



Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints

Nikolay Paleshnikov Advisor: Aljoša Ošep

> RWTH Aachen August 02, 2018

# Roadmap

Monocular Visual Odometry and SLAM

Scene Model

Related Work

Method

**Evaluation** 

Conclusion and Future Work

## Monocular Visual Odometry and SLAM



## Monocular Visual Odometry and SLAM



#### Main applications

- Virtual and augmented reality
- Unknown surface exploration
- Autonomous navigation

## Monocular Visual Odometry and SLAM





## Analytic Visual Frameworks



[Engel et al., ECCV 2014]

# Roadmap

Monocular Visual Odometry and SLAM

Scene Model

Related Work

Method

**Evaluation** 

Conclusion and Future Work

#### **Euclidean Transformations**

Rotation  $R \in \mathbb{R}^{3 \times 3}$ , followed by a translation  $t \in \mathbb{R}^3$ 

$$T = \left(\begin{array}{ccc} R & t \\ 0 & 0 & 0 & 1 \end{array}\right)$$

#### **Euclidean Transformations**

Rotation  $R \in \mathbb{R}^{3 \times 3}$ , followed by a translation  $t \in \mathbb{R}^3$ 

$$T = \left(egin{array}{ccc} R & t \ 0 & 0 & 0 & 1 \end{array}
ight)$$
  $p = \left(egin{array}{c} X \ y \ z \ 1 \end{array}
ight) \in \mathbb{R}^4$   $M_T : \mathbb{R}^4 
ightarrow \mathbb{R}^4 \; , \; p \mapsto T \; p$ 

#### **Euclidean Transformations**

Rotation  $R \in \mathbb{R}^{3 \times 3}$ , followed by a translation  $t \in \mathbb{R}^3$ 

$$T = \begin{pmatrix} R & t \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$p = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \in \mathbb{R}^4$$

$$M_T : \mathbb{R}^4 \to \mathbb{R}^4 , p \mapsto T p$$

$$T_i^j = T_j^{-1} T_i$$

$$egin{aligned} \Pi: \mathbb{R}^4 &
ightarrow \mathbb{R}^2 \;,\; egin{pmatrix} x \ y \ z \ 1 \end{pmatrix} \mapsto egin{pmatrix} x/z \ y/z \end{pmatrix} \ &\Pi^{-1}: \mathbb{R}^2 imes \mathbb{R} &
ightarrow \mathbb{R}^4 \;,\; (egin{pmatrix} u \ v \end{pmatrix}, d_p) \mapsto egin{pmatrix} u/d_p \ v/d_p \ 1/d_p \ 1 \end{pmatrix} \end{aligned}$$

$$egin{aligned} \Pi: \mathbb{R}^4 &
ightarrow \mathbb{R}^2 \;,\; egin{pmatrix} x \ y \ z \ 1 \end{pmatrix} \mapsto egin{pmatrix} x/z \ y/z \end{pmatrix} \ \Pi^{-1}: \mathbb{R}^2 &
ightarrow \mathbb{R}^4 \;,\; (egin{pmatrix} u \ v \end{pmatrix}, d_p) \mapsto egin{pmatrix} u/d_p \ v/d_p \ 1/d_p \ 1 \end{pmatrix} \ &\mathcal{K} &= egin{pmatrix} f_x & 0 & c_x & 0 \ 0 & f_y & c_y & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} \end{aligned}$$

$$\Pi: \mathbb{R}^4 \to \mathbb{R}^2 , \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} x/z \\ y/z \end{pmatrix}$$

$$\Pi^{-1}: \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^4 , (\begin{pmatrix} u \\ v \end{pmatrix}, d_p) \mapsto \begin{pmatrix} u/d_p \\ v/d_p \\ 1/d_p \\ 1 \end{pmatrix}$$

$$K = \begin{pmatrix} f_x & 0 & c_x & 0 \\ 0 & f_y & c_y & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{p}' = \Pi (K T_i^j K^{-1} \Pi^{-1} (\mathbf{p}, d_p))$$



$$\mathbf{p}' = \Pi \left( K \ T_i^j \ K^{-1} \ \Pi^{-1} \left( \mathbf{p}, d_p \right) \right)$$

# **Bundle Adjustment**

$$E_{total} = \sum_{i \in F} \sum_{\mathbf{p}^* \in sp(i)} \|\mathbf{p}^* - \mathbf{p}\|_2^2$$

