Homework 2

Qianlang Chen

Section 2.1

1. Exercise 11 (p97)

Part (a)

Let a, b be the two given odd integers. By definition of odd, we have

$$a = 2m + 1, b = 2n + 1 : m, n \in \mathbb{Z}$$

By substitution,

$$ab = (2m+1)(2n+1)$$

= $4mn + 2m + 2n + 1$
= $2(2mn + m + n) + 1$
= $2k + 1$, where $k = 2mn + m + n$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By definition of odd, we have that ab is an odd number.

Part (b)

Let a be the given odd integer and b be the given even integer. By definition of odd and even, we have

$$a = 2m + 1, b = 2n : m, n \in \mathbb{Z}$$

By substitution,

$$ab = (2m + 1)2n$$

$$= 4mn + 2n$$

$$= 2(2mn + n)$$

$$= 2k, \text{ where } k = 2mn + n$$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By definition of even, we have that ab is an even number.

Part (c)

Let a be the given even integer and b be the given integer that is divisible by 3.

By definition of even, we have

$$a=2m:m\in\mathbb{Z}$$

By definition of being divisible by 3, we have

$$b = 3n : n \in \mathbb{Z}$$

By substitution,

$$ab = 2m \cdot 3n$$

$$= 6mn$$

$$= 6k, \text{ where } k = mn$$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By definition of being divisible by 6, we have that ab is divisible by 6.

2. Exercise 12.d (p97)

This pair of statements are *not* contrapositives of one another.

- Counterexample of case (i): a person that likes computers but does not like computer science.
- Counterexample of case (ii): a person that does not like computers but likes computer science.

3. Exercise 13.a (p97)

Contrapositive: "if m = 0 and n = 0, then $m^2 + n^2 = 0$."

Proof of the contrapositive: Since m = 0 and n = 0, by substitution, we have

$$m^2 + n^2 = 0^2 + 0^2 = 0$$

Since the contrapositive is true, the original statement "if $m^2 + n^2 \neq 0$, then $m \neq 0$ or $n \neq 0$ " is true.

4. Exercise 14.c (p98)

Let n be a number preceding a perfect cube. Since any perfect cube is in the form of x^3 where x is an integer, we have that $n = x^3 - 1$.

The expression $x^3 - 1$ is equivalent to $(x - 1)(x^2 + x + 1)$:

$$(x-1)(x^2+x+1) = x(x^2+x+1) - 1(x^2+x+1)$$

$$= (x \cdot x^2 + x \cdot x + x \cdot 1) - (1 \cdot x^2 + 1 \cdot x + 1 \cdot 1)$$

$$= x^3 + x^2 + x - x^2 - x - 1$$

$$= x^3 - 1$$

Now, since $n = x^3 - 1$, n can always be factorized into (x - 1) and $(x^2 + x + 1)$.

- When x is zero or negative, n is negative, which can never be prime.
- When x is 1, $n = 1^3 1 = 0$, which is not prime.
- When x is 2, $n = 2^3 1 = 7$, which is prime.
- When x is 3 or higher, since n can always be factorized into (x-1) and (x^2+x+1) , but (x-1) is not 1 or n, n is divisible by some other integer that is not 1 or n. Therefore, n is not prime.
- When x is not an integer, n is not an integer, which is not prime.

Since the above cases cover all possibilities of x, 7 is indeed the only prime preceding a perfect cube.

5. Exercise 7.e (p108)

Let m be the given $10^{n-1} - 1$ that is divisible by 9. Since m is divisible by 9, $m = 9k : k \in \mathbb{Z}$.

Since $10^n = 10 \cdot 10^{n-1}$, we have

$$\begin{array}{l} 10^{n}-1=10\cdot 10^{n-1}-1\\ &=10\cdot (10^{n-1}-1+1)-1\\ &=10\cdot (m+1)-1\\ &=10\cdot (9k+1)-1\\ &=90k+10-1\\ &=90k+9\\ &=9\cdot (10k+1)\\ &=9c \end{array} \qquad \begin{array}{l} \text{Substituting } m=10^{n-1}-1\\ \text{Substituting } 9k=m\\ \text{Distributing } 10\\ \text{Distributing } 10\\ \text{Factoring out } 9\\ \text{Where } c=10k+1 \end{array}$$

By closure under addition and multiplication, $c \in \mathbb{Z}$. By definition of being divisible by 9, $10^n - 1$ is divisible by 9.

