Learning Objective: Ampere's Law

Problem 1. Consider an infinite line carrying current I_1 in the +z direction is placed along the z-axis. Another infinite line carrying current I_2 , in the same direction as I_1 , is located at x = a across the x-axis, where a > 0.

- (a) Determine the magnetic field \mathbf{H} as a function of x using Cartesian coordinate.
- (b) Determine the magnetic flux density $\bf B$ as a function of x using Cartesian coordinate.
- (c) Suppose I_2 flows in the opposite direction as I_1 , determine the magnetic field **H** as a function of x using Cartesian coordinate.

Problem 2. Consider an infinitely long cylindrical conductor of radius r = a cm is placed along the z-axis. A current in the +z direction flows through the cylindrical conductor, where the current density is given by

$$J(\rho) = -2 \exp\left(-\frac{\rho}{z}\right) \text{ A/cm}^2$$

where $\rho > 0$ and z = 2 cm.

- (a) Determine the magnetic field **H** as a function of ρ using cylindrical coordinate.
- (b) Suppose the same current flows in the -z direction, determine the magnetic field **H** as a function of ρ using cylindrical coordinate.

Learning Objective: Inductance of a Straight Coil

Problem 3. Consider a solenoid with 10 cm long, 1 mm in diameter, and 1000 terms of wire. The core of the solenoid consists a ferromagnetic material with a relative permeability of 500.

- (a) Determine the magnitude of magnetic field |**H**| within the solenoid core.
- (b) Determine the magnitude of the magnetic flux Φ within the solenoid core.
- (c) Determine the inductance of the solenoid.
- (d) Suppose this solenoid is broke from the middle, determine the inductance of this solenoid.