水惑星における大気南北熱輸送の 太陽定数依存性

人見祥磨

学籍番号:20203069

* * * * *

北海道大学 大学院理学院 宇宙理学専攻 地球流体研究室 修士 2 年

指導教員:石渡正樹

* * * * *

2022年1月24日

目次

第1章	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
第2章	モデルの概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2.1	系の設定と基礎方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2.2	実験設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
第3章	実験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.1	$S=1366\mathrm{W/m^2}$ の結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.2	??? の太陽定数依存性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.3	南北熱輸送の太陽定数依存性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
第4章	結論 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
第5章	謝辞 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
第6章	参考文献リスト ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12

第1章 はじめに

- ハビタブルゾーンの説明
- 暴走温室状態の説明
- 1 次元計算は Nakajima et al. (1992) が行った。
- 3 次元計算を Ishiwatari et al. (2002) が行った。
- Ishiwatari et al. (2002) で利用したモデルにはバグが含まれていた。
- 問題はあるけど、これでいい。
- •現在、放射上限に関して3次元計算をしっかり行った論文はない状況である。
- 非灰色 3 次元で放射上限を検討した研究はまだない。
- 非灰色 3 次元計算を行って南北熱輸送に関して考察する。
- どうして南北熱輸送を考察するか。

第2章 モデルの概要

系の設定と基礎方程式 2.1

DCPAM₅ を利用している。

連続の式、静水圧の式、運動方程式は以下の通りである。

$$\frac{\partial \pi}{\partial t} + v_H \cdot \nabla_{\sigma} \pi = -D - \frac{\partial \dot{\sigma}}{\partial \sigma}, \tag{2.1}$$

$$\frac{\partial \Phi}{\partial \sigma} = -\frac{RT_v}{\sigma},\tag{2.2}$$

$$\frac{\partial \pi}{\partial t} + v_H \cdot \nabla_{\sigma} \pi = -D - \frac{\partial \dot{\sigma}}{\partial \sigma}, \qquad (2.1)$$

$$\frac{\partial \Phi}{\partial \sigma} = -\frac{RT_v}{\sigma}, \qquad (2.2)$$

$$\frac{\partial}{\partial \zeta} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial V_A}{\partial \lambda} - \frac{\partial U_A}{\partial \mu} \right) + \mathfrak{D}[\zeta]. \qquad (2.3)$$

(2.4)

物理過程

2.2 実験設定

第3章 実験結果

実験結果(図を貼る)。

3.1 $S = 1366 \,\mathrm{W/m^2}$ の結果

地表面温度、子午面温度分布、東西風、時系列

3.2 ??? の太陽定数依存性

3.3 南北熱輸送の太陽定数依存性

•′ = • - •、•* = • - [•]、• は時間平均、[•] は東西平均

$$[\overline{x}\overline{v}] = [\overline{x}\overline{v}] - [\overline{x}\overline{v}] + [\overline{x}][\overline{v}] + [\overline{x}\overline{v}] - [\overline{x}][\overline{v}]$$
(3.1)

$$= [\overline{x}\overline{v} - \bar{x}\overline{v}] + [\bar{x}][\bar{v}] + [\bar{x}\bar{v}] - [\bar{x}][\bar{v}]$$
(3.2)

$$= [\bar{x}\bar{v} - \bar{x}\bar{v} - \bar{x}\bar{v} + \bar{x}\bar{v}] + [\bar{x}][\bar{v}] + ([\bar{x}\bar{v}] - [\bar{x}][[\bar{v}]] - [[\bar{x}]][\bar{v}] + [[\bar{x}]][[\bar{v}]])$$
(3.3)

$$= \left[\overline{(x - \bar{x})(v - \bar{v})} \right] + \left[\bar{x} \right] \left[\overline{v} \right] + \left[\overline{(x - [x])(v - [v])} \right] \tag{3.4}$$

$$= [\overline{x'v'}] + [\bar{x}][\bar{v}] + [\bar{x}^*\bar{v}^*] \tag{3.5}$$

図 3.1 $S = 1366 \,\mathrm{W/m^2}$ 30 年目の地表面温度

図 3.2 $S = 1366 \,\mathrm{W/m^2}$ 30 年目の子午面温度分布

図 3.3 S = 1366 W/m² 30 年目の東西風

図 3.4 S = 2000 W/m² 3 年目の地表面温度

図 3.5 $S = 2000 \,\mathrm{W/m^2}$ 3 年目の子午面温度分布

第4章 結論

結論。

第5章 謝辞

謝辞。

第6章 参考文献リスト

参考文献。

表目次

図目次

3.1	S = 1366 W/m ² 30 年目の地表面温度 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
3.2	$S=1366\mathrm{W/m^2}$ 30 年目の子午面温度分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
3.3	S = 1366 W/m ² 30 年目の東西風 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
3.4	$S=2000\mathrm{W/m^2}$ 3 年目の地表面温度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
3.5	$S = 2000 \text{W/m}^2$ 3 年目の子午面温度分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9