Bayesova statistika - zapiski s predavanj prof. Smrekarja

Tomaž Poljanšek

študijsko leto 2023/24

Kazalo

1	Uvod		1
	1.1	Elementarna Bayesova statistika	1
	1.2	Proučevani slučajni vektor (vzročni) parametrični model	2
	1.3	Apriorna in "robna" porazdelitev	3
	1.4	Disperzija aposteriornih porazdelitev	6
2	Enc	parametrični modeli	10
	2.1	Beta-binomski model	10
	2.2	Poissonov model (gama-poissonov model)	10
	2.3	Normalni model z znano disperzijo	11
	2.4	Eksponentne družine porazdlitev	13

Seznam uporabljenih kratic

kratica	pomen
s.v.	slučajni vektor
В	binomska porazdelitev
NEP	neodvisen in enako porazdeljen
s.s.	slučajna spremenljivka
p.v.	pričakovana vrednost
\mathbf{AKI}	aposteriorni kredibilnostni interval
\mathbf{BF}	Bayesova formula

Poglavje 1

$\mathbf{U}\mathbf{vod}$

Bayesova statistika je formalni okvir za "osveževanje" vedenja/znanja o porazdelitvi nekega slučajnega vektorja.

 $Zgled.~1000, \approx 400 \text{\center} \rightarrow 600 \text{\center}$ (apriorno znanje).

Izvedemo (statistični) poskus: izvlečemo 10, dobimo 6 črnih in 4 bele

1.1 Elementarna Bayesova statistika

Privzamemo popoln sistem dogodkov $E_1, E_2 \dots E_m : E_i \cap E_j = \emptyset$ za $i \neq j$ in $E_1 \cup E_2 \cup \dots \cup E_m = \Omega$.

Če imamo še neki dogodek A, velja t.i. zakon o popolni verjetnosti $P(A) = \sum_{i=1}^{m} P(A \mid E_i) \cdot P(E_i)$ (interpretacija: 2-fazni poskus).

V Bayesovem okviru nas zanimajo $P(E_j \mid A)$ (verjetnost, da se je v "1. fazi" zgodil E_j , če se je "2. fazi" zgodil A). Ker je

$$P(E_j \mid A) = \frac{P(E_j \cap A)}{P(A)}$$

jе

$$P(E_j \mid A) = \frac{P(A \mid E_j) \cdot P(E_j)}{P(A)}$$
 - elementarna pogojna verjetnost

oziroma

$$P(E_j \mid A) = \frac{P(A \mid E_j) \cdot P(E_j)}{\sum_{i=1}^m P(A \mid E_i) \cdot P(E_i)} - \text{elementarna Bayesova formula}.$$

Nadaljujemo zgled. V Bayesovi statistiki predhodno ("apriorno") vedenje formaliziramo kot realizacijo slučajnega eksperimenta. V našem primeru vpeljemo fukcijo, da smo število črnih frnikul θ (- realizacija) dobili kot rezultat slučajne spremenljivke $\Theta \in \{0, 1, 2 \dots 1000\}$.

Informacijo $\theta \approx 400$ zakodiramo kot $E(\Theta) = 400$.

Privzamemo (kar!)
$$\Theta \sim B\left(1000, \frac{4}{10}\right)$$

$$\implies P(\Theta = \theta) = \binom{1000}{\theta} \left(\frac{4}{10}\right)^{\theta} \left(1 - \frac{4}{10}\right)^{1000 - \theta}.$$

$$P(k \text{ črnih od 10 izvlečenih}|\Theta = \theta) = \frac{\binom{\theta}{k}\binom{1000 - \theta}{10 - k}}{\binom{10}{k}} \ (*)$$
(*) pri omejitvah (k omejimo).

Osvežena porazdelitev - novo vedenje

$$\begin{split} &P(\Theta=\theta\mid 6\text{ črnih od }10\text{ izvlečenih}) = \\ &\frac{P(6\text{ črnih od }10\text{ izvlečenih}\mid \Theta=\theta)\cdot P(B(1000,\frac{4}{10})=\theta)}{\sum_{i=0}^{1000}P(6\text{ črnih od }10\text{ izvlečenih}\mid \Theta=i)\cdot P(B(1000,\frac{4}{10}))=i}. \end{split}$$

Pravimo ji aposteriorna porazdelitev.

