HEMODIALYSIS: BASICS

By

Ahmed Mohammed Abd El Wahab

Lecturer of internal medicine (Nephrology)

Dialysis

Process by which the solute composition of a solution "A" is altered by exposing it to a second solution "B" through a semi-permeable membrane

Necessary pre-requisites for Hemodialysis

- 1) Semi-permeable membrane
 - 2) Anticoagulation
- 3) Knowing what to remove and how much of it

1773: Nurepuel isolates Urea by boiling urine in a pan

1828: Wohler synthesizes Urea and describes its molecular structure

Thomas Graham (1805-1869)

1850 Glasgow, Scotland:

Thomas Graham 's
experiment to
demonstrate diffusion
across a semipermeable membrane
(Pergamon paper)

Claude Bernard, 1813 to 1878.

Sept. 1, 1888.]

THE BRADSHAWE LECTURE

0N

URÆMIA.

Indicered before the Royal College of Physicians, August, 1888.

WILLIAM CARTER, M.D., B.Sc., LL.B.Lond., F.R.C.P.Lond.,

Physician to the Royal Southern Hospital, Liverpool; Professor of Materia Medica and Therapeutics, in University College, Liverpool.

Dialysis Membranes

- 1750:Advances in the dovelopment of smokeless gunpowder led to the synthesis of a strong Nitrocellulose called "collodion". It was a combination of Nitric acid and cotton
- Addition of Camphor to this substance led to the synthesis of stable and strong "plastics"
- 1957:Helmut Staldiger polymerized "Cellulose"

1913:The First Hemodialysis Experiment

Fig. 1 Presentive View of Vivintervosion Apparatus; Earlies Form Whys Shriver Turns A, arterial changle; B, venous cannals; C, side tube for introduction of himdin; D, inflowings; B, outlet tube; F, G, supporting red attached at H and K to herached U-tubes; L, hurette for himdin; M, N, tube for filling and emptying liquid in outer jacket; O, air outlet; P, dichotomous branching point of inflow tube; Q and R, quadruple branching points of same; S, S', wooden supports; T, theremember. At each of the points H and K the blood is collected from four tubes into the, bending around to the back, and there redividing into four return flow tubes. Army we show the direction of flow.

ON THE REMOVAL OF DIFFUSIBLE SUBSTANCES FROM THE CIRCULATING BLOOD OF LIVING ANIMALS BY DIALYSIS

JOHN J. ABEL, LEONARD G. ROWNTREE AND B. B. TURNER From the Pharmacological Laboratory of the Johns Hopkins University

Received for publication, December 18, 1913

CONTENTS

1.	Introductory	275
II.	The method	277
III.	The apparatus: Types and methods of construction	278
IV.	Technique of the experiments	295
V.	Preparation of the leech extract	302
VI.	Employment of the apparatus not detrimental to life	305
VII.	Quantitative data on the elimination of salicylic acid by the appara-	
	tus	309
VIII.	Qualitative data on constituents of the blood separated by the appara-	
	tus	314
IX.	Summary	316

1937: William Thalhimer successfully lowers BUN by performing Hemodialysis in anephric dogs

PROC. Soc EXP BIOL MED 37:641 Clark

9673 P 1937

Experimental Exchange Transfusions for Reducing Azotemia.

Use of Artificial Kidney for This Purpose.

WILLIAM THALBIMER,

From the Manhattan Convolescent Serum Laboratory, New York City.

1926:The First Human Experiment

- George Haas used a collodion tube arrangement to successfully dialyze human subjects
- Allergic reactions to impurities in Hirudin led him to abandon his experiments

l ig. 412. Methodische Neuanordnung der Blutdialyse nach Haas (Kabinensystem). $\sigma=$ arterieller Zustrom nach dem ersten Glasgefäß; b= erstes Glasgfäß, von hier wird das Blut mit Hilfe des Beckschen Apparates zu den Dialysierschläuchen zepumpt; c=Beckscher Apparat; d= Dialysiersystem (Kabinensystem); c= zweites Glasgefäß, welches das Blut nach Durchströmen der Dialysierschläuche aufnimmt; von hier fließt das Blut infolge der Schwerkraft zurück in die Vene; f= Elektromotor; g= Widerstand.

