数据结构期中考试中厅讲座

杨乐

专题!一时间复杂度分析

* 三种时间复杂度记号:

```
T(n) = \mathcal{O}(f(n)) \quad iff \quad \exists c > 0 \quad s.t. \quad T(n) < c \cdot f(n) \quad \forall n \gg 2
T(n) = \Omega(f(n)) \quad iff \quad \exists c > 0 \quad s.t. \quad T(n) > c \cdot f(n) \quad \forall n \gg 2
T(n) = \Theta(f(n)) \quad iff \quad \exists c_1 > c_2 > 0 \quad s.t. \quad c_1 \cdot f(n) > T(n) > c_2 \cdot f(n) \quad \forall n \gg 2
```

* 图像辅助记忆

专题1-时间复杂度分析

- * 大O记号,T(n) = O(f(n)),"T(n) < f(n)",上界
- * 大 Ω 记号, $T(n) = \Omega(f(n))$,"T(n) > f(n)",下界
- * 正确 f(n) = O(g(n)), 当且仅当 $g(n) = \Omega(f(n))$ 。

专题1一时间复杂度分析

- * 题型1一一判断题
- * 直接按照"大小比较"代入即可
- * 判断时: 找特例!!!
- *运算十分严格,基本上很少是对的

专题!一时间复杂度分析

* 判断:

若 $f(n) = O(n^2)$ 且g(n) = O(n),则下列结论正确的是: 注: O 为上界,没有明确究竟是多

少; 故不能使用除法

 $f(\mathbf{n})*g(n) = O(\mathbf{n}^3)$

A.
$$f(n)+g(n) = O(n^2)$$
 B. $f(n)/g(n) = O(n^2)$ C. $g(n) = O(f(n))$ D.

专题1一时间复杂度分析

- * 重点: 时间复杂度计算!!
- * 1循环一分层计算,看清步进
- * 2递归一嵌套代入,或公式计算
- * 3 随机 期望,乘上概率

专题1-时间复杂度分析

* 1循环 一分层计算,看清步进

```
void F(int n) //O(loglogn) *
{//同理第一题:改+1 为乘 2*
for (int i = 1, r = 1; i<n; i<<=r, r<<=1); *
}*
```

专题!一时间复杂度分析

* 2递归一嵌套代入,或公式计算

```
void F(int n) //O(1.618^(logn)) =
O(n^0.694) {
// 转乘法为加法,fibonacii {
return (n<4)? n: F(n>>1)+F(n>>2); {
} {
} {
//O(1.618^(logn)) =
//O(n^0.694) {
//
```

```
int F(int n) //O(2^n)**

{// 再回头看 F, F = G(2, G(2, G(2, ..., G(2, 1)))
    return (n==0)?1:G(2, F(n-1));**

}**

int G(int n, int m)**

{// 先分析 G, G = O(m), G(n, m) = n * m**
    return (m==0)?0:n+G(n, m-1);**

}**
```

```
int F(int n) //O(n^2)**
{// 再分析 F, G((n-1)*(n-1)) = O((n-1)^2)
    return G(G(n-1));**
}*
int G(int n)**
{// 先分析 G, G=O(n), G(n) = n*n**
    return (n==0)?0:G(n-1)+2*n-1;**
}**
```

专题1-时间复杂度分析

* 3 随机 — 期望,乘上概率

- * 四种排序算法、排序理论
- * 起泡排序P59: n-1趟扫描、每一趟比较相邻的、 把小的放到前面
- * 选择排序P255: 找n次,每次找最大,放到最后
- * 插入排序P270: 顺序插入n个数
- * 归并排序P277: 分治, 递归两个子序列进行排序

- * 要点: 比较次数、交换次数
- * 选择排序相对于起泡排序的优点: 比较次数不变、交换次数减少
- *选择排序、起泡排序:比较次数均为O(n^2),交换次数不同

- * 要点: 最优情况、最差情况
- * 插入排序相对于选择排序的优点:在最优情况下,比选择排序要好(选择时间是固定的、插入是根据输入规模的)
- * 冒泡排序在最优情况下,也比选择排序要快

- * 要点: 最优情况、最差情况
- 7.(0)只要是采用基于比较的排序算法,对任何输入序列都至少需要运行 $\Omega(n \log n)$ 时
- 间。注:插入排序对原本就有序的序列排序,时间是 O(N)(注意题目中所说的是"对任何输入序列")。
 - * 错误: 对插入排序不成立

- * 要点: 时间复杂度分析
- * 选择排序: 排List, 与循环节长度有关
- * 每次会减少循环节的总长度1
- * 实际上是没什么影响的(Inn/n->0)

- * 要点: 时间复杂度分析
- * 插入排序: 就地算法、在线算法、具有输入敏感性、有最好/最坏情况
- * 二分查找?改用向量、用"比较"换"交换"?总体不变
- * 平均比较次数分析

- * 要点: 时间复杂度分析
- * 插入排序: 时间复杂度O(N+I)
- * 时间取决于逆序对数量 (I) ,输入敏感
- * 怎么算逆序对? 归并排序!

* 题目

1. 考察如下问题: 任给 12 个互异的整数,且其中 10 个已组织为一个有序序列,现需要插入剩余的两个已完成整体排序。若采用基于比较的算法(CBA),最坏情况下至少需要做几次比较?为什么? *

答: 8 次。 我们知道对于 CBA,我们可以将其涵盖于一棵比较树里边,而树的每一个节点可以代表一次比较运算,树的分支可以代表算法下一步执行的方向。由此可以推算,树高则可以代表比较的次数。4

注: 类似排序复杂度分析: 总情况数为 11*12 = 132. 故二叉树至少要有 132 个儿子, 高度至少为 8. (2^8 = 256 > 132) +

* 题目

2. 向量的插入排序由 n 次迭代完成,逐次插入各元素。为插入第 k 个元素,最坏情况需要做 k 次移动,最好情况则无需移动。从期望的角度来看,无需移动操作的迭代次数平均有多少次?为什么? •

假定个元素是等概率独立均匀分布的。

答: logn。调和级数 🕶

注: 总次数 = 1 + 1/2 + 1/3 + 1.4 + ... + 1/n = n log n, 平均为 log n. 4

- * 要点: 二分查找三个版本
- * Fib查找是什么? 为什么? 怎么做?

