Answer Key

- a. P(1) = 1 + 1 = 2, true 1.
 - b. P(3) = 9 + 1 = 10, false
 - c. P(9) = 81 + 1 = 81, false
- 2. a. $a_1 = 1$
 - b. $a_2 = 1 + 4 = 5$
 - c. $a_3 = 5 + 4 = 9$
 - d. $a_{m-1} =$ (Anywhere you see k, plug in m-1.) $a_{m-2} + 4$
- 3. a. $a_1 = 4 3 = 1$
 - b. $a_3 = 12 3 = 9$
 - c. $a_5 = 20 3 = 27$
 - d. $a_{m-1} = (\text{Anywhere you see } n, \text{ plug in } m-1.)$ 4(m-1) - 3 = 4m - 4 - 3 = 4m - 7
- 4. **Step 1:**

Recursive: $a_1 = 5$; Closed: $a_1 = 2(1) + 3 = 5$

Step 2:

$$a_m = 4 \cdot a_{m-1} + 2$$

Step 3:

$$a_{m-1} = 2(m-1) + 3$$

 $a_{m-1} = 2(m-1) + 3$ = 2m - 2 + 3 = 2m + 1

Step 4:

$$a_m = a_{m-1} + 2$$

$$a_m = (2m+1) + 2$$

$$a_m = 2m + 3$$

5. **Step 1:**

Recursive: $a_1 = 1$ Closed: $a_1 = 2^1 - 1 = 1$

Step 2:

$$a_m = 2 \cdot a_{m-1} + 1$$

Step 3:

$$a_{m-1} = 2^{m-1} - 1$$
 $= 2^m \cdot 2^{-1} - 1$ $= \frac{2^m}{2^1} - 1$

Step 4:

$$a_m = 2 \cdot a_{m-1} + 1$$

$$a_m = 2^1 \left(\frac{2^m}{2^1} - 1\right) + 1$$

$$a_m = 2^m - 2 + 1$$

$$a_m = 2^m - 1$$

6. Step 1:

Recursive: $b_1 = 3$; Closed: $b_1 = 2^{2 \cdot 1} - 1 = 4 - 1 = 3$

Step 2:

$$b_m = 4 \cdot b_{m-1} + 3$$

Step 3:

$$b_{m-1} = 2^{2(m-1)} - 1$$
 $= 2^{2m} \cdot 2^{-2} - 1$ $= \frac{2^{2m}}{2^2} - 1;$

Step 4:

$$b_m = 4a_{m-1} + 3$$

$$b_m = 4\left(\frac{2^{2m}}{2^2} - 1\right) + 3$$

$$b_m = 2^2\left(\frac{2^{2m}}{2^2} - 1\right) + 3$$

$$b_m = 2^{2m} - 4 + 3$$

$$b_m = 2^{2m} - 1$$

7. Step 1:

Step 2:

$$\sum_{i=1}^{m} (2i+4) = \sum_{i=1}^{m-1} (2i+4) + (2m+4)$$

Step 3:

$$\sum_{i=1}^{m-1} (2i+4) = (m-1)^2 + 5(m-1)$$

$$\sum_{i=1}^{m-1} (2i+4) = m^2 - 2m + 1 + 5m - 5$$

$$\sum_{i=1}^{m-1} (2i+4) = m^2 + 3m - 4$$

Step 4:

$$\sum_{i=1}^{m} (2i+4) = (m^2 + 3m - 4) + (2m+4)$$
$$\sum_{i=1}^{m} (2i+4) = m^2 + 5m$$

This matches the original proposition.

8. **Step 1:**

i value	$\sum_{i=1}^{n} i$	$\frac{n(n+1)}{2}$
i = 1	1	$\frac{1(2)}{2} = 1$
i = 2	1+2=3	$\frac{2(2+1)}{2} = 3$
i = 3	1+2+3=6	$\frac{3(3+1)}{2} = 6$

Step 2:

$$\sum_{i=1}^{m} i = \sum_{i=1}^{m-1} (i) + m$$

$$\sum_{i=1}^{m-1} i = \frac{(m-1)(m)}{2}$$

$$\sum_{i=1}^{m-1} i = \frac{m^2 - m}{2}$$

Step 4:

$$\begin{split} \sum_{i=1}^m i &= \frac{m^2-m}{2} + m \\ \sum_{i=1}^m i &= \frac{m^2-m}{2} + \frac{2m}{2} \\ \sum_{i=1}^m i &= \frac{m^2+m}{2} \\ \sum_{i=1}^m i &= \frac{m(m+1)}{2} \end{split}$$
 This matches the original proposition.