CS 156:Introduction to Artificial Intelligence

Instructor: Dr. Sayma Akther

San José State University

Adversarial Search

Multi-Agent Systems

Robocup 2006

Texas Hold'em

Mafia Game

Multi-Agent Systems

Negotiation

Security

Societal Decision Making

Environment Sustainability

Mobility

Economy Premiu
Fares are slightly higher due to increased demand

REQUEST UBERX

Tic-Tac-Toe

 Two players, X and O, take turns marking the spaces in a 3×3 grid

 The player who succeeds in placing three of their marks in a horizontal, vertical, or diagonal row wins the game

https://en.wikipedia.org/wiki/Tic-tac-toe

Chess

https://en.wikipedia.org/wiki/Chess

Chess

Garry Kasparov vs Deep Blue (1996)

Result: Win-loss-draw-draw-draw-loss (In even-numbered games, Deep Blue played white)

Chess

Reading: Go

• DeepMind promotion video before the game with Lee Sedol

Backgammon: Neural-net learning program TDGammon one of

world's top 3 players

Reading: Go

Good places to learn more:

http://www.cs.ualberta.ca/~games/

http://www.cs.unimass.nl/icga

AlphaGo: https://www.nature.com/articles/nature16961.pdf

AlphaZero: www.nature.com/articles/nature24270.pdf

AlphaGo vs Lee Sedol (3/2016)

AlphaZero vs AlphaGo (2017)

https://deepmind.com/blog/alphago-zero-learning-scratch/

Result: win-win-win-loss-win

Result: 100-0

Typical case

- 2-person game
- Players alternate moves
- Zero-sum: one player's loss is the other's gain
- Perfect information: both players have access to complete information about the state of the game. No information is hidden from either player.
- No chance (e.g., using dice) involved
- Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim, Othello
- Not: Bridge, Solitaire, ...

Game representation

- Initial state
 - Current board position (description of current game state)
- Operators
 - Legal moves a player can make
- Terminal nodes
 - Leaf nodes in the tree
 - Indicate the game is over
- Utility function
 - Payoff function
 - Value of the outcome of a game
 - Example: tic tac toe, utility is -1, 0, or 1

Partial Game Tree for Tic-Tac-Toe

Adversarial Search (Minimax)

- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively

Terminal values: part of the game

Minimax Example

Minimax Efficiency

- How efficient is minimax?
 - Just like (exhaustive) DFS
 - Time: O(b^m)
 - Space: O(bm)

- Example: For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?

Game Tree Pruning

Alpha-beta pruning

- We can improve on the performance of the minimax algorithm through alpha-beta pruning
- Basic idea: "If you have an idea that is surely bad, don't take the time to see how truly awful it is." -- Pat Winston

- We don't need to compute the value at this node.
- No matter what it is, it can't affect the value of the root node.

Alpha-beta example

Participation Exercise:

