Tadao Hoshino (星野匡郎)

ver. 2018 Fall Semester

- Y: Observed outcome variable
- T: Treatment variable (dummy variable: T=1 for treated and T=0 for control)
- We are interested in estimating the causal effect of T on Y.
- Rubin's causal model:

$$Y_i = \begin{cases} Y_{1i} & \text{if } T_i = 1\\ Y_{0i} & \text{if } T_i = 0 \end{cases}$$

or equivalently

$$Y_i = T_i \cdot Y_{1i} + (1 - T_i) \cdot Y_{0i},$$

where Y_{ti} is the "potential" outcome when $T_i = t$.

Treatment Effect

We define the causal effect of T on Y for individual i as

$$Y_{1i} - Y_{0i}$$
,

which is called the (individual) treatment effect.

For each individual i, it is impossible to observe both potential outcomes Y_{1i} and Y_{0i} at the same time.

=> We cannot estimate the individual treatment effect.

Average Treatment Effect (ATE)

The treatment effect averaged over the population

$$E[Y_{1i}] - E[Y_{0i}]$$

is called the average treatment effect (ATE).

Estimation of ATE

- We have a random sample of n observations $\{(Y_i, T_i) : i = 1, ..., n\}$.
- Treatment group = $\{i: T_i = 1\}$, Control group = $\{i: T_i = 0\}$.
- A simple difference estimator of ATE comparing average outcomes between the two groups:

$$\frac{\sum_{i=1}^{n} T_{i} Y_{i}}{\sum_{i=1}^{n} T_{i}} - \frac{\sum_{i=1}^{n} (1 - T_{i}) Y_{i}}{\sum_{i=1}^{n} (1 - T_{i})}$$

This estimator is biased in general, except for the case when T is exogenous.

- For expositional simplicity, assume that the treatment effect is homogeneous $Y_{1i}-Y_{0i}=\beta$. (Clearly, we have ATE = β in this case.)
- Note that the difference estimator is numerically equivalent to the OLS estimator of β in the following simple regression model:

$$Y_i = \alpha + T_i \beta + \varepsilon_i, i = 1, ..., n$$

- If T_i is an endogenous treatment variable $(E[T_i\varepsilon_i] \neq 0)$, the difference estimator is biased for the true causal effect β (endogeneity bias).
- Treatment variables are often endogenous due to the presence of omitted variables (unobserved spurious factors) and simultaneity.

Econometric methods to circumvent the endogeneity problem:

- Pure-experimental approach
 - Randomized experiment
- Quasi-experimental approaches
 - Instrumental variable method
 - Matching method
 - etc

- When class attendance is not compulsory, it would be expected that students with lower attendance rates achieve lower academic performances than students with higher attendance rates.
- Is it possible to interpret this correlation between class attendance and academic performance as a causal relationship?

Let

- Y_i: academic test score
- T_i : treatment variable ($T_i = 1$ if student i's attendance rate is higher than 50%, $T_i = 0$ otherwise.)

	# students	Average test score
T=1 (attendance $> 50%$)	19	77.21
$T=0$ (attendance $\leq 50\%$)	21	57.05

¹This is simulated data created by myself.

- The difference between the average outcome for the treatment group and that for the control group is about 20.16.
- To what extent does this figure reflect the causal effect of class attendance on students' performance?
 - For a student who is reluctant to attend school, is it possible to increase her test score by 20.16 point by making class attendance compulsory?
- Spurious correlation :
 - Potential existence of omitted variables that affect both class attendance and academic performance.
 - For example, students who have strong motivation for studying tend to be less absent in school, and would achieve higher performance.
- Thus, 20.16 is likely to be an overestimation of the true causal effect.

An empirical evidence by Romer (1993)²

- Romer took attendance at six meetings of his intermediate (undergraduate-level) macroeconomics course at UC Berkeley.
- Student performance is measured as the overall score on the three exams in the course.

 $^{^2}$ Romer, D. (1993) Do students go to class? Should they? The Journal of Economic Perspectives, 7(3), 167-174.

An empirical evidence by Romer (1993)

- The first column shows the result of the simple regression with Fraction of Lectures Attended as explanatory variable.
 - We can observe a strong positive correlation btwn the test score and the attendance rate.
- The second column shows the result of the multiple regression with an additional regressor Prior GPA. The prior GPA may be regarded as an index of academic motivation.
 - The coefficient of attendance is two-thirds as large as it is in the baseline model, implying that mere correlation between the two variables overestimates the causal effect.

