UFR 919 Ingénierie – module 3I009 cours 9 Conception de bases de données (suite)

- Conception logique
- •Dépendances fonctionnelles
- •Décomposition de schémas et normalisation
- Formes normales
- •Algorithme de décomposition

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Vormalisation - 1

Raffinement par décomposition

EMP-PR	OJ								
ENO	ENAME	TITLE	SALARY	n	PNO	PNAME	BUDGET	DURATION	RESP
E1 E2 E2 E3 E3 E4 E5 E6	J. Doe M. Smith M. Smith A. Lee A. Lee J. Miller B. Casey L. Chu	Elect. Eng. Analyst Analyst Mech. Eng. Mech. Eng. Programmer Syst. Anal. Elect. Eng.	40000 34000 34000 27000 27000 24000 34000 40000	₩	P1 P1 P2 P3 P4 P2 P2 P4	Instrumentation Instrumentation Database Develop. CAD/CAM Maintenance Database Develop. Database Develop. Maintenance	150000 150000 135000 250000 310000 135000 135000 310000	12 24 6 10 48 18 24	Manager Analyst Analyst Consultant Engineer Programmer Manager Manager
E7 E8	R. Davis J. Jones	Mech. Eng. Syst. Anal.	27000 34000		P3	CAD/CAM CAD/CAM	250000 250000	36 40	Engineer Manager

ENO→ENAME, TITLE, SALARY

PNO → PNAME, BUDGET ENO, PNO → DURATION, RESP

Décomposé en EMP(ENO,ENAME, TITLE, SALARY)

PROJECT(PNO, PNAME, BUDGET)

EMP-PROJbis(ENO, PNO, DURATION, RESP)

- •Qu'est-ce qu'une bonne décomposition ?
- •Est-ce que une décomposition donnée est bonne ?
- •Comment d'obtenir une bonne décomposition ?

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

 ${\bf Normalisation} \ -3$

Normalisation

Normalisation : Méthodologie de conception pour produire un « *bon schéma* » par *décomposition* (descendante) d'un schéma d'origine ou par *génération* (ascendante)

Le schéma produit doit

*éviter les anomalies de mises-à-jour : forme normale

préserver la sémantique du schéma d'origine : sans perte

d'informations et de dépendances

Idée:

•On part d'un schéma de relation R et d'un ensemble de dépendances fonctionnelles F définies sur R (contraintes sémantiques)

♦On applique un ensemble de transformations logiques de R en respectant les contraintes définies par F

La redondance vient des DF, il est normal que les DF soient utilisées pou normaliser

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -2

Problèmes de la normalisation

aProblème: Décomposer le schéma (S,F) en plusieurs relations sans "perdre" des informations et/ou des dépendances dans F:

"Décomposition sans perte d'informations : pour *chaque base de données (BD)* du schéma S qui satisfait F, il doit être possible de la reconstruire (par des jointures) à partir des tables obtenues après la décomposition (par projection).

Décomposition avec préservation des dépendances : il doit être possible de vérifier toutes les contraintes définies par F sans faire de jointures (efficacité).

«Impact sur les requêtes ?

■Le temps d'exécution peut augmenter à cause des jointures nouvelles

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Décomposition de relations

- Un schéma $\{R_1,R_2,...,R_n\}$ est une décomposition du schéma de relation R si $R=R_1\cup R_2\cup...\cup R_n$
- et il y a suffisamment d'attributs commun pour joindre tous les Ri. Par exemple, $\{R1(AB), R2(CD)\}$ n'est pas une décomposition de R(ABCD)
- •Pourquoi la décomposition de R(ABC) en R1(AB), R2(BC) est «mauvaise» (s'il n'y a pas de DF) ?
- •Réponse : Il existe des instances de R où la jointure de R1 et R2 « invente » des n-uplets nouveaux (exemple ci-dessous).
- •Est-ce que la décomposition est encore mauvaise quand on sait que R satisfait $B \to C$?
- Réponse : Non (la relation R ci-dessous ne satisfait pas cette DF, voir transparent suivant))

	Ī			,	(R1 ⊳⊲ R2)(A,B,C)
R(A,B,C)	décomp.	R1(A,B)	R2(B,C)		1.2.3
1,2,3	decomp.	1,2	2,3	jointure >	1,2,5
4,2,5		4,2	2,5		4,2,3
					4,2,5

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -

Décomposition sans perte d'information (SPI)

