

Nemnegatív mátrixok PRIMITÍV, IRREDUCIBILIS, REDUCIBILIS MÁTRIX, PERRON-FROBENIUS-TÉTEL

Wettl Ferenc

ALGEBRA TANSZÉK

Tartalom

Pozitív mátrixok

Nem negatív mátrixok

Sztochasztikus mátrixok

Markov-láncok

Ismeretek, képességek, célok

- nemnegatív mátrixok osztályozása: pozitív, primitív, irreducibilis, reducibilis,
- Perron- és Perron-Frobenius-tételek, a tételbeli mátrixhatványok kiszámítása, Collatz-Wielandt-tétel,
- · reducibilitás és primitívség eldöntése,
- sztochasztikus mátrixok, Frobenius–Kőnig-tétel, Birkhoff-tétel
- sztochasztikus folyamatok, Markov-láncok

Pozitív mátrixok

Mátrixok összehasonlítása

- **D** A > B, ha $a_{ii} > b_{ii} \forall i$ és j esetén pozitív: A > 0 (nemnegatív: $A \ge 0$), azaz ha $a_{ii} > 0$ ($a_{ii} \ge 0$)
- Néhány észrevétel:
 - $A \ge 0 \Leftrightarrow Ax \ge 0$ minden $x \ge 0$ vektorra,
 - A > 0 \Leftrightarrow Ax > 0 minden x \geqslant 0, x \neq 0 vektorra,
 - A \geqslant 0, és x \geqslant y \geqslant 0 \Rightarrow Ax \geqslant Ay.
- **D** A nemnegatív mátrixok pozitivitásának 4 fokozata $(a_{ii}^{(k)} = [\mathbf{A}^k]_{ij})$:
 - A pozitív: $\forall i, j \qquad a_{ii} > 0$
 - A primitív: $\exists k \ \forall i,j \ a_{ij}^{(k)} > 0$ (nem primitív: imprimitív)

 A irreducibilis: $\forall i,j \ \exists k \ a_{ij}^{(k)} > 0$ A reducibilis: $\exists i,j \ \forall k \ a_{ii}^{(k)} = 0$

Példák

- \[1 \ 1 \] pozitív
- $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ primitív, mert $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^2 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$
- $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ irreducibilis, mert $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ reducibilis, mert $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$

Perron-tétel

T Perron-tétel: pozitív sajátérték és sajátvektor

Ha A > 0, akkor

- 1. r > 0, $(r = \varrho(A) \text{ a spektrálsugár})$,
- 2. r sajátérték egy pozitív sajátvektorral,
- 3. A-nak e pozitív sajátvektor skalárszorosain kívül nincs más nemnegatív sajátvektora.

D p (jobb) Perron-vektor és q bal Perron-vektor, ha

$$Ap = rp, \sum_{i=1}^{n} p_i = 1, \qquad q^{T}A = rq^{T}, \sum_{i=1}^{n} q_i = 1$$

T Perron-tétel: egyszeres és domináns sajátérték

Ha A > 0, akkor

- 4. az r sajátérték algebrai multiplicitása 1,
- 5. r domináns, azaz minden további λ sajátértékre $|\lambda| < r$.

Nem negatív mátrixok

A Perron-tétel nem áll a nemnegatív mátrixokra

A Perron-tétel pl. ezekre nem áll:

- a $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \ge 0$, mindkét sajátértéke 0, ezért spektrálsugara is 0,
- az $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \geqslant \mathbf{0}$ mátrix spektrálsugara 1, de az 1 kétszeres sajátérték, és több lineárisan független pozitív sajátvektor is tartozik hozzá,
- a [⁰₁] mátrix sajátértékei 1 és –1, így spektrálsugara ugyancsak 1, de a spektrálkörön több különböző sajátértéke is van,
- az [10] mátrixnak nincs pozitív sajátvektora.

Ugyanakkor pl.

az [¹¹] ≥ 0, sajátértékei 2, -1, spektrálsugara 2, ami egyszeres sajátérték, a spektrálkörön ez az egyetlen sajátérték, a hozzá tartozó (1, 1) sajátvektor pozitív, és ennek konstansszorosait kivéve más pozitív sajátvektor nincs, mert a -1-hez tartozó sajátvektor (1, -2).