6. Exercise 16 (p109)

Since n is not divisible by 3, by the division theorem, $n = 3q + r : q, r \in \mathbb{Z}, 0 < r < 3$. In other words, one of the following cases about r must be true:

Case I, when r = 1, meaning that n = 3q + 1:

$$n^2 + 2 = (3q + 1)^2 + 2$$
 Substituting $3q + 1 = n$
= $9q^2 + 6q + 1 + 2$
= $9q^2 + 6q + 3$
= $3 \cdot (3q^2 + 2q + 1)$ Factoring out 3
= $3k$ Where $k = 3q^2 + 2q + 1$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By definition of being divisible by 3, $n^2 + 2$ is divisible by 3.

Case II, when r = 2, meaning that n = 3q + 2:

$$n^2 + 2 = (3q + 2)^2 + 2$$
 Substituting $3q + 2 = n$
= $9q^2 + 12q + 4 + 2$
= $9q^2 + 12q + 6$
= $3 \cdot (3q^2 + 4q + 2)$ Factoring out 3
= $3k$ Where $k = 3q^2 + 4q + 2$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By definition of being divisible by 3, $n^2 + 2$ is divisible by 3.

Therefore, $n^2 + 2$ is divisible by 3 in every possible case.

7. Exercise 20 (p109)

Let n be any integer. Let $s = (n-1)^3 + n^3 + (n+1)^3$, which is the sum of three consecutive perfect cubes mentioned in the problem. After simplifying the expression of s, we have

$$s = (n-1)^3 + n^3 + (n+1)^3$$

$$= (n^3 - 3n^2 + 3n - 1) + n^3 + (n^3 + 3n^2 + 3n + 1)$$

$$= 3n^3 + 6n$$

$$= 3n \cdot (n^2 + 2)$$
Factoring out $3n$

Now, one of the following cases about n must be true:

Case I, when n is divisible by 3:

Since n is divisible by 3, meaning that $n = 3k : k \in \mathbb{Z}$, we have

$$s = 3n \cdot (n^2 + 2)$$

$$= 3 \cdot 3k \cdot (n^2 + 2)$$
 Substituting $3k = n$

$$= 9k \cdot (n^2 + 2)$$

$$= 9c$$
 Where $c = k \cdot (n^2 + 2)$

By closure under addition and multiplication, $c \in \mathbb{Z}$. By definition of being divisible by 9, s is divisible by 9.

Case II, when n is not divisible by 3:

Since n is not divisible by 3, according to what is proven by *Exercise 16*, $(n^2 + 2)$ is divisible by 3. This means that $n^2 + 2 = 3k : k \in \mathbb{Z}$, and we have

$$s = 3n \cdot (n^2 + 2)$$

= $3n \cdot 3k$ Substituting $3k = n^2 + 2$
= $9nk$
= $9c$ Where $c = nk$

By closure under addition and multiplication, $c \in \mathbb{Z}$. By definition of being divisible by 9, s is divisible by 9. Therefore, s is divisible by 9 is every possible case.

8. Show that the square of an integer not divisible by 5 leaves a remainder of 1 or 4 when divided by 5.

Let n be the given integer that is not divisible by 5. By the division theorem, since n is not divisible by 5, $n = 5q + r : q, r \in \mathbb{Z}, 0 < r < 5$. In other words, one of the following cases about r must be true:

Case I, when r = 1, meaning that n = 5q + 1:

$$n^2 = (5q+1)^2$$
 Substituting $5q+1=n$
 $= (25q^2+10q)+1$
 $= 5 \cdot (5q^2+2q)+1$ Factoring out 5
 $= 5k+1$ Where $k = 5q^2+2q$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By the division theorem, n^2 leaves a remainder of 1 when divided by 5.

Case II, when r = 2, meaning that n = 5q + 2:

$$n^2 = (5q + 2)^2$$
 Substituting $5q + 2 = n$
= $(25q^2 + 20q) + 4$
= $5 \cdot (5q^2 + 4q) + 4$ Factoring out 5
= $5k + 4$ Where $k = 5q^2 + 4q$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By the division theorem, n^2 leaves a remainder of 4 when divided by 5.

