Word Embeddings

Pawan Goyal

CSE, IIT Kharagpur

ACM Summer School

Word Vectors

• At one level, it is simply a vector of weights.

Word Vectors

- At one level, it is simply a vector of weights.
- In a simple 1-of-N (or 'one-hot') encoding every element in the vector is associated with a word in the vocabulary.

Word Vectors

- At one level, it is simply a vector of weights.
- In a simple 1-of-N (or 'one-hot') encoding every element in the vector is associated with a word in the vocabulary.
- The encoding of a given word is simply the vector in which the corresponding element is set to one, and all other elements are zero.

One-hot representation

motel [00000000010000] AND hotel [00000000] = 0

Word Vectors - One-hot Encoding

- Suppose our vocabulary has only five words: King, Queen, Man, Woman, and Child.
- We could encode the word 'Queen' as:

Limitations of One-hot encoding

Limitations of One-hot encoding

Word vectors are not comparable

Using such an encoding, there is no meaningful comparison we can make between word vectors other than equality testing.

Word2Vec – A distributed representation

Distributional representation – word embedding?

Any word w_i in the corpus is given a distributional representation by an embedding

$$w_i \in R^d$$

i.e., a d-dimensional vector, which is mostly learnt!

Word2Vec – A distributed representation

Distributional representation – word embedding?

Any word w_i in the corpus is given a distributional representation by an embedding

$$w_i \in R^d$$

i.e., a *d*-dimensional vector, which is mostly learnt!

Distributional Representation

- Take a vector with several hundred dimensions (say 1000).
- Each word is represented by a distribution of weights across those elements.
- So instead of a one-to-one mapping between an element in the vector and a word, the representation of a word is spread across all of the elements in the vector, and
- Each element in the vector contributes to the definition of many words.

Distributional Representation: Illustration

If we label the dimensions in a hypothetical word vector (there are no such pre-assigned labels in the algorithm of course), it might look a bit like this:

Such a vector comes to represent in some abstract way the 'meaning' of a word

Word Embeddings

- *d* typically in the range 50 to 1000
- Similar words should have similar embeddings

Word Embeddings

- *d* typically in the range 50 to 1000
- Similar words should have similar embeddings

SVD can also be thought of as an embedding method

 It has been found that the learned word representations in fact capture meaningful syntactic and semantic regularities in a very simple way.

- It has been found that the learned word representations in fact capture meaningful syntactic and semantic regularities in a very simple way.
- Specifically, the regularities are observed as constant vector offsets between pairs of words sharing a particular relationship.

- It has been found that the learned word representations in fact capture meaningful syntactic and semantic regularities in a very simple way.
- Specifically, the regularities are observed as constant vector offsets between pairs of words sharing a particular relationship.

Case of Singular-Plural Relations

If we denote the vector for word i as x_i , and focus on the singular/plural relation, we observe that

- It has been found that the learned word representations in fact capture meaningful syntactic and semantic regularities in a very simple way.
- Specifically, the regularities are observed as constant vector offsets between pairs of words sharing a particular relationship.

Case of Singular-Plural Relations

If we denote the vector for word i as x_i , and focus on the singular/plural relation, we observe that

$$x_{apple} - x_{apples} \approx x_{car} - x_{cars} \approx x_{family} - x_{families} \approx x_{car} - x_{cars}$$

and so on.

Perhaps more surprisingly, we find that this is also the case for a variety of semantic relations.

Good at answering analogy questions

a is to b, as c is to?

man is to woman as uncle is to ? (aunt)

Perhaps more surprisingly, we find that this is also the case for a variety of semantic relations.

Good at answering analogy questions

a is to b, as c is to?

man is to woman as uncle is to ? (aunt)

A simple vector offset method based on cosine distance shows the relation.

