Épreuve de mise en perspective didactique d'un dossier de recherche

Agrégation de physique chimie option physique

Laura Ferraris-Bouchez

Parcours

Parcours

2010	Baccalauréat S SVT, spécialité mathématiques	Lycée Pierre-Termier, Grenoble
2010 – 2012	Première Année Communes aux Études de Santé (PACES)	Université Joseph Fourier, Grenoble
2012 – 2015	Licence (L1, L2, L3) de Physique	Université Joseph Fourier, Grenoble
2015 – 2016	Master (M1) Physique fondamentale	Université Grenoble Alpes
2016 – 2017	Master (M2) Physique subatomique et cosmologie	Université Grenoble Alpes
2017 – 2020	Doctorat, direction de Guillaume Pignol	Université Grenoble Alpes,
	Mesure du moment dipolaire électrique du neutron : correction de l'effet systématique du champ fantôme	Laboratoire de Physique Subatomique et Cosmologie
2020 – 2021	Master (M2) Physique fondamentale et applications	Université de Rennes 1

Travaux de recherche

Travaux de recherche Contexte

NÉCESSAIRE

Observables violant T,

symétrie de renversement du temps

EDM des particules fondamentales

- Moment Dipolaire Electrique (EDM): Distance entre les centres des charges + et -
 - Interaction avec champ électrique $m{H} = \vec{m{d}} \cdot \vec{m{E}}$
 - Couplage spin / champ électrique $\hat{H} = -d\hat{\vec{\sigma}} \cdot \vec{E}$

Travaux de recherche **Problématique**

Principe de mesure

Génération du champ magnétique

- Bobine $B_0 \rightarrow 60\%$
- Bobine $B_0 \rightarrow 60\%$ Blindage mu-métal $\rightarrow 40\%$ $\frac{\delta B_0}{B_0} \sim 10^{-3}$
- 30 bobines de correction

Objectifs: Caractériser les inhomogénéités de champ magnétique

Propager les incertitudes sur la mesure du moment dipolaire électrique du neutron

Travaux de recherche Méthode d'analyse

Mesure du champ magnétique

- Cartes 3D de mesures vectorielles
- Magnétomètre à retour de flux

Décomposition du champ

- Solution des équations de Maxwell
- Issue des harmoniques sphériques

$$\vec{B}(\vec{r}) = \sum_{l \ge 0} \sum_{m} G_{l,m} \vec{\Pi}_{l,m}(\rho, \varphi, z)$$

 $G_{l,m} \rightarrow$ gradients généralisés

Compétences acquises pour l'enseignement

Compétences acquises pour l'enseignement Scientifiques

Magnétisme

- Production
 - Champ magnétique homogène (Helmholtz)
 - Gradients (Helmholtz inversées)
- Mesure
 - Fréquence de précession de Larmor
 - Lien flux magnétique/courant
- Matériaux ferromagnétiques
 - Cycle d'hystérésis
 - Champ rémanent
 - Démagnétisation

Incertitudes

- Statistiques / systématiques
- Identification des sources
 - Reproductibilité de l'expérience
 - Répétabilité de la mesure
- Propagation
 - Indépendance / corrélation
 - Ajustement par minimisation de χ^2

Méthode du χ^2

- Hypothèses de validité
- Réalisation numérique
- Calcul matriciel

Compétences acquises pour l'enseignement Transverses

Numériques

- Programmation orientée objet
 - Python, C++
- Visualisation de données
- Logiciels de simulation
- Calcul formel (Mathematica)

Gestion de projet

- Planification à long terme
- Gestion du temps et des échéances
 - Priorisation des tâches
 - Choix
- Travail en équipe

Communication et valorisation

- Raconter une histoire
 - Synthèse des points importants
 - Illustrations
- Rédaction manuscrit et articles
- Conférences internationales
- Exposition Muséum de Grenoble

Langue et ouverture culturelle

- Anglais
- Séminaires et conférences

Activités d'enseignement et formations

Activités d'enseignement – Formations

Mécanique du point (L1 Sciences pour l'ingénieur)

- 12h de travaux dirigés
- 16h de travaux pratiques
- Cinématique, forces et lois et Newton, frottements, énergies cinétique et potentielle

Probabilités, statistiques (2^{ème} année IUT Mesures Physiques)

- 56h (4 x 14h) de travaux dirigés
- Dénombrement, probabilités, variables aléatoires, loi binomiale, Poisson, uniforme et normale
- Estimation, intervalles de confiance
- Tests d'hypothèses (moyenne et χ^2)

Analyse de données (ESIPAP, école du CERN)

- 3h de cours magistral
- Théorie des probabilités, lois statistiques, estimateurs, tests statistiques

- **Formations** Encadrer efficacement des TD (7h)
 - Évaluer les apprentissages des étudiants (4h)
 - Se développer dans son métier d'enseignant (12h)

Questions Effet de la symétrie T **sur l'EDM**

QuestionsDifférence reproductibilité/répétabilité

- ☐ Groupe de cartes
- \bigcap Carte de champ B_0 up
- \bigcirc Carte de champ B_0 down

- Démagnétisation
- au Répétabilité des cartographies
- σ Reproductibilité du champ

Questions

Principe de mesure de l'EDM du neutron

300 s

Questions

Fluctuations temporelles du champ magnétique

