

COLLEGE OF ENGINEERING - Fall 2019

INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH DEPARTMENT - DATA SCIENCE (INDENG242)

COURSE PROJECT:

Machine Learning For The Prediction Of The Success Of Altcoins

Made by:

Johnson Kanjirathinkal, Philippe Ferreira De Sousa, Alejandro Sanchez Molina, Arun Putcha

Contents

1	Motivation	2
2	Data	2
3	Dead coin prediction	4
	3.1 Logistic regression	4
	3.2 Random forest	5
	3.3 Gradient Boosting	
	3.4 Conclusion	7
4	Portfolio determination based on naive growth rates	7
5	Portfolio determination in a log normal stock model	8
	5.1 Linear regression	8
	5.2 Random forest	
	5.3 Gradient boosting	8
	5.4 Conclusion	9
6	Portfolio determination in real-world	10
7	Appendix	11
	7.1 Column Definitions	11
	7.2 Python Code	13
	7.3 Annotated R Code	21

1 Motivation

Altroins are alternative cryptocurrencies launched after the success of bitcoin. While the success of altroins primarily depends on a number of factors such as the tech use case, funding, community and competition, general volume movement surges after they get listed on a major exchange.

Figure 1: Value of \$100 of IOTA invested at the time of ICO

With the thousands of Initial Coin Offerings (ICOs), airdrops and obscure offerings that altroins end up going through, we want to predict the likelihood of a particular set of altroins gaining in value over a period of time. For instance, Fig. 1 represents the value of 100\$ invested in IOTA at the time of ICO till date. The all time high was equivalent to \$910,170 and \$35,080 at the time of this report. Even if some of the portfolio of altroins selected lose its value, the large growth rates of a small number would relate to profitability. This calculation has been considered for determination of portfolio value.

Identifying what makes an altroin successful or unsuccessful has been hypothesized to be dependent on features not limited to the existence of a white paper, team credibility, Github activity, market cap etc. The data collection and modelling has been done to test these hypotheses.

2 Data

Historical altcoin data is not easily available publicly as a result of a variety of coins constantly being added and removed. We determined that Coinmarketcap.com and Coincheckup.com provided sufficient resources for data collection pertaining to our problem statement. In order to evaluate the change in altcoin performance, we decided to consider a 10-month gap between our prediction estimation. All required data for this time frame was scrapped from the HTML from a historical snapshot from The Wayback Machine.

The data from Feb 2019 had 1761 observations, while the data from Dec 2019 had 1916 observations. The count of common coins between these data sets was found to be 1460. Fields that were considered to provide no value to the contribution of features was removed. Fields that had a large number of "NAs" were also dropped. As a consequence of altcoins purchases being done in exchange for BTC or ETH, all prices were converted to BTC, tied to the USD value of BTC on

Figure 2: Fundamental analysis page of coincheckup.com

the day of the data snapshot. An assumption taken was that the market cap change would be of considerable importance. For cryptocurrencies, market cap is defined as the product of price and number of coins in circulation. However, it turns out the number of coins in circulation is modified or adjusted for a number of reasons. For instance, when it is discovered that some coins are lost forever (wallet seed is lost or destroyed) or the developers decide to "drop" privately held coins into circulation. As a result, this field was determined to be unreliable and removed from consideration for model building.

For the creation of a test and training set, the percentage change in price was calculated for each coin based on the December and February data. This value was plotted and based on the number of coins, a growth of greater than 30% was defined to be a successful outcome. A zoomed in plot of percentage change in price can be seen in Fig. 3. The red horizontal line marks the 30% cut-off of the price change. This was used to create a column in the data frame to set a binary value for said outcome.

Python files used to generate the dataset are attached in annex. We used parse.py, parse_ia.py and parse_fa.py to parse the HTMl from 3 different pages of CoinCheckup.com, namely the fundamental analysis page (fa) and the investment analysis page (ia). It needs to be done for the version of the website in March and in December. Then we can merge all the data from March in merge_fixed_data.py.

