HUNIVERSIDAD TECNOLOGICA NACIONAL

FACULTAD REGIONAL ROSARIO

DEPARTAMENTO DE SISTEMAS MICROPROCESADORES MODERNOS

CÁTEDRA DE ARQUITECTURA DE LAS COMPUTADORAS

Ing. Sergio Milardovich - Esp. Prof. Ing. Mario Osvaldo Bressano,

2020

Introducción	3
Conceptos Útiles Thread Hyper-threading Overclock Turbo Boost Turbo Boost Max 3.0	3 3 3 3 4 4
Intel Core Modelos Core i3 Core i5 Core i7 Core i9 Series X Ventajas de elegir un procesador de la familia Core de Inte	4 4 5 5 5 5 6
Desventajas de elegir un procesador de la familia Core de	Intel 6
AMD Ryzen Modelos Ryzen 3 Ryzen 5 Ryzen 7 Ryzen 9 Ryzen Threadripper Ventajas de elegir un procesador de la familia Ryzen de Al Desventajas de elegir un procesador de la familia Ryzen de	
¿Qué procesador es mejor?	8
Lista de socket y procesadores	9
Fuentes	20
Posibles preguntas	20
Posibles mejoras	¡Error! Marcador no definido.
Mapa de cambios	¡Error! Marcador no definido.

Esp. Prof. Ing. Mario Osvaldo Bressano, Ing. Sergio Milardovich

Introducción

Este documento está destinado a informar al alumno sobre los distintos modelos de procesadores actualmente disponibles en el mercado. Además, se intentará introducir al alumno a conceptos básicos que serán muy útiles al momento de elegir un procesador para realizar una tarea determinada.

Se detallarán ventajas y desventajas de cada modelo de procesador, además de sus usos recomendados, y luego se ofrecerá una breve conclusión sobre qué familia y modelo de procesador sería la óptima al momento de tener que optar por uno.

Conceptos Útiles

Antes de ponernos a comparar las distintas marcas y tipos de procesadores, es necesario aclarar ciertos conceptos y terminologías que utilizaremos en este documento, para hacer más fácil la comprensión de la comparación.

Thread

Un thread (o hilo) es una manera de dividir un proceso en dos o más tareas que puedan ejecutarse simultáneamente.

Hyper-threading

El hyper-threading es un término que se utiliza para hacer referencia a que un núcleo físico del procesador tiene la habilidad de realizar dos tareas en simultáneo sin necesidad de activar otros núcleos físicos. Es decir, si tenemos 2 núcleos físicos y los 2 tienen hyper-threading activado, entonces podríamos simular que tenemos 4 núcleos físicos. Cabe destacar que un procesador de tipo quad-core (con 4 núcleos físicos) va a tener obviamente mucha mejor performance que un dual-core (con 2 núcleos físicos) que tenga hyper-threading.

Cabe destacar en este momento, con la llegada de procesadores de gama media e incluso baja con mayor cantidad de núcleos físicos, Intel está planeando en dar de baja el concepto, excepto para su línea i9.

Overclock

El overclock consiste en subir la frecuencia de reloj a la que trabajaría el procesador normalmente. Esto hará que aumente la performance, pero también puede llegar a ser peligroso ya que es probable que el procesador aumente su temperatura. La acción de aumentarle la frecuencia de reloj a un procesador se denomina informalmente "overclockear".

Esp. Prof. Ing. Mario Osvaldo Bressano, Ing. Sergio Milardovich

Turbo Boost

Turbo Boost es una tecnología propietaria de Intel. Consiste en overclockear el procesador de manera "inteligente" en caso de ser necesario. Por ejemplo, si se está jugando a un juego que requiere una potencia extra, el Turbo Boost se va a activar automáticamente para compensar esa falta de potencia.

Tener Turbo Boost es algo muy útil para alguien que tiene que utilizar software que requiera un uso muy intensivo de recursos, tales como juegos o editores de video, pero no es algo que se utilizaría habitualmente en caso de darle un uso hogareño a la computadora como puede ser utilizar un navegador web o aplicaciones de oficina.

Turbo Boost Max 3.0

Una variante de la tecnología Turbo Boost es la Turbo Boost Max 3.0, implementada en las series X de procesadores de la familia Core. Ésta variante consiste en identificar los 2 núcleos que sean los más "rápidos" al momento de aplicarle el boost (o sea, que tengan la mayor capacidad ociosa), y elegirlos por sobre el resto.

