# Introduction to Data Warehousing and Business Intelligence

Peter Scheuermann

# What is Business Intelligence (BI)?

• From Encyclopedia of Database Systems:

"[BI] refers to a set of tools and techniques that enable a company to transform its business data into timely and accurate information for the decisional process, to be made available to the right persons in the most suitable form."

## What is Business Intelligence (BI)?

- BI is different from Artificial Intelligence (AI)
  - Al systems make decisions for the users
  - BI systems help the users make the right decisions, based on available data
- Combination of technologies
  - Data Warehousing (DW)
  - On-Line Analytical Processing (OLAP)
  - Data Mining (DM)
  - Data Visualization

## BI and the Web

- The Web makes BI even more useful
  - Customers do not appear "physically" in a store; their behaviors cannot be observed by traditional methods
  - A website log is used to capture the behavior of each customer,
    e.g., sequence of pages seen by a customer, the products viewed
  - Idea: understand your customers using data and BI!
    - Utilize website logs, analyze customer behavior in more detail than before (e.g., what was **not** bought?)
    - Combine web data with traditional customer data

# Case Study of an Enterprise

- Example of a chain (e.g., fashion stores or car dealers)
  - Each store maintains its own customer records and sales records
    - Hard to answer questions like: "find the total sales of Product X from stores in Evanston"
  - The same customer may be viewed as different customers for different stores; hard to detect duplicate customer information
  - Imprecise or missing data in the addresses of some customers
  - Purchase records maintained in the operational system for limited time (e.g., 6 months); then they are deleted or archived
  - The same "product" may have different prices, or different discounts in different stores
- Can you see the problems of using those data for business analysis?

# Data Analysis Problems

- The same data found in many different systems
  - Example: customer data across different stores and departments
  - The same concept is defined differently
- Heterogeneous sources
  - Relational DBMS, On-Line Transaction Processing (OLTP)
  - Unstructured data in files (e.g., MS Word)
  - Legacy systems (IBM- IMS System)
  - **...**

## Data Analysis Problems (cont')

- Data is suited for operational systems
  - Accounting, billing, etc.
  - Does not support analysis across business functions
- Data quality is bad
  - Missing data, imprecise data, different use of systems
- Data are "volatile"
  - Data deleted in operational systems (6 months)
  - Data changes over time no historical information

## Requirements for the data warehousing process

- Accessibility to users not very familiar with IT and data structures
- Integration of data on the basis of a standard enterprise model
- Query flexibility to maximize the advantages obtained from the existing information
- Information conciseness allowing for target-oriented and effective analyses
- Multidimensional representation giving users an intuitive and manageable view of information
- Correctness and completeness of integrated data

## **Query Types**

#### OLTP (On-Line Transactional Processing):

- They execute transactions that generally read/write a small number of tuples from/to many tables connected by simple relations
- The essential workload core is "frozen" in application programs, and ad hoc data queries are occasionally run for data maintenance
- OLAP (On-Line Analytical Processing):
  - Dynamic, multidimensional analyses that need to scan a huge amount of records to process a set of numeric data summing up the performance of an enterprise
  - Interactivity is an essential property for analysis sessions, so the actual workload constantly changes as time goes by

## The key idea

 A mix of analytical queries with transactional routine queries inevitably slows down the system, and this does not meet the needs of users of both types of queries



Separate *OLAP* from *OLTP* by creating a new repository that integrates data from various sources and then makes data available for analysis and evaluation aimed at decisionmaking processes

## **Data Warehousing**

- Solution: Data Warehouse is a repository of information aimed at supporting the decision making process.
  - Subject oriented (versus function oriented)
  - Integrated (logically and physically)
  - Time variant (data can always be related to time)
  - Non-volatile (data not deleted, several versions)
  - Supporting management decisions (different organizations)
- Data from the operational systems are
  - Extracted
  - Cleansed
  - Transformed
  - Aggregated
  - Loaded into the DW
- A good DW is a prerequisite for successful BI

### A reference DW architecture



#### EXTRACTION, TRANSFORMATION, AND LOADING:

ETL processes extract data from sources, transform and clean them, and finally load them in the ODS and in the data warehouse

#### OPERATIONAL DATA STORE:

Operational data obtained after integrating and cleansing source data. As a result, those data are integrated, consistent, appropriate, current, and detailed

#### DATA MART:

A subset or an aggregation of the data stored to a primary data warehouse. It includes a set of information pieces relevant to a specific business area, corporate department, or category of users

## Function vs. Subject Orientation



## Hard/Infeasible Queries for OLTP

- Why not use the existing databases (OLTP) for business analysis?
- Business analysis queries
  - In the past five years, which product is the most profitable?
  - Which public holiday do we have the largest sales?
  - Which week do we have the largest sales?
  - Does the sales of dairy products increase over time?
- Difficult to express these queries in SQL
  - 3<sup>rd</sup> query: may extract the "week" value using a function
    - But the user has to learn many transformation functions ...
  - 4<sup>th</sup> query: use a "special" table to store IDs of all dairy products, in advance
    - There can be many different dairy products; there can be many other product types as well ...
- The need of multidimensional modeling

