

段页式管理的逻辑地址结构

分段系统的逻辑地址结构由段号和段内地址(段内偏移量)组成。如:

31	 16	15	 0
段号		段内地址	

段页式系统的逻辑地址结构由段号、页号、页内地址(页内偏移量)组成。如:

31	 16	15	12	11		0
段号		页与	를	页内偏移量	Ţ	

段号的位数决定了每个进程最多可以分几个段 页号位数决定了每个段最大有多少页 页内偏移量决定了页面大小、内存块大小是多少

在上述例子中,若系统是按字节寻址的,则 段号占16位,因此在该系统中,每个进程最多有 2¹⁶ = 64K 个段 页号占4位,因此每个段最多有 2⁴ = 16页 页内偏移量占12位,因此每个页面\每个内存块大小为 2¹² = 4096 = 4KB

"分段"对用户是可见的,程序员编程时需要显式地给出段号、段内地址。而将各段"分页"对用户是不可见的。系统会根据段内地址自动划分页号和页内偏移量。

因此段页式管理的地址结构是 二维的。

王道考研/CSKAOYAN.COM

