Space Race Analysis and Visualization

The Space Race project studies more than 4300 space missions from 1957 to 2020. We look at who's involved, when missions happened, what they aimed to do, how successful they were, how much they cost, and if the rockets used are still in use. We want to see patterns in how many launches there are, how history like the Cold War affected space activities, and which countries and groups are most active in space exploration. Our goal is to understand how space exploration has changed over time and why.

Data Dictionary:

Variable	Description					
Unnamed: 0.1	Junk column					
Unnamed: 0	Junk column					
Organisation	Organisation, that created and launched the rocket					
Location	Location from where the rocket was launched					
Date	Mission Date					
Detail	Rocket Name					
Rocket_Status	Represents if rocket is still active or retired					
Price	Price of the whole mission (millions)					
Mission_Status	Shows whether the mission was successful or not					

	df.head(20)											
Out[7]:		Unnamed: 0.1	Unnamed: 0	Organisation	Location	Date	Detail	Rocket_Status	Price	Mission_State		
	0	0	0	SpaceX	LC-39A, Kennedy Space Center, Florida, USA	Fri Aug 07, 2020 05:12 UTC	Falcon 9 Block 5 Starlink V1 L9 & BlackSky	StatusActive	50.0	Succe		
	1	1	1	CASC	Site 9401 (SLS-2), Jiuquan Satellite Launch Ce	Thu Aug 06, 2020 04:01 UTC	Long March 2D Gaofen-9 04 & Q- SAT	StatusActive	29.75	Succe		
	2	2	2	SpaceX	Pad A, Boca Chica, Texas, USA	Tue Aug 04, 2020 23:57 UTC	Starship Prototype 150 Meter Hop	StatusActive	NaN	Succe		
	3	3	3	Roscosmos	Site 200/39, Baikonur Cosmodrome, Kazakhstan	Thu Jul 30, 2020 21:25 UTC	Proton-M/Briz-M Ekspress-80 & Ekspress-103	StatusActive	65.0	Succe		
	4	4	4	ULA	SLC-41, Cape Canaveral AFS, Florida, USA	Thu Jul 30, 2020 11:50 UTC	Atlas V 541 Perseverance	StatusActive	145.0	Succe		
	5	5	5	CASC	LC-9, Taiyuan Satellite Launch Center, China	Sat Jul 25, 2020 03:13 UTC	Long March 4B Ziyuan-3 03, Apocalypse-10 & N	StatusActive	64.68	Succe		

Data Preprocessing

```
In [111]: df.shape
Out[111]: (4324, 9)
In [112]: df.columns
Out[112]: Index(['Unnamed: 0.1', 'Unnamed: 0', 'Organisation', 'Location', 'Date', 'Detail', 'Rocket_Status', 'Price', 'Mission_Status'], dtype='object')
In [113]: df['Price'] = df['Price'].apply(lambda x:str(x).replace(',','')).astype('float64')
df['Date'] = pd.to_datetime(df['Date'], errors='coerce')
            print(df.dtypes)
            Unnamed: 0.1
                                                   int64
                                                   int64
            Unnamed: 0
            Organisation
                                                  object
             Location
                                 datetime64[ns, UTC]
            Date
            Detail
                                                  object
             Rocket_Status
                                                 object
float64
            Price
            Mission_Status
                                                  object
            dtype: object
In [116]: df.isna().sum()
Out[116]: Unnamed: 0.1
            Unnamed: 0
                                     0
            Organisation
Location
                                     0
                                      0
             Date
                                   126
             Detail
             Rocket_Status
            Price
                                  3360
            Mission_Status
dtype: int64
```

