$R^{1}(Alk^{1})_{r}(L^{1})_{s}$ $(Alk^{2})_{m}$ $C(R^{2})-X^{1}R^{4}$ R (1a)

wherein:

R is a carboxylic acid;

R' is an optionally substituted pyridyl group;

Alk¹ is an optionally substituted $C_{1.6}$ aliphatic chain or $C_{1.6}$ heteroaliphatic chain containing one, two, three or four heteroatoms or heteroatom-containing groups;

L¹ is -O-, -S-, -C(O)-, -(O)O-, -C(S)-, -S(O)-, -S(O)₂-, -N(R⁵)-, -CON(R⁵)-, -OC(O)N(R⁵)-, -CSN(R⁵)-, -N(R⁵)CO-, -N(R⁵)C(O)O-, -N(R⁵)CS-, -S(O)N(R⁵)-, -S(O)₂N(R⁵)-, -N(R⁵)S(O)₂-, -N(R⁵)CON(R⁵)-, -N(R⁵)CSN(R⁵)-, -N(R⁵)SON(R⁵)-, or -N(R⁵)SO₂N(R⁵)-;

R⁵ is a hydrogen atom or a straight or branched alkyl group;

r and s, which may be the same or different, is each zero or an integer 1;

Alk² is a straight or branched alkylene chain;

m is zero or an integer 1;

1

4

R² is a hydrogen atom or a methyl group;

 X^1 is a group selected from -N(R³)CO-, (where R³ is a hydrogen atom or a straight or branched alkyl group); -N(R³) SO₂-, -N(R³)C(O)O- or -N(R³)CON(R^{3a})- (where R^{3a} is a hydrogen atom or a straight or branched alkyl group);

 R^4 is an optionally substituted $C_{1.6}$ aliphatic, $C_{3.10}$ cycloaliphatic or $C_{7.10}$ polycycloaliphatic group;

and the salts, solvates, hydrates and N-oxides thereof.

3

14. (Amended Twice) A method for the prophylaxis or treatment of a disease or disorder involving inflammation in which the extravasation of leukecytes plays a role in a mammal, which comprises administering to a mammal suffering from such a disease or disorder a therapeutically effective amount of a compound of formula (1):

$$R^{1}(Alk^{1})_{r}(L^{1})_{s}$$

$$(Alk^{2})_{m}$$

$$C(R^{2})-X^{1}R^{4}$$

$$R$$

$$(1)$$

wherein:

R is a carboxylic acid (CO₂H);

R¹ is a hydrogen atom or a hydroxyl, straight or branched alkoxy or optionally substituted pyridyl group;

Alk¹ is an optionally substituted $C_{1.6}$ aliphatic chain or $C_{1.6}$ heteroaliphatic chain containing one, two, three or four heteroatoms or heteroatom-containing groups;