Diff. Egm. dersi Cuma günü!

*Bizim dersimiz gelecek haftadan (201,301?)

Olasiligin Aksiyomlori:

Bir rostgele deneyde, Sörnek uzayı, E'de bu uzaydaki bir olay ise:

- (1) P(s) = 1
- (2) OSP(E) S1
- (3) $E_1 \cap E_2 = \phi$ (E_1 ve E_2 birbirini dislayan oloylor ise $P(E_1 \cup E_2) = P(E_1) + P(E_2)$

Bu aksiyomlardan oşağıdaki sonuçlar cıkar

$$-P(\phi) = 0$$

$$-P(E') = 1 - P(E)$$

$$-E_1 \subseteq E_2 \rightarrow P(E_1) \langle P(E_2) \rangle$$
Axiom 3 - genellesticilmis hali
• E_1, E_2, \dots, E_r Cifter siffer
birbirini dislayan olaylar dizisi ise yaimi
 $i \neq j$ iken $E_1 \cap E_j = \phi$ ise
$$P(UE_i) = \sum_{i=1}^{\infty} P(E_i)$$

Ornek Hilesiz bir zar atısında sonucun tek gelme olasılısı nedir?

$$E_{tek} = \begin{cases} 1, 3, 5 \end{cases}$$

$$E_{i} = \begin{cases} i \end{cases}$$

$$S = \bigcup_{i=1}^{6} E_{i}$$

$$P(E_{i}) = \frac{1}{6} \downarrow$$

$$P(S) = P(\bigcup_{i=1}^{6} E_{i}) = 1$$

$$P(\bigcup_{i=1}^{6} E_{i}) = \sum_{i=1}^{6} P(E_{i})$$

$$P(E_1) = P(E_2) = ... = P(E_6) = P$$

 $\sum_{i=1}^{6} p = 1 \rightarrow p = \frac{1}{6}$
 $\sum_{i=1}^{6} E_{tek} = E_1 + E_3 + E_5$

$$= p + p + p = \frac{1}{2}$$

Toptam Kurali

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

once EICE2 > P(EI) < P(E2) yi ispatlayalim.

$$E_2 = E_1 U(E_1 \cap E_2)$$

birbirini dislayan olaylar

Toplam Kuralini ispatlogalim

Ornek

Bir sınıfto 30 erkek, 10 boyon öğrenci vardir. Hem erkeklerin hem de boyanlarin yarısı gözlük kullanmaktadır. Bu siniftan rostgele secilen birinin bayon veya gözlüklü olma ihtimoli nedir?

	B	E	_
6	5	15	_
6'	5,	15	

B: Bayan öğrenci olma olayı 6: 602/úk/ú olma olaylı

$$P(B) = \frac{10}{40} \quad P(6) = \frac{1}{2}$$

$$P(B \cap 6) = \frac{5}{40}$$

$$P(B \cup 6) = \frac{1}{4} + \frac{1}{2} - \frac{1}{8} = \frac{10}{10.625}$$

Tonim

Bolayının oluştuğu bilindiğinde, A olayının kosullu olma olasılığı, ya da Anin 13 kosulu altında olma olasılığı P(AIB) seklinde yozılır ve $P(A|B) = \frac{P(A\cap B)}{P(B)}, P(B) > 0$ $P(B) = \frac{P(B)}{P(B)}, P(B) > 0$ $P(B) = \frac{Olmok}{Sortiylo}$

Brnek Asagidaki tabloda 400 adet parça yüzey hatası durumuna ve buzuk olma durumuna gore siniflandirilmis olsun.

Yüzey Hatası Var mı?

_				T
		Eve+	1 Hayır_	
Bozuk	E	10	18	28
	H	30	342	372
		40	360	400

F: Yüzey hatosı var

D: Bozuk

$$P(D|F) = \frac{10}{30} = \frac{P(D\cap F)}{P(F)} = \frac{10}{40} = 0.2500$$

Gorpin Kurali

Toplu olasılık kuralı

$$P(B) = P(B \cap A) + P(B \cap A')$$

$$= P(B \mid A) P(A) + P(B \mid A') P(A')$$

Genellestirisek

· E1, E2, ..., Ek sifter sifter B birbirini dışlayan ve birbirini tamamlayan olaylar olsun. O zaman

 $P(B) = P(B \cap E_1) + \dots + P(B \cap E_k)$ $= P(B \mid E_1) P(E_1) + \dots + P(B \mid E_k) P(E_k)$

Bagimsizlik

Bir olay baska bir olayın oluşma ihtimalini etkilemiyorsa bu olaylar birbirinden başımsızılır

Tanım A ve B olayları aşağıdaki sartlardan herhangi birini sağlıyorsa bu olaylar birbirinden bağımsızdır.

$$(1) P(A|B) = P(A)$$

$$(2) P(B|A) = P(B)$$

(3)
$$P(A \cap B) = P(A)P(B)$$

Ornek Bir torbada 50 Kirmizi, 800 beyaz top vardır. Torbadan 1 adet top çekiliyor ve & tekrar torbaya konuluyor. 2. bir defa top cekiliyor. 1. top kirmizi ise 2. topun beyoz olma intimali nedir?
i. top
i. top
Bi: Beyoz P(B/K1) = P(B2) -> B2 ve K1 birbirinden bagimsizder- $P(B_2) = P(B_1) = \frac{800}{850} = \sim$

Boyes Kurali

Sortli olosiliğin toniminden $P(A \cap B) = P(A \mid B) P(B) = P(B \mid A) P(A)$ $P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)} (P(B) > 0)$

```
Ornek
Bir cipin kirli olma olasılığı 0,2;
Kirli bir çipin bozuk olma olasılığı 0.1
Temi2 // 1/ // // // 0.005 tir.
Bozuk bir cipin Kirli olma olasılığı nedir?
H: Kirli olma olayı, H': temiz --
F: bozuk " "
P(H) = 0.2 P(F | H) = 0.1
                P(F/H') = 0.005
 P(H/F) = \frac{P(F/H) - P(H)}{P(F)}
P(F) = P(F|H) \cdot P(H) + P(F|H') \cdot P(H') = 0.024
  P(H|F) = \frac{0.1 \times 0.2}{0.024} = 0.83 \ \angle
```

Bayes teoremini genellestirirse & E1, E2,.., Ex birbirini dislayan ve birbirini tomamlayon olaylar ise, bir B olayı için P(B/E,) P(E,)

P(E1 | B)= P(B)

P(B)