Valuation Rings and Dedekind Domains

Swayam Chube

Last Updated: June 30, 2025

§1 General Valuation Rings

DEFINITION 1.1. An integral domain R with fraction field K is said to be a *valuation ring* if for each $x \in K^{\times}$, either $x \in R$ or $x^{-1} \in R$.

We remark that if R is a valuation ring with fraction field K, then any subring of K containing R is also a valuation ring.

PROPOSITION 1.2. The ideals in a valuation ring R are totally ordered by inclusion.

Proof. Let I and J be ideals in a valuation ring. If either I or J is zero or I = J, then there is nothing to prove. Assume hence that both are non-zero and $I \neq J$. Without loss of generality, suppose $x \in I \setminus J$. Then for any $0 \neq y \in J$, $\frac{x}{y} \notin R$ lest $x \in J$. But since R is a valuation ring, $\frac{y}{x} \in R$, consequently, $y \in I$, so that $J \subseteq I$.

COROLLARY 1.3. A valuation ring is a local domain.

Proof. Since the ideals are totally ordered, there must be a unique maximal ideal.

COROLLARY 1.4. A finitely generated ideal in a valuation ring is principal, i.e., a valuation ring is a Bézout domain.

Proof. Suppose $I = (a_1, ..., a_n) \leq R$, a valuation ring. In view of Proposition 1.2 there exists an index i such that $(a_i) \subseteq (a_i)$ for all $1 \leq j \leq n$, and hence $I = (a_i)$ is principal.

DEFINITION 1.5. A ring is said to be Bézout if every finitely generated ideal is principal.

PROPOSITION 1.6. Let R be a ring. Then R is a valuation ring if and only if it is a local Bézout domain.

Proof. We have shown above that every valuation ring is a local Bézout domain. Conversely, suppose (R, \mathfrak{m}) is a local Bézout domain and let $0 \neq x \in K$, the fraction field of R. Then there exist $f, g \in R \setminus \{0\}$ such that $x = \frac{f}{g}$. Since R is a Bézout domain, there exists $h \in R$ such that (f,g) = (h). Let $a,b \in R$ be such that f = ah and g = bh. Then (a,b) = (1), and hence, at least one of a or b must be a unit. In any case, either $\frac{f}{g}$ or $\frac{g}{h}$ is an element of R, that is, R is a valuation ring.

PROPOSITION 1.7. A valuation ring is integrally closed in its field of fractions.

Proof. Let (R, \mathfrak{m}) be a valuation ring with field of fractions K. Suppose R is not integrally closed in K, then there exists $0 \neq x \in R$ such that $x^{-1} \in K \setminus R$ is integral over R, and hence, satisfies an equation of the form

$$x^{-n} + a_1 x^{-n+1} + \dots + a_n = 0,$$

where $a_i \in R$ for $1 \le i \le n$. Further, since K is a field, we may assume that $a_n \ne 0$. Multiplying by x^n , we obtain

$$a_n x^n + \dots + a_1 x + 1 = 0.$$

Since x is not a unit in R, $x \in \mathfrak{m}$, but the above equation would then imply that $1 \in \mathfrak{m}$, a contradiction. Thus R is integrally closed in K.

There is a very simple characterization of flat modules over valuation rings which we include here, although it will never be used throughout this article.

THEOREM 1.8. A module over a Bézout domain is flat if and only if it is torsion-free. In particular, this is true for valuation rings.

Proof. Let R be a Bézout domain. It is well-known that a flat module over an integral domain is torsion-free; this follows by considering, for each $0 \neq a \in R$, the injective map $0 \to R \xrightarrow{\cdot a} R$ and tensoring it with M.

