Module 7.
Logistic Regression Case
Study

Methodology Training EXL Decision Analytics



# IF 'A' IS CLIENT, 'B' IS TO BE YOU...



#### I. COMPLICATIONS



'A' witnesses losses in business





'A' plans to investigate





Things look like a black box!





**'B'** provides a solution





'A' seeks help from 'B'





There strikes an idea!



#### **III. BLISS POINTS**



'A' gets desired results



'B' becomes a super-hero

How 'B' comes up with a solution is now the area of focus

# PROBLEM STATEMENT





A departmental store owner experiences decline in total sales over a period of time. He wants to identify the segment of customers who are more likely to buy a product from his store in the next month. He seeks a modeler's help.

Two datasets are being provided by store-owner for the purpose of analysis and validation of results.



Modeling Dataset (400 customers, 17 variables)



**Validation Dataset** (100 customers, 17 variables)

| S. NO. | VARIABLE             | DESCRIPTION                                                                                        |
|--------|----------------------|----------------------------------------------------------------------------------------------------|
| I      | CUSTOMER_ID          | Customer Identification Number                                                                     |
| 2      | IND_BUY              | Takes value 1 if customer has purchased a product in current month, else takes value 0             |
| 3      | IND_LOW_INCOME       | Takes value 1 if customer belongs to low income group, else takes value 0                          |
| 4      | IND_ACTIVE_IM        | Takes value 1 if customer has been tagged as 'active' in the last month, else takes value 0        |
| 5      | IND_CAR_OWNER        | Takes value 1 if customer owns a car, else takes value 0                                           |
| 6      | NUM_POOR_FEEDBACK_IM | Number of times customer has filled up 'poor' feedback in the last one month                       |
| 7      | NUM_PURCHASES_IM     | Number of purchases made by the customer in past one month                                         |
| 8      | CUMM_DISC_AMT_IM     | Cumulative amount of discount till last month as received by the customer                          |
| 9      | PREV_BUY_BILL_AMT    | Bill amount of last purchase                                                                       |
| 10     | NUM_FREEBIES_RECD_IM | Number of freebies received by customer in last one month                                          |
| 11     | NUM_VISITS_2M        | Total number of visits by customer in last 2 months                                                |
| 12     | NUM_VISITS_3M        | Total number of visits by customer in last 3 months                                                |
| 13     | est_spending_limit   | Estimated spending limit of customer                                                               |
| 14     | DAYS_TO_NEXT_BDAY    | Number of days left in nearest birthday in customer household                                      |
| 15     | NUM_KIDS             | Number of kids present in customer household                                                       |
| 16     | MARITAL_STATUS       | M=Married, U=Unmarried, Blank=No Information Available                                             |
| 17     | IND_CASH_PURCHASE    | Takes value I if customer has made a purchase in current month by cash payment, else takes value 0 |

# **EDD ANALYSIS**



```
EDD Macro Syntax Note: EDD macro will not work for variables with name greater than 28 bytes
%EDD (
                        = <Location of the input dataset>,
     INLIB
                        = <Name of input dataset>,
     INPUTDATA
     EDD OUT LOC XLS = <Location and name of output XLS file>,
                        = <Location of the input dataset>,
     OUTLIB
                        = <Name of output dataset>,
     OUTDATA
     NUM_UNIQ
                        = <Option*>
     );
*NUM_UNIQ can either be \mathbf{Y} or \mathbf{N} depending on whether the \# of unique
values column is desired.
```

### After a glance at EDD Output ...

Character format

Possibly an indicator (**Note:** Num. of unique values = 2, Min. = 0 and Max. = 1)

Num. of unique values = Num. of obs.

Missing values present (**Note**: NMISS > 0)

Outliers present (**Note**: Max. / P99 ratio is significantly high)

