Disclaimer

Die Übungen die hier gezeigt werden stammen aus der Vorlesung Kryptographie! Für die Korrektheit der Lösungen wird keine Gewähr gegeben.

1. Possibilistisch sichere Kryptosysteme

Bestimmen Sie alle possibilistisch sicheren Kryptosysteme S = (X, K, Y, e, d) mit $X = \{a, b\}$ und $K = \{1, 2\}$ (bis auf das Umbenennen von Chiffretexten).

Solution:

2. Possibilistische Sicherheit: Eine alternative Definition? Beweisen oder widerlegen Sie: Ein Kryptosystem S = (X, K, Y, e, d) ist possibilistisch sicher genau dann, wenn Folgendes gilt: $\forall x \in X \forall y \in Y \exists k \in K : d(y, k) = x$.

Solution:

Bemerkung: Im Gegensatz zur Definition der possibilistischen Sicherheit wird hier eine Aussage über die Entschlüsselungsfunktion gemacht.

3. Possibilistische Sicherheit bei komponentenweiser Verschlüsselung

Gegeben seien ein Kryptosystem S=(X,K,Y,e,d) und $l\in\mathbb{N}^+$. Wir können S benutzen, um längere Klartexte (Elemente aus X^l) zu verschlüsseln.

Das Kryptosystem $S' = (X^l, K, Y^l, e', d')$ mit $e'((x_1, ..., x^l), k) = (e(x_1, k), ..., e(x_l, k))$ verschlüsselt komponentenweise unter Verwendung eines einzigen Schlüssels k.

(a) Definieren Sie d' so, dass S' tatsächlich ein Kryptosystem ist.

Solution:

(b) Zeigen Sie, dass S' für $|X|, l \ge 2$ nicht possibilistisch sicher ist. (Dies gilt auch dann, wenn S selber possibilistisch sicher ist!)

Solution:

Das Kryptosystem $S^* = (X^l, K^l, Y^l, e^*, d^*)$ mit $e^*((x_1, ..., x_l), (k_1, ..., k_l)) = (e(x_1, k_1), ..., e(x_l, k_l))$ verschlüsselt komponentenweise unter Verwendung mehrerer Schlüssel $k_1, ..., k_l$.

(a) Definieren Sie d^* so, dass S^* tatsächlich ein Kryptosystem ist.

Solution:

(b) Zeigen Sie, dass S^* genau dann possibilistisch sicher ist, wenn S possibilistisch sicher ist.

Solution:

Notation: Für eine natürliche Zahl $n \geq 2$ sei Z_n die Menge der Zahlen $\{0, 1, ..., n-1\}$. Die Addition $+_n$ und Multiplikation $*_n$ auf Z_n sind wie folgt definiert: $a +_n b = (a + b) \mod n$ und $a *_n b = (a * b) \mod n$, wobei $x \mod n$ der Rest von x bei Division durch n ist.

4. Verschiebe- und affines Kryptosystem

Für $n \in \mathbb{N}^+$ betrachten wir zwei Kryptosysteme, um Elemente aus Z_n zu verschlüsseln. Das Verschiebekryptosystem (Cäsar-Chiffre) mit Parameter n ist gegeben durch $C_n = (Z_n, Z_n, Z_n, e_n, d_n)$ mit $e_n(x,k) = x +_n k$.

(a) Wie muss d_n definiert werden, damit C_n tatsächlich ein Kryptosystem ist?

Solution:

(b) Zeigen Sie, dass C_n possibilistisch sicher ist.

Solution:

Das affine Kryptosystem mit Parameter $n \geq 2$ ist gegeben durch $A_n = (Z_n, A_n \times Z_n, Z_n, e'_n, d'_n)$ mit $A_n = \{a \in Z_n | ggT(a, n) = 1\}$ und $e'_n(x, (a, b) = a *_n x +_n b$. Hinweis: Falls ggT(a, n) = 1, d.h., a und n teilerfremd sind, dann gilt: Es existert genau ein $b \in A_n \subseteq Z_n \setminus \{0\}$, so dass $a *_n b = b *_n a = 1$. Dieses Element b heißt "multiplikatives Inverses von a modulo n".

(a) Definieren Sie d'_n so, dass A_n tatsächlich ein Kryptosystem ist.

Solution:

(b) Zeigen Sie, dass A_n possibilistisch sicher ist.

Solution: