

DESCOMPOSICIÓN SVD

ALAN REYES-FIGUEROA MÉTODOS NUMÉRICOS II

(AULA 03) 12.JULIO.2022

La descomposición en valores singulares, SVD, está motivada por el siguiente hecho geométrico:

La imagen de la esfera unitaria bajo cualquier matriz en $\mathbb{R}^{m \times n}$ es una hiperelipse en \mathbb{R}^m , obtenida al "estirar" la esfera unitaria en \mathbb{R}^m por algunos factores $\sigma_1, \ldots, \sigma_m$, (posiblemente cero) en algunas direcciones ortogonales $\mathbf{u}_1, \ldots, \mathbf{u}_m \in \mathbb{R}^m$.

Por conveniencia, consideramos que los \mathbf{u}_i son vectores unitarios, es decir, $||\mathbf{u}_i||_2 = 1$. Los vectores $\{\sigma_i \mathbf{u}_i\}$ son los semi-ejes principales de la hiperelipse, con longitudes $\sigma_1, \ldots, \sigma_m$. Si A tiene rango r, exactamente r de estas longitudes resultarán ser distintas de cero, y en particular, si m > n, como máximo n de ellas serán distinto de cero.

SVD de una matriz en $\mathbb{R}^{2\times 2}$.

Sea $S = S^{n-1}$ la esfera unitaria en \mathbb{R}^n , y tome cualquier matriz $A \in \mathbb{R}^m \times n$ con m > n. Por simplicidad, supongamos que A tiene rango completo n. La imagen AS es una hiperelipse en \mathbb{R}^m .

Definimos algunas propiedades de A en términos de la forma de AS.

Primero, definimos los n valores singulares de A. Estos son las longitudes de los n semi-ejes principales de AS, escritos $\sigma_l \geq \sigma_2 \geq \ldots \geq \sigma_n > 0$.

Los n vectores singulares izquierdos de A. Estos son los vectores unitarios $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n n\}$ orientados en las direcciones de los semi-ejes principales de AS, numerados para corresponder con los valores singulares. Así, $\sigma_i \mathbf{u}_i$ es el i-ésimo mayor semi-eje principal de AS.

Finalmente, los n vectores singulares derechos de A son los vectores unitarios $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\} \subset S$ que son las preimágenes de los semi-ejes principales de AS, numerados de modo que $A\mathbf{v}_i = \sigma_i \mathbf{u}_i$, $i = 1, 2, \dots, n$.

De lo anterior tenemos una relación entre los σ_i , los \mathbf{u}_i y los \mathbf{v}_i :

$$\mathbf{A}\mathbf{v}_{j} = \sigma_{j}\mathbf{u}_{j}, \ \forall \ 1 \leq j \leq n. \tag{1}$$

Esta colección de ecuaciones vectoriales se puede expresar como una ecuación matricial, como

o de forma más compacta como $AV = \widehat{U}\widehat{\Sigma}$, con $\widehat{U} \in \mathbb{R}^{m \times n}$, $V, \widehat{\Sigma} \in \mathbb{R}^{n \times n}$. $V \in O(n)$ es ortogonal, mientras que \widehat{U} posee columnas ortogonormales.

Como V es ortonormal, podemos escribir $A = \widehat{U}\widehat{\Sigma}V^{T}$.

Definición

La factoración $A = \widehat{U}\widehat{\Sigma}V^T$ se llama la **descomposición en valores** singulares reducida de A.

Descomposición SVD reducida, (para $m \ge n$).

Introducimos una segunda factoriación SVD. La idea es la siguiente. Las columnas de \widehat{U} son n vectores ortonormales en el espacio \mathbb{R}^m . A menos que m=n, no forman una base de \mathbb{R}^m , ni \widehat{U} es una matriz ortogonal.

Adjuntamos m-n columnas ortonormales adicionales, de modo que \widehat{U} se extiende a una matriz ortogonal U. Si \widehat{U} se reemplaza por U en (1), $\widehat{\Sigma}$ también cambia. Para que el producto permanezca inalterado, las últimas m-n columnas de U deben multiplicarse por cero. En consecuencia, sea Σ la matriz $m \times n$ que consta de $\widehat{\Sigma}$ en el bloque $n \times n$ superior junto con m-n filas de ceros a continuación.

Ahora tenemos una nueva factoración de la forma $AV = U\Sigma$ ó $A = U\Sigma V^T$, donde $\widehat{U} \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^n$ y $\Sigma \in \mathbb{R}^{m \times n}$. Además, $V \in O(n)$ y $U \in O(m)$ son matrices ortogonales.

