

Modeling Lost Information in Signal Processing

Shuxin Zheng, Machine Learning Group, MSRA

Signal (Processing) is Everywhere

Perception

Signal Processing with Machine Learning

- ML powered signal processing becomes a hot topic and has achieved better performance than traditional method.
- Google (Ballé et al.)^{[1][2][3]} holds the leading position in lossy image compression for years.
- [1] **Ballé J**, Laparra V, Simoncelli E. End-to-end optimized image compression[C]//5th International Conference on Learning Representations, ICLR 2017.
- [2] **Ballé J**, Minnen D, Singh S, et al. Variational image compression with a scale hyperprior [C]//6th International Conference on Learning Representations, ICLR 2018.
- [3] Minnen D, **Ballé J**, Toderici G D. Joint autoregressive and hierarchical priors for learned image compression[C]//Advances in Neural Information Processing Systems. 2018: 10771-10780.

Lost Information

Lost Information ↓ Ill-posed Problem

Capture Lost Information

"High-frequency content will get lost during symple rate conversion."

--According to Nyquist-hannon Sampling Theorem

What **information** is **lost** during downsample?

Claude Shannon

Harry Nyquist

Low-frequency content

Inverse Function

Capture Lost Information

"High-frequency content will get lost during sample rate conversion."

--According to Nyquist-Shannon Sampling Theorem

What **information** is **lost** during downsample?

Claude Shannon

Harry Nyquist

What is the inverse function of a DNN model?

Quick Recap of Invertible Neural Network

Inverse Function

 y_2

$$y_1 = x_1 + \mathcal{F}(x_2)$$
$$y_2 = x_2 + \mathcal{G}(y_1)$$

Strictly Invertible

Inverse Pass

$$x_2 = y_2 - \boldsymbol{\mathcal{G}}(y_1)$$

$$x_1 = y_1 - \mathcal{F}(x_2)$$

Face the "Lost Information" Challenge

) the lost information...

(A). Preserve

How to compress?

(B). Abandon

Dilemma

How to reconstruct?

Do we have a better choice?

3

Why z can't be abandoned?

f(p(x)) = p(y)p(z(y))

Answer: z is case-specific!

Model the Case-Specific Lost Information

p(x)

p(y)

p(y')

Modeling Lost Information

Training Objective	Rescaling	Compression		
Distortion	L_1 or L_2 Reconstruction Loss			
Perception	LR Guidance			
Rate		Bitrate (likelihood(y))		
Distribution Matching	Backward <i>JS</i> [Divergence Loss		

Rescaling Performance (PSNR)

PSNR (dB)	Scale	Param↓	Set5↑	Set14↑	BSD100↑	Urban100↑	DIV2K val↑
Bicubic & RCAN ECCV 2018	2x	15.4M	38.27	34.12	32.41	33.34	-
Bicubic & SAN CVPR 2019	2x	15.7M	38.31	34.07	32.42	33.10	-
TAD & TAU ECCV 2018	2x	-	37.69	33.90	32.62	31.96	36.13
CAR & EDSR (SOTA) TIP 20	2x	51.1M	38.94	35.61	33.83	35.24	38.26
Ours MSRA, ECCV20	2x	1.66M	43.99 (+5.05dB)	40.79 (+5.18dB)	41.32 (+7.49dB)	39.92 (+4.68dB)	44.32 (+6.06dB)
Bicubic & RCAN ECCV 2018	4x	15.6M	32.63	29.0	27.84	27.03	30.92
Bicubic & SAN CVPR 2019	4x	15.7M	32.64	28.92	27.78	26.79	-
TAD & TAU ECCV 2018	4x	<u>-</u>	31.59	28.36	27.57	25.56	30.25
CAR & EDSR (SOTA) TIP 20	4x	52.8M	33.88	30.31	29.15	29.28	32.82
Ours MSRA, ECCV20	4x	4.35M	36.19 (+2.31dB)	32.67 (+2.36dB)	31.64 (+2.49dB)	31.41 (+2.13dB)	35.07 (+2.25dB)

Compression Performance (PSNR/bpp)

30

0.5

0.7

0.8

0.4

Thanks!

The code is available: https://github.com/pkuxmq/Invertible-Image-Rescaling
For any further question, contact: shuz@microsoft.com

Machine Learning Group

Lead by Prof. Tie-Yan Liu, focus on fundamental and innovative machine learning research, including machine learning theory, algorithms and applications. Actively contribute to academic community. Conduct many impactful techniques into Microsoft products, including Bing, Advertising, Xbox, Azure etc.

Super-human Mahjong Al

First place in WMT 2019

High Research Impact