Curvas el Apticas en criptograf Aa

Curvas el Apticas en criptograf Aa

Yabir GarcÃa Benchakhtir David Cabezas Berrido Patricia CÃ³rdobaHidalgo

Contenido

$\mathsf{Definici} \tilde{\mathsf{A}}^3 \textit{ndecurvael} \tilde{\mathsf{A}} \textit{ptica}$

Operaciones en el grupo de la curva

Problema del logaritmo discreto

Cifrado y firma con curvas el Apticas

Algoritmo de firma digital en curvas el Apticas (ECDSA)

Conceptos previos

El **espacio proyectivo** sobre un cuerpo K, $\mathbb{P}_n(K)$, es el conjunto de puntos en $K^{n+1}-\{0\}$ con la relaci \tilde{A}^3 ndeequivalencia \sim que relaciona dos elementos de la siguiente forma

$$(a_0,\ldots,a_n)\sim (a_0',\ldots,a_n')\iff \exists \lambda\in K^* \text{ tal que } (a_0,\ldots,a_n)=\lambda(a_0',\ldots,a_n')$$

En el caso $K=\mathbb{R}$, \mathbb{P}_2 tiene como elementos a las rectas vectoriales de \mathbb{R}^3 . Intuitivamente, este espacio se puede interpretar como un plano y una recta "en el infinito".

En $\mathbb{P}_n(K)$ dos rectas siempre se cortan, ya que las rectas paralelas se cortan "en el infinito".

DefiniciÃ³n

Se define una curva el \tilde{A} ptica como un par (E,O), donde E es una curva proyectiva no singular de genus uno y $O \in E$.

Al punto O se le denomina "punto en el infinito".

Denotaremos la curva como E, sobreentendiendo cual es el punto O.

El **genus** de una curva algebraica proyectiva no singular corresponde al $n\tilde{A}^{\Omega}$ mero de agujeros de la superficie orientable compacta obtenida al considerar la curva como una variedad real.

CaracterizaciÃ³ n

Hay un isomorfismo Φ entre una curva el \tilde{A} ptica E y la curva que cumple la ecuaci \tilde{A}^3 ndeWeierstrass : $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6cona_1, \ldots, a_6 \in K$ y satisfaciendo $\Phi(O) = [0,1,0]$ y $\Phi(P) \in \{[x,y,1]\}$ $\forall P \in E \setminus \{O\}$.

Si la caracter \tilde{A} stica de K es distinta de 2 y 3, podemos simplificar la ecuaci \tilde{A}^3 $nas\tilde{A}:y^2=x^3+Ax+BconA,\ B\in K.$

La curva quedarÃa entonces:

$$E = \{(x, y) \in K \times K : y^2 = x^3 + Ax + B\} \cup \{O\}$$

Ejemplos de curvas elÃpticas

Figure 3.1: Three elliptic curves

Figure 3.2: Two singular cubic curves.

Ejemplos de curvas el $ilde{\mathsf{A}}$ pticas ($\Delta = -16(4 A^3 + 27 B^2)$)

Ejemplos de curvas el Apticas

Consideraremos las curvas el \tilde{A} pticas sobre grupos finitos, pero ayuda visualizarlas sobre $\mathbb R$ para entender las operaciones de grupo sobre ellas. Mostramos un ejemplo de curva el \tilde{A} ptica sobre $\mathbb R$ y sobre un grupo finito.

Curva el $\tilde{\mathsf{A}}$ ptica sobre \mathbb{R} y sobre \mathbb{Z}_{89}

Contenido

DefiniciÃ³ ndecurvaelÃptica

Operaciones en el grupo de la curva

Problema del logaritmo discreto

Cifrado y firma con curvas el Apticas

Algoritmo de firma digital en curvas el Apticas (ECDSA)

Estructura de grupo de la curva E

Neutral element \mathcal{O}

Inverse element -P

Addition P + Q"Chord rule"

Doubling P + P"Tangent rule"

Definimos tambi $\tilde{A}(\tilde{C})$ n O + O = O.

Estructura de grupo de la curva ${\it E}$

P + P + P = 0

Producto por escalares

A partir de la suma de puntos definimos el producto de un punto P por un escalar n como:

$$nP = \underbrace{P + P + \ldots + P}_{n}$$

Esta operaci \tilde{A}^3 npuedecalcularseconeficiencia $O(\log n)$ escribiendo n en base 2 y realizando duplicaciones sucesivas.

Encontrar subgrupo c $\tilde{\mathsf{A}}$ clico $< G > \subset E(\mathbb{F}_p)$

- 1. Calculamos el número de puntos de la curva elÃptica, $N = \#E(\mathbb{F}_p)$. Esto se puede lograr mediante el algoritmo de Schoof.
- 2. Elegimos el factor primo mayor de N, al que llamaremos n.
- 3. Tomamos h=N/n. Para que una curva sea segura, el cofactor ha de ser peque $\tilde{A}\pm o$. Escogemosunpuntocualquieradelacurva $P\in E(\mathbb{F}_p)$ y sea G=hP.
- 5. Si G es el punto en el infinito, cogemos otro punto P. De esta manera, el orden de G es n.

