

Deep Convolutional and Recurrent Neural Networks for Interpretable Analysis of EEG Sleep Stage Scoring

Anders Launer Baek {s160159}

Github: anderslaunerbaek/Deep_Learning_Project

DTU Compute, Technical University of Denmark

DTU Compute

Department of Applied Mathematics and Computer Science

DTU

Sleeping Stages

Figure: This figure illustrates a random epoch of the multi-taper spectrum for each sleeping stage. There is high similarity between sleeping stage N3 and N4.

Sleep Stage						
Dist. (in %)	12	7	46	9	6	20

Table: This table summerises the aggregates the distribution of the labels for all 20 Subjects. The distribution of the labels illustrates the sleep stages of subjects during the recordings.

Performance

Networks

• CNN: VGGNet 16

• RNN: VGGNet 16 + LSTM cell

DTU

Confusion Matrices

		Predicted					Normalized pred. (in %)						
		W	N1	N2	N3	N4	R	W	N1	N2	N3	N4	R
CNN	W	495	145	29	11	1	20	71	21	4	2	0	3
	N1	25	211	43	0	0	62	7	62	13	0	0	18
	N2	4	51	1313	104	17	68	0	3	84	7	1	4
	N3	0	2	11	164	64	0	0	1	5	68	27	0
	N4	0	0	0	54	91	0	0	0	0	37	63	0
	R	17	80	46	0	0	591	2	11	6	0	0	81
RNN	W	578	39	26	7	1	43	83	6	4	1	0	6
	N1	38	107	64	0	0	132	11	31	19	0	0	39
	N2	8	13	1314	102	28	92	1	1	84	7	2	6
	N3	3	0	18	125	95	0	1	0	7	52	39	0
	N4	0	0	1	60	84	0	0	0	1	41	58	0
	R	19	36	43	0	0	636	3	5	6	0	0	87

Table: Confusion matrices and normalized confusion matrices for the CNN and RNN network.

Bootstrapped Performance Metrics

Study	Precision	Sensitivity	F_1 -score	Accuracy
CNN	65- 68 -70	71- 71 -72	67- 69 -70	92- 92 -92
RNN	62- 65 -67	63- 66 -69	62- 64 -67	92- 92 -92

Table: **Mean** and corresponding 95% confident values computed by 100.000 bootstrap iterations with replacement.

DTU

Sensitivity Maps

Figure: Illustration of the average sensitivity maps from the CNN (top) and the RNN (bottom) for the two validation subjects.

Conclusion

Conclusions

- Successfully re-produced [1] in TF which was one of the objectives, despite using few different approaches.
- Added a LSTM cell to the of the VGGNet 16 network. The of the RNN does out-perform the baseline on average (table 3), despite the RNN does archive better classification sensitivity in the following sleeping stages W and R.
- Improvements in this projects can be archived by merging sleeping stage N3 and N4, then follow the newest regulations.
- Study the effect of stacking multiple LSTM cells and applied the LSTM cells from layers with a lower-level feature representation higher and spectral variance.

Conclusion

Conclusions

- Successfully re-produced [1] in TF which was one of the objectives, despite using few different approaches.
- Added a LSTM cell to the of the VGGNet 16 network. The of the RNN does out-perform the baseline on average (table 3), despite the RNN does archive better classification sensitivity in the following sleeping stages W and R.
- Improvements in this projects can be archived by merging sleeping stage N3 and N4, then follow the newest regulations.
- Study the effect of stacking multiple LSTM cells and applied the LSTM cells from layers with a lower-level feature representation higher and spectral variance.

References

A. Vilamala, K. H. Madsen, and L. K. Hansen, "Deep Convolutional Neural Networks for Interpretable Analysis of EEG Sleep Stage Scoring,"

ArXiv e-prints, Oct. 2017.

Anders Launer Baek 16.12.2017 DTU Compute

Anders Launer Baek s160159@student.dtu.dk DTU Compute, Technical University of Denmark