Trabajo practico computacional

Franco, Lautaro, Nicolás, Tomas October 31, 2020

1 DCL

2 Ecuaciones de Newton

En base al diagrama de cuerpo libre definimos las fuerzas peso y elástica de la siguiente forma:

$$\vec{F}_e = kR\sin^2(\theta)\hat{r} + kR\sin(\theta)\cos(\theta)\hat{\theta}$$

$$\vec{P} = -mg\cos(\theta)\hat{r} + mg\sin(\theta)\hat{\theta}$$

Desarrollamos las ecuaciones de Newton:

$$\hat{r}) - mR\dot{\theta}^2 = F_v - mg\cos(\theta) - kR\sin^2(\theta)$$
(1)

$$\hat{\theta}$$
) $mR\ddot{\theta} = mg\sin(\theta) - kR\sin(\theta)\cos(\theta)$ (2)

3 Fuerza de vínculo

Para trabajar $F_v(\theta)$, trabajaremos con la ecuación de movimiento

$$mR\ddot{\theta} = mg\sin(\theta) - kR\sin(\theta)\cos(\theta)$$
$$\ddot{\theta} = \frac{g}{R}\sin(\theta) - \frac{k}{m}\sin(\theta)\cos(\theta)$$

Utilizando regla de la cadena,

$$\int_{\dot{\theta}_0=0}^{\theta} \frac{\dot{\theta}}{s} d\dot{\theta} = \int_{\theta_0}^{\theta} \frac{g}{R} \sin(\theta) d\theta - \int_{\theta_0}^{\theta} \frac{k}{m} \sin(\theta) \cos(\theta) d\theta$$
$$\frac{\dot{\theta}^2}{2} = -\frac{g}{R} [\cos\theta - \cos(\frac{\pi}{2})] - \frac{k}{2m} (\sin^2\theta - 1)$$
$$\dot{\theta}^2 = -2\frac{g}{R} [\cos\theta - \cos(\frac{\pi}{2})] - \frac{k}{m} (\sin^2\theta - 1)$$

Una vez obtenida esta ecuación, metemos en (1) para así poder despejar $F_v(\theta)$. Queda:

$$-mR\left[-2\frac{g}{R}\left[\cos\left(\theta\right)-\cos\left(\frac{\pi}{2}\right)\right]-\frac{k}{m}\left(\sin^{2}\left(\theta\right)-1\right)\right]=F_{v}-mg\cos\left(\left(\theta\right)\right)-kR\sin^{2}\left(\theta\right)$$

$$2mg\cos\left(\theta\right) + kR(\sin^{2}\left(\theta\right) - 1) = F_{v} - mg\cos\left(\theta\right) + kR\sin^{2}\left(\theta\right)$$

$$3mg\cos(\theta) - 2kR\sin^2(\theta) - kR = F_v$$

Para hallar los puntos de equilibrio analíticamente, pedimos $f(\theta) = 0$. En (2), si $mR\ddot{\theta} = f(\theta) = 0$ N, hay equilibrio. De (2):

$$mR\ddot{\theta} = mg\sin(\theta) - kR\sin(\theta)\cos(\theta)$$

$$0 = \sin{(\theta_{\mathbf{eq}})} (mg - kR\cos{(\theta_{\mathbf{eq}})})$$

Entonces,

$$\rightarrow \sin \theta_{\mathbf{eq}} = 0 \rightarrow \theta_{\mathbf{eq}} \in \{0, \pi\}$$

O bien,

$$mg - kR\cos(\theta_{\mathbf{eq}}) = 0$$

$$\leftrightarrow mg = kR\cos(\theta_{\mathbf{eq}})$$

$$\leftrightarrow \arccos\frac{mg}{kR} = \arccos\cos(\theta_{\mathbf{eq}})$$

$$o heta_{\mathbf{eq}} \in \{\arccos\left(\frac{mg}{kR}\right), -\arccos\left(\frac{mg}{kR}\right)\}$$

Hallamos, los siguientes puntos de equilibrio:

$$\theta_{eq} \in \{0, \pi, \pm 1.37\} \text{rad}$$

Siendo consistentes con los puntos de equilibrio hallados en el problema 4.9. En cuanto a su estabilidad, buscamos $f'(\theta)$ y la evaluamos en los puntos de equilibrio encontrados. Analizamos su signos.

$$f'(\theta) = \cos(\theta)(\frac{g}{R} - \frac{k}{m}\cos\theta) + \sin\theta\sin\theta\frac{k}{m}$$
$$\leftrightarrow f'(\theta) = \cos(\theta)(\frac{g}{R} - \frac{k}{m}\cos\theta) + \sin^2\theta\frac{k}{m}$$

Reemplazando:

$$f'(0)<0\to {\sf Estable}$$

$$f'(\pi)<0\to {\sf Estable}$$

$$f'(\pm\arccos(\frac{gm}{Rk}))>0\to {\sf Inestable}$$

Coincidiendo con lo pedido, determinando $\theta=0$ como estable, debido a que $\frac{g}{R}<\frac{k}{m}$

Luego al comparar con la aproximación numérica graficada con Python, obtuvimos que las raíces (marcadas con puntos) coinciden, con un error despreciable de la solución analítica.

