

Element Distinctness, Birthday Paradox, and

30

1-out Pseudorandom Graphs

Hongxun Wu

IIIS, Tsinghua University

Authors of this work

Ce Jin

R. Ryan Williams

Hongxun Wu

Lijie Chen, Ce Jin, and R. Ryan Williams are from MIT.

- INPUT: n positive integers a_1, a_2, \ldots, a_n with $a_i \leq \text{poly}(n)$.
- Decide whether all a's are distinct.

1 3 12 15 23 30 42 42

Comparision model

- No direct access to the INPUT a.
- Each query (i,j) returns one of $a_i < a_j$, $a_i = a_j$, $a_i > a_j$.

Comparision model

Time-Space tradeoff [BFMADH⁺87, Yao88]

Element distictness requires $TS = \Omega\left(n^{2-o(1)}\right)$ in Comparision model.

Comparision model

Time-Space tradeoff [BFMADH⁺87, Yao88]

Element distictness requires $TS = \Omega\left(n^{2-o(1)}\right)$ in Comparision model.

• When S = O(polylog n), $T = \Omega(n^{2-o(1)})$.

- Random access to read-only input.
- Working memory has a (relatively small) size S.

Time-Space tradeoff [BCM13]

• Assuming the existence of *Random Oracle*, there is an algorithm with $T^2S = \tilde{O}\left(n^3\right)$.

Time-Space tradeoff [BCM13]

- Assuming the existence of *Random Oracle*, there is an algorithm with $T^2S = \tilde{O}\left(n^3\right)$.
- When $S = \tilde{O}(1)$, $T = \tilde{O}\left(n^{1.5}\right)$.

Time-Space tradeoff [BCM13]

- Assuming the existence of *Random Oracle*, there is an algorithm with $T^2S = \tilde{O}(n^3)$.
- When $S = \tilde{O}(1)$, $T = \tilde{O}(n^{1.5})$.
- In the rest of this talk, we always assume there is only one collision $(a_i = a_j)$.

Pollard's ρ method [BCM13]

Assuming the existence of Random Oracle, when $S = \tilde{O}(1)$, there is an algorithm with $T = \tilde{O}(n^{1.5})$.

• For random oracle R, define graph $x \mapsto R(a_x)$ with $x \in [n]$.

Pollard's ρ method [BCM13]

Assuming the existence of Random Oracle, when $S = \tilde{O}(1)$, there is an algorithm with $T = \tilde{O}(n^{1.5})$.

- For random oracle R, define graph $x \mapsto R(a_x)$ with $x \in [n]$.
- Pick a random starting point s.

Pollard's ρ method [BCM13]

Assuming the existence of Random Oracle, when $S = \tilde{O}(1)$, there is an algorithm with $T = \tilde{O}(n^{1.5})$.

- For random oracle R, define graph $x \mapsto R(a_x)$ with $x \in [n]$.
- Pick a random starting point s.
- Run Floyd's cycle finding.

Birthday Paradox Type Properties [BCM13]

Suppose $f^*(s)$ is the set of vertices reachable from s.

• $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$

Birthday Paradox Type Properties [BCM13]

Suppose $f^*(s)$ is the set of vertices reachable from s.

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u, v \in f^*(s)] \ge \Omega(1/n), \ \forall u, v \in [n]$

Birthday Paradox Type Properties [BCM13]

Suppose $f^*(s)$ is the set of vertices reachable from s.

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u, v \in f^*(s)] \ge \Omega(1/n), \ \forall u, v \in [n]$

• So each cycle-finding takes $O(\sqrt{n})$ time and finds any collision u, v with probability $\Omega(1/n)$.

Birthday Paradox Type Properties [BCM13]

Suppose $f^*(s)$ is the set of vertices reachable from s.

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u, v \in f^*(s)] \ge \Omega(1/n), \ \forall u, v \in [n]$

- So each cycle-finding takes $O(\sqrt{n})$ time and finds any collision u, v with probability $\Omega(1/n)$.
- Repeat O(n) times, it takes $O(n^{1.5})$ time in total.

Our Main Lemma

There exsits a family $\{r_{\text{seed}}\}$ of hash functions efficiently samplable with seed length O(polylog n), and the graph defined by $\{r_{\text{seed}}\}$ (instead of Random Oracle R) satisfy

• $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$

Our Main Lemma

There exsits a family $\{r_{\text{seed}}\}$ of hash functions efficiently samplable with seed length O(polylog n), and the graph defined by $\{r_{\text{seed}}\}$ (instead of Random Oracle R) satisfy

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u, v \in f^*(s)] \ge \Omega(1/n), \ \forall u, v \in [n]$

Our Main Lemma

There exsits a family $\{r_{\text{seed}}\}$ of hash functions efficiently samplable with seed length O(polylog n), and the graph defined by $\{r_{\text{seed}}\}$ (instead of Random Oracle R) satisfy

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u, v \in f^*(s)] \ge \Omega(1/n), \ \forall u, v \in [n]$

Our Result

Assuming the existence of *Random Oracle*, when S = O(polylog n), there is a RAM algorithm for Element Distinctness with $T = \tilde{O}(n^{1.5})$.

