南京航空航天大学

第1页 (共6页)

		0	<u> </u>	=0=	一 学年	第I学	⊭期 《 €	竖码 :	字》名	与试证	式尟	
		考i	式日期:	2021年	F1月	∃ ì	式卷类型	:	试卷	代号:		
			班	号		学号			姓名			
是	0号	_	=	Ξ	四	五	六	七	八	九	+	总分
往	身分											
_	,	单项选	择题: 7	生下列各	题中,>	将唯一正	确的答		入括号	力		
		N N 02004000 005 1	题,总计			- F N - N - N				× × 7		
1,						加密前首					♯(a)	0
	(a)	Vernam	i体制		(b) P	layfair	体制	(c) Hill	体制		
2,	在一	个密码系	系统模型	中,只都	战取信道	上传送作	言息的攻	击方式被	皮称为(b).		
	(a)	干扰型			(b) 被z	动攻击		(c)主动功	女击		
3,	通信	系统的证	设计目的	是在信息	道有干扰	的情况	下,使接	受到的信	言息无差	错或差钝	昔尽可能	地 (
)。												
	(a)	不变			(b)	小		(c)大			
4、	跟对	称密码位	本制相比	,公钥额	密码体制	」最大的特	寺点是(c).				
	(a)	速度快	:		(b)	加密强度	高	(c)加密图	密钥可公	·开	
5.	公 组	室码 休#	訓的理论	基础是								
01							毛米ん八条	(-) 右 四+	北上的南	サケコナ 米ケ	
	(a)	阳11中	- 門 - 四 - 数		(b)	大数的刻	系 致	(C	/ 有限。	以上的呙	即刈剱	
6、	下列	对 McEl:	iece 密码	马体制论	:述 不 正在	确的是:	(c) (a)	由于明	文空间到	到密文空	间有数据	居扩展,
密	文比明	月文长 2	倍,而ス	下适于数	字签字。	o .						
	(b)	公开密	钥量过る	大, 达2	¹⁹ bits,	这是限制	引此体制	实用的主	三要因素	0		
	(c)	加密速	度低, 但	日安全性	较高。							
7、						制在理论	上是 (a) 1a	皮译的。			
ione di		不可以		y #1 # Z #		可以				易		
8,				钥序列的		要工具是						

(b) 数据寄存器

(c) 移位寄存器

(a) 指令寄存器

9, 1	Hash	函数不可以	用于 (a)。					
	(a)	数据加密		(b)数字签名	3	(c)	完整性检测		
10,	下面	ī对 Feistel	网络的描述2	下正确的是:(c)				
	(a)	它是一种代	没 换网络。						
	(b)	其输出的每	比特密文都和	和输入的明文及	及密钥各比特有	关。			
	(c)	其加密过程	員的算法复杂月	度要比其解密过	过程的复杂度高	得多	0		
20.000	大题		E下列各题中, 总计 10 分)	将正确答案均	真入划线的空台	处			
1,	在保	密系统中,	信源	是信息的发送	者, 离散信 》	原□	「以产生字符	或字符串。	
2,	在密	码学中,没	有加密的信息	称为 明文	、加密/	 一 一 一 一 一 一 一 一 一 	信息称为 <u>客</u>	图文	
3,	公钥	密码体制的	优点是	11密密钥	可以公开传播,	缺点	長 速度	較慢。	
4、	分组	密码的特点	是 <u>加密</u>	密钥和	解密 密	钥相同] 。		
5,	AES t	加密算法的分	分组长度通常	为 <u>128</u>	位,密钥长	长度为	128 位时,	其圈变换	
数目	为_	10	_次。						
6.	序列	密码的加密	的基本原理是	: 用一个	随机	亨列与	ī明文_	序	:
列进	注行 叠	叠加来产生 密	译文。						
7、	密码	学上的 Hash	函数是一种料	各 <u>任意</u>	长度的消息	、压缩	为某一	固定	长
度的	的消息	息摘要的函数	ζ.						
8、	在 EI	[Gamal 公钥	密码体制中,	密文依赖于明	文 m 和秘密选	取的_	随机整数	<u>k</u> , 因此	4
明文	(空间	可中的一个明]文对应密文字	空间中的	午多不同的	密	文。		
9、	Rabii	n密码体制是	是利用合数模型	下求解_ 平方根	的困难性构造	上了一	种 <u>公钥</u> 密码	马体制。	
10,	序列	可密码通常也	2称为 <u>流</u>	密码 ,密	钥序列也称为_	密	密钥流 。		
_	in 4	C DIC1 /	(相家可 <i></i> 4坐)。	h :八丰华 /	71 ~ -7 日 g*	<u> </u>	r 0 - 6) 目 八 T 64-	hn केर के
二、	叹仁	c etgamat 2	、切雷的仲刑。	T, 以系数 p=	71, α=7 是 Z*;	11 117生	p = 0) 定公开的	川省省

