

A2 Formulas.

- for y' + a(x)y = f(x) we have:
 - integrating factor $I(x) = e^{\int a(x) dx}$
 - variation of parameters: $y = uy_h$
 - where $y_h = e^{-\int \alpha(x) dx}$ and $u = \int \frac{f(x)}{u_h} dx$
- circuits
 - Kirkhoff's Voltage Law: E = RI + LI' + Q/C
- derivative of charge is current: I = Q'
- Bernoulli equation: $y' + a(t)y = f(t)y^n$
 - \circ substitute $u = y^{1-n}$
 - \circ converts to $\mathbf{u}' + (1 \mathbf{n})\mathbf{a}(\mathbf{t})\mathbf{u} = (1 \mathbf{n})\mathbf{f}(\mathbf{t})$

A3 Formulas.

- fundamental solutions for y'' + py' + qy = 0 are:
 - distinct real roots $\lambda = a, b$: $y_1 = e^{at}, y_2 = e^{bt}$
 - \circ repeated root $\lambda = a$: $y_1 = e^{at}$, $y_2 = te^{at}$
 - complex roots $\lambda = a \pm bi$: $y_1 = e^{at} \cos bt$, $y_2 = e^{at} \sin bt$
- spring with no external force: $my'' + \mu y' + ky = 0$
- Wronskian: $W(y_1, y_2) = y_1y_2' y_1'y_2$
- Abel's formula: for y'' + p(t)y' + q(t)y = 0
 - $\circ W(y_1, y_2) = Ae^{-\int p(t)dt}$ if y_1, y_2 are solutions
 - if y_1 is a solution, then Abel's formula with A = 1 yields:
 - so is $y_2 = uy_1$ where $u = \int \frac{e^{-\int p(t)dt}}{y_1^2} dt$

A4 Formulas.

forcing term	trial solution y _p
[deg m poly]e ^{at}	t ⁿ [deg m poly]e ^{at}
linear combo of:	
$[\deg m \ poly]e^{at}\cos(bt)$	$t^n[\text{deg m poly}]e^{at}\cos(bt)$
and	+
$[\text{deg m poly}] e^{\alpha t} \sin(bt)$	$t^n[\deg m \text{ poly}]e^{at}\sin(bt)$

note: n is the # of times $\lambda = \alpha$ (or $\lambda = \alpha + bi$) is a root of the characteristic equation.

A5 Formulas.

- variation of parameters for y'' + p(t)y' + q(t)y = f(t):
 - $\circ y = u_1y_1 + u_2y_2$ where:
 - o y₁, y₂ are fundamental homogeneous solutions

$$\circ \, \mathfrak{u}_1 = - \int \frac{y_2 f}{W} \, \, dt \, \, and \, \, \mathfrak{u}_2 = \int \frac{y_1 f}{W} \, \, dt$$

function	Laplace transform
f(t)	$F(s) = \int_0^\infty e^{-st} f(t) dt$
1	$\frac{1}{s}$
t ⁿ	$\frac{n!}{s^{n+1}}$
e ^{at}	$\frac{1}{s-a}$
t ⁿ e ^{at}	$\frac{n!}{(s-a)^{n+1}}$
cos bt	$\frac{s}{s^2 + b^2}$
$\sin \mathfrak{bt}$	$\frac{b}{s^2 + b^2}$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}$
e ^{at} f(t)	$F(s-a) \leftarrow \text{shift theorem}$
t ⁿ f(t)	$(-1)^n \frac{\mathrm{d}^n}{\mathrm{d}s^n} [F(s)] \leftarrow \text{time multiplication}$
y ⁽ⁿ⁾	$s^{n}Y - s^{n-1}y(0) - s^{n-2}y'(0) - \dots - y^{(n-1)}(0)$
$H_c(t)f(t)$	$e^{-cs}\mathcal{L}\left\{f(t+c)\right\}(s) \leftarrow \text{truncation}$
H _c (t)	$\frac{e^{-cs}}{s}$
periodic f(t)	$\frac{\mathcal{L}(f_T)(s)}{1 - e^{-Ts}} \text{period T, window } f_T$
$f(t)\delta(t-c)$	$f(c)e^{-cs}$
f * g	F · G

function	Inverse Laplace transform
F(s)	f(t)
$\frac{1}{(s-a)^n}$ $\frac{C(s-a) + D}{(s-a)^2 + b^2}$	$\frac{t^{n-1}e^{at}}{(n-1)!}$ $Ce^{at}\cos bt + \frac{De^{at}\sin bt}{b}$
$e^{-cs}F(s)$	$H_c(t)f(t-c)$

B4 Formulas.

- unit impulse response e(t):
 - set initial values = 0
 - set forcing function = $\delta(t)$

B5 Formulas.

- $(f * g)(t) = \int_0^t f(u)g(t-u) du$:
- ay'' + by' + cy = f(t) has:
 - o state-free solution: $y_s = e(t) * f(t)$
 - input-free solution:

$$y_i = \alpha y(0)e'(t) + (\alpha y'(0) + by(0))e(t)$$

C1 Formulas.

$$\bullet \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

- characteristic polnomial is $det(A \lambda I)$
- eigenvector \mathbf{v} with eignvalue $\lambda = \mathbf{c}$
 - \circ satisfies (A cI)v = 0
 - \circ generalized eigenvector \mathbf{v}_{q} for \mathbf{v} :
 - \circ satisfies $(A cI)\mathbf{v}_g = \mathbf{v}$

C3 Formulas.

- homogeneous system $\mathbf{x}' = A\mathbf{x}$:
 - evalue λ and evec $\mathbf{v} \implies \mathbf{x} = \mathbf{e}^{\lambda t} \mathbf{v}$
 - generalized evec $\mathbf{v}_{\mathbf{q}} \implies \mathbf{x} = e^{\lambda t} (\mathbf{v}_{\mathbf{q}} + t \mathbf{v})$
- $0 \lambda_1, \lambda_2 > 0 \implies$ nodal source
- $\circ \lambda_1, \lambda_2 < 0 \implies \text{nodal sink}$
- $\circ \lambda_1 > 0, \lambda_2 < 0 \implies$ saddle
- $\circ \lambda = 0 \pm bi \implies center$
- $\circ \lambda = a \pm bi$ and $a > 0 \implies$ spiral source
- $\circ \lambda = a \pm bi$ and $a < 0 \implies$ spiral sink

C4 Formulas.

- $\bullet \mathbf{x}' = A\mathbf{x} + \mathbf{f}$
 - o variation of parameters:

$$\circ x_p = M(t) \int M(t)^{-1} f(t) dt$$

- o undetermined coefficients:
 - if $\mathbf{f}(t) = e^{ct}\mathbf{v}$, then trial $\mathbf{x}_p = e^{ct}\mathbf{a}$, assuming $\lambda = c$ not an evalue of A

C5 Formulas.

$$\bullet \ e^{tA} = I + tA + \frac{t^2A^2}{2!} + \frac{t^3A^3}{3!} + \cdots$$

- if A and B commute: $e^{tA+tB} = e^{tA}e^{tB}$
- if M(t) is the fundamental matrix of A, then: • $e^{tA} = M(t)M(0)^{-1}$

• IVP
$$\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{f}$$
 with $\mathbf{x}(0) = \mathbf{x}_0$ has solution:

$$\circ \ x = \left[e^{tA}x_0\right] + \left[e^{At}\right] * \left[f(t)\right]$$