

Evaluation of Microphone Windscreen Performance in a Wind Tunnel

by Tung-Duong Tran-Luu and Latasha Solomon

ARL-MR-0636 December 2005

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Adelphi, MD 20783-1197

ARL-MR-0636 December 2005

Evaluation of Microphone Windscreen Performance in a Wind Tunnel

Tung-Duong Tran-Luu and Latasha Solomon Sensors and Electron Devices Directorate, ARL

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188		
needed, and completing and Department of Defense, Wa should be aware that notwit number.	reviewing the collection information Headquarters Service that and ing any other provision	mation. Send comments regard es, Directorate for Information	ing this burden estimate or a Operations and Reports (07) ect to any penalty for failing	ny other aspect of this 04-0188), 1215 Jeffers	citions, searching existing data sources, gathering and maintaining the data collection of information, including suggestions for reducing the burden, to on Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents lection of information if it does not display a currently valid OMB control		
1. REPORT DATE (DA		2. REPORT TYPE	os.		3. DATES COVERED (From - To)		
December 2005	D-MM-1111)	Interim			· · ·		
	TOV TO	memm			August 2005 to November 2005		
4. TITLE AND SUBTI Evaluation of Mi		reen Performance in	a Wind Tunnel		5a. CONTRACT NUMBER 5b. GRANT NUMBER		
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
Tung-Duong Tra	n-Luu and Latasha	a Solomon			5NE4TI		
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
7. PERFORMING OR U.S. Army Resea	GANIZATION NAME(sarch Laboratory	S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER		
ATTN: AMSRD 2800 Powder Mi					ARL-MR-0636		
Adelphi, MD 207	783-1197						
9. SPONSORING/MO	NITORING AGENCY N	NAME(S) AND ADDRESS	(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)		
U.S. Army Resea	arch Laboratory						
2800 Powder Mi Adelphi, MD 20					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
	AVAILABILITY STATE						
Approved for pu	blic release; distrib	oution unlimited.					
13. SUPPLEMENTAR	RY NOTES						
14. ABSTRACT							
interest. Windsc	reens are often use		noise. This resea		o detect, classify, and/or track signals of the effectiveness of various windscreens to		
15. SUBJECT TERMS	3						
Acoustics, lamin	ar wind flow, turb	ulent wind flow, sig	nal processing, w	vindscreen			
16. SECURITY CLAS	SSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Latasha Solomon		
a. REPORT	b. ABSTRACT	c. THIS PAGE		32	19b. TELEPHONE NUMBER (Include area code)		
Unclassified	Unclassified	Unclassified	UL		301-394-2180		

Contents

List of Figures	iv
List of Tables	iv
Acknowledgments	v
Summary	1
Introduction	2
Experimental Setup and Equipment	2
Experimental Results	6
Discussion	18
Conclusion	23
Distribution List	24

List of Figures

Figure 1. Wind tunnel intake and speaker used to generate sweep signal	3
Figure 2. Setup for B&K microphone	3
Figure 3. High wind speed generated excessive mechanical vibration on the furry windscreen	S
as these were not designed to fit on the B&K microphone. So they were held in place by	
lightly sticking a screw driver into them	4
Figure 4. Setup for the Knowles microphone and the Sara microphone. The Aerostat box	
recorded data in both cases.	4
Figure 5. Setup for horse hair windscreen and B&K microphone	5
Figure 6. Grid (grey plastic tubes) used to create turbulent flow.	5
Figure 7. PSD normalized at 50 Hz, increasing laminar wind speed, Knowles microphone	7
Figure 8. PSD normalized at 50 Hz, increasing turbulent wind speed, Knowles microphone	8
Figure 9. PSD normalized at 100 Hz, increasing laminar wind speed, Knowles microphone	9
Figure 10. PSD normalized at 100 Hz, increasing turbulent wind speed, Knowles microphone.	.10
Figure 11. PSD normalized at 200 Hz, increasing laminar wind speed, Knowles microphone	11
Figure 12. PSD normalized at 200 Hz, increasing turbulent wind speed, Knowles microphone.	.12
Figure 13. PSD normalized at 50 Hz, increasing laminar wind speed, B&K microphone	13
Figure 14. PSD normalized at 50 Hz, increasing turbulent wind speed, B&K microphone	14
Figure 15. PSD normalized at 100 Hz, increasing laminar wind speed, B&K microphone	15
Figure 16. PSD normalized at 100 Hz, increasing turbulent wind speed, B&K microphone	16
Figure 17. PSD normalized at 200 Hz, increasing laminar wind speed, B&K microphone	17
Figure 18. PSD normalized at 200 Hz, increasing turbulent wind speed, B&K microphone	18
List of Tables	
Table 1. Device of normalized normal another density for the Appetet and D.O.V. and another and D.O.V.	
Table 1. Power of normalized power spectrum density for the Aerostat and B&K microphone, respectively.	
•	
Table 2. Average power ratio increase.	<i>4</i> I

