(1) Publication number:

0 301 874 Α1

12

EUROPEAN PATENT APPLICATION

(2) Application number: 88306987.4

22 Date of filing: 29.07.88

(s) Int. Cl.⁴: **D 01 D 5/253**D 01 F 2/06, A 61 L 15/00

(30) Priority: 30.07.87 GB 8718081

Date of publication of application: 01,02.89 Bulletin 89/05

(84) Designated Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE 7 Applicant: COURTAULDS PLC 18, Hanover Square London W1A 2BB (GB)

72 Inventor: Wilkes, Andrew George 149 Grayswood Avenue Chapelfields Coventry, CV5 8HJ (GB)

> Bartholomew, Alan John 149 Grayswood Avenue Chapelfields Coventry, CV5 8HJ (GB)

Representative: Hale, Stephen Geoffrey et al J.Y. & G.W. Johnson Furnival House 14/18 High Holborn London WC1V 6DE (GB)

(54) Cellulosic fibre.

(57) Viscose filaments, preferably in staple fibre form, have a decitex of less than 5.0 and a multi-limbed cross-section, the limbs having a length-to-width aspect ratio of at least 2:1. Examples of multi-limbed cross-sectional shapes are Y-, X-, Hand T- shapes. The fibre can be formed into woven, non-woven or knitted fabrics, and is especially useful for absorbent products.

Fig. 2.

Description

15

20

25

30

40

45

55

Cellulosic Fibre

This invention relates to regenerated cellulosic filaments, particularly viscose filaments, which have a multi-limbed cross-section, to fibre comprising such filaments and to products formed therefrom.

One advantage of multi-limbed viscose filaments over conventional circular cross-sectional viscose filaments is their greater bulk, because the circumferential area of the multi-limbed filaments is larger than their actual cross-sectional area. For example, Japanese Patent Application Kokai 61-113812 describes a filament yarn consisting of X- or Y-shaped continuous viscose filaments that is used in textile applications where bulk is important, for example in pile weaves.

Another advantage of multi-limbed viscose filaments is their increased absorbency over conventional filaments. Thus, multi-limbed filaments in staple fibre form are particularly useful for absorbent products, for example tampons, towels and swabs. Absorbent viscose fibre is described in UK Patent 1 333 047 in which the filaments have a collapsed hollow structure and a multi-limbed cross-section. Although these filaments have a relatively high absorbency compared with conventional viscose filaments, they have the disadvantage that they are complicated to manufacture, as the filaments must be formed with an inflated, hollow structure and subsequently collapsed. The process also has the disadvantage that the collapse of the fibre is difficult to control sufficiently to ensure a uniform filament cross-section, and therefore the resulting filaments have irregular multi-limbed cross-sectional shapes. The filaments also have a relatively low tenacity.

The present invention provides a solid filament of regenerated cellulosic material having a decitex of less than 5.0 and a multi-limbed cross-section, each limb having a length-to-width aspect ratio of at least 2:1.

The length-to-width aspect ratio of the filament limbs is generally from 2:1 to 10:1, preferably from 2:1 to 7:1, and more preferably from 3:1 to 5:1. In general, the higher the aspect ratio, the higher the degree of free volume of the filaments. This gives a high degree of absorbency when the filaments are in staple fibre form, provided that the limbs are not so long and thin that they bend back upon themselves.

The filament according to the invention preferably has 3 or 4 limbs, although it may have more than 4 limbs if desired, and also preferably has a cross-sectional shape that is generally (i.e. largely) symmetrical about at least one axis, as in a Y-, X-, H- or T- shaped filament cross-section, although other shapes are also included within the scope of the invention. Preferably, the filament has a Y-shaped cross-section. The angle between the limbs varies according to the cross-sectional shape and can be, for example, from 5 to 180°, although, it is preferred that the filament cross-section is as regular as possible.

As mentioned above, the filament according to the invention has a low decitex of less than 5.0, a low decitex being advantageous for high absorbency products. Generally the decitex is between 0.5 and 5.0, but more preferably is between 1.5 and 4.0.

Filaments according to the invention are advantageously produced in the form of staple fibre, and the invention further provides such staple fibre. The combination of the multi-limbed cross-sectional shape and the low decitex gives filaments which in staple fibre form exhibit a high absorbency. Surprisingly, we have found that, although the filaments have a solid structure as opposed to a collapsed hollow structure characteristic of the fibre of UK Patent 1,333,047 mentioned above, the fibre of the invention has an absorbency which can match and in some product forms exceed the absorbency of the fibre of the said UK patent, even though its water imbibition is considerably lower. Usually the fibre according to the invention has a total free absorbency (TFA) of at least 24 grams of water per gram of the fibre using the test as set out in British Pharmacopoeia 1980, Standard Methods (BP 1980, SDM.) XI.A, p.928. For instance, a TFA in the range up to 28 g/g can be obtained. In addition the fibre of the invention has high bulk, a cotton-like handle, and a tenacity approximately equivalent to conventional circular cross-sectional viscose filaments for a given viscose composition and decitex.

