Examen E1 (temes 2 i 3)

- Durada de l'examen: 1:15 hores.
- La solució de cada exercici s'ha d'escriure a l'espai reservat en el propi enunciat.
- No podeu usar calculadora, mòbil, apunts, etc.
- La solució de l'examen es publicarà a Atenea demà i les notes abans de les 12 de la nit del 9 d'octubre..

Pregunta 1) (Objectius 2.4) (1 punt)

Cada fila de la taula té 3 columnes amb el vector X de 8 bits, X expressat en hexadecimal i el valor en decimal, X_u, que representa X interpretat como un nombre natural codificat en binari. Completeu totes las caselles buides.

Х	X (hexa)	Xu
	В4	
		100

Pregunta 2) (*Objectius 2.1 i 2.2*) (0,75 punts)

a) Escriviu la fórmula que dóna el valor d'un nombre natural en funció dels 5 dígits que el representen en el sistema convencional en base 3.

b) Expresseu el rang dels nombres naturals que es poden representar en el sistema convencional en base 8 pel cas d'un vector X de 5 dígits.

c) Quin és el nombre natural de valor màxim que es pot representar en el sistema convencional en base 2 pel cas d'un vector X de 6 bits.

Pregunta 3) (Objectiu 2.2) (0.5 punts)

Quins dels següents nombres en decimal (0,1,7,15,16,25) es poden representar en binari utilitzant els següents nombres de bits.

1 bit:	
4 bits:	

Pregunta 4) (Objectiu 3.6 i 3.10) (1 punt)

a) Quantes portes And i Or, i de quantes entrades cada una, fan falta per implementar directament l'expressió en suma de minterms de la funció w de la següent taula de veritat.

a	ט	C	w	
0	0	0	1	Monthus de nontes And
0	0	1	0	Nombre de portes And = de
0	1	0	1	
0	1	1	0	
1	0	0	1	Nombre de portes Or = de
1	0	1	0	
1	1	0	1	
1	1	1	1	
			l	1

b) Indiqueu la mida mínima de la ROM per sintetitzar un circuit de 5 entrades i 4 sortides.

Nombre de paraules =	Bits per paraula =	

entrades.

entrades.

Pregunta 5) (*Objectiu 3.5 i 3.17*) (*1,5 punts*)

Dibuixeu el mapa de Karnaugh amb les agrupacions adequades per obtenir l'expressió mínima en suma de productes de la funció w d'un circuit al que li correspon la següent taula de veritat:

a	b	C	đ	w
0	0	0	0	1 0
0	0	0	1	0
0	0	1	0	X
0	0	1 1	1	1
0	1	0	0	0
0	1 1 1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1 1	1	1 1 X 0
1	1	0	0	1 0
1	1 1	0	1	1
1	1	1	0	
1	1	1	1	х

Dibuixeu el Mapa de Karnaugh on es vegi clarament els grups que heu escollit

b) Indiqueu l'expressió mínima en suma de productes de w

$$\mathbf{w} =$$

Pregunta 6) (*Objectius 3.5 i 3.17*) (*1 punt*)

Donat l'esquema del següent circuit (inclosa la taula de veritat del bloc B1) completeu la taula de veritat de la sortida w i escriviu l'expressió lògica en suma de minterms de w.

Tau.	ra ve	erita	ic w
X	у	Z	w
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Taula maritat W

Taula veritat B1								
а	b	С	d					
0	0	1	1					
0	1	0	1					
1	0	0	1					
1	1	1	0					

Expressió en suma de minterms de W:

Pregunta 7) (*Objectiu 3.13*) (1,25 punts)

Donat l'esquema del circuit de la pregunta anterior, escriviu el camí crític (tots si n'hi ha més d'un) i el temps de propagació del circuit. Els temps de propagació del bloc B1 (en la taula) i de las portes són: $Tp_{(Not)} = 10$, $Tp_{(And-2)} = 20$, $Tp_{(Or-2)} = 20$ i $Tp_{(Xor-2)} = 40$ u.t. Per exemple, si el camí que va de y a w y passa pel bloc B1, per la porta Xor i per la porta Or fos un camí crític, s'indicaria de la següent forma: $y \rightarrow B1_{b-d} \rightarrow Xor-2 \rightarrow Or-2 \rightarrow w$.

Temps de propagació de B1

Тр	C	d
а	40	30
b	60	40

Camins Crítics =

Tp del circuit =

Cognoms i Nom: Grup: DNI: DNI:

Pregunta 8) (Objectiu 3.12) (1.5 punts)

Completeu el següent cronograma dels senyals de l'esquema lògic considerant que els temps de propagació de les portes son: $Tp_{(Not)} = 10$, $Tp_{(And-2)} = 20$, $Tp_{(Or-2)} = 20$ u.t. Heu d'operar adequadament amb les zones ombrejades (no se sap el valor que tenen) i heu de posar un senyal ombrejat quan no sabeu si val 0 o 1.

0			 5	0			1(00			1	50				
x 🥢																
	.,									77777	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7.7.7.7.7	,,,,,	,,,,,,	.,,,,,	ļ.,.
у 🥢									 							
	,,,,,,,,,,,,,,,,,									77777	77777	77777	77777	27777	77777	777
z ///			 						 							
а	-		 				ļ		 				ļ	ļ	ļ	ļ
			 				ļ		 							ļ
b			 													
			 		 	ļ	ļ		 				.	ļ	ļ	ļ
w																

Pregunta 9) (*Objectius 3.2 i 3.11*) (*1,5 punts*)

Implementeu amb una ROM un circuit que calculi el producte de dos nombres naturals de 2 bits. El bus de entrada A és un vector de 2 bits (a_1a_0) que representa al nombre natural A_u . Igualment, el bus de entrada B és un vector de 2 bits (b_1b_0) que representa un altre nombre natural B_u . El bus de sortida W és un vector de 4 bits ($w_3w_2w_1w_0$) que codifica el valor natural del resultat $W_u = A_u * B_u$. *Nota: l'asterisc és l'operació de multiplicació*.

Dibuixeu la implementació del circuit usant només una ROM i indicant clarament el seu contingut. L'ordre de les entrades del circuit (de major a menor pes) ha de ser el següent: $a_1a_0b_1b_0$