Case III, when r = 3, meaning that n = 5q + 3:

$$n^2 = (5q + 3)^2$$
 Substituting $5q + 3 = n$
 $= 25q^2 + 30q + 9$
 $= (25q^2 + 30q + 5) + 4$
 $= 5 \cdot (5q^2 + 6q + 1) + 4$ Factoring out 5
 $= 5k + 4$ Where $k = 5q^2 + 6q + 1$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By the division theorem, n^2 leaves a remainder of 4 when divided by 5.

Case IV, when r = 4, meaning that n = 5q + 4:

$$n^2 = (5q + 4)^2$$
 Substituting $5q + 4 = n$

$$= 25q^2 + 40q + 16$$

$$= (25q^2 + 40q + 15) + 1$$

$$= 5 \cdot (5q^2 + 8q + 3) + 1$$
 Factoring out 5

$$= 5k + 1$$
 Where $k = 5q^2 + 8q + 3$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By the division theorem, n^2 leaves a remainder of 1 when divided by 5.

Therefore, the n^2 leaves a remainder of 1 or 4 when divided by 5 in every possible case.

9. Exercise 26.c (p109)

First, let us prove that a perfect square k^2 is divisible by 4 if and only if k is even.

Let n be a perfect square, and by definition, $n = k^2 : k \in \mathbb{Z}$. Since k must be either even or odd, one of the following cases must be true:

Case I, when k is even:

Since k is even, $k = 2c : c \in \mathbb{Z}$. By substitution, we have

$$n = k^2 = (2c)^2 = 4c^2 = 4m$$
 where $m = c^2$

By closure under addition and multiplication, $m \in \mathbb{Z}$. By definition of being divisible by 4, n is divisible by 4.

Case II, when k is odd:

Since k is odd, $k = 2c + 1 : c \in \mathbb{Z}$. By substitution, we have

$$n = k^{2} = (2c + 1)^{2}$$

$$= 4c^{2} + 4c + 1$$

$$= 4 \cdot (c^{2} + c) + 1$$

$$= 4m + 1 \text{ where } m = c^{2} + c$$

By closure under addition and multiplication, $m \in \mathbb{Z}$. By the division theorem, n leaves a remainder of 1 when divided by 4, implying that n is not divisible by 4.

Therefore, every perfect square k^2 is divisible by 4 if and only if k is even.

Now, let us prove the contrapositive of the original problem statement: "for every three integers a, b, and c where $c^2 = a^2 + b^2$, if not both a and b are even, then c is not even."

Since every integer is either even or odd, at least one of $\{a,b\}$ must be odd for the above condition to be true. Therefore, we can let j be one of $\{a,b\}$ that is odd and k be the other (which can be either even or odd). Since j is odd, $j = 2p + 1 : p \in \mathbb{Z}$, and this leads us into one of the following:

Case I, when k is even:

By definition of even, $k = 2q : q \in \mathbb{Z}$. By substitution, we have

$$c^{2} = j^{2} + k^{2}$$

$$= (2p+1)^{2} + (2q)^{2}$$
 Substituting $2p+1 = j$ and $2q = k$

$$= 4p^{2} + 4p + 1 + 4p^{2}$$

$$= 4 \cdot (p^{2} + p + q^{2}) + 1$$
 Factoring out 4

$$= 4m + 1$$
 Where $m = p^{2} + p + q^{2}$

By closure under addition and multiplication, $m \in \mathbb{Z}$. By the division theorem, c^2 is not divisible by 4, which means that c is not even, according to what we have proved earlier.

Case II, when k is odd:

By definition of odd, $k = 2q + 1 : q \in \mathbb{Z}$. By substitution, we have

$$c^{2} = j^{2} + k^{2}$$

$$= (2p+1)^{2} + (2q+1)^{2}$$
Substituting $2p+1 = j$ and $2q+1 = k$

$$= 4p^{2} + 4p + 1 + 4q^{2} + 4q + 1$$

$$= 4p^{2} + 4p + 4q^{2} + 4q + 2$$

$$= 4 \cdot (p^{2} + p + q^{2} + q) + 2$$
Factoring out 4

$$= 4m + 2$$
Where $m = p^{2} + p + q^{2} + q$

By closure under addition and multiplication, $m \in \mathbb{Z}$. By the division theorem, c^2 is not divisible by 4, which means that c is not even, according to what we have proved earlier.

Therefore, c is not even in every possible case. Also, since the contrapositive is true, the original statement is true.

