Northeastern University, Department of Mathematics

MATH G5110: Applied Linear Algebra and Matrix Analysis. (Fall 2020)

• Instructor: He Wang Email: he.wang@northeastern.edu

Reading for §7: Review of Polynomials

Definition 1. • A **polynomial** with coefficients in field \mathbb{F} is a function $p: \mathbb{F} \to \mathbb{F}$ of the form $p(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$.

- If $a_m \neq 0$, we say that the polynomial p(t) has **degree** n
- A number λ is called a **root** of the polynomial p(t) if $p(\lambda) = 0$.

Proposition 2. λ is root of a degree n polynomial p(t) if and only if there is a degree n-1 polynomial q(t) such that

$$p(t) = (t - \lambda)q(t)$$

Proof. Backward direction " \Leftarrow " is obvious. Let's show forward direction " \Rightarrow " Since λ is root, we have $a_0 + a_1\lambda + a_2\lambda^2 + \cdots + a_n\lambda^n = 0$. So,

$$p(t) = p(t) - a_0 + a_1 \lambda + a_2 \lambda^2 + \dots + a_n \lambda^n$$

$$= a_1(t - \lambda) + a_2(t^2 - \lambda^2) + \dots + a_n(t^n - \lambda^n)$$

$$= (t - \lambda) [a_1 + a_2(t + \lambda) + \dots + a_n(t^{n-1} + t^{n-2}\lambda + \dots + \lambda^{n-1})]$$

$$= (t - \lambda)q(t)$$

Here q(t) has degree n-1 since $a_n \neq 0$.

Proposition 3. A degree n polynomial has at most n (distinct) roots in \mathbb{F} .

Proof. From the above theorem by induction.

Proposition 4. If $a_0 + a_1t + a_2t^2 + \dots + a_nt^n = 0$ for all $t \in \mathbb{F}$, then $a_0 = a_1 = \dots = a_n = 0$.

Proof. Only zero polynomial p=0 has infinitely many solutions.

This means that $\{1, t, t^2, \dots, t^n\}$ is independent in polynomial vector space P.

Proposition 5 (Division Algorithm). Suppose p(t) and q(t) are non-zero polynomials. There exists polynomials r(t) and s(t) such that

$$p(t) = s(t)q(t) + r(t)$$

and deg(r) < deg(q).

Similar as integers, we can think this as divide p(t) by q(t) and the remainder is r(t).

Theorem 6 (Fundamental Theorem of Algebra). Every polynomial p(t) of degree $n \ge 1$ with complex coefficient has n roots. That is

$$p(t) = a_n(t - z_1)(t - z_2) \cdots (t - z_n)$$

The above factorization is unique if we do not count the order.

Proposition 7. Suppose p(t) is a polynomial with real coefficients. If $z \in \mathbb{C}$ is a root of p(t), then the conjugate of z is also a root.

Proof. If p(z) = 0, then take the conjugate of both sides, we have $\overline{p(z)} = 0$ and hence $p(\bar{z}) = 0$ by properties of conjugate.

Theorem 8 (Real roots). Every polynomial p(t) of degree $n \ge 1$ with real coefficient can be factorized as

 $p(t) = a_n(t - c_1)(t - c_2) \cdots (t - c_p)(t^2 + a_1t + b_1)(t^2 + a_2t + b_2) \cdots (t^2 + a_mt + b_m)$ where all numbers in the factorization are real numbers and $a_i^2 < 4b_i$ for i = 1, 2, ..., m

Proof. First $p(t) = a_n(t-z_1)(t-z_2)\cdots(t-z_n)$ has been factored as complex roots. Since complex roots come in pairs for real polynomials. Suppose z = a + bi is a root, then p(t) contains a real polynomial factor $(t-z)(t-\bar{z}) = t^2 - 2at + |z|^2$.

Proposition 9 (Rational roots). Let $p(t) = a_0 + a_1t + a_2t^2 + \cdots + a_nt^n$ be a polynomial of degree $n \ge 1$ with integer coefficient. Suppose rational number $\frac{p}{q}$ is a root of p(t) such that (p,q) = 1, then $p|a_0$ and $q|a_n$.

Complex vectors

We list some basic knowledge of complex numbers.

• Just as \mathbb{R} denotes the set of real numbers, we will use \mathbb{C} to denote the set of complex numbers z = a + ib. Here $i = \sqrt{-1}$, and a and b are real numbers called/denoted

$$a = Re(z) =$$
real part of z
 $b = Im(z) =$ imaginary part of z

- The complex conjugate of $z = a + bi \in \mathbb{C}$ is $\bar{z} := a bi$
- The absolute value of z is $|z| = \sqrt{a^2 + b^2}$.
- $\bullet \ z\bar{z} = |z|^2$
- Complex numbers \mathbb{C} can be viewed as a 2-dimensional \mathbb{R} -vector space \mathbb{R}^2 . Furthermore, there is a product operation on it.

Similarly to \mathbb{R}^n denoting *n*-dimensional real vectors (that is $n \times 1$ matrices with real number entries), so \mathbb{C}^n shall denote *n*-dimensional complex vectors, that is $n \times 1$ matrices with complex number entries.

If A is an $m \times n$ matrix and $\vec{x} \in \mathbb{C}^n$ an n-dimensional complex vector, then $A\vec{x}$ is defined in exactly the same way as it is in the case of a real n-dimensional vector \vec{x} .

Definition 10 (Real and Imaginary Parts of Vectors). Let $\vec{x} \in \mathbb{C}^n$ be a complex *n*-dimensional vector.

- The **complex conjugate vector** $\overline{\vec{x}}$ of \vec{x} is the vector made up from the complex conjugate entries of \vec{x} .
- The **real part** of \vec{x} , denoted $Re(\vec{x})$ is the (real) vector consisting of the real parts of the entries of \vec{x} .
- The **imaginary part** of \vec{x} , denoted $Im(\vec{x})$ is the (real) vector consisting of the imaginary parts of the entries of \vec{x} .

Note that

$$\vec{x} = Re(\vec{x}) + i \cdot Im(\vec{x})$$
 and $\vec{x} = Re(\vec{x}) - i \cdot Im(\vec{x})$.

Remark 11. Replacing the complex vector \vec{x} from the previous definition by a complex $m \times n$ matrix A, leads to the

- Complex conjugate matrix \overline{A} .
- Real part Re(A) of A.
- Imaginary part Im(A) of A.

The analogues of above equations apply, in addition to

$$\overline{\lambda \cdot \vec{x}} = \overline{\lambda} \cdot \overline{\vec{x}}, \qquad \overline{A \cdot \vec{x}} = \overline{A} \cdot \overline{\vec{x}}, \qquad \overline{A \cdot B} = \overline{A} \cdot \overline{B}.$$