Hack2O analysis

Andrew Wang

General feature table

PropertyInfoDBID	ChlorideResult	CIResult	PhResult	CopperResult	IronResult	Copper_x_IronResult	LeadResult
III.		dh	I			L	
8	9.04	0.34	1.412538	162	0.375	60.75	25.8
8	9.04	0.64	0.724436	162	0.375	60.75	25.8
15	9.46	0.7	0.645654	23.1	0.08	1.848	4.44
17	9.47	0.68	0.47863	218	0.552	120.336	25.1
17	9.47	0.78	0.512861	218	0.552	120.336	25.1
25	9.28	0.64	0.467735	75.9	0.278	21.1002	35.8
25	9.28	0.65	0.346737	75.9	0.278	21.1002	35.8
25	9.28	0.92	0.40738	75.9	0.278	21.1002	35.8
25	9.28	1.28	0.562341	75.9	0.278	21.1002	35.8
25	9.28	1.41	0.707946	75.9	0.278	21.1002	35.8
27	9.41	0.6	0.467735	43.1	0.212	9.1372	11.5
27	9.41	0.68	0.457088	43.1	0.212	9.1372	11.5
27	9.41	0.88	0.524807	43.1	0.212	9.1372	11.5

Processing the general feature table

- pH -> 10^{7-pH} , z-score
- Cu/Fe/Pb aggregation: highest recorded per house
- Pb outliers

Cu * Fe, In(Pb)

In(Cu * Fe), In(Pb)

Train: Pb in $[0, e^{\pi}]$

Linear regression (least-squares)

Neural networks

Boosted decision tree regression

Boosted decision tree regression

Decision forest regression

Things that would have helped

- Precise location data
- City planning data
- Geotagged tweets

Moral of the story

- Bayesian linear regression
- Neural network linear regression
- Regular linear regression
- Fast forest quantile regression
- Poisson regression

- Decision forest regression
- Boosted decision tree regression
- Not trying to predict out of the sample range
- In(x)