Matemáticas Discretas I Teoría de Conjuntos

Juan Francisco Díaz Frias

Profesor Titular (1993-hoy) juanfco.diaz@correounivalle.edu.co Edif. 331 - 2111

Universidad del Valle

Octubre 2018

- Motivación Definiciones
- 2 Predicados y operaciones sobre conjuntos
 - Predicados sobre conjuntos
 - Operaciones sobre conjuntos
- 3 Teoría de Conjuntos: Teoremas y demostraciones
 - Teoremas
 - Demostraciones
 - Demuestre o refute
- Metateorema de representaciór
 - Ejemplos

- Motivación Definiciones
- Predicados y operaciones sobre conjuntos
 - Predicados sobre conjuntos
 - Operaciones sobre conjuntos
- 3 Teoría de Conjuntos: Teoremas y demostraciones
 - Teoremas
 - Demostraciones
 - Demuestre o refute
- Metateorema de representación
 - Ejemplos

- Motivación Definiciones
- Predicados y operaciones sobre conjuntos
 - Predicados sobre conjuntos
 - Operaciones sobre conjuntos
- Teoría de Conjuntos: Teoremas y demostraciones
 - Teoremas
 - Demostraciones
 - Demuestre o refute
- Metateorema de representación
 - Ejemplos

- Motivación Definiciones
- Predicados y operaciones sobre conjuntos
 - Predicados sobre conjuntos
 - Operaciones sobre conjuntos
- Teoría de Conjuntos: Teoremas y demostraciones
 - Teoremas
 - Demostraciones
 - Demuestre o refute
- Metateorema de representación
 - Ejemplos

- Los conjuntos son la estructura básica para construir muchas estructuras discretas: Relaciones, Funciones, Secuencias,
- En computación, los conjuntos son fundamentales para construir tipos, grafos, autómatas, gramáticas...
- Un conjunto es una colección (o agrupación), no ordenada de objetos (o elementos).
- Ejemplos de conjuntos son:

Los conjuntos son una abstracción presente en cualquier modelo

- Los conjuntos son la estructura básica para construir muchas estructuras discretas: Relaciones, Funciones, Secuencias,
- En computación, los conjuntos son fundamentales para construir tipos, grafos, autómatas, gramáticas...
- Un conjunto es una colección (o agrupación), no ordenada de objetos (o elementos).
- Ejemplos de conjuntos son:

Los conjuntos son una abstracción presente en cualquier modelo

- Los conjuntos son la estructura básica para construir muchas estructuras discretas: Relaciones, Funciones, Secuencias,
- En computación, los conjuntos son fundamentales para construir tipos, grafos, autómatas, gramáticas...
- Un conjunto es una colección (o agrupación), no ordenada de objetos (o elementos).
- Eiemplos de conjuntos son:
 - El conjunto de ciclistas que participó en la vuelta a España 2017

- naturales (81)
- Los conjuntos son una abstracción presente en cualquier modelo

- Los conjuntos son la estructura básica para construir muchas estructuras discretas: Relaciones, Funciones, Secuencias,
- En computación, los conjuntos son fundamentales para construir tipos, grafos. autómatas, gramáticas
- Un conjunto es una colección (o agrupación), no ordenada de objetos (o elementos).
- Ejemplos de conjuntos son:
 - El conjunto de ciclistas que participó en la vuelta a España 2017

- Los conjuntos son la estructura básica para construir muchas estructuras discretas: Relaciones, Funciones, Secuencias,
- En computación, los conjuntos son fundamentales para construir tipos, grafos. autómatas, gramáticas
- Un conjunto es una colección (o agrupación), no ordenada de objetos (o elementos).
- Ejemplos de conjuntos son:
 - El conjunto de ciclistas que participó en la vuelta a España 2017

- Los conjuntos son la estructura básica para construir muchas estructuras discretas: Relaciones, Funciones, Secuencias,
- En computación, los conjuntos son fundamentales para construir tipos, grafos, autómatas, gramáticas...
- Un conjunto es una colección (o agrupación), no ordenada de objetos (o elementos).
- Ejemplos de conjuntos son:
 - El conjunto de ciclistas que participó en la vuelta a España 2017
 - El conjunto de etapas de la vuelta a España 2017
 - El conjunto de clasificaciones de la vuelta a España 2017
 - El conjunto de ciclistas, etapas y clasificaciones de la vuelta a España 2017
 - Los conjuntos de números reales (R), racionales (Q), enteros (Z), y
 naturales (N)
- Los conjuntos son una abstracción presente en cualquier modelo

- Los conjuntos son la estructura básica para construir muchas estructuras discretas: Relaciones, Funciones, Secuencias,
- En computación, los conjuntos son fundamentales para construir tipos, grafos, autómatas, gramáticas...
- Un conjunto es una colección (o agrupación), no ordenada de objetos (o elementos).
- Ejemplos de conjuntos son:
 - El conjunto de ciclistas que participó en la vuelta a España 2017
 - El conjunto de etapas de la vuelta a España 2017
 - El conjunto de clasificaciones de la vuelta a España 2017
 - El conjunto de ciclistas, etapas y clasificaciones de la vuelta a España 2017
 - Los conjuntos de números reales (R), racionales (Q), enteros (Z), y
 naturales (N)
- Los conjuntos son una abstracción presente en cualquier modelc

- Los conjuntos son la estructura básica para construir muchas estructuras discretas: Relaciones, Funciones, Secuencias,
- En computación, los conjuntos son fundamentales para construir tipos, grafos, autómatas, gramáticas . . .
- Un conjunto es una colección (o agrupación), no ordenada de objetos (o elementos).
- Ejemplos de conjuntos son:
 - El conjunto de ciclistas que participó en la vuelta a España 2017
 - El conjunto de etapas de la vuelta a España 2017
 - El conjunto de clasificaciones de la vuelta a España 2017
 - El conjunto de ciclistas, etapas y clasificaciones de la vuelta a España 2017
 - Los conjuntos de números reales (\mathbb{R}) , racionales (\mathbb{Q}) , enteros (\mathbb{Z}) , y naturales (\mathbb{N})
- Los conjuntos son una abstracción presente en cualquier modelo

Metateorema de representación

- Los conjuntos son la estructura básica para construir muchas estructuras discretas: Relaciones, Funciones, Secuencias,
- En computación, los conjuntos son fundamentales para construir tipos, grafos. autómatas, gramáticas
- Un conjunto es una colección (o agrupación), no ordenada de objetos (o elementos).
- Ejemplos de conjuntos son:
 - El conjunto de ciclistas que participó en la vuelta a España 2017
 - El conjunto de etapas de la vuelta a España 2017
 - El conjunto de clasificaciones de la vuelta a España 2017
 - El conjunto de ciclistas, etapas y clasificaciones de la vuelta a España 2017
 - Los conjuntos de números reales (\mathbb{R}) , racionales (\mathbb{Q}) , enteros (\mathbb{Z}) , y naturales (\mathbb{N})

- Los conjuntos son la estructura básica para construir muchas estructuras discretas: Relaciones, Funciones, Secuencias,
- En computación, los conjuntos son fundamentales para construir tipos, grafos. autómatas, gramáticas
- Un conjunto es una colección (o agrupación), no ordenada de objetos (o elementos).
- Ejemplos de conjuntos son:
 - El conjunto de ciclistas que participó en la vuelta a España 2017
 - El conjunto de etapas de la vuelta a España 2017
 - El conjunto de clasificaciones de la vuelta a España 2017
 - El conjunto de ciclistas, etapas y clasificaciones de la vuelta a España 2017
 - Los conjuntos de números reales (\mathbb{R}) , racionales (\mathbb{Q}) , enteros (\mathbb{Z}) , y naturales (\mathbb{N})
- Los conjuntos son una abstracción presente en cualquier modelo

Los conjuntos se definen por extensión o por comprensión.

• Por extensión: enunciar, enmarcados en llaves ({,}), los elementos del conjunto.

$$A = \{2, 4, 6, 8, 10\}, V = \{a, e, i, o, u\}, A = \{a, b, c, d, \dots, x, y, z\}$$

 Por comprensión: los elementos del conjunto se expresan por condiciones que cumplan los elementos de otro conjunto (el universal: U).

$$A = \{x : \mathbb{N} | (x \%2) = 0 \land 0 < x \le 10\}$$
$$V = \{l : A | Vocal(l)\}$$

Extensión es una abreviación de comprensión:

$$A = \{a_1, a_2, \dots, a_n\}$$

$$A = \{x : U | x = a_1 \lor x = a_2 \lor \dots \lor x = a_n\}$$

• Aunque el conjunto sea finito, puede ser mejor definirlo por comprensión:

$$A = \{x : \mathbb{N} | (x \%2) = 0 \land 0 < x \le 1024\}$$

Los conjuntos se definen por extensión o por comprensión.