Conversely, let M be a torsion-free R-module. It suffices to show that $\operatorname{Tor}_1^R(R/\mathfrak{a},M)=0$ for every finitely generated ideal \mathfrak{a} of R. Disregarding the trivial case, we may assume that $\mathfrak{a}\neq 0$. Since R is a Bézout domain, $\mathfrak{a}=(a)$ for some $0\neq a\in R$. Tensoring the short exact sequence

$$0 \to R \xrightarrow{\cdot a} R \to R/aR \to 0$$

with M and taking the induced long exact sequence, we get

$$\cdots \to 0 = \operatorname{Tor}_R^1(R,M) \to \operatorname{Tor}_R^1(R/aR,M) \to R \otimes_R M \xrightarrow{\cdot a} R \otimes_R M \to R/aR \otimes_R M \to 0.$$

But since $R \otimes_R M$ is canonically isomorphic to M, and M is torsion-free, we have that $\operatorname{Tor}_R^1(R/aR, M) = 0$, whence M is a flat R-module.

THEOREM 1.9. Let R be a valuation ring with fraction field K, and let R' be another subring of K properly containing R. Let \mathfrak{m} denote the maximal ideal of R and \mathfrak{p} the maximal ideal of R'. Then

- (1) $\mathfrak{p} \subseteq \mathfrak{m} \subseteq R \subseteq R'$.
- (2) \mathfrak{p} is a prime ideal in R, and $R' = R_{\mathfrak{p}}$.
- (3) R/\mathfrak{p} is a valuation ring of the field R'/\mathfrak{p} .
- (4) Given any valuation ring \overline{S} of the field R/\mathfrak{m} , let S be its inverse image in R. Then S is a valuation ring having the same fraction field K as R.
- *Proof.* (1) Let $x \in \mathfrak{p}$ so that x is not a unit in R', i.e., $x^{-1} \notin R'$. Thus $x^{-1} \notin R$, equivalently, $x \in \mathfrak{m}$. Next, to see that the inclusion $\mathfrak{p} \subseteq \mathfrak{m}$ is strict, choose some $y \in R' \setminus R$. Then $y^{-1} \in R$ and is not a unit in R, whence $y^{-1} \in \mathfrak{m}$, but $y^{-1} \notin \mathfrak{p}$, else $y \notin R'$. Thus the inclusion $\mathfrak{p} \subseteq \mathfrak{m}$ is strict.
 - (2) Since $\mathfrak{p} = \mathfrak{p} \cap R$, it is a prime ideal in R. Clearly every element in $R \setminus \mathfrak{p}$ is invertible in R', so that $R \subseteq R_{\mathfrak{p}} \subseteq R'$. But by construction, the maximal ideal $\mathfrak{p}R_{\mathfrak{p}}$ of $R_{\mathfrak{p}}$ is contained in the maximal ideal \mathfrak{p} of R'; in view of (1), this means $R_{\mathfrak{p}} = R'$.
 - (3) Let $\pi: R' \to R'/\mathfrak{p}$ denote the natural surjection. Let $0 \neq \overline{x} \in R'/\mathfrak{p}$ and choose some $x \in R' \setminus p$ such that $\overline{x} = \pi(x)$. If $x \in R$, then $\overline{x} \in R/\mathfrak{p}$, else $x^{-1} \in R$ and $\overline{x}^{-1} = \pi(x^{-1}) \in R/\mathfrak{p}$, as desired.

(4) Note that S is a subring of R containing \mathfrak{m} and $S/\mathfrak{m} = \overline{S} \subseteq R/\mathfrak{m}$. Let $0 \neq x \in K$. Since R is a valuation ring, either $x \in R$ or $x^{-1} \in R$. We may suppose without loss of generality that $x \in R$. Let $\overline{x} \in R/\mathfrak{m}$ denote its image. If $\overline{x} = 0$, then $x \in \mathfrak{m} \subseteq S$. Otherwise, either $\overline{x} \in \overline{S}$ or $\overline{x}^{-1} \in \overline{S}$. Hence, either $x \in S$ or $x^{-1} \in S$, i.e., S is a valuation ring with fraction field K.

THEOREM 1.10. Let K be a field, $A \subseteq K$ a subring, and \mathfrak{p} a prime ideal of A. Then there exists a valuation ring (R,\mathfrak{m}) of K satisfying

$$A \subseteq R$$
 and $\mathfrak{m} \cap A = \mathfrak{p}$.