Vcctor Offset for Gender Relation

Vcctor Offset for Singular-Plural Relation

Encoding Other Dimensions of Similarity

Analogy Testing

Relationship	Example 1 Example 2		Example 3	
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee	
big - bigger	small: larger cold: colder		quick: quicker	
Miami - Florida	Baltimore: Maryland Dallas: Texas		Kona: Hawaii	
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter	
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan	
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium	
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack	
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone	
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs	
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza	

Analogy Testing

$$d = \arg\max_{x} \frac{(w_b - w_a + w_c)^T w_x}{||w_b - w_a + w_c||}$$

man:woman::king:?

- + king [0.30 0.70]
- man [0.20 0.20]
- + woman [0.60 0.30]

queen [0.70 0.80]

Country-capital city relationships

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly the relationships between them, as during the training we did not provide any supervised information about what a capital city means.

More Analogy Questions

Newspapers							
New York	New York Times	Baltimore	Baltimore Sun				
San Jose	San Jose Mercury News	Cincinnati	Cincinnati Enquirer				
NHL Teams							
Boston	Boston Bruins	Montreal	Montreal Canadiens				
Phoenix	Phoenix Coyotes Nashville		Nashville Predators				
NBA Teams							
Detroit	Detroit Pistons	Toronto	Toronto Raptors				
Oakland	Golden State Warriors	Memphis	Memphis Grizzlies				
Airlines							
Austria	Austrian Airlines	Spain	Spainair				
Belgium	Brussels Airlines	Greece	Aegean Airlines				
Company executives							
Steve Ballmer	Microsoft	Larry Page	Google				
Samuel J. Palmisano	IBM	Werner Vogels	Amazon				

Table 2: Examples of the analogical reasoning task for phrases (the full test set has 3218 examples). The goal is to compute the fourth phrase using the first three. Our best model achieved an accuracy of 72% on this dataset.

Element Wise Addition

We can also use element-wise addition of vector elements to ask questions such as 'German + airlines' and by looking at the closest tokens to the composite vector come up with impressive answers:

Czech + currency	Vietnam + capital	German + airlines	Russian + river	French + actress
koruna	Hanoi	airline Lufthansa	Moscow	Juliette Binoche
Check crown	Ho Chi Minh City	carrier Lufthansa	Volga River	Vanessa Paradis
Polish zolty	Viet Nam	flag carrier Lufthansa	upriver	Charlotte Gainsbourg
CTK	Vietnamese	Lufthansa	Russia	Cecile De

Table 5: Vector compositionality using element-wise addition. Four closest tokens to the sum of two vectors are shown, using the best Skip-gram model.

Learning Word Vectors

Basic Idea

Instead of capturing co-occurrence counts directly, predict (using) surrounding words of every word.

Code as well as word-vectors: https://code.google.com/p/word2vec/

Two Variations: CBOW and Skip-grams

 Consider a piece of prose such as:
 "The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precises syntatic and semantic word relationships."

- Consider a piece of prose such as:
 "The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precises syntatic and semantic word relationships."
- Imagine a sliding window over the text, that includes the central word currently in focus, together with the four words that precede it, and the four words that follow it:

- Consider a piece of prose such as:
 "The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precises syntatic and semantic word relationships."
- Imagine a sliding window over the text, that includes the central word currently in focus, together with the four words that precede it, and the four words that follow it:

The context words form the input layer. Each word is encoded in one-hot form. A single hidden and output layer.

CBOW: Training Objective

- The training objective is to maximize the conditional probability of observing the actual output word (the focus word) given the input context words, with regard to the weights.
- In our example, given the input ("an", "efficient", "method", "for", "high",
 "quality", "distributed", "vector"), we want to maximize the probability of
 getting "learning" as the output.

CBOW: Input to Hidden Layer

Since our input vectors are one-hot, multiplying an input vector by the weight matrix W_1 amounts to simply selecting a row from W_1 .

Given C input word vectors, the activation function for the hidden layer h amounts to simply summing the corresponding 'hot' rows in W_1 , and dividing by C to take their average.

CBOW: Hidden to Output Layer

From the hidden layer to the output layer, the second weight matrix W_2 can be used to compute a score for each word in the vocabulary, and softmax can be used to obtain the posterior distribution of words.

