ECON 709B - Problem Set 2

Alex von Hafften*

1. 3.2^1 Consider the OLS regression of the $n \times 1$ vector y on the $n \times k$ matrix X. Consider an alternative set of regressors Z = XC, where C is a $k \times k$ non-singular matrix. Thus, each column of Z is a mixture of some of the columns of X. Compare the OLS estimates and residuals from the regression of Y on X to the OLS estimates from the regression of Y on Z.

The OLS estimates and residuals from the regression of y on X:

$$\hat{\beta}_X = (X'X)^{-1}X'y$$

$$\hat{e}_X = Me = (I - X(X'X)^{-1}X')e$$

The OLS estimates and residuals from the regression of y on Z:

$$\hat{\beta}_Z = (Z'Z)^{-1}Z'y$$

$$= ((XC)'(XC))^{-1}(XC)'y$$

$$= (C'X'XC)^{-1}C'X'y$$

$$= C^{-1}(X'X)^{-1}(C')^{-1}C'X'y$$

$$= C^{-1}(X'X)^{-1}X'y$$

$$\hat{e}_Z = M_Z e$$

$$= (I - Z(Z'Z)^{-1}Z')e$$

$$= (I - (XC)((XC)'(XC))^{-1}(XC)')e$$

$$= (I - (XC)(C'X'XC)^{-1}C'X')e$$

$$= (I - (XC)(C^{-1})(X'X)^{-1}(C')^{-1}C'X')e$$

$$= (I - X(X'X)^{-1}X')e$$

Thus, the OLS estimates from the regression of y on Z are those from the regression of y on X pre-multipled by C^{-1} and the residuals are the same in both regressions.

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, and Ryan Mather. I also discussed problems with Emily Case, Sarah Bass, and Danny Edgel.

¹These problems come from *Econometrics* by Bruce Hansen, revised on October 23, 2020.

2. 3.5 Let \hat{e} be the OLS residual from a regression of y on $X = [X_1 X_2]$. Find $X_2' \hat{e}$.

Note that $X_2 = X\Gamma_2$ where Γ_2 is the last k_2 columns of a I_k , so it is $k \times k_2$:

$$X_2'\hat{e} = (X\Gamma_2)'\hat{e} = \Gamma_2'X'\hat{e} = \Gamma_2'0 = 0$$

3.6 Let $\hat{y} = X(X'X)^{-1}X'y$. Find the OLS coefficient from a regression of \hat{y} on X.

Let $\hat{\beta} = (X'X)^{-1}X'y$ be the OLS coefficient from a regression of y on X. Thus, the OLS coefficient from a regression of \hat{y} on X is

$$\tilde{\beta} = (X'X)^{-1}X'\hat{y} = (X'X)^{-1}X'X(X'X)^{-1}X'y = (X'X)^{-1}X'y = \hat{\beta}$$

3.7 Show that if $X = [X_1 \ X_2]$, then $PX_1 = X_1$ and $MX_1 = 0$.

Note that $X_1 = X\Gamma_1$ where Γ_1 is the first k_1 columns of a I_k , so it is $k \times k_1$:

$$PX_1 = PX\Gamma_1 = X(X'X)^{-1}X'X\Gamma_1 = X\Gamma_1 = X_1$$

$$MX_1 = (I_n - P)X_1 = I_n X_1 - P X_1 = X_1 - X_1 = 0$$

3. 3.11 Show that when X contains a constant $\frac{1}{n} \sum_{i=1}^{n} \hat{y}_i = \bar{y}$.

$$\frac{1}{n}\sum_{i=1}^{n}\hat{y}_{i} = \frac{1}{n}\sum_{i=1}^{n}(y_{i} - \hat{e}_{i}) = \frac{1}{n}\sum_{i=1}^{n}y_{i} - \frac{1}{n}\sum_{i=1}^{n}\hat{e}_{i} = \bar{y} - \frac{1}{n}\sum_{i=1}^{n}\hat{e}_{i}$$

We know from exercise 3.5 that $X_1'\hat{e} = 0$ where $X = [X_1 \ X_2]$. Choose X_1 be the column of ones representing the constant, so $\sum_{i=1}^n \hat{e}_i = 0 \implies \frac{1}{n} \sum_{i=1}^n \hat{y}_i = \bar{y}$.

3.12 A dummy variable takes on only the values 0 and 1. It is used for categorical data, such as an individual's gender. Let D_1 and D_2 be vectors of 1's and 0's, with the *i*th element of D_1 equaling 1 and that of D_2 equaling 0 if the person is a man, and the reserve if the person is a woman. Suppose that there are n_1 men and n_2 women in the sample. Consider fitting the following three equations by OLS: (3.53) $y = \mu + D_1\alpha_1 + D_2\alpha_2 + e$, (3.54) $y = D_1\alpha_1 + D_2\alpha_2 + e$, and (3.55) $y = \mu + D_1\phi + e$. Can all three equations be estimated by OLS? Explain if not.

If gender is binary and all people in the sample indentify either as a man or woman, then only (3.54) and (3.55) can be estimated using OLS. In (3.53) X does not have full (rank(X) = 1 \neq 2) because $D_1 = 1_n - D_2$, so X'X is not invertible.

If gender is not binary, so $D_1 \neq 1_n - D_2$, then all three equations can be estimated using OLS.

- (a) Compare regressions (3.54) and (3.55). Is one more general than the other? Explain the relationship between the parameters in (3.54) and (3.55).
- (3.54) and (3.55) result in estimates that related and the same residuals, but (3.55) is more general than (3.54) because it includes a constant, so if more variables are added it ensures that the regression line passes through the sample averages and that R^2 have a helpful interpretation.

