

探索性資料分析(EDA)_從資料中生成特徵

=~

簡報閱讀

範例與作業

問題討論

學習心得(完成)

重要知識點

觀察

什麼是特徵?

什麼是特徵工程?

特徵工程可以分坐兩大類

Step1:找出變化性的特徵 >

重要知識點

- 掌握特徵的定義
- 掌握不同情境下,產生特徵方法
- 運用 python 產生特徵

我們來做一個小測驗,下面有一張圖,每一張圖的 人臉,都有三種原始資料,眼睛型態,嘴巴顏色和 膚色,你能在5秒內,找出某些資料能分辨出下列 三個人?請回答你使用那些方法來判斷?

你答對了嗎?答案是**嘴巴顏色和膚色**,不知道你是 怎麼找出**嘴巴顏色和膚色**?

從眼睛型態,嘴巴顏色和膚色中,選取出嘴吧顏色 與膚色來分辨這三個人,就是一種特徵工程。

什麼是特徵?

然而透過上面小小的例子,你有發現特徵有什麼特性?

- 在原始資料集中**有變化性**,才能稱為特 徵
- 透過這些特徵能把目標做清楚的分類與 預測,才能稱為好的特徵。

什麼是特徵工程?

特徵工程是基於原始資料中創造出特徵,藉此改善模型性能的過程。

特徵工程可以分坐兩大類

- **衍生**:以現有收集的資料為主,透過探索性分析,了解資料與目標之間的關係後,產生出特徵。
- 添加:現有收集資料以外的資訊,外部數據 很多情況下沒有被重充分利用,實際上它們 可以為模型的性能帶來最重大的突破。
- 今天的課程中,以衍生為主,說明如何透過 python 語法產生出衍生的特徵。

Step1:找出變化性的特徵

眼睛在三個人的臉上都是一樣的,這就是代表沒有 變化性,所以我們無法用眼睛這個資料來判斷這三 個人。

找出變化性的特徵,我們分兩個步驟來看:

- 對資料而言,怎麼找出具有變異性的資料?
- 對目標變數而言,怎麼找出與目標變數 具有相關性的資料?

對資料而言,怎麼找出具有變異性的 資料?

怎麼找出具有變異性的資料,大致上可以根據連續型資料與離散型資料來看。

• 運用類別數量統計 · 分析離散型資料資料的 變異性 。

PS:大家可以回顧,敘述統計的單元內容。

怎麼找出與目標變數具有相關性的資 料?

運用昨天的課程內容,透過挖掘資料和目標資料是 否具有相關性

- 如是高度相關,這個資料可以單獨為特徵。
- 如果中低相關,這個資料可能需要做轉換,才有可能變成特徵。

課程案例

20 筆資料, 收集到 5 種資料, 包含

• sex:性別

• insomnia:失眠

• age:年齡

• height: 身高

• weight:體重

1	Male	N	40	170	68
2	Male	N	5	100	20
3	Male	N	30	176	70
4	Male	N	1	70	10
5	Female	N	40	160	45
6	Female	Υ	16	170	50
7	Female	Y	27	166	58
8	Female	Y	43	155	58
9	Female	N	8	35	17
10	Male	Y	23	170	101
11	Male	N	39	168	65
12	Male	N	5	101	22
13	Male	N	29	175	79
14	Male	N	1	72	12
15	Female	N	42	163	40
16	Female	Y	13	169	53
17	Female	Y	29	163	52
18	Female	Υ	41	151	56
19	Female	N	10	40	14

此資料集中,目標資料為失眠這一個欄位,我們想 建立一個失眠的預測模型。

中低相關的資料,我們怎麼更進一步萃取出可用特徵?

我們可以透過衍生資料的方法,把原始資料做一些轉換,萃取出和目標變數相關的特徵,大致上可以分成以下幾種類型,稱作 ICR。

步驟:

- 指示器變量(Indicator)
- 資料組合(Combination)
- 資料重新定義(Reshape)

假設透過文獻分析發現,體重和失眠有高度相關性,當體重超過 100 公斤時,則得到失眠的機會會大於體重小於100公斤,則我們必須要產生一個新的資料。

$$weight_{new} = \begin{cases} 1, weight \ge 100 \\ 0, weight < 100 \end{cases}$$

Python - 指示器變量(Indicator)

透過 apply function 做指示器變量轉換

```
# 運用 apply function 做變數轉換
data['weight_new']=data['weight'].apply((lambda x: 1 if x >=100 else 0))
display(data.head(5))
```

	sex	insomnia	age	height	weight	weight_new
0	Male	Y	23	180	100	1
1	Male	N	40	170	68	0
2	Male	N	5	100	20	0
3	Male	N	30	176	70	0
4	Male	N	1	70	10	0

資料組合(Combination)

假設透過文獻分析發現,失眠和體重和身高所組成的BMI指數相關時,則我們可以根據資料中的體重和身高,做重新的組合與四則運算,產生出 BMI的資料,在透過 BMI 這個新資料預測失眠,而BMI 就是預測失眠的特徵之一。

$$BMI = \frac{\mathbb{E}\mathbb{E}(\triangle F)}{\mathbb{E}\mathbb{E}(\triangle F)^2}$$

資料組合,透過資料欄位間的四則運算產生出。

運用四則運算,來做計算
data['BMI']=round(data['weight']/data['height']*100*100,2)
display(data.head(5))

	sex	insomnia	age	height	weight	weight_new	BMI
0	Male	Υ	23	180	100	1	30.86
1	Male	N	40	170	68	0	23.53
2	Male	N	5	100	20	0	20.00
3	Male	N	30	176	70	0	22.60
4	Male	N	1	70	10	0	20.41

資料重新定義(Reshape)

資料收集時間長度調整:

預測地下水水位,時雨量比 10 分鐘及時雨量還好,沒有時間遞延問題,透過調整增強數據所能表達的信息。

數值到分類的映射:

可以將年齡,對應成兒童、青少年與成年的資料。

合併稀疏分類:

發現年齡中,某一個年齡層人數偏少, 可以做合併的動作。

表達類別型資料的距離:

定義類別資料距離:比如年齡資料,兒童、青少年與成年可轉換為1,2,3。

創造虛擬資料:

這取決與你選擇的機器學習算法,如果是以距離來量測資料的遠近,則需

重新定義類別資料距離

- 假設我們的年紀,從連續變成離散,分成兒童、青少年、成年人,三種類型。
- 假設這三個群組對於失眠的貢獻不同,年紀 越大失眠狀態越嚴重,我們可以轉譯成1, 2,3也可以轉譯成1,4,9。

Age
child
teens
teens
adult
child

定義類別資料 彼此的距離

Age_線性	
1	1
2	4
2	4
3	9
1	1

創造虛擬變量 - One hot encoding

- 假設我們的年紀,從連續變成離散,分成兒童、青少年、成年人,三種類型。
- 經過 one hot encoding 會產生三個變數。

Age	
child	
teens	
teens	
adult	
child	

one-hot encoding

child	teens	adult		
1	0	0		
0	1	0		
0	1	0		
0	0	1		
1	0	0		

Python - 數值到分類的映射

	sex	insomnia	age	height	weight	weight_new	ВМІ	age_category
0	Male	Υ	23	180	100	1	30.86	adult
1	Male	N	40	170	68	0	23.53	adult
2	Male	N	5	100	20	0	20.00	child
3	Male	N	30	176	70	0	22.60	adult
4	Male	N	1	70	10	0	20.41	child
5	Female	N	40	160	45	0	17.58	adult

定義一個轉換函數,運用 apply 函數,將數值資料轉換成類別型資料。

Python - 合併稀疏分類

- 透過交叉列連表,統計各類型的資料筆數, 發現有小於5的資料點,建議合併。
- 透過定義新的轉換函數,進行調整。

Python - 定義類別資料距離

運用map 函數,把離散型資料應對成連續型資料。

Python - 創建虛擬資料

- 1. 取出要創建虛擬資料的欄位
- 2. 透過 pd.get_dummies,進行轉換。
- 3. 在將資料集合合併。

產生出特徵後,然後?

記得做完特徵轉換後,都要去檢驗心產生出來的特 徵和目標特徵,是否具有相關性。

知識點回顧

今天的課程中,特徵由原始資料而來,其具有以下 特性

- 有變化性
- 有辨識能力與預測能力

(Combination) 與資料重新定義(Reshape)。

回到今天的程式範例

看投影片的結果怎麼一步一步實作出來

延伸閱讀

拿到資料就可以套用各式各樣的演算法模型?

網站:reurl

下一步:閱讀範例與完成作業