Then in add_performance_to_merged_data.py we can read data from December and create 5 columns:

- 1. label_Price: price in December
- 2. label_growth_rate_Price: (label_Price Price)/Price
- 3. label_Mkt. Cap: Market Cap in December

Figure 3: Plot of BTC Price Change for all coins

- 4. label_growth_rate_Mkt. Cap: (label_Mkt. Cap Mkt. Cap)/Mkt. Cap
- 5. label_disappeared: whether a coin is listed in March but not in December

3 Dead coin prediction

3.1 Logistic regression

The list of coins on Coincheckup.com is different between 10 months ago and now. Some have been added (new coins) and others have been removed. We label the removed coins as dead coins and the remaining coins as still alive. We want to predict the death of a coin over those 10 months based on the data that we had in March. As a result, we created a column "label_disappeared" in the March dataset to tell whether the coin is dead or not. We split the dataset in 70% training and 30% testing (with fair distribution of dead coins in both parts).

#	Alive	Dead
Train	1025	208
Test	439	89

We begin with a logistic regression on the features which are numeric and have a very low rate of NAs. We check that our VIF is correct. Then we reduce the range of features to the relevant

ones and make a final logistic model, that we compare to the baseline We do a logistic regression with an arbitrary threshold p = 0.2 and with an AIC of 1015.9 we get:

$$\hat{Y}_{dead} = sigmoid(-0.004X_{X45d} - 0.032X_{Social})$$

with $sigmoid: x \to \frac{1}{1+e^{-x}}$. See appendix for feature descriptions.

We can make predictions on the test set and compare with the result 10 months later. The proportion of dead coins is around 20% and when we predict that if a coin is dead, it is true more or less half of the time, so the model is not too bad!

Real Pred	Alive	Dead	Model	Accuracy	TPR	FPR	
Alive	320	117	Baseline	83.1%	0	0	
Dead	37	52	Logistic reg.	70.5%	58.4%	26.8%	

Figure 4: ROC of the logistic regression (dead coin prediction)

3.2 Random forest

We began checking the number of NAs in each column to select the features. We choose: X_{X24h} , X_{X14d} , X_{X45d} , X_{Social} , $X_{Mkt.Cap}$, $X_{Age.mo}$ and $X_{Business}$. Then we try a random forest with cross-validation. We try a cross-validation measured with Accuracy and then F1-score as Accuracy is less relevant for unbalanced data.

Based on the results of figure 5, an mtry of 3 looks good. We can try sampling stratification to handle the imbalance of the data.

Real Pred	Δlivo	Dead	Model	Accuracy	IPK	FPR
		Dead	Baseline	83.1%	0	0
Alive	427	10			58.4%	26.80%
Dead	70	19				
Dead	10	10	Random forest	84.47%	21.35%	2.29%

Figure 5: Cross validation of the random forest (dead coin prediction)

3.3 Gradient Boosting

Finally we can try a gradient boosting method with cross-validation.

Figure 6: Cross validation of the gradient boosting (dead coin prediction)

			Model	Accuracy	TPR	FPR	
Real Pred	Alive	Dead	Baseline	83.1%	0	0	
Alive	221	218	Logistic reg.	70.5%	58.4%	26.8%	
Dead	70	19	Random forest	84.47%	21.35%	2.29%	
			Gradient boosting	45.45%	21.35%	49.66%	

Based on results from figure 6, we choose n.trees = 2000, interaction.depth = 8.

3.4 Conclusion

Our random forest reaches the best accuracy, beating the baseline, while having a positive TPR and a low FPR.

Our gradient boosting model is very bad while the logistic regression threshold has been chosen to get the highest TPR, but it is at the expense of the accuracy and FPR.

4 Portfolio determination based on naive growth rates

Now let's tackle serious matters, we want to make money! To do that we need to establish a portfolio of assets. For now we assume that there is no opportunity cost for each asset to be in the portfolio. In practice there are fees to enter a position for each coin.

