APPLICATION CERTIFICATION FCC Part 15B On Behalf of IMC INTERNATIONAL INC.

5.5inch 3G TABLET Model No.: FORCE XT55SP

FCC ID: 2ACI7-XT55SP

Prepared for : IMC INTERNATIONAL INC.

Address : 28E Jingang, Xixiang, Bao an District Shenzhen, Guangdong

Province, China

Prepared by : ACCURATE TECHNOLOGY CO. LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20141091

Date of Test : June 18-July 07,2014

Date of Report : July 07,2014

TABLE OF CONTENTS

Description Page **Test Report Certification** GENERAL INFORMATION4 Description of Device (EUT)......4 1.1. 1.2. Accessory and Auxiliary Equipment4 1.3. 1.4. MEASURING DEVICE AND TEST EQUIPMENT......6 2. 3. OPERATION OF EUT DURING TESTING......7

> Block Diagram of Test Setup......9

Test Procedure _______10

RADIATED EMISSION FOR FCC PART 15 SECTION 15.109(A)......20

TEST PROCEDURES AND RESULTS8

CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.107(A)......9

3.1.

3.2.

5.1.

5.2. 5.3.

5.4. 5.5.

5.6.

6.1.

6.2. 6.3.

6.4.

6.5. 6.6.

6.

4. 5.

Test Report Certification

Applicant : IMC INTERNATIONAL INC.

Manufacturer : IMC INTERNATIONAL INC.

EUT Description : 5.5inch 3G TABLET

(A) MODEL NO.: FORCE XT55SP

(B) SERIAL NO.: N/A

(C) POWER SUPPLY: DC 5V (USB Port) &DC 3.7V (Battery)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart B ANSI C63.4: 2009

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart B limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	June 18-July 07,2014
Prepared by :	2-2
	(Eric, Engineer)
Approved & Authorized Signer :	Lemb
	(Sean Liu, Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : 5.5inch 3G TABLET

Model Number : FORCE XT55SP

Frequency Range : GSM 850: 824.2-848.8 MHz 124 Channels

GSM 1900: 1850.2-1909.8 MHz 299 Channels

FDD V: 826.4-846.6 MHz 277 Channels FDD II: 1852.4-1907.6 MHz 102 Channels

802.11b/g/n (20MHz): 2412-2462MHz 11 Channels 802.11n (40MHz): 2422-2452MHz 7 Channels Bluetooth 4.0 LE: 2402-2480MHz 40 Channels Bluetooth 2.1: 2402-2480MHz 79 Channels

Modulation : GSM GPRS: GMSK

FDD: QPSK

WLAN: CCK,OFDM

BT:GFSK,∏/4-DQPSK, 8DPSK

Antenna Gain : 0.5dBi(BT&WLAN)

1.5dBi(GSM & FDD)

Power Supply : DC 5V (USB Port) &DC 3.7V (Battery)
Adapter : Model number: UBP-A806-051000

Input: AC 100-240V; 50/60Hz

Output: DC 5V/1000mA

USB line: Non-shielded, Non-detachable, 1.5m

Applicant : IMC INTERNATIONAL INC.

Address : 28E Jingang, Xixiang, Bao an District

Shenzhen, Guangdong Province, China

Manufacturer : IMC INTERNATIONAL INC.

Address : 28E Jingang, Xixiang, Bao an District

Shenzhen, Guangdong Province, China

Date of sample received: June 18, 2014

Date of Test : June 18-July 07,2014

1.2. Accessory and Auxiliary Equipment

PC Manufacturer: LENOVO

M/N: E440

S/N: 20C5S00500

1.3.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated date	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 11, 2014	Jan. 10, 2015
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 11, 2014	Jan. 10, 2015
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 11, 2014	Jan. 10, 2015
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 11, 2014	Jan. 10, 2015
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2014	Jan. 14, 2015
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 15, 2014	Jan. 14, 2015
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 11, 2014	Jan. 10, 2015
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 11, 2014	Jan. 10, 2015

