IMAGE PICKUP DEVICE

Publication number: JP10155112 Publication date: 1998-06-09

Inventor:

FUKUDA EIJU; INAGAKI OSAMU; KAKINUMA MINORU

Applicant:

OLYMPUS OPTICAL CO

Classification:

- international:

H04N5/243; H04N5/243; (IPC1-7): H04N5/243

- european:

Application number: JP19960310963 19961121 Priority number(s): JP19960310963 19961121

Report a data error here

Abstract of JP10155112

PROBLEM TO BE SOLVED: To minimize increase in a noise level at a connecting point in the image pickup device that extends an image pickup dynamic range by synthesizing a plurality of images whose exposure differs from each other. SOLUTION: A maximum value detection circuit 7 controls the exposure of an image pickup element 1 to be a 1st exposure and a 2nd exposure that is smaller than the 1st exposure and optimizes the 2nd exposure based on the 2nd exposure. Furthermore, a synthesis circuit 6 synthesizes a 1st image signal corresponding to the 1st exposure and a 2nd image signal corresponding to the optimized 2nd exposure.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-155112

(43)公開日 平成10年(1998)6月9日

(51) Int.Cl.⁵

識別記号

FΙ

H 0 4 N 5/243

H 0 4 N 5/243

審査請求 未請求 請求項の数3 OL (全 10 頁)

(21)出廢番号

特願平8-310963

(22)出顧日

平成8年(1996)11月21日

(71)出願人 000000376

オリンパス光学工業株式会社

東京都渋谷区幡ヶ谷2丁目43番2号

(72)発明者 福田 英寿

東京都渋谷区幡ヶ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

(72)発明者 稲垣 修

東京都渋谷区幡ヶ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

(72)発明者 柿沼 実

東京都渋谷区幡ヶ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

(74)代理人 弁理士 伊藤 進

(54) 【発明の名称】 撮像装置

(57)【要約】

【課題】 露光量の異なる複数の画像を合成することによって撮像ダイナミックレンジを拡大する撮像装置において、接続点におけるノイズレベルの増加を最小にする。

【解決手段】 最大値検出回路7で、撮像素子1の露光量を第1の露光量と該第1の露光量よりも少ない第2の露光量に制御するとともに、上記第2の露光量に基づいて上記第2の露光量を最適化する。また、上記第1の露光量に対応する第1画像信号と、上記最適化された第2の露光量に対応する第2画像信号とを合成回路6で合成する。

【特許請求の範囲】

【請求項1】 撮像手段と、

該撮像手段の出力信号のレベルを検出する検出手段と、 該検出手段の検出出力に基づいて、上記撮像手段の第1 の露光量を決定する決定手段と、

上記第1の露光量で撮像された第1の画像信号と上記第 1の露光量より多い第2の露光量で撮像された第2の画 像信号とを合成する合成手段と、

を具備したことを特徴とする撮像装置。

【請求項2】 上記検出手段は、上記撮像手段の出力信 10 号の最大値が飽和レベルに達したことを検出することを 特徴とする請求項1に記載の撮像装置。

【請求項3】 上記撮像手段は、非破壊読み出し可能な 撮像素子であることを特徴とする請求項1に記載の撮像 装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、撮像装置、詳しく は、固体撮像素子を用いたダイナミックレンジが広くと れる撮像装置に関する。

[0002]

【従来の技術】従来、一般にテレビカメラ等の撮像装置 において、撮像ダイナミックレンジ(撮像することがで きる輝度範囲)の上限は撮像素子の飽和レベル、下限は 撮像素子及び周辺回路のノイズレベルで決定している。 この撮像ダイナミックレンジは一般に被写体の輝度範囲 よりも狭いため、高輝度部分での白とびや低輝度部分の 黒つぶれが生じてしまう。

【0003】このような問題を解決する方法として、例 えば、特開昭57-39673号公報には以下に示す技 30 術手段が開示されている。すなわち、シャッタースピー ドの制御あるいはNDフィルタ等によって撮像素子の露 光量を変化させ、得られた露光量の異なる2つの画像を 合成することによって撮像ダイナミックレンジを拡大す る技術手段が開示されている。

【0004】また、特開平7-75026号公報には、 光量の異なる2つ以上の画像を合成して得られる広ダイ ナミックレンジ信号の接続点における特性を適正にする 技術手段が開示されている。

【0005】一方、広ダイナミックレンジ信号を圧縮す 40 るために、図16に示すようなknee特性を持たせる 技術手段が知られている。

[0006]

【発明が解決しようとする課題】しかしながら、上記特 開昭57-39673号公報、特開平7-75026号 公報において開示された技術手段には、接続点でノイズ レベルが急激に変化するという問題については考慮され ていない。露光量の異なる2つの画像を合成する際、図 15に示すように露光量の少ない画像信号に露光量の多 い画像信号との露光量比を掛けるためノイズも同時に増 50 幅される。

【0007】たとえば、露光量をシャッタースピードが 1/60秒と1/2000秒で撮影した画像を合成する 場合には、シャッタースピードが1/2000秒の信号 を32倍に増幅して合成するが、ノイズレベルも32倍 に増幅される。実際に撮像する画像のダイナミックレン ジがさほど広くない場合であってもノイズレベルが32 倍に増幅されるため、接続点でノイズレベルが急激に大 きくなり画質が著しく低下してしまう。この問題は撮像 ダイナミックレンジを拡大するために露光量比を大きく するほど顕著になる。

【0008】一方、露光量の異なる2つの画像を合成す る方法として、図16に示した、合成した広ダイナミッ クレンジ信号にknee特性を持たせる方法において は、knee特性を実現するために露光量の異なる2つ の画像信号を加算してもよいが、S/Nが約3dB劣化 するため、露光量の異なる2つの画像信号を切り換える ことが望ましい。例えば、露光量をシャッタースピード が1/60秒と1/2000秒に固定して撮影した画像 を合成した場合を考える。実際に撮像する被写体のダイ ナミックレンジがさほど広くなく、高速シャッタースピ ードの適正値が例えば1/200秒の場合であっても1 /2000秒に固定しているため、高輝度部のコントラ ストが必要以上に低い画像になってしまう。

【0009】本発明はかかる問題点に鑑みてなされたも のであり、露光量の異なる複数の画像を合成することに よって撮像ダイナミックレンジを拡大する撮像装置にお いて、接続点におけるノイズレベルの増加を最小にする ことを第1の目的とする。

【0010】さらに、本発明は、露光量の異なる2つの 画像を合成することによって撮像ダイナミックレンジを 拡大する撮像装置において、実際に撮像する被写体のダ イナミックレンジに応じて、高輝度部のコントラスト低 下を最小にすることを第2の目的とする。

[0011]

【課題を解決するための手段】上記の目的を達成するた めに本発明の第1の撮像装置は、撮像手段と、該撮像手 段の出力信号のレベルを検出する検出手段と、該検出手 段の検出出力に基づいて、上記撮像手段の第1の露光量 を決定する決定手段と、上記第1の露光量で撮像された 第1の画像信号と上記第1の露光量より多い第2の露光 量で撮像された第2の画像信号とを合成する合成手段 と、を具備する。

【0012】上記の目的を達成するために本発明の第2 の撮像装置は、上記第1の撮像装置において、上記検出 手段は、上記撮像手段の出力信号の最大値が飽和レベル に達したことを検出することを特徴とする。

