

Modulhandbuch

Studienbereich Technik

School of Engineering

Studiengang Informatik

Computer Science

Studienrichtung Angewandte Informatik

Applied Computer Science

Studienakademie

MANNHEIM

Curriculum (Pflicht und Wahlmodule)

Aufgrund der Vielzahl unterschiedlicher Zusammenstellungen von Modulen können die spezifischen Angebote hier nicht im Detail abgebildet werden. Nicht jedes Modul ist beliebig kombinierbar und wird möglicherweise auch nicht in jedem Studienjahr angeboten. Die Summe der ECTS aller Module inklusive der Bachelorarbeit umfasst 210 Credits.

	Festgelegter Modulbereich		ECTS
Modulnummer	Modulbezeichnung	Studienjahr	Leistungspunkte
T3INF1001	Mathematik I	1. Studienjahr	8
T3INF1002	Theoretische Informatik I	1. Studienjahr	5
T3INF1003	Theoretische Informatik II	1. Studienjahr	5
T3INF1004	Programmieren	1. Studienjahr	9
T3INF1005	Schlüsselqualifikationen	1. Studienjahr	5
T3INF1006	Technische Informatik I	1. Studienjahr	5
T3INF2001	Mathematik II	2. Studienjahr	6
T3INF2002	Theoretische Informatik III	2. Studienjahr	6
T3INF2003	Software Engineering I	2. Studienjahr	9
T3INF2004	Datenbanken	2. Studienjahr	6
T3INF2005	Technische Informatik II	2. Studienjahr	8
T3INF2006	Kommunikations- und Netztechnik	2. Studienjahr	5
T3INF3001	Software Engineering II	3. Studienjahr	5
T3INF3002	IT-Sicherheit	3. Studienjahr	5
T3_3101	Studienarbeit	3. Studienjahr	10
T3_1000	Praxisprojekt I	1. Studienjahr	20
T3_2000	Praxisprojekt II	2. Studienjahr	20
T3_3000	Praxisprojekt III	3. Studienjahr	8
T3INF4101	Web Engineering	1. Studienjahr	3
T3INF4103	Anwendungsprojekt Informatik	1. Studienjahr	5
T3INF4305	Softwarequalität und Verteilte Systeme	3. Studienjahr	5
T3INF4304	Datenbanken II	3. Studienjahr	5
T3INF4122	Workflowmanagement	1. Studienjahr	5
T3INF4124	Software-Praxis Al	1. Studienjahr	5
T3INF4905	Wahlmodul Informatik	2. Studienjahr	5
T3INF4213	Web-Engineering 2 und Anwendungen	2. Studienjahr	5
T3INF4324	Consulting, technischer Vertrieb und Recht	3. Studienjahr	5
T3INF4219	International Business	3. Studienjahr	5
T3INF4907	Wahlmodul Business IT	3. Studienjahr	5
T3INF4903	Wahlmodul Informatik II	3. Studienjahr	5
T3_3300	Bachelorarbeit	3. Studienjahr	12

Mathematik I (T3INF1001)

Mathematics I

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Mathematik I	T3INF1001	Deutsch	Prof. Dr. Reinhold Hübl

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
1. Studienjahr	2	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausurarbeit	Siehe Pruefungsordnung	ja
Klausurarbeit	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
240	96	144	8

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Mit Abschluss des Moduls haben die Studierenden die Fähigkeit zu mathematischem Denken und Argumentieren entwickelt. Sie verfügen über ein Grundverständnis der diskreten Mathematik, der linearen Algebra und der Analysis einer reellen Veränderlichen. Sie sind in der Lage, diese Kenntnisse auf Probleme aus dem Bereich der Ingenieurwissenschaften und Informatik anzuwenden.		
Methodenkompetenz	Mathematik fördert logisches Denken, klare Strukturierung, kreative explorierende Verhaltensweisen und Durchhaltevermögen.		
Personale und Soziale Kompetenz	-		
Übergreifende Handlungskompetenz	Die Studierenden sind in der Lage, naturwissenschaftlich-technische Vorgänge mit Hilfe der diskreten Mathematik, der linearen Algebra und der Analysis zu beschreiben. Sie beginnen, Algorithmen der numerischen Mathematik zu nutzen und diese in lauffähige Programme umzusetzen.		

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium	
Lineare Algebra	48	72	
- Grundlagen der diskreten Mathematik - Grundlegende algebraische Strukturen - Vektorräume und lineare Abbildungen - Determinanten, Eigenwerte, Diagonalisierbarkeit - Anwendungsbeispiele.			
Analysis	48	72	
- Folgen und Reihen, Stetigkeit - Differentialrechnung einer Veränderlichen im Reellen - Integralrechnung einer Veränderlichen im Reellen - Anwendungsbeispiele			

Besonderheiten und Voraussetzungen

Besonderheiten

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

Voraussetzungen

Γ-

Literatur

- Beutelspacher: Lineare Algebra, Vieweg+Teubner - Fischer: Lineare Algebra, Vieweg+Teubner - Hartmann: Mathematik für Informatiker, Vieweg+Teubner - Lau:

Algebra und Diskrete Mathematik 1, Springer - Teschl, Teschl: Mathematik für Informatiker: Band 1. diskrete Mathematik und lineare Algebra, Springer - Kreußler, Pfister: Mathematik für Informatiker: Algebra, Analysis, Diskrete Strukturen, Springer

- Estep: Angewandte Analysis in einer Unbekannten, Springer - Hartmann: Mathematik für Informatiker, Vieweg+Teubner - Hildebrandt: Analysis 1, Springer - Teschl, Teschl: Mathematik für Informatiker: Band 2. Analysis und Statistik, Springer

Theoretische Informatik I (T3INF1002)

Theoretical Computer Science I

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Theoretische Informatik I	T3INF1002	Deutsch	Prof. Dr.rer.nat. Bernd Schwinn

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
1. Studienjahr	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausurarbeit	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
150	60	90	5

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden können die theoretischen Grundlagen der Aussage- und Prädikatenlogik verstehen. Die Studierenden verstehen die formale Spezifikation von Algorithmen und ordnen diese ein. Die Studierenden beherrschen das Modell der logischen Programmierung und wenden es an.			
Methodenkompetenz	Die Studierenden haben die Kompetenzen erworben, komplexere Unternehmensanwendungen durch abstraktes Denken aufzuteilen und zu beherrschen sowie fallabhängig logisches Schließen und Folgern einzusetzen.			
Personale und Soziale Kompetenz	-			
Übergreifende Handlungskompetenz	Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, sich mit Fachvertretern und Laien über Fachfragen und Aufgabenstellungen in den Bereichen Logik, logische Folgerung sowie Verifikation und abstraktes Denken auf wissenschaftlichem Niveau auszutauschen.			

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium	
Grundlagen und Logik	60	90	
 - Algebraische Strukturen: Relationen, Ordnung, Abbildung - Formale Logik: Aussagenlogik, Prädikatenlogik - Algorithmentheorie; Komplexität, Rekusion, Terminierung, Korrektheit (mit Bezug zur Logik) - Grundkenntnisse der deklarativen (logischen/funktionalen/) Programmierung 			

Besonderheiten und Voraussetzungen			
Besonderheiten			

Voraussetzungen

Literatur

- Siefkes, Dirk: Formalisieren und Beweisen: Logik für Informatiker, Vieweg
- Kelly, J.: The Essence of Logic, Prentice Hall
- Alagic, Arbib: The Design of Well-Structured and Correct Programs, Springer
- Clocksin, W.F.; Mellish, C.S.: Programming in Prolog, Springer

Theoretische Informatik II (T3INF1003)

Theoretical Computer Science II

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Theoretische Informatik II	T3INF1003	Deutsch/Englisch	Dr. rer. nat. Stephan Schulz

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
1. Studienjahr	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausurarbeit	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte				
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h) ECTS-Leistungspunk		
150	48	102	5	

Qualifikationsziele und Kompetenzen					
Fachkompetenz	Die Studierenden verfügen über vertieftes Wissen: - Algorithmenansätze für wichtige Problemklassen der Informatik - Komplexitätsbegriff und Komplezitätsberechnungen für Algorithmen - wichtige abstrakte Datentypen und ihre Eigenschaften				
Methodenkompetenz	Die Studierenden können die Notwendigkeit einer Komplexitätsanalyse für ein Program bewerten und ein angemessenes Maß für den Einsatz im beruflichen Umfeld wählen.				
Personale und Soziale Kompetenz	Die Studierenden können ihre Entscheidungs- und Fachkompetenz im Bereich Auswahl und Entwurf von Algorithmen und Datenstrukturen einschätzen und über diese Themen mit Fachvertretern und Laien effektiv und auf wissenschaftlichem Niveau zu kommunizieren.				
Übergreifende Handlungskompetenz	Die Studierenden haben die Kompetenz erworben: - effiziente Datenstruktuten für praktische Probleme auszuwählen und anzupassen - durch abstraktes Denken größere Probleme in überschaubare Einheiten aufzuteilen und zu lösen - Algorithmen für definierte Probleme zu entwerfen				

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium	
Algorithmen und Komplexität	48	102	
- Grundbegriffe der Berechnungskomplexität - O-Notation - Algorithmen: Suchalgorithmen - Sortieralgorithmen - Hashing: offenes Hashing, geschlossenes Hashing			

			3,	3, 3, 5, 5, 1, 1, 1	
- Datenstrukturen: Mens	gen, Listen, Kelle	r, Schlangen - B	Bäume, binäre S	uchbäume, balai	ncierte Bäume

- Graphen: Spezielle Graphenalgortihmen, Semantische Netze Codierung: Kompression, Fehlererkennende Codes, Fehlerkorrigierende Codes

	Besonderheiten und Voraussetzungen
Besonderheiten	

Programmieren, Mathematische Grundlagen

Literatur
- Robert Sedgewick, Kevin Wayne, Algorithms, Addison Wesley

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction to Algorithms, MIT Press - Niklaus Wirth: Algorithmen und Datenstrukturen, Teubner Verlag

Programmieren (T3INF1004)

Programming

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Programmieren	T3INF1004	Deutsch	Prof. Dr. Alexander Auch

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
1. Studienjahr	2	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Programmentwurf	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
270	96	174	9

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden kennen die Grundelemente der prozeduralen und der objektorientierten Programmierung. Sie können die Syntax und Semantik dieser Sprachen und können ein Programmdesign selbstständig entwerfen, codieren und ihr Programm auf Funktionsfähigkeit testen. Sie kennen verschiedene Strukturierungsmöglichkeiten und Datenstrukturen und können diese exemplarisch anwenden.	
Methodenkompetenz	Die Studierenden sind in der Lage, einfache Programme selbständig zu erstellen und auf Funktionsfähigkeit zu testen, sowie einfache Entwurfsmuster in ihren Programmentwürfen einzusetzen. Die Studierenden können eine Entwicklungsumgebung verwenden um Programme zu erstellen, zu strukturieren und auf Fehler hin zu untersuchen (inkl. Debugger).	
Personale und Soziale Kompetenz	Die Studierenden können ihren Programmentwurf sowie dessen Codierung im Team erläutern und begründen. Sie können existierenden Code analysieren und beurteilen. Sie können sich selbstständig in Entwicklungsumgebungen einarbeiten und diese zur Programmierung und Fehlerbehebung einsetzen.	
Übergreifende Handlungskompetenz	Die Studierenden können eigenständig Problemstellungen der Praxis analysieren und zu deren Lösung Programme entwerfen, programmieren und testen.	

	Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten		Präsenzzeit	Selbststudium
Programmieren		96	174

Kenntnisse in prozeduraler Programmierung:

- Algorithmenbeschreibung
- Datentypen
- E/A-Operationen und Dateiverarbeitung
- Operatoren
- Kontrollstrukturen
- Kontrollstruki - Funktionen
- Stringverarbeitung
- Strukturierte Datentypen
- dynamische Datentypen
- Zeiger
- Speicherverwaltung

Kenntnisse in objektorientierter Programmierung:

- objektorientierter Programmentwurf
- Idee und Merkmale der objektorientierten Programmierung
- Klassenkonzept
- Operatoren
- Überladen von Operatoren und Methoden
- Vererbung und Überschreiben von Operatoren
- Polymorphismus
- Templates oder Generics
- Klassenbibliotheken
- Speicherverwaltung, Grundverständnis Garbage Collection

Besonderheiten und Voraussetzungen

Besonderheiten

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

Voraussetzungen

_

Literatur

- B.W. Kerninghan, D.M Richie: Programmieren in C, Hanser
- R. Klima, S. Selberherr: Programmieren in C, Springer
- Prinz, Crawford: C in a Nutshell, O'Reilly
- Günster: Einführung in Java, Rheinwerk Computing
- Habelitz: Programmieren lernen mit Java, Rheinwerk Computing
- Ullenboom: Java ist auch eine Insel, Rheinwerk Computing
- McConnell: Code Complete: A Practical Handbook of Software Construction, Microsoft Press

Schlüsselqualifikationen (T3INF1005)

Key Skills

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Schlüsselqualifikationen	T3INF1005	Deutsch/Englisch	Prof. Dr. Jürgen Vollmer

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
1. Studienjahr	2	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Seminar, Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien, Lehrvortrag, Diskussion, Gruppenarbeit, Projekt	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausurarbeit (< 50 %)	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Leistungspunkte				
257	144	113	5	

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden haben Grundkenntnisse der Wirtschaftswissenschaften erworben und können ihre fachlichen Aufgaben im betrieblichen Kontext einordnen.	
Methodenkompetenz	Die Studierenden haben ökonomische, interkulturelle und arbeitswissenschaftliche Grundkompetenzen für Beruf und Studium erworben.	
Personale und Soziale Kompetenz	Die Studierenden können ihre Standpunkte in einem (ggf. interdisziplinär und interkulturell zusammengesetzten) Team vertreten und respektieren andere Sichtweisen. Sie können sich selbst und ihre Projekte organisieren und mit Kritik und Konflikten angemessen umgehen.	
Übergreifende Handlungskompetenz	Über die Sachkompetenz hinaus soll das Denken in fachübergreifenden Zusammenhängen geschult werden, sowie strategische Handlungskompetenz und unternehmerisches Denken vermittelt werden.	

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium	
Schluesselqualifikationen	84	66	
Grundlagen der Wirtschaftswissenschaften - Einführung in die theoretischen Ansätze und Methoden - Ziele und Planung in der Betriebswirtschaftslehre - Rechtsformen - Bilanzen / Gewinn- und Verlustrechnung / Kostenrechnung - Finanzierung und Investition - Marketing Projektmanagement und Kommunikation - Grundlegende PM Methoden - Arbeiten in interdisziplinären und interkulturell zusammengesetzten Teams Fachübergreifende Schlüsselkompetenzen - Vortragstechniken - Lern- und Arbeitstechniken			
- Wissenschaftliches Arbeiten (in Ergänzung zu den Einheiten die den Praxismodulen zugeordnet sind, Experimente planen und Durchführen, etc.)			
Betriebswirtschaftslehre	36	28	
 - Einführung in die theoretischen Ansätze und Methoden in der Betriebswirtschaftslehre - Ziele und Planung in der Betriebswirtschaftslehre - Führungsstile und konzepte - Rechtsformen - Bilanzen - Gewinn- und Verlustrechnung - Kostenrechnung - Finanzierung und Investition - Ganzheitliches Unternehmensplanspiel 			
Fremdsprachen 1	24	19	
- Schriftliche Kommunikation:Entwerfen und Auswerten von Berichten, Stellungnahmen, Reden, Protokollen - Mündliche Kommunikation: Im Rahmen einer Diskussion argumentieren und schlussfolgern. Perfekt Präsentieren			
Vortrags-, Lern- und Arbeitstechniken	24	19	
-Verbale vs. non-verbale Kommunikation -Kommunikationsziel, Botschaft, Adressatenkreis-Auswahl -Inhaltliche Strukturierung -Ablaufgestaltung -Rednerverhalten (z.B. Körpersprache, Stimmmodulation) -Medieneinsatz mit praktischen Beispielen -Lernfunktion im			
Marketing 1	24	19	
- Einführung in Marketing - Marktforschung - Marketingplanung - Marketinginstrumentarium - Produkt- und Sortimentspolitik - Werbe- oder Kommunikationspolitik - Preispolitik - Distributionspolitik			
Marketing 2	24	19	
Verschiedene Themen der Vorlesung Marketing 1 werden hier vertieft.			
Intercultural Communication 1	24	19	
- Major Theories of Intercultural Communications z.B. Hall - Kluckhohn and Strodtbeck - Hofstede - Trompenaars and Hamden-Turner - Exercises - Role Place - Case Studies - Small Group Work - Presentations			
Intercultural Communication 2	24	19	
- Conflict Management - Negotiation - Exercises - Role Place - Case Studies - Small Group Work - Presentations			
Fremdsprachen 2	24	19	
- Schriftliche Kommunikation:Entwerfen und Auswerten von Berichten, Stellungnahmen, Reden, Protokollen - Mündliche Kommunikation: Im Rahmen einer Diskussion argumentieren und schlussfolgern. Perfekt Präsentieren			
Projektmanagement 1	24	19	

- Was ist Projektmanagement?
- Rahmenbedingungen
- Projekt- und Ziel-Definitionen
- Auftrag und Ziele
- Unterlagen für die Projektplanung
- Aufwandsschätzung
- Projektorganisation
- Projektphasenmodelle
- Planungsprozess und Methodenplanung
- Personalplanung
- Terminplanung
- Kostenplanung und betriebswirtschaftliche Hintergründe
- Einführung in Steuerung, Kontrolle und Projektabschluss
- Projektmanagement mit IT Unterstützung (z.B. MS Project)
- Übungen zu den einzelnen Teilen

Projektmanagement 2 19

- Meetings, Teams und Konflikte
- Risikoplanung und Risikomanagement
- Qualitätsplanung
- Projekt Steuerung und Kontrolle
- Projektabschluss, Projektrevision und finanzwirtschaftliche Betrachtungen
- Weitere Projektmanagement Methoden

Einführung in technisch-wissenschaftliches Arbeiten 24 19

Elemente wissenschaftlicher Arbeit und ihrer Produkte:

- Inhaltliche, formale und stilistische Aspekte wiss. Arbeitens
- Kategorien technischer und wissenschaftlicher Dokumente und ihre Bewertung
- Anwendung von technischem Englisch
- Durchführung von Quellenrecherchen und deren qualitative Bewertung
- Ausarbeitungen und Darstellungsformen wissenschaftlicher Vorträge unter Berücksichtigung des

Semantic Environments

- Aufgabenbeschreibung eines technischen bzw. wissenschaftlichen Projektes
- Erstellung einer exemplarischen und vollständigen Dokumentation
- Erstellung eines englischen und deutschen Kurzberichtes
- Methodischer Hinweis: Für die Umsetzung der praktischen Übungen und des Feedbacks werden die

Studierenden in Intensivarbeitsgruppen eingeteilt und betreut.

Besonderheiten und Voraussetzungen

Besonderheiten

Entweder

- T3INF1005.0 - Schluesselqualifikationen als einzige Unit

- T3INF1005.1 - Betriebswirtschaftlehre Pflicht und 2 weitere Units zur Wahl

Weitere Units:

T3INF1005.2 - Fremdsprachen 1

T3INF1005.3 - Vortrags-, Lern- und Arbeitstechniken

T3INF1005.4 - Marketing 1

T3INF1005.5 - Marketing 2

T3INF1005.7 - Intercultural Communication 1

T3INF1005.8 - Intercultural Communication 2

T3INF1005.9 - Fremdsprachen 2

T3INF4103.1 - Projektmanagement 1

T3INF4103.2 - Projektmanagement 2

T3INF4116.1 - Einführung in technisch-wissenschaftliches Arbeiten

Voraussetzungen

keine

Literatur

- Davis, M.: Scientific Papers and Presentations, Boston, London, San Diego
- Eberhard, K.: Einführung in die Erkenntnis- und Wissenschaftstheorie, Stuttgart
- Heydasch, T., Renner, K.-H.: Einführung in das wissenschaftliche Arbeiten; Fakultät für Kultur- und Sozialwissenschaften; FernUniversität Hagen, Hagen
- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall
- P. Mangold: IT-Projektmanagement kompakt, Spektrum Akademischer Verlag
- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall
- P. Mangold: IT Projektmanagement kompakt, Spektrum Akademischer Verlag
- Helmut Kohlert: Marketing für Ingenieure, Oldenbourg
- Marion Steven: Bwl für Ingenieure, Oldenbourg

- Jürgen Härdler: Betriebswirtschaftlehre für Ingenieure. Lehr- und Praxisbuch, Hanser Fachbuch
- Jürgen Härdler: Betriebwirtschaftlehre für Ingenieure: Lehr- und Praxisbuch, Hanser Fachbuch
- Marion Steven: BWL für Ingenieure, Oldenbourg
- Adolf J. Schwab: Managementwissen für Ingenieure: Führung, Organisation, Existenzgründung, Springer
- Managing Intercultural Conflict Effectively: Thousand Oaks, Sage Roger Fisher, W. Ury und B.Patton: Getting to Yes , Penguin
- Robert Gibson: Intercultural Business Communication, Cornelsen und Oxford Nancy Adler: International Dimensions of Organizational Behavior, ITP Geert Hofstede, Cultures and Organizations, McGraw-Hill Stella Ting: Toomey und John G. Oetzel

Entsprechend der gewählten Sprache

Günter Wöhe, "Einführung in die allgemeine Betriebswirtschaftslehre", Vahlen Verlag

Philip Kotler, Gary Armstrong, Lloyd C. Harris, Nigel Piercy, "Grundlagen des Marketing", Pearson Studium

Harald Meier, "Internationales Projektmanagement: Interkulturelles Management. Projektmanagement-Techniken. Interkulturelle Teamarbeit.", NWB Verlag Josef W. Seifert, "Visualisieren, Präsentieren, Moderieren.", Gabal Verlag GmbH, Offenbach

Gloria Beck, "Rhetorik für die Uni", Eichborn AG, Frankfurt am Main

Peter Sedlmeier, Frank Renkewitz, "Forschungsmethoden und Statistik für Psychologen und Sozialwissenschaftler", Pearson Studium

Technische Informatik I (T3INF1006)

Computer Science I

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Technische Informatik I	T3INF1006	Deutsch	Prof. DrIng. Thomas Neidlinger

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
1. Studienjahr	1	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausurarbeit	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Leistungspunkte				
150	48	102	5	

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden bekommen ein grundlegendes Basiswissen vermittelt über die Arbeitsweise digitaler Schaltelemente und den Aufbau digitaler Schaltkreise. Diese Kenntnisse bilden die Grundlage zum Verständnis von Rechnerbaugruppen.	
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden.	
Personale und Soziale Kompetenz	-	
Übergreifende Handlungskompetenz	-	

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium	
Digitaltechnik	48	102	
- Zahlensysteme und Codes - Logische Verknüpfungen und ihre Darstellung - Schaltalgebra - Schaltnetze - Schaltwerke - Schaltkreistechnik und Interfacing			

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen

- Halbleiterspeicher

keine

Literatur

- Elektronik 4: Digitaltechnik, K. Beuth, Vogel Fachbuch
- Digitaltechnik, K. Fricke, Springer Vieweg
- Digitaltechnik, R. Woitowitz, Springer
- Grundlagen der Digitaltechnik, G. W. Wöstenkühler, Hanser

Mathematik II (T3INF2001)

Mathematics II

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Mathematik II	T3INF2001	Deutsch	Prof. Dr. Reinhold Hübl

Verortung des Moduls im Studienverlauf	
Studienjahr	Moduldauer in Semester
2. Studienjahr	2

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfun	gsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausur		Siehe Pruefungsordnung	ja
Klausur		Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
180	72	108	6

	Qualifikationsziele und Kompetenzen		
Fachkompetenz	Mit Abschluss des Moduls haben die Studierenden die Fähigkeit zu mathematischem Denken und Argumentieren weiterentwickelt. Sie verfügen über Überblickswissen in Bezug auf für die Informatik wichtigen Anwendungsgebiete der Mathematik und Statistik und sind in der Lage, problemadäquate Methoden auszuwählen und anzuwenden.		
Methodenkompetenz	-		
Personale und Soziale Kompetenz	-		
Übergreifende Handlungskompetenz	Die Studierenden sind in der Lage, Aufgabenstellungen aus der Informatik mathematisch zu modellieren und Software-gestützt zu lösen. Sie können technische und betriebswirtschaftliche Vorgänge und Probleme mit Methoden der mehrdimensionalen Analysis, der Theorie der Differentialgleichungen und der Wahrscheinlichkeitsrechnung und Statistik beschreiben und beherrschen die grundlegenden Lösungsmethoden.		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Angewandte Mathematik	36	54
- Grundlagen der Differential- und Integralrechnung reeller Funktionen mit mehreren Veränderlichen sowie von Differentialgleichungen und Differentialgleichungssystemen - Numerische Methoden und weitere Beispiele mathematischer Anwendungen in der Informatik		
Statistik	36	54
- Deskriptive Statistik - Zufallsexperimente, Wahrscheinlichkeiten und Spezielle Verteilungen - Induktive Statistik - Anwendungen in der Informatik		

Besonderheiten und Voraussetzungen

Besonderheiten

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

|--|

Literatur

- Cramer, Kamps: Grundlagen der Wahrscheinlichkeitsrechnung und Statistik, Springer - Dümbgen: Stochastik für Informatiker, Springer - Hartmann: Mathematik für Informatiker, Vieweg+Teubner - Heise, Quattrocchi: Informations- und Codierungstheorie, Springer - Teschl, Teschl: Mathematik für Informatiker: Band 2, Springer - Fahrmeir, Heumann, Künstler, Pigeot, Tutz: Statistik: Der Weg zur Datenanalyse, Springer - Bamberg, Baur, Krapp: Statistik, Oldenbourg - Schwarze: Grundlagen der Statistik 1. Beschreibende Verfahren, MWB Verlag - Schwarze: Grundlagen der Statistik 2. Wahrscheinlichkeitsrechnung und induktive Statistik, MWB Verlag

- Dahmen, Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer - Sonar: Angewandte Mathematik, Modellbildung und Informatik, Vieweg+Teubner - Stoer, Bulirsch: Numerische Mathematik 1, Springer - Stoer, Bulirsch: Numerische Mathematik 2, Springer - Teschl, Teschl: Mathematik für Informatiker: Band 2. Analysis und Statistik, Springer - Hartmann: Mathematik für Informatiker, Springer - Fetzer, Fränkel: Mathematik 2, Springer

Theoretische Informatik III (T3INF2002)

Theoretical Computer Science III

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Theoretische Informatik III	T3INF2002	Deutsch	Prof. Dr. Heinrich Braun

Verortung des Moduls im Studienverlauf	
Studienjahr	Moduldauer in Semester
2. Studienjahr	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausur	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Leistungspunkte				
180	72	108	6	

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden verstehen die Grundlagen von Formale Sprachen und Automatentheorie. Sie können reguläre Sprachen einerseits durch einen regulären Ausdruck, eine Regex und eine Typ 3 Grammatik formal spezifizieren und andererseits durch einen endlichen Akzeptor entscheiden.	
	Kontextfreie Sprachen können Sie einerseits durch eine Typ 2 Grammatik spezifizieren. Andererseits verstehen sie die zugehörigen Kellerakzeptoren sowohl Top Down als auch Bottom up als Grundlage für den Übersetzerbau.	
	Sie kennen den Zusammenhang zwischen Typ 0 Sprachen und Turingmaschine als Grundlage der Berechenbarkeitstheorie.	
Methodenkompetenz	Die Studierenden können bei regulären Sprachen aus den verschiedenen Beschreibungsformen einen minimalen endlichen Akzeptor konstruieren. Bei kontextfreien Sprachen können Sie aus der Grammatik die Top Down und Bottom up Kellerakzeptoren (auch mit endlicher Vorausschau) für einfache Anwendungsfälle konstruieren. Sie verstehen die theoretischen Grundlagen der Übersetzerbauwerkzeuge Scanner und Parser für komplexe Anwendungsfälle. Bei praxisnahen Anwendungen aus der Berechenbarkeitstheorie wie Halteproblem und Äquivalenzproblem können Sie erkennen, ob diese berechenbar bzw. entscheidbar sind.	
Personale und Soziale Kompetenz	Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, sich mit Fachvertretern und Laien über Fachfragen und Aufgabenstellungen im Bereich Formale Sprachen, erkennende Automaten sowie Methoden und Tools zu deren Umsetzung auf wissenschaftlichem Niveau auszutauschen.	
Übergreifende Handlungskompetenz	Die Studierenden können bei einer Anwendung die formale Sprache analysieren und insbesondere erkennen, zu welchem Chomsky-Typ diese gehört und welche formale Methoden (Generatoren und Übersetzerbauwerkzeuge) hierfür geeignet sind.	

Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Formale Sprachen und Automaten 1	48	72
Formale Sprachen und Automaten: -Grammatiken - Sprachklassen (Chomsky-Hierarchie) - Erkennende Automaten Reguläre Sprachen: - Reguläre Grammatiken - Endliche Automaten - Nicht deterministische / deterministische endliche Automaten Kontextfreie Sprachen: - Kontextfreie Grammatiken - Verfahren zur Analyse von kontextfreien Grammatiken (CYK) - Kellerautomaten: Top down und Bottom up inklusive k-Vorausschau - Anwendung an einfachen praxisnahen Beispielen - Zusammenhang Turingmaschine, formale Sprachen vom Chomsky Typ 0 und Entscheidbarkeit		
Formale Sprachen und Automaten 2	24	36
 Abgrenzung verschiedener Sprachklassen (Beweis durch Pumpinglemma) - Kontextsensitive Sprachen Vertiefung Entscheidbarkeit und Berechenbarkeitstheorie Turingmächtigkeit von Programmiersprachen (welcher Sprachumfang genügt, um alle berechenbaren Funktionen implementieren zu können) 		
Einführung Compilerbau	24	36
- Phasen des Compilers - Lexikalische Analyse (Scanner) - Syntaktische Analyse (Parser): Top-down Verfahren, Bottom-up Verfahren - Syntaxgesteuerte Übersetzung: Z-Attributierung, IL-Attributierung, Kombination mit Syntaxanalyse-Verfahren - Semantische Analyse: Typüberprüfung		

Besonderheiten und Voraussetzungen		
Besonderheiten		

Voraussetzungen

Literatur

- Aho, Sethi, Ullmann: Compilers: Principles, Techniques, and Tools, Addison Wesley; US ed edition
- Helmut Herold: Linux-, Unix-Profitools awk, sed, lex, yacc und make , open source library
- J.E. Hopcroft, R. Motwani, J.D. Ullmann: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie
- U. Hedtstück: Einführung in die theoretische Informatik, Oldenburg
- J.R. Levine, T. Mason, D. Brown: lex & yacc, O'Reilly Media
- U. Hedtstück: Einführung in die theoretische Informatik, Oldenburg
- J.E. Hopcroft, R. Motwani, J.D. Ullmann: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie

Software Engineering I (T3INF2003)

Software Engineering I

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Software Engineering I	T3INF2003	Deutsch	Prof. Dr. Phil. Antonius Hoof

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
2. Studienjahr	2	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Programmentwurf	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Leistungspunkte				
270	96	174	9	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden kennen die Grundlagen des Softwareerstellungsprozesses. Sie können eine vorgegebene Problemstellung analysieren und rechnergestützt Lösungen entwerfen, umsetzen, qualitätssichern und dokumentieren. Sie kennen die Methoden der jeweiligen Projektphasen und können sie anwenden. Sie können Lösungsvorschläge für ein gegebenes Problem konkurrierend bewerten und korrigierende Anpassungen vornehmen.		
Methodenkompetenz	Die Studierenden können sich mit Fachvertretern über Problemanalysen und Lösungsvorschläge, sowie über die Zusammenhänge der einzelnen Phasen austauschen. Sie können einfache Softwareprojekte autonom entwickeln oder bei komplexen Projekten effektiv in einem Team mitwirken. Sie können ihre Entwürfe und Lösungen präsentieren und begründen. In der Diskussion im Team können sie sich kritisch mit verschiedenen Sichtweisen auseinandersetzen und diese bewerten.		
Personale und Soziale Kompetenz	-		
Übergreifende Handlungskompetenz	Die Studierenden können sich selbsständig in Werkzeuge einarbeiten. Sie verbinden den Softwareentwicklungsprozess mit Techniken des Projektmanagement und beachten während des Projekts Zeit- und Kostenfaktoren.		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Grundlagen des Software-Engineering	96	174

- Vorgehensmodelle
- Phasen des SW-Engineering und deren Zusammenhänge
- Lastenheft und Pflichtenheft, Anwendungsfälle
- Analyse- und Entwurfsmodelle (z.B. Modellierungstechniken von UML oder SADT)
- Softwarearchitekture, Schnittstellenentwurf
- Coderichtlinien und Codequalität: Reviewing und Testplanung, -durchführung und -bewertung
- Continuous Integration
- Versionsverwaltung
- Betrieb und Wartung
- Phasenspezifisch werden verschiedene Arten der Dokumentation behandelt
- Durchführung eines konkreten Softwareentwicklungsprojektes in Projektteams mittlerer Größe (z.B.

eine Web Service / Web App, eine stand-alone Anwendung oder eine Steuerung)

Besonderheiten und Voraussetzungen

Besonderheiten

Die einzelnen Inhalte der Lehrveranstaltung sollen anhand von einem Projekt vertieft werden. In den einzelnen Projektphasen soll auf den Einsatz von geeigneten Methoden, die Dokumentation sowie die Qualitätssicherung eingegangen werden. Geeignete Werkzeuge sollen zum Einsatz kommen. Bei den gruppenorientierten Laborübungen werden außerfachliche Qualifikationen geübt und (Teil) Ergebnisse präsentiert. Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

Voraussetzungen

-

Literatur

- Helmut Balzert: Lehrbuch der Softwaretechnik: Entwurf, Implementierung, Installation und Betrieb, Spektrum akademischer Verlag
- Helmut Balzert: Lehrbuch der Softwaretechnik: Softwaremanagement, Spektrum akademischer Verlag
- Ian Sommerville: Software Engineering, Pearson Studium
- Peter Liggesmeyer: Software Qualität: Testen, Analysieren und Verifizieren von Software, Spektrum Akademischer Verlag
- · Chris Rupp: Requirements-Engineering und -Management: Aus der Praxis von klassisch bis agil, Carl Hanser Verlag GmbH & Co. KG

Datenbanken (T3INF2004)

Database Systems

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Datenbanken	T3INF2004	Deutsch	Prof. Dr. Dirk Reichardt

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
2. Studienjahr	2	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausurarbeit oder Kombinierte Prüfung	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Leistungspunkte				
180	72	108	6	

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden kennen die grundlegenden Theorien und Modelle von Datenbanksystemen. Sie können die Grundprinzipien von Datenbanksystemen systematisch darstellen und erläutern. Sie können diese zum Entwurf einer praktisch einsatzfähigen Datenbank nutzen und Datenbankentwürfe bewerten.	
Methodenkompetenz	Die Studierenden können die Stärken und Schwächen der Entwurfsmethoden für Datenbanken bewerten und diese bzgl. der Einsatzfähigkeit im beruflichen Umfeld einschätzen.	
Personale und Soziale Kompetenz	Die Studierenden können ihre Entscheidungs- und Fachkompetenzen im Bereich der Datenbankentwicklung adäquat einschätzen und die Experten anderer Bereiche (insbes. des Anwendungsbereichs) in den Datenbankentwurf einbeziehen.	
Übergreifende Handlungskompetenz	Die Studierenden haben über die fundierte Fachkenntnis hinaus die Fähigkeit erworben, theoretische Konzepte der Datenbanken in praktische Anwendungen umzusetzen.	

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium	
Grundlagen der Datenbanken	72	108	
- Grundkonzepte und Datenmodellierung (u.a Entity Relationship Modell) - Relationales Datenmodell - Normalformen - Relationaler Datenbankentwurf - Mehrbenutzerbetrieb und Transaktionskonzepte - Architekturen von Datenbanksystemen			

Besonderheiten und Voraussetzungen

Besonderheiten

Das Modul besteht i.d.R. aus theoretischem und praktischem Anteil.

Die Prüfungsdauer bezieht sich auf die Klausur.

Einführung in SQL (Praxisprojekt)

Voraussetzungen

Algorithmen und Datenstrukturen, sowie Grundlagen der Logik

Literatur

- Ramez A. Elmasri, Shamkant B. Navathe: Grundlagen von Datenbanksystemen, Pearson Studium

- Alfons Kemper, André Eickler: Datenbanksysteme: Eine Einführung, Oldenbourg Verlag Nikolai Preiß: Entwurf und Verarbeitung relationaler Datenbanken, Oldenbourg Verlag Heide Fraeskorn-Woyke, Birgit Bertelsmeier, Petra Riemer, Elena Bauer, "Datenbanksysteme", Pearson Studium, aktuelle Auflage

Technische Informatik II (T3INF2005)

Computer Engineering II

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Technische Informatik II	T3INF2005	Deutsch	DrIng. Alfred Strey

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
2. Studienjahr	2	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausur	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Leistungspunkte				
240	96	144	8	

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Die Studierenden gewinnen ein grundlegendes Verständnis von den Aufgaben, der Funktionsweise und der Architektur moderner Rechnersysteme. In einem Übungsteil wird ihnen die systemnahe Programmierung anhand eines Beispielprozessors vermittelt. Abgerundet wird dieses hardwarenahe Wissen durch die Unit "Betriebssysteme", welche die Arbeitsweise von Rechenanlagen aus Sicht der Systemsoftware beleuchtet. Die Studierenden sind somit in der Lage, das Zusammenwirken von Hard- und Software in einem Rechner im Detail zu verstehen.
Methodenkompetenz	Die Studierenden kennen mit Abschluss des Moduls die wissenschaftlichen Methoden aus den Bereichen der Rechnerarchitektur und der Betriebssysteme. Sie sind in der Lage, unter Einsatz dieser Methoden die Hard- und Systemsoftware moderner Rechnersysteme zu interpretieren und zu bewerten. Ferner können sie einfache maschinennahe Programme entwerfen und analysieren.
Personale und Soziale Kompetenz	-
Übergreifende Handlungskompetenz	Die Studierenden sind in der Lage, die Leistungsfähigkeit eines Rechnersystems für eine Anwendung aus der Praxis zu beurteilen. Ferner ist es Ihnen möglich, die rasche Weiterentwicklung auf dem Gebiet der Rechnerhardware mitzuverfolgen und zu verstehen, welche Vor- bzw. Nachteile die Enführung einer neuen IT-Technologie hat. Auch sind sie in der Lage zu verstehen, wie die neue Technologie arbeitet bzw. sie können sich das dazu notwendige neue Wissen jederzeit selbst erarbeiten.

Lerneinheiten und Inhalte		
ehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Rechnerarchitekturen 1	36	54
- Einführung		
- Historie (mechanisch, analog, digital)		
- Architektur nach von Neumann - Systemkomponenten im Überblick		
- Grobstruktur der Prozessorinterna		
- Rechenwerk		
- Addition: Halbaddierer, Volladdierer, Wortaddierer, Bedeutung des Carrybits, Carry Ripple und Carry Look-Ahead Addierer		
- Subtraktion: Transformation aus Addition, Bedeutung des Carrybits		
- Multiplikation: Parallel- und Seriell-Multiplizierer		
- Division: Konzept		
- Arithmetische-logische Einheit (ALU) - Datenpfad: ALU mit Rechenregister und Ergebnisflags (CCR, Statusbits)		
- Steuerwerk: Aufbau, Komponenten und Funktionswiese		
- Befehlsdekodierung und Mikroprogrammierung		
- Struktur von Prozessorbefehlssätzen - Klassifizierung und Anwendung von Prozessorregistern (Daten-, Adress- und Status-Register)		
- Klassinzierung und Anwendung von Frozessonlegistern (baten-, Adress- und Status-Kegister) - Leistungsbewertung und Möglichkeiten der Leistungssteigerung (z.B. Pipelining)		
- Businterface: Daten-, Adress- und Steuerleitungen		
- Buskomponenten		
- Buszyklen: Lese- und Schreib-Zugriff, Handshaking (insbesondere Waitstates) - Busarbitrierung und Busmultiplexing		
- Fundamentalarchitekturen		
- Konzept Systemaufbau und Komponenten: CPU, Hauptspeicher, I/O: Diskussion Anbindung externer		
Geräte (Grafik, Tastatur, Festplatten, DVD,) - Halbleiterspeicher		
- Wahlfreie Speicher: Aufbau, Funktion, Adressdekodierung, interne Matrixorganisation		
- RAM: statisch, dynamisch, aktuelle Entwicklungen		
- ROM: Maske, Fuse, EPROM, EEPROM, FEPROM, aktuelle Entwicklungen - Systemaufbau		
- Aufteilung des Adressierungsraumes		
- Entwerfen von Speicherschemata und der zugehörigen Adress-Dekodierlogik		
- Vitale System-Komponenten: Stromversorgung, Rücksetzlogik, Systemtakt, Chipsatz - Schaltkreise: Interrupt- und DMA-Controller, Zeitgeber- und Uhrenbausteine		
- Schattkreise: Interrupt- und DMA-Controller, Zeitgeber- und Omenbausteine - Schnittstellen: Parallel und seriell, Standards (RS232, USB,)		
Betriebssysteme	36	54
- Einführung - Historischer Überblick		
- Betriebssystemkonzepte		
- Prozesse und Threads		
- Einführung in das Konzept der Prozesse - Prozesskommunikation		
- Prozesskommunikation - Übungen zur Prozesskommunikation: Klassische Probleme		
- Scheduling von Prozessen		
- Threads		
- Speicherverwaltung - Einfache Speicherverwaltung ohne Swapping und Paging		
- Swapping		
- Virtueller Speicher		
- Segmentierter Speicher - Dateisysteme		
- Dateisysteme - Dateien und Verzeichnisse		
Implementierung von Dateisystemen		
- Sicherheit von Dateisystemen - Schutzmechanismen		
- Schutzmechanismen - Neue Entwicklungen: Log-basierte Dateisysteme		
- Ein- und Ausgabe: Grundlegende Eigenschaften der E/A- Festplatten		
- Anwendung der Grundlagen auf reale Betriebssysteme: UNIX/Linux und Windows (NT, 2000, XP,		
Windows7)		
Systemnahe Programmierung 1	24	36

- Programmiermodell für die Maschinenprogrammierung: Befehlssatz, Registersatz und Adressierungsarten

- Umsetzung von Kontrollstrukturen, Auswertung von Ergebnisflags
- Unterprogrammaufruf mit Hilfe des Stacks
- Konventionen
- Konzept und Umsetzung von HW- und SW-Interrupts: Diskussion von HW- und SW-Mechanismen und