# Bundle Adjustment

$$E_{total} = \sum_{i \in F} \sum_{\mathbf{p}^* \in sp(i)} \|\mathbf{p}^* - \mathbf{p}\|_2^2$$

$$\underset{P, \{T_i | i \in F\}, K}{\operatorname{argmin}} E_{total}$$

# Bundle Adjustment

$$E_{total} = \sum_{i \in F} \sum_{\mathbf{p}^* \in sp(i)} \|\mathbf{p}^* - \mathbf{p}\|_2^2$$

$$\underset{P, \{T_i | i \in F\}, K}{\operatorname{argmin}} E_{total}$$

- Maximum a Posteriori (MAP) estimation
- ▶ Non-linear non-convex least-squares optimization problem
- Good initialization required

## SLAM Represented as a Factor Graph



$$\operatorname*{argmax}_{X} p(X|Z) = \operatorname*{argmax}_{X} p(Z|X) p(X)$$

$$\operatorname*{argmax}_{X} p(X|Z) = \operatorname*{argmax}_{X} p(Z|X) p(X)$$

$$\underset{X}{\operatorname{argmax}} p_0 \ p(Z|X) = \underset{X}{\operatorname{argmax}} p_0 \ \prod_{i=1}^{n} p(z_i|X) = \underset{X}{\operatorname{argmax}} p_0 \ \prod_{i=1}^{n} p(z_i|X_i)$$

$$\operatorname*{argmax}_{X} p(X|Z) = \operatorname*{argmax}_{X} p(Z|X) p(X)$$

$$\underset{X}{\operatorname{argmax}} p_0 \ p(Z|X) = \underset{X}{\operatorname{argmax}} p_0 \ \prod_{i=1}^n p(z_i|X) = \underset{X}{\operatorname{argmax}} p_0 \ \prod_{i=1}^n p(z_i|X_i)$$

$$p(z_i|X_i) \propto exp(-\frac{1}{2}\|h_i(X_i) - z_i\|_{\Omega_i}^2)$$

$$\operatorname*{argmax}_{X} p(X|Z) = \operatorname*{argmax}_{X} p(Z|X) p(X)$$

$$\underset{X}{\operatorname{argmax}} p_0 \ p(Z|X) = \underset{X}{\operatorname{argmax}} p_0 \ \prod_{i=1}^n p(z_i|X) = \underset{X}{\operatorname{argmax}} p_0 \ \prod_{i=1}^n p(z_i|X_i)$$

$$p(z_i|X_i) \propto exp(-\frac{1}{2}||h_i(X_i) - z_i||_{\Omega_i}^2)$$

$$\underset{X}{\operatorname{argmin}} - \ln \left( p_0 \prod_{i=1}^{n} p(z_i | X_i) \right) = \underset{X}{\operatorname{argmin}} \sum_{i=1}^{n} ||h_i(X_i) - z_i||_{\Omega_i}^2$$

$$\operatorname*{argmax}_{X} p(X|Z) = \operatorname*{argmax}_{X} p(Z|X) p(X)$$

$$\underset{X}{\operatorname{argmax}} p_0 \ p(Z|X) = \underset{X}{\operatorname{argmax}} p_0 \ \prod_{i=1}^n p(z_i|X) = \underset{X}{\operatorname{argmax}} p_0 \ \prod_{i=1}^n p(z_i|X_i)$$

$$p(z_i|X_i) \propto exp(-\frac{1}{2}||h_i(X_i)-z_i||_{\Omega_i}^2)$$

$$\underset{X}{\operatorname{argmin}} - \ln \left( p_0 \prod_{i=1}^{n} p(z_i | X_i) \right) = \underset{X}{\operatorname{argmin}} \sum_{i=1}^{n} \| h_i(X_i) - z_i \|_{\Omega_i}^2$$

Advantages in comparison with bundle adjustment:

- ► Simultaneous incorporation of various sensors
- Incremental solution possible

### Visual SLAM

Visual SLAM rendered possible by means of a simplified scene model:

- Rigid Lambertian world
- ► Temporal coherence and constant illumination
- ▶ Pinhole camera model and epipolar geometry
  - $\Rightarrow$  6 degrees of freedom for motion, 1 for depth

### Visual SLAM

Visual SLAM rendered possible by means of a simplified scene model:

- Rigid Lambertian world
- ► Temporal coherence and constant illumination
- ▶ Pinhole camera model and epipolar geometry
  - $\Rightarrow$  6 degrees of freedom for motion, 1 for depth

#### Open problems

- ▶ Life-long operation
- High-level geometry understanding
- ▶ Resilience in a variety of environments

## Deep Learning for SfM

Paradigm shift from analytic to statistical solutions

Self-supervision: no explicit labels, geometric consistency

## Deep Learning for SfM

Paradigm shift from analytic to statistical solutions

Self-supervision: no explicit labels, geometric consistency

#### Success stories

- Monocular depth estimation (Garg et al., Godard et al., Kuznietsov et al.)
- ► Joint monocular depth and ego-motion estimation (Zhou et al., Vijayanarasimhan et al.)
- Rigid body detection and motion tracking (Byravan et al.)