【0013】上記の目的を達成するために本発明の第3 の撮像装置は、上記第1の撮像装置において、上記撮像 手段は、非破壊読み出し可能な撮像素子であることを特

3

徴とする。

【0014】上記第1の撮像装置は、撮像手段の出力信号のレベルを検出手段で検出し、該検出手段の検出出力に基づいて、上記撮像手段の第1の露光量を決定手段で決定する。そして、上記第1の露光量で撮像された第1の画像信号と上記第1の露光量より多い第2の露光量で撮像された第2の画像信号とを合成手段で合成する。

【0015】上記第2の撮像装置は、上記第1の撮像装置において、上記検出手段は、上記撮像手段の出力信号の最大値が飽和レベルに達したことを検出する。

【0016】上記第3の撮像装置は、上記第1の撮像装置において、上記撮像手段は、非破壊読み出し可能な撮像素子である。

[0017]

【発明の実施の形態】以下、図面を参照して本発明の実 施の形態を説明する。

【0018】図1は、本発明の第1の実施形態である撮像装置の構成を示したブロック図である。

【0019】図に示すように、この第1の実施形態の撮 像装置は、非破壊読み出し可能な撮像素子1と、後述す 20 る最大値検出回路7からの信号に基づき上記撮像素子1 を制御する撮像素子駆動回路2 (TG) と、上記撮像素 子1からの出力信号をA/D変換するまでのアナログ回 路3と、該アナログ回路3からのアナログ信号をA/D 変換するA/D変換器4と、このA/D変換器4からの 信号により露光量の異なる2つの画像信号のタイミング を一致させる同時化回路5と、この同時化回路5からの 露光量の異なる2つの画像信号を合成する合成回路6 と、上記同時化回路5から出力される信号を入力し、該 入力信号の最大値検出結果に応じて上記撮像素子駆動回 30 路2、同時化回路5、合成回路6に対して制御信号を出 力する最大値検出回路7と、上記合成回路6からの信号 を階調変換する階調変換回路8と、この階調変換回路8 からのデジタル信号をD/A変換し外部装置に出力する D/A変換器9とを備えている。

【0020】次に、本実施形態の動作を簡単に説明する。図1に示すように、撮像素子1は撮像素子駆動回路2(TG)によって露光時間が異なる2つの画像が得られるように駆動される。そして、撮像素子1から出力される、結像した画像に応じた信号は、アナログ回路3で40適正に増幅された後、A/D変換器4でデジタル信号に変換される。デジタル信号に変換された信号は、同時化回路5で露光量の異なる2つの画像信号(長時間露光信号、短時間露光信号)に分離されると共にそのタイミングが同時化された後出力される。そして、この後、合成回路6で広ダイナミックレンジ信号は階調変換回路8で階調変換され、D/A変換器9からビデオ信号として出力される。

【0021】次に、本実施形態の撮像装置の主要動作を 50

図2に示すタイミングチャートを参照して説明する。図2は、本実施形態の撮像装置において、信号電荷蓄積から合成回路6までの動作タイミングを示したタイミングチャートである。

【0022】図2(a)は、垂直同期信号(VD)を示している。また、図2(b)は撮像素子1の蓄積電荷の信号レベルの時間的推移を示している。この図2(b)においては、Si(i=0,1,2,…)は短時間露光信号に対応する画像信号を読み出すタイミングを表し、Li(i=0,101,2,…)は長時間露光信号に対応する画像信号を読み出すタイミングを表している。ここで、Siのタイミングにおいては、画像信号は非破壊で読み出され、Liにおいて画像信号が読み出された直後に画像信号は初期値にリセットされ再び信号の蓄積を開始し、同様の動作を繰り返す。

【0023】上記同時化回路5においては、上記におい

て撮像素子1から出力された画像信号Si, Li を入力 し、図2(c), (d) に示すようにSi, Li を同期 化する。たとえば、図2(b)の画素信号蓄積のタイミ ングS2, L2 を含む区間においてはその前に蓄積され S1, L1 で出力された画像信号が同時化される。そし て、合成回路6においては、図2 (e) に示すように上 記同時化された画像信号が合成される。 なお、図2 (c), (d), (e)には、便宜上Si, Liのタイ ミングで読み出された画像信号を同符号で示している。 【0024】図3は、本実施形態における非破壊読み出 しのタイミングを示した線図であり、図4は、本実施形 態における上記合成回路6の特性を示した線図である。 なお、これら図3、図4に示す特性は、信号蓄積時間が 1/60秒、1/200秒、1/2000秒のときの特 性をそれぞれ(a),(b),(c)で示しており、共に 50dBのダイナミックレンジを持つものとする。

【0025】図4に示すように、合成回路6では信号蓄積時間が1/60秒と1/200秒に対応する信号、すなわち(a)と(b)、あるいは信号蓄積時間が1/60秒と1/2000秒に対応する信号、すなわち(a)と(c)を合成する。そして、信号蓄積時間1/60秒に対応する信号(a)と1/2000秒に対応する信号(c)とを合成する場合には(a)が飽和したときに(c)を、1/60秒と1/2000秒の比、すなわち約32倍に増幅して用いることにより、80dBのダイナミックレンジを得ることができるようになっている。しかしながら、接続点ではノイズレベルも急激に32倍も大きくなってしまい、画質を劣化させる虞がある。【0026】一方、信号蓄積時間1/60秒に対応する信息(a)と1/2000秒に対応する信息(c)と1/2000秒に対応する信号(c)と1/2000秒に対応する信号(c)と1/2000秒に対応する信号(c)と1/2000秒に対応する信息(c)と1/2000秒に対応する(c)と1/2000秒に対

【0026】一方、信号蓄積時間1/60秒に対応する信号(a)と1/200秒に対応する信号(b)とを合成した場合には、ダイナミックレンジは60dBとあまり大きく拡大されないが接続点でのノイズレベルは約3倍にしかならないため画質上殆ど問題にならない。

【0027】本実施形態ではかかる事情を考慮し、最大

値検出回路7において信号蓄積時間が短い方の信号の最大値を検出し、最大値が飽和レベルに達したならば信号蓄積時間を短くし、最大値が飽和レベルに達していないならば信号蓄積時間を長くする制御信号を撮像素子駆動回路2に出力するようにしている。

【0028】具体的な制御方法としては、たとえば、最大値検出回路7は最大値が飽和レベルに達したならば"1"、達していないならば"0"を出力する。ここで、"1"ならばTGは露光量を所定量だけ少なくするために露光時間を所定時間短くする。また、"0"ならば露光量が所定量だけ多くするために露光時間を所定時間長くする。すなわち、上記最大値検出回路7の出力に応じてどれだけ露光量を多くしたり少なくするかにより、露光量が最適値に収束するまでの時間が決まる。

【0029】なお、上記露光量の制御は非破壊読み出し可能な撮像素子1の出力信号を1フィールド期間内で逐次読み出しつつリアルタイムで制御しても良いし、通常のCCD等の撮像素子では複数フィールドの信号を読み出し上記のような露光制御を行っても良い。

【0030】上記撮像素子駆動回路2は上記制御信号に従って、信号蓄積時間が短い方の信号がちょうど飽和レベルになるように信号蓄積時間を制御する。また、最大値検出回路7は、信号蓄積時間によって信号出力のタイミングが変化するため同時化回路5、信号蓄積時間によって信号蓄積時間の比すなわち信号蓄積時間が短い方の信号に対する利得が異なるため合成回路6に対しても制御信号を出力する。

【0031】また、上記撮像素子駆動回路2は、信号蓄積時間が短い方の信号の最大値が飽和しない範囲で信号蓄積時間ができるだけ長くなるように制御されるので、2つの画像を合成する時に信号蓄積時間が短い方の画像信号に掛ける露光量の比を最小にすることが可能となり、ノイズ成分を必要最小限に抑えることができる。