Automatismen, Interrupt-Vektortabelle, Spezialfall: Bootvorgang

- Diskussion User- und Supervisor-Modus von Prozessoren
- Praktische Übungen
- Einführung eines Beispielprozessors
- Aufbau des Übungsrechners
- Einarbeitung und Softwareentwicklungs- und Testumgebung für den Übungsrechner
- Selbständige Entwicklung von Maschinenprogrammen mit steigendem Schwierigkeits- und

Strukturierungsgrad

Besonderheiten und Voraussetzungen	
Besonderheiten	
-	

Voraussetzungen

-

Literatur

_

- D. A. Patterson, J. L. Hennessy: Rechnerorganisation und Rechnerentwurf: Die Hardware/Software-Schnittstelle, Oldenbourg Wissenschaftsverlag
- H. Müller, L. Walz: Elektronik 5: Mikroprozessortechnik, Vogel Fachbuch
- A. S. Tanenbaum: Computerarchitektur, Strukturen Konzepte Grundlagen, Pearson Studium
- W. Oberschelp, G. Vossen: Rechneraufbau und Rechnerstrukturen, Oldenbourg Wissenschaftsverlag
- T. Flik: Mikroprozessortechnik und Rechnerstrukturen, Springer
- W. Schiffmann, R. Schmitz: Technische Informatik 2, Springer
- A. Fertig: Rechnerarchitektur, Books on Demand
- Tanenbaum A.S.: Moderne Betriebssysteme, Pearson Studium
- Mandl P.: Grundkurs Betriebssysteme, Springer Vieweg
- Glatz E.: Betriebssysteme: Grundlagen, Konzepte, Systemprogrammierung, dpunkt Verlag

Stallings W.: Operating Systems: Internals and Design Principles, Prentice Hall

Kommunikations- und Netztechnik (T3INF2006)

Communication and Networks I

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Kommunikations- und Netztechnik	T3INF2006	Deutsch/Englisch	Prof. Friedemann Stockmayer

Verortung des Moduls im Studienverlauf	
Studienjahr	Moduldauer in Semester
2. Studienjahr	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen Vorlesung, Vorlesung, Übung	
Lehrmethoden Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausur	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
225	84	141	5

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Das Modul vermittelt Grundlagenkenntnisse über Kommunikationsnetze. Mit Abschluss des Moduls verfügen die Studierenden über ein detailliertes Verständnis im Bereich der Kommunikations- und Netztechnik bzgl. Aufbau, Funktion, Zusammenwirken der einzelnen Komponenten, sowie über die bei der Kommunikation eingesetzten Technologien, Dienste und Protokolle.
Methodenkompetenz	-
Personale und Soziale Kompetenz	-
Übergreifende Handlungskompetenz	Das Modul führt mehrere Disziplinen zusammen: Grundlagen aus Rechnertechnik bzw. Rechnernetze, Digitaltechnik, Programmieren sowie der Ansatz für Software-Architekturen. Das Modul erschließt komplexe und übergreifende Zusammenhänge.

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Netztechnik	36	39
 - Aufgaben der Kommunikations- und Netztechnik - Referenzmodelle und deren Schnittstellen - Netzelemente - Normen und Standards - Festnetze LAN/MAN: Unterscheidung, Aufbau, Funktion, Aktuelle Entwicklungen - Protokolle TCP/IP mit IPv4 und IPv6 - Netzkopplung und Sicherheitstechniken 		
Labor Netztechnik	12	63
Das Labor Netztechnik ergänzt die Vorlesung durch praktische Übungen an Kommunikationsnetzen (z.B. Netzlabor). Aktuelle netzspezifische Themen werden im Rahmen des Selbststudiums erarbeitet. Optional: Erarbeitung grundlegender Begriffe aus "Signale und Syteme", Systemantwort mit Faltungssumme bzw. Integral, Transformationen (Fourier, Laplace), verknüpft mit Übungs- und Laboreinheiten.		
Signale und Systeme 1	36	39
 - Grundlegende Begriffe und Einführung in Signale und Systeme (kontinuierlich) - Systemantwort mittels Faltungsintegral/Faltungssumme - Fourier-Reihe - Transformationen (Fourier, Laplace) 		

Besonderheiten und Voraussetzungen

Besonderheiten

- Die beiden Units Labor Netztechnik bzw. Signale und Systeme I werden alternativ angeboten

Voraussetzungen

Literatur

- E. Pehl, Digitale und analoge Nachrichtenübertragung, Hüchting Telekommunikation
- J.-R. Ohm, H.D. Lüke, Signalübertragung, Springer
- D.Ch. von Grünigen, Digitale Signalverarbeitung, Hanser Fachbuch
- · Kurose, Ross: Computernetzwerke: Der Top Down Ansatz, Pearson Studium IT · Tanenbaum, A.S:Computer Networks, Prentice Hall · A.Sikora: Technische Grundlagen der Rechnerkommunikation, Hanser Fachbuch

Weiterführende Literatur wird über eine aktuelle Literaturrecherche beschafft (Internet, Online-Kataloge, Fachzeitschriften, Bibliotheken).

Software Engineering II (T3INF3001)

Software Engineering II

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Software Engineering II	T3INF3001	Deutsch	Prof. Dr. Andreas Judt

Verortung des Moduls im Studienverlauf	
Studienjahr	Moduldauer in Semester
3. Studienjahr	1

	Eingesetzte Lehr- und Prüfungsformen		
L	.ehrformen	Vorlesung, Übung	
L	ehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Programmentwurf	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
150	48	102	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis so zu analysieren und aufzuarbeiten. Sie gewinnen die für die Lösung relevanten Informationen, können eine geeignete Softwarearchitektur mit relevanten Techniken entwickeln und nach aktuellen Verfahren zertifizieren.	
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen und technisch sowie wirtschaftlich zu bewerten.	
Personale und Soziale Kompetenz	Die Studierenden sind sich Ihrer Rolle und Verantwortung im Unternehmen bewusst. Sie können technische, theoretische und wirtschaftliche Fragestellungen gegeneinander abwiegen und lösungsorientiert umsetzen.	
Übergreifende Handlungskompetenz	Die Studierenden haben gelernt, sich schnell in neuen Situationen zurechtzufinden und sich in neue Aufgaben und Teams zu integrieren. Die Studierenden überzeugen als selbstständig denkende und verantwortlich handelnde Persönlichkeiten mit kritischer Urteilsfähigkeit. Sie zeichnen sich aus durch fundiertes fachliches Wissen, Verständnis für übergreifende Zusammenhänge sowie die Fähigkeit, theoretisches Wissen in die Praxis zu übertragen. Sie lösen Probleme im beruflichen Umfeld methodensicher und zielgerichtet und handeln dabei teamorientiert.	

Lerneinheiten	und Inhalte	
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Advanced Software Engineering	48	102
- Unified Process mit Phasen- und Prozesskomponenten		

- Entwurfsmuster
- Refactoring und Refactorings
- Design-Heuristiken und -Regeln
- Methoden der Softwarequalitätssicherung
- Requirements Engineering
- Usability/SW-Ergonomie
- SW Management (z.B. ITIL)
- Aktuelle Themen und Trends des Software Engineerings

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen

_

Literatur

- Martin Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley
- Erich Gamma, Richard Helm, Ralph Johnson und John Vlissides, Design Patterns, Addison-Wesley
- Ivar Jacobson, Magnus Christerson, Patrik Jonsson und
- ITIL Service Lifecycle Publication Suite : German Translation, TSO Verlag
- Pohl/Rupp. Basiswissen Requirements Engineering: Aus- und Weiterbildung nach IREB-Standard zum Certified Professional for Requirements Engineering Foundation Level, dpunkt.verlag GmbH
- Nielsen. Usability Engineering (Interactive Technologies), Morgan Kaufmann
- Richter und Flückiger. Usability Engineering kompakt: Benutzbare Produkte gezielt entwickeln (IT kompakt) , Springer Vieweg

IT-Sicherheit (T3INF3002)

IT-Security

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
IT-Sicherheit	T3INF3002	Deutsch/Englisch	Prof. Friedemann Stockmayer

Verortung des Moduls im Studienverlauf	
Studienjahr	Moduldauer in Semester
3. Studienjahr	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen Vorlesung, Übung, Labor	
Lehrmethoden	Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausur	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
150	48	102	5

	Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls sensibilisiert bzgl. Sicherheit in wesentlichen Bereichen der IT. Sie sind in der Lage, nach einer Bedrohungsanalyse einzelne Schwachstellen zu erkennen und entsprechende Maßnahmen zu ergreifen, um eine angemessene IT-Sicherheit im Rahmen eines Sicherheitskonzeptes zu gewährleisten. Sie kennen die Stärken und Schwächen der möglichen Maßnahmen in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen. Das erworbene Fachwissen kann in Diskussionen zum Thema IT-Architekturen (Konzeption, Implementierung, Portierung) eingebracht werden und in der Entwicklung von Lösungsansätzen und Spezifikation von IT-Systemen angewendet werden.		
Methodenkompetenz	-		
Personale und Soziale Kompetenz	Die Studierenden haben die Kompetenz erworben, bei der Bewertung von Informationstechnologien auch gesellschaftliche und ethische Aspekte zu berücksichtigen. Dies gilt speziell für das Abwägen von Interessen der Sicherheit bei IT-Systemen gegenüber dem informationellen Selbstbestimmungsrecht der von der Datenverarbeitung betroffenen Personen.		
Übergreifende Handlungskompetenz	Das Modul führt die Studierenden zu einem bewussten und vorsichtigen Umgang mit Daten jeglicher Art. Entscheidungen werden stets vor dem Hintergrund der IT-Sicherheit getroffen.		
	Einüben wissenschaftlicher Arbeitsweise, Recherchieren und Bewerten aktueller Fachliteratur.		

Ler	einheiten und Inhalte	
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
IT-Sicherheit	48	102

- Grundlegende Begriffe und Sicherheitsprobleme
- Bedrohungsanalyse und Sicherheitskonzepte
- Basismechanismen (Verschlüsselung, Hash-Funktionen, Authentication Codes, Signaturalgorithmen,

Public-Key Verfahren etc.) und deren kryptografische Grundlagen

- Sicherheitsmodelle
- Netzwerksicherheit und Sicherheitsprotokolle (z.B. X.509, OAuth)
- Sicherheit Web-basierter Anwendungen und Dienste (z.B. XSS, SQL-Injection, Rest, Soap)
- Datenschutz
- Embedded Security
- Aktuelle Themen

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen

Literatur

- Jonathan Katz, Y. Lindell, Introduction to Modern Cryptography, Chapmann & Hall CRC Press, Cryptography and Network Security M. Bishop: Computer Security, Addison-Wesley-Longman

- C. Eckert: IT-Sicherheit, Oldenbourg
 W. Stallings, L. Brown: Computer Security: Principles and Practice, Pearson * Education
- C. Pfleeger, S. Lawrence Pfleeger, Security in Computing Laurens Van Houtven, Crypto 101, www.crypto101.io Ivan Ristic, Bulletproof SSL nd TLS, Feisty Druck

Studienarbeit (T3_3101)

Student Research Projekt

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Studienarbeit	T3_3101	Deutsch	Prof. DrIng. Joachim Frech

Verortung des Moduls im Studienverlauf	
Studienjahr	Moduldauer in Semester
3. Studienjahr	2

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Individualbetreuung	
Lehrmethoden	Projekt	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Studienarbeit	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
300	12	288	10

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Die Studierenden können sich unter begrenzter Anleitung in ein komplexes, aber eng umgrenztes Gebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben.
	Sie können selbstständig Lösungen entwickeln und Alternativen bewerten. Dazu nutzen sie bestehendes Fachwissen und bauen es selbständig im Thema der Studienarbeit aus.
	Die Studierenden kennen und verstehen die Notwendigkeit des wissenschaftlichen Recherchierens und Arbeitens. Sie sind in der Lage eine wissenschaftliche Arbeit effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.
Methodenkompetenz	Die Studierenden haben die Kompetenz erworben, relevante Informationen mit wissenschaftlichen Methoden zu sammeln und unter der Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren.
Personale und Soziale Kompetenz	Die Studierenden können ausdauernd und beharrlich auch größere Aufgaben selbstständig ausführen. Sie können sich selbst managen und Aufgaben zum vorgesehenen Termin erfüllen. Sie können stichhaltig und sachangemessen argumentieren, Ergebnisse plausibel darstellen und auch komplexe Sachverhalte nachvollziehbar begründen.
Übergreifende Handlungskompetenz	-

Lerneinheiten und Inh	alte	
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Studienarbeit	12	288
-		

Besonderheiten und Voraussetzungen

Besonderheiten

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Die "Große Studienarbeit" kann nach Vorgaben der Studien- und Prüfungsordnung als vorgesehenes Modul verwendet werden. Ergänzend kann die "Große Studienarbeit" auch nach Freigabe durch die Studiengangsleitung statt der Module "Studienarbeit I" und "Studienarbeit II" verwendet werden.

Voraussetzungen

-

Literatur

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Praxisprojekt I (T3_1000)

Work Integrated Project I

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Praxisprojekt I	T3_1000	Deutsch	Prof. DrIng. Joachim Frech

Verortung des Moduls im Studienverlauf	
Studienjahr	Moduldauer in Semester
1. Studienjahr	2

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Praktikum, Seminar
Lehrmethoden	Lehrvortrag, Diskussion, Projekt

Pi	rüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Pr	ojektarbeit	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden
Al	plauf- und Reflexionsbericht	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
600	4	596	20

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Die Absolventinnen und Absolventen erfassen industrielle Problemstellungen in ihrem Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und beurteilen, inwiefern einzelne theoretische Modelle einen Beitrag zur Lösung des Problems leisten können. Die Studierenden kennen die zentralen manuellen und maschinellen Grundfertigkeiten des jeweiligen Studiengangs, sie können diese an praktischen Aufgaben anwenden und haben deren Bedeutung für die Prozesse im Unternehmen kennen gelernt. Sie kennen die wichtigsten technischen und organisatorischen Prozesse in Teilbereichen ihres Ausbildungsunternehmens und können deren Funktion darlegen. Die Studierenden können grundsätzlich fachliche Problemstellungen des jeweiligen Studiengangs beschreiben und fachbezogene Zusammenhänge erläutern.
Methodenkompetenz	Absolventinnen und Absolventen kennen übliche Vorgehensweisen der industriellen Praxis und können diese selbstständig umsetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre Berufserfahrung auf.
Personale und Soziale Kompetenz	Die Relevanz von Personalen und Sozialen Kompetenz ist den Studierenden für den reibungslosen Ablauf von industriellen Prozessen bewusst und sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren und tragen durch ihr Verhalten zur gemeinsamen Zielerreichung bei.
Übergreifende Handlungskompetenz	Die Studierenden zeigen Handlungskompetenz, indem sie ihr theoretisches Fachwissen nutzen, um in berufspraktischen Situationen angemessen, authentisch und erfolgreich zu agieren. Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Lösungsansätze sowie eine erste Einschätzung der Anwendbarkeit von Theorien für Praxis.

