UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ÁLGEBRA Y ÁLGEBRA LINEAL 520142

Solución al problema de las matrices mágicas

En este problema estudiaremos una clase particular de matrices, llamadas "mágicas". Definamos el vector $\mathbf{1} = (1, 1, 1..., 1) \in \mathbb{R}^n$. Una matriz, $M = (m_{ij}) \in \mathcal{M}_n(\mathbb{R})$, se dice mágica si y sólo si existe $\lambda \in \mathbb{R}$ tal que se tienen las siguientes cuatro propiedades:

$$\mathbf{i)} \ M\mathbf{1}^t = \lambda \mathbf{1}^t \qquad \mathbf{ii)} \ \mathbf{1}M = \lambda \mathbf{1} \qquad \mathbf{iii)} \ tr(M) = \lambda \qquad \mathbf{iv)} \ \sum_{i=1}^n m_{i(n-i+1)} = \lambda$$

En palabras más simples, M es mágica si al sumar sus filas, sus columnas y sus dos diagonales se obtiene siempre el mismo número: λ . Por ejemplo, la siguiente matriz es mágica:

$$\left(\begin{array}{ccccc}
16 & 3 & 2 & 13 \\
5 & 10 & 11 & 8 \\
9 & 6 & 7 & 12 \\
4 & 15 & 14 & 1
\end{array}\right)$$

5.1) Muestre que el conjunto de las matrices mágicas es un subespacio vectorial del espacio de las matrices cuadradas reales.

Solución. Sea $V = \{A \in \mathcal{M}_n(\mathbb{R}) \mid (\exists \lambda \in \mathbb{R}) \ A\mathbf{1}^t = \lambda \mathbf{1}^t, \ \mathbf{1}A = \lambda \mathbf{1}, \ tr(A) = \lambda, \sum_{i=1}^n a_{i(n-i+1)} = \lambda \}$, el conjunto de las matrices mágicas. Basta verificar las 3 propiedades básicas :

I. $\theta \in V$ o $V \neq \emptyset$: la matriz nula θ verifica trivialmente las propiedades de ser matriz mágica con $\lambda = 0$

1

i)
$$\theta \mathbf{1}^t = 0 \mathbf{1}^t$$
 ii) $\mathbf{1}\theta = 0 \mathbf{1}$ iii) $tr(\theta) = 0$ iv) $\sum_{i=1}^n \theta_{i(n-i+1)} = 0$.

- Sean $A = (a_{ij}), B = (b_{ij})$ dos matrices mágicas con $tr(A) = \lambda_1$ y $tr(B) = \lambda_2$ entonces A + B tambien es mágica con $\lambda = \lambda_1 + \lambda_2$:

 - i) $(A+B)\mathbf{1}^t = A\mathbf{1}^t + B\mathbf{1}^t = \lambda_1\mathbf{1}^t + \lambda_2\mathbf{1}^t = (\lambda_1 + \lambda_2)\mathbf{1}^t$ ii) $\mathbf{1}(A+B) = (\lambda_1 + \lambda_2)\mathbf{1}$ iii) $tr(A+B) = \lambda_1 + \lambda_2$ iv) $\sum_{i=1}^n a_{i(n-i+1)} + b_{i(n-i+1)} = \lambda_1 + \lambda_2$.
- III. Sean $A = (a_{ij})$, matriz mágica con $tr(A) = \lambda$ y $\alpha \in \mathbb{R}$. Entonces αA también es mágica:
 - $\mathbf{i)}\;(\alpha A)\mathbf{1}^t=(\alpha \lambda)\mathbf{1}^t\qquad \mathbf{ii)}\;\mathbf{1}(\alpha A)=(\alpha \lambda)\mathbf{1}\qquad \mathbf{iii)}\;tr(\alpha A)=\alpha \lambda\qquad \mathbf{iv)}\;\sum_{i=1}^n(\alpha a)_{i(n-i+1)}=$ $\alpha\lambda$
- **5.2)** Encuentre una matriz mágica en $\mathcal{M}_n(\mathbb{R})$ distinta de θ .