【0032】次に、本発明の第2の実施形態について説明する。

【0033】図5は、本発明の第2の実施形態である撮像装置の構成を示したブロック図である。

【0034】図に示すように、この第2の実施形態の撮像装置は、CCD等の撮像素子1と、後述する最大値検出回路7からの信号に基づき上記撮像素子1を制御する撮像素子駆動回路2(TG)と、上記撮像素子1からの出力信号をA/D変換するまでのアナログ回路3からのアナログ信号をA/D変換するA/D変換器4からの信号により露光量の異なる2つの画像信号のタイミングを一致させる同時化回路5からの露光量の異なる2つの画像信号のタイミングを一致させる同時化回路5から出力される信号を入力し、該入力信号の最大値検出結果に応じて上記撮像素子駆動回路2、合成回路6に対して制御信号を出力する最大値検出回路7と、

上記合成回路6からの信号を階調変換する階調変換回路8と、この階調変換回路8からのデジタル信号をD/A変換し外部装置に出力するD/A変換器9とを備えている。

【0035】すなわち、本第2の実施形態は、上記第1の実施形態に対して、撮像素子1の構成と、最大値検出回路7の出力信号により制御されるブロックが異なっている。

【0036】次に、本実施形態の撮像装置の主要動作を図6に示すタイミングチャートおよび図7を参照して説明する。図6は、本第2の実施形態の撮像装置において、信号電荷蓄積から合成回路6までの動作タイミングを示したタイミングチャートであり、図7は、本実施形態の撮像装置において、撮像素子駆動回路2の制御を受けた撮像素子1内の電荷蓄積の様子を示した説明図である。

【0037】まず、図6に示すタイミングチャートを参照して信号電荷蓄積から合成回路6までの動作を説明する。

【0038】垂直同期信号(a)、長時間露光信号 (c)と短時間露光信号(d)および合成画像(e)の 生成については、上記第1に実施形態(図2に示すタイ ミングチャート参照)の場合と基本的には同様であるの で、ここでの詳しい説明は省略する。

【0039】本第2の実施形態においては、図6に示すように、信号蓄積時間(b)の生成方法が上記第1の実施形態と異なっている。すなわち、図6においては、

(b) に示すように長時間露光に対応する信号 Li (i=0,1,2,…)は通常のフィールド期間内で露光され、短時間露光信号に対応する信号 Si (i=0,1,2,…)は、垂直ブランキング期間で露光される。

【0040】次に、図7を参照して上述したように露光 された長時間露光信号及び短時間露光信号の撮像素子1 内における電荷蓄積と転送の動作について説明する。

【0041】図7において、(1)、(3)は、通常のフィールド期間に蓄積された信号の蓄積及び転送動作を示す。図7(1)においてPD1、PD3の画素に蓄積された信号は垂直転送路(以下、「VCCD」と呼称する)に転送される。次に、上記VCCDに転送された信号は垂直方向に1画素分シフトされる(図7(2))。次に、PD2、PD4の画素に蓄積された信号は上記図7(1)と同様にVCCDに転送されることにより上記PD1の画素の信号と上記PD2の画素の信号及び上記PD3の画素の信号と上記PD4の画素の信号が加算される(図7(3))。

【0042】次に、垂直ブランキングの期間で蓄積された画素PD1, PD3の信号がVCCDに転送される(図7(4))。次に、図7(2)と同様に上記VCCDに転送された信号は垂直方向に1画素分転送される(図7(5))。次に、図7(3)と同様にして上記PD1の画素の

50

信号と上記PD2の画素の信号及び上記PD3の画素の信号と、上記PD4の画素の信号が加算される(図7(6))。

【0043】上述した動作により上記VCCDには、2つの画素の信号が加算された通常のフィールド期間で蓄積された長時間露光信号と垂直ブランキング期間で蓄積された短時間露光信号が交互に転送され、図示しない周知の方法により水平転送路(HCCD)に転送されることにより、信号が読み出される。

【0044】ところで、上述したようにして、撮像素子 1から出力される結像した画像に応じた信号をアナログ 回路 3 で適当に増幅してA/D変換器 4 でデジタル信号 に変換する。デジタル信号に変換された信号を同時化回路 5 で露光量の異なる 2 つの画像信号に分離すると共に そのタイミングを一致させ、合成回路 6 で広ダイナミックレンジ信号を 合成する。広ダイナミックレンジ信号を 階調変換回路 8 で適当に階調変換し、D/A変換器 9 からビデオ信号を出力する。

【0045】図8は、本第2の実施形態における撮像素子1の読み出しのタイミングを示した線図であり、図9は、本第2の実施形態における上記合成回路6の特性を示した線図である。なお、これらの図8、図9において、符号(a),(b),(c)は、それぞれ、信号蓄積時間が1/65秒、1/1000秒、1/2000秒のときの特性を示す。

【0046】本第2の実施形態においては、露光量の異なる2つの画像に対して、図9に示すように合成した信号に光量対出力特性の傾きを変える、いわゆるknee特性を持たせている。なお、該knee特性を実現するために露光量の異なる2つの画像信号を単純に加算して30もよいが、低輝度部のS/N比が劣化するため露光量の異なる2つの画像信号を切り換えることが望ましい。この点を考慮し本実施形態では信号蓄積時間が長い方の信号が飽和したときに信号蓄積時間が短い方の信号をレベルシフトして加算することで低輝度部のS/N比の劣化を防止している。

【0047】また、最大値検出回路7で信号蓄積時間が 短い方の信号の最大値を検出し、最大値が飽和レベルに 達したならば信号蓄積時間を短くし、最大値が飽和レベ ルに達していないならば信号蓄積時間を長くする制御信 40 号を撮像素子駆動回路2に出力する。撮像素子駆動回路 2は該制御信号に従って、信号蓄積時間が短い方の信号 がちょうど飽和レベルになるように信号蓄積時間を制御 する。また、最大値検出回路7は、信号蓄積時間によっ て合成時のレベルシフト量が異なるため合成回路6に対 しても制御信号を出力する。

【0048】このように、上記撮像素子駆動回路2は、信号蓄積時間が短い方の信号の最大値が飽和しない範囲で信号蓄積時間ができるだけ長くなるように制御されるので、2つの画像を合成したときの高輝度部のコントラ 50

スト低下を最小にすることができる。

【0049】なお、この第2の実施形態における各構成要素は、各種の変形、変更が可能である。例えば、本実施形態においては、上記撮像素子1はCCDにより構成しているが、上記第1の実施形態と同様に非破壊読み出しが可能な撮像素子を採用してもよい。本実施形態では、信号蓄積時間が短い信号を垂直ブランキング期間で得ているため、最大でも1/800秒程度である。非破壊読み出しが可能な撮像素子であれば信号蓄積時間が短い方の信号蓄積時間を最大約1/60秒まで設定できるのでより大きな効果が得られる。

Я

【0050】また、露光量の異なる2つの画像をknee特性を持たせて合成した場合には、高輝度部のコントラスト低下を最小にすることができる。

【0051】次に、本発明の第3の実施形態について説明する。

【0052】図10は、本発明の第3の実施形態である 撮像装置の構成を示したブロック図である。

【0053】この第3の実施形態の撮像装置は、その基本的な構成は上記第1の実施形態と同様であり、第1の実施形態では露光量の異なる2つの画像を合成しているのに対して、本第3の実施形態では3つ以上の複数の画像(本実施形態では4つ)を合成している点のみが異なっている。すなわち、これに伴って、同時化回路5は露光量の異なる4つの画像信号のタイミングを一致させ、合成回路6は露光量の異なる4つの画像信号を合成するようになっている。その他の構成は、上記第1の実施形態と同様であり、また、動作タイミングも第1の実施形態と同様であるので、ここでの詳しい説明は省略する。