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Projektarbeit I	0	560
Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen		
Wissenschaftliches Arbeiten I 4 36		
Das Seminar Wissenschaftliches Arbeiten I." findet während der Theorienhase statt. Fine Durchführung		

Das Seminar "Wissenschaftliches Arbeiten I" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T1000 Arbeit
- Typische Inhalte und Anforderungen an eine T1000 Arbeit
- Aufbau und Gliederung einer T1000 Arbeit
- Literatursuche, -beschaffung und -auswahl
- Nutzung des Bibliotheksangebots der DHBW
- Form einer wissenschaftlichen Arbeit (z.B. Zitierweise, Literaturverzeichnis)
- Hinweise zu DV-Tools (z.B. Literaturverwaltung und Generierung von Verzeichnissen in der

Textverarbeitung)

Besonderheiten und Voraussetzungen

Besonderheiten

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Der Absatz "1.2 Abweichungen" aus Anlage 1 zur Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg

(DHBW) bei den Prüfungsleistungen dieses Moduls keine Anwendung.

Voraussetzungen

-

Literatur

-

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Praxisprojekt II (T3_2000)

Work Integrated Project II

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Praxisprojekt II	T3_2000	Deutsch	Prof. DrIng. Joachim Frech

Verortung des Moduls im Studienverlauf	
Studienjahr	Moduldauer in Semester
2. Studienjahr	2

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Praktikum, Vorlesung		
Lehrmethoden	Lehrvortrag, Diskussion, Gruppenarbeit, Projekt	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Projektarbeit	Siehe Pruefungsordnung	ja
Ablauf- und Reflexionsbericht	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden
Mündliche Prüfung	30	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
600	5	595	20

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden erfassen industrielle Problemstellungen in einem angemessenen Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.		
Methodenkompetenz	Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen und situationsgerecht auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.		
Personale und Soziale Kompetenz	Den Studierenden ist die Relevanz von Personalen und Sozialen Kompetenz für den reibungslosen Ablauf von industriellen Prozessen sowie ihrer eigenen Karriere bewusst; sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren andere und tragen durch ihr überlegtes Verhalten zur gemeinsamen Zielerreichung bei.		
Übergreifende Handlungskompetenz	Die Studierenden zeigen wachsende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in sozialen berufspraktischen Situationen angemessen und erfolgreich zu agieren. Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig.		

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Projektarbeit II	0	560
Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen.		
Wissenschaftliches Arbeiten II	4	26
Das Seminar "Wissenschaftliches Arbeiten II" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden. - Leitlinien des wissenschaftlichen Arbeitens - Themenwahl und Themenfindung bei der T2000 Arbeit - Typische Inhalte und Anforderungen an eine T2000 Arbeit - Aufbau und Gliederung einer T2000 Arbeit - Vorbereitung der Mündlichen T2000 Prüfung		
Mündliche Prüfung	1	9
-		

Besonderheiten und Voraussetzungen

Besonderheiten

Entsprechend der jeweils geltenden Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg (DHBW) sind die mündliche Prüfung und die Projektarbeit separat zu bestehen. Die Modulnote wird aus diesen beiden Prüfungsleistungen mit der Gewichtung 50:50 berechnet.

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Voraussetzungen -

	Literatur	
-		

Praxisprojekt III (T3_3000)

Work Integrated Project III

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Praxisprojekt III	T3_3000	Deutsch	Prof. DrIng. Joachim Frech

Verortung des Moduls im Studienverlauf	
Studienjahr	Moduldauer in Semester
3. Studienjahr	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Praktikum, Seminar
Lehrmethoden	Lehrvortrag, Diskussion, Projekt

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Hausarbeit	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden
Ablauf- und Reflexionsbericht	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
240	4	236	8

	Qualifikationsziele und Kompetenzen
Fachkompetenz	Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in moderater Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.
Methodenkompetenz	Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen, situationsgerecht und umsichtig auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement auch bei sich häufig ändernden Anforderungen systematisch und erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.
Personale und Soziale Kompetenz	Die Studierenden weisen auch im Hinblick auf ihre persönlichen personalen und sozialen Kompetenzen einen hohen Grad an Reflexivität auf, was als Grundlage für die selbstständige persönliche Weiterentwicklun genutzt wird. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung für sich und andere. Sie sind konflikt und kritikfähig.
Übergreifende Handlungskompetenz	Die Studierenden zeigen umfassende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in berufspraktischen Situationen angemessen und erfolgreich zu agieren. Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Projektarbeit III	0	220
Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen		
Wissenschaftliches Arbeiten III 4 16		

Das Seminar "Wissenschaftliches Arbeiten III " findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Was ist Wissenschaft?
- Theorie und Theoriebildung
- Überblick über Forschungsmethoden (Interviews, etc.)
- Gütekriterien der Wissenschaft
- Wissenschaftliche Erkenntnisse sinnvoll nutzen (Bezugssystem, Stand der Forschung/Technik)
- Aufbau und Gliederung einer Bachelorarbeit
- Projektplanung im Rahmen der Bachelorarbeit
- Zusammenarbeit mit Betreuern und Beteiligten

Besonderheiten und Voraussetzungen

Besonderheiten

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Voraussetzungen

-

Literatur

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation,, Bern
- Minto, B., The Pyramid Principle: Logic in Writing, Thinking and Problem Solving, London
- · Zelazny, G., Say It With Charts: The Executives's Guide to Visual Communication, Mcgraw-Hill Professional.

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Web Engineering (T3INF4101)

Web Engineering

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Web Engineering	T3INF4101	Deutsch	Prof. Dr. Rolf Assfalg

Verortung des Moduls im Studienverlauf	
Studienjahr	Moduldauer in Semester
1. Studienjahr	1

	Eingesetzte Lehr- und Prüfungsformen	
	Lehrformen	Labor, Vorlesung, Übung
1	Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausurarbeit oder Kombinierte Prüfung	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte					
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Leistungspunkte					
90	48	42	3		

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden setzen die erarbeiteten Theorien und Modelle in Bezug zu ihren Erfahrungen aus der beruflichen Praxis und können deren Grenzen und praktische Anwendbarkeit einschätzen.	
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.	
Personale und Soziale Kompetenz	Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln	
Übergreifende Handlungskompetenz	-	

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium	
Web-Engineering 1	36	39	
- Einführung in HTML und CSS in der aktuellen Version.			
- Grundlagen der Internetprotokolle und ihre zugehörigen Technologien.			
- Betrachtung einer Client-Programmiersprache und/oder einer oder mehrerer serverseitig eingesetzten Programmiersprache.			
- Optional: Dokumentauszeichnungssprache XML			
- Optional: Spezielle Dokumenttypen zur Darstellung von 2D oder 3D-Grafik.			
- Optional: Grundlagen der Mediengestaltung, soweit nicht bereits in anderen Modulen abgedeckt.			
Labor Webengineering 1	12	3	
- Praktische Übungen zu HTML-Grundlagen - Praktische Übungen zu den/der im Rahmen der Vorlesung eingeführten Programmiersprache/EN			

Besonder	heiten und Voraussetzungen
Besonderheiten	
Die Prüfungsdauer bezieht sich auf die Klausur.	

Literatur	
- www.w3c.org - wiki.selfhtml.org	
www.w3c.org de.selfhtml.org	

Anwendungsprojekt Informatik (T3INF4103)

Computer Science Project

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Anwendungsprojekt Informatik	T3INF4103	Deutsch	Prof. Dr. Dirk Reichardt

Verortung des Moduls im Studienverlauf			
Studienjahr Moduldauer in Semester			
1. Studienjahr	1		

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen Vorlesung, Übung, Labor			
Lehrmethoden	Projekt		

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausurarbeit < 50 %	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Leistungspunkte				
150	72	78	5	

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, die Grundlagen der Informatik in einfachen Anwendungsfällen geeignet zur Problemlösung einzusetzen.	
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, ein Anwendungsprojekt mit geeigneten, methodisch fundierten Vorgehensweisen des Projektmanagements zum erfolgreichen Abschluss zu bringen.	
Personale und Soziale Kompetenz	Die reflektierte, praktische Durchführung eines Anwendungsprojekts fördert die Selbständigkeit und Eigenverantwortlichkeit der Studierenden, sowie das Selbst- und Zeitmanagement.	
Übergreifende Handlungskompetenz	Durch die reflektierte, praktische Durchführung eines Anwendungsprojekts in kleinen Gruppen erwerben die Studierenden Kenntnis über fachübergreifende Zusammenhänge und Prozesse. Sie haben gelernt, sich schnell in neue Aufgaben, Teams und (Arbeits-)Kulturen zu integrieren.	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Anwendungsprojekt Informatik	72	78

Management von Informatik-Projekten

- Rahmenbedingungen
- Projekt- und Ziel-Definitionen
- Auftrag und Ziele
- Projektmanagement mit IT Unterstützung (z.B. MS Project)
- Meetings, Teams und Konflikte
- Projekt Steuerung und Kontrolle
- Weitere Projektmanagement Methoden

Lehre am Projektbeispiel

- Durchführen eines Informatikprojektes
- Praktische Vertiefung/Übung zu Grundlagenvorlesungen
- (i.e. Programmieren, Webengineering, Digitaltechnik, Algorithmen und Datenstrukturen)
- Fachübergreifende Anwendung und Vertiefung von Grundlagen der Informatik am Beispielprojekt
- Einsatz von Methoden des Projektmanagements (ggf. Vertiefung eines Grundlagenmoduls

Projektmanagement)

Besonderheiten und Voraussetzungen

Besonderheiten

Projektmanagementkompetenz und Vertiefung von Grundlagenkenntnissen der Informatik werden fachübergreifend vermittelt.

Voraussetzungen

Grundlagenmodule der Informatik, insbesondere Programmieren. Algorithmen und Datenstrukturen kann ggf. parallel unterrichtet werden.

Literatur

- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall

siehe Literatur gemäß Grundlagenmodulen Programmieren, Webengineering, Digitaltechnik, Algorithmen und Datenstrukturen

Softwarequalität und Verteilte Systeme (T3INF4305)

Quality of Software and Distributed Systems

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Softwarequalität und Verteilte Systeme	T3INF4305	Deutsch	Prof. Dr. Johannes Freudenmann

Verortung des Moduls im Studienverlauf	
Studienjahr	Moduldauer in Semester
3. Studienjahr	1

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Vorlesung, Übung
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Kombinierte Prüfung	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
150	72	78	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis so zu analysieren und aufzuarbeiten, dass sie zu diesen entsprechende Programmsysteme erstellen können. Sie gewinnen die für die Lösung relevanten Informationen, führen den Softwareentwurf selbständig durch und geben kritische Hinweise zur Qualität ihrer Ergebnisse.	
Methodenkompetenz	Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Softwaresysteme eine angemessene Methode zur Qualitätsbeurteilung und -sicherung auszuwählen und anzuwenden. Sie können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.	
Personale und Soziale Kompetenz	-	
Übergreifende Handlungskompetenz	-	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Softwarequalität	36	39
- Qualitätsbegriffe - QS nach TQM, Qualitätsmanagement unter dynamischer Marktentwicklung, Definitionen, Standards - QualitätsAudit - Qualitätssteigerung mit messbaren Faktoren - Methoden der QS, Produktlebenszyklus - mit dem QTK-Kreis, LeanProduction,		
Verteilte Systeme	36	39

- Einführung in die verteilten Systeme
- Anforderungen und Modelle
- Hard- und Softwarekonzepte
- Multiprozessor, Multicomputer
- Betriebssystemunterstützung, Prozess-Management
- Verteilte Dateisysteme, verteilter Speicher
- Kommunikation in verteilten Systemen
- Synchronisation, Zeit und Nebenläufigkeit, Transaktionen
- Konsistenz und Replikation
- Middlewarearchitekturen
- Standard (Internet) Anwendungen
- Verteilte Programmierung z.B. mit RPC/RMI

Besonderheiten und Voraussetzungen Besonderheiten -

Voraussetzungen

Software Engineering I

Literatur

- · Coulouris, J.Dollimore, T.Kindberg, Distributed Systems: Concepts and Design, Pearson
- A.S. Tanenbaum, Distributed Systems: Principles and Paradigms, Prentice Hall
- S. Heinzel, Middleware in Java: Leitfaden zum Entwurf verteilter Anwendungen, Vieweg+Teubner
- Günther Bengel, Grundkurs Verteilte Systeme, Springer Verlag
- Peter Liggesmeyer: Software-Qualität:Testen, Analysieren und Verifizieren von Software, Spektrum akademischer Verlag R.Schmidt, T. Pfeifer: Qualitätsmanagement: Strategien, Methoden und Techniken, Hanser Fachbuch R. Kneuper: Verbesserung

Datenbanken II (T3INF4304)

Databases II

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Datenbanken II	T3INF4304	Deutsch/Englisch	Prof . Dr. Carmen Winter

Verortung des Moduls im Studienverlauf	
Studienjahr	Moduldauer in Semester
3. Studienjahr	1

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Labor, Vorlesung, Übung	
Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausur	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Leistungspunkte				
150	72	78	5	

	Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden können Konzepte von aktuellen Datenbankarchitekturen und Datenbankechnologien beurteilen. Die Studierenden kennen den Sinn und Zweck von Data Warehouse Konzepten und können komplexe DWH Architekturen beurteilen. Studierende verfügen über Kenntnisse über den Aufbau und den Betrieb eines DWH und über die Prinzipien der DHW-Datenmodellierung und -speicherung.		
Methodenkompetenz	Die Studierenden können die Stärken und Schwächen der aktuellen Datenbanktechnologien und Datenbankarchitekturen sowie Data Warehouse Konzepte bzgl. der Einsatzfähigkeit im beruflichen Umfeld einschätzen.		
Personale und Soziale Kompetenz	Die Studierenden können mit ihrer Entscheidungs- und Fachkompetenzen im Bereich der Datenbanktechnologien und -Datenbankarchitekturen, sowie Data Warehouse aktuelle Konzepte adäquat einschätzen und die Experten anderer Bereiche (insbes. des Anwendungsbereichs) einbeziehen.		
Übergreifende Handlungskompetenz	Die Studierenden haben über die fundierte Fachkenntnis hinaus die Fähigkeit erworben, theoretische Konzepte der aktuellen Datenbankarchitelturen und Datenbanktechnologien sowie Data Warehouse Konzepte in praktische Anwendungen umzusetzen.		

