MODELLI E METODI PER IL SUPPORTO ALLE DECISIONI

ESERCIZIO 1. (9 punti) Si applichi l'algoritmo ungherese a un problema con questa tabella dei costi

$$T_0 = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 & b_5 \\ a_1 & 8 & 6 & 2 & 9 & 9 \\ a_2 & 7 & 8 & 2 & 5 & 6 \\ a_3 & 5 & 5 & 2 & 3 & 4 \\ a_4 & 6 & 7 & 2 & 6 & 7 \\ a_5 & 8 & 6 & 2 & 7 & 8 \end{bmatrix}$$

È vero che se azzero i costi di assegnamento di b_2 con ogni elemento dell'insieme A, può esistere una soluzione ottima con costo totale di assegnamento minore o uguale a 12?

ESERCIZIO 2. (10 punti) Sia data la rete G = (V, A) con

$$V = \{1, 2, 3, 4, 5\}$$

$$A = \{(1,2), (1,4), (2,3), (2,4), (3,4), (3,5), (4,5), (5,1)\}$$

con i seguenti costi unitari di trasporto c_{ij} e capacità d_{ij}

arco	(1, 2)	(1,4)	(2,3)	(2,4)	(3,4)	(3, 5)	(4, 5)	(5,1)
c_{ij}	-3	7	-4	4	3	5	1	2
d_{ij}	2	6	3	7	1	8	7	5

e i seguenti valori b_i associati ai nodi

nodo	1	2	3	4	5
b_i	5	0	0	-4	-1

Verificare che alla terna

$$B = \{(1,4), (2,4), (3,4), (4,5)\}$$
 $N_0 = \{(1,2), (2,3), (3,5), (5,1)\}$ $N_1 = \emptyset$.

corrisponde una soluzione di base ammissibile e partire da questa per determinare una soluzione ottima e il valore ottimo per questo problema. Cosa succede se le capacità di tutti gli archi vengono portate a $+\infty$?

ESERCIZIO 3. (6 punti) Si dimostri la correttezza dell'algoritmo di Ford-Fulkerson.

ESERCIZIO 4. (6 punti) Si descrivano i quattro diversi gradi di difficoltà dei problemi basati sulla difficoltà dei relativi problemi di approssimazione.