

Lineare Regression

Energiedatenanalyse - Datamining

Die Themengebiete der Veranstaltung verknüpfen Modelle des "Machine Learning" mit energiewirtschaftlichen Fragestellungen

Der Cliffhänger: Was ist das und was hat das mit Regression zu tun?

- 1. Lineare Regression (Theorie)
- 2. Case Study 1: Datenlücken bereinigen
- 3. Case Study 2: Winkelerkennung von WKAs
- 4. Case Study 3: Multiple Regression Strompreis auf Brennstoffe und CO2

Motivation: Überblick Vorgehensweise lineare Regression

Quelle: In Anlehnung an: Eine Einführung; 6. Auflage; Ludwig von Auer;2013; Springer Gabler Verlag

Bei Verwendung mehrerer erklärender Variablen (k ≥ 2) spricht man vom "multiplen", sonst vom "einfachen" Regressionsmodell

Bezeichnungen

"Sprache"	x	Y	
Allgemein	unabhängige Variable	abhängige Variable	
	erklärende Variable	erklärte Variable	
Modellbildung	exogene Variable	endogene Variable	
Maschine Learning	Feature	Output/ Label	
Regression	Regressor	Regressand	

- A1: Die Regressoren beschreiben vollständig das Verhalten von Y.
- A2: Die Parameter a, b,... sind Konstanten.

Es kommen viele parametrische Funktionen für eine Anpassung einer linearen Regression in Frage

Abbildung des Zusammenhangs

- Vorgehensweise der Regressionsrechnung
- 1. Wahl eines geeigneten Funktions-Typs

$$y=f(x)$$
, z.B.:

Funktionstyp	Formel
linear	y = a + bx
quadratisch	$y = a + bx + cx^2$
exponentiell	$y = e^{a+bx+cx^2}$
trigonometrisch	y = a + bsin(x) + bcos(x)

- 2. Anpassung der Funktion y=f(x) an die Punktewolke
 - Berechnung geeigneter Werte für die Parameter

Spezifikation und Parameterschätzung

Schritt 1: Wahl eines geeigneten Modells

Abbildung des Zusammenhangs zwischen exogener und endogener Größe

1. Wahl eines geeigneten Funktions-Typ

$$y = f(x)$$

z. B. Geradenfunktion

$$f(x) = a + bx$$

- Beschreibung durch 2 Parameter a und b
- a und b stellen die Regressionsparameter dar

I.d.R. kann das Modell f(x)=a+bx den empirischen Zusammenhang nicht exakt abbilden.

Erweiterung des Modells um eine Störgröße:

- Annahme: Überlagerung nicht-systematischer zufälliger Störeinflüsse ϵ_i
- Entsprechend ist die Gleichung um einen Störterm zu erweitern, welcher eine zufällige Ausprägung in jedem Zeitschritt taufweist:

$$Y_i = a + bX_i + \epsilon_i$$

Abweichung des gemessenen Wert zur berechneten Geraden

$$e_i = y_i - f(x_i) = y_i - \hat{y}_i$$

= (gemessener y Wert) – (berechneter \hat{y} Wert)

Es gibt eine Vielzahl von Annahmen zu den Eigenschaften des resultierenden Modells und der Störgröße

Annahmen bzgl. des Modells

Der Erwartungswert beträgt Null:

$$E(\epsilon)=0$$

■ Die Störgröße hat eine konstante Varianz (Homoskedastizität):

$$Var(\epsilon) = \sigma^2$$

Die Störgrößen sind nicht korreliert (fehlende Autokorrelation):

$$Cov(\epsilon_1, \epsilon_2)=0$$

Die Störgröße ist unabhängig identisch normalverteilt:

$$\epsilon \sim N(0, \sigma^2)$$

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Die <u>Trendbereinigung</u> einer Zeitreihe kann klassisch mit Hilfe von linearen und/oder polynomialen Funktionen vorgenommen werden

KQ-Schätzung

Das Bestimmtheitsmaß R^2 kann zur Beurteilung herangezogen werden:

$$R^{2} = 1 - \frac{\sum_{t=1}^{n} \hat{e}_{t}^{2}}{\sum_{t=1}^{n} (y_{t} - \overline{y})^{2}}$$

Modelle zur Trendbereinigung:

Lineare Regression

$$y_t = a_0 + a_1 \cdot t + e_t$$

Polynomische Trends

$$y_t = a_0 + \sum_{i=1}^n a_i \cdot t^i + e_t$$

 Schätzung erfolgt mit Methode der kleinsten Quadrate (KQ-Methode)

$$\min_{a_0, \dots, a_1} \sum_{t=1}^n (y_t - a_0 - a_1 \cdot t)^2$$

Ergebnisse:

- Resultierender Trend: $\hat{g}_t = a_0 + a_1 \cdot t$
- Residuum: $\hat{\boldsymbol{e}}_t = y_t \hat{g}_t$

Wahrscheinlichkeitsverteilung der Zufallsvariablen Yi ist den Annahmen nach i.i.d. Normalverteilt

Annahme: $Y_i \sim N(\mu, \sigma)$

Für den Erwartungswert von Y_i gilt:

$$E(Y_t) = E(a + bX_i + \epsilon_i) = a + bX_i$$

mit
$$\epsilon_i \sim i. i. d. N(0, \sigma^2)$$

und die **Varianz von** *Y*_i gilt:

$$var(Y_i) = E[(Y_i - E(Y_i))^2]$$

$$= E[(a + bX_i + \epsilon_i - E(Y_i))^2]$$

$$= E[(\epsilon_i)^2] = \sigma^2$$

Schätzer für die Varianz der Residuen

$$\left[\widehat{\sigma^{2}}\right] = \frac{1}{n-2} \sum_{i=1}^{N} e_{i}^{2} = \frac{1}{n-2} \sum_{i=1}^{N} (y_{i} - \overline{y} - \widehat{b}\overline{x} - \widehat{b}x_{i})^{2}$$

Die Varianz der Störgröße hat einen unmittelbaren Einfluss auf die Varianz der Schätzer

- Im vorliegenden Fall wurden einzelne Stichproben (40 Datenpunkte) des Modells $Y \sim N(a + bX_t, \sigma^2)$ vorgenommen. Die Parameter a = 2 und b = 0,1 wurden nicht verändert. Je Stichprobe wurden die Parameter a und b geschätzt.
- \blacksquare Durch die Störgröße im Modell deren Varianz ebenfalls σ^2 beträgt, resultieren für jede Stichprobe leicht abweichende Parameter.
- Hieraus resultiert die Frage, welche Aussagekraft eine Schätzung hat, die nur eine Stichprobe zugrunde liegen hat

Überblick und Grundbegriffe: Schätzverfahren

■ Punktschätzer:

Ein Punktschätzer für den zu schätzenden Parameter θ ist eine **Zufallsvariable**, welche mit Hilfe von Stichprobenvariablen $Y_1, Y_2, ..., Y_n$ berechnet wird.

