

Author Index to Volume 16

- | | |
|-------------------------|-----------------------|
| Douglass, D. C., 295 | Marechal, E., 123 |
| Earnest, T. R., Jr., 41 | McBrierty, V. J., 295 |
| Kaneko, M., 397 | Neeld, K., 1 |
| Kennedy, J. P., 123 | Tsuchida, E., 397 |
| Kotliar, A. M., 367 | Vogl, O., 1 |
| MacKnight, W. J., 41 | Yasuda, H., 199 |

Subject Index to Volume 16

- ABA block, 370
A-B block, 370
Ablation, 283, 284
Acetylacetonato Rh complex, 449
Acetylenes, 408
Acid dissociation constant, 424
Acidic solids, 154
Acidolysis, 371
Acrolein, 6
Acrylonitrile, 23
Activation energy, 383
Activation energy for viscous flow, 85, 86, 90,
 92
Adsorption of gas molecules, 436
Adsorption of mercury ions, 439
Adsorption of metal ions, 437
Aggregate model, 55-58
Alcoholysis, 378
Aldehyde polymerization, 20
Alkali metal carboxylates, 19
Alkoxide ion, 18
Alkylenediamine, 407
Alkylisocyanide, 415
Allosteric effect, 489
Allylic self-initiation: Kennedy's theory,
 151
 α -Helical structures, 420, 433, 491
 α Relaxation, dielectric, 81, 82
—, mechanical, 75, 81, 108, 111
Alternating sequences, 387
Amide interchange, 372
Anhydride intermediate, 374, 380
Anionic copolymerization, 391
Anionic polymerization, 18
Antimony triacetate, 383
Apoenzyme, 510
Apparent viscosity, 93, 116
Aromatic fluoroaldehydes, 2
Asymmetric synthesis, 457
Atomic polymerization, 284
Autoionization: the Korshak-Plesch-Marek
 theory, 150
- Benzoquinone, 23
3- or 4-Benzoylpyridine, 409
 β Relaxation, 75, 78, 79, 81, 104, 105, 107, 108,
 111
- β' Relaxation, 75, 83
Binuclear copper complex, 461
Bipyridine, 403
4,4'-Bipyridine, 411
Bis(1-asparaginato)Cu(II), 407
Biscyclooctadiene nickel, 415
Bisdi thiolato metal complexes, 411
Bis(2-hydroxyethyl)terephthalate, 381
Bis(1,3-pentadiynyl)mercury, 414
2,2-Bis(*p*-tolyl)hexafluoropropane, 6
Bis(pyridoxylideneimine), 434
Bissalicylaldehyde, 407
Bjerrum method, 423
Block copolyamides, 385
Block copolymers, 367, 386
Blocking of thiol, 10
Blood plasma, 508
Blue copper proteins, 430, 510
Breakdown energy, 226
Bromotris(triphenylphosphine)rhodium(I),
 419
Bronsted (protic) acids, 126
Butadiene/methacrylic acid ionomers, 55, 66,
 75
Butadiene/styrene/vinylpyridine terpolym-
 ers, 67, 75
Butadiene/vinylpyridine copolymers, 65
- CAP mechanism, 283
CAP scheme, 246
Carbon monoxide, 436
Carboxymethylaminated agarose, 442
Carboxypeptidase A, 508, 512
Catalase model, 453
Catalysts, 381
Catalysts in transesterification, 367
Catalytic effect of hydrogen ions, 372
Catalyzed by carboxyl groups, 383
Cationation, 124, 125
Cationic-anionic alternating copolymeriza-
 tion, 162
Cationic polymerization, 21
Cationogen = Bronsted acids, 135, 140, 141
Cationogen = carbonium ion source, 142,
 145
Cationogen/Friedel-Crafts acid systems,
 135

- Cationogen = halogen, 147
 CD spectrum, 420
 Ceiling temperatures, 28
 Cellulose, 418, 457
 Chain transfer, 20
 Charge-transfer initiation, 160
 Charge-transfer polymerization, 158
 Chemical methods, 124
 Chemical shifts, 302, 353, 354
 Chloral, 2, 16
 Citric acid, 10
 Cleavage of acyl oxygen, 378, 380
 Cleavage of alkyl oxygen, 380
 Cluster complex, 414, 460
 Clusters, 44, 66, 68, 81, 98
 Clathrate, 463
¹³C-NMR spectra, 387
 Cobalt(III) chelate, 465, 470
 Cobalt(III)-en or cobalt(III)-triен chelate, 469
 Cobalt(III)-polymer complex, 472
 Cobalt(II)-protoporphyrin IX, 493
 Codeposition, 289
 Colloidal Rh, 451
 Competitive ablation and polymerization (CAP), 212
 Complex viscosity, 93
 Conformation of polymer chains, 472
 Contact ion pairs, 43
 "Controlled" initiation, 187
 Cooperative binding, 491
 Cooperative binding of metal ions, 467
 Coordination number, 490
 Copolyester amides, 385
 Copolymers, 385
 Copolymerization, 290
 Copolymerize, 258
 Copolymer of methacrylate-ethylenedi-methacrylate, 418
 Copolymer of styrene and vinylpicolinic acid, 428
 Copolymer of styrene and 4-vinylpyridine, 482
 Copolymer of 3-vinyl-1,4-butyrolactone and acrylonitrile, 441
 Copoly(4-vinylpyridine-styrene), 493
 Copper-phthalocyanine, 484
 Copper protein, 512
 "Corona" discharge, 209
 Cotton effects, 433
 Cr(III) complex, 466
 Creep, 70
 Cross-amidation, 372
 Crosslinked template resin, 440
 Crosslinking, observed by NMR, 338
 Crown ether, 440
 Crystalline polyfluorral, 19
 Crystallinity, effect on properties, 79, 81, 107, 111
 Cu(II)-amine complex, 475
 Cupric chloride, 409
 Curie law, 432
 Curie-Weiss law, 432, 461
 Cyclic polyamine (Cyclam), 441
 Cyclic voltammetry, 462
 Cyclic voltammogram, 430
 Cyclophosphazene, 407
 Degradation processes, 383
 Degree of compatibility, 387
 Degree of coordination, 464
 Degree of mixing, 387
 Degree of neutralization, 83, 85
 Dehydrogenation of alcohols, 448
 Denaturation, 505, 507
 Dichloro(tetraphenylporphino)germanium, 408
 Difluoroacetaldehyde, 5
 Difluorochloroacetyl chloride, 4
 Difluorothioacetaldehyde, 10
 Diffusion
 —, self, 359
 —, spin, 296, 311, 312, 313, 314, 324
 Diffusion-dominating case, 222, 223
 Dihydroxyethylenediamine copper(II), 418
 Dihydroxy(hemiporphyrinato), 408
 Dihydroxy(meotetraphenylporphino)tin, 408
 2,5-Dihydroxy-*p*-benzoquinone, 407
 Dihydroxy(phthalocyanino)germanium, 408
 2,5-Dimercapto-1,3,4-thiadiazole, 407
 Dimethylglyoxime, 454
 2,4-Dinitrophenylhydrazone, 8
 Diphenylphosphinated PSt-Rh complex, 453
 Diphenylphosphinated PSt-Ru complex, 451
 2,2'-Diphenylpicrylhydrazil, 19
 Direct initiation by Friedel-Crafts acids, 135, 149
 Direct radical oxidation, 156
 Discharge power, 226
 Discharge with internal electrodes, 207
 Distorted coordination structure, 510
 Distorted square-planar structure, 512
 Distorted tetragonal structure, 439