Acknowledgments

We would like to thank NCPA at the University of Mississippi for graciously letting us use their wind tunnel. We would especially like to thank Jeremy Webster for assisting us with great dedication and ingenuity during the length of the experiment.

INTENTIONALLY LEFT BLANK

Summary

Reduction of wind noise flow has been of interest to researchers in the acoustic signal processing arena for many years. It is desirable to obtain a medium that is resilient to extreme temperatures, dusts, and pests, such as insects and birds, while reducing wind noise. Five different windscreens were evaluated in a controlled environment as an initial test to compare their effectiveness at reducing wind noise.

Introduction

The objective of this research is to compare the performance of various windscreens in a controlled environment. Air flow, be it laminar or turbulent, produces pressure variation that can be detected by a microphone. It is a source of noise for most Army applications, where the intent is to listen to distant vehicles, gun fire, explosions, helicopters, etc. A microphone windscreen is a simple means to filter out such wind noise. An experiment comparing the performance of five different windscreens was conducted at the University of Mississippi, Oxford, MS, over a period of two days in August 2005.

Experimental Setup and Equipment

The following windscreens were tested during this experiment:

- 6" foam ball
- 3" foam ball
- Furry ball
- Horse hair
- Sara disk
- No windscreen

The wind speed was varied (0, 6, 9, and 12 m/s) for both laminar flow and turbulent flow.

A reference signal was played through a speaker placed near the tunnel intake for many combinations of wind speed, flow type, and windscreen. Some combinations were left out because of time constraint, impracticality, or loss of equipment (the 3 in. foam ball was sucked into the tunnel during one of the experiments). Our reference signal is a tonal sweep from 50 to 500 Hz, in step of 5 Hz. Each tone was programmed to be played for 100 cycles; however, our data did show some deviation. The same experiment would be repeated again with no reference signal, but only wind noise.

The acoustic signal acquired by the Knowles microphone (BL1994) is sampled with an Aerostat box at 1 kHz. The signal acquired with the B&K Type 4166 (200 V dc sensitivity) microphone is sampled at 5 kHz.

Figures 1 through 6 illustrate the experimental setup.

Figure 1. Wind tunnel intake and speaker used to generate sweep signal.

Figure 2. Setup for B&K microphone.

Figure 3. High wind speed generated excessive mechanical vibration on the furry windscreens as these were not designed to fit on the B&K microphone. So they were held in place by lightly sticking a screw driver into them.

Figure 4. Setup for the Knowles microphone and the Sara microphone. The Aerostat box recorded data in both cases.

Figure 5. Setup for horse hair windscreen and B&K microphone.

Figure 6. Grid (grey plastic tubes) used to create turbulent flow.

Experimental Results

We only show in figures 7 through 18 the data for the reference tones at frequencies of 50, 100, and 200 Hz. The behavior is qualitatively the same for the other 91 - 3 = 88 frequencies. For each reference tone, we normalize the power spectrum densities (PSD) of the signal at the frequency of the reference signal to 0 dB. The difference in power between the reference tone peaks and the noise floor indicates how well the windscreen is suppressing the wind noise. B&K results are not illustrated for 9 m/s turbulent wind flow because noise levels were too high to produce qualitative results.

Figure 7. PSD normalized at 50 Hz, increasing laminar wind speed, Knowles microphone.

Figure 8. PSD normalized at 50 Hz, increasing turbulent wind speed, Knowles microphone.

