Claims:

1. Process for preparing fluoromethyl-substituted heterocycles of the formula (I)

$$F \xrightarrow{R^1} CO_2R^3$$
 (I)

5 in which

10

20

25

R¹ is hydrogen, fluorine or chlorine,

R² is hydrogen, fluorine or chlorine,

 R^3 is C_1 - C_6 -alkyl,

A is a 5-membered heterocycle selected from the group of pyrazole which is substituted by R⁴ in the 1-position, thiazole which is substituted by R⁴ in the 2-position and oxazole which is substituted by R⁴ in the 2-position,

R⁴ is C₁-C₄-alkyl, C₃-C₆-cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl or phenyl,

15 characterized in that

a) chloromethyl-substituted heterocycles of the formula (II)

$$CI \xrightarrow{R^1} CO_2R^3$$
 (II)

in which R¹, R², R³ and A are each as defined above are converted in the presence of a fluorinating agent and optionally in the presence of a diluent.

2. Process according to Claim 1, characterized in that the starting materials used are chloromethyl-substituted heterocycles of the formula (II),

in which

R¹ is hydrogen, fluorine or chlorine,

R² is hydrogen, fluorine or chlorine,

 R^3 is C_1 - C_4 -alkyl,

A is a 5-membered heterocycle selected from the group of

5

10

15

20

where in each case the bond marked by * is joined to the -CClR¹R² group and the other bond to the ester group,

- R⁴ is methyl, ethyl, n-propyl, isopropyl, cyclopropyl, cyclopentyl, cyclohexyl or phenyl.
- 3. Process according to one of Claims 1 and 2, characterized in that the starting materials used are one of the following compounds of the formulae (II-a), (II-b), (II-c) or (II-d)

$$CI \xrightarrow{R^{1}} CO_{2}R^{3}$$

$$CI \xrightarrow{R^{2}} CO_{$$

in which R^1 , R^2 and R^3 in each case are as defined in Claim 1 or 2.

- 4. Process according to Claim 3, characterized in that R¹ is chlorine, R² is hydrogen and R³ is methyl or ethyl.
- 5. Process according to one or more of Claims 1 to 4, characterized in that the fluorinating agent used is an alkali metal fluoride, cobalt(III) fluoride, halogen fluoride, antimony fluoride, molybdenum fluoride, hydrogen fluoride, hydrogen fluoride/pyridine mixture, tertiary ammonium hydrofluoride or trialkylamine hydrofluoride of the general formula n HF / N(Alk)₃ (where n is 1, 2 or 3, and Alk is C₁-C₄-alkyl).
- 6. Process according to one or more of Claims 1 to 5, characterized in that the fluorinating agent used is 3 HF / N(Et)₃ (Franz reagent), 3 HF / N(n-Bu)₃ or HF/pyridine (Olah's reagent).

- 7. Process according to one or more of Claims 1 to 6, characterized in that the fluorinating agent used is 3 HF / N(Et)₃ (Franz reagent) or 3 HF / N(n-Bu)₃.
- 8. Process according to one or more of Claims 1 to 7, characterized in that it is carried out at temperatures of 80°C to 170°C.
 - 9. Process according to one or more of Claims 1 to 8, characterized in that it is carried out at temperatures of 120°C to 150°C.
- 10 10. Use of fluoromethyl-substituted heterocycles of the formula (I)

$$F \xrightarrow{R^1} CO_2 R^3$$
 (I)

in which

15

20

R¹ is hydrogen, fluorine or chlorine,

R² is hydrogen, fluorine or chlorine,

 R^3 is C_1 - C_6 -alkyl,

A is a 5-membered heterocycle selected from the group of pyrazole which is substituted by R⁴ in the 1-position, thiazole which is substituted by R⁴ in the 2-position and oxazole which is substituted by R⁴ in the 2-position,

R⁴ is C₁-C₄-alkyl, C₃-C₆-cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl or phenyl

to prepare fungicidally active carboxamides of the formula (VII)

in which

R¹, R² and A are each as defined above,

is hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl) alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkyl) having in each case 1 to 13 fluorine, chlorine and/or

R9

bromine atoms; (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-cycloalkyl)carbonyl; (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O)R¹⁰, -CONR¹¹R¹² or -CH₂NR¹³R¹⁴,

