Note del corso di Geometria 1

Gabriel Antonio Videtta

28 aprile 2023

Indipendenza e applicazioni affini

Nota. Qualora non specificato diversamente, si intenderà per E uno spazio affine sullo spazio vettoriale V e per E' uno spazio affine sullo spazio vettoriale V', dove sia V che V' sono costruiti sul campo \mathbb{K} .

Fissata un'origine O dello spazio affine, si possono sempre considerare due bigezioni:

- La bigezione $i_O: E \to V$ tale che $i(P) = P O \in V$,
- La bigezione $j_O: V \to E$ tale che $j(\underline{v}) = O + \underline{v} \in E$.

Si osserva inoltre che i_O e j_O sono l'una la funzione inversa dell'altra. Dato uno spazio vettoriale V su \mathbb{K} di dimensione n, si può considerare V stesso come uno spazio affine, denotato con le usuali operazioni:

- (a) $\underline{v} + \underline{w}$, dove $\underline{v} \in V$ è inteso come *punto* di V e $\underline{w} \in W$ come il vettore che viene applicato su \underline{w} , coincide con la somma tra \underline{v} e \underline{w} (e analogamente $\underline{w} \underline{v}$ è esattamente $\underline{w} \underline{v}$).
- (b) Le bigezioni considerate inizialmente sono in particolare due mappe tali che $i_{\underline{v_0}}(\underline{v}) = \underline{v} \underline{v_0}$ e che $j_{\underline{v_0}}(\underline{v}) = \underline{v_0} + \underline{v}$.

Definizione (spazio affine standard). Si denota con $\mathcal{A}_n(\mathbb{K})$ lo spazio affine standard costruito sullo spazio vettoriale \mathbb{K}^n . Analogamente si indica con A_V lo spazio affine costruito su uno spazio vettoriale V.

Osservazione.

▶ Una combinazione affine di A_V è in particolare una combinazione lineare di V. Infatti, se $\underline{v} = \sum_{i=1}^n \lambda_i \underline{v_i}$ con $\sum_{i=1}^n \lambda_i = 1$, allora, fissato $\underline{v_0} \in V$, $\underline{v} = \underline{v_0} + \sum_{i=1}^n \lambda_i (\underline{v_i} - \underline{v_0}) = \underline{v_0} + \sum_{i=1}^n \lambda_i \underline{v_i} - \underline{v_0} = \sum_{i=1}^n \lambda_i \underline{v_i}$.

▶ Come vi è una bigezione data dal passaggio alle coordinate da V a \mathbb{K}^n , scelta una base \mathcal{B} di V e un punto O di E, vi è anche una bigezione $\varphi_{O,\mathcal{B}}$ da E a $\mathcal{A}_n(\mathbb{K})$ data dalla seguente costruzione:

$$\varphi_{O,\mathcal{B}}(P) = [P - O]_{\mathcal{B}}.$$

Proposizione. Sia $D \subseteq E$. Allora D è un sottospazio affine di $E \iff$ fissato $P_0 \in D$, l'insieme $D_0 = \{P - P_0 \mid P \in D\} \subseteq V$ è un sottospazio vettoriale di V.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Siano $\underline{v_1},...,\underline{v_k}\in D_0$. Allora, per definizione, esistono $P_1,...,P_k\in D$ tali che $\underline{v_i}=P_i-P_0$ \forall $1\leq i\leq k$. Siano $\lambda_1,...,\lambda_k\in \mathbb{K}$. Sia inoltre $P=P_0+\sum_{i=1}^k\lambda_i\underline{v_i}\in E$. Sia infine $O\in D$. Allora $P=O+(P_0-O)+\sum_{i=1}^k\lambda_i\underline{v_i}=O+(P_0-O)+\sum_{i=1}^k\lambda_i(P_i-O+O-P_0)=O+(P_0-O)+\sum_{i=1}^k\lambda_i(P_i-O)=O+(1-\sum_{i=1}^k\lambda_i)(P_0-O)+\sum_{i=1}^k\lambda_i(P_i-O)$. In particolare P è una combinazione affine di $P_1,...,P_k\in D$, e quindi, per ipotesi, appartiene a P. Allora $P-P_0=\sum_{i=1}^k\lambda_i\underline{v_i}\in D_0$. Poiché allora P0 è chiuso per combinazioni lineari, P10 è un sottospazio vettoriale di P1.

