Lista 2b

Zadanie 0 Udowodnij, że szereg $\sum_{n=0}^{\infty} a_n$ (gdzie ciąg wyrazów jest nierosnący oraz $a_n \geq 0$) jest

zbieżny wtedy i tylko wtedy kiedy szereg $\sum_{n=0}^{\infty} 2^n a_{2^n}$ jest zbieżny.

Zadanie 1 Znajdź promień zbieżności podanych szeregów:

$$1. \sum_{n=1}^{\infty} \frac{1}{n^x}$$

$$4. \sum_{n=1}^{\infty} 2^n \sin \frac{x}{3^n}$$

7.
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)x^n}$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^x}$$

$$5. \sum_{n=1}^{\infty} \frac{n!}{x^n}$$

$$8. \sum_{n=1}^{\infty} \frac{\sqrt{n}}{(x-2)^n}$$

3.
$$\sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{(2n-1)^2}$$

$$6. \sum_{n=1}^{\infty} \frac{1}{n!x^n}$$

$$9. \sum_{n=1}^{\infty} \frac{n^n}{x^{n^n}}$$

Zadanie 2 Znajdź promień zbieżności podanych szeregów potęgowych i sprawdź zbieżność na granicach promienia zbieżności:

$$1. \sum_{n=0}^{\infty} x^n$$

$$5. \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

9.
$$\sum_{n=1}^{\infty} \frac{x^{n-1}}{n3^n \ln n}$$

$$2. \sum_{n=1}^{\infty} \frac{x^n}{n2^n}$$

6.
$$\sum_{n=0}^{\infty} n! x^n$$

10.
$$\sum_{n=0}^{\infty} x^{n!}$$

3.
$$\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$

7.
$$\sum_{n=1}^{\infty} \frac{x^n}{n^n}$$

11.
$$\sum_{n=1}^{\infty} \frac{(x-1)^{2n}}{n9^n}$$

4.
$$\sum_{n=1}^{\infty} \frac{2^{n-1}x^{2n-1}}{(4n-3)^2}$$

8.
$$\sum_{n=1}^{\infty} \frac{n! x^n}{n^n}$$

12.
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{(2n-1)2^n}$$

Zadanie 3 Znajdź sumy poniższych szeregów:

1.
$$\sum_{n=0}^{\infty} (n+1)x^n$$

3.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

5.
$$\sum_{n=1}^{\infty} \frac{x^{4n-3}}{4n-3}$$

$$2. \sum_{n=1}^{\infty} \frac{x^n}{n}$$

4.
$$\sum_{n=1}^{\infty} \frac{n}{x^n}$$

6.
$$\sum_{n=1}^{\infty} \frac{2n-1}{2^n}$$

Zadanie 4 Dwa pociągi znajdują się w odległości d od siebie i poruszają się z prędkością v w swoją stronę (idą na czołowe zderzenie). Pomiędzy tymi pociągami lata mucha z prędkością v_M , w taki sposób że jeśli doleci do pociągu to od razu zawraca i leci do drugiego pociągu. Jaką drogę pokona mucha do momentu zderzenia pociągów? Jak się zmieni wynik, jeśli pociągi będą poruszały się z innymi prędkościami?

Zadanie 5 Wyobraźmy sobie "pół-nieskończony" ¹ ciąg ładunków elektrycznych q ustawionych w jednej lini w odległości d od siebie. Jaka siła wypadkowa będzie działała na najbardziej lewy skrajny ładunek. Siła pomiędzy ładunkami $F = k \frac{q^2}{d^2}$, gdzie k to pewna stała.

 $^{^1\}mathrm{Taki},$ który ciągnie się w nieskończoność tylko w jedną stronę – załóżmy że w prawo

Zadanie 6^* Wyobraźmy sobie, że żyjemy w świecie dwuwymiarowym. Nagle stajemy przed "pół-nieskończonym" ciągiem latarni, które emitują światło z tą samą jasnością (mocą) I, i które są rozstawione w jednej lini w odległości d. Jaka będzie wypadkowa jasność (moc), którą będę widział? Jak się zmieni wynik jeśli przejdę do świata trójwymiarowego?