FCC Report

Application Purpose : Original grant

Applicant Name: : Hallmark Global LTD.dba HEXA

FCC ID : 2AEJL-KALEIDO8

Equipment Type : Android tablet PC

Model Name : Kaleidoscope

Report Number: FCC16124190A-4

Standard(S) : FCC Part 15 Subpart B

Date Of Receipt : December 08, 2016

Date Of Issue : December 27, 2016

Test By :

(Daisy Qin)

Reviewed By

(Sol Oin)

Authorized by :

<u>(</u>Michal Ling)

Prepared by : QTC Certification & Testing Co., Ltd.

2nd Floor, Bl Building, Fengyeyuan Industrial Plant,,

Liuxian 2st. Road, Xin'an Street, Bao'an

District,,Shenzhen,518000

Registration Number: 588523

				Page 2 o
	ISE RECORD			
port Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	December 27, 2016	Valid	Original Report

Table of Contents	Page
1. GENERAL INFORMATION	4
2. TEST DESCRIPTION	6
2.1 MEASUREMENT UNCERTAINTY	6
2.2 DESCRIPTION OF TEST MODES	7
2.3 CONFIGURATION OF SYSTEM UNDER TEST	8
2.4 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)	9
3. SUMMARY OF TEST RESULTS	10
4. MEASUREMENT INSTRUMENTS	11
5. EMC EMISSION TEST	12
5.1 CONDUCTED EMISSION MEASUREMENT	12
5.1.1 POWER LINE CONDUCTED EMISSION LIMITS	12
5.1.2 TEST PROCEDURE	13
5.1.3 DEVIATION FROM TEST STANDARD	13
5.1.4 TEST SETUP	13
5.1.5 EUT OPERATING CONDITIONS 5.1.6 TEST RESULTS	13 14
5.2 RADIATED EMISSION MEASUREMENT	20
5.2.1 RADIATED EMISSION LIMITS	20
5.2.2 TEST PROCEDURE	21
5.2.3 DEVIATION FROM TEST STANDARD 5.2.4 TEST SETUP	21 22
5.2.5 EUT OPERATING CONDITIONS	22 22
5.2.5.1 TEST RESULTS (BETWEEN 30M – 1000 MHZ)	22
5.2.5.2 TEST RESULTS (BETWEEN 30M = 1000 MHZ)	23 29
6. EUT TEST PHOTO	31
7. PHOTOGRAPHS OF EUT	35

1. GENERAL INFORMATION

Test Model	kaleidoscope
Applicant	Hallmark Global LTD.dba HEXA
Address	Suite 1801, 1 Yonge Street, Toronto Ontario , Canada , M5E 1W7
Manufacturer	SHENZHEN LUCKYSTAR TECHNOLOGY CO.,LTD.
Address	Fl.4,Block 1,Yu Jing Tai Industrial Park, Huarong Rd., Shuiwei Village, Dalang Office, Longhua New District, Shenzhen, Guangdong, China
Equipment Type	Android tablet PC
Brand Name	HEXA
Hardware	M826-MB-2.0
Software	Android 5.1
Battery information:	Li-Polymer Battery : PL0392103P Voltage: 3.7V Capacity: 3600mAh Limited Charge Voltage: 4.2V
Adapter Information:	Adapter: THX-050200KE Input: 100-240V 50/60Hz 650mA Output: 5V 2A
Data of receipt	December 08, 2016
Date of test	December 08, 2016 to December 27, 2016
Deviation	None
Condition of Test Sample	Normal

We hereby certify that:
The above equipment was tested by QTC Certification & Testing Co., Ltd.
2nd Floor,Bl Building,Fengyeyuan Industrial Plant,, Liuxian 2st. Road, Xin'an Street, Bao'an District,,Shenzhen,518000
Registration Number: 588523
The data evaluation, test procedures, and equipment configurations shown in this report were made in
accordance with the procedures given in ANSI C 63.4:2014. The sample tested as described in this report
is in compliance with the FCC Rules Part15 Subpart B.
The test results of this report relate only to the tested sample identified in this report.

