Politechnika Wrocławska Wydział Podstawowych Problemów Techniki

Obliczenia naukowe

Sprawozdanie z zajęć laboratoryjnych

Lista 2

Autor: Jakub Pezda 221426

1.1 Opis problemu

Ćwiczenie polega na powtórzeniu zadania 5 z listy 1 po usunięciu ostatniej 9 z x₄ oraz ostatniej 7 z x₅.

1.2 Rozwiązanie

Do rozwiązania zadania użyto programu z zadania 5 z listy 1.

1.3 Wyniki

Poniższa tabela przedstawia wyniki zadania 5 z listy 1 oraz rezultaty tego samego programu po usunięciu cyfr przedstawionych w opisie problemu.

Algorytm	Przed usunięciem	Po usunięciu			
Float32					
"Do przodu"	-0.4999443	-0.4999443			
"Do tyłu"	-0.4543457	-0.4543457			
Od największego do najmniejszego	-0.5	-0.5			
Od najmniejszego do największego	-0.5	-0.5			
	Float64				
"Do przodu"	1.0251881368296672e-10	-0.004296342739891585			
"Do tyłu"	-1.5643308870494366e-10	-0.004296342998713953			
Od największego do najmniejszego	0.0	-0.004296342842280865			
Od najmniejszego do największego	0.0	-0.004296342842280865			

1.4 Wnioski

W arytmetyce Float32 zmiany na tak dalekiej pozycji po przecinku nie mają znaczenia. W arytmetyce Float64 nawet drobne zmiany mają wielki wpływ na wynik obliczeń.

2.1 Opis problemu

Celem ćwiczenia jest rozwiązanie układu równań Ax = b za pomocą algorytmu eliminacji Gaussa oraz x = inv(A) * b. Eksperyment należy wykonać dla macierzy Hilberta z rosnącym stopniem n oraz dla macierzy losowej. Wyniki porównać z rozwiązaniem dokładnym.

2.2 Rozwiązanie

Do rozwiązania ćwiczenia użyto funkcji matcond (n, c), generującej macierz losową rozmiaru n ze wskaźnikiem uwarunkowania c oraz funkcji hilb(n), generującej macierz Hilberta o podanym stopniu n.

2.3 Wyniki

Kolejne tabele prezentują stopień, rząd, wskaźnik uwarunkowania macierzy oraz błędy względne algorytmu eliminacji Gaussa oraz odwrotności macierzy dla macierzy Hilberta oraz macierzy losowej.

	Macierz Hilberta						
Stopień Rząd		Wskaźnik uwarunkowania	Eliminacja Gaussa	Macierz odwrotna			
1	1	1.0	0.0	0.0			
2	2	19.28147006790397	2.220446049250313e-16	6.661338147750939e-16			
3	3	524.0567775860644	1.1102230246251565e-15	0.0			
4	4	15513.738738928929	1.021405182655144e-14	2.4158453015843406e-13			
5	5	476607.25024224253	7.549516567451064e-15	8.211209490127658e-12			
6	6	1.495105864125091e7	3.397282455352979e-13	5.885096854285621e-10			
7	7	4.7536735637688667e8	2.3741009158584347e-12	3.957326910608572e-9			
8	8	1.5257575516147259e10	8.788081373722889e-12	1.775775126944268e-8			
9	9	4.9315408927806335e11	7.824807468637118e-11	9.133072538247688e-7			
10	10	1.6024859712306152e13	7.70294890095613e-8	0.00012009761940001695			
11	11	5.2210348947688544e14	6.014629028872065e-5	0.006969769078469579			
12	11	1.7255427417341868e16	0.06530801911219886	0.33840749953941973			
13	11	7.126491965424366e17	25.08482043640732	16.844634026394395			
14	12	6.101307732044041e17	1.1139167998034707	10.371393301570851			
15	12	4.223311222761075e17	8.755362236171958	13.013515266400887			
16	12	3.535827507735838e17	32.55208362509067	213.56968488070086			
17	12	3.1182808742153696e17	13.851699783216446	19.825148202224515			
18	12	1.5639169583348145e18	16.50126154972894	20.610856149478998			
19	13	1.3274441976880407e18	22.649802232492924	49.688246165493425			
20	13	2.2777635596453635e18	81.16195867936668	71.32694706530202			

