第7次作业 系统决策作业

2015080072 自53 韩载贤

1-1. 如下表,整理题目

自然状态	销售量高	销售量中等	销售量低
概率 行动方案	0. 5	0. 3	0. 2
建大厂	100	60	-20
建小厂	25	20	18

方案 (建大厂) A1: E(A1) = [0.5*100 + 0.3*60 + 0.2*(-20)] *10(年) -280 =360万元

方案 (建大厂) A2: E(A2) = [0.5*25 + 0.3*20 + 0.2*18]*10(年) - 140 = 81万元

1-2. 绘制决策树

1-3. 使用决策树法进行决策

方案A1 (=360) > 方案A2 (=81)。

因此,选择方案A1(建大厂)更合理。

2-1. 根据两个表绘制决策树

方案A3:增加检验过程,方案A4:不加检验过程

2-2. 使用决策树法进行决策

: 通过期望值计算, E(A3)大于 E(A4)。E(A3)=960。

因此,选增加检验过程的决策。

3.

方案集	状态集	
$A = \{a_i 批发 50i 箱, 1 \le i \le 6, i \in N\}$	$S = \{s_i $ 卖出 $50i$ 箱, $1 \le i \le 6$, $i \in N\}$	

给定决策方案后不同状态发生的概率

$$\widehat{P} = \widehat{p}(s_j|a_i)\big|_{1 \le i,j \le 6} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0.1 & 0.9 & 0 & 0 & 0 & 0 \\ 0.1 & 0.3 & 0.6 & 0 & 0 & 0 \\ 0.1 & 0.3 & 0.2 & 0.4 & 0 & 0 \\ 0.1 & 0.3 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.1 & 0.3 & 0.2 & 0.2 & 0.1 & 0.1 \end{bmatrix}$$

其中,各行表示方案 a_i ,各列表示状态 s_i

后果(用收益值表示):

$$\hat{G} = \hat{g}(s_j|a_i)|_{1 \le i,j \le 6} = \begin{bmatrix} 2000 & 0 & 0 & 0 & 0 & 0 \\ 1000 & 5000 & 0 & 0 & 0 & 0 \\ 1000 & 5000 & 9000 & 0 & 0 & 0 \\ 2000 & 6000 & 10000 & 14000 & 0 & 0 \\ 1500 & 5500 & 9500 & 13500 & 17500 & 0 \\ 1000 & 5000 & 9000 & 13000 & 17000 & 21000 \end{bmatrix}$$

$$\hat{g}_{11} = 140 * 50 - 50 * 100 = 2000$$

 $\hat{g}_{12} = 140 * 50 + 60 * 50 - 100 * 90 = 1000$

$$\hat{g}_{66} = 140 * 300 - 300 * 70 = 21000$$

后果集: $C = \{1000, 1500, 2000, 5000, 5500, 6000, 9000, 9500, 10000, 13000, 135000, 14000, 17000, 175000, 21000\}$

展望集:
$$P = [p^T(1) \ p^T(2) \ p^T(3) \ p^T(4) \ p^T(5) \ p^T(6)]^T$$

其中,p(i) 为选择方案 a_i 时的展望。

该经营者是中立型决策者。

(1) 根据效用理论确定其最优的进货数量;

因为
$$c_1 = c_{min} = 1000$$
, $c_{15} = c_{max} = 21000$,

$$\lambda_i = \frac{c_i - c_{min}}{c_{max} - c_{min}} = \frac{c_i - 1000}{20000}, \ 1 \le i \le 15$$

则,

 $V = [0 \ 0.025 \ 0.05 \ 0.2 \ 0.225 \ 0.25 \ 0.4 \ 0.425 \ 0.45 \ 0.6 \ 0.625 \ 0.65 \ 0.8 \ 0.825 \ 1]^T$ 又因为该经营者是中立型决策者,

$$v(p(i)) = \sum_{j=1}^{15} p_{ij} \times v(j) = v\left(\sum_{j=1}^{15} p_{ij} \times c_j\right)$$

$$v(P) = \begin{bmatrix} 0.05\\0.18\\0.3\\0.43\\0.445\\0.44 \end{bmatrix} = \begin{bmatrix} v(2)\\v(4.6)\\v(7)\\v(9.6)\\v(9.9)\\v(9.8) \end{bmatrix}$$

因为 v(p(5)) > v(p(6)) > v(p(4)) > v(p(3)) > v(p(2)) > v(p(1)),

由于一致性, p(5) > p(i), $i \neq 5, 1 \leq i \leq 6$ 。

所以应选择决策方案 a_5 , 即最优的进货数量为250箱。

(2) 根据极小化最大后悔值准则确定其最优的进货数量。

选择 a 时候发现是 S 发生的后悔值: $r(s|a) = \max_{\hat{a} \in A} v(g(s|\hat{a})) - v(g(s|a))$

$$r(s_j|a_i)\big|_{1 \le i,j \le 6} = \begin{bmatrix} 0.000 & 0.200 & 0.400 & 0.600 & 0.775 & 0.950 \\ 0.050 & 0.050 & 0.250 & 0.450 & 0.625 & 0.800 \\ 0.050 & 0.050 & 0.050 & 0.250 & 0.425 & 0.600 \\ 0.000 & 0.000 & 0.000 & 0.000 & 0.175 & 0.350 \\ 0.025 & 0.025 & 0.025 & 0.025 & 0.000 & 0.175 \\ 0.050 & 0.050 & 0.050 & 0.050 & 0.025 & 0.000 \end{bmatrix}$$

选择 a 可能发生的最大后悔值:

$$R(a_i)|_{1 \le i \le 6} = \max_{s \in S} r(s|a_i)|_{1 \le i \le 6} = [0.95 \ 0.8 \ 0.6 \ 0.35 \ 0.175 \ 0.05]$$

决策准则: $\min_{a \in A} R(a) = 0.05$

《系统工程导论》

所以应选择决策方案 a_6 ,即最优的进货数量为300箱。