

Why Deep Learning rocks

A philosophical note

Andrey Ustyuzhanin, Maxim Borisyak, Mikhail Usvyatsov, Alexander Panin

Yandex School of Data Analysis National Research University Higher School of Economics

No free lunch theorem

No free lunch theorem states that in average all learning algorithms are equally bad at learning.

Examples:

> crazy algorithm:

$$f(x) = \left\lfloor \left(\left\lceil \sum_i x_i \right\rceil \mod 17 + 1027 \right)^\pi \right\rfloor \mod 2$$

> SVM

perform equally well in average.

$$X = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 3 \\ 4 \\ 0 \\ 1 \\ 1 \\ 2 \end{pmatrix} = 1$$

$$X = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 3 \\ 4 \\ 0 \\ 1 \\ 1 \\ ? \end{pmatrix} = y \qquad X = \begin{pmatrix} 2 \\ 7 \\ 1 \\ 0 \\ 4 \\ 0 \\ 1 \\ 1 \\ ? \end{pmatrix} = y \qquad X = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ 1 \\ 2 \\ ? \end{pmatrix} = y$$

$$X = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 3 \\ 4 \\ 0 \\ 1 \\ 1 \\ ? \end{pmatrix} = y \qquad X = \begin{pmatrix} 2 \\ 7 \\ 1 \\ 0 \\ 4 \\ 3 \\ 5 \\ 6 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 3 \\ 4 \\ 0 \\ 1 \\ 1 \\ ? \end{pmatrix} = y \qquad X = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ 1 \\ 2 \\ 3 \end{pmatrix} = y$$

$$y = \begin{vmatrix} \sum_{i=0}^{2} 2^{i}x_{i} - 4 \\ | = |x - 4|$$

No free lunch theorem

Possible learning algorithm behaviours in problem space:

- > + better than the average;
- > - worse than the average.

Are Machine Learning algorithms useless?

Are Machine Learning algorithms useless?

No.

Are Machine Learning algorithms useless?

- Machine Learning algorithms have data scientists;
- > data scientists are additional source of prior information;
- > prior information is a cheat for No Free Lunch Theorem.

Traditional Machine Learning

- > analyse the problem and make assumptions;
- > pick an algorithm from a toolkit (e.g. logistic regression);
- > provide assumptions suitable for the algorithm (feature engineering).

Discussion

- > this approach works well for traditional datasets with a small number of features:
- > e.g. Titanic dataset:

passenger class	sex	age	fare	
-----------------	-----	-----	------	--

Essentially, performance of the algorithm depends data scientist's ability to generate features.

> but our abilities are limited.

Kitten

Kitten

```
32
                 29 ..., 58 36
                                   35
     25
         28
                                       34
                                           341
F 26
         30
                 36 ..., 65
                               38
     29
             31
                                   42
                                       41
                                           421
              30 40 ...,
 27
     28
         31
                           84
                               58
                                   51
                                       52
                                           447
Γ 27
     26
         27
             29 43 ...,
                           90
                              70
                                   60
                                       57
                                           431
Γ 20
             28 31 ..., 83 73
                                       52
     26
         28
                                   62
                                           451
. . . ,
[173 187 180 183 184 ..., 170 227 244 219 199]
[193 199 194 188 185 ..., 181 197 201 209 187]
Γ175 177 156 166 171 ..., 226 215 194 185 1821
[161 159 160 187 178 ..., 216 193 220 211 200]
        177 185 164 ..., 190 184 212 216 18911
```

Solution?

```
> edge detection:
> image segmentation;
> eves. ears. nose models:
> fit shape to recognise nose, ears, eyes, ...:
> average color of segments;
> standard deviation of color segments;
> goodness of fit for segments;
> kitten's face model:
> tf-idf???
> feed it to SVM
> ...
```

Deep Learning

Deep Learning

Let's learn features!

How

> apply some simple transformation to the original input:

$$X \to f(X) \cdots y$$

Kitten

- > use convolutions;
- > use convolutions again;
- > and again;
- > and again;
- ٠...
- > logistic regression.

Why deep?

- new set of features is generated from previous one by a simple learnable transformation;
- > each step increases complexity of feature generation;
- > high-level features (kitten or puppy) are complex ones thus requires a lot of steps;
- > therefore, deep.

Deep Learning

- > is not a superior algorithm;
- > is not a single algorithm;
- > is a framework;
- > very flexible framework;
- > allows to express our assumptions in much more general way.

Why DL rocks

Solves much harder problems:

- > purely a human factor:
 - > research time;
 - > limits of our intuition and understanding of the world; A framework:
 - > algorithms are like constructor;
 - > possible to solve almost every possible problem:
 - > classification;
 - > regression;
 - > clasterisation;
 - > sample generation...

Downsides

- > learning features requires data;
 - > big datasets;
 - > big computational resources (GPUs);
- > there is almost always a better algorithm:
 - > with hand-made features;
 - > probably constructed by a super-intelligent alien.

Summary

Summary

Deep Learning:

- > a flexible framework;
- > allows to express you knowledge easier;
- > solves much harder problems.