

LogiCORE IP AXI UART Lite (v1.01a)

DS741 December 14, 2010

Product Specification

Introduction

The LogiCORE™ IP AXI Universal Asynchronous Receiver Transmitter (UART) Lite interface connects to the Advanced Microcontroller Bus Architecture (AMBA®) specification's Advanced eXtensible Interface (AXI) and provides the controller interface for asynchronous serial data transfer. This soft LogiCORE IP core is designed to interface with the AXI4-Lite protocol.

Features

- AXI interface is based on the AXI4-Lite specification
- One transmit and one receive channel (full duplex)
- 16-character transmit and receive FIFOs
- Configurable number of data bits (5-8) in a character
- Configurable parity bit (odd or even or none)
- Configurable baud rate

LogiCORE IP Facts Table									
Core Specifics									
Supported Device Family (1)		Spartan-6 ⁽²⁾ Virtex-6 ⁽³⁾							
Supported User Interfaces					AXI4-Lite				
		Res	ources		Frequency				
	LUTs	FFs	DSP Slices	Block RAM	Max. Freq.				
		Refer	to Table 9	and Table	10				
	Provided with Core								
Documentation				Product	Specification				
Design Files	VHDL								
Example Design				ı	Not Provided				
Test Bench				ı	Not Provided				
Constraints File					None				
Simulation Model					None				
	Test	ed Des	sign Too	ls					
Design Entry Tools					XPS 12.4				
Simulation			Mentor G	raphics Mo	delSim 6.5.c				
Synthesis Tools					XST 12.4				
Support									
Provided by Xilinx, Inc.									

Notes:

- For a complete listing of supported devices, see the release notes for this core.
- For more information on the Spartan®-6 devices, see the Spartan-6 Family Overview [Ref 3].
- 3. For more information on the Virtex®-6 devices, see the *Virtex-6 Family Overview* [Ref 4].

Functional Description

The AXI UART Lite:

- Performs parallel to serial conversion on characters received through the AXI4-Lite interface and serial-toparallel conversion on characters received from a serial peripheral.
- Can transmit and receive 8, 7, 6, or 5 bit characters, with 1 stop bit and with odd, even, or no parity bit. The AXI UART Lite can transmit and receive independently.
- Can be configured and its status can be monitored via the internal register set.
- Generates an interrupt when data is present in the receive FIFO or when the transmit FIFO becomes empty. This interrupt can be masked by using interrupt enable/disable signal. The device contains a baud rate generator and independent 16-character deep transmit and receive FIFOs.

The AXI UART Lite modules are shown in Figure 1 and described in the sections that follow.

Figure 1: Block Diagram of AXI UART Lite

AXI Interface Module: Provides the interface to the AXI and implements AXI protocol logic. The AXI interface module is a bi-directional interface between a user IP core and the AXI4-Lite interface standard. To simplify the process of attaching AXI UART Lite to the AXI, the core makes use of a portable, pre-designed AXI interface called AXI Lite IPIF, that takes care of the AXI interface signals.

UART Lite Register Module: Includes all memory mapped registers (as shown in Figure 1). It interfaces to the AXI through the AXI interface module. It consists of a status register, a control register, and a pair of transmit/receive FIFOs, both of 16-character depth. All registers are accessed directly from the AXI using the AXI interface module.

UART Control Module: Consists of an RX module, a TX module, a parameterized baud rate generator (BRG), and a control unit. This module also contains the logic to generate the interrupts.

Interrupts

If interrupts are enabled, an edge rising sensitive interrupt is generated when one of the following is true:

- 1. When there exists any valid character in the receive FIFO.
- 2. When the transmit FIFO goes from not empty to empty, such as when the last character in the transmit FIFO is transmitted.

I/O Signals

The AXI UART Lite I/O signals are listed and described in Table 1.

