Problem Set XII

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the exercises of the problem set XII. The chosen problems are 2,3,4.

Question 2.

2. (a) Let M_n be a submartingale. Show that for every $p \ge 1$, every $n \ge 0$ and every m > 0,

$$\mathbb{P}\left(\max_{1\leq k\leq n}M_k\geq m\right)\leq \frac{\mathbb{E}(M_n\vee 0)^p}{m^p}\,.$$

(b) Let M_n be a martingale. Show that for every $p \ge 1$, every $n \ge 0$ and every m > 0,

$$\mathbb{P}\left(\max_{1\leq k\leq n}|M_k|\geq m\right)\leq \frac{\mathbb{E}|M_n|^p}{m^p}\,.$$

(c) Let M_n be a martingale started at $M_0 = 0$. Show that for every m > 0,

$$\mathbb{P}\left(\max_{1\leq k\leq n} M_k \geq m\right) \leq \frac{\mathbb{E}M_n^2}{\mathbb{E}M_n^2 + m^2}.$$

(Hint: use the fact that $(M_n + c)^2$ is a submartingale.)

Solution

(a) By convexity, $\{(M_n^+)^p\}$ is a submartingale. Then, by Doob's inequality,

$$\mathbb{P}(\max_{1 \le k \le n} M_k \ge m) = \mathbb{P}(\max_{1 \le k \le n} (M_k^+)^p \ge m^p) \le \frac{\mathbb{E}(M_k^+)^p}{m^p}.$$

(b) By convexity $\{|M_n|\}$ is a martingale. By (a),

$$\mathbb{P}(\max_{1 \le k \le n} |M_k| \ge m) \le \frac{\mathbb{E}[|M_k|^p]}{m^p}.$$

(c) Let -c < m. Then, by hint, and Doob's inequality,

$$\mathbb{P}(\max_{1 \leq k \leq m} M_k \leq m) \leq \mathbb{P}(\max_{1 \leq k \leq m} (M_k + c)^2 \geq (m + c)^2) \leq \frac{\mathbb{E}[M_n^2 + c^2]}{(m + c)^2}.$$

Viewing the RHS as a function of c, denoted as f, taking the derivative, and setting it equal to 0 give

$$-2(\mathbb{E}[M_n^2] + c^2) + 2c(c+m) = 0$$

so minimum happens at $c = \frac{\mathbb{E}M_n^2}{m} > 0$. Plugging in the value of c at the minimum gives the desired inequality.

Question 3.

3. Let $M_n = \prod_{k=1}^n X_k$ where $\{X_k\}$ are i.i.d. nonnegative r.v.'s with $\mathbb{E}X_1 = 1$ and $\mathbb{P}(X_1 = 1) < 1$.

- (a) Argue that $\mathbb{E}(\log X_1)_+ < \infty$ and infer from the SLLN that $\lim_{n \to \infty} n^{-1} \log M_n \stackrel{a.s.}{=} m < 0$.
- (b) Deduce that $M_n \xrightarrow{a.s.} 0$ as $n \to \infty$ and that M_n is not uniformly integrable.
- (c) Conclude that Doob's L^p maximal inequality cannot be extended to the case p=1; that is, there is no $q<\infty$ such that $\mathbb{E}\left[(\max_{1\leq k\leq n}M_k)_+\right]\leq q\mathbb{E}(M_n)_+$ holds for every submartingale M_n and every n.

Solution.

Define $M_0 = 1$. Observe that $\{M_n\}$ is a martingale, because, by independence,

$$\mathbb{E}[M_n|\mathscr{F}_{n-1}] = \mathbb{E}[\prod_{k=1}^n X_k|\mathscr{F}_{n-1}] = M_{n-1}\mathbb{E}[X_n|\mathscr{F}_{n-1}] = M_{n-1}\mathbb{E}[X_n] = M_{n-1}$$

for any $n \ge 1$.

(a) Suppose $\mu = 0$. By chebyshev,

$$\mathbb{E}[\log(X)_+] = \int_0^\infty \mathbb{P}((\log(X) > \lambda) d\lambda = \int_0^\infty \mathbb{P}(X > e^{\lambda}) d\lambda \le \int_0^\infty \frac{\mathbb{E}[X]}{e^{\lambda}} d\lambda = e^{-\lambda}|_0^\infty = 1.$$

Hence, by SLLN, $n^{-1} \sum_{k=1}^{n} \log(X_k) = n^{-1} \log(M_n) \to \mu$ almost surely, where $\mu = \log(X_1)$.

