

模态蒸馏下的SAR图像建筑物提取方法

报告人: 康健

苏州大学 电子信息学院

2022年4月29日

- 1 研究背景与思路
- 2 知识蒸馏
- **摹 模态蒸馏下的SAR图像建筑物提取方法**
- 4 研究总结

- 1 研究背景与思路
- 2 知识蒸馏
- 3 模态蒸馏下的SAR图像建筑物提取方法
- 4 研究总结

研究背景

研究背景

研究背景

合成孔径雷达 (SAR) 能全天时、全天候对地进行观测,但与光学影像相比,其解译一直是领域内的难点、热点问题

^[1] Shermeyer, J., Hogan, D., Brown, J., Van Etten, A., Weir, N., Pacifici, F., ... & Lewis, R. (2020). SpaceNet 6: Multi-sensor all weather mapping dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 196-197).

^[2] Kang, J., Wang, Z., Zhu, R., Xia, J., Sun, X., Fernandez-Beltran, R., & Plaza, A. (2022). DisOptNet: Distilling Semantic Knowledge from Optical Images for Weather-independent Building Segmentation. IEEE Transactions on Geoscience and Remote Sensing.

^[3] **康健**, 王智睿, 祝若鑫, & 孙显. (2021). 基于监督对比学习正则化的高分辨率 SAR 图像建筑物提取方法. 雷达学报, 10, 1-11.

研究思路

"取长补短":能否利用光学图像对于地物的相对强解译能力来提升

微波视觉中地物的解译效果?

➤ 迁移学习: ImageNet参数重利用再微调 (Fine-tuning) 等[4-9]

▶ 生成模型: 跨模态数据生成减小不同模态图像之间的差异性[10-12]

▶ 元学习: 学习元模型并建立不同模态模型参数与其的映射关系[13]

模态蒸馏:将光学图像中学习到的模型领域知识蒸馏到SAR模型中

- 1 研究背景与思路
- 2 知识蒸馏
- 3 模态蒸馏下的SAR图像建筑物提取方法
- 4 研究总结

知识蒸馏

将教师网络训练好的模型包含 的知识蒸馏到学生网络中[14]

$$L = \alpha L_{soft} + \beta L_{hard}$$

- 教师网络得到的软标签中含有 负标签之间的相互关系(信息) 有利于学生网络学习硬标签中 缺少的知识
- 额外的软标签约束可以加速模型收敛

- 1 研究背景与思路
- 2 知识蒸馏
- 模态蒸馏下的SAR图像建筑物提取方法
- ▲ 研究总结

方法流程图

不同模态下的各个阶段网络提取特征对比

不同模态下的各个阶段网络提取特征对比

跨模态余弦相似性:
$$s_{ij}^{O-S} = \frac{\langle \mathbf{F}^O(i,j,:), \mathbf{F}^S(i,j,:) \rangle}{\|\mathbf{F}^O(i,j,:)\| \|\mathbf{F}^S(i,j,:)\|}$$

- > 特征维度增加
- 底层特征到高阶 语义特征的转化

模态蒸馏:

模态蒸馏损失函数:

$$L = L_{\text{seg}}(y, p) + L_{\text{dis-L}}(p^{PO}, p^{O}) + L_{\text{dis-D}}(\mathbf{F}^{O}, \mathbf{F}^{PO})$$

模拟光学网络各阶段 特征---L2损失

实验数据: SpaceNet6^[1]

- > 荷兰鹿特丹
- ▶ 机载SAR与星载高分光学 影像

Optical

SAR

实验结果: 对比常用的建筑物提取方法

方法	Dice	loU	Precision	Recall
UNet	67.13	50.52	73.97	61.45
PSPNet	62.78	45.75	68.21	58.15
FPN	68.01	51.53	73.77	63.09
Efficient-UNet	67.94	51.45	76.83	60.89
SiU-Net	66.48	49.79	75.87	59.16
MFRN	65.52	48.73	73.97	58.82
Unet-BE	68.17	51.17	73.29	63.72
所提方法[B3]	70.20	54.08	77.34	64.27
所提方法[B4]	70.62	54.59	76.28	65.74

