Topic: 45-45-90 triangles

Question: If $\overline{ET} = 3$, what is \overline{WT} ?

Answer choices:

- Α
- B $2\sqrt{3}$ C $3\sqrt{2}$
- D 9

Solution: C

The triangle \triangle WET is a 45-45-90 triangle, and the pattern for the lengths of the sides of a 45-45-90 triangle is x, x, and $x\sqrt{2}$, where x is the length of each leg.

In this case, x=3, so the lengths of sides \overline{ET} , \overline{WE} , and \overline{WT} of this 45-45-90 triangle (in which \overline{WT} is the hypotenuse) are 3, 3 and $3\sqrt{2}$, respectively. This means that $\overline{WT} = 3\sqrt{2}$.

Alternatively, we could have used the Pythagorean theorem.

$$a^2 + b^2 = c^2$$

$$3^2 + 3^2 = c^2$$

$$9 + 9 = c^2$$

$$18 = c^2$$

Take the square root of both sides to solve for c.

$$c=\sqrt{18}$$

$$c = \sqrt{9 \cdot 2}$$
$$c = 3\sqrt{2}$$

$$c = 3\sqrt{2}$$

Topic: 45-45-90 triangles

Question: If $\overline{MU} = 2\sqrt{2}$, what is \overline{MD} ?

Answer choices:

Α

 $\sqrt{2}$ $4\sqrt{2}$ В

2 C

4 D

Solution: D

The triangle $\triangle MUD$ is a 45-45-90 triangle, and the pattern for the sides of a 45-45-90 triangle is x, x, and $x\sqrt{2}$, where x is the length of each leg.

In this case, $x=2\sqrt{2}$, so the lengths of sides \overline{MU} , \overline{UD} , and \overline{MD} of this 45-45-90 triangle (in which \overline{MD} is the hypotenuse) are $2\sqrt{2}$, $2\sqrt{2}$, and $2\sqrt{2}\cdot\sqrt{2}=2(2)=4$, respectively.

Alternatively, we could have used the Pythagorean theorem.

$$a^2 + b^2 = c^2$$

$$(2\sqrt{2})^2 + (2\sqrt{2})^2 = c^2$$

$$4(2) + 4(2) = c^2$$

$$8 + 8 = c^2$$

$$16 = c^2$$

Take the square root of both sides to solve for c.

$$c = \sqrt{16}$$

$$c = 4$$

Topic: 45-45-90 triangles

Question: Quadrilateral PACK is a square that has a diagonal of length 4. What is the length of \overline{PA} ?

Answer choices:

- Α
- $4\sqrt{2}$ $8\sqrt{2}$ В
- C
- 4 D

Solution: A

All four sides of a square are congruent, so $\overline{PA} = \overline{PK}$, which means that $\triangle PAK$ is isosceles. Also, the measure of each of the four interior angles of a square is 90°, so $\angle APK$ is a right angle. Combining these two results, we see that $\triangle PAK$ is a 45-45-90 triangle.

The pattern for the lengths of the sides of a 45-45-90 triangle is x, x, and $x\sqrt{2}$, where x is the length of each leg. In this case, we see that the hypotenuse of $\triangle PAK$ is side \overline{AK} , which is also a diagonal of square PACK, so its length is 4 (and is represented by $x\sqrt{2}$).

Write $x\sqrt{2} = 4$ and solve for x.

$$x\sqrt{2} = 4$$

$$x = \frac{4}{\sqrt{2}}$$

$$x = \frac{4}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$$

$$x = \frac{4\sqrt{2}}{2}$$

$$x = 2\sqrt{2}$$

Alternatively, we could have used the Pythagorean theorem.

$$a^2 + b^2 = c^2$$

$$x^2 + x^2 = 4^2$$

$$2x^2 = 16$$

$$x^2 = 8$$

Take the square root of both sides to solve for c.

$$x = \sqrt{8}$$

$$x = \sqrt{8}$$

$$x = \sqrt{4} \cdot \sqrt{2}$$

$$x = 2\sqrt{2}$$

$$x = 2\sqrt{2}$$