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium	
DB-Implementierungen	36	39	
- Speicher- und Zugriffsstrukturen - Transaktionen, Concurrency Control und Recovery - Basisalgorithmen für Datenbankoperationen - Anfrageoptimierung			
Data Warehouse	36	39	
- Einführung in DWH und Business Intelligence - DWH-Architektur - Multidimensionales Datenmodell - Physische Umsetzung - Daten-Integrationsprozess - DB-Technologie für DWH			
Aktuelle Datenbankarchitekturen und -technologien	36	39	
- Aktuelle Datenbankarchitekturen - Aktuelle Datenbanktechnologien			
Labor Aktuelle Datenbanktechnologien	36	39	
Aktuelle Datenbank-Technologien sollen implementiert und mit diesen Übungen selbstständig und unter Anleitung durchgeführt werden (inklusive der Darstellung allgemeiner Konzepte wie z.B. MapReduce und konkreter Anwendungsbeispiele anhand verschiedener Datenbanksystem wie z.B. Redis, CouchDB, Hadoop, Apache Kafka, etc.).			

Besonderheiten und Voraussetzungen

Besonderheiten

In diesem Modul sind zwei der vier beschiebenen Units auszuwählen.

Voraussetzungen

Datenbanken I

Literatur

- Andreas Heuer und Gunter Saake: Datenbanken Konzepte und Sprachen, mitp-Verlag Gunter Saake Andreas Heuer und Kai-Uwe Sattler: Datenbanken Implementierungstechniken, mitp Verlag Ramez Elmasri und Shamkant B. Navathe: Fundamentals of Database
- Connolly/Begg "Database Systems: A Practical Approach to Design, Implementation, and Management"
- Silberschatz/Korth/Sudarshan "Database System Concepts"

Es gilt jeweils die aktuelle Auflage.

- John Wiley: The Data Warehouse Toolkit William A. Giovinazzo: Data Warehouse Design, Prentice-Hall Jiawei Han und Micheline Kamper: Data Mining: Concepts and Techniques Morgan, Kaufmann Publishers
- Bauer/Günzel "Data-Warehouse-Systeme: Architektur, Entwicklung, Anwendung".
- Vaisman/Zimányi "Data Warehouse Systems: Design and Implementation"
- Gluchowski & Chamoni (Hrsg.): Analytische Informationssysteme: Business Intelligence-Technologien und -Anwendungen, Springer Gabler

Es gilt jeweils die aktuelle Auflage.

- Meier & Kaufmann: SQL- & NoSQL-Datenbanken; Springer Vieweg, aktuellste Auflage.
- Meyl: NoSQL Datenbanken: Eine Modellierung von Daten in Graphdatenbanken, AV Akademikerverlag, aktuellste Auflage.
- Redmond & Wilson: Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement; Pragmatic Programmers, aktuellste Auflage.
- White: Hadoop: The Definitve Guide; O'Reilly, aktuellste Auflage.
- -Edlich, S., Friedland, A., Hampe, J., Brauer, B. & Brückner, M. NoSQL Einstieg in die Welt Nichtrelationaler WEB 2.0 Datenbanken. München: Carl Hanser Verlag, aktuellste Auflage.
- Meier & Kaufmann: SQL- & NoSQL-Datenbanken; Springer Vieweg, aktuellste Auflage.
- Meyl: NoSQL Datenbanken: Eine Modellierung von Daten in Graphdatenbanken, AV Akademikerverlag, aktuellste Auflage.
- Redmond & Wilson: Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement; Pragmatic Programmers, aktuellste Auflage.
- White: Hadoop: The Definitve Guide; O'Reilly, aktuellste Auflage.

Workflowmanagement (T3INF4122)

Workflow Management

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Workflowmanagement	T3INF4122	Deutsch	Prof. Dr. Holger D. Hofmann

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
1. Studienjahr	1	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Labor, Seminar, Vorlesung, Übung, Labor	
Lehrmethoden	Laborarbeit, Lehrvortrag, Diskussion, Gruppenarbeit, Projekt	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausurarbeit oder Kombinierte Prüfung	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
150	84	66	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden können Geschäftsprozesse erkennen, analysieren, modellieren und als Workflows umsetzen. Sie kennen Analyse- und Entwurfsmethoden für Workflows und können Use-Cases einordnen.		
Methodenkompetenz	Die Verantwortlichkeiten der einzelnen Mitarbeiter wird besser verstanden und Maßnahmen zur Optimierung von Abläufen können analytisch durchgeführt werden.		
Personale und Soziale Kompetenz	Die Rolle des Menschen in der Umsetzung von Geschäftsprozessen ist bekannt und die Problematik von Optimierungsmaßnahmen im Arbeitsumfeld kann fallweise eingeschätzt werden.		
Übergreifende Handlungskompetenz	-		

Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Geschäftsprozesse	36	39
- Grundlagen des Prozessmanagements - Geschäftsprozesse in Unternehmen - Modellierung von Geschäftsprozessen - Modellierungssprachen und -Systeme - Qualitative Prozessanalyse - Quantitative Prozessanalyse - Kriterien für den Einsatz von Workflow-Applikationen - Automatisierung von Geschäftsprozessen		
Workflow-Labor	24	13
 Definition Gescäftsprozess Modellierung von Geschäftsprozessen mit einem Prozesswerkzeug und Transformation in Workflows Umsetzung innerhalb eines Workflow-Management-Systems Analyse und Optimierung von erstellen Lösungen 		
Proseminar Workflow	24	14
Neue Ansätze zur Modellierung, Realisierung und Optimierung von Workflows in Unternehmen werden anhand von technischen Berichten und Use-Cases erarbeitet und in einem Vortrag vorgestellt.		

Besonderheiten und Voraussetzungen

Besonderheiten

Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

Voraussetzungen

-

Literatur

- European Association of Business Process Management EABPM (Hrsg.), BPM CBOK®, Business Process Management BPM Common Body of Knowledge, Version 3.0, Leitfaden für das Prozessmanagement, Verlag Dr. Götz Schmidt

Allweyer, T., BPMN 2.0 - Business Process Model and Notation: Einführung in den Standard für die Geschäftsprozessmodellierung, Books on Demand

- Becker et Al., Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, Springer Gabler
- Gadatsch, Andreas: Grundkurs Geschäftsprozess-Management: Methoden und Werkzeuge für die IT-Praxis: Eine Einführung für Studenten und Praktiker. Vieweg+Teubner.
- van der Aalst, Wil. Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer.

Software-Praxis AI (T3INF4124)

Software Project Management Computer Science

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Software-Praxis Al	T3INF4124	Deutsch	Prof. Dr. Holger D. Hofmann

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
1. Studienjahr	1	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor	
Lehrmethoden Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Programmentwurf	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
150	84	66	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden lernen das systematische, strukturierte Arbeiten im Rahmen von Informatik-Projekten kennen und können dies selbständig anwenden.		
Methodenkompetenz	- Strukturiertes, analytisches Arbeiten		
Personale und Soziale Kompetenz	-		
Übergreifende Handlungskompetenz	-		

obergrenende Handtangskompetenz		
Lerneinheiten un	d Inhalte	
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Einführung in technisch-wissenschaftliches Arbeiten	24	19

Elemente wissenschaftlicher Arbeit und ihrer Produkte:

- Inhaltliche, formale und stilistische Aspekte wiss. Arbeitens
- Kategorien technischer und wissenschaftlicher Dokumente und ihre Bewertung
- Anwendung von technischem Englisch
- Durchführung von Quellenrecherchen und deren qualitative Bewertung
- Ausarbeitungen und Darstellungsformen wissenschaftlicher Vorträge unter Berücksichtigung des Semantic Environments
- Aufgabenbeschreibung eines technischen bzw. wissenschaftlichen Projektes
- Erstellung einer exemplarischen und vollständigen Dokumentation
- Erstellung eines englischen und deutschen Kurzberichtes
- Methodischer Hinweis: Für die Umsetzung der praktischen Übungen und des Feedbacks werden die Studierenden in Intensivarbeitsgruppen eingeteilt und betreut.

Werkzeuge der wissenschaftlichen Informationsverarbeitung	24	19

Werkzeuge zur wissenschaftlichen Informationsverarbeitung kennen und anwenden lernen, etwa - LaTeX für die Erstellung eigener Texte und Präsentationen, - Makro- oder Shell-Programmierung, Linux Command Line Tools zur Datenaufbereitung (z.B. VBA, OpenOffice.org Basic, grep/sed/awk, gnuplot, Perl)

Requirements Engineering und Qualitätssicherung 36 28

- Requirements Engineering: Ausschreibungen verstehen und analysieren, Ausschreibungen formulieren, Angebote verstehen und analysieren, Angebote erstellen, Kundenanforderungen aufnehmen (Interviewtechniken, Beobachtung, Statusanalyse), Anforderungen priorisieren, Meta-Anforderungen bestimmen und anwenden

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen

-

Literatur

- · Balzert, Helmut. Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering, Springer
- Hammerschall, Ulrike. Software Requirements, Pearson Studium- IT
- Davis, M.: Scientific Papers and Presentations, Boston, London, San Diego
- Eberhard, K.: Einführung in die Erkenntnis- und Wissenschaftstheorie, Stuttgart
- · Heydasch, T., Renner, K.-H.: Einführung in das wissenschaftliche Arbeiten; Fakultät für Kultur- und Sozialwissenschaften; FernUniversität Hagen, Hagen
- Held: VBA Programmierung, Franzis Krumbein: Makros in OpenOffice.org 3, Galileo Computing
- Mittelbach, Goossens: Der LaTeX-Begleiter, Pearson Studium
- Schlosser: Wissenschaftliche Arbeiten schreiben mit LaTeX, mitp
- Wolf: Shell-Programmierung: Das um

Wahlmodul Informatik (T3INF4905)

Elective Module LPM III

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Wahlmodul Informatik	T3INF4905	Deutsch	Prof. Dr. Holger D. Hofmann

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
2. Studienjahr	2	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Seminar, Vorlesung, Labor, Vorlesung, Übung, Vorlesung, Übung, Labor	
Lehrmethoden Gruppenarbeit, Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit, Projekt		

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausurarbeit oder Kombinierte Prüfung	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte					
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Leistungspunkte					
150	72	78	5		

Qualifikationsziele und Kompetenzen		
Fachkompetenz	In diesem Modul erweitern und vertiefen die Studierenden ihre Programmierkenntnisse.	
Methodenkompetenz	-	
Personale und Soziale Kompetenz	-	
Übergreifende Handlungskompetenz	Die Studierenden können die neu erworbenen Kenntnisse in anderen Gebieten wie z.B. dem Software-Engineering zur Lösung komplexer Probleme anwenden.	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Systemprogrammierung	36	39
ABAP-Programmierung	36	39
- Grundlagen von SAP-Systemen - Einführung in die Programmierung mit ABAP - Objektorientierung in ABAP		
Seminar Algorithmik	36	39
Im Rahmen der Lehrveranstaltung können sich Studierende in Kleingruppen selbständig ein fortgeschrittenes Thema aus dem Bereich Algorithmen und Datenstrukturen erarbeiten und es zusammen mit einer eigenen Beispielimplementierung präsentieren. In der Vorlesung können auch typische Aufgaben von Programmierwettbewerben vorgestellt werden, die in Gruppenarbeit gelöst werden.		
Codierungstheorie	36	39
Einführung in OpenGL	36	39
Performance-optimierte SQL-Programmierung	36	39
-	7.	
Ausgewählte Methoden der Datenanalyse, Modellierung und Simulation	36	39
 - Grundlagen in Datenmodellieriung: Datenqualität, Integrität, Ownership, Data Cleaning, Data Governance, Datenqualität und Genauigkeit bei Big Data - Grunlagen der Datenanalyse; Daten und Beziehungen, Daten-Vorverarbeitung, Daten-Visualisierung, Korrelationen und Regression, Bayessche Verfahren, Vorhersagen - Grundlagen in Simulation: Wahrscheinlichkeitstheorie, Bayes'sche Statistik, Graphen und Matrizen, Tiefen- und Breitensuche, Dijkstra-, Floyd-Warshall- und A*-Algorithmus, Monte-Carlo-Simulation 		
Funktionale Programmierung	36	39
- Programmieren mit Funktionen - Rekursive Definitionen - Pattern Matching - Funktionen höherer Ordnung - Funktionen map und fold - Konzept der Monaden Funktionale - Auswertungsstrategien: Strikte Auswertung (call-by-value), nicht-strikte Auswertung (Lazy-Evaluation, call-by-name, call-by-need)		
Entwicklung mobiler Applikationen	36	39
- Konzepte User Interface, Speicherverwaltung, Resourcen-limitiertes Computing, Hybrider Ansatz, HTML5, Progressive Webapps, Native Apps - Plattformen (z. B. iOS, Android, Windows Phone) - Frameworks und Bibliotheken (z.B. React Native, PhoneGap/Ionic, Xamarin)		
Digitale Sprachverarbeitung	36	39
Die wichtigsten Grundlagen der Sprachsynthese und der Spracherkennung werden vorgestellt. Wie sieht das prinzipielle Vorgehen aus, welche Möglichkeiten ergeben sich. Grundkenntnisse in Linguistik, Phonetik, Morphologie, digitaler Signalverarbeitung bis hin zu neuronalen Netzen werden vermittelt.		
OO Best Practice	36	39
Ausgewählte aktuelle Inhalte aus der objektorientierten Programmierung und dem objektorientierten Softwareengineering werden vertieft vermittelt.		