### **EDD Output of Modeling Dataset**

Event Rate = 5%

| VARIABLE             | TYPE | # OBS. | NMISS | UNIQUE | MEAN    | STD DEV | MIN  | PI   | P5     | P25  | MEDIAN | P75    | P95   | P99   | MAX   |
|----------------------|------|--------|-------|--------|---------|---------|------|------|--------|------|--------|--------|-------|-------|-------|
| CUSTOMER_ID          | NUM  | 400    | 0     | 400    | 495     | 299.69  | I    | 14   | 54     | 216  | 493    | 772    | 950.5 | 993.5 | 999   |
| IND_BUY              | NUM  | 400    | 0     | 2      | 0.05    | 0.22    | 0    | 0    | 0      | 0    | 0      | 0      | 0.5   | I     | I     |
| IND_LOW_INCOME       | NUM  | 400    | 0     | 2      | 0.55    | 0.50    | 0    | 0    | 0      | 0    | I      | I      | I     | I     | I     |
| IND_ACTIVE_IM        | NUM  | 400    | 0     | 2      | 0.08    | 0.27    | 0    | 0    | 0      | 0    | 0      | 0      | I     | I     | I     |
| IND_CAR_OWNER        | NUM  | 400    | 0     | 2      | 0.01    | 0.11    | 0    | 0    | 0      | 0    | 0      | 0      | 0     | I     | I     |
| NUM_POOR_FEEDBACK_IM | NUM  | 400    | 0     | 6      | 0.52    | 0.96    | 0    | 0    | 0      | 0    | 0      | I      | 3     | 4     | 5     |
| NUM_PURCHASES_IM     | NUM  | 400    | 0     | 27     | 3.35    | 6.51    | 0    | 0    | 0      | 0    | I      | 4      | 14.5  | 26    | 80    |
| CUMM_DISC_AMT_IM     | NUM  | 400    | 6     | 56     | 1805    | 883.70  | 0    | 0    | 0      | 1250 | 1825   | 2500   | 3250  | 3750  | 4250  |
| PREV_BUY_BILL_AMT    | NUM  | 400    | 0     | 54     | 752     | 731.23  | 300  | 350  | 443.75 | 625  | 725    | 816.5  | 1000  | 1050  | 15000 |
| NUM_FREEBIES_RECD_IM | NUM  | 400    | 0     | 7      | 0.39    | 0.77    | 0    | 0    | 0      | 0    | 0      | I      | 2     | 3.5   | 6     |
| NUM_VISITS_2M        | NUM  | 400    | 0     | 22     | 3.12    | 4.23    | 0    | 0    | 0      | I    | 2      | 4      | 11.5  | 19    | 31    |
| NUM_VISITS_3M        | NUM  | 400    | 0     | 24     | 3.66    | 4.75    | 0    | 0    | 0      | I    | 2      | 4      | 13.5  | 23    | 35    |
| EST_SPENDING_LIMIT   | NUM  | 400    | 0     | 278    | 1432    | 1361.10 | 20   | 47.5 | 157.5  | 610  | 1137.5 | 1737.5 | 3675  | 7670  | 11970 |
| DAYS_TO_NEXT_BDAY    | NUM  | 400    | 0     | 62     | 19      | 14.39   | 0    | 0    | 4      | 10   | 16     | 24     | 49    | 69    | 79    |
| NUM_KIDS             | NUM  | 400    | 0     | 4      | 1.13    | 0.43    | ı    | ı    | İ      | I    | I      | I      | 2     | 3     | 4     |
| MARITAL_STATUS       | CHAR | 400    | 72    | 3      | M::23 I | U::97   | ::72 |      |        |      |        |        |       |       |       |
| IND_CASH_PURCHASE    | NUM  | 400    | 0     | 2      | 0.05    | 0.22    | 0    | 0    | 0      | 0    | 0      | 0      | 0.5   | I     | ı     |

# VARIABLE CLASSIFICATION



#### PRIMARY KEY

#### **CUSTOMER ID**

**Necessary Condition**: It's number of unique values equals the total number of records in the dataset.

**Sufficient Condition**: Dataset contains customer level information and as per the label, this is customer's identification number.

#### **TARGET VARIABLE**

#### IND BUY

It takes value I if customer has purchased a product in the current month, else takes value 0. This is what is to be predicted for next month according to given problem statement. Here, I is event and 0 is non-event.

#### **INELIGIBLE VARIABLES**

### IND\_CASH\_PURCHASE

It takes value I if customer has made a purchase in current month by cash payment, else takes value 0. Apparently, this variable contains post-event information and hence it can not be used as an input in the modeling process. (Note: Variables with single unique value are also ineligible as they do not distinguish between event and non-event)

### **INDEPENDENT VARIABLES (ALSO CALLED PREDICTORS)**

**NUMERIC** 

### INDICATORS

# IND\_LOW\_INCOME IND\_ACTIVE\_IM IND\_CAR\_OWNER

**Necessary Condition**: EDD output indicates

- These variables have only 2 unique values
- Minimum value is 0
- Maximum value is I

**Sufficient Condition**: Labels of these variables clearly mention that these are the binary indicators taking value 0 or I

Note: IND\_BUY and IND\_CASH\_PURCH ASE are also indicator variables but they do not belong to the set of predictor variables.

