- **1.** Resolver las ecuaciones para $x \in [0, 2\pi]$:
- a) $2 \sin^2 x + \sin x 1 = 0$, b) $\sin x + \cos x = 1$, c) $tg x = \cot gx$.
- 2. Simplificar las expresiones:
- a) $\frac{\operatorname{sen} x \operatorname{tg} x}{\operatorname{sen}^3 x}$, b) $\frac{\operatorname{sen} 3x + \operatorname{sen} x}{\operatorname{sen} 2x}$, c) $\frac{2 \operatorname{sen} x \operatorname{sen} 2x}{\operatorname{sen}^3 x}$.
- **3.** Calcular la longitud de un arco de circunferencia, sabiendo que el radio mide 18 cm y que el ángulo central correspondiente mide 75°.
- ${\bf 4.}$ Un globo está sujeto al suelo mediante un cordel de 80 m de largo que forma con el suelo horizontal un ángulo de 70°. Suponiendo que el cordel está recto, calcular la distancia del globo al suelo.
- **5.** Si las puntas de los brazos de un compás distan entre sí 6.25 cm y cada brazo mide 11.5 cm, ¿qué ángulo forman los brazos?
- 6. De un ángulo α del tercer cuadrante se sabe que sen $\alpha=-1/2$. Determinar α y las restantes razones trigonométricas.
 - 7. Hallar las razones trigonométricas del ángulo $\alpha=2\pi/3$.
- 8. Un poste vertical de 2 m proyecta una sombra de 0.8 m de longitud y, a la misma hora, la torre de una iglesia tiene una sombra de 24.8 m. Determinar la altura de la torre.
 - 9. ¿Cuál es la fórmula para calcular el área de un sector circular de α grados de amplitud?
 - **10.** Resolver el sistema: $\begin{cases} y x = \pi/2 \\ \cos x + \sin y = 1, \end{cases}$
 - 11. Calcular las razones trigonométricas del ángulo $\alpha=15^{\circ}$, a partir de las de 30° .
- **12.** Usando un triángulo equilátero de lado unidad, calcular las razones trigonométricas de 30° y 60° .
 - 13. Obtener sen 3x y $\cos 3x$ en función de sen x y $\cos x$.

Soluciones: 1. a)
$$\sin x = -1, 1/2$$
, b) $\sin x = 0, 1$, c) $\sin x = \pm \sqrt{2}/2$. a) $\frac{-1}{\cos x(1 + \cos x)}$,

b) $2\cos x$, c) $\frac{2}{1+\cos x}$. 3. Longitud= $15\pi/2$ cm. 4. Distancia del globo al suelo= $80\cdot \text{sen }70^\circ$ cm. 5. Ángulo = $2 \text{arc sen } 0.27 = 35^\circ 20'$. 6. $\cos \alpha = \pm \sqrt{3}/2$ y escogemos el signo - por ser del tercer cuadrante. Entonces: $\cos \alpha = \sqrt{3}/2$ y tg $\alpha = 1/\sqrt{3}$. 7. $2\pi/3$ es suplementario de $\pi/3$. Entonces tienen los senos iguales y los cosenos con signos opuestos: $\sin(2\pi/3) = \sin(\pi/3) = \sin 30^\circ = 1/2$ y $\cos(2\pi/3) = -\cos(\pi/3) = -\cos 30^\circ = -\sqrt{3}/2$. 8. Altura= 62 m.9. Área= $(1/2)R^2\alpha$, si el ángulo se mide en radianes. 10. $\cos x = 1/2$, luego $x = \pm \pi/3$. 11. $\sin 15^\circ = (1/2)\sqrt{2-\sqrt{3}}$ y $\cos 15^\circ = (1/2)\sqrt{2+\sqrt{3}}$. 13. $\sin 3x = 3 \sin x \cos^2 x - \sin^3 x$ y $\cos 3x = \cos^3 x - 3 \sin^2 x \cos x$.