House price prediction

```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    import warnings
    warnings.filterwarnings("ignore")
    %matplotlib inline
    from sklearn.preprocessing import StandardScaler
    import statsmodels.api as sm
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
In [2]: Data = pd.read_csv("C:/Users/hp/OneDrive/Desktop/himadhruthi/data.csv")
Data.head()
```

Out[2]:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view
0	2014-05-02 00:00:00	313000.0	3.0	1.50	1340	7912	1.5	0	0
1	2014-05-02 00:00:00	2384000.0	5.0	2.50	3650	9050	2.0	0	4
2	2014-05-02 00:00:00	342000.0	3.0	2.00	1930	11947	1.0	0	0
3	2014-05-02 00:00:00	420000.0	3.0	2.25	2000	8030	1.0	0	0
4	2014-05-02 00:00:00	550000.0	4.0	2.50	1940	10500	1.0	0	0

```
In [3]: Data.columns
```

In [4]: Data.describe()

Out[4]:

price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	V
4.600000e+03	4600.000000	4600.000000	4600.000000	4.600000e+03	4600.000000	460
5.519630e+05	3.400870	2.160815	2139.346957	1.485252e+04	1.512065	
5.638347e+05	0.908848	0.783781	963.206916	3.588444e+04	0.538288	
0.000000e+00	0.000000	0.000000	370.000000	6.380000e+02	1.000000	
3.228750e+05	3.000000	1.750000	1460.000000	5.000750e+03	1.000000	
4.609435e+05	3.000000	2.250000	1980.000000	7.683000e+03	1.500000	
6.549625e+05	4.000000	2.500000	2620.000000	1.100125e+04	2.000000	
2.659000e+07	9.000000	8.000000	13540.000000	1.074218e+06	3.500000	
: :	4.600000e+03 5.519630e+05 5.638347e+05 0.000000e+00 3.228750e+05 4.609435e+05 6.549625e+05	4.600000e+03 4600.000000 5.519630e+05 3.400870 5.638347e+05 0.908848 0.000000e+00 0.000000 3.228750e+05 3.000000 4.609435e+05 3.000000 6.549625e+05 4.000000	4.600000e+03 4600.000000 4600.000000 5.519630e+05 3.400870 2.160815 5.638347e+05 0.908848 0.783781 0.000000e+00 0.000000 0.000000 3.228750e+05 3.000000 1.750000 4.609435e+05 3.000000 2.250000 6.549625e+05 4.000000 2.500000	4.600000e+03 4600.00000 4600.00000 4600.000000 5.519630e+05 3.400870 2.160815 2139.346957 5.638347e+05 0.908848 0.783781 963.206916 0.000000e+00 0.000000 0.000000 370.000000 3.228750e+05 3.000000 1.750000 1460.000000 4.609435e+05 3.000000 2.250000 1980.000000 6.549625e+05 4.000000 2.500000 2620.000000	4.600000e+03 4600.000000 4600.000000 4.600000e+03 5.519630e+05 3.400870 2.160815 2139.346957 1.485252e+04 5.638347e+05 0.908848 0.783781 963.206916 3.588444e+04 0.000000e+00 0.000000 0.000000 370.000000 6.380000e+02 3.228750e+05 3.000000 1.750000 1460.000000 5.000750e+03 4.609435e+05 3.000000 2.250000 1980.000000 7.683000e+03 6.549625e+05 4.000000 2.500000 2620.000000 1.100125e+04	4.600000e+03 4600.000000 4600.000000 4.600000e+03 4600.000000 5.519630e+05 3.400870 2.160815 2139.346957 1.485252e+04 1.512065 5.638347e+05 0.908848 0.783781 963.206916 3.588444e+04 0.538288 0.000000e+00 0.000000 0.000000 370.000000 6.380000e+02 1.000000 3.228750e+05 3.000000 1.750000 1460.000000 5.000750e+03 1.500000 4.609435e+05 3.000000 2.250000 1980.000000 7.683000e+03 1.500000 6.549625e+05 4.000000 2.500000 2620.000000 1.100125e+04 2.0000000

In [5]: Data.isnull().sum()

Out[5]: date

0 price 0 bedrooms 0 bathrooms 0 sqft_living 0 sqft_lot floors 0 waterfront 0 view 0 condition 0 sqft_above 0 sqft_basement 0 0 yr_built yr_renovated 0 street 0 0 city 0 statezip 0 country dtype: int64

In [6]: x= Data.drop(['date','street','street','city','statezip','country','price']
 x.head()

Out[6]:

	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above
0	3.0	1.50	1340	7912	1.5	0	0	3	1340
1	5.0	2.50	3650	9050	2.0	0	4	5	3370
2	3.0	2.00	1930	11947	1.0	0	0	4	1930
3	3.0	2.25	2000	8030	1.0	0	0	4	1000
4	4.0	2.50	1940	10500	1.0	0	0	4	1140

```
In [7]: y = Data["price"]
        y.head()
Out[7]: 0
              313000.0
        1
             2384000.0
        2
              342000.0
        3
              420000.0
              550000.0
        Name: price, dtype: float64
```