#### **DISCRETE / CONTINUOUS**

NUM\_POOR\_FEEDBACK\_IM
NUM\_PURCHASES\_IM
CUMM\_DISC\_AMT\_IM
PREV\_BUY\_BILL\_AMT
NUM\_FREEBIES\_RECD\_IM
NUM\_VISITS\_2M
NUM\_VISITS\_3M
EST\_SPENDING\_LIMIT
DAYS\_TO\_NEXT\_BDAY
NUM\_KIDS

Both EDD output and the variable descriptions point out that these all are discrete or continuous variables.

#### **CHARACTER**

#### **MARITAL STATUS**

It has character format. It takes three values:

- M implies that the customer is married
- U implies that the customer is unmarried
- <Blank> implies that no information is available about the marital status of customer

# **OUTLIER TREATMENT**



#### **TECHNIQUES FOR OUTLIER DETECTION / TREATMENT:**

- Capping and Flooring Technique: The outliers are identified and treated based upon the values of P99 and P1
- **Exponential Smoothing Technique**: The curve between P95 to P99 is extrapolated beyond P99, to identify the values falling above the curve. The values falling outside the curve are outliers and are treated according to some functions depending upon the boundary conditions
- Sigma Approach: The outliers are identified and treated based upon the values of mean and standard deviation
- Robust Regression Technique: This technique involves running regression repeatedly to identify outliers by assigning weights to the observations. The weights are on the basis of the prediction error (residual) in different iterations. Higher residual means lower weight.
- Mahalanobis Distance Technique: The outliers are identified by the magnitude of 'Mahalanobis' or statistical distance from the origin. Weights are given to each observation as the inverse of 'Mahalanobis' distance.

**Note**: Detailed discussion on each of the outlier treatment techniques is beyond the scope of current exercise. Keeping in mind beginners' perspective, the most commonly used and the most easily implementable technique (**Capping and Flooring Technique**) is now being discussed.

#### **FLOORING**

| CASES    |     |     | LOGIC                          |                        | ILLUSTRATION (Let X = 5) |      |              |  |  |  |  |
|----------|-----|-----|--------------------------------|------------------------|--------------------------|------|--------------|--|--|--|--|
| CASES    | MIN | PI  | OUTLIER                        | TREATMENT              | MIN                      | PI   | TREATMENT    |  |  |  |  |
| CASE I   | < 0 | < 0 | Any value < X * PI             | Floor at X * PI        | - 200                    | - 10 | Floor at -50 |  |  |  |  |
| CASE II  | < 0 | = 0 | Any value < - X                | Floor at - X           | - 200                    | 0    | Floor at -5  |  |  |  |  |
| CASE III | < 0 | > 0 | Any value $\leq PI - (X * PI)$ | Floor at PI - (X * PI) | - 200                    | 10   | Floor at -40 |  |  |  |  |
| CASE IV  | > 0 | > 0 | Any value < PI / X             | Floor at PI / X        | ı                        | 10   | Floor at 2   |  |  |  |  |

#### **CAPPING**

| CASES    |     |     | LOGIC                       |                        | ILLUSTRATION (Let X = 5) |     |           |  |  |  |  |
|----------|-----|-----|-----------------------------|------------------------|--------------------------|-----|-----------|--|--|--|--|
| CASES    | P99 | MAX | OUTLIER                     | TREATMENT              | P99                      | MAX | TREATMENT |  |  |  |  |
| CASE I   | > 0 | > 0 | Any value > X * P99         | Cap at X * P99         | 10                       | 200 | Cap at 50 |  |  |  |  |
| CASE II  | = 0 | > 0 | Any value > X               | Cap at X               | 0                        | 200 | Cap at 5  |  |  |  |  |
| CASE III | < 0 | > 0 | Any value > P99 - (X * P99) | Cap at P99 - (X * P99) | - 10                     | 200 | Cap at 40 |  |  |  |  |
| CASE IV  | < 0 | < 0 | Any value > P99 / X         | Cap at P99 / X         | - 10                     | - 1 | Cap at -2 |  |  |  |  |

# **OUTLIER TREATMENT CONTINUED...**



#### **HOW TO DECIDE UPON THE VALUE OF X?**

As a rule of thumb, X may be assumed as 1 or 2 or 5 or 10.

