| THE REAL PROPERTY IN THE PRO

(43) International Publication Date 1 August 2002 (01.08.2002)

PCT

WO 02/059260 A2

(51)	International Patent C	'Insulfication's	CI2N
(21)	International Applicat	ties Number:	PCT/US01/42950
(22)	International Filing I		2001 (16.11.2001)

(25) Filing Longuage English

(26) Publication Languages English (30) Prierity Data: 09/714.936 17 No

(63) Related by continuation (CON) or continuation-in-part (C1P) to cartier application; 09/714,916 (CIP) 17 November 2000 (17,11,2000) Piled on

(71) Applicant (for all designated States except US): HYSEQ, INC, [US/US]: 670 Almanor Avenue, Sonnyvale, CA

A2

059260

Internation and Conference and Confe

Ranwich Court, San Jose, CA 95118 (US). WEHRMAN, Tom (USAIS); CYSR Mol Phurn 3310, 269 W. Campus, Driva, Stanford, CA 94305 (US). DRMANAC, Radoja, T. (USAIS); 830 East Greenwich Phace, Pulo Aho, CA

(74) Agent: ELRIFI, tver, R.; Minta, Lavin, Cohn, Fortis, Glovsky and Popes PC, One Financial Center, Boston, MA 02111 (US).

Designation States (auctionoff): Alt, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BY, ZCA, CH, CN, CO, CR, CU, CZ, DE, DC, BM, DZ, EC, BE, SE, G, BG, BG, GG, GM, CM, HR, HH, ID, HL, NH, SP, KY, KY, RY, RY, KY, KY, RY, BC, KY, ER, LE, LE, LE, LE, LU, LY, MA, MD, MG, MK, MN, MM, MX, MCA, NC, NC, PH, PH, PT, BC, RU, SD, SE, SC, SL, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

al search report and to be republished

(54) Title: NOVEL NUCLEIC ACIDS AND POLYPEPTIDES (57) Abstract: The pre

one or more epitopes present on such polypeptides, as well as hybridomas producing such entibodies

The compositions of the present invention additionally include vectors, including expression vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polymicleotides and cells genetically engineered to express such polynucleotides.

The present invention relates to a collection or library of at least one povel nucleic acid equence assembled from expressed sequence tags (ESTs) isolated mainly by sequencing by hybridization (SBH), and in some cases, sequences obtained from one or more public database The invention relates also to the proteins encoded by such polynucleotides, along with

therapeutic, diagnostic and research utilities for these polynucleotides and proteins. These nucleic acid sequences are designated as SEQ ID NO: 1-341. The polypeptides sequences are designated SEQ ID NO: 342-682. The nucleic acids and polypeptides are provided in the Sequence Listing. In the nucleic acids provided in the Sequence Listing, A is adenosine; C is cytosine; G is guanine; T is thymine; and N is unknown or any of the four bases.

The nucleic soid sequences of the present invention also include, nucleic soid sequences that hybridize to the complement of SEQ ID NO: 1-341 under stringent hybridization conditions; nucleic acid sequences which are allelic variants or species homologues of any of the nucleic acid sequences recited above, or nucleic acid sequences that encode a pentide comprising a specific domain or truncation of the peptides encoded by SEQ ID NO: 1-341. A polymicleotide comprising a nucleotide sequence having at least 90% identity to an identifying sequence of SEQ ID NO: 1-341 or a degenerate varient or fragment thereof. The identifying sequence can be 100 base pairs in length.

The nucleic acid sequences of the present invention also include the sequence 25 information from the nucleic acid sequences of SEQ ID NO: 1-341. The sequence information can be a segment of any one of SEO ID NO: 1-341 that uniquely identifies or represents the securing information of SEO ID NO: 1-341.

A collection as used in this application can be a collection of only one polynucleotide. The collection of sequence information or identifying information of each sequence can be provided on a nucleic acid array. In one embodiment, segments of sequence information are provided on a nucleic acid array to detect the polynucleotide that contains the segment. The array can be designed to detect full-match or mismatch to the polynucleotide that contains the segment. The collection can also be provided in a computer-readable format.

WO 02/059266

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

1. TECHNICAL FIELD

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with uses for these polynucleotides and proteins, for example in therapeutic, diagnostic and research methods,

2. BACKGROUND 1

Technology aimed at the discovery of protein factors (including e.g., cytokines, such 10 as lymphokines, interferons, circulating soluble factors, chemokines, and interfeukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of 15 expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization-based cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have 20 biological activity, for example, by virtue of their secreted nature in the case of leader sequence cloning, by virtue of their cell or tissue source in the case of PCR-based techniques, or by virtue of structural similarity to other genes of known biological activity.

Identified polynucleotide and polypeptide sequences have numerous applications in, for example, diagnostics, forensics, gene mapping; identification of mutations responsible for 25 genetic disorders or other traits, to assess biodiversity, and to produce many other types of data and products dependent on DNA and amino acid sequences.

3. SUMMARY OF THE INVENTION

The compositions of the present invention include novel isolated polypeptides, novel isolated polynucleotides encoding such polypeptides, including recombinant DNA molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, antisense polynucleotide molecules, and antibodies that specifically recognize

This invention also includes the reverse or direct complement of any of the nucleic acid nces recited above; cloning or expression vectors containing the nucleic acid sequences; and host cells or organisms transformed with these expression vectors. Nucleic acid seque (or their reverse or direct complements) according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology, such as use as hybridization probes, use as primers for PCR, use in an array, use in computer-readable media. use in sequencing full-length genes, use for chromosome and gene mapping, use in the recombinant production of protein, and use in the generation of anti-sense DNA or RNA, their chemical analogs and the like.

In a preferred embodiment, the nucleic acid sequences of SEQ ID NO: 1-341 or novel segments or parts of the nucleic acids of the invention are used as primers in expression assays that are well known in the art. In a particularly preferred embodiment, the nucleic acid sequences of SEQ ID NO: 1-341 or novel segments or parts of the nucleic acids provided herein are used in diagnostics for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide comprising any one of the nucleotide sequences set forth in SEQ ID NO: 1-341; a polynucleotide comprising any of the full length protein coding sequences of SEQ ID NO: 1-20 341; and a polynucleotide comprising any of the nucleotide sequences of the mature protein coding sequences of SEO ID NO: 1-341. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent hybridization conditions to (a) the complement of any one of the nucleotide sequences set forth in SEQ ID NO: 1-341; (b) a nucleotide sequence encoding any one of the amino acid sequences set forth in the Sequence Listing; (c) a polymocleotide which is an allelic variant of any polymocleotides recited above; (d) a polymucleotide which encodes a species homolog. (e.g. orthologs) of any of the proteins recited above; or (e) a polynucleotide that encodes a polyneptide comprising a specific domain or truncation of any of the polypeptides comprising an amino acid sequence set forth in the Sequence Listing.

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising any of the amino acid sequences set forth in SEQ ID NO: 342-682; or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides with biological activity that are encoded by (a) any of the polymacleotides having a

nucleotide sequence set forth in SEQ ID NO: 1-341; or (b) polymucleotides that hybridize to the complement of the polymucleotides of (a) under stringent hybridization conditions. Biologically or humunologically active variants of any of the polypeptide sequences in the Sequence Listing, and "hubstantial equivalents" thereof (e.g., with at least about 65%, 70%, 75%, 80%, 85%, 85%, 90%, 95% or 99% amino acid sequence identity) that preferably retain biological activity are also contemplated. The polypeptides of the Invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g., host cells) of the invention.

The invention also provides compositions comprising a polypeptide of the invention.

10 Polypeptide compositions of the invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The invention also provides host cells transformed or transfected with a polynucleotide of the invention.

The invention also relates to methods for producing a polypeptide of the invention comprising growing a culture of the host cells of the invention in a suitable culture medium under conditions permitting expression of the desired polypeptide, and purifying the polypeptide from the culture or from the host cells. Preferred embodiments include those in which the protein produced by such process is a mature form of the protein.

Polynucleotides according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology. These techniques include use as hybridization probes, use as oligomers, or primers, for PCR, use for chromosome and gene mapping, use in the recombinant production of protein, and use in generation of anti-sense DNA or RNA, their chemical analogs and the like. For example, when the expression of an mRNA is largely restricted to a particular cell or tissue type, polynucleotides of the invention can be used as hybridization probes to detect the presence of the particular cell or tissue mRNA in a sample using, a.g., to stru hybridization.

In other exemplary embodiments, the polynucleotides are used in diagnostics as expressed sequence tags for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins. For example, a polypeptide of the invention can be used to generate an antibody that specifically binds the

WO 02/059260 PCT/US01/42950

substances that interact with (e.g., bind to) the polypeptides of the invention. The invention provides a method for identifying a compound that binds to the polypeptides of the invention comprising contacting the compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and detecting the complex by detecting the reporter gene sequence expression such that if expression of the reporter gene is detected the compound the binds to a polypeptide of the invention is identified.

The methods of the invention also provide methods for treatment which involve the administration of the polymocleotides or polypeptides of the invention to individuals exhibiting symptoms or tendencies. In addition, the invention encompasses methods for treating diseases or disorders as recited herein comprising administering compounds and other substances that modulate the overall activity of the target gene products. Compounds and other substances can effect such modulation either on the level of target gene/protein expression or target protein activity.

The polypeptides of the present invention and the polypucleotides encoding them are also useful for the same functions known to one of skill in the art as the polypeptides and polynucleotides to which they have homology (set forth in Table 2); for which they have a signature region (as set forth in Table 3); or for which they have homology to a gene family (as set forth in Table 4). If on bomology is set forth for a sequence, then the polypeptides and polynucleotides of the present invention are useful for a variety of applications, as described berein, including use in strays for detection.

4. DETAILED DESCRIPTION OF THE INVENTION

4.1 DEFINITIONS

It must be noted that as used herein and in the appended claims, the singular forms
"a", "an" and "the" include plural references unless the context clearly dictates otherwise.

The term "active" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. According to the invention, the terms "biologically active" or "biological activity" refer to a protein or peptide having structural, regulatory or biochemical functions of a naturally occurring molecule.

Likowise "immunologically active" or "immunological setivity" refers to the capability of the

polypeptide. Such antibodies, particularly monoclonal antibodies, are useful for detecting or quantitating the polypeptide in tissue. The polypeptides of the invention can also be used as molecular weight markers, and as a food supplement.

WO 02/059260

Methods are also provided for preventing, treating, or smellorating a medical 5 condition which comprises the step of administering to a mammalian subject a therapeutically effective amount of a composition comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier.

In particular, the polypeptides and polynucleotides of the invention can be utilized, for example, in methods for the prevention and/or treatment of disorders involving aberrant protein expression or biological activity.

The present invention further relates to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample. Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited example, be utilized as part of prognostic archibiting a predisposition to such conditions.

15 The invention provides a method for detecting the polynucleotides of the invention in a sample, comprising contacting the sample with a compound that binds to and firms a complex with the polynucleotide of interest for a period sufficient to form the complex and under conditions sufficient to form a complex and detecting the complex such that if a complex is detected, the polynucleotide of interest is detected. The invention also provides a nethod for detecting the polypeptides of the Invention in a sample comprising contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex and detecting the formation of the complex such that if a complex is formed, the polypeptide is detected.

The Invention also provides kits comprising polynucleotide probes and/or monoclonal
25 antibodies, and optionally quantitative standards, for carrying out methods of the invention.
Furthermore, the invention provides methods for evaluating the efficacy of drugs, and
monitoring the progress of patients, involved in clinical trials for the treatment of disorders as
recited above.

The invention also provides methods for the identification of compounds that modulate (i.e., increase or decrease) the expression or activity of the polynucleotides and/or polyneptides of the invention. Such methods can be utilized, for example, for the identification of compounds that can ameliorate symptoms of disorders as recited herein. Such methods can include, but are not limited to, assays for identifying compounds and other

WO 02/059260 PCT/US01/42950

natural, recombinant or synthetic polypeptide to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The term "activated cells" as used in this application are those cells which are engaged in extracellular or intracellular membrane trafficking, including the export of secretary or enzymatic molecules as part of a normal or disease process.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence 5'-AGT-3' binds to the complementary sequence 3'-TCA-5'. Complementarity between two single-stranded molecules may be "partial" such that only some of the nucleic acids bind or it may be "completer" such that total complementarity exists between the single stranded molecules. The degree of complementarity between the nucleic acid strands has significant effects on the efficiency and strength of the bybridization between the nucleic acid strands.

The term "embryonic stem cells (ES)" refers to a cell that can give rise to many differentiated cell types in an embryo or an adult, including the germ cells. The term "germ 15 line stem cells (GSCs)" refers to stem cells derived from primordial stem cells that provide a steady and continuous source of germ cells for the production of gametes. The term "primordial germ cells (PGCs)" refers to a small population of cells set aside from other cell lineages particularly from the yolk sac, mesenteries, or goosdal ridges during embryogenesis that have the potential to differentiate into germ cells and other cells. PGCs are the source from which GSCs and ES cells are derived. The PGCs, the GSCs and the ES cells are capable of self-renewal. Thus these cells not only populate the germ line and give rise to a pituality of terminally differentiated cells that comprise the adult specialized organs, but are

The term "expression modulating fragment," EMF, means a series of nucleotides 25 which modulates the expression of an operably linked ORF or another EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (includie) elements). One class of EMFs are nucleic acid fragments which induce the expression of an operably linked ORF in response to a specifio regulatory factor or physiological event.

The terms "nucleotide sequence" or "nucleic scid" or "polymeteotide" or "oligonouleotide" are used interchangeably and refer to a heteropolymer of nucleotides or the sequence of these nucleotides. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisease strand, to peptide nucleic scid (PNA) or to any DNA-like or RNA-like material. In the sequences herein A is adenine, C is cytosine, T is thymine, G is guanine and N is A, C, G or T (U). It is contemplated that where the polynucleotide is RNA, the T (thymine) in the sequences provided herein is substituted with U (tursell). Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short Oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a substytotic gene.

The terms "oligonucleotide fragment" or a "polynucleotide fragment", "portion," or "segment" or "probe" or "primer" are used interchangeably and refer to a sequence of nucleotide residues which are at least about 5 nucleotides, more preferably at least about 7 nucleotides, more preferably at least about 17 nucleotides, more preferably at least about 17 nucleotides, more preferably at least about 17 nucleotides. The fragment is preferably less than about 50 nucleotides, preferably less than about 50 nucleotides, preferably less than about 100 nucleotides, more preferably less than about 100 nucleotides, more preferably less than about 50 nucleotides and most preferably less than 30 nucleotides, preferably the probe is from about 6 nucleotides to about 200 nucleotides, preferably from about 15 to about 50 nucleotides, more preferably from about 17 to 30 nucleotides and most preferably from about 20 to 25 nucleotides. Preferably the fragments can be used in polymerase chain reaction (PCR), various hybridization procedures or microarray procedures to identify or amplify identical or related parts of mRNA or DNA molecules. A fragment or aegment may uniquely identify each polymucleotide sequence of the present invention. Preferably the fragment comprises a sequence substantially similar to any one of SEO ID NO: 1-141.

Probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal DNA as described by Walsh et al. (Walsh, P.S. et al., 1992, PCR Methods Appl 1:241-259). They may be labeled by nick translation, Klenow fill-in reaction, PCR, or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are claborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; or Ausubel, F.M. et al., 1989, Current Protocols in Molecular

WO 02/059260 PCT/US01/42950

The terms "polypeptide" or "peptide" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide or protein sequence or fragment thereof and to naturally occurring or synthetic molecules. A polypeptide "fragment," "portion," or "segment" is a stretch of amino acid residues of at least about 5 amino acids, preferably at least about 7 amino acids, preferably at least about 17 or more amino acids. The peptide preferably is not greater than about 500 amino acids, more preferably less than 200 amino acids more preferably tess than 150 amino acids and most preferably less than 100 amino acids. Preferably the peptide is from about 5 to about 200 amino acids. To be active, any polypeptide must have sufficient length to display 10 biological acid/or immunological activity.

The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetylation, curboxylation, glycoxylation, phosphorylation, limitation and acylation.

The term "translated protein coding portion" means a sequence which encodes for the full length protein which may include any leader sequence or any processing sequence.

The term "mature protein coding sequence" means a sequence which encodes a peptide or protein without a signal or leader sequence. The "mature protein portion" means that portion of the protein which does not include a signal or leader sequence. The peptide may have been produced by processing in the cell which removes any leader/signal sequence. The mature protein portion may or may not include an initial methodine residue. The methodine residue may be removed from the protein during processing in the cell. The peptide may be produced synthetically or the protein may have been produced using a polynucleotide only encoding for the mature protein coding sequence.

The term "derivative" refers to polypeptides chemically modified by such techniques as ubiquifination, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of amino acids such as ornithino, which do not normally occur in human proteins.

25

30

The term "variant" (or "analog") refers to any polypoptide differing from naturally occurring polypoptides by amino acid insertions, deletions, and substitutions, created using, g, recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, may be found by

Biology, John Wiley & Sons, New York NY, both of which are incorporated berein by reference in their entirety.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO: 1-341. The sequence 35 information can be a segment of any one of SEQ ID NO: 1-341 that uniquely identifies or represents the sequence information of that sequence of SEQ ID NO: 1-341. One such segment can be a twenty-mer nucleic acid sequence because the probability that a twenty-mer is fully matched in the human genome is 1 in 300. In the human genome, there are three billion base pairs in one set of chromosomes. Because 4²⁰ possible twenty-mers exist, there are 300 times more twenty-mers than there are base pairs in a set of human chromosomes. Using the same analysis, the probability for a seventoem-mer to be fully matched in the human genome is approximately 1 in 5. When these segments are used in arrays for expression studies, fifteen-mer segments can be used. The probability that the fifteen-mer is fully matched in the expressed sequences is also approximately one in five because expressed sequences commrise less than approximately 5% of the entire genome sequence.

Similarly, when using sequence information for detecting a single mismatch, a segment can be a twenty-five mer. The probability that the twenty-five mer would appear in a human genome with a single mismatch is calculated by multiplying the probability for a full match (1+4²³) times the increased probability for mismatch at each nucleotide position (3 x 25). The probability that an eighteen mer with a single mismatch can be detected in an army for expression studies is approximately one in five. The probability that a reventy-mer with a single mismatch can be detected in a human genome is approximately one in five.

The term "open reading frame," ORF, means a series of nucleotide triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

The terms "operably linked" or "operably associated" refer to functionally related nucleic acid sequences. For example, a premoter is operably associated or operably linked with a coding sequence if the promoter controls the transcription of the coding sequence. While operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements e.g. repressor genes are not contiguously linked to the coding sequence but still control transcription/translation of the coding sequence.

The term "pluripotent" refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism. A pluripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.

WO 02/059260 PCT/US01/42950

comparing the sequence of the particular polypeptide with that of homologous peptides and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.

Alternatively, recombinant variants encoding these same or similar polypeptides may

5 be synthesized or selected by making use of the "redundancy" in the genetic code. Various
codon substitutions, such as the silent changes which produce various restriction sites, may
be introduced to optimize cloning into a plasmid or viral vector or expression in a particular
prokaryotic or eukaryotic system. Mutations in the polymeteotide sequence may be reflected
in the polypeptide or domains of other peptides added to the polypeptide to modify the

10 properties of any part of the polypeptide, to change characteristics such as ligand-binding
affinities, interchain affinities, or degradation/humover rate.

Preferably, amino acid "aubstitutions" are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, i.e., conservative amino acid replacements, "Conservative" amino acid replacements, "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, teucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asperagine, and glutamine; positively charged (basic) amino acids include arginine, lyrine, asperagine, and glutamine positively charged (acidic) amino acids include aspartic acid and glutamic acid. "Insertions" or "deletions" are preferably in the range of about 1 to 20 amino acids, more preferably 1 to 10 amino acids. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting

Alternatively, where alteration of function is desired, insertions, deletions or non-conservative alterations can be engineered to produce altered polypeptides. Such alterations can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention. For example, such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate. Further, such alterations can be selected so as to generate polypeptides that are better suited for expression, scale up and the like in the host cells

25

en for expression. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

The terms "purified" or "substantially purified" as used herein denotes that the indicated nucleic acid or polypeptide is present in the substantial absence of other biological macromolecules, e.g., polynucleotides, proteins, and the like. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other component normally present in a solution of the same. The terms "isolated" and "purified" do not 15 encompass nucleic acids or polypeptides present in their natural source

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a polymentide or protein is derived from recombinant (e.g., microbial, insect, or mammalian) expression systems, "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.

The term "recombinant expression vehicle or vector" refers to a plasmid or phase or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include

WO 02/059260 PCT/US01/42950

in instances of hybridization of deoxyoligonucleotides, additional exemplary stringent hybridization conditions include washing in 6X SSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligonucleotides), 48°C (for 17-base oligos), 55°C (for 20-base oligonucleotides), and 60°C (for 23-base oligonucleotides).

As used herein, "substantially equivalent" can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences. Typically, such a substantially equivalent sequence varies from one of those listed herein by no more than about 35% (i.e., the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is about 0.35 or less). Such a sequence is said to have 65% sequence identity to the listed sequence. In one embodiment, a substantially equivalent, e.g., mutant, sequence of the 15 invention varies from a listed sequence by no more than 30% (70% sequence identity); in a variation of this embodiment, by no more than 25% (75% sequence identity); and in a further variation of this embodiment, by no more than 20% (80% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by no more that 5% (95% sequence identity). Substantially equivalent, e.g., mutant, amino acid sequences according to the invention preferably have at least 80% sequence identity with a listed amino acid sequence, more preferably at least 85% sequence identity, more preferably at least 90% sequence identity, more preferably at least 95% identity, more preferably at least 98% identity, and most preferably at least 99% identity. Substantially equivalent nucleotide sequences of the invention can have lower 25 percent sequence identities, taking into account, for example, the redundancy or degeneracy of the genetic code. Preferably, nucleotide sequence has at least about 65% identity, more preferably at least about 75% identity, more preferably at least about 80% sequence identity, more preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% identity, more preferably at least 30 about 98% sequence identity, and most preferably at least about 99% sequence identity. For the purposes of the present invention, sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent. For the purposes of determining equivalence, truncation of the mature sequence

so terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

The term "recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the mbinant transcriptional unit extrachromosomally. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers. 10 Recombinant expression systems as defined herein will express polypeptides or proteins ndogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed. The cells can be prokaryotic or sukaryotic.

The term "secreted" includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins that are transported across the membrane of the endoplasmic reticulum. "Secreted" proteins are also intended to include proteins containing non-typical signal sequences (e.g. interleukin-1 Beta, see Krasney, P.A. and Young, P.R. (1992) Cytokine 4(2): 134-143) and factors released from damaged cells (e.g. Interleukin-1 Receptor Antagonist, see Arend, W.P. et. al (1998) Annu, Rev. Immunol, 16:27-55)

Where desired, an expression vector may be designed to contain a "signal or leader sequence" which will direct the polypeptide through the membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous protein sources by recombinant DNA techniques.

The term "stringent" is used to refer to conditions that are commonly understood in the art as stringent. Stringent conditions can include highly stringent conditions (i.e., hybridization to filter-bound DNA in 0.5 M NaHPOs. 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1X SSC/0.1% SDS at 68°C), and moderately stringent conditions (i.e., washing in 0.2X SSC/0.1% SDS at 42°C). Other exemplary hybridization conditions are described herein in the examples.

PCT/US#1/42950 WO 02/059260

(e.g., via a mutation which creates a spurious stop codon) should be disregarded. Sequence identity may be determined, e.g., using the Jotun Hein method (Hein, J. (1990) Methods Enzymol. 183:626-645). Identity between sequences can also be determined by other methods known in the art, e.g. by varying hybridization conditions.

The term "totipotent" refers to the capability of a cell to differentiate into all of the cell types of an adult organism.

The term "transformation" means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration. The term "transfection" refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed. The term "infection" refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector

As used herein, an "uptake modulating fragment," UMF, means a series of nucleotides which mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

Each of the above terms is meant to encompass all that is described for each, unless the context dictates otherwise.

4.2 NUCLEIC ACIDS OF THE INVENTION

Nucleotide sequences of the invention are set forth in the Sequence Listing

The isolated polynucleotides of the invention include a polynucleotide comprising the tide sequences of SEQ ID NO: 1-341; a polynucleotide encoding any one of the peptide sequences of SEQ ID NO: 342-682; and a polymucleotide comprising the nucleotide sequence encoding the mature protein coding sequence of the polypeptides of any one of SEO ID NO: 342-682. The polynucleoxides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent conditions to (a) the complement of any of the nucleotides sequences of SEQ ID NO: 1-341; (b) nucleotide sequences encoding any one of the amino acid sequences set forth in the Sequence Listing as SEQ ID NO: 342-682; (c) a polynucleotide which is an allelic variant of any polynucleotide recited above; (d)

a polynucleotide which encodes a species homolog of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptides of SEQ ID NO: 342-682. Domains of interest may depend on the nature of the encoded polypeptide; e.g., domains in receptor-like polypeptides include ligand-binding, extracellular, transmembrane, or cytoplasmic domains, or combinations thereof; domains in immunoglobulin-like proteins include the variable immunoglobulin-like domains; domains in enzyme-like polypeptides include catalytic and substrate binding domains; and domains in ligand polypeptides include receptor-binding domains.

The polynucleotides of the invention include naturally occurring or wholly or partially 10 synthetic DNA, e.g., cDNA and genomic DNA, and RNA, e.g., mRNA. The polynucleotides may include all of the coding region of the cDNA or may represent a portion of the coding region of the cDNA.

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed berein. Such methods hethods the preparation of probes or primers from the disclosed sequence information for identification and/or probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. Purther 5' and 3' sequence can be obtained using methods known in the art. For example, full length cDNA or genomic DNA that corresponds to any of the polymacleotides of SEQ ID NO: 1-341 can be obtained by screening appropriate cDNA or genomic DNA Ehraries under suitable hybridization conditions using any of the polymacleotides of SEQ ID NO: 1-341 or a portion thereof as a probe. Alternatively, the polymacleotides of SEQ ID NO: 1-341 may be used as the basis for suitable primer(s) that allow identification and/or amplification of genes in appropriate genomic DNA or cDNA libraries.

The nucleic acid sequences of the invention can be assembled from ESTs and sequences (including cDNA and genomic sequences) obtained from one or more public databases, such as dbEST, gbpri, and UniGene. The EST sequences can provide identifying sequence information, representative fragment or segment information, or novel segment information for the fulllength gene.

The polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above. Polynucleotides according to the invention can have, e.g., at least about 65%, at least about 70%, at least about 80%, 81%, 82%, 83%, 84%, more typically at least

16

WO 02/059260 PCT/US01/42950

. The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

The nucleic soid sequences of the invention are further directed to sequences which encode variants of the described nucleic acids. These amino acid sequence variants may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid equence variants: the location of the mutation and the nature of the mutation. Nucleic acids encoding the amino acid sequence variants are preferably constructed by mutating the polynucleotide to encode an amino acid sequence that does not occur in nature. These nucleic acid alterations can be made at sites that differ in the nucleic acids from different species (variable positions) or in highly conserved regions (constant regions). Sites at such locations will typically be modified in series, e.g., by substituting first with conservative 15 choices (e.g., hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (e.g., hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site. Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous. Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues. Examples of terminal insertions include the beterologous signal sequences necessary for secretion or for intracellular targeting in different host cells and sequences such as FLAG or poly-histidine 25 sequences useful for purifying the expressed protein.

In a preferred method, polynucleotides encoding the novel amino acid sequences are changed via site-directed muzagenesis. This method uses oligonucleotide sequences to aher a polynucleotide to encode the destired amino acid variant, as well as sufficient adjacent nucleotides on both sides of the changed amino acid to form a stable duplex on either side of the site of being changed. In general, the techniques of site-directed mutagenesis are well known to those of still in the art and this technique is exemplified by publications such as, Edelman et al., DNA 2:183 (1983). A versatile and efficient method for producing site-specific changes in a polynucleotide sequence was published by Zoller and Smith,

about 85%, 86%, 87%, 88%, 89%, more typically at least about 90%, 91%, 92%, 93%, 94%, and even more typically at least about 95%, 96%, 97%, 98%, 99%, sequence identity to a polynucleotide recited above.

Included within the scope of the nucleic acid sequences of the invention are nucleic

5 acid sequence fragments that hybridize under stringent conditions to any of the nucleotide
sequences of SEQ ID NO: 1-341, or complements thereof, which fragment is greater than
about 5 nucleotides, preferably 7 nucleotides, more preferably greater than 9 nucleotides and
most preferably greater than 17 nucleotides. Fragments of, e.g., 15, 17, or 20 nucleotides or
more that are selective for (i.e. specifically hybridize to) any one of the polynucleotides of the
10 invention are contempland. Probes capable of specifically hybridizing to a polynucleotide
can differentiate polynucleotide sequences of the invention from other polynucleotide
sequences in the same family of genes or can differentiate human genes from genes of other
species, and are preferably based on unique nucleotide sequences.

The sequences falling within the scope of the present invention are not limited to these specific sequences, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequence provided in SEQ ID NO: 1-341, a representative fragment thereof, or a nucleotide sequence at least 90% identical, preferably 95% identical, to SEQ ID NO: 1-341 with a sequence from another isolate of the same species. Purthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same smino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another codon that encodes the same amino acid is expressly contemplated.

The nearest neighbor or homology result for the nucleic acids of the present invention, including SEQ ID NO: 1-341, can be obtained by searching a database using an algorithm or a program. Preferably, a BLAST which stands for Basic Local Alignment Search Tool is used to search for local sequence alignments (Altshul, S.P. J Mol. Evol. 36 290-300 (1993) and Altschul S.P., et al. J. Mol. Biol. 21.403-410 (1990)). Alternatively a FASTA version 3 search against Genpept, untin Fastsy algorithm.

Species homologs (or orthologs) of the disclosed polynucleotides and proteins are

30 also provided by the present invention. Species homologs may be isolated and identified by
making suitable probes or primers from the sequences provided herein and screening a
suitable nucleic acid source from the desired species.

17

WO 02/059260 PCT/US01/425

Nucleic Acids Res. 10:6487-6500 (1982). PCR may also be used to create amino acid sequence variants of the novel nucleic acids. When small amounts of template DNA are used as starting material, primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant. PCR emplification results in a population of product DNA fragments that differ from the polynucleotide template encoding the polypeptide at the position specified by the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives a polynucleotide encoding the desired amino acid variant.

A further technique for generating amino acid variants is the cassette mutagenesis
technique described in Wells et al., Gene 34:315 (1985); and other mutagenesis techniques
well known in the art, such as, for example, the techniques in Sambrook et al., supra, and
Current Protocols in Molecular Biology, Ausubel et al. Due to the inherent degeneracy of
the genetic code, other DNA sequences which encode substantially the same or a functionally
equivalent amino acid sequence may be used in the practice of the invention for the cloning
and expression of these novel nucleic acids. Such DNA sequences include those which are
capable of hybridizing to the appropriate novel nucleic acid sequence under stringent

Polynucleotides encoding preferred polypeptide truncations of the invention can be used to generate polynucleotides encoding chimeric or fusion proteins comprising one or 20 more domains of the invention and beterologous protein sequences.

The polymucleotides of the invention additionally include the complement of any of the polymucleotides recited above. The polymucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such polymucleotides are well known to those of skill in the srt and can include, for example, methods for determining hybridization conditions that can routinely isolate polymucleotides of the desired semience identities.

In accordance with the invention, polynucleotide sequences comprising the mature protein coding sequences corresponding to any one of SEQ (ID NO: 1-341, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate bost cells. Also included are the cDNA inserts of any of the clones identified berein.

A polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et

WO 02/059260 PCT/US01/42950

al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY).
Useful nucleotide sequences for joining to polynucleotides include an assortment of vectors,
e.g., plasmids, cosmids, lambda phage derivatives, phagemids, and the like, that are well
known in the art. Accordingly, the invention also provides a vector including a

5 polynucleotide of the invention and a boat cell containing the polynucleotide. In general, the
vector contains an origin of replication functional in at least one organism, convenient
restriction endonuclease sites, and a selectable marker for the host cell. Vectors according to
the invention include expression vectors, replication vectors, probe generation vectors, and
sequencing vectors. A bost cell according to the invention can be a prokaryotic or eukaryotic

10 cell and can be a unicellular organism or part of a multicellular organism.

The present invention further provides recombinant constructs comprising a nucleic acid having any of the nucleotide sequences of SEQ ID NO: 1-341 or a fragment thereof or any other polynucleotides of the invention. In one embodiment, the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having any of the nucleotide sequences of SEQ ID NO: 1-341 or a fragment thereof is inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. Large numbers of suitable vectors and promoters are known to those of skill in the set and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTre99A, pKK223-3, pKK233-3, pDR340, pRT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, PXT1, pSG (Stratagene) pSVK2, pBPV, pMSO, pSVL (Pharmacia).

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleie Acids Res. 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligited polynucleotide/expression control sequence.

20

WO 02/159260 PCT/US01/42950

or derepressed by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Polymucleotides of the invention can also be used to induce immune responses. For exampla, as described in Fan et al., Nat. Biotech. 17:870-872 (1999), incorporated berein by reference, nucleic acid sequences encoding a polypeptide may be used to generate antibodies against the encoded polypeptide following topical administration of naked plasmid DNA or following injection, and preferably intranuscular injection of the DNA. The nucleic acid sequences are preferably inserted in a recombinant expression vector and may be in the form of naked DNA.

4.3 ANTISENSE NUCLEIC ACIDS

25

Another aspect of the invention pertains to isolated antisense nucleic acid molecules
that are hybridizable to or complementary to the nucleic acid molecule comprising the
muclotide sequence of SEQ ID NO: 1-341, or fragments, analogs or derivatives thereof. An
"antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense"
nucleic acid encoding a protein, e.g., complementary to the coding strand of a
double-stranded cDNA molecule or complementary to an mRNA sequence. In specific
aspects, antisense nucleic acid molecules are provided that comprise a sequence
complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire coding
strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs,
derivatives and analogs of a protein of any of SEQ ID NO: 342-682 or antisense nucleic acids
complementary to a nucleic acid sequence of SEQ ID NO: 1-341 are additionally provided.

In one embodiment, an amisense nucleix acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence of the invention. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "aonocoding region" of the coding strand of a nucleotide sequence of the invention. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

motor regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include laci, lac2, T3, T7, gpt, lambda PR, and tro. Eukaryotic promoters include CMV immediate early, HSV thymidine 5 kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S, correvision TRP1 gene, and a promoter derived from a highly-expressed gene to 10 direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK). a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated 15 protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an amino terminal identification poptido imparting desired characteristics, e.g., stabilization or simplified partification of expressed recombinant product. Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include E. coll. Bacillus subtilis. Salmonella typhimurium and various species within the genera Pseudomonas. Streptomyces, and 25 Staphylococcus, although others may also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotech, Madison, W., USA). These pBR322 'backbone' sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced

2

WO 02/059260 PCT/US01/42950

Given the coding strand sequences encoding a nucleic acid disclosed herein (e.g., SEQ ID NO: 1-341), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of an mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of a mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start size of a mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted 15 nucleotides can be used.

Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxenthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminor 2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyscetic scid (v), wybutoxosine. pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-emino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or

genomic DNA encoding a protein according to the invention to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for exampla, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major proove of the double belix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administrated systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-arranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gauhier et al. (1987) Nucleic Acids Res 15: 6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue et al. (1987) FEES Lets 215: 217-330).

4.4 RIBOZYMES AND PNA MOIETIES

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave a mRNA transcripts to thereby inhibit translation of a mRNA. A ribozyme having specificity for a nucleic acid of the invention can be designed based upon the nucleotide sequence of a DNA disclosed herein (i.e., SEQ (D NO: 1-341). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is

WO 02/059260 PCT/US01/42956

combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affilinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn et al. (1996) Nucl Acids Res 24: 3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analoga, e.g., 5'-(4-methoxytrity)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al. (1989) Nucl Acid Res 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) above). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, Petersen et al. (1975) Bioorg Med Chem Leu 5: 1119-11124.

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-65555.

Emaitre et al., 1987, Proc. Natl. Acad. Sci. 48:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W088/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or internalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a bybridization-triggreed cleavage agent, etc.

4.5 HOSTS

25

The present lovention further provides host cells genetically engineered to contain the polynucleotides of the invention. For example, such host cells may contain nucleic acids of the invention introduced into the bost cell using known transformation, transfection or infection methods. The present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.

complementary to the nucleotide sequence to be cleaved in an mRNA of SEQ ID NO: 1-341 (see, a.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742).

Alternatively, polymacleotides of the invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA motocules. See, a.g., Bartel et al., (1993)

Setence 26:1:411-1418.

Alternatively, gene expression can be Inhibited by targeting nucleotide sequences complementary to the regulatory region (e.g., promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells. See generally, Helene. (1991) Anticancer Drug Des. 6: 569-84; Helene. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher (1992) Blossmys 14: 807-15.

In various embodiments, the nucleic acids of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the decayribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorg Mad 15 Chem 4: 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the decayribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low loude strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996) above, Perry-O'Keefe et al. (1996) PMAS 93: 14670-675.

PNAs of the invention can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of the invention can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup B. (1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup et al. (1996), above; Perry-O'Keefe (1996), above).

In another embodiment, PNAs of the invention can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper group to PNA, by the formation of PNA-DNA chimerus, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimerus can be generated that may

25

WO 02/059260 PCT/US01/42950

Knowledge of nucleic acid sequences allows for modification of cells to permit, or increase, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a beterologous promoter so that the cells express the polypeptide at higher levels. The beterologous promoter is inserted in such a manner that it is operatively linked to the encoding sequences. See, for example, PCT International Publication No. WO94/12650, PCT International Publication No. WO92/20808, and PCT International Publication No. WO91/09955. It is also contemplated that, in addition to beterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding

The bost cell can be a higher eukaryotic bost cell, such as a mammalian cell, a lower eukaryotic bost cell, such as a yeast cell, or the host cell can be a prokuryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextrain mediated transfection, or electroporation (Davis, L. et al., Basic Methods in Molecular Biology (1986)). The host cells containing one of the polynucleotides of the invention, can be used in conventional mamners to produce the gene product encoded by the isolated fingment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, 293 cells, and Sf9 cells, as well as prokuryotic hosts such as £ coll and B. subtiltu. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level. Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to 30 produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in Molecular Cloning: A Laboratory Manual, Second Edition,

Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines 5 of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981). Other cell lines capable of expressing a compatible vector are, for example, the C127, monkey COS cells. Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cella, mouse L cella, BHK, HL-60, U937, HaK or Jurkat cells. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and 15 polyadenylation sites may be used to provide the required nontranscribed genetic elemen Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid 20 chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lyzing agents.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or insects or in prokaryotes such as bacteria. Potentially suitable yeast strains include
25 Saccharomyces cerevisiae, Schinsaccharomyces pombe, Kluyweromyces strains, Candida, or
any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial
strains include Ercherichia call, Bacillus subtilis, Salmonella typhimarium, or any bacterial
strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria,
it may be necessary to modify the protein produced therein, for example by phosphorylation
or glycosylation of the appropriate sites, in order to obtain the functional protein. Such
covalent strachments may be accomplished using known chemical or enzymatic methods.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polyaucleotides of the invention under the

2

WO 02/05/9260 PCT/US01/42950

PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

5 4.6 POLYPEPTIDES OF THE INVENTION

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising: the amino acid sequences set forth as any one of SEQ ID NO: 342-682 or an amino acid sequence encoded by any one of the nucleotide sequences SEO ID NO: 1-341 or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides preferably with biological or immunological activity that are encoded by: (a) a polynucleotide having any one of the nucleotide sequences set forth in SEQ ID NO: 1-341 or (b) polynucleotides encoding any one of the amino acid sequences set forth as SEQ ID NO: 342-682 or (c) polynucleotides that hybridize to the complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions. The invention 15 also provides biologically active or immunologically active variants of any of the amino acid sequences set forth as SEO ID NO: 342-682 or the corresponding full length or mature protein; and "substantial equivalents" thereof (e.g., with at least about 65%, at least about 70% at least about 75% at least about 80% at least about 85% 86% 87% 88% 89% at least about 90%, 91%, 92%, 93%, 94%, typically at least about 95%, 96%, 97%, more typically at least about 98%, or most typically at least about 99% amino acid identity) that retain biological activity. Polypeptides encoded by allelic variants may have a similar increased, or decreased activity compared to polypeptides comprising SEQ ID NO: 342-682.

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., BioTechnology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated berein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding 30 sites.

The present invention also provides both full-length and mature forms (for example, without a signal sequence or precursor sequence) of the disclosed proteins. The protein coding sequence is identified in the sequence listing by translation of the disclosed nucleotide

control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by bomologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation tites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequence include 10 polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or socretion properties of the protein, or other sequences which after or improve the function or stability of protein or RNA molecules.

· The targeting event may be a simple insertion of the regulatory sequence, placing the one under the control of the new regulatory sequence, e.g., inserting a new promoter enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory nent. Alternatively, the targeting event may replace an existing element: for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has rated into the host cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this espect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No.

29

WO 02/059260 PCT/US01/4295

sequences. The mature form of such protein may be obtained by expression of a full-length polynucleotide in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form. Where proteins of the present invention are membrane bound, soluble forms of the proteins are also provided. In such forms, part or all of the regions causing the proteins to be membrane bound are deleted so that the proteins are fully secreted from the cell in which they are expressed.

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragment which differ from a nucleic acid fragment of the present invention (a.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypeptide sequence. Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. This technique is particularly useful in producing small peptides and fragments of larger polypeptides. Fragments are useful, for example, in generating entilbodies against the native polypeptide. Thus, they may 25 be employed as biologically active or immunological substitutes for natural, purified proteins in acreening of therapeutic compounds and in immunological processes for the development of antibodies.

The polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. One titiled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic

sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

PCT/IISB1/47950

The invention also relates to methods for producing a polypeptide comprising growing a culture of host cells of the invention in a suitable culture medium, and purifying the protein from the cells or the culture in which the cells are grown. For example, the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polypeptide of the invention is cultured under conditions that allow expression of the encoded polypeptide. The polypeptide can be recovered from the culture, conveniently from the culture medium, or from a lysate prepared from the bost cells and further purified. Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-effinity chromatography. See, e.g., Scopes, Protein Purification: Principles and Practice, Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: A Laboratory Manual; Ausubel et al., Current Protects in Molecular Biology. Polypeptide fragments that retain biological/immunocipical ectivity include fragments comprising greater than about 100 amino acids, or greater than about 200 amino acids, and fragments that encode specific protein domains.

The purified polypeptides can be used in *in witro* binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but are not limited to, for e.g., small molecules, molecules from combinatorial libraries, antibodies or other proteins. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged curvival of the animal/cells.

In addition, the peptides of the invention or molecules capable of binding to the peptides may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for SEQ ID NO: 342-682.

32

WO 02/059260 PCT/US01/42950

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopeariTM or Cibacrom blue 3GA SepharoseTM; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathlone-S-transferase (GST) or thioredoxin (TRX), or as a His tag. Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, NJ.) and Invitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("FLAGO") is commercially available from Kodak (New Haven, Conn.).

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other sliphstic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

The polypeptides of the invention include analogs (variants). This embraces fragments, as well as peptides in which one or more annino acids has been deleted, inserted, or substituted. Also, analogs of the polypeptides of the invention embrace fusions of the polypeptides or modifications of the polypeptides of the invention, wherein the polypeptide or analog is fused to another molety or moleties, e.g., tergeting molety or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability. Examples of moleties which may be fused to the polypeptide or an analog include, for example, targeting moleties which provide for the delivery of polypeptide to pancreatic cells, e.g., amibodies to pancreatic cells, amibodies to immune cells such as T-cells, monocytes.

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the

The proteins provided herein also include proteins characterized by amino acid nces similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications, in the pentide or DNA sequence, can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement. 10 Insertion or deletion of a selected amino acid residue in the coding sequence. For example one or more of the cysteine residues may be deleted or replaced with another amino acid to after the conformation of the molecule. Techniques for such alteration, substitution replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein. Regions of the protein that are important for the protein function can be determined by various methods known in the art including the alaning-scanning method which involved systematic substitution of single or strings of amino acids with alanine, followed by testing the resulting alanine-containing variant for biological activity. This type of analysis determines the importance of the substituted amino acid(s) in biological activity. Regions of the protein that are important for protein function may be determined by the eMATRIX program.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and are useful for screening or other immunological methodologies may also be easily made by those skilled in the art given the 25 disclosures herein. Such modifications are encompassed by the present invention.

The protein may also be produced by operably linking the isolated polymucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBarTM kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated berein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

3

WO 02/059260 PCT/US01/42950

dendritic cells, granulocytes, etc., as well as receptor and ligands expressed on pancreatic or immune cells. Other moleties which may be fused to the polypeptide include therapeutic agents which are used for treatment, for example, immunosuppressive drugs such services, SK506, azathloprine, CD3 antibodies and steroids. Also, polypeptides may be fused to immune modulators, and other cytokines such as alpha or beta interferon.

4.6.1 DETERMINING POLYPEPTIDE AND POLYNUCLEOTIDE IDENTITY AND SIMILARITY

Preferred identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in compute programs including, but are not limited to, the GCG program package, including GAP (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, BLASTX, FASTA (Altschul, S.F. et al., J. Molec, Biol. 215:403-410 (1990), PSI-BLAST (Attachul S.F. et al., Nucleic 15 Acids Res. vol. 25, pp. 3389-3402, herein incorporated by reference), eMatrix software (Wu et al., J. Comp. Biol., Vol. 6, pp. 219-235 (1999), herein incorporated by reference), eMotif software (Nevill-Manning et al, ISMB-97, Vol. 4, pp. 202-209, herein incorporated by reference), pFam software (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1), pp. 320-322 (1998), herein incorporated by reference), the GeneAtlas software (Molecular Simulations Inc. (MSI), San Diego, CA) (Sanchez and Sali (1998) Proc. Natl. Acad. Sci., 95, 13597-13602; Kitson DH et al. (2000) "Remote homology detection using structural modeling - an evaluation" Submitted: Fischer and Eisenberg (1996) Protein Sci. 5, 947-955), Neural Network SignalP V1.1 program (from Center for Biological Sequence Analysis, The Technical University of Denmark), and the Kyte-Doolittle hydrophobocity prediction 25 algorithm (J. Mol Biol, 157, pp. 105-31 (1982), incorporated herein by reference). The BLAST programs are publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul, S., et al. NCB NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990).

4.7 CHIMERIC AND FUSION PROTEINS

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises a polypeptide of the invention operatively linked to another polypeptide. Within a fusion protein the polypeptide according to the invention can correspond to all or a portion of a protein according to the invention. In one embodiment, a

fusion protein comprises at least one biologically active portion of a protein according to the invention. In another embodiment, a fusion protein comprises at least two biologically active portions of a protein according to the invention. Within the fusion protein, the term "operatively linked" is Intended to indicate that the polypeptide according to the Invention and the other polypeptide are fused in-frame to each other. The polypeptide can be fused to the N-terminus or C-terminus.

For example, in one embodiment a fusion protein comprises a polypeptide according to the invention operably linked to the extracellular domain of a second protein. In another embodiment, the fusion protein is a GST-fusion protein in which the polypeptide sequences of the invention are fused to the C-terminus of the GST (i.e., ghrathione S-transferase) sequences.

In another embodiment, the fusion protein is an immunoglobulin fusion protein in which the polypeptide sequences according to the invention comprise one or more domains fused to sequences derived from a member of the immunoglobulin protein family. The
15 immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand and a protein of the invention on the surface of a cell, to thereby suppress signal transduction in who. The immunoglobulin fusion proteins can be used to affect the bloavailability of a cognate ligand. Inhibition of the ligand/protein interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, e.g., cancer as well as modulating (e.g., promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies in a subject, to purify ligands, and in screening assays to identify molecules that inhibit the interaction of a polypeptide of the invention with a ligand.

A chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using another primers that give rise to complementary overhangs

36

WO 02/059260 PCT/US01/42950

The present invention still further provides cells genetically engineered by vivo to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell. These methods can be used to increase or decrease the expression of the polynucleotides of the present invention.

Knowledge of DNA sequences provided by the invention allows for modification of cells to permit, increase, or decrease, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter is inserted in such a manner that it is operatively linked to the desired protein encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, emplifiable marker DNA (e.g., ada, dnfr, and the multifunctional CAD gene which encodes certearryl phosphate synthase, aspartate transcarbumylase, and dihydrocrotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. It linked to the desired protein coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polymoleotides of the invention under the control of Inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence lostated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequences include polyadenyfation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Ausubel et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the protein of

4.8 GENE THERAPY

Mutations in the polynucleotides of the invention may result in loss of normal function of the encoded protein. The invention thus provides gene therapy to restore normal activity of the polypeptides of the invention; or to treat disease states involving polypeptides of the invention. Delivery of a functional gene encoding polypeptides of the invention to appropriate cells is effected ax who, in situ, or in who by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Priedmann, Science, 244: 1275-1281 (1989); Verma. Scientific American: 68-84 (1990); and Miller, Nature, 357; 455-460 (1992). Introduction of any one of the nucleotides of the present invention or a gene encoding the polypeptides of the present invention can also be accomplished with extrachromosomal substrates (transient expression) or artificial chromosomes (stable expression). Cells may also be cultured ex who in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in who for 25 therapeutic purposes. Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of polypeptides of the invention will be useful in treating the disease states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of polypeptides of the invention.

Other methods inhibiting expression of a protein include the introduction of antisense molecules to the nucleic acids of the present invention, their complements, or their translated RNA sequences, by methods known in the art. Further, the polypeptides of the present invention can be inhibited by using targeted deletion methods, or the insertion of a negative regulatory element such as a silencer, which is tissue specific.

37

WO 02/059260 PCT/US01/42950

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, 10 allowing for the selection of cells in which the exogenous DNA has integrated into the cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the bost cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; international Application No. PCT/US9209627 (WO93/09222) by Selden et al.; and International Application No. PCT/US9006416 (WO91/06667) by Shoultchi et al., each of which is incorporated by reference herein in its entirety.

4.9 TRANSGENIC ANIMALS

25

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination (Capechi, Science 30 244:1288-1292 (1989)). Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout against, preferably non-human mammals.

WO 02/059260

can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference.

Transgenic animals are useful to determine the roles polypeptides of the invention play in
biological processes, and preferably in disease states. Transgenic animals are useful as model
systems to identify compounds that modulate lipid metabolism. Transgenic animals,
preferably non-human mammals, are produced using methods as described in U.S. Patent No
5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of a promoter of the polynucleotides of the invention is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using 10 homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

The polynucleotides of the present invention also make possible the development,

15 through, e.g., homologous recombination or knock out strategies, of animals that full to

express polypeptides of the invention or that express a variant polypeptide, Such animals are

useful as models for studying the in-vivo activities of polypeptide as well as for studying

modulators of the polypeptides of the invention.

In preferred methods to determine biological functions of the polypeptides of the
invention In who, one or more genes provided by the invention are either over expressed or
inactivated in the germ line of enimals using homologous recombination [Capecchi, Science
244:1281-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory
control of exogenous or endogenous promoter elements, are known as transgenic animals.
Animals in which an endogenous gene has been inactivated by homologous recombination
25 are referred to as "knockout" animals. Knockout animals, preferably non-human mammals,
can be prepared as described in U.S. Patent No. 5,57,032, incorporated herein by reference.
Transgenic animals are useful to determine the roles polypeptides of the invention play in
biological processes, and preferably in disease states. Transgenic animals are useful as model
systems to identify compounds that modulate lipid metabolism. Transgenic animals,
or preferably non-human mammals, are produced using methods as described in U.S. Patent No
5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of the polynucleotides of the invention promoter is either activated or inactivated to alter the level of expression of the

40

WO 02/059260 PCT/US01/42950

protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that 15 described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a pused of multiple proteins for high-throughput acreening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding polypeptide is preferentially expressed (either constitutively or at a particular stage of tissue differentiality expressed (either constitutively or at a particular stage of tissue differentialition or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods inchude without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J. E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Braymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987. polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more beterologous 5 enhancer elements known to confer promoter scrivation in a particular tissue.

4.10 USES AND BIOLOGICAL ACTIVITY

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified herein. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA). The mechanism underlying the particular condition or pathology will dictate whether the polypeptides of the invention, the polynucleotides of the invention or modulators (activators or inhibitors) thereof would be beneficial to the subject in need of treatment Thus, "therapeutic compositions of the invention" include compositions comprising isolated polynucleotides (including recombinant DNA molecules, cloned genes and degenerate variants thereof) or polypeptides of the invention (including full length protein, mature protein and truncations or domains thereof), or compounds and other substances that modulate the overall activity of the target gene products, either at the level of target ene/protein expression or target protein activity. Such modulators include polypeptides analogs, (variants), including fragments and fusion proteins, antibodies and other binding proteins; chemical compounds that directly or indirectly activate or inhibit the polypeptides of the invention (identified, e.g., via drug screening assays as described herein); antisense polynucleotides and polynucleotides suitable for triple helix formation; and in particular antibodies or other binding partners that specifically recognize one or more epitopes of the polypeptides of the invention.

The polypeptides of the present invention may likewise be involved in cellular activation or in one of the other physiological pathways described herein.

4.10.1 RESEARCH USES AND UTILITIES

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant

4

WO 02/05/9260 PCT/US01/42950

4.10.2 NUTRITIONAL USES

Polynucleotides and polypeptides of the present invention can also be used as mutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a altrogen source and use as a source of carbohydrate, in such cases the polypeptide or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the polypeptide or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

4.10.3 CYTOKINE AND CELL PROLIFERATION DIFFERENTIATION ACTIVITY

A polypeptide of the present invention may exhibit activity relating to cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor-dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of therapeutle compositions of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, Ba73, MC9/Q, M+(preß M+), 2ER, RB3, DA1, 123, T1163, HT2, CTL1.2, TF-1, Mo7e, CMK, HUVEC, and Caco. Therapeutic compositions of the invention can be used in the following:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Punction 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. Immunol. 152:1756-1761, 1994.

WO 02/059260

Assays for cytokine production and/or proliferation of spicen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevech, E. M. in Current Protocols in Immunology, J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interteukin-y, Schreiber, R. D. in Current Protocols in Immunology, J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

PCT/US01/47950

Assaya for proliferation and differentiation of hematopoletic and lymphopoletic cells include, without limitation, those described in: Measurement of Human and Murino Interteukin 2 and Interteukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current

10 Protocols in Immunology, J. E. e.a. Colligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. in Current Protocols in Immunology, J. E. Colligan eds. Vol 1 pp. 6:6.1-6:6.5, John Wiley and Sons, Toronto. 1991;

15 Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1837-1851, 1986; Measurement of human Interleukin 11-Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology, J. E. Colligan eds. Vol 1 pp. 6:15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9-Clarietta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology, J. E. Colligan eds. Vol 1 pp. 6:13.1, John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9-Clarietta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology, J. E. Colligan eds. Vol 1 pp. 6:13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell close responses to amigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, B. M. 25 Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Punction; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

4.10.4 STEM CELL GROWTH FACTOR ACTIVITY

30

WO 02/059260

A polypeptide of the present invention may exhibit stem cell growth factor activity and be involved in the proliferation, differentiation and survival of pluripotent and totipotent

PCT/US01/42950

generation of undifferentiated totipotential/pluripotential stem cell lines that are useful as is or that can then be differentiated into the desired mature cell types. These stable cell lines can also serve as a source of undifferentiated totipotential/pluripotential mRNA to create cDNA libraries and templates for polymerase chain reaction experiments. These studies would allow for the isolation and identification of differentially expressed genes in stem cell populations that regulate stem cell proliferation and/or maintenance.

Expansion and maintenance of totipotent stem cell populations will be useful in the treatment of many pathological conditions. For example, polypeptides of the present invention may be used to manipulate stem cells in culture to give rise to neuroepithelial cells that can be used to augment or replace cells damaged by illness, autoimmune disease, accidental damage or genetic disorders. The polypeptide of the invention may be useful for inducing the proliferation of neural cells and for the regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and trummstic disorders which involve degeneration, doath or traums to neural cells or nerve tissue. In addition, the expanded stem cell populations can also be genetically altered for gene therapy purposes and to decrease host rejection of replacement tissues after grafting or implantation.

Expression of the polypeptide of the invention and its effect on stem cells can also be manipulated to achieve controlled differentiation of the stem cells into more differentiated cell types. A broadly applicable method of obtaining pure populations of a specific differentiated cell type from undifferentiated stem cell populations involves the use of a cell-type specific promoter driving a selectable marker. The selectable marker allows only cells of the desired type to survive. For example, stem cells can be induced to differentiate into cardiomyocytes (Wobus et al., Differentiation, 48: 173-182, (1991); Klug et al., J. Clin.

Invest., 98(1): 216-224, (1998)) or skeletal muscle cells (Browder, L. W. In: Principles of Tisme Engineering eds. Lanza et al., Academic Press (1997)). Alternatively, directed differentiation of stem cells can be accomplished by culturing the stem cells in the presence of a differentiation factor such as retinoic acid and an antagonist of the polypeptide of the invention which would inhibit the effects of endogenous stem cell factor activity and allow differentiation to proceed.

In vitro cultures of stem cells can be used to determine if the polypeptide of the invention exhibits stem cell growth factor activity. Stem cells are isolated from any one of various cell sources (including bematopoietic stem cells and embryonic stem cells) and

stem cells including primordial germ cells, embryonic stem cells, bematopoietic stem cells and/or germ line stem cells. Administration of the polypeptide of the invention to stem cells to when or ex who is expected to maintain and expand cell populations in a butborcential or pluripotential state which would be useful for re-engineering damaged or diseased tissues, transplantation, manufacture of bio-pharmaceuticals and the development of bio-sensors. The ability to produce large quantities of human cells has important working applications for the production of human proteins which currently must be obtained from non-human sources or donors, implantation of cells to treat diseases such as Parkinson's, Alzheimer's and other neurodegenerative diseases; tissues for grafting such as bone marrow, skin, cartilage, 10 tendons, bone, muscle (including cardiac muscle), blood vessels, cornea, neural cells, gastrointestinal cells and others; and organs for transplantation such as kidney, liver, pancrea (including islet cells), beart and hung.

It is contemplated that multiple different exogenous growth factors and/or cytokines may be administered in combination with the polypeptide of the invention to achieve the desired effect, including any of the growth factors listed herein, other stem cell maintenance factors, and specifically including stem cell factor (SCF), leukemia inhibitory factor (LIF), Fit-3 ilgand (Fit-3L), any of the interleukins, recombinant soluble IL-6 receptor fixed to IL-6, macrophage inflammatory protein 1-alpha (MIP-1-alpha), G-CSF, GM-CSF, thrombopoletin (TPO), platelet factor 4 (PP-4), platelet-derived growth factor (PDGF), neural growth factors and basic fibroblast growth factor (bFGF).

Since totipotent stem cells can give rise to virtually any mature cell type, expansion of these cells in culture will facilitate the production of large quantities of mature cells. Techniques for culturing stem cells are known in the art and administration of polypeptides of the invention, optionally with other growth factors and/or cytokines, is expected to enhance the survival and proliferation of the stem cell populations. This can be accomplished by direct administration of the polypeptide of the invention to the culture medium.

Alternatively, stroma cells transfected with a polynucleotide that encodes for the polypeptide of the invention can be used as a feeder layer for the stem cell populations in culture or in vivo. Stromal support cells for feeder layers may include embryonic bone marrow libroblasts, bone marrow stromal cells, fetal liver cells, or cultured embryonic fibroblasts (see U.S. Patent No. 5.690.726).

Stem cells themselves can be transfected with a polynucleotide of the invention to induce autocrine expression of the polypeptide of the invention. This will allow for

45

WO 02/059260 PCT/US01/4295

cultured on a feeder layer, as described by Thompson et al. Proc. Natl. Acad. Sci., U.S.A., 92:
7844-7848 (1995), in the presence of the polypeptide of the Invention alone or in
combination with other growth factors or cytokines. The ability of the polypeptide of the
invention to induce stem cells proliferation is determined by colony formation on semi-solid
support e.g. as described by Bernstein et al., Blood, 77: 2316-2321 (1991).

4.10.5 HEMATOPOIESIS REGULATING ACTIVITY

A polypeptide of the present invention may be involved in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell disorders. 10 Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopolesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or 15 erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic enemia and paraxysmal nocturnal 25 hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

Therapeutic compositions of the invention can be used in the following:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation,

those described in; Johansson et al. Cellular Biology 15;141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others,

proteins that regulate lympho-hematopoiets) include, without limitation, those described in:
Methylocellulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells.
R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; Hirayama
et al., Froc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony
forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture
of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York,
N.Y. 1994; Noben et al., Experimental Hematology 22:353-359, 1994; Cobblestome area
forming cell assay, Ploemacher, R. E. In Culture of Hematopoietic Cells. R. I. Freshney, et al.
eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, N.Y. 1994; Long term bone marrow cultures
in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of
Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York,
N.Y. 1994; Long term culture Initiating cell assay, Sutherland, H. J. In Culture of
Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York,
N.Y. 1994.

4.10.6 TISSUE GROWTH ACTIVITY

WO 92/059260

A polypeptide of the present invention also may be involved in bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as in wound healing and tissue repair and replacement, and in healing of burns, incisions and ulcers.

A polypeptide of the present invention which induces cartilage and/or bone growth in

25 circumstances where bone is not normally formed, has application in the healing of bone
fractures and cartilage damage or defects in humans and other animals. Compositions of a
polypeptide, antibody, binding partner, or other modulator of the invention may have
prophylactic use in closed as well as open fracture reduction and also in the improved
fixation of artificial joints. De novo bone formation induced by an osteogenic agent
contributes to the repair of congenital, trauma induced, or oncologic resection induced
craniofacial defects, and also is useful in cosmetic plastic surgery.

A polypeptide of this invention may also be involved in attracting bone-forming cells, stimulating growth of bone-forming cells, or inducing differentiation of progenitors of

PCT/US01/42950

stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a composition of the invention.

Compositions of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

Compositions of the present invention may also be involved in the generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, kidn, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring may allow normal tissue to regenerate. A polypeptide of the present invention may also exhibit angiogenic activity.

A composition of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and 15 conditions resulting from systemic evolutine damage.

A composition of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Therapeutic compositions of the invention can be used in the following:

Assays for tissus generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07/491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in:

5 Winter, Epidermal Wound Healing, pps. 71-112 (Malbach, H. I. and Rovee, D. T., eds.), Year

Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest.

Dermand 71-127-14 (1978).

4.10.7 IMMUNE STIMULATING OR SUPPRESSING ACTIVITY

A polypeptide of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A polypucleotide of the invention can encode a polypeptide exhibiting such activities. A protein may be useful in the treatment of various immune deficiencies and bone-forming cells. Treatment of osteoporosis, esteoarthritis, bone degenerative disorders, or periodontal disease, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenuse activity, esteoclast activity, etc.) mediated by inflammatory processes may also be possible using the composition of the invention.

Another category of tissue regeneration activity that may involve the polypeptide of the present invention is tendon/ligament formation. Induction of tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or 10 ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention 15 contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth 20 of tendon/ligament cells or progenitors ex wive for return in wive to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal turned syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The compositions of the present invention may also be useful for proliferation of
25 neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and
peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic
disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More
specifically, a composition may be used in the treatment of diseases of the peripheral nervous
system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies,
and central nervous system diseases, such as Abbeimer's, Parkinson's disease, Huntington's
disease, amyotrophic lateral selerosis, and Shy-Drager syndrome. Further conditions which
may be treated in accordance with the present invention include mechanical and traumatic
disorders, such as spinal cord disorders, head trauma and cerebrovescular diseases such as

40

WO 02/059260 PCT/US01/4295

disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpes viruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, proteins of the present invention may also be useful where a boost to the immune system generally may 10 be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, 15 graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein (or antagonists thereof, including antibodies) of the present invention may also to be useful in the treatment of allergic reactions and conditions (e.g., anaphylaxis, scrum sickness, drug reactions, food allergies, insect venom allergies, mastocytosis, allergic rhinitis, hypersensitivity pneumonitis, urticaria, angioedema, eczema, atopic dermatitis, allergic 20 contact dermatitis, crythema multiforme, Stevens-Johnson syndrome, allergic conjunctivitis, atopic keratoconjunctivitis, venereal keratoconjunctivitis, giant papillary conjunctivitis and contact allervies), such as asthma (particularly allervic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein (or antagonists thereof) of the present invention. The therapeutic effects of the polypeptides or antagonists thereof on allergic reactions can be evaluated by in vivo animals models such as the cumulative contact enhancement test (Lastborn et al., Toxicology 125: 59-66, 1998), skin prick test (Hoffmann et al., Allergy 54: 446-54, 1999), guinea pig skin sensitization test (Vohr et al., Arch. Toxocol. 73: 501-9), and murine local lymph node assay (Kimber et al., J. Toxicol. Environ. Health 30 53: 563-79).

Using the proteins of the invention it may also be possible to modulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of

WO 02/059260 PCT/US01/42950

an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without to limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-bost disease (GVFID). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by 15 T cells, followed by an immune reaction that destroys the transplant. The administration of a therapeutic composition of the invention may prevent cytokine synthesis by immune cells, such the 3 cells, and thus acts as an immunosuppressant. Moreover, a back of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular therapeutic compositions in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA41g fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., 30 Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of therapeutic compositions of the invention on the development of that disease.

57

WO 02/059260 PCT/US01/42950

addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encedding all or a portion of (e.g., a cytoplasmic-domain trucated portion) of an MHC class I alpha chain protein and β₁ microglobulin protein or an MHC class II alpha chain protein and β₂ microglobulin protein or an MHC class II alpha chain protein and an MHC class II beta chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Viros assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologie studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2483-2492, 1981; Herrmann et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 140:508-512, 1988; Bowman et al., J. Virology 61:1992-1998; Bertagnolli et al., 25 Cellular Immunol. 333:327-341, 1991; Brown et al., J. Immunol. 133:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th/Th2 profiles) include, without limitation, those described in: Maliszewaki, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J. J. and Brunswick, M. In Current Protocols in Immunology, J. E. e.a. Coligan eds. Vol 1 pp. 3.3.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation,

Blocking antigen function may also be therapentically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoantibodies involved in the pathology of the diseases. Preventing the activation of respents which block stimulation of T cells can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of 10 blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus crythmatosis in MRI/Ipr/lpr mice or NZB byteid mice, murine autoimmune collegen arthritis, diabetes mellius in NOD mice and BB rats, and murine experimental mysathenis gravis (see Paul ed., 15 Fundamental Immunology, Raves Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (e.g., a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response may be useful in cases of viral infection, including systemic viral diseases such as influenza, the common cold, and encephalitis.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described berein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

A polypeptide of the present invention may provide the necessary stimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In

5

WO 02/059260 PCT/USD1/42950

those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeck, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interacience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takal et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1007

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:336-544, 1995; Inaba et al., Journal of Experimental Medicine 173:349-559, 1991; Macatonia et al., Journal of Immunology 134:3071-3079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostatis) include, without limitation, those described in: Darzynkisewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; litch et al., Cell 66:233-243, 1991; Zackarchuk, Journal of Immunology 143:4037-4045, 1999; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., Interpational Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Amics et al., Blood \$4:111-117, 1994; Fine et 25 al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood \$5:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA \$8:7548-7551, 1991.

4.10.8 ACTIVININHIBIN ACTIVITY

A polypeptide of the present invention may also exhibit activits- or inhibin-related activities. A polymeteotide of the invention may encode a polypeptide exhibiting such characteristics. Inhibins are characterized by their ability to inhibit the release of follicle stimulating bormone (FSH), while activins and are characterized by their ability to mimulate the release of follicle stimulating bormone (FSH). Thus, a polypeptide of the present

invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the polypeptide of the 5 Invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin group, may be useful as a fertility inducing therapeutic, based upon the ability of activin cules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885. A polypeptide of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime 10 reproductive performance of domestic animals such as, but not limited to, cows, sheep and

The activity of a polypeptide of the invention may, among other means, be measured by the following methods.

Assays for activin/inhibin activity include, without limitation, those described in: Vale 15 et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

4.10.9 CHEMOTACTIC/CHEMOKINETIC ACTIVITY

A polypeptide of the present invention may be involved in chemotactic or chemokinetic activity for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. motactic and chemokinetic receptor activation can be used to mobilize or attract a desired 25 cell population to a desired site of action. Chemotratic or chemokinetic compositions (e.g. proteins, antibodies, binding partners, or modulators of the invention) provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population Preferably, the protein or peptide has the ability to directly stimulate directed movement of

PCT/US01/42950

invention may be useful for the diagnosis and/or prognosis of one or more types of cancer. For example, the presence or increased expression of a polynucleotide/polypeptide of the invention may indicate a hereditary risk of cancer, a precancerous condition, or an ongoing malignancy. Conversely, a defect in the gene or absence of the polypeptide may be 5 associated with a cancer condition. Identification of single nucleotide polymorphisms associated with cancer or a predisposition to cancer may also be useful for diagnosis or

WO 02/059260

Cancer treatments promote tumor regression by inhibiting tumor cell proliferation, inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Therapeutic compositions of the invention may be effective in adult and pediatric oncology including in solid phase tumors/malignancies, locally advanced tumors, human soft tissue sarcomas, metastatic cancer, including lymphatic metastases, blood cell malignancies including multiple myeloma, acute and chronic leukemias, and lymphomas, head and neck 15 cancers including mouth cancer, larynx cancer and thyroid cancer, hung cancers including small cell carcinoma and non-small cell cancers, breast cancers including small cell carcinoma and ductal carcinoma, gastrointestinal cancers including esophageal cancer, stomach cancer, colon cancer, colorectal cancer and polyps associated with colorectal neoplasia, pencreatic cancers, liver cancer, prologic cancers including bladder cancer and prostate cancer, malignancies of the female genital tract including ovarian carcinoma, uterine (including endometrial) cancers, and solid tumor in the ovarian follicle, kidney cancers including renal cell carcinoma, brain cancers including intrinsic brain tumora, neuroblastos astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, bone cancers including osteomas, skin cancers including malignant melanoma, tumor 25 progression of human skin keratinocytes, aquamous cell carcinoma, basal cell carcinoma. hemanajonericytoma and Karposi's sarcoma.

Polypeptides, polynucleotides, or modulators of polypeptides of the invention (including inhibitors and stimulators of the biological activity of the polypeptide of the invention) may be administered to treat cancer. Therapeutic compositions can be administered in therapeutically effective dosages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial effect, e.g. reducing tumor size, slowing rate of tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without

cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell

WO 02/059260

Therapeutic compositions of the invention can be used in the following: Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the shility of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, ithout limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, 10 A. M. Kruisbeek, D. H. Marguiles, E. M. Shovach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376. 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol, 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

HEMOSTATIC AND THROMBOLYTIC ACTIVITY

A polypeptide of the invention may also be involved in hemostasis or thrombolysis or oosls. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Compositions may be useful in treatment of various coagulation disorders 20 (including hereditary disorders, such as hemophilias) or to enhance consulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A composition of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

Therapeutic compositions of the invention can be used in the following: Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

CANCER DIAGNOSIS AND THERAPY

Polypeptides of the invention may be involved in cancer cell generation, proliferation or metastasis. Detection of the presence or amount of polynucleotides or polyneptides of the

57

PCT/US01/42950 WO 02/059260

necessarily eradicating the cancer.

30

The composition can also be administered in therapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or nodulator of the invention with one or more anti-cancer drugs in addition to a pharmaceutically acceptable carrier for delivery. The use of anti-cancer cocktails as a cancer treatment is routine. Anti-cancer drugs that are well known in the art and can be used as a treatment in combination with the polypeptide or modulator of the invention include; Actinomycin D, Aminoglutethimide, Asparaginase, Bleomycin, Busulfan, Carboplatin, Carmustine, Chlorambucil, Cisplatin (cis-DDP), Cyclophosphamide, Cytarabine HCI 10 (Cytosine arabinoside), Dacarbazine, Dactinomycin, Daunorubicin HCL Doxorubicin HCL Estramustine phosphate sodium, Etoposide (V16-213), Floxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog), Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine, Mesna, Methotrexate (MTX), 15 Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl, Streptozocin, Tamoxifen citrate. Thiogramine. Thiotepa, Vinblastine sulfate, Vincristine sulfate. Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin, Semustine, Teninoside, and Vindesine sulfate.

In addition, therapeutic compositions of the invention may be used for prophylactic 20 treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of the polypeptide of the invention to reduce the risk of developing cancers.

In vitro models can be used to determine the effective doses of the polypeotide of the invention as a potential cancer treatment. These in vitro models include proliferation assays of cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshney, (1987) Culture of Animal Cells: A Manual of Basic Technique, Wily-Liss, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovanella et al., J. Natl. Can. Inst., 30 52: 921-30 (1974), mobility and invasive potential of tumor cells in Boyden Chamber assays as described in Pilkington et al., Anticancer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction of vascularization of the chick choricalizatoic membrane or induction of vascular endothelial cell migration as described in Ribatta et al., Intl. J. Dev. Biol., 40: 118997 (1999) and Li et al., Clin. Exp. Metastasis, 17:423-9 (1999), respectively. Suitable tumor cells lines are available, e.g. from American Type Tissue Culture Collection catalogs.

RECEPTOR/LIGAND ACTIVITY

WO 02/059264

A polypeptide of the present invention may also demonstrate activity as receptor. receptor ligand or inhibitor or agonist of receptor/ligand interactions. A polynucleotide of the invention can encode a polypeptide exhibiting such characteristics. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved 10 in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses. Receptors and ligands are also useful for acreening of potential peptide or small nolecule inhibitors of the relevant receptor/ligand interaction. A protein of the present 15 invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described 20 in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et 25 al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

By way of example, the polypeptides of the invention may be used as a receptor for a ligand(s) thereby transmitting the biological activity of that ligand(s). Ligands may be identified through binding assays, affinity chromatography, dihybrid screening assays, BIAcore assays, gel overlay assays, or other methods known in the art.

Studies characterizing drugs or proteins as agonist or antagonist or partial agonists or a partial antagonist require the use of other proteins as competing ligands. The polypeptides of the present invention or ligand(s) thereof may be labeled by being coupled to radioisotopes, colorimetric molecules or a toxin molecules by conventional methods. ("Guide

PCT/US01/42950 WO 02/059260

methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleatide combinatorial libraries. Still other libraries of interest include pentide. protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, Curr. Opin. Blotechnol. 8:701-707 (1997). For reviews and examples of peptidomimetic libraries, see Al-Obeidi et al., Mol. Biotechnol, 9(3):205-23 (1998); Hruby et al., Curr Optn Chem Biol, 1(1):114-19 (1997); Dorner et al., Bloorg Med Chem, 4(5):709-15 (1996) (alkylated dipeptides).

Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to bind a polypeptide of the invention. The molecules identified in the binding assay are then tested for antagonist or agonist activity in in vivo tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells

The binding molecules thus identified may be complexed with toxins, e.g., ricin or cholers, or with other compounds that are toxic to cells such as radioisotopes. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for a polypeptide of the invention. Alternatively, the binding molecules may be complexed with imaging agents for targeting and imaging purposes

4.10.14 ASSAY FOR RECEPTOR ACTIVITY

The invention also provides methods to detect specific binding of a polypeptide e.g. a ligand or a receptor. The art provides numerous assays particularly useful for identifying previously unknown binding partners for receptor polypeptides of the invention. For example, expression cloning using mammalian or bacterial cells, or dihybrid screening assays can be used to identify polynucleotides encoding binding partners. As another example, affinity chromatography with the appropriate immobilized polypeptide of the invention can be used to isolate polypeptides that recognize and bind polypeptides of the invention. There are a number of different libraries used for the identification of compounds, and in particular small molecules, that modulate (i.e., increase or decrease) biological activity of a polypeptide of the invention. Ligands for receptor polypeptides of the invention can also be identified by adding exogenous ligands, or cocktails of ligands to two cells populations that are genetically identical except for the expression of the receptor of the invention: one call population

to Protein Purification" Murray P. Deutscher (ed) Methods in Enzymology Vol. 182 (1990) Academic Press, Inc. San Diego). Examples of radioisotopes include, but are not limited to, tritium and carbon-14. Examples of colorimetric molecules include, but are not limited to, fluorescent molecules such as fluorescamine, or rhodamine or other colorimetric molecules. 5 Examples of toxins include, but are not limited, to ricin.

4.10.13 DRUG SCREENING

This invention is particularly useful for screening chemical compounds by using the novel polypeptides or binding fragments thereof in any of a variety of drug screening 10 techniques. The polypeptides or fragments employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface or located intracellularly. One method of drug screening utilizes enkaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or a fragment thereof. Drugs are acreened against such transformed cells in competitive binding assays 15 Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between polypeptides of the invention or fragments and the agent being tested or examine the diminution in complex formation between the novel polypeptides and an appropriate cell line, which are well known in the art.

Sources for test compounds that may be screened for ability to bind to or modulate 20 (i.e., increase or decrease) the activity of polypertides of the invention include (1) increase and organic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.

Chemical libraries may be readily synthesized or purchased from a number of ercial sources, and may include structural analogs of known compounds or compounds 25 that are identified as "hits" or "leads" via natural product screening.

The sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves. Natural product 30 libraries include polyketides, non-ribosomal peptides, and (non-naturally occurring) variants thereof. For a review, see Science 282:63-68 (1998).

Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis

WO 02/059260

expresses the receptor of the invention whereas the other does not. The response of the two cell populations to the addition of ligands(s) are then compared. Alternatively, an expression library can be co-expressed with the polypertide of the invention in cells and assayed for an autocrine response to identify potential ligand(s). As still another example, BlAcore assays, gel overlay assays, or other methods known in the art can be used to identify binding partner polypeptides, including, (1) organic and inorganic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules.

The role of downstream intracellular signaling molecules in the signaling cascade of 10 the polypeptide of the invention can be determined. For example, a chimeric protein in which the cytoplasmic domain of the polypeptide of the invention is fused to the extracellular portion of a protein, whose ligand has been identified, is produced in a host cell. The cell is then incubated with the ligand specific for the extracellular portion of the chimeric protein, thereby activating the chimeric receptor. Known downstream proteins involved in 15 intracellular signaling can then be assayed for expected modifications i.e. phosphorylation. Other methods known to those in the art can also be used to identify signaling molecules involved in receptor activity.

ANTI-INFLAMMATORY ACTIVITY

Compositions of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Compositions with such activities can be used to treat inflams conditions including chronic or acute conditions), including without limitation intimation associated with infection (such as septic shock, sepsis or systemic inflammatory res syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced hung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Compositions of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material. Compositions of this Invention may be utilized to prevent or treat conditions such as, but not limited to, sepais, acute pancreatitis, endotoxin shock, cytokine induced shock, rheumatold arthritis, chronic inflammatory arthritis, pancreatic cell damage from diabetes mellitus type 1, graft versus host disease, inflammatory bowel disease, inflammation essociated with pulmonary disease, other autoimmune disease or inflammatory disease, an antiproliferative agent such as for acute or chronic mylegenous leukemia or in the prevention of premature labor secondary to intrastretion inflations.

4.10.16 LEUKEMIAS

Leukemias and related disorders may be treated or prevented by administration of a therapeutic that promotes or inhibits function of the polymucleotides and/or polypeptides of the invention. Such leukemias and related disorders include but are not limited to acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia, chronic leukemia, chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia (for a review of such disorders, see Fishman et al. 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia).

4.10.17 NERVOUS SYSTEM DISORDERS

Nervous system disorders, involving cell types which can be tested for efficacy of
intervention with compounds that modulate the activity of the polynucleotides and/or
polypeptides of the invention, and which can be treated upon thus observing an indication of
therapeutic utility, include but are not limited to nervous system injuries, and diseases or
disorders which result in either a disconnection of axons, a diminution or degeneration of
neurons, or demyelination. Nervous system lesions which may be treated in a patient
(including human and non-human marmmalian patients) according to the invention include
but are not limited to the following lesions of either the central (including spinal cord, brain)
or peripheral nervous systems:

- traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries;
 - (ii) ischemic lesions, in which a lack of oxygen in a portion of the nervous system results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia:

WO 02/059260 PCT/US01/42950

forth in Arakawa et al. (1990, J. Neurosci., 10:3507-3515); increased aprouting of neurons may be detected by methods set forth in Pestronk et al. (1980, Exp. Neurol. 70:65-82) or Brown et al. (1981, Ann. Rev. Neurosci. 4:17-42); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody binding. Northern blot 5 assay, etc., depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, e.g., weakness, motor neuron conduction velocity, or functional disability.

In specific embodiments, motor neuron disorders that may be treated according to the invention include but are not limited to disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degeocrative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including but not limited to progressive spinal muscular atrophy, progressive bulbar pairsy, primary lateral sclerosis, infamile and juvenile muscular atrophy, progressive bulbar paralysis of childhood [16]. [Fazio-Londe syndrome, poliomyclitis and the post polio syndrome, and Hereditary Motorsensory Neuronathy (Chanost-Marie-Tooth Disease).

4.10.18 OTHER ACTIVITIES

A polypeptide of the invention may also exhibit one or more of the following
additional scrivities or effects: inhibiting the growth, infection or function of, or killing,
infectious agents, including, without limitation, betteria, viruses, fingi and other parasities;
effecting (suppressing or enhancing) bodily characteristics, helvding, without limitation,
height, weight, bair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or
organ or body part size or shape (such as, for example, breast augmentation or diminution,
change in bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting
the fertility of male or fernale subjects; effecting the metabolism, estabolism, sabolism,
processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohythate,
vitamins, minerals, oc-factors or other nutritional factors or component(s); effecting
behavioral characteristics, including, without limitation, appetite, libido, stress, cognition
(including cognitive disorders), depression (including depressive disorders) and violent
behaviora; providing analgesis effects or other pain reducing effects; promoting
differentiation and growth of embryonic stem cells in lineages other than hemstopoletic
lineages; hormonal or endocrine activity, in the case of enzymes, correcting deficiencies of

(iii) infectious tesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, robbility.

- (iv) degeocrative lesions, in which a portion of the nervous system is destroyed or injured as a result of a degenerative process including but not limited to degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or anyotrophic lateral sciencist;
- (v) tesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicko disease, cobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corrus callosum), and alcoholic cerebellar degeneration:
- (vi) neurological leasons associated with systemic diseases including but not
 limited to diabetes (diabetic neuropathy, Bell's palsy), systemic hupus crythematosus, carcinoma, or garcoidosis;
 - (vii) lesions caused by toxic substances including alcohol, lead, or particular neurotoxins; and
- (viii) demyelinated lesions in which a portion of the nervous system is destroyed or 20 injured by a demyelinating disease including but not limited to multiple sciencis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central portine myelinolysis.

Therapeutics which are useful according to the invention for treatment of a nervous system disorder may be selected by testing for biological activity in promoting the survival or 25 differentiation of neurons. For example, and not by way of limitation, therapeutics which elicit any of the following effects may be useful according to the invention:

- (i) increased survival time of neurons in culture;
- (ii) increased sprouting of neurons in culture or in vivo;
- (iii) increased production of a neuron-associated molecule in culture or in vivo,
- 30 e.g., choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or
 - (iv) decreased symptoms of neuron dysfunction in vivo.
 - Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may be measured by the method set

65

WO 02/059260 PCT/US01/42950

the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

4.10.19 IDENTIFICATION OF POLYMORPHISMS

The demonstration of polymorphisms makes possible the identification of such polymorphisms in human subjects and the pharmacogenetic use of this information for 10 diagnosts and treatment. Such polymorphisms may be associated with, e.g., differential predisposition or susceptibility to various disease states (such as disorders involving inflammation or immune response) or a differential response to drug administration, and this genetic information can be used to tailor preventive or therapeutic treatment appropriately. For example, the existence of a polymorphism associated with a predisposition to inflammation or autoimmune disease makes possible the diagnosis of this condition in humans by identifying the presence of the onlymorphism.

Polymorphisms can be identified in a variety of ways known in the art which all generally involve obtaining a sample from a patient, analyzing DNA from the sample, ptionally involving isolation or amplification of the DNA, and identifying the presence of the polymorphism in the DNA. For example, PCR may be used to amplify an appropriate fragment of genomic DNA which may then be sequenced. Alternatively, the DNA may be subjected to allele-specific oligonucleotide hybridization (in which appropriate oligonucleotides are hybridized to the DNA under conditions permitting detection of a single base mismatch) or to a single nucleotide extension assay (in which an oligonucleotide that 25 hybridizes immediately adjacent to the position of the polymorphism is extended with one or more labeled nucleotides). In addition, traditional restriction fragment length polymorphism analysis (using restriction enzymes that provide differential digestion of the genomic DNA depending on the presence or absence of the polymorphism) may be performed. Arrays with nucleotide sequences of the present invention can be used to detect polymorphisms. The 30 array can comprise modified nucleotide senuences of the present invention in order to detect the nucleotide sequences of the present invention. In the alternative, any one of the nucleotide sequences of the present invention can be placed on the array to detect changes from those sequences.

Alternatively a polymorphism resulting in a change in the amino acid sequence could also be detected by detecting a corresponding change in amino acid sequence of the protein, e.g., by an amilbody specific to the variant sequence.

4.10.20 ARTHRITIS AND INFLAMMATION

The immunosuppressive effects of the compositions of the invention against theumatoid arthritis is determined in an experimental animal model system. The experimental model system is adjuvant induced arthritis in rats, and the protocol is described by J. Holoshitz, et at., 1933, Science, 219:56, or by B. Waksman et al., 1963, Int. Arch. Allergy Appl. Immunol., 23:129. Induction of the disease can be caused by a single injection, generally intradermally, of a supension of killed Mycobacterium tuberculosis in complete Freund's adjuvant (CFA). The route of injection can vary, but rats may be injected at the base of the tail with an adjuvant mixture. The polypeptide is administered in phosphate buffered solution (PBS) at a dose of about 1-5 mg/kg. The control consists of administering PBS only.

The procedure for testing the effects of the test compound would consist of intradermally injecting killed Mycobacterium tuberculosis in CPA followed by immediately administering the test compound and subsequent treatment every other day until day 24. At 14, 15, 18, 20, 22, and 24 days after injection of Mycobacterium CPA, an overall arthritis score may be obtained as described by J. Holoskitz above. An analysis of the data would reveal that the test compound would have a dramatic affect on the swelling of the joints as measured by a decrease of the arthritis score.

4.11 THERAPEUTIC METHODS

The compositions (including polypeptide fragments, analogs, variants and antibodies 25 or other binding partners or modulators including antisense polymucleotides) of the invention have numerous applications in a variety of therapeutic methods. Examples of therapeutic apolications include, but are not limited to, those exemplified herein.

4.11.1 EXAMPLE

One embodiment of the invention is the administration of an effective amount of the polypeptides or other composition of the invention to individuals affected by a disease or disorder that can be modulated by regulating the peptides of the invention. While the mode of administration is not particularly important, parenteral administration is preferred. An

68

WO 02/059260 PCT/US01/42950

growth factors (TGF- α and TGF- β), insulin-like growth factor (IGF), as well as cytokines described berein.

The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or other active ingredient or complement its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein or other active ingredient of the invention, or to minimize side effects. Conversely, protein or other active ingredient of the present invention may be included in formulations of the particular clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent (such as IL-1Ra, IL-1 Hy1, IL-1 Hy2, anti-TNP, corticosteroids, immunosuppressive agents). A protein of the present invention may be active in multimers (e.g., beterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaccutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

As an alternative to being included in a pharmaceutical composition of the invention including a first protein, a second protein or a therapeutic agent may be concurrently administered with the first protein (e.g., at the same time, or at differing times provided that therapeutic concentrations of the combination of agents is schieved at the treatment size).

Techniques for formulation and administration agents is schieved at the treatment size). Techniques for formulation and administration after the composition of the composition may be found in "Reminigron's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. A therapeutically effective dose further refers to that amount of the compound sufficient to result in amelioration of symptoms, e.g., treatment, healing, prevention or amelioration of such conditions, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, a therapeutically effective dose refers to that ingredient alone. When applied to a combination, a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein or other active ingredient of the present invention is administered to a mammal having a condition to be treated. Protein or other active ingredient of the exemplary mode of administration is to deliver an intravenous bolus. The dosage of the polypeptides or other composition of the invention will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight, condition and response of the individual patient. Typically, the amount of 5 polypeptide administered per dose will be in the range of about 0.01 µg/kg to 100 mg/kg of body weight, with the preferred dose being about 0.1µg/kg to 10 mg/kg of patient body weight. For parenteral administration, polypeptides of the invention will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle. Such vehicles are well known in the art and examples include water, saline, Ringer's solution, dextrose solution, and solutions consisting of small amounts of the human serum albumin. The vehicle may contain minor amounts of additives that maintain the Isotonicity and stability of the polypeptide or other active ingredient. The preparation of such solutions is

15 4.12 PHARMACEUTICAL FORMULATIONS AND ROUTES OF ADMINISTRATION

A protein or other composition of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources and including antibodies and other binding partners of the polypeptides of the invention) may be administered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders. Such a composition may optionally contain (in addition to protein or other active ingredient and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, 30 G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. In further compositions, proteins of the invention may be combined with other agents beneficial to the reatment of the disease or disorder in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming

69

WO 02/059260 PCT/US01/42950

present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co- administered with one or more cytokines, lymphokines or other hematopoietic factors, protein or other active ingredient of 5 the present invention may be administered either aimultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein or other active ingredient of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.

4.12.1 ROUTES OF ADMINISTRATION

Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including Intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventicular, intravenous, intraperitoceal, Intranasal, or intraocular injections. Administration of protein or other active ingredient of the present invention used in the paramaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral Ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoceal, 20 parenteral or intravenous injection. Intravenous administration to the patient is preferred.

Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a arthritic joints or in fibrotic dissue, often in a depot or sustained release formulation. In order to prevent the scarring process frequently occurring as complication of glaucoma surgery, the compounds may be administered topically, for example, as eye drops. Furthermore, one may administer the drug in a targetted drug delivery system, for example, in a liposome cound with a specific antibody, targeting, for example, arthritic or fibrotic tissue. The liposomes will be targetted to and taken up selectively by the afflicted tissue.

The polypeptides of the invention are administered by any route that delivers an offictive desage to the desired sit of action. The determination of a suitable route of administration and an effective desage for a particular indication is within the level of skill in the art. Preferably for wound treatment, one administers the therapeutic compound directly to the site. Suitable desage ranges for the polypeptides of the invention can be extrapolated from these dosages or from similar studies in appropriate animal models. Dosages can then be adjusted as necessary by the clinician to provide maximal therapeutic benefit.

4.12.2 COMPOSITIONS/FORMULATIONS

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. These pharmaceutical compositions may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragoo-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Proper formulation is dependent upon the route of administration chosen. When a therapeutically effective amount of protein or other active ingredient of the present invention is administered orally, protein or other active ingredient of the present invention will be in the form of a tablet, capsule, powder, solution or 15 elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein or other active ingredient of the present invention, and preferably from about 25 to 90% protein or other active ingredient of the present invention. When administered in liquid form, a liquid carrier such as water, 20 petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% 25 by weight of protein or other active ingredient of the present invention, and preferably from about 1 to 50% protein or other active ingredient of the present invention.