Figure 9. PSD normalized at 100 Hz, increasing laminar wind speed, Knowles microphone.

Figure 10. PSD normalized at 100 Hz, increasing turbulent wind speed, Knowles microphone.

Figure 11. PSD normalized at 200 Hz, increasing laminar wind speed, Knowles microphone.

Figure 12. PSD normalized at 200 Hz, increasing turbulent wind speed, Knowles microphone.

Figure 13. PSD normalized at 50 Hz, increasing laminar wind speed, B&K microphone.

Figure 14. PSD normalized at 50 Hz, increasing turbulent wind speed, B&K microphone.

Figure 15. PSD normalized at 100 Hz, increasing laminar wind speed, B&K microphone.

Figure 16. PSD normalized at 100 Hz, increasing turbulent wind speed, B&K microphone.

Figure 17. PSD normalized at 200 Hz, increasing laminar wind speed, B&K microphone.

Figure 18. PSD normalized at 200 Hz, increasing turbulent wind speed, B&K microphone.

In general, the reference signal is unobservable for wind noise beyond 9 m/s. B&K results for 9 m/s turbulent wind flow were excluded from this report because the noise level greatly exceeded that of the reference tone. Tones are observable at approximately 225 Hz, possibly due to the frequency of the tunnel fan.

Discussion

We have developed two figures of merit to quantify the relative quality of each windscreen. The first measures the power of the signal as normalized in figures 7 through 12. Intuitively, since the reference tone (plus noise at that frequency) has a power of 0 dB, the remaining power in the other frequency bin tells how much the wind noise has been suppressed relative to the tone. The second figure measures the ratio of the signal power relative to that with 0 wind speed, averaged

over all frequencies. The reasoning here is that a good windscreen should keep the increase in power as small as possible as wind speed increases, at all frequencies.

The following two tables contain the results for the first measure, the power of the normalized signal for both the Aerostat box and the B&K microphone, respectively, as the windscreens are varied. The 3" foam windscreen was destroyed in the wind tunnel during testing, and no qualitative results were produced for turbulent wind flow of 9 m/s. These fields have an x in them indicating no results are available. All numbers are in unit of power.

Table 1. Power of normalized power spectrum density for the Aerostat and B&K microphone, respectively.

Reference tone	La	minar flow ((m/s)	Turb	Turbulent flow (m/s)		
50Hz	0	6	9	0	6	9	
No windscreen	0.0162	0.2540	0.5753	0.1165	0.2710	0.3306	
6in foam ball	0.0152	0.3687	1.3506	0.0239	0.4617	1.0308	
Fur ball	0.0165	0.3985	1.6643	0.0160	0.4973	0.7360	
Sara	0.0257	0.4184	1.2012	0.2472	0.5793	1.0100	

Reference tone	La	minar flow	(m/s)	Turb	Turbulent flow (m/s)		
100Hz	0	6	9	0	6	9	
No windscreen	0.0154	0.4254	0.4780	0.0279	1.6640	0.9327	
6in foam ball	0.0171	0.4619	1.5147	0.0223	0.6165	1.8882	
Fur ball	0.0169	0.3228	4.4402	0.0157	0.9047	1.9686	
Sara	0.0223	0.4239	2.2621	0.2207	0.7479	1.7699	

Reference tone	L	aminar flow	(m/s)	Turbulent flow (m/s)		
200Hz	0	6	9	0	6	9
No windscreen	0.1199	39.5543	8.2815	0.4442	10.7885	1.9082
6in foam ball	0.1042	48.7188	99.8733	0.1661	65.4344	17.3944
Fur ball	0.0775	23.9364	307.0050	0.1608	70.8341	32.6685
Sara	0.1502	7.7160	40.9737	4.3240	7.3256	14.0140

Reference Tone 50 Hz	Laminar Flow (m/s)			Turbulent Flow (m/s)		
	0	6	9	0	6	9
No Windscreen	41638	42455	24318	43286	1621	xxxx
3" Foam	47653	35362	18978	xxxxx	XXXXX	Xxxxx
6" Foam	36532	39243	26693	63328	58049	XXXX
Furry	13582	7755	4894	45015	71489	XXXX
Horse Hair	50409	54567	41780	48762	50083	XXXX