Subset Sum

Low-space Algorithm for Subset Sum [BGNV18]

Assuming the existence of *Random Oracle*, Subset Sum and Knapsack can be solved by a Monte Carlo algorithm in $O^*(2^{0.86n})$ time, with O(poly(n)) space.

Subset Sum

Low-space Algorithm for Subset Sum [BGNV18]

Assuming the existence of *Random Oracle*, Subset Sum and Knapsack can be solved by a Monte Carlo algorithm in $O^*(2^{0.86n})$ time, with O(poly(n)) space.

Our Result

Assuming the existence of *Random Oracle*, Subset Sum and Knapsack can be solved by a Monte Carlo algorithm in $O^*(2^{0.86n})$ time, with O(poly(n)) space.

Our Main Lemma

There exsits a family $\{r_{\text{seed}}\}$ of hash functions efficiently samplable with seed length O(polylog n), and the graph defined by $\{r_{\text{seed}}\}$ (instead of Random Oracle R) satisfy

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u, v \in f^*(s)] \ge \Omega(1/n), \ \forall u, v \in [n]$

Our Main Lemma

There exsits a family $\{r_{\text{seed}}\}$ of hash functions efficiently samplable with seed length O(polylog n), and the graph defined by $\{r_{\text{seed}}\}$ (instead of Random Oracle R) satisfy

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u \in f^*(s)] \ge \Omega(1/\sqrt{n}), \ \forall u \in [n]$

Construction

Random Restriction and Håstad's Switching Lemma

This is Ryan O'Donnell's Youtube lecture which is a masterpiece.

Iterative Restriction

Iterative Restriction

Iterative Restriction

Recall the input $a_1, a_2, \ldots, a_n \in [m]$.

Two Level Example

Suppose we have the following:

- O(polylog n)-wise independent functions $g:[m] \to \{0,1\}$ and $r:[m] \to [n]$.
- Random Oracle R.

Recall the input $a_1, a_2, \ldots, a_n \in [m]$.

Two Level Example

Suppose we have the following:

- O(polylog n)-wise independent functions $g:[m] \to \{0,1\}$ and $r:[m] \to [n]$.
- Random Oracle R.

We define the graph $x \mapsto h(a_x)$ with

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

Two Level Example

We define the graph $x \mapsto h(a_x)$ with

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

level 2

$$g(a_x)=0$$

level 1

$$g(a_x)=1$$

Two Level Example

We define the graph $x \mapsto h(a_x)$ with

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

level 2

$$g(a_x) = 0$$

level 1

$$g(a_x) = 1$$
 s

Two Level Example

We define the graph $x \mapsto h(a_x)$ with

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

level 2

$$g(a_x)=0$$

$$g(a_x)=1$$

Two Level Example

We define the graph $x \mapsto h(a_x)$ with

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

level 2 $g(a_x) = 0$ level 1 $g(a_x) = 1$ s

Two Level Example

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

Two Level Example

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

Two Level Example

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

Two Level Example

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

Two Level Example

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

Two Level Example

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

Sanity Check

• Why this might be a good idea?

Sanity Check

• Why this might be a good idea?

• Each subpath has length $O(\log n)$.

Sanity Check

• Why this might be a good idea?

- Each subpath has length $O(\log n)$.
- Every level 2 edge is an independent sample of a subpath.

Recall our goal.

Our Main Lemma

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u \in f^*(s)] \ge \Omega(1/\sqrt{n}), \ \forall u \in [n]$

Our Construction

Now we sample $O(\log n)$ many hash functions $\{r_i, g_i\}_{i \in [\ell]}$.

Each $r_i : [m] \to [n]$ and $g_i : [m] \to [2]$ are $O(\log n)$ -wise independent.

Our Construction

Now we sample $O(\log n)$ many hash functions $\{r_i, g_i\}_{i \in [\ell]}$.

Each $r_i : [m] \to [n]$ and $g_i : [m] \to [2]$ are $O(\log n)$ -wise independent.

