

CSED233: Data Structures

Midterm Exam.

April 19, 2016

Part 1: Multiple-Choice Questions

Tart 1. Multiple-Choice Ques	, tions	
For each 4-choice question, take only one	choice as the correct answer	er. For each of your
wrong answer, a penalty of 4 points will	be deducted from your over	all score.
1. (4 pts) Consider a linked list of n ele	ements. What is the time ta	ken to insert a new
element after an element pointed by so		
(A) O(1)	$(\mathbb{R}) O(\log n)$	
(C) O(n)	$(\mathcal{D}) O(n \log n)$	
	1	1 100
2. (4 pts) The process of accessing data		access storage (like
magnetic tape) is similar to manipulat	ing data on a:	
(A) linked list	(B) stack	
queue	(D) heap	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(4 pts) Which of the following operat	1	ciently by a doubly-
linked list than by a singly-linked list		500
(A) Searching of an unsorted list for	a given item	
(B) Inverting a node after the node		trave
(C) Traversing a list to process each		
(D) Deleting a node whose location	is given ?	/
)	at and an order
4. (4 pts) If a node in a BST(Binary Sea	rch Tree) has two children,	then its in-order
predecessor has:		(7
(A) no left child	(B) no right child	4
(e) two children	(D) no child	5. 4
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	And right
6. (4 pts) A mirror image of a binary tre	is another binary tree with	lacrithm can be
children of all non-terminal nodes in	erchanged. What traversal a	ligorium can σε
used to convert a binary tree into its	mirror mage?	1/
(A) Pre-order	(B) In-order	
(C) Post-order	(D) Any order	2 - 3 - 4 /

Part-2: Descriptive Questions

- 6. (20 pts) Now we will show how a given array [5, 7, 2, 9, 3, 8, 6, 1] can be sorted in descending order, using Heap Sort which is executed according to the following steps. We know that the given array is a complete binary tree for the elements to sort.
 - (a) (10 pts) Heapify the complete binary tree into a max-heap, and show the result in a form of an array diagram like [x, y, z, ...]
 - (b) (10 pts) Perform *DeleteMax* operations until the *max-heap* becomes empty, and draw an array diagram of the *max-heap* after each removal.
- 7. (10 pts) For any node in a BST, the smallest key in its right-subtree must be in a leaf or degree 1 node. Prove it.
- 8. (15 pts) For a given postfix expression $\underline{AB + CD *E?F + /}$
 - (a) (5 pts) What is its prefix form?
 - (b) (10 pts) The prefix and postfix expressions are <u>parenthesis-free</u> and thus easy to evaluate using STACK. Now we are modifying the postfix evaluation algorithm (explained in our course) to get its corresponding prefix version. What and how should we modify?

T

 (20 pts) In a hash structure, the key K is mapped into a hash table of M slots (indexed from 0 to M-1), where K (key value) and M (size of hash table) are integers. Out of the following hash functions h(K),

(1)	h(K) = K/M,	where M is a prime number	
(2)	$h(K) = K \bmod M,$	where M is an odd number	
(3)	$h(K) = K^2 \bmod M,$	where M is a prime number	
(4)	$h(K) = (K + Random(M)) \mod M,$		
	where $Random(M)$ returns a random integer between 1 and $M-1$		

- (a) Which one(s) may be unacceptable as a hash function? Describe the reason(s) in short?
- (b) Out of the acceptable ones, which one is the best?

----- End of Midterm Exam -----