Question 1. Determine the Maclaurin series for the following indefinite integral:

$$\int \sqrt{1+x^3} \, dx.$$

It suffices to write the first four non-zero terms in the series. *Hint: first calculate the Taylor expansion of* \sqrt{y} *around* y=1.

Question 2. Use the Lagrange multiplier method to find the extrema of

$$f(x,y) = 9x^2 + y^2 + 3$$

constrained to the set $G=\{(x,y)\in\mathbb{R}^2: \frac{4}{9}x^2+y^2=9\}$. Calculate the value of f at these extrema points.

Question 3. Consider the following vector fields defined on \mathbb{R}^2 :

$$F_1(x,y) = y\mathbf{i} + \mathbf{j}$$
 $F_2(x,y) = -y\mathbf{i} + x\mathbf{j}$
 $F_3(x,y) = y\mathbf{i} + x\mathbf{j}$ $F_4(x,y) = 2y\mathbf{i} - 2x\mathbf{j}$
 $F_5(x,y) = 2x\mathbf{i} - 2y\mathbf{j}$ $F_6(x,y) = \sin(x/2)\mathbf{i} + \sin(y/2)\mathbf{j}$.

- I. Match each to one of the plots and briefly explain the logic/calculation for matching each (it is not required to give complete arguments).
- 2. Calculate the divergence, $\nabla \cdot F_n(x,y)$ for each of the vector fields.

Question 1. Determine the Maclaurin series for the following indefinite integral:

$$\int \sqrt{1+x^3} \, dx.$$

It suffices to write the first four non-zero terms in the series. *Hint: first calculate the Taylor expansion of* \sqrt{y} *around* y=1.

Question 2. Use the Lagrange multiplier method to find the extrema of

$$f(x,y) = 9x^2 + y^2 - 2$$

constrained to the set $G=\{(x,y)\in\mathbb{R}^2: \frac{4}{9}x^2+y^2=4\}$. Calculate the value of f at these extrema points.

Question 3. Consider the following vector fields defined on \mathbb{R}^2 :

$$F_1(x,y) = y\mathbf{i} + \mathbf{j}$$
 $F_2(x,y) = -2y\mathbf{i} + 2x\mathbf{j}$
 $F_3(x,y) = y\mathbf{i} + x\mathbf{j}$ $F_4(x,y) = y\mathbf{i} - x\mathbf{j}$
 $F_5(x,y) = 2x\mathbf{i} - 2y\mathbf{j}$ $F_6(x,y) = \sin(x/3)\mathbf{i} + \sin(y/3)\mathbf{j}$.

- I. Match each to one of the plots and briefly explain the logic/calculation for matching each (it is not required to give complete arguments).
- 2. Calculate the divergence, $\nabla \cdot F_n(x,y)$ for each of the vector fields.

Question 4. Let

$$S = \{(x,y) \in \mathbb{R}^2 : x,y \ge 0, x^2 + y^2 \le 4, x^2 + y^2 - 2y \ge 0\}.$$

Sketch this set and then use polar coordinates to evaluate the integral

$$\iint_{S} x \, dx dy.$$

Hint: write the curve $x^2 + y^2 - 2y = 0$ in the form $x^2 + (y - 1)^2 = ?$ to sketch this curve.

Question 5. Let Γ denote the closed path along the portions of the curves $y=x^2, y=1, x=0$. Consider the vector field

$$F(x,y) = (5x^2y - \sin x)\mathbf{i} + (x^3 + y \ln y)\mathbf{j}.$$

Compute the path integral of this vector field anticlockwise around the path. *Hint*: $\int t^3 \ln(t^2) dt = \frac{1}{4}t^4 \ln(t^2) - \frac{1}{8}t^4$, $\int t \ln(t) dt = \frac{1}{2}t^2 \ln(t) - \frac{1}{4}t^2$.

Question 6. Let $S = \sigma(T)$ be the parametric surface defined by $\sigma(u,v) = (u,v^2 - u,u+v)$, $T = [0,2] \times [0,1]$ and write \mathbf{n} for the unit normal. Consider the vector field defined on \mathbb{R}^3 as

$$\mathbf{F}(x, y, z) = -y\mathbf{i} + x\mathbf{j}.$$

Evaluate the flux integral,

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ dS.$$

Question 4. Let

$$S = \{(x,y) \in \mathbb{R}^2 : x,y \ge 0, x^2 + y^2 \le 4, x^2 + y^2 - 2x \ge 0\}.$$

Sketch this set and then use polar coordinates to evaluate the integral

$$\iint_{S} y \, dx dy.$$

Hint: write the curve $x^2 + y^2 - 2x = 0$ in the form $(x - 1)^2 + y^2 = ?$ to sketch this curve.

Question 5. Let Γ denote the closed path along the portions of the curves $y=x^2, y=1, x=0$. Consider the vector field

$$F(x,y) = (4x^2y - \sin x)\mathbf{i} + (x^3 + y \ln y)\mathbf{j}.$$

Compute the path integral of this vector field anticlockwise around the path. Hint: $\int t^3 \ln(t^2) dt = \frac{1}{4}t^4 \ln(t^2) - \frac{1}{8}t^4$, $\int t \ln(t) dt = \frac{1}{2}t^2 \ln(t) - \frac{1}{4}t^2$.

Question 6. Let $S = \sigma(T)$ be the parametric surface defined by $\sigma(u,v) = (u,v^2 - u,u+v)$, $T = [0,2] \times [0,1]$ and write \mathbf{n} for the unit normal. Consider the vector field defined on \mathbb{R}^3 as

$$\mathbf{F}(x, y, z) = y\mathbf{i} - x\mathbf{k}.$$

Evaluate the flux integral,

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ dS.$$