Treating Uncertainty due to Model Error with Applications to RANS Turbulence Models and Chemical Kinetics

Robert D. Moser

Center for Predictive Engineering and Computational Sciences Institute for Computational Engineering and Sciences The University of Texas at Austin

July 15, 2015

Collaborators: T. A. Oliver, G. Terejanu, C. S. Simmons, V. Doyeaux, R. Morrison, D. McDougall, T. Portone, B. Reuter

Engineering Complex Systems

2/35

Models of such complex system are generally imperfect

Imperfect Paths to Knowledge and Predictive Simulation

Prediction is difficult, especially if it is about the future — N. Bohr

3/35

Simulations have a Purpose

To inform some decision (e.g. for design, operations or control)

- Quantities are predicted to inform the decision
- These are the *Quantities of Interest* (Qols)
- Must predict Qols for which confirming observational data is not available
 - ► Otherwise, predictions would not be needed
 - Many reasons why there is no data (e.g. system is not built yet)

Computational models are not scientific theories

Their validity depends on their purpose:

- The Qols to be predicted
- The required accuracy

Fundamental question: What entitles us to make predictions?

4/35

Validation for Predictions

- In comparing models to experiments there are always discrepancies, what do they mean?
 - Discrepancies within the uncertainties of the experiments and models are expected–UQ is necessary for meaningful validation
 - What about larger discrepancies?

- ► The calibrated model and the observations in excellent agreement
- ▶ It is highly improbable that data and model are consistent
- ▶ I want to use this model! It is "inadequate," does it matter?
- Need to include uncertainty due to model inadequacy!

Realistic Example—A Turbulence Model Prediction

Predicting the Data

Predicting a QoI $(\partial T/\partial y|_{wall})$

6/35

- Errors (compared to DNS) are too large to be explained by uncertainty in the model parameters
- Representation of model inadequacy is consistent with the errors
- Ignoring inadequacy yields invalid predictions

Interpreting Validation Results

A Validation Paradox

- Consistency with observations
 ⇒ valid predictions
 - Observation may be insensitive to errors that the QoI is sensitive to
- - Observation may be sensitive to errors that the QoI is insensitive to
- If the validation data is not consistent with the model, we have no "right" to make a prediction.
 - The model errors responsible for the observed discrepancies could also produce significant errors in the Qol.
 - But then again, they might not
 - To know which, need to represent the uncertainty due to the model error
- Enrich the erroneous model with a probabilistic representation of the model error

7/35

Composite Model Structure

Physics-based composite model:

$$\mathcal{R}(u, \boldsymbol{\tau}; r) = 0$$
 (Highly reliable)
 $\boldsymbol{\tau} = m(u; \boldsymbol{\theta}, s)$ (Embedded model)

$$\tau = m(u; \theta, s) + \epsilon_{mod}(u; \alpha, s)$$

Measurement model:

$$\mathbf{d} = \mathbf{d}(u, \mathbf{\tau}; r) + \boldsymbol{\epsilon}_{exp}$$

Quantity of Interest model:

$$\mathbf{q} = \mathbf{q}(u, \boldsymbol{\tau}; r)$$

- τ : unclosed quantity in \mathcal{R}
- θ , α : uncertain model parameters
- r, s: scenario parameters

Model structure allows uncertainty due to model error to be informed by observations and propagated to Qols

An Example: Spring-Mass-Damper System

Prediction Scenario and QoI

Want to predict the *maximum velocity* of a given mass (m=5) for a given initial condition $(x=4,\,\dot{x}=0)$

Physical Model

• Reliable model: F = ma implies

$$m\ddot{x} = f_d + f_s$$

• Embedded models:

$$f_s = -kx$$
$$f_d = -c_o \dot{x}$$

with k and c_o constant

Reality and Data

Reality: Damper not constant coefficient

$$f_d = -c(t)\dot{x} \Rightarrow m\ddot{x} + c(t)\dot{x} + kx = 0$$

where c(t) related to temperature variation in the damping fluid.

Data: "Real" system with correct ICs but smaller masses

- ullet 8 measurements of position vs time for m=1
- ullet 8 measurements of position vs time for m=2

Models of Uncertainty due to Inadequacy

Reflect what we know about the system, so we must be explicit about what we know.

