Solution to CS243 Assignment2

1. Text (Sipser, second edition) Chapter 1 (p.88) 1.29b [14%] $A_2 = \{\omega\omega\omega | \omega \text{ is in } \{a,b\}^*\}$

Assume to the contrary that A_2 is regular, and let p be the pumping length given by pumping lemma. Choose $s = a^pba^pba^pb$, which can be divided into three pieces s = xyz, where $|xy| \le p$. This means xy contains only a's. Since |y| > 0, let $y = a^k$, k > 0. However, $xy^2z = a^{p+k}ba^pba^pb$, where p+k>p, is not in A_2 . That is s cannot be pumped. This is a contradiction. Thus, A_2 is not regular. \square

2. Text (Sipser, second edition) Chapter 1 (p.89) 1.31 [14%]

Let $M = (Q, \Sigma, \delta, q_0, F)$ be the DFA that recognizes A. We can build an $NFAM^R = (Q^R, \Sigma^R, \delta^R, q_0^R, F^R)$ that recognizes the reverse language A^R as follows: We pick $q_0^R \notin Q$ as the start state, $\Sigma^R = \Sigma$, $Q^R = Q \cup \{q_0^R\}$, $F^R = \{q_0\}$, and

 $\delta^R(q,a) = \bigcup_{\delta(p,a)=q} \{p\}$

3. Text (Sipser, second edition) Chapter 1 (p.89) 1.34 [14%]

The following DFA recognizes D. Thus, D is regular.

4. Text (Sipser, second edition) Chapter 1 (p.89) 1.37 [14%]

We only need to construct a DFA to keep track of the remainder of the input seen so far (from left to right) divided by n. If it ends up with remainder zero, accept; otherwise reject. Notice the following relations:

If $(\omega \mod n) = k$, where $0 \le k \le n-1$, we have $\omega = n \cdot q + k$.

For case $\omega 0$: the remainder is $[2(n \cdot q + k) \mod n] = [2k \mod n]$

For case $\omega 1$: the remainder is $[2(n \cdot q + k) + 1 \mod n] = [2k + 1 \mod n]$

Construct DFA M= $(\{q_0,q_1,...,q_n\}, \{0,1\}, \delta, q_0, \{q_0\}),$

$$\delta(q_k, a) = q_{j,} \text{ where } j = \begin{cases} 2k \mod n & \text{if } a = 0\\ 2k + 1 \mod n & \text{if } a = 1 \end{cases}$$

M recognizes C_n , thus C_n is regular.

5. Text (Sipser, second edition) Chapter 1 (p.90) 1.46a, 14.6c, 1.46d [10% each]

1.46a $\{0^n 1^m 0^n \mid m, n > 0\}$

Use pumping lemma, and choose $s = 0^p 10^p = xyz$. Here xy contains only 0's. Let, $y = 0^k$, k>0. Thus $xy^0z = 0^{p-k}10^p$ is not in the language. Thus, it's not regular.

14.6c $\{w \mid w \text{ in } \{0,1\}^* \text{ is not a palindrome}\}$

Let its compliment language $L = \{w \mid w \text{ in } \{0,1\}^* \text{ is a palindrome}\}$, we can prove the original language is not regular by showing that L is not regular.

Choose $s = 0^p 10^p = xyz$, a palindrome in L. Here xy contains only 0's. Let, $y = 0^k$, k>0. Thus $xy^0z = 0^{p-k}10^p$ is not a palindrome, thus it's not in the language L. Thus, L is not regular.

1.46d {wtw | w, t are in $\{0,1\}^+$ }

Use pumping lemma, and choose $s = 0^p 10^p = xyz$. Here xy contains only 0's. Let, $y = 0^k$, k>0. Thus $xy^0z = 0^{p-k}10^p$ is not in the language. Thus, it's not regular.

6. Text (Sipser, second edition) Chapter 1 (p.90) 1.48 [14%]

The following DFA recognize D, thus D is regular.

