1

Assignment 14

AVVARU BHARAT - EE20MTECH11008

Download the latex-tikz codes from

https://github.com/Bharat437/Matrix Theory/tree/master/Assignment14

1 Problem

(UGC,Dec 2015,74):

Let **V** be a finite dimensional vector space over \mathbb{R} . Let $T: \mathbf{V} \to \mathbf{V}$ be a linear transformation such that $rank(\mathbf{T}^2) = rank(\mathbf{T})$. Then,

- 1) $Kernel(\mathbf{T}^2) = Kernel(\mathbf{T})$
- 2) $Range(\mathbf{T}^2) = Range(\mathbf{T})$
- 3) $Kernel(\mathbf{T}) \cap Range(\mathbf{T}) = \{0\}.$
- 4) $Kernel(\mathbf{T}^2) \cap Range(\mathbf{T}^2) = \{0\}.$

2 EXPLANATION

Range(T)	It is column-space of linear operator T .		
	$T(x) = v \implies Ax = v$	(2.0.1)	
	where $\mathbf{x}, \mathbf{v} \in \mathbf{V}$ and We can also say that		
	$Range(\mathbf{T}) = C(\mathbf{A})$	(2.0.2)	
	where $C(\mathbf{A})$ is column space of \mathbf{A} .		
Kernel(T)	It is null-space of linear operator T .		
	$\mathbf{T}(\mathbf{x}) = 0 \implies \mathbf{A}\mathbf{x} = 0$	(2.0.3)	
	where $x \in V$ and matrix A is same as before. We can also say that		
	$Kernel(\mathbf{T}) = N(\mathbf{A})$	(2.0.4)	
	where $N(\mathbf{A})$ is null space of \mathbf{A} .		
rank(T)	$rank(\mathbf{T}) = rank(\mathbf{A})$	(2.0.5)	
\mathbf{T}^2	$\mathbf{T}^2(\mathbf{x}) = \mathbf{A}^2 \mathbf{x} \qquad \mathbf{x} \in \mathbf{V}$	(2.0.6)	
	$rank(\mathbf{T}^2) = rank(\mathbf{A}^2)$	(2.0.7)	
\mathbf{A} and \mathbf{A}^2	The basis vectors of column-space of A and A^2 are same. The basis vectors of null-space of A and A^2 are same.		

TABLE 1: Definitions and theorem used

3 Solution

Statement	Observations		
Given	V is a finite dimensional space over \mathbb{R} and $T: V \to V$		
	$rank(\mathbf{T}) = rank(\mathbf{T}^2)$	(3.0.1)	
According to rank-nullity theorem.			
	$dim(\mathbf{V}) = rank(\mathbf{T}) + nullity(\mathbf{T})$	(3.0.2)	
	$dim(\mathbf{V}) = rank(\mathbf{T}^2) + nullity(\mathbf{T}^2)$	(3.0.3)	
	from (3.0.2) and (3.0.3). we get		
	$\implies rank(\mathbf{T}) + nullity(\mathbf{T}) = rank(\mathbf{T}^2) + nullity(\mathbf{T}^2)$	(3.0.4)	
	$\implies nullity(\mathbf{T}) = nullity(\mathbf{T}^2)$	(3.0.5)	

TABLE 2: Observations

Option	Solution	True/False	
1	From (3.0.5), let		
	$nullity(\mathbf{T}) = nullity(\mathbf{T}^2) = n$ (3.0.6)		
	Therefore, from table 1 and $(3.0.6)$ we can say that both null space of linear operator \mathbf{T} and null space of linear operator \mathbf{T}^2 will have same n number of basis.		
	$\implies Kernel(\mathbf{T}) = Kernel(\mathbf{T}^2) \tag{3.0.7}$		
2	From (3.0.1), let		
	$rank(\mathbf{T}) = rank(\mathbf{T}^2) = r \tag{3.0.8}$		
	Therefore, from table 1 and $(3.0.8)$ we can say that both column space of linear operator \mathbf{T} and column space of linear operator \mathbf{T}^2 will have same r number of basis.	True	
	$\implies Range(\mathbf{T}) = Range(\mathbf{T}^2) \tag{3.0.9}$		
3	From (3.0.6), (3.0.8) and also we can say that column space $C(\mathbf{A})$ and null space $N(\mathbf{A})$ are r-dimensional space and n-dimensional space respectively which will intersect only at origin(zero vector). And also from (2.0.2) and (2.0.4), we get	True	
	$\implies Kernel(\mathbf{T}) \cap Range(\mathbf{T}) = \{0\} $ (3.0.10)		
4	From table (3.0.7), (3.0.9) and (3.0.10), we get		
	$\implies Kernel(\mathbf{T}^2) \cap Range(\mathbf{T}^2) = \{0\} $ (3.0.11)	True	

