WA State HIV Testing Histories - Data Exploration and Formatting

Martina Morris and Jeanette Birnbaum

July 2, 2015

1 Data Structure

```
str(dataf)
## 'data.frame': 26134 obs. of 20 variables:
  $ FirstVL
              : num 658 19914 NA 51 9050 ...
                  : num 566 243 1406 711 858 ...
   $ FirstCD4cnt
## $ tth_ever_neg
                  : int 5555555555...
## $ new_race
                  : int
                         2 2 1 1 1 1 3 1 1 1 ...
                          "WA" "WA" "WA" "WA" ...
## $ hst
                   : chr
## $ hdx_age
                   : int 51 25 41 34 38 33 33 41 45 19 ...
## $ new_mode
                  : int 3681113111...
## $ TTH_lneg_DT_FLAG : int 4 4 4 4 4 4 4 4 4 4 ...
   $ tth_ppos_dt_flag : int
                         4 4 4 4 4 4 4 4 4 . . .
## $ est_infect_period: int 3 3 3 3 3 3 3 3 3 ...
                : chr "1998_3Q" "1999_3Q" "1995_2Q" "1990_" ...
## $ hdx_yr_qtr
## $ HDX_DT_FLAG
                   : chr "M" "M" "M" "Y" ...
## $ adx_yr_qtr
                   : chr
                         "2003_2Q" "2000_1Q" NA NA ...
## $ adx_DT_FLAG
                   : chr "M" "M" NA NA ...
## $ LAG_PPOS_HDX_DT : int NA ...
  $ TTH_PREV_POS : chr
                          "N" "N" "N" "N" ...
##
## $ VL_DAYS
                   : int 181 111 NA 4032 30 3061 2618 1810 0 4461 ...
## $ CD4_DAYS
                   : int 122 122 1553 3271 683 1765 30 1218 304 3195 ...
## $ METH_USE
               : chr NA NA NA NA ...
```

2 Overview

• N = 26134

3 Raw Variable Summaries

```
##
##
## VARIABLE 2 : firstcd4cnt
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
    0.0 109.0 258.0 331.7 494.0 6745.0 2830
##
##
##
    Percent missing:[1] 10.83
##
##
##
## VARIABLE 3 : tth_ever_neg
## var
             3 4 5 <NA>
    1
         2
##
## 2688 605 6 505 22330 0
##
##
  Percent missing:[1] 0
##
##
##
## VARIABLE 4 : new_race
   var
## White Black Hisp Asian NHoPI AI/AN Multi
## 18142 3631 2716 602 100 357 573
## Unknown <NA>
  13 0
##
##
  Percent missing:[1] 0
##
##
##
##
## VARIABLE 5 : hst
##
    var
  OO WA <NA>
##
## 5953 20180 1
##
  Percent missing:[1] 0
##
##
##
##
## VARIABLE 6 : hdx_age
##
   Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
    0.0 28.0 34.0 35.1 41.0 91.0 215
##
##
    Percent missing:[1] 0.82
##
##
##
## VARIABLE 7 : new_mode
## var
                  IDU MSM/IDU Transfus
2132 2697 139
         MSM
##
##
       16416
                               Ped F Pres Hetero
        Hemo
##
                 Hetero
         124
                   1994
                               153 437
##
##
         NIR
                   <NA>
         2042
##
                    0
##
```

```
##
   Percent missing:[1] 0
##
##
##
## VARIABLE 8 : tth_lneg_dt_flag
##
     var
    1 2 3 4 <NA>
##
    348 1586 684 23516 0
##
##
##
     Percent missing:[1] 0
##
##
## VARIABLE 9 : tth_ppos_dt_flag
##
     var
    1 2 3 4 <NA>
##
   818 2390 460 22466 0
##
##
     Percent missing:[1] 0
##
##
## VARIABLE 10 : est_infect_period
##
    var
     1 2 3 <NA>
##
## 1499 913 23722 0
##
     Percent missing:[1] 0
##
##
##
##
## VARIABLE 11 : hdx_yr_qtr
##
      [1] ""
##
     Percent missing:numeric(0)
##
##
##
## VARIABLE 12 : hdx_dt_flag
##
     var
      D M Y <NA>
##
## 4721 18249 3021 143
##
##
     Percent missing:[1] 0.55
##
##
##
## VARIABLE 13 : adx_yr_qtr
      [1] ""
##
##
##
      Percent missing:numeric(0)
##
##
##
## VARIABLE 14 : adx_dt_flag
```

```
## D M Y <NA>
## 2245 15551 143 8195
##
##
     Percent missing:[1] 31.36
##
##
##
## VARIABLE 15 : lag_lneg_hdx_dt
      Min. 1st Qu. Median
                              Mean 3rd Qu. Max. NA's
##
      0.0 178.0 426.5 941.1 1112.0 9938.0 23516
##
##
##
      Percent missing:[1] 89.98
##
##
##
## VARIABLE 16 : lag_ppos_hdx_dt
    Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
##
##
     0.0 0.0 4.0 318.8 15.0 10630.0 22466
##
##
     Percent missing:[1] 85.96
##
##
##
## VARIABLE 17 : tth_prev_pos
      var
    N Y < NA>
##
## 25359 775 0
##
##
     Percent missing:[1] 0
##
##
##
## VARIABLE 18 : vl_days
   Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
       0 9 303 1514 2696 13040 7891
##
##
##
     Percent missing:[1] 30.19
##
##
##
## VARIABLE 19 : cd4_days
   Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
##
     0.0 0.0 61.0 863.9 1259.0 14550.0 2828
##
##
     Percent missing:[1] 10.82
##
##
##
## VARIABLE 20 : meth_use
##
      var

        NO UNKNOWN
        YES
        <NA>

        658
        247
        473
        24756

##
##
##
## Percent missing:[1] 94.73
```