3. OPERATION OF EUT DURING TESTING

3.1.Operating Mode

The modes are used: 1) Video playing

2) Camera

3) Transfer data

3.2.Configuration and peripherals

(EUT: 5.5inch 3G TABLET)

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	
Section 15.107	Conducted Emission Test	Compliant
Section 15.109	Radiated Emission Test	Compliant

5. CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.107(A)

5.1.Block Diagram of Test Setup

5.1.1.Block diagram of connection between the EUT and simulators

5.1.2. Shielding Room Test Setup Diagram

(EUT: 5.5inch 3G TABLET)

5.2. The Emission Limit

5.2.1.Conducted Emission Measurement Limits According to Section 15.107(a)

Frequency	Limit dB(μV)				
(MHz)	Quasi-peak Level	Average Level			
0.15 - 0.50	66.0 - 56.0 *	56.0 – 46.0 *			
0.50 - 5.00	56.0	46.0			
5.00 - 30.00	60.0	50.0			

^{*} Decreases with the logarithm of the frequency.

5.3. Configuration of EUT on Measurement

The following equipment are installed on the Conducted Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1.5.5inch 3G TABLET (EUT)

Model Number : FORCE XT55SP

Serial Number : N/A

Manufacturer : IMC INTERNATIONAL INC.

5.4. Operating Condition of EUT

5.4.1. Setup the EUT and simulator as shown as Section 5.1.

5.4.2. Turn on the power of all equipment.

5.4.3.Let the EUT work in modes and measure it.

5.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2009 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.6. Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

deo playi	ng					
		25-12	fin"			
9PM						
Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
28.80 32.50 22.50	10.8 10.9 11.5	56 56 60	27.2 23.5 37.5	QP QP QP	L1	GND
RESULT:	"RY06	25-12_	fin2"			
				Detector	Line	PE
31.80	10.8	46	14.2	AV	L1	
31.30 15.00	10.9	46 50	14.7 35.0	AV AV	L1 L1	GND GND
RESULT:	"RY06	25-11_	fin"			
				Detector	Line	PE
32.50	10.8	56	23.5	QP	N	GND
32.40 32.10	10.9 11.4	56 60	23.6 27.9	QP	N N	GND GND
	"RY06	25-11_	fin2"			
	Transd	T.imi+	Margin	Detector	Line	PE
				Detection	TIME	
31.70	10.8	46	14.3	AV	N	GND
30.10	11.0	46	15.9	AV	N	GND
	RESULT: 9PM Level dBµV 28.80 32.50 22.50 RESULT: 9PM Level dBµV 31.80 31.30 15.00 RESULT: 4PM Level dBµV 32.50 32.40 32.10 RESULT: 4PM Level dBµV	PPM Level Transd dB dB dB 10.8 32.50 10.9 22.50 11.5 RESULT: "RY06 PPM Level Transd dB 10.8 31.80 10.8 31.30 10.9 15.00 11.4 RESULT: "RY06 4PM Level Transd dB dB dB 10.8 32.50 10.8 32.40 10.9 32.10 11.4 RESULT: "RY06 4PM Level Transd dB 10.9 32.10 11.4	RESULT: "RY0625-12 9PM Level dB	RESULT: "RY0625-12_fin" 9PM Level Transd dB dBμV Limit dBμV Margin dB 28.80 10.8 56 27.2 32.50 10.9 56 23.5 22.50 11.5 60 37.5 RESULT: "RY0625-12_fin2" 9PM Level Transd Limit dBμV dB Margin dB dBμV dB 31.80 10.8 46 14.2 31.30 10.9 46 14.7 15.00 11.4 50 35.0 RESULT: "RY0625-11_fin" 4PM Level Transd Limit Margin dB 32.40 10.9 56 23.5 32.40 10.9 56 23.6 32.6 32.10 11.4 60 27.9 RESULT: "RY0625-11_fin2" 4PM Level Transd Limit Margin dB W 4B Limit Margin dB W dBµV dB dB dB W dB	RESULT: "RY0625-12_fin" 9PM Level Transd dB dBμV dB dBμV dB Detector dBμV dB dBμV dB 28.80 10.8 56 27.2 QP 32.50 10.9 56 23.5 QP 22.50 11.5 60 37.5 QP RESULT: "RY0625-12_fin2" 9PM Level Transd Limit Margin dB dBμV dB Detector dB dBμV dB 31.80 10.8 46 14.2 AV 31.30 10.9 46 14.7 AV 15.00 11.4 50 35.0 AV RESULT: "RY0625-11_fin" 4PM Level Transd Limit Margin dB Detector dB 32.50 10.8 56 23.5 QP 32.40 10.9 56 23.6 QP 32.10 11.4 60 27.9 QP RESULT: "RY0625-11_fin2" 4PM Level Transd Limit Margin dB Detector dB 4PM Level Transd Limit Margin dB Detector dB	RESULT: "RY0625-12_fin" 9PM Level Transd dB W Limit Margin Detector Line dBμV dB 28.80 10.8 56 27.2 QP L1 32.50 10.9 56 23.5 QP L1 22.50 11.5 60 37.5 QP L1 RESULT: "RY0625-12_fin2" 9PM Level Transd Limit Margin Detector Line dBμV dB dBμV dB 31.80 10.8 46 14.2 AV L1 31.30 10.9 46 14.7 AV L1 15.00 11.4 50 35.0 AV L1 RESULT: "RY0625-11_fin" 4PM Level Transd Limit Margin Detector Line dBμV dB dB dBμV dB 32.50 10.8 56 23.5 QP N 32.40 10.9 56 23.6 QP N 32.10 11.4 60 27.9 QP N RESULT: "RY0625-11_fin2" 4PM Level Transd Limit Margin Detector Line dBμV dB dBμV dB 31.70 10.8 46 14.3 AV N

