Real-time Game Physics

Generalized Rigid Bodies

Generalized Rigid Bodies

- Key Differences from Particles
 - Not necessarily spherical in shape
 - Position, p, represents object's center-of-mass location

$$p = \frac{1}{mass} \iiint \wp r \, dx \, dy \, dz \, (\wp : densit\acute{e})$$

- Surface may not be perfectly smooth
 - Friction forces may be present
- translational motion
- rotational motion

Generalized Rigid Bodies Translational motion

Linear spring

$$F_{spring} = k(l - l_{rest}) \hat{d}$$

Generalized Rigid Bodies Translational motion

Surface Friction

 $\mathbf{F}_{applied}$ parallel to $\hat{\mathbf{n}}$ No relative velocity in contact plane

 $\mathbf{F}_{friction} = <0.0.0>$

F applied not parallel to n No relative velocity in contact plane

F_{friction} given by Eq. 24

 $F_{friction} = \frac{-F_t}{|F_t|} min(\wp_s |F_n|, |F_t|) \qquad F_{friction} = \frac{-V_t}{|V_t|} \wp_d |F_n|$

V is nonzero

F_{friction} given by Eq. 25

$$F_{friction} = \frac{-V_t}{|V_t|} \wp_d |F_n|$$

Generalized Rigid Bodies Translational motion

- Aerodynamic Drag
 - Trough a fluid, like air or water
 - Acts in the opposite of the velocity

$$F_{friction} = -\frac{1}{2} \wp_{fluid} |V|^2 C_D S_{ref} \frac{V}{|V|}$$

 \wp_f : Mass density of the fluid

 C_D : drag coefficient

 S_{ref} : Representative front – projected area

Generalized Rigid Bodies Rotational Motion

- Torque
 - Analogous to a force
 - Causes rotational acceleration
 - Cause a change in angular momentum
 - Torque is the result of a force (friction, collision response, spring, etc.)

Generalized Rigid Bodies Rotational motion

- Angular Kinematics
 - Center-of-mass
 - Orientation, 3x3 matrix R or quaternion, q
 - Angular velocity, ω
 - Inertia tensor, J (3x3 matrix, distribution of mass in the volume)
 - Angular momentum, L=Jω

Generalized Rigid Bodies – Numerical Simulation

- Using Finite Difference Integrators
 - Translational components of state $\langle mV, p \rangle$ are the same
 - S and dS/dt are expanded to include angular momentum and orientation, and their derivatives
 - Be careful about coordinate system representation for J, R, etc.
 - Otherwise, integration step is identical to the translation only case
- Additional Post-integration Steps
 - Adjust orientation for consistency
 - Adjust updated R to ensure it is orthogonal
 - Normalize q
 - Update angular velocity, ω