 $\widehat{\Theta}$ = Punktschätzer für den Parameter θ

In Abhängigkeit der vorliegenden Stichprobe können unterschiedliche Ausgleichsgeraden resultieren

Wovon hängt grundsätzlich die Variabilität von a und b ab?

- Stichprobenumfang n
- Varianz σ^2 der Störgröße
- Spannweite von x

Aus den formulierten Eigenschaften für y lässt sich die Verteilung der KQ-Schätzer herleiten

Lageparameter des Schätzers

Schätzer	â	\widehat{b}
Erwartungs wert	а	b
Varianz	$\sigma^2 \frac{1}{n} \frac{\sum x_i^2}{S_{xx}}$	σ^2/S_{xx}
Verteilung	$N\left(a, \sigma^2 \frac{1}{n} \frac{\sum x_i^2}{S_{xx}}\right)$	$N(b, \sigma^2/S_{xx})$

Schätzer für die Varianz der Störterme $\hat{\sigma}^2 = \frac{S_{ee}}{n-2}$

Varianz der Störgröße und Regressand

- lacksquare ist die unbekannte "wahre" Varianz der Störgröße e und y
- 1. Die Varianz der geschätzten Parameter \hat{a} , \hat{b} ist somit umso größer je größer die "wahre" Varianz der Störgröße ist.
- 2. Je größer der Stichprobenumfang, desto kleiner ist die Varianz vom Parameter \hat{a}

 S_{xx} ist die Variation der exogenen Variable: $S_{xx} = \sum (x_i - \bar{x})^2$

■ Die Variation S_{xx} wirkt sich auch minimierend auf die Varianz des Schätzers \hat{b} aus.

Zusammenfassung der Idee und Ausgaben einer linearen Regression

Der "wahre" Zusammenhang zwischen X und Y wird durch eine Störgröße überlagert

Aus der Schätzung lassen sich Punkt und Intervallschätzer* mit ableiten

Intervallschätzer mit Konfidenz $1 - \alpha$

$$\left[\hat{b} - t_{1-a/2} * std(\hat{b}); \hat{b} + t_{1-a/2} * std(\hat{b})\right]$$

Die Parameterschätzer anhand der jeweiligen Stichprobe können als Zufallsvariablen aufgefasst werden

Beispielhaftes Ergebnis

Para- meter	Punktschätzer (Est)	Standard- abweichung $std(\theta)$ (SE)	Intervall
a b	1,02	0,74	$[Est - t_{1 - \frac{a}{2}} \cdot SE;$
D	0,12	0,02	$Est + t_{1 - \frac{a}{2}} \cdot SE];$

Anwendungszweck und Eigenschaften der Statistischen Testverfahren

■ Hypothesen und Gegenhypothesen werden üblicherweise mit der **Nullhypothese** *H*₀ und das Gegenteil mit der **Alternative** *H*₁ bezeichnet

Deskriptive Statistik

Es liegt eine

Totalerhebung der
Grundgesamtheit vor,
daher können Parameter
und statistische
Kenngrößen wie etwa
Mittelwert und Varianz
EXAKT bestimmt
werden.

Induktive Statistik

Es liegen nur

Stichproben vor, daher benötigen wir Verfahren mit denen wir die unbekannten Parameter zumindest annähernd bestimmen bzw.

schätzen können.

Genau wie bei den Testverfahren sind statistische Kennziffern und Parameter unbekannt. Im Gegensatz zu Schätzverfahren überprüfen Testverfahren, **Hypothesen** bezüglich der unbekannten Werte

Hypothesentest auf Basis der Gegenhypothese

- Zielsetzung des Hypothesentest: Eine Vermutung/Behauptung soll gestützt werden.
- Vorgehensweise: Nachweis, dass die Gegenhypothese widerlegt werden kann.
- Nullhypothese zweiseitiger Test Dabei ist μ der tatsächliche Erwartungswert der Grundgesamtheit und μ_0 der hypothetische Wert.

$$H_0: \mu = \mu_0$$

Nullhypothese einseitiger Test
 Hier befindet sich die Alternative jeweils nur auf eine Seite.

$$H_0: \mu \leq \mu_0 \quad oder \quad H_0: \mu \geq \mu_0$$

Gebrauch von Signifikanztests: Konstruktion der Nullhypothese

- Signifikanztest ist ein Ausschlussverfahren, welcher einem indirekten Beweis gleichkommt.
- Wollen wir also die Behauptung A als richtig nachweisen, so muss gezeigt werden, dass das Gegenteil von A Falsch ist:
- \blacksquare $H_0 =$ Gegenteil von Behauptung A

■ Je kleiner der Wert α festgelegt wird, desto sensibler verhält sich der Test und es wird öfters die Behauptung weder widerlegt noch nachgewiesen.

Grundidee des Zweiseitigen Hypothesentest

- Bildung einer Nullhypothese H0: b = 0 mit $\alpha =$ Signifikanzniveau i.d.R. 5% -> Risiko falscher Widerlegung
- Bereits abgeleitet wurde die Verteilungsfunktion von \hat{b} : $\hat{b} \sim N(b = 0, var(\hat{b}))$
- **Fragestellung:** ab welcher Ausprägung des Schätzers \hat{b} muss die Nullhypothese abgelehnt werden?

