9. Лекция

Category Empty

Files
Empty

Created May 28, 2023 11:22 AM

Reminder Empty

Status
Open

© URL Empty

① Updated May 28, 2023 11:22 AM

Дефинирайте някоя от нормалните форми - (аз дефинирах BCNF)

Дефиниция на 1НФ:

Атомарно значение - неделимо

Всяко поле има атомарно значение

ЕГН	ИМЕ
7802134519	Иван Петров Иванов
7607123814	Светлана Христова Георгиева

Можем да възприемем името като атомарно или да го разделим на име, презиме, фамилия. Зависи от предметната област/бизнес изискванията.

ЕГН	ИМЕ	Презиме	Фамилия
7802134519	Иван	Петров	Иванов
7607123814	Светлана	Христова	Георгиева

Кога една таблица е релация

- да има имена на колоните
- всички кортежи да са различни
- няма значение реда на кортежите или атрибутите

За да е 1НФ искаме да са неделими.

На практика всяка таблица, която е релация е в 1НФ.

Прегледахме и дефинициите на 2НФ, 3НФ

Наличието на транзитивни зависимости

Преобразуване в BCNF

кеу: ФН, Предмет

ФН	Име	Град	Предмет	Оценка
82201	Силвия Х.	Ст. Загора	ДААП	6
82165	Радослав Хърлев	Перник	ЛП	6
82154	Георги Хърлев	Ловеч	БД	5.5
88888	Мартин Попов	Добрич	KAPX	3
88888	Мартин Попов	Добрич	ДААП	5

Как можем последователно една релация в 1НФ да я преобразуваме/ декомпозираме в 2НФ, .., BCNF

Функционални зависимости:

- 1. ФН, Предмет → Име, Град, Оценка
- 2. $\Phi H \rightarrow Име, Град$

От 2. имаме, че Relation(...<name>....) не е в нормална форма

Трябва да декомпозираме

- можем да използваме подхода от декомпозицията за постигане на BCNF
- намираме ФЗ, която нарушава условието на 2НФ, взимаме я и прилагаме същия подход

ФН → Име, Град

Получаваме:

Студент1(ФН, Име, Град)

• ФУнкц. зависимости

∘ ФН → Град

Студент1 е в 2НФ

Студент2(ФН, Предмет, Оценка)

Ключът е ФН и предмет.

Функционални засисимости:

ФН, Предмет → Оценка

Студент2 е във 2НФ

ФН	Име	Град
82201	Силвия Х.	Ст. Загора
82165	Радослав Хърлев	Перник
82154	Георги Хърлев	Ловеч
88888	Мартин Попов	Добрич
88888	Мартин Попов	Добрич

Имаме дублиран кортеж.

Ако на всяка стъпка, непрекъснато елиминираме повтарящите се кортежи, от при големи бази данни ще губим много ценно време в изхърлянето на дублираните кортежи

ФН	Име	Град
82201	Силвия Х.	Ст. Загора
82165	Радослав Хърлев	Перник
82154	Георги Хърлев	Ловеч
88888	Мартин Попов	Добрич

Ако пристигне нова заповед на ректора, за всеки студент да пазим и област

<u>ФН</u>	Име	Град	Област
82201	Силвия Х.	Ст. Загора	Ст.Загора
82165	Радослав Хърлев	Перник	София-област
82154	Георги Хърлев	Ловеч	Ловеч
88888	Мартин Попов	Добрич	Добрич

Имаме Ф3

Град → Област

Имаме 1НФ, 2НФ

Намерихме Ф3, която нарушава условието на ЗНФ

Всяка нетривиална зависимост лявата част да е суперключ или дясната да е част от ключа

• Град → Област - град не е суперключ

Аналогично правим декомпозиция

Може да ни се падне задача - декомпозирайте до дадена нормална форма.

