Sample Solutions for Tutorial 4

Question 1.

Recall that for all $u, v \in \mathbb{R}$, $v^2 - u^2 = (v - u)(v + u)$. Consequently, if v > u then $v^2 \ge u^2$ if and only if $v + u \ge 0$ and $v^2 \le u^2$ if and only if $v + u \le 0$.

- (a) If $u, v \in \mathbb{R}_0^-$ and u < v, then v + u < 0, whence f(u) > f(v), showing that f is monotonically decreasing.
- (b) If $u, v \in \mathbb{R}_0^+$ and u < v, then v + u > 0, whence g(u) < g(v), showing that g is monotonically increasing.
- (c) If $u, v \in \mathbb{R}$ and u < v, then v + u can be positive or negative. If u = -2 and v = 1, then u < v and h(u) = 4 > 1 = h(v). If u = -1 and v = 2, then u < v and h(u) = 1 > 4 = h(v). Hence h is not monotonic.

Question 2.

(a) Since $x^2 - 4 = (x - 2)(x + 2)$ for all x, $\frac{x^2 - 4}{x - 2} = x + 2$ whenever $x \neq 2$.

We conjecture that $\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4$.

Given $\varepsilon > 0$, put $\delta := \varepsilon$.

Now $|x-2| < \delta$ if and only if $2 - \delta < x < 2 + \delta$.

In such a case $4 - \delta < x + 2 < 4 + \delta$, or equivalently, $|(x + 2) - 4| < \delta = \varepsilon$

Hence, given $\varepsilon > 0$ there is a $\delta > 0$ with $\left| \frac{x^2 - 4}{x - 2} \right| < \varepsilon$ whenever $|x - 2| < \delta$ showing that

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$$

(b) From the geometric definition of the cosine function, we conjecture that $\lim_{x\to 0}\cos x=1$.

To test this conjecture, we use properties of the trigonometric functions.

Recall that $\cos 2A = \cos^2 A - \sin^2 A = 1 - 2\sin^2 A$.

Thus $\cos 2A - 1 = 2\sin^2 A$. Putting $A := \frac{x}{2}$, we see that

$$\cos x - 1 = -\frac{1}{2}\sin^2\frac{x}{2}.$$

As indicated by the next diagrams, $\sin x \le x$ for $0 < x < \frac{\pi}{2}$.

Thus

$$|\cos x - 1| = |2\sin^2 \frac{x}{2}|$$

$$\leq |2\frac{x}{2}\sin \frac{x}{2}|$$

$$\leq x$$

by the above as $|\sin y| \le 1$ for all y

Hence, given $\varepsilon > 0$, choose $\delta := \min\{\varepsilon, \frac{\pi}{4}\}$. If $|x| < \delta$, then $|\cos x - 1| \le |x| \le \delta \le \varepsilon$, showing that $\lim_{x \to 0} \cos x = 1$.

(c) If x < 0, then |x| = -x, whence $\frac{|x|}{x} = -1$. If x > 0, then |x| = x, whence $\frac{|x|}{x} = 1$. Hence we conjecture that $\lim_{x \to 0} \frac{|x|}{x}$ does not exist.

To verify this, suppose to the contrary, that $\lim_{x\to 0} \frac{|x|}{x} = \ell$. Then, since 1>0, there is a $\delta>0$ such that if whenever $|x|<\delta$, then

$$\left| \frac{|x|}{x} - \ell \right| < 1$$

Put $u := -\frac{\delta}{2}$ and $v := \frac{\delta}{2}$. Then $|u|, |v| < \delta$, and so

$$\begin{aligned} 2 &= \left| \frac{|v|}{v} - \frac{|u|}{u} \right| \\ &\leq \left| \frac{|v|}{v} - \ell \right| + \left| \frac{|u|}{u} - \ell \right| \\ &< 1 + 1, \end{aligned}$$

which is a contradiction. Hence, $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

(d) We conjecture that $\lim_{x\to 0}\frac{1}{x^2+1}=\frac{1}{0+1}=1.$ Suppose that $|x|<\delta$ for some $\delta>0.$ Then $0< x^2=|x|^2<\delta^2.$

Hence $1 < x^2 + 1 = |x|^2 < \delta^2 + 1$, so that $0 < \frac{1}{\delta^2 + 1} < \frac{1}{x^2 + 1}$, from which it follows that

$$0 < 1 - \frac{1}{x^2 + 1} < 1 - \frac{1}{\delta^2 + 1} = \frac{\delta^2}{\delta^2 + 1}$$

Observe that $\frac{\delta^2}{\delta^2 + 1} < 1$ for all real δ . So, given ε , put $r = \min\{\varepsilon, \frac{1}{2}\}$, so that $0 < r \le \varepsilon$. Since $\frac{\delta^2}{\delta^2 + 1} < r$ if and only if $\delta^2 < \frac{r}{1 - r}$, choose $\delta := \sqrt{\frac{r}{1 - r}}$. Then $\frac{\delta^2}{\delta^2 + 1} = r \le \varepsilon$.

Hence, if $|x| < \delta$, then $\left| \frac{1}{x^2 + 1} < \frac{\delta^2}{\delta^2 + 1} \right| = r \le \varepsilon$, showing that $\lim_{x \to 0} \frac{1}{x^2 + 1} = 1$.