Test de suma de rangos Validación de hipótesis de un proceso de Poisson no homogéneo

Georgina Flesia

FaMAF

31 de mayo, 2016

Bondad de ajuste

- Se tiene una muestra de datos y se quiere contrastar la hipótesis H₀) Los datos provienen de la distribución F.
 - Test chi-cuadrado y test de Kolmogorov Smirnov.
- Se tienen dos muestras de datos:
 H₀) los datos de las dos muestras provienen de una misma distribución.
 - Test de suma de rangos (Mann-Whitney o de Wilcoxon).
- Se tienen k muestras, k ≥ 2, H₀) Los datos de todas las muestras provienen de una misma distribución.
 - Test de Kruskal-Wallis.

El problema de las dos muestras

- ▶ Se han observado m datos: Y_1, \ldots, Y_m . Por ejemplo, tiempos de permanencia de clientes en un sistema a lo largo de un día.
- Se establece un modelo matemático para estos datos, asumiendo que las Y_i son independientes e igualmente distribuidas.
- Se realiza una simulación de datos X₁,..., X_n de acuerdo a este modelo matemático.
- ▶ ¿Se puede asegurar que $Y_1, ..., Y_m, X_1, ..., X_n$ son independientes e igualmente distribuidas?
 - H_0) Las n + m variables aleatorias $Y_1, \ldots, Y_m, X_1, \ldots, X_n$ son independientes e igualmente distribuidas.

Test de suma de rangos

Método:

Muestra 1: X_1, \ldots, X_n Muestra 2: Y_1, \ldots, Y_m

- Nota: Cualquiera de las dos muestras puede elegirse como primera.
- ▶ Se ordenan los n + m valores, que asumimos todos distintos.
- ▶ $R(x_i)$: rango de x_i , i-ésimo elemento de la muestra 1, entre los n + m valores.
- R: Suma de los rangos de la muestra 1.

$$R=\sum_{i=1}^n R(x_i).$$

Ejemplo:

Muestra 1: 1, 7, 5, 4. Muestra 2: 3, 2, 9. <u>Ordenamiento</u>: 1, 2, 3, 4, 5, 7, 9.

$$R = 1 + 4 + 5 + 6 = 16$$

.

Test de suma de rangos

 $R = \text{ suma de los rangos de la primera muestra.} \mid \leftarrow \text{Estadístico}$

- ▶ Un valor grande de *R* indica que los datos de la primera muestra son en general mayores que los de la segunda.
- ▶ Un valor chico de *R* indica que los datos de la primera muestra son en general menores que los de la segunda.
- ▶ Si el valor observado es R = r, se rechaza H_0 si son pequeñas alguna de las probabilidades

$$P_{H_0}(R \leq r)$$
 o $P_{H_0}(R \geq r)$.

Ejemplo

Se observaron durante 5 días los siguientes valores:

y la simulación del modelo matemático propuesto para el sistema arrojó los siguientes valores:

Test de suma de rangos:

186, 199, 220, 225, 242, 276, 311, <mark>342, 361</mark>, 371, 426, 448, 453, 456, 504

$$R = 8 + 12 + 15 + 9 + 13 = 57$$

Cálculo de $P_{H_0}(R \le r)$

- ▶ Si n y m son valores pequeños, puede utilizarse una fórmula recursiva para el cálculo de $P_{H_0}(R \le r)$.
- ▶ Si n y m son valores grandes (\geq 8), conviene utilizar
 - distribución de R, o
 - simulación.