	Macierz losowa					
Stopień Rząd Wskaźnik uwarunkowania		* * **	Eliminacja Gaussa	Macierz odwrotna		
5	5	1	0.0	4.440892098500626e-16		
5	5	10	8.881784197001252e-16	8.881784197001252e-16		
5	5	10^{3}	5.1514348342607263e-14	6.661338147750939e-15		
5	5	10 ⁷	6.676326158583379e-10	5.206253206324618e-10		
5 5 1012		10 ¹²	8.316700651267439e-6	3.75316950007587e-5		
5	4	10^{16}	0.7230215617006166	0.08824491195215556		
10	10	1	4.440892098500626e-16	0.0		

10	10	10	8.881784197001252e-16	4.440892098500626e-16
10	10	10^{3}	6.217248937900877e-14	4.440892098500626e-16
10	10	10^{7}	2.3144508531913743e-10	9.468039685600615e-10
10	10	10^{12}	3.688265747037178e-5	6.09188306364139e-5
10	9	10^{16}	0.5479912460692726	0.29633117831802114
20	20	1	0.0	0.0
20	20	10	1.7763568394002505e-15	1.7763568394002505e-15
20	20	10^{3}	5.329070518200751e-15	3.108624468950438e-14
20	20	10^{7}	4.98482144450918e-10	2.0816868229189822e-9
20	20	1012	4.7202138498292356e-5	8.6537043850754e-5
20	19	10^{16}	0.11720325354102368	0.2109703028609129

2.4 Wnioski

Macierz Hilberta jest przykładem macierzy źle uwarunkowanej. Wraz ze wzrostem stopnia macierzy wskaźnik uwarunkowania rośnie w bardzo szybkim tempie. Dla dużych n wynik jest mocno niedokładny. Dla macierzy losowej błąd względny jest zależny od wskaźnika uwarunkowania. Czym wskaźnik jest wyższy tym większy jest błąd względny.

3.1 Opis problemu

Celem ćwiczenia jest obliczenie 20 zer wielomianu, sprawdzenie znalezionych pierwiastków oraz powtórzenie eksperymentu po zamianie jednego współczynniku w wielomianie.

3.2 Rozwiązanie

Do rozwiązania zadania użyto funkcji Poly, poly, polyval oraz roots z pakietu Polynomials.

3.3. Wyniki

Poniższa tabela prezentuje obliczone zera wielomianu za pomocą funkcji roots oraz wartości wielomianu w zerach. P(x) oznacza wartość wielomianu w postaci kanonicznej a p(x) w postaci iloczynowej.

LP	Zero wielomianu	P(z _k)	p(z _k)	$\mathbf{z_k} - \mathbf{k}$
1	0.999999999981168 + 0.0im	229376.0	3.4509824e7	1.883160294369190 5e-12
2	2.0000000001891918 + 0.0im	1.209856e6	7.37869763227592e19	1.891917733587433 8e-10
3	2.9999999926196894 + 0.0im	5.04832e6	3.320413904677803e20	7.380310584892413 e-9
4	4.000000196012741 + 0.0im	2.34368e7	8.854438601699644e20	1.960127411493317 6e-7
5	4.999996302203527 + 0.0im	1.1296512e8	1.8446699735747637e21	3.697796472579284

