Problem 1

We can write a generic CRT solver that can, up to the limits of the chosen integer type (signed 64-bit integer in my implementation), iteratively solve a system of linear congruences:

$$egin{array}{ll} x=a_0 & \mod m_0 \ x=a_1 & \mod m_1 \ & \dots \ x=a_{n-1} & \mod m_{n-1} \end{array}$$

Solving a system of 1 congruence is trivial, since we can simply return a_0 . Now that we have a base case, we can inductively build up the solution to the entire system: suppose we have a solution to the first k congruences, denoted by c_k , then we can find a solution to the first k+1 congruences by making two observations.

First, c_{k+1} must also be a solution to the first k congruences, meaning that for some integer y:

$$c_{k+1} = c_k + (\prod_{i=0}^{k-1} m_k) \cdot y \tag{1}$$

Second, c_{k+1} must also satisfy the k+1's congruence, meaning that:

$$c_{k+1} \equiv a_k \mod m_k \tag{2}$$

Combining the two equations above we have:

$$c_k + (\prod_{i=0}^{k-1} m_k) \cdot y \equiv a_k \mod m_k$$

Which can be easily transformed to find a value of y:

$$y \equiv (\prod_{i=0}^{k-1} m_k)^{-1} \cdot (a_k - c_k) \mod m_k$$

After that, we can plug y back into the first obervsation and obtain a solution to the first k+1's congruences.

The CRT solver's source code can be found at the end of this write up.

a)

The solution is 31

b)

The solution is 5764

c)

d)

Note that all modulo arithmetics are well-defined, since addition, subtraction, and multiplication are always well-defined, and the multiplicative inverse is well-defined iff the two modulos are relatively prime. However, when the two modulos are not relatively prime, it is possible that the inverse does not exist. For example, the element $2 \in \mathbb{Z}_4$ has no inverse. We can use this two construct impossible congruences such as:

```
x \equiv 1 \mod 2
x \equiv 2 \mod 4
```

This system is impossible because the first congruence requires x to be odd, but the second one requires x to be even.

Appendix

Source code for the CRT solver (written in Rust, btw):

```
/// subtract y from x within the input modulo
pub fn modulo_sub(x: i64, y: i64, modulo: i64) -> i64 {
    let x = x % modulo;
   let y = y % modulo;
    if x - y >= 0 {
        return x - y;
    return x - y + modulo;
}
/// Returns (gcd, s, t) such that s*x + t*y = gcd is the Bezout identity
pub fn extended_gcd(x: i64, y: i64) -> (i64, i64, i64) {
   let (mut prev_r, mut r) = (x, y);
    let (mut prev_s, mut s) = (1, 0);
   let (mut prev_t, mut t) = (0, 1);
   while r != 0 {
        let q = prev_r / r;
        (prev_r, r) = (r, prev_r - q * r);
        (prev_s, s) = (s, prev_s - q * s);
        (prev_t, t) = (t, prev_t - q * t);
    }
    return (prev_r, prev_s, prev_t);
}
/// Attempt to find a multiplicative inverse of x \pmod{y}. This is possible
iff
/// x and y are relatively prime. If no multiplicative inverse if possible,
/// return None
```

```
pub fn modulo_invert(x: i64, y: i64) -> Option<i64> {
    let (gcd, s, _t) = extended_gcd(x, y);
    if gcd > 1 {
        return None;
    return Some(s);
}
#[derive(Debug)]
pub struct CRT {
    /// The modulo up to wihch the solution is unique. In teh context of
Chinese
    /// remainder theorem, it is the product of all modulos in all congruences
    modulo: i64,
    /// The solution to the set of congruences, unique up to self.modulo.
    sol: Option<i64>,
}
impl CRT {
    pub fn new() -> Self {
        return Self {
            sol: None,
            modulo: 1,
        };
    }
    /// Update the internal state to solve the union of the existing system
and
    /// the input congruence. Return the solution after the update
    pub fn add_congruence(
        &mut self,
        remainder: i64,
        modulo: i64,
    ) -> Option<i64> {
        if self.sol.is none() {
            self.sol = Some(remainder);
            self.modulo = modulo;
        } else {
            let mut sol = self.sol.unwrap();
            let diff = modulo_sub(remainder, sol, modulo);
            let inverse = modulo_invert(self.modulo, modulo).unwrap();
            sol = sol + self.modulo * diff * inverse;
            self.modulo = self.modulo * modulo;
            self.sol = Some(modulo_sub(sol, 0, self.modulo));
        return self.sol;
   }
}
```