- Distorted tetrahedral structure, 418, 511
 Distribution obtained at equilibrium through interchange process, 368
 Distribution of polymer deposition, 241
 Dithiocarbamate, 403
 Dithiolato-metal complex, 485
 Dithioxamide, 407
 DNA, 506
 Double helix, 506, 508
 Dynamic viscosity, 87, 93
- Effective magnetic moment, 432
 Effect of water, dielectric properties, 82, 83
 —, mechanical properties, 105, 112, 117, 118
 Elastic forces, 44
 Elastic polyester, 388
 Elastomers, 43
 Electrodeless glow discharge, 207, 273
 Electroinitiation, 178
 Electronic interactions between metal ions, 460
 Electron microscopy, 49, 66, 67
 Electron spin resonance (ESR), 65
 Electron transfer reaction, 469
 Electrostatic effect, 469
 Electrostatic effect on the complex formation, 468
 Electrostatic forces, 44
 Elemental or atomic polymerization, 280
 Energy input surface, 270
 Energy input zone, 248
 Entanglements, observed by NMR, 337
 Entatic state, 510
 Environmental effects, 472
 Equal reactivity, 382
 Equilibrium distribution, 370
 ESR spectrum, 417
 Ethylenediamine, 403
 Ethylene/methacrylic acid copolymers, 43, 58
 Ethylene/methacrylic acid ionomers, 49, 55, 58, 74, 78
 Ethylene/phosphoric acid ionomers, 50
 Exciplexes, 165
 Extended x-ray absorption fine structure (EXAFS), 419
- Ferredoxin, 494
 Ferredoxin models, 414
 Ferrirhodoporphyrin IX, 473
 Ferrocene, 402, 435
- Ferroheme, 488
 Fiber properties, 386
 Field emission, 176
 Field ionization, 176
 Fixation of nitrogen, 494
 Flory condensation statistics, 369
 Flow rate of monomer, 220
 Fluid mechanic factors, 271
 Fluoral, 2, 3, 8
 Fluoral-ethylene copolymerization, 34
 Fluoral hydrate, 10
 Fluoroacetaldehyde, 10
 Fluoroacetamide, 10
 Fluoroacetate, 10
 Fluoroacetate poisoning, 10
 Fluoroacetic acid, 9
 Fluoroaldehyde hemiacetals, 8
 Fluoroaldehyde polymers, 15
 Fluoroaldehydes, 2, 6
 ω -Fluoroaldehydes, 5
 p -Fluorobenzaldehyde, 6
 Fluorocitrate, 10
 Fluoroethanol, 10
 Fluoroketones, 2
 Fluorothioaldehyde copolymers, 34
 Fluorothioaldehyde polymers, 18
 Fluorothiocarbonyl compounds, 14
 Fluorothioketones, 14
 Force trace variations during melt extrusions, 392
 Formation curves, 423
 Formation function, (\bar{n}), 423
 Fragmentation, 206
 Free radical addition polymerization, 206
 Free radicals, 205, 216, 266
 Free radical yield (G values), 205
 Friedel-Crafts acids, 131, 134
 Fusion and crystallization behavior of melt blends, 386
- γ -Ray-initiated carbocationic polymerization, 171
 γ Relaxation, 78, 107
 Gas phase reaction, 270
 Gelatinous metal hydroxide, 444
 Geometrical factor of reactor, 236
 Glass transition temperature, 70, 71, 75, 76, 78, 81, 86, 98, 100, 101, 105, 113, 118
 Graft polymerization, 203
 Guinier analysis, 62, 64, 66, 68
- Halometalation: the Sigwalt-Olah theory, 149

- Halonium ions, 147
 H/C ratio of plasma polymers, 253
 Hemoglobin, 488
 Hepatitis, 10
 Heterocyclic compounds, 410
 Heterogeneity, in polymers by NMR, 326–353
 Heterogeneous surface grafting, 203
 Heteropolar excimers, 165
 Hexafluoroisopropylidene-*p,p'*-diphenyl-dialdehyde, 6
 Hill's coefficient, 489
 Hill's equation, 489
 Homogeneous grafting, 203
 Homopolymer–monomer exchange, 391
 "Hot" plasma, 200, 207
 Hycar, 43, 66
 Hydrazamic acid, 405
 Hydroformylation, 452
 Hydrogenation, 449
 Hydrogenation of the acyl chlorides, 8
 Hydrogenation reaction, 100, 106
 Hydrogen bonding, 75, 86, 90, 98, 105, 108
 Hydrogen peroxide decomposition, 453, 463
 Hydrogen yield, 268
 Hydrolysis, 372
 Hydrophobic effect, 469
 β -Hydroxyazo compound, 441
- Imaging by NMR, 360
 Imidazole, 410
 Iminodiacetic acid, 403
 Immobilized enzyme, 445
 Incorporation of gases, 285
 Initiation by chloronium ion, 147
 Initiation by one-electron transpositions, 166
 Initiation by physical methods, 182
 Initiation in carbocationic polymerization, 123
 Initiation of radical polymerization, 456
 Inorganic complexes, 152
 Intensity of glow, 212
 Inter- and/or intramolecular bridging, 404
 Interchange process as a two-step random process, 368
 Interchange rate, 383
 Interfacial polymer —, carbon-filled rubber, 329–332
 —, cilia and folds, 333–337
 Intermolecular acidolysis, 377
 Intermolecular alcoholysis, 377
- Internal stress, 287
 Intramolecular chelation, 466
 Iodine, 153
 Ion generation, 124, 125
 Ionic clusters, 52, 86
 Ionic crosslink, 43
 Ionic domains, 53, 55, 108
 Ionic peak, 46, 47, 53–55, 57–61, 86
 —, effect of water, 57, 58
 Ion injection, 174
 Ionizing radiation, 171
 Ionomer, 42
 Ionic strength, 468
 IR absorptions, 415
 Iron–carbonyl complex, 413
 Iron cluster, 495
 Iron–cystein cluster complex, 495
 Iron(II)–porphyrin, 488
 Iron–sulfur clusters, 414
 Iron–sulfur protein, 512
- Kinetics of initiation, 133
 Kinetic treatments, 383
- Lattice, NMR definition, 296, 300
 Linear coordinated polymers, 407
 Liquid crystal, 444
 Liver, 10
 Location of the polymer deposition surface, 216
 Low-temperature plasma, 200, 207
- Magic angle, 303, 350
 Magnetic field —, local, 298, 299, 305
 —, radio frequency, 296, 298, 299
 Magnetic resonance, see NMR, Spin relaxation
 Magnetic susceptibility, 432
 Magnetization measurements, 67
 Maleonitriledithiol, 483
 Manipulatable processing factor, 225
 Mass-flow-dominating case, 222
 Mass spectrometric techniques, 381
 Mass transport, 382
 Master curves, 88, 89, 92, 94, 96
 Mechanism of transamidation, 371
 Mechanisms of polymer formation, 264
 Mechanochemical system, 443

