

TABLE OF CONTENTS

PAGE
Numerical Index
Functional Index
Family Specifications 11
4000 Series Data 19
JEDEC Standard Specifications 273
CMOS Fundamentals 277
Design Information 281
Typical Package Outlines 291
Ordering Information 299
4000 Series High Reliability 301

Numerical Index

NUMERICAL DEVICE INDEX

SSS Standard Part Number	Description	Page	SSS Standard Part Number	Description	Page
SCL 4000B	Dual 3-input NOR gate		SCL 4047B	Monostable/astable	
	and inverter	20		multivibrator	124
SCL 4001B	Quad 2-input NOR gate	22	SCL 4049UB	Hex inverter buffer/	
SCL 4001 UB	Quad 2-input NOR gate			level shifter	128
342 100102	(unbuffered)	24	SCL 4050B	Hex non-inverting buffer/	
SCL 4002B	Dual 4-input NOR gate	22		level shifter	128
SCL 4006B	18-stage shift register	27	SCL 4051B	8-channel analog multiplexer	
SCL 4007UB	Dual complementary pair			demultiplexer	131
	and inverter	29	SCL 4052B	Differential 4-channel analog	131
SCL 4008B	Four-bit full adder	32	CCI 4053D	multiplexer/demultiplexer Triple 2-channel analog multi-	131
SCL 4009UB	Hex inverting buffer!		SCL 4053B	plexer/demultiplexer	131
	level shifter	36	SCL 4060B	14-stage binary counter	
SCL 4010B	Hex non-inverter buffer/		3CL 4000B	and oscillator	136
	level shifter	36 39	SCL 4066B	Quad analog switch	140
SCL 4011B	Quad 2-input NAND gate	39	SCL 4068B	8-input NAND gate	39
SCL 4011UB	Quad 2-input NAND gate	41	SCL 4069UB	Hexinverter	145
	(unbuffered)	41 39	SCL 4070B	Quad 2-input exclusive-	
SCL 4012B	Dual 4-input NAND gate	39 44		OR gate	147
SCL 4013B SCL 4014B	Dual D-type flip-flop 8-stage parallel-input/ serial-	77	SCL 4071B	Quad 2-input OR gate	149
3CL 4014B	output shift register	46	SCL 4072B	Dual 4-input OR gate	149
SCL 4015B	Dual 4-stage serial-input/	10	SCL 4073B	Triple 3-input AND gate	156
3CL 4013B	parallel-output shift		SCL 4075B	Triple 3-input OR gate	149
	register	48	SCL4076B	4-bit D-type register	
SCL 4016B	Quad analog switch	50		w/3-state outputs	151
SCL 4017B	Decade counter w/10		SCL 4077B	Quad 2-input exclusive	
	outputs	56		NOR gate	154
SCL 4018B	Presettable divide-by-N		JSCL 4078B	8-input NOR gate	22
	counter	61	SCL 4081B	Quad 2-input AND gate	156
SCL 4019B	Quad AND-OR select gate	64	SCL 4082B	Dual 4-input AND gate	156
SCL 4020B	14-stage binary counter	66	SCL 4085B	Complex gate AND-OR inverter	158
SCL 4021B	8-stage parallel-input/serial		SCL 4086B	Complex gate AND-OR inverter	100
	output shift register	69	SCL 4093B	Quad 2-input NAND Schmitt	162
SCL 4022B	Octal counter w/8 decoded		SCL 4094B	trigger 8-stage shift and store	10.
	outputs	72	3CL 4074B	register	16
SCL 4023B	Triple 3-input NAND gate	39 77	SCL 4099B	8-bit addressable latch	168
SCL 4024B	7-stage binary counter Triple 3-input NOR gate	22	SCL 4160B	BCD decade counter w/	, , ,
SCL 4025B SCL 4026AB	Decade counter w/7	22	3CE 1100B	asychronous clear	170
3CL 4020AB	segment outputs	80	SCL4161B	4-stage binary counter w/	
SCL 4027B	Dual JK-type flip-flop	85		asychronous clear	170
SCL 4028B	BCD-to-decimal decoder	87	SCL4162B	BCD decade counter w/	
SCL 4029B	Presettable up/down			synchronous clear	170
	binary decade counter	90	SCL 4163B	4-stage binary counter w/	
SCL 4030B	Quad 2-input exclusive			synchronous clear	170
	· OR gate	94	SCL 4174B	Hex D flip-flop	175
SCL 4033AB	Decade counter w/7		SCL 4192B	4-bit BCD up/down counter	178
	segment outputs	80	SCL 4193B	4-bit binary up/down counter	178
SCL 4034B	8-stage universal bus		SCL 4402B	Dual 4-input expandable	18:
	register	96	7.51 4404B	NOR gate 8-stage binary counter	18
SCL 4035B	4-stage parallel-input/parallel-	101	SCL 4404B SCL 4412B	Dual 4-input expandable	10.
SCL 4040B	output shift register 12-stage binary counter	101	3CL 4412D	NAND gate	18:
SCL 4040B SCL 4041UB	Quad true/complement buffer	107	SCL 4416B	Quad analog switch	18
SCL 4042B	Quad clocked latch	111	SCL 4426AB	Decade counter w/7-segment	
SCL 4043B	Quad NOR R/S latch			driver outputs	19
	w/3-state outputs	113	SCL 4428B	Binary-to-octal decoder	19
SCL 4044B	Quad NAND R/S latch		SCL 4433AB	Decade counter w/7-segment	
	w/3-state outputs	113		driver outputs	19
SCL 4046B	Phase-locked loop	116	SCL 4441UB	Quad buffer/driver	19

NUMERICAL DEVICE INDEX

SSS Standard Part Number	Description	Page
SCL 4445B	21-stage frequency	
	divider and oscillator	201
SCL 4446B	Phase-locked loop	116
SCL 4449UB	Hex inverter	204
SCL 4502B	Hex strobed inverting buffer	
	w/3-stage outputs	206
SCL 4504B	Hex non-inverting level shifter	208
SCL 4508B	Dual 4-bit latch w/3-state outputs	210
SCL 4510B	BCD decade programmable	
	up/down counter	213
SCL 4511B	BCD-to-7 segment latch/	
302 43115	decoder	217
SCL 4512B	8-channel data selector	220
SCL 4514B	4-to-16 line decoder w/	
	latch (active high outputs)	224
SCL 4515B	4-to-16 line decoder wl	
	latch (active low outputs)	224
SCL 4516B	4-stage binary programmable	
	up/down counter	227
SCL 4517B	Dual 64-stage shift	
	register	231
SCL 4518B	Dual BCD decade up counter	234
SCL 4520B	Dual 4-stage binary up counter	234
SCL 4522B	BCD decade programmable	
	down counter	237
SCL 4526B	4-stage binary programmable	
	down counter	237
SCL 4527B	BCD rate multiplier	24
SCL 4528B	Dual monostable multivibrator	245
SCL 4531B	12-bit parity tree	249
SCL 4532B	8-bit priority encoder	25
SCL 4543B	BCD-to-7-segment latch	255
SCL 4555B	Dual 2-to-4 line decoder	
	(active high outputs)	258
SCL 4556B	Dual 2-to-4 line decoder	
	(active low outputs)	258
SCL 4581B	4-bit arithmetic logic unit	261
SCL 4582B	Look-ahead carry block	265
SCL 4584B	Hex Schmitt trigger	267
SCL 4585B	4-bit magnitude comparator	269
		20.

Functional Index

FUNCTIONAL INDEX

Function	Description	Standard Part Number	Replaces Industry Number	DIP Pkg.	Page
		SCL4011B	4011	14	39
		SCL4011UB	4011U	14	41
	NAND	SCL4012B	4012	14	39
		SCL4023B	4023	14	39
		SCL4068B	4068	14	39
		SCL4073B	4073	14	156
	AND	SCL4081B	4081	14	156
		SCL4082B	4082	14	156
		SCL4001B	4001	14	22
	NOR	SCL4001UB	4001U	14	24
	NOR	SCL4002B SCL4025B	4002 4025	14 14	22 22
Gates		SCL4078B	4078	14	22
and		SCL4071B	4071	14	149
Inverters	OR	SCL4071B	4072	14	149
	OK	SCL4075B	4075	14	149
		SCL4000B	4000	14	20
		SCL4007UB	4007U	14	29
		SCL4030B	4030	14	94
		SCL4070B	4070	14	147
	COMPLEX	SCL4077B	4077	14	154
		SCL4085B	4085	14	158
		SCL4086B	4086	14	160
		SCL4019B	4019	16	64
	Inverters	SCL4069UB	4069U	14	145
		SCL4449UB	4449U*	16	204
	Expandable	SCL4402B	4402 *	16	183
	Gates	SCL4412B	4412*	16	183
		SCL4009UB	4009U	16	36
	Level Shifting	SCL4010B	4010	16	36
	Level Siliting	SCL4049UB	4049U	16	128
Buffers		SCL4050B	4050	16	128
DUITEI 3		SCL4504B	4504	16	208
	High Current	SCL4041UB	4041U	14	107
		SCL4441UB	4441U*	14	199
	Tri-State	SCL4502B	4502	16	206
Encoder	8 Bit Priority	SCL4532B	4532	16	251
		SCL4028B	4028	16	87
		SCL4428B	4428*	14	196
	Logic Functions	SCL4514B	4514	24	224
	Logic ranctions	SCL4515B	4515	24	224
		SCL4555B	4555	16	258
Decoders		SCL4556B	4556	16	258
Decoders		SCL4026AB	4026	16	80
		SCL4426AB SCL4033AB	4426* 4033	16	191 80
			4033	16	au
	Display				
	Display Functions	SCL4433AB SCL4511B	4433 * 4511	16 16	191 217

FUNCTIONAL INDEX

Function	Description	Standard Part Number	Replaces Industry Number	DIP Pkg.	Page
		SCL4024B	4024	14	77
		SCL4404B	4404 *	14	185
		SCL4040B	4040	16	104
		SCL4020B	4020	16	66
		SCL4060B	4060	16	136
	Binary	SCL4161B	4161	16	170 170
		SCL4163B	4163	16 16	178
		SCL4193B SCL4029B	4193 4029	16	90
		SCL4516B	4516	16	227
C		SCL4576B	4526	16	237
Counters		SCL4520B	4520	16	234
-		SCL4192B	4192	16	178
		SCL4510B	4510	16	213
		SCL4160B	4160	16	170
	Decade	SCL4162B	4162	16	170
		SCL4522B	4522	16	237
		SCL4518B	4518	16	234
•	Decoded -	SCL4017B	4017	16	56
	Outputs	SCL4022B	4022	16	72
-	Johnson	SCL4018B	4018	16	61
	21-Stg Divider	SCL4445B	4045	16	201
	Rate Multiplier	SCL4527B	4527	16	241
Dividers/	Phase-Locked	SCL4046B	4046	16	116
Multipliers	Loop	SCL4446B	4446 *	16	116
	Multivibrators	SCL4528B	4528	16	245
	MULLIVIDIALOIS	SCL4047B	4047	16	124_
		SCL4582B	4582	16	265
	4-Bit	SCL4585B	4585	16	269
Arithmetic		SCL4008B	4008	16	32
Logic	12-Bit	SCL4531B	4531	16	249
•	4-Bit A.L.U.	SCL4581B	4581	24	261
		SCL4013B	4013	14	44
	Dual D Type				
Flip-Flops	Dual JK Type	SCL4027B	4027	16	85
	4-Bit D Type	SCL4076B	4076	16	151
	Hex D Type	SCL4174B	4174	16	175
	P.C.Tupo	SCL4043B	4043	16	113
	R-S Type	SCL4044B	4044	16	113
Latches		SCL4042B	4042	16	111
Lateries	Clocked	SCL4508B	4508	24	210
,	Addressable	SCL4099B	4099	16	168
Schmitt	Quad	SCL4093B	4093	14	162
Triggers	Hex	SCL4584B	4584	14	267
mggers	Ser In/Ser Out	SCL4006B	4006	14	27
,			4015	16	48
	Ser In/Par Out	SCL4015B			46
CL:6	Par In/Ser Out	SCL4014B	4014	16	69
Shift		SCL4021B	4021	16	
Registers	Par In/Par Out	SCL4035B	4035	16	101
		SCL4034B	4034	24	96
	Bus Registers	SCL4094B	4094	16	165
		SCL4517B	4517	16	231
	Digital Mux	SCL4512B	4512	16	220
	Analog	SCL4051B	4051	16	131
Multiplexers	Multiplexers &	SCL4052B	4052	16	131
and	Demultiplexers	SCL4053B	4053	16	131
Switches		SCL4016B	4016	14	50
	Analog	SCL4066B	4066	14	140
	Switches				

^{*} Part Number is a sole source item of Solid State Scientific.

Family Specifications

THE 4000 SERIES FAMILY

INTRODUCTION

Solid State Scientific CMOS devices comprise a family of medium-speed integrated circuits with a superior combination of high noise immunity, wide operating voltage range, low power dissipation, and high fan-out. These characteristics greatly minimize power supply costs and simplify system design and layout.

The great majority of the devices in the 4000 Series exceed the JEDEC Standard Specifications for "B" Series CMOS Devices. For this reason, Solid State Scientific guarantees that all devices designated 4xxxB or 4xxxUB1 will meet the electrical specifications given in the tables in this section. These standards are tighter than the JEDEC Specifications in several key areas, notably gate leakage currents (I_{DD}), output voltage (V_{OH} , V_{OL}) and, in several cases, output drive current (IOH, IOL). In addition, Solid State Scientific does not degrade any parameter for any commercial-temperature-range part type. The few device types which fail to meet the 4000B Series Family Specifications for any reason are designated by the suffix AB. These devices, however, are guaranteed to meet all Absolute Maximum Ratings and Recommended Operating Conditions of the 4000B Series, as well as most of the electrical characteristics. Therefore, these few part types are fully compatible with 4000B devices in virtually all applications.

All 4000 Series CMOS devices are available in commercial temperature range ($-40\,^{\circ}\mathrm{C}$ to $+85\,^{\circ}\mathrm{C}$) versions, and a variety of package configurations. Available packages include Frit-seal ceramic or Cerdip dual-in-line packages (C suffix - 14- and 16-lead types), welded-seal or side-brazed ceramic dual-in-line packages (D suffix - 14-, 16-, and 24-lead types), ceramic flat packs (K suffix - 14- and 16-lead types), leadless chip carriers (L suffix - 20 lead JEDEC), and bare chip form (H suffix) for those users manufacturing hybrid microcircuits. Commercial tem-

perature range devices are available in the Epoxy or plastic dual-in-line package (E suffix — 14-, 16- and 24-lead types). Since electrical parameters are never degraded for devices in this package, any mix of packages may be used in a system with confidence that they will be fully compatible throughout the entire range of valid operating conditions.

THE 4000B SERIES

Solid State Scientific anticipated the JEDEC Standard Specifications for "B" Series CMOS Devices by several years in several important areas. All part types have been consistently rated at 18 Vdc maximum operating voltage. This upgrading did not entail a process alteration; performance specifications for the higher voltages were simply added to the test programs for each device.

In addition, the decision of the JEDEC Committee to consider devices with buffered outputs as the standard part types in the "B" Series supports the position taken by Solid State Scientific in 1970. Since buffered-output gates exhibit higher noise immunity, standardized output drive independent of type and input pattern, and decreased ac sensitivity to output loading, they offer superior performance in digital logic applications. Gate functions in the 4000 Series have always been buffered, anticipating the decision of the JEDEC Committee by a full six years.

The following Family Specifications apply to all 4xxxB and 4xxxUB part types, unless otherwise specified on individual data sheets.

4000B SERIES **FAMILY SPECIFICATIONS**

ABSOLUTE MAXIMUM RATINGS 1

DC Supply Voltage Input Voltage DC Input Current	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	-0.5 to +18 -0.5 to V _{DD} +0.5 ±10	Vdc Vdc mAdc
(any one input) Power Dissipation Storage Temperature Range	${f P_T} {f T_S}$	300 -65 to +150	mW ℃
RECOMMENDED OPERATING CONDITION	NS1		
DC Supply Voltage Operating Temperature	V _{DD} T _A	3 to 15	Vdc
Range C,D,F packages, chips E package		-55 to +125 -40 to +85	°C °C

^{&#}x27;Voltage referenced to V_{ss}

Parametric limits are guaranteed for $V_{\rm DD}$ = 5, 10, and 15 Vdc. Where low power is required, the lowest supply voltage, consistent with required speed, should be used. For larger noise immunity and higher speed, higher supply voltages should be specified. The lower limit of supply regulation is 3 Vdc or as determined by required system speed, noise immunity, or interface to other logic. The recommended upper limit is 15 Vdc or as determined by power dissipation restrictions or interface to other logic.

Unused inputs must be connected to V_{DD}, V_{SS}, or another input.

Care should be used in handling CMOS devices; static charges may damage the device.

ELECTRICAL SPECIFICATIONS

Parametric limits listed here are guaranteed for the entire 4000B Series Family unless otherwise specified on the individual data sheets.

STATIC CHARACTERISTICS (V_{SS} = 0V)

		V _{DD}	CONDITIONS	TLC	w¹		+25°C		THI	3H1	Units
PARAMETER		(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	DD										
Gates		5		-	0.05		0.0005	0.05	-		μAdc
		10		- 1	0.1		0.001	0.1	- 1	3.0 6.0	
			V _{IN} =V _{SS} or V _{DD}		0.2		0.002	0.2			0 -1 -
Buffers, Flip-Flops		5	All valid input	-	1.0		0.005	1.0 2.0	_	30 60	μAdc
		10	combinations	_ '	2.0 4.0		0.01 0.02	4.0		120	
		15			5		0.05	5		150	μAdc
MSI		5 10		_	10		0.1	.10		300	,
		15		_	20		0.2	20	_	600	
HIGH-LEVEL OUTPUT	V _{OH}					4.99	5		4.95	_	Vdc
VOLTAGE		5	V _{IN} =V _{SS} or V _{DD}	4.99 9.99	_	9.99		_	9.95		Vuc
		10 15	I ₀ ≤1μA	14.99		14.99	15	_	14.95		
LOW-LEVEL OUTPUT	Vol										
VOLTAGE		5	V _{IN} =V _{SS} or V _{DD}	-	0.01	-	0	0.01		0.05	Vdc
		10	1. 1 4	-	0.01	-	0	0.01	1	0.05	
	L	15	I _O ≤1μA		0.01			0.01		0.05	
MINIMUM INPUT HIGH	V _{IH}									2.5	Vdc
VOLTAGE		5	V _O =0.5V or 4.5V		3.5	-	2.75	3.5 7.0	-	3.5 7.0	Vac
		10	V _O =1.0V or 9.0V		7.0	_	5.5 8.25	11.0	_	11.0	
		15	$ V_0 = 1.5 \text{Vor} 13.5 \text{V}$ $ I_0 \le 1 \mu \text{A}$	-	11.0	-	0.23	11.0	_	15	

¹T_{LOW} = -55°C for C, D, F, and H devices

^{= -40°}C for E device

THIGH = +125°C for C, D, F, and H devices

^{= +85°}C for E device

STATIC CHARACTERISTICS (V_{SS} = 0V) Continued

PARAMETER		V_{DD}	CONDITIONS	TL	ow ¹		+25°C		THE	GH 1	Units
		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
MAXIMUM INPUT LOW VOLTAGE	V _{IL}	5 10 15	V _O =0.5V or 4.5V V _O =1.0V or 9.0V V _O =1.5V or 13.5V I _O ≤1μA	3.0	- - -	1.5 3.0 4.0	2.25 4.5 6.75	- - -	1.5 3.0 4.0	- - -	Vdc
OUTPUT HIGH (SOURCE) CURRENT B Series	Юн	5 10 15	V _{OH} =4.6V V _{OH} =9.5V V _{OH} =13.5V V _{IN} =V _{SS} or V _{DD}	-0.64 -1.6 -4.2	- -	-1.3	-1.25 -3.25 -10	- -	-0.36 -0.9 -2.4	- -	mAdc
OUTPUT LOW (SINK) CURRENT B Series	loL	5 10 15	V_{OL} =0.4V V_{OL} =0.5V V_{OL} =1.5V V_{IN} = V_{SS} or V_{DD}	0.64 1.6 4.2	1 + 1	0.51 1.3 3.4	1.25 3.25 10	-	0.36 0.9 2.4		mAdc
INPUT CURRENT	I _{IN}	15	V _{IN} =0 or 15V	_	±0.1		±10 ⁻⁵	±0.1	-	±1.0	μAdc

¹ T_{LOW} = -55°C for C, D, F, and H devices

= -40°C for E device

THIGH = +125°C for C, D, F, and H devices

= +85°C for E device

DYNAMIC CHARACTERISTICS (T_A = 25°C)

PARAMETER	V _{DD} (Vdc)	Min.	Тур.	Max.	Units	
INPUT CAPACITANCE	CIN	_	_	5	7.5	pF

Part types designated "UB" meet the above parametric specifications with the following exception, unless otherwise specified on the individual data sheets.

PARAMETER		V _{DD}	CONDITIONS	T _{LOW} 1		+25°C			THI	GH 1	Unit
		(Vdc)	00.00	Min.	Max.	Min.	Тур.	Max.	Min.	Max.]
MINIMUM INPUT HIGH VOLTAGE	V _{IH}	5 10 15	V_O =0.5V or 4.5V V_O =1.0V or 9.0V V_O =1.5V or 13.5V $ I_O \le 1\mu A$	_	4.0 8.0 12.0	- - -	2.75 5.5 8.25	4.0 8.0 12.0	- - -	4.0 8.0 12.0	Vdc
MAXIMUM INPUT LOW VOLTAGE	VıL	5 10 15	V _O =0.5V or 4.5V V _O =1.0V or 9.0V V _O =1.5V or 13.5V I _O ≤1μA	2.0	-	1.0 2.0 3.0	2.25 4.5 6.75	<u>-</u>	1.0 2.0 3.0	- - -	Vdc

¹ $T_{LOW} = -55^{\circ}C$ for C, D, F, and H devices = $-40^{\circ}C$ for E device

T_{HIGH} = +125°C for C, D, F, and H devices

= +85°C for E device

The user should consult the section of this book entitled "CMOS Design Considerations" in conjunction with the Family Specifications given here to assure proper system performance.

PARAMETER DEFINITIONS AND WAVEFORMS

DEFINITIONS

The following information provides detailed explanations of the electrical parameters specified on 4000 Series data sheets. These parameters are categorized into Absolute Maximum Ratings, Recomended Operating Conditions, Static Electrical Characteristics, and Dynamic Electrical Characteristics, Virtually all devices in the 4000 Series are fully described by a combination of the parameters identified in this section; in a few special cases, however, parameters unique to a device are defined on the individual data sheet.

While all parameters exhibit a statistical distribution about a mean value, only the mean value and one worst-case limit — either the minimum or the maximum value — appears on the data sheet. Following the EIA standard guidelines, the minimum limit value is always less than the mean or typical value, and the maximum limit value is always greater than the typical value. Several parameters, therefore, require the prefix "minimum" or "maximum" in order to maintain the proper convention on the data sheet. These prefixes should not be confused with the minimum and maximum designations applied to limit values. Thus, "maximum clock frequency" has minimum limit values specified, while "minimum clock pulse width" has maximum limit values specified.

Each parameter is measured under a specified set of conditions: supply voltage, input voltages and currents, output voltages and currents, input signal switching characteristics, etc. To assist the designer in constructing his system, any given parameter is measured under the same test conditions for all devices in the 4000 Series, whether they fall into the B, UB, or AB designation.

ABSÓLUTE MAXIMUM RATINGS

These ratings are absolute limits within which safe operation occurs. The presence of conditions outside these limits may cause severe device degradation, and possibly catastrophic failure. These ratings apply across the entire temperature range.

DC Supply Voltage Range

To prevent forward biasing and possibly damaging the structural and protective diode junctions present in CMOS construction, $V_{\rm DD}$ must never be more than 0.5Vdc negative with respect to $V_{\rm SS}$.

The maximum limit of 18Vdc prevents primary breakdown of any internal device junction.

Input Voltage Range

The voltage at any device input must not exceed either the V_{ss} or V_{dd} supply voltages by more than 0.5Vdc. Unrestricted operation outside this range may damage the input protection diodes, or cause internal latch-up.

DC Input Current

To prevent excessive dissipation in the junctions of the protection diodes, input current must be limited to less than 10mAdc.

Maximum Package Power Dissipation

This requirement prevents excessive junction or package temperatures from developing. The maximum rating of 300mW includes both quiescent (dc) and dynamic (ac) dissipation, and should be calculated from the discussion of Power Dissipation in the section entitled "Design Considerations."

Storage Temperature Range

The temperature range within which devices may be stored without electrical connection is -65°C to +150°C. Device reliability may be degraded when stored outside this range.

RECOMMENDED OPERATING CONDITIONS

These conditions specify ranges within which reliable operations may be maintained. Systems utilizing CMOS should be designed to operate within these ranges.

DC Supply Voltage Range

The lower limit of 3Vdc is based upon transistor threshold levels. The recommended maximum limit of 15V is substantially below the primary breakdown limit for the devices to allow for limited power-supply transient and regulation limits.

Operating Temperature Range

The maximum ambient temperature range within which the device may be reliably operated is $-55^{\circ}\mathrm{C}$ to $+125^{\circ}\mathrm{C}$ (the standard military temperature range) for the C, D, and F packages, and $-40^{\circ}\mathrm{C}$ to $+85^{\circ}\mathrm{C}$ (an extended commercial range) for the E package. Chips (H suffix) may be operated over the full military temperature range, $-55^{\circ}\mathrm{C}$ to $+125^{\circ}\mathrm{C}$.

STATIC ELECTRICAL CHARACTERISTICS

These parameters apply to devices in the steadystate condition. They are specified at the low temperature limits (-55° C or -40° C), $+25^{\circ}$ C, and the high temperature limits ($+125^{\circ}$ C or $+85^{\circ}$ C), with typical values given at $+25^{\circ}$ C.

Quiescent Device Current (IDD)

Quiescent current is defined as the current flowing

into the $V_{\rm pD}$ terminal of the device with no load on the outputs. This current is measured under all valid input combinations (inputs tied in all valid combinations to $V_{\rm SS}$ or $V_{\rm pD}$). The maximum limit reflects domination by surface leakage effects. Most devices exhibiting typical leakage currents are dominated by junction leakage which doubles with every 11°C increase in temperature.

These values have been standardized into three

categories: gates, buffers and flip-flops, and MSI devices. Solid State Scientific does not degrade this parameter for commercial temperature range devices (E package).

Output Voltage ($V_{\rm OH}$, $V_{\rm Ol}$)

 $V_{\rm OH}$ is defined as the high-level output voltage under no-load conditions ($|I_{\rm o}|\!<\!1\mu A)$, with inputs tied to $V_{\rm SS}$ or $V_{\rm DD}$. Similarly, $V_{\rm OL}$ is the low-level output voltage measured under the same conditions. Both parameters are guaranteed to be no more than 0.01Vdc from the supply voltage at low temperature and $+25^{\circ}C$, and no more than 0.05Vdc from the supply voltage at high temperature.

Input Voltage (VIH, VIII)

 V_{IH} and V_{IL} are defined as the minimum input high voltage and the maximum input low voltage, respectively, which produce no more than a 10% $V_{\rm DD}$ change in output voltage under no-load conditions ($\left|I_{\rm D}\right|<1\mu$ A). This parameter differentiates device designations "B" and "UB".

In general, "B" devices have greater noise immunity, i.e., lower V_{IH} and higher V_{IL} , than "UB" devices because output buffering more effectively isolates outputs from input voltage variations.

Output Drive Currents (IoH, IoI)

Output drive current is the source current ($l_{\rm OB}$) with the output high, or the sink current ($l_{\rm OL}$) with the output low, that flows out of or into the device from a load of specific voltage. Polarity is defined as positive when flowing into the output. Inputs are tied directly to $V_{\rm SS}$ or $V_{\rm DD}$, output voltages are specified at equal voltage drops for both parameters at given supply voltage.

At $V_{DD}=5Vdc$, I_{OH} and I_{OL} are specified at $V_{OH}=4.6Vdc$ and $V_{OL}=0.4Vdc$, respectively. Logic outputs of "B" and "UB" devices are capable of driving one low-power TTL load across temperature. Although the source current (I_{OH}) specification for these devices is lower than the sink current (I_{OH}) specification (I_{IL} (TTL) $>> I_{IH}$), many devices in the 4000 Series Family are designed for balanced drives at these output voltages.

All gates and flip-flops, and a number of MSI parts, fall into this category; this is noted on the individual data sheets.

At $V_{\rm DD}=10{\rm Vdc}$, an output voltage drop of 0.5Vdc from either supply is used as the standard condition for specifying $I_{\rm OH}$ and $I_{\rm OL}$.

At V_{DD} = 15Vdc, 1.5Vdc is used as the standard output voltage drop. Current values are designed to drive two standard HTL loads over temperature.

The limits at the temperature extremes reflect the 0.3%/°C current decrease with increasing temperature at 25°C characteristic of CMOS. Most device data sheets supply transistor characteristic curves for determination of output drive current under other operating conditions.

Solid State Scientific does not degrade these parameters for commercial temperature range devices (E package).

3-State Output Leakage Current (Izi)

Leakage current at the output terminal of a 3-state device when disabled (high-impedance state) is measured under the two worst-case conditions: V_{DD} is applied at the output along with input combinations which would normally force the output low; V_{SS} is applied at the output along with input combinations which would normally force the output high.

Solid State Scientific does not degrade this parameter for commercial temperature range devices (E package).

Input Current

Input current is defined as the current that flows into or out of an input terminal when V_{SS} or V_{DD} is applied to that terminal. Input current consists of junction leakages in the diode protection circuit, and is typically $\pm\,10\text{pAdc}$. Worst-case input current is specified at $V_{DD}=15\text{Vdc}$ across temperature, with a maximum of $\pm\,1.0\text{uAdc}$ at $+\,125^\circ\text{C}$ (+85°C for commercial temperature range devices).

Solid State Scientific does not degrade this parameter for commercial temperature range devices.

DYNAMIC ELECTRICAL CHARACTERISTICS

Switching characteristics are specified at a total output load capacitance per output C_L =50pF, ambient temperature T_A = 25°C, and input rise and fall times t_r , t_r = 20nS (except for maximum input rise and fall time specifications). Typical temperature coefficient for dynamic characteristics is $|0.3\%|^{\circ}C|$ (negative for maximum clock frequency (f_{CL}) and positive for other parameters). Solid State Scientific does not degrade dynamic parameters for commercial temperature range devices (E package).

Propagation Delay Time (tpl., tph.)

These parameters are specified on all data sheets. For non-synchronous circuits and inputs, the delay time is measured from the 50% point of the input signal edge to the 50% point of the resulting output signal edge. For synchronous inputs (having a clock signal), the delay time is measured from the 50% of the clock signal edge associated with the input level to the 50% point of the resulting output signal edge. The designation "LH" refers to the low-to-high output transition: "HL" refers to the high-to-low output transition. Propagation delays increase linearly with load capacitance.

3-State Propagation Delay (t_{PHZ} , t_{PLZ} , t_{PZH} , t_{PZL})

The t_{PHZ} (high-level to 3-state) and t_{PLZ} (low-level to 3-state) propagation delays are measured from the 50% point of the disable input leading edge to the 90% point of the output signal falling edge (t_{PHZ}) or to the 10% point of the output signal rising edge (t_{PLZ}) . The t_{PZH} (3-state to high-level) and t_{PZL} (3-state to low-level) propagation delays are measured from the 50% point of the disable input trailing edge to the 10% point of the output signal rising edge (t_{PZH}) or to the 90% point of the output signal falling edge (t_{PZL}) . In addition to the 50pF load capacitance, a 1K Ω load resistor is tied to V_{SS} (t_{PHZ} and t_{PZH}) or V_{DD} (t_{PLZ} and t_{PZL}).

Output Transition Time (t_{TLH} , t_{THL})

These parameters refer to the rise $(t_{\rm TLR})$ and fall $(t_{\rm THL})$ times at device outputs. They are measured from the 10% to the 90% points of the output waveform. Both parameters are functions of output transistor sizes, and fall into standard categories in the same way as output drive current. Output transition times vary linearly with load capacitance $C_{\rm L}$.

Minimum (Clock) Pulse Width (PW)

Minimum pulse width refers to that portion of the input signal between the active (leading) edge and the opposite (trailing) edge. It is defined as the interval between the 50% points of each edge. When applied to clock signals, this parameter also refers to the remaining portion of the signal, i.e., 50% duty cycle.

Maximum Clock Frequency (fc)

The maximum clock frequency is the rate at which information can transfer through a synchronous circuit without developing system problems due to excessive propagation delays across internal stages.

Maximum Clock Rise and Fall Times (tree, tree)

These limits refer to the maximum allowable input transition times which prevent interactions between internal stages from interfering with proper clocking. These parameters are measured from the 10% point to the 90% point of the input signal, and usually decrease with increasing operating voltage.

When synchronous stages are cascaded, however, maximum rise and fall times of the clock input should be equal to or less than the transition times of data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load. This prevents improper operation resulting from logic state interaction between adjoining stages.

Minimum Setup Time (t_{setup})

Setup time refers to the minimum interval between the data or control input signal and the clock or strobe signal which guarantees proper entry of that information into the device. It is measured between the 50% points of the two appropriate edges.

Minimum Hold Time (tout)

Hold time refers to the interval after the clock or strobe edge during which data or control information must remain valid. It is measured between the 50% points of the two appropriate edges.

Removal Time (trem)

Removal time is defined as the interval after removing an asynchronous control input during which a clock or strobe signal edge may not be recognized. This parameter is similar to minimum setup time, and is measured from the 50% point of the control input trailing edge to the 50% point of the clock or strobe signal leading edge.

Input Capacitance (C_{IN})

The input capacitance is defined as the ac capacitance under zero bias conditions as applied to any input. This capacitance is typically 5pF for most devices; it is somewhat higher for inputs to high-current buffers.

DYNAMIC PARAMETER WAVEFORMS

Non-Synchronous Circuit Waveshapes and Timing Parameters

Synchronous Circuit Waveshapes and Timing Parameters

Three-State Propagation Delay Waveshape and Test Circuit

4000 Series Data

CMOS DUAL 3-INPUT NOR GATE PLUS INVERTER

FEATURES

- Buffered Gate Outputs
- **♦** Diode Protection on all Inputs
- ♦ Fully "B" Series Compatible

TRUTH TABLE (NOR GATE)

INPUTS	OUTPUT
0 0 0	1
All other combinations	0

LOGIC DIAGRAM

FUNCTION DIAGRAM

CONNECTION DIAGRAM (all packages)

Add suffix for package:

C 14-pin Cerdip

D 14-pin Ceramic

E 14-pin Epoxy

F 14-pin Flat

H Chip

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage $V_{DD} - V_{SS}$ 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device -55 to +125 °C E Device -40 to +85 °C

SCHEMATIC DIAGRAM (One of two NOR Gates)

STATIC CHARACTERISTICS 1.

PARAMETER		V _{DD} CONDITIONS		T _{LOW} ²		+25°C			THI	Units	
PANAMETER	(Vdc)		Contentions	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	J
QUIESCENT DEVICE CURRENT	loc	10	V _{IN} =V _{SS} Qr V _{DD} All valid input combinations		0.05 0.10 0.20	- - -	0.0005 0.001 0.002	0.05 0.10 0.20	1 -	1.5 3.0 6.0	μAdc

NOTES: Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

TLOW = -55°C for C, D, F, H device.
= -40°C for E device.

THIGH = +125°C for C, D, F, H device.
= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	t _{РСН} , t _{РНС}	5 10 15	_ _ _	125 60 45	250 120 90	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

CMOS NOR GATES

4001B - Quad 2-Input NOR 4002B - Dual 4-Input NOR 4025B - Triple 3-Input NOR 4078B - 8-Input NOR

FEATURES

- **♦** Buffered Outputs
- ♦ Diode Protection on all Inputs
- ◆ Fully "B" Series Compatible

Inputs	Output
0 0 0	1
All other combinations	0

FUNCTION DIAGRAMS

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc
Operating Temperature T_A
C, D, F, H Device -55 to +125 °C
E Device -40 to +85 °C

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD}	VDD. CONDITIONS		T _{LOW} ²		+25°C		THIGH 2		Units
FARAMETER		(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	loc	5 10	V _{IN} =V _{SS} or V _{DD} All valid input combinations		0.05 0.10 0.20	_	0.0005 0.001 0.002	0.05 0.10 0.20	=	1.5 3.0 6.0	μAdc

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications."

² T_{LOW} = -55°C for C, D, F, H device. = -40°C for E device. T_{HIGH} = +125°C for C, D, F, H device. = + 85°C for E device.

DYNAMIC CHARACTERISTICS (C, = 50pF, TA = 25°C)

PARAMETER			Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	t _{РLH} , t _{РНL}	t _{PLH} , t _{PHL} 5 10 15		125 60 45	250 120 90	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- -	100 50 40	200 100 80	ns

Typical P-Channel Source Current Characteristics

LOGIC DIAGRAMS

Typical N-Channel Sink Current Characteristics

SCHEMATIC DIAGRAM 4002B (1 of 2 gates)

FEATURES

- ♦ Unbuffered Outputs for Quasi-Linear Applications
- ◆ Quad 2-Input NOR Configuration
- Diode Protection on all Inputs
- ◆ Output Drive Current Compatible with "B" Series
- ◆ Pin Compatible with Buffered 4001B

DESCRIPTION

The 4001UB consists of four positive-logic NOR gates. The outputs are unbuffered, making the device suitable for quasi-linear applications, such as gated oscillators, multivibrators, and pulse shaping circuits.

For digital applications, the buffered 4001B is recommended for its higher gain and input pattern insensitivity.

TRUTH TABLE

Inputs	Output
0 0	1
All other combinations	0

SCHEMATIC DIAGRAM

CMOS NOR GATE (Unbuffered)

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc

Operating Temperature T_A

C, D, F, H Device -55 to +125 °C

E Device -40 to +85 °C

LOGIC DIAGRAM

STATIC CHARACTERISTICS 1.

PARAMETER		V _{DD}	CONDITIONS	T _{LOW} ²		+25°C		THIGH ²		Units	
		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	0
QUIESCENT DEVICE CURRENT	l _{DD}	5 10 15	V _{IN} =V _{SS} or V _{DD} All valid input combinations	-	0.05 0.10 0.20	_	0.0005 0.001 0.002	0.05 0.10 0.20	111	1.5 3.0 6.0	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	t _{PLH} , t _{PHL}	5 10 15	_ _ _	60 30 25	120 60 50	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns

Typical P-Channel Source Current Characteristics

Typical N-Channel **Sink Current Characteristics**

APPLICATIONS INFORMATION

MONOSTABLE MULTIVIBRATOR

COMPENSATED MONOSTABLE MULTIVIBRATOR

SCHMITT TRIGGER

FEATURES

- Fully Static Operation
- Cascadable
- ♦ 5MHz Shift Rate @ 10Vdc

DESCRIPTION

The 4006B is comprised of 4 separate Shift Register sections: two sections of four stages and two sections of five stages with an output tap at the fourth stage. Each section has an independent single rail data path.

A common Clock signal is used for all stages. Data is shifted to the next stage on negative-going transitions of the Clock. Through appropriate connections of inputs and outputs, multiple register sections of 4, 5, 8 and 9 stages or single register sections of 10, 12, 13, 14, 16, 17 and 18 can be implemented using one 4006B package. Longer shift register sections can be assembled by using more than one 4006B.

This part is useful in serial shift register and time delay circuits.

TRUTH TABLE

Di	CL	Di + 1
0	~	0
1		1
×		No Change

X = Don't care

CMOS 18 STAGE SHIFT REGISTER

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

 DC Supply Voltage
 VDD - VSS
 3 to 15
 Vdc

 Operating Temperature
 TA
 -55 to +125
 °C

 C, D, F, H Device
 -55 to +125
 °C

 E Device
 -40 to +85
 °C

TYPICAL REGISTER STAGE

LOGIC DIAGRAM

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD}	CONDITIONS	T _{LOW} ²		+25°C			T _{HIGH} ²		Units
. Allameren		(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	loo	10	V _{IN} =V _{SS} or V _{DD} All valid input combinations	1 1 1	5 10 20	1 1 1	0.05 0.1 0.2	5 10 20	111	150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	t _{РĽН} , t _{РНС}	5 10 15	- - -	250 125 100	500 250 200	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	-· -	100 50 40	200 100 .80	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	_ _ _	200 100 80	400 200 160	ns
MAXIMUM CLOCK FREQUENCY	fcL	5 10 15	1.25 2.5 3.0	2.5 5.0 6.0	_ _ _	MHz
MAXIMUM CLOCK RISE AND FALL TIME ¹	troL, troL	5 10 15	15 5 3	- - -	- - -	μs
MINIMUM SETUP TIME	t _{setup}	5 10 15	- - -	40 25 20	80 50 40	ns
MINIMUM HOLD TIME	thold	5 10 15	_ _ _	40 25 20	80 50 40	ns

¹ When units are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

CMOS DUAL COMPLEMENTARY PAIR PLUS INVERTER

FEATURES

- ♦ Low Output Impedance
- Extremely High Input Impedance
- ♦ Single Supply Operation Positive or Negative
- All Inputs Diode-Protected

DESCRIPTION

4007UB contains three N-Channel and three P-Channel enhancement-type MOS transistors on a single monolithic silicon chip. The transistor elements are accessible through the package terminals to provide means for constructing various logic, transmission gating, and linear circuits.

Typ. P-Channel drain characteristics

Typ. N-Channel drain characteristics

Min. and max. voltage transfer characteristics for inverter

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc

Operating Temperature T_A

C, D, F, H Device -55 to +125 °C

E Device -40 to +85 °C

SCHEMATIC DIAGRAM

Typ. current and voltage transfer characteristics for inverter

STATIC CHARACTERISTICS '

PARAMETER		VDD	CONDITIONS	T _{LOW} 2		+25°C			T _{HIGH} ²		Units
TANAMETEN		(Vdc)	00.110.110	Min.	Max.	Min.	Typ.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	loo	5 10 15	V _{IN} =V _{SS} or V _{DD} All valid input combinations	-	0.05 0.10 0.20		0.0005 0.001 0.002	0.05 0.10 0.20	111	1.5 3.0 6.0	μAdc

Remaining Static Electrical Characteristics are listed under "40008 Series Family Specifications".

TLOW = -55°C for C, D, F, H device.

= 40°C for E device.

THIGH **125°C for C, D, F, H device.

= 40°S°C for E device. NOTES: 1

DYNAMIC CHARACTERISTICS (C. = 50 pF. T. = 25 C)

PARAMETER			Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	tpLH, tpHL				1	
	1	5	-	55	110	ns
		10		30	60	
	1 1	15	-	25	50	
OUTPUT TRANSITION TIME	trum, treu				1	,
	1	5	-	100	200	' ns
	1 1	10	-	50	100	i
		15		. 40	80	

AMBIENT TEMPERATURE (TA) = 25°C TYPICAL TEMPERATURE COEFFICIENT ALL VALUES OF VDD=0.3%/°C THE (LOHE - LOCH

Typ. propagation delay time vs. CL

Typ. dissipation characteristics

APPLICATIONS INFORMATION

APPLICATIONS INFORMATION (Continued)

CMOS FOUR-BIT FULL ADDER

FEATURES

- ♦ Look-Ahead Carry Output
- ♦ High-Speed Operation

DESCRIPTION

The 4008B consists of four Full-Adder stages with fast Look-Ahead Carry provision from stage to stage. Circuitry is included to provide a fast Parallel-Carry-out bit to permit high-speed operation in arithmetic sections using several 4008B's, 4008B inputs include the four sets of bits to be added, A1 to A4 and B1 to B4, in addition to the Carry-in bit from a previous section. 4008B outputs include the four Sum bits, S1 and S4, in addition to the high-speed Parallel-Carry-out which may be utilized at a succeeding 4008B section.

TRUTH TABLE (one stage)

Cin	В	Α	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

RECOMMENDED OPERATING CONDITIONS

H Chip

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device -55 to +125 °C E Device -40 to +85 °C

BLOCK DIAGRAM

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD}			T _{LOW} ²		+25°C			THIGH ²	
		(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units
QUIESCENT DEVICE CURRENT	I _{DD}	5 10	V = V _{SS} or V _{DD} All valid input combinations	111	5 10 20	- - -	0.05 0.1 0.2	5 10 20	- - -	150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER			Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME						
Sum In to Sum Out	t _{PLH} , t _{PHL}					
		5	_	400	800	ns
		10	-	160	320	
		15		115	230	
Sum In to Carry Out	tpLH, tpHL					
•	1.5	5	i –	310	620	ns
		10	_	140	280	
		15	_	110	220	
Carry In to Sum Out	t _{PLH} , t _{PHL}					
3011, III 10 Cam Gat	THE THE	5	_	380	760	ns
		10	_	150	300	
		15	_	115	230	
Carry In to Carry Out	t _{PLH} , t _{PHL}					
ourly in to ourly out	ויירוחי ייחוב	5	_	180	360	ns
	1	10	_	75	150	
		15	-	55	110	
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}					
OUT OF THAIRDITION TIME	ן ידנאי ידאנן	5	_	100	200	ns
		10	_	50	100	""
	1	15	_	40	80	

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

LOGIC DIAGRAM

APPLICATIONS INFORMATION

16-Bit Adder

APPLICATIONS INFORMATION (Continued)

2-Digit BCD-to-Binary Conversion

4-Bit Up/Down Counter

CMOS HEX BUFFERS/CONVERTERS

FEATURES

- ◆ Direct Drive of 2 TTL/DTL Loads
- Operation from Single or Dual Supplies
- All Inputs Diode-Protected

DESCRIPTION

The 4009UB and 4010B are single-chip monolithic silicon integrated circuits containing eighteen N-Channel and twelve P-Channel enhancement-mode MOS transistors connected to form six independent buffer/converter configurations. These devices are designed for use as hex CMOS-to-DTL or TTL logic level converters or hex CMOS current drivers. Conversion ranges are from CMOS logic operating at 3Vdc to 18Vdc supply levels to DTL or TTL logic operating at 3Vdc to 6Vdc supply levels. Conversion to logic output levels greater than 6Vdc is permitted proving $V_{\rm CC} \leqslant V_{\rm DD}$.

CONNECTION DIAGRAM (all packages) VDD 6Y 6A NC 5Y 5A AV 16 15 14 13 12 11 10 9 4009UB 4010B 7 8 VCC 1Y 1A 2Y 2A **3Y** ЗА Vss Add Suffix for Package: C 16-pin Cerdip D 16-pin Ceramic 16-pin Epoxy 16-pin Flat H Chip

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage $V_{DD} \cdot V_{SS}$ 3 to 15 Vdc $V_{CC} \cdot V_{SS}$ 3 to 15 Vdc $V_{CC} \cdot V_{DD}$ Vdc $V_{CC} \cdot V_{DD}$ Operating Temperature $V_{AC} \cdot V_{DD} \cdot V_{CC} \cdot V_{DD}$ -55 to +125 OC E Device -40 to +85 OC

LOGIC DIAGRAMS

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD}	CONDITIONS	T _{LOW} 2		+25°C			T _{HIGH} ²		Units
		(Vdc)		Min.	Max.	Min.	Typ.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT 4009UB	I _{DD}	5 10 15	V _{IN} = V _{SS} or V _{DD} All valid input combinations		0.25 0.50 1.00	- - -	0.005 0.01 0.02	0.25 0.50 1.00	- - -	7.5 15.0 30.0	μAdc
QUIESCENT DEVICE CURRENT 4010B	I _{DD}	5 10 15	V _{IN} = V _{SS} or V _{DD} All valid input combinations	_ _ _	1.0 2.0 4.0	_ _ _	0.005 0.01 0.02	1.0 2.0 4.0	_ _ _	30 60 120	μAdc
MINIMUM INPUT HIGH VOLTAGE 4009UB	ViH	5 10 15	$V_{OL} = 0.5V$ $V_{OL} = 1.0V$ $V_{OL} = 1.5V$ $I_{O} \le 1\mu A$	-	4.0 8.0 12.0	- - -	2.75 5.5 8.25	4.0 8.0 12.0	- - -	4.0 8.0 12.0	Vdc
MAXIMUM INPUT LOW VOLTAGE 4009UB	VIL	5 10 15	V _{OH} = 3.6V V _{OH} = 7.2V V _{OH} = 10.8V I _O ≤ 1μA	1.0 2.0 2.5	- - -	1.0 2.0 2.5	2.25 4.5 6.75	- - -	1.0 2.0 2.5	- - -	Vdc
OUTPUT HIGH CURRENT (SOURCE)	Іон	5 10 15	V _{OH} = 4.6 V _{OH} = 9.5 V _{OH} = 13.5	- 0.25 - 0.62 - 1.9		- 0.2 - 0.5 - 1.5	_ _ _	- - -	- 0.14 - 0.35 - 1.1		mAdc
OUTPUT LOW CURRENT (SINK)	lor	5 10 15	V _{OL} = 0.4V V _{OL} = 0.5V V _{OL} = 1.5V V _{IN} = V _{SS} or V _{DO}	3.7 9.9 29.8	- - -	3.0 8.0 24	4.0 10 36	- - -	2.1 5.6 16.8	- - -	mAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications". ² $T_{LOW} = -55^{\circ}\text{C}$ for C, D, F, H device $T_{HIGH} = +125^{\circ}\text{C}$ for C, D, F, H device $= +85^{\circ}\text{C}$ for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER	V _{DD} (Vdc)	V _{CC} (Vdc)	Min.	Тур.	Max.	Units	
PROPAGATION DELAY TIME Driving CMOS	t _{PLH}						
		5 10 15	5 10 15	_ _ _	60 35 28	120 70 56	ns
Driving TTL/DTL		5 10	5 5 5	-	45 20	90 40	ns
Driving CMOS		15	5		15	30	
Driving civios	t _{PHL}	5 10 15	5 10 15	- - -	30 18 12	60 36 24	ns
Driving TTL/DTL		5 10 15	5 5 5	- - -	35 15 10	70 30 20	ns
OUTPUT TRANSITION TIME	t _{TLH}	5 10 15	5 10 15	- - -	150 75 60	300 150 120	ns
	t _{THL}	5 10 15	5 10 15	- - -	30 20 12	60 40 24	ns
INPUT CAPACITANCE 4009UB 4010B	C _{IN}		_	-	10 5	15 7.5	pF

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

Typ. voltage transfer characteristics as function of temperature — 4009UB

Typ. voltage transfer characteristics as a function of temperature — 4010B

Min. & max. voltage transfer characteristics — 4009UB

Typ. dissipation characteristics - 4009UB, 4010B

CMOS NAND GATES

4011B - Quad 2-Input NAND 4012B - Dual 4-Input NAND 4023B - Triple 3-Input NAND 4068B - 8-Input NAND

FEATURES

- Buffered Outputs
- Diode Protection on all Inputs
- ♦ Fully "B"-Series Compatible

TRUTH TABLE

Inputs	Output
1 11	0
All other combinations	1

FUNCTION DIAGRAMS

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

 DC Supply Voltage
 VDD - VSS
 3 to 15
 Vdc

 Operating Temperature
 TA
 -55 to +125
 °C

 C, D, F, H Device
 -40 to +85
 °C

STATIC CHARACTERISTICS '

PARAMETER		PARAMETER VDD CONDITIONS		TL	DW ²		+25°C		T _{HIGH} ²		Units
		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.		
QUIESCENT DEVICE CURRENT	loo		V _{IN} = V _{SS} or V _{DD}	_	0.05	_	0.0005	0.05	_	15	иAdc
		10	All valid input combinations	-	0.10	-	0.001 0.002	0.10 0.20	-	3.0 6.0	ا عند سر

Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications."

T_OW = -55°C for C, D, F, H device.

= -40°C for E device.

T_HIGH = +125°C for C, D, F, H device.

= + 85°C for E device. NOTES:

DYNAMIC CHARACTERISTICS (CL . 50pF, TA = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME tp.	LH. PHL	5 10 15	-	125 60 45	250 120 90	ns
OUTPUT TRANSITION TIME	LH, [†] THL	5 10 15	-	100 50 40	200 100 80	ns

Typical P-Channel Source Current Characteristics

Typical N-Channel **Sink Current Characteristics**

LOGIC DIAGRAMS

SCHEMATIC DIAGRAM 4012B (1 of 2 gates)

CMOS NAND GATE (Unbuffered)

FEATURES

- Unbuffered Outputs for Quasi-Linear Applications
- ♦ Quad 2-Input NAND Configuration
- Diode Protection on all Inputs
- Output Drive Current Compatible with "B" Series
- ♦ Pin Compatible with Buffered 4011B

DESCRIPTION

The 4011UB consists of four positive-logic NAND gates. The outputs are unbuffered, making the device suitable for quasi-linear applications, such as gated oscillators, multivibrators, and pulse shaping circuits.

