Bab 12 REGRESI LINEAR BERGANDA DAN KORELASI

Tujuan

 Membahas tentang regresi linear dengan dua variabel, koefisien korelasi dan determinasi.

REGRESI DAN KORELASI

Analisis Regresi

Analisa Statistik yang memanfaatkan hubungan antara dua atau lebih peubah kuantitatif sehingga salah satu peubah dapat diramalkan dari peubah yang lain.

• Korelasi:

mengukur keeratan hubungan linear dari dua variabel.

REGRESI LINEAR

• y = a + bx

REGRESI LINEAR

Persamaan
$$y = a_0 + a_1 x_i$$

$$\sum_{i=0}^{n} y_i = a_0 \cdot n + a_1 \sum_{i=0}^{n} x_i$$

$$\sum_{i=0}^{n} y_i x_i = a_0 \cdot \sum_{i=0}^{n} x_i + a_1 \sum_{i=0}^{n} x_i^2$$

REGRESI LINEAR

$$\begin{bmatrix} n & \sum_{i=0}^{n} x_i \\ \sum_{i=0}^{n} x_i & \sum_{i=0}^{n} x_i^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} y_i \\ \sum_{i=0}^{n} y_i x_i \end{bmatrix}$$

Mencari koefisien persamaan

LINEAR BERGANDA (X1, X2)

Persamaan: $y = \beta_0 + \beta_1 x + \beta_2 x_2$

$$\frac{1}{2} \beta_0 n + \beta_1 \sum_{i=1}^n x_i + \beta_2 \sum_{i=1}^n x_{2i} = \sum_{i=1}^n y_i$$

$$\sum_{i=1}^{n} x_{1i} \rightarrow \beta_0 \sum_{i=1}^{n} x_{1i} + \beta_1 \sum_{i=1}^{n} x_{1i}^2 + \beta_2 \sum_{i=1}^{n} x_{1i} \sum_{i=1}^{n} x_{2i} = \sum_{i=1}^{n} x_{1i} \sum_{i=1}^{n} y_i$$

$$\sum_{i=1}^{n} x_{2i} \rightarrow \beta_0 \sum_{i=1}^{n} x_{2i} + \beta_1 \sum_{i=1}^{n} x_{1i} \sum_{i=1}^{n} x_{2i} + \beta_2 \sum_{i=1}^{n} x_{2i}^2 = \sum_{i=1}^{n} x_{2i} \sum_{i=1}^{n} y_i$$

LINEAR BERGANDA (X1, X2)

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_{1i} & \sum_{i=1}^{n} x_{2i} \\ \sum_{i=1}^{n} x_{1i} & \sum_{i=1}^{n} x_{1i^{2}} & \sum_{i=1}^{n} x_{1i} \cdot \sum_{i=1}^{n} x_{2i} \\ \sum_{i=1}^{n} x_{2i} & \sum_{i=1}^{n} x_{1i} \cdot \sum_{i=1}^{n} x_{2i} & \sum_{i=1}^{n} x_{2i^{2}} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \end{bmatrix} =$$

$$\begin{bmatrix}
\sum_{i=1}^{n} y_{i} \\
\sum_{i=1}^{n} x_{1i} & \sum_{i=1}^{n} y_{i} \\
\sum_{i=1}^{n} x_{2i} & \sum_{i=1}^{n} y_{i}
\end{bmatrix}$$

LINEAR BERGANDA (X1, X2, X3)