Emissions attenuated more than 20 dB below the permissible value are not reported. The spectral diagrams are attached as below.

Test mode : Ca	mera						
MEASUREMENT	RESULT	: "RY06	25-13_	fin"			
6/25/2014 3:5	3PM						
Frequency MHz	Level dBµV				Detector	Line	PE
0.638542 1.277288 27.049998	33.30 31.40 23.40	10.8 10.9 11.5	56 56 60	22.7 24.6 36.6	QP QP QP	L1 L1 L1	GND GND GND
<i>MEASUREMENT</i>	RESULT	: "RY06	25-13_	fin2"			
6/25/2014 3:5	3PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.638542	32.50	10.8	46	13.5	AV	L1	GND
0.638542 1.383559	31.10	10.9	46	14.9	AV	L1	
6.068922	23.10	11.2	50	26.9	AV	L1	GND
MEASUREMENT	RESULT	: "RY06	25-14_	fin"			
6/25/2014 3:5							
Frequency MHz	Level dBµV				Detector	Line	PE
0.153640	45.00	10.5	66	21.0	OP	N	GND
0.153640 1.279842 1.492695	30.50	10.9	56	25.5	ÕР	N	GND
1.492695	31.20	10.9	56	24.8	QP	N	GND
MEASUREMENT	RESULT	: "RY06	25-14_	fin2"			
6/25/2014 3:5	8PM						
Frequency						Line	PE
0.639819	32.50	10.8	46	13.5	AV	N	GND
0.639819 1.492695	30.00	10.9	46	16.0	AV	N	GND
5.224352	6.40	11.2	50	43.6	AV	N	GND

Emissions attenuated more than 20 dB below the permissible value are not reported. The spectral diagrams are attached as below.