For digital applications, the buffered 4011B is recommended for its higher gain and input pattern insensitivity.

TRUTH TABLE

Inputs	Output
1 1	0
All other combinations	1

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} · V_{SS} 3 to 15 Vdc

Operating Temperature T_A
C, D, F, H Device -55 to +125 °C
E Device -40 to +85 °C

SCHEMATIC DIAGRAM

LOGIC DIAGRAM

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD} (Vdc)	CONDITIONS	TLO	ow²	+25°C			T _{HIGH} ²		Units
				Min.	Max.	Min.	Тур.	Max.	Min.	Max.	0
QUIESCENT DEVICE CURRENT	مما	10	V _{IN} =V _{SS} or V _{DD} All valid input combinations	- - -	0.05 0.10 0.20	_	0.0005 0.001 0.002	0.05 0.10 0.20	1 1 1	1.5 3.0 6.0	μAdc

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

T_{LOW} = -55°C for C, D, F, H device. = -40°C for E device. T_{HIGH} = +125°C for C, D, F, H device. = + 85°C for E device.

DYNAMIC CHARACTERISTICS ($C_L = 50 pF$, $T_A = 25^{\circ}C$)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	t _{PLH} , t _{PHL}	5 10 15	- - -	60 30 25	120 60 50	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

APPLICATIONS INFORMATION

Gated Oscillator

Compensated Monostable Multivibrator (Independent of Transfer Voltage)

Frequency Doubler

FEATURES

- ♦ Independent Set and Reset Controls
- **♦** Static Operation
- ♦ Logic Edge-Clocked Design
- ♦ 16MHz Toggle Rate @ 10Vdc

DESCRIPTION

The 4013B consists of two identical, independent D-type Flip-Flops. These devices can be used for shift register applications, and, by connecting the $\overline{\Omega}$ output to the Data input, for counter and toggle applications. The logic level present at the D input is transferred to the Q output during the positive-going transition of the Clock pulse. Setting or resetting is independent of the Clock and is accomplished by a high level on the Set or Reset line, respectively.

TRUTH TABLE

LOGIC DIAGRAM

CMOS DUAL D-TYPE FLIP-FLOP

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

 DC Supply Voltage
 VDD - VSS
 3 to 15
 Vdc

 Operating Temperature
 TA
 -55 to +125
 °C

 C, D, F, H Device
 -40 to +85
 °C

BLOCK DIAGRAM

STATIC CHARACTERISTICS '

PARAMETER	V _{DD}	CONDITIONS	T _{LOW} ²		+25°C			T _{HIGH} ²		Units
raname ten	(Vdc)	(Vdc)		Max.	Min.	Typ.	Max.	Min.	Max.	0
QUIESCENT DEVICE ID	10	V _{IN} =V _{SS} or V _{DD} All valid input combinations		1.0 2.0 4.0	-	0.005 0.01 0.02	1.0 2.0 4.0	111	30 60 120	μAdc

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications."

T_{LOW} = -55°C for C, D, F, H device. = -40°C for E device. T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (CL = 50pF, TA = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION						
PROPAGATION DELAY TIME	t _{РСН} , t _{РНС}	5 10 15	1 1	125 65 45	250 130 .90	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	1 1	100 50 40	200 100 80	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	-	70 30 20	140 60 40	ns
MAXIMUM CLOCK FREQUENCY	f _{CL}	5 10 15	4.0 8.0 12.5	7.0 16 25	1 1 1	MHz
MAXIMUM CLOCK RISE AND FALL TIME!	troL, troL	5 10 15	15 10 5		1 1 1	μs
MINIMUM SETUP TIME	t _{setup}	5 10 15	-	25 10 7.5	50 20 15	ns
MINIMUM HOLD TIME	t _{hold}	5 10 15	-	-25 -10 -5	0 0 0	ns
SET AND RESET OPERATIONS						
PROPAGATION DELAY TIME S to Q, R to $\overline{\mathbf{Q}}$	t _{PLH}	5 10 15	_ _ _	125 65 45	250 130 90	ns
MINIMUM SET AND RESET PULSE WIDTH	PW _S . PW _R	5 10 15	-	65 30 25	130 60 50	ns
SET AND RESET REMOVAL TIME	t _{rem}	5 10 15	- - -	0 0	25 10 5	ns

1When units are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

FEATURES

- ♦ Synchronous Parallel Input/Serial Output
- ♦ Synchronous Serial Input/Serial Output
- ♦ Fully Static Operation DC to 6 MHz @ 10Vdc
- Q Outputs from Stages 6, 7, and 8 Available

DESCRIPTION

The 4014B is an 8-stage Parallel-Input/Serial Output Register having common Clock and Parallel/ Serial Control inputs, a single Serial Data input, and individual parallel Jam inputs to each register stage. Each register stage is a D-type, master-slave flip-flop. In addition to an output from stage 8, Q outputs are also available from stages 6 and 7. Parallel as well as serial entry is made into the register synchronous with the positive Clock line transition and under control of the Parallel/Serial Control input. When the Parallel/Serial Control input is low, data is serially shifted into the 8-stage register synchronously with the transition of the Clock line. When the Parallel/Serial Control input is high, data is jammed into the 8-stage register via the Parallel Input lines and synchronous with the positive transition of the Clock line. Changes on the Parallel/Serial Control should be made only while the Clock is low. Register expansion using multiple 4014B packages is permitted.

TRUTH TABLE

Conta	A	
Seria	Operati	on

501101	Operation					
t	CLOCK	SER IN	P/S	Q6 t=n+6	Q7 t-n+7	Q8 t≃n+8
n		0	0	0	?	?
n+1		1	0	1	0	?
n+2		0	0	0	1	0
n+3		1	0	1	0	1
	_	X	0	Q6	Q 7	Q8

Parallel Operation

CLOCK	SERIN	P/S	PI-m	•am
\ \	×	1	0	0

*Q6, Q7, and Q8 are available externally

X = Don't Care

CMOS 8-STAGE SHIFT REGISTER

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc

Operating Temperature T_A
C, D, F, H Device -55 to +125 °C
E Device -40 to +85 °C

TERMINAL 8 GND

l 12

STATIC CHARACTERISTICS '

PARAMETER		V _{DD}	CONDITIONS		DW ²	+25°C			T _{HIGH} ²		Units
PANAMETER		(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min. Max.		
QUIESCENT DEVICE CURRENT	IDD	10	V _{IN} =V _{SS} or V _{DD} All valid input combinations	- - -	5 10 20	- -	0.05 0.1 0.2	5 10 20		150 300 600	μAdc

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

T_{LOW} = -55°C for C, D, F, H device.

T_{LOW} = -55 °C for C, D, F, F, H device. = -40°C for E device. T_{HIGH} = +125°C for C, D, F, H device. = + 85°C for E device.

DYNAMIC CHARACTERISTICS (CL = 50pF, TA =25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units-
PROPAGATION DELAY TIME	t _{PLH} , t _{PHL}	5 10 15	- - -	160 80 60	320 160 120	ns
OUTPUT TRANSITION TIME	t _{TLH} , t T HL	5 10 15	- - -	100 50 40	200 100 80	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	_ _ _	90 40 25	180 80 50	ns
MAXIMUM CLOCK FREQUENCY	f _{CL}	5 10 15	3.0 6.0 8.5	5 10 14	111	MHz
MAXIMUM CLOCK RISE AND FALL TIME	t _{rCL} , t _{fCL}	5 10 15	15 15 5	- - -	- - -	μs
MINIMUM SETUP TIME Serial Input	t _{setup}	5 10 15	- - -	60 40 30	120 80 60	ns
P/S Input	t _{setup}	5 10 15	-	90 40 30	180 80 60	ns
Parallel Inputs	t _{setup}	5 10 15	-	90 40 30	180 80 60	ns
MINIMUM HOLD TIME All Inputs	t _{hold}	5 10 15	_ _ _	40 20 10	80 40 20	ns

¹ When units are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

CMOS DUAL 4-STAGE SHIFT REGISTER

FEATURES

- Serial Input/Parallel Output
- Direct Reset
- **♦ Two Independent Sections**
- Fully Static Operation DC to 5MHz @ 10Vdc

DESCRIPTION

The 4015B consists of two identical, independent, 4-stage Serial-Input/Parallel-Output Registers. Each register has independent Clock and Reset inputs as well as a single serial Data input. O outputs are available from each of the four stages on both registers. All register stages are D-type, master-slave flip-flops. The logic level present at the Data input is transferred into the first register stage and shifted right one stage at each positive-going Clock transition. Resetting of all stages is accomplished by a high level on the Reset line. Register expansion to 8 stages using one 4015B package, or to more than 8 stages using additional 4015B's, is possible.

TRUTH TABLE

CL.	D	R	01	Qn
	0	0	0	Q _{n-1}
	1	0	1	Q _{n-1}
	X	0	Q ₁	Qn
X	X	1	0	0

(NO CHANGE)

* = LEVEL CHANGE X = DON'T CARE

LOGIC DIAGRAM

CONNECTION DIAGRAM (all packages) VDD DB RB Q18 Q28 Q38 Q4A CLA 12 13 4015B CLB Q4B Q3A Q2A Q1A RA DA VSS Add suffix for package: C 16-pin Cerdip D 16-pin Ceramic Ε 16-pin Epoxy 16-pin Flat Chip

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

 DC Supply Voltage
 VDD - VSS
 3 to 15
 Vdc

 Operating Temperature
 TA
 -55 to +125
 °C

 C, D, F, H Device
 -55 to +125
 °C

 E Device
 -40 to +85
 °C

BLOCK DIAGRAM

STATIC CHARACTERISTICS

PARAMETER		V _{DD}	CONDITIONS	TL	DW ²		+25°C		THI	GH ²	Units
				Min.	Max.	Min.	Typ.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	اموا	5	V _{IN} =V _{SS} or V _{DD}	_	5		0.05	5		150	μAdc
		10	All valid input combinations	-	10 15	-	0.1 0.2	10 20		300 600	

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (CL = 50pF, TA = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION						
PROPAGATION DELAY TIME	t _{РСН} , t _{РН}	5 10 15	- - -	250 100 90	500 200 180	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns
MINIMUM CLOCK PULSE WIDTH	PW _C L	5 10 15	-	200 100 80	400 200 160	ns
MAXIMUM CLOCK FREQUENCY	fcL	5 10 15	1.25 2 .5 3.0	2.5 5.0 6.0	-	MHz
MAXIMUM CLOCK RISE AND FALL TIME ¹	troL, troL	5 10 15	15 15 5	1 1 1	- - -	μs
MINIMUM DATA INPUT DATA SETUP TIME	t _{setup}	5 10 15	- - -	150 50 40	300 100 80	ns
MINIMUM DATA INPUT HOLD TIME	t _{hold}	5 10 15	- - -	0 0 0	50 25 15	ns
RESET OPERATION						
PROPAGATION DELAY TIME	tpHL	5 10 15	- - -	200 100 90	400 200 180	ns
MINIMUM RESET PULSE WIDTH	PWR	5 10 15	- - -	200 80 60	400 160 120	ns
RESET REMOVAL TIME	t _{rem}	5 10 15	- - -	375 125 100	750 250 200	ns

¹ When units are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

FEATURES

- Wide Range of Digital and Analog Signal Levels-Digital or Analog Signals to 18 Volts peak
- Low ON Resistance —
 200 Ω typ. over 15Vp-p Signal Input Range, @
 15Vdc
- Matched Switch Characteristics 10Ω typ. Difference between R_{ON} Values at a Fixed Bias Point over 15Vp-p Signal Input Range @ 15Vdc
- High On/Off Output Voltage Ratio 65 dB typ.
 f_{is} = 10kHz, R_I = 10KΩ
- ♦ High degree of Linearity ≤ 0.4% Distortion typ. @ f_{is} = 1kHz, V_{is} = 5V_{p-p}, V_{DD}-V_{SS}≥10V, R_L = 10kΩ
- ◆ Extremely Low OFF Switch Leakage Resulting in Very Low Offset Current and High Effective OFF resistance - 10pA typ. @ VDD-VSS = 10V, TA = 25°C
- Extremely High Control Input Impedance (Control Circuit Isolated from Signal Circuit) 10¹²Ω typ.
- Low Crosstalk between Switches -50dB typ.
 f_{is} = 0.9MHz, R_L = 1kΩ
- Matched Control-Input to Signal-Output Capacitances Reduces Output Signal Transients
- ♦ Transmits Frequencies up to 40MHz

DESCRIPTION

The 4016B is a single-chip monolithic silicon integrated circuit containing eight N-channel and eight P-channel enhancement-mode MOS transistors connected to form four independent bilateral signal switches. Each switch consists of both P- and N-channel devices with common source and drain connections. A single control signal is required per switch. Both P and N devices in a given switch are biased ON or OFF by the control signal. The CMOS switch permits peak input-signal voltage swings equal to the full supply voltage, a considerable advantage over single-channel types.

SWITCH A

SCHEMATIC DIAGRAM CONTROL VOLTAGE (V.) VO

SWITCH B

CMOS QUAD ANALOG SWITCH

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} · V_{SS} 3 to 15 Vdc
Operating Temperature T_A
C, D, F, H Device -55 to +125 °C
E Device -40 to +85 °C

LOGIC DIAGRAM

SWITCH C

STATIC CHARACTERISTICS

PARAMETER		CONDITIONS	Vss	VDD	TLC	w ²		25° C		TH	GH ²	Units
- ANAMETER		CONDITIONS	(Vdc)	(Vdc)	Min.	Max.	Min.	Typ.	Max.	Min.	Max.	L
QUIESCENT DEVICE CURRENT	IDD	V _{IN} = V _{SS} or V _{DD} All valid input combinations	0 0 0	5 10 15	-	0.05 0.1 0.2		0.0005 0.001 0.002	0.05 0.1 0.2	-	1.5 3.0 6.0	μAdd
MINIMUM INPUT HIGH VOLTAGE (Control Input)	V _{IH}		0 0 0	5 10 15	- - -	3.5 7.0 11.0		1.5 1.5 1.5	3.5 7.0 11.0	- - -	3.5 7.0 11.0	Vdc
MAXIMUM INPUT LOW VOLTAGE (Control Input)	VIL	V _{IS} = V _{SS} V _{OS} = V _{DD} I _{OS} = 10µA	0 0 0	5 10 15	0.9 0.9 0.9	-	0.7 0.7 0.7	1.5 1.5 1.5	1 1 1	0.4 0.4 0.4	- - -	Vdc
SWITCH INPUT/OUTPUT LEAKAGE (Switch off)	loff	$V_C = V_{SS}$ $V_{IS} = V_{DD}$	0	15	-	± 0.1	-	±10 ⁻⁵	± 0.1	-	±1.0	μAdo
ON-RESISTANCE	R _{ON}	$V_{IS} = \frac{V_{DD} - V_{SS}}{V_{C} = V_{DD}} \frac{2}{R_{L}}$	0	15 10	-	360 600	-	200 250	400 660	-	520 840	Ω
ON-RESISTANCE MATCH (Same package)	ΔR _{ON}	$V_{C} = V_{DD} \qquad (Vdc)$ $R_{L} = 10k\Omega \qquad \frac{127.5}{\pm 5}$	·7.5 ·5	+7.5 +5	=	-	<u>-</u>	10 15	-	-	-	Ω

Conditions for measuring V_{IH}:

 V_{DD}
 V_{OS}
 V_{IS}
 T_{LOW}
 25°C
 T_{HIGH}
 UNITS

 5
 5
 4.6
 -25
 -20
 -14

 10
 10
 9.5
 -62
 -50
 -35
 mA

 15
 15
 13.5
 -1.8
 -1.50
 -1.10
 mA

DYNAMIC CHARACTERISTICS (CL = 50 pF, TA = 25°C)

PARAMETER		CONDITION	V _{SS} (Vdc)	V _{DD} (Vdc)	Min.	Тур.	Max.	UNIT	
SIGNAL INPUTS (VIS) AND OUTP	UTS (Vos)								
PROPAGATION DELAY TIME Signal input to signal output	îры, îрны	V _C = V _{DD} V _{IS} = square wave R _L = 10kΩ		0 0 0	5 10 15	- - -	20 10 7.5	40 20 15	ns
BANDWIDTH (-3dB) (Sine Wave)	вw	V _C = V _{DD} V _{IS} = 5V _{PP} centered @0.0Vdc	R _L 1kΩ 10kΩ 100kΩ 1MΩ		+5	- - -	54 40 38 37		MHz

ELECTRICAL CHARACTERISTICS (Continued) DYNAMIC CHARACTERISTICS (C_L = 50 pF, T_A = 25°C) (Continued)

PARAMETER		CONDITIO	NS	V _{SS} (Vdc)	V _{DD} (Vdc)	Min.	Тур.	Max.	Units
SIGNAL INPUTS (VIS) AND OUTPL	TS (Vos	(Continued)					4	1	
INSERTION LOSS (= 20 log ₁₀ Vos V _{IS})		V _C = V _{DD} V _{IS} = 5V _{pp} centered @0.0Vdc	R _L 1kΩ 10kΩ 100kΩ 1MΩ	-5	+5		2.3 0.2 0.1 0.05	1 -	dB
SIGNAL DISTORTION (Sine Wave)		V _C = V _{DD} V _{IS} = 5V _{PP} centered @0.0Vdc f _{IS} = 1.0kHz R _L = 10kΩ		.5	+5	-	0.4		%
FEEDTHROUGH (-50dB)		V _C = V _S S V _{IS} = 5V _{PP} centered @0.0Vdc	R _L 10kΩ 100kΩ 100kΩ	5	+5		1250 140 18	-	kH7
CROSSTALK (-50dB) (Between two switches)		V _C (A) = V _{DD} V _C (B) = V _{SS} V _{IS} (A) = 5V _{PP} centered @0.0Vdc R _L = 1.0k		·5	+5	-	0.9	-	MHz
CAPACITANCE Input	C _{IS}					-	4	-	 pF
Output Feedthrough	Cos	V _C = V _{SS}		-5	+5	-	4		ρF
	C _{ios}					_	0.2	-	ρF
CONTROL INPUT (VC)									
PROPAGATION DELAY TIME	t _{PLH.} t _{PHL}	$V_{SS} \leq V_{IS} \leq V_{DD}$ $R_L = 10k\Omega$		0 0 0	5 10 15	-	40 20 15	80 40 30	ns
MAXIMUM INPUT FREQUENCY	fc	$V_{SS} \leq V_{IS} \leq V_{OD}$ $R_L = 1.0k\Omega$		0 0 0	5 10 15		5 10 12	-	MHz
CROSSTALK To signal port)		V_C = Square wave R_L = 10k Ω R_{IN} = 1.0k Ω		0 0	5 10 15	-	30 50	-	mV

TYPICAL ON-RESISTANCE CHARACTERISTICS

CHARAC- TERISTIC*		PLY				DAD		
			R _L	- 1kΩ		- 10kΩ	B	100kΩ
	V _{DD} (V)	V _{SS}	VALŪE (Ω)		VALUE (Ω)		VALUE	V _{is} (V)
8	+15	0	200	+15	200	+15	180	+15
RON	715		200	0	200	0	200	0
RON(max.)	+15	0	300	+11	300	+9.3	320	+9.2
R	+10	0	290	+10	250	+10	240	+10
RON	+10	0	290	0	250	0	300	0
R _{ON} (max.)	+10	0	500	+7.4	560	+5.6	610	+5.5
ρ	+ 5	0	860	+ 5	470	+ 5	450	+ 5
RON	7 3	_ "	600	0	580	0	800	0
R _{ON} (max.)	+ 5	0	1.7k	+4.2	7k	+2.9	33k	+2.7
	+7.5	-7.5	200	+7.5	200	+7.5	180	+7.5
RON			200	-7.5	200	-7.5	180	-7.5
RON(max.)	+7.5	-7.5	290	±0.25	280	±25	400	±0.25
PON	+ 5	- 5	260	+ 5	250	+ 5	240	+ 5
ON			310	- 5	250	- 5	240	- 5
R _{ON} (max.)	+ 5	- 5	600	±0.25	580	±0.25	760	±0.25
Rau.	+2.5	-2.5	590	+2.5	450	+2.5	490	+2.5
RON		-2.5	720	-2.5	520	-2.5	520	-2.5
R _{ON} (max.)	+2.5	-2.5	232k	±0.25	300k	±0.25	870k	±0.25

Typ. ON characteristics for 1 of 4 switches with V_{DD} =+15V, V_{SS} =0V

Typ. ON characteristics for 1 of 4 switches with VDD=+10V, VSS=0V

Typ. ON characteristics for 1 of 4 switches with V_{DD} =+5V, V_{SS} =0V

Typ. ON characteristics for 1 of 4 switches with V_{DD} =+7.5V, V_{SS} =-7.5V

Typ. ON characteristics for 1 of 4 switches with VDD=+5V, VSS=-5V

Typ. ON characteristics for 1 of 4 switches with V_{DD} =+2.5V, V_{SS} =-2.5V

Typ. switch frequency response - switch ON

Typ. feedthru vs. freq. - switch OFF

Typ. crosstalk between switch circuits in the same package

Crosstalk-control input to signal output

APPLICATIONS INFORMATION

LOGIC FUNCTIONS USING THE 4016 B

Wos Vos Vos F-A-B

O

LOGIC "O"

AND Gate

Inverter

APPLICATIONS INFORMATION (Continued)

LATCHING DPDT SWITCH

The latch feature insures positive switching action in response to non-repetitive or erratic commands. A HIGH input to A_1 turns S_3 and S_4 ON, a HIGH to A_2 turns S_1 and S_2 ON. Desirable for use with limit detectors, peak detectors, or mechanical contact closures.

Digitally controlled resistor network

Digitally-controlled capacitor network. (VC1 \rightarrow VC7 are Select Inputs)

FEATURES

- ♦ 10 Decoded Decimal Outputs
- Direct Reset
- Trigger from either Edge of Clock Input
- ♦ Carry Output for Cascading Stages
- ♦ Fully Static Operation—DC to 12MHz @ 10Vdc

DESCRIPTION

The 4017B consists of a 5-stage Johnson Decade Counter and an Output Decoder. Inputs include Clock, Reset, and Clock Enable signals.

The counter has interchangeable Clock and Clock Enable lines for incrementing on either a positive-going or negative-going transition, respectively. A high Reset signal clears the counter to its zero count.

Use of the Johnson decade counter configuration permits high-speed operation, 2-input decode gating, and spike-free decoded outputs. Anti-lock gating is provided, thus assuring proper counting sequence. The 10 decoded outputs are normally low and go high only at their respective decoded time slot. Each decoded output remains high for one full clock cycle. A Carry-out (COUT) signal completes one cycle every 10 clock input cycles and is used to directly clock the succeeding counter in multi-stage applications.

This part can be used in frequency division circuits as well as decade counter or decimal decode display applications.

FUNCTIONAL TRUTH TABLE (Positive Logic)

Clock	Clock Enable	Reset	Decode Output = n
0	×	0	n
×	1	0	n
×	X	1	"0"
	0	0	n + 1
\sim	×	0	n
×		0	n
1	~	0	n + 1

x = Don't Care

If n < 5 Carry = "1", Otherwise = "0"

CMOS DECADE COUNTER/DIVIDER

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

 DC Supply Voltage
 VDD - VSS
 3 to 15
 Vdc

 Operating Temperature
 TA
 -55 to +125
 °C

 C, D, F, H Device
 -55 to +125
 °C

 E Device
 -40 to +85
 °C

BLOCK DIAGRAM

STATIC CHARACTERISTICS '

PARAMETER		V _{DD}	CONDITIONS	T _{LOW} ²		+25°C			T _{HIGH} ²		Units
				Min.	Max.	Min.	Typ.	Max.	Min.	Max.	0
QUIESCENT DEVICE	IDD	5	V _{IN} =V _{SS} or V _{DD}	_	5	_	0.05	5	-	150	μAdc
CURRENT	1	10	All valid input	_	10	-	0.1	10	_	300	
	⊥	15	combinations	_	20	_	0.2	20	_	600	

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS ($C_L = 50pF$, $T_A = 25^{\circ}C$)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION						
PROPAGATION DELAY TIME To Decoded Outputs	t _{PLH} , t _{PHL}	5 10 15		350 200 150	700 400 300	ns
To Carry Output	t _{PLH} , t _{PHL}	5 10 15	- - -	325 175 125	650 350 250	ns
OUTPUT TRANSITION TIME Decoded Outputs	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns
Carry Output	t _{TLH} , t _{THL}	5 10 15	-	100 50 40	200 100 80	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	- - -	100 40 30	200 70 60	ns
MAXIMUM CLOCK FREQUENCY	f _{CL}	5 10 15	2.5 7.0 9.3	5.0 12.0 16.0	-	MHz
MAXIMUM CLOCK OR ENABLE RISE AND FALL TIME	troL, troL	5 10 15		NO LIN	ЛІТ	
MINIMUM ENABLE SETUP TIME	t _{setup}	5 10 15	-	100 50 35	300 100 70	ns
MINIMUM ENABLE REMOVAL TIME	t _{rem}	5 10 15		250 100 75	500 200 150	ns
RESET OPERATION						
PROPAGATION DELAY TIME To Decoded Outputs	t _{PLH} , t _{PHL}	5 10 15	- - -	325 175 125	650 350 250	ns
To Carry Output	t _{PLH} , t _{PHL}	5 10 15	- - -	325 175 125	650 350 250	ns
MINIMUM RESET PULSE WIDTH	PWR	5 10 15	- - -	150 75 60	300 150 120	ns
RESET REMOVAL TIME	t _{rem}	5 10 15	- - -	250 100 80	500 200 1,60	ns

STATIC CHARACTERISTICS¹

PARAMENTER	V _{DD}	CONDITIONS	T _{LOW2}		25°C			T _{HI}	Units	
			Min	Max	Min	Тур	Max	Min	Max	
QUIESCENT DEVICE	5	VIN = VSS or VDD	+	5	-		5		150	
	10	All Valid Input	-	10	-	-	10		300	# Adc
CURRENT	15	Combinations	-	20	-	-	20	-	600	

NOTES:

Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications"

T_{LOW} = -55°C for C, D, F, H devices.
= -40°C for E devices.

T_{HIGH} = +125°C for C, D, F, H devices.
= +85°C for E devices.

AC MEASUREMENT DEFINITION AND FUNCTIONAL WAVEFORMS

APPLICATIONS INFORMATION

COUNTER EXPANSION

This figure shows a technique for extending the number of decoded output states for the 4017B. Decoded outputs are sequential within each stage and from stage to stage, with no dead time (except propagation delay).

DIVIDE-BY-N COUNTER

When the Nth decoded output is reached (Nth clock pulse), the S-R flip-flop (constructed from the 4001B) generates a reset pulse which clears the 4017B to its zero count. At this time, if the Nth decoded output is greater than or equal to 6, the COUT line goes high to clock the next counter section. The "O" decoded output also goes high at this time. Coincidence of the clock "low" and decoded "O" output "high" resets the S-R flip-flop to enable the 4017B.

If the Nth decoded output is less than 6, the C_{OUT} line will not go high, and, therefore, cannot be used. In this case, the "O" decoded output may be used to perform the clock function for the next counter.

CMOS PRESETTABLE TABLE DIVIDE-BY-N COUNTER

FEATURES

- Divide by any Number Between 2 and 10 with One External Gate
- Johnson Counter Configuration for Spike-Free Counting
- ♦ Fully Static operation DC to 5MHz @ 10Vdc

DESCRIPTION

The 4018B consists of 5 Johnson-Counter stages, buffered Q outputs from each stage, and counter preset control gating. Clock, Reset, Data, Preset Enable, and 5 individual Jam inputs are provided. Divide-by 10, 8, 6, 4, or 2 counter configurations can be implemented by feeding the Q5, Q4, Q3, Q2, Q1 signals, respectively, back to the Data input, Divide-by-9, 7, 5, or 3 counter configurations can be implemented by use of a single SCL4081B gate to properly gate the feedback connections to the Data input. Divide-by functions greater than 10 can be achieved by use of multiple 4018B units. The counter is advanced one count at the positive clock-signal transition. A high Reset signal clears the counter to an all-zero condition. A high Preset-Enable signal allows information on the Jam inputs to preset the counter. Reset and Preset gating is provided to assure the proper counting sequence.

This device is particularly useful in frequencydivision and control applications.

TIMING DIAGRAM

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc

Operating Temperature T_A
C, D, F, H Device -55 to +125 °C
E Device -40 to +85 °C

BLOCK DIAGRAM

STATIC CHARACTERISTICS'

PARAMETER	VDD			T _{LOW} ²		+25°C			T _{HIGH} ²	
PANAMETER	(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units
QUIESCENT DEVICE LDC		V _{IN} ≃V _{SS} or V _{DD}	_	5	1	0.05	5	_	150	μAdc
	10	All valid input		10	-	0.1	10	- 1	300] !
	15	combinations	_	20		0.2	20	-	600	

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C1 = 50pF, TA = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION						
PROPAGATION DELAY TIME	t _{PLH} , t _{PHL}	5 10 15	- - -	500 150 120	1000 300 240	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	130 65 50	260 130 100	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	- - -	200 100 80	400 200 160	ns
MAXIMUM CLOCK FREQUENCY	f _{CL}	5 10 15	1.25 2.5 3.0	2.5 5.0 6.0	- - -	MHz
MAXIMUM CLOCK RISE AND FALL TIME ¹	t _{rCL} , t _{fCL}	5 10 15	15 15 5		- - -	μς
MIMIMUM DATA INPUT SETUP TIME	t _{setup}	5 10 15	- - -	200 100 80	400 200 160	ns
MINIMUM DATA INPUT HOLD TIME	t _{hold}	5 10 15	- - -	0 0 0	100 50 40	ns
PRESET OR RESET OPERATION						
PROPAGATION DELAY TIME From PE or Reset Input	t _{PLH} , t _{PHL}	5 10 15	- - -	500 250 200	1000 500 400	ns
MINIMUM PRESET OR RESET PULSE WIDTH	PW _{PR} , PW _R	5 10 15	-	200 100 80	400 200 160	ns
MINIMUM JAM INPUT SETUP TIME	t _{setup}	5 10 15	- - -	200 100 80	400 200 160	ns
PRESET OR RESET REMOVAL TIME	t _{rem}	5 10 15	_	375 125 90	750 250 180	ns

¹ When units are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

Typical P-Channel **Source Current Characteristics**

Typical N-Channel Sink Current Characteristics

LOGIC DIAGRAM

TYPICAL COUNTER STAGE

EXTERNAL CONTROL CONNECTIONS

CMOS QUAD AND-OR SELECT GATE

FEATURES

- **♦** Replaces Three Simple Gate Packages
- ♦ Medium Speed Operation
- ♦ All Inputs Diode-Protected
- ♦ All Outputs Buffered

DESCRIPTION

The 4019B is comprised of four "ANDOR Select" gate configurations, each consisting of two 2-input AND gates driving a single 2-input OR gate. Selection is accomplished by control bits K_a and K_b . In addition to selection of either channel A or channel B information, the control bits can be applied simultaneously to accomplish the logical A + B function.

TRUTH TABLE (one of four gates)

Ka	Кb	D
0	0	0
1	0	Α
0	1	В
1	1	A+B

SCHEMATIC DIAGRAM (one of four gates)

CONNECTION DIAGRAM (all packages) V_{DD} A₄ K_b D₄ D₃ D₂ D₁ 15 13 12 16 11 4019B 8 В4 A_3 Вз A_2 B₁ B₂ Vss Add suffix for package: С 16-pin Cerdip D 16-pin Ceramic Ε 16-pin Epoxy

RECOMMENDED OPERATING CONDITIONS

Chip

F

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device -55 to +125 °C E Device -40 to +85 °C

16-pin Flat

LOGIC DIAGRAM

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD} (Vdc)	VDD CONDITIONS		T _{LOW} ²		+25°C			T _{HIGH} ²	
OLUCCOCNIT DELVICE	,	(Vac)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units
QUIESCENT DEVICE CURRENT	I _{DD}	、10	V _{IN} =V _{SS} or V _{DD} All valid input combinations	-	1.0 2.0 4.0	-	0.005 0.01 0.02	1.0 2.0 4.0	-	30 60 120	μAdc

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

2 T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

DYNAMIC CHARACTERISTICS ($C_L = 50 pF$, $T_A = 25^{\circ}C$)

PARAMETER	V _{DD} (Vdc)	Min.	Тур.	Max.	Units	
PROPAGATION DELAY TIME From Any Input	t _{PLH} , t _{PHL}					
mpat	1 1	5	_	150	300	ns
		10	_	60	120	
0.170.17		15		50	100	
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5	-	100	200	ns
		10	-	50	100	
		15	-	40	80	

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

"Shift left/shift right" register.

CMOS 14-STAGE BINARY COUNTER

FEATURES

- ♦ 14 Fully Static Stages
- **♦** Buffered Outputs Available from 12 Stages
- **♦** Common Reset Line
- ♦ 8MHz Counting Rate @ 10Vdc
- ♦ All Inputs Buffered

DESCRIPTION

The 4020B consists of 14 ripple-carry binary counter stages with appropriate input buffers and reset circuitry. Buffered outputs are externally available from stages 1, and 4 through 14. The counter is reset to its "all zeroes" state by a high level on the Reset input. The counter is advanced one count on the negative-going transition of each input pulse. Isolation from external noise and the effects of loading is provided by output buffering.

Applications include time delay circuits, counter controls, and frequency-dividing circuits.

TRUTH TABLE

CLOCK	RESET	OUTPUT STATE
	0	No Change
	0	Advance to next state
х	1	A!I Outputs are low

X = Don't Care

CONNECTION DIAGRAM (all packages)

C 16-pin Cerdip

D 16-pin Ceramic

E 16-pin Epoxy

F 16-pin Flat

H Chip

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

E Device

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc

Operating Temperature T_A
C, D, F, H Device

-55 to +125 °C -40 to +85 °C

LOGIC DIAGRAM

STATIC CHARACTERISTICS '

PARAMETER		V _{DD} (Vdc) CONDITIONS		T _{LOW} ²		+25°C			GH ²	Units
				Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENTIND	5	VIN=VSS or VDD	_	5	_	0.05	5	-	150	μAdc
	10	All valid input	_	10	_	0.1	10	-	300	ŀ
	15	combinations		20		0.2	20		600	<u> </u>

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C₁ = 50pF. T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION						
PROPAGATION DELAY TIME Clock to Q1	t _{PLH} , t _{PHL}	5 10 15	- -	180 80 65	360 160 130	ns
Q_i to Q_{i-+1}	(_{РСН} , (_{РНС}	5 10 15	-	100 40 30	200 80 60	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 40 30	200 80 60	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	- - -	70 30 20	140 60 40	ns
MAXIMUM CLOCK FREQUENCY	fcL	5 10 15	3.0 6.0 7.5	4.5 9.0 11.0	- - -	MHz
MAXIMUM CLOCK RISE AND FALL TIME	t _{rCL} , t _{fCL}	5 10 15	- - -	100 100 100	50 50 50	μs
RESET OPERATION						
PROPAGATION DELAY TIME	t _{PHL}	5 10 15	- - -	200 100 75	400 200 150	ns
MINIMUM RESET PULSE WIDTH	PWR	5 10 15	- - -	100 40 30	200 80 60	ns
RESET REMOVAL TIME	t _{rem}	5 10 15	-	150 65 40	300 125 75	ns

SCL4020B

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

TIMING DIAGRAM

TYPICAL COUNTER STAGE

CMOS 8-STAGE STATIC SHIFT REGISTER

FEATURES

- ◆ Asynchronous Parallel Input/Serial Output
- Synchronous Serial Input/Serial Output
- ◆ Fully Static Operation DC to 8MHz @ 10Vdc
- ♦ Q Outputs from Stages 6, 7, and 8 Available

DESCRIPTION

The 4021B is an 8-Stage Parallel or Serial-Input/Serial-Output Shift Register having common Clock and Parallel/Serial Control inputs, a single Serial Data input, and individual parallel Jam inputs to each register stage. Each register stage is a D-type, master-slave flip-flop. "Q" outputs are available from the sixth, seventh, and eighth stages. When the Parallel/Serial Control input is low, data is serially shifted into the 8-stage register synchronously with the positive-going transition of the Clock pulse.

When the Parallel/Serial Control input is "high" data is jammed into the 8-stage register via the Parallel input line asynchronously with the Clock line

Register expansion is possible using additional 4021B packages.

CONNECTION DIAGRAM (all packages) VDD PI-7 PI-6 PI-5 Q7 IN CL P/S 16 15 14 13 12 11 10 9 4021B 1 2 3 4 5 6 7 8 PI-8 Q6 Q8 PI-4 PI-3 PI-2 PI-1 VSS Add suffix for package: C 16-pin Cerdip F 16-pin Flat D 16-pin Ceramic H Chip E 16-pin Epoxy

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc

Operating Temperature T_A

C, D, F, H Device -55 to +125 °C

E Device -40 to +85 °C

TRUTH TABLE

SERIAL OPERATION:

t	CLOCK	SER IN	P/S	Q6 t=n+6	Q7 t=n+7	Q8 t=n+8
n		0	0	0	?	?
n+1		1	0	1	0	?
n+2		0	0	0	1	0
n+3	_	1	0	1	0	1
		×	0	Q6	Q 7	08

PARALLEL OPERATION:

CLOCK	SER IN	P/S	PI-m	*Q _m
Х	×	1	0	0
×	×	1	1	1

*Q6, Q7, & Q8 are available externally X = Don't Care

LOGIC DIAGRAM

STATIC CHARACTERISTICS 1

PARAMETER		V_{DD}			T _{LOW} ²		+25°C			T _{HIGH} ²	
		(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units
QUIESCENT DEVICE CURRENT	IDD	5 10	V _{IN} = V _{SS} or V _{DD} All valid input	- -	5 10	-	0.05 0.01	5 10	1 1	150 300	μAdc
		15	combinations	-	20	_	0.2	20	_	600	

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50 pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	₽ _{LH} , t _{PHL}					
		5	-	180	360	ns
From Clock or P/S Input		10	-	90	180	
		15		75	150	
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}					
	ונחייוחנן	5	_	100	200	ns
	1	10	_	50	100	
		15	_	40	80	İ
MINIMUM CLOCK PULSE WIDTH	PW _{CL}					
MINIMON CLOCK CLOC WIDTH	,cr	5	_	90	180	ns
		10		40	80	113
		15	_	25	50	l
MAYIMUM CLOCK ERFOLIENCY						
MAXIMUM CLOCK FREQUENCY	fc∟	5	3	5	!	MHz
		10	6	12	_	IVITIZ
		15	8	16	_	
		- 15		10		
MAXIMUM CLOCK RISE & FALL TIME ¹	trCL, tfCL	_		1		l
		5	15	-	-	μs
		10	15	l –	-	
		15	15			L
MINIMUM P/S PULSE WIDTH	PW			1		ĺ
		5	_	80	160	ns
		10	-	40	80	
		15		25	50	
MINIMUM SETUP TIME	t _{setup}					
	36100	5	l _	60	120	ns
Parallel or Serial Inputs		10	l –	40	80	
·		15	_	30	60	
MINIMUM HOLD TIME	thold					
	,uota	5	_	100	200	ns
Parallel or Serial Inputs		10	_	30	60	'''
		15	_	20	40	
P/S REMOVAL TIME	1.					
170 HEMOVAL HIME	t _{rem}	5	_	140	280	ns
		10	_	70	140	113
	1 1	15	1	50	100	l

¹ When units are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

TYPICAL REGISTER STAGE

FEATURES

- **♦ Eight Decoded Outputs**
- Direct Reset
- ◆ Trigger from either Edge of Clock Input
- Carry Output for Cascading Stages
- ♦ Fully Static Operation DC to 5MHz @ 10Vdc

DESCRIPTION

The 4022 B consists of a 4-stage Johnson Divide-by-8 Counter and an Output Decoder. Inputs include Clock, Reset, and Clock Enable signals.

The counter has interchangeable Clock and Clock Enable lines for incrementing on either a positive-going or negative-going transition, respectively. A high Reset signal clears the counter to its zero count.

Use of the Johnson divide-by-eight counter configuration permits high-speed operation, 2-input decode gating, and spike-free decoded outputs. Anti-lock gating is provided, thus assuring proper counting sequence. The 8 decoded outputs are normally low and go high only at their respective decoded time slot. Each decoded output remains high for one full clock cycle. A Carry-out (C_{OUT}) signal completes one cycle every 8 clock input cycles and is used to directly clock the succeeding counter in multi-stage applications.

This part can be used in frequency division circuits as well as octal counter or octal decode display applications.

FUNCTIONAL TRUTH TABLE (Positive Logic)

(i Oskive Logic)						
Clock	Clock Enable	Reset	Output = n			
0	×	0	n			
×	1	0	n			
	0	0	n + 1			
~	×	0	n			
1	_	0	n + 1			
×		0	n			
×	×	1	"0"			

X Don't Care If n < 4 Carry = 1, otherwise = 0

CMOS OCTAL COUNTER/DIVIDER

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device T_A -55 to +125 °C E Device T_A -40 to +85 °C

BLOCK DIAGRAM

STATIC CHARACTERISTICS 1

DADAMETER		V _{DD}	CONDITIONS	T _{LOW} ²		+25°C		T _{HIGH} ²		Units	
PARAMETER		(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	IDD	5	5 V _{IN} = V _{SS} or V _{DD}	_	5	_	0.05	5	_	150	μAdc
			All valid input combinations	1 1	10 20	_	0.1 0.2	10 20		300 600	

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

ELECTRICAL CHARACTERISTICS (Continued)

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER			Min.	Тур.	Max.	Units
CLOCKED OPERATION		(Vdc)	I	<u></u>		L
PROPAGATION DELAY TIME					T	T
To Decoded Outputs	t _{РLH} , t _{РНL}	5 10 15	- - -	600 240 180	1200 480 360	ns
To Carry Output	t _{РLН} , t _{РНL}	5 10 15	- - -	500 200 150	1000 400 .300	ns
OUTPUT TRANSITION TIME						
Decoded Outputs	t _{TLH} , t _{THL}	5 10 15		250 125 90	500 250 180	ns
Carry Output	t _{TLH} , t _{THL}	5 10 15	_ _ _	180 90 65	360 180 130	·ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	_ _ _	200 100 80	400 200 160	ns
MAXIMUM CLOCK FREQUENCY	f _{CL}	5 10 15	1.25 2 .5 3.0	2.5 5.0 6.0	_ _ _	MHz
MAXIMUM CLOCK OR ENABLE RISE AND FALL TIME	t _{rCL} , t _{fCL}	5 10 15	15 15 5	- - -	_ _ _	μs
MINIMUM ENABLE SETUP TIME	t _{setup}	5 10 15	<u>-</u>	175 75 55	350 150 110	ns
MINIMUM ENABLE REMOVAL TIME	t _{rem}	5 10 15	- - -	250 100 75	500 200 150	ns
RESET OPERATION						
PROPAGATION DELAY TIME To Decoded Outputs	t _{PLH} , t _{PHL}	5 10 15	- - -	500 200 140	1000 400 280	ns
To Carry Output	t _{PLH}	5 10 15		400 150 110	800 300 220	ns
MINIMUM RESET PULSE WIDTH	PWR	5 10 15	- - -	150 75 60	300 150 120	ns
RESET REMOVAL TIME	t _{rem}	5 10 15	- - -	250 100 80	500 200 160	ns

AC MEASUREMENT DEFINITION AND FUNCTIONAL WAVEFORMS

LOGIC DIAGRAM C. C. (193) C.

APPLICATIONS INFORMATION

COUNTER EXPANSION

This figure shows a technique for extending the number of decoded output states for the 4022 B. Decoded outputs are sequential within each stage and from stage to stage, with no dead time (except propagation delay).

DIVIDE-BY-N-COUNTER

When the Nth decoded output is reached (Nth clock pulse) the S-R flip-flop (constructed from the 4001B) generates a reset pulse which clears the 4022B to its zero count. At this time, if the Nth decoded output is greater than or equal to 4, the COUT line goes high to clock the next counter section. The "0" decoded output also goes high at this time. Coincidence of the clock "low" and details time.

coded "0" output "high" resets the S-R flip-flop to enable the 4022B.

If the Nth decoded output is less than 4, the $C_{\mbox{OUT}}$ line will not go high, and, therefore, cannot be used. In this case, the "0" decoded output may be used to perform the clock function for the next counter.

CMOS 7-STAGE BINARY COUNTER

FEATURES

- ♦ 7 Fully Static Stages
- ♦ Buffered Outputs Available from All Stages
- **♦** Common Reset Line
- ♦ 8 MHz Counting Rate @ 10Vdc
- ♦ All Inputs Buffered

DESCRIPTION

The 4024B is a single chip monolithic medium scale integrated circuit containing N-Channel and P-Channel enhancement-mode MOS transistors. Seven single-phase clocked counting stages are provided with the Q output of each stage accessible. The Counter is reset to "zero" by a high level on the Reset input. Each counter stage is a static master-slave flip-flop. The counter state is advanced one count on the negative-going transition of each input pulse.

TRUTH TABLE

Clock	Reset	State
0	0	No Change
0	1	All Outputs Low
1	0	No Change
1	1	All Outputs Low
	0	No Change
	1	All Outputs Low
_	0	Advance One Count
	1	All Outputs Low

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device E Device -55 to +125 °C -40 to +85 °C

LOGIC DIAGRAM

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD}	CONDITIONS	TL	ow ²		+25°C			T _{HIGH} ²		
		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units	
QUIESCENT DEVICE CURRENT	IDD	5	V _{IN} = V _{SS} or V _{DD}	_	5		0.05	5		150	μAdc	
oomilier.		10	All valid input	_	10 20	_	0.05 0.1 0.2	10 20	-	300 600	μΑστ	

NOTES:
1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".
2 TLOW = -55°C for C, D, F, H device.
= -40°C for E device.
THIGH = +125°C for C, D, F, H device.
= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50 pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION						
PROPAGATION DELAY TIME Clock to Q ₁	t _{PLH} , t _{PHL}	5 10 15	_ _ _	180 80 65	360 160 130	ns
Q _i to Q _{i+1}	t _{PLH} , t _{PHL}	5 10 15	- - -	100 40 30	200 80 60	ns
OUTPUT TRANSITION TIME	t _{тьн} , t _{тнь}	5 10 15	_ _ _	100 50 40	200 100 80	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	- - -	120 60 45	240 120 90	ns
MAXIMUM CLOCK FREQUENCY	f _{CL}	5 10 15	2 5 6	4 10 12	=	MHz
MAXIMUM CLOCK RISE AND FALL TIME	t _{rCL} , t _{fCL}	5 10 15	15 10 5	_ _ _	<u>-</u> -	μς
RESET OPERATION						
PROPAGATION DELAY TIME	t _{PHL}	5 10 15	_ _ _	200 100 80	400 200 160	ns
MINIMUM RESET PULSE WIDTH	PW _R	5 10 15	_ _ _	200 100 80	400 200 160	ns
RESET REMOVAL TIME	t _{rem}	5 10 15	- - -	200 100 80	400 200 160	ns

Typical P-Channel Source Current Characteristics

Typical N-Channel
Sink Current Characteristics

TYPICAL COUNTER STAGE

CMOS DECADE 7-SEGMENT DECODERS

FEATURES

- Decade Counter and 7-Segment Decoder in One Package
- ♦ Easily Interfaced with 7-Segment Display Types
- Direct Reset
- ♦ Display Enable Function (4026AB)
- Ripple Blanking and Lamp Test Functions (4033AB)
- ◆ Trigger from either Edge of Clock Input
- Carry Output for Cascading Stages
- ♦ Fully Static Operation DC to 5MHz @ 10Vdc

DESCRIPTION

These two devices each consist of a 5-stage Johnson Decade Counter and an Output Decoder which converts the Johnson code to a 7-segment decoded output for driving each stage in a numerical display. A high Reset signal clears the decade counter to its zero count. The counters have interchangeable Clock and Clock Enable lines for incrementing on either a positive-going or negative-going transition, respectively. Antilock gating is provided on the Johnson counter, thus assuring proper counting sequence. The Carry-Out (COUT) signal completes one cycle every ten clock input cycles and is used to directly clock the succeeding decade in a multi-decade counting chain.

4026AB

When the Display Enable is low, the seven decoded outputs are forced off regardless of the state of the counter. Activation of the display only when required results in significant power savings. This system also facilitates implementation of display-character multiplexing.

The Carry Out and ungated "C-segment" signals are not gated by the Display Enable and therefore are available continuously. This feature is a requirement in implementation of certain divider functions such as divide-by-60 and divide-by-12.

4033AB

The 4033AB has provisions for automatic blanking of the non-significant zeros in a multidigit decimal number which results in an easily readable display consistent with normal writing practice. For example, the number 0050.0700 in an eight digit display would be displayed as 50.07. Zero suppression on the integer side is obtained by connecting the RBI terminal of the 4033AB associated with the most significant digit in the display to a "low-level" voltage and connecting the RBO terminal of that stage to the RBI terminal of the 4033AB in the next-lower-significant position in the display. This procedure is continued for each succeeding 4033AB on the integer side of the display. On the fraction side of the display the

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device T_A -55 to +125 °C E Device T_A -40 to +85 °C

RBI of the 4033AB associated with the least significant digit is connected to a "low-level" voltage and the RBO of the 4033AB is connected to the RBI terminal of the 4033AB in the next-more-significant-digit position. Again, this procedure is continued for each 4033AB on the fraction side of the display.

In a purely fractional number the zero immediately preceding the decimal point can be displayed by connecting the RBI of that stage to a high voltage (instead of to the RBO of the next-more-significant stage). For Example: optional zero - 0.7346.

Likewise, the zero in a number such as 763.0 can be displayed by connecting the RBI of the 4033AB associated with it to a "high-level" voltage.

A "high" Lamp Test signal turns on all outputs.

