Exercise 10, December 1, 2011

1. Determine the autocorrelation functions of the signals

$$x(t) = 0.1\sin(0.5t + \phi_x)$$

$$y(t) = 0.2\sin(0.2t + \phi_y)$$

$$z(t) = x(t) + y(t)$$

when the phase angles ϕ_x ja ϕ_y are independent random variables that are evenly distributed on the interval $[0, 2\pi]$.

2. For the complex sinusoidal signal $x(t) = A \exp(j\omega t) + v(t)$ it is known that $r_x(0) = 2$ and $r_x(1) = j$, and that v(t) is white noise.

Determine the signal power $|A|^2$, the frequency ω of the signal, and the variance of the noise v(t).

- 3. x(t) is a real-valued signal. Assume that the autocorrelations $r_x(0) = 1$, $r_x(1) = c$, and $r_x(2) = 0$ are known.
 - (a) Estimate the power spectrum using the maximum entropy method (MEM).
 - (b) What is the power spectrum if you assume that $r_x(k) = 0$ for all k > 2?
- 4. For the signal in the previous problem with autocorrelations $r_x(0) = 1$, $r_x(1) = c$, $r_x(2) = 0$, calculate an estimate of the power spectrum using the minimum variance method.

Hint: The method requires a matrix inversion which could be calculated by hand using the Levinson recursion, but here you can use some software - e.g., Wolfram Alpha - to find the inverse.

5. (Bonus point exercise)

The process

$$x(n) = \sum_{i=1}^{p} A_i e^{j\omega_i n} + v(n)$$

contains p sinusoids with frequencies $\omega_k = 2\pi k/M$. The noise v(n) is white. Calculate the eigenvalues of the $M \times M$ autocorrelation matrix \mathbf{R}_x of the process x(n). Calculate also the inner products $\mathbf{v}_i^H \mathbf{v}_k$ where \mathbf{v}_i is the eigenvector of \mathbf{R}_x corresponding to the eigenvalue λ_i .

Hint: the sum formula $\sum_{l=0}^{M-1} q^l = \frac{1-q^M}{1-q}$ for the geometric series is helpful when calculating the inner product.