test_LinRegJulia

January 16, 2024

1 Testing LinReg.jl functionality

This notebook contains a small showcase on how to use the functions inside the LinReg. jl file.

1.1 Testing

```
[]: using CSV
   using DataFrames
   using Random
   using StableRNGs

include("solution/LinReg.jl");
```

Read the data:

```
[]: data = CSV.read("dataset.txt", DataFrame, header=0)
first(data, 5)
```

	Column1	Column2	Column3	Column4	Column5	Column6	Column7	Column8	Column9	
	Float64									
1	8.0	1.0	0.19	0.33	0.02	0.9	0.12	0.17	0.34	
2	53.0	1.0	0.0	0.16	0.12	0.74	0.45	0.07	0.26	
3	24.0	1.0	0.0	0.42	0.49	0.56	0.17	0.04	0.39	
4	34.0	1.0	0.04	0.77	1.0	0.08	0.12	0.1	0.51	
5	42.0	1.0	0.01	0.55	0.02	0.95	0.09	0.05	0.38	•••

Separate into a matrix of observations X and a target variable y:

```
[ ]: y, X = unpack(data, ==(:Column102));
```

Implement the regressor. We recommend using the LinearRegressor from the *MLJLinearModels* package. Here is the documentation:

```
[]: doc("LinearRegressor", pkg="MLJLinearModels")
```

LinearRegressor

A model type for constructing a linear regressor, based on MLJLinearModels.jl, and implementing the MLJ model interface.

From MLJ, the type can be imported using

LinearRegressor = @load LinearRegressor pkg=MLJLinearModels

Do model = LinearRegressor() to construct an instance with default hyper-parameters.

This model provides standard linear regression with objective function

$$|X\theta - y|_2^2/2$$

Different solver options exist, as indicated under "Hyperparameters" below.

2 Training data

In MLJ or MLJBase, bind an instance model to data with

```
mach = machine(model, X, y)
```

where:

- X is any table of input features (eg, a DataFrame) whose columns have Continuous scitype; check column scitypes with schema(X)
- y is the target, which can be any AbstractVector whose element scitype is Continuous; check the scitype with scitype(y)

Train the machine using fit! (mach, rows=...).

3 Hyperparameters

- fit_intercept::Bool: whether to fit the intercept or not. Default: true
- solver::Union{Nothing, MLJLinearModels.Solver}: "any instance of MLJLinearModels.Analytical. Use Analytical() for Cholesky and CG()=Analytical(iterative=true) for conjugate-gradient.

If solver = nothing (default) then Analytical() is used. Default: nothing

3.1 Example

```
using MLJ
X, y = make_regression()
mach = fit!(machine(LinearRegressor(), X, y))
predict(mach, X)
fitted_params(mach)
```

Load and instantiate the model (and suppress warnings and such):

```
[]: LinearRegressor = @load LinearRegressor pkg=MLJLinearModels verbosity=0 model = LinearRegressor()
```

```
LinearRegressor(
  fit_intercept = true,
  solver = nothing)
```

Set a stable random number generator for reproducibility:

```
[]: myRNG = StableRNG(123)
   Given a dummy binary array:
[]: rand_ind = bitrand(101)
   101-element BitVector:
   0
   1
   0
   0
   1
   0
   1
   1
   1
   1
   0
   0
```

We can use the ${\tt get_columns}$ function provided in LinReg.jl to get the columns marked as 1 from the data and save it in a matrix X_{sub}

```
[]: X_sub = get_columns(X, rand_ind)
```

	Column2	Column5	Column7	Column8	Column11	Column15	Column16	Column17	Column19
	Float64	Float64	Float64	Float64	Float64	Float64	Float64	Float64	Float64
1	1.0	0.02	0.12	0.17	0.29	0.37	0.72	0.34	0.29
2	1.0	0.12	0.45	0.07	0.35	0.31	0.72	0.11	0.25
3	1.0	0.49	0.17	0.04	0.28	0.3	0.58	0.19	0.38
4	1.0	1.0	0.12	0.1	0.34	0.58	0.89	0.21	0.36
5	1.0	0.02	0.09	0.05	0.23	0.5	0.72	0.16	0.44
6	1.0	0.06	1.0	0.25	0.27	0.52	0.68	0.2	0.28
7	1.0	0.0	0.06	0.02	0.23	0.42	0.5	0.23	0.61
8	1.0	0.03	0.2	1.0	0.36	0.16	0.44	1.0	0.53
9	1.0	0.2	0.02	0.0	0.28	0.17	0.47	0.36	0.55
10	1.0	0.06	0.3	0.03	0.8	0.54	0.59	0.22	0.42
11	1.0	0.15	1.0	0.41	0.35	0.49	0.71	0.16	0.36
12	1.0	0.08	0.07	0.1	0.22	0.72	0.53	0.23	0.63
13	1.0	0.01	0.13	0.02	0.2	0.8	0.55	0.18	0.51
14	1.0	0.0	0.04	0.01	0.32	0.46	0.77	0.41	0.28
15	1.0	0.01	0.14	0.26	0.3	0.71	0.67	0.42	0.25
16	1.0	0.06	0.03	0.03	0.28	0.18	0.42	0.81	0.62
17	1.0	0.4	0.14	0.06	0.65	0.22	0.52	0.1	0.48
18	1.0	0.01	0.2	0.03	0.27	0.79	0.77	0.13	0.44
19	1.0	0.01	0.07	0.02	0.63	0.33	0.56	0.28	0.43
20	1.0	0.05	0.01	0.01	0.24	0.23	0.34	0.33	0.7
21	1.0	0.05	0.48	0.3	0.28	0.33	0.55	0.37	0.39
22	1.0	0.47	0.12	0.05	0.34	0.28	0.62	0.16	0.4
23	1.0	0.02	0.07	0.11	0.43	0.13	0.4	0.26	0.52
24	1.0	0.04	0.09	0.06	0.31	0.22	0.52	0.44	0.56

We finally use the $get_fitness$ method to train, test and calculate the root mean square error of our prediction using our LinearRegressor model, X, and y (that we have separated earlier).

- The model we are using is our LinearRegressor
- Observations are taken from X: all rows, and all columns except the last one
- Targets are taken from the last column of data, which is y
- Optionally pass a random number generator to use as rng

[]: get_fitness(model, X_sub, y; rng=myRNG)

0.1437366927254183

3.2 Documentation

All methods are well documented via docstrings, which can be understood both by humans and Julia. For example, we can use the <code>@doc</code> macro:

[]: @doc get_fitness

get_fitness(model, Xsub, y; rng=myRNG)

Given a model, a subset of the data Xsub and a vector of targets y, return the square root of the

MSE of the model.

3.3 Parameters

- model: An MLJ model.
- Xsub: an nxm matrix of data that should be used for training the model.
- y: a vector of length n containing the regression (target) values of observations
- rng: a StableRNGs random number generator for reproducible results