19: Sampling and the Bootstrap

Jerry Cain May 10, 2021

Quick slide reference

3	Sampling definitions	19a_intro
11	Unbiased estimators	19b_sample_stats
23	Reporting estimation error	19c_statistical_error
29	Bootstrap: Sample mean	19d_bootstrap_mean
40	Bootstrap: Sample variance	LIVE
*	Bootstrap: Hypothesis testing	LIVE

Sampling definitions

Motivating example

You want to know the true mean and variance of happiness in Bhutan.

- But you can't ask everyone.
- You poll 200 random people.
- Your data looks like this:

Happiness = $\{72, 85, 79, 91, 68, ..., 71\}$

The mean of all these numbers is 83.

Is this the true mean happiness of Bhutanese people?

Population

This is a population.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021

Sample

A sample is selected from a population.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021

Sample

A sample is selected from a population.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021

A sample, mathematically

Consider n random variables $X_1, X_2, ..., X_n$.

The sequence $X_1, X_2, ..., X_n$ is a sample from distribution F if:

• X_i are all independent and identically distributed (i.i.d.)

• X_i all have same distribution function F (the underlying distribution),

where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$

A sample, mathematically

A sample of **sample size** 8: $(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$

A **realization** of a sample of size 8: (59,87,94,99,87,78,69,91)

A single sample

A happy Bhutanese person

If we had a distribution F of our entire population, we could compute exact statistics about about happiness.

But we only have 200 people (a sample).

Today: If we only have a single sample,

- How do we report estimated statistics?
- How do we report estimated error of these estimates?
- How do we perform hypothesis testing?

19b_sample_stats

Unbiased estimators

A single sample

A happy Bhutanese person

If we had a distribution F of our entire population, we could compute exact statistics about about happiness.

But we only have 200 people (a sample).

So these population statistics are unknown:

- μ , the population mean
- σ^2 , the population variance

A single sample

A happy Bhutanese person

If we had a distribution F of our entire population, we could compute exact statistics about about happiness.

But we only have 200 people (a sample).

- From these 200 people, what is our best estimate of population mean and population variance?
- How do we define best estimate?

Estimating the population mean

1. What is our best estimate of μ , the mean happiness of Bhutanese people?

If we only have a sample, $(X_1, X_2, ..., X_n)$:

The best estimate of μ is the sample mean:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

 \bar{X} is an <u>unbiased estimator</u> of the population mean μ .

$$E[\overline{X}] = \mu$$

Intuition: By the CLT, $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ If we could take *multiple* samples of size n:

1. For each sample, compute sample mean

- 2. On average, we would get the population mean

Sample mean

Even if we can't report μ , we can report our sample mean 83.03, which is an unbiased estimate of μ .

Estimating the population variance

2. What is σ^2 , the variance of happiness of Bhutanese people?

If we knew the entire population $(x_1, x_2, ..., x_N)$:

population mean

population variance
$$\sigma^2 = E[(X - \mu)^2] = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

If we only have a sample, $(X_1, X_2, ..., X_n)$: sample mean

> sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Actual, σ^2

population mean

population variance
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Population size, N

Calculating population statistics **exactly** requires us knowing all N datapoints.

Actual, σ^2

Estimate, S²

population mean

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

population variance
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$
 sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

Population size, N

sample mean

population mean

Estimate, S²

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Population size, N

sample mean

150

Estimate, S²

population mean
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

Population size, N

Sample variance is an estimate using an estimate, so it needs additional scaling.

Estimating the population variance

2. What is σ^2 , the variance of happiness of Bhutanese people?

If we only have a sample, $(X_1, X_2, ..., X_n)$:

The best estimate of
$$\sigma^2$$
 is the **sample variance**: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$