- Melanin pigment, 485
 Melt blending, 388
 Metal catalysts, 383
 Metalloenzyme, 398, 503, 510
 Metalloporphyrins, 448
 Metallotetraphenylporphyrin, 513
 Methacrolein, 6
 Methacrylatopentaamine cobalt(III) perchlorate, 412
 Methyl chlorodifluoroacetate, 4
 Methyl methacrylate, 22
 Methylviologen, 502
 Microenvironment, 420
 Mixed ligand complex, 508
 Mixed monomers, 258
 Mixing processes, 392
 Mo complex, 495
 Modified Bjerrum plots, 425
 Modified penetration model, 385
 Molecular motion, correlation time
 —, activation energy, 309
 —, distribution of, 307, 324
 —, in NMR relaxation, 304–307
 Molecular polymerization, 280, 284
 Molecular size distribution in linear condensation polymers, 368
 Molecular weight averages which show changes due to interchanges, 369
 Monomer flow rate, 220
 Monomer production, 383
 Monomer salts, effects on interchange, 386
 Monomer-type parameter, 276
 Morphology, small-scale study by NMR, 296
 Mössbauer spectroscopy, 65, 67, 68
 Multidentate anions, 130
 Multiple-pulse NMR, 354
 Multiplet, 44, 53, 54
- Nitrogenase, 494, 512
 Nitrogenase model, 414, 495
 Nitrogen complex, 494
 NMR relaxation (see also Spin relaxation)
 —, heterogeneity in polymers, 326–350
 NMR relaxation in
 —, abnormal tissue, 360
 —, blended polymers, 343–350
 —, cellulose, 355
 —, *cis*-1,4-polybutadiene, 316, 339
 —, *cis*-1,4-polyisoprene, 316, 355
 —, copolymers, 343–350
 —, crosslinked polymers, 337–343
 —, elastomers, 316, 326
 —, entangled polymers, 337–343
 —, filled elastomers, 329–333, 336
 —, glassy polymers, 350
 —, glycine, 357
 —, lysozyme, 356
 —, natural rubber, 316
 —, nucleic acid, 356
 —, oriented polymers, 322–326
 —, partially crystalline polymers, 327, 333
 —, peptides, 356
 —, polycarbonate, 351
 —, polycarbonate-polydimethylsiloxane, 344
 —, polychlorotrifluoroethylene, 328, 333–335
 —, polydimethylsiloxane, 337, 355
 —, poly(ether sulfone), 353
 —, polyethylene, 312, 324, 326, 329, 335
 —, polyglycine, 357
 —, poly-L-alanine, 357
 —, poly-L-leucine, 357
 —, poly-L-valine, 357
 —, poly(methyl methacrylate), 318, 353
 —, poly(*N*-ethyl-2 vinylcarbazole), 318
 —, poly(*N*-ethyl-3 vinylcarbazole), 318
 —, poly(*N*-vinylcarbazole), 318
 —, poly(phenylene oxide), 353
 —, polystyrene, 316–318, 344, 353, 355
 —, poly(styrene-co-acrylonitrile), 353
 —, poly(styrene-co-acrylonitrile)-poly-(methyl methacrylate), 347
 —, polysulfone, 353
 —, polytetrafluoroethylene, 323, 324, 339, 355
 —, poly(tetrafluoroethylene — perfluoromethylvinyl ether), 355
 —, polyurethane, 343, 345
 —, poly(vinyl chloride), 340, 353, 355
 —, poly(vinyl chloride)-poly(methyl methacrylate), 347
 —, poly(vinyl chloride)-tetraethylene glycol dimethylacrylate, 340, 341
 —, poly(vinylidene fluoride), 318, 334, 335
 —, poly(vinylidene fluoride)-poly(methyl methacrylate), 347, 349
 —, poly(vinyl methyl ether)-polystyrene, 347, 348
 —, solid amino acids, 356
 —, styrene-butadiene-styrene block copolymer, 343, 344
 —, unoriented polymers, 316–322
 —, water in biological systems, 358–360
- N,N*-dibenzylleucine, 459