Proof. Replacing A by $A_{\mathfrak{p}}$, we may assume that A is a local ring with $\mathfrak{p}=\mathfrak{m}_A$ the maximal ideal of A. This can be done because $A \cap \mathfrak{p} A_{\mathfrak{p}} = \mathfrak{p}$. Next, let \mathscr{F} denote the subrings of K containing A such that $1 \notin \mathfrak{p} B$; and order \mathscr{F} by inclusion of rings. Clearly every chain in \mathscr{F} has an upper bound given by union of rings constituting the chain. In view of Zorn's lemma, \mathscr{F} admits a maximal element, say R. Since $\mathfrak{p} R \subsetneq R$, there exists a maximal ideal \mathfrak{m} of R containing $\mathfrak{p} R$. Then $R_{\mathfrak{m}} \in \mathscr{F}$, since the extension of \mathfrak{m} to $R_{\mathfrak{m}}$ is $\mathfrak{m} R_{\mathfrak{m}}$, which is a proper ideal. Thus $R_{\mathfrak{m}} \in \mathscr{F}$ and by maximality of R, we have $R = R_{\mathfrak{m}}$, that is, (R,\mathfrak{m}) is a local ring.

Since $\mathfrak{m} \cap A \supseteq \mathfrak{p}$ and \mathfrak{p} is a maximal ideal, we have $\mathfrak{m} \cap A = \mathfrak{p}$. It remains to show that R is a valuation ring. Let $0 \neq x \in K$ and suppose that $x, x^{-1} \notin R$. Since $x \notin R$, $R \subsetneq R[x]$, so that $R[x] \notin \mathscr{F}$ and hence \mathfrak{p} generates the unit ideal in R[x]. Thus there exists a relation

$$1 = a_0 + a_1 x + \dots + a_n x^n$$

for some positive integer n and $a_i \in \mathfrak{p}R$ for $0 \le i \le n$. Note that $n \ge 1$ since $1 \notin \mathfrak{p}R$. Since $1 - a_0$ is a unit in R, we can multiply by its inverse to get a relation of the form

$$1 = b_1 x + \dots + b_n x^n \quad \text{where } b_i \in \mathfrak{m} \text{ for } 1 \le i \le n.$$
 (*)

Choose such a relation that minimizes $n \ge 1$. Similarly, since $x^{-1} \notin R$, we can find another relation

$$1 = c_1 x^{-1} + \dots + c_m x^{-m} \quad \text{where } c_i \in \mathfrak{m} \text{ for } 1 \le i \le m.$$
 $(\star \star)$

Again, choose such a relation that minimizes $n \ge 1$. If $n \ge m$, multiply $(\star \star)$ by $b_n x^n$ and substitute in (\star) to obtain a relation of smaller *x*-degree, a contradiction. On the other hand, if n < m, then we obtain a similar contradiction by interchanging the roles of *x* and x^{-1} . This completes the proof.

THEOREM 1.11. Let K be a field, $A \subseteq K$ a subring, and B the integral closure of A in K. Then B is the intersection of all the valuation rings of K containing A.

Proof. Let B' denote the intersection of all valuation rings of K containing A. Due to Proposition 1.7, every such valuation ring contains B, that is, $B \subseteq B'$. Let $x \in K \setminus B$, that is, x is not integral over A. It suffices to find a valuation ring of K containing A but not x. Set $y = x^{-1}$, and consider the ideal yA[y] of the ring A[y]. Note that this ideal is proper, else, there would exist a relation

$$1 = a_1 y + \dots + a_n y^n$$

for some $a_1, \ldots, a_n \in A$; which upon multiplying by x^n forces x to be integral over A, a contradiction. Let $\mathfrak p$ be a maximal ideal of A[y] containing yA[y]. In view of Theorem 1.10, there exists a valuation ring $(V, \mathfrak m)$ of K containing A[y] such that $\mathfrak m \cap A[y] = \mathfrak p$, in particular, $y \in \mathfrak m$, and hence $x = y^{-1} \notin V$, as desired.

