U.T. 2: Conceptos de las bases de datos relacionales.

Contenidos

- Conceptos de BD Relacionales.
 - BD relacional
 - Entidad, relación y atributo.
 - □ Tabla.
 - Claves.
 - Operaciones relacionales.
 - Vistas.
- Conceptos de los SGBD Relacionales.
 - Integridad de entidad.
 - Integridad de usuario.
 - Integridad referencial.

Base de datos

- Colección de datos interrelacionados almacenados en conjunto sin redundancias perjudiciales o innecesarias.
- Los datos se almacenan de forma que resulten independientes tanto a las aplicaciones que los usan, como a la organización interna y dispositivos que los almacenan.
- ☐ Tipos de Bases de Datos:
 - ☐ BD jerárquicas.
 - □ BD en Red.
 - Bases de datos relacionales.
 - Bases de datos distribuidas.
 - Bases de datos orientadas a objetos-relacionales.

Base de datos relacional

- Los datos se presentan al usuario como un conjunto de tablas relacionadas entre sí.
- Basado en la teoría de Codd (lógica de predicados y teoría de conjuntos).
- Presenta la realidad como un conjunto de entidades entre las que se establecen relaciones.

Entidad

- Cualquier objeto, tangible o intangible, sobre el cual se almacena información.
- Se nombran con un sustantivo en singular
- Tienen existencia propia.
- Todas las ocurrencias de la entidad son distintas.
- Todas las ocurrencias tienen iguales características.

Ej.

AUTOR

Nombre

Dirección

Edad

Sexo

Descripción

Relación

- Asociación entre entidades que genera información adicional.
- Se nombran con un verbo o frase verbal corta.
- Grado de la relación
 - Número de entidades participando.
 - Reflexivas, binarias, ternarias
- Cardinalidad máxima y mínima
 - Número máximo de ocurrencias de cada entidad que participan en la relación.
- ☐ Tipos de relaciones:
 - □ 1:1, 1:N, N:M, 1:1:N, etc.

Relación

GRADO: 2

CARDINALIDAD: N:M

Atributo

- Propiedad o característica de una entidad o relación.
- No tiene existencia de forma independiente.

Tabla

- Percepción que el usuario tiene de los datos almacenados en una BD Relacional.
- Estructurada en filas y columnas.
- Cada fila (registro) representa una ocurrencia de la entidad.
- Cada columna (campo) representa el valor de un atributo de la entidad.
- Valor es el dato referenciado por fila y columna.

EMPLEADOS

Código	Nombre	NDPTO
320	José	D ₁
322	Rosa	D ₃
323	María	D ₃
324	José	D ₅

Tabla

- La información se obtiene de los valores de las columnas.
- Las relaciones entre tablas se establecen a partir de las columnas.
- Las columnas se identifican por su nombre.
- El número de columnas permanece constante.
- El número de filas varia de forma dinámica.
- Todas las filas deben ser diferentes en algún valor de columna.
- El orden de filas y columnas no es significativo.

Tabla

- Cardinalidad de una tabla
 - Cantidad de filas
- □ Grado
 - Número de columnas
- Dominio
 - Conjunto de valores posibles que puede tomar una columna.

Claves

- Atributo o conjunto de atributos que identifican cada fila.
- Una clave debe permitir la identificación unívoca (no redundancia).
- Claves candidatas
 - Conjunto de todas las posibles claves de una tabla
 - De entre ellas se elige una como clave primaria
 - □ El resto de las claves candidatas se denominan **claves alternativas**.
- Clave ajena (foránea)
 - □ No es clave primaria en una tabla pero toma los mismos valores que la clave primaria de otra tabla.

- Operaciones que se realizan sobre las tablas.
- Su resultado es una nueva tabla.
- Operadores Básicos:
 - Union
 - Diferencia
 - Selección
 - Proyección
 - Producto cartesiano
- Operadores derivados:
 - Join
 - Intersección

□ **Union**: La unión de dos relaciones R y S, es otra relación que contiene las tuplas que están en R, o en S, o en ambas, eliminándose las tuplas duplicadas.

Ingenieros

Código	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

Código	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros u Jefes

Código	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25
421	Jorge	48

SELECT * FROM ingenieros UNION SELECT * FROM jefes

□ **Diferencia**: La diferencia de dos relaciones R y S, es otra relación que contiene las tuplas que están en la relación R, pero no están en S.

