ChEn-3170: Computational Methods in Chemical Engineering Fall 2018 UMass Lowell; Prof. V. F. de Almeida **20Dec2018**

Final Exam 20Dec2018 Session 801/802

Name:

Guidance:

- This is a closed-book, closed-note, individual exam.
- You may use an off-line, simple calculator, that does not store documents or notes.
- You may use scratch paper if you wish (paper will be provided).
- All pages must be submitted with your completed exam.
- · Make sure to answer the question asked.
- Show your work and be clear.

Rubric Panel

Show No.	Now Showing (3 - 6)	Value	Score
1-5	Jupythonic Park	50	
6	RelaxRelax	20	
7	Just One More Time	20	
8	Fast and furious	10	
	Total	100	

Show Problem 1 (10 pts)

Name and give an example of the four main data structures in Python used in this course. Write your example as you would do in a Jupyter program cell below and initialize each of the data structures as empty.

```
In [ ]:
        '''1.1 Data structure'''
In [ ]: '''1.2 Data structure'''
In [ ]: '''1.3 Data type'''
```

```
In [ ]: '''1.4 Data type'''
```

Show Problem 2 (10 pts)

In each of the cells below compute the result as it would show if the cell were executed by the Python interpreter.

```
In [ ]: '''2.3 (2pts)'''
    text = 'compute the result'
    print(len(text))
```

Show Problem 3 (10 pts)

3.1 (2pts) Given matrices **A** and **B** compute **C** = **A B**. Write the simplest Python code you can imagine to performe this operation and compute and print the result. Note: $\mathbf{A} = \begin{pmatrix} 1 & 2 & -4 \\ 0 & 3 & 4 \\ 1 & 2 & 5 \end{pmatrix}$

and
$$\mathbf{B} = \begin{pmatrix} 1 & 7 & 3 \\ 3 & 2 & 6 \\ 0 & 2 & 4 \end{pmatrix}$$
.

In []: '''3.1 (2pts) Code and result'''

3.2 (4pts) Given matrix $\bf A$ and vector $\bf b$ compute the solution $\bf x$ of $\bf A$ $\bf x$ = $\bf b$ and write the simplest possible Python code to compute and print the result. Note: $\bf A$ = $\begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ -1/2 & 1 & 1 \end{pmatrix}$ and

 $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}.$

In []: '''3.2 (4pts) Code and result'''

3.3 (4pts) Given matrix $\bf A$ and vector $\bf b$ compute the solution $\bf x$ of $\bf A$ $\bf x$ = $\bf b$ and write the simplest possible Python code to compute and print the result. Note: $\bf A$ = $\begin{pmatrix} 2 & 3 & 1 \\ 0 & 1/2 & 1/2 \\ 0 & 0 & 1 \end{pmatrix}$ and

 $\mathbf{b} = \begin{pmatrix} 1 \\ 5/2 \\ 0 \end{pmatrix}.$

Show Problem 4 (10 pts)

a) (5pts) Given matrix $\bf A$ compute the solution $\bf A$ $\bf x$ = $\bf b$. Write the simplest Python code you can imagine to performe this operation and compute and print the result. Note:

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 1 \\ -1 & -1 & 1 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}.$$

b) (5pts) Given matrix $\bf A$ compute the solution $\bf A$ $\bf x$ = $\bf b$. Write the simplest Python code you can imagine to performe this operation and compute and print the result. Note:

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}.$$

Show Problem 5 (10 pts)

Given the following reaction mechanism for hydrogen bromide:

$$H_2 + Br_2 \longleftrightarrow 2 HBr$$
 $Br_2 \longleftrightarrow 2 Br$
 $Br + H_2 \longleftrightarrow HBr + H$
 $H + Br_2 \longleftrightarrow HBr + Br$
 $H + HBr \longleftrightarrow H_2 + Br$
 $2 Br \longleftrightarrow Br_2$

write a simple code to compute the number of independent reactions and compute this number.