Mi igaz minden nemnegatív mátrixra

T Perron-Frobenius-tétel – gyenge változat

Ha $A\geqslant 0$, akkor az $r=\varrho(A)$ spektrálsugár sajátértéke A-nak, melyhez tartozik nemnegatív sajátvektor.

- B Alapötlet: $\mathbf{A}_k = \mathbf{A} + \frac{1}{k} \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}, \quad k \in \mathbb{N}.$
- T Collatz-Wielandt-tétel

Az **A** ≥ **O** mátrix r spektrálsugarára

$$r = \max_{\substack{\mathbf{X} \\ \mathbf{0}
eq \mathbf{x} \geqslant \mathbf{0}}} \min_{\substack{1 \leqslant i \leqslant n \\ i_i \neq \mathbf{0}}} \frac{[\mathbf{A}\mathbf{x}]_i}{x_i}, \ \textit{másként fogalmazva} \ r = \max_{\substack{\mathbf{X} \\ \mathbf{0}
eq \mathbf{x} \geqslant \mathbf{0}}} \max_{\mathbf{c} \mathbf{x} \leqslant \mathbf{A}\mathbf{x}} c$$

B Ötlet: $A > 0 \rightsquigarrow cx \leqslant Ax \rightsquigarrow cq^Tx \leqslant q^TAx = rq^Tx \rightsquigarrow c \leqslant r$. Másrészt az x = p vektorra $rp = Ap \rightsquigarrow \max c = r$.

Mi igaz minden nemnegatív mátrixra

K Nemnegatív mátrixok spektrálsugarának becslése

Ha A ≥ 0, akkor a spektrálsugár a sorösszegek minimuma és maximuma, illetve az oszlopösszegek minimuma és maximuma közé esik, azaz

$$\min_{i} \left\{ \sum_{j=1}^{n} a_{ij} \right\} \leqslant \varrho(\mathbf{A}) \leqslant \max_{i} \left\{ \sum_{j=1}^{n} a_{ij} \right\}$$

$$\min_{j} \left\{ \sum_{i=1}^{n} a_{ij} \right\} \leqslant \varrho(\mathbf{A}) \leqslant \max_{j} \left\{ \sum_{i=1}^{n} a_{ij} \right\}$$

K Konstans sorösszeg vagy oszlopösszeg Ha A ≥ O, és minden sorösszeg c, akkor a spektrálsugár c. (oszlopösszegre is) Becsüljük meg az alábbi mátrixok spektrálsugarát a sor és oszlopösszegekkel!

$$A = \begin{bmatrix} 3 & 3 & 1 & 3 \\ 2 & 3 & 2 & 2 \\ 3 & 3 & 2 & 3 \\ 3 & 3 & 1 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 16 & 3 & 2 & 13 \\ 5 & 10 & 11 & 8 \\ 9 & 6 & 7 & 12 \\ 4 & 15 & 14 & 1 \end{bmatrix}$$

- **M** A sorösszegei: 10, 9, 11, 8, oszlopösszegei: 11, 12, 6, 9, így $8 \le \rho(\mathbf{A}) \le$ 11, a sajátértékek 9.366, -1.242, $0.438 \pm 0.569i$, $\rho(\mathbf{A}) \approx$ 9.366.
- **M** Dürer híres rajzának bűvös négyzetében minden sorösszeg 34, így $\rho(\mathbf{A})=34$. (Számtalan más összeg is 34, a sajátértékek pedig 34, 8, 0, -8.)

Irreducibilis mátrixok

T Reducibilitás szükséges és elégséges feltétele

Az $A\geqslant O$ mátrix pontosan akkor reducibilis, ha a sorok és oszlopok azonos permutációjával $\begin{bmatrix} X & Y \\ O & Z \end{bmatrix}$ alakra hozható, ahol X és Z négyzetes mátrixok (létezik olyan P permutáló mátrix, hogy PAP^T a fenti alakú).

