Outline

- Graph definitions
- Graph representations
 - –Adjacency matrix
 - –Adjacency list
 - Adjacency multilist

Adjacency Matrix

- n x n matrix for a graph G that has n vertices
 - -a[i][j] = 1 if there is an edge (i,j) (or $\langle i,j \rangle$)
 - -a[i][j] = 0 otherwise

Adjacency Matrix

Properties

- -Matrix for undirected graph is symmetric
- Diagonal entries are zero
- -Digraph: row is tail, column is head
 - Sum of row i : out-degree of i
 - Sum of column j : in-degree of j

Problems

- -Require n² bits
- -O(n²) runtime for several algorithms
 - ex) count the number of edges in a graph

Adjacency List

- n rows are represented as n linked lists
 - Keep head vertices for each row in linked list
- Vertices in each row can be unordered

Inverse Adjacency List

- Adjacency list can be used for calculating <u>out-degree</u> of a vertex
 - In-degree vertex is not easy
- A row of inverse adjacency list stores incoming vertex list

Adjacency Multilist

- Each edge in an <u>undirected</u> graph shows twice in adjacency list
 - –Costly to manage
 - -What if we should examine an edge only once?

Adjacency Multilist

- Proposal
 - Each edge is represented by exactly one node
 - This node appears in two adjacency lists
- New node structure:

node has been examined

ULSAN NATIONAL INSTITUTE OF

The lists are

vertex 0: N0 -> N1 -> N2

vertex 1: N0 -> N3 -> N4

vertex 2: N1 -> N3 -> N5

vertex 3: N2 -> N4 -> N5

The lists are

vertex 0: N0 -> N1 -> N2

vertex 1: N0 -> N3 -> N4

vertex 2: N1 -> N3 -> N5

vertex 3: N2 -> N4 -> N5

Weighted Edges

- Edges of a graph may have weights assigned
- Adjacency matrix
 - -Each entry is weight
- Adjacency list
 - –Extra field required

- Network
 - –A graph with weighted edges

Questions?

Historically Notable Graph Problem: The Seven Bridges of Königsberg

 Is it possible to cross each of the bridges only and only once?

