Trabajo Final Introducción a la Ciencia de Datos

Juanjo Sierra

27 de diciembre de 2018

Planteamiento

El trabajo final de la asignatura Introducción a la Ciencia de Datos se divide en dos secciones. Consiste en realizar un estudio sobre un conjunto de datos de regresión y otro sobre un conjunto de datos de clasificación. Se aplicarán distintas técnicas aprendidas durante la asignatura para conseguir los resultados adecuados.

Librerías y paquetes a cargar

Trabajo Final Regresión

En primer lugar se realizará el estudio de la base de datos de regresión. En este caso el conjunto de datos a analizar es **Friedman**, que se ha descargado desde el repositorio de datasets de la asignatura. Se puede leer utilizando la siguiente orden:

```
friedman = read.csv("Datos/friedman/friedman.dat", header = FALSE, comment.char = "@")
head(friedman)

## V1 V2 V3 V4 V5 V6

## 1 0.6964817 0.3584375 0.4258343 0.33031373 0.22249090 11.09496

## 2 0.5903899 0.4306749 0.8690418 0.07091161 0.63430253 13.22921

## 3 0.8276557 0.6178330 0.9494409 0.67013843 0.64080838 25.33973

## 4 0.8107169 0.2621162 0.4541944 0.85470608 0.27976951 15.18159

## 5 0.4068430 0.8161745 0.8611055 0.12890196 0.15747881 14.43310

## 6 0.6299940 0.3821170 0.9819543 0.98471273 0.07506318 20.97857
```

Dado que los nombres asignados a las variables no aportan ninguna información, y en el resumen del dataset en formato KEEL podemos comprobar que sus nombres tampoco son representativos, se procede a asignarles una notación genérica.

```
n = length(names(friedman))-1
names(friedman)[1:n] = paste ("X", 1:n, sep="")
names(friedman)[n+1] = "Y"
head(friedman)
            X1
                      X2
                                ХЗ
                                           Х4
                                                       Х5
                                                                 Y
## 1 0.6964817 0.3584375 0.4258343 0.33031373 0.22249090 11.09496
## 2 0.5903899 0.4306749 0.8690418 0.07091161 0.63430253 13.22921
## 3 0.8276557 0.6178330 0.9494409 0.67013843 0.64080838 25.33973
## 4 0.8107169 0.2621162 0.4541944 0.85470608 0.27976951 15.18159
## 5 0.4068430 0.8161745 0.8611055 0.12890196 0.15747881 14.43310
## 6 0.6299940 0.3821170 0.9819543 0.98471273 0.07506318 20.97857
```

Ahora podemos comprobar de forma más directa que existen 5 variables de entrada (X1-5) que determinan una única variable de salida (Y). Es interesante comprobar las dimensiones del dataset para poder asegurar que se está asumiendo lo correcto.

dim(friedman)

[1] 1200 6

Con esto se puede confirmar que existen un total de 1200 ejemplos en el conjunto de datos, cada uno con 6 variables (5 de entrada y 1 de salida).

Se puede comprobar también si existen valores perdidos en el dataset. Para esto vamos a utilizar la función anyNA:

anyNA(friedman)

[1] FALSE

Este resultado indica que no hay valores perdidos y que por lo tanto no es necesario imputar ni tomar ninguna decisión para restablecer dichos valores.