Test mode : Tr	ansfer dat	a					
MEASUREMENT	RESULT	: "RY06	25-15_	fin"			
6/25/2014 4:0							
Frequency MHz	Level dBµV				Detector	Line	PE
0.150300 0.170802 1.378041	36.40 36.70 25.70	10.5 10.5 10.9	66 65 56	29.6 28.2 30.3	QP QP QP	N N N	GND
<i>MEASUREMENT</i>	RESULT	: "RY06	25-15_	fin2"			
6/25/2014 4:0							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.531323	28.30	10.7	46	17.7	AV	N	GND
1.378041 5.193131	3.20	10.9		46.8		N N	GND GND
MEASUREMENT	RESULT:	"RY06	25-16_	fin"			
6/25/2014 4:0		m	T 2 2 E	Managara	D-++	T	D.E.
Frequency MHz	dBµV	Transd dB	dBµV	Margin dB	Detector	Line	PE
0.153027	42.50	10.5	66	23.3	QP	L1	GND
0.184275 1.372545	26.20	10.5	64 56	29.8	QP QP	L1 L1	GND GND
<i>MEASUREMENT</i>	RESULT:	"RY06	25-16	fin2"			
6/25/2014 4:0	9PM		_	-			
Frequency					Detector	Line	PE
0.528148						L1	
0.632195 1.477857	26.30 23.80	10.8 10.9	46 46	19.7 22.2		L1 L1	GND GND

Emissions attenuated more than 20 dB below the permissible value are not reported. The spectral diagrams are attached as below.

CONDUCTED EMISSION STANDARD FCC PART 15B

5.5inch 3G TABLET M/N:Force XT55SP

Manufacturer: IMC

Operating Condition: Video playing Test Site: 1#Shielding Room

Operator: Ricky Test Specification: N 120V/60Hz

Comment:

Report No:ATE20141091

SCAN TABLE: "V 150K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kHz Time Bandw.

4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "RY0625-11 fin"

6/25	5/2014 3:4	4PM						
I	Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
	MHz	dΒμV	dB	dΒμV	dB			
	0.634726	32.50	10.8	56	23.5	QP	N	GND
	1.375290	32.40	10.9	56	23.6	QP	N	GND
-	13.850981	32.10	11.4	60	27.9	QP	N	GND

MEASUREMENT RESULT: "RY0625-11 fin2"

6/25/2014	3:44PM						
Frequen	cy Level	Transd	Limit	Margin	Detector	Line	PE
M	Hz dBuV	dB	dBµV	dB			
0.6347	26 31.70	10.8	46	14.3	AV	N	GND
2.3259	76 30.10	11.0	46	15.9	AV	N	GND
5.6027	68 18.80	11.2	50	31.2	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: 5.5inch 3G TABLET M/N:Force XT55SP

Manufacturer: IMC

Operating Condition: Video playing Test Site: 1#Shielding Room

Operator: Ricky
Test Specification: L 120V/60Hz

Comment:

Report No:ATE20141091

SCAN TABLE: "V 150K-30MHz fin"

Short Description: _SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

MEASUREMENT RESULT: "RY0625-12 fin"

6/25/	2014 3:49	9PM						
Fr	equency MHz	Level dBµV			Margin dB	Detector	Line	PE
C	.637267	28.80	10.8	56	27.2	QP	L1	GND
1	.380797	32.50	10.9	56	23.5	QP	L1	GND
2.7	.595893	22.50	11.5	60	37.5	OP	L1	GND

MEASUREMENT RESULT: "RY0625-12 fin2"

6/25/2014 3:	49PM						
Frequency				Margin	Detector	Line	PΕ
MHz	dΒμV	dB	dΒμV	dB			
0.635995	31.80	10.8	46	14.2	AV	L1	$_{\rm GND}$
1.380797	31.30	10.9	46	14.7	AV	L1	GND
14.329525	15.00	11.4	50	35.0	AV	L1	GND

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: 5.5inch 3G TABLET M/N:Force XT55SP

Manufacturer: IMC Operating Condition: Camera

Test Site: 1#Shielding Room

Operator: Ricky
Test Specification: L 120V/60Hz

Comment:

Report No:ATE20141091

SCAN TABLE: "V 150K-30MHz fin"

Short Description: _SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer Frequency Frequency Width Time Bandw.

Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Ãverage

MEASUREMENT RESULT: "RY0625-13 fin"

6,	/25/2014 3:	53PM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dBuV			dB			
	MUL	ασμν	аь	ασμν	uБ			
	0.638542	33.30	10.8	56	22.7	OP	L1	GND
	1.277288	31.40	10.9	56	24.6	ÕP	T.1	GND
						~		
	27.049998	23.40	11.5	60	36.6	QP	L1	GND

MEASUREMENT RESULT: "RY0625-13 fin2"

6/25	/2014 3:5	3PM						
F	requency MHz	Level dBµV			Margin dB	Detector	Line	PE
	0.638542	32.50	10.8	46	13.5	AV	L1	GND
	1.383559	31.10	10.9	46	14.9	AV	L1	GND
	6.068922	23.10	11.2	50	26.9	AV	L1	GND

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: 5.5inch 3G TABLET M/N:Force XT55SP

Manufacturer: IMC Operating Condition: Camera

1#Shielding Room Test Site:

Operator: Ricky Test Specification: N 120V/60Hz

Comment:

Report No:ATE20141091

SCAN TABLE: "V 150K-30MHz fin"
Short Description: __SUB_STD_VTERM2 1.70

Detector Meas. IF
Time Band Stop Start Step Transducer Time Bandw.

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kH 4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "RY0625-14 fin"

6/	/25/2014 3:5	8PM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
	MHz	dΒμV	dB	dΒμV	dB			
	0.153640	45.00	10.5	66	21.0	QP	N	GND
	1.279842	30.50	10.9	56	25.5	QP	N	GND
	1.492695	31.20	10.9	56	24.8	QP	N	GND

MEASUREMENT RESULT: "RY0625-14 fin2"

6/25/2014 3	:58PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
MHz	dΒμV	dB	dΒμV	dB			
0.639819	32.50	10.8	46	13.5	AV	N	GND
1.492695	30.00	10.9	46	16.0	AV	N	GND
5.224352	6.40	11.2	50	43.6	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: 5.5inch 3G TABLET M/N:Force XT55SP

Manufacturer: IMC

Operating Condition: Transfer data 1#Shielding Room Test Site:

Operator: Ricky Test Specification: N 120V/60Hz

Comment:

Report No:ATE20141091

SCAN TABLE: "V 150K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

UB_STD_vib.c. Detector Meas. Time Step IF Start Stop Transducer Bandw.

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kHz 4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "RY0625-15_fin"

6,	/25/2014 4:0	3PM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
	MHz	dΒμV	dB	dΒμV	dB			
	0.150300	36.40	10.5	66	29.6	QP	N	GND
	0.170802	36.70	10.5	65	28.2	QP	N	GND
	1.378041	25.70	10.9	56	30.3	QP	N	GND

MEASUREMENT RESULT: "RY0625-15 fin2"

6/	25/2014 4:0	3PM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
	MHz	dΒμV	dB	dΒμV	dB			
	0.531323	28.30	10.7	46	17.7	AV	N	GND
	1.378041	23.00	10.9	46	23.0	AV	N	GND
	5.193131	3.20	11.2	50	46.8	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: 5.5inch 3G TABLET M/N:Force XT55SP

Manufacturer: IMC

Operating Condition: Transfer data Test Site: 1#Shielding Room

Operator: Ricky Test Specification: L 120V/60Hz

Comment:

Report No:ATE20141091

SCAN TABLE: "V 150K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

Detector Meas. Start Stop Step IF Transducer

Frequency Frequency Width Bandw. Time

150.0 kHz 30.0 MHz 4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "RY0625-16 fin"

