Course Name:Linear Algebra (MT 104)

Topic: Linear Independence (Exercise 1.7)

Instructor: Dr. Sara Aziz

saraazizpk@gmail.com

September 27, 2020

Recall

- ▶ What would be $Span\{\vec{u}\}$, for $\vec{u} \neq \vec{0}$ and $\vec{u} = \vec{0}$.
- ▶ What would be $Span\{\vec{u}, \vec{v}\}$, for \vec{u} isn't multiple of \vec{v} and what for \vec{u} is multiple of \vec{v} .

In the Last Lecture, we have solved following Homogenous System

$$3x_1 + 5x_2 - 4x_3 = 0$$
$$-3x_2 - 2x_2 + 4x_3 = 0$$
$$6x_1 + x_2 - 8x_3 = 0$$

which lead to the following augmented matrix

$$\begin{bmatrix} 3 & 5 & -4 & 0 \\ -3 & -2 & 4 & 0 \\ 6 & 1 & -8 & 0 \end{bmatrix} \quad \rightsquigarrow \quad \begin{bmatrix} 3 & 5 & -4 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

means $x_3 = t(say)$ is free. Hence solution

$$\vec{x} = \begin{bmatrix} 4/3t \\ 0 \\ t \end{bmatrix} = t \begin{bmatrix} 4/3 \\ 0 \\ 1 \end{bmatrix} = t\vec{v}, \text{ where } \vec{v} = \begin{bmatrix} 4/3 \\ 0 \\ 1 \end{bmatrix}$$

Which is parametric equation of line passing through $\vec{0}$ and \vec{v} \vec{z} \vec{z} \vec{z} \vec{z} \vec{z} \vec{z}

Now consider the non Homogeneous System

$$3x_1 + 5x_2 - 4x_3 = 7$$
$$-3x_2 - 2x_2 + 4x_3 = -1$$
$$6x_1 + x_2 - 8x_3 = -4$$

which lead to the following augmented matrix

$$\begin{bmatrix} 3 & 5 & -4 & 7 \\ -3 & -2 & 4 & -1 \\ 6 & 1 & -8 & 4 \end{bmatrix} \quad \rightsquigarrow \quad \begin{bmatrix} 1 & 0 & -4/3 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

means $x_3 = t(say)$ is free. Hence solution

$$\vec{x} = \begin{bmatrix} -1 + 4/3t \\ 2 \\ t \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 4/3 \\ 0 \\ 1 \end{bmatrix} = \vec{p} + t\vec{v}.$$

Which is parametric equation of line passing through \vec{p} and \vec{v}

Parallel solution sets of $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{0}$

Theorem

Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for some given \mathbf{b} , and let \mathbf{p} be a solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Recall

- ▶ Solution of homogeneous system Ax = 0.
- ▶ What would be $Span\{\vec{u}\}$, for $\vec{u} \neq \vec{0}$ and $\vec{u} = \vec{0}$.
- ▶ What would be $Span\{\vec{u}, \vec{v}\}$, for \vec{u} isn't multiple of \vec{v} and what for \vec{u} is multiple of \vec{v} .
- ▶ What does mean by $2\vec{u} 3\vec{v} \vec{w} = \vec{0}$. { Question#26(Ex1.4)}.
- What is dependence in general?

1.7 Linear Independence

- Linear Independence and Homogeneous System
- Linear Independence: Definition
- Linear Independence of Matrix Columns
- Special Cases
 - A Set of One Vector
 - A Set of Two Vectors
 - A Set Containing the 0 Vector
 - A Set Containing Too Many Vectors
- Characterization of Linearly Dependent Sets
 - Theorem: Linear Dependence and Linear Combination

Example

A homogeneous system such as

$$\begin{bmatrix} 1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

can be viewed as a vector equation

$$x_1 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

The vector equation has the trivial solution ($x_1 = 0$, $x_2 = 0$, $x_3 = 0$), but is this the *only solution*?

Linear Independence

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbf{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution.

Linear Dpendence

The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exists weights c_1, \dots, c_p , not all 0, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p=\mathbf{0}.$$

linear dependence relation (when weights are not all zero)

Linear Independence: Example

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix}$.

- a. Determine if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.
- b. If possible, find a linear dependence relation among $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

Solution: (a)

$$x_1 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Augmented matrix:

$$\begin{bmatrix} 1 & 2 & -3 & 0 \\ 3 & 5 & 9 & 0 \\ 5 & 9 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & -1 & 18 & 0 \\ 0 & -1 & 18 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & -1 & 18 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 x_3 is a free variable \Rightarrow there are nontrivial solutions.

$$\Rightarrow \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$$
 is a linearly dependent set

(b) Reduced echelon form:

$$\begin{bmatrix} 1 & 0 & 33 & 0 \\ 0 & 1 & -18 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies \begin{matrix} x_1 & = \\ x_2 & = \\ x_3 & = \end{matrix}$$

Let $x_3 = \dots$ (any nonzero number).