Ingenieros

Código	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

Código	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros - Jefes

Código	Nombre	Edad
322	Rosa	37
323	María	25

Jefes - Ingenieros

Código	Nombre	Edad
421	Jorge	48

SELECT * FROM ingenieros MINUS SELECT * FROM jefes

□ **Selección**: Define una relación con los mimos atributos que R y que contiene solo aquellas filas de R que satisfacen la condición especificada (criterio de selección).

Ingenieros

Código	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

 $\sigma_{\text{edad} >=35}$ (Ingenieros)

Código	Nombre	Edad
322	Rosa	37

σ_{edad>=45} (Ingenieros)

Código	Nombre	Edad

SELECT * FROM ingenieros WHERE edad >= 35 SELECT * FROM ingenieros WHERE edad >= 45

■ Proyección: Define una relación que contiene un subconjunto vertical de R con los valores de los atributos especificados, eliminando filas duplicadas en el resultado.

Ingenieros

Código	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25
324	José	29

 $\pi_{\text{nombre,edad}}$ (Ingenieros)

Nombre	Edad
José	34
Rosa	37
María	25
José	29

$$\pi_{\text{nombre}}$$
(Ingenieros)

Nombre
José Rosa María

SELECT nombre, edad FROM ingenieros SELECT nombre FROM ingenieros

Producto cartesiano: Define una relación que es la concatenación de cada una de las filas de la relación R con cada una de las filas de la relación S.

Ingenieros

Código	Nombre	NDPTO
320	José	D1
322	Rosa	D3

Proyectos

Proyecto	Tiempo
RX338A	21
PY254Z	32

Departamentos

NDPTO	Descrip
D ₁	Central
D ₃	I + D

Ingenieros X Proyectos

Código	Nombre	NDPTO	Proyect o	Tiempo
320	José	D ₁	RX338A	21
320	José	D ₁	PY254Z	32
322	Rosa	D ₃	RX338A	21
322	Rosa	D ₃	PY254Z	32

Ingenieros X Departamentos

Código	Nombre	NDPTO	NDPTO ₂	Descrip
320	José	D1	D ₁	Central
320	José	D1	D ₃	I + D
322	Rosa	D3	D ₁	Central
322	Rosa	D3	D ₃	I + D

SELECT codigo, nombre, ndpto, proyecto, tiempo FROM Ingenieros, Proyectos SELECT codigo, nombre, i.ndpto, d.ndpto, descrip FROM Ingenieros i, Departamentos

Join R*S (Reunión natural)

- □ El resultado es una relación con los atributos de ambas relaciones y se obtiene combinando las tuplas de ambas relaciones que tengan el mismo valor en los atributos comunes.
- Normalmente se realiza entre los atributos comunes de dos tablas que corresponden a la clave primaria de una tabla y la clave foránea correspondiente de la otra tabla.
- Método
 - Se realiza el producto cartesiano R x S
 - Se seleccionan aquellas filas del producto cartesiano para las que los atributos comunes tengan el mismo valor
 - Se elimina del resultado una ocurrencia (columna) de cada uno de los atributos comunes

Join R*S

R1

 Código
 Nombre
 NDPTO

 320
 José
 D1

 322
 Rosa
 D3

 323
 María
 D3

 324
 José
 D5

R2

NDPTO	Descrip
D1	Central
D3	I + D
D4	Ventas

R1 * R2

Código	Nombre	NDPTO	Descrip
320	José	D1	Central
322	Rosa	D3	I + D
323	María	D3	I + D

SELECT codigo, nombre, ndpto, descrip FROM R1 WHERE ndpto = (SELECT ndpto FROM R2)

Outer Join

- Es una variante del Join en la que se intenta mantener toda la información de los operandos, incluso para aquellas filas que no participan en el Join.
- Se "rellenan con nulos" las tuplas que no tienen correspondencia en el Join.
- ☐ Variantes:
 - Left: se tienen en cuenta todas las filas del primer operando.
 - Right: se tienen en cuenta todas las filas del segundo operando.
 - □ Full: se tienen en cuenta todas las filas de ambos operandos.

