Парето оптимизация

Алгоритмы и структуры данных

Область Парето

Область Парето

Уклонения областей

Уклонения областей

Уклонения областей

3-D область Парето

Контрольная работа

🕢 stepik

Алгоритмы и структуры данных

Прогресс по курсу: 115/121

1 for-external-student

1.1 Входной контроль

2 Разминка

- 2.1 Арифметика
- 2.2 Матрицы
- 2.3 Строки

3 Структуры данных

- 3.1 Captcha
- 3.2 FIFO vs LIFO

4 Алгоритмы

- 4.1 Recursion
- 4.2 Japanese Elevator
- 4.3 Dynamic programming
- 4.4 Algorithms on graphs
- 4.5 Optimization

5 Собеседование

Оптимизация по Парето

4.5 Optimization 8 из 8 шагов пройдено 11 из 11 баллов получено

Северо-восточное уклонение

Дано множество объектов. Каждый объект имеет две характеристики x и у. Чем выше значение каждой характеристов найти область Парето-оптимальных решений. На рисунке X - горизонтальная ось, а Y - вертикальна

На вход подаётся:

- в первой строке входных данных записано единственное целое число \mathbf{n} (1<= \mathbf{n} <= $\mathbf{10}^3$) количество объектов;
- во последующих $\bf n$ строках через пробел записаны по два числа значения характеристик $\bf x$ и $\bf y$ это целые ч 0 (включительно) до 10^3 (включительно).

Техническое задание

- считать данные из csv-файла и поместить в список объектов
- пользователь может задать уклонение оптимизации
- построить диаграмму Парето (2-D) точки в области Парето выделены цветом
- вывести в csv-файл все объекты, которые находятся в области Парето