INSTITUT
NATIONAL DE
LA PROPRIETE
INDUSTRIELLE

PCT/FR 2004 / 050702

REC'D 0 4 MAR 2005

WIPO

PCT

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le

0 3 FEV. 2005

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS CONFORMÉMENT À LA RÈGLE 17.1. a) OU b)

Martine PLANCHE

INSTITUT
NATIONAL DE
LA PROPRIETE

SIEGE 26 bis, rue de Saint-Petersbourg 75800 PARIS cedex 08 Téléphone : 33 (0)1 53 04 53 04 Télécople : 33 (0)1 53 04 45 23 www.inpi.fr

ETABLISSEMENT PUBLIC NATIONAL

CREE PAR LA LOI Nº 51-444 DU 19 AVRIL 1951

BREVET D'INVENTION CERTIFICAT D'UTILITE

26bis,	rue de	Saint-Pét	ersbourg
		2/1 00	

Code de la propriété intellectuelle-livreVI

75800 Paris Cédex 08

Téléphone: 01 53.04.53.04 Télécopie: 01.42.94.86.54

REQUÊTE EN DÉLIVRANCE

DATE DE REMISE DES PIÈCES:

N° D'ENREGISTREMENT NATIONAL:

DÉPARTEMENT DE DÉPÔT:

DATE DE DÉPÔT:

Fiona MERCEY

L'AIR LIQUIDE SA

75 Quai d'Orsay

75321 PARIS CEDEX 07

France

Vos références pour ce dossier: S6421 FSM/NS

1 NATURE DE LA DEMANDE Demande de brevet 2 TITRE DE L'INVENTION Appareil de séparation d'air, appareil intégré de séparation d'air et de production d'un métal et procédé de démarrage d'un tel appareil de séparation d'air **3 DECLARATION DE PRIORITE OU** Date Pays ou organisation REQUETE DU BENEFICE DE LA DATE DE DEPOT D'UNE DEMANDE ANTERIEURE FRANCAISE **4-1 DEMANDEUR** Nom L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCÉDÉS **GEORGES CLAUDE** Suivi par Fiona MERCEY Rue 75 Quai d'Orsay Code postal et ville 75321 PARIS CEDEX 16 Pays France Nationalité France Forme juridique Société anonyme N° SIREN 552 096 281 Code APE-NAF 241A N° de téléphone 01 40 62 53 51 N° de télécopie 01 40 62 56 95 Courrier électronique fiona.mercey@airliquide.com

5A MANDATAIRE					
Nom	MERCEY				
Prénom	∡ iona				
Qualité	Liste spéciale: S.0	Liste spéciale: S.017, Pouvoir général: PG10568			
Cabinet ou Société	L'AIR LIQUIDE SA	4			
Rue	75 Quai d'Orsay				
Code postal et ville	75321 PARIS CEI	DEX 07			
N° de téléphone	01 40 62 53 51				
N° de télécopie	01 40 62 56 95	01 40 62 56 95			
Courrier électronique	fiona.mercey@air	fiona.mercey@airliquide.com			
6 DOCUMENTS ET FICHIERS JOINTS	Fichier électroniqu	ıe Pages		Détails	
Texte du brevet	textebrevet.pdf	9		D 6, R 2, AB 1	
Dessins	dessins.pdf	4		page 4, figures 3, Abrégé: page 4, Fig.1.	
Désignation d'inventeurs				page 4, 1 lg. 1.	
Pouvoir général					
7 MODE DE PAIEMENT					
Mode de paiement	Prélèvement du c	ompte courant			
Numéro du compte client	516	516			
8 RAPPORT DE RECHERCHE					
Etablissement immédiat					
9 REDEVANCES JOINTES	Devise	Taux	Quantité	Montant à payer	
062 Dépôt	EURO	0.00	1.00	0.00	
063 Rapport de recherche (R.R.)	EURO	320.00	1.00	320.00	
068 Revendication à partir de la 11ème	EURO	15.00	1.00	15.00	
Total à acquitter	EURO			335.00	

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signé par

Signataire: FR, L'Air Liquide SA, F.Mercey Emetteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0

Fonction

L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCÉDÉS GEORGES CLAUDE (Demandeur 1)

BREVET D'INVENTION CERTIFICAT D'UTILITE

Réception électronique d'une soumission

Il est certifié par la présente qu'une demande de brevet (ou de certificat d'utilité) a été reçue par le biais du dépôt électronique sécurisé de l'INPI. Après réception, un numéro d'enregistrement et une date de réception ont été attribués automatiquement.

