Lecture 2: The classic paradigm

VS

the predictive paradigm

Big Data and Machine Learning for Applied Economics Econ 4676

Ignacio Sarmiento-Barbieri

Universidad de los Andes

August 13, 2020

Agenda

- 1 Motivation
- 2 The Classic Paradigm
- **3** Statistical Decision Theory
- 4 Reducible and Irreducible Error
- 5 Recap
- 6 If there's time left

Recap Last Class

Motivation

- We discussed the examples of Google Flu and Facebook face detection
 - ► Take away, the success was driven by an empiric approach
 - Given data estimate a function f(x) that predicts y from x
- ▶ This is basically what we do as economists everyday so:
 - Are these algorithms merely applying standard techniques to novel and large datasets?
 - ▶ If there are fundamentally new empirical tools, how do they fit with what we know?
 - ► As empirical economists, how can we use them?

The Classic Paradigm

$$Y = f(X) + u \tag{1}$$

- ► Interest lies on inference
- ightharpoonup "Correct" f() to understand how Y is affected by X
- Model: Theory, experiment
- ► Hypothesis testing (std. err., tests)

Example: OLS and the classical model

Set

$$f(X) = X\beta \tag{2}$$

- $Y = X\beta + u$
- ▶ Interest in β
- ▶ The model is given.
- ▶ Problem: how to estimate β in the given model?
- ► Minimize SSR

$$\hat{\beta} = (X'X)^{-1}X'y \tag{3}$$

- Gauss-Markov: under the classical assumptions it is BLUE
- ► Classical assumptions: how they affect properties (omitted variables, endogeneity, heteroscedasticity, etc.)

The Predictive Paradigm

$$Y = f(X) + u \tag{4}$$

- ► Interest on predicting *Y*
- ightharpoonup "Correct" f() to be able to predict (no inference!)
- ► Model?

- ▶ We need a bit of theory to give us a framework for choosing *f*
- ightharpoonup A decision theory approach involves an **action space** $\mathcal A$
- ▶ The **action space** A specify the possible "actions we might take"
- Some examples

Table 1: Action Spaces

Inference	Action Space
Estimation θ , $g(\theta)$	$\mathcal{A}=\Theta$
Prediction	$A = space of X_{n+1}$
Model Selection	$\mathcal{A} = \{Model\ I, Model\ II,\}$
Hyp. Testing	$\mathcal{A} = \{Reject Accept H_0\}$

- ▶ After the data X = x is observed, where $X \sim f(X|\theta)$, $\theta \in \Theta$
- A decision is made
- ▶ The set of allowable decisions is the action space (A)
- ► The loss function in an estimation problem reflects the fact that if an action a is close to θ ,
 - then the decision *a* is reasonable and little loss is incurred.
 - if it is far then a large loss is incurred

$$L: \mathcal{A} \to [0, \infty] \tag{5}$$

Loss Function

- ▶ If θ is real valued, two of the most common loss functions are
 - ► Squared Error Loss:

$$L(a,\theta) = (a-\theta)^2 \tag{6}$$

► Absolute Error Loss:

$$L(a,\theta) = |a - \theta| \tag{7}$$

- ► These two are symmetric functions. However, there's no restriction. For example in hypothesis testing a "0-1" Loss is common.
- Loss is minimum if the action is correct

Risk Function

In a decision theoretic analysis, the quality of an estimator is quantified by its risk function, that is, for an estimator $\delta(x)$ of θ , the risk function is

$$R(\theta, \delta) = E_{\theta}L(\theta, \delta(X)) \tag{8}$$

at a given θ , the risk function is the average loss that will be incurred if the estimator $\delta(X)$ is used

- ▶ since θ is unknown we would like to use an estimator that has a small value of $R(\theta, \delta)$ for all values θ
- Loss is minimum if the action is correct
- ▶ If we need to compare two estimators (δ_1 and δ_2) then we will compare their risk functions
- ▶ If $R(\delta_1, \theta) < R(\delta_2, \theta)$ for all $\theta \in \Theta$, then δ_1 is preferred becasue it performs better for all θ

How to choose *f* for prediction

- ▶ In a prediction problem we want to predict Y from f(X) in such a way that the loss is minimum
- Assume also that $X \in \mathbb{R}^p$ and $Y \in \mathbb{R}$ with joint distribution Pr(X,Y)

$$R(Y, f(X)) = E[(Y - f(X)^{2}]$$
(9)

$$= \int (y - f(x)^2 Pr(dx, dy)$$
 (10)

conditioning on X we have that

$$R(Y, f(X)|X) = E_X E_{Y|X}[(Y - f(X))^2 | X]$$
(11)

this risk is also know as the **mean squared (prediction) error** Err(f)

Mean square error

It suffices to minimize the Err(f) point wise so

$$f(x) = argmin_m E_{Y|X}[(Y-m)^2|X=x)$$
(12)

Y a random variable and m a constant (predictor)

$$min_m E(Y-m)^2 = \int (y-m)^2 f(y) dy$$
 (13)

Result: The best prediction of Y at any point X = x is the conditional mean, when best is measured by mean squared error.

Mean square error

Proof FOC

$$\int -2(y-m)f(y)dy = 0 \tag{14}$$

Divided by -2 and clearing

$$m\int(y)dy = \int yf(y)dz = 0$$
 (15)

$$m = E(Y|X = x) \tag{16}$$

The best prediction of Y at any point X = x is the conditional mean, when best is measured by mean squared error.

