

3DTK — The 3D Toolkit

3D Scan Repository

Related Publications

Legal

Home

Summary

Mailing Lists

Forums

Code

Support

Download

Documentation

Data Sets

sourceforge

A Tutorial

Prof. Dr. Andreas Nüchter Jacobs University Bremen gGmbH

andreas@nuechti.de http://www.nuechti.de

3DTK – Introduction (1)

- 3DTK The 3D Toolkit is a set of compter programs that efficiently processes 3D point cloud data
- An essential part is registration. It was initially developed in a robotics context, thus it focused on robot pose estimates using six degree of freedom, thus 6D SLAM
- Next, will consider 3D laser scans as data
- Agenda
 - 1. Brief Introduction and Topic Statement
 - 2. Scan Matching
 - 3. Global Relaxation

3DTK – Introduction (2)

Microsoft Kinect

- Video 30 Hz
- RGB video: 8-bit VGA resolution (640 x 480 Pixe
- Monochrome Video Stream (depth information): 11-bit VGA 2048 depth values
- Depth: 1,2 3,5 m, (enhanced: 0,7 6 m)
- FOV: 57° (h) ×43°(vert)
- Tilt unit 27°
- Cost effective

3DTK – Introduction (3)

c = 299.792.458 m/s (Vacuum), also

d = 299.792.458 [m/s] x t/2 (d Distance[m], t time-of-flight[s])

$c \approx 0.3 \text{ mm/ps}$

→ With a resolution of 10mm: Precision of the time-of-flight measurement in the order of pico seconds (10⁻¹² s) needed!

(2D laser scan)

3DTK – Introduction (4)

3D laser scanner for mobile robots based on SICK LMS

- Based on a regular (e.g., SICK LMS-200) laser scanner
- Relatively cheap sensor
- Controlled pitch motion (120° v)
- Various resolutions and modi, e.g., reflectance measurement {181, 361, 721} [h] x {128, ..., 500} [v] points
- Fast measurement, e.g., 3.4 sec (181x256 points)

Mounted on mobile robots for 3D collision avoidance and building 3D maps.

(Video Crash)
(Video NoCrash)

3DTK – Introduction (5)

Mode	Symbol	Cont. rotating	pivoting	Advantages
Yaw		SICK	SICK	+ Complete 360° scans + Good point arrangements - High point density at top
Yaw- Top		RIS		+ Fast scanning (half rot.) - High point density at top - Ground not measured
Roll		R. C.		+ Fast scanning (half rot.) + High point density in front - Unusual point arrangement
Pitch			SICK	 High point density at the sides Small apex angle Good point arrangements Easy to build

http://www.rts.uni-hannover.de/index.php/%C3%9Cbersicht_der_m%C3%B6glichen_Scannerkonfigurationen

3DTK – Introduction (6)

- Professional 3D scanners
 - Structured light (close range)

pulsed laser vs. time-of-flight (mid and long

3DTK – Hands-on-experience (1)

- What you should learn now, using the show program
 - Most robotic data sets acquired by a rotating SICK scanner contain some outliers (it is worse with the kinect)
 - Data sets of professional scanners can be very large
- Things to try
 - Viewing a single 3D scan acquired in the kvartorp mine, Örebro
 bin/show -s 1 -e 1 -f old path-to/kvarntorp
 - Viewing a single 3D scan acquired in the kvartorp mine, Örebro
 bin/show -s 1 -e 1 -f old -m 2500 path-to/kvarntorp
 - Viewing multiple 3D scans
 bin/show -s 1 -e 5 -f old path-to/kvarntorp
 - Viewing a high resolution outdoor 3D scan
 bin/show -s 0 -e 0 -f riegl_txt bremen_city

6D SLAM – The ICP Algorithm (1)

Scan registration Put two independent scans into one frame of reference

Iterative Closest Point algorithm [Besl/McKay 1992]

For prior point set M ("model set") and data set D

- **1.** Select point correspondences $w_{i,j}$ in $\{0,1\}$
- 2. Minimize for rotation R, translation t

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} ||\mathbf{m}_i - (\mathbf{R}\mathbf{d}_j + \mathbf{t})||^2$$

3. Iterate 1. and 2.

SVD-based calculation of rotation

- works in 3 translation plus 3 rotation dimensions
- ⇒ 6D SLAM with closed loop detection and global relaxation.

