Week 6 Regression Report Sample

For this sample report, I'll use a portion of R's built-in data set mtcars. I created a data file with five of the variables from that set for the purposes of this sample report.

Question

Can we predict the mpg of a car from its engine displacement, horsepower, weight, and number of gears?

Understanding the Data

```
We load the data set.
```

Median :19.20

3rd Qu.:22.80

gear

Mean

Max.

:20.09

:33.90

Median :196.3

3rd Qu.:326.0

:230.7

:472.0

Mean

Max.

```
library(tidyverse)
myData <- read_csv("carmpg.csv")</pre>
Parsed with column specification:
cols(
 mpg = col_double(),
 disp = col_double(),
 hp = col_double(),
 wt = col_double(),
  gear = col_double()
attach (myData)
The following object is masked from package:ggplot2:
    mpg
head(myData)
# A tibble: 6 x 5
    mpg disp
                 hp
                        wt gear
  <dbl> <dbl> <dbl> <dbl> <dbl> <
  21
          160
                110
                      2.62
2
  21
          160
                      2.88
                               4
                 110
3
  22.8
          108
                 93
                     2.32
  21.4
          258
4
                 110
                      3.22
                               3
5
   18.7
          360
                 175
                      3.44
                               3
  18.1
          225
                 105
                     3.46
                               3
summary(myData)
                       disp
                                         hp
                                                          wt
      mpg
                                          : 52.0
Min.
       :10.40
                 Min.
                         : 71.1
                                                   Min.
                                                           :1.513
1st Qu.:15.43
                 1st Qu.:120.8
                                   1st Qu.: 96.5
                                                   1st Qu.:2.581
```

Median :3.325

3rd Qu.:3.610

:3.217

:5.424

Mean

 ${\tt Max.}$

Median :123.0

3rd Qu.:180.0

:146.7

:335.0

Mean

Max.

Min. :3.000 1st Qu.:3.000 Median :4.000 Mean :3.688 3rd Qu.:4.000 Max. :5.000

The variable gear only has three values which seems to suggest that we should treat it as a categorical variable, not numerical. We can tell R to do this by specifying that gear is a factor. This will tell R to create dummy variables when making the model.

```
new_gear <- factor(gear)</pre>
```

We check the correlation between the other variables.

```
cor( data.frame(mpg, disp, hp, wt) )
```

```
disp
                                    hp
                                                wt
            mpg
      1.0000000 -0.8475514 -0.7761684 -0.8676594
mpg
disp -0.8475514
                 1.0000000
                             0.7909486
                                        0.8879799
     -0.7761684
                 0.7909486
                             1.0000000
                                        0.6587479
hp
wt
     -0.8676594
                 0.8879799
                             0.6587479
                                        1.0000000
```

These all seem to have fairly stron linear relationships to mpg.

We will the scatterplots now.

plot(mpg ~ disp)

plot(mpg ~ hp)

Displacement and horsepower both show some non-linearity. We will transform both and then attempt to build the model.

```
new_disp <- log(disp)
new_hp <- log(hp)

plot(mpg ~ new_disp)</pre>
```


These scatterplots show a much more linear relationship. We check the correlation coefficients to verify: cor(data.frame(mpg, new_disp, new_hp, wt))

```
new_disp
                                   new_hp
                mpg
          1.0000000 -0.9071119 -0.8487707 -0.8676594
mpg
new_disp -0.9071119
                     1.0000000
                                0.8617723
                                            0.8845389
                                1.0000000
new_hp
         -0.8487707
                     0.8617723
                                            0.7158277
                                0.7158277
         -0.8676594
                     0.8845389
                                            1.0000000
wt
```

The correlation coefficients for mpg with both new_disp and new_hp have increased.