4 Variable Transformations

4.1 Split the combined year-quarter of diagnosis and AIDS variables

4.2 Now subset the data based on essentials

```
if (!"year_min" %in% ls()) year_min <- 2005
if (!"year_max" %in% ls()) year_max <- 2013</pre>
# Year min and max for this run
c(year_min, year_max)
## [1] 2005 2014
# Non-sequential look
table(hst_included = dataf$hst == "WA", useNA = "ifany")
## hst_included
## FALSE TRUE <NA>
## 5953 20180
table(yearDx_included = dataf$yearDx >= year_min & dataf$yearDx <=</pre>
   year_max, useNA = "ifany")
## yearDx_included
## FALSE TRUE <NA>
## 19267 6724 143
table(yearDx_missing = is.na(dataf$hdx_yr_qtr))
## yearDx_missing
## FALSE TRUE
## 25991
table(age_missing_and_missing_lastNeg = (is.na(dataf$hdx_age) &
   is.na(dataf$lag_lneg_hdx_dt)))
## age_missing_and_missing_lastNeg
## FALSE TRUE
## 25919 215
```

```
# Sequential look
(hst_included <- table(hst_included = dataf$hst == "WA", useNA = "ifany"))
## hst_included
## FALSE TRUE <NA>
## 5953 20180
dataf <- subset(dataf, hst == "WA")</pre>
(yearDx_included <- table(yearDx_included = (dataf$yearDx >=
    year_min & dataf$yearDx <= year_max), useNA = "ifany"))</pre>
## yearDx_included
## FALSE TRUE
## 14928 5252
dataf <- subset(dataf, yearDx >= year_min & yearDx <= year_max)</pre>
(age_included <- table(age_and_lastNeg_present = !(is.na(dataf$hdx_age) &
    is.na(dataf$lag_lneg_hdx_dt))))
## age_and_lastNeg_present
## TRUE
## 5252
dataf <- subset(dataf, !(is.na(hdx_age) & is.na(lag_lneg_hdx_dt)))</pre>
(Nobs1 <- nrow(dataf))
## [1] 5252
```

Excluded 20882 cases based on year and hst restrictions and missingness in age and year of diagnosis.

4.2.1 Diagnosis

Years of initial diagnosis represented:

```
##
## 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
## 559 542 583 539 548 558 496 512 468 447
```

Quarters of initial diagnosis represented:

```
## ## 1 2 3 4 <NA> ## 1376 1369 1270 1228 9
```

4.3 Split the combined year-quarter of diagnosis and AIDS variables

Editing For those cases when we don't know the quarter, when should the diagnosis fall? Should we evenly distribute them throughout the 4 quarters? I will do that for now:

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2005.00 2007.25 2009.50 2009.67 2012.00 2014.75

time_min <- min(dataf$timeDx)

time_max <- max(dataf$timeDx)

# Time min and max for this run

c(time_min, time_max)

## [1] 2005.00 2014.75
```

4.4 Tabulate and collapse race and mode of diagnosis variables

Investigating counts of race by year and mode by year:

```
table(dataf$new_race, dataf$yearDx, useNA = "ifany")
##
##
           2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
##
          340 345 342 288 319 319
                                       281 288
                                                251 227
    White
##
    Black
          104
                81
                     104
                         101
                               92
                                   79
                                        90
                                            97
                                                 90
                                                    98
##
    Hisp
            75 65
                     90
                         94
                               87 105
                                       76
                                            63
                                                 79
                                                     61
##
    Asian
            20 23
                     23
                         28
                             25
                                   26
                                        25
                                            31
                                                 24
            2
##
    NHoPI
                 5
                     3
                          0
                              2
                                             7
                                                 8
                                   1
                                       5
                                                     5
##
    AI/AN
             9
                 6
                      6
                          12
                               5
                                    9
                                        5
                                            5
                                                 4
                                                     6
                          16
##
            9
                             18
                                   19
                                                 12 12
    Multi
                17
                      15
                                        14
                                            21
##
    Unknown 0
                0
                     0
                          0
                               0
                                    0
                                       0
                                                0 0
table(dataf$new_mode, dataf$yearDx, useNA = "ifany")
##
##
                2005 2006 2007 2008 2009 2010 2011 2012
##
    MSM
                 296 314 335 302 318 349 297
                                                 280
##
    IDU
                 40 41
                           31
                                25
                                    27
                                        33
                                             30
                                                 22
                       46
                                        27
##
    MSM/IDU
                  61
                           48
                                31
                                    44
                                             47
                                                  40
                                   0
                                            0
##
    Transfus
                 1 0
                               1
                                        0
                                                 0
                           1
##
    Hemo
                  1 0
                          0
                                0
                                     0
                                        0
                  69 54
##
    Hetero
                           54
                              60
                                    39
                                       49
                                             21
                                                23
##
    Ped
                  0
                           2
                                2
                                    11
                                        10
    F Pres Hetero 22 17
                           29
                                            18
##
                              25
                                    35
                                        19
                                                 16
##
                  69 68
                           83 93 74 71 77 128
##
##
                2013 2014
##
    MSM
                 271 237
                  20
##
    IDU
                      20
##
    MSM/IDU
                  34
                       29
##
    Transfus
                   0
                       0
##
    Hemo
                  0
                      0
##
    Hetero
                  20
                      18
##
                   4
                       4
    Ped
##
    F Pres Hetero
                  18
                       12
##
                 101 127
```

```
"Multi")
mode_levels <- c("MSM", "Hetero", "Blood/Needle")
dataf <- within(dataf, {
    race <- as.character(new_race)
    race[race == "AI/AN" | race == "NHoPI"] <- "Native"
    race <- factor(race, labels = race_levels, levels = race_levels)
    mode <- as.character(new_mode)
    mode[mode == "MSM/IDU"] <- "MSM"
    mode[mode == "F Pres Hetero" | mode == "NIR"] <- "Hetero"
    mode[mode == "IDU" | mode == "Transfus" | mode == "Hemo" |
        mode == "Ped"] <- "Blood/Needle"
    mode <- factor(mode, levels = mode_levels, labels = mode_levels)
    mode2 <- factor(ifelse(mode == "MSM", "MSM", "non-MSM"))
})</pre>
```

```
table(dataf$race, dataf$yearDx, useNA = "ifany")
##
##
          2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
##
    White
         340 345 342 288 319 319 281 288 251
    Black 104 81 104 101
##
                            92 79
                                    90
                                        97 90
    Hisp 75 65 90 94
                            87 105
                                    76
                                        63 79
##
    Asian 20 23
                    23 28
                             25
                                26
                                     25
                                          31 24
                                                  38
##
               11
                    9
                       12
                             7
                                 10
                                     10
                                         12 12
##
    Native 11
                                                  11
                       16
                                                  12
##
    Multi
          9 17
                    15
                             18
                                19
                                     14
                                          21 12
table(dataf$mode, dataf$yearDx, useNA = "ifany")
##
##
               2005 2006 2007 2008 2009 2010 2011 2012 2013
##
    MSM
                357 360 383 333 362 376 344 320 305
##
    Hetero
               160 139 166 178 148 139 116 167 139
##
    Blood/Needle 42
                    43 34 28 38 43 36 25 24
##
##
               2014
##
    MSM
                266
##
    Hetero
                157
  Blood/Needle 24
##
```

4.4.1 AIDS at diagnosis

AIDS at initial diagnosis?