We want to naively predict $Y = label_rate_Price = \frac{p_T - p_0}{p_0}$ over a period T of 10 months. After trying a linear regression on a lot of features, we stumble upon a multi-colinearity problem. So we remove the guilty features and then keep the few significant features:

$$Y = -2.53 \times 10^{-3} X_{Circ.Supply} + 9.58 \times 10^{-12} X_{Total.Supply} + \epsilon$$

It looks bad. We can compare it to the baseline (predicting negative all the time). We assume that we invest the same amount of money in each coin (ignoring fees) if we follow the baseline while we invest sizes $s_i = \frac{Y_i}{p_{0,i}}$ if we follow our regression strategy. We can thus compute the result growth rate of both portfolios:

1. Linear regression:
$$R = \frac{\sum_{i=1}^{N} s_i p_T^i - \sum_{i=1}^{N} s_i p_0^i}{\sum_{i=1}^{N} s_i p_0^i} = \frac{\sum_{i=1}^{N} Y_i r_i}{\sum_{i=1}^{N} Y_i} = 0.142$$

2. Baseline:
$$R_b = \frac{\sum_{i=1}^{N} r_i}{N} = -0.342$$

Surprisingly we still beat the baseline on the test set and even earn money. We are lucky.

5 Portfolio determination in a log normal stock model

5.1 Linear regression

We often assume that the price of a stock follows a log-normal distribution, that is to say that for S_t the price of an asset at time t, $log(S_t) \sim \mathcal{N}(\mu, \sigma^2)$. Let's B_t be a standard Brownian motion $(\forall s < t, B_t - B_s \sim \mathcal{N}(0, t - s))$. We can write $S_t = S_0 e^{\mu t + \sigma B_t}$. Then for a time T > 0 being our 10 months, $Y^{log} = log(S_T) - log(S_0) = \mu T + \sigma B_T$ where $B_T \sim \mathcal{N}(0, T)$.

Thus performing a linear regression $\forall 1 \leq i \leq n, Y_i^{log} = \beta_0 + \sum_{j=1}^p \beta_j X_{ij} + \epsilon_i$, we can try, assuming our parameters constant, to estimate $\mu = \frac{1}{T}(\beta_0 + \sum_{j=1}^p \beta_j X_{ij})$. However estimating σ from ϵ would require us to assume that each coin has the same constant volatility which is too strong.

We need to do a new split of the data. We come across a big multi-colinearity issue which forces us to remove some features. Making particular choices we find:

$$Y^{\hat{l}og} = \mu T = -1.06 - 0.00169 X_{X7d} - 0.00033 X_{MarketCap} + 0.00412 X_{Age} + \epsilon$$

$$\frac{\text{Model} \quad | \text{MSE} \quad \text{MAE} \quad OSR^2 \quad \text{R}}{\text{Baseline} \quad 1.35 \quad 0.774 \quad 0 \quad 0.413}$$

$$\text{Linear reg.} \quad 1.332 \quad 0.766 \quad 0.0152 \quad 0.50$$

We can create a portfolio with sizes $s_i = exp(Y^{\hat{l}og}_i)$. Then our return is $R_{log} = \frac{\sum_{i=1}^N s_i p_T^i - \sum_{i=1}^N s_i p_0^i}{\sum_{i=1}^N s_i p_0^i} = \frac{\sum_{i=1}^N s_i r_i}{\sum_{i=1}^N s_i} = 0.500$ against $R_b = \frac{\sum_{i=1}^N r_i}{N} = 0.413$ for the baseline.

Much better already! We see that filtering out coins where information is missing, our portfolio behaves already better! That's because trustworthy coins get all their information filled.

5.2 Random forest

We take the features from the 2 previous models and we try it out on a random forest. The best value is 1 for mtry.

Model	MSE	MAE	OSR^2	\mathbf{R}
Baseline		0.774		0.413
Linear reg.	1.332	0.766	0.0152	0.50
Random forest	1.343	0.768	0.005	0.318

Unfortunately this model does not beat the baseline in term of financial gain.

5.3 Gradient boosting

We use the same features as for the random forest. After cross-validation (figure 8, we conclude that the best parameters are the biggest ones.

Figure 7: Cross validation of the random forest (log-normal model)

Figure 8: Cross validation of the gradient boosting (log-normal model)

Model	MSE	MAE	OSR^2	\mathbf{R}
Baseline		0.774	_	0.413
Linear reg.			0.0152	
Random forest			0.005	
Gradient boosting	1.418	0.785	-0.050	0.290

This is also very bad compared to the baseline in term of porfolio return R.

5.4 Conclusion

The linear regression stays the best fit on the test set. The other model seem to overfit the data. Complicated models on low quality data makes bad results.