• Por extensión: enunciar, enmarcados en llaves $(\{,\})$, los elementos del conjunto.

$$A = \{2, 4, 6, 8, 10\}, V = \{a, e, i, o, u\}, A = \{a, b, c, d, \dots, x, y, z\}$$

 Por comprensión: los elementos del conjunto se expresan por condiciones que cumplan los elementos de otro conjunto (el universal: U).

$$A = \{x : \mathbb{N} | (x \%2) = 0 \land 0 < x \le 10\}$$
$$V = \{I : A | Vocal(I)\}$$

Extensión es una abreviación de comprensión:

$$A = \{a_1, a_2, \dots, a_n\}$$

$$A = \{x : U | x = a_1 \lor x = a_2 \lor \dots \lor x = a_n\}$$

Aunque el conjunto sea finito, puede ser mejor definirlo por comprensión

$$A = \{x : \mathbb{N} | (x \%2) = 0 \land 0 < x \le 1024\}$$

Los conjuntos se definen por extensión o por comprensión.

• Por extensión: enunciar, enmarcados en llaves $(\{,\})$, los elementos del conjunto.

$$A = \{2, 4, 6, 8, 10\}, V = \{a, e, i, o, u\}, A = \{a, b, c, d, \dots, x, y, z\}$$

 Por comprensión: los elementos del conjunto se expresan por condiciones que cumplan los elementos de otro conjunto (el universal: U).

$$A = \{x : \mathbb{N} | (x \%2) = 0 \land 0 < x \le 10\}$$

$$V = \{I : A | Vocal(I)\}$$

Extensión es una abreviación de comprensión:

$$A = \{a_1, a_2, \dots, a_n\}$$

$$A = \{x : U | x = a_1 \lor x = a_2 \lor \dots \lor x = a_n\}$$

• Aunque el conjunto sea finito, puede ser mejor definirlo por comprensión:

$$A = \{x : \mathbb{N} | (x \%2) = 0 \land 0 < x \le 1024\}$$

Los conjuntos se definen por extensión o por comprensión.

• Por extensión: enunciar, enmarcados en llaves $(\{,\})$, los elementos del conjunto.

$$A = \{2, 4, 6, 8, 10\}, V = \{a, e, i, o, u\}, A = \{a, b, c, d, \dots, x, y, z\}$$

 Por comprensión: los elementos del conjunto se expresan por condiciones que cumplan los elementos de otro conjunto (el universal: U).

$$A = \{x : \mathbb{N} | (x \%2) = 0 \land 0 < x \le 10\}$$
$$V = \{I : A | Vocal(I)\}$$

Extensión es una abreviación de comprensión:

$$A = \{a_1, a_2, \dots, a_n\}$$

$$A = \{x : U | x = a_1 \lor x = a_2 \lor \dots \lor x = a_n\}$$

• Aunque el conjunto sea finito, puede ser mejor definirlo por comprensión:

$$A = \{x : \mathbb{N} | (x \%2) = 0 \land 0 < x \le 1024\}$$

Propiedades básicas de los conjuntos

Metateorema de representación

Los conjuntos no tienen duplicados:

$${a,a} = {x : |x = a \lor x = a} = {x : |x = a} = {a}$$

$$\{a,b\} = \{x : |x=a \lor x=b\} = \{x : |x=b \lor x=a\} = \{b,a\}$$

$$x \in A$$

$$x \notin A \equiv \neg(x \in A)$$

Propiedades básicas de los conjuntos

Metateorema de representación

Los conjuntos no tienen duplicados:

$$\{a, a\} = \{x : | x = a \lor x = a\} = \{x : | x = a\} = \{a\}$$

En los conjuntos, el orden no importa:

$$\{a,b\} = \{x : |x=a \lor x=b\} = \{x : |x=b \lor x=a\} = \{b,a\}$$

$$x \in A$$

$$x \notin A \equiv \neg(x \in A)$$

Metateorema de representación

Propiedades básicas de los conjuntos

Los conjuntos no tienen duplicados:

$$\{a, a\} = \{x : | x = a \lor x = a\} = \{x : | x = a\} = \{a\}$$

En los conjuntos, el orden no importa:

$${a,b} = {x : |x = a \lor x = b} = {x : |x = b \lor x = a} = {b,a}$$

Lo que importa es saber si un elemento pertenece o no a un conjunto:

$$x \in A$$

$$x \notin A \equiv \neg(x \in A)$$

• Un conjunto A es finito, si tiene n elementos diferentes $(n \in \mathbb{N}, |A| = n)$. Un

Propiedades básicas de los conjuntos

Los conjuntos no tienen duplicados:

$$\{a, a\} = \{x : | x = a \lor x = a\} = \{x : | x = a\} = \{a\}$$

En los conjuntos, el orden no importa:

$${a,b} = {x : |x = a \lor x = b} = {x : |x = b \lor x = a} = {b,a}$$

• Lo que importa es saber si un elemento pertenece o no a un conjunto:

$$x \in A$$

$$x \notin A \equiv \neg(x \in A)$$

• Un conjunto A es finito, si tiene n elementos diferentes $(n \in \mathbb{N}, |A| = n)$. Un conjunto es infinito si no es finito.

El conjunto universal y el conjunto vacío

 Cualquier conjunto está constituido por elementos del conjunto universal: *U*, el cual cumple que:

$$x \in U \equiv true$$

$$x \notin U \equiv false$$

• El conjunto vacío: veresenta un conjunto sin elementos

$$x \in \emptyset \equiv false$$

$$x \not\in \emptyset \equiv true$$

El conjunto universal y el conjunto vacío

 Cualquier conjunto está constituido por elementos del conjunto universal: *U*, el cual cumple que:

$$x \in U \equiv true$$

$$x \notin U \equiv false$$

 El conjunto vacío: ∅ representa un conjunto sin elementos $(|\emptyset| = 0)$, y cumple que:

$$x \in \emptyset \equiv false$$

$$x \notin \emptyset \equiv true$$

- Motivación Definiciones
- Predicados y operaciones sobre conjuntos
 - Predicados sobre conjuntos
 - Operaciones sobre conjuntos
- Teoría de Conjuntos: Teoremas y demostraciones
 - Teoremas
 - Demostraciones
 - Demuestre o refute
- Metateorema de representación
 - Ejemplos

Predicados sobre conjuntos

Hay dos predicados fundamentales que permiten comparar conjuntos definidos sobre U:

 Igualdad, =: A es igual a B si y solo si cada elemento de A pertenece a B y cada elemento de B, pertenece a A

$$A = B \equiv \forall x : U | (x \in A \equiv x \in B)$$

 Inclusión, ⊆: A está incluido en B (A es subconjunto de B, o, A está contenido en B) si cada elemento de A pertenece a B

$$A \subseteq B \equiv \forall x : U | (x \in A \implies x \in B)$$

 La Inclusión propia, ⊂ se define a partir de ellos: A está incluido propiamente en B si A está incluido en B, pero no es igual a B.

$$A \subset B \equiv ((A \subseteq B) \land (A \neq B))$$

Predicados sobre conjuntos

Hay dos predicados fundamentales que permiten comparar conjuntos definidos sobre U:

 Igualdad, =: A es igual a B si y solo si cada elemento de A pertenece a B y cada elemento de B, pertenece a A

$$A = B \equiv \forall x : U | (x \in A \equiv x \in B)$$

 Inclusión, ⊆: A está incluido en B (A es subconjunto de B, o, A está contenido en B) si cada elemento de A pertenece a B

$$A \subseteq B \equiv \forall x : U | (x \in A \implies x \in B)$$

 La Inclusión propia, ⊂ se define a partir de ellos: A está incluido propiamente en B si A está incluido en B, pero no es igual a B.

$$A \subset B \equiv ((A \subseteq B) \land (A \neq B))$$

Predicados sobre conjuntos

Hay dos predicados fundamentales que permiten comparar conjuntos definidos sobre U:

 Igualdad, =: A es igual a B si y solo si cada elemento de A pertenece a B y cada elemento de B, pertenece a A

$$A = B \equiv \forall x : U | (x \in A \equiv x \in B)$$

 Inclusión, ⊆: A está incluido en B (A es subconjunto de B, o, A está contenido en B) si cada elemento de A pertenece a B

$$A \subseteq B \equiv \forall x : U | (x \in A \implies x \in B)$$

 La Inclusión propia, ⊂ se define a partir de ellos: A está incluido propiamente en B si A está incluido en B, pero no es igual a B.

$$A \subset B \equiv ((A \subseteq B) \land (A \neq B))$$

- Motivación Definiciones
- Predicados y operaciones sobre conjuntos
 - Predicados sobre conjuntos
 - Operaciones sobre conjuntos
- Teoría de Conjuntos: Teoremas y demostraciones
 - Teoremas
 - Demostraciones
 - Demuestre o refute
- Metateorema de representaciór
 - Ejemplos

