

CSEN1022: Machine Learning

Probability Theory Review

Seif Eldawlatly

Definition of Probability

- Experiment: toss a coin twice
- Sample space: possible outcomes of an experiment
 - S = {HH, HT, TH, TT}
- Event: a subset of possible outcomes
 - A={HH}, B={HT, TH}
- Probability of an event: a number assigned to an event Pr(A)
 - Axiom 1: $Pr(A) \ge 0$
 - Axiom 2: Pr(S) = 1
 - Axiom 3: For every sequence of disjoint events

$$\Pr(\bigcup_{i} A_{i}) = \sum_{i} \Pr(A_{i})$$

Example: Pr(A) = n(A)/N: frequentist statistics
 (If we repeat an experiment N times, and denote by n(A) the number of times we observe A, then Pr(A) = n(A)/N)

Joint Probability

• For events A and B, **joint probability** Pr(AB) (or Pr(A, B)) stands for the probability that both events happen

 Example: What is the probability that the first toss is H and the second toss is H?

 $Pr(1^{st} \text{ is H and } 2^{nd} \text{ is H}) = Pr(1^{st} \text{ is H}) Pr(2^{nd} \text{ is H}) = 0.5 \times 0.5 = 0.25$

Example: A={HH}, B={HT, TH}, what is the joint probability Pr(AB)?
 Answer: 0

Independence

Two events A and B are independent if

$$Pr(AB) = Pr(A)Pr(B)$$

A set of events {A_i} is independent if

$$\Pr(\bigcap_{i} A_{i}) = \prod_{i} \Pr(A_{i})$$

Example: Drug test

	Women	Men
Success	200	1800
Failure	1800	200

A = {Patient is a Woman}

B = {Drug fails}

Is event A independent of event B?

- Pr(AB)=1800/4000, Pr(A)=2000/4000, Pr(B)=2000/4000
 - \cdot Pr(AB) ≠ Pr(A)Pr(B) \rightarrow A and B are dependent

Conditioning

If A and B are events with Pr(A) > 0, the conditional probability of B
given A is

$$Pr(B \mid A) = \frac{Pr(AB)}{Pr(A)}$$

Example: Drug test

	Women	Men
Success	200	1800
Failure	1800	200

A = {Patient is a Woman}

B = {Drug fails}

Pr(B|A) = ?

Pr(A|B) = ?

- Pr(B|A)=Pr(AB)/Pr(A)=(1800/4000)/(2000/4000)=0.9
- Pr(A|B)=Pr(AB)/Pr(B)=(1800/4000)/(2000/4000)=0.9
- Given A is independent from B, what is the relationship between Pr(A|B) and Pr(A)?

$$Pr(A|B) = Pr(A)$$

Given two events A and B and suppose that Pr(A) > 0, then

$$Pr(B \mid A) = \frac{Pr(AB)}{Pr(A)} = \frac{Pr(A \mid B) Pr(B)}{Pr(A)}$$

Example:

Pr(R)	=0	8.
-------	----	----

Pr(W R)	R	$\neg R$
W	0.7	0.4
$\neg W$	0.3	0.6

R: It is a rainy day

W: The grass is wet

$$Pr(R|W) = ?$$

$$Pr(R | W) = \frac{Pr(W | R) Pr(R)}{Pr(W)} = \frac{0.7 \times 0.8}{Pr(W)}$$

$$Pr(W) = Pr(WR) + Pr(W \neg R) = Pr(W \mid R) Pr(R) + Pr(W \mid \neg R) Pr(\neg R)$$
$$= 0.7 \times 0.8 + 0.4 \times 0.2 = 0.64$$

Example:

Two boxes: one red and one blue
Two kinds of fruit: apples and oranges
Task: randomly pick one of the boxes
and then select a fruit

Let
$$B$$
 represent the box $(B = r \text{ or } B = b)$
Let F represent the fruit $(F = a \text{ or } F = o)$

Let the probability of picking the red box be 40% and the blue box be 60%

$$p(B=r) = 4/10$$

$$p(B=b) = 6/10$$

Conditional Probabilities

$$p(F = a|B = r) = 1/4$$

 $p(F = o|B = r) = 3/4$
 $p(F = a|B = b) = 3/4$
 $p(F = o|B = b) = 1/4$.

• What is the probability of picking an apple? (p(F = a))

$$\begin{array}{lcl} p(F=a) & = & p(F=a|B=r)p(B=r) + p(F=a|B=b)p(B=b) \\ & = & \frac{1}{4} \times \frac{4}{10} + \frac{3}{4} \times \frac{6}{10} = \frac{11}{20} \end{array}$$

	R	$\neg R$
W	0.7	0.4
$\neg W$	0.3	0.6

R: It rains

W: The grass is wet

Information

- Prior Probability: Probability available before observing the evidence
- Posterior Probability: Probability obtained after observing the evidence

- p(B): Prior probability: Probability available before observing the identity of the fruit
- p(B|F): Posterior probability:
 Probability obtained after observing the picked fruit

- Since p(B = r) is 0.4, we are more likely to pick the blue box
- However, once we observe that the picked fruit is an orange we find that it's more likely that we picked from the red box (posterior probability)

$$p(B=r|F=o) = \frac{p(F=o|B=r)p(B=r)}{p(F=o)} = \frac{3}{4} \times \frac{4}{10} \times \frac{20}{9} = \frac{2}{3}$$

