```
In [2]: # import python libraries
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt # visualizing data
         %matplotlib inline
         import seaborn as sns
         C:\Users\twisha\anaconda3\lib\site-packages\scipy\ init .py:146: UserWarning: A NumPy version >=1.16.5 and <1.23.0
         is required for this version of SciPy (detected version 1.26.0
           warnings.warn(f"A NumPy version >={np minversion} and <{np maxversion}"</pre>
In [3]: # import csv file
         df = pd.read csv('Diwali Sales Data.csv', encoding= 'unicode escape')
In [4]: df.shape
Out[4]: (11251, 15)
In [5]: | df.head()
Out[5]:
                                                  Age
Group
                                                         Age Marital_Status
             User ID Cust name Product ID Gender
                                                                                   State
                                                                                            Zone Occupation Product Category Orders Amou
                                                                                         Western
                                                                                                   Healthcare
          0 1002903
                       Sanskriti
                               P00125942
                                               F 26-35
                                                          28
                                                                        0
                                                                              Maharashtra
                                                                                                                        Auto
                                                                                                                                 1
                                                                                                                                    23952
          1 1000732
                                                                                                                                    23934
                         Kartik
                               P00110942
                                                  26-35
                                                          35
                                                                        1 Andhra Pradesh Southern
                                                                                                       Govt
                                                                                                                        Auto
          2 1001990
                         Bindu
                                P00118542
                                                  26-35
                                                          35
                                                                            Uttar Pradesh
                                                                                          Central
                                                                                                  Automobile
                                                                                                                        Auto
                                                                                                                                    23924
                                                                               Karnataka Southern Construction
          3 1001425
                         Sudevi
                               P00237842
                                                   0-17
                                                          16
                                                                        0
                                                                                                                        Auto
                                                                                                                                 2 23912
                                                                                                       Food
          4 1000588
                           Joni P00057942
                                               М
                                                  26-35
                                                          28
                                                                        1
                                                                                  Gujarat Western
                                                                                                                        Auto
                                                                                                                                 2 23877
                                                                                                  Processing
```

```
In [6]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 11251 entries, 0 to 11250
        Data columns (total 15 columns):
            Column
                              Non-Null Count Dtype
            -----
            User ID
                              11251 non-null int64
                              11251 non-null object
            Cust name
             Product ID
                              11251 non-null object
                              11251 non-null object
             Gender
             Age Group
                              11251 non-null object
                              11251 non-null int64
             Age
             Marital Status
                              11251 non-null int64
             State
                              11251 non-null object
                              11251 non-null object
             Zone
            Occupation
                              11251 non-null object
         10 Product Category
                              11251 non-null object
         11 Orders
                              11251 non-null int64
         12 Amount
                              11239 non-null float64
         13 Status
                              0 non-null
                                              float64
                              0 non-null
                                              float64
         14 unnamed1
        dtypes: float64(3), int64(4), object(8)
        memory usage: 1.3+ MB
In [7]: #drop unrelated/blank columns
```

df.drop(['Status', 'unnamed1'], axis=1, inplace=True)

```
In [8]: #check for null values
         pd.isnull(df).sum()
 Out[8]: User_ID
                              0
         Cust_name
                              0
         Product ID
                              0
         Gender
         Age Group
                              0
         Age
         Marital Status
                              0
                              0
         State
         Zone
         Occupation
                              0
         Product Category
                              0
         Orders
                              0
         Amount
                              12
         dtype: int64
 In [9]: # drop null values
         df.dropna(inplace=True)
In [10]: # change data type
         df['Amount'] = df['Amount'].astype('int')
In [11]: df['Amount'].dtypes
Out[11]: dtype('int32')
In [12]: | df.columns
Out[12]: Index(['User_ID', 'Cust_name', 'Product_ID', 'Gender', 'Age Group', 'Age',
                 'Marital_Status', 'State', 'Zone', 'Occupation', 'Product_Category',
                'Orders', 'Amount'],
               dtype='object')
```

```
In [12]: #rename column
df.rename(columns= {'Marital_Status':'Shaadi'})
```

Out[12]:

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Shaadi	State	Zone	Occupation	Product_Category	Orders	Amount
0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Western	Healthcare	Auto	1	23952
1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southern	Govt	Auto	3	23934
2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Central	Automobile	Auto	3	23924
3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnataka	Southern	Construction	Auto	2	23912
4	1000588	Joni	P00057942	М	26-35	28	1	Gujarat	Western	Food Processing	Auto	2	23877
				•••			•••		•••	•••			
11246	1000695	Manning	P00296942	M	18 - 25	19	1	Maharashtra	Western	Chemical	Office	4	370
11247	1004089	Reichenbach	P00171342	M	26-35	33	0	Haryana	Northern	Healthcare	Veterinary	3	367
11248	1001209	Oshin	P00201342	F	36-45	40	0	Madhya Pradesh	Central	Textile	Office	4	213
11249	1004023	Noonan	P00059442	М	36 - 45	37	0	Karnataka	Southern	Agriculture	Office	3	206
11250	1002744	Brumley	P00281742	F	18-25	19	0	Maharashtra	Western	Healthcare	Office	3	188

