

Summary of Our Results

Research Questions

Do short Schnorr signatures have multi-user security?

Are short Schnorr signatures secure against preprocessing attacks?

 \triangleright **Answer:** Yes, still provide k bits of multi-user security! riangleright No concrete security loss (naïve reduction has loss of multiplicative factor of N) Proof: In the Random Oracle Model (ROM) + Generic Group Model (GGM)

Answer 1: No! (trivial attack)

Answer 2: Yes, key-prefixed short Schnorr signatures are secure!

Answer 3: Yes, "short" version of standardized implementations of Schnorr signatures are secure!

 \triangleright **Answer:** Yes, still provide k bits of multi-user security! $hd \ \ No\ concrete\ security\ loss\ (na\"ive\ reduction\ has\ loss\ of\ multiplicative\ factor\ of\ N)$ Proof: In the Random Oracle Model (ROM) + Generic Group Model (GGM)

$Kg(1^k)$	Sign(sk,m)	$Vfy(pk, m, \sigma)$
1: $\frac{sk}{} \leftarrow \mathbb{Z}_p$	1: $r \overset{\$}{\leftarrow} \mathbb{Z}_p$; $I \leftarrow g^r$	1: $R \leftarrow g^s \cdot pk^{-e}$
$2: pk \leftarrow g^{sk}$	$2: e \leftarrow H(I m)$	2: if $H(R m) = e$ then
з: return (pk, sk)	$s: s \leftarrow r + sk \cdot e \mod p$	$\mathfrak{3}$: return 1
	4 : return $\sigma = (s, e)$	4: else return 0

(m,r) such that $e=\mathsf{H}(I\|m)=0$