4026AB Decade Counter/7-Segment Decoder with Display Enable

STATIC CHARACTERISTICS '

PARAMETER		VDD	CONDITIONS	TL	ow ²		+25°C		THI	GH ²	Units
		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Oilles
QUIESCENT DEVICE CURRENT	IDD	5 10 15	V _{IN} =V _{SS} or V _{DD} All valid input combinations	=	5 10 20	-	0.05 0.1 0.2	5 10 20	-	150 300 600	μAdc
OUTPUT HIGH (SOURCE) CURRENT											
Decoded outputs	Юн	5 10 15	V _{OH} = 4.6 V V _{OH} = 9.5 V V _{OH} = 13.5 V V _{IN} = V _{SS} or V _{DD}	-0.175 -0.375 -1.25		-0.14 -0.3 -1.0	-0.28 -0.6 -2.5	- - -	-0.10 -0.21 -0.7		mAdc
Carry output		5 10 15	V _{OH} =4.6V V _{OH} =9.5V V _{OH} =13.5V V _{IN} =V _{SS} or V _{DO}	-0.19 -0.43 -1.57		-0.15 -0.35 -1.25	-0.4 -1.0 -4.0		-0.11 -0.25 -0.88	111	mAdc
Remaining Outputs			V _{OH} =4.6V V _{OH} =9.5V V _{OH} =13.5V V _{IN} =V _{SS} or V _{DD}	-0.10 -0.25 -0.75		-0.08 -0.20 -0.60	-0.2 -0.5 -1.5	- - -	-0.056 -0.14 -0.42	i -	mAdc
OUTPUT LOW (SINK) CURRENT											
All Outputs Except Carry	Ю	5 10 15	V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V V _{IN} =V _{SS} or V _{DD}	0.125 0.31 1.44	-	0.1 0.25 1.15	0.3 0.6 2.5		0.07 0.175 0.81	- - -	mAdc
Carry output			V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V V _{IN} =V _{SS} or V _{DD}	0.19 0.45 1.57	-	0.15 0.35 1.25	0.4 1.0 4.0		0.11 0.25 0.88	- - -	mAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

ELECTRICAL CHARACTERISTICS (Continued)

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION						
PROPAGATION DELAY TIME Clock to Decoded Outputs	t _{PLH} , t _{PHL}	5 10 15	- - -	500 225 175	1000 450 350	ns
Clock to Carry Out	t _{PLH} , t _{PHL}	5 10 15	1 1 1	450 125 100	900 250 200	ns
OUTPUT TRANSITION TIME Decoded Outputs	t _{TLH} , t _{THL}	5 10 15	- -	250 125 100	500 250 200	ns
Carry Output	t _{TLH} , t _{THL}	5 10 15	- - -	200 100 80	400 200 160	ns
MINIMUM CLOCK OR ENABLE PULSE WIDTH	PW _{CL} , PW _{CE}	5 10 15	- - -	200 100 80	400 200 160	ns
MAXIMUM CLOCK FREQUENCY	f _{CL}	5 10 15	1,25 2,5 3,0	2.5 5.0 6.0	- - -	MHz
MAXIMUM CLOCK OR ENABLE RISE AND FALL TIME	t _{rCL} , t _{fCL}	5 10 15	15 15 3	_ _ _	- - -	μs
MINIMUM CLOCK OR ENABLE SETUP TIME	t _{satup}	5 10 15	- - -	250 100 80	500 200 160	ns
RESET OPERATION				,		r
PROPAGATION DELAY TIME Reset to Decoded Outputs	t _{PLH} , t _{PHL}	5 10 15	- - -	700 250 200	1400 500 400	ns
Reset to Carry Output	t _{PLH} , t _{PHL}	5 10 15	- -	500 125 100	1000 250 200	ns
MINIMUM RESET PULSE WIDTH	PWR	5 10 15	- - -	200 100 80	400 200 160	ns
RESET REMOVAL TIME	t _{rem}	5 10 15	- - -	375 150 125	750 300 250	ns

DISPLAY INTERFACE

CMOS DUAL J-K FLIP-FLOP

FEATURES

- ♦ Individual Set and Reset Controls
- ♦ Fully Static Operation
- ♦ Logic Edge-Clocked Design
- ♦ 8MHz Toggle Rate @ 10Vdc

DESCRIPTION

The 4027B consists of two identical independent CMOS J-K master-slave Flip-Flops. The 4027B is useful in performing control, register, and toggle functions. Logic levels present at the J and K inputs along with internal self-steering control the state of each flip-flop; changes in the flip-flop state are synchronous with the positive-going transition of the Clock pulse. Set and Reset functions are independent of the Clock and are initiated when a high level signal is present at either the Set or Reset input.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc
Operating Temperature T_A
C, D, F, H Device -55 to +125 °C
E Device -40 to +85 °C

TRUTH TABLE

•1	n-1	IN	PUT	rs		tt _n OUTPUTS			
CL▲	CLA J K S R 1 X 0 0 X 0 0 X 0 0 X 1 0 0						ā		
	1	x	0	0	0	1	0		
	×	0	0	0	1	1	0		
	0	x	0	0	0	0	1		
	×	1	0	0	1	0	1		
7	×	х	0	0	x			(No Change)	
×	x	×	1	0	х	1	0		
Х	×	×	0	1	×	0	1		
×	×	×	1	1	x	1	1		

WHERE 1 = HIGH LEVEL 0 = LOW LEVEL

- 0 = LOW LEVEL
- A-LEVEL CHANGE X-DON'T CARE
- t_{n-1} REFERS TO THE INTERVAL PRIOR TO THE POSITIVE CLOCK PULSE TRANSITION
- †- t_n REFERS TO THE TIME INTER-VAL AFTER THE POSITIVE CLOCK PULSE TRANSITION

LOGIC DIAGRAM (one of two Flip-Flops)

BLOCK DIAGRAM

STATIC CHARACTERISTICS '

PARAMETER	VDD	CONDITIONS	TL	DW ²		+25°C		THI	GH ²	Units
	(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Omits
QUIESCENT DEVICE IC	10	V _{IN} =V _{SS} or V _{DD} All valid input combinations	- - - -	1.0 2.0 4.0	-	0.005 0.01 0.02	1.0 2.0 4.0	- -	30 60 120	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (CL = 50pF, TA = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION	-					
PROPAGATION DELAY TIME	t _{PLH} , t _{PHL}	5 10 15	-	150 65 50	300 130 100	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- -	100 50 40	200 100 80	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	-	165 60 50	330 120 100	ns
MAXIMUM CLOCK FREQUENCY	fcL	5 10 15	1.5 4.0 5.0	3.0 8.0 10	-	MHz
MAXIMUM CLOCK RISE AND FALL TIME ¹	t _{rCL} , t _{fCL}	5 10 15	15 5 3	_	-	μs
MINIMUM SETUP TIME	t _{setup}	5 10 15	=	100 50 40	200 100 80	ns
MINIMUM HOLD TIME	t _{hold}	5 10 15	-	-25 -10 -5	0	ns
SET AND RESET OPERATION			h			
PROPAGATION DELAY TIME S to Q, R to Q	t _{PLH}	5 10 15	- - -	150 65 50	300 130 100	ns
MINIMUM SET AND RESET PULSE WIDTH	PW _S , PW _R	5 10 15	-	100 50 40	200 100 80	ns
SET AND RESET REMOVAL TIME	t _{rem}	5 10 15	- - -	0 0 0	25 10 5	ns

¹ When units are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

Typical P-Channel Source Current Characteristics

Typical N-Channel **Sink Current Characteristics**

FEATURES

- ♦ BCD-to-Decimal or Binary-to-Octal Decoding
- ♦ Buffered Outputs go High on Selection
- **♦** Low Outputs for all Illegal Input Combinations

DESCRIPTION

The 4028B types are BCD-to-Decimal or Binary-to-Octal Decoders consisting of pulse shaping circuits on all 4 inputs, decoding/logic gates, and 10 output buffers. A BCD code applied to the four inputs, A to D, results in a high level at the selected one of 10 decimal decoded outputs. Similarly, a 3-bit binary code applied to inputs A through C is decoded in octal code at output 0 to 7. A high-level signal at the D input inhibits octal decoding and causes outputs 0 through 7 to go low. If unused, the D input must be connected to V_{SS}.

Expanded decoding such as binary-to-hexadecimal (1-of-16), etc., can be achieved by using other 4028B devices. This part is useful for code conversion, address decoding, memory selection control, demultiplexing, and readout decoding.

TRUTH TABLE

	In	put						0	utp	ut			
D	C	В	Α	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	1	0	0	Ó	0	0	0
0	1	1	1	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	1	1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0

CMOS BCD-TO-DECIMAL DECODER

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc

Operating Temperature T_A

C, D, F, H Device -55 to +125 °C

E Device -40 to +85 °C

BLOCK DIAGRAM

STATIC CHARACTERISTICS '

PARAMETER		V _{DD}	CONDITIONS	TL	DW ²		+25°C		THI	GH ²	Units
		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units
QUIESCENT DEVICE CURRENT	loo	10	V _{IN} ≖V _{SS} or V _{DD} All valid input combinations	- -	5 10 20	=	0.05 0.1 0.2	5 10 20	-	150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	[†] РГН, [†] РНГ	5 10 15	-	150 60 50	300 120 100	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	-	90 50 40	180 100 80	ns

Typical P-Channel **Source Current Characteristics**

Typical N-Channel **Sink Current Characteristics**

LOGIC DIAGRAM

APPLICATIONS INFORMATION

CODE CONVERSION CIRCUIT

The circuit shown here converts any 4-bit code to a decimal or hexadecimal code. The table shows a number of codes and the decimal or hexadecimal number in these codes which must be applied to the input terminals of the 4028B to select a particular output. For example: in order to get a "high" on output No. 8 the input must be either an 8 expressed in 4-Bit Binary code, a 15 expressed in 4-Bit Gray code, or a 5 expressed in Excess-3 code.

Г	_	_	_		INPL	JT (000	ES	_	Г	_		-	_	_	_	_	_	_	-	_	_			_
ı				He De			Dec	me	_	1					_										
	inp	01	•	BINARY	BIT	XCESS-3	KCESS 3	AIKEN	221	<u> </u>															
D	C	8	A	40	40	3	ű	₹	•	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	٥	0			0	0	•	0	0	0	0	0	0	0	0	0	0	၅	0	0	0	9
0	0	0	1	1	1			1	ľ	0	1	0	0	0	0	0	0	0	0	0	0	0	٥	0	0
0	0	1	0	2	3	Ц	9	2	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	3	2	0	3	3	L	0	0	0	1	0	0	0	0	0	0	0	0	٥	٥	٥	0
0	1	0	0	4	7	1	4	4	L	0	0	0	0	Ŀ	0	0	0	0	0	0	٥	٥	٥	0	0
0	Ľ	0	1	5	6	2		L	3	0	0	0	٥	0	1	0	0	0	0	0	0	٥	0	0	0
0	!	1	0	6	4	3	•	L	•	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	1	1	1	7	5	4	~	L	L	0	٥	0	0	٥	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	8	15	5		L		0	0	0	۰	0	0	0	0	1	0	0	0	0	0	0	0
_	0	0	1	9	14	6		L	3	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
1	0	1	•	2	12	•	9		6	0	٥	0	0	0	٥	۰	0	٥	0	1	0	0	0	0	0
1	0	1	1	11	13			5		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
-	1	0	0	12		٠	5	6		0	0	0	0	0	0	0	0	0	0	0	0	1	0	٥	0
1	1	0	1	13			6	7	7	٥	0	0	0	0	0	٥	0	0	0	0	0	0	1	0	0
1	,	1	0	2	11				8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
1	1	1	1	15	10		7	9	9	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	•	1

Code Conversion Chart

6-BIT BINARY TO 1-OF-64 ADDRESS DECODER

CMOS PRESETTABLE UP/DOWN COUNTER

FEATURES

- Binary or Decade Up/Down Counting
- BCD Outputs in Decade Mode
- ♦ Asynchronous Preset Enable
- ♦ Internally Synchronous for High Speed
- ♦ Logic Edge-Clocked Design
- ♦ 6MHz Counting Rate @ 10Vdc
- **♦** Carry Output for Cascading Stages

DESCRIPTION

The 4029B consists of a four-stage Binary or BCD Decade Up/Down Counter with provisions for look-ahead carry in both counting modes. The inputs consist of a single Clock, Carry-in (Clock Enable), Binary/Decade, Up/Down, Preset Enable, and four individual Jam signals. Four separate buffered Q signals and a Carry-out signal are provided as outputs.

A high Preset Enable signal allows information on the Jam inputs to preset the counter to any state asynchronously with the Clock. A low on each Jam line, when the Preset/Enable signal is high, resets the counter to its zero count. The counter is advanced one count at the positive transition of the Clock when the Carry-in and Preset Enable signals are low. Advancement is inhibited when the Carryin or Preset Enable signals are high. The Carry-out signal is normally high and goes low when the counter reaches its maximum count in the Up mode or the minimum count in the Down mode provided the Carry-in signal is low. The Carry-in signal in the low state can thus be considered a "Clock Enable". The Carry-in terminal must be connected to VSS when not in use.

Binary counting is accomplished when the Binary/Decade input is high; the counter counts in the Decade mode when the Binary/Decade input is low. The counter counts up when the Up/Down input is high, and Down when the Up/Down input is low. Multiple packages can be connected in either a parallel-clocking or a ripple-clocking arrangement. Parallel-clocking provides synchronous control and hence faster response from all counting outputs. Ripple-clocking allows for longer clock input rise and fall times.

This counter finds primary use in up/down and difference counting and programmable frequency synthesizer applications. It is also useful in A/D and D/A conversion techniques and for magnitude and sign generation.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage $V_{DD} \cdot V_{SS}$ 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device -55 to +125 °C E Device -40 to +85 °C

TRUTH TABLE

СĪ	U/D	PE	B/D	Action
1	×	0	X	No Count
0	1	0	0	Count Up (Decade)
0	1	0	1	Count Up (Binary)
0	0	0	0	Count Down (Decade)
0	0	0	1	Count Down (Binary)
×	X	1	×	Preset

X = Don't Care

BLOCK DIAGRAM

STATIC CHARACTERISTICS '

PARAMETER		V _{DD}	CONDITIONS	TLI	ow ²	+25°C			THE	Units	
			Min.	Max.	Min.	Тур.	Max.	Min.	Max.	O.III.	
QUIESCENT DEVICE	IDD										
CURRENT		5	V _{IN} =V _{SS} or V _{DD}	-	5	_	0.05	5	_	150	μAdc
		10	All valid input	-	10	_	0.1	10	_	300	
		15	combinations	-	20	_	0.2	20	_	600	

NOTES:
1 Remaining Static Characteristics are listed under "4000B Series Family Specifications"
2 T_{LOW} = -55°C for C, D, F, H device.
= -40°C for E device.
T_{HIGH} = +125°C for C, D, F, H device.
= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION				1		L
PROPAGATION DELAY TIME Clock to Q	t _{PLH} , t _{PHL}	5 10 15	_ _ _	250 120 90	500 240 180	ns
Clock to Carry Out		5 10 15	-	280 130 95	560 260 190	ns
Carry In to Carry Out		5 10 15	-	170 70 50	340 140 100	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	_ _ _	170 85 70	340 170 140	ns
MAXIMUM CLOCK FREQUENCY	f _{CL}	5 10 15	2.0 4.0 5.5	4 8 11	-	MHz
MAXIMUM CLOCK RISE AND FALL TIME ¹	troL, troL	5 10 15	15 15 15	_ _ _	-	μs
MINIMUM SETUP TIME Carry In	t _{setup}	5 10 15	- - -	150 65 50	300 130 100	ns
Up/Down, B/D		5 10 15	- - -	325 115 85	650 230 170	ns
PRESET OPERATION						
PROPAGATION DELAY TIME Preset Enable to Q	t _{PLH} , t _{PHL}	5 10 15	- - -	360 140 110	720 280 220	ns
Preset Enable to Carry Out		5 10 15	= =	410 165 130	820 330 260	ns
MINIMUM PRESET ENABLE PULSE WIDTH	PW _{PE}	5 10 15	-	170 85 70	340 170 140	ns
PRESET ENABLE REMOVAL TIME	t _{rem}	5 10 15	-	325 110 90	650 220 180	ns

¹ When units are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

APPLICATIONS INFORMATION

CASCADING CONNECTIONS PARALLEL CLOCKING PRESET THARLE UN/OPER 1, 12, 13, 14 4029B CO BUNDARY PRESET THARLE THARLE CLOCKING PRESET THARLE CLOCKING

PROGRAMMABLE CASCADED FREQUENCY DIVIDER

FEATURES

- **♦** Buffered Outputs
- Diode Protection on all Inputs
- ♦ Fully "B"-Series Compatible
- Pin Compatible with 4070 types, MC14507, 74C86

DESCRIPTION

The 4030B contains four independent exclusive-OR gates integrated on a single monolithic silicon chip. Each exclusive-OR gate consists of five N-Channel and five P-Channel enhancement-mode transistors, plus output buffering devices.

TRUTH TABLE (one of four gates)

Α	В	Y
0	0	0
1	0	1
0	1	1
1	1	0

Where 1 = High Level 0 = Low Level

LOGIC DIAGRAM

SCHEMATIC DIAGRAM (one of four gates)

CMOS QUAD EXCLUSIVE-OR GATE

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device -55 to +125 °C E Device -40 to +85 °C

Note: The 4030B is identical to the 4070B; the devices are fully interchangeable in all applications.

FUNCTION DIAGRAM

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD}	CONDITIONS	T _{LOW} ²			+25°C		THI	Units	
				Min.	Max.	Min.	Тур.	Max.	Min.	Max.	0
QUIESCENT DEVICE CURRENT	I _{DD}	10	V _{IN} =V _{SS} or V _{DD} All valid input combinations	- - -	0.05 0.10 0.20	-	0.0005 0.001 0.002	0.05 0.10 0.20		1.5 3.0 6.0	μAdc

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

 2 T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

THIGH = +125°C for C, D, F, H device.
= + 85°C for E device.

DYNAMIC CHARACTERISTICS (CL = 50pF, TA = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	t _{РСН} , t _{РН}	5 10 15	- - -	140 65 50	280 130 100	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- -	100 50 40	200 100 80	ns

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

APPLICATIONS INFORMATION 8-BIT TWO'S COMPLEMENT ADDER/SUBTRACTOR

×	x,	X ₆	×s	X ₄	X3	x,	X ₁			×e	×7	×	4	×	×3	x2	x,	
0	•	•	9	0			0			1	1	1	1	1	1	1	1	• -1
0		0			۰	0	1	•	1	1	1	1	1	1	1	1		2
•	0	0	0	•		1	۰	•	2	1	1	1	1	1	1	0	1	• -3
0	0	•	•		•	1	1	•	3	1	1	1	1	1	1	•	•	
						•	•		٠	1	1	1	1	1	٥	1	1	- 4
						•			٠		•	•	•	٠	•	•	•	
	•	•	•		•	•			٠.	٠	•	•	•	•	•	•	•	•
•							•				•	•	•	•	•	•	•	•
•		•	•	•	•	•	•		٠		•	•	•	•	•	•	•	•
•	•		•	•	• •	•	•			•	•	•	•	•	•	•	•	•
0	1	1	1	1	1	1	0	- 1		1	0		0	۰	0	0	1	12
•		1	1	1	1	1	1	- 1	27	1	•	•	•	•	•		0	13

Two's complement numbers and their equivalent decimal values.

CMOS 8-BIT UNIVERSAL BUS REGISTER

FFATURES

- **♦** Bidirectional Parallel Data Inputs
- ◆ Parallel or Serial Inputs/Parallel Outputs
- Asynchronous or Synchronous Parallel Data Loading
- **♦** Data Recirculation for Register Storage
- ◆ Parallel Enable on Data Lines for Bus Connection
- ♦ Static Operation DC to 5MHz @ 10Vdc

DESCRIPTION

The 4034 B is a Static Eight-Stage Parallelor Serial-Input/Parallel-Output Register. It can be used to:

- 1. bidirectionally transfer parallel information between two buses.
- 2. convert serial data to parallel form and direct the parallel data to either of two buses.
 - 3. store (recirculate) parallel data, or
- 4. accept parallel data from either of two buses and convert that data to serial form.

Inputs that control the operations include a single phase Clock (CL), "A" Data Enable (AE), Asynchronous/Synchronous (A/S), "A" bus to "B" bus/"B" bus to "A" bus (A/B), and Parallel/Serial (P/S). Data inputs include 16 bidirectional Parallel Data lines of which the eight "A" Data lines are inputs (outputs) and the "B" Data lines are outputs (inputs) depending on the signal level on the A/B input. In addition, an input for Serial data is also provided.

All register stages are D-type master/slave flipflops with separate master and slave clock inputs generated internally to allow synchronous or asynchronous data transfer from master to slave. Isolation from external noise and the effects of loading is provided by output buffering.

Useful applications for this device include pseudo-random code generation, sample-and-hold register, frequency and phase comparators, address or buffer register, and serial/parallel input/output conversion.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage $V_{DD} \cdot V_{SS}$ 3 to 15 Vdc Operating Temperature $\cdot T_{A}$ D, H Device $\cdot 55$ to +125 °C E Device $\cdot 40$ to +85 °C

BLOCK DIAGRAM

OPERATING INFORMATION

The 4034 B is composed of eight register cells connected in cascade with additional control logic. Each register cell is composed of one "D' master-slave flip-flop with separate internal clocks, and two data transfer gates allowing the data to be transferred bidirectionally from bus A to bus B and from bus B to bus A, and to be memorized. Besides the single phase clock and the serial data inputs, the control logic provides four other features:

A Enable Input — When high, this input enables the bus A data lines.

A/B Input (Data A or B) — This input controls the direction of data flow: when high, the data

flows from bus A to bus B; when low, the data flows from bus B to bus A.

P/S Input (Parallel/Serial) — This input controls the data input mode (Parallel or Serial). When high, the data is transferred to the register in a parallel asynchronous mode or a parallel synchronous mode (positive clock transition). When low, the data is entered into the register in a serial synchronous mode (positive clock transition).

A/S Input (Asynchronous/Synchronous to the Clock) — When this input is high, the data is transferred independently from the clock rate; when low, the clock is enabled and the data is transferred synchronously.

Truth Table for Register Input-Levels and the Resulting Operation
(L = Low Level, H = High, X = Don't Care)

"A" Enable	P/S	A/B	A/S	Operation*
L	L	٦	Х	Serial Mode; Synch. Serial Data Input, "A" Parallel Data Outputs Disabled
٦	L	н	X	Serial Mode; Synch. Serial Data Input, "B" Parallel Data Output
_	н	L	L	Parallel Mode; "B" Synch, Parallel Data Inputs, "A" Parallel Data Outputs Disabled
٦	Н	L	Н	Parallel Mode; "B" Asynch. Parallel Data Inputs, "A" Parallel Data Outputs Disabled
L	Н	H	L	Parallel Mode; "A" Parallel Data Inputs Disabled, "B" Parallel Data Outputs, Synch Data Recirculation
L	H	н	H	Parallel Mode; "A" Parallel Data Inputs Disabled, "8" Parallel Data Outputs, Asynch Data Recirculation
Н	L	_	х	Serial Mode; Synch. Serial Data Input, "A" Parellel Data Output
Н	L	Н	х	Serial Mode; Synch. Serial Data Input, "B" Parallel Data Output
Н	Н	L	L	Parallel Mode; "B" Synch. Parallel Data Input, "A" Parallel Data Output
Н	Н	L	н	Parallel Mode; "B" Asynch. Parallel Data Input, "A" Parallel Data Output
Н	Н	Ŧ	L	Parallel Mode; "A" Synch. Parallel Data Input, "B" Parallel Data Output
Н	Н	Н	н	Parallel Mode; "A" Asynch. Parallel Data Input, "B" Parallel Data Output

Outputs change at positive transition of clock in the serial mode and when the A/S control input is "low" in the perallel mode.

TIMING DIAGRAM

LOGIC DIAGRAM

STATIC CHARACTERISTICS 1

PARAMETER		VDD	CONDITIONS	T _{LOW} ²		+25°C			THI	Units	
		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	0
QUIESCENT DEVICE CURRENT	IDD	5	V _{IN} =V _{SS} or V _{DD}		5		0.05	5	_	150	μAdc
Comment			All valid inputs	_	10	_	0.1	10	_	300	μAdc
		15	combinations		20	_	0.2	20	_	600	
3-STATE OUTPUT LEAKAGE	lzL	15		_	±0.1	_	±10 ⁻⁴	±0.1		±1.0	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for D, H device.
= -40°C for E device.

T_{HIGH} = +125°C for D, H device.
= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	t _{PLH} , t _{PHL}	5 10 15		350 120 100	700 240 200	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	_ _ _	180 90 70	360 180 140	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	-	125 50 40	250 100 80	ns
MAXIMUM CLOCK FREQUENCY	f _{CL}	5 10 15	2 4 6	4 8 12	=	MHz
MAXIMUM CLOCK RISE AND FALL TIME ¹	t _{rCL} , t _{fCL}	5 10 15	15 15 15	_ 	=	μs
MINIMUM HIGH-LEVEL PULSE WIDTH AE, P/S, A/S Inputs	PWAE, PWP/S, PWA/S	5 10 15	- - -	180 90 70	360 180 140	ns
MINIMUM SETUP TIME A, B; Serial Inputs	t _{setup}	5 10 15	_ _ _	140 70 50	280 140 100	ns

¹ When units are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

APPLICATIONS INFORMATION

16-Bit parallel in/parallel out, parallel in/serial out, serial in/parallel out, serial in/serial out register.

16-Bit Serial in/gated parallel out register

N-stage shift register with fixed serial output line.

Sample and hold register - serial/parallel in parallel out.

Frequency and phase comparator

APPLICATIONS INFORMATION (Continued)

positive transition of the clock signal. A "high" on a "A" Enable Input disables the "A" parallel data lines on Reg. 1 and 2 and enables the "A" data lines, on register 3 and 4 and allows parallel data into registers 1 and 2. Other logic schemes may be

associated logic are not required.

*Shift Left input must be disabled during parallel entry.

Shift right/shift left with parallel inputs

Single and double-bus systems

CMOS 4-BIT PARALLEL-IN/PARALLEL-OUT SHIFT REGISTER

FEATURES

- ◆ 4-Stage Clocked Serial-Shift Operation
- ◆ Synchronous Parallel Loading of All Stages
- ♦ J-K Serial Inputs to First Stage
- Asynchronous True/Complement Control of all Outputs
- **♦** Asynchronous Reset
- ♦ Static Operation DC to 6MHz @ 10Vdc

DESCRIPTION

The 4035B is a Four-Stage Clocked Serial Register having provisions for synchronous parallel inputs to each stage and serial inputs to the first stage via JK logic. Register stages 2, 3, and 4 are coupled in a serial "D" flip-flop configuration when the register is in the serial mode (Parallel/Serial control low).

Parallel entry via the "D" line of each register stage is permitted only when the Parallel/Serial control is high. In the parallel or serial mode information is transferred on positive Clock transitions.

When the True/Complement control is high, the true contents of the register are available at the output terminals. When the True/Complement control is low, the outputs are the complements of the data in the register. The True/Complement control functions asynchronously with respect to the Clock signal.

JK input logic is provided on the first stage serial input to minimize logic requirements, particularly in counting and sequence-generation applications. With JK inputs connected together, the first stage becomes a "D" flip-flop. An asynchronous common Reset is also provided.

This device may be used for shift-right/shift-left registers, parallel-to-serial/serial-to-parallel conversion, sequence generation, up/down Johnson or ring counters, pseudo-random code generation, frequency and phase comparators, and sample-and-hold registers.

TRUTH TABLE

		t _n .	ı (İn	puts)	t _n (Outputs)
CL	J	ĸ	R	Q _{n-1}	α _n
\	0	х	0	0	0
	1	x	0	0	1
	x	0	0	1	0
5	1	0	0	Q _{n-1}	ɑ̃ _{n-1} Toggle Mode
	×	1	0	1	1
7	×	×	0	a _{n-1}	Q _{n-1}
×	×	×	1	х	0

X = Don't Care

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} · V_{SS} 3 to 15 Vdc

Operating Temperature T_A

C, D, F, H Device -55 to +125 °C

E Device -40 to +85 °C

BLOCK DIAGRAM

STATIC CHARACTERISTICS

PARAMETER	V _{DD}	CONDITIONS	TL	DW ²		+25°C		THE	GH ²	Units
	(Vdc)	/dc)		Max.	Min.	Тур.	Max.	Min.	Mex.	0
QUIESCENT DEVICE ID		V _{IN} =V _{SS} or V _{DD}	_	5		0.05	5		150	μAdc
COMMENT	10	All valid input	_	10	_	0.03	10	-	300	MAGE
	15	combinations	_	20	-	0.2	20	-	600	

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

T_{LOW} = -55°C for C, D, F, H device. = -40°C for E device. T_{HIGH} = +125°C for C, D, F, H device. = + 85°C for E device.

DYNAMIC CHARACTERISTICS (CL = 50pF, TA = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION						
PROPAGATION DELAY TIME From Clock Input	t _{PLH} , t _{PHL}	5 10 15	-	250 100 75	500 200 150	ns
From T/C Input	t _{PLH} , t _{PHL}	5 10 15	-	150 60 45	300 120 90	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	=	80 40 30	160 80 60	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	=	100 45 30	200 90 60	ns
MAXIMUM CLOCK FREQUENCY	f _{CL}	5 10 15	2.0 5.0 6.0	4.0 10.0 12.0	· -	MHz
MAXIMUM CLOCK RISE & FALL TIME ¹	t _{rCL} , t _{fCL}	5 10 15	15 15 15	Ē	-	μs
MINIMUM SETUP TIME J, K Inputs	t _{setup}	5 10 15	-	110 40 30	220 80 60	ns
P/S, Parallel Inputs	t _{setup}	5 10 15	- -	70 25 20	140 50 40	ns
MINIMUM HOLD TIME J, K inputs	^t hold	5 10 15		-25 -10 - 5	25 10 5	กร
P/S, Parallel Inputs	t _{hold}	5 10 15	-	-25 -10 - 5	25 10 5	ns
RESET OPERATION						
PROPAGATION DELAY TIME	t _{PHL}	5 10 15	- - -	230 120 90	460 240 180	ns
MINIMUM RESET PULSE WIDTH	PWR	5 10 15	1 1	125 55 40	250 110 80	ns

¹ When units are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

LOGIC DIAGRAM

APPLICATIONS INFORMATION

Shift Left/Shift Right Register

CMOS 12-STAGE BINARY COUNTER

FEATURES

- 12 Fully Static Stages
- **♦ All 12 Buffered Outputs Available**
- Common Reset Line
- 8MHz Counting Rate @ 10Vdc
- All Inputs Buffered

DESCRIPTION

The 4040 B consists of 12-ripple-carry binary counter stages with appropriate input buffers and reset circuitry. The counter is reset to its "all 0's" state by a high level on the Reset input. The counter is advanced one count on the negative-going transition of each input pulse. Isolation from external noise and the effects of loads is provided by output buffering.

Applications include time delay circuits, counter controls, and frequency dividers.

TRUTH TABLE

Clock	Reset	Output State
5	0	No Change
~	0	Advance to next state
×	. 1	All Outputs are low

X = Don't Care

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage VDD · VSS 3 to 15 Vds
Operating Temperature TA
C, D, F, H Device -55 to +125 °C
E Device -40 to +85 °C

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD}	CONDITIONS	TL	DW ²		+25°C		TH	GH ²	Units
		(Vdc)	00.00	Min.	Max.	Min.	Typ.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	IDD		V _{IN} =V _{SS} or V _{DD}	_	5	_	0.05	5	-	150	иAdc
		10	All valid input	-	10 20	-	0.1	10 20	_	300 600	

NOTES: Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

TLOW = -55°C for C, D, F, H device.
= -40°C for E device.

THIGH = +125°C for C, D, F, H device.
= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER	V _{DD} (Vdc)	Min.	Тур.	Max.	Units			
CLOCKED OPERATION								
PROPAGATION DELAY TIME Clock to Q1	t _{PLH} , t _{PHL}	5 10 15		180 80 65	320 160 130	ns		
Q _i to Q _{i+1}	t _{PLH} , t _{PHL}	5 10 15	- - -	100 40 30	200 60 30	ns		
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15'	_ _ _	100 40 30	200 80 60	ns		
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	- - -	70 30 20	140 60 40	ns		
MAXIMUM CLOCK FREQUENCY	f _{CL}	5 10 15	3.0 6.0 7.5	4.5 9.0 11.0	-	MHz		
MAXIMUM CLOCK RISE AND FALL TIME	t _{rCL} , t _{fCL}	5 10 15	50 50 50	100 100 100	-	μς		
RESET OPERATION								
PROPAGATION DELAY TIME	t _{PHL}	5 10 15	- - -	200 100 75	400 200 150	ns		
MINIMUM RESET PULSE WIDTH	PWR	5 10 15	- - -	100 40 30	200 80 60	ns		
RESET REMOVAL TIME	t _{rem}	5 10 15	- - -	150 65 40	300 125 _75	ns		

Typical P-Channel
Source Current Characteristics

Typical N-Channel
Sink Current Characteristics

TIMING DIAGRAM

TYPICAL COUNTER STAGE

CMOS QUAD TRUE/COMPLEMENT BUFFER

FEATURES

- Both True and Complement Outputs Available Simultaneously
- **♦** High Source and Sink Current
- Diode Protection on All Inputs

DESCRIPTION

The 4041UB Quad True/Complement Buffer is a monolithic integrated circuit constructed with P-Channel and N-Channel enhancement-mode devices. The outputs have low resistance and are capable of sinking or sourcing high currents for use in driver applications where high noise immunity and low power dissipation are required.

This device is useful as a line-driver, CMOS-to-TTL driver, low-power resistor-network driver for A/D and D/A conversion, display and clock drivers.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc
Operating Temperature T_A
C, D, F, H Device -55 to +125 °C

E Device -40 to +85 °C

SCHEMATIC DIAGRAM (one of four buffers)

LOGIC DIAGRAM

STATIC CHARACTERISTICS!

PARAMETER		VD	P. CONDITIONS	TL	ow ²	T .	+25°C			THIGH ²	
PANAMETEN		(Vd		Min.	Max.	Min.	Typ.	Max.	Min.	Max.	Units
QUIESCENT DEVICE CURRENT	10	1 1		=	1.0 2.0 4.0	=	0.005 0.01 0.02	1.0 2.0 4.0	=	30 60 120	μAdc
MINIMUM INPUT HIGH VOLTAGE	V	ІН									
Non-Inverting Outputs		10		=	7.0 11.0	-	2.75 5.5 8.25	3.5 7.0 11.0	- -	3.5 7.0 11.0	Vdc
Inverting Outputs		1()!	V _{OL} =1.0V	-	4.0 8.0 12.0	-	2.75 5.5 8.25	4.0 8.0 12.0	-	4.0 8.0 12.0	Vdc
MAXIMUM INPUT LOW VOLTAGE	V	ıL									
Non-Inverting Outputs		10 1!	V _{OL} =1.0V	1.5 3.0 4.0	- - -	1.5 3.0 4.0	2.25 4.5 6.75	-	1.5 3.0 4.0	- - -	Vdc
Inverting Outputs		10	V _{OH} =9.0V	1.0 2.0 3.0	-	1.0 2.0 3.0	2.25 4.5 6.75	1 1 1	1.0 2.0 3.0	-	Vdc
OUTPUT HIGH (SOURCE) CURRENT											
Non-Inverting Outputs	ľ	10 15	VOH=9.5V	-1.7 -5.0 -16		-1.4 -4.0 -13		1 1	-1.0 -2.8 -9	- - -	mAdc
Inverting Outputs		10 15	V _{OH} =9.5V	-0.75 -2.2 -8.0	1 1 1	-0.6 -1.8 -6.5	-1.0 -3.6 -13	-	-0.42 -1.3 -4.5		mAdc
OUTPUT LOW (SINK) CURRENT	lo										
Non-Inverting Outputs	'0	10 15	Vol =0.5V	2.0 6.2 23	- -	1.6 5.0 18.5	3.2 10 38	<u>-</u> -	1.1 3.5 13	- -	mAdc
Inverting Outputs		10 15		1.0 2.5 11	<u>-</u>	0.8 2.0 8.5	1.3 4.0 17	- -	0.56 1.4 5.8	- -	mAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

ELECTRICAL CHARACTERISTICS (Continued)

DYNAMIC CHARACTERISTICS (CL = 50pF, TA = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME Non-Inverting Outputs	t _{РСН} , t _{РНС}	5 10 15	_ _ _	60 35 25	120 70 50	ns
Inverting Outputs	t _{PLH} , tPHL	5 10 15	-	60 35 25	120 70 50	ns
OUTPUT TRANSITION TIME Non-Inverting Outputs	t _{TLH} , t _{THL}	5 10 15	_ _ _	40 20 15	80 40 30	ns
Inverting Outputs	t _{TLH} , t _{THL}	5 10 15		35 20 15	70 40 <u>30</u>	ns
INPUT CAPACITANCE	CIN	_	_	10	15	pF

NON-INVERTING (TRUE) OUTPUT

Typical P-Channel Source Current Characteristics

Typical N-Channel
Sink Current Characteristics

INVERTING (COMPLEMENT) OUTPUT

Typical P-Channel Source Current Characteristics

Typical N-Channel
Sink Current Characteristics

Typical transition time vs. C₁-true output.

Typical transition time vs. C_L-complement output.

Typical propagation delay time vs. C_L-true output.

Typical propagation delay time vs. C_L-complement output.

APPLICATIONS INFORMATION

For resolution and accuracy of $\pm \frac{1}{2}$ least significant bit (LSB), choose the values for R (shown in Table I) where R equals the value of the external ladder resistor plus the switch source impedance.

TABLE I. RESISTANCE VALUES AT $V_{DD}-V_{SS}=5V$, $T_A=25^{\circ}C$

RESOLUTION	ESOLUTION ACCURACY OF 1/2 LSB				
4 bit	± 3.25% of full scale	3.5 k			
6 bit	± 0.8% of full scale	14 k			
8 bit	±0.2% of full scale	56 k			
10 bit	±0.05% of full scale	224 k			
12 bit	±0.0125% of full scale	896 k			

The values have been tabulated for V_{DD} = 5V and V_{SS} = 0V. For different supply (reference) voltages, the switch source impedance must be computed and added to the value of R shown in Table I).

TABLE II. ON RESISTANCE VALUES AT VDS = 0.1V, TA = 25°C

V _{DD} -V _{SS} (Volts)	R _N (Ω)	Rp (Ω)
5	175 ± 50	200 ± 75
10	75 ± 25	90 ± 30

CMOS QUAD LATCH

FEATURES

- **♦** Common Clock
- ♦ Positive- or Negative-Edge Clocking
- ♦ Q and Q Outputs Available from Each Latch

DESCRIPTION

4042B devices contain four Latch circuits, each strobed by a common Clock. Complementary buffered outputs are available from each circuit.

Information present at the Data input is transferred to outputs Q and $\overline{\mathbf{Q}}$ during the Clock level which is programmed by the Polarity input. For Polarity = 0 the transfer occurs during the 0 Clock level and for Polarity = 1 the transfer occurs during the 1 Clock level. The outputs follow the Data inputs providing the Clock and Polarity levels defined above are present. When a Clock transition occurs (positive for Polarity = 0 and negative for Polarity = 1) the information present at the input during the Clock transition is retained at the outputs until an opposite Clock transition occurs.

TRUTH TABLE

CLOCK	POLARITY	Q
0	0	D
۲	0	LATCH
1	1	D
¬L	1	LATCH

LOGIC DIAGRAMS One of four latches

Clock Input Control

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc
Operating Temperature T_A
C, D, F, H Device -55 to +125 °C

E Device 40 to +85 °C

BLOCK DIAGRAM

STATIC CHARACTERISTICS

PARAMETER		V _{DD}	CONDITIONS	TL	ow ²		+25°C		THI	GH ²	Units
		(Vdc)		Min.	Max.	Min.	Typ.	Max.	Min.	Max.	Omits
QUIESCENT DEVICE CURRENT	I _{DD}	10	V _{IN} =V _{SS} or V _{DD} All valid input combinations	- -	5 10 20	-	1.0 2.0 4.0	5 10 20	-	150 300 600	μAdc

NOTES: 1 Remaining Static Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device. = -40°C for E device. T_{HIGH} = +125°C for C, D, F, H device. = + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME From Data Inputs	t _{PLH} , t _{PHL}	5 10 15	_ _ _	110 55 40	220 110 80	ns
From Clock Polarity Inputs	t _{PLH} , t _{PHL}	5 10 15	- - -	150 75 50	300 150 100	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	-	100 50 40	200 100 80	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	- -	100 50 30	200 100 60	ns
MAXIMUM CLOCK RISE AND FALL TIME	t _{rCL} , t _{fCL}	5 10 15	15 5 3	- - -	- - -	μs
MINIMUM DATA INPUT SETUP TIME	t _{setup}	5 10 15	- - -	-20 -10 -5	50 30 25	ns
MINIMUM DATA INPUT HOLD TIME	thold	5 10 15	- - -	0 0 0	100 50 40	ns

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

CMOS QUAD 3-STATE R-S LATCHES

FEATURES

- ♦ Separate Set and Reset Inputs for each Latch
- ♦ Active-High (4043 B) or Active-Low (4044 B) Inputs
- ♦ 3-State Outputs with Common Enable

DESCRIPTION

4043 B types are Quad cross-coupled 3-state CMOS NOR Latches, and the 4044 B types are Quad cross-coupled 3-state CMOS NAND Latches. Each latch has a separate Q output and individual Set and Reset inputs. The Q outputs are gated through transmission gates controlled by a common Enable input. A logic "1" or "high" on the Enable input connects the latch states to the Q outputs. A logic "0" or "low" on the Enable input disconnects the latch states from the Q outputs, resulting in an open circuit condition on the Q outputs. The open circuit feature allows common bussing of the outputs. The logic operation of the latches is summarized in the truth table below.

TRUTH TABLES

4043 B

	s	R	E	Q
	×	X O	0 -	OC*
	0	0		0 △
+	NO C	CIRC HANG NATE	3E	S = I INPUT
		40	044 B	
	s	R	Ε	<u> a</u>
	X 0 1	X ! ! 0	0 1 1 1 1	OC* NC+ I O
+	NO C	CIRC HANC INATE	3E	R = O INPUT

CONNECTION DIAGRAMS (all packages) VDD R4 S4 NC S3 R3 Q3 13 12 4043 B 8 ΕN s_2 Vss Q4 Q1 R₁ S₁ Q_2 R4 Q1 R3 S3 Q3 V_{DD} S₄ 9 12 13 16 4044 B 4 5 3 Q4 NC S1 R₁ EN Add suffix for package: 16-pin Flat 16-pin Cerdip С 16-pin Ceramic Chip D 16-pin Epoxy

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc

Operating Temperature T_A
C, D, F, H Device -55 to +125 °C
E Device -40 to +85 °C

BLOCK DIAGRAMS

STATIC CHARACTERISTICS '

PARAMETER		VDD	CONDITIONS	TL	ow ²		+25°C		THI	GH ²	Units
				Min.	Max.	Min.	Typ.	Max.	Min.	Max.	0
QUIESCENT DEVICE CURRENT	l _{DD}	10	V _{IN} =V _{SS} or V _{DD} All valid input combinations		1.0 2.0 4.0	1 1 1	0.005 0.01 0.02	1.0 2.0 4.0		30 60 120	μAdc
3-STATE OUTPUT LEAKAGE CURRENT	IZL	15	Enable = V _{SS}	-	±0.1	-	±10-4	±0.1	-	±1.0	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "40008 Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (CL = 50pF, TA = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME From S or R Inputs	t _{PLH} , t _{PHL}	5 10 15	- -	150 70 50	300 140 100	ns
From Enable Input	t _{PHZ} , t _{PLZ} t _{PZH} , t _{PZL}	5 10 15	-	75 35 30	150 70 60	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns
MINIMUM SET OR RESET PULSE WIDTH	PW _S , PW _R	5 10 15	-	80 40 30	160 80 60	ns
SET OR RESET REMOVAL TIME	t _{rem}	5 10 15	-	25 15 10	50 30 20	ns

Typical P-Channel Source Current Characteristics

Typical N-Channel **Sink Current Characteristics**

LOGIC DIAGRAMS

APPLICATIONS INFORMATION

FEATURES

- Very low power consumption 70 μW (typ)
 e f_o = 10kHz, 5Vdc
- Operating frequency range (no offset) Up to 3MHz (typ) @ 10Vdc (4046B)
 Up to 4MHz (typ) @ 10Vdc (4446B)
- ♦ Low frequency drift 0.04%/°C (typ) @ 10Vdc
- Choice of two phase comparators:
 - 1. Exclusive-OR network
 - 2. Edge-controlled memory network with phase-pulse output for lock indication
- VCO Inhibit control for ON-OFF keying and ultra-low standby power consumption
- ♦ High VCO linearity 1% (typ)
- Source-follower output of VCO control input (Demodulator Output)
- Zener Diode to assist Supply Regulation

APPLICATIONS

- FM demodulator and modulator
- ♦ Frequency synthesis and multiplication
- Frequency discriminator
- Data synchronization
- Voltage-to-frequency conversion
- Tone decoding
- ◆ FSK-Modems
- Signal conditioning

DESCRIPTION

4046B and 4446B phase-locked loops contain two phase comparators, a voltagecontrolled oscillator (VCO), source follower, and zener diode. The comparators have two common inputs. The Signal input can be used directly coupled to large voltage signals, or indirectly coupled (with a series capacitor) to small voltage signals. The self-bias circuit adjusts small voltage signals in the linear region of the amplifier. Phase comparator I (an exclusive OR gate) provides a digital error signal PCI_{out}, and maintains 90° phase shift at the center frequency between Signal and Comparator inputs (both at 50% duty cycle). Phase comparator II (with leading edge sensing logic) provides digital error signals PCIIout and Phase Pulses, and maintains a 0° phase shift between input signals (duty cycle is immaterial). The linear VCO produces an output signal VCO out whose frequency is determined by the voltage of input VCOin and the capacitor and resistors connected to pins C1A, C1B, R1, and R2. The source follower output, Demod Out, with an external resistor is used where the VCOin signal is needed but no loading can be tolerated. The inhibit input Inh, when high, disables the VCO and source follower to minimize standby power consumption. The zener diode can be used to assist in power supply regulation.

CMOS PHASE-LOCKED LOOPS

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

BLOCK DIAGRAM

Fig. 1

VCO SECTION

The VCO requires one external capacitor (C1) and one to two external resistors (R1 or R1 and R2). Resistor R1 and capacitor C1 determine the frequency range of the VCO and resistor R2 enables the VCO to have a frequency offset if required. The high input impedance ($10^{12}\Omega$) of the VCO simplifies the design of low-pass filters by permitting the designer a wide choice of resistor-to-capacitor ratios. In order not to load the low-pass filter, a source-follower output of the VCO input voltage is provided at terminal 10 (DEMODULA-

TOR OUTPUT). If this terminal is used, a load resistor (Rg) of $50 k\Omega$ or more should be connected from this terminal to $V_{SS}.$ If unused, this terminal should be left open. The VCO can be connected directly or through frequency dividers to the comparator input of the phase comparators. A full CMOS logic swing is available at the output of the VCO. A logic 0 on the INHIBIT input "enables" the VCO and the source follower, while a logic 1 "turns off" both to minimize stand-by power consumption.

PHASE COMPARATORS

The phase-comparator signal input (terminal 14) can be direct-coupled provided the signal swing is within CMOS logic levels [logic "0" \leq 30% (V_{DD} - V_{SS}), logic "1" \geq 70% (V_{DD} - V_{SS})]. For smaller swings the signal must be capacitively coupled to the self-biasing amplifier at the signal input.

Phase comparator I is an exclusive-OR network; it operates analogously to an over-driven balanced mixer. To maximize the lock range, the signal and comparator-input frequencies must have a 50% duty cycle. With no signal or noise on the signal input, this phase comparator has an average output voltage equal to $V_{\rm DD}/2$. The low-pass filter connected to the output of phase comparator I supplies the averaged voltage to the VCO input, and causes the VCO to oscillate at the center frequency ($f_{\rm O}$).

The frequency range of input signals on which the PLL will lock, if it was initially out of lock, is defined as the frequency capture range (2f_c).

The frequency range of input signals on which the loop will stay locked if it was initially in lock is defined as the frequency lock range (2f_L). The capture range can not exceed the lock range.

With phase comparator I, the range of frequencies over which the PLL can acquire lock (capture range) is dependent on the low-pass-filter characteristics, and can be made as large as the lock range. Phase-comparator I enables a PLL system to remain in lock in spite of high amounts of noise in the input signal.

One characteristic of this type of phase comparator is that it may lock onto input frequencies that are close to harmonics of the VCO centerfrequency. A second characteristic is that the phase angle between the signal and the comparator input varies between 0° and 180°, and is 90° at the center frequency. Figure 2 shows the (typical) triangular phase-to-output response characteristic of phase-comparator I. Typical waveforms for a CMOS phase-locked-loop employing phase comparator I in locked condition is shown in Figure 3.

Fig. 2 — Phase-comparator I characteristics at low-pass filter output.

Fig. 3 — Typical waveforms employing phase comparator I in locked condition

Fig. 4 — Typical waveforms employing phase comparator II in locked condition.

Phase-comparator II is an edge-controlled digital memory network. It consists of several flip-flop stages, control gating, and a three state output circuit comprising p- and n-type drivers having a common output node. When the p-MOS or n-MOS drivers are ON, they pull the output up to VDD or down to VSS, respectively. This type of phase comparator acts only on the positive edges of the signal and comparator inputs. The duty cycles of the signal and comparator inputs are not important since positive transitions control the PLL system utilizing this type of comparator. If the signal lags the comparator input in phase, the n-type output driver is maintained ON for a time corresponding to the phase difference. If the comparator input lags the signal in phase, the p-type output driver is maintained ON for a time corresponding to the phase difference. Subsequently, the capacitor voltage of the low-pass filter connected to this phase comparator is adjusted until the signal and comparator inputs are equal in both phase and frequency. At this stable point, both p- and n-type output

drivers remain OFF. Thus, the phase comparator output becomes an open circuit and holds the voltage on the capacitor of the low-pass filter constant. Moreover, the signal at the "phase pulses" output is a high level which can be used for indicating a locked condition. Thus, for phase comparator II, no phase difference exists between signal and comparator input over the full VCO frequency range. Moreover, the power dissipation due to the low-pass filter is reduced when this type of phase comparator is used because both the p- and n-type output drivers are OFF for most of the signal input cycle.

It should be noted that the PLL lock range for this type of phase comparator is equal to the capture range, independent of the low-pass filter. With no signal present at the signal input, the VCO is adjusted to its lowest frequency for phase comparator II. Figure 4 shows typical waveforms for a CMOS PLL employing phase comparator II in a locked condition.

DESIGN INFORMATION

This information is a guide for approximating the values of external components for the 4046B and 4446B in a Phase-Locked Loop system. The selected external components must be within the following ranges:

R1, R2 \geqslant 2k Ω , R_S \geqslant 10k Ω C1 \geqslant 15pF

In addition to the given design information refer to Figure 5 for R1, R2, and C1 component selections.

REF. G. S. Moschytz, "Miniaturized RC Filters Using Phase-Locked Loop", BSTJ, May, 1965.

PARAMETER		V _{DD}	CONDITIONS	TL	OW ²		+25°C		THE	GH ²	Units
		(Vdc)		Min.	Max.	Min.	Typ.	Max.	Min.	Max.	0
QUIESCENT DEVICE CURRENT	I _{DD}	5	Inhibit = V _{DD} Signal Input = V _{DD}	-	5 10 20	-	0.05 0.01 0.2	5 10 20	- -	150 300 600	μAdc
TOTAL POWER DISSIPATION	P _T	5 10 15	$\begin{aligned} &\text{Inh} = V_{SS},\\ &VCO_{IN} = \frac{V_{DD}}{f_o} = 10k\text{Hz},\\ &C_L = 15pF\\ &R1 = 1M\Omega,\\ &R2 = R_S = \infty \end{aligned}$	1 1 1	111	1 - 1	0.07 0.6 2.4	1 1		<u> </u>	mW

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

PARAMETER		CONDI	TION	e	\/		25°C		
		CONDI	IION	3	V _{DD}	Min.	Тур.	Max.	UNIT
VCO SECTION									
MAXIMUM OPERATING FREQUENCY	f _{max}								
4046B			R1	C1			1		1
		R2 = ∞ VCO _{IN} = V _{DD}	10k	50pF	5 10 15	0.5 1.0 1.3	0.8 1.5 1.9	-	MHz
			5k	50pF	5 10 15	0.6 1.4 1.8	1.0 2.1 2.7		MHz
			2k	50pF	5 10 15	- -	1.3 2.9 3.8	-	MHz
4446B		R2 = ∞	R1	C1·					
		VCO _{IN} = V _{DD}	10k	50pF	5 10 15	0.7 1.3 1.9	1.0 2.0 2.8	-	MHz
			5k	50pF	5 10 15	0.9 1.9 2.6	1.3 2.9 3.9	-	MHz
			2k	50pF	5 10 15	_ _ _ _	1.8 3.9 5.4	-	MHz
LINEARITY		R2 = ∞ VCO _{IN} = 2.5±0 R1 ≥ 10kΩ).3V,		5	-	1	_	%
		VCO _{IN} = 5.0±2 R1≥400kΩ	2.5V,		10	-	1	-	
		VCO _{IN} = 7.5±5 R1≥1MΩ	5.0V,	i	15	-	1	-	
INPUT	C _{IN}	Pin 14 Only			_	_	-	10	_
CAPACITANCE	~IN	All Other Inputs						7.5	pF .

