Freq. $P(T|X,\theta)$ Gen. $P(X|T|\theta)$ $P(X|\theta) = P(X,\theta)$ $P(X|\theta)$ $P(X|\theta)$ P(X|

(x10,T) P(T IX, B) $(X_{tr}, T_{tr}) = \{(x_i, t_i)\}_{i=1}^n \theta_{un} = \text{argunax } p(T_{tr}|X_{tr}, 0)$ x $p(t|x_i, \theta_{un})$ ρ(θ | χ₄, Τ₄) =

ρ(Τ₄ | χ₄, θ) ρ | θ)

Σρ(π₄ | χ₄, θ) ρ | θ)

Δθ Osyreme Sp(t1x,θ)p(θ1Xt, Tt)d p(t1x, Xt, Tt)

 $b(x|\theta) = 2^{b}(x'\delta|\theta)q\xi = 2^{b}(x|\delta'\theta)^{b}|\delta|\theta)q\xi$ θω: ang wax p(X/θ) = ang wax log p(X/ θ) logp(X418) = logsp(X4, 718) dE = logsp(X412,8)p(218) 12 1 = Sp(210) lag p(X+12,0) (2 ~ lag p(X+12,0) 3~p(218)

Fight (xt 19) = 2d(f) part (xt 10) y = ardinant
$$f^{(4)}$$
 for $f(x^{1}, 5|\theta)$ = $f(5)$ for $f(x^{1}, 5|\theta)$ of $f(5)$ for $f(5)$ for

 $X_{i}^{\overline{c}}(X_{i}-X_{i})$ $X_{i}\in\mathbb{R}^{8}$ $\rightarrow Z_{\overline{c}}(Z_{i}...Z_{i})$ $Z_{i}\in\mathbb{R}^{d}$ D>d $P(X, \frac{1}{2}|\theta) = \prod_{i=1}^{n} P(X_{i}, \frac{1}{2}; \theta) = \prod_{i=1}^{n} P(X_{i}|\theta) = \prod_{i=1}^{n} P(X_{i}|\theta) = \prod_{i=1}^{n} P(X_{i}|\theta)$ $= \iint_{\mathbb{R}^{2}} \mathcal{D}(x; | h + m_{3}; g_{3}) \mathcal{L}(3; | 0') \qquad \theta = \{m', h', q_{3}\}$ WERDXD HERD BERT One : arguas p (XLIB) = orguas [] p(x;10) = = any wax [] [p(x;17;18)p(7;)d2; = any wax [] (x; | \mu, \ww^T+&'] ([13,613) N~3 3+; + W =; X 2: ~ N(2:10, I) W2: ~ N(W2: 0, WW)

$$\frac{\log_{P}(X_{tr}|\theta) = \log_{P}(X_{tr}|2,\theta)_{P}(2)}{\sum_{i=1}^{n} P(X_{i}|2,\theta)_{P}(2,\theta)} = \frac{\sum_{i=1}^{n} P(X_{i}|2,\theta)_{P}(2,\theta$$

0 = {w, m, e3 M- step East legp(X417,0)p(2) -> max 2 = \frac{1}{2} \begin{align*} & \frac{1}{2} \\ \frac

$$\begin{array}{lll}
\Theta - \frac{1}{1262} \sum_{i=1}^{n} \left(-2(x_i - \mu) E_{\overline{i}_i}^T + 2W E_{\overline{i}_i} E_{\overline{i}_i}^T\right) &= \begin{cases} E_{\overline{i}_i} = u_{i_i} \\ E_{\overline{i}_i} E_{\overline{i}_i}^T &= S + u_{i_i} u_{i_i}^T \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i} - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
W &= \left(\sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T\right) \left(\sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T\right) \\
P(A : O(u R^2 + R^3) \sum_{i=1}^{n} O(u R^2) \\
V &= 0 \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
V &= 0 \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
V &= 0 \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
= 0 \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
= 0 \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
= 0 \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
= 0 \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
= \begin{cases} \sum_{i=1}^{n} (x_i - \mu) u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T - \frac{1}{6} W \sum_{i=1}^{n} S + u_{i_i} u_{i_i}^T \end{cases} \\
=$$

 $= \left(\Theta \right) T_{i} f_{i} X) g$ = 17 10(x; |\mu_{i} + W_{i} =; , 62]) 10(2; [0, 1) = 246W3 443, 62, Tb To 20 Extend