بسم الله الرحمن الرحيم

المادة: مقدمة في بحوث العمليات (١٠٠ بحث) الفصل الدراسي ١٤٣٨/١٤٣٨ هـ الاختبار الفصلي الثاني

اسم الطالب:	الرقم الجامعي:
أستاذ المقرر:	الدرجة:

أكتب اختيارك لرمز الإجابة الصحيحة لكل سؤال في الجدول التالي:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
C	A	В	C	D	A	В	C	D	A	В	C	A	D	В

25	24	23	22	21	20	19	18	17	16
A	В	C	D	В	A	D	C	A	В

7. أكبر توفير اقتصادي يمكن إنقاصه من مورد القيد (2) هو:

D 5 **C** 2 **B** 3 **A** 4

8. أكبر توفير اقتصادي يمكن إنقاصه من مورد القيد (4) هو:

 D
 2.5
 C
 2
 B
 1.5
 A
 1

9. فترة الحساسية لمعامل المتغير x_1 في دالة الهدف هي:

D $3 \le c_1 \le 10$ **C** $10 \le c_1 \le 30$ **B** $\frac{10}{3} \le c_1 \le 10$ **A** $5 \le c_1 \le 15$

10. فترة الحساسية لمعامل المتغير x_2 في دالة الهدف هي:

D $\frac{5}{3} \le c_2 \le 15$ **C** $\frac{3}{5} \le c_2 \le \frac{1}{5}$ **B** $\frac{5}{3} \le c_2 \le 5$ **A** $5 \le c_2 \le 15$

السوال الثاني:

ليكن لدينا البرنامج الخطي التالي:

$$\max z = 2x_1 + 2x_2$$

s.t.
$$2x_1 + 4x_2 \le 8$$
 :(1)

$$4x_1 + 3x_2 \le 12$$
 :(2) القيد

$$x_1 \ge 0$$
 , $x_2 \ge 0$

11. القيود الخطية في الصيغة القياسية لهذا البرنامج الخطى هي:

$$\begin{array}{c|c}
\mathbf{D} & 2x_1 + 4x_2 + s_1 = 8 \\
4x_1 + 3x_2 + s_2 = 12 \\
x_1, x_2, s_1, s_2 \ge 0
\end{array}$$

$$\begin{array}{c|c}
\mathbf{B} & 2x_1 + 4x_2 + s_1 \le 8 \\
\hline
 & 4x_1 + 3x_2 + s_2 \le 12 \\
 & x_1, x_2, s_1, s_2 \ge 0
\end{array}$$

$$\begin{array}{c|c}
A & 2x_1 + 4x_2 = 8 \\
\hline
 & 4x_1 + 3x_2 = 12 \\
 & x_1, x_2 \ge 0
\end{array}$$

12. إذا كانت المتغيرات غير الأساسية هي (s_1, s_2) ، فإن الحل الأساسي هو:

$$\mathbf{D} \boxed{ (x_1, x_2, s_1, s_2) = \\ (3, 0, 2, 0) }$$

$$\begin{array}{c|c}
\mathbf{C} & (x_1, x_2, s_1, s_2) = \\
 & (2.4, 0.8, 0, 0)
\end{array}$$

$$\mathbf{B} \begin{array}{|c|c|} \hline (x_1, x_2, s_1, s_2) = \\ \hline (0, 2, 0, 6) \end{array}$$

$$\mathbf{A} \begin{array}{|c|} (x_1, x_2, s_1, s_2) = \\ (0, 0, 2.4, 0.8) \end{array}$$

13. إذا كانت المتغيرات غير الأساسية هي (s_1, s_2) ، فإن النقطة الموافقة لها في الرسم البياني هي:

E

14. إذا كانت المتغيرات الأساسية هي (x_1, s_2) ، فإن الحل الأساسي هو:

$$\mathbf{D} \begin{vmatrix} (x_1, x_2, s_1, s_2) = \\ (3, 0, 2, 0) \end{vmatrix}$$

$$\mathbf{C} = \begin{bmatrix} (x_1, x_2, s_1, s_2) = \\ (4, 0, 0, 4) \end{bmatrix}$$

$$\mathbf{B} = \begin{pmatrix} (x_1, x_2, s_1, s_2) = \\ (0, 4, -8, 0) \end{pmatrix}$$

$$\mathbf{A} (x_1, x_2, s_1, s_2) = (4, 0, 0, -4)$$

15. إذا كانت المتغيرات الأساسية هي (x_1, s_2) ، فإن النقطة الموافقة لها في الرسم البياني هي:

C L

B F

A H

16. إذا كانت المتغيرات الأساسية هي (x_2, s_1) ، فإن الحل الأساسي سيكون:

مقبول مقبول

ممكن С

غیر ممکن عیر

أمثل أمثل

السؤال الثالث:

$$\max z = -x_1 + 3x_2 - 2x_3$$

ليكن لدينا البرنامج الخطى التالى:

s.t.
$$2x_1 + x_2 + 2x_3 \le 2$$
$$2x_1 + 2x_2 + 3x_3 \le 2$$
$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

17. بعد تحويل البرنامج الخطى للصيغة القياسية ، سوف يتم تكوين جدول السمبلكس المبدئي التالى:

В	BV	x_1			s_1	S_2	RHS
•	Z	1		2	0	0	0
	$\overline{x_1}$	2	1	2	1	0	2
	x_2	2	1 2	3	0	1	2

A
 BV

$$x_1$$
 x_2
 x_3
 s_1
 s_2
 RHS

 z
 1
 -3
 2
 0
 0
 0

 s_1
 2
 1
 2
 1
 0
 2

 s_2
 2
 2
 3
 0
 1
 2

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \textbf{D} & BV & x_1 & x_2 & x_3 & s_1 & s_2 & RHS \\ \hline z & 1 & 3 & 2 & 0 & 0 & 0 \\ \hline s_1 & 2 & 1 & 2 & 1 & 0 & 2 \\ s_2 & 2 & 2 & 3 & 0 & 1 & 2 \\ \hline \end{array}$$

18. في جدول السمبلكس المبدئي ، اختبار النسبة الصغرى (ratio test) هو:

	ratio test
D	2/2 = 1
	2/2 = 1

c
$$\frac{\text{ratio test}}{2/1 = 2}$$

 $2/2 = 1$

$$\begin{array}{c|c}
 & \text{ratio test} \\
\hline
 & 2/2 = 2 \\
 & 2/3 = 0.66
\end{array}$$

A
$$\frac{\text{ratio test}}{1/2 = 0.5}$$

 $2/2 = 1$

19. في جدول السمبلكس المبدئي ، المتغير الأساسي الذي سوف يخرج ليصبح متغير غير أساسي هو:

D	s_2	C	s_1	В	x_2	A	x_1
---	-------	---	-------	---	-------	---	-------

السؤال الرابع:

إذا كان لدينا جدول السمبلكس التالي لمسألة ما (دالة الهدف هي دالة تعظيم: max z):

BV	x_1	x_2	x_3	S_1	s_2	RHS
Z	-2	2	1	0	0	0
s_1	2	2	1	1	0	4
s_2	4	2	- 4	0	1	4

بعد معرفة المتغير الغير أساسي الداخل والمتغير الأساسي الخارج وإكمال عملية تحديث الجدول، سنحصل على جدول السمبلكس التالى:

BV	x_1	x_2	x_3	s_1	S_2	RHS
Z			E			F
					Н	
		K				

2. القيمة التي في موقع الحرف E هي:	هي:	ف ف	ع الحر	في مو ق	التي	القيمة	.20
------------------------------------	-----	--------	--------	---------	------	--------	-----

D	1	C	2	В	0	A	- 1

21. القيمة التي في موقع الحرف F هي:

	D	4	C	3	В	2	A	1
--	---	---	---	---	---	---	---	---

22. القيمة التي في موقع الحرف H هي:

D	- 0.5	C	0	В	0.5	A	1.5
---	-------	---	---	---	-----	---	-----

23. القيمة التي في موقع الحرف K هي:

D	1.5	C	0.5	В	1	A	- 2
---	-----	---	-----	---	---	---	-----

24. الحل الأساسي الممكن الموافق لجدول السمبلكس بعد التحديث هو:

$\mathbf{D} \begin{bmatrix} (x_1, x_2, x_3, s_1, s_2) = \\ (1, 2, 0, 0, 0) \end{bmatrix} \mathbf{C} \begin{bmatrix} (x_1, x_2, s_3, s_4, s_4) \\ (-4, 0, 0, 0) \end{bmatrix}$	$(x_3, s_1, s_2) = 0$ $(x_1, x_2, x_3, s_1, s_2) = 0$ $(1, 0, 0, 2, 0)$	$\mathbf{A} = \begin{pmatrix} (x_1, x_2, x_3, s_1, s_2) = \\ (1, 0, 0, 0, 2) \end{pmatrix}$
--	---	---

25. الحل الأساسي الممكن الموافق لجدول السمبلكس بعد التحديث يعتبر حل:

D	أمثل	C	غير محدود	В	غیر ممکن	A	غير أمثل	
---	------	---	-----------	---	----------	---	----------	--