YData: An Introduction to Data Science

Lecture 32: Residuals

Jessi Cisewski-Kehe Statistics & Data Science, Yale University Spring 2020

Credit: data8.org

Announcements

Error in Estimation (Review)

- error = actual value estimate
- Typically, some errors are positive and some negative
- To measure the rough size of the errors
 - square the errors to eliminate cancellation
 - take the **mean** of the squared errors
 - take the square root to fix the units
 - root mean square error (rmse)

Residuals

- Error in regression estimate
- One residual corresponding to each point (x, y)
- residual
 - = observed y regression estimate of y
 - = observed y height of regression line at x
 - = vertical distance between the point and the best line

Residual Plot

A scatter diagram of residuals

- Should look like an unassociated blob for linear relations
- But will show patterns for non-linear relations
- Used to check whether linear regression is appropriate

Regression Diagnostics

Dugong

Properties of Residuals

Discussion Questions

- What should the average of the residuals be?
- Does your answer depend on whether the scatter diagram looks linear or shows a nonlinear pattern?

Average of Residuals

- The average of the residuals is always 0
- No matter what the scatter looks like
- Just as the average of the deviations from mean is always 0
- No matter what the data look like

A Measure of Clustering

Correlation, Revisited

- "The correlation measures how clustered the points are about a straight line."
- We can now quantify this statement.

SD of Fitted Values

$$\frac{\mathsf{SD} \; \mathsf{of} \; \mathsf{fitted} \; \mathsf{values}}{\mathsf{SD} \; \mathsf{of} \; \mathsf{y}} = |r|$$

SD of fitted values = $|r|^*$ (SD of y)

Variance of Fitted Values

```
 \begin{array}{ll} {\sf Variance} &= {\sf Square} \ {\sf of} \ {\sf the} \ {\sf SD} \\ &= {\sf Mean} \ {\sf Square} \ {\sf of} \ {\sf the} \ {\sf Deviations} \end{array}
```

Variance has bad units, but good math properties

$$\frac{\text{Variance of fitted values}}{\text{Variance of y}} = r^2$$

A Variance Decomposition

$$\frac{\text{Variance of fitted values}}{\text{Variance of y}} = r^2$$

$$\frac{\text{Variance of residuals}}{\text{Variance of y}} = 1 - r^2$$

Residual Average and SD

- The average of residuals is always 0
- $\frac{\text{Variance of residuals}}{\text{Variance of y}} = 1 r^2$
- SD of residuals = $\sqrt{1-r^2}$ SD of y

Discussion Question

Midterm: Average 70, SD 10 Final: Average 60, SD 15

r = 0.6

Fill in the blank:

For at least 75% of the students, the regression estimate of final score based on midterm score will be correct to within _____ points.