Some

Author: Pannenets.F

Date: September 22, 2020

Je reviendrai et je serai des millions. «Spartacus»

0.1 MOSFET

CMOS模拟集成电路设计

第一章: MOSFET

胡远奇

©2020

>>> MOSFET

Id=?

MOSFET

>>> MOSFET的I-V关系

>>> MOSFET的I-V关系

>>> MOSFET

- ・晶体管工作在线性区: 电阻
- 晶体管工作在饱和区: 放大器
- 亚反型区/弱翻转区 (Weak Inversion)
- 速度饱和去 (Velocity Saturation)
- 特征频率

>>> MOSFET当作开关

线性区: $V_{DS} < V_{GS}$ - V_{TH}

$$I_D =$$

• 小信号导通电阻:

R=

>>> MOSFET当作开关

线性区: $V_{DS} < V_{GS}$ - V_{TH}

$$I_{D} = \mu C_{ox} \frac{W}{L} \left(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \right) V_{DS}$$

小信号导通电阻:

$$R \approx \frac{1}{\mu C_{ox} \frac{W}{I} (V_{GS} - V_{TH})}$$
 for $V_{GS} - V_{TH} >> V_{DS}$

>>> MOSFET参数

$$R \approx \frac{1}{\mu C_{ox} \frac{W}{L} (V_{GS} - V_{TH})}$$

 $\mu_n \approx 600 \text{ cm}^2/\text{Vs}$

• 栅氧层电容 C_{OX} : $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$

>>> MOSFET参数

$L_{min} = 0.35 \mu m$

电子迁移率u: $\mu_p \approx 250 \text{ cm}^2/\text{Vs}$

 $\mu_n \approx 600 \text{ cm}^2/\text{Vs}$

• 栅氧层电容 C_{OX} : $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} \approx 5 \cdot 10^{-7} \text{ F/cm}^2$

$$KP_n \approx 300 \, \mu A/V^2$$

>>> MOSFET电阻快速估算

$$L_{min} = 0.35 \ \mu m$$
 $KP_n \approx 300 \ \mu A/V^2$

$$R \approx \frac{1}{\mu C_{ox} \frac{W}{L} (V_{GS} - V_{TH})}$$

 对于0.35um工艺方块NMOS晶体管, $EV_{GS}-V_{TH}=1V$ 的驱动电压下,其电阻约为:

3.4K Ω

>>> MOSFET电阻快速估算

已知0.35um工艺方块NMOS晶体管,在 V_{GS} - V_{TH} =1V的驱动电压 下,其电阻约为3.4Kohm,请估算电阻值:

1. 0.35um工艺方块PMOS晶体管, V_{GS}-V_{TH}=1V

8.16K Ω

2. 0.18um工艺方块NMOS晶体管, V_{GS}-V_{TH}=1V

1.75K Ω

$$\mu_p \approx 250 \text{ cm}^2/\text{Vs}$$

 $\mu_p \approx 600 \text{ cm}^2/\text{Vs}$
 $t_{ox} =$

MOSFET

- 晶体管工作在线性区: 电阻
- ·晶体管工作在饱和区: 放大器
- 亚反型区/弱翻转区 (Weak Inversion)
- 速度饱和去 (Velocity Saturation)
- 特征频率

>>> MOSFET当作放大器

饱和区: $V_{DS} > V_{GS} - V_{TH}$

$$I_D=$$

• 小信号跨导:

$$g_m \approx$$

>>> MOSFET当作放大器

饱和区: $V_{DS} > V_{GS}$ - V_{TH}

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

小信号跨导:

$$g_m \approx \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_{DS}} = \frac{2I_{DS}}{V_{GS} - V_{TH}}$$

》)》晶体管跨导gm

$$g_m \approx \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_{DS}} = \frac{2I_{DS}}{V_{GS} - V_{TH}}$$

问:小信号跨导gm与IDS的关系?

