Bool'sche Algebra Benjamin Tröster, HTW Berlin

Bool'sche Algebra

Fahrplan

Recap

Einleitung

Erfüllbarkeit & Äquivalenz

Beweisstrategien

Strukturelle Induktion

Normalformdarstellungen

Aussagenlogik

Definition (Aussagenlogik)

Aussagenlogik, als Teilgebiet der Logik, befasst sich mit Aussagen und der Verknüpfung von Aussagen mittels *Junktoren*.

- ► Junktoren sind logische Verknüpfungen
- Klassische Junktoren:
 - ▶ Negation $\neg P$
 - ▶ Implikation/Subjunktion/Konditional $P \Rightarrow Q$
 - ightharpoonup Äquivalenz/Bikonditional/Bisubjunktion $P \Leftrightarrow Q$
 - ► Konjunktion $P \land Q$
 - ▶ Disjunktion $P \lor Q$

[Rau08]

Bool'sche Algebra nach Huntington (Wichtig!)

Definition

Die bool'sche Algebra nach Huntington ist definiert als Menge $\mathcal{V}:\{0,1\}$ mit den Verknüpfungen $\cdot(\wedge),+(\vee)$, sodass $\mathcal{V}\times\mathcal{V}\to\mathcal{V}$, also $\{0,1\}\times\{0,1\}\to\{0,1\}$.

- ► Kommutativgesetze (K): $a \cdot b = b \cdot a$ bzw. a + b = b + a
- Distributivgesetze (D): $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ bzw. $a + (b \cdot c) = (a+b) \cdot (a+c)$
- ▶ Neutrale Elemente (N): $\exists e, n \in \mathcal{V}$ mit $a \cdot e = a$ und a + n = a
- ▶ Inverse Elemente (I): $\forall a \in \mathcal{V}$ existiert ein a' mit $a \cdot a' = n$ und a + a' = e

Übernommen von [Bar13] bzw. [Hof20]

Darstellungen & Bool'sche Funktionen

► Wahrheitstabelle

а	b	$a \Rightarrow b$
0	0	1
0	1	1
1	0	0
1	1	1

▶ Algebraische Darstellung: $y = ((0 \land x) \lor (1 \lor x))$

Notation und Operatorenbindung

- Syntactic Sugar (Ableitungen aus Basisverknüpfungen)
 - \blacktriangleright $(a \Rightarrow b)$ für $(\neg a \lor b)$ Implikation
 - \blacktriangleright $(a \Leftarrow b)$ für $(b \Rightarrow a)$ Inversion der Implikation
 - \blacktriangleright $(a \Leftrightarrow b)$ für $(a \Rightarrow b) \land (a \Leftarrow b)$ Äquivalenz
 - $(a \oplus b)$ für $\neg(a \Leftrightarrow b)$ Antivalenz oder Exklusiv-ODER/XOR
 - $ightharpoonup \neg (a \lor b) NOR$
 - $ightharpoonup \neg (a \land b) NAND$
- Bindung der Operatoren
 - A bindet stärker als V
 - ▶ ¬ bindet stärker als ∧
- Klammerung
 - Gleiche Verknüpfungen: linksassoziativ zusammengefasst

$$Y = (A \lor B) \land (\neg A \lor B) \land (A \lor \neg B)$$

Umformulieren:

$$Y = (A \lor B) \land (\neg A \lor B) \land (A \lor \neg B)$$

$$= ((A + B) \cdot (\overline{A} + B) \cdot (A + \overline{B}))$$

$$= ((A \cdot B \cdot B) + (B \cdot A \cdot A) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B})$$

$$+ (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B}))$$

Anwenden der Idempotenz: $X \cdot X = X$ für X = B

$$= (A \cdot (\underline{B} \cdot \underline{B})) + (B \cdot A \cdot A) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B}) = (A \cdot (\underline{B})) + (B \cdot A \cdot A) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

Anwenden der Idempotenz: $X \cdot X = X$ für X = A

$$= (A \cdot B) + (B \cdot (A \cdot A)) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B}) = (A \cdot B) + (B \cdot (A)) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

Anwenden des Kommutativgesetz:

$$= (A \cdot B) + (B \cdot A) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (A \cdot B) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

