5th lesson							
Monday, 12 October 2020	10:39						

Digital communications

How can we transmit a sequence of bits?

• What happens if we want to transmit a *sequence of bits* in the place of an analog signal?

$$d_k = \cdots 1,0,1,1,0,0,1,0,1,0,1,0,0,\dots \qquad \frac{T_b}{} \qquad \cdots \qquad \sum_i d_k \delta(t - kT_b)$$

- A train of delta occupies infinite bandwidth, before transmission the bits need to be passed through a low pass filter.
- For reasons already discussed, any signal transmitted in the air needs to be translated in frequency.

How can we transmit a sequence of bits?

 Each bit of the sequence can be modelled as an equiprobable random variable

$$P\{d_k = 0\} = P\{d_k = 1\} = \frac{1}{2}$$

so that
$$E\{d_k\} = \frac{1}{2}$$
.

- In general, to save energy it is better to transmit 0-mean information.
- Bits d_k are mapped to 0-mean information symbols: $a_i = 2d_i 1$.
- One information symbol can be used to map more than just one bit.

Pulse amplitude modulation

- Pulse amplitude modulation (PAM) is the modulation obtained by
 - 1. Mapping the bits d_k to the information symbols a_i
 - 2. Filtering the symbols with a low pass filter with impulse response $g_T(t)$

• Since the mapper can map a sequence of m bits on just one information symbol, the bit duration T_b and the symbol duration T may be different.

Pulse amplitude modulation

 \bullet The signal $\tilde{s}_{PAM}(t)$ is a real baseband signal that can be modulated at any frequency f_c

$$s_{PAM}(t) = \sum_{i} a_i g_T(t - iT) \cos(2\pi f_c t)$$

• The PAM signal is equivalent to an analog DSB where the modulating (and complex envelope) signal m(t) is

$$m(t) = \sum_{i} a_i g_T(t - iT)$$

PAM: symbol mapping

- The mapper block associates a sequence of m bits to a symbol.
- The symbol constellation contains $M=2^m$ bits, $m=\log_2 M$.
- If the source generates bits with a rate $R_b = \frac{1}{T_b}$, the mapper outputs symbols with a rate m times slower, i.e. $R = \frac{R_b}{m} = \frac{R_b}{\log_2 M}$ or, in terms of bit and symbol timing, $T = T_b \log_2 M$
- Usually bit-to-symbol mapping is performed so that $E\{a_i\} = 0$.

PAM: pulse shaping

- Intuitively, the choice of the impulse response of the lowpass pulse shaping filter determines the bandwidth of the PAM signal.
- If the pulse shape has duration longer than 1 symbol time T, the spectrum is more compact but the energy of one symbols is spread over several intervals.

LPF

 $\tilde{s}_{PAM}(t)$

 a_i

PAM: power spectral density

- A PAM signal is modelled as a *stochastic process* because the symbols a_i are samples of a discrete-time random process.
- The bandwidth occupied by a stochastic process is measured by its *power* spectral density (Fourier transform of its autocorrelation function).
- The PSD of the PAM signal $\tilde{s}(t)$ is

$$S_{\tilde{s}}(f) = \frac{1}{T} S_a(f) |G_T(f)|^2$$

where $S_a(f)$ is the PSD of a_i and $G_T(f)$ is the frequency response of the transmit filter $g_T(t)$.

From now on, we omit the tilde for ease of notation.

PAM: power spectral density

• $S_a(f)$ is computed as the Fourier transform of the autocorrelation function $R_a(m)$ of the stationary, discrete, independent process a_i .

$$R_a(m) = E\{a_i a_{i+m}\} = \begin{cases} E\{a_i^2\} = A & m = 0\\ (E\{a_i\})^2 & m \neq 0 \end{cases}$$

when symbols are zero-mean, it is

$$R_a(m) = A\delta(m)$$

and

$$S_a(f) = A$$

$$R_{e}(m) = E \left\{ a_{i} \mid a_{i+m} \right\} = \left\{ E \left\{ a_{i}^{e} \right\} : A \mid m=p \right\}$$

$$E \left\{ a_{i}^{e} \right\} : A \quad \text{mean squar velue}$$

$$E \left\{ a_{i}^{e} \right\} : E \left\{ a_{i+m} \right\} = \text{tetionozity}$$

$$E \left\{ a_{i}^{e} \right\} : A \quad \text{symbols oze } \phi \text{ mean}$$

PAM: pulse shaping

- The most compact spectrum is obtained when $G_T(f) = \text{rect}(fT)$, which in the time domain corresponds to a *sinc*.
- The pulse shape of a *sinc* spans an interval of several symbols.
- One single symbol 'mixes' its information with several adjacent symbols.
- This type of interference is denominated inter-symbol interference (ISI).

PAM: occupied bandwidth

- Because of the espression of the PSD, the bandwidth occupied by the PAM signal depends on $G_T(f)$, the frequency response of the transmit filter.
- There is a trade-off to make:
 - compact spectrum → large amount of interference in the time domain (Extreme choice: a rect in the frequency domain and a sinc in time).
 - wide spectrum → most of the symbol energy is contained within one symbol interval (Extreme choice: a *rect* in the time domain and a *sinc* in frequency).

PAM: receiver architecture

PAM system block diagram

- The propagation channel is in general modelled as a LTI filter with impuls response h(t). When the channel is ideal, it is $h(t) = \delta(t)$.
- The noise term is a white, zero-mean, Gaussian stationary process with PSD $S_w(f) = N_0/2$ ($S_w(f) = 2N_0$ for its complex envelope).
- The receiver's task is to reconstruct the sequence of transmitted bits from the received signal r(t).