6/	25/2014 4:0)9PM						
	Frequency MHz	Level dBµV			Margin dB	Detector	Line	PE
	0.153027	42.50	10.5	66	23.3	QP	L1	GND
	0.184275	36.70	10.5	64	27.6	QP	L1	GND
	1.372545	26.20	10.9	56	29.8	QP	L1	GND

MEASUREMENT RESULT: "RY0625-16 fin2"

6/25/2014 4:	09PM						
Frequency	Level			Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.528148	29.30	10.7	46	16.7	AV	L1	GND
0.632195	26.30	10.8	46	19.7	AV	L1	GND
1.477857	23.80	10.9	46	22.2	AV	L1	GND

6. RADIATED EMISSION FOR FCC PART 15 SECTION 15.109(A)

6.1.Block Diagram of Test Setup

6.1.1.Block diagram of connection between the EUT and simulators

6.1.2.Semi-Anechoic Chamber Test Setup Diagram

FCC ID: 2ACI7-XT55SP

6.2. The Emission Limit For Section 15.109 (a)

6.2.1.Radiation Emission Measurement Limits According to Section 15.109 (a).

	Lin	mit
Frequency (MHz)	Field Strength of Quasi-peak Value (microvolts/m)	Field Strength of Quasi-peak Value $(dB\mu V/m)$
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

6.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.3.1.5.5inch 3G TABLET (EUT)

Model Number : FORCE XT55SP

Serial Number : N/A

Manufacturer : IMC INTERNATIONAL INC.

6.4. Operating Condition of EUT

6.4.1. Setup the EUT and simulator as shown as Section 6.1.

6.4.2. Turn on the power of all equipment.

6.4.3. Let the EUT work in mode measures it.

6.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated emission measurement.

RBW (120 kHz), VBW (300 kHz) for QP detector below 1GHz RBW (1 MHz), VBW (3MHz) for Peak detector above 1GHz RBW (1 MHz), VBW (10Hz) for AV detector above 1GHz

The frequency range from 30MHz to 6000MHz is checked.

The highest frequency of the internal sources of the EUT is 1.2GHz higher than 1GHz; The measurement shall be made above 1GHz.

6.6. The Emission Measurement Result **PASS.**

Below 1G(V	ideo p	laying)						
Polarization								
	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Horizontal	1	92.4624	37.45	-21.77	15.68	43.50	-27.82	QP
	2	130.3788	44.12	-23.04	21.08	43.50	-22.42	QP
	3	173.2050	41.35	-22.13	19.22	43.50	-24.28	QP
	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Vertical	1	83.8156	41.46	-21.51	19.95	40.00	-20.05	QP
	2	127.2176	40.55	-22.90	17.65	43.50	-25.85	QP
	3	166.0680	40.55	-22.21	18.34	43.50	-25.16	QP
Above 1G(V	/ideo p	olaying)						
Polarization								
	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Horizontal	1	1204.835	42.84	-12.63	30.21	74.00	-43.79	peak
	2	1806.300	42.48	-9.90	32.58	74.00	-41.42	peak
	3	2737.291	43.48	-6.23	37.25	74.00	-36.75	peak
	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Vertical	1	1816.036	44.92	-9.82	35.10	74.00	-38.90	peak
	2	2122.382	45.06	-8.42	36.64	74.00	-37.36	peak
	3	2410.307	44.60	-7.47	37.13	74.00	-36.87	peak

