

Recurrent Neural Networks

K. Breininger, V. Christlein, Z. Yang, L. Rist, M. Nau, S. Jaganathan, C. Liu, N. Maul, L. Folle, M. Zinnen,

K Packhäuser

Pattern Recognition Lab, Friedrich-Alexander University of Erlangen-N�rnberg

Activation Functions

Sigmoid Activation Function

Sigmoid (logistic function)

$$f(x) = \frac{1}{1 + exp(-x)}$$
$$f'(x) = f(x)(1 - f(x))$$

for derivative we only need to store the output in the forward pass. but still you should consider error tensor

→ Observe that the derivative can be solely expressed in terms of the activation!

Tanh Activation Function

Tanh

$$f(x) = tanh(x)$$

$$f'(x) = 1 - f(x)^{2}$$

→ The derivative is still a function of the activation!

Elman Recurrent Neural Network

General strategy

• We interpret the **batch** dimension as **time** dimension now

General strategy

- · We interpret the batch dimension as time dimension now
- → Samples are correlated in this dimension

General strategy

- We interpret the batch dimension as time dimension now
- → Samples are correlated in this dimension they become dependent
- This allows to reuse loss functions, optimizers, initializers, activation functions and the Neural Network class

hideen state

time step t-1

Output formula:

$$\mathbf{y}_t = \sigma \left(\mathbf{h}_t \cdot \mathbf{W}_{hy} + \mathbf{b}_y \right)$$

 \mathbf{W}_{hy} : Weight matrix for current hidden state \mathbf{h}_t

 \mathbf{b}_{v} : Output bias

A word on software engineering

• In terms of **encapsulation** - how good was the idea to demand exposition of the weights as member?

A word on software engineering

- In terms of encapsulation how good was the idea to demand exposition of the weights as member?
- Suppose we implement the RNN cell as composite structure
- Getters and Setters provide us the flexibility to do so

A word on software engineering

we need to have access to intermediate values (setters and getters

- In terms of encapsulation how good was the idea to demand exposition of the weights as member?
- Suppose we implement the RNN cell as composite structure
- Getters and Setters provide us the flexibility to do so
- Takeaway? Not doing proper software engineering most of the time will demand a price at some point.

$$\mathbf{h}_t = anh\left(\mathbf{h}_{t-1}\cdot\mathbf{W}_{hh} + \mathbf{x}_t\cdot\mathbf{W}_{xh} + \mathbf{b}_h
ight)$$

hidden layer input

$$\mathbf{h}_t = \tanh \left(\mathbf{h}_{t-1} \cdot \mathbf{W}_{hh} + \mathbf{x}_t \cdot \mathbf{W}_{xh} + \mathbf{b}_h \right)$$

 \mathbf{W}_{hh} : Weight matrix for previous hidden state \mathbf{h}_{t-1}

 \mathbf{W}_{xh} : Weight matrix for current input \mathbf{x}_t

b_h: Update bias

$$\mathbf{h}_t = \tanh\left(\tilde{\mathbf{x}}_t \cdot \mathbf{W}_h\right)$$

 \mathbf{W}_h : Weight matrix of a fully connected layer eas

easier to implement

 $\tilde{\mathbf{x}}_t$: Concatenation of \mathbf{x}_t , \mathbf{h}_{t-1} and a 1 1 is bias

Different from output: Not processed independently!

Backward

how do we compute gradients?

- Most gradients are handled by the embedded layers
- Store and feed the values for backprop (input tensors, activations)
 externally to the embedded layers because of multiple forward calls
- We need gradients through summation, multiplication and copying

Elman RNN Cell Backward

when i forwad in the elman we should save the intermediate results

Backward how to backpropagate the copy procedure

part is one we should forward onlz the first part

Multiply

Copy

$$f(x_1, x_2) = x_1 + x_2$$
$$\frac{\partial \hat{y}}{\partial x_1} = 1$$

$$f(x_1,x_2)=x_1\cdot x_2$$
$$\partial \hat{y}$$

Backward pass of sum So the gradient is a sum!

Gradient is **copying** $\frac{\partial L}{\partial \hat{y}}$

Gradient is · with switched inputs

• Implemented by passing the whole sequence as a **batch**

- Implemented by passing overlapping parts as a batch
- We need to implement memory between states
- Simply store the last hidden state and implement a method switching whether this state is reused in subsequent forward passes.
- Data has to be fed in accordingly!
- Referencing the TBPPT Algorithm presented in the lecture: k_1 is always the sequence length and k_2 is always the TBPTT length.

Long Short-Term Memory (optional)

Forward

- We can reuse a fully connected layer again for the output
- Unlike in the lecture, the output gate is a trainable fully connected layer to allow different output sizes
- The concatenation is also analogous to the RNN
- The gates σ and the yellow tanh can be a single **fully connected** layer with an output size of $4 \cdot \dim(\text{hidden state})$

Backward

- Remember that we have to pass the vectors of the input tensor **sequentially**
- Most gradients are again handled by the embedded layers
- Again store and feed the values for backprop externally to the embedded layers

Thanks for listening.

Any questions?