Fall 2013

# SCHEMA REFINEMENT AND NORMAL FORMS [CH 19]

#### **Database Design: The Story so Far**

- Requirements Analysis
  - Data stored, operations, apps, ...
- Conceptual Database Design
  - Model high-level description of the data, constraints, ER model
- Logical Database Design
  - Choose a DBMS and design a database schema
- Schema Refinement
  - Normalize relations, avoid redundancy, anomalies ...
- Physical Database Design
  - Examine physical database structures like indices, restructure ...
- Security Design

#### Normalization

#### What is a good relational schema? How can we improve it?

- e.g.: Suppliers (<u>name</u>, item, desc, addr, price)
  - Redundancy Problems:
  - 1. A supplier supplies two items: Redundant Storage
  - 2. Change address of a supplier: Update Anomaly
  - 3. Insert a supplier: Insertion Anomaly
    - What if the supplier does not supply any items (nulls?)
    - Record desc for an item that is not supplied by any supplier
  - 4. Delete the only supplier tuple: Delete Anomaly
    - Our of the second of the se
    - O Delete the last item tuple. Can't make name null. Why?

#### Alternative:

# **Dealing with Redundancy**

- Identify "bad" schemas
  - functional dependencies
- Main refinement technique: decomposition
  - replacing larger relation with smaller ones
- Decomposition should be used judiciously:
  - Is there a reason to decompose a relation?
    - Normal forms: guarantees against (some) redundancy
  - Does decomposition cause any problems?
    - Lossless join
    - Dependency preservation
    - Performance (must join decomposed relations)

# **Functional Dependencies (FDs)**

- A form of IC
- D: X  $\Rightarrow$  Y X and Y subsets of relation R's attributes  $t1 \in r$ ,  $t2 \in r$ ,  $\prod_X (t1) = \prod_X (t2) \Rightarrow \prod_Y (t1) = \prod_Y (t2)$
- An FD is a statement about all allowable relations.
  - Based only on application semantics, can't deduce from instances
  - Can simply check if an instance violates FD (and other ICs)
- Consider,  $(X,Y) \rightarrow Z$ . Does this imply (X,Y) is a key?

| X | Υ | Z  | K |
|---|---|----|---|
| 1 | 1 | 11 | Α |
| 1 | 2 | 12 | Α |
| 2 | 2 | 22 | Α |
| 2 | 2 | 22 | В |

Primary Key IC is a special case of FD

### **Example: Constraints on Entity Set**



- S(<u>name</u>, item, desc, addr, price)
- FD: {n,i} → {n,i,d,a,p}
- FD: {n} → {a}
- FD: {i} → {d}
- Decompose to: <u>NA, ID, INP</u>

- Spl(<u>name</u>, item, price)
  - FD:  $\{n,i\} \rightarrow \{n, i, p\}$
- Sup(name, addr)
  - FD:  $\{n\}$  →  $\{n, a\}$
- Item (item, desc)
  - $FD: \{i\} \rightarrow \{i, d\}$

ER design is subjective and can have many E + Rs FDs: sanity checks + deeper understanding of schema

Same situation could happen with a relationship set

# Refining an ER Diagram



- IS (<u>item</u>, name, desc, loc, price)
   S (<u>name</u>, addr)
- A supplier keeps all items in the same location
   FD: name → loc
- Solution:

#### **Inferring FD**

- ename → ejob, ejob → esal; ⇒ ename → esal
- Armstrong's Axioms (X, Y, Z are sets of attributes):
  - Reflexivity: If  $Y \subseteq X$ , then  $X \rightarrow Y$
  - Augmentation: If  $X \rightarrow Y$ , then  $XZ \rightarrow YZ$  for any Z
  - Transitivity: If  $X \rightarrow Y$  and  $Y \rightarrow Z$ , then  $X \rightarrow Z$
- Additional rules (derivable):
  - Union: If  $X \rightarrow Y$  and  $X \rightarrow Z$ , then  $X \rightarrow YZ$
  - Decomposition: If  $X \rightarrow YZ$ , then  $X \rightarrow Y$  and  $X \rightarrow Z$
- Set of all FD = closure of F, denoted as F<sup>+</sup>
- AA sound: only generates FD in F<sup>+</sup>
- AA complete: repeated application generates all FD in F<sup>+</sup>

## Decomposition

- Replace a relation with two or more relations
- Problems with decomposition
  - 1. Some queries become more expensive. (more joins)
  - 2. Lossless Join: Can we reconstruct the original relation from instances of the decomposed relations?
  - **3. Dependency Preservation**: Checking some dependencies may require joining the instances of the decomposed relations.

# **Lossless Join Decompositions**

- Relation R, FDs F: Decomposed to X, Y
- Lossless-Join decomposition if:

$$\prod_{X}(r) \bowtie \prod_{Y}(r) = r$$
 for **every** instance r of R

- Note,  $r \subseteq \prod_X(r) \bowtie \prod_Y(r)$  is always true, not vice versa, unless the join is lossless
- Can generalize to three more relations

| A | В | C |
|---|---|---|
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 2 | 8 |



| A | В |
|---|---|
| 1 | 2 |
| 4 | 5 |
| 7 | 2 |

| В | C |
|---|---|
| 2 | 3 |
| 5 | 6 |
| 2 | 8 |



| A | В   | C                     |
|---|-----|-----------------------|
| 1 |     | 3                     |
| 4 | 2 5 | 6                     |
| 7 |     | 8                     |
| 1 | 2 2 | 3<br>6<br>8<br>8<br>3 |
| 7 | 2   | 3                     |

#### Lossless Join ...

- Relation R, FDs F: Decomposed to X, Y
  - Test: lossless-join w.r.t. F if and only if the closure of F contains:
    - $X \cap Y \rightarrow X$ , or
    - $\cdot X \cap Y \rightarrow Y$

i.e. attributes common to X and Y contain a key for either X or Y

- Also, given FD: X → Y and X  $\cap$  Y =  $\emptyset$ , the decomposition into R-Y and XY is lossless
  - X is a key in XY, and appears in both

#### **Dependency Preserving Decomposition**

- R (sailor, boat, date) {D → S, D → B}
   → X (sailor, boat)
   Y (boat, date) {D → B}
- To check D → S need to join R1 and R2 (expensive)
- Dependency preserving:
  - $-R \rightarrow X, Y F^+ = (F_X \cup F_V)^+$
  - Note: F not necessarily =  $F_x \cup F_y$

#### **Normal Forms**

Is any refinement is needed!

Normal Forms: guarantees that certain kinds of problems won't occur

— 1 NF : Atomic values

– 2 NF : Historical

- 3 NF:...

— BCNF : Boyce-Codd Normal Form

- Role of FDs in detecting redundancy:
  - Relation R with 3 attributes, ABC.
    - No ICs (FDs) hold ⇒ no redundancy.
    - A → B ⇒ 2 or more tuples with the same A value, redundantly have the same B value!

### **Boyce-Codd Normal Form (BCNF)**

- Reln R with FDs F is in BCNF if, for all X → A in F<sup>+</sup>
  - $-A \subseteq X$  (trivial FD), or
  - X is a super key

i.e. all non-trivial FDs over R are key constraints.

- No redundancy in R (at least none that FDs detect)
- Most desirable normal form
- Consider a relation in BCNF and FD: X → A, two tuples have the same X value
  - Can the A values be the same (i.e. redundant)?
  - NO! X is a key,  $\Rightarrow$  y1 = y2. Not a set!

| X | Y  | Α |
|---|----|---|
| X | y1 | а |
| X | y2 | ? |

#### **3NF**

- Relation R with FDs F is in 3NF if, for all X → A in F<sup>+</sup>
  - $-A \subseteq X$  or
  - X is a super key or
  - A is part of some <u>key</u> for R (prime attribute)
    - Minimality of a key (not superkey) is crucial!
- BCNF implies 3NF
- e.g.: Sailor (Sailor, Boat, Date, CreditCrd)
  - SBD -> SBDC, S -> C (not 3NF)
  - If C -> S, then CBD -> SBDC (i.e. CBD is also a key). Now in 3NF!
  - Note redundancy in (S, C); 3NF permits this
  - Compromise used when BCNF not achievable, or perf. Consideration
- Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.