When a therapeutically effective amount of protein or other active ingredient of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein or other active ingredient of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein or other active ingredient solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein or

77

WO 02/059260 PCT/US01/42950

glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present

invention are conveniently delivered in the form of an aerosol spray presentation from
pressurized packs or a nebuliser, with the use of a suitable propellant, e.g.,
dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide
or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined
by providing a valve to deliver a metered amount. Capsules and carridges of, e.g., gelatin
for use in an inhaler or insuffiator may be formulated containing a powder mix of the
compound and a suitable powder base such as factose or starch. The compounds may be
formulated for parenteral administration by injection, e.g., by bolus injection or continuous
infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules
or in multi-dose containers, with an added preservative. The compositions may take such
formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily hipoction suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as seasme oil, or synthetic fatty acid esters, such as ethyl oleste or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before

The compounds may also be formulated in rectal compositions such as suppositories or retention enemss, e.g., containing conventional suppository bases such as ecoos butter or other glycerides. In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable other active ingredient of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Discretos Injection, Destrose Injection, Destrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For Injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, sturries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained from a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules. after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidore, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, tale, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or 25 titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium siterate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene

7

WO 02/059260 PCT/US01/42950

polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

A pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The co-solvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces 10 low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene 15 glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various types of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the 25 biological stability of the therapeutic reagent, additional strategies for protein or other active ingredient stabilization may be employed.

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols. Many of the active ingredients of the invention may be provided as salts with pharmaceutically compatible counter ions. Such pharmaceutically acceptable base addition salts are those salts which retain the biological effectiveness and properties of the free acids and which are obtained by reaction with

inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialkylamine, dialkylamine, monoalkylamine, dibasle amino acida, sodium acetate, potassium benzoate, tricthanol amine and the like.

The pharmaceutical composition of the invention may be in the form of a complex of
the protein(s) or other active ingredient(s) of present invention along with protein or peptide
antigens. The protein and/or peptide antigen will deliver a attenuitatory signal to both B and T
lymphocytes. B lymphocytes will respond to antigen through their aurface inmunoglobulin
receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following
presentation of the antigen by MHC proteins. MHC and structurally related proteins
including those encoded by class I and class II MHC genes on host cells will serve to present
the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as
purified MHC-peptide complexes alone or with co-attinuitatory molecules that can directly
signal T cells. Alternatively entibodies able to bind rurface immunoglobulin and other
molecules on B cells as well as antibodies able to bind the TCR and other molecules on T
cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution.

20 Sultable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, hysolecithins, phospholipids, saportin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporated herein by reference.

25 The amount of protein or other active ingredient of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein or other active ingredient of the present invention with which to treat each individual patient.

30 Initially, the attending physician will administer low doses of protein or other active ingredient of the present invention and observe the patient's response. Larger doses of protein or other active ingredient of the present invention may be administered until the ontimal therapeutic effect is obtained for the natient, and at that point the dosage is not

76

WO 02/059260 PCT/USD1/42950

weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on total formulation weight, which represents the amount necessary to prevent description of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby 15 providing the protein the opportunity to assist the osteogenic activity of the progenitor cells. In further compositions, proteins or other active ingredients of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, yound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors 20 (TGF-α and TGF-β), and insulin-like growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications.

Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins or other active ingredients of the present invention. The desage regimen of a protein-containing pharmaceutical composition to be used in tissue 25 regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and dict, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used 30 in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF 1 (insulin like growth factor i), to the final composition, may also effect the dosage. Progress can be monitored by

increased further. It is contemptated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 μg to about 100 mg(preferably about 0.1 µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein or other active ingredient of the present invention per kg body weight. For 5 compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Purther, the composition may desirably be encapsulated or injected in a 10 viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein or other active ingredient of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the 15 methods of the invention. Preferably for bone and/or cartilage formation, the composition ould include a matrix capable of delivering the protein-containing or other active ingredient-containing composition to the sits of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted 20 medical applications.

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, osmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalcium phosphate, hydroxyapatite, polyfactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability. Presently preferred is a 50:50 (mole

"

WO 02/059260 PCT/US01/42950

periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a 5 mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to prolliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic 10 purposes.

4.12.3 EFFECTIVE DOSAGE

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means a mount effective to prevent development of or to allevian the existing symptoms of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from appropriate in vitro assays. For example, a dose can be formulated in animal models to achieve a circulating concentration range that can be used to more accurately determine useful doses in humans. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC₂₀ as determined in cell culture (i.e., the concentration of the test compound which achieves a half-maximal inhibition of the protein's bloogical activity). Such information can be used to more accurately determine useful doses in the concentration can be used to more accurately determine useful doses.

A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₂₀ (the dose lethal to 50% of the population) and the ED₂₀ (the dose therapeutically felective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD₂₀ and ED₂₀. Compounds which exhibit high therapeutic

WO 02/059260 PCT/US01/42950

indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₂₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form 5 employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.1. Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the desired effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from to vitro data. Dosages occessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bloassays can be used to determine plasma concentrations.

Dosaga intervals can also be determined using MEC value. Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.

An exemplary desage regimen for polypeptides or other compositions of the invention 20 will be in the range of about 0.01 µg/kg to 100 mg/kg of body weight daily, with the preferred dose being about 0.1 µg/kg to 25 mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.

The amount of composition administered will, of course, be dependent on the subject 25 being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

4.12.4 PACKAGING

The compositions may, if desired, be presented in a pack or dispenser device which

may contain one or more unit dosage forms containing the active lagredient. The pack mey,
for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser
device may be accompanied by instructions for administration. Compositions comprising a
compound of the invention formulated in a compatible pharmaceutical carrier may also be

80

WO 02/059260 PCT/US01/42950

targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Syte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each of which is incorporated herein by reference in its entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1928, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Incorporated herein by reference). Some of these antibodies are discussed below.

4.13.1 POLYCLONAL ANTIBODIES

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a symbolic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of each immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Preund's (complete and incomplete), mineral gels (e.g., ahminum hydroxide), surface active substances (e.g., 1 ysolecithin, phuronic polyols, polymions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Ouerin and Corynebacterium parvum, or similar immunostimulatory agents.

prepared, placed in an appropriate container, and labeled for treatment of an indicated

4.13 ANTIBODIES

Also included in the invention are antibodies to proteins, or fragments of proteins of
the invention. The term "antibody" as used herein refers to immunoglobulin molecules and
immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that
contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such
antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab.

10 Fab and Fobry fragments, and an Fab expression library. In general, an antibody molecule
obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ
from one another by the nature of the heavy chain present in the molecule. Certain classes
have subclasses as well, such as IgG₀, IgG₀ and others. Furthermore, in humans, the light
chain may be a happa chain or a lambda chain. Reference herein to antibodies includes a

15 reference to all such classes, subclasses and types of human antibody species.

An isolated related protein of the invention may be intended to serve as an antigen, or a portion or fragment thereof, and additionally can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard mechaniques for polyclocal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as the amino acid sequences shown in SEQ ID NO: 342-682, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that 25 contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 3 amino acid residues, or at least 30 amino acid residues, or at least 30 amino acid residues, or at least 90 ami

In certain embodiments of the invention, at least one epitope encompassed by the

antigenic peptide is a region of -related protein that is located on the surface of the protein,

e.g., a hydrophilic region. A hydrophobicity analysis of the human related protein sequence

will indicate which regions of a related protein are particularly hydrophilic and, therefore, are

likely to encode surface residues useful for targeting antibody production. As a means for

8

WO 02/059260 PCT/US01/42950

Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A. synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D.

Witkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

4.13.2 MONOCLONAL ANTIBODIES

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as

used herein, refers to a population of antibody molecules that contain only one molecular

species of antibody molecule consisting of a unique light chain gene product and a unique

beavy chain gene product. In particular, the complementarity determining regions (CDRs) of

the monoclonal antibody are identical in all the molecules of the population. MAbs thus

contain an antigen binding site capable of immunoreacting with a particular epitope of the

antigen characterized by a unique binding affinity for it.

Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, <u>Nature</u>, <u>256</u>:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate bost animal, is typically immunized with an immunizing agent to clicit lymphocytes that produce or are capable of producing antibodies that will produce the companion of the compa

25 specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.
The immunizing agent will typically include the protein antigen, a fragment thereof or a

fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies; Principles and Practics, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually grantformed mammalian cells, perticularly

myeloma cells of rodent, bovino and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopteria, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a modium auch as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouso-human beteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Intravnol., 133:3001 (1984);

15 Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 31-63).

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Seatchard analysis of Munson and Pollard, <u>Anal Biochem.</u> 107:220 (1980). Preferably, antibodies having a high degree of specificity and a high binding affinity for the target antigen are isolated.

After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods. Suitable culture media for this purpose include, for example, Dulbecoo's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.

The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

84

WO 02/059260 PCT/US01/42950

imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Ricchmann et al., 1988; and Presta, Qurr, Qp., Struct, Biol., 2:593-596 (1992)).

4.13.4 HUMAN ANTIBODIES

Fully human antibodies relate to antibody molecules in which essentially the entire acquences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV 15 hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV 15 hybridoma technique to produce human monoclonal antibodies (see Coke, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, <u>L.Mol. Biol.</u>, <u>227</u>:381 (1991); Marks et al. <u>J.Mol. Biol.</u> <u>227</u>:381 (1991). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been pertially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene trairrangement, assembly, and antibody repertoirs. This approach is described, for example, in U.S. Paters Nos. 5,545,807; 5,545,806; 5,545,807; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio<u>Totenhology</u> 10, 779-783 (1992)); Lonberg et al. (<u>Varure 268</u> 816-839 (1994)); Morrison (<u>Nature 268</u> 812-13 (1994)); Fishwild et al. (<u>Nature Biotechnology</u> 14, 845-51 (1996)); Neuberger (<u>Mature</u>

The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the 5 heavy and light chains of murine antibodies). The hybridoms cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression tors, which are then transfected into host cells such as simian COS cells, Chinese hamster overy (CHO) cells, or myelome cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA . 10 also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a nonimmunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted 15 for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

4.13.3 HUMANIZED ANTIBODIES

The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administration to humans without engendering an immune response by the human against the administration furnamoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, lumumoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab'), 25 or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., <u>Nature</u>, 321:322-325 (1986); Riechmann et al., <u>Nature</u>, 332:333-327 (1988); Verhoeyen et al., <u>Science</u>, 232:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanizad antibodies can also comprise residues which are found neither in the recipient antibody nor in the

85

WO 02/059260 PCT/US01/42950

Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human 10 DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human 15 immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the 20 antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman bost, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and genn cells contain the gene encoding the selectable marker.

A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a beavy chain into one mammalian bost cell in PCT/US01/42950

culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.

to a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an artibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.

4.13.5 F. FRAGMENTS AND SINGLE CHAIN ANTIBODIES

According to the Invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_α expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F_α fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an F_α fragment produced by peptin digestion of an antibody molecule; (ii) an F_α fragment generated by reducing the disulfide bridges of an F_{(α}P₂ fragment; (iii) an F_α fragment generated by the treatment of the antibody molecule with papain and a reducing 20 agent and (iv) F, fragments.

4.13.6 BISPECIFIC ANTIBODIES

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two beavy chains have different specificities (Milstein and Cuello, Nature, 202:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the

88

WO 02/059260 PCT/US01/42950

derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., I, Exp. Med. 175217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab'); molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ExbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol, 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (V1) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary V1 and V1 domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et 25 al., J. Immunol, 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., <u>I. Immunol.</u> 147:60 (1991).

Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyta such as a T-cell receptor molecule (a.g. CD2, CD3, CD28, or B7), or Fc receptors for IgO (FcyR), such as FcyRl (CD54), FcyRll (CD53) and FcyRll (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific

correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08229, published 13 May 1993, and in Traunecker et al., 1991 EMBO J., 10:3655-3659.

WO 02/059260

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are cotransfocted into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers 15 which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as bomodimers.

Bispecific antibodies can be prepared as full length antibodies or antibody fragments

(e.g. F(ab'); bispecific antibodies). Techniques for generating bispecific antibodies from

antibody fragments have been described in the literature. For example, bispecific antibodies
can be prepared using chemical linkage. Brennan et al., Science 229-81 (1985) describe a

procedure wherein intact antibodies are proteolytically cleaved to generate F(ab'); fragments.

These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite
to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab'
fragments generated are then converted to thionitrobezoate (TNB) derivatives. One of the
Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with
mercaptocthylamine and is mixed with an equimolar emount of the other Fab'-TNB

WO 02/059260 PCT/US01/42950

antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further 5 binds tissue factor (TP).

4.13.7 HETEROCONJUGATE ANTIBODIES

Heteroconjugate antibodies are also within the scope of the present invention.

Heteroconjugate antibodies are composed of two covalently joined antibodies. Such
antibodies have, for example, been proposed to target immune system cells to unwanted cells
(U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00350; WO
92/200373; EP 90389). It is contemplated that the antibodies can be prepared in vitro using
known methods in synthetic protein chemistry, including those involving crosslinking agents.

For example, immunosoxins can be constructed using a disulfide exchange reaction or by
forming a thioether bond. Examples of suitable reagents for this purpose include
immorbiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S.
Patent No. 4,676,980.

4.13.8 EFFECTOR FUNCTION ENGINEERING

20 It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fe region, thereby allowing interchain disulfide to the foliation of the foliation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fe regions and can thereby have enhanced complement lytis and ADCC capabilities. See Strevnson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).

91

. .

PCT/IIS01/47950

4.13.9 IMMUNOCONJUGATES

15

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive 5 isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas acruginosa), ricin A chain, abrin A chain, modeccin A chain, 10 alpha-sarcin, Aleurites fordil proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 213Bi, 131I, 131In, 40Y, and 186Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (FD), bifunctional derivatives of imidoesters (such as dimethyl adinimidate HCL), active esters (such as disuccinimidy) subcrate), aldehydes (such as stutureldehyde), bis-ezido compounds (such as bis (p-ezidobenzoyl) hexanediamine), bisdiazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-dilsocyanate), and bis-active fluorine compounds (such as 1,5-diffuoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3methyldicthylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for 25 conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such as streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn 30 conjugated to a cytotoxic agent.

WO 02/059260

(Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system is used to identify open reading frames (ORFs) within a nucleic acid sequence. Such ORFs may be protein encoding fragments and may be useful in producing commercially important proteins such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As 15 used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of a known sequence which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the 25 computer-based systems of the present invention. Examples of such software includes, but is not limited to, Smith-Waterman, MacPattern (EMBL), BLASTN and BLASTA (NPOLYPEPTIDEIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems. As used herein, a "target sequence" can be any nucleic acid or amino acid sequence of six or more nucleotides or two or more mino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 300 amino acids,

4.14 COMPUTER READABLE SEQUENCES

W/O 02/059260

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media 5 Include, but are not limited to; magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tane; ontical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybaso, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present

By providing any of the nucleotide sequences SEQ ID NO: 1-341 or a representative fragment thereof; or a nucleotide sequence at least 95% identical to any of the nucleotide sequences of SEQ ID NO: 1-341 in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE

WO 02/059260 PCT/IIS01/42950

more preferably from about 30 to 100 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

4 15 TRIPLE HELIX FORMATION

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Polynucleotides suitable for use in these methods are preferably 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 15241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense -Olmno, J. Neumchem, 56:560 (1991): Oligodeoxymucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the 25 present invention is necessary for the design of an antisense or triple helix oligonucleotide.

4.16 DIAGNOSTIC ASSAYS AND KITS

The present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention, optionally conjugated or otherwise expociated with a suitable label.

In general, methods for detecting a polymodectide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the

polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample. Such methods can also comprise contacting a sample under stringent hybridization conditions with nucleic acid primers that anneal to a polynucleotide of the invention under such conditions, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.

In general, methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary. 15 Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tilssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The 25 Netherlands (1985). The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as souturn, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the

96

VO 02/059260 PCT/US01/4295

encoded by an ORF corresponding to any of the nucleotide sequences set forth in SEQ ID NO: 1-341, or bind to a specific domain of the polypeptide encoded by the nucleic acid. In detail, said method comprises the steps of:

- (a) contacting an agent with an isolated protein encoded by an ORF of the present
 invention, or nucleic acid of the invention; and
- (b) determining whether the agent binds to said protein or said nucleic acid. In general, therefore, such methods for identifying compounds that bind to a polynucleotide of the invention can camprise contacting a compound with a polynucleotide of the invention for a time sufficient to form a polynucleotide/compound complex, and detecting the complex, so that if a polynucleotide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Likewise, in general, therefore, such methods for identifying compounds that bind to a polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the complex, so that if a polypeptide/compound complex is detected, a compound that binds to a polypus/cotide of the invention is identified.

Methods for identifying compounds that bind to a polypeptide of the Invention can also comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a receptor gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detocted, a compound that binds a polypeptide of the invention is identified.

Compounds identified via such methods can include compounds which modulate the activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to activity observed in the absence of the compound). Alternatively, compounds identified via such methods can include compounds which modulate the expression of a polymucleotide of the invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compound). Compounds, such as compounds identified via the methods of the invention, can be tested using standard assays well known to those of skill in the art for their shilliy to modulate activity/composition.

The agents acreened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be

invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wach reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4.17 MEDICAL IMAGING

The novel polypeptides and binding partners of the invention are useful in medical imaging of sites expressing the molecules of the invention (e.g., where the polypeptide of the invention is involved in the immune response, for imaging sites of inflammation or infection). See, e.g., Kunkel et al., U.S. Pal. NO. 5.413,778. Such methods involve chemical attachment of a labeling or imaging agent, administration of the labeled polypeptide to a subject in a pharmaceutically acceptable carrier, and imaging the labeled polypeptide in vivo at the target site.

4.18 SCREENING ASSAYS

Using the isolated proteins and polynucleotides of the invention, the present invention further provides methods of obtaining and identifying agents which bind to a polypeptide

9

WO 02/059260 PCT/US01/42950

selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein 5 encoded by the ORF of the present invention. Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like, capable of binding to a specific peptide sequence, in order 10 to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides. Antisense Peptides." In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspezak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly

described, can be used to control gene expression through binding to one of the ORFs or

EMFs of the present invention. As described above, such agents can be randomly screened

or rationally designed/selected. Targeting the ORF or EMF allows a skilled sritsan to design

sequence specific or element specific agents, modulating the expression of either a single

ORF or multiple ORFs which rely on the same EMF for expression control. One class of

DNA binding agents are agents which contain base residues which hybridize or form a triple

beltx formation by binding to DNA or RNA. Such agents can be based on the classic

phosphodicator, ribonucleic acid backbone, or can be a variety of suffnydryl or polymeric

derivatives which have base attachment capacity.

Agents suitable for use in these methods preferably contain 20 to 40 bases and are

25 designed to be complementary to a region of the gene involved in transcription (triple helix see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and
Dervan et al., Science 251:1360 (1991); or to the mRNA itself (antisense - Okano, J.

Neurochem. 56:360 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene
Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in

30 a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks

translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated
to be effective in model systems. Information contained in the sequences of the present

WO 02/059260 PCT/US01/42950

invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent. Agents which bind to a protein encoded by one of the 5 ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.

4.19 USE OF NUCLEIC ACIDS AS PROBES

Another aspect of the subject invention is to provide for polypeptide-specific nucleic
acid hybridization probes capable of hybridizing with naturally occurring nucleotide
sequences. The hybridization probes of the subject invention may be derived from any of the
nucleotide sequences SEQ ID NO: 1-341. Because the corresponding gene is only expressed
in a limited number of tissues, a hybridization probe derived from any of the nucleotide
sequences SEQ ID NO: 1-341 can be used as an indicator of the presence of RNA of cell type
15 of such a tissue in a sample.

Any suitable hybridization technique can be employed, such as, for example, in siming hybridization. PCR as described in US Patents Nos. 4,683,195 and 4,965,188 provides additional uses for oligonucleotides based upon the nucleotide sequences. Such probes used in PCR may be of recombinant origin, may be chemically synthesized, or a mixture of both. The probe will comprise a discrete nucleotide sequence for the detection of identical sequences or a degenerate pool of possible sequences for identification of closely related genomic sequences.

Other means for producing specific hybridization probes for nucleic acids include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art and are commercially available and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerase as T7 or SP6 RNA polymerase and the appropriate radioactively labeled nucleotides. The nucleotide sequences may be used to construct hybridization probes for mapping their respective genomic sequences. The nucleotide sequence provided herein may be mapped to a chromosome or specific regions of a chromosome using well known genetic and/or chromosomal mapping techniques. These techniques include in situ hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to known chromosomes, and the like. The

WO 02/059260 PCT/US01/42

secondary amino groups (>NH) that serve as bridge-heads for further covalent coupling.

CovaLink Modules may be purchased from Nunc Laboratories. DNA molecules may be bound to CovaLink exclusively at the 5'-end by a phosphoramidate bond, allowing immobilization of more than 1 pmol of DNA (Rasmussen et al., (1991) Anal. Biochem. 198(1) 138-42).

The use of CovaLink NH strips for covalent binding of DNA molecules at the 5'-end has been described (Rasmussen et al., (1991). In this technology, a phosphoramidate bond is employed (Chu et al., (1983) Nucleic Acids Res. 11(8) 6513-29). This is beneficial as immobilization using only a single covalent bond is preferred. The phosphoramidate bond joins the DNA to the CovaLink NH secondary amino groups that are positioned at the end of spacer arms covalently grafted onto the polystyrene surface through a 2 nm long spacer arm. To link an oligonucleotide to CovaLink NH via an phosphoramidate bond, the oligonucleotide terminus must have a 5'-end phosphate group. It is, perhaps, even possible for biotin to be covalently bound to CovaLink and then streptavidin used to bind the probes.

More specifically, the linkage method includes dissolving DNA in water (7.5 ng/ul) and 15 densturing for 10 min. at 95°C and cooling on loc for 10 min. los-cold 0.1 M 1-methylimidazole, pH 7.0 (1-MeIm-), is then added to a final concentration of 10 mM 1-MeIm-. The single-stranded DNA solution is then dispensed into CovaLink NH strips (75 ul/well) standing on loc.

Carbodiimide 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), dissolved

on 10 mM 1-Melm, is made fresh and 25 jul added per well. The strips are incubated for 5 hours
at 50°C. After incubation the strips are washed using, e.g., Nuno-Immuno Wash; first the wells
are washed 3 times, then they are soaked with washing solution for 5 min., and finally they are
washed 3 times (where in the washing solution is 0.4 N NsOH, 0.25% SDS beated to 50°C).

It is contemplated that a further suitable method for use with the present invention is that
described in PCT Parent Application WO 90/03382 (Southern & Maskos), incorporated berein
by reference. This method of preparing an oligonucleotide bound to a support involves
attaching a nucleoside 31-reagent through the phosphate group by a covalent phosphodiester link
to aliphatic hydroxyl groups carried by the support. The oligonucleotide is then synthesized on
the supported nucleoside and protecting groups removed from the synthetic oligonucleotide

of chain under standard conditions that do not cleave the oligonucleotide from the support.

Suitable reagents include nucleoside suborsphoramidite and nucleoside bythrogen phosphorate.

An on-chip strategy for the preparation of DNA probe for the preparation of DNA probe arrays may be employed. For example, addressable laser-activated photodeprotection may be technique of fluorescent in situ hybridization of chromosome spreads has been described, among other places, in Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

Fluorescent in situ hybridization of chromosomal preparations and other physical 5 chromosome mapping techniques may be correlated with additional genetic map data.

Examples of genetic map data can be found in the 1994 Genome Issue of Science (265:1981f). Correlation between the location of a nucleic acid on a physical chromosomal map and a specific disease (or predisposition to a specific disease) may help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject 10 invention may be used to detect differences in gene sequences between normal, carrier or affected individuals.

4.20 PREPARATION OF SUPPORT BOUND OLIGONUCLEOTIDES
Oligonucleotides, i.e., small nucleic acid segments, may be readily prepared by, for
example, directly synthesizing the oligonucleotide by chemical means, as is commonly practiced
using an automated oligonucleotide synthesizer.

Support bound oligonucleotides may be prepared by any of the methods known to those of skill in the art using any suitable support such as glass, polystyrene or Terlon. One strategy is to precisely spot oligonucleotides synthesized by standard synthesizers. Immobilization can be achieved using passive adsorption (thouge & Hondo, (1990) J. Cilin. Microbiol. 22(6) 1469-77); 20 using UV light (Nagnta et al., 1985; Dahlen et al., 1987; Morrissey & Collins, (1989) Mol. Cell Probes 3(2) 189-207) or by covalent binding of base modified DNA (Keller et al., 1983; 1989); all references being specifically incorporated herein.

Another strategy that may be employed is the use of the strong biotin-streptavidin interaction as a linker. For example, Broude et al. (1994) Proc. Natl. Acad. Sci. USA 91(8) 3072-6, describe the use of biotinylated probes, although these are duplex probes, that are immobilized on streptavidin-coated magnetic beads. Streptavidin-coated beads may be purchased from Dynal, Oslo. Of course, this same linking chemistry is applicable to coating any surface with streptavidin. Biotinylated probes may be purchased from various sources, such as, e.g., Operon Technologies (Alameda, CA).

Nunc Laboratories (Naperville, IL) is also selling suitable material that could be used.

Nunc Laboratories have developed a method by which DNA can be covalently bound to the
microwell surface termed Covalink NH. CovaLink NH is a polystyrene surface grafted with

10

WO 02/05/9260 PCT/US01/42950

employed in the chemical synthesis of oligonucleotides directly on a glass surface, as described by Fodor et al. (1991) Science 251(4995) 767-73, incorporated herein by reference. Probes may also be immobilized on nyion supports as described by Van Ness et al. (1991) Nucleic Acids Res. 19(12) 3345-50; or linked to Teflon using the method of Duncan & Cavalier (1985) Anal. Biochem. 169(1) 104-8; all references being specifically incorporated herein.

To link an oligonucleotide to a nylon support, as described by Van Ness et al. (1991), requires activation of the nylon surface via alkylation and selective activation of the 5'-emine of oligonucleotides with cyanuric chloride.

One particular way to prepare support bound oligonucleotides is to utilize the
light-generated synthesis described by Pease et al., (1994) PNAS USA 91(11) 5022-6,
incorporated berein by reference). These authors used current photolithographic techniques to
generate arrays of immobilized oligonucleotide probes (DNA chips). These methods, in which
light is used to direct the synthesis of oligonucleotide probes in high-density, miniaturized
arrays, utilize photolabile 5'-protected N-acyt-deoxynucleoside phosphoramidites, surface linker
to chemistry and versatile combinatorial synthesis strategies. A matrix of 256 spatially defined
oligonucleotide tombes may be generated in this manner.

4.21 PREPARATION OF NUCLEIC ACID FRAGMENTS

The nucleic acids may be obtained from any appropriate source, such as cDNAs, genomic DNA, chromosomal DNA, microdissected chromosome bends, cosmid or YAC inserts, and RNA, including mRNA without any amplification steps. For example, Sambrook et al. (1989) describes three protocols for the isolation of high molecular weight DNA from memmalism cells (p. 9.14-9.23).

DNA fragments may be prepared as clones in M13, plasmid or ismbda vectors and/or prepared directly from genomic DNA or cDNA by PCR or other amplification methods.

25 Samples may be prepared or dispensed in multiwell plates. About 100-1000 ng of DNA samples may be prepared in 2-500 ml of final volume.

The nucleic acids would then be fragmented by any of the methods known to those of skill in the art including, for example, using restriction enzymes as described at 9.24-9.28 of Sambrook et al. (1989), shearing by ultrasound and NaOH treatment.

Low pressure shearing is also appropriate, as described by Schriefer et al. (1990) Nucleic Acids Res. 18(24) 7455-6, incorporated herein by reference). In this method, DNA samples are passed through a small French pressure cell at a variety of low to intermediate pressures. A

WO 02/059260 PCT/IISB1/47950

lever device allows controlled application of low to intermediate pressures to the cell. The results of these studies indicate that low-pressure shearing is a useful alternative to sonic and enzymatic DNA fragmentation methods.

One particularly suitable way for fragmenting DNA is contemplated to be that using the 5 two base recognition endonuclease, CvIII, described by Fitzgerald et al. (1992) Nucleic Acids Res. 20(14) 3753-62. These authors described an approach for the rapid fragmentation and fractionation of DNA into particular sizes that they contemplated to be suitable for shotgun cloning and sequencing.

The restriction endonuclease CvIII normally cleaves the recognition sequence PuGCPy

10 between the G and C to leave blunt ends. Atpplient reaction conditions, which after the
specificity of this enzyme (CvIII**), yield a quasi-random distribution of DNA fragments form
the small molecule pUCI g1688 base pains). Fitzgerald et al. (1992) quantifizatively evaluated
the randomness of this fragmentation strategy, using a CvIII** digest of pUCIP that was size
fractionated by a rapid gel filtration method and directly ligated, without end repair, to a lac Z

15 minus MI3 cloning vector. Sequence analysis of 76 clones showed that CvIII** restricts
pyGCPy and PuGCPu, in addition to PuGCPy sites, and that new sequence data is accumulated
at a rate consistent with medium fragmentation.

As reported in the literature, advantages of this approach compared to sonication and
agarose get fractionation include: smaller amounts of DNA are required (0.2-0.5 µg instead of
20 2-5 µg); and fewer steps are involved (no preligation, end repair, chemical extraction, or agarose
get electrophoresis and clution are needed

Irrespective of the manner in which the nucleic acid fragments are obtained or prepared, it is important to dename the DNA to give single stranded pieces available for hybridization. This is achieved by incubating the DNA solution for 2-5 minutes at 80-90°C. The solution is then cooled quickly to 2°C to prevent renaturation of the DNA fragments before they are contacted with the chip. Phosphate groups must also be removed from genomic DNA by methods known in the art.

4.22 PREPARATION OF DNA ARRAYS

Arrays may be prepared by spotting DNA samples on a support such as a nylon membrane. Spotting may be performed by using arrays of metal pins (the positions of which correspond to an array of wells in a microtiter piste) to repeated by transfer of about 20 nl of a DNA solution to a nylon membrane. By offset printing, a density of dots higher than the density

104

WO 92/059260 PCT/US01/42950

5. EXAMPLES

5.1 EXAMPLE 1

Novel Nucleic Acid Sequences Obtained From Various Libraries

A plurality of novel nucleic acids were obtained from a DNA libraries prepared from various human tissues and in some cases isolated from a genomic library derived from human chromosome using standard PCR, SBH sequence signature analysis and Sanger sequencing techniques. The inserts of the library were amplified with PCR using primers specific for the vector sequences which flank the inserts. Clones from cDNA libraries were spotted on uylon membrane filters and screened with oligonucleotide probes (e.g., 7-mers) to obtain signature sequences. The clones were clustered into groups of similar or identical sequences. Representative clones were selected for sequencing.

In some cases, the 5' sequence of the amplified inserts was then deduced using a typical

Sanger sequencing protocol. PCR products were purified and subjected to fluorescent dye
terminator cycle sequencing. Single pass gel sequencing was done using a 377 Applied

15 Biosystems (ABI) sequencer to obtain the novel nucleic acid sequences

5.2 EXAMPLE 2

Assemblage of Novel Nucleic Acids

The nucleic sciels of the present invention, designated as SEQ ID NO: 1-341 were assembled using an EST sequence as a seed. Then a recursive algorithm was used to extend the 20 seed EST into an extended assemblage, by pulling additional sequences from different databases (i.e., Hyseq's database containing EST sequences, dbEST, gb pri, UniGene, and exons from public domain genomic sequences predicated by GenScan) that belong to this assemblage. The algorithm terminand when there was no additional sequences from the above databases that would extend the assemblage. Further, inclusion of component sequences into the assemblage was based on a BLASTN hit to the extending assemblage with BLAST score greater than 300 and percent identity greater than 95%.

Using PHRAP (Univ. of Washington) or CAP4 (Paracel), full-length gene sequences and their corresponding protein sequences were generated from the assemblage. Any frame shifts and incorrect stop codons were corrected by hand editing. During editing, the sequence was checked using PASTNY algorithm against Genbank (i.e., dbEST, gb pri, UniGene, and Genpept). Other computer programs which may have been used in the editing process were phredParap and Consed (University of Washington) and ed-ready, ed-ext and go-zip-2 (htysee,

of the wells is achieved. One to 25 dots may be accommodated in 1 mm³, depending on the type of label used. By avoiding spotting in some presidented number of rows and cohumns, separate subsets (substrays) may be formed. Samples in one substray may be the same genomic segment of DNA (or the same genon from different individuals, or may be different, overtapped genomic 5 clones. Each of the substrays may represent replice aposting of the same samples. In one example, a selected gene segment may be amplified from 64 patients. For each patient, the amplified gene segment may be in one 96-well plate (all 96 wells containing the same sample). A plate fite each of the 64 patients is prepared. By using a 96-pin device, all samples may be aposted on one 8 x 12 cm membrane. Substrays may contain 64 samples, one from each patient.

Where the 96 substrays are identical, the dox span may be 1 mm² and there may be a 1 mm space between substrays.

Another approach is to use membranes or plates (available from NUNC, Naperville, Illinois) which may be partitioned by physical spacers e.g. a plassic grid molded over the membrane, the grid being similar to the sort of membrane applied to the bottom of multiwell plates, or hydrophobic strips. A fixed physical spacer is not preferred for imaging by exposure to flat phosphor-storage acreens or x-ray films.

The present invention is illustrated in the following examples. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention. Accordingly, it is intended that the broader aspects of the present invention not be limited to the disclosure of the following examples. The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and compositions and methods which are functionally equivalent are within the scope of the invention. Indeed, mimerous modifications and variations in the practice of the invention are expected to occur to 25 those skilled in the art upon consideration of the present preferred embodiments. Consequently, the only limitations which should be placed upon the scope of the invention are those which appear in the appeared claims.

All references cited within the body of the instant specification are hereby incorporated by reference in their entirety.

105

WO 02/059260 PCT/US01/42950

Inc.). The full-length nucleotide sequences are shown in the Sequence Listing as SEQ ID NO: 1-341. The corresponding polypeptide sequences are SEQ ID NO: 342-682.

Table I shows the various tissue sources of SEO ID NO: 1-341.

The nearest neighbor results for polypeptides encoded by SEQ ID NO: 1-341 (i.e.

SEQ ID NO: 342-682) were obtained by a BLASTP (version 2.0at 19MP-WashU) search
against Gempept, Genesoq and SwissProt databases using BLAST algorithm. The nearest
neighbor result showed the closest homologue with functional annotation for SEQ ID NO: 1341. The translated amino acid sequences for which the nucleic acid sequence encodes are
shown in the Sequence Listing. The homologues with identifiable functions for SEQ ID NO:
10 1-341 are shown in Tuble 2 below.

Using eMatrix software package (Stanford University, Stanford, CA) (Wu et al., J. Comp. Biol., Vol. 6 pp. 219-235 (1999) herein incorporated by reference), polypeptides encoded by SEQ ID NO: 1-341 (le. SEQ ID NO: 342-682) were examined to determine whether they had identifiable signature regions. Table 3 shows the signature region found in the indicated polypeptide sequences, the description of the signature, the eMatrix p-value(s) and the position(s) of the signature within the polypeptide sequence.

Using the Pfam software program (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1) pp. 320-322 (1998) berein incorporated by reference) polypeptides encoded by SEQ ID NO: 1-341 (i.e. SEQ ID NO: 342-682) were examined for domains with homology to certain peptide domains. Table 4 shows the name of the domain found, the description, the p-value and the pFam score for the identified domain within the sequence.

The GeneAthas** software package (Molecular Simulations Inc. (MSI), San Diego,
CA) was used to predict the three-dimensional structure models for the polypeptides encoded
by SEQ ID NO: 1-341 (i.e. SEQ ID NO: 342-682), Models were generated by (1) PSI25 BLAST which is a multiple alignment sequence profile-based searching developed by
Altschul et al, (Nucl. Acids. Res. 25, 3389-3403 (1997)), (2) High Throughput Modeling
(HTM) (Molecular Simulations Inc. (MSI) San Diego, CA.) which is an automated sequence
and structure searching procedure (https://www.msi.com/, and (3) SeqFold** which is a fold
recognition method described by Fischer and Eisenberg (J. Mol. Biol. 209, 779-791 (1998)).
This analysis was carried out, in part, by comparing the polypeptides of the invention with
the known NMR (nuclear magnetic resonance) and x-vy crystal three-dimensional structures
as templates. Table 5 shows, "PDB ID", the Protein DataBase (PDB) identifier given to
template structure; "Chain ID", identifier of the subcomponent of the PDB template structure;

PCT/US01/42950

"Compound Information", information of the PDB template structure and/or its subcomponents; "PDB Punction Amotation" gives function of the PDB template as annotated by the PDB files (http://www.rcsb.org/PDB/); start and end amino acid position of the protein sequence aligned; PSI-BLAST score, the verify score, the SeqFold score, and the 5 Potential(s) of Mean Force (PMF). The verify score is produced by GeneAtlas** software (MSI), is based on Dr. Eisenberg's Profile-3D threading program developed in Dr. David Eisenberg's laboratory (US patent no. 5,436,850 and Luthy, Bowie, and Eisenberg, Nature, 356:83-85 (1992)) and a publication by R. Sanchez and A. Sali, Proc. Natl. Acad. Sci. USA. 95:13597-12502. The verify score produced by GeneAtlas normalizes the verify score for 10 proteins with different lengths so that a unified cutoff can be used to select good models as

Verify score (normalized) = (raw score - 1/2 high score)/(1/2 high score)

15

The PFM score, produced by GeneAtlas* software (MSD, is a composite scoring function that depends in part on the compactness of the model, sequence identity in the alignment used to build the model, pairwise and surface mean force potentials (MFP). As given in Table 5, a verify score between 0 to 1.0, with 1 being the best, represents a good model. Similarly, a PMF score between 0 to 1.0, with 1 being the best, represents a good 20 model. A SeqFold™ score of more than 50 is considered significant. A good model may also be determined by one of skill in the art based all the information in Table 5 taken in totality.

The nucleotide sequence within the sequences that codes for signal peptide sequences and their cleavage sites can be determined from using Neural Network SignalP VI.1 program (from Center for Biological Sequence Analysis, The Technical University of Denmark). The 25 process for identifying prokaryotic and eukaryotic signal peptides and their cleavage sites are also disclosed by Henrik Nielson, Jacob Engelbrecht, Soren Brunak, and Gunnar von Heijne in the publication " Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites" Protein Engineering, Vol. 10, no. 1, pp. 1-6 (1997), incorporated herein by reference. A maximum S score and a mean S score, as described in the Nielson et al. as 30 reference, were obtained for the polypeptide sequences. Table 6 shows the position of the last amino acid of the signal peptide in each of the polypeptides and the maximum score and mean score associated with that signal peptide.

PCT/US01/42950 WO 02/059260

TABLE 1

IABLET					
Titane Origin	RNA Source	Library Name	SEQ ID NO:		
edult brein	GIBCO	AB3001	2 13 26-27 70 75 \$1 97 99-100 123 154-155 187-189		
adult brain	овсо _	ABD003	4 11 21 26-28 32 41 45 50 57 60-62 69-71 79 85 93 97 101 103-104		
			113 115 117 126 131 142 150 154-155 177-178 181 184 190-201 225-		
			226 234 237 243 255-256		
adult brain	Cloutech	ABROOL	6-7 11 14 26-27 75 93 107 131 154 201-202 243		
adult brain	Clostech	ABROO6	9 12 15 26-27 37 45 49 62 69 71 75 87 91 108-109 116 136 154 194		
			202 209 218-219 225 241 253 259 269-270 332 339		
edult brain	Clostoch	ABR008	2 6-7 9 12 15 18-22 26-28 35 37 40-41 45 48 50 55-56 61 63 65 67 71-		
			76 78 85 91 94 99-101 105 108-109 117 121-123 130 140-142 145-		
			147 149-152 154 158-159 170-174 185-186 189 198-199 201-202 205- 206 212-213 220 225 228-229 236-237 240-242 248 252 255 259-262		
			269 272 281-282 286-287 297 302 318 326-327 339		
adult brain	Cloretech	ABROLL	144 287		
adult brain	BioChain	ABR012	23 232		
adult brain	BioChain	ABR013	162		
adult brain			37 40 \$7 253		
achili brain	Invitrogen	ABR015	14 25 61 142		
adult brain	Invitrogen	ABRO16	40 61 124 126 225		
adult brain	Invitrogen	ABT004	5 11 14-15 20 62 65 87 93-94 100 121 147 165 167 170 184-185 196		
		AB1000	202 210 213 237 239-240 270 320		
cultured	Streturene	ADP001	9 14 32 61 85 105-109 118 150 173 175-176 203 225		
preadipocytes					
adrenal gland	Clontech	ADR002	11 13-14 18 21 33 43 64-65 99 101-102 104-106 104-109 111 126 156		
			168 178 195 199 204 206 211 234 258 287		
adult heart	ОТВСО	AHR001	2 4 12 14-17 22 25 32-33 37 40-41 45 47-48 50 61 63-64 73-74 78 83		
		l	85 95 99 101 108-109 118 120 123-127 131 142 147 151-154 170 174		
	1		203 212 225 227-228 236 244 249 259-260 271 287		
adult kidney	GIBCO	AKD001	2 4-7 9 11-12 14-15 20-25 34 40-41 47-50 53 56 60-62 65 69-72 74		
	1	ſ	76-79 83 85 87 90 93 95 97 99-100 103 108-110 113 116 118 121 123		
	1	ļ	126-129 131 140 142 145-146 155-156 162 167 193 223 225 250-251		
		<u></u>	255 287		
adult kidney	hvitregen	AKT002	4-7 9 11 14 18 21 24-25 40 42-43 53 62 73 77 79 95 110 131 151-152		
	GIBCO	ALG001	158 168 185 204 211 219 222 224 245 250-251 312 5 17 25-27 34 41 65 78 85 91 97 99 104 126 135 154 175 182 211 225		
adult lung	uisco	ALGORI	233 330-331		
Lymph node	Classisch	ALN001	4 21 25-27 66 69 107 114 139 145-146 155 157 205 225 229		
young liver	GIBCO	ALVOOL	4 10 12 14 24 40 39 64 94 100 103 105 121 139 154 198 234		
adult liver	Invitreem	ALV002	8 10 12 21 23 43 60 62-63 71 88 103 118 125 127 145-147 168 180		
			191 224 257 266 303 322-323		
adult liver	Clontoch	ALV003	266 117		
adult overy	hytrogra	AOVO01	2 4-7 9 11 13-16 18 21-23 25-27 33 35 37 40-41 43 45 47 52 57 60-65		
			67 70-71 73 78-79 82 85 87-88 90-93 95 97-99 102 104-105 111 113-		
	1	i	114 116-118 123 126-129 131 135 142 144-167 149-153 155 159-160		
		l	164 166-172 174-175 177-179 182 185-186 190-194 196-197 206-209		
			219 222 225 234-237 245-248 250-254 269-270 287 296 330-331		
adult placents	Invitrogen	APL001	20 37 61 69 216		
placents	Invitrogen	APL002	32 37 46 97 62 90 149 209		
adult sploca	OBCO	ASP001	4 14 20 25 32 41 45 49 61 68 70 78 93 97 99-100 103 118 131 138 142		
			148 151-152 158 162 175 177 201 216 222 225 234 309		
adult metis	G139CO	ATS001	2 11 14-15 20 35 40 61 76 81 97 113 127 145-146 159 200-201 206		
			225 230 287		
adult bladder	Invitrogen	BLD001	20 46 48 61-62 110 150 207 227 298		
рове шапа»	Closesch	BMD001	4 9 12 15 20 22 25-27 29 33 40-41 50-66 69-70 72 78 60-85 88 92 97		
			102 104-109 113 115-116 120-121 130 132 141 144 162 178 191-192		

Table 7 correlates each of SEQ ID NO: 1-341 to a specific chrome Table 8 is a correlation table of the novel polynucleotide sequences SEQ ID NO: 1-341, and their corresponding priority nucleotide sequences in the priority application USSN 09/714,936, herein incorporated by reference in its entirety.

WO 02/059260

109

WO 02/059260 PCT/US01/42950

Thou	RNA	Library	SIZQ ID NO:
Origin	Source	Name	
			220 222 225 287 302
pone marrow	GF	BMD002	2 4 9 12 14-15 20-23 25-27 34-35 41-43 45 48 53-56 61-62 66 71 95
	1		105-106 108-109 112 115-116 118 120 127 131 134 136 140-141 145-
	l	•	1 146 149 153 157 160 162 171-173 186 197 204 718 725 727 232 237 259-260 267 277 284 291 300 304 309 319 321 332 335 338
bone marrow	Clontech	BMD004	23+250 267 277 254 291 300 304 309 319 321 332 333 338
adult colon	Invitrogen	CLN001	13 21 87 93 97 130 140 149-150 164 199 232 250-251 266
mixture of 16	various	CTL021	16 61 213 225
tissues/mRN	vendors	C.L.	10001113111
As	1000		
mixture of 16	various	CTL028	61 216
tissues/mRN	vendors		
As	.	l	
adult cervix	BioChain	CVX001	2 5 14 17-18 21 32-33 40 42-43 50 61-62 64-65 70 74 78-79 82 89 92
		j	95 97 110 114 123-124 127 155 158 168 170-172 175-177 185 197
			224 234 250-251 265 287-289 333
endothelial	Stratagene	ED1001	2 4 11-16 18 20-21 23 26-27 32 34-35 40 42-44 47 49-50 56-57 61-63
cells	ĺ	1	65 70 72-74 85 88-91 93 95 99-100 106 103-110 117-118 123-124
	l	l	126-129 142-143 145-146 160 175-178 190 194 204 206 209 216 225 236 262 287
Genomic	Genomic	EPMOOL	1 209
closes from	DNA	L	(== /
the short erro	from	ł	Į.
of	Genetic	l	
chromosome	Research	l	
8		l	
Genomic	Genomic	EPM003	209
clones from	DNA		
the short arm	from	l	•
of chromosome	Genetic Research	1	
t caronicación	ALCOHOL:		
Genomic	Genomic	EPM004	209
ciones from	DNA	1	
the short erm	from		
of	Genetic	l	
chromosome	Research		1
fetal brain	Clomech	FBROOI	21 213
fetal brain fetal brain	Cloutech	FBR004	299 4 6-7 9 12 15 18-19 21 28-29 35 37 40 50 62 67 76 78 91 99 108-109
COURT CAUSES	Clottech	,,,,,,,,	112 117 141 149 151-152 154 157 159 177 185 196 201-202 204 212
		1	218 225 241 255 259 271 281 287 290 299-300 313 332 339
fetal brain	Invitrogen	FB1002	11-12 14 56 62 74 91 96 127 149 160 178-179 184-185 193 206 214
			225 237 241-243
fatal beart	Invitrogen	FHROOL	5 14 21 28 35 64-66 78 101 106 113 149 151-152 158 160 162 186
	1	1	204 218 229 248 311 330-331 339-340
fetal kidney	Clontech	FKD001	12 23 33 40 61 69 12 91 98 104 155 175
fetal kidney	Clontach	FKD002	151-152 204 206 218 224 248 287
(stal kidney	Invitrogen	FKD007	25 61
fetal lung	Cloratech	FLOOOL	21 35 126 159 203
fetal hung	payproteu	FL0003	6-7 14 23 45 48 56 61 121 149 154 164 180 234 248 250-251 330-331
feed liver-	Columbia	PLS001	1-14 16-25 28-49 55 57 59 61-65 74 77-78 80 87-91 93-108 110-112
spieza	University		114 117-118 120-121 128-129 131 136 142-143 149 151-153 155 162
	1	1	180-182 186 193 196 207 210-211 213 217-219 222 224 248 284 287
			294 304 316 322

111

Tisse	RNA	Library	SEQ ID NO:
Orteta	Seerce	Name_	
fotal liver-	Columbia University	FLS002	3-5 8 10 12-13 17 20-21 23-27 30-33 35-37 39-40 44 57 59 63-65 71- 72 74 77 79 88-89 93-95 97 99 101 103-107 111 114-115 117-118
spienn	CHEVERSHY		121-122 127-129 131 142 149 158 160 173 175-176 178 181-182 185
			191-191 196 206-207 209-210 216-220 229 236 243 245-246 248-249
			257 277 294-296 311 317-318 325 341
fetal liver-	Columbia	F1.5003	14 20 126 160 249 294 319 334
spleen	University		1.2.12.12.12.1.1.1.1.1.1.1.1.1.1.1.1.1.
fotal liver	Invitrogea	FLV001	6-7 10 12 14 16 24 33 37 48 50 143 149 151-152 158 186 196 224 238
fotal liver	Clostoch	FLV002	14 21 61 149 335
fotal liver	Clootech	FLV004	10 14 21 24 29 34-35 37 45 47 69 72 108-109 116 118 139 157 179
			255 332
(ctal muscle	parinoscu	FM:S001	21 26-27 32 35 37 44 61 94 108-109 118 124 126-127 134 159 190
		FMS002	216 263 14 21-22 42-43 67-64 E5 108-109 115 118-119 145-146 185 198 216
fetal muscle	Invitrogen	FMS002	14 21-22 42-43 67-68 85 DB-109 11 118-119 145-146 185 198 216 267-263 332 336 339
feral skip	Invitrogen	FSK001	2 10-14 17 28 33 37 40 46 59 62-63 68-69 71 81 90 93 100 115 122
100 120	m.v.m.ogen	1.35.301	127 131 143 150 153 156 160 174 195-196 206 213 216 224-225 239
			287 301-302 313-315
fetal skin	Invitrogen	FSK002	2 22 34 41 66 71 100 113-114 116 121 143 178-179 194 209 216 227
			259 267 313
fetal spleen	BioChain	FSP001	21 91
umbilical	BloChain	FUC001	2 14 17 21 25-27 33 42-43 45 48 60-62 78 85-46 90 93 97 99 103 107
cord		I	110 116-117 126 147 151-152 161 168 216 220 234 236 283
fetal brein	GIBCO	HFB001	14-15 18 21 23 26-28 32 35 40-41 43 47 60 67-68 70-79 85 94 99 101 144-146 149 151-152 158 177 183-184 197 212-213 225
infers brain	Columbia	IB2002	4-5 9 11-12 14 16 21 28-29 35 37 47-48 64 68 71-72 75 79 91-93 99-
times ores	University	152502	100 103 106 121 126 131 147 151-152 154-155 159 162 177 182 185-
	Quarta and		187 201 209 211 213-214 225 246 267 271 309 319-320 328
Infant brain	Columbia	IB2003	4-5 9 21 26-28 45 79 90 92-93 131 147-148 185 191-192 205 213-214
	University		336
infant brein	Columbia	IBM002	21 75 320
	University		
infant brain	Columbia	1BS001	21 150 185 320
fibroblest	Stratagene	LIFBOOL	2 13-14 18 26-27 33 40 42-43 93 99 111 116 123 126 133 137 150 155
DOLOGIEN	Strangene	Labour	175-176 201 216 225 245 329
actual home	hyimera	LCTT002	5-7 11 14 20-21 26-27 33 35 37 40-43 47-48 53 59 61-62 72 74 79 81
			£3 £5 90-91 95 97 99-100 104 106-107 111 117-118 126-127 136 139-
	l		140 142 145-146 153 155 160 162 164 170 175-176 181-182 203 206
			215-216 220-225 233-235 248-251 262 268 291 309-310 330-331
lymphocytes	ATCC	LPC001	49 14 21 26-27 41 50 61 69 83 100 107 113 117-118 120 131 137 164
			170-172 209 225 227 245 247 275 286 319
leukacyte	GIBCO	LUC001	1-2 4-5 9 (2-15 20-22 25-27 33 35 38 40-43 50 53 57 59-63 65 69 71- 72 74 76 78-79 82-83 88 93 95 97-99 101 103 107-109 113-114 116-
	I	ì	1 120 123 126 131 133-139 150 161-165 173 178 218 222 225 227 250-
	I	ļ	251 273-275 287 305-307 309 319 338
leukocyte	Clontech	LUC003	4-5 12 42-43 63 71 99 116 118 148 162 166 171-172 309
metanoma fro	Cloutech	MELO04	2 9 12 20 26-27 70 72 79 100 113 116 126 147-148 168 184 218 225
encell line	1	1	284 304
ATCC #CRL	1	l	
1424			
mammery	Invitrogen	MMG001	5-7 12-16 20-21 28 32 45-46 48 59 61-62 65 71 74 79 90-91 93-94 97
gland	Į.	1	100 102-103 110 115 118 121-122 131 139 149 162 167 169 196 198 206-207 216 220 222 224-225 233 236 245 255-258 287 311 330-331
		l	206-207 216 220 222 224-225 233 236 245 255-258 287 311 330-331
induced	Stratagene	NTDOOL	13-14 26-27 32 61 65 72 78

WO 02/059260

PCT/US01/42950

SEQ LD	Accession	Species	Description	Score	76
NO:	No.				Identity
342	AK027819	Homo sapiens	FLJ14913 fis, clone PLACE1006782.	2806	100
343	AAB\$1047	Homo sapiens	20-JUN-2001 28-JUL-1999 Human protein HP00698 amino soid sequence.	1708	100
344	AB040926	Homo sapiens	for KIAA1493 protein, partial ods.	1973	98
345	AAB01382	Home sapiens	20-OCT-2000 10-DEC-1999 Neuron-	4363	99
313	1.000	The second	essociated protein.		l"
346	AAY99410	Home sepions	08-AUG-2000 01-SEP-1999 Human	3376	99
	1		PRO1480 (UNQ749) amino scid sequence		
			SEQ ID NO:253.	<u> </u>	١
347	347 AAE01114	Home sapicas	17-JUL-2001 08-NOV-2000 Human gene 1	2767	99
			encoded secreted protein HBINK72, SEQ ID		1
148	AAE01114	Homo supiens	17-JUL-2001 08-NOV-2000 Himan state 1	1652	76
348	AAEVIII	HOMO SEPICIES	encoded secreted protein HBINK72, SEQ ID	1 1852	/*
	1		NO:28	Į .	
350	AP113208	Home sapiens	mRNA, complete eds.	1615	100
351	AAB49535	Home sapicas	09-MAR-2001 06-APR-2000 Clone	3027	100
			HFKCD20.		
352	BC001079	Home sapiens	clone MOC:2731 IMAGE:2822460, mRNA,	1127	99
			complete eds.	L	
353	AAB20091	Home sepiens	23-APR-2001 16-JUN-2000 Human hydrophobic domain-containing protein	\$03	100
1		HP03374.	l .		
354	AY007148	Home sapiens	CDABP0034 mRNA sequence.	924	100
355	BC001795	Home papiers	Similar to ribosomal protein \$2, clons	971	100
	100001110		MGC:3141 IMAGE:3353508, mRNA.		
	1		complete cds.		
356	BC008739	Home apiens	protein x 013, clone MGC:3073	386	100
			IMAGE:3346340, mRNA, complete eds.		<u> </u>
357	AY007133	Homo sapiens	CDABP0047 mRNA sequence.	1639	100
358	X15977	Home supiens	mRNA for collagen VI alpha-2 alternative C- terminal domain.	313	100
319	BC013173	Home segions	close MGC:17340 DAAGE:4340287, mRNA.	3049	100
329	100013113	Titalio mpicio	complete cda	1	۱
360	BC011747	Home series	Similar to secretory carrier membrane protein	1022	17
			4, clone MGC:19661 D4AGE:3161979,		
			mRNA, complete cds.		
363	AJ310550	Home sapiens	for SMC3 protein.	3517	99
364	AJ2764E5	Home espiens	for putative integral membrane transporter	1502	100
	205158	1	protein (LC27 gene). carboxypeptidase N mRNA, 3' end.	2274	15
365 366	X57351	Home sapiens	1-10 sees from interferon-inducible sens	673	97
300	123333	rione septem	family.	10''	۱"
367	AF230904	Home seriess	protein (C1N85) mRNA, complete cds.	3437	100
368	AP230904	Home seriens	protein (CIN\$5) mRNA, complete cds.	2615	99
369	AJ236915	Home sepiens	for pak5 protein.	3550	100
370	AF269255	Home supiens	apyrase-libs protein I (LALPI) mRNA,	3198	100
			complete ods.		
373	AAY24791	Home supiens	26-AUG-1999 18-DEC-1998 Human secreted	1277	100
	2/4000	I	protein nm 134_4.	1	100
374	X61277	Home explens	CL 100 mRNA for protein tyrosine phosphatass.	1886	Ιω.
375	AK025844	Home sepiens	FLJ22191 fla, clone HRC01066.	1904	100
376	AF032668		racts	3731	92

RNA Source SEQ ID NO Library Name 14 16 44 231 249 NTR001 NTU001 5 13-14 16 21 68 72 74 115 150 160 170 PITO04 9 34 69 74 85 99 270 333 PILLOD 93537 45 64 37 93 99 113 116 139 164 218
PRT001 14 1731-22 33-34 65-64 79 15 93 99 111 136 220 225 245 262 275
REC001 5-7 13 20 44 61 43 93 100 116-111 130 149 154 199 206 218 223 245
SAL001 51 423 41 70 91 105 111 137 162 245 276 245 SALCOI 314 23 41 79 91 105 111 137 102 245 278 215 STROOI 12 12 14 77 21-22 41 44 64-47 60 62 71-72 83 86 94 100 105 121 126 131 143 131 171-177 175 185 185 203 205 207 216-217 233 225 234-235 245 250-251 776 225 315 SKM001 12 147 26-27 35 76 97 100 311 18 25

The 16 tissue/mRNAs and their vendor sources are as follows: 1) Normal adult brain mRNA (Invitrogen), 2) Normal adult kidney mRNA (Invitrogen), 3) Normal fetal brain mRNA (Invitrogen), 4) Normal adult liver mRNA (Invitrogen), 5) Normal fetal kidney mRNA (Invitrogen), 6) Normal fetal liver mRNA (Invitrogen), 7) normal fetal skin mRNA (Invitrogen), 8) human adrenal gland mRNA (Cloutech), 9) Human bone marrow mRNA (Clontech), 10) Human leukemia lymphoblastic mRNA (Clontech), 11) Human thymus mRNA (Clontech), 12) human lymph node mRNA (Clontech), 13) human solspinal cord mRNA (Clontech), 14) human thyroid mRNA (Clontech), 15) human esophagus mRNA 10 (BioChain), 16) human conceptional umbilical cord mRNA (BioChain).

113

WO 92/059260

PCT/US01/42950

SEQ ID	Accession	Species	Description	Score	1deadh
NO:	Na				Ideatif
	AP195514	Rattus	GER#95	4513	90
378	AF192334		GERP93	4513	"
	AAG63221	norvegicus	01-OCT-2001 18-JAN-2001 Amino scid	518	100
379	AAUGJZI	Homo sapiens	sequence of a human ligid metabolism	310	100
	1	1	enzyme.		
380	AAB64878	Homo sapiens	24-APR-2001 21-JUL-2000 Human RECAP	946	100
350	AABbes/8	rionio sapiens	polypeptida, SEQ ID NO: \$.	~~	۳.
321	BC004546	Homo aspiens	disrupter of silencing 10, clone MOC:11290	2431	100
341	BCANTINO	Motito arbuits	IMAGE:3946633, mRNA, complete cds.		
382	AAY02361	Home sepices	13-JUL-1999 06-OCT-1998 Polypoptide	979	91
,	704,02501	Tomo sapreme	Identified by the signal sequence trap method.	<i>'''</i>	١′٠
383	AAB63460	Home sapiess	26-MAR-2001 26-MAY-2000 Human breast	924	99
,.,	77000	1 I Canto ampacas	cancer associated antigen protein sequence	~	"
			SEO ID NO:822.		
384	AAB63460	Homo sapiena	26-MAR-2001 26-MAY-2000 Human breast	984	99
	7		cancer associated antigen protein sequence		l
			SEQ ID NO:822.		l
315	BC001068	Homo sapiens	clone IMAGE:2823731, mRNA, partial cds.	2994	99
386	AK003950	Mus musculus	putative	623	97
387	AK001527	Homo sapiens	FLJ10665 fls, clone NT2RP2006200.	4109	99
344	BC014442	Home saniens	clone MGC:22964 IMAGE:4866321, mRNA.	2333	100
			complete cds.		l
389	BC000056	Homo sapisas	close MOC:3262 1MAGE:3506385, mRNA,	1464	95
			complete eds.		
390	BC004393	Home mpiens	Similar to RIKEN cDNA 2310045801 gens,	1145	99
			clone MOC:10974 IMAGE:3635540, mRNA,		l
			complete eds.	_	
391	AK026307	Hamo sepiens	FLJ22649 fls, clone HS107332.	930	99
392	AK001411	Home sapises	FLJ10549 fls, clone NT2RF2001976,	3711	100
	i		moderately similar to Mus musculus		l
			estmodulin-binding protein SHA1 mRNA.		
393	AAB93202	Home saplens	26-JUN-2001 28-JUL-2000 Human protein	2549	99
			sequence SEQ ID NO:12168.		
394	AAG75102	Home sapiens	03-SEP-2001 28-SEP-2000 Human colon	995	100
			cancer antigen protein SEQ ID NO:5866.		
396	AF006088	Home sepiens	protein complex subunit p16-Arc (ARC16)	371	100
	<u> </u>		mRNA, complete eds.		
397	BC005131	Homo sepiens	Similar to RIKEN cDNA 2010003303 gene,	149	99
	1		done MGC:11102 DAAGE:3831647, mRNA,	1	
			complete cds.		
398	AK010289	Mas musculus	putative	854	73
399	AF226055	Home mpiens	(HTGN29) mRNA, complete cds.	1367	100
400	AF090930	Home sepiens	HQ0478 PRO0478 mRNA, complete ods.	180	98
401	AF118084	Home saplens	PRO1914	350	100
402	BC007283	Home sapicas	ribosomai protein S11, clone MGC:15628	824	100
	- White 10-	10000	DMAGE:3343839, mRNA, complete eds.	4331	99
403	AK025392	Home mpiens	FLJ21739 fis, clone COLF4061. beta inducible nuclear protein TINP1 (TINP1)	1364	100
404	AF077615	Homo sepiens		1304	۱ 'س
	- Kendana	W. Street	mRNA, complete cds.	2963	99
405	AK027709	Home sapiens	FL114803 fls, clone NT2RP4001442.	566	100
406	BC006002	Home suplens	Similar to RIKEN CDNA 1190005P17 gene, clone MGC:14817 D4AGE:4247279, mRNA,	900	1 400
				ı	
	M80902	17	complete cds.	8529	99
407		Homo sepiena	AHNAK nucleoprotein mRNA, 3' end.		
	AAW90962	Home supiens	14-JUL-2000 06-NOV-1998 Human CSGP-2	2346	99

VO 02057266 PCT/US91/42950 WO 02057260 PCT/US91/42950

SEQ ID	Accession No.	Species	Description	Score	1death
1.0,			protein.	_	
409	AK027715	Home sepicas	FL114809 fis, close NT2RP4001 822, weakly similar to PLATELET-ENDOTRELIAL TETRASPAN ANTIGEN 3.	1295	100
410	BC015928	Homo sepiens	clone MGC:8773 IMAGE:3908916, mRNA, complete cds.	2186	100
411	BC015317	Homo sapiena	Similar to suppression of tumoriganicity 13 (colon carcinoma) (Hap70-interacting protein), clone MGC:21083 [MAGE:4425762, mRNA, complete ods.	302	100
412	L26335	Cavia porcellus	zine finger protein	1493	99
413	AF209198	Home sepiens	finger protein 277 (ZNF277) mRNA, complete cds.	2357	100
414	AE001399	Plasmodium falciparum	GAF domain protein (cyclic at signal transduct.)	178	35
415	AAY48226	Home sapiens	08-DEC-1999 10-MAR-1998 Human prostate cancer-associated protein 12.	1204	96
416	M94389	Loligo pealei	neurofilament protein	165	23
417	AF317425	Homo sapiena	(GAC-1) mRNA, complete cds.	3725	91
418	AF116675	Homo sapiens	PRO1942	257	100
419	AAG73932	Homo sepiens	03-SEP-2001 28-SEP-2000 Human colon cancer antigen protein SEQ ID NO:4696.	1415	100
420	AK000100	House seniens	FLJ20093 fis, close COL04263.	841	100
421	BC005326	Homo mpiens	ribosomal protein L27s, clone MOC:12412 DMAGE:4052417, mRNA, complete eds.	754	99
422	AF119865	Homo sapiera	PRO2176	470	97
424	AF138863	Home mpiens	PRO1677	868	99
425	X14361	Home moiens	CR1 game for C3b/C4b receptor SCR9 (or 16) C-term, exon SCR = short consensus repeat.	135	100
426	224725	Home sepiens	mitogen inducible gene mig-2, complete CDS.	3576	99
427	AK027587	Homo sapiens	FLJ14681 fis, clone NT2RP2004270, weakly similar to PROTEIN PTM1 PRECURSOR.	1103	100
428	AC004770	Homo sepiens	II, BAC CIT-HSP-JIIc# (BC269730) containing the hFENI gross, complete sequence.	1527	84
429	AK026262	Home septens	FLF22609 fis, clone HS104913.	1795	99
430	BC007279	Home sepiens	clone FLB5214, clone MGC:15622 IMAGE:3343280, mRNA, complete eds.	416	100
431	AL133035	Homo sepiens	cDNA DKFZp434G171 (from clone DKFZp434G171),	1136	99
432	AF166125	Home sapiens	N mRNA, partial cds.	1816	99
433	AF161370	Home sapiens	mRNA, partial cds.	824	100
434	AK000161	Homo sapiena	FLJ20154 fls, clone COL08740.	284	100
435	AK001784	Homo sapicas	FLJ10922 fis, clone OVARC1000420.	684	100
436	BC011396	Home sapicas	clone MGC:17720 IMAGE:3870711, mRNA, complete eds.	1080	100
437	AF165527	Home sapiens	(DGCR8) mRNA, complete cds.	259	100
438	AP230200	Home sapiens	mRNA, partial eds.	358	95
439	BC008468	Homo supiens	Similar to RIKEN cDNA 1110059010 gene, clone MGC:14734 IMAGE:4277104, mRNA, complete eds.	791	100
440	BC007170	Home saplens	DC6 protein, clone MGC:14435 IMAGE:4303290, mRNA, complete eds.	505	100
441	AAB20167	Homo sapiens	30-APR-2001 17-JUL-2000 Human protein	2066	100

