An analysis and machine learning project by **B.Nedyalkov**

Diabetes

Statistics and insights of diabetic patients (Pima native American women)

Overview

Diabetes dataset

The data consists of:

- The of clinical parameters (Blood glucose, age, BMI, etc.)
- Of **768** women
 - 268 of whom with type II diabetes
 - 500 without
- From Pima Indian heritage

Diabetes type II is a disease that stops the body from using insulin properly

Overview

Diabetes facts

- Over time, type 2 diabetes can cause serious damage to the body, especially nerves and blood vessels
- Type 2 diabetes is <u>often preventable</u>
- Diabetes is a <u>risk factor for many diseases</u> and health complications
- It is the leading cause of blindness and amputation in adults
- Diabetics have at least <u>2 times the medical costs</u> of someone without diabetes

Analysis of the Data

Most important factors

- BMI
- Insulin levels
- Glucose levels (Blood sugar)
- Age

200 800 75 175 29 100 125 100 75 [7/lomd] ullusul 50 1.0 0.0 0.0 1.0 Outcome Outcome 50 40 40 Age (years) 30 BW 20 10 0 1.0 0.0 1.0 0.0 Outcome Outcome

Analysis of the data

Most important factors

- BMI
- Insulin levels
- Glucose levels (Blood sugar)
- Age

0 = No Diabetes1 = Has Diabetes

Distributions of the data

Analysis of the data

Insights from the data

- Women with more then 5 pregnancies are a risk group
- The diabetes pedigree has very limited impact below value = 1
- Glucose level is a major sign of diabetes
- Diabetes develops predominantly in women in their 30s to 50s
- Overweight individuals (BIM > 25) are much more likely to have diabetes

Curios findings

Skin Thickness vs BMI

Skin Thickness ≈ 1.1xBMI + 4.4

The thickness of the skin in is approximately linearly proportional to the Body mass index (aka. How much muscle and fat are there in one's body)

Machine Learning

The Model

By having 100% recall rate we can guarantee that 0% of the patients from the test set will come up as False Negatives

The models

3 ML models were tried

- Logistic regression
- Random Forest
- XGBoosted Random Forests

The tuning

Random and grid search were implemented

Best model

Hyper-tuned XGBoost with:

- Recall = 100%
- Precision = 63%

Machine Learning

Notes on the Models

The accuracy of the models was chosen based on the area under the Precision-Recall curve, which shows a score **between 0 and 1** (correspondingly no fit and perfect fit), this is called the "**Average accuracy score**"

- The Linear regression model seems to function well, but struggles with its selectivity (Average accuracy score ≈ 0.8 +- 0.15)
- The Random Forest seems to overfit (Average accuracy score ≈ 0.77 +- 0.15)
- XGBoosted Trees seems to perform the best, giving a nice fit and an Average accuracy score of ≈ 0.78 +-0.08

Message to take home

Diabetes type II is a mostly predictable and preventable disease

Weight is a big factor

Having Body Mass Index over 25 correlated with high probability of having diabetes

Blood sugar levels

Balanced diet is could be a key for avoiding/treating diabetes

The Model

A model is available that can with high accuracy identify diabetics from their clinical parameters

Thankyou

This project was delivered to you by Boris Y.

Nedyalkov