Big Data Systems

Image Classification

Sophia Williams Wilmer Maldonado Victor Teelucksingh

Introduction

- Processing big data poses several significant challenges
 - Storage
 - Data pipeline management
 - Computing power and training time
 - Analysis and interpretation
- Goal: Combine the use of AWS services for large data processing and deep learning models to assist the elderly and people who are visually impaired to better navigate their homes.
 - Deploy model by developing an app (mobile or web) to classify user images

Model Architecture

Data Description

- The dataset contains 37,500 fully labelled digital images collected in several elderly home cares in Malaysia in 25 different indoor object categories (i.e., bed, sofa, table, etc.)
 - Sourced from <u>Mendeley Data</u>
 - 1500 .images per class (containing some duplicates from the same class randomly modified using augmentation—rotations following a simple geometric transformation)
 - ~3GB total size (all .jpg)
- Captured using iPhone XS Max main camera and digitalized per process below

Data Analysis / Data Exploration

Image Resolution

Images Displayed with their Labels from Dataset

Frequency of images class/category

Range of sizes per image

Data Preprocessing

- Load data using from S3 bucket using keras
 - Define parameters (batch size, image dimensions)
 - 80/10/10 train/validation/test split
- Additional data augmentation
 - Random horizontal flip
 - Random rotation
 - Random zoom
- Buffer prefetching and shuffle to optimize data retrieval performance
- preprocess_input() method from Keras specifying ResNet50 model

Test-driven development

- Troubleshoot upload image data to S3 bucket
 - AWS CLI vs AWS S3 UI
- AWS Sagemaker Notebook Instance
 - Memory issues during training
 - ml.m5.2xlarge vs. default ml.t3.medium
- Parameter selection (optimized for validation accuracy)
 - Optimizer Adam
 - Learning Rate 0.001
 - Epochs
- Compare baseline CNN model and ResNet50 transfer learning model

Results

- Baseline CNN Model:
- 81% validation accuracy
- 81% test accuracy

- ResNet-50 Transfer Learning Model:
- 95% validation accuracy,
- 96% test accuracy

Visualize Test Results

Predicted: table True Label: table

Predicted: bench True Label: bench

Predicted: basket_bin True Label: basket_bin

Predicted: water_dispencer True Label: water_dispencer

Predicted: sink True Label: sink

Predicted: walker True Label: walker

Predicted: toilet_seat True Label: toilet_seat

Predicted: chair True Label: chair

Predicted: human_being True Label: human_being

Conclusions & Next Steps

High Accuracy Metrics

- Accuracy metrics indicate strong model performance on test set
- Developed models can support development of devices for elderlies with vision constraint and disabilities in healthcare
- Can also benefit general public (esp. disabled personnel)

Potential Improvements

- Test add'l transfer learning options
- Advanced testing / finetune hyperparameters
- App development
 - TFLite => FireBaseML or Android Studio

Project's Budget Estimate

Amazon Amplify:

- •Install and configure the AWS Amplify CLI.
- •Initialize a new Amplify project in your mobile app directory.

•Amazon S3:

•S3 bucket to store images uploaded by users.

•Amazon SageMaker:

•Set up Amazon Image Classification Model to train and analyze images.

•Amazon Polly:

•Amazon Polly to converts text to speech.

•AWS Lambda:

Lambda function:

- •Accepts an image from the S3 bucket trigger.
- •Sends the image to

Amazon SageMaker for object detection.

- •Converts the object name
- to speech using Amazon Polly.
- •Sends the audio response back to the user.

Amazon API Gateway:

•Create a RESTful API using Amazon API Gateway to trigger the Lambda function.

Monthly cost 99.24 USD

Service Name	▼	Status	▼	Upfront cost	▼	Monthly cost
AWS Amplify	1	-		0.00 USD		55.00 USD
Amazon Simple Stora	a	-		0.00 USD		0.07 USD
Amazon SageMaker	~	-		0.00 USD		29.04 USD
Amazon Polly	~	-		0.00 USD		0.12 USD
AWS Lambda	<u>/</u>	-		0.00 USD		0.01 USD
Amazon API Gateway	y <u>/</u>	-		0.00 USD		15.00 USD

Resources

- https://about.fb.com/news/2023/09/new-ray-ban-meta-smart-glasses/
- https://www.tensorflow.org/tutorials/images/classification
- https://aws.amazon.com/getting-started/hands-on/build-android-app-amplify/
- https://data.mendeley.com/datasets/fpctx3svzd/1