Skip-gram Model

The skip-gram model is the opposite of the CBOW model. It is constructed with the focus word as the single input vector, and the target context words are now at the output layer:

Skip-gram Model: Training

- The activation function for the hidden layer simply amounts to copying the corresponding row from the weights matrix W_1 (linear) as we saw before.
- At the output layer, we now output C multinomial distributions instead of just one.
- The training objective is to mimimize the summed prediction error across all context words in the output layer. In our example, the input would be "learning", and we hope to see ("an", "efficient", "method", "for", "high", "quality", "distributed", "vector") at the output layer.

Skip-gram Model

Details

Predict surrounding words in a window of length \boldsymbol{c} of each word

Skip-gram Model

Details

Predict surrounding words in a window of length c of each word **Objective Function:** Maximize the log probablility of any context word given the current center word:

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0} log \ p(w_{t+j}|w_t)$$

Word Vectors

For $p(w_{t+i}|w_t)$ the simplest first formulation is

$$p(w_{O}|w_{I}) = \frac{exp(v'_{wO}^{T}v_{WI})}{\sum_{w=1}^{W} exp(v'_{w}^{T}v_{WI})}$$

Word Vectors

For $p(w_{t+j}|w_t)$ the simplest first formulation is

$$p(w_O|w_I) = \frac{exp(v'_{wO}^T v_{WI})}{\sum_{w=1}^{W} exp(v'_{w}^T v_{WI})}$$

where v and v' are "input" and "output" vector representations of w (so every word has two vectors)

Parameters θ

With d-dimensional words and V many words:

$$\theta = \begin{bmatrix} v_{aardvark} \\ v_{a} \\ \vdots \\ v_{zebra} \\ v'_{aardvark} \\ v'_{a} \\ \vdots \\ v'_{zebra} \end{bmatrix} \in \mathbb{R}^{2dV}$$

Gradient Descent for Parameter Updates

$$\Theta_{j}^{new} = \Theta_{j}^{old} - \alpha \frac{\partial}{\partial \Theta_{j}^{old}} J(\Theta)$$

Implementation Tricks

Batch update would take a very long time

Instead, parameters are updated after each window t.

$$heta_{j}^{new} = heta_{j}^{old} - lpha rac{\partial}{\partial heta_{j}^{old}} J_{t}(heta)$$

Implementation Tricks

Batch update would take a very long time

Instead, parameters are updated after each window t.

$$heta_{j}^{new} = heta_{j}^{old} - lpha rac{\partial}{\partial heta_{i}^{old}} J_{t}(heta)$$

Computing denominator in $p(w_O|w_I)$ is too computionally expensive

Negative Sampling

$$\log \sigma \left(v_{wI}^T v_{wO}'\right) + \sum_{i \sim P_n(w)} \log \sigma \left(-v_{wI}^T v_{wi}'\right)$$

Two sets of vectors

Best solution is to sum these up

$$L_{final} = L + L'$$

Two sets of vectors

Best solution is to sum these up

$$L_{final} = L + L'$$

A good tutorial to understand parameter learning:

https://arxiv.org/pdf/1411.2738.pdf

Two sets of vectors

Best solution is to sum these up

$$L_{final} = L + L'$$

A good tutorial to understand parameter learning:

https://arxiv.org/pdf/1411.2738.pdf

An interactive Demo

https://ronxin.github.io/wevi/

Glove

$$J=rac{1}{2}\sum_{ij}f(P_{ij})ig(w_i\cdot ilde{w}_j-\log P_{ij}ig)^2 \qquad f\sim rac{rac{1}{6}}{62}$$

Combine the best of both worlds – count based methods as well as direct prediction methods

Glove

Combine the best of both worlds – count based methods as well as direct prediction methods

- Fast training
- Scalable to huge corpora
- Good performance even with small corpus, and small vectors

Code and vectors: http://nlp.stanford.edu/projects/glove/

Glove Visualisations

Glove Visualisations

Glove Visualisations

Intrinsic Evaluation

- Word vector distances and their correlation with human judgements
- Example dataset: WordSim353

```
Word 1 Word 2 Human (mean)
tiger
       cat
               7.35
tiger tiger
               10.00
       paper 7.46
book
computer
               internet 7.58
plane
       car
               5.77
professor
             doctor
                      6.62
stock
       phone
               1.62
stock CD
               1.31
stock
               0.92
       jaguar
```

Hyperparameters

Skip-gram: using evaluation on analogy testing

- Dimensions: 300 dimensions work the best
- Window size: 8 words around each center word works well.
- More training time and data helps!!