Muestras chicas

- P_{n,m}(r): probabilidad que de dos conjuntos de datos igualmente distribuidos, de tamaños n y m respectivamente, la suma de los rangos de los datos del primer conjunto sea menor o igual a r.
- Notación:

$$P_{n,m}(r) = P_{H_0}(R \le r)$$

Cálculo de $P_{n,m}(r)$

- ightharpoonup R = r: suma de rangos de la primera muestra (de tamaño n).
- Si el mayor valor es de la primera muestra:

$$r = r - (m+n) + (m+n)$$

- ightharpoonup r-(m+n): suma de los rangos de los n-1 restantes.
- ightharpoonup m+n: rango del mayor.

$$P(R \le r \mid \text{el mayor está en la 1ra. muestra}) = P_{n-1,m}(r-m-n)$$

▶ Si el mayor valor corresponde a la segunda muestra, se tiene

$$P(R \le r \mid \text{el mayor está en la 2da. muestra}) = P_{n,m-1}(r)$$

Cálculo de $P_{n,m}(r)$

Las probabilidades que un elemento de la primera (segunda, respectivamente) muestra sea el mayor son:

$$\frac{n}{m+n}$$
 y $\frac{m}{m+n}$

▶ Definición recursiva de $P_{n,m}(r)$:

$$P_{n,m}(r) = \frac{n}{n+m} P_{n-1,m}(r-n-m) + \frac{m}{m+n} P_{n,m-1}(r).$$

Condiciones iniciales:

$$P_{1,0}(k) = \begin{cases} 0 & k \le 0 \\ 1 & k > 0. \end{cases} \quad P_{0,1}(k) = \begin{cases} 0 & k < 0 \\ 1 & k \ge 0. \end{cases}$$

Cálculo recursivo del valor p

► El valor p está dado por

2 min{
$$P_{H_0}(R \le r), P_{H_0}(R \ge r)$$
}

- ▶ $P_{H_0}(R \ge r) = 1 P_{H_0}(R \le r 1)$.
- Cálculo del valor p por recursión:

valor
$$p = 2 \min\{P_{n,m}(r), 1 - P_{n,m}(r-1)\}.$$

Desventajas del método recursivo

- ▶ Para n = m = 20, $1 + 2 + \cdots + 40 = 820$, por lo que el rango de la muestra de menor rango podría alcanzar el valor 410.
- ► En tal caso, será necesario calcular

$$20 \times 20 \times 410 = 164000$$

valores de $P_{n,m}(r)$.

Distribución del estadístico R

- H₀: Las dos muestras están igualmente distribuidas.
- ▶ Bajo la hipótesis H_0 , todos los ordenamientos de los n + m valores son igualmente probables.
- Notación:
 - ▶ N = n + m.
 - $\rightarrow x_1, \dots, x_n$: elementos de la primera muestra.
 - ► $R(x_i)$: rango del elemento x_i , i = 1 ... n.
- ► $R = R(x_1) + \cdots + R(x_n)$ tiene una distribución aproximadamente normal:

$$\frac{R-E[R]}{\sqrt{\text{Var}(R)}} \sim N(0,1).$$

Parámetros de la distribución de R.

$$E[R(x_i)] = \sum_{j=1}^{N} j \frac{1}{N} = \frac{N+1}{2}.$$

$$E[R] = \sum_{i=1}^{n} E[R(x_i)] = n \frac{N+1}{2}.$$

$$Var(R(x_i)) = \frac{(N-1)(N+1)}{12}$$

$$cov(R(x_i), R(x_j)) = -\frac{N+1}{2}.$$

$$Var(R) = n m \frac{N+1}{12}.$$

Distribución de R

▶ Bajo la hipótesis H₀ y para n y m grandes:

$$W = \frac{R - n\frac{N+1}{2}}{\sqrt{nm\frac{N+1}{12}}} \sim N(0,1)$$

- ▶ Si $r \le E[W]$, entonces $P(W \le r) \le P(W \ge r)$.
- ▶ Si r > E[W], entonces P(W > r) < P(W < r).

valor
$$p \approx \begin{cases} 2P(Z < r^*) & \text{si } r \leq n \frac{N+1}{2} \\ 2P(Z > r^*) & \text{caso contrario.} \end{cases}$$

$$r^* = \frac{r - \frac{n(N+1)}{2}}{\sqrt{\frac{nm(N+1)}{12}}}$$

$$r^* = \frac{r - \frac{n(N+1)}{2}}{\sqrt{\frac{n m(N+1)}{12}}}$$

Ejemplo

Los siguientes valores corresponden a observaciones de un sistema durante 5 días:

La simulación según el modelo matemático propuesto para el sistema arroja los siguientes valores:

El rango de la primera muestra resulta

$$12 + 4 + 14 + 15 + 10 = 55$$
.

