```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans, AgglomerativeClustering
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score
from scipy.cluster.hierarchy import dendrogram, linkage

df = pd.read_csv('/content/simulated_health_wellness_data (3).csv')
df.head()
```

→	Exercise_Time_Min	Healthy_Meals_Per_Day	Sleep_Hours_Per_Night	Stress_Level	BMI	=
	0 34.967142	5	7.618856	2	33.068556	ıl.
	1 28.617357	8	4.105473	7	27.267672	
9	2 36.476885	4	6.024123	1	23.779217	
	3 45.230299	1	8.565319	8	29.820436	
	27 658466	3	8 301648	3	30 947352	•

Next steps: Generate code with df View recommended plots New interactive sheet

```
print(df.describe())
sns.pairplot(df)
plt.suptitle("Pairwise Relationships", y=1.02)
plt.show()

plt.figure(figsize=(8, 6))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```

			_			
→		Exercise_Time_Min		lthy_Meals_Per_Day	Sleep_Hours_Per_Night	\
	count	200.00	0000	200.000000	200.000000	
	mean	29.59	2290	2.875000	6.933582	
	std	9.31	0039	1.815449	1.422471	
	min	3.80	2549	0.000000	1.778787	
	25%	% 29.958081		2.000000	5.967243	
	50%			3.000000	6.972331	
	75%			4.000000	7.886509	
	max	57.20	1692	9.000000	10.708419	
		Stress_Level	В	MI		
	count	200.000000	200.0000	00		
	mean	4.995000	25.1500	08		
	std	2.605556	5.0707	78		
	min	1.000000	12.5029	71		
	25%	3.000000	21.4581	96		
	50%	5.000000	25.1556	62		
	75%	7.000000	28.0111	55		
	max	9.000000	37.8985	47		
				D. ii.	D 1 1' 1'	


```
X = df.values
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
wcss = []
for i in range(2, 11):
    kmeans = KMeans(n_clusters=i, random_state=42)
    kmeans.fit(X_scaled)
    wcss.append(kmeans.inertia_)
plt.plot(range(2, 11), wcss, marker='o')
plt.title('Elbow Method For Optimal k')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
# Use optimal k (e.g., 3)
kmeans = KMeans(n_clusters=3, random_state=42)
labels_kmeans = kmeans.fit_predict(X_scaled)
print("Silhouette Score (KMeans):", silhouette_score(X_scaled, labels_kmeans))
```



```
linked = linkage(X_scaled, method='ward')
plt.figure(figsize=(10, 7))
dendrogram(linked)
plt.title('Hierarchical Clustering Dendrogram')
plt.xlabel('Samples')
plt.ylabel('Distance')
plt.show()
```

```
# Fit with chosen number of clusters
hierarchical = AgglomerativeClustering(n_clusters=3)
labels_hc = hierarchical.fit_predict(X_scaled)
print("Silhouette Score (Hierarchical):", silhouette_score(X_scaled, labels_hc))
```


Silhouette Score (Hierarchical): 0.13628495765267165

```
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
print("Explained Variance Ratio:", pca.explained_variance_ratio_)
plt.figure(figsize=(8, 6))
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=labels_kmeans, cmap='viridis')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.title('PCA Result with KMeans Clusters')
plt.show()
```