Yingkai Li

EC4501/EC4501HM

Let $\mathbb M$ be the set of possible mechanisms (e.g., DSIC mechanisms). For any $M\in\mathbb M$

- ullet M(v) is the performance of mechanism M given realized value profile v;
- $M(F) \triangleq \mathbf{E}_{v \sim F}[M(F)].$

Let $\mathbb M$ be the set of possible mechanisms (e.g., DSIC mechanisms). For any $M\in\mathbb M$

- M(v) is the performance of mechanism M given realized value profile v;
- $M(F) \triangleq \mathbf{E}_{v \sim F}[M(F)].$

Bayesian Optimal

$$OPT_F = \operatorname*{argmax}_{M \in \mathbb{M}} M(F).$$

Let $\mathbb M$ be the set of possible mechanisms (e.g., DSIC mechanisms). For any $M\in\mathbb M$

- M(v) is the performance of mechanism M given realized value profile v;
- $M(F) \triangleq \mathbf{E}_{v \sim F}[M(F)].$

Bayesian Optimal

$$OPT_F = \operatorname*{argmax}_{M \in \mathbb{M}} M(F).$$

Prior-independent Optimal

$$\beta = \min_{M \in \mathbb{M}} \max_{F \in \mathbb{F}} \frac{\mathrm{OPT}_F(F)}{M(F)}$$

Let $\mathbb M$ be the set of possible mechanisms (e.g., DSIC mechanisms). For any $M\in\mathbb M$

- ullet M(v) is the performance of mechanism M given realized value profile v;
- $M(F) \triangleq \mathbf{E}_{v \sim F}[M(F)].$

Bayesian Optimal

$$OPT_F = \operatorname*{argmax}_{M \in \mathbb{M}} M(F).$$

Prior-independent Optimal

$$\beta = \min_{M \in \mathbb{M}} \max_{F \in \mathbb{F}} \frac{\mathrm{OPT}_F(F)}{M(F)}$$

Prior-free Optimal (for Benchmark B)

$$\gamma_B = \min_{M \in \mathbb{M}} \max_{v \in \mathbb{V}} \frac{B(v)}{M(v)}$$

Prior-free Optimal (for Benchmark B)

$$\gamma_B = \min_{M \in \mathbb{M}} \max_{v \in \mathbb{V}} \frac{B(v)}{M(v)}$$

• relates to worst-case competitive analysis [Sleator and Tarjan '85; Littlestone and Warmuth '94].

Prior-free Optimal (for Benchmark B)

$$\gamma_B = \min_{M \in \mathbb{M}} \max_{v \in \mathbb{V}} \frac{B(v)}{M(v)}$$

Optimal mechanism depends on the ad hoc benchmark.

Prior-free Optimal (for Benchmark B)

$$\gamma_B = \min_{M \in \mathbb{M}} \max_{v \in \mathbb{V}} \frac{B(v)}{M(v)}$$

Optimal mechanism depends on the ad hoc benchmark.

Example: single-item, two agents, $v_{(1)} \ge v_{(2)}$.

- $B(v) = v_{(1)}$: no mechanism can approximate this benchmark.
- $B(v) = v_{(2)}$: second-price auction is prior-free optimal.
- $B(v)=k\cdot v_{(2)}$: randomly markup the second highest value by \sqrt{k} with probability $\frac{1}{2}$ achieves a $2\sqrt{k}$ approximation.

n agents, unlimited supply of items.

n agents, unlimited supply of items.

Optimal single price omniscient auction:

$$B^*(v) = \max_{1 \le i \le n} i \cdot v_{(i)}$$

where $v_{(i)}$ is the *i*th highest value.

n agents, unlimited supply of items.

Optimal single price omniscient auction:

$$B^*(v) = \max_{1 \le i \le n} i \cdot v_{(i)}$$

where $v_{(i)}$ is the *i*th highest value.

No mechanism can approximate the benchmark of B^* .

• consider the instance where the highest revenue only comes from the highest value.