In [8]: x.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4600 entries, 0 to 4599 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype			
0	bedrooms	4600 non-null	float64			
1	bathrooms	4600 non-null	float64			
2	sqft_living	4600 non-null	int64			
3	sqft_lot	4600 non-null	int64			
4	floors	4600 non-null	float64			
5	waterfront	4600 non-null	int64			
6	view	4600 non-null	int64			
7	condition	4600 non-null	int64			
8	sqft_above	4600 non-null	int64			
9	sqft_basement	4600 non-null	int64			
10	yr_built	4600 non-null	int64			
11	yr_renovated	4600 non-null	int64			
dtypes: float64(3),		int64(9)				
	434 4	I/D				

memory usage: 431.4 KB

In [9]: x.corr()

Out[9]:

	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view
bedrooms	1.000000	0.545920	0.594884	0.068819	0.177895	-0.003483	0.111028
bathrooms	0.545920	1.000000	0.761154	0.107837	0.486428	0.076232	0.211960
sqft_living	0.594884	0.761154	1.000000	0.210538	0.344850	0.117616	0.311009
sqft_lot	0.068819	0.107837	0.210538	1.000000	0.003750	0.017241	0.073907
floors	0.177895	0.486428	0.344850	0.003750	1.000000	0.022024	0.031211
waterfront	-0.003483	0.076232	0.117616	0.017241	0.022024	1.000000	0.360935
view	0.111028	0.211960	0.311009	0.073907	0.031211	0.360935	1.000000
condition	0.025080	-0.119994	-0.062826	0.000558	-0.275013	0.000352	0.063077
sqft_above	0.484705	0.689918	0.876443	0.216455	0.522814	0.078911	0.174327
sqft_basement	0.334165	0.298020	0.447206	0.034842	-0.255510	0.097501	0.321602
yr_built	0.142461	0.463498	0.287775	0.050706	0.467481	-0.023563	-0.064465
yr_renovated	-0.061082	-0.215886	-0.122817	-0.022730	-0.233996	0.008625	0.022967

In [10]: plt.figure(figsize=(10,10))
sns.heatmap(x.corr(),annot =True,cmap='RdYlBu')

Out[10]: <AxesSubplot:>

In [12]: Scatter('bathrooms')

In [14]: Scatter('sqft_lot')

In [15]: Scatter('floors')

In [17]: Scatter('view')

In [18]: Scatter('condition')

1.525235 0.108089

-0.672391 0.646233

-0.8256

-0.8256

```
In [23]: X_{mean} = x.mean()
         # Standard deviation
         X_{std} = x.std()
         # Standardization
         Z = (x - X_mean) / X_std
         print(Z)
              bedrooms bathrooms sqft_living sqft_lot
                                                           floors waterfront \
         0
              -0.441074 -0.843112
                                    -0.829881 -0.193413 -0.022414 -0.084995
         1
              1.759513 0.432754
                                     1.568358 -0.161700 0.906456
                                                                    -0.084995
         2
              -0.441074 -0.205179
                                     -0.217344 -0.080969 -0.951284
                                                                    -0.084995
         3
             -0.441074 0.113788
                                    -0.144670 -0.190125 -0.951284
                                                                    -0.084995
         4
              0.659220
                         0.432754
                                     -0.206962 -0.121293 -0.951284
                                                                    -0.084995
         4595 -0.441074 -0.524145
                                   -0.653387 -0.236663 -0.951284
                                                                    -0.084995
         4596 -0.441074 0.432754
                                    -0.705297 -0.202860 0.906456
                                                                    -0.084995
         4597 -0.441074 0.432754
                                     0.903911 -0.218438 0.906456
                                                                    -0.084995
         4598 0.659220 -0.205179
                                     -0.051232 -0.229139 -0.951284
                                                                    -0.084995
         4599 -0.441074
                         0.432754
                                     -0.674151 -0.188118 0.906456
                                                                    -0.084995
                  view condition sqft_above sqft_basement yr_built yr_renovat
         ed
         0
              -0.309161 -0.667040
                                    -0.565162
                                                  -0.672391 -0.530956
                                                                           1.2215
         38
              4.829554
                         2.286168
                                     1.789365
                                                  -0.069121 -1.674511
                                                                          -0.8256
         1
         04
                         0.809564
                                                  -0.672391 -0.160982
         2
             -0.309161
                                     0.119158
                                                                          -0.8256
         04
         3
             -0.309161
                         0.809564
                                    -0.959517
                                               1.482145 -0.261884
                                                                          -0.8256
             -0.309161
                         0.809564
                                                   1.051238 0.175357
         4
                                    -0.797135
                                                                           1.2082
         64
         . . .
                                                         . . .
                   . . .
                             . . .
                                          . . .
                                                                  . . .
                         0.809564
                                    -0.367985
                                                   -0.672391 -0.564590
         4595 -0.309161
                                                                           1.1949
         91
         4596 -0.309161 -0.667040
                                    -0.425978
                                                  -0.672391 0.410795
                                                                           1.2256
         22
         4597 -0.309161 -0.667040
                                     1.371813
                                                  -0.672391 1.285278
                                                                          -0.8256
```