(\iff) Sia $P = \sum_{i=1}^k \lambda_i P_i$ con $\sum_{i=1}^k \lambda_i = 1$, con P_1 , ..., $P_k \in D$ e λ_1 , ..., $\lambda_k \in \mathbb{K}$. Allora $P - P_0 = \sum_{i=1}^k \lambda_i (P_i - P_0) \in D_0$ per ipotesi, essendo combinazione lineare di elementi di D_0 . Pertanto, poiché esiste un solo punto P' tale che $P' = P_0 + \sum_{i=1}^k \lambda_i (P_i - P_0)$, affinché $\sum_{i=1}^k \lambda_i (P_i - P_0)$ appartenga a D_0 , deve valere anche che $P \in D$. Si conclude quindi che D è un sottospazio affine, essendo chiuso per combinazioni affini.

Osservazione. Sia D un sottospazio affine di E.

- ▶ Vale la seguente identità $D_0 = \{P Q \mid P, Q \in D\}$. Sia infatti $A = \{P Q \mid P, Q \in D\}$. Chiaramente $D_0 \subseteq A$. Inoltre, se $P Q \in A$, $P Q = (P P_0) (Q P_0)$. Pertanto, essendo P Q combinazione lineari di elementi di D_0 , ed essendo D_0 spazio vettoriale per la proposizione precedente, $P Q \in D_0 \implies A \subseteq D_0$, da cui si conclude che $D_0 = A$.
- ▶ Pertanto D_0 è unico, a prescindere dalla scelta di $P_0 \in D$.
- ▶ Vale che $D = P_0 + D_0$, ossia D è il traslato di D mediante il punto P_0 .

Definizione (direzione di un sottospazio affine). Si definisce $D_0 = \text{Giac}(D) = \{P - Q \mid P, Q \in D\} \subseteq V \text{ come la direzione (o giacitura)}$ del sottospazio affine D.

Definizione (dimensione un sottospazio affine). Dato D sottospazio affine di E, si dice dimensione di D, indicata con dim D, la dimensione della sua direzione D_0 , ossia dim D_0 . In particolare dim $E = \dim V$.

Definizione (sottospazi affini paralleli). Due sottospazi affini si dicono **paralleli** se condividono la stessa direzione.

Osservazione.

- \blacktriangleright I sottospazi affini di dimensione zero sono tutti i punti di E.
- ▶ I sottospazi affini di dimensione uno sono le *rette affini*, mentre quelli di dimensione due sono i *piani affini*.
- ▶ Si dice *iperpiano affine* un sottospazio affine di codimensione 1, ossia di dimensione n-1.
- ▶ Due sottospazi affini sono paralleli se e solo se uno può essere ottenuto mediante una traslazione dell'altro sottospazio.
- ▶ Se $D = \text{Aff}(P_1, ..., P_k)$ con $P_1, ..., P_k \in E$, i vettori $P_2 P_1, ..., P_k P_1$ generano D_0 . Infatti, se $P P_1 \in D_0$, con $P \in D$, esistono $\lambda_1, ..., \lambda_k \in \mathbb{K}$ con $\sum_{i=1}^k \lambda_i = 1$ tali che $P = \sum_{i=1}^k \lambda_i P_i$. Allora $P P_1 = \sum_{i=1}^k \lambda_i (P_i P_1)$, da cui si deduce che tali vettori generano D_0 .

Definizione (punti affinemente indipendenti). Un insieme di punti $P_1, ..., P_k$ di E si dice **affinemente indipendente** se ogni combinazione affine di tali punti è unica. Analogamente un sottoinsieme $S \subseteq E$ si dice affinemente indipendente se ogni suo sottoinsieme finito lo è.

Proposizione. Dati i punti P_1 , ..., $P_k \in E$, sono equivalenti le seguenti affermazioni.