6 Portfolio determination in real-world

In reality there is an opportunity cost in choosing more coins in a portfolio. This cost comes form the fees to enter and exit the position: buy and sell fees plus withdraw fee (blockchain mining reward). Using the model from previous section. If we choose the coin with the best predicted μ according to the linear regression, we get a growth rate r=2.067 for CannabisCoin, which outperforms R_{log} .

The top 5 includes: CannabisCoin, GlobalBoost-Y, Quebecoin, SolarCoin, Curecoin.

7 Appendix

7.1 Column Definitions

Column Name	Description
MCpast	Position of the coin the time of snapshot
Symbol_past	Trading symbol for each coin
Price_past	Price in USD at the time of snapshot
BTC_past	Price in BTC at the time of snapshot
X30d_past	Percentage change in price over 30 days
X45d_past	Percentage change in price over 45 days
X90d_past	Percentage change in price over 90 days
X200d_past	Percentage change in price over 200 days
MktCap_past	Market Cap in USD
MCAP.BTC_past	Market Cap in BTC
CircSupply_past	No of circulating coins in supply
Total.Supply_past	Total supply of coins
MaxSupply_past	Maximum supply of coins possible
Team_past	Confidence value of the team based on past performance of
	leadership, developers etc, in percentage.
Advisors_past	Confidence value of the advisors, whether they have been
	successful historically and confirmed to be associated with
	said coin, in percentage.
Brand.Buzz_past	How large and active is the community as compared to the
	rest of the market, in percentage
Product_past	Is the coin an idea or a product at this stage, does it have a
	roadmap and available, confidence in percentage
Coin_past	Confidence in ability to transact high volumes and avail-
	abilty, in percentage
Social_past	Confidence in activity over social media, in percentage
Communication_past	Confidence of accessibility and activity over slack, telegram,
	email etc, in percentage
Business_past	Confidence in investors behind project, publishing of revenue
	reports etc, in percentage
GitHub_past	Confidence in activity on Github, in percentage
Agemopast	Age of the coins, in number of months
Winning.months_past	No of successful months with positive growth over 12
	months, in percentage
Start.price_past	ICO start price
CMGR3mo_past	Compound Monthly Growth Rate trailing 3 months
CumROI_past	Cumulative ROI, the ROI in % from start trading price till
	the current price
Avgvolume_past	Average volume of coins traded
ATH_past	All time high of coin in USD

XfmATH_past	Change in USD price from ATH, in percentage
ATHBTCpast	All time high of coin in BTC
XfmATHBTCpast	Change in BTC price from ATH, in percentage
Name	Name of the coin
Mkt.BTC_c	Market cap converstion from USD to BTC
growth8mth	Price change over month duration
BTCprice_change	Percentage change in BTC compared to December
BTCmcap_change	Market cap change of in BTC compared to December snap-
	shot
success	Binary value where 1 equals greater than 30% increase in
	price

