MODULE I

<u>Elements</u> of <u>Number Theory</u> We begin with a basic study of the multiplicative structure of Z and we introduce the Euler phi function, which plays an important role in the study of "residue systems".

<u>Definition 1</u> If $a, b \in Z$ we say a <u>divides</u> b, denoted by $a \mid b$, provided $\exists c \in Z$ such that b = ac.

Examples 1. $a \mid 0 \forall a \in Z \text{ since } 0 = a \cdot 0$

- 2. 5 | -5 because -5 = 5(-1)
- 3. 7|49 because 49 = 7(7)

Proposition 1 \forall a, b, c \in Z

- 1. $a|b \text{ and } b|c \Rightarrow a|c$
- 2. $a \mid b \text{ and } a \mid c \Rightarrow a \mid bx+cy \quad \forall x, y \in Z$
- 3. $a \mid a \forall a \text{ (EVEN } a = 0)$
- 4. $a | b \text{ and } b | a \Rightarrow a = \pm b$

Some proofs: 1. b = ad, $c = be \implies c=(ed)a$

4.
$$b = af$$
, $a = gb \implies a = gfa$
 $a \ne 0 \implies gf = 1 \implies g = f=1$ or $g = f = -1$

Exercise 1 (Submit b and d) Prove

- a) \forall n (4 χ n² + 1)
- b) $\forall x,y \in Z (x,y \text{ odd} \Rightarrow x^2 + y^2 \text{ is even but } 4 \chi x^2 + y^2)$
- c) $\forall a,b,c,d \in Z (a | b \text{ and } c | d \Rightarrow ac | bd)$
- d) $\forall n \in Z (n \text{ odd} \Rightarrow 8 | n^2 1)$
- e) $\forall n (6 | (n) (n+1) (n+2))$
- f) $\forall n (24|(n) (n+1) (n+2) (n+3))$

<u>Division Algorithm</u>. <u>Theorem 1</u>

Let $a \in Z$, $d \in Z^+$; then \exists a unique pair q, r such that a = q d+r were $0 \le r \le d-1$.

Notation: r is denoted by a modd and q by a divd.

<u>Proof</u> Let $T = \{a - cd | c \in Z \text{ and } a - cd \ge 0\}$

First we show that $T \neq \emptyset$. Indeed, if $a \ge 0$ then $a = a - 0d \in T$

If a < 0 then $(d-1)(-a) = a-(a) d \in T$

Thus T has a smallest element, say r; i.e. $\exists q \in Z$ such that a - q d = r

Claim $0 \le r < d$. Proof Of course $r \ge 0$ because $r \in T$.

Suppose $r \ge d$; then $r - d \ge 0$, r - d < r and $a - (q+1) d = r - d \in T$

which contradicts the fact that r = minimum of T.

Claim q and r are unique; Suppose a = q d + r = q' d + r' where $0 \le r, r' < d$.

Assuming $r \ge r'$ we get r - r' = (q' - q) d

so $q'-q \ge 0$. But q'-q > 0 implies (q'-q)d > d. However $0 \le r - r' < d$ - a contradiction.

Thus q'=q and consequently r = r'.

<u>Definition</u> 2. If $a \in Z$ and $b \in Z - \{0\}$ then

$$\left\lfloor \frac{a}{b} \right\rfloor$$
 and $\left\lceil \frac{a}{b} \right\rceil$ denotes that largest integer less than or equal to $\frac{a}{b}$

and the smallest integer greater than or equal to $\frac{a}{b}$ respectively.

Remark 1. The question of existence is easily settled with aid of the Division Algorithm.

Indeed, when
$$b > 0$$
, a div $b = \left\lfloor \frac{a}{b} \right\rfloor$ and $r = a - \left\lfloor \frac{a}{b} \right\rfloor b$

Example 5. Let d = 5 and a = -73. Then -73 = (-15)(5) + 2.