X = I is as good as flooring and capping at PI and P99 respectively. This is a very strict treatment.

X = 10 is too lenient.

X = 5 is commonly used.

X = 2 may be used based on data analysis.

#### An Excerpt from Modeling Dataset EDD

| VARIABLE          | TYPE # | OBS. | NMISS | UNIQUE | MEAN S | TD DEV | MIN | PI  | P5     | P25 | MEDIAN | P75   | P95  | P99  | MAX   |
|-------------------|--------|------|-------|--------|--------|--------|-----|-----|--------|-----|--------|-------|------|------|-------|
| PREV_BUY_BILL_AMT | NUM    | 400  | 0     | 54     | 752    | 731.23 | 300 | 350 | 443.75 | 625 | 725    | 816.5 | 1000 | 1050 | 15000 |

Modeling dataset EDD indicates that PREV\_BUY\_BILL\_AMT has outliers.

### An Excerpt from Validation Dataset EDD

| VARIABLE          | TYPE : | # OBS. | NMISS I | UNIQUE | MEAN S | TD DEV | MIN | PI  | P5     | P25   | MEDIAN | P75 | P95  | P99  | MAX  |
|-------------------|--------|--------|---------|--------|--------|--------|-----|-----|--------|-------|--------|-----|------|------|------|
| PREV_BUY_BILL_AMT | NUM    | 100    | 0       | 34     | 698    | 176.44 | 300 | 325 | 416.75 | 587.5 | 668.75 | 800 | 1000 | 1100 | 1200 |

Validation dataset EDD, however, shows that maximum value of PREV\_BUY\_BILL\_AMT is not very far away from modeling data P99 value. Taking X = 2 is likely to work for outlier treatment.

**Outlier Treatment:** Cap PREV\_BUY\_BILL\_AMT at 2100

PREV\_BUY\_BILL\_AMT = min(PREV\_BUY\_BILL\_AMT , 2100);

# MISSING VALUE IMPUTATION



### An Excerpt from Modeling Dataset EDD

| VARIABLE         | TYPE : | # OBS. | NMISS | UNIQUI | MEAN S | STD DEV | MIN  | PI | P5 | P25  | MEDIAN | P75  | P95  | P99  | MAX  |
|------------------|--------|--------|-------|--------|--------|---------|------|----|----|------|--------|------|------|------|------|
| CUMM_DISC_AMT_IM | NUM    | 400    | 6     | 56     | 1805   | 883.70  | 0    | 0  | 0  | 1250 | 1825   | 2500 | 3250 | 3750 | 4250 |
| MARITAL_STATUS   | CHAR   | 400    | 72    | 3      | M::231 | U::97   | ::72 |    |    |      |        |      |      |      |      |

Modeling dataset EDD indicates that CUMM\_DISC\_AMT\_IM and MARITAL\_STATUS have missing values.

### CUMM\_DISC\_AMT\_IM:

- A continuous numeric variable
- Missing values are not too many; hence no need to create a separate indicator for missing values
- Missing values implying no information available; Imputation with ZERO is not meaningful
- Imputation with median value looks apt
- No outliers or extreme values to distort mean; mean value is in fact close to median; hence imputation with mean is also a good option

### **MARITAL STATUS**

- A character variable with three categories
  - M: Customer is married
  - U: Customer is unmarried
  - Missing Values: No information is available about customer's marital status
- To treat missing values, create indicators for each of the remaining categories

An illustrative table showing MVI by indicator creation



| MARITAL_STATUS | IND_MARRIED | IND_UNMARRIED |
|----------------|-------------|---------------|
| M              | 1           | 0             |
| M              | Ţ           | 0             |
| U              | 0           |               |
| U              | 0           |               |
|                | 0           | 0             |
|                | 0           | 0             |

### MVI Treatment: Impute CUMM\_DISC\_AMT\_IM with its median value and create dummy codes for MARITAL\_STATUS

# CORRELATIONS



```
Syntax for computing Pearson's correlation coefficients

PROC CORR DATA = <Modeling dataset after data prep>
```

**OUTP** = <Output dataset containing correlation matrix>;

VAR \_numeric\_;
WITH \_numeric\_;

RUN;

For Correlation Matrix Analysis . . .

