		Not	e
		I	l II
Name Vorname			
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)			
Unterschrift der Kandidatin/des Kandidaten	4		
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	$\begin{vmatrix} 6 \end{vmatrix}$		
Klausur			
Mathematik 3 für Physiker			
(Analysis 2)	8		
Prof. Dr. D. Castrigiano	9		
3. August 2010, 08:30 – 10:00 Uhr			
	\sum		
Hörsaal: Reihe: Platz:			
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 9 Aufgaben	I	rstkorrek	tur
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4 Blätter		weitkorre	ktur
Erreichbare Gesamtpunktzahl: 83 Punkte			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.			

Vorzeitig abgegeben um

 $Be sondere\ Bemerkungen:$

1. Fourierreihen Sei f 2π -periodisch mit $f(t)=t^2$ für $t\in [-\pi,\pi[$.	(12 Punkte)
(a) Berechnen Sie die Fourierkoeffizienten \hat{f}_k von f .	
(b) Die Fourierreihe von f an der Stelle t ist $Sf(t) = \sum_{k=-\infty}^{\infty} \hat{f}$ folgende Aussagen wahr oder falsch sind.	e^{ikt} . Begründen Sie kurz, warum
(i) Sf konvergiert gleichmäßig auf jedem Kompaktum.	
(ii) Sf konvergiert gleichmäßig.	
(iii) $Sf(t)$ konvergiert absolut für jedes t .	
(iv) Sf konvergiert normal.	

2. Matrixexponential

(10 Punkte)

Sei
$$A = \begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix}$$
.

(a) Geben Sie die Eigenwerte λ_1 und λ_2 zu den Eigenvektoren $b_1=\binom{2}{1}$ und $b_2=\binom{2}{-1}$ von A an.

$$\lambda_1 =$$

$$\lambda_2 =$$

- (b) Berechnen Sie damit das Matrix exponential e^{tA} (Rechenweg wird gewertet).
- (c) Wie lautet die Lösung der AWA y' = Ay, $y(1) = \binom{0}{1}$?

	M.
(a) Man zeige: f	$f\circ g$ ist Lipschitz-stetig mit Lipschitz-Konstante LM .
(b) Geben Sie ein	ne hinreichende Bedingung dafür an, dass $f \circ g$ eine Kontraktion ist.
(c) Man gebe ko kleinstmöglic	onkret einen metrischen Raum (X,d) und zwei Funktionen $f,g:X\to X$ an, che Lipschitz-Konstanten $L=M=2$ haben, für die $f\circ g$ eine Kontraktion ist.

$4. \ \ \textbf{Differenzierbarkeit}$

(12 Punkte)

Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei definiert durch

$$f(x,y) := \begin{cases} \frac{x^2y}{x^2 + y^2}, & (x,y) \neq 0, \\ 0, & (x,y) = 0. \end{cases}$$

(a) Sei $v=(1,1)\in\mathbb{R}^2.$ Man berechne

$$\partial_v f(0) =$$

$$\partial_1 f(0) =$$

$$\partial_2 f(0) =$$

- (b) Zeigen Sie, dass f im Ursprung stetig ist.
- (c) Zeigen Sie, dass f im Ursprung nicht total differenzierbar ist.

5.	Taylor-Formel	(10 Punkte)

Gegeben sei eine Funktion $f \in C^4(\mathbb{R}^2)$ mit

$$f(0) = 3, \quad \partial_1^2 f(0) = \partial_1 \partial_2 f(0) = \partial_2 \partial_1 f(0) = -2, \quad \partial_2^3 f(0) = \partial_1^2 \partial_2 f(0) = \partial_1 \partial_2 \partial_1 f(0) = \partial_2 \partial_1^2 f(0) = 1.$$

Alle nicht angegebenen ersten, zweiten und dritten partiellen Ableitungen sind im Nullpunkt gleich 0.

(a) Wie lautet explizit die Taylorentwicklung bis zur dritten Ordnung von f im Entwicklungspunkt $0 \in \mathbb{R}^2$?

$$f(x,y) = +R_4(x,y)$$

- (b) Für welche $k\in\mathbb{N}_0$ kann man $\lim_{(x,y)\to 0}\frac{R_4(x,y)}{\sqrt{x^2+y^2}^k}=0$ folgern?
 - $\square \ k=0$ $\square \ k=1$ $\square \ k=2$ $\square \ k=3$ $\square \ k=4$ $\square \ k=5$
- (c) Wie lautet die Taylorentwicklung von g(t) = f(5t, t) bis zur dritten Ordnung in t im Entwicklungspunkt 0 explizit?

$$g(t) = +R_4(t)$$

6. Implizit definierte Funktionen

(8 Punkte)

Sei $f(x, y, z) = xz - e^{yz - x}$ und $P = (2, 4, \frac{1}{2})$. Es gilt f(P) = 0. Die Gleichung f(x, y, z) = 0 soll in einer Umgebung des Punktes P lokal nach z aufgelöst werden. Man erhält die Funktion $(x, y) \mapsto \tilde{z}(x, y)$.

(a) Berechnen Sie grad f(x, y, z).

 $\operatorname{grad} f(x, y, z) =$

(b) Wie lautet die Formel für grad $\tilde{z}(x,y)$ für (x,y) aus dem Definitionsbereich von \tilde{z} ?

 $\operatorname{grad} \tilde{z}(x,y) =$

(c) Berechnen Sie grad $\tilde{z}(2,4)$.

 $\partial_x \tilde{z}(2,4) =$

 $\partial_y \tilde{z}(2,4) =$

7. Extrema mit Nebenbedingungen (8 Punkte) Wenden Sie die Methode des Lagrange-Multiplikators an, um die Kandidaten für lokale Extremwerte der Funktion $f(x,y) = x^2 + y^2$ unter der Nebenbedingung $x + y^2 = 1$ zu finden.

8	Leibnizregel,	Kettenregel
•	ECIDIIIE OSCI,	TICOUCHII OF CI

(8 Punkte)

(a) Sei $F(x) := \int_{1}^{x} f(x,y) dy$ mit $f(x,y) = \frac{e^{-xy}}{y}$ für $(x,y) \in \mathbb{R}^{+} \times \mathbb{R}^{+}$. Berechnen Sie F'(x) für x > 0.

F'(x) =

(b) Sei $f: \mathbb{R}^{n \times n} \to \mathbb{R}$, $f(X) = \exp(\operatorname{Spur}(X))$. Geben Sie Definitions- und Wertebereich und die Abbildungsvorschrift von Df(A) für $A \in \mathbb{R}^{n \times n}$ explizit an.

HINWEIS: Spur : $\mathbb{R}^{n \times n} \to \mathbb{R}$ ist linear.

9. Gewöhnliche Differentialgleichungen Gegeben sei die AWA $y'=y^2+1,\ y(0)=1.$ Wie lautet die Lösung dieser AW Lösungsintervall.	(6 Punkte) A mit maximalem