Below 1G(C	Below 1G(Camera)									
Polarization										
	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
Horizontal	1	84.9995	40.96	-21.55	19.41	40.00	-20.59	QP		
	2	129.9226	53.82	-23.03	30.79	43.50	-12.71	QP		
3 572.6144 39.56 -12.31 27.25 46.00 -18.75 QP										
No. Freq. Reading Factor Result Limit Margin Detector (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB)										
Vertical	1	129.9226	48.17	-23.03	25.14	43.50	-18.36	QP		
	2	285.9778	42.59	-18.16	24.43	46.00	-21.57	QP		
	3	572.6144	37.37	-12.31	25.06	46.00	-20.94	QP		
Above 1G(C	amer	a)								
Polarization										
	No. Freq. Reading Factor Result Limit Margin (dBuV/m) (dB) (dBuV/m) (dBuV/m) Detector									
Horizontal	1	1742.717	44.82	-10.29	34.53	74.00	-39.47	peak		
	2	1957.973	44.18	-9.11	35.07	74.00	-38.93	peak		
	3	2867.827	44.62	-5.92	38.70	74.00	-35.30	peak		

	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Vertical	1	1835.664	44.32	-9.65	34.67	74.00	-39.33	peak
	2	2401.684	43.65	-7.50	36.15	74.00	-37.85	peak
	3	3536.687	44.34	-2.86	41.48	74.00	-32.52	peak

Below 1G(Ti	ransfe	r data)						
Polarization								
	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Horizontal	1	84.1098	56.49	-21.51	34.98	40.00	-5.02	QP
	2	480.5276	51.92	-14.16	37.76	46.00	-8.24	QP
	3	798.9796	45.07	-7.80	37.27	46.00	-8.73	QP
	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Vertical	1	83.8156	50.31	-21.51	28.80	40.00	-11.20	QP
	2	390.7225	49.80	-15.72	34.08	46.00	-11.92	QP
	3	480.5276	51.26	-14.16	37.10	46.00	-8.90	QP
Above 1G(T	ransfe	er data)						
Polarization								
	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Horizontal	1	1720.996	45.04	-10.27	34.77	74.00	-39.23	peak
	2	1812.785	44.36	-9.85	34.51	74.00	-39.49	peak
	3	2066.100	44.42	-8.70	35.72	74.00	-38.28	peak
	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Vertical	1	1282.812	43.81	-12.29	31.52	74.00	-42.48	peak
	2	1819.293	44.57	-9.79	34.78	74.00	-39.22	peak
	3	2427.643	44.87	-7.42	37.45	74.00	-36.55	peak

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

- 3. The spectral diagrams are attached as below display the measurement of peak values
- 4. The average measurement was not performed when peak measured data under the limit of average detection.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1802

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

Report No:ATE20141091

EUT: 5.5inch 3G TABLET
Mode: Video playing
Model: Force XT55SP
Manufacturer: IMC

Note:

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2014/06/25 Time: 13:44:02 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	83.8156	41.46	-21.51	19.95	40.00	-20.05	QP				
2	127.2176	40.55	-22.90	17.65	43.50	-25.85	QP				
3	166.0680	40.55	-22.21	18.34	43.50	-25.16	QP				

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1803

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: 5.5inch 3G TABLET

Mode: Video playing
Model: Force XT55SP
Manufacturer: IMC

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2014/06/25 Time: 13:45:39 Engineer Signature:

Distance: 3m

Note: Report No:ATE20141091

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	92.4624	37.45	-21.77	15.68	43.50	-27.82	QP			
2	130.3788	44.12	-23.04	21.08	43.50	-22.42	QP			
3	173.2050	41.35	-22.13	19.22	43.50	-24.28	QP			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1804

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: 5.5inch 3G TABLET

Mode: Camera

Model: Force XT55SP

Manufacturer: IMC

Note: Report No:ATE20141091

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2014/06/25 Time: 13:47:42 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	84.9995	40.96	-21.55	19.41	40.00	-20.59	QP			
2	129.9226	53.82	-23.03	30.79	43.50	-12.71	QP			
3	572.6144	39.56	-12.31	27.25	46.00	-18.75	QP			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1805

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: 5.5inch 3G TABLET

Mode: Camera

Model: Force XT55SP

Manufacturer: IMC

Note: Report No:ATE20141091

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2014/06/25 Time: 13:48:50 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	129.9226	48.17	-23.03	25.14	43.50	-18.36	QP			
2	285.9778	42.59	-18.16	24.43	46.00	-21.57	QP			
3	572.6144	37.37	-12.31	25.06	46.00	-20.94	QP			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1806