》)输出电阻r_o

$$I_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

输出电阻:

$$r_0 =$$

》) 输出电阻r₀

$$I_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

• 输出电阻:

$$r_0 \approx \frac{1}{\lambda I_{DS}} = \frac{V_E \cdot L}{I_{DS}}$$

$$V_{En} = 4 V/\mu mL$$

$$L = 1 \mu m$$

$$I_{DS}$$
 = 100 μ A

$$r_0 = 40 \text{ k}\Omega$$

>>> 单晶体管放大器

>>> 单晶体管放大器

$$A_{v} = g_{m}r_{DS} = \frac{2 V_{E} L}{V_{GS} - V_{T}}$$

$$A_v \approx 100$$

If $V_E L \approx 10 \text{ V}$ and V_{GS} - $V_T \approx 0.2 V$

>>> 运放设计Trade-off

$$g_m pprox rac{2I_{DS}}{V_{GS} - V_{TH}}$$

$$A = rac{2 \cdot V_E \cdot L}{V_{GS} - V_{TH}}$$

$$A = \frac{2 \cdot V_E \cdot L}{V_{GS} - V_{TH}}$$

	高增益	高速
V _{GS} -V _{TH}		
L		

>>> 运放设计Trade-off

$$g_m pprox rac{2I_{DS}}{V_{GS} - V_{TH}}$$

$$A = rac{2 \cdot V_E \cdot L}{V_{GS} - V_{TH}}$$

$$A = \frac{2 \cdot V_E \cdot L}{V_{GS} - V_{TH}}$$

	高增益	高速
V _{GS} -V _{TH}	↓	1
L	1	↓

))) MOSFET

- 晶体管工作在线性区: 电阻
- 晶体管工作在饱和区: 放大器
- ·亚反型区/弱翻转区 (Weak Inversion)
- 速度饱和去 (Velocity Saturation)
- 特征频率

>>> 弱反型区和速度饱和区

假设晶体管始终工作在饱和区: $V_{DS} > V_{GS} - V_{TH}$

》) 弱反型区 (weak inversion)

弱反型区:

$$I_{D,wi} = I_{D0} \frac{W}{L} e^{\frac{V_{GS}}{nkT/q}}$$

$$g_{m,wi} = \frac{I_{D,wi}}{nkT/q}$$

n>1, 取决于偏置电压

>>> 弱反型区

- 场效应管实际是一个水平的BJT三极管
- 漏极的反向偏置形成二极管,增加栅极电压将线性降低二极管的电势壁垒 (Potential Barrier)
- 主要的电流是扩散电流(diffusion)而非漂移电流(drift)
- 通道中电势几乎不变,离子浓度线性变化

>>> 弱反型区

$$I_{D,wi} = I_{D0} \frac{W}{L} \exp\left(\frac{V_{GS}}{nU_T}\right) \cdot \left[1 - \exp\left(-\frac{V_{DS}}{U_T}\right)\right]$$

$$I_{D,wi} = I_{D0} \frac{W}{L} \exp\left(\frac{V_{GS}}{nU_T}\right)$$
 for $V_{DS} > 4U_T$ (饱和)

>>> 弱反型与强反型

弱反型区(Weak Inversion)

强反型区 (Strong Inversion)

$$g_{m,wi} = \frac{I_{DS}}{nkT/q}$$

$$g_{m,si} = \frac{2I_{DS}}{V_{GS} - V_{TH}}$$

$$\frac{g_{m,wi}}{I_{DS}} = \frac{1}{nkT/q}$$

$$\frac{g_{m,si}}{I_{DS}} = \frac{2}{V_{GS} - V_{TH}}$$

$$V_{GS} - V_{TH} = 2n \frac{kT}{q} \approx 70mV$$

>>> 弱-强反型区转换点

$$V_{GS} - V_{TH} = 2n \frac{kT}{q} \approx 70mV$$

- 强弱的转换点独立于工艺的尺寸
- 保证 V_{GS} - V_{TH} =0.2V 可以在不同工艺中均保证晶体管工作在强 反型区

• 转换点电流:
$$I_{DSt} = K_n' \frac{W}{L} (V_{GS} - V_{TH})^2$$

$$I_{DSt} = \frac{W}{L} \cdot \mathbf{0}. \, \mathbf{x} \, \mu A$$

>>> 弱反型与强反型

弱反型区 (Weak Inversion)

