Tutorial 8

Exercise 1: For each of the following languages, construct a DFA accepting the given language. Represent the constructed automata by graphs and tables.

- a) $L_1 = \{ w \in \{a, b\}^* \mid w = a \}$
- b) $L_2 = \{b, ab\}$
- c) $L_3 = \{w \in \{a, b\}^* \mid \exists n \in \mathbb{N} : w = a^n\}$
- d) $L_4 = \{w \in \{a, b, c\}^* \mid |w|_a \ge 1\}$
- e) $L_5 = \{ w \in \{0, 1\}^* \mid w \text{ contains subword 011} \}$
- f) $L_6 = \{ w \in \{a, b, c\}^* \mid |w| > 0 \land |w|_a = 0 \}$
- g) $L_7 = \{w \in \{a, b\}^* \mid |w| \ge 2 \text{ and the last two symbols of } w \text{ are not the same} \}$
- h) $L_8 = \{w \in \{a, b\}^* \mid |w|_a \mod 3 = 1\}$

Exercise 2: Construct DFA accepting words beginning with abaab, ending with abaab, and containing abaab, i.e., construct deterministic finite automata accepting the following three languages:

- a) $L_1 = \{abaabw \mid w \in \{a, b\}^*\}$
- b) $L_2 = \{ wabaab \mid w \in \{a, b\}^* \}$
- c) $L_3 = \{w_1 abaabw_2 \mid w_1, w_2 \in \{a, b\}^*\}$

Exercise 3: Describe how to find out for a given DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ if:

- a) $\mathcal{L}(\mathcal{A}) = \emptyset$
- b) $\mathcal{L}(\mathcal{A}) = \Sigma^*$

Exercise 4: Construct DFA A_1 , A_2 such that:

$$\mathcal{L}(\mathcal{A}_1) = \{ w \in \{a, b\}^* \mid |w|_a \bmod 2 = 0 \}$$

$$\mathcal{L}(\mathcal{A}_2) = \{ w \in \{a, b\}^* \mid \text{every occurence of symbol b in } w \text{ is followed with symbol a} \}$$

Using automata A_1, A_2 , construct DFA accepting the following languages:

a) $L_1 = \{w \in \{a, b\}^* \mid |w|_a \mod 2 = 0 \text{ and every occurence of symbol } b \text{ in } w \text{ is followed with symbol } a\}$

- b) $L_2 = \{w \in \{a,b\}^* \mid |w|_a \mod 2 = 0 \text{ or every occurrence of symbol } b \text{ in } w \text{ is followed with symbol } a\}$
- c) $L_3 = \{w \in \{a, b\}^* \mid \text{some occurrence of symbol } b \text{ in } w \text{ is not followed with symbol } a\}$
- d) $L_4 = \{w \in \{a, b\}^* \mid |w|_a \mod 2 = 0 \text{ and some occurrence of symbol } b \text{ in } w \text{ is not followed with symbol } a\}$
- e) $L_5 = \{w \in \{a, b\}^* \mid \text{if } |w|_a \mod 2 = 0 \text{ then every occurrence of symbol } b \text{ in } w \text{ is followed with symbol } a\}$
- f) $L_6 = \{w \in \{a,b\}^* \mid |w|_a \mod 2 = 0 \text{ iff every occurrence of symbol } b \text{ in } w \text{ is followed with symbol } a\}$

Exercise 5: Construct NFA accepting the following languages:

- a) $L_1 = \{ w \in \{a, b, c\}^* \mid |w|_a = 0 \lor |w|_b \mod 2 = 0 \lor |w|_c \mod 3 = 2 \}$
- b) $L_2 = \{w \in \{a, b, c\}^* \mid |w| \ge 8 \text{ and the eighth symbol from the end of word } w \text{ is } a\}$
- c) $L_3 = \{abaabw \mid w \in \{a, b\}^*\}$
- d) $L_4 = \{ wabaab \mid w \in \{a, b\}^* \}$
- e) $L_5 = \{w_1 abaabw_2 \mid w_1, w_2 \in \{a, b\}^*\}$

Exercise 6: Construct a DFA equivalent to the given NFA:

