Computational Math Camp

Problem Sets

Benjamin Soltoff

2019-09-04

Contents

Overview			5	
1	Linear equations, notation, sets, and functions		7	
	1.1	Simplify expressions	7	
	1.2	Simplify a (more complex) expression	10	
	1.3	Graph sketching	11	
	1.4	Root finding	14	
	1.5	Work with sets	16	
2	Logarithms, sequences, and limits			
	2.1	Simplify logarithms	19	
	2.2	Sequences	19	
	2.3	Find the limit	19	
	2.4	Determine convergence or divergence	20	
	2.5	Find more limits	20	
	2.6	Find even more limits		
	2.7			

4 CONTENTS

Overview

Contains problem sets for the 2019 Computational Math Camp.

6 CONTENTS

Chapter 1

Linear equations, notation, sets, and functions

1.1 Simplify expressions

Simplify the following expressions as much as possible:

a.
$$(-x^4y^2)^2$$

1. Distribute exponents over products.

$$(-1)^2 x^{(2\times4)} y^{(2\times2)}$$

2. Multiply 2 and 2 together.

$$(-1)^2 x^{(2\times4)} y^4$$

3. Multiply 2 and 4 together.

$$(-1)^2 x^8 y^4$$

4. Evaluate $(-1)^2$.

$$x^8y^4$$

b. $9(3^0)$

1. Any nonzero number to the zero power is 1.

9(1)

2. Anything times 1 is the same value.

9

- c. $(2a^2)(4a^4)$
 - 1. Combine products of like terms.

$$2a^2 \times 4a^4 = 2 \times 4a^{(2+4)}$$

2. Evaluate 2 + 4.

 $2 \times 4a^6$

3. Multiply 2 and 4 together.

 $8a^6$

- d. $\frac{x^4}{x^3}$
 - 1. For all exponents, $\frac{a^n}{a^m} = a^{(n-m)}$.

 $x^{(4-3)}$

2. Evaluate 4-3.

 \boldsymbol{x}

- e. $(-2)^{7-4}$
 - 1. Subtract 4 from 7.

 $(-2)^3$

2. In order to evaluate 2^3 express 2^3 as 2×2^2 .

 -2×2^2

1.1. SIMPLIFY EXPRESSIONS

3. Evaluate 2^2 .

$$-2 \times 4$$

4. Multiply -2 and 4 together.

-8

f.
$$\left(\frac{1}{27b^3}\right)^{1/3}$$

1. Separate component terms.

$$\frac{1}{27}^{1/3} \times \frac{1}{b^3}^{1/3}$$

2. Evaluate cube roots.

$$\frac{1}{3} \times \frac{1}{b}$$

3. Combine terms.

 $\frac{1}{3b}$

g.
$$y^7 y^6 y^5 y^4$$

1. Combine products of like terms.

$$y^{(7+6+5+4)}$$

2. Evaluate 7 + 6 + 5 + 4.

$$y^{22}$$

h.
$$\frac{2a/7b}{11b/5a}$$

1. Write as a single fraction by multiplying the numerator by the reciprocal of the denominator.

$$\frac{2a}{7b} \times \frac{5a}{11b}$$

2. Product property of exponents: $x^a \times x^b = x^{(a+b)}$

$$\frac{5a \times 2a}{7b \times 11b} = \frac{5 \times 2a^{1+1}}{7 \times 11b^{1+1}}$$

