МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 1.3.3 ИЗМЕРЕНИЕ ВЯЗКОСТИ ВОЗДУХА ПО ТЕЧЕНИЮ В ТОНКИХ ТРУБКАХ

Авторы: Идрисов Сергей Б04-306

Введение

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха

В работе используются: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

Теоретическая часть

Рассмотрим движение вязкой жидкости или газа по трубке круглого сечения. При малых скоростях потока движение оказывается ламинарным (слоистым), скорости частиц меняются по радиусу и направлены вдоль оси трубки. С увеличением скорости потока движение становится турбулентным, а слои перемешиваются. При турбулентном движении скорость в каждой точке быстро меняет величину и направление, сохраняется только средняя величина скорости.

Характер движения газа (или жидкости) в трубке определяется безразмерным числом Рейнольдса:

$$Re = \frac{vr\rho}{\eta},$$

где v — скорость потока, r — радиус трубки, ρ — плотность движущейся среды, η — её вязкость. В гладких трубах круглого сечения переход от ламининарного движения к турбулентному происходит при $Re \approx 10^3$.

При ламинарном течении объем газа V, протекающий за время t по трубе длиной l, определяется формулой Пуазейля:

$$Q = \frac{\pi r^4}{8ln} (P_1 - P_2). \tag{1}$$

В этой формуле P_1-P_2 — разность давлений в двух выбранных сечениях 1 и 2, расстояние между которыми равно l. Величину Q обычно называют расходом. Формула (1) позволяет определять вязкость газа по его расходу.

Отметим условия, при которых справедлива формула (1). Прежде всего необходимо, чтобы с достаточным запасом выполнялось неравенство $Re < 10^3$. Необходимо также, чтобы при течении не происходило существенного изменения удельного объёма газа (при выводе формулы удельный объём считался постоянным). Для жидкости это предположение выполняется практически всегда, а для газа — лишь в тех случаях, когда перепад давлений вдоль трубки мал по сравнению с самим давлением. В нашем случае давление газа равно атмосферному (10^3 см вод. ст.), а перепад давлений составляет не более 10 см вод. ст., т. е. менее 1% от атмосферного. Формула (1) выводится для участков трубки, на которых закон распределения скоростей газа по сечению не меняется при двидении вдоль потока.

Рис. 1: Формирование потока газа в трубке круглого сечения

При втекании газа в трубку из большого резервуара скорости слоёв вначале постоянны по всему направлению. По мере продвижения газа по трубке картина распределения скоростей меняется, так как сила трения о стенку тормозит прилежащие к ней оси. Характерное для ламинарного течения параболическое распределение скоростей устанавливается на некотором расстоянии a от входа в трубку, которое зависит от радиуса трубки r и числа Рейнольдса по формуле

$$a \approx 0, 2 \ r \cdot Re.$$
 (2)

Градиент давления на участке формирования потока оказывается бо́льшим, чем на участке с установившимся ламинарным течением, что позволяет разделить эти участки экспериментально. Формула (2) даёт возможность оценить дину участка формирования.

Ход работы

Рис. 2: Установка

$D_1(N)$	им)	$D_2(MM)$	$T_k(K)$	$P_k(\Pi \mathbf{a})$	$\varphi_k(\%)$
3,9	5	5,05	297,7	100420	16,8

Таблица 1: Параметры установки

$$f(a,b) = \sum_{i=1}^{n} [Q_i - (a+bP_i)]^2.$$

$$b = \frac{\langle \Delta PQ \rangle - \langle \Delta P \rangle \langle Q \rangle}{\langle P^2 \rangle - \langle P \rangle^2}.$$

$$\sigma_b \approx \frac{1}{\sqrt{n}} \sqrt{\frac{\langle \Delta Q^2 \rangle - \langle \Delta Q \rangle^2}{\langle P^2 \rangle - \langle P \rangle^2} - b^2}.$$

