Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної

техніки Кафедра інформатики та програмної

інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних

циклічних алгоритмів»

Варіант 28

виконав студ	ент <u>III-11 Сід</u>	ак Кирил Ігорович
•		(шифр, прізвище, ім'я, по батькові)
Попорінур		
Перевірив		
		(прізвище, ім'я, по батькові)

Лабараторна робота №3

Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Індивідуальне завдання:

Варіант 28

Дано дійсне a > 0. Послідовність x_0, x_1, \dots утворена за законом

$$x_0 = \begin{cases} min(2a, 0.95), & a \le 1 \\ a/5, & 1 < a < 25, \\ a/25, & \text{інакше} \end{cases}$$

$$x_n = \frac{4}{5}x_{n-1} + \frac{a}{5x_{n-1}^4}, \quad n = 1, 2, \dots$$

Знайти перший член x_n , для якого виконується нерівність $\frac{5}{4}a|x_{n+1}-x_n|<10^{-6}$.

Обчислити для знайденого значення x_n різницю $a-{x_n}^5$.

Постановка задачі

Використовуючи ітераційний цикл, знаходимо кожні два наступних члена заданої послідовності, яка прямує до $\sqrt[5]{a}$. Тіло циклу буде виконуватися доти, доки не виконається нерівність $\frac{5}{4}a|x_{n+1}-x_n|<10^{-6}$. Як тільки ця нерівність виконається, то цикл завершиться. Тоді обчислюємо різницю $a-x_n^5$, де x_n - перший член, для якого виконується нерівніть.

Побудова математичної моделі

Складемо таблицю змінних

Змінна	Тип	Ім'я	Призначення
число а	Дійсний	a	Початкове дане
Поточний член послідовності	Дійсний	x_current	Проміжне дане
Попередній член послідовності	Дійсний	x_previous	Проміжне дане
Наступний член послідовності	Дійсний	x_next	Проміжне дане
Різниця n-го члена послідовності та числа а	Дійсний	difference	Реультат

abs(x) — модуль числа

min(x, y) – знаходження мінімального числа з чисел x та y

pow(x, y) - піднесення числа x до степеня у

Таким чином формування задачі зводиться до обчислення членів даної послідовності, що прямує до $\sqrt[5]{a}$, де а — задане число, доти, доки не виконається нерівність $\frac{5}{4}a|x_{n+1}-x_n|<10^{-6}$. Як тільки вона виконається, то для знайденого x_n треба обчислити значення виразу $a-x_n^5$, тобто в результаті отримаємо точність для заданого члена відносно $\sqrt[5]{a}$. Кожний наступний член послідовності обчислюється за формулою $x_n=\frac{4}{5}x_{n-1}+\frac{a}{5x_{n-1}}$, тому треба обчислювати для кожного п не тільки поточний член, але й попередній та наступний.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізація обчислення першого члена послідовності.

Крок 3. Деталізація обчислення шуканого члена послідовності.

Крок 4. Деталізація обчислення різниці числа а та знайденого члена послідовності в п'ятому степені.

Псевдокод

Крок 1

Початок

Обчислення першого члена послідовності.

Обчислення шуканого члена послідовності.

Обчислення різниці числа а та знайденого члена послідовності в п п'ятому степені.

Кінець

Крок 2

Початок

якщо а <= 1

T0

 $x_{current} = min(2 * a, 0.95)$

інакше якщо 1 < a < 25

T0

 $x_current = a / 5$

інакше

$$x_current = a / 25$$

все якщо

Обчислення шуканого члена послідовності.

Обчислення різниці числа а та знайденого члена послідовності в п'ятому степені.

Кінець

Крок 3

Початок

якщо а <= 1

```
x current = min(2 * a, 0.95)
          інакше якщо 1 < a < 25
            T0
               x current = a / 5
          інакше
               x current = a / 25
          все якщо
          повторити поки 1.25 * a * abs(x_next - x_current) >= pow(10, -6)
               x_previous = x_current
               x_{ent} = 0.8 * x_{previous} + a / (5 * pow(x_{previous}, 4))
               x_next = 0.8 * x_current + a / (5 * pow(x_current, 4))
          все повторити
          Обчислення різниці числа а та знайденого члена послідовності в п
          п'ятому степені.
Початок
          якщо а <= 1
            T0
               x_{current} = min(2 * a, 0.95)
          інакше якщо 1 < a < 25
            T0
               x current = a / 5
          інакше
               x_current = a / 25
          все якщо
          поки 1.25 * a * abs(x_next - x_current) >= pow(10, -6)
               x_previous = x_current
               x_{\text{current}} = 0.8 * x_{\text{previous}} + a / (5 * pow(x_{\text{previous}}, 4))
               x_next = 0.8 * x_current + a / (5 * pow(x_current, 4))
```

Кінець

Крок 4

повторити

все повторити

 $difference = a - pow(x_current, 5)$

Кінець

Блок-схема

Крок 1

Крок 2

Крок 3

Крок 4

Перевірка

Блок	Дія
	Початок
1	Введення а = 1
2	x_current = 0.95
3	x_current = 1.005547532630965
4	x_current = 1.0000608739040866
5	x_current = 1.0000000074103623
6	difference = a - pow(x, 5)
7	Виведення difference = -3.705181206292707e-08
	Кінець

Висновок

Отже, я дослідив подання операторів повторення дій та набув практичних навичок їх використання, створивши алгоритм з ітераційним циклом для обчислення членів послідовності, яка прямує до $\sqrt[5]{a}$, де а – задане число.