PODPRZESTRZENIE METRYCZNEEEE

PODPRZESTRZEN (X,d) to (A,d), $A\subseteq X$

 $formalnie\ (A,d)$ nie jest metryka – musimy obciac $d_{|A imes A|}$

PRZYKLAD

Mamy prosta $\mathbb R$ z metryka euklidesowa. Rozwazmy na niej zbior [0,1]. Jesli zastanowimy sie nad kulami w tej podprzestrzeni, to mozemy otrzymac kule:

I ta kula jest otwarta, bo dla tej podprzestrzeni nie istnieja punkty mniejsze od 0.

Na \mathbb{R}^2 z metryka centrum wybieramy okrag o promieniu $\frac{1}{2}$ i srodku w (0,0). Taka podprzestrzen jest bardzo podobna do przestrzeni dyksretnej – kazde dwa punkty, ktore nie sa tym samym punktem, sa od siebie odlegle o 1.

Dwie przestrzenie metryczne: (X,d) i (Y,
ho), i funkcja z jednej w druga:

$$f: X \to Y$$

jest ciagla jesli (warunek Cauchyego):

$$\forall \ x \in X \ \forall \ \varepsilon > 0 \ \exists \ \delta > 0 \ \forall \ y \quad d(x,y) < \delta \implies \rho(f(x),f(y)) < \varepsilon.$$

Jesli mamy (X,d) , (Y,ρ) oraz funkcje $f:X\to Y$, wowczas

- 2. (zbieznosc wg. Heinego): mamy (x_n) ciag z X, taki, ze $\lim x_n = x$, to $\lim f(x_n) = f(x)$ (ciag wartosci zbiega do wartosci granicy)
- 3. $f^{-1}[U]$ jest otwarty, dla kazdego otwartego $U\subseteq Y$

Pokazemy implikacje : 3. \Longrightarrow 1..

Mamy funkcje $f:X\to Y$, i mamy sprawdzic, czy jest ciagla w sensie Cauchyego (z 1., warunek ciaglosci wyzej). Dla dowolnego $x\in X, \varepsilon>0$ mamy dobrac δ tak, zeby warunek ciaglosci byl spelniony, majac do dyspozycji tylko to, ze przeciwobrazy zbiorow otwartych sa otwarte.

Czyli chce pokazac, ze jesli bedziemy brali cos z kuli o promieniu δ , to bedzie do tego nalezec wszystko w kuli o promieniu ε i do tego chce korzystac z otwartosci przeciwobrazow zbiorow otwartych.

Wartosci musze byc w kuli o srodku w f(x) i promieniu $\varepsilon\colon$

$$U = B_{\varepsilon}(f(x)).$$

Z zalozenia 3. jesli wezmiemy dowolny punkt u ze zbioru $f^{-1}[U]$, to on siedzi w tym zbiorze wraz z pewna kula. Wybierzmy $u=x\in f^{-1}[U]$, bo $f(x)\in U$. Z definicji zbioru otwartego:

$$\exists \ \delta > 0 \quad B_{\delta}(x) \subseteq f^{-1}[U].$$

Jesli weze dowolne y z kuli B_{δ} , to jak naloze y f, bedzie oon blizej x niz ε , czyli $f(y) \in B_{\epsilon}(f(y))$

HOMEOMORFIZMY

HOMEOMORFIZM (
$$X \cong Y$$
) nazywamy taka funkcje $f:(X,d) \to (y,\rho)$, ktora:
$$f \text{ jest 1-1 i na i ciagla oraz}$$

$$f^{-1} \text{ jest ciagla}.$$

X jest homeomorfizmem zY, jesli istnieje homomorfizm

PRZYKLADY

 $[0,1]\cong [0,2]$, wezmy funkcje f(x)=2 - jest ciagla bijekcja i funkcja odwrotna jest ciagla (najprostszy przyklad) $(\mathbb{R}^2,d_{euk})\cong (\mathbb{R}^2,d_{miast})$ dla funkcji $f(x,y)=\langle x,y\rangle$, czyli dla identyczności 34:05