

32K x 8 LOW VOLTAGE STATIC RAM

DECEMBER 2002

FEATURES

- Access time: 45, 70 nsLow active power: 70 mW
- Low standby power
 - 45 μW CMOS standby
- Fully static operation: no clock or refresh required
- TTL compatible inputs and outputs
- Single 3.3V power supply

DESCRIPTION

The *ISSI* IS62LV256 is a very high-speed, low power, 32,768-word by 8-bit static RAM. It is fabricated using *ISSI*'s high-performance CMOS double-metal technology.

When $\overline{\text{CE}}$ is HIGH (deselected), the device assumes a standby mode at which the power dissipation is reduced to 10 μW (typical) with CMOS input levels.

Easy memory expansion is provided by using an active LOW Chip Enable (\overline{CE}) input and an active LOW Output Enable (\overline{OE}) input. The active LOW Write Enable (\overline{WE}) controls both writing and reading of the memory.

The IS62LV256 is pin compatible with other 32K x 8 SRAMs in 300-mil SOJ, 330-mil plastic SOP, and TSOP (Type I Normal and Reverse Bent) packages.

FUNCTIONAL BLOCK DIAGRAM

Copyright © 2002 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

PIN CONFIGURATION 28-Pin SOJ and SOP

28-Pin TSOP (Type I) (Normal Bent)

28-Pin TSOP (Type I) (Reverse Bent)

A0-A14 Address Inputs CE Chip Enable Input OE Output Enable Input WE Write Enable Input I/O0-I/O7 Input/Output Vcc Power GND Ground

TRUTH TABLE

PIN DESCRIPTIONS

Mode	WE	CE	ŌĒ	I/O Operation	Vcc Current	
Not Selected (Power-down)	Χ	Н	Х	High-Z	ISB1, ISB2	
Output Disabled	Н	L	Н	High-Z	lcc1, lcc2	
Read	Н	L	L	D оит	lcc1, lcc2	
Write	L	L	Χ	DIN	Icc1, Icc2	

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
TBIAS	Temperature Under Bias	-55 to +125	°C
Тѕтс	Storage Temperature	-65 to +150	°C
PT	Power Dissipation	0.5	W
Іоит	DC Output Current (LOW)	20	mA

Notes:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0°C to +70°C	$3.3V \pm 5\%$
Industrial	-40°C to +85°C	$3.3V \pm 5\%$

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min., IoH = -1.0 mA		2.4	_	V
Vol	Output LOW Voltage	Vcc = Min., IoL = 2.1 mA		_	0.4	V
VIH	Input HIGH Voltage			2.2	Vcc + 0.3	V
VIL	Input LOW Voltage(1)			-0.3	0.8	V
lц	Input Leakage	GND ≤ Vin ≤ Vcc	Com. Ind.	-2 -5	2 5	μA
ILO	Output Leakage	GND ≤ Vouт ≤ Vcc, Outputs Disabled	Com. Ind.	-2 -5	2 5	μA

- 1. $V_{IL} = -3.0V$ for pulse width less than 10 ns.
- 2. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

				-45	ns	-70 r	ns	
Symbol	Parameter	Test Conditions		Min.	Max.	Min.	Max.	Unit
lcc1	Vcc Operating	Vcc = Max., \overline{CE} = VIL	Com.	_	20	_	20	mA
	Supply Current	IOUT = 0 mA, f = 0	Ind.	_	30	_	30	
Icc2	Vcc Dynamic Operating	Vcc = Max., \overline{CE} = VIL	Com.	_	35	_	30	mA
	Supply Current	IOUT = 0 mA, f = fMAX	Ind.	_	45	_	40	
ISB1	TTL Standby Current	Vcc = Max.,	Com.	_	2	_	2	mA
	(TTL Inputs)	$\frac{\text{Vin}}{\text{OF}} > \text{Vin} + \frac{1}{2}$	Ind.	_	5	_	5	
		CE ≥ VIH, f = 0						
ISB2	CMOS Standby	$\underline{\text{Vcc}} = \text{Max.},$	Com.	_	90	_	90	μΑ
	Current (CMOS Inputs)	$\overline{\text{CE}} \ge \text{Vcc} - 0.2\text{V},$ $\text{Vin} \ge \text{Vcc} - 0.2\text{V}, \text{ or}$ $\text{Vin} \le 0.2\text{V}, \text{ f} = 0$	Ind.	_	200	_	200	

Notes

CAPACITANCE(1,2)

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	pF
Соит	Output Capacitance	Vout = 0V	5	pF

^{1.} At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

^{1.} Tested initially and after any design or process changes that may affect these parameters.

^{2.} Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, Vcc = 3.3V.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	5 ns
Input and Output Timing and Reference Levels	1.5V
Output Load	See Figures 1a and 1b

Figures 1a

Figures 1b

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		-4	ō ns	-70	ns	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
trc	Read Cycle Time	45	_	70	_	ns
t AA	Address Access Time	_	45	_	70	ns
t oha	Output Hold Time	2	_	2	_	ns
tace	CE Access Time	_	45	_	70	ns
t DOE	OE Access Time	_	25	_	35	ns
tlzoe(2)	OE to Low-Z Output	0	_	0	_	ns
thzoe(2)	OE to High-Z Output	0	20	0	25	ns
tLZCE ⁽²⁾	CE to Low-Z Output	3	_	3	_	ns
thzce(2)	CE to High-Z Output	0	20	0	25	ns
t PU ⁽³⁾	CE to Power-Up	0	_	0	_	ns
t PD ⁽³⁾	CE to Power-Down	_	30	_	50	ns

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1a.
- 2. Tested with the load in Figure 1b. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. Not 100% tested.

AC WAVEFORMS

READ CYCLE NO. 1^(1,2)

READ CYCLE NO. 2^(1,3)

- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 3. Address is valid prior to or coincident with $\overline{\text{CE}}$ LOW transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS^(1,2,3) (Over Operating Range)

		-45	ns	-70	ns	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	45	_	70	_	ns
tsce	CE to Write End	35	_	60	_	ns
taw	Address Setup Time to Write End	25	_	60	_	ns
t HA	Address Hold from Write End	0	_	0	_	ns
t sa	Address Setup Time	0	_	0	_	ns
tPWE ⁽⁴⁾	WE Pulse Width	25	_	55	_	ns
tsp	Data Setup to Write End	20	_	30	_	ns
t HD	Data Hold from Write End	0	_	0	_	ns

Notes:

2. Tested with the load in Figure 1b. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

4. Tested with OE HIGH.

^{1.} Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1a.

^{3.} The internal write time is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.

AC WAVEFORMS

WRITE CYCLE NO. 1 (WE Controlled)(1,2)

WRITE CYCLE NO. 2 (CE Controlled)(1,2)

- 1. The internal write time is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 2. I/O will assume the High-Z state if $\overline{\text{OE}} \bullet \text{V}_{\text{IH}}$.

ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Speed (ns) 45 45 45	Order Part No. IS62LV256-45J IS62LV256-45U IS62LV256-45T	Package 300-MIL PLASTIC SOJ 330-MIL SOP TSOP (TYPE I NORMAL BENT)
70	IS62LV256-70U	330-MIL SOP
70	IS62LV256-70T	TSOP (Type I NORMAL BENT)
70	IS62LV256-70RT	TSOP (Type I REVERSE BENT)

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
45	IS62LV256-45JI	300-MIL PLASTIC SOJ
45	IS62LV256-45UI	330-mil SOP
45	IS62LV256-45TI	TSOP (Type I NORMAL BENT)
70	IS62LV256-70UI	330-mil SOP
70	IS62LV256-70TI	TSOP (Type I NORMAL BENT)
70	IS62LV256-70RTI	TSOP (Type I reverse Bent)

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.