- B csak az számít, hogy pozitív vagy 0, a nagyság nem.
- G irányított gráf: van $i \rightarrow j$ él $\iff a_{ij} > 0$,
- **G** szomszédsági mátrixa **A**-ból: a pozitív elemeket 1-re cseréljük
- $[G^k]_{ij} > 0 \iff$ az *i*-edikből megy *k*-hosszú irányított út a *j*-edikbe
- A pontosan akkor irreducibilis, ha bármely két csúcs között vezet irányított út, azaz ha a gráf erősen összefüggő
- sorszámozhatjuk a pontokat úgy, hogy a tételbeli alakja legyen (átsorszámozás = azonos sor és oszloppermutációk)

Irreducibilis mátrixok

P reducibilis, vagy irreducibilis?

$$\mathbf{A} = \begin{bmatrix} 11 & 0 & 13 & 14 & 0 \\ 21 & 22 & 23 & 24 & 25 \\ 31 & 0 & 33 & 34 & 0 \\ 41 & 0 & 43 & 44 & 0 \\ 51 & 52 & 53 & 54 & 55 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 0 & 12 & 0 & 0 & 0 \\ 0 & 0 & 0 & 24 & 25 \\ 31 & 0 & 0 & 0 & 0 \\ 0 & 0 & 43 & 0 & 0 \\ 0 & 52 & 0 & 54 & 0 \end{bmatrix}$$

Permutáló mátrix

A reducibilis: az első és utolsó sorok és oszlopok cseréje megfelel

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{P}\mathbf{A}\mathbf{P}^\mathsf{T} = \begin{bmatrix} 55 & 52 & 53 & 54 & 51 \\ 25 & 22 & 23 & 24 & 21 \\ 0 & 0 & 33 & 34 & 31 \\ 0 & 0 & 43 & 44 & 41 \\ 0 & 0 & 13 & 14 & 11 \end{bmatrix}.$$

Más megoldás: az $1 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 2 \rightarrow 1$ csere is megteszi:

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \quad \mathbf{P}\mathbf{A}\mathbf{P}^\mathsf{T} = \begin{bmatrix} 22 & 25 & 21 & 23 & 24 \\ 52 & 55 & 51 & 53 & 54 \\ 0 & 0 & 11 & 13 & 14 \\ 0 & 0 & 31 & 33 & 34 \\ 0 & 0 & 41 & 43 & 44 \end{bmatrix}.$$

- sorok és oszlopok azonos permutációja, nem elemi sorműveletek! ₁₄

Irreducibilis mátrixok

Összefoglalás:

A	algebrai feltétel		gráfelméleti feltétel
pozitív:	$\forall i, j$	$a_{ij} > 0$	irányított teljes gráf hurokélekkel
primitív:	$\exists k \ \forall i,j$	$a_{ii}^{(k)} > 0$	∀ két csúcs között fut <i>k</i> -hosszú út
irreducibilis:	$\forall i,j \; \exists k$	$a_{ii}^{(k)} > 0$	erősen összefüggő
reducibilis:	$\exists i,j \ \forall k$	$a_{ij}^{(k)}=0$	nem erősen összefüggő

Perron-Frobenius-tétel 1.

Perron-Frobenius-tétel 1. – sajátérték/sajátvektor

Ha az $A \ge 0$ irreducibilis, akkor

- 1. r > 0.
- 2. r sajátértéke A-nak, melyhez tartozik pozitív sajátvektor,
- 3. **A**-nak e pozitív sajátvektor skalárszorosain kívül nincs más nemnegatív sajátvektora,
- 4. r egyszeres sajátérték.

Primitív és imprimitív mátrixok

- **m** A Perron-tétel állításai közül nem maradt igaz az irreducibilis nemnegatív mátrixokra az, hogy a spektrálkörön csak egyetlen sajátérték van.
- T Elégséges feltétel mátrix primitivitására: Ha A ≥ O irreducibilis és főátlójában van pozitív elem, akkor primitív.
- B A gráfon!

Primitív és imprimitív mátrixok

P Döntsük el, hogy melyik mátrix primitív!