NO:	No.	Species	Descriptions	Scare	Identity
,,,,,			associated with IgA nephropathy.		Identity
442	AABORSIO	Home samens	30-AUG-2000 22-SEP-1999 Human serveted	1112	100
	~~~		protein sequence encoded by gene 20 SEO ID	'''	l '**
			NO:67.	l	l .
443	BC003026	Home saniens	close IMAGE:2823490, mRNA, partial cds.	354	14
444	BC003127	Home sapiens	Similar to scienoprotein X, 1, clone	527	100
			MGC:3344 DMAGE:2905838, mRNA.	l	1
	ŀ	1	complete cds.	l	l
445	AK000143	Home sapiens	FLJ20136 fts, close COL07068,	2260	100
446	AK000388	Home rapiens	FLIZ0381 fis, close KAIA2329,	2375	100
447	BC002364	Home sapiens	non-POU-domain-containing, octamer-	2449	98
			binding, clone MGC:8677 DMAGE:2964534,		1
	1		mRNA, complete ods.		1
448	AK025645	Home sapiens	FLJ21992 fis, close HEP06554.	920	24
449	AAB95268	Home saplens	26-JUN-2001 28-JUL-2000 Human protein	3708	99
			peguence SEO ID NO:17462.		1
450	API 13538	Home supiens	a receptor interacting protein mRNA.	1800	100
			onmoleto eds.		
451	AAW78167	Homo saniens	13-APR-1999 11-JUN-1998 Human secreted	795	100
			protein encoded by gene 42 clone HFFAT33.		
452	BC014943	Homo sapiena	NMN adenytyltransferese; nicotinamide	1458	100
			monomiclectide adenyiyi transferaso, clone	1	
	ľ		MGC:22925 DMAGE:4874147, mRNA.		ı
			complete cds.	l	
453	BC000348	Home saniens	ribosomal protein L35, clone MGC:8582	591	97
			TMAGE:2960987, mRNA, complete eds.		1
454	AJ277591	Home tapiens	for p15-2a protein (p15-2 gene).	749	100
455	AK000927	Homo saplens	FLJ10065 fis, clone HEMBA (001455.	3143	100
456	AB045118	Home mpices	mRNA, complete cds.	1192	99
457	AAZ51355	Homo sagiens	06-JUN-2000 20-AUG-1999 Human wild	2198	99
			type serine/threonine kinase KIS (hKIS) gene.		ı
458	AF146696	Homo saplena	pAB195 FOXP1 (FOXP1) mRNA, complete	1639	100
			cds.	L	
459	BC009401	Home sapiens	natural killer cell transcript 4, clone	914	100
			MOC:15353 IMAGE:4300407, mRNA,	l	l
		1	complete cds.		I
460	BC010537	Home mosens	activated RNA polymerase II transcription	563	99
			cofactor 4, clone MGC:17295	l	l .
	<u></u>		DMAGE:3457167, mRNA, complete cds.		
461	AF076642	Home sapiens	of O-protein signaling 13 mRNA, complete	1218	100
			eds.		L
462	AF116718	Home sapiens	PRO2900	396	100
463	AAB18919	Homo sapiens	08-FEB-2001 01-MAR-2000 A novel	1137	99
			polypeptide designated PRO4356.		
464	AC025416	Arabidopsis	F5011.12	135	36
		thelians			
465	BC002757	Home sapiens	cytochrome e exidese subunit VIIa	247	100 .
	I		polypeptide I (muscle), clone MGC:3716	l	l
			IMAGE:3631740, mRNA, complete eds.	L	
466	AY037115	Home supiens	stromal lymphopoietin (TSLP) mRNA,	823	100
			complete ods.	Щ.	
467	M15841	Homo sapiens	U2 small nuclear RNA-associated B" antigen	638	100
			mRNA, complete ods,	L	
468	AK026916	Home sapiens	FLJ23263 fis, clone COL06129.	2612	99
469	AAY05317	Home sapiens	25-JUN-1999 08-SEP-1998 Human secreted	1508	100

WO 02/059260 PCT/US01/42950 WO 02/059260

SEQ ID NO:	Accession No.	Species	Description	Score	1dentity
470	AAY05317	Horno sapiens	25-JUN-1999 08-SEP-1998 Human secreted protein bn97 1.	851	99
471	AAY66721	Home suplens	05-APR-2000 02-JUN-1999 Membrane- bound protein PROSII.	1176	95
472	AAB12144	Homo sapiens	02-FEB-2001 17-NOV-1999 Hydrophobic domain protein isolated from WERI-RB cells.	1806	100
474	AL022391	Homo supiens	equence from PAC 434014 on chromosome [1923.44]. Contains the HSD11B1 gene for Hydroxyneroid (11-bets) Dehydrogenese i, the ADDRA2BP adenaine A2b receptor LIKE pseudopen, the RF6 gens for laterform Regulatory Factor 6 and two novel genes. Combine BSTs and GSSs, complete sequence.	575	100
475	AF324830	Home supiens	transcript II protein (ILTII) mRNA, complete cds.	1590	100
476	AJ306731	Home sapiens	for RhoOAP protein (RUCH1 gene).	846	100
477	BC006116	Home supiens	Similar to RIKEN cDNA 3100002B05 game, clone MGC:12993 IMAGE:3504453, mRNA, complete cds.	2063	100
478	AK001077	Homo saplens	FLJ10215 fis, close HEMBA1006737, weakly similar to ANKYRIN, BRAIN VARIANT 2.	812	100
479	AAG89322	Home sapiens	11-SEP-2001 07-DEC-2000 Human secreted protein, SEQ ID NO: 442.	922	98
480	AAE02782	Home sepiens	06-AUG-2001 06-DEC-2000 Human six transmembrane epithelial entigen of prostate (STEAP)-3 protein.	2392	100
481	AK025537	Home supiens	FLJ21864 fis, clone HEP02863.	3021	99
482	AJ007590	Home sapiens	for XRP2 protein.	1766	100
483	AACI93264	Homo rapiens	13-SEP-2001 06-DEC-2000 Human protein HP10160.	841	100
484	AB027258	Home sepiens	for basel transcriptional activator hABTI, complete eds.	140\$	100
445	BC000318	Home supiess	Similar to brain acid-soluble protein 1, clone MOC:8355 IMAGE:2822874, mRNA, complete orb.	1137	99
486	AK001425	Home septens	FLJ10563 fla, clone NT2RP2002769.	1695	99
487	BC013322	Home supiens	clone MGC:13411 IMAGE:4077631, mRNA, complete cds.	1459	99
411	AK002030	Home papiens	FLJ11164 fb, clone PLACE1007274.	1029	100
419	BC003376	Homo supieus	high-mobility group (nonhistone chromosomal) protein 1, clone MOC:5223 IMAGE:2901382, mRNA, complete eds.	1140	99
490 _	AK001159	Home sapicus	FLJ10297 fls, clone NT2RM1001074.	764	100
491	AK000020	Home sapicas	FLJ20013 fls, clone ADKA03455.	1613	100
492	AK001322	Home supices	FLJ10460 fis, clone NT2RP1001475.	1207	100
493	AK001322	Home sapiens	FLJ10460 fts, ctone NTZRP1001475.	892	98
494	AY008293_	Home sepiens	protesse (SENPS) mRNA, complete cds.	1114	99
495	AF413080	Home sapiens	mRNA, complete ods.	9184	99
496	AK000134_	Home sapiens	FL/20147 fls, clone COL07954.	673	100
497	AK001001	Home sapiens	FLJ10139 fls, clone HEMBA1003175.	658	100
499	AK027124	Home suplens	FLJ23471 fls, clone HS111969.	1773	99
501	BC012024	Homo sepiens	kinetochore protein CENP-H, clone MOC:21431 DAAGE:4510607, mRNA,	1214	100

WO 02/059260 PCT/US01/42950

SEQ ID ON:	Accession No.	Species	Description	Scere	% Identity
502	U40407	synthetic construct	T cell receptor alpha chain	1119	10
503	AF043179	Homo sapiens	cell receptor beta chain (TCRBV13S1- TCRB/2S1) mRNA, complete cds.	681	73
504	AP116678	Home sapiens	PRO1995	587	100
505	AB051653	Homo supiens	gene for rho-OTPase activating protein, complete cds.	1766	98
506	AB046074	Macaca fascicularis	unnamed protein product	515	83
507	AK002848	Mus musculus	putative	429	84
508	AAB01973	Home sapiens	30-AUG-2000 22-SEP-1999 Human secreted protein sequence encoded by gene 27 SEQ ID NO:130.	1753	98
509	AK000740	Home sapiens	FLJ20733 fis, clone HEP08550.	4651	100
310	AL136858	Homo sapians	cDNA DKFZp434NZ435 (from closse DKFZp434NZ435); complete cds.	501	100
511	BC008413	Home sapiens	cione MGC:14552 IMAGE:4333393, mRNA, complete cds.	1706	99
513	AJ277275	Homo sapiens	for rape-1 (rape gene).	5086	100
514	AB042563	Homo sapiens	mRNA for casein kinase 1 gamma 11., complete cds.	1739	100
515	BC015597	Home sapiens	clone IMAGE: 4649498, mRNA, pertial ods.	719	63
\$16	BC001277	Home suplens	KDEL (Lys-Asp-Gho-Leu) endoplasmic reticultura protein retention receptor 3, closs MGC:5099 IMAGE:3462392, mRNA, complete cds.	1103	100
317	AF011126	Drosophila melanogaster	ER lumen protein retaining receptor	409	75
519	AK023651	Home suplens	FLIJ339 fis, close PLACE1009308, weakly shaller to GLUCOSE REPRESSION MEDIATOR PROTEIN.	1483	100
320	AK000371	Homo sapiens	FLI20364 fis, clone HEP17854.	2040	100
522	AAB24228	Homo sepiens	07-FEB-2001 06-APR-2000 Human vesicle associated protein 7 SEQ ID NO:7.	1293	100
523	BC015327	Home saplens	Similar to RIKEN cDNA 1110001019 gene, clone MGC:21689 DMAGE:4400374, mRNA, complete cds.	429	100
324	BC008488	Home tapiens	RIKEN cDNA 2010100012 gens, close MGC:14813 DAAGE:4133274, mRNA, complete cds.	404	97
\$26	AF360739	Home suplens	protein \$5-56 (59-56) mRNA, complete eds.	2618	99
527	BC013725	Home sepicas	closs MGC:17998 DAAGE:3922049, mRNA, complete cds.	782	100
529	AF230201	Home sapiens	mRNA, complete cds.	396	100
530	AK001984	Home sapiens	FLJ11122 fts, close PLACE1006159.	658	100
531	AX000530	Home saplens	FLJ20523 fls, clone KAT10456.	691	100
532	U37134	Dresophila malanoguster	interest protein	248	
233	U37134	Drosophila melanogaster	interned protein	244	23
335	AR033132	Home sapiens	complete cds, testis-specific genc2.	1386	100
116	AF153417	Home sentras	9 open reading frame 6 mRNA, complete cds.	221	100
537	AJ277557	Home mpiens	gene for mitochondrial 5(37)- deax yribonucleotidase (dNT-2 gene), exons 1-5.	617	100
538	AF127364	Arabidoosis	ubiquitin-protein ligase 1	854	42

[338 ] AF12/304 | AFE

PCT/US01/42950 WO 02/059260 PCT/US01/42950 WO 02/059260

SEQ ID	Accession No.	Species	Description	Score	% Identity
		thetians			
540	AK000442	Home seciens	FLJ20435 fis, clone KAT03864.	1513	99
341	AF278541	Homo sapiens	protein ACT mRNA, complete ods.	1657	99
542	AAY99440	Home sapiens	08-AUG-2000 01-SEP-1999 Human	3408	100
			PRO1564 (UNQ770) amino acid sequence SEQ ID NO:347.		
543	AL117491	Home sapiens	cDNA DKFZp434N231 (from close DKFZp434N231); pertial cds.	7295	100
544	BC003179	Homa sapiens	cione MGC:4419 IMAGE:2958058, mRNA, complete cds.	792	100
545	AAE05136	Homo sapiens	12-SEP-2001 12-JAN-2001 Human drug metabolising enzyme (DME-17) protein.	1095	99
346	AAY94926	Homo sapiena	16-JUN-2000 13-AUG-1999 Human secreted protein clone rd232_5 protein sequence SEQ ID NO:58,	1578	99
547	AK026027	Homo sapiens	FL/22374 fis, clone HR C06766.	647	100
541	AL137584	Home supiens	cDNA DKFZp434Q1310 (from close DKFZp434Q1310); pertial cds.	245	97
550	AF352026	Home sapiens	protein I mRNA, complete cds.	3015	99
552	AK025840	Home suplens	FLJ22187 fls, clone HRC01029.	918	100
353	BC013117	Home spiens	close MQC:8711 IMAGE:1882749, mRNA, complete eds.	1126	100
554	BC014111	Homo supiens	Similar to ecotropic viral integration sits 5, close MGC:20844 IMAGE:4542709, mRNA, complete cfs.	2698	97
555	AK016622	Mus musculus	putative	1413	97
557	AF111263	Home sepiens	domain containing 2 (EHD2) mRNA, complete cds.	2416	99
558	AP001660	Home suplens	DNA, chromosome 21q, section 4/105.	1424	100
559	BC001781	Homo sapiens	ribosomal protein L44, clone MGC:2064 IMAGE:3353669, mRNA, complete cds.	543	100
560	AF011941	Ratius norvegicus	soluble adepytyl cyclase	142	38
561	AF378129	Homo sapiens	domain containing adaptor protein TIRAP mRNA, complete cds.	1227	99
562	X01403	Homo sapiens	mRNA fragment for T-cell receptor alpha chain.	840	90
563	AAY39883	Home sapiens	07-DEC-1999 26-MAR-1999 MHC Class II p41 specific region.	947	99
564	AB026707	Home septems	for FOAP-11 protein, complete cds.	429	100
565	AK007905	Mus musculus	putative	1484	83
566	BC015389	Homo sapiens	clone IMAGE:4401937, mRNA, partial cds.	421	100
567	AF116669	Homo sapiens	PRO1828	237	100
561	AK000328	Home sapiens	FLJ20321 fls, clone HEP09380.	5507	99
569	AF263913	Mus musculus	fidgetin	3864	97
570	AK015017	Mus musculus	putative	635	50
572	AK001673	Home saplens	FLJ10811 fls, clone NT2RP4000955.	3661	100
573	AAY96059	Home sapiens	05-DEC-2000 02-MAR-2000 Human sphingosine kinase C.	617	100
574	AK000207	Home sapiens	FLJ20200 fis, clone COLF1206.	2500	99
575	X52140	Rattus norvegicus	precursor polypeptide (AA -28 to 1152)	5429	87
576	AK005909	Mus musculus	putative	393	100
577	AAB08870	Homo saplens	15-JAN-2001 03-MAR-2000 Amino acid sequence of a human secretory protein.	590	100

120

WO 02/059260 PCT/US01/42950

SEQ ID	Accession No.	Species	Description	Scere	identity
,,,,,	1,100		NO:3481.		- Tuesday
615	AF161345	Home sapiens	mRNA, partial cds.	439	100
616	AP116694	Home sapiens	PRO2219	351	88
617	AAE03643	Home sapiens	06-AUG-2001 05-DEC-2000 Human	1974	98
•••	1.5.5		extracellular matrix and cell adhesion		1
	l		molecule-7 (XMAD-7).	ļ	
620	AL133640	Home sapiens	cDNA DKFZn586C1021 (from clone	2149	100
•••	1.2.550.10		DKFZp586C1021); partial cds.	1	
621	BC003369	Home seplens	ribosomal protein, large, P1, clone	161	76
			MGC:5215 IMAGE:2900846, mRNA.		
	1	1	complete cds.	į	
622	BC012124	Home papiens	close MGC:20188 IMAGE:4564707, mRNA.	810	100
	100012101		complete cds.		
625	AK008513	Mus musculus	putative	440	50
626	M32639	Homo sapiens	salivery statherin gene, exons 2-6.	276	87
627	BC008282	Home sapiens	Similar to SH3-domain binding protein 1.	897	96
.	· source separate	clone MOC:10501 IMAGE:3639782, mRNA.	•		
		complete ods.	1		
628	AAG04000	Home sapiens	06-OCT-2000 21-FEB-2000 Human secreted	515	100
-	721001300	C.OLLO SAPACIO	protein, SEQ ID NO: 8081.		
629	AC011473	Home sustant	19, BAC BC349142 (CTC-518B2), complete	1392	100
ш,	70011413	. some saprem	sequence.	1.07	1'''
612	AAY82615	Home sepiens	02-AUG-2000 12-OCT-1998 Human PTHrP	768	12
	747.102013	Tions separate	monoclonal antibody clone ICI-3 protein		
	1	SEO ID NO:14.			
633	AAB15539	Home sapiens	28-FEB-2001 04-APR-2000 Human immune	637	92
4,,	72.01.7337	1 trush safacers	system molecule from Incyte clone 2907049.	۳.	, ·
634	AC018513	Home series	14 clone RP11-35H3 map 14q31, complete	RIE	100
	1 ~~	range expens	sequence.	1	l''''
635	X03249	Bos trurus	epsilon-4 beta-globin	321	79
636	AB046099	Macaca	unmersed protein product	395	8.8
		faccicularis			
637	AC006033	Home sapiens	clone RP11-121A8 from 7p14-p13, complete	1017	95
			sequence,	'	
634	BC009488	Home moissa	Similar to CG10958 gene product, close	848	99
			MOC:16372 DMAGE:3929220, mRNA,		
	l .	1	complete cds.		
619	AL359620	Home sessions	cDNA DKFZp762P2111 (from clone	615	100
			DKFZp762P2111).		
640	AB003184	Home supiens	for ISLR, complete eds.	880	59
641	AB036921	Pagrus major	manustion-inducing protein	797	69
643	AF284422	Home supices	cotransporter-interacting protein mRNA,	4694	100
	1		complete cds.		
646	AE000639	Home segions	receptor alpha delta locus from bases 250472	377	100
	1		to 501670 (section 2 of 5) of the Complete		
			Nucleotide Sequence.	<u> </u>	
648	AAR59748	Home papiers	13-FEB-1993 14-DEC-1992 T call receptor	636	100
			Valpha2.3 chain,	l l	
649	AJ004871	Home sepiens	for TCR alpha chain, specific for Mage	1328	94
-	1	1	3/HLA-A2		
650	AF043179	Home sapiens	pell receptor bets chain (TCRBV1351-	1286	92
	I	1	TCRBJ2S1) mRNA, complete cds.	L	L.
631	AA074462	Home emiens	03-SEP-2001 28-SEP-2000 Human colon	143	75
	1	1	cencer entigen protein SEQ ID NO:5226.	ļ	
652	AAE02653	Home regions	06-AUG-2001 03-NOV-2000 History gene 1	287	98
			encoded uteroglobin-like protein from cDNA		

SEQ ID Description No. AJ296173 AE003588 Mus musculus GATS protein
Drosophila CG13947 gene product FLJ13035 fls, close NT2RP3001538, weakly similar to HYPOTHETICAL 19.0 KD PROTEIN T2EP9.3 IN CHROMOSOME II. AK023117 582 1664 583 Similar to meeth year from one of protein DSC43, close MGC:19932 IMAGE:2960099, mRNA, complete ofs.
guante nucleotide binding protein (G protein), gamma 5, close MGC:1969
IMAGE:392279, mRNA, complete ofs.
putative protein 585 BC003563 586 AL035521 145 28 AY014283 AK020796 AL034548 thellene mRNA, complete ods. in RNA, complete och, prattive DNA sequence from clones RP5-110307 on chromosome 20 p12-11. Contains up to chromosome 20 p12-11. Contains up to chromosome 20 p12-11. Contains up to chromosome 20 wNP, the gene for a novel protein kinase domatins containing protein stullar to phosphoprotein CEPW and res NIPK, and the SOXIZI gene for SNY (sex-determining replox Pybox IZ-Contains five Cp0 lishach, ESTa, STSs and GSSa, complete sequence. CpO Islands, ESTA, 3178 are USSA, compenses, megeness.
FLI 1902 fits, close NT2RP3000753, weakly infaller to NULNOFILAMENT TRIFLET it INFANA for eakrytherions.
INFANA for eakrytherions.
Complects 1, close MCCC1007
MAGE-319779, eBTA, complete ch.
Close MCC10270 IMAGE-3184019, mRNA, complete ch. AK023084 BC007194 596 217 25 clone MGC:16291 DAAGE:3834089, mR complete cds. novel brain-specific protein for SMC3 protein. ring-box 1, clone MGC:1481 DAAGE:3138751, mRNA, complete cds. nutritive putative binding protein mRNA, complete cds. 06-OCT-2000 21-FEB-2000 Human s us-OCT-2000 21-EiD-2000 Human s protein, SEQ in Nov. 631-5. 66-OCT-2000 21-EiB-2000 Human s protein, SEQ ID NO: 6012, FL10895 fig. close NT2RP4002903. close 473/1 melanona ubiquitous mut protein (MUM-1) mRNA, partial cds. hypothetical protein AAG01931 159 AK001757 Home sepiens U20897 Home sepiens AE003859 Xylella fastidiosa 9a5c AK002185 Home sapiens

FLJ11323 fis, clone PLACE1010162, weakly similar to 1-PHOSPHATIDYLINOSITOL PHOSPHODIESTERASE PRECURSOR (EC 3.1.4.10).

08-FEB-2001 31-MAR-2000 Human ORFX ORFI744 polypeptide sequence SEQ ID 121

108 39

451 33

116

613

612

614

AAB41980 Homo sapiens

WO 02/059260 PCT/US01/42950

SEQ ID NO:	Accession No.	Species	Description	Score	% Identit
		ļ.,—,—	clone HTELR92.	1425	97
654	AAY70457	Home supiens	21-JUN-2000 02-SEP-1999 Human membrane channel protein-7 (MECHP-7).	1425	97
655	AJ406931	Homo espicas	for terratin associated protein 3.1 (KRTAP3.1 gene).	598	100
656	AK000366	Home supiens	FLJ20359 fls. clone HEP16626.	2151	100
637	AF116688	Home sapiens	PRO2133	370	98
658	BC002505	Home supiens	small nuclear ribonucleoprotein polypoptide	222	14
			P, ctone MGC:1615 IMAGE:3051263, mRNA, complete cds.		l
659	D\$7009	Home sepiens	lambda gone locus DNA, clone:288A10.	1822	99
660	AK000349	Home sapiens	FL720342 fia, close HEP13572.	3028	99
661	AK010756	Mus musculus	putative	653	84
662	AE006360	Lectococcus	HYPOTHETICAL PROTEIN	287	34
	, and a	lactis subsp.			
663	AC004832	Home sapless	clone RP4-519M6 from 22, complete	220	100
			sequence.		
664	AB037902	Homo sapiens	AKR mRNA for truncated aldo-kete reductase type A, complete ods.	670	100
665	AF060511	Homo sepiens	016b10 My016 protein mRNA, complete cds.	133	52
666	M33014	Drusophila	oblimatio	153	62
000	MASSOIR	melanogastur			
667	AK022128	Home sapiens	FLJ12066 fls, clone HEMBB1002266,	1397	100
	ł		moderately similar to NEURONAL PROTEIN.		l
669	AL137512	Home suriens	cDNA DKPZn564E0178 (from clone	751	100
			DKFZp364E0178); pertial cds.		
670	\$66015	human,		1664	100
		mRNA, 1020			
	1	nt). [liome			
10.	1	sapiens	class III region containing NOTCH4 gene,	2133	100
671	U19336	Home sepiens	partial sequence, homeobox PBX2 (HPBX)	4133	۱ ^۱ ۳
	1		gene, receptor for advanced glycosylation end	l	l
		1	products (RAGE) game, complete cets, and 6	ŀ	
	1		unidentified cds, complete sequence.	į .	
672	U29336	Home explens	class III region containing NOTCH4 gene,	2094	96
	1		partial sequence, borneobox PBX2 (HPBX)		
			gene, receptor for advanced glycosylation and	ł	1
	ı	l .	products (RAGE) gens, complete ofts, and 6	1	ı
	J		unidentified eds, complete sequence,		
673	AL136746	Home sepiens	cDNA DKFZp434K0512 (from close DKFZp434K0512); complete cds.	962	94
674	AF125535	Home expiens	homolog mRNA, complete cds.	502	95
675	AF227130	Home sepiens	teste receptor T2R3 gene, complete eds.	1629	100
677	AB046626	Macaca	hypothetical protein	291	93
		fascicularis			<u> </u>
678	AC002017	Homo mpiero	complete sequence.	1145	100
679	AE000659	Home sapiens	receptor siphs delts locus from bases 250472	565	100
,	,		to 501670 (section 2 of 5) of the Complete Nucleotide Sequence.	-	
680	AAY99368	Home sepiens	OS-AUG-2000 01-SEP-1999 Human	2034	100
040	AA 199363	L'ozze sebacus	PRO1326 (UNQ686) amino acid sequence	***	l''''
	1	1	SEQ ID NO:100.		

PCT/US01/42950

TABLE 3

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
682	BC000555	Home sapiens	ribosomal protein L37a, clone MGC:1638 IMAGE:1162085 mRNA complete ods.	187	55

SEQ ID NO:	Accession No.	Description	Resulty*
343	BL00895	3-hydroxylsobutyrate	BL00895B 21.14 7.061e-22 151-190
		dehydrogenese proteins.	BL00895C 20.10 8.071-22 200-236
	i		BL00895A 12.61 1.973a-18 42-63
351	PR00907	THROMBOMODULIN	PR00907B 11.29 9.299-10 234-251
		SIGNATURE	
355	BL00585	Ribosomal protein S5 proteins.	BL00585A 28.43 1.391e-40 103-155
357	PR00078	GLYCERALDEHYDE-3-	PR00078B 7.45 3.250e-24 146-165
		PHOSPHATE	PR00078D 11,49 2,800e-21 232-250
	1	DEHYDROGENASE	PR0007EE 10.50 6.211e-16 272-288
	i	SIGNATURE	PR00078C 15.99 8.000s-16 173-190
			PR00078A 10.38 1.000e-15 111-125
359	BL01282	BIR repeat proteins.	BL01282B 30.49 1.000+13 523-562
361	BL00970	Nuclear transition protein 2	BL00970C 14.80 9.773e-09 70-108
		proteins.	
362	DM00191	w SPACSA4.04C	DM00191A 8.16 9.640e-09 12-25
	1	RESISTANCE SPACEA4.05C	
		DAUNORUBICIN.	
365	PR00500	POLYCYSTIC KIDNEY	PR00500B 7,74 3.558e-09 396-417
		DISEASE PROTEIN	
		SIGNATURE	
367	BL50002	Src homology 3 (SH3) domain	BL50002B 15.18 1.600e-10 141-155
		proteins profile.	BL50002B 15.18 6.000e-09 42-56
368	BL50002	Src homology 3 (SH3) domain	BL50002B 13.18 1.600e-10 141-155
		proteins profile.	BL50002B 15.18 6.000e-09 42-56
369	BL00240	Receptor tyrosine kinase class	BL00240F 17.74 4.196e-11 552-600
		III proteins.	
370	BL01238	GDA1/CD39 family of	BL01238C 14J6 2.080e-16 212-234
		muclenside phosphatases	BL0123ED 10.19 1,180e-12 255-269
		proteins.	BL01238A 11,72 5.673e-11 86-101
371	PR00679	PROHIBITIN SIGNATURE	PR00679F 8.03 7.8486-25 122-146
			PR00679E 12.82 6.674+18 97-117
i			PR00679D 11.91 3.739-16 74-91
	į.		PR00679B 13.63 A.071e-16 28-48
	ļ.		PR00679C 14.44 7.465e-14 51-70
			PR00679G 6.13 1.340=13 157-174 PR00679A 14.03 1.295=12 10-27
374	PR00700	PROTEIN TYROSINE	PR00700D 12 47 4 462=-11 251-272
3/4	PK00700	PHOSPHATASR	PRUO/00D 1247 4.4628-11 253-212
	1	SIGNATURE	
375	PD00066	PROTEIN ZINC-FINGER	PD00066 13.92 2.385e-15 254-267
3/3	1100000	METAL-BINDI.	PD00066 13.92 2.800e-14 310-323
	i	METALABIADI.	PD00066 13.92 7.429-12 282-295
377	PR00925	NONHISTONE	PR00925B 3.73 6.625e-10 12-25
211	16002	CHROMOSOMAL PROTEIN	78307218 3.73 6.6234-10 12-23
ı	1	HMG17 FAMILY	1
		SIGNATURE	
378	PR00049	WILM'S TUMOUR PROTEIN	PR00049D 0.00 8.071e-10 3-18
		SIGNATURE	1
	PF00084	Sushi domain proteins (SCR	PF00084B 9.45 3.250e-10   16-128
120	1	repeat proteins.	
380	l .		
	B1 00636		BI 004364 2071 0476-17 12-15
383	BL00636	Nt-dnal domain proteins.	BL00636A 8.07 1.947e-17 18-35 BL00636B 15 11 5 500-16 46-67
383		Nt-dnal domain proteins.	BL00636B 15.11 5.500e-16 46-67
	BL00636 BL00636		

125

124

WO 02/059260

447

448

453

B1.00030

BL00579

BL00107

PCT/US01/42950

PR00935D 10,20 4,6366-14 179-196 PR00935A 10,16 2,333-12 40-53 PR00935D 11,98 2,500-12 118-139 PR00935B 10,58 8,7146-11 105-119 BL00030A 14,39 1,6436-13 81-100

SEQ ID NO:	Accession No.	Description	Results*
		dissociation stimulators	
		CDC24 family sign.	
388	PF00628	PHD-finger.	PF00628 15.84 9.4196-09 179-194
392	PR00215	NEUROMODULIN SIGNATURB	PR00215C 13.98 4.364e-09 201-222
394	PD00078	REPEAT PROTEIN ANK NUCLEAR ANKYR.	PD00078B 13,14 2,350e-10 132-145
397	BL01262	Eukaryotic initiation factor 1A proteins	BL01262 22.38 6.625e-12 25-80
402	BL00056	Ribosomal protein S17 proteins.	BL00056A 28.90 3,769e-32 116-156 BL00056B 20.86 6,727e-23 164-188
403	BL00019	Actinin-type actin-binding domain proteins.	BL00019D 15.33 9.705e-13 296-326
409	PR00259	TRANSMEMBRANE FOUR	PR00259C 16.40 2.459e-21 78-107
	1	FAMILY SIGNATURE	PR00259A 9.27 2.846e-18 11-35
	1	1	PR00259B 14,81 2,250e-17 51-78
		1	PR00259D 13.50 2.756e-15 221-248
412	PD00066	PROTEIN ZINC-PINGER	PD00066 13.92 2.385e-15 105-118
		METAL-BINDL	PD00066 13.92 4.462s-15 161-174
		,	PD00066 13.92 1.600e-14 189-202
			PD00066 13.92 1.500p-13 133-146
		1	PD00066 13.92 1.500e-13 217-230
		1	PD00066 13.92 1.000e-11 21-34
			PD00066 13.92 2.957e-11 77-90
413	BL00028	Zinc finger, C2H2 type,	BL00024 16.07 3.400e 10 214-231
****	1	domain proteins.	BL00024 16.07 7.171e-09 347-364
417	PP00791	Domain present in ZO-1 and	PF00791B 28.49 8.057e-14 199-254
***		Unc5-like netrin receptors.	PF00791B 28.49 4,909e-11 166-221
421	BL00475	Ribosomal protein L15	BL00475D 16.25 3.250e-19 130-152
		proteins.	BL00475C 13.06 3.700e-17 110-127
			BL00475B 8.20 2.957e-11 36-46
		1	BL00475A 10.62 8.560e-11 16-31
428	DM00215	PROLINE-RICH PROTEIN 3.	DM00215 19.43 2.286e-10 179-212
429	BL01153	NOLI/NOP2/sun family	BL01153D 19.69 4.375e-17 255-281
		proteins.	BL01153C 13.67 1.726e-11 205-219
	f .	1	BL01153A 13.77 4.300e-11 135-150
431	DM00984	W MYOD MYOBLAST	DM00984B 15,18 6,764e-17 142-197
		DETERMINATION SHORT.	
441	PR00120	G-PROTEIN BETA WD-40	PR00320C 13.01 2.400e-09 244-299
		REPEAT SIGNATURE	PR00320B 12.19 1.000e-08 146-161
443	PR00153	CYCLOPHILIN PEPTIDYL	PR00133A 12.98 1.667e-14 49-65
		PROLYL CIS-TRANS	PRO0153B 11.57 6.667e-12 78-91
		ISOMERASE SIGNATURE	
444	PD02811	PROTEIN PEPTIDE	PD02811A 20.67 7.429e-12 4-42
	1.545511	REDUCTASE MG448 PILB	
		FIMBRIA TRAN.	i
446	PR00915	BAND 4.1 PROTEIN	PR00935D 10.20 4.656e-14 179-196
	1	PAMILY SIGNATURE	PR00915A 10.16 2.133=12 40-53
		FAMILE SIGNATURE	PR00913C 11.98 2.500e-12 118-139
	ſ		FR00733C [1.98 43000-12 [18-139

WO 02/059260

PCT/US01/42950

SEQ ID NO:	Accession No.	Description	Results*
		region proteins.	BL00107B 13.31 5.154e-12 222-238
458	BL00657	Fork head domain proteins.	BL00657A 19.39 1.191e-22 101-143
461	PF00615	Regulator of G protein	PF00615B 16.25 3.323e-14 103-120
		signalling domain proteins.	PF00615C 10.06 4.800e-10 180-194
463	BL00983	Ly-6 / u-PAR domain proteins.	BL00983C 12.69 6.885e-09 156-172
466	PR00358	BOMBESIN RECEPTOR SIGNATURE	PR00358F 6.58 5.200e-09 15-29
467	PD02784	PROTEIN NUCLEAR	PD02784B 26.46 1,000s-40 45-68
		RIBONUCLEOPROTEIN.	PD02784A 21.09 7.750e-37 5-42
			PD02784C 20.76 4.106e-09 97-143
469	BL00615	C-type lectin domain proteins.	BL00615A 16.68 2.080e-11 148-166
470	BL00615	C-type lectin domain proteins.	BL00615A 16.68 2.080e-11 175-193
475	PD01652	RECEPTOR CELL NK	PD01652B 8.50 7.207s-27 127-179
		GLYCOPROTEIN	PD01652A 15.35 3.557e-17 137-173
	l	IMMUNOGLOB.	PD01652B 8.50 6.910e-10 32-84
478	PF00791	Domain present in ZO-1 and Unc3-like netrin receptors.	PF00791B 28.49 3.179e-12 40-95
479	PF00624	Flocculin repeat proteins.	PF006241 9.10 7.1650-09 271-301
480	PR00603	CYTOCHROME CI	PR00603H 13.20 9.534e-09 285-301
	1	SIGNATURE	
412	BL01088	CAP protein.	BL01088F 14.83 5.404e-10 60-106
485	BL00412	Neuromodulin (GAP-43)	BL00412D 16.54 2.023e-11 45-96
	I	proteins.	BL00412D 16.54 3.204e-09 41-92
	Į.	1	BL00412D 16.54 5.684e-09 66-117
489	BL00353	HMG1/2 proteins.	BL00353A 9.60 1.000=40 2-51
		•	BL00353B 11.47 1.000s-40 78-128
	l		BL00353C 14.83 1.000=40 128-175
	l		BL00353A 9.60 5.661 +11 3-52
495	PF00523	Pusion glycoprotein F0.	PF00523D 11.39 7.1886-10 80-94
502	DM00031	IMMUNOGLOBULIN V REGION.	DM00031B 15.41 8.606e-11 79-112
505	PR00683	SPECTRIN PLECKSTRIN HOMOLOGY DOMAIN SIGNATURE	PR00683D 15.87 9.864a-09 226-245
507	BLOII 89	Ribosomal protein S12a	BL01189A 14.27 7.513-17 38-74
		proteins.	BL01189A 14.27 5.245e-09 35-71
508	PD01094	ACID FATTY	PD01094D 7.35 7.094e-11 227-281
	l	DESATURASE	
	l	ENDOPLASMI.	
512	BL00028	Zinc finger, C2H2 type, domain proteins.	BL00028 16.07 2.286=-09 353-370
\$13	BL000/28	Zinc finger, C2H2 type, domain proteins,	BL00028 16.07 2.286e-09 353-370
514	BL00107	Protein kinases ATP-binding region proteins.	BL00107A 18.39 5.714e-16 117-148
316	BL00951	ER harmen protein retaining	BL00951C 19.35 1.000e-40 93-142
	1	receptor proteins.	BL00951B 14.23 4.300=31 18-69
	l		BL00951D 13.94 1.783e-30 142-177
	1		BL00951A 15.60 1.818e-29 2-38
517	BL00951	ER lumen protein retaining	BL00951D 13.94 2.761p-30 89-124
	1	receptor proteins.	BL00951A 15.10 1.818e-29 2-38
	1		BL00951B 14.23 5.950e-27 38-69
	1		BL00951C 19.35 4.493e-22 40-89
572	PF01105	emp24/gp25L/p24 family.	PF01105B 25.12 3.928-12 176-228
526	BL00518	Zinc finger, C1HC4 type	BL00518 12.23 2.714-10 31-40
320	STW10	(RUNG finger), proteins.	DENT   1   1   2   1   1   1   1   1   1   1
534	PD00787	SYNTHASE BIOSYNTHESIS	PD00787B 13.26 1.574e-09 91-105
,, <u>,</u>	FLANTE	127	LPM1810 12:44 17144-03 31-103

SEQ ID NO:	Accession No.	Description	Results*
		TRANSFERASE.	
538	PF00632	HECT-domain (ubiquitin-	PF00632C 20.66 1,340s-20 554-516
		transforase).	PF00632B 18.45 8.313e-20 499-527
541	BL00478	LIM domain proteins.	BL00478B 14.79 9.679e-13 62-77
	1		BL0047EB 14.79 5.750s-12 182-197
	1		BL00478B 14.79 6.500s-12 245-260
			BL00478B 14.79 3.400s-11 123-138
543	DM00547	I kw CHROMO	DM00547F 23.43 6.538e-36 628-675
343	-	BROMODOMAIN SHADOW	DN00547E 13.94 2.400e-16 387-410
		GLOBAL.	DM00347C 17.30 9.486e-16 266-288
	1	GLOBAL.	DM00547B 11.28 9.217e-15 237-251
	1		
		1	DN400547D 11.60 4,951e-12 357-371
			DM00547A 12.38 6.455+11 216-228
545	PF00777	Slalystransferase family.	PF00777C 18.60 5.291=21 78-133
550	PD00066	PROTEIN ZINC-FINGER	PD00066 13.92 3.769+15 459-472
		METAL-BINDI.	PD00066 13.92 2.800s-14 206-219
			PD00066 13.92 2.800s-14 234-247
	1		PD00066 13.92 2,800=14 347-360
	Į.	1	PD00066 13.92 2.800=14 431-444
	i		PD00066 13.92 2.800s-14 487-500
			PD00066 13.92 3.400=14 375-388
	ł		PD00066 13.92 5.200e-14 319-332
	1		PD00066 13.92 8.800e-14 403-416
	i		PD00066 13.92 4.000+13 150-163
	1		PD00066 13.92 5.500=13 513-528
	1		PD00066 13.92 7.652+11 263-275
***	PF00613	Regulator of G protein	
553	Prwois		PF00613B 16.25 8.839e-14 101-118
		signalling domain proteins.	PF00615C 10.06 3.700=13 178-192
555	PR.00180	CELLULAR	PR00180A 10.11 1.875e-16 75-98
		RETINALDEHYDE-	PR00180D 12.78 1.155e-15 233-253
	1	BINDING PROTEIN	PR00180B 16.42 4.493e-13 124-149
		SIGNATURE	PR00180C 10.92 2.901e-12 200-222
557	BL00018	EF-band calcium-binding	BL00016 7.41 4.150s-10 494-507
	1	domain proteins.	
559	BL01172	Ribosomal protein L44e	BL01172B 14.10 1.000s-40 15-57
		protrins.	BL01172C 16.78 3.400s-33 63-102
			BL01   72A 7.78 3,520s-13 2-13
562	DM00031	IMMUNOGLOBULIN V	DM00031B 15.41 1.000e-10 83-117
		REGION.	
563	BL00484	Thyroglobulin type-1 repeat	BL00484B 9.04 6.344e-14 103-117
		proteins proteins.	BL00484C 17.01 8.125e-14 123-138
561	PF00366	Probable rabGAP domain	PF00566A 12.64 9.667p-10 111-121
363	111111111111111111111111111111111111111	proteins.	PF00366B 11.92 1.300-09 153-159
166			BL00580A 17.63 9.899e-09 14-50
366	BL00580	Ribosomal protein L32e	BL00380A 17.63 9,8996-09 14-30
	l	proteins.	
569	BL00674	AAA-protein family proteins.	BL00674D 23.41 4.696e-15 599-646
	ŧ		BL00674B 4.46 1.333s-14 508-530
			BL00674C 22.60 3.786e-14 541-584
572	BL00397	Site-specific recombinases	BL00397D 19.54 £.163e-10 279-299
	1 .	proteins.	1
575	BL00242	Integrins alpha chain proteins.	BL00242E 9.03 1,375e-26 1143-1172
	1		BL00242C 16.86 2.324e-23 483-513
	1		BL00242D 13.57 5.200e-22 570-595
	I	I	BL00242B \$.13 6.478e-11 394-404
	i	1	BL00242A 13.80 7.000e-11 75-87
			BL00242D 13.57 3.9576-10 632-657
582	BL00415	Synapsina proteins.	BL00415N 4.29 2.445e-09 386-430

WO 02/059260 PCT/US01/42950

SEQ ID NO:	Accession No.	Description	Results *
671	PD02327	GLYCOPROTEIN ANTIGEN PRECURSOR IMMUNOGLO.	PD02327B 19.84 8.941e-23 143-165 PD02327A 8.89 1.000e-13 115-127 PD02327C 15.47 5.500e-13 209-224
672	PD02327	GLYCOPROTEIN ANTIGEN PRECURSOR IMMUNOGLO.	PD02327B 19.84 8.941e-23 159-181 PD02327A 8.89 1.000e-13 115-127 PD02327C 15.47 5.500e-13 225-240
678	PR00441	GPROTEIN ALPHA SUBUNIT GROUP I	PR00441B 16.16 4.667a-26 163-186 PR00441C 14.17 1.409a-24 192-210 PR00441A 10.69 1.173a-19 31-47

* Results include in order: Accession No., subtype, e-value, and amino acid position of the signature in the corresponding polypeptide

SEQ ID NO:	Accession No.	Description	Results*
513	PD00066	PROTEIN ZINC-FINGER	PD00066 13,92 1,000e-14 165-178
		METAL-BINDL	PD00066 13.92 5.800s-14 193-206
			PD00066 13.92 9.000=13 221-234
			PD00066 13.92 1.000s-12 137-150
	1		PD00066 13.92 5.286e-12 249-262
			PD00066 13.92 9.143e-12 109-122
		I	PD00066 13.92 2.957s-11 81-94
585	BL30058	O-protein gamma subunit profile.	BL50054 27.23 8.393+31 35-43
587	PF00628	PHD-finger.	PF00628 15.84 6.806e-09 77-92
591	PR00450	RECOVERIN PAMILY SIGNATURE	PR00450C 12.22 5.364e-12 65-87
592	PR00450	RECOVERIN FAMILY SIGNATURE	PR00450C 12.22 5.3646-12 65-87
600	BL00617	RecF protein.	BL00617A 25.53 6.308e-11 61-104
603	PR00216	OSTEOPONTIN SIGNATURE	PR00216C 9.63 8.636e-09 189-215
604	BL00019	Actinin-type actin-binding domain proteins.	BL00019D 15.33 7.660=17 397-427
610	PF00855	PWWP domain proteins.	PF00855 13.75 7.000e-10 414-431
613	BL01228	Hypothetical cof family proteins.	BL01228D 17.44 2.523-10 609-634
629	BL00021	Kringle domain proteins.	BL00021B 13.33 4.240s-16 48-66
635	BL01033	Globins profile.	BL01033B 13.81 5.500e-14 38-50
638	PF00992	Troponia.	PF00992A 16.67 7.868e-09 7-43
639	PD00066	PROTEIN ZINC-FINGER METAL-BINDI.	PD00066 13.92 8.800e-14 50-63
640	PR00500	POLYCYSTIC KIDNEY DISEASE PROTEIN SIGNATURE	PR.00500B 7.74 7.964e-12 182-203
641	PD00066	PROTEIN ZINC-FINGER METAL-BINDI.	PD00066 13.92 6.143e-12 316-329 PD00066 13.92 6.192e-10 344-357
643	PD01941	TRANSMEMBRANE COTRANSPORTER SYMP.	PD01941A 14.81 2.662s-34 82-136 PD01941B 15.02 2.246s-28 267-314 PD01941D 27.18 9.194s-19 501-550
	l .		PD01941C 19.96 6.786e-13 347-402
649	DM00031	IMMUNOGLOBULIN V REGION,	DM00031B 15.41 3.278e-09 79-113
650	BL00290	Immunoglobulins and major histocompatibility complex proceins.	BL00290A 20.89 8.200e-12 162-185
654	BL00407	Connexins proteins.	BL00407E 22.17 1.000-40 164-209 BL00407B 14.23 7.231e-35 39-70 BL00407A 18.57 5.250e-29 2-39 BL00407C 14.61 7.097e-28 70-98 BL00407D 17.61 4.000e-25 125-155
656	PR00359	B-CLASS P450 SIGNATURE	PR00359F 24,20 4,536e-10 310-338
661	BL01064	Pyridoxamine 5'-phosphate exidase proteins.	BL01064C 15.22 1.205e-09 307-340
664	PR00069	ALDO-KETO REDUCTASE SIGNATURE	PR00069A 16.01 1.000e-18 42-67 PR00069B 11.33 1.735e-13 102-121
665	PD02462	PROTEIN BOLA TRANSCRIPTION REGULATION AC.	PD02462A 22.43 9.873e-12 13-48
666 ·	PR00348	UBIQUITIN SIGNATURE	PR00348A 7.86 8.625e-09 11-32
667	BL01052	Calponin family repeat proteins.	BL01052B 15.31 2.518-10 511-537

WO 02/059260 PCT/US01/42950

SEQ ID N		Description	Lvalue	Score
350	K_tetra	K+ channel tetramerisation domain	230-31	117.6
351	zona_pellucida	Zona pelhucida-like domain	2.2e-25	97.7
355	Ribosomal SS	Ribosomal protein S5	1.70-46	167.9
357	gpdh	Glyceraldehyde 3-phosphate dehydrogenase, NA	3.10-144	349.8
429	Nol1 Nop2 Sun	NOLI/NOP2/sun family	4.50-19	68.6
431	LIM	LiM domain	£ 6e-32	119.1
41	WD40	WD domain, G-beta repeat	2.3e-07	37.9
443	pro_isomerase	Cyclophilin type poptidyl-prolyl cis-tr	5.30-34	120.4
444	DUF25	Domain of unknown function DUP25	1.1-11	46.9
446	Band 41	FERM domain (Band 4.1 family)	3.2e-77	242.4
447	rma	RNA recognition motif.	1.1e-33	125.4
448	SH2	SH2 domain	1.76-33	100.2
449	UIM	Ubiquitin interaction motif	0.00071	26.3
453	Ribosomal L29	Ribosomal L29 protein	1.70-15	64.9
454	NTF2	Nuclear transport factor 2 (NTF2) domain	3.2m-07	37.4
457	pkinase	Protein kinese domain	60-40	146.1
458	Fork_head	Fork head domain	10-28	108.8
460	PC4	Transcriptional Conctivator p15 (PC4)	2.1+38	141.0
461	ROS	Regulator of G protein signaling domain	2.60-45	164.0
465	COX7a	Cytochroms c oxidase subunit VIIa	23+40	147.5
467	П	RNA recognition motif.	3.20-15	64.0
469	lectin_c	Lectin C-type domain	5.1e-06	33.3
470	lectin_c	Lectin C-type domain	5.1e-06	33.3
475	lis.	Immunoglobulia domain	9.1e-07	26.9
478	enk	Ank repest	3+15	64.1
481	Zip	ZIP Zinc transporter	3.8+31	116.9
489	HMG_bex	HMG (high mobility group) box	8e-53	188.9
490	PH	PH domain	2.80-13	52.3
494	Utpl_C	Ulp1 protesse family, C-terminal catalytic d	1,2+11	52.1
495	Peptidase C6	Helper component proteiness	0.0056	7.9
502	lig	Immunoglobulia domaia	2.30-09	35.2
503	18	Immunoglobulin domain	9.24-09	33.3
505	IPH	PH domain	1.90-14	56.4
507	Ribosomal_L7Ae	Ribosomal protein L7Ae/L30e/S12e/Ondd4	6.2×14	59.3
512	xf-C2H2	Zinc finger, C2H2 type	1.10-10_	48.9
513	zf-C2H2	Zinc finger, C2H2 type	3.2+16	67.3
514	pkinese	Protein kirmse domain	3.44-26	98.4
516	ER komen recept	ER human protein retaining receptor	3.5+144	492.4
317	ER homen recopt	ER hamen protein retaining receptor	1.80-88	307.3
322	EMP24 GP25L	corp24/pp25L/p24 family	6.90-06	24.1
526	SPRY	SPRY domain	2.3+30	114.3
538	HECT	HECT-domain (ubiquitin-transferese)	1.1+115	397.8
540	Rhombold	Rhombold family	4.20-42	153.3
341	LIM	LIM domain	20-35	131.1
542	Glycos transf 2	Olycosyl transferase	1.70-25	91.1
543	SNF2_N	SNF2 and others N-terminal domain	5.9~104	338.6
545	Glyce transf 29	Olycosyltransferase family 29	7.3+20	79.4
546	LysM	LysM domain	Je-06	33.5
550	zf-C2H2	Zinc finger, C2H2 type	1.1+104	361.2
353	ROS	Regulator of G protein signating domain	5.10-52	186.2
554	TBC	TBC domain	7.2+35	129.3
555	CRAL TRIO	CRAL/TRIO domain	4.50-47	158.6
539	Ribosomal L44	Ribosomal protein L44	10-48	175.3
561	TIR	TIR domain	0.063	9.9

SEQ ID NO:	Pfam Model	Description	E-value	Score
562	la	Immunoglobulin domain	3.5=-08	31,4
562 563 563 564 569	thyroglobulin I	Thyroglobulin type-1 repest	3.9-24	93.6
565	TBC	TBC domain	1.2a-54	195.0
564	Ef-C2H2	Zinc fineer, C2H2 type	7.1e-08	39.6
569	AAA	ATPase family associated with verious cellul	26-64	161.0

WO 02/059260

PCT/US01/42950

WO 02/059260 PCT/U501/42950

133

9

1.76-29

ą.

5

126-63

ě

10-36

£ €

Diom					лон 6-марн; тон(о)-	9	<u> </u>
PDB sasetation			OXIDOREDUCTASE OXIDOREDUCTASE		OXIDOREDUCTASE GRODH, 6-PODH; OXIDOREDUCTASE, CHOH(D)- NADP+(B)	OXIDOREDUCTASE OXIDOREDUCTASE, OXIDOREDUCTASE, NAD	
Congpound	GLYCERATE DEHYDROGENASE (APO FORM) (B.C.I.I.1.29) I GDH 3	OXIDORIDIOCTASSICATORI (D)-MAD(A)) APO-'L 'LACTATI DEHYDROGENASE (R,C,1,1,12) ILDB 4	LEUCINB DEHYDROGENASE; CHAIN: A, B;	OXIDOREDUCTÁSE/CHOH (DIPAKO (A)) L-LACTATE DEHYDROGENASE (R.C.I.I.L.T) (T-STATE) MUTANT ILLD 3 WITH CYS 199 REPLACED BY SER (CIPSS) COMPLEX WITH NADH ILLD A	6-PHOSPHOGLUCONATE DEHYDROGENASE; CHAIN: A, B;	LALANDA DEHYDROGENASE; CHAIN: A;	OXDONEDUCTASE (NADA)) D-3- PHOSPHOGLYCERATE DERYTOROGENASE (PHOSPHOGLYCERATE 1PSD 3
Score							
Scare Scare		3	623	3	850	09'0	770
Vertity		8	ž	417	12.0	900	51.0
PSI BLAST Som		89 A	1.7e-0s	1.78-06	3.44-37	60-03	к•п;
3 \$		22	ñ	951	ğ	3	a
Start		25	a	<del>-</del>	\$	Ţ.	=
<b>1</b> 0			<	<	٧.	<	<
<u> </u>		2	ij	3	<u>a</u>	tyie of	Ī
5EQ 10 70:		3	3	3	₹	ŝ	3

PDB anaetation	OXIDOREDUCTASE SIMILAR TO THE PREVIOUSLY SOLVED FORMATE DEHYDROGENASE, 2 OXIDOREDUCTASE		OXIDOREDUCTASE (CHOHID) NAD+(A)) R-LACTATE DEHYDROGENASE; 20LD 7	OXIDOREDICTASE (CHOH(D)- NAD+(A)) R-LACTATE DEHYDROGENASE, 2DLD 7		OXIDOREDICTASE SCHAD; OXIDOREDICTASE BETA CXIDATION, SCHAD, CATALYTIC ACTIVITY: 1 L-1-HYDROXYACYL COA + NAD(+) = 3-OXOACYL-COA + NADH	OXIDOREDUCTASE SCHAD; OXIDOREDUCTASE SETA OXIDATION, SCHAD, CATALYTIC ACTIVITY: 1 L-1+FYDROXYACYL CON + NAD(+) = JOXOACYL-COA + NADH	OXIDOREDUCTASE SCHAD, OXIDOREDUCTASE, BETA
Counteend	FORMATE DEHYDROGENASE; CHAIN! A, B;	OXIDOREDUCTASK(NAD) A)-CHIDH(DI) MALATE DEHYDROGENASI (B.C.1.1.37) 20MD 3	D-LACTATB DEHYDROGENASE; 2DLD S CHADN: A, B; 2DLD 6	D-LACTÁTE DEHYDROGENASE; 2DLD 5 CHADY: A, B; 2DLD 6	OXIDOREDUCTASE (CHORID-NADP-(A)) 6- PHOSPHOGLICONATE DEHYDROGENASE (6- PGDH) (B.C.I.I.A4) 2PGD )	LJ-HYDROXYACYL COA DGHYDROGENASE; CHAIN: A, B, C;	LJ-HYDROXYACYL COA DEHYDROGENASE; CHAIN: A, B, C;	L-3-HYDROXYACYL COA DEHYDROGENASE;
Beg Fold						38.		75.95
25	ş	000	ş	673	0.69		2.0	
S and	600	1000	620	ŝ	6.13		0.15	
25	7	5.1e-06	5.4e-18	3	23-65	3	5 <del>-</del> 6-	6.80-32
35	212	2	291	315	Ē	SX.	ă	111
Žį	11	\$	9	R	3	*	\$	2
<b>1</b> 0	<		<	<		<	<	l.
ğ 9	<u>B</u>	1	7	P	<u>ş</u>	ğ	9	Я
ã e ğ	ŝ	ī	3	3	3	3	3	3

BLAST Seen

Chala Start Ead TO AA AA

TABLE 5
SEQ PDB
NO: 10

				_		_			
POB sapetition	OXIDATION, SCHAD, CATALYTIC ACTIVITY: 2 L3-HYDROXYACYC COA + NAD(+) = 3-OXOACYC-COA + NADH	OXIDOREDICTASI SCHAD, OXIDOREDICTASI STRA OXIDATION, SCHAD, CATALTIC ACTIVITY: 1 L-14YDBOXTACTL COA+NAD(+) - J-OXOACTL-COA + NAD4		SCAFFOLD PROTEIN SCAFFOLD PROTEIN, PP2A, PHOSPHORYLATION, HEAT REPEAT	ARMADILLO REPEAT ARMADILLO REPEAT, BETA-CATENIN, CYTOSKELETON		СОФОТА (ОЗДОВЕРИСТАВРАНТВООУ) СТГОСТВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВ	DAMING SYSTEM DAMINGELOBULIN FOLD, ANTIBODY, ICIM, FV	DOCUMOGLOBULIN BIDSFY; MONOCLONAL ANTBODY, ANTITUMOR, PROLINGGLOBULIN
Compense	CHAIN: A, B, C;	LJ-HYDROXYACYL COA DEHYDROGENASE; CHAIN: A, B, C;		PROTEIN PHOSPHATASE PP2A; CHADA: A, B;	BETA-CATENIN; CHAIN: NULL;		CYTOCHROMB C OXDASE, CHADR. A. B; ANTBODY FV FRAGMENT; CHADR. C, D;	IQM MEZ DAMUNOGLOBULM; CHANY I.; IOM MEZ DAMUNOGLOBULM; CHANY; H;	ANTICANCER ANTIBODY BI; CHADI: L, II;
SeqFold Score			ľ						
FMF		700	l	0.19	ğ	Ī	6FP	<b>6</b> 20	4.17
Venth Sees		0.12	Ī		910		80	80	0.10
BLAST		[[-4]]		0.00016 0.12	1,36.14		3.4e-16 0.06	3.40-16	1.74-16
3 \$		317		282	619		313	17	<b>7</b> 17
A Start		\$		111	\$02	I	128	128	8
a S		v	Γ	<		Ī	ပ	I	I
5 9 9		N. C.	Γ	ib3a	3bc		<u> </u>	Ā	Jap 1
g a g		ž	Γ	ž	3	Γ	g g	*	ž

WO 02/059260 PCT/US01/42950

CHCCANTRANSERARE   CHCANTRANSERARE   CHCCANTRANSERARE   CHCCANTRANSE	AA AA	32	PSI BLAST Scerv	Vertify Sears	Score	Seaffold	Company	PDB annotation
195   18-20   9-3-1   WILLY TRUST TRUST TRUST IN V.     121   13-14   0-31   0-49   FOUTASSUM CHANNEL   132   14-24   0-39   0-49   FOUTASSUM CHANNEL   134   14-24   0-39   0-49   FOUTASSUM CHANNEL   135   14-24   0-39   0-49   FOUTASSUM CHANNEL   136   14-24   0-39   0-49   FOUTASSUM CHANNEL   137   14-24   0-39   0-49   FOUTASSUM CHANNEL   124   1-44   0-39   0-49   FOUTASSUM CHANNEL   124   1-44   0-30   0-49   FOUTASSUM CHANNEL   124   1-44   0-30   0-49   FOUTASSUM CHANNEL   125   1-44   0-30   0-49   FOUTASSUM CHANNEL   126   1-44   0-30   0-49   FOUTASSUM CHANNEL   127   1-44   0-30   0-49   FOUTASSUM CHANNEL   128   1-44   0-30   0-49   FOUTASSUM CHANNEL   129   1-44   0-30   0-49   FOUTASSUM CHANNEL   120   1-44   0-30   0-49   FOUTASSUM CHANNEL   120   1-44   0-30   0-49   FOUTASSUM   120   1-44   0-30   0-49   FO							CYCLODEXTRIN GLUCANOTRANSFERASE (B.C.2.4.1.19) (COTASE) ICYO 3	
12   13-14   423   449   FOTA SSUIM CHANNEL   123   14-24   429   449   FOTA SSUIM CHANNEL   124   14-27   429   449   FOTA SSUIM CHANNEL   125   14-27   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421   421	2	392	1.6-20			59.37	VIRUS TOMATO BUSHY STUNT VIRUS 2TBV 4	
12   1.8-14   -0.21   0.49   POTASSUM CHANNELL   12   1.1-24   -0.21   0.49   POTASSUM CHANNELL   12   1.1-24   -0.21   0.49   0.49   POTASSUM CHANNELL   13   1.4-14   -0.21   0.49   POTASSUM CHANNELL   14   1-14   0.22   0.44   POTASSUM CHANNELL   15   1-14   0.22   0.24   POTASSUM CHANNELL   16   1-14   0.22   0.24   POTASSUM CHANNELL   17   1-14   0.22   0.24   POTASSUM CHANNELL   18   1-14   0.22   0.24   POTASSUM CHANNELL   19   1-14   0.22   0.24   POTASSUM CHANNELL   19   1-14   0.22   0.24   POTASSUM CHANNELL   19   1-14   0.22   0.24   POTASSUM CHANNELL   10   1-14   0.25   0.24   POTASSUM CHANNELL   1	L	L						
13   1.1e-34   4.39   4.49   FOTASSUM CHANNEL.   134   1.4e-14   4.31   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47   4.47	=	ž	1.76-14	Ş	0.49		POTASSIUM CHANNEL KVI.I; CHAIN! NULL;	POTASSIUM CHANNELS POTASSIUM CHANNELS, TETRAMERIZATION DOMAIN, X-RAY 2 STRUCTURE, APLYSIA KV1.1
156   516-17   647   647   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   1	2	3	7.1-1	979	0.49		POTASSTUM CHANNEL KVI.I; CHAIN: NULL;	POTASSIUM CHANNELS POTASSIUM CHANNELS, TETRAMERIZATION DOMAIN, X.RAY 2 STRUCTURE, APLYSIA KVI.1
124   14+14   40.31   40.37   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   40.37.45   4	2	2	3.te-17	0.47	047		PROMYELOCYTIC LEUKEMIA ZINC FINGER PROTEIN PLZP, CHAIN: A;	GEGE REGULATION POS DOMANIS:  DOMAN, TRANSCRIPTIONAL 2  REPRESOR, ZINC-FINGER PROTEN,  XEAY CRYSTALLOGAPHY, 3  PROTEN STRUCTURE,  PROPEN STRUCTURE,  PROMPLOCYTIC LEUKEMOL, GENE  PROMPLOCYTIC LEUKEMOL, GENE  PROMPLOCYTIC LEUKEMOL, GENE  PROMPLATION
124   16-14   002   0.54	=	<u>*</u>	1.40-14	-6.31	673		KVI.2 VOLTAGE-GATED POTASSILM CHANNEL; CHADE: A, B, C, D, E, F, G, H;	SIGNALING PROTEIN VOLTAGE- GA TED POTASSIUM CHANNEL, ASSEMBLY DOMAIN, TETRAMER
124 16-16 406 0.45 KV1.2 YOLTAGE-GATED POTASSTUD GHANNEL; GHANN. A B, C, D;	<u> </u>	2	<u>*</u>	200	950		KV BETAJ PROTEIN; CHAIN: A; POTASSIUM CHANDEL KVI.1; CHAIN: R;	METAL TRANSPORTION CHANNEL, OXIDOREDUCTASE, BETA SUBUNIT
	=	ž .	101	78 49	0.45		KVI.2 VOLTAGE-GATED POTASSTUM CHANNEL; CHAIN: A, B, C, D;	SIGNALING PROTEIN VOLTAGE GATED POTASSIUM CHANNEL, TETRAMERIZATION DOMAIN, 2

138

137

PCT/US01/42950

WO 02/059260

	_					_		
PDB ensocation	INTRACELLULAR GATE, TETRAMER	SIGNALINO PROTEIN VOLTAGE. GATED POTASSIDA CHANNEL. TSTRAMGRIZATION DOMAIN, 2 RYTRAGELLUIAR GATE, TSTRAMER	PROTON TRANSPORT POTASSIUM CHANNELS, TETRAMERIZATION COMAIN, KRAY STRUCTURE, 2 APLYSIA KVI.1, PROTON TRANSPORT	POTASSIUM CHANNEL POTASSIUM CHANNEL, TETAAGENZATION DOMANN, MOLECULAR 2 RECOGNITION, ZINC-BINDING	POTASSIUM CHÂNNEL POTASSIUM CHANNEL, TETRAMERIZATION DOMAIN, MOLECULAR 2 RECOGNITION, ZINC-BINDING		COMPLEX (BLOOD) AUTOPORNEATOR) AUTOPORNEATOR AUTOPORNEACE SENDE PROTEINAST, PLASAR CALCIUM BIVODING, BANCORPORTEN, COMPLEX (BLOOD) COAGULA TION/PHIBITOR)	THE STATE OF CONTROL O
Cermpenad		KVIZ VOLTAGB-GATED POTASSIUM CHANNEL; CHAIN: A, B, C, D;	POTASSIUM CHANNEL KVI.I; CHAIN: A;	POTASSIUM CHANNEL. PROTEIN SHAW; CHAIN: NULL;	POTASSIUM CHANNEL PROTEIN SHAW; CHAIN: NULL;		ACTIVATED PROTEIN C; CHAIN: C, L; DATER-RD. MAL; CHAIN: P;	COACULATION FACTOR THA LIGHT CHAIN) (DES- GLAF, CHAINEL; COACULATION FACTOR THE AVAY CHAIN) (DES-GLAF, CHAINE H; DEGRACT ENGINTOR EGGLACT ENGINTOR EGGLACT ENGINTOR EGGLACT AND G. CHAINE  1.
SeqPold								
YM.		0.42	3	96'0	16:0		0.40	180
Vertify	Γ	110	409	Ž	137		0.42	90.0
FSI BLAST Scere		1.16-27	1.76-14	1,40-31	91-11		3,4-20	3,64-13
33	Г	22	3	<u>21</u>	140		n	238
žų.		\$	7	3	Ŧ		<u> 3</u>	ia .
100		<	٠.					<u>.</u>
<b>2</b> 8	ĺ	ģ	70	#I	ЗБМ		Ī	aud j
g e ğ		85	85	951	જા		ā	×

139

157

2

1855

ž

141

BCT/	IICA+#	3060

PDB annetation	BLOOD COAGULATION, SERVE PROTEASE, COMPLEX, CO-FACTOR, 2 ECCETIOR ENCYME, INHIBITOR, GLA, ECF, 3 COMPLEX (SERVE PROTEASE COFACTORALIGAND)	BLOOD COAGILATION, SERVE RROTEASE COMPLEX, CO-FACTOR, 2 ECEPTOR, ENCYME, BABBITOR, GLA, EDF, 1 COMPLEX (SERINE PROTEASE/COFACTOR/LIGACO)	BLOOD COAGULATION, SERVE RECTEAE, COMPLEX, CO-FACTOR, 2 BEGSTOR, BLOTAE, INHERTOR, GLA, EUF, 3 COMPLEX (SERVE PROTEASE/COFACTORALIGAD)	HYROLASEAFYDROLASE DHEBITOR PROTEIN-PETIDB COMPLEX	HYDROLASEAHYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX
Ceemboune	BLOOD COADULATION PACTOR VUA; CHAIR: L, H; SOLUBLE TISSUB FACTOR; CHAIR: T, U, D. PHE-PHE-ARC. CHLOROMETHYLKETONE (OFFRICART) WITH CHAIR: C;	BLOOD COAGULATION AFTOR VUA; CHAIR: L H; SOLUBLE TISSUB FATOR; CHAIR: T, U; D PHE-PHE-ARG CHLOROMETHYLKETONE COFFICION WITH CHAIR: C;	BLOOD COAGULATION FACTOR WILE, CHANF. L. H. SOLUBLE TISSUE FACTOR, CHANF. T. U. D. PHE-PHE-ARO. CHLOROMETHYLKETONE (DFFRCMS) WITH CHANF.	DESGLA FACTOR VIA (FELAY CHADIS, CHADIS, H, I, DESGLA FACTOR VIA (LUGH CHADIS, CHADIS, LK, (DPS)-PHB- ARO, CHADIS, C, DS PETTIDE B-76, CHADIS, X, Y,	DES-GLA PACTOR VIIA (PEAVY CHAIN); CHAIN;
Scars					
PMF	0.01	0.17	0.87	676	0.59
Verily Score	-0.17	<b>8</b> 13	750	-000	9.64
PSI BLAST Score	5,46-18	1.86-72	3.46-15	61-97'	3.46-15
3 5	234	398	£72	1972	273
Start A Start	124	951	a	£:	182
a a	1	٠.		7	7
5 E	a.b	1	Idan	Idva	ldva
ž e ž	135	351	131	331	35

Verty PMP SeqFold Score Score Score

£ 5

708 Chals

S e S

į

8

20

ž

PCT/US01/42950

2

ğ

WO 02/059260

PCT/US01/42950

WO 02/059260

PDS Chals Start ID ID AA

3 a §

| 2.54 | 1.54 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 | 2.47 |

PDB ausscation	MATRIX, CALGUM-BINDRQ, GLYCORFOTER) A REBEAT, SIGNAL, MULTIGENE BAMILY, DISBASE MUTATION, 3 EGF-LIKE DOMAIN, MURAN FIREILLAN-I FRAGMENT, MATRIX, PROTEIN	MATRY PATRIES EXTRACTLULAR MATRY CALCINA-BINDING, GLYCOPROTEN 2 REPEAT, SIGNAL, MALTITION, S EGG-LIKE DOMAN, MUTATION, S EGG-LIKE DOMAN, HIMAN PRIBLILLIAR PROMENT, MATRY PROTEN	SIGNALLING PROTEIN BINDING PROTEIN, CYTOKINE, SIGNALLING PROTEIN	SIGNALLING PROTEIN BINDING PROTEIN, CYTOKINE, SIGNALLING PROTEIN	HYDROLASE PROTEIN-INHIBITOR COMPLEX	BLOOD CLOTTING COMPLEXGEBURE ROTEASECRACTIVATION), BLOOD COAGULATION, SERVE ROTEASE, COMPLEX, COP-ACTOR, RECEPTOR ENCYME, 3 INCHIBITOR, CALL, EDIC, COMPLEX (SERVINE, PROTEASECON-ACTORALIGAND),	GLYCOPROTEIN GLYCOPROTEIN	SIGNALLING PROTEIN TYPE I
	MATRE OLYCO MULTIC MUTAT HUMAN	MATRE OLYCO MULTIC MUTAT HUMAN	PROTEIN	PROTEIN, PROTEIN	HYDROLL	ROTE ROTE ROTE GLA EC	GLYCO	SIGNAL
Coumpound		Fibrilli, Chaîn: Null;	TUMOR NECROSIS FACTOR RECEPTOR; CHAIN: A, B;	TUMOR NECROSIS PACTOR RECEPTOR; CHAIN: A, B;	COAGULATION FACTOR XX; CHAIN: A; COAGULATION FACTOR XX; CHAIN: B;	BLOOD COAGULATION FACTOR VUL, CHAIN: L; BLOOD COAGULATION PACTOR VILA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 51.15; CHAIN: L;	LAMININ, CHAIN: NULL;	TUMOR NECROSIS
SeaFold		_	77.32					13.13
Score		<b>53</b>		2	9110	97	F 2	3
Vertity		97.0		820	19:0	- P 0	= 5	
PSI BLAST Score		. Se 20	S	SI-all.	3.66-13	3.46-15	13615	166.12
3 \$		22	992	1,1	365	£	22 5	92
Ş Ş	-	ä	221	52	ä	ā	8 -	121
e e			<	۷	ш	ي	П	<b>~</b>
<b>2</b> 0		į	<u>B</u>	<u>B</u>	<u>g</u>	<u> </u>	2 1	т
ğa ç		188	ž.	131	ž	55	2 2	Ħ

142

143

PDB assets flora

2 × 8

Chade Start ID AA A 109

0 0 E

g e g ∺

LECTIN (AGGLUTRIN)
WELS TO SEA
AGGLUTRIN)
CAGGLUTRIN)
CAGGLUTRIN)
AGGLUTRIN)
CAGGLUTRIN)
AGGLUTRIN)
AGGRUTRIN)

1 1 1 1 1 N

168 BEDGGGALL RAY,
GLARE, FRACACESTO OF
SAME PROCESSAL
X, 158 BEDGGGALL
FOR BEDGGGALL

11.0 90.0

6.Be-44

263

3

145

PDB aunotation	COMPLEX (BLOOD CONDLATOW (NEBETON) CONDLATOW COMPLEX, INDIBITIAL EXACTOR, COMPLEX, INDIBITIAL EXACTOR, INDIBITIAL AND INDIBITI	SERING PROTEASE PULA; BLOOD COAGULATION, SERING PROTEASE	SERDAG PROTEASE PUTA, PVIIA, BLODD COAGULATION, SERINE PROTEASE	SERNIR PRUTEASE PVILA; BLOOD COACULATION, SERDIE PROTEASE	BLOOD COAGULATION FACTOR STUART FACTOR: BLOOD COAGULATION FACTOR, SERINE PROTEINASE, EPIDENMAL 2 GROWTH PACTOR 1 JRR DOMAIN
Compound	FACTOR TA; CAAD! C.	COAGULATION PACTOR TO LLOHT CHAIN; CHAIN: L; COAGULATION PACTOR VIA (FEAVY CAIND; CIAIN: I; TRUEFTIDYL DEIBITOR; CHAIN: CIAIN: II	COAGULATION PACTOR THA (LIGHT CANIN); CIAIN: L. COAGULATION PACTOR VIA (HEAVY CHAIN); CHAIN: H; TRUPETIDYL DEGISTOR; CHAIN: C	COAGULATION FACTOR THE GLORING TO AGAIN, THE GLORING TO AGAIN, THE FACTOR VIA (FEAVY GLANN); CHANN;	BLOOD COAGULATION PACTOR XA; CHADY: L, C;
Scars					
Scere	ŝ	ez S	30	60	770
Verdy See:	ā	110	40.5	α,	ä
E I		7.26-20	5.46-21	<u> </u>	3.le13
3 5	912	512	592	E	122
A Štan	ā	251	22	3	32
<b>a</b>		٠	د	د	.,
	ždi.	<u>ā</u>	ğ	큠	물
g e ç		ā	25	ã	ā

144

•

WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950
WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950

PDB anastration				
Coumpound	MEDICAL PROTEIN 59.  OLINEL 130 BLOSCOMAL  MOUTHS 130 BLOSCOMAL  MOUTHS 130 BLOSCOMAL  BLOSCOMAL PROTEIN 512  CHARLE, 136  BLOSCOMAL PROTEIN 513  CHARLE 136  CHAR	RIBOSOMAL PROTEIN SS (PROKAR YOTIC) IPRP 3	RIBOSOMAL PROTEIN RIBOSOMAL PROTEIN S3 (PROKARYOTIC) IPVP 3	OXIDOREDUCTASS (NADS(A)-ALDEHYDE(D))
SeqPold Score			31.18	477.74
PM F Scare		0.19		
Vertiy Scars		ţ3		
ILAST F		ĵ,	1,40-49	
3 \$		នេ	133	ίť
A Start		2	2	
g e				_
80 <u>8</u>		Đ.	<u>R</u>	Ē
ន្ទីឧទ្ធ័		ž	ž	137

146

	•						
POS amociativa			TRANSCRIPTION REGULATION PROTO-CHCOGENE, NUCLEAR BODDES (PODS), LEUKEMA, 2 TRANSCRIPTION REGULATION			TRANSPORT PROTEIN SERING-RICH RNA POLYMERASEI SUIPPRESSOR PROTEIN, ARM REPEAT	LIGASE GEL, UBGHT ZAP-YA, EZ, UBIQUITIN, EJ, PHOSPHORYLATION, J TYROSINE KINASE, UBIQUITINATION, PROTEIN DEGRADATION, PROTEIN
Company	D-GLYCERALDEHYDE-3- PHOSPHATB DEHYDROGENASB (E.C.1.21.12) 3GPD 4	OXIDOREDÚCTASE (PALOXA)-ALDEHYDE(D)) POLYCEA-LDEHYDE-3- PHOSPHATE DEHYDROGENASE (R.C.1.1.13) 3GPD 4	TAANSCAIPTION FACTOR PALL: CHAIN: NULL:	VIRUS EQUINS HERPES VIRUS-1 (CSHC4, OR RING DOMAIN) ICHC 3 (NMR, 1 STRUCTURE) ICHC 4	VIRUS EQUINE HERPES VIRUS-1 (CSHC4, OR RING DOMADN) ICHC 3 (NAR, 1 STRUCTURE) ICHC 4	KARYOPHERIN ALPHA; CHAIN; A, B; MYC PROTO- ONCOGENE PROTEIN; CHAIN; C, D, B, P.	SIGNAL TRANSDUCTION THE STATE CALDS: A: ZAP-TO PETTIDE, CIAIDS: B: USIQUITIN- E: USIQUITIN- E: USIQUITIN- E: USIQUITIN- E: USIQUITIN- COUNCATING BXZYME E: USIQUITIN- CHAIN: C.
Sea Fold							
N. S.		8	2	2	7	23	ğ
		8	63	810	\$. \$	8	<b>Q</b>
2 2 3			1.89-09	10-41	10007	50-99	3.40-07
35		à	3	3	*	Ħ	3
ž ž		_	ă	ă	ŭ	2	Ê
<b>å</b> e		ar_				<	۷
ē e		ğ	¥	<del>1</del> 2	Đị.	1	ě
g e ş		£	85	ž	ž	ž.	ST.

	ATION,	3	AD CANON	SMORE IN-S, LEX,	PACSE PACS TRA. 2	TATE 2	OTTO
PDB annetation	LIGASE CBI, UBCH, ZAF-R, ER, UBIQUITA, BI, PROSTHE KINASE, UBIQUITAN TION, PROTEIN DEGRADATION, PROTEIN DEGRADATION,	METAL BINDING PROTEIN RING FINGER PROTEIN MATI; RING FINGER (CHICA)	CHÁPERONE HOP, TPR-LIOMAIN, PEPTIDE-COMPLEX, HELICAL REPRAT, HSPOR, 2 PROTEIN BINDING	SIGNALING PROTEIN PEROXISMORE RECEPTOR 1, PTSI-BP, PEROXIN-5, PTSI PROTEIN-PEPTURE COMPLEX, TETRATINCOPEPTURE REPEAT, TPR, 2 HELICAL REPEAT	SIGNALING PROTEIN PEROXISMORE RECEPTOR 1, PTS1-8P, PEROXIN-5, PTS1 PROTEIN-PEPTURE COMPLEX, TETRATRICOPEPTURE REPEAT, TP9, 2 HELICAL REPEAT	SIGNALING PROTEIN PEROXISMONE REDCETOR I, PTSI-BP, PEROXIN-S, PTSI PROTEIN-PEPTIDE COMPLEX, TBITRA TRICOPERTIDE REPEAT, TPL, 2 HELICAL REPEAT	STRUCTURAL PROTEIN ARMADILLO REFEAT, BETA-CATENIN,
Compound	SIGNAL TRANSDUCTION PROTED CUL; CIAIN; A; ZAP-TO PEPTIDE; CIAIN; A; B; USIQUITIN CONJUGATING ENZYME CONJUGAT	COK-ACTIVATING KINASB ASSEMBLY PACTOR MATI; CHAIN: A;	TPRZA-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MERVID: CLAIN: B;	PEROXISOMAL TARGETING SIGNAL 1 RECEPTOR, CHAIN: A, B; PTSI-CONTAINING PETTING: CHAIN: C. D.	PEROXISOMAL. TARGETING SIGNAL I RECEPTOR, CHAIN: A, B; PTSI-CONTAINING PETTIDS: CHAIN: C.	PEROXUSOMAL TARGETING SIGNAL I RECEPTOR; CHAIN: A, B; PTSI-CONTAINING PEPTIDE; CHAIN: C, D;	BETA-CATENIN; CHAIN: NULL;
Scars							
ž į	=	0.12	\$1.0	40	5000	0.03	0.0
Vertity Sears	27.0	25.	970	0.07	5	600	120
FSI Soor	1.7e-05	3.6e-07	ie-0f	1.7e-03	75-07	: 4 <u>4</u>	3.66-17
3 ≾	5 <del>8</del>	3	25	1963	82	1143	903
Start A	515	224	ĩ	ž	ğ	575	352
i e	<	<	<	<	<	<	
<b>2</b> C	ěj.	ž	2	£	₫.	Ę.	Į.
S a S	329	S S	- ×	<u>3</u>	ž	<u>×</u>	23

148

WO 02/859260 PCT/US01/42950

137200	1 C 11 00 011 4

į	3 \$ 5	12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	die e	Ser. 1	Seq Votal	Compound	COMPLEX (INHIBITORANICLEASE)
						INHERTOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	COMPLEX (INIBITORNUCLEASE), COMPLEX (BLAND), HYDROLASE 1 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS
Ξ	92	5.44-24	93	۵,77		UD RNA HAIRPIN IV; CHAIN: Q, R; UZ A; CHAIN: A, C; UZ B; CHAIN: B, D;	COMPLEX (NUCLEAR PROTEINRIM) COMPLEX (NUCLEAR PROTEINRIM), RIM, SIRINP, RIBONUCLEOPROTEIN
72	270	12-04-27	rco	54.0		CHAIN: A, C, US B"; CHAIN: A, C, US A"; CHAIN: B, C, US B"; CHAIN: B, D;	COMPLEX (NUCLEAR PROTEINRIN) COMPLEX (NUCLEAR PROTEINRIN), RNA, SNRNP,RIBONUCLEOPROTEIN
521	318	3.4-23	0.55	30		UZ RNA HABPIN IV; CHAIN; Q, R; UZ A; CHAIN; A, C; UZ B*; CHAIN; B, D;	COMPLEX (NUCLEAR PROTEINRINA) COMPLEX (NUCLEAR PROTEINRINA), RINA, SHRIMP, RIBONUCLEOPROTEIN
112	86	1.16-24	ริ	0.78		CIRNA HABPIN IV: CHAIN: Q. R. UZ A: CHAIN: A. C. UZ B"; CHAIN: B. D;	COMPLEX (NUCLEAR PROTEINRNA) COMPLEX (NUCLEAR PROTEINRNA), RNA, SNRNP, REGONUCLEOPROTEIN
<b>%</b>	\$	136-18	ຕ	<u>6</u>		UZ RNA HAJBPIN IV; CHARIN: Q. R. UZ A; CHARIN: A. C. UZ B*; CHARIN: B, D;	COMPLEX (NUCLEAR PROTEINRIA) COMPLEX (NUCLEAR PROTEINRIA), RNA, SNRNP, AIBONUCLEOPROTEIN
8	5	1.8e-16	27	980		UT RNA HAURPIN IV; CHADE: Q. R. UZ A; CHADE: A. C. UZ B; CHADE: B. D;	COMPLEX (NUCLEAR PROTEINRINA) COMPLEX (NUCLEAR PROTEINRINA), RINA, SNRNP, RIBONUCLEOPROTEIN
	cu.	1,6e-27 0.48	0.48	Q.39		UZ RNA HAIRPIN IV; CHADK: Q, R; UZ A; CHAIN: A, C; UZ B; CHAIN: B, D;	COMPLEX (NUCLEAR PROTEINRNA) COMPLEX (NUCLEAR PROTEINRNA) RNA, SNRMP, PLBONUCLEOPROTEIN
561		311 11.6.25   0.22	20	70		UZ RNA HAIRPIN IV:	COMPLEX (NI)CLEAR PROTEIN/RNA)

150

WO 02/059260 PCT/US01/42950

149

2

ğ 9 ğ g

PDB ametrices		COMPLEX (NUCLEAR PROTED/RNA), RNA, SNRNP, RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEINRAN) COMPLEX (NUCLEAR PROTEINRAN) RNA, SHRNF, KIBORNCLEOFROTEIN	COMPLEX (NUCLEAR PROTEDWRNA) COMPLEX (NUCLEAR PROTEDWRNA), RNA, SNRNP, REGONUCLEOPROTEIN	CELL ADHESION LEUCING RICH REPEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REFEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCTUM BINDING, CELL ADHESION	CELL ADMESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADMESION	CELL ADHESION LEUCING RICH ADHESION	CELL ADHESION LEUCING RICH REPEAT, CALCTUM BINDING, CELL ADHESION	TRANSPERASE CRYSTAL GERANYLOERANYLTRANSFERASE, 10 A 1 RESOLUTION, N. PORMYLJETHONING, ALPHA
Consupernel		CHAIN! Q.R. U2 A'; CHAIN! A. C; U2 B'; CHAIN! B, D;	UZ RNA HAIDPIN IV; CHADI; Q, R; UZ A; CHADI; A, C; UZ B; CHADI; B, D;	UZRNA HAIRPIN IV. CHADE: Q. R. UZ A; CHADE: A. C. UZ B; CHADI: B. D;	INTERNALIN B; CHAIN: A;	INTERNALIN B; CHAIN: A;	INTERNALLIN B; CHAIN: A;	INTERNALIN B; CHAIN: A;	INTERNALIN B; CHAIN: A;	INTERNALIN B; CHAIN: A;	RAB Geranyloeranyltran Sperase alpia Subunti, Chada: A, C; Rab
Seq.Pedd	Ę										
È,	į		390	£3	1.00	740	8	Q.76	120	2	8:
Verify	į		2	6.16	83	95.0	0.70	9.48	0.42	# 0	629
-	5		ά. 1.	3.66-17	X-91.5	72 <del>4</del> 5 7	₹ <b>-9</b>	7.49	1.4.13	7.4	<u>.</u>
3	\$		<b>?</b>	Ħ	αĭ	132	350	417	ä	r.	151
_	\$		£	7.	₹	2	213	316	;	2	7
9	8		υ	υ	<	<	· •	<	<	<	<
80.	8		€	ē	ğ	<u>g</u>	<b>6</b>	<b>4</b> 0	909	909	<b>a</b>
SEQ	ΘŞ		ž	ž	2 <u>9</u>	3	3	192	ŝ	3	3

PDB searcedon	SUBUNIT, BETA SUBUNIT	Transferash crystal Structure, rab Geranylobranyliransferase, 20 a 2 resolution, m	FORMYLAGTHUNDE, ALPHA SUBUNT, BETA SUBUNIT	CONTRACTLE PROTEIN LEUCINE- RUCH REPAT, BETA-BETA-ALPHA CYLINDER, DYNEIN, 2 CHLANYDOMONAS, FLAGELA	CONTRACTUJI PROTEIN LEUCING- RUCH REPEAT, BETA-BETA-ALPHA CYLINDER, DYNEIN, 2 CHEAMYDOMONAS, FLAGELLA	LIGASE CYCLIN ACDIXA. ASSOCIATED PROTEIN PH; CYCLIN ACDXAASOCIATED PROTEIN PH; SYP1, SYP1, F-BOX, LR, LEUCINE. RICH REPATI, SCF, BORDUTTO, 2 E., BIOUTTH PROTEIN LIGASE	LIGASE CYCLIN ACDKA- ASSOCIATED PROTEIN PH; CYCLIN ACDKA-ASSOCIATED PROTEIN PH; SKP1, SKP1, PBOX, LBA, LEUGNE; SKP1, SKP2, PBOX, LBA, LEUGNE; BICH REPEAT, SCP, UBIQUITIN, 2 E.), UBIQUITIN PROTEIN LIGASE	LIGASB CYCLIN AKDICA ASSOCIATED P45; CYCLIN AKDICA ASSOCIATED P19; SKP1, SKP2, F-BOX,
Состроиля	GERANYLGERANYLTRAN SFERASE BETA SUBUNIT; CHAIN: B, D;	RAB GERANYLGERANYLTRAN SFERASE ALPHA SUBUNT; CIATN: A, C;	BAB GERANYLGERANYLTRAN SFERASE BETA SUBUNIT; CHAIN: B, D;	OUTER ARM DYNEIN; CHAIN: A;	OUTER ARM DYNEIN; CHAIN: A;	SKPZ CHADI: A, C, E, G, I, K, M, O; SKPI; CHADI: B, D, F, H, I, L, N, F;	SKPZ CIAMIN A, C, E, G, I, K, M, O; SKPI; CHAIN: B, D, F, H, J, L, N, P;	SKPZ CHÁNI: A, C; SKP1; CHÁIN: B, D;
Scere								
PM P		0.49		0.03	ST OF IS	90.0	6 81.0	0.07
Veriffy Score		70		970	9.10	-0.08	50.0	0.21
BLAST Sours		6.80-10		1.7e13	1.76-11	1.5612	हा बहु	S.le-14
3 4		202		<del>2</del>	22	ES.	290	972
Sent A		26		i i	130	82	4	п
O C		۷.		<	<	<	<	<
<b>8</b> a		2		1ds9	क्ष	ð.	क्षे	162
8 a g		365		ž	365	ž	363	36

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

			,			
PDB sanetales	FACTOR RECEPTOR-BOUND PROTEIN 2; COMPLEX (ADAPTOR 2; COMPLEX (ADAPTOR 3; COMPLEX (ADAPTOR 3; SH3 DOMAIN; 2 GUANNINE-NUCLEOTIDE RELEASING FACTOR	COMPLEX (LONGUES)  PROTEINFETTING) ASI, GROWTH  PACTOR RECEPTOR-BOUND PROTEIN  PACTOR RECEPTOR BOUND PROTEIN  PROTEINFETTING, IS HID DOMAIN, 2  PROTEINFETTING, IS HID DOMAIN, 2  GULNUME-NUCLEOTING RELEASING  PACTOR.	PHOSPHOTRANSFERASE C-SRC, P60- SRC, SRC, TYROSDE KINASE, PHOSPHOTYACION, SH2, SH3, 2 PHOSPHOTYROSDE, PROTO, ONCOGENE, PHOSPHOTRANSFERASE	COMPLEX (SIGNAL TRANSDUCTION/PETTIDE) COMPLEX (SIGNAL TRANSDUCTION/PETTIDE), SHI DOMAIN	COMPLEX (SIGNAL TRANSDUCTION/PETTDE), SID DOMAIN	
Соещроспе		GRB2 CHAIN: A, 503; CHAIN: B;	TYROSINE-PROTEIN KINASE SRC, CHAIN: NULL;	GRBY, CHAIN! A; SOS-1; CHAIN: B;	GRB'S CHAIN! A; SOS-1; CHAIN! B;	SIGNAL TRANSDUCTION PROTEIN GROWTH FACTOR RECEPTOR. BOUND PROTEIN 2 (GR32, PETSAMALL IGR3 SED DOMAND COMPLECED WITH SOS-A PEPTIDE IGRA (MARL 39 STRUCTURES) [GR8 5
SeqPeld Seare						
FMF		8	0.55	0.95	0.91	85
Verify Score		ā	Q.16	0,74	9 7	416
PSI BLAST Seen		14-17	1.le-06	1.46-19	71-46.7	1 4
3 4		7.	191	TE.	ß	ผู
Start		2	107	112	7	i.
Obeis 15		۷		<	٧.	<
708 ED		5	<b>∤</b> =91	Ŧ	<u> </u>	<u>a</u>
SEQ No D		Ģ.	795	797	787	367

154

02/	<b>D</b> 59	260																										P	ст	705	i01.	/42	95
