NA Assignment 2

Name : Kushagra Arora Roll Number : 2015049

1. 10G Ethernet uses all four pairs of the UTP cable for transmission unlike the earlier 100M ethernet which used 2. In 10G ethernet, each pair transmits two bits at a time using 4D-PAM5. 4D means four data symbols(two bits), and PAM5 is Pulse Amplitude Modulation with five signal levels. This happens at a rate of 125 million symbols per second. Also, there is a complex scrambling procedure which makes sure various properties like possible interference are optimized. However, the technology of transmission and collision detection - CSMA/CD, depends on the first bit of a packet travelling all the way across a collision domain before a station transmits the last bit of a packet so that there is a shared notion of "transmitting at the same time". This is to say that the last bit of the packet cannot be sent until the first bit of the packet is received. However, with the high speeds of transmission, the collision domain size needed to be reduced to an impractical 20 metres. To avoid this, carrier extension could be used with padded the signal to 512 bytes so that collision domain size could be around a workable 200m. But, another approach could be to use ethernet switches as with switches, CSMA/CD becomes redundant. The two ethernet systems could simply transmit at the same time(not that 10G ethernet uses all four pairs of transmission). This is called full duplex operation.

Source: https://www.wired.com/2011/07/speed-matters/

 Auto-negotiation is a protocol that when running on both communicating systems, determines the best match for speed of operation and duplex mode of transmission. This protocol does so by advertising it's best operation speed and duplex mode. When both the participating machines advertise their parameters, the best match is decided(higher speeds and full duplex is preferred.)

Source:

https://www.safaribooksonline.com/library/view/network-warrior-2nd/9781449307974/ch0 3s02.html

3. First thing a STP enable network do, is the election of Root Bridge. Switches share BPDUs(Bridge Protocol Data Unit which is a multicast frame that sends meta data about each switch) with each other to select the Root Bridge. Switch that has lowest priority will become root. Default priority is set to 32768. If priority value is same then switch with lowest MAC address would be selected as root. In our network switch S3 has lowest MAC address. Since we did not change priority value, switch S3 would be chosen as Root Bridge.

Every switch selects single port (that has shortest path cost) from all its ports and marked it as root port.

 If two switches have multiple connections, only single connection that has shortest path cost would be marked as designated port. (Path cost is determined using the ports on that path. Each port is designated a cost depending on the bandwidth of the connection. Lower the bandwidth, higher the cost. Path cost is the accumulation of the cost of the ports on the path.)

• Any port that is not either a root port or designated port would be blocked.

Ports on switch running STP go through the five different states. During STP convergence, switches will move their root and designated ports through the various states: blocking, listening, learning, and forwarding, whereas any other ports will remain in a blocked state.

Blocking

In blocking state, switch only listen and process BPDUs on its ports. Any other frames except BPDUs are dropped. In this state, switch try to find out which port would be root port, which ports would be designated ports and which ports would remains in blocking state to remove loops. A port will remain in this state for twenty seconds. By default all ports are in blocking state, when we powered on the switch. Only root port and designated ports will move into next state. All remaining ports will remain in this state.

Listening

After twenty seconds, root port and designated ports will move into listening state. In this state ports still listen and process only BPDUs. All other frames except BPDUs are dropped. In this state switch will double check the layer 2 topology to make sure that no loops occur on the network before processing data frames. Ports remain in this state for fifteen seconds.

Learning

Root port and designated ports enter in learning state from listening state. In this state ports still listen and process BPDUs. However, in this state ports start processing user frames. Switch examines source address in the frames and updates its MAC Address Table. Switch will not forward user frames to destination ports in this state. Ports stay in this state for fifteen seconds.

Forwarding

In forwarding state, ports will listen and process BPDUs. In this state ports will also process user frames, update MAC Address Table and forward user traffic through the ports.

Disable

Disable ports are manually shut down or removed from STP by an administrator. All unplugged ports also remain in disable state. Disable ports do not participate in STP.

