COMPLEX VARIABLES: EXAM 1

- 1. Compute all the values of $\sqrt[4]{-16} = (-16)^{\frac{1}{4}}$. Represent your answer geometrically.
- 2. Compute the following:
 - (a) $\exp(1 + \frac{\pi}{2}i);$
 - (b) $\log(-ie)$;
 - (c) $\cosh(i\pi)$;
 - (d) $\sin(\frac{\pi}{2} + i);$
 - (e) $P.V(-1)^{1+i}$.
- 3. Describe in geometric terms the effect of the mapping $f(z) = (1+i)z^2$ on the right half-plane $\text{Re}(z) \geq 0$. Specifically, sketch the *images* of the coordinate grid-lines of the "input" z-plane in the "output" w-plane.
- 4. Consider complex logarithm as a function defined on its Riemann surface. Find the pre-image, on the Riemann surface, of the horizontal strip $-2\pi \leq \text{Im}(w) \leq 2\pi$. Please provide an accompanying illustration!
- 5. Find a branch f(z) of the multivalued logarithmic function which is continuous along both negative and positive parts of the real axis and attains the value of f(1) = 0. Give an explicit (piece-wise) formula relating the branches to Log(z) and interpret in terms of the Riemann surface. In addition, sketch the range for your branch and emphasize the location of the branch cut.
- 6. Find the domain of the function $f(z) = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$.

Extra Credit: Summarize in two-three sentences the reasons why Cauchy-Riemann equations hold.