PDS ansotation					-				_																			SIGNAL TRANSDUCTION ADAPTOR	SPC, SH3 1GRU 14	SCONAL TRANSDUCTION ADAPTOR	SHZ, SH3 IGRU 14		GROWTH FACTOR BOUND STONAL TRANSDUCTION ADAPTOR
Сепиропи		SIGNAL TRANSDUCTION	FACTOR RECEPTOR.	BOUND PROTEIN 2 (GRB2.	N-TERMINAL IGBR 1 SHI	DOMAIN) COMPLEXED	WITH SOS-A PEPTIDE	IGBR 4 PNACE, 29	STRUCTURES) IGBR 5	ADAPTOR PROTEIN	CONTAINING SH2 AND	SHB GROWTH PACTOR	RECEPTOR-BOUND	PROTEIN 2 (CRBZ) IGFC 3	(C-TERMINAL SHI	DOMAIN) (NIMR.	MUNIMIZED MEAN	STRUCTURE) (GFC 4	ADAPTOR PROTEIN	CONTAD/ING SH2 AND	SH3 GROWTH PACTOR	RECEPTOR-BOUND	PROTEIN 2 (CRB2) LGFC 3	(C-TERMINAL SHI	DOMAIN) (NAME,	MUNDATZED MEAN	-+	_	PROTEIN 2: 1GRU S CHAIN:	CTOR ROLLYD	GRI S CHAIN:	A, B; 1GR16	OROWTH FACTOR BOUND
Scar										Γ									Ī									200					
Score		150						_		8								Ī	8								1			1			8
5		0.43			_					6.73						_			ē						_					150			0.01
25		3,66-17						_		1									1						_			2		70.4			1.76-16   0.01
1 2	_	191		_						25				_					=	_	_			_				2		222			83
į 2		z								<u>=</u>									ļ									<u>ē</u>		8			
1 Ser		٧	_															_		_			_	_			J	<			_		<b>Y</b>
2 9		431								4								_	병	,		_						<u>_</u>		Ī			Jen I
9 4	é	767						_	_	75			_	_	_			_	ķ		_							ž		3			191

155

LUAS, LEICCING-MICH REPEATS, SCT.

JUDIGATION, LOUGHTH, B.J. DEGUTIN MATERIA

TON SEATTHING MACH. PARAGO,

TON SEATTHING MACH. LOR. REPEAT,

TON SEATTHING MACH. LOR. RECORD.

TON SEATTHING MACH. LOR. RECORD.

TON SEATTHING, LEGICIERA,

T

REBATOCLASS
REBATOR, CHARRENTL;
REGONOCLASS
REBATOR, CHARRENTL;
REGONOCLASS
REBONOCLASS
REBONOCLASS
REBONOCLASS
REBONOCLASS
REBONOCLASS
REBONOCLASS

800

1.70-22

2brd

365

365

153

1

Seq Pold Score

PDB Chain Start End PS1 Vertly PMP D 1D AA AA BLAST Score Score Score

SE SE

92

37.6

38

RRUTON'S TYRIGEDRE KINASE; CHAIN: NULL; GRB2; CHAIN: A; SOS; CHAIN: B;

97.0

325

767

328

laww

FDB senotation	अस्त, इस्त । तक्ष्य १४	SIGNAL TRANSDUCTION ADAPTOR SIC, SIC IGRI 14																					The second secon	PHOSPHATIDYLINGSTOL   PHOSPHOTIKANSPEKASB PISK SHIS
Courspond	PROTBIN 2; 10M S CHAIN: A, B; 1GM 6	GROWTH FACTOR BOUND PROTEDN 2; IGRI 5 CHAIN: A, B; IGRI 6	PHOSPHORIC DIESTER HYDROLASE PHOSPHOR PASE C.	GANGMA (SHD DOMAIN)	MONDAZED MEAN STRUCTURED HSO 4	PHOSPHORIC DIESTER	HYDROLASE	PHOSPHOLIPASE C.	CC11411 HS0 100G	MUNIMIZED MEAN	PHOSPHORIC DIRECTED	HYDROLASE	PHOSPHOLIPASE C.	GAMMA (SH3 DOMAIN)	(E.C.3.1.4.11) 1HSQ 3 (NAR.	MUNIMIZED MISAN	PHOSPHORIC DIESTER	HYDROLASE	PRIOSPHOLIPASE C.	GAMMA (SHE DOMAIN)	(B.C.3.1.4.11) 1HSQ 3 (NMR,	MUNIMIZED MEAN	SIXULIUKE) INSQ4	PHOSPHATIDY LANDS I UL.
Score Score																								1
Scare		0.42	8			0.55					690						8						1	22
Vertity		0.08	0.17			0.20					9 40						0.17							0.47
PSI BLAST Store		136-17	13e-16			3.8e-16					0.00017						722-17		_	_				3.66-13
3 \$		251	138			328					111						3						_	9
£ Ser		2	<u>.</u>			256					270	-					-						ŀ	ğ
9 9 9		<									I					_	I							
<u>8</u> 0		<u>B</u>	ğ			a a					5	[					1 bac					_		H
ge ş	Γ	75	78			795	_	_			5						19							2

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

<u>ş</u> e	d e	Start A	3 2	BLAST Son	Verity	Score	Seq Feld Scare	Compense	PDB nasotation
								PROLINGALICH PEPTIDE FROM MSOS ISEM & CHAIN: C, D ISEM 10	PEPTIDE BINDING PROTEIN, ISEM IS 2 GUANINE NICLEOTIDE EXCHANGE PACTOR ISEM 19
<u> </u>	٠	122	я	T-4-1	15.0	8		SEW-5; I SEM 3 CHADR. A. B. 1SEM 5 ID-RESIDUE PROLING-RICH PETTIDE FROM MSCS 1SEM 3 CHADR. C. D. ISEM 10	SIGNAL TRANSDUCTION PROTEIN SRC-HOMOLOGY 3 (SH3) DOMAIN, PETTIDE-BINDING PROTEIN, 1SEM 18 2 GUANNIE NUCLEOTIDE EXCHANGE FACTOR 1SEM 19
1	<		×	E A	8	8		SEW-5; ISEM 3 CHATR: A, B; ISEM 5 (0-RESIDUE PROLIDE-RICH PETTUE FROM MSOS ISEM 1 CHATR; C, D ISEM 10	SIGNAL TRANSDUCTION PROTEIN SECHOMOLOGY 1 (SH3) DOMAIN, PETIDE BNDING PROTEIN, ISEM 18 2 GUANINE NUCLEOTIDE EXCHANGE FACTOR 1SEM 19
1	<		×	<u> </u>	80.0	8		SEM-5; ISEM 3 CHAIN! A, B: ISEM 5 IO-RESIDUE PROLING-RICH PETTUE FROM MSCS ISEM 1 CHAIN: C, D ISEM 10	SIGNAL TRANSDUCTION PROTEIN SRC-HOMOLOGY 1 (SH1) DOMAIN, PETIDE-BINDING PROTEIN, ISEM 18 2 GUANNIE NUCLEOTIDE EXCHANGE FACTOR ISEM 19
3		=	<u>3</u>	7.75-16	17.0	รี		ALPHA-SPECTRUN; CHAIN: NULL;	CYTOSKELETON CAPPING PROTEIN, CALCIUM-BINDING, DUPLICATION, REPEAT, 2 SH3 DOMAIN, CYTOSKELETON
ğ		202	ii.	1.46-14	-6.16	6.75		ALPHA-SPECTRIN; CHAIN: NULL;	CYTOSKELETON CAPPING PROTEIN, CALCIUM-BINDING, DUPLICATION, REPRAT, 1 SH3 DOMAIN, CYTOSKELETON
45.ck		101	25	Ē	61.9	629		HEMATOPOIBTIC CELL KINASE; CHAIN: NULL;	TRANSFERASE HCK; SHJ, PROTEIN TYROSINE KINASE, SIGNAL TRANSDUCTION, 2 TRANSFERASE
1		<b>35</b>	22	3,66-16	02.0	25		BRUTONS TYROSINE KINASE, CHAIN: NULL;	TRANSFERASE ATK, AMGXI, BPK; TYROSINB KINASE, X-LINKED AGAMAGIOBULINEMIA, XIA, BITK,

PDB annotation	IPHT 9 PHOSPHATIDYLNOSITOL 3- KINASE, P1S-ALPHA SUBUNIT, SH3 DOMAIN IPHT 21	PHOSPHOTRANSFERASE PLIX SHI; IPHT 9 PHOSPHATEDYLINOSITOL 3- KINASE, PUSALPHA SUBUNIT, SHI DOMAIN IPHT 21		CIRCULAR PERMUTANT PWT; CIRCULAR PERMUTANT, SHI DOMAIN, CYTOSKELETON	CIRCULAR PERMUTANT PWT; CIRCULAR PERMUTANT, SHI DOMAIN, CYTOSKELETON	CYTOSKELETON CYTOSKELETON, MEMBRANE, SH3 DOMAIN	CYTOSKELETON CYTOSKELETON, MEMBRANE, SH3 DOMAIN	CYTOSKELETON CYTOSKELETON, MEMBRANE, SHI DOMAIN	TYROSING-ROTEIN KINASE BAUTONS TYROSING KINASE, B CELL PROJENTOR KINASE, TRANSERASE, TYROSING-ROTEIN KINASE, PHOSPHORYLATION, 2 SHE DOWAIN	SIGNAL TRANSDUCTION PROTEIN SRC-HOMOLOGY 3 (SH3) DOMAIN,
Componed	SUBUNIT, IPHT 6 CHAIN: NULL; IPHT 7	PHOSPHATIDYLINOSITOL  J-KINASB P15-ALPHA SUBUNIT; IPHT 6 CHAIN:	PHOSPHOTRANSFEASE HOSPHOTRANSTOL HOSPHATINTLINOSITOL HORDANIT, IPAJ 3 SIB DOMAIN, IPAJ 3 SIB MINIMIZED A VERAGE STRUCTURE) PNJ 4	ALPHA SPECTRIN, CHAIN; NULL;	ALPHA SPECTRIN; CHAIN; NULL;	ALPHA II SPECTRIN; CHAIN! A;	ALPHA II SPECTRIN; CHAIN: A;	ALPHA II SPECTKIN; CHAIN; A;	TYROSINI-PROTEIN KINASE BIK; CHAIN: A;	SEM-3; ISEM 3 CHAIN: A, B; ISEM 5 10-RESIDUE
Seare										
PMF Sear		Q.17	500	77	00'1	0.60	89	63	0.87	8
Vertity		-0.02	2.0	0.80	0.25	0,60	0.42	91.9	5.	139
PSI BLAST Scen		160-15	1.16-12	1.49.1	1.69-18	1.16-18	5.40-18	1.6	£1.	1.40-17
3 2		ž	191	251	*	25	326	×	153	136
Start Start		1.22	<u>.</u>	9		<u>8</u>	269		101	101
a e						<	<b>4</b>	<	<	٧
202 01		搏	ł	Ig.	E	lakw	Mag.	rg b	争	lien I
SEQ Š D Š		167	367	367	367	367	290	190	797	367

157

| Fig. | Fig. | Color | Start | Ead | Fig. | Verify | Fig. | Seep | Seap | Seap

					_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
PDB enactation																		SIGNAL TRANSDUCTION ADAPTOR	SHZ, SH3 IUKU IA	SIGNAL TRANSDUCTION ADAPTOR	STA ON LUKI IN
Coumpound	IGBR 4 (NMR, 29 STRUCTURES) IGBR 5	SIGNAL TRANSDUCTION PROTEIN GROWTH PACTOR RECEPTOR- BOUND PROTEIN 2 (GRB2,	N-TERMINAL, IGBR 3 SHD DOMAIN) COMPLEXED	WITH SOS-A PEPTIDE 108R 4 (NAR, 29 STREET RES) 108R 5	ADAPTOR PROTEIN	SID GROWTH FACTOR	RECEPTOR-BOUND	C-TERMINAL SIG	DOMAIN) (NIMIR,	STRUCTURED IGEO	ADAPTOR PROTEIN	CONTADUDO SIE AND	RECEPTOR-BOLING	PROTEIN 2 (CRB2) IGPC 1	(CTERMINAL SHI	DOMAIN) (NIMR,	MINIMIZED MEAN	GROWTH FACTOR BOUND	PROTEIN 2: IGRU 3 CHAIN:	CTOR BOUND	
Seq Fold Score																		56.68	_		
PM P Scen		ě			8	_					90.									=	
Verity See	Γ	3			0.73						12.0							Γ		กู	
PSI Sera		1,46-17			19						1.40.1							1.34-26		130.26	
3 5		191			25						×							ĕ		327	
A A	Γ	ı			ē						,							ō		ē	
<b>a</b>		<									Γ							<b>\</b>		<	
<u> </u>	Γ	<u>a</u>			Ē			_			100							<u>_</u>		<u>E</u>	
ខ្លួនខ្		3			358	_	_				368							36		32	

WO 02/059260

PCT/US01/42950

	П		<u> </u>							٦ -
PDB sanotation		PHOSPHOTRANSFERASE PIJK SKIJ; IPHT 9 PHOSPHATIDYLLNOSITOL 3- KINASE, P8S-ALPHA SUBUMIT, SHJ TOMAKIN IPHT 21	PHOSPHOTRANSPERASE PUK SHI; IPHT 9 PHOSPHATIDYLINOSITOL 3- KINASE, P15-ALPHA SUBUNIT, SHI DOMAIN IPHT 21		CIRCULAR PERMUTANT PWT; CIRCULAR FERMUTANT, SH3 DOMAIN, CYTOSKELETON	CIRCULAR PERMUTANT PWT; CIRCULAR PERMUTANT, SH3 DOMAIN, CYTOSKELETON	CYTOSKELETON CYTOSKELETON, MEMBRANE, SH3 DOMAIN	CYTOSKELETON CYTOSKELETON, MEMBRANE, SHI DOMAIN	CYTOSKELETON CYTOSKELETON, MEMBRANE, SHD DOMAIN	TYROSING-ROTEN KINASE BRUTONS TYROSING KINASE, B CELL ROCEDITOR KINASE, TRANSFERASE, TYROSING-PROTEIN KINASE, PHOSPHORYLATION, 2 SHE
Commpound	STRUCTURE) 1HSQ 4	PHOSPHATDYLNOSITOL	PHOSPHATIDYLINOSTOL  SKINASB PISALPHA SUBUNT: IPHT 6 CHAIN:	PHOSPHOTRANSFERASE PLOSSBACHOTRANSSTOL PLONASS (PES ALPIN SUBUNIT, IPM 1 SH3 DOMAIN) (NMR, MORGED A VERAGE SIRUCTURE) IPM 1	ALPHA SPECTRIN; CHAIN: NULL;	ALPHA SPECTRIN; CHAIN: NULL;	ALPHA II SPECTRUN; CHAIN: A;	ALPHA II SPECTRUN; CHAIN: A;	ALPHA U SPECTRIN; CHAIN; A;	TYROSINE-PROTEIN KINASB BTK; CHAIN; A;
Seq Fold Score	STRU	NAC SUBU SUBU	SUBUS SUBUS	PHOS SUBL SUBL NOM NOM STRU	ALPHA NGL;	ALPHA NULL;	CHAIN: A	ALPHA US CHAIN: A;	4 A B	KINA
ž Š	r	rg Tg	£11,	g	0.0	8.	38.	85	8	45
Verify Beer		64	700	0.42	0.80	220	3	3	91.0	0.43
E 72 5	Γ	3.60-13	1.64.13	1.10-12	1.60-18	11-09-1	1.16.18	11-47	=	<u> </u>
35		<u>=</u>	3	191	551	*	133	975	2	2
¥₹		ā	Ē	<u>.</u>	101		8	592		<u>5</u>
<b>j</b> e							<			<
ê e		1	4	Ē	l part	Ĭ	rith.	å	ag.	Ę.
g e g	T	3	3	3	35	3	3	3	3	34

| Section | State | St

PCT/US01/42950

WO 02/059260 PCT/US01/42950

					4	Ė		Name of the last	
9	Ω.	<b>\$</b>	\$	Brens AST	Ę	į	2		
	<	5	×	14	87	8		SEM-5; ISEM 3 CHAIN: A, B; ISEM 5 IO-RESIDUR PROLING-RICH PEPTIDE	SIGNAL TRANSDUCTION PROTEIN SEC-HOMOLOGY 1 (SH1) DOMAIN, PEPTIDE-BINDING PROTEIN, ISEM 18
								FROM MSOS ISEM 8 CHAIN: C, D ISEM 10	2 GUANTNE NUCLEOTIDE EXCHANGE FACTOR I SEM 19
8	~	112	121	1.40-17	0.13	8		SEM-1; ISEM 3 CHAIN: A, B; ISEM 1 10-RESIDUE	SIGNAL TRANSDUCTION PROTEIN SRC-HOMOLOGY 3 (SH3) DOMAIN
								PROUNG-RICH PEPTIDE FROM MSOS ISEM 8	PETTIDE-BINDING PROTEIN, ISEM 18 2 GUANDAE NUCLEOTIDE EXCHANGE
1				7	1			CHAIN: C, D ISEM 10	FACTOR ISEM 19
1	۷.		×	7.20-15	8	8		SEM-5; ISEM 3 CHAIN: A.	SIGNAL TRANSDUCTION PROTEIN SECTIONOLOGY 1 (SH1) DOMAIN.
								PROLING-RICH PEPTIDE	PEPTEDE BINDING PROTEIN, ISEM 18
								FROM MSOS ISEM 8	1 GUANINE NUCLEOTIDE EXCILANGE
Ī	Ī.	7	į	,	1	1		CHAIN: C.D. ISEM TO	STOCKET TO ANSWER THOM BOOTED
	<	•	2	1	Š	3		B- ISBM 6 IARPSIDLE	SECHONDIOGY 3 (SH3) DOMAIN.
								PROLING-RICH PEPTIDE	PEPTIDE-BINDING PROTEIN, ISEM 18
								FROM MSOS ISEM 8	2 GUANTNE NUCLEOTIDE EXCHANGE
								CHAIN: C, D ISEM 10	FACTOR ISEM 19
2		111	191	1.2016	0.41	ร		ALPHA-SPECTRIN; CHAIN:	CYTOSKELETON CAPPING PROTEIN,
Ī								NUTT:	CALCTUM-BRIDING, DUPLICATION,
									CYTOSKELETON
ğ		213	338	144.	416	6.75		ALPHA-SPECTRIN; CHAIN:	CYTOSKELETON CAPPING PROTEIN,
								NUT.	CALCTUM-BINDING, DUPLICATION,
									REPEAT, 2 SH3 DOMAIN,
£¢¢		iõi	135	118	913	620		HEMATOPOLETIC CELL	TRANSFERASE HCK; SH3, PROTEIN
			Ī					KINASES CHASIN: NOLL;	TRANSDUCTION, 2 TRANSFERASE
1									
8	12	378	189				140.90	TRANSFERASE(PHOSPHO TRANSFERASE) SC-JAMPS	

PDB exactation			-	
Compensed	DEPODENT ROTEN KOASE (C.C.1.1.37) (CANAL) IANI 3 (CANAL) IANI 4 (C	TANSPERALSEMPOREPRO PERSONAL REPARATE ROUTEN (FOLVAR) IAM I REPARED BY ALA (FILMAR) IAM I REPARED BY AND THE PETTER IAM I AND THE PETTE	PHOSPHOTRANSPERASE CANG-DEPENDENT CATEN KONASE CATATTE SUBUNT ICME 3 (E.C.2.7.1.37)	PHOSPHOTRANSFURASE CAMP-DEPENDENT
Seq Pold Scare			147.30	
Sear S		87		90'1
Vents Sems		97.0		ध्य
_		0	•	
3 2			· ·	92.9
¥ \$		# T	36	388
<b>3</b> e		en en	u	<b>a</b>
P.08		<u> </u>	T. L.	Ā
) (2)		§.	690	8

WO 02/059260

PCT/US0	1/42950

	_		" g.f.								
PDB ansetation		HYDROLASE C2 DOMAIN, PHOSPHOTDYLNOSITOL, PHOSPHOTASE, HYDROLASE	HYDROLASE PROTED-TYROSINE PROSPHATASE, HYDROLASE, PROTEIN TYROSING PROSPHATASE, CATALYTIC DOMAIN, 2 WPD LOOP, SIA DOMAIN	HYDROLASE TYROSINE PHOSPHATEASE, LAR PROTEIN	HYDROLASE TYROSINE PHOSPHATEASE, LAR PROTEIN	HYDROLASE TYROSINE PHOSPHATEASE, LAR PROTEIN	HYDROLASE DUAL SPECIFICITY PHOSPHATASE, MAP KINASE HYDROLASE	HYDROLASE DUAL SPECIFICITY PHOSPHATASE, MAP KINASE HYDROLASE	HYDROLASE DUAL SPECIFICITY PHOSPHATASE, MAP KINASE HYDROLASE		HYDROLASE VHR. HYDROLASE, PROTEIN DUAL-SPECIFICITY PHOSPHATASE
Compousé	PROTEIN-TYROSINE PHOSPHATASE IB; CHAIN: A;	PHOSPHOTASE PTEN: CHAIN: A:	SIP-I; CHAIN: NUIL;	LAR; CHAIN: A, B;	LAR; CHADH: A, B;	LAR; CHADN: A, B;	PYSTI; CHAIN: NULL;	PYSTI; CHAIN: NULL;	PYSTI; CHAIN! NULL;	RECEPTOR PROTEIN TYROSDIB PHOSPHATASE MU; CHAIN: A, B;	HUMAN VHI-RELATED DUAL-SPECIFICITY PHOSPHATASB CHAIN: A, B,
Seq Pald Beers			D.E.				142.92				20'66
grant APRA	000	0.45		413	8 0	40.05		8	8	70 G	
Verify	10.0	99		ī	9	200		61.0	3	0.19	
PSI Stere	13-47	1.74-31	15-41-9	1.70-76	5,10-62	3.46-73	5.40.37	5.44.)7	136.77	35-66	Ω. •\$.
3 4	215	₹	a	190	916	792	216	Ε_	7	=	Ē _
Start A A	7	3		R	2	3	5	Ξ	2	==	8
10	<	<		<	8	9				<	<
<b>5</b> 0	3	165	Ē	3	1	ī	di I	tato	r) P	Ē	<u>+</u>
g e ë	ž	ž.	7.	374	ž	ž .	7.4	174	ř	ž	ž

PROTEIN TYROSINE PHOSPILATASE IB; CHAIN: MULL; PMF SeqFold Score Score 970 South ŝ End PSI AA BLAST Score 32 ¥ Ş = a e 20 E 163 8

WO 02/059260 PCT/US01/42950

165

369

SEQ.

PDB ametrides	HYDROLASE, PHR, HYDROLASE, PROTEIN DUAL-SPECIFICITY PHOSPHATASE	Hydroláse di; hydroláse, signal transcolction, receptor, glycoproten; signal phosphorylation, signal	HYDROLASE YOPSI, YOPZB, PASTELBELLA X, PTP-ASS, PROTEIN TYROSIDE PHOSPHATASE, HYDROLASE	Tyrosne phosphatase stp. Siptp-2, tyrosne phosphatase, Insulin Signaling, she protein	COMPLEX (ZINC FINGERODIA), COCRPLEX (ZINC FINGERODIA), ZINC FINGER, DINC-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CXYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DINA) ZINC FINGER, PROTEIN-DINA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DINA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA
Companie	HUMAN VHI-RELATED DUAL-SPECIFICITY PHOSPHATASE CHAIN: A, B,	RECEPTOR PROTEIN TYROSINB PHOSPILATASE ALPHA; CHAIN: A, B;	Yersina Protein Tyrosing Phosphatase Chain: Null;	SIP-2; CHAIN: A, B;	QOSR ZINC FINGER PEPTIDE, CHAIN: A: DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B,	DNA; CHADA; A, B, D, E; CONSENSUS ZINC FUNGER PROTEDY; CHADA; C, F, C;	DNA; CHADI: A, B, D, E; CONSENSUS ZINC FUNDER PROTEIN; CHADI: C, P, O;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER
Seq Fold Scare								
Score	90	<b>8</b> 00	0.01	G _P	0.70	ā .	8.	97
Verity	0.81	0.10	ŝ	00	รู	8	0.41	0.15
PSI PLAST		5.19-67	1.te-06	1.78-61	Ω+C1	Ĭ	3.46-51	10-51
3 \$	eic eic	Ħ	ī	31.7	977	97	**	343
¥ ¥	133	n	217	n	12 12	3	ន	72
đe	<	<		<	<	U	u	c
<b>2</b> e	1	<u>5</u>	<u> </u>	A	£	i	Incy	ine,
geg	374	**	*	ž	25	225	22	375

PDB assecution	DITERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DIA) ZINC FINGER, PROTEDI-DIA	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	RECITION TOWNS AND	POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	RECULATION/DNA) COMPLEX	CHANGED THON	POLYMERASE III. 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	RECULATION/DNA) COMPLEX	(TRANSCRIPTION	REGULATION/DNA), RNA	POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATIONONA) YING-YANG I;	TRANSCRIPTION INTERFERENCE
Compound	PROTEIN; CHAIN: C, F, C;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN; C, P, O;	DNA; CHAIN: A, B, D, E;	PROTEIN; CHAIN: C, P, O;		TFILLA; CHAIN: A, D; 55	RIBOSOMAL RNA GENE;	Crowns is a factor			TFUIA; CHAIN: A, D; 58	RIBOSOMAL RNA GENE;	CHAIN: B, C, B, P;			TFUIA; CHAIN: A, D; 53	RIBOSOMAL RNA GENE;	CHAIN: B, C, B, P;				YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS PS	IN LATOR ELEMENT
Sea Fed		\$6.001										12.													
Scar				3			<u>10</u> 0										97.0					٦	Į,		-
Verify				ž			623										01.0					7	3		
PSI BLAST Sour		15.91		17637			3.46-31					6.be-32					6.80-32						2		
3 \$		3		3			ä					348		_	_		ž						ž		
Start AA		192		289			2					203					213						ş		
Clash		S		Į,			<					~					<						ပ		Ī
<b>8</b> 9		L Bey		Ē			2					148		_	_	_	198					_	¥		
SEQ 10 10		21.5		21.			375					375					375				_		22		-

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

PDB annotation	PROTEINDNA) FIVE-FINGER OLL, OLL, ZINC FINGER, COMPLEX (DNA-BINDING PROTEINDNA)		ISOMERASE EPIMERASE; UDP- GALACTOSE, EPIMERASE; ISOMERASE	GLYCOPROTEIN MEMBRANE COFACTOR PROTEIN (MCP); VIRUS	RECEPTOR, COMPLEMENT	COFACTOR, SHORT CONSENSUS REPRAT, 2 SCR. MEASURS VIRUS.	GLYCOPROTEIN	GLYCOPROTEIN MEMBRANE	COFACTOR PROTEIN (MCP); VIRUS	RECEPTOR, COMPLEMENT	COFACTOR, SHORT CONSENSUS	REPEAT, 2 SCR, MEASILES VIRUS,	OL TOOR OTHER AND A LIGHT	COFACTOR PROTEIN OVERLY	RECEPTOR, COMPLEMENT	COFACTOR, SHORT CONSENSUS	REPEAT, 2 SCR, MEASIES VIRUS,	GUTCOPROTEIN	COMPLEMENT INHIBITION VCP, SP35,	COMPLEMENT, NMR, MODULES,	PROTEIN STRUCTURE, VACCINIA	VIKUS	COMPLEMENT INHIBITION VCP, 3713; COMPLEMENT, NAM, MODULES,	PROTEIN STRUCTURE, VACCINIA VIRUS
Centspented	GLII; CHAIN: A; DNA; CHAIN: C, D;		UDP-GALACTOSB-4- EPIMERASB; CHAIN: NULL;	COME CHAIN: A, B, C, D, E,				CD46; CHAIN: A. B. C. D. E.					a d J a r julyno znoc	Committee of the second	•				COMPLEMENT CONTROL	PROTEIN; CHAIN: A:			PROTEIN; CHAIN: A;	
Seq Fold Score								21.16											_					
PMP			0.01	8				Ī					1	1				I	ž				- -	
Verth Feer			98.0	243										5				1	5				ğ	
15. 15. 15. 15. 15. 15. 15. 15. 15. 15.			0.0013	5.4e-30				546.30						2016				7	8			7		
3 \$			3	3				255					Ì						3				<u> </u>	
¥ Ş			u	n				<u>_</u>					ŀ	3					2				8	
i e				<b>~</b>				~					Į.	٠.	_				<	_		J	·	
<b>2</b> 9		Γ	8	3				3					1	1					Š				Ų	
ĝ <u>e</u> ĝ			ž	3	_			9					1	į					ă				3	

PDB expetition	INITIATOR ELEMENT, VYI, ZINC2 FINGER ROTELN, DNA-PROTEIN RECOGNITION, 3 CONCLEX (TRANSCRIPTION REQUILATIONDIA)	COUNTER (TRANSCULINON RECULATION/ONLY YOU YANG I; TRANSCULTION BRITIATION BRITIATION BRITIATION BRITIATION SOLVENOTES BROOMFINE, I COMPANIONEN TRANSCULTION IS USULATIONONA)	COMPLEX (TRANSCULIDA REGULATUONONA) YING-YANG I; TRANSCULTION BETLATON BITTATUS BLADELY (YI) ZING 2 REGORDING I, COMPLEX REGURATION I, COMPLEX (TRANSCULTION ECULATIONONA)	CONFLEX (TRANSCHITTON REGULATONONIA) YNG-YAND ; TRANSCHITTON BUTLATON BUTLATON BLABENT, YVI, ZMC 2 FROMER ROTEN, BNA-ROTEN RAGER ROTEN, SOM-ROTEN (TRANSCHITTON BUTLATONONA)	COMPLEX (DAY-BINDING PROTENDINA) FUB-FINGER CIL; CIL, BINDING PROTEINDINA)	COMPLEX (DNA-BINDING PROTEN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING
Coumpetine	DNA. CHAIN: A. B;	YYI; GIAUH: C, ADENO- ASSOCIATED YRUS PS BUTLATOR ELEMENT DRA; GIAUH: A, B;	YY I; GIAIN: C, ADENO- ASSOCIATED VRUS PS BUTLATOR ELEMENT DIAN; CHAIN: A, B;	YY; GIADH C, ADENO SSOCIATED VRUS PS DUTIATOR ELEMENT DNA; CHADH A, B.	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINÇ FINGER PROTEIN GLI]; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN
SeeFold		2.0			3		
Sour			8	8		96.0	5
Verify			97.0	รี		61.0	
PS! Soor		25-98	55	5.10.34	3. 9	76-32	236 348 3.46-54 0.32
3 5		3	ž	ž	3	ž	7
AA AA		ដែ	102	<u>*</u>	92	213	336
a e		U	U	υ	<b>v</b>	·	<b>~</b>
<b>2</b> 0		3	3	<u> </u>	į.	19	Г
ã e ĝ		375	EE .	212	37.5	375	375 24

169

| 110 | 120 | 120 | 131 | 134-24 | 134 | 144-24 | 134 | 144-24 | 134 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134-24 | 134 | 134 | 134-24 | 134 | 134 | 134-24 | 134 | 134 | 1

				_						,			
PDB annotation	COMPLEMENT INHUSTOR, COMPLEMENT MODULE, SCR, SUSHI DOMAIN, 2 MODULE PAIR		ENDOCYTOSIS/BXOCYTOSIS NSEC!; PROTEIN-PROTEIN COMPLEX, MULTI- SUBUNIT		LIPID TRANSPORT APO A-L: LIPOPROTEIN LIPID TRANSPORT.	CHOLDSTEROL METABOLISM, 2 ATHEROSCIEROSIS, HDL, LCAT- ACTIVATION	CHAPERONE HSPAP, CHAPERONE, HEAT SHOCK, PROTEIN FOLLDING, DNAK	CHAPERONE HSP40; CHAPERONE, HEAT SHOCK, PROTEIN FOLDING, DNAK	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRUN, ALPHA HELICAL LINKER REGION, 22 TANDEM HELICK COLLED-COLLS,	STOCK ONCE THE STOCK OF T	MOLECULAR CHAPERONE IDJ-1; MOLECULAR CHAPERONE	MOLECULAR CHAPERONE HDJ-1; MOLECULAR CHAPERONE	MOLECULAR CHAPERONE HDL-1; MOLECULAR CHAPERONE
Compound	PROTEIN; CHAIN: NULL;		SYNTAXIN BINDING PROTEIN I; CHAIN; A; SYNTAXIN IA; CHAIN; B;		APOLIPOPROTEIN A-I;		UNA! CHAIN: NULL;	DNAJ; CHAIN: NULL;	ALPHA SPECTRIN; CHAIN: A. B. C.	SYNTAXON-IA; CHAIN: A, B, C;	HUMAN HSP40, CHAIN:	HUMAN HSP40, CHAIN:	HUMAN HSP40, CHAIN:
Seq Feld Scere					19.49		65.24					64.95	
PM.F			8					1.00	ŝ	8.8	8		8.
Vertify								કુ	rra C	022	55.0		6.79
PSI PSI			0.00054 -0.22		720-08		1.76-23	1.76-23	7.26-10	1.6e-06	136-21	12-97	156.23
3 \$			ş		¥		92	11	75	306	92	92	+
SE.			551		2			1	591	161	1	2	2
đe			æ		~				<	₹			
<b>8</b> 9			149		lav		op Op	op.	3	B	Ī	Ē	JA.
g a g		Γ	Ħ		ä		ă	38	Ħ	2	ä	22	E

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

												_
PDB ametation	ATHEROSCIEROSIS, HDL, LCAT- ACTIVATION	CHAPERONE HSP40; CHAPERONE, HEAT SHOCK, PROTEIN POLDING, DNAK,	CHAPERONE HSP40; CHAPERONE, HEAT SHOCK, PROTEIN POLDENG, DNAK	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIM, ALPHA HELICAL LINKER REGION, 23 TANDEM 3-HELLIX COLLED-COLLS, STRUCTURAL PROTEIN	ENDOCYTOSISASOCYTOSIS SYNAPTOTAGAÑN ASSOCIATED 35 KDA PROTEIN, P33A, THREE HELLX BUNDLE.	MOLECULAR CHAPERONE HDJ-1; MOLECULAR CHAPERONE	MOLECULAR CHAPERONE HDJ-1; MOLECULAR CHAPERONE	MOLECULAR CHAPERONE HDJ-1; MOLECULAR CHAPERONE	CONTRACTILE PROTEIN TRIPLE. HELLX COLLED COIL, CONTRACTILE PROTEIN	TRANSCRIPTION REGULATION SIGNATE RVA POLYNERASE SIGNA FACTOR, TRANSCRIPTION REGULATION	CHAPERONE HSP40, CHAPERONE, HEAT SHOCK, PROTEIN FOLDING, DNAK	ALPHA SPECTRIN; CHAIN: STRUCTURAL PROTEIN TWO
Севиренте		DNAJ; CHAIN: NULL;	DNA! CHAIN: NULL;	ALPIA SPECTRIN; CHAIN: A. B. C.	SYNTAXTN-1A; CHADN: A, B, C;	HUMAN HSP40; CHAIN: NULL;	HUMAN HSP4Q CHAIN: NULL:	HUMAN HSP4Q; CHAIN: NULL:	HUMAN SKELBTAL MUSCLE ALPHA-ACTIVIN 2; CIAIN: A;	RNA POLYMERASB PEDAARY SIGMA FACTOR; CHAIN: NULL;	DNA); CHAIN: NULL;	ALPHA SPECTRIN; CHAIN:
SouPost		12.30					25.33		98.36			
J.N.	Г		8	ĝ	8	8		8		3	8	0.0
Vertily Score			0.90	673	70	0.43		8,3		400	1	
PSI BLAST Scars		1.74.23	136.2	7.24-10 0.33	. fe-06	77.49	27.ed	1362	3.6e-07	3.40.06	7	165 354 7,24-10 0,33
3 \$		22	F	ž	ğ	92	2	۲	391	32	92	354
ž ž		_	_	3	161	7	~	~	951	977	_	3
e e				<	<				<			<
804 El		<u>ş</u>	<u>ş</u>	1	ā	7	7	Ī	<u>B</u>	3	Ş.	98
S e S		ž	¥	¥	3	¥	¥	¥	3	¥	¥	ž

	ROLLE TRACTILE	ASE SIGNA	PERONE, OLDING,	WO LPHA 1,23 SCOILS,	SIS LATED 35 EB HELLX	8 HDJ-1;	BHDF1;	TRACTILE	ASB SIGNA	I; KSPORT, ISM, 2
PDB annetation	CONTRACTILE PROTEIN TRIPLE HELIX COLLED COLL CONTRACTILE PROTEIN	TRANSCRIPTION REGULATION SIGNATO, RNA POLYMERASE SIGNA PACTOR, TRANSCRIPTION REGULATION	CHAPERONE HIS 40, CHAPERONE, HEAT SHOCK, PROTEIN FOLDING, DNAK	STRUCTURAL PROTEIN TWO REPRATS OF SPECTRUM, ALPHA HELICAL LINKER REGION, 3.1 TANDEM 3-HELIX COLLED-COLLS, STRUCTURAL PROTEIN	ENDOCYTOSIS/ALXOCYTOSIS SYNAPTOTAGAKIN ASSOCIATED 33 KDA PROTEIN, P35A, TYREE HELIX BUNDLE	MOLECULAR CHAPERONE HEL-1; MOLECULAR CHAPERONE	MOLECULAR CHAPERONE HDF-1; MOLECULAR CHAPERONE	CONTRACTILE PROTEIN TRIPLE- HELLX COLLED COLL, CONTRACTILE PROTEIN	TRANSCRIPTION REGULATION SIGMATO, RNA POLYMERASH SIGMA FACTOR, TRANSCRIPTION REGULATION	LIPID TRÁNSPORT APO A·I; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROI, METABOLUSM, 2
Cerapeus	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2: CHAIN: A;	KNA POLYNERASE PRIMARY SIGMA FACTOR, CHAIN: NULL;	DNAJ; CHAIN: NULL;	ALPHA SPECTRIN: CHAIN: A. B, C;	SYNTAXIN-IA; CHAIN: A. B, C;	HUMAN HSP40; CHAIN: NULL;	HUMAN HSP40, CHAIN: NULL;	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2: CHAIN: A;	RNA POLÝMERASE PRDARY SIGNA FACTOR; CHAIN: NULL;	APOLIPOPROTEIN A-1; CHAIN: A, B, C, D;
Sear Sear	97.69							96.90		19:19
N. S.		66	8	er e	0.00	8	8.		100	
Verify Score		40.07	3	633	ET 0	990	0.45		0.07	
PSI Ser	3.6e-07	3.46-06	16-24	7.26-10	1,60-06	3.46-23	1.be-28	1.86-14	7.20-07	7.20-08
₹ [	365	35	2	ž	306	F	۾	<u>&amp;</u>	\$	¥
¥ Sgr	×	22		291	181	,,	~	35	226	148
<b>1</b> 0	<			<	٧			∢		¥
<b>2</b> 0	ng.	<b>1</b>	ē.	<u>a</u>	<u>B</u>	¥	P.	m.	\$ia1	lva!
ğ e ş	ž	2	£	g	9	ä	<b>SE</b>	3	383	712

PDB ansetation	REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM PHELIX COLLED-COLLS, STRUCTURAL PROTEIN	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGAN ASSOCIATED 15 KDA PROTEIN, P15A, THREE HELIX BUNDILE	MOLECULAR CHAPERONE HDJ-1; MOLECULAR CHAPERONE	MOLECULAR CHAPERONE HDF-1; MOLECULAR CHAPERONE	CONTRACTILB PROTEIN TRIPLE HELIX COLLED COLL, CONTRACTILB PROTEIN	TRANSCRUPTION REGULATION SIGMATO, RNA POLYMERASE SIGMA FACTOR, TRANSCRUPTION REGULATION		ENDONUCLEASE ENDONUCLEASE, PHOSPHODESTERASE,	ENDONUCLEASE ENDONUCLEASE, PHOSPHODIESTERASE,		PLANT PROTEIN TWO HOMOLOGOUS HEVEN-LIKE DOMAINS	PLANT PROTEIN TWO HOMOLOGOUS HEVER-LIKE DOMAINS	SUGAR BINDING PROTEIN UDA; LECTIN, HEVEIN DOMAIN, UDA, SUPERANTIGEN	SUGAR BINDING PROTEIN UDA; LECTIN, HEVEIN DOMAIN, UDA,
Сектроные	A.B.G.	SYNTAXIN ⁵ -TA; CHAIN: A, B, C;	HUMAN HSP40, CHAIN:	HUMAN HSP40, CHAIN: NULL;	HUMAN SKELETAL MUSCLB ALPHA-ACTININ 2: CHAIN: A:	RNA POLYMERASE PRDAARY SIGMA PACTOR: CHAIN: NULL;		ENDONUCLEASE; CHAIN: A;	ENDONUCLEASE; CHAIN:		AGGLUTININ ISOLECTIN VI; CHAIN; A	ADOLUTININ ISOLECTIN VI; CHAIN: A	AGGLUTININ ISOLECTIN VYAGGLUTININ ISOLECTIN V; CHAIN: A;	AGGLUTTININ ISOLECTIN VACGLUTTININ ISOLECTIN
Seq Pald Score					36.90					L				
A Na		8	8.	8		10.0		693	0.47	L	61.9	8	8	8
4 F 8		770	0.64	3		0.0		3	679		990	8	8	1.12
E PE		1.50-06	1,40.23	1,86-23	1	124-07		13-11	1.76-21		91000	S.40-CE	3.66-03	3.68-03
3 2		300	ŗ.	e	<u>ş</u>	ş		ă	ξģ		F	2	3	=
Start A		161	~_		32	ä	L	喜	Ē	L	2	2	÷	2
a e		<			٠.			<		L	<_	<_	<	<u> </u>
ê e		19	Ī	¥	2	ž.		Į.	ķ		3	3	<u>=</u>	3

_		۰,			_	_			_		_	_	_	_	_	_		_	_	_	_	_	_	_
PDB emotation	SUPERANTICEN, SACCHARIDE BINDING		GLYCOSIDASE CGTASE; IGU I TEERAGSTABLE ICTU 14	STRUCTURAL PROTEIN INTEGRIN- BINDING PROTEIN, INV GENB	STRUCTURAL PROTEIN INTEGRUM BINDING PROTEIN, DAY GENE	CHAPERONE/STRUCTURAL PROTEIN	CHAPERONE ADHESTN DONOR	CHAPERONE/STRUCTURAL PROTEIN	COMPLEX (OTP-RINDING/GFFECTOR)	RAS-RELATED PROTEIN RABIA;	COMPLEX (OTP-SINDINOVEFFECTOR),	G PROTEIN, EFFECTOR, RABCOR, 2	SYNAPTIC EXOCYTOSIS, RAB	PROTEIN, RABJA, RABPHILIN	SACTION CHANGE CYCLE LAND	COMPLEX (TRANSCRITTION	PACTOR/DNA1, ASYNOGETRY, 2	TRANSCRIPTIONAL ACTIVATION,	HYPERACTIVE MUTANT	MEMBRANE PROTEIN VSG V6G,	TRYPANOSOME, ANTIGENEC	VARIATION, MEMBRANG PROTEIN		LIGASE AMP COMPLEX, NAD+- DEPENDENT
Coumpound	V/CHAIN: A;		CYCLODEXTRUN GLYCOSYLTRANSFERASE ; ICTU 6 CHAIN: NULL; ICTU 7	DNVASIN; CHAIN: A;	DVASIN; CHAIN: A;	PAPD-LIKE CHAPERONE	FINC, CHAIN: A, C, B, O, I,	SPECIFIC ADJESTIN FUNDI:	RAB-1A: CHAIN: A:	RABPHILIN-3A; CHAIN: B;					CTC/ DNA DUPLEX:	ACTIVATOR PROTEIN:	CHAIN: C. D.			VARIANTSURFACE	GLYCOPROTEIN ILTAT	1,24; CHAIN: A, B;		DNA LIGASE; CHAIN: A, B;
Seq Puld Scare								-																
PM/P Scare	П		<b>4</b> .19	<del>0</del> 20	110	40.14			529						3			_		61.0				170
Verify			0.10	0.0	ž	0.14			19.61						ģ					0.02				-0.70
PSI BLAST Score		_	3,60-08	1.80-09	16-11	5.40-14			0.0072	_					2,000					5.40-09				0.001
3 ₹			5	53	437	211			222	_				1	2					240				223
Start A			92	ā	292	265			791					1	ē					592				493
9 6				<b>_</b>	<b>,</b>				_	_			_		,	_			_		_			8
804 CI			5	AM J	Icw	2			1	_				,	Ì					348		7		<u>1</u>
g a 5			388		388	388			311					_	1					=				393

WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950
--------------	----------------	--------------	----------------

				•					
PDB sanotation	3 PACTOR	TUMOR SUPPLESSOR TUMOR SUPPLESSOR, CDK46 INHIBITOR, ANKYRIN MOTIF	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK 46 INHIBITOR, ANKYRIN MOTIF	COMPLEX (KINASE/ANTI- ONCOCINE) CDK4, PLENKA, MTS1; CYCLIN DEPENDENT KINASE,	CILLAR DE FROTEN COR, DIKA, CEL CYCLE, METER THAOR SUPPLEX THAOR KIPRESSOR, 3 MTSI, COMPLEX KINASEVANTI-ONCOGENE) HEADER	COMPLEX (INHIBITOR PROTEINANCE) INHIBITOR PROTEIN, CYCLIA-DEPENDENT KRASS, CELL CYCLE 2 CONTROL, LATHARETE, COMPLEX (INHIBITOR PROTEINALMASE)	COLFLEX (DHUBITOR PROTEIN CYCLAL-DEPENDENT KINASE CSLL CYCLE 2 CONTROL, ALFWARETA, COMPLEX (DHUBITOR PROTEIN CHARACTA, COMPLEX (DHUBITOR PROTEIN CHARACTA, COMPLEX (DHUBITOR)	HORMONE/GROWTH FACTOR PIB- INKAC, CELL CYCLE INHIBITOR, PILINKAC, THOMOR, SUPPRESSOR, CYCLAL 2 DETENDENT RIMASE, HORMONE/GROWTH FACTOR	HORMONE/GROWTH FACTOR PILE INK4C, CELL CYCLE INHIBITOR,
Compense		PISINKAD CDK46 DRIBITOR; CHAIN; NULL;	PISTINKED CDK466 INHIBITOR; CHAIN: NULL;	CYCLIN-DEPENDENT KINASE & CHAIN: A; MULTIPLE TUMOR	SUTRESSUR, LINUX: B;	CYCLOLDEPENDENT KINASE & CHAIN! A; PISINKAD; CHAIN! B;	CYCLÍN-DEPENDENT KINASE 6; CHADI: A; PIÐRKAD, CHADI: B;	CYCLIN-DEPENDENT KINASE 6 INFIBITOR; GIAD!: A;	CYCLIN-DEPENDENT KINASE & INHIBITOR;
Seq Fold Score			33.62				85.59	60.76	
P.M.F.	Γ	80		8		8			16.0
Vertify Bears	Γ	0.07		442		570.			60.0
E PE SE		\$16.30	S 4 5	Q et		24	8.36.1	1.45.1	17-71
3 \$		161	<u>ē</u>	8		5	191	8	=
¥ 5		2	<b>"</b>	5		21	_	2	6
9							<b>6</b>	<	<
9		ž	3	2		4	<u>#</u>	3	ibe@
S e š	Ī	¥	¥	ž		ž	¥	¥	홌

178

		_		_	_		_				_	_	_	_		_		_		_	,	_	_	_	_	
PDB ametades	ANTI-ONCOORNE CELL CYCLE, ANTI-	ONCOGENE, REPEAT, ANK REPEAT	COMPLEX (TRANSCRUPTION REGULATION/DNA) GABPALPHA;	GABPBETAL; COMPLEX CRANSCRIPTION	RECTUATION DNA BROWN, 2	NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRUPTION	3 PACTOR	COMPLEX (TRANSCRIPTION	KECOLATIONUNA) UABRALPHA;	CRANSCRIPTION	REGULATION/DIAL DIVA-BINDING, 2	NUCLEAR PROTEIN, ETS DOMAIN,	ANK YRIN REPEATS, TRANSCRIPTION	COMPLEX CTRANSCRIPTION	REGREATION DIA I OABPALPHA:	GABPBETAL; COMPLEX	(TIANSCRUPTION	REGULATION/DNA, DNA-BINDING, 2	NUCLEAR PROTEIN, ETS DOMAIN,	ANK YRIN REPRATS, TRANSCRIPTION	COMPLEX (TRANSCRIPTION	REGULATION/DNA) GABPALPHA;	GABPBETAT; COMPLEX	(TRANSCRUPTION	REGULATION DNA, BNA-BDDDNG, 2	NUCLEAR PROTEIN, ETS DOMAIN, ANK YRIN REPEATS, TRANSCRIPTION
Centipens	TUMOR SUPPRESSOR	PIGNK4A, CHAIN: NULL;	ALPHA; CHAIN: A; GA	BINDING PROTEIN BETA	9.6			DA BINDING PROTEIN	ALPHA: CHAIN: A: UA	1: CHAIN: B: DNA: CHAIN	D. B.			GA BINDING PROTEIN	ALPHA: CHAIN: A: GA	BINDING PROTEIN BETA	I; CHAIN; B; DNA; CHAIN;	1 to 1 to 1			OA BINDING PROTEIN	ALPHA: CHAIN; A: 0A	BINDING PROTEIN BETA	1; CHAIN: B; DNA; CHAIN:	5.0	
Seq Feld Score								2						Ī							T	_				
Score B	gel)		8					_						8	•						8					
Score	400		3				٦							315							253					_
PSI BLAST Score	1.46-19	_	3.1e-37					5.10-37						136.13	_						3.40-23					
3 2	8	7	2				_	=						1	!	_					3				_	
Start	1.7		<del></del>					<b>~</b>							,											
a G			Δ.											_							_					
8 B	3	1	Ĭ					2						1						_	I MC					
Oğ e ş	š	┪	ž					36		_			_	ă	_	_		_			ž		_	_	_	

177

| Colsis | Sart | Law | Raff | Sart |

			_				_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_
PDB ansetation	ANK-REPEAT MYOTROPHIN, ACETYLATION, NMR, ANK-REPEAT	ANK-REPEAT MYOTROPHIN, ACETYLATION, NAR, ANK-REPEAT	COMPLEX (TRANSCRIPTION	REGVANK REPEAT) CONCPLEX	CRANSCRIPTION REGULATION/ANK PERSAT, ANEVEN 2 SERVAT HELIX	COMPLEX (TRANSCRUTTON	RECVANK REPRAT) COMPLEX	(TRANSCRIPTION REGULATION/ANK	REPEAT, ANK YRIN 2 REPEAT HELLY	COMPLEX (TRANSCRIPTION	REGVANK REPEAT) COMPLEX	(TRANSCRIPTION REGULATION/ANK	REPEAT, ANKYRIN 1 REPEAT HELLX	TRANSCRIPTION REGULATION	TRANSCRUPTION REGULATION,	ANKYRIN REPRATS, CELL-CYCLE	TRANSCRUPTION REGULATION	TRANSCRUPTION REGULATION,	ANKYRIN REPRATS, CELL-CYCLE	TRANSCRUPTION REGULATION	TRANSCRUPTION REGULATION,	ANKYRIN REPRATS, CELL-CYCLE	COMPLEX (ANT)-	ONCOGENE/ANK YRLN REPEATS)	PS3BP2; ANK YRIN REPEATS, SH3, PS3,	TUMOR SUPPRESSOR, MULTICENE 3	FAMILY, NUCLEAR PROTEIN,	PHOSPHORYLATION, DISEASE	MUTATION, 3 POLYMORPHISM,	COMPLEX (ANTI-	ONCOCENE/ANK YRIN REPEATS)
Countpound	MYOTROPHIN; CHAIN: NULL	MYOTROPIEN; CHAIN: NULL	NP-KAPPA-B P65; CHAIN:	A. C. NF-KAPPA-B PSO,	CHAIN: B, D; I-KAPPA-B-	NF-KAPPA-B P65; CHAIN:	A.C. NF.KAPPA-B PSO,	CHAIN B, D; LKAPPA-B-	ALPHA; CHAIN: B, F.	NF-KAPPA-B P65; CHAIN:	A.C. NF-KAPPA-B PSC	CHAIN: B, D; LKAPPA-B-	ALPHA; CHAIN: B, P,	REGULATORY PROTEIN	SW16; CHADN: A, B;		REGULATORY PROTEIN	SWILE, CHAIN: A, B;		REQUIATORY PROTEIN	SWIG CHAIN: A. B;		P53; CHAIN: A; 53BP2;	CI(AD): B;							
SeqFold Scare			Ī			29.53			1																	_		_			_
PM(F Score	9.69	8670	692							8				6.81			ક્લ	_		25			96.0								
Vertify Score	7	120-	25.5			Ī				3				97.0			-0.16			60.0			61.0								
PSI BLAST Soors	2+T	3.60-21	1.70-17			75.5				1.50-36 0.30			_	3,49-07			5.10-19			3.64-22			6.84-20								_
3 5	=	181	9/			Ē			┱	=				121			123			138			181	_	_						_
Start	Ş .		7			-			Ī	•				132	_		81			8			ă								_
<b>d</b> e			_			_								<			٧			٧			8		-				_		_
<b>5</b> e	ekii.	og at	ā			50			7	멸				340			Iswé			Jan 6			124							_	-
SE ES	ž	age.	ğ			ž	_		_	ž				ž	_		394	_		384	-		394	_							_

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

PDB annotation	HOMOLOGY (CH) DOMAIN; PILAMENTOUS ACTIVE BINDING DOMAIN, CYTOSKELETON	METAL-BENDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 15	SIGNALING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL- BINDING PROTEIN	STRUCTURAL, PROTEIN DYSTROPHY, MUSCULAR DYSTROPHY, CALPOIN HOMOLOGY DOMAIN, 2 ACTH-BINDING, UTROPHIN	METAL-BINDING PROTEIN CRIP, METAL-BINDING PROTEIN, LIM DOMAIN PROTEIN	STRUCTURAL PROTEIN CALPONIN HOMOLOOY DOMAIN SWAPFING, ACTIN BINDING, 2 UTROPHIN, IN STRUCTURAL STRUCTURAL PROTEIN	METAL-BINDING PROTEIN LIM DOMAIN, ZINC-FINGER, METAL- BINDING PROTEIN		HYDROLASE ARYLSUIFATASE B,
Cenmbenne	CHAIN: A;	AVIAN CYSTEING RICH PROTEIN; ICTL 3	CYSTEINE AND GLYCINE- RICH PROTEIN CRP2; CHAIN: A;	DYSTROPHIN; CHAIN: A, B, C, D;	CYSTEINE RICH INTESTINAL PROTEIN: CHAIN: NULL;	UTROPIEN ACTEN BINDING REGION; CHAIN: A, B;	LASP-I; CHAIN: NULL;	CATALYTIC ANTIBODY 17E1 COMPLEXED WITH PRENT, II 41-N. SUCCINYLAMMOPENTY I, IBAP 3 PROSPHONATE IEAP 4	ż
SeqFold									
Scere		3	e e	110	0.77	0.83	0.41	. 0.03	000
Vertify Score		£ C	\$	ig o	0.16	0.15	9110	28	0.37
PSI BLAST Seer		16613	<u> </u>	- Ja-36	21-45 12-15-13-13-13-13-13-13-13-13-13-13-13-13-13-	<u> </u>	16e-06	0.0036	3,40-17
3 5		615	g	. SK	els S	ξ.	\$	502	ž
Start		3	3	3	35	91	3	131	31
g o			<	<		<		8	
ē e		<u>B</u>	3	₫	]	Ī	8	<u>\$</u>	Ŀ
ğ e ğ		Ş	Ş	£03	£03	£	ĝ	â	ğ

		_								_
PDB annetation	COMPLEX (NAT).  PERBEATS THORSE ANY TRANSPERATS  PERBEATS, SANY TRANSPEATS, STA, PTA,  TAMENY, NOCLEAR PROTEIN  PROTEINGER ALT THORSE STANDARD NO STAN		LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL-BENDING PROTEIN, ZINC 2 FINGER	ACTD-BINDING PROTEIN ACTIN- BINDING PROTEIN, CALCIUM- BINDING, PHOSPHORYLATION	CONTRACTILE LIM DOMAIN, CRP, NMR, MUSCLE DIFFERENTIATION, CONTRACTILE	CONTRACTILB LIM DOMAIN, CRP, NMR, MUSCLE DEFERENTIATION, CONTRACTILE.	STRUCTÚRAL PROTEIN CALPONIN HOMOLOGY, ACTIN BINDING, STRUCTURAL PROTEIN	STRUCTURAL PROTEIN CALPONIN HOMOLOGY, ACTIN BINDING, STRUCTURAL PROTEIN	ACTIV-BINDRYD CALPONIN HOMOLOGY (GT) DOMAIN; FILAMENTOUS ACTIV-BINDRYD DOMAIN, CYTOSKELETON	ACTIN-BINDING CALPONIN
Commission	PSI; CHALIN: A: 33BP 2; CHALIN: B:		OCRT? (LIM!); CHAIN: NULL;	T-FIMBRIN; CHAIN: NULL;	CRP1; CHAIN: A:	CRP1; CILAIN: A;	UTROPHIN; CHAIN: A, B;	UTROPHIN; CHAIN: A, B;	SPECTRIN BBTA CHAIN; CLIAIN! A;	COCOTON ROTA CHAIN.
SeqPeld Score		Ī								
Scor S	6118	T	273	6.93	ริ	2	8	8	8.	8
Vertify Seere	-0.53		0.26	500	01.0	0.20	6.79	90.1	16.91	٢
PSI BLAST	· · · · · · · · · · · · · · · · · · ·	İ	5.4e-13	12+11	1.46.13	7 <u>-</u>	1-13	1.6-36	6.86-16	1000
3 4	8	İ	ğ	376	818	£	21.5	E.	2	Ē
Start A	\$ .	Ī	2	ž.	493	\$	272	127	278	
a e		Ī			<	<	<	<	<	
<u>8</u> e	D.	T	Ē	2	#4	2	3	<u>3</u>	Ā	1
geş		t	3	3	3	g	3	ŝ	ĝ	ļ

181

| E. | P. | P. | Chair | Earl | Earl | March | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl | Earl

PDB aggestation	COMPLEX (ZINC PINGEADDAA) ZINC FINGES, PROTED-DIVA FINEACCTION, PROTEIN DESIGN, 1 CRYSTAL STRUCTURS, COMPLEX (ZINC FINGEADDAA)	COMPLEX (ZINC FINGEL/DNA) ZINC FINGER, PROTEIN-LINA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGEN/DNA)	COMPLEX (ZINC PINGENDNA) ZINC FINGER, PROTEIN-DNA PINGER, PROTEIN-DNA GRYSTAL STRUCTURE, COMPLEX (ZINC FINGENDNA)	COMPLEX (ZINC FINGER/DINA) ZINC FINGER, PROTEIN-DINA INTERACTION, PROTEIN DESIGN, 1 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DINA)	COMPLEX (ZINC FINGEADINA) ZINC FINGER, PROTEIN-DINA INTERACTION, PROTEIN DESIGN, 3 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGENDINA)	COMPLEX (ZINC PINGEADINA) ZUNC FINGER, PROTEIN-LONA CRYSTAL STRUCTURA, COMPLEX CRYSTAL STRUCTURA, COMPLEX (ZINC FINGEADINA)	COMPLEX (ZINC PINDEA/DNA) ZINC FINDER, PROTEIN-DNA DYTERACTION, PROTEIN DESIGN, 2
Composed	DNÁ; CHAIN! A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, O;	DNA; CIAIN! A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN! C, F, G;	DNA; CHÁIN: A, B, D, E; CONSENSUS ZINC FENGER PROTEIN; CHAIN: C, F, O;	DNA; CHAIN; A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN; C, F, O;	DIA, CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, Q;	DNA, CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, P, G;	DNA; CHAIN! A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, O;
Scare Scare			99.03				
	81	8		8	8	8	8
Seat y	60'0	427		-0.03	10	0.29	100
PSI Sor	Ĩ	1.7€.50	1.70-50	1.50.39	2.70 <del>-4</del> 9	1.78-46	Ŝ.
3 5	ā	572	92	9	<u>8</u>	=	751
ğ Ş	<u>ş</u>	3	891	8	2	-	*
đa	U	U	υ	υ	v	v	U
<b>2</b> e	<u> </u>	Iney	BC,	Ties.	lacy	real lines	tmey
g a ģ	\$	2	<b>₽</b>	Ę	7	<b>#</b>	ş

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

PDB spacetton	FINGER PROTEIN, DINA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION RECULATION/DNA)	COMPLEX TRANSCRAFTION REGULATION/DAY THO-YAND I; TRANSCRAFTION PRICATION INTRATING BLEMENT, TY1, ZINC 2 PRICER REDITION, DRA-REOTEN RECOMMITMY, 3 COMPLEX (TRANSCRAFTION REGILATION/DAY)	COMPLEX TRANSCENTION REGULATIONORY YRO, YAND I; TRANSCENTION BRITATION BUTTATION BLEAGENT, YYI, ZINC 2 FROED PROTEIN, DIA-ROTEIN RECOMMENTON, 3 COMPLEX (TRANSCENTION REGULATIONDA)	COMPLEX TRANSCENTION TEACLATIONOMY THE-YAND; TRANSCENTION POTTATION BITHATOME ELEMENT, TY1, EMC 2 FINGER PROFERN, DNA-PROFEN FECOMPTING, 3 COMPLEX FRANSCENTION REGULATIONOMA)	COMPLAT TRANSCAPTION REGULATION/DNI YRIC-YANG I; TRANSCAUPTION PUTATION, TRANSCAUPTION PUTATION, TRANSCAPTION, BACA-FROTEN PROFESSAPTION REGULATION/DNI TRANSCAPTION REGULATION/DNI TRANSCAPTION TRANSCAPTION TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TRANSCAPTION TRANSCAPTION TO ANNO TRANSCAPTION TRANSCAPTION TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRANSCAPTION TO ANNO TRA	COMPLEX (TRANSCRIPTION REGULATIONDNA) YING-YANG I; TRANSCRIPTION INITIATION,
Countpound		YYI; CIÁIN: C; ADENO- SECCATED YIBUS PI INTLATOR ELEMENT DNA; CIAIN: A, B;	YYI; CHAIN: C, ADENO ASSOCIATED YIRUS PS DUTLATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHADE: C, ADENO- SSCOLATED YRUS PS DUTATOR ELEMENT DRA; CHADE: A, B;	YYI; CHÁIN: C, ADENO- ASSOCIATED YRUS PS INTIATOR ELEMENT DIVI, CHAIN: A, B;	YYI; CHAIN: C, ADENO- ASSOCIATED VIRUS PS INITIATOR FLEMENT
Seq Podd		85.17				
A La			ž,	<u>8</u>	290	8
A see			8	600	9.10	433
EAST Sears		8-41	\$£-94.9	K18.33	4	1.56.21
3 \$		ş	82	ta .	137.	=
A A		5	3	×	_	_
9		υ	υ	v	U	c
g a		3	3	3	3	lubdu.
g e ğ		Ş	ş	£ 42	9	ş

11   154   16-49   0.16   1.00   DIAN, CHAINS, A, B, IJ, E, CONSERSUS TAXCOPER PROTECTION CHAINS, C,	-	ď	TD VV	Įį	BLAST	Scare	Score	Score	Compound	
16   16-9   0.36   1.00   CONSESUS JUE FROME		H	r	Ī						(ZINC FINGER/DNA)
13   24   14+36   402   633   THILCGANIS, A.D.55   RB-SSOMAL RAY OF GRANE B. C. B. P. CHANE B. C. B.	U					ń	87		DNA; CHAIN; A, B, IJ, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN; C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2
13   24   Leb M   407   633   TÜÜLGCAUNI, A, D; SS		-								CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
15   14e-77   4.17   0.14   TFILIA CIALDE'A, D. 55   TFILIA CIALDE'A, D. 55   TFILIA CIALDE'A, D. 55   TFILIA CIALDE'A, D. 55   TFILIA CIALDE, D. 62   TFILIA CIALDE, D. 62   TFILIA CIALDE, D. 63   TFILIA CIALDE, D. 64   TFILIA	<	-	г			-0.02	63		TFUIA; CHAIN: A, D, SS	COMPLEX (TRANSCRIPTION
13   146-77   417   044   TFILL, CHADE, A, D. SS   174   316-77   417   044   TFILL, CHADE, B, C. B. S.									RIBOSOMAL RNA GENE; CHAIN: B, C, B, P;	(TRANSCRUPTION) COMPLEX
13   134   316-37   4.17   0.14   TTHIALCHAINEA, D.S.		_								REGULATION/DNA), RNA
13   14   14   17   044   THILLGACHRIA D. P. S. CRADE B. C. B. P. CRADE B. CRADE B. C. B. P. CRADE B. CRADE B. C. B. P. CRADE B. C. B. P. CRADE B. C. B. P. CRADE B. C. B. CRADE B. C. B. CRADE B. C. B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B. CRADE B										POLYMERANG III, 2 TRANSCRIPTION DITTATION, ZING FINGER PROTEIN
155 14e-77 4.20 1.00   THILL CHAPLE, A. D. S. CHADE, B. C. R. P. CHADE, P. C. R. P. CHADE, B. C. R. P. CHA	⋖	ř	_	_	_	Ę	1		TFIIIA; CHAIN: A, D; SS	COMPLEX (TRANSCRIPTION
151 146-77 4-20 1.00   TFULK, CHAUP, A, D.; SS   TELOSCHALL RAY, GPR.   CENOSCHALL RAY, G	_								CHAIN: B. C. B. P.	(TRANSCRIPTION
151 146-77 4-320 1.00   TPULK-CHAIN: A. D. D. S. REBOSOMAL, RAY, D. S. CHAONE, B., C. B., P. CHAONE, B., C. B., P. CHAONE, C. B., P. CHAONE, C. B., P. CHAONE, C. B., C. CHAONE, C. C. B., C. CHAONE, C. C. B., C. CHAONE, C. C. B., C. CHAONE, C. C. B., C. C. C. CHAONE, C. C. B., C. C. C. C. C. C. C. C. C. C. C. C. C.										REGULATIONDNA), RNA
153 1.46-77 4.20 1.00   TTHE COLORE, A.D. 153										POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC PROPER PROTEIN
119 249 1.86-31 0.05 0.34   VICIOANIS C. ALRO-COLORIS C. ALR	<	F	T	1	1	82.0	8		TFULK: CHAIN: A. D. 55	COMPLEX (TRANSCRIPTION
131 249 148-31 0.05 0.34 TYTICAMIN'C, ALBOO-		_							RIBOSOMAL RNA GENE:	REGULATION/DNA) COMPLEX
14   25  1.86-77   104.19   THILK-COANE, A.D. 55   THIRK-COANE, A.		_							CHADY: B, C, B, P;	CTRANSCRUPTION
131 249 1.18-37 194.19 Trilly-COAIN'S, A.D. 15. COAIN'S, A.D. 15.			_							POLYMERASE III. 2 TRANSCRIPTION
11 249 148-31 0.05 0.34 VYICHANIS CARBO										MITATION, ZINC PINGER PROTEIN
THINGSMALL RAY GENE.  CHADE B.C. B.P.  CHADE B.C. B.P.  CHADE B.C. B.P.  ASSOCIATIO VIRIS PA	<		Т	152	77-98.			104.19	THILK; CHAIN: A, D; SS	COMPLEX (TRANSCRIPTION
131 249 148-31 0.05 0.54   YYT, CHARK C, ALBRO-		-							RIBOSOMAL RNA GENE	REGULATION/DNA) COMPLEX
131 249 1.84-51 0.05 0.54 YYY1; CHAIN! C. ADENO. ASSOCIATED VRUE PS		_							CIPTURE BY C. B. T.	REGILATION/NA) RNA
138 249 1.8e-58 0.05 0.94 YYI; CHAIN; C. ADENO- ASSOCIATION VIEWS PS		_								POLYMERASS III, 1 TRANSCRIPTION
138 249 1.86-58 0.05 0.94 YY1; CHAIN; C; ADENO-	_	1	╗			1				INITIATION, ZINC FINGER PROTEIN
	Ů.				1.8-58	8	ş		YYI; CHAIN: C; ADENO-	REGULATION DIA YONG-YANG I:
	_	_							DATIATOR ELEMENT	TRANSCRIPTION INTTIATION,

| 12 | 170 | Chian | Starf | Ear | 154 | March | 184 | Saphad | Conseprend | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection | PiD sussection

	<u>_</u>		-	-		-			
PDB amoution	PROTEINDNA) FIVE-FINGER GIJ; GLJ, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI, GLI, ZINC FINGER, COLPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTEINIDHA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTEINDHA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDHA)	COMPLEX (DYA-BINDING PROTEINDNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDNA)			
Countmound	GLI); CHAIN: A; DNA; CHAIN: C, D;	ZINC FONGUR PROTEIN GLJ1; CHAIN: A; DNA; CHAIN: C, D;	ZINC FDAGER PROTEIN GLJI; CHAINE A; DWA; CHAINE G, D;	ZDPC FINGER PROTEIN GLI; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLI; CHAIN; A; DNA; CHAIN; C, D;	ZINC FINGER PROTEIN GLI); CHAIN: A; DNA; CHAIN: C, D;		DNA-BINDING PROTEIN HUMAN BUHANCER BINDING PROTEIN MBP-1 AUTANT WITH CYS 11 BEOS TRETACED BY ABU (C1 ABU) (NMR, 60 STRUCTURES) 1880 4	ZINC FINGER /DNAS BINDING DOMAIN ZINC FINGER (MARE) 17NF 1
Saq Podd Score			21.24 1.24						
Scare P		97		8	<b>3</b>	7		9709	0.76
Verdy Scan		0.12		0.15	457	-0.15		419	8
BLAST Start		3.60-64	1.66-75	5.40-71	ĵ	3,66-75		61°0- +1000°0	01-44-10
3 \$		. 167	<u>8</u>	281	130	230		17.5	239
Star		77	98	35	~	ı		319	210
O E		<b>.</b>	<	<	<	<b>~</b>			
<b>6</b> 0		7. 7.	7	120	ig.	100	Γ	<b>9</b> 401	] <u>a</u> [
3 e 3		<b>‡</b>	Ę	7	Ę	412		<b></b>	<b></b>

[88

WO 02/059260 PCT/US01/42950

PDB ansotation	3 FACTOR	COMPLEX (TRANSCRIPTION REGILATIONONIA, OBFALPHA; CRANSCRIPTION (TRANSCRIPTION REGILATIONAL) NUCLEAR PROTEIN ETS DOMAIN ANT PAR REFELTS. TRANSCRIPTION J PACTOR	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK46 INHIBITOR, ANKYRIN MOTIF	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK46 INHIBITOR, ANKYRIN MOTIF	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INFIBITOR, ANKYRIN MOTTF	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDX 4/6 INHIBITOR, ANX YRIN MOTIF	CONFLEX (EINAERANT). CHACHOL DEPRODER KENAER CYCLAN DEPRODER KENAER CYCLAN DEPRODER KENAER CYCLE MULTIPLE TUMOR SUFFRESSOR, J. NITA, I.O. DIK, CELL CYCLE MULTIPLE TUMOR SUFFRESSOR, J. NITA, I.O. DIK, CELL CYCLE MULTIPLE TUMOR SUFFRESSOR, J. NITA, I.O. DIK, CENAERANTI, COMPLEX	COMPLEX (INHEBITOR PROTEIN/CINALS) INHEBITOR FOUTEN CYCLIA-DEPENDENT KINASE, GELL CYCLE 1 CONTROL, ALPHARETA, COMPLEX (INHEBITOR
Composed		GA DINDING PROTEIN HERIC, CHAIR, K. GA BUDDING PROTEIN BETA I; CHAIN; B; DNA; CHAIN; D, E;	PISINKAD CDK46 INHIBITOR; CHAIN: NULL;	PISTUKAD CDK46 INHIBITOR; CHAIN: NULL;	PIPENKAD COKAN INHIBITOR; CHAIN: NULL;	PISINKAD CDK46 INHIBITOR; CHAIN: NULL;	CYCLIN-USPENDENT KUNKE & CHAIN: A: MULTULE TUMOR SUPPRESSOR, CHAIN: B:	CYCLIN-DEPENDENT KINASE & CHAIN: A; PISDIKAD; CHAIN: B;
Seq Fadd Score								
PM.P Scare		§	8	8	0.40	100	9671	63
Varity Score	Γ	6708	ริ	Q-45	0.11	Ş	67	6.32
PS. BLAST		3	<u> </u>	S.46.35	1.76-25	1.7e-25	1.8e-28	3.4-12
\$ 5		£	3	E .	232	≣	877	72
¥ Şev	Γ	ä	3	≊	691	•	133	50
a		<b>6</b> 2					æ	a .
708 10		<u>s</u>	3	2	ž	2	ā	£
g e g		<b>\$</b>	÷	ş	411	:	<b>(</b>	417

						_			_			_	_		_,	_		_	_	_	_
POB ameticies				ANTI-ONCOGENE CELL CYCLE, ANTI- ONCOGENE, REPEAT, ANK REPEAT	COMPLEX (TRANSCRIPTION REGULATIONONA) GABPALPHA:	GABPBETA1; COMPLEX	REGULATIONONA, DNA-BRODNO, 2	ANKYEN REPEATS, TRANSCRIPTION	COMPLEX CRANSCRIPTION	REGULATION DIAN GABPALPHA:	GABPBETAI; COMPLEX	(TRANSCRIPTION	MEDICAL SECURITY OF DOLLARS	ANK YRIN REPEATS, TRANSCRIPTION	1 PACTOR	COMPLEX (TRANSCRIPTION	REGULATION/DNA) GABPALPHA;	GABPBETAI; COMPLEX	(TRANSCRUPTION	KEGULATIONDRAL DIAGRADING, 1	ANKYRIN REPEATS, TRANSCRIPTION
Compense	ZINC FINGER IDNAS BINDING DOMAIN ZINC FINGER (NUMRS) 3ZNF 3	ZINC FINGER DNA BINDING DOMANN ZINC- FINGER (ZFY-SWAP) (NMR, 12 STRUCTURES) 72NF 3		TUMOR SUPPRESSOR PIGNK44; CHAIN: NULL;	DA BINDING PROTEIN ALPHA: CHAIN: A: GA	BINDING PROTEIN BETA	D. E.		OA BINDING PROTIEN	ALPHA; CHAIN: A; 0A	BINDING PROTEIN BETA	I; CHADI: B; DNA; CHADI:	3 5			DA BINDING PROTEIN	ALPHA; CHAIN: A; QA	BINDING PROTEIN BETA	I. CHAIN: B. DNA: CHAIN:	# 5	
Scar Fold									Ī					_			_		_		
N S	a.76	0.71	Γ	8	8				8	ļ				_		87				_	
Verdy Sear	023	-0.24		979	61.0				91,0	}						62.0					
PSI Sours	0.0046	0.00017		<u>15</u>	1.46.19				140.76							¥37					
3 5	170	238		592	247				24.3	_			_			892					
¥ Şŧ	ž	210		155	701				62.1	:						156					
<b>å</b> e.					<u> </u>				Ţ,							8					
5 E	Ä	Jaj.	Γ	828	Dava				1							lawc		_	_		
g e g	+	₽	Ī	ş	413		_		1							417		_	_	_	_

.

WO 02/059260 PCT/U501/42950

															•													٠				
PDB ampetation	PROTEIN/KINASE)	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR	PROTEIN, CYCLIN-DEPENDENT .	KINASE, CELL CYCLE 2 CONTROL,	ALPHABETA, COMPLEX (INHIBITIOR	PROTEIN/KINASE)	COMPLEX (INHIBITOR	PROTEIN/KINASE) INHIBITOR	PROTEIN, CYCLIN-DEPENDENT	KINASE, CELL CYCLE 1 CONTROL,	ALPHA/BETA, COMPLEX (INHIBITOR	PROTEIN/KINASE)	HORMONE/GROWTH FACTOR PLE	DNK4C; CELL CYCLE INHIBITOR,	PIEDICAC, TUMOR, SUPPRESSOR,	CYCLIN- 2 DEPENDENT KINASE,	HORMONE/GROWTH FACTOR	HORMONE/GROWTH PACTOR PILE .	DIE 4C, CELL CYCLE INFIBITION.	PIEDNIK 4C, TUMOR, SUPPRESSOR,	CYCLIN- 2 DEPENDENT KINASE,	HORMONE/GROWTH PACTOR	SIGNALING PROTEIN HELLX-TURN-	HELLX, ANK YRIN REPEAT		METAL BINDING PROTEIN ZINC.	BINDING MODULE, ANK YKIN	REPEATS, METAL BINDING PROTEIN	CELL CYCLE INHIBITIOR PIS.	NIX 4C(INKS); CELL CYCLS	INHIBITION, PIE-INK 4 C(INK6),	ANKYRIN REPEAT, 2 COK 26
Constant		CYCLIN-DEPENDENT KINASE & CHAIN: A:	PIPOR 4D; CIADS: B;				CYCLIN-DEPENDENT	KINASE 6; CHAIN: A;	PLYNKAD, CHAIN: B;				CYCLIN-DEPENDENT	KINASE 6 INSTITUR;	CHAIR: A:			CYCLIN-DEPENDENT	KINASE 6 INHIBITOR;	CHAIN: A:			CYCLIN-DEPENDENT	KINASB 4 INHIBITOR B;	CHAIN: A;	PYIC2-ASSOCIATED	PROTEIN BETA; CICAIN: A;		CYCLIN-DEPENDENT	KINASE 6 INHIBITOR;	CHAIN: A. B;	
Sea Fall		Γ																														
ž į		8					0.78						0.43					8					8			90,			8			
Verity Scare		7				_	400						670					ą					0.47			0.48			ij			
IS IS		97					1.76.23						14					8					1.44.35			1.10-31			14.33			
33	l	238				_	332					_	Ž					ž					52.2			772			772			
¥ Ş		33					991						22				_	38				_	25			132			ã			
đe		_	_		Ī		8					_	<			_	_	4			_		٧			٧			<			
<u> </u>	Ī	2					#			_			2					ì					ē			\$			2			
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		Ę	_	_			417						:					Ę					ş			Į.			Ę	_		

										_
PDB amotation	CELL CYCLE DAMBITOR PIE- DATACINAS; CELL CYCLE DATBITOR, PIE-DAYACINAS, DATATAD REFEAT, 2 CDK 46	TRANSCRUPTION FACTOR, P65, P500; TRANSCRUPTION FACTOR, IKBNEKB COMPLEX	ANK-REPEAT MYOTROPHIK, ACETYLATION, NMR, ANK-REPEAT	ANK-REPEAT MYOTROPHIN, ACETYLATION, NAR, ANK-REPEAT	ANK-REPEAT MYOTROPHIN, ACETYLATION, NAR, ANK-REPEAT	ANK-REPEAT MYOTROPHIN, ACETYLATION, NMR, ANK-REPEAT	ANK-REPEAT MYOTROPHIN, ACETYLATION, NICH, ANK-REPEAT	COMPLEX (TRANSCRIPTION REGIANK REPEAT) COMPLEX (TRANSCRIPTION REGULATIONANK REPEAT), ANK YRIN 2 REPEAT HELIX	ONCORPEZ, (ANT) ONCORPEZ, ANT YER ONCORPEZ, ANT YER THANG SIPPEZSOR, MULTIDER 2 FAULT, YINGER REPER, SE MULT, ANT YER MULT, TOLINO, IDEAG MULT, TOLINO, IDEAG MULT, TOLINO, IDEAG MULT, ANT, TOLINO,	COMPLEX (ANTI-
Compound	CYCLINDEPENDENT KDNASB 6 INFBITOR; CHAIN: A, B;	NF-KAPPA-B P65 SUBUNTI, CHAN: A; NF- KAPPA-B P50D SUBUNTI, CHAN: C; I-KAPPA-B- ALPIN; CHAN: D;	MYOTROPIEM; CHAIM: NULL	MYOTROPHIN; CHAIN: NOIL,	MYOTROPHINE CHAIN: NULL	MYOTROPHIN; CHAIN: NULL	MYOTROPHIN: CHAIN: NUL	NF-KAPPA-B MS; CHAIN: A, C; NF-KAPPA-B PSQ; CHAIN: B, D; HKAPPA-B- ALPHA: CHAIN: B, P;	P31; CHAIN: A; 518P2; CHAIN: B;	P53: CHAIN: A: 538P2:
Seq Fold Scare										Ī
PM.F	17.0	il o	600	9170	8	8	150	971	8	8
Vertity Seare	600	0.13	2033	0.10	100	0.40	8	<b>50.0</b>	27 27	8
PSI BLAST		%-3-1 %-3-1	120-23	1.46-25	1.46-27	1.16-38	6.86-17	1.46-35 -0.08	3.66-33	15-13
3 5	EE .	329	216	5 <del>2</del>	ž	27.8	ž.	329	<b>5</b>	
ž Į	3	121	ã	8	3	<u>1</u>	g	126	3	
a a	<							D2	ω.	-
5 B	19	ā	10 ye	e a	28 87	e e	g g	9	<u>g</u>	2
ğ a ģ		ş	413	£	£	417	41	41	\$	417 Incs

WO 02/059240 PCT/US01/42950

PDS unsottlen	RIBOSOMAL PROTEIN L24E,	HILLING 22: SOS RIBOSOMAL PROTEIN	L29P, HMAL29, HL33; SOS RIBOSOMAL	PROTEIN LIOP, HMALJO, HL20, FL16;	SOS RIBOSOMAL PROTEIN L31E, L34.	HL30: SOS RIBOSOMAL PROTEIN L32B.	HL3: SOS RIBOSOMAL PROTEIN L37E,	LISE, SOS RIBOSOMAL PROTEINS	L19E, HL39E, HLAGE; SOS RIBOSOMAL	PROTEIN LARE, LA, HLA; 505	RIBOSOMAL PROTEIN LAP, HMALA,	HLIO RIBOSOME ASSEMBLY, RNA-	RNA, PROTEIN-RNA, PROTEIN-	PROTEIN																				
Countpeand	RIBOSOMAL PROTEIN	LIE CHAIN: K:	RIBOSOMAL PROTEIN	LIBE CHAIN: L.	RIBOSOMAL PROTEIN	LIP CHADE M	RIBOSOMAL PROTEIN	L21E: CHAIN: N;	RIBOSOMAL PROTEIN	LZZ: CHAIN: O.	RIBOSOMAL PROTEIN	LD; CHAIN: P.	RUBOSOMAL PROTEIN	L24; CHAIN: Q.	RIBOSOMAL PROTEIN	L24E; CHAIN: R;	RIBOSOMAL PROTEIN	L29, CHAIN: S.	RIBOSOMAL PROTEIN	LIS CHAIN: T	RIBOSOMAL PROTEIN	LJIE CHAIN: U.	RIBOSOMAL PROTEIN	L32E GIAIN: V;	RIBOSOMAL PROTEIN	LITAE; CHADN: W;	RIBOSOMAL PROTEIN	LJ7E; CHAIN: X;	RIBOSOMAL PROTEIN	LISE CHAIN: Y;	RIBOSOMAL PROTEIN	LARE CHAIN: 2:	RIBOSOMAL PROTEIN LG;	CHAIN: 1;
Sca Fold Scars	T		_			_		_																										
PIK/P	T									_						_				_									_					
Verth Scere	Ī																																	
E E						_				_																							_	
3 \$	T		_																															
Start	Γ																					_				_								
je	Ī							_	_	_			_	_				_			_	_												
<b>2</b> e	T																																	
ទីចន្	į			_																										_				_

193

PCT/US01/42950

WO 02/059260

PDB assection		LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL-BUDING PROTEINS, METAL-BUDING PROTEIN, ZINC 2 FINGER	LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL-BEDING PROTEIN, ZINC 2 FINGER	CONTRACTILE LIM DOMAIN, CRP, NMR, MUSCLE DIFFERENTIATION, CONTRACTILE	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 15	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 15	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 15	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 15	SIGNALING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL- BINDING PROTEIN	SIGNALING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL- BINDING PROTEIN	METAL-BINDING PROTEIN CRIP; METAL-BINDING PROTEIN, LIM DOMAIN PROTEIN	METAL BINDING PROTEIN CRIP.
Сокирений		אנזרד: לכב <i>הז (</i> נדמיו): כאעזא:	NULL;	CIP1; CHAIN: A;	AVIAN CYSTEINE RICH PROTEIN; ICTL 3	AVIAN CYSTEINE RICH PROTEZN; ICTL 3	AVIAN CYSTEINE RICH PROTEIN; ICTL 3	AVIAN CYSTEINE RICH PROTEIN; ICTL 3	CYSTEDIE AND OLYCINE. RICH PROTEIN CRP? CHAIN: A;	CYSTEINE AND OLYCINE. RICH PROTEIN CRP2; CHAIN: A:	CYSTEDIE RICH DITESTINAL PROTEIN; CHAIN: NULL;	CYSTEINE RICH
Seq Fold Brown				65.67								
PM7 Scere		160	0.72		Z Z	9	0.78	0.57	99	85	arz	100
Verity Score		432	ş		10'0	414	-Q.19	0.07	\$1.0	77	474	-0.29 0.07
15 F 15		91-471	5.14.13	3.46.23	1-8-14	3,40-14	1	1	1.4	5-4 <u>-</u>	1.76-13	5.44-17
3 \$	Г	651	3	ž	22	声	8	651	651	65	651	=
£ \$		\$	<u>š</u>	5	3	ន	2	8	ā	8	3	8
đ a				<					<	۷ .		
<b>6</b> 8		1/21	Ē	#4	별	Ē	<u> </u>	Ē	8	3	3	Ī
ğ e ğ	T	5	5	Ş	ē	Ş	5	5	ē	9	ē	=

19

				_						
708 annetation	METAL-BINDING PROTEIN, LIM DOMAIN PROTEIN	METAL-BINDING PROTEIN CRUP; METAL-BINDING PROTEIN, LIM DOMAIN PROTEIN	METAL-BINDING PROTEIN CRIP: METAL-BINDING PROTEIN, LDM DOMAIN PROTEIN		Transcription inhibitor beta- propeller	transcription inhibitor beta- propeller	TRANSCRIPTION INHIBITOR BETA- PROPELLER	OXIDOREIXICTASE QUINOPROTEIN, SUPERBARREI, DEHYDROGENASB	COMULX (GIP. BINDINCTRANSDICER) BETA1, TRANSDICTR BETA SUBURT; GANANI, TRANSDICTR GANAN SUBURT; COMELEX (GIP. BRODHOTRANSDICER), O PROTEIN, HETEROTHNER 2 SIGNAL.	COMPLEX (GTP. BINDINGTRANSDUCER) BETA!, BINDINGTRANSDUCER) BETA!, BANSDUCER SUBURIT; AAMMAI, TRANSDUCEN GAMMA SUBURIT; COMPLEX (GTP.
Consposed	INTESTRAL PROTEIN; CHAIN: NULL;	CYSTEDIE NICH DYTESTUAL PROTEDA CHAIN: NULL:	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NULL;		HAD:	TRANSCRIPTIONAL REPRESSOR TUPI; CHAIN: A, B, C;	TRANSCRIPTIONAL REPRESSOR TUPI; CHAIN: A. B. C.	QUINOPROTEIN ETHANOL DEHYDROGENASE; GHAIN: A, B	GTADPIANGI-ALPHA GENERAL CHANF A: GT. BETA, CHANF B; GT. GANGAL; CHANF: G;	GT-ALPHANGI-ALPHA GRIDGERA; GRAIN: A; GT- GABAGRA; GRAIN: A; GT- GABAGRA; GRAIN: Q; GABAGRA; GRAIN: Q;
Seq Paid Score									67.04	
Score		8 10	g.15	Ī	873 873	8	90:	0.13		96'0
Verify Sears		0.08	0.20		0.14	0.69	Q.70	67.79		990
BLAST SEAST		1.76-13	1.86-17	Ī	3.4e-33	1.26.53	05-31	0.0014	5.le.56	5.16-46
3 \$	Γ	ន	ä	Ī	86	8	£	<b>%</b>	378	297
¥ Ser		20	292	Γ	12	11	ŧ	ğ	12	n
đe.				ſ	~	_	< -		g	<u> </u>
<b>2</b> a	Γ	<u>=</u>	1	Ī	Ē	Ē	Ē	<u></u>	ī	Ē.
0 e 9		ē	ş		3	<u>₹</u>	<u>1</u>	<u>‡</u>	3	<u>1</u>
			_							

WO 02/059260 PCT/US01/43950 WO 02/059260 PCT/US01/42950

	Г	+						
PDB annychiden	ADHESION	CELL, ADHESION 3 SUBDOMAINS, CYTOSKELETON, CELL ADHESION		RHA-BINDING PROTEINRIÁ TRA PRE-ARNA; SPLICING REGULATION, RNP DOMAIN, RNA COMPLEX	RIA' BIDDING PROTEINRIA TRA PRE-ARIA', SPLICING REGULATION, RIP DOMAIN, RIA COMPLEX	RNA-BINDING PROTEINIRNA TRA PREARNA, SPLICINO REGULATION, RNP DOMAIN, RNA COMPLEX	GENE REGULATIONRAY POLY(A) BROIDEN RIVA COMPLEX, GENE REGULATIONRAN	GENE REGULATIONRAN POLY(A) BROTEDI-RUN COMPLEX, GENE REGULATIONRAN
Coempound		RADIXIN; CHAIN: A;		SXC-LETHAL PROTEIN: CHAIN: A, B; RNA (5: RP-OP-UP-UP-UP-UP- UP-UP-UP-UP-UP-UP- CHAIN: P, Q;	SXC-LETHAL PROTEIN; CHAIN; A, B; RNA (5° R(P*CIP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP	SXC-LETHAL PROTEIN; CHAIN: A. B; RNA (5: RD*QP*UP*UP*UP*UP*UP *UP*UP*UP*UP*UP*UC); CHAIN: P, Q;	POLYDENYLATE BINDUNG ROTEN I, CLARRY, A. B., R'AP'AP'AP'AP'AP'AP'AP'AP'AP'AP'AP'AP'AP'	POLYDENYLATE BINDING PROTEIN I. CHAIN: A. B. C. D. E. F. G. H; RNA (5'- R(* AP* AP* AP* AP* AP* AP* AP* AP* AP* AP* AP* AP* AP* AP* AP* AP* AP* AP* AP* AP* CHAIN: M. N. O. P. G. R. S.
SeqFold						11.64		
N. See	Γ	1,00		613	87		27	8
Vertity Scere	Γ	95'0	Г	110	5		•1.0	0.71
FSI Scare		7.30-13		1.76-29	1.44.39	1.40-39	1.76.23	17631
E4		82		Ē	ã	ñ	316	<b>=</b>
		n		3	r	ı.	3	ç
Chala Start UD AA		۷		<	٧	<	<	۷
03 CD		1857		).  -	1/41	<u>), 1</u>	Ē	Ē
ğ e ğ		<b>3</b>		3	3	ŝ	3	ş

PDB assection	BINDINGTRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION	COMPLEX (GTP. BEDDINGTTRANSDUCER) BETA1, TRANSDUCTRANSDUCTO BETA1, TRANSDUCTRANSTUCTO BADAA TRANSDUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTRANSTUCTR	SE ENZYME NASE, SE, N, 1 ELECTRON UPLASMIC		COMPLEX (ISOMERASEPPETIDE) COMPLEX (ISOMERASEPPETIDE), CYCLOPHILDIA, HIV-1 CAPSID, 2 PSEUDO-SYMAGETRY	COMPLEX (ISOMERASE/PEPTIDE) COMPLEX (ISOMERASE/PEPTIDE), CYCLOPHILIN A, HIV-1 CAPSID, 2 PSELIDO-SYMMETRY	TEIN CRYSTAL MBRANE, FERM OMAIN	HEIN CRYSTAL MBRANE, FERM OMAIN	CELL ADRESION 3 SIRDOMANS CYTOSKELETON CELL
804	BINDINGTRANSDUCER), (HETEROTRIMER 2 SIGNAL TRANSDUCTION	COMPLEX (GTF. BRUDINGTRANISDUCER) BETAL, TRANISDUCIN BETA SUBUNT; CAMALAT, TRANISDUCIN CAMBAN SUBUNT; COMPLEX (GTF. BRUDINGTRANISDUCIN, O PROTI HETEROTRADER 2 SIGNAL. TRANISDUCTION	OXIDOREDUCTASE ENZYME, MITRITE REDUCTASE, OXIDOREDUCTASE, DEMITRIFICATION, 2 ELECTRON TRANSPORT, PERFELASMIC		COMPLEX (ISOMERASEPETIDE) COMPLEX (ISOMERASEPETIDE) CYCLOPHILD A, HIV-1 CAPSID, 2 PSEUDO-SYMMETRY	COMPLEX (ISOMERASEPEPTIDE) COMPLEX (ISOMERASEPEPTIDE) CYCLOPHILIN A, HIV-1 CAPSID, 2 PSEUDO-SYMMETRY	MEMBRANE PROTEIN CRYSTAL STRUCTURE, MEMBRANE, FERM DOMAIN THE DOMAIN	MEMBRANE PROTEIN CRYSTAL STRUCTURE, MEMBRANE, PERM DOMAIN, TAIL DOMAIN	CELL ADRESION 3
Countries		GTALPHAGIALPHA BETA, CHANH A; GT- BETA, CHANH B; GT- GALDKA; CHANH; G,	CYTOCHROMB CD1 NTRITS REDUCTASE; CHAIN: A, B;		CYCLOPHILIN A; CHAIN: A; PEPTIDE FROM THE HIV-1 CAPSID PROTEIN; CHAIN: B;	CYCLOPHILIN A; CHAIN: A; PEPTIDE FROM THE HIV-1 CAPSID PROTEIN; CHAIN! B;	MOESDY, CHADY: A, B; MOESDY, CHADY: C, D;	MOESIN; CHAIN: A, B; MOESIN; CHAIN: C, D;	RADIXIN; CHAIN: A;
ScaPold						72.97			
E S		88	-0.15		0.92		8	8	8
ŧ,		0.45	0,12	Ī	20:02		6.63	1.0	2970
E Z		5.19.36	1.3e.lé		73-647	.7e-17	1,56-55	3,64-11	5.10-56
35		370	8		=	<u> </u>	152	82	182
¥		92	3	Γ	r.	12	2	n	2
g e		<u>.</u>	<		<	,	<	<	<
ē a		<u> </u>	큠	Γ	parag	lawq	2	ā	126
2 e 2		<u>1</u>	<b>3</b>	T	3	3	3	3	3

. 197

	GDB REGULATIONARA POLYLA BINDING PROTEIN I, PABP I; REM, PROTEIN-RUA COMPLEX, GDSB REGULATIONARA	GER REGULATIONARY POLYKY BRODING PROTEIN I, PABP 1: REM, PROTEIN-RINA COMPLEX, GENE REGULATIONARYA	GEG REGULATIONERA, POLYA, BEDDENG RECUERA ; PASP I; RAM, PROTEIN-RIVA COMPLEX, GENE REGULATIONERA	GERE EGOLATIONARA POLYIV BINDING PROTEIN I, PABP I: RBA, PROTEIN-RNA COMPLEX, GENE REGULATIONARA	GENB REGULATIONARIA POLY(A) BINDING PROTEIN 1, PABP 1; RRK, PROTEIN-RNA COMPLEX, GENB REGULATION/RNA
1	POLYDENYLATE BINDING POLYDENYLATE BINDING C, D, B, F, Q, H, RNA (S. R(*AF*AF*AF*AF*AF*AF*AF*AF*AF*AF*AF*AF*AF*	POLYDENYLATE BINDING POLYDENYLATE BINDING C, D, B, P, G, H, RNA (5°. R(*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*	POLYDENYLATE BINDING POLYDENYLATE BINDING C, D, B, P, Q, H; RNA (5'- R("AP"AP"AP"AP"AP" AP"AP"AP"AP"AP" AP"AP"AP"AP" AP"AP"AP"AP" T, T, T, T, T, T, T, T, T, T, T, T, T, T	POLYDENYLATE BINDING TO B. F. O. H. RIM (S. R. M. P. O. H. RIM (S. R. M. P. A. M. M. R. M. M. M. M. M. A. M. M. M. M. M. GHAIN: M. M. O. R. S. T.	POLYDENYLATE BINDING PROTEIN I; CHAIN; A, B, C, D, E, P, G, H; RNA (9:- R(*AP*AP*AP*AP*AP*AP* AP*AP*AP*AP*AP*AP*
Ī	8	999	001 .	67:0	627
Γ	250	623	+90	สู	91.0
			1.76-26	6. Be 24	1.7e-20
	219	218	204	ž	128
	2	SS1	23	551	<b>\$</b>
	en en	14.	Ca.	=	I
Γ	<u>S</u>	<u>[6</u>		levj	3
	<del>1</del>	j.	3	ţ\$	3