1.2 Proučevani slučajni vektor (vzročni) parametrični model

Naj bo $X=(X_1,X_2...X_n)\in\mathbb{R}^n$ preučevani slučajni vektor. Pogosto so neodvisni in enako porazdeljeni (NEP) realizacija danega slučajnega eksperimenta. S pomočjo statistike lahko "ocenjujemo" porazdelitev slučajnega vektorja X. Zanjo privzamemo, da pripada nekemu modelu, t.j. neki množici dopustnih rešitev. Privzamemo, da je ta množica parametrizirana s parametričnim prostorom $\Theta \subset \mathbb{R}^r$. Tu si mislimo, da parameter $\theta \in \Theta$ dobimo kot realizacijo slučajnega vektorja (s.v.) Θ z vrednostmi v Θ (večinoma $r \geq 2$).

Porazelitvi s.v. X_i pogojno na $\Theta = \theta$ pravimo vzorčna porazdelitev. Privzeli bomo, da imamo gostote $f(x \mid \theta)$ ali verjetnostne funkcije

$$P(X = x \mid \theta) = f(x \mid \theta),$$

torej da velja

$$P(X \in B \mid \Theta = \theta) = \int_{B} f(x \mid \theta) d\nu(x)$$

(v Lebesgueovi meri) ali

$$P(X \in B \mid \Theta = \theta) = \sum_{x \in B} f(x \mid \theta).$$

Modelu pogojnih porazdelitev $(X \mid \Theta = \theta)$ pravino vrorčni model.

1.3 Apriorna in "robna" porazdelitev

Porazdelitvi fiktivnega slučajnega vektorja Θ pravimo apriorna porazdelitev, brezpogojni (robni) porazdelitvni slučajnega vektorja X pa pravimo "robna" porazdelitev

(*) v resnici sta obe porazdelitvi robni porazdelitvi družne porazdelitve vektorja (X,Θ) z vrednostmi v \mathbb{R}^{n+r} .

Zgled. Ocenjujemo Bernoullijevo porazdelitev. Predhodno vedenje je podano z apriorno prazdelitvijo na (0,1); mislimo si, da je p realizacija slučajne spremenljivke (s.s.) Π z vrednostmi v (0,1). Možnosti:

- nimamo apriornega mnenja o (dejanskem) p: tedaj bi (morda) vzeli zvezno porazdelitev z gostoto enakomerna porazdelitve,
- smo "zelo" prepričani, da je (dejanski) $p \approx \frac{1}{2}$.

Recimo, da je f(p) gostota apriorne porazdelitve. Tedaj so apriorne verjetnosti

$$P(\Pi \in (a,b)) = \int_{a}^{b} f(p)dp$$

in apriorna pričakovana vrednost

$$E(\Pi) = \int_0^1 p f(p) dp.$$

Pripomnimo, da pri $\Pi \sim U(0,1)$ dobimo $E(U(0,1)) = \frac{1}{2}$.

Privzemimo, da smo "vzorčili" p, potem pa "neodvisno" n-krat vržemo p-kovanec (P(cifra=p)), gre za slučajne spremenljivke $X_1, X_2 \dots X_n$, za katere je ($X_i \mid \Pi = p$) ~ Bernoulli(p) in so $X_1 \dots X_n$ neodvisne pogojno na p. To ne pomeni, da do $X_1 \dots X_n$ brezpogojno neodvisne.

Za $i \neq j$ je

$$P(X_{i} = 1 \land X_{j} = 1) = \int_{0}^{1} P(X_{i} = 1 \land X_{j} = 1 \mid \Pi = p) f(p) dp =$$

$$\stackrel{\text{pogojno neodvisne}}{=} \int_{0}^{1} P(X_{i} = 1 \mid \Pi = p) P(X_{j} = 1 \mid \Pi = p) f(p) dp =$$

$$= \int_{0}^{1} p^{2} f(p) dp =$$

$$= E(\Pi^{2}).$$

Ker je
$$P(X_i = 1) = \int_0^1 P(X_i = 1 \mid p) f(p) dp = \int_0^1 p f(p) dp = E(\Pi)$$
, je
$$Cov(X_i, X_j) = E(\Pi^2) - E(\Pi)^2 = D(\Pi)$$

za $i \neq j$, torej so X_i brezpogojno neodvisne $\iff \Pi = \text{konstantna (slučajna spremenljivka)}.$