7.2 Python Code

```
parse.py
# URL = "https://web.archive.org/web/20190208144932/https://coincheckup.com/predictions"
import re
from bs4 import BeautifulSoup
import csv
datas = []
for tab_idx in range(1, 22):
    with open(f"html/20190208/predictions/Predictions Overview –
       CoinCheckup{tab_idx}.html") as file:
       soup = BeautifulSoup(file.read(), 'html.parser')
       cryptos = [link.string for link in soup.find_all('a') if link.get("href") and "coins"
           in link.get ("href")]
       divs = [row for row in soup.find_all (attrs={"class": re.compile("ag-row
           ag-row-no-focus ag-row-\w* ag-row-level-0")}) if
               row.div is not None and row.div.span is None
       data = [[cryptos[idx]] + [cell.string.strip ("$").replace(',',') for cell in
            div.children | for idx, div in enumerate(divs)|
       datas.append(data)
with open('coincheckup_10_months_predictions.csv', 'w', newline='') as csvfile:
    writer = csv.writer(csvfile, delimiter=',')
    writer.writerow([span.string for span in soup.find_all(role="columnheader")])
    for data in datas:
        for row in data:
           writer.writerow(row)
```

```
# URL = "https://web.archive.org/web/20190208144932/https://coincheckup.com/analysis"
import re
from bs4 import BeautifulSoup
import csv
def current():
    datas = []
    for tab_idx in range(1, 21):
       with open(f"html/20191205/fundamental_analysis/Analysis Overview –
           CoinCheckup{tab_idx}.html") as file:
           soup = BeautifulSoup(file.read(), 'html.parser')
           cryptos = [link.string for link in soup.find_all('a') if link.get("href") and
                "coins" in link.get ("href")]
           divs = [row for row in soup.find_all (attrs={"class": re.compile("ag-row
                ag-row-no-focus ag-row-\w* ag-row-level-0")}) if
                   row.div is not None and row.contents[1].img is None]
           data = [[cryptos[idx]] + [div.contents[i].string if div.contents[i].div is None
               else div.contents [i] .div.string for i in range(len(div.contents)-1) if i!=1]
                for idx, div in enumerate(divs)
           for d in data:
               #print(d)
                for i in range(len(d)):
                    if d[i] is not None: # Some 200d values are None
                       d[i] = d[i] .strip ("$\%") # MM and K units should be handled here
           datas.append(data)
    with open('coincheckup_current_fa.csv', 'w', newline='') as csvfile:
        writer = csv.writer(csvfile, delimiter=',')
        ### WARNING: Problem with order in the column, FIXED HEADER
       header=['Name', 'MC #', 'Symbol', 'Price', 'BTC', '1h', '24h', '7d', '14d', '30d',
            '45d', '90d', '200d', 'Mkt. Cap', 'MCAP BTC', '24h Vol', '24h Vol BTC', 'Circ.
           Supply', 'Total Supply', 'Max. Supply', 'Team', 'Advisors', 'Brand/Buzz',
           'Product', 'Coin', 'Social', 'Communication', 'Business', 'GitHub', 'GitHub', 'Avg.
           volume', 'Age (mo)', 'Winning months']
        #writer.writerow([span.string for span in soup.find_all (role="columnheader")[1:-1] if
           span.string is not None)
       writer.writerow(header)
        for data in datas:
           for row in data:
```

