Sejam fig: R" - D R tais que g(x) = f(x) + (f(x)). Le gee (de clarre e). Rospoda Vannos fixar um ponto x_0 arbitrário em \mathbb{R}^n e definimos: $F: \mathbb{R}^n \times \mathbb{R} \longrightarrow \mathbb{R}$, $F(x_1 y_1) = g(x) - y - y^5$ Ternos que $F(x_0, f(x_0)) = 0$ so $\partial F(x_0, f(x_0)) = 1 - 5f(x_0)^4 + 0$ Com ilso, pelo teorema da Funços Implicita, vistam abertos ICR^N e fCR, contendo xo e $f(x_0)$, respectivamente, fais que $\forall x \in I$ existe um único y $\in \forall x_1 \in f$ tal que $F(x_1, y_1) = 0$ e $f:I \to f$ esta definida em C^n . Il mos que f i contérua um \mathbb{R}^N e of abuto em \mathbb{R} , então $f^{-1}(f)$ C \mathbb{R}^N é abeto. Tomemos intão um $W = (f^{-1}(f) \times f) \wedge (\mathbb{F} \times f)$.

Asim, f mos que $(\pi_0, f(\pi)) \in W$ e $\forall (\chi, f(\pi)) \in W$, $F(\chi, f(\pi)) = \mathbb{O}$, com isto, rela unicidade de f temos que $f(\pi) = f(\pi)$, $\forall \chi \in F^{-1}(f)$ e into implica que f é de classe C^N numa vizinhança de π_0 , e como π_0 for π_0 tomado orbitariamente, se que que f é de classe C^N em R^N .