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix},$$
$$\mathbf{D} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad \mathbf{E} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad \mathbf{F} = \begin{bmatrix} 0 & 0 & 6 \\ 7 & 0 & 8 \\ 0 & 9 & 0 \end{bmatrix}$$

M A reducibilis → nem primitív. (a többi irred.)

- B pozitív → primitív.
- $C^3 = I \rightarrow \text{nem primitiv.}$

-
$$\mathbf{D}^2 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
 reducibilis $\leadsto \mathbf{D}^{2m}$ is $\leadsto \mathbf{D}$ nem primitív.

Primitív és imprimitív mátrixok

- E irreducibilis és a főátlóján van pozitív elem → primitív.

- Az F primitív, mivel
$$\mathbf{F}^5 = \begin{bmatrix} 27216 & 20412 & 31104 \\ 36288 & 54432 & 57348 \\ 23814 & 46656 & 54432 \end{bmatrix} > \mathbf{0},$$

- Egyszerűbb: $0 \mapsto 0$, pozitív \mapsto 1, szorzás \mapsto AND, összeadás \mapsto OR:

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Sőt, csak négyzetreemelésekkel még gyorsabb:

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Eszerint $F^8 > 0$, tehát F primitív.

Perron-Frobenius-tétel – sajátértékek a spektrálkörön

Ha az $A \ge 0$ irreducibilis, akkor

- 1. a spektrálkör határára eső sajátértékek 1 multiplicitásúak, és $\{r, r\varepsilon, \dots, r\varepsilon^{k-1}\}$ alakba írhatók, ahol $\varepsilon = \mathrm{e}^{2\pi\mathrm{i}/k}$,
- 2. A primitív $\iff \forall \lambda \neq r$ sajátértékére $|\lambda| < r$,
- 3. A pontosan akkor primitív, ha létezik a lim_{k→∞} (A/r)^k határérték. Ekkor e határérték megegyezik az A spektrálfelbontásában szereplő, az r sajátértékhez tartozó vetítő mátrixszal (ahol p a Perron és q a bal Perron vektor), azaz

$$\lim_{k\to\infty} (\mathsf{A}/r)^k = \frac{\mathsf{pq}^{\mathsf{T}}}{\mathsf{q}^{\mathsf{T}}\mathsf{p}} > 0,$$

4. Ha A imprimitív, akkor

$$\lim_{k\to\infty}\frac{\mathsf{I}+(\mathsf{A}/r)+(\mathsf{A}/r)^2+\ldots+(\mathsf{A}/r)^{k-1}}{k}=\frac{\mathsf{p}\mathsf{q}^\mathsf{T}}{\mathsf{q}^\mathsf{T}\mathsf{p}}>0.$$

Sztochasztikus mátrixok

- D A nemnegatív vektort sztochasztikusnak nevezzük, ha koordinátáinak összege 1 (azaz 1-normája 1). A nemnegatív A mátrix sztochasztikus, ha minden oszlopvektora sztochasztikus. (Sorsztochasztikus, ha minden sora).
- Ha \mathbf{A} és \mathbf{v} sztochasztikus, akkor $\mathbf{u} = \mathbf{A}\mathbf{v}$ is:

$$\sum_{i=1}^{n} u_i = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} v_j = \sum_{j=1}^{n} v_j \sum_{i=1}^{n} a_{ij} = \sum_{j=1}^{n} v_j = 1.$$

- sztochasztikus mátrixok szorzata sztochasztikus mátrix.
- Az A mátrix pontosan akkor sztochasztikus, ha A-nak az
 1 = (1,1,...,1) vektor bal sajátvektora 1 sajátértékkel.
- T Ha S sztochasztikus mátrix, akkor
 - 1. $\lambda = 1$ egy sajátérték,
 - 2. a spektrálsugara 1, és
 - 3. ha **S** primitív, akkor $\lambda \neq 1$ esetén $|\lambda| < 1$.