writer.writerow(row)

```
def ten_months():
    datas = []
    for tab\_idx in range(1, 19):
       with open(f"html/20190208/fundamental_analysis/Analysis Overview –
            CoinCheckup{tab_idx}.html") as file:
            soup = BeautifulSoup(file.read(), 'html.parser')
            cryptos = [link.string for link in soup.find_all('a') if link.get("href") and
               "coins" in link.get ("href")]
            divs = [row for row in]
                    soup.find_all (attrs={"class": re.compile("ag-row ag-row-no-focus
                       ag-row-\sqrt{w*ag-row-level-0"}) if
                   row.div is not None and row.contents[1].img is None]
            data = [
                [cryptos[idx]] + [div.contents[i].string if div.contents[i].div is None else
                    div.contents[i].div.string
                                 for i in range(len(div.contents) -2)] for idx, div in
                                     enumerate(divs)]
            for d in data:
               print (d)
                for i in range(len(d)):
                   ### WARNING: I modify this part because there is a column that is
                       useless
                    if i <= 2:
                        if i == 2:
                           continue
                        if d[i] is not None: # Some 200d values are None
                           d[i] = d[i] .strip ("$%")
                    else:
                        if d[i] is not None: # Some 200d values are None
                           d[i-1] = d[i] .strip ("$\%")
            datas.append(data)
    with open('coincheckup_10_months_fa.csv', 'w', newline='') as csvfile:
        writer = csv.writer(csvfile, delimiter=',')
       ### WARNING: Problem with order in the column, FIXED HEADER
       header=['Name', 'MC #', 'Symbol', 'Price', 'BTC', '1h', '24h', '7d', '14d', '30d',
```

```
'45d', '90d', '200d', 'Mkt. Cap', 'MCAP BTC', '24h Vol', '24h Vol BTC', 'Circ. Supply', 'Total Supply', 'Max. Supply', 'Team', 'Advisors', 'Brand/Buzz', 'Product', 'Coin', 'Social', 'Communication', 'Business', 'GitHub', 'GitHub', 'Avg. volume', 'Age (mo)', 'Winning months']

#writer.writerow([span.string for span in soup.find_all (role="columnheader")[1:-1] if span.string is not None])

writer.writerow(header)

for data in datas:
    for row in data:
        writer.writerow(row)
```

```
# URL = "https://web.archive.org/web/20190208144932/https://coincheckup.com/analysis"
import re
from bs4 import BeautifulSoup
import csv
def current():
   datas = []
   numeration=1
    for tab_idx in range(1, 25):
       with open(f"html/20191205/investment_analysis/Investment Overview -
           CoinCheckup{tab_idx}.html") as file:
           soup = BeautifulSoup(file.read(), 'html.parser')
           cryptos = [link.string for link in soup.find_all('a') if link.get("href") and
               "coins" in link.get ("href")]
           divs = [row for row in soup.find_all (attrs={"class": re.compile("ag-row
               ag-row-no-focus ag-row-\w* ag-row-level-0")}) if
                   row.div is not None and row.contents[1].img is None]
           data = [[cryptos[idx]] + [cell.string.strip ("$%").replace(',',') for cell in
                div.children for idx, div in enumerate(divs)
           datas.append(data)
   with open('coincheckup_current_ia.csv', 'w', newline='') as csvfile:
       writer = csv.writer(csvfile, delimiter=',')
       writer.writerow([span.string for span in soup.find_all(role="columnheader")[1:] if
            span.string is not None])
        for data in datas:
           for row in data:
                data.insert
               writer.writerow(row)
def ten_months():
   datas = []
    for tab_idx in range(1, 22):
       with open(f"html/20190208/investment_analysis/Investment Overview -
           CoinCheckup{tab_idx}.html") as file:
```

```
soup = BeautifulSoup(file.read(), 'html.parser')
            cryptos = [link.string for link in soup.find_all('a') if link.get("href") and
                "coins" in link.get ("href")]
            divs = [row for row in]
                    soup.find_all (attrs={"class": re.compile("ag-row ag-row-no-focus
                        ag-row-\sqrt{w*ag-row-level-0"}) if
                    row.div is not None and row.contents[1].img is None]
            if len(cryptos) == 0:
                print("WARNING: File of idx {} is ignored because it contains no
                    data".format(tab_idx))
                continue
            data = [[cryptos[idx]] + [cell.string.strip ("$%").replace(',',') for cell in
                div.children for idx, div in enumerate(divs)
            datas.append(data)
    with open('coincheckup_10_months_ia.csv', 'w', newline='') as csvfile:
        writer = csv.writer(csvfile, delimiter=',')
       writer.writerow ([span.string for span in soup.find_all (role="columnheader")[1:] if
            span.string is not None)
        for data in datas:
            for row in data:
                writer.writerow(row)
current()
ten_months()
```

```
import csv
```

```
num_fields = ['MC #', 'Price', 'BTC', '1h', '24h', '7d', '14d', '30d', '45d', '90d', '200d',
    'Mkt. Cap', 'MCAP BTC', '24h Vol', '24h Vol BTC', 'Circ. Supply', 'Total Supply', 'Max.
    Supply', 'Team', 'Advisors', 'Brand/Buzz', 'Product', 'Coin', 'Social', 'Communication',
    'Business', 'GitHub', 'Avg. volume', 'Age (mo)', 'Winning months']
with open ("fixed_data/coincheckup_10_months_fa.csv", 'r', newline=") as old_fa,
    open("fixed_data/coincheckup_10_months_fa.csv", 'r', newline=") as old_ia:
    fa_reader = csv.DictReader(old_fa, delimiter=',')
    ia_reader = csv.DictReader(old_ia, delimiter=',')
    fields = set(fa_reader.fieldnames).union(set(ia_reader.fieldnames))
    #data = pd.DataFrame({field: [] for field in fields })
    data = {row["Name"]: row for row in fa_reader}
    for row in ia_reader:
        for key, value in row.items():
            data[row["Name"]][key] = value
    for name, row in data.items():
        for field in num_fields:
            if row[field] in {'--', '---', '', 'N/A'}:
                row[field] = "
            else:
                row[field] = float(row[field].strip("$%").replace(',',').replace(',',
                    '').replace('K', '000').replace('MM', '000000').replace('Bn',
                    '000000000').replace('Tn', '000000000000'))
with open("merged_10months_data.csv", 'w', newline='') as output:
    writer = csv.DictWriter(output, delimiter=',', fieldnames=fields)
    writer.writeheader()
    for row in data.values():
        writer.writerow(row)
```