通二 HW4

(b) $s_i(t)$ and $s_i(t)$ are orthogonal $(=>\int_0^{T_b}s_i(t)s_i(t)dt=0 (=>P=sinc(2\pi of T_b)=0)$ $=>\frac{1}{2T_b}$ is the minimum value of of sta $s_i(t)$ and $s_i(t)$ are orthogonal (C) Let (\$1, \$2) be an orthonormal basis st 4,1t) = 5,1 \$, (t) , where 5,1 = (5,7t) ot) = JE, (21t) = (321) + (322) + (312)Then $P = \frac{\int_0^{\text{Tb}} \zeta_1(t) \zeta_2(t) dt}{\int_0^{\text{Tb}} \zeta_1^2(t) dt} = \frac{\int_0^{\text{Tb}} (\zeta_1(\phi_1(t))) (\zeta_2(\phi_1(t)) + \zeta_2(\phi_1(t))) dt}{E_b} = \frac{\zeta_1(\zeta_2)}{E_b}$ => 51.121 = Ebp => 51 = JE, P => $\frac{1}{2} \frac{1}{12} \frac{1}{12} = \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} = \frac{1}{12} \frac{1}{12}$ => || 51-52|| = J2(1-P)Eb => $\rho_e = \frac{1}{2} \operatorname{erfc}\left(\frac{||f_i - f_i||}{2\sqrt{N_s}}\right) = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{||f_i - f_i||}{2N_s}}\right)$ => Pe has minimum value <=> Phas minimum value has minimum -0.2172 at $sf = \frac{0.7151}{T_b}$ (These are approximately value evaluated by Matlab => of = 0.715/ minimizes the average probability of symbol error # The average probability of symbol error of BPSK is given by Pe=生ertc 原 To make this FSK has the same noise performance, it requires $\frac{E_b}{N_0}$ increasing by the factor $\frac{z}{1-p}$, where $\rho = -0.2172$

