ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА" МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА Вычислительной механики

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (ДИПЛОМНАЯ РАБОТА) специалиста

ИССЛЕДОВАНИЕ УДАРНОВОЛНОВЫХ КОНФИГУРАЦИЙ

Выполнил студент 621 гр. Липартелиани М. Г. Научный руководитель: доктор физ.-мат. наук, профессор Луцкий А.Е.

Москва

Цель работы

• Цель работы: исследование ударно-волновых конфигураций при обтекании угла сжатия.

• Расчет всех характеристических углов.

Распределение плотности расчетной области.

Теоретическая модель расчета углов ударных волн при отрывном обтекании угла сжатия^[1]

yp. macc: $\nabla \cdot (\rho u) = 0 \tag{2.1}$

ур. моментов: $\rho u \cdot \nabla u = \rho f - \nabla p + \nabla (\eta \vartheta) + \nabla \cdot (2\mu D)$ (2.2)

ур. кинетической энергии: $\rho u \cdot \nabla \left(\frac{1}{2}|u|^2\right) = \rho f \cdot u + \rho \vartheta + \nabla \cdot (T \cdot u) - \phi \tag{2.3}$

, где $\phi = \eta \vartheta^2 + 2\mu D$: D

 θ — дивергенция скорости

D – тензор скорости деформации

Т – тензор напряжения

 ϕ — диссипация кинетической энергии

Вид функции диссипации кинетической энергии

$$\hat{\phi} = \int_{\epsilon_{\omega}} \phi dn = \mathcal{E} - \mathcal{P}$$

$$\mathcal{E} = -\int_{\epsilon_{\omega}} \rho u \cdot \nabla \left(\frac{1}{2}|u|^{2}\right) dn = \frac{1}{2} \left\{ \rho_{a} \left(M_{a} c_{a} \sin \beta\right)^{3} - \rho_{b} \left[M_{b} c_{b} \sin \left(\beta - \theta\right)\right]^{3} \right\}$$

$$\mathcal{P} = -\int_{\epsilon_{\omega}} p \vartheta dn \approx \frac{1}{2} \left(p_{a} + p_{b}\right) \left[M_{a} c_{a} \sin \beta - M_{b} c_{b} \sin \left(\beta - \theta\right)\right]$$

$$(3.1)$$

 \mathcal{E} — потери кинетической энергии

 \mathcal{P} — отрицательная работа давления

Система для нахождения углов

$$\begin{cases} M_b^2 = F_M(M_a, \beta) \\ c_a/c_b = F_c(M_a, \beta) \\ \rho_a/\rho_b = F_\rho(M_a, \beta) \\ p_a/p_b = F_p(M_a, \beta) \\ F_\beta(M_a, \beta, \theta) = 0 \end{cases}$$
(3.2)

$$\mathcal{F}_{M}(M,\beta) \equiv \frac{M^{2} + \frac{2}{\gamma - 1}}{\frac{2\gamma}{\gamma - 1}M^{2}\sin^{2}\beta - 1} + \frac{M^{2}\cos^{2}\beta}{\frac{\gamma - 1}{2}M^{2}\sin^{2}\beta + 1}$$

$$\mathcal{F}_{c}(M,\beta) \equiv \frac{\left[(\gamma - 1)M^{2}\sin^{2}\beta + 2\right]^{1/2}\left[2\gamma M^{2}\sin^{2}\beta - (\gamma - 1)\right]^{1/2}}{(\gamma + 1)M\sin\beta}$$

$$\mathcal{F}_{\rho}(M,\beta) \equiv \frac{(\gamma + 1)M^{2}\sin^{2}\beta}{(\gamma - 1)M^{2}\sin^{2}\beta + 2}, \quad \mathcal{F}_{p}(M,\beta) \equiv \frac{2\gamma}{\gamma + 1}M^{2}\sin^{2}\beta - \frac{\gamma - 1}{\gamma + 1}$$

$$\mathcal{F}_{\beta}(M,\beta,\theta) \equiv 2\cot\beta\frac{M^{2}\sin^{2}\beta - 1}{M^{2}(\gamma + \cos2\beta) + 2} - \tan\theta$$
(3.3)

Общая диссипация

$$\frac{L_{SB}}{\sqrt{\Omega_s}} = \sqrt{\frac{2 \sin \alpha}{\sin \theta_r \sin \theta_s}} \frac{\cos \theta_s \tan(\beta_r + \theta_s) - \sin \theta_s}{\cos \beta_s \tan(\beta_r + \theta_s) - \sin \beta_s},$$

$$\frac{L_{RB}}{\sqrt{\Omega_s}} = \sqrt{\frac{2 \sin \alpha}{\sin \theta_r \sin \theta_s}} \frac{\cos \theta_s \tan(\beta_r + \theta_s) - \sin \theta_s}{\sin(\beta_r + \theta_s) - \cos(\beta_r + \theta_s) \tan \beta_s}.$$

$$\Phi(heta_{\scriptscriptstyle S}) = \widehat{\phi_{\scriptscriptstyle SB}} L_{\scriptscriptstyle SB} + \widehat{\phi_{\scriptscriptstyle RB}} L_{\scriptscriptstyle RB}$$
 - общая диссипация

Дня нахождения минимума нужно, чтоб было выполнено два условия:

$$\frac{\partial \Phi}{\partial \theta_S} = 0$$
 и $\frac{\partial^2 \Phi}{\partial \theta^2} > 0$.