- Nonequilibrium distribution, 370, 384
 Nonflammability, 15
 Nonpolymer-forming gas, 243
 Nonpolymer-forming plasmas, 206, 224
 Nonpolymerizable gas, 238
N-substituted polyamides, 386
 Nucleic acids, 506
 Nucleophilicity, 127
 Nylon, 456
- One-dimensional polymer-metal complex, 443
 One-electron (homolytic) transpositions, 156
 One-electron transpositions, 156
 Optical activity, 433
 Optical resolution, 457
 ORD spectrum, 420
 Organic metal cluster, 463
 Overall stability constant, 423
 Overhauser effect, transient experiment, 314, 316, 318
 Oxidation state, 430
 Oxidative polymerization, 475, 483, 486
 Oxygen carrier, 488
 Oxygen content, 253
 Oxygen, paramagnetic impurity, 301, 318
- Paracrystalline lattice, 55, 56
 Pd complex of poly(amino acid), 457
 Pd complex with S-(+)-alanine or S-(-)-phenylalanine, 459
 Pendant complex, 400
 Penetration theory, 382
 Pentafluorobenzaldehyde, 10
 Perfluoroadipate, 3
 Perfluoroaldehydes, 2, 4, 15
 Perfluorobenzaldehyde, 6
 Perfluorobutyraldehyde, 15
 Perfluorohemiacetals, 8
 Perfluorohexane-1,6-dialdehyde, 3
 Persistence time of pellet heterogeneities, 392
 Phenylmethyl amide, 7
 Phosphine-Rh complex, 453
 Phosphinic acid, 407
 Phosphites, 19
 Phosphonate ionomers, 100
 Photochemical reactivity, 435
 Photodecomposition of water, 501
 Photoinduced charge-transfer polymerization, 164
 Photoreactive polymer, 445
 Photoredox reaction, 499
 Photosynthesis, 498
 Physical methods, 171
 Piezoelectricity, in poly(vinylidene fluoride), 318
 Plasma, 200
 Plasma etching, 283
 Plasma-induced molecular polymerization, 280
 Plasma-induced polymerization, 201, 249, 273, 281
 Plasma polymerization, 201
 Plasma-state polymerization, 201, 203, 206, 273, 280
 Plasma susceptibility, 261
 Plasticizers, 115, 118
 Plastocyanin, 398
 Poly(acrylic acid), 406
 Polyamide esters, 391
 Polyamides, 385
 Polyamine, 403, 438, 457
 Poly(amino acid), 420, 457, 503
 Poly(chloromethylated styrene), 449, 453
 Poly(2-cyanoethyl methacrylate), 436
 Poly(β -diketone), 454
 Polyester-amides, 390
 Polyesters, 387
 Poly(ethylene glycol), 417
 Polyethylenimine, 441, 468
 Poly(ethylene terephthalate), 383
 Polyfluoral, 19
 Polyfluoroketones, 18
 Polyfluorothioaldehydes, 34
 Poly(L-arginine), 422
 Poly(L-diaminobutyric acid), 422, 504
 Poly(L-glutamate), 421, 456
 Poly(L-histidine), 503
 Poly(L-histidine)-Cu(II) complex, 447
 Poly(L-lysine), 420, 421, 434, 457, 490, 504
 Poly(L-ornithine), 421, 434
 Polymer-Cu complexes, 487
 Polymer deposition rate, 284
 Polymer-forming plasmas, 206, 224, 261
 Polymer-heme complex, 490
 Polymeric Ir complex, 450
 Polymeric Schiff's base, 448
 Polymerization, 203, 273
 Polymerization and depolymerization of poly- ϵ -caprolactam polymers, 374
 Polymerization in films, 382
 Polymerization without propagation, 127
 Polymer stabilization, 24
 Polymer uniformity, 391