Data Cleaning

```
In [13]: #df['Price'] = df['Price'].fillna(df['Price'].mean().round(2))
#df.dropna(subset=['Price'], inplace=True)
         df['Price'].fillna(0, inplace = True)
         df['Date'].fillna(method='ffill', inplace=True)
         print(df.isna().sum())
         Unnamed: 0.1
         Unnamed: 0
         Organisation
         Location
                        0
         Detail
         Rocket_Status
         Price
         Mission Status
         dtype: int64
  In [16]: df = df.drop(["Unnamed: 0.1", "Unnamed: 0"], axis=1)
  In [17]: symbols = "@$%^*=*?\<>`~Â"
         for column in df.columns:
            if df[column].dtype != 'object':
               continue
             symbols_found = df[column].apply(lambda x: any(char in symbols for char in x))
             rows_with_symbols = df[symbols_found]
            if not rows_with_symbols.empty:
                print(f"Symbols found in '{column}' column:")
                print(rows_with_symbols)
Symbols found in 'Organisation' column:
          Organisation
3800 Arm??e de l'Air Brigitte, Hammaguir, Algeria, France \
3803 Arm??e de l'Air Brigitte, Hammaguir, Algeria, France
3903 Arm??e de l'Air Brigitte, Hammaguir, Algeria, France
3923 Arm??e de l'Air Brigitte, Hammaguir, Algeria, France
                                                       Detail Rocket_Status Price
3800 1967-02-15 10:06:00+00:00 Diamant A | Diad?≅me 2 StatusRetired
                                                                                  0.00 \
3803 1967-02-08 08:39:00+00:00 Diamant A | Diad?≅me 1 StatusRetired
                                                                                   0.00
3903 1966-02-17 07:33:00+00:00
                                       Diamant A | Diapason StatusRetired
                                                                                   0.00
                                       Diamant A | Ast??rix StatusRetired
3923 1965-11-26 14:47:00+00:00
                                                                                   0.00
       Mission Status
3800
                Success
3803 Partial Failure
3903
                Success
3923
                Success
Symbols found in 'Location' column:
                                                                     Location
     Organisation
15
       Rocket Lab
                        Rocket Lab LC-1A, M?@hia Peninsula, New Zealand
                        Rocket Lab LC-1A, M?@hia Peninsula, New Zealand
21
       Rocket Lab
                        Rocket Lab LC-1A, M?@hia Peninsula, New Zealand
55
       Rocket Lab
77
       Rocket Lab
                        Rocket Lab LC-1A, M?@hia Peninsula, New Zealand
93
       Rocket Lab
                        Rocket Lab LC-1A, M?@hia Peninsula, New Zealand
```

```
Detail Rocket_Status Price
           Electron/Curie | Pics Or It Didn?? t Happen
15
                                                        StatusActive
                                                                       7.50
      Long March 2D | Jilin-1 Wideband 01 & ??uSat-7/8 StatusActive
60
                                                                       29.75
64
     Rokot/Briz KM | Gonets-M ???24, 25, 26 [block-... StatusRetired 41.80
391
                                   Vega | G??kt??rk-1A
                                                        StatusActive 37.00
436
           Long March 4B | Ziyuan III-02 & ??uSat-1, 2
                                                        StatusActive 64.68
             Falcon 9 v1.1 | Turkmen??lem52E/MonacoSat StatusRetired 56.50
504
546
                   Ariane 5 ES | Georges Lema??tre ATV StatusRetired
                                                                       0.00
626
                      Soyuz ST-A/Fregat | Pl??iades 1B
                                                        StatusActive 80.00
         Soyuz ST-A/Fregat | Pl??iades 1A, SSOT, Elisa
660
                                                        StatusActive 80.00
                   Ariane 40 | Helios 1B & Cl??mentine StatusRetired
1224
                                                                        0.00
     Delta II 7920-10 | ARGOS (P91-1 ARGOS), ?örste... StatusRetired
1266
1360
                    Titan IV(401)B | Cassini???Huygens StatusRetired
                                                                        0.00
1435
                  Ariane 44L | Arabsat-2A, T??rksat 1C StatusRetired
                                                                        0.00
1746
                   Cosmos-3M (11K65M) | Ta??foun n†59 StatusRetired
                                                                       0.00
                                      | Ta??foun n†32 StatusRetired
2290
                   Cosmos-3M (11K65M)
                                                                       0.00
                   Cosmos-3M (11K65M) | Ta??foun n†27 StatusRetired
2351
                                                                       0.00
        Saturn IB | ASTP (Apollo???Soyuz Test Project) StatusRetired
2911
                                    Diamant B | P??ole StatusRetired
3399
                                                                        0.00
                        Proton K/Block D | M-69 ???522 StatusRetired
3570
                                                                        0.00
3800
                                Diamant A | Diad?≅me 2 StatusRetired
                                                                        0.00
3803
                                Diamant A | Diad?≧me 1 StatusRetired
                                                                        0.00
                                  Diamant A | Ast??rix StatusRetired
3923
                                                                        0.00
```

Noticing that there are many values that have char and other symbols in the middle of word letters, I am trying to find all the lines where any column has unclear or mismatched symbols.

```
In [18]: # Char valymas
             symbols = "!@#$%^*=*?\.<>` |~Â"
             df['Organisation'] = df['Organisation'].apply(lambda x: ''.join(char for char in x if char not in symbols))
df['Detail'] = df['Detail'].apply(lambda x: ''.join(char for char in x if char not in symbols))
df['Location'] = df['Location'].apply(lambda x: ''.join(char for char in x if char not in symbols))
In [19]: def clean column(df, column name):
                   final_str_column = []
                   for detail in df[column_name]:
                         # Use regular expression to remove non-printable characters
clean detail = re.sub(r'[^\x20-\x7E]', '', detail)
                         final_str_column.append(clean_detail)
                   df[column_name] = final_str_column
             clean_column(df, 'Organisation')
clean_column(df, 'Detail')
clean_column(df, 'Location')
             df.iloc[15]
Out[19]: Organisation
                                                                                          Rocket Lab
                                       Rocket Lab LC-1A, Mhia Peninsula, New Zealand
             Location
             Date
                                                                    2020-07-04 21:19:00+00:00
             Detail
                                              Electron/Curie | Pics Or It Didnt Happen
             Rocket_Status
                                                                                       StatusActive
             Price
                                                                                                  7.50
             Mission Status
                                                                                              Failure
             Name: 15, dtype: object
```

Then I create an algorithm that cleans any char or other non-printable characters in the middle of word letters. Also I use regular expression to correct this problem.

```
In [20]: duplicated_rows = df[df.duplicated(keep=False)]
         print(duplicated_rows)
         df = df.drop_duplicates()
             Organisation
                                                                    Location
                     CASC Site 9401 (SLS-2), Jiuquan Satellite Launch Ce...
         792
         793
                     CASC Site 9401 (SLS-2), Jiuquan Satellite Launch Ce...
                                  Date
         792 2008-11-05 00:15:00+00:00 Long March 2D | Shiyan-3 & Chuangxin-1(02)
         793 2008-11-05 00:15:00+00:00 Long March 2D | Shiyan-3 & Chuangxin-1(02)
             Rocket_Status Price Mission_Status
         792 StatusActive 29.75
                                         Success
         793 StatusActive 29.75
                                         Success
```

The dataset is now clean. We dealt with the missing values in the Price column in three ways: 1. Filling them with the average price 2. Removing rows with missing prices 3. Setting missing prices to 0. However, since about 78% of the prices were missing (3375 out of 4323), using the average or 0 wouldn't provide meaningful insights. Removing rows would lose a lot of data, so we only did it for certain categorical variables when calculating statistics. We also removed any duplicate entries from the dataset to improve its quality.

Descriptive statistics

```
In [125]: df.describe()
Out[125]:
                      Price
             count
                     963.00
                     153.92
             mean
               std
                     288.57
                       5.30
               min
              25%
                      40.00
                      62.00
              50%
              75%
                      164.00
              max 5.000.00
```

```
In [96]: # Central tendency
          print("Number of organisations: " + str(df["Organisation"].nunique()))
          print("Earliest Date: " + str(df['Date'].min()))
          print("Latest Date: " + str(df['Date'].max()))
          print('-----
          print("Number of rocket details: " + str(df["Detail"].nunique()))
          df["Price"] = pd.to_numeric(df["Price"], errors='coerce')
          print("The average price of rocket launch: " + str(round(df["Price"].mean(), 2)))
print("The middle price of rocket launch: " + str(df["Price"].median()))
         print("The most frequently occurring price of rocket launch: " + str(df["Price"].mode().tolist()))
print('-----')
         Range = df["Price"].max() - df["Price"].min()
print("A range of prices: " + str(Range))
print('-----')
          price_variance = df["Price"].var()
          rounded_variance = round(price_variance, 2)
          print("A measure of how spread out the prices of rocket launches are: " + str(rounded_variance))
          # Standard deviation
         s_dev = math.sqrt(rounded_variance)
          print("The square root of the variance of rocket launch prices: " + str(round(s_dev, 2)))
          Number of organisations: 24
          Earliest Date: 1964-09-01 15:00:00+00:00
          Latest Date: 2020-08-07 05:12:00+00:00
          Number of rocket details: 947
          The average price of rocket launch: 129.9
          The middle price of rocket launch: 62.0
          The most frequently occurring price of rocket launch: [450.0]
          A range of prices: 444.7
          A measure of how spread out the prices of rocket launches are: 20523.14
          The square root of the variance of rocket launch prices: 143.26
```

The outlier in the dataset is the maximum price of 5000, which represents the investment in developing Proton rockets for the Russian space program. However, it's important to note that the Energiya/Buran program, which also cost around 5 billion rubles, was separate from the Proton rocket program. Energiya/Buran involved the development of the Energia rocket and the Buran spacecraft. So, while the Proton rockets were a significant investment for Russia, the cost of Energiya/Buran was not directly related to the Proton rocket program.

Number of Launches per Company Number of Active versus Retired Rockets

Distribution of Mission Status

```
fre = df["Mission_Status"].value_counts()
plt.figure(figsize=(10, 2))
fre = fre.sort_values(ascending=False)
fig = px.pie(fre, values=fre.values, names=fre.index, title='Mission Status Distribution')
fig.update_traces(textposition='inside', textinfo='percent+label')
fig.update_layout(width=900)
fig.show()
output_path = os.path.join(output_dir, 'mission_status_df.png')
fig.write_image(output_path, width=1200, height=400, scale=4)
```

Mission Status Distribution

As we can see, 90% of the missions were successful. These figures are impressive and mean that every mission is taken very seriously.

Analyse the Total Amount of Money Spent by Organisation on Space Missions

Total Money Spent by Organization on Space Missions

NASA is at the forefront in terms of the amount of money spent on space missions. NASA spends the most money on space missions because it carries out a wide range of ambitious projects, from exploring other planets to sending astronauts into space.

This graph shows how the average prices vary from 1957 to 2020. The beginning of the graph shows exactly 0 because in those years most of the mission's capital was classified, so we replaced those values with 0. The largest peak was during the period of 2010-2014. We also see a huge dip at the end of 1980 and a significant increase at the beginning of 1990.

Cold War Space Race: USA vs USSR

Total Number of Launches (USSR vs USA)

.