

Lecture 13. More monads and applicatives

Functional Programming

Utrecht University

1

Goals

- See yet another example of monad
- · Understand the monad laws
- Introduce the idea of applicative functor
- Understand difference functor/applicative/monad

Chapter 12.2 from Hutton's book

The State monad

Reverse Polish Notation (RPN)

Notation in which an operator follows its operands

Parentheses are not needed when using RPN

Reverse Polish Notation (RPN)

Notation in which an operator follows its operands

Parentheses are not needed when using RPN

Historical note: RPN was invented in the 1920s by the Polish mathematician Łukasiewicz, and rediscovered by several computer scientists in the 1960s

4

RPN expressions

Expressions in RPN are lists of numbers and operations

```
data Instr = Number Float | Operation ArithOp
type RPN = [Instr]
```

We reuse the ArithOp type from arithmetic expressions

```
For example, 3 4 + 2 * becomes
[ Number 3, Number 4, Operation Plus
, Number 2, Operation Times ]
```

RPN calculator

To compute the value of an expression in RPN, you keep a stack of values

- Each number is added at the top of the stack
- Operations use the top-most elements in the stack

6

```
type Stack = [Float]
evalInstr :: Instr -> Stack -> Stack
```

Let me introduce two new operations to make clear what is going in with the stack

```
pop :: Stack -> (Float, Stack)
push :: Float -> Stack -> Stack
```

Using those the evaluator takes an intuitive form.

Let me introduce two new operations to make clear what is going in with the stack

```
pop :: Stack -> (Float, Stack)
pop (x:xs) = (x, xs)
push :: Float -> Stack -> Stack
push x xs = x : xs
Using those the evaluator takes this form:
evalInstr (Number f) s
  = push f s
evalInstr (Operation op) s
  = let (x, s1) = pop s
        (y, s2) = pop s1
    in push (evalOp op x y) s2
```

Encoding state explicitly

A function like pop

```
pop :: Stack -> (Float, Stack)
```

can be seen as a function which modifies a state:

- · Takes the original state as an argument
- Returns the new state along with the result

Encoding state explicitly

A function like pop

```
pop :: Stack -> (Float, Stack)
```

can be seen as a function which modifies a state:

- · Takes the original state as an argument
- Returns the new state along with the result

The intuition is the same as looking at IO as

```
type IO a = World -> (a, World)
```

Encoding state explicitly

```
Functions which only operate in the state return ()
push :: Float -> Stack -> ((), Stack)
push f s = ((), f : s)
evalInstr :: Instr -> Stack -> ((), Stack)
evalInstr (Number f) s
  = push f s
evalInstr (Operation op) s
  = let (x, s1) = pop s
        (y, s2) = pop s1
    in push (eval0p op x y) s2
```

Looking for similarities

The same pattern occurs twice in the previous code

```
let (x, newStack) = f oldStack
in _ -- something which uses x and the newStack
```

This leads to a higher-order function

```
next :: (Stack -> (a, Stack))
-> (a -> Stack -> (b, Stack))
-> (Stack -> (b, Stack))
```

Looking for similarities

The same pattern occurs twice in the previous code

```
let (x, newStack) = f oldStack
in _ -- something which uses x and the newStack
```

This leads to a higher-order function

(Almost) the State monad

```
type State a = Stack -> (a, Stack)
```

State is almost a monad, we only need a return

• The type has only one hole, as required

The missing part is a return function

• What can we do?

```
return :: a -> Stack -> (a, Stack)
```

(Almost) the State monad

```
type State a = Stack -> (a, Stack)
```

State is almost a monad, we only need a return

• The type has only one hole, as required

The missing part is a return function

The only thing we can do is keep the state unmodified

```
return :: a -> Stack -> (a, Stack)
return x = \s -> (x, s)
```

Nicer code for the examples

The Stack value is threaded implicitly

• Similar to a single mutable variable

We can generalize this idea to any type s of State

type State
$$s a = s \rightarrow (a, s)$$

We can generalize this idea to any type s of State

```
type State s a = s \rightarrow (a, s)
```

Alas, if you try to write the instance GHC complains

```
instance Monad (State s) where -- Wrong!
```

This is because you are only allowed to use a type synonym with all arguments applied

• But you need to leave one out to make it a monad

The "trick" is to wrap the value in a data type

```
newtype State s a = S (s -> (a, s))
run :: State s a -> s -> a
run = ???
```

The "trick" is to wrap the value in a data type

```
run :: State s a = S (s -> (a, s))
run :: State s a -> s -> a
run (S f) s = fst (f s)
```

But now every time you need to access the function, you need to unwrap things, and then wrap them again

What is going on?