- Poly(metal azaporphyn), 412
Poly(metal phosphinate)s, 407
Poly(metal phthalocyanine), 411, 463
Poly(methacrylic acid), 406
Polymethacryloydrazide, 426
Poly(methyl vinyl ketone), 449
Poly(*N*-acetoacetyl-L-diaminobutyric acid), 429, 433
Poly(*N*-acetoxycetyl-L-lysine), 429, 433
Poly(*N*-acetoxycetyl-L-ornithine), 429, 433
Polynuclear copper complex, 483
Polynuclear Cr complex, 444
Polynuclear metal carboxylate, 444
Polynuclear metal complex, 460
Polynuclear metalloenzyme, 512
Polynuclear μ -pyrazine (pz) complex, 462
Polynucleotides, 420, 421
Poly(O-isophthaloylisophtalamide oxime), 416, 419
Polyoxime, 436
Polyoxime-palladium complex, 436
Polyoxymethylene, 24
Poly(*p*-aminostyrene), 469
Polypentenamer, 99
Polypeptides, 503
Poly(propylene sulfide), 433
Polyribonucleotide, 421
Poly(*t*-butyl-*N*-vinylcarbamate), 438
Poly(vinyl alcohol), 404, 425, 443, 451, 456, 457
Polyvinylamine, 457
Poly(vinyl ferrocene), 435
Poly(1-vinylimidazole), 419, 447
Poly(vinyl-1-methylimidazole), 472
Poly(2-vinylpyridine), 405
Poly(4-vinylpyridine) (PVP), 401, 405, 406, 416, 417, 426, 432, 438, 464, 469, 470, 473, 476, 480
Poly(2- or 4-vinylpyridine 1-oxide), 405
Poly(vinylpyrrolidone), 451
Polyyne polymer, 408
Porod analysis, 62, 64
Porphyrin-containing polymer, 452
Postpolymerization reactions, 99, 113, 116
Precursor, 267, 284
Primary radicals, 268
Priming, 124, 125
Principle of equal reactivity of all functional groups, 368
Processes as aminolysis, 371
Product-gas, 224
L-Proline, 460
Proton affinity, 127
Protonation, 127
Proton magnetic resonance, 417
Pseudo-allosteric effect, 492
Pseudomaster curve, 93, 94, 96
Pulse radiolysis, 174
Pyrazine, 410
Pyrazole, 410
Pyridine, 21
Pyridoxal Schiff base, 434
Pyroelectricity, in poly(vinylidene fluoride), 318

Quaternary ammonium compounds, 19

Radial distribution function (RDF), 47, 59, 61, 62, 64
Radiation-induced polymerization, 267, 273
Radical oxidation, 156
Random copolymers, 386
Redistribution reactions, 385
Redox potential, 430
Redox reaction, 447
Reduction of the nitrogen complex, 496
Reexcitation, 268
Reinforcement factors in fibers, 387
Relaxation, spin-lattice, see Spin relaxation
—, spin-spin, see Spin relaxation
Reorganization of random-to-block copolyester, 389
Resident time, 221, 228
Residual (trapped) free radicals, 270
Rh carbonyl complex, 450
RNA, 506
Rotating frame (see also Spin relaxation, $T_{1\alpha}$), 301
Rubbery plateau, 70, 72, 103, 104, 105
Rubeanic acid, 407

Sample spinning in NMR, 299
Semiconductivities, 442
Sequence structure resulting from the interchange, 370
Shell-core model, 65, 69
Shift factors, 72, 74, 91
Sigmoidal curve, 489
Small angle neutron scattering (SANS), 65
Small angle x-ray scattering (SAXS), 48, 60, 65–67, 86
Solar energy, 497
Solvation, 128