Intel Core

La familia de procesadores Core de Intel son una línea de procesadores para la gama media y media-alta de computadoras de escritorio. Esta familia reemplazó a la línea Pentium en el momento de su salida al mercado (2006). Existe una correlación entre muchas gamas de los procesadores de la línea Core con la línea Xeon, siendo esta última la gama de procesadores de Intel destinada a servidores.

Existen 4 gamas principales de procesadores dentro de la línea Core: i3, i5, i7 e i9, además de una serie de alto rendimiento llamada "Serie X". El modelo de cada procesador inicia con un número de 1 o 2 dígitos que hace referencia a la "generación" del mismo (ej: Core i7 **10**68G7). Cada año, Intel saca al mercado una nueva "generación", siendo la última (para el año 2019) la generación número 10, mientras que los últimos 2 caracteres (en el caso del ejemplo anterior G7) hacen referencia a la variante de producto dentro de la misma gama y la misma generación.

Modelos

Como aclaración, antes de ver la comparación de modelos, cabe destacar que los números 3, 5, 7 y 9 no denotan el número de procesadores. Es decir, un procesador de la línea Core i3 no necesariamente tendrá 3 núcleos, así como un procesador de la línea i7 no va a tener 7. Éstos números son simplemente una forma de diferenciar las distintas gamas la familia.

Esp. Prof. Ing. Mario Osvaldo Bressano, Ing. Sergio Milardovich

Las principales diferencias (además del precio, obviamente), serán la cantidad de núcleos físicos, el tamaño de la caché, los gráficos integrados y la posibilidad de aplicar las tecnologías hyperthreading y Turbo Boost.

A continuación se puede ver una tabla comparativa de cada uno de los modelos ofrecidos actualmente por Intel para la familia Core.

Procesador	Núcleos Físicos	Tamaño de la caché	Hyper Threading	Turbo Boost	Calidad de los gráficos	Precio
Core i3	2-4	3MB-8MB	Sí	No	Baja	Bajo
Core i5	2-4	3MB-12MB	No	Sí	Media	Medio
Core i7	2-8	4MB-12MB	Sí	Sí	Alta	Alto
Core i9	10-18	12MB-16MB	Sí	Sí	Muy Alta	Muy Alto

Core i3

Actualmente, la línea de procesadores Intel Core i3 es la más económica de los mismos. A pesar de tener menor cantidad de núcleos de manera física, esta línea soporta el hyper-threading, aunque no soporte la tecnología Turbo Boost. Son procesadores considerados de línea mediabaja.

Core i5

La línea de procesadores Core i5 no posee hyper-threading, pero posee mayor cantidad de núcleos fisicos, así como también la tecnología Turbo Boost. Los procesadores Core i5 vendrían a ser una gama media dentro de la familia Core de Intel.

Core i7

Los procesadores Core i7 poseen la misma cantidad de núcleos físicos que los core i5, con la diferencia que algunos modelos tienen más memoria caché, y tienen las tecnologías tanto hyper threading como Turbo Boost. Se consideran una gama media-alta y alta.

Core i9

La línea Core i9 son los más caros (el precio oficial empieza en 1.000USD), y poseen la mayor cantidad de núcleos físicos (hasta 18, y 36 threads en caso de usar hyper threading). Aplican

Esp. Prof. Ing. Mario Osvaldo Bressano, Ing. Sergio Milardovich

tanto Turbo Boost como hyper threading, pero con una cantidad de recursos muy superior a la de los Core i7.

Series X

Las series X de procesadores se aplican a los procesadores de la gama i5, i7 e i9. Consisten en procesadores de alta gama, destinadas principalmente al gaming (juegos), con tecnología Turbo Boost Max 3.0, además de estar diseñados para permitir al usuario overclockearlo fácilmente.

Ventajas de elegir un procesador de la familia Core de Intel

- 1. Mayor frecuencia de reloj individual de los núcleos en comparación con sus equivalentes de la línea Ryzen, especialmente útil para edición de video y gaming.
- 2. Mayor cuota en el mercado (75% en el mercado de computadoras de uso personal, 90% en empresas y 95% en servidores).
- 3. Mayor cantidad y variedad de modelos de computadoras disponibles en el mercado.
- 4. Menor consumo de energía.