Perfect Positive Correlation (100%)

40% ≤ Absolute Correlation < 100%

20% < Absolute Correlation < 40%

Note: The primary key 'CUSTOMER\_ID' is numeric too. But it should be dropped from this analysis as its correlation with variables would have no meaning.

| VARIABLES            |   | A      | В      | С      | D      | E      | F      | G      | н      | 1      | J      | K      | L      | М      | N      | 0      | Р      | Q      |
|----------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| IND_BUY              | A | 100.0% |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| IND_LOW_INCOME       | В | -7.3%  | 100.0% |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| IND_ACTIVE_IM        | С | 10.1%  | 11.4%  | 100.0% |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| IND_CAR_OWNER        | D | 7.7%   | -8.1%  | 5.0%   | 100.0% |        |        |        |        |        |        |        |        |        |        |        |        |        |
| NUM_POOR_FEEDBACK_IM | E | -3.2%  | 10.8%  | 3.3%   | -6.1%  | 100.0% |        |        |        |        |        |        |        |        |        |        |        |        |
| NUM_PURCHASES_IM     | F | 22.6%  | -11.3% | 10.8%  | 0.1%   | -3.3%  | 100.0% |        |        |        |        |        |        |        |        |        |        |        |
| CUMM_DISC_AMT_IM     | G | 7.4%   | -5.7%  | 0.4%   | 4.3%   | 1.5%   | 16.4%  | 100.0% |        |        |        |        |        |        |        |        |        |        |
| PREV_BUY_BILL_AMT    | Н | -8.8%  | 2.3%   | -4.3%  | -2.5%  | -5.8%  | -17.8% | -79.8% | 100.0% |        |        |        |        |        |        |        |        |        |
| NUM_FREEBIES_RECD_IM | ı | 7.9%   | 5.4%   | 10.4%  | 3.2%   | 14.1%  | 14.9%  | 56.0%  | -57.4% | 100.0% |        |        |        |        |        |        |        |        |
| NUM_VISITS_2M        | J | 16.2%  | -11.8% | -1.9%  | 3.9%   | -12.8% | 28.8%  | 24.0%  | -24.5% | 13.1%  | 100.0% |        |        |        |        |        |        |        |
| NUM_VISITS_3M        | K | 18.6%  | -14.1% | -1.2%  | 3.2%   | -12.5% | 26.6%  | 23.7%  | -25.9% | 14.6%  | 96.4%  | 100.0% |        |        |        |        |        |        |
| EST_SPENDING_LIMIT   | L | 12.5%  | -11.4% | 2.2%   | -2.2%  | -7.5%  | 29.7%  | 23.0%  | -29.2% | 15.7%  | 52.8%  | 53.4%  | 100.0% |        |        |        |        |        |
| DAYS_TO_NEXT_BDAY    | М | -6.9%  | 9.1%   | 1.2%   | -0.2%  | 1.6%   | -15.9% | -23.5% | 23.8%  | -13.0% | -24.7% | -25.4% | -34.7% | 100.0% |        |        |        |        |
| NUM_KIDS             | N | 0.9%   | -4.2%  | 3.8%   | 12.2%  | 14.3%  | 10.0%  | 19.3%  | -17.6% | 24.7%  | 5.2%   | 6.2%   | 12.1%  | -5.2%  | 100.0% |        |        |        |
| IND_CASH_PURCHASE    | 0 | 100.0% | -7.3%  | 10.1%  | 7.7%   | 3.2%   | 22.6%  | 7.4%   | -8.8%  | 7.9%   | 16.2%  | 18.6%  | 12.5%  | -6.9%  | 0.9%   | 100.0% |        |        |
| IND_MARRIED          | Р | -1.3%  | 43.0%  | 8.4%   | -8.6%  | 8.2%   | -9.8%  | -7.9%  | 5.9%   | -3.9%  | -7.9%  | -7.7%  | -6.6%  | 2.5%   | -0.7%  | -1.3%  | 100.0% |        |
| IND_UNMARRIED        | Q | 0.4%   | -4.8%  | 0.5%   | -6.4%  | -0.1%  | -1.4%  | 3.4%   | -6.1%  | 3.5%   | 7.1%   | 6.5%   | 6.0%   | 1.5%   | -3.9%  | 0.4%   | -66.1% | 100.0% |