【0054】次に、本第3の実施形態の撮像装置の主要動作を図11,図12を参照にして説明する。

【0055】図11は、本実施形態における非破壊読み出しのタイミングを示した線図であり、図12は、本実施形態における上記合成回路6の特性を示した線図である。なお、これら図11、図12に示す特性は、信号蓄積時間が1/60秒、1/250秒、1/1000秒、1/4000秒のときの特性をそれぞれ(a)、(b)、(c)、(d)で示しており、共に50dBのダイナミックレンジを持つものとする。

【0056】また、上記信号蓄積時間(b)、(c)、(d)はそれぞれ(a)から光量に対して12dB、24dB、36dBシフトした特性になる。合成回路6では光量が $0\sim50dB$ までは(a)、 $50\sim62dB$ までは(b)を1/60秒と1/250秒の比すなわち約4倍に増幅して用い、 $62\sim74dB$ までは(c)を1/60秒と1/1000秒の比すなわち約16倍に増幅して用い、 $74\sim86dB$ までは(d)を1/60秒と1/4000秒の比すなわち約64倍に増幅して用いることで86dBの広ダイナミックレンジ信号を得ている。そして、4つの画像を合成することで、2つの画像

の合成では実現不可能なダイナミックレンジの拡大が可能になる。

【0057】また、撮影する被写体のダイナミックレンジがあまり広くない場合には、最大値検出回路7で信号蓄積時間が最も短い信号の最大値を検出し、最大値が飽和レベルに達したならば信号蓄積時間を短くし、最大値が飽和レベルに達していないならば信号蓄積時間を長くするように非破壊読み出しタイミングの制御する制御信号を撮像素子駆動回路2に出力する。撮像素子駆動回路2は制御信号に従って、信号蓄積時間が最も短い信号がちょうど飽和レベルになるように信号蓄積時間を制御する。信号蓄積時間が1/60秒と最も短い信号との間の非破壊読み出しは対数的に間隔がほぼ同じになるように決定する。

【0058】例えば被写体のダイナミックレンジが70dB程度のときには、図13のような非破壊読み出しのタイミングで信号を読み出す。このときの合成回路6の特性を図14に示す。図中、符号(a)、(b)、

(c)、(d)はそれぞれ信号蓄積時間が1/60秒、 1/120秒、1/250秒、1/500秒であり、5 20 0dBのダイナミックレンジを持つものとする。

(b)、(c)、(d)はそれぞれ(a)から光量に対して6dB、12dB、18dBシフトした特性になる。合成回路6では光量が0~50dBまでは(a)、50~56dBまでは(b)を1/60秒と1/120秒の比すなわち約2倍に増幅して用い、56~62dBまでは(c)を1/60秒と1/250秒の比すなわち約4倍に増幅して用い、62~68dBまでは(d)を1/60秒と1/500秒の比すなわち約8倍に増幅して用いることで68dBのダイナミックレンジ信号を得30る。

【0059】このように、本実施形態では、撮像素子駆動回路2は、信号蓄積時間が短い方の信号の最大値が飽和しない範囲で信号蓄積時間ができるだけ長くなるように制御されるので、画像を合成する際に信号蓄積時間が短い非破壊読み出し信号に掛ける露光量の比を最小にすることが可能となり、ノイズ成分を必要最小限に抑えることができる。

【0060】なお、本実施形態は合成回路6で光量に対して出力が線形になるように合成しているが、knee特性を数段階持たせた特性で合成してもよく、その場合には高輝度部のコントラスト低下を最小に抑えるという効果が得られる。

【0061】このように、本第3の実施形態は、撮像手段と、この撮像手段から複数の異なる露光量の画像を読み出す制御手段と、得られた複数の画像を合成する合成手段とを備え、上記制御手段は撮像信号に応じて上記撮像手段の信号蓄積時間を可変するように制御することを特徴とする。すなわち、上記制御手段は撮像手段に応じて、該撮像手段が飽和しない範囲で露光量ができるだけ50

多くなるように制御するので、ノイズ成分を必要最小限 に抑えたS/N比が良好な画像を得ることができる。

10

[0062]

【発明の効果】以上説明したように請求項1に記載の発明によれば、露光量の異なる複数の画像を合成することによって撮像ダイナミックレンジを拡大する撮像装置において、ノイズレベルの増加を最小にすることができる。

【0063】また、請求項2に記載の発明によれば、露 光量の異なる2つの画像を合成することによって撮像ダ イナミックレンジを拡大する撮像装置において、実際に 撮像する被写体のダイナミックレンジに応じて、高輝度 部のコントラスト低下を最小にすることができる。

【図面の簡単な説明】

【図1】本発明の第1の実施形態である撮像装置の構成を示したブロック図である。

【図2】上記第1の実施形態の撮像装置において、信号 電荷蓄積から合成回路までの動作タイミングを示したタ イミングチャートである。

【図3】上記第1の実施形態の撮像装置における、撮像素子の非破壊読み出しのタイミングを示した線図である。

【図4】上記第1の実施形態の撮像装置における、合成回路の特性を示した線図である。

【図5】本発明の第2の実施形態である撮像装置の構成 を示したブロック図である。

【図6】上記第2の実施形態の撮像装置において、信号 電荷蓄積から合成回路までの動作タイミングを示したタ イミングチャートである。

【図7】上記第2の実施形態の撮像装置において、撮像素子駆動回路の制御を受けた撮像素子内の電荷蓄積の様子を示した説明図である。

【図8】上記第2の実施形態の撮像装置における撮像素子の読み出しのタイミングを示した線図である。

【図9】上記第2の実施形態の撮像装置における合成回路の特性を示した線図である。

【図10】本発明の第3の実施形態である撮像装置の構成を示したブロック図である。

【図11】上記第3の実施形態の撮像装置における、撮40 像素子の非破壊読み出しのタイミングを示した線図である。

【図12】上記第3の実施形態の撮像装置における、合成回路の特性を示した線図である。

【図13】上記第3の実施形態の撮像装置における、撮像素子の非破壊読み出しのタイミングの他の例を示した 線図である。

【図14】上記図13に示した第3の実施形態の撮像装置における、合成回路の特性の他の例を示した線図である。

【図15】従来の撮像装置において、露光量の異なる2

つの画像を合成する際の光量と出力の関係の一例を示した線図である。

【図16】従来の撮像装置において、露光量の異なる2つの画像を合成する際、合成した信号にknee特性を持たせた場合の、光量と出力の関係の一例を示した線図である。

【符号の説明】

1…撮像素子

* 2…撮像素子駆動回路

3…アナログ回路

4 ··· A / D変換器

5…同時化回路

6 …合成回路

7…最大值検出回路

8…階調変換回路

9…D/A変換器

【図14】

[Date of extinction of right]

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-155112

(43)Date of publication of application: 09.06.1998

(51)Int.CI.

HO4N 5/243

(21)Application number: 08-310963

(71)Applicant: OLYMPUS OPTICAL CO LTD

(22)Date of filing:

21.11.1996

(72)Inventor: FUKUDA EIJU

INAGAKI OSAMU KAKINUMA MINORU

(54) IMAGE PICKUP DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To minimize increase in a noise level at a connecting point in the image pickup device that extends an image pickup dynamic range by synthesizing a plurality of images whose exposure differs from each other.