- (i) $P_1, ..., P_k$ sono affinemente indipendenti,
- (ii) $\forall i \in \mathbb{N}^+ \mid 1 \le i \le k, P_i \notin \text{Aff}(P_1, \dots, P_k), \text{ con } P_i \text{ escluso},$
- (iii) $\forall i \in \mathbb{N}^+ \mid 1 \leq i \leq k$ l'insieme di vettori $\{P_j P_i \mid 1 \leq j \leq k, j \neq i\}$ è linearmente indipendente,
- (iv) $\exists i \in \mathbb{N}^+ \mid 1 \leq i \leq k$ per il quale l'insieme di vettori $\{P_j P_i \mid 1 \leq j \leq k, j \neq i\}$ è linearmente indipendente.

Dimostrazione. Siano P_1 , ..., P_k affinemente indipendenti. Sia $i \in \mathbb{N}^+ \mid 1 \leq i \leq k$. Allora chiaramente (i) \iff (ii), dacché se P_i appartenesse a $\mathrm{Aff}(P_1,\ldots,P_k)$, con P_i escluso, si violerebbe l'unicità della combinazione affine di P_i , e analogamente se esistessero due combinazioni affini in diversi scalari dello stesso punto si potrebbe un punto P_j con $1 \leq j \leq k$ come

combinazione affine degli altri punti.

Siano allora $\lambda_1, ..., \lambda_k \in \mathbb{K}$, con λ_i escluso, tali che:

$$\sum_{\substack{j=1\\j\neq i}}^{n} \lambda_j (P_j - P_i) = \underline{0}.$$

Allora si può riscrivere P_i nel seguente modo:

$$P_{i} = \left(1 - \sum_{\substack{j=1\\j \neq i}}^{n} \lambda_{j}\right) P_{i} + \sum_{\substack{j=1\\j \neq i}}^{n} \lambda_{j} P_{j}.$$

Dal momento che la scrittura di P_i è unica per ipotesi, $\lambda_j = 0 \ \forall 1 \le j \le k$ con $j \ne i$, e dunque l'insieme di vettori $\{P_j - P_i \mid 1 \le j \le k, j \ne i\}$ è linearmente indipendente, per cui (ii) \Longrightarrow (iii). Analogamente si deduce anche che (iii) \Longrightarrow (i) e che (iii) \Longrightarrow (iv). Pertanto (i) \Longleftrightarrow (ii) \Longleftrightarrow (iii).

Si assuma ora l'ipotesi (iv) e sia $t \in \mathbb{N}^+ \mid 1 \le t \le k$ tale che $t \ne i$. Siano dunque $\lambda_1, ..., \lambda_k$, con λ_t escluso, tale che:

$$\sum_{\substack{j=1\\j\neq t}}^{k} \lambda_j (P_j - P_t) = \underline{0}.$$

Allora si può riscrivere la somma come:

$$\sum_{\substack{j=1\\j\neq t}}^{k} \lambda_j (P_j - P_i) - \sum_{\substack{j=1\\j\neq t}}^{k} \lambda_j (P_t - P_i) = \underline{0},$$

ossia come combinazione lineare dei vettori della forma $P_j - P_i$. Allora, poiché per ipotesi tali vettori sono linearmente indipendenti, vale che:

$$\begin{cases} \lambda_j = 0 & \text{se } j \neq t \text{ e } j \neq i, \\ \sum_{\substack{j=1 \ j \neq t}}^k \lambda_j = 0 & \Longrightarrow \lambda_i = 0. \end{cases}$$

Pertanto l'insieme di vettori $\{P_j - P_t \mid 1 \leq j \leq k, j \neq t\}$ è linearmente indipendente, da cui vale che (iv) \Longrightarrow (iii). Si conclude dunque che (i) \Longleftrightarrow (ii) \Longleftrightarrow (iii) \Longleftrightarrow (iv), ossia la tesi.

Osservazione.