```
## ## FALSE TRUE ## 3871 1381
```

Years of AIDS diagnosis represented:

```
## ## 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 <NA> ## 166 208 217 257 280 235 233 201 173 162 20 3100
```

Quarters of AIDS diagnosis represented:

```
##
## 1 2 3 4 <NA>
## 547 549 532 521 3103
```

4.5 Make a flag for everHadNegTest

This variable will be coded as Yes=TRUE, No=FALSE, and Don't Know/Refused/Missing=NA

```
dataf <- transform(dataf, everHadNegTest = ifelse(tth_ever_neg ==</pre>
   "Y" | tth_ever_neg == 1, TRUE, ifelse(tth_ever_neg == "N" |
   tth_ever_neg == 2, FALSE, NA)))
with(dataf, table(everHadNegTest, tth_ever_neg, useNA = "always"))
##
            tth_ever_neg
## everHadNegTest 1 2
                      3 4
                            5 <NA>
        FALSE 0 552
                     0 0
                            0
##
                      0 0
##
        TRUE 2479
                 0
                             0
                                 0
##
        <NA>
             0
                 0 6 354 1861
# Now cross-check it with the lag_lneg_hdx_dt, which actually
# has the time since last negative test
(checkEver <- with(dataf, table(everHadNegTest, TID_NA = is.na(lag_lneg_hdx_dt),</pre>
  useNA = "always")))
##
            TID_NA
## everHadNegTest FALSE TRUE <NA>
        FALSE 4 548
##
        TRUE
             2403 76
##
                       0
##
        <NA>
            16 2205
# Look at actual lag_lneg_hdx_dt values by everHadNegTest
ddply(dataf, .(everHadNegTest), function(x) c(summary(x$lag_lneg_hdx_dt)))
##
   everHadNegTest Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1
        FALSE 112
                  475.0 738.0 667.0 930 1080
## 2
          TRUE 0
                  178.5 428.0 949.3
                                  1120 9938
## 3
           NA 122 212.2 665.5 907.1 1588 2663
## NA's
## 1 548
## 2
    76
## 3 2205
```

Editing We have 4 cases with everHadNegTest=FALSE and 16 with everHadNegTest=NA but have a time since last negative test. Change their everHadNegTest flag.

```
toTRUE1 <- !dataf$everHadNegTest & !is.na(dataf$lag_lneg_hdx_dt)
toTRUE2 <- is.na(dataf$everHadNegTest) & !is.na(dataf$lag_lneg_hdx_dt)
dataf$everHadNegTest[toTRUE1] <- TRUE
dataf$everHadNegTest[toTRUE2] <- TRUE</pre>
```

More editing We have 76 cases who have everHadNegTest=TRUE but have NO time since last negative test. Change their everHadNegTest flag.

```
toFALSE <- dataf$everHadNegTest & is.na(dataf$lag_lneg_hdx_dt)
dataf$everHadNegTest[toFALSE] <- FALSE</pre>
```

Better?

4.6 Define TID, aka infPeriod

Define aidsUB=17.98 years, and lastNeg_yrs as lag_lneg_hdx_dt/365, and infPeriod as follows:

everHadNegTest	infPeriod
TRUE	min(lastNeg_yrs, aidsUB)
FALSE	min(age-16, aidsUB)
NA	NA

```
summary(dataf$infPeriod, digits = 3)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -3.000 0.612 1.990 5.080 7.000 18.000 2205
```

```
# Number of cases who got a negative infPeriod
(neginfPeriod <- sum(dataf$infPeriod < 0, na.rm = TRUE))
## [1] 3</pre>
```

```
# Diagnoses at or under age 16 by everHadNegTest
(a1 <- table(atunder16 = dataf$hdx_age <= 16, everHadNegTest = dataf$everHadNegTest,
    useNA = "ifany"))
##
            everHadNegTest
## atunder16 FALSE TRUE <NA>
      FALSE 619 2418 2134
               5
                   5
##
      TRUE
                        71
# Diagnoses at or under age 16 by year, 2005-2013
table(atunder16count = subset(dataf, yearDx >= year_min & yearDx <=
    year_max)$hdx_age <= 16, year = subset(dataf, yearDx >= year_min &
    yearDx <= year_max)$yearDx, useNA = "ifany")</pre>
##
                year
## atunder16count 2005 2006 2007 2008 2009 2010 2011 2012 2013
            FALSE 556 539 576 533 536 546 488 500 457
##
##
                   3
                         3
                             7
                                 6
                                      12
                                           12
                                                      12
##
                year
## atunder16count 2014
##
           FALSE 440
           TRUE
# Now just under 16, excluding hdx_age=16 Diagnoses under age
# 16 by everHadNegTest
(a2 <- table(under16 = dataf$hdx_age < 16, everHadNegTest = dataf$everHadNegTest,
   useNA = "ifany"))
##
         everHadNegTest
## under16 FALSE TRUE <NA>
    FALSE 621 2420 2139
##
     TRUE
              3 3 66
# Diagnoses under age 16 by year
table(under16count = subset(dataf, yearDx >= year_min & yearDx >=
    year_max)$hdx_age < 16, year = subset(dataf, yearDx >= year_min &
    yearDx >= year_max)$yearDx, useNA = "ifany")
##
              year
## under16count 2014
##
        FALSE 441
         TR.UF.
# Among those diagnosed at or under 16: everHadNegTest by
# mode
table(everHadNegTest = subset(dataf, hdx_age <= 16)$everHadNegTest,
   mode = subset(dataf, hdx_age <= 16)$new_mode, useNA = "ifany")</pre>
##
                mode
## everHadNegTest MSM IDU MSM/IDU Transfus Hemo Hetero Ped
##
           FALSE 1
                               0
                                         0
                                             0
                                                   1
                       0
##
                   1
                        0
                               1
                                         0
                                              0
                                                    1
##
            <NA>
                   2
                        0
                               0
                                         0
                                              0
##
                mode
## everHadNegTest F Pres Hetero NIR
##
            FALSE
                              0
            TRUE
##
                              1
                                  1
##
            <NA>
                              0 28
```

Diagnoses younger than age 16 There are 76 cases who do not have a date of last negative test and may not fit the assumption of TID=age-16. Of those, 7 are age 16 at diagnosis and will have TID=0 using this assumption. Primary mode of transmission is Ped ('Perinatal or pediatric').