SOLUTION: A maximum value detection circuit 7 controls the exposure of an image pickup element 1 to be a 1st exposure and a 2nd exposure that is smaller than the 1st exposure and optimizes the 2nd exposure based on the 2nd exposure. Furthermore, a synthesis circuit 6 synthesizes a 1st image signal corresponding to the 1st exposure and a 2nd image signal corresponding to the optimized 2nd exposure.

LEGAL STATUS

[Date of request for examination]

20.10.2003

[Date of sending the examiner's decision of

11.04.2006

rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

* NOTICES *

JPO and NCIP1 are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[C laim (s)]

[Claim 1] The image pick—up equipment characterized by to provide a synthetic means compound an image pick—up means, a detection means detect the level of the output signal of this image pick—up means, a decision means determine the 1st light exposure of the above—mentioned image pick—up means based on the detection output of this detection means, and the 1st picture signal picturized with the 1st light exposure of the above and the 2nd picture signal picturized with more 2nd light exposure than the 1st light exposure of the above.

[Claim 2] The above—mentioned detection means is image pick—up equipment according to claim 1 characterized by detecting that the maximum of the output signal of the above—mentioned image pick—up means reached saturation level.

[Claim 3] The above-mentioned image pick-up means is image pick-up equipment according to claim 1 characterized by being the image sensor in which destructive read is possible.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.*** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]
[0001]

[Field of the Invention] This invention relates to image pick—up equipment and the image pick—up equipment which can take the large dynamic range using a solid state image sensor in detail.

[Description of the Prior Art] Conventionally, generally, in image pick—up equipments, such as a television camera, the upper limit of an image pick—up dynamic range (brightness range which can be picturized) is determined on the saturation level of an image sensor, and the minimum is determined with the noise level of an image sensor and a circumference circuit. Generally, since it is narrower than the brightness range of a photographic subject, black crushing of the white jump and low brightness part in a high brightness part will produce this image pick—up dynamic range.

[0003] The technical means shown below is indicated by JP,57-39673,A as an approach of solving such a problem. That is, the light exposure of an image sensor is changed with control or an ND filter of shutter speed etc., and a technical means to expand an image pick-up dynamic range is indicated by compounding two images with which the obtained light exposure differs. [0004] Moreover, the technical means which makes proper the property in the node of the extensive dynamic range signal which compounds two or more images with which the quantity of lights differ, and is acquired is indicated by JP,7-75026,A.

[0005] On the other hand, in order to compress an extensive dynamic range signal, a technical means to give a knee property as shown in $\frac{drawing 16}{drawing 16}$ is known.

[Problem(s) to be Solved by the Invention] However, it is not taken into consideration about the problem that a noise level changes rapidly in a node by the technical means indicated in above—mentioned JP,57-39673,A and JP,7-75026,A. In case two images with which light exposure differs are compounded, a noise is also amplified by coincidence in order to hang a light exposure ratio with a picture signal with much light exposure on a picture signal with little light exposure, as shown in drawing 15.

[0007] For example, although shutter speed amplifies and compounds the signal which are 1 / 2000 seconds 32 times in compounding the image with which shutter speed photoed light exposure in 1 / 60 seconds, and 2000 seconds in 1/seconds, a noise level is also amplified 32 times. Since a noise level is amplified 32 times even if it is the case which is not so large as for the dynamic range of the actually picturized image, a noise level will become large rapidly in a node, and image quality will deteriorate remarkably. This problem becomes so remarkable that a light exposure ratio is enlarged in order to expand an image pick—up dynamic range.

[0008] In the approach of giving a knee property to the compound extensive dynamic range signal shown in drawing 16 as an approach of on the other hand compounding two images with which light exposure differs, in order to realize a knee property, two picture signals with which light exposure differs may be added, but since about 3dB of S/Ns deteriorates, it is desirable to switch two picture signals with which light exposure differs. For example, the case where the image with which shutter speed fixed and photoed light exposure at 1/60 seconds, and 2000

1/seconds is compounded is considered. Since it is fixing to 1 / 2000 seconds so widely [the dynamic range of the actually picturized photographic subject] even if it is the case where the proper values of high—speed shutter speed are for example, 1 / 200 seconds, the contrast of the high brightness section will become an image low beyond the need.

[0009] It sets it as the 1st purpose that this invention makes min the increment in the noise level in a node in the image pick—up equipment to which an image pick—up dynamic range is expanded by compounding two or more images with which it is made in view of this trouble, and light exposure differs.

[0010] Furthermore, this invention sets it as the 2nd purpose to make the contrast fall of the high brightness section into min according to the dynamic range of the actually picturized photographic subject in the image pick—up equipment to which an image pick—up dynamic range is expanded by compounding two images with which light exposure differs. [0011]

[Means for Solving the Problem] In order to attain the above—mentioned purpose the 1st image pick—up equipment of this invention An image pick—up means and a detection means to detect the level of the output signal of this image pick—up means, Based on the detection output of this detection means, a synthetic means to compound a decision means to determine the 1st light exposure of the above—mentioned image pick—up means, and the 1st picture signal picturized with the 1st light exposure of the above and the 2nd picture signal picturized with more 2nd light exposure than the 1st light exposure of the above is provided.

[0012] In order to attain the above—mentioned purpose, the 2nd image pick—up equipment of this invention is characterized by the maximum of the output signal of the above—mentioned image pick—up means detecting having reached saturation level by the above—mentioned detection means in the image pick—up equipment of the above 1st.

[0013] In order to attain the above—mentioned purpose, the 3rd image pick—up equipment of this invention is characterized by the above—mentioned image pick—up means being an image sensor in which destructive read is possible in the image pick—up equipment of the above 1st.

[0014] The image pick—up equipment of the above 1st detects the level of the output signal of an image pick—up means with a detection means, and determines the 1st light exposure of the above—mentioned image pick—up means with a decision means based on the detection output of this detection means. And the 1st picture signal picturized with the 1st light exposure of the above and the 2nd picture signal picturized with more 2nd light exposure than the 1st light exposure of the above are compounded with a synthetic means.

[0015] As for the above—mentioned detection means, the image pick—up equipment of the above 2nd detects that the maximum of the output signal of the above—mentioned image pick—up means reached saturation level in the image pick—up equipment of the above 1st.

[0016] The image pick—up equipment of the above 3rd is an image sensor in which destructive read of the above—mentioned image pick—up means is possible in the image pick—up equipment of the above 1st.

[0017]

[Embodiment of the Invention] Hereafter, the gestalt of operation of this invention is explained with reference to a drawing.

[0018] <u>Drawing 1</u> is the block diagram having shown the configuration of the image pick—up equipment which is the 1st operation gestalt of this invention.