<u>Definition 3.</u> The non - \emptyset set $I \subseteq Z$ is an <u>ideal</u> if and only if

1.
$$\forall$$
 a, b $(a, b \in I \Rightarrow a - b \in I)$,

and 2. \forall a, b (a \in Z, b \in I \Rightarrow a b \in I).

Theorem 2 If I is an ideal then \exists a unique $d \ge 0$ such that $I = \{a \ d | a \in Z\}$

Notation We write (d) and say that I is generated by d. Such an ideal of Z is <u>principal</u>, $(Z, +, \bullet)$ is called a principal <u>ideal</u> <u>domain</u> (p.i.d).

<u>Proof</u> Since $I \neq \emptyset \exists b \in I$. Since $b \in I$ so does -b = (-1) b by 2) and we may conclude that $\exists b \in I$ such that $b \ge 0$. If only b = 0 lies in I then I = (0). Otherwise let

$$d = \min \{b \in I | b > 0\}.$$

Then, by 2) $(d) \subseteq I$.

Next, if $a \in I$ we may invoke the Division Algorithm to get

$$a = q d + r$$

where $0 \le r \le d-1$. But $r = a - q d \in I$ by 1) and 2) so r = 0. Hence $a = q d \in (d)$.

Finally, uniqueness of d follows from (4) of our first proposition; i.e. Proposition 1.(4).

Application Consider an arbitrary pair a, $b \in Z$, not both 0, and realize that $I = \{a \mid x + b \mid y \mid x, y \in Z\}$ is an ideal. Furthermore, since $I \neq (0)$, \exists a unique d > 0 such that I = (d).

Now, as a, $b \in I$ it follows that d a and d b, i.e. d is a <u>common</u> divisor of a and b.

Next suppose d' > 0 is another common divisor of a and b, i.e. d' | a and d' | b. Then, by 2 of our first proposition, d' | a x + b y $\forall x, y \in Z$. Now $\exists x_1, y_1$ such that $d = ax_1 + b_1$. But then d' | d so d is a greatest <u>common divisor</u> of a and b.

<u>Definition 4 and Remark 2</u> Given $a, b \in \mathbb{Z}$, not both zero, the <u>greatest common divisor</u> of a and b $(g \ c \ d \ (a, b))$ is the <u>largest</u> positive d such that $d \ a$ and $d \ b$. As per our previous discussion MORE is true: if $d' \ a$ and $d' \ b$ then not only is $d' \le d$ but ALSO $d' \ d$. If $a = 0, b > 0, g \ c \ d \ (a, b) = b$. <u>Exercise 2 a)</u> (Submit this one) Given $a_1, a_2, ...a_n \ (n \ge 2)$ at most one being 0 prove that the process $d_2 = g \ c \ d \ (a_1, a_2)$,

$$\begin{aligned} &d_{3} = gcd(d_{2}, \ a_{3}), ..., d_{n} = gcd(d_{n-1}, \ a_{n}) \text{ yields a gcd of } a_{1}, ...a_{n} \text{ and} \\ &(d_{n}) = \left\{ \sum_{i=1}^{n} \ a_{i} \ x_{i} \ \middle| \ x_{i} \in Z \ i = 1, ..., n \right\}. \end{aligned}$$

Exercise 2 b) Prove: \forall a, b $(g c d (a, 4) = g c d (b, 4) = 2 \implies g c d (a+b, 4) = 4.$

Example 6. The set of divisors of 24 and 36 is $\{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\}$ so g c d (24, 36) = 12.

Another related notion is that of the <u>least common</u> multiple of a and b, denoted by $\underline{\text{lcm}(a, b)}$. We prove it existence and determine its nature in the following theorem:

Theorem 3 Given a, $b \in Z^+$ the set $I = \{m \in Z \mid a \mid m \text{ and } b \mid m\}$

- the set of ALL common mutiples of a and b, is an ideal and $I \neq (0)$. Its generator, i.e. the smallest positive number in I, say \overline{m} , yields $I = (\overline{m})$ and is a common multiple of a and b which <u>divides</u> every common multiple of a and b, we write $\overline{m} = \text{lcm}(a, b)$.

