

ML/DL Basic Week04

tf.constant([en]
=tf.constant([en]
te = tr.lookup.Static\
init,
num_oov_buckets=5)

lookup.StaticVocabular
initializer,

Lookup.KeyValue

- Layer: Convolution, Pooling, Fully-Connected
- Convolution & Pooling: Feature Extraction Fully Connected - Classification

고양이 시각 피질 실험(Hubel&Wiesel)

- 고양이 시야의 한 쪽에 자극을 주었더니 특정 뉴런만이 활성화
- 물체의 형태와 방향에 따라서 활성화되는 뉴런이 다름

주요 용어

- Convolution
- Channel
- Filter
- Stride
- Padding
- Pooling

Convolution

1	7	٦	1	0
0	1	7	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

7	0	1
0	1	0
7	0	7

4	3	4
2	4	3
2	3	4

Image

Filter

Feature Map

Channel

Red Channel

Green Channel

Blue Channel

RGB image

Channel

Red Channel

Green Channel

RGB image

Blue Channel

Convolution Layer의 입력 데이터에 한 개 이상의 필터 적용, n개의 필터가 적용되면 출력 데이터는 n개의 채널을 가짐

Filter & Stride

Filter

- 이미지의 특징을 찾아내기 위한 공용 파라미터

1	1	1	1	0
0	7	1	1	0
0	0	1	7	1
0	0	1	1	0
0	1	1	0	0

1	0	1			
0	1	0			
1	0	7			
Filter					

4	3	4
2	4	3
2	3	4

Filter & Stride

Stride

- 지정된 간격으로 필터를 순회하는 간격

1	1	1	7	0
0	٦	٦	٦	0
0	0	7	1	1
0	0	1	1	0
0	7	1	0	0

output size (N-F)/stride + 1

-> Stride가 1인 경우

$$(5-3)/1 + 1 = 3$$

: Feature Map의 크기

Padding

Convolution Layer에서 Filter와 Stride의 작용으로 Feature Map의 크기는 입력 데이터보다 작음 -> 가장자리의 정보들이 사라지는 문제 발생

합성곱 연산 수행 전, 입력 데이터 주변을 특정값으로 채워 늘림 주로 zero-padding을 사용

Padding

1	7	1	٦	0
0	٦	7	٦	0
0	0	1	7	1
0	0	1	7	0
0		7	0	0

0	0	0	0	0	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	0	1	1	1	0
0	0	0	1	1	0	0
0	0	1	1	0	0	0
0	0	0	0	0	0	0

Pooling

Pooling Layer 사용 이유

- 1. Activation Map의 크기를 줄이기
- 2. 특정 데이터를 강조하기

Pooling Layer 종류

- 1. Max Pooling
- 2. Average Pooling

Pooling

Pooling

Average Pooling

Conv1

$$F = 5$$

 $S = 1$
Filter = 6 $(32-5)/1 + 1$
 $= 28$
 $-> 28 \times 28 \times 6$

Pool1
$$(10-2)/2 + 1$$

F = 2 = 5
S= 2 $5 \times 5 \times 16$

Cat-Dog Classifier

