UNIVERSITÄT BONN

Robot Learning

Assignment 2

Due Tuesday, April 23rd, before class.

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN COMPUTER SCIENCE VI **AUTONOMOUS** INTELLIGENT SYSTEMS

Prof. Dr. Sven Behnke Endenicher Allee 19a

2.1) Consider a student taking an exam, which consists of k tasks.

> For simplicity, we assume that the tasks i = 1, ..., k can either be solved, which results in the full number r_i of points, or not be solved, resulting in zero points ($r_i = 0$).

After working on a task, the student knows whether the task has been solved or not.

The student may attempt to solve each task a second time, but only when it has not been solved before.

The probability p_i^2 of solving the task in the second attempt is only half of the probability p_i^1 in the first attempt. The first-attempt probabilities p_i^1 are as follows:

Task i	Points r_i	First attempt solution probability p_i^1
1	12	0.25
2	4	0.4
3	10	0.35
4	5	0.6
5	7	0.45
6	3	0.5
7	50	0.15

Formulate this problem as a Markov Decision Process!

4 points

2.2) Assume that the student can attempt only N = 10 tasks in the exam. For passing the exam, the student needs to get at least 50% of the available points. Model the probability of passing the exam.

4 points

2.3) The student considers two policies for choosing the tasks:

 π_A : work on the tasks in sequential order, according to index i.

 π_R : work on the tasks in the order of increasing difficulty (decreasing solution probability)

In both cases, the first non-solved task will be attempted again.

Compare the expected return of both policies!

4 points

2.4) Suggest an improved policy $\pi_{\mathcal{C}}$ that has a higher expected return than both of the above policies.

4 points

2.5) Give an example for a process model where the Markov assumption is not justified. How can the state be augmented to make the assumption valid again?

4 points