Predicción On-Policy con Aproximación de Funciones

Fernando Lozano

Universidad de los Andes

18 de abril de 2023

• Aproximar v_{π} con datos generados por π (on policy).

- Aproximar v_{π} con datos generados por π (on policy).
- \bullet Aproximador es función paramétrica $\hat{v}(s,\mathbf{w})$

- Aproximar v_{π} con datos generados por π (on policy).
- Aproximador es función paramétrica $\hat{v}(s, \mathbf{w})$
 - Función lineal $\mathbf{w}^T \mathbf{s}$.

- Aproximar v_{π} con datos generados por π (on policy).
- Aproximador es función paramétrica $\hat{v}(s, \mathbf{w})$
 - Función lineal $\mathbf{w}^T \mathbf{s}$.
 - Función lineal de descriptores \mathbf{z} , $\mathbf{w}^T \mathbf{z}$.

- Aproximar v_{π} con datos generados por π (on policy).
- Aproximador es función paramétrica $\hat{v}(s, \mathbf{w})$
 - Función lineal $\mathbf{w}^T \mathbf{s}$.
 - Función lineal de descriptores $\mathbf{z}, \mathbf{w}^T \mathbf{z}$.
 - ightharpoonup Red neuronal con pesos \mathbf{w} .

- Aproximar v_{π} con datos generados por π (on policy).
- Aproximador es función paramétrica $\hat{v}(s, \mathbf{w})$
 - Función lineal $\mathbf{w}^T \mathbf{s}$.
 - Función lineal de descriptores $\mathbf{z}, \mathbf{w}^T \mathbf{z}$.
 - Red neuronal con pesos w.
 - ▶ Kernels, árboles de decisión,

- Aproximar v_{π} con datos generados por π (on policy).
- Aproximador es función paramétrica $\hat{v}(s, \mathbf{w})$
 - Función lineal $\mathbf{w}^T \mathbf{s}$.
 - Función lineal de descriptores \mathbf{z} , $\mathbf{w}^T \mathbf{z}$.
 - Red neuronal con pesos w.
 - ► Kernels, árboles de decisión,
- Ajustar parámetros **w** para que $v_{\pi}(s) \approx \hat{v}(s, \mathbf{w})$:

- Aproximar v_{π} con datos generados por π (on policy).
- Aproximador es función paramétrica $\hat{v}(s, \mathbf{w})$
 - Función lineal $\mathbf{w}^T \mathbf{s}$.
 - Función lineal de descriptores \mathbf{z} , $\mathbf{w}^T \mathbf{z}$.
 - ▶ Red neuronal con pesos w.
 - ► Kernels, árboles de decisión,
- Ajustar parámetros **w** para que $v_{\pi}(s) \approx \hat{v}(s, \mathbf{w})$:
 - ▶ Dimensión de $\mathbf{w} \ll |\mathcal{S}|$.

- Aproximar v_{π} con datos generados por π (on policy).
- Aproximador es función paramétrica $\hat{v}(s, \mathbf{w})$
 - Función lineal $\mathbf{w}^T \mathbf{s}$.
 - Función lineal de descriptores \mathbf{z} , $\mathbf{w}^T \mathbf{z}$.
 - ▶ Red neuronal con pesos w.
 - ► Kernels, árboles de decisión,
- Ajustar parámetros **w** para que $v_{\pi}(s) \approx \hat{v}(s, \mathbf{w})$:
 - ▶ Dimensión de $\mathbf{w} \ll |\mathcal{S}|$.
 - Generalización.

- Aproximar v_{π} con datos generados por π (on policy).
- Aproximador es función paramétrica $\hat{v}(s, \mathbf{w})$
 - Función lineal $\mathbf{w}^T \mathbf{s}$.
 - Función lineal de descriptores \mathbf{z} , $\mathbf{w}^T \mathbf{z}$.
 - ightharpoonup Red neuronal con pesos \mathbf{w} .
 - ► Kernels, árboles de decisión,
- Ajustar parámetros **w** para que $v_{\pi}(s) \approx \hat{v}(s, \mathbf{w})$:
 - ▶ Dimensión de $\mathbf{w} \ll |\mathcal{S}|$.
 - Generalización.
 - ▶ Ajustar pesos cambia $\hat{v}(s, \mathbf{w})$ para muchos estados.

- Aprendizaje supervisado:
 - ▶ Datos i.i.d. $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ donde se asume que $y_i \approx f(\mathbf{x}_i)$.

- Aprendizaje supervisado:
 - ▶ Datos i.i.d. $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ donde se asume que $y_i \approx f(\mathbf{x}_i)$.
 - ▶ Aprendizaje ajusta \mathbf{w}_k a \mathbf{w}_{k+1} de manera que $\hat{f}(\mathbf{x}_i, \mathbf{w}_{k+1}) \mapsto \mathbf{y}_i$.

- Aprendizaje supervisado:
 - ▶ Datos i.i.d. $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ donde se asume que $y_i \approx f(\mathbf{x}_i)$.
 - ▶ Aprendizaje ajusta \mathbf{w}_k a \mathbf{w}_{k+1} de manera que $\hat{f}(\mathbf{x}_i, \mathbf{w}_{k+1}) \mapsto \mathbf{y}_i$.
- Al aproximar $v_{\pi}(s)$, queremos ajustar **w** para que $\hat{v}(s, \mathbf{w}) \mapsto v_{\pi}(s)$.

- Aprendizaje supervisado:
 - ▶ Datos i.i.d. $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ donde se asume que $y_i \approx f(\mathbf{x}_i)$.
 - ▶ Aprendizaje ajusta \mathbf{w}_k a \mathbf{w}_{k+1} de manera que $\hat{f}(\mathbf{x}_i, \mathbf{w}_{k+1}) \mapsto \mathbf{y}_i$.
- Al aproximar $v_{\pi}(s)$, queremos ajustar **w** para que $\hat{v}(s, \mathbf{w}) \mapsto v_{\pi}(s)$.
- No conocemos $v_{\pi}(s)$, sino valor estimado.