5

R⁸ is hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,

n is 1, 2, 3 or 4, preferably 1 or 2,

10

is optionally mono- to pentasubstituted phenyl having identical or different substituents which are selected from halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy having in each case 1 to 5 fluorine, chlorine and/or bromine atoms, hydroxyimino-C₁-C₄-alkyl, C₁-C₄-alkoxyimino-C₁-C₄-alkyl, C₁-C₄-haloalkoxyimino-C₁-C₄-alkyl, or, in the case of two adjacent substituents, from difluoromethylenedioxy or tetrafluoroethylenedioxy,

15

or is C_3 - C_{10} -cycloalkyl or C_3 - C_{10} -bicycloalkyl which is in each case optionally mono- to tetrasubstituted, identically or differently, by halogen and/or C_1 - C_4 -alkyl, or unsubstituted C_2 - C_{20} -alkyl, or C_1 - C_{20} -alkyl which is mono- or polysubstituted, identically or differently, by fluorine, chlorine, bromine, iodine and/or C_3 - C_6 -cycloalkyl, in which case the cycloalkyl moiety may itself optionally be mono- to tetrasubstituted, identically or differently, by fluorine, chlorine, bromine, iodine, C_1 - C_4 -alkyl and/or C_1 - C_4 -haloalkyl,

20

or is C_2 - C_{20} -alkenyl or C_2 - C_{20} -alkynyl which is in each case optionally mono- or polysubstituted, identically or differently, by fluorine, chlorine, bromine, iodine and/or C_3 - C_6 -cycloalkyl in which case the cycloalkyl moiety may itself optionally be mono- to tetrasubstituted, identically or differently, by fluorine, chlorine, bromine, iodine, C_1 - C_4 -alkyl and/or C_1 - C_4 -haloalkyl,

25

is hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

30

R¹¹ and R¹² are each independently hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R¹¹ and R¹² are also, together with the nitrogen atom to which they are bonded, a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted, identically or differently, by halogen or C₁-C₄-alkyl, and the heterocycle may contain 1 or 2 further, nonadjacent heteroatoms from the group of oxygen, sulphur and NR¹⁵,

35

R¹³ and R¹⁴ are each independently hydrogen, C₁-C₈-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R¹³ and R¹⁴ are also, together with the nitrogen atom to which they are bonded, a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted, identically or differently, by halogen or C₁-C₄-alkyl, and the heterocycle may contain 1 or 2 further, nonadjacent heteroatoms from the group of oxygen, sulphur and NR¹⁵, R¹⁵ is hydrogen or C₁-C₆-alkyl.

10 11. Process for preparing fungicidally active carboxamides of the formula (VII)

$$\begin{array}{c|c}
F & R^1 & O & R^8 \\
R^2 & R^7 & R^9
\end{array}$$
(VII)

in which

5

20

25

30

R¹ is hydrogen, fluorine or chlorine,

R² is hydrogen, fluorine or chlorine,

15 A is a 5-membered heterocycle selected from the group of pyrazole which is substituted by R⁴ in the 1-position, thiazole which is substituted by R⁴ in the 2-position and oxazole which is substituted by R⁴ in the 2-position,

 R^4 is C_1 - C_4 -alkyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl or phenyl,

is hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-cycloalkyl)carbonyl; (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O)R¹⁰, -CONR¹¹R¹² or -CH₂NR¹³R¹⁴,

R⁸ is hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl, n is 1, 2, 3 or 4, preferably 1 or 2,