Results of regression analysis: extracted from Romer (1993) Table 2

Constant	1.25 (0.27)	-0.67 (0.32)		
Fraction of Lectures Attended	2.19 (0.35)	1.52 (0.32)		
Prior GPA		0.78 (0.12)		
Sample size	195	195		

(Standard errors in the parentheses.)

- We summarize the above discussion in terms of Rubin's causal model.
- Each student i's academic performance is

$$Y_i = T_i \cdot Y_{1i} + (1 - T_i) \cdot Y_{0i}.$$

 Consider the difference between the expected value of the outcome for the treatment group and that for the control group:

$$E[Y_i|T_i=1]-E[Y_i|T_i=0].$$

In the above example, the sample estimate of this quantity is 20.16.

Here, observe that

$$E[Y_i|T_i = 1] = E[T_i \cdot Y_{1i} + (1 - T_i) \cdot Y_{0i}|T_i = 1]$$

= $E[1 \cdot Y_{1i} + 0 \cdot Y_{0i}|T_i = 1]$
= $E[Y_{1i}|T_i = 1]$.

· Similarly,

$$E[Y_i|T_i = 0] = E[T_i \cdot Y_{1i} + (1 - T_i) \cdot Y_{0i}|T_i = 0]$$

= $E[0 \cdot Y_{1i} + 1 \cdot Y_{0i}|T_i = 0]$
= $E[Y_{0i}|T_i = 0]$.

Hence,

$$\underbrace{E\left[Y_{i}|T_{i}=1\right]-E\left[Y_{i}|T_{i}=0\right]}_{\text{(A)}}$$

$$=E\left[Y_{1i}|T_{i}=1\right]-E\left[Y_{0i}|T_{i}=0\right]$$

$$=\underbrace{E\left[Y_{1i}-Y_{0i}|T_{i}=1\right]}_{\text{(B)}}+\underbrace{E\left[Y_{0i}|T_{i}=1\right]-E\left[Y_{0i}|T_{i}=0\right]}_{\text{(C)}},$$

where the second equality is obtained by adding and subtracting $E[Y_{0i}|T_i=1]$.

(1)

- The term (B) is interpreted as the average causal effect of class attendance on academic performance for the students whose attendance rate is higher than 50%.
- This average treatment effect for the treatment group is called the Average Treatment Effect on the Treated (ATET or ATT):

ATET:
$$E[Y_{1i} - Y_{0i}|T_i = 1]$$

 When the treatment effect for the treatment group and that for the control group are the same on average, i.e.,

$$E[Y_{1i} - Y_{0i}|T_i = 1] = E[Y_{1i} - Y_{0i}|T_i = 0],$$

by the law of iterated expectations,

$$\underbrace{E\left[Y_{1i} - Y_{0i}\right]}_{ATE} = E\left[E\left[Y_{1i} - Y_{0i}|T_{i}\right]\right]$$

$$= E\left[Y_{1i} - Y_{0i}|T_{i} = 1\right] \Pr(T_{i} = 1) + E\left[Y_{1i} - Y_{0i}|T_{i} = 0\right] \Pr(T_{i} = 0)$$

$$= E\left[Y_{1i} - Y_{0i}|T_{i} = 1\right] \left\{\Pr(T_{i} = 1) + \Pr(T_{i} = 0)\right\}$$

$$= \underbrace{E\left[Y_{1i} - Y_{0i}|T_{i} = 1\right]}_{ATET}.$$

Hence, in this case ATE is equal to ATET.

• The term (C)

$$E[Y_{0i}|T_i=1]-E[Y_{0i}|T_i=0]$$

is interpreted as

the average difference between

the counterfactual academic performance among students whose attendance rate is higher than 50% had they not attended class

and

the actual academic performance among students whose attendance rate is less than 50%.

• This term is called the selection bias.

- As in equation (1), if the selection bias (C) is zero, ATET (B) can be obtained simply by computing (A); the resulting estimated value of (A) is 20.16 in the above example.
- However, when comparing the potential outcome Y_0 for students with higher academic motivation (T=1) and the actual outcome Y_0 for less-motivated students (T=0), the former would be larger than the latter:

$$E[Y_{0i}|T_i=1] \geq E[Y_{0i}|T_i=0].$$

• Thus, we can expect that the selection bias term is positive, and the value 20.16 would be an overestimation of the causal effect ATET:

$$\underbrace{E\left[Y_i|T_i=1\right] - E\left[Y_i|T_i=0\right]}_{\approx 20.16} = \mathsf{ATET} + \underbrace{\mathsf{Selection \ bias}}_{\geq 0}$$

- The selection bias can be viewed as a special case of endogeneity bias.
- When a selection bias exists, we have

$$E[Y_{0i}|T_i=1] \neq E[Y_{0i}|T_i=0]$$
,

which suggests that Y_{0i} and T_i are not independent.