State passing style!

Warning: the following slides contain ASCII-art

What is going on?

A State s a value is a "box" which, once feed with an state, gives back a value and the modified state

What is going on?

A State s a value is a "box" which, once feed with an state, gives back a value and the modified state

A function c -> State s a is a "box" with an extra input

What is going on with return?

return has type a -> State s a

What is going on with return?

return has type a -> State s a

- · It is thus a box of the second kind
- It just passes the information through, unmodified

What is going on with (>>=)?

```
(>>=) : State s a -> (a \rightarrow State s b) \rightarrow State s b
```

- · We take one box of each kind
- And have to produce a box of the first kind

What is going on with (>>=)?

```
(>>=) : State s a -> (a -> State s b) -> State s b
```

- · We take one box of each kind
- And have to produce a box of the first kind

Connect the wires and wrap into a larger box!

+----+

Another use for state: counters

Given a binary tree, return a new one labelled with numbers in depth-first order

Another use for state: counters

Given a binary tree, return a new one labelled with numbers in depth-first order

What is the type for such a function?

Another use for state: counters

Given a binary tree, return a new one labelled with numbers in depth-first order

```
'h'
                 (Node Leaf 'c' Leaf)
> label t
Node (Node Leaf (0, 'a') Leaf)
     (1, 'b')
      (Node Leaf (2, 'c') Leaf)
What is the type for such a function?
label :: Tree a -> Tree (Int, a)
Idea: use an implicit counter to keep track of the label
```

> let t = Node (Node Leaf 'a' Leaf)

Cooking label

The main work happens in a local function which is stateful

```
label' :: Tree a -> State Int (Tree (Int, a))
```

The purpose of label is to initialize the state to 0

```
label t = run (label' t) 0
where label' = ...
```

Cooking label'

We use an auxiliary function to get the current label and update it to the next value

```
nextLabel :: State Int Int
nextLabel = S  i \rightarrow (i, i + 1)
Armed with it, writing the stateful label ' is easy
label' Leaf = return Leaf
label' (Node l \times r) = do l' \leftarrow label' l
                            i <- nextLabel
                            r' <- label' r
                            return (Node 1' (i, x) r')
```

Monad laws

As with functors, valid monads should obbey some laws

```
-- return is a left identity
do y <- return x == f x
    f y</pre>
```

Monad laws

As with functors, valid monads should obbey some laws

```
-- return is a left identity
do y <- return x == f x
    f y
-- return is a right identity
do x <- m == m
    return x</pre>
```

Monad laws

As with functors, valid monads should obbey some laws

```
-- return is a left identity
do \vee <- return \times == f \times
    f y
-- return is a right identity
do \times < -m == m
    return x
-- bind is associative
\mathbf{do} \ \ \mathsf{v} \ \mathrel{<-} \ \ \mathbf{do} \ \ \mathsf{x} \ \mathrel{<-} \ \mathsf{m} \qquad \qquad \mathbf{do} \ \ \mathsf{x} \ \mathrel{<-} \ \mathsf{m}
                f x == do y <- f x == y <- f x
    g y
                                    q y
                                                               q y
```

In fact, monads are a higher-order version of monoids

Summary of monads

Different monads provide different capabilities

- Maybe monad models optional values and failure
- State monad threads an implicit value
- [] monad models search and non-determinism
- I0 monad provides impure input/output

Summary of monads

Different monads provide different capabilities

- · Maybe monad models optional values and failure
- State monad threads an implicit value
- [] monad models search and non-determinism
- I0 monad provides impure input/output

There are even more monads!

