II.2 Tabel Perbandingan Pustaka

Tabel II.2 Perbandingan karya/sistem sejenis

No	Tahun	Judul	Penulis	Metode	Hasil	Jenis Karya Ilmiah
1.	2014	Antena Miktrostrip Rectangular Gerigi dengan 13 slit untuk Radar Altimeter Pesawat	Aries Asrianto Ramadian	Antena Miktrostrip Rectangular Gerigi dengan 13 slit	Antena Miktrostrip dengan rentang frekuensi kerja 4132-4373 Mhz, memiliki <i>bandwith</i> sebesar 241 MHz dan VSWR serta <i>Return</i> <i>Loss</i> masing-masing 1,350 dan - 16,55dB	Journal kajian teknik elektro Vol.1 No.2 Universitas 17 Agustus 1945 Jakarta
2	2016	Antena Mikrostrip Patch Persegi Susunan Linier dengan Teknik Pencatuan Proximity Coupled	Yahya Syukri Amrullah	Antena Mikrostrip Patch Persegi Susunan Linier	Antena Miktrostrip dengan frekuensi tengah pada 4300MHz berpolarisasi elips dengan VSWR 1,005 dan <i>bandwidth</i> 286MHz	PPET LIPI Paper ISSN :2557-995
3.	2017	Realisasi Antena Mikrostrip Lingkaran dengan Material Dielektrik Artifisial Berbahan Styrofoam pada Frekuensi UHF	Ibni Inggrianti	Material dielektrik artifisial dengan permitivitas isotropis dilengkapi dengan mode gelombang	Material dielektrik artifisial dengan permitivitas anisotropis dan mode gelombang menghasilkan permitivitas yang lebih besar dilihat dari frekuensi kerja yang lebih rendah dibandingkan material dielektrik natural	Tugas Akhir Program Diploma III Teknik Telekomunikasi, Politeknik Negeri Bandung
4.	2017	Realisasi 2 Prototipe Antena Mikrostrip Lingkaran 1 Elemen dengan Material Dielektrik Artifisial Berbahan FR4 Epoxy dan Acrilik pada Frekuensi UHF	Yugyta Prafitri	Material dielektrik artifisial dengan permitivitas isotropis dilengkapi dengan mode gelombang		Tugas Akhir Program Diploma III Teknik Telekomunikasi. , Politeknik Negeri Bandung
5	2018	Realisasi Antena Mikrostrip Lingkaran 1 Elemen Menggunakan Purwarupa Material Elektromagnetik Inovatif Berbahan Dasar Akrilik Dengan Mode Tmo1 Dan Tm11 Pada Frekuensi 1800 Mhz	Ika Kartika	Antena dengan material elektromagnetik konvensional dan artifisial dengan bahan akrilil dengan mode gelombang	Antena dengan material elektromagnetik artifisial dapat memperkecil dimensi antena (miniaturisasi antena).	Tugas Akhir Diploma III Teknik Telekomunikasi , Politeknik Negeri Bandung

Berdasarkan Tabel II.1 dapat diketahui informasi mengenai penelian yang telah dilakukan Aries Asrianto.R dan Yahya Syukri Amrullah, bahwa antena mikrostrip yang digunakan untuk radar altimeter pesawat dapat dibuat dengan berbagai metode dan bentuk Pada penelitian yang dibuat oleh Aries Arianto R, antena mikrostrip dibuat dengan *patch* berbentuk *rectangular* dengan 13 *slit* atau gerigi dengan frekuensi kerja pada 4132-4373 Mhz atau tetap dalam rentang frekuensi kerja radar altimeter pesawat [5]. Sedangkan, penelitian yang dibuat oleh Yahya Syukri Amrullah menerapkan teknik pencatuan *Proximity Cuopled* pada antena susun persegi yang bekerja pada frekuensi tengah 4300MHz atau pada frekuensi tengah radar altimeter pesawat.

Selanjutnya terdapat penelitian yang dilakukan oleh Ibni dan Yugyta untuk merealisasikan purwarupa material dielektrik artifisial dengan permitivitas isotropis dilengkapi dengan mode gelombang. Sehingga pada penelitian tersebut dibuatlah dua purwarupa dengan dimensi yang sama, dengan material utama yang sama, namun pada salah satu purwarupa disisipi dengan kawat konduktor menggunakan mode gelombang *Transverse Magnetic* (TM) tertentu. Pada penelitian itu, terbukti bahwa material dielektrik artifial dengan permitivitas anisotropis dan mode gelombang menghasilkan permitivitas yang lebih besar lagi karena dilihat dari frekuensi kerja yang lebih rendah dibandingkan material dielektrik natural [6] [7]. Penelitian yang dilakukan oleh Ibni dan Yugyta kemudian dikembangkan oleh Ika untuk membuktikan fungsi modifikasi pada material dielektrik artifisial yang dapat meminiaturisasi dimensi antena pada frekuensi yang sama [8].

Karena banyak metode yang dapat dilakukan untuk membuat antena pada radar altimeter , sehingga dari penelitian-penelitian yang sudah ada, pada tugas akhir ini dilakukan penelitian dan realisasi antena mikrostrip dengan material dielektrik artifisial pada substrat dengan menggunakan mode *Transverse Magnetic* (TM) dengan TM₀₁ dan TM₁₂ untuk meningkatkan permitivitas dielektrik material dengan memanfaatkan bagian medan listrik maksimum pada TM tersebut sehingga menghasilkan dimensi yang lebih kecil serta parameter-parameter yang lebih efektif pada frekuensi kerja radar altimeter pesawat.