

Introdução

- Processo de normalização
 - Aplicar uma série de testes para se certificar se o esquema definido satisfaz a forma normal.
 - Inicialmente Codd propôs 1FN, 2FN e 3FN
 - Depois uma definição mais forte da 3FN foi proposta por Boyce-Codd e chamada de BCNF (Boyce-Codd Normal Form)
 - Todas estas formas normais são baseadas nas dependências funcionais entre os atributos de uma relação.
 - Depois ainda foram propostas a 4FN e a 5FN.

Introdução

- O processo de normalização tem o objetivo de atender as propriedades
 - Minimizar redundância
 - Minimizar anomalias de inserção, remoção e atualização
- As relações que não satisfizerem as condições são decompostas em esquemas de relações menores que estão de acordo com as condições e possuem as propriedades anteriores.

Definição

■ Super-chave de uma relação

 $R = \{A_1, A_2, ..., A_n\}$

é um conjunto de atributos $S \subseteq R$ com a seguinte propriedade

Não há duas tuplas t₁ e t₂ em um estado da relação r de R tal que t₁[S] = t₂[S]

Definição

- Chave K é uma super-chave com a propriedade adicional de que a remoção de qualquer atributo de K fará com que K não seja mais uma super-chave.
- A diferença é que a chave precisa ser mínima, ou seja, se K = {A₁, A₂, ..., A_k} é chave de R, então K – {A_i} não é mais chave de R para qualquer i, sendo 1 ≤ i ≤ k.

Exemplo

- EMPLOYEE(ENAME, <u>SSN</u>, BDATE, ADDRESS, DNUMBER*)
- {SSN} é chave
- {SSN}, {SSN, ENAME}, {SSN, ENAME, BDATE}, etc são superchaves.

Definição

- Quando uma relação possui mais de uma chave primária, cada uma é chamada de chave candidata.
- Neste caso uma delas é arbitrariamente escolhida para ser a chave primária, e as outras são chamadas de chaves secundárias.

Definição

- Um atributo de uma relação R é chamado de primo de R se for membro de uma chave candidata de R.
- Em caso contrário, o atributo é não primo.
- Ex.:
 - WORKS_ON (<u>SSN*</u>, <u>PNUMBER*</u>, HOURS)
 - SSN e PNUMBER são primos
 - HOURS é não primo

3

Primeira Forma Normal

Uma relação não deve ter atributos não atômicos ou relações aninhadas.

Exemplo - 1FN

■ DEPARTMENT (DNAME, <u>DNUMBER</u>, DMGRSSN*, DLOCATIONS)

DNAME	DNUMBER	DMGRSSN	DLOCATIONS
Pesquisa	1	33445566	{Rio, São Paulo, Salvador}
Administração	2	55667788	{Rio}
Rec Humanos	3	77889900	{Cabo Frio}

10

Primeira Forma Normal

- Normalização
 - Forme novas relações para cada atributo não atômico ou relação aninhada

Exemplo – 1FN

DEPARTMENT

X – 1FN

(DNAME, <u>DNUMBER</u>, DMGRSSN*, DLOCATIONS)

DEPARTMENT

(DNAME, <u>DNUMBER</u>, DMGRSSN*),

Ok – 1FN

■ DEPT_LOCATIONS

(DNUMBER*, DLOCATION)

12

Segunda Forma Normal

- Para relações onde as chaves primárias contêm múltiplos atributos, nenhum atributo não chave deve ser dependente funcional de parte da chave primária.
- De forma geral: Uma relação R está em 2FN se todo atributo não primo A de R não for dependente parcialmente de qualquer chave de R.

14

Segunda Forma Normal

Uma relação está em 2FN se estiver em 1FN e todo atributo não primo não depender funcionalmente de uma parte da chave.

15

Segunda Forma Normal

- Normalização
 - Decomponha e crie uma nova relação para cada chave parcial e seus atributos dependentes.
 - Tenha certeza que foi mantida uma relação com a chave primária original e todos os atributos que são completamente dependentes dela.

