

Unidad 6. Gases Ideales. Ejercicios adicionales.

- 1. Una cantidad de CO (g) ocupa un volumen de $60.0 \, \text{dm}^3$, a $30.0^0 \, \text{C}$ y $700 \, \text{mmHg}$. ¿Qué volumen ocupará a $40.0 \, ^{\circ} \, \text{C}$ y $570 \, \text{mmHg}$?
- 2. Un gas se encuentra en un recipiente rígido de 5,00 dm³ a 62,0 °C y 720 mm Hg. Si se cuadruplica el volumen y la presión final es de 430 mm Hg, ¿cuál es la temperatura final del sistema?
- 3. Se tiene O_2 (g) en un recipiente de 2500 mL, a 25,0 °C y 0,500 atm. Calcular la cantidad de gas en el sistema.
- 4. En un recipiente de 2,00 L se introducen 0,0300 mol de Cl₂ (g) a 75°C. Calcular la presión que ejerce el gas en el recipiente.
- 5. Se sabe que 400 cm³ de un gas en condiciones normales tienen una masa de 0,465 g. Calcular la densidad y la masa molar del gas.
- 6. Calcular la masa molar de un gas X, sabiendo que 79,9 g ocupan 61,0 dm³ medidos a 25,0°C y 1,00 atm.
- 7. Un recipiente rígido de 2,50 dm³ contiene 0,225 mol de SO₃ (g) a 20,0 °C. Se le agrega CO₂ (g) manteniendo la temperatura constante, hasta que la presión total sea de 3,90 atm. Calcular:
 - a. la fracción molar de CO₂ (g) en la mezcla final
 - b. la presión parcial del SO₃
 - c. la densidad de la mezcla gaseosa
- 8. Un recipiente de volumen variable contiene una mezcla gaseosa de O₂ y N₂ a cierta temperatura y presión. Suponiendo comportamiento ideal, decidir si las siguientes afirmaciones son correctas o incorrectas, justificando sin hacer cálculos cada respuesta.
 - a. Si se agrega más O_2 (g) a temperatura y presión constantes, la fracción molar del N_2 no cambia
 - b. Al aumentar la temperatura del sistema a presión constante, el volumen aumenta.
- 9. Un recipiente rígido de 5,80 dm³, contiene 1,20 mol de CO_2 (g) y una cierta cantidad de CH_4 (g). La temperatura del sistema es 70,0 °C y la fracción molar de CO_2 en la mezcla es 0,250. Calcular
 - a. la presión total del sistema
 - b. la fracción molar de CH_4 (g) en la mezcla final
 - c. la presión parcial del CH₄
- 10. Un recipiente rígido de $5,00 \text{ dm}^3$ contiene 6,30 g de un gas A y 3,50 g de PH_3 (g). La temperatura del sistema es $80,0^{\circ}$ C y la presión de la mezcla es de 1,50 atm. Calcular:
 - a. la masa molar del gas A.
 - b. la masa de gas argón que debe agregarse al sistema, a T constante, para que la presión final sea el doble de la inicial.