- * 二分查找 —— 基于"向量"非"列表"
- * 有序,可"比较"非"比对"
- * 成功情况n种, 失败情况n+1种

- * 二分查找: 比较次数(向左走+1,向右走+2,根=2)
- * (平均/最大/最小)成功查找长度
- * (平均/最大/最小)失败查找长度
- * 至多比较次数

- * Fib查找
- * 为什么: 左右次数差距太大、比较次数不均匀
- * 怎么做: 把左边区间调大 (0.618)

- * Fib查找: 比较次数 (例子为n=Fib(k)-1,7=Fib(6)-1)
- * 平均成功查找长度: 【k-2】4
- * 平均失败查找长度: 【n(k-1)/(n+1)】35/8 = 4.38
- * 至多比较次数: 【k-1】5

- * Fib查找: 比较次数 (例子为n=Fib(k)-1,7=Fib(6)-1)
- 3. (B) 对长度为n = Fib(k) 1的有向序列做 Fibonacci 查找。若个元素的数值等概率独立均匀分布,且平均成功查找长度为 L,则失败平均查找长度为: (举例子 or 习题解析 P46)
- 注: P184: 平均成功查找长度 L=k-2, 平均失败查找长度 n(k-1)/(n+1) = n(L+1)/(n+1), 比较次数至多为 k-1.+

- * 二分查找三个版本
- * 版本A: 正常, 比较+比对(3分支)
- * 版本B/C: 只比较 (2分支)
- * 好(坏)的情况会更坏(好)

* 题目

3.(0)若借助二分法查找确定每个元素的插入位置,向量的插入排序只需时间 $O(n \log n)$

时间。注:单次查找是 <u>logN</u>,但单次插入则不一定(最好 O(1),最坏 O(N)),故插入排序还是 O(N^2)的~

8. (0)对于同一有序向量,每次折半查找绝不会慢于顺序查找。<u>注:每次找第一个,顺</u>序 O(1), 折半 O(logN)⁴

3. 现有一长度为 15 的有序向量 A[0...14], 个元素被成功查找的概率如下: *

 ₽	04	1₽	2⊷	3₽	44	5⊷	6₽	7₽	84	9€	10₽	1	12⊷	13₽	14-
												1₽			
$P_i(\sum =$	1/1	1/1	1/	1/	1/	1/	1/	1/	1/1	1/	1/	1/	3/	1/1	1/
$P_i(\underline{Z} =$	28•	28•	32₽	84	8•	32₽	16 •	16•	28⊷	64•	16⊷	4•	16⊷	28	64₽
C															

若采用二分查找算法,试计算该结构的平均成功查找长度。"

* 题目

3. 现有一长度为 15 的有序向量 A[0...14], 个元素被成功查找的概率如下: •

 40	04	1₽	2⊷	3₽	4.	5⊷	6₽	7⊷	8-	9€	10⊷	1	12⊷	13⊷	14
												1.			
$P(\Sigma =$	1/1	1/1	1/	1/	1/	1/	1/	1/	1/1	1/	1/	1/	3/	1/1	1/
$P_i(\sum =$	28•	28⊷	32•	84	8•	32₽	16	16⊷	28⁴	64	16⊷	4.	16⊷	28₽	64⊷
C															

若采用二分查找算法,试计算该结构的平均成功查找长度。

T																	7
	Ľ₽	<u>0</u> ₽	<u>1</u> .	<u>2</u> ₽	<u>3</u>	<u>4</u> ₽	<u>5</u> ₽	<u>6</u> ₽	<u>7</u> ₽	<u>8</u> •	<u>9</u> ₽	<u>10</u> -	<u>11</u> -	<u>12</u> ₽	<u>13</u> ₽	<u>14</u>	4
	<u>Length</u>	<u>5</u> ₽	<u>4</u> ₽	<u>6</u> ₽	<u>3</u> .	<u>6</u> ₽	<u>5</u> ₽	<u>7</u> ₽	<u>2</u> ₽	<u>6</u> ₽	<u>5</u> ₽	<u>7</u> ₽	<u>4</u> ₽	<u>7</u> ₽	<u>6</u> ₽	<u>8</u> •	•

平均查找长度= 5/128 + 4/128 + 6/32 + 3/8 + 6/8 + 5/32 + 7/16 + 2/16 + 6/128 + 5/64 + --

7/16 + 4/4 + 7/16*3 + 6/128 + 8/64 = 659/128

专题4-栈与KPN

* 栈混洗: 卡特兰数

* RPN: 栈的一个重要应用

专题4-栈与KPN

- * RPN: 题目
- * RPN中各操作数的相对次序,与原中缀表达式完全一致。(正确)
- 4. 考察表达式求值算法。算法执行过程中的某时刻,若操作符栈中的括号多达 2010 个,则此时栈的规模(含栈底的'\n')至多可能多达?试说明理由,并示范性地画出当时栈中的内容。4

答: 4 * 2010 + 1 + 4 = 8045(考虑乘方操作后)、(注意+1,有阶乘操作!) +

栈中内容: \0+*^(+*^(+*^...(+*^!←