Anwenden der Idempotenz: $X \cdot X = X$ für $X = A \cdot B$

$$= ((A \cdot B) + (B \cdot A)) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

Anwenden der Idempotenz: $X \cdot X = X$ für X = A und X = B (Nicht dargestellt) Anwenden des Komplements

$$= (A \cdot B) + (A \cdot \overline{A}) + (B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (0) + (B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

Anwenden der Identität:

$$= (((A \cdot B) + 0) + (B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (0) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

Anwenden des Komplements und Identität:

$$= (A \cdot B) + (B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (0) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= ((A \cdot B) + 0) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

Anwenden des Kommutativgesetz und Komplements:

$$= (A \cdot B) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (A \cdot \overline{A} \cdot B) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (0 \cdot B) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (B \cdot 0) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

Anwenden der Dominanz und Identität:

$$= (A \cdot B) + (B \cdot 0) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (0) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= ((A \cdot B) + 0) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

... Wiederholung Identität und Dominanz durch 0 und Anwenden der Identität

$$= (A \cdot B) + (\overline{A} \cdot 0) = (A \cdot B) + (0)$$
$$= ((A \cdot B) + 0) = (A \cdot B)$$

$$Y = (A \lor B) \land (\neg A \lor B) \land (A \lor \neg B)$$

$$Y = (\neg a \land \neg b) \lor (a \land b)$$

Heute: Einleitung

- ► Erfüllbarkeit & Äquivalenz
- ► Beweisstrategien & Induktion Strukturelle Induktion
- Negationstheorem
- De Morgan Regeln & Dualitätsprinzip
- Universelle Operatoren
- Normalformen
- ► Bitweise logische Operationen, Bit-Maskierung
- Einführung Logikgatter

Erfüllbarkeit

Definition (Erfüllbarkeit)

Sei φ ein beliebiger boolescher Ausdruck. φ heißt

- erfüllbar, wenn es Werte x_1, \ldots, x_n gibt, mit $\varphi(x_1, \ldots, x_n) = 1$.
- widerlegbar, wenn es Werte x_1, \ldots, x_n gibt, mit $\varphi(x_1, \ldots, x_n) = 0$.
- unerfüllbar, wenn $\varphi(x_1,\ldots,x_n)$ immer gleich 0 ist.
- ightharpoonup allgemeingültig, wenn wenn $\varphi(x_1,\ldots,x_n)$ immer gleich 1 ist.

Einen allgemeingültigen Ausdruck bezeichnen wir auch als **Tautologie**.

Erfüllbarkeit/Unerfüllbar/Allgemeingültig

- $\phi = \neg x$
- $ightharpoonup \neg (x \land \neg x)$

Äquivalenz

Definition (Äquivalenz)

Zwei bool'sche Ausdrücke φ und ψ sind äquivalent, falls sie dieselbe Funktion repräsentieren. In anderen Worten: φ und ψ sind genau dann äquivalent, wenn für alle Variablenbelegungen x_1, \ldots, x_n die folgende Beziehung gilt:

$$\varphi(\mathbf{x}_1,\ldots,\mathbf{x}_n)=\psi(\mathbf{x}_1,\ldots,\mathbf{x}_n)$$

D.h. Zwei bool'sche Ausdrücke ϕ und ψ sind genau dann äquivalent, wenn der Ausdruck $\varphi \Leftrightarrow \psi$ eine Tautologie ist.

Mithilfe von Wahrheitstafeln, algebraischer Umformung oder durch erzeugen einer Normalform können wir die Äquivalenz feststellen.

Beweisstrategien

- ▶ Direkter Beweis
 - ightharpoonup Annahme: A ist allgemeingültig, durch richtiges Schließen: $A \Rightarrow B$
- ► Indirekter Beweis:
 - ▶ Negation der Annahme darf zu keinem korrekten Ergebnis führen
- Vollständige Induktion
 - ▶ Beweise für Aussagen über die natürlichen Zahlen №
 - ▶ Basierend auf den Peano-Axiomen für N

