

Fixed Income: Predicting bond excess return

Multi-dimensional Selection Factor Model

Team members:

陈栩淦 胡宇峰 陈文成 王佳艺周欣吾桐 刘晨 施莹璐 方艺璇

Contents

Innovations PART I **PART II** Data & Methodology 1 Choosing and Filtering Data 2 In-sample & Out-of-sample analysis **Empirical Findings PART III** 1 Whole sample regression 2 In-sample & Out-of-sample regression **Robustness Check** PART IV 1 Restricted regression 2 Three-month frequency 3 Longer forecast

4 Financial Crisis

PART I | Innovations

Multiple Dimensions & Higher R^2

Multi-dimensional Factor

Construct our factors in multiple classes:

- Technical factors
- Macroeconomic & Financial factors
- Composite Leading factors
- Market factors
- Sentiment factors
- Stock model factors
- Classical model factors

Multi-selection Processing

Robustness and advantages

Robust in **different aspects:**

- Good empirical results for other frequencies
- Not fastidious about time to maturities
- Test for restricted model and unrestricted model then run better for the later
- Better results when ruling out crisis

Higher R^2 :

• Moderate factors combined with a higher R^2 than the classical models.

Process data in **two dimensions**:

- Class-within PCA: One factor from each class __ contribute to reveal economic meanings
- Backward: remaining class-within factors filtered by significance process selection

PART II | Data & Methodology

Choosing and Filtering Factors

Choosing Data

Factors	Data Source
Liquidity indicators	S&P monthly data
Fama-French 5	http://mba.tuck.dartmouth.edu/pages/facul ty/ken.french/Data_Library/f- f_5_factors_2x3.html
Financial indicators	Raw data given
Macroeconomic indicators	Raw data given
Technical indicators	Yahoo Finance
CP indicators	Raw data given
Composite leading indicators	http://mba.tuck.dartmouth.edu/pages /faculty/ken.french/Data_Library/f- f_5_factors_2x3.html
Investors' sentiment factors	http://people.stern.nyu.edu/jwurgler/
Market jump risk measure	https://www.investing.com

🔼 PCA & Backward

- For financial factor, technical factor and macroeconomic factor, each contains several different classes and consists of more than 100 factors.
- Choose only one factor from one class by PCA to eliminate multicollinearity problem.

Regression model:

$$Y{=}Xeta{+}arepsilon^{-1} t_{\scriptscriptstyle k} {=} rac{b_{\scriptscriptstyle k}}{\left[s^{\scriptscriptstyle 2}(X'\!X)_{\scriptscriptstyle kk}^{^{-1}}
ight]^{\!-\!\frac{1}{2}}}$$

$$S^2 = rac{e^{\prime}e}{n - k} \;\; p_{_k} = 2Pig(t(n - k) > |t_{_k}|ig)$$

Step1: do regression and calculate p-value

Step2: eliminate the factor which has the

biggest p-value

Step3: repeat until $(P_i = 2P(t(n-k) > |t_i|)) \le 0.1$ for each i

Step4: do regression with the remaining factors

PART II | Data & Methodology

Prediction: In-sample & Out-of-sample

🚹 In-sample analysis

2-5 year maturity, 1980.01-2002.12

$$y_{t+1}^{(n)} = X_t \beta_t + \varepsilon_t$$
, for $n = 2, 3, 4, 5$,

To select the best combinations of the factors

Test: Wald statistics of large samples

$$W = (R\hat{\beta} - q)![R(s^2(X'X)^{-1}R']^{-1}(R\hat{\beta} - q) \xrightarrow{d} \chi^2(J)$$
 & p-value

Out-of-sample analysis

Rolling window

Use the observations of a certain period of time to predict next month's bond risk premium.

$$y_{t}^{(n)} = X_{t-1}\beta_{t-1} + \varepsilon_{t}, \text{ for } n = 2,3,4,5, \longrightarrow \hat{\beta}_{t-1} \longrightarrow \hat{y}_{t+1}^{(n)}$$

- Predictive ability
 - R² (coefficient of determination)

$$R^{2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y}_{i})^{2}}$$

• RMSE(root-mean-square error)

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

• $R_{OOS}^2 = 1 - \frac{\sum_{i=1}^n (y^{(n)} - \hat{y}^{(n)})^2}{\sum_{i=1}^n (y^{(n)} - \overline{y}^{(n)})^2}$

The closer R² is to 1, the smaller RMSE is, the better predictive effect our model has. A $R_{OOS}^2 > 0$ indicates a higher predictive accuracy.

PART II | Empirical Findings

Whole sample regression

🚹 Backward selection

 We use Backward Selection based on p-value to eliminate 22 less influential factors and get 18 factors remained.

$$y_t = \beta_{1t} x_{1t} + \beta_{2t} x_{2t} \dots + \beta_{18t} x_{18t} + \varepsilon_t$$

Results of regression:

- R² in whole sample regression reach to 0.712, 0.687, 0.669 and 0.645 respectively for 2-5-year bond, much higher than 0.44(CP).
- As maturity increase, the explanatory abilities decrease which are consistent with the results in CP.