Persamaan $y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$

$$\beta_0 \ n + \beta_1 \sum_{i=1}^n X_{1i} + \beta_2 \sum_{i=1}^n X_{2i} + \beta_3 \sum_{i=1}^n X_{3i} = \sum_{i=1}^n Y_{i}$$

$$\beta_0 \sum_{i=1}^n X_{1i} + \beta_1 \sum_{i=1}^n X_{1i}^2 + \beta_2 \sum_{i=1}^n X_{2i} X_{1i} + \beta_3 \sum_{i=1}^n X_{3i} X_{1i} = \sum_{i=1}^n Y_i X_{1i}$$

$$\beta_0 \sum_{i=1}^n X_{2i} + \beta_1 \sum_{i=1}^n X_{1i} X_{2i} + \beta_2 \sum_{i=1}^n X_{2i}^2 + \beta_3 \sum_{i=1}^n X_{3i} X_{2i} = \sum_{i=1}^n Y_i X_{2i}$$

$$\beta_0 \sum_{i=1}^n X_{3i} + \beta_1 \sum_{i=1}^n X_{1i} X_{3i} + \beta_2 \sum_{i=1}^n X_{2i} X_{3i} + \beta_3 \sum_{i=1}^n X_{3i}^2 = \sum_{i=1}^n Y_i X_{3i}$$

LINEAR BERGANDA (X1, X2, X3)

$$\begin{bmatrix} n & \sum_{i=1}^{n} X_{1i} \sum_{i=1}^{n} X_{2i} & \sum_{i=1}^{n} X_{3i} \\ \sum_{i=1}^{n} X_{1i} & \sum_{i=1}^{n} X_{1i}^{2} \sum_{i=1}^{n} X_{2i} & X_{1i} & \sum_{i=1}^{n} X_{3i} & X_{1i} \\ \sum_{i=1}^{n} X_{2i} & \sum_{i=1}^{n} X_{1i} X_{2i} \sum_{i=1}^{n} X_{2i}^{2} & \sum_{i=1}^{n} X_{3i} & X_{2i} \\ \sum_{i=1}^{n} X_{3i} & \sum_{i=1}^{n} X_{1i} & X_{3i} \sum_{i=1}^{n} X_{2i} & X_{3i} & \sum_{i=1}^{n} X_{3i}^{2} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \beta_{3} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} Y_{i} \\ \sum_{i=1}^{n} Y_{i} & X_{1i} \\ \sum_{i=1}^{n} Y_{i} & X_{2i} \\ \sum_{i=1}^{n} Y_{i} & X_{2i} \end{bmatrix}$$

KORELASI

Analisis yang digunakan untuk menelaah tingkat keeratan hubungan 2 variabel (x dan y)

X: Variabel bebas

Y: Variabel tidak bebas (Peubah Respon)

- → tidak menggambarkan hubungan sebab akibat
- → nilainya berkisar antara -1 dan 1
- → Pearson's Coef of Correlation linear relationship
- → Spearman'n Coef of Correlation (rank correlation) trend relationship

KORELASI

Nilai koefisien korelasi (r) untuk regresi linear :

$$r = \frac{n\sum x_{i}y_{i} - \sum x_{i}\sum y_{i}}{\sqrt{n\sum x_{i}^{2} - (\sum x_{i})^{2}} \sqrt{n\sum y_{i}^{2} - (\sum y_{i})^{2}}}$$

Dengan : n=banyaknya data xi= peubah bebas ke-i yi=peubah respon ke-i

Koefisien Determinasi (R):

Besarnya kontribusi x terhadap naik turunnya y

$$R = r^2$$

BENTUK HUBUNGAN

Hubungan +:

Jika kenaikan /penurunan x pada umumnya diikuti oleh kenaikan / penurunan y

Hubungan -:

Jika kenaikan / penurunan x pada umunya diikuti oleh penurunan // kenaikan y

POLA HUBUNGAN X DAN Y

Korelasi Linear:

Jika semua titik (X,Y) pd diagram pencar mendekati bentuk garis lurus.

Korelasi Non-linear:

Jika semua titik (X,Y) pd diagram pencar tidak membentuk garis lurus.

Korelasi Positif:

Jika arah perubahan kedua variabel sama ⇒ If X naik, Y juga naik.

Korelasi Negatif:

Jika arah perubahan kedua variabel tidak sama ⇒ If X naik, Y turun.

KOEFISIEN KORELASI

TERIMA KASIH