

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

End Semester Re-examination

January - 2020

Duration: 3 Hours

Semester: V

Branch: EXTC

Max. Marks: 100

Class:TE

Course Code:ETC605

Name of the Course: Operating System

Instruction:

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Q No.						Max. Marks	CO
Q.1 (a)	Discuss the necessity of a typical desktop operating system stating the parameters supported by it in detail.					10	CO1
Q:1 (b)	Each process requires Process Control Block (PCB). Justify by drawing a typical format of PCB with necessary fields and its functions.					10	CO2
Q.2 (a)	For any hypothetical OS, list the states in the process. Hence, discuss the working of these states with their transitions with the help of a diagram.					10	CO3
Q.2 (b)	Consider a following set of processes, with length of CPU bursts given in milliseconds as follows:					10	CO2
	Pro	ocess	Burst Time	Arrival Time	1		
		P1	10	0			
		P2	29	0	The latest than a	Pariffe of the	
		Р3	3	0		in prod	
		P4	7	0		The man	
		P5	12	0	The same of the last		
	Draw the Gantt charts for FCFS, Non Preemptive SJF and RR (Quantum=10) What is the waiting time of each process for each of the above algorithms? What is the turnaround time of each process for each of the above algorithms? Which algorithm results						
	in the minimum average waiting time?						
	OR						

	Process Burst Time Arrival Time				
	P1 14 0				
	P2 8 0				
	P3 21 0				
	P4 10 0				
	Draw the Gantt charts for FCFS, Non Preemptive SJF and RR				
	(Quantum=10) What is the waiting time of each process for each				
	of the above algorithms? What is the turnaround time of each				
	process for each of the above algorithms? Which algorithm results				
	in the minimum average waiting time?				
Q.2 (b)	For any hypothetical OS, list the states in the process. Hence,	10	CO3		
	discuss the working of these states with their transitions with the				
	help of a diagram.	10	005		
Q.3 (a)	Discuss the mechanism of translating the virtual address to its re-	10	COS		
	spective physical address for a particular operating system. Con-				
	sider the concept of paging.				
	OR				
	In desktop systems, the files are appropriately allocated space. Explain various method to achieve this task with their comparisons.				
Q.3 (b)	Consider the following page reference string:	10	CO		
	7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1 How many page faults would				
	occur for the following replacement algorithms, assuming three	To her			
	page frames? Remember that all frames are initially empty, so your				
	first unique pages will cost one page each. FIFO LRU OPTIMAL				
04(0)	Design the file structure of a typical file system.	10	CO		
Q.4 (a)	Compare and contrast various disk scheduling algorithms.	10	CO		
Q.4 (b)	Compare and contrast various dish conteduling algorithms in a typical Real time	10	CO		
Q.o(a)	embedded system.				
Q.5 (b)	Consider a system with three tasks, which we'll call Task 1, Task	10	CO		
	2 and Task 3. Assume all are periodic tasks with periods T1, T2	in was a			
	and T3. Each has a deadline that is the beginning of its next	The state of			
	cycle. Task 1 has $P1 = 4$ ms, $C1 = 1$ ms, Task 2 has $P2 = 10$				
	ms, $C2 = 2$ ms and Task 3 has $P3 = 15$ ms, $C3 = 4$ ms. Consider	2500			
	static priority scheduling (RMA), draw the time space diagram and	m sits a			
	calculate processor utilization, schedulability.				