Рис. 3: График D_1

x, MM	$Q, \frac{\pi}{\text{Muh}}$	Р, Па	$Q', \frac{M^3}{C}$	$\frac{P}{Q} \frac{\Pi a \cdot c}{M^3}$	$P \cdot Q \frac{\Pi a \cdot M^3}{c}$	$P^2\Pi a^2$	$Q^2 \frac{\mathrm{M}^3}{c^2}$
5	0,347	9,8	5,783E-06	5,901E-07	5,667E-05	96,04	3,344E-11
10	0,715	19,6	1,191E-05	6,079E-07	2,335E-04	384,16	1,42E-10
15	1,063	29,4	1,771E-05	6,026E-07	5,208E-04	864,36	3,138E-10
20	1,468	39,2	2,446E-05	6,24E-07	9,59E-04	1536,64	5,986E-10
25	1,916	49	3,193E-05	6,517E-07	1,564E-03	2401	1,019E-09
30	2,205	58,8	3,675E-05	6,25E-07	2,160E-03	3457,44	1,35E-09
35	2,572	68,6	4,286E-05	6,248E-07	2,94E-03	4705,96	1,837E-09
40	2,997	78,4	4,995E-05	6,371E-07	3,916E-03	6146,56	2,495E-09
45	3,325	88,2	5,541E-05	6,283E-07	4,887E-03	7779,24	3,071E-09
50	3,778	98	6,296E-05	6,425E-07	6,17E-03	9604	3,964E-09
55	3,986	107,8	6,643E-05	6,162E-07	7,161E-03	11620,84	4,413E-09
60	4,383	117,6	7,305E-05	6,211E-07	8,59E-03	13829,76	5,336E-09
65	4,792	127,4	7,986E-05	6,268E-07	1,017E-02	16230,76	6,378E-09
70	4,945	137,2	8,241E-05	6,007E-07	1,13E-02	18823,84	6,792E-09
75	5,405	147	9,008E-05	6,128E-07	1,324E-02	21609	8,115E-09
<>		78,4	4,877E-05		4,925E-3	7939,306	3,057E-09
80	5,53	156,8	9,228E-05	5,885E-07			
90	5,65	176,4	9,41833E-05	5,339E-07			
100	5,78	196	9,645E-05	4,920E-07			
110	6,01	215,6	1,003E-04	4,652E-07			
120	6,27	235,2	1,045E-04	4,446E-07			
130	6,56	254,8	1,093E-04	4,292E-07			
140	6,66	274,4	1,11E-04	4,046E-07			
152	6,91	297,9	1,151E-04	3,865E-07			
160	7,09	313,6	1,182E-04	3,771E-07			
171	7,26	335,1	1,211E-04	3,613E-07			
179	7,35	350,8	1,226E-04	3,495E-07			
190	7,58	372,4	1,263E-04	3,393E-07			
205	7,95	401,8	1,326E-04	3,3E-07			

Таблица 2: Параметры для D_1

Рис. 4: Ламинарное течение в D_1

$$k_1 = \frac{4,925 * 10^{-3} - 3,831 * 10^{-3}}{(7939,306 - 6146,56)} = (6,2 \pm 0,5) \cdot 10^{-7}$$

$$\sigma_k = \frac{1}{\sqrt{15}} \sqrt{\frac{3,057 * 10^{-9} - 2,388 * 10^{-9}}{7939,306 - 6146,56}} - 3,77 \cdot 10^{-15} = 0,5 \cdot 10^{-7}$$