Optimal single price omniscient auction with at least two sales: [Goldberg, Hartline, Karlin, Saks and Wright '06]

$$B^{(2)}(v) = \max_{2 \le i \le n} i \cdot v_{(i)}.$$

Optimal single price omniscient auction with at least two sales: [Goldberg, Hartline, Karlin, Saks and Wright '06]

$$B^{(2)}(v) = \max_{2 \le i \le n} i \cdot v_{(i)}.$$

Exclude the possibility of all revenue contribution comes from a single agent.

$ProfitExtract_R$

The Profit Extraction auction (ProfitExtract_R), given target profit R, is defined as follows:

- lacksquare Find the largest k such that the highest k bidders' bids are at lease R/k.
- ② Charge these k bidders R/k and reject all others.

 $ProfitExtract_R$ is incentive compatible given any $R \geq 0$.

$ProfitExtract_R$

The Profit Extraction auction (ProfitExtract_R), given target profit R, is defined as follows:

- Find the largest k such that the highest k bidders' bids are at lease R/k.
- ② Charge these k bidders R/k and reject all others.

 $ProfitExtract_R$ is incentive compatible given any $R \geq 0$.

RSPE

The Random Sampling Profit Extraction auction (RSPE) is works as follows:

- **1** Partition bids uniformly at random into two sets: b' and b''.
- ② Compute R' and R'' as the optimal single price profits for b' and b'', respectively.
- **3** Compute the auction results by running $ProfitExtract_{R''}$ on b' and $ProfitExtract_{R'}$ on b''.

RSPE is incentive compatible.

Theorem (Goldberg, Hartline, Karlin, Saks and Wright '06)

The Random Sampling Profit Extraction auction (RSPE) is a 4-approximation to $B^{(2)}$.

Theorem (Goldberg, Hartline, Karlin, Saks and Wright '06)

The Random Sampling Profit Extraction auction (RSPE) is a 4-approximation to $B^{(2)}$.

Revenue from RSPE is at least $\min\{R', R''\}$.

Theorem (Goldberg, Hartline, Karlin, Saks and Wright '06)

The Random Sampling Profit Extraction auction (RSPE) is a 4-approximation to $B^{(2)}$.

Revenue from RSPE is at least $\min\{R', R''\}$.

Let $p \ge 0, k \ge 2$ be the optimal price and number of winners in benchmark $B^{(2)}$. Let k' be the number of those k winners in b' and k'' be the number of those k winners in b''.

$$R' \ge p \cdot k'$$
 and $R'' \ge p \cdot k''$.

Theorem (Goldberg, Hartline, Karlin, Saks and Wright '06)

The Random Sampling Profit Extraction auction (RSPE) is a 4-approximation to $B^{(2)}$.

Revenue from RSPE is at least $\min\{R', R''\}$.

Let $p \ge 0, k \ge 2$ be the optimal price and number of winners in benchmark $B^{(2)}$. Let k' be the number of those k winners in b' and k'' be the number of those k winners in b''.

$$R' \ge p \cdot k'$$
 and $R'' \ge p \cdot k''$.

Therefore, for any v,

$$\frac{\mathrm{RSPE}(v)}{B^{(2)}(v)} \ge \mathbf{E}\left[\frac{\min\{k',k''\}}{k}\right] \ge \frac{1}{4}.$$

Given the benchmark of $B^{(2)}$, is ${\rm RSPE}$ the optimal mechanism?

Given the benchmark of $B^{(2)}$, is RSPE the optimal mechanism? No.

There exists a mechanism that guarantees a 2.42-approximation to the optimal [Chen, Gravin and Lu '14].

Given the benchmark of $B^{(2)}$, is RSPE the optimal mechanism? No.

There exists a mechanism that guarantees a 2.42-approximation to the optimal [Chen, Gravin and Lu '14].

• non-constructive proof.

Given the benchmark of $B^{(2)}$, is RSPE the optimal mechanism? No.

There exists a mechanism that guarantees a 2.42-approximation to the optimal [Chen, Gravin and Lu '14].

• non-constructive proof.

Question: is $B^{(2)}$ the right benchmark for the prior-free model? Is the corresponding optimal mechanism for $B^{(2)}$ the appropriate mechanism to adopt for such robust environments?

