Escherichia coli Host Strains

INSTRUCTION MANUAL

Part #200256-12 Revision A

LIMITED PRODUCT WARRANTY

This warranty limits our liability to replacement of this product. No other warranties of any kind, express or implied, including without limitation, implied warranties of merchantability or fitness for a particular purpose, are provided by Agilent. Agilent shall have no liability for any direct, indirect, consequential, or incidental damages arising out of the use, the results of use, or the inability to use this product.

ORDERING INFORMATION AND TECHNICAL SERVICES

United States and Canada

Agilent Technologies Stratagene Products Division

11011 North Torrey Pines Road

La Jolla, CA 92037

 Telephone
 (858) 373-6300

 Order Toll Free
 (800) 424-5444

 Technical Services
 (800) 894-1304

Internettechservices@agilent.comWorld Wide Webwww.stratagene.com

Europe

Location	Telephone	Fax	Technical Services
Austria	0800 292 499	0800 292 496	0800 292 498
Belgium	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 15775	0800 15740	0800 15720
France	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 919 288	0800 919 287	0800 919 289
Germany	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 182 8232	0800 182 8231	0800 182 8234
Netherlands	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 023 0446	+31 (0)20 312 5700	0800 023 0448
Switzerland 00800 7000 7000		00800 7001 7001	00800 7400 7400
	0800 563 080	0800 563 082	0800 563 081
United Kingdom	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 917 3282	0800 917 3283	0800 917 3281

All Other Countries

Please contact your local distributor. A complete list of distributors is available at www.stratagene.com.

Escherichia coli Host Strains

CONTENTS

Escherichia coli Host Strain Storage Conditions and Media	1
Storage Conditions	1
Host Strain Media	1
Preparation of Host Cells	3
Preparation of a -80°C Bacterial Glycerol Stock	3
Host Strain Genotypes	4
Preparation of Media and Reagents	6
References	8
MSDS Information	8

ESCHERICHIA COLI HOST STRAIN STORAGE CONDITIONS AND MEDIA

The host strains have been supplied as bacterial glycerol stocks. (Instructions for preparing host cells are in subsequent sections of this instruction manual.)

Storage Conditions

Store the vials at -80°C.

Host Strain Media

For the appropriate media, please refer to the following table:

Bacterial strain	Catalog #	Agar plate for bacterial streak ^{a,b}	Medium for bacterial glycerol stock ^{o,b}	Medium for bacterial cultures for titering phage (final concentration) ^{o,b}
ABLE C c,d	200306	LB-Tet-Kan	LB-Tet-Kan	_
ABLE K c,d	200307	LB-Tet-Kan	LB-Tet-Kan	_
AG1	200274	LB	LB	_
BB4	200269	LB-Tet	LB-Tet	LB with 0.2% maltose—10 mM MgSO ₄
C600	200261	LB	LB	LB with 0.2% maltose—10 mM MgSO ₄
JM101 ^d	200272	NZY	NZY	_
JM109 d	200271	NZY	NZY	_
JM110 ^d	200299	NZY	NZY	_
LE392	200266	LB	LB	LB with 0.2% maltose-10 mM MgSO ₄
NM514	200297	LB	LB	LB with 0.2% maltose-10 mM MgSO ₄
NM522 ^d	200270	NZY	NZY	_
NM554	200284	LB	LB	_
P2392	200267	LB	LB	LB with 0.2% maltose-10 mM MgSO ₄
SCS-8	700288	LB-Tet	LB-Tet	NZY with 0.2% maltose-10 mM MgSO ₄
SCS110 d	200275	NZY	NZY	_
SOLR	200298	LB-Kan	LB-Kan	LB without supplements
SURE c,d,e,f	200294	LB-Tet	LB-Tet	LB with 0.2% maltose-10 mM MgSO ₄
VCS257	700256	LB	LB	LB with 0.2% maltose-10 mM MgSO ₄

(table continues on the next page)

Revision A

© Agilent Technologies, Inc. 2009.