	I	I	3	ДΠ	- П 3	0 0	- 0 - 3
x, MM	$Q, \frac{\pi}{\text{Muh}}$	Р, Па	$Q', \frac{\mathrm{M}^3}{\mathrm{c}}$	$\frac{P}{Q} \frac{\Pi a \cdot c}{M^3}$	$P \cdot Q \frac{\Pi a \cdot m^3}{c}$	$P^2\Pi a^2$	$Q^2 \frac{\mathrm{M}^3}{c^2}$
5	1,261	9,8	2,101E-05	2,144E-06	2,059E-03	96,04	4,417E-10
12	2,819	23,5	4,698E-05	1,997E-06	1,105E-02	553,19	2,207E-09
15	3,618	29,4	0,0000603	2,051E-06	1,772E-02	864,36	3,636E-09
20	4,774	39,2	7,956E-05	2,026E-06	3,119E-02	1536,64	6,33E-09
25	5,995	49	9,991E-05	2,039E-06	4,895E-02	2401	9,983E-09
<>		30,184	6,155E-05		2,219E-03	1090,246	4,519E-09
30	6,709	58,8	1,118E-04	1,901E-06			
35	7,387	68,6	1,231E-04	1,794E-06			
40	7,944	78,4	1,324E-04	1,688E-06			
51	8,689	99,96	1,448E-04	1,448E-06			
60	9,066	117,6	1,511E-04	1,284E-06			
70	9,666	137,2	1,611E-04	1,174E-06			
80	10,344	156,8	1,724E-04	1,099E-06			
90	11,03	176,4	1,838E-04	1,042E-06			
100	11,683	196	1,947E-04	9,934E-07			
115	12,679	225,4	2,113E-04	9,375E-07			
130	13,492	254,8	2,248E-04	8,825E-07			
145	14,316	284,2	2,386E-04	8,395E-07			
159	15,052	311,64	2,508E-04	8,049E-07			
170	15,596	333,2	2,599E-04	7,801E-07			
180	16,097	352,8	2,682E-04	7,604E-07			

Таблица 3: Параметры для D_2

$$k_2 = \frac{2,219 * 10^{-3} - 1,857 * 10^{-3}}{(1090,246 - 991,073)} = (2,0 \pm 0,3) \cdot 10^{-6}$$

$$\sigma_k = \frac{1}{\sqrt{5}} \sqrt{\frac{4,519 * 10^{-9} - 3,788 * 10^{-9}}{1090,246 - 991,073} - 4,04 \cdot 10^{-15}} = 0,3 \cdot 10^{-6}$$

Рис. 5: Ламинарное течение в D_2

Рис. 6: График D_2

С помощью коэффициентов наклона мы можем найти вязкость воздуха из формулы

$$\eta = \frac{\pi R^4}{8kl}$$

где k – коэффициент наклона графика, l – длина участка трубы, а R – радиус трубки. Далее найдем критическое число Рейнольдса $Re_{\rm kp}$ для всех трубок:

$$Re = \frac{\rho uR}{\eta} = \frac{\rho Q}{\pi R \eta}$$

$$\sigma_{\eta} = \eta \sqrt{(\frac{\sigma_l}{l})^2 + (\frac{\sigma_k}{k})^2 + (\frac{\sigma_D}{D})^2} = 2\sqrt{(\frac{0,5}{40})^2 + (\frac{0,2}{6,2})^2 + (\frac{0,05}{3,95})^2} \approx 0,4 \cdot 10^{-5}, \Pi \text{a·c}$$

$$\sigma_{Re} = Re\sqrt{(\frac{\sigma_{\eta}}{\eta})^2 + (\frac{\sigma_Q}{Q})^2} = 810\sqrt{(\frac{0,4}{2,2})^2 + (\frac{0,5}{2,1})^2} \approx 2 \cdot 10^2$$

	$d_1 = 3,95 \text{ mm}$	$d_2 = 5,05 \text{ mm}$
$k \cdot 10^{-7}$, м ³ /с·Па	6,2	20
$\eta \cdot 10^{-5}, \Pi \text{a·c}$	2,2	2,0
$Q_{\rm kp} \cdot 10^{-5}, \frac{{\rm M}^3}{c}$	9,00	9,99
$Re \cdot 10^2$	8	8

Таблица 4: Результаты полученные из графиков

$$\eta_{\mathrm{табл}} = 1,78 \cdot 10^{-5},\, \Pi a \cdot c$$

x, MM	$Q, \frac{\pi}{\text{Muh}}$	$Q', \frac{M^3}{C}$	$P, \Pi a$	y, cm
45	3,269	5,448E-05	88,2	81,5
36	3,241	5,401E-05	70,5	41,5
25	3,207	5,345E-05	49	0
81	3,241	5,401E-05	158,7	11,5
45	3,203	5,338E-05	88,2	11,5

