Revision on Page Rank and Behavioral Intuition

Minor in AI, IIT Ropar 28th May, 2025

1 Session Overview and Philosophy

- Feedback and Engagement:
 - Monthly feedback encouraged for session improvement.
 - Emphasis on real-world intuition and application over mathematical formulas.
 - Revision covers both Module A and Module B, integrating concepts for comprehensive understanding.

2 Sweet Shop and Bookshop

2.1 Sweet Shop Scenario

• Shelves organized by sweet type (laddoos, gulab jamun, etc.).

- Customers sample sweets, starting with favorities or visually appealing options.
- Decision-making influenced by variety, arrangement, and personal preference.
- Shop offers free samples to encourage tasting and selection.
- Behavior patterns: customers may try many varieties, but typically return to favorites or most appealing options.

2.2 Bookshop Scenario

- Books arranged by genre, then by author's last name within each genre.
- Customers browse genres, read sample pages, and may switch genres if not satisfied.
- Behavior patterns: customers may stay in one genre for a while, then move to another if nothing appeals.

2.3 Common Observations

- Arrangement: Items grouped by similarity (sweets by type, books by genre).
- Variety: Multiple options available, leading to decision fatigue.
- Sampling: Customers try samples or read excerpts before making a choice.
- **Segmentation:** Popular or best-selling items are prominently displayed.
- Transition: Customers may move between sections based on interest or satisfaction.

3 Scientific Approach: Probability and Observation

• Observation:

- Researchers observe behavior in shops, noting time spent and transitions between shelves.
- Example: 80% chance a person stays in the same section, 20% chance they move to another.

• Probability in Behavior:

- Used to model real-world scenarios (e.g., bookshop browsing, web page navigation).
- Introduces the concept of the **damping factor** (e.g., 85% chance to stay, 15% to jump).

4 Page Rank Algorithm: Intuition and Application

4.1 Graph Theory Basics

- Graph: Set of nodes (vertices) and edges (connections).
- Directed Graph: Edges have direction (e.g., from node A to node B).
- In-degree: Number of edges coming into a node.
- Out-degree: Number of edges going out from a node.

4.2 Page Rank Intuition

- Inspired by real-world browsing behavior (e.g., sweet shop, bookshop).
- Random Surfer Model: User starts at a random page, follows links, or jumps to a new page.
- **Damping Factor:** Probability the user stays on the current page (e.g., 0.85) vs. jumps (0.15).

4.3 Algorithm Steps

- 1. **Initialization:** All pages start with equal rank.
- 2. Iteration:
 - Rank is updated based on in-links and out-links.
 - Formula:

$$PR(A) = \frac{1-d}{N} + d\sum_{i} \frac{PR(T_i)}{C(T_i)}$$

- -PR(A): Page Rank of page A
- − d: Damping factor
- -N: Total number of pages
- $-T_i$: Pages pointing to A
- $C(T_i)$: Out-degree of T_i
- 3. Convergence: Repeat until ranks stabilize.

4.4 Implementation

- NetworkX Library: Used to implement graph structures and page rank in Python.
- Trap State: Node with no outgoing edges (user gets stuck).

5 Key Takeaways and Exam Tips

• Intuition Over Math:

- Focus on understanding real-world scenarios and behavioral patterns.
- Math details can be revisited in recorded sessions if needed.

• Damping Factor:

- Represents the probability of staying vs. jumping in a graph.
- Typical value: 0.85 (stay), 0.15 (jump).

• Graph Representation:

- Nodes and directed edges model relationships.
- In-degree and out-degree are crucial for ranking.

• Implementation:

- Use libraries like NetworkX for quick implementation.
- Graph data structures are widely applicable in AI and data science.

• Exam Questions:

- May ask to explain the damping factor in the context of real-world behavior.
- Could involve identifying in-degree and out-degree in a graph.
- May require understanding how the algorithm converges and its real-world relevance.

6 Additional Insights

• Live Sessions and Interaction:

- Attending live sessions is encouraged for better understanding and interaction.
- Feedback from students shapes future sessions.

• Six Degrees of Separation:

- Concept from social networks: everyone is connected to anyone else through a chain of six people.
- Used to illustrate the power of graph theory in understanding connections.

• Real-World Data Application:

- Example: Metro Interstate traffic data set for regression analysis.
- Encouragement to experiment with code and data for deeper understanding.

7 Summary Table: Page Rank Concepts

Concept	Description
Graph	Nodes and edges representing relationships
In-degree	Number of edges coming into a node
Out-degree	Number of edges going out from a node
Damping Factor	Probability user stays on current page (e.g., 0.85)
Page Rank	Algorithm to rank nodes based on link structure and probability
NetworkX	Python library for graph operations and page rank implementation
Trap State	Node with no outgoing edges