**Definizione 1.** Sia R un insieme dotato di due leggi di composizione interne  $\land$  e  $\lor$ . Si dice che la struttura algebrica  $(R, \land, \lor)$  è un reticolo (algebrico) se  $\land$  e  $\lor$  verificano le proprietà:

- (1)  $\forall x, y, z \in R$ ,  $(x \land y) \land z = x \land (y \land z)$ ;  $(x \lor y) \lor z = x \lor (y \lor z)$  associativa
- (2)  $\forall x, y \in R, x \land y = y \land x; x \lor y = y \lor x$  commutativa
- (3)  $\forall x, y \in R$ ,  $x \vee (x \wedge y) = x$ ;  $x \wedge (x \vee y) = x$  assorbimento.

Osservazione 1. In un reticolo vale il *principio di dualità*, ovvero se si dimostra un teorema, vale lo stesso teorema scambiando tra loro le operazioni  $\vee$  e  $\wedge$ . Questo perchè le proprietà associativa e commutativa valgono per entrambe le leggi di composizione interne e nella proprietà di assorbimento le due leggi sono intercambiabili.

**Esempio 1.** Un classico esempio di reticolo è fornito dall'insieme delle parti di un assegnato insieme X sul quale si considerino le leggi di composizione interne  $\cap$  e  $\cup$ . Quindi  $(\mathscr{P}(X), \cap, \cup)$  è un reticolo, come facilmente si può verificare.

**Esempio 2.** Si può provare che l'insieme  $\mathbb{N}^*$  con le leggi di composizione interne  $\wedge = M.C.D., \vee = m.c.m.$  è un reticolo.

**Esempio 3.** Per ogni  $n \in \mathbb{N}$ ,  $n \geq 2$ , anche la struttura  $(D_n, \wedge, \vee)$ , dove  $D_n$  è l'insieme dei divisori di  $n, \wedge = M.C.D., \vee = m.c.m.$ , è un reticolo.

**Definizione 2.** Sia  $(R, \land, \lor)$  un reticolo. Un sottoinsieme R' di R si dice sottoreticolo se è chiuso rispetto alle operazioni  $\land$  e  $\lor$ , ovvero se

$$\forall x, y \in R' \quad x \land y \in R', \quad x \lor y \in R'.$$

Osservazione 2. Se R' è un sottoreticolo di  $(R, \land, \lor)$ , allora diventa a sua volta reticolo con le operazioni indotte.

**Osservazione 3.** Si può provare che  $D_n$  è chiuso rispetto alle due leggi  $\land$  e  $\lor$  del reticolo  $(\mathbb{N}^*, \land, \lor)$  dell'esempio 2. Quindi  $(D_n, \land, \lor)$  è un sottoreticolo di  $(\mathbb{N}^*, \land, \lor)$ .

**Definizione 3.** Un reticolo  $(R, \wedge, \vee)$  si dice distributivo se

$$\forall x, y, z \in R \ (x \land y) \lor z = (x \lor z) \land (y \lor z); \ (x \lor y) \land z = (x \land z) \lor (y \land z).$$

**Notazione 1.** Sia  $(R, \wedge, \vee)$  un reticolo. Se esiste l'elemento neutro rispetto a  $\wedge$ , esso si indica con  $\widehat{0}$ ; se esiste l'elemento neutro rispetto a  $\vee$ , si indica con  $\widehat{0}$ . Quindi, nel caso esistano  $\widehat{0}$  e  $\widehat{1}$ , si ha:

$$\forall x \in R \quad x \wedge \widehat{1} = x; \quad x \vee \widehat{0} = x.$$

**Esempio 4.** Nell'esempio 1, si ha:  $\widehat{0} = \emptyset$ ,  $\widehat{1} = X$ .

**Definizione 4.** Siano  $(R, \wedge, \vee)$  un reticolo dotato di  $\widehat{0}$  e  $\widehat{1}$ ,  $a \in R$ . Si dice che a è complementato se esiste un elemento a' tale che:

$$a \vee a' = \widehat{1}, \quad a \wedge a' = \widehat{0};$$

in tal caso si dice che a' è un complemento di a.

**Esempio 5.** Nel caso dell'esempio 1, per ogni  $A \in \mathcal{P}(X)$  esiste il complemento di A,  $A' = \mathbb{C}_X A$ . Infatti  $A \cap \mathbb{C}_X A = X = \widehat{1}$ ,  $A \cup \mathbb{C}_X A = \emptyset = \widehat{0}$ .