The staple fibre according to the invention preferably comprises multi-limbed filaments substantially all of which have substantially the same cross-sectional shape. This enables the fibre properties, such as absorbency and bulk, to be more readily controlled. However, if desired, the staple fibre may comprise a mixture of filaments of two or more different cross-sectional shapes provided that at least some of the filaments have a multi-limbed cross-section characteristic of the filaments of the invention.

Preferably, the filaments according to the invention are viscose, and they are conveniently spun from a standard viscose composition using standard viscose spinning conditions, with the exception that multi-limbed shaped extrusion holes in the spinnerette are substituted for the conventional circular shaped holes. As the filaments produced have a solid rather than a hollow structure, the disadvantages involved in producing hollow filaments are avoided.

The viscose composition used for spinning the filaments of the invention may be a commonly used viscose, typically having a cellulose content of 5 to 12% by weight and a caustic soda content of 4 to 10%, preferably 5 to 7%, by weight. Filaments may be spun over the full range of salt figures, although viscose having a salt figure of 4.0 to 12.0 is generally used. The ball-fall viscosity of the viscose can be from 15 to 180 seconds at 18°C, but is preferred to be from 45 to 55 seconds.

The filaments are spun through extrusion holes having a multi-limbed shape similar to the desired shape of the filaments. Typically the spinnerette is made from a gold-platinum alloy and the extrusion holes formed by conventional methods such as spark erosion or mechanical punching. To achieve filament limb aspect ratios of

at least 2:1 together with a filament decitex of less than 5.0 the dimensions of the limbs of the extrusion holes are preferably between 50 μ m and 250 μ m long and between 20 μ m and 40 μ m wide.

The filaments are spun into a spin bath which can conveniently be of a standard spin bath composition for viscose spinning. Typically this composition includes by weight zero to 3%, preferably 0.5 to 2%, zinc sulphate, 6 to 20%, preferably 7 to 10%, sulphuric acid and 10 to 28%, preferably 20 to 26%, sodium sulphate. The spin bath temperature is generally between 50 and 60°C, although higher and lower temperatures may be used.

5

10

15

20

25

35

40

45

50

55

60

65

We have found that, for absorbent products such as tampons, even higher absorbencies can be achieved by adapting the process to give a slower rate of filament regeneration. The regeneration rate can be slowed down by altering one or more or the spinning conditions, for example by decreasing the acid level and/or increasing the sulphate level. Alternatively, or in addition, the viscose can be modified by a viscose modifier which is usually added to the viscose prior to spinning. Any of the commonly available viscose modifiers may be employed, examples being polyalcohols, soluble dithiocarbonates, soluble aliphatic and alicyclic amines, oxyethanols and quinoline. Polyglycols are preferred, especially PEG-1500 (polyethylene glycol where 1500 indicates the average molecular weight of the chain).

After spinning, the filaments are stretched, and then preferably cut into staple lengths, washed and dried using conventional techniques to give staple fibre.

The low decitex, multi-limbed filaments in staple fibre form can be used in a wide range of textile and other applications which take advantage of the fibre's high absorbency, bulk, cover and/or cotton-like handle. These applications include, for example, tampons, swabs and waddings, woven fabrics, knitted fabrics and non-woven fabrics. Non-woven fabrics can be produced by, for example, latex bonding, powder bonding, thermal bonding or hydroentanglement. The fibre is especially useful for tampons and similar products because the fibre has the combined advantages of high absorbency and satisfactory compresssional stability. In general, tampons are manufactured in one of two forms; longitudinally expanding or radially expanding. For either type the absorbency of the tampon is linked to its stability, in that any modification made to the tampon fibre to increase its absorbency generally has the effect of decreasing its stability. A tampon formed from fibre according to the invention has the advantage that it can be manufactured to have an acceptable stability together with high absorbency.

Thus a longitudinally expanding tampon formed from fibre according to the invention can be manufactured to have a stability of approximately 15 mm as measured by the 'expansion test' as hereinafter defined, and an absorbency of at least 4.3 grams 1% saline solution per gram of fibre, and often at least 4.5 g/g and up to about 5.5 g/g, as measured by a 'modified Syngina' test as hereinafter defined.

Likewise, a radially expanding tampon formed from fibre according to the invention can be manufactured to have a stability of at least 3.2 decaNewtons (daN), often 3.8 daN or more, e.g. up to about 8.0 daN, as measured by the 'crush test' as hereinafter defined, and an absorbency of at least 4.5 g/g, often at least 5.0 g/g and up to about 6.0 g/g, as measured by a 'modified Syngina' test as hereinafter defined.

In addition tampons having a higher stability can be formed from fibre according to the invention. Thus, longitudinally expanding tampons can be manufactured that have a stability of 10 mm or less, and radially expanding tampons can be manufactured having a stability of 5.0 daN or more.

Products formed from the fibre may contain solely fibre according to the invention or may be blended with other fibres. These other fibres may be cellulosic fibres, such as standard viscose or cotton, or non-cellulosic such as polyester. In addition, the fibre of the invention may be incorporated in a product in only one cross-sectional shape, for example solely Y-shaped, or, alternatively, two or more different cross-sectional shapes can be used.