ELECTRICAL CHARACTERISTICS (Continued)

					+25°C		
PARAMETER		CONDITIONS	V _{DD}	Min.	Тур.	Max.	UNIT
VCO SECTION (Continu	ed)			_			
TEMPERATURE- FREQUENCY STABILITY No Offset		R2 = ∞	5 10 15	-	0.12-0.24 0.04-0.08 0.015-0.03	_ _ _	%/°C
With Offset		R2≤ 10X R1	5 10 15	-	0.06-0.12 0.05-0.1 0.03-0.06	- - -	%/°C
INPUT RESISTANCE (VCO _{IN})	R _{IN}		5, 10, 15	_	10 ⁶	_	мΩ
OUTPUT DUTY CYCLE		All valid input combinations and voltages		_	50	_	%
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	C _L = 50pF	5 10 15	_ _ _	100 50 40	200 100 80	ns
PHASE COMPARATORS	3					•	
INPUT RESISTANCE Signal Input	R _{IN}		5 10 15	1 0.2 0.1	3 0.7 0.3	- - -	мΩ
Comparator Input	RIN		5, 10, 15	_	106	-	мΩ
AC-COUPLED INPUT SENSITIVITY Signal Input	VIN		5 10 15	- -	200 400 700	400 800 1400	mV
OUTPUT TRANSITION TIME PCI, PCII Outputs	t _{TLH} , t _{THL}	C _L ≈ 50pF	5 10 15	- - -	100 50 40	200 100 80	ns
Phase Pulses Output	t _{TLH} , t _{THL}		5 10 15	- - -	130 65 50	260 130 100	ns
DEMODULATOR OUTP	UT						
OFFSET VOLTAGE	VCO _{IN} · V _{DEM}	R _S >50kΩ	5 10 15	- - -	1.4 1.6 1.8	2.2 2.2 2.2	Vdc
LINEARITY		R _S >50k Ω VCO _{IN} = 2.5±0.3V VCO _{IN} = 5.0±2.5V VCO _{IN} = 7.5±5.0V	5 10 15	1 1	0.1 0.6 0.8	111	%
ZENER DIODE							
ZENER VOLTAGE	٧z	I _Z = 50μΑ	_	6.3	7.0	7.7	٧
DYNAMIC RESISTANCE	Rz	I _Z = 1mA		-	100	1	Ω

Fig. 5 (a) Typical center frequency (f₀) vs C1 (R2 = ∞ , VCO_{IN} = $\frac{V_{DD}}{2}$, T_A = 25°C)

Fig. 5 (b) Typical frequency offset vs C1 (VCO_{IN} = V_{SS}, T_A = 25°C)

Fig. 5 (c) Typical f_{max}/f_{min} vs R2/R1

Fig. 7 — Typical lock range vs signal input amplitude

Fig. 8(a, b) - Typical VCO linearity vs R1 and C1

CMOS MONOSTABLE/ASTABLE MULTIVIBRATOR

FEATURES

- Low Power Consumption
- Monostable (one-shot) or (Astable) Operation
- True and Complementary Buffered Outputs
- Only One External R and C Required
- Enabled with either a Low or a High Level in Astable Mode
- Triggered on either a Low to High or High to Low Transition in Monostable Mode
- Asynchronous Master Reset
- Output Pulse Width Independent of Trigger Pulse, in Monostable Mode
- May Be Utilized as Free Running or Gated Oscillator, in Astable Mode

DESCRIPTION

4047B is capable of operating in either the monostable or astable mode. It requires an external capacitor (between pins 1 and 3) and an external resistor (between pins 2 and 3) to determine the output pulse width in the monostable mode, and the output frequency in the astable mode.

Astable operation is enabled by a high level on the astable input or low level on the astable input. The output frequency (at 50% duty cycle) at Ω and $\overline{\Omega}$ outputs is determined by the timing components. A frequency twice that of Ω is available at the Oscillator Output; a 50% duty cycle is not guaranteed.

Monostable operation is obtained when the device is triggered by low-to-high transition at + trigger input or high-to-low transition at —trigger input. The device can be retriggered by applying a simultaneous low-to-high transition to both the + trigger and retrigger inputs.

A high level on Reset input resets the outputs Q to low, $\overline{\mathbf{Q}}$ to high.

BLOCK DIAGRAM

Absolute Maximum Ratings

V_{DD} DC Supply Voltage $-0.5 \text{ to } + 18V_{DC}$ V_{IN} Input Voltage -0.5 to $V_{DD} + 0.5$ VDC T_S Storage Temperature Range -65°C to +150°C P_D Package Dissipation 500mW T_L Lead Temperature (Soldering, 10 seconds) 300°C

Recommended Operating Conditions

V_{DD} DC Supply Voltage 3 to 15V_{DC} 0 to V_{DD}V_{DC} V_{IN} Input Voltage T_A Operating Temperature Range SCL4047BC, D, F, H -55°C to +125°C SCL4047BE -40°C to +85°C

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD}	CONDITIONS	TL	ow ²		+25°C		THE	GH ²	Units
		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	l _{DD}	10	V _{IN} =V _{SS} or V _{DD} All valid input combinations	-	1.0 2.0 4.0	_	0.0005 0.001 0.002	1.0 2.0 4.0	- -	30 60 120	μAdc

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

T_{LOW} = -55°C for C, D, F, H device. = -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device. = + 85°C for E device.

AC ELECTRICAL CHARACTERISTICS

 $T_A = 25$ °C, $C_L = 50$ pF

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
t _{PHL} , t _{PLH}	Propagation Delay Time Astable. Astable to OSC Out	V _{DD} = 5V V _{DD} = 10V V _{DD} = 15V		200 100 80	400 200 160	ns ns ns
t _{PHL} , t _{PLH}	Astable, Astable to Q Q	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		550 250 200	900 500 400	ns ns ns
t _{PHL} , t _{PLH}	+ Trigger, - Trigger to Q Q	V _{DD} = 5V V _{DD} = 10V V _{DD} = 15V		700 300 240	1200 600 480	ns ns ns
t _{PHL} , t _{PLH}	+ Trigger, Retrigger to Q Q	V _{DD} = 5V V _{DD} = 10V V _{DD} = 15V		300 175 150	600 300 250	ns ns ns
t _{PHL} , t _{PLH}	Reset to Q Q	V _{DD} = 5V V _{DD} = 10V V _{DD} = 15V		300 125 100	500 250 200	ns ns ns
t _{THL} , t _{TLH}	Transition Time Q, Q, OSC Out	V _{DD} = 5V V _{DD} = 10V V _{DD} = 15V		100 50 40	200 100 80	ns ns ns
t _{WL} , t _{WH}	Minimum Input Pulse Duration	Any Input V _{DD} = 5V V _{DD} = 10V V _{DD} = 15V		500 200 160	1000 400 320	ns ns ns
t _{RCL} , t _{FCL}	+ Trigger, Retrigger, Rise and Fall Time	V _{DD} = 5V V _{DD} = 10V V _{DD} = 15V			15 5 5	μS μS μS
C _{IN}	Average Input Capacitance	Any Input		5	7.5	pF

TRUTH TABLE

	TER	MINAL CONNE			TYPICAL OUTPUT
FUNCTION	TO V _{DD}	TO V _{SS}	INPUT PULSE TO	OUTPUT PULSE FROM	PERIOD OR PULSE WIDTH
Astable Multivibrator Free-Running True Gating Complement Gating	4, 5, 6, 14 4, 6, 14 6, 14	7, 8, 9, 12 7, 8, 9, 12 5, 7, 8, 9, 12	5 4	10, 11, 13 10, 11, 13 10, 11, 13	$t_A(10, 11) = 4.40 RC$ $t_A(13) = 2.20 RC$
Monostable Multivibrator Positive-Edge Trigger Negative-Edge Trigger Retriggerable	4, 14 4, 8, 14 4, 14	5, 6, 7, 9, 12 5, 7, 9, 12 5, 6, 7, 9	8 6 8, 12	10, 11 10, 11 10, 11	t _M (10, 11) = 2.48 RC
External Countdown*	14	5, 6, 7, 8, 9 <u>,1</u> 2	(See Figure)	(See Figure)	(See Figure)

Note: External resistor between terminals 2 and 3. External capacitor between terminals 1 and 3.

TYPICAL PERFORMANCE CHARACTERISTICS

Typical Q, Q, Osc Out Period Accuracy vs Supply Voltage (Astable Mode Operation)

V_{DD} — SUPPLY VOLTAGE (V)

	fa,ā	R	С
Α	1000 kHz	22k	10 pF
В	100 kHz	22k	100 pF
С	10 kHz	220k	100 pF
D	1 kHz	220k	1000 pF
Ε	100 Hz	2.2M	1000 pF

Typical Q, Q and Osc Out Period Accuracy vs Temperature Astable Mode Operation

T_A-AMBIENT TEMPERATURE ("C)

	fa.ā	R	С
Α	1000 kHz	22k	10 pF
В	100 kHz	22k	100 pF
C	10 kHz	220k	100 pF
D	1 kHz	220k	1000 pF

Typical Q, Q, Pulse Width Accuracy vs Supply Voltage Monostable Mode Operation

V_{DD}-SUPPLY VOLTAGE (V)

	t _M	R	C
Α	2μs	22K	10 pF
В	7μs	22k	100 pF
С	60μs	220k	100 pF
D	550μs	220k	1000 pF
E	5.5ms	2.2M	1000 pF

Typical Q and \overline{Q} Pulse Width Accuracy vs Temperature Monostable Mode Operation

T_A —TEMPERATURE ("C)

	t _M	н	C
Α	2μS	22K	10 pF
В	7μs	22k	100 pF
С	60μs	220k	100 pF
D	550us	220k	1000 pF

TIMING DIAGRAMS

CMOS HEX BUFFERS/CONVERTERS

FEATURES

- Direct Drive of 2 TTL/DTL Loads
- Operation from Single Supply
- Pin-for Pin Replacements for 4009UB 4010B

DESCRIPTION

The 4049UB and 4050B are Inverting and Non-Inverting Hex Buffers, respectively, and feature logiclevel conversions using only one supply voltage (V_{CC}). The Input-signal high level (VIH) can exceed the VCC supply voltage when these devices are used for logiclevel conversions. These devices are intended for use as CMOS-to-DTL/TTL converters and can drive directly two DTL/TTL Loads.

The 4049UB and 4050B are interchangeable with 4009 UB and 4010B devices, respectively. In these applications the 4049UB and 4050B are pin-compatible with the 4009UB and 4010B, respectively, and can be substituted for these devices in existing as well as in new designs. Terminal No. 16 is not connected internally on the 4049UB or 4050B; therefore, connection to this terminal is of no consequence to circuit operation.

RECOMMENDED OPERATING CONDITIONS For maximum reliability:

VCC 1Y

16

DC Supply Voltage VCC - VSS Vdc 3 to 15 Operating Temperature T_{Δ} C, D, F, H Device -55 to +125 °C E Device -40 to +85 °C

CONNECTION DIAGRAM

(all packages)

6Y 6A NC 5Y 5A 4Y

4050B

3Y 2A

ЗА

14 13 12 11

4049UB

1A 2Y

Note: These devices contain input protection networks to VSS only. Therefore, VIH (max) may exceed VCC without damage (subject to absolute maximum ratings).

SCHEMATIC DIAGRAMS

LOGIC DIAGRAMS

STATIC CHARACTERISTICS '

PARAMETER		Vcc			T _{LOW} ²		+25°C			T _{HIGH} ²		
		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units	
QUIESCENT DEVICE CURRENT	lcc	5 10 15	V _{IN} =V _{SS} or V _{DD} All valid input combinations	- - -	1.0 2.0 4.0	- - -	0.005 0.01 0.02	1.0 2.0 4.0	-	30 60 120	μAdc	
OUTPUT LOW (SINK) CURRENT	lor	5 10 15	V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V V _{IN} =V _{SS} or V _{DD}	3.7 10 30			6.4 16 40	- 1 -	2.1 5.6 16.8	- 1 -	mAdc	

NOTES: Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

TLOW = -55°C for C, D, F, H device.

= -40°C for E device.

THIGH = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{IN} (Vdc	V _{CC}	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME 4049UB	tpLH	5 10 15	5 10 15	- - -	60 32 25	120 65 50	ns
		10 15	5 5	_ _	45 45	90 90	ns
4050B		5 10 15	5 10 15	- - -	70 40 30	140 80 60	ns
		10 15	5 5	- -	45 40	90 80	ns
4049UB	tpHL	5 10 15	5 10 15	1 1 1	32 2 0 15	65 40 30	ns
		10 15	5 5		15 10	30 20	ns
4050B		5 10 15	5 10 15	1 1 1	55 27 15	110 55 30	ns
		10 15	5 5	1 1	50 50	100 100	ns
OUTPUT TRANSITION TIME	t _{TLH}	5 10 15	5 10 15	1 1	80 40 30	160 80 60	ns
	t _{THL}	5 10 15	5 10 15		30 20 15	60 40 30	ns
INPUT CAPACITANCE 4049UB	C _{IN}	_	_	_	15	22.5	pF

SCL4049UB, SCL4050B

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

Typical voltage transfer characteristics as a function of temperature for 4049UB.

Typical voltage transfer characteristics as a function of temperature for 4050B.

CMOS ANALOG MULTIPLEXERS/DEMULTIPLEXERS

FEATURES

- Wide Range of Digital and Analog Signal Levels: Digital-3 to 15V, Analog-to 15V, p.
- Digital-3 to 15V, Analog-to 15V_{p-p}
 ♦ Low ON-Resistance: 80Ω (typ.) over entire 15V_{p-p} Signal-Input Range for V_{DD}-V_{EE} = 15V
- ♦ High OFF-Resistance: Input Leakage ± 10pA (typ) @ VDD-VEE = 10V
- ◆ Logic-Level Conversion for Digital Addressing Signals of 3 to 15V (V_{DD}-V_{SS}= 3V to 15V) to Switch Analog Signals to 15V_{p-p} (V_{DD}-V_{EE} = 15V)
- Matched Switch Characteristics: $\Delta R_{ON} = 5\Omega$ (typ.) for V_{DD} - $V_{EE} = 18V$
- Very Low Quiescent Power Dissipation under all Digital Control Input and Supply Conditions:
 1μW typ. @ V_{DD}-V_{SS} = V_{DD}-V_{EE} = 10V
- Binary Address Decoding on Chip

DESCRIPTION

The 4051B, 4052B, and 4053B are Digitally-Controlled Analog Switches having low ON-impedance and very low OFF leakage current. Control of analog signals up to 15V_{p-p} can be achieved by digital signal amplitudes of 3 to 15V. For example, if V_{DD} = +5V, V_{SS} = 0V, and V_{EE} = -5V, analog signals from -5V to +5V can be controlled by digital inputs of 0 to 5V. The multiplexer circuits dissipate extremely low quiescent power over the full V_{DD} - V_{SS} and V_{DD} - V_{EE} supply-voltage ranges, independent of the logic state of the control signals. When a logic "1" is present at the Inhibit input terminal all channels are OFF.

4051B is a Single 8-Channel Multiplexer having three binary Control inputs, A, B, and C, and an Inhibit input. The three binary signals select 1 of 8 channels to be turned ON and connect the input to the output.

4052B is a Differential 4-Channel Multiplexer having two binary Control inputs, A and B, and an Inhibit input. The two binary input signals select 1 of 4 pairs of channels to be turned on and connect the differential analog inputs to the differential outputs.

4053B is a Triple 4-Channel Multiplexer having three separate digital Control inputs, A, B, and C and an Inhibit input. Each control input selects one of a pair of channels which are connected in a single-pole double-throw configuration.

When the devices are used as demultiplexers, the "CHANNEL IN/OUT" terminals are the outputs and the "COMMON OUT/IN" terminal(s) is (are) the input(s).

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

 DC Supply Voltage
 VDD - VSS VDD - VEE
 3 to 15 Vdc
 Vdc

 Operating Temperature
 TA
 -55 to +125 °C
 -20 to +85 °C

NOTE: There are no restrictions on the relative magnitudes of VSS and VEE, providing Absolute Maximum Ratings are observed.

LOGIC DIAGRAMS

TRUTH TABLE

INPUT	STATE	S		"ON" CHANNELS				
INHIBIT	С	В	А	4051	4052	4053		
0	0	0	0	0	Ox, Oy	cx, bx, ax		
0	0	0	1	1	1x, 1y	cx, bx, ay		
0	0	1	0	2	2x, 2y	cx, by, ax		
0	0	1	1	3	3x, 3y	cx, by, ay		
0	1	0	0	4		cy, bx, ax		
0	1	0	1	5		cy, bx, ay		
0	1	1	0	6		cy, by, ax		
0	1	1	1	7		cy, by, ay		
1	*	*	*	NONE	NONE	NONE		

* = Don't care

STATIC CHARACTERISTICS '

PARAMETER		CONDITIONS	Vss	V _{DD}	VEE	TL	ow ²		+25°C		THI	GH ²	
FARAMETER		CONDITIONS	(Vdc)	(Vdc)	(Vdc)	Min.	Max.	Min.	Typ.	Max.	Min.	Max.	Units
QUIESCENT	l _{DD}	V IN=VSS dr VDD	0	+5	0	_	5	_	0.05	5	_	150	μAdc
DEVICE CURRENT		All valid input	0	+10	0	_	10	_	0.1	10	_	300	1
		combinations		+5	-5								
			0	+15	0	_	20	_	0.2	20	_	600	
				+7.5	-7.5								
MINIMUM INPUT	V _{IH}	V _{is} =V _{EE}	0	5	0	_	3.5	_	2.75	3.5	_	3.5	Vdc
HIGH VOLTAGE		Vos=VDD	0	10	0	-	7.0	-	5.5	7.0	-	7.0	
(Control and Inhibit Inputs)		l _{os} =10μΑ	0	15	0	-	11.0	-	8.25	11.0	_	11.0	
MAXIMUM INPUT		V _{is} =V _{EE}	0	5	0	1.5	-	1.5	2.25	-	1.5	-	Vdc
LOW VOLTAGE		Vos=VDD	0	10	0	3.0	-	3.0	4.5	-	3.0	-	
(Control and Inhibit Inputs)		l _{os} =10μΑ	0	15	0	4.0	_	4.0	6.75	-	4.0	-	
SWITCH INPUT/ OUTPUT LEAKAGE													
Any channel OFF	b FF	V _{IN} =V _{SS} or V _{DD} V _{is} =±7.5Vdc	0	+7.5	-7.5	-	±100	-	±0.01	±100	-	± 1000	nAdc
All channels OFF		Inh = 7.5Vdc	0	+7.5	-7.5								
		V _{is} =±7.5Vdc		7.5	-7.5								
		4051B					±400		±0.08	±400		±1000	nAdc
		4052B					±200		±0.04	±200	_	±1000	
		4053B					±100		±0.02	±100	_	±1000	
ON-RESISTANCE	_	l l											
	HON	V _{IN} =V _{SS} or V _{DD}	-		-7.5								
		V _{EE} <v<sub>is <v<sub>DD</v<sub></v<sub>	0	+15	0		220		125	280		400	
		R _L =10kΩ	-5 0	+5 +10	-5 0	-	310	-	180	400	-	590	Ω
			-2.5	+2.5		_	2000	_	470	2500	_	3500	Ω
			0	+5	0	_	2000	_	4/0	2500	_	3500	26
ON-RESISTANCE	ΔRON	V _{IN} =V _{SS} or V _{DD}	-7.5	+7.5	-7.5	_	_	_	5	_	-	_	Ω
MATCH		V _{EE} ≪V _{is} ≪V _{DD}	0	+15	0								
(Same Package)		R _L =10kΩ	-5	+10	-5	-	-	-	10	-	_	-	Ω
			0	+10	0								
			-2.5	+2.5		-	-	-	50	-	_	-	Ω
		L	0	+5	0							L	

NOTES: 1 Remaining Static Characteristics are listed under "4000B Series Family Specifications".

In certain applications, the external load-resistor current may include both V_{DD} and signal-line components. To avoid drawing V_{DD} current when switch current flows into terminals 1, 4, 8, or 11, the voltage drop across the bidirectional switch must not exceed 0.8 volt (calculated from R_{ON} values shown).

exceed 0.8 volt (calculated from R_{ON} values shown). No V_{DD} current will flow through $R_{\rm i}$ if the switch current flows into terminals 2, 3, 9, or 10. Failure to observe this condition may result in distortion of the signal.

SCL4051B, SCL4052B, SCL4053B ELECTRICAL CHARACTERISTICS (Continued)

DYNAMIC CHARACTERISTICS (CL = 50pF, TA = 25°C)

PARAMETER		CONDITIONS	V _{SS} (Vdc)	V _{DD} (Vdc)	V _{EE} (Vdc)	Min.	Тур.	Max.	Units
SIGNAL INPUTS (Vis) A	ND O	UTPUTS (Vos)							
PROPAGATION DELAY	tpLH								
TIME Signal Input to Signal Output	tpHL	Inh = V _{SS} V _{IN} =V _{SS} or V _{DD} V _{is} = Square Wav		5 10 15	0 0 0	- - -	30 15 12.5	60 30 25	ns
BANDWIDTH (-3dB) (Sine Wave)	вw	R _L = 10kΩ Inh = V _{SS} R _L	2 0	+5	-5		54		МН
(2lus Mans)		V _{IN} = V _{SS} 1ks or V _{DD} 10ks V _{is} =5V _{P-P} 100ks centered 1Ms @ 0.0Vdc	2	75	-5	- - -	40 38 37	- - -	MA2
INSERTION LOSS									
(= 20 log ₁₀ V _{is})		Inh = V _{SS} R _L V _{IN} =V _{SS} 1ks or V _{DD} 10ks V _{is} =5V _{P-P} 100ks centered 1Ms @ 0.0Vdc	2	+5	-5	- - -	2.3 0.2 0.1 0.05	- - - -	d₿
SIGNAL DISTORTION (Sine Wave)		Inh = V_{SS} V_{IN} = V_{SS} or V_{DC} V_{is} = $5V_{p-p}$ centered @ 0.0Vdc f_{is} = 1.0kHz R_{L} = $10k\Omega$	-7.5 -5 -2.5	+7.5 +5 +2.5	-7.5 -5 -2.5	-	0.1 0.2 1.0	 -	%
FEEDTHROUGH (-40dB)		Inh = V _{SS} R _L V _{IN} =V _{SS} or V _{DD} V ₈ =5V _{P-P} centered @0.0Vdc	2	+5	-5	- - -	1250 140 18 2	- - - -	kHz
CROSSTALK (-40dB) Between two switches		Inh = V_{SS} $V_{IN}^{=}V_{SS}$ or V_{DC} $V_{is}^{=}5V_{p-p}$ centered @ 0.0Vdc $R_{L}^{=}1.0k\Omega$	0	+5	-5	_	1.0	-	мн
CAPACITANCE		Inh = V _{DD}							
Input	Cis	40510	0	+5	-5		30		pF
Common	Co.	4051B 4052B 4053B	0	+5	-5	=	18	<u> </u>	pF
Feedthrough	Cios	1,000	0	+5	-5	-	0.2	-	ρ̈́F
CONTROL INPUTS									
PROPAGATION DELAY		l	_				100	200	
TIME,		Inh = V _{SS} V _{EE} ≤V _{in} ≤V _{DD}	0	+7.5	-7.5 0	-	160	320 240	ns
Turn on	PHL	R _L = 10kΩ	0	+5	-5	_	225	450	1
	1		0	+10	0	_	160	320	}
			-2.5	+2.5	-2.5	-	400	800]
			0	+5	0	_	360	720	
INHIBIT INPUT			, .						
PROPAGATION DELAY	TEPLH.			+7.5	-7.5		160	320	ns
TIME	tpHL	Vis = VDD	0	+15	0		120	240	4
	1	R _L = 10kΩ	0	+5	-5		200	400	4
Turn on	1		0	+10	0	-	160	320	4
	1	İ	-2.5	+2.5	-2.5		400	800	4
	-		0	+5	0	-	360	720	
INHIBIT RECOVERY	t _{rel}	VIN=VSS or VDE		+7.5	-7.5	-	150	300	ns
TIME ²	1	$V_{EE} \leqslant V_{is} \leqslant V_{DI}$		+15	0	-	80	160	4
	1	R _L = 10kΩ	0	+5	-5	-	200	400	1
	1	l	0	+10	0		105	210	4
			-2.5 0	+2.5	-2.5 0		225	600 450	4

Notes: ¹ Channel Overlap time — interval following change of control input during which two channels may be ON simultaneously.

² Interval following removal of Inhibit during which channel information is invalid.

Typical Channel "ON" resistance vs. signal voltage

Typical "ON" characteristics

Typ. switch frequency response-switch "ON"

Typ. feedthru vs. freq. - switch "OFF"

Typ. crosstalk between switch circuits in the same package

SCHEMATIC DIAGRAM OF ONE SWITCH

CMOS 14-STAGE COUNTER AND OSCILLATOR

FEATURES

- ♦ 14 Fully Static Stages
- ♦ 10 Buffered Outputs Available
- ♦ Common Reset Line
- ♦ 8MHz Counting Rate @ 10Vdc
- ♦ All Active Oscillator Components on Chip for R-C or Crystal Control

DESCRIPTION

The 4060 B consists of an oscillator section and 14 ripple-carry binary counter stages. The oscillator configuration allows design of either R-C or crystal oscillator circuits. A Reset input is provided which resets the counter to the all-0's state. A high level on the Reset line accomplishes the reset function. The state of the counter is advanced one step in binary order on the negative transition of the Clock input ϕ . All inputs and outputs are fully buffered. Outputs are available from stages 4 through 10 and 12 through 14.

Applications include timers, frequency dividers, delay circuits and counter controls.

TRUTH TABLE

CLOCK	RESET	OUTPUT STATE
	0	No Change
7	0	Advance to next state
×	1	All Outputs are low

X = Don't Care

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage $V_{DD} \cdot V_{SS}$ 3 to 15 V_{O} Operating Temperature T_{A} .55 to +125 °C E Device -40 to +85 °C

LOGIC DIAGRAM

STATIC CHARACTERISTICS'

PARAMETER		V _{DD} (Vdc) CONDITIONS		T _{LOW} ²		+25°C			THIGH ²		Units
				Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	l _{DD}	5 10 15	V _{IN} =V _{SS} or V _{DD} All valid input combinations	=	5 10 20		0.05 0.1 0.2	5 10 20	-	150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION	•					
PROPAGATION DELAY TIME Clock to Q4	t _{PLH} , t _{PHL}	5 10 15	_ _ _	400 200 150	800 400 300	ns
Q _i to Q _i + 1	t _{РСН} , t _{РНС}	5 10 15	_ _ _	100 40 30	200 80 60	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	-	100 40 30	200 80 60	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	- - -	70 30 20	140 60 40	ns
MAXIMUM CLOCK FREQUENCY	f _{CL}	5 10 15	3.0 6.0 7.5	4.5 9.0 11.0	-	MHz
MAXIMUM CLOCK RISE AND FALL TIME	t _{rCL} , t _{fCL}	5 10 15	50 50 50	100 100 100	-	μs
RESET OPERATION						
PROPAGATION DELAY TIME	t _{PHL}	5 10 15	- - -	200 100 75	400 200 150	ns
MINIMUM RESET PULSE WIDTH	PWR	5 10 15	_ _ _	100 40 30	200 80 60	ns
RESET REMOVAL TIME	t _{rem}	5 10 15	_ _ _	150 65 40	300 125 75	ns

SCL4060B

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

TIMING DIAGRAM

TYPICAL COUNTER STAGE

APPLICATIONS INFORMATION

Typical RC oscillator circuit

Typical crystal oscillator circuit

Input pulse-shaping circuit (Schmitt trigger)

Input circuit characteristics for pulse-shaping circuit.

FEATURES

- Transmission or Multiplexing of Analog or **Digital Signals**
- 80Ω Typical ON-Resistance for 15-Volt oper-
- Switch ON-Resistance Matched to within 5 Ω over 15-Volt Signal-Input Range
- ON-Resistance Flat over Full Peak-to-Peak Signal Range
- High Degree of Linearity:

≤0.5% Distortion (typ) @ fis = 1kHz,

- Vis = 5V_{p-p}, V_{DD}-V_{SS} ≥ 10V, R_L = 10kΩ Extremely Low OFF switch Leakage Resulting in very Low Offset Current and High Effective **OFF** Resistance:
 - 10pA (typ) @ $V_{DD}-V_{SS}=10V$, $T_A=25^{\circ}C$
- Extremely High Control Input Impedance (Control Circuit Isolated from Signal Circuit): 1012 Ω (tvp)
- Low Crosstalk between Switches:
 - -50dB (typ) @ f_{is} = 0.9MHz, R_L = 1k Ω
- Matched Control-Input to Signal-Output Capacitance Reduces Output Signal Transients
- Frequency Response, Switch ON = 40MHz (typ)

DESCRIPTION

The 4066B is a Quad Bilateral Switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with the 4016B, but exhibits a much lower ON-resistance. In addition, the ONresistance is relatively constant over the full input signal range. The 4066 consists of four independent bilateral switches. A single control signal is required per switch. Both the P and the N device in a given switch are biased ON or OFF simultaneously by the control signal. As shown below, the well of the N-channel device on each switch is either tied to the input when the switch is ON or to VSS when the switch is OFF. This configuration minimizes the variation of the switch-transistor threshold voltage with input-signal, and thus keeps the ONresistance low over the full operating range.

SCHEMATIC DIAGRAM (one of four switches)

CMOS QUAD ANALOG SWITCH

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage Vdc VDD - VSS 3 to 15 **Operating Temperature** T_A C, D, F, H Device -55 to +125 °C E Device -40 to +85

The advantages over single-channel switches include peak input-signal voltage swings equal to the full supply voltage, and more constant ON-impedance over the input-signal range. For sample-and-hold applications, the 4016 is recommended. When the control input is high the switch will be ON. When the control input is low the switch will be OFF.

LOGIC DIAGRAM

STATIC CHARACTERISTICS

PARAMETER		CONDITIONS	V _{SS}	V _{DD}	T _{LOW} ²		25°C			T _{HIGH} 2		Units
		CONDITIONS		(Vdc)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	IDD	V _{IN} = V _{SS} or V _{DD} All valid input combinations	0 0 0	5 10 15	1 1 1	0.05 0.1 0.2	1 1 1	0.0005 0.001 0.002	0.05 0.1 0.2		1.5 3.0 6.0	μAdo
MINIMUM INPUT HIGH VOLTAGE (Control Input)	V _{IH}	V _{IS} = V _{SS} V _{OS} = V _{DD} I _{OS} = 10µA	0 0 0	5 10 15	1 1 1	3.5 7.0 11.0		2.75 5.5 8.25	3.5 7.0 11.0	- - -	3.5 7.0 11.0	Vdc
MAXIMUM INPUT LOW VOLTAGE (Control Input)	VIL	V _{IS} = V _{SS} V _{OS} = V _{DD} I _{OS} = 10μA	0 0 0	5 10 15	1.0 2.0 3.0	- - -	1.0 2.0 3.0	2.25 4.5 6.75	1 1 1	1.0 2.0 3.0	- -	Vdc
SWITCH INPUT/OUTPUT LEAKAGE	loff	$V_C = V_{SS}$ $V_{IS} = \pm 7.5 Vdc$	-7.5	+7.5	-	±100	-	±0.01	±100	-	± 1000	nAdc
ON-RESISTANCE R _{ON}	Ron	$V_{IS} = V_{SS}/V_{DD}$ $V_{OS} = \frac{V_{DD} - V_{SS}}{2}$ $.5$ 0	-7.5 0	+7.5 +15	_	220	-	80	280	_	320	Ω
			-5 0	+5 +10	-	400	-	120	500	-	550	Ω
		R _L = 10kΩ	-2.5 0	+2.5 +5	-	2000	-	270	2500	-	3500	Ω
ON-RESISTANCE MATCH (Same package)	$V_C = V_{DD} \qquad .7.5$ $V_{IS} = V_{SS}/V_{DD} \qquad 0$		+7.5 +15	_	-	-	5	_	_	_	Ω	
		$V_{OS} = \frac{V_{DD} - V_{SS}}{2} \qquad .5$	1	+5 +10	-	-	-	10	-	-		Ω
	R _L = 10kΩ	·2,5	+2.5 +5	-	-	_	10	-	-		Ω	

NOTES: ¹ Remaining Static Electrical Characteristics are listed under 4000B Series Family Specifications .

² T_{LOW} = -55°C for C, D, F, H device.
= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.
= + 85°C for E device.

 $^{^3}$ Conditions for measuring $\rm V_{IH}$

		los					
UNITS	T _{HIGH} 14	25°C 20	T _{LOW}	V _{IS} 4.6	Vos 5	V _{DD} 5	
mA	35	50	62	9.5	10	10	
	- 1.10	- 1.50	- 1.8	13.5	15	15	

ELECTRICAL CHARACTERISTICS (Continued)

DYNAMIC CHARACTERISTICS ($C_L = 50 pF$, $T_A = 25 °C$)

PARAMETER		CONDITIONS	V _{SS} (Vdc)	V _{DD} (Vdc)	Min.	Тур.	Max.	Units
SIGNAL INPUTS (Vis) AND OU	TPUTS	(Vos)					L	±-,,,
PROPAGATION DELAY TIME	t _{PLH} ,	V _c =V _{DD} V _{is} =Square	0	5	_	20	40	ns
Signal Input to Signal Output	PHL	Wave R _L = 10kΩ	0	10 15		10 7.5	20 15	113
BANDWIDTH (-3dB)	BW	V _c =V _{DD} R _L						
(Sine Wave)		$\begin{array}{c} V_{is}\text{=}5V_{p\text{-}p} & 1k\Omega \\ \text{centered} & 10k\Omega \\ \text{@ } 0.0V\text{dc} & 100k\Omega \\ \hline 1M\Omega \end{array}$	-5	+5	- - -	54 40 38 37	- - -	MHz
INSERTION LOSS								
$(=20 \log_{10} \frac{V_{os}}{V_{is}})$		$\begin{array}{c} V_c = V_{DD} & R_L \\ V_{is} = 5 V_{p-p} & 1 k \Omega \\ \text{centered} & 10 k \Omega \\ @ \ 0.0 \ \text{Vdc} & 100 k \Omega \\ \hline 1 M \Omega \end{array}$	-5	+5	- - -	2.3 0.2 0.1 0.05	- - - -	dB
SIGNAL DISTORTION (Sine Wave)		$V_c=V_{DD}$ $V_{is}=5V_{p-p}$ centered $0.0Vdc$ $f_{is}=1.0kHz$ $R_L=10k\Omega$	-5	+5	_	0.16	-	%
FEEDTHROUGH (-50dB)		$\begin{array}{c c} V_c = V_{SS} & R_L \\ V_{is} = 5 V_{p-p} & 1 k \Omega \\ centered & 10 k \Omega \\ @ 0.0 V dc & 100 k \Omega \\ \hline & 1 M \Omega \end{array}$	-5	+5	- - -	1250 140 18 2	- - -	kHz
CROSSTALK (-50dB) Between two switches		$V_c(A)=V_{DD}$ $V_c(B)=V_{SS}$ $V_b(A)=5V_{p,p}$ centered @ 0.0Vdc $R_L=10k\Omega$	-5	+5	-	0.9	-	MHz
CAPACITANCE						_		
Input Output	C _{is}	V _C = V _{SS}	-5	+5	_	8	· -	pF pF
Feedthrough	Cios	vc - vss	-5	5	_	0.5	_	pF pF
CONTROL INPUT (V _C)	-ios			L	I		<u> </u>	I
PROPAGATION DELAY TIME Turn on	t _{PC}	$V_{SS} \leq V_{is} \leq V_{DD}$ $R_L = 10k\Omega$	0 0 0	5 10 15	_ _ _	50 25 20	100 50 40	ns
MAXIMUM INPUT FREQUENCY	f _c	$V_{SS} \leq V_{is} \leq V_{DD}$ $R_L = 1.0k\Omega$	0 0 0	5 10 15	_ _ _	5 10 12	- - -	MHz
CROSSTALK (To signal port)		V_c = Square Wave $R_L = 10k\Omega$ $R_{in} = 1.0k\Omega$	0 0 0	5 10 15	- - -	30 50 100	- - -	mV

Typical channel ON resistance vs. signal voltage for three values of supply voltage (VDD-VSS)

Typical ON characteristics for 1 of 4 channels.

Typ. switch frequency response - switch "ON"

Typ. feedthru vs. freq. - switch "OFF"

Typ. crosstalk between switch circuits in the same package

Test circuit, crosstalk-control input to signal output

SPECIAL CONSIDERATIONS - 4066B

- 1. In applications where separate power sources are used to drive V_{DD} and the signal inputs, the V_{DD} current capability should exceed V_{DD}/R_L (R_L = effective external load of the 4 4066B bilateral switches). This provision avoids any permanent current flow or clamp action on the V_{DD} supply when power is applied or removed from 4066B.
- In certain applications, the external load-resistor current may include both V_{DD} and signal-line components. To avoid drawing V_{DD} current when switch current flows into terminals 1, 4, 8, or 11, the voltage drop across the bidirectional switch must not exceed 0.8 volt (calculated from R_{ON} values shown).
 No V_{DD} current will flow through R_L if the switch current flows into terminals 2, 3,

APPLICATIONS INFORMATION

9, or 10. Failure to observe this condition may result in distortion of the signal.

Basic Switch Functions using the 4066B

Active Low Pass Filter with Digitally Selected Break Frequency

CMOS HEX INVERTER

FEATURES

- ♦ Fully "B"-Series Compatible
- **Diode Protection on all Inputs**
- Pin Compatible with 74C04

DESCRIPTION

The 4069UB consists of six CMOS inverter circuits. The device is intended for general-purpose inverter applications where the higher output drive and levelshifting feature of the 4009UB and 4049UB are not required.* The 4069UB is particularly useful for quasilinear circuits such as oscillators (See Applications Information).

*For pin-to-pin compatibility with the 4009UB and 4049UB, the 4449UB is available.

SCHEMATIC DIAGRAM (one of six inverters)

Typical current and voltage transfer characteristics

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage VDD - VSS 3 to 15 Vdc Operating Temperature T_A -55 to +125 °C C, D, F, H Device -40 to +85 °C E Device

LOGIC DIAGRAM

$$1A \circ \frac{1}{2} \circ \frac{2}{1} \circ 1$$

$$2A \circ \frac{3}{4} \circ 2$$

$$3A \circ \frac{5}{6} \circ 3$$

$$4A \circ \frac{9}{6} \circ \frac{8}{4} \circ 4$$

$$5A \circ \frac{11}{6} \circ \frac{10}{6} \circ 5$$

$$6A \circ \frac{13}{6} \circ \frac{12}{6} \circ 6$$

$$V_{SS} = 7$$

$$V_{DD} = 14$$

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD} CONDITIONS		T _{LOW} ²		+25°C			T _{HIGH} ²		Units
		(Vdc)		Min.	Max.	Min.	Typ.	Max.	c. Min. Max.		Oiiits
QUIESCENT DEVICE	IDD										
CURRENT	1		V _{IN} =V _{SS} or V _{DD}	_	0.05	-	0.0005	0.05	_	1.5	μAdc
	i i		All valid input	_	0.10	_	0.001	0.10	_	3.0	
		15	combinations	_	0.20	_	0.002	0.20	_	6.0	

NOTES: 1 Remaining Static Characteristics are listed under "4000B Series Family Specifications".

T_{Low} = -55°C for C, D, F, H device. = -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device. = + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER			Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	t _{PLH} , t _{PHL}	5 10 15	-	50 25 20	100 50 40	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	-	75 35 30	150 70 60	ns

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

APPLICATIONS INFORMATION

Typical crystal oscillator circuit

Typical RC oscillator circuit

Input pluse shaping circuit (Schmitt Trigger)

FEATURES

- **♦** Buffered Outputs
- ♦ Diode Protection on all Inputs
- ◆ Fully "B"-Series Compatible
- Pin Compatible with 4030 types, MC14507, 74C86

DESCRIPTION

The 4070B contains four independent exclusive-OR gates integrated on a single monolithic silicon chip. Each exclusive-OR gate consists of five N-channel and five P-channel enhancement-mode transistors, plus output buffering devices.

TRUTH TABLE (one of four gates)

	Α	В	Y
	0	0	0
	1	0	1
i	0	1	1
	1	1	0

Where 1 = High Level 0 = Low Level

LOGIC DIAGRAM

SCHEMATIC DIAGRAM (one of four gates)

CMOS QUAD EXCLUSIVE-OR GATE

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

Note: The 4070B is identical to the 4030B; the devices are fully interchangeable in all applications.

FUNCTION DIAGRAM

STATIC CHARACTERISTICS 1

PARAMETER	V _{DD}	CONDITIONS	TL	ow ²		+25°C		THI	GH ²	Units
	(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE										
CURRENT		V _{IN} =V _{SS} or V _{DD}	_	0.05	_	0.0005	0.05	_	1.5	μAdc
ľ		All valid input	_	0.10	_	0.001	0.10	_	3.0	
	15	combinations	_	0.20	_	0.002	0.20	_	6.0	

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications". 2 1

T_{HIGH} = +125°C for C, D, F, H device. = + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	t _{PLH} , t _{PHL}	5 10 15	-	140 65 50	280 130 100	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns

Typical P-Channel Source Current Characteristics

Typical N-Channel **Sink Current Characteristics**

APPLICATIONS INFORMATION 8-BIT TWO'S COMPLEMENT ADDER/SUBTRACTOR

A-LEAST SIGNIFICANT BIT O-MOST SIGNIFICANT BIT (SIGN BIT)

Two's complement numbers and their equivalent decimal values

CMOS OR GATES

4071B - Quad 2-Input OR 4072B - Dual 4-Input OR 4075B - Triple 3-Input OR **FEATURES**

- **Buffered Outputs**
- **Diode Protection on all Inputs**
- Fully "B"-Series Compatible

TRUTH TABLE

Inputs	Output
000	0
All other combinations	1

FUNCTION DIAGRAMS

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage 3 to 15 Vdc VDD - VSS T_A Operating Temperature C, D, F, H Device -55 to +125 °C -40 to +85 °C E Device

STATIC CHARACTERISTICS '

PARAMETER	V _{DD} CONDITIONS		T _{LOW} ²			+25°C		T _{HIGH} ²		Units
	(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	0
QUIESCENT DEVICE IDE										
CURRENT	5	V _{IN} =V _{SS} or V _{DD}	-	0.05	_	0.0005	0.05	-	1.5	μAdc
	10	All valid input	-	0.10	-	0.001	0.10	_	3.0	
	15	combinations	-	0.20	-	0.002	0.20	_	6.0	

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

TLOW = -55°C for C, D, F, H device.

= -40°C for E device.

THIGH = +125°C for C, D, F, H device.
= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C, = 50pF, TA = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	t _{PLH} , t _{PHL}	5 10 15	- - -	100 50 40	200 100 80	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	-	90 45 40	180 90 80	ns

Typical P-Channel Source Current Characteristics LOGIC DIAGRAMS

Sink Current Characteristics SCHEMATIC DIAGRAM 4072B (1 of 2 gates)

FFATURES

- **♦ 3-State Outputs with Gated Control Lines**
- **♦ Fully Independent Clock**
- **♦** Asynchronous Reset
- ♦ Fully Static Operation DC to 12MHz @ 10Vdc

DESCRIPTION

The 4076B 4-bit Register consists of four D-Type flip-flops operating synchronously from a common Clock. OR-gated Output Disable inputs force the outputs into a high-impedance state for use in bus-organized systems. OR-gated Data Disable inputs cause the Q outputs to be fed back to the D inputs of the flip-flops. Thus, they are inhibited from changing state while the clocking process remains undisturbed. An asynchronous Master Reset is provided to clear all four flip-flops simultaneously independent of the Clock or Disable inputs.

TRUTH TABLE

		Di	input sable	Data	Next State Output	
Reset	Clock	G1	G2	D	Q	
1	X	x	х	X	0	
0	0	×	Х	X	Q	NC
0	_	1	×	x	Q	NC
0		×	1	×	a	NC
0		0	0	1	1	
0		0	ó	0	0	
0	1	х	×	х	a	NC
0		х	×	x	a	NC

When either Output Disable M or N is high, the outputs are disabled (high impedance state); however sequential operation of the flip-flops is not affected.

1 ≡ High Level

X = Don't Care

0 ≡ Low Level

NC = No Change

CMOS 4-BIT D-TYPE REGISTER

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

BLOCK DIAGRAM

STATIC CHARACTERISTICS '

PARAMETER		V _{DD}	VDD CONDITIONS		T _{LOW} ²		+25°C			T _{HIGH} ²	
		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units
QUIESCENT DEVICE CURRENT	I _{DD}	5 10	V _{IN} =V _{SS} or V _{DD} All valid input combinations		5 10 20	11:	0.05 0.1 0.2	5 10 20	-	150 300 600	μAdc
3-STATE OUTPUT LEAKAGE CURRENT	IZL	15		_	±0.1	_	±10 ⁻⁴	±0.1	_	±1.0	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (CL = 50pF, TA = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION				•		
PROPAGATION DELAY TIME						
Clock to Q	tpLH, tpHL	5	_	150	300	ns
	1,5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10	_	70	140	
		15	_	45	90	1
Output Disable to Q	tpHZ, tpLZ	5		75	.50	ns
Output Disable to Q	IPHZ, IPLZ	10	_	40	150 80	113
		15	_	30	60	
		5	_	80	160	ns
	t _{PZH} , t _{PZL}	10	-	35	70	115
		15	_	25	50	
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5		100	200	ns
OUT OF THAIRDITION TIME	TLH, THE	10	_	50	100	113
		15	_	40	80	
MINIMUM CLOCK PULSE WIDTH	PWCL	5	_	80	160	ns
	1.446	10	_	40	80	'''
		15	_	30	60	1
MAXIMUM CLOCK FREQUENCY	f _{CL}	5	3.0	6.0	_	МН
MAXIMOM OLOOK I IILQOLIIOI	1.65	10	6.0	12	_	''''
		15	8.0	16	_	
MAXIMUM CLOCK RISE & FALL TIME ¹	troL, troL	5	15	_	_	μѕ
	1,027,402	10	15	- !	_	"
		15	15	_	_	
MINIMUM SETUP TIME						
Data Inputs	t _{setup}	5	_	75	150	ns
	-sotup	10	l –	40	80	
	11	15		30	60	[
Data Disable Inputs	t _{setup}	5	_	100	200	ns
•	, accep	10	l –	60	120	
		15	_	45	90	
MINIMUM HOLD TIME						
All Inputs	thold	5	_	75	150	ns
		10	-	35	70	
		15		30	60	
RESET OPERATION						
PROPAGATION DELAY TIME	t _{PHL}	5	_	200	400	ns
		10	-	100	200	
		15		75	150	
MINIMUM RESET PULSE WIDTH	PWR	5	_	75	150	ns
		10	-	40	80	
		15		30	60	
RESET REMOVAL TIME	t _{rem}	5	_	100	200	ns
		10	- '	60	120	
	1 1	15	l –	45	90	

¹ When units are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

TIMING DIAGRAM

THREE-STATE PROPAGATION DELAY WAVESHAPE AND CIRCUIT

LOGIC DIAGRAM

FEATURES

- **♦** Buffered Outputs
- Diode Protection on all Inputs
- ♦ Fully "B"-Series Compatible

DESCRIPTION

The 4077B contains four independent exclusive-NOR gates integrated on a single monolithic silicon chip. Each exclusive-NOR gate consists of five N-channel and five P-channel enhancement-mode transistors, plus output buffering devices.

TRUTH TABLE (one of four gates)

Α	В	Υ
0	0	1
1	0	0
0	1	0
1	1	1

Where 1 = High Level 0 = Low Level

LOGIC DIAGRAM (one of four gates)

SCHEMATIC DIAGRAM (one of four gates)

CMOS QUAD EXCLUSIVE-NOR GATE

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device -55 to +125 °C E Device -40 to +85 °C

FUNCTION DIAGRAM

STATIC CHARACTERISTICS '

PARAMETER		V _{DD}	CONDITIONS	TLO	.ow²		+25°C		T _{HIGH} ²		Units
- Anameren	- 10	(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE I	DD		V _{IN} = V _{SS} or V _{DD} All valid input combinations	- -	0.05 0.10 0.20	_	0.0005 0.001 0.002	0.05 0.10 0.20	111	1.5 3.0 6.0	μAdc

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

T_{LOW} = -55°C for C, D, F, H device. = -40°C for E device. T_{HIGH} = +125°C for C, D, F, H device. = + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER	V _{DD} (Vdc)	Min.	Тур.	Max.	Units	
PROPAGATION DELAY TIME	t _{PLH} , t _{PHL}	5 10 15	_ _ _	150 65 50	300 130 100	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns

Typical P-Channel **Source Current Characteristics**

Typical N-Channel **Sink Current Characteristics**

CMOS AND GATES

4081B - Quad 2-Input AND 4082B - Dual 4-Input AND 4073B - Triple 3-Input AND

FEATURES

- ♦ Buffered Outputs
- ♦ Diode Protection on all Inputs
- ♦ Fully "B"-Series Compatible

TRUTH TABLE

Inputs	Output
111	1
All other combinations	0

FUNCTION DIAGRAMS

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device -55 to +125 °C E Device -40 to +85 °C

STATIC CHARACTERISTICS 1.

PARAMETER		V _{DD} CONDITIONS T		DW ²		+25°C		T _{HIGH} ²		Units
PARAMETER	(Vdc)	CONDITIONS	Min. Ma		Min.	Typ.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	5 10 15	V _{IN} = V _{eg} or V _{DD} All valid input combinations	- - -	0.05 0.10 0.20		0.0005 0.001 0.002	0.05 0.10 0.20		1.5 3.0 6.0	μAdc

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

T_{LOW} = -55"C for C, D, F, H device. = -40"C for E device. T_{HIGH} = +125°C for C, D, F, H device. = + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER	V _{DD} (Vdc)	Min.	Тур.	Max.	Units	
PROPAGATION DELAY TIME	t _{РСН} , t _{РНС}	5 10 15	-	120 60 45	240 120 90	ns
OUTPUT TRANSITION TIME	t _{тен} , t _{тне}	5 10 15	-	100 50 40	200 100 80	ns

Typical P-Channel Source Current Characteristics LOGIC DIAGRAMS

CMOS DUAL 2-WIDE, 2-INPUT AND-OR-INVERTER GATE

FEATURES

- Medium-speed operation —tpHL = 90 ns;
 tpLH = 125 na (typ.) at 10 V
- Individual inhibit controls
- Standardized symmetrical output characteristics
- 100% tested for quiescent current at 18 V
- Maximum input current of 1 μA at 15 V over full temperature range; 100 nA at 15 V and 25° C
- Noise margin (over full package-temperature range):
 - 1 V at V_{DD} = 5 V
 - 2 V at V_{DD} = 10 V
 - 2.5 V at V_{DD} = 15 V
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13A, "Standard Specifications for Description of 'B' Series CMOS Devices"

DESCRIPTION

The 4085 contains a pair of AND-OR-INVERT gates, each consisting of two 2-input AND gates driving a 3-input NOR gate. Individual inhibit controls are provided for both A-O-I gates.

The 4085B types are supplied in 14-lead dual-in-line ceramic packages (D and C suffixes), 14-lead dual-in-line plastic packages (E suffix), 14-lead ceramic flat packs (F suffix), and in chip form (H suffix).

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIM	UNITS	
	Min.	Max.	
Supply Voltage Range (For T _A = Full Package Temperature Range)	3	18	V

STATIC CHARACTERISTICS

PARAMETER				TL	OW ²	+25°C			T _{HIGH} ²		Units
TANAME I EN		(Vdc)	(Vdc)		Max.	Min.	Typ.	Max.	Min.	Max.	J
QUIESCENT DEVICE CURRENT	IDD		V _{IN} =V _{SS} or V _{DD}	-	0.05	_	0.0005	0.05	_	1.5	μAdc
		10	All valid input combinations	-	0.10 0.20		0.001 0.002	0.10 0.20	-	3.0 6.0	

NOTES: Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device. = -40°C for E device.

ABSOLUTE MAXIMUM RATINGS

DC SUPPLY-VOLTAGE RANGE, (VDD)

(Voltages referenced to

V_{SS} Terminal) −0.5 to +20V

INPUT VOLTAGE RANGE,

ALL INPUTS -0.5 to V_{DD} +0.5V

DC INPUT CURRENT.

ANY ONE INPUT ±10 mA

POWER DISSIPATION PER PACKAGE (PD):

For $T_A = -40 \text{ to } +60^{\circ} \text{ C}$

(PACKAGE TYPE E) 500 mW

For $T_A = +60$ to +85e

For $T_A = +60 \text{ to } +85^{\circ} \text{ C}$

(PACKAGE TYPE E) Derate Linearly at 12 mW/° C to 200 mW

For $T_A = -55 \text{ to } +100^{\circ} \text{ C}$

(PACKAGE TYPES D, F, C).... 500 mW

For TA = +100 to +125° C

(PACKAGE TYPES D, F, C) . Derate Linearly at 12 mW/° C to 200 mW

DEVICE DISSIPATION

PER OUTPUT TRANSISTOR

For TA = FULL PACKAGE-TEMPERATURE

RANGE (All Package Types). 100 mW

OPERATING TEMPERATURE RANGE (TA):

PACKAGE TYPES D, F, C, H . -55 to +125° C

PACKAGE TYPE E -40 to +85° C

STORAGE TEMPERATURE

-65 to +150° C RANGE (T_{stg})

LEAD TEMPERATURE (DURING SOLDERING):

At distance $1/16 \pm 1/32$ inch $(1.59 \pm 0.79$ mm) from case for 10 s max. +265° C

DYNAMIC ELECTRICAL CHARACTERISTICS

 $(T_A = 25$ °C, Input t_r , $t_f = 20$ ns, $C_L = 50$ pF, $R_L = 200$ K Ω)

	CONDITIONS	LIN	IITS		
CHARACTERISTICS	VDD	Тур.	Max.	UNITS	
Propagation Delay Time (Data)	5	225	450		
	10	90	180	ns	
High-to-Low Level tp.	15	65	130	1	
	5	310	620		
Low-to-High Level to	10	125	250	ns	
Low-to-High Level tpL	H 15	90	180	1	
Propagation Delay Time (Inhibit):	5	150	300		
	10	60	120	ns	
High-to-Low Level tpH	L 15	40	80	1	
	5	250	500		
Low-to-High Level tpL	10	100	200	ns	
	15	70	140	1	
Transition Time true true	5	100	200		
Transition Time tTHL, tTLH	10	50	100	ns	
	15	40	80		
Input Capacitance C _{IN}	Any Input	5	7.5	pF	

T_{HIGH} = +125°C for C, D, F, H device. = + 85°C for E device.