Численная модель расчета углов ударных волн

Недостаток теоретической модели – нельзя явно выразить все неизвестные через угол $heta_s$

график зависимости θ от β в интервале от 0 до $\frac{\pi}{2}$

Отбор подходящих точек в численном методе

$$\begin{cases} M_i > 0 \\ c_i > 0 \\ \rho_i > 0 \\ p_i > 0 \\ \beta_i > \theta \\ \theta_s + \theta_r = \alpha \end{cases}$$

Сравнение теоретической и численной моделей

M = 6	θ_s	$oldsymbol{eta}_s$	$ heta_r$	$oldsymbol{eta}_r$
$\alpha = 15$	S	P S	r	Pr
численный	4.81	13.01	10.18	17.85
расчет	4.01	15.01	10.10	17.03
Статья	4.93	13.1	10.07	18.77
Crarbn	1.55	13.1	10.07	10.77
M = 6	θ_s	$oldsymbol{eta}_s$	$ heta_r$	$oldsymbol{eta}_r$
$\alpha = 28$				
Численный	8.34	16.04	19.66	29.68
расчет				
Статья	7.98	15.71	20.02	29.99
M = 6	$ heta_{\scriptscriptstyle \mathcal{S}}$	eta_s	$ heta_r$	eta_r
$\alpha = 15$				
Численный	4.63	10.54	10.35	16.79
расчет				
Статья	4.65	10.55	10.35	16.79

Постановка задачи

В качестве конкретных примеров рассматривались каналы с числом Маха 6 входного потока и углом сжатия 28°.

Рассчитанные параметры сравнивались с верифицированной моделью Спаларта-Аллмараса.

Распределение плотности расчетной области.

Ламинарное течение

Распределения плотностей

Ламинарное течение

Для этих моментов времени имеем следующие углы:

	$\boldsymbol{\theta}_{s}$	β_s	θ_r	$oldsymbol{eta}_r$
1	5.65	12.55	22.35	37.05
2	5.9	12.97	22.14	37.75
3	6.12	14.4	21.87	44.43
Теоретическ	6.73	14.61	21.27	36.11
ая модель				

Численным методом на основе изложенной выше теоретической модели получаются следующие углы, которые близки ко второму моменту времени.

Турбулентное течение

Распределение плотности

При расчете же турбулентного течения, построенного на модели Спаларта-Аллмараса, область отрыва существует и оно близко к стационарному. Но модельные расчеты далеки от теоретической модели.

	$\boldsymbol{\theta}_{s}$	$oldsymbol{eta}_s$	θ_r	$oldsymbol{eta}_r$
Модель S-A	0.7	11.29	27.3	44.43
Теоретическ	6.73	14.61	21.27	36.11
ая модель				

Ламинарное течение

Распределения давлений

Турбулентное течение

Распределение давления

Распределение давления вдоль поверхности пластины и клина

Заключение

- Произведено исследование теоретической модели [1] определения ударно-волновой конфигурации. Разработан и верифицирован численный алгоритм решения системы алгебраических уравнений, описывающей эту модель.
- В целях проверки адекватности теоретической модели проведены расчеты обтекания угла сжатия на основе уравнений Навье-Стокса и Рейнольдса. Установлено, что ламинарное течение является нестационарным. В некоторые моменты времени параметры ударноволновой конфигурации согласуются с теоретическими. При расчете с использованием модели турбулентности Спаларта-Аллмараса получается стационарное решение, существенно отличающееся от теоретического.
- Необходимы дальнейшие исследования для определения области применимости теоретической модели.

Спасибо за внимание!

Литература

- [1] Yan-Chao Hu, Wen-Feng Zhou, Yan-Guang Yang, Zhi-Gong Tang and Zhao-Hu Qin, Prediction of shock wave configurations in compression ramp flows Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Centre, Mianyang 621000, China 2020
- [2] Колган В.П. Применение принципа минимальных значений производных к построению конечно-разностных схем для расчета разрывных решений газовой динамики Ученые записки цаги 1972
- [3] Петров К.П. Аэродинамика тел простейших форм. Научное издание М: "Факториал", 1998. 432 с.
- [4] Кудряшов И.Ю., Луцкий А.Е., Северин А.В. Численное исследование отрывного трансзвукового обтекания моделей с сужением хвостовой части Препринты ИПМ им. М.В. Келдыша 2010. № 7. 12 с.
- [5] Седов Л.И. Механика сплошных среды. Том 2 М.: Наука, 1970 г.
- [6] Стулов В.П. Лекции по газовой динамике// Учебник. М.: ФИЗМАТЛИТ, 2004. 192 с. ISBN 5-9221-0213-3
- [7] Гарбарук А.В. Конспект лекций дисциплины «Течения вязкой жидкости и модели турбулентности: методы расчета турбулентных течений»