**Proposizione 1.** Sia  $(R, \wedge, \vee)$  un reticolo distributivo dotato di  $\widehat{0}$  e  $\widehat{1}$ ,  $a \in R$ . Allora, se a ammette complemento, esso è unico

**Dimostrazione.** Siano a' e a'' complementi di a. Allora si ha:

$$a'' = a'' \lor \widehat{0} = a'' \lor (a' \land a) = (a'' \lor a') \land (a'' \lor a) = (a'' \lor a') \land \widehat{1}$$
$$= (a'' \lor a') \land (a \lor a') = (a'' \land a) \lor a' = \widehat{0} \lor a' = a'$$

In seguito si vedranno esempi di reticoli che non sono distributivi contenenti elementi che ammettono più di un complemento.

**Definizione 5.** Si dice che un reticolo  $(R, \wedge, \vee)$  è di Boole se

- B<sub>1</sub>) è distributivo
- $B_2$ ) ammette  $\widehat{0}$  e  $\widehat{1}$
- B<sub>3</sub>) ogni elemento è complementato.

**Esempio 6.** Sia X un insieme. Allora il reticolo  $(\mathscr{P}(X), \cap, \cup)$  è di Boole: infatti valgono le proprietà distributive e, come si è già osservato, esistono  $\widehat{0} = \emptyset$ ,  $\widehat{1} = X$  e ogni elemento A di  $\mathscr{P}(X)$  ha complemento che è  $C_XA$ .

**Esempio 7.** Il reticolo  $(\mathbb{N}^*, \wedge, \vee)$  dell'esempio 2 non è un reticolo di Boole, perchè pur ammettendo  $\widehat{0} = 1$ , non ammette  $\widehat{1}$ .

**Esempio 8.** In generale, il reticolo  $(D_n, \wedge, \vee)$  dell'esempio dei divisori di un intero  $n \geq 2$  (cf. esempio 3) non è di Boole. Si può dimostrare che lo è se e soltanto se n è prodotto di numeri primi distinti.

**Definizione 6.** Un insieme ordinato  $(R, \leq)$  si dice reticolo (ordinato) se ogni coppia di elementi di R ammette estremo superiore ed estremo inferiore. In altri termini

$$\forall x, y \in R \ \exists \sup(x, y), \ \inf(x, y).$$

**Esempio 9.** L'insieme  $(\mathbb{N}^*, | )$  è un reticolo ordinato, in quanto, com'è facile osservare, per ogni  $a,b \in \mathbb{N}^*$  si ha, rispetto a "|"

$$\inf(a, b) = M.C.D.(a, b), \quad \sup(a, b) = m.c.m.(a, b).$$

**Esempio 10.** Per ogni intero  $n \geq 2$ , l'insieme dei divisori di n ordinato per divisibilità  $(D_n, | )$  è un sottoinsieme ordinato di  $(\mathbb{N}^*, | )$  e, come si è già osservato,  $\forall a, b \in D_n$ ,  $M.C.D.(a, b) \in D_n$  e  $m.c.m.(a, b) \in D_n$ , per cui anche  $(D_n, | )$  è un reticolo ordinato.

**Esempio 11.** Sia X un insieme. Allora l'insieme  $\mathscr{P}(X)$  delle parti di X, ordinato per inclusione, ovvero  $(\mathscr{P}(X),\subseteq)$ , è un reticolo ordinato in quanto

$$\forall A, B \in \mathscr{P}(X) \quad \inf(A, B) = A \cap B, \quad \sup(A, B) = A \cup B.$$

**Esempio 12.** Sia  $(G, \cdot)$  un gruppo, H, K ne siano sottogruppi. È noto che  $H \cap K$  è un sottogruppo di G, ma  $H \cup K$  non lo è, in generale. Si considera allora il più piccolo sottogruppo (per inclusione)  $\widehat{H \cup K}$  che contiene  $H \cup K$ . Si può verificare che la struttura  $(\mathcal{H}(G), \subseteq)$ , dove  $\mathcal{H}(G)$  è l'insieme dei sottogruppi di G è un reticolo ordinato poichè

$$\forall H, K \in \mathcal{H}(G) \ \inf(H, K) = H \cap K, \ \sup(H, K) = \widehat{H \cup K}.$$

Osservazione 4. Un insieme  $(A, \leq)$  ordinato finito può essere rappresentato mediante un diagramma di Hasse. Se  $a, b, c \in A$ , se  $a \leq b$  e se non ci sono elementi intermedi, basta collegare a con b mediante un segmento ascendente. Poichè vale la proprietà transitiva, se  $a \leq b$  e  $b \leq c$ , a sarà collegato con b mediante un segmento ascendente, b sarà collegato con c mediante un altro segmento ascendente, e a sarà collegato con c mediante una spezzata ascendente:



In particolare questo può essere fatto per un reticolo.