DEFINITION 1.12. An abelian group (H,+) together with a total ordering (H,\leq) is said to be an *ordered group* if

$$\forall x, y, z, w \in H \quad x \ge y \text{ and } z \ge w \implies x + z \ge y + w.$$

Note that if x > 0 and $y \ge 0$ in H, then

$$x + y \ge x > 0$$
,

and if $x \ge y$ in H, then adding -(x + y) to both sides of the inequality, we obtain: $-y \ge -x$.

Given an ordered abliean group (H, \leq) , we can extend the ordering to the set $H \cup \{\infty\}$ by setting $\infty \geq x$ for all $x \in H$, $\infty + x = \infty$ for all $x \in H$, and $\infty + \infty = \infty$.

DEFINITION 1.13. A(n) (additive) *valuation* of a field K is a map $v: K \to H \cup \{\infty\}$ where (H, \leq) is an ordered abelian group such that for all $x, y \in K$,

- (i) v(xy) = v(x) + v(y),
- (ii) $v(x+y) \ge \min\{v(x), v(y)\}\$, and
- (iii) $v(x) = \infty$ if and only if x = 0.

Clearly, the restriction $v: K^{\times} \to H$ defines a group homomorphism. Set

$$R_v = \{x \in K : v(x) \ge 0\}$$
 and $\mathfrak{m}_v = \{x \in K : v(x) > 0\}$.

It is easy to see that (R_v, \mathfrak{m}_v) is a valuation ring of the field K. The image of the group homomorphism $v: K^{\times} \to H$ is called the *value group* of the valuation v. Note that we may restrict the codomain of v to its value group without changing the valuation ring.

Now, let (R, \mathfrak{m}) be a valuation ring with fraction field K. Let G denote the set of non-zero principal R-submodules of K, that is,

$$G = \left\{ xR : x \in K^{\times} \right\}.$$

Note that G is clearly an abelian group under the "multiplication" defined by

$$xR \cdot yR = xyR$$
.

The identity element is R and the inverse of xR is given by $x^{-1}R$. The canonical map $v: K^{\times} \to G$ given by $x \mapsto xR$ is a surjective group homomorphism with kernel R^{\times} . Thus $G \cong K^{\times}/R^{\times}$ as abelian groups. Note that the submodules in G are totally ordered, indeed, if $x, y \in K^{\times}$, either $\frac{x}{y}$ or $\frac{y}{x} \in R$, and thus, one of xR and yR must be contained in the other. Define the relation

$$xR \le yR \iff xR \supseteq yR$$

on G. Clearly G forms an ordered abelian group under this relation. Extend the map $v: K^{\times} \to G \subseteq G \cup \{\infty\}$ by setting $v(0) = \infty$. We contend that v is a valuation. To this end, it suffices to verify axiom (ii); for this, we may assume $x, y \in K^{\times}$. Now,

$$v(x+y) = xR + yR = \min\{v(x), v(y)\},\$$

since the submodules in G are totally ordered. Thus v is a valuation, and the corresponding valuation ring is (R, \mathfrak{m}) by construction. Call this the *canonical valuation* of the valuation ring (R, \mathfrak{m}) . In essence, we have shown that there's no substantial difference between "abstract" valuation rings and those valuation rings that come from (additive) valuations of a field.

PROPOSITION 1.14. Let v and v' be two (additive) valuations of the field K with value groups Hand H' respectively. If both v and v' give rise to the same valuation ring, then there is an order isomorphism $\varphi: H \to H'$ such that $v' = \varphi \circ v$.

Thus, in some sense, the value group of a valuation ring is determined up to order-isomorphism, and in particular, is isomorphic to K^{\times}/R^{\times} .

Proof. Note that it suffices to assume v' is the canonical valuation with value group $G = \{xR : x \in K^{\times}\}$. Since $\ker v = R^{\times}$ and $\ker v' = R^{\times}$, there is an injective map $\varphi \colon G \to H$ such that $\varphi \circ v' = v$. Since v is surjective, so is φ . That is, v is an isomorphism. Finally, suppose $v'(x) \leq v'(y)$, that is, $xR \supseteq yR$, equivalently, $\frac{y}{x} \in R$, whence $v\left(\frac{x}{y}\right) \ge 0$, equivalently $v(x) \ge v(y)$, as desired.