Таблица 5: Зависимость P(y) для D_1

$$L_{\text{yct}} \approx 0,2Re_1 \cdot R_1 = 0,28101,975 \cdot 10^{-3} \approx 0,3$$
 m

Рис. 7: Ламинарное течение в D_1

x, MM	$Q, \frac{\pi}{\text{Muh}}$	$Q', \frac{M^3}{C}$	Р, Па	y, cm
20	4,549	7,581E-05	39,2	81,5
20	4,576	7,626E-05	39,2	41,5
14	4,572	7,62E-05	27,44	11,5
16	4,59	7,65E-05	31,36	0

Таблица 6: Зависимость P(y) для D_2

$$L_{\rm yct}\approx 0, 2Re_2\cdot R_2=0, 28002, 525\cdot 10^{-3}\approx 0, 4{\rm M}$$

Рис. 8: Ламинарное течение в D_2

	$Q_1 \cdot 10^{-5}$	$Q_2 \cdot 10^{-5}$	$\ln Q_1$	$\ln Q_2$	$\ln R_1$	$\ln R_2$
ламин. т.	2,45	7,96	-10,62	-9,44		
турб. т.	12,3	26,8	-8,92	-8,22	-6.23	-5.98

Таблица 7: Зависимость расхода от радиуса

$$\beta_{\pi} = \frac{-10,62 + 9,44}{-6.23 + 5.98} = 5 \pm 1$$

$$\beta_{\kappa} = \frac{-8,92 + 8,22}{-6.23 + 5.98} = 2,8 \pm 0,2$$

$$\sigma_{\beta} = \beta \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_Q}{Q}\right)^2}$$

$$\sigma_{\beta_1} = 4,72\sqrt{\left(\frac{0,05}{1,975}\right)^2 + \left(\frac{0,5}{2,45}\right)^2} = 1$$

$$\sigma_{\beta_2} = 2,8\sqrt{\left(\frac{0,05}{1,975}\right)^2 + \left(\frac{0,5}{12,3}\right)^2} = 0,2$$

	$Q \cdot 10^{-4}$	\sqrt{P}	$Q\sqrt{P\cdot 10^{-3}}$	$Q^2 \cdot 10^{-8}$	P^2
	1,118	7,668	0,857	1,25	58,8
	1,231	8,282	1,019	1,515	68,6
	1,324	8,854	1,172	1,752	78,4
	1,448	9,997	1,447	2,097	99,96
	1,511	10,844	1,638	2,283	117,6
	1,611	11,713	1,887	2,595	137,2
	1,724	12,521	2,158	2,972	156,8
	1,838	13,281	2,441	3,379	176,4
	1,947	14	2,726	3,791	196
	2,113	15,013	3,172	4,465	225,4
	2,248	15,962	3,589	5,056	254,8
	2,386	16,858	4,022	5,693	284,2
	2,508	17,653	4,428	6,293	311,64
	2,599	18,253	4,744	6,756	333,2
	2,682	18,782	5,039	7,197	352,8
<>	1,886	13,312	2,689	3,806	190,12

Рис. 9: Зависимость Q от \sqrt{P}

$$k = \frac{(2,689 - 2,51) \cdot 10^{-3}}{190,12 - 177,449} = (1,4 \pm 0,4) \cdot 10^{-5}$$
$$\sigma_k = \frac{1}{\sqrt{15}} \sqrt{\frac{(3,806 - 3,557) \cdot 10^{-8}}{190,12 - 177,449}} - 1,9881 \cdot 10^{-10} = 0,4 \cdot 10^{-5}$$

Вывод

Экспериментально исследовались свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха. Получили вязкость воздуха:

$$\eta = (2 \pm 0, 4) \cdot 10^{-5} \; \text{\Pia} \cdot \text{c}$$

Сравнили зависимость расхода при ламинарном и турбулентном течении в зависимости от радиуса трубы:

- Для ламинарного течения теоретический коэффициент: $\beta=4$; Экспериментальный: $\beta_{\rm vcr}=5\pm1$.
- Для турбулентного течения теоретический коэффициент: $\beta=2.5$; Экспериментальный: $\beta=2,8\pm0.2$.