

Algorithmique numérique (MU4IN910)

TD-TME nº 3 - Introduction à l'optimisation

1. TD

Exercice 1 (Fonctions coercives et extrema). Une fonction $f: \mathbb{R}^n \to \mathbb{R}$ est dite *coercive* si

$$\lim_{\|x\|\to+\infty}f(x)=+\infty.$$

Montrer que si f est continue et coercive alors f admet au moins un minimum sur \mathbb{R}^n .

Exercice 2 (Condition nécessaire). Soit f une fonction numérique différentiable sur un ouvert U de \mathbb{R}^n . Montrer que si $a \in U$ est un minimum local de f alors $\nabla f(a) = 0$.

Exercice 3 (Fonctions convexes et extrema). Soit f une fonction numérique convexe sur un ouvert convexe U de \mathbb{R}^n . Si f est différentiable en $a \in U$ et si $\nabla f(a) = 0$, montrer que f admet un minimun global en a sur U. On suppose maintenant que f est strictement convexe. Montrer que le minimum est unique. Indication : on pourra utiliser le fait de f (différentiable) est convexe sur C si pour tout $x, y \in C$, $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$.

Exercice 4 (Calcul d'extrema). On considère la fonction $f : \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x, y) = 3x^2 + 2y^2 + 2xy + x + y + 10.$$

- 1. Cette fonction est-elle convexe? Justifiez.
- **2.** On considère le problème d'optimisation $\inf_{(x,y)\in\mathbb{R}^2} f(x,y)$. Que peut-on dire de ce problème?
- 3. Le résoudre.

Exercice 5 (Optimisation (5 points)). Soit $n \ge 2$ un entier naturel. On considère l'application $f : \mathbb{R}^n \to \mathbb{R}$ définie par

$$f(x_1, x_2, ..., x_n) = \sum_{k=1}^n x_k^2 + \left(\sum_{k=1}^n x_k\right)^2 - \sum_{k=1}^n x_k.$$

- **1.** Justifier que f est de classe C^2 sur \mathbb{R}^n et calculer le gradient ∇f ainsi que la matrice hessienne H_f .
- **2.** Déterminer le seul point critique $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$ de f sur \mathbb{R}^n .
- 3. On souhaite prouver que \overline{x} est un minimum local de f.
 - **a.** Vérifier que la matrice hessienne $H_f(\overline{x})$ s'écrit sous la forme $H_f(\overline{x}) = 2(I_n + J_n)$ où I_n est la matrice identité de taille n et J_n la matrice de taille n dont tous les coefficients sont égaux à 1.
 - **b.** Déterminer le rang de J_n . En déduire que 0 est valeur propre de J_n . Déterminer la dimension du sous-espace propre associé.
 - **c.** Calculer le produit de J_n par le vecteur $(1, ..., 1)^T$. En déduire une autre valeur propre de J_n .
 - **d.** En déduire les valeurs propres de $H_f(\overline{x})$ et conclure concernant la nature du point \overline{x} .

2. TME

Exercice 6 (Fonction de Rosenbrock et méthode de Newton). La *fonction de Rosenbrock* est une fonction non convexe de deux variables utilisée comme test pour des problèmes d'optimisation mathématique. Elle a été introduite par Rosenbrock en 1960. Elle est définie par

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2.$$

- **1.** Calculer le gadient g(x) et la Hessienne H(x) de la fonction f (on utilisera la Symbolic Math Toolbox).
- **2.** Vérifier que $x^* = [1,1]^T$ est un minimum local de f.
- 3. Calculer les 5 premiers itérés de la méthode de Newton pour minimiser f en commençant avec $x_0 = [-1, -2]^T$. Tracer les lignes de niveau de la fonction f en utilisant ezcontour dans le domaine [-1.5;2;-3;3]. Afficher les itérés sur le même graphe.
- **4.** Calculer la norme de l'erreur $||x x^*||$ à chaque itération et déterminer si le taux de convergence est quadratique.

Exercice 7 (Méthode de gradient à pas optimal et méthode de Wolfe). Soit $f : \mathbb{R}^n \to \mathbb{R}$ une fonction de n variables à valeur réelle. La méthode du gradient à pas constant consiste à calculer les itérations

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

avec α constant.

