The Kth maximum

+ 30.0

+ 30.0

You are given a 2D matrix A of size $N \times M$. The XOR(i,j) value is defined for a pair (i,j) as the bitwise XOR of all the cells A_{yy} from A_{11} to A_{ij} where $\Omega \leq x \leq \Omega$ and $\Omega \leq y \leq D$. Find the pair (i, j) with the k^{th} maximum XOR(i, j) value among all possible pairs. If multiple such pairs (i, j) exist, then print the smallest one

Note

- If more than one (i, j) pair has the same XOR(i, j) value, then one having the smallest i or if the same i is there then the smallest j is considered to be the smallest.
- · 1 based indexing is considered.

Input format

- . The first line has an integer T denoting the number of test cases. For each test case:
- ullet The first line of each test case contains two space-separated integer denoting N and M.
- ullet Next N lines of each test case have M space-separated integer denoting the elements of A.
- ullet The last line of each test case has an integer K.

Output format

Print (i, j) denoting the required answer for each test case in a new line,

Constraints

 $1 \le T \le 10$

$$1 \le N \times M \le 10^5$$

$$0 \leq A_{i,j} \leq 2^{31}$$

$$1 \le K \le N \times M$$

Sample Input 1

22

12 23

Sample output 1