- Aprendizaje supervisado:
 - ▶ Datos i.i.d. $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ donde se asume que $y_i \approx f(\mathbf{x}_i)$.
 - ▶ Aprendizaje ajusta \mathbf{w}_k a \mathbf{w}_{k+1} de manera que $\hat{f}(\mathbf{x}_i, \mathbf{w}_{k+1}) \mapsto \mathbf{y}_i$.
- Al aproximar $v_{\pi}(s)$, queremos ajustar **w** para que $\hat{v}(s, \mathbf{w}) \mapsto v_{\pi}(s)$.
- No conocemos $v_{\pi}(s)$, sino valor estimado.
 - ▶ DP: $\mathbb{E}_{\pi} [R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) \mid S_t = s]$

- Aprendizaje supervisado:
 - ▶ Datos i.i.d. $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ donde se asume que $y_i \approx f(\mathbf{x}_i)$.
 - ▶ Aprendizaje ajusta \mathbf{w}_k a \mathbf{w}_{k+1} de manera que $\hat{f}(\mathbf{x}_i, \mathbf{w}_{k+1}) \mapsto \mathbf{y}_i$.
- Al aproximar $v_{\pi}(s)$, queremos ajustar **w** para que $\hat{v}(s, \mathbf{w}) \mapsto v_{\pi}(s)$.
- No conocemos $v_{\pi}(s)$, sino valor estimado.
 - ▶ DP: $\mathbb{E}_{\pi} [R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) | S_t = s]$
 - ▶ Montecarlo: G_t .

- Aprendizaje supervisado:
 - ▶ Datos i.i.d. $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ donde se asume que $y_i \approx f(\mathbf{x}_i)$.
 - ▶ Aprendizaje ajusta \mathbf{w}_k a \mathbf{w}_{k+1} de manera que $\hat{f}(\mathbf{x}_i, \mathbf{w}_{k+1}) \mapsto \mathbf{y}_i$.
- Al aproximar $v_{\pi}(s)$, queremos ajustar **w** para que $\hat{v}(s, \mathbf{w}) \mapsto v_{\pi}(s)$.
- No conocemos $v_{\pi}(s)$, sino valor estimado.
 - ▶ DP: $\mathbb{E}_{\pi} [R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) | S_t = s]$
 - ightharpoonup Montecarlo: G_t .
 - ► TD(0): $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$

- Aprendizaje supervisado:
 - ▶ Datos i.i.d. $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ donde se asume que $y_i \approx f(\mathbf{x}_i)$.
 - ▶ Aprendizaje ajusta \mathbf{w}_k a \mathbf{w}_{k+1} de manera que $\hat{f}(\mathbf{x}_i, \mathbf{w}_{k+1}) \mapsto \mathbf{y}_i$.
- Al aproximar $v_{\pi}(s)$, queremos ajustar **w** para que $\hat{v}(s, \mathbf{w}) \mapsto v_{\pi}(s)$.
- No conocemos $v_{\pi}(s)$, sino valor estimado.
 - ▶ DP: $\mathbb{E}_{\pi} [R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) | S_t = s]$
 - ▶ Montecarlo: G_t .
 - ► TD(0): $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$
 - ▶ TD(n): $G_{t:t+n}$

- Aprendizaje supervisado:
 - ▶ Datos i.i.d. $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ donde se asume que $y_i \approx f(\mathbf{x}_i)$.
 - ▶ Aprendizaje ajusta \mathbf{w}_k a \mathbf{w}_{k+1} de manera que $\hat{f}(\mathbf{x}_i, \mathbf{w}_{k+1}) \mapsto \mathbf{y}_i$.
- Al aproximar $v_{\pi}(s)$, queremos ajustar **w** para que $\hat{v}(s, \mathbf{w}) \mapsto v_{\pi}(s)$.
- No conocemos $v_{\pi}(s)$, sino valor estimado.
 - ▶ DP: $\mathbb{E}_{\pi} [R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) | S_t = s]$
 - ▶ Montecarlo: G_t .
 - ► TD(0): $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$
 - ▶ TD(n): $G_{t:t+n}$
- Datos generados incrementalmente

- Aprendizaje supervisado:
 - ▶ Datos i.i.d. $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ donde se asume que $y_i \approx f(\mathbf{x}_i)$.
 - ▶ Aprendizaje ajusta \mathbf{w}_k a \mathbf{w}_{k+1} de manera que $\hat{f}(\mathbf{x}_i, \mathbf{w}_{k+1}) \mapsto \mathbf{y}_i$.
- Al aproximar $v_{\pi}(s)$, queremos ajustar **w** para que $\hat{v}(s, \mathbf{w}) \mapsto v_{\pi}(s)$.
- No conocemos $v_{\pi}(s)$, sino valor estimado.
 - ▶ DP: $\mathbb{E}_{\pi} [R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) | S_t = s]$
 - ▶ Montecarlo: G_t .
 - ► TD(0): $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$
 - ightharpoonup TD(n): $G_{t:t+n}$
- Datos generados incrementalmente→ Aprendizaje en línea.

- Aprendizaje supervisado:
 - ▶ Datos i.i.d. $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ donde se asume que $y_i \approx f(\mathbf{x}_i)$.
 - ▶ Aprendizaje ajusta \mathbf{w}_k a \mathbf{w}_{k+1} de manera que $\hat{f}(\mathbf{x}_i, \mathbf{w}_{k+1}) \mapsto \mathbf{y}_i$.
- Al aproximar $v_{\pi}(s)$, queremos ajustar **w** para que $\hat{v}(s, \mathbf{w}) \mapsto v_{\pi}(s)$.
- No conocemos $v_{\pi}(s)$, sino valor estimado.
 - ▶ DP: $\mathbb{E}_{\pi} [R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) | S_t = s]$
 - ightharpoonup Montecarlo: G_t .
 - ► TD(0): $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$
 - ▶ TD(n): $G_{t:t+n}$
- \bullet Datos generados incrementalmente
— Aprendizaje en línea.
- Aprender función no estacionaria.

$$\overline{VE}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \right]^2$$

• Error cuadrático medio de valor:

$$\overline{VE}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \right]^2$$

 \blacktriangleright $\mu(s)$: importancia del estado (p.ej. estados visitados más frecuentemente).

$$\overline{VE}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \right]^2$$

- \blacktriangleright $\mu(s)$: importancia del estado (p.ej. estados visitados más frecuentemente).
- $\blacktriangleright \mu(s)$ es una distribución:

$$\overline{VE}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \right]^2$$

- \blacktriangleright $\mu(s)$: importancia del estado (p.ej. estados visitados más frecuentemente).
- $\blacktriangleright \ \mu(s)$ es una distribución: $\mu(s) \geq 0, \, \sum_{s \in \mathcal{S}} \mu(s) = 1$

$$\overline{VE}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \right]^2$$

- \blacktriangleright $\mu(s)$: importancia del estado (p.ej. estados visitados más frecuentemente).
- $\mu(s)$ es una distribución: $\mu(s) \ge 0, \sum_{s \in \mathcal{S}} \mu(s) = 1$
- \blacktriangleright En tareas no episódicas $\mu(s)$ es distribución estacionaria.

