### Indian Institute of Technology, Guwahati



## **Depratment Of Mechanical Engineering**

# Computational Fluid Dynamics (ME543)

# **Home Assignment 1**

**Submitted To:** 

Prof. Anoop K.Das

**Submitted By:** 

Mritunjay Roll No. 214103004

#### **Table of Content**

#### 1. C codes

- 1. Gauss Seidal
- 2. Time Marching Method
- 3. PSOR Method
- 4. PSOR with Different over Relaxation factor
- 5. Analytical Method
- 2. Table 1- for Results
- 3. Graph between No. Of Iterations V/s Different Over Relaxation factor
- **4. Tempurature Contour**

#### 1. C codes

#### **Problem 1. Gauss Seidal Mthod:**

```
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
void main()
{
  double u[40][20],error=0,store[40][20];
  int i,j;
  for(i=0;i<21;i++)
  u[0][i]=100;
  store[0][i]=100;
  for(j=1;j<41;j++)
     for(i=0;i<21;i++)
       u[j][i]=0;
       store[j][i]=0;
  do
```

```
error=0;
  for(j=1;j<40;j++)
  {
    for(i=1;i<20;i++)
       u[j][i]=(u[j+1][i]+u[j-1][i]+u[j][i+1]+u[j][i-1][i]
1])*0.25;
      error=error+fabs(u[j][i]-store[j][i]);
      store[j][i]=u[j][i];
}while(error>.01);
  printf("\nthe error is =%f",error);
  printf("\n the solutions are\n");
  for(j=0;j<41;j++)
  {
     for(i=0;i<21;i++)
       printf("%d\t\%d\t\%f\n",j+1,i+1,u[j][i]);
     printf("\n");
```

#### Problem 2. Time marching method:

```
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
void main()
{
  double u[40][20],error=0,store[40][20];
  int i,j;
  for(i=0;i<21;i++)
  u[0][i]=100;
  store[0][i]=100;
  for(j=1;j<41;j++)
     for(i=0;i<21;i++)
       u[j][i]=0;
       store[j][i]=0;
```

```
do
  error=0;
  for(j=1;j<40;j++)
    for(i=1;i<20;i++)
       u[j][i]=(u[j+1][i]+u[j-1][i]+u[j][i+1]+u[j][i-1][i]
1])*0.25;
      error=error+fabs(u[j][i]-store[j][i]);
      store[j][i]=u[j][i];
}while(error>.01);
  printf("\nthe error is =%f",error);
  printf("\n the solutions are\n");
  for(j=0;j<41;j++)
  {
     for(i=0;i<21;i++)
       printf("%d\t\%d\t\%f\n",j+1,i+1,u[j][i]);
     printf("\n");
```

#### **Problem 3. PSOR Method:**

```
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#define pi 3.1428
void main()
{
  double u[40][20],error=0,store[40][20];
  int i,j;
  float a,w;
a=pow((cos(pi/20)+cos(pi/40))/2,2);
w=(2-2*sqrt(1-a))/a;
printf("a=\%f\n",a);
printf("w=%f\n",w);
  for(i=0;i<21;i++)
  u[0][i]=100;
  store[0][i]=100;
  }
  for(j=1;j<41;j++)
     for(i=0;i<21;i++)
       u[j][i]=0;
```

```
store[j][i]=0;
  do
  error=0;
  for(j=1;j<40;j++)
   {
    for(i=1;i<20;i++)
       u[j][i]=(1-w)*u[j][i]+w*((u[j+1][i]+u[j-1][i]
+u[j][i+1]+u[j][i-1])/4);
      error=error+fabs(u[j][i]-store[j][i]);
      store[j][i]=u[j][i];
}while(error>.01);
  printf("\nthe error is =%f",error);
  printf("\n the solutions are\n");
  for(j=0;j<41;j++)
     for(i=0;i<21;i++)
       printf("%d\t\%d\t\%f\n",j+1,i+1,u[j][i]);
     printf("\n");
```