```
(young_included <- with(dataf, table(over16_or_atunder16_with_obs_infPeriod = (hdx_age >
    16 | !(hdx_age <= 16 & (!everHadNegTest | is.na(everHadNegTest)))))))
## over16_or_atunder16_with_obs_infPeriod
## FALSE TRUE
     76 5176
dataf <- subset(dataf, !(hdx_age <= 16 & (!everHadNegTest | is.na(everHadNegTest))))</pre>
(Nobs2 <- nrow(dataf))</pre>
## [1] 5176
summary(dataf$infPeriod, digits = 3)
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                                       NA's
##
    0.000 0.617 1.990
                           5.100 7.000 18.000
                                                       2134
```

Excluded 76 cases due to age<16 and no observed infPeriod data.

4.7 TID is still zero

```
# Cases who still have a zero infPeriod - treat like missing
zeroinf <- dataf$infPeriod == 0 & !is.na(dataf$infPeriod)
(table(dataf$everHadNegTest[zeroinf], useNA = "ifany"))

##
## TRUE
## 29

# Change their everHadNeg flag to NA and their infPeriod to
# NA, since TID=0 does not make sense
dataf$everHadNegTest[zeroinf] <- NA
dataf$infPeriod[zeroinf] <- NA</pre>
```

A remaining 29 cases had infPeriod=0 for some reason. Since this doesn't make much sense, we treat these as if they had missing responses for everHadNegTest and infPeriod.

4.8 Check effect of TID definition

Among those with everHadNegTest=TRUE, we capped 25 cases at aidsUB.

```
## infPeriod_over_aidsUB
## original_over_aidsUB FALSE
## <NA> 619
```

Among those with everHadNegTest=FALSE, no one had an original TID value.

Among those with everHadNegTest=NA, no one had an original TID value.

5 Analysis Subset

Final subset is

- 2005 onwards
- Diagnosis made in WA state
- If missing age, must have recorded time of last negative test
- If age;=16, must have recorded time of last negative test
- Non-missing year of diagnosis

Final look at data:

```
nrow(dataf)
## [1] 5176
if (printSummaries) {
    for (var in c("hdx_age", "timeDx", "everHadNegTest", "lastNeg_yrs",
        "infPeriod")) {
        cat("\nVARIABLE:", var, "\n")
        print(summary(dataf[, var]))
##
## VARIABLE: hdx_age
     Min. 1st Qu. Median
                            Mean 3rd Qu.
##
                                              Max.
##
     14.00
            28.00
                    36.00
                             37.54 46.00
                                             83.00
##
## VARIABLE: timeDx
      Min. 1st Qu. Median
##
                              Mean 3rd Qu.
                                              Max.
##
      2005
            2007
                      2010
                              2010
                                      2012
                                              2015
##
## VARIABLE: everHadNegTest
           FALSE
##
      Mode
                      TRUE
                              NA's
## logical
              619
                      2394
                              2163
##
## VARIABLE: lastNeg_yrs
   Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
                                                      NA's
```

```
## 0.0000 0.4904 1.1750 2.5990 3.0670 27.2300 2753

##

## VARIABLE: infPeriod

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## 0.0027 0.6438 2.0160 5.1450 7.1450 17.9800 2163
```