Desventajas de elegir un procesador de la familia Core de Intel

- 1. Precio mayor que la gama equivalente ofrecida por AMD.
- 2. Menor tiempo de soporte para los sockets (cambian cada 1 a 3 años). Por ende, menor durabilidad ya que se debe cambiar la placa madre para actualizar el modelo.
- 3. Menor cantidad de núcleos que los equivalentes ofrecidos por AMD.

AMD Ryzen

Modelos

Al igual que sucede con la línea Core de Intel, los números 3, 5, 7 y 9 hacen referencia a la línea dentro de la familia, y generalmente también a la gama. AMD optó por utilizar los mismos números que Intel, por lo que ambas familias de procesadores son fácilmente comparables (por ejemplo, un procesador Ryzen 3 sería equivalente en cuanto a su gama que un procesador Core i3 de Intel).

Procesador	Núcleos Físicos	Tamaño de la caché	Threads	Calidad de los gráficos	Precio
Ryzen 3	4	Hasta 10MB	4	Baja	Bajo
Ryzen 5	4-6	Hasta 35MB	Hasta 12	Media	Medio

Esp. Prof. Ing. Mario Osvaldo Bressano, Ing. Sergio Milardovich

Ryzen 7	Hasta 8	Hasta 36MB	Hasta 16	Alta	Alto
Ryzen 9	Hasta 16	Hasta 72MB	Hasta 32	Muy Alta	Muy Alto
Ryzen Threadripper	Hasta 32	Hasta 80MB	Hasta 64	Muy Alta	Muy alto

Ryzen 3

Es la línea más barata de los procesadores de la familia Ryzen. No poseen el equivalente al hyper threading que tienen algunos procesadores de la familia Core de Intel, por lo que su cantidad de threads es la misma que su cantidad de núcleos.

Ryzen 5

Es una gama media de procesadores dentro de la familia Ryzen. A diferencia de los Core i5 de Intel, estos procesadores sí poseen el equivalente al hyper threading, además de tener una mayor cantidad de núcleos físicos.

Ryzen 7

Los Ryzen 7 son procesadores orientados a actividades de alta performance, pero a un precio mucho menor que los Core i7 ofrecidos por Intel. Ofrecen mayor cantidad de núcleos físicos y memoria caché que los Ryzen 5, aunque a un precio bastante mayor.

Ryzen 9

Esta línea es la competidora directa de los Core i9 de Intel. Su principal ventaja es que toda la gama de Ryzen 9 vienen unlocked (desbloqueados) de fábrica. Los procesadores de tipo unlocked permiten ser overclockeados sin límites (corriendo el riesgo de que se echen a perder si se nos va la mano). Sólo las variantes K y Z de los Intel Core (las variantes más caras) nos permiten esto.

Ryzen Threadripper

La serie Threadripper de Ryzen es la serie más cara de dichos procesadores, ofreciendo hasta 64MB de caché, 32 cores y 64 threads. Vienen desbloqueados de fábrica y hasta el momento Intel no ofrece un modelo que pueda competir con los Threadrippers.

Esp. Prof. Ing. Mario Osvaldo Bressano, Ing. Sergio Milardovich

Ventajas de elegir un procesador de la familia Ryzen de AMD

- 1. Mayor cantidad de núcleos en comparación con procesadores de la misma gama ofrecidos por Intel.
- 2. Motherboards más baratas.
- 3. Socket utilizado (AM4, liberado en el año 2016) con soporte hasta el año 2020.
- 4. Precio de los procesadores inferior al de los de la misma gama ofrecidos por Intel.

Desventajas de elegir un procesador de la familia Ryzen de AMD

- No se ofrecen tantos modelos de computadoras pre-armadas como sí sucede con los modelos ofrecidos por Intel.
- 2. Menos capacidad de procesamiento single-core que los procesadores Intel de la misma gama.
- 3. Mayor consumo de energía en comparación con los procesadores equivalentes ofrecidos por Intel.

¿Qué procesador es mejor?

Realizando una simplificación (no teniendo en cuenta muchos otros factores), podríamos tomar como una generalidad que tener en cuenta el "valor" de una pieza de hardware podría constar de 3 variables: precio + performance + durabilidad.

En el caso del precio, los procesadores Ryzen tienen un costo menor que cualquiera de sus equivalentes en Intel. En cuanto a durabilidad, al conservar el mismo socket durante 4 años, en cambio, Intel ha cambiado el socket con una frecuencia de 1 a 3 años durante la última década.

