

Predicting Visual Search Targets

Ramvinojen Narayana Perumal Shyamnarayan Sankarasubramanian Vijeth Kumar

Motivation

- Is it possible to infer the persons goals by analyzing their eye fixations?
- Eye movements can reveal complex cognitive states of mind
- Analyse Visual Behavior
- Closed World Vs Open World Settings
- Prediction of Search Targets using Stationary Eye Tracker

Can we predict Search Targets using Mobile Eye Tracker?

Agenda

- 1. Hardware
- 2. Data Collection
- 3. Preprocessing Data
- 4. Feature Extraction
- 5. Models
- 6. Applications
- 7. References

Mobile Eye Tracker

Hardware:

- Mobile Eye Tracker World Camera and 2 Eye Cameras
- Sampling Frequency Eye Camera 200Hz
- Sampling Frequency World Camera 30Hz
- Recording 1920X1080p HD

Calibration

- Screen Marker Calibration Small field of vision
- Manual Marker Calibration Low Accuracy & Time Consuming
- Natural Feature Calibration Better Approach

Screen Marker Calibration

Natural Feature Calibration

Data Collection

Object Type	Pros	Cons
Real Object	1) Mimics Real World	 Maximum 3 classes Lower Distractors options Costly Complex Image Processing
Virtual Object	 More classes Better Dataset More Distractors Economically feasible 	1) Deviation from Real life situation

Data Collection

Class	Sub Class	
	Sedan	
Car	Hatchback	
	Pickup	
	Fire Engine	
Truck	Cement Truck	
	Road Roller	
Due	Public Bus	
Bus	School Bus	
	Cement Trailer	
Distractors	Crane	
	Tractor	

Description	Number
Participants	17
Dataset	286
Training dataset	190(~70%)
Validation dataset	48(~15%)
Testing dataset	48(~15%)

Preprocessing Data

Feature Extraction

Approach I - Regression & Classifier

Summary	for	each class:			
		precision	recall	f1-score	support
	0	0.25	0.56	0.34	9
	1	0.00	0.00	0.00	9
	2	0.00	0.00	0.00	9
	3	0.50	0.22	0.31	9
	4	0.17	0.11	0.13	9
	5	0.17	0.11	0.13	9
	6	0.36	0.44	0.40	9
	7	0.24	0.44	0.31	9
avg / tot	al	0.21	0.24	0.20	72

Approach I - Regression & Classifier

Summary for	each class: precision	recall	f1-score	support
0	0.43	0.33	0.38	9
1	0.56	0.56	0.56	9
2	0.17	0.11	0.13	9
3	0.60	0.33	0.43	9
4	0.00	0.00	0.00	9
5	0.33	0.33	0.33	9
6	0.40	0.67	0.50	9
7	0.33	0.56	0.42	9
avg / total	0.35	0.36	0.34	72

Approach II - DNN

Summary	for	each class: precision	recall	f1-score	support
	0	0.40	0.44	0.42	9
	1	0.33	0.22	0.27	9
	2	0.30	0.33	0.32	9
	3	0.50	0.56	0.53	9
	4 5	0.60	0.67	0.63	9
	5	0.38	0.33	0.35	9
	6	0.75	0.67	0.71	9
	7	0.40	0.44	0.42	9
avg / tot	al	0.46	0.46	0.46	72

Approach III – Feature Reduction

Approach III – Feature Reduction

Summary	for	each class: precision	recall	f1-score	support
	0	0.80	0.67	0.73	6
	1	0.75	0.50	0.60	6
	2	0.33	0.50	0.40	6
	3	0.67	0.33	0.44	6
	4	0.38	0.50	0.43	6
	5	0.43	0.50	0.46	6
	6	0.57	0.67	0.62	6
	7	1.00	0.83	0.91	6
avg / to	tal	0.62	0.56	0.57	48

Approach III – Feature Reduction

Summary for	each class: precision	recall	f1-score	support
9	0.72	0.72	0.72	18
1	0.83	0.83	0.83	18
2	0.75	0.75	0.75	12
avg / total	0.77	0.77	0.77	48

Other Approaches

Below Par Results!!!

Applications

Virtual Search Assistant in Grocery Store

Virtual Search Assistant for Drivers

Enhances Human – Machine Interaction

References

- Prediction of Search Targets From Fixations in Open-World Settings -Hosnieh Sattar, Sabine Mueller, Mario Fritz, Andreas Bulling
- Predicting the Category and Attributes of Visual Search Targets Using DeepGaze Pooling
 Hosnieh Sattar, Andreas Bulling, Mario Fritz
- 3. Fixation Detection for Head-Mounted Eye Tracking Based on Visual Similarity of Gaze Targets Julian Steil, Michael Xuelin Huang, Andreas Bulling
- What do eyes reveal about the mind? Algorithmic inference of search targets from fixations - Ali Borji, Andreas Lennartz, Marc Pomplun
- 5. Eye can read your mind: Decoding gaze fixations to reveal categorical search targets Gregory J. Zelinsky, Yifan Peng, Dimitris Samaras