Convergence

Convergence is a state where all ports on switch have transitioned to either forwarding or blocking modes. During the STP converging, all user data frames would be dropped. No user data frame will be forwarded until convergence is complete. Usually convergence takes place in fifty seconds (20 seconds of blocking state + 15 seconds of listing state + 15 seconds of learning state).

Source :

http://www.computernetworkingnotes.com/ccna-study-guide/stp-spanning-tree-protocol-explained-with-examples.html

8-Port 10G XL M1 I/O Module Architecture

N7K-M108X2-12L

4. Source:

http://etherealmind.com/whats-happening-inside-an-ethernet-switch-or-network-switches-for-virtualization-people/

Description of each component:

- Replication engine: duplicates frames that are to be sent to multiple ports
- Forwarding engine: This contains the TCAM lookup tables (MAC lookup tables analogue for ipv6). This basically means that there is a mapping from MAC address to port.
- VOQ: Virtual Output queues. This is a very high speed memory modules that
 performs frame queueing in silicon. Queueing is needed to ensure that the fabric
 is not overrun in the outbound direction. Also, packets arriving from the fabric
 must no overrun the MAC interfaces.

- **Fabric**: Interface chip to the switch fabric. For the NX7K, this is a five interface connection to the fabric modules on a clos switch design.
- **10G MAC**: Media Access Control for 10 gigabit Ethernet port. Think of it as the signal encoder for SFP interface.

5.