1937:Nils Alwall used the Alwall Kidney to perform the first ever hemodialysis treatment at the university of Lund,

Sweden

Alwall Kidney / Working Model

SHALDOW/IZ_ZIIZ/HDPFT 6

"If I have seen farther it is because I have stood on the shoulders of Giants"

Sir Isaac Newton

Hemodialysis:History and Current Perspective

- History of Dialysis
- Principles of Hemodialysis

Mechanisms of Solute transfer

- Diffusion
- Convection
- Osmosis
- Ultrafilteration

Fig. 1.1 a Diffusion, osmosis, and osmotic ultrafiltration by osmotic pressure. b Hydrostatic ultrafiltration. D diffusion, O osmosis, OU osmotic ultrafiltration, UF ultrafiltration by hydrostatic pressure, C convection

Diffusive Clearance

- A result of random molecular motion
- Influenced by concentration gradient of the solute and its Molecular weight as well as by the membrane permeability to the solute

Convective Clearance

- Water molecules passing through a SPM carry with them the solutes in their original concentration. This is called the "solvent drag phenomenon"
- Water can be made to move across a SPM by the application of either a hydrostatic or an osmotic gradient

Convection vs. Diffusion

- small molecular wt substances (< 1 kD)
- large molecular wt substances (5 - 50 kD)

Convection vs. Diffusion

The Hemodialysis circuit

Fig. 2.2 Replacement fluid can be added to the circuit either before (pre-dilution) or after (post-dilution) the dialyzer/filter

Fig. 2.3 Hemodialysis Setup

Cross Section of a Dialyzer

Dialysis Membranes

Membrane	Hydr.Perm.	Examples	Biocomp.
Regen. cellulose	Low flux	cuprophane	Poor
Modif. Cellulose	Low/High Flux	Cell.acetate Cell di-acet.	Interm.
Synthetic	High/Low flux	PAN,PS,PA, PC,PMMC	Good

Acetate-containing bicarbonate dialysate	Intradialytic compli- cations, Activation of cells Activation of inflam- matory proteins	
Citrate-containing	Decrease in Ca and	Reduced clotting:
bicarbonate dialysate	Mg	
		 Increase in the dose of dialysis Heparin-free acute/chronic dialysis Reduced heparin chronic dialysis Increase in reuse of dialyzer

Disadvantages

Advantages

Type of dialysate

Dialysis Solution

Component	Concentration mmol/L
Na	140
K	2
Ca	1.25 (5 mg/dl)
Mg	0.5 (1.2 mg/dl)
Acetate	3.0
Chloride	108
Bicarbonate	35
Glucose	5.6 (100 mg/dl)

Water Purification

Dialysate Circuit Water source Dialysate concentrates* Back-flow valve Water treatment Charcoal Filter Deaerator & filter Heater Deionizer Reverse osmosis Proportioning Conductivity ⇉ system monitor Temperature monitor Bypass valve Bypass circuit Volumetric control system Dialyzer Blood leak ⇉ detector >Drain

TOXIC WATER CONTAMINANTS

CONTAMINANT	SOURCE	ADVERSE EVENT
ALUMINUM	MUNICIPAL WATER	ENCEPHALOPATHY, BONE DISEASE, ANEMIA
CHLORAMINES	MUNICIPAL WATER	HEMOLYSIS
FLUORIDE	MUNICIPAL WATER	FATAL ARRHYTHMIA, BONE DISEASE (?)
CYANOTOXIN	SOURCE WATER	LIVER FAILURE
NITRATES	SOURCE WATER	ANEMIA
ENDOTOXIN	DIALYSIS UNIT	PYROGENIC REACTIONS, CHRONIC INFLAMMATION
COPPER	DIALYSIS UNIT	HEMOLYSIS, NAUSEA, VOMITING
ZINC	DIALYSIS UNIT	HEMOLYSIS, NAUSEA, VOMITING
CALCIUM, MAGNESIUM	SOURCE WATER, MUNICIPAL WATER	NAUSEA, VOMITING