				5e-6
6	6.000048439601834 + 0.0im	5.03290368e8	3.3204997150860955e21	4.843960183364970 4e-5
7	6.999557630040994 + 0.0im	1.968515584e9	5.422257511907465e21	0.000442369959006 1503
8	8.002891069857936 + 0.0im	6.86119424e9	8.273531117022048e21	0.002891069857936 3014
9	8.986693042189247 + 0.0im	2.1149393408e10	1.1898344284110906e22	0.013306957810753 417
10	10.049974037139467 + 0.0im	6.454844928e10	1.6861528285627986e22	0.049974037139467 24
11	10.886016935269065 + 0.0im	1.43521440768e11	2.1611210016567717e22	0.113983064730934 56
12	12.358657519230299 + 0.0im	5.32673099264e11	3.200289909858192e22	0.358657519230298 76
13	12.561193394139806 + 0.0im	6.02947259392e11	3.364993214681233e22	0.438806605860193 6
14	14.51895930872283 + 0.2133045589544431im	2.4994706855470215 e12	5.2587404851564885e22	0.561086088742918 5
15	14.51895930872283 - 0.2133045589544431im	2.4994706855470215 e12	5.2587404851564885e22	0.526211916945224
16	16.206794587063147 + 0.0im	7.95998408192e12	7.368034614384767e22	0.206794587063146 9
17	16.885716688231323 + 0.0im	1.183580855552e13	8.35536703031109e22	0.114283311768677 01
18	18.030097274474777 + 0.0im	2.248445502208e13	1.0212521663802737e23	0.030097274474776 725
19	18.993902180590464 + 0.0im	3.7714572212736e13	1.197494347004195e23	0.006097819409536 243
20	20.000542093702702 + 0.0im	6.5522804164608e13	1.4020685518755461e23	0.000542093702701 8624

Kolejna tabela prezentuje wyniki po zmianie współczynnika.

LP	Zero wielomianu	P(z _k)
1	0.999999999999999999999999999999999999	121344.0
2	2.00000000125739 + 0.0im	798208.0
3	2.99999997067533 + 0.0im	2.075136e6
4	4.0000000239207445 + 0.0im	1.92768e6
5	4.9999998538783785 + 0.0im	993280.0
6	6.000008306313138 + 0.0im	464384.0
7	6.999658994843255 + 0.0im	1.60592384e8
8	8.007774348640831 + 0.0im	1.254020096e9
9	8.914607795492033 + 0.0im	5.313501184e9
10	10.094428982895645 + 0.6484395759738677im	2.700928553743177e10

11	10.094428982895645 - 0.6484395759738677im	2.700928553743177e10
12	11.794602785376995 + 1.654264687407388im	1.982419589176788e11
13	11.794602785376995 - 1.654264687407388im	1.982419589176788e11
14	13.993017972902537 + 2.5192216404720296im	1.7827980190248804e12
15	13.993017972902537 - 2.5192216404720296im	1.7827980190248804e12
16	16.730964028115842 + 2.812655951272096im	1.336962421751052e13
17	16.730964028115842 - 2.812655951272096im	1.336962421751052e13
18	19.502497979348277 + 1.9403295086506278im	5.250917494398969e13
19	19.502497979348277 - 1.9403295086506278im	5.250917494398969e13
20	20.846927301650048 + 0.0im	7.5911013208576e13

3.4 Wnioski

Pierwiastki wielomianu są skrajnie czułe na zakłócenia współczynników. Niewielka zmiana wartości współczynnika może zaburzyć wartości pierwiastków. Zadanie wyznaczania pierwiastków jest źle uwarunkowane ze względu na zaburzenie współczynników.

4.1 Opis problemu

Celem ćwiczenia jest przeprowadzenie eksperymentu na równaniu rekurencyjnym $p_n+1:=p_n+rp_n(1-p_n)$.

- 1. Dla danych p0 = 0.01 i r = 3 wykonać 40 iteracji wyrażenia, a następnie wykonać ponownie 40 iteracji wyrażenia z niewielką modyfikacją tj. wykonać 10 iteracji, zatrzymać, zastosować obcięcie wyniku odrzucając cyfry po trzecim miejscu po przecinku. Porównać otrzymane wyniki.
- 2. Dla danych p0 = 0.01 i r = 3 wykonać 40 iteracji wyrażenia w arytmetyce Float32 i Float64 . Porównać otrzymane wyniki.

4.2 Rozwiązanie

Aby wykonać ćwiczenie należy zaimplementować podaną funkcję rekurencyjną oraz wywołać ją dla podanych danych.