The invention is illustrated by the following Examples and with reference to the accompanying drawings in which:

Figures 1, 6 and 8 are diagrammatic representations of extrusion holes used for spinning filaments according to the invention;

Figures 2, 3, 5, 7 and 9 are reproductions of photographs of filament cross-sections; and Figure 4 shows the measurements taken to determine the aspect ratio of a filament limb. All percentages given are by weight unless otherwise specified.

Example 1

A 14,364 filament viscose tow comprising 9.0% cellulose and 6.0% caustic soda, with a salt figure of 5.6 and a ball-fall viscosity of 45 seconds at 18°C, was spun through Y-shaped extrusion holes, the dimensions of the limbs of the holes being 89 μ m long and 25 μ m wide with equivalent limb-to-limb angles of 120° as shown diagrammatically in Figure 1. The filaments were spun into a spin bath comprising 7.5% sulphuric acid, 0.8% zinc sulphate, 24.5% sodium sulphate and 67.2% water to form a tow of filaments having an average filament decitex of 2.2. The spinning speed was 50 m per minute and the viscose extrusion rate was 1068 millilitres per minute (ml/min). The tow was stretched by 45% in a 2% aqueous sulphuric acid solution at 95°C, cut to staple lengths of 38 mm and washed and dried.

The cross-sectional shapes of the resulting filaments is shown magnified 500 times in Figure 2 and

magnified 1240 times in Figure 3. The solid filaments have a well-defined Y-shape with a much higher degree of regularity than the filaments described in UK Patent 1 333 047 mentioned above. The length-to-width aspect ratio of the resulting filaments was between 3:1 and 4:1. This aspect ratio is determined by measuring the length 1 and width w of the limbs as exemplified in Figure 4. For each limb measured, one length measurement and three width measurements are taken. The widths are measured at approximately the middle and at either end of the limb and then the average width of the limb is calculated from these three measurements. The aspect ratio is given as the ratio of the length 1 to average width w. Using the standard test defined in BP 1980, SDM.XI.A, p.128, the staple fibre was found to have a total free absorbency (TFA) of 25.6 gram of water per gram of fibre. The fibre also possessed an average water imbibition of 120%, a filament tenacity of 18 cN/tex and an extensibility of 23.5%.

To determine the water imbibition value of the filaments, a 1 g sample of dried filaments is soaked in water at a temperature of 20°C for 15 minutes, centrifuged at a force of 10,000 Newton for 5 minutes, weighed, dried at a temperature of 110°C for 2.5 hours and finally re-weighed. Water imbibition is then defined as follows:

15

weight of wet filaments - weight of dry filaments X 100% weight of dry filaments

20

Example 2

25

30

35

Y-shaped viscose fibre was produced as described in Example 1 with the following modifications:-

Viscose salt figure: 6.0

Viscose modifier: 30/6 PEG-1500 added to viscose prior to spinning (no modifier added in Example 1)

Zinc sulphate in spin bath: 1.5%

Tow Stretch: 50% in air

Viscose extrusion rate: 1359 ml/min

The resulting filaments were solid and had a well-defined, uniform Y-shaped cross-section as can be seen from the photograph of the filaments, magnified 500 times, in Figure 5. The filaments had a decitex of 2.8 and a limb aspect ratio of 3:1 to 4:1. Using the same test as in Example 1, the staple fibre have a TFA of 25.4 g/g and a water imbibition of 113%. The filament tenacity was 16.7 cN/Tex and the extensibility 21.5%.

40

45

50

Example 3

A 16,568 filament viscose tow having the same composition as that described in Example 1 was spun through Y-shaped extrusion holes, the dimension of the limbs being 70 μ m long and 25 μ m wide with equivalent limb-to-limb angles of 120°. The filaments were spun into a bath comprising 9.0% sulphuric acid, 0.8% zinc sulphate, 24.0% sodium sulphate and 66.2% water at 50°C to form a tow of filaments having an average decitex of 1.3. The spinning speed was 50 m/min and the viscose extrusion rate was 726 ml/min. The tow was stretched by 50% in a 2% aqueous sulphuric acid solution at 95°C, cut to a staple length of 38 mm and washed.

The resulting filaments were solid and had a well defined Y cross-section with a limb aspect ratio between 3:1 and 4:1. The staple fibre had a TFA of 25.8 g/g, a water imbibition of 125%, a filament tenacity of 18.3 cN/tex and an extensibility of 25.2%.

55

Example 4

A 14,364 filament viscose tow was produced as described in Example 3 except that the viscose was spun from Y-shaped extrusion holes with limbs 89 μ m long and 25 μ m wide and the viscose extrusion rate was 2184 ml/min to form a tow of filaments having an average decitex of 4.5.

The resulting solid filaments had a well defined Y cross-section with a limb aspect ratio above 2:1, a TFA of 26.0 g/g, a water imbibition of 104%, a filament tenacity of 19.0 cN/tex and an extensibility of 22.8%.

65

Example 5

Staple fibres produced as described in Examples 1 and 2 were each formed into two types of tampon: a longitudinally expanding tampon having an average weight of about 2.72 g and an average density of about 0.35 g/cm³ and a radially expanding tampon having an average weight of about 2.8 g and an average density of 0.46 g/cm³.

