Question-1. Download dataset

Question-2. Load the dataset

path = '/content/drive/MyDrive/Colab Notebooks/Churn_Modelling.csv'
import pandas as pd

data = pd.read_csv('/content/drive/MyDrive/Colab
Notebooks/Churn_Modelling.csv')

data.head

<pre><bound \<="" age="" creditscore="" customerid="" gender="" geography="" method="" ndframe.head="" of="" pre="" rownumber="" surname=""></bound></pre>								
0			5634602	Hargrave	63	L9 France	e Female	
42 1		2 1	5647311	Hill	60)8 Spair	Female	
41		3 1	5619304	Onio	50)2 France	e Female	
42 3		4 1	5701354	Boni	69	99 France	e Female	
39 4		5 1	5737888	Mitchell	85	50 Spair	Female	
43					•			
9995 39	99	96 1	5606229	0bijiaku	77	71 France	e Male	
9996 35	99	97 1	5569892	Johnstone	51	l6 France	e Male	
9997	99	98 1	5584532	Liu	70	9 France	e Female	
36 9998	99	99 1	5682355	Sabbatini	77	72 Germany	, Male	
42 9999 28	100	00 1	5628319	Walker	79	92 France	e Female	
0 1 2 3 4	Tenure 2 1 8 1 2	83807 159660	.00 .86 .80 .00	0fProducts 1 1 3 2 1	HasCrCard 1 0 1 0	IsActiveMe	ember \ 1 1 0 0 1	
9995 9996 9997 9998 9999	5 10 7 3 4	57369	.00 .31	2 1 1 2 1	 1 1 0 1		 0 1 0 0	

```
EstimatedSalary
                        Exited
0
            101348.88
                              1
1
                              0
            112542.58
2
            113931.57
                              1
3
             93826.63
                              0
4
                              0
             79084.10
                              0
9995
             96270.64
            101699.77
                              0
9996
9997
                              1
              42085.58
9998
             92888.52
                              1
9999
             38190.78
                              0
```

[10000 rows x 14 columns]>

Question-3. Perform Below Visualizations.

3.1 univariate analysis

```
sns.displot(data['CreditScore'])
```

<seaborn.axisgrid.FacetGrid at 0x7ff47b124f50>

sns.histplot(data['CreditScore'])
<matplotlib.axes._subplots.AxesSubplot at 0x7ff47aec4a50>

sns.boxplot(x = data['CreditScore'])

<matplotlib.axes._subplots.AxesSubplot at 0x7ff4780406d0>

sns.distplot(data['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed

in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7ff47af787d0>

sns.histplot(data['Age'])

<matplotlib.axes._subplots.AxesSubplot at 0x7ff477ed9d10>

sns.boxplot(data['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7ff477d9ea90>

3.2 Bi-variate Analysis

```
plt.figure(figsize=(7,7))
sns.lineplot(data = data, x = 'Tenure', y = 'CreditScore')
<matplotlib.axes._subplots.AxesSubplot at 0x7ff47afc7750>
```


plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'EstimatedSalary')
<matplotlib.axes._subplots.AxesSubplot at 0x7ff477da5e10>

plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'Tenure')
<matplotlib.axes._subplots.AxesSubplot at 0x7ff47b1b3cd0>

plt.figure(figsize=(10,10))
sns.lineplot(data['Age'], data['EstimatedSalary'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7ff475933690>

plt.figure(figsize=(17,17))
sns.barplot(data['Age'], data['EstimatedSalary'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7ff4749085d0>

3.3 Multivariate Analysis

sns.scatterplot(data = data, x = 'CreditScore', y = 'Age') <matplotlib.axes._subplots.AxesSubplot at 0x7ff472f36a10>

sns.scatterplot(data = data, x = 'CreditScore', y = 'Balance', hue = 'Gender')

