Midterm Preperation

LIU Chenyuan

Spring 2024

- ► Midterm exam: April 14th, 7:00pm 9:00pm.
- ► Location
 - 1. 6C201 if your student ID is 2017080182 2022010900
 - 2. 6C202 if your student ID is 2022010901 2022011461
 - 3. 6C300 if your student ID is 2022011462 2024403080
- ➤ You can bring a double-sided A4 paper with formulas (print or handwritten). No calculator is needed.
- ▶ Range: Ch1 Ch5, no Stata command will be tested, but we may ask you to interpret Stata outputs.
- ➤ Office hour before the Midterm: April 11th, Thursday 3-5 pm, Lihua Building B629

Outline

Interpretation of Regression Model

Estimation of Parameters

Properties of the OLS Estimators

Hypothesis Testing of Parameters

Three Interpretations of A Regression Model

$$y = \beta_0 + \beta_1 x + u.$$

1. Descriptive: conditional mean

$$E(y|x) = \beta_0 + \beta_1 x.$$

- 2. Causal: β_1 represents the causal effect of x on y
- 3. Forecasting

4

Causal Interpretation: E(u|x) = 0

$$y = \beta_0 + \beta_1 x + u.$$

- \triangleright u: factors affecting y other than x
- \triangleright β_1 represents causal effect of x on y if u does not change when x changes
- \triangleright Fix x and take expectation:

$$E[y|x] = \beta_0 + \beta_1 x + E[u|x].$$

Take derivatives with regard to x:

$$\frac{\partial E[y|x]}{\partial x} = \beta_1 + \frac{\partial E[u|x]}{\partial x} = \beta_1$$

if
$$E(u|x) = 0$$
.

6

Multiple Regression Model: Causal Interpretation

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u,$$

and E(u|x) = 0.

- \triangleright β_1 represents holding fixed other factors, the change in y when x_1 increases by one unit.
- Partialling out interpretation: β_1 measures the relationship between y and x_1 after $x_2, ..., x_k$ have been partialled out.

Other Interpretation Issues

- ▶ $log(y) \sim x$: β_1 is approximately the fractional change in y when x changes by 1 unit
- ▶ Goodness of fit: R^2 represents the fraction of variation in the dependent variable explained by the model.

Outline

Interpretation of Regression Mode

Estimation of Parameters

Properties of the OLS Estimators

Hypothesis Testing of Parameters

Method 1: Sample Analogue

$$E(u|x) = 0$$
 implies:

Population expectations	Sample analogue
E(u) = 0	$\frac{1}{N} \sum_{i=1}^{N} \hat{u}_i = 0$
$E(x_1u)=0$	$\frac{1}{N} \sum_{i=1}^{N} x_{i1} \hat{u}_i = 0$
	•••
$E(x_k u) = 0$	$\frac{1}{N} \sum_{i=1}^{N} x_{ik} \hat{u}_i = 0$

9

Method 2: Ordinary Least Squares

- ► Minimize the sum of the residual square.
- Fitted value: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + ... + \hat{\beta}_k x_{ik}$.
- ightharpoonup Residual: $\hat{u}_i = y_i \hat{y}_i$
- We choose β s to minimize the sum of residual squares:

$$\min_{\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k} \sum_{i=1}^N \hat{u}_i^2 = \sum_{i=1}^N (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_k x_{ik})^2.$$

Method 3: FWL Theorem

$\hat{\beta}_j$ can be obtained by

- 1. Regress x_{ij} on other independent variables (including the intercept), obtain the residual \hat{r}_{ij} .
- 2. (Can skip) regress y_i on other independent variables (including the intercept), obtain the residual \hat{r}_{iy} .
- 3. Regress y_i (or \hat{r}_{iy}) on \hat{r}_{ij} . The resulting slope coefficient is $\hat{\beta}_j$.

