Balanza de corriente

Alejandro Zubiri

2025-04-01

```
library("knitr")
library("readODS")
data = read_ods("./BalanzaCorriente.ods")
```

Balanza de Corriente

1. Objetivo

- Estudiar la ley de Laplace aplicada a la interacción entre corrientes eléctricas y campos magnéticos.
- Determinar experimentalmente el módulo del campo magnético generado por un imán permanente.
- Observar y analizar el **principio de acción y reacción** de Newton en un sistema magnético.

2. Materiales

- Generador de corriente continua: Para suministrar una corriente estable.
- Balanza digital: Medir variaciones de masa debido a fuerzas magnéticas.
- Soporte y barra metálica: Estructura para fijar componentes.
- Set de circuitos impresos (6 modelos): Diferentes longitudes de conductores para variar el parámetro L.
- Unidad de sujeción: Dispositivo para fijar los circuitos impresos cerca del imán.
- Cables y amperímetro: Conectar y medir la corriente en el circuito.
- Imán permanente: Fuente del campo magnético.

Figura 1: Esquema de los componentes principales: generador, balanza, soporte, circuitos impresos e imán.

3. Fundamentos Teóricos

Ley de Laplace

Cuando un conductor de longitud L, por el que circula una corriente I, se coloca en un campo magnético \vec{B} , experimenta una fuerza magnética \vec{F} . Esta fuerza es perpendicular al plano formado por \vec{B} y el vector longitud \vec{L} , y se expresa como:

$$\vec{F} = I \cdot (\vec{L} \times \vec{B})$$

Donde:

- $-\vec{L}$: Vector con magnitud igual a la longitud del conductor y dirección igual al sentido de la corriente.
- \vec{B} : Campo magnético del imán.

4. Procedimiento Experimental

Montaje Inicial

- 1. Fijación de componentes:
 - Unir la barra metálica a la base del soporte.
 - Enroscar la unidad de sujeción en la barra.
 - Acoplar el circuito impreso seleccionado en la parte frontal de la unidad de sujeción (ver Figura 2).
- 2. Configuración eléctrica:
 - Conectar el generador en modo corriente continua.
 - Colocar el amperímetro en serie entre el generador y la unidad de sujeción (Figura 3).
 - Asegurar que el circuito esté abierto hasta comenzar las mediciones.

Medición de la Masa del Imán

• Pesar el imán con la balanza y registrar su masa (m) junto con la precisión del instrumento.

Colocación del Circuito Impreso

- Posicionar el circuito impreso entre los polos del imán sin contacto físico (Figura 4.a).
- Asegurar que solo la sección horizontal del circuito (dentro del contorno rojo en Figura 4.b) esté expuesta al campo magnético.

Ejecución del Experimento

- 1. Encender el generador para establecer una corriente I en el circuito.
- 2. Registrar la masa aparente (m') mostrada por la balanza, que disminuirá debido a la fuerza de reacción magnética $\vec{F_r}$.

Análisis de Fuerzas

En equilibrio estático, las fuerzas sobre el imán cumplen:

$$\sum \vec{F_i} = \vec{F}_N + \vec{P} + \vec{F_r} = \vec{0}$$

- \vec{F}_N : Fuerza normal de la balanza.
- $\vec{P} = m \cdot q$: Peso del imán.
- $\vec{F_r} = I \cdot L \cdot |\vec{B}|$: Fuerza de reacción (módulo igual a la fuerza magnética).

La relación entre la masa aparente y el campo magnético se obtiene de:

$$m' \cdot g = m \cdot g - I \cdot L \cdot |\vec{B}|$$

Figura 5: Diagrama de fuerzas sobre el imán en equilibrio. # Tratamiento de datos Los datos recogidos fueron los siguientes:

Table 1: Balanza de corriente, variando el circuito.

$\overline{I(A)}$	m (kg)	F (N)	L (m)	Circuito
1.5	0.16027	1.570588511151	0.0078	SF40
1.5	0.16011	1.569020568543	0.0201	SF37
1.5	0.16003	1.568236597239	0.027525	SF39
1.5	0.15976	1.565590694088	0.03	SF38
1.5	0.15965	1.564512733545	0.03775	SF41
1.5	0.15913	1.559416920069	0.04	SF42

Sin embargo, antes de representar los datos, vamos a desarrollar la propagación de errores. Tenemos que:

$$F_N = m'g$$

Por tanto, desarrollando, tenemos que:

$$\Delta F_N = |\frac{\partial F_N}{\partial m'}|\Delta m' + |\frac{\partial F_N}{\partial g}|\Delta g$$

```
fn = t.data.frame(data[1:6, 3])
long = t.data.frame(data[1:6,4])
plot(long, fn, xlab="Longitud (m)", ylab="F_N (N)")
```


rores Tenemos que la fuerza