	R ⁹	is optionally mono- to pentasubstituted phenyl having identical or different
		substituents which are selected from halogen, C ₁ -C ₄ -alkyl, C ₁ -C ₄ -alkoxy, C ₁ -C ₂ -
		haloalkyl or C ₁ -C ₂ -haloalkoxy having in each case 1 to 5 fluorine, chlorine and/or
		bromine atoms, hydroxyimino-C ₁ -C ₄ -alkyl, C ₁ -C ₄ -alkoxyimino-C ₁ -C ₄ -alkyl, C ₁ -C ₄ -
5		haloalkoxyimino-C ₁ -C ₄ -alkyl, or, in the case of two adjacent substituents, from
		difluoromethylenedioxy or tetrafluoroethylenedioxy,
		or is C_3 - C_{10} -cycloalkyl or C_3 - C_{10} -bicycloalkyl which is in each case optionally
		mono- to tetrasubstituted, identically or differently, by halogen and/or C ₁ -C ₄ -alkyl,
		or unsubstituted C2-C20-alkyl, or C1-C20-alkyl which is mono- or polysubstituted,
10		identically or differently, by fluorine, chlorine, bromine, iodine and/or C ₃ -C ₆ -
		cycloalkyl, in which case the cycloalkyl moiety may itself optionally be mono- to
		tetrasubstituted, identically or differently, by fluorine, chlorine, bromine, iodine,
		C_1 - C_4 -alkyl and/or C_1 - C_4 -haloalkyl,
		or is $C_2\text{-}C_{20}\text{-alkenyl}$ or $C_2\text{-}C_{20}\text{-alkynyl}$ which is in each case optionally mono- or
15		polysubstituted, identically or differently, by fluorine, chlorine, bromine, iodine
		and/or C ₃ -C ₆ -cycloalkyl in which case the cycloalkyl moiety may itself optionally
		be mono- to tetrasubstituted, identically or differently, by fluorine, chlorine,
		bromine, iodine, C ₁ -C ₄ -alkyl and/or C ₁ -C ₄ -haloalkyl,
	R^{10}	is hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -cycloalkyl;
20		$C_1\text{-}C_6\text{-haloalkyl}, C_1\text{-}C_6\text{-haloalkoxy}, \text{halo-}C_1\text{-}C_4\text{-alkoxy-}C_1\text{-}C_4\text{-alkyl}, C_3\text{-}C_8\text{-haloalkyl}$
		cycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
	R ¹¹ and	l R ¹² are each independently hydrogen, C ₁ -C ₈ -alkyl, C ₁ -C ₄ -alkoxy-C ₁ -C ₄ -alkyl, C ₃ -C ₈ -
		$cycloalkyl; C_1-C_8-haloalkyl, halo-C_1-C_4-alkoxy-C_1-C_4-alkyl, C_3-C_8-halocycloalkyl$
		having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
25	R ¹¹ and	1 R ¹² are also, together with the nitrogen atom to which they are bonded, a saturated
		heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted,
		identically or differently, by halogen or C_1 - C_4 -alkyl, and the heterocycle may contain
		1 or 2 further, nonadjacent heteroatoms from the group of oxygen, sulphur and NR ¹⁵ ,
	R ¹³ and	l R ¹⁴ are each independently hydrogen, C ₁ -C ₈ -alkyl, C ₃ -C ₈ -cycloalkyl; C ₁ -C ₈ -haloalkyl,
30		C ₃ -C ₈ -halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine
		atoms,
	R ¹³ and	I R ¹⁴ are also, together with the nitrogen atom to which they are bonded, a saturated
		heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted,
		identically or differently, by halogen or C ₁ -C ₄ -alkyl, and the heterocycle may contain
35	0.2-2	1 or 2 further, nonadjacent heteroatoms from the group of oxygen, sulphur and NR ¹⁵ ,
	R^{15}	is hydrogen or C ₁ -C ₆ -alkyl,

characterized in that fluoromethyl-substituted heterocycles of the formula (I)

in which

R¹, R² and A are each as defined above,

are hydrolyzed in the presence of a base and optionally in the presence of a diluent, and the free acid is subsequently either converted to the corresponding acid chloride in the presence of a chlorinating agent and optionally in the presence of a diluent or the free acid is reacted directly with aniline derivatives of the formula (VIII)

$$HN = R^{\theta_n}$$
(VIII)

10

5

in which R⁷, R⁸, n and R⁹ are each as defined above

optionally in the presence of a catalyst, optionally in the presence of a condensing agent, optionally in the presence of an acid binding agent and optionally in the presence of a diluent.

15

- 12. Process according to Claim 11, characterized in that the compounds of the formula (I) are obtained by the process according to Claim 1.
- 13. Chloromethyl-substituted heterocycles of the formula (II)

$$CI \xrightarrow{R^1} CO_2R^3$$
 (II)

20

in which R¹, R², R³ and A are each as defined in Claim 1.

14. Compounds of the formula (II-a)

$$CI \xrightarrow{\mathbb{R}^1} CO_2\mathbb{R}^3$$
 $N \longrightarrow N$
 CH_3
 $(II-a)$

in which R^1 , R^2 and R^3 are each as defined in Claim 1.

15. Compounds of the formula (II-b)

$$CI \xrightarrow{R^1} CO_2R^3$$
 $H_3C \xrightarrow{N} N$
(II-b)

5 in which R^1 , R^2 and R^3 are each as defined in Claim 1.

16. Compounds of the formula (II-c)

in which R¹, R² and R³ are each as defined in Claim 1.

17. Compounds of the formula (II-d)

10

$$CI \xrightarrow{\mathbb{R}^1} CO_2\mathbb{R}^3$$
 $S \xrightarrow{\mathbb{N}} \mathbb{N}$
 CH_3
(II-d)

in which R¹, R² and R³ are each as defined in Claim 1.