Grundidee des einseitiger Hypothesentest

- Bildung einer Nullhypothese H0: $b \le g$ mit $\alpha = Signifikanzniveau$ i.d.R. 5% -> Risiko erster Art
- **Fragestellung:** ab welcher Ausprägung des Schätzers \hat{b} muss die Nullhypothese abgelehnt werden?

Der Aufbau der Teststatistik hängt von der konkreten Fragestellung ab

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Schritt 1: Formulierung von H0 und H1 und Festlegung des Signifikanzniveaus α

 H_0 : $b = g \quad und \quad H_1$: $b \neq g$ (i.d.R. wird im Hypothesenaufbau g = 0 gesetzt)

 H_0 : $b \le g$ und H_1 : b > g

Schritt 2: Formulierung der Testgröße unter H0

$$t = \frac{\hat{b} - g}{std(\hat{b})}$$
 mit Freiheitsgraden $\vartheta = n - 2$

Schritt 3: Ermittlung des kritischen Wertes $t_{1-\alpha/2}$

$$P\{t_{a/2} \le t \le t_{1-a/2}\} = 1 - \alpha$$

$$P\{t \le t_{1-a}\} = 1 - \alpha$$

Schritt 4: Prüfung ob Testgröße kritischen Wert überschreitet/unterschreitet

Wenn $|t| > t_{1-\alpha/2} \rightarrow$ Ablehnung von H0

Wenn $t > t_{1-\alpha} \rightarrow$ **Ablehnung von H0**

Der P-Wert wird häufig in statistischen Programmen ermittelt und gibt das Signifikanzniveau an, zu dem H0 gerade noch nicht widerlegt wird

- Häufig wird in der Statistik der sogenannte p-Wert angegeben
- Dieser drückt bei berechneter Testgröße t das Signifikanzniveau aus, welches noch nicht zur Widerlegung von H0 führt.
- Der Wert p bringt gegenüber dem t-Wert direkter zum Ausdruck, wie deutlich eine H0-Hypothese abgelehnt oder akzeptiert worden ist
- Der Wert p kann als Irrtumswahrscheinlichkeit interpretiert werden, H0 fälschlicherweise abzulehnen.

Im Rahmen des Hypothesentests wird die Nullhypothese, dass der Parameter Null beträgt geprüft:

Der "wahre" Zusammenhang zwischen X und Y wird durch eine Störgröße überlagert

Aus der Schätzung lassen sich Punkt und Intervallschätzer* mit ableiten

Intervallschätzer mit Konfidenz $1 - \alpha$

$$\left[\hat{b} - t_{1-a/2} * std(\hat{b}); \hat{b} + t_{1-a/2} * std(\hat{b})\right]$$

 $t_{a/2} = Quantilswert der t - Verteilung t \sim t(N-2)$

Hypothesentest P-Wert

Kann die Hypothese "Parameter ist Null" mit entsprechender Konfidenz abgelehnt werden?

Bei welcher Signifikanz p würde meine Nullhypothese gerade nicht widerlegt?

Anwendungsbeispiel 2: Datenimputation Regression am Beispiel der schweizer Strompreise

Im Rahmen des Hypothesentests wird die Nullhypothese, dass der Parameter Null beträgt geprüft:

Hypothesentest

Frage: Kann die Hypothese "Parameter ist Null" mit entsprechender Konfidenz abgelehnt werden?

P-Wert

Frage: bei welcher Signifikanz p würde meine Nullhypothese gerade nicht widerlegt?

Interpretation: ein p in der Nähe von 0 entspricht einer extrem kleinen Irrtumswahrscheinlichkeit beim Ablehnen der Hypothese.

	1	2	3	4
	Estimate	SE	tStat	pValue
1 (Intercept)	1.0169	0.7419	1.3708	0.1873
2 x1	0.1201	0.0214	5.6048	2.5568e-05

1. Einfache lineare Regression

2. Case Study 1: Datenlücken bereinigen

- 4. Multiple lineare Regression
- 5. Case Study 3: Multiple Regression Strompreis auf Brennstoffe und CO2

Anwendungsbeispiel 2: Datenimputation Regression am Beispiel der schweizer Strompreise

Es gibt eine Vielzahl von Annahmen zu den Eigenschaften des resultierenden Modells und der Störgröße

Annahmen bzgl. des Modells

Der Erwartungswert beträgt Null:

$$E(\epsilon)=0$$

■ Die Störgröße hat eine konstante Varianz (Homoskedastizität):

$$Var(\epsilon) = \sigma^2$$

■ Die Störgrößen sind nicht korreliert (fehlende *Autokorrelation*):

$$Cov(\epsilon_1, \epsilon_2)=0$$

Die Störgröße ist unabhängig identisch normalverteilt:

$$\epsilon \sim N(0, \sigma^2)$$

Im Rahmen der Modellbeurteilung werden müssen insb. die Residuen e hinsichtlich ihrer Eigenschaften evaluiert werden

Residuen haben konstante Varianz und um Null verteilt $Var(\varepsilon_t) = \sigma_\epsilon^2$, $E(\varepsilon_t) = 0$	Unabhängigkeit $\mathbf{Cov}ig(arepsilon_i,arepsilon_jig)=0\ f$ ü $r\ i eq j$	Normalverteilt $\varepsilon_t{\sim}N(0,\sigma_\epsilon^2)$	
Graphische Analyse			
Plot Residuen gegenüber X und Y	ACF, PACF	QQ-Plot	
Anwendung von Testverfahren			
	Durbin Watson Test	Anderson-Darling-Test Jaque Bera Test	

Abbildungen dienen zur visuellen Analyse von Nichtlinearität, nicht konstanter Varianz und Ausreißern

30

30

40

50

50

Residuals vs. Order Plot kann visuell insb. bei Zeitreihen Trends und Autokorrelation aufspüren und somit die i.i.d. Annahme überprüfen

Konstante Momente

Die Unabhängigkeit kann mit Hilfe des Durbin-Watson Test überprüft werden

■ Berechnung der Prüfgröße:

$$DW = \frac{\sum_{t=2}^{N} (e_t - e_{t-1})^2}{\sum_{t=1}^{N} e_t^2} = \frac{\sum_{t=2}^{N} e_t^2 + e_{t-1}^2 - 2e_t e_{t-1}}{\sum_{t=1}^{N} e_t^2}$$