$$\overline{VE}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \right]^2$$

- \blacktriangleright $\mu(s)$: importancia del estado (p.ej. estados visitados más frecuentemente).
- $\mu(s)$ es una distribución: $\mu(s) \ge 0, \sum_{s \in \mathcal{S}} \mu(s) = 1$
- ▶ En tareas no episódicas $\mu(s)$ es distribución estacionaria.
- Minimizar $\overline{VE}(\mathbf{w})$:

$$\overline{VE}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \right]^2$$

- \blacktriangleright $\mu(s)$: importancia del estado (p.ej. estados visitados más frecuentemente).
- $\mu(s)$ es una distribución: $\mu(s) \ge 0, \sum_{s \in \mathcal{S}} \mu(s) = 1$
- \blacktriangleright En tareas no episódicas $\mu(s)$ es distribución estacionaria.
- Minimizar $\overline{VE}(\mathbf{w})$:
 - \blacktriangleright En general no es una función convexa \rightarrow mínimo local.

$$\overline{VE}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \right]^2$$

- \blacktriangleright $\mu(s)$: importancia del estado (p.ej. estados visitados más frecuentemente).
- ▶ $\mu(s)$ es una distribución: $\mu(s) \ge 0$, $\sum_{s \in \mathcal{S}} \mu(s) = 1$
- \blacktriangleright En tareas no episódicas $\mu(s)$ es distribución estacionaria.
- Minimizar $\overline{VE}(\mathbf{w})$:
 - ightharpoonup En general no es una función convexa ightharpoonup mínimo local.
 - ► En muchos casos no hay garantía de convergencia.

Descenso de gradiente estocástico

Descenso de gradiente estocástico

• Suponga que se generan estados con probabilidad $\mu(s)$.

Descenso de gradiente estocástico

- Suponga que se generan estados con probabilidad $\mu(s)$.
- SGD:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla_{\mathbf{w}} \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right]^2$$

- Suponga que se generan estados con probabilidad $\mu(s)$.
- SGD:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla_{\mathbf{w}} \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right]^2$$
$$= \mathbf{w}_t + \alpha \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}_t)$$

- Suponga que se generan estados con probabilidad $\mu(s)$.
- SGD:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla_{\mathbf{w}} \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right]^2$$
$$= \mathbf{w}_t + \alpha \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}_t)$$

• No conocemos $v_{\pi}(S_t)$, reemplazando por valor estimado U_t :

- Suponga que se generan estados con probabilidad $\mu(s)$.
- SGD:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla_{\mathbf{w}} \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right]^2$$
$$= \mathbf{w}_t + \alpha \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}_t)$$

• No conocemos $v_{\pi}(S_t)$, reemplazando por valor estimado U_t :

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[U_t - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}_t)$$

- Suponga que se generan estados con probabilidad $\mu(s)$.
- SGD:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla_{\mathbf{w}} \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right]^2$$
$$= \mathbf{w}_t + \alpha \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}_t)$$

• No conocemos $v_{\pi}(S_t)$, reemplazando por valor estimado U_t :

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[U_t - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}_t)$$

• Si U_t es un estimativo no sesgado de $v_{\pi}(S_t)$ y $\sum_{t=1}^{\infty} \alpha_t = \infty$, $\sum_{t=1}^{\infty} \alpha_t^2 < \infty$, \mathbf{w}_t converge a un mínimo local de $\overline{VE}(\mathbf{w})$.

- Suponga que se generan estados con probabilidad $\mu(s)$.
- SGD:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla_{\mathbf{w}} \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right]^2$$
$$= \mathbf{w}_t + \alpha \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}_t)$$

• No conocemos $v_{\pi}(S_t)$, reemplazando por valor estimado U_t :

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[U_t - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}_t)$$

- Si U_t es un estimativo no sesgado de $v_{\pi}(S_t)$ y $\sum_{t=1}^{\infty} \alpha_t = \infty$, $\sum_{t=1}^{\infty} \alpha_t^2 < \infty$, \mathbf{w}_t converge a un mínimo local de $\overline{VE}(\mathbf{w})$.
- Por ejemplo $\mathbb{E}_{\pi}[G_t \mid S_t = s] = v_{\pi}(s)$

Require: Política π . función diferenciable $\hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R}. \ \alpha > 0$ Incialice **w**

Require: Política π . función diferenciable $\hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R}. \ \alpha > 0$ Incialice \mathbf{w} repeat

Require: Política π . función diferenciable $\hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R}. \ \alpha > 0$ Incialice \mathbf{w} repeat

Genere episodio $\pi: S_0, A_0, R_1, S_1, A_1, R_2, \dots S_{T-1}, A_{T-1}, R_T$

Require: Política π . función diferenciable $\hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R}. \ \alpha > 0$ Incialice \mathbf{w} repeat

Genere episodio $\pi: S_0, A_0, R_1, S_1, A_1, R_2, \dots S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$

Require: Política π . función diferenciable $\hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R}$. $\alpha > 0$ Incialize w repeat

Genere episodio
$$\pi: S_0, A_0, R_1, S_1, A_1, R_2, \dots S_{T-1}, A_{T-1}, R_T$$

$$G \leftarrow 0$$
for $t = T - 1$, $T = 2$

Require: Política π . función diferenciable $\hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R}$. $\alpha > 0$ Incialice \mathbf{w} repeat Genere episodio $\pi: S_0, A_0, R_1, S_1, A_1, R_2, \dots S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$ for $t = T - 1, T - 2, \dots, 0$ do $G \leftarrow G + R_{t+1}$ $\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[G - \hat{v}(S_t, \mathbf{w}) \right] \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})$

```
Require: Política \pi. función diferenciable \hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R}. \alpha > 0

Incialice \mathbf{w}

repeat

Genere episodio \pi: S_0, A_0, R_1, S_1, A_1, R_2, \dots S_{T-1}, A_{T-1}, R_T

G \leftarrow 0

for t = T - 1, T - 2, \dots, 0 do

G \leftarrow G + R_{t+1}

\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[ G - \hat{v}(S_t, \mathbf{w}) \right] \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})

end for
```

```
Require: Política \pi. función diferenciable \hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R}. \alpha > 0 Incialice \mathbf{w} repeat

Genere episodio \pi: S_0, A_0, R_1, S_1, A_1, R_2, \dots S_{T-1}, A_{T-1}, R_T
G \leftarrow 0
for t = T - 1, T - 2, \dots, 0 do
G \leftarrow G + R_{t+1}
\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[ G - \hat{v}(S_t, \mathbf{w}) \right] \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})
end for until \infty
```

Ejemplo: Random walk con 1000 estados

Figure 9.1: Function approximation by state aggregation on the 1000-state random walk task, using the gradient Monte Carlo algorithm (page 202).

