Tema Nr. 6: Arbori Multicăi

Transformări între diferite reprezentări

Timp alocat: 2 ore

Implementare

Se cere implementarea **corectă** și **eficientă** a unor algoritmi de complexitate *liniară* pentru transformarea arborilor multicăi între următoarele reprezentări:

R1: reprezentarea părinte: pentru fiecare index, valoare din vector reprezintă indexul părintele, ex: $\Pi = \{2,7,5,2,7,7,-1,5,2\}$

R2: reprezentare arbore multicăi: fiecare nod conține cheia si un vector de noduri copil **R3**: reprezentare binara: fiecare nod conține cheia si doi pointeri: unul către primul copil si al doilea către fratele din dreapta (ex: următorul frate).

Așadar, trebuie să definiți transformarea **T1** din reprezentarea *părinte* (**R1**) în reprezentarea *arbore multicăi* (**R2**), iar apoi transformarea **T2** din reprezentarea *arbore multicăi* (**R2**) în reprezentarea *binară* (**R3**). Pentru toate reprezentările (**R1**, **R2**, **R3**) trebuie să implementați afișarea prietenoasă (pretty print, **PP**) (vezi pagina 2).

Definiți structurile de date. Puteți folosi structuri intermediare (ex: memorie adițională).

Cerinte

- 1. Implementarea corectă la pretty-print la R1 (5p)
- 2. Implementarea corectă la T1 și pretty-print la R2 (1p) + T1 în timp liniar (1p)
- 3. Implementarea corectă la T2 și pretty-print la R3 (2p) + T2 în timp liniar 1p

Corectitudinea algoritmilor va trebui demonstrată pe exemplul de la $\mathbf{R1}$ (Π). Folosiți afișarea prietenoasă pentru cele trei reprezentări.

Explicați ce structuri de date ați folosit pentru reprezentările R2 și R3.

Analizați eficienta în timp și spațiu a celor două transformări. Ați atins O(n)? Ați folosit memorie aditională?