Then we set $h_{\ell+1}(a_x) = \perp$ and

$$h_i(a_x) = \begin{cases} h_{i+1}(a_x) & g_i(a_x) = 0 \\ r_i(a_x) & g_i(a_x) = 1 \end{cases}$$

Finally, we set $h = h_1$.

level 5

level 4

level 3

level 2

 $\begin{array}{c} |\text{evel } 1 \\ g_1(a_x) = 1 \end{array}$

level 5

level 4

level 3

level 2

$$\begin{array}{ccc} |\text{evel } 1 & \bullet & \circ \\ g_1(a_x) = 0 & s & \end{array}$$

level 5

level 4

level 3

$$g_2(a_x)=0$$

0 $g_1(a_x)=0$

0

level 5

level 4

$$g_3(a_x)=0$$

0

$$\frac{\text{level } 2}{g_2(a_x) = 0}$$

$$g_1(a_x) = 0$$
 s

level 5

level 4
$$g_4(a_x) = 1$$
level 3
 $g_3(a_x) = 0$
level 2
 $g_2(a_x) = 0$
level 1
 $g_1(a_x) = 0$
 $g_2(a_x) = 0$

level 4

level 3

level 2

 $g_2(a_x)=1$

Key Ideas in Our Analysis

• We index a node by the shape of its path, e.g. $\vec{k}_{10} = (0, 0, 1, 2)$.

• We index a node by the shape of its path, e.g. $\vec{k}_{11} = (0, 0, 2, 2)$.

- We index a node by the shape of its path, e.g. $\vec{k}_{11} = (0, 0, 2, 2)$.
- Consider \vec{k}_x . Fix x, \vec{k} is a random variable. Fix \vec{k} , x is a random variable.

- We index a node by the shape of its path, e.g. $\vec{k}_{11} = (0, 0, 2, 2)$.
- Consider \vec{k}_x . Fix x, \vec{k} is a random variable. Fix \vec{k} , x is a random variable.
- We fix index \vec{k} and let x be the random variable (which may not exist).

• Fix
$$\vec{k} = (0, 0, 2, 2)$$
.

• Fix $\vec{k} = (0, 0, 2, 2)$.

• Fix $\vec{k} = (0, 0, 2, 2)$.

- Fix $\vec{k} = (0, 0, 2, 2)$.
- Blue part is a random variable. But it will finally end up with a node with level ≥ 4.

- Fix $\vec{k} = (0, 0, 2, 2)$.
- Blue part is a random variable. But it will finally end up with a node with level \geq 4.

- Fix $\vec{k} = (0, 0, 2, 2)$.
- Blue part is a random variable. But it will finally end up with a node with level \geq 4.

- Fix $\vec{k} = (0, 0, 2, 2)$.
- Blue part is a random variable. But it will finally end up with a node with level \geq 4.

- Fix $\vec{k} = (0, 0, 2, 2)$.
- Blue part is a random variable. But it will finally end up with a node with level ≥ 4.
- One issue: What if $a_{w_2} = a_{w_9}$?

• Instead of original walk w, we looks at extended walk w^* .

- Instead of original walk w, we looks at extended walk w^* .
- Once a position in our memory is queried twice, we replace it with true randomness.

- Instead of original walk w, we looks at extended walk w^* .
- Once a position in our memory is queried twice, we replace it with true randomness.
- w* is *locally simulatable* in the sense that each query position can be uniquely determined by memory.

- Instead of original walk w, we looks at extended walk w^* .
- Once a position in our memory is queried twice, we replace it with true randomness.
- w* is locally simulatable in the sense that each query position can be uniquely determined by memory.
- w and w^* agree if w^* has no collision $a_{w_i^*} = a_{w_i^*}$.

Recall our goal.

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u \in f^*(s)] \ge \Omega(1/\sqrt{n}), \ \forall u \in [n]$
- w and w^* agree if w^* has no collision $a_{w_i^*} = a_{w_i^*}$.

Recall our goal.

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u \in f^*(s)] \ge \Omega(1/\sqrt{n}), \ \forall u \in [n]$
- w and w^* agree if w^* has no collision $a_{w_i^*} = a_{w_i^*}$.
- Good: $E[\#\{t|w_t^*=u,w^* \text{ has no collision}\}] \ge \Pr[\exists t,w_t=u].$

Recall our goal.

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u \in f^*(s)] \ge \Omega(1/\sqrt{n}), \ \forall u \in [n]$
- w and w^* agree if w^* has no collision $a_{w_i^*} = a_{w_i^*}$.
- Good: $E[\#\{t|w_t^*=u,w^* \text{ has no collision}\}] \ge \Pr[\exists t,w_t=u].$
- All: $E[\#\{t|w_t^*=u\}]$

Recall our goal.

