Aim: A simple spectrometer (and diffractometer)

- Create a new instrument from 'template (test)'.
- Call it Liquid_simple and define input
 parameters (lambda=2.36, string coh="Rb_liq_coh.sq
 string inc="Rb_liq_inc.sqw")
- Insert a Source_simple ϕ 1cm sending λ =lamb with $d\lambda/\lambda$ =1%. Focus onto a 1x1cm² area.
- Insert an Isotropic_Sqw 3m away, using $\sigma_{coh} = coh$, $\sigma_{inc} = inc$ with $\phi 1cm \times 5cm$.

Sqw: a 'liquid' TOF

• Add a Monitor_nD cylindrical detector ϕ 1m x 30cm, sensitive to (θ,y) for diffraction, centred on the sample, with 100 bins.

- Add the same, but sensitive to (angle, energy)
 with automatic energy limits.
- Save, run in Trace 3D to check geometry.
- Run in Simulation/PGPLOT mode with 1e8 neutron events.
- Plot results!
- Comment on the diffraction pattern and the inelastic one.

Sqw: a 'liquid' TOF: contributions

 Insert an instrument variable in the DECLARE block, as 'flag_scat'.

```
DECLARE %{
int flag_scat=0;
%}
```

 After the AT token of the 'sample', insert an EXTEND block that sets flag_scat to the number of SCATTERED events.

```
EXTEND %{
flag_scat=SCATTERED; // nb of scattered events
%}
```

