Question 1

Model Summa	rv
-------------	----

					Change Statistics				
		R	Adjusted R	Std. Error of	R Square	F			Sig. F
Model	R	Square	Square	the Estimate	Change	Change	df1	df2	Change
1	.071a	.005	012	1369.555	.005	.297	1	58	.588

a. Predictors: (Constant), Age

Co	effic	cie	ntsa
\mathbf{U}			1113

Coefficients								
Unstandardized			Standardized			95.0% Confid	lence Interval	
Coefficients			Coefficients			for B		
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	8041.424	965.396		8.330	<.001	6108.973	9973.874
	Age	8.729	16.027	.071	.545	.588	-23.352	40.811

a. Dependent Variable: Income

Step 1: Define the null and alternative Hypotheses

 H_0 : p= 0 (age and income are not related)

 H_1 : p≠ 0 (age and income are related)

Step 2: Determine the region of Acceptance of the Hypothesis

 α = 0.05 df=1 t-crit =±6.314. Thus the region of Acceptance for H₀ is -6.314≤ t ≤ +6.314

The decision rule is then stated as follows:

- o Accept H₀ if t-stat lies between -6.314 and +6.314 inclusive.
- o Reject H₀ if t-stat lies below -6.314 or above +6.314

Step 3: The sample test Statistic (t-stat)

Step 4: Compare the sample test statistic of the Acceptance

t-stat = 8.330 lies outside (well above) the region of Acceptance of H_0

Step 5: Draw Statistical and Management Conclusions

- o Reject H₀ at 5% level of significance. There is strong enough sample evidence to conclude that the population correlation coefficient is not zero. The alternative hypothesis is probably true.
- o The sample evidence indicates that there is a genuine strong positive statistical relationship between age and income.

Question 2

One-Sample Test

Test Value = 0.05

	1000 1000							
						95% Confider	nce Interval of	
			Significance			the Diff	erence	
			One-Sided	Two-Sided	Mean			
	t	df	р	р	Difference	Lower	Upper	
Race	20.911	59	<.001	<.001	1.283	1.16	1.41	
Incom	48.695	59	<.001	<.001	8558.283	8206.61	8909.96	
е								

One-Sample Statistics

			Std.	Std. Error
	N	Mean	Deviation	Mean
Race	60	1.33	.475	.061
Incom	60	8558.33	1361.367	175.752
е				

- **Step 1: Define the null and alternative Hypotheses**
- **Step 2: Determine the region of Acceptance of the Hypothesis**
- **Step 3: The sample test Statistic (t-stat)**
- **Step 4: Compare the sample test statistic of the Acceptance**
- **Step 5: Draw Statistical and Management Conclusions**

Question 3

Chi-Square Tests							
			Asymptotic				
			Significance	Exact Sig.	Exact Sig.		
	Value	df	(2-sided)	(2-sided)	(1-sided)		
Pearson Chi-Square	.600a	1	.439				
Continuity Correction ^b	.234	1	.628				
Likelihood Ratio	.592	1	.442				
Fisher's Exact Test				.563	.312		
Linear-by-Linear	.590	1	.442				
Association							
N of Valid Cases	60						

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 6.67.

b. Computed only for a 2x2 table

Gender * Occupation Crosstabulation

Count

		Occup		
		Engineer	Teacher	Total
Gender	Male	8	12	20
	Female	12	28	40
Total		20	40	60

Step 1: Define the null and Alternative Hypotheses

 H_0 : p = 0 There is no association between gender and Occupation.

 H_1 : p \neq 0 there is association between gender and Occupation

Step 2: Determine the region of Acceptance of the null Hypothesis

 $\alpha = 0.05 \text{ df} = 1 \text{ } X^2_{\text{Crit}} = 3.843 \text{ P-Value} = 0.442$

Accept H₀ if X^2 -stat ≤ 0.600

Reject H_0 if X^2 -stat > 0.600

Step 3: the sample Statistics for this test

 X^2 -stat=0.600

Step 4: Compare the Sample test statistic to the region of acceptance.

 X^2 -stat ≤ 0.600 , which lies below the acceptance region of X^2 _{crit}=3.843

p-value = 0.442, which is 44,2%

Step 5: Draw Statistical and Management Conclusions

- \circ Since the p-value > 0.05, Accept H₀ at the 5% level of Significance. The p-value implies that there is only weak sample evidence to reject H₀ in Favour of H₁.
- o There is no association between gender and occupation.