- \blacktriangleright Si osserva che il numero massimo di punti affinemente indipendenti di un sottospazio affine D di dimensione $k \in k+1$, dacché, fissato un punto, vi possono essere al più k vettori linearmente indipendenti.
- \blacktriangleright Un punto di E è sempre affinemente indipendente, dacché la sua unica combinazione affine è sé stesso.
- ightharpoonup Due punti di E sono affinemente indipendenti se e solo se il vettore che li congiunge è non nullo.
- Se P_1 , ..., P_k sono punti affinemente indipendenti, allora dim Aff $(P_1, \ldots, P_k) = k-1$. Infatti esistono almeno k-1 vettori linearmente indipendenti nella direzione di questo sottospazio affine, ed esattamente k-1 vettori generano tale direzione.

Definizione (riferimento affine). Sia $D \subseteq E$ un sottospazio affine di E di dimensione k-1. Siano i punti $P_1, ..., P_k$ dei punti affinemente indipendenti. Allora si dice che tali punti formano un **riferimento affine** di D.

Definizione (coordinate affini). Sia $D \subseteq E$ un sottospazio affine di E di dimensione k-1 e siano i punti $P_1, ..., P_k$ un riferimento affine R di D. Allora, se $P = \lambda_1 P_1 + ... + \lambda_k P_k \in D$ con $\lambda_1 + ... + \lambda_k = 1$, si dice che le **coordinate affine** di P sono rappresentate dal punto $[P]_{\mathcal{B}}$, dove:

$$[P]_R = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{pmatrix} \in \mathcal{A}_{\mathbf{n}}(\mathbb{K}).$$

Osservazione.

- Esiste sempre un riferimento affine di un sottospazio affine D di E. Infatti, dato un punto P_1 di E, e una base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_k}\}$ della direzione D_0 , i punti $P_1, P_1 + v_1, \dots, P_1 + v_k$ formano un riferimento affine.
- ▶ Dalla definizione sopra si deduce che, scelto un riferimento affine R, esiste una mappa iniettiva $[\cdot]_R : D \to \mathcal{A}_n(\mathbb{K})$, dove l'immagine di P mediante $[\cdot]_R$ è esattamente il vettore contenente le coordinate affini di P.

Proposizione. Sia $E = \mathcal{A}_n(\mathbb{K})$. Allora i punti $P_1, ..., P_k$ sono affinemente indipendenti se e solo se i vettori $\hat{P}_1 = \begin{pmatrix} P_1 \\ 1 \end{pmatrix}$, ..., $\hat{P}_k = \begin{pmatrix} P_k \\ 1 \end{pmatrix}$ sono linearmente indipendenti.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Siano $\lambda_1, ..., \lambda_k \in \mathbb{K}$ tali che $\lambda_1 \hat{P}_1 + ... + \lambda_k \hat{P}_k = \underline{0}$. Allora $\sum_{i=1}^k \lambda_i = 0$ e $\lambda_1 P_1 + ... + \lambda_k P_k = 0$.

Pertanto, sapendo che $\lambda_1 = -\lambda_2 + \ldots - \lambda_k$, vale la seguente identità:

$$\lambda_2(P_2 - P_1) + \ldots + \lambda_k(P_k - P_1) = 0.$$

Poiché i punti $P_1, ..., P_k$ sono affinemente indipendenti, per la proposizione precedente, allora i vettori $P_2 - P_1, ..., P_k - P_1$ sono linearmente indipendenti, per cui $\lambda_2 = \cdots = \lambda_k = 0$. Pertanto anche $\lambda_1 = 0$, e quindi i vettori $\hat{P}_1, ..., \hat{P}_k$ sono linearmente indipendenti.

(\iff) Siano λ_2 , ..., $\lambda_k \in \mathbb{K}$ tali che $\lambda_2(P_2 - P_1) + \ldots + \lambda_k(P_k - P_1) = 0$. Sia allora $\lambda_1 = -\lambda_2 + \ldots - \lambda_k$. Si osserva dunque che $\lambda_1 + \ldots + \lambda_k = 0$ e che $\lambda_1 P_1 + \ldots + \lambda_k P_k = 0$, da cui si deduce che $\lambda_1 \hat{P}_1 + \ldots + \lambda_k \hat{P}_k = 0$. Dal momento però che \hat{P}_1 , ..., \hat{P}_k sono linearmente indipendenti, $\lambda_2 = \cdots = \lambda_k = 0$, da cui la tesi, per la proposizione precedente.