<u>Proof</u> If $a \mid m_1$, $a \mid m_2$, $b \mid m_1$ and $b \mid m_2$ then a and b divide $m_1 - m_2$. Also if a, b both divide m and $c \in \mathbb{Z}$ then a, $b \mid cm$ so $cm \in I$. Also $I \neq \emptyset$. Hence I is an ideal and has a unique positive generator \overline{m} . Since $\overline{m} \in I$ we have a, $b \mid \overline{m}$. Also $\overline{m} \mid m \forall m \in I$ so \overline{m} divides every common multiple of a and b.

Question How are gcd(a, b) and lcm(a, b) related?

Theorem 4. $gcd(a, b) lcm(a, b) = ab, \forall a, b \in Z^+$.

<u>Proof</u> Realize that, because $\frac{a}{\gcd(a, b)}$ and $\frac{b}{\gcd(a, b)}$ are both integers,

 $\frac{ab}{gcd(a,\,b)}$ is a common multiple of a and b. Thus lcm(a, b) $\big| \ \frac{ab}{gcd(a,\,b)}$ and so

lcm(a, b) gcd(a, b) | ab.

Now $\exists \alpha, \beta \in \mathbb{Z}$ such that $lcm(a,b) = \alpha a$, $lcm(a,b) = \beta b$.

Thus, with gcd(a, b) = a x + b y

lcm (a, b) gcd (a, b) =
$$(\beta x + \alpha y)$$
 (ab)

i.e. ab | lcm(a,b)gcd(a,b)

As both numbers are positive 4) of Proposition 1 yields the result.

Exercise 3 (Submit b; d and e are for extra credit)

a) Given
$$a_1, a_2,..., a_n \in Z^+$$
 where $n \ge 2$ prove $lcm(a_1, a_2,...,a_n)$ exists

and the procedure

$$l_2 = lcm(a_1, a_2), l_3 = lcm(l_2, a_3), ..., l_n = lcm(l_{n-1}, a_n)$$

terminates in $lcm(a_1, a_2, ..., a_n)$

Is the following true:

$$lcm(a_1,...,a_n) \cdot gcd(a_1,..., a_n) = \prod_{i=1}^n a_i$$
?

- b) Prove: \forall a, b, m (gcd(a m) = gcd(b, m) = 1 \Rightarrow gcd(ab, m)=1)
- c) Prove: Given $g \in Z^+$ and $s \in Z$, $\exists x, y \in Z$ such that x+y=s and gcd(x, y)=g if and only if g|s
- d) Prove: $\not\exists$ a, b, n > 1 such that $a^n b^n | a^n + b^n$
- e) Prove: $\forall a, b > 2 (2^b 1 \chi 2^a + 1)$
- f) Prove: \forall a, b, c $\left(a \middle| bc \text{ if and only if } \frac{a}{\gcd(a, b)} \middle| c\right)$

Example 7. Recall
$$gcd(24, 36) = 12$$
. So $lcm(24, 36) = \frac{(24)(36)}{12} = 72$

Corollary 4.1 and Definition 4. Integers a, b are relatively prime (or coprime) if gcd (a, b) = 1. In this event lcm (a, b) = ab.

Theorem 5. If a bc and a and b are relatively prime then a c.

<u>Proof</u> Since gcd(a, b) = 1 the ideal

$$I = \left\{ a \times +by \mid x,y \in Z \right\} = (1)$$

Thus $\exists x, y \text{ such that } 1 = a x + b y$

Hence

$$c = acx + bcy$$

Now a acx and a bcy implies by 2 of Proposition 1. that a c

Exercise 4. (Submit this one) Suppose $gcd(a_i, b) = 1$ i = 1,...,k.