AAMI WATER QUALITY STANDARDS - 2000 (DRAFT)

SUBSTANCES IN DIALY SATE		SUBSTANCES TO XIC IN DIALYSIS			
CALCIUM	2	ALUMINUM	0.01		
MAGNESIUM	4	CHLORAMINES	0.10		
SODIUM	70	FREE CHLORINE	0.5		
POTASSIUM	8	COPPER	0.10		
TOXIC SUBSTANCES (S	DWA)	FLU O RIDE	0.20		
ANTIMONY	0.006	NITRATE (as N)	2.0		
ARSENIC	0.005	SULFATE	100		
BERYLLIUM	0.0004	ZINC	0.10		
BARIUM	0.01				
CADMIUM 0.001 M		MICROBIOLOGICAL CONTA	MICROBIOLOGICAL CONTAMINANTS		
CHR OM IUM	0.014	BACTERIA	200		
CYANIDE	0.02	ACTION LEVEL	50		
LEAD	0.005	ENDO TO X IN	2		
MERCURY	0.0002	ACTION LEVEL	1		
SELENIUM	0.09				
SILVER	0.005				
THALIUM	0.002				

CHEMICAL CONCENTRATIONS IN mg/L, BACTERIA CFU/ml, ENDOTOXIN EU/ml

Vascular Access

Types Of Vascular Access

- Arteriovenous fistula (AVF)
- Prosthetic bridge graft (PBG)
- Tunneled-cuffed catheter (TCC)

A-V Fistula - Advantage

- Long term patency vs PBG
 - · 67% better at age 40
 - · 54% better at age 50
 - · 24% better at age 65
- Infection rate vs PBG
 - · One -tenth

Brachio-Cephalic Fistula

Brachio-Basilic Fistula

Radio-Cephalic Fistula

Prosthetic Bridge Graft

Advantage:

- Wide applicability
- Use early
- Works well
- Large sticking area

Disadvantage:

- Venous stenosis
 - Inadequate dialysis
 - · Recurrent thrombosis
 - Limited life (50 60% at 2 years)
- Infection

Tunneled Cuffed Catheter

Advantage:

- Wide applicability
- Easily placed
- Use immediately

Disadvantage:

- Poor flow
- Loss of function
- Infection

Temporary Catheter in RIJ

Tunneled, Cuffed Catheter for Long-Term Use

Types of Continuous Therapies

- Continuous arteriovenous hemofiltration (CAVH)
- Continuous venovenous hemofiltration (CVVH)
- Continuous venovenous hemodialysis (CVVHD)
- •Continuous venovenous hemodiafiltration (CVVHDF)
- •Slow low-efficiency diffusion hemodialysis (SLEDD)
- •Slow continuous ultrafiltration (SCUF)

Continuous Arteriovenous Hemofiltration Set-up

Continuous Venovenous Hemofiltration Set-up

Continuous Venovenous Hemodiafiltration Set-up

Indications for initiating Hemodialysis

In patients with calculated creatinine clearance <20 ml/min/1.73 m₂ the onset of:

```
*Uremic symptoms
```

Nausea/emesis

Altered sleep pattern

*Altered mental status

Coma

Stupor

Tremor

Asterixis

Clonus

Seizures

Indications for Hemodialysis

- *Pericarditis or Tamponade (urgent indication)
- *Uremic platelet dysfunction (urgent indication)
- *Refractory volume overload
- *Refractory hyperkalemia
- *Refractory Metabolic acidosis with anuria

□ Non renal:

- 1. Sepsis
- Drug removal
- 3. ARDS
- 4. Resistant CHF
- 5. Tumor lysis syndrome

THANK YOU