Une décomposition de R en $\{R_1, R_2, ..., R_n\}$ est sans perte d'information (SPI) par rapport à un ensemble de DF F ssi: $\forall r(R)$: si r satisfait F, alors $r = \Pi_{Ri}(r) \bowtie I \bowtie I$ $\Pi_{Rn}(r)$

Comment vérifier SPI seulement en regardant les DF:

Algorithme de poursuite (« chase »)

 ${}_{\bullet}\text{On a toujours } r \subseteq \Pi_{Ri}(r) \bowtie \Pi_{Rn}(r)$

(SPI = pas de nuplets en trop)

 $\label{eq:linear_section} \begin{array}{l} \text{ $\tt u$II suffit de prouver l'inclusion dans l'autre sens : on montre que tous les n-uplets t générés par la jointure entre les n-uplets $t_i \in \Pi_{Ri}(r)$ étaient dans r à cause des DF dans F } \end{array}$

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation - 7

Décomposition SPI

Décomposition Sans Perte d'Information (SPI) :

si une instance r de R est décomposée en instances r_i de R_1 , ..., R_n (par projection), on doit pouvoir reconstruire r à partir des r_i (par jointure) sans connaissances (nuplets) supplémentaires (ci dessous R satisfait $B \rightarrow C$)

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -6

Tableaux (1/2)

Soit donnée une décompo. de R en $\{R_1, R_2, ..., R_n\}$ avec l'ensemble de DF F. Tableau (représente une instance de R) :

 $_{\text{\tiny d}}$ On prend un n-uplet quelconques dans la jointure et on montre qu'il est dans r $_{\text{\tiny d}}$ On définit pour chaque attribut A une constante $c_{_{\Delta}}$.

∗t_i.A=c_A si l'attribut A fait partie de R_i t_i est défini sur A

 $ullet t_i.A$ est une nouvelle valeur (différente de toutes les autres) si l'attribut A ne fait pas partie de R_i — t_i n'est pas défini sur A

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Tableaux (2/2)

FournisseurProduit(NomF, Adr, NomP, Prix) est décomposé en

Fournisseur(NomF, Adr) Produit(NomP, NomF, Prix)

Tableau (FournisseurProduit):

	NomF	Adr	NomP	Prix
t1	nom	adr	b31	b41
t2	nom	b22	prod	prix

•t1 est défini sur NomF et Adr •t2 est défini sir NomF, NomP et Prix

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Jormalisation -C

Algorithme de poursuite (2/3)

FournisseurProduit(NomF, Adr, NomP, Prix) est décomposé en

Fournisseur(NomF, Adr) Produit(NomP, NomF, Prix)

 $F = \{NomF \rightarrow Adr, \, (NomF, \, NomP) \rightarrow Prix\}$

Tableau de poursuite:

	NomF	Adr	NomP	Prix
t1	nom	adr	b31	b41
t2	nom	adr	prod	prix

NomF \rightarrow Adr \Rightarrow b22 = adr \Rightarrow t1 \bowtie t2 \in r \Rightarrow décomp. est SPI

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -11

Algorithme de poursuite (1/2)

Soit donnés un tableau T et un ensemble de DF F.

Algorithme de poursuite :

oh

a)Choisir une DF $\mathbf{X} \to Y$ et trouver toutes les lignes T_X de T qui sont identiques pour tous les attributs dans \mathbf{X} .

b) Unification sur Y: remplacer dans toutes les lignes T_X et pour tous les attributs A dans Y la valeur t.A par

 $_{\bullet}$ la constante c_A s'il existe au moins un n-uplet t_j T_X avec t_j = c_A

⇒une valeur (différente de CA) sinon.

until il existe au moins une ligne complètement défini (succès = décomposition SPI) ou il n'y a plus de remplacement possible (échec).

En pratique, considérer les DF dans un ordre donné, et recommencer à la première lorsqu'on a passé la dernière et pas de ligne complètement définie

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation - 1

Algorithme de poursuite (3/3)

FournisseurProduit(NomF, Adr, NomP, Prix) est décomposé en

Rel1(NomF, Adr, NomP) Rel2(NomF, Prix)

 $F = \{NomF \rightarrow Adr, (NomF, NomP) \rightarrow Prix\}$

Tableau de poursuite:

	NomF	Adr	NomP	Prix
t1	nom	adr	prod	b41
t2	nom	adr	b32	prix

NomF \rightarrow Adr \Rightarrow b22 = adr \Rightarrow echec \Rightarrow décomp. *n'est pas* SPI