Table 1: I/O Signal Descriptions

Port	Signal Name	Interface	I/O	Initial State	Description						
	Sys	tem Signals	S								
P1	S_AXI_ACLK	System	Input	-	AXI clock.						
P2	S_AXI_ARESETN	System	Input	-	AXI reset, active Low.						
P3	Interrupt	System	Output	0x0	Edge rising UART interrupt.						
	AXI Write Address Channel Signals										
P4	S_AXI_AWADDR[C_S_AXI_ADDR_WIDTH-1:0]	AXI	Input	-	AXI write address. The write address bus gives the address of the write transaction.						
P5	S_AXI_AWVALID	AXI	Input	-	Write address valid. This signal indicates that valid write address is available.						
P6	S_AXI_AWREADY	AXI	Output	0x0	Write address ready. This signal indicates that the slave is ready to accept an address.						
	AXI Write	Channel S	ignals								
P7	S_AXI_WDATA[C_S_AXI_DATA_WIDTH - 1: 0]	AXI	Input	-	Write data.						
P8	S_AXI_WSTB[C_S_AXI_DATA_WIDTH/8-1:0]	AXI	Input	-	Write strobes. This signal indicates which byte lanes to update in memory. ⁽¹⁾						
P9	S_AXI_WVALID	AXI	Input	-	Write valid. This signal indicates that valid write data and strobes are available.						
P10	S_AXI_WREADY	AXI	Output	0x0	Write ready. This signal indicates that the slave can accept the write data.						
	AXI Write Res	ponse Chan	nel Sign	als							
P11	S_AXI_BRESP[1:0]	AXI	Output	0x0	Write response. This signal indicates the status of the write transaction. "00" - OKAY "10" - SLVERR "11" - DECERR (Not generated in the core)						
P12	S_AXI_BVALID	AXI	Output	0x0	Write response valid. This signal indicates that a valid write response is available.						
P13	S_AXI_BREADY	AXI	Input	-	Response ready. This signal indicates that the master can accept the response information.						
	AXI Read Add	dress Chanr	nel Signa	Is							
P14	S_AXI_ARADDR[C_S_AXI_ADDR_WIDTH -1:0]	AXI	Input	-	Read address. The read address bus gives the address of a read transaction.						

Table 1: I/O Signal Descriptions (Cont'd)

Port	Signal Name	Interface	I/O	Initial State	Description					
P15	S_AXI_ARVALID	AXI	Input	-	Read address valid. This signal indicates, when High, that the read address is valid and will remain stable until the address acknowledgement signal, S_AXI_ARREADY, is high.					
P16	S_AXI_ARREADY	AXI	Output	0x1	Read address ready. This signal indicates that the slave is ready to accept an address.					
	AXI Read Data Channel Signals									
P17	S_AXI_RDATA[C_S_AXI_DATA_WIDTH -1:0]	AXI	Output	0x0	Read data					
P18	S_AXI_RRESP[1:0]	AXI	Output	0x0	Read response. This signal indicates the status of the read transfer. "00" - OKAY "10" - SLVERR "11" - DECERR (Not generated in the core)					
P19	S_AXI_RVALID	AXI	Output	0x0	Read valid. This signal indicates that the required read data is available and the read transfer can complete					
P20	S_AXI_RREADY	AXI	Input	-	Read ready. This signal indicates that the master can accept the read data and response information.					
	UART Lite Interface Signals									
P21	RX	UART Lite	Input	-	Receive data					
P22	TX	UART Lite	Output	0x1	Transmit data					

Notes:

1. This signal is not used. The AXI UART Lite assumes that all byte lanes are active.

Design Parameters

To allow the user to create the AXI UART Lite that is uniquely tailored for the user's system, certain features can be parameterized in the AXI UART Lite design. This allows the user to have a design that only utilizes the resources required by the system and operating at the best possible performance. The AXI UART Lite design parameters are shown in Table 2.

Table 2: Design Parameters

Generic	Feature/Description	Parameter Name	Allowable Values	Default Value	VHDL Type				
System Parameters									
G1	Target FPGA family	C_FAMILY	virtex6, spartan6	virtex6	string				
G2	System clock frequency (in Hz) driving the UART Lite peripheral	C_S_AXI_ACLK_FREQ_HZ	integer (ex. 100000000)	100_ 000_ 000	integer				
		AXI Paramet	ters						
G3	AXI Base Address	C_BASEADDR	Valid Address ⁽¹⁾	0xFFFFFFFF(3)	std_logic_vector				
G4	AXI High Address	C_HIGHADDR	Valid Address ⁽²⁾	0x00000000(3)	std_logic_vector				
G5	AXI address bus width	C_S_AXI_ADDR_WIDTH	32	32	integer				
G6	AXI data bus width	C_S_AXI_DATA_WIDTH	32	32	integer				
G7	AXI interface type	C_S_AXI_PROTOCOL	AXI4LITE	AXI4LITE	string				
		UART Lite Para	meters						
G8	Baud rate of the UART Lite in bits per second	C_BAUDRATE	integer (ex. 128000)	9600(4)	integer				
G8	The number of data bits in the serial frame	C_DATA_BITS	5 - 8	8	integer				
G10	Determines whether parity is used or not	C_USE_PARITY	0 = Do not use parity 1 = Use parity	0	integer				
G11	If parity is used, determines whether parity is odd or even	C_ODD_PARITY	0 = Even parity 1 = Odd parity	0	integer				