Duplán sztochasztikus mátrixok*

- D Duplán sztochasztikus, ha sor- és oszlopsztochasztikus is
- Duplán sztochasztikus mátrixok szorzata is duplán sztochasztikus.
- Minden permutáló mátrix duplán sztochasztikus.
- Ha $\mathbf{U} = [u_{ij}]$ unitér, akkor az $\mathbf{A} = [|u_{ij}|^2]$ mátrix duplán sztochasztikus, ugyanis $\sum_{i=1}^n |u_{ij}|^2 = \sum_{i=1}^n |u_{ij}|^2 = 1$.
- T Frobenius–Kőnig-tétel: Az n-edrendű A mátrixban pontosan akkor eleme minden kígyónak a 0, ha A részmátrixai közt van olyan $s \times t$ méretű zérusmátrix, hogy s + t = n + 1.
- B Ötlet:

K Minden duplán sztochasztikus mátrixban van legalább egy kígyó, melynek minden eleme pozitív.

T Birkhoff-tétel: Minden n-edrendű duplán sztochasztikus mátrix előáll permutáló mátrixok konvex lineáris kombinációjaként, azaz a duplán sztochasztikus mátrixok az $\mathbb{R}^{n\times n}$ térben olyan konvex poliédert alkotnak, melynek csúcsai a permutáló mátrixok. Azaz

$$A = \sum_{i=1}^{n} c_i P_i$$
, ahol $c_1 + c_2 + \ldots + c_k = 1$, $c_i \ge 0$.

$$= .3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + .3 \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} + .2 \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} + .1 \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + .1 \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Markov-láncok

Markov-lánc

- Egy rendszer következő állapota csak a pillanatnyi állapot függvénye, a múlté nem.
- Populációk fejlődése, bizonyos kémiai, termodinamikai, gazdasági folyamatok, tömegkiszolgálási és sorbanállási rendszerekben, statisztika, web-oldalak rangsorolása,...
- Legyen S egy megszámlálható halmaz (pl. $S = \{1, 2, ..., N\}$, vagy $S = \mathbb{N}$). Az S-értékű valószínűségi változók egy $X_0, X_1, X_2, ..., X_n, ...$ sorozata diszkrét paraméterű homogén Markov-lánc, ha

$$\mathbb{P}(X_{n+1} = i \mid X_n = j, X_{n-1} = k, \dots, X_0 = \ell) = \mathbb{P}(X_{n+1} = i \mid X_n = j) \text{ \'es}$$

$$\mathbb{P}(X_{n+1} = i \mid X_n = j) = \mathbb{P}(X_1 = i \mid X_0 = j) = p_{ij},$$

Az $\mathcal S$ halmazt a Markov-lánc állapotterének nevezzük.

Markov-lánc lineáris algebrai modellje

- $\mathbf{p}_0 = (p_1, p_2, ...)$ a kezdeti valószínűségeloszlás vektora $(p_i = \mathbb{P}(X_0 = i), \mathbf{p} \geqslant \mathbf{0}, \sum_i p_i = 1).$
- A $P = [p_{ij}]$ egy $|S| \times |S|$ -es mátrix, az átmenetvalószínűségek mátrixa, vagy átmenetmátrix.
- A kezdeti állapotból az *i*-be való jutás valószínűsége

$$\mathbb{P}(X_1 = i) = \sum_{i} \mathbb{P}(X_1 = i \mid X_0 = j) \mathbb{P}(X_0 = j) = \sum_{i} p_{ij} p_j = [\mathbf{P} \mathbf{p}_0]_i,$$

- tehát a második állapot eloszlásvektora **Pp**₀
- az n-edik állapot valószínűségeloszlása $\mathbf{p}_n = \mathbf{P}^n \mathbf{p}_0$ (általában $\mathbb{P}(X_{n+m} = i \mid X_n = j) = [\mathbf{P}^m]_{ij}).$
 - Ha $\mathcal S$ egy megszámlálható halmaz, $\mathbf p$ egy valószínűségeloszlás $\mathcal S$ -en, és $\mathbf P$ egy $|\mathcal S| \times |\mathcal S|$ méretű sztochasztikus mátrix, akkor létezik olyan $\mathcal S$ állapotterű Markov-lánc, melynek kezdeti eloszlása $\mathbf p$, és átmenetmátrixa $\mathbf P$.

