# 추가 설명자료





챔피언리그 팀 엄덕구

# 목차

- 1. 전처리
- 2. 피쳐 엔지니어링
  - 1) 내부 변수
  - 2) 외부 변수
  - 3) 변수 선택
- 3. 모델링
  - 1) 예측 모델링
  - 2) 최적화 모델링

# 1. 전처리

## **■** Log Transfomation

취급액
 취급액 변수의 왜도가 심하여 이를 조정해주기 위해 로그화 적용

#### Outlier

◆ 취급액

1 억원 이상의 값이 전체 데이터의 약 1%수준으로, 빈도가 적은 것에 비해데이터의 대표성에 미치는 영향이 크므로 제거함

## **■** Missing Value

◆ 취급액 취급액의 결측치(전체 데이터의 2.5%)는 모두 0 을 의미하므로 제거함

◆ 노출(분)

다수의 Missing Value(전체 데이터의 43.8%)들이 존재하였으며, 동일 시간에 함께 판매된 제품들의 노출(분)은 최상위 데이터에만 기록되고, 아래 데이터들은 기록되지 않은 것을 발견.

전 Row 의 값을 끌어오는 Forward Fill 방식으로 채워넣음

## **■** Time Adjustment

◆ 방송일시

주어진 방송일시는 일별 방송 시간이 {당일 새벽 6 시~익일 새벽 2 시}로 되어 있어 자정이 넘어가는 방송의 경우 {당일, 당월, 당해}가 아닌 {익일, 익월, 익년}으로 할당이 되는 문제가 발생함.

이를 해소하기 위해 모든 방송 시간대를 3 시간씩 당겨주었음

# 2. 피쳐 엔지니어링

# 1) 내부/내부 파생 변수

|    | 변수명              | 설명                         | 비고        |
|----|------------------|----------------------------|-----------|
| 1  | 노출(분)            | 원 데이터의 노출                  | 단위 : 분    |
| 2  | cast_time        | 해당 상품의 누적 연속 노출시간          | 단위 : 분    |
| 3  | cast_count       | 해당 상품의 누적 연속 편성수           |           |
| 4  | cast_time_sum    | 해당 상품의 총 연속편성 시간           | 단위 : 분    |
| 5  | cast_count_sum   | 해당 상품의 총 연속편성 횟수           |           |
| 6  | cast_time_ratio  | cast_time_sum 대비 해당 편성의 비율 |           |
| 7  | 마더코드             | 원 데이터의 마더코드                |           |
| 8  | 상품코드             | 원 데이터의 상품코드                |           |
| 9  | 상품명              | 원 데이터의 상품명                 |           |
| 10 | 상품명_plan         | 상품의 결제 관련 정보               | 무이자:0,    |
|    |                  |                            | 일시불:1     |
| 11 | 상품명_add          | 추가구성 여부                    | T:1, F:0  |
| 12 | 상품명_maker        | 상품명에서 추출한 브랜드명             |           |
| 13 | 상품명_set          | 세트상품 여부                    | T:1,F:0   |
| 14 | 상품명_sex          | 특정 성별 전용 상품 여부             | 여성:1 남성:2 |
|    |                  |                            | 구분없음:0    |
| 15 | 상품명_kid          | 아동용 상품 여부                  | T:1, F:0  |
| 16 | 판매단가             | 원 데이터의 판매단가                |           |
| 17 | fake_weight      | 동시 편성된 여러 조건의 상품을          |           |
|    |                  | 상품단가를 기준으로 역가중치            |           |
| 18 | fake_weight2     | 동시편성 동일단가이면서 다른 상품인지       |           |
|    |                  | 여부                         |           |
| 19 | 가격_9x            | 가격 끝자리가 9로 끝나는지 여부         |           |
| 20 | 할인여부             | 판매단가에서 추가 할인이 있었는지 여부      |           |
| 21 | mean_amt_by_hhmm | 시간당 평균 판매금액                |           |
| 22 | 방송일시             | 원 데이터의 방송일시                |           |
| 23 | 방송일시_MM          | 방송월                        |           |
| 24 | 방송일시_DD          | 방송일                        |           |
| 25 | 방송일시_hh          | 방송시                        |           |
| 26 | 방송일시_mm          | 방송분                        |           |
| 27 | 방송일시_MMDD        | 방송월,일                      |           |
| 28 | 방송일시_DDhh        | 방송일,시                      | (월:0~일:6) |
| 29 | 방송일시_hhmm        | 방송시,분                      |           |

