CH224手册 1

USB PD 等多快充协议受电芯片 CH224

中文手册

版本: 1G

http://wch.cn

1. 概述

CH224 单芯片集成 USB PD 等多种快充协议,支持 PD3. 0/2. 0, BC1. 2 等升压快充协议,自动检测 VCONN 及模拟 E-Mark 芯片,最高支持 100W 功率,内置 PD 通讯模块,集成度高,外围精简。集成输出电压检测功能,并且提供过温、过压保护等功能。可广泛应用于各类电子设备拓展高功率输入如无线充电器、电动牙刷、充电剃须刀、锂电池电动工具等各类应用场合。

2. 功能特点

- 支持 4V 至 22V 输入电压
- 支持 PD3. 0/2. 0, BC1. 2 等快充协议
- 支持 USB Type-C PD, 支持正反插检测与自动切换
- 支持 E-Mark 模拟, 自动检测 VCONN, 支持 100W 功率的 PD 请求
- 请求电压可通过多种方法动态调整
- 单芯片集成度高,外围精简,成本低
- 内置过压保护模块 OVA、超温保护模块 OTA

3. 应用场合

- 无线充电器
- 笔记本电脑充电线
- 锂电池小家电
- 锂电池电动工具
- 移动电源

4. 引脚

4.1. CH224 各封装引脚排列

4. 2. CH221K 引脚功能说明

引脚号	引脚名称	类型	引脚说明			
1	VDD	电源	工作电源输入,外接 1uF 退耦电容,串联电阻至 VBUS			
2	GND	电源	工作电源公共接地端			
3	PG	开漏输出	默认 Power Good 指示,低电平有效,可定制功能			
4, 5	CC1, CC2	双向	Type-C CC 总线			
6	CFG	模拟输入	电源档位配置输入			

4. 3. CH224K 引脚功能说明

引脚号	引脚名称	类型	引脚说明		
0	GND	电源	公共接地端,散热底板		
1	VDD	电源	工作电源输入,外接 1uF 退耦电容,串联电阻至 VBUS		
4, 5	DP, DM	双向	USB 总线		
6, 7	CC1, CC2	双向	Type-C CC 总线		
2, 3, 9	CFG1, CFG2, CFG3	模拟输入	电源档位配置输入		
8	VBUS	模拟输入	电压检测输入,需要串联电阻至外部输入 VBUS		
10	PG	开漏输出	默认 Power Good 指示,低电平有效,可定制功能		

4. 4. CH224D 引脚功能说明

引脚号	引脚名称	类型	引脚说明	
CH224D	力胸右你	大空	סואים אינו די	
0	GND	电源	公共接地端,散热底板	
2	VBUS	电源	工作电源输入	
7	VDD	电源	内部稳压器输出端,外接 1uF 退耦电容	
8, 9	DP, DM	双向	USB 总线	
10, 11	CC1, CC2	双向	Type-C CC 总线	
19, 13, 12	CFG1~3	输入	CFG1 为模拟输入,CFG2, 3 为数字输入且内置下拉	
1	DRV	模拟输出	弱驱动输出,用于驱动配置电阻	
14, 15	ISP, ISN	差分输入	用于检测工作电流,定制功能	
5	GATE	高压输出	用于驱动高侧电源通路 NMOS,定制功能	
6	NMOS#	数字输入	GATE 脚驱动 NMOS 使能,低电平有效	

5. 功能描述

5.1. 概述

CH224是一款支持PD3. 0/2. 0, BC1. 2等升压快充协议输入的协议电源受电端IC, 支持4~22V范围内电压的请求,并可通过多种方式动态配置优先请求的电压档位。

CH221K仅支持PD3. 0/2. 0协议。

CH224K/CH224D 提供单电阻配置方式和电平配置方式。CH221K 仅提供单电阻配置方式。

CH224手册 3

5. 2. CH224K/CH224D 电压档位配置

5. 2. 1单电阻配置

适用于同一 PCB 通过修改电阻阻值实现不同请求电压的应用场合。

CFG1对GND连接电阻,不同阻值对应不同的电压请求档位。使用单电阻配置方式时,CFG2和CFG3引脚可悬空。电阻-请求电压对照表如下。

CFG1上阻值	请求电压
6. 8K Ω	9V
24Κ Ω	12V
56K Ω	15V
NC	20V

5. 2. 2电平配置

适用于 MCU 动态调整请求电压,或 PCB 线路固定请求电压的应用场合。

CFG1, CFG2, CFG3直接连接到外部MCU的10口,或直接连接CH224K/CH224D芯片的VDD/GND管脚,使用电平对请求电压进行配置。真值表如下。

CFG1	CFG2	CFG3	请求电压
1	_	_	5 V
0	0	0	9V
0	0	1	12V
0	1	1	15V
0	1	0	20V

使用电平配置方式时,需注意使用的 10 口电压和默认状态。

对于 CH224K 来说, CFG2/CFG3 引脚输入电压不可高于 3.7V, 对于 CH224D 来说, CFG2/CFG3 引脚输入 电压不可高于 5V。

若 MCU 等后端电路启动较慢,或 MCU 管脚有特定的默认状态,启动前 CFG1 将可能会处于浮空状态或 IO 配置模式,此时则有可能请求 20V,若系统无法承受 20V 输入,则应当在 CFG1 引脚添加配置电阻,以保证 MCU 启动前,CH224K/CH224D 可以通过电阻配置,请求合适的电压。