Tvorimo $X = X_1 + \cdots + X_n \in \{0, 1 \dots n\}$. To je "preučevana" slučajna spremenljivka. Velja $(X \mid \Pi = p) \sim B(n,p)$. To je vzorčna porazdelitev; vzročni model je parametriziran s prostorom parametrov $(0,1) = \Theta$. Robna porazdelitev je podana z verjetnostmi

$$P(X = k) = \int_0^1 P(X = k \mid p) f(p) dp =$$

$$= \int_0^1 \binom{n}{k} p^k (1 - p)^{n-k} f(p) dp.$$

Recimo, da "opazimo" X=k. Aposteriorna porazdelitev (osveženo vedenje o p) je sestavljeno iz verjetnosti

$$P(X \in (a,b) \mid X = k) = \frac{P(X = k \land \Pi \in (a,b))}{P(X = k)} =$$

$$= \frac{\int_0^1 P(X = k \land \Pi \in (a,b) \mid \Pi = p) f(p) dp}{P(X = k)} =$$

$$= \int_a^b \frac{P(X = k \mid \Pi = p)}{P(X = k)} f(p) dp.$$

Opazimo, da ima aposteriorna porazdelitev ($\Pi \mid X = k$) gostoto

$$f_{(\pi|X)}(p \mid k) = \frac{P(X = k \mid p)f(p)}{P(X = k)}.$$

Zgornji formuli pravimo Bayesova formula.

Za številsko oceno za p bi lahko vzeli pričakovano vrednost aposteriorne porazdelitve

$$\hat{p} = E(\Pi \mid X = k) = \int_0^1 p \cdot f(p \mid k) dp.$$

Pravimo ji aposteriorna pričakovana vrednost.

Posebej priročna družina apriornih porazdelitev (za binomske vzorčne porazdelitev) je t.i. $Beta = \{Beta(a,b) \mid a,b \in (0,\infty)\}$

$$f_{Beta(a,b)}(p) = \frac{1}{B(a,b)} p^{a-1} (1-p)^{b-1} 1_{(0,1)}(p)$$

(tu je $B(a,b) = \int_0^1 p^{a-1} (1-p)^{b-1} dp$).

$$E(Beta(a,b)) = \frac{a}{a+b}$$

$$D(Beta(a,b)) = \frac{ab}{(a+b)^2(a+b+1)}.$$

D(Beta(a,b)) predstavlja "težo" apriornega prepričanja; večji - manj sigurni smo.

$$E(Beta(a,b)) = 0.7.$$

Aposteriorna porazdelitev ima gostoto (če je $f(p) = f_{Beta(a,b)}(p)$)

$$f(p \mid k) = \frac{\binom{n}{k} p^k (1-p)^{n-k} \cdot \frac{1}{B(a,b)} p^{a-1} (1-p)^{b-1}}{P(X=k)} = \text{konst.} \cdot p^{a+k-1} (1-p)^{b+n-k-1}.$$

Vidimo, da je $(\Pi \mid X = k) \sim Beta(a + k, b + n - k)$.

Aposteriorna pričakovana vrednost (p.v.) je

$$\frac{a+k}{a+b+n} = \frac{(a+b)\frac{a}{a+b} + n\frac{k}{n}}{a+b+n} =$$

$$= \frac{a+b}{a+b+n} \cdot \frac{a}{a+b} + \frac{n}{a+b+n} \cdot \frac{k}{n}.$$

Tukaj je

- $\frac{a}{a+b}$ apriorna ocena,
- $\frac{k}{n}$ vzorčna ocena in
- $\frac{a+b}{a+b+n}$ in $\frac{n}{a+b+b}$ faktorja pri konveksni kombinaciji obeh ocen.

Vzorec velik \rightarrow prevlada mnenje vzorca.