# VARIABLE CLUSTERING



### **PROC VARCLUS Syntax** PROC VARCLUS DATA = <Input Data> MAXEIGEN = 0.7 MAXCLUSTERS = 100\* SHORT HI; VAR IND\_LOW\_INCOME IND ACTIVE 1M IND CAR OWNER NUM\_POOR\_FEEDBACK\_1M NUM\_PURCHASES\_1M CUMM\_DISC\_AMT\_1M PREV\_BUY\_BILL\_AMT NUM\_FREEBIES\_RECD\_1M NUM\_VISITS\_2M NUM VISITS 3M EST\_SPENDING\_LIMIT DAYS\_TO\_NEXT\_BDAY NUM KIDS IND\_MARRIED IND UNMARRIED ODS OUTPUT RSQUARE = <Output Data>; RUN: \*Since number of variables listed in VAR statement is 15, MAXCLUSTERS = 100 is not putting any effective condition.

A variable selected from each cluster should have a high correlation with its own cluster and a low correlation with the other clusters

R Square Ratio = I - R Square Own Cluster

I - R Square Next Closest

| Output          |           | Cluster's best representative (Variable with minimum R Square I |                |                 |                   |  |  |  |  |  |  |
|-----------------|-----------|-----------------------------------------------------------------|----------------|-----------------|-------------------|--|--|--|--|--|--|
| Num<br>Clusters | Cluster   | Variable                                                        | Own<br>Cluster | Next<br>Closest | R Square<br>Ratio |  |  |  |  |  |  |
| 2               | Cluster I | IND_LOW_INCOME                                                  | 0.099          | 0.0003          | 0.9012            |  |  |  |  |  |  |
| 2               |           | NUM_POOR_FEEDBACK_IM                                            | 0.0401         | 0.0093          | 0.9689            |  |  |  |  |  |  |
| 2               |           | NUM_PURCHASES_IM                                                | 0.2227         | 0.0391          | 0.8089            |  |  |  |  |  |  |
| 2               |           | NUM_VISITS_2M                                                   | 0.782          | 0.0542          | 0.2305            |  |  |  |  |  |  |
| 2               |           | NUM_VISITS_3M                                                   | 0.7828         | 0.0595          | 0.2309            |  |  |  |  |  |  |
| 2               |           | EST_SPENDING_LIMIT                                              | 0.5391         | 0.0705          | 0.4958            |  |  |  |  |  |  |
| 2               |           | DAYS_TO_NEXT_BDAY                                               | 0.2031         | 0.0516          | 0.8403            |  |  |  |  |  |  |
| 2               |           | IND_MARRIED                                                     | 0.0866         | 0.0043          | 0.9173            |  |  |  |  |  |  |
| 2               |           | IND_UNMARRIED                                                   | 0.0403         | 0.0015          | 0.9611            |  |  |  |  |  |  |
| 2               | Cluster 2 | IND_ACTIVE_IM                                                   | 0.0108         | 0.0001          | 0.9893            |  |  |  |  |  |  |
| 2               |           | IND_CAR_OWNER                                                   | 0.0098         | 0.0012          | 0.9915            |  |  |  |  |  |  |
| 2               |           | CUMM_DISC_AMT_IM                                                | 0.7882         | 0.0858          | 0.2317            |  |  |  |  |  |  |
| 2               |           | PREV_BUY_BILL_AMT                                               | 0.7936         | 0.0982          | 0.2289            |  |  |  |  |  |  |
| 2               |           | NUM_FREEBIES_RECD_IM                                            | 0.6423         | 0.0273          | 0.3678            |  |  |  |  |  |  |
| 2               |           | NUM_KIDS                                                        | 0.1508         | 0.0073          | 0.8554            |  |  |  |  |  |  |
|                 |           |                                                                 |                |                 |                   |  |  |  |  |  |  |
|                 |           |                                                                 | •              |                 |                   |  |  |  |  |  |  |
|                 |           |                                                                 | •              |                 |                   |  |  |  |  |  |  |
| 8               | Cluster I | NUM_VISITS_2M                                                   | 0.9124         | 0.1236          | 0.1               |  |  |  |  |  |  |
| 8               |           | NUM_VISITS_3M                                                   | 0.9156         | 0.1167          | 0.0956            |  |  |  |  |  |  |
| 8               |           | EST_SPENDING_LIMIT                                              | 0.5461         | 0.1791          | 0.5529            |  |  |  |  |  |  |
| 8               | Cluster 2 | CUMM_DISC_AMT_IM                                                | 0.8242         | 0.0694          | 0.1889            |  |  |  |  |  |  |
| 8               |           | PREV_BUY_BILL_AMT                                               | 0.8338         | 0.0862          | 0.1819            |  |  |  |  |  |  |
| 8               |           | NUM_FREEBIES_RECD_IM                                            | 0.6362         | 0.0347          | 0.3768            |  |  |  |  |  |  |
| 8               | Cluster 3 | IND_MARRIED                                                     | 0.8307         | 0.1851          | 0.2077            |  |  |  |  |  |  |
| 8               |           | IND_UNMARRIED                                                   | 0.8307         | 0.0054          | 0.1702            |  |  |  |  |  |  |
| 8               | Cluster 4 | IND_CAR_OWNER                                                   | 0.5612         | 0.0066          | 0.4417            |  |  |  |  |  |  |
| 8               |           | NUM_KIDS                                                        | 0.5612         | 0.0539          | 0.4639            |  |  |  |  |  |  |
| 8               | Cluster 5 | NUM_POOR_FEEDBACK_IM                                            | I              | 0.0156          | 0                 |  |  |  |  |  |  |
| 8               | Cluster 6 | IND_ACTIVE_IM                                                   | I              | 0.0131          | 0                 |  |  |  |  |  |  |
| 8               | Cluster 7 | IND_LOW_INCOME                                                  | I              | 0.0688          | 0                 |  |  |  |  |  |  |
| 8               | Cluster 8 | NUM_PURCHASES_IM                                                | 0.5793         | 0.0996          | 0.4672            |  |  |  |  |  |  |

