What is MLlib?

What is MLlib?

MLlib is a Spark subproject providing machine learning primitives:

- initial contribution from AMPLab, UC Berkeley
- shipped with Spark since version 0.8
- 35 contributors

What is MLlib?

Algorithms:

- classification: logistic regression, linear support vector machine (SVM), naive Bayes, classification tree
- regression: generalized linear models (GLMs), regression tree
- collaborative filtering: alternating least squares (ALS)
- clustering: k-means
- decomposition: singular value decomposition (SVD), principal component analysis (PCA)

Why MLIib?

scikit-learn?

Algorithms:

- classification: SVM, nearest neighbors, random forest, ...
- regression: support vector regression (SVR), ridge regression, Lasso, logistic regression, ...
- · clustering: k-means, spectral clustering, ...
- decomposition: PCA, non-negative matrix factorization (NMF), independent component analysis (ICA), ...

Mahout?

Algorithms:

- classification: logistic regression, naive Bayes, random forest, ...
- collaborative filtering: ALS, ...
- clustering: k-means, fuzzy k-means, ...
- decomposition: SVD, randomized SVD, ...

Mahout?

LIBLINEAR?

H₂O?

Vowpal Wabbit?

MATLAB?

scikit-learn?

R?

Weka?

GraphLab?

Why MLIib?

- It is built on Apache Spark, a fast and general engine for large-scale data processing.
 - Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.

Write applications quickly in Java, Scala, or Python.

Spark philosophy

Make life easy and productive for data scientists:

- Well documented, expressive API's
- Powerful domain specific libraries
- Easy integration with storage systems
- ... and caching to avoid data movement

k-means (python)

```
# Load and parse the data
data = sc.textFile("kmeans_data.txt")
parsedData = data.map(lambda line:
               array([float(x) for x in line.split(' ')])).cache()
# Build the model (cluster the data)
clusters = KMeans.train(parsedData, 2, maxIterations = 10,
             runs = 1, initialization_mode = "kmeans||")
# Evaluate clustering by computing the sum of squared errors
def error(point):
    center = clusters.centers[clusters.predict(point)]
    return sqrt(sum([x**2 for x in (point - center)]))
cost = parsedData.map(lambda point: error(point))
         .reduce(lambda x, y: x + y)
print("Sum of squared error = " + str(cost))
```

 It ships with Spark as a standard component.

A special-purpose device may be better at one aspect than a general-purpose device. But the cost of context switching is high:

- different languages or APIs
- different data formats
- different tuning tricks

Spark SQL + MLlib

```
// Data can easily be extracted from existing sources,
// such as Apache Hive.
val trainingTable = sql("""
  SELECT e.action,
         u.age,
         u.latitude,
         u.longitude
  FROM Users u
  JOIN Events e
  ON u.userId = e.userId""")
// Since 'sql' returns an RDD, the results of the above
// query can be easily used in MLlib.
val training = trainingTable.map { row =>
  val features = Vectors.dense(row(1), row(2), row(3))
 LabeledPoint(row(0), features)
val model = SVMWithSGD.train(training)
```


- Built on Spark's lightweight yet powerful APIs.
- Spark's open source community.
- Seamless integration with Spark's other components.
- Comparable to or even better than other libraries specialized in large-scale machine learning.

- Scalability
- Performance
- User-friendly APIs
- Integration with Spark and its other components

Collaborative filtering

Collaborative filtering

\Rightarrow	$\triangle \triangle \triangle \triangle$? -
☆	$\triangle \triangle \triangle$	$\Delta \Delta$
$\triangle \triangle \triangle \triangle$?	$\stackrel{\bigstar}{\sim}$
$\stackrel{\bigstar}{}$?	$\Delta \Delta$
?	$\triangle \triangle \triangle$	☆☆
$\triangle \triangle \triangle \triangle$	☆☆	?

 Recover a rating matrix from a subset of its entries.

Alternating least squares (ALS)

Iterate:

$$f[i] = \arg\min_{w \in \mathbb{R}^d} \sum_{j \in \text{Nbrs}(i)} (r_{ij} - w^T f[j])^2 + \lambda ||w||_2^2$$

ALS - wall-clock time

System	Wall-clock time (seconds)
Matlab	15443
Mahout	4206
GraphLab	291
MLlib	481

- Dataset: scaled version of Netflix data (9X in size).
- Cluster: 9 machines.
- MLlib is an order of magnitude faster than Mahout.
- MLlib is within factor of 2 of GraphLab.