■ Die Auto-Korrelation beeinflusst maßgeblich den letzten Term des Zählers

$$DW \approx \begin{cases} 0 & \text{falls die Residuen stark positiv korreliert sind} \\ 2 & \text{falls die Residuen unkorreliert sind} \\ 4 & \text{falls die Residuen stark negativ korreliert sind.} \end{cases}$$

Die Unabhängigkeit der Innovationen kann auch mit Hilfe des Ljung Box Pierce Test analysiert werden

- Der Ljung-Box-Pierce-Test zur Überprüfung der Unkorreliertheit der Residuen prüft die ersten k Korrelationen gemeinsam auf Null.
- Nullhypothese: Residuen sind <u>nicht</u> korreliert

■ Prüfgröße:

$$Q = n(n+2) \sum_{\tau=1}^{k} \frac{\widehat{\rho}_{\tau}^{2}}{n-\tau}$$

geschätzte Autokorrelation

- \blacksquare Q ist approximativ χ^2 -verteilt () mit k-p-Freiheitsgraden
- k sollte größer als die höchste berücksichtigte Modellordnung sein. Faustregel: $k \approx 2\sqrt{n}$
- Die Nullhypothese wird abgelehnt, falls Q größer ist als der kritische Wert, ermittelt aus der χ^2 -Verteilung mit [k-p]-Freiheitsgraden zu einem Signifikanzniveau von α

Verletzungen der Annahmen: Der Jarque Bera nutzt die Eigenschaft, dass jede Normalverteilung eine Schiefe von 0 und Kurtosis von 3 besitzt

 Signifikanzniveau α 0,10
 0,05
 0,01
 0,001

 Quantil $\chi^2_{2;1-\alpha}$ 4,61
 5,99
 9,21
 13,82

- Der Test basiert auf der Schiefe und Wölbung der Normalverteilung und liefert zwei Testwerte b₁ und b₂
- Parameter für Schiefe:

$$\sqrt{b_1} = \frac{1/n \sum e_t^3}{(1/n \sum e_t^2)^{\frac{3}{2}}} \sim N(0, \sqrt{6n^{-1}})$$

Parameter für Kurtosis: 3

$$b_2 = \frac{1/n \sum e_t^4}{(1/n \sum e_t^2)^2} \sim N(3, \sqrt{24n^{-1}})$$

Diese werden in eine $\chi^2 - verteilte$ Teststatistik mit zwei Freiheitsgraden zusammengefasst:

$$JB = \frac{n}{6}b_1 + \frac{n}{24}b_2^2$$

Ablehnung der H0-Hypothese falls JB kritischen Wert übersteigt.

Der Anderson-Darling-Test misst, ob eine Datenstichprobe aus einer Normalverteilung stammt.

Vergleich Abstand der Verteilungen

- Hierbei wird entlang der empirischen Verteilungsfunktion der Residuen der Abstand zur theoretischen Verteilung der H0 – Hypothese gemessen.
- Test:
 - \blacksquare H_0 : Residuen folgen der Normalverteilung
 - \blacksquare H_1 : Residuen sind nicht normalverteilt
- Es resultiert folgende Teststatistik:

Konstante Momente

$$A_n^2 = -n - \sum_{i=1}^n \frac{2i-1}{n} \left[\ln(F(X_i)) + \ln(1 - F(X_{n+1-i})) \right]$$

- X sind die geordneten Residuen
- H_0 wird abgelehnt sobald der p-Wert der Teststatistik kleiner ist als das Signifikanzniveau α (z. B. 0.05)

- Teil I: lineare Regression
 - Spezifikation
 - Punktschätzung
 - Indikatoren für die Qualität der Schätzung
 - Intervallschätzer
 - Hypothesentest
 - **■** Prognose

Berechnung der Punktprognose

■ Der Aufbau des linearen Modells lautet:

$$\widehat{y}_t = \widehat{a} + \widehat{b}x_t$$

 \blacksquare Hierbei wird vorausgesetzt, dass x_t bekannt ist; beispielsweise mit der Ausprägung x_0

$$\hat{y}_0 = \hat{a} + \hat{b}x_0$$

 \blacksquare Für die Abweichung zwischen prognostizierten und realem Wert y_0 lässt sich folgende Aussage ableiten:

$$\hat{y}_0 - y_0 = (\hat{a} - a) + (\hat{b} - b)x_0 - u_0$$

- Es können zwei Ursachen für Prognosefehler geben
 - 1. Die Störgröße u kann von 0 abweichen
 - 2. Die Schätzer der Parameter können vom wahren Wert abweichen

Verlässlichkeit der Punktprognose

- Da \hat{y}_0 von den geschätzten Zufallsvariablen \hat{a} und \hat{b} abhängt, kann die Prognose in Abhängigkeit der unterlegten Stichprobe unterschiedlich ausfallen
- Für eine Angabe der Verlässlichkeit der Prognose \hat{y}_0 könnte dessen Wahrscheinlichkeitsverteilung abgeleitet werden.
- In diesem Fall wird aber auf die Verteilung von $\hat{y}_0 y_0$ verwiesen
- Da die Punktschätzer erwartungstreu sind, gilt für den Erwartungswert:

$$E(\hat{y}_0 - y_0) = E[(\hat{a} - a) + (\hat{b} - b)x_0 - u_0] = E(\hat{a}) - E(a) + E(\hat{b}x_0) - E(bx_0) - E(u_0)$$

$$E(\hat{y}_0 - y_0) = a - a + b_{x0} - b_{x0} - 0 = 0$$

Für die Varianz des Prognosefehlers gilt:

$$\widehat{var}(\hat{y}_0 - y_0) = \hat{\sigma}_0^2 \left[1 + \frac{1}{N} + \frac{(x_0 - \bar{x})^2}{S_{rr}}\right]$$

- Interpretation:
 - 1. Die Prognosequalität hängt von der Varianz der Störgröße e ab
 - 2. Die Prognosequalität steigt mit Stichprobenumfang
 - 3. Die Prognosequalität ist besser bei einem x nahe dem Mittelwert der Stichprobe von x

