IT314

Lab7 - Testing Software Engineering Winter Semester 2022-23

Name: Pansuriya Viraj Dhirajbhai Student Id:202001196

Date:13/04/2023

Section-A:

Test-Case:

Day	Month	Year	Expected Outcome
15	6	1900	14 june , 1900
15	6	1901	14 june 1901
15	6	1958	14 june , 1958
15	6	2014	14 june , 2014
15	6	2015	14 june , 2015
1	6	1958	31 may , 1958
2	6	1958	1 june , 1958
30	6	1958	29 june , 1958
31	6	1958	Invalid Date
15	1	1958	14 jan , 1958
15	2	1958	14 feb, 1958
15	11	1958	14 nov, 1958
5	12	1958	14 dec, 1958

Day:

Day	Output
1 to 28	Valid
< 1	Invalid
> 31	Invalid
=30	Valid
=29	Valid for leap year
=31	Valid for month which contains 3 days

Month:

Month	Output
1 to 12	Valid
< 1	Invalid
> 12	Invalid

Year:

Year	Output
1900 to 2015	Valid
< 1900	Invalid
> 2015	Invalid

Problem 1:

Array a	Variable v	Expected Output	а	V
Empty	Non-Exist in Array	-1		500
Non Empty	Not Exists in array	-1	[5,6,7,8]	50
Non Empty	Exists in array	0	[5,6,7,8]	5

Array	Value	Expected Outcome
0	50	-1
[10]	10	0
[10]	50	-1
[10,50,70,90,100]	10	0
[10,50,70,90,100]	70	2
[10,50,70,90,100]	100	4
[10,50,70,90,100]	500	-1

Problem 2:

Array a	Variable v	Expected Output	а	V
Empty	Non-Exist in Array	0	0	500
Non Empty	Not Exists in array	0	[5,6,7,8]	50
Non Empty	Exists in array	1	[5,6,7,8]	5

Array	Value	Expected Outcome
0	50	0
[10]	10	1
[10]	50	0
[10,50,70,90,100]	10	1
[70,70,70,70,70]	70	5
[10,50,100,100,100]	100	3
[10,50,70,90,100]	500	0

Problem 3:

Array	Value	Expected Outcome
0	50	-1
[1,5,10]	5	1
[1,5,10]	1	0
[1,5,10]	10	2
[1,5,10,50]	6	-1

Array	Value	Expected Outcome
0	50	-1
[10]	10	0
[10]	20	-1
[10,20,30,40,50]	10	0
[10,20,30,40,50]	30	2
[10,20,30,40,50]	50	4
[10,20,30,40,50]	5	-1
[10,20,30,40,50]	100	-1

Problem 4:

Input	Expected Value
a=0 OR b = 0 OR c = 0	INVALID
a=b=c , where all are positive	EQUILATERAL
a=b (a, b are positive) and c = 0	INVALID
a=b > 0 , c > 0 (c should be less than b)	ISOSCELES
a <b+c ,="" b<a+c="" c<a+b<="" td=""><td>SCALENE</td></b+c>	SCALENE
b>a+c (same for a , c)	INVALID

Input	Expected Value
a=0 , b=0 , c=0	INVALID
a=0,b=1,c=1	INVALID
a=1,b=0,c=1	INVALID
a=1,b=1,c=0	INVALID
a=5,b=1,c=3	INVALID
a=2,b=5,c=3	INVALID
a=b=c=10	EQUILATERAL
a=b=5,c=10	INVALID
a=b=5,c=9	ISOSCELES
a=10,b=c=4	INVALID
a=3,b=4,c=5	SCALENE

Problem 5:

S1	S2	Expected Outcome
un	un	True
un	"ab"	True
"a"	"ab"	True
"b"	"ab"	False

S1	S2	Expected Outcome
4133	"abc"	True
"b"	"abc"	False
"abc"	"abc"	True
"abd"	"abc"	False
"abcd"	"abc"	False
"a"	""	False
"a"	"a"	True
"a"	"b"	False
"xxxxx"	"xxyxxxxx"	False

Problem 6:

a) Equivalence Class for the System:

Class1: Invalid (0 length OR negative length)

Class2: Non-Triangle (sum of two side is not greater than remain side)

Class3: Equilateral Triangle (All Side are Equal)

Class4: Scalene (All Side are different) Class5: Isosceles (Two sides are equal)

Class6: Right-Angle Triangle (according to Pythagoras Theorem)

b) Test Cases:

Class 1: a=0,b=0,c=0; a=1,b=0,c=0; a=-5,b=4,c=4

Class 2: a=10,b=4,c=5 Class 3: a=b=c=50 Class 4: a=3,b=4,c=5 Class 5: a=b=5, c= 9 Class 6: a=9,b=16,c=25

c)
$$A + B > C$$

Here sum of two side is greater than longest side that means it is Scalene Triangle

Here the sum of the first two sides is less than the longest side , that means it will not make a triangle.

$$d) A = C$$

$$a = 10$$
, $b = 19$, $c = 10$

Here a and c both are equal, which means it is an Isosceles Triangle.

$$a=10$$
, $b=20$, $c=10$

Here a and c are equal but one catch is that (b>=a+c) which says that it is not a valid triangle.

e) A = B = C

a=b=c= INT_MAX / DOUBLE_MAX

f) $A^2 + B^2 = C^2$

 $a=INT_MAX\ ,\ b=DOUBLE_MAX\ ,\ c=INT_MAX;$ Here a and c are INT_MAX , so the square of it will be out of bound.

a=3,b=4,c=5

g) For the non-triangle case

a=1, b=5, c= 10

a=45,b=46, c = 100

h) For non-positive input,

a=-10,b=40,c=-45

a=-4,b=5,c=10

Section - B

1) Control Flow Graph:

2) Construct test sets for your flow graph that are adequate for the following criteria:

a) Statement Courage:

Here the motive is that: test cases should cover as possible statements of code.

Test cases:

```
P: (0,0), (4,0), (1,1)
P: (0,5), (1,5), (2,5), (0,4), (2,4), (0,0), (1,0), (2,0), (3,0)
```

Generally, y with the same x should be on a large scale such that the number of statements will increase.

b) Branch Coverage:

Here , our motive is to design a test case such that it should pass from as many branches.

Test Cases:

```
\begin{array}{l} P: (0,0)\;,\, (4,0)\;,\, (1,1) \\ P: (0,5)\;,\, (1,5)\;,\, (2,5)\;,\, (0,4)\;, (2,4)\;,\, (0,0)\;,\, (1,0)\;,\, (2,0)\;,\, (3,0) \\ P: (4,10)\;,\, (4,9)\;,\, (4,8)\;,\, (3,8)\;,\, (2,8)\;,\, (5,8)\;,\, (6,8)\;,\, (7,8)\;,\, (10,8)\;,\, (12,8) \end{array}
```

c) Basic Condition Coverage:

Here , our motive is to design a test case such that it should pass from as possible boolean Condition.

Test Case:

```
P: (0,0), (10,10), (20,10)
P: (0,0), (2,0), (3,0)
P: (4,50), (5,50), (6,50), (7,50), (8,50), (9,50), (10,50), (11,50), (40,50)
```

Generally , for minimum y , cover as much possible x , such that in the second loop it checks both boolean operations.