1.4 Disperzija aposteriornih porazdelitev

Gre pravzaprav za disperzijo pogojnih porazdelitev. Naj bosta $X: \Omega \to \mathbb{R}^m$ in $Y: \Omega \to \mathbb{R}^n$ in naj ima (X,Y) gostoto $f_{(X,Y)}$ glede na $\mu \times \nu$ Sledita gostoti $f_X(x) = \int f_{(X,Y)}(x,y) d\nu(y)$ za X glede na μ in $f_Y(y) = \int f_{(X,Y)}(x,y) d\mu(x)$ za Y glede na ν . Dalje definiramo pogojni porazdelitvi $(Y \mid X = x)$ in $(X \mid Y = y)$ preko gostot

$$f_{(Y|X)}(y \mid x) = \frac{f_{(X,Y)}(X,Y)}{f_{X}(x)}$$

glede na ν : gostota v $X \to \mu$ in simetrično za $f_{(X|Y)}(x \mid y)$. $P(Y \in B) \mid X = x = \int_B f_{(Y|X)}(y \mid x) d\nu(y)$ - porazdelitev, opremljena z gostoto.

Definicija 1.4.1.

$$E(Y \mid X = x) = \int y f_{(Y|X)}(y \mid x) d\nu(y).$$

y lahko zamenjamo s h(y).

Pišemo $E(Y \mid X = x) = u(X)$ - h je identiteta.

Definicija 1.4.2.

$$E(Y \mid X) = u(X) : \Omega \to \mathbb{R}^n.$$

Slučajni vektor \rightarrow pogojna pričakovana vrednost, oz.

$$E(Y \mid X)(\omega) = u(X(\omega)) = E(Y \mid X = X(\omega)).$$

 $E(Y \mid X)(\omega)$: funkcija na X, kompozitum.

 $X(\omega)$: vrednost.

Definicija 1.4.3. Pogojno varianco slučajnega vektorja Y, pogojno na X = x definiramo kot varianco pogojne porazdelitve $(Y \mid X = x)$, t.j.

$$E((Y - u(X))(Y - u(X))^T \mid X = x) =: Var(Y \mid X = x).$$

Ker je E aditivna, velja

$$E((Y-u(X))(Y-u(X))^T \mid X=x) = E(YY^T \mid X=x) - u(X)u(X)^T =: v(X).$$

v(X) je $n \times n$ matrika.

Definicija 1.4.4. Pogojna varianca slučajnega vektorja Y pogojno na slučajni vektor X je

$$Var(Y \mid X) = v(X).$$

Zadnjič: beta-binomski model: proučevana s.s. T; vzorčne porazdelitve $(T \mid p) \sim B(n,p)$ za $p \in \Theta = (0,1)$. Če je apriorna porazdelitev Beta(a,b), je aposteriorna pri T = k enaka Beta(a + k, b + n - k).

Disperzija porazdelitve ($\Pi \mid T = k$) je enaka $\frac{(a-k)(b+n-k)}{(a+b+k)^2(a+b+n+1)}$ (in je odvisna od realizacije k).

DN: za katere k je D(aposteriorne) > D(apriorne).

Izkaže se, da je za nekatere k manjša, za nekatere k pa večja od disperzije apriorne porazdelitve. Vendar pa velja t.i. "zakon popolne porazdelitve"

$$Var(\Theta) = E(Var(\Theta \mid X)) + Var(E(\Theta \mid X)),$$

kjer sta seveda

$$E(Var(\Theta \mid X)) \ge 0$$
 in

$$Var(E(\Theta \mid X)) \ge 0,$$

(Xvzorčni), iz katerega sledi $E(Var(\Pi\mid X))\leq Var(\Theta)$ (apriori). V konkretnem primeru je

$$E(Var(\Pi \mid T)) \le Var(\Pi).$$

Opomba.

$$E(Var(\Pi \mid T)) = \sum_{k=0}^{n} Var(\Pi \mid k) \cdot P(T = k);$$

T vzorčimo, T je robna porazdelitev (binomska pogojna?).

(V povprečju aposteriorna varianca boljša.)

1.4.1 Aposteriorni kredibilnostni interval

(Bayesova različica intervala zaupanja).

V konkretnem zgledu "iščemo" funkciji realizacije L(k), U(k), za kateri velja

$$\forall k \ P(L(k) \le p \le U(k)) \ge 1 - \alpha.$$

p je slučajen.