10. Exercise 2 (p121)

Part (a)

•
$$R(1)$$
: $a_1 = 2^{1-1} + 3 = 4$

•
$$R(2)$$
: $a_2 = 2^{2-1} + 3 = 5 = 2a_1 - 3$

•
$$R(3)$$
: $a_3 = 2^{3-1} + 3 = 7 = 2a_2 - 3$

•
$$R(4)$$
: $a_4 = 2^{4-1} + 3 = 11 = 2a_3 - 3$

According to the above, R(1), R(2), R(3), and R(4) are all true.

Part (b)

•
$$R(8)$$
: $a_8 = 2^{8-1} + 3 = 131$

•
$$R(9)$$
: $a_9 = 2^{9-1} + 3 = 259$

Part (c)

Since R(8) is verified to be true, meaning that $a_n = a_k$ for n = k = 8, we have

$$a_{n+1} = 2^{(n-1)+1} + 3$$

$$= 2 \cdot 2^{n-1} + 3$$

$$= 2 \cdot (2^{n-1} + 3 - 3) + 3$$

$$= 2 \cdot (2^{n-1} + 3) - 6 + 3$$

$$= 2a_n - 3$$

$$= 2a_k - 3$$

$$= a_{k+1}$$

Since $a_{n+1} = a_{k+1}$ and n+1 = k+1 = 9, R(9) is now verified to be true.

11. Exercise 3.f (p121)

Statement: show that $a_n = a_k$, where $a_n = 2^{n-1} + 3$ and $a_k = 2a_{k-1} - 3$.

Base case: when n = k = 1, $a_n = 2^{1-1} + 3 = 4 = a_k$.

Induction hypothesis: assume that $a_n = a_k$ when $n = k = m, m \in \mathbb{Z} : m \ge 1$.

Induction step: when n = k = m + 1,

$$a_n = 2^{(m+1)-1} + 3$$

$$= 2 \cdot 2^{m-1} + 3$$

$$= 2 \cdot (2^{m-1} + 3 - 3) + 3$$

$$= 2 \cdot (2^{m-1} + 3) - 6 + 3$$

$$= 2a_m - 3$$

$$= a_{m+1}$$

$$= a_k$$

Verifying the first four terms:

•
$$a_1 = 2^{1-1} + 3 = 4$$

•
$$a_2 = 2^{2-1} + 3 = 5 = 2a_1 - 3$$

•
$$a_3 = 2^{3-1} + 3 = 7 = 2a_2 - 3$$

•
$$a_4 = 2^{4-1} + 3 = 11 = 2a_3 - 3$$

12. Exercise 4.e (p122)

Statement: show that $b_n = b_k$, where $b_n = 3 \cdot 2^n - n - 2$ and $b_k = 2b_{k-1} + k$.

Base case: when n = k = 1, $b_n = 3 \cdot 2^1 - 1 - 2 = 3 = b_k$.

Induction hypothesis: assume that $a_n = a_k$ when n = k = m - 1, $m \in \mathbb{Z} : m > 1$.

Induction step: when n = k = m,

$$a_n = 3 \cdot 2^m - m - 2$$

$$= 3 \cdot (2 \cdot 2^{m-1}) - m + m - m - 2$$

$$= 2 \cdot (3 \cdot 2^{m-1}) - 2m - 2 + m$$

$$= 2 \cdot (3 \cdot 2^{m-1} - m - 1) + m$$

$$= 2 \cdot (3 \cdot 2^{m-1} - m + 1 - 1 - 1) + m$$

$$= 2 \cdot (3 \cdot 2^{m-1} - (m - 1) - 2) + m$$

$$= 2a_{m-1} + m$$

$$= 2a_{k-1} + k$$

$$= a_k$$

13. Exercise 8.f (p122)

Statement: show that $a_n = b_n$, where $a_n = \sum_{i=1}^n \frac{1}{i(i+1)}$ and $b_n = \frac{n}{n+1}$.

Base case:

$$a_1 = \sum_{i=1}^{1} \frac{1}{i(i+1)} = \frac{1}{1(1+1)} = \frac{1}{2}$$
$$= \frac{1}{1+1} = b_1$$

Induction hypothesis: assume that $a_{k-1} = b_{k-1}, k \in \mathbb{Z} : k > 1$.