Beweisregeln

- ► Abtrennungsregel:
 - ▶ Sind A und $A \Rightarrow B$ allgemeingültig, so ist B allgemeingültig
 - ► Korrektheit folgt aus der Allgemeingültigkeit von $(A \land (A \Rightarrow B)) \Rightarrow B$
- ► Fallunterscheidung
 - ▶ Sind $A \Rightarrow B$ und $\neg A \Rightarrow B$ allgemeingültig, so ist B allgemeingültig
 - ► Korrektheit folgt aus der Allgemeingültigkeit von $((A \Rightarrow B) \land ((\neg A) \Rightarrow B)) \Rightarrow B$
- Kettenschluss
 - ▶ Sind $A \Rightarrow B$ und $B \Rightarrow C$ allgemeingültig, so ist $A \Rightarrow C$ allgemeingültig
 - ► Korrektheit folgt aus der Allgemeingültigkeit von $((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$

Beweisregeln

- Indirekter Beweis
 - ▶ Sind $A \Rightarrow B$ und $A \Rightarrow \neg B$ allgemeingültig, so ist $\neg A$ allgemeingültig
 - ► Korrektheit folgt aus der Allgemeingültigkeit von $((A \Rightarrow B) \land (A \Rightarrow (\neg B))) \Rightarrow (\neg A)$
- ► Kontraposition: Ist $A \Rightarrow B$ allgemeingültig, so ist $(\neg B) \Rightarrow (\neg A)$ allgemeingültig
 - ► Korrektheit folgt aus der Allgemeingültigkeit von $(A \Rightarrow B) \Rightarrow ((\neg B) \Rightarrow (\neg A)).$

Vollständige Induktion

- ▶ Drei Teile:
 - ► Induktionsanfang (IA) & Induktionsannahme
 - ► Induktionsschritt (IS)
 - ► Induktionsschluss

Beispiel: Vollständige Induktion

Theorem

$$\forall n (n \in \mathbb{N}_0 \to 2^0 + 2^1 + \dots 2^n = 2^{n+1} - 1)$$

Beweis.

Prädikat:
$$\varphi(n) \equiv (2^0 + 2^1 + \dots 2^n = 2^{n+1} - 1)$$

- 1. Induktions an fang (IA): $\varphi(0)$ soll gelten $2^0 = 2^{0+1} 1 \Leftrightarrow 1 = 1\sqrt{2}$
- 2. Induktionsschritt (IS):

$$\varphi(n) \Rightarrow \varphi(n^{+})$$

$$2^{0} + 2^{1} + \dots + 2^{n} + 2^{n+1} = 2^{(n+1)+1} - 1$$
Anm.: $2^{0} + 2^{1} + \dots + 2^{n} = 2^{n+1} - 1$

$$\Leftrightarrow 2^{n+1} - 1 + 2^{n+1} = 2^{(n+1)+1} - 1$$
Anm.: $a^{n} + a^{m} = 2^{n+m}$

$$\Leftrightarrow 2^{n+2} - 1 = 2^{(n+2)} - 1\sqrt{n}$$

Beweis.

Prädikat:
$$\varphi(\mathbf{n}) \equiv (2^0 + 2^1 + \dots 2^{\mathbf{n}} = 2^{\mathbf{n}+1} - 1)$$

- 1. Induktionsanfang: $\varphi(0)$ soll gelten $2^0 = 2^{0+1} 1 \Leftrightarrow 1 = 1\sqrt{2}$
- 2. Induktionsschritt:

$$\varphi(n) \Rightarrow \varphi(n^{+})$$

$$2^{0} + 2^{1} + \dots + 2^{n} + 2^{n+1} = 2^{(n+1)+1} - 1$$

$$\Leftrightarrow 2^{n+1} - 1 + 2^{n+1} = 2^{(n+1)+1} - 1$$

$$\Leftrightarrow 2^{n+2} - 1 = 2^{(n+2)} - 1$$

3. Induktionsschluss:

nach IA und IS
$$\Rightarrow \varphi(n)(\forall n(\varphi(n)))$$

Strukturelle Induktion

- ► Vollständige Induktion ist eine Spezialfall der strukturellen Induktion
- ▶ Wie in der vollständigen Induktion: Beweis für Basisfälle (Atome)
- Anschließend via Induktionsschritt, dass sich die Gültigkeit der Behauptung auf nächste Ebene überträgt
- ► Basisfälle: Alle nicht zusammengesetzten Elemente
 - ► Wahrheitswerte 0 und 1,
 - bool'schen Ausdrücke mit einer Variablen
 - ▶ D.h. Rückführung auf $x \land \neg x$ bzw. $x \lor \neg x$
 - ightharpoonup Induktionsanfang den Ausdruck f = x
- ▶ Induktionsschritt: Zeigt, dass Behauptung für beliebig zusammengesetzte Ausdrücke gilt
 - ► Induktionsschritt nur Elementaroperatoren: ¬, ∧, ∨

