Data Mining: Introduction

Lecture Notes for Chapter 1

Introduction to Data Mining

Fang Zhou

Books:

 "Introduction to Data Mining" by Pang-Ning Tan, Michael Steinbach, Vipin Kumar

(https://www-users.cse.umn.edu/~kumar001/dmbook/contents.pdf)

- "Mining of Massive Datasets" by Jure Leskovec,
 Anand Rajaraman, Jeffrey David Ullman
- Lecturer: Fang Zhou
- TAs: Guanyu Lu

- Lectures: Week 1- Week 17, Tue, 1pm-2:35pm
- Practical courses: Week 4 Week 15, Tue, 18pm-20:25pm

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
第 11 节																	
第 12 节																	
第 13 节																	

Prerequisites

- Knowledge of basic computer science principles and skills, at a level sufficient to write a reasonably non-trivial computer program
- Good knowledge of Python
- Familiarity with algorithmic analysis
- Familiarity with machine learning

周次	课程内容
1–2	数据类型、预处理
3-6	关联规则
7	项目介绍
8-11	异常检测
12–15	数据分析
16–17	项目汇报

●课程考核

- 平时出勤、课堂讨论: 10%

- 平时作业: 30%

- 大作业: 60%

课程目标

- 深刻理解数据的获取、预处理、特征提取和建模过程
- 掌握数据挖掘中关联规则和异常检测基本模型
- 了解异常检测在金融领域中的应用并掌握主要解决方法
- 能够针对应用问题,应用开源软件进行数据处理和分析

Data, Data Everywhere

What is Big Data?

.... Is the exponential growth and availability of data, both structured and unstructured, because of the Internet & fast growing technology advancements

Data is power

Data contains value and knowledge

Data Mining

- But to extract the knowledge data needs to be
 - Stored
 - Managed
 - And ANALYZED ← this class

Data Mining ≈
Predictive Analytics ≈ Data Science

Why Data Mining? Commercial Viewpoint

- Lots of data is being collected and warehoused
 - Web data
 - Yahoo has Peta Bytes of web data
 - Facebook has billions of active users
 - purchases at department/ grocery stores, e-commerce
 - Amazon handles millions of visits/day
 - Bank/Credit Card transactions

- Computers have become cheaper and more powerful
- Competitive Pressure is Strong
 - Provide better, customized services for an edge (e.g. in Customer Relationship Management)

Why Data Mining? Scientific Viewpoint

- Data collected and stored at enormous speeds
 - remote sensors on a satellite
 - NASA EOSDIS archives over petabytes of earth science data / year

fMRI Data from Brain

Sky Survey Data

- telescopes scanning the skies
 - Sky survey data
- High-throughput biological data
- scientific simulations
 - terabytes of data generated in a few hours
- Data mining helps scientists
 - in automated analysis of massive datasets
 - In hypothesis formation

Surface Temperature of Earth

Great Opportunities to Solve Society's Major Problems

Improving health care and reducing costs

Finding alternative/ green energy sources

Reducing hunger and poverty by increasing agriculture production

Good news: Demand for Data Mining

THE DATA
SCIENCE /
ANALYTICS
LANDSCAPE

2,350,000

DSA job listings in 2015

By 2020, DSA job openings are projected to grow

15%

364,000

Additional job listings projected in 2020 Demand for both Data Scientists and Data Engineers is projected to grow

39%

DSA jobs remain open

5 days

longer than average

DSA jobs advertise average salaries of

\$80,265

With a premium over all BA+ jobs of

\$8,736

81%

Of DSA jobs require workers with 3-5 years of experience or more

Good news: Demand for Data Mining

What is Data Mining?

- Given lots of data
- Discover patterns and models that are:
 - Valid: hold on new data with some certainty
 - Useful: should be possible to act on the item
 - Unexpected: non-obvious to the system
 - Understandable: humans should be able to interpret the pattern

What is Data Mining?

Many Definitions

- Non-trivial extraction of implicit, previously unknown and potentially useful information from data
- Exploration & analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns

What is Data Mining

What is (not) Data Mining?

What is not Data Mining?

Look up phone number in phone directory

 Query a Web search engine for information about "Amazon"

What is Data Mining?

- Certain names are more prevalent in certain US locations (O'Brien, O'Rourke, O'Reilly... in Boston area)
- Group together similar documents returned by search engine according to their context (e.g., Amazon rainforest, Amazon.com)

Data Mining: Cultures

- Data mining overlaps with:
 - Databases: Large-scale data, simple queries
 - Machine learning: Small data, Complex models
 - CS Theory: (Randomized) Algorithms

Data Mining Tasks

- Prediction Methods
 - Use some variables to predict unknown or future values of other variables.

- Description Methods
 - Find human-interpretable patterns that describe the data.

Data Mining Tasks ...