11239 rows × 13 columns

•

In [13]: # describe() method returns description of the data in the DataFrame (i.e. count, mean, std, etc)
df.describe()

Out[13]:

	User_ID	Age	Marital_Status	Orders	Amount
count	1.123900e+04	11239.000000	11239.000000	11239.000000	11239.000000
mean	1.003004e+06	35.410357	0.420055	2.489634	9453.610553
std	1.716039e+03	12.753866	0.493589	1.114967	5222.355168
min	1.000001e+06	12.000000	0.000000	1.000000	188.000000
25%	1.001492e+06	27.000000	0.000000	2.000000	5443.000000
50%	1.003064e+06	33.000000	0.000000	2.000000	8109.000000
75%	1.004426e+06	43.000000	1.000000	3.000000	12675.000000
max	1.006040e+06	92.000000	1.000000	4.000000	23952.000000

In [14]: # use describe() for specific columns
df[['Age', 'Orders', 'Amount']].describe()

Out[14]:

	Age	Orders	Amount
count	11239.000000	11239.000000	11239.000000
mean	35.410357	2.489634	9453.610553
std	12.753866	1.114967	5222.355168
min	12.000000	1.000000	188.000000
25%	27.000000	2.000000	5443.000000
50%	33.000000	2.000000	8109.000000
75%	43.000000	3.000000	12675.000000
max	92.000000	4.000000	23952.000000

Exploratory Data Analysis

Gender


```
In [16]: # plotting a bar chart for gender vs total amount
    sales_gen = df.groupby(['Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
    sns.barplot(x = 'Gender',y= 'Amount' ,data = sales_gen)
```

Out[16]: <Axes: xlabel='Gender', ylabel='Amount'>

From above graphs we can see that most of the buyers are females and even the purchasing power of females are greater than men

Age

```
In [17]: ax = sns.countplot(data = df, x = 'Age Group', hue = 'Gender')
for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [18]: # Total Amount vs Age Group
sales_age = df.groupby(['Age Group'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.barplot(x = 'Age Group',y= 'Amount' ,data = sales_age)
```

Out[18]: <Axes: xlabel='Age Group', ylabel='Amount'>

From above graphs we can see that most of the buyers are of age group between 26-35 yrs female

State

```
In [19]: # total number of orders from top 10 states
sales_state = df.groupby(['State'], as_index=False)['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)
sns.set(rc={'figure.figsize':(15,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Orders')
```

Out[19]: <Axes: xlabel='State', ylabel='Orders'>


```
In [20]: # total amount/sales from top 10 states
         sales_state = df.groupby(['State'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False).head(10)
         sns.set(rc={'figure.figsize':(15,5)})
         sns.barplot(data = sales_state, x = 'State',y= 'Amount')
```


From above graphs we can see that most of the orders & total sales/amount are from Uttar Pradesh, Maharashtra and Karnataka respectively

Marital Status

```
In [21]: ax = sns.countplot(data = df, x = 'Marital_Status')
sns.set(rc={'figure.figsize':(7,5)})
for bars in ax.containers:
    ax.bar_label(bars)
```


Out[22]: <Axes: xlabel='Marital_Status', ylabel='Amount'>

From above graphs we can see that most of the buyers are married (women) and they have high purchasing power

Occupation

```
In [23]: sns.set(rc={'figure.figsize':(20,5)})
    ax = sns.countplot(data = df, x = 'Occupation')

for bars in ax.containers:
    ax.bar_label(bars)
```


Out[24]: <Axes: xlabel='Occupation', ylabel='Amount'>

From above graphs we can see that most of the buyers are working in IT, Healthcare and Aviation sector

Product Category

```
In [25]: sns.set(rc={'figure.figsize':(20,5)})
    ax = sns.countplot(data = df, x = 'Product_Category')

for bars in ax.containers:
    ax.bar_label(bars)
```


Furniture

Sports Products

Games & Toys

Product Category

Auto

Stationery

From above graphs we can see that most of the sold products are from Food, Clothing and Electronics category

Clothing & Apparel Electronics & Gadgets Footwear & Shoes

Food

Out[27]: <Axes: xlabel='Product_ID', ylabel='Orders'>

Conclusion:

Type $\it Markdown$ and LaTeX: $\it \alpha^2$

Type $\it Markdown$ and LaTeX: $\it \alpha^2$

Thank you!