 S^2 is an **unbiased estimator** of the population variance, σ^2 . $E[S^2] = \sigma^2$

$$E[S^2] = \sigma^2$$

Proof that S^2 is unbiased (just for reference)

$$E[S^2] = \sigma^2$$

$$E[S^{2}] = E\left[\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right] \Rightarrow (n-1)E[S^{2}] = E\left[\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right]$$

$$(n-1)E[S^{2}] = E\left[\sum_{i=1}^{n}((X_{i}-\mu)+(\mu-\bar{X}))^{2}\right] \qquad (introduce \ \mu-\mu)$$

$$= E\left[\sum_{i=1}^{n}(X_{i}-\mu)^{2}+\sum_{i=1}^{n}(\mu-\bar{X})^{2}+2\sum_{i=1}^{n}(X_{i}-\mu)(\mu-\bar{X})\right] \qquad 2(\mu-\bar{X})\sum_{i=1}^{n}(X_{i}-\mu)$$

$$= E\left[\sum_{i=1}^{n}(X_{i}-\mu)^{2}+n(\mu-\bar{X})^{2}-2n(\mu-\bar{X})^{2}\right] \qquad 2(\mu-\bar{X})\left(\sum_{i=1}^{n}X_{i}-n\mu\right)$$

$$= E\left[\sum_{i=1}^{n}(X_{i}-\mu)^{2}-n(\mu-\bar{X})^{2}\right] = \sum_{i=1}^{n}E[(X_{i}-\mu)]^{2}-nE[(\bar{X}-\mu)^{2}]$$

$$= n\sigma^{2}-n \text{Var}(\bar{X}) = n\sigma^{2}-n\frac{\sigma^{2}}{n} = n\sigma^{2}-\sigma^{2} = (n-1)\sigma^{2} \qquad \text{Therefore } E[S^{2}] = \sigma^{2}$$

Therefore $E[S^2] = \sigma^2$

19c_standard_error

Standard error

Estimating population statistics

A particular outcome

1. Collect a sample, X_1, X_2, \dots, X_n .

$$(72, 85, 79, 79, 91, 68, ..., 71)$$

 $n = 200$

2. Compute sample mean, $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

$$\bar{X} = 83$$

3. Compute sample deviation, $X_i - \bar{X}$.

$$(-11, 2, -4, -4, 8, -15, ..., -12)$$

4. Compute sample variance, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$.

$$S^2 = 793$$

How "close" are our estimates \bar{X} and S^2 ?

Sample mean

- $Var(\bar{X})$ is a measure of how "close" \bar{X} is to μ .
- How do we estimate $Var(\bar{X})$?

How "close" is our estimate \overline{X} to μ ?

$$E[\bar{X}] = \mu$$

$$\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$$

We want to estimate this

def The standard error of the mean is an estimate of the standard deviation of \bar{X} .

$$SE = \sqrt{\frac{S^2}{n}}$$

Intuition:

- S^2 is an unbiased estimate of σ^2
- S^2/n is an unbiased estimate of $\sigma^2/n = \text{Var}(\bar{X})$
- $\sqrt{S^2/n}$ can estimate $\sqrt{\operatorname{Var}(\bar{X})}$

More info on bias of standard error: wikipedia

Standard error of the mean

1. Mean happiness:

Claim: The average happiness of Bhutan is 83, with a standard error of 1.99.

Closed
$$SE = \sqrt{\frac{S^2}{n}}$$

this is our estimate of how "close" we are

this is our best estimate of μ

These 2 statistics give a sense of how the sample mean random variable \bar{X} behaves.

Standard error of variance?

1. Mean happiness:

Claim: The average happiness of Bhutan is 83, with a standard error of 1.99.

Closed
$$SE = \sqrt{\frac{S^2}{n}}$$

2. Variance of happiness:

estimate of σ^2 Claim: The variance of happiness of Bhutan is 793.

Closed Not covered

form: in CS109

But how close are we?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021

this is our best

Up next: Compute Statistics with code!

Bootstrap: Sample mean

Bootstrap

The Bootstrap:

Probability for Computer Scientists

Computing statistic of sample mean

What is the standard deviation of the sample mean \overline{X} ? (sample size n=200)

Population distribution (we don't have this)

$$\frac{\sigma}{\sqrt{n}} = 1.886$$

1.869

Exact statistic (we don't have this)

Simulated statistic (we don't have this)

Sample distribution (we do have this)

$$SE = \frac{S}{\sqrt{n}} = 1.992$$

???

Estimated statistic, by formula, standard error

Simulated estimated statistic

Note: We don't have access to the population.