• Recall that when the treatment effect is homogeneous $\beta = Y_{1i} - Y_{0i}$, we have $Y_i = Y_{0i} + T_i\beta$. Then, letting $\alpha = E[Y_{0i}]$ and $\varepsilon_i = Y_{0i} - E[Y_{0i}]$, we can consider the following simple regression model:

$$Y_i = \alpha + T_i \beta + \varepsilon_i$$

• In order to consistently estimate β , T_i needs to satisfy $E[T_i\varepsilon_i]=0$ (exogeneity).

• By the definition of ε_i ,

$$E[T_{i}\varepsilon_{i}] = E[(Y_{0i} - E[Y_{0i}])T_{i}]$$

$$= E[Y_{0i}T_{i}] - E[Y_{0i}]E[T_{i}]$$

$$= Cov(Y_{0i}, T_{i}),$$

which is not zero in general since Y_{0i} and T_i are not independent.

Thus, the selection bias can be viewed as a source of endogeneity bias.

- In general, selection bias arises when individuals can "select" their own treatment status by themselves.
- The selection bias problem does not exist in laboratory experiments, where the treatment status of each subject can be "exogenously" determined by researcher.
 - In the example of class attendance and academic performance, the source of selection bias is that students can choose whether to attend class or not.
- What if we randomly assign individuals to the treatment and control groups?
 - => Average characteristics of individuals will be likely to be equal between the two groups, and thus the selection bias would disappear.
 - => Randomized Experiment (also called Randomized Controlled Trial: RCT).

Randomized experiment

A randomized experiment is an experiment with the following properties:

• Assignment to the treatment or control groups is random:

$$0 < \Pr(T = 1) < 1$$
.

• Treatment status is independent of the two potential outcomes:

$$(Y_1, Y_0) \perp T$$
.

- This is conceptually equivalent to determine assignment to the treatment group by a lottery.
- Since the value of T_i (whether i wins or loses in the lottery) is irrelevant to her potential achievement, it must hold that

$$E[Y_{1i}|T_i = 1] = E[Y_{1i}|T_i = 0]$$

 $E[Y_{0i}|T_i = 1] = E[Y_{0i}|T_i = 0]$

- This implies that the selection bias is zero.
- Furthermore, since

$$E[Y_{1i} - Y_{0i}|T_i = 1] = E[Y_{1i} - Y_{0i}|T_i = 0],$$

Hence, we have

$$E[Y_i|T_i = 1] - E[Y_i|T_i = 0] = \underbrace{E[Y_{1i} - Y_{0i}|T_i = 1]}_{ATET} = \underbrace{E[Y_{1i} - Y_{0i}]}_{ATE}.$$

• In randomized experiments, we can estimate ATE(T) by simply taking the difference between the sample averages for the treatment and control groups (or, equivalently, by a simple regression of Y on T).

Feasibility

- Cost of implementation:
 - In empirical studies in economics, treatments of which we are interested
 in estimating their causal effects are, for example, the implementation
 of a new economic policy, the introduction of a new transportation
 service, increasing/decreasing the regional minimum wages, etc.
 - The costs of implementing such treatments are enormous, not only financially but also politically.
- Ethical problem:
 - An experiment in which whether students can attend class or not is randomly determined in a lottery (only for the purpose of estimating the treatment effect) is ethically problematic in terms of fairness of educational opportunity.

Attrition of participants

- When the duration of experiment is long, there is a risk that some participants may drop out.
- There is no problem if the attrition of participants is at random.
- If particular types of participants are more likely to drop out of one group than the other, the two groups will no longer be similar.
 - For example, consider a job training program designed to reduce unemployment. If a participant finds a job while in training, she would exit from the training program before it ends.

Hawthorne effect (Experimenter demand effect)

 The Hawthorne factory of the Western Electric Company conducted an experiment in 1924-32 to investigate whether their workers would become more productive in higher/lower levels of light.

Women in the Relay Assembly Test Room at the Hawthorne factory. This picture is taken from: http:

//www.lmmiller.com/lean-lessons-from-the-hawthorne-studies

Hawthorne effect (Experimenter demand effect)

- Surprisingly, the study found that regardless of whether the level of lighting was increased or decreased, the productivity of workers increased.
- The researchers concluded that it was not the changes in the level of lighting that were affecting the workers' productivity.
- Rather, the increase in productivity was because of the fact that the workers worked harder as they felt they were being watched.
- Hawthorne effect: People behave differently when they know they are participating in an experiment.