Building the Model

Finally we are ready to generate our first model. We will use all variables initially then use backward elimnation to remove unnecessary variables.

```
mpgModel <- lm( mpg ~ new_disp + new_hp + wt + new_gear)</pre>
summary(mpgModel)
Call:
lm(formula = mpg ~ new_disp + new_hp + wt + new_gear)
Residuals:
   Min
             1Q Median
                             3Q
                                    Max
-3.2294 -1.1997 -0.4561 0.6932 4.8744
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
             70.080
                         8.964
                                7.818 2.71e-08 ***
                          2.569 -1.221
new_disp
                                          0.2329
              -3.137
              -5.703
                          2.255 -2.529
                                          0.0178 *
new_hp
wt
             -1.720
                          1.032 -1.666 0.1077
             -0.715
                          1.461 -0.489
                                          0.6287
new_gear4
                          1.734
                                0.860
                                         0.3976
new_gear5
              1.491
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.313 on 26 degrees of freedom
Multiple R-squared: 0.8764,
                                Adjusted R-squared: 0.8527
F-statistic: 36.88 on 5 and 26 DF, p-value: 5.28e-11
The variable new_gear is the least significant, so we remove it first.
mpgModel <- lm( mpg ~ new_disp + new_hp + wt)</pre>
summary(mpgModel)
Call:
lm(formula = mpg ~ new_disp + new_hp + wt)
Residuals:
   Min
             1Q Median
                             3Q
                                    Max
-3.0949 -1.4954 -0.3474 0.7356 4.6082
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 63.8126
                        5.6977 11.200 7.45e-12 ***
new disp
            -3.0519
                         2.1093 - 1.447
                                          0.1590
new_hp
             -4.1506
                         1.7443 -2.380
                                          0.0244 *
wt
             -2.2784
                         0.9213 -2.473 0.0197 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Residual standard error: 2.296 on 28 degrees of freedom Multiple R-squared: 0.8689, Adjusted R-squared: 0.8549 F-statistic: 61.88 on 3 and 28 DF, p-value: 1.791e-12
```

The transformed displacement does not seem significant. We remove it.

```
mpgModel <- lm( mpg ~ new_hp + wt)
summary(mpgModel)</pre>
```

```
Call:
```

```
lm(formula = mpg ~ new_hp + wt)
```

Residuals:

```
Min 1Q Median 3Q Max -3.4130 -1.2642 -0.3679 0.7902 5.0780
```

Coefficients:

Residual standard error: 2.339 on 29 degrees of freedom Multiple R-squared: 0.8591, Adjusted R-squared: 0.8494 F-statistic: 88.44 on 2 and 29 DF, p-value: 4.542e-13

Both of the remaingin variables and the model overall are significant.

Model Assumptions

We will check model assumptions to see if any more transformations are necessary.

```
plot(resid(mpgModel) ~ fitted(mpgModel), main="Residual vs Fitted")
```

Residual vs Fitted

This is not terrible, but not perfect either. There seems to be some nonlinearity, but the variance seems roughly equal.

library(car) # this library lets me make the nice plot with dashed lines
qqPlot(resid(mpgModel))

[1] 20 17

There are a several points on the large end that leave the dashed lines. This combined with the residual

plot above indicates a data transformation would be helpful. We will perform a log transformation on the response variable.

```
newMpg <- log(mpg)
new_mpgModel <- lm(newMpg ~ new_hp + wt)
summary(new_mpgModel)</pre>
```

Call:

lm(formula = newMpg ~ new_hp + wt)

Residuals:

Min 1Q Median 3Q Max -0.16296 -0.07799 -0.02210 0.06837 0.25985

Coefficients:

Residual standard error: 0.1043 on 29 degrees of freedom Multiple R-squared: 0.8852, Adjusted R-squared: 0.8773 F-statistic: 111.8 on 2 and 29 DF, p-value: 2.338e-14

So far the model looks better with a slightly larger adjusted R-squared and even smaller p-values for several of the variables. Let's check the model assumptions with some residual plots.

```
plot(resid(new_mpgModel) ~ fitted(new_mpgModel))
```


qqPlot(new_mpgModel)

[1] 17 25

These both seem improved. There is no more non-linearity in the residual plots. The normal-probability plot has most of the points very close to the straight line. This seems to be the best model we can construct from this dataset.

Conclusion

Overall the model meets all assumptions and the R-squared value is rather high at 88%. We should be confident in using this model to predict mpg for cars based on their weight and horsepower.