Aula Prática 4

Inteligência Artificial Aplicada

Prof. Dr. Luciano Frontino de Medeiros

Temas

- Problemas de otimização
- Funções objetivo de 5 e 10 variáveis.
- AG com permutação de 8 nós em um grafo.

Solucionando Equações com AG

 Certos problemas matemáticos que possuem métodos determinísticos ou analíticos de resolução a priori, são bons para comparar o desempenho de um AG na busca por soluções ótimas.

Exemplo: Otimização com 2 Variáveis

$$f(x) = 2 - (x-3)^2 - (y-2)^2$$

 Por métodos analíticos (ou mesmo por visualização), esta equação tem um máximo no ponto x=3 e y=2.

Gráfico

Classe Example1.java

```
public class Example1 {
    public static int MVAR = 2;
    public static int NEXEC = 1000;
    static Utility utility;
    static IFunctionFitness ff;

public static void main(String[] args) throws FileNotFoundException {
        utility = new Utility();
        PrintStream ps = new PrintStream(new FileOutputStream("Example1.txt", true));
        utility.printHeader(System.out, NVAR);
        ff = new FunctionFitness1();
        for(int j=0; j<NEXEC; j++) {
            GenAlg g = new GenAlg(60, 15, 2, 100000, 0.01, 0.6, 0.8, 1.9999, 40, false, ff);
            utility.printLine(System.out, j, g.fGen, g.maxFitness, g.indGlobalFitMax.xNorm);
            utility.printLine(ps, j, g.fGen, g.maxFitness, g.indGlobalFitMax.xNorm);
        }
        ps.close();
    }
}</pre>
```

Função Objetivo (1)

```
public class FunctionFitness1 implements IFunctionFitness {
    private double bias = 0.0; // Para ajustar valores para o fi
    private double f;

    public FunctionFitness1() {
     }

    public double process(double[] x, boolean normalized) {
        if(normalized) {
            return(function(x) + bias);
        } else {
            return(function(x));
        }
    }
}
```

Função Objetivo (2)

```
public void setMinMax(double[] xMin, double[] xMax) {
    double fmin, fmax;
    for(int i=0; i < xMin.length; i++) {
        xMin[i] = 0;
        xMax[i] = 6;
    }
    fmin = Math.abs(function(xMin));
    fmax = Math.abs(function(xMax));
    bias = fmin > fmax ? fmin : fmax;
}

public double function(double[] x) {
    f = 2 - Math.pow(x[0] - 3, 2) - Math.pow(x[1] - 2, 2);
    return(f);
}
```

Execução

#		Data	Hora	Gen	Fitness	×[6)] ×[1]
	0	8/03/2017	18:14:19	70	2,0000	3,00	1,99
	1	8/03/2017	18:14:19	117	2,0000	3,00	1,99
	2	8/03/2017	18:14:19	28	1,9999	3,00	1,99
	3	8/03/2017	18:14:19	254	2,0000	3,00	2,00
	4	8/03/2017	18:14:19	281	2,0000	3,00	2,00
	5	8/03/2017	18:14:19	328	1,9999	3,00	1,99
	6	8/03/2017	18:14:19	17	2,0000	3,01	2,00
	7	8/03/2017	18:14:19	75	1,9999	3,00	1,99
	8	8/03/2017	18:14:19	168	1,9999	3,00	1,99
	9	8/03/2017	18:14:19	40	2,0000	3,00	2,00
	10	8/03/2017	18:14:19	9	1,9999	3,00	1,99
	11	8/03/2017	18:14:19	657	2,0000	3,00	2,00
	12	8/03/2017	18:14:19	428	2,0000	3,00	2,00
	13	8/03/2017	18:14:20	132	2,0000	2,99	2,00
	14	8/03/2017	18:14:20	34	1,9999	3,00	1,99
	15	8/03/2017	18:14:20	52	1,9999	3,00	2,01

Exemplo: Otimização com 5 Variáveis

$$f(x) = 55 - (x_1 - 1)^2 - (x_2 - 3)^2 - (x_3 - 4)^2$$
$$-(x_4 - 5)^2 - (x_5 - 2)^2$$

 Por métodos analíticos (ou por visualização), esta equação tem um máximo no ponto (1,3,4,5,2)

Classe Example2.java

```
public class Example2 {
    public static int NVAR = 5;
    public static int NEXEC = 1000;
    static Utility utility;
    static IFunctionFitness ff;
    \textbf{public static void } \texttt{main}(\texttt{String}[] \texttt{ args}) \texttt{ throws } \texttt{FileNotFoundException } \{
        utility = new Utility();
         PrintStream ps = new PrintStream(new FileOutputStream("Example2.txt", true));
        utility.printHeader(System.out, NVAR);
         //utility.printHeader(ps, NVAR);
        ff = new FunctionFitness2();
         for(int j=0; j<NEXEC; j++) {</pre>
             GenAlg g = new GenAlg(60, 15, 5, 100000, 0.02, 0.6, 1.0, 54.9999, 42, false, ff);
             utility.printLine(System.out, j, g.fGen, g.maxFitness, g.indGlobalFitMax.xNorm);
             utility.printLine(ps, j, g.fGen, g.maxFitness, g.indGlobalFitMax.xNorm);
         ps.close();
```