En el caso de la performance, si se analizan distintos benchmarks ofrecidos por sitios especializados, se puede apreciar que los procesadores de la línea Ryzen ofrecen una mayor cantidad de núcleos que los de la misma gama de Intel, pero, a su vez, la performance de cada núcleo individual es menor.

En conclusión, si uno busca la mejor performance de núcleos individuales (especialmente útil si la computadora se utilizará para jugar juegos que requieran de esa tecnología), y se dispone de un presupuesto ilimitado, entonces los procesadores de la gama Intel son definitivamente una opción mejor que los ofrecidos por AMD.

Esp. Prof. Ing. Mario Osvaldo Bressano, Ing. Sergio Milardovich

En cambio, si nuestro presupuesto es limitado, y valoramos más la funcionalidad de multithreading (poder realizar varias tareas al mismo tiempo), en el caso específico de los procesadores de la línea Ryzen, de momento (año 2019), la misma gama ofrece mayor cantidad de núcleos (cores) que los ofrecidos por Intel, y a un precio menor.

Como nota, cabe destacar que los juegos desarrollados en los últimos años utilizan cada vez más el procesamiento en paralelo utilizando varios núcleos en simultáneo, por lo que es posible que en un tiempo no tan lejano se pueda valorar más tener una mayor cantidad de núcleos a poseer una mejor performance en cada núcleo individual.

Lista de socket y procesadores

Nombre del	Año de introducción	Familias de CPU	Empaq ue	Núme ro de pines
zócalo				I
	1970	Intel 8086	DIP	40
DIP		Intel 8088		
	1982	Intel 80186	PLCC	68, 132
		Intel 80286		
PLCC		Intel 80386		
Socket 1	1989	Intel 80486	PGA	169
Socket 2		Intel 80486	PGA	238
Socket 3	1991	Intel 80486	PGA	237

	1993	Intel Pentium	PGA	273
Socket 4				
	1994	Intel Pentium	PGA	320
		AMD K5		
		IDT WinChip C6		
		IDT WinChip 2		
Socket 5				
Socket 6		Intel 80486	PGA	235
Socket 463/	1994	NexGen Nx586	PGA	463
Socket NexGen				
	1995	Intel Pentium	PGA	321
		Intel Pentium MMX		
Socket 7		AMD K6		
Socket 8	1995	Intel Pentium Pro	PGA	387
Socket 431	1995	Alpha 21164/Alpha 21164A	PGA	431
Socket 499	1997	Alpha 21164/Alpha 21164A	PGA	499
	1997	Intel Pentium II	Slot	242
Slot 1				

		Intel Pentium III		
Socket 587	1998	Alpha 21164A	Slot	587
	1998	AMD K6-2	PGA	321
		AMD K6-III Rise mP6		
Super Socket 7		Cyrix MII		
Slot 2	1998	Intel Pentium II Xeon	Slot	330
	1999	Intel Mobile Pentium II		615
Socket 615		Intel Mobile Celeron	PGA	
Slot A	1999	AMD Athlon	Slot	555
Slot B	?	Alpha 21264	Slot	587
	1999	Intel Pentium III	PGA	370
		Intel Celeron		
		VIA Cyrix III		
Socket 370		VIA C3		
Socket 462/	2000	AMD Athlon	PGA	462

Socket A		AMD Duron		
		AMD Athlon XP		
		AMD Athlon XP-M		
		AMD Athlon MP		
		AMD Sempron		
Socket 423	2000	Intel Pentium 4	PGA	423
Socket 478/	2000	Intel Pentium 4	PGA	478
Socket N		Intel Celeron		
		Intel Pentium 4 EE		
		Intel Pentium 4 M		
Socket 495	2000	Intel Celeron	PGA	495
PAC418	2001	Intel Itanium	PGA	418
Socket 603	2001	Intel Xeon	PGA	603
Socket 563	2002	AMD Athlon XP-M	μ-PGA	563
PAC611	2002	Intel Itanium 2	PGA	611