Prove
$$gcd\left(\prod_{i=1}^{k} a_i, b\right) = 1.$$

Corollary 5.1 and Definition 5. The integer $p \ge 2$ is <u>prime</u> if and only if the only positive divisors of p are 1 and p. Otherwise it is composite.

If p is prime and p ab then p a or p b.

<u>Proof</u> Suppose p χ a. Then gcd(p, a) = 1 and so p|b by the previous proposition.

Exercise 5 (Submit a)) a) Suppose gcd $(a_i, a_i) = 1, 1 \le i, j \le k$ and $i \ne j$ and

$$a_i b \forall i. Prove \prod_{i=1}^k a_i b.$$

b) Suppose a, b > 0 and d = gcd(a, b). Prove: if kld then $gcd(\frac{a}{k}, \frac{b}{k}) = \frac{d}{k}$.

Question How is gcd(a, b) calculated algorithmically? We develop two algorithms for this purpose. The essence of the first one, the Euclidean algorithm, is given in the following result:

Proposition 2 Let $a \ge b \ge 0$ not both 0 and write a = q b + r, where a > 0 and r = a if b = 0, and $0 \le r \le b-1$ if b > 0. Then gcd(a, b) = gcd(b, r). If r = 0 then gcd(a, b) = b.

<u>Remark 3.</u> Since the remainder strictly decreases, repeated application of the division algorithm, i.e. divide b by r etc., produces the gcd after at most b. divisions.

<u>Proof</u> Suppose b > 0; then the Division algorithm yields

$$a = bq + r$$

where $0 \le r < b$. Since r = a - bq

any common divisor of a and b divides r and so is a common divisor of b and r.

Of course any common divisor of b and r also divides a and therefore is a common divisor of a and b.

Of course, if r = 0 then a = bq so b = gcd(a, b).

Euclidean Algorithm

Input: given integers $a \ge b \ge 0$, where if b = 0 then a > 0.

Output: gcd(a, b)

1. While $b \neq 0$ do

1.1 Set
$$a \leftarrow b$$
, $b \leftarrow a \mod b$

2. Return a

Example 8. Compute gcd (4864, 3458)

Step 1:
$$4864 = (1)(3458) + 1406$$

Set $a = 3458$, $b = 1406$

Step 2:
$$3458 = (2)(1406) + 646$$

Set $a = 1406$, $b = 646$

Step 3:
$$1406 = (2)(646) + 114$$

Set $a = 646$, $b = 114$

Step 4:
$$646 = (5)(114) + 76$$

Set $a = 114$, $b = 76$

Step 5:
$$114 = (1)(76) + 38$$

Set $a = 76$, $b = 38$

Step 6:
$$76 = (2)(38) + 0$$

Set $a = 38$, $b = 0$

Step 7: Since
$$b = 0$$
 return $gcd(a, b) = 38$

Our second algorithm, the so-called Extended Euclidean algorithm, not only provides gcd(a, b) but also an expression

$$gcd(a, b) = ax + by,$$

the existence of which is guaranteed by the previously obtained result

$$I = \{aw+bz | w, z \in Z\} = (gcd(a, b)).$$

Since the Euclidean algorithm computes gcd(a, b) by repeated use of the Division Algorithm and culminates by declaring the LAST divisor to be the gcd, it is simply a matter of updating the expression for the remainder in terms of a and b at each application of the Division Algorithm.

