

Dynamics of DNA in Micro/Nanofluidic Flows

September 8, 2008

Kengo Ichiki (UofA, NINT)

with

Alexander E. Kobryn (NINT)

Andriy Kovalenko (NINT, UofA)

(Theory and Modeling Group)

Introduction

DNA in micro/nanofluidic devices

Target systems:

packed particles of silica

Zeng, Harrison (2007)

connected cavities by gel

Fig. 1. Schematic of a DNA molecule trapped inside the cavity array.

- Nykypunchuk et al. (2002)
- Zeng, Harrison (2006)

size of particle / cavity : 160nm ~ 900nm

Theory & Computation ---- Experiment

- to understand the problem,
 - what can Theor.& Comp. provide to Exp.?
 - what do Theor.& Comp. need from Exp.?

Theoretical Modeling

Elements:

- DNA
- device (boundary)
- fluid
- electric field

Mechanisms:

- DNA model
- Brownian force
- viscous force
- electro-phoresis
- electro-osmosis
- interactions

DNA

DNA for 12 bp (from 2BNA.pdb)

- size : 50bp ~ 50kbp
- contour length: 17nm ~ 17 micro m
 - (1 bp = 0.34 nm)
- DNA is not flexible
 - 1 Kuhn length = 100 nm

DNA models

molecular model

- pros : detailed
- cons : too small

dWLC model

- detailed enough
- large enough

FENE chain model

- pros : large scale
- cons : bad (confinement)

DNA models

Number of beads for dWLC and FENE models

n [bp]	$L[\mu m]$	$N_{ m dWLC}$	$N_{ m FENE}$
50	0.017	3	
100	0.034	7	
200	0.068	14	
300	0.102	20	
367	0.125	25	
762	0.259	52	
1010	0.343	68	
2000	0.68	136	
2311	0.79	157	
13000	4.42	884	2
48500	16.5	3300	8
62000	21	4200	10

Brownian force

size of DNA in solution

radius of gyration

$$R_g \propto N^{\nu}, \quad \nu \approx 0.6$$

because of the Brownian force (thermal fluctuation)

• this is why bead-SPRING model works (entropic effect)

Brownian Dynamics

ALBERTA

molecular dynamics (MD) vs Brownian dynamics (BD)

Newton's equation (MD)

$$m\ddot{m{x}}_{lpha}=m{F}_{lpha}$$

$$\Delta t^{\mathrm{MD}} = 1 \mathrm{\ fs}$$

• integrate for mom. relax. time (0.5 ps)

Langevin equation (BD)

$$\Delta \boldsymbol{x}_{\alpha} = \boldsymbol{R}^{-1} \cdot \left(\boldsymbol{F}_{\alpha} + \boldsymbol{F}_{\alpha}^{\mathrm{B}} \right) \Delta t$$

$$\Delta t^{\mathrm{BD}} = 1 \mathrm{ns}$$

Simulation, Part I

DNA at equilibrium

• neutral system (no electric field)

** movie **

Results, Part I

What can be obtained by the simulation?

diffusion constant

end-to-end distance

Simulation, Part II

DNA in packed particles

- neutral system
- hydrodynamic interaction is included

** movie **

Simulation, Part III

DNA under confinement

- no HI
- spherical cavity

cylindrical channel

extension r [nm]

Results, Part III

Extension under confinement

de Gennes regime (D > P):

$$r = L\left(\frac{wP}{D^2}\right)$$

Odijk regime (D < P):

$$r = L \left[1 - A \left(\frac{D}{P} \right)^{2/3} \right]$$

Discussions

Electric field

• Electro-phoresis and Electro-osmosis

mobility has NO size dependence!

- simple model / approximation
 - EP : external force (without HI)
 - EO : imposed flow
- Experimental inputs are necessary.

Simulation, Part IV

DNA in packed particles driven by "electric field"

EP by external force

** movie **

mobility vs DNA size

mobility vs force

Heller et al. (1994)

Summary

- Brownian dynamics with dWLC model
 - OK for long DNA (not by MD)
 - good under confinement (not by bead-spring model)
- reproduce the existing results
 - diffusion constant at equilibrium
 - radius of gyration (end-to-end distance)
 - extension in confinement
- simple EP/EO model
 - size dependence on mobility

Outlook

What Theor.& Comp. can provide?

quantitative predictions

- diffusion constant, radius of gyration
- electro-phoretic mobility (passage time)
- detailed dynamics
- Especially,

DNA-size dependence field strength dependence field orientation dependence