Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Dipl.-Ing. Stephan Günther, M.Sc. Johannes Naab, M.Sc.

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 7 (8. Juni – 12. Juni 2015)

Hinweis: Die mit * gekennzeichneten Teilaufgaben sind ohne Kenntnis der Ergebnisse vorhergehender Teilaufgaben lösbar.

Aufgabe 1 Schiebefensterprotokolle

Wie betrachten ein Sliding-Window-Verfahren, dessen Sende- und Empfangsfenster $w_s = w_r = 2$ beträgt. Der Sequenznummernraum sei Sequenznummernraum $\mathcal{S} = \{0,1\}$. Die Fehlerbehandlung erfolge analog zu Go-Back-N. Abbildung 1 zeigt eine Datenübertragung. Die Blitze stehen für durch Störungen verlorengegangene Segmente. Die beiden ersten ACKs erreichen also nicht den Sender.

Abbildung 1: Modifiziertes Alternating-Bit-Protocol

- a)* Welches Problem tritt in dem Beispiel bei der Übertragung auf?
- b) Passen Sie ${\mathcal S}$ an, so dass das Verfahren korrekt funktionieren kann.

Im Folgenden betrachten wir die beiden Verfahren Go-Back-N und Selective Repeat. Die Sequenznummern $s \in \mathcal{S}$ haben eine Länge von 4 bit. Beantworten Sie die folgenden Fragen **sowohl für Go-Back-N als auch Selective Repeat.**

- c)* Wie viele unbestätigte Segmente darf der Sender jeweils senden, um eine gesicherte Verbindung zu realisieren? Begründen Sie Ihre Antwort anhand von Beispielen. (Hinweis: Denken Sie an in möglichst ungünstigen Momenten verlorene Bestätigungen)
- d)* Begründen Sie, welche oberen und unteren Grenzen für das Empfangsfenster des Empfängers bei den beiden Verfahren jeweils sinnvoll sind.
- e)* Für eine praktische Implementierung benötigt der Empfänger einen Empfangspuffer. Wie groß sollte dieser bei den beiden Verfahren jeweils gewählt werden?

Aufgabe 2 Fluss- und Staukontrolle bei TCP

Das im Internet am weitesten verbreitete Transportprotokoll ist TCP. Dieses implementiert Mechanismen zur Fluss- und Staukontrolle.

- a)* Diskutieren Sie die Unterschiede zwischen Fluss- und Staukontrolle. Welche Ziele werden mit dem jeweiligen Mechanismus verfolgt?
- b) Ordnen Sie die folgenden Begriffe jeweils der TCP-Fluss- bzw. Stau-kontrolle zu:
 - · Slow-Start
 - · Empfangsfenster
 - Congestion-Avoidance
 - · Multiplicative-Decrease

Zur Analyse der mit TCP erzielbaren Datenrate betrachten wir den Verlauf einer zusamenhängenden Datenübertragung, bei der die Slow-Start-Phase bereits abgeschlossen ist. TCP befinde sich also in der Congestion-Avoidance-Phase. Wir bezeichnen die einzelnen Fenster wie folgt:

- Sendefenster W_s , $|W_s| = w_s$
- Empfangsfenster W_r , $|W_r| = w_r$
- Staukontrollfenster W_c , $|W_c| = w_c$

Wir gehen davon aus, dass das Empfangsfenster beliebig groß ist, so dass das Sendefenster allein durch das Staukontrollfenster bestimmt wird, d. h. $W_s = W_c$. Es treten keinerlei Verluste auf, solange das Sendefenster kleiner als ein Maximalwert x ist, also $w_s < x$.

Wird ein vollständiges Sendefenster bestätigt, so vergrößert sich das aktuell genutzte Fenster um genau 1 MSS. Hat das Sendefenster den Wert x erreicht, so geht genau eines der versendeten TCP-Segmente verloren. Den Verlust erkennt der Empfänger durch mehrfachen Erhalt derselben ACK-Nummer. Daraufhin halbiert der Sender das Staukontrollfenster, bleibt aber nach wie vor in der Congestion-Avoidance-Phase, d. h. es findet kein erneuter Slow-Start statt. Diese Vorgehensweise entspricht einer vereinfachten Variante von TCP-Reno (vgl. Vorlesung).

Als konkrete Zahlenwerte nehmen wir an, dass die maximale TCP-Segmentgröße (MSS) 1460 B und die RTT 200 ms beträgt. Die Serialisierungszeit von Segmenten sei gegenüber der Ausbreitungsverzögerung vernachlässigbar klein. Segmentverlust trete ab einer Sendefenstergröße von $w_s \ge x = 16$ MSS auf.

- c)* Wieviel Zeit vergeht, bis nach einem Segmentverlust das Staukontrollfenster einfolge eines weiteren Segmentverlusts wieder reduziert wird?
- d)* Erstellen Sie ein Schaubild, in dem die aktuelle Größe des Sendefenster w_s gemessen in MSS über der Zeitachse t gemessen in RTT aufgetragen ist. In Ihrem Diagramm soll zum Zeitpunkt $t_0 = 0$ s gerade die Sendefenstergröße halbiert worden sein, also $w_s = x/2$ gelten. Zeichnen Sie das Diagramm im Zeitintervall $t = \{0, ..., 27\}$.
- e)* Bestimmen Sie allgemein die durchschnittliche Verlustrate θ . Hinweis: Da das Verhalten von TCP in diesem idealisierten Modell periodisch ist, reicht es aus, lediglich eine Periode zu betrachten. Setzen Sie die Gesamtzahl übertragener Segmente in Relation zur Anzahl verlorener Segmente.
- f) Bestimmen Sie mit Hilfe der Ergebnisse aus den Teilaufgaben (c) und (e) die in der betrachteten TCP-Übertragungsphase durchschnittlich erzielbare Übertragungsrate in kbit/s.
- g)* Bis zu welcher Übertragungsrate könnten Sie mit UDP maximal über den Kanal senden, ohne einen Stau zu erzeugen? Berücksichtigen Sie, dass der UDP-Header 12 B kleiner als der TCP-Header ohne Optionen ist.