Solución.

$$\begin{pmatrix}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{pmatrix}$$

En lo que sigue restringiremos nuestro estudio a las matrices mágicas de 3x3. Sea M_G el conjunto de matrices mágicas de 3x3. Hay una matriz mágica muy simple:

$$C = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$$

Considere los siguientes subespacios: $M_0 = \{M \in M_G | M \mathbf{1}^t = 0\}$ y $M_1 = <\{C\}$

5.3) Demuestre que $M_0 \oplus M_1 = M_G$.

Solución. Por un lado C es una matriz mágica, con lo cuál $M_1 = \langle \{C\} \rangle$ es s.e.v. de M_G , y por otro lado M_0 también es s.e.v. de M_G , por definición. Luego, $M_0 + M_1$ es s.e.v.de M_G . Para probar que $M_0 \oplus M_1 = M_G$ basta verificar entonces que :

I. todo matriz mágica puede escribirse como un elemento de $M_0 + M_1$. En efecto, sea $A \in M_G$, podemos descomponer:

$$A = \left(A - \frac{tr(A)}{3}C\right) + \frac{tr(A)}{3}C.$$

Por un lado $\frac{tr(A)}{3}C \in \{C\} >= M_1$, y por otro $A - \frac{tr(A)}{3}C$ resulta ser una matriz mágica (combinación lineal de dos matrices mágicas) tal que

$$tr(A - \frac{tr(A)}{3}C) = tr(A) - \frac{tr(A)}{3}tr(C) = tr(A) - \frac{tr(A)}{3}3 = 0$$

Luego por ser mágica, se tiene que $(A - \frac{tr(A)}{3}C)\mathbf{1}^t = \lambda\mathbf{1}^t$, con $\lambda = tr(A - \frac{tr(A)}{3}C) = 0$ con lo cuál $(A - \frac{tr(A)}{3}C) \in M_0$. Es decir $A = (A - \frac{tr(A)}{3}C) + \frac{tr(A)}{3}C \in M_0 + M_1$.

II. La suma es directa, es decir $M_0 \cap M_1 = \{\theta\}$. En efecto, Sea $A \in M_0 \cap M_1$. Se tiene entonces que $A = \alpha C$ para algún $\alpha \in \mathbb{R}$. Como además $A\mathbf{1}^t = 0 \Rightarrow \alpha C\mathbf{1}^t = 0 \Rightarrow \alpha n = 0 \Rightarrow \alpha = 0 \Rightarrow A = \theta$.

Considere el espacio de las matrices simétricas (U) y el espacio de las matrices antisimétricas (W).

5.4) Muestre que $W \cap M_G \subset M_0$.

Solución. Sea $A \in W \cap M_G$. Se tiene que $A = -A^t$ (por definición de matriz antisimétrica), luego usando la definición de matriz mágica se tiene que

$$1A = \lambda 1 = (\lambda 1^t)^t = (A1^t)^t = 1A^t = -1A$$

con lo cúal $2\mathbf{1}A=0$, es decir $\mathbf{1}A=\lambda\mathbf{1}=0$ lo que implica que $\lambda=0$, y por lo tanto $A\in M_0$.

Sean
$$S = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$
 y $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$

5.5) Muestre que $(W \cap M_0) = <\{A\}>$.

Solución. Es fácil constatar que A es una matriz mágica, antisimétrica y tal que tr(A) = 0. Con lo cuál $<\{A\}> \subset (W\cap M_0)$. Probemos que $(W\cap M_0)\subset <\{A\}>$

Sea entonces $M \in (W \cap M_0)$. Como M es antisimétrica de 3×3 se escribe necesariamente de la forma :

$$M=\left(egin{array}{ccc} 0&a&b\ -a&0&c\ -b&-c&0 \end{array}
ight)$$

Como además $M \in M_0$, se tiene que $M\mathbf{1}^t = 0$, es decir a = -b, a = c, y b = -c, o sea

$$M = \begin{pmatrix} 0 & c & -c \\ -c & 0 & c \\ c & -c & 0 \end{pmatrix} = c \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

Esto es M = cA, con lo cual $M \in \{A\} >$, y $(W \cap M_0) \subset \{A\} >$.

5.6) Muestre que $(U \cap M_0) = \langle \{S\} \rangle$.

