

Final Project

Detection of Negative Reviews in Online Stores

Team #8

Mikhail Sidorenko

Egor Baryshnikov

Roman Teplykh

Mentor

Evgeny Frolov

Possible applications of sentiment analysis

Яндекс.Маркет

Possible workflow may be look like this

Data we used

Amazon Reviews dataset*

*http://jmcauley.ucsd.edu/data/amazon/

- 24 different categories of items
- Include ratings, reviews and other information
- «Cell Phones and Accessories» 194k reviews

Data preprocessing

Summary

- vocabulary size: 3723 words
- sliding window size: 2
- two labels: positive/negative review

Feature extraction

Feature extraction

i-th review

word2vec algorithms

SPPMI-SVD

Idea: find W and C using SVD decomposition of SPPMI matrix

Disadvantage: such approach doesn't lead to

minimization of SGNS objective

SGNS-RO

Idea: optimize SGNS objective directly on the low-rank matrices space

Disadvantage: works in assumption of independence of wc

values

word2vec algorithms

SGNS-EMF

Idea: explicitly factorize cooccurence matrix

Disadvantage: too many cycles

```
Algorithm 1: Alternating minimization for explicit ma-
   trix factorization
    Input: Co-occurrence matrix D, step-size of gradient
               descent \eta, maximum number of iterations K
     Output: C_K, W_K
 1 initialize C_i and W_i randomly, i = 1;
 2 while i \leq K do
          W_i = W_{i-1};
          //minimize over W:
          repeat
               \mathbf{W}_i = \mathbf{W}_i - \eta \ \mathbf{C}_{i-1} \left( \mathbb{E}_{\mathbf{D}' | \mathbf{W}_i, \mathbf{C}_{i-1}} \mathbf{D}' - \mathbf{D} \right);
          until Convergence;
          C_i = C_{i-1};
          //minimize over C;
10
          repeat
               \mathbf{C}_i = \mathbf{C}_i - \eta \left( \mathbb{E}_{\mathbf{D}'|\mathbf{W}_i,\mathbf{C}} \mathbf{D}' - \mathbf{D} \right) \mathbf{W}_i^T;
11
          until Convergence;
12
13
         i = i + 1;
```

*Li, et al., 2015, «Word Embedding Revisited: A New Representation Learning and Explicit Matrix Factorization Perspective»

Discussion

Introduction Methodology Results Discussion

Classification

Summary

- two simple classifiers were used
 out of the box»
- classification metric: f1-score

Logistic Regression

Similarity test's results

Spearman's correlation between predicted similarities and the manually assessed ones (k = 5, alpha=0.5), simlex999 dataset

d=100	SVD-SPPMI	0.13284
	SGNS-RO	0.13466
	SGNS-EMF	0.03252
d=200	SVD-SPPMI	0.12277
	SGNS-RO	0.13051
	SGNS-EMF	0.06966
d=500	SVD-SPPMI	0.18781
	SGNS-RO	0.18920
	SGNS-EMF	0.06119

SGNS's objective function values

The values of SGNS objective function at the optimal point (all values are multiplied by 10^-9, k=5, alpha=0.5)

	SVD-SPPMI	SGNS-RO	SGNS-EMF
d=100	-0.2383	-0.2321	-0.3841
d=200	-0.2381	-0.2316	-0.5406
d=500	-0.2357	-0.2300	-0.8484

SGNS's objective function values

The values of SGNS objective function at the optimal point (all values are multiplied by 10^-9, d=200, alpha=0.5)

	SVD-SPPMI	SGNS-RO	SGNS-EMF
k=1	-0.0758	-0.0742	-0.3467
k=5	-0.2381	-0.2316	-0.5406
k=15	-0.6354	-0.6157	-0.6779

Classification results

F1-score values (k=5, alpha=0.5)

		LR	SVC
d=100	SVD-SPPMI	0.87892	0.87901
	SGNS-RO	0.87890	0.87888
	SGNS-EMF	0.86754	0.86849
d=200	SVD-SPPMI	0.88341	0.88338
	SGNS-RO	0.88345	0.88341
	SGNS-EMF	0.87446	0.87492
d=500	SVD-SPPMI	0.89012	0.89016
	SGNS-RO	0.89019	0.89023
	SGNS-EMF	0.88568	0.88580

Thank you for your attention!

Any questions?

https://github.com/BullIdoger/NLA-Project