

XNDL

Lab1 - GLMs

Generalized Linear Models

- Gaussian: Continuous response var (mean & variance)
 - Regression problems
 - Normalizing helps w/ outliers & coefficients

Residual plot

- x axis: linear prediction
- y axis: error measure
- Identify outliers
- Data non-/linearity
- Heteroscedasticity (error variance changes with predicted value)
 - Linear regression assumption

Checking Normality

- Shapiro-Wilk
 - Distribution shift at each point
 - p-value: Prob. of sampling from a Gauss.
 - Low p-value (threshold?) -> Not normal
- Kolmogorov-Smirnov
 - Distance in cumulative distribution
 - Compare against "Gaussian"
 - Low value -> High normality

To Do

- Understand data
- Check coefficients
- Find which dataset is better fit for a linear regression.
- Add an outlier and try to detect it in the plots
- Improve code:
 - Print functions
 - Load dataset function & input param
 - stats functions

Generalized Linear Models

- Poisson: Positive integer response var (num. occurrences)
 - Count problems

Incidence Rate Ratios / Confidence interval

- Importance of variables for target
- Precision of estimates

- To Do
 - Find most relevant variables
 - Improve code & structure

References

- [1] https://statisticsbyjim.com/regression/check-residual-plots-regression-analysis/
- [2] https://statisticsbyjim.com/regression/heteroscedasticity-regression/
- [3] https://www.statisticshowto.com/residual-plot/
- [4] https://www.spss-tutorials.com/spss-shapiro-wilk-test-for-normality/

Closure

The end