<matplotlib.axes._subplots.AxesSubplot at 0x7ff472e6d3d0>

sns.scatterplot(data['Tenure'], data['CreditScore'], hue =
data['Gender'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7ff472ef03d0>

sns.scatterplot(data['Age'], data['Balance'], hue = data['Gender'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7ff472dacf10>

sns.pairplot(data)
<seaborn.axisgrid.PairGrid at 0x7ff472db8650>

Question-4. Perform descriptive statistics on the dataset

data.mean(numeric_only = True)

RowNumber 5.000500e+03 CustomerId 1.569094e+07 CreditScore 6.505288e+02 Age 3.892180e+01 Tenure 5.012800e+00 Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 Exited 2.037000e-01

dtype: float64

```
data.median(numeric only = True)
RowNumber
                   5.000500e+03
CustomerId
                   1.569074e+07
CreditScore
                   6.520000e+02
                   3.700000e+01
Aae
Tenure
                   5.000000e+00
Balance
                   9.719854e+04
NumOfProducts
                   1.000000e+00
HasCrCard
                   1.000000e+00
IsActiveMember
                   1.000000e+00
EstimatedSalary
                   1.001939e+05
Exited
                   0.000000e+00
dtype: float64
data['CreditScore'].mode()
0
     850
dtype: int64
data['EstimatedSalary'].mode()
0
     24924.92
dtype: float64
data['HasCrCard'].unique()
array([1, 0])
data['Tenure'].unique()
array([ 2, 1, 8, 7, 4, 6, 3, 10, 5, 9,
                                                 0])
data.std(numeric_only=True)
RowNumber
                    2886.895680
CustomerId
                   71936.186123
CreditScore
                      96.653299
                      10.487806
Age
Tenure
                       2.892174
Balance
                   62397.405202
NumOfProducts
                       0.581654
HasCrCard
                       0.455840
IsActiveMember
                       0.499797
                   57510.492818
EstimatedSalary
Exited
                       0.402769
dtype: float64
data.describe()
         RowNumber
                      CustomerId
                                    CreditScore
                                                          Age
Tenure
                                  10000.000000
count 10000.00000 1.000000e+04
                                                 10000.000000
```

10000.000000			
mean 5000.50000	1.569094e+07	650.528800	38.921800
5.012800			
std 2886.89568	7.193619e+04	96.653299	10.487806
2.892174			
min 1.00000	1.556570e+07	350.000000	18.000000
0.000000			
25% 2500.75000	1.562853e+07	584.000000	32.000000
3.000000			
50% 5000.50000	1.569074e+07	652.000000	37.000000
5.000000			
75% 7500.25000	1.575323e+07	718.000000	44.000000
7.000000			
max 10000.00000	1.581569e+07	850.000000	92.000000
10.000000			
Ralance	NumOfProducts	HasCrCard	TsActiveMem

	Balance	NumOfProducts	HasCrCard	IsActiveMember	\
count	10000.000000	10000.000000	10000.00000	10000.000000	
mean	76485.889288	1.530200	0.70550	0.515100	
std	62397.405202	0.581654	0.45584	0.499797	
min	0.000000	1.000000	0.00000	0.000000	
25%	0.000000	1.000000	0.00000	0.000000	
50%	97198.540000	1.000000	1.00000	1.000000	
75%	127644.240000	2.000000	1.00000	1.000000	
max	250898.090000	4.000000	1.00000	1.000000	

	EstimatedSalary	Exited
count	10000.000000	10000.000000
mean	100090.239881	0.203700
std	57510.492818	0.402769
min	11.580000	0.000000
25%	51002.110000	0.000000
50%	100193.915000	0.000000
75%	149388.247500	0.000000
max	199992.480000	1.000000

Question-5. Handle the Missing values.

data.isnull().any()

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False

IsActiveMember False EstimatedSalary False False

dtype: bool

data.isnull().sum()

RowNumber 0 CustomerId 0 Surname 0 CreditScore 0 Geography 0 Gender 0 Age 0 Tenure 0 Balance 0 NumOfProducts 0 HasCrCard 0 IsActiveMember 0 EstimatedSalary 0 Exited 0 dtype: int64