The Denial Model: Parameter Uncertainty Only

- Constant k spring model is presumed a good approximation (no inadequacy)
- Constant c_o damper model is presumed a good approximation (no inadequacy)
- Values of k and c_o not well known

Determine k and c_o via Bayesian inference based on m=1 data

Posterior Predictive Check of Denial Model

Comments

• Qualitatively, prediction not too bad—trends correct

Posterior Predictive Check of Denial Model

12/35

Comments

- Qualitatively, prediction not too bad—trends correct
- But, uncertainties much to small to explain some discrepancies
- γ is HPD metric (highest posterior density)
- Cannot proceed to further validation checks or prediction

The Inadequate Damper Model

Model Uncertainty in Damper Representation

- Constant k spring model is presumed to be a good approximation
- Suspect that a constant c_0 model is inadequate
- Hypothesize that non-constant behavior caused by damper fluid temperature changes
 - e.g. noticed that damper gets warm
- Note: Information about why the model may be inadequate is important
 - Can constrain an inadequacy model
 - Provides a basis for assessing the domain of applicability of models, including inadequacy

The Inadequate Damper Model

Model

Physics:

$$m\ddot{x} + c\dot{x} + kx = 0$$

• Uncertainty:

$$c \sim \log \mathcal{N}(c_{\mu}, c_{\sigma}^2)$$

• Joint Bayesian calibration of k, c_{μ} , and c_{σ}

Likelihood

Requires marginalizing c:

$$p(D_i|k, c_{\mu}, c_{\sigma}) = \int p(D_i|k, c)p(c|c_{\mu}, c_{\sigma}) dc$$

$$p(\mathbf{D}|k, c_{\mu}, c_{\sigma}) = \prod_{i=1}^{M} p(D_i|k, c_{\mu}, c_{\sigma})$$

Posterior Predictive Check of Inadequate Damper Model (m = 1)

Observations

- All m=1 data within prediction uncertainty
- No small γ values

Posterior Predictive Check of Inadequate Damper Model (m=2)

Observations

- All m=2 data within prediction uncertainty
- No γ values close to zero

QoI Prediction (m = 5) with Inadequate Damper Model

Do Validation Tests give Confidence in the Prediction

- Not in general, need to asses how strong the validation tests are (out of scope for today)
- Conclusion: validation tests are strong enough for this prediction

As expected, true value of QoI within uncertainty range of prediction

Importance of Inadequacy Representations

- It is common to use embedded models with known flaws; i.e. known to be inconsistent with relevant observations of the phenomena
 - Better models are not tractable
 - Phenomenon is not fully understood, and no better model exists
 - ► Yet, decision must be made
 - Low fidelity (inexpensive) models are commonly used early in a design process, or for model-based control
- When inadequate (flawed) models are to be used for prediction, inadequacy representations are necessary
- Consider two representative examples
 - Reduced chemical reaction mechanisms
 - RANS turbulence models

Inadequacy of Reduced Chemical Reaction Mechanisms

- Combustion of a fuel can involve 100's or 1000's of reactions and up to 100's of intermediate chemical species.
 - ► In simulations (e.g. DNS) of turbulent combustion, generally intractable
 - Memory scales with number of species and cost scales with number of reactions
- Instead, use "reduced mechanisms" with many fewer species and reactions
 - ► Intended to capture specific characteristics of the reaction process
 - Generally need to be calibrated (e.g. against higher fidelity mechanisms or experiments)
 - Introduces modeling errors: need to represent the resulting uncertainties
- Even the most detailed mechanisms are incomplete and are therefore "reduced" relative to reality

Consider the simplest possible example: ${\rm H_2/O_2}$ combustion.

Detailed reaction mechanism, where $k=AT^ne^{-E/R^\circ T}$; mol/cm 3 , s $^{-1}$, K, kJ/mol

Reaction	A	n	E
Hydrogen-oxygen chain	16		
1. H + O ₂ \longrightarrow OH + O	3.52×10^{16}	-0.7	71.4
2. $H_2 + O \longrightarrow OH + H$	5.06×10^4	2.7	26.3
3. $H_2 + OH \longrightarrow H_2O + H$	1.17×10^{9}	1.3	15.2
4. $\text{H}_2^2\text{O} + \text{O} \longrightarrow \text{OH} + \text{OH}$	7.60×10^{0}	3.8	53.4
Direct recombination			
5. $H + H + M \longrightarrow H_2 + M$	1.30×10^{18}	-1.0	0.0
6. H + OH + M \longrightarrow $H_2O + M$	4.00×10^{22}	-2.0	0.0
7. $O + O + M \longrightarrow O_2 + M$	6.17×10^{15}	-0.5	0.0
8. H + O + M \longrightarrow OH + M	4.71×10^{18}	-1.0	0.0
9. O + OH + M \longrightarrow HO ₂ + M	8.00×10^{15}	0.0	0.0
Hydroperoxyl reactions			
10. H + O ₂ + M \longrightarrow HO ₂ + M	5.75×10^{19}	-1.4	0.0
11. $HO_2 + H \longrightarrow OH + OH$	7.08×10^{13}	0.0	1.2
12. $HO_2^2 + H \longrightarrow H_2 + O_2$	1.66×10^{13}	0.0	3.4
13. $HO_2^2 + H \longrightarrow H_2^2O + O$	3.10×10^{13}	0.0	7.2
14. $HO_2 + O \longrightarrow OH + O_2$	2.00×10^{13}	0.0	0.0
15. $HO_2 + OH \longrightarrow H_2O + O_2$	2.89×10^{13}	0.0	-2.1
2 2 2			
Hydrogen peroxide reactions	2.30×10^{18}	0.0	-7.1
16. OH + OH + M \longrightarrow H ₂ O ₂ + M		-0.9	
17. $HO_2 + HO_2 \longrightarrow H_2O_2 + O_2$	3.02×10^{12}	0.0	5.8
18. $\text{H}_2\text{O}_2 + \text{H} \longrightarrow \text{HO}_2 + \text{H}_2$	4.79×10^{13}	0.0	33.3
19. $H_2O_2 + H \longrightarrow H_2O + OH$	1.00×10^{13}	0.0	15.0
20. $\text{H}_2\text{O}_2 + \text{OH} \longrightarrow \text{H}_2\text{O} + \text{HO}_2$	7.08×10^{12}	0.0	6.0
21. $\text{H}_2\text{O}_2 + \text{O} \longrightarrow \text{HO}_2 + \text{OH}$	9.63×10^{6}	2.0	2.0