Notes:

- The user must set the values. The C_BASEADDR must be a multiple of the range, where the range is C_HIGHADDR -C_BASEADDR + 1.
- 2. C_HIGHADDR C_BASEADDR must be a power of 2 greater than equal to C_BASEADDR + 0xFFF.
- 3. An invalid default value will be specified to insure that the actual value is set, i.e., if the value is not set, a compiler error will be generated.
- 4. With a baud rate of 115200, the sample clock is 16 * 115200 = 1.8432 MHz. With the System clock C_S_AXI_ACLK_FREQ_HZ running at 10 MHz, the integer ratio for driving the sample clock is 5 (rounding of [10/1.8432]). The AXI UART Lite would then divide the System clock by 5 resulting in 2 MHz for the sample clock. The baud rate error is (1.8432 2) /1.8432 => -8.5% which is outside the tolerance for most UARTs. The issue is that the higher the baud rate and the lower the C_S_AXI_ACLK_FREQ_HZ, the greater the error in the generated baud rate of the AXI UART Lite. AXI UART Lite requires that the baud error should be less than 3%.

Allowable Parameter Combinations

The address range specified by C_BASEADDR and C_HIGHADDR must be a power of 2, and must be at least 0xFFF. For example, if C_BASEADDR = 0xE00000000, C_HIGHADDR must be at least = 0xE00000FFF.

Dependencies between Parameters and I/O Signals

The width of some of the AXI UART Lite signals depends on parameters selected in the design. The dependencies between the AXI UART Lite core design parameters and I/O signals are described in Table 3.

Table 3: Parameter-I/O Signal Dependencies

Generic or Port	Name	Affects	Depends	Relationship Description						
	Design Parameters									
G5	C_S_AXI_ADDR_WIDTH	P4, P14	-	Defines the width of the ports						
G6	C_S_AXI_DATA_WIDTH	P7, P8, P17	-	Defines the width of the ports						
	I/O Si	gnals								
P4	S_AXI_AWADDR[C_S_AXI_ADDR_WIDTH-1:0]	-	G5	Port width depends on the generic C_S_AXI_ADDR_WIDTH						
P7	S_AXI_WDATA[C_S_AXI_DATA_WIDTH-1:0]	-	G6	Port width depends on the generic C_S_AXI_DATA_WIDTH						
P8	S_AXI_WSTB[C_S_AXI_DATA_WIDTH/8-1:0]	-	G6	Port width depends on the generic C_S_AXI_DATA_WIDTH						
P14	S_AXI_ARADDR[C_S_AXI_ADDR_WIDTH -1:0]	-	G5	Port width depends on the generic C_S_AXI_ADDR_WIDTH						
P17	S_AXI_RDATA[C_S_AXI_DATA_WIDTH -1:0]	-	G6	Port width depends on the generic C_S_AXI_DATA_WIDTH						

Register Descriptions

Table 4 shows all the AXI UART Lite registers and their addresses.

Table 4: Registers

Base Address + Offset (hex)	Register Name	Access Type	Default Value (hex)	Description
C_BASEADDR + 0x0	Rx FIFO	Read ⁽¹⁾	0x0	Receive data FIFO ⁽³⁾
C_BASEADDR + 0x4	Tx FIFO	Write ⁽²⁾	0x0	Transmit data FIFO(3)
C_BASEADDR + 0x8	STAT_REG	Read ⁽¹⁾	0x4	UART Lite status register
C_BASEADDR + 0xC	CTRL_REG	Write ⁽²⁾	0x0	UART Lite control register

Notes:

- 1. Writing of a read only register has no effect.
- 2. Reading of a write only register returns zero.
- 3. When system reset is applied both TX FIFO and RX FIFO are reset and cleared.

Receive Data FIFO

This 16 entry deep FIFO contains data received by AXI UART Lite. The FIFO bit definitions are shown in Table 5. Reading this register will result in reading the data word from the top of the FIFO. When a read request is issued to an empty FIFO a bus error will be generated and the result is undefined. The receive data FIFO is a read-only register. Issuing a write request to the receive data FIFO will do nothing but generate a successful write acknowledgement. Figure 2 shows the location for data on the AXI when C_DATA_BITS is set to 8.