2. TEST DESCRIPTION

2.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±3.2dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.7dB
5	All emissions, radiated(>1G)	±4.7dB
6	Temperature	±0.5°C
7	Humidity	±2%

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Video Recording
Model 2	Video Playing
Mode 3	Exchange data with computer

For Conducted Emission			
Final Test Mode Test with Keyboard and Mouse			
Mode 1	Video Recording		
Model 2	Video Playing		
Mode 3	Exchange data with computer		

For Radiated Emission			
Final Test Mode	Test with Keyboard and Mouse		
Mode 1	Video Recording		
Model 2 Video Playing			
Mode 3	Exchange data with computer		

2.3 CONFIGURATION OF SYSTEM UNDER TEST

Mode 1&2&4&5:

(EUT: kaleidoscope)

(EUT: kaleidoscope)

I/O Port of EUT					
I/O Port Type Q'TY Cable Tested with					
Power	1	1m USB cable, unshielded	1		
Earphone	1	1m USB cable, unshielded	1		

2.4 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	Adapter	1	THX-050200KE	/	/
2	Keyboard	HP	SK-2880	435302-AA-	/
3	Mouse	DELL	MS111-1	/	/

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in Length column.

3. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 , Subpart B						
Standard Section	Test Item	Judgment	Remark			
15.107	CONDUCTED EMISSION	PASS				
15.109	RADIATED EMISSION	PASS				

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

4. MEASUREMENT INSTRUMENTS

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibrated	Calibrated until
ESCI Test Receiver	R&S	ESCI	100005	08/19/2016	08/18/2017
LISN	AFJ	LS16	16010222119	08/19/2016	08/18/2017
LISN(EUT)	Mestec	AN3016	04/10040	08/19/2016	08/18/2017
pre-amplifier	CDSI	PAP-1G18-38		08/19/2016	08/18/2017
System Controller	СТ	SC100	-	08/19/2016	08/18/2017
Bi-log Antenna	Chase	CBL6111C	2576	08/19/2016	08/18/2017
Spectrum analyzer	R&S	FSU26	200409	08/19/2016	08/18/2017
Horn Antenna	SCHWARZBECK	9120D	1141	08/19/2016	08/18/2017
Bi-log Antenna	SCHWAREBECK	VULB9163	9163/340	08/19/2016	08/18/2017
Pre Amplifier	H.P.	HP8447E	2945A02715	10/13/2016	10/12/2017
9*6*6 Anechoic				08/21/2016	08/20/2017

5. EMC EMISSION TEST

5.1 CONDUCTED EMISSION MEASUREMENT

5.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Class A (dBuV)		Class B	Standard	
PREQUENCY (MINZ)	Quasi-peak	Average	Quasi-peak	Average	Stariuaru
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

5.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

5.1.3 DEVIATION FROM TEST STANDARD

No deviation

5.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

5.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

5.1.6 TEST RESULTS

EUT	Android tablet PC	Model Name	kaleidoscope
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	L
Test Date	December 10, 2016	Test Mode	Mode 1

10.58

10.58

10.56

10.57

10.60

10.60

35 69

23.68

31.95

19.31

31.50

21.83

56.00 -20.31

46.00 -22.32

60.00 -28.05

50.00 -30.69

60.00 -28.50

50.00 -28.17

QΡ

AVG

QP

AVG

QP

AVG

Report No.: FCC16124190A-4

2 3820

2.4539

6.7220

6.7620

25.8700

25.8700

25 11

13.10

21.39

8.74

20.90

11.23

7

8

9

10

11

12

EU	Т	Android tablet PC		Model Name		kaleidoscope			
Ten	nperat	ture	26 ℃	26 °C F			lumidity	54%	
Pre	ssure		1010hPa			Phase		N	
Tes	t Date)	December	10, 2016		Test Mode)	Mode 1	
80.0) dBu\	v							
								Limit AVG	
	X								
	₩ `]/	\ _{Max}							
40	΄ Ψ	₩₩		. X					
	\mathbb{M} .	<u> </u>	This walk In W	h'y quant hit hadan kanan ka	MANAN MANAN		Maria Ma	1 _m hua i	John William P
)' \{	V)MV		propriet and the second	Mayora James May	MMM		11 Me Jugar	
	,	Y .	A han A bulb Mith	^M M,	"ww/larly	, A A	My the whole of	Commenter Many Marie Marie	WATER TO A STATE OF THE STATE O
0.0									
0.	150		0.5		(MHz)	5			30.000
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	1	*	0.1660	40.63	12.18	52.81	65.15	-12.34	QP
	2		0.1711	19.93	12.12	32.05	54.90	-22.85	AVG
	3		0.3620	11.73	11.24	22.97	48.68	3 -25.71	AVG
	4		0.3940	26.82	11.13	37.95	57.98	3 -20.03	QP
	5		0.9380	24.08	10.66	34.74	56.00	-21.26	QP
	6		1.1700	11.52	10.62	22.14	46.00	-23.86	AVG
	7		2.3740	26.22	10.58	36.80	56.00	-19.20	QP
	8		2.5540	14.50	10.58	25.08	46.00	-20.92	AVG
	9		4.6659	22.84	10.54	33.38	56.00	-22.62	QP
	10		4.7619	10.08	10.53	20.61	46.00	-25.39	AVG
	11		26.5260	11.70	10.61	22.31	50.00	-27.69	AVG
			28.1460	19.58	10.65	30.23	00.00	-29.77	QP