Graphische Ableitung des Prognoseintervalls

Ableitung des Prognoseintervalls

Schritt 1: Schätzung von $\widehat{var}(\widehat{y_0} - y_0)$ und Festlegung des Signifikanzniveaus

$$\widehat{var}(\widehat{y_0} - y_0) = \widehat{\sigma^2} \left[1 + \frac{1}{N} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right]$$

Schritt 2: Standardisierung des Prognosefehlers $(\widehat{y_0} - y_0)$

$$t = \frac{(\widehat{y_0} - y_0) - E(\widehat{y_0} - y_0)}{\widehat{std}(\widehat{y_0} - y_0)} = \frac{(\widehat{y_0} - y_0)}{\widehat{std}(\widehat{y_0} - y_0)}$$

- Schritt 3: Ermittlung des $t_{\alpha/2}$ Wertes
- Schritt 4: Formulierung des Prognoseintervalls

$$PR\left\{t_{a/2} \le \frac{(\widehat{y_0} - y_0)}{\widehat{std}(\widehat{y_0} - y_0)} \le t_{a/2}\right\} = 1 - \alpha$$

$$PR\left\{\widehat{y_0} - t_{a/2} * \widehat{std}(\widehat{y_0} - y_0) \le y_0 \le \widehat{y_0} + t_{\underline{a/2}} * \widehat{std}(\widehat{y_0} - y_0)\right\} = 1 - \alpha$$

Interfall des Schätzer a mit einer Wahrscheinlichkeit von $1-\alpha$: $\left[\widehat{y_0} - t_{a/2} * \widehat{std}(\widehat{y_0} - y_0); +t_{\underline{a/2}} * \widehat{std}(\widehat{y_0} - y_0)\right]$

- 1. Einfache lineare Regression
- 2. Case Study 1: Datenlücken bereinigen
- 3. Case Study 2: Winkelerkennung von WKAs
- 4. Multiple lineare Regression
- 5. Case Study 3: Multiple Regression Strompreis auf Brennstoffe und CO2

Was ist das?

Ausgangsfrage: Kann anhand von Satellitenaufnahmen eine Fehlstellung von Windkraftanlagen erkannt werden?

Windrichtung und gemessene Windrichtung

Ursachen der Fehlstellung

Abweichung der Windrichtungsmessung:Gemessene Richtung =/= Reale Richtung

Abweichungen der Nachführmotoren/True-North-Kalibration:
Soll-Position =/= Ist-Position

Durch eine falsche Ausrichtung der Anlagen können Energieverluste eintreten

Ausrichtungsfehler in Abhängigkeit der Windgeschwindigkeit

Energieverluste in Abhängigkeit des Ausrichtungsfehlers

Mit Hilfe von Satellitenaufnahmen soll die tatsächliche Ausrichtung der Anlagen gemessen werden

- Momentan 2 Satelliten mit Radaraufnahmen
- 12 Tage polnaher Orbit
- Freier privater und kommerzieller Zugriff auf Daten

Ausgangspunkt der Analyse ist ein Datensatz, der in einem Raster die Auflösung der Datenpunkte in unterschiedlichen Farbtönen beinhält

- Bilder werden als Datenpunkte codiert
- Im dargestellten Bild sind ca. 850x850 Datenpunkte enthalten (Pixel).
- Jedes Pixel besitzt in Abhängigkeit der Farbgebung einen Wert.
- In der Aufbereitung des Bildes wird vereinfacht die Struktur der Windenergieanlage so referenziert, dass
 - Blaue Punkte den Wert Null besitzen
 - Gelbe Punkte (Struktur der WKA) den Wert 1 besitzen

Frage: Wie kann der Winkel der Ausrichtung mit Hilfe einer linearen Regression bestimmt werden?

Die Winkelmessung erfolgt anhand der Steigung einer Geraden durch die Datenpunkte

- Bestimmung einer Geradengleichung durch die Datenpunkte
- Normierung der Gerade auf Einheitsvektor
- 3. "Einzeichnen des Steigungsdreieck"
- 4. Verhältnis von Y_e und X_e entspricht der Steigung b der Geradengleichung
- Nutzung des trigonometrischen Tangens zur Bestimmung des Winkels

```
if b>0

Winkel = \arctan(b)/pi*180;
else

Winkel = 180 + \arctan(b)/pi*180;
end
```

- 1. Bestimmung einer Geradengleichung durch die Datenpunkte
- 2. Normierung der Gerade auf Einheitsvektor
- 3. "Einzeichnen des Steigungsdreieck"
- 4. Verhältnis von Y_e und X_e entspricht der Steigung b der Geradengleichung
- Nutzung des trigonometrischen Tangens zur Bestimmung des Winkels

```
if b>0

Winkel = arctan(b)/pi*180;
else

Winkel = 180+arctan(b)/pi*180;
end
```

Wie kann dieses Problem in eine lineare Regression überführt werden?

Für die Geradengleichungen muss die Matrix der Pixel in einen X und Y- Vektor zerlegt werden

- Das Bild besitzt 850 x 850 Datenpunkte
- Gelbe Datenpunkte sind mit 1 markiert; blaue mit Null
- Jeder Datenpunkt ist eindeutig durch Y und X Achse bestimmbar
- Flatten der Matrix in einen X und Y-Vektor
 - Berechnung des "neuen" Y-Vektors
 - Je höher auf der Y-Achse ein "gelbes" Pixel liegt, desto höher soll die "Y-Ausprägung" sein
 - $Y_{neu} = Wert(Y,X) = Pixel * (850 Y(X))$
 - X_neu = X

Ein Datenpunkt ist **einflussreich**, wenn er die Regressionsanalyse übermäßig beeinflusst, wie z. B. die geschätzten Werte \hat{y}_i , die geschätzten Steigungskoeffizienten oder die Ergebnisse des Hypothesentests

Ausreißer: y_i und \hat{y}_i liegen weit auseinander

Ausreißer:

Werte $\hat{y_i}$ und y_i liegen weit auseinander

Leverage:

Eine Beobachtung mit ungewöhnlicher Kombination von Regressoren x_{i1} , x_{i2} besitzt ein hohes **leverage**.