In []:	'''5. Independent reactions'''

Show Problem 6 (20 pts)

A concentration signal is believed to follow the model

$$c(t) = a + b e^{-t/\tau_1} + c e^{-t/\tau_2}$$

which has two modes of relaxation with relaxation times, $\tau_1 = 2$ s, and $\tau_2 = 4$ s. Given the scarce measurements of c(t) below:

- 1. Calculate the best values of *a*, *b*, *c* that fit the model.
- 2. Calculate the residual of your best approximation.
- 3. Is this a good approximation for the data? (hint: calculate c(1) and/or graph the approximant c(t) on the plot)
- 4. Explain why or why not the approximation is good and the conditions that control the goodness of the approximation.


```
In [ ]: '''6.1 Calculate optimum a, b, c'''
```

chen-3170-final-exam

12/20/18, 11:12 AM

chen-3170-final-exam 12/20/18, 11:12 AM In []: '''6.2 Calculate the residual''' In []: '''6.3 Is this a good approximation of the data?'''

Show Problem 7 (20 pts)

A reversible first-order endothermic reaction

$$A \xrightarrow[k_b]{k_f} 2B$$
,

is performed in a continuous-stirred-tank reactor.

The experimental forward rate of reaction per unit volume is

$$r_{\rm f,1} = k_{\rm f} c_{\rm A} c_{\rm B}^0,$$

and the reverse is

$$r_{\rm b,1} = \lambda \, k_{\rm f} \, c_{\rm A}^0 \, c_{\rm B}^\beta.$$

The governing equations for the time variation of the concentrations of species A and B are:

$$\frac{dc_{A}}{dt} = -\frac{1}{\tau} \left(c_{A} - c_{Ain} \right) + g_{A}(t),$$

$$\frac{dc_{B}}{dt} = -\frac{1}{\tau} \left(c_{B} - c_{Bin} \right) + g_{B}(t),$$

where $\tau=\frac{V}{q}=\frac{V\,\rho}{w}$ is the residence time of the flow in the reactor tank, and $\mathbf{g}=\begin{pmatrix}g_{\mathrm{A}}\\g_{\mathrm{B}}\end{pmatrix}$ is the species production vector obtained from the stoichiometric relation

$$S^T r = g$$
,

using $\mathbf{r} = r_{\rm f,1} - r_{\rm b,1}$.

The following values are given

Name	Parameter	Value	Unit
mass flow rate	w	10	ka/s

inflow concentration of A	c_{Ain}	1.2	kgmol/m ³
inflow concentration of B	c_{Bin}	0.0	kgmol/m ³
holdup volume	V	0.2	m^3
mass density	ho	1000	kg/m ³
Arrhenius frequency	k_0	1.97×10^{24}	s^{-1}
activation temperature	E/R	20000	K
reverse reaction factor	λ	0.1	
reverse reaction order	$oldsymbol{eta}$	2.5	
S.S. reactor temperature	$T_{ m ss}$	350	K

When the reactor reaches steady state (temperature $T_{\rm ss}=350$ K), the forward reaction constant $k_{\rm f}$ is given by the Arrhenius relation: $k_{\rm f}=k_0\,\exp(\frac{-E}{R\,T})$ at the steady state temperature. Compute the concentration of A and B at steady state.

chen-3170-final-exam

12/20/18, 11:12 AM

chen-3170-final-exam

12/20/18, 11:12 AM

Show Problem 8 (10 pts)

If the flow rate through the tank in Problem 7 is too high, the species generation terms are negligible. In this limit, calculate:

- 1. The time-dependent behavior of the concentrations of A and B assuming that the starting concentrations in the tank are the values of the steady state computed in Problem 7.
- 2. What would be the temperature in the tank?

```
In [ ]: '''8.1a (4pts) Solve for c a(t)'''
```

In []:	'''8.1b (4pts) Solve for c_b(t)'''

In []:	'''8.2 (2pts) Temperature in the tank'''