(table continued from the previous page)

Bacterial strain	Catalog #	Agar plate for bacterial streak ^{a,b}	Medium for bacterial glycerol stock ^{a,b}	Medium for bacterial cultures for titering phage (final concentration) ^{0,6}
XL1-Blue ^{c,d}	200268	LB-Tet	LB-Tet	_
XL1-Blue MR ^d	200300	LB	LB	_
XL1-Blue MRA	200302	LB	LB	LB with 0.2% maltose-10 mM MgSO ₄
XL1-Blue MRA (P2)	200303	LB	LB	LB with 0.2% maltose-10 mM MgSO ₄
XL1-Blue MRF′d	200301	LB-Tet	LB-Tet	LB with 0.2% maltose—10 mM MgSO ₄
XL1-Blue MRF′ Kan ^d	200309	LB-Kan	LB-Kan	LB with 0.2% maltose—10 mM MgSO ₄
XLOLR	200304	LB-Tet	LB-Tet	LB without supplements
XPORT	200310	LB	LB	LB without supplements
Y1088	200263	LB-Amp	LB-Amp	LB with 0.2% maltose-10 mM MgSO ₄
Y1089r ⁻	200260	LB-Amp	LB-Amp	LB with 0.2% maltose-10 mM MgSO ₄
Y1090r ⁻	200281	LB-Amp	LB-Amp	LB with 0.2% maltose-10 mM MgSO ₄

^a See Preparation of Media and Reagents.

^b NZY media may be substituted for LB in all cases.

^c Stratagene electroporation-competent cells produce efficiencies greater than those achieved with the best chemical methods. These cells routinely produce high-efficiency transformations between 3.0×10^9 and 7.5×10^9 cfu/ μ g of pUC18 DNA.

^d To transform any of these strains, using Stratagene competent cells is recommended. These cells offer extremely high efficiencies (up to 1×10^9 cfu/μg of pUC18), as well as convenience. Alternatively, the procedures described in Hanahan¹ may be used to obtain efficiencies of 10^7 – 10^8 cfu/μg of pUC18.

^e When growing lambda phage for plaque formation, incubate plates at 39°C.

^f We do not recommend the CaCl₂ procedure to make competent cells; instead we use a modified Hanahan protocol.¹

PREPARATION OF HOST CELLS

On arrival, prepare the following from the bacterial glycerol stock:

Note The host strains may thaw during shipment. The vials should be stored immediately at -20° or -80° C, but most strains remain viable longer if stored at -80° C. It is also best to avoid repeated thawing of the host strains in order to maintain extended viability.

- 1. Revive the stored cells by scraping off splinters of solid ice with a sterile wire loop.
- 2. Streak the splinters onto the recommended plate containing the appropriate antibiotic.
- 3. Restreak the cells fresh each week.

Preparation of a -80°C Bacterial Glycerol Stock

- 1. In a sterile 50-ml conical tube, inoculate 10 ml of the appropriate liquid media (see the third column of the table in *Host Strain Media*) with one or two colonies from the plate. Grow the cells to late log phase $(OD_{600} = \sim 1.0 2.0)$.
- 2. Add 4.5 ml of a sterile glycerol–liquid media solution (5 ml of glycerol + 5 ml of the appropriate media) to the bacterial culture from step 1. Mix well. (For the appropriate medium, see the third column of the table in *Host Strain Media*.)
- 3. Aliquot into sterile centrifuge tubes (1 ml/tube).

This preparation may be stored at -20°C for 1-2 years or at -80°C for more than 2 years.

HOST STRAIN GENOTYPES

For all *E. coli* strains, the genes listed signify that the bacterium carries a mutant allele. The genes present on the F´ episome, however, represent the wild-type alleles unless indicated. Strains should be considered λ^- and F¯ unless otherwise designated.

