$Table\ 2^k$

RANGE	ANSWER (n)	GUESSES	RESULT OF FORMULA
[1:1]	1	1	$2^{\mathrm{k}}\!=\!1$
[1:2]	2	2	$2^{\mathrm{k}}=2$
[1:4]	4	3	$2^{\mathrm{k}}=3$
[1:8]	8	5	$2^{\mathrm{k}}=4$
[1:16]	16	5	$2^{\mathrm{k}}=5$
[1:32]	32	6	$2^{\mathrm{k}}=6$
[1:64]	64	7	$2^{ m k}=7$
[1:128]	128	8	$2^{\mathrm{k}}=8$
[1:256]	256	9	$2^{\mathrm{k}}=9$
[1:512]	512	10	$2^{ m k}\!=10$
[1:1024]	1024	11	2^{k} $=11$
[1:2048]	2048	12	$2^{ m k}\!=12$

$$log_2(n) + 1$$

1.c.ii Table 2^k - 1

RANGE	ANSWER (n)	GUESSES	RESULT OF FORMULA
[1:1]	1	1	2^{k} - $1=1$
[1:3]	3	2	2^{k} - $1=2$
[1:7]	7	5	2^{k} - $1=4$
[1:15]	15	5	$2^{ m k}$ - $1=5$
[1:31]	31	6	2^{k} - $1=6$
[1:63]	63	7	2^{k} - $1=7$
[1:127]	127	8	2^{k} - $1=8$
[1:255]	255	9	2^{k} - $1=9$
[1:511]	511	10	2^{k} - $1=10$
[1:1023]	1023	11	2^{k} - $1=11$
[1:2047]	2047	12	2^{k} - $1=12$

$$\lceil log_2(n) + 1 \rceil$$


```
1.d
```

 $O(log_2n)$

2

$$\begin{array}{l} f(n) = \lceil n/2 \rceil \text{ - } 1 \\ O(n) \end{array}$$

3

```
remove(vector v, int k){
    v[k] = v[v.size-1];
    remove v[v.size-1];
    v.size = v.size - 1;
}
```

4

Mathematically, n^2 will be less than nlog(n) as long as n is less than 100. This means that for cases when n is less than 100, $O(n^2)$ is faster than O(nlog(n)). n^2 will be larger than nlog(n) as long as n is greater than 100. This means that for cases when n is greater than 100, $O(n^2)$ is slower than O(nlog(n)).

5

1:
$$f(n) = n - 1$$

$$O(n)$$

2:
$$f(n) = 4n^2 + 1$$

 $O(n^2)$

3:
$$f(n) = n^2 - n + 3$$

 $O(n^2)$