Einfluss:

Ein Datenpunkt ist **einflussreich**, wenn er die Regressionsanalyse übermäßig beeinflusst, wie z. B. die geschätzten Werte $\widehat{y_i}$, die geschätzten Steigungskoeffizienten b oder die Ergebnisse des Hypothesentests wie z.B. std oder p-Wert sowie das R^2 der Regression.

Leverage h_{ii} ist ein Distanzmaß zwischen x_i und $ar{x}$ und quantifiziert den Einfluss von y_i auf \hat{y}_i

Ausreißer

Man kann zeigen, dass in Matrixschreibweise folgende Beziehung in einer Regression gilt:

$$\hat{y} = X(X'X)^{-1}X'y$$

■ mit $H = X(X'X)^{-1}X'$ folgt:

$$\hat{y} = Hy$$

Auflösung der Matrixschreibweise führt zu:

$$\hat{y}_i = h_{i1}y_1 + \dots + h_{ii}y_i + \dots + h_{in}y_n \quad i = 1, \dots, n$$

- Leverage h_{ii} quantifiziert den Einfluss von y_i auf \hat{y}_i .
 - wenn h_{ii} klein hat y_i einen geringen Einfluss auf die Schätzung von \hat{y}_i
- \blacksquare Eigenschaften von h_{ii}
 - \blacksquare h_{ii} ist eine Zahl zwischen 0 und 1
 - Die Summe h_{ii} entspricht der Anzahl der Parameter p

Ausreißer können anhand des Residuums bzw. des standardisierten Residuums erkannt werden

Histogramm eines "studentized" Residuums

- Standardisiertes Residuum (studentized)
 - Berücksichtigung des Leverage eines jeden Datenpunktes
 Individueller Fehler

 h_{ii} ist eine Zahl zwischen 0 und 1

■ Daumenregel: ein studentized Wert größer |3| kann immer als Ausreißer angesehen werden

Mit Hilfe des Cook-Distanzmaß bzw. der "Difference in fit (DFFITS) können einflussreiche Datenpunkte erkannt werden

Gewichtung mit Leverage

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Cooks distance (D)

- Vorgehen:
 - Durchführung der Parameterschätzung

Metrik D:

$$D_i = \frac{(y_i - \hat{y}_i)^2}{p \cdot MSE} \left(\frac{h_{ii}}{(1 - h_{ii})^2}\right)$$

p = Anzahl der Parameter

Ein Datenpunkt ist einflussreich wenn gilt:

Difference in Fit (DFFITS)

- Vorgehen:
 - Anpassung der Regressionsgerade jeweils ohne und mit den betrachteten Datenpunkt
 - Vergleich der Ergebnisse mit und ohne den jeweiligen Datenpunkt
- Metrik DFFITS: (i) bedeutet Datenpunkt ist exkludiert:

$$DFFITS_{i} = \frac{\hat{y}_{i} - \hat{y}_{(i)}}{\sqrt{MSE_{(i)}h_{ii}}}$$

Ein Datenpunkt ist einflussreich wenn gilt:

$$abs(DFFITS) > 2\sqrt{\frac{p+1}{n-p-1}}$$

Umsetzung in matlab: Ausreißeranalyse plotDiagnostics(mdl)

Darstellung

Einstellungsmöglichkeiten

plottype — Type of plot'dffits'

Value	Plot Type	Purpose
'contour'	Residual vs. leverage with overlaid contours of Cook's distance	Identify observations with large residual values, high leverage, and large Cook's distance values.
'cookd'	Cook's distance	Identify observations with large Cook's distance values.
'covratio'	Delete-1 ratio of determinant of covariance	Identify observations where the delete-1 statistic value is not in the range of the recommended thresholds.
'dfbetas'	Delete-1 scaled differences in coefficient estimates	Identify observations with large delete-1 statistic values.
'dffits'	Delete-1 scaled differences in fitted values	Identify observations with large delete-1 statistic values in an absolute value.
'leverage'	Leverage	Identify high leverage observations.
's2_i'	Delete-1 variance	Compare the delete-1 variance with the mean squared error

Umsetzung in matlab: Ausreißeranalyse plotDiagnostics(mdl)

Darstellung

Erläuterung

- Purpose: The delete-1 variance (S2_i) shows how the mean squared error changes when an observation is removed from the data set. You can compare the S2_i values with the value of the mean squared error.
- Definition: S2_i is a set of residual variance estimates obtained by deleting each observation in turn. The S2_i value for observation i is

$$S2_{i} = MSE_{(i)} = \frac{\sum_{j \neq i}^{n} \left[y_{j} - \hat{y}_{j(i)} \right]^{2}}{n - p - 1},$$

Einfluss des Ausreißers auf die Zielfunktion kann durch eine Gewichtung verringert werden

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Zielfunktion

KQ- Methode für den Punktschätzer eines linearen Regressionsmodells

Mögliche Maßnahmen

Umstellung der Zielfunktion auf L1-Norm

$$S_{ee} = \sum_{i=1}^{N} abs(e_i)$$

■ Einfügung von Gewichten

$$S_{ee} = \sum_{i=1}^{N} (y_i - \mathbf{w_{ii}} b X_i + a)^2 \qquad w = \begin{bmatrix} \frac{1}{\sigma_1^2} & \\ & \ddots & \\ & & \frac{1}{\sigma_n^2} \end{bmatrix}$$

Robuste Regressionstechniken:

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} e_i^2 \qquad \qquad \min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \rho(r_i)$$

Die "robuste lineare Regression" behandelt Ausreißer entsprechend einer Gewichtungsfunktion, um deren Einfluss zu begrenzen

Aufbau der robusten Regression

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \epsilon_i^2 \qquad \qquad \qquad \min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \rho(r_i)$$

