SOLUTIONS SHEET 10

YANNIS BÄHNI

Exercise 1.

a.

Lemma 1.1. Let $[x] \in X/M$. Then

$$||[x]||_{X/M} = \inf_{m \in M} ||x - m||.$$

Proof. This immediately follows from

$$\{\|y\|: y \in [x]\} = \{\|x - m\|: m \in M\}.$$

Indeed, if $y \in [x]$, by definition $x - y \in M$ and thus there exists some $m \in M$ such that x - y = m or equivalently y = x - m. Conversly, $x - m \in [x]$.

• (Well definedness) Let $[x], [y] \in X/M$ such that [x] = [y]. Hence $x \sim y$ and thus we find $m_0 \in M$ such that $x - y = m_0$. Thus

$$||[x]||_{X/M} = \inf_{m \in M} ||x - m|| = \inf_{m \in M} ||y - (m - m_0)|| = \inf_{\widetilde{m} \in M} ||y - \widetilde{m}|| = ||[y]||_{X/M}$$

since M is a linear subspace.

• (*Positivity*) Let $[x] \in X/M$. If [x] = 0 we have that $x \in M$. But then

$$||[x]||_{X/M} = \inf_{m \in M} ||x - m|| = 0.$$

Conversly, assume that $||[x]||_{X/M} = 0$. By the definition of the infimum, we can construct a sequence $(m_n)_{n \in \mathbb{N}}$ in M such that $||x - m_n|| \to 0$. But then $m_n \to x$ and since M is closed we have that $x \in M$. Hence [x] = 0.

• (*Homogeneity*) Let $[x] \in X/M$ and $\lambda \in \mathbb{K}$. The case $\lambda = 0$ is clear. So assume $\lambda \neq 0$. Then

$$\begin{split} \|\lambda \, [x]\|_{X/M} &= \|[\lambda x]\|_{X/M} \\ &= \inf_{m \in M} \|\lambda x - m\| \\ &= \inf_{m \in M} |\lambda| \|x - m/\lambda\| \\ &= |\lambda| \inf_{m \in M} \|x - m/\lambda\| \\ &= |\lambda| \inf_{\widetilde{m} \in M} \|x - \widetilde{m}\| \end{split}$$

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

$$=|\lambda|\|[x]\|_{X/M}$$

since M is a linear subspace.

• (*Triangle inequality*) Let $[x], [y] \in X/M$. Then

$$\begin{split} \|[x] + [y]\|_{X/M} &= \|[x + y]\|_{X/M} \\ &= \inf_{m \in M} \|x + y - m\| \\ &= \inf_{m \in M} \|x + y - 2m + m\| \\ &\leq \inf_{m \in M} \|x - m\| + \inf_{m \in M} \|y - m\| + \inf_{m \in M} \|m\| \\ &= \inf_{m \in M} \|x - m\| + \inf_{m \in M} \|y - m\| \\ &= \|[x]\|_{X/M} + \|[y]\|_{X/M} \end{split}$$

since M is a linear subspace and thus $0 \in M$.

b. Let $x \in X$. By part **a.** we have that

$$\|\pi(x)\|_{X/M} = \|[x]\|_{X/M} = \inf_{m \in M} \|x - m\| \le \inf_{m \in M} \|x\| + \inf_{m \in M} \|m\| = \|x\|.$$

c. Let $([x_n])_{n\in\mathbb{N}}$ be a Cauchy sequence in X/M. Then $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in X. Indeed, for any $m\in M$ we have that

$$||x_n - x_k|| \le ||x_n - x_k - m|| + ||m||$$

And thus

$$\|x_n - x_k\| \le \inf_{m \in M} \|x_n - x_k - m\| + \inf_{m \in M} \|m\| = \|[x_n - x_k]\|_{X/M} = \|[x_n] - [x_k]\|_{X/M} \xrightarrow{n,k \to \infty} 0.$$

Since X is a Banach space, there exists $x \in X$ such that $x_n \to x$. Then $[x_n] \to [x]$. Indeed, by part **b.** we have

$$\lim_{n \to \infty} [x_n] = \lim_{n \to \infty} \pi(x_n) = \pi(x) = [x].$$

d. Define $\tilde{T}: X/\ker T \to T(X)$ by

$$\tilde{T}([x]) := T(x).$$

This mapping is well defined. Indeed, if $[x] = [y] \in X / \ker T$, we have that $x - y \in \ker T$ and thus

$$\tilde{T}([x]) = T(x) = T(x - y + y) = T(x - y) + T(y) = T(y) = \tilde{T}([y])$$

by the linearity of T. Also \tilde{T} is linear. Let $\lambda \in \mathbb{K}$. Then we have

$$\widetilde{T}([x] + \lambda [y]) = \widetilde{T}([x + \lambda y]) = T(x + \lambda y) = T(x) + \lambda T(y) = \widetilde{T}([x]) + \lambda \widetilde{T}([y]).$$

Clearly, \widetilde{T} is surjective. Also \widetilde{T} is injective since if $[x] \in \ker \widetilde{T}$, we have that

$$0 = \tilde{T}([x]) = T(x)$$

and thus $x \in \ker T$ which implies [x] = 0. Next we verify the commutativity of the diagram. Let $x \in X$. Then

$$(\iota \circ \widetilde{T} \circ \pi)(x) = \iota (\widetilde{T}([x])) = \iota (T(x)) = T(x).$$

Lastly we show that $\|\widetilde{T}\| = \|T\|$ which in particular implies $\widetilde{T} \in \mathcal{L}(X/\ker T, T(X))$. Indeed, by part **b.** we have that $\|\pi(x)\|_{X/M} \leq \|x\|$ for all $x \in X$ and thus

$$\|\widetilde{T}([x])\| \leq \|\widetilde{T}\| \|[x]\|_{X/M} = \|\widetilde{T}\| \|\pi(x)\|_{X/M} \leq \|\widetilde{T}\| \|x\| = \|T\| \|x\|$$

for all $[x] \in X/M$.

• $(||T|| \le ||\widetilde{T}||)$ Observe that

$${x \in X : ||x|| \le 1} \subseteq {x \in X : ||[x]||_{X/M} \le 1}$$

by the continuity of π . Thus

$$||T|| = \sup_{\|x\| \le 1} ||T(x)|| \le \sup_{\|[x]\|_{X/M} \le 1} ||T(x)|| = \sup_{\|[x]\|_{X/M} \le 1} ||T([x])|| = ||\tilde{T}||.$$