6D SLAM – The ICP Algorithm (2)

Closed form (one-step) solution for minimizing of the error function

1. Cancel the double sum:

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} ||\mathbf{m}_i - (\mathbf{R}\mathbf{d}_j + \mathbf{t})||^2$$

$$\propto \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{m}_i - (\mathbf{R}\mathbf{d}_i + \mathbf{t})||^2,$$

2. Compute centroids of the matching points

$$\mathbf{c}_{m} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{m}_{i}, \qquad \mathbf{c}_{d} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{d}_{j}$$

$$M' = \{ \mathbf{m}'_{i} = \mathbf{m}_{i} - \mathbf{c}_{m} \}_{1,...,N}, \qquad D' = \{ \mathbf{d}'_{i} = \mathbf{d}_{i} - \mathbf{c}_{d} \}_{1,...,N}.$$

3. Rewrite the error function

$$E(\mathbf{R}, \mathbf{t}) = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{m}_{i}' - \mathbf{R}\mathbf{d}_{i}' - \underbrace{(\mathbf{t} - \mathbf{c}_{m} + \mathbf{R}\mathbf{c}_{d})}_{=\tilde{\mathbf{t}}}||^{2}$$

6D SLAM – The ICP Algorithm (3)

Closed form (one-step) solution for minimizing of the error function

3. Rewrite the error function

$$E(\mathbf{R}, \mathbf{t}) = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{m}_{i}' - \mathbf{R}\mathbf{d}_{i}' - \underbrace{(\mathbf{t} - \mathbf{c}_{m} + \mathbf{R}\mathbf{c}_{d})}_{=\tilde{\mathbf{t}}}||^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{m}_{i}' - \mathbf{R}\mathbf{d}_{i}'||^{2} - \frac{2}{N}\tilde{\mathbf{t}} \cdot \sum_{i=1}^{N} (\mathbf{m}_{i}' - \mathbf{R}\mathbf{d}_{i}') + \frac{1}{N} \sum_{i=1}^{N} ||\tilde{\mathbf{t}}||^{2}.$$

Minimize only the first term! (The second is zero and the third has a minimum for $\tilde{t}=0$).

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} \left| \left| \mathbf{m}'_i - \mathbf{R} \mathbf{d}'_i \right| \right|^2.$$

Arun, Huang und Blostein suggest a solution based on the singular value decomosition.

K. S. Arun, T. S. Huang, and S. D. Blostein. Least square fitting of two 3-d point sets. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 9(5):698 – 700, 1987.

6D SLAM – The ICP Algorithm (4)

Theorem: Given a 3 x 3 correlation matrix

$$\mathbf{H} = \sum_{i=1}^{N} \mathbf{m}_{i}^{\prime T} \mathbf{d}_{i}^{\prime} = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{pmatrix}$$

with $S_{xx} = \sum_{i=1}^{N} m'_{ix}d'_{ix}$, $S_{xy} = \sum_{i=1}^{N} m'_{ix}d'_{iy}$, ..., then the optimal solution for $E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} \left| \left| \mathbf{m}'_{i} - \mathbf{R}\mathbf{d}'_{i} \right| \right|^{2}$ is $\mathbf{R} = \mathbf{V}\mathbf{U}^{T}$ with $\mathbf{H} = \mathbf{U}\mathbf{\Lambda}\mathbf{V}^{T}$ from the SVD.

Proof:

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} \left| \left| \mathbf{m}'_{i} - \mathbf{R} \mathbf{d}'_{i} \right| \right|^{2}.$$

Rewrite

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} \left| \left| \mathbf{m}_{i}' \right| \right|^{2} - 2 \sum_{i=1}^{N} \mathbf{m}_{i}' \cdot \mathbf{R} \mathbf{d}_{i}' + \sum_{i=1}^{N} \left| \left| \mathbf{d}_{i}' \right| \right|^{2}.$$

Rotation is length preserving, i.e., maximize the term

$$\sum_{i=1}^{N} \mathbf{m}_{i}' \cdot \mathbf{R} \mathbf{d}_{i}' = \sum_{i=1}^{N} \mathbf{m}_{i}'^{T} \mathbf{R} \mathbf{d}_{i}'$$

6D SLAM – The ICP Algorithm (5)

Theorem: Given a 3 x 3 correlation matrix

$$\mathbf{H} = \sum_{i=1}^{N} \mathbf{m}_{i}^{\prime T} \mathbf{d}_{i}^{\prime} = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{pmatrix}$$

with $S_{xx} = \sum_{i=1}^{N} m'_{ix} d'_{ix}$, $S_{xy} = \sum_{i=1}^{N} m'_{ix} d'_{iy}$, ..., then the optimal solution for $E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} \left| \left| \mathbf{m}'_{i} - \mathbf{R} \mathbf{d}'_{i} \right| \right|^{2}$ is $\mathbf{R} = \mathbf{V} \mathbf{U}^{T}$ with $\mathbf{H} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{T}$ from the SVD.

