⑫実用新案公報(Y2) 平4-42781

®Int. Cl. 5

識別配号

庁内整理番号

2043公告 平成4年(1992)10月9日

G 01 R 31/26

G 8411-2G

(全5頁)

日考案の名称 IC試験装置

> ②実 頣 昭61-40519

多公 開 昭62-152276

包出 顧 昭61(1986)3月19日 @昭62(1987) 9月26日

東京都練馬区旭町1丁目32番1号 株式会社アドバンテス 何 考案 者 吉 \blacksquare 健 嗣 卜内

株式会社 アドパンテ 東京都練馬区旭町1丁目32番1号 の出 質の 人

スト

79代 理 人 弁理士 草野 審 杏 官 横林 秀治郎

1

2

匈実用新案登録請求の範囲

ダイオードプリッジの一陽極陰極接続点に接続 され、そのダイオードブリッジの他の陽極陰極接 続点は終端抵抗器を通して終端電圧端子に接続さ 半導体スイツチを通じて第1電源端子に接続さ れ、陰極接続点は第2半導体スイツチを通して第 1電源端子の電源より低い電位の第2電源端子に 接続され、上記第1、第2半導体スイツチに対し て、同時にこれらを開閉制御する制御信号が与え 10 いる。 られるように構成されているIC試験装置。

考案の詳細な説明

「産業上の利用分野」

この考案は被試験集積回路の入出力兼用端子 とを接続状態と非接続状態とに切り替えられる IC試験装置に関する

「従来の技術」

IC試験装置は、被試験集積回路の入力端子に 力信号を観測し、その観測結果により被試験集積 回路の機能動作の良否を判定する。この際、正規 の出力信号を得るためには出力端子には終端抵抗 器を接続し、終端電圧端子に終端させる必要があ 子とを兼ね、適宜に入力端子機能と出力端子機能

とに切り替えて入出力動作をするようになつてい る場合がある。この場合、出力端子機能状態にあ るときには終端抵抗器を接続して終端させ、入力 端子機能状態にあるときには終端抵抗器を切り離 れ、上記ダイオードブリッジの陽極接続点は第1 5 す必要がある。このような終端抵抗器の接続と非 接続との切り替え操作をするために、被試験集積 回路の入出力端子とIC試験装置とを接続するビ ンエレクトロニクス回路では入出力兼用強子と終 嫦抵抗器との間にスイッチング回路を介在させて

> 第2図は、従来のIC試験装置におけるピンエ レクトロニクス回路の例を示す図である。

被試験集積回路DUTの各端子11は接続線1 2によりIC試験装置13の入出力端14に接続 と、その入出力兼用端子を終端させる終端抵抗器 15 さる (図では1つの端子11に対するもののみを 示す)。その端子11が入力端子機能状態にある 時には、リレー15が開に制御されて終端抵抗器 16が端子11からの接続線12から切り離さ れ、IC試験装置 1 3 の例えば50Ωの出力抵抗値を 信号を与え、その時に出力強子から出力される出 20 もつ出力回路 17 から試験信号が供給される。ま た、端子11が出力機能状態にある時には、リレ -15が閉に制御されて50Ωの終端抵抗器 16が 端子11からの接続線12に接続される。従つ て、被試験集積回路DUTの端子11から出力さ る。ところで集積回路の端子は入力端子と出力端 25 れる出力信号は終端抵抗器 16 で終端電圧端子 1 8に終端された状態の下でIC試験装置13の入

す。

3

力回路19に供給され、入力回路19は供給され た信号を比較電圧と比較し、その比較出力をIC 試験装置13は被試験集積回路DUTの正規の出 力信号として受け取ることが可能とされている。 「考案が解決しようとする問題点」

非試験集積回路の入出力兼用端子は被試験期間 中、入力端子機能と出力端子機能とに適宜に切り 換えて試験される。ここで用いられているリレー は機械的な開閉動作により接点を開閉させるが、 に遅いという問題がある。従つて、従来のIC試 験装置では、リレー11の開閉動作速度により被 試験集積回路の試験速度が決められ、高速動作で 試験を行うことができない。