5

10

15

20

25

30

35

40

The surface properties of the fibre were modified by the addition of a glycerol finish in order to obtain a tampon having a stability of approximately 15 mm for the longitudinally expanding tampons, and approximately 3.5 to 7.0 decaNewtons (daN) for the radially expanding tampons.

The stability of a longitudinally expanding tampon is measured by the 'expansion test' whereby the tampon is maintained in a controlled environment after manufacture and the increase in the length of the tampon in millimetres is measured.

The stability of a radially expanding tampon is measured using the 'crush test' which measures, in decaNewtons (daN), the longitudinal force required to buckle the tampon. The cylindrical tampon is placed with one end on a fixed lower jaw of a test machine, the upper moveable jaw is brought down to contact the other end of the tampon and is then set to move down at a speed of 5 cm/min. The force exerted by the tampon on the jaws of the test machine is measured continuously and the point at which this force begins to fall instead of rise is the point at which the tampon buckles. The maximum force achieved is the stability of the tampon. During the test the tampon is maintained in a controlled environment of 65% RH and 20°C.

The absorbency of each tampon was then tested using a 'modified Syngina' test. For the radially expanding tampons the test used was as defined in UK Patent 2 094 637B, pp. 4 - 6 except that a 200 mm hydrostatic head air pressure was employed. For the longitudinally expanding tampons the test was used as defined in the said patent with the further modification that 1 180 mm hydrostatic head water pressure was employed, the Syngina chamber was tilted at 30° to the vertical and the saline solution was injected into the top of the tampon, using a hypodermic needle, at a rate of 50 mm/hour. For both tampon types the absorbency was tested with a 1% saline solution.

The absorbencies were compared with those of tampons formed from standard, circular cross-section viscose fibre spun from equivalent viscose compositions and spinning conditions and finished in order to obtain stability approximately 15 mm and 3.5 to 7.0 daN for longitudinally and radially expanding tampons respectively. The absorbencies were also compared with those of tampons formed from collapsed hollow viscose fibre produced according to UK Patent 1 333 047. The water imbibition of each fibre type was also measured

The results are given in Tables A and B, where 'Y-shaped (1)' and 'Y-shaped (2)' denote tampons formed from the staple fibre of Examples 1 and 2 respectively, 'Standard (1)' and 'Standard (2)' denote tampons spun from standard staple viscose fibre produced from viscose compositions and using spinning conditions equivalent to those of Examples 1 and 2 respectively, and 'Collapsed Hollow' denotes a tampon produced from staple fibre according to UK Patent 1 333 047.

Table A - Longitudinally Expanding Tampon

Fibre Type	Absorbency (g/g)	St	ability (mm)	Water Imbibition (%)	45
					50
Y-shaped (1)	4.35	7	15	120	
Standard (1)	3.82		14	103	
Y-shaped (2)	4.76		15	113	55
Standard (2)	3.96		15	88	
Collapsed Hollow	4.47		12	270	60

The results in Table A show that longitudinally expanding tampons formed from the fibre according to the invention have, for a given stability, a much higher absorbency than tampons formed from equivalent standard

viscose fibre. Furthermore, when the fibre of the invention is spun using a modified viscose composition as in Example 2, then the resulting tampon also has an absorbency higher than that achieved using collapsed hollow viscose fibre, even though the water imbibition of the collapsed hollow fibre is more than double that of the fibre of the invention.

maha p padia

5

30

40

45

50

55

60

65

Table	В	-	Radially	Expanding	Tampon

10	Fibre Type	Absorbency (g/g)	Stability (daN)	Water Imbibition (%)
15			******	
	Y-shaped (1)	4.76	3.8	120
	Standard (1)	3.98	3.5	103
20	Y-shaped (2)	5.53	7.0	113
	Standard (2)	3.82	4.0	88
<i>25</i>	Collapsed Hollow	5.30	3.2	270

The results in Table B show that radially expanding tampons formed from fibre according to the invention have a markedly greater absorbency than tampons formed from standard fibre. This is particularly noticeable when 'Y-shaped (2)' fibre is used as this tampon has superior absorbency as well as superior stability over tampons formed from both standard and collapsed hollow viscose fibre.

35 Example 6

The staple fibres of Examples 1 and 2 were each formed into tampons as described in Example 5 except that no finish was added to the fibre to modify its surface properties, and hence no alteration was made to the 'natural' stability of the tampons.

These stabilities were compared with those of tampons from unfinished equivalent standard viscose fibres. The results are given in Table C.