H₂/O₂ reaction¹

- Detailed reaction model
 - 21 elementary reactions
 - 2 types of atoms (hydrogen and oxygen)
 - ▶ 8 species (H₂, O₂, H, O, OH, HO₂, H₂O, H₂O₂), whose concentrations are denoted $\boldsymbol{u} = [u_1, u_2, \dots, u_8]^T$
 - Yields a set of 8 nonlinear ODEs
- Reduced reaction model
 - Subset of 5 of the previous reactions
 - ► 7 species are tracked (all but H₂O₂)
 - Set of 7 ODEs, but much simpler than above (fewer reactions)

Bayesian inference to infer reaction parameters from "observations" from detailed mechanism.

R. D. Moser Model Inadequacy 6/24/2015 21 / 35

¹ F. A. Williams. Detailed and reduced chemistry for hydrogen auto-ignition. *Journal of Loss Prevention in the Process Industries*, 21: 131-135, 2008.

Validation Check of the Reduced Model

Stochastic Operator Inadequacy Model

- Reduced model inconsistent with observations, to be used, we need to represent uncertainty due to model error
- Proposed representation

$$\frac{d\boldsymbol{c}}{dt} = R(\boldsymbol{c}) + \mathcal{A}\boldsymbol{c}$$

where A is a stochastic linear operator (matrix).

- But A must satisfy physical constraints
 - Species concentrations remain non-negative
 - H and O atoms must be conserved
- These constraints imply:
 - ► Columns of A sum to 0
 - A is weakly diagonally dominant
 - ► A has non-positive eigenvalues
- But how to construct A that satisfies the constraints?

Construction of A

It can be shown that the constraints are satisfied if A = CQ =

with
$$\hat{q}_{28} = q_{28} + 2(q_6 + q_{12} + q_{16}/2 + 2q_{20}/3 + 2q_{24}/3)$$

• The elements $q_i \geq 0$ and are modeled

$$q_i \sim \log \mathcal{N}(\mu_i, \eta_i)$$

6/24/2015

24/35

• The (log) mean and variance μ_i and η_i are inferred via (hierarchical) Bayesian inference, along with reaction parameters

Validation Check of Stochastic Inadequacy Model

Model Inadequacy in RANS

Mean conservation of momentum

$$\partial_t U_i + \partial_j U_i U_j = -\partial_i P + \partial_j (\nu \partial_j U_i - \overline{u_i' u_j'})$$

- · Where applicable, validity of RANS equations is NOT in doubt
- But, $\overline{u_i'u_j'}$ is not known in terms of U_i (closure problem)

Standard eddy-viscosity-based closure

$$-\overline{u_i'u_j'} = \tau_{ij} = 2\nu_t S_{ij} - \frac{2}{3}k\delta_{ij}$$

where S_{ij} is mean strain rate tensor

Model inadequacy idea

$$-\overline{u_i'u_j'} = \tau_{ij} = 2\nu_t S_{ij} - \frac{2}{3}k\delta_{ij} + \zeta_{ij}$$

where ζ_{ij} is random tensor field

Channel Flow Example

Incompressible, fully-developed channel flow

- Simplest possible wall-bounded flow
- Calibrate and assess stochastic model using DNS
 - $Re_{\tau} = 944, 2003$ [del Alamo et al., 2004; Hoyas et al., 2006]
 - $Re_{ au} pprox 5200$ [Lee et al., 2013]

