Cl_2 + NaOH \rightarrow$	NaCl + NaC	IO+H ₂ O					
[cold and dilute]								