2장. 딥러닝의 동작 원리

2-1. 딥러닝을 위한 기초 수학

①일차 함수 : y = ax + b

②이차 함수 : $y = x^2$

③미분 : $\lim_{\Delta x \to 0} \left(\frac{f(\alpha + \Delta x) - f(\alpha)}{\Delta x} \right)$

④편미분 : $\frac{\partial f}{\partial x}$

⑤지수 함수 : $y = a^x$

⑥시그모이드 함수 : $f(x) = \frac{1}{1+e^{-x}}$

⑦로그함수 : $y = log_a x$

2-2. 손실 함수

-신경망이 학습데이터를 잘 학습하는지를 보여주는 함수로 가중치와 편향으로 구성

-학습 종류에 따라 사용되는 손실 함수가 다름

MSE	RMSE	MAE	RMSLE	R-Square
$\frac{1}{m}\sum_{i=1}^{m}(y_{real}-y_{pre})^{2}$	$\sqrt{\frac{1}{m} \sum_{i=1}^{m} (y_{real} - y_{pre})^2}$	$\frac{1}{m} \sum_{i=1}^{m} \left y_{real} - y_{pre} \right $	$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(y_{pre} + 1) - \log(y_{pre} + 1))^{2}}$	$R^{2} = \frac{SSR}{SST} = \frac{\sum (y_{pre} - y_{avg})^{2}}{\sum (y_{real} - y_{avg})^{2}}$

binary cross entropy	categorical cross entropy		
$\frac{1}{m} \sum_{i=1}^{m} -y \log(h(x)) - (1-y)\log(1-h(x))$ $h(x) = \frac{1}{1+e^{-x}}$	$\frac{1}{m} \sum_{i=1}^{m} -y \log(h(x)) - (1 - y) \log(1 - h(x))$ $h(x) = \frac{e^{x_k}}{\sum_{i=1}^{n} e^{x_i}}$		

2-3. 최적화 기법

- -가중치와 편향을 최신화하면서 손실함수가 최솟값을 갖는 가중치와 편향을 찾는 기법
- -어떤 최적화 기법을 사용하는지에 따라 모델의 학습능력이 판가름 남

XStochastic Gradient Descent

- -가장 기본적인 최적화 기법
- -Chain Rule을 이용해 가중치의 기울기가 최소가 되는 가중치를 구함

2-4. 활성화 함수

- -가중치와 편향을 통해 구해진 값을 활성화시킬 것인지 결정하는 함수
- -비선형성을 부여하여 선형시스템으로는 신경망을 깊게 만들지 못하는 한계를 극복
- -어떤 데이터인지에 따라 출력층에서 사용하는 활성화함수가 다름

Linear	Sigmoid	ReLU	Tanh	Softmax
	*			ay yy
h(x)=x=y	$h(x) = \frac{1}{1 + e^{-x}} = y$	$h(x) = \max(0, x) = y$	$h(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = y$	$y_k = \frac{e^{a_k}}{\sum_{i=1}^n e^{a_i}}$