Bayes' Rule: More Complicated

• Suppose that $B_1, B_2, \dots B_k$ form a partition of S:

$$B_i \cap B_j = \emptyset; \bigcup_i B_i = S$$

Suppose that $Pr(B_i) > 0$ and Pr(A) > 0. Then

$$\Pr(B_i|A) = \frac{\Pr(A|B_i)\Pr(B_i)}{\Pr(A)}$$

$$= \frac{\Pr(A|B_i)\Pr(B_i)}{\sum_{j=1}^{k} \Pr(AB_j)}$$

$$= \frac{\Pr(A|B_i)\Pr(B_i)}{\sum_{j=1}^{k} \Pr(B_j)\Pr(A|B_j)}$$

Random Variable and Distribution

- A *random variable X* is a numerical outcome of a random experiment
- The distribution of a random variable is the collection of possible outcomes along with their probabilities:
 - Discrete case: $Pr(X = x) = p_{\theta}(x)$
 - Continuous case: $\Pr(a \le X \le b) = \int_a^b p_\theta(x) dx$

 θ represents the parameter(s) of the distribution

Random Variable: Example and Distribution

 Let S be the set of all sequences of three rolls of a die. Let X be the sum of the number of dots on the three rolls

What are the possible values of X?

Answer: 3, 4, 5, 6, ..., 18

•
$$Pr(X = 5) = ?$$

To get $X = 5$: (1,1,3), (1,3,1), (3,1,1),
(1,2,2), (2,1,2), (2,2,1)
 $Pr(X = 5) = 6/6^3$

Expectation

• A random variable $X \sim \Pr(X = x)$. Then, its expectation is

$$E[X] = \sum_{x} x \Pr(X = x)$$

- In an empirical sample, $x_1, x_2, ..., x_N$, the sample mean is

$$E[X] = \frac{1}{N} \sum_{i=1}^{N} x_i$$

• Continuous case: $E[X] = \int_{-\infty}^{\infty} x p_{\theta}(x) dx$

Expectation of sum of random variables

$$E[X_1 + X_2] = E[X_1] + E[X_2]$$

Expectation of product of random variables

$$E[X_1X_2] = \sum_{x_1} \sum_{x_2} x_1x_2 \Pr(X_1 = x_1, X_2 = x_2)$$

If X_1 and X_2 are independent, $Pr(X_1 = x_1, X_2 = x_2) = Pr(X_1 = x_1)Pr(X_2 = x_2)$

$$\therefore E[X_1 X_2] = \sum_{x_1} x_1 \Pr(X_1 = x_1) \sum_{x_2} x_2 \Pr(X_2 = x_2) = E[X_1] E[X_2]$$

Expectation: Example

• Let S be the set of all sequences of three rolls of a die. Let X be the sum of the number of dots on the three rolls.

• What is E[X]?

Answer:
$$X=X_1+X_2+X_3$$

 $E[X]=E[X_1]+E[X_2]+E[X_3]$
 $E[X_i]=\sum_{x_i}x_i\Pr(X_i=x_i)$
 $=1\times\frac{1}{6}+2\times\frac{1}{6}+3\times\frac{1}{6}+4\times\frac{1}{6}+5\times\frac{1}{6}+6\times\frac{1}{6}=\frac{21}{6}$
 $\therefore E[X]=\frac{21}{6}+\frac{21}{6}+\frac{21}{6}=10.5$

Expectation: Example

 Let S be the set of all sequences of three rolls of a die. Let X be the product of the number of dots on the three rolls

• What is *E*[*X*]?

Answer: $X=X_1X_2X_3$

Since the three rolls are independent, then

$$E[X] = E[X_1]E[X_2]E[X_3]$$
$$= \left(\frac{21}{6}\right)^3$$

Variance

 The variance of a random variable measures how much variability there is in the random variable

$$Var(X) = E((X - E[X])^{2})$$

$$= E(X^{2} + E[X]^{2} - 2XE[X])$$

$$= E(X^{2} - E[X]^{2})$$

$$= E[X^{2}] - E[X]^{2}$$

- Population variance: $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2$, where μ is the sample mean
- Example
 Let X represent randomly sampled integer numbers in the range (1, 100):

- {2, 50, 9, 4, 23, 65, 99}
$$\rightarrow \sigma^2 = \frac{1}{7} \sum_{i=1}^{7} (x_i - 36)^2 = 1154.85$$

- {33, 34, 35, 36, 37, 38, 39} $\rightarrow \sigma^2 = \frac{1}{7} \sum_{i=1}^{7} (x_i - 36)^2 = 4$

Covariance

 The covariance of two random variables measures the extent to which the two variables vary together

$$Cov[X,Y] = E[(X - E[X])(Y - E[Y])]$$

$$= E[XY - XE[Y] - YE[X] + E[X]E[Y]]$$

$$= E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]$$

$$= E[XY] - E[X]E[Y]$$

- Sample covariance $C_{XY} = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu_X)(y_i \mu_Y)$
- Example

Bernoulli Distribution

• The outcome of an experiment can either be success (1) or failure (0)

•
$$Pr(X = 1) = \theta$$
, $Pr(X = 0) = 1 - \theta$, or

$$p_{\theta}(x) = \theta^{x} (1-\theta)^{1-x}$$

• $E[X] = \theta$, $Var(X) = \theta(1 - \theta)$

Gaussian Distribution

• $X \sim N(\mu, \sigma)$

$$p_{\theta}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

$$\Pr(a \le X \le b) = \int_a^b p_\theta(x) dx = \int_a^b \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} dx$$

- $E[X] = \mu$, $Var(X) = \sigma^2$
- Mean: μ , Standard deviation: σ
- If $X_1 \sim N(\mu_1, \sigma_1)$ and $X_2 \sim N(\mu_2, \sigma_2)$, $X = X_1 + X_2$?

Answer: X is Gaussian as well with mean μ_1 + μ_2 and variance

$$\sigma^2 = \sigma_1^2 + \sigma_2^2$$

Plots of Gaussian Distribution

