Laminar-Turbulent Sheet Conductivity Scaling

Tim Hill

January 2024

Sheet-flow models

Table 1 lists the different sheet-flow options:

Table 1: Model descriptions

Model	•
Laminar	$\mathbf{q} = -k_{\mathrm{s}}h^{3}\nabla\phi$
Turbulent	$\mathbf{q} = -k_{\rm s}h^{\alpha_{\rm s}} \nabla\phi ^{-1/2}\nabla\phi$
Transition	$\mathbf{q} + \frac{\omega}{\nu} \left(\frac{h}{h_b} \right)^{3-2\alpha_{\mathrm{s}}} \mathbf{q} \mathbf{q} = -k_{\mathrm{s}} h^3 \nabla \phi$

Adjusting the sheet conductivity

Note that the units of k_s for the turbulent model depend on the value of α_s and are different from the units for the laminar and transition models. This means we need to find a relationship between the conductivity for the turbulent and laminar/transition models to make them comparable.

There are at least two ways to do this:

1. Asymptotically match the behaviour. The transition model asymptotically approaches the laminar model as $\text{Re} = \frac{q}{\nu} \to 0$ by definition. We could also tune the conductivity of the turbulent model so that the turbulent model matches the $\text{Re} \to \infty$ limit of the transition model.

Taking Re $\to \infty$, and taking the absolute value to simplify, the transition model becomes

$$\frac{\omega}{\nu} \left(\frac{h}{h_{\rm b}}\right)^{3-2\alpha_{\rm s}} q^2 = k_{\rm s} h^{3/2} |\nabla \phi|^{1/2}. \tag{1}$$

This can be written to look like the turbulent model,

$$q = \left[k_s \frac{\nu}{\omega} (h_b)^{2\alpha_s - 3} \right]^{1/2} h^{\alpha_s} |\nabla \phi|^{1/2}.$$
 (2)

So, we've recovered the turbulent model as the Re $\to \infty$ limit of the transition model. We can then compute what k_s we should use in the transition/laminar model so that the entire coefficient in Eq. 2 matches the turbulent conductivity we have been using so far.

2. Match laminar and turbulent models at the transition Re. The idea is to have $\mathbf{q}_{\text{laminar}} = \mathbf{q}_{\text{turbulent}}$ at the transition between laminar and turbulent sheet flow. We do this by first computing the sheet thickness that gives $\omega \text{Re} = 1$. It's easiest to do this from the laminar model:

$$1 = \omega \operatorname{Re} = \omega \frac{q}{\nu} = \frac{\omega}{\nu} k_{\rm s} h_{\rm crit}^3 |\nabla \phi|, \tag{3}$$

so that

$$h_{\rm crit}^3 = \frac{\nu}{\omega k_{\rm s} |\nabla \phi|}.$$
 (4)

Now we substitute this expression for h_{crit}^3 into the turbulent model, setting $\omega \text{Re} = \omega_{\nu}^{q} = 1$. For clarity, write the conductivity parameter for the turbulent model as k_t . Then,

$$1 = -\frac{\omega}{\nu} k_{\rm t} h_{\rm crit}^{\alpha_{\rm s}} |\nabla \phi|^{1/2}. \tag{5}$$

Simplifying.

$$k_{\rm s}^{\alpha} = k_{\rm t}^3 \left(\frac{\omega}{\nu}\right)^{3-\alpha_{\rm s}} |\nabla \phi|^{\left(\frac{3}{2}-\alpha\right)}. \tag{6}$$

At this point you can go either direction to convert between $k_{\rm s}$ and $k_{\rm t}$. If you want to continue with a conductivity that matches what you've been using for the turbulent model, use this for your $k_{\rm t}$ and solve for the laminar/transition conductivity $k_{\rm s}$. Note that the $\nabla \phi$ dependence goes away if (and only if) the turbulent sheet conductivity $\alpha_{\rm s}=3/2$, so here you can use any value for $\nabla \phi$. For the turbulent model with $\alpha_{\rm s}=5/4$, you will need to assume a value for the hydraulic potential gradient and the result will depend on this value. The sensitivity is very low $(|\nabla \phi|^{1/12})$, so I've just used a taken the difference in potential (assuming $p_{\rm w}=p_{\rm i}$) between the terminus and highest point divided by the domain length.

