HOUSING SOLUTIONS FOR NORTHEASTERN STUDENTS

 \star

Finding Ideal Accomodation

Based on the characteristics

MOST REASONABLE RENT

MOST ACCESSIBLE LOCATION

MOST AFFORDABLE TRANSPORT

Data Visualization

Q-Q Plot

- Distribution of Total rent
- Normality Plot

Scatter Plot

• Total rent vs roommates

• Individual rent vs roommates

Histogram & Density Curve

Total rent vs frequency

Bar Graph

Sampling Distribution of Mean and Standard Deviation

• Generating a Sampling Distribution

Visualizing the Sampling Distribution

• Probability of Sampling Distribution

A) Total Rent P(X <= 3500) = 0.7159

B) Indiviual Rent P(X<=800) = 0.4912

C) Distance from University P(X<=2) = 0.984

Parameters	Theoretical Mean	Actual Sampling Mean
Total Rent	3376	3379.11
Individual Rent	809.8374	811.2988
Distance from University	1.456	1.46

CONFIDENCE INTERVAL OF MEANS

A) Most accessible location from University

- Lower level = 1.615 miles
- Upper level = 2.009 miles

B) Most reasonable rent

- Lower level = 697 USD
- Upper level = 923 USD

C) Most affordable public transport

- Lower level = 44 USD
- Upper level = 69 USD

CONFIDENCE INTERVAL OF POPULATION PROPORTION

A) Most accessible location from University

- Lower level = 25.7%
- Upper level = 50.3%

B) Most reasonable rent

- Lower level = 11.5%
- Upper level = 32.5%

C) Most affordable public transport

- Lower level = 8.3%
- Upper level = 27.7%

$$p = population proportion$$

 $\hat{p} = sample proportion$
 $\hat{q} = 1 - \hat{p}$

$$\hat{p} = \frac{x}{n}$$

$$\hat{p} \pm z_{\alpha/2} \left(\sqrt{\frac{\hat{p}\hat{q}}{n}} \right)$$

where, x = number of successes

HYPOTHESIS TESTING

- Number of Students = 60
- Average Budget = 809.83 USD
- Standard Deviation of Budget = 447.69
- Significance level = 5%

True population mean budget = 700 USD

Determine Null & Alternative Hypothesis

- Null Hypothesis = 700 USD
- Alternative Hypothesis ≠ 700 USD

Two-Tailed Test

$$H_0: \mu_X = \mu_0$$

$$H_1: \mu_X \neq \mu_0$$

HYPOTHESIS TESTING

Calculate Z

• $Z = (\bar{X} - \mu)/(\sigma/\sqrt{n})$

Compare Z value

- Z value (5% significance) = 1.96
- Z hyp. = 1.90
- Z value > Z hyp.
- Null Hypothesis not rejected

CONCLUSION

Characteristics:

Best Location: Mission Main

Affordable Rent: 700 USD

Best Public Transport:
Bus