Bacterial strain	Reference(s)	Genotype	
ABLE C strain a,b	2	E. coli C lac(LacZ ω) [Kan' McrA $^-$ McrCB $^-$ McrF $^-$ Mrr $^-$ HsdR(r_k^- m $_k^-$)] [F' proAB lacl 9 Z Δ M15 Tn10 (Tet')]	
ABLE K strain ^{a,b}	2	E. coli C lac(LacZ ω) [Kan' McrA $^-$ McrCB $^-$ McrF $^-$ Mrr $^-$ HsdR(r_k^- m $_k^-$)] [F' proAB lacl 9 Z Δ M15 Tn10 (Tet')]	
AG1 strain°	1,3	recA1 endA1 gyrA96 thi-1 hsdR17(r _K ⁻ m _K ⁺) supE44 relA1 (uncharacterized mutation improves transformation efficiency)	
BB4 strain	3,4	LE392.23 [F´ lacl ^q ZΔM15 proAB Tn10 (Tet')]	
C600 strain	5	e14 ⁻ (McrA ⁻) supE44 thi-1 thr-1 leuB6 lacY1 tonA21	
JM101 strain ^a	6	supE thi-1 Δ(lac-proAB) [F´ traD36 proAB lacl ^q ZΔM15]	
JM109 strain ^a	6	e14 ⁻ (McrA ⁻) recA1 endA1 gyrA96 thi-1 hsdR17(r _K ⁻ m _K ⁺) supE44 relA1 Δ(lac-proAB) [F´ traD36 proAB lacl ^q ZΔM15]	
JM110 strain ^a	6	rpsL (Str') thr leu thi-1 lacY galK galT ara tonA tsx dam dcm supE44 Δ(lac-proAB) [F´ traD36 proAB lacl ⁹ ZΔM15]	
LE392 strain	7	e14 ⁻ (McrA ⁻) hsdR514 supE44 supF58 lacY1 or Δ(lacIZY)6 galK2 galT22 metB1 trpR55	
NM514 strain	8	$hsdR514(r_{\kappa}^{-}m_{\kappa}^{-})$ argH galE galX lycB7 strA (Hfl ⁺)	
NM522 strain ^a	9	supE thi-1 Δ (lac-proAB) Δ (mcrB-hsdSM)5 (r_{κ}^{-} m_{κ}^{-}) [F′ proAB lacl $^{q}Z\Delta$ M15]	
NM554 strain	10	recA13 araD139 Δ(ara-leu)7696 Δ(lac)I7A galU galK hsdR rpsL (Str') mcrA mcrB	

(table continues on the next page)

(table continued from the previous page)