No) .	Time	S	ource	Des	tination	Proto	col Lengt	:h	
	10	.0000000	oc	fe8o::	892:4d75	;:96d5:d9	7d ff02::fl) <u>1</u>	ADNS	621
	2 1	.77534210	1	192.168	.60.85	224.0.0	0.251	MDNS	163	
	3 1	.77544289	6	fe8o::c	a69:cdff:f	e93:90dc	ffo2::fb	MD	NS	183
	41	.98444599)2	192.168	3.60.85	224.0.	0.251	MDNS	368	
	5 1	.98462416	9	fe8o::c	a69:cdff:f	e93:90dc	ffo2::fb	MD	NS	388
	6 1	.98474484	ю	192.168	8.60.85	224.0.	0.251	MDNS	163	
	71	.98486421	8	fe8o::c	a69:cdff:f	e93:90dc	ffo2::fb	MΓ	NS	183
	8 2	2.29766711	4	192.168	.60.85	224.0.0	0.251	MDNS	418	
	9 2	2.29789753	34	fe8o::c	a69:cdff:1	fe93:90do	ffo2::fb	MI	ONS	438
	10	2.4021291	11	192.168	3.60.216	224.0.	0.251	MDNS	150	
	11 2	2.4022530	43	fe80::8	892:4d75:	:96d5:d97	7d ff02::fb	N	IDNS	170
	12	2.5068642	23	192.16	8.60.216	224.0	0.0.251	MDNS	76:	2
	13	2.5071894	13	fe80::8	892:4d75:	96d5:d97	d ffo2::fb	M	DNS	782
	14	2.71562789	94	fe80::8	3f13:2708	:ff7a:46b	5 ff02::fb	M	DNS	112
	15	5.8488112	22	192.168	8.57.196	224.0.	0.251	MDNS	129	
	16	5.8488814	66	192.16	8.59.107	224.0	.0.251	MDNS	82	
	17 !	5.8489727	20	fe80:::	195c:4c01	:810c:8c3	ge ffo2::fb	M	DNS	102
	18	5.95374116	7	192.168	3.57.190	224.0.	0.251	MDNS	1494	1
	19	5.9539779	32	192.16	8.57.190	224.0	.0.251	MDNS	643	1
	20	5.9541262	56	192.16	8.57.190	224.0	.0.251	MDNS	264	1
	21	6.1624038	30	fe8o::;	33cc:3ee7	::1471:b94	13 ff02::fb	M	DNS	145
	22	6.2666060	81	192.16	8.59.164	224.0	0.0.251	MDNS	129	9
	23	6.3710548	59	fe8o::;	33cc:3ee7	:1471:b94	3 ff02::fb	M	DNS	156
	24	6.37114479	95	192.168	3.57.190	224.0.	0.251	MDNS	136	
	25	6.5799935	69	192.16	8.60.216	224.0	0.0.251	MDNS	273	3
	26	6.5801359	32	fe8o::	892:4d75	:96d5:d9	7d ffo2::fb	N	IDNS	293
	27	8.7743580	22	192.16	8.58.147	224.0	.0.251	MDNS	90	
	28	8.7746851	74	192.16	8.59.141	224.0	.0.251	MDNS	203	;
	29	8.7748036	50	fe8o::	18dd:281	b:e464:10	lef ffo2::fb) N	1DNS	223
	30	8.7950301	84	192.16	8.57.89	224.0	.0.251	MDNS	180)
	31	9.1087307	06	fe80::4	434:2b82	:5311:200	o ff02::fb	M	IDNS	310
	32	9.1101390	90	192.16	8.55.22	224.0.	0.251	MDNS	290	

```
33 10.757909536 fe80::434:2b82:5311:2000 ff02::fb
                                                     MDNS
                                                             310
                                                MDNS 290
34 10.758069124 192.168.55.22
                                224.0.0.251
35 11.175738821 fe80::892:4d75:96d5:d97d ff02::fb
                                                    MDNS 346
36 11.175889117 192.168.60.216
                                224.0.0.251
                                               MDNS 326
                                               MDNS 82
37 12.324565714 192.168.59.107
                                224.0.0.251
38 12.324646585 fe80::195c:4c01:810c:8c3e ff02::fb
                                                     MDNS 102
39 12.324739920 192.168.59.107
                                                MDNS 82
                                 224.0.0.251
40 12.324861479 fe80::195c:4c01:810c:8c3e ff02::fb
                                                     MDNS 102
41 12.429040649 fe80::cc57:622:373b:1474 ff02::fb
                                                    MDNS 102
                                                   MDNS 102
42 12.429111359 fe80::cc57:622:373b:1474 ff02::fb
43 12.429211013 192.168.59.108
                                224.0.0.251
                                                MDNS 82
44 12.434449147 192.168.57.89
                                               MDNS 198
                                224.0.0.251
45 12.533644596 192.168.55.196
                                224.0.0.251
                                                MDNS 191
                                                   MDNS 211
46 12.533761074 fe80::58:bd85:d5a0:35fa ff02::fb
47 12.637917153 192.168.0.10
                               224.0.0.1
                                             IGMPv2 42
48 12.637975554 fe80::669e:f3ff:febf:402f ff02::1
                                                  ICMPv6 86
49 12.727342417 fe8o::d17f:c1a8:6e4b:5be6 ffo2::fb
                                                    MDNS 112
50 13.613858507 fe80::d17f:c1a8:6e4b:5be6 ff02::1:ff4b:5be6 ICMPv6 86
51 13.787005004 192.168.57.190
                                                MDNS 104
                                 224.0.0.251
                                                   MDNS 211
52 13.787289959 fe80::58:bd85:d5a0:35fa ff02::fb
53 13.787419524 192.168.55.196
                                224.0.0.251
                                               MDNS 191
54 13.995952436 192.168.60.85
                                224.0.0.251
                                                MDNS 350
55 13.996140550 fe80::ca69:cdff:fe93:90dc ff02::fb
                                                    MDNS 370
56 14.100189151 192.168.60.190
                                                MDNS 104
                                224.0.0.251
57 14.204751908 fe80::8f13:2708:ff7a:46b5 ff02::fb
                                                    MDNS 102
58 14.334294863 fe80::d17f:c1a8:6e4b:5be6 ff02::fb
                                                     MDNS 155
59 15.249108871 192.168.59.107
                                                MDNS 82
                                224.0.0.251
60 15.249204950 fe80::195c:4c01:810c:8c3e ff02::fb
                                                     MDNS 102
61 15.458009874 192.168.59.108
                                                MDNS 82
                                 224.0.0.251
                                                    MDNS 102
62 15.458095464 fe80::cc57:622:373b:1474 ff02::fb
63 15.458191459 192.168.59.108
                                224.0.0.251
                                                MDNS 82
64 15.458314668 fe80::cc57:622:373b:1474 ff02::fb
                                                    MDNS 102
                                                MDNS 102
65 15.666932868 192.168.58.147
                                 224.0.0.251
                                                    ICMPv6 86
66 16.225855327 fe80::d17f:c1a8:6e4b:5be6 ff02::fb
67 18.800511423 192.168.58.147
                                                MDNS 198
                                224.0.0.251
68 18.800958600 fe80::8cc:b853:1165:4759 ff02::fb
                                                     MDNS 310
                                               MDNS 290
69 18.801121948 192.168.55.83
                                224.0.0.251
70 18.801215109 192.168.58.147
                                224.0.0.251
                                                MDNS
                                                        90
71 18.904818866 192.168.55.196
                                                MDNS 191
                                224.0.0.251
```

