CSC 3130: Automata theory and formal languages

DFA minimization

Andrej Bogdanov

http://www.cse.cuhk.edu.hk/~andrejb/csc3130

Example

• Construct a DFA over alphabet $\{0, 1\}$ that accepts those strings that end in 111

This is big, isn't there a smaller DFA for this?

Smaller DFA

Can we do it with 3 states?

Even smaller DFA?

• Suppose we had a 3 state DFA M for L

... let's imagine what happens when:

• By the pigeonhole principle, on two of these inputs ${\cal M}$ ends in the same state

Pigeonhole principle

Suppose you are tossing m balls into n bins, and m > n. Then two balls end up in the same bin.

• Here, balls are inputs, bins are states:

If you have a DFA with n states and you run it on m inputs, and m > n, then two inputs end up in same state.

A smaller DFA

• Suppose M ends up in the same state after reading inputs x=1 and y=11

- Then after reading one more 1
 - The state of $x_1 = 11$ should be rejecting
 - The state of y1 = 111 should be accepting
 - ... but they are both the same state!

A smaller DFA

• Suppose M ends up in the same state after reading inputs $x = \varepsilon$ and y = 1

- Then after reading 11
 - The state of $x_1 = 11$ should be rejecting
 - The state of y1 = 111 should be accepting
 - ... but they are both the same state!

No smaller DFA!

• After looking at all possible pairs for $x, y, x \neq y$

$$(\epsilon, 1)$$
 $(\epsilon, 11)$ $(\epsilon, 111)$ $(1, 11)$ $(1, 111)$ $(11, 111)$

we conclude that

There is no DFA with 3 states for L

So, this DFA is minimal

DFA minimization

We will show how to turn any DFA for L into the minimal DFA for L

Minimal DFAs and distinguishable states

• First, we have to understand minimal DFAs:

minimal DFA

every pair of states is distinguishable

Distinguishable states

Two states q and q' are distinguishable if

on the same continuation string $w_1w_2...w_k$, one accepts, but the other rejects

Examples of distinguishable states

- (q_0, q_1) distinguishable by 01
- (q_0, q_2) distinguishable by 1
- (q_0, q_3) distinguishable by ε
- (q_1, q_2) distinguishable by 1
- (q_1, q_3) distinguishable by ϵ
- (q_2, q_3) distinguishable by ε

DFA is minimal

Examples of distinguishable states

- (q_0, q_3) distinguishable by ϵ
- (q_1, q_3) distinguishable by ε
- (q_2, q_3) distinguishable by ε
- (q_1, q_2) distinguishable by 0
- (q_0, q_2) distinguishable by 0
- (q_0, q_1) indistinguishable

indistinguishable pairs can be merged

Examples of distinguishable states

- (q_0, q_2) distinguishable by ϵ
- (q_1, q_2) distinguishable by ϵ
- (q_0, q_3) distinguishable by ϵ
- (q_1, q_3) distinguishable by ϵ
- (q_0, q_1) indistinguishable
- (q_2, q_3) indistinguishable

Finding (in) distinguishable states

Rule I:

If q is accepting and q' is rejecting Mark (q, q') as distinguishable (x)

Rule 2:

If (q_1, q_1') are marked, Mark (q_2, q_2') as distinguishable (x)

Rule 3:

Unmarked pairs are indistinguishable Merge them together

 \bigcirc q_{11} is distinguishable from all other states

② q_1 is distinguishable from q_{ϵ} , q_0 , q_{00} , q_{10} On transition 1, they go to distinguishable states

② q_{01} is distinguishable from q_{ϵ} , q_{0} , q_{00} , q_{10} On transition 1, they go to distinguishable states

Merge states not marked distinguishable

 $q_{\epsilon}, q_0, q_{00}, q_{10}$ are equivalent \rightarrow group A q_1, q_{01} are equivalent \rightarrow group B q_{11} cannot be merged \rightarrow group C

Why does method find all distinguishable pairs?

Because we work backwards

Why are there no inconsistencies when we merge?

Because we only merge indistinguishable states

Why is there no smaller DFA?

Suppose there is

By the pigeonhole principle this must happen:

Why is there no smaller DFA?

But then

Every pair of states is distinguishable

q" cannot exist!