

Efficient Evidence Accumulation Clustering for large datasets

Diogo Silva¹, Helena Aidos² and Ana Fred²

¹Portuguese Air Force Academy, Sintra Portugal ²Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal dasilva@academiafa.edu.pt, {haidos, afred}@lx.it.pt

INTRODUCTION

- EAC is a robust ensemble method but its computational complexity restricts its use to small datasets.
- We propose an optimized implementation of the different EAC steps for faster execution and decreased memory usage.

VALIDATION AND SPEED-UP

- The clustering accuracy of the optimized version relative to the original on several small benchmark datasets is negligible.
- Speed-up over the original version on small datasets varied between 6 and 200 on the different EAC phases.

RULES

Four rules for the minimum and maximum number of clusters of the ensemble were tested.

Evolution of K_{min} with different rules

10⁵ 10⁴ 10³ 10² 10¹ 10⁰ - 2sqrt 10⁻¹ - sk=300, th=30% - sk=sqrt2, th=30% - sqrt 10⁻³ 10³ 10⁴ 10⁵ 10⁶ 10⁷ Number of samples

(A) Production of the clustering ensemble

PRODUCTION OF ENSEMBLE

Challenge O(n²) space complexity

Co-association matrix

Partition P

Solution CSR sparse matrix with optimized building

COMBINATION OF PARTITIONS

RECOVERY OF FINAL PARTITION

Challenge
O(n²) space
complexity

Single-Link (SL)

SolutionMST based SL
MST disk-based SL

CONCLUSIONS

- •EAC is now applicable to a wider spectrum of datasets.
- •Speed-up from 6 to 200 compared to original implementation on the different phases.