Lecture 12

Part 3 Estimation and Hypothesis Test

ECON2843 1/38

Estimation

ECON2843 2 / 38

I Have a Problem...

▶ I ask myself at night, "Am I smarter than the average person?"

▶ Step 1: Establish a variable of interest, such as IQ.

▶ Step 2: Compare my IQ to a benchmark (population mean IQ).

4□ > 4□ > 4 = > 4 = > = 90

ECON2843 3 / 38

I Have a Problem...

▶ Randomly select a representative sample from the population.

Compare my IQ to the mean IQ of the sample.

➤ So we are using a sample statistic (sample mean IQ) to estimate a population parameter (population mean IQ).

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ ■ 9000

ECON2843 4 / 38

Sample Statistics as Estimators

- What did we see last topic?
- On average, the sample mean is approximately equal to the population mean.
 - ▶ The expected value of the sample mean was equal to the population mean, i.e., $E(\bar{X}) = \mu$.
- As the sample size increased, the sample mean was much closer to the population mean.
 - ▶ The variance of the sample mean decreased as the sample size increased, i.e., $V(\bar{X}) = \frac{\sigma^2}{n}$.

4□ > 4□ > 4 = > 4 = > = 90

ECON2843 5 / 38

Two Types of Estimators

- ▶ **Point estimator:** Draws inferences about a population by using a single value, calculated from a sample, to estimate an unknown population parameter.
- ▶ Interval estimator: Draws inferences about a population by using an interval or range of values, calculated from a sample, to estimate an unknown population parameter.

ECON2843 6 / 38

Point Estimators

- ▶ We have already seen examples of point estimators, e.g., \bar{X} for μ and s^2 for σ^2 .
- ▶ But there are many different sample statistics that we could use to estimate any particular population parameter.
- ▶ For example, we could also use the sample median to estimate μ .
- ▶ Given a population parameter, how can we choose which sample statistic to use as an estimator?

ECON2843 7 / 38

Bias of a Point Estimator

- Let θ be some population parameter and let $\hat{\theta}$ denote a point estimator of θ .
- ▶ The **bias** of a point estimator is defined to be:

$$B(\hat{\theta}) = E(\hat{\theta}) - \theta$$

▶ A point estimator is **unbiased** if $B(\hat{\theta}) = 0$, i.e., if $E(\hat{\theta}) = \theta$.

ECON2843 8 / 38

Example of a Biased Point Estimator

► Consider estimating the population variance σ^2 using the sample variance:

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

► This estimator is biased because:

$$E(S^2) = \frac{n-1}{n}\sigma^2 \neq \sigma^2$$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

ECON2843 9 / 38

Bias of a Point Estimator

ECON2843 10 / 38

A Real-world Example

- Scenario: Estimating average fish length in a lake
- ▶ Biased method: Using a net with 10cm gaps between threads
- ▶ This method is biased because:

Fish smaller than 10cm escape through the gaps Estimated average length will be higher than true average

▶ If true average length is 12cm:

Biased estimate might be 15cm
Bias = 15cm - 12cm = 3cm (overestimation)

 Unbiased alternative: Use a net with very small gaps or a variety of gap sizes

ECON2843 11 / 38

Bias of a Point Estimator

- Unbiasedness is a desirable quality of a point estimator.
- ▶ We know that $E(\bar{X}) = \mu$, so \bar{X} is an unbiased estimator of μ .
- ▶ We have shown that $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ is an unbiased estimator of σ^2 .

ECON2843 12 / 38

Variance of a Point Estimator

▶ If $\hat{\theta}$ is a point estimator of θ , the **variance** of $\hat{\theta}$ is:

$$V(\hat{\theta}) = E\left(\left(\hat{\theta} - E(\hat{\theta})\right)^2\right)$$
$$= E(\hat{\theta}^2) - \left(E(\hat{\theta})\right)^2$$

▶ We would like our estimators to have low variance.

ECON2843 13 / 38

Variance of a Point Estimator

High Variance

ECON2843 14 / 38

Low vs High Variance Estimators

- ▶ If you want to estimate average daily sales in a coffee shop
- ➤ Low Variance Estimator: Average sales over 30 days Example results: \$985, \$1010, \$995 (multiple samples) Low spread around true value
- ▶ High Variance Estimator: Sales from a single randomly chosen day

Example results: \$1200, \$800, \$1100 (multiple samples) High spread around true value

Implications:

Low variance: More reliable estimates High variance: Less reliable, more prone to extreme values

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (C)

ECON2843 15 / 38

Bias and Variance

Biased and Low Variance

Unbiased and High Variance

ECON2843 16 / 38

Trade-off

- ► There is often a trade-off between minimizing bias and minimizing variance. Why the trade-off?
 - Reducing bias often increases complexity of the estimator
 - ▶ More complex estimators tend to have higher variance