CMOS EXPANDABLE 4-WIDE, 2-INPUT AND-OR INVERT GATE

FEATURES

- Medium-speed operation tpHL = 90 ns;
 tpLH = 140 ns (typ.) at 10 V
- INHIBIT and ENABLE inputs
- Buffered outputs
- 100% tested for quiescent current at 15 V
- Maximum input leakage current of 1μA over full package-temperature range; 100 nA at 15 V and 25° C
- Noise margin (over full package temperature range):

1 V at V_{DD} = 5 V

2 V at V_{DD} = 10 V

2.5 V at VDD = 15 V

- Standardized, symmetrical output characteristics
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13A, "Standard Specifications for Description of 'B' Series CMOS Devices"

DESCRIPTION

The 4086B contains one 4-wide 2-input AND-OR-INVERT gate with an INHIBIT/ $\overline{\text{EXP}}$ input and an ENABLE/EXP input. For a 4-wide A-O-I-function INHIBIT/EXP is tied to V_{SS} and ENABLE/EXP to V_{DD} . See Fig. 2 and its associated explanation for applications where a capability greater than 4-wide is required.

The 4086B is supplied in 14-lead dual-in-line ceramic packages (D and C suffixes), 14-lead dual-in-line plastic packages (E suffix), 14-lead ceramic flat packs (F suffix), and in chip form (H suffix).

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	UNITS	
	Min.	Max.	
Supply Voltage Range (For T _A = Full Package Temperature Range)	3	18	V

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD}	CONDITIONS	T _{LOW} ²		+25°C			THIGH ²		Units
ranameren		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE	I _{DD}		V _{IN} =V _{SS} or V _{DD}		0.05	_	0.0005	0.05	_	1.5	μAdc
COMMENT		10	All valid input	-	0.10	-	0.001	0.10	-	3.0	
		15	combinations	_	0.20	-	0.002	0.20		6.0	

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.
= -40°C for E device.

THIGH = +125°C for C, D, F, H device. = + 85°C for E device.

ABSOLUTE MAXIMUM RATINGS

DC SUPPLY-VOLTAGE RANGE, (VDD) (Voltages referenced to

INPUT VOLTAGE RANGE,

ALL INPUTS -0.5 to V_{DD} +0.5 V DC INPUT CURRENT,

POWER DISSIPATION PER PACKAGE (PD):

For $T_A = -40 \text{ to } +60^{\circ} \text{ C}$ (PACKAGE TYPE E) 500 mW

For $T_A = +60 \text{ to } +85^{\circ} \text{ C}$ (PACKAGE TYPE E) Derate Linearly at 12 mW/° C to 200 mW

For $T_A = -55 \text{ to } +100^{\circ} \text{ C}$ (PACKAGE TYPES D, C, F) 500 mW For $T_{\Delta} = +100 \text{ to } +125^{\circ} \text{ C}$

(PACKAGE TYPES D, C, F) Derate Linearly at 12 mW/° C to 200 mW

DEVICE DISSIPATION

PER OUTPUT TRANSISTOR

For TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types). ... 100 mW OPERATING TEMPERATURE RANGE (TA):

PACKAGE TYPES D, F, C, H -55 to +125° C PACKAGE TYPE E -40 to +85° C

STORAGE TEMPERATURE

RANGE (T_{stq}) -65 to +150° C LEAD TEMPERATURE (DURING SOLDERING): At distance $1/16 \pm 1/32$ inch $(1.59 \pm 0.79 \text{ mm})$ from case for 10 s max. +265° C

Fig. 3 shows two 4086's utilized to obtain an 8-wide 2-input A-O-I function. The output (J1) of one 4086 is fed directly to the ENABLE/EXP2 line of the second 4086. In a similar fashion, any NAND gate output can be fed directly into the ENABLE/EXP input to obtain a 5-wide A-O-I function. In addition, any AND gate output can be fed directly into the INHIBIT/EXP input with the same result.

12 ATBT - C1 D1 - E1 F1 - G1 H1 - A2 82 - C2 D2 + E2 F2 - F2 H2 TWO 4086B'S CONNECTED AS AN 8 WIDE 2 INPUT A O-I GATE

DYNAMIC ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C; Input t_r, t_f = 20ns, C_1 = 50pF, R_1 = 200K\Omega)$

CHARACTERISTIC	CONDITIONS	LIMITS		UNITS
	V _{DD}	TYP.	MAX.	
Propagation Delay Time	· 5	225	450	
(Data)	10	90	180	ns
High to Low Level, IPHL	15	60	120	I
	5	350	700	
Low to High Level, IPLH	10	140	280	ns
	15	100	200	
Propagation Delay Time	5	150	300	
(Inhibit) High to Low	10	60	120	ns
Level, tpHL(INH)	15	40	80	
	5	250	500	
Low to High Level,	10	100	200	ns
PLHUNH	15	70	140	i .
	5	100	200	
Transition Time,	10	50	100	ns
THL-TTLH	15	40	80	i
Input Capacitance C _{IN}	Any Input	5	75	μF

FEATURES

- Schmitt Trigger Action on each Input with no External Components
- ♦ Quad 2-Input NAND Configuration
- ♦ Noise Immunity Greater than 50%
- ♦ No Limit on Input Rise and Fall Times

DESCRIPTION

The 4093B consists of four Schmitt trigger circuits. Each circuit functions as a 2-input NAND gate with Schmitt trigger action on both inputs. The gate switches at different points for positive- and negative-going signals. The difference between the positive voltage (Vp) and the negative voltage (VN) is defined as the hysteresis voltage (VH). This device is useful in high-noise environments and in wave and pulse shapers and multivibrators.

LOGIC DIAGRAM

CMOS QUAD SCHMITT TRIGGER

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage $V_{DD} - V_{SS}$ 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device -55 to +125 °C E Device -40 to +85 °C

BLOCK DIAGRAM

STATIC CHARACTERISTICS '

PARAMETER		V _{DD}	CONDITIONS	TL	ow ²		+25°C		THI	GH ²	Units
PARAMETER				Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	I _{DD}	5 10 15	V _{IN} = V _{SS} or V _{DD} All valid input combinations	- - -	1.0 2.0 4.0	- -	0.0005 0.001 0.002	1.0 2.0 4.0	- - -	30 60 120	μAdc
POSITIVE TRIGGER THRESHOLD VOLTAGE	V _P (V _{IL})	5 10 15			typ typ typ	2.3 4.5 6.8	2.9 5.9 8.9	3.5 7.0 11	5.9	typ typ typ	Vdc
NEGATIVE TRIGGER THRESHOLD VOLTAGE	(V _{IH})	5 10 15		4	S typ typ 5 typ	1.5 3.0 4.0	2.3 3.9 5.4	2.7 5.5 8.2	3.8	typ typ typ	Vdc
HYSTERESIS VOLTAGE	V _H	5 10 15		.4 .7 .85	2.0 3.0 4.0	.4 .7 .85	.75 .95 1.20	2.0 3.0 4.0	.4 .7 .85	2.0 3.0 4.0	V _{dc}

NOTES: Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

Thom = -55°C for C, D, F, H device.

= -40°C for E device.

Thigh = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25 C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	tpLH, tpHL	5	-	190	380	ns
		10	_	90	180	i
		15	! -	65	130	
OUTPUT TRANSITION TIME	tich, tinc	5	-	100	200	ns
		10		50	100	
		15	i –	40	80	

Typical P-Channel **Source Current Characteristics**

Typical N-Channel Sink Current Characteristics

V_N V_P V_I V_N V_P V_N

Definition of Vp, VN and VH.

Transfer characteristic of 1 of 4 gates.

Input and output characteristics.

Typical current and voltage transfer characteristics.

Typical voltage transfer characteristics as a function of temperature.

Typical trigger threshold voltage vs. VDD.

Typical per cent hysteresis vs. supply voltage.

APPLICATIONS INFORMATION

Wave shaper.

Monostable multivibrator.

Astable multivibrator.

CMOS 8-STAGE SHIFT-AND-STORE BUS REGISTER

FEATURES:

- 3-state parallel outputs for connection to common bus
- Separate serial outputs synchronous to both positive and negative clock edges for cascading
- Medium speed operation 5 MHz at 10 V
- Quiescent current specified to 15 V
- Maximum input leakage of 1 μA at 15 V (full package-temperature range)
- 1-V noise margin (full package-temperature range)
- 5-V, 10-V, and 15-V parametric ratings

DESCRIPTION:

The 4094B is an 8-stage serial shift register having a storage latch associated with each stage for strobing data from the serial input to parallel buffered 3-state outputs. The parallel outputs may be connected directly to common bus lines. Data is shifted on positive clock transitions. The data in each shift register stage is transferred to the storage register when the STROBE input is high. Data in the storage register appears at the outputs whenever the OUTPUT-ENABLE signal is high.

Two serial outputs are available for cascading a number of 4094B devices.

Data is available at the Q_s serial output terminal on positive clock edges to allow for high-speed operation in cascaded systems in which the clock rise time is fast. The same serial information, available at the Q_s terminal on the next negative clock edge, provides a means for cascading 4094B devices when the clock rise time is slow.

APPLICATIONS

- Serial-to-parallel data conversion
- Remote control holding register
- Dual-rank shift, hold, and bus applications

RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}\text{C}$, Except as Noted. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	V _{DD}	LIN	NITS	UNITS
	(V)	MIN.	MAX.	
Supply-Voltage Range (For T _A = Full Package-Temperature Range)		3	18	v
Data Setup Time, t _s	5 10 15	125 55 35	_ _ _	ns
Clock Pulse Width, tw	5 10 15	200 100 83		ns
Clock Input Frequency, f _{ct}	5 10 15	dc	1.25 2.5 3	MH _z
Clock Rise & Fall Time, t,CL, t,CL*	5, 10, 15	_	15	μS
Strobe Pulse Width, tw	5 10 15	200 80 70	_ 	ns

^{&#}x27;If more than one unit is cascaded t_iCL (for Q_s only) should be made less than or equal to the sum of the fixed propagation delay at 50 pF and the transition time of the output driving stage for the estimated capacitive load.

TRUTH TABLE

	CL.	Output Enable	Strobe	Data		allel puts		rial puts
					Q1	QN	QS*	Q'S
	_	0	×	Х	ос	ОС	Q7	NC
ı	_	0	X	х	ос	oc	NC	Q7
ļ		1	0	X	NC	NC	Q7	NC
	/	1	1	0	0	Q _{N-1}	Q7	NC
1		1	1	1	1	Q_{N-1}	Q7	NC
l		1	1	1	NC	NC	NC	Q7

^{▲ =} Level Change X = Don't Care

Logic 1 ≡ High Logic 0 ≡ Low

NC = No Change OC = Open Circuit

^{*}At the positive clock edge information in the 7th shift register stage is transferred to the 8th register stage and the ${\bf Q_8}$ output.

STATIC ELECTRICAL CHARACTERISTICS

		1	T _{LOW} ²		+25°C			T _{HIGH} ²	
PARAMETER	V _{oo}	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units
QUIESCENT DEVICE	5		5	_	0.02	5		150	
CURRENT (Ing.)	10		10	_	0.02	10		300	μΑ
(56)	15	_	20		0.02	20		600	1
3-STATE OUTPUT LEAKAGE CURRENT (Iz.)	15	_	±0.1	_	±10-4	±0.1	_	±1	μА

NOTES: ¹ Remaining Static Electrical Characteristics are listed under " 4000B Series Family Specifications"
² T_{LOW} = -55°C for C, D, F, H devices.
= -40°C for E Devices.

T_{NIGH} = +125°C for E, D, F, H devices.
= +85°C for E devices.

DYNAMIC ELECTRICAL CHARACTERISTICS

At $T_A = 25$ °C; Input t_r , $t_r = 20$ ns, $C_L = 50$ pF

		A	LIMITS LL PACKAG	ES	UNITS
CHARACTERISTIC	(V)	MIN.	TYP.	MAX.	UNITE
Propagation Delay Time. tphi. tpli Clock to Serial Output (Q's)	5 10 15	=	300 125 95	600 250 190	ns
Clock to Serial Output (Q's)	5 10 15	=	230 110 75	460 220 150	ns
Clock to Parallel Output	5 10 15		420 195 135	840 390 270	ns
Strobe to Parallel Output	5 10 15		290 145 100	580 290 200	ns
Output Enable to Parallel Output:	5 10 15		140 75 55	280 150 110	ns
t _{PLH}	5 10 15	-	225 95 70	450 190 140	ns
Minimum Strobe Pulse Width, tw	5 10 15		100 40 35	200 80 70	ns
Minimum Clock Pulse Width, t _w	5 10 15	1.	100 50 40	200 100 83	ns
Minimum Data Setup Time, t _s	5 10 15		60 30 20	125 55 35	ns
Transition Time;	5 10 15	=	100 50 40	200 100 80	ns
Clock Rise and Fall Time;	5, 10, 15	_	_	15	μs
Max. Clock Input Frequency, f _{CL}	5 10 15	1.25 2.5 3	2.5 5 6	=	MH,
Average Input Capacitance, C ₁ (Any Input)	_	_	5	_	pF

FEATURES

- Serial data input
- Active parallel output
- Storage register capability
- Master clear
- Can function as demultiplexer

APPLICATIONS

- Multi-line decoders
- A/D converters

DESCRIPTION

The 40998 8-bit addressable latch is a serial-input, paralleloutput storage register that can perform a variety of functions.

Data are inputted to a particular bit in the latch when that bit is addressed (by means of inputs A0, A1, A2) and when WRITE DISABLE is at a low level. When WRITE DISABLE is high, data entry is inhibited; however, all 8 outputs can be continuously read independent of WRITE DISABLE and address inputs.

A master RESET input is available, which resets all bits to a logic "0" level when RESET and WRITE DISABLE are at a high level. When RESET is at a high level, and WRITE DISABLE is at a low level, the latch acts as a 1-of-8 demultiplexer; the bit that is addressed has an active output which follows the data input, while all unaddressed bits are held to a logic "0" level.

LOGIC DIAGRAM

PACL INPUTS ARE PROTECTED BY COSIMOS PROTECTION NETWORK

8-BIT ADDRESSABLE LATCH

TRUTH TABLE

WD	R	Addressed Latch	Unaddressed Latch
0	0	D H	olds previous data
0	1	D	0
1	0	Holds previous	data
1	1	0	0

TIMING DIAGRAMS

Fig.1 — Definition of WRITE DISABLE ON time.

Fig. 2 — Master timing diagram.

STATIC CHARACTERISTICS 1, 2

		Low		+ 25°C			Тн	Units	
PARAMETER	V _{DD}	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Ullits
QUIESCENT DEVICE IDD	5	_	5		0.02	5	-	150	
CURRENT	10	_	10	—	0.02	10	_	300	μΑ
	15	_	20		0.02	20	_	600	

DYNAMIC CHARACTERISTICS

 $T_A = 25^{\circ}$ C, $C_L = 50$ pF, Input t_r , $t_f = 20$ ns, $R_L = 200$ K

CHARACTERISTIC	SEE	V _{DD}	LIMI	GE TYPES	UNITS
	FIG 2*	(V)	TYP.	MAX.	
Propagation Delay: t _{PLH,}		5	200	400	
t _{PHL}	(1)	10 15	75 50	150 100	
WRITE DISABLE		5	200	400	
to Output. t _{PLH.}	(2)	10	80	160	ns
tphL	$\overline{}$	15	60	120	
		5 10	175 80	350 160	
Reset to Output,	(3)	15	65	130	
t _{PHL} Address to Output,		- 13 -	225	450	
t _{PLH,}	9	10	100	200	
t _{PHL}		15	75	150	
Transition Time, T _{THL}		5	100	200	
(Any Output) t _{TLH}		10	50	100	ns
		15	40	80	
Minimum Pulse		5	100	200 100	ns
Width, t _W Data	(4)	10 15	50 40	80	115
Data		5	200	400	
Address	(8)	10	100	200	ns
		15_	65	125	
		5	75	150 75	ns
Reset	(5)	10 15	40 25	75 50	115
Minimum Cotum		5	50	100	
Minimum Setup	(6)	10	25	50	ns
Time, t _S Data to WRITE DISABLE		15	20	35	
Minimum Hold	$\overline{}$	5	75	150	
Time, t _H	(7)	10	40	75 50	ns
Data to WRITE DISABLE		15	25	30	
Average Input Capacitano		nut	5	_	pF
U 1	Any Ir	iput	3		P'

^{*}Circled numbers refer to times indicated on master timing diagram.

Note: In addition to the above characteristics, a WRITE DISABLE ON time (the time that WRITE DISABLE is at a high level) must be observed during an address change for the total time that the external address lines A0, A1, and A2 are settling to a stable level, to prevent a wrong cell from being addressed (see Fig. 1).

CMOS SYNCHRONOUS 4-BIT COUNTERS

FEATURES

- BCD Decade (4160B, 4162B) or 4-Bit Binary (4161B, 4163B) Counting
- ♦ Internal Look-Ahead for Fast Counting
- ♦ Carry Output for Cascading
- Synchronously Programmable
- **♦** Sychronous Counting
- ♦ Load Control Input
- Clear Input Asynchronous (4160B, 4161B) or Synchronous (4162B, 4163B)
- ♦ Static Operation DC to 5MHz @ 10Vdc

DESCRIPTION

The 4160B - 4163B are Synchronous Programmable Counters constructed with complementary MOS P-Channel and N-Channel enhancement-mode devices in a single monolithic structure. These counters are functionally equivalent to the 74160 - 74163 TTL counters.

Two are synchronous programmable decade counters with asynchronous and synchronous Clear inputs respectively (4160, 4162). The other two are 4-bit binary counters with asynchronous and synchronous Clear respectively (4161, 4163).

SYNCHRONOUS MODE SELECTION 4160B/4161B

L	PE TE		Mode
LII	X L X H	ХХГН	Preset No Change No Change Count

H = High level L = Low level X = Don't care

SYNCHRONOUS MODE SELECTION 4162B/4163B

CLR	L	PE	TE	Mode
н	L	×	х	Preset
н	н	L	X	No Change
н	н	X	L	No Change
н	н	н	н	Count
L	х	х	х	Reset

H = High level L = Low level X = Don't care

CONNECTION DIAGRAM (all packages) VDD CO Q1 Q2 Q3 Q4 TE 16 15 14 13 12 11 10 9 4160B - 4163B CLR CLK P1 P2 P3 P4 PE Vss Add suffix for package: 16-pin Cerdip D 16-pin Ceramic Ε 16-pin Epoxy F 16-pin Flat Chip

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device -55 to +125 °C E Device -40 to +85 °C

BLOCK DIAGRAM

SELECTOR GUIDE

CLEAR	MOI	DULUS
CLEAR	DECADE	BINARY
Asynchronous Synchronous	4160B 4162B	4161B 4163B

FUNCTIONAL DESCRIPTION

These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the Load input disables the counter and causes the outputs to agree with the setup data after the next Clock pulse regardless of the levels of the Enable inputs. Low-to-high transitions at the Load input should be avoided when the Clock is low if the Enable inputs are high at or before the transition. The Clear function for the 4160, 4161 is asynchronous and a low level at the Clear input sets all four of the flip-flop outputs low regardless of the levels of the Clock. Load or Enable inputs. The Clear function for the 4162 and 4163 is synchronous and a low level at the Clear inputs sets all four of the flip-flop outputs low after the next Clock pulse regardless of the levels of the Enable inputs. This synchronous Clear allows the count length to be modified easily; decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the Clear input to synchronously clear the counter to 0000 (LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two Count Enable inputs and a Carry output. Both Count Enable inputs (PE, TE) must be high to count, and Enable input TE is fed forward to enable the carry output. The Carry output thus enabled will produce a positive output pulse with a duration approximately equal to the positive portion of the Q1 output. This positive overflow Carry pulse can be used to enable successive cascaded stages. High-to-low-level transitions at the Enable PE or TE inputs should occur only when the Clock input is high.

Typical P-Channel Source Current Characteristics

Typical N-Channel
Sink Current Characteristics

SWITCHING WAVEFORMS

STATIC CHARACTERISTICS '

PARAMETER		V _{DD}	CONDITIONS	TL	ow ²		+25°C		THI	GH ²	Units
		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	0
QUIESCENT DEVICE CURRENT	IDD	5 10	V _{IN} = V _{SS} or V _{DD} All valid input	-	5 10	-	0.05 0.1	5 10	-	150 300	μAdc
		10 15	All valid input combinations	-	10 20	-	0.1 0.2	10 20	-	300 600	ľ

NOTES: Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

TLOW = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device. = + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION						-
PROPAGATION DELAY TIME Clock to Q	tpLH, tpHL	5 10 15		200 80 60	400 160 120	ns
Clock to Carry Out		5 10 15	_	240 95 75	480 190 150	ns
TE to Carry Out		5 10 15	_ _ _	180 70 50	360 140 100	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	_ _ _	85 35 25	170 70 50	ns
MAXIMUM CLOCK FREQUENCY	f _{CL}	5 10 15	2.0 5.5 8.0	3.0 8.5 12.0		MHz
MAXIMUM CLOCK RISE AND FALL TIME	t _{rCL} , t _{fCL}	5 10 15	50 50 50	∞ ∞ ∞	_ _ _	ms
MINIMUM SETUP TIME Data to Clock	t _{setup}	5 10 15	- - -	120 45 30	240 90 65	ns
Load to Clock		5 10 15	- - -	120 45 30	240 90 65	ns
PE or TE to Clock		5 10 15	- - -	170 70 50	340 140 100	ns
CLEAR OPERATION PROPAGATION DELAY TIME Clear to Q	t _{PLH} , t _{PHL}		[
(4160, 4161 only)		5 10 15	-	150 50 30	300 100 60	ns
MINIMUM SETUP TIME Clear to Clock (4162, 4163 only)	t _{setup}	5 10 15	_ _ _	120 50 30	240 100 60	ns

less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

4160B, 4162B LOGIC DIAGRAM (Clear is synchronous for 4162B)

4160B, 4162B TIMING DIAGRAM

4161B, 4163B LOGIC DIAGRAM (Clear is Synchronous for 4163B)

CMOS HEX TYPE D FLIP-FLOP

FEATURES:

- Static Operation
- All Inputs and Outputs Buffered
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Output Compatible with Two HTL Loads, Two Low-Power TTL

Loads or One Low-Power Schottky TTL Load

■ Functional Equivalent to TTL 74174

DESCRIPTION:

The 4174B hex type D flip-flop is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. Data on the D inputs which meets the setup time requirements is transferred to the Q ouptuts on the positive edge of the clock pulse. All six flip-flops share common clock and reset inputs. The reset is active low, and independent of the clock.

MAXIMUM RATINGS (Voltages referenced to Vss)

Reting	Symbol	Value	Unit
DC Supply Voltage	Voo	-0.5 to +18	Vdc
Input Voltage, All inputs	Vin	-0.5 to V _{DD} +0.5	Vdc
DC Current Drain per Pin	1	10	mAdc
Operating Temperature Range—C, D, F, H E	TA	-55 to +125 -40 to +85	°C
Storage Temperature Range	T _{sto}	-65 to +150	°C

TRUTH TABLE (Positive Logic)

	INPUTS		OUTPUT	
Clock	Data	Reset	Q	
	0	1	0	
	1	1	1	A1-
	X	1	Q	No Change
Х	Х	0	0	0

X = Don't Care

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\rm in}$ and $V_{\rm out}$ be constrained to the range $V_{\rm 80} < (V_{\rm in} \ {\rm or} \ V_{\rm wol}) < V_{\rm 900}$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{ss} or V_{oo}).

SWITCHING CHARACTERISTICS* (C_L = 50 pF, T_A = 25°C)

		Voo		All Types		
Characteristic	Symbol	Vdc	Min	Min Typ		Unit
Output Rise and Fall Time	t _r , t _r					ns
		5.0	i –	100	200	
	1	10	_	50	100	
		15	_	40	80	1
Propagation Delay Time—Clock to Q	t _{PLH} ,					ns
	t _{PHL}	5.0	-	150	300	
		10	-	70	140	
		15	_	50	100	
Propagation Delay Time—Reset to Q	t _{PHL}					ns
		5.0	_	250	500	1
		10	_	100	200	1
		15	-	75	150	ĺ
Minimum Clock Pulse Width	PWc	5.0	_	75	150	ns
		10	_	45	90	
		15	_	35	70	
Minimum Reset Pulse Width	PW _B	5.0	_	100	200	ns
	"	10	_	50	100	113
		15	_	40	80	
Maximum Clock Pulse Frequency	PRF	5.0	2.0	7.0		MHz
		10	5.0	12.0	_	1
		15	6.5	15.5	_	
Maximum Clock Pulse Rise and Fall Time	t _r , t _r	5.0	15	_		μs
		10	15	_	_	"
		15	15	_	_	
Data Setup Time	t _{setup}	5.0	_	20	40	ns
	1	10	_	10	20	""
		15	_	0	15	
Data Hold Time	t _{held}	5.0		40	80	ns
	-1010	10	_	20	40	113
		15	_	15	30	
Reset Removal Time**	t _{rem}	5.0		125	250	ns
	, uem	10	_	50	100	ns
	1	15	_	40	80	

^{*}The formulas given are for the typical characteristics only.

STATIC CHARACTERISTICS

PARAMETER		PARAMETER VDD CONDITIONS		T _{LOW} ² +25°C			THIGH ²		Units		
		(Vdc)	dc)		Max.	Min.	Typ.	Max.	Min.	Max.	Oille
QUIESCENT DEVICE CURRENT	loo	5 10 15	V _{IN} = V _{SS} or V _{DD} All valid input combinations	-	5 10 20	- -	0.005 0.010 0.015	5 10 20	1 1 1	150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

^{**}The reset signal must be high prior to a positive-going transition of the clock.

CMOS PRESETTABLE UP-DOWN COUNTERS (Dual Clock with Reset)

FEATURES:

- Individual clock lines for counting up or counting down
- Synchronous high-speed carry and borrow propagation delays for cascading
- Asynchronous reset and preset capability
- Medium-speed operation—f_{CL} = 8 MHz (typ.) @ 10 V

DESCRIPTION:

The SSS- 4192B Presettable **BCD** Up/Down Counter and the 4193B Presettable Binary Up/Down Counter each consist of 4 synchronously clocked, gated "D" type flip-flops connected as a counter. The inputs consist of 4 individual jam lines, a PRESET ENABLE control, individual CLOCK UP and CLOCK DOWN signals and a master RESET. Four buffered Q signal outputs as well as CARRY and BORROW outputs for multiple-stage counting schemes are provided.

The counter is cleared so that all outputs are in a low state by a high on the RESET line. A RESET is accomplished asynchronously with the clock. Each output is individually programmable asynchronously with the clock to the level on the corresponding jam input when the PRESET ENABLE control is low.

The counter counts up one count on the positive clock edge of the CLOCK UP signal provided the CLOCK DOWN line is high. The counter counts down one count on the positive clock edge of the CLOCK DOWN signal provided the CLOCK UP line is high.

The CARRY and BORROW signals are high when the counter is counting up or down. The CARRY signal goes low one-half clock

APPLICATIONS:

- Up/down difference counting
- Multistage ripple counting
- Synchronous frequency dividers
- A/D and D/A conversion
- Programmable binary or BCD counting

cycle after the counter reaches its maximum count in the count-up mode. The BORROW signal goes low one-half clock cycle after the counter reaches its minimum count in the count-down mode. Cascading of multiple packages is easily accomplished without the need for additional external circuitry by tying the BORROW and CARRY outputs to the CLOCK DOWN and CLOCK UP inputs, respectively, of the succeeding counter package.

The 4192B and 4193B types are supplied in 16-lead hermetic dual-in-line ceramic packages (C and D suffixes), 16-lead dual-in-line plastic packages (E suffix), 16-lead ceramic flat packages (F suffix), and in chip form (H suffix).

STATIC CHARACTERISTICS '

PARAMETER		PARAMETER		V _{DD}	CONDITIONS	TL	ow ²		+25°C		THE	GH ²	Units
		(Vdc)	· · · · · · · · · · · · · · · · · · ·	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Oille		
QUIESCENT DEVICE CURRENT	loo	10	V _{IN} = V _{SS} or V _{DD} All valid input	_	5 10	-	0.04 0.04	5 10	- -	150 300	μAdc		
		15	combinations	-	20	_	0.04	20	_	600			

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature C, D, F, H Device -55 to +125 °C E Device -40 to +85 °C

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_A = 25^{\circ}$ C input t_o t_o = 20 ns. C₁ = 50 pF, R₁ = 200 kΩ

	V _{DD}	LIMITS			
CHARACTERISTIC	(V)	Min.	Тур.	Max.	UNITS
Propagation Delay Time t _{PHL} , t _{PLH} : CLOCK UP or CLOCK DOWN to Q, RESET to Q	5 10 15	=	120	500 240 180	ns
PE to Q	5 10 15	=	100	400 200 140	ns
CLOCK UP to CARRY, CLOCK DOWN to BORROW	5 10 15	=	80	320 160 120	ns
RESET or PE to BORROW or CARRY	5 10 15	=	150	600 300 220	ns
Transition Time, t _{THL} , t _{TLH}	5 10 15	=		200 100 80	ns
Min. Removal Time, t _{rem} * RESET or PE	5 10 15	=	40 20 15	80 40 30	ns
Min. Pulse Width, tw RESET	5 10 15	=	240 150 130	300	ns
PE	5 10 15	 - 	120 85 70		ns
CLOCK	5 10 15	_ 	90 45 30	180 90 60	ns
Max. Clock Input Frequency, f _{CL}	5 10 15	2 4 5.5	4 8 11	=	MHz
Clock Rise & Fall time, t,, t,	5 10 15	=	<u>-</u>	15 15 5	μs
Input Capacitance, C _{IN} : RESET	_	_	10	15	pF
All Other Inputs	_	_	5		pF

^{*}The time required for RESET or PRESET ENABLE control to be removed before clocking (see timing diagram).

Internal logic of Flip-flop.

TRUTH TABLE

CLOCK UP	CLOCK	PRESET ENABLE	RESET	ACTION
	1	1	0	COUNT UP
1	1	1	0	NO COUNT
1		1	0	COUNT DOWN
1		1	0	NO COUNT
Х	х	0	0	PRESET
Х	Х	Х	1	RESET

1 = HIGH LEVEL

0 = LOW LEVEL

X = DON'T CARE

13 14 15 0 1 2

4193B timing diagram.

1 0 15 14 13

Q4 10 CARRY 0 BORROW 0 COUNT →

CMOS EXPANDABLE GATES

FEATURES

- Dual 4-Input Gates with Uncommitted Output Transistors
- Simplifies Construction of Combinational Logic Functions
- ♦ CMOS-to-TTL Interface Capability
- ♦ All Inputs Diode-Protected

DESCRIPTION

These devices are buffered Dual 4-input NOR Gates (4402B) and NAND Gates (4412B), with uncommitted output transistors. Gate expansion, complex combinational gating, and interface circuits can be constructed from these devices.

LOGIC DIAGRAMS

Typical P-Channel Source Current Characteristics

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc

Operating Temperature T_A

C, D, F, H Device -55 to +125 °C

E Device -40 to +85 °C

Typical N-Channel Sink Current Characteristics

STATIC CHARACTERISTICS 1

PARAMETER		V_{DD}	CONDITIONS	TL	OW ²		+25°C		THI	Units	
		(Vdc)	-	Min.	Max.	Min.	Typ.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	DD	10	V _{IN} = V _{SS} or V _{DD} All valid input combinations		0.05 0.10 0.20	-	0.0005 0.001 0.002	0.05 0.10 0.20	1 1 1	1.5 3.0 6.0	μAdc

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

T_{LOW} = -55°C for C, D, F, H device. = -40°C for E device. T_{HIGH} = +125°C for C, D, F, H device. = + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER			Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME Connected as Dual 4-Input Gates	t _{PLH} , t _{PHL}	5 10 15	- - -	125 60 45	250 120 90	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	_ _ _	100 50 40	200 100 80	ns

APPLICATIONS INFORMATION

4402B

4412B

For additional information, see Application Note AN-102.

FEATURES

- ♦ 8-Stage Synchronous Counter
- **♦** Buffered Outputs from all 8 Stages
- Direct Reset
- ♦ Fully Static Operation DC to 8MHz @ 10Vdc

DESCRIPTION

The 4404B consists of eight synchronous, single-phase clocked counting stages, with the Q output of each stage accessible. The counter is reset to all "zeroes" by a high level on the Reset line. Each stage of the counter utilizes a master-slave flip-flop configuration. The state of the counter is advanced one step in binary order on the negative-going transition of the input clock pulse.

TRUTH TABLE

CLOCK	RESET	OUTPUT STATE
	0	No Change
7	0	Advance to next
×	1	All Outputs are low

X = Don't Care

CMOS 8-STAGE BINARY COUNTER

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device -55 to +125 °C

E Device 40 to +85 °C

STATIC CHARACTERISTICS '

PARAMETER		V _{DD}	CONDITIONS	T _{LOW} ²		+25°C			THE	Units	
raname ren		(Vdc)	CONDITIONS	Min.	Max.	Min.	Typ.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	IDD		V _{IN} = V _{SS} or V _{DD} All valid input combinations	- - -	5 10 20		0.05 0.1 0.2	5 10 20	- - -	150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units						
CLOCKED OPERATION												
PROPAGATION DELAY TIME	t _{РСН} , t _{РН}	5 10 15	_ _ _	250 125 100	500 250 200	ns						
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns						
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	- - -	125 65 50	250 130 100	ns						
MAXIMUM CLOCK FREQUENCY	f _{CL}	5 10 15	2.0 4.0 5	4.0 8.0 10	- - -	MHz						
MAXIMUM CLOCK RISE AND FALL TIME	t _{rCL} , t _{fCL}	5 10 15	15 5 3	- - -	- -	μς						
RESET OPERATION				•								
PROPAGATION DELAY TIME	t _{PHL}	5 10 15	-	175 75 60	350 150 120	ns						
MINIMUM RESET PULSE WIDTH	PWR	5 10 15	_ _ _	100 50 40	200 100 80	ns						
RESET REMOVAL TIME	t _{rem}	5 10 15	_ _ _	200 90 65	400 180 130	ns						

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

FEATURES

- **♦ DPDT Switch Operation Without External Logic**
- Wide Range of Digital and Analog Signal Levels Digital or Analog Signal to 18 Volts peak
- ♦ Low ON Resistance —
 200 Ω typ. over 15V_{p-p} Signal Input Range,
 VDD VSS = 15V
- ♦ Matched Switch Characteristics 10 \(\Omega\$ typ. Difference Between R_{ON} Values at a Fixed Bias Point over 15 V_{p-p} Signal Input Range, V_{DD} V_{SS} = 15V
- High "ON/OFF" Output Voltage Ratio —
 65 dB typ. @ f_{is} = 10 kHz, R_L = 10 kΩ
- High Degree of Linearity 0.4% Distortion typ. @ f_{is} = 1 kHz, V_{is} = 5 V_{p-p}, V_{DD} · V_{SS} = 10V, R_L = 10 k Ω
- ♦ Extremely low OFF Switch Leakage Resulting in Very Low Offset Current and High Effective OFF Switch Resistance — 10 pA typ.
 ② VDD - VSS = 10V, T_A = 25° C
- Extremely High Control Input Impedance (Control Circuit Isolated from Signal Circuit) — 10¹²Ω typ.
- Low Crosstalk Between Switches

 -50dB typ.

 ⊕ f_{is} = 0.9 MHz, R_I = 1k Ω
- Matched Control-Input to Signal-Output Capacitances - Reduces Output Signal Transients
- ♦ Transmits Frequencies up to 40MHz

DESCRIPTION

The 4416B is a single-chip monolithic silicon integrated circuit containing eight N-channel and eight P-channel enhancement-mode MOS transistors connected to from four independent bilateral signal switches. Each switch consists of both P- and N-channel devices with common source and drain connections. A single control signal is required per switch. Both P and N devices in a given switch are biased ON or OFF by the control signal.

CMOS QUAD ANALOG SWITCH

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc
Operating Temperature T_A
C, D, F, H Device -55 to +125 °C
E Device -40 to +85 °C

The CMOS switch permits peak input-signal voltage swings equal to the full supply voltage, a considerable advantage over single-channel types. When the control input is high the switch will be ON. When the control input is low the switch will be OFF.

SCHEMATIC DIAGRAM

*Note the difference from the 4016 B

STATIC CHARACTERISTICS '

DAD AMETER		CONDITI	ONE	Vss	VDD	TLO	w ²		25°C		THE	GH ²	Units
PARAMETER		CONDITI	OIN2	(Vdc)	(Vdc)	Min.	Max.	· Min.	Тур.	Max.	Min.	Max.	0
QUIESCENT DEVICE CURRENT	IDD	All valid inp	V _{IN} = V _{SS} or V _{DD} All valid input combinations				0.05 0.1 0.2	- -	0.0005 0.001 0.002	0.05 0.1 0.2	1 1 1	1.5 3.0 6.0	μAdc
MINIMUM INPUT HIGH VOLTAGE (Control Input)	VIH	V _{IS} = V _{SS} V _{OS} = V _{DD} I _{OS} = 10µA		0 0 0	5 10 15		2.9 2.9 2.9	- - -	1.5 1.5 1.5	2.7 2.7 2.7	1 1	2.4 2.4 2.4	Vdo
MAXIMUM INPUT LOW VOLTAGE (Control Input)	ViL	V _{IS} = V _{SS} V _{OS} = V _{DD} I _{OS} = 10μΑ		0 0	5 10 15	0.9 0.9 0.9	-	0.7 0.7 0.7	1.5 1.5 1.5	1 1 1	0.4 0.4 0.4	- - -	Vdc
SWITCH INPUT/OUTPUT LEAKAGE (Switch off)	l _{OFF}	V _C = V _{SS} ⁴	V _{IS} ±7.5 ±5	.7.5 .5	+7.5 +5	-	±250 ±125	-	±0.1 ±0.01	±250 ±125	<u>-</u>	±2500 ±1250	
ON-RESISTANCE	R _{ON}	V _C = V _{DD} ⁴ R _L = 10kΩ	V _{IS} (Vdc) +7.5 -7.5 ±0.25	-7.5	+7.5	 - -	200 200 180		100 100 80	220 220 200	- - -	450 450 420	Ω
			+5 -5 ±0.25	-5	+5	-	260 260 260	=	160 160 150	300 300 290		500 500 500	Ω
			+15 +0.25 +9.3	0	+15	-	230 100 250	=	130 40 150	250 120 270	-	500 260 580	Ω
			+10 +0.25 +5.6	0	+10	- - -	220 100 400	-	120 60 220	240 130 420	1 1	500 280 900	Ω
ON-RESISTANCE MATCH (Same package)	78 ^{0N}	V _C = V _{DD} ⁴ R _L = 10kΩ	V _{IS} (Vdc) ±7.5 ±5	-7.5 -5	+7.5 +5	-	-	=	10 15	_	-	=	Ω

NOTES: | Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".
| T_{LOW} = -55°C for C, D, F, H device.
| = -40°C for E device.
| T_{HIGH} = +125°C for C, D, F, H device.
| = + 85°C for E device.

DYNAMIC CHARACTERISTICS (CL = 50 pF, TA = 25°C)

PARAMETER		CONDITIONS	V _{SS} (Vdc)	V _{DD} (Vdc)	Min.	Тур.	Max.	Units	
SIGNAL INPUTS (VIS) AND OUTP	UTS (VOS)								
PROPAGATION DELAY TIME Signal input to signal output	t _{PLH,} t _{PHL}	$V_C = V_{DD}^1$ $V_{IS} = \text{square wave}$ $R_L = 10k\Omega$		0	5 10 15	-	20 10 7.5	40 20 15	ns
BANDWIDTH (-3dB) (Sine Wave)	BW	V _C = V _{DD} ¹ V _{IS} = 5V _{SP} centered @0.0Vdc	R _L 1kΩ 10kΩ 100kΩ 1MΩ	-5	+5	- - -	54 40 38 37	- - -	MHz

 $^{^4}$ Reverse polarity of $\rm V_{\rm C}$ (control input) for switches B and C.

ELECTRICAL CHARACTERISTICS (Continued)

DYNAMIC CHARACTERISTICS (C_L = 50 pF, T_A = 25°C) (Continued)

PARAMETER	l	CONDITION	ıs	V _{SS} (Vdc)	V _{DD} (Vdc)	Min.	Тур.	Max.	Units
SIGNAL INPUTS (VIS) AND OUTPU	TS (Vos)	(Continued)							
INSERTION LOSS			_						
(= 20 log ₁₀ V _{0S})		V _C = V _{DD} ¹ V _{IS} = 5V _{p,p} centered @0.0Vdc	R _L 10kΩ 100kΩ 100kΩ	.5	+5	1.0.1	2.3 0.2 0.1 0.05	1111	dB
SIGNAL DISTORTION (Sine Wave)		$V_{C} = V_{DD}^{\dagger}$ $V_{IS} = 5V_{PP}$ centered $0.0Vdc$ $f_{IS} = 1.0kHz$ $R_{L} = 10k\Omega$.5	+5	-	0.4	-	%
FEEDTHROUGH (-50dB)		V _C = V _{SS} ^I V _{IS} = 5V _{PP} centered @0.0Vdc	R _L 10kΩ 100kΩ 100kΩ	-5	+5	1111	1250 140 18 2	1111	kHz
CROSSTALK (-50dB) (Between two switches)		V _C (A) = V _{DD} ¹ V _C (B) = V _{SS} ¹ V _S (A) = 5V _{PP} centered @0.0Vdc R _L = 1.0k		.5	+5	-	0.9	-	MHz
CAPACITANCE							4	_	
Input Output	C _{IS}	Vc = Vss1		-5	+5	-	4	-	pF pF
Feedthrough	Cios	vc - vss				-	0.2	-	pF
CONTROL INPUT (V _C)									
PROPAGATION DELAY TIME	^t РLН, ФНL	V _{SS} < V _{IS} < V _{DD} R _L = 10kΩ		0 0	5 10 15		40 20 15	80 40 30	ns
MAXIMUM INPUT FREQUENCY	fc	$V_{SS} \leq V_{IS} \leq V_{DD}$ $R_L = 1.0k\Omega$		0	5 10 15		5 10 12	-	MHz
CROSSTALK (To signal port)		V_C = Square wave R_L = 10k Ω R_{IN} = 1.0k Ω		0	5 10 15	1 1 1	30 50 100	-	mV

TYPICAL ON-RESISTANCE CHARACTERISTICS

CHARAC- TERISTIC*		PLY			COND	AD ITIONS		
				- 1kΩ	RL.	10ιΩ		100kΩ
	VDD	Ves	VALUE		VALUE	Vis	VALUE	Vis
	(V)	(V)	(Ω)	(V)	(Ω)	(V)	(Ω)	(V)
Rau.	+15	0	200	+15	200	+15	180	+15
RON	1.0		200	0	200	0	200	0
R _{ON} (mex.)	+15	0	300	+11	300	+9.3	320	+9.2
	+10	0	290	+10	250	+10	240	+10
RON	710	Ů	290	0	250	0	300	0
R _{ON} (mex.)	+10	0	500	+7.4	560	+5.6	610	+5.5
	+ 5		860	+ 5	470	+ 5	450	+ 5
RON	* 5	۰	600	0	580	0	800	0
R _{ON} (mex.)	+ 5	0	1.7k	+4.2	7k	+2.9	33k	+2.7
	+7.5	-7.5	200	+7.5	200	+7.5	180	+7.5
RON	77.0	-/.5	200	-7.5	200	-7.5	180	-7.5
RON(mex.)	+7.5	-7.5	290	±0.25	280	±25	400	±0.26
8	+ 5	- 5	260	+ 5	250	+ 5	240	+ 5
RON	* 0		310	- 5	250	- 5	240	- 5
R _{ON} (mex.)	+ 5	- 5	600	±0.25	580	±0.25	760	±0.25
	+2.5	-2.5	590	+2.5	450	+2.5	490	+2.5
RON	₹4.0	-2.5	720	-2.5	520	-2.5	520	-2.5
R _{ON} (mex.)	+2.5	-2.5	232k	±0.25	300k	±0.26	870k	±0.25

^{*} Variation from a perfect switch; R_{ON} = 0Ω .

Typ. switch frequency response - switch "ON"

Typ. feedthru vs. freq. - switch "OFF"

Typ. crosstalk between switch circuits in the same package

Test circuit, Crosstalk-control input to signal output.

APPLICATIONS INFORMATION

4416B connected as a DPDT Switch

CMOS DECADE COUNTER/7-SEGMENT DECODER/DRIVERS

FEATURES

- Monolithic Construction of Bipolar Transistors on Outputs Allow Direct Display Drive
- Decade Counter and 7-Segment Decoder in One Package
- **♦ Direct Reset**
- ◆ Display Enable Function (4426AB)
- Ripple Blanking and Lamp Test Functions (4433 AB)
- Trigger from either Edge of Clock Input
- **♦** Carry Output for Cascading Stages
- ♦ Fully Static Operation DC to 5MHz @ 10Vdc

DESCRIPTION

These two devices each consist of a 5-stage Johnson decade counter and an output decoder which converts the Johnson code to a 7-segment decoded output for driving each stage in a numerical display. A "high" Reset signal clears the decade counter to its zero count. The counters have interchangeable Clock and Clock Enable lines for incrementing on either a positive-going or negative-going transition, respectively. Antilock gating is provided on the Johnson counter, thus assuring proper counting sequence. The Carry-Out (COUT) signal completes one cycle every ten clock input cycles and is used to directly clock the succeeding decade in a multi-decade counting chain.

4426AB

When the Display Enable is "low" the seven decoded outputs are forced off regardless of the state of the counter. Activation of the display only when required results in significant power savings. This system also facilitates implementation of display-character multiplexing.

The Carry Out and ungated "C-segment" signals are not gated by the Display Enable and therefore are available continuously. This feature is a requirement in implementation of certain divider functions such as divide-by-60 and divide-by-12.

4433AB

The 4433AB has provisions for automatic blanking of the nonsignificant zeros in a multidigit decimal number which results in an easily readable display consistent with normal writing practice. For example, the number 0050.0700 in an eight-digit display would be displayed as 50.07. Zero suppression on the integer side is obtained by connecting the RBI terminal of the 4433AB associated with the most significant digit in the display to a "low-level" voltage and connecting the RBO terminal of that stage to the RBI terminal of the 4433AB in the next-lower significant position in the display. This procedure is continued for each succeeding 4433AB on the integer side of the display. On the fraction side of the display.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc

Operating Temperature T_A

C, D, F, H Device -55 to +125 °C

E Device -40 to +85 °C

play the RBI of the 4433AB associated with the least significant digit is connected to a "low level" voltage and the RBO of the 4433AB is connected to the RBI terminal of the 4433AB in the next more-significant-digit position. Again, this procedure is continued for all 4433AB on the fraction side of the display.

In a purely fractional number the zero immediately preceding the decimal point can be displayed by connecting the RBI of that stage to a "high-level" voltage (instead of to the RBO of the next more-significant stage). For Example: optional zero - 0.7346.

Likewise, the zero in a number such as 736.0 can be displayed by connecting the RBI of the 4433AB associated with it to a "high-level" voltage.

A "high" Lamp Test signal turns on all outputs.

BIPOLAR OUTPUTS

These devices are functionally and pin-for-pin interchangeable with all CMOS device types 4026AB and 4433AB. All counting and decoding in 4426AB and 4433AB devices is implemented with CMOS transistor circuitry. In order to furnish higher output drive for applications such as driving LED's, bipolar Darlington transistors have been furnished at each display drive output.

4426AB Decade Counter/7-Segment Decoder/Driver with Display Enable.

4433B Decade Counter/7-Segment Decoder/Driver with Ripple Blanking.

STATIC CHARACTERISTICS 1, 3

PARAMETER		V _{DD}	CONDITIONS	TL	OW ²		+25°C		THI	GH ²	Units
TANAME IER		(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Omits
QUIESCENT DEVICE CURRENT	IDD	5 10 15	V _{IN} = V _{SS} or V _{DD} All valid input combinations	-	5 10 15	-	0.05 0.1 0.2	5 10 20	-	150 300 600	μAdc
HIGH LEVEL OUTPUT VOLTAGE Decoded Outputs	У он	5 10 15	$V_{IN} = V_{SS} \text{ or } V_{DD}$ $ I_O < 1\mu A$	4.25 9.25 14.25	_ _ _	4.25 9.25 14.25	- - -		4.25 9.25 14.25	- - -	Vdc
MINIMUM INPUT HIGH VOLTAGE	VIH	5 10 15	$V_O = 0.5V \text{ or}$ $4.25V$ $V_O = 1.0V \text{ or}$ $9.0V$ $V_O = 1.5V \text{ or}$ $13.5V$ $ I_O < 1\mu A$	-	3.75 7.5 11.25	-	2.75 5.5 8.25	3.75 7.5 11.25	-	3.75 7.5 11.25	Vdc
MAXIMUM INPUT LOW VOLTAGE	٧L	5 10 15	V _O = 0.5V or 4.25V V _O = 1.0V or 9.0V V _O = 1.5V or 13.5V I _O < 1μA	1.25 2.5 3.75	-	1.25 2.5 3.75	2.25 4.5 6.75	-	1.25 7.5 3.75		Vdc
OUTPUT HIGH (SOURCE) CURRENT Decoded Outputs ³	I _E	5 10 15	V _{OH} = 3.5V V _{OH} = 8.5V V _{OH} = 13.5V	-	-	-15 _ _	-25 -60 -100	- - -	- - -	-	mAdc
Carry Output	Іон	5 10 15	V _{OH} = 4.6V V _{OH} = 9.5V V _{OH} = 13.5V V _{IN} = V _{SS} or V _{DD}	-0.10 -0.30 -0.90		-0.10 -0.30 -0.90	-0.4 -1.0 -4.0	- - -	-0.07 -0.20 -0.65		mAdc
Remaining Outputs		5 10 15	V _{OH} = 4.6V V _{OH} = 9.5V V _{OH} = 13.5V V _{IN} = V _{SS} or V _{OD}	-0.08 -0.20 -0.60		-0.08 -0.20 -0.60		- - -	-0.06 -0.14 -0.42	- - -	mAdc
OUTPUT LOW (SINK) CURRENT Carry Output	loL	5 10 15	V _{OL} = 0.4V V _{OL} = 0.5V V _{OL} = 1.5V V _{IN} = V _{SS} or V _{DD}	-0.10 -0.30 -0.90		-0.10 -0.30 -0.90	0.4 1.0 4.0	1 1 1	-0.07 -0.20 -0.65		mAdc
Remaining Outputs		5 10 15	V _{OL} = 0.4V V _{OL} = 0.5V V _{OL} = 1.5V V _{IN} = V _{SS} or V _{DD}	0.13 0.31 1.43	1 1	-0.08 -0.20 -0.60	0.25 0.6 2.5		-0.06 -0.14 -0.42	1 1 1	mAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

³ Observe Package Power Dissipation rating.