Definizione (combinazione convessa). Si dice che una combinazione affine $\sum_{i=1}^k \lambda_i P_i$ nei punti $P_1, ..., P_k$ con $\sum_{i=1}^k \lambda_i = 1$ è una **combinazione convessa** se $\lambda_i \geq 0 \ \forall \ 1 \leq i \leq k$.

Definizione (baricentro). Si definisce **baricentro** G_S dei punti $P_1, ..., P_k$, che compongono l'insieme $S \subseteq E$, la combinazione convessa $\sum_{i=1}^k \frac{1}{k} P_i$.

Definizione (inviluppo convesso). Si definisce l'inviluppo complesso IC(S) di un insieme $S \subseteq E$ l'insieme delle combinazioni convesse finite di S.

Osservazione.

- ▶ L'insieme IC(S) è, effettivamente, un insieme convesso, se $S \subseteq E$. Se infatti $P, Q \in IC(S)$, allora $\lambda_1 P + \lambda_2 Q \in IC(S)$, con $\lambda_1, \lambda_2 \geq 0$, e quindi $[P,Q] \subseteq IC(S)$.
- ▶ Se $E = \mathcal{A}_2(\mathbb{R})$, e P_1 , P_2 , P_3 sono tre punti di E, l'inviluppo convesso dei tre punti è esattamente il triangolo costruito sui tre punti. Analogamente, presi quattro punti di $\mathcal{A}_3(\mathbb{R})$, l'inviluppo convesso dei quattro punti è un tetraedro.
- ▶ Se $A = B \cup C \subseteq E$ (ossia se $A = B \cup C$ con $B \cap C = \emptyset$), si osserva che $G_A = \frac{|B|}{|A|}G_B + \frac{|C|}{|A|}G_C$. Infatti, se B_1 , ..., $B_{|B|}$ sono i punti di A appartenenti a B e C_1 , ..., $C_{|C|}$ sono quelli appartenenti a C, $G_A = \sum_{i=1}^{|B|} \frac{1}{|A|}B_i + \sum_{i=1}^{|C|} \frac{1}{|A|}C_i = \frac{|B|}{|A|}\sum_{i=1}^{|B|} \frac{1}{|B|}B_i + \frac{|C|}{|A|}\sum_{i=1}^{|C|} \frac{1}{|C|}C_i = \frac{|B|}{|A|}G_B + \frac{|C|}{|A|}G_C$.

▶ In $A_2(\mathbb{R})$, il baricentro tra tre punti affinemente indipendenti è esattamente il baricentro del loro inviluppo convesso, ossia del triangolo formato da questi punti. Infatti, se $S = \{P_1, P_2, P_3\}$, $G_S = \frac{1}{3}P_1 + \frac{1}{3}P_2 + \frac{1}{3}P_3$. Inoltre, per l'osservazione precedente, si può scrivere il baricentro di questo triangolo come una combinazione convessa del punto medio di due punti e del terzo punto non considerato, ossia $G_S = \frac{2}{3}\left(\frac{1}{2}P_i + \frac{1}{2}P_j\right) + \frac{1}{3}P_k$. Pertanto il baricentro di un triangolo è l'intersezione di tutte e tre le mediane di tale triangolo. Se si dota il piano della misura euclidea si deduce anche che il segmento che congiunge il baricentro al punto medio è la metà del segmento che congiunge il baricentro al terzo punto.

Definizione (applicazione affine). Si definisce **applicazione** affine da E a E' un'applicazione $\varphi: E \to E'$ che conservi le combinazioni affini, ossia tale che:

$$\varphi\left(\sum_{i=1}^k \lambda_i P_i\right) = \sum_{i=1}^k \lambda_i \varphi(P_i), \text{ se } \sum_{i=1}^k \lambda_i = 0.$$

Osservazione.

- ▶ Come per le applicazioni lineari, la somma e la composizione di più applicazioni affini è ancora una applicazione affine.
- ightharpoonup Se si sceglie un riferimento affine di E, φ è univocamente determinata da come agisce su tale riferimento.