Question-6. Find the outliers and replace the outliers

sns.boxplot(data['CreditScore']) #Outlier detection - box plot

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7ff46fbdf3d0>


```
fig, ax = plt.subplots(figsize = (5,3)) #Outlier detection - Scatter
plot
ax.scatter(data['Balance'], data['Exited'])
# x-axis label
ax.set_xlabel('Balance')
# y-axis label
ax.set_ylabel('Exited')
plt.show()
sns.boxplot(x=data['Balance'])
```


<matplotlib.axes. subplots.AxesSubplot at 0x7ff47177b710>


```
from scipy import stats #Outlier detection — zscore
zscore = np.abs(stats.zscore(data['CreditScore']))
print(zscore)
print('No. of Outliers : ', np.shape(np.where(zscore>3)))
        0.326221
1
        0.440036
2
        1.536794
3
        0.501521
        2.063884
9995
        1.246488
9996
        1.391939
9997
        0.604988
9998
        1.256835
9999
        1.463771
Name: CreditScore, Length: 10000, dtype: float64
No. of Outliers: (1, 8)
q = data.quantile([0.75,0.25])
      RowNumber
                  CustomerId
                              CreditScore
                                             Age
                                                  Tenure
                                                            Balance \
0.75
        7500.25
                 15753233.75
                                                     7.0
                                                          127644.24
                                     718.0
                                            44.0
0.25
        2500.75
                                                     3.0
                 15628528.25
                                     584.0
                                            32.0
                                                               0.00
      NumOfProducts HasCrCard IsActiveMember EstimatedSalary
Exited
0.75
                2.0
                           1.0
                                            1.0
                                                     149388.2475
```

```
0.0
                                             0.0
                                                       51002.1100
0.25
                1.0
                            0.0
0.0
iqr = q.iloc[0] - q.iloc[1]
igr
RowNumber
                      4999.5000
CustomerId
                    124705.5000
CreditScore
                       134.0000
                        12.0000
Aae
Tenure
                         4.0000
Balance
                    127644.2400
NumOfProducts
                         1.0000
HasCrCard
                         1.0000
IsActiveMember
                         1.0000
EstimatedSalary
                     98386.1375
Exited
                         0.0000
dtype: float64
u = q.iloc[0] + (1.5*iqr)
u
RowNumber
                    1.499950e+04
CustomerId
                    1.594029e+07
CreditScore
                    9.190000e+02
Age
                    6.200000e+01
Tenure
                    1.300000e+01
Balance
                    3.191106e+05
NumOfProducts
                    3.500000e+00
HasCrCard
                    2.500000e+00
IsActiveMember
                    2.500000e+00
                    2.969675e+05
EstimatedSalary
                    0.000000e+00
Exited
dtype: float64
l = q.iloc[1] - (1.5*iqr)
RowNumber
                   -4.998500e+03
CustomerId
                    1.544147e+07
CreditScore
                    3.830000e+02
                   1.400000e+01
Age
Tenure
                   -3.000000e+00
Balance
                   -1.914664e+05
NumOfProducts
                   -5.000000e-01
HasCrCard
                   -1.500000e+00
IsActiveMember
                   -1.500000e+00
                   -9.657710e+04
EstimatedSalary
                    0.000000e+00
Exited
dtype: float64
```

```
Q1 = data['EstimatedSalary'].quantile(0.25) #Outlier detection - IQR
Q3 = data['EstimatedSalary'].quantile(0.75)
iar = 03 - 01
print(iqr)
upper=Q3 + 1.5 * iqr
lower=Q1 - 1.5 * igr
count = np.size(np.where(data['EstimatedSalary'] >upper))
count = count + np.size(np.where(data['EstimatedSalary'] <lower))</pre>
print('No. of outliers : ', count)
98386.1375
No. of outliers: 0
data['CreditScore'] = np.where(np.logical or(data['CreditScore']>900,
data['CreditScore']<383), 650, data['CreditScore'])</pre>
sns.boxplot(data['CreditScore'])
/usr/local/lib/python3.7/dist-packages/seaborn/ decorators.py:43:
FutureWarning: Pass the following variable as a keyword arg: x. From
version 0.12, the only valid positional argument will be `data`, and
passing other arguments without an explicit keyword will result in an
error or misinterpretation.
```

FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7ff47b1b5910>


```
upper = data.Age.mean() + (3 * data.Age.std()) #Outlier detection - 3
sigma
lower = data.Age.mean() - (3 * data.Age.std())
columns = data[ ( data['Age'] > upper ) | ( data['Age'] < lower ) ]</pre>
```

```
print('Upper range : ', upper)
print('Lower range : ', lower)
print('No. of Outliers : ', len(columns))
               70.38521935511383
Upper range :
Lower range: 7.458380644886169
No. of Outliers: 133
columns = ['EstimatedSalary', 'Age', 'Balance', 'NumOfProducts',
'Tenure', 'CreditScore']
#After outlier removal
for i in columns:
 Q1 = data[i].quantile(0.25)
 Q3 = data[i].quantile(0.75)
 igr = 03 - 01
 upper=Q3 + 1.5 * iqr
 lower=Q1 - 1.5 * igr
 count = np.size(np.where(data[i] >upper))
 count = count + np.size(np.where(data[i] <lower))</pre>
 print('No. of outliers in ', i, ' : ', count)
No. of outliers in EstimatedSalary : 0
No. of outliers in Age : 359
No. of outliers in Balance : 0
No. of outliers in NumOfProducts : 60
No. of outliers in Tenure : 0
No. of outliers in CreditScore : 0
Question-6. Find the outliers and replace the outliers
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
le = LabelEncoder()
oneh = OneHotEncoder()
data['Surname'] = le.fit transform(data['Surname'])
data['Gender'] = le.fit transform(data['Gender'])
data['Geography'] = le.fit transform(data['Geography'])
data.head()
   RowNumber CustomerId Surname CreditScore Geography Gender
                                                                    Age
/
0
           1
                15634602
                             1115
                                            619
                                                         0
                                                                 0
                                                                     42
1
           2
                15647311
                             1177
                                            608
                                                         2
                                                                 0
                                                                     41
2
                                                                     42
           3
                15619304
                             2040
                                            502
                                                         0
                                                                 0
3
                                            699
                                                                     39
           4
                15701354
                              289
                                                         0
                                                                 0
4
           5
                15737888
                             1822
                                            850
                                                         2
                                                                 0
                                                                     43
```

0 1 2 3 4	Tenure 2 1 8 1 2	Balance 0.00 83807.86 159660.80 0.00 125510.82	NumOfProducts 1 1 3 2 1	HasCrCard 1 0 1 0 1	IsActiveMember 1 1 0 0 1	\
0 1 2 3 4	1 1 1	edSalary E 01348.88 12542.58 13931.57 93826.63 79084.10	xited 1 0 1 0 0			

Question-8. Split the data into dependent and independent variables split the data in X and γ

x = data.iloc[:, 0:13]
x # independent values (inputs)