	F	Feg   B   430   2169   5.16-34   0.87   1.00   POLYDENVLATE BINDING   PROTING I. CHANG A. B. C. D. B. E. D. B. E. M. G. P. A. P.	Ferj   B   10   2.16-34   0.97   1.00   POLYDENYLATE BINDING	Feet   B   50   219   3.16-34   0.57   1.00   DOLYDENYLATE BINDING   Feet   B   10   316-34   0.97   1.00   DAYDBAYLATE BINDING   DAY	

WO 02059260 PCT/US01/43950 WO 02059260 PCT/US01/43950 WO 02059260 PCT/US01/43950

PDB annotation		BINDING DOMAIN		KIBONUCLEOROTEUN FIB. FTB. C194, HETEROGENEOUS NUCLEAR POLYPYEMEDDEE TRACT BINDING PROTEIN, RNP, RN4, SPICING, 2 TRANSI,ATION	RNA BINDING PROTEIN RNA- BINDING DOMAIN	COMPLEX (REGOUCLEOPEGTERODRY) HARDY A1, UPI: COMPLEX FORDINGLEOPEGTERODRY), HETROGREDIS NICLEAR REGOUCLEOPEGTER A1	COMPLEA RIBONICECORREDATIONAL) HYRNY AT, UPI; COMPLEX REDONICECORPENDANAL HETRACGENECUS NICLEAR? REDONICECORREDATIONAL
Ceampeand		NUCLEAR RIBONUCLEOPROTEIN DO; CHAIN; A;	RIBON/CECRROTED PROTEIN FROM UI SMALL NUCLEAR RIBON/CECRPOTED (SNEW UI) IRRC 3 (N- TEXAMAL FROMENT, RESIDUES 1 - 93) MUTANT WITH CLIN 81 IRRC 4 REPLACED BY CYS (Q8C) INRC 3 HONORY	POLYFYRIMDING TRACT- BINDING PROTEIN; CHAIN: A;	MUSASHII; CHAIN: A;	HETEROGENEOUS NOCLEAR REDONUCECPROTEIN A1; CHAIN; A; 13- CHAIN; A; 13- SINCLEOTIDE SINCLE- SITEANDED TELOMOTRIC DIAK, CHAIN; B;	MULLAN NUCLEAR BEONUCLEOROTEN A1; CHARY, A13: NUCLEOTED SINGLE STRANDED TELOMETRIC DNA; CHARY; B;
Seq Feld	E CO						
	Ę		8	0.95	960	0.41	08:1
Ventity	ž.		690	91.0	290	0.17	0.73
_	ELAST Serv			5.40.72	6.le-19	1.7637	3,46-49
3	ŧ			1112	222	317	ä
F.	<b>1</b>		8	2	2	3	E
Г-	9			۷	<	<	<
Г.	9		<u>E</u>	8 <b>⊞</b> 1	A	Ē	ldra
H	ВŞ			j j	î	î	£3

202

PDB ametation		GERE REGULATION ROLY(N) BINDING REOTEN 1, PABP I: REA, PROTEIN-RAM COMPLEX, GENE REGULATION RNA	RNA BINDING PROTEIN RNA- BINDING DOMAIN	REGNUCLEOPROTEIN UIA117; REGNUCLEOPROTEIN, RNP DOMAIN, SPLICEOSOME	STRUCTURAL PROTEIN PROTEIN C23; RWP, RBD, RRM, RNA BINDING DOMAIN, NUCLEOLUS	NUCLEAR PROTEIN HETEROGENGOUNGLEAR RBONICLEOPROTEIN A1, NUCLEAR PROTEIN HNRNP, RBD, RBM, RNP, RBONICLEOPROTEIN RBONICLEOPROTEIN	NUCLEAR PROTEIN HETROCOBEDOUS NUCLEAR HETROCOBEDOUS NUCLEAR HEDONICLEOPROTEIN AI, NUCLEAR PROTEIN HYRAY, RED, REM, RAY, RNA BENOUK, 2 HEDONICLEOPROTEIN	RNA BINDING PROTEIN RNA- BINDING DOMAIN	BWA BINDING PROTEIN B.MA.
Competed	CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BENDENO POLYDENYLATE BENDENO C, D, R, Q, H, RNA (5'. R(*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*	HU ANTIGEN C, CHADN: A;	UI SMALL NUCLEAR RIBONUCLEOPROTEIN A; CHAIN; NULL;	NUCLEOLIN RBD2; CHADN; A;	HNRNP AI; CHAIN: MILL;	HNRNP AI; CHAIN: NULL;	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN DO, CHAIN: A:	Non-condition and a second
Score Score									İ
P.M.F.		8	8.	66.0	8.0	0.43	8.	860	8
Verify Scars		23.0	1.10	8	0.71	0.03	0.97	0.71	7
PSI Som		3.44.26	3.46-20	1.46-18	3,66-18	9(35)	14-41	1.76-19	346.70
₹ 5	Γ	202	152	2	€	11	232	232	Ş
£ \$		2	92	8	7	2	2	ž	٤
e 5		x	<		<b>~</b>			<	
5 a		Ē	1482	ĕ	흪	ā	ā	7	7
일 a 호		74	7	3	3	3	3	3	1041

COMPLEX (TRANSFERASE/PEPTIDE) COMPLEX (TRANSFERASE/PETTDE) ITAM PEPTIDE, COMPLEX (TRANSFERASE/PEPTIDE), SYK, KTNASE, SHZ DOMAIN, ITAM CASC TYROSING KINASE; CO CAULA, NE, AGE CHANGA LE, AGE CHANGA CHANGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TOWNER, CASC TARGENTA. CASC TOWNER, CASC TARGENTA. CASC TOWNER, CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. CASC TARGENTA. SEX-LETHAL; CHAIN: A, B, C, Varthy PMCF SeqPold Scare Scare Scare 13.11 35 Ē ž v 9 5 5 a B 8 Ę 8 a S o S 12 2 # 1.2 3

							_
PDB sametados		COMPLEX (PROTO- ONCOGENCEALLY PROTEIN) SEC HOMOLONY 2 DOMANNS SER DOMANN SIGNAL TRANSDUCTION, PETTINE COMPLEX 3 COMPLEX PROTO-ONCOGENERARLY PROTEIN)	V-SRC SH2 DOMAIN SRC SH2: V-SRC SH2 DOMAIN, PHOSPHOTYROSING RECOGNITION DOMAIN, PP60 2 SRC SH2 DOMAIN	V-SRC SID DOMAIN SRC SH2: V-SRC SH2 DOMAIN, PHOSPHOTYROSINE RECOGNITION DOMAIN, PP60 2 SRC SP2 DOMAIN	PHOSPHORYLATION SIGNAL TRANSDUCTION, TYROSINE KINASE, TRANSFERASE, 1 PHOSPHORYLATION PHOSPHORYLATION	COMPLEX (PHOSPHOTRANSFERASE, COMPLEX PHOSPHOTRANSFERASE, COMPLEX (PHOSPHOTRANSFERASE/PEPTIDE)	COMPLEX (SHI DOMAIN/VIRAL ENIANCER) SRC-HOMOLOGY 3
Contrapostud	TRANSFERGERICSTHO TRANSFERASE) PROTO- ONCOGENE TREOSINE TANSFERASE TRANSFERGEATI, ILIZ TANSFERGEATI, ILIZ TANSFERGERICSTHO TRANSFERGERICSTHO TRANSFER	FYN PROTEIN-TYROSINE MOKASI: CHARN: F; MOSPHOTYROSYI. FEPTIDE; CHAIN: P	PP60 V-SRC TYROSDIB KINASB TRANSFORMING PROTEIN; CHAIN: NULL;	PP60 V-SRC TYROSINE KDVASH TRANSFORMINO PROTEIN; CHAIN: NULL;	P53 BLK PROTEIN TYROSINE KINASE; CHADI: NULL;	PSGCK TYROSINE KINASE; CHAIN: 1; PHOSPHONOPEPTIDE CHAIN: P;	PYN TYROSINE KIDASE: CHAIN: A, C, HIV: I NEP
Scar Podd Score	\$6.13	77.83	13.76		90.55	11.19	
PM.				8			603
Vertity				<b>8</b>			40.04
PSi Sons	1.7618	1.62	1.26-25	128-23	1.4-23	7. 8	1.76-10
3 \$	8	682	ā	%1	561	<u>s</u>	2
ž į	3	3	2	66	=	6	11
a e		L.					<
8 e	<u> </u>		P4	1917	191	Pwd I Fwd	ğ
g a ģ	3	3	3	3	2	3	₹

WO 02/059260 PCT/US01/43950 WO 02/059260 PCT/US01/43950

		·				
PDB annotation	SIGNAL TRANSDUCTION ADAPTOR SP2, SED 1GRU 14		COMPLEX (KINASE/FETTURE)	Complex (Kinasépeptide)	COMPLEX (KDAASE/PEPTIDE)	COMPLEX (TYROSINE KINASE/PETIDE)
Сопиропи	GROWTH PACTOR BOUND PROTEIN 2: 10NJ 5 CHAIN: A. B. 10RJ 6	PHOSPHORIC DIESTER PHOSPHOLIASE PHOSPHOLIASE C GALDA (SIB DOMAIN) (EC.1.1.4.1) 1180 3 (POR. MINICIZED MEAN STRUCTURE) 1180 4	PS6—LCK— TYROSINE LOADSE, ILCK 7 CHAIN: A. ILCK 8 TAL. PHOSPHOPETIDE TEOQCHOSPHO)YOPQPA. ILCK 14 CHAIN: B; ILCK 15	PSGLCK TYROSINE ILCR 1 ILCR 1 GIAIN: A: ILCR 8 TAIL PHOSPHOPETIDE TEGQPHOSPHOJYOPQPA: ILCR 14 GHAIN: B; ILCR 15	PSGCCK TYROSINE ANDARE: ILCK 7 CHAIN: A; ILCK 8 TALL PHOSPHOPETIDE TEOQCHOSPHOJY QPQPA; ILCK 14 CHAIN: B; ILCK 15	HUMAN PS6 TYROSINE KINASE; ILKK 7 CHAIN: A; ILKK 8
Seq Fold			C .			95.11
Pare Source	2670	(III)		8	8.	
Vertity	0.41	ş		3	90.00	
2 3		5.19-10	[ <del>.e.</del> ]	£ <b>6</b> € 13	1,44-35	5.10-24
3 \$	3	6	61	6	π.	193
Start A	92	2	z	ä	ž.	8
d a	<		<	<	<	<
50	_	Ī	ā	ᅽ	ă	#
5 S		3	3	3	3	3

PDB sasscities	DOMANN: COMPLEX (SID COMADN'IRAL ENHANCER, PROTO- ONCOGENE, 7 TRANSPERASE, TYROSOBE-PROTEN KITASE, PHOSPHORY TATION, 1 AUTS. MYNISTYLATION, GTP-BNDDNG, ATP-BNDDNG, SID DOMANN, SID DOMANN, PRI FELLX, PROT	PHOSPHOTRANSFERASH C-SRC, PM- SRC, SRC, TYROSHE KIDASE, PHOSPHOYLATION, SHE, SHI, 3 PHOSPHOTYCSIDE, PROTO- ONCOCHINE, PHOSPHOTRANSFERASE.			SIGNAL TRANSDUCTION ADAPTOR SP2, SH3 IGRI 14
Соппрецей	PROTEIN; CKAIN: B, D;	TYROSINE-PROTEIN KINASE SRC, CHAIN: NULL;	SIGNAL TRANSOUCTION PROTEIN GROWTH FACTOR RECEPTOR. BOUND PROTEIN 2 (GBB., WHT SOSA PEPTIDE IGBR 4 (NAG. 19 STRUCTURES) IGBR 3	ADATOR PROTEIN CONTAINING SEL AND SEU GROWTH PACTOR RECEPTORAGOUND FROTEIN 2 (GRE3) (GFC 3) (C-TERAINAL, SIG DOMAIN) FRACE MITGAGESED MACA! STRUCTURE) 109C 4	GROWTH FACTOR BOUND PROTEIN 2: I GRI 5 CHAIN: A, B; I GRI 6
Score Score					202
Scars		8	673	ā.	
Vertify		93	100	523	
PSI BLAST Son		3.6-42	3.6-10	3.40-10	1.56-23
3 5		202	8	=	502
¥ Ş		*	u	11	35
đe			<		<
PDB		<u>i</u>	±.	ğ	Ē
S a S		<b>3</b>	3	3	3

CYCLIN-DEFENDENT KINASE 6; CHAIN: A; PISINKAD; CHAIN: B;

CYCLIN-DEPENDENT KINASE & CHAIN: A: PISINKAD, CHAIN: B;

WOTEN KENAGE CORL, PROTEIN
RANKS, CELL CECLA,
RINKS, CELL CECLA,
RINKS, CELL CELL BYCSON,
ANTOSI, PRINKED, CELL BYCSON,
ANTOSI, PRINKED, CELL BYCSON,
ANTOSI, BRIBERTON
ANTOSI, BRIBERTON
ANTOSI, BRIBERTON
CORK, PINNKED, CELLAN
DEPODENT KENAGE (CHANA
DEPODENT KENAGE (CHANA
DEPODENT KENAGE (CHANA
DEPODENT KENAGE (CHANA
DEPODENT KENAGE (CHANA
DEPODENT KENAGE (CHANA
DEPODENT KENAGE (CHANA
DEPODENT KENAGE (CHANA
DEPODENT KENAGE PROTEIN
COMPLEX (CHANA
DEPODENT KENAGE PROTEIN
COMPLEX (CHANA
DEPODENT KENAGE PROTEIN
COMPLEX (CHANA
DEPODENT KENAGE PROTEIN
COMPLEX (CHANA
DEPODENT KENAGE PROTEIN
COMPLEX (CHANA
DEPODENT KENAGE PROTEIN
COMPLEX (CHANA
DEPODENT KENAGE PROTEIN
COMPLEX (CHANA
DEPODENT KENAGE PROTEIN
COMPLEX (CHANA
DEPODENT KENAGE PROTEIN
COMPLEX (CHANA
DEPODENT KENAGE PROTEIN
COMPLEX (CHANA
DEPODENT KENAGE PROTEIN
COMPLEX (CHANA
DEPODENT KENAGE PROTEIN
COMPLEX (CHANA
DEPODENT KENAGE
COMPLEX (CHANA
DEPODENT KENAGE
COMPLEX (CHANA
DEPODENT KENAGE
COMPLEX (CHANA
DEPODENT KENAGE
COMPLEX (CHANA
DEPODENT KENAGE
COMPLEX (CHANA
DEPODENT KENAGE
COMPLEX (CHANA
DEPODENT KENAGE
COMPLEX (CHANA
DEPODENT KENAGE
COMPLEX (CHANA
DEPODENT KENAGE
COMPLEX (CHANA
DEPODENT KENAGE
COMPLEX (CHANA
DEPODENT KENAGE
COMPLEX (CHANA
DEPODENT KENAGE
COMPLEX (CHANA
DEPODENT KENAGE
COMPLEX (CHANA
DEPODENT KENAGE
DEPODENT KENAGE
COMPLEX (CHANA
DEPODENT KENAGE
DEPODENT KENAGE
COMPLEX (CHANA
DEPODENT KENAGE
DEPODENT KENAGE
COMPLEX (CHANA
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE
DEPODENT KENAGE

5.44-36

			_							
PDB sasctides		TRANSFERASE TRANSFERASE, TYROSDIE KINASE, SHJ, SHJ, ONCOPROTEIN	transferase transferase, tyrosine kinase, sid, sid, oncoprotein	TRANSFERASE HCK, SH2, TYROSINE KDYSSE, SIGNAL, TRANSDUCTION, TRANSFERASE	TRANSFERASE INCK, SID, TYROSINE KINASE, SIGNAL TRANSDUCTION, TRANSFERASE	TRANSPORT PP15, B2; TRANSPORT, NUCLEAR TRANSPORT PROTEIN	TRANSPORT PP15, B2; TRANSPORT, NUCLEAR TRANSPORT PROTEIN		KINASE KINASE, SIGNAL TRANSDUCTION, CALCTUMCALMODULIN	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP RIBONUCLEOPROTEIN
Compound	TA-ASSORAINO PROTEIN (PROSPINITANS) ISHA 3 RECORNITION DOMANN SIRT) (E.C.Z.J.112) COMPLEX WITH ISHA 4 PROSPINITAN COMPLEX VALPRO-MET-LEU, VALPRO-MET-LEU, SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SINA 5 SI	ABL TYROSINE KINASE; CHAIN: NULL;	ABL TYROSINE KINASE; CHAIN: NULL;	HCK SH2; CHAIN: NULL;	HCK SH2; CHAIN: NULL;	NUCLEAR TRANSPORT FACTOR 2; CHAIN: A, B;	NUCLEAR TRANSPORT PACTOR 2; CHAIN: A, B;		CALCIUMCALMODULIN- DEPENDENT PROTEIN KINASE; CHAIN: NULL;	CHAINS HABBIN IV: CHAINS Q. R. UZ AS CHAINS A. C. UZ BS
SeqPaid Score		17.30			103.54	67.09			19:69	
Scar			8	8			96.0			8.
Vertify Scare	-		0.74	989			0.49			0.42
PSI Score		3.46.29	3.46-29	3.40-26	3.40-26	2.20-31	2.20-31		5.40-23	F. 16-09
3 5		681	192	561	561	₹	9[]		ž	397
¥ Start		73	52	Si .	8	2	82		8	ž
g e						<	4			a
<b>2</b> 9		Zebi	4	je je	3bck	Ora .	3		200	637 6437
) 9 9 9		3	3	3	111	3	ž	Γ	\$	£\$

PCT/US01/42950

WO 92/059260

PCT/US01/42950

AND ADDROME PROTECTION MESTED DOUBLE SELECTION OF THE NAME AND ADDROME ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME AND ADDROME KINASE, CELL CYCLE J CONTROL.

FEMENTALE, COMPLEX, (DATE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE OF THE O PDB annecation HIGSPIDTANSPEAASE
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTANTS SUBJANT
CANTA FGF RECEPTOR 1; CHAIN: A, B; Seq Fold Sears ž š 8 S 5 Vertity ş 3 5.44.30 3.44.07 3 \$ ļe, I E 2 A Shert E 90 zgpi 3 1 3 ğ e ğ

WO 02/059260

22.24

8.16.33

8.1c-33

310

3

2

209

Seers Vertfy Score PSI BLAST Scare

3 5 Start A A 4 e e e

\$ 10 EQ

THEORINE IS COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX CO PDB samocation UI SWALL NUCLEAR RIBONUCLEOFROTEIN A; CHAIN; NULL; NUCLEOLIN RBD2; CHAIN; A; PJE MAP KINASE; CHAIN: NULL; INSULIN RECEPTOR; CLIAIN: A: PEPTIDB SUBSTRATE; CHAIN: B; HUKAN CYCLIN-DEPENDENT KINASS 2; CHAIN: NULL; HUMAN CYCLIN-DEPENDENT KINASE 2; CHAIN: NULL; PMP Vertity Scere 1100 3 3 ₽ ¥ Ş 3 2 a 를 9

53

5 15 \$

WO 02/05/9260 PCT/IUS01/43950 WO 02/05/9260 PCT/IUS01/43950

							_		_		_				_	_	_			_	_	_		
PDB assectation	ANALOG), ENZYMB, 3 COMPLEX (TRANSFERASE/SUBSTRATE)	TRANSFERASB INKJ; TRANSFERASB, INKJ MAP KINASB,	SERINE/THREONINE PROTEIN 1 KINASS	TRANSFERASE INC.; TRANSFERASE, INC. MARKINASE	STRINE/THEONING PROTEIN 2	KINASE KINASE, TWITCHIN,	TO A NECTOR ACTION AND A TONA CO	SERINE/THREORING PROTEIN KINASE TRANSFERASE	TRANSFERASE MAP KINASE,	SERINE/THREONING PROTEIN KINASE, TRANSFERASE	RIBONUCLEOPROTEIN PTB, PTB-	CI98, HETEROGENEOUS NUCLEAR	POLYPYRIMIDDIS TRACT BINDING	PROTEIN, RMP, RNA, SPICING, 2 TRANSLATION	SERINB KINASH SERINE KINASE,	TITIN, MUSCLE, AUTORNHIBITION	SERINE KINAKE SERINE KINASE, TITIN, MUSCLE, AUTOINHEBITION	COMPLEX	(REBONUCLEOPROTEIN/RINA)					
Compense		CJUN N-TERMINAL KINASE, CHAIN: MULL:		CJUN N-TERMINAL	אומעשלי ליונטחיי ייטוקי	TWITCHIN; CHAIN: MILL;	COUNTY CHAIN MILL	ENGLA CHANGE HOUSE	ERKZ; CHAIN: NULL;		POLYPYRIMIDDE TRACT	BINDING PROTEIN;	CHAIN: A:		TITIN; CHAIN: A, B;		TITIN; CHAIN: A. B;	UIA SPLICEOSOMAL	PROTEIN; IURN S CHAIN:	A. B. C. IURN 6 RNA	ZIMER HARREN (S.	CA. Vanda Carda Vanda	TUP TURN II CHAIN: P. C.	1
Seer's Seer's				55.25		3.50	Ì		13						19.96									
Score		56.0					8				0.62						5	0.76						
Verdiy Seare		3					1	j			61.0				Γ		8	0.75						
PSI BLAST Som		1.631		1.16-31		8.16.29	1		1.10-33		8.1e-08 0.19				1.46.23	-	1.40-29	2.70-09 0.75						
\$ E	Γ	e E		ž		1	1	;	ž		397				365		ğ	393						
Start	Γ	=				Ţ	ļ	3	g		345				-	1	<u>z</u>	336						
Chale 15		Γ		Γ		T	Ī				<				~		<u> </u>	~						
<b>6</b> 0		Ĭ		1		a a	į	į	-bae		6mb				3		2	9						
S e S		457		457		5	5		25		153		_		153	1	457	\$57						•

WO 02/059260

<b>6</b> 6	<b>1</b> a	¥ \$	35	E AST	Verlfy Som	Sear S	Seq Feb	Countycount	PDB ametation
#		8	192	1.64-21			76.10	OENESIS; CHAIN: NULL;	HNF-3 HOMOLOGUES IFFIL-2; INF-3 HOMOLOGUES, WINGED HELLX PROTEIN
L	ŀ	L	L						
<u>E</u>	<	-	=	P500'0	429	600		SECINF (RESIDUES 22 - 210); CHAIN: A, B, C,	ENDOCYTOSIS/EXOCYTOSIS POUBLE-FSI BETA BARREL, VESICLE FUSION, 2 ENDOCYTOSIS/EXOCYTOSIS
Ĭ	<u> </u>	3	171	0Z-49-5			16'11	TRANSCRUPTIONAL COACTIVATOR PCS; CHAIN: A, B, C, D, B, P, Q, H;	TRANSCRPTION P15; TRANSCRPTION, TRANSCRPTIONAL COPACTOR, TRANSCRPTIONAL 2 CO- ACTIVATOR, SSDWA BINDING, NUCLEAR PROTEIN
3	<	=	2	2 <b>4</b> 3	16.0	80°1		TRANSCRUPTIONAL COACTIVATOR PC4; CIADN: A, B, C, D, B, F, Q, H;	TRANSCRUPTION P15; TRANSCRUPTIONAL COPACTOR, TRANSCRPTIONAL 2 CO- ACTIVATOR, SSDNA BINDING,
$\perp$	$\downarrow$	$\downarrow$	1						NOCTES PROTEIN
Ĭ	<	z.	ğ	1.76-50			110.54	GAIP (G-ALPHIA UNTERACTING) PROTEIN; CHAIN: A;	SIGNALINO PROTEIN REGULATION DALPIA, DITERACTINO PROTEIN; DALP, RGS, REGULATOR OF 0 PROTEIN; SIGNALINO PROTEIN 2 REGULATION
<u>a</u>	<	2	ğ	2.76-50	3	801		GALPHA INTELACTING) PROTEIN; CHAIN: A;	SIGNALING PROTEIN REGULATION GALPHA INTERACTING PROTEIN; GAR, RGG, REGULATOR OF 0 PROTEIN, SIGNALING PROTEIN 2 REGULATION
를	<u>۷</u>	=	ş	3.6 4.2	643	6.94		AXIN; CHAIN: A;	SIGNALING PROTEIN ALPHA-HELLX, M-HELLX
lenou	<b>∢</b>	a	g	1.60-37	950	97		AXIDA, CHAIN: A; ADENOMATOUS POLYPOSIS COLI	SIGNALING PROTEIN RGS DOMAIN

PCT/US01/42950

WO 92/059260

	SO EEN	MAAP 2.	KAP 2.		נונא,	XLE	OR 3 NESIS,	OR J NESIS, NE	NF-3
rtstlen	RNA-BINDING PROTEIN SPLICING, UZ SNRNP, RBD, RNA-BINDING PROTEIN	TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASS, MAP 2, ERIZ: TRANSFERASS, SERINETHREONING-PROTEIN KINASS, MAP KINASS, 2 ERIZ	TRANSTERASE MITOGEN ACTIVATED ROTEIN KINASE, MAP 2, ERUZ; TRANSTERASE, SERNETHREONING-ROTEIN KINASE, MAP KINASE, 2 ERK2		OBNE REGULATION WINGED HELLX, DNA-RECOGNITION HELLX	DNA BINDING DOMAIN DNA BINDING DOMAIN, WINGED HELLX	GENG REGIJATION/DNA HEPATOCYTB NUCLEAR FACTOR 1 FORKHRAD HOMOLOO 2, NWR, STRUCTURR, DYANAMICS, GENESIS, WINGED HELLY PROFILM, 3 GENE REGULATION/DNA	GENG REGULATION/DONA HEPATOCYTE NUCLEAR FACTOR 1 FORKHEAU HOMGUOG 2, NUC, STRUCTURE DYANAMICS, GENESIS, WINGED HELLY PROTEIN, 3 GENE REGULATION/DANA	HNF-3 HOMOLOGUES HFH-2; HVF-3 HOMOLOGUES, WINGED HELLX BOTTED
PDB annetades	ING PROT ID, RNA-B	TRANSFERASE MITOGEN ACTIVATED PROTEIN KIN ERKZ; TRANSFERASE, SERINE/THREONINE-PRO KINASE, MAP KINASE, 2 E	TRANSFERASE MITOGEN ACTIVATED PROTEIN KD ERKZ; TRANSFERASE, SERDVE/THREONDYG-PRO KINASE, MAP KINASE, 21		ULATION NOTTION	ING DOM SOMAIN,	TTE NUCT TTE NUCT D HOMOL US, DYAN ELLX PRO	GENE REGULATIONDRA HERATOCYTE NUCLEAR! PORKIEAD HOMOLOO 2, STRUCTURE, DYANAMIC WINGED HELX PROTEIN REGULATIONDRA	NIA SAN
	RNA-BIND SNRNP, RE	TRANSFE ACTIVATE ERKZ: TRA SERINE/TA KINASE, M	TRANSFE ACTIVATE ERUZ; TRA SERINE/TI KINASE, M		OBNE REGULATION WINGI DNA-RECOGNITION HELLX	DNA BINDING DOMAIN DNA BINDING DOMAIN, WINGED	GENE REGULATIONDNA HERATOCYTB NUCLEAR FORKHEAD HOMGLOG & STRUCTURR, DYANAMGC WINGED HELLY RROTEIN REGULATIONDNA REGULATIONDNA	GENG REGULATION HEPATOCYTE NUC FORKHEAD HOMOI STRUCTURE, DYAN WINGED HELIX PRO	HNF-3 HO HOMOLOC HOMOLOC
		# E	: B		_			CHAIN	du.
Соптровы	SPLICING FACTOR UZAF 65 KD SUBUNIT; CHAIN: A;	EKTRÄCELLULAR REGULA TED KDASS 2. GIAIN: NULL;	EXTRACELLUIAR REGULATED KINASE 2; CHAIN; NULL;		SIZ TRANSCRIPTION PACTOR (PKIL-14); CHAIN: A;	ξ. γ.	HNFYFH TYANSCHETTON PACTOR GENESIS; CHAIN; A; S: CHAIN; B; S: CHAIN; G;	HOFFFH TRANSCHPTION PACTOR CIDNESIS, CHAIN: A: 5: CHAIN: B; 5: CHAIN: C;	OENESIS; CHAIN: MULL;
ວ	SPLICTING 65 KD SU A;	EXTRACELLUI REGULATED K GIAIN: NULL;	EXTRACELLU REGULATED K CHAIN: NULL:		SIZ TRAN PACTOR A:	APX; CHAIN: A;	PACTOR PACTOR A: 5: CHU	PACTOR A: 5: CIU	OENESIS
Seq Fold Score		r r						ž.	
Score	a.71		1.00		8	87	9 <u>.</u>		8
Vertfy	0.14		679		0.29	0.43	0.27		0.17
PSI Sour	LI ₀ -07	5.46-34	5.40-34		E.1e-25	8.10-25	17	23-23	1.66-23
Eed AA	397	84	321		62	52	173	197	521
Start	345	9	*		8	2	8	8	8
Chala Lo	<			L	<	<	<	<	
PDB 15	2021	¥	¥		<b>1</b>	Je17	25 C	age of the second	246
Š e Š	457	457	457	Ī	5	\$	2	\$	\$3

213

PCT/US01/42950

Challe   Start   Ead   PS1	3	E	_	Venty	AWA	Seq Fold	Coumpeand	PDB annotation
₹	\$	BLAST		Scarr	Scare	200		
3 % 1.16-32	İΤ	1.10-32		2	8		UZ RNA HAIRPON IV;	COMPLEX (NUCLEAR PROTEDVRNA)
_	_						CHAIN A CUB.	RNA, SPRAP, ABONUCLEOPROTEIN
1 8	Т	1.16.72		Ī	Ī	147.88	UZ RNA HAIRPIN IV:	COMPLEX (NUCLEAR PROTEDVRNA)
_	_						CHAIN: Q. R. UZ A.	COMPLEX (NUCLEAR PROTEINRNA),
		_					CHAIN: A. C; UZ B+;	RNA, SNRNP, REGONDEL EOPROTEIN
							CHAIN! B, D,	
1 8.10-16	_	8.10-16				29.62	SXL-LETHAL PROTEINS	RNA-BINDING PROTEIN/RNA TRA
							CHAIN: A, B; RNA (5-	PRE-MRNA, SPLICING REGULATION,
							KA-OI-CI-CI-CI-CI	RINE DOMAIN, RIVA COMPLEX
							CHAIN-TO-UP-UP-UP-UP-	
6 AI 1 1 1 A	1 12 16		ŀ	110	200		SXLALETHAL PROTEIN:	RNA-BINDING PROTEIN/RNA TRA
			•	:			CHAIN: A. B. RNA (5	PRE-MRNA; SPLICING REGULATION,
					_		An-th-th-th-th-th	RNP DOMAIN, RNA COMPLEX
	_				_		-Ch-4D-4D-4D-4D-	
							CHAIN: P. Q.	
7 174 1.40-14	1	1.40-14	L	Γ		17.12	POLYDENYLATE BINDING	GENE REGULATION RNA POLY(A)
			_				PROTEIN 1; CHAIN! A. B.	BINDING PROTEIN I, PABP I; RRM,
_	_	_					C, D, E, F, O, H; RNA (5.	PROTEIN-RIVA COMPLEX, GENE
_	_	_	_				R(*AP*AP*AP*AP*AP*AP*	REGULATION/RNA
							AP*AP*AP*A};	•
							CHAIN: M. N. O. P. Q. R. S.	
_	_	_					-	
8 173 1.40-14 0.42	т	1.40-14	0	2	980		POLYDENYLATE BINDING	GENE REGULATION RNA POLY(A)
							PROTEIN 1; CHAIN: A. B.	BDODING PROTEIN I, PABP 1; RRM,
	_	_					C, D, E, P, O, H; RNA (5'-	PROTEIN-RNA COMPLEX, CIENE
		_					II(*AP*AP*AP*AP*AP*	REGULATION/RNA
	_						AP* AP* AP* AP* A)-3);	
		_					CHAIN: M. N. O. P. O. R. S.	
т	т			ì			District of the District	(A)V 104 AVENUTA HOUSE SATE
8 191 8 10-13 m	_	2		9	1		PROTEIN I; CHAIN: A. B.	

WO 02/059260

PCT/US01/42950

WO 02/059260

PCT/US01/42950

PDB sepection	PROTEIN; RIVA BINDING DOMAIN, NUCLEAR PROTEIN	COMPLEX (REGONUCLEOPROTEINDNA) HARAP AL UPI: COMPLEX	(RIBONYCLEOPROTEIN/DNA), HETEROGENEOUS NUCLEAR 2	RIBONUCLEOPROTEIN AI	SCAFFOLD PROTEIN SCAFFOLD PROTEIN, PF2A, PHOSPHORYLATION, HEAT REPEAT		SUGAR BINDING PROTEIN C. TYPB	APPRACED SP-0, COLECTIVA	LING SURFACTANT, SUGAR	BINDING PROTEIN	NK CELL NK CELL, RECEPTOR, C TYPE LECTIN, C-TYPE LECTIN-LIKE, NKD	NX CELL NX CELL, RECEPTOR, C. TYPE LECTIN, C-TYPE LECTIN-LIKE, NYD.	MEMBRANE PROTEIN C-TYPE	LECTIN-LIKE DOMAINS	HEMATOPOLISTIC CELL RECEPTOR	ACTIVATION INDUCER MOLECULE (ADA), EA 1, HEMATOPOIETIC CELL.	RECEPTOR, LEUCOCYTE, C-TYPE LECTIN-LIKE, 1 NKD, KLR
Compense	RIBONUCLEOPROTEIN A; CHAIN: NULL;	HETEROGENEOUS NUCLEAR RIBONICI EOPROTEIN A I:	CHAIN: A: 12- NUCLEOTIDE SINGLE-	STRANDED TELOMETRIC DNA; CHAIN: B;	PROTEIN PHOSPHATASE PPZA; CHAIN: A, B;		LUNG SURPACTANT	PROTEIN D. CHAIN: A, B,	3		CDM; CHAIN: NULL;	CDM; CHAIN: NULL;	FLAVOCETTA-ALPHA	SUBUNIT; CHAIN: A: PLAVOCETIVA: BETA STRUMT: CHAIN: B	EARLY ACTIVATION	ANTIGEN CD69; CHAIN: A;	
PMF SeqFeld Score Score						Ī						16.24					
See S	Г	524			D.15		618				8.		0.78		40		
V artis	Γ	22			51.9	Γ	200				659		900		255		
2 kg 5		7.4-13			1000		1.14-23				3.44.16	5.44-26	275.24		6 10.26		
3 5		174			3		22				98	92	192		ŝ		
Fag ¥		_			a		8				2	ž	12		È		
a a		٧			٧	ĺ	<						_		ļ		

PDB ametados	PROTEIN-RNA COMPLEX, OENE REGULATION RNA	GEAR EGGLATOWANA POLY(A) BENDING PROTEIN I, PABP I; RIAK, PROTEIN-RUA COMPLEX, GENE REGULATIOWRNA	GEA EGULATIONANA, POLYA) BROTINO PROTEIN, I, PABP I; RIA, PROTEIN-RIA COMPLEX, GENE REGULATIONENA	NUCLEAR RUDEIN HETEROGENEOUS NUCLEAR REGORNCLEOPROTEIN AI, NUCLEAR PROTEIN HARVP, RED, REM, RVP, RUM BINDING, 2 REDONUCLEOPROTEIN	REGONUCLEOPROTEIN PTB. PTB. CUSA, RETEROGENEOUS NUCLEAR POLYPYRAMIDINE TRACT BINDING PROTEIN, RNA. SPICING, 2 TRANSLATION	NUCLEAR PROTEIN UI SNRAP A PROTEIN; RNA BINDING DOMAIN, NUCLEAR PROTEIN	NUCLEAR PROTEIN UI SNRNP A
Counported	C, D, E, F, Q, H; RNA (5'- R(*A)*A)*A)*A)*A, A)*A A)*A, A)*A, A)*A, A)* A)*A, A)*A, A)*A, A)*A, B)* CIAIN; M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING POLYDENYLATE BINDING C, D, B, P, O, H; RNA (S'. R("AP" AP" AP" AP" AP" AP" AP" AP" AP" AP" CHAIN: M, N, O, P, Q, R, S, T,	POLYDENYLATE DENDING ROTTEN I CAUNINA, B., C. D. E. P. O. H. RIM (S. RI'AP'AP'AP'AP'AP'AP'AP'AP'AP'AP'AP'AP'AP'	HORDO AI; CHADN: NÜLL;	POLYPYRÜMDING TRACT- BDODNO PROTEIN; CHAIN: A;	UI SMALL NUCLEAR RIBONUCLEOPROTEIN A; CHAIN: MULL;	UI SMALL NUCLEAR
Seq Fold Score							13
Scare		66	680	0.78	ខេ	0.99	П
Varth Some		979	0.47	170	Ş	4	П
PSI Score		<u> </u>	kle14 0.47	1.le-10	1.16-21	1.9e-09	1.96-09
3 ≯		<u>\$</u>	151	191	174		2
Start			-		۰	121	z
Q E		_	z _		<		
<b>6</b> €		Ē	<u>3</u>	ā	SE .	Zule.	9 R
S e Ş		63	3	467	ţ <b>ş</b>		467
			217				

GLYCOPROTEIN YELVIR, NG CELL, DRIBBITORY RECEPTOR, MHC I, C. TYPR LECTIN-LICE, 1 HISTOCOMPATIBILITY, BIM, LY49, LY49	LECTIN TETRANECTIN, PLASMINOGEN BINDING, KRINGLE 4, C. TYPE LECTIN, 2 CARBOHYDRATE RECOGNITION DOMAIN	ANTUREEZE PROTEIN RECOMBINANT ESA RAVEN PROTEIN, SOLLITION BACKBONE FOLD, C. 2 TYPE LECTIN, ANTIFREEZE PROTEIN	SUGAR BINDING PROTEIN C 1778 LECTIN, CRD, SP-D, COLECTIN, ALPHA-IELICAL COLLED- 1 COLL, LUNG SURFACTANT, SUGAR BINDING PROTEIN	NK CELL NK CELL, RECEPTOR, C. TYPE LECTIN, C-TYPE LECTIN-LIKE, NKD	NK CELL NK CELL, RECEPTOR, C. TYPE LECTIN, C. TYPE LECTIN-LIKE, NKD	MEMBRANG PROTEIN C-TYPE LECTIN-LIKB DOMAINS	HEMATOPOBATIC CELL RECEPTOR ACTIVATION INDUCER MOLECULE (ALM), EA I, HEMATOPOBETIC CELL RECEPTOR, LEUCOCYTE, CTYPE LECTIVILICE, 2 NKD, KLR
GLYCOPROTEIN 120 PETTIDE; CHAIN: P; LY49A; CHAIN: C, D;	TETRANECTON, CHADN: NULL;	SEA RAVEN TYPE (I ANTIPREEZB PROTEIN, CHAIN: A;	LUNG SURFACTANT PROTEIN D; CHAIN: A, B, C,	CDM; CHAIN: NUIL;	CD94; CHAIN: NULL;	FLAVOCETB-A: ALPHA SUBUNT; CHAIN: A: FLAVOCETB-A: BETA SUBUNT; CHAIN: B	BARLY ACTIVATION ANTIGEN CD69, CHAIN: A;
					62.39		
	0.19	850	73	8.		0.78	0.67
	0.15	8	0.03	6.53		90.00	0.55
	2.76.24				5.4e-26		8.1e-26
	<b>3</b> 52 .		215	287	212	288	312
	3	g	. 148	191	191	35	2
		<	<			_	<
	ij			<u>\$</u> .	1966		73
	694	<b>6</b> 9	694	\$9	699	694	69
		Ind 134 236-24 0.15 0.19 TETRANECTE CHARK:	GAYONGOTEN 120	Ind   115   154-214   0.15   0.19   THERWEITH CHAIR!	134   255   25-24   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0	134   235   276-24   0.15   0.19   TETTANSCTIPE CHAINE. P. LIVYON, CIAADE, C. D.     245   A   132   235   354-25   4.05   0.15   0.19   TETTANSCTIPE CHAINE.     245   A   132   235   354-25   4.05   0.25   SAA,NUSH TYPE      245   A   132   334-25   4.05   0.25   SAA,NUSH TYPE      246   A   132   334-25   4.05   0.25   CAUDE, A.     166   A   141   235   354-26   4.05   0.25   CAUDE, A.     156   A   151   344-25   0.25   1.00   COP4, CIADE, NULL.     156   A   151   344-25   0.25   1.00   COP4, CIADE, NULL.     156   A   151   344-25   0.55   1.00   COP4, CIADE, NULL.     156   A   151   344-25   0.55   1.00   COP4, CIADE, NULL.     156   A   151   345-25   0.55   1.00   COP4, CIADE, NULL.     156   A   151   345-25   0.55   1.00   COP4, CIADE, NULL.     156   A   151   345-25   0.55   1.00   COP4, CIADE, NULL.     156   A   151   345-25   0.55   1.00   COP4, CIADE, NULL.     156   A   151   345-25   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55   0.55	134   235   23-6-34   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15

WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950

	_				 			
PDB annetation	FA-49	CLASS DE-COURTRY RECEPTORANG CLASS DE-CLASS I BAN-RACEL SIREAG GLYCOWOTEN YENG NY CELL AND MENTON RECEPTOR, MRC4, C. TYPE LECTIVE LAND NO. 1824, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49, LV49,	LECTIN TETRANBCTIN, PLASMINGEN BINDING, KRINGLE 4, C-TYPE LECTIN, 2 CARBOHYDRATE RECOGNITION DOMAIN	ANTIFREZE ROTEIN RECOMBINATE SE RAVEN PROTEIN, SOLUTION BACKBONE FOLD, C. 2 TYPE LECTIV, ANTIFREEZE PROTEIN	SUGAR BINDING PROTEIN C. TYPE LECTR, CRD, SY-D, COLECTR, ALPHA-HELICAL COLED- 7 COLD, LUNG SURFACTANT, SUGAR BINDING PROTEIN	NK GELL NK CELL, RECEPTOR, C- TYPE LECTIN, C-TYPE LECTIN-LIKE, NKD	NK CELL NK CELL, RECEPTOR, C. TYPE LECTIN, C.TYPE LECTIN-LIKE, NKD	MEMBRANG PROTEIN C-TYPE LECTIN-LIKE DOMAINS
Ceampeand		MHCCLASS 1H-2DD HEAVY CLANG CHUCK CHUNF: B, HTV BAVELOFB GLYCOPPOTEN 120 HTVCOPPOTEN 120 FB/TINE; CRAIN: P, LY49A; CHAIN: C, D;	TETRANECTIN, CHAIN: NULL;	SBA RAVEN TYPE (I ANTEREEZB PROTEIN; CHAIN: A;	LUNG SURFACTANT PROTEIN D. CHAIN: A, B, C,	כסאי כאיזאי מתרוי	CD94; CHAIN: NULL;	FLAVOCETRAA: ALPHA SUBUNIT; CHAIN: A: FLAVOCETRAA: BETA
Scott							1624	
PMP Score		89	61.0	6.58	6.19	00'1		0.78
Verify		• I O	0.15	8	80	0.53		90:0
PSI BLAST		27623	2.70-24	3.44-30	1.10-23	3.44-36	5.4e.7d	276-24
33	Ī		STZ	SEE	152	092	192	2
ž ž		3	191	159	8	ž	ž	121
80 €		q		۷ .	<			
<b>2</b> 0	Ī	<u>ş</u>	tal	ģ	<u> </u>		<u>\$</u>	3
3 a §	Ī		699	ş	Q.	470	ę,	ę

PDB assetation	COAGULATION FACTOR BUDDING TIXY-BP COAGULATION FACTOR BINDING, CTYPE LECTIN, GLA- DOMAIN 2 BINDING, CTYPE GLD MOTTE, LOOP EXCHANGED DIMER	COAGULATION FACTOR BINDING DIX-AP COAGULATION FACTOR BINDING, CTYPE LECTING GLA- DOMAIN 2 BINDING, C-TYPE GRD MOTTE, LOOP EXCENAGED DIMER	COAGULATION FACTOR BINDING DIX-4P COAGULATION FACTOR BINDING, CTYPE LECTRY, GLA- DOMAIN 2 BINDING, CTYPE CRD MOTTP, LOOP EXCHANGED DIMER	PANCELATIC STONE INHUBITOR PANCREATIC STONE INHUBITOR, LECTIN	METAL BINDING PROTEIN PANCREATIC STONE PROTEIN, PSP; PANCREATIC STONE INHIBITOR, LITHOSTATHUNB	METAL, BINDING PROTEIN PANCREATIC STONE PROTEIN, PSP; PANCREATIC STONE INHIBITOR, LITHOSTATHINE	COMPULEY ON RECEPTORAMHC GLAST IN 12 GLAST GLAST IN 12 GLAST BACK WAS CELL STRANKAS BACK WAS CELL STRANKAS GLYCOPROTEN YSTUK, NY CELL, INHIBITORY RECEPTOR, MHCJ, C. TYPE LECTRILLER, BASTOCOMPATRILLTY, BTA, 1749,
Countries	COAGULATION PACTORS IXX-BINDING PROTEIN; CHAIN: A, B, C, D, B, P;	COAGULATION PACTORS DXX-BNDING PROTEIN; CHAIN: A, B, C, D, E, P.	COAGULATION FACTORS DXX-BINDING PROTEIN; CHAIN: A, B, C, D, E, P;	LITHOSTATHÜNE; CHAIN: NULL	LTHOSTATHUNE; CHAIN!	LITHOSTATHENE; CHAIN: A;	Mit CLASS 11+2DD  BEAY CHANI: CHANI: A; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2-MCROGLOBULM; BETA-2
Sepre Serre	\$0.23	28.01		2 2	10.33 10.33		
P.M.P.			0.62			96.0	0.72
Vertity			81.8			<b>83</b>	170
BLAST	1.16.21	1362	1,47	7 8 1	1.46-24	1.46-24	11-01
3 \$	216	817	27	333	212	282	282
Start A	291	3	2	<u>3</u>	55	191	137
e e	<	m	æ		<	<	U
5 C	ā	ä	Zi.	<u>=</u>	lqdd	19dd	<u>E</u>
e è	5	69	69	89	69	99	694

/O 02/059260 PCT/US01/4

PDB sanotation		HEMATOPOIGTIC CELL RECEPTOR ACTIVATION INDUCER MOLECULE (AIM), EA 1, HEMATOPOIGTIC CELL RECEPTOR, LEUCOCYTE, CTYPE LECTINHLIKE, 2 NKD, KLR	COAGULATION FACTOR BINUING DXX-BP COAGULATION FACTOR BINDING, C-TYPE LECTIN, GLA- DOMAIN 2 BINDING, C-TYPE CRD MOTTE, LOOP EXCHANGED DIMER	COAGULATION FACTOR BINDING IXX-BP COAGULATION FACTOR BINDING, C-TYPE LECTIN, GLA- DOMAIN 2 BINDING, C-TYPE CRD MOTT, LOOP EXCHANGED DIMER	PANCREATIC STONE INHIBITOR PANCREATIC STONE INHIBITOR, LECTIN	METAL BINDING PROTEIN PANCREATIC STONE PROTEIN, PSP, PANCREATIC STONE INHIBITOR, LITHOSTATHINE	METAL BINDING PROTEIN PANCELATIC STONG PROTEIN, PSF. LITHOSTATIC STONG DAIIBITOR, LITHOSTATIOR	COMPLEX FOR RECEPTORAHIC CLASS I) HAJ CLASS I HISTOCOMPATIBILITY ANTIGEN, BENI, NICCELL SURFACE GLYCOROTEN YEMA, NG CELL, NOBEROTEN YEMA, NG CELL, TYPE LECTIVILISE, 2
Counpernd	SUBUNIT; CHAIN: B	EARLY ACTIVATION ANTIGEN CD69, CHAIN: A;	COAGULATION FACTORS EXX-BINDING PROTEIN; CHAIN: A, B, C, D, E, F;	COAGULATION PACTORS IXX-BINDING PROTEIN; CHAIN: A, B, C, D, E, F;	LTHIOSTATHINE; CHAIN: NULL	LTHOSTATHERE; CHADN: A;	LTROSTATIENE; CIAIN: A:	MHCCLASS 114-2DD MHCCLASS 114-2DD MHCAY CHANE, CHANE, A: BRTA-2-MCROGLOBULIN; CHANE, B; HTV ENVELOPE GLYCOPROTEIN 120 GLYCOPROTEIN 120 GLYCOPROTEIN 120 LYGA-CHANE, P. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA-CHANE, C. LYGA
PMP SagPald Scara Scara			8.9		87.00	39.68		
Scen		Q.E.		790			96.0	0.75
Varify Scare		55		<b>.</b>			970	0.24
PSI BLAST Sours		1.1e-26	136.21	136-23	1.94-21	1,46-24	1.46-24	17.42.
3 4		672	192	92	36!	192	9	992
Blant AA		80	<b>%</b>	137	137	2	3	a
	Γ	<		_		<	<	ນ
708 CO CO CO		Ē	ā	Ē	ž.	<u> </u>	3	<u>3</u>
8 E É	Γ	£	0¢	R.	ę,	470	ę	\$

_					_	_	_		_	_	_	_	-	_	_	_	_		_	_		_		
HISTOCOMPATIBILITY, BIM, LY49, LY-49	COMPLEX (NK RECEPTORAMIC CLASS 1) H-2 CLASS 1	HISTOCOMPATIBILITY ANTIGEN, BOM: NK-CFLL SLIRPACE	GLYCOPROTEIN YELVE, NK CELL,	TYPE LECTIN-LIKE, 2	HISTOCOMPATERILITY, BIM, LY49, LY-49	LECTIN TETTANECTIN,	PLASMINOGEN GINDING, KICKGLE 4.	RECOGNITION DOMAIN	ANTIFREEZE PROTEIN	RECOMBINANT SEA RAVEN	PROTEIN, SOLUTION BACKBONE	ANTESERTE BROTTEN	STICAR RINGING PROTEIN C.TVPE	LECTIN CRD SP.D. COLECTIN	ALPHA-FELLICAL CORLED- 2 COR.	LUNG SURFACTANT, SUGAR	BINDING PROTEIN	TYPE I SCHOOL CATANANA SCHOOL INC.	NXD	NK CELL NK CELL, RECEPTOR, C.	TYPE LECTIN, C-TYPE LECTIN-LIKE,	MEMBERNE PROTEIN C.TVPR	LECTIN-LIKE DOMAINS	
	MHC CLASS 1 H-2DD HEAVY CHAIN; CHAIN: A;	BETA-2-MCROGLOBULIN; CHAIN: B: HIV ENVELOPE	GLYCOPROTEIN 120	LY49A; CHAN; C, D;		TETRANECTIN; CHAIN:	MULL		SBA RAVEN TYPE II	ANTIPREEZE PROTEIN;	GIADR: A:		I INC CIBEACTANT	PROTEIN O' CHAIN: A. B.	5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CONT. CONTR. NOTE:		COSC CHAIN: NULL:		STAVOCHEN A: ALBERT	SUBUNITY CHAIN: A:	FAVORATIVA: BETA
																	1		1	62.23		T		
	8					GE 3			25				200	}			,	3					;	_
	0.14					o is			Г				¥0.0	}				3				Т		_
	2.7e-25					270-24			5.4e-26				546.34							5.40.26		37.74		_
	92					258			328											г			•	_
	Ē					₹			132				Т					9		П		Т		_
	_								~				T	_			1			Ī			,	_
Γ	<u>199</u>					3			47				ş	•			1	ŝ		8		5	į	
	470					470			ŝ				-				_			470		-		_
		140   260   2.76-23   0.14   1.00   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS   18-23D   MHCCLASS	140 D 141 200 276-21 0.14 100 MICCLASS IB-DDD ARACTOCOLOGILD! CALADA BELLA MICCLASS IB-DDD ARACTOCOLOGILD! CALADA BELLA MICCLASS IB-DDD ARACTOCOLOGILD!	14  260 276-23 0,14 100 HICCLASS1B-330 CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CANDER CAN	140 D 141 250 2.76-23 6.14 1.00 MICCLASS 114-230 A TRAVY CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHA	140   260   276-25   614   100   MHCCLASSIB-22D   141   260   276-25   614   100   MHCCLASSIB-22D   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142   142	14   250   276-23   0.14   100   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-20D   MICCLASS IH-2	140   260   276-24   6.14   1.00   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14-23D   MHCCLASSI14	141   250   276-23   6.14   100   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCCLASS1H-2DD   MHCC	14  250 276-25 0.14   100   MHCCLASS H-2DD   HZAVY CHANG CHARK A BETA-ADGROGOULD, CHANG H-2DD   HZAVY CHANG CHARK A BETA-ADGROGOULD, CHANG H-2DD   HZAVY CHANG CHARK H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHANG H-2DD   HZAV CHAN	140   260   276-23   0.14   1.00   HHCCLASS   H-2DD   HEAVY CHANG (SLAND) R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R. REAVY R.	14   240   276-24   0.14   1.00   MHCCLASS   H-2DD   HELVY CRADE (CALAS)   H-2DD   HELVY CRADE (CALAS)   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2	140   260   276-24   6.14   1.00   MHCCLASS   H-2DD   HEAVY CHANG (SLAND, X, CHANG (SLAND, X, CHANG (SLAND, X, CHANG (SLAND, X, CHANG (SLAND, X, CHANG (SLAND, X, CHANG (SLAND, X, CHANG (SLAND, X, CHANG (SLAND, X, CHANG (SLAND, X, CHANG (SLAND, X, CHAND,	14   240   276-25   0.14   1.00   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS	140   260   276-24   6.14   1.00   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   H-2DD   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS   MHCCLASS	14   26   276-25   0.14   1.00   HHCCLASS   H-2DD   HGLVVCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   HGLVCCLASS   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD   H-2DD	140   20   276-24   0.14   1.00   MHCCLASS H-ZDD   HEAVY CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG A CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG C	14   26   276-24   6.14   1.00   HHCCLASS H-ZDD   HGLV/CLASS H-ZDD   HGC/CLASS H-ZDD   HGLV/CLASS H-ZDD   HGLV/CLASS H-ZDD   HGLV/CLASS H-ZDD   HGLV/CLASS H-ZDD   HGC/CLASS H-ZDD   HGLV/CLASS H-ZDD   HGC/CLASS H-ZDD   HGLV/CLASS H-ZDD   HGC/CLASS H-ZDD   HGLV/CLASS H-ZDD   HGLV/CLASS H-ZDD   HGC/CLASS H-Z	140   20   276-24   0.14   1.00   MHCCLASS H-22D   MGAVC GLARG CRARK A GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-22D   MGAVC GLASS H-2	140   250   276-23   0.14   1.00   HHCCLASS   H-2DD   HEAVY CHANG (CAAD); K.A.     150   276-23   0.14   1.00   HEAVY CHANG (CAAD); K.A.     151   276-24   0.15   0.15   0.15   0.15   0.15   0.15     152   276-24   0.15   0.15   0.15   0.15   0.15     153   276-24   0.15   0.15   0.15   0.15   0.15     154   275   276-25   0.25   0.25   0.25   0.25   0.25   0.25     154   277   3.46-25   0.25   0.25   0.25   0.25   0.25   0.25   0.25     155   276-24   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25	Head   D   141   250   276-24   6.14   1.00   HHICCLASS H-22DD   HGAV CHONG CHARK A, CHONG CHARK A, CHONG CHARK A, CHONG CHARK A, CHONG CHARK A, CHONG CHARK A, CHONG CHARK A, CHONG CHARK A, CHONG CHARK A, CHONG CHARK A, CHONG CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A, CHARK A,	140   200   276-21   0.14   1.00   HHICCLASS   H-2DD   HGAVC GRADK CRADK 14   26   276-24   0.14   1.00   HHCCLASS H-ZDD   HGLVVCLASS H-ZDD   HGLVCLASS H-	Head   D   114   250   276-24   0.14   1.00   HHICCLASS H-2200   HGAVY CHORG CAMBY A, CAMBY CHORG CAMBY A, CAMBY CHORG CAMBY A, CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CHORG CAMBY CH	

WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950

Scene	BLAST Scare Score	Soure
Ne-23 0.14 1.00	276-23 0.14	¥1.0
76-24 0.15 0.89	2.76-24 0.15	0.15
979 -008	5.4e.36 -0.06	900
1619 -0.09 0.37	1.1619 -0.09	600
4-72 -003 0.23	5.44-22 -0.03	-0.03
5,40-09 0.28 0.29	1400 028	

	_	_				_	_	_	_		_		_	_	_	_		_	_	_	_	_	_		_			_	_
PDB annetities		HEMATOPOLETIC CELL RECEPTOR ACTIVATION INDUCER MOLECULE	(ADA), EA 1, HEMATOPOIETIC CELL	RECEPTOR, LEUCOCYTH, C-1775 LECTIN-LIKE, 2 NKD, KLR	COAGULATION FACTOR BUNDING	DUX-BP COACILIATION PACTOR	BINDING CTYPE LECTIX GLA- DOMAIN 2 BINDING C-TYPE CRD	MOTTE LOOP EXCHANGED DIMER	COAGULATION FACTOR BINDING	IXX-BP COAGULATION FACTOR	BINDING, C-TYPE LECTIN, GLA-	DOMAIN 2 BINDING, C. TYPE CRD	MOTTP, LOOP EXCHANGED DIMER	COAGULATION PACTOR BINDING	DVX-BP COAGULATION FACTOR	BINDING, C.T.PE LECTIN, GLA-	DOMAIN 2 BINDING, C-TYPE CRD	MOTTE, LOOP EXCHANGED DIMER	PANCREATIC STONE INHIBITOR	PANCREATIC STONE INHIBITION,	METAL BINDING PROTEIN	PANCREATIC STONE PROTEIN, PSP;	PANCARATIC STONE INSIBITION,	LITHOSTATHING	METAL BINDING PROTEIN	PANCHEATIC STONE PROTEIN, PSP;	PANCAGATIC STONE INHIBITOR,	COMPLEX (NG RECEPTORALISC	CLASS D H-2 CLASS I
Cempeand	SUBUNT; CHAIN: B	EARLY ACTIVATION ANTIGEN CD69; CHAIN: A:			COAGULATION FACTORS	LXX-BINDING PROTEIN;	CHAIR: A, B, C, D, B, P;		COAGULATION FACTORS	IXX-BINDING PROTEIN;	CHAIN: A, B, C, D, R, P,			COAGULATION FACTORS	IXXX-SINDING PROTEIN;	CIADEA, B, C, D, E, F.		╛	STATHDR. CHAIN:	אמד	LITHOSTATIONE CHAIN:	*			LITHOSTATHENE; CHAIN:	~		MHC CLASS I H-200	HEAVY CHADY; CHADY: A;
Scare Scare					20.23				10.86		_					_		7	2.16	_	83	_	_		_		_	Ī	=
Scar S		410							Ī					29'0				1	_						8			22	_
Verify		\$5.0												9770					_		Ī			7	ş			170	_
Sars Sars		£.19-26			12-01.9				36-23			_		1.36-23				1	8		14024				45.5		_	1.10-21	
} ₹		982			286				57					77	_	_	_		78		288			7	727	_		12.	Ī
Start		791			163				3		_			ĩ	_			7	3		=		_	7	2			15	
<b>a</b>		·			٧				n					-				1			~			1	<			U	
P08		147			1 jour				ğ			_		ğ				ļ	5		귷			1	<u>_</u>			120	
ğ e ğ		470			470		_		29				╛	\$					<b>P</b>		470		_	-	ę	_		420	

e e ş	9	ş	1	E LEVE	Scene	i i	Scare Scare	Cerapeand	
L									DAMUNITY, LPS-BINDING, HOMOPHELIC ADHESION
Ē	J	*	291	5.4e-03	0.10	609		FIBROBLAST GROWTH	GROWTH FACTOR/GROWTH PACTOR
								FIREORI AST GROWTH	NOT INCLUDE THE STONAL
								PACTOR RECEPTOR 1:	TRANSDUCTION, 2 DIMERIZATION
								CHAIN: C, D,	GROWTH FACTOR/GROWTH FACTOR
3	۵	×	3	5.4e-07	800	010		FIBROBLAST GROWTH	GROWTH FACTOR/GROWTH FACTOR
								FACTOR 2: CHAIN: A, B;	RECEPTOR FOF, POPR,
								FIBROBLAST CROWTH	DARKUNOGLOBULIN-LIKE, SIGNAL
								PACTOR RECEPTOR 1;	TRANSDUCTION, 2 DIMERIZATION,
								CHADI: C. D.	GROWTH PACTOR/GROWTH FACTOR
Ď	<	22	791	104	500	9		NEURAL CELL ADITESION	CELL ADITESION NCAM; NCAM,
								MOLECULE; CHAIN: A, B,	DAMUNOGLOBULIN FOLD.
								C, D,	GLYCOPROTEIN
lev	٥	45	162	120-07	643	61.0		PIBROBLAST GROWTH	GROWTH FACTOR/GROWTH PACTOR
	_							PACTOR 1; CHAIN: A, B;	RECEPTOR POFI; POPRI;
								PIBROBLAST GROWTH	INMUNOCIOBULIN (ICI) LIKE
								PACTOR RECEPTOR 1;	DOMAINS BELONGING TO THE LSET
								CHAIN! C, D;	2 SUBGROUP WITHIN IG-LIKE
1			1						DOMAINS, B-TREPOIL FOLD
ğ	<	3	239	5.44-23	9.46	ş		HIGH AFFINITY	MANUNE SYSTEM FC-EPSILON RL
	_							INMUNOCIOBULIN	ALPHA; IMMUNOCIOBULIN FOLD,
	_							EPSILON RECEPTOR	CLYCOPROTEIN, RECEPTOR, IGE.
								CHAIN: A:	BINDING 2 PROTEIN
100	<	99	ī	1342	9	0.45		HIGH APPINITY	IMMUNE SYSTEM HIGH AFFUNTY
_	_							IMPRIMOGROBULIN	IGE-PC RECEPTOR, FC(BPSILON) IGE.
								EPSILON RECEPTOR	FC; INMUNOGLOBULIN FOLD,
		_						CHAIN: A; IG EPSILON	GLYCOPROTEIN, RECEPTOR, IGE.
								CHAIN CREGION; CHAIN:	BINDING 2 PROTEIN, IGE ANTIBODY.
120	ŀ	ŀ	į	8 10.70 013	5	8		PC BRCTPTOB	MAN THE SVETEM MEMBERNE

PDB anactation	PROTEIN CD12; FC RECEPTOR, INAMINOGLOULN, LEUKOCYTE, CD32	DÁMUNG SYSTEM RECEPTOR BETA SANDWICH, DAMUNOGLOBULIN- LIKE, RECEPTOR	INGBITORY RECEPTOR KILLER CELL INGBITORY RECEPTOR, INGBITORY RECEPTOR, NATURAL KILLER CELLS, INGRINOLOGICAL 2 RECEPTORS, INGRINOGIOBULIN FOLD	INFIBITORY RECEPTOR KILLER CELL MINIBITORY RECEPTOR, INHIBITORY RECEPTOR, NATURAL KILLER CELLS, BANKINGLOGICAL 7 RECEPTORS, BANKINGLOGICAL 7 RECEPTORS,	INITIATION Y RECEPTOR KILLER CELL POGIBITORY RECEPTOR, DATIBLIORY RECEPTOR, NATURAL KILLER CELLS, DAMINOLOGICAL 3 RECEPTORS, DAMINOCIOSICIAN FOLD	CELL ADHESION PROTEIN VCAM- DI.2; IVCA 6 DOMINOGLOBULN SUPERFAMILY, DYTEGRIN-BINDINO IVCA 15	CELL ADHESION PROTEIN VCAM- DIL; IVCA 6 BARINOGLOBULIN SUPERPAMILY, D'TEGRIN-BINDINO IVCA 13	CELL ADHESION ICAM-2; INDAUNOGLOBULN FOLD, CELL ADHESION, OLYCOPROTEIN, 1 TRANSMEMBRANE, REPRAT, SIGNAL
Compound	FC(GAMMA)RILA; CHAIN: A;	LOW AFFIRETY IMMUNOGLOBULIN GAMMA PC REGION GHAIN: A;	PSECIAZ KIR; CHAIN: NULL;	PSECIAZ KIR; CHAIN; NULL;	PSECIAZ KIR; CHAIN: NULL;	HUMAN VASCULAR CELL. ADHESTON MOLECULE-1: IVCA 4 CHAIN: A, B; IVCA 5	HUMAN VASCULAR CELL ADHESION MOLECULE 1; 1VCA 4 CHAIN: A, B; 1VCA 5	INTERCELLULAR ADHESTON MOLECULE-2; CHADN: NULL;
Seaf Faid				10 941		22.80		
PM.P		3	8.	<u> </u>	8		0.07	50.0
Vertify Score		173	150		0.72		0.12	0.17
PSI BLAST		1603	13621	2.70-68	2.70-68	1.1e-08	1.1 1.0 1.1	5.40-08
3 3		612	7	722	ຄ	ž	261	791
reg ঽ		÷	₹	<b>3</b>	99	\$	\$	25
ge.		<				<	4	
20		ā	相	멸	뒘	<u>s</u>	<u>ş</u>	<u>a</u>
S a S		\$	Ş.	8	£	\$13	ê	\$

WO 02/05/9260 PCT/US01/42950 WO 02/05/9260 PCT/US01/42950

						_			
PDB annotation	3 PACTOR	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK46 INHIBITOR, ANKYRIN MOTTF	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK46 INHIBITOR, ANKYRIN MOTIF	COMPLEX (KINASE/ANT)- ONCOCENE) CDKS; PIGDK4A, MTSI; CYCLIN DEFENDENT KINASE, CYCLIN DEPENDENT KINASE,	DAHBITORY 2 PROTEIN, CDK, BNKA, CELL CYCLE, MULTIPLE TUMOR SUPPRESSOR, 1 MTS1, COMPLEX KINASSANTI-ONCOGENSI HEADER	COMPLEX (KINASE/ANTI- ONCOGENE) CDK6; PIGINK4A, MTSI; CYCLIN DEPENDENT KINASE, CYCLIN DEPENDENT KINASE	INHIBITORY 2 PROTEIN, CDK, INKA, CELL CYCLE, MULTPLE TUMOR SUPPRESSOR, 3 MT81, COMPLEX (KINASHAMTI-ONCOCENE) HEADER	COMPLEX (INTERTOR PROTEIN/CINKES) MEBITOR RUTEIN, CYCLIA-DEPENDENT KINASS, CELL CYCLE 2 CONTROI, ALPIANGETA, COMPLEX (INTERTOR PROTEIN/CINKES)	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHARBETA, COMPLEX (INHIBITOR
Compound		PISDNK4D CDK46 DRUBITOR; CHAIN: NULL;	PISTAKAD CDK46 INHIBITOR; CHAIN: NULL;	CYCLIN-DEPENDENT KINASB 6; CHADN: A; MULTIPLE TUMOR SUPPRESSOR: CHADN: B;		CYCLIN-DEPENDENT KDAKE 6; CHADI: A; MULTIPLE TUMOR SUPPRESSOR; CHADI: B;		CYCLIN-DEPENDENT KINASE & CHAIN: A; PISINKAD; CHAIN: B;	CYCLIN-DEPENDENT KDASE 6; CHADI: A; PISDKKD; CHADI: B;
SeqPold Scare			97,32	35.62					34.31
PM P		8				8		6.99	
Varify		7				8		103	
PSI BLAST Seen		1.1e.23	£.19-23	126.1		179-71		1.46.34	1.46-24
3 \$	Γ	7	2	22		3		137	138
Start AA		2		_		ន		91	_
<b>1</b> 00				m .		an an		Ð	a
904	Γ	<u>3</u>	3	<u> </u>		Į.		<b>₹</b>	ž
S e Š		Ę	5	5		12.		149	16.

		•				
PDB sandation	IMMUNE SYSTEM PSS NÁTURAL KILLER CELL RECEPTOR, KIR, NATURAL KILLER RECEPTOR, MATURETTORY RECEPTOR, 2 PARUNOGLOBULM	MINING SYSTEM PSI NA TURAL KILLER CELL RECEPTOR, KIR, NA TURAL KILLER RECEPTOR, PHIBITION Y RECEPTOR, IMMUNOGLOBULIN		COMPLIANCE (TRANSCREPTON REGULATIONONA) GABALETA; CARBERTA; COMPLEX (TRANSCRETON TRANSCRETON 1 REGULATIONONA), DIA-BRODING, 2 NUCLEAR PLOTEN, ETS DOMAIN, ANYTHIN REPORTS, ETS DOMAIN, 1 PACTOR	COMPLEX (TRANSCRIPTION REQUILATIONNOW, OBSPALPHA; CRANSCRIPTION (TRANSCRIPTION RECULATIONNOM, DWA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANY THIN REPEATS, TRANSCRIPTION 15 ACTOR	COMPLEX TRANSCRIPTION REGULATION CONFLEX OARRETATIC COMPLEX REGULATION ON THE STANSCRIPTION REGULATION ON THE STOCKHIN NUCLEAR WOTTEN EST DOMAIN NEXTEN REPEATS TRANSCRIPTION
Countpound	MHC CLASS I NK CRIT. RECEPTOR PRECURSOR; CHAIN: A;	MHCCIASS INK CELL RECEPTOR PRECURSOR; CHAIN: A;		GA BIDDING PROTEIN ALPIN; CRADI: A: GA BIDDING PROTEIN BETA I; CHAIN: B; DNA; CRADI: D, E;	GA BINDING PROTEIN ALPINS, CINDS: AS GA BINDING PROTEIN BETA I; CHAINS: B; DINS, CHAINS: D, E;	GA BINDING PROTEIN HELIN; CHADI: A; GA ALDING PROTEIN BETA I; CEAIN: B; DNA; CHAIN: D; E;
Seq Pad						61.03
Seers	8.1	931		8	8	
Verify Sears	a	590		10	8.	
PSI	1	5.40-40		5.4-23	17-17-17	5.40-23
3 \$	St	336		<u>=</u>	157	152
P V	65	Ş .		2	2	
	<	<b>,</b>	ľ	es es	m	<b>6</b>
10 Co.	IIPZ	Jan.		<u> </u>	1	lawc

229

WO 02/059260

				_						
PDB anasotation	ONCOGENE/ANK YRIN REPEATS)		OXIDOREDUCTASE (CHOH(D)- NADH(A)) R-LACTATE DEHYDROGENASE; 2DLD 1		PHOSPHOTRANSFERASE PHOSPHOTRANSFERASE	TRANSPERASB NUPK FH; NUCLEOSIDE DIPHOSPHATE KINASB, NAIS, MITOCHONDRIAL, KILLER, 2 OF-PRUNG				PHOSPHOTRANSFERASE NUCLEOSIDE TRIPHOSPHATE NUCLEOSIDE DIPHOSPHATE INUE 10
Conspound			D-LACTATE DESYDROGENASE; 2DLD S CHAIN; A, B; 2DLD 6		NUCLEOSIDIS DIPHOSPHATE TRANSFERASE; CHADI: A, B, C,	NUCLEOSIDE DIPHOSPHATE KINASE; CHAIN: A, B;	PHOSPHOTRANSFERASE NOCLEOSIDE NOCLEOSIDE NOCLEOSIDE WITH INEX 3 S-CYCLIC ADENOSINE MONOPHOSPHATE INEX 4	PHOSPHOTRANSTERASE(P OA AS ACCEPTOR) NUCLEOSIDI DIPHOSPHATE KIDASE (ILC.2.7.4.6) INPK 3	PHOSPHOTRANSFERASE NUCLEOSIDE DIPHOSPHATE KINASE (E.C.2.7.4.6) 1NSQ 3	NUCLEOSIDE DIPHOSPIATE KINASE; INUE 4 CHAIN: A, B, C, D,
Sea Pudd Sears										
N. S.	П		0.50		619	Q.87	678	8	Q.77	600
Verify Score	П		35.0		25.0	979	150	0.13	90'0	Ş
2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			5.4e-09		0.00054 0.02	0.00054 0.20		0.00054	0.00041	12000.0
35	П	Γ	=		308	308		308	<b>3</b> 0	310
Start \$	П	Γ	=		123	152	052	250	152	152
Chatha 10	П	Γ	,		<b>~</b>	<	×		<b>4</b>	<
<b>6</b> 0		Γ	2414		Ĭ	A P	<del>1</del> 1	Ing.	ā	and I
S e S		Ī	\$	Ī	3	3		8	<b>4</b> 2	482

232

PCT/US01/42950

PCT/US01/42950

<b>Г</b> ОВ ваносатия	PROTEIN-RNA COMPLEX, GENE REGULATIONRNA	GENE REGULATION WAY POLY(A) BRODING PROTEIN, 1, PABP 1; RIM, PROTEIN-RIM, COMPLEX, GENE REGULATION RIMA	RNA BINDING PROTEIN RNA- BINDING DOMAIN	RNA-BINDING PROTEIN SPLICING, UZ SPRNP, RBD, RNA-BINDING PROTEIN		TRANSFERASE DINUCLEOTIDE. BINDING MOTIF, PHOSPHORIBOSYL TRANSFERASE	ISOMERASB ISOMERASE, MUTASE, INTRAMOLECULAR TRANSPERASE	ISOMERASE ISOMERASE, MUTASE, INTRAMOLECULAR TRANSFERASE	DNA-BINDING HAGA DNA-BINDING HAG-BOX DOMAIN A OF RAT HAGI; JAAB I HAG-BOX JAAB 20	DNA-BINDING HAGA DNA-BINDING FAG-BOX DOMAIN A OF RAT HAGI; IAAB I FAG-BOX IAAB 20
Commpound	C, D, R, P, O, H; RNA (5°- R(* A)* AP* AP* AP* AP* AP* AP* AP* AP* AP* A)* T; CHAIN: M, N, O, P, Q, R, S, T;	POLYDEAYLATE BINDING PROTEIN I, CHAIN, A. B., C. D. R. P. G. HENN (S. R.*AP*AP*AP*AP*AP*AP* AP*AP*AP*AP*AP* AP*AP*AP*AP* AP*AP*AP* AP*AP* HU ANTIOEN C; CHAIN: A;	SPLICING PACTOR UDAF 63 KD SUBUNIT; CHAIN: A;		NICOTTINATE MONONUCLEOTIDE:5,6- CHAIN: A;	METHYLMALONYL-COA MUTASE; CHAIN: A, B, C, D;	METHYLMALONYL-COA MUTASE; CHAIN: A, B, C, D,	HIGH MOBILITY GROUP PROTEIN; 1AAB 3 CHAIN; NULL; 1AAB 6	HIGH MOBILITY GROUP PROTEIN; IAAB 5 CHAIN: NULL; IAAB 6	
Seaffeld										131.01
NG P		ş	0.05	rg.		QT P	61.6	-0.20	8:	
Verth Sears		190	ŝ	0.43		Q.13	6.33	10.04	M.	
FS! BLAST		22007	1100.0	0.00027		6 <del>-6</del> 9:	2.76-13	£.1⊕10	0(472	2.36-30
33		<u> </u>	3	7		ZI3	2	ta .	2	2
A Serr		J	7	4	L	z	9	11	7	
9 0		I	<	٧		<b>~</b>	<	<		
0 10		Ē	4	352		2	Ī	ā.	1	9
g e ş		3	3	2	Γ	ş	9	3	£13	ş

PDB ensetztion		LIPID TRANSPORT APO A-I; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCI, EROSIS, HDL. LCAT.	ACTIVATION	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 23 TANDEM SHELIX COLED-COLE, STRUCTURAL PROTEIN		RNA-BINDING PROTEINANA TRA PRE-MRNA; SPLICING REGULATION, RNP DOMAIN, RNA COMPLEX		GENE REGULATIONENA POLY(A) BRODINO PROTEIN I, PABP I, REA, PROTEIN-RNA COMPLEX, GENE REGULATIONENA		GENE REGULATIONRNA POLY(A) BRUDING PROTEIN 1, PABP 1; REM, PROTEIN-RNA COMPLEX, GENE REGULATIONRNA		GENE REGULATION/RNA POLY(A) BINDING PROTEIN I, PABP I; RRM,
Ceempeend	B, F; INUE 5	APOLIPOPROTEIN A-1; CHAIN: A, B, C, D;		ALPHA SPECTRIN; CHÁIN: A, B, C.		SXL-LETHAL PROTEIN; CHAIN: A, B; RNA (5: R(P*QP*UP*UP*QP*UP*UP	CHAINE P.O.	POLYDENYLATE BINDDO PROTEIN I; CHAIN: A, B, C, D, B, P, Q, II; RNA (5: R(*A)*A)*A)*A)*A)* A)*A)*A)*A)*A)*	CHAIN: M, N, O, P, Q, R, S,	POLYDENYLATE BINDING PROTEIN I; CHAIN! A, B, C, D, B, P, O, H; RNA (5* R(* A** A** A** A** A**	CHAIN: M. N. O. P. O. R. S. Ti.	POLYDENYLATE BINDING PROTEIN I; CHAIN: A, B,
Seq Fold		9£02										
Sear S				900		5		0.07		150		600
Verify Seers			_		Γ	0.07		7.0		220		3
PSI BLAST Score		0.00081		276-05		0.00014 0.07		0.0027		0.0027		0.0027
3 \$		7.		051		ž		3		ž		ž
Start		-		=		7		3		7		7
		<b>4</b>		<		<		<		æ		_
<b>1</b>		7		<u>8</u>		157		Į.		<u> </u>		<u>13</u> ;
S e S		<b>3</b>		3		\$		3		ş		3

233

PCT/US01/42950

WO 02/059260

PDB nametation	DNA BINDING PROTEIN HAIG BOX, DNA BENDING, DNA RECOGNITION, CHEOMATIN, NAR, DNA 2 BINDING PROTEIN	DNA BINDING PROTEIN HMG BOX, DNA BENDING, DNA RECOGNITION, CHROMATIN, NMB, DNA 2 BINDING PROTEIN	GERG REGULATIONDIA, PAGO I, AMPHOTERN FOR HER BROING PROTEIN POR, HIGH-MOBBLITY GROUP DOMAIN, BENT DIA, PROTEIN-DRUG-DIN 2 COMPLEX, GENE REGULATIONDIA.	GENE EGULATIONUNA HMG-I, AAPHOTEUN, HEPARIN-BRUDNO PROTEIN PAS, HIGH-MOBILLTY GROUF DOMANY, BENT DINA, BROTEIN-DRUG-DINA, I COMPLEX, GENE BEGULATIONUNA.	ENDOCYTOSISEXOCYTOSIS SYNAPTOTAGAIN ASSOCIATED 33 KDA PROTEIN, P15A, THREE HELIX BUNDLA	ISOMERASE ISOMERASE, MUTASE, DITRAMOLECULAR TRANSFERASE	COMPLEX (TRANSDUCENTRANSDUCTION) OT BETT-OLANIA, REXA, PTJ; PHIGOLOCH, TRANSDUCH, BETA- GARAM, SIGNAL TRANSDUCTION, 2 BEGILLATION, PHOSPHORYLATION, O PROTEINS, THIOSEDOXIN, 3
Cemperad	NON HISTONE PROTEIN 6 A: CHAIN! A:	NON HISTONE PROTEIN 6 A; CHAIN: A;	HIGH MOBILITY GROUP I PROTEIN; CHAIN; A; DNA (\$:Dy-CP*CP*(IDO) CHAIN; B; DNA (\$* CHAIN; C.	HIGH MOBILITY GROUP I PROTEIN; CHAIN: A; DNA (5-07-07-07-(IDO) CHAIN: B; DNA (5- CHAIN: C.	SYNTAXIN-1A; CHAIN: A, B, C,	METHYLMALONYL-COA MUTASE; CHADY: A, B, C, D;	TRANSDUCTH; CHAIN: B, G; PHOSDUCTH; CHAIN: P;
Seq Paid Scare	16.77			08'901			
A JALA		8	8.		61.0	07.0	9
Varify		ş	OF C		şr ₀	979	0.13
ا <u>لا ت</u>	1.10	62-91:1	73 	R.	278-08	2	2.74-10
3 \$	59	3	2	31	Ę	17	512 318
ğ ş	ž.	8		_	5	<u>ş</u>	2
<b>3</b> =	<	<	<	<	<	۷	
<u>5</u> 9	Ę	14,7	된	표	3	Ē	A
ğ a ş	\$	ş	647	\$	Ş	ş	48

												_	_	_		_	_										_		
PDB spectation	VISION, MEKA, COMPLEX (TRANSDUCENTRANSDUCTION)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) GABPALPHA;	(TRANSCRIPTION	REGULATION/DNA), DNA-BINDING, 2	NUCLEAR PROTEIN, ETS DOMAIN,	ANK YRIN REPRATS, TRANSCRUPTION 3 FACTOR	SIGNAL TRANSDUCTION SIGNAL	TRANSDUCTION, SOS, PLECKSTRIN	HOMOLOGY (PH) DOMAIN	COMPLEX (DNA-BINDING	FACTOR ACCESSORY PROTEIN IA:	ETS DOMAIN, DNA-BINDING	DOMAIN, WINGED HELLIX-TURN-	HELLY, 2 CRYSTAL STRUCTURE,	DNA-BINDING SPECIFICITY,	COMPLEX 1 (DNA-BINDING	PROTEIN/DNA) SHEET HEADER	CONECT	ACASO ACT ONLY DESCRIPTION OF THE COLUMN	AUCONALIDATION I TRUSTICE	KINASE, BIK, IKANSPEKASE, PH	DOMAIN, BTK MOTIP, ZINC BINDANG,	X-LINKED 2	AGAMDKAGLOBULDVEMIA,	TYROSINE-PROTEIN KINASE	GENE REGULATION SON OF	SEVENLESS PROTEIN; GUANINE	NUCLEOTION RXCHANGE PACTOR
Countpound		CA BINDING PROTEIN	ALPEA; CHADS: A; GA	I; CHAIN: B; DNA; CHAIN:	D, E.			SOS1; CHAIN: NULL;			G74 PROMOTOR DNA;	CHAINC								BRUIGNS LIROSING	ALMANS; CRAIN: A, B;						HUMAN SOS I; CHADN: A;		
Sea Pold		T						Ī			_		_	_												1			
N. S	П	242						61.0			7						_	_		•				_			9	_	
Ventfy		477						ğ		_	Ş								ŀ	ş							400		
PEAST PEAST		0.0054						0.00054			200.0									3							0.00027 -0.07		_
3 ₹		ž						≡	_		2						_		1	è							8		_
Star ₹		26			_			42	_		8							_		۲,	_	_					25		
<b>5</b> 0		<									Ü						_			<							<		
<b>6</b> 0		3						100			3		_	_				_	1	ğ		_	_				8		_
§ 0 §	П	8		_	_			8	_		8	_	_						_	<b>Ş</b>			_	_	_		ŝ		_

2.36

WO 02/059260 PCT/US01/43550 . WO 02/059260 PCT/US01/42550

PDB onnotation		SIGNAL TRANSDUCTION SON OF SEVENLESS; PLECKSTRIN, SON OP SEVENLESS, SIGNAL TRANSDUCTION		HYDROLASS SUM PUROLASS, BUTHALES PROTEASE, SATJ HYDROLASS 2 DESUMONTATING BATHAE, CYSTEMS PROTEASE, STANO PROCESSING 3 DESTING SATJ PROCESSING SATJANG SATJANG SATJANG PROCESSING SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJANG SATJ		EMDOCYTOSISEXOCYTOSIS NSEC!; PROTEIN-PROTEIN COMPLEX, MULTI- SUBUNIT		LIPID TRANSPORT APO A-i; LIPOPROTEIN, LIPD TRANSPORT, CHOLESTEROL METABOLISM, 1 ATTEROSCLEROSIS, HDL, LCAT- ACTIVATION	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HEJICAL LINKER REGION, 2 2 TANDEM 3-HELIX COILED-COILS,
Сопировай	HOMOLOGY DOMAIN HOMOLOGY DOMAIN MUTANT IPLS 1 WITH HOLE GUT (GESS ADDED TO THE C TELMANUS IPLS 10 THE C TELMANUS IPLS 10 THE C TELMANUS IPLS 11 TO THE C TELMANUS IPLS 12 TELMANUS IPLS 14 (RNSCI TELMANUS IPLS 14 TELMANUS IPLS 15 TELMANUS IPLS 16 TELMANUS IPLS 16 TELMANUS IPLS 16 TELMANUS IPLS 16 TELMANUS IPLS 16 TELMANUS IPLS 16 TELMANUS IPLS 16 TELMANUS IPLS 16 TELMANUS IPLS 17 TELMANUS IPLS 17 TELMANUS IPLS 17 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18 TELMANUS IPLS 18	SOS I; CHADN: MULL;		A UDITOUTSAGE, CHADI: A UDITOUTSAGE, CHADI: B. ROTEIN SATT; CHADI: B.		SYNTAXIN BINDING PROTEIN 1; CHAIN: A; SYNTAXIN 1A; CHAIN: B;		APOLIPOPROTEIN A-1; CHAIN: A, B, C, D;	Alpha Spectrin; Chain: A, B, C;
SeqFedd Score								2.19	8. 2
Source		B6'0		90'1		\$ D.			
Verth Serth		0.13		0230	Ī	200			
2 T S		2.7e-10		3.46-41		604	Ī	0.00017	1100
3 \$		<b>8</b> 01		212		ĸ		72	ã
¥ \$		n	-	9		<u> </u>		Ē.	3
<b>9</b> 0				۷.	Γ			<	<b>,</b>
ê e		<u>i</u>		va	Γ	₫		1	1
g a g		8		Ŷ		\$		\$	র

PDB sanetation	GENE REGULATION	TRANSCRIPTONIA TRANSCRIPTONIA TRANSCRIPTONIA DAVISTORIA DAVISTORIA STRUCTURI STRUCTURI SPECTICIT	TRANSCRIPTION REGULATION	SGONALDO PROTEIN DAPPI, PRISH, BAMIL PLECKSTRIN, Y. PROSPHOLOMOSITIDES, INOSTROL. TETRAKISHICKPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN, ADAPTOR	SIGNALIDAO PROTEIN DAPH, PHISH, BAMIZ, PLECKSTRIN, J. PHOSPHOLNOSTIDES, INDSTRO. TETRAKISHIOSPIATE 1 SIGNAL TRANSDACTION PROTEIN, ADAPTOR PROTEIN	SIGNALING PROTEIN ARFI GUANINE NUCLEOTIDE EXCHANGE FACTOR AND PH DOMAIN	COMPLEX (TRANSCRIPTION PACTORIONA)	
Септрети		DAN (5° AP CP*CP*CP*CP*CP*CP*CP*CP*CP*CP*CP*CP*CP*C	MURING BTS-1 TRANSCRIPTION PACTOR; IBTC 4 CHAIN: NULL; IETC 5	DUAL ADAPTOR OF PHOSTHOTYROSINE AND 3- CHAIN: A;	DUAL ADAPTOR OF PLOSPHOTYROSINE AND 3- CHAIN: A:	GRPT; CHAIN: A;	FLI-1; IFLI SCHAIN: A; IFLI 6 DNA IFLI 10 CHAIN: B, C; IFLI 12	PHOSPHORYLATION PLECKSTRIN (N-
SeqFold								
PM.P	Γ	623	83	8.1	8	8.	600	8
Verify Sear	Ī		-0.47	6.73	0,92	16.0	10.01	6.29
BLAST			0.0027	226-13	54e13	5.4e-12	0.0027	3.4411
¥ Ed	Γ		3	8	<b>3</b> 6	8	55	8
Start		5	8	2	a	2	2	77
Chals		u		<	<	<b>~</b>	<b>~</b>	
804 61	T	¥	분	3	<u>.</u>	Ĝ.	ğ	<u>i</u> .
SE 0 2	T	8	8	8	0 <b>\$</b>	8	\$	8

237

_		_								
	TDB sassemen	INTERFERON, IMMUNE SYSTEM	DAMUNOGLOBULN DAMUNOGLOBULN, KAPPA LIGHT- CHAIN DIMER HEADER	DAMUNOGLOBULD DAMUNOGLOBULDI, KAPPA LIGHT- CHAIN DIMER HEADER		COMPLEX (MICVIRAL PETIDERECETOR) H.A. A.3 HEAVY CEVINE; COMPLEX (MHCVIRAL PETIDERECEFTOR)	ANTBODY ANTBODY, FAB, CAMPATIF10, CD52	COMPLEX (ANTIBODY/ANTIGEN) FAB-12, VEGP, COMPLEX (ANTIBODY/ANTIGEN), ANGIOGENIC FACTOR	COMPLEX (ANTIBODY/ANTIGEN) PAB-I2; VEGF; COMPLEX (ANTIBODY/ANTIGEN), ANGIOGENCE FACTOR	ANTIBODY THERAPEUTIC, ANTIBODY, CD52
	Ceraponse		DAMUNOGLOBULN; CHAIN: A, B;	UMMUNOCIOBULIN; CHAIN: A, B;	IMMUNOGLOBULIN PAB- FRACMENT OF MONOCLONAL ANTIBODY BT2 1BBJ 1 GUIRNEMAN CHIMERA) 1BBJ 4	HIA-A DODI, CHADE: A; BATA-2 MICROGLOBULIN; CHANE: CTCELL RECEPTOR ALPHA; CHANE: D T CELL RECEPTOR BETA; CHADE: RECEPTOR BETA; CHADE:	CAMPATH-10 ANTIBODY; CHAIN: A, B, C, D, E, P, G, H;	PAB FRAGMENT, CHAIN: L, H, J, K; VASCULAR ENDOTHELIAL GROWTH PACTOR, CHAIN: V, W;	FAB FRAGMENT; CHAIN: L, H, J, K; VASCULAR ENDOTHELIAL GROWTH FACTOR; CHAIN: V, W;	CAMPATH-INCLIGHT CHAIN; CHAIN: L;
	Scan			109.72	1020	233.42	105.12		109.40	
	Score		838					08.0		8
	Scare		0.11					0.03		120
	BLAST		24 to 1	1.40-£6	11.40.78	E.10-74	5.10-79	11-01-1	1.40-13	6.86-85 0.27
	₹ 5		977	ă	672	219	335	822	774	977
	Start AA		02	17	17	<b>=</b> _	21	a	17	07
	9	Ī	<	<	٠	۵	٧	1	J	۔
	<u> </u>	Γ	<u>8</u>	<u>8</u>	<u> </u>	ā	941	CĀ.	iği	3
	g a g	Γ	202	202	262	ğ	ğ	<b>2</b> 02	<b>3</b>	82

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

PDB annotation	(A:ALPHA) BINDING, 1 COMPLEX (WILLEBRANDIMORINOGLOBULIN), BLOOD COAGULATION TYPE 3 1B VON WILLEBRAND DISEASE			COMPLEX (RIV ENVELOPE PROTECTION COMPLEX (RIV EXTENDE F ROTEN COMPLEX (RIV EXTENDE 2 ENVELOPE OF 13.1. T. CELL SURFACE CLYCOPROTEN CDA, 3 ANTICEN-ENDING FRAGMENT OF HUDAN DAAD MODEL OBJUST (178,4 CLYCOSYLATED PROTEN	COMPLEX (HV BAVELOPE RROTENCUAREA) COMPLEX (HV BAVELOPE RROTEN/COAPLEX (HV EXTREME 2 ENVELOPE OF 12), T. CELL SURFACE CL YCORFOTEN CDA, ANTICEN-BRONNO PRAGAGET OF HUMAN MANTHOGOBULIN ITB, 4 CLL YCOSYLATED PROTEIN		
Coumpound	MMUNDOLOBULIN NMC- 4 1001; CHAIN: H; VON WILLEBRAND FACTOR; CHAIN: A:	DAMUNCOLOBULIN FAB FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 I FVD 3	IMMUNOGLOBULIN PAB FRACIMENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 I FVD 3	BWELDRE PROTEIN GPIDS CHAIN: G: CD4; GAIAN: C: AVTBOOV 1 78; CHAIN: L. H.	ENVELOPE PROTEIN GPIZE, CHAIN: G; CDV; CHAIN: C; ANTBODY I TB; CHAIN: L, N;	INDAUNOGLOBUILN IOGZA FAB FRAGMENT (FAB 179) IHIL 3	MAKUNOGLOBULIN IGG2A FAB FRAGMENT (PAB 179) COMPLEX
Seaffeld			60901	9.701			
Scar		150			8	ş	ari
Vertify		200			į3	9170	0.00
PSI BLAST Scere		38 48	. to 86	145		). 	S.le-di
3 2		ន	ដ	fā	922	326	972
Start A		я	21	12	n	R	я
90		<	<	٠	٠.	٧	د.
90		ž.	Ē	<u>ii</u>	Ē	TN1	110
g e ş		ğ	ğ	S	ã	203	gg

PDB annetation		Амтвору пеямеилс, Амтвору, связ	DÁMÍNE SYSTEM ABZYME TRANSITION STATE ANALOG, DÓMUNE SYSTEM	MANIDE SYSTEM PAB-BB COMPLEX CRYSTAL STRUCTURE 2.7A RESQLITION BINDING 2 OUTSIDE THE ANTIGEN COMBINING SITE SPICENTIFICEN PAB VIE 3 SPICENTIFICEN PAB VIE 3		IMMUNE SYSTEM DAMUNGOLOBULIN, ANTERODY, FAR, HEPATITIS B, PRES.		DIGMUNE SYSTEM VON WILLEBRAND FACTOR, GLYCOPROTEIN IBA
Сепиропье	CAMPATH-HIHBAYY CHAIN; CHAIN; H; PEPTIDE ANTIGEN; CHAIN: P;	CAMPATH-LIBLIGHT CHADS CHADS LS CHADS CHADS IS CHADS CHADS IS CHADS ANTIGES	TCS FAB FRAGMENT; SHORT CHAIN; CHAIN: A, C; TCS FAB FRAGMENT; LONG CHAIN; CHAIN: B, D	IGM RF 2A2; CHAIN: A, C, E; IGM RF 2A2; CHAIN: B, D, P; IMMUNOGLOBULIN O BINDING PROTEIN A; CHAIN: Q, H;	MAUNOGLOBULIN 1D6 PAB 1DPB 1	FIZA HAMUNOGLOBULDN (KAPPA LIGHT CHAIN); CHAIN: A, C; FIZA HAMUNOGLOBULN (IQCI HEAVY CHAIN); CHAIN: B,	DASALNOGLOBULZN DAAVNOGLOBULLN GI (KAPPA LIGHT CHADN) FAB: FRAGNENT 1FIG 3	MANUNOLOBULIN NAC- 4 1001; CHAIN: L;
Seq.Fold Score		101.57	105.20		107.04		103.10	
PMP Score				26.0		8		0.7
Vertify Source				90.0		20.0		<b>9</b>
BLAST		6.80-13	5.16-75	1.20-89	7.02	5. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	11-612	1.70-83
Esd A Sed		62	222	622	222	922	a	573
F &			74	R	71	R	8	a
<b>a</b>		T	۷	<	1	<	1	
108 01		<u> </u>	Stari	2 <u>5</u>	qp	Ē	ğ	Ē.
S e S		55 26	ğ	ğ	203	ğ	ş	ğ

241

_				_				_	_
FRAGMENT, REPRODUCTION	RECEPTOR TOP: T-CELL, RECEPTOR, TRANSMEMBRANE, GLYCOPROTEIN, SIGNAL	IGATUNOGLOBULIN TRI 9, ANTI- THYROID PEROXIDASIS, AUTOANTIBODY, 2 MANUNOGLOBULIN	IMMUNOGLOBULM TR.1.9, ANTI- THYROD PEROXIDASE, AUTOANTIBODY, 1 DAMUNOGLOBULM	CATALYTIC ANTIBODY CATALYTIC ANTIBODY, PAB, RING CLOSURB REACTION	·		DMUNE SYSTEM METAL CHELATASE, CATAL YTIC ANTBODY, FAD FRACMENT, DOMUNE 2 SYSTEM		COMPLEX (MHC/VIRAL
7	ALPHA, BETA T-CELL RECEPTOR CHAIN: A, B;	TRI 3 PAD; CHAIN! L, H;	TRI.9 FAB; CHAIN: L, H;	IOG SCE, CHAIN: L, H.	IMMUNOCLOBULIN FAB FRADMENT OF A HUMANIZED VERSION OF THE ANTI-CD18 ZPOW 3 ANTIBODY 142F (RUHS)- OZ PAB) 2FOW 4	INMUNOGLOBULIN FAB FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CD IS 12-GW 3 ANTIBODY 1427 (HUHS2- OZ FAB) 35-GW 4	METAL CHELATASB CATALYTIC ANTIBODY; GHANIA, A, C, METAL CHELATASB CATALYTIC ANTIBODY; CHANN, B, D;		HLA-A 0201: CHAIN: A:
Ī	211	10413				E.73			
Γ			6.87	2,2	560		(F)		87
Γ			20.0	3	60.09		0.20		629
	1,46-74	1.7e-15	1.76-85		3.46-19	3,46.19	5.10-41	Ī	270-49 0.29
Γ	122	a	ន	ដ	â	22	122		22
	11	=	z	R	я	a	n		77
	<	ر ا	1	_	<b></b>	1	<		
	Ē	al v	aga.	-			He.		69
1	ğ	ğ	ã	202	Ş	ş	ğ		8
	L: FRAGMENT, REPRODUCTION	INT. A 21 27 1.46-74 III.33 ALPHA, BETA T-CELL. REGETOR CHARL A.B.	1	11   12   14   14   15   15   14   14   15   15	1	1	1	1	1

WO 02/059260 PCT/US91/42950

PDB annecacion	RECEPTOR T CELL RECEPTOR 185C	HA-DRI, DDA HA-DRI, DDB 1001; TOR HALT HA-DRIAN; TOR HALT) BETA CHANK, PROTEIN COLOFTER, DAGINGGLOBULN FOLD	SIGNAL TRANSDUCTION PROTEIN	CYTOSKELETON	SHI PROTOTYPE WWPROTOTYPE, PROTEIN DESIGN	ISONCRASE PINI; PLETIDYL- PROLING ISONGRASE, WW DOMAIN, PHOSPHOSERING BINDING	SIGNALINO PROTEIN DAPPI, PHISH, BAMTI, PLECKSTRIN, 1- PHOSHODHOSKIDES, DNOSITOL TETRAKESHONGFRA, NE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN, ADAPTOR	SIGNALING PROTEIN DAPPI, PHISH, BAM32; PLECKSTRIN, 3-
Compand	14.3.D T CELL ANTIGEN RECEPTOR; IBEC 3 CHAIN: MULL; IBEC 6	HIA CASS II HERTOCAMO A CHESTOCAMO ETA-SPECTRIN; 18TN 4 CHAIN; NULL; 18TN 5	BETA-SPECTRIN; IDRO 6 CHAIN: NULL; IDRO 7	WWPROTOTYPE: CHAIN: A;	PEPTIDYL-PROLYL CIS- TYANS ISOMERASB NDAA- CHAIN: B; Y(SEPJET(SEP)S PEPTIDE; CHAIN: C,	DUAL ADAPTOR OF PHOSPHOTYROSING AND 3- CHAIN: A:	DUAL ADAPTOR OF PHOSPHOTYROSINE AND	
Seq Fold Score								
Scar	<u>8</u>	1.00	979	0.76	3	0.07	3	ผง
Vertty	0.47	977	0.22	0.67	8	0.08	0.61	09:0
ELAST Sear	2 2 2 3	3.44-37	1101	5,40-15	1000	900070	276-11	11-11
3 ≥	3	9	346	122	3	3	123	153
Serri AA	а	n	3	22	ñ	n	951	951
đe		23			,		<b>4</b>	٨
<b>804</b>	<u>X</u>	<u>\$</u>	8	g	ē.	<u>e</u>	ā	ē