Teorema. Sia $\varphi: E \to E'$ un'applicazione affine. Allora esiste un'unica applicazione lineare $g: V \to V'$ tale per cui $\varphi(P) = \varphi(O) + g(P - O)$ $\forall P \in E$, invariante per la scelta di $O \in E$.

Dimostrazione. Sia $O \in E$. Si consideri l'applicazione $g: V \to V'$ tale per cui $g(\underline{v}) = \varphi(O + \underline{v}) - \varphi(O)$. Si verifica che g è lineare:

- $g(\underline{v} + \underline{w}) = \varphi(O + \underline{v} + \underline{w}) \varphi(O) = \varphi((O + \underline{v}) + (O + \underline{w}) O) \varphi(O) = \varphi(O + \underline{v}) \varphi(O) + \varphi(O + \underline{w}) \varphi(O) = g(\underline{v}) + g(\underline{w})$ (additività),
- $g(a\underline{v}) = \varphi(O + a\underline{v}) \varphi(O) = \varphi(a(O + \underline{v}) + (1 a)O) \varphi(O) = a\varphi(O + \underline{v}) + (1 a)\varphi(O) \varphi(O) = ag(\underline{v})$ (omogeneità).

Inoltre, $\varphi(P) = \varphi(O + P - O) = \varphi(O) + \varphi(P) - \varphi(O) = \varphi(O) + g(P - O)$. Si osserva infine che g è unica per costruzione. Si verifica allora che scegliendo $O' \in E$ al posto di O, la costruzione di g è invariante, ossia che $\varphi(O' + \underline{v}) - \varphi(O') = \varphi(O + \underline{v}) - \varphi(O) \ \forall \underline{v} \in V$. Infatti $\varphi(O' + \underline{v}) - \varphi(O') = \varphi(O' - O + (O + \underline{v})) - \varphi(O') = \varphi(O') - \varphi(O) + \varphi(O + \underline{v}) - \varphi(O') = \varphi(O + \underline{v}) - \varphi(O)$, da cui la tesi.

Osservazione. Data un'applicazione lineare g da V in V' e dati $O \in E$, $O' \in E$, si può sempre costruire un'applicazione affine φ tale che $\varphi(P) = O' + g(P - O)$. Infatti, se $\sum_{i=1}^{n} \lambda_i = 1$, $\varphi(\sum_{i=1}^{n} \lambda_i P_i) = O' + g(\sum_{i=1}^{n} \lambda_i (P_i - O)) = O' + \sum_{i=1}^{n} \lambda_i g(P_i - O) = O' + \sum_{i=1}^{n} \lambda_i (\varphi(P_i) - O') = \sum_{i=1}^{n} \lambda_i \varphi(P_i)$.

Definizione (applicazione lineare associata ad un'applicazione affine). Data un'applicazione affine $\varphi: E \to E'$ e dato $O \in E$, si definisce $g: V \to V'$ tale che $g(\underline{v}) = \varphi(O + \underline{v}) - \varphi(O)$ come l'applicazione lineare associata a φ .

Osservazione.

- ▶ Siano $E = \mathcal{A}_n(\mathbb{K})$ ed $E' = \mathcal{A}_m(\mathbb{K})$. Allora, se φ è un'applicazione affine da E a E', $\varphi(\underline{x}) = \varphi(\underline{0}) + g(\underline{x} \underline{0}) = A\underline{x} + \underline{b} \ \forall \underline{x} \in E$, dove A è la matrice associata di g nelle basi canoniche di \mathbb{K}^n e \mathbb{K}^m e $b = \varphi(0)$.
- Sia E'' un altro spazio affine costruito su un altro spazio vettoriale V'', sempre fondato sul campo \mathbb{K} . Se dunque g e g' sono le applicazioni lineari associate alle applicazioni affini $\varphi: E \to E'$ e $\varphi': E' \to E''$, allora $g \circ g'$ è l'applicazione lineare associata a $\varphi \circ \varphi'$ e $\varphi + \varphi'$. Infatti, se $O \in E$, $\varphi(\varphi'(P)) = \varphi(\varphi'(O) + g'(P O)) = \varphi(\varphi'(O)) + g(g'(P O))$.