Figure 2: Receive Data FIFO (C_DATA_BITS = 8)

Table 5: Receive Data FIFO Bit Definitions

Bit(s)	Name	Core Access	Reset Value	Description
[31-C_DATA_BITS] - 0	Reserved	N/A	0x0	Reserved
31 - [(31-C_DATA_BITS)+1]	Rx Data	Read	0x0	UART receive data

Transmit Data FIFO

This 16 entry deep FIFO contains data to be output by AXI UART Lite. The FIFO bit definitions are shown in Figure 3. Data to be transmitted is written into this register. When a write request is issued when the FIFO is full, a bus error (SLVERR) will be generated and the data is not written into the FIFO. This is write-only location. Issuing a read request to the transmit data FIFO will generate the read acknowledgement with zero data. Table 6 shows the location for data on the AXI when C_DATA_BITS is set to 8.

Figure 3: Transmit Data FIFO (C_DATA_BITS = 8)

Table 6: Transmit Data FIFO Bit Definitions

Bit(s)	Name	Core Access	Reset Value	Description
[31-C_DATA_BITS] - 0	Reserved	N/A	0x0	Reserved
[(31-C_DATA_BITS)+1] - 31	Tx Data	Write	0x0	UART transmit data

Control Register (CTRL_REG)

The control register contains the enable interrupt bit and reset pin for the receive and transmit data FIFO. This is write-only register. Issuing a read request to the control register will generate the read acknowledgement with zero data. Figure 4 shows the bit assignment of CTRL_REG. Table 7 describes this bit assignment.

Figure 4: Control Register

Table 7: Control Register Bit Definitions

Bit(s)	Name	Core Access	Reset Value	Description
31 - 5	Reserved	N/A	0x0	Reserved
4	Enable Intr	Write	0x0	Enable interrupt for the UART Lite '0' = Disable interrupt signal '1' = Enable interrupt signal
3 - 2	Reserved	N/A	0x0	Reserved
1	Rst Rx FIFO	Write	0x0	Reset/clear the receive FIFO Writing a '1' to this bit position clears the receive FIFO '0' = Do nothing '1' = Clear the receive FIFO
0	Rst Tx FIFO	Write	0x0	Reset/clear the transmit FIFO Writing a '1' to this bit position clears the transmit FIFO '0' = Do nothing '1' = Clear the transmit FIFO

Status Register (STAT_REG)

The status register contains the status of the receive and transmit data FIFOs, if interrupts are enabled, and if there are any errors. This is a read-only register. If a write request is issued to the status register, it will do nothing but generate a write acknowledgement. Bit assignment in the STAT_REG is shown in Figure 5 and described in Table 8.

Figure 5: Status Register

Table 8: Status Register Bit Definitions

Bit(s)	Name	Core Access	Reset Value	Description
31 - 8	Reserved	N/A	0x0	Reserved
7	Parity Error	Read	0x0	Indicates that a parity error has occurred since the last time the status register was read. If the UART is configured without any parity handling, this bit will always be '0'. The received character will be written into the receive FIFO. This bit will be cleared when the status register is read '0' = No parity error has occurred '1' = Parity error has occurred
6	Frame Error	Read	0x0	Indicates that a frame error has occurred since the last time the status register was read. Frame error is defined as detection of a stop bit with the value '0'. The receive character will be ignored and not written to the receive FIFO. This bit will be cleared when the status register is read '0' = No frame error has occurred '1' = Frame error has occurred
5	Overrun Error	Read	0x0	Indicates that a overrun error has occurred since the last time the status register was read. Overrun is when a new character has been received but the receive FIFO is full. The received character will be ignored and not written into the receive FIFO. This bit will be cleared when the status register is read. '0' = No overrun error has occurred '1' = Overrun error has occurred
4	Intr Enabled	Read	0x0	Indicates that interrupts is enabled. '0' = Interrupt is disabled '1' = Interrupt is enabled
3	Tx FIFO Full	Read	0x0	Indicates if the transmit FIFO is full. '0' = Transmit FIFO is not full '1' = Transmit FIFO is full

Table 8: Status Register Bit Definitions (Cont'd)

Bit(s)	Name	Core Access	Reset Value	Description
2	Tx FIFO Empty	Read	0x1	Indicates if the transmit FIFO is empty. '0' = Transmit FIFO is not empty '1' = Transmit FIFO is empty
1	Rx FIFO Full	Read	0x0	Indicates if the receive FIFO is full. '0' = Receive FIFO is not full '1' = Receive FIFO is full
0	Rx FIFO Valid Data	Read	0x0	Indicates if the receive FIFO has valid data. '0' = Receive FIFO is empty '1' = Receive FIFO has valid data

Response Signaling

The AXI UART Lite core generates SLVERR when one of the following condition is true:

- 1. A read request is issued to an empty receive data FIFO.
- 2. A write request is issued when the transmit data FIFO is full.

