Grado en Ingeniería Informática – Curso 2011/12 – Grupo 126 Circuitos Electrónicos – 1^{er} control intermedio – 25 de octubre de 2011

Apellidos______ Nombre____

- 1.- Para el siguiente circuito de dos terminales:
 - a) (2 puntos) Deducir la ecuación característica (voltaje de salida en función de la corriente de salida).
 - b) (1 punto) Identificar el voltaje equivalente de Thévenin y la resistencia equivalente en dicha ecuación.
 - c) (1 punto) Obtener la corriente equivalente de Norton a partir de su definición, y comparar el resultado con el cociente de los parámetros deducidos en el apartado anterior, $I_N = V_{Th}/R_{eq}$.

2.- (*3 puntos*) Dado el siguiente circuito, obtener la expresión temporal de v_{AB} , utilizando para ello el principio de superposición.

Datos:
$$R = 5\Omega$$
, $C = 200\mu F$, $I_1 = 2A$, $v_2(t) = 0.5V \cdot \cos(10^3 \text{rad} \cdot \text{s}^{-1} \cdot \text{t})$.

- **3.-** Para el filtro de la siguiente figura, suponiendo que v_i es sinusoidal:
 - a) (1 punto) Obtener la expresión de la ganancia de voltaje, $A_v(j\omega) = v_o/v_i$.
 - b) (1 punto) Deducir los ceros y/o polos de $A_v(j\omega)$.
 - c) (1 punto) Expresar $A_v(j\omega)$ en forma polar (módulo-argumento).

Sugerencia: Emplear no más de 20 minutos para la resolución del ejercicio 1, y no más de 15 minutos para cada uno de los otros dos.