Anti-tremor device 0.2.2 explained

1. Sheet

Трябва да бъде добавен google account, за да могат да се изпълняват скриптовете зад таблицата, които правят обновления и комуникат с контролера. Името на таблицата, в която се намира управлението е "01.Control"

1.Настройки

- 1.1 **Actuator num** броят на актуатори, които се поддържат максимално, в случаят не се въвежда от потребителя
- 1.2 **STEP(ms)** това е стъпката на една част от цикъла. При 200 ms стъпка и 2000 ms цикъл, цикълът ще има 10 стъпки
- 1.3 Loop cycle(ms) това е продължителността на цикъла
- 1.4 **Loop steps** генерира се автоматично от STEP и Loop cycle, не се въвежда от потребителя

Пример с настройките - зададена стъпка 330 ms и цикъл 2000 ms. Това прави възможни 6 стъпки в цикъла. Таблицата автоматично смята това и оцветява в сиво стъпките, които няма да се ползват.

2. Таблица

- 2.1 В първата колона, която започва от ред 6 на таблицата **Act ID/ ms steps** на таблицата се намира индексът на моторите от 1 до 6.
- 2.2 В ред 5 са номерирани индексът на циклите в случая от 1 до 10, защото стъпката е 200 ms и цикълът е 2000; 200/20 = 10.
- 2.3 C checkbox се задава **ON/OFF** състояние на актуаторите. **Маркиран чекбокс**, означава, че моторът е включен.

П	pι	lМ	е	a	
•	~		_	~	•

5			2	3	4	5	6	7	8	9	10	
6	Act ID/ms steps	200	400	600	800	1000	1200	1400	1600	1800	2000	(
7	1	~										>
8	2			$\overline{\mathbf{V}}$	\sim							3
9	3									\sim		ı
10	4											
11	5											
12	6											

Примерът по-горе показва работа на три мотора, със стъпка 200 ms и цикъл с дължина 2000 ms.

Ред 7, мотор1 ще бъде **ON** от 0 до 200 ms от първият чекбокс и от 200 до 400 ms.

Ред 8, мотор1 ще бъде **ON** от 400 до 600 ms от първият чекбокс и от 600 до 800 ms.

Ред 9, мотор1 ще бъде **ON** от 1600 до 1800 ms от първият чекбокс и от 1800 до 2000ms.

3. Бутони и управление

- 3.1 **Default settings** връща default настройки 250 мс стъпка, 2000 мс цикъл.
- 3.2 **Reset boxes** занулява всички checkbox
- 3.3 **UPDATE** информацията се обновява и контролерът работи с последните състояния на checkbox-овете.

3.4 Last update - кога за последен път контролерът е получил настройки

22	Last update	5:45 F
23	Count of msgs	3502

Last update 5:45 PM - означава, че 5:45 PM GMT контролерът се е свързал с таблицата и е получил тогавашните настройки от нея.

Count of msgs - при всяко получаване на настройки контролерът изпраща съобщение. Двата параметъра служат за индикация дали последните настройки са пристигнали.

4. Използване

- 4.1 Потребителят влиза в таблицата и въвежда желаните настройки **STEP, LOOP cycle.**
- 4.2 Потребителят маркира желаните чекбоксове, за определени времеви периоди
- 4.3 Потребителят натиска бутона **UPDATE**, за да обнови символния низ, който се праща до контролерът.
- 4.4 Потребителят включва устройството посредством белия кабел в powerbank или адаптер.
- 4.5 Потребителят натиска червения бутон(**RESET**) на кутията на устройството, с което рестартира device-а, който се свърза с WiFi мрежата прочита символния низ от таблицата. След натискането на бутона **RESET** са необходими около **10 секунди**, в които устройството да започне работа.

При рестартиране или изключване на захранването от устройството, то няма да запомни своите настройки. То ще прочете последните настройки, от таблицата.

5. Снимки на поставяне на принтираната част в гривната

Жълтата част се поставя с моторите надолу в гривната. Кабелите трябва да минават през "изядената" част от нея.

От таблицата се вижда, че

		2	3	4	5	6	7	8	9	10	Цветове на кабели	
Act ID/ms steps	500	1000	1500	2000	2500	3000	3500	4000	4500	5000	core 1 cable color	core 2cable color
1											жълт	зелен
2					\checkmark						зелен	жълт
3					\vee						червен	черен прав
4												
5												
6												
										1	To MCU	

На реда с мотор 1, в колона **core 2 cable color,** която е в жълто се вижда че съответства зелен кабел. Най-дясната клема отговаря на мотор 1, съответна зеленият кабел отива там. Жълтият на втората, и черният на третата. Остава четвърти кабел, който трябва да отиде в най-близката клема, от реда, който е по дължина.

