ONTOLOGIES IN COMPUTATIONAL BIOLOGY

Michel Dumontier, Ph.D.

Distinguished Professor of Data Science
Maastricht University

Outline

- Introduction: what is an ontology and where can I find them
- Annotation: using ontologies for data annotation
- Analysis: gaining new insights in data through ontologies
- Reasoning: ontologies as formal knowledge bases

What is an ontology?

- Ontology stands for a logical discourse of existence. It aims to uncover and describe the nature and structure of existence.
- Predominantly the domain of philosophy known as metaphysics
- Address questions such as
 - What does it mean to be?
 - What constitutes the *identity* of an object?
 - What categories of things exist?
- Ontologies, when communicated to others, foster a shared understanding of things by making explicit a way to carve up the world

Greek philosopher Parmenides (515BC) proposed an ontological characterization of the fundamental nature of reality – akin to a grand unification theory

Early Bio-ontologists

Aristotle (384-322 BC)

- First systematic taxonomy of biology
- Classification of organisms by shared properties
- Used binomial *genus-differentia* nomenclature

Galen (130-210 AD)

- Systematic description of diseases, signs and symptoms.
- In *De Febrium Differentia* description of fever symptoms he uses the Aristotelian *genus-differentia* approach

genus-differentia definitions are one way to specify ontologies

A type of *intensional* definition - where necessary and sufficient conditions are specified - composed of two parts:

genus: Serves as the basis for a new definition; all definitions with the same genus are considered members of that genus.

differentia: The portion of the definition that is not provided by the genus.

a **rhombus**: a **quadrilateral** that has bounding sides which all have the same length.

a square: a rhombus that has interior angles which are all right angles.

Porphyry's depiction of Aristotle's Categories

Biological Taxonomy

Rank: a classification
Of taxonomic categories

Homo saplens

Members of the genus Homo with a high forehead and thin skull bones.

Homo

Hominids with upright posture and large brains.

Hominids

Primetes with relatively flat faces and three-cimensional vision.

Primates

Mammals with collar bones and grasping fingers.

Mammals

Chordates with fur or hair and milk glands.

Chordates

Animals with a backbone.

Animals

Organisms able to move on their own.

Biological taxonomy: an is-a hierarchy of biological types

- A biological classification (taxonomy) by Carl Linnaeus in his Systema Naturae (1735)
- Three kingdoms, divided into classes, and they, in turn, into orders, families, genera, and species, with an additional rank lower than species.

Genus-differentia illustrates basic inference vis-à-vis the "is a" relationship

Development of an *increasingly* applied notion of ontology

An explicit specification of a conceptualization

- Thomas Robert Gruber, 1993 (inventor of Siri)
- A conceptualization is the way we think about a domain (a "system of categories accounting for a particular view on the world", i.e., a philosophical ontology)
- A specification provides a formal way of writing it down (and making it accessible to humans and machines)

A **formal** specification of a **shared** conceptualization

- Borst 1997

An ontology specifies a **vocabulary** with which to make assertions, which may be inputs or outputs of knowledge agents (such as a software program). ... **an ontology must be formulated in some representation language**

- Gruber (2007)

An ontology is defined by *axioms* in a **formal language** with the goal to provide an unbiased (domain- and application-independent) view on reality

How is an ontology different than a...

Folksonomy

A collection of terms (tags) to enhance categorization.

Glossary

List of terms with definitions and explanations in natural language

Controlled Vocabulary

An enumeration of terms defined to be shared and reused.

Hierarchy

A nested set of terms

Taxonomy

A hierarchy that uses the "is a" relation.

Meronomy

A hierarchy that uses the "part of" relation.

Classification

A set of categories in which objects are grouped into a hierarchy

Ontologies vs Classifications

Classifications focus on:

- Access based on predetermined criteria (encoded by syntactic keys)
- Uniform syntactic access to information

Ontologies focus on:

- Meaning of terms
- Nature and structure of a domain of discourse
- Shared understanding

Ontologies vs Knowledge Bases

Knowledge bases:

- Assertional component
 - Reflects specific states of affairs
 - Designed for problem solving
- Terminological component (ontology)
 - Independent of states of affairs
 - Designed to support terminological services
 - ... but are independent of the actual terminology used
- Ontological formulas are invariant, necessary information

Why develop an ontology?