钥,①假设随机整数 k=2,试求明文 m=20 所对应的密文 ②假设选取一个不同的随机整数 k,使得明文 m=20 所对应的明文为(59, C_2),求 C_2 (本题计 10 分)

解: ①
$$c1 = \alpha^k \mod p = 7^2 \mod 71 = 49$$

 $c2 = m\beta^k \mod p = 20 \times 3^2 \mod 71 = 38$
密文 $c = (c1, c2) = (49, 38)$

② 由
$$59 = 7^k \mod 71$$
 得 k=3
$$c2 = m\beta^k \mod p = 20 \times 3^3 \mod 71 = 43$$

四、利用 Fermat 定理计算 3^{501} mod 11。(本题计 10 分)

解:由 Fermat 定理 3¹¹⁻¹ mod 11 = 1

$$3^{501-1} \mod 11 = 3 \times 3^{500} \mod 11 = 3 \times (3^{10})^{50} \mod 11 = 3 \times 1^{50} \mod 11 = 3$$

 \mathcal{B} 马定理: $a' \equiv a \mod p$

P 是素数, a 和 p 互质

五、设在 EIGamal 签名方案中,p=17,g=2,①若选取 x=8,计算 y ②若选取 k=9,试对消息 m=7 进行签名。 **(本题计 15 分)**

②
$$\gamma = g^k \mod p = 2^9 \mod 17 = 2$$

$$\delta = (m - x\gamma)k^{-1} \mod (p - 1) = (7 - 8 \times 2) \times 9^{-1} \mod 16 = 15$$
可得(2,15)是对消息 m=7 的签名。

六、设 E 是由 $y^2 \equiv x^3 + x + 8 \pmod{17}$ 所确定的有限域 Z_{17} 上的椭圆曲线,试确定 E 上四个点。 (本题计 15 分)

解:

X	$y^2 \equiv x^3 + x + 8 \pmod{17}$	是否为模 17 的平方剩余	Y
0	8	不是	
1	10	不是	
2	1	是	1, 16
3	4	是	2, 15
4	8	不是	
5	2	不是	
6	9	是	3, 14
7	1	是	
8	1	是	1, 16
9	15	不是	1, 16
10	15	不是	

点有 (2, 1) (2, 16) (3, 2) (3, 15) (6, 3) (6, 14) (7, 1) (7, 16) (8, 1) (8, 16)

七、下图所示,在洞穴深处的位置 C 和位置 D 之间有一道门,只有知道秘密咒语的人才能打开位置 C 和位置 D 之间的门,假设 P 知道打开门的咒语,P 想向 V 证明自己知道咒语,但又不想向 V 泄露咒语,请写出 P 向 V 证明自己知道咒语的协议。(本题总计 15 分)

零知识洞穴示意图

解: (1) V 停留在位置 A;

- (2) P 从位置 A 走到位置 B, 然后随机选择从左通道走到位置 C 或从右通道走到位 D;
- (3) P消失后, V走到位置 B;

- (4) V 命令 P 从位置 C 经左通道或从位置 D 经右通道返回位置 B:
- (5) P 服从 V 的命令, 必要时 P 可以利用咒语打开位置 C 和位置 D 之间的门;
- (6) P和V重复执行第(1)步至第(5)步n次。

八、下图是 AES 算法结构示意图,请在下图空白框中,写出相应文字说明。(本题总计 15 分)

AES 加密算法的分组长度通常为 128 位,当密钥长度为 128 位时,其轮变换数目为 10 次

把一个信息分组 State 分成四行 x 列的矩阵形式,一轮 AES 算法包含 4 种变换:

- 字节代换 SubBytes(State)。使用一个 S 盒 π_S 对 State 进行非线性变换,其中 π_S 是有限域{0,1}8 的一个置换。SubWord(A0, A1, A2, A3) = (B0, B1, B2, B3),其中 Bi = SubBytes(Ai)
- 行移位变换 ShiftRow(State)。分组长度为 128 或 192 b 时, State 下三行分别循环左移
 1、2、3 字节。

		第6页(共6页	〔)
3. 列混合变换 MixColumn(State	e) = C*State 是有限 垣	戊 GF(2 ⁸)⁴ 上的一个线性变换。	
4. 轮密钥加法变换 AddRoundK	ey(State, RoundKey	y)。将由函数 KeyExpansion(ke	y) 生
的轮密钥 RoundKey 中的一个字	与 State 的每一个列	向量进行异或运算 。	
, , , , ,			