Fab 14, 2018

... continued

CSC263 Wednesday Lecture

Starting from $\{1\}, \{2\}, ..., \{n\}$; want to execute sequence of operations R: n-1 unions, $m \ge n$ finds.

FOREST STRUCTURE

- · cost per union: O(1)
- · cost per find: O(1+ length of find path
- · weighted mion rule: make smaller tree child of larger
- toot of thee is representative element

EX

Viver.

· weighted union by;

size - fewer nodes thee child of more nodes tree rank - smaller height tree child of taller height tree

Claim: using weightel union ne produces trees of height & logn

* Claim: any tree T of height h created during the execution of R has at least IT | > 2n nodes, Prove via induction on h.

- · h=0, |T/= 1=20: holds for h=0
- · Assume holds for some arbitrary h > 0. Mut show holds for h+1.

Tree T of height hal is created by moning 2 trees A, B.

- One Child of T, A, has height (by I.H. has 7 2h hodes).
 - We know (WV nle used) Bh Z An.
- : |T| = |A| + |B| = 2h + 2h = 2h+ nodes : holds for h+1:

2h & |T| & m + m & h & logzn

	Path compression; PC rule
	- after once traversing find path and arriving at
	representative node, stone direct pointer to representative
	B
	for all Atme children of path-compressed nodes.
	for all there children of path-compressed nodes.
>	What is the cost of doing R with weighted union and path
	compression rules??
	Define x*y: x*0=1; x*(n+1) = X x*(n)
4	$\frac{\text{perme } X \circ : X'' = I}{X}$
Ex	7×0=1. 2×1= 22=2. 7×2= 22-11. 7 Grans wing
	$2^{*0} = 1$, $2^{*1} = 2^{2} = 2$; $2^{*2} = 2^{2} = 4$; $2^{*3} = 2^{2^{2}} = 16$ Crows very $2^{*4} = 2^{2^{2}} = 2^{16} = 65536$; $2^{*5} = 2^{61536} = 10^{19+29}$ quickly!
	Petine log*n = m {k: 2*k > m3
*	
Ex	n 2 3 4 5 6 16 17 655 3 6 65537 265536 Grows very log*n 1 2 2 3 3 4 4 5 5 Slowly!
	legt 1 2 2 3 3 4 4 5 5 \ . slowly!
10-	
1973	Somebody proped that cost of executing R with WU & PC
	(M, M, M
1005	mathematically logt n increases forever, realistically constant
1975	Somebody proved R €. O(m · x(m,n))
	· x(m,n): inverse ackerman's function, grows slower than log*n!
1079	· What if ackermans is artifact of analysis! Find 0?
1979	Somebody proved R & IZ (m· d(m,n)) relying on assumptions
1101	Somebody proved RE solm. a(m,n)) with no assumptions
1964	Algo for finds & unions first created
-	