Reducible and Irreducible Error

$$Y = f(X) + u \tag{17}$$

- ▶ If *f* were known and *X* were observable, the problem comes down to predicting *u*
- ► Given that *u* is not observable, the best prediction in MSE is its expectation. *u* is the irreducible error
- ▶ When f(.) is also unknown, the prediction problem is reduced to knowing f(.)
- ▶ The 'reducible' error refers to the discrepancy between $\hat{f}(.)$ and f(.)

Reducible and irreducible error

- ▶ Let's think about our usual problem f(.) is unknown
- ► Consider a given estimate \hat{f} and a set of predictors
- ▶ this predictors yield $\hat{Y} = \hat{f}(x)$.
- For now assume \hat{f} and X are fixed (Hastie et al. make this assumption any idea why?)
- ▶ Then we can show that the mean square error

$$E(Y - \hat{Y})^2 = E(f(X) + u - \hat{f}(X))^2$$
(18)

$$= \underbrace{[f(X) - \hat{f}(X)]^{2}}_{Reducible} + \underbrace{Var(u)}_{Irreducible}$$
(19)

Reducible and irreducible error

$$E(Y - \hat{Y})^2 = \underbrace{[f(X) - \hat{f}(X)]^2}_{Reducible} + \underbrace{Var(u)}_{Irreducible}$$
(20)

- ► The focus the is on techniques for estimating *f* with the aim of minimizing the reducible error
- ► It is important to keep in mind that the irreducible error will always provide an upper bound on the accuracy of our prediction for *Y*
- ▶ This bound is almost always unknown in practice

Variance Decomposition/ Bias

Remember

- ► $Bias(\hat{f}(X)) = E(\hat{f}(X)) f = E(\hat{f}(X) f(X))$
- $Var(\hat{f}) = E(\hat{f} E(\hat{f}))^2$

Result (very important!)

$$MSE = Bias^{2}(\hat{f}(X)) + V(\hat{f}(X))$$
(21)

Proof: as an exercise

The econometric approach

$$MSE = Bias^{2}(\hat{f}(X)) + V(\hat{f}(X))$$
 (22)

- ▶ When $\hat{f}(X)$ is unbiased, minimize MSE $\hat{f}(X)$ is reduced to minimize $V(\hat{f}(X))$
- ► The best kept secret: tolerating some bias is possible to reduce $V(\hat{f}(X))$ and lower MSE
- ► If the goal is to predict, it is not a problem to tolerate biased estimates
- ▶ It could be the case that the MSE is minimum for biased predictors

How to estimate f()

Parametric methods → assume the functional form → from economic theory?

How to estimate f(.)

Source: motorcycle data from https://www.stata-press.com/data/r12/r.html

How to estimate f(.)

▶ Linear $f(X) = X\beta$

Source: motorcycle data from https://www.stata-press.com/data/r12/r.html

How to estimate f()

- Parametric methods → assume the functional form → from economic theory?
- ▶ Non-Parametric methods \rightarrow no assumption about f() let the data speak

How to estimate f(.)

► Local Polynomial Regression

Source: motorcycle data from https://www.stata-press.com/data/r12/r.html

How to estimate f(.)

Linear vs Local Polynomial Regression

Source: motorcycle data from https://www.stata-press.com/data/r12/r.html

Accuracy, complexity and interpretability

Source: https://imgs.xkcd.com/comics/machine_learning.png

Accuracy, complexity and interpretability

Recall the problem of interpretation in

$$Y = \beta_1 + \beta_2 X + \beta_3 X^2 + u \tag{23}$$

- We have lost the interpretation of β_2 as a marginal effect
- In a non-linear model the interpretations are no longer trivial
- Machine learning: we quickly lose interpretability in predictive quality post
- ▶ Is this a problem?

Accuracy, complexity and interpretability

▶ Is this a problem?

Source: shorturl.at/gm013

Supervised vs Unsupervised

- ► Supervised Learning
 - for each predictor x_i a 'response' is observed y_i .
 - everything we have done in econometrics is supervised

Source: shorturl.at/opqKT

Supervised vs Unsupervised

- Unsupervised Learning
 - ightharpoonup observed x_i but no response.
 - example: cluster analysis

Source: shorturl.at/opqKT

Recap

- ► We start shifting paradigms
- ► Tools are not that different (so far)
- ightharpoonup Decision Theory: Risk with square error loss ightarrow MSE
- ▶ Objective minimize the reducible error
- ► Irreducible error our unknown bound
- Machine Learning best kept secret: some bias can help lower MSE

Next

- ▶ Next Class: OLS, Geometry, BLUE, BLUP
- ► GitHub Demo
- Questions about software installation
 - ▶ R and RStudio
 - ► Conda?

Further Readings

- ➤ Casella, G., & Berger, R. L. (2002). Statistical inference (Vol. 2, pp. 337-472). Pacific Grove, CA: Duxbury.
- ▶ James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
- ► Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, No. 10). New York: Springer series in statistics.
- ▶ Mullainathan, S. and Spiess, J., 2017. Machine learning: an applied econometric approach. Journal of Economic Perspectives, 31(2), pp.87-106.