# Roadmap

Monocular Visual Odometry and SLAM

Scene Model

Related Work

Method

**Evaluation** 

Conclusion and Future Work

#### SfMLearner Overview



(a) Training: unlabeled video clips.



(b) Testing: single-view depth and multi-view pose estimation.

[Zhou et al., CVPR 2017]

#### SfMLearner Network



[Zhou et al., CVPR 2017]

#### SfM-Net Motion Subnetwork



[Vijayanarasimhan et al., ArXiv 2017]

#### SfM-Net Architecture



[Vijayanarasimhan, arXiv 2017]

# Roadmap

Monocular Visual Odometry and SLAM

Scene Model

Related Work

Method

**Evaluation** 

Conclusion and Future Work

#### Method Overview



[Mahjourian et al., CVPR 2018]

## Three-Dimensional Point Cloud Alignment



[Mahjourian et al., CVPR 2018]

# Three-Dimensional Point Cloud Alignment



[Mahjourian et al., CVPR 2018]

## Three-Dimensional Geometry Loss Term

Point cloud of frame i at time t:

$$Q_t^i = \{ M_i[\mathbf{p}_t^i](K^{-1}\Pi^{-1}(\mathbf{p}_t^i, d_i(\mathbf{p}_t^i))) | \mathbf{p}_t^i \in P \}$$

Warped towards the next local coordinate frame i + 1:

$$Q_{t-1}^{i+1} = T_t Q_t^i$$

## Three-Dimensional Geometry Loss Term

Point cloud of frame *i* at time *t*:

$$Q_t^i = \{ M_i[\mathbf{p}_t^i](K^{-1}\Pi^{-1}(\mathbf{p}_t^i, d_i(\mathbf{p}_t^i))) | \mathbf{p}_t^i \in P \}$$

Warped towards the next local coordinate frame i + 1:

$$Q_{t-1}^{i+1} = T_t Q_t^i$$

Objective function of the Iterative Closest Point (ICP) algorithm used for point cloud alignment:

$$\underset{\mathcal{T}'}{\operatorname{argmin}} \frac{1}{2} \| \mathcal{T}' Q_{t-1}^{i+1} - Q_{t}^{i+1} \|_{2}^{2}$$

## Three-Dimensional Geometry Loss Term

Point cloud of frame *i* at time *t*:

$$Q_t^i = \{ M_i[\mathbf{p}_t^i](K^{-1}\Pi^{-1}(\mathbf{p}_t^i, d_i(\mathbf{p}_t^i))) | \mathbf{p}_t^i \in P \}$$

Warped towards the next local coordinate frame i + 1:

$$Q_{t-1}^{i+1} = T_t Q_t^i$$

Objective function of the Iterative Closest Point (ICP) algorithm used for point cloud alignment:

$$\underset{T'}{\operatorname{argmin}} \frac{1}{2} \| T' Q_{t-1}^{i+1} - Q_{t}^{i+1} \|_{2}^{2}$$

Loss term:

$$L_{3D} = |T_t' - I| + |r_t|$$

Photometric consistency term:

$$L_{ph} = \sum_{\mathbf{p}_t^i \in P} \|M_i[\mathbf{p}_t^i](I_t[\mathbf{p}_t^i] - I_{t+1}[\mathbf{p}_{t+1}^i])\|_2$$

Photometric consistency term:

$$L_{ph} = \sum_{\mathbf{p}_{t}^{i} \in P} \|M_{i}[\mathbf{p}_{t}^{i}](I_{t}[\mathbf{p}_{t}^{i}] - I_{t+1}[\mathbf{p}_{t+1}^{i}])\|_{2}$$

Structured similarity term:

$$SSIM(x,y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x + \sigma_y + c_2)}$$

$$L_{SSIM} = \sum_i M_i[\mathbf{p}_t^i](1 - SSIM(I_t[\mathbf{p}_t^i], I_{t+1}[\mathbf{p}_{t+1}^i]))$$

Photometric consistency term:

$$L_{ph} = \sum_{\mathbf{p}_t^i \in P} \|M_i[\mathbf{p}_t^i](I_t[\mathbf{p}_t^i] - I_{t+1}[\mathbf{p}_{t+1}^i])\|_2$$