| 30 | 방송일시_MMDDhh        | 방송월,일,시                      |             |
|----|--------------------|------------------------------|-------------|
| 31 | 방송일시_mmmm_1        | 방송일시를 분 단위로 누적               | 일단위 리셋      |
| 32 | 방송일시_mmmm_2        | 방송일시를 분 단위로 누적               | 월단위 리셋      |
| 33 | 방송일시_mmmm_3        | 방송일시를 분 단위로 누적               | 년단위 리셋      |
| 34 | 방송일시_dow           | 방송 요일                        |             |
| 35 | 방송일시_dow2          | 주말 여부                        |             |
| 36 | time_cat1          | 구간화된 방송시간 1                  |             |
| 37 | time_cat2          | 구간화된 방송시간 2                  |             |
| 38 | 판매단가_cat           | 구간화된 판매단가                    |             |
| 39 | encoding_상품명       | Label Encoding 된 상품명         |             |
| 40 | encoding_상품군       | Label Encoding 된 상품군         |             |
| 41 | encoding_상품명_brand | Label Encoding 된 브랜드명        |             |
| 42 | encoding_new_상품명   | Label Encoding 된 불필요 요소가 제거된 |             |
|    |                    | 상품명                          |             |
| 43 | com                | 동시판매 상품 여부                   | T(1) / F(0) |
| 44 | fake_weight3       | 동시판매 상품 중 몇번째인지 여부           |             |

# 2)외부 변수

|    | 변수명            | 설명                           | 비고    |
|----|----------------|------------------------------|-------|
| 1  | review_counts  | 네이버쇼핑 기준 리뷰 개수               |       |
| 2  | internet_price | 네이버 쇼핑 기준 최저가                |       |
| 3  | price_minus    | 최저가 대비 가격                    |       |
| 4  | search_naver   | 네이버 쇼핑에 검색되는지 여부             |       |
| 5  | temperature    | 기온                           |       |
| 6  | search_compare | 네이버 데이터랩 기준 NS 홈쇼핑의 타 홈쇼핑 대비 |       |
|    |                | 상대적 검색량                      |       |
| 7  | 변동 %           | 해당 날짜의 전일대비 코스피 지수 상승률       |       |
| 8  | encoding_cat1  | 네이버쇼핑 API 를 통해 재분류한 상품의 대분류  | 라벨인코딩 |
| 9  | encoding_cat2  | 네이버쇼핑 API 를 통해 재분류한 상품의 중분류  | 라벨인코딩 |
| 10 | encoding_cat3  | 네이버쇼핑 API 를 통해 재분류한 상품의 소분류  | 라벨인코딩 |

## 3) 변수 선택

## ■ RFE(Recursive Feature Elimination)

• 모든 변수에서 시작해 사전 설정된 변수 개수에 다다를 때까지 가능한 모든 조합으로 변수를 제거하는 방법.

<변수 개수별 성능(MAPE) 비교>

| 변수 개수 | МАРЕ |
|-------|------|
| 35    | 45.1 |
| 38    | 44.3 |
| 40    | 43.3 |
| 42    | 44.5 |
| 45    | 47.6 |

• 비교 결과 40 개의 변수를 사용할 때 가장 좋은 성능을 보임.

<선택된 40 개의 변수>

| 노출(분)         | 마더코드                | 상품코드              | 판매단가           | 상품명_kid          |
|---------------|---------------------|-------------------|----------------|------------------|
| 상품명_plan      | 상품명_add             | 상품명_maker         | 상품명_set        | 상품명_sex          |
| fake_weight   | fake_weight2        | fake_weight3      | 가격_9x          | 할인여부             |
| price_minus   | search_naver        | review_counts     | internet_price | mean_amt_by_hhmm |
| encoding_상품군: | encoding_상품명_brand: | encoding_new_상품명: | 판매단가_cat       | encoding_상품명:    |
| 'cast_time    | cast_count          | cast_time_sum     | cast_count_sum | cast_time_ratio  |
| 방송일시_hh       | 방송일시_MMDD           | 방송일시_hhmm         | 방송일시_MMDDhh    | 방송일시_dow2        |
| time_cat2     | com                 | encoding_cat1:    | encoding_cat2: | encoding_cat3:   |

# 3. 모델링

## 1) 예측 모델링

### ■ 모델 선택

- ◆ 바닐라 모델링을 통해 다양한 모델의 기본 성능을 비교
- ◆ 모델은 트리 기반, 선형 기반, 부스팅 기반의 모델들을 골고루 사용
- ◆ 가장 기본 성능이 좋은 RF 와 XGB 를 튜닝 모델로 선택

#### ■ 모델 튜닝

- ◆ 하이퍼 파라미터 튜닝을 위한 베이즈 서치 활용
- 하이퍼 파라미터별 특정 범위를 입력하여 최적의 파라미터 값 출력
- RF={max\_depth=20, max\_features='auto', n\_estimators=1000, min\_samples\_leaf=1, min\_samples\_split=2}
- XGB={learning\_rate=0.247, max\_depth=7, n\_estimators=300, colample\_bytree=0.31}