- To provide a formal specification of biomedical knowledge
- To provide a classification of biomedical entities
- To develop a common understanding of the entities in a given domain
- To enable reuse of data and knowledge, e.g., when developing a database
- To enable biomedical discovery

Gene Ontology

Arguably one of the most *successful* ontology projects in the life sciences.

Millions of annotations on hundreds of thousands of genes using GO terms.

The GO defines types used to describe gene function. It classifies functions along three aspects:

- molecular function
 - what gene products do
- cellular component
 - where gene products operate
- biological process
 - The pathways and processes that gene products participate in

UniProtKB - P34144 (RAC1A_DICDI)

Protein | Rho-related protein rac1A

Gene rac1A

Organism | Dictyostelium discoideum (Slime mold)

Status Reviewed - Annotation score: © © © © - Experimental evidence at protein level

Function

Overexpression promotes the formation of filopodia and membrane ruffles. # 1 Publication -

Regions

Feature key	Position(s)	Length	Descrip
Nucleotide binding i	10 - 17	8	GTP # B
Nucleotide binding	57 - 61	5	GTP # B
Nucleotide binding	115 - 118	4	GTP # B

Manual assertion based on experiment in

"Rac1 GTPases control filopodia formation, cell motility, endocytosis, cytokinesis and development in Dictyostelium."

Dumontier M., Hoecht P., Mintert U., Faix J.

J. Cell Sci. 113:2253-2265(2000) [PubMed] [Europe PMC] [Abstract]

Cited for: INTERACTION WITH RGAA, FUNCTION.

GO - Molecular function

- GTP binding Source: UniProtKB-KW
- protein kinase binding Fource: dictyBase

GO - Biological process

- positive regulation of actin filament polymerization Source: dictyBase
- Rac protein signal transduction Source: dictyBase

Complete GO annotation...

Keywords - Ligand ¹
GTP-binding, Nucleotide-binding

GO facilitates interoperability of function descriptions across species

Accession GO:0005525 Name GTP binding Ontology molecular_function Synonyms None Alternate IDs None Definition Interacting selectively and non-covalently with GTP, guanosine triphosphate. Source: GOC:ai Comment None History See term history for GO:0005525 at QuickGO Subset gosubset_prok Related Link to all genes and gene products annotated to GTP binding. Link to all direct and indirect annotations to GTP binding. Link to all direct and indirect annotations download (limited to first 10,000) for GTP binding.

Orga	anisn	11:	
+	[-]	(8780)	Eukaryota
+	-	(5564)	Metazoa
+	-	(4905)	Vertebrata
+	-	(3269)	Mammalia
+	-	(1661)	Fungi
+	-	(1268)	Danio rerio
+	-	(1013)	Rattus norvegicus
+	[-]	(848)	Viridiplantae
+	-	(590)	Bacteria
+	-	(569)	Mus musculus
+	-	(455)	Dictyostelium discoideum
+	-	(447)	Homo sapiens
+	-	(433)	Arabidopsis thaliana
1	-	(387)	Canis lupus familiaris
+	-	(376)	Bos taurus
+	[-]	(346)	Sus scrofa
+	-	(332)	Caenorhabditis elegans
+	-	(307)	Gallus gallus
(+)	-	(209)	Saccharomyces cerevisiae S288c
+	-	(165)	Drosophila melanogaster
+	_	(115)	Schizosaccharomyces pombe

Organism

Ontologies across scales

some disease and phenotype ontologies

Disease Ontology (DO)

- standardized ontology for human disease
- Mapped to major terminologies, UMLS, MeSH, ICD10 etc.
- 11,280 classes

Human Phenotype Ontology (HPO)

- phenotypic features encountered in human hereditary and other disease
- 15,381 classes

Mammalian Phenotype Ontology (MP)

- Phenotypic features encountered in animal models
- 12,805 classes

Experimental Factor ontology (EFO)

- application ontology
- Imports classes from other phenotype and related ontologies (MIREOT)
- 19,094 classes

Unified Medical Language System (UMLS)

- US National Library of Medicine
- terminology, classification and coding standards
- 8M normalized concepts

SNOMED-CT

- clinical terminology, diseases, diagnostics and procedures
- 324,129 classes

NCI thesaurus

- vocabulary for clinical care, translational and basic research, and public information and administrative activities.
- 118,941 classes

LOINC

- labs, vitals signs, clinical documents
- 187,123 classes

ICD-10

- disease, epidemiology, billing
- 12,450 classes

Where can we get ontologies?