Hay cuatro operaciones básicas entre conjuntos. Dados $A, B, A \subseteq U$, y $B \subseteq U$:

• Complemento: El complemento de un conjunto A, se denota \overline{A} , y contiene todos los elementos de U que no están en A.

$$\overline{A} = \{x : U | x \notin A\}$$

 Unión: La unión de los conjuntos A y B, se denota A ∪ B, y contiene todos los elementos de A y de B

$$A \cup B = \{x : U | x \in A \lor x \in B\}$$

• Intersección: La intersección de los conjuntos A y B, se denota $A \cap B$, y contiene todos los elementos que están tanto en A como en B

$$A \cap B = \{x : U | x \in A \land x \in B\}$$

 Diferencia: La diferencia de los conjuntos A y B, se denota A \ B, y contiene todos los elementos que están en A pero no están en B

$$A \setminus B = \{x : U | x \in A \land x \notin B\}$$

ĀCU AUBCU ANBCU ANBCU

Hay cuatro operaciones básicas entre conjuntos. Dados $A, B, A \subseteq U$, y $B \subseteq U$:

• Complemento: El complemento de un conjunto A, se denota \overline{A} , y contiene todos los elementos de U que no están en A.

$$\overline{A} = \{x : U | x \notin A\}$$

 Unión: La unión de los conjuntos A y B, se denota A ∪ B, y contiene todos los elementos de A y de B

$$A \cup B = \{x : U | x \in A \lor x \in B\}$$

• Intersección: La intersección de los conjuntos A y B, se denota $A \cap B$, y contiene todos los elementos que están tanto en A como en B

$$A \cap B = \{x : U | x \in A \land x \in B\}$$

• Diferencia: La diferencia de los conjuntos A y B, se denota $A \setminus B$, y contiene todos los elementos que están en A pero no están en B

$$A \setminus B = \{x : U | x \in A \land x \notin B\}$$

Hay cuatro operaciones básicas entre conjuntos. Dados $A, B, A \subseteq U$, y $B \subseteq U$:

• Complemento: El complemento de un conjunto A, se denota \overline{A} , y contiene todos los elementos de U que no están en A.

$$\overline{A} = \{x : U | x \notin A\}$$

 Unión: La unión de los conjuntos A y B, se denota A ∪ B, y contiene todos los elementos de A y de B

$$A \cup B = \{x : U | x \in A \lor x \in B\}$$

• Intersección: La intersección de los conjuntos A y B, se denota $A \cap B$, y contiene todos los elementos que están tanto en A como en B

$$A \cap B = \{x : U | x \in A \land x \in B\}$$

 Diferencia: La diferencia de los conjuntos A y B, se denota A \ B, y contiene todos los elementos que están en A pero no están en B

$$A \setminus B = \{x : U | x \in A \land x \notin B\}$$

Hay cuatro operaciones básicas entre conjuntos. Dados $A, B, A \subseteq U$, y $B \subseteq U$:

• Complemento: El complemento de un conjunto A, se denota \overline{A} , y contiene todos los elementos de U que no están en A.

$$\overline{A} = \{x : U | x \notin A\}$$

 Unión: La unión de los conjuntos A y B, se denota A ∪ B, y contiene todos los elementos de A y de B

$$A \cup B = \{x : U | x \in A \lor x \in B\}$$

• Intersección: La intersección de los conjuntos A y B, se denota $A \cap B$, y contiene todos los elementos que están tanto en A como en B

$$A \cap B = \{x : U | x \in A \land x \in B\}$$

 Diferencia: La diferencia de los conjuntos A y B, se denota A \ B, y contiene todos los elementos que están en A pero no están en B

$$A \setminus B = \{x : U | x \in A \land x \notin B\}$$

Hay cuatro operaciones básicas entre conjuntos. Dados $A, B, A \subseteq U$, y $B \subseteq U$:

• Complemento: El complemento de un conjunto A, se denota \overline{A} , y contiene todos los elementos de U que no están en A.

$$\overline{A} = \{x : U | x \notin A\}$$

 Unión: La unión de los conjuntos A y B, se denota A ∪ B, y contiene todos los elementos de A y de B

$$A \cup B = \{x : U | x \in A \lor x \in B\}$$

• Intersección: La intersección de los conjuntos A y B, se denota $A \cap B$, y contiene todos los elementos que están tanto en A como en B

$$A \cap B = \{x : U | x \in A \land x \in B\}$$

 Diferencia: La diferencia de los conjuntos A y B, se denota A \ B, y contiene todos los elementos que están en A pero no están en B

$$A \setminus B = \{x : U | x \in A \land x \notin B\}$$

• Sea $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 3, 4\}, B = \{3, 4, 8, 9\}$ • $\overline{A} = \{5, 6, 7, 8, 9\}$ • $\overline{B} = \{1, 2, 5, 6, 7\}$ • $A \cup B = \{1, 2, 3, 4, 8, 9\}$ • $A \cap B = \{3, 4, 8, 9\}$

Podemos concluir que, por definición

• Sea
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 3, 4\}, B = \{3, 4, 8, 9\}$$
• $\overline{A} = \{5, 6, 7, 8, 9\}$
• $\overline{B} = \{1, 2, 5, 6, 7\}$
• $A \cup B = \{1, 2, 3, 4, 8, 9\}$
• $A \cap B = \{3, 4\}$

Podemos concluir que, por definición

• Sea
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 3, 4\}, B = \{3, 4, 8, 9\}$$

• $\overline{A} = \{5, 6, 7, 8, 9\}$
• $\overline{B} = \{1, 2, 5, 6, 7\}$
• $A \cup B = \{1, 2, 3, 4, 8, 9\}$
• $A \cap B = \{3, 4\}$
• $A \setminus B = \{1, 2\}$

```
• Sea U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 3, 4\}, B = \{3, 4, 8, 9\}
• \overline{A} = \{5, 6, 7, 8, 9\}
• \overline{B} = \{1, 2, 5, 6, 7\}
• A \cup B = \{1, 2, 3, 4, 8, 9\}
• A \cap B = \{3, 4\}
• A \setminus B = \{1, 2\}
• B \setminus A = \{8, 9\}
```

• Sea
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 3, 4\}, B = \{3, 4, 8, 9\}$$
• $\overline{A} = \{5, 6, 7, 8, 9\}$
• $\overline{B} = \{1, 2, 5, 6, 7\}$
• $A \cup B = \{1, 2, 3, 4, 8, 9\}$
• $A \cap B = \{3, 4\}$
• $A \setminus B = \{1, 2\}$
• $B \setminus A = \{8, 9\}$

• Sea
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 3, 4\}, B = \{3, 4, 8, 9\}$$

• $\overline{A} = \{5, 6, 7, 8, 9\}$
• $\overline{B} = \{1, 2, 5, 6, 7\}$
• $A \cup B = \{1, 2, 3, 4, 8, 9\}$

•
$$A \cap B = \{3, 4\}$$

$$\bullet \ A \setminus B = \{1,2\}$$

•
$$B \setminus A = \{8, 9\}$$

Podemos concluir que, por definición:

- Sea $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 3, 4\}, B = \{3, 4, 8, 9\}$
 - $\overline{A} = \{5, 6, 7, 8, 9\}$
 - $\overline{B} = \{1, 2, 5, 6, 7\}$
 - $A \cup B = \{1, 2, 3, 4, 8, 9\}$
 - $A \cap B = \{3, 4\}$
 - $A \setminus B = \{1, 2\}$
 - $B \setminus A = \{8, 9\}$
- Podemos concluir que, por definición:

 $x \in A \cap B = x \in A \cap x \in B$

- Sea $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 3, 4\}, B = \{3, 4, 8, 9\}$
 - $\overline{A} = \{5, 6, 7, 8, 9\}$
 - $\overline{B} = \{1, 2, 5, 6, 7\}$
 - $A \cup B = \{1, 2, 3, 4, 8, 9\}$
 - $A \cap B = \{3, 4\}$
 - $A \setminus B = \{1, 2\}$
 - $B \setminus A = \{8, 9\}$
- Podemos concluir que, por definición:
 - $x \in A \equiv x \notin A$
 - $x \in A \cup B \equiv x \in A \lor x \in B$
 - $x \in A \cap B \equiv x \in A \land x \in B$
 - $x \in A \setminus B \equiv x \in A \land x \notin B$

