

DITET

Swiss Federal Institute of Technology Zurich

Dept. of Information Technology and Electrical Engineering

Übungsstunde 1

Themenüberblick

• Einführung Signale:

Einteilung der Signale und einfache Beispielsaufgaben zu Signalen

• Lineare Algebra Recap:

Lineare Räume und Unterräume:

Lineare Unabhängigkeit, Basen, Koordinaten, Dimensionsbegriff, duale Basen, Funktionsräume, Normen, Skalarprodukte, Orthogonalität

Aufgaben für diese Woche

1, **2**, **3**, **4**, **5**, **6**, 7, **8**, **9**, 10, **11**, 12, 13, 14, **15**

Die **fettgedruckten** Übungen empfehle ich, weil sie wesentlich zu eurem Verständnis der Theorie beitragen und/oder sehr prüfungsrelevant sind.

1 Einteilung der Signale

Zeit Signal- amplitude	kontinuierlich	diskret
kontinuierlich	analoge Signale	zeitdiskrete Signale
		$\begin{array}{c c} x(nT) \\ \hline \\ \hline \\ \\ \end{array}$
diskret	amplitudendiskrete Signale	digitale Signale
	x(t) t	

Beispielsaufgabe (aus Aufgabe 1, 2 und 3)

Für die abgebildeten Signale $x_1(t), x_2(t)$ (mit normierter Amplituden- und Zeitachse) zeichne man folgende Signale:

a)
$$x_1(1-t)$$

d)
$$4x_2(t/4)$$

b)
$$x_1(2t+2)$$

e)
$$\frac{1}{2}x_2(t)\sigma(t) + x_2(-t)\sigma(t)$$

c)
$$[x_1(t) + x_1(2-t)] \sigma(1-t)$$

f)
$$x_1(t)x_2(-t)$$

wobei

$$\sigma(t) := \begin{cases} 1, & t \ge 0, \\ 0, & t < 0. \end{cases}$$

2 Lineare Algebra Recap

Lineare Räume

Definition: Ein linearer Raum über $\mathbb C$ ist eine nichtleere Menge X zusammen mit

- (i) einer Abbildung $+: X \times X \to X$, genannt Addition und notiert mit $x_1 + x_2$,
- (ii) einer Abbildung von $\mathbb{C} \times X$ nach X, genannt skalare Multiplikation und notiert mit αx , so, dass Addition und skalare Multiplikation folgende Eigenschaften erfüllen:
 - (A1) Kommutativität (+): $x_1 + x_2 = x_2 + x_1$, für alle $x_1, x_2 \in X$.
 - (A2) Assoziativität (+): $x_1 + (x_2 + x_3) = (x_1 + x_2) + x_3$, für alle $x_1, x_2, x_3 \in X$.
 - (A3) Nullelement (+): $\exists ! 0 \in X$, so dass 0 + x = x, für alle $x \in X$.
 - (A4) Inverses Element (+): $\forall x \in X \ \exists ! -x \in X$, so dass x + (-x) = 0.
 - (SM1) Assoziativität (·): $\alpha(\beta x) = (\alpha \beta)x$, für alle $\alpha, \beta \in \mathbb{C}$ und alle $x \in X$
 - (SM2) Einselement (·): 1x = x, für alle $x \in X$.
 - (A&SM1) Distributivgesetz: $\alpha(x_1 + x_2) = \alpha x_1 + \alpha x_2$, für alle $\alpha \in \mathbb{C}$, und alle $x_1, x_2 \in X$.
 - (A&SM2) Distributivgesetz: $(\alpha + \beta)x = \alpha x + \beta x$, für alle $\alpha, \beta \in \mathbb{C}$, und alle $x \in X$.

Bemerkungen:

Der lineare Raum X muss abgeschlossen sein bezüglich Addition und Multiplikation. (implizite Bedingung)

Um zu beweisen, dass X ein linearer Raum ist, müssen **alle** Eigenschaften gezeigt werden. Mit bereits **einem Gegenbeispiel** kann man jedoch schon beweisen, dass das Gegebene kein linearer Raum ist.

Aufgabe 7

Zeigen Sie, dass der Raum der komplexwertigen $m \times n$ Matrizen, also $\mathbb{C}^{m \times n}$, ein linearer Raum ist.

Lineare Unterräume

Definition: Ein linearer Unterraum ist eine **nichtleere Teilmenge** (\tilde{X}) eines linearen Raumes X, wenn folgende beide Eigenschaften gelten:

- (i) $x_1 + x_2 \in \tilde{X}$, für alle $x_1, x_2 \in \tilde{X}$.
- (ii) $\alpha x \in \tilde{X}$, für alle $\alpha \in \mathbb{C}$ und alle $x \in \tilde{X}$.

Bemerkung: Wenn 0 (das Nullelement in X) nicht in \tilde{X} liegt, dann kann \tilde{X} kein Unterraum von X sein, da die zweite Bedingung für $\alpha = 0$ nicht erfüllt sein kann.

Aufgabe 9

Zeigen Sie, dass der Raum aller Vektoren $\mathbf{v} = (v_1 \dots v_n)^T \in \mathbb{C}^n$, ausgestattet mit Addition und Multiplikation, die für eine gegebene Menge $\mathcal{I} = \{i_1, \dots, i_k\}$ mit $k \leq n$ die Bedingung $v_i = 0$, für alle $i \in \mathcal{I}$ erfüllen, ein linearer Unterraum von \mathbb{C}^n ist.

Basen in linearen Räumen

Lineare Unabhängigkeit

Definition: Eine Teilmenge $\{x_i\}_{i=1}^n$ des linearen Raumes X ist linear abhängig, wenn es zugehörige Skalare $\{\alpha_i\}_{i=1}^n$ gibt, die **nicht alle gleich Null** sind und so, dass

$$\sum_{i=1}^{n} \alpha_i x_i = 0.$$

Wenn $\sum_{i=1}^{n} \alpha_i x_i = 0$ impliziert, dass $\alpha_i = 0$ für alle $i \in \{1, \dots, n\}$, dann ist die Teilmenge $\{x_i\}_{i=1}^n$ linear unabhängig.

Bemerkung: Um lineare Unabhängigkeit einer endlichen Menge an Vektoren zu überprüfen, kann man die Vektoren als Spaltenvektoren einer Matrix zusammenfassen und diese Matrix muss für lineare Unabhängigkeit vollen Rang haben.

Definition: Eine unendliche Menge von Vektoren ist linear unabhängig, wenn jede endliche Teilmenge linear unabhängig ist.

Basis

Die Basis eines linearen Raums X ist eine Menge von Vektoren in X, die linear unabhängig sind und jedes Element x des gesamten Raumes X durch eindeutige Linearkombination erzeugen können.

Formale Definition: Die Menge $\{\mathbf{e}_k\}_{k=1}^M$, $\mathbf{e}_k \in \mathbb{C}^M$, ist eine Basis für \mathbb{C}^M , wenn:

- 1. span $\{\mathbf{e}_k\}_{k=1}^M = \mathbb{C}^M$
- 2. $\{\mathbf{e}_k\}_{k=1}^M$ linear unabhängig ist.

$$\forall x \in X \quad \exists! c_1, \dots, c_M, \text{ sodass } c_1 \mathbf{e}_1 + \dots + c_M \mathbf{e}_M = x$$