Definición

La factoración $A = U\Sigma V^T$ se llama la **descomposición en valores** singulares completa de A.

Descomposición SVD completa, (para $m \ge n$).

Habiendo descrito la SVD completa, ahora podemos descartar el supuesto inicial que A tiene rango completo. Si A es deficiente en rango, i.e. $rank(A) = r < min\{m, n\}$, la factoración SVD completa aún es válida.

Todo lo que cambia es que ahora no n sino solo r de los vectores singulares izquierdos de A están determinados por la geometría de la hiperelipse. Al construir la matriz ortogonal U, añadimos m-r en lugar de m-n columnas ortonormales adicionales. La matriz V también necesitará n-r columnas ortonormales adicionales para extender las r columnas determinadas por la geometría.

La matriz Σ ahora tendrá r entradas diagonales positivas, con las n-r restantes igual a cero. De la misma manera, la SVD reducida también tiene sentido para matrices A de rango deficiente. Se puede tomar \widehat{U} como $m \times n$, con $\widehat{\Sigma}$ de dimensiones $n \times n$ con algunos ceros en la diagonal, o comprimir aún más la representación de modo que \widehat{U} sea $m \times r$ y $\widehat{\Sigma}$ sea $r \times r$ y estrictamente positiva en la diagonal.

Teorema (Existencia y unicidad SVD)

Toda matriz $A \in \mathbb{C}^{m \times n}$ posee una descomposición en valores singulares $A = U^*$. Además, los valores singulares $\{\sigma_j\}$ se determinan unívocamente y, si A es cuadrada y los σ_j son distintos, los vectores singulares izquierdos y derechos $\{\mathbf{v}_j\}$ y $\{\mathbf{u}_j\}$ se determinan de forma única hasta signos complejos (es decir, factores escalares complejos de módulo 1).

<u>Prueba</u>. Para probar la existencia de la SVD, procedemos por inducción sobre la dimensión de A.

Hagamos $\sigma_1 = ||A||_2$. Como $S = \{\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}||_2 = 1\}$ es compacto, existe un vector $\mathbf{v}_1 \in \mathbb{R}^n$ con $||\mathbf{v}_1||_2 = 1$, y $||\mathbf{u}_1||_2 = \sigma_1$, tales que $\mathbf{u}_1 = A\mathbf{v}_1$.

Extendemos \mathbf{v}_1 a una base ortonormal $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ de \mathbb{R}^n , y \mathbf{u}_1 a una base

 $\{\mathbf{u}_1,\ldots,\mathbf{u}_m\}$ ortonormal de \mathbb{R}^m . Sean U_1 y V_1 las matrices ortogonales con columnas \mathbf{u}_i y \mathbf{v}_i , respectivamente.

Tenemos

$$U^{\mathsf{T}}\Sigma V = \mathsf{S} = \begin{pmatrix} \sigma_{\mathsf{1}} & \mathbf{w}^{\mathsf{T}} \\ \mathbf{o} & B \end{pmatrix},$$

donde \mathbf{w}^T es un vector fila, \mathbf{o} es un vector columna y $B \in \mathbb{R}^{(m-1)\times (n-1)}$. Además

$$\left|\left|\begin{pmatrix} \sigma_1 & \mathbf{W}^T \\ \mathbf{O} & B \end{pmatrix} \begin{pmatrix} \sigma_1 \\ \mathbf{W} \end{pmatrix}\right|\right|_2 \geq \sigma_1^2 + \mathbf{W}^T \mathbf{W} = (\sigma_1^2 + \mathbf{W}^T \mathbf{W})^{1/2} \left|\left|\begin{pmatrix} \sigma_1 \\ \mathbf{W} \end{pmatrix}\right|\right|_2,$$

de modo que $||S||_2 \ge (\sigma_1^2 + \mathbf{w}^T \mathbf{w})^{1/2}$.

Como U_1 y V_1 son ortogonales, sabemos que $||S||_2 = ||A||_2 = \sigma_1$, y esto implica que $\mathbf{w} = \mathbf{0}$.

Si n=1 ó m=1, acabó la prueba. De lo contrario, la submatriz B describe la acción de A en el subespacio ortogonal a $\langle \mathbf{v}_1 \rangle$, un espacio de dimensión n-1.

Por la hipótesis de inducción, B admite una descomposición SVD de la forma $B = U_2 \Sigma_2 V_2^T$, y se verifica que

$$A = U_1 \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & U_2 \end{pmatrix} \begin{pmatrix} \sigma_1 & \mathbf{0} \\ \mathbf{0} & \Sigma_2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & V_2 \end{pmatrix}^T V_1^T.$$

es una descomposición SVD para A, como queríamos. Esto muestra la existencia.

Para la unicidad, leer el final del capítulo 4, libro de Trefethen. \Box

Cambio de Bases

La SVD nos permite decir que cada matriz es diagonal, desde que se utilicen las bases adecuadas para los espacios de dominio y rango. DAdo cualquier $\mathbf{b} \in \mathbb{R}^m$, \mathbf{b} puede expandirse en la base de los vectores singulares izquierdos de A (columnas de U), y cualquier $\mathbf{x} \in \mathbb{R}^n$ puede representarse en la base de los vectores singulares derechos de A (columnas de V).

Los vectores de coordenadas para estas expansiones son $\mathbf{b}' = U^T \mathbf{b}$ y $\mathbf{x}' = V^T \mathbf{x}$. De $A = U \Sigma V^T$, la relación $\mathbf{b} = A \mathbf{x}$ se puede expresar en términos de \mathbf{b}' y \mathbf{x}' como

$$\mathbf{b} = A\mathbf{x} \Leftrightarrow U^{\mathsf{T}}\mathbf{b} = U^{\mathsf{T}}A = U^{\mathsf{T}}U\Sigma V^{\mathsf{T}}\mathbf{x} \Leftrightarrow \mathbf{b}' = \Sigma \mathbf{x}'.$$

Así, A se reduce a la matriz diagonal Σ cuando el rango se expresa en la base de columnas de U y el dominio en la base de columnas de V.

SVD y Descomposición Espectral

Una matriz cuadrada A de rango completo puede expresarse como una matriz diagonal de autovalores A, si el rango y el dominio están representados en una base de autovectores.

Relación entre la SVD y la Descomposición espectral:

Sea $A = U\Sigma V^T$ la SVD de A. Entonces

$$A^{\mathsf{T}}A = (U\Sigma V^{\mathsf{T}})^{\mathsf{T}}(U\Sigma V) = V\Sigma (U^{\mathsf{T}}U)\Sigma V^{\mathsf{T}} = V\Sigma^{2}V^{\mathsf{T}} = V\Lambda V^{\mathsf{T}}$$

- \Rightarrow las columnas de V son los autovectores de A^TA ,
- \Rightarrow los valores singulares σ_i son las raíces de los autovalores λ_i de A^TA .

$$\mathsf{A}\mathsf{A}^\mathsf{T} = (\mathsf{U}\mathsf{\Sigma}\mathsf{V}^\mathsf{T})(\mathsf{U}\mathsf{\Sigma}\mathsf{V})^\mathsf{T} = \mathsf{U}\mathsf{\Sigma}(\mathsf{V}^\mathsf{T}\mathsf{V})\mathsf{\Sigma}\mathsf{U}^\mathsf{T} = \mathsf{U}\mathsf{\Sigma}^\mathsf{2}\mathsf{U}^\mathsf{T} = \mathsf{U}\mathsf{\Lambda}\mathsf{U}^\mathsf{T}$$

- \Rightarrow las columnas de *U* son los autovectores de AA^T ,
- \Rightarrow los valores singulares σ_i son las raíces de los autovalores λ_i de AA^T .

Propiedades a partir de la SVD

Sea $A = U\Sigma V^T$ su descomposición en valores singulares. Las pruebas de los resultados siguientes están en el Capítulo 5 de Trefethen.

Teorema

El rango rank(A) es r, el número de valores singulares no-nulos.

Teorema

$$\mathsf{Im}(A) = \langle \mathbf{u}_1, \dots, \mathbf{u}_r \rangle \ y \ \mathsf{Ker}(A) = \langle \mathbf{v}_{r+1}, \dots, \mathbf{v}_n \rangle.$$

Teorema

$$||A||_2 = \sigma_1 y ||A||_F = \sqrt{\sigma_1^2 + \sigma_2^2 + \ldots + \sigma_r^2}.$$

Propiedades a partir de la SVD

Teorema

Los valores singulares no-nulos de A son las raíces de los autovalores de A^TA o de AA^T . Esto es $\sigma_i = \sqrt{\lambda_i}$, donde $\Lambda = (\lambda_1, \dots, \lambda_r, \dots)$ corresponde a la diagonal en la descomposición espectral de A^TA o de AA^T .