### The Multidimensional model

- It is the key for representing and querying information in a DW
- Facts of interest are represented in cubes where:
  - each cell stores numerical measures that quantify the fact from different points of view
  - each axis is a <u>dimension</u> for analyzing measure values
  - each dimension can be the root of a hierarchy of attributes used to aggregated measure values

## Multidimensional Modeling

- Example: sales of supermarkets
- Facts and measures
  - Each sales record is a fact, and its sales value is a measure
- Dimensions
  - Group correlated attributes into the same dimension → easier for analysis tasks
  - Each sales record is associated with its values of Product, Store, Time

| Product | Туре | Category | Store    | City  | County | Date            | Sales |
|---------|------|----------|----------|-------|--------|-----------------|-------|
| Тор     | Beer | Beverage | Trøjborg | Århus | Århus  | 25 May,<br>2009 | 5.75  |

**Product** 

Store

Time

## Multidimensional Modeling

- How do we model the *Time* dimension?
  - Hierarchies with multiple levels
  - Attributes, e.g., holiday, event



| <u>tid</u> | day                 | day<br># | week<br># | month<br># | year | work<br>day |  |
|------------|---------------------|----------|-----------|------------|------|-------------|--|
| 1          | January<br>1st 2009 | 1        | 1         | 1          | 2009 | No          |  |
| 2          | January<br>2nd 2009 | 2        | 1         | 1          | 2009 | Yes         |  |
|            |                     |          |           |            |      |             |  |

- Advantage of this model?
  - Easy to query (more about this later)
- Disadvantage?
  - More data redundancy (but controlled redundancy is acceptable)

### **OLAP Data Cube**

#### Data cube

- Useful data analysis tool in DW
- Generalized GROUP BY queries
- Aggregate facts based on chosen dimensions
  - Product, store, time dimensions
  - Sales represent facts

#### Why data cube?

- Good for visualization (i.e., text results hard to understand)
- Multidimensional, intuitive
- Supports interactive OLAP operations
- How is it different from a spreadsheet?

| Store      | Product | Year | Sales |
|------------|---------|------|-------|
| Aalborg    | Bread   | 2000 | 57    |
| Aalborg    | Milk    | 2000 | 56    |
| Copenhagen | Bread   | 2000 | 123   |
|            |         |      |       |



## On-Line Analytical Processing (OLAP)



- On-Line Analytical Processing
  - Interactive analysis
  - Explorative discovery
  - Fast response times required
- OLAP operations/queries
  - Aggregation, e.g., SUM
  - Starting level, (Year, City)
    - Roll Up: Less detail
    - Drill Down: More detail
  - Slice/Dice: Selection, Year=2000





## **Dimension Hierarchies**





# Aggregation levels



## Advanced Multidimensional Modeling

#### Changing dimensions

- Some dimensions are not static. They change over time.
  - A store moves to a new location with more space
  - The name of a product changes
  - A customer moves from Evanston to Wilmette
- How do we handle these changes?
- Large-scale dimensional modeling
  - How do we coordinate the dimensions in different data cubes and data marts?



Data marts

#### **Dimensions**

|        | Time | Customer | Product | Supplier |
|--------|------|----------|---------|----------|
| Sales  | +    | +        | +       |          |
| Costs  |      |          | +       | +        |
| Profit | +    | +        | +       | +        |

# Extract, Transform, Load (ETL)

- "Getting multidimensional data into the DW"
- Problems
  - Data from different sources
  - 2. Data with different formats
  - 3. Handling of missing data and erroneous data
  - 4. Query performance of DW
- ETL

```
 Extract (for problem #1)
 Transformations / cleansing (for problems #2, #3)
 Load (for problem #4)
```

- The most time-consuming process in DW development
  - 80% of development time spent on ETL

## Performance optimization---Materialization Example

- Imagine 1 billion sales rows, 1000 products, 100 locations
- CREATE VIEW TotalSales (pid, locid, total) AS SELECT s.pid, s.locid, SUM(s.sales) FROM Sales s GROUP BY s.pid, s.locid
- The materialized view has 100,000 rows
- Wish to answer the query:
  - SELECT p.category, SUM(s.sales)
    FROM Products p, Sales s WHERE p.pid=s.pid
    GROUP BY p.category
- Rewrite the query to use the view:
  - SELECT p.category, SUM(t.total)
    FROM Products p, TotalSales t
    WHERE p.pid=t.pid
    GROUP BY p.category
    - Query becomes 10,000 times faster!

#### Sales

| tid | pid | locid | sales |
|-----|-----|-------|-------|
| 1   | 1   | 1     | 10    |
| 2   | 1   | 1     | 20    |
| 3   | 2   | 3     | 40    |
|     |     |       |       |

1 billion rows

#### VIEW TotalSales

| pid | locid | sales |
|-----|-------|-------|
| 1   | 1     | 30    |
| 2   | 3     | 40    |
|     |       |       |

100,000 rows