g e ğ	3	3	ğ	ĝ	Ş.	ä	ş	ŝ

246

| Fig. | 7th | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count | Count |

WO 02/059260 PCT/US01/42950

245

PDB nanetation	PHOSPHOINOSITIDES, INOSITOL, TETRAKISPHOSPHATE 2 SIGNAL, TRANSDUCTION PROTEIN, ADAPTOR PROTEIN	SIGNALING PROTEIN ARFI GUANINE NUCLEOTIDE EXCHANGE PACTOR AND PH DOMAIN		SIGNAL TRANSDUCTION SON OF SEVENCESS, PLECKSTRIN, SON OF SEVENLESS, SIGNAL TRANSDUCTION	SIGNAL TRANSDUCTION IRS-1; BETA- SANDWHICH, SIGNAL TRANSDUCTION	LEGORIO SE RESCONAL PROTEIN LE PARAL, ELS SE REGORDAL LE PARAL, ELS SES REGORDAL PROTEIN LES HANG, ENCENTE LE PARAL, ELS SES REGORDAL PROTEIN LES HANG, ENCENTE LES PROCEINAL PROTEIN LES PROCEINAL PROTEIN LES PROCEINAL PROTEIN LES PROCEINAL PROTEIN LES PROCEINAL PROTEIN LES PROCEINAL PROTEIN LES PROCEINAL PROTEIN LES PROCEINAL PROTEIN LES PROCEINAL PROTEIN LES PROCEINAL PROTEIN LES PROCEINAL PROTEIN LES PROCEINAL PROTEIN LES PROCEINAL PROTEIN LE PARALLE PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL PROCEINAL
Compound	3- CHADI: A;	GRPI; CHAIN: A;	PHOSPHORYCATION PLECKTRIN (N- TENGRAL PLECKTRIN HOMOLOVY DOMAIN) MUTANT INE 3 WITH LEU GLU (GLU (GLUS)A DODED TO THE C TENGRAL SPAS 4 (DNS(O165-LEHRERGH)) (NORM, 25 STRUCTURES)	SOS I; CHAIN; NUILL;	INSULIN RECEPTOR SUBSTRATE 1; CHAIN: A, B;	135 RRAG GAURE & SERVIC GRADE & SERVIC GRADE & SERVIC GRADE & SERVIC GRADE & SERVIC GRADE & SERVIC GRADE & SERVIC GRADE & SERVIC GRADE & SERVIC GRADE & SERVIC GRADE & SERVIC GRADE & SERVIC GRADE & SERVIC GRADE & SERVIC GRADE & SERVIC GRADE & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERVIC & SERV
Seq Feld Scare						
PMF		3	02.50	ž	Q.17	P. 64
Vertity		47.0		0.41	ā	82
BLAST		F.19-08	2.76-10 0.18	1.96.14	1.96-12	1.76-19
3 \$		a	2	757	312	2
į į		22	81	81	2	=
đe		<			<	<b>a</b>
5 e		ē	Ē	<u>i</u>	<u>a</u>	ē
g e ë		ş	ğ	ğ	ĝ	<u>ş</u>

	Г	-	-	_	-	-1	-	_	_	-	-	z	-1		_	<b>4</b>	_	-	_	-		-	-	-	-	_	-	_	-	-	_	-	-
PDB annotation	FUNAL 15, HLP, SOS RIBOSOMAL	PROTEIN LIEP, HOWALIS, HE, 12; 505	REDOSOMAL PROTEIN LISE, HLZ9,	L19; SOS RUBOSOMAL PROTEIN L19E,	EDMAL 19, 18,24; 50S RIBOSOMAL	PROTEIN L212, HL31; 505 RIBOSOMAL	PROTEIN L22P, HDAAL22, HL23; SOS	RIBOSOMAL PROTEIN L23F, HDMAL23	HL25, L21; SOS RIBOSOMAL PROTEIN	124P, HOLAL 24, HL16, HL15; 505	REDOSOMAL PROTEIN L24B,	HIZIMAIZZ; SOS RUBOSOMAL PROTEIN	125P, HOMALZO, HLJJ; SOS RUBOSOMAL	PROTEIN L30P, 104AL30, HL20, HL16;	SOS RIBOSOMAL PROTEIN LITE, L'M,	HL30; SGS RIBOSOMAL PROTEIN LIZE	HLJ; SOS RIBOSOMAL PROTEIN LJ7E,	LISTE; SOS RIBOSOMAI, PROTEINS	LISTE, HELSTE, HEAGE; SOS REBOSOMAL	PROTEIN LAND, LA, HEA; 305	RIBOSOMAL PROTEIN LAP, HMALA,	HE 10 REBOSOME ASSEMBLY, RNA-	RNA, PROTEIN-RNA, PROTEIN-	PROTEIN									
Coempound	RIBOSOMAL PROTEIN	LIDE: CHAIN: P.	RIBOSOMAL PROTEIN	L13; CHADN: 0;	RIBOSOMAL PROTEIN	LIN, CHAIN: H.	RIBOSOMAL PROTEIN	LISE CIADS: E	RIBOSOMAL PROTEIN	LIS CHAIN: 7:	RIBOSOMAL PROTEIN	LIB; CHADN: K;	KIBOSOMAL PROTEIN	LIFE CHAIN: L.	RIBOSOMAL PROTEIN	LIP, CHAIN: M;	RIBOSOMAL PROTEIN	LIE CHAIR X	RUBOSOMAL PROTEIN	LZZ; CHAIN: O,	RIBOSOMAL PROTEIN	L23; CHAIN: P.	RIBOSOMAL PROTEIN	L24; CHAIN: Q:	RIBOSOMAL PROTEIN	LACE CHAIN: R.	RIBOSOMAL PROTEIN	L29, CHAIN: S;	REDOSOMAL PROTEEN	L30; CHAIN: T;	RIBOSOMAL PROTEIN	LAIR; CHAIN: U;	RUBOSOMAL PROTEIN
SeqFeld Score																																	
Score	Ī																				_				_								
Verify	Γ																																
PSI BLAST Score	Ī					_						_											_										
3 5	Γ					_	_								_																		
Start		_									_																						
a e									_														_			_		_		_			
<b>2</b> 8			_	_											_																		
ğe ğ	Γ	_									_	_	_			_						_				_							

WO 82059260 PCT/US01/42950 WO 02059260 PCT/US01/42950

PDB ametados	BIOSYNTHESIS	TRANSFERASE SHAFT, SERINE METHYLASE, ALPHA PLP ASPARTATE, AMDIO TRANSFERASE, (AAT)-LIKE POLD	TRANSFERASE PLP-DEPENDENT ENZYMES, IRON-SULFUR-CLUSTER SYNTHESIS, C-S 2 BETA LYASE	TRANSFERASE SHORT, SERING- OLYCINE CONVERSION, PYRIDOXAL S-PHOSPHATE, 1 TBTRAHYDROPOLATE, ASYMAETRIC DIMER	LYASE FES CLUSTER BIOSYNTHESIS, PYRIDOXAL S-PHOSPHATE, 1 THOCYSTEINE, AMINOACRYLATE, ENZYNE-PRODUCT COMPLEX	LYASE METHONING BIOSYNTHESIS, PYRIDOXAL S-PIOSPHATE, GAMGA- 2 FAMILY, LYASB	GELOROHYLL BIOSYNTHESIS GELORANATS SEMALDEHYDS ANDOMUTASI, CELOROPHYLL BIOSYNTHESIS, PYRIDOXALOF, PHOSPHATE, 1 PYRIDOXANGRES. PHOSPHATE, 4 SYNAGETRUC DIMER.	COMPLEX (ZINC FINGER/DINA) COMPLEX (ZINC FINGER/DINA), ZINC FINGER, DINA-BINDINO PROTEIN
Сепреспе	CHAIN: A. B.C.D.	SERINB HYDROXYMETHYLTRANS FERASE; CHADI: A, B, C, D,	AMINOTRANSPERASE; CHAIN: A, B;	SERDIG HYDROXYMETHYLTRANS FERASE; CHAIN: A, B, C, D,	L-CYSTENEL-CYSTINE C-S LYASE; CHAIN: A, B;	CYSTATHONDRE GALGMA-SYNTHASE; CHADY: A, B, C, D, B, P, O, H;	GLUTAMATB SEMILIDEHTDE AAGNOTRANSPERASE; CHADH: A, B;	QGSR ZINC FINGER PETIDS; CHAIN: A; DUPLEX GLOGNUCLEOTIDS BINDING SITE; CHAIN: B,
SeqTeld Score	Ī							
ž š	T	80	8	ā	6.93	50.05	88	0.17
Vertity	T	6.17	3	6.23	3	. 04	0.16	0.16
-	5	LA A	1.70-65	3	3.60-03	1,40.51	1. 4-10	2,70-05
35	1	8	8	8	3	£	e e	9/1
A San	T	n	я	s .	÷	=	ş	169
je	T	<		<	<	<	<	<
e e	T	<u>ş</u>	3	3	4	<u>B</u>	<u>a</u>	=
ge:	Ë	§.	<b>§</b>	§.	ş	ş	§	g g

PDB nanotation	ļ		TRYPTOPHAN BIOSYNTHESIS TRYPTOPHAN INDOLE-LYASE;	TRYPTOPHAN BIOSYNTHESIS,	PYRIDOXAL 2 5-PHOSPHATE,	MONOVALENT CATION BRIDING	TRANSFERASE TRANSFERASE,	METABOLIC ROLE, PYRIDOXAL F.	LYASE ALPHABITA FOLD	TRANSFERASE TRANSFERASE.	AMINOTRANSFERASE, PYRIDOXAL PHOSPHATE	TRANSFERASE SHMT;	HYDROXYMETHYL TRANSFERASE, 1	METHONINE BIOCYNTHESIS BETA	CYSTATHONASE: PLP-DEPENDENT	ENZYMES, METHONINE BIOSYNTHESIS, C-S BETA 2 LYASE	LYASE COS, LYASE, LLP-DEPENDENT	ENZYMES, METHIONINE
Compense	HIDGOMAL POTENT ITAE CHARP W RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL PROTEN RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RI		TRYPTOPHANASE; TRY CHAIN: A. B. C. D; TRY	TAT TAT	PYR	STIE	SERINE	HYDROXYMETHYLTRANS   MET	ASK A	۰		1-	25	PERASE CHAIN: A B.		200	T	OAMMA-SYNTHASE; ENZ
Seq.Feld Score							l		T					T		_	Ī	
PM F Scare		_	11.0				80.0		8	90		0.00		410	2		Ş	
Vertify Scure			60'0		_		न्		0.37	809		25		95.0	}		2	
PSI BLAST Sees			1.76-10				1.50-67		5.10.76	+		3.46-68		17.			1.76-52	-
<b>3</b> 4			320	_			498	_	448	200		8		Ę	ï		ŝ	
Σg.τ			0				23		=		:	'n		Į,	:		3	_
<b>1</b> 9			<				<				!						<	
<u> </u>			10				1		Ę			8		1	<u>.</u>		12	
g e g			8				ş		ş	8		8		Ę	â.		ş	_

249

DIVA-BINDING PROTEIN
PROTYON-COCENE PRODUCT, DIVABRODING PROTEIN
DIVA BINDING PROTEIN
PROTYON-COCENE PRODUCT IMBE DNA BINDING PROTEIN PROTOGNICOGENE PRODUCT IMBR DWA; CHAIN! A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN! C, F, G; OGSR ZINC FINGER
PETTIDE, CHADA A;
DUPLEX
OLIOONIVELEOTIDE
BINDING STE, CHANE B, 3 13 35 8 22 3 £ A.A. E 3 **5** 9 0 B 1 3 ae. g a g 🖫 25

	Ä	D. T.	28	9 S	ĸ	Э Б.		ż	28	
PDB exactation	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (ZINC PINGEADMA) COMPLEX (ZINC PINGEADMA), ZINC FINGER, DIA-BINDING PROTEIN	DNA BINDING PROTEIN PROTOGNICOGENE PRODUCT IMBE 12	CONPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGENDINA) COMPLEX (ZINC FINGENDINA), ZINC FINGER, DNA-BINDING PROTEIN		DNA-BINDING PROTEIN PROTOGNICOGENE PRODUCT, DNA- BINDING PROTEIN	DNA BINDING PROTEIN PROTOGNEOGENB PRODUCT 1MBB 12	
Coemponed	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	QGSR ZINC FNGER PETIDE, CHADE A; DUPLEX OLICONUCLEOTIDE BRODNG SITE, CHAIN: B,	MYB PROTO-ONCOGENE PROTEIN; IMBZ 4	DHA, CHAIN! A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN! C, P, Q;		QOSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX	OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	MOUSE C-MYB DNA- BINDING DOMAIN REPRAT 3; CHAIN; NULL;	MYB PROTO-ONCOGENE PROTEIN; IMBE 4	COMPLEX (BINDING PROTEIN/DNA) C-MYB
SeqPaid Score										
Scare	ę3	Q.17	0.46	0.72		990		5	ជ្ជ	ĝ
Vertify Scare	120	-0.16	- -	0.21		10.0-		-0.02	-0.36	20,0
BLAST	3.4e-06		0.00085	0.00022	_	1.18-07		2,00.0	970076	0.0075
<b>2</b> ₹	3	924	689	9.18		3		169	99	<b>7</b> 69
Start A ≜	769	769	3	792		992		639	3	639
đe	<	٧		၁		<				ပ
ã e	FF 75	(elb	<u> </u>	lmey		41		1147	açını	8 11
<b>3 e</b> §	512	513	ES.	513		EIS		cıs	3	513

PCT/US01/42950

					П	П		Т	
PDB annotation		PHOSPHOTRANSFERASE PROTEIN KINASE ICKI 18	PHOSPHOTRANSFERASE PROTEIN KINASE ICKI 18		PHOSPHOTRANSFERASE	PHOSPHOTRANSFERASE		THE CAN PROPERTY AND A L.	LIPOPROTEIN, LIPED TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCLEROSIS, HDL, LCAT.
Сечиреные	(CATALTHIC SUBURI) ALPHA ISOENCYNE MUTAAT WTH SER 119 ARM 4 REPLACED BY ALL ACI 1984S) COMPLEX WITH THE PETIDE IAPM 5 DRIBITOR FULLS 19 BOTHERCENT AND THE DETERCENT MEDA-1 APM 6	CASEIN KINASE I DELTA; ICKI 6 CHAIN; A, B; ICKI 7	CASEIN KINASE I DELTA; ICKI 6 CHAIN: A, B; ICKI 7	PHOSPHOTRANSFERASE CAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT ICMK 3 (B.C.2.7.1.37)	CASEIN KINASE 1; 1CSN 4	CASEIN KINASB-1; 1CSN 4	TRANSFERASE/HOSPHO TRANSFERASE) CAMP- DEPRODENT PROTEIN KDASE (E.C.1.1.17) (CAPK.) ICTP 3 (CAPALYTIC SUBUNIT) ICTP 4	A BOT TROPPORTED! A 1.	CHAIN: A, B, C, D;
Seq Pold Score		285.79		21.27		793.57	77.16	71.07	979
PM.F Scare			1.00		1.00				
Vertity Score			9.64		0.73				
PSI BLAST Scere		130-14	14.	0	3.40-78	3.40-78	0	20.43	
7		ğ	562	336	ž	162	335	1	
Start		_	_	2	_	,	_	9	
đe		<b>.</b>	۷.	m			я	Į.	
e0 804		뀰	1ck	lomk	£	8	<b>8</b> 7		
3 e á		1	514	\$15	314	514	314	2	

WO 02/059260

PDB annetation		CONFLEX (TRANSCURITION REGULATION/DAY) YING-YANG I; TRANSCURTION INITIATION, PINTATOR ELEBERGY ("YI, ZINC.2 FINGER PROTEN, INA. PROTEN RACGORTICA, 3 COMPLEX (TRANSCURTION EGGLA, TIONONA)	COMPLEX (DNA-BINDING PROTEINDYA) FIVE-FINGER GIL: GAL, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDINA)			
Compound	COMPLEXED WITH DNA LIMSB 3 (NIMR, MINIDAIZED A VERA GE STRUCTURE) I MSB 4 I MSB 84	YY!, CHAIN: C, ADENO- ASSOCIATED VIUS PS UNTLATOR ELEMENT DNA; CHAIN: A, B;	ZDAC FINGER PROTEIN GLI ; CHANE A; DNA; CHANE C, D;		TRANSPERALSEPHOSPHO PERANDER PROTING PERANGE (G.C.1.11) (GOVAL) TICS (BRUND) ALPIN ESDEZYME ALPIN ESDEZYME ALPIN ESDEZYME ALPIN ESDEZYME ALPIN ESPENGED BY ALA (S198-A) COMPLEX WITH THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE EPTIDE IVAN AND THE E	TRANSFERASE/PHOSPHO TRANSFERASE) & CAMPS- DEPENDENT PROTEIN KINASE (E.C.2.7.1.37)
Seq Peld Score					8.17	
FMF		S S	â	l		6
Verily		91.6	170	Γ		12.0
PSI BLAST Score		2. te-06	5.4e-06		0	
3 2		3	3		776	327
£ ₹		ī.	991	Ī	_	
đe		υ	<	ſ	ω	ω .
<b>9</b> 8		3	ip.		E	g.
SEQ B B		8	8	Ī	75	ž

1592**60** PCT/US01/42950

	_					_	_	-	_	-			_	۰,	_		-	_				_	_	Т	
РОВ аквосибов	ACTIVATION	CONTRACTUE PROTEIN TRIPLE- HELIX COLLED COLL CONTRACTUE PROTEIN	TRANSCRIPTION REGULATION SIGNA	FACTOR, TRANSCRIPTION REGULATION					LIGASE CBL, UBCH7, ZAP-70, E2,	UBIQUITIN, E3, PHOSPHOR YLATION,	2 TYROSINE KINASE,	DECEMBER 10N, PROTEIN			LIGASE CBL, UBCHT, ZAP-70, E2,	UBIQUITIN, E3, PHOSPHORYLATION,	2 TYROSINE KINASE,	UBIQUITINATION, PROTEIN	DEGRADATION		ZINC-BINDING PROTEIN ZINC	BINDING PROTEIN, XNF7, BBOX,	DEVELOPMENT, 1 MID-BLASTULA-	ZINC.BINDING PROTEIN ZINC.	BINDING PROTEIN, XNF7, BBOX, DEVELOPMENT, 3 MID-BLASTULA-
Септрепи		HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2: CHAIN: A;	RNA POLYMERASE	FACTOR; CHAIN: NULL;		VIRUS EQUINE HERPES	VIRUS-1 (CHICA, OR RING	STRUCTURED LCHC 4	SIGNAL TRANSDUCTION	PROTEIN CBL; CHAIN: A;	ZAP.70 PEPTIDE, CHAIN:	A: UBIQUITA-	E12-18 KDA UBCH7:	CHAIN: C;	SIGNAL TRANSDUCTION	PROTEIN CRU, CHAIN: A:	ZAP-70 PEPTEDE; CHAIN:	B; UBIQUITIN	CONTUGATING ENZYMB	CHAIN: C.	NUCLEAR FACTOR XNF7:	CHAIN: NULL;		NIKT PAR PACTOR XNET	CHAIN: MULL;
SeaFold	Ī	151	78.92		Ī			_																Ī	
N. S	Γ					0.78			0.03						613						à		_	150	
Vertify					Γ	r ₂			Ş						619						10.63			150	
is is		5.46-12	279-10			S.46-11			7.00						1.10				_		5.6012			9,000	
3 5	Γ	332	&		Ī	8			ŝ						2						2			ŀ	
		<u> </u>				13		_	2			_	_		9						8			,	
Chats Start ID AA		<			Γ				~						<						Ī			Ī	
50	Γ	1	2			100			ě						À						ğ			į	
O e é		220	ă		L	226			32						925						å			į	

_	_			_	_	-,	_	_	_	_		_	т	_	_	_	-	_	-	-		-	-	7	-	-	_	г	-	7	_	_
PDB sametation		TRANSITION	METAL BINDING PROTEIN RING FINGER PROTEIN MATH; RING FINGER (CHC4)	METAL BINDING PROTEIN RING	FINGER PROTEIN MATI; RING	FINGER (C3HC4)	DNA-BINDING PROTEIN V(D)	RECOMBINATION ACTIVATING	PROTEIN I; MACI, V(D)	KELUMBINALIUM, ANI BODI, MOD,	KING FINGER, 2 ZINC BINDCLEAK	CLUSIER, ARC FINGER, UNA	BINDING PROJEIN	DNA-BINDING PROTEIN VOM	RECOMBINATION ACTIVATING	PROTEIN I; RAGI, V(D)J	RECOMBINATION, ANTIBODY, MAD,	RING FINGER, 2 ZINC BINUCLEAR	CLUSTER, ZINC FONGER, DNA-	BINDING PROTEIN		OXIDOREDUCTASE PDZ DOMAIN,	NNOS, NITRUC OXIDE SYNTHASE		PEPTIDS RECOGNITION PEPTIDS	RECOGNITION, PROTEIN	LOCALIZATION	CYTOKINE LCF; CYTOKINE,	LYMPHOCYTE CHEMOATTRACTANT	FACTOR, PDZ DOMADN	KINASE HCASK, GLOF REPEAT, DHPR;	PDZ DOMAIN, NEUREXIN, SYMBECAN, BECEPTOR CLUSTER INC
Сопирензе			CDK-ACTIVATING KIRKASB ASSEMBLY PACTIOR MATTE CHAIN: A:	CDK.ACTIVATING	KINASB ASSEMBLY	PACTOR MATH, CHADK: A.	RAGI; CHAIN; NULL;							RADI; CHAIN; NULL;								NEURONAL NITRIC OXIDE	STATISTICS CHAIN! A:	HEPTAPEPTIDE; CHAIN: B;	PSD-95; CHALIN: A; CRUPT;	CHAIN: B:		INTERLEUXIN I& CHAIN:	MULT:		HCASKALIN-2 PROTEIN:	CHAIN: A, B;
Seq Pold																					Ī											
		Γ	â	\$25			0.47							0.23								150			0.77			0.46			83	
Verlity	5		91.0	909			Š							-0.28							Γ	3			55			411			-0.52	
	3 5		1.46-13	2012			2,40-19							5							Ī	8			140-05		_	9	_		2.40	
3	ŧ	Ī	r	Į			103							101								ភ		_	2			251		_	997	
Start	ŧ	Γ	2	ŀ		_	10			_				3							Γ	802		_	717			198			ă	
1	=		_	Ī.																Ī		<			~						~	
	3	Ī	Ē	Š	}		Page	_		_				Per				_				200			88			9			1	
510	ġ	Ī	925	ě	_		226	_						975							Ī	2			22	_		E			ä	

WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950

<u> </u>	<b>å</b> 9	# <b>5</b>	33	BLAST Source	Kath Kanth	ž Š	Stag Podd Score	Consposed	PDB senetation
١		Ĺ							REPEAT
<u>1</u>	<	<u>\$</u>	2	3.40-07	ą	59		ALPHA-1 SYNTROPIDN (RESDUES 71-11); CHAD: A; NEURONAL NITRIC OXDE SYNTHASB (RESIDUES 1-130); CHAD: R:	MEMBIKANE PROTEINOXIDOREDUCTASE BETA- FINGER, HETENODIAGER
뀰	<	ន្តី	111	5.4e-05	ā	7		POSTSYNAPTIC DENSITY PROTEIN 95; CHAIN: A;	PEPTIDE RECOGNITION PSD-95; PDZ DOMADY, NEURONAL NITRIC OXIDE SYNTHASE, NADA RECEPTOR 2 BINDING
ğ	۷.	ğ	zu)	246-03	4.26	0 E4		TYROSINE PHOSPHATASE (PTP-BAS, TYPE I); CHAIN: A;	HYDROLASE PDZ DOMAIN, HUMAN PHOSPHATASE, HPTPIE, PTP-BAS, SPECIFICITY 2 OF BENDING
	_		_		_	_	_		
ž Ž	<	ğ	ia I	1.6e-03	9	160		NEURONAL NITRUC OXIDE SYNTHASE; CHAIN; A; HEPTAPEPTIDS; CHAIN; B;	
<u>\$</u>	<	ž	122	# #	559	4.77		PSD-91; CHAIN: A; CRUPT; CHAIN: B;	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION
9111		182	ā	 	ē	9.66		INTERLEUKIN 16; CHAIN: NULL;	CYTOKINE LCP; CYTOKINE, LYMPHOCYTE CHEMOATTRACTANT PACTOR, PDZ DOMAIN
Ē	<	Q.	97	S.40-07	-0.52	స్త		HCASKAID+2 PROTEIN; CHAIN: A, B;	KINASE HCASK, GLOP REPEAT, DHR; PDZ DOMAIN, NEUREXIN, SYNDECAN, RECEPTOR CLUSTERINO, KINASE
<u>*</u>		ă	ęg _	20- <del>2</del> 8.	463	0.47		HUMAN DISCS LARGE PROTEIN; CHAIN: MULL;	SIGNAL TRANSDUCTION HDLO, DHBJ DOMAIN, SIGNAL TRANSDUCTION, SHB DOMAIN, REFEAT
<u>ā</u>	<u>_</u>	8	12	5.40-07	633	. 20.0		ALPHA-I SYNTROPHIN (RESIDUES 77-171);	MEMBRANE PROTEINOXIDOREDUCTASE BETA-

258

	_									
PDB ambetition	KINASH	SIGNAL TRANSINICTION KDLO, DHBJ DOMADY, SKGNAL TRANSDUCTION, SKB DOMAIN, REPEAT	MEMBRANG PROTEGNOZIDOREDUCTASE BETA- FINGER, HETERODIMER	PETIDE RECOGNITION PSD-95; PDZ DOMADY, NEURONAL NITME OXIDE SYNTHASE, NMDA RECEPTOR 1 BINDING	hydrolase Pdz Domain, Human Phosphatase, Hptp-1e, Ptp-Bab, Specificity 2 op Binding	OXIDOREDUCTASH PDZ DOMAIN, NNOS, NITRIC OXIDE SYNTHASB	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION	CYTOKINB LCP; CYTOKINB, LYMPHOCYTB CHEMOATTRACTANT FACTOR, PDZ DOMAIN	KINASE HCASK, OLOP REPEAT, DHR; PDZ DOMAIN, NEUBEXUN, SYNDECAN, RECEPTOR, CLUSTERDAO, KINASE	SIGNAL TRANSDUCTION HDLG, DHRJ DOMAIN; SIGNAL TRANSDUCTION, SH3 DOMAIN,
Commen		HUMAN DISCS LANGE PROTSIN; CHAIN: NULL;	ALPHA-I SYNTROPHIN (RESUMBS 77-17); CHAID: A; NEURONAL NITRIC OXIDE SYNTHASE (RESUMBS 1-150; CHAID: B;	PROTEIN 95; CHADS: A;	TYROSINE PHOSPHATASE (PTP-BAS, TYPE I); CHAIN: A;	NEURONAL NITRUC OXIDE SYNTHASE; CHAIN: A; HEPTAPEPTIDE; CIAIN: B;	PSD-95; CHAIN: A; CRIPT; CHAIN: B;	INTERLEUKIN 16; CHAIN: NULL;	HCASKAIN-2 PROTEIN; CHAIN: A, B;	HUMAN DISCS LARGE PROTEIN; CHAIN: NULL;
Seq Fold Rears	Ī									
PM.P	Ī	0.47	50.0	3	2	2670	9.77	940	ຶ່ງ	0.47
Vertify Score		59.0	£ 63	3	970	643	-0.55	11.0	452	29.0
PSI BLAST Sour		1.66-03	5.40-07	5.46-05	2.46-05	20-03	\$ - B	 26	5.40-07	20-69.
3 ×	T	612	*	E	E .	122	ī	ā	35	617
Start		ğ	<u>\$</u>	EQZ.	208	208	214	161	58	ă
Challe D	Ī		<		<b>~</b>	<			<b>*</b>	
<b>804</b>	T	₽d.	à	윤	ğ	<u>a</u>	3	9111	lices	1
ខ្លួកខ្	1	28	25	25	232	23	23	Œ	232	232

			_															
PDB aggestion	PEPTIDE RECOGNITION PSD-95; POZ DOMAJN, WEJRONAL, NITRIC OXIDE SYNTHASS, NADA RECEPTOR 2 BINDING	HYDROLASE PDZ DOMÁDY, HIDAAN PHOSPHATASE, HPTPIE, PTP-BAS, SPECIFICTY 2 OF BINDING		LIGASE EGAP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E3	UBIQUITIN LIGASE, EZ 2 UBIQUITIN CONTUGATING ENZYME	LIGASE EAAP; UBCH7; BILOBAL	STRUCTURE, ELONGATED SHAPE, E3 UBIQUITIN LIGASE, E2 2 UBIQUITIN	CONJUGATING ENZYME		LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING	PROTEINS, METAL-BINDING PROTEIN, ZINC 2 FINGER	LIM DOMAIN CONTAINING PROTEINS	PROTEINS, METAL-BINDING	PROTEIN, ZINC 2 FINGER	LIM DOMAIN CONTABRING PROTEINS I IM DOMAIN CONTABRING	PROTEINS, METAL-BINDING	CONTRACTILE LIM DOMAIN CRP.	NAME, MUSCLE DIFFERENTIATION,
Composed	POSTSYNAPTIC DENSITY PROTEIN 95; CHAIN: A;	TYROSDE PHOSPHATASE (PTP-BAS, TYPE I); CHAIN: A;		UBIQUITIN-PROTEIN LIGASE EJA; CHAIN: A, B,		UBIOUITIN-PROTEIN	LIGASE E3A; CHAIN: A, B,	CONTUGATING ENZYME B2; CHAIN: D;		QCRP2 (LIMI); CHAIN: NULL:		QCRP2 (LLM1); CHAIN:	אמדן:		OCRUZ (LIMI); CHARN:		CRPI: CHAIN: A:	
Scaffold			Ī			227.88												
P.M.P	3	7		8		Ī				3		0.83		1	68		770	
y and	170	-0.26	Γ	ŝ		Ī				69'0		-0.03		1	9,40		100	
ELAST Series	5.4e-05	2.40-05								21-04-1		1.96.1			5.4e-14		14013	
3 \$	111	<i>m</i>		33		38				139		812		╗	x		187	i
¥ Ş	<b>50</b>	202		ă		ž				8		130			8		292	!
đe.	<	<b>V</b>		<		<											\	:
<b>2</b> 0	활	3pdt		76		242	_			<u>[8</u>		Ita1		1	Ē		34	
ğ a ş	g	£		88		838			-	ī		3	_	7	<del></del>		3	

WO 02/059260 PCT/US01/42950 WO 02/059260

		_												
PDB ensecrites		·	TRANSFERASE GLYCOSYLTRANSFERASE	HYDROLASE XYLAN DEGRADATION	HYDROLASE XYLAN DEGRADATION		REPLICATION DNA NUCLEOTIDE EXCISION REPAIR, UVRABC,	HELICASE, 2 HYPERTHERMOSTABLE PROTEIN	HYDROLASE UVRB; MULTIDOMAIN PROTEIN	GENE REGULATION APO PROTEIN	TRANSLATION YEAST INITIATION PACTOR 44, BF44; HELICASE, PUTLATION FACTOR 44, DEAD-BOX PROTEIN	TRANSLATION EUKARYOTIC INITIATION PACTOR 44; 1944, HELICASE, DEAD-BOX PROTEIN		HYDROLASE MLTD, MUREDN HYDROLASE D, SPOTT ATORY
Courspound		COMPLEX (CLYCOSIDASE/CARBOHY DRATE) ABRIN-A COMPLECED WITH TWO SUGAR CHAINS JABR 3	SPORE COAT POLYSACCHARIDE BLOSYNTHESIS PROTEIN CHAIN: A:	ENDO-1,4-BETA- XYLANASE; CHADI: A, B;	ENDO-1,4-BETA- XYLANASE; CHAIN: A, B;		DNA NUCLEOTIDE EXCISION REPAIR	ENZYME UVRB; CHAIN: A;	EXCINICLEASE ABC SUBUNIT B; CHAIN: A;	EXCENUCLEASE UVRABC COMPONENT UVRB; CHAIN: A;	EUKARYOTIC BITTATION FACTOR 44; CHAIN: 4;	YEAST DITIATION FACTOR 4A; CHADS: A, B;		MEMBRANE-BOUND
Score						l								
Seer	ľ	į	23	6970	a.70		9.65		3	8	99	290		ğ
Score	ľ	643	613	3	100	Г	0.25		629	19.0	0.71	970		4,7
E Ty		\$10-13	1.46.21	1.70-30	10-17	Ī	3,40-11		2.76-10	2.40-18	11411	1.66-11		126-04
33	Γ	93	Ş	63	90	Γ	2		3	3	3	632	Ī	ē
ž ž		525	ē	8	3		83		529	536	3	333		59
ge e	Ī	a	<	<b>~</b>	,	Ī			~	<	<			<
<b>2</b> a		4	<u> </u>	lxyf	ž.		8		142m	€	TE.	ag.		ğ
g e ş	r	3	3	3	ž	T	3		£	3	R	ã	_	346

											_	
PDB annetation	CONTRACTILE LIM DOMADI, CRP, NMB, MUSCLE DIPPERENTIATION, CONTRACTILE	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 13	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 15	SIGNALING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL- BRIDING PROTEIN	SIGNALINO PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL- BRIDING PROTEIN	SIGNALLING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL- BINDING PROTEIN	SIGNALLINO PROTEIN BINDINO PROTEIN, CYTOKINE, SIGNALLINO PROTEIN	METAL-BINDING PROTEIN CRIP; METAL-BINDING PROTEIN, LIM DOMAIN PROTEIN	METAL-BROOMG PROTEIN CALP; METAL-BINDING PROTEIN, LIM DOMAIN PROTEIN	METAL-BRODNG PROTEIN CRIP; METAL-BRODING PROTEIN, LIM DOMAIN PROTEIN	CLYCOPROTEIN CLYCOPROTEIN	SIGNALLING PROTEIN TYPE I RECEPTOR, STNFRI; INCF I BINDING PROTEIN, CYTOKINE INCP 19
Compound	CRFI; CHAIN! A:	AVIAN CYSTEINE RICH PROTEIN; ICTL 3	AVIAN CYSTEINE RICH PROTEIN; ICTL. 3	CYSTEINE AND GLYCINE. RICH PROTEIN CRP2, CHAIN: A;	CYSTEINE AND OLYCING- RICH PROTEIN CRP2; CHAIN: A;	CYSTEINE AND GLYCINE. RICH PROTEIN CRP2. CHAIN: A;	TUMOR NECROSIS FACTOR RECEPTOR; CHAIN: A, B;	CYSTEDIE RICH INTESTINAL PROTEIN; CHAIN: NULL;	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NULL;	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN; NULL;	LAMMN, CHAIN; NULL;	TUMOR NECROSIS FACTOR RECEPTOR; INCF 4 CHAIN! A, B; INCF 5
Seq Fold Scare	60.09						65.68				87.29	32.60
Scar		8	a.c	a.71	8	160		7	3	0.27		
Varia Som y		61.0	3	77.0	0.74	0.10		0.12	9.03	0.27		
E PE	5.10-14	S.40-16	5.46-13	2.70-13	Steels	1.40.1	6.80-07	1.16-15	5.4e-21	5.44-17	0.00027	3.40-07
3 ₹	236	z	25	212	z.	157	270	E.	230	=	177	<u>3</u>
¥ Şfr¥	æ	25	8:	š	=	8:	₹	ē	3	Ę	2	п
10	<			<	<b>~</b>	_	<				Ī	<
e e	4	<u> </u>	Ē	E	iax	8	8	1	1	9	2	Į.
g e ģ	Z.	ž	Ī	Ī	ž	<u> </u>	<u> </u>	Ī	ž	3	ž	<u> </u>

PCT/US01/42950

PCT/US01/42950

Ę	ž	¥	٠.	y Y	~	ž	~.	ž	~,	Ş.	_

g e g	5 C	9	Sp.rt A	3 \$	PSI BLAST Score	Verliy Score	Scars Scars	Seare Seare	Compound	PDB nanotribon
									TRANSGLYCOSYLASE D; CHAIN: A;	PROTEIN DURK, CELL WALL, HYDROASH, GLYCOSIDASE, HYDROTEIN, 2 OUTER MEMBRANH, MULTIGENE FAMILY
88	dials.	v	270	351	12-96.1	10.0	91.0		QGSR ZINC FINGER PEPTIDE, CHAIN: A; DUFLEX OLIGONUCLEOTIDE BRUDING STRE, CHAIN: B,	COMPLEX (ZINC FINGENDIA) COMPLEX (ZINC FINGENDIA), ZINC FINGER, DNA-BINDING PROTEIN
88	lacy	3	101	231	1,50-44	9170	00'1		DNA; CI(AIN: A, B, D, B;	COMPLEX (ZINC FINGER/DNA) ZINC FINCER PROTEIN, DNA
				_					PROTEIN CHAIN C. F. O.	INTERACTION PROTEIN DESIGN 2
										CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
83	imc)	o	5	ā	7.40-47	ŝ	8		DNA; CHAIN; A, B, D, E;	COMPLEX (ZINC FINGER/DNA) ZINC
									CONSENSUS ZINC PINGER	FINGER, PROTEIN-DNA
									PROTEIN; CHAIN: C, F, G,	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX
1		Ī		-1		I				(ZINC FINGERODAA)
š	locy	υ U	3	ž	Ĭ	9:0	8		DNA; CHAIN: A, B, D, E;	COMPLEX (ZINC FINGER/DNA) ZINC
									PROTEIN; CHAIN: C. F. G.	INTERACTION, PROTEDN DESIGN, 2
										CRYSTAL STRUCTURE, COMPLEX
ĕ	lacy.	Ü	233	ig.	1.70-46	1970	667		DNA: CHAIN: A. B. D. E.	COMPLEX (ZINC FINGER/DNA) ZINC
				_					CONSENSUS ZINC FINGER	FINGER, PROTEIN-DNA
									PROTEIN; CHAIN; C, F, G.	INTERACTION, PROTEIN DESIGN, 2
				_						CRYSTAL STRUCTURB, COMPLEX (ZDAC FINGER/DNA)
88	lacy	2	2	155	1.16.39	0.02	69'0		DNA; CHAIN: A, B, D, E;	COMPLEX (ZINC FINGER/DNA) ZINC
				_					PROTEIN: CHAIN: C. F. O.	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2
				Ì						

WO 02/059260

		ç	~	_	ړ	-	_		ပ္	_	~	_	1	ů	_	_	-	Ţ		-	_	_	Ļ		_		-	ي	7
PDB anastades	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGEADINA)	COMPLEX (ZINC FINGER/DINA) ZINC FINGER, PROTEIN-DINA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTECN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEDNIA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGERONA)	COMPLEX (ZINC PINCESODIA) ZINC	FINGER, PRUIEM-DNA	INTERACTION, PROJECT DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLETE CONTRACTOR DISTRICT	STACTOR PROTECTIONA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DINA) ZINC	FINGER, PROTEIN-DWA
Септреше		DNA; CHAIN: A, B, D, B; CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, O;		DNA: CIAIN: A. B. D. E.	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, P, Q.		DNA CHAIN A B. D. P.	CONSENSIAS ZINC FINGER	PROTEIN; CHAIN: C, P, O.			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN; C, F, O;			DNA, CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROFEIN; CHAIN: C. F. C.		Dale Cuenti a D D B	CONTRACTOR THE PROPER	PROTEIN CHAIN: C. P. G.			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER PINGER, PROTEIN-DINA
SeqFold																													
Scare		8			87				8					20.					8				٤	1			_	8	
Verify Score		9 9			0.16				0.29					12.0					5				21.0	;				620	
PSI BLAST Scere		1.70-46		_	1.56.49				1.45.50 0.29					15-6-51				╗	950				5					16.50	
3 2	Γ	331			379				604	_				435				Т	ç	_			10,	_				\$19	
¥ Ş		592			298	;			325					354					ğ				9	?	_			867	
O Charles		2			U	,			U					0					u				,	,				U	
<b>2</b> 0		lmey			200	ì			No.	ì				lancy			_		Iney				į	· · ·		_		Imey	
3 e ğ		82		_	935		_	_	250		_			š					88				5	3	_			550	

264

PCT/US01/42950

die	hath Start	3	Ē	Verth	AWA	Sea Fold	Compound	PDB amounton
9	\$	\$	-	Score	Scere	Sea		
Γ	T	I						INITIATION, ZINC FINGER PROTEIN
	2	ğ	3.46-34	9.18	8		THILL; CHAIN: A, D; 5S RIBOSOMAL RNA GENE:	COMPLEX (TRANSCRIPTION REGULATION/DIA) COMPLEX
							CHAIN: B, C, E, P;	(TRANSCRIPTION
	_							REGULATION/DNA), RNA
								POLYMERASE III, 1 TRANSCRIPTION
Ţ	701	113	7. 4.	100	07.0		TEHLA CHAIN: A. D. SS	COMPLEX CRANSCRIPTION
,	!	;		į			RIBOSOMAL RNA GENE:	REGULATION/DNA) COMPLEX
							CHAIN: B, C, E, F.	(TRANSCRIPTION
								REGULATION/DNA), RNA
								POLYMERASE III, 2 TRANSCRIPTION
1								INTITATION, ZINC PINGER PROTEIN
_	3	23	16-37	20.0	5		THILK; CHAIN: A, D; 3S	COMPLEX (TRANSCRIPTION
							RIBOSOMAL KINA GENE	REGULATION DIA COMPLEX
_	_						CHAIN: B, C, E, F;	CIRANSCALPTION
_								KELOLA HUNDINAJ, KNA
								NITTATION, ZINC FINGER PROTEIN
	1	ŝ	3.46.36	52	3		TFIIIA; CHADI: A, D; SS	COMPLEX (TRANSCRIPTION
							RIBOSOMAL RNA GENE:	REGULATION/DNA) COMPLEX
							CHAIN: B, C, E, F.	TRANSCRUPTION
								REGULATION/DNA), RNA
								POLYMERASE III, 2 TRANSCRIPTION
Ī.	8	916	92.72	8	2		TELLA CHAIN A D. SS	COMPLEX CTRANSCRIPTION
,		:		1	}		RIBOSOMAL RNA GENE	REGULATION DIA COMPLEX
							CHAIN: B, C, B, P.	(TRANSCRIPTION
		_			_			REGULATIONDNA), RNA
		_	_		_			POLYMERASE III, 2 TRANSCRIPTION
		_						INTTIATION, ZINC FINGER PROTEIN
Ü	š	200	6.8	613	00'		YYI; CHAIN: C, ADENO-	COMPLEX (TRANSCRUPTION
		_					ASSOCIATED VIRUS PS	REGULATION/DNA) YDNG-YANG I;
							INTIATOR ELEMENT	TRANSCRIPTION INTITATION,

PDB unnetation	INTERACTION, PROTEIN DESIGN, 1 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGERDNA) ZINC FINGER, PROTEXL-DNA, TNERACTION, PROTEIN DESIGN, 2 CXYSTAL STRUCTINE, COMPLEX (ZINC FINGERDNA)	COMPLEX (ZING FINGERDNA) ZINC PINGER, PROFELNA PINGER, PROFELN DESIGN, 1 CRYSTAL STRUCTURE, COMPLEX (ZING FINGERDNA)	COMPLEX (ZINC FINGERGINA) ZINC FINGER, PROTEINDAN INTERACTION, PROTEIN DESIGN, 2 CRYSTAL, STRUCTINE, COMPLEX (ZINC FINGERDINA)	COMPLEX (ZING FINGERDNA) ZINC FINGER, PROTEN-DNA FINGER, CTOTEN DESIGH, 1 CRYSTAL STRUCTURE, COMPLEX IZINC FINGERDTNA	COMPLEX (TRANSCENTION REGULATIONDAN) COMPLEX (TRANSCENTION REGULATIONDINA), RNA REGULATIONDINA, RNA POLYMERASE ILL ? TRANSCENTION NUTRATION, ZINC FENCER PROTEIN NUTRATION, ZINC FENCER POTEIN	COMPLEX (TRANSCHITTON REGULATIONDINA) COMPLEX REGULATIONOTON REGULATIONOTON POLYMERASE III, 1 TRANSCHITTON
Compound	PROTEIN; CHAIN: C, P, O;	DNA, CHAIN! A, B, D, E; CONSENSIS ZINC FINGER PROTEIN; CHAIN! C, F, G;	DNA; CHAIN; A, B, D, E; CONSENSUS ZINC PINGER PROTEIN; CHAIN; C, F, G;	DNA; CHAIN! A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN! C, F, G;	DNA; CHAN; A, B, B; CONSENSUS ZNC FINGER PROTEIN; CHAIN; C, F, Q;	TPULA; CHÁINÍ: A, D; 3S RIBOSOMAL RNA GENE; CHÁIN: B, C, B, P;	TFILLY, CHÁDN: A, D; 3S RIBOSOMAL, RNA GENE; CHAIN: B, C, E, P;
Seq Fold Scere		107.02					107.11
Scara			8	8	9.65	0.59	
Vertify Scere			0.29	0.20	70	51.9	
BLAST		16-50	8.•1.×	1.5e.35	16-33	3.16-35	3,46-36
ž ž		82	ŝ	232	<u>z</u>	77	â
Start		5	\$	ŝ	2	ā	121
a B		u	U	J	u	<	<
ē e		Ппсу	Incy	liney	l Bec	g	g.
0 e 9		ĕ	8ž	8	88	88	83

265

PCT/US01/42950

WO 02/059260

PDB ansotation	TRANSCRUPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DIAC-PROTEIN REDOCUTTION, 3 COMPLEX (TRANSCRUPTION REGULATIONDAA)	COMPLEX (TRANSCRIPTION REQUILATIONOMA), THREY YANG I; REANSCRIPTION DUTLATION, INITIATION ELEMENT, YYI, ZINC 2 FINGER ROTTEN, DNAPROTEIN RECOGNITION, I COMPLEX RECOGNITION, I COMPLEX	COMPLEX (TRANSCULTION REQUITIONONA) TING-YANG 1; REANSCURTION INITIATION, INITATION ELEMENT, YY1, ZENC 2 FENERS ROTIEN, DIA,-ROTED RECOGNITION, I COMPLEX RECOGNITION, I COMPLEX	COMPLEX (TRANSCUPTION REQUILT TRONDS NING-YANG 1; TRANSCUPTION INTIA TION, INTIA TOR ELEMENT, YY1, ZINC 2 PRINER ROTTEN, UNA-RECTEN RECOGNITION, I COMPLEX RECOGNITION, I COMPLEX RECOGNITION, I COMPLEX	COMPLEX (TRANSCAPTION REGULATION/DRILATION, INTANTOR BLIMBERT, Y.Y., 2002 BURGOWNING, JOAN-PROTEIN RECOGNITION, JOAN-PLOYER (TRANSCHPTION BEGULATIONDM)
Compound	INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C, ADENO- ASSOCIATED VIRUS PS INTIATOR ELEMENT DIVA; CHAIRE, A, B;	YYI CIADR C ADENO- ASSOCIATED VRUB PS NITIATOR ELEMENT DNA; CHAIN: A, B;	YY; CHAIN: C, ADENO- ASSOCIATED VIRUS PS INTIATOR ELEMENT DNA; CHAIN: A, B;	YY; CHAIN: C, ADBNO- ASSOCIATED YIRUS PS BUTLATOR ELEMENT BNA; CHAIN: A, B;
Sea Feld					
N See		0.17	18.0	66°0	8
Se att		150	916	623	*:
BLAST		5.46.50	1.4633	1.10-31	15-9-1
3 2		9£	379	407	164
		33	ш	236	361
Chale Start		Ü	J	U	v
<b>1</b> 0		De la company	<u> </u>	3	pan
S 5 5		920	85	550	88

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

	П	Ħ	3	ı i	i	<b>.</b>	a l	Ĺ	
PDB авросийов	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEINDINA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- RINDING BETTEINGINA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLL; GLL, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINONA)	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI, GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GIL; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTED/DNA) FIVE-FINGER GIL; GIL, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	SIGNALING PROTEIN REGULATION GALPHA INTERACTING PROTEIN; GAIP, ROS. REGULATOR OF G PROTEIN, SIGNALING PROTEIN 2 REGULATION	SIGNALING PROTEIN REGULATION GALPHA INTERACTING PROTEIN; GAIP, ROS, REGULATOR OF G
Compound		ZINC FINGER PROTEIN GLII; CHAIN; A; DNA; CHAIN; C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DIM; CHAIN: C, D;	ZINC FINGER PROTEIN GLIT; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLI; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DIA; CHAIN: C, D;	GAIP (G-ALPHA INTERACTING) PROTEIN; CHAIN: A;	GAIP (G-ALPHA INTERACTING) PROTEIN; CHAIN: A:
Seq Fold Sears									17206
A N	Ī	8	5	850	8	3	88	8	
Varty Beer ty		0. 65	0.10	 	ŝ	<b>6</b> 08	0117	6.47	
E LS S		2,20-67	59-99		2.70-68	£.16-73	6.le-33	1.46-51	1.4e-51
3 \$	Ī	162	£	11.E	£	ŝ	=	8	92
rg 🗧	T	55	3	ŝ	ž.	ă	8	F	E.
đe		<	<b>~</b>	<	<	<	<b>~</b>	٠	<
<b>2</b> 9		7	3	2	ī.	<b>13</b> .	72	<u>1</u>	Ē
S e ģ	T	ž	8	82	83	S.	8	g	3

РЪВ впротабен	REGULATION/DAN / YDAC - YANG 1: TANGSZEPIANO NUTLA 170N, NUTLATOR ELEMENT, YY1, ZDAC 2 FINGER PROTEN, DNA-PROTEIN RECOGNITION, 1 COMPAT (TRANSCRIPTON RECULATION DANA)	COMPLEX (TRANSCRIPTION REGULATIONONA) YING-YANG 1; TRANSCRIPTION INTIATION, INTIATION RELABENTY YII, ZINC 2 FINGER PROTEIN INVA-PROTEIN RECOMMENTAL 31 ONA-PROTEIN (TRANSCRIPTION REGULATIONONA)	COMPLEX (TRANSCHITTON REGILATIONDNA) THG. YAND I; TRANSCHITTON INTIATION, INTIATION BELBERGIT, YNI, ZNC 2 FINGER PROTEIN, DNA-PROTEIN RECOMMING, I COMPLEX (TRANSCHITTON REGILATIONDNA)	TRANSCRIPTION REGULATION TRANSCRIPTION REGULATION, ADRI, ZINC FINGER, NAR	COMPLEX (DNA-BINDING PROTEINDRAN) FINE-FINGER GIL; GIL, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEINDRAN) PRE-FNOER GLI; GLL, ENC FNOER, COMPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (DNA-BRUDING PROTEINDINA) FIVE-FINGER CLL; CIL, ZINC FINGER, COMPLEX (DNA-
Countysand	ASSOCIATED VIRUS PS DUTLATOR ELEMENT DNA; CHAIN! A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS NITTATOR ELEMENT DNA; CHAIN: A, B;	YYI, CHÁIN: C, ADENO- ASSOCIATED VRUS PS RVITATOR ELEMENT DNA; CRAIN: A, B;	ADRI; CHAIN: NULL;	ZINC FINGER PROTEIN GLI; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLLI; CHAIN; A; DNA; CHAIN; C, D;	ZINC FINGER PROTEIN GLIT; CHAIN! A; DNA; CHAIN! C. D:
Scere							100.42
Seer S		660	6630	590	0.30	8.	
Vertity Seen		8	0.13		60.0	75.0	
BLAST Seen		% e l'e %	Ş[ <b>4</b> ]	1.50-16	2.76-43	T.le-70	0.3€-70
3 ₹		ã	ž	29.1	212	<b>39</b> 2	*
Start		436	3	242	Ξ	8	157
Carlo		v	U		<	<	<
808 CD		3	3	7	192	15 ²	3
SEQ Seq		280	88	88	88	055 250	ž

REGULATION
SIGNALING PROTEIN REGULATION
GALPHA INTERACTING PROTEIN:
GALP, RGS, REGULATOR OF G
PROTEIN SIGNALING PROTEIN 2
REGULATION PHOSPHATIDYLINOSITOL TRANSFER PROTEIN SECIAP: CHAIN: NULL; EPIDERMAL GROWTH FACTOR RECEPTOR PATHWAY CHAIN: A; PM F 8 Verify 0.44 FSI BLAST Score 1,46-83 0,001 1,76-39 2 3 % 3 \$ R ž ¥ § 3 **9** a <u>5</u> 9 100 4 P 4 g a g 3 3 3 357

PDB Chain Start East P51 Verty PMF Suspending ID AA AA BLAST Score Score Score

g e ë

WO 02/059260

PDB smetribes	CALCIUM BINDING EHE, EFIDERMAL, GROWTH FACTOR RECEPTOR SINSTFATE CALCIUM BINDING, SINSTEADE DOMAIN, NPF BINDING, EF-HAND, EH 2 DOMAIN.		TRANSLATION TRANSLATIONAL GTPASE		PROTEIN BUDDING EFG; EF-O ELONGATION FACTOR, ELONGATION FACTOR, ELONGATION 1 TRANSLATION, PROTEIN SYMF FACTOR, GTP-SAG, GTP-DINDING, TRANSLATION, NUCLECTURE BINDING, PROTEIN SYMF BUDDING, PROTEIN BUDDING, PROTEIN		REBOSOME SAS BLBOSOMAL PROTEIN LTP. HEALL J. HA. 18 SR REBOSOMAL PROTEIN LIP, HEALL J. H. 18 SE REBOSOMAL PROTEIN LE, MALA, HA. 18 SR BLBOSOMAL PROTEIN LIP, HALL J. H. 13 SR BLBOSOMAL PROTEIN HES, 508 REBOSOMAL
Севиреки	EPS15, CHAIN: NULL;	TIANSPORT AND PROTECTION PROTECN BLOWGATTON PACTOR TU (DOMAIN I) "GLANDSING GLANDSING THE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFI	TRANSLATION INITIATION PACTOR IPZEIF3B; CHAIN: A;	CALCIUM-BUNDING PROTEIN RAT CHICOMODULIN IRRO 3	E ONGATION FACTOR Q. CHAUR: A; ELONGATION PACTOR B: DOMARN 3; CHAIN: B;		213 RRNÁ, CHÁINE & 35 RUMA, CHÁINE & RUBOSOMAL PROTEN L2; CHÁINE A, RUBOSOMAL RUBOSOMAL PROTEN L3; RUBOSOMAL PROTEN L4; CHÁINE (RUBOSOMAL
Seq Fold Score							
FM P	8.	ā	ş	0.13	0.10		<b>8</b>
Sourt)	=	28.0	50.0	80.0	Q <del>+</del> Q		13
PSI PSI		16.53	(l-ol-)	11000	<u> </u>		5,26-30
3 5	33	ā	188	Š	Ħ		5
AA Start	3	æ	St.	478	я	L	14
o d			<		<		2
808	<del>4</del>	<u>a</u>	1/2/1	Ē	Ą		<u>a</u>
	S S	is s	ž	ž	§ .	Γ	S

272

WO 02/059260

PCT/US01/42950

PCT/US01/42950

3 5	Coumpanne	PDB annetation
	LJIE, CHADN: U; RIBOSOMAL PROTEIN LJZE, CHADN: V;	
	RIBOSOMAL PROTEIN L37AE; CHAIN: W;	
	RIBOSOMAL PROTEIN L17E; CHAIN: X; RIBOSOMAL, PROTEIN	
	LISE: CHAIN: Y;	
	LARE CHAIN: 2; RIBOSOMAL PROTEIN 16;	٠
T	CHAIN: I;	TORY IAMOSORIA SOS SINOSORIA
	BUNA; CHADY: 9;	LZP, HDKALZ, HLA; SOS RIBOSOMAL
	CHAIN: A: RIBOSOMAL	PROTEIN LIP, HMALIJ, HLI; XIS RIBOSOMAL PROTEIN LAE, HMALA
	PROTEIN L3; CHAIN: B;	HLG; SGS REBOSOMAL, PROTEIN LSP FDAALS, HELS: 30S REBOSOMAL
	CHAIN: C. RIBOSOMAL	PROTEIN HISK, SOS RIBOSOMAL
	RIBOSOMAL PROTEIN	REDISONAL PROTEIN LI4P, HMAL
	L7AR; CHAIN: R; RIBOSOMAL PROTEIN	HLZ7; SOS RIBOSOMAL PROTEIN LI HDAAL15, HLP, SOS RIBOSOMAL
	LIGE CHAIN: P.	PROTEIN LIEP, HOLALIS, HLIZ, 508
	KIBUSOMAL PROTEIN	KIBOSOMAL PROTEIN LIRE, FILLY, LIP, 508 RIBOSOMAL PROTEIN LIS
	RIBOSOMAL PROTEIN	HOLALIS, HILZ4; SOS RIBOSOMAL
	RIBOSOMAL PROTEIN	PROTEIN LZZP, HMALZZ, HLZ3; 508
	LISE CHAIN: I;	RIBOSOMAL PROTEIN 1.23P, HMAL
	LIS CHAIN: J.	124P, FDAAL24, FL.16, FL.15; 505
	RIBOSOMAL PROTEIN	RIBOSOMAL PROTEIN L24R,

g e §	<b>ē</b> 9	d e	įį	3 5	2 <b>2</b> 2	Verlig En gr	E S	See Pak	Countries	PDB annetation
									LUIE CALDE IL.  BIRGOMAL PROTEIN LUZE CALDRE IV. BIRGOMAL PROTEIN LUZE CALDRE IV. BIRGOMAL PROTEIN LUZE CALDRE IV. BIRGOMAL PROTEIN BIRGOMAL PROTEIN BIRGOMAL PROTEIN BIRGOMAL PROTEIN BIRGOMAL PROTEIN BIRGOMAL PROTEIN BIRGOMAL PROTEIN BIRGOMAL PROTEIN BIRGOMAL PROTEIN BIRGOMAL PROTEIN BIRGOMAL PROTEIN BIRGOMAL PROTEIN BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGOMANE IV. BIRGO	
55	<u>e</u>	N	•		2.78-43	453	603		133 RANK CHANE 43 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANG CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANE 44 STANK CHANG CHANE 44 STANK CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG CHANG	LIP, HOALL, BAS EBROSOMAL PROPERLY LIP, HOALL, BLI, SOS EBROSOMAL BENGERIAL PROPERLY REST SOS EBROSOMAL ROWELL ROWS BENGER ROWS BENGER FOR THE SAME ROWS BENGER FOR THE SAME ROWS BENGER FOR THE SAME RESTORMAL PROPERLY ROWS RESTORMAL PROPERLY ROWS BENGER LIP, ROWLIS, SOS RESTORMAL PROPERLY ROWS BENGER LIP, ROWLIS, SOS RESTORMAL PROPERLY ROWLIS BENGER LIP, SOS RESTORMAL PROPERLY ROWLIS BENGER LIP, SOS RESTORMAL PROPERLY ROWLIS BENGER LIP, SOS RESTORMAL PROPERLY ROWS BENGER LIP, SOS RESTORMAL PROPERLY ROWLING BENGER ROSOWAL PROPERLY ROWLING BENGER ROSOWAL PROPERLY ROWLING BENGER ROSOWAL PROPERLY ROWLING BENGER ROSOWAL PROPERLY ROWLING BENGER ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWAL PROPERLY ROSOWA

·	<u> </u>	9 e	1	1 2	BLAST	g.	E S	Sour		
OTEN OTEN OTEN OTEN OTEN OTEN OTEN OTEN	ğ			Ī	Scot		Ī		7 10 10	Matoda 141030018 303 St 00 15 01
OTEN OTEN OTEN OTEN OTEN OTEN OTEN OTEN	_						Ī		LIE CHAIN: K.	HEALTH AS KIBUSUMAL PROJECT
OTEN OTEN OTEN OTEN OTEN OTEN OTEN OTEN		_							RIBOSOMAL PROTEIN	L29P, HMAL29, HL33; SOS RIBOSOMAL
OTEN OTEN OTEN OTEN OTEN OTEN OTEN OTEN		_							LIEGONORIC	PROTEIN L30P, HMAL30, HL20, HL16;
OTEN OTEN OTEN OTEN OTEN OTEN OTEN OTEN			_						RIBOSOMAL PROTEIN	SOS RIBOSOMAL PROTEIN LJIB, LJA,
OTEN OTEN OTEN OTEN OTEN OTEN OTEN OTEN									LIP CHADE ME	HIJO, SOS RIBOSOMAL PROTEIN LIZE,
3	_		_	_					RIBOSOMAL PROTEIN	HLS: SOS RUBOSOMAL PROTEIN LITE.
3	_		_						LZ1R: CHADY: X:	LISE: SOS RIBOSOMAL PROTEINS
ž			_						RINGSOMAL PROTEIN	1.39E H. 39E H. 46E: SOS RIBOSOMAL
ž	_					_			22: CHADE O	PROTEIN 1448 LA 10 A: 505
ž	_					_			RIBOSOMAL PROTEIN	REPOSOMAL PROTEIN LAP HOMALA
3	_								123 CHAIN: P.	HT.10 RTGCSOME ASSEMBLY, RNA-
ž									RIBOSOMAL PROTEIN	RNA PROTEIN-RNA PROTEIN-
ž	_	_							1.24: CHAIN: O:	PROTEIN
A TARE, CHARLER  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURTH  A CANAL FOURT									RIBOSOMAL PROTEIN	
LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PROTEIN LEGICSOLAL PR	_	_							134P-CHAIN-B-	
TO SCHOOL FOR THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE	_		_	_					prepared transfer	
THE COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN COUNTY IN CO	_			_					KIRCEOMAL PROJECT	
BIDGOOMAL PROTENT  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:  THE COLUMN:	_			_					LAS CHAIN: S:	
LIS CHAIR;  THE CHAIR;  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  THE CHAIR IN  T	_			_					RIBOSOMAL PROTEIN	
TING CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN IN  THE CHANN  THE CHANN  THE CHANN  THE CHANN IN  THE CHANN IN  THE CHANN IN	_		_	_					LIS CHAIN: T	
LITE CANAL TROTTEN INDOCAMAL PROTTEN IND			_	_		_			RIBOSOMAL PROTEIN	
REDOCAMAL POTTEN  LUNG CHAMP. W.  REDOCAMAL POTTEN  LUNG CHAMP. W.  LUNG CHAMP. W.  REDOCAMAL POTTEN  LUNG CHAMP. W.  REDOCAMAL POTTEN  LUNG CHAMP. W.  REDOCAMAL POTTEN  LUNG CHAMP. W.  REDOCAMAL POTTEN  AND COMAL POTTEN  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.  CHAMP. W.	_								LIE CHAP: C.	
TATE CALAN:  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN: 10.  TATE CALAN			_						RIBOSOMAL PROTEIN	
INTERPRETATION OF THE POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT POTENT P	_	_							LUZE: CHAIN: V;	
TUTACTOLARI W.  BIDGGOALL PROTEN  LING CALANI W.  LING CALANI WOTEN  LAG CALANI WOTEN  LAG CALANI WOTEN  LAG CALANI WOTEN  LAG CALANI WOTEN  LAG CALANI WOTEN  LAG CALANI WOTEN  LAG CALANI WOTEN  LAG CALANI WOTEN  LAG CALANI WOTEN  LAG CALANI WOTEN  LAG CALANI WOTEN  LAG CALANI WOTEN  CHANGE L.		_	_						RIBOSOMAL PROTEIN	
TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING CALANI: A TING C	_								LITAE; CHAIN; W;	
LIPE GRANE, X. ADDGGGAAL PROTEIN LUNE, CHARLE, Y. ADDGGGAAL, PROTEIN LUNE, CHARLE, Z. ADDGGGAAL, PROTEIN LUNE, CHARLE, Z. ADDGGGAAL, PROTEIN CHARLE, Z. ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAAL, PROTEIN LA, ADDGGGAA									RIBOSONAL PROTEIN	
CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN CONTROL OF CHANGE IN		_	_	_					LITE CHAIN: X	
LUP, CHARR Y. ADDGGDALL POTERN LUC, CHARP Z. EDGGGDALL POTERN LUC, CHARP Z. EDGGGDALL POTERN LUC, CHARP Z.	_								RIBOSOMAL PROTEIN	
ADDOGRAFI, PROTEIN LA GRANDIS. CALANIS.	_	_							L19E; CHAIN: Y;	
LAG CHARP. Z. EDGARAM PROTEIN LG. CHARP. I. CHARP. II.	_	_		_					RIBOSOMAL PROTEIN	
RIBOSOMAL PROTEIN LA; CHAIN: 1;									LARE: CHAIN: Z:	
CHARY: I;	_		_	_		_			RIBOSOMAL PROTEIN LA	
									CHAIN: 1;	

WO 02/059260

PCT/US01/42950

		_	_						_
РЪВ авворжан	SIGNALING PROTEIN BETA-ALPHA. BETA POLD PARALLEL BETA SPEET	SIGNALING PROTEIN BETA-ALPHA- BETA FOLD		IMAUNGSTREEM DAGNOGLOGULIN DAGNOGLOGULIN DAGNOGLOGULIN DAGNOGLOGULIN DAGNOGLOGULIN DAGNOGLOGULIN DAGNOGLOGULIN STRUCTURE THEEDUMENSTONL STRYCTURE GAADAM. 3 STRYCTURE GAADAM. 3 STRYCTURE GAADAM. 3 STRYCTURE GAADAM. 3	MACINOGLOBULIN DAMUNOGLOBULIN, KAPPA LIGHT- CHAIN DÜMER HEADER	CONTEX GOOD THAN A HEAVY CHARL CONTEX (AHOVIRAL PETIDER CEPTOR)	COMPLEX (ANTIBODY/ANTIGEN) PAB-12: VEGF; COMPLEX (ANTIBODY/ANTIGEN), ANGIOGENIC FACTOR	INKUNG SYSTEM ANTIBODY (PAB FRAGMENT), DANUNG SYSTEM	LAMUNE SYSTEM FAB-18P COMPLEX CRYSTAL STRUCTURE 2.7A
Coumpound	TOLL-LIKE RECEPTOR 1; CHAIN! A:	TOLL-LIKB RECEPTOR 2: CHAIN: A;		ANTIBODY (LIGHT GIAIN); CHAIN: L; ANTIBODY (PEAVY CHAIN); CHAIN: H;	CHAIN: A, B;	HLA-A 2001; CHÁIN! A' BETA-LA MCROGLOBULIN! GHAIN! BI TAX PETIDE; GLAIN! C. T CELL RECETIOR ALPHA; GRAIN! D. T CELL GRAIN! D. T CELL GRAIN! D. T CELL B.	FAB FRAGMENT; CHAIN; L, H, J, K; VASCULAR ENDOTHELIAL GROWTH FACTOR; CHAIN; V, W;	ANTIBODY IZ4 (LIGHT CHAIN; CHAIN: A: ANTIBODY R24 (HEAVY CHAIN; CHAIN; B;	IOM RF 2A2; CHAIN: A, C. R: IOM RF 2A2; CHAIN: B,
SeaFeld						130.55		11:15	
FMF	ā	0.17	ľ	0.83	660		2670		6.93
Vertify	6.13	603		0.10	6.20		120		-0.12
PSI BLAST	5.40-15	1.76-20		5.10-67	99-01	3.40-57	1.76-68	16-59	3,40-69
3 5	3	513	Ī		130	£ .	91	<u>s</u>	3
Start A	E	3	Γ	E .	22	2	α	ถ	17
C C Sept	~	<	ľ	1	<b>~</b>	۵	۱.	<b>,</b>	,
g e	<u>ş</u>	š		1b2w	<u> </u>	<u>ā</u> .	191	Del.	2
SEQ.	-	<u>z</u>	r		795	3	38	3	35

276

PCT/US01/42950

Verify PMP SeqFold Score Score Score 94.0 860 8 ş 3 3 133 Start A. PDB Chath Ē 盘 ğ 3 282

277

WO 02/059260

PCT/US01/42950

PDB sunstation	RECEPTOR TCR; T-CELL, RECEPTOR, TRANSMEMBRANG, CL, YCOPROTEDY, SIGNAL.	IMMUNOGLOBULDY TRI.9, ANTI- THYRODD PEROZUDASE, AUTOANTIBODY, 1 DAKTNOGLOBULN			HYDROLASE II FRADAGNT, CD74 FRADAGNT CYSTEUR FOOTBIASE, CATHEFSIN, MIT CLASS II, BVAELANT 2 CHADA, THYROGLOBULIN TYPE-1 DOMAIN	HYDROLASE I PROBLEM, CDM PRACHEM CYSTEINE PROTEINASE, CATHEFEN, MHC CLASS II, DVARIANT 2 CHAÑ, THYROGLOBULN TYPE-I DOMAIN	MAJOR HERSTOCAGO TRELLITY CONFLEX ELA CLASS II FESTOCOMO ATBELTY ANTIGEN, GAMMA MAJOR HISTOCOMO ATBELTY COMPLEX, MATTIGEN PROCESSION OLOGOGENZATION, CHAPERONIN	MAJOR HISTOCOMPATIBILITY
Cormpound	ALPHA, BETA T-CELL RECEPTOR CHAIN: A, B;	TRI.9 FAB; CHAIN: L, H;	IMMUNOCIOBULD FAB FRADMENT OF A HUMANIZED VERSION OF THE ANTI-COLI 2 FOW 3 ANTIBOOY 142F (RUHS)- OZ FAB) 2FOW 4		CATHERSIN L. HEAVY CHARY CHAIN: A, C, CATHERSIN L. LIGHT CHARY, CHAIN: B, D, CHAIN: T CHAIN; CHAIN: I,	CATHERSIN L. HBAVY CHAIN; CHAIN; A. C. CATHERSIN L. LIGHT CHAIN; CHAIN; B. D; CHAIN; CHAIN; CHAIN; L.	HA-DR ANTIGENS ASSOCIATED DIVARIANT CHAIN: CHAIN: A, B, C;	HLA-DR ANTIGENS
Sea Fold	<u> </u>							136.01
PMP Stars		660	35		90'	8	8	
Verify		6.23	60		14.0	0.47	ş	П
E LAST	1.40-57	1.70-66	S. Io-64	Ī		27-27	1	1041
3 \$	6	<u>a</u>	3	Ī	9	271	=	=
Įį	*	92	я		<b>a</b>	a		L
a a	<u>-</u>	_	_		_	_	<	IJ
ē a	豆	<u> </u>	i,	Ī	Ā	Pi	2	П
$\overline{}$	3	3	3	r	S.	3	3	ž.

PDB assectation		DNÁ-BINDÍNG REGULATORY PROTEDN ATP-2; CNE BINDÍNG PROTEDN, ATP-2, TRANSCALFITONAL ACTIVATIÓN 2 DOMANN, ZN FINGER	COMPLEX (ZINC PINGERONA) ZINC PINGER, PROTEIN-DINA INTERACTION, PROTEIN DESIGN, 1 CRYSTAL, STRUCTURE, COMPLEX (ZINC FRORENDINA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX CINC FINGER/DNA)	COMPLEX (ZNC PINGEADHA) ZNC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CXYSTAL, STRUCTURE, COMPLEX (ZNC FINGEADHA)	
Contribound	TRANSCRIPTION PACTOR PADR (REEDUCES IZS - 130) 1AED 3 (AMENO TESAENAL ZEAC FROCER DOMARD) (PAR, 10 STRUCTURES) 1AED 3 (ADRIB) 1AED 3	CRE-BP1; CHAIN: NUCL;	DNA, CHAIN: A, B, D, E; CONSENSUS ZINC PINCER PROTEIN; CHAIN: C, P, O;	DNA; CHAIN: A. D. D. E. CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G,	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC PINGER PROTEIN; CHAIN: C, F, O;	REGULATION PLAST TRANSCRIPTION PAST TRANSCRIPTION PACTOR TRANSCRIPE 180 - 159 IPAA 1 (RAPA - CARBOXY TERMINAL ZINC FINGER DOACH) MITTANT WITH
Seq Fold Scars						
PM P Scare		990	£10	R	e e	์ วิ
Verity Score		60	9176		931	\$
PSI BLAST		0.00034	6.80-25 6.16	5.le-11	11-47	0.00085
3 ×		570	\$	339	570	zus
Start AA		₹	3	Sg.	Ī	ž
g o			υ	0	U	
2 CI		3	lmcy	imey	lney	1
S e S			3	3	3	3

WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950

282

15   15   15   15   15   15   15   15		<b>201</b>	<b>4</b> 0	ž ž	35	PSI BLAST Score	Verth Rem		Seq Feed Scere	Compense	PDB sasstribes
19.44   514 5.14-10   647   649   517-02-04.0-10.0-2.0-2.0-2.0-2.0-2.0-2.0-2.0-2.0-2.0-	-									REPLACED BY ALA, PRO 131 REPLACED BY ALA, CYS 140 IPAA 5 REPLACED BY ALA (P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P131A,P13A,P13	
A   544   661   6.14   6.14   TRANSCULTION FACTOR   IM. CHARF. A; SR. RA   IM. CHARF. A; SR. RA   IM. CHARF. A; SR. RA   IM. CHARF. B; F; F; F; F; F; F; F; F; F; F; F; F; F;	_	Ē		3	574	5.16-10	0.07	8		IPAA 6 SPIPZ; CHAIN: NULL;	ZINC FINDER TRANSCRIPTION FACTOR SP1; ZINC FINDER,
11   110   1.4-06   6.19   6.29   SWIS, CHADE, NULL;		9	<	3	8		9.18	0.10		TRANSCRIPTION FACTOR IIIA: CHADE A; SS RNA	TRANSCRIPTION ACTIVATION, SPI COMPLEX (TRANSCRIPTION REGULATION/DNA) TFILM; 55 GENE,
11   110   1.44-06   6.19   6.29   SWIT; CHALDE NULL;										GENE; CHAIN: E, P;	NAK, TEILA, PROTEIN, UNA, TRANSCRIPTION FACTOR, SS RNA 2 GENE, DNA BINDING PROTEIN, ZINC FINGER, COMPLEX 3 FINGER, COMPLEX 3
74 756   13-6-05   0.25   0.07   ADM!; GIADE: NULL;		221		3	S.		61.9	623		SWIS; CHAIN: NULL;	ZINC FINGER DIVA BINDING DOMAIN DNA BINDING MOTIE, ZINC FINGER DNA BINDING DOMAIN
A   49   640   1.7e. )   629   612		2mds		ž	576	36-06	9730	603		ADRI; CHAIN: NUIL;	TRANSCRIPTION REGULATION TRANSCRIPTION REGULATION, ADRI, ZINC FRIGER, NAR
E 477 598 3.46-12 4.31 0.63 HEA/TSINGT PROTEIN HEA/TSINGT PROTEIN HEA/TSINGT PROTEIN HEA/TSINGT PROTEIN HEA/TSINGT PROTEIN A 499 732 1.36-14 0.01 4.051 GELL DYSINGTONTOL		ā	<	<del>\$</del>	3		83	0.12		NETITITAALEDADE. SENSTIVE FUSION	HEXAMERIZATION DOMAIN HEXAMERIZATION DOMAIN, A TRACE TE ANGROPT
A 490 732 1.5-14 4.01 4.05 CELL DIVISION CONTROL PROTEIN 6; CHAIN: A, B;		<u> </u>	ω	433	285	3.40-12	120	0.03		HEAT SHOCK PROTEIN HEAT SHOCK PROTEIN HEAT SHOCK PROTEIN HEAT SHOCK PROTEIN	CILMERONG HELV; HELU CHAPERONG, HELVU, CLPOY, AAA- ATPASE, ATP-DEPENDENT 2 PROTEOLYSIS, PROTEASOME
		E .	<	ŝ	252	1961	<u>0</u> 0	500		CELL DIVISION CONTROL PROTEIN 6; CHAIN: A, B;	CELL CYCLE CHOSP, CHOC CDC18, ORC1, AAA PROTEIN, DNA REPLICATION INTTATION 2 PACTOR,

1.00   DITECTOR ALPHA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABLA T BETA-   CHANGE ABL	<del></del>	<b>20</b>	g e	Įş	3 \$	· ·	A a d	M M	Seq Fold Score	Cottapound	PDB sametation
166   545   34-5/4   1/0   10   10   10   10   10   10   1	+	T	Ī		Ι		T	Γ			
166   566   346-35	+-	ğ	<	3	3	_	8	8		INTEGRIN ALPHA 1 BETA; CHAIN: A, B;	INTEGRIN INTEGRIN, CELL ADHESION, GLYCOPROTSIN
156   370   34-64   0.21   0.99   VILLEBAND PUCNE;     156   361   1.59-64   1.20   DIAGNIN OF VOR STATE     151   359   1.59-54   1.20   DIAGNIN OF VOR STATE     151   359   1.59-54   1.20   DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAGNIN OF DIAG	+	Ę	<	3	3	3.40.36			23.161	INTEGRIN ALPHA 2 BETA; CHAIN: A, B;	INTEGRIN INTEGRIN, CELL. ADPRESION, GLYCOPROTEIN
169   34   158-61   120   DITCOLN A.P. II.		1		95	370		931	83		AL DOMAIN OF YON WILLEBRAND FACTOR; CHAIN: MULL;	WILLEBRAND WILEBRAND, BLOOD COAGULATION, PLATELET, GLYCOPROTEIN
111   139   178-13   1.12   120   DAGUNGOLDBULN NAC-   146   367   160   100   100   100   100     146   359   18-37   0.47   1.00   100   100   100     146   359   34-43   1.16   1.00   100   100   100     151   356-34   1.16   1.00   100   100   100     151   316   48-34   1.16   1.00   100   100     151   316-37   3.27   1.00   100   100   100     151   316-37   3.27   1.00   100   100   100     151   316-37   3.27   1.00   100   100   100     151   316-37   3.27   1.00   100   100   100     151   316-37   3.27   3.27   3.20   100   100     151   316-37   3.27   3.27   3.20   100   100     151   316-37   3.27   3.27   3.20   100   100     151   316-37   3.27   3.27   3.20   100   100     151   316-37   3.27   3.27   3.27   3.27   3.27   3.27     151   316-37   3.27   3.27   3.27   3.27   3.27   3.27   3.27     151   316-37   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27		14	<	<u>s</u>	<u> </u>		8	8		INTEGRIN ALPITA-1; CILAIN: A, B;	STRUCTURAL PROTEIN HOOMAIN, METAL BINDING, COLLAGEN, ADHESION
166   367   1637   1647   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   1640   16	_	10,44		Ē	82		1.12	8		DYTEGRIN ALPITA-1; CHAIN: A, B;	STRUCTURAL PROTEIN LOOMAIN, METAL BINDING, COLLAGEN, ADHESION
154   359   346-45   1.16   100   CAUDIN, A LAFAN BETA INTEGREN     171   379   646-56   1.16   1.00   CAUDIN, CAUDINE BETA INTEGREN     171   379   646-56   1.16   1.00   CAUDIN, CAUDINE BETA INTEGREN     171   346-37   3.27   1.00   CAUDIN, CAUDINE BETA INTEGREN     171   346-37   3.27   1.00   CAUDIN, CAUDINE BETA INTEGREN     172   346-37   3.27   3.27   3.27   3.27   3.27     173   346-37   346-37   3.27   3.27   3.27   3.27   3.27   3.27     174   346-37   346-37   3.27   3.27   3.27   3.27   3.27   3.27   3.27     175   346-37   346-37   3.27   3.27   3.27   3.27   3.27   3.27   3.27     175   346-37   346-37   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27   3.27		4	<	3	ž.	<u> </u>	0.47	87		DORUNGOLOBULDN NAC- 410G1; CHAIN: L; DORUNGOLOBULDN NAC- 410G1; CHAIN: H; VON WILLEBRAND FACTOR;	DALING SYSTEM VON WILLERAND ACTOR, CHYCOPROTEIN BA (A-LHA), BINDING, 2 CONFLEX (WILLEBRANDMANINOCIOBULIN), BLOOD COAGULATION TYPE 3 28 VON WILLEBRAND DISEASE.
11   151   146-34   1.16   130   CAUDIN, CRADIN BETAIN BERGAN BEAN BEAN BEAN BEAN BEAN BEAN BEAN BE	1	Ē	<	3	85	ž.	91'1	8		ALPHAI BETAI INTEGRIN; CHAIN: A; ALPHAI BETAI INTEGRIN; CHAIN: B;	CELL ADIESION INTEGRIN, CELL ADRESION
231   24-3.7   0.27   1.00   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN COGN ZING PRIGER   COGN COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING PRIGER   COGN ZING	1	3	<	Ē	32	X 4 3	1.16	8		ALPHAI BETAI INTEGRIN; CHAIN: A; ALPHAI BETAI INTEGRIN; CHAIN: B;	CELL ADHESION INTEGRIN, CELL ADHESION
201   203   5.40-37     90.89   QOSR ZINC FINGER		elei elei	<	ī Z	a	3.46.37	027	8.		QOSR ZINC FINGER PETIDE; CHAIN: A; IMPLEX CLICONIUCI EOTIDE BIDDING SITE; CHAIN: B,	COMPLEX (ZINC FINGER/DINA) COMPLEX (ZINC FINGER/DINA), ZINC FINGEX, DNA-BINDING PROTEIN
	Н	4	<	Ē	E	5.40-37		Ш	80.89	QOSR ZINC FINGER	COMPLEX (ZDAC FINGER/DNA)

			Scere Scere	Score Score	Scara Scara Scara	BLAST Scere Scere Scere	BLAST Scere Scere Scere	AA AA BLAST Scere Scere Scere	Start Ead F51 Verlty PMF SegPold AA AA BLAST Stern Stern Stern Stern
COMPLEX (ZINC FINGERDINA), ZINC FINGER, DNA-BINDING PROTEIN : B,	PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING STTE; CHAIN: B, C.	PEPTIDE; GIAIN: A; DUPLEX OLIGONUCLEOTIDE BIDDING SITE; CIAIN; C;	PEPTIDE, CHAIN: A; DOPLEX OLICONUCLEOTIDE BRODING STTE; CHAIN: C;	PETIDE, CIÁDY: A; DUTEX OLIGONUCI, EOTIDE BUDDIO STRE, CIÁDR.	PETITION OF CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS DATE CHAINS AS	PUTING CHAPIF, A.  OLICONUCLEOTIDE  GODING STE, CIADR	PUTURE CHICK, A.  OLIGONICALOTIDE  ENDOROSTE, CIADR.  C.	OUTER CIADE. A OLOGNICZEOTIDE BUDING SITE, CIADE. C.	C. CHURK ALLOR CHURK A. DUNEX OLICON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON CALDON
COMPLEX (ZINC FINGENDINA) ZINC COMPLEX (ZINC FINGENDINA), ZINC FINGEN, DAVA-BINDING PROTEIN B.	QOSR ZINC FINGUR PETTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE CINDING SITE; CHAIN: B,	OGSR ZINC FÜGLIK PETTUBÇ CHAÜN: A: DUFLEX GLICONUCLEOTIDE EINDING SITE; CHAÎN:		093	-0.03 0.93	176-24 -403 893	256 1.76-24 -0.03 0.93	176-24 -403 893	229 256 2.7-24 4.05 0.99
COMPLEX (ZINC FINGEADINA) COMPLEX (ZINC FINGEADINA), ZINC FINGER, DIAA-BINDING PROTEIN B,	QOSR ZINC FINGUR FETTDE, CHADS: A; DUPLEX OLIGONUCLEOTDE BINDING STE; CHADS: B,	QOSR ZINC FINGUR PETTUE; CHAN: A; DUPLEX OLIGONICLEOTIDE BINDING STE; CHAN:	OLIO GOSR ZINC FINGER  I FETTICE: GALON: A;  UNIFIEX  OLIOONICLEOTIDE  BINDINO SITE: CHARN:  C. C.		0.10	5.16-23 0.10 0.48	309 5.18-23 0.10 0.88	5.16-23 0.10 0.48	. 229 309 5.1e-21 0.10 0.18
CONTRACTILE LIM DOMAIN, CRP. NACE, MUSCLE DIFFERENTIATION, CONTRACTILE	CIUT; CHAIN! A;	35.06 CRP1; CHAIN: A;		35.06	33.06	5.46-13 53.06	315 5.4e-[3 55.06	5.46-13 53.06	112 315 5.46-13 35.06
	DNA; CIMIN: A, B, B, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FING PROTEIN; CHAIN: C, F, G	1.00 DNA; CIAIN! A, B, D, E; CONSENSUS ZING TRUG PROTEDQ CHAIN! C, F, G	0071	0.10 1.00	3.46-51 0.70 1.00	197 3.46-51 0,70 1.00	116 197 3.40-51 0,70 1,00	197 3.46-51 0,70 1.00
	DNA; CHAIN! A. B. D. E. CONSENSUS ZINC FINGER PROTEIN; CHAIN: C. F. Q.	IUE AG DINA; CHAIN! A, B, D, E; CONSENSIS ZING FRUE PROTEIN; CHAIN: C, F, G			99*101	3.40-51	192 3.46-51	116 192 3.4e-51	192 3.46-51
COMPLEX (ZINC FINGER/DINA) ZINC FINGER, PROTEIN-DINA INTELACTION, PROTEIN DESIGN, 1 CAYSTAL STRUCTURR, COMPLEX	DNA; CIÁDN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, P, G;	DNA; CHÁDH: A, B, D, E; CONSENSUS ZINC FINGE PROTEIN; CHADN; C, P, G;	1.00 DNA; CIÁDI: A, B, B, E; CONSENSUS ZINC FINGE PROTEDY; CHAIN; C, P, G;	8	0.18 1.00	6.16-51 0.38 1.00	225 6.8-51 0.58 1.00	144 223 6.16-51 0.38 1.00	225 6.8-51 0.58 1.00

WO 02/059260 PCT/U501/47950 WO 02/059260 PCT/U501/42950

PDB sametation	URE, COMPLEX \)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	OTEIN DESIGN, 3	URE, COMPLEX	COMPLEX (TRANSCRIPTION BROTH ATTOMONA) TETTA - SS OFNE	EIN, DNA.	ACTOR, SS RNA 2	GENE, DNA BINDING PROTEIN, ZINC PINGER, COMPLEX 1	TRANSCRIPTION REGULATION DNA)	CRUPTION	COMPLEX	IL RNA	POLYMERASE III, 2 TRANSCRIPTION	FINGER PROTEIN	CRUPTION		I) RNA	OLYMERASE III, 2 TRANSCRIPTION	NITTATION, ZINC FINGER PROTEIN	CONTRA		C) BNA	POLYMERASE III, 2 TRANSCRIPTION	CALPTION	V COLUMN
FDB **	CRYSTAL STRUCTURE, COMPLEX (ZINC PINGER/DINA)	COMPLEX (ZINC FINGE FINGE	INTERACTION, PROTEIN DESIGN, 3	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (TRANSCRIPTION BEGIN ATTOMONA) TETTA:	NMR, TFILLA, PROTEIN, DNA,	TRANSCRIPTION FACTOR, SS RNA 2	GENE, DNA BINDING PINGER, COMPLEX 1	(TRANSCRIPTION	COMPLEX (TRANSCRIPTION	CONTROL OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE	REGULATION DNA , RNA	POLYMERASE III,	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRUPTION BY PX	CHANSCRIPTION	REGULATION DNA , RNA	POLYMERASE III,	INTER TION, ZINC	SEGII ATTINONA) COMPI EX	TRANSCRUPTION	REGULATION/DNAL RNA	POLYMERASE II.	COMPLEX CRANSCRIPTION	VENT A TOWN AND COLUMN
Countracted		DNA; CHAIN: A, B, D, B; CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, Q,		TRANSCRUPTION PACTOR	GENE CHAIN: R. P.				TFUIA; CHAIN: A, D; 53	RIBOSOMAL KNA GENE				TFULK; CHADY: A, D; SS PTBOSOMAI BNA GENE:	CIAN: B.C.B.F.				THURS CHAIN: A, D; 35	CHAIR B. C.E.F.			TEITA: CHAIN: A. D. 58	STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY
Seq Pold																				2				Ī	
2 5		8			ā		_			3					8				1					8	
Verly Sear		220			-0.07					ğ					14.0									040	
BLAST Sees		01-45			7				Ī	6.80-36					¥.					2					
3 \$		ā			Ş					916					2					a				ž	
ğş		ž			52					Ē					ş					8				Į	_
đe					<					<					<					<u> </u>					:
ē a		ì			ē					3					¥					8				ě	!
§ 6 §		ä			3					2					ã					Ę				E	-

	_			_	_	_		_				_	_			_	_	_	_	_	_	_	_		_	_		_
PDB exactation	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DINA) ZINC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 1	CKYSIAL SIXOCIUKE, CUMPLEX (ZINC PINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DINA)	COMPLEX (ZDVC FINGER/DNA) ZDVC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC PINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	NTERACTION, PROTEIN DESIGN, 2
Coumpound		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN; C, P, Q;		DNA; CHAIN: A, B, D, E;	PROTEIN; CHAIN; C. P. O.		DNA; CHADI: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CIENC, C. P. C.		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, P, Q,			UNA; CHAIN; A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN; C. F. O.		DNA: CHAIN: A. B. D. E.	CONSENSUS ZINC FINGER	PROTEIN; CHAIN; C. P. O.			UNA; CHAIN: A, B, D, E;	CONSENSUS ZINC PINGER	
Score Score												Ī		_			_		_			_	_				_	
Scar		8	_		8			597				170	_	_	_	1	8	_	_		8			_		8		
Yerley Sear		6.73			750			õ				5	_			1	ā				113					2		
EAST See Table		1.46-50			3.40-46			94.				16-25				-1	£				8.9	_				6.86-51		-
\$ €	r	52			274			ž			_	317				┪	≘		_	_	Ξ	_				691		•
Start AA	Γ	22.			ğ			228				82			_	1	3	_			8		•			=		
ge.	Г	o O			U			U	_			J					ပ				0					Į,		
<u>5</u> 6	Ī	lmey			lacy.	_		Iney				Incy			_	~1	Tacy	_			iney	1	_			laey	_	
S e Š	Ī	8			283	_		33		_		583	_		_	7	25	_	_	_	ã	_			i	68		-

		NO ALSE	d I; by by	7 7 2 1: 2 4 2 1: 2 4 4 2 1:	6 1; F. 2 KDNA)	P C G	
PDB anneentlen		(TRANSCRIPTION REGULATIONDHA), RNA POLYMERASE LIL 2 TRANSCRIPTION INTIATION, ZINC FINGER, PROTEIN	COMPLEX TRANSCENTION PEGULATOWONA, YING-YANG I; TRANSCENTION DUTLATION, TRANSCENTION DUTLATION, TO TRANSCENTION, DAWA-ROTEEN PROGRAMMON, SOURCELEX PROGRAMMON, SOURCELEX TRANSCENTION REGULATIONOMA)	COMPLEX (TRANSCRIPTION BEGULATION/DNN) V. PUCE VANG 1; TRANSCRIPTION INITIATION, INITIATION, INITIATION, INITIATION, INITIATION, INITIATION, INITIATION, INITIATION, INITIATION, INITIATION, INITIATION SECTION PECTIA TIONDWA	COMPLEX (TRANSCRUPTION REQUILATION/DRAY) YNGO-YNANG I; TRANSCRUPTION INTIATION; FURTH RECORDING ISSUED IN A RECORDING ISSUED IN A RECORDING ISSUED IN A RECORDING ISSUED IN A RECORD RECORD RECORD IN A RECORD RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A RECORD IN A REC	COMPLEX (TRANSCOUPTION REGULATION/DRA), YNGO-YNAO I: TRANSCOUPTION INITIATION, INITIATION ELEMENT, YVI, ZINC I PHOERR MOTERN, DAM, PROTEEN RECOGNITION, 3 COMPLEX TRANSCOUPTION REGULATION/DANA	COMPLEX CTRANSCRIPTION
Coumpound		GIAIN: B, C, B, P;	YYI, CHAIN: C, ADENO- ASSOCIATED VILUS PS ANTIATOR ELEMENT DIVA, CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCATED YRUS PS DUTIATOR ELEMENT DNA; CHAIN! A, B;	YYI, CHAIN: C, ADENO- ASSOCIATED YRUS PS DYTIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED YRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YY!: CHAIN: C. ADENO-
See Fold	Sea					17.00	Ī
ž	E S		8	8.	8		8
¥ .	Som		99	2	â		61.0
25	ᆫ		3.44-47 0.40	Î.	27.48	3 4	54.35
3	\$		ន	ន	ā	c <del>u</del>	ž
Start Led	\$		<u>:</u>	22	8	ž.	161
100 C	e		υ	U	v	U	U
100	8		3	夏	3	4	Popp
5			[	l_		_	Ι.

SEQ 10	2 e	<b>f</b> e	¥ ₹	3 \$	ELST Seer	Verliy Se s	P.M.F.	SeqFold Score	Cenmpeand	PDB association
									INTIATOR ELEMENT DRA; CHAIN: A, B;	TRANSCUPTION INITIATION, DUTATOR ELEMENT, TY1, ZINC 2 FINGER ROTERI, DNA-PROTEIN RECOGNITION, 3 CONPLEX (TRANSCUPTION REGULATIONDNA)
