Advanced Linear Algebra: Quiz 2 Solutions, Spring 2017

Problem 1.

(a) Treating \mathbb{C} as a complex vector space, show that multiplication by $\alpha = a + ib \in \mathbb{C}$ is a linear transformation from \mathbb{C} to itself. What is its matrix?

Solution. We have $\alpha(z+w) = \alpha z + \alpha w$ and $\alpha(\omega z) = \omega \alpha z$ for all $z, w, \omega \in \mathbb{C}$, so complex multiplication is a linear transformation. The matrix with respect to the standard basis $\{\mathbf{e}_1 = 1\} \in \mathbb{C}$ is the 1×1 complex matrix α .

(b) Treating \mathbb{C} as the real vector space \mathbb{R}^2 , show that multiplication by $\alpha = a + ib \in \mathbb{C}$ defines a linear transformation on \mathbb{R}^2 . What is its matrix?

Solution. Identifying $(x,y)^T \in \mathbb{R}^2$ with $x+iy \in \mathbb{C}$, we have

$$\alpha((x_1+iy_1)+(x_2+iy_2)) = \alpha(x_1+iy_1)+\alpha(x_2+iy_2),$$

$$\alpha(a(x+iy)) = a\alpha(x+iy), \quad \forall \ a \in \mathbb{R},$$

so α is linear. Evaluating α on the standard basis vectors, $\alpha(\mathbf{e}_1) \cong \alpha(1) = a + ib$ and $\alpha(\mathbf{e}_2) \cong \alpha(i) = -b + ia$, we conclude that multiplication by α is represented by the real 2×2 matrix

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

Problem 2. Find the matrix of the orthogonal projection in \mathbb{R}^2 onto the line $x_2 = -\frac{1}{2}x_1$, by writing it as a composition of rotations and projection onto a coordinate axis.

Solution. The line makes an angle θ with the x_1 -axis, such that $\sin \theta = 1/\sqrt{5}$ and $\cos \theta = 2/\sqrt{5}$. The projection P' is equivalent to the transformation which rotates the line onto the x_1 -axis, projects onto the x_1 -axis (P), and then rotates back: thus

$$P' = R_{-\theta} P R_{\theta}$$

$$= \begin{pmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{\sqrt{5}} \end{pmatrix}^2 \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$$

$$= \frac{1}{5} \begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 4/5 & -2/5 \\ -2/5 & 1/5 \end{pmatrix}.$$

Problem 3. Let X be a subspace of a vector space V, and let $\mathbf{v} \in V$, $\mathbf{v} \notin X$. Prove that if $\mathbf{x} \in X$ then $\mathbf{x} + \mathbf{v} \notin X$.

Proof. Arguing by contradiction, suppose that $\mathbf{v} \in V$, $\mathbf{v} \notin X$, and $\mathbf{x} \in X$, but that $\mathbf{x} + \mathbf{v}$ lies in X. Since X is a subspace, it follows that $-\mathbf{x} = (-1)\mathbf{x} \in X$, and then

$$(\mathbf{x} + \mathbf{v}) + (-\mathbf{x}) = \mathbf{v} \in X,$$

which contradicts the assumption that $\mathbf{v} \notin X$.