- Statistics ————————————————————————————————————	
Ontologies	517
Classes	7,801,718
Resources Indexed	48
Indexed Records	39,359,542
Direct Annotations	95,468,433,792
Direct Plus Expanded Annotations	144,789,582,932

Formalization

- Formalization is the process by which we map a conceptualization into a logical representation.
- We logically combine the terms to form expressions, which have an unambiguous interpretation, and hence can be automatically reasoned about.

Logic-Based Ontologies Can Be Constructed From Concept and relation Lego

Description logics offer the building blocks for constructing *computable* ontologies

A transcription factor is a protein that binds to DNA and regulates the rate of transcription

molecule ontology

'transcription factor'
equivalentTo
'protein'
that 'binds to' some DNA
and 'regulates' some 'rate of transcription'

function ontology

The Web Ontology Language (OWL) Has Explicit Semantics

It can be used to capture knowledge in a machine understandable way

OWL specifies a vocabulary and grammar to express more precisely what you mean

Enhanced vocabulary (strong axioms) to express knowledge relating to classes, properties, individuals and data values

- Subclass, Equivalence
- Disjointness (disjointWith (classes), differentFrom (instances))
- Quantification (some, only, 0->n)
 - o existential, universal, cardinality restriction
- Negation (not)
- Disjunction (or)
- property characteristics
 - transitive, functional, inverse functional, symmetric, antisymmetric, reflexive, irreflexive
- o complex class expressions in domain and range restrictions
- property chains

What is a class?

A class represents a group of individuals that share one or more things in common.

e.g. The class of "transcription factor" represents all entities that satisfy the criteria for class membership.

What is an instance?

An **instance** is an *individual* that is a member of a **class**.

e.g. An *individual* transcription molecule in the cell is an instance of the class "transcription factor" e.g. Michel is an instance of Person

An individual can be a member of more than one class. For instance a transcription factor is also a member of the class Protein.

An individual may have properties

These properties can refer to attributes of the individual or relations to other individual.

That individual transcription factor is bound to a single molecule of DNA

Robert is a colleague of Michel

subClass

A **subClass** is a class that minimally exhibits all the attributes of a parent class, and potentially more.

Transcription Factor subClassOf Protein all transcription factors are also proteins -> each transcription factor shares all the attributes that proteins do.

However, the inverse, that all proteins are transcription factors is **not** implied.

Equivalent class

Two classes are **equivalent** if they contain exactly the same individuals.

For example, we often use the term Protein and Polypeptide interchangeably, meaning that every instance of the class Protein is also an instance of class Polypeptide, and vice versa.

Disjoint classes

Two classes are **disjoint** if they contain exactly no same individuals. In some cases, membership in one class precludes membership in another.

For example, no molecule can both be wholly a DNA molecule and also be a Protein molecule. owl:disjointClasses (DNA, Protein)

Same and different individuals

OWL does not assume that two names imply two different individuals. In fact, one individual may have two names – e.g. **P38398** and **Q7KYU9** are two names for **BRCA1** - so it would be wrong to conclude that these refer to two different individuals.

However, OWL provides a mechanism to explicitly indicate that individuals are the same as (owl:sameAs) or different from (owl:differentFrom) one another.

Same and different individuals

This has important implications when counting the number of entities in a knowledge base.

Individual: P38398

Individual: Q7KYU9

Individual: Q16512

-> how many individuals are there? 1

P38398 owl:sameAs Q7KYU9

-> how many individuals are there? 1

P38398 owl:differentFrom Q16512

-> how many individuals are there? 2

More complex class expressions

We can define more complex descriptions of a class by combining classes and properties together. The basic constructors are 'and'/'that', 'or', 'not', 'some', 'only', 'min', 'max'.

```
'transcription factor'
  equivalentTo
  'protein'
  that 'binds to' some DNA
  and 'regulates' min 1 'rate of transcription'
```