# DOUBLE CHECK MULTICOLLINEARITY



There arises a problem of multicollinearity when predictors are highly correlated among themselves. Variable clustering does away with this to a large extent. To double check, variance inflation test is recommended for use.

```
VIF Macro Syntax
%VIF
       MOD DAT
                      = <Input dataset with library name>,
       OUT_DAT
                      = <Output dataset containing stats of short-listed variables>,
                      = <Output dataset containing summary of variables eliminated>,
       ELIM SUM
       VAR LIST
                      = <List of variables>,
                      = <Dependent variable>,
       DP_VAR
       MAX VIF LIMIT = <Maximum value of VIF permitted>,
       IF CORR
                      = <Option*>
       );
*IF_CORR can either be Y or N depending on whether correlation technique should be applied for
variable reduction or VIF only is sufficient.
```

As a rule of thumb, MAX\_VIF\_LIMIT is generally used as 2 or 5 or 10. However, MAX\_VIF\_LIMIT = 10 is a bit too lenient on variable elimination by variance inflation factor.

### VIF Output ...

VIF value is under 2

| Dependent | <b>V</b> ariable     | DF | Estimate | StdErr | <b>tVal</b> ue | Probt  | Variance<br>Inflation |
|-----------|----------------------|----|----------|--------|----------------|--------|-----------------------|
| IND_BUY   | NUM_VISITS_3M        | I  | 0.0080   | 0.0024 | 3.2761         | 0.0011 | 1.1596                |
| IND_BUY   | PREV_BUY_BILL_AMT    | I  | 0.0000   | 0.0001 | -0.5625        | 0.5741 | 1.1258                |
| IND_BUY   | DAYS_TO_NEXT_BDAY    | I  | -0.0002  | 0.0008 | -0.2720        | 0.7857 | 1.1137                |
| IND_BUY   | IND_LOW_INCOME       | 1  | -0.0263  | 0.0221 | -1.1870        | 0.2359 | 1.0550                |
| IND_BUY   | NUM_POOR_FEEDBACK_IM | 1  | 0.0134   | 0.0114 | 1.1774         | 0.2398 | 1.0368                |
| IND_BUY   | IND_ACTIVE_IM        | I  | 0.0837   | 0.0398 | 2.1016         | 0.0362 | 1.0197                |
| IND_BUY   | IND_CAR_OWNER        | I  | 0.1260   | 0.0972 | 1.2956         | 0.1959 | 1.0191                |
| IND_BUY   | IND_UNMARRIED        | 1  | -0.0041  | 0.0252 | -0.1631        | 0.8705 | 1.0152                |
| IND_BUY   | INTERCEPT            | I  | 0.0523   | 0.0549 | 0.9530         | 0.3412 | 0.0000                |