Table C

Fibre Typ	pe	Tampon Type	Stability	5
Y-shaped Standard		Radially Expanding	5.4 daN	10
Scandard	(1)	Radially Expanding	3.6 daN	
Y-shaped	(1)	Longitudinally Expanding	9 mm	15
Standard	(1)	Longitudinally Expanding	16 mm	10
Y-shaped	(2)	Radially Expanding	7.0 daN	00
Standard	(2)	Radially Expanding	4.0 daN	20
Y-shaped	(2)	Longitudinally Expanding	7 mm	25
Standard	(2)	Longitudinally Expanding	15 mm	20
				<i>30</i>
These results s stability than stan	how that for both ta dard fibre. This is e	ampon types, the fibre according to the invent specially evident in tampons formed from fibre	ion has considerably greater e type 'Y-shaped (2)'.	
		Example 7		<i>35</i>
extrusion holes, sulphate, 24.0% iilament decitex d aqueous sulphuri	as specified in Ex sodium sulphate a of 2.4 and a limb as ic acid solution at	aposition as that described in Example 1 w ample 1, into a spin bath comprising 10.5% and 64.8% water to form a tow of Y-shaped spect ratio between 3:1 and 4:1. The tow was 95°C, cut to staple lengths of 38 mm, was	o sulphuric acid, 0.7% zinc filaments having an average s stretched by 50% in a 2% shed and dried.	40
oolyester by weig dropped needle	ght yarn having a 1 interlock construct	vith a 1.7 decitex polyester, 'SD Grilene B', to 1/30 s cotton count. The fibre was made up tion. The fabric weighed 340 g/m and had a sability, and flexural rigidity of the fabric were not the fabric were not be sabric we	into a knitted fabric with a thickness of 2.0 mm.	45
Rate of absorb Comparison of L Research Journa	aboratory Test Me I, July 1984, pp 471	asured using the 'Plate Test' as defined in a pathods for Measuring Wicking' by P.R. Harn I-478. The fabric was washed and immersed intervals over 2 minutes.	ett and P.N. Mehta, Textile	50
Bulk: The rate using the Shirley Drapability: The own weight. Drap	of air flow through Micronaire test m drapability of a fab ability was measure being the ratio of the	a 5 g compressed sample of the fabric was nethod, the lower the rate the greater the fa pric is the extent to which it will deform when it ed by determining the drape coefficient of the ne projected area of the draped specimen to i	abric bulk. t is allowed to hang under its t face and back of the fabric,	55
Flexural Rigidity est BS 3356 196 The fabric prop he viscose fibre above except tha	y: The degree to wh 1. The flexural rigic erties were compa was spun from an at the filaments we	nich the fabric bends under its own weight was dity along the length and across the width of ared with an equivalent standard viscose/poly equivalent composition and using the equiva- are spun through standard, circular cross-se	the fabric was determined. rester knitted fabric wherein alent spinning conditions as ection holes.	60
ine results are ibre and 'Standa	given in Tables D, E ird' denotes the fa	Eand F, where 'Y-shaped' denotes the fabric on the containing the standard, circular cross	containing Y-shaped viscose -section viscose fibre.	<i>65</i>

0 301 874

Table D - Fabric Absorbency

	Absorbency (cm ³ /g)		
Time (secs)	Y-shaped	Standard	
		0.00	
60			
90	2.17		
120	2.19	1.77	
	15 30 60 90	Time (secs) Y-shaped 15 1.53 30 1.88 60 2.10 90 2.17	Time (secs) Y-shaped Standard 15 1.53 0.22 30 1.88 0.62 60 2.10 1.35 90 2.17 1.63

20

25

These results show that fabric containing fibre according to the invention has a substantially improved rate of absorbency over equivalent fabric containing standard viscose fibre.

Table E - Fabric Bulk

30	Fabric Type	Air Flow (cm ³ /sec)
35	Y-shaped . Standard	16.6 24.4

40

45

65

The air flow through the fabric containing the Y-shaped fibre is considerably lower than the air flow through the standard fabric which shows the higher bulk of the fabric containing fibre according to the invention.

Table F - Drapability and Flexural Rigidity

50		7	Y-Shaped	Standard
	Drape coefficient:	face	0.118	0.087
<i>55</i>		back	0.126	0.106
	Flexural rigidity:	length	40.0	27.3
60		width	17.2	9.3

The higher drape coefficient and higher flexural rigidity of the fabric containing the Y-shaped fibre indicates that this fabric has a stiffer, more cotton-like handle than standard viscose fabrics.

Example 8

From fibre produced under the conditions specified in Example 1, latex bonded nonwovens were prepared using a Kidd & Zigrino saturation bonder. A VA/E vinyl acetate-ethylene copolymer (type R32440) (available from Vinamul Limited) was used as the binder at 20% add-on to 100% viscose webs. The bonded fabrics were produced at 40 gsm and evaluated using the following tests:

Bulk: the average thickness of the 40 gsm fabric in mm using the EDANA recommended test for nonwoven thickness 30.2-78.

Overall Dry Strength: the maximum load sustainable by the fabric using the EDANA recommended test for nonwoven tensile strength 20.0-73, where the overall dry strength is taken to be the square root of the product of the individual machine and cross-directional strengths.

Absorbent Capacity: the quantity of water retained by a 4 cm diameter circle of the fabric after total immersion for one minute and draining for 30 secs, in g/g.

Wicking Distance: the capillary water rise (speed of liquid transport) in mm using the EDANA recommended test for nonwoven absorption 10.0-72.