Examples of Randomized Experiments

- It is often believed that smaller class size is more beneficial to students and their academic achievement than larger class size.
- However, smaller class size is more expensive. More classrooms and more teachers are needed. It is crucial to clarify to what extent small class size is actually effective for learning.
- Tennessee Student/Teacher Achievement Ratio (STAR) experiment:
 - Large-scale randomized experiment to evaluate the causal effect of class-size reduction on reading and mathematics achievement.
 - More than 11,000 students and 80 schools in the state participated in this experiment, which became known Project STAR.

Experimental design of Project STAR

- Children entering kindergarten in the fall of 1985 were randomly assigned to one of the following types of classes:
 - Small class a small-size class with 13 17 students.
 - Regular class a regular-size class with 22 25 students.
 - Regular/aide class a regular-size class with a full-time teachers' aide.
- Teachers in each school were also randomly assigned.
- The students stayed in their randomly assigned category from kindergarten until third grade.

Results

- The following table shows the average SAT score for each category at each grade. The test scores are scaled in percentile points.
- Students in small-size classes tend to achieve higher SAT scores than those in regular-size classes.
- Teacher aides have only a subtle effect on the test score.

Percentile score: extracted from Krueger (1999)³ Table I

	Average percentile score			
	Kindergarten	1st grade	2nd grade	3rd grade
Small class	54.7	49.2	46.4	47.6
Regular class	49.9	42.6	45.3	44.2
Regular/aide class	50.0	47.7	41.7	41.3

 $^{^3}$ Krueger, A. (1999) Experimental estimates of education production functions. The Quarterly Journal of Economics, 114(2), 497-532.

Results (cont')

- The next table presents the regression results of the test score on the class-size dummies (Regular class is omitted as a baseline).
- Students in small classes tend to perform better than those in regular classes; in particular, the gap in average performance is large (about 8.6 points) in first grade.
- Again, teacher aides have only a small effect.

Regression analysis: extracted from Krueger (1999) Table V

	Kindergarten	1st grade	2nd grade	3rd grade
Small class	4.82 (2.19)	8.57 (1.97)	5.93 (1.97)	5.32 (1.91)
Regular/aide class	0.12 (2.23)	3.44 (2.05)	1.97 (2.05)	-0.22 (1.95)
Sample size	5861	6452	5950	6109

(The estimates of the intercept are omitted. Standard errors in the parentheses.)

Moving to Opportunity

- Neighborhood effects: The economic and social environment of neighborhoods have direct/indirect on individual behaviors.
- The existence of neighborhood effects has been demonstrated in many fields of research including education, health, crime, juvenile delinquency, voting, etc.
- MTO (Moving to Opportunity): a social experiment designed to evaluate the neighborhood effects on economic and social outcomes of low-income families in the United States.

Moving to Opportunity

Experimental design of MTO

- A total of 4,600 low-income households, mostly African American or Hispanic, participated in the MTO experiment between September 1994 and August 1998.
- They were randomly assigned to one of the following three groups by a lottery:

Low poverty voucher (LPV) gourp, which received Section 8 certificates⁴ or vouchers usable only in low-poverty areas.

Traditional voucher group, which received regular Section 8 certificates or vouchers (geographically unrestricted).

Control group, which received no certificates or vouchers.

 Among the households assigned to the LPV group, 47 percent used the voucher to relocate to a low-poverty neighborhood.

⁴Eligibility to receive rent subsidy from the government.

Moving to Opportunity

Chetty, Henderson and Katz (2016)⁵

- "We find that moving to a lower-poverty neighborhood significantly improves college attendance rates and earnings for children who were young (below age 13) when their families moved."
- "The treatment effects are substantial: children whose families take up an experimental voucher to move to a lower-poverty area when they are less than 13 years old have an annual income that is 3,477 (31%) USD higher on average relative to a mean of 11,270 USD in the control group in their mid-twenties."

⁵Chetty, R., Hendren, N. and Katz, L. F. (2016) The effects of exposure to better neighborhoods on children: New evidence from the Moving to Opportunity experiment. American Economic Review, 106(4), 855-902.

Glossary I

ATET: Average treatment effect on the treated, 17 Hawthorne effext, 30 MTO: Moving to Opportunity, 36 neighborhood effects, 36 Project STAR, 32 randomized experiment, 23, 25 selection bias, 19