$$\frac{g_{m,wi}}{I_{DS}} = \frac{1}{nkT/q}$$

$$\frac{g_{m,si}}{I_{DS}} = \frac{2}{V_{GS} - V_{TH}}$$

>>> 弱反型与强反型

》) 弱反型与强反型: EKV模型

$$I_{DS} = K' \frac{W}{L} V_{GSTt}^2 \cdot ln^2 (1 + e^v)$$
$$v = \frac{V_{GST}}{V_{GSTt}}$$

能否通过一个公式同时 表述两种反型区?

$$\ln^2(1+e^v)$$

》) 弱反型与强反型: EKV模型

$$I_{DS} = K' \frac{W}{L} V_{GSTt}^2 \cdot ln^2 (1 + e^v), \quad v = \frac{V_{GST}}{V_{GSTt}}, \qquad V_{GSTt} = (V_{GS} - V_T)_t = 2n \frac{kT}{q}$$

• 弱反型区中:

• 强反型区中:

》) 弱反型与强反型:EKV模型

$$I_{DS} = K' \frac{W}{L} V_{GSTt}^2 \cdot ln^2 (1 + e^v), \quad v = \frac{V_{GST}}{V_{GSTt}}, \qquad V_{GSTt} = (V_{GS} - V_T)_t = 2n \frac{kT}{q}$$

• 弱反型区中: $ln(1+e^v) \approx e^v$

$$I_{DS} = K' \frac{W}{L} V_{GSTt}^2 \cdot e^{2v} = I_{DSt} \cdot \exp(\frac{V_{GS} - V_T}{nkT/q})$$

• 强反型区中: $ln(1+e^v) \approx v$

$$I_{DS} = K' \frac{W}{L} V_{GSTt}^2 \cdot v^2 = K' \frac{W}{L} (V_{GS} - V_T)^2$$

>>> 弱反型与强反型:反型系数

$$I_{DS} = K' \frac{W}{L} V_{GSTt}^2 \cdot ln^2 (1 + e^v), \quad v = \frac{V_{GST}}{V_{GSTt}}, \quad V_{GSTt} = (V_{GS} - V_T)_t = 2n \frac{kT}{q}$$
 反型系数i: $i = \frac{I_{DS}}{I_{DSt}} = ln^2 (1 + e^v)$
$$v = ln(e^{\sqrt{l}} - 1)$$

$$V_{GST} = V_{GSTt} \cdot ln(e^{\sqrt{l}} - 1)$$

$$V_{GSTt} = 2n \frac{kT}{q} \approx 70mV$$

>>> 弱反型与强反型:反型系数

》) 弱反型与强反型:反型系数与gm/lps

晶体管最大的g_m/I_{DS}出现 在弱饱和区,且随着反型 系数增加而下降

归一化效率 GM/ID:
$$GM/ID = \frac{g_m/I_{DS}}{(g_m/I_{DS})_{max}}$$

》) 弱反型与强反型:反型系数与gm/lps

$$GM/ID = \frac{1 - e^{-\sqrt{i}}}{\sqrt{i}}$$

・ 反型系数为8,即 V_{GS} - V_T =200mV时,晶体管在跨导值和跨导效率中取得 一个较好的平衡。

>>> 弱反型与强反型

• 晶体管不会立即从弱反型区的指数行为切换为强反型区的二次项 行为。在这两个极端之间有一个平滑的过渡,其中漂移和扩散均 会产生电流。 对该区域进行建模非常困难,通常将其行为理解 为弱反型和强反型行为的混合体。