More specifically, suppose r_1 , r_2 and r_3 are three successive remainders so that

$$r_1 = q_3 r_2 + r_3$$

and suppose $r_1 = x_1 a + y_1 b$ and $r_2 = x_2 a + y_2 b$. Then

$$r_3 = r_1 - q_3 r_2 = (x_1 - q_3 x_2) a + (y_1 - q_3 y_2) b$$

Hence the updating equations are given by

$$x_3 = x_1 - q_3 x_2$$
 and $y_3 = y_1 = q_3 y_2$

BUT HOW DO WE START? We require initial conditions such that

the FIRST
$$q_3 = \left\lfloor \frac{a}{b} \right\rfloor$$
, $r_3 = a - \left\lfloor \frac{a}{b} \right\rfloor$ b, $x_3 = 1$ and $y_3 = - \left\lfloor \frac{a}{b} \right\rfloor$.

Thus we want

$$1 = x_1 - \left| \frac{a}{b} \right| x_2, - \left| \frac{a}{b} \right| = y_1 - \left| \frac{a}{b} \right| y_2$$

Hence we begin with $x_1 = 1$, $x_2 = 0$, $y_1 = 0$, $y_2 = 1$.

Extended Euclidean Algorithm

Input: Given integers $a \ge b \ge 0$ or a > b = 0

Output: d = gcd(a, b) and $x, y \in Z$ such that ax + by = d.

- 1. If b = 0 then set $d \leftarrow a$, $x \leftarrow 1$, $y \leftarrow 0$ and return (d, x, y)
- 2. Set $x_1 \leftarrow 1$, $x_2 \leftarrow 0$, $y_1 \leftarrow 0$ and $y_2 \leftarrow 1$.
- 3. While b > 0 do the following:

3.1
$$q_3 \leftarrow \left\lfloor \frac{a}{b} \right\rfloor$$
, $r \leftarrow a - q_3 b$, $x_3 \leftarrow x_1 - q_3 x_2$ and $y_3 \leftarrow y_1 - q_3 y_2$

3.2
$$a \leftarrow b, b \leftarrow r, x_1 \leftarrow x_2, y_1 \leftarrow y_2, x_2 \leftarrow x_3, y_2 \leftarrow y_3$$

4. Set
$$d \leftarrow a$$
, $x \leftarrow x_1$, $y \leftarrow y_1$ and return (d, x, y)

Example 9. Let a = 362 and b = 102. Then applying the algorithm we get

STEPS
$$q_3$$
 r x_3 y_3 a b x_2 x_1 y_2 y_1

2 362 102 0 1 1 0

3.1 3.2

1st - 3 3 56 1 -3 102 56 1 0 -3 1

2nd - 3 1 46 -1 4 56 46 -1 1 4 -3

3rd - 3 1 10 2 -7 46 10 2 -1 -7 4

4th - 3 4 6 -9 32 10 6 -9 2 32 -7

5th - 3 1 4 11 -39 6 4 11 -9 -39 32

6th - 3 1 2 -20 71 4 2 -20 11 71 -39

7th - 3 2 0 51 -181 2 0 51 -20 -181 71

4. $d = 2$, $x = -20$, $y = 71$

Exercise 6. (Submit b; a is for extra credit) a) Given the following bit complexities $(a, b \ge 0)$

Operation	Bit complexity
Addition a + b	0 (lga + lgb) = 0 (lgn)
Subtraction a – b	0 (lga + lgb) = 0 (lgn)
Multiplication a, b	$0 ((lga)(lgb)) = 0 ((lgn)^{2})$
Division $a = qb + r$	$0 ((lga)(lgb)) = 0 ((lgn)^2)$
where $n = max(a, b)$	

Show that both algorithms have running time $O((\lg n)^2)$ bit operations.

- b) Find gcd (1819, 3587) and $x, y \in Z$ such that
 - $1819 x + 3587 y = \gcd(1819, 3587)$
- c) Find values of x, y, and z such that

$$6x + 10y + 15z = 1$$

- d) i) Find lcm (482, 1687)
 - ii) Find lcm (60, 61)

In the following discussion, it is revealed that the prime numbers constitute the "multiplicative" building blocks of Z^+ - $\{1\}$.

Theorem 6. \forall $n \in Z^*$ (if $n \ge 2$ then n is a prime number or a product of prime numbers)

Proof (by induction on n.)

base case: n = 2. But 2 is prime.