EUT		Android tablet PC		Model Name		kaleidoscope		
Tempera	ature	26 °C					·	
Pressure		1010hPa Phase			L			
Test Dat		December 1	0, 2016		Test Mode		Mode 2	
	dBuV		-,		1,22,1112			
/								mit: — /G: —
40	MM		JAMA JAMA JAMA			/^ /~ * \~		a luile
0.0	1/14/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/		Ullynder of hypertole	P P VIALAP		Vyranova (word by de hope his his hope	AV
0.150	<u> </u>	0.5		(MHz)	5			30.000
N	o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	t Over	
		MHz	dBuV	dB	dBuV	dBu\	/ dB	Detector
	1	0.1620	26.40	12.24	38.64	55.3	6 -16.72	AVG
	2 *	0.1677	39.70	12.16	51.86	65.0	7 -13.21	QP
	3	0.3268	14.62	11.35	25.97	49.5	3 -23.56	AVG
	4	0.3980	28.39	11.12	39.51	57.8	9 -18.38	QP
	5	0.6540	24.76	10.78	35.54	56.0	0 -20.46	QP
	6	0.6780	13.33	10.77	24.10	46.0	0 -21.90	AVG
	7	2.0660	24.88	10.59	35.47	56.0	0 -20.53	QP
	8	2.2460	14.26	10.58	24.84	46.0	0 -21.16	AVG
	9	3.7460	10.85	10.56	21.41	46.0	0 -24.59	AVG
1	0	3.8420	24.70	10.55	35.25	56.0	0 -20.75	QP
1	1	6.4899	21.76	10.56	32.32	60.0	0 -27.68	QP
1	2	6.6540	10.15	10.56	20.71	50.0	0 -29.29	AVG

EUT	Android tablet PC	Model Name	kaleidoscope
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	N
Test Date	December 10, 2016	Test Mode	Mode 2

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBu∨	dB	Detector
1	*	0.1620	41.42	12.24	53.66	65.36	-11.70	QP
2		0.1700	22.57	12.13	34.70	54.96	-20.26	AVG
3		0.2819	27.91	11.48	39.39	60.76	-21.37	QP
4		0.3940	13.97	11.13	25.10	47.98	-22.88	AVG
5		0.9220	23.11	10.67	33.78	56.00	-22.22	QP
6		0.9620	12.94	10.64	23.58	46.00	-22.42	AVG
7		2.4300	15.44	10.58	26.02	46.00	-19.98	AVG
8		2.4739	28.27	10.58	38.85	56.00	-17.15	QP
9		4.7060	10.81	10.54	21.35	46.00	-24.65	AVG
10		4.8500	24.50	10.53	35.03	56.00	-20.97	QP
11		24.0340	9.10	10.59	19.69	50.00	-30.31	AVG
12		25.8900	19.65	10.60	30.25	60.00	-29.75	QP

EUT	Android tablet PC	Model Name kaleidoscope	
Temperature	26 ℃	Relative Humidity 54%	
Pressure	1010hPa	Phase N	
Test Date	December 10, 2016	Test Mode Mode 3	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1740	18.14	12.08	30.22	54.76	-24.54	AVG
2	*	0.1749	37.56	12.07	49.63	64.72	-15.09	QP
3		0.3980	27.80	11.12	38.92	57.89	-18.97	QP
4		0.3980	14.17	11.12	25.29	47.89	-22.60	AVG
5		0.9100	25.75	10.67	36.42	56.00	-19.58	QP
6		0.9820	12.91	10.64	23.55	46.00	-22.45	AVG
7		2.2580	15.79	10.58	26.37	46.00	-19.63	AVG
8		2.5220	30.30	10.58	40.88	56.00	-15.12	QP
9		4.3820	11.07	10.54	21.61	46.00	-24.39	AVG
10		5.3300	21.66	10.54	32.20	60.00	-27.80	QP
11		21.0020	11.45	10.63	22.08	60.00	-37.92	QP
12		24.9340	6.63	10.59	17.22	50.00	-32.78	AVG