「問題点を解決するための手段」

この考案では、このような従来のIC試験装置 の問題点を解決するもので、被試験集積回路の入 出力兼用端子に接続される終端抵抗器を、高速に 接続状態と非接続状態とに切り換え制御すること を可能とする。

即ち、入出力兼用端子の機能状態に応じて、そ の入出力兼用端子に接続されるべき終端抵抗器を 接続状態と非接続状態とに切り換え制御するスイ ツチング回路は、ダイオードブリッジを用いて構 成される。

入出力兼用端子からの接続線12はダイオード ブリッジの一方の陽極陰極接続点に接続され、他 方の陽極陰極接続点は終端抵抗器を介して終端電 圧端子に接続される。

また、ダイオードブリッジの陽極接続点は第1 半導体スイッチを介して第1電源端子に接続さ れ、陰極接続点は第2半導体スイツチを介して第 2電源端子に接続され、これら第1、第2半導体 スイッチを同時に制御してダイオードブリッジの 御する。この結果、ダイオードブリッジの2つの 陽極陰極間の導通、非導通伏態が制御され、よつ て入出力兼用端子と終端抵抗器との接続と非接続 との切り換え制御が電子回路的な速度で制御され る。

「実施例」

第1図はこの考案の実施例を示す回路図であ る。

第2図と対応する部分には同じ符号を付して示

この考案では、入出力兼用端子11の機能状態 に応じて、その入出力兼用端子 1 1 に接続される べき終端抵抗器16を非接続状態或いは接続状態 5 に制御するスイツチ回路にダイオードブリッジ2 1が用いられる。

被試験集積回路DUTの入出力兼用端子11か らの接続線12はIC試験装置13の試験信号入 出力端14に接続される。また、その接続線12 一般に機械的な動作は電気的な動作に較べて非常 10 には、その入出力兼用端子11が出力端子機能と される場合に、終端抵抗器 18 がダイオードブリ ツジ21を用いて構成されるスイツチング回路2 2を介して接続される。即ち、ダイオードブリッ ジ21を構成する第1ダイオード23の陽極と第 15 2ダイオード24の陰極との接続点25に入出力 兼用端子11からの接続線12が接続され、ダイ オードブリッジ21を構成する第3ダイオード2 6の陽極と第4ダイオード27の陰極との接続点 28に終端抵抗器 16の一端が接続され、その終 20 端抵抗器 1 6 の他端は終端電圧端子 1 8 とコンデ ンサ31とに接続される。コンデンサ31の他端 は接地される。

また、この第2ダイオード24の陽極と第4ダ イオード27の陽極との接続点32には第1半導 25 体スイツチ33が接続され、この陽極接続点32 は第1半導体スイツチ33を通して第1電源端子 34に接続される。第1半導体スイッチ33はこ の例ではPNP型のペア。トランジスタ35,3 6で構成され、その一方の第1トランジスタ35 30 のコレクタに第2、第4ダイオード24, 27の 陽極接続点32が接続され、第1トランジスタ3 5のエミツタと第2トランジスタ36のエミツタ との共通接続点37は抵抗器38を介して第1電 源端子34に接続される。第1、第2トランジス 第1電源端子側から第2電源端子側への電流を制 35 夕35,36のベースはそれぞれ抵抗器39,4 1を介して第1電源端子34に接続されると共 に、それぞれ第5,第6ダイオード42,43の 陰極に接続され、この第5、第6ダイオード4 2, 43を通して第1半導体スイツチ33の開閉 40 制御信号が供給されるように構成される。

> 第1ダイオード23の陰極と第3ダイオード2 8の陰極との接続点44は第2半導体スイツチ4 5が接続され、この陰極接続点44は第2半導体 スイツチ45を通して第2電源端子46に接続さ