- 1. Implémenter la méthode du gradient avec $\alpha = 1$. Tester votre programme sur la fonction $f(x) = x_1^2 + 2x_2^2$ en partant de $x_0 = (-1, -1)$. Tester pour plusieurs pas de descente : par exemple $\alpha = 0.1$, $\alpha = 0.1$ et $\alpha = 0.5$ et $\alpha = 1$. Commenter.
- **2.** Faire de même avec la fonction de Rosenbrock en commençant par exemple en $x_0 = (-1, 1.2)$ et $\alpha = 0.001$.
- 3. Dans la méthode du gradient à pas optimal, on cherche α_k tel que

$$\min_{\alpha_k \geq 0} f(x_k - \alpha_k \nabla f(x_k)).$$

Pour trouver ce α_k , on va utiliser la méthode de Wolfe. Soit donc g(t) = f(x+td) où d est une direction de descente. Étant donné un $t \in \mathbb{R}^+$, la recherche linéaire de Wolfe consiste à rétrécir un intervalle de confiance $[t_g, t_d]$ dans lequel on choisit un t que l'on teste.

- Au départ, $t_g = 0$, $t_d = +\infty$ et t = 1, $m_1 = 0.1$, $m_2 = 0.9$
- si g(t) ≤ $g(0) + m_1 t g'(0)$ et g'(t) ≥ $m_2 g'(0)$ alors arrêt
- si $g(t) > g(0) + m_1 t g'(0)$ alors on pose $t_d = t$, $t_g = t_g$ et $t = (t_d + t_g)/2$ (si $t_d = +\infty$ alors $t = 10t_g$)
- si $g(t) \le g(0) + m_1 t g'(0)$ et $g'(t) < m_2 g'(0)$ alors $t_g = t$, $t_d = t_d$ et $t = (t_d + t_g)/2$ (si $t_d = +\infty$ alors $t = 10t_g$)

Implanter la méthode du gradient à pas optimal avec la méthode de Wolfe. Tester votre implantation sur la fonction de Rosenbrock.

Exercice 8 (Algorithme de Nelder-Meade). La méthode de Nelder-Mead est un algorithme d'optimisation non-linéaire qui a été proposé par John Nelder et Roger Mead en 1965. C'est une méthode numérique heuristique qui cherche à minimiser une fonction continue dans un espace à plusieurs dimensions.

- 1. Choix de N+1 points de l'espace à N dimensions des inconnues, formant un simplexe : $\{x_1, x_2, \dots, x_{N+1}\},$
- 2. Calcul des valeurs de la fonction f en ces points, réindexation des points de façon à avoir $f(x_1) \le f(x_2) \le \cdots \le f(x_{N+1})$. Il suffit en fait de connaître le premier et les deux derniers.
- 3. Calcul de x_0 , centre de gravité de tous les points sauf x_{N+1} .
- 4. Calcul de $x_r = x_0 + (x_0 x_{N+1})$ (réflexion de x_{N+1} par rapport à x_0).
- 5. Si $f(x_r) < f(x_N)$, calcul de $x_e = x_0 + 2(x_0 x_{N+1})$ (étirement du simplexe). Si $f(x_e) < f(x_r)$, remplacement de x_{N+1} par x_e , sinon, remplacement de x_{N+1} par x_r . Retour à l'étape 2.
- 6. Si $f(x_N) < f(x_r)$, calcul de $x_c = x_{N+1} + 1/2(x_0 x_{N+1})$ (contraction du simplexe). Si $f(x_c) \le f(x_N)$, remplacement de x_{N+1} par x_c et retour à l'étape 2, sinon aller à l'étape 7.
- 7. Homothétie de rapport 1/2 et de centre x_1 : remplacement de x_i par $x_1 + 1/2(x_i x_1)$ pour $i \ge 2$. Retour à l'étape 2.

Figure 1 – Algorithme de Nelder-Meade

- 1. Implanter l'algorithme de Nelder-Meade.
- **2.** Tester votre code sur la fonction de Rosenbrock.
- 3. Comparer votre résultat avec la commande MATLAB fminsearch.