Binary Search Trees

Let's say that I have a collection of numbers...

There are a few fundamental operations I can perform

I can **lookup** an item to see if it exists

I can **lookup** an item to see if it exists

I can add an item to the collection

I can add an item to the collection

For now, I haven't talked about how we actually **implement** the collection

Only it's **specification**

Ask yourself: what's the simplest possible implementation?

Ask yourself: what's the simplest possible implementation?

For me that would be a list

Implemented as a list...

Note: collection is unordered! Implemented as a list...

Can implement these two operations

```
def insert(l,n):
    return l.insert(0,n) # Extend front

def lookup(l,n):
    for i in l:
        if (i == n): return true # Found!
    return false
```

Can implement these two operations

```
def insert(l,n):
    return l.insert(0,n) # Extend front

def lookup(l,n):
    for i in l:
        if (i == n): return true # Found!
    return false
```


Can we do better for lookup?

Answer: yes, using slightly smarter data-structure

But all data structures have trade-offs

First some intuition...

When I lookup, I go through list one-by-one...

12 23 42 14 -2

When I lookup, I go through list one-by-one...

The crucial trick is to sort

Is 12 in this sequence?

Start looking here

-2 12 14 23 42

Is 12 in this sequence?

-2 12 14 23 42

14 > 12, so I know it must be in lower half

Is 12 in this sequence?

Keep looking here...

To lookup i in a sequence I:

- Start at the middle element, call it j
 - If i = j, then return true
 - If i < j, then repeat with the lower half of the list
 - If i > j, then repeat with the upper half

Logarithmic work! Every step eliminates half!

To lookup i in a list l:

- Start at the middle element, call it j
 - If i = j, then return true
 - If i < j, then repeat with the lower half of the list
 - If i > j, then repeat with the upper half

Logarithmic work! Every step eliminates half!*

Logarithmic work! Every step eliminates half!*

*But if we use a list, we don't get log(n) lookup!

Lists aren't random access, so first step takes linear time!

To lookup i in a sequen

- Start at the middle element, call it j
 - If i = j, then return true
 - If i < j, then repeat with the lower half of the list
 - If i > j, then repeat with the upper half

Therefore, actually n!:(

Arrays are random access

lookup now log(n)!

Downside: insertions must copy the whole array

Insert 13 -2 12 14 23 42

Downside: insertions must copy the whole array

Downside: insertions must copy the whole array

Let's apply this intuition to trees

BST: Binary Tree that has the...

Binary Search Property

Every item in left child < parent, vice versa

Everything over here had better be < 14 (Even in children of this node)

Let's say we want to look for 12...

Start at the top of the tree

12 < 14, so look down left child

At a high level: Walk down tree left / right until you find what you're looking for

The **structure** of the tree tells you which way to go

Implementing lookup

```
# Assume t is a tree with .left, .right, and .elem
def lookup(t,i):
    if t == null: return false
    if t.elem == i: return true
    else if t.elem < i: return lookup(t.left, i)
    else if t.elem > i: return lookup(t.right, i)
```

Assume t is a tree with .left, .right, and .elem
def lookup(t,i):
 if t == null: return false
 if t.elem == i: return true
 else if t.elem < i: return lookup(t.left, i)
 else if t.elem > i: return lookup(t.right, i)

Assume t is a tree with .left, .right, and .elem
def lookup(t,i):
 if t == null: return false
 if t.elem == i: return true
 else if t.elem < i: return lookup(t.left, i)
 else if t.elem > i: return lookup(t.right, i)

Assume t is a tree with .left, .right, and .elem
def lookup(t,i):
 if t == null: return false
 if t.elem == i: return true
 else if t.elem < i: return lookup(t.left, i)</pre>

else if t.elem > i: return lookup(t.right, i)

Looking for 23 12 **23 42** # Assume t is a tree with .left, .right, and .elem
def lookup(t,i):

if t == null: return false
if t.elem == i: return true
else if t.elem < i: return lookup(t.left, i)
else if t.elem > i: return lookup(t.right, i)

Now let's say I want to insert 13...

Start at top

13 < 14, so must add to leftStart at top

13 > 12, so must add to right

Oops! Nothing here. Add **new** node

Oops! Nothing here. Add **new** node


```
# Assume node(elem,left,right) is a constructor
def add(t,i):
    if t == null: new node(i,null,null)
    if t.elem == i: return t
    else if t.elem < i:
        return node(t.elem,add(t.left,i),t.right)
    else if t.elem > i:
        return node(t.elem,t.right,add(t.right,i))
```

Observation: BSTs can store more than just numbers

Only need total ordering (any two can be compared)

- **→**Strings
- **→**Doubles
- →Other user defined types
 - →Some langs allow overloading <

Observation: BSTs can store more than just numbers

Only need total ordering (any two can be compared)

- **⇒**Strings
- **→**Doubles
- →Other user defined types
 - →Some langs allow overloading <

Can also use as basis for other data structures (e.g., dictionary: nodes key/value pairs)

insert O(height)
lookup O(height)

O(log(size)) when balanced

Naive insertion does not balance tree :(

insert O(height)
lookup O(height)

O(log(size)) when balanced

Let's say I start with a I-element tree...

Then extend it...

Question

Can we ensure good performance generally?

- Precompute **best** BST (dynamic programming)
- Randomize insertion order
- Build even smarter data structures:
 - Red-Black trees maintain "balanced-ish" trees
 - AVL trees "rebalance" the tree

(Beyond scope, today)

List

insert O(I)

lookup O(n)

Simple

lnsertions frequent

Lookups frequent

List

insert O(I)

lookup O(n)

Simple

Insertions frequent

Lookups frequent

Sorted Array

Also allocates lots of memory

insert O(n)

lookup O(log(n))

Lookups frequent

Insertions frequent

List

insert O(I)

lookup O(n)

Simple

Insertions frequent

Lookups frequent

Sorted Array

Also allocates lots of memory

insert O(n)

lookup O(log(n))

Lookups frequent

Insertions frequent

BST

balanced

Lookups frequent

insert ~O(log(n))

Insertions frequent

 $lookup \sim O(log(n))$

Maintaining balance hard