- Sea $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 3, 4\}, B = \{3, 4, 8, 9\}$
 - $\overline{A} = \{5, 6, 7, 8, 9\}$
 - $\overline{B} = \{1, 2, 5, 6, 7\}$
 - $A \cup B = \{1, 2, 3, 4, 8, 9\}$
 - $A \cap B = \{3, 4\}$
 - $A \setminus B = \{1, 2\}$
 - $B \setminus A = \{8, 9\}$
- Podemos concluir que, por definición:
 - $x \in \overline{A} \equiv x \notin A$
 - $x \in A \cup B \equiv x \in A \lor x \in B$
 - $x \in A \cap B \equiv x \in A \land x \in B$
 - $x \in A \setminus B \equiv x \in A \land x \notin B$

- Sea $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 3, 4\}, B = \{3, 4, 8, 9\}$
 - $\overline{A} = \{5, 6, 7, 8, 9\}$
 - $\overline{B} = \{1, 2, 5, 6, 7\}$
 - $A \cup B = \{1, 2, 3, 4, 8, 9\}$
 - $A \cap B = \{3, 4\}$
 - $A \setminus B = \{1, 2\}$
 - $B \setminus A = \{8, 9\}$
- Podemos concluir que, por definición:
 - $x \in \overline{A} \equiv x \notin A$
 - $x \in A \cup B \equiv x \in A \lor x \in B$
 - $x \in A \cap B \equiv x \in A \land x \in B$
 - $x \in A \setminus B \equiv x \in A \land x \notin B$

- Sea $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 3, 4\}, B = \{3, 4, 8, 9\}$
 - $\overline{A} = \{5, 6, 7, 8, 9\}$
 - $\overline{B} = \{1, 2, 5, 6, 7\}$
 - $A \cup B = \{1, 2, 3, 4, 8, 9\}$
 - $A \cap B = \{3, 4\}$
 - $A \setminus B = \{1, 2\}$
 - $B \setminus A = \{8, 9\}$
- Podemos concluir que, por definición:
 - $x \in \overline{A} \equiv x \notin A$
 - $x \in A \cup B \equiv x \in A \lor x \in B$
 - $x \in A \cap B \equiv x \in A \land x \in B$
 - $x \in A \setminus B \equiv x \in A \land x \notin B$

- Sea $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 3, 4\}, B = \{3, 4, 8, 9\}$
 - $\overline{A} = \{5, 6, 7, 8, 9\}$
 - $\overline{B} = \{1, 2, 5, 6, 7\}$
 - $A \cup B = \{1, 2, 3, 4, 8, 9\}$
 - $A \cap B = \{3, 4\}$
 - $A \setminus B = \{1, 2\}$
 - $B \setminus A = \{8, 9\}$
- Podemos concluir que, por definición:
 - $x \in \overline{A} \equiv x \notin A$
 - $x \in A \cup B \equiv x \in A \lor x \in B$
 - $x \in A \cap B \equiv x \in A \land x \in B$
 - $x \in A \setminus B \equiv x \in A \land x \notin B$

Otras operaciones entre conjuntos, pero cuyos resultados son conjuntos de otro universo, son:

• Partes o Potencia: El conjunto de todos los subconjuntos de A, se denota $\mathcal{P}(A)$, y contiene todos los subconjuntos de A.

$$\mathcal{P}(A) = \{B : B \subseteq U | B \subseteq A\} = \{B : |B \subseteq A\}$$

 Producto cartesiano: El producto cartesiano de los conjuntos A y B, se denota A x B, y contiene todos las parejas de elementos de A con elementos de B

$$A \times B = \{(x, y) : U \times U | x \in A \land y \in B\}$$

• Sea $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 4\}, B = \{4, 8\}$

Otras operaciones entre conjuntos, pero cuyos resultados son conjuntos de otro universo, son:

• Partes o Potencia: El conjunto de todos los subconjuntos de A, se denota $\mathcal{P}(A)$, y contiene todos los subconjuntos de A.

$$\mathcal{P}(A) = \{B : B \subseteq U | B \subseteq A\} = \{B : |B \subseteq A\}$$

 Producto cartesiano: El producto cartesiano de los conjuntos A y B, se denota A x B, y contiene todos las parejas de elementos de A con elementos de B

$$A \times B = \{(x, y) : U \times U | x \in A \land y \in B\}$$

• Sea $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 4\}, B = \{4, 8\}$

 $P(A) = \{\emptyset, \{1\}, \{2\}, \{4\}, \{1,2\}, \{1,4\}, \{2,4\}, \{1,2,4\}\}\}$ $A \times B = \{(1,4), (1,8), (2,4), (2,8), (4,4), (4,8)\}$

Otras operaciones entre conjuntos, pero cuyos resultados son conjuntos de otro universo, son:

• Partes o Potencia: El conjunto de todos los subconjuntos de A, se denota $\mathcal{P}(A)$, y contiene todos los subconjuntos de A.

$$\mathcal{P}(A) = \{B : B \subseteq U | B \subseteq A\} = \{B : |B \subseteq A\}$$

 Producto cartesiano: El producto cartesiano de los conjuntos A y B, se denota A x B, y contiene todos las parejas de elementos de A con elementos de B

$$A \times B = \{(x, y) : U \times U | x \in A \land y \in B\}$$

• Sea $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 4\}, B = \{4, 8\}$

•
$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{1, 2, 4\}\}$$

•
$$A \times B = \{(1,4), (1,8), (2,4), (2,8), (4,4), (4,8)\}$$

• Nótese que $1 \notin \mathcal{P}(A)$ pero $\{1\} \in \mathcal{P}(A)$

Otras operaciones entre conjuntos, pero cuyos resultados son conjuntos de otro universo, son:

• Partes o Potencia: El conjunto de todos los subconjuntos de A, se denota $\mathcal{P}(A)$, y contiene todos los subconjuntos de A.

$$\mathcal{P}(A) = \{B : B \subseteq U | B \subseteq A\} = \{B : |B \subseteq A\}$$

 Producto cartesiano: El producto cartesiano de los conjuntos A y B, se denota A x B, y contiene todos las parejas de elementos de A con elementos de B

$$A \times B = \{(x, y) : U \times U | x \in A \land y \in B\}$$

- Sea $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 4\}, B = \{4, 8\}$
 - $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{1, 2, 4\}\}$
 - $A \times B = \{(1,4), (1,8), (2,4), (2,8), (4,4), (4,8)\}$
 - Nótese que $1 \not\in \mathcal{P}(A)$ pero $\{1\} \in \mathcal{P}(A)$

Otras operaciones entre conjuntos, pero cuyos resultados son conjuntos de otro universo, son:

• Partes o Potencia: El conjunto de todos los subconjuntos de A, se denota $\mathcal{P}(A)$, y contiene todos los subconjuntos de A.

$$\mathcal{P}(A) = \{B : B \subseteq U | B \subseteq A\} = \{B : |B \subseteq A\}$$

 Producto cartesiano: El producto cartesiano de los conjuntos A y B, se denota A x B, y contiene todos las parejas de elementos de A con elementos de B

$$A \times B = \{(x, y) : U \times U | x \in A \land y \in B\}$$

- Sea $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 4\}, B = \{4, 8\}$
 - $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{1, 2, 4\}\}$
 - $A \times B = \{(1,4), (1,8), (2,4), (2,8), (4,4), (4,8)\}$
 - Nótese que $1 \notin \mathcal{P}(A)$ pero $\{1\} \in \mathcal{P}(A)$

Otras operaciones entre conjuntos, pero cuyos resultados son conjuntos de otro universo, son:

• Partes o Potencia: El conjunto de todos los subconjuntos de A, se denota $\mathcal{P}(A)$, y contiene todos los subconjuntos de A.

$$\mathcal{P}(A) = \{B : B \subseteq U | B \subseteq A\} = \{B : |B \subseteq A\}$$

 Producto cartesiano: El producto cartesiano de los conjuntos A y B, se denota A x B, y contiene todos las parejas de elementos de A con elementos de B

$$A \times B = \{(x, y) : U \times U | x \in A \land y \in B\}$$

- Sea $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 4\}, B = \{4, 8\}$
 - $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{4\}, \{1,2\}, \{1,4\}, \{2,4\}, \{1,2,4\}\}$
 - $A \times B = \{(1,4), (1,8), (2,4), (2,8), (4,4), (4,8)\}$
 - Nótese que $1 \not\in \mathcal{P}(A)$ pero $\{1\} \in \mathcal{P}(A)$