The fabric properties were compared with an equivalent latex bonded fabric produced from standard circular cross-section viscose spun under identical conditions as given for the standard fibre in Example 7.

The results are given in Table 6 below where 'Y-shaped' denotes the fabric containing Y-shaped fibre and

The results are given in Table G below, where 'Y-shaped' denotes the fabric containing Y-shaped fibre and 'Standard' denotes the fabric containing the standard, circular cross-section viscose.

Table G

Property	Y-shaped	Standard	30
Bulk (mm)	0.23	0.17	<i>35</i>
Overall Dry Strength (daN)	2.2	2.4	
Absorbent Capacity (g/g)	10.6	7.3	
Wicking Distance (mm) at 30 secs	8	3	40
60 secs	11	6	
180 secs	19	13	

Example 9

From fibre produced under the conditions specified in Example 1, water jet entangled nonwovens were prepared using a Honeycomb hydroentanglement rig from 100% Viscose webs. The water pressure used to attain full entanglement was of the order of 1500 psi(10,000 kPa).

The bonded fabric was produced at 40 gsm and evaluated using the test methods described in Example 8. The fabric properties were compared with an equivalent hydroentangled fabric produced from standard circular cross-section viscose spun under identical conditions as given for the standard fibre in Example 7. The results are given in Table H below, where 'Y-shaped' denotes the fabric containing Y-shaped fibre and 'Standard' denotes the fabric containing the standard, circular cross-section viscose.

60

45

50

55

5

10

15

20

25

Table H

5	Property	Y-shaped	Standard
10			
	Bulk (mm)	0.22	0.18
	Overall Dry Strength (daN)	1.3	1.3
15	Absorbent Capacity (g/g)	17.5	11.9
10	Wicking Distance (mm) at 30 secs	5	3
	60 secs	7	5
20	180 secs	12	8

The results given in Tables G and H indicate that for both latex and hydroentangled nonwovens the Y-shaped fibre produces bulkier, more absorbent products which are more able to transport fluid. In hydroentangled nonwovens Y cross-section fibre has the advantage of producing a fabric with a stiffer, more cotton-like handle.

Example 10

From fibre produced under the conditions specified in Example 7, 100% viscose woven fabrics were prepared. The staple fibre was spun into a yarn having a 1/30's cotton count. The yarn was made up into a woven fabric with a 2x2 twill construction. The fabric weighed 320 gsm and had a thickness of 1.8 mm.

The fabric properties were compared with an equivalent standard viscose woven fabric wherein the viscose fibre was spun from an equivalent composition viscose as the Y-shaped fibre using identical spinning conditions.

The results are quoted below for both fabrics following an evaluation using the test methods outlined previously in Example 7, where 'Y-shaped' again denotes the fabric containing the Y-shaped viscose fibre and 'Standard' denotes the fabric containing the standard, circular cross-section viscose fibre.

10

30

35

45

50

55

Table J

Property				
			Y-shaped	Standard
bsorbency (cm ³ /g)	at 5	secs	0.96	0.57
accidency (om , g,		secs	1.38	1.15
		secs	1.64	1.44
		secs	1.75	1.67
		secs	1.78	1.71
ir Flow (cm ² /sec)			14.7	18.6
Flexural Rigidity (mg.cm)	length	53.0	45.4
		width	27.1	23.7
5000 filament viscose tow havin	ig the same	composition as	that described in Exam	
shaped extrusion holes, the dime limb angles of 90° as shown in lid, 1.0% zinc sulphate, 24.5% socerage decitex of 3.5. The spinning wwas stretched by 50% in a 2% d washed. The resulting solid filaments had a	Figure 6. The dium sulphate groups some subsets of the subsets of	e filaments were te and 65.0% wa s 50 m/min and t ulphuric acid sol ed X cross-section) µm long and 25 µm wi e spun into a bath con ter at 50° C to form a to he viscose extrusion ra lution at 95° C, cut to a on, with a limb aspect r	de, with equivalent lingrising 9.5% sulphows of filaments having the was 590 ml/min. The staple length of 38 ratio of between 2:1 a
shaped extrusion holes, the dime limb angles of 90° as shown in Fid, 1.0% zinc sulphate, 24.5% societage decitex of 3.5. The spinning wwas stretched by 50% in a 2% of washed. The resulting solid filaments had a 1. The staple fibre had a TFA of 25	Figure 6. The dium sulphate groups some subsets of the subsets of	e filaments were te and 65.0% was 50 m/min and to alphuric acid soled X cross-section imbibition of) µm long and 25 µm wi e spun into a bath con ter at 50° C to form a to he viscose extrusion ra lution at 95° C, cut to a on, with a limb aspect r	de, with equivalent ling prising 9.5% sulphower of filaments having the was 590 ml/min. The staple length of 38 ratio of between 2:1 a
shaped extrusion holes, the dime limb angles of 90° as shown in Fed, 1.0% zinc sulphate, 24.5% sociarage decitex of 3.5. The spinning was stretched by 50% in a 2% dwashed. The resulting solid filaments had a 1. The staple fibre had a TFA of 25 tensibility at break of 25.0%.	Figure 6. Th dium sulphat g speed was aqueous si a well define .0 g/g, a wat	e filaments were te and 65.0% was 50 m/min and to alphuric acid soled X cross-section imbibition of Example 12) µm long and 25 µm will spun into a bath conter at 50°C to form a to he viscose extrusion ration at 95°C, cut to a con, with a limb aspect 114%, a filament tenact	de, with equivalent lir nprising 9.5% sulphu w of filaments having te was 590 ml/min. T staple length of 38 n atio of between 2:1 a ty of 19.0 cN/tex and
chaped extrusion holes, the dime limb angles of 90° as shown in Fid, 1.0% zinc sulphate, 24.5% social age decitex of 3.5. The spinning was stretched by 50% in a 2% washed. The resulting solid filaments had a . The staple fibre had a TFA of 25 ensibility at break of 25.0%.	Figure 6. Th dium sulphat g speed was aqueous si a well define .0 g/g, a wat	e filaments were te and 65.0% was 50 m/min and to alphuric acid soled X cross-section imbibition of Example 12) µm long and 25 µm will spun into a bath conter at 50°C to form a to he viscose extrusion ration at 95°C, cut to a con, with a limb aspect 114%, a filament tenact	de, with equivalent lir nprising 9.5% sulphu w of filaments having te was 590 ml/min. T staple length of 38 n atio of between 2:1 a ty of 19.0 cN/tex and
shaped extrusion holes, the dime limb angles of 90° as shown in Fid, 1.0% zinc sulphate, 24.5% societage decitex of 3.5. The spinning was stretched by 50% in a 2% dwashed. The resulting solid filaments had a 1. The staple fibre had a TFA of 25 tensibility at break of 25.0%. X-shaped fibre was produced as scose salt figure: 6.0 Scose modifier: 6.0 6.0	Figure 6. The dium sulphate growing speed was aqueous so a well define .0 g/g, a water so described added to 1.5%.	e filaments were te and 65.0% was 50 m/min and to alphuric acid soled X cross-section imbibition of the Example 12. I in Example 11 the viscose prices	m long and 25 µm will be spun into a bath conter at 50°C to form a to he viscose extrusion ration at 95°C, cut to a con, with a limb aspect of 114%, a filament tenaction with the following more to spinning.	de, with equivalent lir nprising 9.5% sulphu w of filaments having te was 590 ml/min. T staple length of 38 m atio of between 2:1 a ty of 19.0 cN/tex and odifications:
shaped extrusion holes, the dime limb angles of 90° as shown in Fid, 1.0% zinc sulphate, 24.5% societage decitex of 3.5. The spinning w was stretched by 50% in a 2% ad washed. The resulting solid filaments had a 1. The staple fibre had a TFA of 25 atensibility at break of 25.0%. X-shaped fibre was produced as scose salt figure: 6.0 scose modifier: 3% PEG-1500 no sulphate in the spin bath:	Figure 6. The dium sulphare growing speed was a queous so a well define .0 g/g, a wat a described added to 1.5%. It and had a se, magnified the staple fib	e filaments were te and 65.0% was 50 m/min and tulphuric acid solved X cross-sectiver imbibition of the Example 12 I in Example 11 the viscose price well defined, und 1624 times, in Frenda a TFA of	pm long and 25 µm will spun into a bath conter at 50°C to form a to he viscose extrusion raution at 95°C, cut to a on, with a limb aspect on, with a limb aspect of 1140%, a filament tenaction to spinning. With the following more to spinning. Inform X-shaped cross-igure 7. The filaments 25.0 g/g and a water in the spinning and the spinning and the spinning.	de, with equivalent lir reprising 9.5% sulphu w of filaments having ate was 590 ml/min. T staple length of 38 n atio of between 2:1 a ty of 19.0 cN/tex and odifications: section as can be se had a decitex of 3.5 a

Staple X-shaped fibres prepared according to the conditions specified in Examples 11 and 12 were evaluated in longitudinally expanding tampons against standard circular cross-section viscose fibres produced under identical conditions, using the method outlined in Example 5. The surfaces of the fibres were modified by the addition of glycerol finish in order to obtain a tampon having a stability of approximately 15 mm.

The tampon absorbency values were also compared with those for tampons formed from collapsed hollow fibres produced according to UK Patent 1 333 047. The water imbibition of each fibre is specified.

The results are given in Table K below, where 'X-shaped' and 'X-shaped (M)' refer to tampons formed from the staple fibre of Examples 11 and 12 respectively. 'Standard' and 'Standard (M)' denote tampons produced from standard staple viscose fibre spun from viscose compositions and using spinning conditions equivalent to those of Examples 11 and 12 respectively. 'Collapsed Hollow' denotes a tampon produced from staple fibre according to the previously cited patent.

Table K

20	Fibre Type	Absorbency (g/g)	Stability (mm)	Water Imbibition (%)
<i>25</i>	X-shaped Standard	4.26 3.80	14 15	114 100
	X-shaped (M)	4.64	14	107
30	Standard (M) Collapsed Hollow	3.85 4.47	15 12	94 270

Similar trends are observed to those described in Example 5.