Solución. Es fácil constatar que S es una matriz mágica, simétrica y tal que tr(A) = 0. Con lo cuál $\langle \{S\} \rangle \subset (U \cap M_0)$. Probemos que $(U \cap M_0) \subset \langle \{A\} \rangle$

Sea entonces $M \in (U \cap M_0)$. Como M es simétrica de 3×3 se escribe necesariamente de la forma :

$$M = \left(egin{array}{ccc} a & b & c \ b & d & e \ c & e & f \end{array}
ight)$$

Como además $M \in M_0$, se tiene que M es mágica y $M\mathbf{1}^t = 0$, es decir

$$\begin{cases} a+b+c = 0 \\ b+d+e = 0 \\ c+e+f = 0 \\ a+d+f = 0 \\ c+d+c = 0 \end{cases}$$

Resolviendo este sistema de ecuaciones en términos de f se tiene que $a=e=-f,\,b=f$ y $c=d=0,\,$ con lo cuál

$$M = \begin{pmatrix} -f & f & 0 \\ f & 0 & -f \\ 0 & -f & f \end{pmatrix} = f \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & -1 \\ o & -1 & 1 \end{pmatrix}$$

Esto es M = fS, con lo cual $M \in \{S\} >$, y $(U \cap M_0) \subset \{S\} >$.

5.7) Usando que $W \oplus U = \mathcal{M}_3(\mathbb{R})$, concluya que $M_G = \langle \{S, A, C\} \rangle$.

Solución. Como S, A, C son todas matrices mágicas, entonces $\langle \{S, A, C\} \rangle \subset M_G$. Probemos que $M_G \subset \langle \{S, A, C\} \rangle$.

Sea $M \in M_G$. Usando **5.3**, se tiene que M = D + E, con $D \in M_0$ y $E \in M_1$. Por definición de M_1 , se tiene que $E = \alpha C$, para algún $\alpha \in \mathbb{R}$. Por otro lado usando la propiedad $W \oplus U = \mathcal{M}_3(\mathbb{R})$, se tiene que la matriz $D \in M_0$ se puede descomponer en D = F + G, con $F \in U$ y $G \in W$. Ahora bien, como las suma entre U y W es directa, entonces la descomposición es única y es facil verificar que :

$$F = \frac{D + D^t}{2}, \qquad G = \frac{D - D^t}{2}$$

Si D es una matriz mágica, entonces D^t también lo es y si $D \in M_0 \Rightarrow D^t \mathbf{1}^t = (\mathbf{1}D)^t = (\lambda \mathbf{1})^t = 0$, pues $\lambda = tr(D) = 0$ para $D \in M_0$. Con lo cuál $D^t \in M_0$. Como F, G son combinaciones lineales de matrices de M_0 , entonces también están en M_0 , y por lo tanto

$$F \in U \cap M_0, \qquad G \in W \cap M_0$$

Luego usando **5.5**, se tiene que $G = \beta A$, y usando **5.6** se tiene que $F = \gamma S$. En definitiva

$$M = \alpha C + \beta A + \gamma S.$$

Es decir $M_G = \langle \{S, A, C\} \rangle$.

Por otro lado es fácil comprobar que S, A, C son matrices linealmente independientes. Con lo que se concluye que M_G es un s.e.v de dimensión 3, en el espacio $\mathcal{M}_3(\mathbb{R})$ de dimensión iguál a 9.

Comentarios:

En este ejercicio se estudió un problema relatívamente dificil: "caracterizar las matrices mágicas". Para abordar el problema se estudiaron los casos particulares de las matrices mágicas simétricas y las matrices mágicas antisimétricas. Esto transformó el problema general, que pedía estudiar una matriz con 9 coeficientes independientes (un sistema con 9 incógnitas), en dos problemas más pequeños, uno con 6 incógnitas (matrices simétricas) y otro con 3 incógnitas (matrices antisimétricas).

No hubo pérdida de generalidad gracias a que toda matriz mágica (y toda matriz en general) se escribe como suma de una simétrica y otra antisimétrica. Esto justifica el que, en este caso, nos podamos restringir y estudiar sólo las matrices simétricas y antisimétricas.

Bibliografía:

- 1) Este y otros problemas similares se pueden encontrar en el libro "Algebra" de Eric Goles Chacc.
- 2) En la página web :

http://bayledes.free.fr/carres_magiques/Carres_magiques_2.html

se puede encontrar una demostración para el caso general, de matrices mágicas de $n \times n$ (en este caso la dimensión es iguál a $(n-1)^2-1$).

MSC/AGS/msc/ags.-(16/10/2003)