[0019] As shown in drawing, the image pick—up equipment of this 1st operation gestalt The image sensor drive circuit 2 which controls the above—mentioned image sensor 1 based on the image sensor 1 in which destructive read is possible, and the signal from the maximum detector 7 mentioned later (TG), The analog circuit 3 until it carries out A/D conversion of the output signal from the above—mentioned image sensor 1, A/D converter 4 which carries out A/D conversion of the analog signal from this analog circuit 3, The synchronization circuit 5 which makes in agreement the timing of two picture signals that light exposure changes with signals from this A/D converter 4, The synthetic circuit 6 which compounds two picture signals with which the light exposure from this synchronization circuit 5 differs, The maximum detector 7 which inputs the signal outputted from the above—mentioned synchronization circuit 5, and outputs a control

signal to the above—mentioned image sensor drive circuit 2, the synchronization circuit 5, and the synthetic circuit 6 according to the maximum detection result of this input signal, It has the gradation conversion circuit 8 which carries out gray scale conversion of the signal from the above-mentioned synthetic circuit 6, and D/A converter 9 which carries out D/A conversion of the digital signal from this gradation conversion circuit 8, and is outputted to an external device. [0020] Next, actuation of this operation gestalt is explained briefly. As shown in drawing 1, an image sensor 1 is driven so that two images from which the exposure time differs by the image sensor drive circuit 2 (TG) may be obtained. And after the signal according to the image which carried out image formation outputted from an image sensor 1 is amplified proper in an analog circuit 3, it is changed into a digital signal with A/D converter 4. The signal changed into the digital signal is outputted after synchronization of the timing is carried out, while separating into two picture signals (a long duration exposure signal, short-time exposure signal) with which light exposure differs in the synchronization circuit 5. And an extensive dynamic range signal is compounded after this in the synthetic circuit 6. By the gradation conversion circuit 8, gray scale conversion of the above-mentioned extensive dynamic range signal is carried out, and it is outputted as a video signal from D/A converter 9.

[0021] Next, it explains with reference to the timing chart which shows main actuation of the image pick—up equipment of this operation gestalt to <u>drawing 2</u>. <u>Drawing 2</u> is the timing chart which showed the timing of operation from the signal—charge are recording to the synthetic circuit 6 in the image pick—up equipment of this operation gestalt.

[0022] <u>Drawing 2</u> (a) shows the Vertical Synchronizing signal (VD). Moreover, <u>drawing 2</u> (b) shows the time shift of the signal level of the stored charge of an image sensor 1. In this <u>drawing 2</u> (b), Si (i=0, 1 and 2, —) expresses the timing which reads the picture signal corresponding to a short—time exposure signal, and Li (i=0, 1 and 2, —) expresses the timing which reads the picture signal corresponding to a prolonged exposure signal. Here, it is Si. In timing, a picture signal is read by un—destroying, and it is Li. Immediately after having set and reading a picture signal, a picture signal is reset by initial value, starts are recording of a signal again, and repeats the same actuation.

[0023] Picture signals Si and Li outputted from the image sensor 1 in the above in the abovementioned synchronization circuit 5 They are Si and Li, as it inputs and is shown in drawing 2 (c) and (d). It synchronizes. For example, the timing S2 of pixel signal are recording of drawing 2 (b) and L2 In the section to include, it is accumulated before that, and is S1 and L1. Synchronization of the outputted picture signal is carried out. And in the synthetic circuit 6, the picture signal by which synchronization was carried out [above—mentioned] as shown in drawing 2 (e) is compounded. In addition, in drawing 2 (c), (d), and (e), they are Si and Li for convenience. The same sign shows the picture signal read to timing.

[0024] <u>Drawing 3</u> is the diagram having shown the timing of destructive read in this operation gestalt, and <u>drawing 4</u> is the diagram having shown the property of the above—mentioned synthetic circuit 6 in this operation gestalt. In addition, the property shown in these <u>drawing 3</u> and <u>drawing 4</u> shall show the property in case the signal storage times are 1 /60 seconds, 200 1/seconds, and 2000 1/seconds by (a), (b), and (c), respectively, and shall have both 50dB dynamic ranges.

[0025] As shown in drawing 4, in the synthetic circuit 6, the signal corresponding to 1/60 seconds, and 200 1/seconds in the signal storage time, i.e., (a) and (b), and the signal storage time compound (the signal corresponding to 1/60 seconds, and 2000 1/seconds, i.e., (a), and c). And when the signal (a) corresponding to signal storage time 1/60 seconds and the signal (c) corresponding to 1/2000 seconds are compounded and (a) is saturated, a 80dB dynamic range can be obtained by amplifying and using (c) for the ratio of 1/60 seconds, and 2000 1/seconds, i.e., about 32 times. However, in a node, rapidly, a noise level also becomes large also 32 times and has a possibility of degrading image quality.

[0026] On the other hand, when the signal (a) corresponding to signal storage time 1 / 60 seconds and the signal (b) corresponding to 1 / 200 seconds are compounded, although a dynamic range is not expanded not much greatly with 60dB, since the noise level in a node does not increase about 3 times, it hardly becomes a problem on image quality.

[0027] In the maximum detector 7, the maximum of a signal with the shorter signal storage time is detected, in consideration of this situation, if maximum reaches saturation level, the signal storage time will be shortened, and if it becomes, he is trying to output the control signal with which maximum has not reached saturation level and which lengthens the signal storage time to the image sensor drive circuit 2 with this operation gestalt.

[0028] if, as for the maximum detector 7, maximum reaches saturation level as the concrete control approach, for example — "1" — it has not reached — "0" will be outputted if it becomes, here — "1" — if it becomes, in order that TG may lessen light exposure only for the specified quantity — the exposure time — predetermined time — it shortens. "0" — if it becomes, in order that light exposure may make [many] only the specified quantity — the exposure time — predetermined time — it lengthens. [moreover,] That is, time amount until which makes [many] light exposure or light exposure converges it on an optimum value by whether it lessens according to the output of the above—mentioned maximum detector 7 is decided.

[0029] In addition, it may be controlled by real time, control of the above—mentioned light exposure beginning to read serially the output signal of the image sensor 1 in which destructive read is possible within 1 field period, in image sensors, such as usual CCD, may read the signal of two or more fields, and may perform the above exposure control.

[0030] According to the above—mentioned control signal, the above—mentioned image sensor drive circuit 2 controls the signal storage time so that a signal with the shorter signal storage time is exactly set to saturation level. Moreover, since the timing of a signal output changes with the signal storage times and the gain over the ratio of the signal storage time, i.e., a signal with the shorter signal storage time, changes with the synchronization circuit 5 and signal storage times, the maximum detector 7 outputs a control signal also to the synthetic circuit 6. [0031] Moreover, since the above—mentioned image sensor drive circuit 2 is controlled so that the signal storage time becomes as long as possible in the range in which the maximum of a signal with the shorter signal storage time is not saturated, when compounding two images, the signal storage time becomes possible [making into min the ratio of the light exposure applied to the picture signal of the shorter one], and it can hold down a noise component to necessary minimum.

[0032] Next, the 2nd operation gestalt of this invention is explained.

[0033] <u>Drawing 5</u> is the block diagram having shown the configuration of the image pick—up equipment which is the 2nd operation gestalt of this invention.

[0034] As shown in drawing, the image pick—up equipment of this 2nd operation gestalt The image sensor drive circuit 2 which controls the above—mentioned image sensor 1 based on the image sensors 1, such as CCD, and the signal from the maximum detector 7 mentioned later (TG), The analog circuit 3 until it carries out A/D conversion of the output signal from the above—mentioned image sensor 1, A/D converter 4 which carries out A/D conversion of the analog signal from this analog circuit 3, The synchronization circuit 5 which makes in agreement the timing of two picture signals that light exposure changes with signals from this A/D converter 4, The synthetic circuit 6 which compounds two picture signals with which the light exposure from this synchronization circuit 5 differs, The maximum detector 7 which inputs the signal outputted from the above—mentioned synchronization circuit 5, and outputs a control signal to the above—mentioned image sensor drive circuit 2 and the synthetic circuit 6 according to the maximum detection result of this input signal, It has the gradation conversion circuit 8 which carries out gray scale conversion of the signal from the above—mentioned synthetic circuit 6, and D/A converter 9 which carries out D/A conversion of the digital signal from this gradation conversion circuit 8, and is outputted to an external device.