Teorema

Si A = AT, los valores singulares de A son los valores absolutos $\sigma_i = |\lambda_i|$ de los autovalores de A.

Teorema

Para
$$A \in \mathbb{R}^{n \times n}$$
, vale $det(A) = \prod_{i=1}^{n} \sigma_{i}$.

Aproximaciones de bajo rango

Teorema (Eckart-Young)

Sea $A \in \mathbb{R}^{n \times d}$, $n \geq d$, una matriz cuya descomposición SVD está dada por

$$A = USV^T = \sum_{i=1}^d \sigma_i \mathbf{u}_i \mathbf{v}_i^T.$$

Entonces, la matriz \widehat{A}_r de rango r, $1 \le r \le d$, que mejor aproxima A en el sentido de minimizar $\min_{\substack{rank \ \widehat{A}_r < r}} ||A - \widehat{A}_r||_F^2$

se obtiene de truncar la descomposición en valores dingulares de A:

$$\widehat{\mathbf{A}}_r = \mathbf{U}_r \mathbf{S}_r \mathbf{V}_r^\mathsf{T} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^\mathsf{T},$$

Aproximaciones de bajo rango

Teorema (Eckart-Young) donde

$$U_r = [\mathbf{u_1} \ \mathbf{u_2} \ \dots \ \mathbf{u_r}], \ S_r = diag(\sigma_1, \sigma_2 \dots, \sigma_r), \ V_r = [\mathbf{v_1} \ \mathbf{v_2} \ \dots \ \mathbf{v_r}].$$

En ese caso, el error de aproximación está dado por

$$||A - \widehat{A_r}||_F^2 = \sum_{i=r+1}^d \lambda_i,$$

0

$$||\mathbf{A} - \widehat{\mathbf{A}_r}||_2^2 = \lambda_{r+1}.$$

Descomposición de Schur

Otra factorización matricial, en realidad la que es más útil en análisis, es la llamada factoración de Schur.

Definición

Una **factoración de Schur** de una matriz $A \in \mathbb{R}^{n \times n}$ es una factorización de la forma $A = OTO^{T}$.

donde Q es ortogonal (unitaria) y T es triangular superior.

Observe que A y T son semejantes. De manera similar, los autovalores de A necesariamente aparecen en la diagonal de T.

Teorema

Toda matriz cuadrada A posee una factoración de Schur.

Descomposición de Schur

Prueba: Por inducción sobre la dimensión n de A.

El caso n=1 es directo, ya que $A=[a]=[1][a][1]^T$, así que suponga que $n\geq 2$. Sea $\mathbf{x}\in\mathbb{R}^n$ cualquier autovector de A, con autovalor correspondiente λ .

Tomamos $\mathbf{u}_1 = \frac{\mathbf{x}}{||\mathbf{x}||_2}$ normalizado, y lo hacemos la primer columna de la matriz U. Entonces, al igual que en la descomposición espectral, vale

$$U^{\mathsf{T}} \mathsf{A} U = \begin{pmatrix} \lambda & \mathsf{B} \\ \mathbf{o} & \mathsf{C} \end{pmatrix},$$

con $B \in \mathbb{R}^{n-1}$, $C \in \mathbb{R}^{(n-1)\times(n-1)}$.

De la hipótesis inductiva, existe una factoración de Schur VTV^T para C. Escribimos entonces

Descomposición de Schur

$$Q = U \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & V \end{pmatrix}.$$

Entonces, Q es una matriz ortogonal (unitaria), pues $QQ^T = U\begin{pmatrix} 1 & 0 \\ 0 & W^T \end{pmatrix}U^T = UU^T = I$, y tenemos

$$Q^{T}AQ = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & V^{T} \end{pmatrix} U^{T}AU \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & V \end{pmatrix} = \begin{pmatrix} \lambda & BV \\ \mathbf{0} & T \end{pmatrix} \Rightarrow A = Q \begin{pmatrix} \lambda & BV \\ \mathbf{0} & T \end{pmatrix} Q^{T} \cdot \Box$$

En resumen:

- Una diagonalización $A = X \lambda X^{-1}$ existe, si y sólo si, A es no defectuosa.
- Una diagonalización unitaria existe, si y sólo si, A es **normal** (esto es, $AA^* = A^*A$).
- Una descomposición SVD $A = U\Sigma V^T$ siempre existe.
- Una descomposición de Schur $A = QTQ^T$ siempre existe.