Ker za $\Pi \sim Beta(a,b)$, vemo $(\Pi \mid T=k) \sim Beta(a+k,b+n-k)$, lahko izberemo

$$L(k) = F_{Beta(a+k,b+n-k)}^{-1} \left(\frac{\alpha}{2}\right),$$

$$U(k) = F_{Beta(a+k,b+n-k)}^{-1} \left(1 - \frac{\alpha}{2}\right)$$

in v aposteriorni kredibilnostni interval (AKI) dobimo = $1-\alpha$. Taki konstrukciji pravimo centralni kredibilnostni interval. V praksi pogosto uporabljamo tudi t.i. kredibilnostni interval največje gostote, kjer zahtevamo

$$f_{(\Pi|T=k)}(L(k)) = f_{(\Pi|T=k)}(U(k)).$$

To ima smisel za unimodalne aposteriorne porazdelitve.

1.4.2 Splošne oznake

X - proučevalni vektor (z vrednostmi v \mathbb{R}^n).

x - realizacija vektorja $X(x\in\mathbb{R}^n).$

 $\Theta \subset \mathbb{R}^n$ - parametrični prostor.

 Θ - (fiktivni) vektor z realizacijo $\theta \in \Theta$.

 $P=\{P_{\theta}=(X\mid \Pi=\theta)\mid \theta\in\Theta\}$ - družina vzorčnih porazdelitev (vzorčni
 model).

 $f(x\mid\theta)$ - gostota (ali verjetnostna funkcija) porazdelitve (X | $\Theta=\theta)$ (izračunano vx).

 $Opomba. \ f(x \mid \theta) = f_{X \mid \Theta}(x \mid \theta)$ - spuščamo.

V istem smislu gostota (ali verjetnostna funkcija) apriorne porazdelitve. Za aposteriorno gostoro (ali verjetnostno funkcijo) velja Bayesova formula (BF)

$$f(\theta \mid x) = \frac{f(x \mid \theta)f(\theta)}{f(\theta)} \propto f(x \mid \theta)f(\theta).$$

f(x) je normalizacijski faktor.

Poglavje 2

Enoparametrični modeli

2.1 Beta-binomski model

Uvodni beta-binomski model je enoparametričen.

2.2 Poissonov model (gama-poissonov model)

Naj bo parametrični prostor $\Theta = (0, \infty)$ in naj bo $X = (X_1 \dots X_n)$, kjer so $(X_i \mid \lambda) \stackrel{\text{NEP}}{\sim} Poisson(\lambda)$. Za proučevano s.s. vzamemo $T = \sum_{i=1}^n X_i$; seveda je $(T \mid \lambda) \sim Poisson(n\lambda)$.

Privzemimo apriorno porazdelitev

$$f(\lambda) = f_{Gama(a,b)}(\lambda) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} e^{-b\lambda} \cdot 1_{(0,\infty)}(\lambda).$$

 $(0,\infty)$ je parametrični prostor, a in b sta pozitivni konstanti. Izkaže se:

$$E(Gama(a,b)) = \frac{a}{b},$$

$$D(Gama(a,b)) = \frac{a}{b^2}.$$

DN.

$$P(T = k \mid \lambda) = e^{-n\lambda} \frac{(n\lambda)^k}{k!}.$$

Bayesova formula se glasi

$$f(\lambda \mid T = k) \propto P(T = k \mid \lambda) \cdot f(\lambda)$$
$$\propto e^{-n\lambda} \lambda^k \cdot \lambda^{a-1} e^{-b\lambda}$$
$$= \lambda^{a+k-1} e^{-(b+n)\lambda}$$

$$\implies (\Lambda \mid T = k) \sim Gama(a + k, b + n).$$

Definicija 2.2.1. Naj bo podan vzorčni model P in naj bo K družina porazdelitev na parametričnem prostoru Θ . Pravimo, da je K konjugirana kP, če vedno velja

$$f(\theta \mid x) \in K \implies \forall x : (\Theta \mid X = x) \in K.$$

 $f(\theta \mid x)$ je porazdelitev na Θ . Rečemo lahko tudi, da sta P in K konjugiran par.

2.3 Normalni model z znano disperzijo

Tu je σ^2 znana disperzija, vzorec $X=(X_1\ldots X_n)$ pa zadošča $(X_i\mid \mu)\stackrel{\text{NEP}}{\sim} N(\mu,\sigma^2)$, kjer je $\mu\in\Theta=\mathbb{R}$. S katero porazdelitvijo bi zakodirali apriorno informacijo?