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

 ${\bf Normalisation} \ - 12$

Décomposition en 2 et plusieurs relations

Théorème: Soit {R₁,R₂} une décomposition de R et F l'ensemble des DF qui s'appliquent à R, alors la décomposition de R en deux relations {R₁,R₂} est SPI ssi l'intersection de R₁ et R₂ est une surclé d'au moins une des deux relations:

$$\{R_1, R_2\}$$
 SPI $\equiv (R_1 \cap R_2) \rightarrow R_1 - R_2$ ou $(R_1 \cap R_2) \rightarrow R_2 - R_1$

Preuve: il suffit de faire le tableau de poursuite

Théorème: Si $\{\mathbf{R}_1, \mathbf{R}_2, ..., \mathbf{R}_n\}$ est SPI de R et $\{S_1, S_2, ..., S_m\}$ est SPI de \mathbf{R}_1 , alors $\{S_1, S_2, ..., S_m, \mathbf{R}_2, ..., \mathbf{R}_n\}$ est SPI de R.

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation - 13

Décomposition SPD (1/4)

■{ R₁(CodePostal, Rue), R₂(CodePostal, Ville) }

est une décomposition SPI de

$$\begin{split} &R(\text{CodePostal, Ville, Rue}) \text{ avec} \\ &F = \{(\text{Ville, Rue}) \rightarrow & \text{CodePostal, CodePostal} \rightarrow & \text{Ville}\} \\ &\text{car } (R_1 \cap R_2) \rightarrow & R_2 - R_1 = & \text{CodePostal} \rightarrow & \text{Ville.} \end{split}$$

^aMais: la DF (Ville, Rue) → CodePostal ne peut plus être évaluée efficacement (sans faire des jointures): la décomposition ne préserve pas les dépendances (SPD).

=> reste à le prouver formellement

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -15

Décomposition SPD

Décomposition Avec Préservation des DF (SPD) :

 $_{\circ}$ Si (R,F) est décomposé en $R_1, ..., R_n$, alors dans chaque instance de R_i on ne peut valider que les DF $X \rightarrow Y$ de F^+ $où R_i$ contient XY (F est projeté sur les attributs de R_i : F_i)

ightharpoonup On veut être sûr que les contraintes définies par F sur R peuvent être vérifiées en vérifiant uniquement les DF F_i sur chaque instance R_i

⇒ sinon on serait obligé de *recalculer R* (par des jointures) pour vérifier les DF perdues!

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -14

Décomposition SPD (2/4)

aDéfinition : Une DF $X \rightarrow Y$ est projetée dans R si R contient XY.

•Remarque : Une DF non-projeté dans les relations d'une décomposition n'est pas forcément « perdue »: elle peut faire partie de la *fermeture transitive* des DF projetées.

Ex: R(ABCD) décomposée en R1(AB), R2(BC), R3(CD) et F(A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A)

•Il faut considérer F+!!!

"Définition : Soit F_R^+ les DF de F^+ qui se projettent dans R. Une décomposition de R en $\{R_1, R_2, ..., R_n\}$ est préserve les dépendances (SPD) dans F si

 $F^+=[F^+_{R1}\cup...\cup F^+_{Rn}]^+$

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Décomposition SPD (3/4)

Théorème : Il suffit de montrer que $F \subseteq [F^+_{R1} \cup ... \cup F^+_{Rn}]^+$

Preuve:

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -1

Conception de bases de données

- Conception logique
- Dépendances fonctionnelles
- Décomposition de schémas et normalisation
- Formes normales
- Algorithme de décomposition

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -19

Décomposition SPD (4/4)

Entrée: décomposition $D=\{R_1, R_2, ..., R_n\}$ et F

Sortie : succès (D est SPD) ou échec

Algorithme : on montre que toutes les DF sont préservées

pour toutes les DF $X \rightarrow A \in F$: Z := X tant que Z change $pour toutes les <math>R_i : Z := Z \cup ([Z \cap R_i]^*_F) \cap R_i)$ $si A \notin Z \text{ retourne échec}$ sinon retourne succès

Exemple:

 $\bullet R(ABCD) \text{ et } F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, \underline{D \rightarrow A}\}$

 $R_1(AB)$, $R_2(BC)$, $R_3(CD)$ est SPD car $Z=\{A,C,B,D\}$ pour $A\rightarrow D$

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -18

Revient à

considérer

F+

1e Forme Normale

Définition : Une relation est en première forme normale (1NF ou 1FN en anglais) quand tous les attributs ont des valeurs atomiques.

■En particulier, une relation 1FN *ne peut avoir* une valeur d'attribut qui soit un *ensemble de valeurs* ou un *nuplet*.

