DEVSIM BJT Example

Juan E. Sanchez juan.sanchez@devsim.com

April 23, 2024

1 Introduction

This package includes the examples for the article "Semiconductor Device Simulation Using DEVSIM". In this example, the meshing, modeling, simulation, and visualization for a bipolar junction transistor (BJT) is developed. DEVSIM is an open source simulation software for technology computer-aided design (TCAD) and is developed by DEVSIM LLC. It uses a generalized partial-differential equation (PDE) approach to perform semiconductor device simulation on a mesh. The software and documentation is available from http://www.devsim.org.

In addition to DEVSIM, the following software packages are used to perform meshing, analysis, and visualization of results.

Name	Description	Website	License ^a
Gmsh	Mesh Generator	http://geuz.org/gmsh	GPL
matplotlib	Python 2D Plotting Library	http://matplotlib.org	matplotlib
NumPy	Python Scientific Computing	http://numpy.org	BSD
Python	Scripting Language	http://python.org	PSF
VisIt	Visualization Tool	http://visit.llnl.gov	BSD

2 Running the Examples

Here are some of the files in the package used for simulation.

bjt.geo	Mesh description for Gmsh
bjt.msh	Resulting gmsh mesh
${\tt initial_guess.py}$	Creates initial guess from Potential only simulation
refinement.py	Sets up E-field based refinements for creating background mesh
netdoping.py	Specifies analytical doping profile
bjt_dd.py	Creates the zero bias drift diffusion solution for later sweeps
$bjt_refine.py$	Runs DEVSIM to create a background mesh
bjt_bgmesh.pos	Background mesh generated by DEVSIM for refinement using Gmsh
physics/	subdirectory containing physics files used in simulation.

2.1 Meshing and Refinement

The file bjt.geo contains the initial mesh specification for the bjt structure. This file is run through Gmsh in order to create a triangular mesh for use in DEVSIM. The resulting mesh file is called bjt.msh. In order to create a mesh suitable for devsim, the bjt_refine.py script is run to create a background mesh with element sizes appropriate for simulation. The background mesh is then used with the original mesh specification to create a refined mesh. This procedure is repeated until the mesh is sufficiently refined for use in DEVSIM.

The steps are:

```
gmsh -format msh2 -2 bjt.geo
python bjt_refine.py
gmsh -format msh2 -2 bjt.geo -bgm ./bjt_bgmesh.pos
python bjt_refine.py
gmsh -format msh2 -2 bjt.geo -bgm ./bjt_bgmesh.pos
python bjt_refine.py
gmsh -format msh2 -2 bjt.geo -bgm ./bjt_bgmesh.pos
python bjt_refine.py
gmsh -format msh2 -2 bjt.geo -bgm ./bjt_bgmesh.pos
python bjt_refine.py
gmsh -format msh2 -2 bjt.geo -bgm ./bjt_bgmesh.pos
python bjt_refine.py
```

The resulting mesh from each DEVSIM run can be visualized by running Visit.

```
visit bjt_refine.tec
```

2.2 Zero bias drift diffusion solution

When creating a new device, it is necessary to create initial zero bias solution for all the subsequent sweeps.

```
python bjt_dd.py
```

This creates bjt_dd_0.msh file that is read in the next section.

2.3 Simulation

The dc and ac sweeps used in the publication are listed in simsbatch.txt. These simulations can be run in sequence or in parallel.

V_c sweep

```
For a given value of V_b, sweep V_c from 0 to 1.5 V. python bjt_circuit2.py 0.1 &> data/vb2_0.1.out
```

V_h sweep

```
For a given value of V_c, sweep V_b from 0 to 1.0 V. python bjt_circuit3.py 0.0 &> data/vc_0.0.out
```

V_e sweep

```
For a given value of V_c, sweep V_e from 0 to -1.0 V. python bjt_circuit4.py 0.0 &> data/ve_0.0.out
```

Small-signal ac sweep

For a given value of V_c , sweep V_e from 0 to -1.0 V. Do a small signal frequency sweep from fmin to fmax with given points per decade.

```
python bjt_circuit5.py 0.0 1e3 1e11 3 &> data/ssac_0.0.out
```

2.4 Visualization

The data/ directory contains scripts used to generate the plots used for publication. A script was written to collect the data from the simulations to create plots using matplotlib. This script is in the data/ directory and is called prep.sh.

```
ft.py Small-signal ft simulation gummel.py Ic, Ib versus Vbe. ic_vec.py Ic versus Vce.
```