Лекция 4

Серия испытаний Бернулли

Схемой Бернулли - называется серия одинаковых независимых экспериментов, каждый из которых имеет 2 исхода: произошло интересующее нас событие или нет

p = p(A) - вероятность успеха при одном испытании

q = 1 - p - вероятность неудачи

 v_n - число успехов в серии из n испытаний

$$p(v_n = k) = p_n(k)$$

Из этого получаем формулу Бернулли:

Th. Вероятность того, что при n испытаниях произойдет ровно k успехов, равна $p_n(k) = C_n^k p^k q^{n-k}$

г

Рассмотрим один из элементарных исходов, благоприятных данному событию:

 $A_n = \text{УУУ} \dots \text{УН} \dots \text{ННН}$ - k успехов, n-k неудачи

$$p(y) = p, p(H) = q^{n-k}$$

Так как испытания независимы, то $p(A_n) = p^k q^{n-k}$

Остальные элементарные исходы имеют ту же вероятность, перебираем все расстановки исходов, получаем C_n^k , в итоге, получаем формулу Бернулли

Ex. Вероятность попадания стрелка при одном выстреле - 0.8. Какова вероятность того, что из пяти выстрелов точными будут три

$$n = 5$$
 $p = 0.8$ $q = 1 - p = 0.2$ $k = 3$

$$p_5(3) = C_5^3 p^3 q^2 = 0.2048$$

Наиболее вероятное число успехов

Выясним, при каком значении k вероятность предшествующего числа успехов k-1 будет не более, чем вероятность k успехов

$$p_n(k-1) \le p_n(k)$$

$$\frac{C_n^{k-1}p^{k-1}q^{n-k+1} \le C_n^k p^k q^{n-k}}{n!} \frac{n!}{(k-1)!(n-k+1)!} q \le \frac{n!}{(k)!(n-k)!} p$$

$$\frac{q}{(k-1)!(n-k+1)!} \le \frac{p}{(k)!(n-k)!}$$

$$\frac{q}{n-k+1} \le \frac{p}{k}$$

$$k(1-p) \le p(n-k+1)$$

 $k \le np + p$

Отсюда $np + p - 1 \le k \le np + p$

Рассмотрим 3 ситуации:

- 1) np целое, тогда np+p нецелое, и k=np наиболее вероятное
- 2) np + p нецелое, тогда $k = \lfloor np + p \rfloor$
- 3) np+p целое, тогда np+p-1 целое, и 2 наиболее вероятных числа успеха

Геометрическая интерпретация:

При увеличении числа n точки превращаются в кривую Гаусса

При увеличении числа испытаний n формула Бернулли вырождается в следующие асимптотические формы (применяем, если требуется найти вероятность точного числа успеха)

1) локальная формула Муавра-Лапласа

$$p_n(k) \underset{n \to \infty}{\longrightarrow} \frac{1}{\sqrt{npq}} \varphi(x)$$
, где $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ - функция гаусса $x = \frac{k - np}{\sqrt{npq}}$

Свойства $\varphi(x)$:

- 1. $\varphi(x) = \varphi(-x)$ функция четная
- 2. при x > 5 $\varphi(x) \approx 0$

2) Интегральная формула Муавра-Лапласа (если требуется найти вероятность того, что число успехов в данном диапазоне)

$$p_n(k_1 \le k \le k_2) \xrightarrow[n \to \infty]{} \Phi(x_2) - \Phi(x_1)$$
, где $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{z^2}{2}} dz$ - функция Лапласа $x_1 = \frac{k_1 - np}{\sqrt{npq}}$ - отклонение от левой границы, $x_2 = \frac{k_2 - np}{\sqrt{npq}}$ - отклонение от правой Свойства $\Phi(x)$

- 1. $\Phi(-x) = -\Phi(x)$ функция нечетная
- 2. при x > 5 $\Phi(x) \approx 0.5$

Nota. Эти формулы обычно можно применять при $n \ge 100$ и $0.1 \le p \le 0.9$

Nota. В некоторых источниках под функцией Лапласа подразумевают другую функцию: $F_0(x) =$ $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$ - стандартное отклонение. Эта функция отличается от $F_0 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{-\frac{t^2}{2}} dt$ + $\Phi(x) = \frac{1}{2} + \Phi(x)$ Так как $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$ - интеграл Пуасона

Ех. Вероятность попадания стрелка в цель 0.8, стрелок сделал 400 выстрелов. Найти вероятность того, что:

- а) произошло ровно 330 попаданий

б) произоппло от 312 до 336 попаданий a)
$$x=\frac{k-np}{\sqrt{npq}}=\frac{330-400\cdot0.8}{\sqrt{400\cdot0.8\cdot0.2}}=\frac{330-320}{8}=1.25$$
 $p_{400}(330)\approx\frac{1}{\sqrt{npq}}\varphi(1.25)=\frac{1}{8}\varphi(1.25)\approx\frac{1}{8}\cdot0.1826\approx0.0228$ б) $x_1=\frac{312-320}{8}=-1,\ x_2=\frac{336-320}{8}=2$ $p_{400}(312\le k\le 336)\approx\Phi(2)-\Phi(-1)=\Phi(2)+\Phi(1)\approx0.4772+0.3413=0.8185$

Статистическое понятие вероятности

Пусть проводим n реальных экспериментов, n_A - число появления события A, $\frac{n_A}{n}$ - относительная частота события A.