▶ ¿Valor p usando recursión? Ross: 0.0752579. Ejercicio.

Ejemplo

▶ Valor p por aproximación normal:

$$E[R] = 5 \frac{5+10+1}{2} = 40,$$
 55 > 40.

valor
$$p = 2P\left(Z \ge \frac{55 - 40}{\sqrt{\frac{50 \times 16}{12}}}\right) = 2P(Z \ge 1.8371) = 0.066.$$

Respuesta exacta: 0.0752579.

Aproximación mediante simulación

- ▶ H_0 : si los n + m datos son distintos, todos los ordenamientos son igualmente probables.
- Simulación:
 - ▶ Generar un subconjunto de tamaño n del conjunto 1, 2, ..., n + m.
 - Determinar R: suma de los elementos generados.
 - Comparar R con el valor observado r.

$$R \ge r$$
 $R \le r$.

- Repetir los pasos anteriores k veces.
- ▶ Se habrán obtenido valores $R_1, ..., R_k$.
- Estimar:

$$P(R \ge r) = \frac{\#\{i \mid R_i \ge r\}}{k}, \qquad P(R \le r) = \frac{\#\{i \mid R_i \le r\}}{k}.$$

Caso de datos repetidos

- Si las muestras tienen datos repetidos, se utiliza como rango el promedio de los rangos de dichos valores.
- Ejemplo:
- Muestra 1: 2, 3, 4.
- Muestra 2: 3, 5, 7.

Ordenamiento:

$$R = 1 + 2.5 + 4 = 7.5.$$

► En este caso, utilizar la aproximación normal.

Problema de múltiples muestras

- ▶ Se tienen m muestras de tamaños $n_1, n_2, ..., n_m$.
- R_i: rango de la i-ésima muestra.
- ▶ $n = n_1 + \cdots + n_m$: número total de datos u observaciones.
- ► H₀: todas las muestras están igualmente distribuidas ⇒ todos los ordenamientos de los n datos son igualmente probables.
- $E[R_i] = n_i \frac{n+1}{2}.$
- Estadístico:

$$R = \frac{12}{n(n+1)} \sum_{i=1}^{m} \frac{(R_i - n_i(n+1)/2)^2}{n_i}.$$

▶ Valores chicos de R no indicarían que haya que rechazar H₀.

Problema de múltiples muestras

▶ Si se observa R = y, entonces

valor
$$p = P_{H_0}(R \ge y)$$
.

Si los tamaños de las muestras son grandes, R puede aproximarse por una distribución chi-cuadrado con m − 1 grados de libertad:

valor
$$p \approx P(\chi_{m-1}^2 \geq y)$$
.

- Puede usarse simulación.
- La aproximación chi-cuadrado también puede utilizarse si hay datos repetidos.

Proceso de Poisson no homogéneo

- H₀) Las llegadas diarias a un sistema ocurren de acuerdo a un Proceso de Poisson no homogéneo.
- ► El número de llegadas en un período (t, t + s) es una variable aleatoria Poisson:

$$E[N(t+s)-N(t)]=\int_{s}^{s+t}\lambda(x)\,dx,$$

 $\lambda(x)$ es la función de intensidad.

- ▶ El número de llegadas diarias es una v. a. Poisson, con media $\hat{\lambda} = \int_0^T \lambda(x) \, dx$, T: long. del día.
- ▶ Si las llegadas diarias durante r días fueron N_1, \ldots, N_r , puede utilizarse un test de bondad de ajuste para validar la hipótesis que son v. a. Poisson con la misma media.

Método alternativo

En una variable aleatoria Poisson X, la media es igual a la varianza:

$$E[X] = Var(X) = \lambda.$$

Esto implica en particular

$$\frac{\operatorname{Var}(X)}{E[X]}=1.$$

➤ Si las observaciones del número de llegadas durante r días son respectivamente:

$$N_1, N_2, \ldots, N_r,$$

la hipótesis nula establece que $E[N_i] = Var[N_i]$, i = 1, ..., r.