Markov-lánc gráfos modellje: bolyongás a gráfon

- Minden Markov-lánc modellezhető egy súlyozott élű irányított gráfon való bolyongással.
- A gráf csúcsai az állapotok, és a j-edik csúcsból akkor vezet egy p_{ij} súlyú él az i-edikbe, ha $\mathbb{P}(X_1 = i \mid X_0 = j) = p_{ij}$, azaz a j-edik állapotot p_{ii} valószínűséggel követi az i-edik.
- A bolyongót letesszük a gráf egyik csúcsára a kezdeti p valószínűségeloszlás szerint, az időegységenként körbenéz, és a kifutó élekre írt valószínűségeknek megfelelően véletlenül választ közülük
- Mivel P sztochasztikus, e gráf minden csúcsából kifutó élek súlyainak összege 1.

Két kérdés

- Létezik-e a $\lim_{m\to\infty} \mathbf{p}_m$ határérték?
- Ha ez nem létezik, létezik-e a

$$\lim_{m\to\infty}\frac{p_0+p_1+\dots p_{m-1}}{m}$$

határérték függetlenül p_0 értékétől?

Markov-láncok

Néhány példa

Időjárás

- P Derűs napot 80% eséllyel derűs, míg borúst 60% eséllyel borús nap követ.
- M Az átmenetmátrix

$$\mathbf{P} = \begin{bmatrix} 0.8 & 0.4 \\ 0.2 & 0.6 \end{bmatrix}$$

A folyamat gráfja:

Csön-csön gyűrű

P Páros sok gyerek körben ül, egyikük kezében rejtve egy gyűrű. Ritmusra mindenki úgy tesz, mintha egyik szomszédja kezébe adná a gyűrűt. Tfh minden játékos fix valószínűséggel, véletlenül választva adja át a gyűrűt.

A Markov-lánc állapota az, hogy kinél van a gyűrű.

A Markov-lánc átmenetmátrixában legyen $a_{i+1,i}=p_i$, $a_{i-1,i}=1-p_i$, ahol $p_i\in[0,1]$, és $i=0,1,\ldots,n-1$, számolás mod n, azaz

$$\mathbf{P} = \begin{bmatrix} 0 & 1 - p_2 & 0 & \dots & 0 & p_n \\ p_1 & 0 & 1 - p_3 & \dots & 0 & 0 \\ 0 & p_2 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 - p_1 & 0 & 0 & \dots & p_{n-1} & 0 \end{bmatrix}$$

Csön-csön gyűrű

- **m** Mivel a résztvevők száma páros, ezért minden lépésben változik a Markov-lánc állapotának paritása, így a \mathbf{p}_m vektorok határértéke nem létezik.
- P egy 6-fős játék mátrixa:

$$\begin{bmatrix} 0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \end{bmatrix}$$

ha a gyűrű az {1,2,3} halmazba kerül, onnan többé nem jut ki, ha egyszer elhagyja a {4,5,6} halmazt, oda többé nem tér vissza.

Ki nevet a végén?

A táblán a Starttól a Célig öt további mező van. A játékos dob, majd annyit lép a Cél felé, amennyi a dobás eredménye, de ha nagyobbat dob, mint amennyi a célba éréshez szükséges, vissza kell fordulnia. Akkor ér a Célba, ha épp ott fejezi be a lépéseket.

Start 1 2 3 4 5 CÉL

M A játékhoz tartozó átmenetmátrix

$$\mathbf{P} = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 2 & 2 & 1 & 1 & 0 \\ 1 & 2 & 2 & 2 & 2 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 6 \end{bmatrix}$$

A kezdeti eloszlás (1,0,0,0,0,0,0), és a Start-ba sosem jutunk

Ki nevet a végén?

A szürke élekhez ½6, a kékekhez ½6, míg a piroshoz 1 valószínűség tartozik.

Azt sejtjük, hogy a játékos 1 valószínűséggel véges időn belül CÉL-ba ér, ezért az állapotvektorok határértéke (0,0,0,0,0,0,1).