Induction hypothesis: Given $2 \le k \le n$, k is prime or a product of primes.

Induction step: Consider n + 1 and suppose it is NOT prime. Then

 \exists a \in Z⁺ such that a \neq 1 and a \neq n + 1 and a | n + 1. Hence \exists b \in Z⁺ such that n + 1 = a b. Of course b \neq 1 and b \neq n+1 (or else a = n + 1 or a = 1 respectively). Thus 2 \leq a, b \leq n, so by the induction hypothesis, both a and b are either prime numbers or a product of prime numbers. Hence n + 1 = a b is product of primes numbers.

Corollary 6.1 \forall $n \ge 2 \exists$ primes numbers $p_1, p_2, ..., p_k$ and $m_1, ..., m_k \in Z^+$ such that $n = p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k}$

<u>Proof</u> Since n is prime or a product of primes let $\{p_1, p_2, ..., p_k\}$ be the set of prime numbers in the "product" (k = 1 when n is prime). Next let m_1 = the number of times p_i appears in the product. Then, by commutativity and associativity, the result follows.

Next we establish "uniqueness" of this representation.

Theorem 7. The set $\{p_1,...,p_k\}$ and the corresponding m_i 's are unique.

<u>Claim</u> If $q \notin \{p_1,..., p_k\}$ then $q \not \chi p_1^{m_1}...p_k^{m_k}$ (where q is prime). <u>Proof</u> (induction on $m_1 + \cdot + m_k$) Suppose $m_1 + \cdot + m_k = 1$ so that $m_1 = 1$, k = 1

Now $q \neq p_1$ implies $q \chi p_1$.

Induction hypothesis If $m_1 + \cdots + m_k = t > 1$ then $q \chi p_1^{m_1} \cdots p_k^{m_k}$

Induction step Suppose $m_1 + \cdots + m_k = t + 1 \ge 2$. Then assume

$$q \Big| p_1^{m_1} \cdots p_k^{m_k}.$$
 But then $\ q \Big| (p_1) (p_1^{m_1-1} \cdots p_k^{m_k})$

Since gcd $(q, p_1) = 1$ it follows that $q | p_1^{m_1-1} \cdots p_k^{m_k}$

But

$$m_1 - 1 + m_2 + \cdots + m_k = t$$

so this is a contradiction.

Hence $\ell = k$ and we may assume $q_i = p_i$ i = 1,..., k. Now

$$p_1^{m_1}\; p_2^{m_2} \cdots p_k^{m_k} \; = \; p_1^{n_1}\; p_2^{n_2} \cdots p_k^{n_k}.$$

Suppose i is the smallest index such that $m_i \neq n_j$ and assume without loss of generality

that $m_i > n_i$. If i > 1 then it follows by cancellation $p_i^{m_i} \cdot p_k^{m_k} = p_i^{n_i} \cdot \cdot \cdot p_k^{n_k}$.

If i = 1 this is still true. Again by cancellation we get

$$p_i^{m_i - n_i} p_{i+1}^{m_{i+1}} \cdots p^{m_k} \ = p_{i+1}^{n_{i+1}} \cdots p_k^{n_k} \ \ if \ i < k$$

or

$$p^{m_i-n_i} = 1 \quad if \qquad i = k$$

In the first case $p_i \left| p_{i+1}^{n_{i+1}} \cdots p_k^{n_k} \right|$ - a contradiction. The seconds yields a more absurd contradiction

Example 10. $180 = 2^2 3^2 5^1$

Remark 4. This factorization result is called the <u>fundamental</u> <u>theorem</u> of <u>arithmetic</u>.

Corollary 7.1 (of the claim) If a > 0, p is prime, t > 0 and $p^t | a$ then p appears in the factorization of a to a power m such that $t \le m$.

