Sequence Data Quality Assessment Exercises and Solutions.

Starting Note: Please do not copy and paste the commands. Characters in this document may not be copied correctly. Please type the commands and use **<tab> complete** for commands, directories and long names.

Loading Modules:

First do **module load bioinfo-tools** and then

FastQC: module load FastQC/0.11.5

Seqtk: module load seqtk/1.0-r68e

Trimmomatic: module load trimmomatic/0.32

1. Use **md5sum** to calculate the checksum of all data files in

/proj/g2016024/nobackup/QC_Data/.

Redirect (> operator) the output into a file called **checksum.txt** in your workspace.

- \$ cd /proj/g2016024/nobackup/QC_Data
- \$ md5sum */* > ~/checksum.txt
- 2. Make a copy of the data in your workspace (note the . at the end):

```
cp -vr /proj/g2016024/nobackup/QC_Data/* .
```

Use **md5sum** with the **-c** option and **checksum.txt** to check the files are complete.

\$ md5sum -c checksum.txt

(If the checksum wasn't generated in the QC_Data folder, the paths in checksum.txt need to be edited to reflect the new locations they are checking)

3.	Use file to test the files. In what format is the data compressed?
	\$ file */*
	gzip compressed data
4.	Use zcat and head to view the first 8 lines of
	Bacteria/bacteria_R1.fastq.gz.
	<pre>\$ zcat Bacteria/bacteria_R1.fastq.gz head -n8</pre>
_	From which sequencing technology is
٥.	a. Bacteria/bacteria_R{1,2}.fastq.gz
	a. Bacterra/Bacterra_R{1,2}.rastq.gz
	Illumina
	b. Ecoli/E01_1_135x.fastq.gz
	<pre>\$ zcat E01/E01_1_135x.fastq.gz head</pre>
	Pacific Biosciences
6.	What is each part of the FastQ header?
	@HWI-ST486:212:D0C8BACXX:6:1101:2365:1998 1:N:0:ATTCCT
	Machine number:
	Run number:
	Flowcell ID:
	Lane:
	Tile:
	X-coord:
	Y-coord
	First/Second in pair:
	Failed Illumina QC (Chastity):
	Control bit:
	COILLI OI DIL.

Barcode index sequence/ID

7. What is each part of this FastQ header?

```
@m151121_235646_42237_c100926872550000001823210705121647_
s1_p0/81/22917_25263
```

Movie name consisting of the date, time, instrument, and smrt cell

barcode

set number

part number

ZMW number

subread start_subread end

8. What does each tool in this command do?

zcat – concatenates compressed files to one output stream.

seqtk – toolkit for manipulating sequence data (seqtk seq –A converts the file to a fasta output).

grep – searches through files for lines containing the given string (-v excludes lines containing the given string).

tr – translates characters from one set to another (-dc deletes any character not in the given character set).

wc - word count (-m counts characters).

- 9. Use the command above to calculate how much data is in
 - a. Bacteria/bacteria_R{1,2}.fastq.gz

```
225890464 (nucleotides)
```

b. Ecoli/E01_1_135x.fastq.gz

```
$ zcat Ecoli/E01_1_135x.fastq.gz | seqtk seq -A
- | grep -v "^>" | tr -dc "ACGTNacgtn" | wc -m
748508257 (nucleotides)
```

10. How much data in **Ecoli/E01_1_135x.fastq.gz** are contained in reads 10kb or longer?

```
$ zcat Ecoli/E01_1_135x.fastq.gz | seqtk
seq -A -L10000 - | grep -v "^>" | tr -dc
"ACGTNacgtn" | wc -m
510546313 (nucleotides)
```

11. Run FastQC (fastqc) on the data files:

fastqc -t 6 Bacteria/*.fastq.gz Ecoli/*.fastq.gz
How many sequences are in each file (use either fastqc or firefox to
open the html)?

```
766616 (Bacteria/bacteria_R{1,2}.fastq.gz)
87217 (Ecoli/E01_1_135x.fastq.gz)
```

12. What is the average GC% in each data set?

```
40 (Bacteria/bacteria_R{1,2}.fastq.gz)
49 (Ecoli/E01_1_135x.fastq.gz)
```

13. Which quality score encoding is used?

Sanger / Illumina 1.9

14. What does a quality score of 20 (Q20) mean?

An expectation of 1 error in 100bp

15. What does a quality score of 40 (Q40) mean?

An expectation of 1 error in 10000bp

- 16. For **Bacteria/bacteria_R{1,2}.fastq.gz**, in the per base sequence plot, what percentage should the G and C lines be at, and why?
 - 20, because the mean GC is 40% and G and C should be in equal proportions and therefore half of the mean GC%.
- 17. For **Bacteria/bacteria_R{1,2}.fastq.gz**, in the per base sequence plot, what percentage should the A and T lines be at, and why?
 - 30, because the mean AT is 60% and A and T should be in equal proportions and therefore half of the mean AT%.
- 18. What distribution should the per base sequence plot follow?

A Uniform distribution

19. What distribution should the per base GC plot follow?

A Gaussian/Normal distribution

20. What value should the per base GC distribution be centered on?

Average GC content

21. How much duplication is present in

Bacteria/bacteria_R{1,2}.fastq.gz?

24% (R1) and 15% (R2)

22. What is adapter read through?

MINLEN:36

When the sequence reads past the insert into the adapter sequence on the other end.

23. After loading Trimmomatic look at **\$TRIMMOMATIC_HOME/adapters** using

ls \$TRIMMOMATIC_HOME/adapters.

This folder contains adapter sequence files from various library preparation kits.

Trim Bacteria/bacteria_R{1,2}.fastq.gz using the TruSeq3-PE.fa file.

java -jar \$TRIMMOMATIC_HOME/trimmomatic.jar PE
bacteria_R1.fastq.gz bacteria_R2.fastq.gz
bacteria_R1.trimmed.paired.fastq.gz
bacteria_R1.trimmed.unpaired.fastq.gz
bacteria_R2.trimmed.paired.fastq.gz
bacteria_R2.trimmed.unpaired.fastq.gz
ILLUMINACLIP:\$TRIMMOMATIC_HOME/adapters/TruSeq3PE.fa:2:3:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15