$V_{GS} > V_T + 100 \text{mV}$	strong inversion
$V_T + 100 \text{mV} > V_{GS} > V_T - 100 \text{mV}$	moderate inversion
$V_{GS} < V_T - 100 \text{mV}$	weak inversion

))) MOSFET

- 晶体管工作在线性区: 电阻
- 晶体管工作在饱和区: 放大器
- 亚反型区/弱翻转区 (Weak Inversion)
- ・速度饱和去 (Velocity Saturation)
- 特征频率

>>> 速度饱和区 (Velocity Saturation)

□ 如何理解饱和区电流 中V_{GS}的平方项?

□ 如何理解饱和区跨导 与V_{GS}的线性关系

>>>> 速度饱和区 (Velocity Saturation)

• 速度饱和区:

- ✓ 电子以最大速度流过 沟道
- ✓ 电流随着驱动电压线 性增加

>>>> 速度饱和区 (Velocity Saturation)

• 速度饱和区:

$$I_{DSvs} = WC_{ox}v_{sat} (V_{GS}-V_{T})$$

 $v_{sat} \approx 10^{7} \text{ cm/s}$

$$g_{msat} = WC_{ox}v_{sat}$$

跨导到达最大值!

>>>> 速度饱和区 (Velocity Saturation)

$$g_{msat} = WC_{ox}v_{sat}$$

- g_{msat}/W只与工艺参数C_{OX}和物理参数v_{sat}有关
- 模拟电路中一般不使用该区域

>>> 速度饱和区

>>> 速度饱和区

强反型区(Strong Inversion) 速度饱和区(Velocity Saturation)

$$g_{m,si} \approx \mu C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) \qquad g_{m,sat} = W C_{OX} v_{sat}$$

$$(V_{GS} - V_{TH})_{vs} = \frac{L \cdot v_{sat}}{\mu}$$

$$v_{sat} \approx 10^7 \text{ cm/s}$$

$$\mu_p \approx$$
 250 cm²/Vs

$$\mu_n \approx 600 \text{ cm}^2/\text{Vs}$$

$$(V_{GS} - V_{TH})_{vs} = 0.58V$$

$$L_{min} = 0.35 \mu m$$

>>> 速度饱和区

强反型区(Strong Inversion) 速度饱和区(Velocity Saturation)

$$g_{m,si} pprox \mu C_{ox} rac{W}{L} (V_{GS} - V_{TH})$$

$$g_{m,sat} = WC_{OX}v_{sat}$$

$$\frac{1}{g_m} = \frac{1}{g_{m,si}} + \frac{1}{g_{m,sat}}$$

$$g_{\rm m} \approx \frac{W}{L} \frac{17 \cdot 10^{-5}}{1 + 2.8 \cdot 10^4 \, \text{L} / \text{V}_{\rm GST}} \bigg|_{\text{in cm}}$$

》)饱和区VS速度饱和区

>>> 其他因素

Drain-Induced Barrier Lowering (DIBL)

Surface Scattering

Impact ionization

>>> MOSFET

- 晶体管工作在线性区: 电阻
- 晶体管工作在饱和区: 放大器
- 亚反型区/弱翻转区 (Weak Inversion)
- 速度饱和去 (Velocity Saturation)
- ・特征频率

>>> 特征频率f_T

• 特征频率是表征晶体管在高频时放大能力的一个基本参量,主要由晶体管的**跨导**和**寄生电容**决定。

>>> 特征频率f_T

>>> 高频小信号模型

>>> 高频小信号模型

$$C_{GS} \approx \frac{2}{3} WLC_{ox} \approx 2W fF/um for Lmin$$

$$L_{min}C_{ox} \approx L_{min} \frac{\epsilon_{ox}}{t_{ox}} \approx 50 \epsilon_{ox} \approx 2 \text{ fF/}\mu\text{m}$$

