Question Number	Answer		Mark
17(a)	Either		
17(4)	Current carrying coil/conductor in a magnetic field	(1)	
	Coil experiences a force	(1)	
	Force changes direction with current (as current is changing direction)	(1)	
	Or		
	Current in coil causes a magnetic field	(1)	
	Field interacts with permanent magnet's field, so force on coil	(1)	
	Field changes direction with current so force changes direction	(1)	3
17(b)(i)	Use of $\omega = 2\pi f$	(1)	
	Use of $v = -A\omega \sin \omega t$	(1)	
		(1)	3
	$v = 0.82 \text{ m s}^{-1}$	(1)	
	Example of calculation		
	$\omega = 2\pi \text{rad} \times 75 \text{s}^{-1} = 471 \text{rad s}^{-1}$		
	$v = 1.75 \times 10^{-3} \text{m} \times 471 \text{ s}^{-1} \times 1 = 0.8247 \text{ m s}^{-1}$		
17(b)(ii)	At the equilibrium/undisplaced/central/middle (position)	(1)	1
17(c)	MAX 2		
	The driver frequency of the coil matches the natural frequency of the cone	(1)	
	There is a maximum transfer of energy (from the coil to the cone)	(1)	
	Resonance occurs	(1)	2
	[For full marks the response must be related to the question context]		
	Total for question 17		9