ELECTRICAL CHARACTERISTICS (Continued)

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION						
PROPAGATION DELAY TIME Clock to Decodéd Outputs	t _{РСН} , t _{РНС}	5 10 15	1 1	850 250 200	1700 500 400	ns
Clock to Carry Out	t _{РСН} , t _{РНС}	5 10 15	- - -	500 125 100	1000 250 200	ns
OUTPUT TRANSITION TIME Decoded Outputs	t _{TLH} , t _{THL}	5 10 15	- -	450 200 150	900 400 300	ns
Carry Output	t _{TLH} , t _{THL}	5 10 15	- - -	250 125 100	500 250 200	ns
MINIMUM CLOCK OR ENABLE PULSE WIDTH	PW _{CL} , PW _{CE}	5 10 15	_ _ _	200 100 80	400 200 160	ns
MAXIMUM CLOCK FREQUENCY	f _{CL}	5 10 15	1.25 2.5 3.0	2.5 5.0 6.0	- - -	MHz
MAXIMUM CLOCK OR ENABLE RISE AND FALL TIME	t _{rCL} , t _{fCL}	5 10 15	15 15 3	- -	- - -	μς
MINIMUM CLOCK OR ENABLE SETUP TIME	t _{setup}	5 10 15	- - -	250 100 80	500 200 160	ns
RESET OPERATION						
PROPAGATION DELAY TIME Reset to Decoded Outputs	t _{PLH} , t _{PHL}	5 10 15	- - -	700 250 200	1400 500 400	ns
Reset to Carry Output	t _{PLH} , t _{PHL}	5 10 15	- - -	500 125 100	1000 250 200	ns
MINIMUM RESET PULSE WIDTH	PWR	5 10 15	_ _ _	200 100 80	400 200 160	ns
RESET REMOVAL TIME	t _{rem}	5 10 15	- - -	375 150 125	750 300 250	ns

OUTPUT NETWORK

DISPLAY INTERFACE

CMOS BINARY-TO-OCTAL DECODER

FEATURES

- ♦ Binary-to-Octal Decoding
- ♦ Buffered Outputs Go High on Selection
- ♦ Strobe Input for Simple Expansion

DESCRIPTION

The 4428B is a one-of-eight CMOS Strobed Decoder. The three inputs labeled X_0 , X_1 , and X_2 , constitute a three-bit word which defines a number from 0 to 7, and activates one of eight outputs of the decoder. The Strobe line inhibits the outputs from responding to the inputs. If the Strobe line is a logic "1", one of eight outputs is a logic "1". This is an important feature of the Strobe since many 4428B's may be cascading to produce a 1 or N \times 8 strobed decoder. This array is particularly useful in expanding memory systems.

TRUTH TABLE - Strobe at Logical 1

	-	Output										
PIN	X ₂ 10	X ₁	Х _О	0	"1" 12	"2" 2	"3" 13	"4" 1	"5" 5	"6" 6	"7" 4	
	0	0	0	1	0	0	0	0	0	0	0	
	0	0	1	0	1	0	0	0	0	0	0	
	0	1	0	0	0	1	0	0	0	0	0	
	0	1	1	0	0	0	1	0	0	0	0	
	1	0	0	0	0	0	0	1	0	0	0	
	1	0	1	0	0	0	0	0	1	0	0	
	1	1	0	0	0	0	0	0	0	1	0	
	1	1	1	0	0	0	0	0	0	0	1	

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device -55 to +125 °C E Device -40 to +85 °C

BLOCK DIAGRAM

STATIC CHARACTERISTICS 1.

PARAMETER		V _{DD}	CONDITIONS	T _{LOW} ²			+25°C		T _{HIGH} ²		Units
				Min.	Max.	Min.	Тур.	Max.	Min.	Max.	•
QUIESCENT DEVICE CURRENT	loo	5	V _{IN} = V _{SS} or V _{DD} All valid input combinations		5 10 20	111	0.05 0.1 0.2	5 10 20	111	150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETERS					Max.	Units
PROPAGATION DELAY TIME	t _{РСН} , t _{РНС}	5 10 15		225 100 70	450 200 140	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THU}	5 10 15	_ _ _ _	100 50 40	200 100 80	ns

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

APPLICATIONS INFORMATION SIX-BIT BINARY 1-OF-64 DECODER

FEATURES

- **♦ Symmetrical High-Current Outputs**
- High-Speed Operation with Large Capacitive Loads
- **♦ Low Output Impedance**
- Diode Protection on all Inputs

DESCRIPTION

The 4441UB is a monolithic N-channel and P-channel enhancement-mode integrated circuit consisting of four large buffers for very high current capability. This device is useful as a line driver, low-power resistor-network driver for A/D and D/A conversion, display and clock drivers.

SCHEMATIC DIAGRAM (one of four buffers)

Minimum and maximum transfer characteristics.

CMOS QUAD BUFFER-DRIVER

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_{A} C, D, F, H Device -55 to +125 $^{\circ}$ C E Device -40 to +85 $^{\circ}$ C

Typical propagation delay time vs. CL

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD}	CONDITIONS	TL	ow².		+25°C		THE	GH ²	Units
		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.]
10 All va			V _{IN} = V _{SS} or V _{DD} All valid input combinations	_ _ _	1.0 2.0 4.0	 - -	0.005 0.01 0.02	1.0 2.0 4.0		30 60 120	μAdc
OUTPUT HIGH (SOURCE) CURRENT	Іон	5 10 15	V _{OH} = 4.6V V _{OH} = 9.5V V _{OH} = 13.5V V _{IN} = V _{SS}	-2.5 -7.3 -23.1	- - -	-2.0 -5.8 -18.5	-4.5 -14.0 -45	- -	-1.4 -4.0 -13.0	-	mAdc
OUTPUT LOW (SINK) CURRENT	loL	5 10 15	V _{OL} = 0.4V V _{OL} = 0.5V V _{OL} = 1.5V V _{IN} = V _{DD}	2.4 7.0 22.2	-	2.4 7.0 27	4.5 14.0 45	1 1 1	1.7 4.9 19	- - -	mAdc

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications". 2 $T_{LOW} = -55^{\circ}C$ for C, D, F, H device. $= -40^{\circ}C$ for E device.

T_{HIGH} = +125°C for C, D, F, H device. = + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER	V _{DD} (Vdc)	Min.	Тур.	Max.	Units	
PROPAGATION DELAY TIME	t _{РLH} , t _{РНL}	5 10 15	_ _ _	90 45 35	180 90 70	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	_ _ _	90 45 35	180 90 70	ns

Typical P-Channel Source Current Characteristics

Typical N-Channel **Sink Current Characteristics**

CMOS 21-STAGE DIVIDER

FEATURES

- **♦ Low Duty Cycle Push-Pull Outputs**
- Inverter on Chip for Crystal Oscillator Circuit
- Buffered Output Available for Trimming Oscillator
- ♦ 21 Fully Static Stages
- ♦ 10MHz Counting Rate @ 10Vdc

DESCRIPTION

The 4445B monolithic aluminum gate CMOS integrated circuit consists of an oscillator inverter, 21 toggle flip-flops, and two flip-flops used to produce a 3.125% duty cycle output wave-form. Push-pull operation is provided by the inverter output buffers. A divide-by-4 frequency output is provided as an oscillator monitor or subsidiary high frequency output.

The 4445B is especially suited for low-power timekeeping applications such as desk or wall clocks, automobile clocks, and digital timing references. Its output is suitable for driving miniature synchronous motors, stepping motors, or external bipolar transistors in push-push fashion.

The 4445B is pin compatible with device type CD4045A. The extra function $f_0/4$ is provided on pin 11.

TIMING DIAGRAM

Typical propagation delay (f_0 to y or y + d out) vs. V_{DD} . ($C_L = 50pF$).

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc
Operating Temperature T_A
C, D, F, H Device -55 to +125 °C
E Device -40 to +85 °C

Typical f_0 vs. V_{DD} ($C_L = 50pF$).

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD}	CONDITIONS	T _{LOW} ²		+25°C			T _{HIGH} ²		Units
				Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Oiiits
QUIESCENT DEVICE CURRENT	PD	5 10 15	V _{IN} = V _{SS} or V _{DD} All valid input combinations	_ _ _	5 10 20	1 1	0.05 0.1 0.2	5 10 20		150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER	V _{DD} (Vdc)	Min.	Тур.	Max.	Units	
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns
MAXIMUM CLOCK FREQUENCY	fcL	5 10 15	3 5 6	6 10 12	- - -	MHz
MAXIMUM CLOCK RISE AND FALL TIME	t _{rCL} , t _{fCL}	5 10 15	15 15 5	- - -	- - -	μς

Typical P-Channel **Source Current Characteristics**

Typical N-Channel Sink Current Characteristics

LOGIC DIAGRAM

APPLICATIONS INFORMATION

Typical clock motor driver

CMOS HEX INVERTER

FEATURES

- ♦ All Inputs Fully Diode-Protected
- ♦ Pin Compatible with 4009B, 4049B
- ♦ Fully "B"-Series Compatible

DESCRIPTION

The 4449UB consists of six CMOS inverter circuits. It is pin-compatible with the 4009UB, 4049UB, and equivalent device types. In systems which do not require the high output current and level-shifting capabilities of the buffers, the less expensive 4449 can be substituted directly with no change in board layout. The device is particularly useful for quasi-linear circuits, such as oscillators and multivibrators.

SCHEMATIC DIAGRAM (one of six inverters)

Typical current and voltage transfer characteristics.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device -55 to +125 °C E Device -40 to +85 °C

STATIC CHARACTERISTICS '

PARAMETER		V _{DD}	CONDITIONS	T _{LOW} ²		+25°C			THI	Units	
				Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	I _{DD}	5 10 15	V _{IN} = V _{SS} or V _{DD} All valid input combinations	-	0.05 0.10 0.20	- - -	0.0005 0.001 0.002	0.05 0.10 0.20	-	1.5 3.0 6.0	μAdc

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

THIGH = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS ($C_L = 50pF$, $T_A = 25^{\circ}C$)

PARAMETER	V _{DD} (Vdc)	Min.	Тур.	Max.	Units	
PROPAGATION DELAY TIME	t _{PLH} , t _{PHL}	5 10 15	_ _ _	60 30 25	120 60 50	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	_ _ _	100 50 40	200 100 80	ns

Typical P-Channel Source Current Characteristics

Typical N-Channel
Sink Current Characteristics

APPLICATIONS INFORMATION

Typical crystal oscillator circuit

Typical RC oscillator circuit

Input pulse shaping circuit (Schmitt trigger)

CMOS STROBED HEX INVERTER/BUFFER

FEATURES

- ♦ 3-State Outputs with Separate Disable Control
- ♦ Common Input Inhibit Line
- ♦ TTL Output Drive Guaranteed Over Temperature Range
- lack lack Output Impedance < 200 Ω @ 5Vdc Guaranteed Over Temperature Range

DESCRIPTION

The 4502B is a Strobed Hex Inverter/Buffer with a common Data Input Inhibit Control and a common Output Disable Control. The 3-state output allows common bus configurations.

TRUTH TABLE

Dn	Inhibit	Disable	a _n
0	0	0	1
1	0	0	0
Х	1	0	0
Х	Х	1	High
			Impedance

X = Don't Care

SCHEMATIC DIAGRAM (1 of 6 buffers)

Typical P-Channel Source Current Characteristics

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

LOGIC DIAGRAM

Typical N-Channel Sink Current Characteristics

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD}	CONDITIONS	TL	ow ²		+25°C		THIGH ²		Units
PARAMETER		(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	loo	5 10 15	V _{IN} = V _{SS} or V _{DD} All valid input combinations	_ _ _	1.0 2.0 4.0	- - -	0.005 0.01 0.02	1.0 2.0 4.0	- - -	30 60 120	μAdo
OUTPUT LOW (SINK) CURRENT	Іог	5 10 15	V _{OL} = 0.4V V _{OL} = 0.5V V _{OL} = 1.5V V _{IN} = V _{SS} or V _{DD}	3.5 7.8 29	- - -	2.8 6.3 24.0	5.7 12.5 49	- - -	2.0 4.4 16	- - -	mAdd
3-STATE OUTPUT LEAKAGE CURRENT	IzL	15		_	±0.1	_	±10 ⁻⁴	±0.1		±1.0	μAde

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (CL = 50pF, TA = 25°C)

PARAMETER	V _{DD} (Vdc)	Min.	Тур.	Max.	Units	
PROPAGATION DELAY TIME From Data Inputs	tрын	5 10 15	- - -	125 60 45	250 120 90	ns
	t _{PHL}	5 10 15	- - -	100 50 40	200 100 80	ns
From Disable	t _{PHZ} , t _{PLZ} t _{PZH} , t _{PZL}	5 10 15	_ _ _	65 30 25	130 60 50	ns
OUTPUT TRANSITION TIME	t _{TLH}	5 10 15	- - -	100 50 40	200 100 80	ns
	t _{THL}	5 10 15	_ _ _	60 30 20	120 60 40	ns

3-State AC Test Circuit and Waveforms (tpHZ, tpZH, tpLZ, tpZL)

PRELIMINARY

FEATURES

- Up and down level-shifting capability
- Input Threshold Can Be Shifted for TTL Compatibility
- 3 to 18 Vdc Operation for V_{DD} and V_{CC}
- Diode Protected Inputs to V_{SS}

DESCRIPTION

The 4504B is a non-inverting hex level shifter that is designed to shift a TTL signal to CMOS logic levels for any CMOS supply voltage between 5 and 15 volts. The control input allows interface from CMOS to CMOS at one logic level to another logic level.

The V_{DD} level selects the output voltage levels and the V_{CC} level sets the input signal levels.

HEX NON-INVERTING LEVEL SHIFTER

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD}-V_{SS} 3 to 15 V_{dc} Operating Temperature C, D, F, H Device E Device T_A -55 to +125 °C -40 to +85 °C

STATIC CHARACTERISTICS

PARAMETER		CONDITIONS	V _{SS}	V _{DD}		w ²		25°C			GH ²	Units
PANAMETER		CONDITIONS	(Vdc)	(Vdc)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	I _{DD}	V _{IN} = V _{SS} or V _{DD} All valid input combinations	0 0 0	5 10 15	- - -	0.05 0.1 0.2	_ _ _	0.0005 0.001 0.002	0.05 0.1 0.2	- - -	1.5 3.0 6.0	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications"

²T_{LOW} = -55°C for C, D, F, H device. = -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device = + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

		ALUETING MODE	v _{cc}	V _{DD}		Limits		Units
CHARACTERISTIC	SYMBOL	SHIFTING MODE	Vdc	Vdc	Min.	Тур.	Max.	Unita
PROPAGATION DELAY, HIGH TO LOW	t _{PHL}	TTL-CMOS V _{DD} > V _{CC}	5.0 5.0	10 15	_	120 120	-	ns
		CMOS - CMOS V _{DD} > V _{CC}	5.0 5.0 10	10 15 15	_ _ _	100 120 50	_ _ _	
		CMOS - CMOS V _{CC} > V _{DD}	10 15 15	5.0 5.0 10	_ _ _	160 160 160	- - -	
PROPAGATION DELAY, LOW TO HIGH	t _{PHL}	TTL - CMOS V _{DD} > V _{CC}	5.0 5.0	10 15	_	200 160	_	ns
		CMOS - CMOS V _{DD} > V _{CC}	5.0 5.0 10	10 15 15	_ _ _	100 120 50	_ ·	
		CMOS - CMOS V _{CC} > V _{DD}	10 15 15	5.0 5.0 10	_ _ _	160 160 65	- - -	
OUTPUT RISE AND FALL TIME	t _{TLH} , t _{THL}	ALL	- -	5.0 10 15	_ _ _	100 50 40		ns

FEATURES

- ♦ Two Independent Four-Bit Latches
- ♦ 3-State Outputs
- Direct Reset
- All Inputs Buffered

DESCRIPTION

The 4508B consists of two identical independent 4-Bit Latches with separate Strobe (ST) and Master Reset (MR) controls. Separate Disable inputs force the outputs to a high-impedance state for bus line applications.

These devices find primary use in buffer storage, holding register, and display circuits, and other general digital logic applications.

CMOS DUAL 4-BIT LATCH

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

 DC Supply Voltage
 VDD - VSS
 3 to 15
 Vdc

 Operating Temperature
 TA
 -55 to +125
 9C

 D, H Device
 -55 to +125
 9C
 -40 to +85
 9C

TRUTH TABLE

MR	ST	Disable	D3	D2	D1	D0	Q3	Q2	Q1	Q0		
0	1	0	0	0	0	0	0	0	0	0		
0	1	0	0	0	0	1	0	0	ō	Ť		
0	1	0	0	0	1	0	0	0	1	0		
0	1	0	0	1	0	0	0					
0	1	0	1	0	0	0	1 0 0 0					
0	0	0	х	Х	Х	Х	Latched					
1	X	0	X	Х	Х	Х	0 0 0 0					
X	X	1	Х	Х	×	х	High Impedance					

X = Don't Care

BLOCK DIAGRAM

STATIC CHARACTERISTICS '

		V _{DD}	CONDITIONS	TLO	ow²		+25°C		THE	GH ²	Units
PARAMETER		(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	IDD	5 10 15	V _{IN} = V _{SS} or V _{DD} All valid input combinations	-	5 10 20	- - -	0.05 0.1 0.2	5 10 20	- - -	150 300 600	μAdc
3-STATE OUTPUT LEAKAGE CURRENT	IzL	15		_	±0.1	_	±10 ⁻⁴	±0.1		±1.0	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for D, H device.
= -40°C for E device.

T_{HIGH} = +125°C for D, H device.
= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C₁ = 50pF, T₄ = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME From Data Inputs	t _{РСН} , t _{РНС}	5 10 15	- - -	220 90 60	440 180 120	ns
From Disable Input	t _{PHZ} , t _{PLZ} t _{PZH} , t _{PZL}	5 10 15	- - -	85 45 30	170 90 60	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns
MINIMUM MASTER RESET PULSE WIDTH	PW _{MR}	5 10 15	- - -	100 50 35	200 100 70	ns
MINIMUM STROBE PULSE WIDTH	PW _{ST}	5 10 15	- - -	70 35 20	140 70 40	ns
MINIMUM SETUP TIME Data Inputs	t _{setup}	5 10 15	_ _ _	25 10 5	50 20 10	ns
MINIMUM HOLD TIME Data Inputs	[†] hold	5 ,10 15	_ _ _	0 0 0	0 0 0	ns

Typical N-Channel **Sink Current Characteristics**

3-STATE AC TEST CIRCUIT AND WAVEFORMS

APPLICATIONS INFORMATION

BUS REGISTER

DUAL MULTIPLEXED BUS REGISTER WITH FUNCTION SELECT

FUNCTION SELECT

Α	В	Function
0	0	Inhibit (all 0)
1	0	Select A Bus
0	1	Select B Bus
1	1	A _i + B _i

FEATURES

- ♠ Internally Synchronous for High Speed
- ◆ Asynchronous Preset Enable
- Asynchronous Reset
- ♦ Logic Edge-Clocked Design
- ♦ 6MHz Counting Rate @ 10Vdc
- **♦** Carry Output for Cascading Stages

DESCRIPTION

The 4510B consists of a four-stage Up/Down Counter with provisions for "look-ahead" carry in both counting modes. The inputs consist of a single Clock, Carry-in (Clock Enable), Reset, Up/Down, Preset Enable, and four individual Jam signals. Four separate buffered Q signals and a Carry out signal are provided as outputs.

A high Preset Enable signal allows information on the Jam inputs to preset the counter to any state asynchronously with the Clock. A high on the Reset line resets all stages to the "zero" state. The counter is advanced one count at the positive transition of the Clock when the Carry-in and Preset Enable signals are low, Advancement is inhibited when the Carry-in or Preset Enable signals are high. The Carry-out signal is normally high and goes low when the counter reaches its maximum count in the Up mode or the minimum count in the Down mode, provided the Carry-in signal is low. The Carry-in signal in the low state can thus be considered a "Clock Enable." The Carry-in terminal must be connected to Vss when not in use.

The counter counts Up when the Up/Down input is high, and Down when the Up/Down input is low. Multiple packages can be connected in either a parallel-clocking or a ripple-clocking arrangement. Parallel clocking provides synchronous control and hence faster response from all counting outputs. Ripple-clocking allows for longer clock input rise and fall times.

This counter finds primary use in up/down and differential counting and frequency synthesizer applications. It is also useful in A/D and D/A conversion and for magnitude and sign generation.

TRUTH TABLE

CARRY IN	UP/DOWN	PRESET ENABLE	RESET	ACTION
1	х	0	0	No Count
0	1	0	0	Count Up
0	0	0	0	Count Down
×	×	1	0	Preset
×	×	х	1	Reset

X = Don't Care

CMOS BCD UP/DOWN COUNTER

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage VDD - VSS 3 to 15 Vdc
Operating Temperature TA
C, D, F, H Device -55 to +125 °C
E Device -40 to +85 °C

BLOCK DIAGRAM

STATIC CHARACTERISTICS

STATIO CHANACTEMENTO	V _{DD}	CONDITIONS	TL	ow ²		+25°C		THE	GH ²	Units
PARAMETER	(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT IDE	10	V _{IN} = V _{SS} or V _{DD} All valid input combinations		5 10 20	-	0.05 0.1 0.2	5 10 20	=	150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION						
PROPAGATION DELAY TIME Clock to Q	_{ГРЕН} , ГРНС	5 10 15	- - -	200 100 75	400 200 150	ns
Clock to Carry Out		5 10 15	1 1 1	210 120 90	420 240 180	ns
Carry In to Carry Out		5 10 15		125 60 50	250 120 100	ns
OUTPUT TRANSITION TIME	t _{тен} , t _{тне}	5 10 15	- - -	100 50 40	200 100 80	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	- - -	170 85 70	340 170 140	ns
MAXIMUM CLOCK FREQUENCY	fcL	5 10 15	2.0 4.0 5.5	4.0 8.0 11.0	<u>-</u> -	MHz
MAXIMUM CLOCK RISE AND FALL TIME	t _{rCL} , t _{fCL}	5 10 15	15 15 15	- - -	- - -	μs
MINIMUM SETUP TIME Carry In	t _{setup}	5 10 15	- - -	130 65 50	260 130 100	ns
Up/Down		5 10 15	=	250 100 75	500 200 150	ns
PRESET OR RESET OPERATION						
PROPAGATION DELAY TIME Preset Enable or Reset to Q	t _{PLH} , t _{PHL}	5 10 15	- - -	210 105 90	420 210 180	ns
Preset Enable or Reset to Carry Out		5 10 15	=	320 160 25	640 320 250	ns
MINIMUM PRESET ENABLE OR RESET PULSE WIDTH	PW _{PE} , PW _F	5 10 15		100 50 40	200 100 80	ns
PRESET ENABLE OR RESET REMOVAL TIME	t _{rem}	5 10 15		325 110 90	650 220 180	· ns

¹ When units are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

APPLICATIONS INFORMATION CASCADING COUNTERS

Cascading Counter Packages.

Programmable Cascaded Frequency Divider

CMOS BCD-TO-SEVEN SEGMENT LATCH/DECODER/DRIVER

FEATURES

- High-Current Sourcing Bipolar Outputs (Up to 25 mA)
- **♦ Latched Storage of Input Code**
- ♦ Blanking Input for Display Intensity Modulation
- **♦ Lamp Test Provision**
- Readout Blanking for Illegal Input Combinations

DESCRIPTION

The 4511B provides the functions of a 4-bit storage latch, an 8421 BCD-to-seven segment decoder, and an output drive capability to source up to 25 mA of current. Lamp Test, Blanking, and Latch Enable inputs are used to test the display, turn off the display, and store a BCD code, respectively. It can be used with LED, incandescent, fluorescent, gas discharge, or liquid crystal readouts either directly or indirectly.

Applications include counter display drivers, seven-segment decimal display, and various clock, watch, and timer uses.

TRUTH TABLE

LE	ВІ	LT	D	С	В	Α	а	ь	С	đ	е	f	9	DISPLAY
X	×	0	×	X	X	×	1	1	1	1	1	1	1	8
х	0	. 1	×	×	х	×	0	0	0	0	0	0	0	Blank
0000		1 1 1	0000	0000	0 0 1 1	0 1 0 1	0 1 1	1 1 1	1 0 1	1 0 1	1 0 1 0	1 0 0	0 1 1	0 1 2 3
0000	1 1 1	1 1 1 1	0000	1 1 1 1	0 0 1 1	0 1 0 1	0 1 0 1	1001	1 1 1	0 1 1 0	0010	1 1 0	1 1 0	4 5 6 7
0000	1 1 1	1 1 1	1 1 1 1	0 0 0	0 0 1 1	0 1 0 1	1100	1 0 0	1 0 0	1 0 0	1 0 0 0	1 0 0	1100	8 9 Blank Blank
0000	1 1 1	1 1 1	1 1 1	1 1 1	0 0 1 1	0 1 0 1	0000	0000	0000	0000	0000	0000	0000	Blank Blank Blank Blank
1	1	1	×	X	x	X				*				*

- X = Don't care
- * Depends upon the BCD code applied during the 0 to 1 transition of LE.

BLOCK DIAGRAM

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

Typical P-Channel
Source Current Characteristics

The maximum continuous (worst case) derated output drive current applies to a single output with all other outputs sourcing an equal amount of current. Operation above the derating curve at a given temperature is not recommended.

STATIC CHARACTERISTICS

PARAMETER		V _{DD}	CONDITIONS	TLC	W ²		+ 25°(;	THI	T _{HIGH} 2		
		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.		
QUIESCENT DEVICE CURRENT	I _{DD}	5 10 15	V _{IN} = V _{SS} or V _{DD} All valid input combinations	-	5 10 20	_ _ _	0.05 0.1 0.2	5 10 20	1 1 1	150 300 600	<i>µ</i> Adc	
OUTPUT DRIVE VOLTAGE	V _{OUT}	5	I _{OH} = 0 mAdc - 5 - 10 - 15 - 20 - 25	4.99 - - - -	1 1 1 1 1 1	4.99 - 3.9 - 3.4 -	5.0 4.25 4.13 3.95 3.75 3.5		4.95 	11111	Vdc	
	_	10	I _{OH} = 0mAdc - 5 -10 -15 -20 - 25	9.99 - - - -	11111	9.99 - 9.0 - 8.6 -	9.25 9.15 9.03 8.90 8.75		9.95 - - - -	111111	Vdc	
		15	i _{OH} = 0mAdc - 5 -10 -15 -20 -25	14.99	11111	14.0 - 13.6	15 14.25 14.18 14.08 13.95 13.80	111111	14.96 - - - - -	111111	Vdc	
OUTPUT LOW (SINK) CURRENT	lor	5 10 15	V _{OL} = 0.4V V _{OL} = 0.5V V _{OL} = 1.5V V _{IN} = V _{SS} or V _{DD}	1.9 5.0 13.8	-	1.5 4.0 11.0	3.4 6.5 24	111	1.1 2.8 7.7		mAdc	

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

2 T_{LOW} = -55°C for C, D, F, H device.

-40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (CL = 50pF, TA = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME		1		 		
From Data Inputs	teLH.		l		1	1
	1	5	l -	520	1040	ns
		10	l –	210	420	""
		15	-	150	300	1
	трнь	1				
	PHL	5	_	660		ns
	- 1	10	_	260	1320 '	ns ns
	- 1	15	-	180	520 360	
From Blanking Input		+		-	300	
From Blanking Input	tpLH	1 - 1				1
		5	-	300	600	ns
	1	10	-	125	250	1
		15		100	200	
	₽н⊾	1			1	I
	1	5	_	500	1000	ns
	1	10	_	200	400	l
	L	15		160	320	
From Lamp Test Input	teLH .					
	1.5	5	_	300	600	ns
	1	10	i –	120	240	'''
	!	15	-	90	180	1
	tens					
	THE	5	_	325	650	ns
		10	_	130	260	l '''
		15	_	95	190	
OUTPUT TRANSITION TIME	T			<u> </u>		
SOTI OT THANSITION TIME	t _{TLH}	5		170	250	
	ļ	10	_	120	200	ns
	1	15	_	100	180	[
		1		100		
	t _{THL}	5		400		
	1	10	_	400 225.	900 450	ns
		15	_	200	400	ĺ
Manager Control of the Control of th	+	1 13		200	400	
MINIMUM DATA INPUT SETUP TIME	Setup	1 .				l
	1	5	-	90	180	ns
	1	10	-	40	80	
		15		20	40	
MINIMUM DATA INPUT HOLD TIME	thold	1 1				
	1	5	_	-90	0	กร
	1	10	_	-40	0	· ·
		15		-20	0	
MINIMUM LATCH ENABLE PULSE WIDTH	PWLE	1 7				
	1	5	_	260	520	ns
	1	1 10	_	110	220	'''
		15		65	130	

LOGIC DIAGRAM

APPLICATIONS INFORMATION

DISPLAY CONNECTIONS

FEATURES

- ♦ 3-State Output with Disable Control
- Separate Inhibit Input
- ♦ Selects One of Eight Data Sources
- Performs Parallel-To-Serial Conversion

DESCRIPTION

The 4512B is an 8-Channel Data Selector with Function Inhibit and Output Disable controls. One of eight binary inputs is selected by Select inputs A, B, and C, and is routed to the output Z. A high on the Disable input causes the Z output to assume a high-impedance state, regardless of other input conditions. This allows the output to interface directly with bus-oriented systems. When the Inhibit input is high, it forces the output low, providing the Disable input is low. By manipulation of the inputs, the 4512B can provide any logic functions of four variables (see Applications Information).

TRUTH TABLE

С	В	Α	INHIBIT	DISABLE	Z
0	0	0	0	0	ΧO
0	0	1	0	0	X1
0	1	0	0	0	X2
•	1	1	0	0	хз
1	0	0	0	0	X4
1	0	1	0	0	X5
1	1	٥	0	0	×6
1	1	1	0	0	X7
•	Ф	•	1	0	0
•	ø	•	•	1	High Impedance

= Don't Care

CMOS 8-CHANNEL DATA SELECTOR

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

 DC Supply Voltage
 VDD - VSS
 3 to 15
 Vdc

 Operating Temperature
 TA
 -55 to +125
 °C

 C, D, F, H Device
 -40 to +85
 °C

BLOCK DIAGRAM

STATIC CHARACTERISTICS'

PARAMETER		V _{DD}	CONDITIONS	TL	DW ²	+25°C			THI	GH ²	Units
		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	IDD	5 10 15	V _{IN} = V _{SS} or V _{DD} All valid input combinations	-	5 10 20		0.05 0.1 0.2	5 10 20	- - -	150 300 600	μAdc
3-STATE OUTPUT LEAKAGE CURRENT	եւ	15		-	±0.1		± 10 ⁻⁴	±0.1		±1.0	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS ($C_L = 50 pF$, $T_A = 25 ^{\circ}C$)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME From Inhibit	t _{PLH} , t _{PHL}					
	761, 4716	5 10 15	-	120 55 40	240 110 80	ns
From Select Input	tPLH, tPHL					
		5 10 15	- -	225 100 75	450 200 150	ns
From Data Input	t _{PLH} , tPHL	5 10 15	_	200 80 60	400 160 120	ns
From Disable	tpHZ, tpZH tpLZ, tpZL	13			-	
	100	5 10 15	- - -	60 30 25	120 60 50	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5	_	100 50	200 100	ns
		10 15	_	40	80	

Typical P-Channel **Source Current Characteristics**

Typical N-Channel **Sink Current Characteristics**

LOGIC DIAGRAM

3-State AC Test Circuit and Waveform

APPLICATIONS INFORMATION

32-INPUT MULTIPLEXER

Output terminals of several 4512B devices can be connected to a single data bus. One 4512B is selected by the 3-state Disable control, and the remaining devices are disabled into

a high-impedance state. A 32-input multiplexer utilizing four 4512B data selectors and a single 4011B is shown.

LOGIC FUNCTION GENERATORS

In addition to the standard application of multiplexers in data conversion techniques, these circuits can also be used in generating logic functions, which in many cases can reduce system package count.

A multiplexer is a multiple-position single-pole switch. One set of inputs selects the position of the switch. The second set of inputs collects the input data, which is transferred through the circuit to one output. By using the binary select inputs and the data inputs, the 4512B can generate any of the 65,536 different functions of four variables.

Assume the four binary inputs are A, B, C, and D, and that Z is the desired function. Using the

IN	OT VA	RIABL	REQUIRED FUNCTION	
A	В	С	D	Z
L	L	L	L	н
L	L	L	н	L
L	L	н	L	н
L	L	н	н	Н Н
L	н	L	L	ļ .
L	н	L	н	н
L	н	н	L	L
L	н	н	н	L
н	L	L	L) L
•	•	•	•	· ·
•	•	•	•	
/		· ·	•	
			H - HIG	H Level
			L - LOV	

select inputs as the first three variables, any combination of A, B, and C will select a data input (assuming the output is enabled). For each combination of A, B, and C, the required output, as a function of the fourth variable D, can be HIGH or LOW or the same as D or the inverse of D. Therefore, the truth table may be examined and each data input of the 4512B is connected to V_{DD} , V_{SS} , D, or \overline{D} as required. In such fashion, the function is generated.

In the example shown, the first two outputs are the inverse of D, so XO is connected to \overline{D} . The next two are HIGH, so X1 is connected to V_{DD} , etc.

CMOS 4-TO-16 LINE DECODERS WITH LATCH

FEATURES

- ♦ Strobed Input Latch
- Inhibit Control
- Selected Output Active High (4514B) or Active Low (4515B)

DESCRIPTION

The 4514B and 4515B are two output options of a 4-to-16 Line Decoder with Latched Inputs. The 4514B presents a logic "1" at the selected output, and the 4515B presents a logic "0" at the selected output. The latches hold the last input data presented prior to the Strobe transition from "1" to "0". Inhibit allows all outputs to be placed at "0" (4514B), or "1" (4515B), regardless of the state of the Data or Strobe inputs.

Applications include code conversion, address decoding, memory selection control, demultiplexing, and readout decoding

TRUTH TABLE (Strobe = 1)

	Di	ata	Inp	uts	Selected Output
Inhibit	D	С	В	Α	4514B = Logic "1" 4515B = Logic "0"
0	0	0	0	0	S0
0	0	0	0	1	S1
0	0	0	1	0	\$2
0	0	0	1	_1_	S3
0	0	1	0	0	S4
0	0	1	0	1	S5
0	0	1	1	0	S6
0	0	_1	1	1	S7
0	1	0	0	0	S8
0	1	0	0	1	S9
0	1	0	1	0	S10
0	1	0	1	1	S11
0	1	1	0	0	S12
0	1	1	0	1	S13
0	1	1	1	0	S14
0	1	1	1	1	S15
1	X	X	X	X	All Outputs
					= "0", 4514B
					All Outputs
					= "1", 4515B
X = Don'	t Ca	re			

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

 DC Supply Voltage
 VDD - VSS
 3 to 15
 Vdc

 Operating Temperature
 TA
 -55 to +125
 °C

 D, H Device
 -40 to +85
 °C

BLOCK DIAGRAM

STATIC CHARACTERISTICS1

PARAMETER	V _{DD}	CONDITIONS	T _{LOW} ²		+25°C			THE	Units	
	(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	O.I.I.C
QUIESCENT DEVICE CURRENT LD										
	5	V _{IN} =V _{SS} or V _{DD}	_	5	_	0.05	5	_	150	μAdc
	10	All valid input	_	10	_	0.1	10	_	300	
	15	combinations		20		0.2	20		600	

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	t _{РЬН} , фнь					
From Data Inputs		5	-	485	970	ns
		10	_	185	370	ł
		15	_	135	270	
From Inhibit Input		5	_	250	500	ns
·		10	_	110	220	
		15	_	85	170	
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}					
	1,154,,146	5	_	100	200	ns
	1 1	10	l _	50	100	
		15	_	40	80	
MINIMUM DATA INPUT SETUP TIME	t _{setup}					
	setup	5	_	75	150	ns
		10	_	35	70	
		15	_	20	40	
MINIMUM STROBE PULSE WIDTH	PW _{ST}					
	1	5	_	125	250	ns
		10	_	50	100	1
		15	_	40	75	

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

LOGIC DIAGRAM

FEATURES

- ♦ Internally Synchronous for High Speed
- **♦** Asynchronous Preset Enable
- **♦** Asynchronous Reset
- ♦ Logic Edge-Clocked Design
- ♦ 6MHz Counting Rate @ 10Vdc
- **♦** Carry Output for Cascading Stages

DESCRIPTION

The 4516B consists of a four-stage Up/Down Counter with provisions for "look-ahead" carry in both counting modes. The inputs consist of a single Clock, Carry-in (Clock Enable), Reset, Up/Down, Preset Enable, and four individual Jam signals. Four separate buffered Q signals and a Carry-out signal are provided as outputs.

A high Preset Enable signal allows information on the Jam inputs to preset the counter to any state asynchronously with the Clock, A high on the Reset line resets all stages to the "zero" state. The counter is advanced one count at the positive transition of the Clock when the Carry-in and Preset Enable signals are low, Advancement is inhibited when the Carry-in or Preset Enable signals are high. The Carry-out signal is normally high and goes low when the counter reaches its maximum count in the Up mode or the minimum count in the Down mode, provided the Carry-in signal is low. The Carry-in signal in the low state can thus be considered a "Clock Enable." The Carry-in terminal must be connected to VSS when not in use.

The counter counts Up when the Up/Down input is high, and Down when the Up/Down input is low. Multiple packages can be connected in either a parallel-clocking or a ripple-clocking arrangement. Parallel clocking provides synchronous control and hence faster response from all counting outputs. Ripple-clocking allows for longer clock input rise and fall times.

This counter finds primary use in up/down and differential counting and frequency synthesizer applications. It is also useful in A/D and D/A conversion and for magnitude and sign generation.

TRUTH TABLE

CARRY IN	UP/DOWN	PRESET ENABLE	RESET	ACTION
1	×	0	0	No Count
0	1	0	0	Count Up
0	0	0	0	Count Down
×	×	1	0	Preset
×	×	х	1	Reset

X = Don't Care

CMOS BINARY UP/DOWN COUNTER

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc

Operating Temperature T_A

C, D, F, H Device -55 to +125 °C

E Device -40 to +85 °C

BLOCK DIAGRAM

LOGIC DIAGRAM

TIMING DIAGRAM

STATIC CHARACTERISTICS

STATIC CHARACTERISTICS	V _{DD}	CONDITIONS	T _{LOW} ²		+25°C			THE	Units	
PARAMETER	(Vdc)			Max.	Min.	Typ.	Max.	Min.	Max.	-
QUIESCENT DEVICE CURRENT ID	5 10 15	V _{IN} = V _{SS} or V _{DD} All valid input combinations		5 10 20	- - -	0.05 0.1 0.2	5 10 20	- - -	150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C. = 50nF. TA = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION						
PROPAGATION DELAY TIME Clock to Q	t _{Р∟Н} , t _{РН} ∟	5 10 15	- - -	200 100 75	400 200 150	ns
Clock to Carry Out		5 10 15	-	210 120 90	420 240 180	ns
Carry In to Carry Out		5 10 15		125 60 50	250 120 100	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- -	100 50 40	200 100 80	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	- - -	170 85 70	340 170 140	ns
MAXIMUM CLOCK FREQUENCY	fcL	5 10 15	2.0 4.0 5.5	4.0 8.0 11.0	- - -	MHz
MAXIMUM CLOCK RISE AND FALL TIME	t _{rCL} , t _{fCL}	5 10 15	15 15 15	- - -	- - -	μς
MINIMUM SETUP TIME Carry In	t _{setup}	5 10 15	_ _ _	130 65 50	260 130 100	ns
Up/Down		5 10 15	=	250 100 75	500 200 150	ns
PRESET OR RESET OPERATION						
PROPAGATION DELAY TIME Preset Enable or Reset to Q	ф _{ЕН} , ф	5 10 15	- - -	210 105 90	420 210 <u>180</u>	ns
Preset Enable or Reset to Carry Out		5 10 15	-	320 160 125	640 320 250	ns
MINIMUM PRESET ENABLE OR RESET PULSE WIDTH	PW _{PE} , PW _R	5 10 15	- - -	100 50 40	200 100 80	ns
PRESET ENABLE OR RESET REMOVAL TIME	t _{rem}	5 10 15	- - -	325 110 90	650 220 180	ns

¹ When units are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

APPLICATIONS INFORMATION CASCADING COUNTERS

Cascading counter packages.

Programmable Cascaded Frequency Divider

CMOS 64-BIT DUAL SHIFT REGISTER

FEATURES

- Independent Clock, Write Enable Inputs
- Static Operation
- Positive Edge-Clocked Design
- 6.7MHz Toggle Rate @ 10 VDC
- Tri-State Output at 64th Bit
- Balanced Output Drive Current Specifications

DESCRIPTION

The SCL4517B dual 64-bit static shift register consists of two identical, independent, 64-bit registers. Each register has separate clock and write enable inputs, as well as outputs at bits 16, 32, 48, and 64. Data at the data input is entered by clocking, regardless of the state of the write enable input. An output is disabled (open circuited) when the write enable input is high. During this time, data appearing at the data input as well as the 16-bit, 32-bit, and 48-bit taps may be entered into the device by application of a clock pulse. This feature permits the register to be loaded with 64 bits in 16 clock periods, and also permits bus logic to be used. This device is useful in time delay circuits, temporary memory storage circuits, and other serial shift register applications.

FUNCTIONAL TRUTH TABLE

CLOCK	WRITE		16-BIT TAP	32-BIT TAP	48-BIT ȚAP	64-BIT TAP
0	0	×	Content of 16-Bit Displayed	Content of 32-Bit Displayed	Content of 48-Bit Displayed	Content of 64-Bit Displayed
0	1	X	High Impedance	High Impedance	High Impedance	High Impedance
1	0	×	Content of 16-Bit Displayed	Content of 32-Bit Displayed	Content of 48-Bit Displayed	Content of 64-Bit Displayed
1	1	x	High Impedance	High Impedance	High Impedance	High Impedance
	0	Data entered into 1st Bit	Content of 16-Bit Displayed	Content of 33-Bit Displayed	Content of 49-Bit Displayed	Content of 64-Bit Displayed
	1	Data entered Into 1st Bit	Data at tap entered into 17-Bit	Data at tap entered into 32-Bit	Data at tap entered into 48-Bit	High Impedance
~	. 0	X	Content of 16-Bit Displayed	Content of 32-Bit Displayed	Content of 48-Bit Displayed	Content of 64-Bit Displayed
~	1	x	High Impedance	High Impedance	High Impedance	High Impedance

X = Don't Care

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} + 15 to - 0.5 V_{dc} Input Voltage, all inputs V_{IN} V_{DD} to -0.5 V_{dc} DC Current Drain per Pin 10 mAdc Operating Temperature Range T_A

C, D, F, H Device -55 to +125 °C **E** Device -40 to +85 °C Storage Temperature Range T_{STG} -65 to +150 °C

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD} CONDITIONS		TL	ow²		+ 25°C		TH	GH ²	Units
		V _{DD} (Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Ointa
QUIESCENT DEVICE CURRENT	IDD	5	V _{IN} = V _{SS} or V _{DD}		0.05	_	0.0005	0.05	_	1.5	A
		10 15	All valid input combinations	_ _	0.10 0.20	_ 		0.10 0.20	_	3.0 6.0	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

 2 T_{LOW} = -55° C for C, D, F, H device. = -40° C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= +85°C for E device.

SWITCHING CHARACTERISTICS* (TA = 25°C)

CHARACTERISTIC	SYMBOL	V _{DD}	Min.	Typ. All Types	Max.	Unit
Output Transition Time	t,	5.0		100	200	ns
$(C_L = 15pF)$	t _{TLH}	10	_	50	100	""
	t _{THL}	15	_	40	80	
Propagation Delay Time (C _L = 15 pF)	tpLH					
	tpHL	5.0	_	200	400	ns
		10	_	110	220	
		15		90	180	
Minimum Clock Pulse Width	PW _C	5.0	_	170	250	ns
		10	-	75	100	
		15	_	60	75	
Maximum Clock Pulse Frequency	PRF	5.0	2.0	3.0	_	MHz
		10	5.0	6.7		
		15	6.7	8.3	_	
Maximum Clock Pulse Rise and Fall Time	t _r , t _f	5.0	_	_	No	_
		10	-	l –	Limit	
		15	_	_	**	
Data to Clock Setup Time	t _{setup}	5.0	_	- 40	- 10	ns
	33.34	10	-	- 15	Ö	
		15	_	0	5	
Data to Clock Hold Time	thold	5.0	_	75	120	ns
		10	. —	25	50	
		. 15	_	10	25	
Write Enable to Clock Setup Time	t _{setup}	5.0	_	170	300	ns
		10	-	65	130	
		15	_	50	80	
Write Enable to Clock Release Time	t _{rel}	5.0		160	280	ns
		10	-	55	120	
	1	15	_	40	70	

^{*}The formula given is for the typical characteristics only.

^{**}When shift register sections are cascaded, the maximum rise and fall time of the clock input should be equal to or less than the rise and fall time of the data outputs, driving data inputs, plus the propagation of the output driving stage for the output capacitance load.

AC TEST WAVEFORMS

FEATURES

- **♦ Two Independent 4-Bit Counters**
- ♦ Internally Synchronous for High Speed
- Dual BCD (4518B) and Dual Binary (4520B) Configurations
- **♦** Direct Reset
- Logic Edge-Clocked Design
- Trigger from either Edge of Clock Signal
- ♦ Static Operation— DC to 5MHz @ 10Vdc

DESCRIPTION

The 4518B Dual BCD Counter and the 4520B Dual Binary Counter are constructed with MOS P-channel and N-channel enhancementmode devices in a single monolithic structure. Each consists of two identical, independent, internally synchronous 4-stage counters. The counter stages are type-D flip-flops, with interchangeable Clock and Enable lines for incrementing on either the positive-going or negative-going transition as required when cascading multiple stages. Each counter can be cleared by applying a high level on the Reset line. In addition, the 4518B will count out of all undefined states within two clock periods. These complementary MOS up counters find primary use in multi-stage synchronous or ripple counting applications requiring low power dissipation and/or high noise immunity.

TRUTH TABLE

CLOCK	ENABLE	RESET	ACTION
_	1	0	Increment Counter
0	1	0	Increment Counter
	X	0	No Change
X	\	0	No Change
	0	0	No Change
1	7	0	No Change
Х	Х	1	Q0 thru Q3 = 0

X = Don't Care

CMOS DUAL UP COUNTERS

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

BLOCK DIAGRAM

STATIC CHARACTERISTICS '

PARAMETER	Т	VDD	CONDITIONS	TLO	DW ²		+25°C		THE	GH ²	Units
PARAMETER	((Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	loo	10	V _{IN} = V _{SS} or V _{DD} All valid input combinations	-	5 10 20	-	0.05 0.1 0.2	5 10 20	-	150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "40008 Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} -125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C1 = 50pF, TA = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION						
PROPAGATION DELAY TIME From Clock or Clock Enable	îр _{ЕН} , îрнс	5 10 15	- - -	225 100 80	450 200 160	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	- - -	100 50 35	200 100 70	ns
MINIMUM CLOCK ENABLE PULSE WIDTH	PW _{CE}	5 10 15	- - -	200 100 70	400 200 140	ns
MAXIMUM CLOCK FREQUENCY	fcL	5 10 15	1.5 3.0 4.0	3.0 6.0 8.0	1 1	мн
MAXIMUM CLOCK OR CLOCK ENABLE RISE & FALL TIME!	trou, Hou	5 10 15	15 5 5	111		μς
RESET OPERATION						
PROPAGATION DELAY TIME	t _{PHL}	5 10 15	_ _ _	225 100 80	450 200 160	ns
MINIMUM RESET PULSE WIDTH	PWR	5 10 15		120 50 40	240 100 80	ns
RESET REMOVAL TIME	trem	5 10 15	-	100 50 40	200 100 80	ns

¹ When units are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

LOGIC DIAGRAMS

APPLICATIONS INFORMATION

Ripple cascading of four counters with positive-edge triggering.

Synchronous cascading of four binary counters with negative-edge triggering.

CMOS PROGRAMMABLE DOWN COUNTERS

FEATURES

- ♦ Internally Synchronous for High Speed
- ♦ BCD Decade (4522B) or 4-Bit Binary (4526B) Down Counters
- **♦** Asychronous Preset Enable
- **♦** Asynchronous Reset
- Cascadable
- **♦ Logic Edge-Clocked Design**
- ♦ Static Operation DC to 5MHz @ 10Vdc
- **♦ Trigger from Either Edge of Clock Input**

DESCRIPTION

The 4522B BCD Counter and the 4526B Binary Counter are constructed with MOS P-channel and N-channel enhancement-mode devices in a single monolithic structure.

These devices are programmable, cascadable down counters with a decoded "0" state output for divide-by-N applications. In single stage applications the "0" output is applied to the Preset Enable input. The Cascade Feedback input allows cascade divide-by-N operation with no additional gates required. The Master Reset function provides synchronous initiation of divide-by-N cycles. The Clock Inhibit input allows disabling of the pulse counting function.

These complementary MOS counters can be used in frequency synthesizers, phase-locked loops, and other frequency division applications requiring low power dissipation and/or high noise immunity.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_{Δ}

C, D, F, H Device -55 to +125 °C E Device -40 to +85 °C

TRUTH TABLES

BLOCK DIAGRAM

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD}	CONDITIONS	TL	DW ²		+25°C		THE	GH ²	Units
		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Oilles
QUIESCENT DEVICE CURRENT	I _{DD}	5 10 15	V _{IN} =V _{SS} or V _{DD} All valid input combinations	-	5 10 20	1 1 1	0.05 0.1 0.2	5 10 20	-	150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (CL = 50pF, TA = 25°C)

PARAMETER		V _{DD} (V dc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION						
PROPAGATION DELAY TIME Clock or Inhibit to Q	[†] РЕН, [†] РНЕ	5 10 15	-	415 160 120	830 320 240	ns
Clock or Inhibit to "O"		5 10 15	=	175 125 100	350 250 200	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	_ _ _	125 50 40	250 100 80	ns
MAXIMUM CLOCK FREQUENCY	fcL	5 10 15	1.5 3.0 4.0	2.0 5.0 6.6	- - -	MHz
MAXIMUM CLOCK OR INHIBIT RISE AND FALL TIME!	troL, troL	5 10 15	15 15 15	-	- - -	μς
PRESET OPERATION						
PROPAGATION DELAY TIME PE to Q	t _{PLH} , t _{PHL}	5 10 15	- - -	415 160 120	830 320 240	ns
PE to "O"		5 10 15	-	175 125 100	350 250 200	ns
MINIMUM PRESET ENABLE PULSE WIDTH	PW _{PE}	5 10 15	<u>-</u> -	125 50 40	250 100 80	ns
MINIMUM DATA INPUT HOLD TIME	[†] hold	5 10 15	-	75 25 20	125 50 40	ns
RESET OPERATION						
PROPAGATION DELAY TIME MR to Q	tpHL	5 10 15	- -	415 160 120	830 320 240	ns
MR to "O"	t _{PLH}	5 10 15	_ _ _	175 125 100	350 250 200	ns
MINIMUM MASTER RESET PULSE WIDTH When units are cascaded, the maximum rise and fi	PW _{MR}	5 10 15	- - -	150 125 100	300 250 200	ns

When units are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

4522B LOGIC DIAGRAM (BCD Divide-by-N Counter)

4526B LOGIC DIAGRAM (Binary Divide-by-N Counter)

APPLICATIONS INFORMATION

2-Stage Programmable Down Counter (One Cycle)

2-Stage Programmable Frequency Divider

FEATURES

- ♦ Internally Synchronous for High Speed
- ♦ Strobe for Enabling or Inhibiting Outputs
- ♦ Enable and Cascade Inputs
- ◆ "9" Output Available for Cascading
- **♦** Complementary Outputs
- Clear and Set-To-Nine Inputs

DESCRIPTION

The 4527B is a BCD Digital Rate Multiplier (DRM) which provides an output pulse rate of the clock input pulse rate multiplied by 1/10 of the BCD input. For example, when the BCD input is 8, there will be 8 output pulses for every 10 input pulses. The output is clocked on the negative-going edge of the input clock. This device may be used to perform arithmetic operations, solve algebraic and differential equations, generate logarithms and trigonometric functions, A/D and D/A conversion, and frequency division.