> Demande de brevet : X Demande de CU:

DATE DE RECEPTION	22 décembre 2003	
TYPE DE DEPOT	INPI (PARIS) - Dépôt électronique	Dépôt en ligne: X Dépôt sur support CD:
№ D'ENREGISTREMENT NATIONAL	0351157	Depot du dappoit ob.
ATTRIBUE PAR L'INPI		
Vos références pour ce dossier	S6421 FSM/NS	
DEMANDEUR		
Nom ou dénomination sociale	L'AIR LIQUIDE, SOCIÉTÉ ANONYI	ME À DIRECTOIRE ET CONSEIL
	DE SURVEILLANCE POUR L'ETUI	DE ET L'EXPLOITATION DES
	PROCÉDÉS GEORGES CLAUDE	
Nombre de demandeur(s)	1	
Pays	FR	
TITRE DE L'INVENTION		w;
Appareil de séparation d'air, appareil intégr	é de séparation d'air et de production d	d'un métal et procédé de
démarrage d'un tel appareil de séparation d	d'air	
DOCUMENTS ENVOYES		
package-data.xml	Requetefr.PDF	fee-sheet.xml
Design.PDF	ValidLog.PDF	textebrevet.pdf
FR-office-specific-info.xml	application-body.xml	request.xml
dessins.pdf	indication-bio-deposit.xml	
EFFECTUE PAR		
Effectué par:	F.Mercey	
Date et heure de réception électronique:	22 décembre 2003 10:33:21	,
Empreinte officielle du dépôt	08:4E:03:21:01:84:78:7C:1C:9F:EE:3D:	5D:75:88:CC:95:37:FC:BE
		/ INPI PARIS, Section Dépôt /

/ INPI PARIS, Section Depot /

SIEGE SOCIAL

INSTITUT 26 bis, rue de Saint Petersbourg NATIONAL DE 75800 PARIS cedex 08 LA PROPRIETE Téléphone : 01 53 04 53 04 INDUSTRIELLE Télécopie: 01 42 93 59 30

10

15

20

25

30

La présente invention est relative à un appareil de séparation d'air, à un appareil intégré de séparation d'air et de production d'un métal et à un procédé de démarrage d'un tel appareil de séparation d'air.

Comme décrit dans l'article « Optimized Steel Production with Oxygen for Blast Furnaces at ILVA, Taranto Works, Italy » de Capogrosso et al., Steel Times International, février-mars, 2003, il est connu d'alimenter au moins partiellement un appareil de séparation d'air en air comprimé à partir de la soufflante d'un haut fourneau. L'oxygène produit par l'appareil est ensuite mélangé avec le reste de l'air provenant de la soufflante, chauffé et envoyé au haut fourneau.

Il est fréquemment nécessaire de surpresser une partie de l'air provenant de la soufflante et destinée à l'appareil de séparation d'air.

L'article décrit que l'air peut provenir d'un réseau d'air comprimé alimenté par plusieurs soufflantes.

Des appareils de séparation d'air adaptés à alimenter un haut fourneau sont décrits dans US-A-5244489, US-A-6089040, US-A-6119482 et US-A-6122932.

Pour démarrer le haut fourneau, il est d'abord nécessaire de mettre en marche la soufflante. La pression de l'air augmente progressivement jusqu'à une pression qui permet au surpresseur comprimant l'air destiné à la séparation d'air de démarrer.

Il est évidemment important de pouvoir démarrer rapidement ce surpresseur afin de fournir le client en oxygène dès que possible, de sorte que le haut fourneau puisse fonctionner normalement.

Un but de la présente invention est de réduire la pression minimale d'air à laquelle le surpresseur peut commencer à fonctionner.

Selon un objet de l'invention, il est prévu un appareil de séparation d'air comprenant un système de colonnes, des moyens pour alimenter l'appareil au moins partiellement en air comprimé provenant au moins d'un surpresseur, des moyens pour épurer et refroidir l'air, des moyens pour l'envoyer à une colonne du système de colonnes, des moyens pour soutirer un produit gazeux d'une colonne du système de colonnes caractérisé en ce que le surpresseur est entraîné par un moteur à vitesse de rotation variable avec au moins deux vitesses de rotation nominales.

· ...

Į.

La variation de la fréquence du réseau et/ou de la charge font que le moteur ayant une vitesse nominale de x tours va tourner en réalité autour de cette vitesse dans une fourchette de plus ou moins 5% au maximum.

- l'appareil comprend des moyens pour alimenter le moteur avec un courant alternatif à fréquence variable ;
 - l'appareil comprend un moteur multi-vitesses ;

5

10

15

20

25

30

- le moteur est de type à bobinage primaire unique, en particulier de type Dahlander ou de type à plusieurs bobinages primaires ;

Selon un autre objet de l'invention, il est prévu un appareil intégré de séparation d'air et de production d'un métal comprenant l'appareil comprend un appareil de séparation d'air, un appareil de production d'un métal, un compresseur qui comprime de l'air destiné à l'appareil de séparation d'air et de l'air destiné à l'appareil de production d'un métal, l'appareil de séparation d'air étant selon l'une des revendications 1 à 4, des moyens pour envoyer de l'air du compresseur au surpresseur et des moyens pour envoyer le produit gazeux provenant de l'appareil de séparation d'air à l'unité de production de métal.

Selon un autre objet de l'invention, il est prévu un procédé de démarrage d'un appareil de séparation d'air et de production de métal comprenant un système de colonnes, des moyens pour alimenter un surpresseur avec de l'air comprimé et des moyens pour envoyer de l'air du surpresseur à au moins une colonne du système de colonnes et des moyens pour soutirer un produit gazeux d'une colonne du système de colonnes pour l'envoyer à la production de métal, caractérisé en ce que le surpresseur est entraîné par un moteur à vitesse variable et que, lors d'une période du démarrage de l'appareil de production de métal, la vitesse du moteur est supérieure à la vitesse du moteur pendant le fonctionnement stable de l'appareil.

Selon d'autres aspects facultatifs :

- le moteur tourne à l'une de deux vitesses, le moteur tournant à une première vitesse lors du démarrage de l'appareil de production de métal et à une deuxième vitesse lors du fonctionnement stable de l'appareil, la première vitesse étant supérieure à la deuxième vitesse ;
 - le moteur est alimenté par un courant alternatif à fréquence plus élevée lors du démarrage de l'appareil de production de métal

La variation de la fréquence du réseau et/ou de la charge font que le moteur ayant une vitesse nominale de x tours va tourner en réalité autour de cette vitesse dans une fourchette de plus ou moins 5% au maximum.

- l'appareil comprend des moyens pour alimenter le moteur avec un courant alternatif à fréquence variable ;
 - l'appareil comprend un moteur multi-vitesses ;

5

10

15

20

25

30

- le moteur est de type à bobinage primaire unique, en particulier de type Dahlander ou de type à plusieurs bobinages primaires ;

Selon un autre objet de l'invention, il est prévu un appareil intégré de séparation d'air et de production d'un métal comprenant l'appareil comprend un appareil de séparation d'air, un appareil de production d'un métal, un compresseur qui comprime de l'air destiné à l'appareil de séparation d'air et de l'air destiné à l'appareil de production d'un métal, l'appareil de séparation d'air étant du type défini ci-dessus, des moyens pour envoyer de l'air du compresseur au surpresseur et des moyens pour envoyer le produit gazeux provenant de l'appareil de séparation d'air à l'unité de production de métal.

Selon un autre objet de l'invention, il est prévu un procédé de démarrage d'un appareil de séparation d'air et de production de métal comprenant un système de colonnes, des moyens pour alimenter un surpresseur avec de l'air comprimé et des moyens pour envoyer de l'air du surpresseur à au moins une colonne du système de colonnes et des moyens pour soutirer un produit gazeux d'une colonne du système de colonnes pour l'envoyer à la production de métal, caractérisé en ce que le surpresseur est entraîné par un moteur à vitesse variable et que, lors d'une période du démarrage de l'appareil de production de métal, la vitesse du moteur est supérieure à la vitesse du moteur pendant le fonctionnement stable de l'appareil.

Selon d'autres aspects facultatifs :

- le moteur tourne à l'une de deux vitesses, le moteur tournant à une première vitesse lors du démarrage de l'appareil de production de métal et à une deuxième vitesse lors du fonctionnement stable de l'appareil, la première vitesse étant supérieure à la deuxième vitesse ;
- le moteur est alimenté par un courant alternatif à fréquence plus élevée lors du démarrage de l'appareil de production de métal que la fréquence du courant pendant le fonctionnement stable de l'appareil;

que la fréquence du courant pendant le fonctionnement stable de l'appareil ;

- le moteur est alimenté par un courant à fréquence variable ;
- le moteur comprend plusieurs bobines, couplées différemment selon la
 marche de l'appareil;

Selon un autre objet de l'invention, il est prévu un procédé selon l'une des revendications 6 à 10 dans lequel un appareil de séparation d'air et un appareil de production de métal sont alimentés en air à partir d'un compresseur et l'appareil de production de métal est alimenté en un produit gazeux de l'appareil de séparation d'air, dans lequel on démarre d'abord le compresseur alimentant les deux appareils et ensuite on démarre l'appareil de séparation d'air selon l'une des revendications 6 à 10.

10

15

20

25

30

Le réglage de la vitesse de rotation du moteur peut être obtenu par divers moyens :

-on peut agir sur le nombre de paires de pôles, avec des machines à bobinage primaire unique (avec couplage d'enroulements de type Dahlander) ou des machines à plusieurs bobinages primaires.

-on peut agir sur la fréquence de la tension d'alimentation statorique avec des convertisseurs de fréquence électromécaniques ou des convertisseurs statiques.

-on peut agir sur le glissement en agissant sur la tension d'alimentation statorique, en utilisant un rhéostat de glissement au rotor ou en utilisant une cascade de récupération.

Toutes les pressions mentionnées sont des pressions absolues.

L'invention sera décrite en plus de détail en se référant aux dessins, qui sont des schémas de principe d'une installation de séparation d'air selon l'invention intégré avec un haut fourneau.

La Figure 1 représente une unité de traitement de métal, dans cet exemple un haut fourneau FM, et un appareil de distillation d'air comprenant une ligne d'échange LE, une double colonne DC et une colonne de mélange CM, le haut fourneau et l'appareil de distillation d'air étant alimentée en air par une soufflante S produisant typiquement plus que 100 000 Nm3/h d'air à une pression de moins de 6 bars, typiquement entre 3 et 5,5 bars. La soufflante S peut alimenter d'autres appareils. L'air destiné au haut fourneau FM est chauffé

- le moteur est alimenté par un courant à fréquence variable ;

5

10

15

20

25

30

- le moteur comprend plusieurs bobines, couplées différemment selon la marche de l'appareil ;

Selon un autre objet de l'invention, il est prévu un procédé du type cidessus dans lequel un appareil de séparation d'air et un appareil de production de métal sont alimentés en air à partir d'un compresseur et l'appareil de production de métal est alimenté en un produit gazeux de l'appareil de séparation d'air, dans lequel on démarre d'abord le compresseur alimentant les deux appareils et ensuite on démarre l'appareil de séparation d'air selon le procédé de démarrage vu plus haut.

Le réglage de la vitesse de rotation du moteur peut être obtenu par divers moyens :

-on peut agir sur le nombre de paires de pôles, avec des machines à bobinage primaire unique (avec couplage d'enroulements de type Dahlander) ou des machines à plusieurs bobinages primaires.

-on peut agir sur la fréquence de la tension d'alimentation statorique avec des convertisseurs de fréquence électromécaniques ou des convertisseurs statiques.

-on peut agir sur le glissement en agissant sur la tension d'alimentation statorique, en utilisant un rhéostat de glissement au rotor ou en utilisant une cascade de récupération.

Toutes les pressions mentionnées sont des pressions absolues.

L'invention sera décrite en plus de détail en se référant aux dessins, qui sont des schémas de principe d'une installation de séparation d'air selon l'invention intégré avec un haut fourneau.

La Figure 1 représente une unité de traitement de métal, dans cet exemple un haut fourneau FM, et un appareil de distillation d'air comprenant une ligne d'échange LE, une double colonne DC et une colonne de mélange CM, le haut fourneau et l'appareil de distillation d'air étant alimentée en air par une soufflante S produisant typiquement plus que 100 000 Nm3/h d'air à une pression de moins de 6 bars, typiquement entre 3 et 5,5 bars. La soufflante S peut alimenter d'autres appareils. L'air destiné au haut fourneau FM est chauffé

10

15

20

25

30

et envoyé au haut fourneau après avoir été mélangé avec un débit d'oxygène O provenant de l'appareil de séparation d'air.

L'appareil de distillation d'air représentée à la figure 1 est destiné à produire selon une première marche de l'oxygène basse pureté, par exemple ayant une pureté de 80 à 97 % et de préférence de 85 à 95 % sous une pression déterminée P différente de 7 bars, par exemple sous 2 à 6 bars ou encore sous une pression supérieure à 7 bars d'au moins 2 bars et pouvant aller jusqu'à 14 bars, de préférence entre 9 et 14 bars. La double colonne de distillation DC comprenant elle-même une colonne moyenne pression MP, une colonne basse pression BP et un condenseur-vaporiseur principal. Les colonnes MP et BP fonctionnent typiquement sous environ 6 bars et environ 1,2 bars respectivement.

Comme expliqué en détail dans le document US-A-4022030, une colonne de mélange est une colonne qui a la même structure qu'une colonne de distillation mais qui est utilisée pour mélanger de façon proche de la réversibilité un gaz relativement volatil, introduit à sa base, et un liquide moins volatil, introduit à son sommet.

Un tel mélange produit de l'énergie frigorifique et permet donc de réduire la consommation d'énergie liée à la distillation. Dans le cas présent, ce mélange est mis à profit, en outre, pour produire directement de l'oxygène impur sous la pression P, comme cela sera décrit ci-dessous.

L'air destiné à la distillation est refroidi par un refroidisseur R et épuré par une unité d'épuration E. Ensuite il est divisé en deux débits. Le débit L est surpressé dans un surpresseur C2 jusqu'à une pression de 6 x 10⁵ Pa et ensuite refroidie dans la ligne d'échange LE et introduite à la base de la colonne de mélange CM.

L'autre débit J est envoyé à la ligne d'échange LE, refroidi partiellement et divisé en deux. Une partie est envoyé à la colonne moyenne pression MP après s'être refroidi jusqu'au bout froid de la ligne d'échange et l'autre partie est détendue à la basse pression dans une turbine t, puis insufflée en un point intermédiaire de la colonne basse pression BP.

Le surpresseur C2 est entraîné par un moteur M à vitesse de rotation variable avec au moins deux vitesses nominales. Ce moteur peut être de type Dahlander avec deux voire trois vitesses, tel que décrit dans Memotech

10

15

20

25

30

Electrotechnique de Bourgeois et Cogniel, éd. Educalivre, page 295. Lors d'une période du démarrage de l'appareil de production de métal, la vitesse du moteur est supérieure à la vitesse du moteur pendant le fonctionnement stable de l'appareil. Eventuellement en addition, le surpresseur peut être entraîné par une turbine, telle qu'une turbine à vapeur.

Du « liquide riche » (air enrichi en oxygène), prélevé en cuve de la colonne MP est, après détente dans une vanne de détente, introduit dans la colonne BP, à peu près au point d'insufflation de l'air. Du « liquide pauvre » (azote impur) prélevé en un point intermédiaire de la colonne MP est, après détente dans une vanne de détente, introduit au sommet de la colonne BP. De l'azote N constituant le gaz résiduaire de l'installation, et éventuellement l'azote gazeux pur sous la moyenne pression produit en tête de la colonne MP, sont réchauffés dans la ligne d'échange LE et évacués de l'installation.

De l'oxygène liquide, plus ou moins pur suivant le réglage de la double colonne DC, est soutiré en cuve de la colonne BP, porté par une pompe W à une pression P1, légèrement supérieure à la pression P précitée pour tenir compte des pertes de charge (P1-P par exemple inférieur à 1 x 10⁵ Pa), et introduit au sommet de la colonne CM. P1 est donc avantageusement comprise entre 4-6 x 10⁵ Pa et 30 x 10⁵ Pa, de préférence entre 8 x 10⁵ Pa et 16 x 10⁵ Pa. De la colonne de mélange CM sont soutirés trois courants de fluide : à sa base, du liquide voisin du liquide riche et réuni à ce dernier via une conduite munie d'une vanne de détente ; en un point intermédiaire, un mélange essentiellement constitué d'oxygène et d'azote, qui est renvoyé en un point intermédiaire de la colonne basse pression BP via une conduite munie d'une vanne de détente ; et à son sommet de l'oxygène impur qui, après réchauffement dans la ligne d'échange thermique, est évacué, sensiblement à la pression P, de l'installation via une conduite en tant que gaz de production O.

On a également représenté sur la figure 1 des échangeurs de chaleur auxiliaires assurant la récupération du froid disponible dans les fluides en circulation dans l'installation.

Dans l'exemple de la Figure 2, tout l'air destiné à la distillation est comprimé dans un surpresseur C1 entraîné par un moteur à vitesse M de rotation variable. L'air surpressé est ensuite épuré dans une unité d'épuration E, refroidi, divisé en deux. Une partie de l'air est surpressé à la pression de la

colonne de mélange CM dans un surpresseur c, couplé à la turbine d'insufflation t qui est alimentée par une partie du reste de l'air.

Les autres éléments de la figure sont identiques à ceux de la Figure 1.

Dans la Figure 3, de même que dans la Figure 2, tout l'air destiné à la distillation est comprimé dans un surpresseur C1 entraîné par un moteur à vitesse M de rotation variable. L'air surpressé est ensuite épuré dans une unité d'épuration E et une partie L de l'air épuré est surpressé à la pression de la colonne de mélange dans un deuxième surpresseur C2 couplé également à un moteur M' éventuellement à vitesse de rotation variable. Cet air se refroidit dans la ligne d'échange LE et est envoyé à la colonne de mélange CM. Le reste J de l'air provenant de l'épuration est partiellement refroidi et divisé en deux. Une partie de l'air est envoyé à une turbine t et ensuite à la colonne basse pression BP. Le reste de l'air poursuit son refroidissement dans la ligne d'échange LE et est envoyé sous forme gazeuse à la colonne moyenne pression.

La turbine t est entraînée par un compresseur c d'azote basse pression.

Il est également concevable que la double colonne soit alimentée à partir de la soufflante alors que la colonne de mélange est alimentée à partir d'un compresseur dédié ou le contraire.

Le surpresseur peut être utilisé pour alimenter la colonne de mélange et/ou la colonne de mélange.

20

15

5

10

10

15

20

25

30

REVENDICATIONS

- 1. Appareil de séparation d'air comprenant un système de colonnes (MP,BP,CM), des moyens pour alimenter l'appareil au moins partiellement en air comprimé provenant au moins d'un surpresseur (C1,C2), des moyens pour épurer et refroidir l'air (E,LE), des moyens pour l'envoyer à une colonne (CM,MP) du système de colonnes et des moyens pour soutirer un produit gazeux (O) d'une colonne du système de colonnes caractérisé en ce que le surpresseur est entraîné par un moteur (M,M') à vitesse de rotation variable avec au moins deux vitesses de rotation nominales.
- 2. Appareil selon la revendication 1 comprenant des moyens pour alimenter le moteur avec un courant alternatif à fréquence variable.
- 3. Appareil selon la revendication 1 ou 2 comprenant un moteur (M,M') multi-vitesses.
- 4. Appareil selon la revendication 1 ou 3 dans lequel le moteur (M,M') est de type à bobinage primaire unique, en particulier de type Dahlander ou de type à plusieurs bobinages primaires.
- 5. Appareil intégré de séparation d'air et de production d'un métal comprenant un appareil de séparation d'air, un appareil de production d'un métal (FM), un compresseur (S) qui comprime de l'air destiné à l'appareil de séparation d'air et de l'air destiné à l'appareil de production d'un métal, l'appareil de séparation d'air étant selon l'une des revendications 1 à 4, des moyens pour envoyer de l'air du compresseur au surpresseur (C1,C2) et des moyens pour envoyer le produit gazeux (O) provenant de l'appareil de séparation d'air à l'unité de production de métal.
- 6. Procédé de démarrage d'un appareil de séparation d'air et de production de métal comprenant un système de colonnes, des moyens pour alimenter un surpresseur (C1,C2) avec de l'air comprimé et des moyens pour envoyer de l'air du surpresseur à au moins une colonne du système (MP,CM) de colonnes et des moyens pour soutirer un produit gazeux (O) d'une colonne du système de colonnes pour l'envoyer à la production de métal, caractérisé en ce que le surpresseur est entraîné par un moteur (M,M') à vitesse variable et que, lors d'une période du démarrage de l'appareil de production de métal, la

vitesse du moteur est supérieure à la vitesse du moteur pendant le fonctionnement stable de l'appareil.

- 7. Procédé selon la revendication 6 dans lequel le moteur (M,M') tourne à l'une des deux vitesses, le moteur tournant à une première vitesse lors du démarrage de l'appareil de production de métal (FM) et à une deuxième vitesse lors du fonctionnement stable de l'appareil, la première vitesse étant supérieure à la deuxième vitesse.
- 8. Procédé selon la revendication 7 dans lequel le moteur est alimenté par un courant alternatif à fréquence plus élevée lors du démarrage de l'appareil de production de métal (FM) que la fréquence du courant pendant le fonctionnement stable de l'appareil.
- 9. Procédé selon la revendication 8 dans lequel la fréquence du courant est variable.
- 10. Procédé selon la revendication 8 dans lequel le moteur (M,M') comprend plusieurs bobines, couplées différemment selon la marche de l'appareil.
 - 11. Procédé selon l'une des revendications 6 à 10 dans lequel un appareil de séparation d'air et un appareil de production de métal (FM) sont alimentés en air à partir d'un compresseur (S) et l'appareil de production de métal est alimenté en un produit gazeux (O) de l'appareil de séparation d'air, dans lequel on démarre d'abord le compresseur (S) alimentant les deux appareils et ensuite on démarre l'appareil de séparation d'air selon l'une des revendications 6 à 10.

20

5

10

15

BREVET D'INVENTION CERTIFICAT D'UTILITE

Désignation de l'inventeur

Vos références pour ce dossier	S6421 FSM/NS
N°D'ENREGISTREMENT NATIONAL	
TITRE DE L'INVENTION	
	Appareil de séparation d'air, appareil intégré de séparation d'air et de production
LE(C) DEMANDEUD(C) OUT TO	d'un métal et procédé de démarrage d'un tel appareil de séparation d'air et de production
LE(S) DEMANDEUR(S) OU LE(S) MANDATAIRE(S):	- Special of Cal
DESIGNE(NT) EN TANT	
QU'INVENTEUR(S):	
Inventeur 1	
Nom	OHOLLAT
Prénoms	CHOLLAT
Rue	Jean-Jacques
· · · · ·	17 Allée des 100 Arpents
Code postal et ville	77720 MORMANT
Société d'appartenance	L'Air Liquide SA
Inventeur 2	TATAL ENGINE OA
Nom	GUILLARD
Prénoms	Alain
Rue	11 rue Lauriston
	- 145 Eddison
Code postal et ville	75016 PARIS
Société d'appartenance	L'AIR LIQUIDE SA
Inventeur 3	
Nom	LIBARRE
Prénoms	Alain
Rue	72 avenue Roger Salengro
Code postal et ville	
Société d'appartenance	94500 CHAMPIGNY-SUR-MARNE
nventeur 4	L'AIR LIQUIDE SA
Nom	DONTONE
rénoms	PONTONE
Rue	Xavier
· ·	9 rue de l'Ermitage
Code postal et ville	94100 SAINT MAUR DES FOSSES
Société d'appartenance	L'AIR LIQUIDE SA

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signataire: FR, L'Air Liquide SA, F.Mercey

Emetteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0

L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCÉDÉS GEORGES CLAUDE (Demandeur 1)