

Computational Physics

numerical methods with C++ (and UNIX)
2020-21

Fernando Barao

Instituto Superior Técnico, Dep. Fisica email: fernando.barao@tecnico.ulisboa.pt

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (1)

Computational Physics Numerical integration

Fernando Barao, Phys Department IST (Lisbon)

45

Romberg integration

It improves the results of numerical integration using error-correction techniques

uses two estimates of the integral with different precisions, to compute a more accurate approximation

trapezoidal rule

$$I = I(h) + E(h)$$

I: exact value of integral

I(h): integral evaluation using trapezoidal rule with step size $\frac{b-a}{n}$

E(h): truncature error $E(h) \simeq -\frac{b-a}{12} h^2 \bar{f}''$

How to combine different precision estimations?

$$I = I(h_1) + E(h_1) = I(h_2) + E(h_2)$$

with $E(h_i) = O(h_i^2)$

Assuming \bar{f}'' constant regardless of step size (h),

$$\frac{E(h_1)}{E(h_2)} \simeq \left(\frac{h_1}{h_2}\right)^2 \to E(h_2) = \frac{I(h_2) - I(h_1)}{\left(\frac{h_1}{h_2}\right)^2 - 1}$$

It can be shown that the error is $O(h^4)$

$$I = I(h_2) + E(h_2) = I(h_2) + \frac{I(h_2) - I(h_1)}{\left(\frac{h_1}{h_2}\right)^2 - 1}$$

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (3)

Romberg integration (cont.)

Defining following indices:

k, level of integration

k = 1 trapezoidal rule, $O(h^2)$

k = 2 differences, $O(h^4)$

k = 3 differences, $O(h^6)$

. . .

j, integral accuracy level related to number of slices (h size)

$$j=1,2,3,\cdots$$

$$I_{j+1,k+1} = I_{j+1,k} + \frac{1}{4^k - 1} (I_{j+1,k} - I_{j,k})$$

For example,

$$I_{2,2} = I_{2,1} + \frac{1}{4-1} (I_{2,1} - I_{1,1})$$

$$I_{3,2} = I_{3,1} + \frac{1}{4-1} (I_{3,1} - I_{2,1})$$

$$k = 1 k = 2 k = 3 k = n$$

$$\begin{pmatrix} I_{1,1} & & & \\ I_{2,1} & I_{2,2} & & \\ I_{3,1} & I_{3,2} & I_{3,3} & & \\ \vdots & \vdots & \vdots & \vdots & \\ I_{n,1} & I_{n,2} & I_{n,3} & I_{n,n} \end{pmatrix} (j = n)$$

$$(j = 1) (j = 2) (j = 3)$$

$$(j = 3) (j = n)$$

Within same level of integration, integral estimation is improving (check variation)

Next level of integration is better (check)

Optimal value will be $I_{n,n}$

65

Simpson rule

- ✓ Making n = 2 in Newton-Cotes formula is equivalent to use a degree 2 polynomial approximation for describing the function f(x)
- ✓ This method requires segments defined by **pairs of slices** in order to have the polynomial defined (adjacent slices)

✓ The result is that the **number of slices has to be even**. The integral for a pair of slices made with the three points $[x_{i-1}, x_i, x_{i+1}]$

$$F_i = \int_{x_{i-1}}^{x_{i+1}} f(x) \ dx \simeq \frac{h}{3} \left[f(x_{i-1}) + 4f(x_i) + f(x_{i+1}) \right]$$

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (5)

Simpson rule (cont.)

