SFH 229

Radial T1

Silicon PIN Photodiode with very short switching time

Applications

- Electronic Equipment
- Highbay Industrial
- Industrial Automation (Machine Controls, Light Barriers, Vision Controls)
- Smoke Detectors
- White Goods

Features:

- Package: clear epoxy
- ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)
- Especially suitable for applications from 380 nm to 1100 nm
- Short switching time (typ. 10 ns)
- 3 mm LED plastic package
- Also available on tape and reel

Ordering Information

Type	Photocurrent	Photocurrent	Ordering Code
	5 4000 L 01 L 1 L A V 5 V	typ.	
	$E_v = 1000 \text{ lx}$; Std. Light A; $V_R = 5 \text{ V}$	$E_v = 1000 \text{ ix; Std. Light A; } V_R = 5 \text{ V}$	
	I _P	I _P	
SFH 229	≥ 18 µA	28 μΑ	Q62702P0215

Maximum Ratings

T_A = 25 °C

Parameter	Symbol		Values
Operating Temperature	T _{op}	min. max.	-40 °C 100 °C
Storage temperature	T_{stg}	min. max.	-40 °C 100 °C
Reverse voltage	V_R	max.	20 V
Total power dissipation	P _{tot}	max.	150 mW
ESD withstand voltage acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)	V_{ESD}	max.	2 kV

Characteristics

Τ.	=	25	$^{\circ}C$
Ι,	=	25	\cup

Parameter	Symbol		Values
Wavelength of max sensitivity	$\lambda_{\sf S \; max}$	typ.	860 nm
Spectral range of sensitivity	λ _{10%}	typ.	380 1100 nm
Radiant sensitive area	А	typ.	0.31 mm²
Dimensions of active chip area	LxW	typ.	0.56 x 0.56 mm x mm
Half angle	φ	typ.	17 °
Dark current V _R = 10 V	I _R	typ. max.	0.05 nA 5 nA
Spectral sensitivity of the chip $\lambda = 850 \text{ nm}$	$S_{_{\lambda}}$	typ.	0.62 A / W
Quantum yield of the chip $\lambda = 850 \text{ nm}$	η	typ.	0.90 Electrons / Photon
Open-circuit voltage E _v = 1000 lx; Std. Light A	V _o	min. typ.	400 mV 450 mV
Short-circuit current E _v = 1000 lx; Std. Light A	I _{SC}	typ.	27 μΑ
Rise time $V_R = 10 \text{ V}; R_L = 50 \Omega; \lambda = 850 \text{ nm}$	t _r	typ.	0.01 µs
Fall time $V_R = 10 \text{ V}; R_L = 50 \Omega; \lambda = 850 \text{ nm}$	t _f	typ.	0.01 µs
Forward voltage $I_F = 100 \text{ mA}$; $E = 0$	V_{F}	typ.	1.3 V
Capacitance $V_R = 0 \text{ V}; f = 1 \text{ MHz}; E = 0$	C _o	typ.	13 pF
Temperature coefficient of voltage	TC_v	typ.	-2.6 mV / K
Temperature coefficient of short-circuit current Std. Light A	TC _I	typ.	0.18 % / K
Noise equivalent power $V_R = 10 \text{ V}; \lambda = 850 \text{ nm}$	NEP	typ.	0.006 pW / Hz ^{1/2}
Detection limit $V_R = 10 \text{ V}; \lambda = 850 \text{ nm}$	D*	typ.	8.7e12 cm x Hz ^{1/2} / W

Relative Spectral Sensitivity 1), 2)

 $S_{rel} = f(\lambda)$

Directional Characteristics 1), 2)

 $S_{rel} = f(\phi)$

Photocurrent/Open-Circuit Voltage 1), 2)

$$I_P (V_R = 5 \text{ V}) / V_O = f (E_v)$$

Dark Current 1), 2)

$$I_R = f(V_R)$$
; $E = 0$

Capacitance 1), 2)

$$C = f(V_R); f = 1 MHz; E = 0;$$

Dark Current 2)

$$I_{R} = f(T_{A}); E = 0; V_{R} = 10 V$$

Power Consumption

$$P_{tot} = f(T_A);$$

Dimensional Drawing 3)

Approximate Weight: 156.0 mg

Package marking: Cathode

Recommended Solder Pad 3)

E062.3010.188-01

Pad 1: anode

TTW Soldering

IEC-61760-1 TTW

Notes

The evaluation of eye safety occurs according to the standard IEC 62471:2006 (photo biological safety of lamps and lamp systems). Within the risk grouping system of this IEC standard, the device specified in this data sheet falls into the class **exempt group (exposure time 10000 s)**. Under real circumstances (for exposure time, conditions of the eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices. As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. When looking at bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation.

Packing information is available on the internet (online product catalog).

For further application related informations please visit www.osram-os.com/appnotes

Disclaimer

Disclaimer

Language english will prevail in case of any discrepancies or deviations between the two language wordings.

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version in the OSRAM OS Webside.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office.

By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product safety devices/applications or medical devices/applications

OSRAM OS components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.

In case Buyer - or Customer supplied by Buyer- considers using OSRAM OS components in product safety devices/applications or medical devices/applications, Buyer and/or Customer has to inform the local sales partner of OSRAM OS immediately and OSRAM OS and Buyer and /or Customer will analyze and coordinate the customer-specific request between OSRAM OS and Buyer and/or Customer.

Glossary

- ¹⁾ **Testing temperature**: T_A = 25°C
- Typical Values: Due to the special conditions of the manufacturing processes of LED, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm.

Published by OSRAM Opto Semiconductors GmbH EU RoHS and China RoHS compliant product Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved.

此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。

