Pregunta 1	Dadas $a, b > 0$ y la función $f(x, y) = ax^2 - ax^4 + by^2$, tildar la(s) alternativas correcta(s):
Sin responder aun Puntúa como 25.00 Marcar pregunta	 Seleccione una o más de una: a. No es posible saber si hay algún punto máximo o mínimo para la función sin conocer los valores exactos de a y b. b. La función derivable posee no posee puntos de silla. c. Ninguna de las opciones es correcta. d. La función tiene 1 punto crítico que se pueden identificar utilizando el criterio de la primera derivada para extremos locales. e. El criterio de la segunda derivada para valores extremos locales es concluyente al evaluarlo en el origen de coordenadas. f. Independientemente de los valores de a y b la función tiene un mínimo local.
Pregunta 2 Sin responder aún Puntúa como 25,00 Marcar pregunta	Tildar la(s) alternativas correcta(s): Seleccione una o más de una:

	 e. El criterio de la segunda derivada para valores extremos locales es concluyente al evaluarlo en el origen de coordenadas.
	$\ \square$ f. Independientemente de los valores de a y b la función tiene un mínimo local.
Pregunta 2 Sin responder aun Puntua como 25,00 Marcar pregunta	 Tildar la(s) alternativas correcta(s): Seleccione una o más de una: a. Sea f(x,y). Si las derivadas parciales af y af existen y son iguales a una constante en una región abierta que contiene al punto (x0, y0) entonces la función es continua en ese punto. b. Sea f(x,y). Si las derivadas parciales af y af existen en una región abierta que contiene al punto (x0, y0) entonces la función es continua en ese punto. c. Ninguna de las opciones es correcta. d. Si una función posee derivadas direccionales en todas las direcciones en el punto (x0, y0) entonces existen las derivadas parciales en ese punto.
	e. Si una función $f(x,y)$ tiene límites iguales cuando considero las trayectorias $y=mx-m,m\in\mathbb{R}$ cuando $(x,y)\to(1,0),$ entonces $\lim_{(x,y)\to(1,0)}f(x,y)$ existe y es igual al límite obtenido por las trayectorias.
Pregunta 3 Sin responder aun Puntua como 25,00 Marcar	Tildar la(s) alternativa(s) correcta(s): Seleccione una o más de una:
pregunta	$0 \leq x \leq y$; $0 \leq y \leq 1$. Para el cálculo de la integral de superficie $\iint_S (z-x) dS$.

Pregunta 3

Marcar Marcar

pregunta

Sin responder aun

Puntúa como 25.00

Seleccione una o más de una:

Tildar la(s) alternativa(s) correcta(s):

a. Sea S la porción de superficie de $z=x+y^2$ correspondiente a

 $0 \le x \le y$; $0 \le y \le 1$. Para el cálculo de la integral de superficie $\iint_S (z-x) dS$. se tiene que $dS = \sqrt{2 + 4y^2}$.

 \Box b. $\iint_S (z-x)dS = \frac{1}{20}(6\sqrt{6}+\sqrt{2}).$

Ayuda: para el cálculo de la integral definida, es aconsejable conseguir la primitiva por el método de sustitución.

- c. Sea g(x,y,z) un campo escalar y S la superficie del primer apartado. $\iint_S g \, dS$ representa el flujo de un determinado fluido a través de S (hacia arriba o hacia abajo, según como sea la orientación de S) por unidad de tiempo.
- d. Ninguna de las opciones es correcta.

Tildar la(s) alternativa(s) correcta(s):

Pregunta 4

VP Marcar pregunta

Sin responder aun

Seleccione una o más de una: Puntúa como 25.00

a.

Sea $C=C_1\cup C_2$, donde C_1 C_2 son curvas cerradas, simples y $C_2\subset C_1$. Supongamos que C_1 y C_2 se recorren ambas en sentido antihorario (ver figura). Entonces, si Ω es la región comprendida por C, entonces $\int_C Pdx + Qdy = \iint_\Omega \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \, dx \, dy \, \mathrm{donde} \, P \, , Q \, \mathrm{son} \, \mathrm{campos} \, \mathrm{escalares}$ continuamente derivables en Ω .

- b. Sea C una curva cerrada, simple, orientada positivamente que contiene al origen. Entonces $\int_C -\frac{y}{r^2+n^2} dx + \frac{x}{r^2+n^2} dy = 0$.
- c. Sea C una curva cerrada, simple, orientada positivamente y tal que $(0,0) \notin \Omega$, donde Ω es la región encerrada por C. Entonces $\int_C -\frac{y}{x^2+y^2} dx + \frac{x}{x^2+y^2} dy = 2\pi$.