4.3 Wyniki

LP		Wielkość populacji						
	Float32	Float32 z modyfikacją	Float64	Float64 z modyfikacją				
1	0.0397	0.0397	0.0397	0.0397				
2	0.15407173		0.15407173000000002	0.15407173000000002				
3	0.5450726	0.5450726	0.5450726260444213	0.5450726260444213				
4	1.2889781	1.2889781	1.2889780011888006	1.2889780011888006				
5	0.1715188	0.1715188	0.17151914210917552	0.17151914210917552				
6	0.5978191	0.5978191	0.5978201201070994	0.5978201201070994				
7	1.3191134	1.3191134	1.3191137924137974	1.3191137924137974				
8	0.056273222	0.056273222	0.056271577646256565	0.056271577646256565				

9	0.21559286	0.21559286	0.21558683923263022	0.21558683923263022
10	0.7229306 0.722		0.722914301179573	0.722
11	1.3238364	1.3241479	1.3238419441684408	1.324148
12	0.037716985	0.036488414	0.03769529725473175	0.03648822228799964
13	0.14660022	0.14195944	0.14651838271355924	0.14195871805478313
14	0.521926	0.50738037	0.521670621435246	0.5073780393238604
15	1.2704837	1.2572169	1.2702617739350768	1.2572147329310672

•

38	0.81736827	1.2292118	1.3326056469620293	0.05704534228698055
39	1.2652004	0.3839622	0.0029091569028512065	0.2184188559180059
40	0.25860548	1.093568	0.011611238029748606	0.7305550338104317

4.4 Wnioski

Równanie rekurencyjne jest niestabilne, ponieważ niewielkie błędy popełnione w początkowych etapach kumulują się w kolejnych, powodując ogromną utratę dokładności obliczeń. Z każdym krokiem różnica wyników jest większa.

5.1 Opis problemu

Celem ćwiczenia jest przeprowadzenie eksperymentów na równaniu rekurencyjnym.

5.2 Rozwiązanie

Aby wykonać ćwiczenie należy zaimplementować podaną funkcję rekurencyjną oraz wywołać ją dla podanych danych.

5.3 Wyniki

Wyniki wykonania programu zostały przedstawione na wykresie oraz w tabeli.

LP	x0=1 c=-2	x0=2 c=-2	x0=1.99999999 999999 c=-2	x0=1 c=-1	x0=-1 c=-1	x0=0.75 c=-1	x0=0.25 c=-1
1	-1	2.0	1.9999999999 996	0.0	0.0	-0.4375	-0.9375
2	-1	2.0	1.9999999999 98401	-1.0	-1.0	-0.80859375	-0.12109375
3	-1	2.0	1.99999999999 93605	0.0	0.0	-0.3461761474609375	-0.9853363037109375
4	-1	2.0	1.99999999999 7442	-1.0	-1.0	-0.8801620749291033	- 0.029112368589267135
5	-1	2.0	1.99999999998 97682	0.0	0.0	-0.2253147218564956	-0.9991524699951226
6	-1	2.0	1.99999999995 90727	-1.0	-1.0	-0.9492332761147301	- 0.001694341702645596
7	-1	2.0	1.9999999983 6291	0.0	0.0	-0.0989561875164966	-0.9999971292061947
8	-1	2.0	1.9999999934 51638	-1.0	-1.0	-0.9902076729521999	-5.741579369278327e-6
9	-1	2.0	1.99999999738 06553	0.0	0.0	- 0.01948876442658909	-0.999999999670343
10	-1	2.0	1.99999998952 2621	-1.0	-1.0	-0.999620188061125	-6.593148249578462e- 11
11	-1	2.0	1.9999995809 04841	0.0	0.0	- 0.00075947962064115	-1.0
12	-1	2.0	1.99999983236 19383	-1.0	-1.0	-0.9999994231907058	0.0

•

38 -1 2.0 1.81457425506 -1.0 -1.0 -1.0 0.0 78174 2.0 1.29267972715 0.0 -1.0 **39** -1 0.0 0.0 49244 40 -1 2.0 -0.3289791230 -1.0 -1.0 -1.0 0.0

5.4 Wnioski

026702

Równanie rekurencyjne jest niestabilne, ponieważ małe błędy popełnione w początkowych etapach rosną w następnych i poważnie zniekształcają wyniki obliczeń.