ā	3	υ	202	309	1.7427	-031	96'0		YYI; GIADE C, ADEBO- SASOCIATED VEUE PS DITIATOR ELEMENT DNA; CHAIN: A, R.	СОМЕТЯ КИРУКЕНТИЯ В ВОППУИНОВ В В В В В В В В В В В В В В В В В В
9	<b>B</b>	U	3	<b>Ξ</b>	1,50.27	177	00'1		YY I; CHAIN; C, ADENO- ASCOCATED VEUS PS DUTIA, TOR ELEMENT DNA; CHAIN; A, B;	COMPLEX TRANSCENTION REGULATION/DRAY, YORG-YAND I; TRANSCAUTION DRATAFION, INTILATOR ELEMENT, YYI, ZINC 2 FRACES REGULATION, 10 CAN-FROTEM RECOMMENT, 10 CAN-FROTEM RECOMMENT, 10 CAN-FROTEM RECOMMENT, 10 CAN-FROTEM (TRANSCRIPTION REGULATION/DRAY)
3	3	υ	3	169	l.lo-47	637	8:		YYI; GIÁIN: Ç, ADENO- ASOCIATION PIUS PS BUTTATOR ELEMENT DNA; CHÁIN: A, B;	COMPLEX (TRANSCEPTION BEGIL-ATRONOWN, TNO-Y-KNO!; TRANSCEPTION BUTLATION, BUTLATON ELEMENT, YYI, ZINC 2 FINGER PROTEDL, MAK-PROTEIN ECOGRITION 2 COMPLEX (TRANSCEPTION REGULATIONDNA)
3	3	υ	3	<u>\$</u>	1.26-34 1.00-34-34 1.00-34-34 1.00-34-34 1.00-34-34 1.00-34-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34 1.00-34	0.48	8		YYI: CIAIN: C. ADENO- SASCATADO VILLE FS DITIA, TOR ELEMENT DIVI, CHAIN: A, B;	COMPLEX TRANSCENTION REGILATIONORM, YOGA YANG I; TRANSCENTION INTENTIONAL FROMER PROTEIN, 1944-PROTEIN FROMER PROTEIN, 1944-PROTEIN FROMER PROTEIN TRANSCENTION I, COMPLEX TRANSCENTION FEGULATIONORM)
ž	100		152	800	1.76-03 -0.43		10.0		ADRI; CHAIN: NULL;	TRANSCRIPTION REGULATION

WO 02/059160 PCT/US01/42950 WO 02/059160 PCT/US01/42950

PDB annetation		COMPLEX (GTP- BINDING/TRANSDUCER) SIGNAL TRANSDUCTION PROTEIN, GTP-ASE, WDA, RAS-LIKE, 2 COMPLEX (GTP- BINDING/TRANSDUCER)	COMPLEX (GTP- BENDINGTRANSDUCER) SIGNAL TRANSDUCTION PROTEIN, GTP-ASE, WDQ, RAS-LIKE, 2 COMPLEX (GTP- BINDINGTRANSDUCER)		TRANSFERASE METHYLTRANSFERASE	STRUCTURAL GENOMICS HYPOTHERICAL PROTEIN, METHANOCOCCUS JANNASCHII	TRANSTERASE FT3. METHYLTRANSPERASE, FT3. METHYLTRANSPERASE, ADOMST. ADENOSYL METHOPINE, HEAT 2 SHOCK PROTEINS, 235 KIBOSOMAL. RNA.	TRANSFERASE (METHYTTANSFERASE) COMT: TRANSFERASE, METHYTTANSFERASE, METHYTTANSFERASE, PEGINTANSMITTER PEGINANSMITTER	METHYLTRANSFERASE GNMT, S. ADENOSYL-L-METHYONDE: GLYCINE METHYLTRANSFERASE	
Сениропи		O PROTEIN GI ALPHA I; CHAIN: A; O PROTEIN GI BETA I; CHAIN: B; O PROTEIN GI GAMMA 2; CHAIN: O;	O PROTEIN OI ALPHA I; CHAIN: A; O PROTEIN OI BETA I; CHAIN: B; O PROTEIN OI DAMMA 2; CHAIN: O;		GLYCTHE N. METHYLTRANSFERASE; CHAIN: A. B. C. D;	MJ0812; CHAIN: A;	FTSI; CHADN: A;	CATECHOL O- METHYLTRANSFERASE; GHAIN: NULL;	GLYCINE N- METHYLTRANSFERASE; CHAIN: A, B;	
SeqFold Score			37.14	Ī						
PMF		99			500	8	0.16	5	0.24	
Verly Fee		= 0			0.49	11.0	80	\$7.0 \$7.0	0.32	
PSI BLAST Seen		7.43	(Pe.3)		1:45	6	0,00017	11-09	1141	
3 2		2	2		8	8	<u>\$</u>	261	8	
San A		2	æ		11	æ	£	52	3,8	
9 8	ľ	0	g		<	<	<		٧	
108 E	Ī	ğ	gi.		ā	1 <del>0</del>	율	ž	ızı	П
Se S	Ī	g	313		ž	3	ž	ă	98. 88.	

	_	-	-	-	-		-		
РОВ кареситіон	TRANSCRIPTION REGULATION, ADRI, ZINC FINGER, NAGR	COMPLEX (DNA-BINDING PROTEINDINA) PIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDINA)	BINDING PROTEINONA) PROTEINDAN PIVE-FRUGER GIL; GIL, COMPLEX (DWA-BINDENG COMPLEX (DWA-BINDENG COMPLEX (DWA-BINDENG)	COMPLEX (DNA-BINDING PROTEINDNA) PIVB-FINGER QLI; GLL ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTEINDNA) FIVB-FINGER OLL; GILL ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (DNA-BLODING PROTEINDINA) PIVE-FINGER CIL; GIL, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDINA)	COMPLEX (DNA-BUDDING PROTEDVIDNA) PIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEDVIDNA)	COMPLEX DNA-BINDING PROTEINDINA) FIVE-FINDER CIL; CILI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDINA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
Совирока		ZINC FINGER PROTEIN GLJI; CHAIN; A; DNA; CHAIN; C, D;	ZINC FDAGER PROTEIN GLU; CHADH: A; DNA; CHADH: C, D;	ZINC PINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZDC FDGER PROTEIN GLII; CHAIN; A; DNA; CHAIN; C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; · CHAIN: C, D;	ZDIC FINGER PROTEIN GLII; CHADI: A; DNA; CHADI: C, D;	ZINC FINGER PROTEIN GLU; CHAIN: A; DNA; CHAIN: C, D;	ZDNC FINGER PROTEIN GLI!: CHAIN: A; DNA; CHAIN: C, D;
Seq Fold Sears						¥ 8			
Phily		8.	8	6.99	ę,		8	8	8
Verify	Γ	010	977	55.0	7		ş	0.42	990
PSI Stere		24051	5.16-35 0.44	\$.le-32	6.16-27	29.	23 e 2	F 4 9	2.40-62
3 2		E .	žž	22	ğ	<u>&amp;</u>	<u>\$</u>	8	121
Start A		<u>e</u>	3	25	3	8	3	3	2
Chada Start ID AA		<	<	<	<b>~</b>	<	<	<	۷
108		ig.	Ď,	<b>19</b>	7	į,	<b>7</b>	7	ij.
SE O		35	3	3	9	2	≘	2	9

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

		_					_		_	_		_	_	_		_	_	_	_	÷	_	_			٠,	_	_
PDB sanstades	CALCIUM-BINDING, REGULATION, TROPONIN C, SKELETAL MUSCLE, 2 CONTRACTION																								CAT CITING BROWNING BROTTED	CALMODULIN APO TRICCIDOMAIN;	IOAF 9
Compound	NULL;	CALCIUM-BINDING PROTEIN CALMODULIN	COMPLEXED WITH	DOMAIN OF ICDM 3	CALMODULDA:	DEPENDENT PROTEIN	CALCTUM-BINDING	PROTEIN CALMODULIN	COMPLEXED WITH	CALMODULIN-BINDING	DOMAIN OF ICDM 3	CALMODULIN	DEPENDENT PROTEIN	KINASE II ICDM 4	CALCTUM-BINDING	PROTEIN CALMODULIN	(VERTEBRATE) ICLL 3	CALCTUM-BINDING	WESTERNATED ICLA	CALCIUM-BINDING	PROTEIN CALMODULIN	WERTEBRATE) ICLL 3	CALCTUM-BINDING	PROTEIN CALMODULIN	CALL MODELLE JICALE	WERTERATE: 1006 6	CHAIN: NULL: ICAP 7
Seq7ald Scare							18.59	_						-				2		Ī	_						_
PM P		8					Ī								8					100			970		1	į	_
Vertity		0.77					T		_	_	_				0.22					27			5		2	}	
PSI BLAST		3.46-56					3.40.56					_			15061			3		20-26			1.70-24		1		
3 \$		167			_		2								191		7	3		2			Ī		95	<u>`</u>	_
FF \$		=					=								11			=		Ī.,			8		1	:	
e di		<					Į										1			Ī	_				Ī		
5 a		1					8								101		1	 3	_	2			2	_	1	1	
Se S		165					<u>ş</u>	_		_					165			<u>s</u>		8			Ē			_	

292

WO 02/059260

PCT/US01/42950	WO 02/059260	PCT/US01/42950

										_
PDB annetation		CONTRACTION, CALCTUM-BROBRG, TROPORN, B.F. HAND, 2 OPEN CONFORMATION REQUILATOR Y DOMANI, CALCTUM-REQUILATED 3 MUSCLE, CONTRACTION	CALCIDIA REGULATED MUSCLE CONTRACTION HUSCLE ROPONIN, EP HAKD, 10 PEN CONTRACTION CALCIDIA BEDUNATORY CONFORMATION REGULATORY DOMAIN, CALCIDIA BEDUNATORY MUSCLE CONTRACTION	CALCIUM-BINDING PROTEIN EF- HAND ITNX 14	CALCIUM-BINDING PROTEIN EF- HAND ITNX 14					
Септина			Tropond C Cládu: Null:	TROPONIN C; ITNX 4 CHAIN: NULL; ITNX 5	TROPONIN C; I TNX 4 CHAPP: NULL; ITNX 5	CONTRACTILE SYSTEM PROTEIN TROPONIN C 1TOP 3	CONTRACTILE SYSTEM PROTEIN TROPONIN C 1TOP 3	CONTRACTILE SYSTEM PROTEIN TROPONIN C 1TOP 3	CALCIUM BROING WOTEN CLANDULLAN (VR-2-CF FRACHERT COMPASSING RESIDUES 11 -144 ITRC 3 OF THE PITACT MOLECULE) ITRC	MUSCLE PROTEIN TROPONIN C (TRIC
See Paid	Food		77.47	Γ	69.47			78.36		
H	Stare			8		8	0.77		8.	8
Venth	2			3		63.0	950		950	1.19
2	_		138-47	3.1946	5.10-46	6. Ee 49	5.1e-24	61-93	1.4-27 0.36	3.6-25
3			3	3	3	3	2	02.1	691	=
Start	\$		•	=		=	7	9	5	=
9									<	
PDB			Ā	1	ā	ğ	ğ	ĝ	E	Ē
SEO			Ē	Ē	Ē,	ž,	ž	165	<u> </u>	Ē

	ż	z	z	ż		2	Π	g _	ď .	Г
PDS assetation	STRUCTURAL PROTEIN HELIX TURN- HELLX	METAL TRANSPORT CALMODULIN, HOTH RESOLUTION, DISORDER	METAL TRANSPORT CALMODULIN, HIGH RESOLUTION, DISORDER	METAL TRANSPORT CALMODULIN, HOH RESOLUTION, DISORDER	TRANSFORT PROTEIN CALCIUM BINDING, EF HAND, FOUR-HELLX BUNDLS	CONTRACTILE PROTEIN TRUPONIN C-TROPONIN I INTERACTION, CARDIAC, MUSCLE PROTEIN, 2 CALCITIN BINDING PROTEIN, 2	CALCIUM-BINDING PROTEIN CALCIUM-MYRISTOYL SWITCH CALCIUM-MYRISTOYL SWITCH	CALCIUM-REGULATED MUSCIE CONTRACTION MUSCIE CONTRACTION CALCIUM-BINDING, TOPONIN, DE FILAND, 3 OPEN CONCORLACTION REGULATORY CONCORLACTION REGULATORY MUSCIE CONTRACTION	CALCIUM-REGULATED MUSCLE CONTRACTION MUSCLE CONTRACTION, CALCIUM-BRODIN, DROCODN, E.F. HAND, 2 OPEN CONFORMATION REGULATORY DOMARY, CALCIUM-REGULATORY MUSCLE, CONTRACTION	CALCIUM-REQUIATED MUSCLE
. Септректо	CARDIAC TROPONING: CHAIN: A:	CALMODULIN; CHAIN: A;	CALMODULIN; CHAIN: A;	CALMODULIN; CHAIN: A;	CALLACODULIN; CHAIN: A;	TROPONIN C; CHAIN: A;	RECOVERUN; CHAIN: NULL;	TROPONDI C; CHADI: NULL:	TROPONDI G GLADI: NULL:	TROPONIN C. CHAIN:
SeaPold							86.95			
Son	8	8	8	68.0	8	5		8	663	200
Verty Search	2	527	150	650	3	010		0.75	0.45	ő
E Last	_	5.16-59	3,44-25	3.46-23	3,4-37	6. <b>te-</b> 20	3.44-29	130-47	5.16.24	6195
35	3	168	25	₹	691	2	3	ā	21	3
\$ £	2	91	2	=	95	3	_	=	2	8
d e	4	٧	·v	٧.	٧	<b>v</b>				
<b>2</b> B	146	18	loss	lex	1221	SUL	ag.	ष्ट	Inf	ā
S a ğ	166	165	166	165	165	165	<u>s</u>	165	165	165

293

| D | D | D | AA | AA | BAST | Not | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept | Sept |

PDB agnetation	CONTRACTION, CALCIUM. ACTIVATED, TROPONIN, B.P. HAND 2 CALCIUM-BINDING PROTEIN	CALCIUM-BINDING PROTEIN SWTNC; CALCIUM-BINDING, REOULATION, TROPONIN C, SKELETAL MUSCLE, 1 CONTRACTION	MUSCLE PROTEIN MDE; MUSCLE PROTEIN					
Connpound		NULL NULL	MYOSIN; CHADN: A. B. C. D. E. F. O. H;	CALCTUM-BROBNO PROTERS CALMODULIN COMPLEXED WITH CALMODULIN-BROBNO BONARN OF ICDM 3 CALMODULIN- BEFORENT PROTEIN KINASE II ICDM 4	CALCUNA-BIDDING COMPLEXED WITH CALMODULIN-BIDDING CALMODULIN-BIDDING DOMAIN OF ICDM 3 CALMODULIN- EFECTION 1 KINASE II CODM 4	CALCTUM-BUYDING PROTEIN CALMODULIN (VERTEBRATE) ICLL 3	CALCIUM-BRODNO PROTEIN CALMODULIN (VERTEBRATE) ICLL 3	CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE) ICLL.)
Seq Padd Score					73		11.03	
FMF		6970	8	8		8.		050
Vertiy		0.50	0.73	0.72		0.75		<b>17</b> '0
PSI BLAST	Score	3.10-26	120-33	5.16.34	15 0 16 16 16 16 16 16 16 16 16 16 16 16 16	75-01	16-57	6.84-26
3 5		25	85	151	8	157	138	22
Start A		11	19	=	<u>6</u>	<u>=</u>	61	
i e				<	<			
<b>1</b> 0		ş.	ž	1	n populari n	<u> </u>	2	퀻
5 a	ĝ	165	ŝ	65	165	165	183	165

2%

WO 02/059260 PCT/US01/42950

		,								
PDB ansetzden		CALMODULM, CALCIUM BINDING, HELX-LOOP-HELX, SIGNALLING, 2 COMPLEX(CALCIUM-BINDING PROFEMPRETIDE)	CALMODULIN, CALCIUM BINDING, HELIX-LOOP-HELIX, SIGNALLING, 2 COMPLEX(CALCIUM-BINDING) PROTELN/PETIDE)	CALMODULIN, CALCIUM BINDING, HELX-LOOP-HELIX, SIGNALLING, 2 COMPLEX(CALCIUM-BINDING PROTEIN/PEPTIDE)	MUSCLE PROTEIN MUSCLE PROTEIN, MYOSIN SUBFRAGMENT-1, MYOSIN HEAD, 2 MOTOR PROTEIN		MUSCLE PROTEIN CTNC; CARDIAC, MUSCLE PROTEIN, REGULATORY, CALCIUM BINDING	MUSCLE PROTEIN CTNC: CARDIAC, MUSCLE PROTEIN, REGULATORY, CALCIUM BINDING	CALCHUM-BINDING PROTEIN CALMODULIN CENUM TRIC DOMAN, RESIDUES I - 75; CERUM- LOADEN, CALCHUM-BINDING PROTEIN	HYDROLASE CALCINEURIN; HYDROLASE, PHOSPHATASE, IMOALINOSI, IPPRESSION
Септрекая	TRUPONIN C (TRIC FRACKENT) (APO FORM) (NAR, 1 STRUCTURE) ITRF 3	CALMODULIN; CHAIN: A; RSZQ; CHAIN: B;	CALMODULIN; CHAIN: A; RSZQ; CHAIN: B;	CALMODULIN; CHAIN: A; RSDP, CHAIN: B;	MYOSIN; CHAIN: A, B, C;		TROPONIN'S; CHAIN: NULL;	TROPONTN C; CHAIN; NULL;	CALMODULIN; CHAIN; NULL;	SERINE/THREONINE PHOSPHATASE 2B; CHAIN: A. B:
See Fuld			SI:05			Ī		69.33		
2		16.0		0.70	3		2670		970	CIT O
Verthy Scar		11.0		3	<b>A16</b>		95'0		7.0	0.58
E PE		95 <del>- 4</del> 5 - 15 - 56	× • • • • • • • • • • • • • • • • • • •	1.76.24	1.76-24	-	6.Be-45	SP-493	5.4.	0-40
35		151	651	2	53		161	0.1	£	541
Žź		۶ı	=	_	g		01	-	1	11
<b>]</b> e		٧.	<	<						8
ē e		Ī	Ē	<u>t</u>	E I		3	3	71	19
ğeğ		166	ā	<u>s</u>		1	392	265	26	265

STRUCTURAL PROTEIN PELLYTURAL
REITAL PRANSPORT CALADDULIA
REITAL PRANSPORT CALADDULIA
REITAL PRANSPORT CALADDULIA
REITAL REION PROSEDER
REITAL REION PROSEDER
CONTRACTION, CALADLA BRODRA,
CONTRACTION, CALADLA BRODRA,
CONTRACTION, CALADLA BRODRA,
CONTRACTION, CALADLA BRODRA,
CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREALA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTRACTION AREA CONTR CARDIAC TROPONING, CHAIN: A: CALMODULIN; CHAIN: A: CALMODULIN; CHAIN: A: TRUPONIN'C 1TRX'A
GOMEN (CLITRX'A
COUNTAIN'S COUNTAIN'S
COUNTAIN'S COUNTAIN'S
COUNTAIN'S COUNTAIN'S
COUNTAIN'S COUNTAIN'S
REQUERY TRUPONIN'C
COUNTAIN'S COUNTAIN'S
REQUERY TRUPONIN'C
COUNTAIN'S COUNTAIN'S
REQUERY TRUPONIN'C TROPONIN C. CHAIN: NULL; Seq Pold Score P. W. 8 8 3 88 S 150 PSI BLAST Score 1,46-40 1.70-44 3.40-43 1.70-45 P S 151 88 8 8 8 F S a B 5 a ₩ B B Ī 03 00 05 05 05 05 05

297

WO 02/059260 PCT/US01/42950

				,,			
PDB ametaties	HYDROLASE CALCINEURIN; HYDROLASE, PHOSPHATASE, INXLINOSUPPRESSION	MUSCLE CONTRACTION MUSCLE OONTRACTION, CALCIUM- ACTIVATED, TROPONEN, E-F HAND 2 CALCIUM-BINDING PROTEIN	CALCHUM-BINDING CALCHUM- BINDING, MYRISTOYLATION, NEURONAL SPECIFIC GUANYLATB 2 CYCLASB, ACTIVATOR	CALCIUM-BINDING PROTEIN SWING CALCIUM-BINDING, REGULATION, TROPONIN C, SKELETAL MUSCLE, 2 CONTRACTION			
Compand	SERINE/THREONING PHOSPHATASE 18; CHAIN: A, B;	TROPONIN C, CHAIN: A, B;	NEUROCALCIN DELTA; CHAIN: A, B;	NULL:	CALCIUM-BINDNO PROTEIN CALMODULIN COMPLEXED WITH CALMODULIN-BINDINO DOMAIN OF ICDM 3 CALMODULIN- EFEDIDENT PROTEIN KINASE I ICDM 4	PROTEIN CALADODICA COAPLEXED WITH COAPLOULDS BRIDING DOMARN OF ICOM 3 CALAGOULDS. KINASE II ICOM 4 KINASE II ICOM 4	CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE) ICLL, 3
Seq Feld Scars	65.74		FF 38	-		18:59	
E S		673		<b>59</b>	8		8.
Vertsy Rear		0.67		3	0.71		0.tz
2	9	3.44-25	1.693	51-2K	3.4.36	3.46.36	19-62
3 \$	<u>5</u>	5	3	2	5	91	167
¥ Ş		=	-	=	=	=	18
<b>1</b> 00	_	<	<		<	<	
<b>2</b> e	1	<u> </u>	· P		<u>\$</u>	5	Ē
	255	265	ž	£	<u>s</u>	£	282

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

TO A ADMINISTRA				CALCIUM-BINDING PROTEIN CALMODULIN APO TRZC-DOMAIN; ICMF 9	STRUCTURAL PROTEIN HELLX-TURN- HELLX	METAL TRANSPORT CALMODULIN, HIGH RESOLUTION, DISORDER	METAL TRANSPORT CALMODULDY, HIGH RESOLUTION, DISORDER	METAL TRANSPORT CALMODULDY, HIGH RESOLUTION, DISORDER	TRANSPORT PROTEIN CALCIUM BINDING, EF HAND, FOUR-HELD BUNDLE	CONTRACTILE PROTEIN TROPONIN C-TROPONIN I PRERACTION, CANDIAC, MUSCLE PROTEIN, 2 CALCIUM BINDING PROTEIN	CALCIUM BINDING PROTEIN CALCIUM MYRISTOYL SWITCH, CALCUIM-BINDING PROTEIN	CALCIUM-REQUIATED MUSCLE CONTRACTION MUSCLE CONTRACTION, CALCUM-BINDING, TROPONIN, E-P HAND, 2 OPEN
Campana	CALCIUM-BINDING PROTEIN CALMODULIN OVENTERRATE) ICLL 3	CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE) ICLL 3	CALCIUM-BINDUNG PROTEIN CALMODULIN (VERTEBRATT) ICLL 1	CALMODULIN (VERTEBRATE); ICMF 6 CHAIN; MULL; ICMF 7	CANDIAC TROPONDA C. CHAIN: A;	CALMODULIN; CHAIN: A;	CALMODULIN; CHAIN: A;	CALMODULIN; CHAIN: A;	CALMODULIN; CHAIN: A:	TRUPONIN C; CHADY: A;	RECOVERIN; CHAIN: NULL;	TROPONIN C; CHAIN: NULL;
Sea Feed	73.45						Γ				56.95	
P.M.F		850	0.46	3	8	87	8	0.89	8	0.15		8
Verty Soors		0.74	23,	20.0	120	6.57	2	650	0.58	40.10		0.73
	19-95	130-26	1.70-24	5.16-21	15.65	5.10-59	3.46.25	3.46-23	3.40-27	6.16-20	3,40-29	1.26-47
3 5	99	2	7	89	3	29	22	7	691	191	38	891
Start	=		8	2	2	9	~	=	8	2		=
<b>1</b> =					<	<	~	<	4	<		
<u> </u>	3	3	ā	ĵiji J	<u>a</u>	Ĕ	3	ğ	161	185	₫	jiri,
_	Ş S	<u>88</u>	25	23	25	285	392	ž	<u>%</u>	ž.	žš.	282

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

ē e	đe •	a Ag ₹	35	BLAST BLAST	Vertify	FM7	Seq Fold Scars	Consposed	PDB asmetation
3	_	•	<u> </u>	6 Be-49			4.h	CONTRACTILE SYSTEM PROTEIN TROPONIN C 1TOP 3	
<u>B</u>	<	2	191	1. <b>4</b> .	70	8		CALCIUM BINDING PROTEIN CALAGOULIN (VIR-2-CS FRACUENT COMPAISING RESIDUES 78 - 144 ITRC 3 OF THE  INTACT MOLECULE) ITRC 4	
E		=	=	34-23	61.1	8'1	·	MUSCLE PROTEIN TROPONIN C (TRIC PRAGMENT) (APO FORM) (ARG. I STRUCTURE) ITM. 3	
Ē	<u>د</u>	2	<u>s</u>	16.59	0.75	8		CALMODULIN; CHAIN: A; RSTD; CHAIN: B;	CALMODULIN, CALCIUM BINDING, COMPLEX(CALCIUM-BINDING, 2 PROTENPEFFIDE)
Ī	۷	2	<u>s</u>	<u>ş</u>			73.17	CALMODULIN; CHAIN; A; RS20; CHAIN; B;	CALAODULN, CALCIUM BRDING, HELK-LOOP-HELK, SIGNALLING, 2 COMPLEX(CALCIUM-BINDING PROTEIN/PETTIDE)
Ĕ	<	-	2	1.45	0.13	6670		CALMODULIN; CHAIN: A; RS20; CHAIN: B;	CALMODULIN, CALCTUM BRODING, HELIX-LOOP-HELIX, SIGNALLING, 1 COMPLEX(CALCTUM-BRODING PROTED-PFEPTIDE)
Ī	۷	2	3	7.	62.0	690		CALMODULDI CHADI: A; RSSQ; CHADI: B;	CALMODULIN, CALCTUM BINDING, HELLYLOOPHELIX, SIGNALLING, 2 COMPLEXCALCTUM-BINDING. PROTELINGS
8	-	5	3	1.28-19	0.22	6.59		TROPONDN C; CHADN: NULL;	CALCTUM-BINDING PROTEIN CTNC; CARDIAC, MUSCLE, REGULATORY, CALCTUM-BINDING PROTEIN

PDB assectation	CONFORMATION REGULATORY DOMAIN, CALCIUM-REGULATED 3 MUSCLE CONTRACTION	CALCIUM-PEGULATED MUSCIE CONTRACTION MUSCLE CONTRACTION MUSCLE CONTRACTION, CALCIUM-BINDING, TROPONIN, E.F. HAND, 1 OPEN CONTORALION REGULATORY DOMAIN, CALCIUM-REGULATED 1 MUSCLE CONTRACTION MUSCLE CONTRACTION	CALCIUM-REGULATED MUSCLE CONTRACTION, USQUE CONTRACTION, CALCIUM-BUDINO, IROPODIALITO REGULATORY DOMANY CALCIUM-REGULATORY MUSCLE CONTRACTION MUSCLE CONTRACTION	MINCALE CONTRACTION MUSCLE TOWNERSTORM MUSCLE TOWNERSTORM LEGILATORY TOWNERSTORM CALCIUM-BIRDORY TOWNERSTORM CALCIUM-BIRDORY TOWNERSTORM CALCIUM-BIRDORY TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTORM TOWNERSTO	CALCTUM-BINDING PROTEIN EF- HAND ITNX 14	CALCIUM-BINDING PROTEIN EF- HAND I TINX 14		,
Coumpound		Tropond C Chain: Null:	Troponin C, Chain: Null;	Troponin C, Chain: Mull;	TROPONIN C: ITNX 4 CHAIN: NULL; ITNX 5	TROPONIN C; ITNX 4 CHAIN: NULL; ITNX 5	CONTRACTILE SYSTEM PROTEIN TROPONIN C	CONTRACTLE SYSTEM PROTEIN TROPONIN C
Seq Fald Sears				77.67		29.63		
Scare	Г	3g .	043		8	Γ	8	477
Vertify		25	673		કુ		64.0	979
BLAST		51e24 0.43	9195	126-47	5.10-46	5.10-46	6. le-49	3.16-24
3 >		3	Ī		ž	92	161	2
Start		2	8	6	=	6	=	~
Chatin Start ID AA								
808 10		Ā	<u> </u>	Ĭ	Ī	ā	<u>ş</u>	<u>ş</u>
S a S	i	E .	ĕ	55.	ĕ	£	285	352

301

| EACH | Fig. | Ches | Rarr | Lat | Verti | Pert | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | Mar

						_				
PDB emectades					STRUCTURAL PROTEIN HELLX-TURN- HELLX	METAL TRANSPORT CALMODULIN, IDGH RESOLUTION, DISORDER	METAL TRANSPORT CALMODULM, HIGH RESOLUTION, DISORDER	CONTRACTION AUSCLE CONTRACTION CALCULAENDING, TROPORTIC EF HAKID, 10 PEN CONTRACTION CALCULAENDING, CONTRACTION CALCULAENDING, DOLAIN, CALCULAEDOUT BO MUSCLE CONTRACTION	СОАСТИК ВЕОГИСТВИЕ МІЗСІВ СОМТКАСТІОМ КІЗСІВ СОМТКАСТІОМ КІЗСІВ В ПОСРОВІЙ, В Р НАКОЗ 10 РЕМ СОМСТОВАТІОМ У ВООГАТІОМ У ВООГАТІОМ У МІЗСІВ СОМТКАСТІОМ РОМАТІСЯ В ОМАТІСЯ ВООГАТІВО З МІЗСІВ СОМТКАСТІОМ У	CALCTUM-BINDING PROTEIN EP- HAND ITNX 14
Countpered	CALMODULIN- DEPENDENT PROTEIN KINASE II ICDM 4	CALCTUM-BINDING PROTEIN CALMODULIN (VEXTEBRATE) ICLL 3	CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE) ICLL 3	CALCTUM-BINDING PROTEIN CALMODULIN (VPRTEBRATE) ICLL 3	CARDIAC TROPONING	CALMODULIN; CHAIN: A;	CALMODULIN; CHAIN: A;	Troponin C; Chain: Null;	TROPONDI C. CHAIN:	TROPONIN C, ITNX 4 CIEALN; NULL; ITNX 5
SeqPold Score			71.03					64.07		63.93
Scure		8		8	8.	8	ã		8	
Verify Scere		0.75		#0	6970	8	53		0.28	
BLAST		18-57	18-57	6.86-26	04-07	1.76-55 0.50	1,40.23	7	1364	3.46-43
35		131	158	23	151	158	98	158	8	951
¥ Ş		=	63		2	=	_	2	=	13
<b>1</b> 0					<	<	<			
<b>2</b> e		3	Ē	3	191	8	8	ā	夏	Tag.
S e ș		282	392	292	592	265	285	292	265	282

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

		NSFERASE		DIMOLOGOUS	PROTEIN		BLE-STRAND PASE		N ACTINE CIUME ATTON	CALPONIN DING,	CALPONIN DING	3	INDING INDING	NIN	SADAG SADAG	TEN.
PDS sassection		ISOMERASE ISOMERASE, MUTASE, INTRAMOLECULAR TRANSFERASE		PLANT PROTEIN TWO HOMOLOGOUS HEVERN-LIKE DOMAINS	GLYCOPROTEIN GLYCOPROTEIN		REPLICATION DNA DOUBLE-STRAND BREAK REPAIR, ABC-ATPASE		ACTIN-BINDING PROTEIN ACTIN- BINDING PROTEIN, CALCIUM- BINDING, PHOSPHORYLATION	STRUCTURAL PROTEIN CALPONIN HOMOLOGY, ACTIN BINDING, STRUCTURAL PROTEIN	STRUCTURAL PROTEIN CALPONIN HOMOLOGY, ACTIN BINDING, STRUCTURAL PROTEIN	ACTIN-BINDING CALPONIN	HOMOLOOY (CH) DOMAIN: FILAMENTOUS ACTIV-BINDING DOMAIN, CYTOSKELETON	ACTIN-BINDING CALPONIN	HOMOLOGY (CH) DOMAIN; FILAMENTOUS ACTIN-BINDING DOMAIN, CYTOSKELETON	TRANSMEMBRANG PROTEIN COLICIN, BACTERIOCIN, ION CHANNEL FORMATION,
Contribution	SLT70; CHAIN: A;	METHYLMALONYL-COA MUTASE; CHAIN; A, B, C, D;		AGGLUTININ ISOLECTIN VI; CHAIN: A	LAMININ; CHAIN; NULL;		RADSO ABCATPASE; CHAIN: A, C, RADSO ABC- ATPASE; CHAIN; B, D;		T-FIMBRIN; CHAIN; NULL;	UTROPHIN; CHAIN! A, B;	UTROPHIN; CHAIN: A, B;	SPECTRIN BETA CHAIN:	CHAIN! A;	SPECTRIN BETA CHAIN;	CHADE A:	COLICIN IN; CHAIN: NULL;
See Peld Scare	Ī										74,00	27				
1 M.F		LG I		200	120		0.46		0.47	8				8		g Ç
Verify Score		0.24		96'0	16.0		900		11.0	6.79				20		617
PSI BLAST Form		2.76-06		0.00014	910000	Ī	16-26	Γ	5.18-26	<u> </u>	<u> </u>	j		Î		3,44-11
]\$		:		2	2		3	Ī	3	8	27	3		\$		92
Start A		3		=	=	Γ	15	Γ	ž	51ć	щ	Ē	}	339		a
9		<b>,</b>	ſ	<	Ī	ſ	<			<	<			<		
904	T	P.		3	9		g	Γ	1	3	3	į		旦		iā.
g e ģ		Ŧ		285	265		8	Ī	3	ş	š	ş		ğ		\$

_											_
PDB unnetution		CALCIUM BINDING PROTEIN EF- HAND ITNX 14					CALMODÚLIN, CALCIUM BINDING, HELIX-LOOP-HELIX, SIGNALLING, 2 COMPLEX(CALCIUM-BINDING PROTEIN/PEPTIDE)	CALMODULIN, CALCIUM BINDING, HELIX-LOOP HELIX, SIGNALLING, 2 COMPLEX/CALCIUM-BINDING FROTEIN/PEFFILDE)	CALMODULIN, CALCTUM BINDING, HELDL, SIGNALLING, 2 COMPLEXICALCTUM-BINDING PROTEINFEFTIDE)	MUSCLÉ PROTEIN MUSCLE PROTEIN, MYOSIN SUBFRAGMENT-1, MYOSIN HEAD, 2 MOTOR PROTEIN	TRANSFERASE ALPHA-SUPERHELLX,
Commpound		TROPONIN C; ITNX 4 CHAIN: NULL; ITNX 5	CONTRACTILE SYSTEM PROTEIN TROPONIN C ITOP 3	CONTRACTILE SYSTEM PROTEIN TROPONIN C 1TOP 3	CONTRACTILE SYSTEM PROTEIN TROPONTN C	MUSCLE PROTEIN TROPONIN C (TRIC FRAGMENT) (APO FORM) (PARE, I STRUCTURE) TRP 3	CALMODULIN; CHAIN: A; RS20; CHAIN: B;	CALMODULIN; CHAIN: A; BEZO, CHAIN: B;	CALMODULN; CHÁIN: A; R530; CHÁIN: B;	MYOSIN; CHAIN; A, B, C,	SOLUBLE LYTIC
SeqFold	Scare				27.00			69.13			
Æ	Score	ş	8	57.0		8	86.0		0.70	ă	10'0
Vertity	S.	ร	990	97.0		<u>6</u>	0.71		970	-0.16	0.04
Ē	BLAST Seen	3.44-43	25	3.46-23	į	1.4.23	36.0	1.6.56	1.74.24	1.70-24	6,00.0
Ked	\$	8	8	22	651	<u>-</u>	157	651	2	145	=
Start	\$	=	=		9_	=	2	6		R	×
Charle	A						<	<	<	a	<
PDB	9	Ē	<u>B</u>	<u>a</u>	g g	Ē	Ĭ	ivik	¥.	E C	2
SEO	ΒŞ	25	265	265	265	292	592	265	285	ž	ž

| 10 | 10 | A. | A. | BLATT | See | Barn | See | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company

307

ğ

**3 3** 

S = 5

CYCLODEXTRIN GLUCANOTRANSFERASE; CHAIN: A, B;

61.0

1

617

HUMAN SKELETAL MUSCLE ALPHA-ACTDUN 2, CHADH: A;

600

500

13813

ā ā

25

20

				_				_			_	_
944		TERA-KADICEATERADICETOR) OT BETA-CADANA META, PTJ: HOGOLICA: TRANSDUCTION; J LEGILA, GIOAL, THANSDUCTION; J LEGILA, TION, HIGSPROXIA; J STROTENS, THOREDOXIA; J STROTENS, THOREDOXIA; J	COMPLIANCE OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION TO ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE ASSOCIATION OF THE		HYDROLASE PI-PLC, HYDROLASE, PHOSPHOLIPD DEGRADATION, VIRULENCE PACTOR OF 2 HUMAIN PATHOOEN	HYDROLASE PI.PLC, HYDROLASE,	MIGSPHOLIPID DEGRADATION, VIRULENCE PACTOR OF 2 HUMAN PATHOGEN	HYDROLASE PLPLC, HYDROLASE,	PHOSPHORIC DESTER, LIPED	PHOSPHATDYLMOSITOL SPECIFIC PHOSPHOLDASEC	HYDROLASE PI-PLC; HYDROLASE,	PROSPRORIC DIESTER, LIPED DEGRADATION, 2
	Certifornia	G; PHOSDUCTN; CHADA: P;	TANSDICTN; CHAIN: B,		PHOSPHATIDYLINOSITOL SPECIFIC PHOSPHOLIPASE C, CHAIN: NULL;	PHOSPHATIDYLINOSITOL.	SPECIFIC PHOSPHOLIPASE C, CHAIN: NILLI:	PHOSPHATEDYLINOSITOL	-SPECIFIC	CIAN: NULL;	PHOSPHATIDYLINOSITOL	PHOSPHOLIPASEC
	Score					16'98					74.76	
	Sea.		R P		6.9			2				
	8		0.12		0.10			60.0				
1	BLAST	•			19-93	6. Be-67		3,46-34			3.40-34	
	3 5		677		Ē	312		ē			E	
	¥ \$		R.		9	2		Ŀ			ļ	
	<u> </u>		a.					L				
	<b>.</b>	1	1	Г	l	١		1			L	

308

WO 02/059260

PCT/US01/42950

WO 02/059260

CHAIN: NULL;

61.0

633

339

SaqFold

PAR Search

Verify Seers

PSI BLAST

3 5

PDB Chals Start

S B S

PCT/US01/42950

PCT/US01/42950

TRYPSIN: CHAIN: A. B. C. ITRYPSIN: CHAIN: A. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B. C. B.

210.95

8

<u>ā</u>

250 1.7e-93 1

ន ន

623

							_
PDB sanotation	SERINE PROTEINASS TRYPSTN-LIKB SERINB PROTEINASE, TETRAMER, HEPARIN, ALLERGY, 2 ASTHMA	SEALME PROTEASE PROBENTN CONVERTING ENZYME (PRECE), EPIDERAAL GLANDULAR KALLINGEN, SERNE PROTEASE, PROTEIN MATTURATION	SERING PROTEASE PRORENIN CONVERTING ENZYME (PRECE), EPIDERMAL GLANDULAR KALLINGEN, SERINE PROTEASE, PROTEIN MATURATION	בסילות אונסאנטות מורטטים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במורטסים במור	COMPLEX (SERING PROTEASE) AND TRY (SERING PROTEASE) AND TRY (SERING PROTEASE) AND TRY (SERING PROTEASE AND TRY (SERING PROTEASE AND TRY (SERING PROTEASE)	SERINE PROTEASIS SERINE PROTEASIS, HYDROLASIS, COMPLEMENT, FACTOR D, CATALYTIC 2 TRAD, SELF- REGULATION	PLASMINOGEN  BLOOD CLOTTING TSV-PA. ACTIVATOR; CHAIN: A, B; FIBRINOLYSIS, PLASMINOGEN
Cermpense	BETA-TRYPTASE; CHAIN: A. B. C. D;	GLANDULAR KALLIKREN-13; CHAIN: A, B;	GLANDULAR KALLIKREIN-13; CHAIN: A, B;	ACTIVATED PROTEIN C. GHAIN: C. L. DPREPRD- MAT, CHAIN: F,	D, B, ECOTTIN; CHAIN; C,	COMPLEMENT FACTOR D: CHAIN: MUL;	PLASMINOCIEN ACTIVATOR; CHAIN: A, B;
SeqPaid Score	144.00	197.00		5050	14.12	27.51	160.19
Scere 4 Mid			8				
Verify			8:				
BLAST	17.4	3.6.13	1. 6. 19.		3.40-63	17 m	5.16.79
7	ă	8	8 <u>7</u> .	677	82	57	ន្ត
Start	2	a	7	a	z	3	*
O O	<	<	<	U	<		
97 804	<u>a</u>	3	<u>5</u>	1	<u> </u>	2	<u>B</u>
\$ 0 0 0 0 0 0	ş	ş	\$3	S	ş	3	8

PDB ametaden		ACTIVATOR, SERINE PROTEINASE, 2 SNAKE VENOM, COMPLEX	CLOTTING CLOTTING	SERINE PROTEASE HYDROLASE, SERINE PROTEASE, DIGESTION.	PANCREAS, ZYMOGEN, 2 SIGNAL, MULTIGENE PAMIL, Y	HYDROLASE/HYDROLASE INHIBITOR	ENTEROKINASE, HEAVY CHAIN;	ENTEROKINASE, LIGHT CHAIN;	ACTIVATION 3	HYDROLASEARYDROLASE INITIBITOR	SERING PROTEINASE		COMPLEX (PROTEASE/INSERTIOR)	TRYPSIN, COAGOLATION PACTOR	AA CHIMEKA, PROTEASE, FFALK, I	COLOROME I THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PAR	(No. 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 10 mary 1											
Consuperzad		GLU-GLY-ARO- CHLOROMETHYLKETONE	INSTRUMENTOR; CHAIN: B. F.	TRYPSIN; CHAIN: MULL;		ENTEROPEPTIDASE;	CHAIN: A:	ENTEROPEPTIDASE,	A CP. A CP. V. PEPTIDE.	CHAIN: C.	ELASTASE; IELT 4 CHAIN:	MUL; 1ELT S	COAGULATION FACTOR	XA-TRYPSIN CHIMERA;	CHAIN: A; DANGE-MO-	Cut Oschication representation	(PPACIC) WITH CHAIN: I.	COMPLEXCPROTELNASEA	NEEDTOR) TRYPSIN	(E.C.3.4.21.4) COMPLESCED	WITH DRIEDITOR PROM	BILLER HACH JOOKED	COMPLEXOREOTENASES	NHOBITOR) TRYPSIN	(ECJ.4.21.4) COMPLEXED	WITH INHEBITION FROM	BITTER IMCT J GOURD	
SeqFold	Scen			197.58		145.55		_		_	65091		17.67.1										31100					
PMP	2																	8		_	_							
Vertity	Scere												L					260								_		
150	E			130.03		2,76-80					1967		1.50-10					6.84.95					6 46.05					
782	1		Ĭ	82		672					77		250					549					9	_				
Start	\$			3		2					a		12	_				2		_			7	_				
S S	9					B	_						٧				_	<					ŀ	:				
804	9			8		₫					4		_Agr					T I					ì					
ONS.	e ģ			ŝ		ŝ					63		83					ŝ					963	ì			_	

31

SEKUNB PROTEDNASB SEKUNB PROTEINASB, OLYCOPROTEIN	HYDROLASE MICROPLASMINOGEN, SEXDE PROTEASE, ZYMOGEN, CHYMOTRYPSIN 2 FAMILY, HYDROLASE	GROWTH FACTOR 73 NOP; GROWTH PACTOR (BETA-NGT, HYDROLASS). SERUG PROTEINASS 7 (GAMGA-MOT), DAY GERING PROTEINASS (ALFHA-NGP)	GROWTH PACTOR 15 NGF, GROWTH PACTOR (BETA-NGF, HYDROLASS - SERING PROTEINASE 2 (GAMMA- MGP, GWACTIVE SERING PROTEINASE (ALPHA-NGP)	GROWTH FACTOR 78 NOP; GROWTH FACTOR (BETA-NOP, HYDROLASS - SERIGE PROTEDIASE 2 (GANGAA- NOP, DAACTIVE SERINE PROTEINASE (ALPHA-NGP)	COMPLEX (SELDE ROTBASE/DAGETTOR) TRYPEIN HEISTING, COMPLEX, BEDDING STELL, RETAL BEDDING STELL, PROTEN SUGSTALLON, PROTEASE SUGSTALL TREATINGS, 3	COMPLEX (SERINE PROTESTN PROTESTN PROTESTS PROTESTS PROTESTS PROTESTS PROTESTS PROTEIN PRODUCE STEELS, 2 PROTEIN
_			NERVE GROWTH FACTOR: CHAIN: A, B, Q, X, Y, Z;	NERVE GROWTH PACTOR: CLAIN: A, B, G, X, Y, Z;	GOOTH; CHADI: A. ANGWIC TR YPSIM; CHADI: B;	ECOTIN; CHAIN; A; ANTONIC TRYPSIN; CHAIN; B;
23.62	132.25	154.03		203.29		16391
			<u>8</u>		8	
			693		2670	
2.70-88	8.1e-79	f.le.77		3.44-91		6.10
25	330	82		ន្ត	677	230
2	9	g	3	3	ຊ	ä
Ţ	<	<	0	0	<u>a</u>	e e
g.	돌					<u> </u>
629	629	S ₃	63	g	á	63
	Impa A 24 249 2.70-88 235.42 NEURUPSIN; CHAIN: A. B;	1972 A 6 259 8.18-79   13235 PLÁSAINOGEN; CHANN: A, B.   1922 A 6 259 8.18-79   13235 PLÁSAINOGEN; CHANN: A, B.   1922 B 6 259 8.18-79   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   1922 B 7458INOGEN; CHANN: A, B.   192	1972   A   24   27   24   27   24   27   24   27   24   27   27	134.5   145.5   145.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.5   155.	Haps	Happo

WO 02/059260

g e ğ	<b>9</b> 9	<b>d</b> e	Ş ¥	ž \$	E Tag	Keath Kear	P.M.P	Seq Fold	Consepone	PDB ametades
629	Ą		3	82	<u> </u>			165.28	HYDROLASE(SERINE PROTEINASE) TR YPSIN (E.C.1A.21.4) COMPLEXED WITH REDIZAMENDE THYDROLASE(SERINE THYDROLASE(SERINE	
3	8		R	82	1.70-91	29'1	8		BETA TRYPSIN; CHAIN: NULL;	SERING PROTEASE HYDROLASE, SERING PROTEASE, DIGESTION, PANCREAS, 1 ZYMOGEN, SIGNAL.
5	g.		3	952	1.70-91			202.83	BETA TRYPSIN; CHAIN: NULL;	SERINE PROTEASE HYDROLASE, SERINE PROTEASE, DIGESTION, PANCREAS, 2 ZYMOGEN, SIGNAL
632	is.	ر	21	041	1.74.78			15753	INDAUNOCLOBULIN FAB	IMMUNOGLOBUIDN DIELS-ALDER, DISFAVORED REACTION, CATALYTIC ANTIBODY, 2 MAUDOOLOBUI,N
63	<b>7</b> 91	1	<b>=</b>	691	1.74-80	0.53	971		CALIN: F, CHINO 172; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T, H; CALIN: T,	COMPLEA ANTEGORY RES. MANCHOOLOBULAN, ANTEGORY RES. MANCHOOLOBULAN, ANTEGORY RES. MANCHOOLOBULAN, BETTORE, COMPLEX, (MANCHOOLOBULANVIRAL, REFITIBE)
S	ā	ب	7	0/1	1.76-90			151.40	IGODA; CHADI; I, H; CHADAN REBOVIBUS CHADI: P; CHADI: P;	COMPLEAST INVINORATION THE SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF SETTING CONFILES OF
632	Ī		1	170	1.44.15			176.88	BANUNOGLOBULAN, DIELS ALDER CATALYTIC ANTIBODY; GIAIN: L, H, A, B;	IMMUNOGLOBULIN LAMUNOGLOBULIN, ANTIBODY, CATALYTIC ANTIBODY, DIELS ALDER, 2 GERMLINE
23	8		Ē	٤	1.74			160.46	FAB FRAGMENT CTMOI;	IMMUNOGLOBULIN

PCT/US01/42950

WO 02/059260

PDB annotation	ENOINEERING, PROTEASE- SUBSTRATE INTERACTIONS, 1 METALLOPROTEINS					
Conspound		HYDROLASE(SERING PROTEINASE) TONIN (B.C. NUMBER NOT ASSIGNED) 1TON 4	HYDROLASE(SERINE PROTEINASE) TONIN (E.C. NUMBER NOT ASSIGNED) 1TON 4	HYOROLASE (SERINE ROTEUASE) TRYBEN (EC.J.A.11-) COMPLEXED WITH THE DUBLICA ITMN 1050PROPYL FLUGROPHORSPROPYL FLUGROPHORSPROPYL RUMAN TRYBEN OFF HUMAN TRYBEN OFF	HYDROACES (SEEDE ROTENASE) RYPEN RCLEAZII OOMULEED WITH THE BHIBHTOR ITAN I DUSOPROPTU- PLUOROPHOEFHOFTU-ONI DATE (DPP) ITEN 4 HUBAAN TRYESI, BPP	HYDROLASE(SERINE PROTEINASE) TRYPSIN (E.C.) A.21.4) COMPLEXED WITH REPLANDING
Seq Faid Score			() [Q		191.92	
PMF Score		8		8		8
Vertity Score		974		250		£6.
ELAST Serv		18-8:1	<u>8</u>		1.78-92	15-691
3 2		ន	ន	349	22	S ₂
Start		3	A	z z	3	a
e e				<	<	
PDB 10		oi i	<u>8</u>	Ē	<u>s</u>	Å
g e g		8	ŝ	629	68	63

313

PCT/US01/42950

| St. | 190 | Chain | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start | Start |

PDB sasotides		MAINTER SYSTEM FAB-LEP COMPLEX CRYSTAL STRUCTURE 2.1A RESCLATION BRIDDING 2.0ATSDB THE ANTIGEN COMBINING STE STUFFICHATION FAB VH 3 SPECFICITY	DOMUNOCIOBULIN				CATALYTIC ANTBODY CATALYTIC ANTBODY 609 CATALYTIC ANTBODY, ESTER HYDROLYSIS, ESTEROLYTIC, FAB. 2 INMINOCLOBULIN	
Centiperad	ANTIBODY IDBB 3 (IOGI, SUBGROUP 24, KAPPA 1) COMPLEX WITH PROCESTERONE IDBB 4	TOM NY ZAZ CHADN: A, C, E, 10M NY ZAZ; CHADN: B, D, P, DAGUNOCILOBULIN G BINGTHON A; CHADN: Q, H;	44-20 (IG*02A-KAPPA-) PAB FRAGMENT; IFLR S CHAIN! L. H. IFLR 6	IMMUNOGLOBULN FAB FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 1FVD 3	IMMUNOCIOBULIN IGOZA PAB FRAGMENT (PAB 179) 1HIL.3	IMMUNOGLÓBULN IGGZA FAB FRAGMENT (PAB 179) HILL 3	IMMUNOGLOBULIN 60%; CHAIN! L, H;	DAMUNOGLOBULIN 1002A FAB FRACINENT (FAB 179) COMPLEX WITH PEPTIDS OF 11FH 3 INPLUENZA PEPACOGLITININ HAI
Seq Padd Score			169.43			148.78	163.42	
A See		87		1.00	00'1			87
Verify		0.58		0.57	0.45			6.50
PSI Sears		1.76-91	3.40-16	3.46-19	3.40-90	3.40-90	7 8	3.46-90
3 \$		0.4	62	22	169	0/.T	170	169
Stern A		=	77	2	æ	23	×	2
g a		<		< -	<	<	_	ر
<u> </u>		<u>8</u>	直	2	2	2	r.	£
ğ e ğ		632	632	632	632	632	65	23

WO 02/059260	PCT/US01/42950	WO 02/059260	PCT/US01/42950

9	Start	W	PSI SEAST	Verity Seers	¥ S	Seq Paid Scare	Coumpound	FDB anactation
							ANTIBODY D2.3 (HEAVY CHAIN); CHAIN: H;	IMMUNE SYSTEM
	12	<u>g</u>	16-93	<b>3</b> 0	90'1		DAACINOGIJOBULIN FAB FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CD14 ZFGW 3 ANTIBODY Y1SZ (MIHSZ- OZ FAB) ZFGW 4	
		Γ						
	ន	=	3,46-33			\$1.12	MONOCLONAL ANTIBODY DI.3; CHAIN:	COMPLEX (DACHARD BULDNIND ROLASE)
							C Bi LT SOZ I MES CROINS	(DAMUNOGLOBULDNINDROLASE), DAMUNOGLOBULIN V 2 REGION,
								SIGNAL, HYDROLASE, GLYCOSIDASE, BACTERIOLYTIC 3 ENZYME, EOG WHITB
	R	=	1.76-32			31 25	MONOCLONAL ANTBODY DI J; CHADI: L. H:	BOKUNOGLOBULN BOKUNOGLOBULN, VARIANT
	я	=	1.76.13			St.16	MONOCLONAL ANTIBODY CZ19, CHADN: A, B, C, D,	DOMINOGLOBULIN VARIABLE DOMAIN; SINGLE CHAIN FY, MONOCLONAL ANTBODY, C219, P. GLYCOPROTEN, 2
	n	111	3.1€3 <b>2</b>	40.18	8.0		HIGA-A 0201; CHAIN! A: DETA-2 MCROGLOBULIN; CHAIN! B: TX FETIDE; CHAIN! C: T CELL RECEPTOR ALPHA; CHAIN! D: T CELL RECEPTOR BETA; CHAIN;	MANGALBURA COMPLEX (MICYURAL PETIDEAECHTOR) HLA AZ HEAVY CHADE, COMPLEX (MICYURAL PETIDEAECHTOR)
							E.	CHAIR GOMESTIC STREET
	R	=	346.34	3	8		14.3.D T CELL ANTIQUEN	KELFTUK I CELL KELEFTUK IBEL

	-		_	_	-	_	_	_	_	-	r	-	7	Г	-	_	_	_	-	_	1	_	7	_		٦	_	_				Г
PDB amountion																						DAMUNOGLOBULLN		MONOCLONAL ANTIBODY	MONOCLONAL ANTIBODY, PAD-	FRAGMENT, REPRODUCTION	MONOCLONAL ANTERODY	MONOCLONAL ANTIBODY, FAB-	FRAGMENT, REPRODUCTION	CATALYTIC ANTIBODY CATALYTIC	ANTIBODY, TRANSITION STATE ANALOGREE	DAMUNE SYSTEM ABZYME.
Compeend		(STRAIN X47) (RESIDUES 101-107) (IFH 4	INMUNOCIOBILIDA	TOGZA PAB PRAGMENT	(FAB 179) COSOLEX	WITH PEPTEDS OF 11PH 3	DIFLUENZA	HEMAGGLUTININ HAI	CSTRADY X47) (RESIDUES	101-107) 1IFH 4	INMUNOCITOBULIN 1001	FAB' FRAGMENT (B1312)	IIOF 3	DAMUNOGLOBULDY	INCAUNDOLOBULDN PAB	FRACMENT (MC/PC\$603)	IMO 4	DAMUNOGLOBULIN	DAMUNOGLOBULDN FAB	FRACIMENT (MC/PCS603)	IMCP 4	10GZA=KAPPA=; 1PLO 4	CHAIN: L. H. IPLO 5	MONOCLONAL	ANTEODY 3A2: CHAIN: H.	3	MONOCLONAL	ANTIBODY 3A2; CHAIN: H.	12	1002A FAB FRAGMENT	(D2.1); CHAIN: L, H;	16 АМТВОБУ 023 (ЦОНТ
Sea Field	Scar		148.62							_	163.94							16.031		_		165.16			_		151.00	_		15163	_	25
L.	Š	П												8				Γ						8								
Verly	Š		Г								Γ			697										99.0			Γ			Γ		Ī
	Score		3.46-90								5			16-31			_	16-91				3,46-85		6.80-95		_	6.86.95		_	1.le-62		110.02
3	ŧ		8								22			9				2				170	_	691		_	2	_	_	170		22
Start	<b></b>		17	_					_		77	_	_	~		_	_	12				17	_	17			31			77		-
Charles	9		1											_				_				ı	_	1			7	_	_	_		_
FDB	8		di-		_						1	•		8				eban 1				g pd g		ě			Ą			ž	_	1
8	9 8		2				Τ		_	_	2	_		E	_			22			_	32		33	Ī		32			1		1

PDB annetation	*	DANUNOGLOBULIN DANUNOGLOBULIN, PV PRACINGNT, STEROOL 102MONG, 2 FING	COMPLEX (ANTIBODY/ANTIGEN) COMPLEX (ANTIBODY/ANTIGEN), ANDIOGENIC RACTOR	COOPLE ST (HULAVUZED AVITBODY(HUROLIAS) AVITBODY (AVITBODY COPLEX, FV, ANTL-YSOZYRE, TOWANZED OHDAAUZED AVITBODY(HUROLIAS)	DAKING SYSTEM PAB-18P COMPLEX CRYSTAL STRUCTURES 2.7A RESCUTION BRODNO 2 OUTSIDE THE ANTICEN COMBROND SITS SUPERANTIGEN FAB VED 3 SPECTICATY SPECTICATY		DOMUNOGLOBUELN ANTI-DANSYL FV FRAGMENT FV FRAGMENT, DAMUNOGLOBUELN	MANUNOGLOBULIN BIDSEV; MONOCLONAL ANTIBODY, ANTITUMOR, IMMUNOGLOBULIN	
Compensed	RECEPTOR, IBEC 5 CHAIN: NULL; IBEC 6	FV41SS; CHAIN: L, H;	FAB FRAGMENT; CHAIN: L, H, J, K; VASCULAR ENDOTHELLAL, GROWTH PACTOR: CHAIN: Y, W.	HILYSIYAR, CHAIN: C. F. LYSOZYMR, CHAIN: C. F.	IGM RF 1A2; CHAIN! A. C. E! IGM RF 1A2; CHAIN! B, D, F; IMMINACILOBULIN G BINDING PROTEIN A; CHAIN! G, H;	IMMUNOCLOBULD 3D6 FAB IDFB 3	ANTEDANSYL INDMUNOGLOBULN IGCZA(SI: CHAPI: L. FE	ANTICANCER ANTIBODY BI; CHAIN: L, II;	INDMINOGLOBULIN FV FRAGMENT OF A HUMANIZED VEKSION OF
Source Source		21.90		ă			10.22	\$0.03	
N. S			593		100	0.63			0.99
Verts			-0.21		629	20			900
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		T-eZ	1.56.21	F-43	9	3,44-36	1.76-27	3.44.25	3.44-40
32		=	=	=	=	≣	1	=	=
ž t		Я	я	R	я	2	я	я	я
f e				<	<	_	۔		
<b>2</b> e		Ē	2	Ī	- <u>1</u>	Ē	ğ	Ā	į.
g e g	Γ	3	3	3	3	9	3	ĝ	ĝ

WO 02/059260

PDB assectation							
Согироный	THE ANTI-COIS IFOV 3 ANTIBODY 152" (KUISS- AA FV) IFOV 4	DEMENDOLOBULDS FV PRACHENT OF A HUMANIZED VERSION OF THE ANTI-CD11 IFOV 3 ANTIBODY 11ST GRUISS- AA FV) IFOV 4	IMMUNOCICOBULIN PV PRACIMENT OF HUMANIZED ANTIBODY 4D5, VERSION 1 IPVC 3	INDIVINOGLOBULIN FV PRACIMENT OF HUMANIZED ANTIBODY 4D5, VERSION # 1PVC 3	DAMUNOGLOBULIN FAB FRACKENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 IFVD 3	DAMINOCIOBULN MANINOCIOBULN IN DOMAIN OF KAPA LIGHT IIVI 3 CHARD) OF DESIGNED ANTBODY MASSINED ANTBODY	IMALINOGLOBULIN MURINE ANTBODY 25-10 VL DOMAIN (NAR., 15 ENERGY MINIMIZED 11 MAJ 3 STRUCTURES)
Sear Sour		<b>X X</b>		32.10		52.59	3. N
Scar Scar			98.0		200		
Venth		,	-0.06		0.03		
PSI BLAST Sear		3.45-40	3,46-40	3.45-40	17-943	3.46-28	1.42.1
¥ ₹		<b>2</b>	=	=	=	11.	=
Start A		82	QZ	02	8	8	8
a B		د	,	٠.	<	<b>~</b>	
5 G		Ţ.	₹ .	iş.	Ē	<u>≅</u>	ī
0 a 8		8	63	3	£3	3	63

320

WO 02/059260

PCT/US01/42950

WO 02/059260

PCT/US01/42950

tarifice.		T OXYGEN VA PROTEIN, EIN, HEMB		RANSPORT HB N D (R-STATE) 1, N, HIGH 2 GEN			THEME, T, RESPIRATORY	T X-RAY STUDY, SIN, ARTIFICIAL CYGEN
PDB annetation	4	OXYGEN TRANSPORT OXYGEN TRANSPORT, CHÜMERA PROTEIN RESPIRATORY PROTEIN, HEME		OXYGEN STORAGE/TRANSPORT HB D; HB D HEMOGLOBIN D (R.STATE) I, HEMOGLOBIN, AVIAN, HIGH 2 COOPEDA TUTY, OXYGEN TRANSPORT			OXYGEN TRANSPORT HEME, OXYGEN TRANSPORT, RESPIRATORY PROTEIN, ERVIHROCYTE	OXYGEN TRANSPORT X-RAY STUDY, PORCING HEMOGLOBIN, ARTIFICIAL IDMAN BLOOD, 2 OXYGEN
Coumpound	HEMOGLOBIN THONYILLE ALPHA CHAIN MUTANT WITH VAL. I BAB 3 REPLACED BY GLU AND AN ACETTATED MET BOUND TO THE IBAB 4 AMINO TERMINUS IBAB 5	MODULE-SUBSTITUTED CEMCERA HEMOGLOBIN BETA-ALPHA; CILAIN: A, B, C, D;	OXYGEN TRANSPORT HEMOGLOBIN (DEOXY, HUMAN FETAL F-A15*) 1FDHG 1 [FDHH 2	HEMOGLOBÍN D; CHAIN: A, C; HEMOGLOBÍN D; CLAIN: B, D;	OXYGEN TRANSPORT HEMOGLOBIN (DEOXY) HDA 3	OXYGEN TRANSPORT HEMOGLOBIN (SICKLE CRLL) HDS 4	HEMOGLOBIN (DEOXY); CHAIN: A, B;	PORICINE HEMOGLOBIN (ALPHA SUBUNIT); CHAIN: A.C. PORICINE
Sea Peda								
N. S		8	8	8	\$3	0.93	8,1	80.
Vertig		-068	8,4	-0.76	2	4.73	9.66	3
15 15 15 15 15 15 15 15 15 15 15 15 15 1		3.16.33	1.4.1	<u> </u>	1.76-33	6.86-31	<b>3</b>	1.4.1
35		25	t.	£	1	u	1	+
ğş		-	-					
<b>2</b> 0		<	0	<b>a</b>	_	<b>.</b>	<u> </u>	_
ē e		4	9	五	2	2	8	<u>s</u>
g a §		3	3	â	â	ã	ŝ	â

322

PDB smetades	RECEPTOR TCR; T-CELL, RECEPTOR, TRANSMEMBRANB, GLYCOPROTEIN, SIGNAL			итластроитми помимостовитм	OXYGEN TRANSPORT OXYGEN TRANSPORT, HEMER, RESPIRATOR Y PROTEIN, ENYTHEOCYTE	OXYGEN TRANSPORT OXYGEN TRANSPORT	
Countpound	ALPHA, BETA T-CELL RECEPTOR CHAIN: A, B;	IMMINOGLOBULIN PAB FRACIMENT OF A FUDANIZED VERSION OF THE ANTI-CENT REGW 3 ANTIBOOV 1452 (FUHS2- OZ PAB) ZFGW 4	THE SEEN RELIGIOUS NOCICES THAT IS ON MOCICE STAND. THE SEEN RETAINED BOWKING (VARINETE DOWNING PERSEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN MICH. SEEN RELIGION IN	IMMUNOGLOBULM (LIGHT CHAPP, CHAPP, A, C, E, G; IMMUNOGLOBULM (MANY CHAPP), CHAPP; B, D, F, H;	HEMOGLOBIN; CHAIN: A,	HEMOGLOBIN; CHAIN: A, B, C, F;	OXYGEN TRANSPORT
Seq Void Score			20.13	ίζι T			
2 5	8	0.43			90:1	8	8
Vertfy Scere	000	8			-0.66		
E 75 5	_	0-43	7. 1. 1.	1.7+33	1.70-35	1.28-36	1.75-36 -0.71
₹ <u>5</u>	≘ _	=	=	<b>e</b>	11	77	4
Start A	R	2	92	2		_	
da e	_			٧		E	В
<b>2</b> 8	ā	17th	7jmu	53	J#I	a ga	9
SEQ.	3	3	3	63	\$09	509	519

321

COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLE MONOCLONAL
AVERBOOY DI, CHADE:
LA E
AVERBOOY DI, CHADE:
FAB FAKGUENT:
A B, C, D.
GGW REA, CHADE:
AVERBOA; CHADE:
AVERBOA; CHADE:
AVERBOA; CHADE:
H, L, CYTOCHROME C OXIDASI: GIAIN: A. B; ANTBODY FV FRAGMENT; CHAIN: C. D; SUBUNITY CHAIN: B, D Son Fold 3 \$ Ξ 8 ğ ş **3** a 1 9 ទី១ទី ន 63 5

PDB senecation	TRANSMEMBRANE, CYTOCHBOME OXIDASH, ANTIBODY COMPLEX	IMMUNII SYSTEM BENGE-JONES; DOMUNOGLOBULIN, AMYLOID, DOMUNE SYSTEM	BONUNOGLOBULIN BONUNOGLOBULIN, KAPPA LIGHT- CILAIN DIMER HEADER	COMPLEX PHEOVIEAL PETTIDE/RECEPTOR) HA A 2 HEAVY CHARK COMPLEX (MHEOVIEAL PETTIDE/RECEPTOR)	COMPLEX (ANTIBODY/ANTICEN) FAB-12; VEGF; COMPLEX (ANTIBODY/ANTICEN), ANGIOGENIC FACTOR	COMPLEX (ANTIBODY/ANTIGEN) FAB-IZ-VEGP; COMPLEX (ANTIBODY/ANTIGEN), ANGIOGENIC FACTOR	DMKUNOGLOBULIN BENGEAONES PROTEIN, IBIM 1 BENGE KONES, ANTBODY, MULTIFLE QUATERNARY STRUCTURES IBIM 13	COMPLEX (HUDANIZED AVTRODY/HYDROLASD) AVTRODY/AVTRODY COMPLEX AVTRODY/AVTRODY COMPLEX (HUDANIZED)
Composed		BENCEJONES KAPPA I PROTEIN BRE; CHAIN: A, B, C,	DKKUNOGLOBULIN; CHAIN: A, B;	HAAA RONG CHADE. AN RETA'S META'S AB FRAGMENT, CHAIN: L, H, J, K; VASCULAR ENDOTHELLAL GROWTH PACTOR, CHAIN: V, W;	FAB FRAGIGENT, CHAIN: I, H, J, K; VASCILAR ENDOTHELLAL GROWTH FACTOR; CHAIN: V, W;	LOC - LAMBDA I TYPE LIGHT-CHAIN DINER; IBJM 6 CHAIN: A, B; IBJM 7	HOLYSI I; CHAIN: A, B, D, B, LYSOZYMB; CHAIN: C, F;	
Seq Fald Scare		33.76	86.36	51.40		2.2		s x
PMF					3		S	
Scars					g		9,03	
ELAST FEAST		1.46.39	3.46-55		1.76-57	1.76-57	8.56-67	3.45-41
3 5	Γ	5	ğ	<u>&amp;</u>	921	8	=	5
Start	Γ	<u>_</u>	2	a	5	61	17	6
Chah To		<	<	۵	د	٠	<	۷.
108	Γ	<u>š</u>	<u>3</u>	ă	ī-Ā-I	<b>2</b>	Ē.	Ĭ
S e S		63	637	<b>3</b>	à	â	£3	19

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

PDB annotation			IMMUNOCITOBULIN,	IMMUNE SYSTEM HUMAN	A2 HILV-I TAX TOR TAGEL	RECEPTOR, INGUINE SYSTEM			RECEPTOR TCR: T-CELL, RECEPTOR,	TRANSMEMBRANE, GLYCOPROTEIN, SIGNAL.																		
Сектрений		(/MCGS-/WEIRS HYBRID)	NIO9 (IGO!-LAMBDA-); CHAIN: L. H;	MHC CLASS I HLA-A;	ACCOUNT A: USTA-2	B: TAX PEPTIDE PGA:	CHAIN C. HARN T-CELL	RECEPTOR: CHAIN: D:	ALPHA, BETA T-CELL	RECEPTOR CHAIN: A, B;	INCHUNOGLOBULEN WAT,	A VARIABLE DOMAIN	FROM	DAMUNOGLOBULIN	LIGHT-CHAIN INTL'3	(BENCE-JONES PROTEDA)	WIL 4	MACHINE COLOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T	2FB44	IMMUNOGLOBULIN FAB	FRACMENT OF A	HUMANIZED VERSION OF	THE ANTI-COLS 2FOW 3	ANTIBODY 1457 (HUBIS2-	OZ PAB) 2FGW 4	DAMUNOGLOBULIN	LAMBDA LIGHT CHAIN	DIMER (MCOS) 2MCG 3
Seq Fold	i		31.23	52.06					1		35.26						1			22					-			
d l				Γ					T		l						1	3								ā		
Verity				Γ					I		I						1	3								0.12		
FS.I	Sear		15-821	1.4					619		3						7	ě,		740.57						S. le-64		
3 \$		Г	8	ă					ă		Ē						1	1		g						227		
£ 5		Г	2	R					8						_		,	3		6						17		
8	:		ī	٥					Į		Į							_		L			_			_	_	
<u> </u>			9	5		_			1		2						1	Á		Á	•		_			ă		
3 0	č		73	ŝ				_	ŝ		ĝ	-			_		7	3	_	13						ŝ		

	_								
PDB smetrijon	ANTIBOOYHYDROLASE)	IMMUNE SYSTEM REIV, STABILIZED IMMUNOGLOBULIN FRAGMENT, BENCEJONES 2 PROTEIN, IMMUNE SYSTEM	ANTIBODY, THERAPEUTIC, ANTIBODY, CD22				COMPLEX (ANTIBODY/ANTIGEN) CYTOKUB RECEPTOR, COMPLEX (ANTIBODY/ANTIGEN), 3 TRANSAPABRANE, GLYCOPROTEIN	DOMUNOCIOBULIN DAMINOCIOBULIN, BENCE JONES PROTEIN	
Central		IQ KAPPA CIJAIN V-I RECION REI; CHAIN: A, B;	CAMPATI-HILLIGHT CHARL CHARL: CAMPATII-HERAVY CIAND: CHARL: H; CAMPATII-HERAVY CIAND: CHARL: H; CHARL: CHARL: H; CHARL: P;	IMMUNOGLOBULIN 1D6	INMUNOQLOBULIN FV FRAGMENT OF A HUMANUZED VERSION OF THE ANTI-CD18 IFGV 3 ANTEROPY 457 (HURSS- AN FY) IFGV 4	IMMUNOGLOBULIN BAKUNOGLOBULIN M (IG-M) PV FRAGMENT HGM 3	ANTIBODY A& CHAIN: L. H; INTERFERON-DAMMA RECEPTOR ALPHA CHAIN; CHAIN: I;	LAKBDA III BENCE JONES PROTEIN CLE; CHAIN: A, B	DAMUNOGLOBULIN DAMUNOGLOBULIN HETEROLOGOUS LIGHT CHAIN DIMER IMCV.1
Sea Paid Sours		23.82	6:03	26.32	57.59	55.75	91 %		
N S	Ī							3	50.03
Verify Som	Ī							0.12	90.00
BLAST		<u>18</u>	136.53	X 9-1	16-0	6.lo-42	3,46-43	Z 47	1.76-39
] \$	Γ	<u> </u>	8	8	ā	3	<u>s</u>	<u>8</u>	Ē
A Štart	Ī	2	61	6	6	2	61	=	77
<b>j</b> e	Γ	<	-1	]	٠	٦	1	<	>
<b>8</b> 8	Γ	lbww.	3	eg P	<u>i</u>	<u>B</u>	4	9	l DCs
g a ģ	Γ	6	29	10	à		7.03	53	3

325

PCT/US01/42950

				Т		_	·			٦	_	_	-	٦		-	-	_	7	_	_		-
PDB annetation		COMPLEX (ZDAC FINGER/DNA) ZDAC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX CRYSTAL STRUCTURE, COMPLEX CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	PINGER, PROTEIN-UNA INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGERONA)	COMPLEX (ZINC FINGER/DMA) ZINC	PINGER, PROTEIN UNA	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DRA)	COMPLEX (ZINC FINGER/DNA) ZINC	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION	(TRANSCRIPTION	REGULATION DNA, RNA	POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	TRANSCRIPTION INTENTION.	DITTATOR ELEMENT, YY1, 2DIC 2	FINGER PROTEIN, DNA-PROTEIN
Composted	BINDING SITE; CHAIN: B,	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN; C, P, O;	DNA; CHAIN! A, B, D, E;	CONSENSUS ZINC FINGER		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	TROITEN, CHAMIN, C. C.		DNA; CHADI: A, B, D, E;	PROTEIN: CHAIN: C. P. C.			TFUIA, CHAIN: A, D, 55	CHAINE B. C. E. P.				YYI; CHAIN: C. ADENO-	ASSOCIATED VIKUS PS	DNA: CHAIN: A. B.	
Score Score		6.2		Ī						_										58.78			
A S				17.0			8	_			8				100			_		Ī			•
Verity	Г			10			000				*				97.0-	٠				Γ			
BLAST		3.46-49		3.40-49			1749				3.40-14 0.44				5.10-28					3.40-32			
35		2		9			2				22				112					Ξ			
Start AA	Γ	_		12			_				z				7					_			
e de	Γ	o		U		_	U								Į					ů			
e e	T	No.		1			Liney				) je	_		_	題				_	B		_	_
g a g	Г	63		653			679			_	613			_	639					609			

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

_		ROTEIN		DARNA)	SINKA,	ROTEIN		EINWANA)	EDVRNA),	ROTEIN		SIN'RNA)	EDVRNA)	ROTEIN		EDVRNA)	EINTENA),	ROTEIN		EIN/RNA)	EDVRNA),	ROTEIN		Ti di	713		5	ļ	HOH.	1		
TOD SEPONDE		RNA, SNRNP, RIBONUCLEOPROTEIN		COMPLEX (NUCLEAR PROTEINRINA)	COMPLEX (NUCLEAR PRUISINKINA),	RNA, SNRNP, RIBONUCLEOPROTEIN		COMPLEX (NUCLEAR PROTEINRINA)	COMPLEX (NUCLEAR PROTEINRINA),	RNA, SYRINP, RIBONUCLEOPROTEIN		COMPLEX (NUCLEAR PROTEIN/RNA)	COMPLEX (NUCLEAR PROTEINRNA)	RNA, SMRNP, ALBONUCL EOPROTEIN		COMPLEX (NUCLEAR PROTEINRINA)	COMPLEX (NUCLEAR PROTEINRNA),	RNA, SNRNP, REGONDCLEOPROTEIN		COMPLEX (NUCLEAR PROTEINRINA)	COMPLEX (NUCLEAR PROTEDVRNA)	RNA, SYRNP, ABONUCLEOPROTEIN		ADHESTON NEURAL CELL	CELL ADHESION NEURAL CELL	ADRESION ADMENDED BIONE	CELL ADRESSON LEUCINE MICH	ADHESTON	CELL ADHESION LEUCINE RICH	ADHESION		STRUCTURE, KAB
Coumpound		CHAIN: A.C. LZ BT	CHAIN: B, D.	UZ RNA HALIPEN IV;	CHAIN: Q. K. UZ A.	CHAIR: A C. UZ B.	CHAIN: B, D;	UZ RNA HAIRPIN IV;	CHAIN: Q. R; U2 A;	CHAIN: A. C. UZ B";	CHAIN: B, D,	UZ RNA HAJRPIN IV;	CHAIN G R; UZ A;	CHAIN: A.C. UZ B.	CHAIN: B, D;	UZ RNA HARRIN IV;	CHAIN: Q. P. UZ A.	CHAIR A.C. LZ B.	CHAIN: B, D;	UZ RNA HAIRPIN IV;	CHAIN: Q. R: UZ A;	CHAIR A C UZ B"	CHAIN: B, D,	AXONIN-1; CHAIN: A;	AXONIN-I; CRAIN: A;	the state of the state of	INTERNALIN B; CHAIN: A;		INTERNALIN B; CHAIN; A;		EVB	GERANYLOERANYLTRAN
Seaford	ž,					_																										
	Ş	Γ		0.78			_	60.0				9110				69.0				5				90.0	\$   		5		80		5	
Verify	į			950				900				0.24				0.47				250				110	0.10		Ŗ		81.0		22	
£	15 10 2		_	276-22				1				1.46.15				1.44.22				1.40.17				5.40-09	1.76-08	1	74.7		6.84-77 0.18		8.50-10 0.22	
P7	\$			731				g				651				711				ĝ				374	97,0		ă		236		Ξ	
Stant	\$			2				23				3		_		×				g				7	ž		2		١		2	
O P	9			۷				<				Į,			•	Ü				J				<_	<		<		<		×	
	e	Γ	_	Ę				ŝ				ē				5				ē.				8	25		ĝ		1406		250	
075	Ωģ			93				3				3			_	3				3				3	3		3		3		3	

Scene	Scere	Scare	Som			200	Son Son	Scars	Consposed VYI-CHAIN-C-ADEMO	THE ATTENDED TO THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF
						3 (	,		ASSOCIATED VIRUS PS NUTLATOR ELEMENT DRA; CHADI: A, B;	COMPLETION TO THE TOTAL TO THE TRANSPORT OF THE TRANSPORT OF THE THE TRANSPORT OF THE TRANSPORT OF THE TRANSPORT OF THE TRANSPORT OF THE TRANSPORT OF THE TRANSPORT OF THE TRANSPORT OF THE TRANSPORT OF THE TRANSPORT OF T
C 7 110 3.4e.32 -4.02 0.24	3.46-32 -0.02	3.46-32 -0.02	3.46-32 -0.02	-0,02		70			YYI; CIALNI'C, ADENO- BATTATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX TRANSCAPINOM ESCALATIONOMA, YMOS-YMO I; TRANSCAPTON DATATION INTATOR ELEMENT YI, ESC2 FINGER PROTEIN, DINA-PROTEIN FICCORPITCH I, TOWNERS (TRANSCAPTION) REGULATIONDEN)
10-13	P 10-13	P 10-13	10-13					51.76	ADRI; CHAIN: NULL;	TRANSCRIPTION REGULATION TRANSCRIPTION REGULATION, ADRI, ZINC FINGER, NACK
A 17 109 5.1e.29 0.13 40.03	109 5.10-29 0.13	109 5.10-29 0.13	5.16-29 0.13	613		9	3		ZINC FINGER PROTEIN GLJI; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEINONA) PIVB-FINGER GL; GL; ZING FINGER, COMPLEX (DNA- BINDING PROTEINDNA)
A 4 12 5.4e-24 0.02 0.18	5.46-24 0.02	5.46-24 0.02	5.46-24 0.02	0.0		ਤੋਂ	_		ZINC FINGER PROTILIN GLII; CHAIN: A; DNA; CHAIN: C, D;	CONFLEX (DNA-BINDING PROTEINDINA) PYNE-FINGER GLL, GLL, ZINC FINGER, COMPLEX (DNA- BINDING PROTEINDINA)
A 52 181 54e15 4.17 0.36	181 54615 417	181 54615 417	S4e15 -0.17	417		13			RIBONUCLEASE DAMBITOR; CHAIN! A, D; ANGIOGENIN; CHAIN! B, E.	COMPLEX (INTERTORNALICIEAEE) COMPLEX (INTERTORNALICIEAEE) COMPLEX (INTERTORNALICE MOLECULAR RECOGNITION, ENTOPE MANPING, LEUCINGERICH 3 REPEATS
A 40 152 1.6c-15 0.14 0.	152 1.66-15 0.14	152 1.66-15 0.14	1.66-15 0.14	10	_	lg	197		CHAIN: O. R: UZ A:	COMPLEX (NUCLEAR PROTEINANA)

			7				
PDB assertation		RIVA BINDING PROTEIN TAP (NP.XI); RIBONUCLEOPROTEIN (NAP RBD OR RRM) AND LEUCINB-RICH-REPEAT 2 (LAR)	RNA BRUING PROTEIN TAP (NFX1). RIBGNUCLEOPROTEIN (NAPRBD OR RRM) AND LEUCINB-RICHREFEAT 2 (LAR)	LIGASE CYCLIN ACDK2. ASSOCIATIDE PROTEIN P19: SEP1, SEP2, F-BOX, LEA, LEUGNE. RICH REPART, SCP, UBIQUITIN, 2 B., UBIQUITIN PROTEIN LOASE	LIGASE CYCLN ACDK2- ASSOCIATED PA; CYCLIA ACDK2- ASSOCIATED PI; SEP!, SEP; P. BOX LERS, LEUCHG-RICH REPEATS, SCF; 21 UBIQUITIN PROTEIN LIGASI	ACETYLATION RNASE DHIBITOR, RIBONUCLEASE/ANDIOCIDIN DHIBITOR ACETYLATION, LEUCING- RICH REPEATS	COMPLEX (ZINC PRIGERDINA) COMPLEX (ZINC FINGERDINA), ZINC FINGER, DNA-BINDING PROTEIN
Compens	CELL ADHESION PROTEIN FIBRONECTIN CELL ADHESION MODULE TYPE III-10 1FNA 3	NUCLEAR RNA EXPORT FACTOR 1; CHAIN: A, B;	NUCLEAR RNA EXPORT FACTOR I; CHADH: A, B;	SKP2 CHADH A C E Q L K M O, SKP1, CHANI B, D, F, H, I, L N P,	SKP2 CHADH: A, C; SKP1; CHADH: B, D;	RIBONUCLEASE DHIBITOR, CHAIN: NULL;	GOSK ZING FINGER PEPTIDG, CHAIN: A; DUPLEX OLLONUCLEOTIDE RINDING STTT: CHAIN: R.
Seq Fold Score							
ž į	ã	į	5	(O)	77	ស្ង	2630
Verls Sear	90'0	& LS	0.46	10.0	200	60.00	80.00
BLAST	_	1.76-06	1.76-06	1.4010	51-91. 3	1.60-19	1,16-21
3 \$	3,	=	Ε	261	Ξ	9	ž
¥ Ş	53	÷	\$	S .	S S	23	E
g e		<	_	<	<		<
5 e	ā	101	191	ģ	ā	fl.	9
ខ្លួកទ	3	3	3	3	3	93	3

WO 02/059260

WO 02/059260

PCT/US01/42950

PDB ausotation	COMPLEX (ZINC FINGEADINA) ZINC FINGER, PROTEIN-DINA DYTEACTORY PROTEIN DESIGN, 2 GYSTAL STRUCTURE, COMPLEX (ZINC FINGENDINA)	COMPLEX (ZINC FINGER/DINA) ZINC FINGER, PROTEIN-DINA INTERACTION, PROTEIN DESIGN, 2 CENYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DINA)	COMPLEX (ZINC PINGER/DNA) ZINC FINGER, PROTEIN-DNA THERACTION, PROTEIN DESIGN, 1 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC PINGER/DINA) ZINC FINGER, PROTEDN-DINA PNERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC PRIOGRADNA)	COMPLEX CRANSCENTON REGILATOWONA) TEILE, SI GENE; NAR, TEILE, PROTEIN, DNA, TALNSCENTON PACTOR, SI RNA 2 GENE, DNA, BINDEN GENOTEN, ZANC FINGER, COMPLEX J. TRANSCENTION REGILATIONDNA)	COMPLEX (TRANSCRUPTION REGULATION/ONA) COMPLEX (TRANSCRUPTION REGULATION/DNA), RNA REGULATION/DNA), RNA POLYMERASE III, TRANSCRUPTION PUTATION, ZNG FINGER PROTEIN	COMPLEX (TRANSCRIPTION
Counpound	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, P, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC PINGER PROTEIN; CHAIN: C, F, Q;	DNA; CHADN: A, B, D, B; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, P, O;	DNA; CHAIN! A, B, B, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN! C, F, Q;	TIANSCULTION FACTOR UIA, CHADI: A; S: RNA GENE; CHADI: E, F;	TFILIA, CHAIN! A, D; 35 RIBOSOMAL RNA GENE; CHAIN! B, C, B, P;	TFIIIA; CHAIN: A, D, SS
Scere		16.38			39.21		55 95
A W.A	3		86	0.17		a13	
Verity Score	2		*1.0	-0.36		*14	Γ
BLAST	27-23	3.46-51	3,66-31	7	S.te-19	146.13	440 3.46-32
3 \$	<b>3</b>	Ē	376	ż	ă	*2	9
ž t	EE.	£	ž	ā	ñ	ii.	£
<b>1</b> e	U	υ	υ	U	<	<	<
804	laey	iner	Ē	Į.	ē	<u>a</u>	8
) 13 e 9	ī	3	ī	3	3	ī	3

334

ŭ ~ ž	ge ë	5 e		ž ž	3 5	BLAST Scen	Score	YM Y	Score Score	Compressed	TUB basetane
<u>!_</u>	H	H	T		r					3	
3		d dis		ž	376	3.46-31	427	653		QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
										OLIOONUCLEOTUB BINDING SITE, CHAIN: B,	
13	3	414		ž	916	3.46-31			22	QOSR ZINC FINGER PEPTIDE; CLAIN: A; DUPLEX	COMPLEX (ZINC PINGER/DIA) COMPLEX (ZINC PINGER/DIA), ZINC FINGER, DNA, BINDINO PROTEIN
										CLICONUCLEOTER BUDDIO SITE; CHAIN: B,	
z z	3	1buo		_	121	16-20			16.53	PROMYELOCYTIC	GENE REGULATION POZ DOMAIN:
		_								PROTEIN PLZP; CIADN: A;	DOMAIN, TRANSCRIPTIONAL 2
		_									REPRESSOR, ZINC-FINGER PROTEIN, X-RAY CRYSTALLOGRAPHY, 3
		_									PROTEIN STRUCTURE,
	-	_		_							PROMYPLOCYTIC LEUKEMIA, DENE REDULATION
12	3	200	-	ľ	Ê	224	11.0	1.00		PROMYELOCYTIC	GENE REGULATION POZ DOMAIN;
										PROTEIN PLZP; CHAIN: A;	DOMAIN, TRANSCRIPTIONAL 2
	_		_								REPRESSOR, ZINC-FINGER PROTEIN, X-B A V CRYSTALL CORAPHY 1
	_										PROTEIN STRUCTURE.
		_									PROMYELOCYTIC LEUKEMAA, GENE
13	2 2	time	Ü	172	320	5.16-37	0.03	ឌ		DNA; CHAIN: A. B. D. E.	COMPLEX (ZINC FINGER/DNA) ZINC
										PROTEIN CHAIN: C. P. C.	INTERACTION, PROTEIN DESIGN, 2
	-										CRYSTAL STRUCTURE, COMPLEX

335

PCT/US01/42950

	_								
PDB snaetrica	DANCINE SYSTEM	DOWNOCLOBULN DOWNOCLOBULN, KAPPA LIGHT. CHAIN DOMER HEADER	COMPLEX (ANTIBODY/ANTIGEN) FAB-12, VEGP; COMPLEX (ANTIBODY/ANTIGEN), ANGIOGENIC PACTOR	COMPLEX (RUMANIZED ANTIBODY/ANTOROLASE) MURAMIDASE; RUMANIZED ANTIBODY, ANTIBODY COMPLEX	GHUMANIZED ANTIBODYHYDROLASED	DAMINE SYSTEM REPY, STABILIZED DAMINOCILOBILIN FRACINENT, BENCE-JONES 2 PROTEIN, DAMINE SYSTEM	DAMUNE SYSTEM REIV, STABILIZED DAMUNOGLOBILIN FRAGMENT, BENCEJONES 2 PROTEIN, DOMUNG SYSTEM	АКТВООУ, СЮЗЗ АКТВООУ, СЮЗЗ	DOGUNE SYSTEM FAB-LUP COMPLEX CRYSTAL STRUCTURE 2.7A RESOLUTION BINDING 2 OUTSIDE THE AMTIGEN COMBINING STE SUPERAMTICEN PAB 9419 3
Compense	2,4	IMMUNOGLOBULN; CHADE A, B;	FAB FRADMENT; CHAIN: L, H, J, K; VASCILAR ENDOTHELLAL GROWTH PACTOR: CHAIN; V. W.	HULYS I I; CHAIN! A, B, D, B; LYSOZYMB; CHAIN! C, F;		IG KAPPA CHAIN V.J REGION REI; CHAIN: A, B;	IG KAPPA CHAIN VA REGION REL CHAIN: A, B;	GAWPATH-HELIGHT CHADN; CHADN; C; CAMPATH-HERBAVY CHADN; CHADN; H; PETUDE AVMIGEN; CHADN; P;	IGM NF 2A2, CHAIN: A, C, E, IGM NF 2A2, CHAIN: B, D, P, IMMUNOGLOBULIN O BUNDINO PROTEIN A; CHAIN: O, H:
Seera Seera				20.22		\$1.17			
PM.P		8	8				8	86	8
Vertify Scere	Γ	0.21	55				77		0.18
BLAST Score		12-51	1.76-53	1.76-49		12.01	16-51	5.1e-50 0.37	25-4 <u>4.</u>
₹ 5	Ī	22	2	130		82	123	126	2
Start A		R	R	R		=	8	R	2
a B		<	_,	<		<	<	-	<
0 0		Ĭ	2	<u> </u>		Ibreve	averd!	<u>8</u>	eg E
SE O		93	3	3		3	3	3	3

WO 02/059260

PCT/US01/43950 WO 02/059240 PCT/US01/42950

						•
PDB annotation		COMPLEX (HYDROLASE/MAUNOGLOBULIN)	RECEPTOR TCR; T-CSIL, RECEPTOR, TRANSMEMBRANE, GLYCOPROTEIN, SIGNAL.			COMPLEX (AHLCVIRAL) PETIDERECETOR) HA-A3 HEAVY CANN, CASS I MRC, T-CELL RECETOR, VIAL PETIDE, 2 COMPLEX (AHCVIRAL) PETIDERECETOR
Compound	MONOCLONAL ANTI-HEN EGG (HEL 4 LYSOZYME ANTIBODY DIL.18 COMPLEX WITH PHEASANT EGG (HEL 5 FLYSOZYME (HIL 6	N9 NEURAMINIDASE: INMB 4 CHAIN: N; INMB 5 FAB NCIQ; INMB 9 CIAIN; L. H; INMB 10	ALPHA, BBTA T-CELL RECEPTOR CHAIN: A, B;	IMMUNOGLOBULIN WAT, A VALUBLE DOMAIN FROM DIMUNOGLOBULIN LIGHT-CHAIN 1 WT1, 3 (BENCE-LONGS PROTEIN) 1 WT1, 4	INAUNOGLOBULN FAB FRACHERT OF A HUMANIZZD VERSION OF THE ANTI-COLIS PEWS A ANTIBODY 1527 (HUHSZ- OZ FAB) 2FOW 4	HIA-A (201; CHAIN: A; BETA-2 MICROGLOBULIN; CHAIN: G.T CELL RECEPTOR ALPHA; CHAIN: D.T CELL RECEPTOR BETA; CHAIN;
Seq Pald		81.18	31.98	23.03		01,911
PMP Sterr				-	8	
Verth Ser						
E LE		24	3.18-40	3.6-49	3-1	1.7
3 \$		2	2	82	22	2
¥ \$		Я	-	ន	S	z
<b>1</b> e			,	<b>~</b>	_	٥
2 e		g I	<u> </u>	3	i,	3
ន្ទីខទ្	5	3	3	3	3	3

PDB azzetzten	SPECIFICITY							
Cermponne		IMMUNOCLOBULIN 1D6	IMMUNOULOBULIN PV FRADMENT OF A HUMANIZED VERSTON OF THE ANTI-CD18 IPGV 3 ANTI-CD18 IPGV 4 AA PY) IPGV 4	IMMUNOGLOBULIN FV FINANNIZED VEZSION OF THE ANTH-COLE FEOV 3 ANTH-COLE FEOV 3 ANTH-COLE FEOV 3 ANTH-COLE FEOV 4	IMMUNOGLOBULIN PV FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION II IFVC 3	DAMUNOGLOBULIN FV PLACAGENT OF HUMANIZED ANTERODY OS, VERSION 8 IPVC 3	IMMUNOGLOBULÍN FAB FRAGMENT OF HUMANIZED ANTEDODY 4D5, VERSION 4 IPVD 3	COMPLEX(ANTIBODY. ANTIGRAP, PERAGENT (GGI, KAPA) (LIGHT AND HEAVY VARUABLE COVALENTLY ASSOCIATED OF
Scar				57.39		33.42		32.03
Score		8	3		367		8	
Verify		270	0.43		S		2	
PSI BLAST Score		6.10-50	3,46-53	3.46-33	S.	3.44.50	05 <del>4</del> 5.	3
34		22	821	8	97.1	9E1	921	8
Start		8	8	8	g	Я	Я	ន
Chadn E0			-1	_	<	<	<	د
5 a		ă B	ي	ي	Ē	ž.	Į.	4
98 9 5		3	3	3	ž	<del>3</del>	3	35

	٦	2	_		٤		- ×2
PDB amodados		COMPLEX (MICHAEL) ENTEREDENCY ON HIGH ACT ENTER CLASS I MHC, T-CELL ENTER CLASS I MHC, T-CELL ENTER CLASS I MHC, T-CELL ENTER (METCHEN) ENTER CLESTOR ENTER ENTER CLESTOR	T CELL RECEPTOR, TCR; T CELL RECEPTOR, MIC CLASS I, HUMAN BAGINODEFICIENCY VIRUS, 2 MOLECULAR, RECOGNITION	T CELL RECEPTOR TCR; T CELL RECEPTOR, MHC CLASS I, HUMAN RAMUNODEFICIENCY VIRUS, 2 MOLECULAR RECOGNITION	COMPLEX (MICHARL) PETIDE/RECEPTOR) HILA AZ HEAVY CHARŁ COMPLEX (MICA/BAL) PETIDE/RECEPTOR)	IMMUNE SYSTEM IMMUNOCLOBULIN, DAMUNORECEPTOR, DAMUNE SYSTEM	DOWNESSYSTEM MHC FAKE WHC CLASS  IL DIQ LAKE
Сентрепле	á	HEA-A GOI; CHADE: A; BETT-3 MCCOGLOBULDI; CHADE: E; TAX PEPTURE; CHADE: C; T CELL CHADE: D; T CELL CHADE: D; T CELL CHADE: D; T CELL RECEPTOR BETA; CHADE:	T CELL RECEPTOR V. ALPHA DOMAIN; CHAIN: A. B;	T CELL RECEPTOR V. ALPHA DOMAIN; CHAIN: A, B;	HAAA GOO! CHAIN! A. CHAIN! C. T CHA. RECEPTOR ALPHA: CHAIN! D. T CELL CHAIN! D. T CELL CHAIN! D. T CELL	ALPHA-BETA T CELL RECEPTOR (TCR) (D10); CHAIN: A;	T-CELL RECEPTOR DIO (ALPHA CHAIN); CHAIN: A. R. T-CELL RECEPTOR DIO (BETA CHAIN); CHAIN: R. R. MIC'LAR A
SeqPeld		·	71.71				
PMF Scare	Γ	8		071 071	00'1	8	8
Vertity		043		11'0	0.53	ឌូ	ž
PSI BLAST Sees			1.76-42	7. 1.	<u> </u>	1.4.4	<u>.</u>
3 5			131	3	fii	<u> </u>	ž
¥ \$		n	α	2	3	3	a
<b>1</b> =		٥	v	٧	۵	<	<
<u> 6</u> 0	ĺ	3		100	ā	1	<u>\$</u>
g a g		3	3	3	3	3	3

DELS ALDER CATALYTIC ANTBODY: CHADE L. H. A. B. ANTBODY CTADI; CHADE L. H.

8 ន

8

ŝ 5

SeqPold Scare A Was

Verily Scene

PSI BLAST Bonn 3 4

Start A

g e 2 e

SEQ TO:

C BANDOGLOBULK ANTBODY, CATALTIC ANTBODY, CATALTIC ANTBODY, DELSE ANTBODY, DELSE ANTBODY, DELSE ANTBODY, DELSE ANTBODY, DELSE ANTBODY, DELSE ANTBODY, DELSE ANTBODY DELGENCY, LICHAN, WITSON, DELGENCY, LICHAN, DATE, DAG GREEK, ANTBODY, FALL, YAAY STRUCTURE, TREE-DIAGNON, LICHAN, STREAM DAMINGS, LICHAN, MITBODY, DAG STREAM DAMINGS, DAG DELGENC, LICHAN, MITBODY, DAG STREAM DAMINGS, DAG STREAM DAMINGS, DAG STREAM DAMINGS, LICHAN, MITBODY, CALL, YAAY, STRUCTURE, TREE-DIAGNON, LICHAN, MITBODY, CALL, YAAY, STRUCTURE, TREE-DIAGNON, LICHAN, TREE-DIAGNON, LICHAN, TREE-DIAGNON, LICHAN, TREE-DIAGNON, LICHAN, TREE-DIAGNON, LICHAN, TREE-DIAGNON, LICHAN, TREE-DIAGNON, LICHAN, TREE-DIAGNON, LICHAN, TREE-DIAGNON, LICHAN, TREE-DIAGNON, LICHAN, TREE-DIAGNON, LICHAN, TREE-DIAGNON, LICHAN, TREE-DIAGNON, LICHAN, TREE-DIAGNON, LICHAN, TREE-DIAGNON, LICHAN, TREE-DIAGNON, TREE-DIAGNON, LICHAN, TREE-DIAGNON, LICHAN, TREE-DIAGNON, LICHAN, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, LICHAN, DAG STREE, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, LICHAN, DAG STREE, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-DIAGNON, TREE-

ANTBOOY (LIGHT CHAIN; CHAIN; L; ANTBOOY (HEAVY CHAIN; CHAIN; H;

ANTBODY; CHAIN: L. H;

FAB FRAGMENT, CHAIN:
I, H, J, K, VASCULAR
ENDOTHELLAL GROWTH
FACTOR, CHAIN: V, W;

DAMUNOCILOBULDS; CHAIN: A. B;

0.70 3

5

121 ä

R

3

3 3

Ē

						_	_
PDB seperados		COMPLEX [IDOLINGOLOSULDIVAECEPTOR) TOR VAPILAY VASTA DOMANN: T-CELL RECEPTOR, STRAND SWITCH, FAB, ANTICLONOTPHIC, 1 [MAKINGOLOSULDIVAECEPTOR)]	COMPLEX (INDUNIOGLOBULIN/RECEPTOR) TCR (INDUNIOGLOBULIN/RECEPTOR) TCR RECEPTOR, STRAND SWITCH, FAB, ANTICLONOTPRIC, 3 (INDUNIOGLOBULIN/RECEPTOR)	NAGING SYSTEM HUMAN TEXPETIESCHE COMPLEX, HIA- TEXPETIESCHE COMPLEX, HIA- RECEPTOR, BANUNG SYSTEM	DANING SYSTEM HUMAN TEMPETEROMOGO COMPLEX, HIA- SHIVAL, IAX, TEM, T3 CELL RECIPTOR, DANING SYSTEM		IMMUNOGLOBULIN