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: 5.5inch 3G TABLET

Mode: Transfer data

Model: Force XT55SP

Manufacturer: IMC

Note: Report No:ATE20141091

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2014/06/25 Time: 13/49/18 Engineer Signature: Distance: 3m

46.00

-8.73

QP

3

798.9796

45.07

-7.80

37.27

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1807

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: 5.5inch 3G TABLET

Mode: Transfer data
Model: Force XT55SP
Manufacturer: IMC

Note: Report No:ATE20141091

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2014/06/25 Time: 13/50/35 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	83.8156	50.31	-21.51	28.80	40.00	-11.20	QP			
2	390.7225	49.80	-15.72	34.08	46.00	-11.92	QP			
3	480.5276	51.26	-14.16	37.10	46.00	-8.90	QP			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1941 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: 5.5inch 3G TABLET

Mode: Video playing
Model: Force XT55SP
Manufacturer: IMC

Note: Report No:ATE20141091

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2014/07/02 Time: 17:39:40 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	1204.835	42.84	-12.63	30.21	74.00	-43.79	peak			
2	1806.300	42.48	-9.90	32.58	74.00	-41.42	peak			
3	2737.291	43.48	-6.23	37.25	74.00	-36.75	peak			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1940 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: 5.5inch 3G TABLET

Mode: Video playing
Model: Force XT55SP
Manufacturer: IMC

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2014/07/02 Time: 17:38:56 Engineer Signature: Distance: 3m

Note: Report No:ATE20141091

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	1816.036	44.92	-9.82	35.10	74.00	-38.90	peak			
2	2122.382	45.06	-8.42	36.64	74.00	-37.36	peak			
3	2410.307	44.60	-7.47	37.13	74.00	-36.87	peak			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1939 Polarization: Vertical

Standard: FCC PK Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 2014/07/02 Temp.(C)/Hum.(%) 25 C / 55 % Time: 17:35:37 EUT: 5.5inch 3G TABLET Engineer Signature: Distance: 3m

Mode: Camera Model: Force XT55SP Manufacturer: IMC

Report No:ATE20141091 Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	1835.664	44.32	-9.65	34.67	74.00	-39.33	peak			
2	2401.684	43.65	-7.50	36.15	74.00	-37.85	peak			
3	3536.687	44.34	-2.86	41.48	74.00	-32.52	peak			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1938 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: 5.5inch 3G TABLET
Mode: Camera

Model: Force XT55SP Manufacturer: IMC

Note: Report No:ATE20141091

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2014/07/02 Time: 17:34:01 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	1742.717	44.82	-10.29	34.53	74.00	-39.47	peak				
2	1957.973	44.18	-9.11	35.07	74.00	-38.93	peak				
3	2867.827	44.62	-5.92	38.70	74.00	-35.30	peak				

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1937 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: 5.5inch 3G TABLET

Mode: Transfer data

Model: Force XT55SP

Manufacturer: IMC

Note: Report No:ATE20141091

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2014/07/02 Time: 17:32:07 Engineer Signature: Distance: 3m

١	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1		1720.996	45.04	-10.27	34.77	74.00	-39.23	peak			
2		1812.785	44.36	-9.85	34.51	74.00	-39.49	peak			
3		2066.100	44.42	-8.70	35.72	74.00	-38.28	peak			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1936

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: 5.5inch 3G TABLET

Mode: Transfer data

Model: Force XT55SP

Manufacturer: IMC

Note: Report No:ATE20141091

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2014/07/02 Time: 17:31:05 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	1282.812	43.81	-12.29	31.52	74.00	-42.48	peak			
2	1819.293	44.57	-9.79	34.78	74.00	-39.22	peak			
3	2427.643	44.87	-7.42	37.45	74.00	-36.55	peak			