**Esempio 13.** Il diagramma di Hasse del reticolo  $(D_{45}, | )$  dei divisori di 45 ordinato per divisibilità è:



Esempio 14. L'insieme ordinato rappresentato dal seguente diagramma di Hasse



non è un reticolo, poichè la coppia  $\{e,d\}$  ha come insieme dei minoranti  $X=\{a,b,c\}$  che non presenta massimo.

Esercizio 1. Stabilire perchè l'insieme ordinato rappresentato dal seguente diagramma:



non è un reticolo.

**Lemma 1.** Sia  $(R, \wedge, \vee)$  un reticolo. Allora si ha

$$\forall x, y \in R, (x \land y = x) \Leftrightarrow (x \lor y = y).$$

**Dimostrazione.** Siano  $x, y \in R$ , tali che  $x \wedge y = x$ , allora, per l'assorbimento,

$$x \lor y = (x \land y) \lor y = y.$$

Viceversa, se  $x \lor y = y$ , allora, in modo analogo

$$x \wedge y = x \wedge (x \vee y) = x.$$

**Teorema 1.** Sia  $(R, \wedge, \vee)$  un reticolo (algebrico). Se  $\forall x, y \in R$  si pone

$$x \leq y \Longleftrightarrow x \wedge y = x \overset{Lemma1}{\Longleftrightarrow} x \vee y = y,$$

allora "  $\leq$ " è una relazione di ordine rispetto alla quale R risulta essere un reticolo (ordinato).

Vale anche il teorema inverso

**Teorema 2.** Sia  $(R, \leq)$  un reticolo (ordinato). Se  $\forall x, y \in R$  si pone

$$x \wedge y = \inf(x, y), \quad x \vee y = \sup(x, y)$$

allora  $(R, \wedge, \vee)$  è un reticolo (algebrico).

In virtù del Teorema 2, si hanno i seguenti esempi:

**Esempio 15.** I reticoli (ordinati) ( $\mathbb{N}^*$ , |) e ( $D_n$ , |) diventano reticoli (algebrici) ponendo  $\forall a, b \ a \land b = M.C.D.(a, b) \ a \lor b = m.c.m.(a, b).$ 

**Esempio 16.** Sia X un insieme. Allora il reticolo (ordinato)  $\mathscr{P}(X)$  diventa reticolo (algebrico) ponendo

$$\forall A, B \in \mathscr{P}(X) \quad A \land B = A \cap B \quad A \lor B = A \cup B.$$

**Esempio 17.** Sia  $(G,\cdot)$  un gruppo. Allora il reticolo (ordinato)  $(\mathcal{H}(G),\subseteq)$  dei sottogruppi di  $(G,\cdot)$  ordinato per inclusione diventa reticolo (algebrico) ponendo

$$\forall H, K \in \mathcal{H}(G) \ H \land K = H \cap K, \ H \lor K = \widehat{H \cup K}.$$

Esercizio 2. Usando il Teorema 1, fare il procedimento inverso nei tre esempi precedenti.

Osservazione 5. Sia  $(R, \leq)$  un reticolo ordinato. Se il reticolo algebrico associato ammette  $\widehat{0}$ , questo è il più piccolo elemento di R rispetto a  $\leq$ . Infatti, per il Teorema 9,

$$\forall x \in R \ \ x = x \vee \widehat{0} \ \Leftrightarrow \ \widehat{0} \le x.$$

Analogamente, Se il reticolo algebrico associato ammette  $\widehat{1}$ , questo è il più grande elemento di R rispetto a  $\leq$ .

Osservazione 6. Sia  $(R, \leq)$  un reticolo ordinato. Se il reticolo algebrico associato ammette  $\hat{0}$ , allora si ha:

$$\forall x \in R, \ x \vee \widehat{0} = x \stackrel{Lemma1}{\Longleftrightarrow} x \wedge \widehat{0} = \widehat{0}.$$

Se il reticolo algebrico associato ammette  $\widehat{1}$ , allora

$$\forall x \in R, \ x \wedge \widehat{1} = x \stackrel{Lemma1}{\Longleftrightarrow} x \vee \widehat{1} = \widehat{1}.$$

Osservazione 7. Si dimostra che ogni reticolo finito ha necessariamente  $\hat{0}$  e  $\hat{1}$ .