CMOS BCD RATE MULTIPLIER

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc
Operating Temperature T_A
C, D, F, H Device -55 to +125 °C

E Device

BLOCK DIAGRAM

-40 to +85 °C

TRUTH TABLE

					Impute					Number of Pulses or Guignat Logic Lovel (H or L)					
•	С	•	A	No. of Clock Pulses	Em	Strake	Cascade	Cheer	Set	Pin 6 OUT	Pin S OUT	Mn 7 EOUT	Re 1		
•	•	•	•	10	•	•	0	•		L	*	,	1		
	0	0	1	10	0	•	0	0		1	1	1	1		
	0	1	0	10	0	•	•			2	2	1	1		
•	0	1	1	10		•	0	0	0	3	3	1	1		
•	1	•	•	10		0	•	•	•	4	4	1	1		
ě	l i	ě	1	10			۰				5	١ ،	1		
	l i	1		10			۰	0	0	6		1	1		
•	1	1	1	10		•	۰			7	7	1	1		
1	•	•	•	10		0	•	0				1	1		
i :	١.	i .		10		ă	ا آ		0			1	1		
۱i		li	•	10	ŏ		0	0				1	1		
l i	ò	1	1	10			۰	0	0			1	1		
H	Ť	•	-	10	•	0		0				1	1		
١;	H	١.	1	10			١٠٠	١٠				١ ،	1		
li.	ı ;	lī	6	10		ŏ						1	1		
l i	١,	li '	١ĭ	10	ě	ō		0				1	1		
×	×	×	×	10	,	•	•	•				on internal			
×	l x	l w	×	18	۱ 。	١,		۱ 。		l ı	H	1 1	1 1		
I ŵ	ı û	l x	ı 🛈	10			1	i		н	•	1	1		
1	×	×	×	10	•	•	•	1	0	10	10	#	7		
i .	×	×	×	10				١,		l L	H	H	L		
×	×	×	×	19			•		_ • ا	L	H	ı.	н		

^{*}Output same as the first 16 lines of this truth table (depending on values of A, B, C, D).

Cioca O T Enable Out Cioca O T Enable Out Cioca O T Enable Out Cioca O T Enable Out

APPLICATIONS INFORMATION

Cascading Connections

For words of more than one digit, 4527B devices may be cascaded in two different modes: an Add mode and a Multiply mode.

In the Add mode, some of the gaps left by the more significant unit at the count of 9 are filled in by the less significant units. Output Rate = Clock Rate X $(0.1 \text{ BCD}_1 + 0.01 \text{ BCD}_2 + \dots)$

Two 4527B's cascaded in the "Multiply" mode with a preset number of 36.

Two 4527B's cascaded in the "Add" mode with a preset number of 94.

In the Multiply mode, the fraction programmed into the first DRM is multiplied by the fraction programmed into the second one.

Output Rate = Clock Rate
$$\times \frac{BCD_1}{10} \times \frac{BCD_2}{10} \times \dots$$

STATIC CHARACTERISTICS'

DARAMETER		V _{DD}	CONDITIONS	T _{LOW} ²		+25°C			T _{HIGH} ²		Units
PARAMETER		(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	loo	10	V _{IN} =V _{SS} or V _{DD} All valid input combinations		5 10 20	- -	0.05 0.1 0.2	5 10 20	- - -	150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (CL = 50pF, TA = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
CLOCKED OPERATION						
PROPAGATION DELAY TIME Clock to Out	t _{PLH} , t _{PHL}	5 10 15	- - -	150 75 60	300 150 120	ns
Clock to Out		5 10 15	- - -	95 50 35	190 100 70	ns
Clock to E _{out}		5 10 15	1 1 1	250 100 75	500 200 150	ns
Clock to "9"		5 10 15	1 1	300 125 100	600 250 200	ns
Cascade to Out	-	5 10 15		95 50 35	190 100 70	ns
Strobe to Out		5 10 15	-	175 80 60	350 160 120	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - 	130 65 50	260 130 100	ns
MINIMUM CLOCK PULSE WIDTH	PW _{CL}	5 10 15	- - -	165 85 65	330 170 130	ns
MAXIMUM CLOCK FREQUENCY	fcL	5 10 15	1.5 3.0 4.0	3.0 6.0 8		мн
MAXIMUM CLOCK RISE AND FALL TIME	t _{rCL} , t _{fCL}	5 10 15	15 15 15	- - -		μs
MINIMUM ENABLE IN SETUP TIME	t _{setup}	5 10 15	_ _ _	175 60 45	350 120 90	ns
SET OR CLEAR OPERATION						
PROPAGATION DELAY TIME	[†] РЬН, ФНС	5 10 15	- - -	350 150 115	700 300 230	ns
MINIMUM SET OR CLEAR PULSE WIDTH	PW _S , PW _C	5 10 15	=	90 35 30	180 70 60	ns
SET OR CLEAR REMOVAL TIME	t _{rem}	5 10 15	=	-20 -10 - 7.5	0 0 0	ns

¹ When units are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load.

APPLICATIONS INFORMATION

Multiplication of Two Variables

$$R_1 = f_{CLK} (\frac{A}{10})$$
 $R_2 = f_{CLK} (\frac{A}{10}) (\frac{B}{10}) = f_{CLK} (\frac{AB}{100})$
 $R_3 = f_{CLK} (\frac{N}{10})$

R2 addresses "up" count, R3 addresses "down" count. The interface circuit converts to a single clock with mode control. When loop stabilizes,

$$R_2 = R_3$$

 $f_{CLK}(\frac{AB}{100}) = f_{CLK}(\frac{N}{10})$
or $N = \frac{AB}{10}$

Note: To prevent simultaneous "up" and "down" commands, a multiphase clock input must be used.

Generation of A^{2/3}

$$R_1 = f_{CLK} \left(\frac{A^2}{100} \right) \left(\frac{1}{10} \right) = f_{CLK} \left(\frac{A^2}{1000} \right)$$

$$R_2 = f_{CLK} \left(\frac{N^3}{1000} \right)$$

At equilibrium,

$$R_1 = R_2$$

$$N3 = A2$$

or
$$N = A2/3$$

Note: To prevent simultaneous "up" and "down" commands, a multiphase clock input must be used.

Frequency Ratios

$$R_1 = f_1/10^n$$

 $R_2 = f_2N/10^n$ where n = number of stages

At equilibrium,

$$R_1 = R_2$$

$$N = f_1/f_2$$

Note: To prevent simultaneous commands (overlap), f_1 and f_2 may require preconditioning.

CMOS DUAL MONOSTABLE MULTIVIBRATOR

FEATURES

- ♦ Two Independent Multivibrators on One Chip
- ♦ Triggerable from Leading- or Trailing-Edge Pulse
- ♦ Retriggerable
- **♦** Resettable
- ♦ Q and Q Buffered Outputs Available
- ♦ Wide Range of Output Pulse Widths

DESCRIPTION

The 4528B Dual Multivibrator provides stable retriggerable/resettable one-shot operation for any fixed-voltage timing application. Timing for the circuit is controlled by an external resistor-capacitor combination $(R_X \cdot C_X)$. Adjustment of these components permits generation of output pulse widths from nanoseconds to minutes. Leading-edge and trailing-edge Trigger inputs are provided, and both positive-going and negative-going pulses are available from complementary outputs.

Timing pulses may be terminated at any time by applying a low logic level to the Reset input ${\bf C}_{\rm D}$.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc
Operating Temperature T_A
C, D, F, H Device -55 to +125 °C

E Device 40 to +85 °C

FUNCTION TABLE

II	NPUT	S	OUTPUTS				
CD	A	В	Q	ō			
L	Х	Х	L	Н			
Х	Н	Х	L	Н			
X	Х	L	L	Н			
Н	1	Н	$ \mathcal{I} $	L			
Н	L	↓	77	L			

H = High Level (Steady State)

L = Low Level (Steady State)

↑ = Transition, Low-to-High

↓ = Transition, High-to-Low

X = Irrelevant (Inc. Transitions)

□ = One Low-Level Pulse

BLOCK DIAGRAM (one of two devices)

4528B PULSE WIDTH VS. RX, CX, VDD

LOGIC DIAGRAM

Notes:

There is no effective maximum limit on R_X ; recommended minimum value for R_X is 1K Ω . There are no restrictions on the value of C_X .

For proper operation all unused inputs should be tied to a logic level. The mode point (T2) of a unused half of device should be tied high through an external resistor to V_{DD} .

Normalized Pulse Width versus Temperature

STATIC CHARACTERISTICS 1

PARAMETER	1	V _{DD}	CONDITIONS	TL	w ²		+25°C		THE	GH ²	Units
PARAMETER		(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	-
QUIESCENT DEVICE CURRENT	ю	5 10 20	V _{IN} = V _{SS} or V _{DD} All valid input combinations	1 1 1	5 10 20	1 1	0.05 0.1 0.2	5 10 20	1 1 1	150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C, = 50pF, TA = 25°C)

PARAMETER		Cx (pF)	Rx (kΩ)	V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME From A or B	t _{РLН} , t _{РНL}	15	5	5 10 15	1 1 1	270 90 70	540 180 140	ns
		1000	10	5 10 15	1 1	510 170 120	1020 340 240	ns
From C _D		15	5	5 10 15		270 90 70	540 180 140	ns
		1000	10	5 10 15	- -	550 300 250	1100 600 500	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	-	-	5 10 15	- - -	130 65 50	260 130 100	ns
Note: Q Output	t _{TLH}	15	5	5 10 15	_ _ _	130 65 50	260 130 100	ns
		1000	10	5 10 15	- - -	270 240 220	540 480 440	ns
MINIMUM INPUT PULSE WIDTH A or B Input	PW _{in}	-	-	5 10 15	- - -	70 30 25	140 60 50	ns
OUTPUT PULSE WIDTH MATCH Same package	ΔPW _{out}	1000	10	5 10 15	- -	± 7.5 ; ±10 ±10	±15 ±20 ±20	%
Different packages		1000	10	5 10 15	- - -	-	±50 ±50 ±50	%

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

AC TEST WAVEFORMS

APPLICATIONS INFORMATION

Astable Operation

Connection for Non-Retriggerable Operation

Astable Multivibrator with Adjustable Period and Duty Cycle

CMOS 12-BIT PARITY TREE

FEATURES

- ♦ Variable Word Length
- Buffered Output
- Parity Selection Input

DESCRIPTION

The 4531B 12-Bit Parity Tree is constructed with MOS P-channel and N-channel enhancement-mode devices in a single monolithic structure. The circuit consists of 12 Data-bit inputs (D0 thru D11), an even or odd Parity Selection input (W), and an output (Q). The Parity Selection input can be considered as an additional bit. Words of less than 13 bits can generate an even or odd parity output if the remaining inputs are selected to contain an even number of 1's. Words of greater than 12 bits can be accommodated by cascading other 4531B devices by using the W input. Applications include checking or including a redundant (parity) bit to a word for error detection/ correction systems, controller for remote digital sensors or switches (digital event detection/ correction), or as a multiple-input summer without carries.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device -55 to +125 °C E Device -40 to +85 °C

TRUTH TABLE

				INP	υτs			ООТРОТ
w	D11	D10		D2	D1	DO	DECIMAL (OCTAL) EQUIVALENT	٥٠
0	0	0		0	0	0	0 (0)	0
0	0	0		0	0	- 1	1 (1)	1 1
0	0	0		0	1	0	2 (2)	1
٥	۰	٥		•	1	_1	3 (3)	0
0	0	0		1	0	0	4 (4)	1
0	0			1	0	1	5 (5)	0
0	0	0		,	1	0	6 (6)	0
٥		۰		. 1	_'_	,	7 (7)	1
.								
:	:	1 :	. : .	:	:]	:	:	
1	1	1		0	0	0	8184 (17770)	0
1	1 1	1		0	0	1	8185 (17771)	1 1
1	1	1		0		0	8186 (17772)	1 1
1	1	1		0	1	1	8187 (17773)	0
1	1	1		1	0	0	8188 (17774)	1
1	1	1		1	0	,	8189 (17775)	0
1	١ ، ١	1		1	1	0	8190 (17776)	0
1	-	1		1	1	1	8191 (17777)	١,
٠0٠	Even	Parity	Not	e May	redef	ne to s	uit application b	v -
1	000	Parity					nd/or other eveil	

LOGIC DIAGRAM

STATIC CHARACTERISTICS 1

PARAMETER	V _{DD}	CONDITIONS	TL	ow ²	+25°C			THE	Units		
	(Vdc)	(Vdc)		Max.	Min.	Тур.	Max.	Min.	Max.		
QUIESCENT DEVICE CURRENT	I _{DD}	5 10 15	V _{IN} = V _{SS} or V _{DD} All valid input combinations	- -	5 10 20		0.05 0.1 0.2	5 10 20	1 1 1	150 300 600	μAdc

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

T_{LOW} = -55°C for C, D, F, H device. = -40°C for E device. T_{HIGH} = +125°C for C, D, F, H device. = + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units	
PROPAGATION DELAY TIME From D Inputs	t _{PLH} , t _{PHL}						
		5	_	420	840	ns	
		10	l –	175	350		
		15	-	120	240		
From W Input	t _{PLH} , t _{PHL}						
		5	_	250	500	ns	
	1	10	-	100	200		
		15	_	70	140		
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}						
		5	_	130	260	ns	
	[]	10	_	65	130		
		15	_	50	100		

Typical P-Channel **Source Current Characteristics**

Typical N-Channel Sink Current Characteristics

FEATURES

- Converts from 1 of 8 binary
- Provides cascading features to handle any number of inputs
- group select indicates one or more priority inputs
- Standardized, symmetrical output characteristics
- Noise margin (full package-temperature range):

 $1V \text{ at } V_{DD} = 5V$

2V at V_{DD} = 10V

2.5V at V_{DD} = 15V

• 5V, 10V, and 15V parametric ratings

APPLICATIONS

- Priority encoder
- . Binary or BCD encoder (keyboard encoding)
- Floating point arithmetic

DESCRIPTION

The 4532B consists of combinational logic that encodes the highest priority input (D7-D0) to a 3-bit binary code. The eight inputs, D7 through D0, each have an assigned priority; D7 is the highest priority and D0 is the lowest. The priority encoder is inhibited when the chip-enable input E_1 is low. Then E_1 is high, the binary representation of the highest-priority input appears on output lines O(2-O(1)), and the group select line GS is high to indicate that priority inputs are present. The enable-out O(1) is high when no priority inputs are present. If any one input is high, O(1) is low and all cascaded lower-order stages are disabled.

CMOS 8-BIT PRIORITY ENCODER

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.

Characteristic	Min.	Max.	Units
Supply Voltage Range (for T _A =	3	15	v
Full Package Temp. Range)			

FUNCTIONAL DIAGRAM

TRUTH TABLE

				Input							Output		
EI	D7	D6	D5	D4	D3	D2	D1	D0	GS	Q2	Q1	Q0	EO
0	X	Х	Х	Х	Х	X	X	Х	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	1
1	1	х	Х	Х	X	х	х	Х	1	1	1	1	0
1	0	1	х	х	x	×	×	x	1	1	1	0	0
1	0	0	1	×	x	х	х	х	1	1	0	1	0
1	0	0	0	1	×	×	×	х	1	1	0	0	0
1	0	0	0	0	1	X	X	Х	1	0	1	1	0
1	0	0	0	0	0	1	x	X	1	0	1	0	0
1	0	0	0	0	0	0	1	х	1	0	0	1	0
1	0	0	0	0	0	0	0	1	1	0	0	0	0

X = Don't Care

Logic 1 ≡ High

Logic 0 ≡ Low

4532 logic diagram.

Input current test circuit.

STATIC CHARACTERISTICS¹

PARAMETER		V _{DD}	CONDITIONS	TLO	T _{LOW} 2 + 25°C			THI		T _{HIGH} 2	
PARAMETER		(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units
QUIESCENT DEVICE CURRENT	I _{DD}	5 10 15	V _{IN} = V _{SS} or V _{DD} All Valid input combinations	- - -	5 10 20	- - -	0.05 0.1 0.2	5 10 20	- - -	150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications"

² T_{LOW} = -55°C for C, D, F, H device.
= -40°C for E device.

DYNAMIC ELECTRICAL CHARACTERISTICS at T $_{\rm A}$ = 25°C; C $_{\rm L}$ = 50 pF.

CHARACTERISTIC	TEST CONDITONS	LIN ALL 1	UNITS	
	VOLTS	TYP.	MAX.	
PROPAGATION DELAY TIME t _{PHL} , t _{PLH}	5	110	220	
E _I to E _O , E _I to GS	10	55	110	7
,	15	45	85	
	5	170	340	
E _I to Qm, Dn to Gs	10	85	170	ns
	15	65	125	
	5	220	440	
Dn to QM	10	110	220	
	15	85	170 125 440	
	5	100	200	
TRANSITION TIME t _{THL} , t _{TLH}	10	50	100	ns
	15	40	80	
INPUT CAPACITANCE CIN	Any Input	5	75	pF

T_{HIGH} = +125°C for C, D, F, H device = + 85°C for E device.

AC TEST WAVEFORMS

BCD-TO-SEVEN SEGMENT LATCH/DECODER/DRIVER

FEATURES

- Phase Input Signal Reproduced on Outputs for Liquid Crystal Display
- **♦** Latched Storage of Input Code
- Blanking Input for Display Intensity Modulation
- Readout Blanking for Illegal Input Combinations
- Pin Compatible with CD4056A (with Pin 7 Tied to V_{SS})

DESCRIPTION

The 4543B BCD-to-7 Segment Latch/ Decoder/Driver is designed for use with liquid crystal readouts and is constructed with complementary MOS (CMOS) enhancement-mode devices. The circuit provides the functions of a 4-bit storage latch and a 8421 BCD-to-seven segment decoder and driver. The device has the capability to invert the logic levels of the output combinations. The Phase (Ph), Blanking (BI), and Latch Disable (LD) inputs are used to reverse the truth-table phase. blank the display, and store a BCD code, respectively. For liquid crystal readouts, a square wave is applied to the Ph input of the circuit and the electrically common backplane of the display. The outputs of the circuit are connected directly to the segments of the readout. For other types of readouts, such as light-emitting diode (LED), incandescent, gas discharge, and fluorescent readouts, connection diagrams are given on this data sheet.

Applications include instrument (e.g., counter,

TRUTH TABLE

		INPUT	s							_ '	OU.	TPL	JTS	
ro	Bi	Ph*	D	c	8	Α		b	c	d	e	f	9	Display
х	1	0	x	×	x	x	٥	0	0	0	0	0	0	Blank
1	0	0	0	0	0	0	1	1	1	1	1	1	0	0
1	0	0	٥	0	0	١	0	1	1	0	0	0	0	1
1	0	0	0	0	1	0	1	1	0	1	1	0	1	2
1	0	0	0	0	1	1	1	1	1	1	0	0	1	3
1	0	0	0	1	0	0	0	1	1	0	0	1	1	4
1	0	0	0	1	0	1	t	0	1	1	0	1	1	5
1	0	0	0	1	1	0	1	0	1	1	1	1	1	6
1	0	.0	٥	1	1	1	1	1	1	0	0	0	0	7
1	0	0	1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	0	0	1	1	1	1	1	0	1	1	9
1	0	0	1	0	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	0	1	1	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	1	0	0	0	0	0	0	0	Blank
1	0	0	1	1	1	0	0	0	0	0	0	0	0	Blank
1	٥	0	1	1	<u>.</u>		0	0	0	0	0	0	0	Blank
0	0	0	×	<u>×</u>	X	X	L		_			_		••
•	1	1			1		Co		ıns		Dutp	out		Display as above
Fo Fo	ove C r liqu r corr r corr	are combinated crysta amon ca amon an upon th	el re thod ode	add e L	D i	re	ada loui	w 15.	se sele	tec:	Ph Ph	- 1	Ō.	

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DVM, etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS1

PARAMETER		V _{DD}	CONDITIONS	T _{LOW} ²		+25°C			T _{HIGH} ²		Units
		(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.]
QUIESCENT DEVICE CURRENT	l _{DD}	5 10 15	V _{IN} = V _{SS} or V _{DD} All valid input combinations	-	5 10 20		0.05 0.1 0.2	5 10 20		150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	tесн, tенс	5 10 15	- - -	550 210 160	1100 420 320	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	_ _ _	100 50 40	200 100 80	ns
MINIMUM DATA INPUT SETUP TIME	t _{setup}	5 10 15	<u>-</u>	-40 -15 -10	0 0 0	ns
MINIMUM DATA INPUT HOLD TIME	[†] hold	5 10 15	_ _ _	40 15 10	80 30 20	ns
MINIMUM LD PULSE WIDTH	PWLD	5 10 15	- - -	125 50 40	250 100 80	ns

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

LOGIC DIAGRAM

APPLICATIONS INFORMATION

CONNECTIONS TO VARIOUS DISPLAY READOUTS

FEATURES

- Buffered Outputs
- Selected Output Active High (4555B) or Active Low (4556B)
- **♦** Expandable

DESCRIPTION

The 4555B and 4556B are constructed with complementary MOS (CMOS) enhancement-mode devices. Each decoder/demultiplexer has two Select inputs (A and B), an active-low Enable input (E), and four mutually-exclusive outputs (Q0, Q1, Q2, Q3). The 4555B has the selected output go to the "high" state, and the 4556B has the selected output go to the "low" state. Expanded decoding such as binary-to-hexadecimal (1-of-16), etc., can be achieved by using other 4555B or 4556B devices.

Applications include code conversion, address decoding, memory selection control, and demultiplexing (using the Enable input as a data input) in digital data transmission systems.

TRUTH TABLE

Inp	Inputs				outs	;	Outputs 4556B				
Enable	Se	lect		455							
Ē	В	Α	Q3	Q2	Q1	QΟ	ФЗ	ā2	Õ1	Ōο	
0	0	0	0	0	0	1	1	1	1	0	
0	0	1	0	0	1	0	1	1	0	1	
0	1	0	0	1	0	0	1	0	1	1	
0	1	1	1	0	0	0	0	1	1	1	
1	х	х	0	0	0	0	1	1	1	1	

X = Don't Care

CMOS DUAL 2-TO-4 LINE DECODERS

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc

Operating Temperature T_A

C, D, F, H Device -55 to +125 °C

E Device -40 to +85 °C

BLOCK DIAGRAMS

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS '

PARAMETER		V _{DD}	CONDITIONS	T _{LOW} ²		+25°C			THIGH 2		Units
		(Vdc)		Min.	Max.	Min.	Typ.	Max.	Min.	Max.	0
QUIESCENT DEVICE CURRENT	I _{DD}	5 10 15	V _{IN} =V _{SS} or V _{DD} All valid inputs combinations	- -	5 10 20	- i -	0.05 0.1 0.2	5 10 20	-	150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (C_L = 50pF, T_A = 25°C)

PARAMETER	V _{DD} (Vdc)	Min.	Тур.	Max.	Units	
PROPAGATION DELAY TIME 4555B	tpLH, tpHL	5	_	140		
		10 15		65 50	280 130 100	ns
4556B	t _{PLH} , t _{PHL}	5 10	-	160 75	320 150	ns
OUTDUT TO ANOTHER TOTAL		15		50	100	
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns

Typical P-Channel **Source Current Characteristics**

Typical N-Channel Sink Current Characteristics

LOGIC DIAGRAM (1/2 of Dual)

APPLICATIONS INFORMATION

1-of-4 Line Data Demultiplexer Using 4555B

1-of-8 Decoder Using 4555B

1-of-16 Decoder Using 4555B/ 4556B

CMOS 4-BIT ARITHMETIC LOGIC UNIT

FEATURES

- ♦ Function and Pinout Equivalent to 74181
- Provides 16 Logic Functions and 16 Arithmetic Functions
- **♦** Comparator Function
- Positive or Negative Logic
- Full Look-Ahead for High-Speed Operations on Long Words

DESCRIPTION

The 4581B is a CMOS 4-Bit Arithmetic Logic Unit (ALU) capable of providing 16 functions of two Boolean variables and 16 binary arithmetic operations on two 4-bit words. The level of the Mode Control input determines whether the output function is logic or arithmetic. The desired logic function is selected by applying the appropriate binary word to the Select inputs (S0 thru S3) with the Mode Control input high, while the desired arithmetic operation is selected by applying a low voltage to the Mode Control input, the required level to Carry in, and the appropriate word to the Select inputs. The Word inputs and Function outputs can be operated with either active-high or active-low data.

Carry propagate (P) and Carry generate (G) outputs are provided to allow a full look-ahead carry scheme for fast simultaneous carry generation for the four bits in the package. Fast arithmetic operations on long words are obtainable by using the 4582B as a second-order lookahead block. An inverted Ripple-Carry input (C_n) and a Ripple-Carry output (C_{n+4}) are included for ripple-through operation.

ALU SIGNAL DESIGNATIONS

Designation	Pin Nos.	Function
A3, A2, A1, A0	19, 21, 23, 2	Word A Inputs
B3, B2, B1, B0	18, 20, 22, 1	Word B Inputs
S3, S2, S1, S0	3, 4 5, 6	Function-Select Inputs
Cn	7	Inv. Carry Input
мс	8	Mode Control Input
F3, F2, F1, F0	13, 11, 10, 9	Function Outputs
A = B	14	Comparator Output
Р	15	Carry Propagate Output
Cn+4	16	Inv. Carry Output
G	17	Carry Generate Output

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_A D, H Device -55 to +125 °C E Device -40 to +85 °C

BLOCK DIAGRAM

ALU FUNCTION GENERATION

The 4581B can be used with the signal designations of either Figure 1 or Figure 2.

The logic functions and arithmetic operations obtained with signal designations as in Figure 1 are given in Table 1; those obtained with the signal designations of Figure 2 are given in Table 2.

TABLE 1

TABLE 2

								_						
Γ.				Т		ACTIVE-LOW	DATA						ACTIVE-HIGH	DATA
5	ELE	CTI	ON	Ī	· MC = H	MC = L; ARITHN	METIC OPERATIONS	. SI	ELEC	. 110	JNI.	MC - H MC - L; ARITHMETIC OPERATIO		ETIC OPERATIONS
				1	LOGIC	Cn = L	C _n • H	1	\$3 \$2 \$1 \$0		LOGIC	Č _n = H	Č _n = L	
S3	S2	SI	S	미	FUNCTIONS	(no carry)	(with carry)	23	SZ	51	\$0	FUNCTIONS	(no carry)	(with carry)
ī	L	L		:†	F=Ā	F = A MINUS 1	F=A	L.	L	L	·L	F=A	F = A	F = A PLUS 1
L	L	L		٠l	F = AB	F = AB MINUS 1	F = AB	L	L	L	н	F = A + B	F = A + B	F = (A + B) PLUS 1
L	L	н		١	F = A + B	F = AB MINUS 1	F = AB	L	L	٠н	L	F = AB	F = A + B	F = (A + B) PLUS 1
L	L	н		4	F=1	F = MINUS 1 (2's COMP)	F = ZERO	L	L	н	н	F=0	F = MINUS 1 (2's COMPL)	F = ZERO
Ĺ	н	L	. 1	١	F = A + B	F = A PLUS (A + B)	F = A PLUS (A + B) PLUS 1	L	н	L	L	F = AB	F = A PLUS AB	F = A PLUS AB PLUS 1
L	н	Ł		١	F=B	F = AB PLUS (A + B)	F = AB PLUS (A + B) PLUS 1	L	н	L	н	F=B	F = (A + B) PLUS AB	F = (A + B) PLUS AB PLUS 1
L	н	н	1	ı	F = A 🕀 B	F = A MINUS B MINUS 1	F = A MINUS B	L	Н	н	L	F = A ⊕ B	F = A MINUS B MINUS 1	F = A MINUS B
L	н	н			F = A + B	F=A+B	F = (A + B) PLUS 1	L	н	н	н	F = AB	F = AB MINUS 1	F = AB
н	ı.	L		- 1	F = AB	F = A PLUS (A + B)	F = A PLUS (A + B) PLUS 1	н	L	L	L	F = X + B	F = A PLUS AB	F = A PLUS AB PLUS 1
н	ī	ī		- 1		F = A PLUS B	F = A PLUS B PLUS 1	Н	L	L	н	F = A ⊕ B	F = A PLUS B	F = A PLUS B PLUS 1
н	ī	н			F≖B	F = AB PLUS (A + B)	F = AB PLUS (A + B) PLUS 1]н	L	н	L	F=B	F = (A + B) PLUS AB	F = (A + B) PLUS AB PLUS
н	ī			- 1		F = (A + B)	F = (A + B) PLUS.1	н	L	н	н	F = AB	F = AB MINUS 1	F = AB
н	н			1	F=0	F = A PLUS A*	F = A PLUS A PLUS 1	н	н	L	L	F = 1	F = A PLUS A*	F = A PLUS A PLUS 1
н	н	ī		- 1		F = AB PLUS A	F = AB PLUS A PLUS 1	н	н	L	Н	F = A + B	F = (A + B) PLUS A	F = (A + B) PLUS A PLUS 1
н		н		- 1	F = AB	F = AB PLUS A	F = AB PLUS A PLUS 1	н	н	н	L	F = A + B	F = (A + B) PLUS A	F = (A +B) PLUS A PLUS 1
Н				- 1	F = A	F=A	F = A PLUS 1	н	н	н	н	F=A	F = A MINUS 1	F=A

^{*}Each bit is shifted to the next more significant position.

When the device is in the subtract mode (LHHL), comparison of two 4-bit words present at the A and B inputs is provided using the A=B output. It assumes a high-level state when indicating equality. Also, when the ALU is in the subtract mode the C_{n+4} output can be used to indicate relative magnitude as shown in this table:

Data Level	Cn	Cn + 4	Magnitude
	Н	н	A≤B
Active	L	н	A < B
High	н	L	A > B
	L	L	A≥B
	L	L	A≤B
Active	н	L	A < B
Low	L	н	A > B
	н	н	A≥B

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

PARAMETER		VDD	CONDITIONS	TLOW ²		+25°C			T _{HIGH} ²		Units
VANAMETER		(Vdc)	CONDITIONS	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	O.I.I.G
QUIESCENT DEVICE CURRENT	l _{DD}	5 10	V _{IN} = V _{SS} or V _{DD} All valid input combinations	-	5 10 20	111	0.05 0.1 0.2	5 10 20	-	150 300 600	μAdc

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for D, H device.

= -40°C for E device.

T_{HIGH} = +125°C for D, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS (CL = 50pF, TA = 25°C)

PARAMETER		V _{DD} (Vde)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME Sum in to Sum Out	tр⊾н, tрн∟	5 10 15	- - -	400 160 120	800 320 240	ns
Sum In to Sum Out (Logic Mode)		5 10 15	- - -	380 190 160	760 380 320	ns
Sum In to A = B		5 10 15	-	450 275 225	900 550 450	ns
Sum In to P or G		5 10 15	-	300 150 125	600 300 250	ns
Sum In to C _{n+4}		5 10 15	-	300 150 125	600 300 250	ns
Carry In to Sum Out		5 10 15	-	200 100 70	400 50 35	ns
Carry In to C _{n+4}		5 10 15		200 100 70	400 50 35	ns
OUTPUT TRANSITION TIME	[†] TLH, [‡] THL	5 10 15	-	100 50 40	200 100 80	ns

AC Test Setup Reference Table

	AC P	ATHS	DC DATA	INPUTS	
TEST	INPUTS	OUTPUTS	TO V _{SS}	TO VDD	MODE
Sum _{in} to Sum _{out} Delay Time	ÀO	Any F	Remaining A's Cn	All B's	Add
Sum _{in} to P Delay Time	ÃO	Ρ	Remaining A's C _n	All B's	Add
Sum _{in} to G . Delay Time	ê0	CutA	All Â's C _n	Remaining 6's	Add
Sum _{in} to C _{n+4} Delay Time	ão.	Ğ	All A's Cn	Remaining 6's	Add
C _n to Sum _{out} Delay Time	C _n	Any F	All Ä's	All Ö's	Add
C _n to C _{n+4} Delay Time	Cn	Cn+4	All A's	All B's	Add
Sum _{in} to A = B Delay Time	AO	A - 8	All Š's Remaining À's	C _n	Sub
Sum _{in} to Sum _{out} Delay Time (Logic Mode)	All 8's	Any F	All A's	м	Exclusive OR

Typical P-Channel **Source Current Characteristics**

Typical N-Channel Sink Current Characteristics

APPLICATIONS INFORMATION

ADDITION REQUIREMENTS

Number	Pack	age Count	Carry Method
	Arithmetic/ Logic Units	Look-Ahead Carry Generators	Between ALU's
1 to 4	1		None
5 to 8	2		Ripple
9 to 16	3 or 4	1	Full Look-Ahead
17 to 64	5 to 16	2 to 5	Full Look-Ahead

EXPANSION TECHNIQUES

CMOS LOOK-AHEAD CARRY BLOCK

FEATURES

- ♦ Expandable to any Number of Bits
- **♦** High-Speed Operation
- ◆ Directly Compatible with 4581B ALU

DESCRIPTION

The 4582B is a high-speed, Look-Ahead Carry Generator capable of anticipating a carry across four binary adders or group of adders. It is cascadable to perform full look-ahead across n-bit adders. Carry, generate-carry, and propagate-carry functions are provided.

When used in conjunction with the 4581B Arithmetic Logic Unit (ALU), these generators provide high-speed carry look-ahead capability for any word length. Each 4582B generates the look-ahead (anticipated carry) across a group of four ALU's and, in addition, other carry look-ahead circuits may be employed to anticipate carry across sections of four look-ahead packages up to n-bits.

Carry input and output of the 4581B ALU are in their true form and the carry propagate (P) and carry generate (G) are in negated form; therefore, the carry functions (inputs, outputs, generate, and propagate) of the look-ahead generators are implemented in the compatible forms for direct connections to the ALU. Reinterpretations of carry functions as explained on the 4581B data sheet are also applicable to and compatible with the look-ahead generator.

PIN DESIGNATIONS

DESIGNATION	PIN NO's	FUNCTION
G0,G1,G2,G3	3,1,14,5	Active-Low Carry-Generate Inputs
P0,P1,P2,P3	4,2,15,6	Active-Low Carry-Propagate Inputs
Cn	13	Carry Input
Cn+x, Cn+y Cn+z	12,11,9	Carry Outputs
Ğ	10	Active-Low Group Carry-Generate Output
P	7	Active-Low Group Carry-Propagate Output

LOGIC EQUATIONS

```
C_{n+x} = G0 + P0 \oplus C_n
C_{n+y} = G1 + P1 \oplus G0 + P1 \oplus P0 \oplus C_n
C_{n+y} = G2 + P2 \oplus G1 + P2 \oplus P1 \oplus G0 + P2 \oplus P1 \oplus P0 \oplus C_n
G = G3 + P3 \oplus G2 + P3 \oplus P2 \oplus G1 + P3 \oplus P2 \oplus P1 \oplus G0
\overline{P} = P3 \oplus P2 \oplus P1 \oplus P0
```

CONNECTION DIAGRAM (all packages) V_{DD} P2 G2 Cn Cn+xCn+y G Cn+z 16 15 14 13 12 10 9 11 4582B 2 5 Add suffix for package: С 16-pin Cerdip D 16-pin Ceramic Е 16-pin Epoxy F 16-pin Flat Chip

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc Operating Temperature T_A C, D, F, H Device -55 to +125 °C E Device -40 to +85 °C

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD}	CONDITIONS	TL	ow ²		+25°C		THI	GH ²	Units
		(Vdc)	30.10.110.110	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	0
QUIESCENT DEVICE CURRENT	I _{DD}	5 10 15	V _{IN} =V _{SS} or V _{DD} All valid input combinations	- - -	5 10 20	111	0.05 0.1 0.2	5 10 20	- -	150 300 600	μAdc

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

T_{LOW} = -55°C for C, D, F, H device. = -40°C for E device. T_{HIGH} = +125°C for C, D, F, H device. = + 85°C for E device.

DYNAMIC CHARACTERISTICS (C, = 50pF, TA = 25°C)

PARAMETER		V _{DD} (Vdc)	Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	t _{РLH} , t _{РНL}	5 10 15	_ _ _	200 100 85	400 200 160	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	_ _ _	100 50 40	200 100 80	ns

Typical P-Channel Source Current Characteristics

Typical N-Channel Sink Current Characteristics

APPLICATIONS INFORMATION

CMOS HEX INVERTING SCHMITT TRIGGER

FEATURES:

- Schmitt Trigger Action on each input with no External Components
- Noise Immunity Greater than 30%
- No Limit on Input Rise and Fall Times
- Pin for Pin Replacement for CD40106B, MM74C14 and MCI4584B
- Also Pin Compatible with 74C04 and 4069 Hex Inverters

DESCRIPTION:

The 4584B consists of six Schmitt Trigger circuits, constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These devices find primary use where low power dissipation and/or high noise immunity is desired. The 4584B may be used in place of the MCI4069B hex inverter for enhanced noise immunity or to square up slowly changing waveforms.

LOGIC DIAGRAMS

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage $V_{DD} - V_{SS}$ 3 to 15 Vdc Operating Temperature C, D, F, H Device E Device -40 to + 85 °C

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS¹

PARAMETER		V _{DD}	CONDITIONS		ow ²		+25°C			GH ²	Units
	_	(Vdc)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	0
QUIESCENT DEVICE CURRENT	l _{oo}	5 10 15	V _{IN} = V _{SS} or V _{DD} All valid input combinations	_ 	1.0 2.0 4.0	_ _ _	.005 .01 .02	1.0 2.0 4.0	_	30 60 120	μΑ
POSITIVE TRIGGER THRESHOLD VOLTAGE	V _{TP}	5 10 15		2.3 4.5 6.8	3.5 7.0 11.0	2.3 4.5 6.8	2.9 5.3 7.7	3.5 7.0 11.0	2.3 4.5 6.8	3.5 7.0 11.0	٧
NEGATIVE TRIGGER THRESHOLD VOLTAGE	V _{TN}	5 10 15		1.5 3.0 4.0	2.7 5.5 8.2	1.5 3.0 4.0	2.15 4.4 6.5	2.7 5.5 8.2	1.5 3.0 4.0	2.7 5.5 8.2	٧
HYSTERESIS VOLTAGE	V _H	5 10 15		.4 .7 .85	2.0 3.0 4.0	.4 .7 .85	.75 .95 1.2	2.0 3.0 4.0	.4 .7 .85	2.0 3.0 4.0	>

NOTES: 1 Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

T_{HIGH} = +125°C for E, D, F, H devices. = +85°C for E devices.

DYNAMIC CHARACTERISTICS ($C_L = 50 pF$, $T_A = 25 °C$)

PARAMETER	V _{DD} (Vdc)	Min.	Тур.	Max.	Units	
PROPAGATION DELAY TIME	t _{PLH} t _{PHL}	5 10 15	86 42 30	107 48 35	150 60 40	ns
OUTPUT TRANSITION TIME	t _{TLH} t _{THL}	5 10 15	44 24 19	62 29 23	200 100 80	ns

² T_{Low} = -55°C for C, D, F, H devices. = -40°C for E Devices.

CMOS 4-BIT MAGNITUDE COMPARATOR

FEATURES

- ♦ Binary or BCD Comparison
- **♦** Expandable
- ♦ A<B, A=B, A>B Outputs Available

DESCRIPTION

This 4-Bit Magnitude Comparator performs comparison of straight binary and straight BCD (8-4-2-1) codes. Three decisions about two 4-bit words (A, B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The A<B and A=B outputs of a stage handling less-significant bits are connected to the corresponding A<B and A=B inputs of the next stage handling more-significant bits. The A>B cascading input is connected to a high level. The stage handling the least-significant bits must have a high-level voltage applied to the A=B and A>B inputs. An alternate method of cascading which reduces the comparison time is shown under Applications Information.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc
Operating Temperature T_A
C, D, F, H Device -55 to +125 °C
E Device -50 to +85 °C

TRUTH TABLE

	Inputs										
	Comparing					Cascading			Outputs		
A3, B3	A2, B2	A1, B1	A0, B0	A <b< td=""><td>A=B</td><td>A>B</td><td>A<b< td=""><td>A=B</td><td>A>B</td></b<></td></b<>	A=B	A>B	A <b< td=""><td>A=B</td><td>A>B</td></b<>	A=B	A>B		
A3>B3	×	X	×	X	×	1	0	0	1		
A3=B3	A2>B2	×	×	×	l x	1	0	0	1		
A3=B3	A2=B2	A1>B1	×	×	×	1	0	0	1		
A3=B3	A2=B2	A1=B1	A0>B0	x	×	1	0	0	1		
A3=B3	A2=B2	A1=B1	A0=B0	0	0	1	0	0	1		
A3=B3	A2=B2	A1=B1	A0≃B0	0	1	X	0	1	0		
A3=B3	A2≂B2	A1=B1	A0=B0	1	0	х	1	0	0		
A3=B3	A2=B2	A1=B1	A0<80	X	×	X	1	0	0		
A3=B3	A2=B2	A1 <b1< td=""><td>×</td><td>×</td><td>×</td><td>×</td><td>1</td><td>0</td><td>0</td></b1<>	×	×	×	×	1	0	0		
A3=B3	A2 <b2< td=""><td>×</td><td>×</td><td>×</td><td>×</td><td>х</td><td>1</td><td>0</td><td>0</td></b2<>	×	×	×	×	х	1	0	0		
A3 <b3< td=""><td>×</td><td>l ×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>1</td><td>0</td><td>0</td></b3<>	×	l ×	×	×	×	×	1	0	0		
X	X	X	X	Х	×	0	-	1	0		

X = Don't Care

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS 1

PARAMETER		V _{DD}	DD CONDITIONS	T _{LOW} ²		+25°C			T _{HIGH} ²		Units
		(Vdc)	00/12/110/10	Min.	Max.	Min.	Typ.	Max.	Min.	Max.	0
QUIESCENT DEVICE	IDD										
CURRENT		5	V _{IN} =V _{SS} or V _{DD}	-	5	-	0.05	5	-	150	μAdc
		10	All valid input	-	10	-	0.1	10	-	300	
		15	combinations	_	20	-	0.2	20		600	

NOTES: ¹ Remaining Static Electrical Characteristics are listed under "4000B Series Family Specifications".

² T_{LOW} = -55°C for C, D, F, H device.

= -40°C for E device.

T_{HIGH} = +125°C for C, D, F, H device.

= + 85°C for E device.

DYNAMIC CHARACTERISTICS ($C_1 = 50pF$, $T_{\Delta} = 25^{\circ}C$)

PARAMETER			Min.	Тур.	Max.	Units
PROPAGATION DELAY TIME	t _{РСН} , t _{РНС}	5 10 15	- - -	300 125 80	600 250 160	ns
OUTPUT TRANSITION TIME	t _{TLH} , t _{THL}	5 10 15	- - -	100 50 40	200 100 80	ns

Typical P-Channel **Source Current Characteristics**

Typical N-Channel Sink Current Characteristics

LOGIC DIAGRAM

APPLICATIONS INFORMATION

COMPARISON OF TWO N-BIT WORDS

JEDEC Standard Specifications

JEDEC STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES

MAY 1976

Formulated by JEDEC Solid State Products Council

NOTE: Solid State Scientific has taken part in the activities of the JEDEC Committee since its inception, and fully supports the following specifications. All part types manufactured by Solid State Scientific and marked with the designation "B" meet or exceed the industry standard CMOS specifications described herein.

1. PURPOSE AND SCOPE

1.1 Purpose

To develop a standard of "B" Series CMOS Specifications to provide for uniformity, multiplicity of sources, elimination of confusion, and ease of device specification and system design by users.

1.2 Scope

This Standard covers standard specifications for description of "B" Series CMOS devices.

2. DEFINITIONS

2.1 "B" Series

"B" Series CMOS includes both buffered and unbuffered devices.

2.2 "Buffered"

A buffered output is one that has the characteristic that the output "on" impedance is independent of any and all valid input logic conditions, both preceding and present.

3. STANDARD SPECIFICATIONS

- 3.1 Listing of Standard Specifications. Table 1 lists the standard specifications for "B" Series CMOS devices.
- 3.2 Absolute Maximum Ratings. In the maximum ratings listed below voltages are referenced to Vss.

ABSOLUTE MAXIMUM RATINGS

DC Supply Voltage Input Voltage	V _{DD} V _{IN}	-0.5 to + 18 -0.5 to V _{pp} + 0.5	Vdc Vdc
DC Input Current	l _{IN}	±10	mAdc
(any one input) Storage Temperature Range	$T_{\mathbf{s}}$	-65 to + 150	°C

3.3 Recommended Operating Conditions. Recommended operating conditions are listed below.

RECOMMENDED OPERATING CONDITIONS

DC Supply Voltage	V _{DD}	+3 to + 15	Vdc
Operating Temperature Range	T _A		
Military-Range Devices		-55 to + 125	°C
Commercial-Range Devices		-40 to + 85	°C

3.4 Designation of "B" Series CMOS Devices

Those parts which have analog inputs and/or outputs shall be included in the "B" Series providing those parts' maximum ratings and logical input and output parameters conform to the "B" Series, such as (including, but not limited to):

4051B	4053B
4052B	4066B

Products that meet "B" Series specifications except that the logical outputs are not buffered and the $V_{\rm L}$ and $V_{\rm IH}$ specifications are 20% and 80% of $V_{\rm DD}$, respectively, shall be marked with the *UB* designation, such as (including, but not limited to):

4000UB	4002UB	4011UB	4023UB	4041UB	4069UB
4001UB	4007UB	4012UB	4025UB	4049UB	

STATIC CHARACTERISTICS

					LIMITS							
	PARAMETER	TEMP.	V_{DD}	CONDITIONS	TLC			+25°C		T _{HIGH} *		UNITS
	TANAMETER	RANGE	(Vdc)	00.00	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
DD	Quiescent	Mil	5 10	V =V- or V	-	0.25 0.5	-	-	0.25	-	7.5 15	μAdc
	Device Current		15	V _{IN} =V _{SS} or V _{DD}	_	1.0	_	_	1.0	-	30	дичас
	GATES		·								7.	
		Comm	5 10	All valid input combinations	-	1.0	-	-	1.0	-	7.5 15	μAdc
		00	15	COMBINETIONS	_	4.0			4.0		30	
			5		-	1.0	-	-	1.0	-	30 60	u A da
		Mil	10 15	V _{IN} =V _{SS} or V _{DD}	_	2.0 4.0	_	_	2.0 4.0	_	120	μAdc
	BUFFERS,											
	FLIP-FLOPS	Comm	5 10	All valid input combinations	_	4.0 8.0	_	_	4.0 8.0	_	30 60	μAdc
			15	Comomations	_	16.0		-	16.0		120	,
			5		-	5	-	-	5	-	150	
		Mil	10 15	V _{IN} =V _{SS} or V _{DD}	-	10 20	_	_	10 20	_	300 600	μAdc
			15		-	20	_		20		000	
	MSI	_	5	All valid input	-	20	-	-	20	-	150 300	μAdc
		Comm	10 15	combinations	-	40 80	_	_	40 80	_	600	дАСС
VoL	Low-Level		5		-	0.05	-	-	0.05	-	0.05	
	Output Voltage	All	10	V _{IN} =V _{SS} or V _{DD}	-	0.05	-	-	0.05	-	0.05	Vdc
_			15	I _O ≤1μA	-	0.05			0.05	_	0.05	
V _{он}	_		5		4.95	-	4.95	-	-	4.95 9.95	_	Vdc
	Output Voltage	All	10	V _{IN} =V _{SS} or V _{DD} I _O ≤1μA	9.95 14.95	_	9.95 14.95	_	_	14.95	_	Vuc
V _{IL}	Input Low			Vo=								
	Voltage		5	0.5V or 4.5V	-	1.5	-	-	1.5	-	1.5	
		All	10 15	1.0V or 9.0V 1.5V or 13.5V	_	3.0 4.0	_	-	3.0 4.0	_	3.0 4.0	Vdc
			15	1.5 V 01 13.5 V I _O ≤1μA		7			4.0		7.0	
V _{II}	Input High			Vo=				1				
	Voltage	All	10	0.5V or 4.5V 1.0V or 9.0V	3.5 7.0	_	3.5 7.0	-	_	3.5 7.0	_	Vdc
		^"	15	1.5V or 13.5V	11.0	-	11.0	-	-	11.0	-	'
				I _O ≤1μA	ļ							├
l _{OL}	Output Low (Sink) Current		5	V _O =0.4V, V _{IN} =0 or 5V	0.64	_	0.51	_	_	0.36	_	
	(Onic) Current		10	Vo=0.5V,					_	0.9	_	mAdo
		Mil	15	V _{IN} =0 or 10V V _O =1.5V,	1.6	_	1.3	-	-	0.9	_	made
				V _{IN} =0 or 15V	4.2	-	3.4	-	-	2.4	-	
			5	V _O =0.4V,	1							
				V _{IN} =0 or 5V	0.52	-	0.44	-	-	0.36	-	
		Comm	10	V _O =0.5V, V _{IN} =0 or 10V	1.3	۱ _	1.1	_	_	0.9		mAdo
		0011111	15	V _O =1.5V,			ł	1				ĺ
			-	V _{IN} =0 or 15V	3.6		3.0	 -	-	2.4	-	 -
Юн	Output High (Source) Current		5	V _O =4.6V, V _{IN} =0 or 5V	-0.25	_	-0.2	_	_	-0.14	_	
	(Source) Current		10	Vo=9.5V.				1				
		Mil	15	V _{IN} =0 or 10V V _O =13.5V,	-0.62	-	-0.5	-	-	-0.35	-	mAdd
			"	V _O =13.5V, V _{IN} =0 or 15V	-1.8	-	-1.5	-	-	-1.1	-	
			_	W	1							
			5	V _O =4.6V, V _{IN} =0 or 5V	-0.2	_	-0.16	-	-	-0.12	-	
			10	V _O =9.5V,			1		-		_	mAdd
		Comm	15	V _{IN} ≃0 or 10V V _O =13.5V,	-0.5	_	-0.4	-	-	-0.3	-	mAdd
			<u> </u>	V _{IN} =0 or 15V	-1.4	 -	-1.2	 -	 -	-1.0	_	-
I _{IN}	Input Current	Mil	15	V _{IN} =0 or 15V	-	±0.1 ±0.3		-	±0.1 ±0.3	-	±1.0 ±1.0	μAdc μAdc
	1	Comm	10	V _{IN} =0 or 15V	+-	20.0	+	+	-0.3	+	1-1.0	
GN	Input Capacitance	All	-	Any Input	_	-	l –	-	7.5	l –	-	pF

^{*}T_{LOW} = -55°C for Military Temp. Range device, -40°C for Commercial Temp. Range device. *T_{HIGH} = +125°C for Military Temp. Range device, +85°C for Commercial Temp. Range device.

CMOS Fundamentals

CMOS FUNDAMENTALS

MOS DEVICES

Complementary MOS (CMOS) logic, memory, and switching circuits are constructed with P-channel and N-channel enhancement-mode MOS transistors diffused on a monolithic silicon chip. Field-effect transistors are unipolar devices; that is, their operation is based on a function of only one type of charge carrier—holes in P-channel types, and electrons in N-channel types.

A simplified cross-section of an N-channel enhancement-mode MOS transistor is shown in Figure 1. This transistor is a four-terminal device. In CMOS logic applications, the substrate and the source are usually connected to a common point, which in the N-channel transistor is the most negative potential or \dot{V}_{SS} . With no voltage applied between gate and source, the two N+ diffusions are electrically isolated from each other and no conduction occurs. As an increasingly positive voltage is applied to the gate, an N-type inversion layer begins to form at the surface between source

Figure 1

Figure 3

and drain. When a threshold voltage V_{TN} is reached, the inversion layer just begins to connect source and drain, allowing some conduction. As the gate voltage increases further, the inversion layer is driven deeper, resulting in greater conductivity from source to drain. A saturation point is reached when $+V_{DN}$ is forced higher than $V_{CT}V_{TN}$; the device, therefore, is self-current-limiting. Figure 2 shows typical drain characteristics for an N-channel MOS transistor. Note the similarity to equivalent vacuum tube characteristics.

Operation of the P-channel device (Figure 3) is similar, except that the source and substrate are connected to the most positive potential, $V_{\rm ID}$ - A P-type inversion layer, or channel, is formed when a negative voltage is applied to the gate with respect to the source. The threshold voltage $V_{\rm TP}$ is defined as that value of $V_{\rm G}$ which causes a specified minimum conductivity between source and drain. Saturation occurs when the drain-to-source voltage $V_{\rm DS}$ is forced more negative than $V_{\rm G}$ - $V_{\rm TS}$. Figure 4 shows typical drain characteristics for a P-channel MOS transistor.

Figure 2

Figure 4

Figure 5

A major feature of the metal oxide semiconductor is the very high input resistance resulting from the dielectric oxide isolation between the gate and the channel. The input resistance is virtually unaffected by the polarity of the gate bias. Also, whatever leakage current does exist between gate and source is relatively independent of ambient temperature variations.

CMOS DEVICES

Complementary MOS logic circuits employ both P-channel and N-channel enhancement-mode MOS transistors. They have opposite, or complementary, switching characteristics and can therefore be used as virtually ideal switching components. Consider the implementation shown in Figure 5. The circuit consists of one P-channel device and one N-channel device. Note that to form the N-channel device, a P-doped "tub" must be created into which the device is placed. "Channel stops" must also be placed between the P-tub and the P-drain to prevent parasitic channeling effects.

