Problemas, Algoritmos, y Programación Trabajo Práctico 1

Jonás Levy Alfie Denys Bulavka Martín Fixman Facundo Gutiérrez

Segundo Cuatrimestre 2016

Índice

L.	La Tienda de Apu
	1.1. Soluciones teóricas al problema
	1.1.1. Backtracking naïve
	1.1.2. Meet in the Middle
2.	El cumpleaños de Lisa
3.	Experimentos nucleares
1.	El error de Smithers

1. La Tienda de Apu

1.1. Soluciones teóricas al problema

1.1.1. Backtracking naïve

Una posible manera de solucionar el problema es usar backtracking normal. En particular, se puede definir una función $\mathcal{B}: \{Tamano\} \times precio \times precio \rightarrow precio$ que, dado un conjunto de tamaños de rosquillas D_1, \ldots, D_N , un precio P, y el precio ya pagado p, diga cuanta es la mayor cantidad de plata que puede gastar comprando las rosquillas en los argumentos para que en total gaste menos de P pesos.

$$\mathcal{B}(\varnothing,P,p) = \begin{cases} p & \text{si } p \leq P \\ 0 & \text{si } p > P \end{cases}$$

$$\mathcal{B}\left(\left\{D_{1},D_{2},\ldots,D_{N}\right\},P,p\right) = \max \begin{pmatrix} \mathcal{B}\left(\left\{D_{2},\ldots,D_{N}\right\},P,p+D_{1}\right) \\ \mathcal{B}\left(\left\{D_{2},\ldots,D_{N}\right\},P,p\right) \end{pmatrix}$$

El resultado de $\mathcal{B}(D, P, 0)$ sería el mejor resultado del problema, ya que

- Homero empieza comprando 0 pesos en rosquillas.
- Si no hay rosquillas disponibles, Homero no puede gastar más plata en rosquillas.
- lacksquare Si hay dos casos donde se gasta menos que P pesos, el mejor caso es el que se gastó el mayor valor.
- El resultado no va a ser menor a 0; lo peor que le puede pasar a Homero es no poder comprar ninguna rosquilla.
- Cada rosquilla se puede comprar solo una vez.
- Cada combinación de $F \subseteq D$ de rosquillas compradas por Homero es contada. En particular, cada $d \in D$ aparece y no aparece en el precio final, alternativamente.

Si se implementa una función B que devuelva el resultado de $\mathcal B$ recursivamente, la complejidad en tiempo sería.

 $\mathcal{O}(1)$ en el caso base.

 $\mathcal{O}(1)$ en cada paso de la recursión.

 $\mathcal{O}(2^N)$ pasos de la recursión diferentes: dos paso por cada elemento de D.

 $\mathcal{O}(2^N)\cdot\mathcal{O}(1)=\mathcal{O}(2^N)$ complejidad de tiempo total.

Esto no es lo suficientemente rápido para las restricciones del problema, así que hay que usar otro método.

1.1.2. Meet in the Middle

Dado cierto número $\tau \in [1, N]$, separamos D en dos conjuntos.

$$A = D_1, \dots, D_{\tau}$$
$$B = D_{\tau+1}, \dots, D_N$$

Luego, definimos la función $\mathcal{V}: \{Tamano\} \times precio \times precio \rightarrow \{precio\}\}$ tal que V(D,P,p) es el conjunto de rosquillas subconjunto de D que se pueden comprar con P pesos si ya se pagaron p pesos de una manera similar a \mathcal{B} .

$$\mathcal{V}(\varnothing, P, p) = \begin{cases} \{p\} & \text{si } p \leq P \\ \varnothing & \text{si } p > P \end{cases}$$

$$\mathcal{V}\left(\left\{D_{1}, D_{2}, \dots, D_{N}\right\}, P, p\right) = \frac{\mathcal{V}\left(\left\{D_{2}, \dots, D_{N}\right\}, P, p + D_{1}\right)}{\bigcup \mathcal{V}\left(\left\{D_{2}, \dots, D_{N}\right\}, P, p\right)}$$

Se puede ver que la complejidad en tiempo de calcular $\mathcal{V}(D,P,p)$ es $\mathcal{O}\left(2^{|D|}\right)$ usando el mismo cálculo que se usó para \mathcal{B} .

Si calculamos $Q = \mathcal{V}(A, P, 0); W = \mathcal{V}(B, P, 0)$, estos dos valores van a ser subconjuntos de cantidades de donas que se pueden comprar dentro de A y B. Si la suma de dos elementos de cada uno de los conjuntos es menor que P, entonces se pueden comprar cierta cantidad de rosquillas de A y cierta cantidad de B sin gastar más plata que la que se tiene. Calcular estos dos conjuntos tiene complejidad $\mathcal{O}(2^{\tau} + 2^{N-\tau})$.

Por cada elemento q de entre los $t \leq 2^{|A|}$ elementos de Q, se puede elegir cualquier elemento $w \in W$ de sus $y \leq 2^{|B|}$ elementos siempre y cuando la suma de cada uno sea menor o igual a P. Pero, ¿cuál elegir? Como queremos maximizar la cantida de donas compradas, se debería tomar, por cada $q \in Q$ el mayor elemento $w \in W$ posible tal que $q + w \leq P$, osea, $w \leq P - q$. Como $A \cup B = D$ esto da todas las soluciones posibles, y una de estas tiene que ser la solución óptima.

Usando una estructura de árbol balanceado para representar los conjuntos (como set de C++), la operación de buscar el mayor elemento menor o igual a otro elemento en W (similar a lower_bound) tiene complejidad $\mathcal{O}(\log |W|) = \mathcal{O}(\log 2^{|B|}) = \mathcal{O}(|B|) = \mathcal{O}(N-\tau)$. Como esto se tiene que hacer por cada elemento de Q, la complejidad final del "merge" es $\mathcal{O}(2^{\tau} \cdot (N-\tau)) = \mathcal{O}(N \cdot 2^{\tau})$.

La complejidad final en tiempo de hacer el merge de los dos conjuntos es $\mathcal{O}(2^{\tau}+2^{N-\tau}+N\cdot 2^{\tau})=\mathcal{O}(2^{N-\tau}+N\cdot 2^{\tau})$. Como la exponenciación crece mucho más rápido que la multiplicación, la complejidad menor se alcanza poniendo $\tau=1/2$. Esta complejidad entonces queda como $\mathcal{O}(2^{\frac{1}{2}}+N\cdot 2^{\frac{1}{2}})=\mathcal{O}(N\cdot \frac{1}{2})$, que esta vez sí cumple con las restricciones del enunciado.

2. El cumpleaños de Lisa

3. Experimentos nucleares

4. El error de Smithers