# LOGISTIC REGRESSION



```
Logistic Regression Syntax
PROC LOGISTIC DATA = <Modeling dataset> NAMELEN = 32 DESCENDING
OUTEST = <Dataset containing estimated parameters (View 1)>;
MODEL <Dependent Variable>
                                = <List of independent variables>
                     SELECTION = <Selection method>
                     SLE
                                = <SLE Criterion>
                     SLS
                                = <SLS Criterion>
                     LACKFIT
                     RSQ
                     STB
                     CLPARM
                                = WALD;
OUTPUT OUT = <Scored modeling dataset> P = PRED;
ODS OUTPUT PARAMETERESTIMATES = <Dataset containing estimated parameters (View 2)>;
RUN;
```

Note: Importance of a variable in a model should never be deduced from magnitude of estimates.

Different variables may have different units and scales.

Standardized estimates provide more meaningful indications

### Sample Output ...

| Variable      | DF | Estimate | Std. Err. | Wald Chi Sq. | Prob. Chi Sq. | Standardized Est. |
|---------------|----|----------|-----------|--------------|---------------|-------------------|
| Intercept     | I  | -3.6669  | 0.3475    | 111.336      | 4.99E-26      |                   |
| NUM_VISITS_3M | I  | 0.1087   | 0.0319    | 11.61226     | 0.000655      | 0.2845            |
| IND_ACTIVE_IM | I  | 1.2982   | 0.6061    | 4.588731     | 0.032183      | 0.1944            |

#### STATISTICAL SIGNIFICANCE:

As p-values are less than 0.05, both variables are statistically significant at 5% level

#### **CHECK VARIABLE HYPOTHESIS:**

**NUM\_VISITS\_3M:** More visits to the departmental store by customer in the past 3 months, more likely she is to visit again and buy some product

**IND\_ACTIVE\_IM:** Active customers in last I month are more probable to remain active and purchase a product.

### SCORING



Before scoring, it should be ensured that all data prep has been done on validation dataset too.

```
Validation Dataset Preparation: Replicate all steps (MVI / Outlier Treatment / New Variable Creation)PREV_BUY_BILL_AMT= min(PREV_BUY_BILL_AMT , 2100);If CUMM_DISC_AMT_1M= . then CUMM_DISC_AMT_1M = 1825 ;If MARITAL_STATUS= "M" then IND_MARRIED= 1 ; else IND_MARRIEDIf MARITAL_STATUS= "U" then IND_UNMARRIED= 1 ; else IND_UNMARRIED= 0;
```

# LIFT CHARTS



```
Lorenz-curve (Lift) and KS statistic Macro Syntax
%KS_LZ_GB
           INDATA
                      = <name of the input dataset>,
           OUTPUT_KS = <Output location for KS stat dataset>,
           OUTPUT_LZ = < Output location for Lorenz dataset>,
           NUM_BIN
                      = <Number of bins to be created>,
                      = <Dependent variable Name>,
           DEP VAR
                      = <Scoring Variable name>,
           SCORE
                      = <Key used for binning>,
           VAR KEY
                      = <Value at which lift is to be calculated>,
           LIFT
                      = <Name of file containing KS stat and Lift with '.xls' as the extension>
           ODS OUT
           );
```



| Model Performance                |      |
|----------------------------------|------|
| Concordance                      | 66.6 |
| Modeling Lift at 5% Event Rate   | 20%  |
| Validation Lift at 5% Event Rate | 19%  |

**Note**: The lift charts are not smooth because of very few records in the current exercise, However, in LIVE projects, modeling population is likely to be much more, yielding smooth lift charts.

# **APPENDIX**



### For running any SAS Toolkit Macro, user must define the toolkit catalogue as follows:

LIBNAME CATLOG "Z:\MacroToolkit";
OPTIONS MSTORED SASMSTORE = CATLOG;



# **Thanks**

For queries, contact Varun Aggarwal at <a href="mailto:Varun.Aggarwal@exlservice.com">Varun.Aggarwal@exlservice.com</a>