- ① Suponga que $A = \{2,4,6\}, B = \{2,6\}, C = \{4,6\}, D = \{4,6,8\}.$ ¿Cuáles de las siguientes afirmaciones son ciertas? $(1)A \subseteq B$, $(2)B \subseteq A$, $(3)B \subset A$, $(4)A \subseteq D$, $(5)C \subseteq A$, $(6)C \subseteq D$, $(7)B \in \mathcal{P}(A)$, $(8)B \times C \subset A \times A$
- ② ¿Cuáles de las siguientes afirmaciones son ciertas? $(1)0 \in \emptyset$, $(2)\emptyset \in \{0\}$, $(3)\{0\} \subset \emptyset$, $(4)\{\emptyset\} \subset \{\emptyset\}$, $(5)\emptyset \in \{\emptyset\}$
- **3** Halle *A* y *B* tales que $A \setminus B = \{1, 5, 7, 8\}, B \setminus A = \{2, 10\}, A \cap B = \{3, 6, 9\}$
- Sean $A = \{0, 2, 4, 6, 8, 10\}, B = \{0, 1, 2, 3, 4, 5, 6\}, C = \{4, 5, 6, 7, 8, 9, 10\}.$ Halle $A \cap B \cap C$, $A \cup B \cup C$, $(A \cup \overline{B}) \cap C \vee (\overline{A} \cap B) \cup \overline{C}$

- ① Suponga que $A = \{2,4,6\}, B = \{2,6\}, C = \{4,6\}, D = \{4,6,8\}.$ ¿Cuáles de las siguientes afirmaciones son ciertas? $(1)A \subseteq B$, $(2)B \subseteq A$, $(3)B \subset A$, $(4)A \subseteq D$, $(5)C \subseteq A$, $(6)C \subseteq D$, $(7)B \in \mathcal{P}(A)$, $(8)B \times C \subset A \times A$
- ② ¿Cuáles de las siguientes afirmaciones son ciertas? $(1)0 \in \emptyset$, $(2)\emptyset \in \{0\}$, $(3)\{0\} \subset \emptyset$, $(4)\{\emptyset\} \subseteq \{\emptyset\}$, $(5)\emptyset \in \{\emptyset\}$
- **3** Halle *A* y *B* tales que $A \setminus B = \{1, 5, 7, 8\}, B \setminus A = \{2, 10\}, A \cap B = \{3, 6, 9\}$
- ① Sean $A = \{0, 2, 4, 6, 8, 10\}, B = \{0, 1, 2, 3, 4, 5, 6\}, C = \{4, 5, 6, 7, 8, 9, 10\}.$ Halle $A \cap B \cap C$, $A \cup B \cup C$, $(A \cup \overline{B}) \cap C$ y $(\overline{A} \cap B) \cup \overline{C}$

- ① Suponga que $A = \{2,4,6\}, B = \{2,6\}, C = \{4,6\}, D = \{4,6,8\}.$ ¿Cuáles de las siguientes afirmaciones son ciertas? $(1)A \subseteq B$, $(2)B \subseteq A$, $(3)B \subset A$, $(4)A \subseteq D$, $(5)C \subseteq A$, $(6)C \subseteq D$, $(7)B \in \mathcal{P}(A)$, $(8)B \times C \subset A \times A$
- ② ¿Cuáles de las siguientes afirmaciones son ciertas? $(1)0 \in \emptyset$, $(2)\emptyset \in \{0\}$, $(3)\{0\} \subset \emptyset$, $(4)\{\emptyset\} \subseteq \{\emptyset\}$, $(5)\emptyset \in \{\emptyset\}$
- **3** Halle A y B tales que $A \setminus B = \{1, 5, 7, 8\}, B \setminus A = \{2, 10\}, A \cap B = \{3, 6, 9\}$
- ① Sean $A = \{0, 2, 4, 6, 8, 10\}, B = \{0, 1, 2, 3, 4, 5, 6\}, C = \{4, 5, 6, 7, 8, 9, 10\}.$ Halle $A \cap B \cap C$, $A \cup B \cup C$, $(A \cup \overline{B}) \cap C$ y $(\overline{A} \cap B) \cup \overline{C}$

- ① Suponga que $A = \{2,4,6\}, B = \{2,6\}, C = \{4,6\}, D = \{4,6,8\}.$ ¿Cuáles de las siguientes afirmaciones son ciertas? $(1)A \subseteq B$, $(2)B \subseteq A$, $(3)B \subset A$, $(4)A \subseteq D$, $(5)C \subseteq A$, $(6)C \subseteq D$, $(7)B \in \mathcal{P}(A)$, $(8)B \times C \subset A \times A$
- ② ¿Cuáles de las siguientes afirmaciones son ciertas? $(1)0 \in \emptyset$, $(2)\emptyset \in \{0\}$, $(3)\{0\} \subset \emptyset$, $(4)\{\emptyset\} \subseteq \{\emptyset\}$, $(5)\emptyset \in \{\emptyset\}$
- **3** Halle A y B tales que $A \setminus B = \{1, 5, 7, 8\}, B \setminus A = \{2, 10\}, A \cap B = \{3, 6, 9\}$
- **③** Sean $A = \{0, 2, 4, 6, 8, 10\}, B = \{0, 1, 2, 3, 4, 5, 6\}, C = \{4, 5, 6, 7, 8, 9, 10\}.$ Halle $A \cap B \cap C$, $A \cup B \cup C$, $(A \cup \overline{B}) \cap C$ y $(\overline{A} \cap B) \cup \overline{C}$

Plan

- Motivación Definiciones
- 2 Predicados y operaciones sobre conjuntos
 - Predicados sobre conjuntos
 - Operaciones sobre conjuntos
- 3 Teoría de Conjuntos: Teoremas y demostraciones
 - Teoremas
 - Demostraciones
 - Demuestre o refute
- 4 Metateorema de representación
 - Ejemplos

Teoría de Conjuntos: Teoremas de ∩

Teorema	Nombre
$A \cap U = A$	identidad de ∩
$A \cap \emptyset = \emptyset$	dominación ∩
$A \cap A = A$	idempotencia ∩
$A \cap B = B \cap A$	conmutatividad ∩
$(A \cap B) \cap C = A \cap (B \cap C)$	asociatividad ∩
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$distributividad \cap sobre \ \cup$
$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$	de Morgan de ∩
$A\cap (A\cup B)=A$	absorción de ∩ sobre ∪
$A \cap \overline{A} = \emptyset$	negación de ∩

Teoría de Conjuntos: Teoremas de ∪

Teorema	Nombre
$A \cup \emptyset = A$	identidad ∪
$A \cup U = U$	dominación ∪
$A \cup A = A$	idempotencia ∪
$A \cup B = B \cup A$	conmutatividad ∪
$(A \cup B) \cup C = A \cup (B \cup C)$	asociatividad ∪
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	distributividad \cup sobre \cap
$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$	de Morgan ∪
$A \cup (A \cap B) = A$	absorción ∪ sobre ∩
$A \cup \overline{A} = U$	negación ∪

Teoría de Conjuntos: Otros teoremas

Teorema	Nombre
$A = B \equiv (A \subseteq B) \land (B \subseteq A)$ Definición de igualdad	
$A \subseteq B \equiv \overline{B} \subseteq \overline{A}$	subconjuntos complementos
$A = \overline{(\overline{A})}$	Doble complemento

Plan

- 1 Motivación Definiciones
- 2 Predicados y operaciones sobre conjuntos
 - Predicados sobre conjuntos
 - Operaciones sobre conjuntos
- Teoría de Conjuntos: Teoremas y demostraciones
 - Teoremas
 - Demostraciones
 - Demuestre o refute
- Metateorema de representación
 - Ejemplos

Teoría de Conjuntos: Demostraciones

Video 2.1

Cuando nos pidan demostrar que

$$A = B$$

podemos hacerlo:

- Por definición (bajo nivel): $A = B \equiv \forall x : U | (x \in A \equiv x \in B)$
- Por definición (alto nivel): $A = B \equiv (A \subseteq B) \land (B \subseteq A)$

Teoría de Conjuntos: Demostraciones

Video 2.1

Cuando nos pidan demostrar que

$$A = B$$

podemos hacerlo:

- Por definición (bajo nivel): $A = B \equiv \forall x : U | (x \in A \equiv x \in B)$
- Por definición (alto nivel): $A = B \equiv (A \subseteq B) \land (B \subseteq A)$

Doble complemento: $A = (\overline{A})$

Video 2.1

	expresión	justificación
1	$(x \in \overline{(\overline{A})})$	
	$(x \notin \overline{A})$	definición complemento (1)
3	$\neg(x\in\overline{A})$	definición ∉ (2)
4	$\neg(x \not\in A)$	definición complemento (3)
5	$\neg\neg(x\in A)$	definición ∉ (4)
6	$x \in A$	doble negación (5)
		♦

De Morgan \cap : $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$

Video 2.2

	expresión	justificación
1	$x \in \overline{(A \cap B)}$	
2	$x \notin (A \cap B)$	definición complemento (1)
3	$\neg(x \in (A \cap B))$	definición ∉ (2)
4	$\neg(x \in A \land x \in B)$	definición \cap (3)
5	$\neg(x \in A) \lor \neg(x \in B)$	de Morgan ∧ (4)
6	$x \notin A \lor x \notin B$	definición ∉ (5)
7	$x \in \overline{A} \lor x \in \overline{B}$	definición complemento (6)
8	$x \in \overline{A} \cup \overline{B}$	definición ∪

De Morgan \cup : $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$

	expresión	justificación
	$\overline{A} \cap \overline{B}$	
	$\frac{A \cap B}{}$	
=	$(\overline{(\overline{A}\cap \overline{B})})$	doble complemento
=	$(\overline{(\overline{A})} \cup \overline{(\overline{B})})$	de Morgan ∩
=	$\overline{A \cup B}$	doble complemento
		\Diamond

$$(A \subseteq B) \implies (A \cap B) = A$$

$$A\subseteq B\vdash (A\cap B)=A$$

$\begin{array}{c} 1 \\ 2 \equiv \\ 3 \Longrightarrow \end{array}$	$x \in (A \cap B)$ $x \in A \land x \in B$ $x \in A$	Definición ∩ (1) Simplificación (2)		
		♦ tesis ¿Por qué?		