Reference Tone 100 Hz	Laminar Flow (m/s)			Turbulent Flow (m/s)		
	0	6	9	0	6	9
No Windscreen	22420	25579	25260	34522	17750	xxxx
3" Foam	15328	13269	13083	XXXXX	XXXXX	xxxx
6" Foam	14557	17469	16596	34958	43662	xxxx
Furry	4486	5872	4383	26738	54921	XXXX
Horse Hair	24076	34338	23605	30568	55791	XXXX

Reference Tone 200 Hz	Laminar Flow (m/s)			Turbulent Flow (m/s)		
	0	6	9	0	6	9
No Windscreen	633930	814640	766210	2248300	204230	XXXX
3" Foam	603400	542480	470000	XXXX	XXXXX	XXXX
6" Foam	454020	403100	578360	2015900	4496200	XXXX
Furry	154480	88564	165200	1911500	1911900	XXXX
Horse Hair	1355000	1181300	241460	1245900	2642700	XXXX

One might notice, even in the absence of a windscreen, the Knowles microphone seems to do pretty well. This is misleading because, in the absence of wind, there is a peak around 10 Hz in the frequency response (25 Hz for the Sara windscreen). When the wind blows and there is no windscreen, those peaks are buried in the noise and are not accounted for in this performance measure. The other windscreens actually did a better job at suppressing the wind noise, so the peaks are still apparent, and contribute to a bigger (and less desirable) total power.

The Sara windscreen seems to perform well with a 6 m/s wind speed and a 200 Hz reference tone. But the numbers seem way out of range when compared to the others. The second figure of merit discussed later will have to confirm this.

The data taken with the B&K microphone does not show the peaks at 10 and 25 Hz. In fact, for the B&K, the noise floor clearly follows a 1/f shape. We believe the peaks observed with the Knowles microphone are due to its characteristic roll-off at low frequency, filtering out the 1/f spectrum.

The furry windscreen produces the best result for laminar wind flow. A closer look, however, reveals that it is cutting off very low frequencies, which make disproportionately a big contribution in the 1/f shape (this is more obvious on a linear scale). This roll-off is not apparent in turbulent flow though. It could be because turbulent flow does not persistently press the fur down, and thus decreasing its acoustic impedance. It also could be that the turbulences shake the fur around, creating additional low frequency noise.

In any case, this measure for performance is sensitive to the normalization factor, which is computed from the data at just one frequency, and therefore subject to measurement noise and estimation method. Furthermore, it is skewed by the 1/f shape of the noise power spectrum density, in which lower frequency components contribute more. This is the reason why we develop the second figure to measure performance of the windscreens.

Table 2 shows the results for the second measure of performance, on the log base 10 scale.

Table 2. Average power ratio increase.

	Windscreen	Wind speed	Refe	erence tone (Hz)
	Willascreen	increase (m/s)	50	100	200
	No	0 to 6	26.7034	27.9345	27.7828
	windscreen	0 to 9	38.1316	27.9345	39.315
≽	6in foam	0 to 6	15.6251	15.5486	16.6762
Laminar flow	ball	0 to 9	21.7195	15.5486	20.7634
mina	Furry	0 to 6	12.7419	15.0092	17.0949
La	Turry	0 to 9	18.4549	15.0092	22.5587
	Sara	0 to 6	28.7266	28.2118	24.0547
	Sara	0 to 9	27.2516	28.2118	24.1352
	No	0 to 6	46.6988	52.7088	46.412
	windscreen	0 to 9	52.9758	52.7088	55.6514
MC MC	6in foam	0 to 6	20.7466	22.7207	22.6645
Turbulent flow	ball	0 to 9	31.5563	22.7207	31.7719
bule	Furry	0 to 6	23.6991	24.2702	24.7766
Turl	lully	0 to 9	33.3873	24.2702	34.2041
	Sara	0 to 6	25.5349	27.3056	25.578
	Sara	0 to 9	34.3319	27.3056	35.0705