Induction step:

$$a_k = \sum_{i=1}^k \frac{1}{i(i+1)}$$

$$= (\sum_{i=1}^{k-1} \frac{1}{i(i+1)}) + \frac{1}{k(k+1)}$$

$$= a_{k-1} + \frac{1}{k(k+1)}$$

$$= b_{k-1} + \frac{1}{k(k+1)}$$

$$= \frac{k-1}{(k-1)+1} + \frac{1}{k(k+1)}$$

$$= \frac{(k-1)(k+1)}{k(k+1)} + \frac{1}{k(k+1)}$$

$$= \frac{k^2 - 1 + 1}{k(k+1)}$$

$$= \frac{k}{k+1}$$

$$= b_k$$

Verifying the first four terms:

$$a_1 = \sum_{i=1}^{1} \frac{1}{i(i+1)} = \frac{1}{2} = \frac{1}{1+1} = b_1;$$

$$a_2 = \sum_{i=1}^{2} \frac{1}{i(i+1)} = \frac{1}{2} + \frac{1}{6} = \frac{2}{3} = \frac{2}{2+1} = b_2;$$

$$a_3 = \sum_{i=1}^{2} \frac{1}{i(i+1)} = \frac{2}{3} + \frac{1}{12} = \frac{3}{4} = \frac{3}{3+1} = b_3;$$

$$a_4 = \sum_{i=1}^{2} \frac{1}{i(i+1)} = \frac{3}{4} + \frac{1}{20} = \frac{4}{5} = \frac{4}{4+1} = b_4;$$

14. Exercise 13 (p122)

Statement: show that $a_n = b_n$, where

$$a_n = \sum_{i=0}^n x^i,$$

$$b_n = \frac{x^{n+1} - 1}{x - 1},$$

$$x \in \mathbb{R} : x \neq 1$$

Base case:

$$a_0 = \sum_{i=0}^{0} x^i = x^0 = 1$$
$$= \frac{x-1}{x-1} = \frac{x^{0+1}-1}{x-1} = b_0$$

Induction hypothesis: assume that $a_{k-1} = b_{k-1}, k \in \mathbb{Z} : k > 0$. Induction step:

$$a_k = \sum_{i=0}^k x^i$$

$$= (\sum_{i=0}^{k-1} x^i) + x^k$$

$$= a_{k-1} + x^k$$

$$= b_{k-1} + x^k$$

$$= \frac{x^{(k-1)+1} - 1}{x - 1} + x^k$$

$$= \frac{x^k - 1}{x - 1} + \frac{x^k(x - 1)}{x - 1}$$

$$= \frac{x^k - 1 + x^k \cdot x - x^k}{x - 1}$$

$$= \frac{x^{k+1} - 1}{x - 1}$$

$$= b_k$$

15. Exercise 1.d (p130)

$$d_n = d_{n-1} + \frac{1}{(2n-1)(2n+1)}, d_1 = \frac{1}{3}$$

16. Exercise 2.d (p130)

Statement: show that $a_n = d_n$, where $a_n = a_{n-1} + \frac{1}{(2n-1)(2n+1)}, a_1 = \frac{1}{3}$, and $d_n = \frac{n}{2n+1}$.

Base case:

$$a_1 = \frac{1}{3} = \frac{1}{2 \cdot 1 + 1} = d_1$$

Induction hypothesis: assume that $a_{k-1} = d_{k-1}, k \in \mathbb{Z} : k > 1$.

Induction step:

$$\begin{aligned} a_k &= a_{k-1} + \frac{1}{(2k-1)(2k+1)} \\ &= d_{k-1} + \frac{1}{(2k-1)(2k+1)} \\ &= \frac{k-1}{2(k-1)+1} + \frac{1}{(2k-1)(2k+1)} \\ &= \frac{k-1}{2k-1} + \frac{1}{(2k-1)(2k+1)} \\ &= \frac{(k-1)(2k+1)+1}{(2k-1)(2k+1)} \\ &= \frac{2k^2 + k - 2k - 1 + 1}{(2k-1)(2k+1)} \\ &= \frac{2k^2 - k}{(2k-1)(2k+1)} \\ &= \frac{k(2k-1)}{(2k-1)(2k+1)} \\ &= \frac{k}{2k+1} \\ &= d_k \end{aligned}$$

17. Exercise 4.b (p130)

Statement: let D(n) be the statement " $n^3 - n$ is divisible by 3." Show that D(n) is true for each integer n, where $n \ge 1$.

Base Case: when n = 1, D(n) states that $1^3 - 1 = 0$ is divisible by 3, which is true.

Induction hypothesis: assume that D(n) is true for n = k - 1, $k \in \mathbb{Z} : k > 1$.

Induction step: since D(k-1) is true, meaning that $(k-1)^3 - (k-1)$ is divisible by 3, we have $(k-1)^3 - (k-1) = 3q : q \in \mathbb{Z}$, by definition of being divisible by 3.

Now, to show that D(k) is true, we have

$$\begin{aligned} k^3 - k &= (k^3 - 3k^2 + 2k) + 3k^2 - 3k \\ &= (k^3 - 3k^2 - 3k - 1) - (k - 1) + 3k^2 - 3k \\ &= (k - 1)^3 - (k - 1) + 3k^2 - 3k \\ &= 3q + 3k^2 - 3k & \text{Substituting } 3q = (k - 1)^3 - (k - 1) \\ &= 3(q + k^2 - k) \\ &= 3c & \text{Where } c = q + k^2 - k \end{aligned}$$

By closure under addition and multiplication, $c \in \mathbb{Z}$. By definition of being divisible by 3, $k^3 - k$ is divisible by 3, meaning that D(k) is true.

18. Exercise 6 (p131)

Statement: let D(n) be the statement " $2^{3n} - 1$ is divisible by 7." Show that D(n) is true for each integer n, where $n \ge 2$.

Base Case: when n=2, D(n) states that $2^{3\cdot 2}-1=63=7\cdot 9$ is divisible by 7, which is true.

Induction hypothesis: assume that D(n) is true for n = k - 1, $k \in \mathbb{Z} : k > 1$.

Induction step: since D(k-1) is true, meaning that $2^{3(k-1)}-1$ is divisible by 7, we have $2^{3(k-1)}-1=7q:q\in\mathbb{Z}$, by definition of being divisible by 7.

Now, to show that D(k) is true, we have

$$\begin{aligned} 2^{3k} - 1 &= 2^3 \cdot 2^{3(k-1)} - 1 \\ &= 8 \cdot 2^{3(k-1)} - 8 + 7 \\ &= 8 \cdot (2^{3(k-1)} - 1) + 7 \\ &= 8 \cdot 7q + 7 & \text{Substituting } 7q = 2^{3(k-1)} - 1 \\ &= 7 \cdot (8q + 1) \\ &= 7c & \text{Where } c = 8q + 1 \end{aligned}$$

By closure under addition and multiplication, $c \in \mathbb{Z}$. By definition of being divisible by 7, $2^{3k} - 1$ is divisible by 7, meaning that D(k) is true. Now, since $2^{3n} - 1 > 7$ when $n \ge 2$, but $2^{3n} - 1$ is divisible by 7, $2^{3n} - 1$ is not prime for all $n \ge 2$.

19. Exercise 12 (p147)

Let us assume that a+b is rational. By definition of rational, $a+b=\frac{m}{n}:m,n\in\mathbb{Z},n\neq0.$

Since $a \in \mathbb{Q}$, by definitional of rational, $a = \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0$.

By substitution,

$$b = (a + b) - a$$

$$= \frac{m}{n} - \frac{p}{q}$$

$$= \frac{mq - np}{nq}$$

$$= \frac{j}{k} \text{ where } j = mq - np \text{ and } k = nq$$

By closure under addition and multiplication, $j, k \in \mathbb{Z}$. Also, since $n \neq 0$ and $q \neq 0$, $k = nq \neq 0$.

Since we showed that $b = \frac{j}{k}$, meaning that b must be rational, but the problem states that b is irrational, we have arrived at a contradiction. This indicates that our assumption in the beginning must be incorrect, meaning that a + b cannot be rational. Therefore, a + b is irrational.

20. Exercise 20 (p148)

Contrapositive: "for all real numbers x and y, if x = 0 and y = 0, then $x^2 + y^2 = 0$."

Proof of the contrapositive: Since x = 0 and y = 0, by substitution, we have

$$x^2 + y^2 = 0^2 + 0^2 = 0$$

Since the contrapositive is true, the original statement "for all real numbers x and y, if $x^2 + y^2 \neq 0$, then $x \neq 0$ or $y \neq 0$ " is true.