Del Lema 1 y Lema 2, y del teorema $A = B \equiv (A \subseteq B) \land (B \subseteq A)$ se deduce que

$$(A \cap B) = A$$

$$(A \subseteq B) \implies (A \cap B) = A$$

$$A\subseteq B\vdash (A\cap B)=A$$

Lema 1: $A \subseteq B \vdash (A \cap B) \subseteq A$					
	exp.	just.	1	$x \in A$	
$ \begin{array}{c} 1\\2\\3\\\Longrightarrow\end{array} $	$x \in (A \cap B)$ $x \in A \land x \in B$ $x \in A$	Definición ∩ (1) Simplificación (2)			
Nótese que	no se usó la hipó	•		$x \in A \land x \in B$ $x \in (A \cap B)$	

Del Lema 1 y Lema 2, y del teorema $A = B \equiv (A \subseteq B) \land (B \subseteq A)$ se deduce que

$$(A \cap B) = A$$

$$(A \subseteq B) \implies (A \cap B) = A$$

$$A\subseteq B\vdash (A\cap B)=A$$

			Lema 2: A	$\subseteq B \vdash A \subseteq (A \cap B)$	3)
Lema 1: $A \subseteq B \vdash (A \cap B) \subseteq A$			exp.	just.	
1	exp. $x \in (A \cap B)$	just.	$\begin{array}{ccc} 1 & & \\ 2 & \Longrightarrow & \end{array}$	$x \in A$ $x \in B$	MP (1),
2 ≡ 3 ⇒	$x \in A \land x \in B$ $x \in A$	Definición ∩ (1) Simplificación (2) ⋄	3 ⇒	$x \in A \land x \in B$	$A \subseteq B \equiv$ $\forall x : U (x \in A \implies$ $x \in B)$
Nótese que	no se usó la hipó	tesis ¿Por qué?	4 ≡	$x \in A \land X \in B$ $x \in (A \cap B)$	Composición (1),(2) Definición ∩ (3) ♦

Del Lema 1 y Lema 2, y del teorema $A = B \equiv (A \subseteq B) \land (B \subseteq A)$ se deduce que:

$$(A \cap B) = A$$

$$(A \subseteq B) \implies (A \cap B) = A$$

$$A\subseteq B\vdash (A\cap B)=A$$

Lema 2: $A \subseteq B \vdash A \subseteq (A \cap B)$ Lema 1: $A \subseteq B \vdash (A \cap B) \subseteq A$ iust. exp. iust. exp. $x \in A$ $2 \implies x \in B$ MP (1), $x \in (A \cap B)$ $A \subseteq B \equiv$ $2 \equiv x \in A \land x \in B$ Definición \cap (1) $\forall x: U | (x \in A \implies$ $3 \implies x \in A$ Simplificación (2) $x \in B$) $3 \implies x \in A \land x \in B$ $4 \equiv x \in (A \cap B)$ Composición (1),(2) Nótese que no se usó la hipótesis ¿ Por qué? Definición ∩ (3)

Del Lema 1 y Lema 2, y del teorema $A=B\equiv (A\subseteq B)\wedge (B\subseteq A)$ se deduce que:

$$(A \cap B) = A$$

$(A \cap B) = (A \cup B) \equiv (A = B)$ Video 2.3

Puesto que $(P \equiv Q) \equiv (P \implies Q) \land (Q \implies P)$ demostraremos:

- Lema 1: $(A \cap B) = (A \cup B) \implies (A = B)$, y
- Lema 2: $(A = B) \implies (A \cap B) = (A \cup B)$

Lema 1:
$$(A \cap B) = (A \cup B) \implies (A = B)$$

Por teorema de la deducción y definición de =, debemos probar:

$$(A \cap B) = (A \cup B) \vdash x \in A \equiv x \in B$$

o lo que es igua

$$(A \cap B) = (A \cup B) \vdash (x \in A \implies x \in B) \land (x \in B \implies x \in A)$$

Lema 3: Hip.:		Lema 4: Hip.:	

$(A \cap B) = (A \cup B) \equiv (A = B)$ Video 2.3

Puesto que $(P \equiv Q) \equiv (P \implies Q) \land (Q \implies P)$ demostraremos:

- Lema 1: $(A \cap B) = (A \cup B) \implies (A = B)$, y
- Lema 2: $(A = B) \implies (A \cap B) = (A \cup B)$

Lema 1: $(A \cap B) = (A \cup B) \implies (A = B)$

Por teorema de la deducción y definición de =, debemos probar:

$$(A \cap B) = (A \cup B) \vdash x \in A \equiv x \in B$$

o lo que es igual:

$$(A \cap B) = (A \cup B) \vdash (x \in A \implies x \in B) \land (x \in B \implies x \in A)$$

	Lema 3: Hip.:	$x \in A \implies x \in B$ $(A \cap B) = (A \cup B)$	
		exp.	just.
Ī	1	$x \in A$	
	2 =>	$x \in A \lor x \in B$	$p \implies p \lor q$
	3 ≡	$x \in (A \cup B)$	Definición ∪
	4 ≡	$x \in (A \cap B)$	Hipótesis
	5 ≡	$x \in A \land x \in B$	Definición ∩
	6 ⇒	$x \in B$	$p \wedge q \implies q$
			♦

Lema 4:	$x \in B \implies x \in A$	
Hip.:	$(A\cap B)=(A\cup B)$	
	exp.	just.
1	$x \in B$	
2 =>	$x \in A \lor x \in B$	$q \implies p \lor q$
3 ≡	$x \in (A \cup B)$	Definición ∪
4 ≡	$x \in (A \cap B)$	Hipótesis
5 ≡	$x \in A \land x \in B$	Definición ∩
6 ⇒	$x \in A$	$p \wedge q \implies p$
		^

$(A \cap B) = (A \cup B) \equiv (A = B)$ Video 2.3

Puesto que $(P \equiv Q) \equiv (P \implies Q) \land (Q \implies P)$ demostraremos:

- Lema 1: $(A \cap B) = (A \cup B) \implies (A = B)$, y
- Lema 2: $(A = B) \implies (A \cap B) = (A \cup B)$

Lema 2:
$$(A = B) \implies (A \cap B) = (A \cup B)$$

Por teorema de la deducción debemos probar:

$$A = B \vdash (A \cap B) = (A \cup B)$$

Lema 2:	$(A \cap B) = (A \cup B)$	
Hip.:	A = B	
	exp.	just.
1	$(A \cap B)$	
2 =	$(A \cap A)$	Hip. y Leibniz (1)
3 =	Α	Idempotencia ∩
4 =	$(A \cup A)$	Idempotencia ∪
5 =	$(A \cup B)$	Hip. y Leibniz (4)
		♦

$A \subseteq B \equiv \overline{B} \subseteq \overline{A}$

Recordemos que:

$$A \subseteq B \equiv \forall x : U | (x \in A \implies x \in B)$$

Luego lo que hay que demostrar es:

$$\forall x: U | (x \in A \implies x \in B) \equiv \forall x: U | (x \in \overline{B} \implies x \in \overline{A})$$

Ahora, nótese que:

$$(x \in A \implies x \in B) \equiv (\neg(x \in B) \implies \neg(x \in A)) \equiv (x \notin B \implies x \notin A) \equiv (x \in \overline{B} \implies x \in \overline{A})$$

Por lo tanto, usando Leibniz:

$$\forall x: U | (x \in A \implies x \in B) \equiv \forall x: U | (x \in \overline{B} \implies x \in \overline{A})$$

O sea.

$$A \subseteq B \equiv \overline{B} \subseteq \overline{A}$$

$(A \not\subseteq B \land B \not\subseteq A) \implies (\exists x, y | x \in A \land y \in B \land x \neq y)$

$$\neg (A = B) \equiv (\exists x | \neg (x \in A \equiv x \in B))$$
$$\neg (A \subseteq B) \equiv (\exists x | x \in A \land x \notin B)$$