3. Evaluate 1 + 1.

$$\frac{5 \times 2a^2}{7 \times 11b^2}$$

4. Multiple scalars together.

$$\frac{10a^2}{77b^2}$$

- i. $(z^2)^4$
 - 1. Nested exponents rule: $(x^a)^b = x^{ab}$

$$z^{2\times4}$$

2. Evaluate 2×4

 z^8

1.2 Simplify a (more complex) expression

Simplify the following expression:

$$(a+b)^2 + (a-b)^2 + 2(a+b)(a-b) - 3a^2$$

1. Expand $(a+b)^2$ with FOIL.

$$a^{2} + 2ab + b^{2} + (a - b)^{2} + 2(a + b)(a - b) - 3a^{2}$$

2. Expand $(a - b)^2$ with FOIL.

$$a^{2} + 2ab + b^{2} + a^{2} - 2ab + b^{2} + 2(a+b)(a-b) - 3a^{2}$$

3. Multiply a + b and a - b together using FOIL.

$$a^{2} + 2ab + b^{2} + a^{2} - 2ab + b^{2} + 2(a^{2} - b^{2}) - 3a^{2}$$

1.3. GRAPH SKETCHING

11

4. Distribute 2 over $a^2 - b^2$.

$$a^{2} + 2ab + b^{2} + a^{2} - 2ab + b^{2} + 2a^{2} - 2b^{2} - 3a^{2}$$

5. Group like terms.

$$(a^2 + a^2 + 2a^2 - 3a^2) + (b^2 + b^2 - 2b^2) + (2ab - 2ab)$$

6. Combine like terms.

$$a^2 + (b^2 + b^2 - 2b^2) + (2ab - 2ab)$$

7. Look for the difference of two identical terms.

 a^2

1.3 Graph sketching

Let the functions f(x) and g(x) be defined for all $x \in \Re$ by

$$f(x) = \begin{cases} |x| & \text{if } x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}, \quad g(x) = \begin{cases} x^2 & \text{if } x < 2 \\ 4 & \text{if } x \ge 2 \end{cases}$$

Sketch the graphs of:

1.
$$y = f(x)$$

2.
$$y = g(x)$$

3.
$$y = f(g(x))$$

To sketch the composite function, we first evaluate g(x) for different values of x, and then evaluate f(g(x)) for different outputs of g(x).

• For $x \ge 2$, g(x) is a constant value:

$$g(x) = 4$$

$$f(g(x)) = f(4) = 1$$

• For x < 2, g(x) is not constant: $g(x) = x^2$. f(x) evaluates differently depending on its input, so we have two cases based on the output of g(x):

- if
$$g(x) < 1$$
, $f(g(x)) = |g(x)| = |x^2| = x^2$. This is the case when:

$$x^2 < 1 \text{ and } x < 2$$

$$-1 < x < 1$$

- if $g(x) \ge 1$, f(g(x)) = 1. This is the case when:

$$g(x) \ge 1$$

$$x^2 \ge 1$$
 and $x < 2$

$$x \le -1 \text{ or } 1 \le x < 2$$

• Therefore, f(g(x)) has the following values:

$$f(g(x)) = \begin{cases} 1 & \text{if } x \le -1 \\ x^2 & \text{if } -1 < x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$

1.3. GRAPH SKETCHING

13

4.
$$y = g(f(x))$$

To sketch the composite function, we first evaluate f(x) for different values of x, and then evaluate g(f(x)) for different outputs of f(x).

• For $x \ge 1$, f(x) is a constant value:

$$x \ge 1$$

$$f(x) = 1$$

$$g(f(x)) = f(1) = 1^2 = 1$$

• For x < 1, f(x) is not constant: f(x) = |x|. g(x) evaluates differently depending on its input, so we have two cases based on the output of f(x):

- if
$$f(x) < 2$$
, $g(f(x)) = f(x)^2 = |x|^2 = x^2$. This is the case when:

$$f(x) < 2$$

 $|x| < 2$ and $x < 1$
 $-2 < x < 1$

- if $f(x) \ge 2$, g(f(x)) = 4. This is the case when:

$$f(x) \ge 2$$

$$|x| \ge 2 \text{ and } x < 1$$

$$x \le -2$$

• Therefore, g(f(x)) has the following values:

$$g(f(x)) = \begin{cases} 4 & \text{if } x \le -2\\ x^2 & \text{if } -2 < x < 1\\ 1 & \text{if } x \ge 1 \end{cases}$$

1.4 Root finding

Find the roots (solutions) to the following quadratic equations.