For all other requests, OKAY response is passed. The AXI UART Lite never generates DECERR.

Design Implementation

Target Technology

The intended target technology is Virtex-6 and Spartan-6 family FPGAs.

Device Utilization and Performance Benchmarks

Core Performance

Because the AXI UART Lite core will be used with other design modules in the FPGA, the utilization and timing numbers reported in this section are estimates only. When the AXI UART Lite core is combined with other designs in the system, the utilization of FPGA resources and timing of the AXI UART Lite design will vary from the results reported here.

The AXI UART Lite resource utilization for various parameter combinations measured with a Virtex-6 device as the target are detailed in Table 9.

Table 9: Performance and Resource Utilization Benchmarks on Virtex-6 (XC6VLX130T-1-FF1156)

Par	Parameter Values (other parameters at default value)					Device Resources			Performance
C_S_AXI_AWIDTH	C_S_AXI_ACLK_FREQ_HZ	C_BAUDRATE	C_DATA_BITS	C_USE_PARITY	C_ODD_PARITY	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
32	100_000_000	19_200	5	0	0	51	76	99	270
32	100_000_000	19_200	6	1	0	49	83	106	264
32	100_000_000	19_200	7	1	1	62	83	111	264
32	100_000_000	9600	8	0	0	52	78	121	250
32	40_000_000	38_400	8	0	0	49	76	107	242
32	100_000_000	19_200	6	1	0	49	83	106	264
32	100_000_000	19_200	7	1	1	62	83	111	264

The AXI UART Lite resource utilization for various parameter combinations measured with a Spartan $^{\otimes}$ -6 device as the target are detailed in Table 10.

Table 10: Performance and Resource Utilization Benchmarks on Spartan-6 (XC6SLX45T-2-FGG484)

Parameter Values (other parameters at default value)							rice Resourc	Performance	
C_S_AXI_AWIDTH	C_S_AXI_ACLK_FREQ_HZ	C_BAUDRATE	C_DATA_BITS	C_USE_PARITY	C_ODD_PARITY	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
32	100_000_000	19_200	5	0	0	52	76	97	168
32	100_000_000	19_200	6	1	0	63	83	107	147
32	100_000_000	19_200	7	1	1	58	83	109	158
32	100_000_000	9600	8	0	0	59	78	106	167
32	40_000_000	38_400	8	0	0	58	76	99	160
32	100_000_000	19_200	6	1	0	63	83	107	147
32	100_000_000	19_200	7	1	1	58	83	109	158

System Performance

To measure the system performance (F_{MAX}) of this core, this core was added to a Virtex-6 FPGA system and a Spartan-6 FPGA system as the device under test (DUT) as illustrated in Figure 6.

Because the AXI UART Lite core will be used with other design modules in the FPGA, the utilization and timing numbers reported in this section are estimates only. When this core is combined with other designs in the system, the design's FPGA resources and timing usage will vary from the results reported here.

The target FPGA was filled with logic to drive the LUT and block RAM utilization to approximately 70% and the I/O utilization to approximately 80%. Using the default tool options and the slowest speed grade for the target FPGA, the resulting target F_{MAX} numbers are shown in Table 11.

Figure 6: Virtex-6 and Spartan-6 Devices FMAX Margin System

Table 11: AXI UART Lite System Performance

Target FPGA	Target F _{MAX} (MHz)				
Spartan-6	110				
Virtex-6	180				

The target F_{MAX} is influenced by the exact system and is provided for guidance. It is not a guaranteed value across all systems.

Support

Xilinx provides technical support for this LogiCORE product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled *DO NOT MODIFY*.

Ordering Information

This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx ISE Design Suite Embedded Edition software under the terms of the Xilinx End User License. The core is generated using the Xilinx ISE Embedded Edition software (EDK).

Information about this and other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page. For information on pricing and availability of other Xilinx LogiCORE modules and software, please contact your local Xilinx sales representative.

Reference Documents

- 1. ARM® AMBA® AXI Protocol Version: 2.0 Specification
- 2. <u>DS765</u>, LogiCORE IP AXI Lite IPIF Data Sheet
- 3. DS160, Spartan-6 Family Overview
- 4. DS150, Virtex-6 Family Overview

Revision History

The following table shows the revision history for this document:

Date	Version	Description of Revisions
09/21/10	1.0	Initial Xilinx release.
12/14/10	2.0	Updated core to v1.01a and ISE to v12.4.

Notice of Disclaimer

Xilinx is providing this product documentation, hereinafter "Information," to you "AS IS" with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.