

NLU 的基础概率模型

下面三次课

课程提纲

课程提纲

为什么是"隐"?

什么是"马尔可夫模型"?

- 马尔可夫模型 (Markov Model) 是一种 统计模型,广泛应用在词性自动标注, 概率文法,语音识别,音字转换等多个 自然语言处理等应用领域。
- 隐性马尔可夫模型 (HMM) 在现代人工智能系统中仍有广泛应用。
- 为了区别传统的 HMM, 一般把显性马尔可夫模型 (VMM) 称为马尔可夫模型。

定义

- 如果一个系统有 N 个状态 $S_1, S_2, ... S_N$ 。用 q_t 表示系统在 t 时间的状态变量,那么 t 时刻的状态取值为 S_j (1 < j < N)。
- 假设:系统在 t 时刻的状态只与其在 t-1 时刻的状态有关,则该系统构成一个离散的一阶马尔可夫链

$$P(q_t = S_j | q_{t-1} = S_i, q_{t-2} = S_k, ...) = P(q_t = S_j | q_{t-1} = S_i)$$

如果只考虑上述公式独立于时间 t 的随机过程(不动性假设), 状态与时间无关, 那么:

$$P\big(q_t = S_j | q_{t-1} = S_i\big) = a_{ij}, 1 \leq i, j \leq N$$
 该随机过程称为马尔可夫模型。

• 在马尔可夫模型中,状态转移概率 a_{ij} 必须满足下列条件:

$$a_{ij} \ge 0$$

$$\sum_{i=1}^{N} a_{ij} = 1$$

举例

• 假设:有一个住得很远的朋友,他每天跟你打电话告诉你他那里的天气。

• 条件:天气只有阴雨和晴朗两种情况。天气的转换只与前一天的天气有关。

• 问题:在他告诉你每天天气的基础上,你想要计算他那里天气情况的转换概率。

- 假设:有一个住得很远的朋友,他每天跟你打电话告诉你他那天做了什么。
- 条件:他仅对三种活动感兴趣:散步,购物以及打扫房间。他决定做什么事情 只凭天气。
- 问题:在他告诉你每天所做的事情基础上,你想要猜测他所在地的天气情况。

- 状态数 N = 2 —— 天气种类
- 每个状态可能输出的不同符号数 M=3 —— 活动种类
- 状态转移概率矩阵 $A = a_{ij}$ —— 从一种天气 S_i 转向另一种天气 S_j 的概率
- 符号发射概率矩阵 $B = b_i(k)$ —— 从第 j 中天气从事第 k 种活动的概率

初始状态概率分布 π。

三个基本问题

1. 在给定模型 $\mu = (A, B, \pi)$, 怎样计算某个观察序列发生的概率,即 $P(O|\mu)$?

$$P(O|X,\mu) = b_{x_1o_1}b_{x_2o_2} \ \dots b_{x_To_T}$$

$$P(X|\mu) = \pi_{x_1} a_{x_1 x_2} a_{x_2 x_3} \dots a_{x_{T-1} x_T}$$

$$P(O, X|\mu) = P(O|X, \mu)P(X|\mu)$$

$$P(O|\mu) = \sum_{\{x_1,..,x_T\}} \pi_{x_1} b_{x_1o_1} \prod_{t=1}^{T-1} a_{x_t x_{t+1}} b_{x_{t+1}o_{t+1}}$$

三个基本问题

- 1. 在给定模型 $\mu = (A, B, \pi)$, 怎样计算某个观察序列发生的概率, 即 $P(O|\mu)$?
- 2. 给出观测序列 O 和模型 μ ,怎样选择一个状态序列 $(X_1, ..., X_{T+1})$ 来最好的解释观测序列?
 - 有超过一种状态序列来解释观察序列。
 - 选择原则:对于 t,需要找到 X_t,使 P(X_t|O,μ)最大。
 - Viterbi 算法

三个基本问题

- 1. 在给定模型 $\mu = (A, B, \pi)$, 怎样计算某个观察序列发生的概率, 即 $P(O|\mu)$?
- 2. 给出观测序列 O 和模型 μ , 怎样选择一个状态序列 $(X_1, ..., X_{T+1})$ 来最好的解释观测序列?
- 3. 给定观测序列 O, 如何调节模型 $\mu = (A, B, \pi)$ 参数使 $P(O|\mu)$ 最大?
 - 期望值最大化算法 (Expectation-maximization algorithm, EM)
 - 最大似然估计 (Maximum likelihood estimation, MLE)