Proof:
$$\sum_{i=1}^{N} \mathbf{m}_{i}' \cdot \mathbf{R} \mathbf{d}_{i}' = \sum_{i=1}^{N} \mathbf{m}_{i}'^{T} \mathbf{R} \mathbf{d}_{i}'$$

Rewrite using the trace of a matrix

$$\operatorname{Trace}\left(\sum_{i=1}^{N} \mathbf{R} \mathbf{d}_{i}' \mathbf{m}_{i}'^{T}\right) = \operatorname{Trace}\left(\mathbf{R} \mathbf{H}\right)$$

Lemma: For all positiv definite matrices AA^T and all orthonormal matrices B the following equation holds: $Trace(AA^T) \ge Trace(BAA^T)$

6D SLAM – The ICP Algorithm (6)

Theorem: Given a 3 x 3 correlation matrix

$$\mathbf{H} = \sum_{i=1}^{N} \mathbf{m}_{i}^{\prime T} \mathbf{d}_{i}^{\prime} = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{pmatrix}$$

with $S_{xx} = \sum_{i=1}^{N} m'_{ix}d'_{ix}$, $S_{xy} = \sum_{i=1}^{N} m'_{ix}d'_{iy}$, ..., then the optimal solution for $E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} \left| \left| \mathbf{m}'_{i} - \mathbf{R}\mathbf{d}'_{i} \right| \right|^{2}$ is $\mathbf{R} = \mathbf{V}\mathbf{U}^{T}$ with $\mathbf{H} = \mathbf{U}\mathbf{\Lambda}\mathbf{V}^{T}$ from the SVD.

Proof: Suppose the singular value decomposition of H is $H=U\Lambda V^T$ U and V are orthonormal 3 x 3 and Λ a diagonal matrix without negative entries .

$$\mathbf{R} = \mathbf{V}\mathbf{U}^T$$
.

6D SLAM – The ICP Algorithm (7)

- Estimating the transformation can be accomplished very fast O(n)
- Closest point search
 - Naïve O(n²), i.e., brute force
 - K-d trees for searching in logarithmic time Recommendation: Start with
 ANN: A Library for Approximate Nearest Neighbor Searching by David M. Mount and Sunil Arya (University of Maryland)
 - Easy to use
 - Many different methods are available
 - Quite fast

http://www.cs.umd.edu/~mount/ANN/

6D SLAM – The ICP Algorithm (8)

- One has to search all buckets according to the ball-within-bounds-test.

 ⇒ Backtracking
- Approximation in the ANN package represents a method for not-evaluating leafs, taking small errors into account.

6D SLAM – The ICP Algorithm (9)

How to split a k-d tree during construction?

- 1. Splitting at median
 - Fast calculation of median is needed (accomplishable in O(n)???)
 - Cells may have an arbitrary aspect ratio
 - Final tree has size $\lceil \log_2 n \rceil$
- 2. Midpoint splitting rule
 - Fast and easy to compute
 - Guarantees aspect ratio, but may result in trivial splits
- 3. Midpoint splitting rule that reverts to splitting at media to avoid degeneration.

6D SLAM – The ICP Algorithm (10)

Other methods are implemented in ANN as well

Best performance is achieved by the so-called optimized

k-d tree

Choose (b) over a, since it reduces the total amount of backtrackung.

6D SLAM – The ICP Algorithm (11)

- Point reduction another key for fast ICP algorithms
 - Start with cube surrounding the 3D point cloud

6D SLAM – The ICP Algorithm (12)

- Point reduction another key for fast ICP algorithms
 - Start with cube surrounding the 3D point cloud

6D SLAM – The ICP Algorithm (13)

- Point reduction another key for fast ICP algorithms
 - Start with cube surrounding the 3D point cloud

6D SLAM – The ICP Algorithm (14)

- Point reduction another key for fast ICP algorithms
 - Start with cube surrounding the 3D point cloud

6D SLAM – The ICP Algorithm (15)