**Proposizione 2.** Sia  $(R, \wedge, \vee)$  un reticolo di Boole. Allora  $\forall a, b \in R$  risulta

$$(a \lor b)' = a' \land b'; \quad (a \land b)' = a' \lor b'$$
 Leggi di De Morgan.

**Dimostrazione.** Bisogna provare che  $\forall a, b \in R$ 

$$(a \lor b) \land (a' \land b') = \widehat{0}; \quad (a \lor b) \lor (a' \land b') = \widehat{1}$$

$$(a \wedge b) \wedge (a' \vee b') = \widehat{0}; \quad (a \wedge b) \vee (a' \vee b') = \widehat{1}.$$

Si prova solamente la prima delle quattro: la seconda si verifica in maniera analoga, le altre due seguono per il principio di dualità.

$$(a \lor b) \land (a' \land b') = (a \land (a' \land b')) \lor (b \land (a' \land b'))$$

$$= ((a \land a') \land b') \lor (b \land (b' \land a'))$$

$$= (\widehat{0} \land b') \lor ((b \land b') \land a')$$

$$= \widehat{0} \lor (\widehat{0} \land a') = \widehat{0} \lor \widehat{0} = \widehat{0}.$$

Osservazione 8. Dato un reticolo algebrico, si può considerare il reticolo ordinato ad esso canonicamente associato e viceversa. Pertanto da ora in avanti si parlerà indifferentemente di struttura algebrica o ordinata di un assegnato reticolo.

**Definizione 7.** Si dice *pentagonale*, e si indica con  $N_5$ , un reticolo ordinato  $R = \{\widehat{0}, a, b, c, \widehat{1}\}$  con la condizione che  $b \leq c$ .

Il diagramma di Hasse di  $N_5$  è:



Si osserva che a ha due complementi che sono b e c. Pertanto non è detto che il reticolo sia distributivo (cf. Proposizione 4). Poiché risulta

$$b \lor (a \land c) = b \lor \widehat{1} = \widehat{1}$$

$$(b \lor a) \land (b \lor c) = \widehat{1} \land c = c$$

il reticolo non è distributivo.

**Definizione 8.** Si dice *trirettangolo*, e si indica con  $M_3$ , un reticolo ordinato isomorfo al seguente:  $R = \{\widehat{0}, a, b, c, \widehat{1}\}$ , senza ulteriori condizioni.

Il diagramma di Hasse del reticolo trirettangolo è il seguente:



Si osservi che a ha due complementi, ovvero b e c; b ha due complementi, ovvero a e c; c ha due complementi, ovvero a e d. Quindi, come nel caso di  $N_5$  non è detto si tratti di un reticolo distributivo: e infatti si ha:

$$a \wedge (b \vee c) = a \wedge \widehat{1} = a$$

$$(a \wedge b) \vee (a \wedge c) = \widehat{0} \vee \widehat{0} = \widehat{0}.$$

Se si deve provare che un reticolo finito è distributivo e non lo si può fare con tre generici suoi elementi, non è consigliabile verificare tutti i possibili casi. Infatti si ricorre al seguente criterio.

**Teorema 3.** Un reticolo finito  $(R, \wedge, \vee)$  è distributivo se e soltanto se non ammette sottoreticoli isomorfi a  $N_5$  o a  $M_3$ .

Osservazione 9. Per vedere se un tale sottoreticolo esiste, si utilizzano i diagrammi di Hasse, come nei seguenti esempi.

Esempio 18. Il reticolo rappresentato dal seguente diagramma di Hasse, non è distributivo:



Infatti  $\{b, d, c, e, f\}$  formano un sottoreticolo isomorfo a  $N_5$ .

Esempio 19. Analogo discorso vale per il reticolo individuato dal diagramma di Hasse:



poichè  $\{a, c, d, e, f\}$  formano un sottoreticolo isomorfo a  $N_5$ .

Esempio 20. Il reticolo il cui diagramma di Hasse è:



non è distributivo, in quanto  $\{c, d, e, f, g\}$  è un sottoreticolo isomorfo a  $M_3$ .

Esercizio 3. Nell'esempio precedente  $\{a,b,c,f,g\}$  non forma un sottoreticolo: perchè?