Some drawbacks:

- 1. excessive number of factors
- 2. have not go through the term structure model as CP does

2 Whole sample regression

	2 year	3 year	4 year	5 year
CLI	-0.929*	-2.065*	-2.724*	-3.846*
MktRF	2.845***	7.029***	11.966***	17.043***
HML	1.071**	2.605***	4.345***	5.695***
RF	-3.449***	-7.094***	-11.044***	-13.632***
BWSENTcoth	-7.094***	-13.704***	-18.124***	-21.576***
BWSENT	6.179***	11.604***	15.406***	18.929***
BV	-1.147**	-2.520**	-3.751***	-4.827***
СР	4.784***	6.876***	6.165***	3.996*
tech_class4	-2.612***	-5.502***	-9.091***	-13.040***
tech_class5	-2.854**	-4.903*	-5.873	-4.743
tech_class6	6.776***	13.243***	18.419***	22.225***
labor_market	-0.971*	-1.752*	-2.745*	-3.246*
housing	-3.212***	-6.925***	-10.554***	-14.088***
consumption	-1.709***	-3.754***	-5.310***	-6.780***
price	3.964***	7.823***	11.434***	14.338***
stock	-3.591***	-6.485***	-8.987***	-11.316***
PYD	-1.360*	-2.722*	-3.469	-4.292
Industries	3.275***	7.925***	13.528***	19.299***
R-squared	0.712	0.687	0.669	0.645
Adj. R-squared	0.697	0.671	0.652	0.626

PART II | Empirical Findings

In-sample regression

🚹 In-sample regression

• In this step, we **lag** each of the excess return **by one month**. We further use different combination of 18 variables, trying to find out the best choice.

$$y_{t+1}^{(n)} = \beta_{1t}x_{1t} + \beta_{2t}x_{2t} \dots + \beta_{18t}x_{18t} + \varepsilon_{t+1}$$

- 011				*	
R-squared	2у	3у	4 y	5у	
СР	0.252	0.189	0.165	0.126	
NG	0.529	0.502	0.490	0.466	
CP+NG	0.592	0.553	0.532	0.497	
CP+NG+Tech	0.638	0.593	0.570	0.530	
CP+NG+SENT	0.619	0.581	0.557	0.519	
CP+NG+Fama	0.654	0.622	0.611	0.578	
CP+NG+BV	0.600	0.561	0.541	0.508	
CP+NG+CLI	0.637	0.595	0.569	0.530	
Te+SE+BV+CLI	0.484	0.450	0.430	0.397	
Total	0.755	0.737	0.729	0.701	

 We find that the model with the whole 18 variables shows the highest adjusted R-squared.

Wald Test of in-sample

χ^2	Fama	SENT	tech	macro	finan
2у	24.37	16.53	16.96	34.67	4.89
	***	***	***	***	***
Зу	31.45	17.77	16.53	35.88	8.81
	***	***	***	***	***
4 y	36.02	16.56	17.52	37.45	11.02
	***	***	***	***	***
5y	36.52	14.43	16.39	36.01	12.21
	***	***	***	***	***

- Compute factor model on Fama, sentiments, technology, micro and financial.
- Both two statistics convincingly reject the H₀ hypothesis which strengthen the feasibility of in-sample regression model.

Expectation Hypothesis

- R-squared for EH model approach zero
- It indicates EH does not hold in our research
- (main reason) We ignore term structure model

PART II | Empirical Findings

Out-of-sample regression

out of sample regression

 we use the Rolling Window to do the out-of-sample predicting regression with 18 variables

$$\begin{aligned} y_t^{(n)} &= \beta_{1t-1} x_{1t-1} + \beta_{2t-1} x_{2t-1} \dots + \beta_{18t-1} x_{18t-1} + \varepsilon_t \\ \hat{y}_{pred,t+1}^{(n)} &= \hat{\beta}_{1t} x_{1t} + \hat{\beta}_{2t} x_{2t} \dots + \hat{\beta}_{18t} x_{18t} \quad (n=2,3,4,5) \end{aligned}$$

$\mathbf{2} R_{OOS}^2$, RMSE analysis

	2-year	3-year	4-year	5-year
RMSE	3.0953	9.149	13.864	19.233
R_{OOS}^2	-3.312	-10.354	-13.156	-18.530

- As bond maturity increases, RMSE gets larger and R_{OOS}^2 gets smaller.
- It strengthens the evidence that the prediction ability become worse in longer maturity bond.

The predicted excess return curve deviate more from true curve as maturity increases

The R-squared get smaller in longer-term bond

PART IV | ROBUSTNESS CHECKS

Four tests for our factor

Restricted Regression

- Step 1: $\overline{rx_t} = \beta X + \epsilon$, - Denote $\gamma = \beta X$ the new factor.
- Step 2: $rx_t^i = b_i \gamma + \epsilon$

Maturity	\overline{R}^2	Factor loading
2	0.688	0.4728
3	0.683	0.8788
4	0.669	1.2109
5	0.638	1.4375

• The results are slightly better. Proves the robustness of our factor

Three-month Frequency

- Resample the given monthly data to three month frequency.
- The result are significantly better.
- Why? Lack of sample? Better cyclic behavior?
- Prediction: precisely caught trends.
 - Figure: Real (blue) and prediction (yellow) result

PART IV | ROBUSTNESS CHECKS

Four tests for our factor

3 Longer forecast?

- Test the longer-run predictability of our factor.
- Shift y three months ahead.
- The results are bad. Market is stochastic.

Financial Crisis

- Three major financial crisis.
 - Mexico Financial Crisis, from Dec. 1994 to Mar. 1995
 - Asian Financial Crisis, from Jul. 1997 to Dec. 1998
 - American Subprime Mortgage Crisis, from Feb. 2007 to Jul. 2009
- Figure: VIX index during financial crisis.
- We exclude financial crisis in our regression.
- As our factor is robust, the result is much better.
- Table: R2 statistics for comparison.

Maturity	With crisis	Without crisis
2	0.697	0.763
3	0.671	0.746
4	0.652	0.730
5	0.626	0.695

Thank you!

Team members:

陈栩淦 胡宇峰 陈文成 王佳艺 周欣吾桐 刘晨 施莹璐 方艺璇