21. Exercise 32.b (p149)

Let five integers be given. Place these numbers into boxes labeled 0, 1, 2, and 3 according to the rule: a number x goes into the box labeled i if i or (7-i) is the remainder when x is divided by 7. By the basic pigeonhole principle, some box (call its label r) contains at least two numbers. Call these numbers a and b. Since a and b are in the box labeled r, by the division theorem, one of the following cases must be true:

Case I, when a = 7p + r and b = 7q + r, $p, q \in \mathbb{Z}$:

$$a - b = (7p + r) - (7q + r)$$

$$= 7p - 7q$$

$$= 7 \cdot (p - q)$$

$$= 7k \text{ where } k = p - q$$

By closure under addition, $k \in \mathbb{Z}$. By definition of being divisible by 7, a-b is divisible by 7.

Case II, when a = 7p + (7 - r) and b = 7q + r, $p, q \in \mathbb{Z}$:

$$a + b = (7p + 7 - r) + (7q + r)$$

$$= 7p + 7q + 7$$

$$= 7 \cdot (p + q + 1)$$

$$= 7k \text{ where } k = p + q + 1$$

By closure under addition, $k \in \mathbb{Z}$. By definition of being divisible by 7, a + b is divisible by 7.

Case III, when a = 7p + r and b = 7q + (7 - r), $p, q \in \mathbb{Z}$:

$$a + b = (7p + r) + (7q + 7 - r)$$

$$= 7p + 7q + 7$$

$$= 7 \cdot (p + q + 1)$$

$$= 7k \text{ where } k = p + q + 1$$

By closure under addition, $k \in \mathbb{Z}$. By definition of being divisible by 7, a + b is divisible by 7.

Case IV, when a = 7p + (7 - r) and b = 7q + (7 - r), $p, q \in \mathbb{Z}$:

$$a - b = (7p + 7 - r) - (7q + 7 - r)$$

$$= 7p - 7q$$

$$= 7 \cdot (p - q)$$

$$= 7k \text{ where } k = p - q$$

By closure under addition, $k \in \mathbb{Z}$. By definition of being divisible by 7, a-b is divisible by 7. Therefore, a+b or a-b is divisible by 7 in every possible case.

22. Exercise 34.b (p149)

Let fifty-two integers be given. Place these numbers into boxes labeled using integers [0..50] according to the rule: a number x goes into the box labeled i if i or (100 - i) is the remainder when x is divided by 100. By the basic pigeonhole principle, some box (call its label r) contains at least two numbers. Call these numbers a and b. Since a and b are in the box labeled r, by the division theorem, one of the following cases must be true:

Case I, when a = 100p + r and b = 100q + r, $p, q \in \mathbb{Z}$:

$$a - b = (100p + r) - (100q + r)$$

= $100p - 100q$
= $100 \cdot (p - q)$
= $100k$ where $k = p - q$

By closure under addition, $k \in \mathbb{Z}$. By definition of being divisible by 100, a-b is divisible by 100.

Case II, when a = 100p + (100 - r) and b = 100q + r, $p, q \in \mathbb{Z}$:

$$a + b = (100p + 100 - r) + (100q + r)$$

$$= 100p + 100q + 100$$

$$= 100 \cdot (p + q + 1)$$

$$= 100k \text{ where } k = p + q + 1$$

By closure under addition, $k \in \mathbb{Z}$. By definition of being divisible by 100, a + b is divisible by 100.

Case III, when a = 100p + r and $b = 100q + (100 - r), p, q \in \mathbb{Z}$:

$$a + b = (100p + r) + (100q + 100 - r)$$

$$= 100p + 100q + 100$$

$$= 100 \cdot (p + q + 1)$$

$$= 100k \text{ where } k = p + q + 1$$

By closure under addition, $k \in \mathbb{Z}$. By definition of being divisible by 100, a + b is divisible by 100.

Case IV, when a = 100p + (100 - r) and b = 100q + (100 - r), $p, q \in \mathbb{Z}$:

$$a - b = (100p + 100 - r) - (100q + 100 - r)$$

$$= 100p - 100q$$

$$= 100 \cdot (p - q)$$

$$= 100k \text{ where } k = p - q$$

By closure under addition, $k \in \mathbb{Z}$. By definition of being divisible by 100, a - b is divisible by 100.

Therefore, a + b or a - b is divisible by 100 in every possible case.