20. Công thức tính khoảng cách từ vật đến thấu kính

1. Định nghĩa

Khoảng cách từ vật đến thấu kính là d = OA, được quy ước như sau:

+ vật thật: d >0

+ vật ảo: d < 0

2. Công thức - đơn vị đo

Trường hợp đối với một thấu kính

Công thức tính khoảng cách từ vật đến thấu kính:

$$\frac{1}{f} = \frac{1}{d} + \frac{1}{d'} = > d = \frac{f \cdot d'}{d' - f}$$

3. Mở rộng

Khi biết số phóng đại ảnh là k, ta có thể xác định tỉ số giữa khoảng cách từ vật đến thấu kính và khoảng cách từ ảnh đến thấu kính

$$k = -\frac{d'}{d} \Longrightarrow d = -\frac{d'}{k}$$

Đối với hệ thấu kính đồng trục L_1 , L_2 có khoảng cách giữa hai tâm là O_1O_2 thì ảnh của L_1 trở thành vật đối với thấu kính L_2

Ví dụ: Hệ hai thấu kính hội tụ

Hệ thấu kính hội tụ - phân kì

Ta có sơ đồ tạo ảnh

AB
$$\xrightarrow{L_1}$$
 A'₁ B'₁ $\xrightarrow{L_2}$ A'₂ B'₂ (d_2, d'_2)

Khi đó khoảng cách từ vật sáng A_1 ' B_1 ' đến thấu kính L_2 là: $d_2 = O_1O_2$ - d_1 '

Trong đó:

+ d₂ là khoảng cách từ ảnh của vật AB tạo bởi thấu kính L₁, nay là vật sáng đối với L₂ đến thấu kính L₂.

- + d_1 ' là khoảng cách từ ảnh của vật AB tạo bởi thấu kính L_1 đến thấu kính L_1
- + O₁O₂ là khoảng cách giữa hai quang tâm của hai thấu kính.

Lưu ý: nếu hệ thấu kính ghép sát thì $O_1O_2=0$, khi đó $d_2=-d_1$ '

4. Bài tập ví dụ

Bài 1: Một thấu kính hội tụ có tiêu cự f=20 cm cho ảnh thật cao gấp 2 lần vật. Xác định khoảng cách giữa vật và thấu kính.

Bài giải:

Vì ảnh thật cao gấp hai lần vật nên k = -2.

Ta có
$$k = -\frac{d'}{d} = -2 => d' = 2d$$

Áp dụng công thức xác định vị trí ảnh:

$$d' = {d.f \over d-f} = {d.20 \over d-20} = 2d \Rightarrow d = 30$$
 (cm)

Đáp án: d = 30 cm.

Bài 2: Cho thấu kính hội tụ L_2 có tiêu cự $f_2 = 24$ cm và vật AB đặt trên trục chính cách thấu kính một đoạn không đổi a = 44 cm. Thấu kính phân kì L_1 có tiêu cự $f_1 = -15$ cm được đặt giữa vật AB và L_2 , cách L_2 một khoảng l sao cho hai trục chính trùng nhau. Xác định vị trí và số phóng đại k của ảnh sau cùng A_2 ' B_2 ' trong trường hợp l = 34 cm

Bài giải

Sơ đồ tạo ảnh:

$$AB \xrightarrow{L_1} A_1B_1 \xrightarrow{L_2} A_2B_2$$

$$d_1 \quad d_1' \qquad d_2 \quad d_2'$$

$$a_1 \quad d_1' = a_1' - a_2' - a_2'$$

$$a_2 \quad a_2' = a_1' - a_2' - a_2' - a_2'$$

Ta có d'₁ =
$$\frac{d_1 f_1}{d_1 - f_1} = \frac{10.(-15)}{10 + 15} = -6$$
 (cm)

$$d_2 = l - d'_1 = 34 - (-6) = 40 \text{ (cm)}$$

$$d'_2 = \frac{d_2 f_2}{d_2 - f_2} = \frac{40.24}{40 - 24} = 60 \text{ (cm)}$$

$$k = \frac{d_1'd_2'}{d_1d_2} = \frac{-6.60}{10.40} = -0.9$$

Ảnh cuối cùng là ảnh thật, ngược chiều với vật và cao bằng 0,9 lần vật.