When a positive voltage V_{DD} is applied at the input, the P-channel switches off and the N-channel switches on. Thus, the output is connected to V_{SS} through the low on-resistance of the N-channel device. Alternatively, applying V_{SS} to the input turns off the N-channel and turns on the P-channel. In this state, the output is connected to V_{DD} through the equivalent on-resistance of the P-channel device. Therefore, an input voltage of V_{DD} results in an output voltage of V_{SS} , and an input voltage of V_{SS} results in an output voltage of V_{DD} . The circuit is a simple digital inverter.

Gates

Any logic function capable of being constructed with ideal switches can be implemented in CMOS. Adding a parallel P-channel device and a series N-channel device to the basic inverter transforms the circuit into a positive-logic 2-input NAND gate (Figure 6). Adding a parallel N-channel and a series P-channel device instead transforms the inverter into a 2-input NOR gate.

Figure 6

Figure 7

Note that in each circuit there exists no DC path from $V_{\rm DD}$ to $V_{\rm SS}$; if a connection is made to $V_{\rm SS}$ through the N-channels, a corresponding P-channel blocks the connection to $V_{\rm DD}$; alternatively, if the P-channels are on, then a corresponding N-channel is off. Therefore, very low power dissipation results without sacrificing low output impedance.

Combinational Logic

Numerous functional logic combinations are easily implemented in CMOS. A rule of thumb is series N-channel devices for AND/NAND functions, and parallel N-channel devices for OR/NOR functions. The P-channel devices are then configured in the circuit dual of the N-channel devices. Figure 7 shows the common AND/OR/INVERT (AOI) construction.

Transmission Gates (Analog Switches)

The CMOS transmission gate, or analog switch, is a single-pole single-throw (SPST) switch formed by the parallel connection of a P-channel and an N-channel

Figure 8

device (Figure 8). The inverter is required to apply the correct polarity gate voltage to both transistors simultaneously. The switch is purely ohmic, with an ON-resistance of about 200 - 400Ω and OFF-resistance typically about $10^{11}\Omega$. There is no offset voltage across the switch. These characteristics approach those of the ideal switch ($R_{\rm IN}=0$, $R_{\rm OFF}=\pm$). A single-transistor switch results in a source-follower circuit in which gate cut-off occurs and limits the load to charge only to within one threshold of the gate. When two complementary devices are operated in parallel, one of the two channels is always being operated as a drain-loaded stage, permitting a low-impedance path for all switched signal voltages.

The transmission gate is useful in digital applications as well. Combinational logic functions can be implemented, and the device provides a simple method for constructing 3-state (bussed) systems.

4000 SERIES DEVICES

Using basic CMOS techniques. Solid State Scientific has developed the SCL4000 Series Family of building block elements and complex functions. Devices numbered 40xx and 45xx are equivalents to industry 40xx and 45xx types. The designation 44xx indicates proprietary devices: they are usually variations on standard 40xx devices. making them more suitable for specific applications.

Design Information

CMOS DESIGN CONSIDERATIONS

This section is presented as an aid to the systems designer in proper application and use of CMOS devices. Areas such as power supply techniques and dissipation characteristics, thermal factors, operating considerations, interfacing parameters, and ac fan-out are covered in some detail.

POWER SUPPLY CONSIDERATIONS

CMOS offers the designer several important advantages over other technologies:

- 1. wide operating voltage range
- 2. very low power dissipation
- 3. constant switching threshold voltage ratio

These advantages permit operation from unregulated supplies, simplify filtering requirements, and eliminate the need for cooling equipment. In addition, battery-operated systems, either stand-alone or back-up, are feasible.

OPERATING VOLTAGE RANGE

Minimum and maximum operating voltages for all Solid State Scientific CMOS devices are specified as 3 and 15 Vdc, respectively, with an absolute limitation of -0.5 and 18 Vdc, applied at the V_{DD} terminal relative to V_{SS}. The minimum value of 3 Vdc represents the maximum expected value of either P-channel or N-channel transistor threshold voltages. Operation at lower voltages may, therefore, prevent half of the device from turning on. The absolute limitation of -0.5 Vdc merely prevents the internal device junctions from becoming forward-biased: the circuit is obviously non-operational under this condition.

The maximum value prevents avalanche of these internal junctions. While the 18 Vdc restriction on low-current avalanche is somewhat conservative, there is the possibility of on-chip current transients turning on the parasitic bipolar transistors inherent in CMOS construction. The chip can enter secondary breakdown because these transients can easily exceed the 10 - 50 mA sustaining current required. The result is a short circuit reflected at the supply and catastrophic device failure (see Figure 1).

Fig. 1 - Secondary breakdown characteristics

POWER DISSIPATION

The quiescent, or DC, power dissipation component consists normally of only leakage currents across reverse-biased diode junctions. This is true because, in the quiescent state, there exists no direct path between $V_{\rm DD}$ and $V_{\rm SS}$ other than these leakages, which are typically in the nanoampere region. In reality, certain surface effects will contribute to the quiescent dissipation. These factors have been taken into account in specifying the worst-case values given in the individual device data sheets; these values should be used by the designer in determining the necessary capacity of standby battery or other back-up supplies.

Dynamic, or ac, dissipation consists of two factors associated with switching: the power delivered from the supply to the load, and the current which momentarily flows between the supplies during switching. The first of these represents the energy required to charge and discharge the load capacitance (plus the small internal capacitances). The energy stored by a capacitor is given by:

$$E_S = \frac{1}{2} CV^2$$

Since CMOS outputs switch from supply to supply, and the load capacitance is both charged and discharged once each cycle of the output frequency f, this component of power dissipation is given by:

$$\dot{P}_{\rm D} = \frac{2E_{\rm S}}{t} = C_{\rm L} V_{\rm DD}^2 f$$
 (V_{SS} = 0 Vdc)

Note that this component increases linearly with load capacitance $C_{\rm L}$ operating frequency f, and the square of the operating voltage $V_{\rm DD}$. Figure 2 shows this functional dependence for a typical CMOS gate.

The Figure assumes input rise and fall times of 20ns. As these transition times increase, however, cur-

Fig. 2 — Typical gate power dissipation characteristics

Fig. 3 — Typical current and voltage transfer characteristics

rent flows between the supplies because both P-channel and N-channel transistors are biased on momentarily. This through-current is a complex function of fabrication parameters, device geometries, operating voltage, temperature, rise and fall times, and operating frequency. A typical waveform of through-current $I_{\rm Tc}$ in relation to voltage transfer characteristics is shown in Figure 3.

Power dissipation due to through-current can be shown to be proportional to the factors described above in the following way:

$$P_{TC} \propto f(t_r + t_f)V_{DD}^3$$

where the constant of proportionality is dependent upon device parameters.

The relationship between supply current $I_{\rm DD}$ and $I_{\rm SS}$, load capacitance, and input rise and fall time is illustrated in Figure 4.

The waveforms (a) show $l_{\rm Db.}$ $l_{\rm SS.}$ and the throughcurrent $l_{\rm TC}$ for a load capacitance of 15pF and $t_{\rm r}$ $t_{\rm f}$ of 10 μs . The smaller of the $l_{\rm Db}$ and $l_{\rm SS}$ pulses represents the maximum through-current of the device. The slight amplitude differences between pulses represent the current delivered to the load. The magnitude of the through-current pulses in (a) is used as the standard for (b) and (c).

The input rise and fall times are decreased to 400ns in (b). Here again, the smaller current pulses represent through-current, which has somewhat decreased from (a). Note that since the width of the current pulse has also decreased, the magnitude of the current delivered to the 15pF load has increased (to deliver the same charge).

Load capacitance in (c) is increased to 65pF, and input transition times decreased to 40ns. Through-current pulses have virtually disappeared, except for the current charging and discharging internal capacitance. The magnitude of the load current, however, has increased due to the increased load and narrower current pulse width.

All complex CMOS functional devices employ buffered inputs to minimize the through-current effects described here. Caution is urged when using highcurrent buffers and unbuffered gates in conjunction with large loads and high operating voltages; long input rise and fall times may cause the device power dissipation restriction to be exceeded.

REGULATION AND BATTERY OPERATION

The wide operating voltage range and constant switching voltage ratio of CMOS permit use of simple unregulated supplies, as shown in Figure 5.

Fig. 4 — Switching current waveforms

Fig. 5 - CMOS unregulated power supply

Fig. 6 - CMOS battery back-up power supply

The primary considerations with a supply of this type are:

- The resulting voltage must at all times fall within the specified limits of the system. This is the purpose of the zener diode.
- The lowest instantaneous voltage must permit the system to operate at the worst-case system speed parameters.
- 3. The filter capacitor must be able to furnish the worst-case system switching current. $R_{\rm S}$ is selected to supply the peak transient current of the system plus the necessary zener current when diode $D_{\rm i}$ is forward biased (high portion of $V_{\rm S}$ cycle). The capacitor is selected to supply the system switching current and quiescent current when $D_{\rm i}$ is reverse biased (low portion of $V_{\rm S}$ cycle).

Replacing the filter capacitor with a rechargeable battery provides an easy method of implementing a back-up supply (see Figure 6). Here, R_s supplies also the charging current for the battery. The zener diode has a breakdown voltage between the battery voltage and the maximum device rating. It prevents power line transients from developing damaging voltage spikes due to the characteristic impedance of the battery. Systems may be kept operating over long periods of time on such a supply.

CMOS power supplies may also be derived from higher-voltage dc supplies as shown in Figure 7. The zener diode regulates the CMOS supply voltage; resistor R_s supplies the load and zener currents, while the filter capacitor maintains the voltage during switching transients.

FILTERING

Most CMOS systems require less filtering on supply busses than other logic families. While Vpp and Vss line drops are generally small due to the small currents involved, a few capacitors per board are recommended to prevent switching transients from causing excessive voltage variations. This is especially true with devices which have long rise and fall time input signals. As described in the discussion of through-current, large supply currents can result under these conditions. An extra 0.1 μ F capacitor may be required to supply the current surge without causing excessive supply voltage drops. Similarly, devices which operate synchronously, such as counters and shift registers, supply large charging currents to several loads during switching. Here again, 0.1 μ F bypass capacitors may be indicated in such cases.

Fig. 7 — Deriving CMOS power from high voltage DC source

THERMAL FACTORS

Transfer characteristics of CMOS devices exhibit excellent stability over temperature. This feature allows the ambient temperature range of CMOS devices to be a function of package type. This section discusses techniques of thermal management and the variation of device characteristics with temperature.

THERMAL MANAGEMENT

Circuit performance and long-term reliability are maximized at low junction temperatures. Power dissipation is the common source of heat in any system; the negligible power consumed in the quiescent state in CMOS circuits is a major factor in maintaining performance and reliability. In general, operation at moderate speeds and voltages does not require consideration of the package dissipation restriction of 300 mW. In high-frequency, high-voltage, large-load, or analog applications, however, these considerations become important.

The average junction temperature is a function of device power dissipation and the ability of the packaging system to remove the generated heat. This is expressed in the following formula:

 $T_J = T_A + P_D (\Theta_{JA})$ where T_J = junction temperature

T_A = ambient temperature

P_D = calculated power dissipation

θ_{JA} = thermal resistance, junction-to-ambient

Worst-case and typical values of $\theta_{\rm JA}$ for common IC package types in still air and without heat sinking are shown in the table:

Bootsons T	$\Theta_{JA}(^{\circ}C/watt)$			
Package Type	Тур	Max		
Epoxy B Dual-in-line 14- or 16-lead	135	200		
Cerdip Dual-in-line 14- or 16-lead	100	155		
Epoxy B Dual-in-line 24-lead	95	140		
Ceramic Dual-in-line 24-lead	70	100		

These figures should be consulted in cases where there is reason to believe that device dissipation may be excessive.

Fig. 8 — Typical inverter voltage transfer characteristics as a function of temperature

PARAMETRIC THERMAL VARIATION

All operational parameters vary to some degree with temperature. Since CMOS devices may be used over very wide temperature ranges, the designer should be familiar with the effects of these thermal variations. They fall into three categories: transfer characteristics, leakage current, and channel resistance effects.

1. Transfer Characteristics

Figure 8 illustrates the negligible variation in transfer voltage over the entire military temperature range. This results from the tendency of P-channel and N-channel transistor threshold voltages to track together. Under similar conditions, a bipolar device threshold may vary more than 40%. This features makes threshold-dependent circuits such as oscillators and multi-vibrators feasible in systems with a wide range of operating temperature.

2. Leakage Current

As expected, since device leakage current is normally leakage across reverse-biased silicon junctions, temperature variation of this parameter follows the traditional diode leakage characteristic, i.e., approximately doubling with each 11°C rise in temperature.

3. Channel Resistance

Such parameters as output drive current ($I_{\rm OII}$, $I_{\rm OII}$), switching through-current ($I_{\rm Tr}$), propagation delays ($t_{\rm PLH}$, $t_{\rm PHI}$), and output transition times ($t_{\rm TLH}$, $t_{\rm THI}$) are direct effects of channel resistance. These parameters vary as channel resistance varies—0.3%/°C. Current characteristics decrease with increasing temperature at this rate; this factor is employed in specifying low- and high-temperature limits for these parameters on device data sheets. Switching parameters increase at this rate with temperature; this dependence must be considered by the designer in order to guarantee system dynamic performance over temperature.

INPUT RATINGS

The high impedance of a CMOS input results from the insulating oxide between the gate and the channel. This high impedance coupled with the 5pF input capacitance make CMOS inputs excellent energy storage nodes, allowing buildup of large voltages. Input diode protection networks are used, therefore, to conduct excess energy to the supply rails, thus protecting the gate regions from damage. These diodes affect certain device operations, as described in the following discussion of general input characteristics.

Fig. 9 — Typical multiple-input switching transfer characteristics for conventional 4-input NAND gate

INPUT VOLTAGE RANGE

Input signals should never exceed the range from 0.5 Vdc more negative than $V_{\rm SS}$ to 0.5 Vdc more positive than $V_{\rm DL}$. This prevents forward biasing the input diodes, with the attendant possibility of entering a latch-up mode due to high-current transients. Further details may be found in the preceding discussion of "Power Supply Considerations" and later on in this section.

NOISE IMMUNITY

Noise immunity as specified in CMOS data sheets refers to the worst-case input voltage levels which will maintain guaranteed output conditions and will not produce a change in logic state. Specifically, the data sheets specify the minimum input high-level voltage (VIII) and maximum input low-level voltage (VIII) which guarantee an output voltage of no lower than 90% of Vpp or no higher than 10% of Vpp under no-load conditions $(|I_0| < 1\mu A)$. Since the switching threshold voltage of a CMOS inverter is typically 50% of the supply and fairly sharp, and output voltages are close to the supplies, these input voltages tend to be symmetric and close to the ideal situation of 50% noise immunity. In fact, VIII is typically 55% of V_{DD}, and V_{IL} is 45% of V_{DD}. (Note: the older designations of VNH and VNL can be related to VIH and Vii. by the following:

$$V_{NH} = V_{DD} - V_{IH} (min)$$

 $V_{NL} = V_{IL} (max) - V_{SS}$

Worst-casespecifications under these output voltage requirements are 20% of V_{DD} for the conventional SSI devices (Note: the older 30% noise immunity specification allowed much greater output voltage variations). This specification can be greatly improved by making the transfer voltage characteristic sharper, i.e., increasing device gain. In 1970, Solid State Scientific developed the technique of buffering gate outputs for increased gain; since that time, all CMOS gates in the 4000 series have been buffered. The industry began to realize the superiority of this structure for digital logic applications only with the recent agreement on "B" series CMOS.

Buffered outputs become even more important in maintaining noise immunity with the variation in transfer voltage with input pattern on multiple input gates. Figure 9 shows the typical range in switching voltage for a conventional 4-input NAND gate. Observe that V_{IH} (min) degrades as a function of the number of inputs switching. This pattern sensitivity is reversed for NOR

Fig. 10 - Typical signal-line noise-immunity

gate types. Buffering the device outputs, although the variations in switching voltage are unaffected, maintains greater noise immunity over all input conditions resulting from the much more nearly ideal transfer characteristic. Further improvement is attained by the requirement that CMOS gate structures consist of no more than three inputs per section; this decreases the variation in switching voltage, as compared with the 4-input gate in Figure 9. There are many other advantages to the buffered-gate concept. Each one is fully discussed in following sections.

Note that Solid State Scientific specifies and measures noise immunity under worst-case input combinations. This factor gives the designer a more realistic description of device operation, in view of the above discussion.

Noise immunity specifications refer to input signals; however, a similar discussion applies to noise introduced on power and ground lines. CMOS devices are sensitive only to negative power line transients and positive ground line transients. The magnitude of power-and ground-line noise immunity approaches that of signal-line noise immunity because of the close tracking of output voltage with supply in either state.

The relatively slow response times of CMOS devices tend to act as a noise filter: extremely short spikes of greater magnitude than the dc noise immunity limits are prevented from propagating through the device. A typical example of dc noise immunity is shown in Figure 10.

Another source of noise introduction into CMOS devices is crosstalk from high noise voltages coupled through small capacitances. Since CMOS devices have much higher output impedance than equivalent TTL types, they are much more sensitive than TTL to such capacitively-coupled noise. The designer should consult the individual device data sheets to determine the magnitude of current which will pull a CMOS output into the threshold region of the driven CMOS inputs, and use good interconnection techniques to prevent this type of crosstalk from interfering with system operation.

INPUT CURRENT

The high input impedance of CMOS results in an input current of typically 10pAdc. Worst-case specifica-

tions provide allowance for surface effects, and guarantee no higher than 100nAdc at room temperature.

These characteristics apply for input voltages within the permitted range, as described above. There are a certain class of applications, however, such as oscillators and multivibrators, for which input voltages normally exceed the supplies by large margins. In these instances, the input protection diodes can be utilized as clamps if the input current is restricted to 10mAdc or less. This is usually accomplished by adding a series resistor at the affected input. The minimum value of this resistor is calculated from the worst-case input voltage and the input current limitation; the maximum value should be determined by the effect which the combination of this resistor and the 5pF input capacitance has on operating speed and frequency.

UNUSED INPUTS

If a CMOS input is left unterminated, it can acquire unpredictable voltages through coupling with stray external capacitances and internal crosstalk. Since these voltages are normally within the supply range, the input protection diodes cannot conduct away this accumulated energy. Since both P- and N-channel transistors spend significant time in their "on" states, both power dissipation and device noise immunity degrade. Even catastrophic failure can result from these conditions. Therefore, all inputs should be connected to an appropriate supply voltage, or to another driven CMOS input. If a portion of a device is not loaded, its inputs must also be properly terminated.

INPUT WAVEFORMS

The maximum input rise and fall time specification for sequential circuits is typically in the $3\mu s$ to $15\mu s$ range, depending on supply voltage. This prevents ambiguous logic states and false clocking due to switching voltage variations and skew problems. Power dissipation also increases as logic elements spend more time in the switching region.

When sequential circuits are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the transition times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitive load. If setup and hold times are specified on device data sheets, they must also be taken into account.

Schmitt trigger constructions may be indicated to bring rise and fall times within indicated bounds.

INPUT PROTECTION NETWORKS

Because the gate oxide of a CMOS transistor has extremely high resistance, even a very-low-energy source (such as a static charge) is capable of developing the breakdown voltage of approximately 100V. This results in permanent damage to the device. Therefore, gate protection structures are employed to conduct excess energy away from the gate region. These structures, however, are only capable of protecting from overvoltages of less than 1000V. While this is normally sufficient for in-system transients, device handling can produce overvoltages of one or two orders of magnitude greater. Handling precautions are recommended when using CMOS devices. Some suggested procedures appear in the section entitled "Handling Precautions for CMOS Devices".

The input protection structure utilized on 4000 Series devices is shown in the diagram of a typical

Fig. 11 — Gate-oxide protection circuit used in 4000 Series integrated circuits

CMOS device in Figure 11. The circuit consists of diodes D1 and D2, which clamp the input voltage to $V_{\rm SS}$ and $V_{\rm DD}$ respectively, and series resistor R, whose nominal value is 1.5K Ω . Avalanche voltages of the diodes are well below the breakdown voltage of the gate oxide. The resistor provides a small delay with the 5pF input capacitance which allows excess energy to be conducted away before reaching the gate region.

When the diodes are used as clamps for oscillators, multivibrators, etc., input current must be limited to less than 10mA to protect against both possible latchup and long-term degradation due to metal migration.

In a system power-up or power-down sequence, power must be applied to the device before the introduction of low-impedance driving signals. This sequence must also be maintained while troubleshooting systems where devices or modules must be removed from or inserted into a system.

OUTPUT CHARACTERISTICS

The amount of current which a CMOS output is capable of sinking or sourcing is a function of the channel impedance of the driving structure. These characteristics vary with voltage and temperature; these variations were discussed previously. Transistor characteristics are illustrated on most device data sheets.

BUFFERED OUTPUTS

Consider the conventional CMOS 2-input NAND gate structure of Figure 12. Since the N-channel devices are in series, their on-resistance must be decreased (larger chip area) to hold the output low impedance (or sink current parameter) within specification. As the number of gate inputs increases, even larger N-channel transistors are required. Also, since the P-channel de-

vices are connected in parallel, the output high impedance (and, therefore source current) is a function of input pattern, i.e., the number of devices turned on. Solid State Scientific gates have buffered outputs: small geometry logic transistors are used to generate the required function, while only one large P-channel and one large N-channel device form the output. This technique reduces chip size; in addition, output impedance is no longer a function of input pattern. This means that dc and ac fanout are constant, and the user need not concern himself with several sets of loading requirements for each device.

OUTPUT LOADING

Since CMOS outputs driving CMOS inputs switch essentially from supply to supply while the driven inputs draw very little current (typically 10 pAdc), dc fanout can usually be ignored, except in bus-oriented systems. Of much greater importance is ac fanout, discussed below. However, several precautions are necessary to prevent damaging the output structure.

The outputs of most CMOS devices consist of a complementary pair. This structure prohibits the connection of outputs in a "wire-OR" configuration. Three-state output devices should be used to achieve this configuration. It is possible, however, to parallel inputs and outputs of devices to provide increased drive. This practice should be restricted to devices within the same package to avoid current hogging.

Note that because of the negative temperature coefficient of MOS transistors, there is built-in short-term burn-out protection. In general, devices with standard output characteristics may be shorted to the supply rails at low operating voltages. Precautions are necessary with higher voltages and/or high-current buffers, in which saturation currents can cause the maximum dissipation limitation to be exceeded.

CMOS drive capability is limited if the outputs are required to maintain a specified logic level. However, if the output is used to drive a discrete device such as a transistor or LED, large currents (within maximum ratings) can be achieved by operating the device in the saturated region.

The output impedance of a CMOS device can be employed as an effective means of providing delay and integrator functions when loaded with a capacitor. However, in any application which places a sizable capacitive load on a CMOS output, care must be taken to prevent damaging transient currents when power is removed. If the capacitive load is charged when the power supply is removed, the diode from the output to the supply (output D2 in Figure 11) forms the discharge path as it becomes forward biased. Series resistance should be added to the output in order to prevent discharge currents above 1mA.

Figure 12

INTERFACE PARAMETERS

Table I provides interface parameters between CMOS and other logic families under the following conditions:

- 1. The power-supply voltage level and tolerances are chosen to accommodate the interfaced elements. since CMOS devices will operate over a much wider range.
- 2. The logic levels at the interface will meet or exceed the specified worst-case logic levels of the other elements.
- 3. Fan-out rules at the interface are derived from the current sourcing or sinking capability of the driving element.

TABLE I. CMOS INTERFACE PARAMETERS

INTERFACE		RFACE MARGIN "O"		RFACE LEVELS "O"	INTERFACE MAXIMUM FAN OUT	REMARKS
CMOS-CMOS	1.5V	1.5V	3.5V	1.5V	> 50	5-volt system
	3.0V	3.0V	7.0V	3.0V	> 50	10-volt system
	4.0V	4.0V	11.0V	4.0V	> 50	15-volt system
CMOS-TTL/DTL	2.5V	0.4V	2.0V	0.8V	2	Buffers only
TTL/DTL-CMOS	1.1V	1.1V	3.5V	1.5V	See Remarks	2KΩ pull-up resistor for TTL or open- collector DTL. Fan-out determined by dynamic requirements
CMOS-LTTL	2.5V	0.5V	2.0V	0.7V	2	Standard "B" Series Output Drive
LTTL-CMOS	1.1V	1.2V	3.5V	1.5V	See Remarks	$3K\Omega$ pull-up resistor. Fan-out determined by dynamic requirements
CMOS-LSTTL	2.5V	0.4V	2.0V	0.8V	1	Standard "B" Series Output Drive
LSTTL-CMOS	1.1V	1.1V	3.5V	1.5V	See Remarks	3KΩ pull-up resistor. Fan-out determined by dynamic requirements.
CMOS-HTL	5.0V	5.0V	8.5V	6.5V	1	
HTL-CMOS	2.5V	2.5V	11.0V	4.0V	> 50	Active pull-up HTL
	3.5V	3.5V	11.00	4.UV	> 50	Passive pull-up HTL with $2K\Omega$ to $5K\Omega$ pull-up resistor.
CMOS-MOS	3.0V	4.0V	-3.0V	-9.0V	> 50	High threshold PMOS: V _{SS} -V _{DD} =13V
	2.5V	6.0V	2.5V	1.0V	> 50	Low threshold PMOS: V _{SS} -V _{DD} =10V
MOS-CMOS	3.9V	3.9V	-3.9V	-9.1V	> 50	High threshold PMOS: V _{SS} -V _{DD} =13V
	3.0V	3.0V	2.0V	-2.0V	> 50	Low threshold PMOS: V _{SS} -V _{DD} =10V
CMOS-ECL	0.225V	4.325V	-1.105	-1.475	2	V_{DD} =ground V_{SS} = -5.2V
ECL-CMOS	0.66V*	1.56V*	-1.56V	-3.64V	> 50	V_{DD} =ground V_{SS} = -5.2V

* typical with transistor driver

NOTES: 1. Interface Noise Margin

For "1" Column — difference between output high level of one device and input high level of next device. For "0" Column — difference between output low level of one device and input low level of next device.

2. Interface Logic Level Worst-case threshold level going from one device to the input of another.

DYNAMIC CONSIDERATIONS

The operating speed of a CMOS logic system is dependent upon signal propagation delays, output transition times, and associated characteristics. These parameters vary as a function of output load capacitance (ac fanout), operating voltage, and device temperature.

All device data sheets give dynamic characteristics at $V_{\rm BB} = 5$. 10. and 15 Vdc. 50pF load capacitance, and 25 C ambient temperature.

CAPACITIVE LOADING

The higher output impedance of CMOS devices, in comparison to TTL, make them more sensitive to capacitive loading (ac fan-out). A linear relationship exists between dynamic parameters and load capacitance, which is to be expected: loads are charged and discharged by the resistance of the driving transistor channel.

The buffered gate output structure pioneered by Solid State Scientific in 1970 provides significantly better performance than conventional CMOS gate structures. The single stage output makes delays and transition times independent of input pattern and less sensitive to capacitive loading. In addition, the extra gain stages provide significant pulse shaping of slow transition inputs — when input rise and fall times increase, the conventional gate exhibits an increase in output transition time, while the buffered gate transition times remain unchanged. This feature eliminates progressive deterioration of pulse characteristics in a system. These buffered outputs are designed for symmetric transition times, as opposed to the conventional types.

Special considerations must be given to output transition times and propagation delays when driving synchronous systems with edge triggered inputs. Consult the section on "Input Waveforms".

It should be noted that the extra gain stages in a buffered-output gate exhibit very sharp transfer characteristics. In certain applications, notably oscillators, multivibrators, or poor input transitions, this may result in ringing or even oscillation at the switching point. For this reason. Solid State Scientific manufactures several simple unbuffered inverters (4007UB. 4069UB. unbuffered 2-input gates 4449UB) and (4001UB. 4011UB). Since these types exhibit none of the features of buffered outputs, it is recommended that some pulse shaping be employed to permit use of the buffered structures wherever possible.

VOLTAGE EFFECTS

Increasing the supply voltage from 5Vdc to 10Vdc at least doubles the operating speed of CMOS devices. Increasing to 15V results in another increase, usually far less, at a substantial penalty in power dissipation. The increase in speed is a direct effect of the lower channel resistance; the increase in power dissipation is a symptom of higher charging currents to load capacitances.

Dynamic characteristics at voltages not given on device data sheets may be interpolated from specified data

TEMPERATURE VARIATIONS

As the temperature of a CMOS device increases, carrier mobility decreases, resulting in an increase in channel impedance. Therefore, dynamic parameters change in proportion to the factor given previously: -0.3%/ C for operating frequency, +0.3%/ C for all other parameters. Consequently, this factor must be considered in designing a system which must operate at a given frequency over a wide temperature range.

THREE STATE LOGIC

Devices such as the 4016 and 4066 provide a means for constructing bus-oriented systems. Several devices in the 4000 Series employ variations in this structure to provide their own high-impedance output state. Leakage currents and capacitances are specified on individual data sheets. to allow the user to determine fan-out and system speed.

ANALOG SIGNAL SWITCHING

When using the analog switch device types, care must be taken to prevent the input signal from exceeding the supply voltage. Latch-up conditions may result if this precaution is not observed.

The ON-resistance characteristics of the switch are specified on the device data sheets. This enables the user to calculate power dissipation for high-current-drive requirements.

All CMOS switches are make-before-break. Therefore, in multiplexing applications, the low-impedance path between signal drivers which occurs during the overlap must be considered when generating controlinput signals.

Further information is contained on individual data sheets.

HANDLING CMOS DEVICES

Care must be exercised in handling any CMOS device. Although all SSS CMOS devices have a built-in protective diode network which protects the device against damage due to static electric discharge, additional precautions should be followed to assure trouble-free performance after assembly. The following guidelines for handling CMOS devices are suggested:

A. GENERAL

- Use a conductive, grounded work surface.
- Keep operators at ground potential (use conductive wrist bands and a 1 megohm resistor to ground)
- · Don't use nylon smocks.
- Repack devices in conductive or anti-static containers; keep devices at a common potential.
- Use conductive or anti-static envelopes for storing and shipping devices — never use untreated plastic.

B. CLEANING

 Use static neutralizing ion blower when manually cleaning with brushes.

- · Ground all automatic equipment.
- · Ground cleaning baskets.

C. ASSEMBLY

- . Insert CMOS devices last to avoid overhandling.
- Use conductive handling trays.
- Use conductive material between edge connections.
- · Ground all automatic insertion equipment.
- Ground solder machines and metallic parts of conveyor systems.
- · Ground soldering irons.

D. TESTING

- Use grounded metallic fixtures where possible.
- Use static neutralizing ion air blower when using automatic handlers.
- · Use conductive handling trays.
- Don't insert or remove boards with power turned ON.

CMOS CHIPS

Solid State Scientific CMOS integrated circuits are provided in chip form to permit customer design of special or hybrid circuits to suit individual needs. CMOS chips are electrically identical to (temperature range -55°C to +125°C) and offer the features of their packaged counterparts. For maximum ratings, electrical characteristics, schematics, and features, see the individual data sheets in this catalog.

CHIP PREPARATION

- · All chips are glass passivated.
- All chips have been electrically tested for all static and functional parameters.
- Chip inspection and packaging is performed under laminar flow hoods in a temperature- and humiditycontrolled dust-free atmosphere.

CHIP HANDLING

- Chips should be stored in a clean, dry atmosphere preferably below 40° C and 50% relative humidity.
- The user should exercise proper care when handling chips to prevent even the slightest mechanical damage to the chip.
- Individual handling should be done with nonmetallic vacuum pick-ups.

- Proper mounting and lead bonding techniques must be used to obtain optimum electrical, mechanical and thermal performance.
- The back surface of the chip is electrically connected to the P-channel substrates which should be the most positive potential (V_{ID}). Care must be taken to keep the active substrate isolated from ground or other circuit elements in the assembly. It is recommended that the +V_{ID} pad on the front of the chip be wire bonded to the chip substrate mount for optimum performance.
- After mounting and bonding, necessary procedures must be followed to insure that the chips are not subjected to mechanical abuse or to moist or contaminated atmosphere which might permit electrical conductive paths across the relatively small insulating surfaces.
- Bonders, pick-up tools, table tops, sealing and die attach equipment, and other apparatus used in chip handling should be properly grounded.
- The operator should be properly grounded.
- Assemblies or sub-assemblies of chips should be transported and stored in conductive carriers.
- All external leads of assemblies should be shorted together.

Typical Package Outlines

14 Lead Cerdip*

	MIN.	MAX.				
Α	_	.200				
A_1	.020					
В	.015	.023				
B ₁	.030	.070				
C	.008	.015				
D	.660	.785				
E ₁	.220	.280				
e ₁	.100	Тур.				
eA	.300 Typ.					
L	.100	_				
α	0°	15°				
Q_1	_	_				
S		_				
IEDEC drawing						

*JEDEC drawing #MO-001AA

16 Lead Cerdip*

_	MIN.	MAX.
Α	.165	.210
A_1	.015	.045
В	.015	.020
B ₁	.045	.070
С	.009	.011
D	.750	.795
E ₁	.245	.300
e ₁	.100	Тур.
eΑ	.300	Тур.
L	.120	.160
α	2°	15°
Q_1	.050	.080
S	.010	.060

*JEDEC drawing #MO-001AG

18 Lead Cerdip

	MIN.	MAX
Α	.165	.202
A ₁	.015	.040
В	.015	.020
B ₁	.053	.065
C	.008	.012
D	.870	.923
Εı	.258	.306
e ₁	.100	Тур.
eA	.300	Тур.
L	.120	.155
α	4°	15°
Q_1	_	_
S	.020	.060

22 Lead Cerdip*

MIN.	MAX.
.090	.150
.020	.065
.014	.020
.035	.065
.008	.012
1.050	1.110
.370	.390
.100	Тур.
.400	Тур
.120	.160
0°	15°
.010	.050
.035	.060
	.090 .020 .014 .035 .008 1.050 .370 .100 .400

*JEDEC drawing #MO-026AA

	MIN.	MAX.
Α	.120	.250
A ₁	.020	.070
В	.016	.020
B ₁	.028	.070
С	.008	.012
D	1.200	1.290
E ₁	.515	.580
e ₁	.100	Тур.
eA	.600	Тур
L	.100	.200
α	0°	15°
Q_1	.040	.075
S	.040	.100

*JEDEC drawing #MO-015AA

28 Lead Cerdip

	MIN.	MAX.
Α	.164	.219
A_1	.020	.070
В	.016	.020
B ₁	.050	.060
C	.008	.012
D	1.430	1.485
E ₁	.510	.541
e ₁	.090	.110
eA	.600	.620
L	.120	.155
α	4°	20°
Q_1		_
S	.060	.090

40 Lead Cerdip*

	MIN.	MAX.
A	.160	.220
A ₁	.000	.070
В	.015	.020
B ₁	.015	.055
C	.008	.012
D	2.020	2.070
Εı	.485	.580
e ₁	.100	Тур.
eA	.600	Тур.
L	.100	.200
α	0°	15°
Q_1	.070	.120
S	.060	.090

*JEDEC drawing MO-015AJ

14 Lead Plastic*

	MIN.	MAX.
Α	.140	.180
A ₁	.015	.040
В	.014	.020
B ₁	.044	.070
C	.008	.012
D	.730	.770
E_1	.240	.260
e ₁	.100	Тур.
eA	.300	Тур.
L	.115	.155
α	0°	15°
Q_1	.050	.085
S	.055	.095

*JEDEC drawing #MO-001AH

16 Lead Plastic*

	MIN.	MAX.
A	.120	.160
A ₁	.020	.065
B	.014	.020
B_1	.035	.065
C	.008	.012
D	.745	.785
E ₁	.240	.260
e ₁	.100	Тур.
eA	.300	Тур.
L	.125	.150
α	0°	15°
Q_1	.050	.085
S	.015	.060

*JEDEC drawing #MO-001AE

18 Lead Plastic

	MIN.	MAX
Α	.136	.175
A_1	.008	.040
В	.015	.021
B ₁	.055	.065
С	.008	.013
D	.890	.910
E ₁	.245	.255
e ₁	.090	.110
eA	.285	.315
L	.115	.145
α	2°	12°
Q_1	.060	.079
S	.040	.070

	MIN.	MAX.
A	.090	.150
A_1	.020	.065
В	.014	.020
B ₁	.035	.065
C	.008	.012
D	1.050	1.110
E ₁	.370	.390
e ₁	.100	Тур.
eA	.400 Typ.	
L	.120	.160
α	0°	15°
Q_1	.010	.050
S	.035	.060
* IEDEC drawing		

*JEDEC drawing #MO-026AA

24 Lead Plastic*

	NAINI .	MAN
	MIN.	MAX.
Α	.120	.250
A ₁	.020	.070
В	.016	.020
B ₁	.028	.070
С	.008	.012
D	1.200	1.290
E ₁	.515	.580
e ₁	.100	Тур.
eA	.600	Тур.
L	.100	.200
α	0°	15°
Q_1	.040	.075
S	.040	.100
*.IEDEC.drawing		

*JEDEC drawing #MO-015AA

	MIN.	MAX.
Α	.157	.187
A ₁	_	.040
В	.015	.021
B_1	.055	.065
С	.008	.013
D	1.440	1.460
E ₁	.535	.545
e ₁	.090	.110
eA	.585	.615
L	.115	.145
α	4°	12°
Q_1	.070	.084
S	.060	.090

40 Lead Plastic*

	MIN.	MAX.
A	.160	.220
A_1	.000	.070
В	.015	.020
B ₁	.015	.055
C	.008	.012
D	2.020	2.070
E ₁	.485	.580
e ₁	.100	Тур.
eA	.600	Тур.
L	.100	.200
α	0°	15°
Q_1	.070	.120
<u>s</u>	.060	.090

*JEDEC drawing #MO-015AJ

Ordering Information

ORDERING INFORMATION

PACKAGING INFORMATION

Devices in the 4000 Series are available in a variety of package types and temperature ranges. The single-letter package designator appears as a suffix to the device type.

Designator SCL	Туре	Style	No. of Pins	Temperature Range
С	Cerdip (Frit-Seal)	Dual-in-Line (DIP)	14, 16, 24	-55° C to +125° C
D	Ceramic (Welded-Seal or Side-Brazed)	Dual-in-Line (DIP)	14, 16, 24	-55° C to +125° C
E	Epoxy (Plastic)	Dual-in-Line (DIP)	14, 16, 24	-40° C to +85° C
н	Dice	_	- .	-55° C to +125° C

DEVICE MARKING

4000 Series High Reliability

Built-In Reliability

Reliability in MOS integrated circuits does not just happen it must be built in. Built in through conservative designs. advanced wafer fabrication technology, and controlled by stringent in-process quality controls, inspections and tests. But there is more. Reliability is built in by people. At Solid State Scientific, dedicated people work with the latest technology producing MOS devices that meet the highest quality and reliability standards in the industry. SSS has proven its dedication to these high standards since 1968 when it was founded.

Solid State Scientific is a high volume manufacturer of MOS integrated circuits and offers a variety of high reliability options to meet customer requirements. Our facilities in Willow Grove, Pennsylvania have been certified by the Defense Electronics Supply Center for the production of Class B devices in accordance with MIL-M-38510.

In addition, regardless of product grade, Solid State Scientific has established definite minimum quality and reliability standards which apply across all product lines. All products are manufactured identically from incoming inspection through wafer probe of the die. Pre-seal visual inspection is performed in accordance with MIL-STD-883 level B. This same philosophy of ensuring the reliability of our products applies to environmental screening, final electrical testing and lot acceptance for packaged parts.

Integrated Circuit Reliability

CMOS integrated circuits exhibit the same basic reliability characteristics as other semi-

conductor devices in that the failure rate has three distinct phases. Within a relatively short time, certain failure mechanisms appear under moderate levels of stress. Failures which occur during this phase are called infant mortality failures. During infant mortality, the failure rate decreases dramatically. Then for a long period of time, infrequent random failures occur. Finally, device packages can actually wear out and the failure rate will increase again. For CMOS integrated circuits, there are only two significant wear-out mechanisms; electromigration and corrosion in plastic devices. Electromigration is a function of temperature and current density in the metallization and is influenced by the type of metal, grain structure and surface sealing. This phenomenon occurs in all package types. The other major wear-out mechanism is electrolytic corrosion of the die metallization which occurs in plastic packages. This

is a function of the packagel passivation system and is influenced by the type of epoxy, the protective molding compound and chip glassivation materials.

When the failure rate is plotted as a function of time, the result is the basic bathtub curve characteristic of all semiconductor devices. While the bathtub curve is universal throughout the IC industry, actual values can vary greatly from one manufacturer to another. Solid State Scientific has many years of experience in the manu-

facturing of CMOS integrated circuits, and our design rules and processing techniques have been developed to:

- minimize the infant mortality failure mechanisms.
- detect potential failures before they reach the customer.
- control wear-out so that operating life far exceeds the lifetime required by the customer.
- prevent defects from occurring at the earliest possible stage.

State-of-the-Art Device Development

Conservative Design Rules

At Solid State Scientific, rules for mask lay-out extend the operating life of the product far beyond normal usage. This reliability is a result of the following design considerations:

- Metal width and spacing controls in conjunction with stringent in-process controls eliminate electro-migration. MIL-M-38510 Level B specifications call for a maximum current density in glassivated pure aluminum stripes of 5 x 10⁵ amps/cm² Solid State Scientific demands no more than 1.5 x 10⁵ amps/cm². Also, an absolute minimum design width for any metal line is maintained for standard industrial devices.
- Strictly controlled element spacings and sizes are specified for:
 - all diffusion widths
 - distances between pad and scribe line for leakage protection
 - spacings between elements to prevent inversion
 - spacing between the boundary of a diffusion and the contact cut for the diffusion to prevent leakage.

- metal-to-metal and pad-topad spacings
- pad size to insure room for a good bond
- High voltage reverse baised diodes to both V_{SS} and V_{DD} in conjunction with series resistors to protect inputs from voltage transients and ESD.

Each wafer contains its own process control test cells. This special device measures all process and design parameters that have a significant effect on yield and reliability.

Controlled Wafer Processing

Reliability Assured Through Stringent Controls

At Solid State Scientific we have one of the most highly controlled wafer processing facilities in the industry. All MOS products are manufactured in the same fabrication facility using identical materials, technology, and MIL-M-38510 procedures and controls. All SSS products are processed on a fully approved MIL-M-38510

wafer line, whether destined for the commercial or military market.

Reliability is assured through:

- a special tapered oxide process that controls the edges of all cuts in the oxide to obtain a nominal 45° angle.
- planetary rotation during metal evaporation. This technique results in a controlled oxide step with uniform metal thickness. Failure due to electron migration is eliminated.

Product Assurance Program

Table 1—Processing and Screening requirements for MIL-STD-883, MIL-M-38510 and Standard products.

	MIL-STD-883B Method In accordance with 5004 & 5005	883C4 XXX DESC Drawing MIL-STD-883B Class B	MIL-M-38510 Class B
Assembly			
Precap Visual (Cond. B)	2010B	X	X
Preconditioning			_
Seal & Lot Identification		X	X
Stabilzation Bake 24 hrs @ 150°C	1008C	X	X
Temperature Cycle	1010C	X	×
Centrifute Y1	2001E	X	X
Fine Leak	1014B	X	X
Gross Leak	1014C	X	X
Test and Burn-In			
Initial Test		X	X
Static Burn-In, 160 Hr. Min. or Equiv.	1015	X	X
Final Electrical 25°C, DC and Function	nal (A-1, A-7)	X	X
Final Electrical AC 25°C (A-4, A-9)	X	X	
Final Electrical - 55°C DC and Function	X	X **	
Final Electrical AC = 55°C (A-6, A-11)	_	X**	
Final Electrical + 125°C DC and Functional (A-2, A-8b)		X	X**
Final Electrical AC + 125°C (A-5, A-10			X **
External Visual	2009	×	X

X = 100% Testing - = Not Required "(A-X)" are Subgroups

^{*&}quot;+" product has 168 hours of static burn-in or equivalent.

^{**}Subgroups A-5, A-6, A-8, A-8b, A-10 and A-11 are only performed when required by the detailed specification.

- an ion-implant operation to increase the P-channel thick field inversion voltage. This allows SSS to offer the cost effectiveness of a smaller chip while maintaining the same low leakage and high voltage characteristics found in guard ring construction.
- precision phosphorous doping of the glass passivation that prevents surface inversion during the life of the device. Passivation layer thickness is carefully chosen to provide full coverage over the tapered oxide steps. This means superior long term stability and added moisture protection at the die level.
- test cells and test transistors on every wafer are probed for twelve parameters prior to metal alloying and fourteen parameters at final wafer probe. Trends are monitored continuously and variations are detected immediately. Typical parameters measured are:
 - threshold voltages of transistors
 - breakdown voltages of transistors
 - gate breakdown voltages
 - transistor contact resistance
 - metal strip fusing current

Our process controls are some of the most stringent in the

industry. Every lot undergoes 100% inspection after each and every mask level operation.

Sampling Inspection

Tables 2, 3, 4 and 5 illustrate the sample criteria used to insure an LTPD requirement for military product. Sample sizes are based on the Poisson exponential binominal limit in accordance with MIL-S-19500. The tables of subgroup tests demonstrate the level of quality conformance of Hi-Rel Military and Standard products.

Table 2—Group A Electrical Sampling Inspection for Class B High-Reliability CMOS Integrated Circuits per MIL-STD-883, Method 5005

Subgroup	Test	Condition	LTPD Class B	DESC E	4 XXX Drawing MIL-M-38510 Class B
1	DC Static Parameters	$T_A = +25^{\circ}C$	2 .		· ·
2	DC Static Parameters	$T_A = +125$ °C	3	~	~
3	DC Static Parameters	$T_A = -55$ °C	5	~	~
4	Dynamic Parameters	$T_A = +25$ °C	2	"	~
7	Functional Parameters	$T_A = +25$ °C	2	~	~
9	AC Parameters	$T_A = +25$ °C	2	V .	~

Note: Performed on each inspection lot.

Table 3 — Group B Sampling Inspection for Class B High-Reliability CMOS Integrated Circuits per MIL-STD-883, Method 5005

Subgroup	Test	MIL-STD-883 Method & Condition	883C4 XXX DESC Drawing MIL-STD-883B MIL-M-38510 Class B Class B
1	Physical Dimension	2016 —	V
2	Resistance to Solvents	2015 —	
3	Solderability	2003 Soldering Temperature 245°C ± 5°C	<i>V</i>
4	Internal Visual and Mechanical	2014 —	
5	Bond Strength	2011	
6	Internal Water Vapor Content	1018 —	
7	Fine and Gross Leak	1014B, 1014C —	
9	V_{ZAP}	Per Detailed Specification	

Note: Performed on each package type and lead finish for each week of seal (date code).

Table 4—Group C Die-Related Tests for Class B High-Reliability CMOS Integrated Circuits per MIL-STD-883, Method 5005

			883C4 XXX DESC Drawing		
Subgroup	Test	MIL-STD-883 Method & Condition	MIL-STD-883B Class B	MIL-M-38510 Class B	
1	Operating Life	1005, T _A = 125°C, 1000 hrs. or equiv.	~	~	
	Electrical Parameters	As Specified	~	~	
2	Temperature Cycling	1010 Test Condition C	~		
2	Constant Acceleration	2001 Test Condition E	~		
	Fine Leak	1014B —	~		
	Gross Leak	1014D —	~	~	
		1014C —	~	~	
	Visual Examination Electrical Parameters	As Specified	<i>V</i>	-	

Note: Performed every 13 weeks for each microcircuit group or as specified in the detailed drawing.

Table 5—Group D Package-Related Tests for High-Reliability CMOS Integrated Circuits per MIL-STD-883, Method 5005

		MIL-STD-883		883C4 XXX DESC Drawing MIL-STD-883B MIL-M-38510	
ubgroup	Test		d & Condition	Class B	Class B
1	Physical Dimensions	2016	_	~	~
2	Lead Integrity	2004	_	~	~
_	Fine Leak	1014B	_	~	~
	Gross Leak	1014C	_	200	•
3	Thermal Shock Temperature Cycling	1011 1010	Test Condition B Min. Test Condition C	~	~
			100 cycles	~	
	Moisture Resistance	1004		~	~
	Fine Leak	1014	Test Condition B		
	Gross Leak Visual Examination	1014	Test Condition C Per Visual of Method	<i>V</i>	~
	VISUALEXAMINATION		1004 and 1010	V	~
	Electrical Parameters		As Specified	~	-
4	Mechanical Shock	2002	Test Condition B	~	~
7	Vibration, var. freg. Constant Acceleration,	2007	Test Condition A	V	~
	Y1 plane	2001	Test Condition E	~	~
	Fine Leak		Test Condition B	~	~
	Gross Leak	1014	Test Condition C	~	~
	Visual Examination	1010	or 1011	~	~
	Electrical Parameters		As Specified	~	~
5	Salt Atmosphere	1009	Test Condition A		~
	Fine Leak .	1014E	· —	~	~
	Gross Leak Visual Examination	10140	: — Per Visual of Method	~	
	v isaai Examiniadoli		1009	~	~
6	Internal Water Vapor Content	1018	5000ppm Max.	_	_
7	Adhesion of Lead Finish	2025	As Applicable	,	,
8	Lid Torque	2023	As Applicable	~	-

Note: Performed every 26 weeks or as specified in the detailed drawing.

Summary

Solid State Scientific has extensive experience in all aspects of CMOS integrated circuit technology. This expertise dates back to 1968 with the design and development of custom CMOS devices for space applications. In 1970 SSS began manufacturing the 4000 Series standard circuits. Today, with more than a decade of CMOS experience, SSS is respected as a major supplier of a wide variety of CMOS products. Over the years, our products have established a reputation for outstanding reliability in applications as varied as data processing, military and space systems, automotive, and timekeeping products. This quality and reliability results from a combination of:

- conservative design rules
- advanced wafer fabrication capabilities
- stringent in-process controls and inspection procedures
 In addition, Solid State Scientific adds one more ingredient to every device; a company-wide dedication to customer satisfaction.

QPL Products

MIL-STD-883C Class B CMOS 4000 Series Products

CMOS 4000 Series devices are available in Cerdip (Frit-Seal) (C), Ceramic (Side-Brazed) (D) packages, and Dice (H).

Figure 1
MIL-STD-883C—Device Nomenclature

MIL-M-38510 Class B CMOS 4000 Series, QPL Accepted Product

Contact SSS Regional Sales Offices for the current listing of MIL-M-38510 Class B, QPL Accepted Products.

MIL-M-38510 CMOS 4000 Series devices are available in Ceramic (Side-Brazed) and Cerdip (Frit-Seal) packages.

Figure 2 MIL-M-38510 — Device Nomenclature

MIL-M-38510 Package Type

C	14-lead 1/4 x 3/4 DIP 1
E	16-lead 1/4 x 7/8 DIP 1

MIL-M-38510 Lead Finish

Α	Hot Solder Dip	С	Gold Plate	
В	Tin Plate	X	Optional	
_				

Note: Hot Solder Dip and Tin Plate lead finishes are available in Cerdip (Frit-Seal) packages. Tin plate and gold lead finishes are available in Ceramic (Side-Brazed) packages. When ordering tin plate lead finishes, specify package preferred.

Notes

Notes

Notes

Solid State Scientific Sales Offices

NORTH AMERICA

2444 Moorpark Avenue San Jose, CA 95128 (408) 241-7111 TWX-910-997-0074

15010 Ventura Blvd. Sherman Oaks, CA 91403 (213) 995-6666 TWX-910-495-1746

3395L N. Arlington Heights Rd. Arlington Heights, IL 60004 (312) 255-3883 TWX-910-687-0270

12703 A. Research Blvd. Austin, TX 78759 (512) 331-0778 TWX-910-997-6560 10 Dale Street Waltham, MA 02154 (617) 891-7530 TWX-710-324-0321

3900 Welsh Road Willow Grove, PA 19090 (215) 657-8400 TWX-510-661-7267

8001 N. Dale Mabry Hwy. Building 501, Suite T Tampa, FL 33614 (813) 935-8203 TWX-810-876-9120

EUROPE

3900 Welsh Road Willow Grove, PA 19090 (215) 657-8400 TWX-510-661-7267 Telex-476-1101

FAR EAST

G.P.O.B. 4289 Hong Kong Tel: 0-283188 Telex-43395 SPRAG HX

Solid State Scientific, Inc.

3900 Welsh Road Willow Grove, PA 19090 (215) 657-8400 TWX-510-661-7267 Telex-476-1101

Printed in U.S.A. 4SCL108425