Beispiel Strukturelle Induktion

Theorem

Sei φ ein beliebiger boolescher Ausdruck, in dem neben den Variablen x_1, \ldots, x_n ausschließlich der Implikationsoperator vorkommt. Dann ist φ stets erfüllbar.

▶ Idee: Wir zeigen, dass $\varphi(x_1, ..., x_n)$ stets gleich 1 ist, wenn wir alle Variablen 1 sind

Beispiel Strukturelle Induktion

Beweis.

Induktionsanfang (IA): φ sei ein nicht zusammengesetzter boolescher Term. φ hat die Form x_i , da keine Konstanten erlaubt sind . Es gilt $\varphi(1)=1$. Induktionsvoraussetzung (IV): φ sei ein zusammengesetzter boolescher Ausdruck, in dem neben den Variablen x_1,\ldots,x_n ausschließlich der Implikationsoperator vorkommt. Wir nehmen an, die Behauptung sei für alle Unterterme von φ bereits bewiesen.

Induktionsschritt (IS): Da die Implikation der einzige Operator ist, der in φ vorkommen darf, hat φ die Form $\varphi_1\Rightarrow\varphi_2$. Dann ist

$$\varphi(1,\ldots,1)=\varphi_1(1,\ldots,1)\Rightarrow\varphi_2(1,\ldots,1)=1\Rightarrow 1=1$$

somit ist φ bewiesen.

Negationstheorem

Theorem

Sei $f(0, 1, x_1, ..., x_n, \land, \lor, \neg)$ ein boolescher Ausdruck, in dem neben den Konstanten 1 und 0 und den Variablen $x_1, ..., x_n$ die booleschen Operatoren \land, \lor und \neg vorkommen. Dann gilt:

$$\overline{f(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)}=f(1,0,\overline{x_1},\ldots,\overline{x_n},\vee,\wedge,\neg)$$

Beweis.

Induktionsanfang (IA): Sei φ ein nicht zusammengesetzter Ausdruck. Wir betrachten alle Ausdrücke f der Länge 1:

Fall 1
$$\underline{\varphi} = 0$$
 $\underline{\varphi}(0, 1, \mathbf{x}_1, \dots, \mathbf{x}_n, \wedge, \vee, \neg) = 0 = 1 = \varphi(1, 0, \overline{\mathbf{x}_1}, \dots, \overline{\mathbf{x}_n}, \vee, \wedge, \neg)$

Fall 2
$$\underline{\varphi} = 1$$
 $\underline{\varphi}(0, 1, \mathbf{x}_1, \dots, \mathbf{x}_n, \wedge, \vee, \neg) = 1 = 0 = \varphi(1, 0, \overline{\mathbf{x}_1}, \dots, \overline{\mathbf{x}_n}, \vee, \wedge, \neg)$

Fall 3
$$\varphi = x_i$$
 $\varphi(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg) = \overline{(x_i)} = (\overline{(x_i)}) = \varphi(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg)$

Bool'sche Algebra. 20. Oktober 2021

Beweis.

Induktionsvoraussetzung (IV): Wir nehmen an, die Behauptung sei für alle Unterterme von f bereits bewiesen.

Beweis.

Induktionsschritt (IS): Wir unterscheiden drei Fälle:

Fall 1: $\varphi = \overline{\varphi}$

$$\overline{\varphi(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} = \overline{\varphi(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)}$$

$$\underline{P} \overline{\varphi(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg)}$$

$$= \varphi(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg)$$

Bool'sche Algebra, 20, Oktober 2021

Beweis.

Induktionsschritt (IS): Wir unterscheiden drei Fälle:

Fall 2:
$$\varphi = \varphi \wedge \varphi$$

$$\overline{\varphi(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} = \overline{\varphi_1(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} \wedge \underline{\varphi_2(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} \\
= \overline{\varphi_1(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} \vee \overline{\varphi_2(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} \\
\underline{\stackrel{\text{IV}}{=}} \varphi_1(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg) \vee \varphi_2(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg) \\
= \varphi(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg)$$

Bool'sche Algebra, 20, Oktober 2021

Beweis.

Induktionsschritt (IS): Wir unterscheiden drei Fälle:

Fall 3:
$$\varphi = \varphi \vee \varphi$$

$$\overline{\varphi(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} = \overline{\varphi_1(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} \vee \underline{\varphi_2(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} \\
= \overline{\varphi_1(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} \wedge \overline{\varphi_2(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} \\
\underline{\stackrel{\text{IV}}{=}} \varphi_1(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg) \wedge \varphi_2(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg) \\
= \varphi(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg)$$

Bool'sche Algebra, 20, Oktober 2021

Negationstheorem & De Morgansche Regel

- Mithilfe des Negationstheorem haben wir die De Morgansche Regel bewiesen:
- ► Noch besser: Wir erhalten das Dualitätsprinzip Symmetrieeigenschaft!

Dualitätsprinzip

Theorem

Sei

$$\varphi(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)=\psi(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)$$

ein Gesetz der booleschen Algebra, in der neben Variablen und den Konstanten 0 und 1 ausschließlich die Elementarverknüpfungen \neg , land und \lor vorkommen. Dann ist auch die duale Gleichung

$$\varphi(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)=\psi(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)$$

ein Gesetz der booleschen Algebra.

Vollständige Operatorensysteme

Definition

 $\mathcal M$ sei eine beliebige Menge von Operatoren. $\mathcal M$ ist ein vollständiges Operatorensystem, wenn sich jede boolesche Funktion durch einen Ausdruck beschreiben lässt, in dem neben den Variablen x_1,\ldots,x_n ausschließlich Operatoren aus $\mathcal M$ vorkommen.

- ▶ Die Elementaroperatoren \land, \lor und \neg bilden zusammen ein vollständiges Operatorensystem
- ▶ Die Operatoren NAND und NOR bilden jeder für sich bereits ein vollständiges Operatorensystem
- ▶ Die Implikation und die 0 bilden zusammen ebenfalls ein vollständiges Operatorensystem

Universelle Operatoren

ightharpoonup Reduktion von \land , \lor und \neg auf NAND

$$\overline{x} = \overline{x \wedge x}$$

$$x \wedge y = \overline{\overline{x \wedge y}} \quad \text{Idee:Doppelte Negation hebt sicht auf}$$

$$= \overline{\overline{x \wedge y} \wedge \overline{x \wedge y}}$$

$$x \vee y = \overline{\overline{x \vee y}} \quad \text{Idee: OR ist A und K}$$

$$= \overline{\overline{x} \wedge \overline{y}}$$

$$= \overline{\overline{x \wedge x} \wedge \overline{y \wedge y}}$$

Normalformdarstellungen

- Normalform beschreibt eine eindeutige Darstellung
- Bool'sche Funktionen: Exakt eine Art und Weise der Repräsentation
- ► Wahrheitstafeldarstellung ist eine Art der Normalformdarstellungen
- Bool'sche Ausdrücke hingegen sind keine Normalformdarstellung
 - ▶ Jede bool'sche Funktion durch unendlich viele Ausdrücke beschreibbar

Quellen I

- Barnett, Janet Heine (2013). "Boolean algebra as an abstract structure: Edward V. Huntington and axiomatization". In: *Convergence*.
- Bewersdorff, Jörg (2007). "Algebra für Einsteiger: Von der Gleichungsauflösung zur Galois-Theorie, 3". In: Aufl. Vieweg+ Teubner, Wiesbaden (2007, Juli).
- Hoffmann, Dirk W (2020). *Grundlagen der technischen Informatik*. Carl Hanser Verlag GmbH Co KG.
- Rautenberg, Wolfgang (2008). Einführung in die mathematische Logik. Springer.
- Sasao, Tsutomu (1999). "Lattice and Boolean Algebra". In: Switching Theory for Logic Synthesis. Springer, S. 17–34.

Quellen II

Teschl, Gerald und Susanne Teschl (2013). Mathematik für Informatiker: Band 1: Diskrete Mathematik und Lineare Algebra. Springer-Verlag.