OLS Estimators

For simple linear regression model:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{N} (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}.$$

► For multiple linear regression model:

$$\hat{\beta}_j = \frac{\sum_{i=1}^N \hat{r}_{ij} y_i}{\sum_{i=1}^N \hat{r}_{ij}^2}, \quad \forall j = 1, 2, ..., k.$$

Outline

Interpretation of Regression Mode

Estimation of Parameters

Properties of the OLS Estimators

Hypothesis Testing of Parameters

Normal Equations

The following conditions hold for any sample of data and are true regardless of interpretations:

$$\sum_{i=1}^{N} \hat{u}_i = 0.$$

$$\sum_{i=1}^{N} \hat{u}_i x_{ij} = 0, \forall j = 1, 2, ..., k.$$

$$\sum_{i=1}^{N} \hat{u}_i \hat{y}_i = 0.$$

$$\bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}_1 + ... + \hat{\beta}_k \bar{x}_k.$$

14

Classical Linear Model Assumptions

Key: understand the meaning of each assumption.

- 1. MLR.1 Linear in Parameters
- 2. MLR.2 Random Sampling
- 3. MLR.3 No Perfect Collinearity (SLR. 3 Sample Variation in the Explanatory Variable)
- 4. MLR.4 Zero Conditional Mean: E(u|x) = 0
- 5. MLR.5 Homoskedasticity: $Var(u|x) = \sigma^2$
- 6. MLR.6 Normality: $u \sim N(0, \sigma^2)$

Gauss-Markov Theorem

Key: understand the meaning of each property; knowing how we prove them (unless not required)

- ▶ Under MLR.1-MLR.4, the OLS estimators are unbiased and consistent.
- ▶ Under MLR.1-MLR.5, the OLS estimators are BLUE. We can derive the variance formula and the asymptotic distribution of the OLS estimators.
 - Note the difference between standard error and standard deviation of $\hat{\beta}_j$.
- ▶ Under MLR.1-MLR.6, the OLS estimators are BUE. We can derive the sampling distribution of the OLS estimators.

Extension

- ▶ Underspecifying the model (excluding a relevant variable): affect unbiasedness omitted variable bias
- ➤ Overspecifying the model (including irrelevant variables in a regression model): affect the variance
- ▶ Multicollinearity: high but not perfect correlation among parameters; affect the variance

Proof Hints

- ▶ Law of iterated expectations: E(X) = E(E(X|Y)).
- ▶ When proving something new, try to convert the problem to an existing problem which we have an answer.
- ▶ Be careful about the notation: expectation or sample mean? \hat{u}_i or u_i ?
- ▶ Feel free to use the results we already showed in class, for example, the FWL theorem, the Gauss-Markov Theorem etc., unless the question asked otherwise.

Outline

Interpretation of Regression Model

Estimation of Parameters

Properties of the OLS Estimators

Hypothesis Testing of Parameters

Testing Hypothesis About One Parameter

$$H_0: \quad \beta_j = 0.$$

 $H_1: \quad \beta_j \neq 0.$

Reject H_0 if

- 1. $|t_{\hat{\beta}_j}| > c$, where $t_{\hat{\beta}_j} = \hat{\beta}_j / se(\hat{\beta}_j)$
- 2. $p < \alpha$, where p = 2P(T > |t|)
- 3. 0 is not inside the (1α) confidence interval.

Testing Single Hypothesis About Multiple Variables

$$H_0: \quad \beta_j = \beta_k.$$

 $H_1: \quad \beta_i \neq \beta_k.$

- ▶ We can transform this question into a test of a single parameter for another regression model.
- ▶ Define $\theta = \beta_j \beta_k$, then plug in the original regression equation, such that θ is a parameter. Test $H_0: \theta = 0$ against $H_1: \theta \neq 0$ in the new model.

Testing Multiple Linear Restrictions

 $H_0: \quad \beta_j = 0 \text{ and } \beta_k = 0.$

 $H_1: H_0$ is not true

- Estimate the original model, obtain SSR_{ur} .
- Estimate the restricted model (the model when H_0 is true), obtain SSR_r .
- ► Calculate the F stat: $F = \frac{(SSR_r SSR_{ur})/q}{SSR_{ur}/(N-k-1)}$. Reject H_0 if F > c (or if $p < \alpha$.)

After the Midterm...

After the midterm: extensions from the basic model

- 1. Ch6: functional forms and prediction analysis
- 2. Ch7: binary independent variable
- 3. Ch8: heteroskedasticity
- 4. Ch12: serial correlation
- 5. Ch9: (mis)specification and measurement error
- 6. Ch15: instrumental variable
- 7. Ch17: limited dependent variable

Good Luck! ^ ^

WWW.PHDCOMICS.COM