AY2025 Spring GCI199-1 Independent Study in GC Program "Set Theory and Topology"

On Cantor's Theorem and Cantor's Diagonal Argument (カントールの定理とカントールの対角線論法について)

Cantor's Theorem

For any set

$$|X| < |2^X|.$$

As part of this,

there is no injection from
$$2^X$$
 to X . (1)

The general proof is as follows.

[Proof of (1)]

Assume there exists an injection
$$f: 2^X \to X$$
. (2)

Define a set $A \in 2^X$ (i.e. $A \subset X$) by

$$A = \left\{ f(U) \mid U \in 2^X, \ f(U) \notin U \right\} \tag{3}$$

1. The case $f(A) \notin A$.

By definition of A, f(A) meets the criterion for membership in A, so

$$f(A) \in A$$
.

This is a contradiction.

2. The case $f(A) \in A$.

By definition of A, there exists $U \in 2^X$ such that

$$f(A) = f(U)$$
, and $f(U) \notin U$.

Since f is injective, A = U, and hence

$$f(A) \notin A$$
.

This is a contradiction.

This proof can be seen as a generalization of the well-known Cantor diagonal argument used to show that

$$\mathbf{bijection} \quad f: \quad \mathbb{N} \to [0,1] \quad \text{does not exist.}$$

Below, assume a bijection

$$f:2^{\mathbb{N}}\to\mathbb{N}$$

exists, and observe that the concrete instance of the above general proof becomes the Cantor diagonal argument (we are not proving anything new here, only illustrating the connection).

Suppose f is concretely given by the following mapping. The left side of each arrow is an element of \mathbb{N} , the right side is the corresponding subset $U_i \in 2^{\mathbb{N}}$, and the final columns indicate, as usual, a "1" if the index is in U_i and "0" otherwise:

$\mathbb N$ element		$2^{\mathbb{N}}$ element (U_i)		$0 \in U_i$	$1 \in U_i$	$2 \in U_i$	$3 \in U_i$	$4 \in U_i$	• • •
0	\leftarrow	U_0	=	0	1	1	0	1	
1	\leftarrow	U_1	=	1	1	0	1	1	
2	\leftarrow	U_2	=	1	0	0	1	1	
3	\leftarrow	U_3	=	0	1	1	0	1	
4	\leftarrow	U_4	=	1	0	1	1	1	
:	:	:	:	÷	:	:	:	:	٠

The set A defined in (3) consists precisely of those N-elements $u_i = f(U_i)$ for which $u_i \notin U_i$, corresponding to a "0" in the *i*-th position—namely, the blue entries:

$\mathbb N$ element		$2^{\mathbb{N}}$ element (U_i)		$0 \in U_i$	$1 \in U_i$	$2 \in U_i$	$3 \in U_i$	$4 \in U_i$	
0	\leftarrow	U_0	=	0	1	1	0	1	
1	\leftarrow	U_1	=	1	1	0	1	1	
2	\leftarrow	U_2	=	1	0	0	1	1	
3	\leftarrow	U_3	=	0	1	1	0	1	
4	\leftarrow	U_4	=	1	0	1	1	1	
:	:	:	:	÷	÷	÷	÷	:	٠
A	=	$\{0,2,3,\dots\}$	=	1	0	1	1	0	
				$0 \in A$	$1 \notin A$	$2 \in A$	$3 \in A$	$4 \notin A$	

Hence, since A differs from every U_i , no bijection f can exist. In constructing A, one is precisely building—via the binary expansion—a new element whose diagonal bits differ from those of each U_i . However, when relating this to the real interval [0,1], as in the usual Cantor diagonal proof, one must be careful about non-uniqueness of expansions (for example, in base $10 \ 1 = 0.999...$, and in base $2 \ 1 = 0.111...$).

カントールの定理

任意の集合について

$$|X| < |2^X|.$$

の一部である,

$$2^X$$
 から X への単射は存在しない. (4)

の一般的な証明は以下の通りである.