Question: What makes a good benchmark?

Question: What makes a good benchmark?

Goal: discriminate between good and bad mechanisms [Hartline and Roughgarden '08].

Question: What makes a good benchmark?

Goal: discriminate between good and bad mechanisms [Hartline and Roughgarden '08].

- too small: many mechanisms can approx, doesn't discriminate.
- too large: no mechanism can approx, doesn't discriminate.

Question: What makes a good benchmark?

Goal: discriminate between good and bad mechanisms [Hartline and Roughgarden '08].

• too small: many mechanisms can approx, doesn't discriminate.

• too large: no mechanism can approx, doesn't discriminate.

Informal Goal: formalize "too small", optimize "too large".

Intuition: benchmark must not be too small.

Intuition: benchmark must not be too small.

Definition (Normalized Benchmark)

For distributions \mathbb{F} , benchmark B is normalized if $B(F) \geq \mathrm{OPT}_F(F)$ for all $F \in \mathbb{F}$. $\mathbb{B}(\mathbb{F})$ is family of normalized benchmarks.

E.g., welfare is a normalized benchmark for revenue.

Intuition: benchmark must not be too small.

Definition (Normalized Benchmark)

For distributions \mathbb{F} , benchmark B is normalized if $B(F) \geq \mathrm{OPT}_F(F)$ for all $F \in \mathbb{F}$. $\mathbb{B}(\mathbb{F})$ is family of normalized benchmarks.

E.g., welfare is a normalized benchmark for revenue.

Theorem (Hartline, Roughgarden '08)

Prior-free γ -approximation of normalized benchmark for \mathbb{F} \Rightarrow prior-independent γ -approximation for \mathbb{F} .

Intuition: benchmark must not be too small.

Definition (Normalized Benchmark)

For distributions \mathbb{F} , benchmark B is normalized if $B(F) \geq \mathrm{OPT}_F(F)$ for all $F \in \mathbb{F}$. $\mathbb{B}(\mathbb{F})$ is family of normalized benchmarks.

E.g., welfare is a normalized benchmark for revenue.

Theorem (Hartline, Roughgarden '08)

Prior-free γ -approximation of normalized benchmark for \mathbb{F} \Rightarrow prior-independent γ -approximation for \mathbb{F} .

For any $F \in \mathbb{F}$,

$$M(F) \ge \frac{1}{\gamma} \cdot B(F) \ge \frac{1}{\gamma} \cdot \mathrm{OPT}_F(F).$$

Intuition: benchmark must not be too big.

Intuition: benchmark must not be too big.

Definition (Benchmark Resolution)

$$\gamma_B = \min_{M \in \mathbb{M}} \max_{v \in \mathbb{V}} \frac{B(v)}{M(v)}.$$

Intuition: benchmark must not be too big.

Definition (Benchmark Resolution)

$$\gamma_B = \min_{M \in \mathbb{M}} \max_{v \in \mathbb{V}} \frac{B(v)}{M(v)}.$$

- The resolution of welfare is ∞ .
- The resolution of $B^{(2)}$ in digital auction is 2.42.

Intuition: benchmark must not be too big.

Definition (Benchmark Resolution)

$$\gamma_B = \min_{M \in \mathbb{M}} \max_{v \in \mathbb{V}} \frac{B(v)}{M(v)}.$$

- The resolution of welfare is ∞ .
- The resolution of $B^{(2)}$ in digital auction is 2.42.

Benchmark Optimization

Find normalized benchmark with finest resolution:

$$\gamma = \min_{B \in \mathbb{B}(\mathbb{F})} \min_{M \in \mathbb{M}} \max_{v \in \mathbb{V}} \frac{B(v)}{M(v)}.$$

Equivalence Between Prior Independent and Prior Free

Benchmark Optimization

$$\gamma = \min_{B \in \mathbb{B}(\mathbb{F})} \min_{M \in \mathbb{M}} \max_{v \in \mathbb{V}} \frac{B(v)}{M(v)}$$

Prior-independent Optimization

$$\beta = \min_{M \in \mathbb{M}} \max_{F \in \mathbb{F}} \frac{\mathrm{OPT}_F(F)}{M(F)}$$