Gewichtungsfunktion für iterativen Durchlauf:

$$w(r) = (abs(r) < 1) * (1 - r^2)^2$$

$$\text{r gr\"{o}Ser } |1| \text{ wird } \text{r nahe Null } \text{besitzt hohes}$$

$$\text{Gewicht} \text{Fehler der } \text{Regression}$$

Transformierter Fehlerterm:

$$r = \frac{e}{\tau \cdot \frac{MAD}{0.6745} \cdot \sqrt{(1-h)}}$$

Erläuterung

- Die gewöhnliche KQ Schätzung ist nur unter den getroffenen Annahmen gültig: insb. $\epsilon \sim N(0, \sigma^2)$
- Robuste Regressionsmethoden bieten eine Alternative zur KQ-Regression

Hinweise:

- MAD = absolute Abweichung vom Median der Residuen
- Die Konstante in H\u00f6he von 0.6745 macht den Sch\u00e4tzer unbiased zur Normalverteilung
- h = Leverage Vektor

Parameter

- 1. Einfache lineare Regression
- 2. Case Study 1: Datenlücken bereinigen
- 3. Case Study 2: Winkelerkennung von WKAs
- 4. Multiple lineare Regression
- 5. Case Study 3: Multiple Regression Fernwärmepreise

Labeling der Daten

Es gibt eine Reihe von graphischen Visualisierungen, um mehrdimensionale Daten zu analysieren II

y soll folgend auf den funktionalen Zusammenhang von x_1 und x_2 bestimmt werden

Aufbau des Modells

Aufbau des ökonometrischen Modells:

$$y_t = a + b_1 * x_{1t} + b_2 * x_{2t} + e_t$$

Resultat des geschätzten Modells

$$\hat{y}_t = \hat{a} + \hat{b}_1 * x_{1t} + \hat{b}_2 * x_{2t}$$

Formulierung der Residuen der Schätzung

$$e_t = y_t - \hat{y}_t$$

Daraus folgt folgender Zusammenhang:

$$y_t = \hat{a} + \hat{b}_1 * x_{1t} + \hat{b}_2 * x_{2t} + e_t$$

Coal

Gas

^{*} Für die Störgrößen gelten die gleichen Annahmen wie im einfachen linearen Fall. Störgröße e hat Erwartungswert von Null; Varianz Störgröße ist konstant; Störgröße weist keine Autokorrelation auf; Störgröße ist normalverteilt

Punktschätzer für \widehat{a} , \widehat{b}_1 \widehat{b}_2

Wiederum kann die KQ-Methode zur Ableitung der Schätzung der Parameter verwendet werden

Minimierung der Summe der quadrierten Residuen

$$S_{ee} = \sum e_t^2$$

■ Aufgelöst nach ê folgt:

$$e_t = y_t - \hat{a} - \hat{b}_1 \cdot x_{1t} - \hat{b}_2 \cdot x_{2t}$$

■ Eingesetzt in die Minimierungsfunktion

$$S_{ee} = \sum (y_t - \hat{a} - \hat{b}_1 \cdot x_{1t} - \hat{b}_2 \cdot x_{2t})^2$$

Zur Minimierung erfolgt die Ableitung dieser Funktion und deren Nullsetzung

$$\partial S_{ee}/\partial \hat{a} = 0, \qquad \partial S_{ee}/\partial \hat{b}_1 = 0, \qquad \partial S_{ee}/\partial \hat{b}_2 = 0$$

Punktschätzer der Parameter

- Im Nenner zur Bestimmung von b erscheinen nur exogene Variablen
- Im Zähler sind jeweils auch Kovarianzen zwischen exogener und endogener Variable abgebildet

$$\hat{a} = \bar{y} - \hat{b}_1 \overline{x_1} - \hat{b}_2 \overline{x_2}$$

$$\hat{a} = \bar{y} - \hat{b}_1 \overline{x_1} - \hat{b}_2 \overline{x_2}$$

$$\hat{b}_1 = \frac{S_{22} S_{1y} - S_{12} S_{2y}}{S_{11} S_{22} - S_{12}^2}$$

$$\hat{b}_2 = \frac{S_{11}S_{2y} - S_{12}S_{1y}}{S_{11}S_{22} - S_{12}^2}$$

Definition des Bestimmtheitsmaß

■ Die Variation der zu erklärenden Variable ist definiert:

$$S_{yy} = \sum (y_t - \bar{y})^2$$

■ Die erklärende Variation bildet sich wie folgt:

$$S_{\hat{y}\hat{y}} = \sum (\widehat{y_t} - \bar{y})^2$$
 , $S_{yy} = S_{\hat{y}\hat{y}} + S_{ee}$

Daraus folgt für das Bestimmtheitsmaß:

$$R^2 = \frac{S_{yy} - S_{ee}}{S_{yy}} = \frac{S_{\hat{y}\hat{y}}}{S_{yy}} \operatorname{mit} S_{\hat{y}\hat{y}} = \sum_{k=1}^{p} \hat{b}_k * S_{ky}$$

- Das Bestimmtheitsmaß wird beeinflusst durch die Kovarianzen, gewichtet mit dem geschätzten Parameter b.
- Definition der Korrelation:

$$R_{12}^2 = \frac{S_{12}^2}{S_{11}S_{22}}$$

Weitergehende Fragestellung: Unverzerrtheit und Effizienz der KQ-Methode

■ Bildung des Erwartungswertes -> Schätzer ist Erwartungstreu

$$E(\widehat{b_1}) = b_1$$
; $E(\widehat{b_2}) = b_2$; $E(\widehat{a}) = a$

Bildung der Varianzen:

$$\operatorname{var}(\widehat{b_1}) = \frac{\sigma^2}{S_{11}(1 - R_{12}^2)}$$
$$\operatorname{var}(\widehat{b_2}) = \frac{\sigma^2}{S_{22}(1 - R_{12}^2)}$$

$$var(\widehat{a}) = \frac{\sigma^2}{N} + \overline{x_1^2} var(\widehat{b_1}) + \overline{x_2^2} var(\widehat{b_2}) + 2^* \overline{x_1} \overline{x_2} var(\widehat{b_1}) var(\widehat{b_2})$$

Kovarianz:

$$\operatorname{cov}(\widehat{b_2}, \widehat{b_1}) = \frac{-\sigma^2 R_{12}^2}{S_{12}(1 - R_{12}^2)} \operatorname{mit} R_{12}^2 = \frac{S_{12}^2}{S_{11}S_{22}}$$

