STATS 232A Project 5: Generator and descriptor

1 Generator: real inference

The model has the following form:

$$Y = f(Z; W) + \epsilon \tag{1}$$

$$Z \sim N(0, I_d), \ \epsilon \sim N(0, \sigma^2 I_D), \ d < D.$$
 (2)

f(Z; W) maps latent factors into image Y, where W collects all the connection weights and bias terms of the ConvNet.

Adopting the language of the EM algorithm, the complete data model is given by

$$\log p(Y, Z; W) = \log[p(Z)p(Y|Z, W)] \tag{3}$$

$$= -\frac{1}{2\sigma^2}||Y - f(Z;W)||^2 - \frac{1}{2}||Z||^2 + \text{const.}$$
 (4)

The observed-data model is obtained by intergrating out Z: $p(Y;W) = \int p(Z)p(Y|Z,W)dZ$. The posterior distribution of Z is given by $p(Z|Y,W) = p(Y,Z;W)/p(Y;W) \propto p(Z)p(Y|Z,W)$ as a function of Z.

We want to minimize the observed-data log-likelihood, which is $L(W) = \sum_{i=1}^{n} \log p(Y_i; W) = \sum_{i=1}^{n} \log \int p(Y_i, Z_i; W) dZ_i$. The gradient of L(W) can be calculated according to the following well-known fact that underlies the EM algorithm:

$$\frac{\partial}{\partial W}\log p(Y;W) = \frac{1}{P(Y;W)} \frac{\partial}{\partial W} \int p(Y,Z;W) dZ \tag{5}$$

$$= \mathcal{E}_{p(Z|Y,W)} \left[\frac{\partial}{\partial W} \log p(Y,Z;W) \right]. \tag{6}$$

The expectation with respect to p(Z|Y,W) can be approximated by drawing samples from p(Z|Y,W) and then compute the Monte Carlo average.

The Langevin dynamics for sampling $Z \sim p(Z|Y,W)$ iterates

$$Z_{\tau+1} = Z_{\tau} + \delta U_{\tau} + \frac{\delta^{2}}{2} \left[\frac{1}{\sigma^{2}} (Y - f(Z_{\tau}; W)) \frac{\partial}{\partial Z} f(Z_{\tau}; W) - Z_{\tau} \right], \tag{7}$$

where τ denotes the time step for the Langevin sampling, δ is the step size, and U_{τ} denotes a random vector that follows $N(0, I_d)$.

The stochastic gradient algorithm can be used for learning, where in each iteration, for each Z_i , only a single copy of Z_i is sampled from $p(Z_i|Y_i,W)$ by running a finite number of steps of Langevin dynamics starting from the current value of Z_i , i.e., the warm start. With $\{Z_i\}$ sampled in this manner, we can update the parameter W based on the gradient L'(W), whose Monte Carlo approximation is:

$$L'(W) \approx \sum_{i=1}^{n} \frac{\partial}{\partial W} \log p(Y_i, Z_i; W)$$
 (8)

$$= -\sum_{i=1}^{n} \frac{\partial}{\partial W} \frac{1}{2\sigma^2} ||Y_i - f(Z_i; W)||^2$$
(9)

$$= \sum_{i=1}^{n} \frac{1}{\sigma^2} (Y_i - f(Z_i; W)) \frac{\partial}{\partial W} f(Z_i; W). \tag{10}$$

Algorithm 1 describes the details of the learning and sampling algorithm.

Algorithm 1 Generator: real inference

Input:

- (1) training examples $\{Y_i, i = 1, ..., n\}$,
- (2) number of Langevin steps l,
- (3) number of learning iterations T.

Output:

- (1) learned parameters W,
- (2) inferred latent factors $\{Z_i, i = 1, ..., n\}$.
- 1: Let $t \leftarrow 0$, initialize W.
- 2: Initialize Z_i , for i = 1, ..., n.
- 3: repeat
- 4: **Inference step**: For each i, run l steps of tangevin dynamics to sample $Z_i \sim p(Z_i|Y_i, W)$ with warm start, i.e., starting from the current Z_i , each step follows equation 7.
- 5: Learning step: Update $W \leftarrow W + \gamma_t L'(W)$, where L'(W) is computed according to equation 10, with learning rate γ_t .
- 6: Let $t \leftarrow t + 1$.
- 7: **until** t = T

1.1 TO DO

For the lion-tiger category, learn a model with 2-dim latent factor vector. Fill the blank part of ./GenNet/GenNet.py. Show:

(1) Reconstructed images of training images, using the inferred z from training images.

- (2) Randomly generated images, using randomly sampled z.
- (3) Generated images with linearly interpolated latent factors from (-2,2) to (-2,2). For example, you inperlolate 8 points from (-2,2) for each dimension of z. Then you will get a 8×8 panel of images. You should be able to see that tigers slight change to lion.
 - (4) Plot of loss over iteration.