Teo:	$(\exists x, y x \in A \land y \in B \land x \neq y)$	
Hip.:	$H_1: A \not\subseteq B, H_2: B \not\subseteq A$	
	Exp.	Just.
1	$(A \not\subseteq B)$	Hipótesis H_1
2	$(\exists x x \in A \land x \notin B)$	Definición de $\not\subseteq$ en (1)
3	$(\hat{x} \in A \land \hat{x} \not\in B)$	Instanciación existencial de (2)
4	$(B \not\subseteq A)$	Hipótesis H_2
5	$(\exists x x \in B \land x \not\in A)$	Definición de ⊈ en (4)
6	$(\hat{y} \in B \land \hat{y} \not\in A)$	Instanciación existencial de (5)
7	$(\hat{x} \neq \hat{y})$	Lema $\hat{x} \neq \hat{y}$
8	$(\hat{x} \in A)$	Simplificación de (3)
9	$(\hat{y} \in B)$	Simplificación de (6)
10	$(\hat{x} \neq \hat{y}) \land (\hat{x} \in A) \land (\hat{y} \in B)$	Composición de (7, 8, 9)
11	$(\exists x, y : x \in A \land y \in B \land y \neq x)$	Generalización de \exists en (11)
		^

$(A \not\subseteq B \land B \not\subseteq A) \implies (\exists x, y | x \in A \land y \in B \land x \neq y)$

$$\neg (A = B) \equiv (\exists x | \neg (x \in A \equiv x \in B))$$
$$\neg (A \subseteq B) \equiv (\exists x | x \in A \land x \notin B)$$

Lema: Hip.:	$ \hat{x} \neq \hat{y} H_1: (\hat{y} \in B \land \hat{y} \notin A), H_2: (\hat{x} \in A \land \hat{x} \notin B) $		
ı ııp	Exp. $(x \in B \land y \notin A), H_2 \cdot (x \in A \land x \notin B)$	Just.	
1	$(\hat{y} \in B \land \hat{y} \not\in A)$	Hipótesis H ₁	
2	$(\hat{x} \in A \land \hat{x} \notin B)$	Hipótesis H_2	
3	$(\hat{x} = \hat{y})$	Supuesto	
4	$(\hat{y} \not\in A)$	Simplificación de (1)	
5	$(\hat{x} \in A)$	Simplificación de (2)	
6	$(\hat{x} \not\in A)$	Leibniz de (3, 4)	
7	$\neg(\hat{x}\in A)$	Definición ∉ (6)	
8	false	Contradicción (5,7)	
		♦	

Plan

- Motivación Definiciones
- 2 Predicados y operaciones sobre conjuntos
 - Predicados sobre conjuntos
 - Operaciones sobre conjuntos
- 3 Teoría de Conjuntos: Teoremas y demostraciones
 - Teoremas
 - Demostraciones
 - Demuestre o refute
- Metateorema de representación
 - Ejemplos

Demuestre o refute: $A \not\subseteq B \equiv \overline{A} \subseteq B$ Video 2.4

- Necesitamos un caso donde haya elementos del universo por fuera de A y de B
- $U = \{1, 2, 3, 4\}, A = \{1, 2\}, B = \{2, 3\}, \overline{A} = \{3, 4\}$
- Note que $A \not\subseteq B$ pero $\overline{A} \not\subseteq B$

Demuestre o refute: $A \not\subseteq B \equiv \overline{A} \subseteq B$ Video 2.4

- Necesitamos un caso donde haya elementos del universo por fuera de A y de B
- $U = \{1, 2, 3, 4\}, A = \{1, 2\}, B = \{2, 3\}, \overline{A} = \{3, 4\}$
- Note que $A \not\subseteq B$ pero $\overline{A} \not\subseteq B$

Demuestre o refute: $A \nsubseteq B \equiv \overline{A} \subseteq B$ Video 2.4

- Necesitamos un caso donde haya elementos del universo por fuera de A y de B
- $U = \{1, 2, 3, 4\}, A = \{1, 2\}, B = \{2, 3\}, \overline{A} = \{3, 4\}$
- Note que $A \not\subseteq B$ pero $\overline{A} \not\subseteq B$

Demuestre o refute: $A \nsubseteq B \equiv \overline{A} \subseteq B$ Video 2.4

- Necesitamos un caso donde haya elementos del universo por fuera de A y de B
- $U = \{1, 2, 3, 4\}, A = \{1, 2\}, B = \{2, 3\}, \overline{A} = \{3, 4\}$
- Note que $A \not\subseteq B$ pero $\overline{A} \not\subseteq B$

Demuestre o refute: $A \not\subseteq B \equiv \overline{B} \subseteq A \text{ Video } 2.4$

- Necesitamos un caso donde haya elementos del universo por fuera de A y de B
- $U = \{1, 2, 3, 4\}, A = \{1, 2\}, B = \{2, 3\}, \overline{B} = \{1, 4\}$
- Note que $A \not\subseteq B$ pero $\overline{B} \not\subseteq A$

Demuestre o refute: $A \not\subseteq B \equiv \overline{B} \subseteq A \text{ Video } 2.4$

- Necesitamos un caso donde haya elementos del universo por fuera de A y de B
- $U = \{1, 2, 3, 4\}, A = \{1, 2\}, B = \{2, 3\}, \overline{B} = \{1, 4\}$
- Note que $A \not\subseteq B$ pero $\overline{B} \not\subseteq A$

Demuestre o refute: $A \nsubseteq B \equiv \overline{B} \subseteq A$ Video 2.4

- Necesitamos un caso donde haya elementos del universo por fuera de A y de B
- $U = \{1, 2, 3, 4\}, A = \{1, 2\}, B = \{2, 3\}, \overline{B} = \{1, 4\}$
- Note que $A \not\subseteq B$ pero $\overline{B} \not\subseteq A$

Demuestre o refute: $A \nsubseteq B \equiv \overline{B} \subseteq A$ Video 2.4

- Necesitamos un caso donde haya elementos del universo por fuera de A y de B
- $U = \{1, 2, 3, 4\}, A = \{1, 2\}, B = \{2, 3\}, \overline{B} = \{1, 4\}$
- Note que $A \not\subseteq B$ pero $\overline{B} \not\subseteq A$

Demuestre o refute: $A \nsubseteq B \equiv A \subseteq \overline{B}$ Video 2.4

- Necesitamos un caso donde haya elementos en la intersección de A y de B
- $U = \{1, 2, 3, 4\}, A = \{1, 2\}, B = \{2, 3\}, \overline{B} = \{1, 4\}$
- Note que $A \not\subseteq B$ pero $A \not\subseteq \overline{B}$
- Demuestre entonces que $(A \subseteq B) \land (A \cap B = \emptyset) \equiv A \subseteq B$

Demuestre o refute: $A \not\subseteq B \equiv A \subseteq \overline{B}$ Video 2.4

- Necesitamos un caso donde haya elementos en la intersección de A y de B
- $U = \{1, 2, 3, 4\}, A = \{1, 2\}, B = \{2, 3\}, \overline{B} = \{1, 4\}$
- Note que $A \not\subseteq B$ pero $A \not\subseteq \overline{B}$
- Demuestre entonces que $(A \subseteq B) \land (A \cap B = \emptyset) \equiv A \subseteq B$

Demuestre o refute: $A \not\subseteq B \equiv A \subseteq \overline{B}$ Video 2.4

- Necesitamos un caso donde haya elementos en la intersección de A y de B
- $U = \{1, 2, 3, 4\}, A = \{1, 2\}, B = \{2, 3\}, \overline{B} = \{1, 4\}$
- Note que $A \not\subseteq B$ pero $A \not\subseteq B$
- Demuestre entonces que $(A \nsubseteq B) \land (A \cap B = \emptyset) \equiv A \subseteq \overline{B}$

Demuestre o refute: $A \not\subseteq B \equiv A \subseteq \overline{B}$ Video 2.4

- Necesitamos un caso donde haya elementos en la intersección de A y de B
- $U = \{1, 2, 3, 4\}, A = \{1, 2\}, B = \{2, 3\}, \overline{B} = \{1, 4\}$
- Note que $A \not\subseteq B$ pero $A \not\subseteq \overline{B}$
- Demuestre entonces que $(A \subseteq B) \land (A \cap B = \emptyset) \equiv A \subseteq \overline{B}$

Demuestre o refute: $A \nsubseteq B \equiv A \subseteq \overline{B}$ Video 2.4

- Necesitamos un caso donde haya elementos en la intersección de A y de B
- $U = \{1, 2, 3, 4\}, A = \{1, 2\}, B = \{2, 3\}, \overline{B} = \{1, 4\}$
- Note que $A \not\subseteq B$ pero $A \not\subseteq \overline{B}$
- Demuestre entonces que $(A \subseteq B) \land (A \cap B = \emptyset) \equiv A \subseteq \overline{B}$