Mean Momentum

$$-\frac{d}{d\eta} \left(\frac{1}{Re_{\tau}} \frac{d\langle u \rangle^{+}}{d\eta} + \tau^{m+} + \zeta \right) = 1$$

Errors

- Mean velocity: $e^+ = \langle u \rangle^+ \bar{u}^+$
- Reynolds shear: $\zeta = \tau^+ \nu_t(\langle u \rangle^+) d\langle u \rangle^+ / dy$
 - Note: $\tau^{m+} = \nu_t(\langle u \rangle^+) d\langle u \rangle^+/dy$

A Model For Reynolds Stress Error

Motivation/Inspiration

- True Reynolds stress satisfies Reynolds stress transport equation
- Modeled Reynolds stress does not, but residual is not computable

$$\mathcal{R}(\tau) = \mathcal{R}(\tau^m + \zeta) = 0 \quad \Rightarrow \quad \mathcal{R}'[\tau^m](\zeta) \approx -\mathcal{R}(\tau^m)$$

The model (for channel flow case)

$$\underbrace{-C_p \frac{d\bar{u}}{dy} \zeta}_{\text{"Production"}} \underbrace{+C_p \frac{3}{2} \frac{\sqrt{\tau^m}}{y} \zeta}_{\text{"Dissipation"}} \underbrace{-\frac{d}{dy} \left((\nu + C_\nu \nu_t(\bar{u})) \frac{d\zeta}{dy} \right)}_{\text{"Diffusion"}} = C_\sigma \underbrace{\sqrt{\frac{s^2}{\ell}} \frac{dW}{dy}}_{\text{"Residual"}}$$

where
$$s=u_{ au}^3$$
, $\ell=u_{ au}/(\partial u/\partial y)$

- LHS: Simplistic modeling and dimensional analysis
- RHS: Don't know correct residual, so choose white noise
- Set parameters C_p , C_{ν} , and C_{σ} via Bayesian calibration

Channel Flow Results Overview

- Fully-developed, incompressible channel flow
- Turbulence model: Spalart–Allmaras
 - Similar results with other models
- Available DNS data
 - $Re_{\tau} = 944, 2003$ [del Alamo et al., 2004; Hoyas et al., 2006]
 - $Re_{ au} pprox 5200$ [Lee et al., 2013]
- Calibrate with $Re_{\tau} = 944, 2003$ DNS
- Test against $Re_{ au} pprox 5200 \; {
 m DNS}$

Forward Propagation: Scaling with Re

- Forward propagate ζ uncertainty to $\langle u \rangle$ using posterior mean for C_p, C_ν, C_σ obtained at $Re_\tau = 1000$
- ullet Resulting standard deviation of u shows good collapse with usual non-dimensionalizations
- · Inner peak qualitatively similar to true error

Forward Prop: Comparison Against Calibration Data

- $\pm 2\sigma$ covers true velocity error in both cases
- Shape of σ is qualitatively similar to true error
- But, inner peak is in the wrong location ($y^+ \approx 6$ instead of 12)
- Some potential to improve by relaxing relation between production and dissipation terms in model (adds another calibration parameter)

R. D. Moser Model Inadequacy 6/24/2015 31 / 35

Forward Propagation: Comparison Against $Re_{\tau} = 5200$

- ullet Qualitatively the same as lower Re results
- ullet Gives confidence that model can successfully extrapolate in Re

R. D. Moser Model Inadequacy 6/24/2015 32 / 35

Ongoing efforts in model inadequacy

RANS turbulence modeling

Generalizing SPDEs to govern Reynolds stress uncertainty

Low-fidelity aerodynamic design models

- Potential flow + integral boundary layer model
- Model uncertainty based on indicators of violated modeling assumptions?

Contaminant transport in porous media flow

Inferring linear operator governing inadequacy of depth-integrated model

Turbulent Combustion

- Inadequacy of reduced kinetics model
- Inadequacy of model for Reynolds averaged reaction rates

Summary

- In Engineering and Science, we commonly use models that are known a priori to be inadequate.
- When we do, it is important to consider the uncertainty introduced by model inadequacy
- To represent model inadequacy:
 - Introduce the uncertainty where it occurs in the model: enrich the inadequate imbedded model
 - Make use of all that is known about the phonomenon being modeled and the inadequacy of the embedded model
 - Constrain the inadequacy representation with observations
 - calibration and validation observables need to be sensitive to the inadequacy

Further Reading:

Oliver *et al* 2015 Validating predictions of unobserved quantities, *Comput. Methods Appl. Mech. Engrg.* **283**, 13101335

Moser & Oliver 2015 Validation of physical models in the presence of uncertainty, manuscript for a chapter in *Handbook of Uncertainty Quantification*.

Thank you.

Questions?