5.2 RADIATED EMISSION MEASUREMENT

5.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

The field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

EDECHENCY (MH-)	Limit (dBuV/m) (at 3M)			
FREQUENCY (MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15B.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted	4 Mills / 4 Mills for Dook 4 Mills / 41 Is for Average
band)	1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement

performed. f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported **5.2.3 DEVIATION FROM TEST STANDARD** No deviation

5.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency 30MHz~1GHz

(B) Radiated Emission Test-Up Frequency Above 1GHz

5.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.2.5.1 TEST RESULTS (BETWEEN 30M - 1000 MHZ)

EUT	Android tablet PC	Model Name	kaleidoscope
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Horizontal
Test Mode	Mode 1	Test Date	December 10, 2016

EUT	Android tablet PC	Model Name	kaleidoscope
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization :	Vertical
Test Mode	Mode 1	Test Date	December 10, 2016

Ε	UT				An	Android tablet PC							N	lodel	Nam	ne			ļ	kaleidoscope					
Te	empera	ature			20	20 ℃						R	elativ	е Ни	ımid	dity		4	48%						
	ressure					10 ł		l					_	olariz		າ :				Horiz					
Te	est Mo	de			Mc	ode	2						T	est D	ate					Dece	eml	oer	10,	201	6
80.0	0 dBuV	//m																				Lim	i+1 -	<u>.</u>	
30	Ar had weed production with	Wash of the Comment	entropy.	Andland			3	***************************************	"Dohn-like"	riman ^{d h}	nardy	2	al control	1 May		33	الماليك	*	N	tud (l.b				. Mahah	
30	0.000	40	ţ	50	60	70	80				(1	HHz)				300		400		500	60	00	700	10	00.00
	No.	Mk		F	req.			eac .ev	ding el			rect ctor		Mea m	sur ent	e-	L	imi	it	C)ve	er			
_				N	ИHZ		(dΒι	ıV		d	В		dBu	iV/m		dE	BuV	/m		dB		De	etect	or
_	1		8	39.2	764	1	4	0.0	08		-7.	98		32	.10		43	.50)	-1	1.4	10	(QΡ	
_	2		17	9.3	863	3	3	9.	74		-5.	14		34.	.60		43	.50)	-8	3.9	0	(QΡ	
_	3	*	30	0.3	672)	4	6.9	95		-5.	69		41.	26		46	.00)	-4	1.7	4	(QΡ	
-	4		38	36.6	338	}	4	0.8	34		-3.	02		37.	.82		46	.00)	-8	3.1	8	(QΡ	
_	5		46	8.8	362)	4	1.3	38		-1.	41		39.	.97		46	.00)	-6	0.6	3	(QΡ	
-	6		63	33.9	071		2	0.6	32		-1	35		31.	07		46	.00	1	-1	4 (13	(QΡ	

EUT	Android tablet PC	Model Name	kaleidoscope
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Vertical
Test Mode	Mode 2	Test Date	December 10, 2016