"Hypothèse de base des SGBD relationnels.

aDans les SGBD objet, relationnel-objet et XML, cette contrainte est relâchée.

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

2^e Forme Normale

- L'attribut A *dépend complètement* de X si $X \rightarrow A \in F$ est une DF non-redondante à gauche :
 - \bullet X' \subset X implique X' \to A $\not\in$ F⁺
- A dépend partiellement de X sinon

Définition 2FN:

Une relation R est en deuxième forme normale (2FN) par rapport à un ensemble de DF F ssi (si et seulement si) tout attribut de R qui ne fait pas partie d'une clé dépend *complètement* de *chaque clé*.

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -21

Exemple 2FN et redondance

FournisseurProduit(NomF, NomP, Prix, Marque)

 $F = \{NomP \rightarrow Marque, NomF \rightarrow (NomP, Prix)\}$ LA clé: NomF

FournisseurProduit est en 2FN:

 Aucun attribut non-clé peut en dépendre partiellement d'une clé avec un attribut

Mais : il y a encore des redondances : la marque d'un produit est répétée pour chaque fournisseur.

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -23

Exemple 2FN

EmpProj(ENO, ENAME, TITLE, PNO, PNAME, RESP)

 $F = \{ENO \rightarrow (ENAME, TITLE), PNO \rightarrow PNAME, (ENO, PNO) \rightarrow RESP\}$ Une clé : (ENO, PNO)

- **EmpProj n'est pas en 2FN** parce que ENAME, TITLE et PNAME dépendent *partiellement de la clé*
- Ainsi: ENAME et TITLE sont répétés pour chaque produit et PNAME est répété pour chaque employé

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -22

3ème forme normale

Définition 3FN:

Un schéma de relation R est en troisième forme normale (3FN) par rapport à un ensemble de DF F, ssi pour toute DF non-triviale $X \to A$ applicable à R, A est premier (fait partie d'une clé) ou X est une surclé $de\ R$.

FournisseurProduit(NomF, Marque, NomP, Prix)

 $F = \{NomP \rightarrow Marque, NomF \rightarrow (NomP, Prix)\}$

Clé: NomF

FournisseurProduit est en 2FN mais pas en 3FN:

Dans $NomP \rightarrow Maraue$.

Marque n'est pas premier et NomP n'est pas une surclé (Marque dépend transitivement de la clé)

On peut montrer que toute relation en 3FN est aussi en 2FN...

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Exemple 3FN + redondance

R(CodePostal, Ville, Rue)

 $F=\{(Ville,Rue) \rightarrow CodePostal, CodePostal \rightarrow Ville\}$ Deux clés : (Ville Rue) et (Rue CodePostal)

FournisseurProduit est en 3FN:

Pas d'attributs non-premier...

Mais il y a encore des redondances : la ville est répétée pour chaque rue.

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -25

Forme normale de Boyce-Codd

Observation: En 3FN, on peut encore avoir des DF transitives où les attributs dépendants sont premiers.

Définition FNBC:

Un schéma de relation R est en forme normale Boyce-Codd (FNBC) par rapport à un ensemble de DF F, si pour toute DF non-triviale $X \to A$ (de F+) applicable à R, X est une surclé de R.

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -27

3FN - Exemple

EMP n'est pas en 3FN à cause de f₂

 $_{\bullet}TITLE \rightarrow SALARY: TITLE$ n'est pas une surclé et SALARY n'est pas premier

•le problème est que l'attribut clé ENO détermine transitivement l'attribut SALARY : redondance

Solution : décomposition •EMP (ENO, ENAME, TITLE) •PAY (TITLE, SALARY)

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -26

Forme Normale de Boyce-Codd

Propriétés de FNBC:

- ♦Tout attribut non-premier dépend complètement de chaque clé.
- →Tout attribut premier dépend complètement de chaque clé à laquelle il n'appartient pas.
- *Aucun attribut ne dépend d'attributs non-premiers.