Handling Polysemy

Problem with word vectors

Multiple senses of a given word get the same representation!!

Handling Polysemy

Problem with word vectors

Multiple senses of a given word get the same representation!!

Huang et al., "Improving Word Representations via Global Context and Multiple Word Prototypes", ACL 2012.

Basic Idea

Cluster words windows around words, retrain with each word assigned to multiple different clusters, e.g., bank₁, bank₂ etc.

Multiple Word Prototypes: Nearest Neighbors

Center Word	Nearest Neighbors	
bank_1	corporation, insurance, company	
bank_2	shore, coast, direction	
star_1	movie, film, radio	
star_2	galaxy, planet, moon	
cell_1	telephone, smart, phone	
cell_2	pathology, molecular, physiology	
left_1	close, leave, live	
left_2	top, round, right	

Code and dataset:

http://www.socher.org/index.php/Main/ImprovingWordRepresentations Via Global Control of the Control of Contr

Multiple Word Prototypes: Visualization

Cross-lingual applications: Word Embeddings

Cross-lingual information retrieval task

Query is in one language and documents in another language

Cross-lingual applications: Word Embeddings

Cross-lingual information retrieval task

Query is in one language and documents in another language

Obtaining common representations for words in multiple languages

So that you can visualize words in multiple languages in the same space

Bilingual Word Embeddings: Merge and Shuffle

Vulić, Ivan, and Marie-Francine Moens. "Monolingual and cross-lingual information retrieval models based on (bilingual) word embeddings." SIGIR 2015.

Other Approaches

- The previous approach requires a comparable corpora. What if you do not have such corpora?
- Suppose you have a dictionary to start with, what would be an approach?

Applications: Bilingual Word Embeddings

- 1. Align pretrained monolingual embedding spaces (offline) using dictionaries [Mikolov et al., arXiv 2013; Lazaridou et al., ACL 2015]
- 2. Jointly learn and align embeddings **(online)** using *parallel-only data* [Hermann and Blunsom, ACL 2014; Chandar et al., NIPS 2014]
- 3. Jointly learn and align embeddings (online) using mono and parallel data [Gouws et al., ICML 2015; Soyer et al., ICLR 2015, Shi et al., ACL 2015]

Applications: Sentiment Specific Embeddings

Basic Idea

Introduce an additional objective: The word vectors of the model should predict the sentiment label using some appropriate predictor.

$$\hat{s} = f(\phi_w)$$

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. (2011). Learning Word Vectors for Sentiment Analysis. The 49th Annual Meeting of the Association for Computational Linguistics (ACL 2011).

Andrew Mass' Model

	Our model Sentiment + Semantic	Our model Semantic only	LSA
melancholy	bittersweet	thoughtful	poetic
	heartbreaking	warmth	lyrical
	happiness	layer	poetry
	tenderness	gentle	profound
	compassionate	loneliness	vivid
ghastly	embarrassingly	predators	hideous
	trite	hideous	inept
	laughably	tube	severely
	atrocious	baffled	grotesque
	appalling	smack	unsuspecting
lackluster	lame	passable	uninspired
	laughable	unconvincing	flat
	unimaginative	amateurish	bland
	uninspired	clichéd	forgettable
	awful	insipid	mediocre
romantic	romance	romance	romance
	love	charming	screwball
	sweet	delightful	grant
	beautiful	sweet	comedies
	relationship	chemistry	comedy

Table 1: Similarity of learned word vectors. Each target word is given with its five most similar words using cosine similarity of the vectors determined by each model. The full version of our model (left) captures both lexical similarity as well as similarity of sentiment strength and orientation. Our unsupervised semantic component (center) and LSA (right) capture semantic relations.