Proof Exercise 7

Corollary 7.2 If $a, b \in Z^+$ and we write

$$\begin{aligned} a &= p_1^{e_1} \ p_2^{e_2} \cdots p_k^{e_k} \ , \ each \ e_i \ge 0 \\ b &= p_1^{f_1} \ p_2^{f_2} \cdots p_{\nu}^{f_k} \ , \ each \ f_i \ge 0 \end{aligned}$$

then

$$\begin{split} gcd(a,\,b) &= p_1^{min(e_1,f_1)} \ p_2^{min(e_2,f_2)} \cdots p_k^{min(e_k,f_k)} \\ \text{and} \quad lcm(a,\,b) &= p_1^{max(e_1,f_1)} p_2^{max(e_2,f_2)} \cdots p_k^{max(e_k,f_k)} \end{split}$$

<u>Proof</u> By the previous corollary, if $gcd(a, b) = q_1^{z_1} \cdots q_\ell^{z_\ell}, z_i > 0$

then each q_i is a prime division of a and of b. Futhermore with $\{p_1, p_2, ..., p_k\}$ equal to the union of the prime divisors of a and b, if $p_i = q_i$ then $z_i \le e_i$, f_i , i.e

$$z_i \le \min(e_j, f_j)$$
. Hence $gcd(a, b) = p_1^{\alpha_1} p_2^{\alpha_2} \cdot p_k^{\alpha_k}$

where
$$\alpha_i \leq \min(e_i, f_i)$$

But
$$p_1^{min(e_1,f_1)} \ p_2^{min(e_2,\ f_2)} \cdots p_k^{min(e_k,f_k)} \ \Big| a, b$$

so
$$gcd(a, b) = p_1^{min(e_1, f_1)} \cdots p_k^{min(e_k, f_k)}$$

Next set

$$\ell cm(a, b) = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k} c, \beta_i > 0, c \ge 1$$

since, by the previous corollary each p_i i=1,...,k must be in the fatorization for $\ell cm(a,b)$. Again by the previous corollary each $\beta_i \geq e_i$, $f_i(so \beta_i \geq max(e_i,f_i))$ Furthermore,

a, b
$$|p_1^{\max(e_1,f_1)}p_2^{\max(e_2,f_2)}\cdots p_k^{\max(e_k,f_k)}$$

(WHY?)

so

$$\ell cm(a,\,b) = \prod_{i=1}^k \; p_i^{max(e_1,f_i)}$$

Remark 5. Use of this result trivializes Exercises 4 and 5.

Example 11. If
$$a = 24 = 2^3 \cdot 3^1$$
 and $b = 36 = 2^2 \cdot 3^2$ then

$$gcd(24, 36) = 2^2 3^1 = 12$$

and

$$\ell$$
cm(24, 36) = $2^3 \cdot 3^2 = 72$

Next we study a function defined on Z^+ which plays an important role in the study of "residue systems" - a topic of concern in the study of cryptography.

Definition (Euler phi function; Euler totient function)

$$\varphi(n)\underline{\Delta}|\{m \in [n]|\gcd(m, n) = 1\}|, n \ge 1.$$

We derive some of the properties of $\varphi(n)$, the first of which is trivial:

(p1) \forall primes p (φ (p) = p - 1)

The next one is a generalization of p1.

(p2)
$$\forall$$
 primes p and $e \ge 1$ ($\varphi(p^e) = p^e(1 - \frac{1}{p})$)

<u>Proof</u> Observe that for $k \in [p^e]$

$$gcd(k, p^e) > 1 \Leftrightarrow k = pm \text{ such that } 1 \le m \le p^{e-1}$$

Thus

$$\left|\left\{k \in \left[p^{e}\right] \middle| gcd(k, p^{e}) > 1\right\}\right| = p^{e-1}$$

SO

$$\varphi(p^{e}) = p^{e} - p^{e-1} = p^{e}(1 - \frac{1}{p}).$$

Next we prove that φ is "multiplicative".

$$(p3) \forall m, n \in \mathbb{Z}^+ (\gcd(m,n) = 1 \Rightarrow \varphi(mn) = \varphi(m) \varphi(n))$$

<u>Proof</u> Let $E(t) = \{s \in [t] | gcd(s, t) = 1\}$. We obtain the result by proving

that \exists a bijection between E (nm) and E(n) X E(m). Consider $x \in E(nm)$.