For my simulations, it turned out that option (2) provided a more fair comparison between the models. For the same laminar/transition conductivity, option (1) results in a higher turbulent sheet conductivity, such that it produced fewer and smaller channels and extremely low winter water pressure.

In practice

For my simulations, parameters are in Table 2. I chose a laminar/transition sheet conductivity $k_s = 0.05 \,\mathrm{Pa}\,\mathrm{s}^{-1}$, and this gave a conductivity for the turbulent 5/4 model of 0.0071 (with appropriate units) using option (2) for scaling (Table 3).

Table 2: Constants (top group) and model parameters (bottom group) for GlaDS simulations.

Symbol	Description	Value	Units
$\overline{ ho_{ m w}}$	Density of water	1000	${\rm kg~m^{-3}}$
$ ho_{ m i}$	Density of ice	910	${\rm kg~m^{-3}}$
g	Gravitational acceleration	9.81	$\mathrm{m^3~s^{-1}}$
$c_{ m w}$	Specific heat capacity of water	4.22×10^{3}	$\rm J~kg^{-1}$
$c_{ m t}$	Pressure melting coefficient	-7.50×10^{-8}	$\mathrm{K}\;\mathrm{Pa}^{-1}$
u	Kinematic viscosity of water at 0° C	1.793×10^{-6}	${\rm m~s^{-2}}$
$k_{ m s}$	Effective laminar sheet conductivity	0.1	$Pa s^{-1}$
$\alpha_{ m s}$	Sheet-flow exponent	$\begin{bmatrix} \frac{5}{4}, \frac{3}{2}, 3 \\ [\frac{3}{2}, 2] \end{bmatrix}$	
$eta_{ m s}$	Sheet-flow exponent	$[\frac{3}{2}, 2]$	
$k_{ m c}$	Channel conductivity	0.2	${ m m}^{3/2}{ m s}^{-1}$
$lpha_{ m c}$	Channel-flow exponent	5/4	
$eta_{ m c}$	Channel-flow exponent	3/2	
$h_{ m b}$	Bed bump height	0.5	m
$l_{ m b}$	Bed bump length	10	m
$l_{ m c}$	Width of sheet-flow contributing to channel	10	m
$e_{ m v}$	Englacial porosity	1×10^{-4}	
ω	Laminar-turbulent transition parameter	1/2000	
$u_{ m b}$	Basal velocity	30	${ m m~a^{-1}}$
$u_{ m b} \ ilde{A}^a \ ilde{A}_{ m s}$	Rheological parameter for creep closure	1.78×10^{-25}	
$ ilde{A}_{ m s}$	Rheological parameter for creep when $N<0$	0	$\mathrm{s}^{-1}~\mathrm{Pa}^{-3}$
n	Ice-flow exponent	3	
$\dot{m}_{ m s}$	Basal melt rate	0.01	m w.e. a^{-1}

 $a\tilde{A}$ differs from the canonical rheology parameter A by a factor of $\frac{2}{27}$. The listed value for \tilde{A} corresponds to the recommended value $A = 2.4 \times 10^{-24} \text{ s}^{-1} \text{ Pa}^{-3}$ for temperate ice.

Table 3: Comparable model conductivities. Caution, these values are conditioned on $\omega=1/2000$ (Table 2) and a hydraulic potential gradient of $\nabla\phi=135\,\mathrm{Pa}\,\mathrm{m}^{-1}$

Model	Sheet conductivity	${f Units}$
Turbulent ($\alpha_{\rm s} = 5/4$)	0.0071	$m^{7/4} kg^{-1/2}$
Turbulent ($\alpha_s = 3/2$)	0.0134	$\mathrm{mkg}^{-1/2}$
Laminar	0.05	$\mathrm{Pa}\mathrm{s}^{-1}$
Transition $5/4$	0.05	$\mathrm{Pa}\mathrm{s}^{-1}$
Transition 3/2	0.05	Pas^{-1}