If $\mu = 0$, then it follows that X_1 will be constant, which contradicts the assumption.

(b) From the convergence in (a),

$$n^{-1}\log(M_n) \le 2^{-1}\mu$$

and hence

$$M_n \le \exp(2^{-1}\mu n)$$

almost surely, for all n sufficiently large. Taking $n \to \infty$, shows that $M_n \to 0$ almost surely. Now, suppose $\{M_n\}$ is uniformly integrable. Then, $M_n \to 0$ in L^1 . However, $\mathbb{E}[M_n] = 1$ for all $n \ge 1$, so we have a contradiction, and $\{M_n\}$ is not integrable.

(c) Suppose the L^p maximal inequality holds for p = 1. Then,

$$\mathbb{E}[\max_{k < n} M_k] \le q \mathbb{E}[M_n] = q \mathbb{E}[M_0] < \infty$$

for some $q < \infty$. Taking $n \to \infty$ shows that

$$\mathbb{E}[\sup_{k} M_k] < \infty$$

which implies that $\{M_n\}$ is U.I, which contradicts (b). So, the maximal inequality cannot be extended to p = 1.

Question 4.

4. Let $S_n = \sum_{k=1}^n X_k$ where the X_k are mutually independent.

(a) Show that for every n and $s, t \ge 0$, if $Z_n = \max_{1 \le k \le n} |S_k|$ then

$$\mathbb{P}(Z_n \ge t + s) \le \mathbb{P}(|S_n| \ge t) + \mathbb{P}(Z_n \ge t + s) \max_{1 \le k \le n} \mathbb{P}(|S_n - S_k| > s).$$

(b) Suppose that $\mathbb{E}|X_k| < \infty$ for all k and that $\sup_n \mathbb{E}|S_n| < \infty$. Show that $\mathbb{E}[\sup_n |S_n|] < \infty$.

Solution.

(a) The idea is to mimic the proof of Levy's maximal inequality. Set $E_k = \{|S_1| < t + s, |S_2| < t + s, ..., |S_{k-1}| < t + s, |S_k| \ge t + s\}$. Then,

$$\begin{split} \mathbb{P}(Z_n \geq t_s) &= \mathbb{P}(Z_n \geq t + s, |S_n| \geq t) + \mathbb{P}(Z_n \geq t_s, |S_n| < t) \\ &\leq \mathbb{P}(|S_n| \geq t) + \sum_{k=1}^{n-1} \mathbb{P}(E_k \cap \{|S_n - S_k| > s\}) \\ &\leq \mathbb{P}(|S_n| \geq t) + \sum_{k=1}^{n-1} \mathbb{P}(E_k) \max_{1 \leq k \leq n} \mathbb{P}(|S_n - S_k| > s) \\ &\leq \mathbb{P}(|S_n| \geq t) + \mathbb{P}(Z_n \geq t + s) \max_{1 \leq k \leq n} \mathbb{P}(|S_n - S_k| > s). \end{split}$$

(b) Observe that

$$\mathbb{E}[\sup_{n} |S_{n}|] \leq \sum_{k=0}^{\infty} \mathbb{P}(\sup_{n} |S_{n}| \geq k) = \sum_{k=0}^{\infty} \mathbb{P}(\sup_{n} Z_{n} \geq k)$$

$$\leq \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \mathbb{P}(Z_{n} \geq k) \leq \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \mathbb{P}(|S_{n}| \geq k - \frac{1}{k}) + \mathbb{P}(Z_{n} \geq k) \max_{1 \leq i \leq n} \mathbb{P}(|S_{n} - S_{i}| > \frac{1}{k})$$

$$\leq \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \mathbb{P}(|S_{n}| \geq k - \frac{1}{k}) + \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \mathbb{P}(Z_{n} \geq k) \max_{1 \leq i \leq n} \mathbb{P}(|S_{n} - S_{i}| > \frac{1}{k})$$

$$\leq \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \mathbb{P}(|S_{n}| \geq k - \frac{1}{k}) + \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \mathbb{P}(Z_{n} \geq k) \max_{1 \leq i \leq n} \mathbb{P}(|S_{n} - S_{i}| > \frac{1}{k}).$$

For k = 0, just take $\frac{1}{k}$ in the above expression. Then, from the fact that $\sup_n \mathbb{E}S_n$ is bounded, maybe we can deduce the summability of the RHS.