- Point reduction another key for fast ICP algorithms
 - Start with cube surrounding the 3D point cloud

6D SLAM – The ICP Algorithm (16)

- Point reduction another key for fast ICP algorithms
 - Start with cube surrounding the 3D point cloud

6D SLAM – The ICP Algorithm (17)

- Point reduction another key for fast ICP algorithms
 - Start with cube surrounding the 3D point cloud

6D SLAM – The ICP Algorithm (18)

- Point reduction another key for fast ICP algorithms
 - Start with cube surrounding the 3D point cloud

3DTK - Hands-on-experience (2)

- Things to try
 - Odometry extrapolation and ICP on the mine data set

```
bin/slam6D -s 1 -e 10 -r 10 -m 3000 -d 50
    -i 1000 --epsICP=0.000001 --anim=1
    -f old path-to/kvarntorp
bin/show -s 0 -e 10 -m 3000
    -f old path-to/kvarntorp
```

- Change the above call to -e 75
- Odometry extrapolation and ICP on a large loop (Univ. Hannover)

```
bin/slam6D -s 1 -e 75 -r 10 -i 100 --epsICP=0.00001 -d 150
    path-to/hannover
bin/show -s 1 -e 75 path-to/hannover
```


Closed Loop Detection and Global Relaxation

3D data acquisition

6D SLAM – Global Relaxation (1)

- In SLAM loop closing is the key to build consistent maps
 - Notice: Consistent vs. correct or accurate
- GraphSLAM
 - 1. Graph Estimation
 - 2. Graph Optimization

1. Graph Estimation

- Simple strategy: Connect poses with graph edges that are close enough
- Simple strategy: Connect poses, they have enough point pairs (closest points)

6D SLAM – Global Relaxation (1)

 Consecutive Scan Matching with ICP results in an erroneous map, since small matching errors sum up.

6D SLAM – Global Relaxation (2)

 Consecutive Scan Matching with ICP results in an erroneous map, since small matching errors sum up.

6D SLAM – Global Relaxation (3)

 Consecutive Scan Matching with ICP results in an erroneous map, since small matching errors sum up.

6D SLAM – Global Relaxation (4)

- Consecutive Scan Matching with ICP results in an erroneous map, since small matching errors sum up.
- ⇒ Replace the ICP error function by a global one, i.e.,

$$D_{i,j} = X_i - X_j$$

$$W = \sum_{(i,j)} (D_{i,j} - \bar{D}_{i,j})^T C_{i,j}^{-1} (D_{i,j} - \bar{D}_{i,j})$$

where $\bar{D}_{i,j} = D_{i,j} + \Delta D_{i,j}$ models random Gaussian noise, added to the unknown exact pose $D_{i,j}$ and $C_{i,j}$ the covariance matrix of the overlapping scans computed from closest point pairs.

(Video Uni Hannover)

(Video courtesy Riegl)(Video 1) (Video 2) (Video 3)

TOESULABAH CREAIGERIANGORITHM (1)

Scan registration Put two independent scans into one frame of reference

Iterative Closest Point algorithm [Besl/McKay 1992]

For prior point set M ("model set") and data set D

- **1.** Select point correspondences $w_{i,j}$ in $\{0,1\}$
- 2. Minimize for rotation **R**, translation **t**

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} ||\mathbf{m}_i - (\mathbf{R}\mathbf{d}_j + \mathbf{t})||^2$$

3. Iterate 1. and 2.

Four closed form solution for the minimization

Global consistent registration

$$E = \sum_{j \to k} \sum_{i} |\mathbf{R}_{j} \mathbf{m}_{i} + \mathbf{t}_{j} - (\mathbf{R}_{k} \mathbf{d}_{i} + \mathbf{t}_{k})|^{2}$$

Minimize for all rotations R and translations t at the same time

3DTK – Hands-on-experience (3)

Things to try

 Odometry extrapolation and ICP and loop detection and global relaxation on a large loop

Closed loop detection, using the mining data set

6D SLAM – Hands-on-experience (4)

```
bin/scan red -s 0 -e 12 -r 10 path-to//bremen city
bin/slam6D -a 2 -f uos path-to/bremen_city/reduced
    -d 150 -s 0 -e 12 --anim=1 -n path-to/bremen_city/bremen.net
    -G 1 -D 100 -i 0 -I 50 -p --epsSLAM=0.0
bin/show -s 0 -e 12 /home/nuechter/dat/bremen city/reduced
                                                              (video)
```