Обикновено се стига до ЗНФ в реалните приложения

Град-Област(Град, Област)

Студент4(ФН, Име, Град)

Отново трябва да се опише: ключ, ФЗ, НФ

Това е в лекцията на ФЗ

В слайдовете има дребни детайли/клопки, които да ни накарат да се замислим и да потърсим информация

Функционални зависимости - зависимости между атрибутите в една релация, а не между отделните релации

Имаше правила свързани със създаването на ФЗ

Многозначни зависимости. 4НФ

- Има ситуации, при които независимостта на атрибутите не се изразява чрез FDs
- 2 атрибута или множество атрибути са независими помежду си
- Обобщение на Ф3

съдържат излишпи даппи

Stars

name	street	city	title	year
C. Fisher	123 Maple Str.	Hollywood	Star Wars	1977
C. Fisher	5 Locust Ln.	Malibu	Star Wars	1977
C. Fisher	123 Maple Str.	Hollywood	Empire Strikes Back	1980
C. Fisher	5 Locust Ln.	Malibu	Empire Strikes Back	1980
C. Fisher	123 Maple Str.	Hollywood	Return of the Jedi	1983
C. Fisher	5 Locust Ln.	Malibu	Return of the Jedi	1983

Нямаме избор освен да включим всички атрибути в ключа. релацията е в BCNF - защото нямаме нетривиални зависимост Но все пак има излишество на информация

Отново са само за една релация

Отчитаме всички атрибути при многозадачните зависимости

Отново имаме посокоа, казваме, че атрибутите А определят атрибутите В

Дефиниция - Многозначни зависимости / multivalued dependency

 $X \to Y$ утвърждава, че ако 2 кортежа в една релация съвпадат по всички атрибути на X, техните компоненти от множеството атрибути Y могат да бъдат разменени и резултатът ще даде Y нови кортежа, които също принадлежат на релацията

Дефиниция за изпит - Многозначна зависимост (MVD):

А1A2...An $\rightarrow \rightarrow$ B1B2...Bm е многозначна зависимост в R ако: за всяка двойка кортежи t, u от R, за които t[A1A2...An] = u[A1A2...An],

съществува кортеж v от R за който:

- (1) v[A1A2...An] = t[A1A2...An] = u[A1A2...An]
- (2) v[B1B2...Bm] = t[B1B2...Bm]
- (3) v[C1C2...Ck] = u[C1C2...Ck],

където C1C2...Ck са всички атрибути от R, с изключение на (A1A2...An ∪ B1B2...Bm)

Разместваме групата атрибути по В

name $\rightarrow \rightarrow$ street, city

SLAIS

	name	street	city	title	year
u	C. Fisher	123 Maple Str.	Hollywood	Star Wars	1977
w	C. Fisher	5 Locust Ln.	Malibu	Star Wars	1977
٧	C. Fisher	123 Maple Str.	Hollywood	Empire Strikes Back	1980
t	C. Fisher	5 Locust Ln.	Malibu	Empire Strikes Back	1980
	C. Fisher	123 Maple Str.	Hollywood	Return of the Jedi	1983
	C. Fisher	5 Locust Ln.	Malibu	Return of the Jedi	1983

Ще разгледаме

Тривиални зависимости

Правило за транзитивност

Правило за попълнение

Правило за обединение

Тривиални и нетривиални еднозначни зависимости

Тривиална MVD

A1A2...An →→ **B1B2...Bm**, когато B1B2...Bm е подмножество на A1A2...An или (A1A2...An ∪ B1B2...Bm) съдържа всички атрибути на R

Нетривиална MVD

 $A1A2...An \rightarrow B1B2...Bm$

- когато нито един от атрибутите В1В2...Вт не съвпада с А1А2...Ап
- Не всички атрибути на R принадлежат на (A1A2...An ∪ B1B2...Bm)

Транзитивно правило

Ако A1A2...An $\rightarrow \rightarrow$ B1B2...Bm и B1B2...Bm $\rightarrow \rightarrow$ C1C2...Ck, то A1A2...An $\rightarrow \rightarrow$ C1C2...Ck