Recimo, da je apriorno mnenje: $\mu \approx \mu_0$. Vzemimo za apriorno porazdelitev kar $N(\mu_0, \tau_0^2)$.

Vzorčna:

$$f(x \mid \mu) = f(x_1 \dots x_n \mid \mu)$$

= $(2\pi\sigma^2)^{-\frac{1}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}$.

Pripomnimo, da je

$$\sum_{i=1}^{n} (x_i - \mu)^2 = n \cdot (\mu - \overline{x})^2 + \sum_{i=1}^{n} (x_i - \overline{x})^2,$$

kjer je $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$. (Vzorčna: jih je več, apriorna: ena.)

Apriorna:

$$f(\mu) = (2\pi\sigma_0^2)^{-\frac{1}{2}} e^{-\frac{1}{2\sigma_0^2}(\mu-\mu_0)^2}$$

Opazimo, da je

$$f(\mu) = e^{\text{kvadratni polinom}(\mu)}$$
.

Velja:

$$\int_{-\infty}^{\infty} e^{a\mu^2 + b\mu + c} d\mu < \infty \iff a < 0.$$

DN (kako se narobe lotiti): drugače koliko apriorna gostota (integral robne gostote, Bayesova formula).

V tem duhu

$$f(\mu \mid x) \propto e^{-\frac{1}{2}\left(\left(\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}\right)\mu^2 - 2\left(\frac{n\overline{x}}{\sigma^2} - \frac{\mu_0}{\tau_0^2}\right)\mu\right)}.$$

Prepoznamo kot normalno porazdelitev. Označimo jo $N(\mu_1, \tau_1^2)$.

Velja

$$f_{N(\mu_1, \tau_1^2)}(\mu) \propto e^{-\frac{1}{2} \left(\frac{1}{\tau_1^2} \mu^2 - 2\frac{\mu_2}{\tau_1^2} \mu\right)}$$

Sledi

$$[\mu^2]: \frac{n}{\sigma^2} + \frac{1}{\tau_0^2} = \frac{1}{\tau_1^2} \text{ in}$$
$$[\mu]: \frac{n\overline{x}}{\sigma^2} + \frac{\mu_0}{\tau_0^2} = \frac{\mu_1}{\tau_1^2}.$$

Tukaj je:

- $\frac{n}{\sigma^2}$ vzorčna preciznost,
- $\frac{1}{\tau_0^2}$ apriorna preciznost,
- $\frac{1}{\tau_1^2}$ aposteriorna preciznost,
- preciznosti se pri seštevanju neodvisnih normalnih porazdelitvah seštevajo.

Preciznost je $\frac{1}{D(..)}$.

To pomeni

$$\tau_1^2 = \left(\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}\right)^{-1}$$

in

$$\mu_1^2 = \tau_1^2 \left(\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}\right)$$

$$= \frac{\left(\frac{n}{\sigma^2}\overline{x} + \frac{1}{\tau_0^2}\mu_0\right) \cdot \frac{\tau_0^2 \sigma^2}{n}}{\left(\frac{n}{\sigma^2} + \frac{1}{\tau_1^2}\right) \cdot \frac{\tau_0^2 \sigma^2}{n}}$$

$$= \frac{\tau_0^2 \overline{x} + \frac{\sigma^2 \mu_0}{n}}{\tau_0^2 + \frac{\sigma^2}{n}}$$

$$= \frac{\tau_0^2}{\tau_0^2 + \frac{\sigma^2}{n}} \overline{x} + \frac{\frac{\sigma^2}{n}}{\tau_0^2 + \frac{\sigma^2}{n}} \mu_0$$

2.4 Eksponentne družine porazdlitev

Vzorčni model pripada eksponentni družini porazdelitev, če velja

$$f(x \mid \theta) = c(\theta) \cdot e^{\langle Q(\theta), T(x) \rangle} \cdot h(x)$$

= $e^{-\psi(\theta)} e^{\langle Q(\theta), T(x) \rangle} \cdot h(x),$ (2.1)

kjer je

$$\tau: \Theta \to \mathbb{R}$$
$$T: \mathbb{R}^n \to \mathbb{R}^m$$
$$Q: \Theta \to \mathbb{R}^m \text{ in }$$
$$h: \mathbb{R}^n \to [0, \infty].$$

Zgled.