Markov-láncok

Osztályozás

Az állapotok osztályozása

- **D** A *j* állapotból az *i* elérhető (jelölése $j \to i$), ha van olyan $n \ge 0$ egész, hogy $\mathbb{P}(X_n = i \mid X_0 = j) > 0$. (algebra: van olyan *n*, hogy $[\mathbf{P}^n]_{ij} > 0$; gráf: van irányított út *j*-ből *i*-be)
- D i és j állapotok érintkeznek (közlekednek, $i \leftrightarrow j$), ha $i \rightarrow j$ és $j \rightarrow i$
- Á E reláció osztályozza az állapotokat (ekvivalencia-reláció).
- P A "Ki nevet a végén?"-ben három osztály (Start, Cél, többi), a "Csön-csön gyűrű"-ben két osztály ({ 1, 2, 3 }, { 4, 5, 6 }) van.
- D Egy Markov-lánc irreducibilis, ha egyetlen osztályból áll.
- T A Markov-lánc pontosan akkor irreducibilis, ha átmenetmátrixa irreducibilis, azaz \forall (i,j) párhoz \exists m, hogy $[\mathbf{P}^m]_{ij} > 0$.
- P Az "Időjárásmodell" irreducibilis, a "Csön-csön gyűrű" lehet reducibilis és irreducibilis is, a megadott konkrét esetben reducibilis, a "Ki nevet a végén?" reducibilis.

Az állapotok osztályozása

- D Az *i* állapot d_i periódusa azon kísérletek sorszámának legnagyobb közös osztója, amelyekben a Markov-lánc az *i* állapotból indulva visszatérhet *i*-be, azaz $d_i = \text{lnko} \{ n > 0 : \mathbb{P}(X_n = i \mid X_0 = i) > 0 \}$.
- P Például a "Csön-csön gyűrű" játék mindegyik állapotának 2 a periódusa.
- D Az állapot aperiodikus, ha $d_i = 1$. A Markov-lánc aperiodikus, ha minden állapota aperiodikus.
- P Az "Időjárásmodell" és a "Ki nevet a végén?" aperiodikus.
- D Az i állapot visszatérő, ha a Markov-lánc az i-ből indulva 1 valószínűséggel visszatér az i-be, azaz
- $\mathbb{P}(\exists n>0: X_n=i\mid X_0=i)=1.$
- D Egy állapot átmeneti, ha nem visszatérő.
- P A "Csön-csön gyűrű" { 1,2,3 }-beli állapotai visszatérők, a { 4,5,6 }-beliek átmenetiek.

Az állapotok osztályozása

- **m** Általában is igaz, hogy a visszatérés, az átmenetiség és a periódus ún. osztálytulajdonság, azaz egy osztály minden elemére azonos.
- Á Egy véges állapotterű Markov-láncban egy osztály pontosan akkor átmeneti, ha gráfján vezet ki belőle él, és pontosan akkor visszatérő, ha nem. Ha a Markov-lánc elhagy egy átmeneti osztályt, akkor oda többé nem jut vissza, ha belép egy visszatérő osztályba, akkor onnan többé nem tud kijönni. Minden Markov-lánc állapottere diszjunkt átmeneti és visszatérő osztályok uniója.
- A "Csön-csön gyűrű" (csupa pozitív valószínűség esetén) és az Időjárámodell állapotai egyetlen visszatérő osztályt alkotnak, A 6-fős változata egy visszatérő és egy átmeneti osztályból áll.
- P A "Ki nevet a végén?" játék két átmeneti és egy visszatérő osztály uniója.