Definition 1.1 (The quadratic formula).

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

a.
$$4x^2 - 1 = 17$$

• Move terms so that x is alone on the left side of the equation.

$$4x^{2} - 1 = 17$$

$$4x^{2} = 18$$

$$x^{2} = \frac{18}{4}$$

$$x^{2} = \frac{9}{2}$$

$$x = \pm \sqrt{\frac{9}{2}}$$

b.
$$9x^2 - 3x - 12 = 0$$

• Factor the left-hand side.

$$3(x+1)(3x-4) = 0$$

• Divide both sides by 3 to simplify the equation.

$$(x+1)(3x-4) = 0$$

1.4. ROOT FINDING

15

• Find the roots of each term in the product separately by solving for x.

$$x+1=0 \qquad \qquad 3x=4$$
$$x=-1 \qquad \qquad x=\frac{4}{3}$$

c.
$$x^2 - 2x - 16 = 0$$

1. Complete the square

$$x^{2} - 2x - 16 = 0$$

$$x^{2} - 2x = 16$$

$$x^{2} - 2x + 1 = 17$$

$$(x - 1)^{2} = 17$$

$$x - 1 = \pm\sqrt{17}$$

$$x = 1 \pm\sqrt{17}$$

- 2. Quadratic formula
 - Using the quadratic formula, solve for x

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - (4 \times 1 \times 16)}}{2 \times 1}$$
$$x = \frac{2 \pm \sqrt{4 + 64}}{2}$$
$$x = \frac{2 \pm \sqrt{68}}{2}$$

• Simplify the radical

$$x = \frac{2 \pm \sqrt{2^2 \times 17}}{2}$$
$$x = \frac{2 \pm 2\sqrt{17}}{2}$$

• Factor the greatest common divisor

$$x = 1 \pm \sqrt{17}$$

d.
$$6x^2 - 6x - 6 = 0$$

• Divide both sides by 6 to simplify the equation.

$$x^2 - x - 1 = 0$$

• Using the quadratic formula, solve for x

$$x = \frac{-(-1) \pm \sqrt{(-1)^2 - (4 \times 1 \times -1)}}{2 \times 1}$$

$$x = \frac{1 \pm \sqrt{1 - 4(-1)}}{2}$$

$$x = \frac{1 \pm \sqrt{1 + 4}}{2}$$

$$x = \frac{1 \pm \sqrt{5}}{2}$$

e.
$$5 + 11x = -3x^2$$

• Move everything to the left hand side.

$$3x^2 + 11x + 5 = 0$$

• Using the quadratic formula, solve for x

$$x = \frac{-11 \pm \sqrt{(11)^2 - (4 \times 3 \times 5)}}{2 \times 3}$$
$$x = \frac{-11 \pm \sqrt{121 - 60}}{6}$$
$$x = \frac{-11 \pm \sqrt{61}}{6}$$

1.5 Work with sets

Using the sets

$$A = \{2, 3, 7, 9, 13\}$$

$$B = \{x : 4 \le x \le 8 \text{ and } x \text{ is an integer}\}$$

$$C = \{x : 2 < x < 25 \text{ and } x \text{ is prime}\}$$

$$D = \{1, 4, 9, 16, 25, \ldots\}$$

identify the following:

1. $A \cup B$

 $E=\{2,3,4,5,6,7,8,9,13\},$ combine all integers between 4 and 8 inclusive with the numbers in set A.

2. $(A \cup B) \cap C$

 $F = \{3, 5, 7, 13\}$, Since C is only prime numbers greater than 2 and less than 25, we take all the prime numbers that are also included in E, but remember to drop out 2 since it is not included in C.

3. $C \cap D$

 $G = \emptyset$, there are no prime numbers in D, so nothing is shared between C and D.