4 Pequeñas oscilaciones vs. solución numérica

Para buscar la solución analítica utilizaremos p
queñas oscilaciones. Para ello, desarrollamos el polinomio de Taylor de orden 1 de
 $f(\theta)$ en un entorno a $\theta_{\bf eq}=0$.

$$f(\theta) \simeq f(\theta_{eq}) + f'((\theta_{eq}))(\theta - \theta_{eq})$$

$$f(\theta) \simeq (\cos \theta_{eq}(\frac{g}{R} - \frac{k}{m}\cos(\theta_{eq})) + \sin^2(\theta))(\theta - \theta_{eq})$$
 (3)

$$f(0) \simeq (\frac{g}{R} - \frac{k}{m})\theta$$

Para que tenga sentido fisica, $\frac{g}{R}<\frac{k}{m}$ porque sino sería un equilibrio inestable y no podría oscilar. Entonces, coincide con la resolución numérica.

- a. Estos resultados tienen sentido físico ya que al posicionar la masa en el punto de equilibrio 0 el resorte crea una mayor fuerza (elástica) que el peso (kR > mg), y en π ambas fuerzas "trabajan en conjunto" restituyendo a la masa a su posición de equilibrio luego de un corrimiento de la misma. Luego, los puntos ± 1.37 que provienen de la ecuacion (2) aparentemente también coinciden con el gráfico y son posibles debido a que mg < kR ya que la función arccos tiene el dominio limitado tal que $\theta \in [-1;1]$ rad.
- b. Luego de aproximar la ecuación de movimiento para pequeñas oscilaciones obtenemos la ecuación (3), y despejamos ω resultando:

$$\omega = \pm \sqrt{mg - kR} \tag{4}$$

Para que tenga sentido físico se debe respetar que $\frac{g}{R} < \frac{k}{m}$ ya que solo así el punto de equilibrio puede ser estable y por ende oscilar (sino no tendría sentido hablar de pequeñas oscilaciones). En cuanto a $\dot{\theta}_i$, debemos considerar un intervalo el cual llegue hasta el punto límite donde la velocidad inicial causa que la masa "salga" definivamente del punto de equilibrio y deje de oscilar. Finalmente, $\dot{\theta}_i \in [0; 5.7] \frac{\text{rad}}{\text{s}}$.

c. Luego proponemos una solución a la ecuación diferencial mediante la ecuación:

$$\theta(t) = A\cos\omega t + \phi \tag{5}$$

Resulta, de (5), resulta

$$\dot{\theta}(t) = -A\omega\sin\omega t + \phi$$

y con las condiciones iniciales dadas por el enunciado, obtenemos la amplitud A y la fase ϕ . Al graficar este resultado y compararlo con el método numérico realizado con *odeint* podemos sacar las siguientes conclusiones: Nos encontramos con que las funciones acuerdan con un error despreciable, siendo practicamente iguales ($\dot{\theta}_i = 0.1 \frac{\rm rad}{\rm s}$).

Para $\dot{\theta}_i=3\frac{\rm rad}{\rm s}$ notamos un desfase marcado, que con el paso del tiempo va aumentando.

Para $\dot{\theta}_i = 10 \frac{\text{rad}}{\text{s}}$ notamos un gráfico diferente a los que veníamos teniendo. Nos encontramos ante una situación en la cual la velocidad inicial es tan alta que deja de haber oscilación, dado que la masa sale del punto de equilibrio.

d. Cambiando el valor de k por $k=5\frac{\mathrm{N}}{\mathrm{m}}$ no nos encontramos, claramente, con el comportamiento típico de pequeãs oscilaciones dado que no hay oscilación. Como $k=5\frac{\mathrm{N}}{\mathrm{m}}$ tenemos que en $\theta=0$ hay un equilibrio inestable, ya que $\frac{g}{R}>\frac{k}{m}$.

Al analizar los gráficos podemos ver que para $t \in [0,2)$ hay un acuerdo entre ambas soluciones. Luego de t=2s comienza a haber un desfase

y con el paso del tiempo el desfase aumenta notablemente. En cuanto a la posicion angular, notemos que cuando θ es muy pequeña, los gráficos coinciden. Incluso encontramos acuerdo hasta $\theta \simeq 1 \mathrm{rad}$. Luego empieza el desfase y con el tiempo aumenta.