Besonderheiten und Voraussetzungen

Besonderheiten

Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

Voraussetzungen

-

Literatur

- Bättig, D.: Angewandte Datenanalyse: Der Bayes'sche Weg, Springer Spektrum
- Runkler, T.: Data Analytics: Models and Algorithms for Intelligent Data Analysis, Springer Vieweg
- Simsion, G.: Data Modeling Essentials, Morgan Kaufmann
- Scheuch, R. Gansor, T., Ziller C.: Master Data Management: Strategie, Organisation, Architektur, tdwi
- Templ, M.: Simulation for Data Science with R, Packt Publishing
- Bird: Pearls of Functional Algorithm Design, Cambridge University Press Cormen, Leiserson, Rivest, Stein: Algorithmen Eine Einführung, Oldenbourg Gerdes, Klawonn, Kruse: Evolutionäre Algorithmen: Genetische Algorithmen Strategien und Opt

- Keller: ABAP Objects, SAP Press Kühnhauser: Discover ABAP, SAP Press
- Pfister, Kaufmann: Sprachverarbeitung, Grundlagen und Methoden der Sprachsynthese und Spracherkennung, aktuellste Auflage
- Reese, R.: Natural Language Processing with Java, Packt Publishing, aktuellste Auflage
- Bird, S.; Klein, E.; Loper, E.: Natural Language Processing with Python, O'Reilly, aktuellste Auflage
- Jurafsky, D.; Martin, J.: Speech and Language Processing, Prentice Hall, aktuellste Auflage
- Chopra, D.; Joshi, N.; Mathur, I.: Mastering Natural Language Processing with Python, Packt Publishing, aktuellste Auflage
- Pfister, B.; Kaufmann, T.: Sprachverarbeitung: Grundlagen und Methoden der Sprachsynthese und Spracherkennung, Springer, aktuellste Auflage
- Barrière, C.: Natural Language Understanding in a Semantic Web Context, Springer, aktuellste Auflage
- Phillips, Bill; Stewart, Chris: Android Programming: The Big Nerd Ranch Guide, Pearson
- Conway, J.; Hillegass, A.: iPhone Programming: The Big Nerd Ranch Guide, Addison-Wesley Longman, Amster-dam.
- Mathias, Mathew; Gallagher, John: Swift Programming: The Big Nerd Ranch Guide; Pearson
- Wilkon, Jeremy: Ionic in Action; Manning
- Fling, B.: Mobile Design and Development: Practical Concepts and Techniques for Creating Mobile Sites and Web Apps, O'Reilly, Sebastopol

Jeweils aktuelle Auflage

- Thiemann, Peter, Grundlagen der funktionalen Programmierung, Teubner-Verlag
- Pepper, Peter; Hofstedt, Petra, Funktionale Programmierung Sprachdesign und Programmiertechnik, Springer, Berlin
- · Simon Peyton Jones [editor], Haskell 98 language and libraries, the revised report, http://haskell.org/onlinereport
- Bryan O Sullivan, Donald Bruce Stewart, and John Goerzen, Real World Haskell. O' Reilly-Verlag

00 Best Practice

- Ian Sommerville: Software Engineering. Addison-Wesley, München
- Thomas Grechenig, Mario Bernhart, Roland Breiteneder, Karin Kappel: Softwaretechnik Mit Fallbeispielen aus realen Projekten Pearson Studium, München

Web-Engineering 2 und Anwendungen (T3INF4213)

Web Engineering 2 and Applications

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Web-Engineering 2 und Anwendungen	T3INF4213	Deutsch	Prof. Dr. Holger D. Hofmann

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
2. Studienjahr	1	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Vorlesung, Übung, Labor	
Lehrmethoden	Gruppenarbeit, Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Programmentwurf	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte					
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Leistungspunkte					
150	72	78	5		

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden erlernen die Erstellung von Server-seitigen Webanwendungen und deren Kommunikation mit Client-seitigen Inhalten. Hierbei werden die Server-seitige Speicherung von Objekten in relationale Datenbanken und die Übertragungssicherung von Daten berücksichtigt.	
Methodenkompetenz	Die Studierenden üben es, eigene Ideen im Projekt zu präsentieren und zu vertreten und diese im Team umzusetzen.	
Personale und Soziale Kompetenz	Die kritische Auseinandersetzung mit Datenmissbrauch im Webumfeld wird angeregt.	
Übergreifende Handlungskompetenz	Die Bedürfnisse verschiedener Interessenvertreter (engl., Stakeholder) werden erkannt und gemäß ihrer Wichtigkeit in Projekten berücksichtigt.	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Web-Engineering 2	36	39
- Vertiefung oder Erlernen einer serverseitigen Programmiersprache und/oder die Vertiefung oder Erlernen clientseitiger Programmierung als Ergänzung und Fortführung von Unit Web-Engineering 1		
- Spezielle Verwendungskontexte client- oder serverseitigen Programme unter Einbezug üblicher Frameworks/Bibliotheken der verwendeten Programmiersprache.		
- Optional: Spezielle Ausführungsplattformen für Webanwendungen		
- Optional: Einführung in die Architekturmuster und Konzepte moderner Webanwendungen		
Embedded SQL	24	26
- Einführung in die Anwendungsentwicklung - Grundlagen Embedded SQL - DCLGEN - Fehlerbehandlung - Program Preparation - Cursor-Verarbeitung - AE-Umbebung - EXPLAIN - DB2-Utilities		
Labor Webengineering 2 kompakt	12	13
Praktische Realisierungsübungen in praxisnahen Szenarien wie sie z.B. im Kontext des elektronischen Handels auftreten.		
Grundlagen E-Business	24	26
- Grundlagen des eBusiness - weiterführende eBusiness-Konzepte (z.B. Long Tail, "brick-n-click"- Shops) - Umsetzung eines webbasierten, elektronischen eCommerce-/eBusiness-Systems mit integrierten Zuliefer- oder B2B-Kommunikationsprozessen.		

Bes	onderheiten und Voraussetzungen
Besonderheiten	

Voraussetzungen

_

Literatur

- Geisler, Geisler: Datenbanken Grundlagen und Design mitp 2009 Throll, Bartosch: Einstieg in SQL, Galileo Computing 2009 Jonathan. Sayles: Embedded SQL for DB2. Application Design and Programming, Wellesley QED1990
- Kollmann, Tobias. E-Business: Grundlagen elektronischer Geschäftsprozesse in der Digitalen Wirtschaft. Springer.
- Kollmann, Tobias: E-Business: Grundlagen elektronischer Geschäftsprozesse in der Digitalen Wirtschaft. Springer.
- www.w3c.org
- de.selfhtml.org
- s. spezifisches Themengebiet, Literatur wird in Form passender Manuskripte oder Tutorials ausgegeben

Consulting, technischer Vertrieb und Recht (T3INF4324)

Consulting, Technical Sales and Law

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Consulting, technischer Vertrieb und Recht	T3INF4324	Deutsch	Prof. DrIng. Olaf Herden

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
3. Studienjahr	1	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Vorlesung, Übung		
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausurarbeit oder Kombinierte Prüfung	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
150	72	78	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz	- Kennen der Anforderungen und Rollen von internen und externen Consultants - Beurteilen der Aufgabenbereiche und Erfolgsfaktoren eines Consultants und der Strukturen und Zielsetzungen von Consulting-Unternehmen - Anwenden von Methoden des Consultings - Kennen der Anforderungen und der Struktur von Vertriebsprozessen - Anwendung und Vertiefung der Projektmanagement-Kenntnisse und -Methoden - Kennen der Grundlagen des deutschen Rechts insbesondere des Privatrechts und des Rechts des geistigen Eigentums		
Methodenkompetenz	-		
Personale und Soziale Kompetenz	-		
Übergreifende Handlungskompetenz	- Sensibilisierung für das Auftreten rechtlicher Fragestellungen und deren Beurteilung insbesondere auch im Hinblick auf die Fachrichtung Informatik		

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium	
Consulting und technischer Vertrieb	48	52	
Externes und Internes Consulting Vorgehensweise im Consulting Kommunikation im Consulting Technischer Vertrieb Der industrielle Kaufprozess Akquisitionsplanung und Account Management Kosten und Erlösrechnung Distribution und Vertriebswege Strategische Planung und Verkaufen im Top Management Soft-Skills Verhandlungsführung z.B. Harvard-Konzept Konfliktmanagement Vortragstechnik und Moderation Führung Selbstmarketing Vertiefung der Projektmanagementkenntnisse			
Recht	24	26	
Einleitung Systematik des deutschen Rechts Zivilrecht und bürgerliches Recht Rechtssubjekte, Rechtsobjekte, Rechtsfähigkeit Vertragsrecht Allgemeines zur Vertragslehre Vertragsbegründung Stellvertretung Einbeziehung von AGB in den Vertrag Einwendungen Verbraucherschutz EContracting, Der Vertrag im Cyberlaw Leistungsstörungen Mängelhaftung im Kaufrecht, Urheberrecht, Gewerblicher Rechtsschutz Urheberrecht Recht am eigenen Bild Markenrecht Patente Gebrauchsmuster			

Besonderheiten

- Wettbewerbsrecht, Datenschutzrecht

Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

Voraussetzungen

Literatur

- Cope, Mike: "The Seven Cs of Consulting", Perason Education Limited
- Ury, William: "Getting Past No", Bantam Verlag
- Scheer, August-Wilhelm und Alexander Köppen: "Consulting", Springer Verlag
- Kleinaltenkamp, Michael: "Technischer Vertrieb", Springer Verlag
- Karl E. Hemmer und Achim Wüst Basics Zivilrecht, Band 1, BGB AT und vertragliche Schuldverhältnisse, Hemmer/Wüst Verlagsgesellschaft
- Eugen Klunzinger Einführung in das Bürgerliche Recht Vahlen
- Ernst R. Führich Grundzüge des Privat- Handels- und Gesellschaftsrechts für Wirtschaftswissenschaftler und Unternehmenspraxis Vahlen
- Volker Ilzhöfer Patent- Marken- und Urheberrecht Vahlen
- Wolfgang Berlit Wettbewerbsrecht C.H. Beck
- Flemming Moos Datenschutzrecht schnell erfasst Springer
- Peter Gola und Christoph Klug Grundzüge des Datenschutzrechts C.H. Beck

International Business (T3INF4219)

International Business

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
International Business	T3INF4219	Deutsch	Prof. Dr. Holger D. Hofmann

Verortung des Moduls im Studienverlauf			
Studienjahr Moduldauer in Semester			
3. Studienjahr	1		

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen Seminar, Vorlesung, Übung		
Lehrmethoden Gruppenarbeit, Lehrvortrag, Diskussion		

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausurarbeit oder Kombinierte Prüfung	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
150	72	78	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz Kenntnisse über Kultur-spezifische und -übergreifende Verhaltensweisen, speziell im Umfeld internationaler Projekte, werden erworben.			
Methodenkompetenz Die persönliche Wirkung in einer internationalen Umgebung wird erprobt.			
Personale und Soziale Kompetenz	Die Akzeptanz von kulturellen Unterschieden im Leben und Arbeiten wird erhöht.		
Übergreifende Handlungskompetenz	-		

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium	
International Business Seminar	36	39	
m Rahmen einer internationalen Begegnung oder eines Projekts wird das Arbeiten in internationalen Projektteams diskutiert und landestypische Verhaltensweisen analysiert und herausgearbeitet.			
Intercultural Proficiency	36	39	
 Introduction to the course Working with cultural differences, Awareness of cultural differences, Identifying Synthetic culture profiles, Simulations with synthetic cultures Comparing different cultural characteristics of different countries How we manage time? How far do we get involved? How do we accord status? How do we relate to nature? Identification of individual cultural indentity, Designing a cultural compass Five Challenges facing global teams, Managing cultural diversity, Handling geographic distance, 			

Besonderheiten und Voraussetzungen
Besonderheiten
Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

Dealing with coordination and control, Maintaining good coordination, Developing and maintaining

teamness

Voraussetzungen

Lit	eratur

- Hecht-El-Minshawi: "Interkulturelle Kompetenz: Soft Skills für die internationale Zusammenarbeit", Beltz.
- Hiller, Vogler-Lipp: "Schlüsselqualifikation Interkulturelle Kompetenz an Hochschulen: Grundlagen, Konzepte, Methoden", VS Verlag.

Hofstede et al: "Lokales Denken, globales Handeln: Interkulturelle Zusammenarbeit und globales Management", DTV 2009 Trompenaars et al.: "Building Cross-Culture Competence", Wiley 2002

Wahlmodul Business IT (T3INF4907)

Elective Module Business IT

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Wahlmodul Business IT	T3INF4907	Deutsch	Prof. Dr. Holger D. Hofmann

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
3. Studienjahr	1	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen Vorlesung, Labor, Vorlesung, Übung, Vorlesung, Übung, Labor			
Lehrmethoden	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit		

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausurarbeit oder Kombinierte Prüfung	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Leistungspunkte
372	144	228	5

Qualifikationsziele und Kompetenzen			
Fachkompetenz Die Studierenden erwerben vertiefende Kenntnisse für die Arbeit mit IT-Systemen in einem professionellen Umfeld. Dabe ist die Nähe zu betriebswirtschaftlichen Aspekten bei der Umsetzung wesentlich.			
Methodenkompetenz	Die Arbeit in Projektteams wird gefördert.		
Personale und Soziale Kompetenz	Der verantwortungsvolle Umgang mit neuen Technologien im betrieblichen Umfeld wird geschult.		
Übergreifende Handlungskompetenz	-		