• Agregación de a 100 estados.

Ejemplo: Random walk con 1000 estados

Figure 9.1: Function approximation by state aggregation on the 1000-state random walk task, using the gradient Monte Carlo algorithm (page 202).

- Agregación de a 100 estados.
- $\nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}) = \begin{cases} 1 & \text{Grupo estado visitado}, \\ & \text{otros.} \end{cases}$
- 100000 episodios, $\alpha = 2 \times 10^{-5}$

• Si U_t usa bootstrapping, depende de \mathbf{w}_t y no es un estimativo sin sesgo de $v_{\pi}(s)$.

- Si U_t usa bootstrapping, depende de \mathbf{w}_t y no es un estimativo sin sesgo de $v_{\pi}(s)$.
- En la actualización SDG:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla_{\mathbf{w}} \left[\begin{array}{c} U_t \\ \uparrow \\ \text{depende de } \mathbf{w} \end{array} - \hat{v}(S_t, \mathbf{w}_t) \right]^2$$

- Si U_t usa bootstrapping, depende de \mathbf{w}_t y no es un estimativo sin sesgo de $v_{\pi}(s)$.
- En la actualización SDG:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla_{\mathbf{w}} \begin{bmatrix} U_t & -\hat{v}(S_t, \mathbf{w}_t) \end{bmatrix}^2$$

$$= \mathbf{w}_t + \alpha \left[U_t - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla_{\mathbf{w}} \left[\hat{v}(S_t, \mathbf{w}_t) - U_t \right]$$

- Si U_t usa bootstrapping, depende de \mathbf{w}_t y no es un estimativo sin sesgo de $v_{\pi}(s)$.
- En la actualización SDG:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla_{\mathbf{w}} \begin{bmatrix} U_t & -\hat{v}(S_t, \mathbf{w}_t) \end{bmatrix}^2$$

$$\stackrel{\uparrow}{\text{depende de } \mathbf{w}}$$

$$= \mathbf{w}_t + \alpha \left[U_t - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla_{\mathbf{w}} \left[\hat{v}(S_t, \mathbf{w}_t) - \underline{U}_t \right]$$

• Ignorar parte del gradiente: semigradiente.

• Aprendizaje más rápido.

- Aprendizaje más rápido.
- Aprendizaje en línea, sin esperar al final del episodio.

- Aprendizaje más rápido.
- Aprendizaje en línea, sin esperar al final del episodio.
- Aplicable en tareas no episódicas.

- Aprendizaje más rápido.
- Aprendizaje en línea, sin esperar al final del episodio.
- Aplicable en tareas no episódicas.
- Convergencia menos robusta.

Require: Política π , $\alpha \in (0,1]$

Require: Política π , $\alpha \in (0,1]$

Require: función diferenciadle $\hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R} \text{ con } \hat{v}(\text{terminal}, .) = 0$

Incialize \mathbf{w}

Require: Política π , $\alpha \in (0,1]$

Require: función diferenciadle $\hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R}$ con $\hat{v}(\text{terminal}, .) = 0$

Incialice \mathbf{w}

repeat ▷ para cada episodio

Require: Política π , $\alpha \in (0,1]$

Require: función diferenciadle $\hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R}$ con $\hat{v}(\text{terminal}, .) = 0$

Incialice \mathbf{w}

repeat ▷ para cada episodio

Inicialize S

```
Require: Política \pi, \alpha \in (0,1]
```

Require: función diferenciadle $\hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R}$ con $\hat{v}(\text{terminal}, .) = 0$