-0.878326

-0.391183

[4600 rows x 12 columns]

4598 -0.309161 -0.667040

4599 -0.309161 0.809564

04

04

```
In [24]: scalar=StandardScaler()
         #scalar.fit(x)
         X=scalar.fit_transform(x)
         print(X)
         [[-0.44112227 -0.84320364 -0.82997105 ... -0.67246372 -0.53101376]
            1.22167046]
          -0.82569345]
          [-0.44112227 -0.20520105 -0.21736733 ... -0.67246372 -0.1609999
           -0.82569345]
          [-0.44112227 \quad 0.43280154 \quad 0.90400897 \dots -0.67246372 \quad 1.2854179
           -0.82569345]
          [ 0.6592912 -0.20520105 -0.05123751 ... 1.5254011
                                                               0.10810108
           -0.82569345]
          -0.82569345]]
In [26]: Ss = [w \text{ for } w \text{ in } x]
         Ss
Out[26]: ['bedrooms',
          'bathrooms',
          'sqft_living',
          'sqft_lot',
          'floors',
          'waterfront',
          'view',
          'condition',
          'sqft above',
          'sqft_basement',
          'yr_built',
          'yr_renovated']
In [27]: X = sm.add_constant( Data[Ss] )
         X.head(5)
Out[27]:
            const bedrooms bathrooms sqft_living sqft_lot floors waterfront view
                                                                        condition sqf
                                         1340
          0
              1.0
                       3.0
                                1.50
                                                7912
                                                                 0
                                                                      0
                                                                               3
                                                       1.5
          1
              1.0
                       5.0
                                2.50
                                         3650
                                                9050
                                                       2.0
                                                                 0
                                                                      4
                                                                               5
                                               11947
          2
              1.0
                       3.0
                                2.00
                                         1930
                                                       1.0
                                                                 0
                                                                      0
                                                                               4
                                2.25
                                         2000
                                                8030
              1.0
                       3.0
                                                       1.0
                                                                 0
                                                                      0
                                                                               4
                       4.0
                                2.50
                                         1940
                                               10500
                                                                      0
                                                                               4
              1.0
                                                       1.0
In [28]: from sklearn.model_selection import train_test_split
         train_x,test_x,train_y,test_y= train_test_split(X, y , train_size=0.7)
In [29]: |test_x.shape
Out[29]: (1380, 13)
```

```
In [30]: |train_x.shape
Out[30]: (3220, 13)
In [31]: model = LinearRegression()
          model.fit(train_x , train_y)
Out[31]:
          ▼ LinearRegression
          LinearRegression()
In [32]: pred_y = model.predict(test_x)
          c = model.intercept_
Out[32]: 4596507.247459341
In [33]: m = model.coef_
         m
Out[33]: array([ 0.00000000e+00, -6.35169549e+04,
                                                      6.07634606e+04,
                                                                        1.70610648e+02,
                 -5.91969678e-01,
                                    3.62503877e+04,
                                                      4.05496194e+05,
                                                                        3.27418491e+04,
                  3.85748516e+04, 9.82494855e+01,
                                                      7.23611620e+01, -2.39190732e+03,
                  4.04863974e+00])
In [34]: print(pred_y)
          [ 175336.38902299 521055.75656389 270315.74839067 ... 644250.23673443
            344889.21358581 1161871.14279958]
In [35]: plt.scatter(test_y,pred_y)
          plt.xlabel('actual score')
          plt.ylabel('predicted score')
         plt.show()
             3.5
             3.0
             2.5
          predicted score
             2.0
            1.5
             1.0
             0.5
             0.0
                 0.0
                       0.5
                              1.0
                                    1.5
                                           2.0
                                                  2.5
                                                        3.0
                                                           le6
                                   actual score
In [40]: r2= r2_score(test_y,pred_y)
         r2
Out[40]: 0.5024517349159334
```

```
In [37]: model.predict([[1,3,1.50,1340,7912,1.5,0,0,3,1340,0,1955,2005]])
Out[37]: array([354729.33696997])
In [38]: error = 367194.60858801 - 313000.0
error
Out[38]: 54194.608588010015
In [41]: if r2 >= 0.7:
    print("The model has a strong fit and performs well.")
    elif r2 >= 0.5:
        print("The model has a moderate fit and gives decent predictions.")
    else:
        print("The model may need further improvement as it has a weak fit.")
    print("You can further refine the model by feature engineering and hyperpar.
```

The model has a moderate fit and gives decent predictions. You can further refine the model by feature engineering and hyperparameter tuning to improve its performance.

This Jupyter Notebook code begins by loading the dataset, preprocessing the data (which includes handling missing values, encoding categorical variables, and selecting relevant features), and splitting the data into training and testing sets. It then creates a Linear Regression model, fits it to the training data, makes predictions on the test data, and evaluates the model's performance using metrics.

The conclusion section interprets the results and provides guidance on potential improvements to the model. This allows you to assess how well the model is performing and what actions can be taken to enhance its accuracy.