れる。第2半導体スイツチ45はこの例では NPN型のペア・トランジスタ47, 48で構成 され、その一方の第3トランジスタ47のコレク タに第1、第3ダイオード23,26の陰極接続 点44が接続され、第3トランジスタ47のエミ 5 はLーレベルとなり、第4トランジスタ48のエ ツタと第4トランジスタ48のエミツタとの共通 接続点49は抵抗器51を介して第2電源端子4 6に接続される。第3、第4トランジスタ47, 48のペースはそれぞれ抵抗器52,53を介し れ第7、第8ダイオード54,55の陽極に接続 され、この第7、第8ダイオード54,55を介 して、第2半導体スイッチ45を開閉制御する制 御僧号が供給される。

圧V2は第1電源電圧V1よりも低い電源電位とさ れ、第1、第2半導体スイツチ33,45の閉閉 によりこのダイオードブリッジ21には第1電源 端子34から第2電源端子46に向けて電流が流 れているように構成される。

この考案では、第1、第2半導体スイツチ3 3, 45に対して、これらを同時に開閉制御する 制御信号が与えられる。第6、第7ダイオード4 3,54の陽極陰極接続点56と第5、第8ダイ オード42,55の陽極陰極接続点57とには、25 に供給する。 互いに符号の異なる相補的な制御信号が制御回路 58から相補信号出力回路59を介して供給され る。

相補信号出力回路59は互いに逆極性の信号、 5 8からHーレベルの信号が相補信号出力回路 5 8に与えられると、相補信号出力回路59はH-レベル信号を第6、第7ダイオード43。54の 陽極陰極接続点56に供給し、Lーレベル信号を 点57に供給する。陽極陰極接続点56にHーレ ベル信号が供給されると、第6ダイオード43の 陰極はHーレベルとなり、第2トランジスタのエ ミツターペース間は電位差がなくなり第2トラン ド54の陽極はHーレベルとなり、第3トランジ スタ47エミツターベース間には電位差が生じ第 3トランジスタ47は導通状態となる。

陽極陰極接続点57にLーレベル信号が供給さ

れると、第5ダイオード42の陰極はLーレベル となり、第1トランジスタ35のエミツターベー ス間には電位差が生じ第1トランジスタ35は導 通状態となる。一方の第8ダイオード55の陽極 ミツターペース間の電位差はなくなり第4トラン ジスタ48は非導通状態となる。

このように、第1、第3トランジスタ35,4 7は共に導通状態となり、従つて、ダイオードブ て第2電源端子46に接続されると共に、それぞ 10 リツジ21には第1トランジスタ35を介して第 1電源端子34から電流が供給され、第3トラン ジスタ47を介して第2電源端子46へ電流が流 れる。このように、ダイオードブリッジ21に電 流が流れている時はこのダイオードブリッジ21 この第2電源端子46に供給される第2電源電 15 の2つの陽極陰極接続点25及び28との間は導 通状態となり、従つて入出力兼用端子11からの 接続線12と終端抵抗器16とは接続状態ONと

> 次に、制御回路58からLーレベルの制御信号 20 が相補信号出力回路59に供給されると、相補信 号出力回路59の出力は反転し、Lーレベルの信 号を第6、第7ダイオード43,54の陽極陰極 接続点56に供給し、Hーレベルの信号を第5、 第8ダイオード42,55の陽極陰極接続点57

陽極陰極接続点56にLーレベル信号が供給さ れると、第6ダイオード43の陰極がLーレベル となり、第2トランジスタのエミツターベース間 は電位差が生じ第2トランジスタは導通状態とな つまり相補的な2つの信号を出力する。制御回路 30 る。一方、第7ダイオード54の陽極はLーレベ ルとなり、第3トランジスタ47の4エミッター ベース間には電位差がなくなり第3トランジスタ 47は非導通状態となる。陽極陰極接続点57に Hーレベルの信号が供給されると、第5ダイオー 第5、第8ダイオード42,55の陽極陰極接続 35 ド42の陰極はHーレベルとなり、第1トランジ スタ35のエミツターベース間には電位差がなく なり第1トランジスタ35は非導通状態となる。 一方の第8ダイオード55の陽極はHーレベルと なり、第4トランジスタ48のエミツターベース ジスタは非導通状態となる。一方、第7ダイオー 40 間には電位差が生じ第4トランジスタ48は導通 状態となる。

