

Loan
Repayment
Prediction

Problem Statemen

Build a credit score using Machine Learniand that indicates the likelihood of loan repayment

What: Methodology leveraged by Financial Institutions to determine the risk of non payment associated with loans

Why is it used?

- Credit scoring facilitates informed decision-making throughout every stage of the customer lifecycle.
- It eliminates the necessity for manual reviews of each loan applicant.
- Provides a clear insight into the reasons for denial or approval, leading to a more effective business strategy.

How is it used?

- Credit scores play a critical role in assessing various aspects of loan portfolios.
- Approval Is the loan eligible for approval?
- Pricing What is the appropriate interest rate?
- Cross-Sell Is there an opportunity to offer another loan?
- Refinance Is a change in interest rate warranted?

Scorecards are deployed to take Model Driven decisions in an intuitive manner

Variable	Value Bucket	Scorecard Point
AGE	<22	100
AGE	22<=AGE<26	120
AGE	26<=AGE<29	185
AGE	29<=AGE<32	200
AGE	32<=AGE<36	210
AGE	36<=AGE<42	225
AGE	>=42	250
HOME STATUS	OWN	225
HOME STATUS	RENT	110
INCOME	<10000	120
INCOME	10000<=INCOME<17000	140
INCOME	17000<=INCOME<25000	180
INCOME	25000<=INCOME<35000	200
INCOME	35000<=INCOME<58000	225
INCOME	58000<=INCOME<100000	230

Steps to build a Scorecard

- Exploratory Data Analysis
- Variable Discretization
- WOE Substitution and IV Screening
- Model Fitting and Validation
- Score Scaling from Model
 Parameters
- Drive Decisions through Scores

Dataset and Description

VARIABLE	DESCRIPTION
	The month which the loan was funded
Application	The number of payments on the loan. Values are in months and can be either 36 or 60.
	The number of inquiries in past 6 months (excluding auto and mortgage inquiries)
Bureau	The total number of credit lines currently in the borrower's credit file
	Number of collections in 12 months excluding medical collections
Collections	post charge off collection fee
	The listed amount of the loan applied for by the borrower. If at some point in time, the credit department reduces the loan amount, then it will be reflected in this value.
Credit Line	The month the borrower's earliest reported credit line was opened
	The number of 30+ days past-due incidences of delinquency in the borrower's credit file for the past 2 years
Deliquency	The number of months since the borrower's last delinquency.
	The home ownership status provided by the borrower during registration. Our values are: RENT, OWN, MORTGAGE, OTHER.
Demographics	The state provided by the borrower in the loan application
	Employment length in years. Possible values are between 0 and 10 where 0 means less than one year and 10 means ten or more years.
Employment	The job title supplied by the Borrower when applying for the loan.*
	Indicates if income was verified by LC, not verified, or if the income source was verified
Income	The combined self-reported annual income provided by the co-borrowers during registration
	Remaining outstanding principal for portion of total amount funded by investors
Outstanding	Remaining outstanding principal for total amount funded
	Last total payment amount received
Payment	Next scheduled payment date
	Interest Rate on the loan
Pricing	Interest received to date
	The lower boundary range the borrower's FICO at loan origination belongs to.
Risk Score	The lower boundary range the borrower's last FICO pulled belongs to.
	Revolving line utilization rate, or the amount of credit the borrower is using relative to all available revolving credit.
Risky Behavior	Total credit revolving balance
Status of Loan (Dependent)	Status of Loan

Defining Dependent Variable and Cleaning of Independent Variables

Example of Outlier Treatment

Example of Binning Method

Import pandas as pd df ['var_bin']=pd.qcut(df['var'].rank(method='first').values,10,duplicates='drop').codes+1 df.groupby('var_bin')['Dependent'].mean()

What is the nature of Bivariate Relationship of variables

- Create buckets of independent variables based on ranking methods
- This process allows us to understand feature performance better
- The insights from this part of the analysis can be useful in devising portfolio risk strategies

Capped_Age	Cappped_Age_Bin
21	A:0-22
23	A:22-26
27	A:26-29
28	A:29-32
33	A:32-36
34	A:36-42
60	A:42+

Weight of Evidence Substitution

Weight of Evidence is used for substituting in place of categorical values for Variable Bins

Calculation Logic

WOE = Ln Distribution of Good 100 Cases Distribution of Bad Cases

Uses and Interpretation

WOE measures the strength of a bin in differentiating the Good and Bad accounts

WOE values are substituted in place of the Bin Labels across variables

WOE < 0 indicates that the variable bin is captures higher proportion of bad accounts

The overall trends for WOE across should be logical and we should ideally observe a monotonic trend

Information Value of Variables

Information value is the measure of overall predictive power of the variables and is very useful for feature selection

Calculation Logic

IV = Sum (Good Case % - Bad CaseVOE
%)

IV Predictive Power

<0.02	Not Useful
0.02 to 0.1	Weak Predictor
0.1 to 0.3	Medium Predictor
0.3 to 0.5	Strong Predictor
>0.5	Suspicious

Example (WOE & IV)

Age Bins	Obs Count	Bad	Good	Bad Distribution	Good Distribution	NOE	IV
0-30	10,758	1,244	9,514	7%	7%	-5.36	0.02
			21,94				
30-40	24,339	2,390	9	16%	16%	-3.4	0.02
			32,14				
40-50	35,037	2,893	4	23%	23%	-1.68	0.01
			32,65				
50-60	34,806	2,149	7	23%	23%	0.56	0
			26,47				
60-70	27,424	952	2	18%	19% -	3.4-	0.02
			12,40			V = 0	.09
70-80	12,700	298	2	8%	9%	4.56-	
80+	4,447	89	4,358	3%	3%	4.91	0.01

Model Fitting on prepared data

Parametric Approach: Logistic Regression Classifier to be used to fit the training data and model to be finalized post iterations

Logistic Regression Model

- Dependent Variable Categorical (Good/Bad)
- Relates Log of Odds to a Linear Combination of Predictors
- Final model have statistically significant predictors
- LR Coefficients to be estimated from the training data to be used for developing Scorecard
- The Scores are further scaled to fall within a certain range of values

Model Structure

$$\log\left(\frac{p(y=1)}{1-(p=1)}\right) = \beta_0 + \beta_1 \cdot x_2 + \beta_2 \cdot x_2 + \dots + \beta_p \cdot x_m$$

Predicted Probabilities Describe a Sigmoidal Curve

How to Measure Classificatio n Performance

Confusion

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)	
	Class=No	c (FP)	d (TN)	

• Accuracy $\frac{TP + TN}{TP + TN + FP + FN}$

Precision

$$\frac{TP}{TP + FP}$$

Recall

$$\frac{TP}{TP + FN}$$

F Score

F-measure (F) =
$$\frac{1}{\left(\frac{1/r+1/p}{2}\right)}$$

$$\frac{2TP}{2TP + FP + FN}$$

Score Scaling

Scores for each variable bin is calculated as follows

Score
$$\beta * WOE + \alpha$$
 N * Factor + Offset _ /N

Where

B Logistic Regression coefficient of the variable

Logistic Regression Intercept

Number of Variables in the Model

Factor Points to double the odds / Ln (2)

Offset Score – { Factor * In (Odds) }

- We choose to scale the points such that a total score of 600 points corresponds to good/bad odds of 50 to 1
- An increase of the score of 20 points corresponds to a doubling of the good/bad odds.

Factor
$$-20/ln(2) = 28.85$$

Offset
$$-600 - 28.85 * Ln (50) = 28.85$$

Decision Making from Scorecard **Considerations for Score Usage**

- Choosing a score cut off that is appropriate for the Loan Product
- For Example: Secured Loans may be approved for a lower score than unsecured loans
- Scores not only are used for assessment but also for predictive purposes
- The Model scores combined with business considerations are used for final decision making

An Example

Characteristic	Attribute	Scorecard Points				
AGE	-22	100	Let cutoff=	600		
AGE	22<=AGE<28	120		_		
AGE	26<=AGE<20	185	So, a new customer applies for			
AGE	29<+AGE<32	200	credit			
AGE	JZ<*AGE<37	210				
AGE	37<=AGE<42	225	AGE	35	210 points	
AGE	>=42	250		1727		
HOME	OWN	225	1000		225 points	
HOME	RENT	110	HOME		225 points	
INCOME	<10000	120				
INCOME	10000< =NCOME<17000	140	Total		660 points	
INCOME	17000 INCOME -28000	100	an mana			
INCOME	28000 ← INCOME < 35000	200	Decision:		GRANT CREDIT	
INCOME	35000<=INCOME<42000	225				
INCOME	42000<=INCOME<58000	230				
INCOME	>=58000	260				