✓ For an integration range [a,b], we divide it in n intervals (even) of width $h = \frac{b-a}{n}$,

$$F = \int_{a}^{b} f(x) dx \simeq \sum_{i=1,3,5,\cdots}^{n} \left[\int_{x_{i-1}}^{x_{i+1}} f(x) dx \right]$$

= $\frac{h}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right]$

✓ Error:

$$\Delta F = \frac{(b-a)h^4}{180} f^{(4)}(\chi)$$

Simpson rule requires that the number of slices n shall be even. If this is not the case, we can integrate over the n-1 slices with Simpson method and integrate the last slice using a degree 2 polynomial built from

$$[x_{n-2},x_{n-1},x_n]$$

$$\int_{x_n-h}^{x_n} f(x)dx = \frac{h}{12} \left(-f_{n-2} + 8f_{n-1} + 5f_n \right)$$

Integration errors: step size

Aiming at obtaining an accuracy ε

trapezoidal rule

$$\Delta F = \frac{h^2}{12}(b-a)M_{(2)} = \frac{(b-a)^3}{12}\frac{M_{(2)}}{n^2} < \varepsilon \implies n^2 > \frac{1}{\varepsilon}\frac{M_{(2)}}{12}(b-a)^3$$

simpson rule

$$\Delta F = \frac{h^4}{180}(b-a)M_{(4)} = \frac{(b-a)^5}{180}\frac{M_{(4)}}{n^4} < \varepsilon \implies \boxed{n^4 > \frac{1}{\varepsilon}\frac{M_{(4)}}{180}(b-a)^5}$$

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (7)

C++ classes

class Func1D

class Integrator

class Derivator

```
class Func1D {
public:
  Func1D(TF1 *fp=NULL);
  // other constructors?
  ~Func1D();
  void Draw();
  double Evaluate();
protected:
  TF1 *p;
};
```


Fernando Barao, Phys Department IST (Lisbon)

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (17)

Monte-Carlo methods

- any method using random variables for a numerical calculation
 - we ask for a statistical answer!
- founding article:
 - "The monte carlo method", N. Metropolis, S. Ulam (1949)
- ✓ applications: physics, engineering, finance, ...
- aims of the method:
 - ▶ generate samples of random variables (\vec{X}) according to a density probability distribution $p(\vec{X})$
 - estimate expectation values (<>) of variables or functions

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION

Number 247

SEPTEMBER 1949

Volume 44

THE MONTE CARLO METHOD

NICHOLAS METROPOLIS AND S. ULAM

Los Alamos Laboratory

We shall present here the motivation and a general description of a method dealing with a class of problems in mathematical physics. The method is, essentially, a statistical approach to the study of differential equations, or more generally, of integro-differential equations that occur in various branches of the natural sciences.

ALREADY in the nineteenth century a sharp distinction began to appear between two different mathematical methods of treating

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (19)

Statistical concepts

 \checkmark the expected value of a variable X sampled N times (X_1, X_2, \cdots, X_N)

$$E(X) = \langle X \rangle = \frac{1}{N} \sum_{i=1}^{N} X_i$$

the variance of the sample:

$$Var(X) \equiv \sigma_X^2 \simeq \frac{1}{N} \sum_{i=1}^N (X_i - \langle X \rangle)^2 = \langle (X - \langle X \rangle)^2 \rangle = \langle X^2 \rangle - \langle X \rangle^2$$

✓ the standard deviation of the sample:

$$\sigma_X \simeq \sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_i - \langle X \rangle)^2}$$

PDFs - prob density distributions

✓ PDFs: the probability density function p(X) give us the probability of an event (a value X_i in this case) to occur

$$\int_{-\infty}^{+\infty} p(X) \ dX = 1$$

 \checkmark for a discrete variable X, its expectation value is given by:

$$\langle X \rangle = \frac{1}{N} \sum_{i=1}^{N} p(X_i) X_i$$

 \checkmark for a continuous variable X or function f(X), the expectation value is given by:

$$\langle X \rangle = \int_{-\infty}^{+\infty} p(X) \ X \ dX$$
$$\langle f \rangle = \int_{-\infty}^{+\infty} p(X) \ f(X) \ dX$$

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (21)

Important PDFs

 \checkmark uniform distribution: X[a,b]

$$p(X) = \frac{1}{b-a}H(X-a)H(b-X)$$

✓ exponential distribution: $X[0, \infty]$

$$p(X) = \alpha e^{-\alpha X}$$

✓ normal distribution: $X[-\infty, +\infty]$

$$p(X) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{X-\mu}{\sigma}\right)^2}$$

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (23)

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (24)

60-1