		HP PA-8800, PA-8900		
Socket 604	2002	Intel Xeon	PGA	604
	2003	AMD Athlon 64	PGA	754
		AMD Sempron		
Socket 754		AMD Turion 64		
	2003	AMD Opteron Athlon 64 FX		940
Socket 940			PGA	
	2003	Intel Pentium M	PGA	
Socket 479		Intel Celeron M		4798
	2004	AMD Athlon 64	PGA	939
		AMD Athlon 64 FX		
		AMD Athlon 64 X2		
Socket 939		AMD Opteron		
LGA 775/	2004	Intel Pentium 4		775
Socket T		Intel Pentium D		
		Intel Celeron		
		Intel Celeron D	LGA	

		Intel Pentium XE		
		Intel Core 2 Duo		
		Intel Core 2 Quad		
		Intel Xeon		
	2006	Intel Core Solo	PGA	478
		Intel Core Duo		
		Intel Dual-Core Xeon		
Socket M		Intel Core 2 Duo		
LGA 771/	2006			771
Socket J		Intel Xeon	LGA	
Socket S1	2006	AMD Turion 64 X2	PGA	638
	2006	AMD Athlon 64		940
Socket AM2		AMD Athlon 64 X2	PGA	
	2006	AMD Athlon 64 FX		1207
Socket F		AMD Opteron	LGA	
	2007	AMD Athlon 64		940
		AMD Athlon X2		
Socket AM2+		AMD Phenom	PGA	

		AMD Phenom II		
	2007	7 WILD T HOHOLITH	PGA	478
Socket P		Intel Core 2	1	1
Socket 441	2008	Intel Atom	PGA	441
LGA 1366/	2008	Intel Core i7 (serie 900)		1366
		Intel Xeon (serie 35xx, 36xx, 55xx, 56xx)		
Socket B			LGA	
rPGA 988A / B/	2008	Intel Core i7 (serie 600, 700, 800, 900)		988
Socket G1 / G2		Intel Core i5 (serie 400, 500)		
		Intel Core i3 (serie 300)		
		Intel Pentium (serie P6000)		
		Intel Celeron (serie P4000)	rPGA	
	2009	AMD Phenom II	PGA	941 ¹³ ó
		AMD Athlon II		94014
Socket AM3		AMD Sempron		
LGA 1156/	2009	Intel Core i7 (serie 800)		1156
Socket H		Intel Core i5 (serie 700, 600)		
		Intel Core i3 (serie 500)	LGA	

		Intel Xeon (serie X3400, L3400)		
		Intel Pentium (serie G6000)		
		Intel Celeron (serie G1000)		
	2010	AMD Opteron (serie 6000)	LGA	1974
Socket G34				
	2010	AMD Opteron (serie 4000)	LGA	1207
Socket C32				
LGA 1248	2010	Intel Intel Itanium serie 9300	LGA	1248
LGA 1567	2010	Intel Intel Xeon serie 6500/7500	LGA	1567
LGA 1155/	2011/Q1			1155
Socket H2		Intel Sandy Bridge-DT	LGA	
LGA 2011/	2011/Q3	Intel Core i7 3xxx Sandy Bridge-E		2011
Socket R	(2011.11.14)	Intel Core i7 4xxx Ivy Bridge-E		
		Intel Xeon E5 2xxx/4xxx [Sandy Bridge EP] (2/4S)		
		Intel Xeon E5-2xxx/4xxx v2 [Ivy Bridge EP] (2/4S)	LGA	
rPGA 988B/	2011	Intel Core i7 (series 2000, 3000)		988
Socket G2		Intel Core i5 (series 2000, 3000)	rPGA	

		Intel Core i3 (series 2000, 3000)		
Socket FM1	2011	AMD K-10:Llano	PGA	905
Socket FS1	2011	AMD Llano	PGA	722
	2011	AMD FX Zambezi	PGA	942 (CPU
	2012	AMD FX Vishera		71pin)
	2013	AMD Phenom II		
	2014	AMD Athlon II		
Socket AM3+		AMD Sempron		
Socket FM2	2012	AMD Trinity Processors	PGA	904
LGA 1150/	2013.06.03	Intel Haswell		1150
Socket H3	2014.05.11	Intel Haswell Refresh		
	(2015.06.02)	Intel Broadwell	LGA	
Socket G3/	2013/Q2	Intel Haswell		946
Socket G3		Intel Broadwell	rPGA	
	2014	AMD Kaveri		906
Socket FM2+	2015	AMD Godavari (Kaveri para Escritorio)	PGA	
	2014	AMD Athlon		721
Socket AM1		AMD Sempron	PGA	