Podemos estimar la media y la varianza con la media muestral N v la varianza muestral S²:

$$\overline{N} = \frac{\sum_{i=1}^r N_i}{r}, \qquad \mathcal{S}^2 = \sum_{i=1}^r \frac{(N_i - \overline{N})^2}{r-1}.$$

- ▶ Si H_0 es cierta, \overline{N} y S^2 deberían ser aproximadamente iguales.
- Estadístico del test:

$$T = \frac{S^2}{\overline{N}}.$$

 Valores grandes o pequeños de T indicarían que la hipótesis no es correcta.

valor
$$p = 2 \min \{ P_{H_0}(T \le t), P_{H_0}(T \ge t) \}$$
.

- ▶ Notar que H_0 no especifica la media de la distribución (λ), por lo tanto debe ser estimada.
- Sea *m* la estimación de la media: $\overline{N} = m$.
- ▶ Denotamos $P_m(A)$ como la probabilidad bajo H_0 , suponiendo que la media es m:

valor
$$p = 2 \min \{ P_m(T \le t), P_m(T \ge t) \}$$
.

- ► El valor p puede calcularse mediante simulación:
 - ► Generar r v. a. Poisson, con media m,
 - ► Calcular *T* y comparar con el valor observado *t*.
 - Repetir k veces.
- Estimar

$$P(T \le t) = \frac{\#\{i \mid T_i \le t\}}{k}, \qquad P(T \ge t) = \frac{\#\{i \mid T_i \ge t\}}{k}.$$

- Si el valor p es pequeño ⇒ se rechaza la hipótesis que el número de llegadas diarias sea una v.a. Poisson.
- Si no se rechaza la hipótesis, ¿hay evidencias que los tiempos de llegadas de un día y otro correspondan a una misma función de intensidad?
- ▶ Se han observado *N_i* tiempos de llegada el día *i*-ésimo:

$$X_{i,1}, X_{i,2}, \ldots, X_{i,N_i}, \qquad i = 1, \ldots, r.$$

- Si los tiempos de llegada corresponden a un P.P. no homogéneo, entonces cada conjunto {X_{i,1}, X_{i,2},..., X_{i,N_i}} es una muestra de una misma distribución.
- ▶ Bajo la hipótesis nula, todos los X_{i,j} son independientes y están igualmente distribuidos.
- ► En particular, se tienen *r* muestras de v.a. independientes, con la misma distribución.

- ▶ Validación: utilizar la prueba de Kruskal-Wallis (varias muestras).
- ▶ $N = N_1 + \cdots + N_r$: número total de llegadas.
- ► R_i: rango de la *i*-ésima muestra (día).

$$R = \frac{12}{N(N+1)} \sum_{i=1}^{r} \frac{(R_i - N_i(N+1)/2)^2}{N_i}.$$

Si H₀ es cierta.

$$R\sim \chi^2_{r-1}$$
 .

▶ Valor observado de R = y:

valor observado de
$$H = 1$$

valor
$$p = 2 \min \{ P_{H_0}(R \le y), P_{H_0}(R \ge y) \}$$

= $2 \min \{ P(\chi_{r-1}^2 < y), P(\chi_{r-1}^2 > y) \}$

Test chi-cuadrado

Dos colas: se está testeando homogeneidad e independencia.

▶ Para calcular el valor *p* también se puede utilizar simulación.

Ejemplo

Se han observado durante 5 días los tiempos de entrega y los números de entregas diarias.