Incialice \mathbf{w}

repeat ▷ para cada episodio

Inicialize S

repeat ▷ para cada paso del episodio

```
 \begin{array}{lll} \textbf{Require:} & \text{Política } \pi, \ \alpha \in (0,1] \\ \textbf{Require:} & \text{función diferenciadle } \hat{v} \ : \ \mathcal{S} \times \mathbb{R}^d \to \mathbb{R} \ \text{con } \hat{v}(\text{terminal},.) = 0 \\ & \text{Incialice } \mathbf{w} \\ & \textbf{repeat} & \qquad \qquad \triangleright \ \text{para cada episodio} \\ & \text{Inicialice } S \\ & \textbf{repeat} & \qquad \qquad \triangleright \ \text{para cada paso del episodio} \\ & A \leftarrow \ \text{acción dada por } \pi \ \text{en } S \\ \end{array}
```

```
Require: Política \pi, \alpha \in (0,1]

Require: función diferenciadle \hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R} con \hat{v}(\text{terminal}, .) = 0

Incialice \mathbf{w}

repeat \Rightarrow para cada episodio

Inicialice S

repeat \Rightarrow para cada paso del episodio

A \leftarrow acción dada por \pi en S

Tome acción A, observe R, y nuevo estado S'
```

```
Require: Política \pi, \alpha \in (0,1]

Require: función diferenciadle \hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R} con \hat{v}(\text{terminal}, .) = 0

Incialice \mathbf{w}

repeat \Rightarrow para cada episodio

Inicialice S

repeat \Rightarrow para cada paso del episodio

A \leftarrow acción dada por \pi en S

Tome acción A, observe R, y nuevo estado S'

\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[ R_t + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w}) \right] \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w})
```

```
 \begin{aligned}  & \textbf{Require:} \  \, \text{Política} \,\, \pi, \, \alpha \in (0,1] \\ & \textbf{Require:} \,\, \text{función diferenciadle} \,\, \hat{v} \,:\, \mathcal{S} \times \mathbb{R}^d \to \mathbb{R} \,\, \text{con} \,\, \hat{v}(\text{terminal},.) = 0 \\ & \text{Incialice} \,\, \textbf{w} \\ & \textbf{repeat} \qquad \qquad \triangleright \, \text{para cada episodio} \\ & \text{Inicialice} \,\, S \\ & \textbf{repeat} \qquad \qquad \triangleright \, \text{para cada paso del episodio} \\ & A \leftarrow \, \text{acción dada por} \,\, \pi \,\, \text{en} \,\, S \\ & \text{Tome acción} \,\, A, \, \text{observe} \,\, R, \, \text{y nuevo estado} \,\, S' \\ & \textbf{w} \leftarrow \textbf{w} + \alpha \, [R_t + \gamma \hat{v}(S', \textbf{w}) - \hat{v}(S, \textbf{w})] \, \nabla_{\textbf{w}} \hat{v}(S, \textbf{w}) \\ & S \leftarrow S' \end{aligned}
```

```
Require: Política \pi, \alpha \in (0,1]
Require: función diferenciadle \hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R} con \hat{v}(\text{terminal..}) = 0
   Incialice w
   repeat
                                                                                     ▶ para cada episodio
         Inicialize S
         repeat

    para cada paso del episodio

               A \leftarrow acción dada por \pi en S
               Tome acción A, observe R, y nuevo estado S'
              \mathbf{w} \leftarrow \mathbf{w} + \alpha \left[ \mathbf{R}_t + \gamma \hat{\mathbf{v}}(S', \mathbf{w}) - \hat{\mathbf{v}}(S, \mathbf{w}) \right] \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S, \mathbf{w})
              S \leftarrow S'
         until S es terminal
```

```
Require: Política \pi, \alpha \in (0,1]
Require: función diferenciadle \hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R} con \hat{v}(\text{terminal..}) = 0
   Incialice w
   repeat
                                                                                    ▶ para cada episodio
         Inicialize S
         repeat

    para cada paso del episodio

               A \leftarrow acción dada por \pi en S
               Tome acción A, observe R, y nuevo estado S'
              \mathbf{w} \leftarrow \mathbf{w} + \alpha \left[ \mathbf{R}_t + \gamma \hat{\mathbf{v}}(S', \mathbf{w}) - \hat{\mathbf{v}}(S, \mathbf{w}) \right] \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S, \mathbf{w})
              S \leftarrow S'
         until S es terminal
   until \infty
```

• Representación del estado en espacio de características:

$$\mathbf{x}(s) = \begin{bmatrix} x_1(s) & x_2(s) & \dots & x_d(s) \end{bmatrix}$$

con $x_i(s): \mathcal{S} \to \mathbb{R}$

• Representación del estado en espacio de características:

$$\mathbf{x}(s) = \begin{bmatrix} x_1(s) & x_2(s) & \dots & x_d(s) \end{bmatrix}$$

con
$$x_i(s) : \mathcal{S} \to \mathbb{R}$$

• Aproximar con función lineal de características:

$$\hat{v}(s, \mathbf{w}) \doteq \mathbf{w}^T \mathbf{x}$$

• Representación del estado en espacio de características:

$$\mathbf{x}(s) = \begin{bmatrix} x_1(s) & x_2(s) & \dots & x_d(s) \end{bmatrix}$$

$$\operatorname{con} x_i(s) : \mathcal{S} \to \mathbb{R}$$

• Aproximar con función lineal de características:

$$\hat{v}(s, \mathbf{w}) \doteq \mathbf{w}^T \mathbf{x} \doteq \sum_{i=1}^d w_i x_i(s)$$

• Representación del estado en espacio de características:

$$\mathbf{x}(s) = \begin{bmatrix} x_1(s) & x_2(s) & \dots & x_d(s) \end{bmatrix}$$

$$\operatorname{con} x_i(s) : \mathcal{S} \to \mathbb{R}$$

• Aproximar con función lineal de características:

$$\hat{v}(s, \mathbf{w}) \doteq \mathbf{w}^T \mathbf{x} \doteq \sum_{i=1}^d w_i x_i(s) \longrightarrow \text{funciones base}$$

• Representación del estado en espacio de características:

$$\mathbf{x}(s) = \begin{bmatrix} x_1(s) & x_2(s) & \dots & x_d(s) \end{bmatrix}$$

$$\operatorname{con} x_i(s) : \mathcal{S} \to \mathbb{R}$$

• Aproximar con función lineal de características:

$$\hat{v}(s, \mathbf{w}) \doteq \mathbf{w}^T \mathbf{x} \doteq \sum_{i=1}^d w_i x_i(s) \longrightarrow \text{funciones base}$$

• SGD:

• Representación del estado en espacio de características:

$$\mathbf{x}(s) = \begin{bmatrix} x_1(s) & x_2(s) & \dots & x_d(s) \end{bmatrix}$$

$$\operatorname{con} x_i(s) : \mathcal{S} \to \mathbb{R}$$

• Aproximar con función lineal de características:

$$\hat{v}(s, \mathbf{w}) \doteq \mathbf{w}^T \mathbf{x} \doteq \sum_{i=1}^d w_i x_i(s) \longrightarrow \text{funciones base}$$

• SGD:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[\hat{v}(S_t, \mathbf{w}_t) - U_t \right] \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}_t)$$

• Representación del estado en espacio de características:

$$\mathbf{x}(s) = \begin{bmatrix} x_1(s) & x_2(s) & \dots & x_d(s) \end{bmatrix}$$

$$\operatorname{con} x_i(s) : \mathcal{S} \to \mathbb{R}$$

• Aproximar con función lineal de características:

$$\hat{v}(s, \mathbf{w}) \doteq \mathbf{w}^T \mathbf{x} \doteq \sum_{i=1}^d w_i x_i(s) \longrightarrow \text{funciones base}$$

• SGD:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[\hat{v}(S_t, \mathbf{w}_t) - U_t \right] \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}_t)$$
$$= \mathbf{w}_t + \alpha \left[\hat{v}(S_t, \mathbf{w}_t) - U_t \right] \mathbf{x}(S_t)$$

 \bullet Función $\overline{VE}(\mathbf{w})$ es convexa

- \bullet Función $\overline{VE}(\mathbf{w})$ es convexa
 - Mínimo local es mínimo global.

- Función $\overline{VE}(\mathbf{w})$ es convexa
 - Mínimo local es mínimo global.
 - ► Convergencia a mínimo local ⇒ convergencia a mínimo global.