$$C_{GD} = WC_{gdo}$$

>>> 特征频率f_{T,} i_{DS}= i_{GS}

>>> 特征频率f_{T,} i_{DS}= i_{GS}

$$G \xrightarrow{i_{GS}} \xrightarrow{I} V_{GS} \xrightarrow{I$$

>>> f_T与沟道长度L的关系

Processors

f_T与沟道长度L的关系

$$f_T = \frac{1}{L} \frac{13.5}{1 + 2.8 L / V_{GST}}$$
 GHz

L in µm

If
$$V_{GST}$$
 = 0.2 V, v_{sat} takes over for L < 65 nm
If V_{GST} = 0.5 V for L < 0.15 μ m

>>> f_T在强反型区和弱反型区中模型

$$\begin{cases} GM/ID = \frac{g_m/I_{DS}}{(g_m/I_{DS})_{max}} = \frac{1 - e^{-\sqrt{i}}}{\sqrt{i}} \\ i = \frac{I_{DS}}{I_{DSt}} \end{cases}$$

$$f_T =$$

>>> f_T在强反型区和弱反型区中模型

$$\begin{cases} GM/ID = \frac{g_m/I_{DS}}{(g_m/I_{DS})_{max}} = \frac{1 - e^{-\sqrt{i}}}{\sqrt{i}} \\ i = \frac{I_{DS}}{I_{DSt}} \end{cases}$$

$$f_T = \frac{g_m}{2\pi C_{GS}} = \frac{1}{2\pi C_{GS}} \frac{I_{DSt}}{nkT/q} \sqrt{i} (1 - e^{\sqrt{i}})$$

$$=\frac{2\mu kT/q}{2\pi L^2}\cdot \sqrt{i}(1-e^{\sqrt{i}})$$

尺寸设计 偏置设计

>>> 设计思路总结

- 1. 手工计算用来估算尺寸,精确设计依赖仿真结果。
- 2. 时刻牢记 g_m/I_D 的曲线及大致数值。
- 3. 低功耗电路取 V_{GS} - V_{TH} <-0.1V; 高增益电路取 V_{GS} - V_{TH} =0.2V; 高速电路取 V_{GS} - V_{TH} =0.5V。
- 4. 通过 f_T 的公式来估算设计的特征频率。

>>> 课程群(钉钉)

扫一扫二维码,加入班级

>>> 课后作业

- 分别对于W/L=1um/1um的NMOS和PMOS,在0-1.8V的区域内,扫描V_{GS},同时令V_{DS}=1.8V,画出I_{DS},g_m和g_m/I_{DS}的曲线。(提示:改变坐标的刻度表现形式,以得到更直观的展示)
- 2. 估算V_{GS}=0.5V, 0.8V和1.1V且V_{DS}=1.8V时, W/L=1um/0.18um的NMOS的g_m和r₀。
- 3. 估算V_{GS}=0.5V, 0.8V和1.1V且V_{DS}=1.8V时, W/L=1um/0.18um的NMOS的特征频率f_T, 并通过AC仿真得到所求的特征频率。

0.2

CMOS模拟集成电路设计

第二章:模拟电路的基本构成

胡远奇

©2020

>>> 运算放大器

>>> 模拟电路的基本结构

1. 单晶体管放大器

- 2. 源极跟随器
- 3. Cascode (共源共栅极)
- 4. 电流镜
- 5. 差分对

>>> 单晶体管放大器

>>> 单晶体管放大器

$$A_{v} = g_{m}r_{DS} = \frac{2 I_{DS}}{V_{GS}-V_{T}} \frac{V_{E} L}{I_{DS}} = \frac{2 V_{E} L}{V_{GS}-V_{T}}$$

 $A_V \approx 100$ if $V_E L \approx 10 \text{ V}$ and $V_{GS} - V_T \approx 0.2 \text{ V}$

>>> 单晶体管放大器

如何获得高增益?