Chapter 2

Logarithms, sequences, and limits

2.1 Simplify logarithms

Express each of the following as a single logarithm:

- a. $\log(x) + \log(y) \log(z)$
- b. $2\log(x) + 1$
- c. $\log(x) 2$

2.2 Sequences

Write down the first three terms of each of the following sequences. In each case, state whether the sequence is an arithmetric progression, a geometric progression, or neither.

- a. $u_n = 4 + 3n$
- b. $u_n = 5 6n$
- c. $u_n = 4^n$
- d. $u_n = 5 \times (-2)^n$
- e. $u_n = n \times 3^n$

2.3 Find the limit

In each of the following cases, state whether the sequence $\{u_n\}$ tends to a limit, and find the limit if it exists:

a.
$$u_n = 1 + \frac{1}{2}r$$

o.
$$u_n = 1 - \frac{1}{2}$$

c.
$$u_n = (\frac{1}{2})^n$$

a.
$$u_n = 1 + \frac{1}{2}n$$

b. $u_n = 1 - \frac{1}{2}n$
c. $u_n = \left(\frac{1}{2}\right)^n$
d. $u_n = \left(-\frac{1}{2}\right)^n$

Determine convergence or divergence 2.4

Determine whether each of the following sequences converges or diverges. If it converges, find the limit.

a.
$$a_n = \frac{3+5n^2}{n+n^2}$$

a.
$$a_n = \frac{3+5n^2}{n+n^2}$$

b. $a_n = \frac{(-1)^{n-1}n}{n^2+1}$

Find more limits 2.5

Given that

$$\lim_{x \to a} f(x) = -3, \quad \lim_{x \to a} g(x) = 0, \quad \lim_{x \to a} h(x) = 8$$

find the limits that exist. If the limit doesn't exist, explain why.

a.
$$\lim_{x \to a} [f(x) + h(x)]$$

a.
$$\lim_{x \to a} [f(x) + h(x)]$$

b. $\lim_{x \to a} [f(x)]^2 = (-3)^2$

c.
$$\lim_{x \to a} \sqrt[3]{h(x)}$$
d.
$$\lim_{x \to a} \frac{1}{f(x)}$$

d.
$$\lim_{x \to a} \frac{1}{f(x)}$$

e.
$$\lim_{x \to a} \frac{f(x)}{h(x)}$$

f.
$$\lim_{t \to a} \frac{g(x)}{f(x)}$$

e.
$$\lim_{x \to a} \frac{f(x)}{f(x)}$$
f.
$$\lim_{x \to a} \frac{g(x)}{f(x)}$$
g.
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

h.
$$\lim_{x \to a} \frac{2f(x)}{h(x) - f(x)}$$

2.6 Find even more limits

Find the limits of the following:

a.
$$\lim_{x \to 4} \frac{x^2 + 5x + 4}{x^2 + 3x - 4}$$

a.
$$\lim_{x \to -4} \frac{x^2 + 5x + 4}{x^2 + 3x - 4}$$

b.
$$\lim_{x \to 4^-} \sqrt{16 - x^2}$$

c.
$$\lim_{x \to -4} \frac{\frac{1}{4} + \frac{1}{x}}{4+x}$$

Check for discontinuities

Which of the following functions are continuous? If not, where are the discontinuities?

a.
$$f(x) = \frac{9x^3 - x}{(x - 1)(x + 1)}$$

b.
$$f(x) = e^{-x^2}$$

c.
$$f(y) = y^3 - y^2 + 1$$

a.
$$f(x) = \frac{9x^3 - x}{(x - 1)(x + 1)}$$
b.
$$f(x) = e^{-x^2}$$
c.
$$f(y) = y^3 - y^2 + 1$$
d.
$$f(x) = \begin{cases} x^3 + 1, & x > 0 \\ \frac{1}{2}x = 0 \\ -x^2, & x < 0 \end{cases}$$