72 18.904957154 fe80::58:bd85:d5	5a0:35fa ff02::fb	MDN	IS 211
73 19.845103928 fe80::8f13:2708:	MDNS 124		
74 21.515987510 192.168.57.190	224.0.0.251	MDNS	82
75 21.516089464 fe80::33cc:3ee7:	1471:b943 ff02::fb	MD	NS 102
76 21.516180947 192.168.57.190	224.0.0.251	MDNS	82
77 21.516281769 fe80::33cc:3ee7:1	471:b943 ff02::fb	MD	NS 102
78 22.874020894 192.168.56.70	224.0.0.251	MDNS	249
79 23.082776797 192.168.56.70	224.0.0.251	MDNS	231
80 23.291619570 192.168.56.70	224.0.0.251	MDNS	129
81 23.500510419 fe80::3e77:e6ff:fe	ee6:1e77 ff02::fb	MDN	IS 107
82 23.918516827 fe80::3e77:e6ff:fe	ee6:1e77 ff02::fb	MDN	IS 327
83 23.918637671 192.168.56.70	224.0.0.251	MDNS	195
84 24.231720469 fe80::3e77:e6ff:f	ee6:1e77 ff02::fb	MDN	NS 327
85 24.231843351 192.168.56.70	224.0.0.251	MDNS	195
86 24.231944807 192.168.56.70	224.0.0.251	MDNS	110
87 24.753907740 192.168.58.147	224.0.0.251	MDNS	168
88 24.858411015 fe80::8cc:b853:1	165:4759 ff02::fb	MDI	NS 310
89 24.858563956 192.168.55.83	224.0.0.251	MDNS	290
90 24.858839794 192.168.58.147	224.0.0.251	MDNS	90
91 26.007306186 192.168.56.70	224.0.0.251	MDNS	217
92 26.216200851 fe80::1c2c:ff5e:b	790:f48 ff02::fb	MDN	S 216
93 26.425346356 fe80::3e77:e6ff:f	ee6:1e77 ff02::fb	MDN	NS 149
94 26.634007906 192.168.56.70	224.0.0.251	MDNS	259
95 26.634235488 192.168.59.97	224.0.0.251	MDNS	82
96 26.634344552 fe80::f42d:6937	:b2e9:42a4 ff02::fb	o M	DNS 102
97 26.634434062 192.168.59.97	224.0.0.251	MDNS	82
98 26.634541324 fe80::f42d:6937	b2e9:42a4 ff02::fb	M	DNS 102
99 29.036362995 192.168.60.85	224.0.0.251	MDNS	236
100 29.036786947 fe80::ca69:cdff:	fe93:90dc ff02::fb	MI	ONS 256

The packets can be categorised based on the protocol of transfer used. The following three distinct protocols are identified in the captured packets :

- MDNS
- IGMPv2
- ICMPv6