Terceira Forma Normal

- Uma relação não deve ter um atributo que não é chave determinado funcionalmente por outro atributo não chave (ou por um conjunto de atributos não chave).
- Ou seja, não deve haver dependência transitiva.
 - uma dependência funcional X → Y em uma relação R é uma dependência transitiva se existe um conj. de atributos Z que não é chave candidata e nem um subconjunto de alguma chave de R, e é válido que X → Z e Z → Y.

19

Terceira Forma Normal

- Uma relação está em 3FN se estiver em 2FN e todo atributo não primo depender apenas de um atributo primo.
- Ou ainda
 - If R is a relation scheme and F is a set of FD's on R
 - R is in 3NF if
 - whenever X->A which is an element of F+
 - And when A is not in X
 - Then
 - either X is a superkey for R
 - Or A is prime (i.e. a member of a candidate key for R)

Uma relação em 3FN garante que não haverá anomalias de atualização.

20

Exemplo – 3FN

X = 3FN

- EMP_DEPT (ENAME, <u>SSN</u>, BDATE, ADDRESS, DNUMBER, DNAME, DMGRSSN)
- SSN → DMGRSSN existe através da transitividade por DNUMBER
 - $\quad \blacksquare \quad \mathsf{SSN} \to \mathsf{DNUMBER}$
 - $\quad \blacksquare \ \, \mathsf{DNUMBER} \to \mathsf{DMGRSSN}$
 - DNUMBER n\u00e3o \u00e9 chave e nem parte da chave de EMP_DEPT
 - Intuitivamente nós vemos que a dependência entre DNUMBER e DMGRSSN não é desejada em EMP_DEPT já que DNUMBER não é chave de EMP_DEPT.

21

Terceira Forma Normal

- Normalização
 - Decomponha e crie uma relação que inclua os atributos não chave que determinem funcionalmente os outros atributos não chave.

22

Exemplo – 3FN

- EMP_DEPT
 (ENAME, <u>SSN</u>, BDATE, ADDRESS,
 DNUMBER, DNAME, DMGRSSN) X 3FN
- ED1 (ENAME, <u>SSN</u>, BDATE, ADDRESS, DNUMBER)Ok – 3FN
- ED2 (DNUMBER, DNAME, DMGRSSN)

Boyce-Codd Normal Form

- Uma relação em BCNF é mais restrita que a 3FN pois uma relação em BCNF está de acordo com a 3FN, mas o contrário não é verdadeiro.
- Uma relação está em FNBC se todas as dependências funcionais não triviais são do tipo atributo chave determina um ou mais atributos.

24

Boyce-Codd Normal Form

- Ou, de forma equivalente
 - lacksquare Uma relação está em FNBC quando R satisfizer X ightarrowA, $A \notin X$ e X for super-chave de R.
- - If R is a relation scheme and F is a set of FD's on R
 - R is in BCNF if
 - whenever X->A which is an element of F+
 - and when A is not in X
 - Then X is a superkey for R

FNBC elimina todos os problemas de anomalias referente a DFs.

Exemplo - FNBC

- R(cidade, end, cep)
 - Chaves candidatas
 - (cidade, end)
 - (end, cep)
 - DFs
 - $\quad \hbox{$=$ (cidade, end)} \rightarrow \text{cep}$
 - R está em 3FN
 - todo atributo n\u00e3o primo depende apenas de um atributo primo
 - R não está em FNBC
 - cep → cidade e cep não é chave.
 - Esta dependência funciona não é do tipo atributo chave determina um ou mais atributos

26

Exemplo - FNBC

- Teach(student, course, instructor)
 - Chave candidata
 - (student, course)
 - DFs
 - (student, course) → instructor
 - \blacksquare instructor \rightarrow course
 - R está em 3FN
 - todo atributo não primo depende apenas de um atributo primo

-FNBC

- R não está em FNBC
 - instructor → course e instructor não é chave.