Lerneinheiten und Inhalte				
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium		
Data Mining	36	39		
 - Daten und Datenanalyse - Clustering - Classification - Assoziationsanalyse - Weitere Verfahren, z.B.: - Regression - Deviation Detection - Visualisierung - Alternativ zur Behandlung algorithmischer Ansätze, können grafische Methoden behandelt werden. 				
Angewandtes Projektmanagement	36	39		
Alternativen zum klassischen Projektmanagement sollen in einem Projekt erfahren werden. Dabei sind insbesondere auch Aspekte wie Mitarbeitertypen, Steuerungsalternativen, Projektcontrolling, strategische Ausrichtung und Meetingkulturen zu berücksichtigen.				
Corporate Systems	36	39		
Corporate Systems umfasst alle Systeme zur Organisation und Steuerung von Unternehmen. Dies sind im Besonderen Systeme für ERP, CRM, SCM, Personalmanagement, Projektsteuerung, Produktionsplanung. Es werden dazu Einsatzgebiete, Architekturen und Systemgrenzen betrachtet und Systeme einer Kategorie verglichen.				
Marketing und Vertrieb	36	39		
- Einführung - Marktforschung - Marketingplanung - Marketinginstrumentarium ("die fünf Ms") - Produkt- und Sortimentspolitik - Werbe- oder Kommunikationspolitik - Preispolitik - Distributionspolitik - Packaging/Deployment				
Mobile Business	36	39		
- Strategien und Geschäftsmodelle für M-Business - Design von M-Business-Systemen - Content-Technologien - M-Marketing - Sicherheitsaspekte				
Grundlagen der Künstlichen Intelligenz	36	39		
- Grundlagen und Definition von Wissen und Modellbildung - Einsatz von Logik und automatischer Beweisführung - Einsatz von Heuristiken (u.a. heuristische Suche) - Repräsentation unscharfer Probleme (z.B. Probabilistische Netze, Evidenztheorie / Dempster -Shafer / Fuzzy Systeme) - Analogie und Ähnlichkeit - Grundlagen des Maschinelles Lernens - Anwendungsgebiete Künstlicher Intelligenz (z.B. Design digitaler Schaltungen, Big Data, Autonome Systeme, Intelligente Interaktion) - Praktische Anwendungen von Methoden der künstlichen Intelligenz				
Wissensbasierte Systeme	36	39		
- Wissensrepräsentation und Wissensverarbeitung - Grundlagen und Definition von Wissen - Modellbildung - Einsatz von Beschreibungslogiken und automatische Beweisführung - Einsatz von Heuristiken (u.a. heuristische Suche) - Repräsentation unscharfer Probleme (u.a. Probabilistische Netze, Evidenztheorie / Dempster -Shafer / Fuzzy Systeme) - Analogie und Ähnlichkeit - Grundlegende Lernverfahren - Aufbau und Komponenten eines Expertensystems - Anwendungsgebiete Wissensbasierter Systeme (u.a. Konfiguration, Diagnose, Bildverstehen, Sprachverarbeitung, Robotik) - Anwendungen von Methoden Wissensbasierter Systeme (incl. spezielle Sprachen) - Entwurf und Realisierung einer wissensbasierten Anwendung				
Web-Services	36	39		

Grundlegende Konzepte von Webservices und Service-orientierter Architektur (SOA) werden erläutert und beispielhaft erstellt.

Definierte Dienste und Protokolle werden vorgestellt:

- SOAP, Message-Protokoll
- WSDL, Interface Beschreibung
- UDDI, Verzeichnis
- WSIL, Dezentrale Verzeichnisse
- BPEL4WS.

Weitverkehrsnetze 36 39

- Grundlagen der Weitverkehrsnetze
- Grundlagen Leitungsvermittlung
- Grundlagen L1 (Glasfasernetze & Laser)
- Grundlagen Telekommunikationsnetze (ISDN/SS7)
- Grundlagen zellvermittelnder WAN-Protokolle (ATM)
- Grundlagen von QoS in Weitverkehrsnetzen (MPLS)
- Grundlagen Zugangsnetze
- Grundlagen Übertragungssysteme (Glasfaser, Twisted Pair, Powerline, RLL, 3,5/4G, Satellit)
- Grundlagen der Protokolle der Zugangsnetze (xDSL, ATM, PPP/PPPoE)

Big Data Analytics 36 75

Besonderheiten und Voraussetzungen

Besonderheiten

Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

Voraussetzungen

-

Literatur

- A. Tanenbaum, "Computernetzwerke", Pearson-Studium
- D. Conrads, "Telekommunikation", Vieweg+Teubner
- G. Siegmund, "ATM Die Technik. Grundlagen, Netze, Schnittstellen, Protokolle", Hüthig
- K. Obermann, M. Horneffer, "Datennetztechnologien für Next Generation Networks: Ethernet, IP, MPLS und andere", Vieweg+Teubner
- A. Bluschke, M. Matthews, "xDSL-Fibel", VDE Verlag
- · H. Jansen, "Telekommunikation mit ISDN und ADSL", Europa Lehrmittel
- Applegate, et al.: Corporate Information Systems Management: Text and Cases: Issues Facing Senior Executives, McGrawHill.
- Zheng et al: Managing Corporate Information Systems Evolution and Maintenance, IGI Publishing
- Marcus Görtz und Martin
- · Christoph Beierle, Gabriele Kern-Isberner: Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen, Vieweg Verlag, aktuelle Auflage
- Stuart J. Russel, Peter Norvig: Künstliche Intelligenz Ein moderner Ansatz, Pearson Studium, aktuelle Auflage
- Günter Görz, Claus-Rainer Rollinger, Josef Schneeberger: Handbuch der Künstlichen Intelligenz, Oldenburg Verlag, aktuelle Auflage
- Ingo Boersch, Jochen Heinsohn, Rolf Socher: Wissensverarbeitung. Eine Einführung in die Künstliche Intelligenz für Informatiker und Ingenieure, Spektrum Akademischer Verlag, aktuelle Auflage
- Christoph Beierle, Gabriele Kern-Isberner: Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen, Vieweg Verlag, aktuelle Auflage
- · Stuart J. Russel, Peter Norvig: Künstliche Intelligenz Ein moderner Ansatz, Pearson Studium, , aktuelle Auflage
- Ertel: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung, Springer Vieweg, aktuelle Auflage
- Kruse, et.al.: Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze, Vieweg+Teubner Verlag, aktuelle Auflage
- Eckhart Hanser: Agile Prozesse: Von XP über Scrum bis MAP Tom DeMarco ...: Adrenalin-Junkies & Formular-Zombies : typisches Verhalten in Projekten Boris Gloger: Scrum : Produkte zuverlässig und schnell entwickeln
- Melzer, Eberhard, von Thiele; Service-orientierte Architekturen mit Web Services; Spektrum Akademischer Verlag 2010, 4. Auflage, 9783827425492
- Peter Winkelmann: Marketing und Vertrieb: Fundamente für die Marktorientierte Unternehmensführung, Oldenbourg
- Ewald Lang: Die Vertriebs-Offensive: Erfolgsstrategien für umkämpfte Märkte, Gabler
- Marion Steven: BWL für Ingenieure, Oldenbourg
- Tan, Steinbach, Kumar. Introduction to Data Mining, Pearson Verlag.
- · Han, Kamber. Data Mining: Concepts and Techniques, Morgan-Kaufmann Publishers.
- Ian H. Witten und Eibe Frank, Data Mining, Morgan-Kaufmann Publishers.
- Turowski, Klaus; Pousttchi, Key: Mobile Commerce: Grundlagen Und Techniken. Springer

Wahlmodul Informatik II (T3INF4903)

Elective Module

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Wahlmodul Informatik II	T3INF4903	Deutsch	Prof. Dr. Holger D. Hofmann

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
3. Studienjahr	1	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung	
Lehrmethoden	Lehrvortrag, Diskussion	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Klausurarbeit oder Kombinierte Prüfung	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Leistungspunkte			
150	72	78	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Studierende haben ein Gebiet der Informatik, das für sie persönlich oder für ihre Ausbildungsfirma interessant ist, vertiefter kennengelernt. Entsprechend den eigenen Interessen und der weiteren Karriereplanung werden Kompetenzen von einem vertieften Verständnis ausgewählter Gebiete angeboten.	
Methodenkompetenz	Der Studierende kann sich in ein spezifisches Fachgebiet einarbeiten und sich die entsprechenden Kentnisse zügig aneignen. In einem Fachgebiet wird vertiefte Kompetenz erworben.	
Personale und Soziale Kompetenz	-	
Übergreifende Handlungskompetenz	-	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
E-Business	36	39
- E-Business, E-Commerce und E-Government Klassifikationen (X2Y-Matrix) - Elektronische Marktplätze - Rahmenbedingungen für E-Business - Sicherheit und Vertrauen in E-Business - Zahlungssysteme - E-Business-Architekture - elektronischer Datenaustausch zwischen Unternehmen - E-Business Standards - Kategorisierung von E-Government: E-Administration und E-Democracy - E-Government auf unterschiedlichen Ebenen: Bund, Land, Kommunen - Definierte E-Government Prozesse und Standards		
Wissensmanagement	36	39
- Motivation und Begriffsbildung - Von der Information zum Wissen - Das TOM-Modell: Technik, Organisation, Mensch - Wissen erheben, (re-)präsentieren, austauschen - Wissensmanagementwerkzeuge - Menschzentrierte Wissenskultur - Motivation und Anreizgestalt		
Interaktive Systeme	36	39
Interaktive Systeme: Normen und Richtlinien -Interaktionsformen - Software-Ergonomie - Software Usability und User Experience - Barrierefreiheit - Anwendungskontexte interaktiver Systeme (z.B. Elearning, Mobile Anwendungen, Personalisierung, Gamification, etc)		
ERP-Systeme	36	39
- Entwicklung und Marktübersicht von ERP-Systemen - Modellierung von ERP-Systemen, ARIS-Haus - Aufbau und Funktionsweise eines realen ERP-Systems (z.B. SAP) - Schnittstellen zu anderen Anwendungssystemen		
Ausgewählte Themen der IT-Security	36	39
Ausgewählte Themen bzw. vertiefte Behandlung von Themen aus den Bereichen: - Kryptographie, Schlüsselmanagement - Authentifizierung, Zugriffskontrolle - Virenschutzmaßnahmen, VPN, Firewall, IDS - Security Engineering and Management		
Software Architecture Management	36	39
Software-Architektur ist die nächste Abstraktionsstufe nach Anwendungsprogrammierung: Es geht um den übergreifenden Einsatz von Bausteinen, Stilen und Vorgehensweisen um gleichartige Lösungen für gleichartige (insbesondere nicht-funktionale) Anforderungen darzustellen. Ziel ist die von Geschäftszielen abgeleitete Gestaltung von Anwendungslandschaften. Gliederung: - Was sind Software-Architekturen? - Aufgaben des Software-Architekten - Dokumentation von Software-Architekturen - Architektur-Stile (-Muster) - Architektur-Bausteine - Bewertung von Software-Architekturen - Standards, Technologien und Werkzeuge - Beispiele von Software-Architekturen - Ausblick: Enterprise Architecture Management		

Besonderheiten und Voraussetzungen

Besonderheiten

Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

Voraussetzungen

-

Literatur

- Abecker et al: Geschäftsprozessorientiertes Wissensmanagement, Springer
- Mertins et al: Wissensbilanzen, Springer
- Reinmann-Rothmeier et al: Wissensmanagement lernen, Belz
- Schütt: Wissensmanagement, Falken/Gabler
- Amrit, Tiwana: The knowledge management toolkit, Verlag: Pearson Prentice Hall Computin

- Frick, Gadatsch, Schäffer-Külz: Grundkurs SAP ERP: Geschäftsprozessorientierte Einführung mit durchgehendem Fallbeispiel, Vieweg, aktuellste Auflage
- Görtz, Hesseler: Basiswissen ERP-Systeme: Auswahl, Einführung & Einsatz betriebswirtschaftlicher Standardsoftware, W3I, aktuellste Auflage
- Gronau, N.: Enterprise Resource Planning: Architektur, Funktionen und Management von ERP-Systemen, De Gruyter Oldenbourg, aktuellste Auflage
- iSAQB Curriculum für Certified Professional for Software Architecture (CPSA), http://www.isaqb.org/downloads/pdf/isaqb-Lehrplan-foundation.pdf
- Reussner, Ralf und Hasselbring, Wilhelm (Hrsg.) Handbuch der Software-Architektur, dpunkt. Verlag.
- M. Bishop: Computer Security, Addison-Wesley-Longman C. Eckert: IT-Sicherheit, Oldenbourg W. Stallings, L. Brown: Computer Security: Principles and Practice, Pearson * Education C. Pfleeger, S. Lawrence Pfleeger: Security in Computing
- Wirtz, B.W., Electronic Business, Springer Gabler
- Wirtz, B.W., E-Government: Grundlagen, Instrumente, Strategien, Gabler
- Kollmann, T., E-Business: Grundlagen elektronischer Geschäftsprozesse in der Digitalen Wirtschaft, Springer Gabler
- -B. Shneiderman: Designing the User Interface: Strategies for Effective Human-Computer Interaction, Addison Wesley
- -A. Heinecke: Mensch-Computer-Interaktion: Basiswissen für Entwickler und Gestalter, X.me3dia.press
- -B. Preim: Interaktive Systeme: Band 1: Grundlagen, Graphical User Interfaces, Informationsvisualisierung, eXamen.press
- -M. Richter, M.D. Flückinger: Usability und UX kompakt: Produkte für Menschen, Springer Vieweg
- -M. Richter: M. D. Flückinger: Usability Engineering kompakt: Benutzbare Produkte gezielt entwickeln, IT kompakt
- -J.E. Heilbusch: Barrierefreiheit verstehen und umsetzen: Webstandards für ein zugängliches und nutzbares Internet, D Punkt

Bachelorarbeit (T3_3300)

Bachelor Thesis

	Formale Angaben zum Modul		
Modulbezeichnung	Modulnummer	Sprache	Modulverantwortung
Bachelorarbeit	T3_3300		

Verortung des Moduls im Studienverlauf		
Studienjahr	Moduldauer in Semester	
3. Studienjahr	1	

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Individualbetreuung	
Lehrmethoden	Projekt	

Prüfungsleistung	Prüfungsumfang (in Minuten)	Benotung
Bachelor-Arbeit	Siehe Pruefungsordnung	ja

Workload und ECTS-Leistungspunkte			
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Leistungspunkte			
360	6	354	12

Qualifikationsziele und Kompetenzen		
Fachkompetenz	-	
Methodenkompetenz	-	
Personale und Soziale Kompetenz	-	
Übergreifende Handlungskompetenz	Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in realistischer Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können. Die Studierenden können sich selbstständig, nur mit geringer Anleitung in theoretische Grundlagen eines Themengebiets vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben. Sie können auf der Grundlage von Theorie und Praxis selbstständig Lösungen entwickeln und Alternativen bewerten. Sie sind in der Lage eine wissenschaftliche Arbeit als Teil eines Praxisprojektes effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.	

Lerneinheiten u	und Inhalte	
Lehr- und Lerneinheiten	Präsenzzeit	Selbststudium
Bachelorarbeit	6	354
-		

Besonderheiten und Voraussetzungen

Besonderheiten

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der DHBW hingewiesen.

Voraussetzungen

Literatur

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern