DE2 UART Jiří Vitouš

Push button	PC0[A0] voltage	ADC value (calculated)	ADC value (measured)
Right	0 V	0	0
Up	0.495 V	101	101
Down	1.202 V	246	245
Left	1.970 V	403	402
Select	3.1818	651	650
none	5	1023	1022

Function name	Function parameters	Description	Example
uart_init	UART_BAUD_SELECT(9600, F_CPU)	Initialize UART to 8N1 and set baudrate to 9600 Bd	uart_init(UART_BAUD_SELECT(9600, F_CPU));
uart_getc	none	Get char from input buffer	uint8_t c= uart_getc();
uart_putc	char	Put character into output buffer to send	uart_putc('c');
uart_puts	const char*	Put character array one by one into output buffer	uart_puts("Ahoj");

Operation	Register(s)	Bit(s)	Description
Voltage reference	ADMUX	REFS1:0	01: AVcc voltage reference, 5V
Input channel	ADMUX	MUX3:0	0000: ADC0, 0001: ADC1,
ADC enable	ADCSRA	ADEN	Zapnout ADC
Start conversion	ADCSRA	ADSC	Začít s konverzí vstupní úrovně napětí na dignitální reprezentaci
ADC interrupt enable	ADCSRA	ADIE	Umožnit přerušení
ADC clock prescaler	ADCSRA	ADPS2:0	000: Division factor 2, 001: 2, 010: 4,
ADC result	ADLAR	ADC9:0	Hodnota po konverzi


```
ISR(ADC_vect)
       uint16_t value = 0;
       char lcd_string[4] = "0000";
                                                   // Copy ADC result to 16-bit variable
       value = ADC;
       itoa(value, lcd_string, 10);
                                                 // Convert to string in decimal
                                                  // set cursor to position 'a'
       lcd_gotoxy(8, 0);
       lcd_puts(" ");
                                                 // clear space for new number
                                                 // set cursor to position 'a'
       lcd_gotoxy(8, 0);
       lcd_puts(lcd_string);
                                                   // send string
       uart_puts("Button pressed: ");
                                                   //send text preceding value
       uart_puts(lcd_string);
                                                   // send character string over UART (value
of adc)
       uart_puts("\n");
                                                   // end line
       lcd_gotoxy(13, 0);
                                                   // set cursor to position 'b'
       lcd_puts(" ");
                                                   // clear space for new number
       lcd_gotoxy(13, 0);
                                                   // set cursor to position 'b'
       itoa(value, lcd_string, 16);
                                                 // Convert to string in hex
                                                   // send string
       lcd_puts(lcd_string);
       // code for printing button name pressed
       if(value<50)</pre>
       {
              lcd_gotoxy(8, 1);
lcd_puts(" ");
              lcd_gotoxy(8, 1);
              lcd_puts("Right");
       else if((value>=50) & (value < 170))</pre>
       {
              lcd_gotoxy(8, 1);
lcd_puts(" ");
              lcd_gotoxy(8, 1);
              lcd_puts("Up");
       else if((value>=170) & (value < 350))</pre>
              lcd_gotoxy(8, 1);
lcd_puts(" ");
              lcd_gotoxy(8, 1);
              lcd_puts("Down");
       else if((value>=350) & (value < 500))</pre>
              lcd_gotoxy(8, 1);
lcd_puts(" ");
              lcd_gotoxy(8, 1);
              lcd_puts("Left");
       else if((value>=500) & (value < 800))</pre>
              lcd_gotoxy(8, 1);
```

```
lcd_puts(" ");
lcd_gotoxy(8, 1);
              lcd_puts("Select");
       }
       else
       {
              lcd_gotoxy(8, 1);
lcd_puts(" ");
              lcd_gotoxy(8, 1);
              lcd_puts("None");
       }
// parity bit computation for even parity of whole "value", if odd then add parity^=1;
       uint8_t parity=0;
       for(uint8_t i=0;i<16;i++)</pre>
                                          // go through the whole length of "value"
              parity^= (value & 0x01); // parity XOR (if last bit is one)
              value>>=1;
                                           // bit shift value right
       }
       lcd_gotoxy(15, 1);
                                           // move to some free location
                                           // decide if parity bit is zero or one
       if(parity==1)
       lcd_putc('1');
                                           // put parity bit onto display
       else
                                          // put parity bit onto display
       lcd_putc('0');
}
```

