- 2.a. Let X_i follow the Exponential(1) distribution for i=1,2,3, and they are independent. Define $Y_1=X_1+X_2+X_3$ and $Y_2=X_1+X_2$. Find the joint distribution of (Y_1,Y_2) . Are Y_1 and Y_2 independent? Give clear arguments. [2+2]
- 2.b. A random variate from the standard Cauchy distribution is given to you. Explain how you would use this random variate to generate a random variate from the following pdf:

$$f(x) = \frac{e^{(x-1)}}{(1 + e^{(x-1)})^2}$$
 for $-\infty < x < \infty$.

[3]

 $\frac{2.a.}{Ne}$ have $X_i \sim Exponential(1)$, i = 1, 3, 3. The joint pdb ob $X = (X_1, X_2, X_3)$ is $6x(3) = e^{-(\chi_1 + \chi_2 + \chi_3)}$; $\chi_1 > 0$, $\chi_2 > 0$, $\chi_3 > 0$ $Y_1 = X_1 + X_2 + X_3$ $Y_2 = X_1 + X_2$ $X_3 = Y_2 - X_3$ $X_3 = X_1 - X_2$ $X_4 = X_2 - X_3$ $X_5 = X_1 - X_2$ $|J| = \begin{vmatrix} 0 & 0 & 1 \\ 0 & +1 & -1 \\ 1 & -1 & 0 \end{vmatrix} = 1$ (1 mark) .. the joint Pdb eb 1 = (1,12,73) is $6y(1y) = 6x(1y_3, y_2-y_3, y_1-y_2) |T| = e^{-y_1}, 0 < y_3 < y_2 < y_1 < \infty$ Now, $b_{1,12}(y_1,y_2) = \begin{cases} b_{1}(y) dy_3 \\ 0 \end{cases}$, $0 < y_2 < y_1 < \infty$ = 5° e-y1 dy3 , 0 < y2 < y1 < 00 $= y_2 e^{-y_1}, \quad 0 < y_2 < y_1 < \infty \quad (1 \text{ mark})$ $(64, (9)) = \int_{0}^{9} (64, 42) (91, 92) dy_{2} = \int_{0}^{9} (92) (-91) dy_{2}$ $=\frac{y_1^2}{2}.e^{-y_1}$; $y_1>0$

1. 11 N Gamma (3,1).

Y, and 1/2 are / H /2).

2.b.
$$f_1(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}$$

$$F_1(x) = \frac{1}{2} + \frac{1}{x} \cdot tan^{-1}(x)$$
, $X_1 \sim f_1$

$$U_1 = F_1(x_1) = \frac{1}{2} + \frac{1}{x} \cdot tent(x_1) \sim U(0,1)$$

$$\Rightarrow \frac{1}{2} + \frac{1}{4} \cdot tan^{-1}(x_1) = \frac{1}{1 + e^{-(x_1 - 1)}}$$

$$= \frac{1}{\frac{1}{2} + \frac{1}{4} \cdot tan^{T}(X_{1})}$$

$$= \frac{1 - \frac{1}{2} - \frac{1}{4} \cdot tan^{T}(X_{1})}{\frac{1}{2} + \frac{1}{4} \cdot tan^{T}(X_{1})} = \frac{1 - \frac{1}{2} - \frac{1}{4} \cdot tan^{T}(X_{1})}{\frac{1}{2} + \frac{1}{4} \cdot tan^{T}(X_{1})}$$

$$\Rightarrow -(\chi-1) = loge \left[\frac{1}{2} - \frac{1}{4} + ant(\chi_1)\right]$$

$$\Rightarrow \chi = 1 + log_e \left[\frac{1}{2} + \frac{1}{2} + ant(x_1) \right]$$