Equilibrio chimico

Una reazione chimica può essere reversibile, cioè la trasformazione dei reagenti in prodotti può non essere completa.

La reazione tra i reagenti A e B che genera i prodotti C e D avviene in maniera parziale e i composti C e D, a loro volta, reagiscono tra loro per formare A e B.

Le concentrazioni delle quattro specie tenderanno a rimanere all'equilibrio tra loro senza subire alcuna variazione.

Punto di equilibrio: la reazione è al equilibrio quando le concentrazioni rimangono tali nel tempo. $aA + bB \Rightarrow cC + dD$

COSTANTE DI EQUILIBRIO

- In funzione della concentrazione molare

$$K = \frac{[C]^c [D]^d}{[A]^a [B]^b}.$$

∆la kc tiene contro solo delle specie in fase gassosa

- In funzione della pressioni parziali

$$K_p = rac{p_C^c p_D^d}{p_A^a p_B^b}$$

- In funzione delle frazioni molari

$$K_x = rac{x_C^c x_D^d}{x_A^a x_B^b}$$

Se una reazione è in fase gassosa posso utilizzare altre formule per rappresentare la costante

$$K_p = K_c (RT)^{\Delta n}$$
 $K_n = K_x P^{\Delta n}$

 Δn o Δv : differenza tra la somma dei coefficienti stechiometrici dei prodotti e la somma dei coefficienti stechiometrici dei reagenti. Δv =(c+d) - (a+b)

Se la Kc ha un valore alto vuol dire che la reazione e spostata verso i prodotti Se la kc è bassa vuol dire che la reazione è spostata verso sinistra ovvero verso i reagenti.

Il valore assunto dalla costante di equilibrio dipende da:

- Natura chimica dei reagenti e dei prodotti
- Temperatura se la reazione è esoergonica (libera energia) il valore della costante e la temperatura hanno andamento inverso (l'aumento di temperatura implica un abbassamento della Kc) se la reazione endoergonica (utilizza energia) il valore della costante e la temperatura hanno andamento uguale (l'aumento di temperatura implica un aumento della kc)

PRINCIPIO DI LE CHATELIER (EQUILIBRIO MOBILE)

Se una reazione all'equilibrio subisce una perturbazione che ne alteri temporaneamente il suo equilibrio, la reazione tenera immediatamente a ripristinare un nuovo stato di equilibrio. Il senso di spostamento dell'equilibrio (verso destra - prodotti, verso sinistra - reagenti) è quello in cui viene minimizzata la perturbazione apportata.

La perturbazione puo essere data da:

- Modificazione delle concentrazioni: un aumento della concentrazione dei reagenti provoca uno spostamento della reazione verso i prodotti (ovvero verso destra) un aumento di concentrazione dei prodotti provoca uno spostamento della reazione verso i reagenti (ovvero verso sinistra)
 - →avviene il contrario se tolgo un reggente o un prodotto
- Pressione: quando la pressione aumenta c'è uno spostamento verso la parte dove sono presenti un minor numero di molecole (ovvero dove sono presenti meno urti) quindi se il Δv è negativo la freccia va verso i prodotti (verso destra) se è positivo va verso i reagenti (verso i prodotti)
 - Questo avviene solo in presenza di gas, se la pressione diminuisce lo spostamento va verso la parte dove sono presenti più urti
- **Temperatura**: reazioni endotermiche ΔH>0 aumento di temperatura provoca lo spostamento dell'equilibrio verso destra (prodotti) in quanto il calore fornito viene assorbito dai reagenti per formare prodotti più energetici.
 - Per le reazioni esotermiche un aumento di temperatura provoca lo spostamento di equilibrio verso sinistra ovvero verso i reagenti