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u \in f^*(s)] \ge \Omega(1/\sqrt{n}), \ \forall u \in [n]$
- w and w^* agree if w^* has no collision $a_{w_i^*} = a_{w_i^*}$.
- Good: $E[\#\{t|w_t^*=u, w^* \text{ has no collision}\}] \ge \Pr[\exists t, w_t=u].$
- All: $E[\#\{t|w_t^*=u\}]$
- Bad:

$$E[\#\{t|w_t^* = u, \exists t' \neq t'', a_{w_{t'}^*} = a_{w_{t''}^*}\}]$$

$$\leq E[\#\{t, t' \neq t''|w_t^* = u, a_{w_{t'}^*} = a_{w_{t''}^*}\}]$$

$$E[\#\{t|w_t^*=u\}] = \sum_{\vec{k}} \frac{2^{-(k_1+k_2+\cdots+k_\ell)}}{n}$$

$$E[\#\{t,t'\neq t''|w_t^*=u,a_{w_{t''}^*}=a_{w_{t''}^*}\}] = \sum_{\vec{k},\vec{k}',\vec{k}''} \frac{2^{-\|\vec{k}\|_1 - \|\vec{k}'\|_1 - \|\vec{k}''\|_1}}{n^2}$$

$$\mathsf{Good} = \sum_{\vec{k}} \frac{2^{-(k_1 + k_2 + \dots + k_\ell)}}{n} - \sum_{\vec{k}, \vec{k}', \vec{k}''} \frac{2^{-\|\vec{k}\|_1 - \|\vec{k}'\|_1 - \|\vec{k}''\|_1}}{n^2}$$

$$\mathsf{Good} = \sum_{\vec{k}} \frac{2^{-(k_1 + k_2 + \dots + k_\ell)}}{n} - \sum_{\vec{k}, \vec{k}', \vec{k}''} \frac{2^{-\|\vec{k}\|_1 - \|\vec{k}'\|_1 - \|\vec{k}''\|_1}}{n^2}$$

$$\sum_{\vec{k}} \frac{2^{-(k_1 + k_2 + \dots + k_\ell)}}{n} = \frac{1}{n} \prod_{i=1}^{\ell} \sum_{k_i = 0}^{\infty} 2^{-k_i} = \frac{2^{\ell}}{n}$$

$$\mathsf{Good} = \sum_{\vec{k}} \frac{2^{-(k_1 + k_2 + \dots + k_\ell)}}{n} - \sum_{\vec{k}, \vec{k}', \vec{k}''} \frac{2^{-\|\vec{k}\|_1 - \|\vec{k}'\|_1 - \|\vec{k}''\|_1}}{n^2}$$

$$\sum_{\vec{k},\vec{k}',\vec{k}''} \frac{2^{-\|\vec{k}\|_1 - \|\vec{k}'\|_1 - \|\vec{k}''\|_1}}{n^2} = \frac{8^{\ell}}{n^2}$$

$$\begin{aligned} \mathsf{Good} &= \sum_{\vec{k}} \frac{2^{-(k_1 + k_2 + \dots + k_\ell)}}{n} - \sum_{\vec{k}, \vec{k'}, \vec{k''}} \frac{2^{-\|\vec{k}\|_1 - \|\vec{k'}\|_1 - \|\vec{k''}\|_1}}{n^2} = \frac{2^\ell}{n} - \frac{8^\ell}{n^2} \\ \mathsf{Let} \; \ell &\leftarrow \frac{1}{2} \log n - 100. \; \frac{2^\ell}{n} - \frac{8^\ell}{n^2} = \frac{2^{-100}}{\sqrt{n}} - \frac{2^{-300}}{\sqrt{n}} = \Omega\left(\frac{1}{\sqrt{n}}\right). \end{aligned}$$

Warning

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u \in f^*(s)] \ge \Omega(1/\sqrt{n}), \ \forall u \in [n]$
- Even for this simple case, there is so much more technical challenges that is hidden in this talk.

Open Problems

Open Problems

- Time-space Tradeoffs In this work, we only solved the case when $S = \tilde{O}(1)$. Can we extend it to the full tradeoff?
- Shorter Seed Length
 In this work, our seed length is O(log³ n log log n). Can this be improved?

References I

Deterministic simulation of probabilistic constant depth circuits. In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985), pages 11–19. IEEE, 1985.

Paul Beame, Raphaël Clifford, and Widad Machmouchi. Element distinctness, frequency moments, and sliding windows. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 290–299. IEEE, 2013.

Allan Borodin, Faith Fich, F Meyer Auf Der Heide, Eli Upfal, and Avi Wigderson.

A time-space tradeoff for element distinctness.

SIAM Journal on Computing, 16(1):97-99, 1987.

References II

Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and Nikhil Vyas. Faster space-efficient algorithms for subset sum, k-sum, and related problems.

SIAM Journal on Computing, 47(5):1755-1777, 2018.

Andrew Chi-Chih Yao.

Near-optimal time-space tradeoff for element distinctness. In FOCS, pages 91–97, 1988.