Dabei sind c_1, \ldots, c_M die **Koordinaten** von x in der gegebenen Basis. Diese Koordinaten erhält man durch **orthogonale Projektion** auf die Basisvektoren. Man nennt sie auch **Entwicklungskoeffizienten**. Diese berechnet man wie folgt:

$$c_k := \langle \mathbf{x}, \ \mathbf{e}_k \rangle, \quad k = 1, \dots, M$$

Wir definieren die Analysematrix

$$\mathbf{T} := \begin{bmatrix} \mathbf{e}_1^H \\ \vdots \\ \mathbf{e}_M^H \end{bmatrix}, \quad \text{sodass man als Koordinaten} \quad \mathbf{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_M \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1^H \cdot \mathbf{x} \\ \vdots \\ \mathbf{e}_M^H \cdot \mathbf{x} \end{bmatrix} = \begin{bmatrix} \langle \mathbf{x}, \ \mathbf{e}_1 \rangle \\ \vdots \\ \langle \mathbf{x}, \ \mathbf{e}_M \rangle \end{bmatrix} = \mathbf{T}\mathbf{x}, \quad \text{erhält.}$$

Die Analysematrix **T** sollte vollen Rang haben und quadratisch sein.

Dimensionsbegriff

Die Dimension M eines linearen Raumes X ist die maximale Anzahl linear unabhängiger Elemente in diesem linearen Raum. Dies entspricht der Anzahl Basiselemente jeder Basis dieses linearen Raumes. Wenn es kein solches endliches M gibt, dann ist X unendlich-dimensional.

Beispiel

Orthonormalbasis

Falls alle Basisvektoren paarweise orthogonal zueinander stehen und Norm 1 haben, so spricht man von einer Orthonormalbasis.

Duale Basen

Eine Menge $\{\tilde{\mathbf{e}}_k\}_{k=1}^M$, $\tilde{\mathbf{e}}_k \in \mathbb{C}^M$, $k = 1, \dots, M$ heisst dual zu einer Basis $\{\mathbf{e}_k\}_{k=1}^M$, wenn:

$$\mathbf{x} = \sum_{k=1}^{M} \langle \mathbf{x}, \ \mathbf{e}_k \rangle \tilde{\mathbf{e}}_k, \quad \text{für alle} \quad \mathbf{x} \in \mathbb{C}^M$$

In anderen Worten suchen wir eine andere Basis, sodass wir mit den gleichen Koordinaten den Vektor \mathbf{x} konstruieren können.

Die duale Basis einer Orthonormalbasis ist sie selbst. $\tilde{\mathbf{e}}_k = \mathbf{e}_k$, für alle k = 1, ..., M Dies ist einfach zu sehen, da in diesem Fall $\mathbf{x} = \sum_{k=1}^{M} \langle \mathbf{x}, \ \mathbf{e}_k \rangle \mathbf{e}_k$ gilt.

Ansonsten verwendet man eine Synthesematrix $\tilde{\mathbf{T}}^H = [\tilde{\mathbf{e}}_1, \dots, \tilde{\mathbf{e}}_1].$

Indem man $\tilde{\mathbf{T}}^H = \mathbf{T}^{-1}$ setzt, zeigt dies nun, dass man zu $\{\mathbf{e}_k\}_{k=1}^M$ eine duale Basis $\{\tilde{\mathbf{e}}_k\}_{k=1}^M$ finden kann, denn dann haben wir:

$$\tilde{\mathbf{T}}^H \mathbf{T} \mathbf{x} = [\tilde{\mathbf{e}}_1, \dots, \tilde{\mathbf{e}}_1] \begin{bmatrix} \langle \mathbf{x}, \ \mathbf{e}_1 \rangle \\ \vdots \\ \langle \mathbf{x}, \ \mathbf{e}_1 \rangle \end{bmatrix} = \sum_{k=1}^M \langle \mathbf{x}, \ \mathbf{e}_k \rangle \tilde{\mathbf{e}}_k = \mathbf{x}, \text{ wie gewünscht.}$$

Im Falle eines Orthonormalsystems ist **T** unitär.

Aufgabe 11

Es seien:

$$\Phi_1 = \{\mathbf{e}_1, \mathbf{e}_2\} \text{ mit } \mathbf{e}_1 = \begin{bmatrix} 1/2 \\ \sqrt{3}/2 \end{bmatrix}, \ \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{split} &\Phi_2 = \{\mathbf{f}_1, \mathbf{f}_2\} \text{ mit } \mathbf{f}_1 = \begin{bmatrix} 1/2 \\ \sqrt{3}/2 \end{bmatrix}, \ \mathbf{f}_2 = \begin{bmatrix} -\sqrt{3}/2 \\ 1/2 \end{bmatrix} \\ &\text{a) Bestimmen Sie die zu } \Phi_1 \text{ und } \Phi_2 \text{ zugehörigen Matrizen } \mathbf{T}_1 \text{ und } \mathbf{T}_2. \end{split}$$

- b) Begründen Sie, warum es sich sowohl bei Φ_1 als auch bei Φ_2 um eine Basis handelt.
- c) Bestimmen Sie die dualen Basen $\tilde{\Phi}_1$ und $\tilde{\Phi}_2.$
- e) Sind die Basen $\tilde{\Phi}_1$ und $\tilde{\Phi}_2$ normerhaltend? Begründen Sie ihre Antwort.

Funktionsräume

Für eine nichtleere Menge S definiert man den linearen Raum X als Menge aller Funktionen von S nach \mathbb{C} , wobei die Addition und die skalare Multiplikation wie folgt definiert sind:

$$(+) \ \forall x_1, x_2 \in X + : X \times X \to X \ (x_1 + x_2)(s) = x_1(s) + x_2(s) \ \forall s \in S$$

$$(\cdot) \ \forall \alpha \in \mathbb{C}, \ x \in X \quad \cdot : \mathbb{C} \times X \to X \quad (\alpha \cdot x)(s) = \alpha x(s)$$

Norm

Definition: Eine reelle Funktion $||\cdot||$, definiert auf einem linearen Raum X, ist eine Norm auf X, wenn folgende Eigenschaften erfüllt sind:

- (N1) Nichtnegativität: $||x|| \ge 0$, für alle $x \in X$
- (N2) Dreiecksungleichung: $||x_1+x_2|| \leq ||x_1|| + ||x_2||,$ für alle $x_1,x_2 \in X$
- (N3) Homogenität: $||\alpha x|| = |\alpha|||x||$, für alle $x \in X$
- (N4) Definitheit: ||x|| = 0 dann, und nur dann, wenn x = 0

Normierte Lineare Räume

Definition: Ein normierter linearer Raum ist ein Paar $(X, ||\cdot||)$ bestehend aus einem linearen Raum X und einer Norm auf X.

Beispiele für normierte lineare Räume:

• linearer Raum \mathbb{R}^n oder \mathbb{C}^n mit einer der folgenden Normen:

Summennorm (1-Norm):
$$||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$$

Euklidische Norm (2-Norm): $||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$

p-Norm:
$$||\mathbf{x}||_p = (\sum_{i=1}^n |x_i|^p)^{1/p} \text{ für } 1 \le p < \infty$$

Maximum snorm:
$$||\mathbf{x}||_{\infty} = \max_{i=1,\dots,n} |x_i|$$

- linearer Raum $L^p := \{x : \mathbb{R} \to \mathbb{C} : \int_{-\infty}^{\infty} |x(t)|^p dt < \infty\}$ mit der Norm $||x||_{L^p} := \left(\int_{-\infty}^{\infty} |x(t)|^p dt\right)^{1/p}$
- linearer Raum $l^p := \{x : \mathbb{Z} \to \mathbb{C} : \sum_{n=-\infty}^{\infty} |x[n]|^p < \infty \}$ mit der Norm $||x||_{l^p} := \left(\sum_{n=-\infty}^{\infty} |x[n]|^p\right)^{1/p}$

In einem normierten linearen Raum können wir den Abstand zwischen zwei Elementen mit der Norm messen:

$$d: X \times X \to \mathbb{R}_{\geq 0}$$
 $d(x_1, x_2) := ||x_1 - x_2||$