§2 Discrete Valuation Rings and Dedekind Domains

DEFINITION 2.1. A valuation ring whose value group is isomorphic to \mathbb{Z} is called a *discrete valuation* ring (DVR).

THEOREM 2.2. Let *R* be a valuation ring. The following are equivalent:

- (1) R is a DVR.
- (2) R is a PID.
- (3) R is Noetherian.

Proof.

THEOREM 2.3. Let R be a ring. The following are equivalent:

- (1) *R* is a DVR.
- (2) R is a local PID which is not a field.
- (3) R is a Noetherian local ring of positive Krull dimension with principal maximal ideal.
- (4) R is a one-dimensional normal Noetherian local domain.

Proof.

§§ Fractional Ideals and Dedekind Domains

DEFINITION 2.4. Let R be an integral domain with fraction field K. A fractional ideal of R is an *R*-submodule *I* of *K* such that there exists $0 \neq \alpha \in R$ such that $\alpha I \subseteq R$.

Just like ordinary ideals of R, we can take the sum and product of R-submodules of K:

$$I + J = \{x + y : x \in I, y \in J\}$$
 and $I \cdot J = \{xy : x \in I, y \in J\}R$.

Note that the sum and product of fractional ideals is again a fractional ideal. Indeed, suppose $\alpha, \beta \in R \setminus \{0\}$ such that $\alpha I, \beta J \subseteq R$. Then it is clear that $\alpha \beta (I+J) \subseteq R$ and $\alpha \beta (I\cdot J) \subseteq R$.

Next, we take a look at localization. Let $S \subseteq R$ be a multiplicative subset. Then

$$S^{-1}I = \left\{ \frac{x}{s} : x \in I, \ s \in S \right\}$$

is an $S^{-1}R$ submodule of K such that $\alpha(S^{-1}I) \subseteq S^{-1}R$, so that $S^{-1}I$ is a fractional ideal of $S^{-1}R$. The usual properties of localization for ideals carries over to the case of fractional ideals. Indeed, if I and J are R-submodules of K, then:

(i)
$$S^{-1}I \cdot S^{-1}J = S^{-1}(I \cdot J)$$

(ii)
$$S^{-1}I: {}_{S^{-1}R}S^{-1}J = S^{-1}(I: {}_RJ).$$

The first one is clear. For the second one, the inclusion $S^{-1}(I:{}_RJ)\subseteq S^{-1}I:{}_{S^{-1}R}S^{-1}J$ is also clear. Conversely, if $\frac{\alpha}{s}\in S^{-1}I:{}_{S^{-1}R}S^{-1}J$, then for any $\frac{y}{t}\in S^{-1}J$, we have $\frac{\alpha y}{st}\in S^{-1}I$, that is, $\alpha y\in I$, whence $\alpha\in I:{}_RJ$. This establishes the equality.

DEFINITION 2.5. An R-submodule I of K is said to be *invertible* if there exists an R-submodule J of K such that $I \cdot J = R$.

Clearly, if I is an invertible R-submodule of K, then it must be a fractional ideal. Further, if $I \cdot J = R$, then

$$J = \{\alpha \in K \colon \alpha I \subseteq R\} = R \colon {}_RI.$$

Indeed, we have the inclusion $J \subseteq R : {}_{R}I = (R : {}_{R}I) \cdot I \cdot J \subseteq J$, and hence, equality holds everywhere.

THEOREM 2.6. Let R be an integral domain and I a fractional ideal of R. The following are equivalent:

- (1) I is invertible.
- (2) I is a projective R-module.
- (3) I is finitely generated, and for every maximal ideal \mathfrak{m} of R, the fractional ideal $I_{\mathfrak{m}}$ of $R_{\mathfrak{m}}$ is principal.

Proof.