- Función $\overline{VE}(\mathbf{w})$ es convexa
 - Mínimo local es mínimo global.
 - ► Convergencia a mínimo local ⇒ convergencia a mínimo global.
- En Gradiente Montecarlo con $\sum_{t=1}^{\infty} \alpha_t = \infty$, $\sum_{t=1}^{\infty} \alpha_t^2 < \infty$, \mathbf{w}_t converge al mínimo global de $\overline{VE}(\mathbf{w})$.

- Función $\overline{VE}(\mathbf{w})$ es convexa
 - Mínimo local es mínimo global.
 - ► Convergencia a mínimo local ⇒ convergencia a mínimo global.
- En Gradiente Montecarlo con $\sum_{t=1}^{\infty} \alpha_t = \infty$, $\sum_{t=1}^{\infty} \alpha_t^2 < \infty$, \mathbf{w}_t converge al mínimo global de $\overline{VE}(\mathbf{w})$.

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left(R_{t+1} + \gamma \mathbf{w}_t^T \mathbf{x}_{t+1} - \mathbf{w}_t^T \mathbf{x}_t \right) \mathbf{x}_t$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left(R_{t+1} + \gamma \mathbf{w}_t^T \mathbf{x}_{t+1} - \mathbf{w}_t^T \mathbf{x}_t \right) \mathbf{x}_t$$
$$= \mathbf{w}_t + \alpha \left(R_{t+1} \mathbf{x}_t - \mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^T \mathbf{w}_t \right)$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left(R_{t+1} + \gamma \mathbf{w}_t^T \mathbf{x}_{t+1} - \mathbf{w}_t^T \mathbf{x}_t \right) \mathbf{x}_t$$
$$= \mathbf{w}_t + \alpha \left(R_{t+1} \mathbf{x}_t - \mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^T \mathbf{w}_t \right)$$

$$\mathbb{E}\left[\mathbf{w}_{t+1} \mid \mathbf{w}_{t}\right] = \mathbf{w}_{t} + \alpha \left(\mathbb{E}\left[R_{t+1}\mathbf{x}_{t}\right] - \mathbb{E}\left[\mathbf{x}_{t}(\mathbf{x}_{t} - \gamma\mathbf{x}_{t+1})^{T}\right]\mathbf{w}_{t}\right)$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left(R_{t+1} + \gamma \mathbf{w}_t^T \mathbf{x}_{t+1} - \mathbf{w}_t^T \mathbf{x}_t \right) \mathbf{x}_t$$
$$= \mathbf{w}_t + \alpha \left(R_{t+1} \mathbf{x}_t - \mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^T \mathbf{w}_t \right)$$
$$\mathbb{E} \left[\mathbf{w}_{t+1} \mid \mathbf{w}_t \right] = \mathbf{w}_t + \alpha \left(\mathbb{E} \left[R_{t+1} \mathbf{x}_t \right] - \mathbb{E} \left[\mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^T \right] \mathbf{w}_t \right)$$

 $= \mathbf{w}_t + \alpha \left(\mathbf{b} - \mathbf{A} \mathbf{w}_t \right)$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha \left(R_{t+1} + \gamma \mathbf{w}_{t}^{T} \mathbf{x}_{t+1} - \mathbf{w}_{t}^{T} \mathbf{x}_{t} \right) \mathbf{x}_{t}$$

$$= \mathbf{w}_{t} + \alpha \left(R_{t+1} \mathbf{x}_{t} - \mathbf{x}_{t} (\mathbf{x}_{t} - \gamma \mathbf{x}_{t+1})^{T} \mathbf{w}_{t} \right)$$

$$\mathbb{E} \left[\mathbf{w}_{t+1} \mid \mathbf{w}_{t} \right] = \mathbf{w}_{t} + \alpha \left(\mathbb{E} \left[R_{t+1} \mathbf{x}_{t} \right] - \mathbb{E} \left[\mathbf{x}_{t} (\mathbf{x}_{t} - \gamma \mathbf{x}_{t+1})^{T} \right] \mathbf{w}_{t} \right)$$

$$= \mathbf{w}_{t} + \alpha \left(\mathbf{b} - \mathbf{A} \mathbf{w}_{t} \right)$$

$$= (\mathbf{I} - \alpha \mathbf{A}) \mathbf{w}_{t} + \alpha \mathbf{b}$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left(R_{t+1} + \gamma \mathbf{w}_t^T \mathbf{x}_{t+1} - \mathbf{w}_t^T \mathbf{x}_t \right) \mathbf{x}_t$$
$$= \mathbf{w}_t + \alpha \left(R_{t+1} \mathbf{x}_t - \mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^T \mathbf{w}_t \right)$$
$$\mathbb{E} \left[\mathbf{w}_{t+1} \mid \mathbf{w}_t \right] = \mathbf{w}_t + \alpha \left(\mathbb{E} \left[R_{t+1} \mathbf{x}_t \right] - \mathbb{E} \left[\mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^T \right] \mathbf{w}_t \right)$$

$$\mathbb{E} \left[\mathbf{w}_{t+1} \mid \mathbf{w}_{t} \right] = \mathbf{w}_{t} + \alpha \left(\mathbb{E} \left[R_{t+1} \mathbf{x}_{t} \right] - \mathbb{E} \left[\mathbf{x}_{t} (\mathbf{x}_{t} - \gamma \mathbf{x}_{t+1})^{T} \right] \mathbf{w}_{t} \right)$$

$$= \mathbf{w}_{t} + \alpha \left(\mathbf{b} - \mathbf{A} \mathbf{w}_{t} \right)$$

$$= (\mathbf{I} - \alpha \mathbf{A}) \mathbf{w}_{t} + \alpha \mathbf{b}$$

► Convergencia (punto fijo de TD):

$$\mathbf{A}\mathbf{w} = \mathbf{b} \Rightarrow \mathbf{w}_{\mathrm{TD}} = \mathbf{A}^{-1}\mathbf{b}$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left(R_{t+1} + \gamma \mathbf{w}_t^T \mathbf{x}_{t+1} - \mathbf{w}_t^T \mathbf{x}_t \right) \mathbf{x}_t$$
$$= \mathbf{w}_t + \alpha \left(R_{t+1} \mathbf{x}_t - \mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^T \mathbf{w}_t \right)$$

$$\mathbb{E}\left[\mathbf{w}_{t+1} \mid \mathbf{w}_{t}\right] = \mathbf{w}_{t} + \alpha \left(\mathbb{E}\left[R_{t+1}\mathbf{x}_{t}\right] - \mathbb{E}\left[\mathbf{x}_{t}(\mathbf{x}_{t} - \gamma\mathbf{x}_{t+1})^{T}\right]\mathbf{w}_{t}\right)$$

$$= \mathbf{w}_{t} + \alpha \left(\mathbf{b} - \mathbf{A}\mathbf{w}_{t}\right)$$

$$= (\mathbf{I} - \alpha\mathbf{A})\mathbf{w}_{t} + \alpha\mathbf{b}$$

► Convergencia (punto fijo de TD):

$$\mathbf{A}\mathbf{w} = \mathbf{b} \Rightarrow \mathbf{w}_{\mathrm{TD}} = \mathbf{A}^{-1}\mathbf{b}$$

▶ A depende de p(s'|s, a), π , $\mu(s)$ estacionaria, γ .