Structured similarity term:

$$SSIM(x,y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x + \sigma_y + c_2)}$$

$$L_{SSIM} = \sum_i M_i[\mathbf{p}_t^i](1 - SSIM(I_t[\mathbf{p}_t^i], I_{t+1}[\mathbf{p}_{t+1}^i]))$$

Depth gradient smoothness term:

$$L_{sm} = \sum_{\mathbf{p}_t^i \in P} \|\partial_x d_i(\mathbf{p}_t^i)\| e^{-\|\partial_x I_t[\mathbf{p}_t^i]\|} + \|\partial_y d_i(\mathbf{p}_t^i)\| e^{-\|\partial_y I_t[\mathbf{p}_t^i]\|}$$

Photometric consistency term:

$$L_{ph} = \sum_{\mathbf{p}_t^i \in P} \|M_i[\mathbf{p}_t^i](I_t[\mathbf{p}_t^i] - I_{t+1}[\mathbf{p}_{t+1}^i])\|_2$$

Structured similarity term:

$$SSIM(x,y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x + \sigma_y + c_2)}$$

$$L_{SSIM} = \sum_i M_i[\mathbf{p}_t^i](1 - SSIM(I_t[\mathbf{p}_t^i], I_{t+1}[\mathbf{p}_{t+1}^i]))$$

Depth gradient smoothness term:

$$L_{sm} = \sum_{\mathbf{p}_t^i \in P} \|\partial_X d_i(\mathbf{p}_t^i)\| e^{-\|\partial_X I_t[\mathbf{p}_t^i]\|} + \|\partial_Y d_i(\mathbf{p}_t^i)\| e^{-\|\partial_Y I_t[\mathbf{p}_t^i]\|}$$

Weighted sum:

$$\mathit{L} = \sum_{\mathit{s}} \alpha \mathit{L}_{\mathit{ph}}^{\mathit{s}} + \beta \mathit{L}_{\mathit{3D}}^{\mathit{s}} + \gamma \mathit{L}_{\mathit{sm}}^{\mathit{s}} + \omega \mathit{L}_{\mathit{SSIM}}^{\mathit{s}}$$

# Roadmap

Monocular Visual Odometry and SLAM

Scene Model

Related Work

Method

**Evaluation** 

Conclusion and Future Work

# Depth Estimation Evaluation

$$\textit{RMSE} = \sqrt{\frac{1}{|P|} \sum_{\mathbf{p}_t^i \in P} \lVert d_i(\mathbf{p}_t^i) - d_i^{gt}(\mathbf{p}_t^i) \rVert_2^2}$$

# Depth Estimation Evaluation

$$\begin{aligned} \textit{RMSE} &= \sqrt{\frac{1}{|P|} \sum_{\mathbf{p}_t^i \in P} \lVert d_i(\mathbf{p}_t^i) - d_i^{\textit{gt}}(\mathbf{p}_t^i) \rVert_2^2} \\ \Delta_i &= \textit{In } d_i(\mathbf{p}_t^i) - \textit{In } d_i^{\textit{gt}}(\mathbf{p}_t^i) \end{aligned}$$

$$\textit{RMSE}_{\textit{scale-invariant}}^{\textit{log}} &= \sqrt{\frac{1}{|P|} \sum_{\mathbf{p}_t^i \in P} \Delta_i^2 - \frac{1}{|P|^2} (\sum_{\mathbf{p}_t^i \in P} \Delta_i)^2}$$

## Depth Estimation Evaluation

| Method              | Supervision | Dataset            | Depth Cap | RMSE  | RMSE <sup>log</sup><br>scale—invariant |
|---------------------|-------------|--------------------|-----------|-------|----------------------------------------|
| All losses          | -           | Cityscapes + KITTI | 0-80m     | 5.912 | 0.243                                  |
| All losses          | -           | KITTI              | 0-80m     | 6.220 | 0.250                                  |
| No ICP loss         | -           | KITTI              | 0-80m     | 6.267 | 0.252                                  |
| Zhou et al.         | -           | Cityscapes + KITTI | 0-80m     | 6.565 | 0.275                                  |
| Zhou et al.         | -           | KITTI              | 0-80m     | 6.856 | 0.283                                  |
| Eigen et al. Coarse | Depth       | KITTI              | 0-80m     | 6.563 | 0.292                                  |
| Eigen et al. Fine   | Depth       | KITTI              | 0-80m     | 6.307 | 0.282                                  |
| All losses          | -           | Bike dataset       | 0-80m     | 7.741 | 0.309                                  |
| No ICP loss         | -           | Bike dataset       | 0-80m     | 7.750 | 0.305                                  |
| SfM-Net             | -           | Stereo KITTI 2012  | 0-80m     | N/A   | 0.45                                   |
| SfM-Net             | -           | Stereo KITTI 2015  | 0-80m     | N/A   | 0.41                                   |
| All losses          | -           | Cityscapes + KITTI | 1-50m     | 4.383 | 0.227                                  |
| All losses          | -           | KITTI              | 1-50m     | 4.549 | 0.231                                  |
| Garg et al.         | Stereo      | KITTI              | 1-50m     | 5.104 | 0.273                                  |