降低V_{GS}-V_T

0.15-0.2V

进一步减小会牺牲信噪 比SNR和跨导gm

增加L

4-5x minL

进一步增大会牺牲速度 和面积

>>> 单晶体管放大器

口问:对于一个55nm工艺的单晶体管放大器,其典型的放大倍数是多少? $(V_E=4V/um)$

• 如果只有大的负载电容

For all single-stage **Operational amplifiers**

$$A_{v0} = g_m r_{DS}$$

$$BW = \frac{1}{2\pi r_{DS}C_{L}}$$

$$GBW = \frac{g_{m}}{2\pi C_{L}}$$

□设计指标GBW=100M,负载电容2pF的NMOS单晶体放大器, 根据工艺指标计算相应的直流偏置电流和典型晶体管尺寸。

 $L_{min} = 0.35 \ \mu m \ KP_n \approx 300 \ \mu A/V^2$

• 如果只有大的输入电容

$$A_{v0} = g_{m}r_{DS}$$

$$BW = \frac{1}{2\pi R_{S}C_{GS}}$$

·如果只有大的**输入**电容

• 如果只有大的反馈电容

$$A_{v0} = g_m r_{DS}$$

$$BW = \frac{1}{2\pi R_S A_{v0} C_F}$$

$$\Rightarrow \qquad \mathsf{GBW} = \frac{1}{2\pi \, \mathsf{R}_{\mathsf{S}} \, \mathsf{C}_{\mathsf{F}}}$$

GBW和晶体管的参数无关!

Source Degeneration

是一种负反馈形式

Source Degeneration

是一种负反馈形式

• 在输出端施加电压变化ΔV并测量输出电流的最终变化ΔI

• $R_{outR} = r_{DS} (1 + g_m R_S) \approx (g_m r_{DS}) R_S$

Rs造成额外的噪声

>>> 模拟电路的基本结构

1. 单晶体管放大器

2. 源极跟随器

- 3. Cascode (共源共栅极)
- 4. 电流镜
- 5. 差分对

>>> 源极跟随器 (Source Follower)

Voltage buffer

>>> 源极跟随器 (Source Follower)

>>> 模拟电路的基本结构

- 1. 单晶体管放大器
- 2. 源极跟随器
- 3. Cascode (共源共栅极)
- 4. 电流镜
- 5. 差分对

Cascode

>>> Cascode

• 定义跨阻增益 A_R=V_{out}/i_{in}

>>> Cascode

• 分析输入电阻R_{in}

>>> Cascode

$$A_v = (g_m r_{DS})_1$$

$$R_{out} = r_{DS1}$$

$$A_v = (g_m r_{DS})_1 (g_m r_{DS})_2$$

$$R_{out} = r_{DS1} (g_m r_{DS})_2$$

BW =

GBW =

• 增益带宽积不变!

})

• 主要参数指标与套筒式一致, 功耗是其两倍!

》) 调节式 (Regulated) Cascode

$$A_v = (g_m r_{DS})_1 (g_m r_{DS})_2$$
 $A_v = (g_m r_{DS})_1 (g_m r_{DS})_2 (g_m r_{DS})_3$

》) 调节式 (Regulated) Cascode

>>> 单晶体管结构对比

>>> 低频特性对比

• 放大器

 g_{m}

Rin ∞

 R_{out} r_o • 源极跟随器

 ∞

1/g_m

Cascode

 $g_m r_o R_B$

 R_{B}

 $g_{m}r_{o}R_{B} \\$

>>> 模拟电路的基本结构

- 1. 单晶体管放大器
- 2. 源极跟随器
- 3. Cascode (共源共栅极)
- 4. 电流镜
- 5. 差分对

>>> 电流镜 (Current Mirror)

• 二极管连接晶体管

• 单晶体管放大器

>>> 二极管连接晶体管 (Diode-connected)

$$I_{DS} = K_n^{'} \frac{W}{L} (V_{DS} - V_T)^2$$

>>> 二极管连接晶体管 (Diode-connected)

$$I_{DS} = K'_{n} \frac{W}{L} (V_{DS} - V_{T})^{2}$$

>>> 二极管连接的小信号模型

□求二极管连接方式的输入电阻和带宽?