Predictive Modeling: Classification

 Find a model for class attribute as a function of the values of other attributes

Model for predicting credit worthiness

Class

Tid	Employed	Level of Education	# years at present address	Credit Worthy	
1	Yes	Graduate	5	Yes	
2	Yes	High School	2	No	
3	No	Undergrad	1	No	
4	Yes	High School	10	Yes	
•••					

Classification Example

Tid	Employed	Level of Education	# years at present address	Credit Worthy	
1	Yes	Graduate	5	Yes	
2	Yes	High School	2	No	
3	No	Undergrad	1	No	
4	Yes	High School	10	Yes	

Tid	Employed	Level of Education	# years at present address	Credit Worthy
1	Yes	Undergrad	7	?
2	No	Graduate	3	?
3	Yes	High School	2	?
		•••	•••	

Examples of Classification Task

- Classifying credit card transactions as legitimate or fraudulent
- Classifying land covers (water bodies, urban areas, forests, etc.) using satellite data
- Categorizing news stories as finance, weather, entertainment, sports, etc
- Identifying intruders in the cyberspace
- Predicting tumor cells as benign or malignant
- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil

Classification: Application 1

Fraud Detection

 Goal: Predict fraudulent cases in credit card transactions.

– Approach:

- Use credit card transactions and the information on its account-holder as attributes.
 - When does a customer buy, what does he buy, how often he pays on time, etc
- Label past transactions as fraud or fair transactions. This forms the class attribute.
- Learn a model for the class of the transactions.
- Use this model to detect fraud by observing credit card transactions on an account.

Classification: Application 2

- Direct Marketing
 - Goal: Reduce cost of mailing by targeting a set of consumers likely to buy a new cell-phone product.
 - Approach:
 - Use the data for a similar product introduced before.
 - We know which customers decided to buy and which decided otherwise. This {buy, don't buy} decision forms the class attribute.
 - Collect various demographic, lifestyle, and companyinteraction related information about all such customers.
 - Type of business, where they stay, how much they earn, etc.
 - Use this information as input attributes to learn a classifier model.

Regression

- Predict a value of a given <u>continuous</u> valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency.
- Extensively studied in statistics, neural network fields.
- Examples:
 - Predicting sales amounts of new product based on advertising expenditure.
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - Time series prediction of stock market indices.

Clustering Definition

- Given a set of data points, each having a set of attributes, and a similarity measure among them, find clusters such that
 - Data points in one cluster are more similar to one another.
 - Data points in separate clusters are less similar to one another.
- Similarity Measures:
 - Euclidean Distance if attributes are continuous.
 - Other Problem-specific Measures.

Clustering

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

Understanding

- Custom profiling for targeted marketing
- Group related documents for browsing
- Group genes and proteins that have similar functionality
- Group stocks with similar price fluctuations

Summarization

Reduce the size of large data sets

Use of K-means to partition Sea Surface Temperature (SST) and Net Primary Production (NPP) into clusters that reflect the Northern and Southern Hemispheres.

Courtesy: Michael Eisen

Clustering: Application 1

Market Segmentation:

 Goal: subdivide a market into distinct subsets of customers where any subset may conceivably be selected as a market target to be reached with a distinct marketing mix.

– Approach:

- Collect different attributes of customers based on their geographical and lifestyle related information.
- Find clusters of similar customers.
- Measure the clustering quality by observing buying patterns of customers in same cluster vs. those from different clusters.

Clustering: Application 2

- Document Clustering:
 - Goal: To find groups of documents that are similar to each other based on the important terms appearing in them.
 - Approach: To identify frequently occurring terms in each document. Form a similarity measure based on the frequencies of different terms. Use it to cluster.
 - Gain: Information Retrieval can utilize the clusters to relate a new document or search term to clustered documents.

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

```
Rules Discovered:

{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}
```

Association Rule Discovery: Application

- Supermarket shelf management.
 - Goal: To identify items that are bought together by sufficiently many customers.
 - Approach: Process the point-of-sale data collected with barcode scanners to find dependencies among items.
 - A classic rule ---
 - If a customer buys diaper and milk, then he is very likely to buy beer.
 - So, don't be surprised if you find six-packs stacked next to diapers!

Association Analysis: Applications

- Market-basket analysis
 - Rules are used for sales promotion, shelf management, and inventory management
- Telecommunication alarm diagnosis
 - Rules are used to find combination of alarms that occur together frequently in the same time period
- Medical Informatics
 - Rules are used to find combination of patient symptoms and test results associated with certain diseases

Deviation/Anomaly/Change Detection

- Detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud Detection
 - Network Intrusion
 Detection
 - Identify anomalous behavior from sensor networks for monitoring and surveillance.
 - Detecting changes in the global forest cover.

What matters when dealing with data?

What will we learn?

- We will learn to mine different types of data:
 - Data is high dimensional
 - Data is labeled

- We will learn to solve real-world problems:
 - Market Basket Analysis
 - Fraud Detection
- We will learn various "tools"