Bacterial strain	Reference(s)	Genotype
P2392 strain	4	LE392 (P2 lysogen)
SCS-8 strain	11	recA1 endA1 mcrA Δ(mcrBC-hsdRMS-mrr) Δ(argF-lac)U169 φ80dlacZΔM15 Tn10 (Tet')
SCS110 strain ^a		rpsL (Str') thr leu endA thi-1 lacY galK galT ara tonA tsx dam dcm supE44 Δ(lac-proAB) [F´ traD36 proAB lacl ⁹ ZΔM15]
SOLR strain	12	e14 $^-$ (McrA $^-$) Δ (mcrCB-hsdSMR-mrr)171 sbcC recB recJ uvrC umuC::Tn5 (Kan') lac gyrA96 relA1 thi-1 endA1 λ^R [F $^\prime$ proAB lacl q Z Δ M15] Su $^-$ (nonsuppressing)
SURE strain ^{a,b}	12	e14 ⁻ (McrA ⁻) Δ(mcrCB-hsdSMR-mrr)171 endA1 supE44 thi-1 gyrA96 relA1 lac recB recJ sbcC umuC::Tn5 (Kan') uvrC [F΄ proAB lacl ^q ZΔM15 Tn10 (Tet')]
VCS257 strain		Derivative of DP50 supF ^c
XL1-Blue strain ^{a,b}	3	recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB lacl®Z∆M15 Tn10 (Tet')]
XL1-Blue MR strain ^a	13	Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac
XL1-Blue MRA strain		Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 gyrA96 relA1 lac
XL1-Blue MRA (P2) strain		XL1-Blue MRA (P2 lysogen)
XL1-Blue MRF′ strain ^a	13	Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac [F´ proAB lacl ^q ZΔM15 Tn10 (Tet')]
XL1-Blue MRF′ Kan strain°		Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac [F´ proAB lacl ^q ZΔM15 Tn5 (Kan')]
XLOLR strain		Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 thi-1 recA1 gyrA96 relA1 lac [F´ proAB lacl ^q ZΔM15 Tn10 (Tet')] Su¯ (nonsuppressing) λ ^R (lambda resistant)
XPORT		Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac [F' proAB lacl ^q Z ΔM15]
Y1088 strain	14	e14 ⁻ (McrA ⁻) Δ(lac)U169 supE supF hsdR metB trpR tonA21 proC::Tn5 (Kan') [pMC9 Amp' Tet'] (Note: pMC9 is pBR322 with lacl ⁴ inserted.)
Y1089r ⁻ strain	5	Δ(lac)U169 Δ(lon)? araD139 strA mcrB hflA150::Tn10 (Tet') [pMC9 Amp' Tet'] (Note: pMC9 is pBR322 with lacl ^q inserted.)
Y1090r ⁻ strain	5	Δ(lac)U169 Δ(lon)? araD139 strA supF mcrA mcrB hsdR trpC22::Tn10 (Tet') [pMC9 Amp' Tet'] (Note: pMC9 is pBR322 with lacl ^q inserted.)

Strains are available as high-efficiency, chemically competent cells producing transformation efficiencies up to 1 × 10° cfu/μg of pUC18 DNA. Visit http://www.stratagene.com for details.

^b Strains are available as higher efficiency, electroporation-competent cells producing transformation efficiencies up to 7.5 × 10° cfu/μg of pUC18 DNA. Visit http://www.stratagene.com for details.

 $^{^{\}circ}$ DP50 supF genotype: supE44 supF58 hsdS3($r_{B}^{-}m_{B}^{-}$) dapD8 lacY1 glnV44 Δ (gal-uvrB)47 tyrT58 gyrA29 tonA53 Δ (thyA57).

PREPARATION OF MEDIA AND REAGENTS

Note All media must be autoclaved prior to use.

NZY Broth (per Liter) 5 g of NaCl 2 g of MgSO ₄ · 7H ₂ O 5 g of yeast extract 10 g of NZ amine (casein hydrolysate) Adjust the pH to 7.5 with NaOH NZY-Kanamycin Broth (per Liter) NZY broth Autoclave Cool to 55°C Add 50 mg of filter-sterilized kanamycin	NZY Agar (per Liter) 5 g of NaCl 2 g of MgSO ₄ · 7H ₂ O 5 g of yeast extract 10 g of NZ amine (casein hydrolysate) 15 g of agar Adjust the pH to 7.5 with NaOH Autoclave Pour into petri dishes (~80 ml/150-mm plate)
NZY Top Agar (per Liter) 1 liter of NZY broth Add 0.7% (w/v) agarose	NZY-Kanamycin Agar (per Liter) NZY agar Autoclave Cool to 55°C Add 50 mg of filter-sterilized kanamycin
LB Broth (per Liter) 10 g of NaCl 10 g of tryptone 5 g of yeast extract Add deionized H ₂ O to a final volume of 1 liter Adjust pH to 7.0 with 5 N NaOH Autoclave	LB Agar (per Liter) 10 g of NaCl 10 g of tryptone 5 g of yeast extract 20 g of agar Add deionized H ₂ O to a final volume of 1 liter Adjust pH to 7.0 with 5 N NaOH Autoclave Pour into petri dishes (~25 ml/100-mm plate)
LB-Ampicillin Broth (per Liter) 1 liter of LB broth, autoclaved Cool to 55°C Add 10 ml of 10-mg/ml filter-sterilized ampicillin	LB-Ampicillin Agar (per Liter) 1 liter of LB agar, autoclaved Cool to 55°C Add 10 ml of 10-mg/ml filter-sterilized ampicillin Pour into petri dishes (~25 ml/100-mm plate)
LB-Kanamycin Broth (per Liter) 1 liter of LB broth Autoclave Cool to 55°C Add 50 mg of filter-sterilized kanamycin	LB-Kanamycin Agar (per Liter) 1 liter of LB agar Autoclave Cool to 55°C Add 50 mg of filter-sterilized kanamycin Pour into petri dishes (~25 ml/100-mm plate)