 α_1 is the average of y for men and α_2 is the average of y for women.

 μ is the average of y for women and ϕ is the difference between the average y for men and women.

So $\mu = \alpha_2$ and $\phi = \alpha_1 - \mu = \alpha_1 - \alpha_2$.

(b) Compute $1'_nD_1$ and $1'_nD_2$, where 1_n is a $n \times 1$ vector of ones.

$$1_n'D_1 = n_1$$

$$1_n'D_2 = n_2$$

3.13 Let D_1 and D_2 be defined as in the previous excerise.

(a) In the OLS regression $Y = D_1 \hat{\gamma}_1 + D_2 \hat{\gamma}_2 + \hat{u}$. Show that $\hat{\gamma}_1$ is the sample mean of the dependent variance among the men in the sample (\bar{y}_1) and that $\hat{\gamma}_2$ is the sample mean the women in the sample (\bar{y}_2)

. . .

(b)

4. 3.16 Consider two least squares regressions $y = X_1 \tilde{\beta}_1 + \tilde{\epsilon}$ and $y = X_1 \hat{\beta}_1 + X_2 \hat{\beta}_2 + \hat{\epsilon}$. Let R_1^2 and R_2^2 be the R-squared from the two regressions. Show that $R_2^2 \geq R_1^2$. Is there a case (explain) when these is equality $R_2^2 = R_1^2$?

. . .

5. 3.21 Consider the least squares regression estimators $y_i = X_{1i}\hat{\beta}_1 + X_{2i}\hat{\beta}_2 + \hat{e}_i$ and the "one regressor at a time" regression estimators $y_i = X_{1i}\tilde{\beta}_1 + \tilde{e}_{1i}$ and $y_i = X_{2i}\tilde{\beta}_2 + \tilde{e}_{2i}$. Under what condition does $\tilde{\beta}_1 = \hat{\beta}_1$ and $\tilde{\beta}_2 = \hat{\beta}_2$?

. . .

3.22

3.23

. . .

6. 3.24

. . .

3.25

. . .

- 7. Given the $n \times 1$ vector y and the $n \times k$ matrix X. Assume: $\operatorname{rank}(X) = k$; $E(y|X) = X\beta$; and $\operatorname{var}(y|X) = \sigma^2 I$. Partition X: $X = [X_1 \ X_2]$ where X_1 is $n \times k_1$, X_2 is $n \times k_2$, and $k_1 + k_2 = k$. And similarly partition β : $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$, where β_1 is $k_1 \times 1$ and β_2 is $k_2 \times 1$.
- (a) Consider the OLS regression of y on X that yields the OLS estimator $\hat{\beta}$. What is $E[\hat{\beta}_1|X]$? Simplify your answer.

From lecture, we have that

$$\hat{\beta}_1 = (X_1'X_1)^{-1}X_1'(y - X_2\hat{\beta}_2)$$

$$\hat{\beta_2} = (X_2' M_1 X_2)^{-1} X_2' M_1 y$$

So,

$$E[\hat{\beta_2}|X] = E[(X_2'M_1X_2)^{-1}X_2'M_1y|X] =$$

and

$$E[\hat{\beta}_1|X] = E[(X_1'X_1)^{-1}X_1'(y - X_2\hat{\beta}_2)|X] = E[(X_1'X_1)^{-1}X_1'y|X] - E[(X_1'X_1)^{-1}X_1'X_2\hat{\beta}_2|X] = (X_1'X_1)^{-1}X_1'E[y|X] - (X_1'X_1)^{-1}X_1'Y_1 - (X_1'X_1)^{-1}X_1'Y_2 - (X_1'X_1)^{-1}X_1'Y_1 - (X_1'X_1)^{-1}X_1'Y_2 - (X_1'X_1)^{-1}X_1'Y_1 - (X_1'X_1)^{-1}X_1'Y_2 - (X_1'X_1)^{-1}X_1'Y_1 - (X_1$$

$$\hat{\beta} = (X'X)^{-1}X'y \implies \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} [X_1 \ X_2] \end{pmatrix}^{-1} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} y = \begin{pmatrix} \begin{pmatrix} X_1X_1 & X_1 \\ X_2X_1 & \end{pmatrix} [X_1 \ X_2] \end{pmatrix}^{-1} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} y$$

- (b) Let $\hat{y} = X\hat{\beta}$. Now, consider the OLS regression of \hat{y} on X_1 that yields the OLS estimator $\hat{\beta}_1$. What is $E[\hat{\beta}_1|X]$? (Simpllify your answer.) Is $\hat{\beta}_1$ an unbiased estimator of β_1 ?
- . . .
- (c) Consider the OLS regression of y on X_1 that yields the OLS estimator $\tilde{\beta}_1$. Let $\tilde{y} = X_1 \tilde{\beta}_1$. Now consider the OLS regression of \tilde{y} on X that yields the OLS estimator $\tilde{\tilde{\beta}}$. How is $\tilde{\tilde{\beta}}$ related to $\tilde{\beta}_1$? (Provide a mapping between $\tilde{\tilde{\beta}}$ and $\tilde{\beta}_1$ that does not involve X.)
- . . .
- (d) What is the \mathbb{R}^2 for the OLS regression of \tilde{y} on X (from part (c))? Simplify your answer.
- . . .

What is $\operatorname{var}(\tilde{\tilde{\beta}}|X)$? Simply your answer.