Research plan

The project is divided into the following four main parts:

- **1. Orthology and paralogy relationships**. Retrieve the list of orthologs and paralogs candidates between *Drosophila* as well as the protein FASTA sequences of them.
- **2. Domain annotation**. The annotation of the domains is going to be done with Pfam.
- **3. Domain rearrangement**. Carsten's program in C++ is going to be used to determine the different domain rearrangements.
- **4. Expression changes**. To estimate the expression changes we will use Yanai's *et al.* τ index as a measure of tissue or developmental stages bias.

Drosophila species information

We will focus on the *Drosophila* lineage due to the availability of resources, both regarding genomics and expression data. In the OMA database we have, among other Drosophila species, the 12 that conform the *Drosophila* lineage as follows:

OMA IDs	NCBI Taxonomy ID	Species name	OMA data source
DROME	7227	Drosophila melanogaster	Ensembl 84; BDGP6 24-FEB-2016
DROAN	7217	Drosophila ananassae	Ensembl Metazoa 25 GCA_000005115.1 18-DEC-2014
DROER	7220	Drosophila erecta	Ensembl Metazoa 25 GCA_000005135.1 18-DEC-2014
DROGR	7222	Drosophila grimshawi	Ensembl Metazoa v5 dgri_r1.3_FB2008_07 15-MAY-2010
DROMO	7230	Drosophila mojavensis	Ensembl Metazoa; 21 dmoj_caf1 29-NOV-2013
DROPE	7234	Drosophila persimilis	Ensembl Metazoa 25 GCA_000005195.1 18-DEC-2014
DROPS	46245	Drosophila pseudoobscura	Ensembl Metazoa 21 HGSC2 29-NOV-2013
DROSE	7238	Drosophila sechellia	Ensembl Metazoa 23; dsec_caf1 24-JUL-2014
DROSI	7240	Drosophila simulans	Ensembl Metazoa 25 GCA_000259055.1 18-DEC-2014
DROVI	7244	Drosophila virilis	Ensembl Metazoa v5 dvir_r1.2_FB2008_07 15-MAY-2010
DROWI	7260	Drosophila willistoni	Ensembl Metazoa 3 dwil_r1.3_FB2008_07 20-AUG-2009
DROYA	7245	Drosophila yakuba	Ensembl Metazoa 21 dyak_r1.3_FB2008_07 29-NOV-2013

Pairwise orthologs between Drosophila species

The pairwise orthologs between Drosophila species have been retrieved from the OMA database. The following graph summarize the pairwise orthologs between *Drosophila melanogaster* and the other 11 species inside their phylogeny. In all the cases, the majoritary type of **orthology** is the **1:1 type**. It can be considered that the other three types: **1:m**, **n:1** and **n:m** are **paralogous** genes as they imply a duplication event at some point of the divergence process.

The following table summarizes the number of orthologous between the species, the number of paralogous and the number of FASTA sequences for the paralogs.

Pair group	Number of orthologous (1:1, 1:m, n:1, n:m)	Number of paralogous (1:m, n:1, n:m)	Paralogous FASTA sequences
DROME DROAN	12154	972	449 455
DROME DROER	12478	464	234 214
DROME DROGR	11666	1801	844 1197
DROME DROMO	11231	994	540 537
DROME DROPE	10993	1097	589 653
DROME DROPS	12280	1457	713 846
DROME DROSE	12131	647	251 348
DROME DROSI	10932	458	241 250
DROME DROVI	11536	1189	570 590
DROME DROWI	11666	1377	640 735
DROME DROYA	12786	985	495 762

Pfam: searching domains

Poteomes are going to be scanned using the **pfamscan** utility, specifically, the script they provide that allows users to perform local Pfam searches: **pfam** scan.pl.

The information that we need is the hmm acc, that is the ID of the domain, and the start and end of the domain.

Determine domain rearrangements

The protein domain rearrangements can be classified as:

- Missing one domain in the front
- Missing two domains in the front
- Missing one domain in the back
- Missing two domains in the back
- Missing one domain the front and one in the back

The consideration of **homologs without domain modifications** can be used as a "control", and compare them against paralogs with a domain rearrangement.

We will use **Carsten's program (C++ script)** to determine the domain rearrangements commented above. We will apply all the changes necessaries to fit the program to our input data and the output that we need.

Check: we need to ensure that the domains differences between two paralogs are not due to the repetition of domains (as happens in B). In this case, it is expected that the function of the two paralogs would still be the same or similar. We are interested in cases as A, where a new domain is gained.

Measure of tissue/stages specificity

We will use the expression breadth as a measure for the tissue or developmental stages specificity. In the formula, N is the number of tissues and x_i is the expression profile component normalized by the maximal component value. We will use the RPKM values as a measure of expression. τ ranges from 0 to

$$\tau = \frac{\sum_{i=1}^{N} (1 - x_i)}{N - 1}$$

1, with values close to 0 indicating broadly expressed genes (housekeeping genes) and values close to 1 indicating genes with a highly biased (or specificity) expression. For example, a gene with a τ = 1, means that is only detectable in one sample (tissue or stage) while τ = 0, that is expressed in all samples with the same expression level.