实验结果: 对比其他迁移学习/知识蒸馏方法

方法	训练数据	Dice	loU	Precision	Recall
-	SAR	66.50	49.81	72.67	61.29
Fine-tune	光学; SAR	67.85	51.34	74.59	62.30
Structured-KD	光学; SAR	50.17	33.49	65.13	40.80
DML	光学; SAR	66.37	49.67	72.77	61.02
MARS	光学; SAR	66.84	50.19	73.75	61.10
Hallucinated Two-Stream Net	光学; SAR	67.63	51.09	75.78	61.06
所提方法	光学; SAR	70.62	54.59	76.28	65.74

Structured-KD

UNet-BE

DisOptNet

实验结果: 模态子网络拆分位置

实验结果: 模态子网络拆分位置

- 1 研究背景与思路
- 2 知识蒸馏
- 3 模态蒸馏下的SAR图像建筑物提取方法
- 4 研究总结

研究总结

研究总结

- > 提出了基于模态蒸馏的SAR图像建筑物提取方法。
- ▶ 方法利用子网络来模拟光学图像的特征提取,并具有记忆性,从 而在仅有SAR图像作为输入时提高了预测精度。

参考文献

- [1] Shermeyer, J., Hogan, D., Brown, J., Van Etten, A., Weir, N., Pacifici, F., ... & Lewis, R. (2020). SpaceNet 6: Multi-sensor all weather mapping dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 196-197).
- [2] Kang, J., Wang, Z., Zhu, R., Xia, J., Sun, X., Fernandez-Beltran, R., & Plaza, A. (2022). DisOptNet: Distilling Semantic Knowledge from Optical Images for Weather-independent Building Segmentation. IEEE Transactions on Geoscience and Remote Sensing.
- [3] **康健**, 王智睿, 祝若鑫, & 孙显. (2021). 基于监督对比学习正则化的高分辨率 SAR 图像建筑物提取方法. 雷达学报, 10, 1-11.
- [4] Wang, Z., Du, L., Mao, J., Liu, B., & Yang, D. (2018). SAR target detection based on SSD with data augmentation and transfer learning. IEEE Geoscience and Remote Sensing Letters, 16(1), 150-154.
- [5] Huang, Z., Pan, Z., & Lei, B. (2019). What, where, and how to transfer in SAR target recognition based on deep CNNs. IEEE Transactions on Geoscience and Remote Sensing, 58(4), 2324-2336.
- [6] Zhao, Siyuan, et al. "Transferable SAR Image Classification Crossing Different Satellites under Open Set Condition." *IEEE Geoscience and Remote Sensing Letters* 19 (2022): 1-5.
- [7] Bao, W., Huang, M., Zhang, Y., Xu, Y., Liu, X., & Xiang, X. (2021). Boosting ship detection in SAR images with complementary pretraining techniques. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 8941-8954.
- [8] Jiao, N., Wang, F., You, H., Liu, J., & Qiu, X. (2020). A generic framework for improving the geopositioning accuracy of multi-source optical and SAR imagery. *ISPRS Journal of Photogrammetry and Remote Sensing*, 169, 377-388.
- [9] Dalsasso, E., Yang, X., Denis, L., Tupin, F., & Yang, W. (2020). SAR Image Despeckling by Deep Neural Networks: from a pretrained model to an end-to-end training strategy. Remote Sensing, 12(16), 2636.
- [10] Fu, S., Xu, F., & Jin, Y. Q. (2021). Reciprocal translation between SAR and optical remote sensing images with cascaded-residual adversarial networks. Science China Information Sciences, 64(2), 1-15.
- [11] Song, Q., Xu, F., Zhu, X. X., & Jin, Y. Q. (2021). Learning to Generate SAR Images With Adversarial Autoencoder. IEEE Transactions on Geoscience and Remote Sensing.
- [12] Xia, J., Yokoya, N., & Baier, G. (2022). DML: Differ-Modality Learning for Building Semantic Segmentation. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14.
- [13] Zheng, Zhuo, et al. "Deep multisensor learning for missing-modality all-weather mapping." ISPRS Journal of Photogrammetry and Remote Sensing 174 (2021): 254-264.
- [14] Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2(7).

谢谢大家! 敬请批评指正!

个人主页