№1 Построить выражение с одной операцией по следующим таблицам истинности:

	x	\mathbf{y}	f
	0	0	1
1.	0	1	1
	1	0	0
	1	1	0

	X	\mathbf{y}	f
	0	0	0
2.	0	1	1
	1	0	1
	1	1	1

$$3. \begin{array}{|c|c|c|c|c|c|c|c|} \hline \mathbf{x} & \mathbf{y} & \mathbf{f} \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 1 & 0 & 0 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

	X	\mathbf{y}	f
	0	0	1
5.	0	1	1
	1	0	1
	1	1	0

№2 C помощью таблицы истинности упростить следующие формулы:

1.
$$x \wedge (y \vee \overline{y})$$

5.
$$x \to y \to x \to y$$

$$2. x \oplus y$$

6.
$$y \wedge (x \vee \overline{y})$$

3.
$$x \wedge (x \downarrow y)$$

7.
$$(x \to y) \leftrightarrow (y \to x)$$

4.
$$x \vee \overline{x} \wedge y$$

8.
$$(x \oplus y) \mid (x \downarrow y)$$

№3 Построить и упростиить СКНФ и СДНФ функции f по следующим таблицам истинности:

$$\begin{array}{c|ccccc}
 & \mathbf{x} & \mathbf{y} & \mathbf{f} \\
\hline
 & 0 & 0 & 1 \\
 & 0 & 1 & 0 \\
 & 1 & 0 & 1 \\
 & 1 & 1 & 0
\end{array}$$

 $\mathbf{x} \mid \mathbf{y} \mid$

 ${f z}$

	x	y	f
	0	0	1
2.	0	1	1
	1	0	0
	1	1	1

	x	y	f
	0	0	0
3.	0	1	1
	1	0	0
	1	1	0

	X	\mathbf{y}	f
	0	0	0
4.	0	1	0
	1	0	1
	1	1	1

	0	0	0	1
	0	0	1	1
	0	1	0	0
5.	0	1	1	0
	1	0	0	1
	1	0	1	1
	1	1	0	0
	1	1	1	0

	x	y	${f z}$	f
	0	0	0	1
	0	0	1	0
	0	1	0	1
6.	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	1
	1	1	1	0

	X	\mathbf{y}	\mathbf{Z}	f
	0	0	0	0
	0	0	1	0
	0	1	0	0
7.	0	1	1	1
	1	0	0	1
	1	0	1	1
	1	1	0	1
	1	1	1	0

	x	\mathbf{y}	${f z}$	f
	0	0	0	0
	0	0	1	0
	0	1	0	1
8.	0	1	1	1
	1	0	0	0
	1	0	1	0
	1	1	0	1
	1	1	1	0