[(4) の証明]

単射
$$f: 2^X \to X$$
 が存在すると仮定する (5)

集合 $A \in 2^X$ (つまり $A \subset X$) を以下のように定義する.

$$A = \{ f(U) | U \in 2^X, f(U) \notin U \}$$
 (6)

1. $f(A) \notin A$ の場合.

A の定義より, f(A) は A の元である条件を満たすので,

$$f(A) \in A$$
.

したがって矛盾.

 $2. f(A) \in A$ の場合.

A の定義より, ある $U \in 2^X$ が存在し,

$$f(A) = f(U)$$
, かつ $f(U) \notin U$.

ここで, f は単射なので, A = U より

$$f(A) \notin A$$
.

したがって矛盾.

この証明は、よくある、

全単射 $f: \mathbb{N} \to [0,1]$ は存在しない

のを示すための, 有名なカントールの対角線論法の一般化であることがわかる. 以下では,

全単射
$$f: 2^{\mathbb{N}} \to \mathbb{N}$$

が存在するとして、上の一般の場合の証明の具体例がカントールの対角線論法となっていることを見る (何かを証明しているわけでは全く無い. 関係性を見るだけである).

f が具体的に以下のような写像であるとする. 矢印の左側が $\mathbb N$ の元, 右側が $2^\mathbb N$ の元を表しており, 最右辺は, よくあるように, 各桁の数字が, その桁が $U_i\in 2^\mathbb N$ に含まれていれば 1, ふくまれていなければ 0 とする表記にしている:

№ の元		$2^{\mathbb{N}}$ の元 (U_i)		$0 \in U_i$	$1 \in U_i$	$2 \in U_i$	$3 \in U_i$	$4 \in U_i$	
0	\leftarrow	U_0	=	0	1	1	0	1	
1	\leftarrow	U_1	=	1	1	0	1	1	
2	\leftarrow	U_2	=	1	0	0	1	1	
3	\leftarrow	U_3	=	0	1	1	0	1	
4	\leftarrow	U_4	=	1	0	1	1	1	
:	:	:	:	:	:	:	:	:	٠.

これに対して、定義 (6) に従って定められる A は、以下の左辺の $\mathbb N$ の元 $u_i = f(U_i)$ のうち、 $u_i = f(U_i) \notin U_i$ を反映して、0 が i 桁目に表示されている、青文字のもののみをすべて含む集合である:

№ の元		$2^{\mathbb{N}}$ の元 (U_i)		$0 \in U_i$	$1 \in U_i$	$2 \in U_i$	$3 \in U_i$	$4 \in U_i$	
0	\leftarrow	U_0	=	0	1	1	0	1	
1	\leftarrow	U_1	=	1	1	0	1	1	
2	\leftarrow	U_2	=	1	0	0	1	1	
3	\leftarrow	U_3	=	0	1	1	0	1	
4	\leftarrow	U_4	=	1	0	1	1	1	• • •
÷	:	÷	:	:	:	:	:	:	٠.
A	=	$\{0,2,3,\cdots\}$	=	1	0	1	1	0	
				$0 \in A$	$1 \notin A$	$2 \in A$	$3 \in A$	$4 \notin A$	

よって, A はどの $i \in \mathbb{N}$ についても U_i とも異なことから, 全単射 f が存在しないことが言えるわけだが, A を構成する際, まさに, 二進数表示における, 対角線的上の偶奇 (ここでは 0 か 1 か) が異なる実数 (ここでは $2^{\mathbb{N}}$ の要素) を構築している事がわかる. ただし, 実数の集合 [0,1] と対応付ける際は, これはもとも とのよくあるカントールの対角線論法での証明でもそうであるが, 少数表示は一位でない (例えば十進法では $1=0.9999999\dots$ とか, 二進法では $1=0.1111111\dots$) に注意しなければならない.