

Environmental Remote Sensing GEOG 2021

Lecture 2

Image display and enhancement

Image Display and Enhancement

Purpose

- visual enhancement to aid interpretation
- enhancement for improvement of information extraction techniques

UCL

Topics

Display

- Colour composites
- Greyscale Display
- Pseudocoluor

• Image arithmetic

- +-×÷

Histogram Manipulation

- Properties
- Transformations
- Density slicing

'Real Colour' composite

red band on red green band on green blue band on blue

Swanley, Landsat TM 1988

'Real Colour' composite

red band on red

'Real Colour' composite

red band on red green band on green

'Real Colour' composite

red band on red green band on green blue band on blue

approximation to 'real colour'...

'False Colour' composite

NIR band on red red band on green green band on blue

'False Colour' composite

NIR band on red red band on green green band on blue

'False Colour' composite

- many channel data, much not comparable to RGB (visible)
 - e.g. Multi-polarisation SAR

Fig. 3 L-band PI-SAR image of sea ice in southern part of the Sea of Okhotsk, February 23, 1999

HH: Horizontal transmitted polarization and Horizontal received polarization

VV: Vertical transmitted polarization and Vertical received polarization

HV: Horizontal transmitted polarization and Vertical received polarization

'False Colour' composite

- many channel data, much not comparable to RGB (visible)
 - e.g. Multi-temporal data
 - AVHRR MVC 1995

April
August
September

Greyscale Display

Put same information on R,G,B:

August 1995

August 1995

August 1995

LUCL

Pseudocolour

- use colour to enhance features in a single band
 - each DN assigned a different 'colour' in the image display

- Combine multiple channels of information to enhance features
- e.g. NDVI (NIR-R)/(NIR+R)

- Combine multiple channels of information to enhance features
- e.g. NDVI (NIR-R)/(NIR+R)

• Common operators: **Ratio**

Landsat TM 1992

Southern Vietnam:

green band

what is the 'shading'?

• Common operators: **Ratio**

topographic effects visible in all bands

FCC

• Common operators:

apply band ratio

= NIR/red

what effect has it had?

Ratio (ch_a/ch_b)

Common operators: Ratio (ch_a/ch_b)

- Reduces topographic effects
- Enhance/reduce spectral features
 - e.g. ratio vegetation indices (SAVI, NDVI++)

- Common operators:
- Subtraction

MODIS NIR: Botswana Oct 2000

Predicted Reflectance

Based on tracking reflectance for previous period

• examine CHANGE

Measured reflectance

Difference (Z score)

measured minus predicted
noise

• Common operators:

Addition

- Reduce noise (increase SNR)
 - averaging, smoothing ...
- Normalisation (as in NDVI)

- Common operators: Multiplication
- rarely used *per se:* logical operations?
 - land/sea mask

• WHAT IS A HISTOGRAM?

• WHAT IS A HISTOGRAM?

WHAT IS A HISTOGRAM?

Don't always want to use full dynamic range of display

Density slicing:

 a crude form of classification

Or use single cutoff

= Thresholding

- Analysis of histogram
 - information on the dynamic range and distribution of DN
 - attempts at visual enhancement
 - also useful for analysis, e.g. when a multimodal distribution is observed

- Analysis of histogram
 - information on the dynamic range and distribution of DN
 - attempts at visual enhancement
 - also useful for analysis, e.g. when a multimodal distibution is observed

Typical histogram manipulation algorithms:

Linear Transformation

Typical histogram manipulation algorithms:

Linear Transformation

Typical histogram manipulation algorithms:

Linear Transformation

- Can automatically scale between upper and lower limits
 - •or apply manual limits
 - •or apply piecewise operator

Typical histogram manipulation algorithms:

Typical histogram manipulation algorithms:

Histogram Equalisation

Typical histogram manipulation algorithms:

Histogram Equalisation

Typical histogram manipulation algorithms:

Histogram Equalisation

- Useful 'automatic' operation, attempting to produce 'flat' histogram
- Doesn't suffer from 'tail' problems of linear transformation
- Like all these transforms, not always successful
- Histogram Normalisation is similar idea
- Attempts to produce 'normal' distribution in output histogram

• both useful when a distribution is very skewed or multimodal skewed

Summary

Display

- Colour composites
- Greyscale Display
- Pseudocoluor

• Image arithmetic

- +-×÷

Histogram Manipulation

- Properties
- Density slicing
- Transformations

LUCL

Summary

Followup:

- web material
 - http://www.geog.ucl.ac.uk/~plewis/geog2021
 - Mather chapters
 - Follow up material on web and other RS texts
 - Access Journals