Правило на допълнението

Ако A1A2...An \rightarrow → B1B2...Bm, то A1A2...An \rightarrow → C1C2...Ck , където C1C2...Ck е м-то от всички атрибути на R с изключение на (A1A2...An \cup B1B2...Bm)

Правило на обединението

Ако X1X2...Xn \to Y1Y2...Ym и X1X2...Xn \to Z1Z2...Zk , то X1X2...Xn \to (Y1Y2...Ym \cup Z1Z2...Zk)

Сравнение с FD

- подобно на FD не можем да разделяме лявата част на MVD
- За разлика от FD's не можем да правим декомпозиция и по
- Stars: name →→ street city
- name $\rightarrow \rightarrow$ street ?

name	street	city	title	year
C. Fisher	5 Locust Ln.	Hollywood	Star Wars	1977
C. Fisher	5 Locust Ln.	Malibu	Star Wars	1977

Не можем да кажем name $\rightarrow \rightarrow$ street, защото по правилото за допълнението ще ни остане name \rightarrow

!! Caми: - FD-IS-AN-MVD

Ако A1A2...An → B1B2...Bm то A1A2...An →→ B1B2...Bm Докажете чрез (1), (2), (3) от MVD дефиницията

4та нормална форма

- излишеството на данни, което произтича от MVD's не може да се отстрани чрез привеждане в BCNF
- необходима е по-строга нормална форма, наречена 4NF, която третира MVD's като FD's по отношение на

Дефиниция - 4NF

Релацията R удовлетворява 4NF, ако за всяка нетривиална MVD

A1A2...An → →B1B2...Bm , A1A2...An е **суперключ**.

Понятието ключ се основава на дефиницията на FD 4NF е обобщение на BCNF тъй като FD е MVD, 4NF ightarrow BCNF

Декомпозиция и 4NF

Ако X \to Y нарушава 4NF за релацията R, извършваме декомпозиция на R, използвайки същата техника както при BCNF

- 1. XY е едната от декомпозираните релации
- 2. Всички атрибути, без Х ∪ Y другата релация

В нашия случай

- name→→street city
 - Нетривиална MVD
 - Name не е суперключ
- Прилагаме декомпозиция:

R(name, street, city)
S(name, title, year)

- name $\rightarrow \rightarrow$ street city in R?
- name $\rightarrow \rightarrow$ title year in S?

Свойства на нормалните форми

Свойство	ЗНФ	BCNF	4НФ
Отсъствие на FD излишество	В повечето случаи	Да	Да
Отсъствие на MVD излишество	Не	Не	Да
Запазване на FD	Да	Не винаги	Не винаги
Запазване на MVD	Не винаги	Не винаги	Не винаги

Защо са важни FD's

Как се пазят релациите -

• обикновено се пази по редове/кортежи

Обаче има случаи

• примерно vertica - пази по колони. Разделяме по колони и пазим тази информация

Трислоен модел на БД

Досега:

- R модел
- Преобразувахме го в Relational model
 - о имаме правила, които важат за всички релационни БД, общи теоретични правила
- Normalization нормализираме го
 - общ механизъм, не зависи от конкретното СУБД

Общи правила, които ни казват как да направим по-добро представяне на информацията

Групираме във всяка отделна релация само атрибутите, които са тясно свързани помежду си

За да възстановим R модела, правим съединения между релациите

• това е механизма между референциалния интегритет

Остава ни да видим теоретичната основа на релационната алгебра

Следващия път ще разгледаме някои механизми, свързани с реалната работа по отношение обновяването на екземплярите/транзакциите

Четене на информация от дискове, буфериране, физическа организация

- пак се подчинява на общи принципи, но физически е различна при всяко СУБД
- ще видим как ORACLE е направил тези неща
 - обща концепция за обработка на заявки

Ще има и лекция за nosql решенията

- повечето отново ползват таблици, но с липсваща атомарност
- в една колона можем да наблъскаме цял документ