> 従つて、第1、第3トランジスタ35. 47は 非導通状態となり、ダイオードブリッジ21には 電流は流れない。ダイオードブリッジ21の陽極

接続点32と陰極接続点44との間に電流が流れ ないと、このダイオードブリツジ21の2つの陽 極陰極接続点25.28との間は非導通状態とな り、従つて、入出力兼用端子11からの接続線1 2と終端抵抗器 16とは非接続状態OFFとされ 5 る。

このダイオードブリッジ21の2つの陽極陰極 接続点25,28間のON状態からOFF状態へ、 或いは又OFF状態からON状態への変換動作は、 制御回路58からの信号制御により行われ、電子 10 的なON-OFF制御が実現され、従つて、電子回 路的な高速動作を行わせることが可能である。

以上では、ダイオードブリッジで構成されるス イッチング回路は入出力兼用端子に接続れるとし 端子及び信号を出力するだけの出力端子に接続さ れる入力或いは出力端にも適用され、試験期間中 ダイオードブリッジをOFFに制御或いはONに制 御させておいても何等差し支えない。

「考案の効果」

非試験集積回路の入出力端子が接続される従来の IC試験装置のピンエレクトロニクス装置ではリ レーを制御することにより、その機械的な接点の 開閉動作をさせ、終端抵抗器との接続状態と非接 オードブリッジの2つの陽極陰極接続点を介して 終端抵抗器を接続する構成とした。そして、その ダイオードブリッジの陽極接続点と陰極接続点と の間を流れる電流を半導体スイツチにより制御す 状態を制御し、終端抵抗器との接続と非接続を切 り替えるように構成した。従つて、ダイオードブ リッジの電子的な開閉動作で終端抵抗器の接続と

非接続の切り替え制御が可能になり、よつて、被 試験集積回路の高速動作下での試験を行うことが できるようになつた。

皮面の簡単な説明

第1図はこの考案の実施例でIC試験装置と被 試験集積回路の端子との間を接続するピンエレク トロニクスの例を示す回路図、第2図は従来の IC試験装置のピンエレクトロニクスの例を示す 図である。

1 …… 入出力端子、12 …… 接続線、13 …… IC試験装置、14……入出力端、15……リレ 一、16······終端抵抗器、17······出力回路、1 8 ……終端電圧端子、19 ……入力回路、21 … ・・・ダイオードブリッジ、22……スイツチング回 て説明してきたが、信号を供給されるだけの入力 15 路、23……第1ダイオード、24……第2ダイ オード、25……陽極陰極接続点、26……第3 ダイオード、27……第4ダイオード、28…… 陽極陰極接続点、31……コンデンサ、32…… 陽極接続点、33……第1半導体スイツチ、34 20 ……第1電源端子、35……第1トランジスタ、 36……第2トランジスタ、37……エミツタの 共通接続点、38……抵抗器、39……抵抗器、 4 1 ……抵抗器、4 2 ……第5ダイオード、43 ·····第6ダイオード、44·····陰極接続点、45 続状態とを切り変えていたが、この考案ではダイ 25 ……第2半導体スイツチ、46……第2電源端 子、47……第3トランジスタ、48……第4ト ランジスタ、49……エミツタの共通接続点、5 1 ……抵抗器、5 2 ……抵抗器、5 3 ……抵抗 器、54……第7ダイオード、55……第8ダイ ることによって2つの陽極陰極接続点の間の導通 30 オード、56……陽極陰極接続点、57……陽極 陰極接続点、58……制御回路、59……相補信 号出力回路。

