Tuning hyperparameters

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro Raabe
Data Scientist

Hyperparameters

- Influence shape and complexity of trees
- Model parameters whose values control model complexity and are set prior to model training

Hyperparameters in parsnip decision trees:

- min_n: Minimum number of samples required to split a node
- tree_depth : maximum allowed depth of the tree
- cost_complexity : penalty for tree complexity

Why tuning?

Default values set by parsnip:

```
decision_tree(min_n = 20, tree_depth = 30, cost_complexity = 0.01)
```

Work well in many cases, but may not be the best values for all datasets

Goal of hyperparameter tuning is finding the optimal set of hyperparameter values.

Tuning with tidymodels using the tune package

Tuning with tidymodels

Tuning with tidymodels

Tuning with tidymodels

Step 1: Create placeholders: tune()

```
Decision Tree Model Specification
(classification)

Main Arguments:
   tree_depth = tune()
   min_n = tune()
```

- tune() labels parameters for tuning
- Rest of the specification as usual

Step 2: Create a tuning grid: grid_regular()

```
tree_grid <- grid_regular(
          parameters(spec_untuned),
          levels = 3
)</pre>
```

- Helper function parameters()
- Levels : number of grid points for each hyperparameter

Step 3: Tune the grid: tune_grid()

- Builds a model for every grid point
- Evaluates every model out-of-sample (CV)

Usage and arguments:

- Untuned tree spec
- Model formula
- CV folds
- Tuning grid
- List of metrics wrapped in metric_set()

```
tune_results <- tune_grid(
   spec_untuned,
   outcome ~ .,
   resamples = my_folds,
   grid = tree_grid,
   metrics = metric_set(accuracy))</pre>
```

Visualize the tuning results

autoplot(tune_results)

Step 4: Use the best parameters: finalize_model()

```
# Select the best performing parameters
final_params <- select_best(tune_results)
final_params</pre>
```

Let's tune!

MACHINE LEARNING WITH TREE-BASED MODELS IN R

More model measures

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro RaabeData Scientist

Limits of accuracy

- "Naive" model always predicting no can have 98% accuracy
- ightarrow Possible in imbalanced dataset with 98% of negative samples

Sensitivity or true positive rate

Proportion of all positive outcomes that were correctly classified

truth prediction	yes	n o
yes	TP	FP
no	FN	TN

$$sens = \frac{TP}{TP + FN}$$

Specificity or true negative rate

Proportion of all negative outcomes that were correctly classified

truth	yes	no
yes	TP	FP
no	FN	TN

$$spec = \frac{TN}{TN + FP}$$

-1	~~~d; ~+; ~~~		4: 44	+bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
crass	predictions	using	attrerent	threshotas

		threshold_0.5	threshold_0.75
0.8	yes	yes	yes
0.5	yes	yes	no
0.7	yes	yes	no
0.6	yes	yes	no
0.3	yes	no	no
0.5	yes	yes	no
0.3	yes	no	no

ROC (Receiver-operating-characteristic) curve

• Visualizes the performance of a classification model across all possible thresholds

ROC curve and AUC

Area under the ROC curve

- AUC = 0.5
- Performance not better than random chance

- AUC = 1
- ullet All examples correctly classified for every threshold ightarrow perfect model

- AUC = 0
- Every example incorrectly classified

yardstick sensitivity: sens()

```
predictions
```

```
# Calculate single-threshold sensitivity
sens(predictions,
        estimate = .pred_class,
        truth = true_class)
```

Similar arguments as accuracy() and conf_mat()

yardstick ROC: roc_curve()

yardstick AUC: roc_auc()

• Same arguments: data, prediction column, truth column

Let's measure!

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Bagged trees

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro RaabeData Scientist

Many heads are better than one

Bootstrap & aggregation

Bagging = short for Bootstrap Aggregation

- 1. Bootstrapping
- ullet Sampling with replacement o many modified training sets

- 2. Aggregation
- Predictions of different models are aggregated for final prediction:
 - Average (in regression)
 - Majority vote (in classification)

Step 1: Bootstrap and train

Step 2: Aggregate

Coding: Specify the bagged trees

```
spec_bagged <- baguette::bag_tree() %>%
  set_mode("classification") %>%
  set_engine("rpart", times = 100)
```

```
Bagged Decision Tree Model Specification (classification)
Main Arguments:
  cost_complexity = 0
  min_n = 2
Engine-Specific Arguments:
  times = 100
Computational engine: rpart
```

Train all trees

```
model_bagged <- fit(spec_bagged, formula = still_customer ~ ., data = customers_train)</pre>
```

```
parsnip model object
Fit time: 23.9s
Bagged CART (classification with 100 members)
Variable importance scores include:
# A tibble: 19 x 4
                         value std.error used
  term
                         <dbl> <dbl> <int>
  <chr>
1 total_trans_ct
                         876. 3.93 100
2 total_trans_amt
                         800. 4.54 100
                         491. 3.67 100
3 total_revolving_bal
```

Let's bootstrap!

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Random forest

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro RaabeData Scientist

Random forest

- Suited for high-dimensional data
- Easy to use
- Out-of-the-box performance
- Implemented in a variety of packages: ranger, randomForest
- tidymodels interface to these packages: rand_forest() (contained in parsnip package)

ldea

- Basic idea (identical to bagging): train trees on bootstrap samples
- ullet Key difference: **random** predictors across trees o **random** forest

Intuition

Coding: Specify a random forest model

Function name: rand_forest()

Hyperparameters:

 mtry: predictors seen at each node, default:

$$\sqrt{\mathrm{num\ predictors}}$$

- trees: number of trees in the forest
- min_n : smallest node size allowed

```
rand_forest(
    mtry = 4,
    trees = 500,
    min_n = 10) %>%

# Set the mode
set_mode("classification") %>%

# Use engine ranger or randomForest
set_engine("ranger")
```

Coding: Specify a random forest model

```
Random Forest Model Specification
(classification)

Main Arguments:
   trees = 100
Computational engine: ranger
```

Training a forest

```
spec %>% fit(still_customer ~ ., data = customers_train)
```

```
parsnip model object
Fit time: 631ms
Ranger result
Number of trees:
                                   100
Sample size:
                                   9116
Number of independent variables:
                                  19
Mtry:
                                   4
Target node size:
                                   10
```


Variable importance

```
rand_forest(mode = "classification") %>%
    set_engine("ranger", importance = "impurity") %>%
    fit(still_customer ~ ., data = customers_train) %>%
    vip::vip()
```


Let's plant a random forest!

MACHINE LEARNING WITH TREE-BASED MODELS IN R