But Lisa is sharing the exact statisticar with Pilo Mehran Sahami, and Jerry Cain, CS109, Spring 2021

Bootstrap insight 1: Estimate the true distribution

Bootstrap insight 1: Estimate the true distribution

You can estimate the PMF of the underlying distribution, using your sample.*

*This is just a histogram of your data!n, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021

Bootstrap insight 2: Simulate a distribution

Approximate the procedure of simulating a distribution of a statistic, e.g., \bar{X} .

Bootstrapped sample means

Estimate the true PMF using our "PMF" (histogram) of our sample.

...generate a whole bunch of sample means of this estimated distribution...

...and compute the standard deviation of this distribution.

Computing statistic of sample mean

What is the standard deviation of the sample mean \bar{X} ? (sample size n=200)

Population distribution (we don't have this)

$$\frac{\sigma}{\sqrt{n}} = 1.886$$

1.869

Exact statistic (we don't have this)

Simulated statistic (we don't have this)

Sample distribution (we do have this)

$$SE = \frac{S}{\sqrt{n}} = 1.992$$

2.003

Estimated statistic, by formula, standard error

Simulated estimated statistic, bootstrapped standard error

Bootstrap algorithm

Bootstrap Algorithm (sample):

- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the sample mean on the resample
- 3. You now have a distribution of your sample mean

What is the distribution of your sample mean?

We'll talk about this algorithm in detail during live lecture!

Bootstrap algorithm

Bootstrap Algorithm (sample):

- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the **statistic** on the resample
- 3. You now have a distribution of your statistic

What is the distribution of your statistic?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021

Bootstrapped sample variance

Bootstrap Algorithm (sample):

- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the sample variance on the resample
- 3. You now have a distribution of your sample variance

What is the distribution of your sample variance?

Even if we don't have a closed form equation, we estimate statistics of sample variance with bootstrapping!

(live) 19: Sampling and the Bootstrap

Jerry Cain May 10, 2021

Think

Slide 42 has a question to go over by yourself.

Post any clarifications here or in Zoom chat!

https://edstem.org/us/courses/5090/discussion/428950

Think by yourself: 2 min

Quick check

 μ , the population mean

- A. Random variable(s)
- B. Value
- C. Event

2.
$$(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$$
, a sample

- 3. σ^2 , the population variance
- 4. \bar{X} , the sample mean $A_{yy} = \bar{X} = \bar{X}$

5.
$$\bar{X} = 83$$

6.
$$(X_1 = 59, X_2 = 87, X_3 = 94, X_4 = 99, X_5 = 87, X_6 = 78, X_7 = 69, X_8 = 91)$$

Quick check

1. μ , the population mean

- A. Random variable(s)
- B. Value
- C. Event
- 2. $(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$, a sample
- 3. σ^2 , the population variance
- 4. \bar{X} , the sample mean
- 5. $\bar{X} = 83$
- 6. $(X_1 = 59, X_2 = 87, X_3 = 94, X_4 = 99, X_5 = 87, X_6 = 78, X_7 = 69, X_8 = 91)$

These are outcomes from your collected data.

If we only have a single sample of RVs generated i.i.d. from the same unknown distribution, how can we perform statistical analysis?

- What is the probability that a Bhutanese peep is just straight up loving life?
- What is a good estimate of the population mean (and how "close" is the estimate)?
- What is a good estimate of the population variance (and how "close" is the estimate)?

1. Mean happiness:

Claim: The average happiness of Bhutan is 83, with a standard error of 1.99.

Closed $SE = \sqrt{\frac{S^2}{n}}$

this is how close we are 83, estimate of μ

this is our best

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Standard error Review

1. Mean happiness:

Claim: The average happiness of Bhutan is 83, with a standard error of 1.99.

Closed
$$SE = \sqrt{\frac{S^2}{n}}$$

2. Variance of happiness:

this is our best estimate of σ^2

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Claim: The variance of happiness of Bhutan is 793.

Closed Not covered form: in CS109

But how close are we?

We can bootstrap for standard error of sample variance— a statistic of a statistic.

The Bootstrap:

Probability for Computer Scientists

Allows you to do the following:

- Calculate distributions over statistics
- Calculate p values

Bootstrapped sample variance

```
n=200
Bootstrap Algorithm (sample):
```

- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the sample variance on the resample
- 3. You now have a distribution of your sample variance

What is the distribution of your sample variance? Goal

- Estimate the **PMF** using the sample
- 2. Repeat 10,000 times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the sample variance on the resample
- 3. You now have a distribution of your sample variance

1. Estimate the PMF using the sample

- 2. Repeat 10,000 times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the **sample variance** on the resample
- 3. You now have a distribution of your sample variance

[52, 38, 98, 107, ..., 94]

1. Estimate the PMF using the sample

Why are these samples different?

- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the **sample variance** on the resample
- 3. You now have a distribution of your

This resampled sample is generated with replacement.

- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the sample variance on the resample
- 3. You now have a distribution of your sample variance

1. Estimate the PMF using the sample

- 2. Repeat 10,000 times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the **sample variance** on the resample
- 3. You now have a distribution of your sample variance

- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the **sample variance** on the resample
- 3. You now have a distribution of your sample variance

$$variances = [827.4]$$

- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the sample variance on the resample
- 3. You now have a distribution of your sample variance

- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the **sample variance** on the resample
- 3. You now have a distribution of your sample variance

You now have a distribution of your sample variance

variances = [827.4, 846.1, 726.0, ..., 860.7]

3. You now have a distribution of your sample variance

What is the bootstrapped standard error?

Bootstrapped standard error: 66.16

- Simulate a distribution of sample variances
- Compute standard deviation

Standard error

1. Mean happiness:

Claim: The average happiness of Bhutan is 83, with a standard error of 1.99.

Closed
$$SE = \sqrt{\frac{S^2}{n}}$$

2. Variance of happiness:

Claim: The variance of happiness of Bhutan is 793,

with a bootstrapped standard error of 66.16.

this is how close we are, calculated by bootstrapping

 S^2 is our best

estimate of σ^2

Algorithm in practice: Resampling

- 1. Estimate the PMF using the sample
- 2. Repeat 10,000 times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the statistic on the resample
- 3. You now have a distribution of your statistic

Algorithm in practice: Resampling

```
def resample(sample, n):
    # estimate the PMF using the sample
    # draw n new samples from the PMF \neg
    return np.random.choice(sample, n, replace=True)
```


$$P(X = k) = \frac{\text{# values in sample equal to } k}{n}$$

[116, 76, 132, 85, ..., 78]

This resampled sample is generated with replacement.

To the code!

Bootstrap provides a way to calculate probabilities of statistics using code.

Bootstrapping works for any statistic*

*as long as your sample is i.i.d. and the underlying distribution does not have a long tail

Google colab notebook link (we will use this in Breakout rooms)

Bradley Efron

- Invented bootstrapping in 1979
- Still a professor at Stanford
- Won a National Science Medal

Efron's dice: 4 dice A, B, C, D such that

$$P(A > B) = P(B > C) = P(C > D) = P(D > A) = \frac{2}{3}$$

Interlude for announcements

Announcements

Problem Set 5

Out: now

Due: Friday 5/21 10:00am

Up to and including today Covers:

Quiz #2

This Wednesday 5/12 11:00am - Friday 5/14 10:00am PT Time frame:

Up to end of Week 5 (including Lecture 15). PS3+PS4 Covers:

Tonight at 7pm PT (and will be recorded) Emma's Review session:

http://web.stanford.edu/class/cs109/quizzes/ Info and practice:

Bootstrap: p-value

Null hypothesis test

Nepal
Happiness
4.45
2.45
6.37
2.07
1.63

Bhutan
Happiness
0.91
0.34
1.91
1.61
1.08

$$\bar{X}_1 = 3.1$$

$$\bar{X}_2 = 2.4$$

Claim: The difference in mean happiness between Nepal and Bhutan is 0.7 happiness points, and this is significant.

Null hypothesis test

<u>def null hypothesis</u> – Even if there is no pattern (i.e., the two samples are from identical distributions), your claim might have arisen by chance.

def p-value - What is the probability that the observed difference occurs under the null hypothesis?

Example:

- Flip some coin 100 times.
- Flip the same coin another 150 times.
- Compute fraction of heads in both groups.
- There is a possibility we'll see the observed difference in these fractions even if we used the same coin

A significant p-value (< 0.05) means we reject the null hypothesis.

Null hypothesis assumes we use the same coin

Universal sample

(this is what the null hypothesis assumes)

Want p-value: probability $|\bar{X}_1 - \bar{X}_2| \neq |3.1 - 2.4|$ happens under null hypothesis

1. Create a universal sample using your two samples

i.e., recreate the null hypothesis

- 1. Create a universal sample using your two samples
- 2. Repeat **10,000** times:
 - a. Resample both samples
 - b. Recalculate the mean difference between the resamples
- (mean diffs >= observed diff) 3. p-value = n

Probability that observed difference arose by chance

```
def pvalue boot(bhutan sample, nepal sample):
   N = size of the bhutan_sample
                                                    0,7
   M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|
    uni sample = combine bhutan sample and nepal sample
    count = 0
    repeat 10,000 times:
        bhutan_resample = draw(N) resamples from the uni_sample
        nepal_resample = draw M resamples from the uni_sample
        muBhutan = sample mean of the bhutan resample
        muNepal = sample mean of the nepal_resample
        diff = |muNepal - muBhutan|
        if diff >= observed_diff:
            count += 1
```

1. Create a universal sample using your two samples

```
def pvalue_boot(bhutan_sample, nepal_sample):
   N = size of the bhutan sample
   M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|
    uni sample = combine bhutan sample and nepal sample
    count = 0
    repeat 10,000 times:
        bhutan resample = draw N resamples from the uni sample
        nepal resample = draw M resamples from the uni sample
        muBhutan = sample mean of the bhutan resample
        muNepal = sample mean of the nepal resample
        diff = |muNepal - muBhutan|
        if diff >= observed diff:
            count += 1
```

2. a. Resample both samples

Bootstrap for p-values

```
def pvalue boot(bhutan sample, nepal sample):
    N = size of the bhutan sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|
    uni sample = combine bhutan sample and nepal sample
    count = 0
    repeat 10,000 times:
        bhutan_resample = draw N resamples from the uni_sample
        nepal resample = draw M resamples from the uni sample
        muBhutan = sample mean of the bhutan_resample
        muNepal = sample mean of the nepal resample
        diff = |muNepal - muBhutan|
         if diff >= observed diff:
             count += 1
pValue = count / 10,000 Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
```

2. b. Recalculate the mean difference b/t resamples

```
def pvalue boot(bhutan sample, nepal sample):
    N = size of the bhutan sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|
    uni sample = combine bhutan sample and nepal sample
    count = 0
    repeat 10,000 times:
        bhutan resample = draw N resamples from the uni sample
        nepal resample = draw M resamples from the uni sample
        muBhutan = sample mean of the bhutan resample
        muNepal = sample mean of the nepal resample
        diff = |muNepal - muBhutan|
        if diff >= observed_diff:
            count += 1
```

```
3. p-value = # (mean diffs > observed diff)
                            n
```

```
def pvalue boot(bhutan sample, nepal sample):
   N = size of the bhutan sample
    M = size of the nepal_sample
    observed diff = |mean of bhutan sample - mean of nepal sample|
    uni sample = combine bhutan sample and nepal sample
    count = 0
    repeat 10,000 times:
        bhutan resample = draw N resamples from the uni sample
        nepal resample = draw M resamples from the uni sample
        muBhutan = sample mean of the bhutan resample
        muNepal = sample mean of the nepal resample
        diff = |muNepal - muBhutan|
        if diff >= observed diff:
            count += 1
```

```
def pvalue boot(bhutan sample, nepal sample):
    N = size of the bhutan sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|
    uni sample = combine bhutan sample and nepal sample
    count = 0
                                                        with replacement!
    repeat 10,000 times:
        bhutan_resample = draw N resamples from the uni_sample
        nepal resample = draw M resamples from the uni sample
        muBhutan = sample mean of the bhutan_resample
        muNepal = sample mean of the nepal resample
        diff = |muNepal - muBhutan|
        if diff >= observed diff:
             count += 1
pValue = count / 10,000 Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
```

Bootstrap

Let's try it!

Google colab notebook link

Null hypothesis test

Nepal
Happiness
4.45
2.45
6.37
2.07
1.63

Bhutan
Happiness
0.91
0.34
1.91
1.61
•••
1.08

$$\bar{X}_1 = 3.1$$

$$\bar{X}_2 = 2.4$$

Claim: The happiness of Nepal and Bhutan have a 0.7 difference of means, and this is significant (p < 0.05).