>>> 二极管连接的小信号模型

>>> 电流镜的输出特性

- 电流镜的输出阻抗即是单晶体管放大器的输出阻抗
- 电流镜的输出精度可以描述为

$$\frac{\Delta i_{out}}{i_{out}} =$$

>>> 改进型的电流镜

>>> 改进型的电流镜

>>> 电流镜案例

>>> 低电压电流镜

- 该电路不能改善输出电阻
- 该电路可以改善系统性失配问题

>>> 超低电压电流镜

□此结构是否是合 适的Cascode?

不是!

lout

M4

M2

电流镜晶体管工作在线性区,通过运放锁定Vds,使得两个晶体管工作电压 完全一致!

>>> 电流镜的高频特性

BW =
$$\frac{g_{\text{m}}}{2\pi (C_{\text{G}} + C_{\text{DS1}})} \approx f_{\text{T}} \frac{1}{(2 + B)}$$

>>> 电流镜中的密勒效应

Miller effect:

$$f_{-3dB} = \frac{1}{2\pi R_S A_{v2} C_M}$$

$$R_S = 1/g_{m1}$$
 $A_{v2} = g_{m2}R_L$

$$f_{-3dB} = \frac{1}{2\pi (1+B)C_M R_L}$$

>>> 模拟电路的基本结构

- 1. 单晶体管放大器
- 2. 源极跟随器
- 3. Cascode (共源共栅极)
- 4. 电流镜
- 5. 差分对

》》 差分对 (Differential Pair)

- 差分对的本质依旧是电压输入电流输出
- 差分对中的信号均以差分形式体现
- 差分对的能效是单晶体放大器的一半

差分对 (Differential Pair)

・ V_{GS}-V_T决定gm和直流范围

>>> 差分放大器

• 差分放大器 = 差分对+负载

$$A_v = g_m R_L$$

$$A_{v} = g_{m1}(r_{DS1}//r_{DS2})$$

>>> 特殊形态的负载-交叉耦合对

• 交叉耦合对 (Cross Coupled Pair)

>>> 特殊形态的负载-交叉耦合对

实际使用中受到匹配(matching)的限制

>>> 特殊形态的负载-交叉耦合对

实际使用中受到匹配(matching)的限制

>>> 特殊形态的负载-共模反馈

>>> 特殊形态的负载

• 本质上是一种共模反馈形式

$$A_v = g_{m1} (R // r_o)$$

 $r_o = r_{o1} // r_{o2}$

>>> Cascode

□求该折叠套筒型运 放的第一和第二高阻 点的阻值,用公式表 示。

》总结

- □ 模拟电路的基本构成单元:
 - 1. 单晶体管
 - 放大器
 - 源极跟随器
 - Cascode
 - 2. 多晶体管
 - 差分对
 - 电流镜

>>> 作业1

•利用仿真结果,找到我们所使用工艺的u_{0p,n}, C_{ox}, V_{THn}, V_{THp}

>>> 作业2

• 通过公式描述V_B的取值范围(提示:晶体管M1-M4均需要工作在饱和区)

• 在Cascode电流镜中,假设有寄生电容C_{par},利用公式估算并用仿真 验证该电流镜的频率特性。 (可以自由设置偏置、晶体管的尺寸以及

寄生电容)

>>> 作业3

- 假设差分对偏置电流为200uA,W/L=20um/1um,根据理论分析和仿真验证。
 - 1. 计算g_m>99%*g_{m,max}的区间。
 - 2. 计算差分输出电流为198uA时的差分输入电压。
 - 3. 如果需要把问题2中求得的电压扩大一倍,差分对的W需要如何修改?