Segundo Examen Parcial

Instrucciones: Debe incluir todo el procedimiento que utilizó para llegar a sus respuestas. Trabaje en forma clara y ordenada y utilice cuaderno de examen u hojas debidamente grapadas. No se acogerán apelaciones en exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni el uso de dispositivos electrónicos con conectividad inalámbrica durante el desarrollo de la prueba.

- #1. (2 ptos.) Determine los puntos de intersección entre la recta $y = \frac{x}{2} + 4$ y la parábola $y = x^2 + x 1$.
- #2. Considere la función $f: D_f \to C_f$ con criterio $f(x) = -x^2 8x 11$.
 - a) (3 ptos.) Usando completación de cuadrados, exprese el criterio de dicha función en la forma $y = a(x h)^2 + k$, con a, h y k constantes reales, $a \neq 0$.
 - b) (1 pto.) Determine todos los intervalos donde f es decreciente.
 - (2 ptos.) Si $D_f =]-\infty, -4]$ y $C_f =]-\infty, 5]$, determine f^{-1} .
- #3. Una pelota se lanza desde una altura de 5 metros con una velocidad inicial de 15 m/s. La altura de la pelota en función del tiempo t (en segundos) está dada por la función cuadrática

$$h(t) = -4.9t^2 + 15t + 5.$$

- a) (2 ptos.) ¿Cuál es la altura máxima aproximada alcanzada por la pelota?
- b) (1 pto.) ¿Cuántos segundos tarda aproximadamente la pelota en tocar el suelo? 3.06
- #4. (3 ptos.) Considere la función $f: \mathbb{R} \to \mathbb{R}$ con $f(x) = 2x^4 + x^3 11x^2 + 11x 3$. Halle los puntos de intersección de f con el eje X. Debe mostrar al menos dos divisiones sintéticas.
- #5. (2 ptos.) Sea $P(x) = 2x^3 + 3x^2 cx 2$ un polinomio, donde $c \in \mathbb{R}$. Si al dividir P(x) entre x 2 su residuo es igual a 10, determine el valor de c. C=13
- #6. (3 ptos.) Determine la descomposición en fracciones parciales de la función $g(x) = \frac{-2x-5}{x^2+3x}$ con $g: \mathbb{R} \{-3, 0\} \to \mathbb{R}$.
- #7. Considere los polinomios $P(x) = 3x^3 + 2x^2 + 4$ y $Q(x) = x^2 + 3x + 2$.
 - a) (2 ptos.) Determine el residuo que se obtiene al realizar la división de P(x) entre Q(x).
 - b) (1 pto.) Si $h: \mathbb{R} \{-2, -1\} \to \mathbb{R}$ con $h(x) = \frac{P(x)}{Q(x)}$, determine la ecuación de la asíntota oblicua de h.