

Eng.^a Mecatrónica Universidade de Évora 2010/2011

Programa:

- 1. Introdução à Electrónica Industrial
- 2. Dispositivos Electrónicos de Potência
- 3. Conversores AC/DC Rectificadores
- 4. Conversores AC/AC
- 5. Conversores DC/DC "Chopper"
- 6. Conversores DC/AC Onduladores
- 7. Regulação e Comando de Conversores Electrónicos de Potência

Historia da electrónica de potencia

- Dispositivos de electrónica de potência:
 - O Díodo
 - O Tiristor
 - O Tiristor de Corte Comandado (GTO)
 - O Transístor de Junção Bipolar
 - O Transístor de Efeito de Campo de Porta Isolada (MOSFET)
 - O Transístor Bipolar de Porta Isolada (IGBT)

 Díodos para várias utilizações

 Varias configurações de Tiristores

• GTO, Gate-turn-off Tiristor

Características dos dispositivos de electrónica de potência:

Type		Voltage/current rating	Upper frequency (Hz)	Switching time (µs)	On-state resistance (Ω)
Diodes	General purpose	5000 V/5000 A	Ik	100	0.16m
	High speed	3000 V/1000 A	10k	2-5	1m
	Schottky	40 V/60 A	20k	0.23	10m
Forced-turned-off thyristors	Reverse blocking	5000 V/5000 A	1k	200	0.25m
	High speed	1200 V/1500 A	10k	20	0.47m
	Reverse blocking	2500 V/400 A	5k	40	2.16m
	Reverse conducting	2500 V/1000 A	5k	40	2.1m
	GATT	1200 V/400 A	20k	8	2.24m
	Light triggered	6000 V/1500 A	400	200-400	0.53m
TRIACs		1200 V/300 A	400	200-400	3.57m
Self-turned-off thyristors	GTO	4500 V/3000 A	10k	15	2.5m
	SITH	4000 V/2200 A	20k	6.5	5.75m
Power transistors	Single	400 V/250 A	20k	9	4m
		400 V/40 A	20k	6	31m
		630 V/50 A	25k	1.7	15m
	Darlington	1200 V/400 A	10k	30	10m
SITs		1200 V/300 A	100k	0.55	1.2
Power MOSFETS	Single	500 V/8.6 A	100k	0.7	0.6
		1000 V/4.7 A	100k	0.9	2
		500 V/50 A	100k	0.6	0.4m
IGBTs	Single	1200 V/400 A	20k	2.3	60m
MCTs	Single	600 V/60 A	20k	2.2	18m

Características e símbolos dos dispositivos

Características e símbolos dos dispositivos (cont.)

Aplicações e utilização dos dispositvos de electrónica de potência

- Tipo Controlo de dispositivos de potência :
 - Tiristor

- Tipo Controlo de dispositivos de potência :
 - GTO, MCT e SITH

- Tipo Controlo de dispositivos de potência :
 - Transístor BJT

- Tipo Controlo de dispositivos de potência :
 - Transístores MOSFET e IGBT

Rectificadores

Circuitos rectificadores normalmente constituídos por díodos que convertem tensão AC numa tensão fixa DC. A tensão da entra AC pode ser de fase simples o trifásica.

Single-phase rectifier circuit.

Conversores AC/DC – Rectificadores

Conversor de ac-dc de fase simples constituído por dois tiristores de comutação natural . O valor médio da tensão de saída é controlado pela variação do tempo de condução dos tiristores ou angulo de disparo.

Single-phase ac-dc converter.

Conversores AC/AC

Com o conversor de ac-ac obtém-se uma tensão saída AC variável a partir de uma tensão AC de entrada fixa. A tensão de saída é controlado pela variação do tempo de condução do Triac ou angulo de disparo

Conversores DC/DC - "Chopper"

Conversor de dc-dc também chamado "chopper" constituído por um transístor (ou outro dispositivo). O valor médio da tensão de saída é controlado pela variação do tempo de condução t1 do transistor (ou outro dispositivo). Sendo T o período "chopping", então o "duty cycle" do chopper será δ =t1/T.

Conversores DC/AC – Onduladores

Conversor de dc-ac também chamado onduladores. O conversor dc-ac de fase simples constituído po MOSFETs, se o transístor M1e M2 conduzem por meio período e M3 e M4 por o outro meio período a tensão de saída vai ter a forma alternada. A tensão de saída pode ser controlada variando o tempo de condução dos transístores.