- Either models failure, but remembers the problem
- Reader provides a read-only environment
- Writer computes an on-going value
 - For example, a log of the execution
- STM provides atomic transactions
- Cont provides non-local control flow

Summary of monads

Monads provide a common interface

- do-notation is applicable to all of them
- Many utility functions (to be described)

Lifting functions

When explaining Maybe and IO we introduced liftM2

In general, we can write liftM2 for any monad

Lifting functions

When explaining Maybe and IO we introduced liftM2 $\,$

In general, we can write liftM2 for any monad

Lifting functions

This makes the code shorter and easier to read

```
liftM1 :: (a -> b) -> m a -> m b
liftM3 :: (a -> b -> c -> d)
-> m a -> m b -> m c -> m d
liftM4 :: ...
```

```
liftM1 :: (a -> b) -> m a -> m b
liftM3 :: (a -> b -> c -> d)
       -> m a -> m b -> m c -> m d
liftM4 :: ...
The implementation of liftM follows the same pattern
liftM3 f x y z = do x' <- x
                     y' <- y
                     7' <- 7
                     return (f x' y' z')
```

The implementation of liftM follows the same pattern

liftM3 f x y z = do x' <- x
$$y' <- y \\ z' <- z \\ return (f x' y' z')$$

Can you find a nicer implementation for liftM1?

The implementation of liftM follows the same pattern

Can you find a nicer implementation for liftM1?

$$liftM1 = fmap$$

This is clearly suboptimal:

- We need to provide different liftM with almost the same implementation
- If we refactor the code by adding or removing parameters to a function, we have to change the liftM function we use at the call site

Can we do better?

Suppose we want to lift a function with two arguments:

$$f:: a \rightarrow b \rightarrow c \quad x:: fa \quad y:: fb$$

What type does fmap f x have?

Suppose we want to lift a function with two arguments:

$$f:: a \rightarrow b \rightarrow c$$
 $x:: fa$ $y:: fb$

What type does fmap f x have?

We are able to apply the first argument

fmap
$$f x :: f (b \rightarrow c)$$

The result is not in the form we want

• The function is now *inside* the functor/monad

To apply the next argument we need some magical function

If we had that function, then we can write

```
fmap f x <*> y
= -- using the synonym (<$>) = fmap
f <$> x <*> y
```

Note that in the type of (<*>) we can choose c to be yet another function type

 As a result, by means of fmap and (<*>) we can lift a function with any number of arguments

```
f :: a -> b -> ... -> y -> z
ma :: m a
mb :: m b
...
f <$> ma <*> mb <*> ... <*> my :: m z
```

Using (<*>)

Take the label' functions for trees we wrote previously

Now we would write instead:

It turns out that (<*>) by itself is an useful abstraction

- Functor allows you to lift one-argument function
- With (<*>) you can lift functions with more than one argument

It turns out that (<*>) by itself is an useful abstraction

- Functor allows you to lift one-argument function
- With (<*>) you can lift functions with more than one argument

For completeness, we also want a way to lift 0-ary functions. What is the type of an fmap for 0-ary functions?

It turns out that (<*>) by itself is an useful abstraction

- Functor allows you to lift one-argument function
- With (<*>) you can lift functions with more than one argument

For completeness, we also want a way to lift 0-ary functions. What is the type of an fmap for 0-ary functions?

A type constructor with these operations is called an **applicative** (functor)

```
class Functor f => Applicative f where
pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b
```

Every monad is also an applicative

```
pure = ???
mf <*> mx = ???
```

Every monad is also an applicative

Every monad is also an applicative

As a result, you can use applicative style with IO, [], State...

Every monad is also an applicative

As a result, you can use applicative style with IO, [], State...

But there are applicatives which are not monads!

The functor - applicative - monad hierarchy

```
class Functor f where
 fmap :: (a -> b) -> f a -> f b
class Functor f => Applicative f where
 pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b
class Applicative f => Monad f where
  -- return is the same as Applicative's pure
  (>>=) :: f a -> (a -> f b) -> f b
```

The functor - applicative - monad hierarchy

```
fmap :: (a -> b) -> f a -> f b
(<*>) :: f (a -> b) -> f a -> f b
flip (>>=) :: (a -> f b) -> f a -> f b
```

- Have seen: can express <*> in terms of >>= and return
- Exercise: express fmap in terms of <*> and pure

The functor - applicative - monad hierarchy

```
fmap :: (a -> b) -> f a -> f b
(<*>) :: f (a -> b) -> f a -> f b
flip (>>=) :: (a -> f b) -> f a -> f b
```

- Have seen: can express <*> in terms of >>= and return
- Exercise: express fmap in terms of <*> and pure
- Finally: monads are more expressive than applicatives!

Summary

- State monad models computation which can read/write some bit of state
- Applicatives are functors + more structure (to lift multiple argument functions)
- Monads are applicatives + more structure (to decide based on argument whether or not to perform side-effects)