Эксперименты с монетой показали, что при больших $n, \frac{n_A}{n} \approx p(A)$ - явление стабилизации Вероятность отклонения относительной частоты от вероятности события

n - число испытаний, $p=p(A), \frac{n_A}{n}$ - экспериментальная частота

$$p\left(\left|\frac{n_A}{n}-p\right| \le \varepsilon\right) = p\left(-\varepsilon \le \frac{n_A}{n}-p \le \varepsilon\right) = p(-n\varepsilon \le n_A-np \le n\varepsilon) = p(np-n\varepsilon \le n_A \le n\varepsilon + np) \underset{n\to\infty}{\longrightarrow} \left[\text{по } \right.$$
 интегральной формуле Лапласа $] \underset{n\to\infty}{\longrightarrow} \Phi\left(\frac{n\varepsilon}{\sqrt{npq}}\right) - \Phi\left(-\frac{n\varepsilon}{\sqrt{npq}}\right)$

$$\begin{split} &=\Phi\left(\frac{\sqrt{n}\varepsilon}{\sqrt{pq}}\right)-\Phi\left(-\frac{\sqrt{n}\varepsilon}{\sqrt{pq}}\right)\\ &=2\Phi\left(\frac{\sqrt{n}\varepsilon}{\sqrt{pq}}\right) \end{split}$$

Итак, получили, что нужная нам вероятность $p\left(\left|\frac{n_A}{n}-p\right| \le \varepsilon\right) \approx 2\Phi\left(\frac{\sqrt{n\varepsilon}}{\sqrt{p_A}}\right)$

Закон больших чисел Бернулли

Итак,
$$p\left(\left|\frac{n_A}{n}-p\right| \le \varepsilon\right) \xrightarrow[n \to \infty]{} 2\Phi\left(\frac{\varepsilon}{\sqrt{pq}}\sqrt{n}\right)$$
 при $n \to \infty$, $\sqrt{n} \to \infty$, $\frac{\varepsilon}{\sqrt{pq}}\sqrt{n} \to \infty$, $\Phi\left(\frac{\varepsilon}{\sqrt{pq}}\sqrt{n}\right) \to 0.5$, $p\left(\left|\frac{n_A}{n}-p\right| \le \varepsilon\right) \to 2 \cdot 0.5 = 1$ - закон больших чисел показывает, что вероятность попадания относительной частоты в ε -трубу вероятность события приближается к 1 $\lim_{n \to \infty} p\left(\left|\frac{n_A}{n}-p\right| \le \varepsilon\right) = 1$ или $\frac{n_A}{n} \to p$ - сходимость по вероятности

 $\lim_{n \to \infty} p\left(|rac{n_A}{n} - p| \le arepsilon
ight) = 1$ или $rac{n_A}{n} \xrightarrow[n \to \infty]{} p$ - сходимость по вероятности

 $\mathit{Ex.}\ \Box$ ля оценки доли p курящих людей берется выборка объема n, и делается оценка доли курящих людей по формуле $p^* = \frac{n_A}{n}$. Каким должен быть объем n, чтобы с вероятностью $\gamma = 0.95$ данная оценка отличалась от истинного значения не более, чем на $\varepsilon = 0.01$ По формуле вероятности отклонения частоты от вероятности $p(|p^*-p| \le \varepsilon) = p\left(\left|\frac{n_A}{n}-p\right| \le \varepsilon\right) \approx$

$$2\Phi\left(\frac{\varepsilon}{\sqrt{pq}}\sqrt{n}\right) = 0.95$$

$$\Phi\left(\frac{\varepsilon}{\sqrt{pq}}\sqrt{n}\right) = 0.475$$

$$\frac{\varepsilon}{\sqrt{pq}}\sqrt{n} = 1.96$$

$$\frac{1}{\sqrt{pq}}\sqrt{n} = 196$$

$$\frac{n}{pq} = 38416$$

$$n \ge 38416pq$$

В самое худшей ситуации
$$pq \le 0.5^2 = \frac{1}{4}$$
 $n \ge \frac{38416}{4} = 9604$