EUT	Γ			Android tablet PC							Model Name						kalei	dosc	ope				
Tem	pera	ture		2	20 ℃						Re	elativ	∕е Нι	umic	dity		48%						
Pres	ssure				101	010 hPa Polarization :				Horizontal													
Test	t Moc	de			Mo	de 3	3						Te	est Date				December			20	16	
0.0	dBuV∕	/m																		Liu	mit1:		
30	nder had decode	له د ادا	Muna I	1	~	wh.				И÷	2	3 X	J.	*	, , ,	5 K	Jun	Mu a /		المراما	البديموايس	dparts	Mari
		TWOY "	· · · · · · · · · · · · · · · · · · ·	Ψ		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Y	- V	ghdustmor	Alverta .	\	(Interviole)	wit .	half ha	MV.	14./M	H. WY	WV	All Low				
		40	50	60			30	~~ ~	ophdysylmir	diograph .	(1-)	(Hz)	JI .	Wh.	MW	300	thank!	400	500	600	700	1	000.0
				60		⁷ 0 8	30		ding.			(Hz)	wif		asur	300		400		600	700	1	000.0
30.00	00		50	60 Fre	7	70 8	30 Re		ling	C	ori			Mea		300 re-					700	1	000.0
30.00	00	40	50		<u>7</u>	70 8	Re L	eac	ding el	C	ori	rect ctor		Mea	asur	300 re-	Li	400	C	600	700	1 etec	
30.00	00	40	50	Fre	eq.	70 {	Re L	eac .ev	ding el	C	Cori	rect ctor		Mea m dBr	asur	300 re-	Li	400 mit	C	600)ver	700 D		ctor
30.00	00 No.	40 Mk.	50	Fre MH	7eq.	70 8	Re L	eac ev	ding el	C	Cori Fac	rect ctor 3		Mea m dBi	asur ient	300 re-	Li	400 mit uV/m	C 19	600 Over	700	etec	ctor
30.00	00 No.	40 Mk.	50	Fre MH .64	7eq.	70 {	80 Re L	eac ev dBu	ding el iv 68	C	Fac dl	rect ctor 3 40 56		Mea m dBi	asur ient uv/m	300 re-	Li dB	400 mit uV/m 00	-9 -1:	600 Over dB	700 D	etec QP	ctor
30.00	No.	40 Mk.	59	Fre MH .64	eq. Iz 93 77	70 {	Re L 3	eac .ev dBu	ding el iv 68 78	C	Fac dl -9.	rect ctor 8 40 56		Mea m dBi 30 30	asur ient uV/m	300 re-	Li dB 40 43	400 mit uV/m 00 50	-9 -1 -7	600 Over dB 0.72	700 D	etec QP QP	ctor
30.00	No.	40 Mk.	59 146 179	.64 .88	93 77 63	70 {	3 3 3 4	eac.ev dBu 9.6	ding el iv 68 78 08	C	ori Fac dl -9.	rect ctor 8 40 56 14 39		Mea m dBi 30 30 35 32	asur ient uv/m 0.28 0.22	300 re-	Li dB 40 43 43	400 mit uv/m 00 50 50	-1: -7: -1:	000 0ver dB 0.72 3.28	700 D	etec QP QP	ctor

EUT	Android tablet PC	Model Name	kaleidoscope
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization :	Vertical
Test Mode	Mode 3	Test Date	December 10, 2016

5.2.5.2 TEST RESULTS (1GHZ TO 6GHZ)

EUT	Android tablet PC	Model Name	kaleidoscope
Temperature	1/() (Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1
Test Date	December 10, 2016		

Freq.	Ant.	Emis	ssion	Limi	t	Over(dB)		
(MHz)	Pol.	Level(dBuV)	3m(dBu)	3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV	
1632.45	V	59.81	41.64	74	54	-14.19	-12.36	
2829.27	V	58.68	40.79	74	54	-15.32	-13.21	
1684.52	Н	59.08	39.15	74	54	-14.92	-14.85	
2831.6	Н	58.89	39.89	74	54	-15.11	-14.11	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Android tablet PC	Model Name	kaleidoscope
Temperature	120 (Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2
Test Date	December 10, 2016		

Freq.	Ant.	Emis	ssion	Limi	t	Over(dB)		
(MHz)	Pol.	Level(dBuV)	3m(dBu)	V/m)			
	H/V	PK	AV	PK	AV	PK	AV	
1583.35	V	58.60	41.30	74	54	-15.40	-12.70	
2641.52	V	58.76	40.27	74	54	-15.24	-13.73	
1628.42	Н	58.87	40.23	74	54	-15.13	-13.77	
2810.39	Н	58.68	39.68	74	54	-15.32	-14.32	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Android tablet PC	Model Name	kaleidoscope
Temperature	170 (Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3
Test Date	December 10, 2016		

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
1577.35	V	60.49	39.87	74	54	-13.51	-14.13
2652.38	V	58.56	40.12	74	54	-15.44	-13.88
1699.33	Н	58.50	40.50	74	54	-15.50	-13.50
2739.42	Н	58.48	39.48	74	54	-15.52	-14.52

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier. All the x/y/z orientation has been investigated, and only worst case is presented in this report.

6. EUT TEST PHOTO

CONDUCTED EMISSION TEST

7. PHOTOGRAPHS OF EUT

---END OF REPORT---