

Présentation BE voilier

Université Paul Sabatier

Marlon MAZARGUIL Lucie JEANNIN

M2 SME 2022-2023

Sommaire

- 1. Introduction
- 2. F2 Conversion Cap
 - a. F2.1 captage Cap
 - b. F2.2 Conversion/Adaptation
- 3. F1 info vent
- 4. F7 Gestion commandes et indications barreur
- 5. Conclusion

Introduction

carte / composants physiques

Tests simulations

Compilation

Tests réels

F2 Conversion Cap - F2.1 captage Cap

Туре	précision	Sortie	Choix
Compas Fluxgate	<1 degré	analogique	
Boussole magnéto-résistive	3 degrés	numérique (PWM) ou I2C	Х
Module Compas	<1 degré	Trame NMEA	

Boussole CMPS03

F2 Conversion Cap - F2.2 Conversion/Adaptation

- Conversion PWM → degrés
- Gestion des deux modes :
 - Un mode monocoup : actualise le cap uniquement à l'appui d'un bouton
 - Un mode continu : actualise le cap toutes les secondes

F2 Conversion Cap - F2.2 Conversion/Adaptation

F2 Conversion Cap - F2.2 Conversion/Adaptation - PWM

1 ms \rightarrow 0° 10 ms \rightarrow 90° 19 ms \rightarrow 180° 28 ms \rightarrow 270°

 $\theta(t) = (t-1) * 10$, avec t en ms et θ en degrés

F1 Conversion info vent

F1 Conversion info vent

 $0 \text{ Hz} \rightarrow 0 \text{ km/h}$ 250 Hz \rightarrow 250 km/h

 $fréquence(Hz) \equiv vitesse(km/h)$

fréquence = nombre de période par seconde

 $nombre de p\'eriode \equiv nombre de front montant$

2 types d'action sur les boutons:

- Appui court (moins de deux secondes)
- Appui long (plus de deux secondes)

1 seconde de bip

0,5 seconde d'attente

Conclusion

- Problématiques du langage rencontrées :
 - synchronisation des signaux
 - gestions de l'horloge et ses connexions
- Différence entre les résultats en simulation et en réel

- Voies d'amélioration :
 - valider les différents blocs en réel à chaque nouvelle fonctionnalité
 - connaître mieux le principe général du VHDL