Mathematics Department

COLLEGE ALGEBRA Learning Module #6b

Topic	Fractional Exponents/Radicals
Duration	3 hours
Lesson Proper	We shall extend the definition of a^n to include fractions or rational numbers for n. If m/n is a rational number with positive integer a, then
	$a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$
	The form $\sqrt[n]{a^m} = a^{m/n}$ is called the principal root of a^m . The numerator m indicates a power and the denominator n is called the root or order .
	Specifically, $a^{1/n}$ means the principal nth root of a . The symbol $\sqrt[n]{a}$ is called a radical , where a is called the radicand , and n is called the index or order .
	To evaluate radicals, it is sometimes convenient to express the radical with fractional exponent or apply the rule $\sqrt[n]{a^n}=a$. The following are examples on radicals:
	1. $(-64)^{\frac{2}{3}} = (\sqrt[3]{-64})^2 = (-4)^2 = 16$
	2. $(-32)^{-\frac{2}{3}} = \frac{1}{(-32)^{2/5}} = \frac{1}{(-2)^2} = \frac{1}{4}$
	$3. \sqrt[6]{x^{18}} = x^{18/6} = x^3$
	4. $\sqrt[3]{8x^6} = \sqrt[3]{(2x^2)^3} = [(2x^2)^3]^{\frac{1}{3}} = 2x^2$
	5. $\sqrt[6]{16x^2} = (16x^2)^{1/6} = (2^4x^2)^{1/6} = (2^4x)^{1/3} = \sqrt[3]{4x}$
	$6. \sqrt[3]{-64x^6} = -4x^2$
	$7. \sqrt[5]{-32x^{10}} = -2x^2$
	Notice that we impose the condition a >0 in the definition of square root of the number a because it will not always hold if a<0. For example:
	$(\sqrt{-7})^2 \neq -7$

So to avoid conflict we give a stronger definition for the square of a number,

$$\sqrt{a^2} = |a|$$
, for any number a.

In general, for an even n and any real number a.

$$\sqrt[n]{a^n} = |a|$$
.

Examples: a.
$$\sqrt[3]{x^3} = x$$

Examples: a.
$$\sqrt[3]{x^3} = x$$
 b. $\sqrt[5]{32a^5} = \sqrt[5]{2^5a^5} = 2a$

Laws on Radicals

1.
$$(\sqrt[n]{a})^n = a$$
, $a > 0$. Example: $(\sqrt[5]{6})^5 = 6$

2.
$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt{b}$$
, $a, b > 0$ Example: $\sqrt{18} = \sqrt{9 * 2} = \sqrt{9}\sqrt{2} = 3\sqrt{2}$

3.
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$
, $a, b > 0$ Example: $\sqrt[5]{\frac{5}{32}} = \frac{\sqrt[5]{5}}{\sqrt[5]{32}} = \frac{\sqrt[5]{5}}{2}$

4.
$$\sqrt[n]{\frac{m}{\sqrt{a}}} = \sqrt[mn]{a} = \sqrt[m]{\sqrt[n]{a}}$$
 Example: $\sqrt[6]{4} = \sqrt[3]{\sqrt{4}} = \sqrt[3]{2}$

Simplified Radical Form

- 1. All exponents in the radicand must be less than the index.
- 2. Any exponents in the radicand can have no factors in common with the index.
- 3. No fractions appear under a radical.
- 4. No radicals appear in the denominator of a fraction.

EXERCISES:

Simplify the following radicals:

a.
$$\sqrt[4]{x^7}$$

b.
$$\sqrt[3]{-16}$$

c.
$$\sqrt[5]{-6}$$

d.
$$\sqrt[6]{x^{11}}$$

e.
$$\sqrt[3]{\frac{9}{x^{12}}}$$

f.
$$\sqrt[8]{x^2}$$

g.
$$\sqrt[6]{x^4y^8}$$

simplify the following radicals:
a.
$$\sqrt[4]{x^7}$$
 b. $\sqrt[3]{-16}$ c. $\sqrt[5]{-64}$ d. $\sqrt[6]{x^{11}}$
e. $\sqrt[3]{\frac{9}{x^{12}}}$ f. $\sqrt[8]{x^2}$ g. $\sqrt[6]{x^4y^8}$ h. $\sqrt[3]{\frac{8}{x^{12}}}$

i.
$$\sqrt[3]{-64x^6z^{24}}$$