Example 14

40

35 .

5

15

A 5000 filament viscose tow having the same composition as that described in Example 12 was spun through extrusion holes having a shape and dimensions as shown in Figure 8.

The filaments were spun into a bath comprising 7.5% acid, 1.2% zinc and 23.5% sulphate at 50°C to form a tow of filaments having an average decitex of 3.3. The spinning speed was 50 m/min and the viscose extrusion rate was 558 ml/min. The tow was stretched by 50% in air, cut to a staple length of 38 mm and washed.

The resulting solid filaments had a well defined H-shaped cross-section as shown in Figure 9, magnified 1624 times. The limb aspect ratio was between 2:1 and 4:1. The staple fibre had a TFA of 25.3 g/g, a water imbibition of 110%, a filament tenacity of 18.4 cN/tex and an extension of 23%.

Claims

55

60

65

- 1. A solid filament of regenerated cellulosic material having a decitex of less than 5.0 and a multi-limbed cross-section, each limb having a length-to-width aspect ratio of at least 2:1.
 - 2. A filament according to claim 1 which has a decitex of between 0.5 and 5.0.
 - 3. A filament according to claim 1 or 2 wherein each limb has an aspect ratio of from 2:1 to 10:1.
- 4. A filament according to any of claims 1 to 3 which has a cross-sectional shape that is largely symmetrical about at least one axis.
 - 5. A filament according to claim 4 which has a substantially Y-, X-, H- or T- shaped cross-section.
 - 6. A filament according to any of claims 1 to 5 which is produced from a modified viscose composition.
- 7. A filament according to claim 6 wherein the viscose composition has been modified by the addition of polyethylene glycol.

- 8. Staple fibre comprising filaments according to any of claims 1 to 7 in staple fibre form.
- 9. Staple fibre according to claim 8 wherein substantially all the said filaments have substantially the same cross-sectional shape.
- 10. Staple fibre according to claim 8 or 9 which has a total free absorbency of at least 24 grams of water per gram of fibre using the test as set out in BP 1980, SDM.XI.A, p.928.
- 11. An absorbent product formed from fibre according to claim 8, 9 or 10.
- 12. An absorbent product according to claim 11 which is non-woven.
- 13. An absorbent product according to claim 11 which is a tampon.
- 14. A longitudinally expanding tampon formed from fibre according to claim 8, 9 or 10 which, when manufactured to have a stability of approximately 15 mm as measured by the 'expansion test' as hereinbefore defined, has an absorbency of at least 4.3 grams 1% saline solution per gram of fibre as measured by a 'modified Syngina' test as hereinbefore defined.
- 15. A longitudinally expanding tampon according to claim 14 which has an absorbency of at least 4.5 grams 1% saline solution per gram of fibre.
- 16. A radially expanding tampon formed from fibre according to claim 8, 9 or 10 which has a stability of at least 3.2 daN as measured by the crush test as hereinbefore defined, and an absorbency of at least 4.5 grams 1% saline solution per gram of fibre as measured by a 'modified Syngina' test as hereinbefore described.
- 17. A radially expanding tampon according to claim 16 which has an absorbency of at least 5.0 grams 1% saline solution per gram of fibre.
- 18. A woven or knitted product formed from fibre according to claim 8, 9 or 10.
- 19. A process for the production of filaments according to any of claims 1 to 7 which includes the step of spinning a viscose composition through multi-limbed shaped extrusion holes, the limb dimensions of each hole being no more than 250 μ m long and 40 μ m wide.

25

20

5

10

15

30

35

40

45

50

55

60

Fig.1.

Fig.4.

Fig.6.

Fig.8.

Fig.2.

Fig.5.

Fig. 3.

Fig. 7.

Fig.9.

EUROPEAN SEARCH REPORT

EP 88 30 6987

	DOCUMENTO CONTO	DEDED TO DE DELETA	NIT	
<u> </u>		DERED TO BE RELEVA		
Category	Citation of document with it of relevant pa	ndication, where appropriate, ssages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl. 4)
Х	GB-A-2 085 304 (KA * The whole documen	O SOAP) t *	1-19	D 01 D 5/253 D 01 F 2/06
D,Y	US-A-4 129 679 (C. * Claims; column 3,		1-13	A 61 L 15/00
Х	US-A-2 002 153 (W. * Claims; page 2, 1 lines 30-34 *	MENDEL) eft-hand column,	1	
Х	US-A-1 773 969 (W. * Claims; page 1, 1 line 5 *		1	
D,A		JAPAN, vol. 10, no. 8th October 1986; & AHI CHEM. IND. CO.,		
				TECHNICAL FIELDS SEARCHED (Int. Cl.4)
				D 01 D D 01 F
	The present search report has b	een drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
THE	E HAGUE	11-10-1988	VAN	GOETHEM G.A.J.M.
X: par Y: par doc A: tecl O: nor	CATEGORY OF CITED DOCUME ticularly relevant if taken alone ticularly relevant if combined with and ument of the same category nnological background n-written disclosure ermediate document	E : earlier patent after the filing other D : document cite L : document cite	ed in the application d for other reasons	ished on, or