Problem Set: 3

1. Show that
$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$
 diverges.

2. Show that
$$\frac{1}{n} \approx 7.49$$

3. Explain why
$$\sum_{n=1}^{\infty} \frac{n^2}{2n^2+1}$$
 diverges.

4. Explain why
$$\frac{5}{\sum_{n=1}^{\infty} \frac{5}{2^{y_n} + 14}}$$
 diverges.

5. Explain why
$$\sum_{n=1}^{\infty} \frac{3}{n}$$
 diverges,

4. Compute
$$\sum_{n=0}^{\infty} \left(\frac{4}{(-3)^n} - \frac{3}{3^n} \right).$$

5. Compute
$$\sum_{n=0}^{\infty} \left(\frac{3}{2^n} + \frac{4}{5^n} \right).$$

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n/4}$$
 (ii)
$$\sum_{n=1}^{\infty} \frac{n}{n^2+1}$$
 (iii)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$

(iv)
$$\sum_{n=1}^{\infty} \frac{1}{n^2+1}$$
 (v) $\sum_{n=1}^{\infty} \frac{1}{e^n}$ (vi) $\sum_{n=1}^{\infty} \frac{n}{e^n}$

$$(v_{11}) \sum_{n=2}^{\infty} \frac{1}{n!nn} \qquad (v_{111}) \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

7. Find an N So that
$$\sum_{n=1}^{\infty} \frac{1}{n^{4}} = \sum_{n=1}^{N} \frac{1}{n^{4}} + 0.005$$

Find an N so that
$$\sum_{n=0}^{\infty} \frac{1}{e^n} = \sum_{n=0}^{N} \frac{1}{e^n} \pm 10^{-1}$$

7. Find an N 80 that
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^2} = \sum_{n=1}^{N} \frac{\ln n}{n^2} \pm 0.005$$

10. Find an N 80 that
$$\sum_{n=2}^{N} \frac{1}{n(\ln n)^2} = \sum_{n=2}^{N} \frac{1}{n(\ln n)^2} \pm 0.005$$

(i)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n+5}$$
 (ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3n-2}$

(ici)
$$\sum_{n=4}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n-3}}$$
 (w) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\ln n}{n}$

(v) Approximate
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^3}$$
 to two decimal

places.

Places.

N=1

Approximate
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^{\frac{1}{4}}}$$
 to two decimal

13. Does
$$\sum_{n=2}^{\infty} \frac{|3nn|}{n^2}$$
 converge?

14. Does
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^2-3}}$$
 Converge?

15. Does
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 3}}$$
 converge?

Determine whether the series

(i)
$$\sum_{n=1}^{\infty} \frac{1}{2n^2+3n+5}$$
 (ii) $\sum_{n=2}^{\infty} \frac{1}{2n^2+3n-5}$ (iii) $\sum_{n=1}^{\infty} \frac{1}{2n^2+3n-5}$ (iv) $\sum_{n=1}^{\infty} \frac{1}{2n^2+3n-5}$

(iv)
$$\sum_{n=1}^{\infty} \frac{2n+3n+5}{2n^2+3n+5} = \sum_{n=1}^{\infty} \frac{3n^2+4}{2n^2+3n+5} = \sum_{n=1}^{\infty} \frac{3n^2+4}{2n^2+3n+5} = \sum_{n=1}^{\infty} \frac{\ln n}{n}$$

(VII)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$$
 (VIII) $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ (IX) $\sum_{n=1}^{\infty} \frac{3^n}{2^n + 5^n}$

$$(x)$$
 $\sum_{n=1}^{\infty} \frac{3^n}{2^n + 3^n}$

17. Does
$$\sum_{n=2}^{\infty} \frac{\sin n}{n^2}$$
 converge?

18. Does
$$\sum_{n=0}^{\infty} (-1)^n \frac{3n+4}{2n^2+3n+5}$$
 converge?

19. Determine whether each series converge absolutely, converge conditionally, or diverges.

(i)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n^2 + 3n + 5}$$
 (ii) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3n^2 + 4}{2n^2 + 3n + 5}$

(iii)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\ln n}{n}$$
 (iv) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\ln n}{n^3}$

(v)
$$\sum_{n=2}^{\infty} (-1)^n \frac{1}{\ln n}$$
 (vi)
$$\sum_{n=0}^{\infty} (-1)^n \frac{3^n}{2^n + 5^n}$$

(N1)
$$\sum_{n=0}^{\infty} (-1)^n \frac{3^n}{2^n + 3^n} \quad (viii) \sum_{n=1}^{\infty} (-1)^{n-1} \arctan n$$