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left(R_{t+1} + \gamma \mathbf{w}_t^T \mathbf{x}_{t+1} - \mathbf{w}_t^T \mathbf{x}_t \right) \mathbf{x}_t$$
$$= \mathbf{w}_t + \alpha \left(R_{t+1} \mathbf{x}_t - \mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^T \mathbf{w}_t \right)$$

$$\mathbb{E} \left[\mathbf{w}_{t+1} \mid \mathbf{w}_{t} \right] = \mathbf{w}_{t} + \alpha \left(\mathbb{E} \left[R_{t+1} \mathbf{x}_{t} \right] - \mathbb{E} \left[\mathbf{x}_{t} (\mathbf{x}_{t} - \gamma \mathbf{x}_{t+1})^{T} \right] \mathbf{w}_{t} \right)$$

$$= \mathbf{w}_{t} + \alpha \left(\mathbf{b} - \mathbf{A} \mathbf{w}_{t} \right)$$

$$= (\mathbf{I} - \alpha \mathbf{A}) \mathbf{w}_{t} + \alpha \mathbf{b}$$

► Convergencia (punto fijo de TD):

$$\mathbf{A}\mathbf{w} = \mathbf{b} \Rightarrow \mathbf{w}_{\mathrm{TD}} = \mathbf{A}^{-1}\mathbf{b}$$

- ▶ A depende de p(s'|s, a), π , $\mu(s)$ estacionaria, γ .
- ▶ A es positiva definida

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left(R_{t+1} + \gamma \mathbf{w}_t^T \mathbf{x}_{t+1} - \mathbf{w}_t^T \mathbf{x}_t \right) \mathbf{x}_t$$
$$= \mathbf{w}_t + \alpha \left(R_{t+1} \mathbf{x}_t - \mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^T \mathbf{w}_t \right)$$

$$\mathbb{E} \left[\mathbf{w}_{t+1} \mid \mathbf{w}_{t} \right] = \mathbf{w}_{t} + \alpha \left(\mathbb{E} \left[R_{t+1} \mathbf{x}_{t} \right] - \mathbb{E} \left[\mathbf{x}_{t} (\mathbf{x}_{t} - \gamma \mathbf{x}_{t+1})^{T} \right] \mathbf{w}_{t} \right)$$

$$= \mathbf{w}_{t} + \alpha \left(\mathbf{b} - \mathbf{A} \mathbf{w}_{t} \right)$$

$$= (\mathbf{I} - \alpha \mathbf{A}) \mathbf{w}_{t} + \alpha \mathbf{b}$$

► Convergencia (punto fijo de TD):

$$\mathbf{A}\mathbf{w} = \mathbf{b} \Rightarrow \mathbf{w}_{\mathrm{TD}} = \mathbf{A}^{-1}\mathbf{b}$$

- ▶ A depende de p(s'|s, a), π , $\mu(s)$ estacionaria, γ .
- ▶ **A** es positiva definida ⇒si $\alpha \ll \Rightarrow$ valores propios de $(\mathbf{I} \alpha \mathbf{A})$ son <1

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left(R_{t+1} + \gamma \mathbf{w}_t^T \mathbf{x}_{t+1} - \mathbf{w}_t^T \mathbf{x}_t \right) \mathbf{x}_t$$
$$= \mathbf{w}_t + \alpha \left(R_{t+1} \mathbf{x}_t - \mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^T \mathbf{w}_t \right)$$

$$\mathbb{E} \left[\mathbf{w}_{t+1} \mid \mathbf{w}_{t} \right] = \mathbf{w}_{t} + \alpha \left(\mathbb{E} \left[R_{t+1} \mathbf{x}_{t} \right] - \mathbb{E} \left[\mathbf{x}_{t} (\mathbf{x}_{t} - \gamma \mathbf{x}_{t+1})^{T} \right] \mathbf{w}_{t} \right)$$

$$= \mathbf{w}_{t} + \alpha \left(\mathbf{b} - \mathbf{A} \mathbf{w}_{t} \right)$$

$$= (\mathbf{I} - \alpha \mathbf{A}) \mathbf{w}_{t} + \alpha \mathbf{b}$$

▶ Convergencia (punto fijo de TD):

$$\mathbf{A}\mathbf{w} = \mathbf{b} \Rightarrow \mathbf{w}_{\mathrm{TD}} = \mathbf{A}^{-1}\mathbf{b}$$

- ▶ A depende de p(s'|s, a), π , $\mu(s)$ estacionaria, γ .
- ▶ **A** es positiva definida ⇒si $\alpha \ll \Rightarrow$ valores propios de $(\mathbf{I} \alpha \mathbf{A})$ son <1

$$\overline{VE}(\mathbf{w}_{TD}) \leq \frac{1}{1-\gamma} \min_{\mathbf{w}} \overline{VE}(\mathbf{w})$$

• Estado $\mathbf{s} = \begin{bmatrix} s_1 & s_2 & \dots & s_d \end{bmatrix}$.

