α				k ³ r ₅	$\frac{1+t_1}{(2)^2 r_5 t_1}$		+t ₁ ² r ₅ t ₁
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{i}{k r_5 + 2 k^3 r_5}$	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 \; r_5 + 2 k^4 \; r_5)}$	$\frac{6 k^2 r_5 + t_1}{2 (k + 2 k^3)^2 r_5 t_1}$	0	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	0	$\frac{i}{k r_5 + 2 k^3 r_5}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$\tau_{1}^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^+\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1}\dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

$f_{1^-}^{\#1}{}_{lpha} \qquad f_{1^-}^{\#2}{}_{lpha}$	0	0 (0 0)	$\frac{1}{3}$ \vec{l}	0 ($\frac{2k^2t_1}{3}$
·	0	0	0	0	0	0	k t 1 0
$\omega_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t1</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5 + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}ikt_1$
$f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{\bar{\ell}kt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#2}{}_+\alpha\beta$	$\frac{zh}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} +^{\alpha\beta}$	$\omega_1^{\#2} + ^{\alpha \beta}$	$f_1^{\#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_1^{\#2} +^{\alpha}$	$\epsilon_1^{\#1} + \alpha$	$\epsilon_{1}^{#2} +^{\alpha}$

$\sigma_{0}^{\#1}$	0	0	0	$-\frac{1}{t_1}$
$\tau_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	0	0	0	0
$\sigma_{0}^{\#1}$	0	0	0	0
	$\sigma_0^{\#1} \dagger$	$\tau_0^{\#1} +$	$\tau_0^{\#2} +$	$\sigma_{0}^{\#1}$ †

Source constraints	
SO(3) irreps	#
$\sigma_{0^{+}}^{\#1} == 0$	1
$\tau_{0+}^{\#1} == 0$	1
$\tau_{0+}^{\#2} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5
Total #:	17

Lagrangian density

	$-\frac{1}{3}t_{1} \omega_{\alpha}^{\alpha l} \omega_{\kappa\alpha}^{\ \ \kappa_{-}}t_{1} \omega_{\kappa\lambda}^{\ \ \ \ } \omega_{\kappa\lambda}^{\ \ \ \ \ } + f^{\alpha\beta} \ t_{\alpha\beta} + \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi^{-}}r_{5} \partial_{l}\omega^{\kappa\lambda}^{\ \ \ \ } $ $r_{5} \partial_{\alpha}\omega_{\lambda}^{\ \ \ \ \ \ } \partial_{\kappa}\omega^{\beta\kappa\lambda} + r_{5} \partial_{\theta}\omega_{\lambda}^{\ \ \ \ \ \ } \partial_{\kappa}\omega^{\beta\kappa\lambda} - r_{5} \partial_{\alpha}\omega_{\lambda}^{\ \ \ \ \ \ } \partial_{\kappa}\omega^{\kappa\lambda\beta} + 2 r_{5} \partial_{\theta}\omega^{\kappa\lambda}^{\ \ \ \ \ } $ $\frac{1}{2}t_{1} \partial^{\alpha}f_{\theta\kappa} \partial^{\kappa}f_{\alpha}^{\ \ \ \ \ \ \ \ \ } \frac{1}{2}t_{1} \partial^{\alpha}f_{\kappa} \partial^{\kappa}f_{\alpha}^{\ \ \ \ \ \ \ \ \ } \frac{1}{2}t_{1} \partial^{\alpha}f_{\kappa}^{\ \ \ \ \ \ \ \ \ } \partial^{\kappa}f_{\alpha\lambda}^{\ \ \ \ \ \ \ \ } + \frac{1}{2}t_{1} \partial_{\kappa}f_{\alpha\lambda}^{\ \ \ \ \ \ \ \ \ \ \ } \partial^{\kappa}f_{\alpha\lambda}^{\ \ \ \ \ \ \ \ \ \ \ } \partial^{\kappa}f_{\alpha\lambda}^{\ \ \ \ \ \ \ \ \ \ \ \ \ } \partial^{\kappa}f_{\alpha\lambda}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
--	--

	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0^{+}}^{\#1}$ †	0	0	0	0
$f_{0+}^{#1}\dagger$	0	0	0	0
$f_{0+}^{#2}$ †	0	0	0	0
$\omega_{0}^{#1}$ †	0	0	0	-t ₁

Unitarity conditions

 $r_5 < 0 \&\& t_1 < 0 \mid \mid t_1 > 0$

(No massive particles)