Outer Join

R1

Código	Nombre	NDPTO
320	José	D ₁
322	Rosa	D ₃
323	María	D ₃
324	José	D ₅

R2

NDPTO	Descrip
D1	Central
D3	I + D
D4	Ventas

Código	Nombre	NDPTO	Descrip
320	José	D ₁	Central
322	Rosa	D ₃	I + D
323	María	D ₃	I + D
324	José	D ₅	null

R1 *
$$_{\text{RIGHT}}$$
 R2

Código	Nombre	NDPTO	Descrip
320	José	D ₁	Central
322	Rosa	D ₃	I + D
323	María	D ₃	I + D
null	null	D ₄	Ventas

R1 *
$$_{\text{FULL}}$$
 R2

Código	Nombre	NDPTO	Descrip
320	José	D ₁	Central
322	Rosa	D ₃	I + D
323	María	D ₃	I + D
324	José	D ₅	Null
null	null	D ₄	Ventas

☐ **Intersección**: Define una relación que contiene el conjunto de todas las filas que están tanto en la relación R como en S

Ingenieros

Código	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

Código	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros Jefes

Código	Nombre	Edad
320	José	34

SELECT codigo, nombre, edad FROM Ingenieros INTERSECT SELECT codigo, nombre, edad FROM Jefes

Algebra relacional

Vistas

- Son representaciones lógicas de una tabla o conjunto de tablas.
- □ No contienen datos por sí mismas.
- Se pueden generar sobre la práctica totalidad de las tablas y sobre otras vistas.
- Propósitos:
 - Proteger el acceso a determinados datos, ya que sólo son visibles algunas columnas y filas que forman la vista.
 - Permitir acceder directamente a datos relacionados
 - Independizar la presentación de los datos de la forma en que se encuentran en las tablas base, permitiendo cambiar el nombre de columnas, etc.

Gestor de base de datos relacional

- Un SGBD es el conjunto de herramientas que facilitan la consulta, uso y actualización de una base de datos.
- Software necesario para proporcionar al usuario la visión externa del modelo relacional, estableciendo la relación con los ficheros físicos de los datos.

Gestor de base de datos relacional

- Un SGBD debe proporcionar un lenguaje que permita:
 - Operar con las tablas (recuperación y actualización)
 - Seleccionar subconjuntos de tablas.
 - Definir datos
 - Sacar estadísticas básicas
 - Ordenar en una determinada secuencia
 - □ Agrupar, etc.
- Un SGBD debe proporcionar medios para controlar la integridad, seguridad y consistencia de los datos de la BD.

Integridad en los SGBD

- ☐ La integridad hace referencia a la coherencia y veracidad de los datos almacenados en la BD.
- □ **Integridad de entidad**: Cada fila debe estar identificada por una clave primaria. Estos atributos no pueden contener valores nulos ni duplicados.
- Integridad de usuario: Deben garantizarse las restricciones semánticas impuestas a los datos.
 - Restricciones de dominio.
 - Restricciones de verificación.
 - Restricción de valor nulo (campos obligatorios).
 - Disparadores o triggers.
 - Aserciones o restricciones genéricas.

Integridad en los SGBD

- Integridad referencial: Una clave ajena sólo puede tomar los valores de la clave primaria a la que hace referencia o el valor nulo.
- La integridad referencial se aplica en las siguientes situaciones:
 - Inserciones que afectan a clave foráneas.
 - Actualizaciones de la clave primaria.
 - Actualizaciones de la clave foránea.
 - Borrado de una clave primaria.

Integridad en los SGBD

Operaciones que afectan a la consistencia de los datos

PAISES

Código	Descrip
A	Alemania
F	Francia
E	España
GB	GranBretaña
P	Portugal

CLIENTES

Código	País	Empresa	Total Compras
0	D	Deutche Bank	1000000
1	D	Volkswagen	5700000
2	E	Campofrio	65200
3	F	BNP	7032000

FACTURAS

Núm	Cliente	Total
0	1	30000
1	172	1700
2	45	50000

- Incluir una factura a un cliente que no existe (inconsistencia)
- Asignar a un mismo país dos códigos distintos (duplicidad)
- Borrar Volkswagen como cliente sin eliminar sus facturas en la tabla facturas. (Integridad referencial)
- Modificar el código de un país que es utilizado en la tabla Clientes sin modificar también éste último. (Integridad referencial).