Execução

```
Data Hora Gen Fitness x[0] x[1] x[2] x[3] x[4]
0 8/03/2017 18:25:08 58666 55,0000 1,00 3,00 4,00 5,00 2,00
 1 8/03/2017 18:25:09 10756 54,9999 1,00 3,01 4,00 5,00 2,01
 2 8/03/2017 18:25:10 18386 55,0000 1,00 3,00 4,00 5,00 2,01
 3 8/03/2017 18:25:11 22108 55,0000 1,00 3,00 4,00 5,00 2,00
4 8/03/2017 18:25:12 11179 55,0000 1,00 3,00 4,00 5,00 2,00
5 8/03/2017 18:25:12 5227 54,9999 1,00 3,00 4,00 4,99 2,00
 6 8/03/2017 18:25:12 1848 54,9999 1,00 3,00 4,00 5,00 2,01
 7 8/03/2017 18:25:14 27414 54,9999 1,00 2,99 4,00 5,00 2,00
 8 8/03/2017 18:25:15 7016 54,9999 1,00 3,00 4,00 5,00 1,99
9 8/03/2017 18:25:15 8796 54,9999 1,00 3,00 3,99 5,00 2,00
10 8/03/2017 18:25:16 11107 54,9999 1,00 2,99 4,00 4,99 2,00
11 8/03/2017 18:25:17 10011 54,9999 1,00 3,00 4,00 5,00 2,01
12 8/03/2017 18:25:17 5060 54,9999 0,99 3,00 4,00 5,00 2,00
13 8/03/2017 18:25:18 9299 54,9999 1,00 3,00 4,00 5,01 2,00
14 8/03/2017 18:25:18 1122 54,9999 1,00 3,00 4,00 4,99 2,00
15 8/03/2017 18:25:19 15434 55,0000 1,00 3,00 4,01 5,00 2,00
```

Exemplo: Otimização com 10 Variáveis

$$f(x) = \frac{611}{4} - (x_1 - 1)^2 - (x_2 - 3)^2 - (x_3 - 4)^2$$
$$-(x_4 - 5)^2 - (x_5 - 2)^2 - (x_6 - \frac{1}{2})^2 - (x_7 - \frac{3}{2})^2$$
$$-(x_8 - 2)^2 - (x_9 - 1)^2 - (x_{10} - \frac{7}{2})^2$$

 Esta equação tem um máximo no ponto (1,3,4,5,2,0.5,1.5,2,1 ,3.5)

Classe Example3.java

```
public class Example3 {
   public static int NVAR = 10;
   public static int NEXEC = 1000;
   static Utility utility;
   static IFunctionFitness ff;
   public static void main(String[] args) throws FileNotFoundException {
       utility = new Utility();
       PrintStream ps = new PrintStream(new FileOutputStream("Example3.txt", true));
       utility.printHeader(System.out, NVAR);
       //utility.printHeader(ps, NVAR);
       ff = new FunctionFitness3();
       for(int j=0; j<NEXEC; j++) \{
           GenAlg g = new GenAlg(100, 15, 10, 200000, 0.005, 0.6, 1.0, 152.749, 50, false, ff);
           utility.printLine(System.out, j, g.fGen, g.maxFitness, g.indGlobalFitMax.xNorm);
           utility.printLine(ps, j, g.fGen, g.maxFitness, g.indGlobalFitMax.xNorm);
       ps.close();
```