- Estado $\mathbf{s} = \begin{bmatrix} s_1 & s_2 & \dots & s_d \end{bmatrix}$.
- Polinomio de orden 2 (en 2 dimensiones):

$$\mathbf{x}(\mathbf{s}) = \begin{bmatrix} s_1^2 & s_2^2 & s_1 s_2 & 1 \end{bmatrix}$$

- Estado $\mathbf{s} = \begin{bmatrix} s_1 & s_2 & \dots & s_d \end{bmatrix}$.
- Polinomio de orden 2 (en 2 dimensiones):

$$\mathbf{x}(\mathbf{s}) = \begin{bmatrix} s_1^2 & s_2^2 & s_1 s_2 & 1 \end{bmatrix}$$

• Polinomio de orden 2 (en d dimensiones):

$$\mathbf{x}(\mathbf{s}) = \begin{bmatrix} s_1^2 & s_2^2 & \dots & s_d^2 \\ s_1 s_2 & s_1 s_3 & \dots & s_2 s_3 & \dots & s_{d-1} s_d \\ s_1 & s_2 & \dots & s_d & 1 \end{bmatrix}$$

- Estado $\mathbf{s} = \begin{bmatrix} s_1 & s_2 & \dots & s_d \end{bmatrix}$.
- Polinomio de orden 2 (en 2 dimensiones):

$$\mathbf{x}(\mathbf{s}) = \begin{bmatrix} s_1^2 & s_2^2 & s_1 s_2 & 1 \end{bmatrix}$$

• Polinomio de orden 2 (en d dimensiones):

$$\mathbf{x}(\mathbf{s}) = \begin{bmatrix} s_1^2 & s_2^2 & \dots & s_d^2 \\ s_1 s_2 & s_1 s_3 & \dots & s_2 s_3 & \dots & s_{d-1} s_d \\ s_1 & s_2 & \dots & s_d & 1 \end{bmatrix}$$

 $\binom{d+2}{2}$ términos!

- Estado $\mathbf{s} = \begin{bmatrix} s_1 & s_2 & \dots & s_d \end{bmatrix}$.
- Polinomio de orden 2 (en 2 dimensiones):

$$\mathbf{x}(\mathbf{s}) = \begin{bmatrix} s_1^2 & s_2^2 & s_1 s_2 & 1 \end{bmatrix}$$

• Polinomio de orden 2 (en d dimensiones):

$$\mathbf{x}(\mathbf{s}) = \begin{bmatrix} s_1^2 & s_2^2 & \dots & s_d^2 \\ s_1 s_2 & s_1 s_3 & \dots & s_2 s_3 & \dots & s_{d-1} s_d \\ s_1 & s_2 & \dots & s_d & 1 \end{bmatrix}$$

 $\binom{d+2}{2}$ términos!

• Polinomios de orden superior

- Estado $\mathbf{s} = \begin{bmatrix} s_1 & s_2 & \dots & s_d \end{bmatrix}$.
- Polinomio de orden 2 (en 2 dimensiones):

$$\mathbf{x}(\mathbf{s}) = \begin{bmatrix} s_1^2 & s_2^2 & s_1 s_2 & 1 \end{bmatrix}$$

• Polinomio de orden 2 (en d dimensiones):

$$\mathbf{x}(\mathbf{s}) = \begin{bmatrix} s_1^2 & s_2^2 & \dots & s_d^2 \\ s_1 s_2 & s_1 s_3 & \dots & s_2 s_3 & \dots & s_{d-1} s_d \\ s_1 & s_2 & \dots & s_d & 1 \end{bmatrix}$$

 $\binom{d+2}{2}$ términos!

• Polinomios de orden superior: selección de características.

• Representar como un período de señal periódica de período 1, par.

- Representar como un período de señal periódica de período 1, par.
- Base de Fourier:

$$x_i(s) = \cos(i\pi s)$$

- Representar como un período de señal periódica de período 1, par.
- Base de Fourier:

$$x_i(s) = \cos(i\pi s)$$

• Representación como serie de Fourier truncada:

$$\mathbf{w}^T \mathbf{x}(s) = \sum_{i=0}^{d-1} w_i \cos(i\pi s), \quad s \in [0, 1]$$

- Representar como un período de señal periódica de período 1, par.
- Base de Fourier:

$$x_i(s) = \cos(i\pi s)$$

• Representación como serie de Fourier truncada:

$$\mathbf{w}^T \mathbf{x}(s) = \sum_{i=0}^{d-1} w_i \cos(i\pi s), \quad s \in [0, 1]$$

• En más dimensiones:

$$x_i(s) = \cos(i\pi \mathbf{s}^T \mathbf{c}^i), \quad s \in [0, 1]$$

donde $c_j^i \in \{0, \dots, n\}.$

Figure 9.4: A selection of six two-dimensional Fourier cosine features, each labeled by the vector \mathbf{c}^i that defines it $(s_1$ is the horizontal axis, and \mathbf{c}^i is shown with the index i omitted). After Konidaris et al. (2011).

Codificación gruesa (Coarse coding)

Codificación gruesa (Coarse coding)

Narrow generalization

Broad generalization

Asymmetric generalization

Codificación con baldosas (Tile Coding)

Figure 9.9: Multiple, overlapping grid-tilings on a limited two-dimensional space. These tilings are offset from one another by a uniform amount in each dimension.

• Función decreciente de distancia a un prototipo:

• Función decreciente de distancia a un prototipo:

$$x_i(s) = \exp\left(-\frac{\|s - c_i\|^2}{2\sigma_i}\right)$$

• Función decreciente de distancia a un prototipo:

$$x_i(s) = \exp\left(-\frac{\|s - c_i\|^2}{2\sigma_i}\right)$$

$$\hat{v}(s, \mathbf{w}) = \mathbf{w}^T \mathbf{x}$$

$$\hat{v}(s, \mathbf{w}) = \mathbf{w}^T \mathbf{x} \doteq \sum_{i=1}^d \mathbf{w}_i x_i(s) \longrightarrow \text{lineal}$$

$$\hat{v}(s, \mathbf{w}) = \mathbf{w}^T \mathbf{x} \doteq \sum_{i=1}^d \mathbf{w}_i x_i(s) \longrightarrow \text{lineal}$$

$$\hat{v}(s, \mathbf{w}) = \mathbf{w}^T \mathbf{x} \doteq \sum_{i=1}^d \mathbf{w}_i x_i(s) \longrightarrow \text{lineal}$$

$$\hat{v}(s, \mathbf{w}) = \sum_{i=1}^{d} a_i f\left(\mathbf{w}^T \mathbf{s}\right) \longrightarrow \text{no lineal}$$

$$\hat{v}(s, \mathbf{w}) = \mathbf{w}^T \mathbf{x} \doteq \sum_{i=1}^d w_i x_i(s) \longrightarrow \text{lineal}$$

$$\hat{v}(s, \mathbf{w}) = \sum_{i=1}^{d} a_i f\left(\mathbf{w}^T \mathbf{s}\right) \longrightarrow \text{no lineal}$$

• En aproximación no lineal se requieren exponencialmente menos parámetros para lograr error de aproximación dado.