35

Irreducibilis Markov-láncok

- m A továbbiakban kizárólag csak véges állapotterű Markov-láncokkal foglalkozunk.
- D A P átmenetmátrixú véges Markov-lánc állapotterén értelmezett valamely π eloszlásvektor stacionárius, ha $P\pi = \pi$.
- **m** Primitív mátrixok hatványainak határértéke megegyezik a jobb és bal Perron-vektor diadikus és skaláris szorzatának hányadosával. Mivel egy $n \times n$ -es átmenetmátrix bal Perron-vektora $\frac{1}{n}$ 1, ahol 1 a csupa-1 vektor, ezért ha π jelöli a jobb Perron-vektort, akkor

$$\lim_{m\to\infty}\mathsf{P}^m=\frac{\boldsymbol{\pi}(1/n)^{\scriptscriptstyle\mathsf{T}}}{\boldsymbol{\pi}^{\mathsf{T}}(1/n)}=\boldsymbol{\pi}\mathsf{1}^{\mathsf{T}}.$$

K $\lim_{m o \infty} \mathbf{p}_m = m{\pi}$, ugyanis tetszőleges \mathbf{p}_0 eloszlásvektorra $\mathbf{1}^\mathsf{T} \mathbf{p}_0 = 1$, így

$$\lim_{m\to\infty} \mathbf{p}_m = \lim_{m\to\infty} \mathbf{P}^m \mathbf{p}_0 = \boldsymbol{\pi} \mathbf{1}^\mathsf{T} \mathbf{p}_0 = \boldsymbol{\pi}.$$

Irreducibilis Markov-láncok

P Az Időjárásmodell esetén a $P = \begin{bmatrix} .8 & .4 \\ .2 & .6 \end{bmatrix}$ átmenetmátrix primitív, az 1 sajátértékhez tartozó jobb sajátvektora, s vele a stacionárius eloszlás $\pi = (2/3, 1/3)$, vagyis a napoknak 2/3-a derűs. Másrészt

$$\lim_{m\to\infty} \mathbf{P}^m = \begin{bmatrix} 2/3 & 2/3 \\ 1/3 & 1/3 \end{bmatrix}.$$

P A "Ki nevet a végén?" ugyan reducibilis, de K átmenetmátrixának az 1 egyszeres multiplicitású sajátértéke és nincs több sajátérték a spektrálkörén, így létezik a $\lim_{n\to\infty} \mathbf{K}^n$ határérték, a jobb sajátvektora fejben számolva is ellenőrizhetően $\pi=(0,0,0,0,0,0,1)=\mathbf{e}_7$, így az állapotvektorok határértéke \mathbf{e}_7 , vagyis valóban a CÉL-ban végzünk (1 valószínűséggel).

Irreducibilis és imprimitív Markov-láncok

- Ha **P** irreducibilis, de imprimitív (ekkor több sajátérték van a spektrálkörön, pl. a csupa pozitív valószínűséggel definiált "Csön-csön gyűrű" ilyen, sajátértékei 1 és —1), akkor létezik ugyan stacionárius megoldás, de az nem az állapotvektorok határértéke. A stacionárius vektor *i*-edik koordinátája megadja, hogy a Markov-lánc "idejének" átlagosan hányad részét tölti az *i*-edik állapotban (mint a primitív esetben).
- Az állapotvektoroknak nincs határértékük, de átlaguknak igen, a stacionárius vektor, ugyanis

$$\lim_{m\to\infty}\frac{\mathsf{I}+\mathsf{P}+\mathsf{P}^2+\cdots+\mathsf{P}^{m-1}}{m}=\boldsymbol{\pi}\mathbf{1}^\mathsf{T},$$

amiből

$$\lim_{m\to\infty}\frac{\mathsf{p}_0+\mathsf{p}_1+\cdots+\mathsf{p}_{m-1}}{m}=\boldsymbol{\pi}.$$

Reducibilis Markov-láncok

- A korábbi 6 fős "Csön-csön gyűrű" reducibilis ugyan, de a π = (1/4, 1/2, 1/4, 0, 0, 0) stacionárius vektor még kifejezi, hogy a Markov-lánc "idejének" átlagosan hányad részét tölti az *i*-edik állapotban (az átmeneti osztályban töltött idő "elenyészik").
- P Ha azonban több visszatérő osztály is van, akkor már ez sem igaz. P. a következő esetben két stacionárius vektor is van: (1/2, 1/2, 0, 0, 0, 0), (0, 0, 1/4, 1/2, 1/4, 0):

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & \frac{1}{2} \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