Then $x_1 = ----$ and $x_2 = ----$.

$$--- \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + --- \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix} + --- \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

or

$$---\mathbf{v}_1 + ----\mathbf{v}_2 + ----\mathbf{v}_3 = \mathbf{0}$$
 (one possible linear dependence relation)

Linear Independence of Matrix Columns

Example (Linear Dependence Relation)

$$-33\begin{bmatrix}1\\3\\5\end{bmatrix}+18\begin{bmatrix}2\\5\\9\end{bmatrix}+1\begin{bmatrix}-3\\9\\3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$$

can be written as the matrix equation:

$$\begin{bmatrix} 1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3 \end{bmatrix} \begin{bmatrix} -33 \\ 18 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Each linear dependence relation among the columns of A corresponds to a nontrivial solution to $A\mathbf{x} = \mathbf{0}$.

The columns of matrix A are linearly independent if and only if the equation $A\mathbf{x} = \mathbf{0}$ has *only* the trivial solution.

Special Cases: 1. A Set of One Vector

Sometimes we can determine linear independence of a set with minimal effort.

Example (1. A Set of One Vector)

Consider the set containing one nonzero vector: $\{\mathbf{v}_1\}$

The only solution to $x_1\mathbf{v}_1 = 0$ is $x_1 = ----$.

So $\{\mathbf{v}_1\}$ is linearly independent when $\mathbf{v}_1 \neq \mathbf{0}$.

Example (2. A Set of Two Vectors)

Let

$$\mathbf{u}_1 = \left[egin{array}{c} 2 \\ 1 \end{array}
ight], \, \mathbf{u}_2 = \left[egin{array}{c} 4 \\ 2 \end{array}
ight], \, \mathbf{v}_1 = \left[egin{array}{c} 2 \\ 1 \end{array}
ight], \, \mathbf{v}_2 = \left[egin{array}{c} 2 \\ 3 \end{array}
ight].$$

- a. Determine if $\{\textbf{u}_1,\textbf{u}_2\}$ is a linearly dependent set or a linearly independent set.
- b. Determine if $\{\textbf{v}_1,\textbf{v}_2\}$ is a linearly dependent set or a linearly independent set.

Solution: (a) Notice that $\mathbf{u}_2 = \mathbf{u}_1$. Therefore

$$_{----}\mathbf{u}_1 + _{----}\mathbf{u}_2 = 0$$

This means that $\{u_1, u_2\}$ is a linearly _____ set.

Special Cases: 2. A Set of two Vector (cont.)

(b) Suppose

$$c\mathbf{v}_1+d\mathbf{v}_2=\mathbf{0}.$$

Then $\mathbf{v}_1 = ----\mathbf{v}_2$ if $c \neq 0$. But this is impossible since \mathbf{v}_1 is _____ a multiple of \mathbf{v}_2 which means c = ----. Similarly, $\mathbf{v}_2 = ------\mathbf{v}_1$ if $d \neq 0$. But this is impossible since \mathbf{v}_2 is not a multiple of \mathbf{v}_1 and so d = 0. This means that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a linearly _____ set.

Special Cases: 2. A Set of two Vector (cont.)

A set of two vectors is linearly dependent if at least one vector is a multiple of the other.

A set of two vectors is linearly independent if and only if neither of the vectors is a multiple of the other.

Special Cases: 3. A Set Containing the $\vec{0}$ Vector

Theorem

A set of vectors $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbf{R}^n containing the zero vector is linearly dependent.

Proof: Renumber the vectors so that $\mathbf{v}_1 = \dots$. Then

$$\dots \mathbf{v}_1 + \dots \mathbf{v}_2 + \dots + \dots \mathbf{v}_p = \mathbf{0}$$

which shows that S is linearly ______.

Special Cases: 4. A Set Containing the Too Many Vectors

Theorem

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. I.e. any set $\{\mathbf v_1, \mathbf v_2, \dots, \mathbf v_p\}$ in $\mathbf R^n$ is linearly dependent if p>n.

Outline of Proof:

$$A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_p] \text{ is } n \times p$$

Suppose p > n.

 \implies $A\mathbf{x} = \mathbf{0}$ has more variables than equations \implies $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions \implies columns of A are linearly dependent

Examples

With the least amount of work possible, decide which of the following sets of vectors are linearly independent and give a reason for each answer.

a.
$$\left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 9\\6\\4 \end{bmatrix} \right\}$$

b. Columns of
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 0 \\ 9 & 8 & 7 & 6 & 5 \\ 4 & 3 & 2 & 1 & 8 \end{bmatrix}$$

Special Cases: Example (cont.)

Examples (cont.) $c.\left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 9\\6\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$ $d. \left\{ \begin{bmatrix} 8 \\ 2 \\ 1 \\ 4 \end{bmatrix} \right\}$

Characterization of Linearly Dependent Sets

Example

Consider the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ in \mathbf{R}^3 in the following diagram. Is the set linearly dependent? Explain

Characterization of Linearly Dependent Sets

Theorem

An indexed set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent, and $\mathbf{v}_1 \neq \mathbf{0}$, then some vector \mathbf{v}_j $(j \geq 2)$ is a linear combination of the preceding vectors $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.