Execução

#	Data	Hora	Gen	Fitness	X[0] X[1]	x[2]	x[3] x[4]	x[5]	x[6]	X[7] >	([8]	x[9]
	0 8/03/2017	18:40:53	2410	152,7493	0,983,00	4,01	5,00 2,00	0,52	1,50	1,99 1	1,00	3,50
	1 8/03/2017	18:40:53	1881	152,7491	1,00 3,00	4,00	5,01 2,01	0,50	1,49	1,99 6	98,6	3,49
	2 8/03/2017	18:40:56	8290	152,7491	1,00 3,00	3,98	5,00 2,01	0,50	1,49	2,01 6	98,6	3,50
	3 8/03/2017	18:40:58	7119	152,7493	0,98 3,00	4,01	5,02 2,01	0,50	1,50	2,00 1	,00	3,49
	4 8/03/2017	18:41:03	14311	152,7490	1,00 3,00	4,02	5,00 1,99	0,50	1,50	2,00 1	,00	3,52
	5 8/03/2017	18:41:04	2602	152,7494	1,00 3,00	4,01	5,02 2,00	0,51	1,50	2,02 1	1,00	3,50
	6 8/03/2017	18:41:05	3634	152,7491	1,01 3,00	3,98	5,00 2,02	0,50	1,50	2,02 1	,00	3,50
	7 8/03/2017	18:41:06	2996	152,7490	1,00 3,00	4,00	5,00 2,00	0,52	1,49	2,02 1	,00	3,52
	8 8/03/2017	18:41:07	3496	152,7497	1,00 3,00	4,00	5,00 2,00	0,50	1,50	2,00 1	,00	3,52
	9 8/03/2017	18:41:08	2675	152,7491	1,00 3,00	4,00	5,00 2,00	0,52	1,50	1,98 1	,00	3,52
	10 8/03/2017	18:41:09	2596	152,7491	1,00 3,00	4,00	4,99 2,00	0,49	1,50	1,98 6	98,6	3,49
	11 8/03/2017	18:41:10	2076	152,7491	1,01 3,00	4,00	5,00 2,00	0,48	1,51	2,00 6	99,99	3,50
	12 8/03/2017	18:41:11	1733	152,7497	1,01 3,00	4,00	5,00 2,00	0,50	1,50	2,00 6	98,6	3,50
	13 8/03/2017	18:41:12	4154	152,7493	1,00 3,00	4,00	4,99 2,00	0,48	1,50	2,02 1	,00	3,50
	14 8/03/2017	18:41:13	3185	152,7493	1,01 3,00	4,01	5,00 2,00	0,52	1,50	2,02 1	,01	3,50
	15 8/03/2017	18:41:13	888	152,7491	1,00 3,01	3,98	5,02 1,99	0,50	1,50	1,99 1	,00	3,50

AG com Permutação

- AG para permutação são utilizados para minimizar a distância entre nós em um determinado grafo.
- Dessa forma, podemos utilizar ao AG para resolver o problema do viajante, por exemplo.

Exemplo: Permutação com 8 nós

Distância Total

 Calculando a distância euclidiana entre dois pontos, sabemos a priori o resultado de para a distância total mínima entre os nós é de 21,59338.

Classe ExOrder3.java

```
public class ExOrder3 {
    public static int TAMANHO = 8;
    public static int TAMPOP = 30;
    public static int NGEN = 3000;
    public static int NEXEC = 1000;
    public static GenAlgOrder g;
    public static Utility utility:
    {\bf public\ static\ void\ main} ({\bf String[]\ args})\ {\bf throws}\ {\bf FileNotFoundException}\ \{
       utility = new Utility();
        // Exemplo de nós
        double[] x = new double[]{21, 23, 24, 23, 21, 19, 18, 19};
        double[] y = new double[]{11, 12, 15, 18, 19, 18, 15, 12};
        PrintStream ps = new PrintStream(new FileOutputStream("ExOrder3.txt", true));
        utility.printHeaderOrder(System.out, TAMANHO);
        for(int j=0; j<NEXEC; j++) {</pre>
           g = new GenAlgOrder(x, y, TAMANHO, TAMPOP, NGEN, 0.9, 0.9, 4, false, 21.59338,
                  utility.CROSSOVER_EDGE_RECOMBINATION, utility.MUTATION_INVERSION_LIST);
            utility.printLine(System.out, j, g.getGen(), g.indGlobalFitMax.getFitness(), g.indGlobalFitMax.getString());
            utility.printLine(ps, j, g.getGen(), g.indGlobalFitMax.getFitness(), g.indGlobalFitMax.getString());
        ps.close();
```

Execução

```
Data Hora Gen Fitness Cromossomo
0 9/03/2017 08:29:58 3000 21,5934 7,8,1,2,3,4,5,6
1 9/03/2017 08:29:58 3000 21,5934 2,1,8,7,6,5,4,3
2 9/03/2017 08:29:59 3000 21,5934 8,7,6,5,4,3,2,1
3 9/03/2017 08:30:00 3000 21,5934 6,7,8,1,2,3,4,5
4 9/03/2017 08:30:00 3000 21,5934 7,6,5,4,3,2,1,8
5 9/03/2017 08:30:01 3000 21,5934 6,5,4,3,2,1,8,7
6 9/03/2017 08:30:01 3000 21,5934 1,8,7,6,5,4,3,2
7 9/03/2017 08:30:02 3000 21,5934 2,1,8,7,6,5,4,3
8 9/03/2017 08:30:02 3000 21,5934 8,1,2,3,4,5,6,7
9 9/03/2017 08:30:02 3000 21,5934 6,7,8,1,2,3,4,5
10 9/03/2017 08:30:02 3000 21,5934 8,1,2,3,4,5,6,7
11 9/03/2017 08:30:03 3000 21,5934 4,3,2,1,8,7,6,5
12 9/03/2017 08:30:03 3000 21,5934 8,1,2,3,4,5,6,7
13 9/03/2017 08:30:03 3000 21,5934 3,4,5,6,7,8,1,2
14 9/03/2017 08:30:04 3000 21,5934 4,5,6,7,8,1,2,3
15 9/03/2017 08:30:04 3000 21,5934 2,3,4,5,6,7,8,1
```