**Definizione 9.** Si dice che un anello  $(A, +, \cdot)$  è di Boole se

$$\forall a \in A \ a^2 = a$$

**Proposizione 3.** Sia  $(A, +, \cdot)$  un anello di Boole. Allora

$$\forall a \in A \ a+a=0$$

Dimostrazione Sia  $a \in A$ , allora

$$a + a = (a + a)^2 = a^2 + a^2 + a^2 + a^2 = a + a + a + a.$$

Per le leggi di cancellazione a + a = 0.

**Esempio 21.**  $(\mathbb{Z}_2, +, \cdot)$  è anello di Boole.

Osservazione 10. Siano  $(A_1, +, \cdot), \dots, (A_n, +, \cdot)$  anelli e sia

$$A = A_1 \times \cdots \times A_n$$
.

Si può munire A della struttura di anello ponendo

$$\forall (a_1,\ldots,a_n),(b_1,\ldots,b_n)\in A$$

$$(a_1, \ldots, a_n) + (b_1, \ldots, b_n) = (a_1 + b_1, \ldots, a_n + b_n)$$
  
 $(a_1, \ldots, a_n) \cdot (b_1, \ldots, b_n) = (a_1 \cdot b_1, \ldots, a_n \cdot b_n).$ 

In particolare, se  $(B,+,\cdot)$  è un anello, si può considerare l'anello  $(B^n,+,\cdot)$ , dove  $B^n=B\times\cdots\times B$ . È facile osservare che se  $(B,+,\cdot)$  è un anello di Boole, allora anche  $(B^n,+,\cdot)$  è di Boole. Quindi per ogni  $n\in\mathbb{N}^*$ ,  $(\mathbb{Z}_2^n,+,\cdot)$  è un anello di Boole.

**Teorema 4.** Sia  $(A, +, \cdot)$  un anello di Boole. Posto

$$\forall a, b \in A \ a \land b = a \cdot b, \ a \lor b = a + b + a \cdot b,$$

si ha che  $(A, \wedge, \vee)$  è un reticolo di Boole. Viceversa se  $(R, \wedge, \vee)$  è un reticolo di Boole, allora le due leggi di composizione "+" e "·" così definite

$$\forall x, y \in R \ x + y = (x \land y') \lor (x' \land y) \ x \cdot y = x \land y$$

conferiscono a R la struttura di anello di Boole.

**Esempio 22.** Dato X insieme,  $(\mathscr{P}(X), \cap, \cup)$  è un reticolo di Boole. Allora si pone per ogni  $A, B \in \mathscr{P}(X)$ 

$$A + B = (A \cap C_X(B)) \cup (C_X(A) \cap B) = (A \setminus B) \cup (B \setminus A) = A\Delta B$$

che si chiama anche differenza simmetrica di  $A \in B$ ,

$$A \cdot B = A \cap B$$
.

Quindi  $(\mathcal{P}(X), \Delta, \cdot)$  è un anello di Boole.

**Definizione 10.** Si dice che due anelli  $(A_1, +, \cdot)$  e  $(B, +, \cdot)$  sono *isomorfi* se esiste un'applicazione bigettiva  $f: A \to B$  tale che:

- $\forall a, a' \in A$  f(a+a') = f(a) + f(a')
- $\forall a, a' \in A$   $f(a \cdot a') = f(a) \cdot f(a')$
- $f(1_A) = 1_B$ .

In tal caso f si dice isomorfismo di anelli.

Osservazione 11. Si può provare che per un isomorfismo di anelli  $f(0_A) = 0_B$ .

**Teorema 5.** Sia  $(A, +, \cdot)$  anello di Boole finito. Allora esiste  $n \in \mathbb{N}^*$  tale che  $(A, +, \cdot)$  sia isomorfo all'anello di Boole  $(\mathbb{Z}_2^n, +, \cdot)$ .

Osservazione 12. Ogni anello di Boole finito ha cardinalità che è una potenza di 2. Quindi se un anello ha cardinalità diversa da una potenza di 2, sicuramente non è di Boole. Inoltre, dal Teorema 4 si sa che ogni reticolo di Boole si può riguardare come un anello di Boole e dunque un reticolo di Boole finito ha cardinalità una potenza di 2. Pertanto se un reticolo non ha come cardinalità una potenza di 2 non è di Boole, ma non è vero che se un reticolo ha cardinalità una potenza di 2 allora è un reticolo di Boole!