		Intel Xeon (series E3v5-12xx;E3v5-15xx)		1151
	(Q3.2015)15			
	2016	Intel Celeron (series G3900;G3920)		
		Intel Pentium (series G4400-G4500;G4520))		
		Intel Core i3 (series 6098P;6100;6300;6320)		
		Intel Core i5 (series 6400;6500;6600;6600K;6685R)		
		Intel Core i7 (series 6700;6700K;6785R)		
		Intel Core i5 (series 63xxHQ-6440HQ)		
		Intel Core i7 (series 67xxHQ-69xxHQ)		
		Intel Celeron (serie G390xE;395xU))		
		Intel Pentium (serie 4405U-Y)		
		Intel Core i3 (Serie 61xxU)		
		Intel Core i5 (Serie 62xxU-63xxU)		
		Intel Core i7 (Serie 65xxU-6660U)		
		Intel Core m3 (serie 6Y30), Core m5 (serie 6Y5x)		
		Core m7 (serie 6Y7x)		
LGA 1151	(Q1.2017)17	Intel Kabylake	LGA	

		Coro iF/i7 7yyy 7Vyy		
		Core i5/i7-7xxx, -7Yxx		
	2016	Intel Xeon Phi		3647
		Intel Skylake-SP		
LGA 3647			LGA	
	(05.Sep.2016	AMD Ryzen 7		1331
)	AWID TRYZOTT		1001
		AMD Ryzen 5		
Socket		AMD Ryzen 3		
AM4			PGA	
Socket	(20.Jun.2017	AMD EPYC		4094
SP3)21		LGA	
		AMD EPYC		4094
		AMD Duran Three drinner		
Socket	(10.Ago.2017	AMD Ryzen Threadripper		
TR4)23		LGA	
LGA 2066		Intel Intel Skylake-X		2066
Socket R4		Intel Kaby Lake-X		
	/ h.m. 0047\05	interrupy Lane /	1.04	
	(Jun.2017)25		LGA	
	(21.Ago.2017)26	Intel Coffelake		1151
	2018			
	2010	Intel Cannonlake		
		Intel Include		
		Intel Icelake		
LGA 1151 rev2	2019	Intel Tigerlake	LGA	
<u> </u>				

Esp. Prof. Ing. Mario Osvaldo Bressano, Ing. Sergio Milardovich

Fuentes

https://www.quora.com/Should-I-consider-buying-an-AMD-Ryzen-processor

http://techyjacky.com/best-budget-processor-for-gaming/

https://en.wikipedia.org/wiki/CPU_socket

https://www.tomshardware.co.uk/processors-cpu-apu-features-upgrade,review-32814-9.html

https://wccftech.com/amd-ryzen-and-intel-core-cpu-market-share-report/

https://en.wikipedia.org/wiki/Intel_Core

https://www.makeuseof.com/tag/intel-core-i3-vs-i5-vs-i7-one-really-need/

https://www.intel.com/content/www/us/en/products/processors/core/i9-processors.html

https://www.makeuseof.com/tag/intel-core-i9-cpu/

https://www.amd.com/en/ryzen

https://technical.city/es/cpu/Ryzen-5-1600-vs-Ryzen-7-2700X

https://www.tomshardware.com/reviews/amd-ryzen-9_3900x-vs-intel-core_i7-9900k,6225.html

https://www.amd.com/en/products/ryzen-threadripper

https://simple.wikipedia.org/wiki/Thread_(computer_science)

Posibles preguntas

- 1. ¿Qué es hyper-threading?
- 2. ¿Qué es Turbo Boost?
- 3. Si tengo un procesador del tipo Core i3, ¿quiere decir que mi procesador tiene 3 núcleos?
- 4. Se requiere comprar un procesador que me sirva para realizar muchas tareas en simultáneo: ¿sería mejor un procesador con mayor cantidad de núcleos físicos a menor velocidad o uno con menor cantidad, pero a mayor velocidad individual?
- 5. Si tengo un procesador con 4 núcleos físicos que no soporta hyper threading ¿cuál será la cantidad máxima de threads?
- 6. Si el modelo de mi procesador Intel es i9-9900T ¿cuál será su generación?
- 7. ¿Es lo mismo decir thread que decir proceso?
- 8. Si le aplico overclock a un procesador ¿su frecuencia de reloj aumentará o disminuirá?