Λ	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender
Age 0	1	15634602	1115	619	0	0
42 1	2	15647311	1177	608	2	0
41 2 42	3	15619304	2040	502	0	0
42 3 39	4	15701354	289	699	0	0
4 43	5	15737888	1822	850	2	0
9995 39 9996 35 9997 36	9996	15606229	1999	771	0	1
	9997	15569892	1336	516	0	1
	9998	15584532	1570	709	0	0
9998	9999	15682355	2345	772	1	1
42 9999 28	10000	15628319	2751	792	0	0
0 1 2 3		Balance Nur 0.00 33807.86 9660.80 0.00		HasCrCard 1 1 1 0 3 1	IsActiveMe	mber \ 1

```
4
           2
               125510.82
                                       1
                                                   1
                                                                    1
         . . .
                                     . . .
                                                 . . .
9995
           5
                    0.00
                                       2
                                                   1
                                                                    0
9996
          10
                57369.61
                                       1
                                                   1
                                                                    1
                                                                    1
           7
                                       1
                                                   0
9997
                    0.00
           3
                                       2
9998
                75075.31
                                                   1
                                                                    0
9999
           4
                                       1
                                                   1
                                                                    0
               130142.79
      EstimatedSalary
0
            101348.88
1
            112542.58
2
            113931.57
3
             93826.63
4
             79084.10
             96270.64
9995
9996
            101699.77
9997
             42085.58
             92888.52
9998
9999
             38190.78
[10000 rows x 13 columns]
y = data['Exited']
y # dependent values (output)
0
        1
        0
1
2
        1
3
        0
4
        0
9995
        0
9996
        0
9997
        1
        1
9998
9999
        0
Name: Exited, Length: 10000, dtype: int64
Question-9. Scale the independent variables
from sklearn.preprocessing import StandardScaler, MinMaxScaler
sc = StandardScaler()
x_scaled = sc.fit_transform(x)
x scaled
array([[-1.73187761, -0.78321342, -0.46418322, ..., 0.64609167,
         0.97024255,
                       0.02188649],
       [-1.7315312, -0.60653412, -0.3909112, ..., -1.54776799,
         0.97024255, 0.21653375],
       [-1.73118479, -0.99588476, 0.62898807, ..., 0.64609167,
```

```
-1.03067011, 0.2406869 1,
       [ 1.73118479, -1.47928179,
                                   0.07353887, \ldots, -1.54776799,
         0.97024255, -1.00864308],
                                   0.98943914, ..., 0.64609167,
       [ 1.7315312 , -0.11935577,
        -1.03067011, -0.12523071],
       [1.73187761, -0.87055909, 1.4692527, \ldots, 0.64609167,
        -1.03067011, -1.07636976]])
Question-10. Split x and y into Training and Testing
from sklearn.model selection import train test split
x_train, x_test, y_train, y_test = train_test_split(x_scaled, y,
test_size = 0.3, random state = 0)
x train
array([[ 0.92889885, -0.79703192, -1.47580983, ..., 0.64609167,
         0.97024255, -0.77021814],
       [\ 1.39655257,\ 0.71431365,\ -1.58808148,\ \ldots,\ 0.64609167,
        -1.03067011, -1.39576675],
       [-0.4532777, 0.96344969, -0.24082173, ..., -1.54776799,
         0.97024255, -1.49965629],
       [-0.60119484, -1.62052514, -0.36136603, \ldots, 0.64609167,
        -1.03067011, 1.41441489],
       [1.67853045, -0.37403866, 0.72589622, ..., 0.64609167,
         0.97024255, 0.84614739],
       [-0.78548505, -1.36411841, 1.3829808, ..., 0.64609167,
        -1.03067011, 0.32630495]])
x train.shape
(7000, 13)
x test
array([[ 1.52229946, -1.04525042, 1.39834429, ..., 0.64609167,
                     1.61304597],
         0.97024255,
       [-1.42080128, -0.50381294, -0.78208925, \ldots,
                                                     0.64609167,
        -1.03067011, 0.49753166],
       [-0.90118604, -0.7932923 ,
                                   0.41271742, ..., 0.64609167,
         0.97024255, -0.4235611 ],
       [ 1.49216178, -0.14646448,
                                   0.6868966 , ..., 0.64609167,
         0.97024255, 1.17045451],
       [ 1.1758893 , -1.29228727, -1.38481071, ..., 0.64609167,
         0.97024255, -0.50846777],
       [0.08088677, -1.38538833, 1.11707427, ..., 0.64609167,
         0.97024255, -1.1534268511)
x test.shape
```

```
(3000, 13)
y_train
7681
        1
9031
        0
3691
        0
202
        1
5625
        0
9225
        0
4859
        0
3264
        0
9845
        0
2732
        1
Name: Exited, Length: 7000, dtype: int64
y_test
9394
        0
898
        1
2398
        0
5906
        0
2343
        0
4004
        0
7375
        0
9307
        0
8394
        0
5233
Name: Exited, Length: 3000, dtype: int64
```