2 Descriptor: real sampling

The descriptor model is as follows:

$$p_{\theta}(Y) = \frac{1}{Z(\theta)} \exp\left[f_{\theta}(Y)\right] p_0(Y), \tag{11}$$

where $p_0(Y)$ is the reference distribution such as Gaussian white noise

$$p_0(Y) \propto \exp\left(-\|Y\|^2/2\sigma^2\right) \tag{12}$$

The scoring function $f_{\theta}(Y)$ is defined by a bottom-up ConvNet whose parameters are denoted by θ . The normalizing constant $Z(\theta) = \int \exp[f_{\theta}(Y)] p_{\theta}(Y) dY$ is analytically intractable. The energy function is

$$\mathcal{E}_{\theta}(Y) = \frac{1}{2\sigma^2} \|Y\|^2 - f_{\theta}(Y). \tag{13}$$

 $p_{\theta}(Y)$ is an exponential tilting of p_0 .

Suppose we observe training examples $\{Y_i, i = 1, ..., n\}$ from an unknown data distribution $P_{\text{data}}(Y)$. The maximum likelihood learning seeks to maximize the log-likelihood function

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(Y_i). \tag{14}$$

If the sample size n is large, the maximum likelihood estimator minimizes the Kullback-Leibler divergence $\mathrm{KL}(P_{\mathrm{data}} \| p_{\theta})$ from the data distribution P_{data} to the model distribution p_{θ} . The gradient of $L(\theta)$ is

$$L'(\theta) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial \theta} f_{\theta}(Y_i) - \mathcal{E}_{\theta} \left[\frac{\partial}{\partial \theta} f_{\theta}(Y) \right], \tag{15}$$

where E_{θ} denotes the expectation with respect to $p_{\theta}(Y)$. The key to the above identity is that $\frac{\partial}{\partial \theta} \log Z(\theta) = E_{\theta}[\frac{\partial}{\partial \theta} f_{\theta}(Y)]$.

The expectation in equation (15) is analytically intractable and has to be approximated by MCMC, such as Langevin dynamics, which iterates the following step:

$$Y_{\tau+1} = Y_{\tau} - \frac{\delta^2}{2} \frac{\partial}{\partial Y} \mathcal{E}_{\theta}(Y_{\tau}) + \delta U_{\tau}$$

$$= Y_{\tau} - \frac{\delta^2}{2} \left[\frac{Y_{\tau}}{\sigma^2} - \frac{\partial}{\partial Y} f_{\theta}(Y_{\tau}) \right] + \delta U_{\tau}, \tag{16}$$

where τ indexes the time steps of the Langevin dynamics, δ is the step size, and $U_{\tau} \sim N(0, I)$ is Gaussian white noise. The Langevin dynamics relaxes Y_{τ} to a low energy region, while the noise term provides randomness and variability. A Metropolis-Hastings step may be added to correct for the finite step size δ . We can also use Hamiltonian Monte Carlo for sampling the generative ConvNet.

We can run \tilde{n} parallel chains of Langevin dynamics according to (16) to obtain the synthesized examples $\{\tilde{Y}_i, i=1,...,\tilde{n}\}$. The Monte Carlo approximation to $L'(\theta)$ is

$$L'(\theta) \approx \frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial \theta} f_{\theta}(Y_{i}) - \frac{1}{\tilde{n}} \sum_{i=1}^{\tilde{n}} \frac{\partial}{\partial \theta} f_{\theta}(\tilde{Y}_{i})$$

$$= \frac{\partial}{\partial \theta} \left[\frac{1}{\tilde{n}} \sum_{i=1}^{\tilde{n}} \mathcal{E}_{\theta}(\tilde{Y}_{i}) - \frac{1}{n} \sum_{i=1}^{n} \mathcal{E}_{\theta}(Y_{i}) \right],$$

$$(17)$$

which is used to update θ .

To make Langevin sampling easier, we use mean images of training images as the sampling starting point. That is, we down-sampled each training image to a 1×1 patch, and up-sample this patch to the size of training image. We use cold start for Langevin sampling, i.e., at each iteration, we start sampling from mean images.

Algorithm 2 describes the details of the learning and sampling algorithm.

Algorithm 2 Descriptor: real sampling

Input

- (1) training examples $\{Y_i, i = 1, ..., n\}$,
- (2) number of Langevin steps l,
- (3) number of learning iterations T.

Output:

- (1) estimated parameters θ ,
- (2) synthesized examples $\{\tilde{Y}_i, i = 1, ..., n\}$.
- 1: Let $t \leftarrow 0$, initialize θ .
- 2: repeat
- 3: For i = 1, ..., n, initialize \tilde{Y}_i to be the mean image of Y_i .
- 4: Run l steps of Langevin dynamics to evolve \tilde{Y}_i , each step following equation (16).
- 5: Update $\theta_{t+1} = \theta_t + \gamma_t L'(\theta_t)$, with step size γ_t , where $L'(\theta_t)$ is computed according to equation (17).
- 6: Let $t \leftarrow t + 1$.
- 7: **until** t = T

2.1 TO DO

For the egret category, learn a descriptor model. Fill the blank part of ./DesNet/DesNet.py. Show:

- (1) Synthesized images.
- (2) Plot of training loss over iteration.

3 What to submit

Write a report to show your results. And zip the report with your code.