5. 3. CH221K电压档位配置

CFG对VDD连接电阻,不同阻值对应不同的电压请求档位。电阻-请求电压对照表如下。

CFG对VDD阻值	请求电压
10ΚΩ	5V
20ΚΩ	9V
47K Ω	12V
100ΚΩ	15V
200Κ Ω	20V

5. 4. 模拟 E-Mark 功能

若要使用模拟 E-Mark 功能,以请求大于 20V 或大于 60W 输出,则必须使用 Type-C 公头,并在 CC2 引脚对 GND 连接 1KΩ 电阻。(请咨询我司技术支持)

5. 5. 仅使用 PD 协议

若无需使用 A 口协议(由 DP, DM 通讯实现的各种协议),可以选择 CH221K 型号。

若希望在 CH224K/CH224D 上屏蔽这些协议,需断开 CH224K/CH224D 的 DP/DM 引脚与 Type-C 接口上 DP/DM 的连接,并在 CH224K/CH224D 侧短接 DP 与 DM。对于 CH224K 此时 VBUS 引脚可 NC。

6. 参考原理图

6. 1. CH224K/CH224D 使用 Type-C 母口, 单电阻配置 9/12/15/20V (图中电阻配置 6. 8KΩ 为 9v)

Rset阻值	请求电压
6. 8K Ω	9V
24ΚΩ	12V
56K Ω	15V
NC	20V

6. 2. CH224K 使用 Type-C 母口, 电平配置 5/9/12/15/20V (图中电平方式配置为 12v)

CFG1	CFG2	CFG3	请求 电压
1	-	_	5V
0	0	0	9V
0	0	1	12V
0	1	1	15 V
0	1	0	20 V

6.3. CH224K 使用 Type-C 公口,仅使用 PD 协议和 E-Mark 模拟功能(图中电阻配置 NC 为 20v)

6. 4. CH221K 使用 Type-C 母口, 单电阻配置 20V

7. 参数

7.1. CH221K 芯片绝对最大值

(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	105	°C
TS	储存时的环境温度	-55	150	°C
VDD	工作电源电压(VDD 引脚接电源,GND 引脚接地)	-0. 5	5. 8	٧
VODHV	高压开漏输出引脚 PG 上的电压	-0. 5	13. 5	٧
VIOCC	CC1, CC2 引脚上的电压	-0. 5	8	٧
VIOUX	CFG 引脚上的电压	-0. 5	VDD+0. 5	٧
PD	整个芯片的最大功耗(VDD 电压*电流)		250	mW

7. 2. CH224K 芯片绝对最大值

(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	90	°C
TS	储存时的环境温度	-55	105	°C
VDD	工作电源电压(VDD 引脚接电源,GND 引脚接地)	3. 0	3. 6	٧
VIOHV	支持高压的引脚(CFG, VBUS)上的电压	-0. 5	13. 5	٧
VIOCC	CC1, CC2, CFG1 引脚上的电压	-0. 5	8	٧
VIOUX	DP, DM, CFG, CFG2, CFG3 引脚上的电压	-0.5	VDD+0. 5	٧
VIOLV	CFGHV 引脚上的电压		0.8	٧
PD	整个芯片的最大功耗(VDD 电压*电流)		400	mW

7. 3. CH224D 芯片绝对最大值

(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	100	°C
TS	储存时的环境温度	-55	125	°C
VDD	工作电源电压(VDD 引脚接电源,GND 引脚接地)	-0. 5	6	٧
VIOHV	VBUS 引脚上的电压	-0. 5	24	٧
VIOCC	CC1, CC2 引脚上的电压	-0. 5	20	٧
VIOUX	DP, DM, CFG1, CFG2, CFG3, DRV, NMOS#, ISP, ISN 引脚上的电压	-0. 5	VDD+0. 5	٧
VIOHX	GATE 引脚上的电压	-0. 5	V10HV+6. 5	٧
PD	整个芯片的最大功耗(VDD 电压*电流)		300	mW

7. 4. CH221K 芯片电气参数 (测试条件: TA=25℃)

名称	参数说明	最小值	典型值	最大值	单位
VLDOK	CH221K 内部电源调节器 VDD 并联稳压	3. 0	3. 3	3. 6	٧
ILD0	内部电源调节器 VDD 并联吸收电流能力	0		30	mA
VR	电源上电复位的电压门限	2. 2	2. 4	2. 6	V

7. 5. CH224K 芯片电气参数 (测试条件: TA=25℃)

名称	参数说明	最小值	典型值	最大值	单位
VLDOK	CH224K 内部电源调节器 VDD 并联稳压	3. 24	3. 3	3. 36	٧
ILD0	内部电源调节器 VDD 并联吸收电流能力	0		30	mA
TOTA	超温保护模块 OTA 的参考阈值温度	90	105	120	°C
VR	电源上电复位的电压门限	2. 2	2. 4	2. 6	٧

7. 6. CH224D 芯片电气参数 (测试条件: TA=25℃)

名称	参数说明		典型值	最大值	单位
VLD0	内部电源调节器 VDD 输出电压	4. 65	4. 7	4. 75	٧
ILD0	内部电源调节器 VDD 对外负载能力			10	mA
VR	电源上电复位的电压门限	2. 2	2. 4	2. 6	V

CH224手册

8. 封装信息

封装形式	塑体宽度		引脚	间距	封装说明	订货型号
QFN20	3*3mm	118mil	0. 40mm	15.7mil	方形扁平无引脚封装	CH224D
ESS0P10	3. 9mm	150mil	1. 00mm	39mil	带底板的窄距 10 脚贴片	CH224K
S0T23-6L	1. 6mm	63mil	0. 95mm	37mil	小型 6 脚贴片	CH221K

符号	标称值
A	1.6
A2	1.45
D	4.9
D1	3.3
E	3.9
E1	6.0
E2	2.1
b	0.4
e	1.00BSC
c	0.2

说明: 封装信息图中标注的单位为 mm(毫米)。