

University of Calabria

Department of Mathematics and Computer Science

Master Thesis in Computer Science

Multiclass Classification of Biosignals using several Supervised Learnign approaches

In collaboration with

Faculty of Sciences of the University of Lisbon

IT-Institute of Technology of Lisbon

Supervisors:

Prof. Francesco Ricca

Prof. Mário Calha

Candidate:

Davide Amato

ID 199670

Context

Classification problem

 $f(\mathcal{O}) \rightarrow cat$

Biosignals(ECG, EMG, EDA,...)

Problem

Problem faced by IT with its project BITalino

<u>Users must tell the program which sensor</u> they have plugged-in in which port!

Leads to

Unlabeled data

Objective of the work

Automatize classification of biosignals with Machine Learning

Conclusions

Very promising results!

Better than the one achieved by the BITalino's Team in recent paper (96,7%)

Approach	Model	Accuracy
1st	SVM	95,84%
1st	KNN	97,66%
1st	RF	98,74%
1st	DNN	99,15%
2nd	W-DNN	98,80%
2nd	1D-CNN	99,74%
3rd	2D-CNN	99,62%

Showing a tendency of Neural Network models to outperform classical ones

Thanks for your attention!

DNN (1st approach)

W-DNN

(2nd approach)

1D-CNN (2nd approach)

2D-CNN (3rd approach)