ECON2843 17 / 38

Mean Squared Error of a Point Estimator

▶ If $\hat{\theta}$ is a point estimator of θ , the **mean squared error** of $\hat{\theta}$ is defined to be:

$$MSE(\hat{\theta}) = E\left(\left(\hat{\theta} - \theta\right)^{2}\right)$$
$$= V(\hat{\theta}) + \left(B(\hat{\theta})\right)^{2}$$

- ▶ MSE can be useful for comparing point estimators.
- ▶ Mean Squared Error (MSE) = Variance + $Bias^2$

◆ロト ◆個ト ◆ 恵ト ◆ 恵ト ・ 恵 ・ 夕久で

ECON2843 18 / 38

Mean Squared Error: Understanding the Bias-Variance Trade-off

▶ MSE can be decomposed into two components:

$$MSE = Bias^2 + Variance$$

▶ **Bias**: How far off our predictions are from the true value.

High bias: Underfitting (oversimplified model) Low bias: Captures underlying pattern well

▶ Variance: How much our predictions vary for different samples.

High variance: Overfitting (too sensitive to noise in data)

Low variance: More stable predictions across samples

ECON2843 19 / 38

Mean Squared Error: Understanding the Bias-Variance Trade-off

► The Trade-off:

As model complexity increases: Bias \downarrow , Variance \uparrow As model complexity decreases: Bias \uparrow , Variance \downarrow

▶ Goal: Find the sweet spot that minimizes total error (MSE)

ECON2843 20 / 38

Bias-Variance Trade-off: House Price Prediction

- Predicting house prices based on square footage
- ▶ Data(our sample): 100 houses with their prices and square footage
- We use two ways to estimate
 - ▶ Linear: Price = $a \times (Square\ Footage) + b$
 - ▶ Quadratic: Price = $a \times (Square\ Footage)^2 + b \times (Square\ Footage) + c$

◆ロト ◆個ト ◆ 恵ト ◆ 恵ト ・ 恵 ・ 夕久で

ECON2843 21 / 38

Bias-Variance Trade-off: House Price Prediction

► Results:	Model	Bias	Variance	MSE	
	Linear	High	Low	10,000	
	Quadratic	Low	High	8,000	

- Interpretation:
 - ▶ Linear: Underfits (high bias), but consistent (low variance)
 - ▶ Quadratic: Balances bias and variance, lowest overall error
- ▶ The quadratic model finds the "sweet spot" in the bias-variance trade-off for this dataset.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Price_i - Price_i)^2, \quad n = 100 \text{ here}$$

Why We Need MSE: For Consistency!

- ▶ An estimator is said to be *consistent* if it approaches (i.e., gets closer to) the population parameter as the sample size increases.
- In other words...
- ▶ We can use the mean squared error to measure closeness.
- ▶ Let $\hat{\theta}$ be a point estimator of θ . If $MSE(\hat{\theta}) \to 0$ as $n \to \infty$, then $\hat{\theta}$ is a **consistent** estimator of θ .
- Now you should be able to tell me what is a point estimator: Mean, Median, Mode, Variance?

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなぐ

ECON2843 23 / 38

Consistency: Examples

▶ Is \bar{X} a consistent estimator of μ ? Yes!

▶ We know that $E(\bar{X}) = \mu$ and $V(\bar{X}) = \frac{\sigma^2}{n}$. ∴ $MSE(\bar{X}) = \frac{\sigma^2}{n} + 0^2 \to 0$ as $n \to \infty$

ECON2843 24 / 38

Recall the Sample Proportion We Learned

 $X = \sum_{i=1}^{n} X_i$, where

$$X_i = \begin{cases} 1 & \text{person } i \text{ prefers Coke over Pepsi} \\ 0 & \text{otherwise} \end{cases}$$

So \hat{p} is just **the sample mean** of a sample of independent Bernoulli random variables:

$$\hat{p} = \frac{X}{n} = \frac{\sum_{i=1}^{n} X_i}{n}$$

ECON2843 25 / 38

Consistency: Examples

▶ Is the sample proportion, $\hat{p} = \frac{X}{n}$, a consistent estimator of p? Yes!

▶ Previously we showed that $E(\hat{p}) = p$ and $V(\hat{p}) = \frac{p(1-p)}{n}$. ∴ $MSE(\hat{p}) = \frac{p(1-p)}{n} + 0^2 \to 0$ as $n \to \infty$

ECON2843 26 / 38

Is sample variance a consistent estimator for population variance?

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}, \quad \sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu)^{2}$$

- \triangleright We have proved unbiasedness of s^2 .
- ▶ And we just proved, as $n \to \infty$:
 - $\bar{X} \rightarrow \mu$ (sample mean converges to population mean)

Recall that

$$MSE = Bias^2 + Variance$$

For this question, we need to calculate the variance of sample variance!