Remarques:

^aToute relation à 2 attributs est FNBC

FNBC = plus aucune redondance dûe aux DF

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

FNBC – Exemple

₃Supposons la relation PROJECT où chaque employé sur un projet a un lieu et une responsabilité unique pour ce projet et il y a un seul projet par lieu

PROJECT est en 3FN mais pas en FNBC

Décomposition :

PR (PJNO, ENO, RESP), PLOC (LOCATION, PJNO)

Cette décomposition évite toutes les anomalies mais n'est pas SPD ! (on a perdu la DF (PJNO ENO) \rightarrow LOCATION)

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -2

Formes normales Toutes les relations 1FN = modele relationnel 2FN = 1FN+pas de DF partielle 3FN = 2FN et pas de DF transitive FNBC 4NF ... UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (15009)

Conception de bases de données

- Conception logique
- Dépendances fonctionnelles
- Décomposition de schémas et normalisation
- Formes normales
- Algorithme de décomposition

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Algorithme de passage en 3FN

Entrée : $R(A_1, A_2, ..., A_n)$ et un ensemble minimal de DF F

Sortie : une décomposition SPI et SPD $\{R_1, R_2, ..., R_n\}$ où tous les R_i sont en 3FN

Algorithme:

- 1.Regrouper les DF qui ont même partie gauche
- $2.\mbox{Cr\'eer}$ un schéma de relation R_i avec tous les attributs de chaque groupe de DF
- 3.Si aucune clé de R n'apparaît dans un R_i existant, rajouter un schéma de relation formé par les attributs d'une clé de R
- 4. Éliminer les schémas de relation inclus dans d'autres

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -

Algorithme de passage en FNBC

Entrée : $R(A_1,A_2,...,A_n)$ et F un *ensemble minimal* de DF F **Sortie :** une décomposition SPI $\{R_1,R_2,...,R_n\}$ où tous les R_i sont en FNBC (décomposition pas forcément SPD)

Algorithme:

- $1. S := \{R\}$
- 2. tant qu'il existe un R_i(Y) dans S et une DF non-triviale

 $X \to A$ dans $[R_i]^+_F$ telle que X n'est pas surclé de R_i :

$$S := (S - R_i) \cup R_i(AX) \cup R_k(Y \setminus A)$$

(on décompose Ri en {Rj, Rk}) (noter que c'est bien SPI)

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -35

Décomposition en 3FN

Exemple : FournisseurProduit(NomF, Marque, NomP, Prix) avec $F = \{ NomP \rightarrow Marque, NomF \rightarrow (NomP, Prix) \}$

- 1.Regroupement : rien à faire
- 2.Création de
 - Fournisseur(NomF, NomP, Prix) avec F1= NomF→ (NomP, Prix)
 - ▶ Produit(NomP, Marque) avec $F2=\{NomP \rightarrow Marque\}$
- 3. Création d'une table pour la clé NomF: pas nécessaire
- 4.Élimination de schémas inclus dans d'autres schémas : rien à faire

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -34

Exemple de décomposition FNBC

Soient

▶EMP(ENO, ENAME, TITLE, PNO, PNAME, RESP) **▶** $F = \{\text{ENO} \rightarrow \text{ENAME}, \text{ENO} \rightarrow \text{TITLE} => \text{on peut regrouper}\}$ PNO \rightarrow PNAME, (ENO PNO) \rightarrow RESP}

■ EMP n'est pas en FNBC, car ENO et PNO ne sont pas surclés, donc ENO → (ENAME TITLE) et PNO → PNAME posent problème

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

 ${\bf Normalisation~-36}$

Exemple de décomposition FNBC

Commençons avec

D0 = {**EMP(ENO, ENAME, TITLE, PNO, PNAME, RESP)**} Itération 1

- ${\color{blue} \bullet}$ prendre une des DF qui posent problème : ENO \rightarrow ENAME TITLE D1 = $\{R_1,\,R_2\}$ où
 - * $\mathbf{R}_1(\mathbf{ENO}, \mathbf{PNO}, \mathbf{PNAME}, \mathbf{RESP})$ avec $F1 = \{ \text{ PNO} \rightarrow \mathbf{PNAME}, (\mathbf{ENO} \ \mathbf{PNO}) \rightarrow \mathbf{RESP} \}$
 - **P** \mathbf{R}_2 (ENO, ENAME, TITLE) avec F2 = {ENO → (ENAME TITLE) }

R₂ est en FNBC, mais pas R₁

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)

Normalisation -37

Exemple de décomposition FNBC

Itération 2

◆D1 contient R_1 (ENO, PNO, PNAME, RESP) qui n'est pas en FNBC ◆prendre une des DF qui posent problème : PNO \rightarrow PNAME

 $D2 = \{R_2, R_3, R_4\}$ où

- R_3 (ENO, PNO, RESP) avec F1 = { (ENO PNO) \rightarrow RESP }
- * $R_4(PNO, PNAME)$ avec F1 = { PNO \rightarrow PNAME }

R₂, R₃, R₄ sont alors en FNBC (et on a pu préserver les DF, ce qui n'est pas toujours le cas)

UPMC - UFR 919 Ingéniérie - Cours Bases de donnnés (I3009)