Physics 721: Tutorial 2022.02.25

Please hand in this tutorial on Friday, 4 March 2022.

We know from the analysis of the grand canonical potential that

$$\mathfrak{Z}(z,T,V) = \sum_{N=0}^{\infty} z^N Z_N = \sum_{N=0}^{\infty} e^{\beta\mu N} \sum_r e^{-\beta E_r} = \exp\left[\frac{PV}{k_B T}\right]. \tag{1}$$

1. Show that

$$\langle N \rangle = z \frac{\partial \ln \mathfrak{Z}}{\partial z}.\tag{2}$$

- 2. Derive the ideal gas equation of state using properties of 3, using eqs. (1) and (2).
- 3. The virial expansion is obtained by investigating the thermodynamic limits of the pressure and density:

$$\frac{P}{k_{\rm B}T} = \lim_{V \to \infty} \frac{\ln \mathfrak{Z}}{V} = \frac{1}{\lambda^3} \sum_{\ell=1}^{\infty} b_{\ell} z^{\ell}$$
(3)

$$\frac{\langle N \rangle}{V} = \lim_{V \to \infty} \frac{z}{V} \frac{\partial \ln \mathfrak{Z}}{\partial z} = \frac{1}{\lambda^3} \sum_{\ell=1}^{\infty} \ell b_{\ell} z^{\ell}. \tag{4}$$

We determine an equation that has the form of the *virial expansion* as below. The virial expansion is given in terms of the virial coefficients a_{ℓ} :

$$\frac{P}{k_{\rm B}T} = \frac{1}{\lambda^3} \sum_{\ell=1}^{\infty} a_{\ell} \times \left(\lambda^3 \frac{\langle N \rangle}{V}\right)^{\ell}.$$
 (5)

It is our task to derive the coefficients a_1 , a_2 , etc. We do this by combining equations (3) and (4). Solve for z power by power to derive expressions for a_1 in terms of b_1 , a_2 in terms of b_1 and b_2 , and a_3 in terms of b_1 , b_2 , and b_3 .

4. Calculate a_2 for the potential energy

$$V(\vec{r}) = \begin{cases} \infty, & r \le \alpha \\ 0, & r > \alpha \end{cases}$$

where $\alpha > 0$.

5. Calculate a_2 for the potential energy

$$V(\vec{r}) = \begin{cases} \infty, & r \le \alpha \\ -v_0, & a \le r < 2\alpha \\ 0, & r > 2\alpha \end{cases}$$

where $\alpha > 0$, and $v_0 > 0$. Does a_2 ever change sign as a function of temperature?