Equivalence Between Prior Independent and Prior Free

Benchmark Optimization

$$\gamma = \min_{B \in \mathbb{B}(\mathbb{F})} \min_{M \in \mathbb{M}} \max_{v \in \mathbb{V}} \frac{B(v)}{M(v)}$$

Prior-independent Optimization

$$\beta = \min_{M \in \mathbb{M}} \max_{F \in \mathbb{F}} \frac{\mathrm{OPT}_F(F)}{M(F)}$$

Theorem (Hartline, Johnson and Li '20)

Benchmark optimization = prior-independent optimization, i.e., $\gamma=\beta$

Equivalence Between Prior Independent and Prior Free

Benchmark Optimization

$$\gamma = \min_{B \in \mathbb{B}(\mathbb{F})} \min_{M \in \mathbb{M}} \max_{v \in \mathbb{V}} \frac{B(v)}{M(v)}$$

Prior-independent Optimization

$$\beta = \min_{M \in \mathbb{M}} \max_{F \in \mathbb{F}} \frac{\mathrm{OPT}_F(F)}{M(F)}$$

Theorem (Hartline, Johnson and Li '20)

Benchmark optimization = prior-independent optimization, i.e., $\gamma=eta$

Sketch:

- prior-independent opt. program suggests a benchmark and algorithm, best benchmark and algorithm is no worse.
- enchmark program suggests a algorithm that is a prior-independent approximation, optimal prior-independent approximation is no worse.

Proof of (1)

Benchmark Optimization

$$\gamma = \min_{B \in \mathbb{B}(\mathbb{F})} \min_{M \in \mathbb{M}} \max_{v \in \mathbb{V}} \frac{B(v)}{M(v)}$$

Prior-independent Optimization

$$\beta = \min_{M \in \mathbb{M}} \max_{F \in \mathbb{F}} \frac{\mathrm{OPT}_F(F)}{M(F)}$$

 $\gamma \leq \beta$: prior-independent opt. program suggests a benchmark and algorithm, best benchmark and algorithm is no worse.

- ullet let M be solution to prior-independent program with objective value eta
- define scaled-up benchmark: $B(v) = \beta \cdot M(v)$
- \bullet (M,B) are valid for benchmark program with objective β
- optimal solution to benchmark program has $\gamma \leq \beta$.

Proof of (2)

Benchmark Optimization

$$\gamma = \min_{B \in \mathbb{B}(\mathbb{F})} \min_{M \in \mathbb{M}} \max_{v \in \mathbb{V}} \frac{B(v)}{M(v)}$$

Prior-independent Optimization

$$\beta = \min_{M \in \mathbb{M}} \max_{F \in \mathbb{F}} \frac{\mathrm{OPT}_F(F)}{M(F)}$$

 $\beta \leq \gamma$: benchmark program suggests a mechanism that is a prior-independent approximation, optimal prior-independent approximation is no worse.

- ullet let (M,B) be solution to benchmark program with objective value γ
- normalization of benchmark $\Rightarrow M$ is prior-independent γ -approx.
- ullet M is valid solution for prior-independent program with objective γ
- optimal solution to prior-independent program has $\beta \leq \gamma$.

Open Questions

Benchmark Optimization

Find normalized benchmark with finest resolution:

$$\gamma = \min_{B \in \mathbb{B}(\mathbb{F})} \min_{M \in \mathbb{M}} \max_{v \in \mathbb{V}} \frac{B(v)}{M(v)}.$$

Question: is this the right way for benchmark optimization?

Open Questions

Benchmark Optimization

Find normalized benchmark with finest resolution:

$$\gamma = \min_{B \in \mathbb{B}(\mathbb{F})} \min_{M \in \mathbb{M}} \max_{v \in \mathbb{V}} \frac{B(v)}{M(v)}.$$

Question: is this the right way for benchmark optimization?

Its connection to prior-independent analysis indicates that it loses some of desirable robustness properties when adopting the "optimal" benchmark.

• e.g., online learning [Hartline, Johnson and Li '20].