	Windscreen	Wind Speed	Re	Reference Tone (Hz)			
	Windscreen	Increase (m/s)	50	100	200		
	None	0 to 6	7.6825	14.5182	14.3742		
	TVOIC	0 to 9	24.4743	25.4477	25.9332		
	3" Foam	0 to 6	10.8484	12.6172	12.2785		
M _O	3 Toani	0 to 9	14.6122	16.6620	16.8732		
Laminar Flow	6" Foam	0 to 6	6.1880	11.2458	10.5471		
mina	o roam	0 to 9	15.2652	16.0292	17.1639		
Laı	Furry	0 to 6	9.7312	13.4756	12.0534		
	rully	0 to 9	15.6836	17.2128	17.3697		
	Horse Hair	0 to 6	20.6353	24.8606	24.0764		
		0 to 9	28.5863	32.1873	31.2105		
	None	0 to 6	24.5807	32.9477	39.3432		
	TVOILE	0 to 9	XXX	XXX	XXX		
	3" Foam	0 to 6	XXX	XXX	XXX		
wo	3 Touri	0 to 9	XXX	XXX	XXX		
Turbulent Flow	6" Foam	0 to 6	8.5453	22.2130	19.4263		
bule	o roum	0 to 9	XXX	XXX	XXX		
Tur	Furry	0 to 6	21.6488	22.5974	21.9895		
	1 uii y	0 to 9	XXX	XXX	XXX		
	Horse Hair	0 to 6	14.8393	20.8791	20.8535		
	Tiorse Tiun	0 to 9	XXX	XXX	XXX		

Smaller numbers are better since they indicate that the windscreen effectively suppresses the wind noise. The catch here is that, if we completely isolate the microphone, we get the best possible windscreen (negative numbers). However, there is a risk that the sound of interest will also be suppressed. Ideally, the reference tone should increase in power. However, due to spectral leakage, accounting for it would require more complications.

Even though this performance measure is not perfect, it still gives numbers that agree with the figures 7 through 12. Namely, the 6 in. foam ball generally performs best, followed by the furry windscreen, then by the Sara windscreen. Measurements with the B&K microphone again confirm this behavior.

The reason the Sara appears to do worse than the furry windscreen is because it does not suppress high frequency wind noise very well, although it does a decent job at low frequency. Adding up all frequencies shows that effect.

It has been observed during the setup that the Sara windscreen was not parallel to the wind flow. That might have created local turbulences on the windscreen itself, which would have increased the wind noise. However, we have been informed that the skew of 12 degrees (as it was) is within operating tolerance of the windscreen (± 15 degrees).

Conclusion

Consistent with theory, we found that turbulent flow noise is harder to suppress than laminar flow noise for all windscreens. Most windscreens perform in the same range with the 6 in. foam ball edging out the others. One might argue that the Sara microphone was not parallel to the laminar flow and could do better in that situation. In addition, our performance measures may still have room for improvement.

Distribution List

ADMNSTR DEFNS TECHL INFO CTR ATTN DTIC-OCP (ELECTRONIC COPY) 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218

US ARMY RSRCH LAB ATTN AMSRD-ARL-CI-OK-TP TECHL LIB T LANDFRIED (2 COPIES) ABERDEEN PROVING GROUND MD 21005-5066

DIRECTOR
US ARMY RSRCH LAB
ATTN AMSRD-ARL-RO-EN W D BACH
PO BOX 12211
RESEARCH TRIANGLE PARK NC 27709

US ARMY RSRCH LAB ATTN AMSRD-ARL-CI-OK-T TECHL PUB (2 COPIES) ATTN AMSRD-ARL-CI-OK-TL TECHL LIB (2 COPIES) ATTN AMSRD-ARL-D J M MILLER ATTN AMSRD-ARL-SE-SA D ROBERTSON ATTN AMSRD-ARL-SE-SA L SIM ATTN AMSRD-ARL-SE-SA L SOLOMON (5 COPIES) ATTN AMSRD-ARL-SE-SA N SROUR ATTN AMSRD-ARL-SE-SA S TENNEY ATTN AMSRD-ARL-SE-SA T TRAN-LUU (5 COPIES) ATTN AMSRL-SE-EA M SCANLON ATTN IMNE-ALC-IMS MAIL & RECORDS MGMT

ADELPHI MD 20783-1197