Competed	CHÁIN (ALPHA CHÁIN); CHÁIN: C. Q. MHC LAK B CHÁIN (BETA CHÁIN); GLÁIN: D. H.	KBS-C20 T-CELL ANTIGEN RECETTOR, CIAAN: A. B; ANTIBODY DESIGE!; CHAD: L. H;	KB-CCD T-CELL ANTIGEN RECEPTOR: CHAIN: A. B; ANTIBODY DESIRE-1; CHAIN: L. H;	MHC CLASS I HLA-A; CARDE A; BERTA-3 MCCLOGLOBULD; CAME; B; TAX FETTIDE PA; CAME C; BMAN T-CELL RECETTOR; CAMB; D; RECETTOR; CAMB; D; HJA-A 2001; CHAM; B;	MICCLASS HILAM; CANNE, REETA? MCCOGLOBULD; CHAN; B; TAX FETIDE FA; CHANE C; HAAN T-CELL RECETOR; CALAN; D; RECETOR; CALAN; D; HLAM 2001; CHAN; B;		IMMUNOCLOBULIN,
Seq Pold Score			02,74	7.			12.63
Sean S		8			8		
Some S		84.0			0.49		Γ
E AST		Ī	<u> </u>	1.30-40	1.76-40		238 16-73
3 ₹		81	81	2	761		177
Şeri Y¥		2	7	22	ก		7
<b>j</b> e		<	<	۵	۵		_
ē e		<b>243</b>	Đ.	<u>s</u>	타	Γ	Ī
g e ğ		ž	3	3	3	Γ	181

340

341

1824

PCT/US01/42950

WO 02/059260

PCT/US01/42950

WO 02/059260

MICCLASS HALAG.

MICCLASS HALAG.

MICCLOSULM: GRADE.

RITAN PETTUR NA.

RICALANA FICELA.

RECATOR GRADE.

RECATOR GRADE.

MONCOLNIE.

MONCOLNIE.

MONCOLNIE.

MONCOLNIE.

MONCOLNIA. WILEBAND FACTOR: 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JUNE 10 JU HABZH; CHAIN: A, B, C, LAMBDA III BENCE JONES PROTEIN CLE; CHAIN: A. ALPHA, BETA T-CELL RECEPTOR CHAIN: A, B; Seq Fold Score PM.P S 3 Varts See ş FAST Feet 27074 2 3 5 ā ŝ ä ¥ Ş 100 g e Ł

PDB agmetations	АМТВОDY, ПЕВАРЕИЛС, АМТВОDY, СОЭЗ	BINUNCILOBULIN CBRS6 FAB (INCHINOCILOBULIN); BINUNCILOBULIN, BONUNCILOBULIN CREDION, OLYCOPROTEN, ANTIB	BAMUNOGLOBULIN MBR86 FAB (INAMUNOGLOBULIN); BAMUNOGLOBULIN C REGION, GLYCOPROTEIN, TRANSAEMBRANE	IMMUNE SYSTEM ABZYMB TRANSITION STATE ANALOG, DOMUNE SYSTEM	MAKING SYSTEM PAB-18P COMPLEX CONYTILL STRUCTURE 2.7A RESOLUTION BINDING 2.015 THE ANTIGEN COMBINING SITE SUPERANTIGEN PAB 1913 SPECIFICITY	IMMUNOQLOBULIN FAB, FAB LIGHT CHAIN, FAB HEAYY CHAIN; ANTIBODY, FAB, ANTI-TT, MONOCLOBULM, MUBINE, DAMINOCLOBULM	IMMUNE SYSTEM YON WILLEBRAND FACTOR, GLYCOPROTEIN BA (A:ALPHA) BINDING, 2 COMPLEX (WILLEBRANDYIMMUNOGLOBULIN),
Countyound	CAMPATH-HELIGHT CHAPP, CHAPP, L; CAMPATH-HEREAVY CHAPP, CHAPP, H; CHAPP, CHAPP, H; CHAPP, CHAPP, H; CHAPP, CHAPP, H; CHAPP, CHAPP, H; CHAPP, CHAPP, H; CHAPP, CHAPP, H;	IOO FAB (HUMAN IGOI, KAPTA); CHAIN: L, H;	IGO FAB (IGG), KAPPA); CHAIN: L, H;	TOP FAB PRACIMENT; SHORT CHAIN; CHAIN: A, C, POF FAB FRACIMENT; LONG CHAIN; GLAIN: B, D	IOM NF 2A2, CHADP: A, C, E, IOM NF 2A2, CHADP: B, D, F, DOAUNOGLOBULD O BINDING PROTEIN A; CHADP: Q, H;	MAKUNOGLOBULN FAB SO9, CHAIN: L, H;	WMUNOGLOBULN NMC- 4 IOO1; CHAIN; L; DAKUNOGLOBULN NMC- 4 IOO1; CHAIN; H; VON
Scare Scare	8	H.78	57 71	89'11		\$ =	
Boare					20		a.75
Varthy Boses					80		-627
PSI BLAST Scene	3.6	5.10-73	3,46-73	1.76-74	3,4-11	1.28-40	14614
¥.	702	240	622	822	ध्य	\$22	ន្ត
Start	12	n	οz	17	22	z (	Я
9	1	r.		<	<b>v</b>	٠	٠
PDB CD	Ī	<u>19</u>	Ð.	<u>a</u>	3	ş	<u>a</u>
SEQ TO	3	ŝ	ŝ	ğ	ŝ	ŝ	ŝ

ä

3

3

3 3

표

3

S e Š

				_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	-	_	-
PDB tanetation	TITYROID PEROXIDASE, AUTOANTBODY, 2 DAMINOGLOBULIN												MMUNOQLOBULDY	INDICUNOCIOBULDI, PAB FRAGMENT, HUMANISATION	COMPLEX (VIRAL	CAPSIDADACINIOGLOBULDI) HTV-1	CA, HITV CA, HITV P24, P74; FAB, PAB	LIGHT CHAIN, PAB HEAVY CHAIN	COMPLEX (VIRAL	CAPSIDAMAUNOGLOBULDA, HTV.	COMPLEX (MHCVIRAL
Cettapeand		IMMUNOGLOBULIN PAB FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-COLS FOW 3	ANTIBODY HS? (HUHS2. OZ FAB) ZFGW 4	IMMUNOGLOBULIN FAB	HUMANIZED VERSION OF	ANTIBODY HIST (HUHS2-	DAMUNOGLOBULIN	ANTIGEN-BROONG	MURING ANTI-	PIENYLARSONATE 6FAB	3 ANTIBODY 36-71, PAB	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	ANTIBODY CTM01;	CHAIN: L. H.	HUMAN	DAMUNODEFICIENCY	VIRUS TYPE I CAPSID	CHAIN: A. B; ANTIBODY	FAB253 FRACKENT;	CHAIN: H, K, L, M;	303 44 HG A-A 0201: CHAIN: A:
Scare				13.47			11.24														191
A S		250										Ι	8		8						
Som ty		ş					Γ					T	ŠŠ		23,						T
PSI BLAST		3.40-17		3.40-17			3.40-80		_			T	-6-9-		210.53						26-62
3 \$		229		£2			823					Τ	ž		ž						ž
Start A		R		17			31					Τ	12		17						2
<b>1</b> 0				_			_					Ţ	ī		_			_			
a e		A. Sign		# <b>3</b> 77			da)					T	8		è	_		_			┰
ğ e ş		ક્રે		649			ŝ						3		3						7007

WO 02/U59260 PCT/US01/42950

PDB ansotation						IMMUNOGLOBULIN INTACT INMUNOGLOBULIN V REGION C REGION, IMMUNOGLOBULIN		DAMUNOGLOBULN DAMUNOGLOBULN
Compound	FRADMENT, CHAIN! B;	COMPLEX (ANTBODY/ANTIGEN) FAB FRAGMENT OF THE MONOCLONAL ANTROPY	IFBI 3 COMPLEXED WITH LYSOZYME (B.C.3.2.1.17) IFBI 4	IMMUNOQLOBULIN FAB FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION & 1FVD 3	COMPLEX (ANTBODYCRINDING PROTEIN) LOGIL FAB PROCEIN) LOGIL FAB PROCEIN COMPLEXED WITH PROTEIN Q POMANIN II 11GC 5 PROTEIN Q STREPTOCOCCUS 11GC 15	IGG2A INTACT ANTIBODY - MAB231; CHAIN: A, B, C, D	DAMINGGLOBULIN ANTI- PHOSPHOLIPASE C PHOSPHOLIPASE C DABODY ILMK 3 STWONYNS: LSMK 16 DIABODY, SINGLE-GHAIN FY DDGER ILMK 4	N169 (IGGI=LAMBDA=); CHAIN; L, It;
SeqFold								
PM.F Score		6670		00'1	8.	8	653	8
Vertify Score		228		ā	643	3	0.16	99.0
PSI AST		<u> </u>		5,16-92			6.le-12	1.46.94
3 \$	Γ	ra La		82		ង	<u> </u>	ž
Sart		12		12	~	=	-	Ę.
10	Γ							

WQ 02/059260 PCT/US01/42950

	ag ~	2 A D	SGI (23)			1	Ek -	į	
PDB assetation	INVALNOCIOBETTIN AVRIVETE  MUTLIA TENEL VALLEDDI,  MUTLIA VENEL VALLEDDI,  MUTLIA VENEL VALLEDDI,  MUTLIA VENEL VALLEDEL  DEVOLNOCIOBETTIN AVRIVETE  DEVOLNOCIOBETTIN AVRIVETE	INDATINOGLOBULIN INDATINOGLOBULIN, SINGLE-CHAIN PV, ANTI-CARCINOBABRYONIC 2 ANTIGEN	(YNLIBODA/ETECLEON LEVELOGIL  YELDOWE COPMENT  YEAR'S LYB EV CHAC  YEAR EVELOGICH (CCI  LEVELOGIL) LYB EV CHAC  LOVALTE (VALIBODA/ETECLEON  COPALTE (VALIBODA/ETECLEON  COPALTE (VALIBODA/ETECLEON)				OXIDOREDUCTASE PATTY ACID HYDROXYLASE; FATTY ACID MONOOXYGENASE, HEMOPROTEIN, P450 REMARK.	OXIDOREDUCTASE FATTY ACID HYDROXYLASE; PATTY ACID MONOOXYGENASE, HEMOPROTEIN, PASO REMARK	OXIDOREDUCTASE PATTY ACID HYDROXYLASE; PATTY ACID
Coumpound	SDAGLE-CHAIN ANTIBODY FRAGMENT; CHAIN: A. C.	MEB-23 RECOMBINANT ANTIBODY FRAGMENT; CHAIN: A;	EFANTBODY, CHAIN: L, H, CYTOCHBOMB C, CHAIN: P;	PHOSPHOLIPASE A3 INDEBITOR CLARA CELL 17-KDA PROTEIN ICCD 3	STEROID BRYDDYG UTEROGLOBDY (OXEDIZED) IUTG 4		CYTOCHROMG P450; CHADN: A, B;	CHAIN! A, B;	CYTOCHROMB P450; CHAIN: A, B;
Seat Food Score									114.08
PM!	253	8670	00'1	643	60:0		8	00'1	
Vertity Score	0.07	629	0.35	 -0.41	0.0		0.40	0+0	
PSI BLAST Score	<u> </u>	13	3.le-91	6100:0	0.0016		2.76-60	1.78-45	2.76-40
3 \$	81	¥	952	×	22		נדנ	SIC	<b>3</b>
Start End AA AA	=	=		-	_		<u>-</u> `	_	_
a a	<	۷.	н				۷.	<b>v</b>	٠,
<b>9</b> 0	<u>\$</u>	100	ľ	B	g g		) is	1967	E .
9 9 Š	3	3	650	259	3		§	3	3

							_					
PDB street:riden	MONOOXYGENASH, HEMOPROTEIN, P450 REMARK		OXDOPEDUCTAS PROGESTRONG TI-STOROYYLASE CYTICS M99 I, MEMBRANE PROTEIN PROGESTRONG TI-STOROXYTASE BRZOA) I PYREB HYROXYTASE ESTRADOL PHYDROXYTASE FYRADOL PH	OXIDOREDUCTASB NITRIC OXIDE REDUCTASB, CYTOCHROMB PASONOR	OXIDOREDUCTASE NITRUC OXIDE REDUCTASE, CYTOCHROME PASONOR	OXIDOREDUCTASE CYP119, P450 FOLD	CYTOCHROME MASS ERYF: OXIDOREDUCTASE (OXYGENASE) 10XA 6 GALAN: NULL  CYTOCHROME MASS ERYF: OXIDOREDUCTASE (OXYGENASE)	CYTOCHROME PASS ERYF; OXIDOREDUCTASE (OXYGENASE) 10XA 5 CHAIN: NULL 10XA 6	CYTOCHROME PASS ERYF; OXIDOREDUCTASE (OXYGENASE) IONA 6 GHAIN: NULL  TOTAL 6 GHAIN: NULL  TOTAL 6 GHAIN: NULL  TOTAL 6 GHAIN: NULL  TOTAL 6 GHAIN: NULL  TOTAL 6 GHAIN: NULL  TOTAL 6 GHAIN: NULL  TOTAL 6 GHAIN: NULL  TOTAL 6 GHAIN: NULL  TOTAL 6 GHAIN: NULL  TOTAL 6 GHAIN: NULL  TOTAL 6 GHAIN: NULL  TOTAL 6 GHAIN: NULL  TOTAL 6 GHAIN: NULL  TOTAL 6 GHAIN: NULL  TOTAL 6 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOTAL 7 GHAIN: NULL  TOT	OXIDOREDUCTASE CAMPHOR 5- MONOOXYGENASB OXIDOREDUCTASE(OXYGENASE), RUSUBSTRATE,		RIVA BINDING PROTEIN SNRAP, SPLICING, SPLICEOSOME, SM, CORE
Commence		OXIDOREDUCTASE(OXYO ENASE) CYTOCHROME P450-TEMP (CPT 3	CYTOCHROME MSD 2CS; CHAIN: A:	NITRIC OXIDB	NITRIC OXIDE REDUCTASE; CHAIN: A;	CYTOCHROME PASO 119; CHAIN: A, B;	CYTOCHROME MASS ERYF; IOXA 5 CHAIN: NULL IOXA 6	CYTOCHROME P450 ERYF; IOXA 5 CHAIN: NULL IOXA 6	CYTOCHROME PASS ERYF; IOXA 5 CHAIN: NULL 10XA 6	CYTOCHROME P450; CHADN: A;		SMALL NUCLEAR REGONUCLEOFROTEEN SM
Seq Padd Score								20.00				
Scar	Γ	3	8	0.47	90'0	570	8		<b>5</b> 5	027		000
Son at	Γ	0.00	ŝ	, i.o	2	9.16	50.05		825	0.03		(17)
E IS		914	•	35-95.	1.70-07	Lal.	3.40-61	3.40-61	1.76-19	1.4e-06		1.16-11
3 3		8	a	ΕE	ž	Ë	ĕ	<u>&amp;</u>	ž	38		23
¥ \$		<u>\$</u>	~	۰	a .	n	_	_		941		_
đe.			<		7	_				<b>V</b>		<b>~</b>
20		Ē.	<b>8</b> ₽	32	ğ	¥	18	Ē	<b>2</b>	pand		1834
g a g		33	3	959	ş	3	33	3	39	33	П	159

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

PDB axaotados	COMPLEX (TRANSCUPTION REGULATIONDNA) COMPLEX (TRANSCUPTION REGULATIONDNA), BNA REGULATIONDNA), BNA REGULATIONDNA), BNA REGULATIONDNA), BNA REATIONDNA REATIONDNA REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATION REATI	COMPLEX (TRANSCENTION REGULATION/DIAN) YING-YANG I; TRANSCENETION INTELLION BUTHATION ELEMENT, YI. IZDIC 2 FUNDER PROTENT, VI. AND C. RECOMMITMY, STOCKHEIN RECOMMITMY, STOCKHEIN GRANSCHPTION REGULATION/DAN	COMPLEX TRANSCARTION REGULATION/DIALY TRO-YANG I; TRANSCARTION DUTATION, RITHAND BELEMENT, 11, 200.2 FINGER PROTEIN, DAY-PROTEIN PROCESSER PROTEIN, SOURCELES FROM REGULATION/DAY RANSCRIPTION REGULATION/DAY	CORPUES (TRANSCAPTION REGILATION/DAY YEG-YANG); TRANSCAUPTION DUTATION, FINANCE REPORT, YI, 200.2 FINGER ROTEIN, DNA-ROTEIN RECONDITION, I COMPALIEX (TRANSCAPTION REGILATION/DAY)	COMPLEX (DNA-BINDING PROTEINDRAN) BIVE-FINGER GLL: GEL, ZINC PINGER, COMPLEX (DNA- BINDING PROTEINDNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-
Сепреть	TPIIA; CHAIN: A, D; 38 RIBOSOMAL RNA GENE; CHAIN: B, C, B, F,	YY; GIAIN: C; ADENO- ASSOCIATED VRUS PS NITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C, ADENO SSOCLATED YRUS PS BYTA TOR ELEMENT DNA; CHAIN: A, B:	YY! GHAR! C. ADENO- SSOCIATED YRUS PS NITIATOR ELEMENT DRA; GIAD!: A. B:	ZINC FINGER PROTEIN GLI; CHADH: A: DNA; GLADH: C, D;	ZINC FINDER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;
Seq Fold Score	37.65					19.77
Z L		ă ă	10.01	0.16	100	
Verd5		4067	2065	***	140	
BLAST Sees	<u> </u>	0. 0.	6.be-31	2.7e-10	( le 12	6.66-32
33	E .	Ę	ž	992	E	246
¥ \$	à	3	3	3	3	x
a a	٠ _	υ	υ	υ	<	<b>v</b>
ē a	<b>1</b> 13	<u> </u>	3	3	īģ.	24
g e ğ	ş	§ .	§	83	639	639

	รานา	L CORE	ZDAC	N ZINC	ZDAC FR, 2	ZE ZE
PDB sassetides	ENYTHEMATOSUS, SLE	RAK BRDING PROTEIN DI COKE SINNY PROTEIN, E COKE SINUN PROTEIN SAVA, STLICINO, SA, COKE SINNY DOMALIK, SYSTEMCLIPIUS I ENTHEMATOSIS, SLE, RNA BINDING PROTEIN	COMPLEX (ZINC FINGEADNA) COMPLEX (ZINC FINGEADNA) ZINC FINGEX, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGEADINA) COMPLEX (ZINC FINGEADINA), ZINC FINGER, DIVA-BIDDDO PROTEIN	COMPLEX (ZINC FINGERANA) ZINC FINCER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, Z CRYSTAL STRUCTURE, COMPLEX (ZINC PRIGERONA)	COMPLEX (ZINC FINGENDINA) ZINC FINGER, PROTEIN-DINA INTERACTION, PROTEIN DESIGH, 2 CRYSTAL STRUCTURE, COMPLEX
Coumpound	DI; CHAIN: A; SMALL NUCLEAR RIBONUCLEOFROTEIN SM D2; CHAIN: B;	EMALL NUCLEAR DISONUCLEOROTEN SA DISONUCLEOROTEN SA SMALL NUCLEAR SMALL NUCLEAR ASSOCIATED CHAIN: B, D,	QOSA ZINC FRAGER FEFTURE: CHAIN: A; DUFLEX OLLOONUCLEOTIDE LINDENO SITE; CHAIN: B,	QGSR ZINC FINGER PEPTIDE, CHAIN: A; DUPLEX OLIOONUCLEOTIDE BINDING SITE; CHAIN: B,	DNA; CHAIN! A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, O;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, Q;
Sear Ped						
PMP		412	6.13	600	3	8
Vertity		1.0	-0.26	452	25	-0.52
PSI		\$1e12		1.76-26	3. 34.	1.70-13
3 5		5	344	511	3	35
¥ Şirit		n	92	86	651	217
e e		m	<b>4</b>	<	υ	0
<b>2</b> e		2	la i b	lath	To and and and and and and and and and and	n cy
និតខ្		2	8	83	8	2

<u> </u>	2 4 □	Şerit A Şerit	35	15 A 2	Verity Score	Scare	SeqPetel Scare	Controvend	PDB annecation
П									BINDING PROTEIN/DNA)
Γ									
3		=	621	3	<b>%</b>	1.00		OXIDOREDUCTASE ALDOSE REDUCTASE (E.C.I.1.11) COMPLEX WITH NADPH 1ADS 3	
9	<		£21	E.A.	50	87		FALFIA- HYDROXYSTEROID DEHYDROGENASE; CHAIN: A, B;	OXIDOREDICTASE 3-ALPHA-HSD; OXIDOREDICTASE, NAD
3		-	7.	3.44-39	150	97:		ALDOSE REDUCTASE; CHAIN: NULL;	OXIDOREDUCTASE OXIDOREDUCTASE, ALDOSE REDUCTASE, INHIBITION, DIABETES
Š	<		72	3.44.39	55.0	8		CHO REDUCTASE; CHAIN: A;	OXIDOREDUCTASE ALPHABETA TIM BARREL, PROTEIN-NADP+COMPLEX
9	<	=	£	6.be-42	જુ	97.		ALDOSE REDUCTASE; CHAIN: A;	OXIDOREDUCTASE ALDOSE REDUCTASE, DRIBITION, DIABETES
55		•	138	6.16-39	550	87		FR-1 PROTEIN; CHAIN: NULL:	OXIDOREDUCTASE (NADP) ALDO- KETO OXIDOREDUCTASE (NADP), TIM BARREL
		L	Ĺ						
2	<		×	15-23 15-23	462	7		IDS UBIQUITIN; CHAIN: A;	DE NOVO PROTEIN PROTEIN DESIGN, HYDROPHOBIC CORE, PACKING, ROTAMERS, ROC, 2 UBIQUITIN, DB NOVO PROTEIN, UBIQUITIN
<u>a</u>		_	ž	15-27	979	ş		UBIQUITM ITBE 3	
4	L	<u> </u> _	ž	15-27	253	99		CHROMOSOMAL PROTEIN UBIQUITIN IUBI 3	
Į,	<	-	2	3.10-23	471	3		UBIQUITIN CORE MUTANT ID?, CHAIN: A;	UBIQUITIN UBIQUITIN, DESIGNED CORE MUTANT
3		=_	122	1.70-64			\$9.67	2EJ (IGGI-KAPPA-) ANTIBODY; CHAIN: L, H,	DAMUNOGLOBULIN

PDB agnotation		IMMUNOGLOBULIN IMMUNOGLOBULIN, C'REGION, V REGION		COMPLEX (HEVOYDAL) PETIDENEGETOR) HIA A2 HEAVY SETIDENEGETOR) PETIDENEGETOR)	RECEPTOR T CELL RECEPTOR IBEC 14	INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING, HOMOPHILIC ADHESION	ANTBODY, THERAPEUTIC, ANTBODY, CD53	
Compend	X	ANTI-IDIOTYPIC FAB 409.53 (DOZA) PAB; CHAIN: A, B, L, H	DAKUNGGOBULN FAB- FRAGMENT OF MONDCLONAL ANTERDY BELS 18BI 3 GINERA) 18BI 4	HAA-A 0201; CIÁDR: A: BETA-2 MICROGADBULN; CHARH: B: TAX PETIDE; CHARH: C. T CELL RECEPTOR ALPHA; CHARH: D. T CELL CHARESTOR BUTA; CHARH; E.	14.3.D T CELL ANTIGEN RECEPTOR: 18EC 5 CHAIN: NUTL; 18EC 6	HEMOLIN; CHAIN! A, B;	CAMPATH-HELIGHT CHAP, CHADR: L; CAMPATH-HERBAYY CHAPR, CHADR: H; CHAPR, CHADR: H; CHAPR, CHADR: H; CHAPR, CHADR: H; CHAPR. H;	DAMUNOGLOBULIN DIOMUNOGLOBULIN GI (KAPPA LIGHT CHAD) FAB' FRAGMENT 1FIG 3
SeeFold		75.57	n.u	322	15.74	102.10	22	ica ica
PM P Score	Ī							
Verify Score								
PS1 BLAST Stere		\$.1e-72	%1F-69	<u>13-27</u>	1.76-21	8.5e-16	3.le-72	3.40-77
\$ E		121	a	ā	ž	Ş	2	ia
Start AA		11	2	2	=	-2	11	<u>=</u>
đe	Γ		J.	to .		<	د	
50	Γ	ì	<u>z</u>	3	<u> </u>	2	8	ē.
<u> </u>		<u>-</u>	155	11.9	159	1/9	13	11.9

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

PDB assectation	DAMINOGLOBULIN	CATALYTIC ANTIBODY CATALYTIC ANTIBODY, FAB, RING CLOSURE REACTION			COMPLEX CONFLEX CONFLEX CONFLEX (MANIHOGLOBULINAUTOANTIGEN) RIEDMATOD FACTOR 2 AUTO- ANTIBODY COMPLEX ANTIBODY COMPLEX	IMMUNOGLOBULN IMMUNOGLOBULN, C REGION, V REGION	CONTRACT (NELVORAL) PETIDENE ECETOR) HIGAAZ HEAVY GAMB, CAKS) INIC, TAGEL RESERVOR, (WAL PETIDE, 2 CONPLEX (MHOVRAL) PETIDENE CETOR	COMPLEX (MHCVTRA). PETTDE/RECETOR) HIA A3 HEAVY CHAIN; COMPLEX (MHCVFRA).
Counterad		100 SCI; CHAIN: L, H;	BENUNOGLOBULN DACUNOGLOBULN LAMBDA LIGHT CHADN DINGER (MCGS) 2MCG 3  (TRUGONAL FORM) 2MCG	IMMUNOGLOBULIN BANUNOGLOBULIN FAB NEW (LAMBDA LIGHT CHAIN) 7FAB 3	IGON REA; CHAIN: A; RF- AN IGAZLANDDA; CHAIN: H, L;	ANTI-IDIOTYPIC FAB 409.53 (IOGZA) FAB; CHAIN: A, B, L, H	HLA-A GOI; CHADP: A: BBTA-2 MCROGLOBULDY: CHADP: B: TAX PETIDE; CHADP: CT CELL RECEPTOR ALPHA; CHADP: B: T CELL RECEPTOR BETA; CHADP: B;	HLA-A 0201; CHAIN: A: BETA-2 MICROGLOBULIN; CHAIN: B; TAX PEPTIDB;
SeqPold Score		74.57	13.07	16.53	16.79		88	77.18
Score S	Γ					83		
Vert5						<b>1</b>		
¥ } }		1. 1.	3	85-8	75 <b>453</b>	S.18-63	3.4-27	1.76-38
33		a	<b>7</b> 2	a	242	350	82	82
ğş	Γ	=	2	<u>=</u>	<u>6</u>	=	=	=
g e	Ī	,	_		د		ss s	8
a a	T	132	Ž.	2	şş.	3	(a)	ă
និចនុំ		<u>-</u>	1.59	ī,	15	159	ī,	119

PDB ensetation		COMPLEX (DAKNOOL/OBULINIECEPTOR) TCR (NAFLA VEETA COMMIN; T-CELL RECEPTOR, STRAND SWITCH, FAB, ANTICLONOTPIC; (RAUNOCLOBULINIECEPTOR)		COMPLEX (INACUNORECEPTOR/INACUNOCLOBU LIN) COMPLEX (INACUNORECEPTOR/INACUNOCLOBU LIN)	COMPLEX (INANINGCIGBULLALIPOPROTEIN) (INANINGCIGBULLALIPOPROTEIN) (INANINGCIGBULLALIPOPROTEIN) (INANINGCIGBULLALIPOPROTEIN) COMPLEXED WITH FABIRAL BORRELIA BURGIOGRERALI STRAIN BORRELIA	RECEPTOR TOR: T-CELL, RECEPTOR, TRANSMEMBRANE, OLYCOPROTEIN, SIGNAL.	DMM/NOGLOBULD TR19, ANTI- THYROD PEROXIDASE, AUTOANTBODY, 2
Септрецыя	IMMUNOGLOBULIN FAB FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 IFVD 3	KBS-C20 T-CELL ANTIGEN RECEPTOR: CHAIN: A, B; ANTIBODY DESIRB-1; CHAIN: L, H;	HYDROLASE(O- OLYCOSYL) NO NEUTAAMDASE-NCAI (E.C.) 2 L.18) COMPLEX WITH FAB INCA 3	NIS ALPHA-BETA T-CELL RECEPTOR; CHAIN: A, B, C, D; H37 FAB; CHAIN: B, P, Q, H	FAB HAJ; CHAIN: L. H. OUTER SURPACS PROTEIN A; CHAIN: O;	ALMÍA, BETA T-CELL RECEPTOR CHAIN: A, B;	TRI.9 FAB; CHAIN: L, H.
SeqPaid	16.29	93.57	73.83	2,5	27.	77.57	15.01
Scare							
Verify							
PSI BLAST Sear	1.56.72	6.be72	1.56.71	6.16-23	3.10-67	2.15	17-8-1
3 4	22	722	tu.	\$17 	ä	ŝ	ä
Start	£1	£1	=	=	<u>.</u>	=	=
g a	<	٠,	۔	<u> </u>			
50 E	2	<del>1</del>	<u>s</u>		<u>g</u>	<u> </u>	8.
g a ģ	17.9	ī;	15	I.5	ī,	1129	15

353

_								
PDB annotation	PETIDERECEPTOR)	NECEPTOR T CELL RECEPTOR 18EC	INSECT DAMUNITY INSECT DAMUNITY, LPS-BINDING, HOMOPHILIC ADHESION	COMPLEX (ANTIBODY/ANTIGEN) FAB-12: VEGF; COMPLEX (ANTIBODY/ANTIGEN), ANGIOGENIC FACTOR	DAMUNOGLOBULIN BENCE-JONES PROTEIN; IEIM 8 BENCE JONES, ANTBODY, MULTIPLE QUATERNARY STRUCTURES IEIM 13	COOPLE AT (HOLANDEED ANTRODY (HOLANDEED ANTRODY (HOLANDEED ANTRODY (ANTRODY PA, ANTLAY SOCY NE. 7, COMPLEX (HOLANDEED ANTRODY (HYDROLASE)	IMMUNE SYSTEM REIV, STABILIZED IDAKINOGLOBILIN FRAGMENT, BENCE-JONES 1 PROTEIN, IMMUNE SYSTEM	T-CELL SURPACE CLYCOPROTEIN INDAINOGLOBULIN FOLD. TRANSMEMBRANE, GLYCOPROTEIN, T-CELL, 3 Milc, LIPOPROTEIN, T.
Counpound	CHAIN: C; T CELL RECETOR ALPHA; CHAIN: D; T CELL RECETOR BETA; CHAIN: E.	14.1.D T CELL ANTIGEN RECEPTOR: 18EC 5 CHAIN: NULL; 18EC 6	HEMOLIN; CHAIN: A, B;	FAB FRAGMENT; CHAIN: L, H, J, K; VASCULAR ENDOTHELIAL GROWTH PACTOR; CHAIN; V, W;	LOC - LAMBDA I TYPE LIGHT-CHAIN DIAER; 18JM 6 CIAIN: A, B; 18JM 7	HULYSI I; CHAIN: A, B, D, E, LYSOZYNE; CHAIN: C, F,	IG KAPPA CHAIN V.I REGION REL CHAIN: A, B;	T-CELL SURPACE GLYCOPROTEIN CD4; CHAIN: NULL;
PMF SeqPadd Score Score		16.74	16,03		67.92			
PMC Seare				6.13		8	50 Q	ŝ
Vertify Score				ñ		77	0.81	Q.
	No.	1.76-32	2.78-36	9	¥.	16	1.76-32	5.40-14
3 \$		952	611	92	22	£	=	Ē
	-	=	11	=	11	=	=	ž
Chats Start ID AA				_	<	٠	<	
<b>2</b> 0		<u>B</u>	2	Ē	4	ĭ	<u>k</u>	Į.
3 e	2	11.9	55	E .	129	ŝ	is .	7.59

_		_	_	_		_	_	_		_		_	_				_	_	_	_					_	_		_	_					_	
PDB consisten		CELL SURFACE OLYCOPROTEIN	CATALYTIC ANTIBODY CATALYTIC	ANTIBODY, TERPENOID SYNTHASE,	CARBOCATION, 2 CYCLIZATION	CASCADE		GROWTH PACTORAGROWTH FACTOR	RECEPTOR FGP, FOFF	INDAUNOGLOBULIN-LIKE, SIGNAL	TRANSDUCTION, 2 DIMERIZATION,	GROWTH PACTOR/OROWTH PACTOR	RECEPTOR	GROWTH PACTORAGROWTH PACTOR	RECEPTOR FOF, FOFR.	DAGGINGGLOBULIN-LIKE, SIGNAL	TRANSDIKCTION, 2 DOMERIZATION.	GROWTH PACTORAGROWTH PACTOR	RECEPTOR	COMPLEX (ANTBODY ANTIGEN) I.A.	BETA-N-ACETYLAURAMIDASE C.	SINGLE-DOMAIN ANTIBODY.	TURKEY EGG-WHITE LYSOZYNCE, 2	ANTIBODY-PROTEIN COMPLEX,	SINGL&-CHAIN FV FRAGMENT	CELL ADHESION NCAM; NCAM,	IMMUNOCIOBULIN FOLD,	OLYCOPROTEIN GLYCOPROTEIN	GROWTH PACTORAGROWTH PACTOR	RECEPTOR FGP2; FGFR2;	DAMUNOGLOBULIN (IG)LIKE	DOMAIN'S BELONGING TO THE I-SET	2 SUBGROUP WITHIN IO-LIKE	DOMAINS, B-TREFOIL FOLD	
0.000			CATALYTIC ANTIBODY	19A4 (LIGHT CHAIN);	GIAIN: L. CATALYTIC	ANTERODY 1944 (HEAVY	CHAIN! CHAIN: H.	PIBROBLAST GROWTH	FACTOR 2: CHAIN: A. B.	FIBROBLAST GROWTH	PACTOR RECEPTOR 1:	CHADECE		FIBROBLAST GROWTH	FACTOR 2: CHAIN: A. B.	FIBROBLAST GROWTH	FACTOR RECEPTOR 1:	CHAIN C.D.		SCFV FRADMENT 1P9.	CHAIN: A. B. TURKEY	EGG-WHITTE LYSOZYNE	COMDEXY			NEURAL CELL ADHESION	MOLECULE; CHAIN: A, B,	ซื้อ	PIBROBLAST GROWTH	FACTOR 2; CHAIN: A, B, C,	D. PEBROBLAST GROWTH	FACTOR RECEPTOR 2:	CHAIN: B, P, O, H;		FIND OF TAKE
0.10.14	e s																																		_
2774	Sea		00					ē						9						61.0						55			Z.0						0 28
1	Search		ž					5						ŝ				Ī		6		_				170			9770						010
	BLAST		3,40-63			_		6.80-47						3						2						5.40-17			1.76-45 0.36						25.0 0 30
1			972					75						ž						288	_	_				334			ž						7
1	<b>\{</b>	1	2				_	12						12	_					5		_				65.			132						345

WO 02/059260

PCT/US01/42950

																								_										
PDB amotadem						DOMUNE SYSTEM YON WILLEBRAND	FACTOR, GLYCOPROTEIN IBA	(A:ALPHA) BINDING, 2 COMPLEX	(WILLEBRAND/BOAUNOGLOBULDY),	BLOOD COAGULATION TYPE 3 28	VON WILLEBRAND DISEASE																	COMPLEX	(IMMAUNOGLOBULINARECEPTOR)	IMMUNOCLOBULIN FOLD,	TRANSMEMBRANE CLYCOPROTEIN,	RECEPTOR, 2 SIGNAL, COMPLEX	Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Con	COMPLEX
Coumpound		AA FV) IFOV 4	IMMUNOGLOBULIN	MAKUNOGLOBULIN GI	FAR FRAGMENT ING 1	DAMUNOGLOBULIN NAC-	4 1001; CHAIN: L;	INCAUNOGLOBULIN NAC.	4 1001; CHAIN: 14; VON	WILLEBRAND FACTOR:	CHAIN: A;	IMMUNOGLOBULIN FV	FRACIACENT OF	HUMANIZED ANTIBODY	4DS, VERSION 1 IFVC 3	DOMUNOGLOBULIN FAB	PRACINEDIT OF	HUMANIZED ANTIBODY	4D5, VERSION 4 IPVD 3	TLYMPHOCYTE	ADHESION	CILYCOPROTEIN CD2	(RAT) IRNO 3	DAMUNOGLOBULIN	IMMUNOCIOBULIN M	(10-M) FV FRADMENT	IIGMS	INTERLEUKIN-1 BSTA;	CHAIN: A; TYPE 1	DITERLEUKINFI	RECEPTOR: CHAIN: B;		Parent miles : Paren	MIEKLEUKIN-1 BELA;
Seq Pold																ŝ												\$. \$6					T	1
A M	i		0.27			612						10.0								÷				100	_								1	S
Verth			6.17			ž					-	59.0		_		Γ				80.0				94.0									ŀ	ž
154.1	S.		5.18-63			3.663						25.4				94				= 8:				3				1.8						1.0
3 3			977			97.						071				Ē				ä				92			_	8						78
Start			æ			=						=				-				82				=				ŝ					7	×
<b>#</b> e	!					_						٧				Į				~				_				_					Ī,	_
ê e	!		ŧų.			2						٤		_		2				Į.				ß				g					т	9
9 e	ğ		1/9			-129						3		_		129		_		1/9				129	_		_	671					į	•

PDB agastriles	RECEPTOR FOP2; FGFR2; DAMUNOGLOBULIN (IG)LIKB DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IOLIKE DOMAINS BELONGING TO THE I-SET	GROWTH FACTORAGE OWN HACTOR RECEPTOR FOR FOR FORTS.  DAMINOGLOBULM (IGULES TO SHANN) SELONGING TO THE LEET STUDGED WITHOUT OLUKE  DOMAINS BELONGING TO THE LEET STUDGED WITHOUT OLUKE  DOMAINS B. THEFOIL FOLD.	GROWTH FACTOR/CROWTH FACTOR RECETURE FOR FEG. 1: FORBIL: DAVINOCLOBULM (10) LINE DOMAINS BELONGING TO THE FEET STUBGOOD WITHIN CLIKE DOMAINS, B-TREFOIL, FOLD	GROWTH FACTOR/ORGOWTH FACTOR REGENTOR FOR F, FGFR I; DAVINOCIOBULLA (00) LICE DOMAIN'S BELONGING TO THE F-SET S KRORGON'S WITHIN FOLLICE DOMAIN'S B-TREFOIL FOLD	DAMINE SYSTEM HIGH AFFRITY (IGB-C RECEPTOR, CEGESLOO) (GE- FC, INACHNOCLOBILIN FOLD.  GL YCOPROTEIN, RECEPTOR, (GE- BROWN 2 PROTEIN, (GE ANTBODY,	
Сопировай	FACTOR 2; CHADI: A, B, C, D; FIBROBLAST GROWTH FACTOR RECEPTOR 2; CHADI: B, F, G, H;	FIRKOBLAST GROWTH FACTOR 2: CHADH: A, B, C, D; FIRROBLAST GROWTH PACTOR RECEPTOR 2: CHADH: B, F, Q, H;	FIBROBLAST GROWTH PACTOR I; CHADN: A, B; FIBROBLAST GROWTH PACTOR RECEPTOR 1; CHADN: C, D;	FIBROBLAST GROWTH PACTOR I; CHADN: A, B; PIBROBLAST GROWTH PACTOR RECEPTOR 1; CHADN: C, D;	HIGH AFFINITY DAKUNOGLOBULIN EPSILON RECEPTOR CHAIN: A; IG EPSILON CHAIN: A; IG EPSILON B, D.	IMMUNOGLOBULIN PV FRACHENT OF A HUMANIZED VERSION OF THE ANTI-CDIE 1FOV 3 ANTIBODY 1437 (RUH53-
Seq/ald Score						
PMU		900	100	0.16	10.0-	-0.05
Verlity		0.40	0.40	590	ີວ	67)
is is		19-01	S.1849	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2.40-14	¥.
3		TO TO	ž	339	339	=
ž ž		ž	Ē	22	851	=
đe		0	U	U	<	,
g e		<u>E</u>	Ē	Ē	<u>8</u>	<u>š</u>
SEQ TO		1.59	11.0	11.9	<u>.</u>	119

357

WO 02/059260

PCT/US01/42950

PDB annetaden	(DAMINOGLOBULDNRECEPTOR) DAMINOGLOBULDN POLD, ANNISMEMBRANE, GLYCOROTEIN, RECEPTOR, 2 SIGNAL, COMPUEX, GAMINOGLOBULDNRECEPTOR)		MUISCLE ROTEIN CONVECTIV, NEXTMS; CELL ADRESION, GLYCOPROTEIN, TRANSAGABRANE, REFEAT, BARN, 2 IMMINGGLOBULIN FOLD, ALTERATIVE STLICHO, SIGNAL, MUISCLE PROTEIN	COMPLEX (INACINORECEPTOR/INACINOCILOBU LIN) COMPLEX (INACINORECEPTOR/INACINOCILOBU LIN)	DOMINE SYSTEM BETA BARREL DOMINDGLOBULIN YL DOMAIN DIMER, FLIPPED DOMAIN 2 DIMER	ANTIBODY ANTIBODY, VI PEPTIDE, BINDING SITE	MONOCLONAL ANTIBODY MONOCLONAL ANTIBODY, PAB- FRAGMENT, REPRODUCTION	RECEPTOR TCR, T-CELL, RECEPTOR, TRANSMEMBRANE, GLYCOPROTEIN,
Compound	CHAIN: A; TYPE I INTERLEUKIN-1 RECEPTOR; CHAIN: B;	IMMUNOGLOBULIN MOMUNOGLOBULIN FAB FRAGMENT (MCPCS603) IMCP 4	TITN; CHAIN: NULL;	NIS ALPHA-BETA T-CELL RECEPTOR, CHAIN: A, B, C, D; H37 FAB; CHAIN: G, P, Q, H	IMMUNOCIOBULIN LIGHT CHAIN VARIABLE DOMAIN; CHAIN: A, B;	TO THE THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PRO	MONOCLONAL ANTIBODY 3A2; CHAIN; H, L;	ALPHA, BETA T-CELL. RECEPTOR CHAIN: A, B;
SeqPold				74.63				20.09 0.09
PMF		90	coro.		50.0	900	0.03	
Verity Some		77.0	1 ·		25	0.37	0.42	
2 2 3		186	S1 • 1	Stell	1.76-13	15-45.	3,44-6J	1.76-33
3 \$		3	ā	ឆ្ក	611	£	340	ā
¥ gg		2	ន	=	<u>e</u>	2	<u>.</u>	
g e				Δ	<	د		٥
<u>e</u>		tag	1	ग्रम	<u>s</u>	<u>B</u>	4	Ĕ
geg		129	129	17.9	119	119	11.0	119

_		_						_	_
PDR sunotedon		SIGNAL		COMPLEX (AVTBODY REECTRON TRANSPORT) PAB EX. CYT C. AVTICIEN, IMMUNOSLOBILIN, IGGI KAPPA, FAB FRAGNERT, HOKES 1 CYTOCHROMS C, COMPLEX (AVTBODY REECTRON TRANSPORT)	GLYCOPROTEIN CD4; TRANSMEMBRARG, GLYCOPROTEIN, T-CELL, 2 MHC LIPOPROTEIN, POLYMORPHISM	MUSCLE PROTEIN IMMUNOGLOBULLN SUPERPAMILY, I SET, MUSCLE PROTEIN		CATALYTIC ANTIBODY CATALYTIC ANTIBODY, FAB, RING CLOSURE REACTION	IMMUNE SYSTEM PSE NATURAL KILLER CELL RECEPTOR: KIR, NATURAL KILLER RECEPTOR,
Paraca and			MUSCLE PROTEIN TITIN MODULE MS (CONDECTIN) ITNM 3 (NAR, MUDINIZED . AVERAGE STRUCTIRE) ITNM 4 ITNM 58	ES ANTIBODY; CHAIN! L, H; CYTOCHROMB C; CHAIN! P;	T-CELL SURFACE GLYCOPROTEIN CD4; CHAIN! A, B;	TWITCHIN 18TH 10SP MODULE: CHAIN: NULL;	IMMUNOGLOBULIN WAT, AVALUBLE DOMAIN FROM DAGUNOGLOBULIN LIGHT-CHAIN IWTL.3 (BENGE-UNES PROTEIN) IWTL.4	IOG SCI; CHAIN! L, 15	MHC CLASS I NK CELL RECEPTOR PRECURSOR; CHAIN: A:
No.	Sea				15.1				
274	Scene		900	500		4.15	11.0	3	900
1	×		629	7		150	150	620	0.00
Ī	ELST See		27615	345	1.40.23	1.10-14	6.le-32	1.78-63	1.14-14
3	1		Ē	972	285	Ē	611	82	333
3	<b>!</b>	Γ	ä	2	ล	52	=	я	<u>82</u>
1	e				<		۷ .	ر	<
gua	2		era .	¥	. <u>e</u>	in the	<u>z</u>	132	i di
023	βeş		1/9	5	129	1.0	11.9	119	1/9

WO 02/059260 PCT/U5/01/42950 WO 02/059260 PCT/U5/01/42950

<b>e</b> 9	10	įį	3 \$	15 J	£ 6	į	Set Valle	Considerated	
									OPI-ANCHOR, 2 NEURAL ADVESSION MOLECUR, DAMONOCLOBULIN FOLD, HOMOPHILC 3 BINDING, CELL ADVESSION PROTEIN
g g	7	=	ä	1.76-33			11.79	MMUNOGLOBULIN BAMUNOGLOBULIN FAB- NEW (LAMBDA LIGHT CHAIN) TFAB 3	
1									
2	J.	=	112	1.76-68			1976	ANTIBODY; CHAIN: L, H,	итивотроилими итивотроилими
1	۔	=	ä	5.16-77				ANTLIDIOTYPIC FAB 409.53 (GGZA) FAB; CHAIN: A, B, L, H	EXMUNOGLOBULEN EXMUNOGLOBULEN, C'REGION, V REGION
<u> </u>	.1		rn	3.10-69			n'u	LMMUNOGLOBULN FAD PRACHENT OF MONOCLONAL ANTEGODY B72.3 18BJ 3 (MURINEMINAN CHIMERA) 18BJ 4	
<u>3</u>	21	=	ă	22-401			<b>3</b> 72	HILA-A GOI; CHAIN; A; BETA-2 MCROGLOBULIN; CHAIN; E; TCELL RECEPTOR ALPHA; CHAIN; E; TCELL CELL RECEPTOR BETA; CHAIN; E; E	COMPLEX (MECVINAL) PETIDE/RECEPTOR) HALA AL HEAVY RETIDE/RECEPTOR)
<u> </u>		=	ă	1.36-21			15.74	RECEPTOR, IBBC 5 CHAIN: NULL; IBBC 6	RECEPTOR T CELL RECEPTOR 1BEC
2	٧	41	503	31-5.3			102.10	HEMOLIN; CHAIN! A, B;	INSECT DAMUNTY DISECT

PDB ansetation	INHIBITORY RECEPTOR, 2 IMMUNOGLOBULIN				CELL ADFESION NCAM DOMAIN I; CELL ADFESION, GLYCOPROTEIN, EFFARD-BRIDNING, GFANCHOR, 2 NEURAL ADFESION MOLECULE, DAMINOGLOBULIN POLD, SIGNAL	CELL ADHESION PROTEIN NCAM MODULE 2: CELL ADHESION, GLYCOPROTEIN, HEPARIN-BINDING,
Contractor		INMUNOQLOBULIN FAB FRACKENT OF A HUMANIZED VERSION OF THE ANTI-COIL 2POW 3 ANTIBODY 14ST (HUHSS- OZ PAB) ZFOW 4	HACKBOLDBULK VI DOWATH (VARIABLE DOWATH (VARIABLE DOWATH (VARIABLE DOWATH (VARIABLE MCPGOLDBULK) TO WICKSON MUTANT IN WICKSON MUTANT IN WICKSON MUTANT IN WICKSON WICKSON IN WICKSON WICKSON IN WICKSON WICKSON IN WICKSON WICKSON IN WICKSON WICKSON IN MORCIO TRANCO	DIACINOGLOBULIN BARCINOGLOBULIN LAMBDA LIGHT CHAIN DIAGER (MCGS) 2MCG 3 (TRUGONAL FORM) 2MCG	NEUTAL CELL ADRESION MOLECULE; CHAIN: NALL:	NEURAL CELL ADHESION MOLECULE, LARGE ISOPORM; CHAIN; A;
Seere				3		
Scere	Γ	042	170		81.0	ā
Vertity Score		0.42	69.0		97.	150
PSI BLAST Score		3.40-63	E-31	5.1e.36	5.4e-15	5.46-15
Ead AA		<del>3</del>	611	22	ă	Ē
Start		=	<u>•</u>	2	ន្ត	22
e e				_		<
804 E	Γ	į.	Jima Jima	i i	S S	1
9 a 8		11.9	15	150	159	1.59

361

PDB sasection	(DAAUNOGIOBULIN/LIPOPROTEIN), OUTER SURRACE 2 PROTEIN A COMPLEXED WITH FABIRA!, BORRELLA BURDDORFER 2 STRAIN B31	RECEPTOR TOR: T-CELL, RECEPTOR, TRANSAEMBRANE, OLYCOPROTEDI, STONAL.	DGGUNOGLOBULN TEL9, ANTI- THYROD PEROXIDASE, AUTOANTIBODY, 1 DGGUNOGLOBULIN	CATALYTIC ANTIBODY CATALYTIC ANTIBODY, FAB, IUNG CLOSURE REACTION			COMPLEX (DAAUNOGLOBULDVALTOANTIGEN) (DAAUNOGLOBULDVALTOANTIGEN) (DAAUNOGLOBULDVALTOANTIGEN) HEIGHAA TOU PACTOR 1 AUTO- ANTIBODY COMPLEX	IMMUNOGLOBULIN DAMUNOGLOBULIN, C'REGION, V REGION
Coumpense		ALPHA, BETA T-CELL. RECEPTOR CHAIN: A, B;	TRI 3 YAB; CHAIN: L, H;	IGG SCI; CHAIN: L, IL:	IMMUNOCIOBULN IMMUNOCIOBULN IMMUNOCIOBULN IMMEN (NACOS) SACO 3 SINER (NACOS) SACO 3 4	DMMUNOGLOBULD IMMUNOGLOBULD FAB' NEW (LAMBDA LIGHT GIARN) TFAB 3	IGGA RUA; CHÁIDI; CHÁIDI; AN IGMAAMEDA; CHÁIDI; H, L;	AMTI-IDIOTYPIC FAB 409.5.3 (GOGZA) FAB; CHAIN: A, B, L, H
Seq Fed		4.6	15.01	74.57	75.07	76.52	¥.79	
M E								0.25
Vertfy Scene								97'0
BLAST Sare		5.16.22	1.87	1.56.73	()- <b>4</b> ()	85-91	1.637	S.18-63
3 \$		£25	ä	a	322	22	242	240
Start >		=		=	4	=	61	=
0 10 10 10 10 10 10 10 10 10 10 10 10 10		m	_ د	د	_	٠	ب	,
0 Q		<u> </u>	ž.	×	Zmcg	7fsb	<u>\$</u>	laif
S e S		219	E	219	119	£5	219	229

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

PDB annotation	FV, ANTI-LYSOZYME, 1 COMPLEX (HUMANIZED ANTIBODY/HYDROLASE)	IMMINE SYSTEM REIV, STABILIZED IMMINOGLOBILIN FRAGMENT, BENCEJONES 2 PROTEIN, IMMINE SYSTEM	T-CELL SUBFACE GLYCOPROTEIN DAMINOGLOBULIN FOLD, TRANSACEMBRANE, GLYCOPROTEIN, T-CELL 2, MAIC, LIPOPROTEIN, T-CELL 2, MAIC, LIPOPROTEIN CELL SURFACE GLYCOPROTEIN	CATALYTIC ANTIBODY CATALYTIC ANTIBODY, TEPENOD SYNTHASE, CARBOCATION, 2 CYCLIZATION CASCADE	GROWTH FACTOR GORD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AND GOLD AN	GROWTH FACTORAGE OWTH PACTOR RECEPTOR FEB. FOOR DANINOGLOBULH-LIKE, SIGNAL TRANSDUCTION, 2 DIMERIZATION, GROWTH PACTOROGEOWTH FACTOR RECEPTOR	COMPLEX (ANTIBODY ANTIGEN) 1,4 BETA-NACETYLAURANIDASE C; SINGLE-DOMAIN ANTIBODY, TURKEY EOG-WHITE LYSOZYME, 1 ANTIBODY-PROTEN COMPLEX,
Cormpound		IO KAPPA CHAIN V4 REGION REI; CHAIN: A, B;	T-CELL SURFACE GLYCOPROTEIN CD4; CHAIN: NULL;	CATALYTIC ANTIBODY 1944 (LIGHT GLAD); GHAN!; L. CATALYTIC ANTIBODY 1944 (BEAVY GHAN); CHAN!; H.	FIBROBLAST GROWTH FACTOR 2; CIADI: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CAADI: C, D;	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH PACTOR RECEPTOR 1; GHAIN: C, D;	SCFV FRAGMENT 1F9; CHAN; A, B; TURKEY EOG-WHITE LYSOZYME C; CHAIN; X, Y;
Self of Self							
E S		Şq Q	ã	500	10.0	60	40.19
Varity		5	8	ā	5	ĝ	61.9
ELAST Feed		1.76-32	5. 40-14	3.4	<u> </u>	1	1412
		=	ā	9%	ž.	¥	<b>1</b> 7
Start End AA AA		=	ă	я	561	511	611
<b>1</b> a		<		_	υ	٥	<
ē e		Brane .	lody.	9	<u>\$</u>	<u>E</u>	₫
og e g		r,	es es	<b>#</b>	25	229	<i>E</i> .

PDB expectation	COMPLEX (MECVIRAL) PETIDEAGECTOR) HA-A2 HEAVY RECETOR) HA-A2 HEAVY RECETOR, VIAAL PETIDE, 2 COMPLEX (MECVIRAL) PETIDEAGECETOR	COMPLEX (HECVIRAL PETIDEAECEFTOR) HAA A3 HEAVY RETIDEAECEFTOR) PETIDEAECEFTOR)	RECEPTOR T CELL NECEPTOR IBEC	INSECT IMMUNITY INSECT UMMUNITY, LPS-BINDING, HOMOPHILIC ADHESION	COMPLEX (ANTERODY/ANTIDEN) FAB-12: VEGF; COMPLEX (ANTERODY/ANTIGEN), ANGIOGENIC FACTOR	IMMUNOGLOBULIN BENCE-JONES PROTEIN; IBIN 1 BENCE JONES, ANTBODY, MULTIPLE QUATERNARY STRUCTURES IBIN 13	COMPLEX (HUMANIZED ANTBODY/HYDROLASE) ANTBODY ANTBODY COMPLEX
Compound	HANA (20); CHAIN: A; BETA-2 MCROCLOBULIN; CHAIN: B; TAX PETIDE; CHAIN: C; T CELL RECEPTOR ALPHA; CHAIN: D; T CELL RECEPTOR BETA; CHAIN: RECEPTOR BETA; CHAIN:	HIAAA GORI CIKADI: AÇ GRADIN BITAX PETITDE: CHANN: GIT CELL BECETTOR ALPHA: CHANN: DI CELL CHANN: DI CELL RECEPTOR BETA: CHANN:	MAID T CELL ANTIGEN RECEPTOR: 18EC 3 CHAIN: MULL; 18EC 6	HEMOLIN; CHAIN: A. B;	FAB FRAGICENT; CHADN: L, H, J, K; VASCULAR ENDOTHELLAL GROWTH FACTOR; CHAIN; V, W;	LOC - LAMBDA I TYPE LIGHT-CHAIN DIMER; 18JM 6 CHAIN: A, B; 18JM 7	HULYSI I; CHAIN: A, B, D, E; LYSOZYME; CHAIN: C, P;
SeaFold	69:03	11.	76.74	1608		67.92	
Scare					0.13		800
Vertity Score					970		ž,
PSI Son	3.40.77	1.76.31	1.76-32	276-36	6.16-63	¥-4.	3.46-33
3 2	230	જ	250	419	240	242	611
Start	=	=	=	4	=	11	=
g e	ம	ш		<	٠,	<b>v</b>	<b>4</b>
<b>2</b> e	<u> </u>	ā	3	2	<u> </u>	il il	1pvt
Se ë		Ę	229	159	Eg	15	259

PCT/US01/42

	_						
PDB ansetation	SINGLE-CHAIN PV FRAGMENT	CELL ADHESION NCAM, NCAM, DOCKINDOLOBULIN FOLD, GLYCOPROTEIN	GROWTIF FACTORAGOWTH FACTOR REGETYOR ROT2, ROPEL MANUNCAL-BULLN (ROJLKE DOMANN BELONGUNO TO THE I-SET STRUGGOR WITHEN (IO.LIKE DOMANNS, B-TREFOIL, FOLD.	GROWTH EACTGOAGOWTH FACTOR. RECEPTOR FOLK FORRX. DANHOGLOBULIN (IG)LICE DOMANNS BELONGING TO THE F.SET S SUBGROUP WITHIN IG-LICE DOMANNS, B-TREFOIL FOLG.	GROWNIF ACTION/GOVTH FACTOR BECEPTOR FOFY, FOFFY, DANANGS BELOWING TO THE I-SET 3 SUBGROUP WITHIN IOLLICE DOMAINS, P. TREFOIL FOLD.	GROWTH EACTORAGEOWTH FACTOR BECTTOR FORT; FORM; DOMANS BELOYGING TO THE LEST S SUBCROUP WITHIN YOLIGE DOMANS, P.TREOIL FOLD.	CAROWTH PACTORAGOWTH FACTOR RECEPTOR FORT; FORRI; IMMINOCILORICIA (16) LIKE DOMANYS BELONDINO TO THE I-SET 2 SUBGROUP WITHIN IOLIKE DOMANYS, B-TREORI, FOLD
Сепропе		NEURAL CELL ADHESION MOLECULE; CHAIN: A, B, C, D;	FIBROBLAST GROWTH FACTOR 2: CHAIN: A, B, C, D; FIBROBLAST GROWTH FACTOR RECEPTOR 2: CHAIN: E, P, Q, H;	FIBROBLAST GROWTH PACTOR 2: CHAIN: A, B, C, D; FIBROBLAST GROWTH FACTOR RECEPTOR 2; CHAIN: E, F, G, H;	FIBROBLAST GROWTH PACTOR 2: CHAIN: A, B, C, D; FIBROBLAST GROWTH PACTOR RECEPTOR 2: CHAIN: E, F, Q, H;	FIBROBLAST GROWTH FACTOR I; CHADI: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR I; CHADI: C, D;	FIBROBLAST GROWTH PACTOR I: CHAIN: A, B; FIBROBLAST GROWTH PACTOR RECEPTOR I; CHAIN: C, D,
Varity PMF SugPaid Scure Scure Score							
PMP Seere		283	223	0.28	9070	<b>300</b>	0.16
Varidy Scare	Γ	17'0	979	0.0	07:0	0.40	<b>29'0</b>
25 AST		3,46-17	1.7 <del>4</del>	5.10-14	\$7** <b>9</b> *1	S-18	
35	Ī	ă	ř	¥	<b>8</b> 2	ă	339
<u>ş</u> \$		139	112	592	ž	2	ž
10			<b>3</b>	3	0	u	o
802	Ī	Þ	lev2	اع	lev2	E	Ē
g e ģ		E9	ra ra	<b>E</b> \$	<b>L</b> 9	ш,	E .

r		-						
	708 впастина	IMAINE SYSTEM HIGH AFBRITY IGGE-RECEPTOR, CEPERLON) IGG. FC, INAUMOGLOBULN FGLD, GLYCOPROTEIN, RECEPTOR, IGG. BINDING 3 PROTEIN, IGG ANTIBODY, IGG-PC.			IMMUNE SYSTEM YON WILLEBRAND PACTOR, GLYCOPROTEN BA (AALHA) BINDING, 2 COMPLEX (WILLERANDIAMUNGGLOBULIN, BLOOD COAGULATION 177E 3 28 YOW WILLEBRAND DISEASE			
	Company	HIGH AFFRITY DAMUNOGLOBULIN EFSTLON RECEPTOR CHAIN: A: 10 EFSLON GLAIN C REGION; CHAIN: B, D;	DAMUNOGLOBULIN FV FRAGMENT OF A FUMANIZED VERSION OF THE ANTI-CD11 1FQV 3 ANTIBOOP 1/12 (HUHS)	DOKUNOGLOBULD DOKUNOGLOBULDN GI POKUNOGLOBULDN GI FAB' FRAGMENT I FIG 3	DAMUNICALOBULIN NACCA 1001; CAIAN: 1; DAMUNOGLOBULIN NACCA 1001; CHAIN: H; VON WILLEBRAND FACTOR; CHAIN: A;	THAMINOGLOBULDY FV FRACINGENT OF FRACINGENT OF FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STORY FRACING STO	INMUNOCLOBULIN FAB FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 IFVD 3	TLYAPHOCYTE ADHESION GLYCOPAOTEIN CD2 (TANAPHOCYTE
	Ker F						66.39	
	È	100	SUG	12.0	0.12	110		-0.14
	Verify Seer	ລີ	ero ero	0.17	0.36	59'0		0.0
	E E		F(9)	5.10-63	3.46-63	120-32	19-98'9	11-8-1
	3 \$	339	=	240	240	0Z1	177	<b>1</b> 86
	ž ž	651	=	Я	<u>.</u>	=	11	651
	<b>4</b> e	<	د	٠	٠	٧	٧	<
	<u>e</u>		ۇ تۇ	<b>a</b> yı	मु	38	PAI	ij
	8 e ş	229	11.9	229		229	229	213

PCT/US01/42950
į

									_	
PDB ликосибов	Private Primary posts pit a brace	DIMER, FLIPPED DOMAIN 2 DIMER	ANTIBODY ANTIBODY, V3 PEPTIDE, BINDING SITE	MONOCLONAL ANTIBODY MONOCLONAL ANTIBODY, FAB- FRAGMENT, REPRODUCTION	RECEPTOR TCR; T-CELL, RECEPTOR, TRANSMEMBRANE, GLYCOPROTEDY, SIGNAL		COMPLEX (ANTIBODYELECTRON TRANSPORT) PAR ELS CTT C, ANTIGEN BAMINOGLOBULM; IOOI KAPA, FAB FRAGAGAT, HORSE 2 CYTOCHORGAG, COMPLEX (ANTIBODY/ELECTRON TRANSPORT)	GLYCOPROTEIN CDA; INANINOCILOBULIN POLD, TANISAGEABRANE, GLYCOPROTEIN, T-CELL, 2 MHC LIPOPROTEIN, POLYMORPHISM	MUSCLE PROTEIN DAMINOCLOBULIN SUPERFAMILY, I SET, MUSCLE PROTEIN	
Coumpound		DOMAIN; CHAIN; A, B;	Q.SB ANTBODY (LIGHT CHARK); CHAIN: L; Q.SB ANTBODY (HBAVY CHAIN: H; GP120; GIAIN: P;	MONOCLONAL ANTIBODY 3A2; CHAIN: H, L;	ALPHA, BETA T-CELL. RECEPTOR CHAIN: A, B;	MUSCLE PROTEIN TITIN MODULE M3 (CONNECTIN) ITMM 1 (NMR, MINIMIZED AYERAGE STRUCTURE) ITNM 4 ITMM 38	EF ANTBODY; CHARN: 1, H; CYTOCHROME C; CHAIN: P;	T-CELL SURFACE CLYCOPROTEIN CD4; CHAIN: A, B;	TWITCHEN 18TH 10SP MODULE; CHAIN: NULL;	IMMUNOGLOBULIN WAT, A VARIABLE DOMAIN
Seqf'ald Scure	1				70.09 0.09			Ž.		
è i	Ī		3	9		<b>9</b> 0	403		0.15	
Verify Score	T	1	631	0.42		ş	ž		159	รี
PSI ELAST	ž.	_	<u> </u>	3		27615	33	27. <del>4</del>	1	6.8e-32
3		1	•	8	ភ	ŭ	97.	3	ā	611
Start AA	I		я	<u>s</u>	=	527	=	7	131	=
<b>a</b>	T	1			<u>a</u>			۷.		٧
<b>2</b> e	1	1	1	£	Þ	Ī	<u>P</u>	<u>\$</u>	<u>1</u>	1
_	٤	-1	5	£,	r,	S .	ŗ.	5	22.9	229

PDB expectation		COMPLEX FLAMINGGLOBULIN/REGETFOR) IMMUNOGLOBULIN/ROLD, IRANSKELMER, GLYCOPROTEIN, RECETFOR, 2 SIGNAL, COMPLEX (BARLINGGLOBULIN/RECEFFOR)	COMPLEX CHANDROGLOBULINRECETOR) IMMUNOCLOBULIN FOLD, TRANSPERGRANE, GLYCOPEOTEN, RESPTOR, 2 SIGNAL, COMPLEX (BANUNOCLOBULINRECETOR)		MUSCLE PROTEN CONNECTN.  NEXTAS, CELL ALBESTON,  CH YCCPROTEN, TRANSMEMBANE,  REPAL, SENAN, 3.  MANDOGLOBULIN POLD.  ALTERANTHE SPLICTNO, SIGNAL, 3.  MUSCLE PROTEIN.	COMPLEX (INAUNORECEPTOR/NAUNOGLOBU LIN) COMPLEX (INAUNORECEPTOR/NAMUNOGLOBU	IMMUNE SYSTEM BETA BARREL. IMMUNOGLOBULIN YL DOMAIN
Compound	EMUNOGLOBULN BOMINOGLOBULN M (1040) PV FRAGMENT 110M 3	INTEXLEUKIN-1 BETA; GRAIN: A; TYPB 1 INTEXLEUKIN-1 RECEPTOR; CHAIN: B;	NTEXLEUKIN-1 BETA; CHAID: A; TYPB 1 INTEXLEUKIN-1 RECEFTOR; CHAIN: B;	IMMUNOGLOBULIN INDAUNOGLOBULIN FAB FRAGMENT (MC/PCS603) IMCP 4	TITIN; CHAIN: NULL;	NIS ALPHA-BETA T-CELL. RECEPTOR; CHAIN: A, B, C, D; HS7 PAB; CHAIN: B, F, Q, H	LIGHT CHAIN VARIABLE
Sea Fedd Sears		¥1:68				76.63	
P S	9		800	8	<b>100</b> .		š
Vertify	\$		ă	3	3		3
PSI Start		1.96.14	1.96.1	1306	Lieis	3.le-33	1.76-32
3 2	921	83	3	350	331	123	61
¥ Se	=	60	<u> 3</u>	61	222	=	2
<b>1</b> 0	1	<b>a</b>	<u>m</u>	_		<u> </u>	
<b>1</b> 08	B.	2	<u>a</u> .	lanca target	ā	Plafe	38.
3 a 5	22.9	22.9	229	229	219	249	229

PCT/US01/42950

_						
PDB aggetation		CATALYTIC ANTIBODY CATALYTIC ANTIBODY, FAB, RING CLOSURE REACTION	DAMUNG SYSTEM PSS NATURAL KILLER CELL RECEPTOR, KIR, NATURAL KILLER RECEPTOR, INHIBITORY RECEPTOR, 2 INHIBITORY A			
Conspense	FROM DAMINOGLOBULN LIGHT-CHAIN IWTL 3 (BENCE-LONES PROTEIN) IWTL 4	IOG SCI; CHAIN: L, H;	MHIC CLASS I NK CELL RECEPTOR PRECURSOR; CHAIN! A;	IMMUNCCICOBULIN FAB FRACIMENT OF A HUMANIZED VERSION OF THE ANTI-CD18 ZPGW 3 ANTIBODY 412F (FUH52- OZ FAB) ZFGW 4	HUROGLOBILIN DOMANYCOLOBILIN VL DOMANYCOLOBILIN VL DOMANO FLAFA ZDON HUCKA ZDON HUCKA ZDON HUCKA ZDON SOMPLEMENTARTY: DEN REPERTARTY: DEN REPERTARTY: TRON FINANCE DESIGNAL HAN BEEN REPLACED BY ZDON FINANCE DESIGNAL MONCHO ZDON	DAMUNOGLOBULIN DAMUNOGLOBULIN LAMBDA LIGHT CHAIN
Seq Feld Scen						19.19
E S		ğ	90'0	0.42	779	
Varity		039	50'0	0.42	6970	
ELAST Feet		13-47.	1.1614	].te-6]	3	5.1e.56
		350	2	92	<u>•</u>	ž
ž ž		я	8 <u>9</u>	=	<u>e</u>	=
Challe Starr 10 AA AA			<			_
80 A		132	3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<b>1</b>	Ĭ
300		-	r.		c	2

		. •				_
PDB sasetation		CELL ADFESTON NCAM DOMAIN I; CELL ADFESTON, QLYCOPROTEIN, HEP AIDN-BINDING, QPF-ANCHOR, 1 NEURAL ADFESTON MOLECULE, IMMUNOGLOBULIN POLD, SIGNAL	CELL ADJESSION PROCIBIN NCAM MODULE 2, CELL ADPESSION, GLYCOPROCIEN, HERVACH-BINDING, GPT-ANCHOR, 2 NGURAL ADPESSION MOLECULE, INAUNOGLOBULIN FOLD, BINOCHILLIN ADJESSION PROFIEN		COMPLEX (OTP. BIDDIOVETRANSDICTR) RANSDICTR BETA I, TRANSDICTR BETA I, TRANSDICTR OADLA STRINGT, TRANSDICTR OADLA STRINGT, COMPLEX (OTP. BINDINGTRANSDICTR), O PROTEN, HETRANSDICTRA, TRANSDICTRA, TRANSDICTRA, TRANSDICTRA	
Cermpound	DIMER (MCOS) 2MCG 3 (TRUGONAL FORM) 2MCG	NEURAL CELL ADIESION MOLECULE; CHAIN: NUL;	NEURAL CELL ADVESION MOLECULA, LAKGE ISOFORM: CHADH: A;	MANUNOGLOBULIN BANUNOGLOBULIN FAB NEW (LAMBDA LICHT CHAIN) TFAB 3	OT-ALPHANGI-ALPHA GENGERA; CHANP, A; GT- BETA; CHANP, B; GT- GAMMA; CHANP; Q;	OTP-BINDING PROTEIN TRANSDUCIN-ALPHA (OT- ALPHA-GBP-ALP, T. CONCHENCE ALF) ITAD 3 CONCHENCE WITH GDP CONCHENCE OF ALF)
Scare				1	262.16	m.m
		0.16	2			
Verlity Scene		8	150			
·				1.76-53	4 80	1.5095
3 \$		338	E .	102	382	752
į		557	552	<u>-</u>	•	12
100			<	_	<	<
			Jacon	-	3	3
g a ş		229	672		8/9	F.29
	PDB Chain Start End PS1 Verly PMF 2  ID ID AA AA BLAST Scere Scere Scere	D   Chia   Start   Ead   Fist   Verify   PM   Sagrada   Cempound	D   Chia   Start   Ead   Fill   Worth   Publ   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara   Seara	D   Chia   Start Ead   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File	D   Cola   Start Ead   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File   File	779   Cab   Start   Ear   Far   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Star

WO 02/059260 PCT/US01/42950 WO 02/059260 PCT/US01/42950

					_
PDB emotation	СНАПЧ. СОЫРЦЕХ (АНСУПЛАL РЕТПОВЛЕСЕТОВ)	IMMUNE SYSTEM DOATHOOLOBULIN, DAATHOORECEPTOR, DAATINE SYSTEM	ANGERSTER MIC FAK, MIC I AK, T-CELL BECETOR, MIC CLASS IL DIO, I-AK	HA-DRI, DRA HA-DRI, DRBI 1001; TCR KH.17 HA-DRI, DRBI 1001; TCR KH.17 CHADA; CHANF TRATA DAGINGGIOBILIN FOLD	COMPLEX
Coumponed	GIAIN: B: TAX PETIDE; GIAIN: C; T CELL RECEPTOR ALPHA; CHAIN: D; T CELL RECEPTOR BETA; CHAIN: E.	ALPHA-BETTA T CELL. RECEPTOR (TCR) (D10); CHADN: A:	TOTELL RECEPTOR BIO (ALPHA CHAND; CHAND; ALE T-CELL RECEPTOR DIO (BETA CHAND; CHAND; R. P. MGC I-AK, CHAND; R. P. MGC I-AK, CHAND; C. G. MGC I-AK, CHAND; C. G. MGC I-AK, CHAND; C. G. MGC I-AK, CHAND; C. G. MGC I-AK, CHAND; C. G. MGC I-AK, CHAND; C. G. MGC I-AK, CHAND; D. H. CONALLEICHER, D. H.	HAT GASS IN HENTOCOME AT HENTOCOME AT HENTOCOME AT HENTOCOME AT HENTOCOME AT HENTOCOME AT HENTOCOME AT HENTOCOME AT HENTOCOME AT HENTOCOME CALINE IN AT HENTOCOME CHAINE IN AT HENTOCOME HENTOCOME IN HENTOCOME HENTOCOME IN HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTOCOME HENTO	KBS-C20 T-CELL ANTIGEN   COMPLEX
Seq Fold Sepre					
PMF		8	3	8_	E C
Verity Sours		\$1.0	ĝ	3	200
		3.4.16	Le.33	7.5	1,36-37 0.24
3 3		92	91	95	ŝ
Start A		91	z z	a	E
a e		<	<	۵	<
9		d d	1624	<u>\$</u>	2
5 a	ğ	639	63	E.	63

PDB ammetation			RECEPTOR RECEPTOR, V ALPHA DOMAIN, STE-DIRECTED	MUTAGENESIS, 1 THREE-	DIMENSIONAL STRUCTURE, GLYCOPROTEIN, SIGNAL	RECEPTOR RECEPTOR, V ALPHA	DOMAIN, SITE-DIRECTED	DWENSIONAL STRUCTURE	GLYCOPROTEIN, SIGNAL	COMPLEX (MHCVIRAL	CHARLE ASSINGLE TOTAL	RECEPTOR VIRAL PEPTIDE 2	COMPLEX (AGICVIRAL	PETTDEAECEPTOR		COMPLEX (MHC/VIRAL	PEPTIDE/RECEPTOR) HLA-A2 HEAVY	CHAIN; CLASS I MRC, T-CELL	RECEPTOR, VIRAL PEPTIDE, 2	COMPLEX GARCINGAL	PEPTIDEAECEPTOR		TOSIL RECEPTOR TOR: TOSIL	RECEPTOR, MRC CLASS I, ITUMAN	DAMINODEFICIENCY VIRUS, 2	MOLECULAR RECOGNITION	COMPLEX (MICVIEAL	PETILIDENCE EFICK) PLA AZ PISAVI
Compound	FLUORIDE 17AD 4		T-CYLL RECEITOR ALPHA: CHAIN: A. B.			T-CELL RECEPTOR	ALPHA; CHAIN: A, B;			HLA-A 0201; CHAIN: A:	CHAIN- B. TAX REPUTE.	CHAIN C. TOFL	RECEPTOR ALPHA:	CHAIN: D. T CELL	RECEPTOR BETA; CHAIN:	HLA-A 0201: CHADN: A:	BETA-2 MICROGLOBULDY	CHAIN: B; TAX PEPTIDB;	CHAIN: C; T CELL	RECEPTOR ALPHA:	CHAIN: D, T CELL	RECEPTOR BETA; CHAIN:	TOELL RECENTOR V.	ALPRIA DOMAIN: CHAIN:	<b>₩</b>			BELA-2 MICKOULUBULIN;
Seq7edd Scere			67.32			Ī				51.63						Ī							Ī				1	
PM.F						8			1							68.0				_			2				68.0	1
Verthy Sours						ş			1							100		_	_				6:3				070	1
PSI BLAST Score	Ī		Ω. •			5.50-33				1.46-31				_		3.46.31				-			7.95.				1.76-34	
3 2		Γ	121			136				5						2				_			26				961	1
A A			12			ā			1	=						R							=				12	1
<b>1</b> 0	Ī		<b>~</b>			~				_						٥							Į				a	7
<u> </u>	Ī	Γ	ž <u>i</u>			8		_	1	6						19			_	_			2	_			3	1
g e g	T	T	639			679			7	- 6	_		_	_		620			_	_			629		_		629	1

373

| 150 | 10-10 | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Column | Colum

W O 02/05/2440 PCT/US01/12550 WO 02/05/2440 PCT/US01/12550

TABLE 6

Q ID	Position of The Last	Maximum Score	Mesa Score
NO:	Amino Acid of The Signal	0,981	0,764
	1-13	0.978	0.754
<u>.                                    </u>		0.954	0.756
	1-34	0.981	0.652
3	1-22	0.982	0.632
6			0.882
7	1-13	0.981	0.764
8	1-27	0.992	0.589
9	1-15		0.864
0	1-33	0.961	0.943
1	1-17		
3	1-20	0.957	0.874
4	1-20	0.972	0.771
5	1-28	0.941	0.755
6	1-22	0.932	0.802
7	1-20	0.895	0.595
	1-17	0.884	0.588
9	1-16	0.988	0.881
50	1-26	0.937	0.784
51	1-29	0.911	0.864
52	1-26	0.968	0.806
3)	1-22	0.968	0.806
14	1-29	0.956	0.765
	1-21	0.992	0.929
70	1-46	0.978	0.754
10	1-34	0.954	0.756
1	1-31	0.960	0.773
<del>?</del> 9	1-45	0.981	0.652
28	1-22	0.912	0.812
09	1-42	0.593	0.715
11	1-30	0.966	0.767
23	1-18	0.997	0.971
30	1-13	0.981	0.764
35	1-45	0.890	0.631
1	1-27	0.992	0.969
56	1-33	0.961	0.864
72	1-45	0.987	0.658
73	1-20	0.992	0.967
72	1-20	0.957	0.874
13	1-21	0.989	0.945
06	1-42	0.980	0.577
11	1-20	0.972	0.771
16	1-28	0.941	0.755
17	1-28	0.941	0.755
18	1-12	0.907	0.779
22	1-21	0.958	0.779
27	1-15	0.970	0.875
38	1-20	0.895	0.595
12	1-31	0.987	0.895
45	11-30	0.971	0.889
52	11-17	0.884	0.588
62	1-23	0.965	0.817
64	1-29	0.933	0.725
75	1-28	0.972	0.870
,,	1.1-20	U.714	0.870

SEQ ID	Position of The Last Amino Acid of The Signal	Maximum Score	Mesa Score
577	1-17	0.966	0.905
586	1-26	0.921	0.587
395	1-20	0.938	0.631
606	1-18	0.901	0.763
611	1-20	0.940	0.693
615	1-26	0.937	0.784
617	1-22	0.972	0.745
618	1-15	0.930	0.748
619	1-35	0.906	0.600
622	1-29	0.981	0.864
629	1-19	0,976	0.916
630	1-27	0.973	0.931
631	1-29	0.950	0.629
632	1-19	0.969	0.913
633	1-21	0.956	0.823
637	1-17	0.976	0.938
640	1-18	0.991	0.978
645	1-26	0.968	0.806
646	1-20	0.972	0.828
647	1-27	D.893	0.567
648	1-21	0.994	0.959
649	1-20	0.945	0.891
650	1-21	0.984	0.858
551	1-27	0.891	0.593
654	1-40	0.955	0.703
668	1-22	0.968	0.806
571	1-23	0.982	0.945
572	1-23	0.982	0.945
675	1-32	0.955	0.617
576	1-23	0.936	0.677
579	1-20	0.937	0 859
580	1-29	0.956	0.765
182	1-23	0.964	0.819

377

WO 02/059260

PCT/US01/42950

WO 02/059260

PCT/US01/42950

SEQ ID NO:	Chromosomal Location
1	17
2	10
3	11
4	1
	15q25
6	
9	12
7)	12
12	17pter-p13.1
13	11
14	16p13.3
15	
16	12p13
17	21922.3
20	14
21	7q22
22	9
23	5q31
24	\$p23-p22
25	L
26	x
27	X
28	15q14
	10q24
30	17921
31	
32	1
33	5934
34	6
35	10
37	8q24
40	4q13.3
41	10
44	20q11.22-q12
46	12
47	
44	19
49	19
50	4
31	17
52	14
35	
56	1]
57	17p13,3
58	5p14.2-q31.3
59	7911.2
60	15
61	L81p91
62	1 6
63	5
64	, , , , , , , , , , , , , , , , , , ,
65	22
66	12q24.3

SEQ ID NO:	Chromosomal Location
70	15
71	22q13.2 16
<u>/1</u>	7931.1
<del></del>	10
76	is is
77	1 13
78	I Eq.
79	6q14
50	11p15
81	5p13.3-q21.3
83	7q33
84	1q32
65	14
87	11q12-q13.1
29	n
90	1
91	1p36.13
92	7p14
93	10cen-q26.11
94	19
95	17
96	22q11.2
97	6971.3
99	<u> </u>
100	<del> </del>
101	<del> </del>
102	7p13-p11.2
103	15921-922
104	15
105	9q22.1-q22.3
106	Xq13.1
107	20
101	3
109	3
. 110	16q23
111	1p32-p35
112	9
113	Xq22
114	15
115	Bq21-q23
117	6p21.3
118	16p13.3
119	15
120	16
121	2q37
123	\$q22-q23
124	19q13.1
126	20p12.2-p11.22
127	
124	12pter-p13.31
129	12ptu-913.31 14p11.22-p11.21
[31	14011.22-011.21
133	[q32,3-q4] [9q13,4

WO 02/05/260 PCT/US01/47550 WO 02/05/260 PCT/US01/47550

\$EQ ID NO: 135 136 137 139 140	Chromosomal Location 16 17 17 17ptr-p13.1 7
136 137 139 140	17 17ptcr-q13.1 7
137 139 140	17ptcr-p13.1
139	· · · · · · · · · · · · · · · · · · ·
140	
141	Xp11.4-p11.21
142	
143	6
14	5p14-15
145	14
146	14
147	20
148	<u>n</u>
149	19
150	17
151	15
152	1.5
154	6
155	10
156	12pter-p13.31
160	5p15.2
161	14q11.2
162	7q35
163	15
164	12
166	69
168	11
169	· · · · · · · · · · · · · · · · · ·
170	7
171	6p12.1-21.1
172	6p12.1-21.1
173	15q22,1-q22.31
175	22q13.1
176	22q13.l
177	22q13.2-q13.31
178	11cen-q12.1
179	3
180	11
184	17q21.3
185	- 11
11:5	20
189	10
190	4p16
191	
192	
193	12
194	9 -
196	17p11.2
197	
198	
199	17
200	6q16.1-q16.3
202	
203	2q13
205	19
209	19
3	80

δEQ ID NO:	Chromosomal Lecation
211	19
212	q25-26
216	19913.3
217	21q11,2
218	Xq21.3-q22
219	6
221	14q11,2
222	5q12
224	13
225	3q13.3-q21
226	6q23-q24
27	17
228	17
211	14
232	22
233	19
234	5q11.2
237	7q22
241	19
242	15
244	lp22
246	3p21.1-9
248	p12.2-13
249	10
250	19p13.3
251	19p13.3
253	4
255	10
259	9
260	5431
262	
264	[q32.1-q4]
267	10
269	<del> </del>
272	5q34
274	19
275	i i
279	17
280	1 2
286	22913.1
287	22413.1
284	19q13.3-q13.4
291	2p12
292	14
293	14931
293	
	11p15.5
296	7p14-p13
298	7q35-q36
299	20
300	9
302	7q22
305	14q11,2
306	11
307	14q11,2
308	14q11.2
309	7935

WQ 02/039260 PCT/US01/42950

SEQ ID NO:	Chromosomal Location		
313	p34.3-36.11		
315	17.		
316	15		
317	12		
318	22q1i.2		
319	6pter-p22.1		
322	22q		
323	10 X		
326			
328			
329	14q11.2		
330	6p21.3		
331	6p21.3		
332	19q13.3		
333	X		
334	7q31.3-q32		
337	3p21.3		
338	14q11.2		
339	9		
***			

WO 02/059260 PCT/US01/42950

## TABLES

EQ ID NO: f Full-length Nucleotide Segurace	SEQ ID NO: of Full-length Peptide Sequence	SEQ 1D NO: In Priority Application USSN 09/714,936
Sequence	342	
	343	<del></del>
<del></del>	344	
<del></del>	345	<del>;</del>
1	346	<del></del>
<del>-</del>	347	
<del>-</del>	348	
-	349	12
	350	13
10	351	14
11	352	15
12	353	17
13	354	18
14	355	19
15	356	20
16	357	21
17	358	22
18	359	25
19	360	29
20	361	30
21	362	32
22	363	34
23	364	36
24	365	37
25	366	38
26	367	39
27	368	40
28	369	41
29	370	42
30	371	43
31	372	44
32	373	45
33	374	46
34	375	47
35	376	45
36	377	49
37	378	50
38	379	31
39	380	52
40	381	53
41	382	- 34
42	383	55
43	34	96
44	315	37
45	386	58
46	387	39
47	311	60
_41	389	61
49	390	62
_ 50	391	63

WO 02/059240 PCT/US01/42950 WO 02/059240 PCT/US01/42950

SEQ ID NO: of Full-length Nucleotide Sequence	SEQ ID NO: of Pasi-length Peptide Sequence	SEQ ID NO: to Priority Application USSN 09/714,936
51	392	64
52	393	65
53	394	66
54	395	67
55	396	64
56	397	69
\$7	398	70
5.8	399	71
59	400	72
60	401	73
61	402	74
62	403	75
63	404	76
64	. 405	77
65	406	78
66	407	79
67	408	20
68	409	81
69	410	82
70	411	23
71	412	64
72 .	413	8.5
73	414	26
74	415	87
75	416	ts .
76	417	<b>B</b> 9
77	418	90
71	419	91
79	420	92
10	421	93
81	422	94
82	423	95
83	424	96
- 14	425	97
25	426	98
86	427	99
87	428	100
11	429	101
89	430	102
90	431	103
91	432	104
92	433	105
93	434	106
94	435	107
95	436	108
96	437	109
97	438	110
98	439	311
99	440	112
100	441	113
101	442	114
102	443	115
103	444	116

SEQ ID NO: of Full-length Nucleotide	SEQ ID NO: of Pull-length Puptide Sequence	SEQ ID NO: in Priority Application USSN 69/714,936
Sequence		
104	445	117
105	446	118
106	447	119
107	448	120
108	449	121
109	450	122
110	451	123
111	452	124
112	453	125
111	454	126
114	455	127
115	456	128
116	457	129
117	458	130
118	459	131
119	460	132
120	461	133
121	462	134
122	463	135
124		136
125	465	138
126	467	139
127	467	140
128	469	141
129	470	142
130	471	143
131	472	144
132	473	145
133	474	146
134	475	147
135	476	141
136	477	149
137	478	150
138	479	[5]
139	480	152
140	481	153
141	482	154
142	483	155
143	484	156
144	485	157
145	486	158
146	487	159
147	488	160
148	4.89	162
149	490	163
150	491	164
151	492	165
152	493	166
153	494	167
154	495	168
155	496	169
156	497	170

WO 02/059260 PCT/U501/42950 WO 02/059260 PCT/U501/42950

SEQ ID NO: of Full-length Nucleotide Sequence	SEQ ID NO: of Pall-length Peptids Sequence	SEQ 1D NO: In Priority Application USSN 69/714,936
157	498	171
158	499	172
159	500	173
160	501	174
161	502	175
162	503	176
163	504	177
164	505	178
165	506	179
166	507	180
167	508	181
168		. 182
169	510	143
170	511	184
171	512	185
172	513	1\$6
173	514	187
174	515	188
175	516	189
176	517	190
178	519	192
179	520	193
180	521	194
181	522	195
182	523	196
183	524	197
184	525	198
185	326	199
186	527	200
187	328	201
183	529	202
189	530	203
190	331	204
191	532	205
192	533	206
193	534	207
194	. 535	501
195	536	209
196	537	210
197	531	211
198	539	212
199	540	213
201	34E 342	214
202	543	215
203	544	210
204	545	217
205	546	218
206	97	220
207	54	221
205	549	222
209	550	223

SEQ ID NO: of Full-length Nucleotide Sequence	SEQ ID NO: of Full-length Peptide Sequence	SEQ ID NO: in Priority Application USSN 09/714,936
210	551	224
211	552	225
212	553	226
213	554	227
214	555	228
215	556	229
216	557	230
217	558	231
218	559	232
219	560	233
220	361	234
221	562	235
222	563	236
223	364	237
224	565	238
225	566	239
226	567	240
227	568	241
228	569	242
229	570	244
230	571	245
231	572	246
232	573	247
233	574	248
234	575	249
235	576	250
236	577	251
237	578	252
238	579	253
239	580	254
240	581	255
241	542	256
242	\$43	257
243	584	258
244	585	259
245	586	260
246	587	261
247	388	262
248	589	253
249	590	265
250	591	266
251	592	267
252	593	268
253	594	269
254	595	270
255	396	272
256	597	273
257	598	275
258	599	276
259	600	277
260	601	278
261	602	279
262	603	280

SEQ ID NO: of Pull-length Nucleotide Sequence	SEQ ID NO: of Full-length Peptide Sequence	SEQ ID NO: in Priority Application USSN 09/714,936
263	604	291
264	605	212
265	606	213
266	607	284
~ 267	601	285
268	609	286
269	610	287
270	611	288
271	612	290
272	613	291
273	614	292
274	615	293
275	616	294
276	617	295
277	618	296
278	619	297
279	620	298
280	621	299
281	622	300
282	623	301
283	624	302
284	625	303
285	625	304
286	627	305
287	628	306
211	629	307
219	630	308
290	631	309
291	632	310
292	633	311
293	634	312
294	635	313
295	636	314
296	637	315
197	638	316
298	639	318
299	640	319
300	641	320
301	642	321
302	641	322
303	644	323
304	645	324
305	646	325
306	647	326
307	648	327
308	649	328
309	650	329
310	651	330
311	652	331
312	653	332
313	654	333
314	655	334
315	656	335

WO 02/059260 PCT/US01/42950

WHAT IS CLAIMED IS:

- An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-341, a mature protein coding portion of SEQ ID NO: 1-341, an active domain coding portion of SEQ ID NO: 1-341, and complementary sequences thereof.
- An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide hybridizes to the polynucleotide of claim 1 under stringent hybridization conditions.
- 10 3. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide has greater than about 90% sequence identity with the polynucleotide of claim 1.
  - 4. The polynucleotide of claim 1 wherein said polynucleotide is DNA.
  - An isolated polynucleotide of claim 1 wherein said polynucleotide comprises the complementary sequences.
  - 6. A vector comprising the polynucleotide of claim 1.
  - 7. An expression vector comprising the polymucleotide of claim 1.
  - 8. A host cell genetically engineered to comprise the polynucleotide of claim 1.
- A host cell genetically engineered to comprise the polynucleotide of claim 1
  operatively associated with a regulatory acquence that modulates expression of the
  polynucleotide in the bost cell.
  - 10. An isolated polypeptide, wherein the polypeptide is selected from the group consisting
- 30 of:

15

- (a) a polypeptide encoded by any one of the polymucleotides of claim 1;
- a polypeptide encoded by a polynucleotide hybridizing under stringent conditions with any one of SEQ (D NO: 1-341; and

SEQ ID NO: of Full-length Nucleotide Sequence	SEQ ID NO: of Pull-length Poptide Sequence	SEQ ID NO: In Priority Application USSN 09/714,936
316	657	336
317	658	337
318	659	338
319	660	339
320	661	340
321	662	341
322	663	342
323 `	664	343
324	663	344
325	666	345
326	667	346
327	664	347
328	669	341
329	670	349
330	671	351
331	672	352
332	673	353
333	674	354
334	675	355
335	. 676	356
336	677	357
337	678	358
338	679	359
339	680	360
340	681	361
341	682	362

389

WO 02/059260 PCT/US01/42950

- (c) a polypeptide of any one of SEQ ID NO: 342-682.
- 11. A composition comprising the polypeptide of claim 10 and a carrier.
- 5 12. An antibody directed against the polypeptide of claim 10.
  - 13. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
  - a) contacting the sample with a compound that binds to and forms a complex with the polynucleotide of claim 1 for a period sufficient to form the complex; and
- 10 b) detecting the complex, so that if a complex is detected, the polynucleotide of claim 1 is detected.
  - 14. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample under stringent hybridization conditions with
- 15 nucleic acid primers that anneal to the polynucleotide of claim 1 under such conditions;
  - b) amplifying a product comprising at least a portion of the polynucleotide of claim 1; and
  - c) detecting said product and thereby the polynucleotide of claim 1 in the
- 20 sample.
  - 15. The method of claim 14, wherein the polynucleotide is an RNA molecule and the method further comprises reverse transcribing an annealed RNA molecule into a cDNA polynucleotide.
- A method for detecting the polypeptide of claim 10 in a sample, comprising:
  - a) contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex; and
- 30 b) detecting formation of the complex, so that if a complex formation is detected, the polypeptide of claim 10 is detected.

WO 02/059260 PCT/US01/42950

17. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:

- a) contacting the compound with the polypeptide of claim 10 under conditions sufficient to form a polypeptide/compound complex; and
- detecting the complex, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 18. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10, in a cell, under conditions sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and
- b) detecting the complex by detecting reporter gene sequence expression,
   so that if the polypeptide/compound complex is detected, a compound that binds to the
   polypeptide of claim 10 is identified.
  - 19. A method of producing the polypeptide of claim 10, comprising,
- a) culturing a host cell comprising a polynucleotide sequence selected from SEQ ID NO: 1-341, a manure protein coding portion of SEQ ID NO: 1-341, an active 20 domain coding portion of SEQ ID NO: 1-341, complementary sequences thereof and a polynucleotide sequence hybridizing under stringert conditions to SEQ ID NO: 1-341, under conditions sufficient to express the polypeptide in said cell; and
  - b) isolating the polypeptide from the cell culture or cells of step (a).
- 25 20. An isolated polypertide comprising an amino acid sequence selected from the group consisting of any one of the polypeptides SEQ ID NO: 342-682, the mature protein portion thereof, or the active domain thereof.
  - The polypeptide of claim 20 wherein the polypeptide is provided on a polypeptide
     array.
  - 22. A collection of polynucleotides, wherein the collection comprising the sequence information of at least one of SEQ ID NO: 1-341.

392

WO 02/059260 PCT/US01/42950

- 23. The collection of claim 22, wherein the collection is provided on a nucleic acid array,
- 24. The collection of claim 23, wherein the array detects full-matches to any one of the 5 polynucleotides in the collection.
  - The collection of claim 23, wherein the array detects mismatches to any one of the polynucleotides in the collection.
- 10 26. The collection of claim 22, wherein the collection is provided in a computer-readable formet.
- A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising a polypeptide of claim 10 or 20
   and a pharmaceutically acceptable carrier.
  - 23. A method of treatment comprising administering to a mammalian subject in need thereof a therepeutic amount of a composition comprising an antibody that specifically binds to a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.

393

## This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
☐ OTHER:	

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.