[0035] That is, the blocks with which the operation gestalt of ***** 2 is controlled by the configuration of an image sensor 1 and the output signal of the maximum detector 7 to the operation gestalt of the above 1st differ.

[0036] Next, it explains with reference to the timing chart and <u>drawing 7</u> which show main actuation of the image pick—up equipment of this operation gestalt to <u>drawing 6</u>. <u>Drawing 6</u> is the timing chart which showed the timing of operation from the signal—charge are recording to

the synthetic circuit 6 in the image pick—up equipment of the operation gestalt of **** 2, and drawing 7 is the explanatory view having shown the situation of the charge storage in the image sensor 1 which received control of the image sensor drive circuit 2 in the image pick—up equipment of this operation gestalt.

[0037] First, with reference to the timing chart shown in <u>drawing 6</u>, actuation from the signal-charge are recording to the synthetic circuit 6 is explained.

[0038] Since it is fundamentally [as the case of an operation gestalt (refer to the timing chart shown in <u>drawing 2</u>)] the same to the above 1st about generation of a Vertical Synchronizing signal (a), a prolonged exposure signal (c), a short—time exposure signal (d), and a synthetic image (e), detailed explanation here is omitted.

[0039] In the operation gestalt of **** 2, as shown in drawing 6, the generation method of the signal storage time (b) differs from the operation gestalt of the above 1st. That is, in drawing 6, as shown in (b), the signal Li (i=0, 2 [1 and 2], —) corresponding to prolonged exposure is exposed within the usual field period, and the signal Si corresponding to a short—time exposure signal (i=0, 1 and 2, —) is exposed in a perpendicular blanking period.

[0040] Next, the charge storage and the actuation of a transfer in the image sensor 1 of the prolonged exposure signal exposed as mentioned above with reference to <u>drawing 7</u>, and a short—time exposure signal are explained.

[0041] In drawing 7, (1) and (3) show the are recording and transfer operation of a signal which were accumulated in the usual field period. The signal accumulated in the pixel of PD1 and PD3 in drawing 7 (1) is transmitted to a perpendicular transfer way ("VCCD" is called hereafter). Next, the signal transmitted to Above VCCD is perpendicularly shifted by 1 pixel (drawing 7 (2)). Next, the signal of the pixel of the above PD 1, the signal of the pixel of the above PD 2, and the signal of the pixel of the above PD 3 and the signal of the pixel of the above PD 4 are added by transmitting the signal accumulated in the pixel of PD2 and PD4 to VCCD like above—mentioned drawing 7 (1) (drawing 7 (3)).

[0042] Next, the signal of the pixels PD1 and PD3 accumulated in the period of a perpendicular blanking is transmitted to VCCD (<u>drawing 7</u> (4)). Next, the signal transmitted to Above VCCD like <u>drawing 7</u> (2) is perpendicularly transmitted by 1 pixel (<u>drawing 7</u> (5)). Next, the signal of the pixel of the above PD 1, the signal of the pixel of the above PD 2 and the signal of the pixel of the above PD 3, and the signal of the pixel of the above PD 4 are added like <u>drawing 7</u> (3) (drawing 7 (6)).

[0043] A signal is read by transmitting by turns the long duration exposure signal accumulated in the usual field period when the signal of two pixels was added to Above VCCD by actuation mentioned above, and the short—time exposure signal accumulated in the perpendicular blanking period, and being transmitted to a level transfer way (HCCD) by the approach of the common knowledge which is not illustrated.

[0044] By the way, as it mentioned above, the signal according to the image which is outputted from an image sensor 1 and which carried out image formation is amplified suitably in an analog circuit 3, and it changes into a digital signal with A/D converter 4. While dividing the signal changed into the digital signal into two picture signals with which light exposure differs in the synchronization circuit 5, the timing is made in agreement, and an extensive dynamic range signal is compounded in the synthetic circuit 6. Gray scale conversion of the extensive dynamic range signal is suitably carried out by the gradation conversion circuit 8, and a video signal is outputted from D/A converter 9.

[0045] <u>Drawing 8</u> is the diagram having shown the timing of read—out of the image sensor 1 in the operation gestalt of **** 2, and <u>drawing 9</u> is the diagram having shown the property of the above—mentioned synthetic circuit 6 in the operation gestalt of **** 2. In addition, in these drawing 8 and <u>drawing 9</u>, a sign (a), (b), and (c) show a property in case the signal storage times are 1/65 seconds, $1000 \ 1/s$ econds, and $2000 \ 1/s$ econds, respectively.

[0046] In the operation gestalt of **** 2, the so-called knee property of changing the inclination of quantity of light pair output characteristics into the signal compounded as shown in <u>drawing 9</u> is given to two images with which light exposure differs. In addition, in order to realize this knee property, two picture signals with which light exposure differs may be added simply, but since the

S/N ratio of the low brightness section deteriorates, it is desirable to switch two picture signals with which light exposure differs. When a signal with the longer signal storage time is saturated with this operation gestalt in consideration of this point, degradation of the S/N ratio of the low brightness section is prevented by carrying out the level shift of the signal with the shorter signal storage time, and adding it.

[0047] Moreover, the maximum of a signal with the shorter signal storage time is detected in the maximum detector 7, if maximum reaches saturation level, the signal storage time will be shortened, and if it becomes, the control signal with which maximum has not reached saturation level and which lengthens the signal storage time will be outputted to the image sensor drive circuit 2. According to this control signal, the image sensor drive circuit 2 controls the signal storage time so that a signal with the shorter signal storage time is exactly set to saturation level. Moreover, since the amount of level shifts at the time of composition changes with signal storage times, the maximum detector 7 outputs a control signal also to the synthetic circuit 6. [0048] Thus, since the above—mentioned image sensor drive circuit 2 is controlled so that the signal storage time becomes as long as possible in the range in which the maximum of a signal with the shorter signal storage time is not saturated, it can make min the contrast fall of the high brightness section when compounding two images.

[0049] In addition, various kinds of deformation and modification are possible for each component in this 2nd operation gestalt. For example, in this operation gestalt, although CCD constitutes the above—mentioned image sensor 1, it may adopt the image sensor in which destructive read is possible like the operation gestalt of the above 1st. With this operation gestalt, since the signal with the short signal storage time has been acquired in the perpendicular blanking period, they are 1 /about 800 seconds at the maximum. Since the signal storage time with the shorter signal storage time can be set up till maximum abbreviation 1 /60 seconds if it is the image sensor in which destructive read is possible, bigger effectiveness is acquired. [0050] Moreover, when a knee property is given and two images with which light exposure differs are compounded, the contrast fall of the high brightness section can be made into min. [0051] Next, the 3rd operation gestalt of this invention is explained.

[0052] <u>Drawing 10</u> is the block diagram having shown the configuration of the image pick—up equipment which is the 3rd operation gestalt of this invention.

[0053] The image pick—up equipment of that fundamental configuration of this 3rd operation gestalt is the same as that of the operation gestalt of the above 1st, and only the points which are compounding two or more three or more images (this operation gestalt four) differ by the operation gestalt of **** 3 to compounding two images with which light exposure differs with the 1st operation gestalt. That is, in connection with this, the synchronization circuit 5 makes in agreement the timing of four picture signals that light exposure differs, and the synthetic circuit 6 compounds four picture signals with which light exposure differs. Since other configurations are the same as that of the operation gestalt of the above 1st and timing of operation is the same as that of the 1st operation gestalt, detailed explanation here is omitted.