27 / 38

Variance of the Sample Variance

The variance of S^2 , by the shortcut formula $V(X) = \mathbb{E}(X^2) - \mathbb{E}(X^2)$, is:

$$V(S^2) = \mathbb{E}[(S^2)^2] - (\mathbb{E}[S^2])^2 = \mathbb{E}[(S^2)^2] - \sigma^4$$

After expansion and using properties of expectations:

$$\operatorname{Var}(S^2) = \frac{\mathbb{E}(X_i^4)}{n} - \frac{\sigma^4(n-3)}{n(n-1)} \to 0, \text{ as } n \to \infty$$

ECON2843 28 / 38

Relative Efficiency

Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two *unbiased* point estimators of θ . The **relative efficiency** of $\hat{\theta}_1$ with respect to $\hat{\theta}_2$ is defined to be:

$$\operatorname{eff}(\hat{\theta}_1, \hat{\theta}_2) = \frac{V(\hat{\theta}_2)}{V(\hat{\theta}_1)}$$

➤ The unbiased estimator with the smaller variance is said to be relatively more efficient.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

ECON2843 29 / 38

Relative Efficiency

For example, for a normal distribution, it can be shown that the sample median has expected value equal to μ and variance equal to $\frac{1.5708 \times \sigma^2}{n}$.

$$\therefore \operatorname{eff}(\bar{X},\operatorname{Med}) = \tfrac{V(\operatorname{Med})}{V(\bar{X})} = \tfrac{\tfrac{1.5708 \times \sigma^2}{n}}{\tfrac{\sigma^2}{n}} = 1.5708$$

▶ Since $\operatorname{eff}(\bar{X},\operatorname{Med})>1$, i.e., $V(\bar{X})< V(\operatorname{Med})$, \bar{X} is relatively more efficient than the sample median for estimating μ in a normal distribution.

ECON2843 30 / 38

Interval Estimators

- Why use interval estimators?
 - Point estimators will almost always be wrong.
 - ▶ Difficult to tell how close a point estimator is to the parameter.
 - Point estimators do not reflect the effects of larger sample sizes.
- ▶ How do we construct an interval estimator?
 - Recall that sampling distributions gave us the distribution of an estimator (sample statistic).
 - We will use probabilities derived from the sampling distribution of the estimator to construct an interval estimator.

ECON2843 31 / 38

Estimating μ (σ^2 Known)

- ▶ To construct an interval estimator for μ based on \bar{X} (when the population variance is known) we will use its sampling distribution via the Central Limit Theorem.
- Specifically, we know that the sample mean follows a normal distribution for large sample sizes.
- ▶ We will use the z-tables to determine the associated probabilities.

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

ECON2843 32 / 38

Central Limit Theorem

 \triangleright From the CLT, we know that for large n:

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

▶ And if we standardize, we get:

$$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

ECON2843 33 / 38

Standard Normal Distribution

$$P(-1.96 < Z < 1.96) = 0.95$$

ECON2843 34 / 38

Standard Normal Distribution

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	80.0	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952

ECON2843 35 / 38

Interval Estimator for μ

$$P(-1.96 < Z < 1.96) = 0.95$$

$$P\left(-1.96 < \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} < 1.96\right) = 0.95$$

$$P\left(-1.96 \frac{\sigma}{\sqrt{n}} < \bar{X} - \mu < 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

$$P\left(-1.96 \frac{\sigma}{\sqrt{n}} - \bar{X} < -\mu < 1.96 \frac{\sigma}{\sqrt{n}} - \bar{X}\right) = 0.95$$

$$P\left(1.96 \frac{\sigma}{\sqrt{n}} + \bar{X} > \mu > -1.96 \frac{\sigma}{\sqrt{n}} + \bar{X}\right) = 0.95$$

$$P\left(\bar{X} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

ECON2843 36 / 38

95% Confidence Interval for μ

▶ So our interval estimator for μ when σ^2 is known is given by:

$$\bar{X} \pm 1.96 \frac{\sigma}{\sqrt{n}} = \left(\bar{X} - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right)$$

- ▶ This is called a 95% **confidence interval** for μ .
- ▶ What this means: In repeated sampling, 95% of the intervals created in this way would contain μ and 5% would not.

4□ > 4□ > 4 = > 4 = > = 90

ECON2843 37 / 38

95% Confidence Interval for μ

$$P\left(\bar{X} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

▶ What made this a 95% confidence interval?

$$\bar{X} \pm 1.96 \frac{\sigma}{\sqrt{n}} = \left(\bar{X} - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right)$$

ECON2843 38 / 38