Simulazione di Compito

24 aprile 2024

Tempo a disposizione: 2 ore.

1. Calcola il numero di sottogruppi isomorfi a D_6 in S_6 .

Soluzione. Se H < S₆ è isomorfo a D₆, ha un sottogruppo ciclico N di ordine 6, quindi della forma N = $\langle \sigma \rangle$, dove $\sigma \in S_6$ è un 6-ciclo o un 3,2-ciclo. Poiché σ è normale in H, dev'essere H < $\mathbf{N}_{S_6}(N)$. Calcoliamo allora $|\mathbf{N}_{S_6}(N)|$. Vale intanto $\mathbf{C}_{S_6}(N) = \mathbf{C}_{S_6}(\sigma)$, che ha cardinalità 6: infatti, $|\operatorname{cl}(\sigma)|$ vale 5! = 120 se σ è un 6-ciclo, e $\binom{6}{3} \cdot 2 \cdot \binom{3}{2} = 120$ se σ è un 3,2-ciclo, perciò $\mathbf{C}_{S_6}(\sigma)$ ha in ogni caso ordine $|S_6|/120 = 6$, da cui necessariamente coincide con N = $\langle \sigma \rangle$.

Si ha poi che $\mathbf{N}_{S_6}(N)/\mathbf{C}_{S_6}(N)$ si immerge in $\mathrm{Aut}(N) \simeq \mathrm{Aut}(\mathbb{Z}/6) \simeq \mathbb{Z}/2$ per il lemma N/C, e pertanto N ha indice al più 2 in $\mathbf{N}_{S_6}(N)$: poiché $\mathbf{N}_{S_6}(N)$ contiene H, che ha ordine 12, tale indice dev'essere necessariamente 2, da cui $|\mathbf{N}_{S_6}(N)| = 12$ e, per cardinalità, $\mathbf{N}_{S_6}(N) = H$.

Abbiamo quindi ottenuto che un sottogruppo isomorfo a D_6 in S_6 è il normalizzatore del sottogruppo N generato un elemento $\sigma \in S_6$ di ordine 6. Il numero di tali σ , per quanto già osservato, è 120+120=240, e pertanto i possibili N sono $240/\phi(6)=120$. Infine, se due sottogruppi $N=\langle \sigma \rangle, N'=\langle \sigma' \rangle < S_6$ ciclici di ordine 6 hanno lo stesso normalizzatore, devono necessariamente coincidere: poiché quest'ultimo è isomorfo a D_6 , contiene esattamente 2 elementi di ordine 6, e lo stesso vale per entrambi N, N'; pertanto, σ' deve coincidere con uno tra σ e σ^{-1} , e perciò N=N'.

In conclusione, i sottogruppi isomorfi a D_6 in S_6 sono 120.

- **2.** Sia G un gruppo finito, e sia p un primo che divide |G|.
 - i) Se G = HK per certi $H, K \leq G$, mostra che esiste un p-Sylow P di G tale che $P \cap H \in Syl_p(H)$ e $P \cap K \in Syl_p(K)$.

- ii) Se G è isomorfo a un prodotto semidiretto $N \times H$ per certi $N, H \leq G$, dimostra che un p-Sylow P di G è isomorfo a un prodotto semidiretto $Q \times R$, con $Q \in Syl_n(N)$, $R \in Syl_n(H)$.
- Soluzione. i) Verifichiamo intanto che, se Q < H è un p-Sylow di H, esiste un p-Sylow P di G tale che P∩H = Q: siccome Q è, in particolare, un p-sottogruppo di G, dal teorema di Sylow segue che esiste $P \in Syl_p(G)$ tale che Q < P. Ma allora $P \cap H \supset Q$, e $P \cap H$ è un p-sottogruppo di H: ne segue che $|P \cap H| \leq |Q|$, e pertanto vale $P \cap H = Q$ per cardinalità. Applicando il ragionamento appena visto separatamente a H e K, si ottiene che esistono $P, \widetilde{P} \in Syl_p(G)$ tali che $P \cap K$ è un p-Sylow di K e $\widetilde{P} \cap H$ è un p-Sylow di H.

Ora, ancora per il teorema di Sylow, dev'essere $\widetilde{P}=xPx^{-1}$ per qualche $x\in G$. Inoltre, poiché G=HK, si ha x=hk per certi $h\in H$ e $k\in K$. Allora

$$\widetilde{P} \cap H = xPx^{-1} \cap H = hkPk^{-1}h^{-1} \cap H = h(kPk^{-1} \cap H)h^{-1},$$

dove l'ultima uguaglianza segue dal fatto che $h \in H$. Se allora $Q := kPk^{-1}$, si ottiene che $Q \cap H$ è un p-Sylow di H, in quanto coniugato, tramite h, a $\widetilde{P} \cap H \in Syl_p(H)$.

