Problem Set 9: Weighted Tate resolutions

Let $d_0, \ldots, d_n \ge 0$. Let k be a field and $S = k[x_0, \ldots, x_n]$, with \mathbb{Z} -grading given by $\deg(x_i) = d_i$. Let $E = \Lambda_k(e_0, \ldots, e_n)$, with \mathbb{Z}^2 -grading given by $\deg(e_i) = (-d_i, -1)$. Let $w := \sum_{i=0}^n d_i$.

1. (Short exercise) Show that $\mathbf{R}(S)^*$ is the minimal free resolution of k.

Solution. We have $H(\mathbf{R}(S))_{(a,j)} = \operatorname{Tor}_j^S(S,k)_a$. Moreover, $\operatorname{Tor}_j^S(S,k)_a = 0$ unless a = j = 0, in which case it is k. Thus $H(\mathbf{R}(S)) = k$ concentrated in bidegree (0,0). It follows that the composition of maps of differential modules $k \to \omega_E \hookrightarrow \mathbf{R}(S)$ is a quasi-isomorphism. Since dualizing over k is exact, the induced map $\mathbf{R}(S)^* \to k$ is a quasi-isomorphism. Note that $F := \mathbf{R}(S)^* \simeq \bigoplus_{i \geq 0} E(i,0) \otimes_k S_i$ with the induced differential. Since $\partial(\mathbf{R}(S)) \subseteq \mathfrak{m}_E \mathbf{R}(S)$ and $(-)^* = \operatorname{Hom}_E(-, E)(-n - 1)$, it follows that $\partial(\mathbf{R}(S)^*) \subseteq \mathfrak{m}_E \mathbf{R}(S)^*$. Setting $F_i := \omega_E(i,0) \otimes_k S_i$, we have $F = \bigoplus_{i \geq 0} F_i$ and $\partial(F_i) \subseteq \bigoplus_{j \leq i} F_i$.

2. Prove that, if M is a graded S-module, then there is an isomorphism $\mathbf{R}(M(i)) \cong \mathbf{R}(M)(i,0)$ of differential E-modules for all $i \in \mathbb{Z}$.

Solution. We have

$$\mathbf{R}(M(i)) = \bigoplus_{d \in \mathbb{Z}} \omega_E(-d, 0) \otimes_k M(i)_d$$

$$= \bigoplus_{d \in \mathbb{Z}} \omega_E(-d, 0) \otimes_k M_{i+d}$$

$$= \bigoplus_{d \in \mathbb{Z}} \omega_E(-d - i, 0)(i, 0) \otimes_k M_{i+d}$$

$$= \mathbf{R}(M)(i, 0)$$

as graded E-modules, and the differentials are the same.

- **3.** Suppose n=1, $d_0=1$, and $d_1=2$. Let $M=S/(x_0^2-x_1)$. Prove the following:
 - (a) $M_{\geq i} \cong M(-i)$ for all $i \geq 0$.
 - (b) $\mathbf{R}(M)$ is not quasi-isomorphic to its homology.

Notice the contrast with the standard graded case, where we have that $\mathbf{R}(M_{\geq r})$ is an injective resolution whenever $r \geq \operatorname{reg}(M)$.

Solution. (a) We have $\dim_k(M_i) = 1$ for all $i \geq 0$. The S-linear map of graded S-modules $M(-i) \to M_{\geq i}$ sending 1 in degree i to x_0^i is an isomorphism. (b) Note that from the formula $H(\mathbf{R}(M))_{(a,j)} = \operatorname{Tor}_j^S(M,k)_a$, we see that $H(\mathbf{R}(M))_{(a,j)} = k$ if (a,j) = (0,0) or (a,j) = (2,1)

and 0 otherwise (to compute this Tor, resolve M over S via the Koszul complex on $x_0^2 - x_1$). Thus, $\mathbf{L}(H(\mathbf{R}(M)))$ is isomorphic to a complex of the form

$$0 \leftarrow S \stackrel{\ell}{\leftarrow} S(-2) \leftarrow 0.$$

The output of the functor \mathbf{L} is always a linear complex, in the sense that the differentials must be matrices of linear forms. Thus, ℓ is either 0 or a linear form of degree 2, i.e. a k-multiple of x_1 . We conclude that $\mathbf{L}(H(\mathbf{R}(M)))$ is quasi-isomorphic to either $S \oplus S(-2)[-1]$ or $S/(x_1)$. If there is a quasi-isomorphism between $H(\mathbf{R}(M))$ and $\mathbf{R}(M)$, then, since \mathbf{L} is exact (we didn't observe this in the multigraded case, but it's true and not too hard to prove), there exists a quasi-isomorphism between $\mathbf{L}(M)$ and $\mathbf{L}(H(\mathbf{R}(M)))$ and hence between $\mathbf{L}(H(\mathbf{R}(M)))$ and M. (Once again, we didn't observe in the multigraded case that there are quasi-isomorphisms $\mathbf{L}(M)$ is not isomorphic to either $\mathbf{S} \oplus \mathbf{S}(-2)[-1]$ or $\mathbf{S}/(x_1)$, we conclude that $\mathbf{H}(\mathbf{R}(M))$ is not quasi-isomorphic to $\mathbf{R}(M)$.

4. Use your solution to (1) to compute the Tate resolution of \mathcal{O} . Then use your solution to recover the following calculation of the cohomology of $\mathcal{O}(j)$ on $\mathbb{P}(d)$:

$$H^{i}(\mathbb{P}(\underline{d}), \mathcal{O}(j)) = \begin{cases} S_{j}, & i = 0 \text{ and } j \geqslant 0; \\ S_{-j-w}, & i = n \text{ and } j \leqslant -w; \\ 0, & \text{else.} \end{cases}$$

Solution. We have $T(\mathcal{O}) = \operatorname{cone}(\mathbf{R}(S)^* \xrightarrow{\varepsilon} \mathbf{R}(S))$, where ε is the evident quasi-isomorphism. Thus, as graded E-modules, $T(\mathcal{O})$ is isomorphic to $(\bigoplus_{d\geq 0} \omega_E(w+d,n)\otimes_k S_d) \bigoplus_{d\geq 0} \omega_E(-d,0)\otimes_k S_d$. Recall that $\dim_k H^i(\mathbb{P}(\underline{d}),\mathcal{O}(j))$ is the number of copies of $\omega_E(-j,i)$ in $T(\mathcal{O})$. From the description at hand of $T(\mathcal{O})$, the desired conclusions are easily read off.