Then there exists unique

$$r_n, r_m$$
 such that $1 \le r_n \le n$, $1 \le r_m \le m$

and

$$x = q_n + r_n = q_m + r_m$$

(<u>Proof Exercise 8</u> - use the Division Algorithm)

Since gcd
$$(x, n m) = 1$$
, we get gcd $(x,n) = gcd(x, m) = 1$. Thus $r_n \in E(n), r_m \in E(m)$.

Consider the following mapping:

$$\begin{array}{ccc} f \colon E \; (nm) \; \to & \; E(n) \; \; x \; E(m) \\ x \; \to & \; f(x) \underline{\Delta}(r_{_{\! n}}, r_{_{\! m}}) \end{array}$$

The following claim establishes bijectivity:

Claim $\forall (s, t) \in E(n) \times E(m) \exists a \text{ unique } x \in E(nm)$

such that

$$x = q_n + s = q_m + t$$

<u>Proof</u> First we prove the existence of x. Since $gcd(n, m) = 1 \exists \alpha, \beta \in Z$ such that

$$\alpha n + \beta m = 1$$

Thus

$$[\alpha(t-s)] n + [\beta(t-s)] m = t-s$$

so \exists $q_1, q_2 \in Z$ such that $q_1 n + q_2 m = t - s$

or

$$q_1 n + s = (-q_2) m + t$$

By the division algorithm $\exists \eta$, r_1 such that $q_1 = \eta m + r_1$ where

$$0 \le r_1 \le m - 1$$

Hence

$$x \triangleq r_1 n + s = (q_1 - \eta m) n + s = (q_2 - \eta n) m + t$$

Clearly

$$1 \le x \le (m-1) n + n = mn$$

Also gcd(n, s) = 1 forces gcd(x, n) = 1. Likewise

gcd(x, m) = 1. Hence gcd(x, nm) = 1 as well and $x \in E(nm)$.

As for uniqueness suppose $\exists x, x' \in E(nm)$ such that

$$x = q_n n + s = q_m m + t$$

and

$$x' = q'_{n} + s = q'_{m} + t$$

Then assuming x > x', we get

$$0 < \left(q_{n} - q'_{n}\right) n = \left(q_{m} - q'_{m}\right) m$$

But then $m \mid (q_n - q'_n)$ n; and as gcd(m, n) = 1 $m \mid q_n - q'_n$

i.e
$$m \ n \ | \ (q_n - q'_n) n \ and \ 0 < (q_n - q'_n) n = x - x' < nm$$

This contradiction forces x = x'.

<u>Remark 6</u> The previous claim is a special case of the Chinese Remainder theorem; a theorem we shall prove in short order.

Finally we obtain the next property by induction

(p4)
$$\forall n \ge z \text{ (if } n = p_1^{e_1} \cdots p_k^{e_k} \text{ then } \varphi(n) = n \prod_{i=1}^k (1 - \frac{1}{p_i^e}))$$

The conclusion follows from the induction hypothesis and $\,p_{\,2}$.

Exercise 9. (Submit a) a) Prove (p4) directly using inclusion-exclusion

Hint: With $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ set

$$A_{i} = \{ m \in [n] \mid p_{i} \mid m \}$$

Then

$$E(n) = \bigcap_{i=1}^{k} A_i^c$$

- b) Using (p4) obtain p_2 and p_3
- c) Find φ (n) for $n \in \lceil 12 \rceil$