- El problema está en $A \subseteq (B \cup C) \implies (A \subseteq B) \lor (A \subseteq C)$ Necesitamos un conjunto A que tenga elementos de B que no estén en C y elementos de C que no estén en B
- $U = \{1, 2, 3, 4\}, B = \{1, 2\}, C = \{2, 3\}, A = \{1, 3\}$
- Note que $A \subseteq (B \cup C)$ pero $(A \not\subseteq B) \land (A \not\subseteq C)$

- El problema está en $A \subseteq (B \cup C) \implies (A \subseteq B) \lor (A \subseteq C)$ Necesitamos un conjunto A que tenga elementos de B que no estén en C y elementos de C que no estén en B
- $U = \{1, 2, 3, 4\}, B = \{1, 2\}, C = \{2, 3\}, A = \{1, 3\}$
- Note que $A \subseteq (B \cup C)$ pero $(A \not\subseteq B) \land (A \not\subseteq C)$

- El problema está en $A \subseteq (B \cup C) \Longrightarrow (A \subseteq B) \lor (A \subseteq C)$ Necesitamos un conjunto A que tenga elementos de B que no estén en C y elementos de C que no estén en B
- $U = \{1, 2, 3, 4\}, B = \{1, 2\}, C = \{2, 3\}, A = \{1, 3\}$
- Note que $A \subseteq (B \cup C)$ pero $(A \not\subseteq B) \land (A \not\subseteq C)$

- El problema está en $A \subseteq (B \cup C) \implies (A \subseteq B) \lor (A \subseteq C)$ Necesitamos un conjunto A que tenga elementos de B que no estén en C y elementos de C que no estén en B
- $U = \{1, 2, 3, 4\}, B = \{1, 2\}, C = \{2, 3\}, A = \{1, 3\}$
- Note que $A \subseteq (B \cup C)$ pero $(A \not\subseteq B) \land (A \not\subseteq C)$

- $(A \setminus C) \cap (C \setminus B) = \emptyset$

- $(A \setminus C) \cap (C \setminus B) = \emptyset$

- $(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$

- $(A \setminus C) \cap (C \setminus B) = \emptyset$

- $(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$

- $(A \setminus C) \cap (C \setminus B) = \emptyset$

- Relación muy estrecha entre la lógica proposicional y la teoría de conjuntos.
- Sea E_S una expresión de conjuntos construida con variables de conjuntos (A,B,C,\ldots) , y los símbolos $\emptyset,U,\ldots,\cup,\cap$
- Sea E_P una expresión de la lógica proposicional construida a partir de E_S, haciendo los siguiente reemplazos:

$$0 \longrightarrow false$$

$$\bullet$$
 \cup \rightarrow \lor

$$\bullet$$
 \cap \rightarrow \wedge

$$lacksquare$$
 \longrightarrow $-$

- $\vdash E_S \subseteq F_S \text{ sol} \vdash E_P \implies F_P$
- $\vdash E_S = U \text{ sai} \vdash E_P$

- Relación muy estrecha entre la lógica proposicional y la teoría de conjuntos.
- Sea E_S una expresión de conjuntos construida con variables de conjuntos (A,B,C,\ldots) , y los símbolos $\emptyset,U,--,\cup,\cap$
- Sea E_P una expresión de la lógica proposicional construida a partir de E_S, haciendo los siguiente reemplazos:
 - \bullet 0 \rightarrow false
 - U → true
 - $\bullet \ \cup \to \vee$
 - $\bullet \ \cap \to \wedge$
 - $\bullet \ \ -\!\!\!\!- \rightarrow \neg$

Entonces, vale lo siguiente, dados E_S y F_S expresiones de conjuntos:

 $a \vdash E_S = F_S \text{ ssi} \vdash E_P \equiv F_P$

 $b \vdash E_S \subseteq F_S \text{ ssi} \vdash E_P \implies F_P$

- Relación muy estrecha entre la lógica proposicional y la teoría de conjuntos.
- Sea E_S una expresión de conjuntos construida con variables de conjuntos (A, B, C, \ldots) , y los símbolos $\emptyset, U, ---, \cup, \cap$
- Sea E_P una expresión de la lógica proposicional construida a partir de E_S, haciendo los siguiente reemplazos:
 - ullet $\emptyset o false$
 - \bullet $U \rightarrow true$
 - \bullet $\cup \rightarrow \lor$
 - \bullet $\cap \to \land$
 - lacksquare \longrightarrow \neg

a
$$\vdash E_S = F_S \text{ ssi} \vdash E_P \equiv F_P$$

b $\vdash E_S \subseteq F_S \text{ ssi} \vdash E_P \implies F_P$

- Relación muy estrecha entre la lógica proposicional y la teoría de conjuntos.
- Sea E_S una expresión de conjuntos construida con variables de conjuntos (A, B, C, \ldots) , y los símbolos $\emptyset, U, ---, \cup, \cap$
- Sea E_P una expresión de la lógica proposicional construida a partir de E_S, haciendo los siguiente reemplazos:
 - ullet $\emptyset o false$
 - $U \rightarrow true$
 - \bullet $\cup \rightarrow \lor$
 - \bullet $\cap \to \land$
 - — → ¬

$$\mathsf{a} \; \vdash \mathsf{E}_{\mathsf{S}} = \mathsf{F}_{\mathsf{S}} \; \mathsf{ssi} \vdash \mathsf{E}_{\mathsf{P}} \equiv \mathsf{F}_{\mathsf{P}}$$

$$b \vdash E_S \subseteq F_S \text{ ssi} \vdash E_P \implies F_F$$

$$C \vdash E_S = U \operatorname{ssi} \vdash E_F$$

- Relación muy estrecha entre la lógica proposicional y la teoría de conjuntos.
- Sea E_S una expresión de conjuntos construida con variables de conjuntos (A, B, C, \ldots) , y los símbolos $\emptyset, U, ---, \cup, \cap$
- Sea E_P una expresión de la lógica proposicional construida a partir de E_S, haciendo los siguiente reemplazos:
 - ullet $\emptyset o false$
 - $U \rightarrow true$
 - \bullet U \rightarrow V
 - \bullet $\cap \to \land$
 - → ¬

a
$$\vdash E_S = F_S \text{ ssi} \vdash E_P \equiv F_P$$

b $\vdash E_S \subseteq F_S \text{ ssi} \vdash E_P \implies F_P$

- Relación muy estrecha entre la lógica proposicional y la teoría de conjuntos.
- Sea E_S una expresión de conjuntos construida con variables de conjuntos (A, B, C, \ldots) , y los símbolos $\emptyset, U, ---, \cup, \cap$
- Sea E_P una expresión de la lógica proposicional construida a partir de E_S, haciendo los siguiente reemplazos:
 - ullet $\emptyset o false$
 - $U \rightarrow true$
 - \bullet $\cup \rightarrow \lor$
 - ullet $\cap \to \land$
 - — → ¬

$$a \vdash E_S = F_S$$
 ssi $\vdash E_P \equiv F_P$

$$b \vdash E_S \subseteq F_S \text{ ssi} \vdash E_P \implies F_P$$

$$c \vdash E_S = U ssi \vdash E_P$$

Plan

- Motivación Definiciones
- 2 Predicados y operaciones sobre conjuntos
 - Predicados sobre conjuntos
 - Operaciones sobre conjuntos
- Teoría de Conjuntos: Teoremas y demostraciones
 - Teoremas
 - Demostraciones
 - Demuestre o refute
- Metateorema de representación
 - Ejemplos

Ejemplos de uso del metateorema

$$\bullet \vdash A \cup (A \cap B) = A \mathsf{ssi} \vdash A \vee (A \wedge B) \equiv A$$

$$\bullet \vdash A \cap B \subseteq A$$
ssi $\vdash A \land B \implies A$

$$\bullet \vdash (A \cup \overline{A}) = U \mathsf{ssi} \vdash (A \lor \neg A)$$

Ejemplos de uso del metateorema

$$\bullet \vdash A \cup (A \cap B) = A \mathsf{ssi} \vdash A \vee (A \wedge B) \equiv A$$

$$\bullet \vdash A \cap B \subseteq A \text{ ssi} \vdash A \land B \implies A$$

$$\bullet \vdash (A \cup \overline{A}) = U \operatorname{ssi} \vdash (A \lor \neg A)$$

Ejemplos de uso del metateorema

$$\bullet \vdash A \cup (A \cap B) = A \mathsf{ssi} \vdash A \vee (A \wedge B) \equiv A$$

$$\bullet \vdash A \cap B \subseteq A \text{ ssi} \vdash A \land B \implies A$$

$$\bullet \vdash (A \cup \overline{A}) = U \mathsf{ssi} \vdash (A \lor \neg A)$$