1 NEP Bernoullijev model:

$$(X_i \mid p) \stackrel{\text{NEP}}{\sim} Bernoulli(p) = B(1,p)$$

 $f(x_1 \dots x_n \mid p) = p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i} \cdot 1_{\{0,1\}^n} (x_1 \dots x_n)$
 $f(x_1 \dots x_n \mid p) = P(X_1 = x_1 \dots X_n = x_n \mid p)$

Preoblikujemo v:

$$(1-p)^n \left(\frac{p}{1-p}\right)^{\sum_{i=1}^n x_i} \cdot 1_{\{0,1\}^n} (x_1 \dots x_n) = e^{\ln\left(\frac{p}{1-p}\right) \sum_{i=1}^n x_i} \cdot 1_{\{0,1\}^n} (x_1 \dots x_n).$$

(2) Normalni model z znano σ^2 :

$$\Theta = \mathbb{R}, \mu \in \mathbb{R}$$

$$(EXP) f(x_1 \dots x_n \mid \mu) = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}$$

$$= (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2 + \frac{\mu}{\sigma^2} \sum_{i=1}^n x_i - \frac{n\mu^2}{2\sigma^2}}$$

$$= (2\pi\sigma^2)^{-\frac{n}{2}} \cdot e^{-\frac{n\mu^2}{2\sigma^2}} \cdot e^{\frac{\mu}{\sigma^2} \sum_{i=1}^n x_i} \cdot e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2}.$$

Tukaj je

$$c(\mu) = (2\pi\sigma^2)^{-\frac{n}{2}} \cdot e^{-\frac{n\mu^2}{2\sigma^2}}$$

$$Q(\mu) = e^{-\frac{\mu}{\sigma^2}}$$

$$T(x) = e^{\sum_{i=1}^{n} x_i}$$

$$h(x) = e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} x_i^2}$$

(3) Normalni model z neznano disperzijo:

$$\Theta = \mathbb{R} \times (0, \infty) = (\mu, \sigma^2)$$

Zapišemo

$$f(x_1 \dots x_n \mid \mu, \sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{n\mu^2}{2\sigma^2}} e^{\langle (\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2}), (\sum_{i=1}^n x_i, \sum_{i=1}^n x_i^2) \rangle}$$

Tukaj je

$$c(\mu) = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{n\mu^2}{2\sigma^2}}$$

$$Q(\mu) = (\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2})$$

$$T(x) = (\sum_{i=1}^n x_i, \sum_{i=1}^n x_i^2).$$

m=2.

Preimenujemo (EXP) in definirajmo apriorne gostote

$$f(\eta, \upsilon) = \frac{1}{K(\eta, \upsilon)} \cdot e^{\langle Q(\theta), \eta \rangle - \upsilon \psi(\theta)}.$$
 (2.2)

Tukaj je $\mu \in \mathbb{R}^n$ in $\upsilon \in \mathbb{R}$.

(Upoštevati moramo morebitne omejitve zaradi zahteve $\int F = 1$).

Seveda je

$$K(\eta, \upsilon) = \int e^{\langle Q(\theta), \upsilon \rangle - \upsilon \psi(\theta)} d\theta.$$

Aposteriorna gostota?

$$f(\theta \mid x) \propto e^{-(v+1)\psi(\theta) + \langle Q(\theta), \eta + T(x) \rangle}$$

Tukaj smo zmožili nekonstantne faktorje iz 2.1 in 2.2.

Vidimo:

$$f(\theta \mid x) = f_{(\eta + T(x), \upsilon + 1)}(\theta)$$

gre za konjugirano družino.

Zgled. Aplicirajmo to konstrukcijo na modelu $\Large{\textcircled{2}}.$ Dobimo konjugirano družino

$$f_{(\eta,\upsilon)}(\mu) \propto e^{\frac{\mu}{\sigma^2\eta} - \tau \frac{n\mu^2}{2\sigma^2}},$$

kjer sta $\eta, \upsilon \in \mathbb{R}$.

Vidimo, da mora biti v > 0.

DN: $\eta, \upsilon \rightarrow \mu_0, \tau_0^2$ - reparametrizacija.