### ■ 최종 결과

- 위 모델 튜닝으로 출력된 최적의 하이퍼 파라미터 값을 통해 모델 학습 후 테스트 스코어 출력
- RF = 33.64
- XGB = 29.68

## 2)최적화 모델링

#### ■ 모델링 아이디어

- 가장 좋은 최적화 방안은 모든 경우의 수를 조합하여 전부 비교하는 것(모집단을 확인하려는 전수조사와 같음)
- 그러나 모든 경우의 수를 고려할 경우 연산량이 기하급수적으로 상승하여 현실적으로 불가능(하루치 편성표에 대한 연산량이 대략 20! 로 234 경의 연산량이 듦)
- 이러한 연산량을 줄이기 위해 할당 알고리즘인 헝가리안 알고리즘을 활용하고자 함
- 그러나 헝가리안 알고리즘 또한 시간복잡도가 n 의 4 승이므로 행렬의 크기가 커질수록 연산량이 기하급수적으로 상승함
- 즉, 최대한 작은 단위로 나누어 작은 행렬을 만들고 병렬연산을 통해 연산량을 줄이고 결과값을 합치는 방식을 만들어야 함
- 따라서, ①일주일치의 상품을 하루 단위로 할당하고, ②하루 단위의 상품을
  3 그룹으로 할당하여, ③헝가리안 알고리즘을 병렬적으로 진행

#### ■ 모델 구조



- 일주일 단위의 편성표를 최적화하는 것을 기준으로 함
- 제공되는 편성표는 예측 모델을 통해 특정 시간(예측 취급액의 분산이 가장 큰 시간)을 기준으로 모든 요일(월~일)의 예측 취급액을 추출함
- Standard Scores Allocation(표준점수 할당 알고리즘)
  - 본 단계는 일주일 간 판매할 상품을 하루 단위로 할당하는 과정임
  - 상품별로 최적의 요일에 할당하는 것이 목적임

- 본 단계에 헝가리안 알고리즘이 아닌 표준점수 알고리즘을 활용한 이유는 헝가리안 알고리즘은 무조건 정방행렬을 기준으로 연산을 하기 때문에 이 경우 약 140!의 연산을 해야함. 그러나 표준점수 알고리즘은 압도적으로 적은 연산량으로 헝가리안 알고리즘에 버금가는 성능을 냄.
- 알고리즘 로직은 다음과 같음
  - ① 각 상품은 추출된 요일별 취급액을 표준점수화 시킴(상품별로 진행)
  - ② 각 상품은 가장 높은 표준점수를 기록한 요일로 1차 할당
  - ③ 각 요일은 할당된 상품들의 표준점수를 내림차순하여 n 개를 채우고 나머지는 탈락시킴(각 요일의 할당량은 균등함)
  - ④ 탈락한 상품들은 다음으로 높은 표준점수를 기록한 요일로 할당
  - ⑤ 모든 요일에 상품이 균등하게 할당될 때까지 ④~⑤번을 반복
- Variance Scores Allocation(분산점수 할당 알고리즘)
  - 본 단계는 하루 동안 판매할 상품을 3 그룹으로 할당하는 과정임
  - 상품별, 시간대별 예측 취급액의 분산의 크기에 맞춰 최적의 그룹에 할당하는 것이 목적임
  - 본 단계를 거치는 이유는 여전히 헝가리안 알고리즘이 작동하기에 너무
    큰 연산량(약 20!)이 필요하기에 더 적은 연산량(6!~7!)로 줄여 최적화를
    시킬 수 있도록 하는 것임
    - ① (방송 시간, 판매 상품)행렬을 만들어 모든 경우의 예측 취급액 추출
    - ② ①단계를 통해 추출된 취급액을 기준으로 각 방송 시간, 각 판매 상품에 대한 분산 값을 구함
    - ③ ②를 통해 구해진 분산 값을 방송 시간, 판매 상품별로 내림차순하여 순서대로 1, 2, 3 그룹으로 할당
    - ④ 각 방송 시간 n 그룹, 판매 상품 n 그룹을 1:1 로 매칭(방송 1 그룹:상품 1 그룹)
    - ⑤ (방송 시간, 판매 상품)행렬은 (6~7, 6~7)행렬의 크기가 됨

### ■ 최종 편성 최적화 모형



- ① 일주일간 편성되어 있는 상품을 특정 시간 기준으로 예측모델을 활용하여 예상 취급액 추출
- ② 표준점수 할당 알고리즘을 통해 각 상품을 최적의 요일로 균등 할당
- ③ 각 요일별 상품 후보를 분산점수 할당 알고리즘을 통해 3 개의 그룹으로 할당
- ④ 시간그룹과 상품그룹을 1:1 매칭하여 헝가리안 알고리즘을 통해 최적의 조합 할당
- ⑤ 4)번의 결과를 합쳐서 주간 편성표 확정