

Modelosir

Número total de indivíduos

$$N = S + I + R$$

Ele não muda ao longo de todo o processo

Processo de contágio

Δt

Intervalo de tempo

Os processos de infecção e recuperação vão ocorrer em intervalos igualmente espaçados de tempo.

Número de infectados

Se refere a quantidadade de indivíduos infectados

S

Fração total de suscetíveis

Determina a probabilidade de encontrar indivíduos suscetíveis

Taxa de infecção

 $\beta = pc$

p: probabilidade de contágio a cada contato entre indivíduos.

 ${\it C}$: média de contato entre as pessoas por unidade de tempo.

Voltando ao diagrama do SIR

Processo de recuperação

$\gamma I \Delta t$

Taxa de recuperação

$$\gamma = rac{1}{t_{inf}} \hspace{0.5cm} egin{pmatrix} t_{inf}
ightarrow \gamma \ t_{inf}
ightarrow \gamma \end{pmatrix}$$

Unindo os termos teremos:

Voltando ao diagrama do SIR

Como cada compartimento se comporta ao longo do tempo?

Suscetíveis

Numero de 1° Suscetíveis em 't'

Ocorre o

processo que

altera o valor do

compartimento

Numero de Suscetíveis em 't + Δt'

$$S_t \xrightarrow{1^{\circ}} - \frac{\beta S_t I_t}{N} \Delta t \xrightarrow{2^{\circ}} S_{t+\Delta t}$$

Sinais

Diminui o atual compartimento.

Aumenta o atual compartimento.

$$S_t \xrightarrow{1^{\circ}} - \frac{\beta S_t I_t}{N} \Delta t \xrightarrow{2^{\circ}} S_{t+\Delta t}$$

Agora Processo Depois

$S_t \xrightarrow{1^{\circ}} - \frac{\beta S_t I_t}{N} \Delta t \xrightarrow{2^{\circ}} S_{t+\Delta t}$

$$S_{t+\Delta t} = S_t - rac{eta S_t I_t}{N} \Delta t$$

Reorganizando os termos

$$S_{t+\Delta t} = S_t - rac{eta S_t I}{N} \Delta t$$
Depois Agora Processo

Equação dos Suscetíveis

$$S_{t+\Delta t} = S_t - rac{eta S_t I_t}{N} \Delta t$$

Equação dos Infectados

$$egin{aligned} I_{t+\Delta t} &= I_t + \left(rac{eta S_t I_t}{N} - \gamma I_t
ight) \Delta t \end{aligned}$$

Equação dos Recuperados

$$R_{t+\Delta t} = R_t + \gamma I_t \Delta t$$

MODELO SIR

$$egin{aligned} S_{t+\Delta t} &= S_t - rac{eta S_t I_t}{N} \Delta t \ I_{t+\Delta t} &= I_t + \left(rac{eta S_t I_t}{N} - \gamma I_t
ight) \Delta t \end{aligned}$$

$$R_{t+\Delta t} = R_t + \gamma I_t \Delta t$$

$$N = S_t + I_t + R_t$$

Número básico de reprodução

$$R0 = \frac{\beta}{\gamma}$$

RO = 3

Como frear esse processo?