最大似然估计

定义

- 给定一个概率分布 D;
- 已知其概率密度函数(连续分布)或概率质量函数(离散分布)为 f_D ,以及一个分布参数 θ ;
- 从这个分布中抽出一个具有 n 个值的采样 $X_1, X_2, ..., X_n$;
- 利用 f_D 计算出其似然函数:

$$\mathrm{L}(heta \mid x_1, \ldots, x_n) = f_{ heta}(x_1, \ldots, x_n).$$

- 若 D 是离散分布, f_{θ} 即是在参数为 θ 时观测到这一采样的概率。
- 若 D 是连续分布, f_{θ} 则为 $X_1, X_2, ..., X_n$ 联合分布的概率密度函数在观测值处的取值。

最大似然估计

抛硬币的例子

- 假设一个硬币正面跟反面轻重不同。
- 我们把这个硬币抛80次(获取一个采样 $x_1={
 m H}, x_2={
 m T}, \ldots, x_{80}={
 m T}$ 并把正面的次数记下来,正面记为 ${
 m H}$,反面记为 ${
 m T}$)。
- 得到正面的概率 P, 则反面的概率为 1-P (这里的 P 相当于上边的 θ)。
- 假设我们抛出了49个正面,31个反面。
- 假设这个硬币是我们从一个装了三个硬币的盒子里头取出的。这三个硬币抛出 正面的概率分别为 $P = \frac{1}{3}$, $P = \frac{1}{2}$, $P = \frac{2}{3}$ 。这些硬币没有标记,所以我们无法 知道哪个是哪个。

最大似然估计

抛硬币的例子

 使用最大似然估计,基于二项分布中的概率质量函数公式,通过这些试验数据 (即采样数据),我们可以计算出哪个硬币的可能性最大。这个似然函数取以 下三个值中的一个:

$$\mathbb{L}(p=1/3\mid \text{H=49, T=31}\;) \quad = \quad \mathbb{P}(\text{H=49, T=31}\mid p=1/3) \quad = \quad \binom{80}{49}(1/3)^{49}(1-1/3)^{31} \approx 0.000$$

$$\mathbb{L}(p=1/2\mid \text{H=49, T=31}\;) \quad = \quad \mathbb{P}(\text{H=49, T=31}\mid p=1/2) \quad = \quad \binom{80}{49}(1/2)^{49}(1-1/2)^{31} \approx 0.012$$

$$\mathbb{L}(p=2/3\mid \text{H=49, T=31}\;) \quad = \quad \mathbb{P}(\text{H=49, T=31}\mid p=2/3) \quad = \quad \binom{80}{49}(2/3)^{49}(1-2/3)^{31} \approx 0.054$$

• 当 $\hat{p} = \frac{2}{3}$ 时,似然函数取得最大值。这就是 p 的最大似然估计。

课程提纲

- 贝叶斯 (Thomas Bayes, 1701—1761) 英国牧师、业余数学家。在《论机会学说中一个问题的求解》中给出了贝叶斯定理。
- 并列于数据挖掘十大经典算法。
- 它解决了两个事件条件概率的转换问题。

- 贝叶斯 (Thomas Bayes, 1701—1761) 英国牧师、业余数学家。在《论机会学 说中一个问题的求解》中给出了贝叶斯定理。
- 并列于数据挖掘十大经典算法。
- 它解决了两个事件条件概率的转换问题。

$$P(A \mid B) = \frac{P(A)P(B \mid A)}{P(B)}$$

- P(A)是A的先验概率或边沿概率,之所以称为先验,是因为它不考虑任何B 方面的因素
- P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称为A的后验概率
- P(B|A)是已知A发生后B的条件概率,也由于得自B的取值而被称为B的后验概率
- P(B)是B的先验概率或边沿概率,之所以称为先验,是因为它不考虑任何A方面的因素

$$P(A \mid B) = \frac{P(A)P(B \mid A)}{P(B)}$$

- 先验概率:由以往的数据分析得到的概率
- 后验概率:得到"结果"的信息后重新修正的概率
- 简单地说,贝叶斯定理是基于假设的先验概率、给定假设下观察到不同数据的概率,提供了一种计算后验概率的方法
- 在人工智能领域,贝叶斯方法是一种非常具有代表性的不确定性知识表示和 推理方法