Podemos utilizar una curva de la lista de curvas seguras ya conocidas con cofactor peque $\tilde{\rm A}\pm o$.

Contenido

DefiniciÃ³ ndecurvaelÃptica

Operaciones en el grupo de la curva

Problema del logaritmo discreto

Cifrado y firma con curvas el Apticas

Algoritmo de firma digital en curvas el Apticas (ECDSA)

Problema del logaritmo discreto

Sea < G > un subgrupo aditivo de E(K), el problema del logaritmo discreto para curvas el \tilde{A} pticas es el problema de encontrar k de manera que kG = P, para un punto dado $P \in < G >$.

La seguridad de las curvas elÂpticas en criptografÃa, descansa en la dificultad de resolver este problema.

Contenido

DefiniciÃ³ ndecurvaelÃptica

Operaciones en el grupo de la curva

Problema del logaritmo discreto

Cifrado y firma con curvas el Apticas

Algoritmo de firma digital en curvas el Apticas (ECDSA)

Parámetros compartidos

Alice y Bob intercambian los siguientes par $\tilde{A}_{\tilde{I}}$ metros por un canal potencialmente inseguro:

- ▶ Una curva $E(\mathbb{F}_p)$ segura.
- ▶ G un punto de la curva de orden primo.
- ▶ Ambos deben conocer el valor n que es el orden del grupo $< G > \subset E(\mathbb{F}_p)$.

Claves pública y privada

Las claves son:

- ▶ Clave privada: Un entero $d_X \in [1, n-1]$ elegido de manera aleatoria.
- ► Clave pública: $Q_X = d_X G$.

Con X = A para las clavas de Alice y X = B para las de Bob.

El c \tilde{A}_i lculo de Q_X se puede realizar en tiempo $O(\log d_X)$.

Algoritmo de firma digital en curvas el Apticas (ECDSA)

Para firmar un mensaje, Alice sigue los siguientes pasos:

- 1. Calcula e = HASH(m).
- 2. Si definimos L_n como el n \tilde{A}^{Ω} mero de bits de n, toma z los L_n bits menos significativos de e.
- 3. Elige de manera aleatoria un entero secreto $k \in [1, n-1]$.
- 4. Calcula el punto de la curva $(x_1, y_1) = kG$.
- 5. Toma $r = x_1 \mod n$. En el caso de que r sea 0, vuelve al paso 3.
- 6. Calcula $s = k^{-1}(z + rd_A) \mod n$. Si s es 0, vuelve al paso 3.

La firma es el par (r, s).

VerificaciÃ³ ndelafirma

Para verificar que el emisor es Alice, Bob seguirÃÂ; los pasos siguentes:

- 1. Comprueba que $Q_A \neq O$.
- 2. Se debe cumplir que $nQ_A = O$

Si las comprobaciones anteriores son satisfactorias, Bob deber \tilde{A}_i entonces proceder de la siguiente manera:

- 1. Comprueba que $r, s \in [1, n-1]$, en otro caso, la firma es inv \tilde{A}_i lida.
- 2. Calcula e usando la misma funci \tilde{A}^3 ndehashingqueusoAlice. Tomadenuevozlos L_n bits menos significativos de e.
- **3**. Obtiene $u_1 = zs^{-1} \mod n$ y $u_2 = rs^{-1} \mod n$.
- 5. Calcula el punto $C = (x_1, y_1) = u_1 G + u_2 Q_A$. Si $(x_1, y_1) = O$ entonces la firma no es v \tilde{A}_i lida.

Finalmente la firma ser \tilde{A}_i v \tilde{A}_i lida si $r=x_1 \mod n$. En caso contrario, no lo ser \tilde{A}_i .

${\sf Comprobaci} \tilde{\mathsf{A}}^3 \textit{ndelospasosdeBob}$

Veremos por qu $\tilde{A}(C)$ con $C = u_1G + u_2Q_A$ obtenemos el resultado que queremos. Para ello notamos en primer lugar que $Q_A = d_AG$ por lo que

$$C = u_1 G + u_2 d_A G$$

Ahora usamos la propiedad asociativa:

$$C = (u_1 + u_2 d_A)G$$

desarrollamos las expresiones de u_1 y u_2

$$C = (zs^{-1} + rd_A s^{-1})G$$

y aplicamos la propiedad asociativa de nuevo con lo que

$$C = (z + rd_A)s^{-1}G$$

Sustituimos s por su expresi \tilde{A}^3 ntalycomosecalcul \tilde{A}^3 enelalgoritmo : $C = (z + rd_A)(z + rd_A)^{-1}(k^{-1})^{-1}G$ conloqueobtenemosC = kG

urvas elÄpticas en criptografÅa	
Cifrado y firma con curvas elÃpticas	
Algoritmo de firma digital en curvas elÃpticas	(ECDSA)

Problema

Curvas elÁpticas en criptografÁa

Cifrado y firma con curvas elÁpticas

Algoritmo de firma digital en curvas elÁpticas (ECDSA)

Simulaci $\tilde{A}^3 n$

Recuerda poner fragile en el