

Art of Problem Solving 2013 Romania National Olympiad

Romania National Olympiad 2013

_	IX
1	A series of numbers is called complete if it has non-zero natural terms and any nonzero integer has at least one among multiple series. Show that the arithmetic progression is a complete sequence if and only if it divides the first term relationship.
2	Given $f: \mathbb{R} \to \mathbb{R}$ an arbitrary function and $g: \mathbb{R} \to \mathbb{R}$ a function of the second degree, with the property: for any real numbers m and n equation $f(x) = mx + n$ has solutions if and only if the equation $g(x) = mx + n$ has solutions Show that the functions f and g are equal.
3	Given P a point m inside a triangle acute-angled ABC and DEF intersections of lines with that AP , BP , CP with $[BC]$, $[CA]$, respective $[AB]$ a) Show that the area of the triangle DEF is at most a quarter of the area of the triangle ABC b) Show that the radius of the circle inscribed in the triangle DEF is at most a quarter of the radius of the circle circumscribed on triangle $4ABC$.
4	Consider a nonzero integer number n and the function $f: \mathbb{N} \to \mathbb{N}$ by
	$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even} \\ \frac{x-1}{2} + 2^{n-1} & \text{if } x \text{ is odd} \end{cases}.$
	Determine the set:
	$A = \{ x \in \mathbb{N} \mid \underbrace{(f \circ f \circ \dots \circ f)}_{n f\text{'s}}(x) = x \}.$
	X
1	Solve the following equation $2^{\sin^4 x - \cos^2 x} - 2^{\cos^4 x - \sin^2 x} = \cos 2x$
2	To be considered the following complex and distinct a, b, c, d . Prove that the following affirmations are equivalent: i) For every $z \in \mathbb{C}$ the inequality takes place $: z-a + z-b \geq z-c + z-d $; ii) There is $t \in (0,1)$ so that $c = ta + (1-t)b$ si $d = (1-t)a + tb$

Contributors: ionbursuc

Art of Problem Solving

2013 Romania National Olympiad

- Find all injective functions $f: \mathbb{Z} \to \mathbb{Z}$ that satisfy: $|f(x) f(y)| \leq |x y|$, for 3 any $x, y \in \mathbb{Z}$.
- a)Prove that $\frac{1}{2} + \frac{1}{3} + ... + \frac{1}{2^m} < m$, for any $m \in \mathbb{N}^*$. b)Let $p_1, p_2, ..., p_n$ be the prime numbers less than 2^{100} . Prove that $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_2} + \frac{1}{p_3} + \frac{1}{p_4} + \frac{$ 4 $\dots + \frac{1}{p_n} < 10$
- XI
- 1 Given A, non-inverted matrices of order n with real elements, $n \geq 2$ and given A^* adjoin matrix A. Prove that $tr(A^*) \neq -1$ if and only if the matrix $I_n + A^*$ is invertible.
- $\mathbf{2}$ Whether m and n natural numbers, $m, n \geq 2$. Consider matrices, $A_1, A_2, ..., A_m \in$ $M_n(R)$ not all nilpotent. Demonstrate that there is an integer number k>0such that $A^{k_1} + A^{k_2} + + A^{k_m} \neq O_n$
- 3 A function

$$f:(0,\infty) \to (0,\infty)$$

is called contract if, for every numbers $x, y \in (0, \infty)$ we have, $\lim_{n \to \infty} (f^n(x) - f^n(y)) =$ 0 where $f^n = \underbrace{f \circ f \circ \dots \circ f}_{n \ f\text{'s}}$

a) Consider

$$f:(0,\infty)\to(0,\infty)$$

a function contract, continue with the property that has a fixed point, that existing $x_0 \in (0,\infty)$ there so that $f(x_0) = x_0$. Show that f(x) > x, for every $x \in (0,x_0)$ and f(x) < x, for every $x \in (x_0,\infty)$.

b) Show that the given function

$$f:(0,\infty) \to (0,\infty)$$

given by $f(x) = x + \frac{1}{x}$ is contracted but has no fix number.

4 a) Consider

$$f:[0,\infty)\to[0,\infty)$$

a differentiable and convex function . Show that $f(x) \leq x$, for every $x \geq 0$, than $f'(x) \leq 1$, for every $x \geq 0$

b) Determine

$$f:[0,\infty)\to[0,\infty)$$

Art of Problem Solving 2013 Romania National Olympiad

	differentiable and convex functions which have the property that $f\left(0\right)=0$, and $f'\left(x\right)f\left(f\left(x\right)\right)=x,$ for every $x\geq0$
_	XII
1	Determine continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that $(a^2 + ab + b^2) \int_a^b f(x) dx = 3$ for every $a, b \in \mathbb{R}$.
2	Given a ring $(A, +, \cdot)$ that meets both of the following conditions: (1) A is not a field, and (2) For every non-invertible element x of A , there is an integer $m > 1$ (depending on x) such that $x = x^2 + x^3 + \ldots + x^{2^m}$. Show that (a) $x + x = 0$ for every $x \in A$, and (b) $x^2 = x$ for every non-invertible $x \in A$.
3	Given $a \in (0,1)$ and C the set of increasing functions $f: [0,1] \to [0,\infty) \text{ such that } \int\limits_0^1 f(x) dx = 1 \text{ . Determine: } (a) \max_{f \in C} \int\limits_0^a f(x) dx$ $(b) \max_{f \in C} \int\limits_0^a f^2(x) dx$
4	Given $n \geq 2$ a natural number, $(K, +, \cdot)$ a body with commutative property that $\underbrace{1+\ldots+1}_m \neq 0, m=2,\ldots,n, f\in K[X]$ a polynomial of degree n and G a subgroup of the additive group $(K, +, \cdot), G \neq K$. Show that there is $a \in K$ so $f(a) \notin G$.

Contributors: ionbursuc