Numerical Solution of Ordinary Differential Equations (MTH 452/552)

Homework due Wednesday, January 25, 2017

Problem 1. (20 points). Let u be a solution of the differential equation u' = f(t, u) with $u: R \to \mathbf{R}$ and $f: \mathbf{R}^2 \to \mathbf{R}$. Use the chain rule and the differential equation to show that

- **a)** $u''(t) = f_t + f f_u$
- **b)** $u'''(t) = f_{tt} + 2f f_{tu} + f^2 f_{uu} + f_u (f_t + f f_u)$

Here and in the next problem the abbreviated notation f, f_t , etc. means f(t, u(t)), $f_t(t, u(t))$, etc. .

Problem 2. (20 points). Consider the single differential equation u' = f(t, u) and the numerical method

$$U^{n+1} = U^{n} + \frac{\Delta t}{2}(K_{1} + K_{2})$$

$$K_{1} = f(t_{n}, U^{n})$$

$$K_{2} = f\left(t_{n} + \Delta t, U^{n} + \frac{\Delta t}{2}(K_{1} + K_{2})\right)$$

Let u denote the solution of the differential equation that satisfies $u(t_n) = U^n$. Assume that f and u are sufficiently often differentiable and use Taylor's theorem to show that

- a) $K_2 = f + O(\Delta t) = f + \Delta t (f_t + f f_u) + O(\Delta t^2)$
- **b)** $U^{n+1} = u(t_n + \Delta t) + O(\Delta t^3).$
- c) Based on part b), , what order of convergence (as $\Delta t \to 0$) would you expect if this method is used to solve an initial value problem on an interval $[t_0, t_1]$? State the reason for your answer.

Problem 3. (20 points). Consider two bodies of masses $\mu = 0.012277471$ and $\hat{\mu} = 1 - \mu$ in planar motion, and a third body of negligible mass moving in the same plane. The motion is governed by the equations

$$u_1'' = u_1 + 2u_2' - \hat{\mu} \frac{u_1 + \mu}{D_1} - \mu \frac{u_1 - \hat{\mu}}{D_2}$$

$$u_2'' = u_2 - 2u_1' - \hat{\mu} \frac{u_2}{D_1} - \mu \frac{u_2}{D_2}$$

$$D_1 = \left((u_1 + \mu)^2 + u_2^2 \right)^{3/2}$$

$$D_2 = \left((u_1 - \hat{\mu})^2 + u_2^2 \right)^{3/2}$$
(1)

For the initial conditions

$$u_1(0) = 0.994, \quad u_2(0) = 0, \quad u_1'(0) = 0$$

 $u_2' = -2.00158510637908252240537862224$

Figure 1: Astronomical orbit

the solution is periodic with period < 17.1. The orbit is sketched in Figure 1.

a) Use the Euler method to solve this initial value problem for the time interval [0, 17.1]. How small does Δt need to be in order for the orbit to appear qualitatively correct? Plot the orbit for this Δt . Also, use this same value of Δt to try to compute the solution on the larger time interval [0, 34.3] (corresponding to two revolutions) and again plot the resulting orbit. Does this experiment indicate some limitations of the numerical method used?