

Algorithms Design and Analysis

Computing Running time

Mahmond Khalaf Saced

```
for (i = 1; i \le n, i + +)
            for (j = 1; j \le 10, j + +)
                if (condition)
                   operation
               else
                     break
T(n) = O(n) * O(10) = O(N)
```

for
$$(i = 1; i \le n, i + +)$$

for $(j = 1; j \le n * n, j + +)$
operation
 $T(n) = O(n) * O(n * n) = O(N^3)$

for (i = 1; i \le n, i + +)
for (j = i; j \le i + 3, j + +)
operation

$$T(n) = O(n) * O(4) = O(N)$$

Note that inner loop executed from I to I + 3 only

for (i = 1; i \le n, i + +)
for (j = 1; j \le n, j+= 5)
operation

for (k = 1; k \le \frac{n}{2}, k + +)
operation

$$T(n) = MAX\{O(n) * O(n), O(n)\} = O(N^2)$$

for
$$(i = 3; i \le n, i + +)$$

$$operation$$

$$T(n) = O(n)$$

for
$$(i = 3; i \le n * 2, i + +)$$

$$operation$$

$$T(n) = O(n)$$

for
$$(i = 1; i \le n * m, i + +)$$

operation
 $T(n) = O(n * m) = O(N^2)$ if $n \approx m$

for
$$(i = 1; i \le n, i = i * 2)$$

operation

Time complexity for loop means number of times the loop has run, the given loop will run for the following values of i:

i	1	2	4	8	16	 	n
In terms of power of 2	2 ⁰	2^1	2 ²	2^3	2^4	 	2^k

The loop will run till $2^k=n$ which leads to $k = \log N$

$$T(n) = O(\log n)$$

for
$$i = 1$$
 to N
 $j = n$
while $j > i$
 $j = j - 1$
end while

end for

Outer loop (i)	Inner loop (j)	# Steps that run
1	From n to 1	n-1
2	From n to 2	n-2
3	From n to 3	n-3
n	From n to n	n-n

Summation of all steps =

$$\sum_{n=0}^{n-1} i = \frac{n-1(n-1+1)}{2} = \frac{n^2-n}{2} = O(n^2)$$

for (i = 1 to k)
for (x = 1 to n)

$$x = x + 1$$

for (m = 1 to d)
 $m = m + 1$

There are two inner loops, the first one

$$T1(n) = O(body) * NO of iteration = O(n)$$

the second inner loop consume

$$T2(n) = O(body) * NO of iteration = O(D)$$

The running time for outer loop is

$$T(n) = O(body) * NO of iteration$$

$$= O(Max[N,D]) * K = O(KN)where N is the Max[N,D]$$

$$i = 1$$

while $i < N$

for $(j = 1 \text{ to } i)$
 $h = 1$

end for

 $i = i * 2$

end while

Outer loop(i)	Inner loop(j)	# steps	
$1 = 2^{0}$	From 1 to 1	$1 = 2^0$	
$2 = 2^1$	From 1 to 2	$2 = 2^1$	
$4 = 2^2$	From 1 to 4	$4 = 2^2$	
$8 = 2^3$	From 1 to 8	$8 = 2^3$	
$= 2^{k}$	From 1 to 1	$x = 2^k$	

The total number of steps =

$$2^{0} + 2^{1} + 2^{2} + 2^{3} + 2^{4} + \dots + 2^{n} = 1 + \sum_{1}^{k} 2^{i}$$

$$= 1 + 2^{\log n + 1} - 1 = 2^{\log n + 1} = 2 * 2^{\log n} = 2 n^{\log 2} = 2N$$

$$= > T(N) = O(N)$$

Outer loop terminates if $i = n = > 2^k = N = > k = log n$

$$i = n$$

$$while i > 0$$

$$i = i - 10$$

$$end while$$

the i values decrease from n by 10 every time as: N, N-10, N-20, N-30, ..., N-H which can be expressed as

$$N - 0 * 10$$
, $N - 1 * 10$, $N - 2 * 10$, $N - 3 * 10$, ..., $N - k * 10$

The loop terminates when the condition is broken after N iteration with value equal to 0 so

$$N - k * 10 = 0 => N = 10 k => k = n/10$$

so while has $n/10$ iterations which leads to $T(N) = O(1) * n/10 = O(n/10) \approx O(N)$

Input size: n = 10

Input size: n = 1 billion

Linear search takes 1 billion ms

Binary Search takes 32 ms

46 Days

T(N) = O(N)

Piece of Day

$$T(N) = O(\log N)$$

Assignment

Compute the running time of the following pseudocodes


```
for (int i = 1; i <= n; i += 2):
print(i);
```

```
for (int i = 1; i <= n; i += 20):
print(i);
```

```
for (int i = 0; i < n; i++):

for (int j = 0; j < i; j++):

print(j);
```

```
p = 0
for (int i = 1; p <= n; i += p):
// statement;
```

```
for (int i = n; i >= 1; i /= 2):
statement;
```

```
for (int i = 0; i*i < n; i++):
// statement;
```


Assignment instructions

Answer about all assignments as a word/powerPoint files. Deadline of all assignments before next section Assignments done by only one person Similar assignments will not be checked (BigZero) Deliver your assignment with your name on: mahmoudelsaeed777@gmail.com

$$\sum_{i=i}^n ca_i = c\sum_{i=i}^n a_i$$
 where c is any number. So, we can factor constants out of a summation.

$$\sum_{i=i_0}^n (a_i \pm b_i) = \sum_{i=i_0}^n a_i \pm \sum_{i=i_0}^n b_i$$
 So, we can break up a summation across a sum or difference.

$$egin{aligned} \sum_{i=1}^n c &= cn \ &\sum_{i=1}^n i = rac{n\,(n+1)}{2} \ &\sum_{i=1}^n i^2 = rac{n\,(n+1)\,(2n+1)}{6} \ &\sum_{i=1}^n i^3 = \left[rac{n\,(n+1)}{2}
ight]^2 \end{aligned}$$

$$\sum_{i=1}^{\log n} 2^i = 2^{\log n+1} - 1$$