[0054] Next, main actuation of the image pick—up equipment of the operation gestalt of **** 3 is carried out to drawing 11, drawing 12 is carried out reference, and it explains.

[0055] <u>Drawing 11</u> is the diagram having shown the timing of destructive read in this operation gestalt, and <u>drawing 12</u> is the diagram having shown the property of the above—mentioned synthetic circuit 6 in this operation gestalt. In addition, the property shown in these <u>drawing 11</u> and <u>drawing 12</u> shall show the property in case the signal storage times are 1 /60 seconds, 250 1/seconds, 1000 1/seconds, and 4000 1/seconds by (a), (b), (c), and (d), respectively, and shall have both 50dB dynamic ranges.

[0056] Moreover, the above—mentioned signal storage time (b), (c), and 12dB (d) become the property shifted 36dB from (a) to the quantity of light, respectively. [24dB] In the synthetic circuit 6, the quantity of light amplifies 0-50dB to (a), amplifies (b) to 50-62dB to the ratio of 1 / 60 seconds, and 250 1/seconds, i.e., about 4 times, and it uses. 62-74dB has acquired the 86dB extensive dynamic range signal because amplify and use (c) for the ratio of 1 / 60 seconds, and 1000 1/seconds, i.e., about 16 times, and 74-86dB amplifies and uses (d) for the ratio of 1 / 60 seconds, and 4000 1/seconds, i.e., about 64 times. And by composition of two images, expansion

of an unrealizable dynamic range is attained by compounding four images.

[0057] Moreover, when the dynamic range of the photographic subject to photo is not not much large, the maximum of a signal with the shortest signal storage time is detected in the maximum detector 7, if maximum reaches saturation level, the signal storage time will be shortened, and if it becomes, the control signal with which maximum has not reached saturation level and which destructive—read timing controls to lengthen the signal storage time will be outputted to the image sensor drive circuit 2. According to a control signal, the image sensor drive circuit 2 controls the signal storage time so that a signal with the shortest signal storage time is exactly set to saturation level destructive read between signals with the as short signal storage time as 1 \(\int 60 \) seconds \(--- \) a logarithm \(--- \) it is determined that spacing will become almost the same—like.

[0058] For example, when the dynamic range of a photographic subject is about 70dB, a signal is read to the timing of destructive read like drawing 13. The property of the synthetic circuit 6 at this time is shown in drawing 14. A sign (a), (b), (c), and (d) shall have among drawing the dynamic range which the signal storage times are 1/60 seconds, 120 1/seconds, 250 1/seconds, and 500 1/seconds, and is 50dB, respectively. (b), (c), and 6dB (d) become the property shifted 18dB from (a) to the quantity of light, respectively. [12dB] in the synthetic circuit 6, the quantity of light amplifies 0-50dB to (a), amplifies (b) to 50-56dB to the ratio of 1/60 seconds, and 120 1/seconds, i.e., twice [about], and it uses. 56-62dB acquires a 68dB dynamic range signal because amplify and use (c) for the ratio of 1/60 seconds, and 250 1/seconds, i.e., about 4 times, and 62-68dB amplifies and uses (d) for the ratio of 1/60 seconds, and 300 1/seconds, i.e., about 8 times.

[0059] Thus, it becomes possible with this operation gestalt to make into min the ratio of the light exposure applied to a destructive—read signal with the short signal storage time in case an image is compounded since it is controlled so that the signal storage time becomes as long as possible in the range in which, as for the image sensor drive circuit 2, the maximum of a signal with the shorter signal storage time is not saturated, and a noise component can be held down to necessary minimum.

[0060] In addition, although this operation gestalt is compounded so that an output may become linearity to the quantity of light in the synthetic circuit 6, you may compound in the property which gave the several steps knee property, and the effectiveness of suppressing the contrast fall of the high brightness section to min in that case is acquired.

[0061] Thus, the operation gestalt of **** 3 is equipped with an image pick—up means, the control means which reads the image of light exposure with which plurality differs from this image pick—up means, and a synthetic means to compound two or more obtained images, and it is characterized by controlling the above—mentioned control means to carry out adjustable [of the signal storage time of the above—mentioned image pick—up means] according to an image pick—up signal. That is, since the above—mentioned control means is controlled so that light exposure increases as much as possible in the range in which this image pick—up means is not saturated according to an image pick—up means, the S N ratio which held down the noise component to necessary minimum can obtain a good image.

[Effect of the Invention] As explained above, according to invention according to claim 1, in the image pick—up equipment to which an image pick—up dynamic range is expanded, the increment in a noise level can be made into min by compounding two or more images with which light exposure differs.

[0063] Moreover, according to invention according to claim 2, in the image pick—up equipment to which an image pick—up dynamic range is expanded, the contrast fall of the high brightness section can be made into min according to the dynamic range of the actually picturized photographic subject by compounding two images with which light exposure differs.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the block diagram having shown the configuration of the image pick—up equipment which is the 1st operation gestalt of this invention.

[Drawing 2] In the image pick—up equipment of the operation gestalt of the above 1st, it is the timing chart which showed the timing of operation from signal—charge are recording to a synthetic circuit.

[Drawing 3] It is the diagram in the image pick—up equipment of the operation gestalt of the above 1st having shown the timing of destructive read of an image sensor.

[Drawing 4] It is the diagram in the image pick—up equipment of the operation gestalt of the above 1st having shown the property of a synthetic circuit.

[Drawing 5] It is the block diagram having shown the configuration of the image pick-up equipment which is the 2nd operation gestalt of this invention.

[Drawing 6] In the image pick-up equipment of the operation gestalt of the above 2nd, it is the timing chart which showed the timing of operation from signal-charge are recording to a synthetic circuit.

[Drawing 7] In the image pick-up equipment of the operation gestalt of the above 2nd, it is the explanatory view having shown the situation of the charge storage in the image sensor which received control of an image sensor drive circuit.

[Drawing 8] It is the diagram having shown the timing of read—out of the image sensor in the image pick—up equipment of the operation gestalt of the above 2nd.

[Drawing 9] It is the diagram having shown the property of the synthetic circuit in the image pick-up equipment of the operation gestalt of the above 2nd.

[Drawing 10] It is the block diagram having shown the configuration of the image pick—up equipment which is the 3rd operation gestalt of this invention.

[Drawing 11] It is the diagram in the image pick—up equipment of the operation gestalt of the above 3rd having shown the timing of destructive read of an image sensor.

[Drawing 12] It is the diagram in the image pick—up equipment of the operation gestalt of the above 3rd having shown the property of a synthetic circuit.

[Drawing 13] It is the diagram in the image pick—up equipment of the operation gestalt of the above 3rd having shown other examples of the timing of destructive read of an image sensor.

[Drawing 14] It is the diagram in the image pick—up equipment of the 3rd operation gestalt shown in above—mentioned drawing 13 having shown other examples of the property of a synthetic circuit.

[Drawing 15] In conventional image pick—up equipment, it is the diagram having shown an example of the quantity of light at the time of compounding two images with which light exposure differs, and the relation of an output.

[<u>Drawing 16</u>] In conventional image pick—up equipment, in case two images with which light exposure differs are compounded, it is the diagram having shown an example of the relation of the quantity of light and the output at the time of giving a knee property to the compound signal.

[Description of Notations]

- 1 Image sensor
- 2 Image sensor drive circuit
- 3 Analog circuit
- 4 A/D converter
- 5 Synchronization circuit
- 6 Synthetic circuit
- 7 Maximum detector
- 8 Gradation conversion circuit
- 9 D/A converter

[Translation done.]