# 3D Loss Term Ablation and Pre-Training on Cityscapes



### Qualitative Results



[Mahjourian et al., CVPR 2018]

# Ego-Motion Estimation Evaluation

$$ATE = \sqrt{\frac{1}{|T|} \sum_{P_i \in T} \|trans(Q_i^{-1}SP_i)\|_2^2}$$

# Ego-Motion Estimation Evaluation

$$ATE = \sqrt{\frac{1}{|T|} \sum_{P_i \in T} \|trans(Q_i^{-1}SP_i)\|_2^2}$$

| Method        | Sequence 09                       | Sequence 10                       |  |
|---------------|-----------------------------------|-----------------------------------|--|
| Full ORB-SLAM | $0.014\pm0.008$                   | $\textbf{0.012}\pm\textbf{0.011}$ |  |
| Zhou et al.   | $0.021 \pm 0.017$                 | $0.020\pm0.015$                   |  |
| No ICP loss   | $0.014 \pm 0.010$                 | $0.013 \pm 0.011$                 |  |
| All losses    | $\textbf{0.013}\pm\textbf{0.010}$ | $\textbf{0.012}\pm\textbf{0.011}$ |  |

# Roadmap

Monocular Visual Odometry and SLAM

Scene Model

Related Work

Method

**Evaluation** 

Conclusion and Future Work

### Conclusion and Future Work

- Main contribution: Novel differentiable three-dimensional geometry loss term
- Attained precision: equal to a full SLAM system
- Robustness: competitive results even after training on a highly irregular custom dataset and evaluation on an unrelated well-calibrated benchmark

### Conclusion and Future Work

- Main contribution: Novel differentiable three-dimensional geometry loss term
- Attained precision: equal to a full SLAM system
- Robustness: competitive results even after training on a highly irregular custom dataset and evaluation on an unrelated well-calibrated benchmark

#### Future research directions:

- Dynamic object detection and tracking
- Optimization over an extended time lapse
- Scene model generalization: non-rigidity, specular reflections
- ► Learning and evaluation on a richer dataset incorporating all 6 DOF for ego-motion

### References I

A. Byravan and D. Fox.

Se3-nets: Learning rigid body motion using deep neural networks.

arXiv, abs/1606.02378, 2016.

C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard.

Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. *IEEE T-RO*, 2016.

D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep network.

NIPS, 2014.

#### References II

- J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. *ICRA*, 2017.
- R. Garg, V. K. B. G, and I. D. Reid.
  Unsupervised CNN for single view depth estimation:
  Geometry to the rescue.

  arXiv, abs/1603.04992, 2016.
- C. Godard, O. Mac Aodha, and G. J. Brostow.
  Unsupervised monocular depth estimation with left-right consistency.

arXiv, abs/1609.03677, 2016.

Y. Kuznietsov, J. Stückler, and B. Leibe.
Semi-supervised deep learning for monocular depth map prediction.

arXiv, abs/1702.02706, 2017.

### References III

R. Mahjourian, M. Wicke, and A. Angelova.
Unsupervised learning of depth and ego-motion from monocular video using 3d geometric constraints.

CVPR, 2018.

N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox.

A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation.

arXiv, abs/1512.02134, 2015.

R. Mur-Artal and J. D. Tardós.

ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras.

arXiv, abs/1610.06475, 2016.

### References IV

- O. Ozyesil, V. Voroninski, R. Basri, and A. Singer. A survey on structure from motion.

  Acta Numerica, 2017.
- S. Vijayanarasimhan, S. Ricco, C. Schmid, R. Sukthankar, and K. Fragkiadaki.

  Sfm-net: Learning of structure and motion from video. arXiv, abs/1704.07804, 2017.
  - T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsupervised learning of depth and ego-motion from video. *CVPR*, 2017.