Reasoning over OWL ontologies

- Consistency: determines whether the ontology contains contradictions.
 (1) DNA disjointFrom Protein (2) myprotein instanceOf protein (3) myprotein instanceOf DNA
- Satisfiability: determines whether classes can have instances.
 (1) DNA disjointFrom Protein (2) DNA subClassOf Protein
- Subsumption: are all instances of one class also instances of another class?
 - (1) Protein subClassOf Molecule
- Classification: repetitive application of subsumption to discover implicit subclass links between named classes
- (1) Transcription Factor equivalentTo Protein ...
 - -> (2) Transcription Factor subClassOf Protein
- Realization: find the most specific class that an individual belongs to.

protégé

Protégé's plug-in architecture can be adapted to build both simple and complex ontology-based applications. Developers can integrate the output of Protégé with rule systems or other problem solvers to construct a wide range of intelligent systems. Most important, the Stanford team and the vast Protégé community are here to help.

W3C STAND

W3C STANDARDS SUPPORT

Protégé fully supports the latest OWL 2 Web Ontology Language and RDF specifications from the World Wide Web Consortium.

EXTENSIBLE OPEN SOURCE ENVIRONMENT

Protégé is based on Java, is extensible, and provides a plugand-play environment that makes it a flexible base for rapid prototyping and application development.

DOWNLOAD NOW

USE WEBPROTÉGÉ

TopBraid Composer Maestro Edition™

Ready to build powerful semantic web and Linked Data applications for your enterprise? Let's get to work.

Buy Now »

TopBraid ComposerTM Maestro Edition (TBC-ME) combines world's leading semantic web modeling capabilities with the most comprehensive data conversion options and a powerful Integrated Development Environment (IDE) for building semantic web and Linked Data applications.

Query answering

SNOMED-CT

- SNOMED-CT (Clinical Terms) ontology
- used in healthcare systems of more than 15 countries, including Australia, Canada, Denmark, Spain, Sweden and the UK
- used by major US providers
- ontology provides common vocabulary for recording clinical data
- 324,129 classes

SNOMED-CT

Description: 'Accessory breast (disorder)' Equivalent classes 'Congenital anomaly of breast (disorder)' and 'Congenital malformation (morphologic abnormality)' and (RoleGroup some (('Associated morphology (attribute)' some 'Supernumerary structure (morphologic abnormality)') and ('Finding site (attribute)' some 'Breast structure (body structure)'))) and (RoleGroup some ('Occurrence (attribute)' some 'Congenital (qualifier value)'))

- Pattern based knowledge capture
- Requires some training and an information system to implement

SNOMED - Verification

- Kaiser Permanente extended SNOMED to express, e.g.:
 - non-viral pneumonia (negation)
 - infectious pneumonia is caused by a virus or a bacterium (disjunction)
 - double pneumonia occurs in two lungs (cardinalities)
- This is easy in SNOMED-OWL
 - but reasoner failed to find expected subsumptions, e.g., that bacterial pneumonia is a kind of non-viral pneumonia
- Ontology under-constrained: need to add disjointness axioms
 - virus and bacterium must be disjoint
- Adding disjointness led to surprising results
 - many classes become inconsistent, e.g., percutanious embolization of hepatic artery using fluoroscopy guidance
- Cause of inconsistencies identified in the class groin
 - groin asserted to be subclass of both abdomen and leg
 - abdomen and leg are disjoint
 - modelling of groin (and other similar "junction" regions) identified as incorrect

Phenotips

- Using controlled vocabulary (human phenotype ontology) for phenotyping
- Can collect demographics, medical history, family history, labs, findings

Girdea et al. (2013). Hum. Mutat., 34: 1057–1065. doi: 10.1002/humu.22347

PhenomeCentral: A Portal for Phenotypic and Genotypic Matchmaking of Patients with Rare Genetic Diseases

Human Mutation

Ontology-Aided Rare Disease Diagnosis

http://compbio.charite.de/PhenIX/

Credit: Damian Smedley & Will Bone Zemojtel et al. Sci Transl Med. 2014. 6(252):252ra123

Summary

- Ontologies have a rich history in philosophy that has evolved to modular and computable representation of human knowledge
- **Description logics** (e.g. OWL) are the current favored formalism to build and test ontologies.
- Ontologies have a variety of uses from the answering questions to enabling sophisticated knowledge discovery.

Acknowledgements

Slides shamelessly adapted from *leaders* in the field:

- Mark Musen
- Barry Smith
- Ian Horrocks
- Robert Hoehndorf
- Melissa Haendel
- Paul Schofield