D'altra parte, si ha anche che Q∩K è un p-Sylow di K: infatti,

$$Q\cap K=kPk^{-1}\cap K=k(P\cap K)k^{-1}$$

perché $k \in K$, e si conclude come sopra che $Q \cap K \in Syl_p(K)$ perché coniugato via k a un p-Sylow di K. Quindi, Q è il p-Sylow di G cercato.

ii) Essendo G un prodotto semidiretto di N e H, si ha in particolare che G = NH.

Poiché, per Sylow, tutti i p-Sylow di G sono isomorfi, è sufficiente mostrare la tesi per un p-Sylow P come in (i), cioè tale che $P \cap N \in Syl_p(N)$ e $P \cap H \in Syl_p(H)$.

Verifichiamo allora le ipotesi necessarie affinché P sia un prodotto semidiretto $(P \cap N) \times (P \cap H)$.

Certamente $P \cap N$ è normale in P, in quanto N è normale in G. Inoltre, $(P \cap N) \cap (P \cap H) = P \cap N \cap H = 1$ poiché già $N \cap H = 1$ per ipotesi.

Resta da vedere che si ha $P = (P \cap N)(P \cap H)$. Se $|G| = p^n \cdot m$ e $|N| = p^a \cdot l$, con m, l coprimi con p, da $|G| = |N| \cdot |H|$ si ottiene che la massima potenza di p che divide |H| dev'essere p^{n-a} ; ma allora, $|P \cap N| = p^a$ e $|P \cap H| = p^{n-a}$.

Allora vale

$$|(P\cap N)(P\cap H)|=\frac{|(P\cap N)|\cdot|(P\cap H)|}{|(P\cap N)\cap(P\cap H)|}=|(P\cap N)|\cdot|(P\cap H)|=\mathfrak{p}^{\mathfrak{n}}.$$

Dal fatto che, evidentemente, $(P \cap N)(P \cap H) \subset P$, si ottiene l'uguaglianza per cardinalità. La tesi segue.

- 3. i) Sia p un primo, e sia $G = A_{p+1}$. Se P è un p-Sylow di G, calcola la cardinalità di $N_G(P)$.
 - ii) Mostra che un gruppo di ordine 336 non è semplice.

Soluzione. i) Se p=2, vale $G=A_3\simeq \mathbb{Z}/3$, che ha un unico 2-Sylow banale, il cui normalizzatore è l'intero A_3 . Supponiamo allora p>2.

Ricordando che $[G:\mathbf{N}_G(P)]$ è il numero \mathfrak{n}_p dei p-Sylow di G, è sufficiente calcolare quest'ultimo.

Vale $|A_{p+1}| = (p+1)!/2$, pertanto un p-Sylow P di A_{p+1} ha cardinalità p, ed è quindi un sottogruppo di S_{p+1} generato da un p-ciclo. Viceversa, poiché p è dispari, i p-cicli di S_{p+1} stanno in A_{p+1} : pertanto, il numero n_p di p-Sylow di A_{p+1} coincide col numero di sottogruppi di S_{p+1} generati da p-cicli. Ora, i p-cicli di S_{p+1} sono

$$\binom{p+1}{p} \cdot (p-1)! = (p+1) \cdot (p-1)!,$$

e pertanto $n_p = (p+1) \cdot (p-2)!$ dato che ogni sottogruppo generato da un p-ciclo contiene esattamente $\varphi(p) = p-1$ dei p-cicli. Si conclude quindi che

$$|\mathbf{N}_{G}(P)| = \frac{|G|}{n_{p}} = \frac{p(p-1)}{2}.$$

ii) Supponiamo per assurdo che esista un gruppo G semplice tale che $|G| = 336 = 2^4 \cdot 3 \cdot 7$. Allora, n_7 è un divisore di $2^4 \cdot 3$ congruo a 1 (mod 7), e quindi è 1 oppure 8: siccome

G è semplice, dev'essere $n_7=8$. Pertanto, l'azione di G sui suoi 7-Sylow induce un omomorfismo $\varphi:G\to S_8$. Tale omomorfismo è certamente non banale: poiché l'azione di G è transitiva, im φ è un sottogruppo transitivo di S_8 , e quindi S_8 divide la sua cardinalità per il lemma orbita-stabilizzatore. Ne segue che ker $\varphi\neq G$, e quindi necessariamente ker $\varphi=1$ perché G è semplice. Quindi, a meno di identificare G con im φ , G è un sottogruppo di S_8 , e in realtà di S_8 (altrimenti, S_8) sarebbe un sottogruppo di indice 2 di S_8 , e quindi necessariamente normale).

Ma allora un 7-Sylow P di G è un 7-Sylow di A_8 , e $\mathbf{N}_G(P) = \mathbf{N}_{A_8}(P) \cap G < \mathbf{N}_{A_8}(P)$. D'altra parte, $[G:\mathbf{N}_G(P)] = \mathfrak{n}_P(G) = 8$, cioè $|\mathbf{N}_G(P)| = |G|/8 = 42$, mentre $|\mathbf{N}_{A_8}(P)| = (7\cdot 6)/2 = 21$ per il punto (i). Di conseguenza, l'inclusione $\mathbf{N}_G(P) < \mathbf{N}_{A_8}(P)$ risulta assurda. \square