Constructive interpolation for guarded logics

Michael Vanden Boom

Department of Computer Science, University of Oxford, England

Highlights 2013 Paris, France

	ML
finite model property	✓
finite model property tree-like model property	\checkmark
Craig interpolation	✓

constrain number of variables

	ML	FO^2	
finite model property	✓	1	
tree-like model property	1	X	
Craig interpolation	✓	X	

constrain number of variables constrain quantification

 $\exists \vec{x}. G(\vec{x}\vec{y}) \land \psi(\vec{x}\vec{y})$ $\forall \vec{x}. G(\vec{x}\vec{y}) \rightarrow \psi(\vec{x}\vec{y})$

	ML	FO^2	GFO	
finite model property	✓	1	✓	
tree-like model property	1	X	✓	
Craig interpolation	✓	X	X	

	ML	FO^2	GFO	GNFO
finite model property	√	1	√	√
tree-like model property	1	X	1	\checkmark
Craig interpolation	1	X	X	✓

Interpolation

Interpolation

$$\varphi \models \bigvee_{\substack{\text{only uses} \\ \text{relations in} \\ \text{both } \varphi \text{ and } \psi}} \models \psi$$

$$\exists xyz(Gxyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$$

"there is a G-guarded 3-cycle using R"

"there is an odd-length cycle using R"

$$\exists xyz(Gxyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$$

"there is a *G*-guarded 3-cycle using *R*"

"there is an odd-length cycle using R"

$$\exists xyz(Gxyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$$

"there is a *G*-guarded 3-cycle using *R*"

"there is an odd-length cycle using R"

$$\exists xyz(Gxyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$$

"there is a *G*-guarded 3-cycle using *R*"

"there is an odd-length cycle using R"

interpolant
$$\chi := \exists xyz (Rxy \land Ryz \land Rzx)$$

"there is a 3-cycle using R"

$$\exists xyz(Gxyz \land Rxy \land Ryz \land Rzx) \quad \models \quad \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$$

"there is a *G*-guarded 3-cycle using *R*"

"there is an odd-length cycle using R"

GNFO interpolant $\chi := \exists xyz (Rxy \land Ryz \land Rzx)$ "there is a 3-cycle using R"

Interpolation

$$\varphi \models \mathop{\chi}\limits_{\stackrel{\text{interpolant}}{\downarrow}} \models \psi$$
 only uses relations in both φ and ψ

Theorem [Barany+Benedikt+ten Cate '13]

Given GNFO φ and ψ such that $\varphi \models \psi$, there is a GNFO interpolant χ (but model theoretic proof implies no bound on size of χ).

Interpolation

$$\varphi \models \mathop{\chi}\limits_{\stackrel{\text{interpolant}}{\downarrow}} \models \psi$$
 only uses relations in both φ and ψ

Theorem [Barany+Benedikt+ten Cate '13]

Given GNFO φ and ψ such that $\varphi \models \psi$, there is a GNFO interpolant χ (but model theoretic proof implies no bound on size of χ).

Theorem [VB, unpublished]

Given GNFO φ and ψ such that $\varphi \models \psi$, we can construct a GNFO interpolant χ of size $f(|\varphi| + |\psi|)$ (where f(n) is a tower of exponentials of height $2^{2^{2^{2^{n}}}}$).

bound proof size in terms of size of $\varphi \text{ and } \psi$

bound proof size in terms of size of $\varphi \text{ and } \psi$

bound proof size in terms of size of $\varphi \text{ and } \psi$

bound growth of interpolant at each stage

construction

interpolant

bound growth of interpolant at each stage

interpolant