}

# **Problem 4. PSOR with Different Over Relaxation Factor:**

```
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#define pi 3.1428
void main()
FILE *out;
out=fopen("gauss1.dat","w");
fprintf(out,"#It\tRelaxation factor\n");
  double u[40][20],error=0,store[40][20];
  int i,j,count=1;
  float a,w;
for(w=0.8; w\le 2.0; w=w+0.1)
count=1;
for(i=0;i<21;i++)
  u[0][i]=100;
  store[0][i]=100;
  for(j=1;j<41;j++)
```

```
for(i=0;i<21;i++)
     {
       u[j][i]=0;
       store[j][i]=0;
  do
  error=0;
  for(j=1;j<40;j++)
  {
    for(i=1;i<20;i++)
       u[j][i]=(1-w)*u[j][i]+w*((u[j+1][i]+u[j-1][i]
+u[j][i+1]+u[j][i-1])/4);
      error=error+fabs(u[j][i]-store[j][i]);
      store[j][i]=u[j][i];
       //fprintf(out,"%d\t%f\n",count,w);
  count++;
}while(error>.01);
  printf("%d\t%f\n",count,w);
  fprintf(out,"%d\t%f\n",count,w);
```

```
printf("\n");
/*printf("\nthe error is =%f",error);
printf("\n the solutions are\n");
for(j=0;j<41;j++)
{
    for(i=0;i<21;i++)
    {
        //printf("%d\t%d\t%f\n",j+1,i+1,u[j][i]);
      }
      //printf("\n");
}
</pre>
```

## **Problem 5. Analytical Method:**

```
#include<stdio.h>
#include<math.h>
int main()
float pi=3.1416,X,Y,sum;
float T[41][21];
int n,i,j;
for(i=0;i<41;i++)
for(j=0;j<21;j++)
if(i==0)
T[i][j]=100;
else
T[i][j]=0;
for(i=1;i<40;i++)
for(j=1;j<20;j++)
X=i*0.05;
Y=j*0.05;
sum=0;
```

```
for(n=1;n<=110;n++)
   {
 sum = sum + ((1 - (pow(-1,n)))/(n*pi))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh((n*pi*(2-in)))*sinh(
X))/1)*sin(n*pi*Y/1)/sinh(n*pi*2/1);
 T[i][j]=100*2*sum;
 for(i=2;i<41;i++)
 for(j=2;j<21;j++)
printf("T[%d][%d]=%f\t",i,j,T[i][j]);
printf("\n");
```

# 2. Table of Result

|    | i | J  | Gauss  | Time   | <b>PSOR</b> | Analytic |
|----|---|----|--------|--------|-------------|----------|
|    |   |    | Seidal | Marchi |             | al       |
|    |   |    |        | ng     |             | Method   |
| 11 |   | 1  | 0      | 0      | 0           | 0        |
| 11 |   | 2  | 4.34   | 4.34   | 4.35        | 4.32     |
| 11 |   | 3  | 8.53   | 8.53   | 8.54        | 8.51     |
| 11 |   | 4  | 12.44  | 12.44  | 12.44       | 12.41    |
| 11 |   | 5  | 15.94  | 15.94  | 15.95       | 15.92    |
| 11 |   | 6  | 19.01  | 19.01  | 19.01       | 18.96    |
| 11 |   | 7  | 21.55  | 21.55  | 21.54       | 21.52    |
| 11 |   | 8  | 23.55  | 23.55  | 23.55       | 23.51    |
| 11 |   | 9  | 24.96  | 24.96  | 24.97       | 24.94    |
| 11 |   | 10 | 25.82  | 25.82  | 25.82       | 25.79    |
| 11 |   | 11 | 26.11  | 26.11  | 26.13       | 26.08    |
| 11 |   | 12 | 25.82  | 25.82  | 25.83       | 25.79    |
| 11 |   | 13 | 24.96  | 24.96  | 24.96       | 24.94    |
| 11 |   | 14 | 23.53  | 23.53  | 23.54       | 23.50    |
| 11 |   | 15 | 21.55  | 21.55  | 21.56       | 21.55    |
| 11 |   | 16 | 19.03  | 19.03  | 19.04       | 19.01    |
| 11 |   | 17 | 15.96  | 15.96  | 15.94       | 15.92    |
| 11 |   | 18 | 12.44  | 12.44  | 12.45       | 12.42    |
| 11 |   | 19 | 8.53   | 8.53   | 8.53        | 8.51     |
| 11 |   | 20 | 4.33   | 4.33   | 4.32        | 4.31     |

# 3. Graph between No. Of Iterations V/s Different Over Relaxation factor:





Conclusion: From the above graph we can conclude that as the Over-relaxation factor Increases upto a certain limit No. Iterations decreases as it reaches its optimum value it again stars increasing.

# **4. Temperature Contour**



**Conclusion:** The Temperature distribution can be seen on above tecplot.