CO227: COMPUTER ENGINEERING PROJECT

CE Smart Inventory

Project Proposal Group 13

GROUP 13 - MEMBERS

FERNANDO K.A.I. – E/18/098

FERNANDO K.N.A. – E/18/100

JAYASUNDARA J.W.K.R.B. – E/18/155

Outline

- 1. Project Motivation
- 2. Problem Introduction (Generic Approach)
- 3. Problem Introduction (Department Specific Approach)
- 4. Solution (Generic)
- 5. Solution (Department Specific)
- 6. High Level Plan
- 7. Timeline
- 8. Q&A

1. PROJECT MOTIVATION

- → Identification of real world problems under the scope of a possible software solution.
- → Construction of relatively complex software solutions using the knowledge gained from the previous courses.
- → Practise of teamwork and related technologies.
- → Modeling the real world problem, breaking it down into sub-tasks, and applying deadlines to sub-tasks.

- → Use of appropriate tools and techniques for the sub-tasks to increase efficiency.
- → Preparation of technical documents, report writing.
- → Work with limited guidance and self-learning approach.
- → Output of a real world application, to be used to solve the identified problems.

2. PROBLEM INTRODUCTION (GENERIC APPROACH)

Let's see some inventory systems in different scopes

(Imagine Finding/Locating A Given Item From The Inventory)

Let's see some inventory systems in different scopes

. . .

(Imagine Finding/Locating A Given Item From The Inventory)

Let's see some inventory systems in different scopes

. . .

(Imagine Finding/Locating A Given Item From The Inventory)

- → Finding/locating items is a very common task that we all go through.
- → Sometimes it's frustrating, time consuming, confusing, complex or impossible.
- → This is a common problem in every field (such as agriculture, retail stores, laboratories, libraries, warehouses etc...) that consist of inventory management and storing.

- → So, the solution is not the same to all the fields.
- → Need to follow a specific approach to each field.
- → But could model a generic solution, conceptually.

3. PROBLEM INTRODUCTION (CE DEPARTMENT SPECIFIC APPROACH)

Specific problem we are trying to solve

- → Computer Engineering Department has a quite a big Inventory consists of Tools, Equipments and Electronics that need to be Stored in an Ordered manner
- → A system needs to be implemented to locate what's necessary, easily.

It would be difficult to locate an item in an environment like this

4.GENERIC SOLUTION

What's the best way to manage inventory

- Idea is to create a database that has the locations of the items that needs to be located
- → It can be a 2D or a 3D matrix, so each item has two or three unique numbers that can be used to locate the item.
- → from that 2D or 3D coordinate, it can further be developed to make it easy for user to locate the item

5. DEPARTMENT SPECIFIC SOLUTION

What can we do in our department

- → In a 2D matrix two unique numbers can be used to locate the tool's desk and in that desk's specific position for the tool.
- → A web Application has been suggested as a way to manage this.
- → In primary level database will give the name of the table that tool is located.
- → If more than one copies of the same tool is available it will show that as well.

- → For a more convenient way of locating tools in the inventory, 2D matrix result from the database can be used to switch on two LED bulbs
- → One for the specific desk and one near the specific tool in that table

a larger LED will be attached to show the Desk

a LED will be set to each different tool

6. HIGH LEVEL PLAN

- PHP with Laravel
- HTML + Bootstrap 4
- Vue.js
- GitHub and Project
 Management Tools
- Agile Methodology

Sprint 1 - Consumables

- Consumables -> LEDs, ICs, Resistors, Capacitors, etc..
- Models, Views and Controllers

Sprint 2 - Database Design (Search function)

Sprint 3 - Implement the Model and Controllers

- Search Model
- Search Controller

Sprint 4 - Implement Views

- Admins View
- Users View

Sprint 5 - Prepare Seeders(for tables in db) and Unit Testing

- Insert data about current locations of items
- Unit test every part of the added functionality

Sprint 6 - Implementing AR (Augmented Reality) Solution

• Three.js + WebXR

7. TIMELINE

Timeline

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
_	Project Introduction	Problem Identification & Identifying Technology Stack	Sprint 1: Consumables List	Sprint 2 : Database Design	Sprint 3: Implement Models and Controllers	Sprint 4 : Implement Views	Sprint 5 : Prepare Seeders and Unit Testing	Sprint 6 : Implementin g AR Solution

7. Expertise of the group

- FERNANDO K.A.I. (E/18/098) Database part (Models, Migrations, Seeders)
- FERNANDO K.N.A. (E/18/100) Frontend Views, Routes
- JAYASUNDARA J.W.K.R.B. (E/18/155) Controllers, Unit Testing

Extendability

→ Integrate AR (Augmented Reality) for locating the items

Q & A

Thank You!