Interpretation der Formeln

$$\operatorname{var}(\widehat{b_1}) = \frac{\sigma^2}{S_{11}(1 - R_{12}^2)} = \frac{\sigma^2}{S_{[11]}}$$

$$S_{[11]} = autonome\ Variation$$

- Fall A: Varianz des Schätzers ist hoch
- Fall B: Varianz des Schätzers ist niedrig

Fall A: σ^2 ist im Verhältnis zu $S_{[11]}$ groß

Fall B: σ^2 ist im Verhältnis zu $S_{[11]}$ klein

Schätzformeln für die Varianzen und Kovarianzen der Punktschätzer

Gegenüber der vorangegangen Folie wird nun davon ausgegangen, dass die Varianz der Störgröße unbekannt und damit geschätzt werden muss

$$\widehat{\sigma^2} = \frac{S_{ee}}{N - p}$$

■ Mit Hilfe des Schätzers für die Varianz der Störterme können wiederum die Varianz-Kovarianz der Punktschätzer bestimmt werden

■ Die Schätzer sind normalverteilt:

$$\widehat{b_1} \sim N\left(b_1, \frac{\sigma^2}{S_{11}(1-R_{12}^2)}\right)$$

Intervallschätzer

■ Schritt 1 Schätzung von σ und $std(\widehat{b_1})$

$$\widehat{std}(\widehat{b}_1) = \sqrt{\frac{\widehat{\sigma^2}}{S_{11}(1 - R_{12}^2)}}$$

Standardisierung von $\widehat{b_1}$ lautet:

$$t = \frac{\widehat{b_1} - E(\widehat{b_1})}{\widehat{std}(\widehat{b_1})}$$
$$t \sim t(N-3), da \ p = 3 \ ist$$

lacktriangledown Ermittlung eines $t_{lpha/2}-Wertes$ und Bildung des Intervalls und Ersetzen von t

$$Pr\left[t_{\alpha/2} \le t \le t_{\alpha/2}\right] = 1 - \alpha$$

$$\left[\widehat{b_1} - t_{\alpha/2} * \widehat{std}(\widehat{b_1}); \widehat{b_1} + t_{\alpha/2} * \widehat{std}(\widehat{b_1})\right]$$

Verallgemeinerung in Matrixschreibweise (Hinweis: https://online.stat.psu.edu/stat501/lesson/5/5.4)

Aufstellung des Regressionsmodells:

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1x_{11} & \cdots & x_{k1} \\ 1 \vdots & \ddots & \vdots \\ 1x_{1n} & \cdots & x_{kn} \end{bmatrix} \underbrace{\begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{bmatrix}}_{b} + \underbrace{\begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix}}_{e}$$

$$y = Xb + e$$

Ableitung der Punktschätzer*:

$$\hat{b} = (X'X)^{-1}X'y$$

Berechnung R^2

$$R^{2} = \frac{\left[y'X(X'X)^{-1}X'y - N\overline{y^{2}}\right]}{y'y - N\overline{y^{2}}}$$

Ableitung der Varianz Kovarianz Matrix:

$$V(\hat{b}) = \sigma^2 (X'X)^{-1}, \ \widehat{\sigma^2} = \frac{S_{ee}}{N-p}$$
 p=Anzahl der Parameter

Ableitung der Intervallschätzer:

$$\left[s'\hat{b}-t_{\alpha/2}*\hat{\sigma}\sqrt{s'(X'X)^{-1}s};s'\hat{b}+t_{\alpha/2}*\hat{\sigma}\sqrt{s'(X'X)^{-1}s}\right]$$

Der F-Test wird für den Fall angewendet, wenn mehrere Linearkombinationen gleichzeitig getestet werden sollen

- Vorgehensweise: Gegenüberstellung der SSE zweier Modelle
- H0-Hypothese: : *Parameter die nicht im einfacheren Modell enthalten sind, sind Null*

Aufstellen der Hypothese

- 1. Berechnung der Summe quadrierter Residuen
- 2. Berechnung Teststatistik

3. Bestimmung des kritischen Wertes F

$$Modell H_0$$

$$y_t = a + e_t$$

Modell H₁

 $y_t = a + b_1 x_{1t} + b_2 x_{2t} + e_t$

$$\rightarrow S_{ee_{H_0}}$$

 $S_{\hat{e}\hat{e}_{\mathrm{H}_{\mathtt{J}}}}$

$$F = \underbrace{\frac{S_{ee_{H_0}} - S_{ee_{H_1}}}{dF_{H_0} - dF_{H_1}}}_{Ver\"{a}nderung} \cdot \underbrace{\frac{dF_{H_1}}{S_{ee_{H_1}}}}_{Skalierun}$$

$$F \sim F \left(dF_{H_0} - dF_{H_1}, dF_{H_1} \right)$$
 (einseitiges Intervall

F ist F-verteilt:

Je schlechter die Daten zur H0-Hypothese passen, desto größer wird F

$$S_{ee} = \sum_{t=1}^{N} (y_t - \hat{y}_t)^2$$

$$dF = N - p$$

Anzahl der Freiheitsgrade

Ergebnis: F-statistic vs. constant model: 90, p-value = 7.38e-27

- 1. Einfache lineare Regression
- 2. Case Study 1: Datenlücken bereinigen
- 3. Case Study 2: Winkelerkennung von WKAs
- 4. Multiple lineare Regression
- 5. Case Study 3: Multiple Regression Strompreis auf Brennstoffe und CO2

Aufgabe: Analyse der Terminmarktpreise

- Teil 1: Erstellen Sie ein neues jupyter-notebook
 - Importieren Sie die Tabelle "Terminpreise
 - Erstellen Sie geeignete Plots zur Analyse der Zusammenhänge
 - Interpretieren Sie die Plots und leiten geeignete Modellhypothesen für den Strompreis ab
- Teil 2:
 - Erstellen Sie eigene Modellzusammenstellungen auf Basis der Modellhypothesen
 - Analyse und Interpretation der Ergebnisse
 - Parameter, t-Werte, p-Werte, Standardabweichung (Se)
 - Fit: RMSE
 - Ausgabe der Darstellung im Zeitablauf