条件概率

P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

贝叶斯公式

P(B|A)是根据A判断其属于类别B的概率,称为后验概率。P(B)是直接判断某个样本属于B的概率,称为先验概率。P(A|B)是在类别B中观测到A的概率,P(A)是在数据库中观测到A的概率

$$(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

条件概率

P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

贝叶斯公式

P(B|A)是根据A判断其属于类别B的概率,称为后验概率。P(B)是直接判断某个样本属于B的概率,称为先验概率。P(A|B)是在类别B中观测到A的概率,P(A)是在数据库中观测到A的概率

$$(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)} P(B) = P(A,B) + P(A^{C},B) = P(B|A)P(A) + P(B|A^{C})P(A^{C})$$

$$=rac{P(B|A)\,P(A)}{P(B|A)P(A)+P(B|A^C)P(A^C)}$$

例子

假设一个常规的检测结果的灵敏度和特异度均为 99%, 即吸毒者每次检测呈阳性 (+) 的概率为 99%。而不吸毒者每次检测呈阴性 (-) 的概率为 99%。假设某公司对全体雇员进行吸毒检测,已知 0.5% 的雇员吸毒。请问每位检测结果呈阳性的雇员吸毒的概率有多高?

- 令 "D" 为雇员吸毒事件, "N" 为雇员不吸毒事件, "+" 为检测呈阳性事件
- P(D) 代表雇员吸毒的概率,不考虑其他情况,该值为 0.005。因为公司的预先 统计表明该公司的雇员中有 0.5%的人吸食毒品,所以这个值就是D的先验概率。
- P(N) 代表雇员不吸毒的概率,显然,该值为 0.995,也就是 1-P(D)。
- P(+|D) 代表吸毒者阳性检出率,这是一个条件概率,由于阳性检测准确性是 99%,因此该值为 0.99。
- P(+|N)代表不吸毒者阳性检出率,也就是出错检测的概率,该值为 0.01,因为对于不吸毒者,其检测为阴性的概率为 99%,因此,其被误检测成阳性的概率为 1-0.99 = 0.01。

例子

P(+)代表不考虑其他因素影响的雇员阳性检出率。用公式表示为:

$$P(+) = P(+ \cap D) + P(+ \cap N) = P(+ \mid D)P(D) + P(+ \mid N)P(N)$$

 雇员吸毒者阳性检出率 (0.5% x 99% = 0.495%) + 雇员不吸毒者阳性检出率 (99.5% x 1% = 0.995%)。
 P(+)=0.0149 是检测呈阳性的先验概率。

$$P(D|+) = \frac{P(+|D)P(D)}{P(+)}$$

$$= \frac{P(+|D)P(D)}{P(+|D)P(D) + P(+|N)P(N)}$$

$$= \frac{0.99 \times 0.005}{0.99 \times 0.005 + 0.01 \times 0.995}$$

$$= 0.3322$$

结论

 尽管吸毒检测的准确率高达99%,但贝叶斯定理告诉我们:
 如果某人检测呈阳性,其吸毒的概率只有大约33%,不吸毒的可能性比较大。 假阳性高,则检测的结果不可靠。

- Naive Bayes classifier
- 一种构建分类器的简单方法
- 基于贝叶斯定理与特征条件独立假设。
 - 结合样本输入输出的联合概率分布和输出的概率分布
 - 对于给定的输入 x, 利用贝叶斯定理求解后验概率的过程。

医学诊断

新闻分类

人脸识别

天气预测

例子

• 问题描述:通过测量的特征,判定一个人是男性还是女性。

性别	身高(英尺)	体重(磅)	脚的尺寸(英寸)
男	6	180	12
男	5.92 (5'11")	190	11
男	5.58 (5'7")	170	12
男	5.92 (5'11")	165	10
女	5	100	6
女	5.5 (5'6")	150	8
女	5.42 (5'5")	130	7
女	5.75 (5'9")	150	9

性别	均值(身高)	方差(身高)	均值(体重)	方差(体重)	均值(脚的尺寸)	方差(脚的尺寸)
男性	5.855	3.50E-02	176.25	1.23E+02	11.25	9.17E-01
女性	5.4175	9.72E-02	132.5	5.58E+02	7.5	1.67E+00

例子

• 问题描述:通过测量的特征,判定一个人是男性还是女性。

性别	身高	体重	脚的尺寸
?	6	130	8

基本思想:对于给定的待分类项 x,求解在此样本出现的条件下各个类别出现的概率 P,后验概率高的即为预测值。

$$posterior(male) = \frac{P(male) \, p(height|male) \, p(weight|male) \, p(footsize|male)}{evidence}$$

$$posterior(female) = \frac{P(female) \, p(height|female) \, p(weight|female) \, p(footsize|female)}{evidence}$$

$$evidence = P(male) \, p(height|male) \, p(weight|male) \, p(footsize|male) + P(female) \, p(height|female) \, p(weight|female) \, p(footsize|female)$$

$$posteriornumerator(male) = 6.1984e^{-09}$$

$$posteriornumerator(female) = 5.3778e^{-04}$$

Q & A