- Spattering tendency of metals, 263
 Spin (see also NMR relaxation)
 -, decoupling, 303, 350
 -, diffusion, 296, 311–314, 324
 -, in Goldman-Shen experiment, 346
 -, Hamiltonian, 298, 301
 -, dipolar, 302
 -, effective, 298, 302–304
 -, locking, 301
 -, relaxation measurements, cross relaxation, 296, 313, 352
 -, Goldman-Shen experiment, 346
 -, pressure effect on, 316
 -, T_1 , 299, 300, 304, 310, 315
 -, T_2 , 299, 304
 -, T_2 of cilia, 333–335
 -, $T_{1\rho}$, 301, 304, 310
 -, $T_{1\rho}$ of Slichter-Ailion conditions, 305, 310
 -, temperature, 298–301
 Spin–spin interaction, 432
 Square–planar Cu(II) complex, 418
 Square–planar structure, 418, 439
 Stability constant, 423
 Stability of polymer–metal complex, 423
 Stable carbonium ion salts, 126, 131
 Stepwise coordination reaction, 426
 Stopping experiments, 135, 143
 Stress relaxation, 70–72, 74
 Styrene ionomers, 71, 72, 74, 76, 86
 Substrate, 260, 261
 Substrate surface, 271
 Successive stability constant, 423, 468
 Sulfonate ionomers, 100
 Sulfonium salts, 19
 Superoxide dismutase, 511
 Surface generation, 382
 Surface grafting, 203
 Surface reaction, 270
 Surlyn, 43
 System pressure, 223
 System pressure before glow discharge, 224
 System pressure during glow discharge polymerization, p_g , 224

 Tacticity, 405
 Tail-flame, 216, 239, 249, 273
 Telechelic polymer, 146
 Template reaction, 407, 411
 Tensile strength, 70
 Tetraazaporphyrin polymers, 412
 Tetrafluoroethylene, 6

 Tetrakis(triphenylphosphine) tetrathionaphthalene diplatinum (II,II), 431
 2,2',2'',2'''-Tetrapyridyliron(III) complex, 421
 Thermally induced charge-transfer polymerization, 158
 Thermal stability, 15
 Thermorheologically complex, 88, 89
 Thiocarbonyl, 403
 Thiocarbonyl fluoride, 32
 Thioglycolate ionomers, 99
 Time–temperature superposition, 71–73, 88, 89
 Titanocene dichloride, 450
 Toluene-3,4-dithiol, 485
 Toxicity, 2
 Toxicity of fluoroaldehydes, 9
 Transesterification, 377
 Transesterification, general review of, 367
 Transesterification kinetics, 383
 Trapped free radicals, 286
 Triaryl phosphines, 19
 1,2,4-Triazole, 410
 Triethylenetetramine, 454
 Trifluoroacetaldehyde, 2, 10
 Trifluoroacetamide, 2
 Trifluoroacetone, 11
 Trifluoroaldehydes, 4
 Trifluorobutanal, 4
 Trifluoroethylene, 10
 Trifluoroisobutanal, 5
 m- and p-Trifluoromethylbenzaldehyde, 6
 Trifluoromethyl group, 9
 Trifluoromethyl-substituted acetylenes, 4
 Trifluorothioaldehyde-fluoral, 34
 Trimethyl amine, 21
 Tris(bipyridine)ruthenium(II) dichloride complex, 501
 tRNA, 507
 Two-electron (heterolytic) transpositions, 124

 Uncatalyzed reaction, 382
 UV radiation, 174

 Valence of central metal ion, 432
 Vapor phase fluorination, 2
 Vinylamine–vinylacetamide copolymer, 447
 Vinyl compounds of metal complexes, 412
 Vinyl polymerization, 412
 Viscosity of mixture of two polyesters, 368

- Vitamine B₁₂ model, 454
Volatile diol, 382
Volume of glow discharge, 212, 220
Volume of reactor, 220
- Water**
—, in biological systems, 358
—, self-diffusion, 359
Water and carboxyl groups, 372
Weiss temperature, 432
- W/FM parameter**, 236
Wilkinson's catalyst, 419
WLF equation, 72, 91
- X-ray analysis**, 419
X-ray radiation, 19
- Zero shear viscosity**, 86, 87, 92, 93
Zeumatography, 360