LB-Tetracycline Broth (per Liter)

1 liter of LB broth Autoclave Cool to 55°C Add 12.5 mg of filter-sterilized tetracycline Store broth in a dark, cool place as tetracycline is light-sensitive

LB-Tetracycline Agar (per Liter)

1 liter of LB agar Autoclave Cool to 55°C

Add 12.5 mg of filter-sterilized tetracycline Pour into petri dishes (~25 ml/100-mm plate)

Store plates in a dark, cool place or cover plates with foil if left out at room temperature for extended time periods as tetracycline is light-sensitive

LB-Tetracycline-Kanamycin Broth (per Liter) 1 liter of LB broth

Autoclave Cool to 55°C Add 12.5 mg of filter-sterilized tetracycline Add 50 mg of filter-sterilized kanamycin Store broth in a dark, cool place as tetracycline is light-sensitive

LB—Tetracycline—Kanamycin Agar (per Liter)

1 liter of LB agar Autoclave Cool to 55°C

Add 12.5 mg of filter-sterilized tetracycline Add 50 mg of filter-sterilized kanamycin Pour into petri dishes (~25 ml/100-mm plate)

Store plates in a dark, cool place or cover plates with foil if left out at room temperature for extended time periods as tetracycline is light-sensitive

REFERENCES

- 1. Hanahan, D. (1983) J Mol Biol 166(4):557-80.
- 2. Greener, A. (1993) Strategies 6(1):7–9.
- 3. Bullock, W. O., Fernandez, J. M. and Short, J. M. (1987) Biotechniques 5(4):376–378.
- 4. Silhavy, T. J., Berman, M. L. and Enquist, L. W. (1984). In *Experiments with Gene Fusions*, pp. xi-xii. Cold Spring Harbor Laboratory Press, Plainview, NY.
- 5. Huynh, T. V., Young, R. A. and Davis, R. W. (1985). In *DNA Cloning: A Practical Approach*, D. Glover (Ed.). Vol. 1, pp. 56-110. IRL Press, Washington, DC.
- 6. Yanisch-Perron, C., Vieira, J. and Messing, J. (1985) Gene 33:103–119.
- Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- 8. Murray, N. E., Brammar, W. J. and Murray, K. (1977) Mol Gen Genet 150(1):53-61.
- 9. Gough, J. A. and Murray, N. E. (1983) J Mol Biol 166(1):1-19.
- 10. Raleigh, E. A., Murray, N. E., Revel, H., Blumenthal, R. M., Westaway, D. *et al.* (1988) *Nucleic Acids Res* 16(4):1563-75.
- 11. Kohler, S. W., Provost, G. S., Fieck, A., Kretz, P. L., Bullock, W. O. *et al.* (1991) *Proc Natl Acad Sci U S A* 88(18):7958-62.
- 12. Greener, A. (1990) Strategies 3(1):5-6.
- 13. Jerpseth, B., Greener, A., Short, J. M., Viola, J. and Kretz, P. L. (1992) *Strategies* 5(3):81–83.
- 14. Young, R. A. and Davis, R. W. (1983) Science 222(4625):778-82.

MSDS INFORMATION

The Material Safety Data Sheet (MSDS) information for Stratagene products is provided on the web at http://www.stratagene.com/MSDS/. Simply enter the catalog number to retrieve any associated MSDS's in a print-ready format. MSDS documents are not included with product shipments.