Definizione (affinità). Un'applicazione affine da E in E si dice **affinità** se è bigettiva.

Osservazione. Affinché un'applicazione affine sia un'affinità è necessario e sufficiente che la sua applicazione lineare sia invertibile. Infatti, se $\varphi: E \to E$ è un'applicazione affine e l'applicazione lineare associata $g: V \to V'$ è invertibile, allora $\varphi(P) = \varphi(Q) \Longrightarrow \varphi(O) + g(P - O) = \varphi(O) + g(Q - O) \Longrightarrow g(P - O) = g(Q - O) \Longrightarrow P - O = Q - O \Longrightarrow P = Q$ (iniettività), e $\forall P \in E$, $\varphi(O + g^{-1}(P - \varphi(O))) = \varphi(O) + g(g^{-1}(P - \varphi(O))) = P$ (surgettività). Analogamente si dimostra il viceversa.

Osservazione. Se $\varphi: E \to E$ è un'affinità, anche il suo inverso φ^{-1} lo è. Dacché φ^{-1} è già bigettiva, è sufficiente mostra che è anche un'applicazione affine. Siano allora $\lambda_1, ..., \lambda_k \in \mathbb{K}$ tali che $\sum_{i=1}^k \lambda_i = 1$. Siano inoltre $P_1, ..., P_k$ punti di E. Allora, poiché φ è un'affinità, esistono $Q_1 = \varphi^{-1}(P_1), ..., Q_k = \varphi^{-1}(P_k) \in E$ tali che $\varphi\left(\sum_{i=1}^k \lambda_i Q_i\right) = \sum_{i=1}^k \lambda_i P_i$. Allora $\varphi^{-1}\left(\sum_{i=1}^k \lambda_i P_i\right) = \varphi^{-1}\left(\varphi\left(\sum_{i=1}^k \lambda_i Q_i\right)\right) = \sum_{i=1}^k \lambda_i \varphi^{-1}(P_i)$.

In particolare, se $g \in \operatorname{End}(V)$ è l'applicazione lineare associata a φ , g^{-1} è l'applicazione lineare associata a φ^{-1} . Sia infatti $f \in \operatorname{End}(V)$ è l'applicazione lineare associata a φ^{-1} . Dal momento che $\varphi^{-1}(\varphi(O+v)) = O+v$ e che

 $\varphi^{-1}(\varphi(O+\underline{v})) = \varphi^{-1}(\varphi(O)+g(\underline{v})) = \varphi^{-1}(\varphi(O))+f(g(\underline{v})) = O+f(g(\underline{v})),$ deve valere infatti che $f(g(\underline{v})) = \underline{v} \ \forall \underline{v} \in V$, ossia $f \circ g = \operatorname{Id}_V \implies f = g^{-1}$.

Definizione (gruppo delle affinità di uno spazio affine). Si indica con A(E) il gruppo, mediante l'operazione di composizione, delle affinità di E.

Osservazione.

- ▶ Un esempio notevole di affinità è la **traslazione** $\tau_{\underline{v}}: E \to E$ tale che $\tau_{\underline{v}}(Q) = Q + \underline{v}$, dove $\underline{v} \in V$. In particolare l'applicazione associata a tale affinità è l'identità. Infatti, se $O \in E$, $g(\underline{v}) = \tau_{\underline{v}}(O + \underline{v}) \tau_{\underline{v}}(O) = (O + 2\underline{v}) (O + \underline{v}) = \underline{v}$.
- ▶ L'applicazione $\zeta: A(E) \to \operatorname{GL}(V)$ che associa ad un'affinità l'applicazione ad essa associata è un epimorfismo di gruppi. Infatti, dato un endomorfismo invertibile di V, vi si può costruire sopra, come visto prima, un'affinità. Inoltre vale che $\zeta(f \circ f') = \zeta(f) \circ \zeta(f')$, per $f, f' \in A(E)$.
- \blacktriangleright Vale che Ker ζ è esattamente il sottogruppo normale di A(E) delle traslazioni, dal momento che sono le uniche affinità la cui applicazione lineare associata è l'identità.