						Total
Números de entrega	18	24	16	19	25	102

► Si se ordenan los tiempos de entrega, la suma R_i de los rangos de entregas de cada día son:

i	1	2	3	4	5
R_i	1010	960	1180	985	1118

 Paso 1: validar la hipótesis que el número de entregas proviene de una misma distribución de Poisson.

$$\overline{N} = \frac{102}{5} = 20.4,$$
 $S^2 = 15.3,$ $T = 0.75.$

- ▶ valor p: mediante simulación,
- generar M muestras de 5 v. a. Poisson independientes con media m = 20.4,
- calcular $T = S^2/\overline{N}$.
- valor p ≈ 0.84: no se rechaza la hipótesis que los números de entrega sean v.a. independientes con una distribución de Poisson.

▶ Paso 2: Validar la hipótesis de un P. P. no homogéneo:

$$R = \frac{12}{N(N+1)} \sum_{i=1}^{5} \frac{(R_i - N_i(N+1)/2)^2}{N_i} = 14.425.$$

Prueba chi-cuadrado:

$$P(\chi_4^2 \ge 14.425) = 0.006$$

Se rechaza la hipótesis que los tiempos de llegada provienen de un Proceso de Poisson no homogéneo.

La función de intensidad

▶ Si no se rechaza la hipótesis de un proceso de Poisson no homogéneo, ¿cómo se estima la función de intensidad $\lambda(t)$?

Estimación de $\lambda(t)$

▶ Ordenar los *N* tiempos de llegada

$$y_0 < y_1 < \cdots < y_N$$
.

- ▶ En el tiempo (y_{j-1}, y_j) ocurrió una llegada en el total de r días, por lo que se estima que en un día hay un promedio de 1/r llegadas.
- ▶ Si $\hat{\lambda}(t)$ es la f. de intensidad, :

$$E[N(y_j) - N(y_{j-1})] = \int_{y_{j-1}}^{y_j} \hat{\lambda}(t) dt = \frac{1}{r}.$$

Se puede elegir

$$\hat{\lambda}(t) = \frac{1}{(y_i - y_{i-1})r}, \quad y_{j-1} < t < y_j.$$

Proceso de Poisson homogéneo

- Si el P. Poisson se supone homogéneo, N₁, N₂, ..., Nr también deben ser v. a. Poisson.
- Paso 1: validar la hipótesis que los números de llegada diarias son v. a. Poisson. Igual que para no homogéneos.
- Paso 2: validar que los tiempos de llegada son v. a. con una misma distribución. Se puede mejorar este paso.
- En un proceso de Poisson homogéneos, dado el número de llegadas en un día, los tiempos de llegada están uniformemente distribuidos.
- Para validar que esta hipótesis, puede utilizarse el Test de Kolmogorov-Smirnov.

Test de Kolmogorov-Smirnov

Dados los tiempos de llegada en los r días:

$$X_{1,1}$$
 , $X_{1,2}, \dots, X_{1,N_1}$
 $X_{2,1}$, $X_{2,2}, \dots, X_{2,N_2}$
 \vdots
 $X_{r,1}$, $X_{r,2}, \dots, X_{r,N_r}$

- ▶ Ordenar los tiempos $X_{i,j}$, i = 1, ..., r, $j = 1, ..., N_i$.
- $ightharpoonup N = N_1 + N_2 + \cdots + N_r$: número total de llegadas, valor conocido
- ► H₀) Los N tiempos de llegada están uniformemente distribuidos en un día (o intervalo (0, T).)

Proceso de Poisson homogéneo

Definir la distribución empírica:

$$F_{e}(x) = \frac{\#\{(i,j) \mid X_{i,j} \leq x\}}{N}.$$

Estadístico de Kolmogorov-Smirnov:

$$D = \max_{0 \le x \le T} \left| F_e(x) - \frac{x}{T} \right|.$$

Calcular el valor p mediante simulación.

Ejemplos

Plantear la resolución de los siguientes ejercicios:

Se han registrado el siguiente número de arribos diarios durante 8 días:

- ¿Puede decirse que los arribos diarios provienen de un proceso de Poisson no homogéneo?
- ▶ Durante un intervalo de tiempo de longitud 100, se han producido 18 llegadas en los siguientes instantes:

Aproximar el p-valor de la muestra bajo la hipótesis: "El proceso de llegada es de Poisson homogéneo".