Languages and grammars: Why?

- 1. Lexical analysis can be defined by a grammar.
- 2. Syntax analysis (parsing) can be defined by a grammar.
- 3. No need to program these from scratch: just write the grammar.
- 4. But need to understand something about different grammars, etc.

Compiler generators for C and Java

	Programming Language	Lexical method	Parser method
Lex/Yacc	C	DFA	LALR(1)
Flex/Bison	C	DFA	LALR(1)
JavaCC	Java	DFA	LL(k)
SableCC	Java	DFA	LALR(1)
ANTLR	Java	LL(<i>k</i>)/LL(*)	LL(<i>k</i>)/LL(*)

LANGUAGES AND GRAMMARS

A grammar G has 4 parts: G = (N, T, P, S)

- N: Set of nonterminal symbols
- T: Set of terminal symbols
- P: Set of productions
- S: Start symbol ($S \in N$)

Nonterminals and terminals are disjoint: $N \cap T = \emptyset$

Production $P: (N \cup T)^+ \to (N \cup T)^*$

Language $L(G) = \{ w \in T^* \mid S \Rightarrow_G w \}$

Example: arithmetic expressions

$$G = (\{E, M, F\}, \{x, y, +, *, (,)\}, P, E)$$

$$P = \{ E \rightarrow M,$$

$$E \rightarrow E + M,$$

$$M \rightarrow F,$$

$$M \rightarrow M * F,$$

$$F \rightarrow x,$$

$$F \rightarrow y,$$

$$F \rightarrow (E) \}$$

$$x + y * x \in L(G)$$

Parse trees (Syntax trees)

The full parse tree for the string x + y * x is:

$$E \rightarrow M$$
 $E \rightarrow E + M$
 $M \rightarrow F$
 $M \rightarrow M * F$
 $F \rightarrow x$
 $F \rightarrow y$
 $F \rightarrow (E)$

The Chomsky hierarchy

• Type 0: recursively enumerable

$$\alpha \rightarrow \gamma$$

• Type 1: context-sensitive

$$\alpha A\beta \rightarrow \alpha \gamma \beta$$

• Type 2: context-free

$$A \rightarrow \gamma$$

• Type 3: regular

$$A \rightarrow a, A \rightarrow Ba, A \rightarrow \varepsilon$$
 (No recursion)

Where $\alpha, \beta, \gamma \in (N \cup T)^*$ and $A, B \in N$ and $a \in T$.

Recognizers

• Type 0-1

Not used for artificial languages.

• Type 2: context-free

Can be recognized by a *nondeterministic pushdown* automaton.

• Type 3: regular

Can be recognized by a *finite automaton*.

See COMS11700.

Deterministic finite automaton (DFA) to recognize integer and real numbers:

Backus Naur Form (BNF)

BNF is a notation to describe context-free grammars:

- Nonterminal symbols enclosed in
brackets>
- Terminal symbols may be in 'quotes' (and are not defined)
- ::= separates nonterminal from its definition
- separates alternatives

BNF Example

$$E \rightarrow M$$

$$E \rightarrow E + M$$

$$M \to F$$

$$M \rightarrow M * F$$

$$F \rightarrow x$$

$$F \rightarrow y$$

$$F \rightarrow (E)$$

$$< f > ::= 'x' | 'y' | '(' < e > ')'$$

Ambiguous grammars

A grammar is *ambiguous* if it can derive one sentence with more than one parse tree. E.g.:

```
<letter> ::= 'a' | ... | 'z'
<identifier> ::= <letter>+
<keyword> ::= 'i' 'f' | 'e' 'l' 's' 'e' | ...
<token> ::= <keyword> | <identifier>
Two parses of "if", "else", etc.
```

Another ambiguous grammar:

Two parses of "x+y*x":

Two parses of "x+y+x":

Dealing with ambiguity

```
<exp> ::= <exp> '+' <exp> | <exp> '*' <exp> |
    'x' | 'y' | '(' <exp> ')'
```

• To give * higher **precedence** than +

```
<exp> ::= <term> | <exp> '+' <term>
<term> ::= <factor> | <term> '*' <factor>
<factor> ::= 'x' | 'y' | '(' <exp> ')'
```

• To make * and + right-associative (instead of left)

```
<exp> ::= <term> | <term> '+' <exp>
<term> ::= <factor> | <factor> '*' <term>
```

Another ambiguous grammar: the "dangling else":

Two parses of:

Left: compact version.

Right: full parse tree.


```
<st> ::= 'if' '(' <exp> ')' <st> ('else' <st>)?
```

• Java makes this unambiguous by transforming the grammar:

```
<st> ::= <simple> | <ift> | <ifte>
<sst> ::= <simple> | <iftes>
<ift> ::= 'if' '(' <exp> ')' <st>
<ifte> ::= 'if' '(' <exp> ')' <sst> 'else' <st>
<iftes> ::= 'if' '(' <exp> ')' <sst> 'else' <sst>
```

Extended BNF (EBNF)

Extended BNF also allows:

- *: zero or more times
- +: one or more times
- ?: zero or one times
- (): parentheses

$$E \rightarrow M \qquad ::= ('+')*$$

$$E \rightarrow E + M \qquad ::= ('*')*$$

$$M \rightarrow F \qquad ::= ('*')*$$

$$M \rightarrow M * F \qquad ::= 'x' | 'y' | '(' ')'$$

$$F \rightarrow y \qquad F \rightarrow (E)$$

Example: regular grammar for (integer and real) numbers

Can be translated to this DFA:

Transforming EBNF to BNF

• Parentheses:

$$...(v)... \Rightarrow ...vs...$$
 where vs ::= v

• Repetition: * is same as optional +:

$$...v*... \Rightarrow ...v+?...$$

• Repetition can be defined by recursive rule:

```
...v+... \Rightarrow ...vs... where vs ::= v \mid v \mid vs
```

• For an optional item, we can define two alternatives:

$$x ::= u v? w \Rightarrow x ::= u w \mid u v w$$

This generates 2^n alternatives if original contains n optional items.

- 1. Is this grammar ambiguous?
- 2. Draw the parse tree(s) for the string

(list)*list

where list is a token with lexical type 'id'