TABLE 3: Solution

4 Example

Statement	Calculations and observations	
Consider vector space		
$\mathbf{V} = \mathbb{R}^3$		
Let matrix A be	$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{pmatrix}$	(4.0.1)
\mathbf{A}^2	$\mathbf{A}^2 = \begin{pmatrix} 0 & 7 & 7 \\ -1 & 4 & 5 \\ -5 & 13 & 18 \end{pmatrix}$	(4.0.2)
Convert both A and A ² to Row Reduced echelon form	For matrix A ,	
	$\begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{pmatrix} \xrightarrow[R_1 \leftarrow R_1 - 2R_2]{R_3 \leftarrow R_3 + R_1} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 5 & 5 \end{pmatrix}$	(4.0.3)
	$\stackrel{R_3 \leftarrow R_3 - 5R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$	(4.0.4)
	For matrix A^2 ,	
	$\begin{pmatrix} 0 & 7 & 7 \\ -1 & 4 & 5 \\ -5 & 13 & 18 \end{pmatrix} \xrightarrow{R1 \leftrightarrow R2} \begin{pmatrix} -1 & 4 & 5 \\ 0 & 7 & 7 \\ -5 & 13 & 18 \end{pmatrix}$	(4.0.5)
	$ \stackrel{R_3 \leftarrow R_3 - 5R_1}{\longleftrightarrow} \begin{pmatrix} -1 & 4 & 5 \\ 0 & 7 & 7 \\ 0 & -7 & -7 \end{pmatrix} \stackrel{R_3 \leftarrow R_3 + R_1}{\longleftrightarrow} \begin{pmatrix} -1 & 4 & 5 \\ 0 & 7 & 7 \\ 0 & 0 & 0 \end{pmatrix} $	(4.0.6)
	$ \stackrel{R_2 \leftarrow \frac{R_2}{7}}{\longleftrightarrow} \begin{pmatrix} 1 & -4 & -5 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \stackrel{R_1 \leftarrow R_1 + 4R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} $	(4.0.7)
$Range(\mathbf{T}) = Range(\mathbf{T}^2)$	Therefore, from $(4.0.4)$ and $(4.0.7)$ we can say that the vectors of $Range(\mathbf{T})$ and $Range(\mathbf{T}^2)$ are same as shown	
	$\mathbf{b_1} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \qquad \mathbf{b_2} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$	(4.0.8)
	and also we can say	
	$Range(\mathbf{T}) = Range(\mathbf{T}^2)$	(4.0.9)
$Kernel(\mathbf{T}) = Kernel(\mathbf{T}^2)$	Lets find the basis for null-space of linear operator \mathbf{T} of It is the solution of the equation $\mathbf{A}\mathbf{x} = 0$. From (4.0.4)	

$$\mathbf{A}\mathbf{x} = 0 \tag{4.0.10}$$

$$\implies \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \tag{4.0.11}$$

Setting the value of the free variable $x_3 = 1$ we get the solution,

$$\mathbf{x} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \tag{4.0.12}$$

Hence, the basis vector of the Kernel(T) is given by,

$$\mathbf{p} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \tag{4.0.13}$$

Now, lets find the basis for null-space of linear operator \mathbf{T}^2 or $N(\mathbf{A}^2)$. It is the solution of the equation $\mathbf{A}^2\mathbf{x} = 0$. From (4.0.7) we have,

$$\mathbf{A}^2 \mathbf{x} = 0 \tag{4.0.14}$$

$$\implies \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \tag{4.0.15}$$

Setting the value of the free variable $x_3 = 1$ we get the solution,

$$\mathbf{x} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \tag{4.0.16}$$

Hence, from (4.0.13) and (4.0.16) we got the basis vector of $Kernel(\mathbf{T}^2)$ same as the basis vector of $Kernel(\mathbf{T})$ which is \mathbf{p} . Therefore, we can say that

$$Kernel(\mathbf{T}) = Kernel(\mathbf{T}^2)$$
 (4.0.17)

 $Kernel(\mathbf{T}) \cap Range(\mathbf{T}) = \{0\}$

From (4.0.8) and (4.0.13), we got 2 basis vectors $\mathbf{b_1}$, $\mathbf{b_2}$ for $Range(\mathbf{T})$ and 1 basis vector \mathbf{p} for $Kernel(\mathbf{T})$. Here $\mathbf{b_1}$, $\mathbf{b_2}$, \mathbf{p} are linearly independent which can be proven as below. Let columns of matrix \mathbf{M} are filled with vectors $\mathbf{b_1}$, $\mathbf{b_2}$, \mathbf{p} .

$$\implies \mathbf{M} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 + R_1} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$
(4.0.18)

$$\stackrel{R_3 \leftarrow R_3 - R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 3 \end{pmatrix}$$
(4.0.19)

From (4.0.19), we got $rank(\mathbf{M}) = 3$. Therefore $\mathbf{b_1}$, $\mathbf{b_2}$, \mathbf{p} are linearly independent

	$Range(\mathbf{T})$ is a 2-dimensional space which is a plane in \mathbb{R}^3 and $Kernel(\mathbf{T})$ is a 1-dimensional space which is a line in \mathbb{R}^3 . Since $\mathbf{b_1}$, $\mathbf{b_2}$, \mathbf{p} are linearly independent then plane and line intersect at origin(zero vector). And we can say that	
	$Kernel(\mathbf{T}) \cap Range(\mathbf{T}) = \{0\}$	(4.0.20)
$Kernel(\mathbf{T}^2) \cap Range(\mathbf{T}^2) = \{0\}$	From (4.0.9), (4.0.17), (4.0.20) we get	
	$\implies Kernel(\mathbf{T}^2) \cap Range(\mathbf{T}^2) = \{0\}$	(4.0.21)

TABLE 4: Example