Redes Pre-entrenadas

No.	Nombre	Dataset	Criterio de Evaluación	Descripción
1	Identificación de Mosquito (Convolucionales)	800 imágenes (Atacar un problema nuevo Lenet 5, over=drop, or batchnorm, combinar. Batchnorm features up, 3x3, 5x5 no+ Red coco si no mejora)	Exactitud	Visualización. Distinguir entre las especies de Albopictus y Aegyti 600x600 px (256x256 px) -image scale 1.1 Problema entrada 1.2 Repetir tésis Faster R-CNN Inception ResNet v2 (COCO)
2	Detección de Neumonía COVID-19 (CNN)	https://www.kaggle.com/kho ongweihao/covid19-xray-dat aset-train-test-sets - 85 MB		Análisis de tomografías de rayos X para la identificación de pulmones afectados por el virus SARS-CoV-2 (COVID-19)
3	Clasificación de Navíos (CNN & Data Augmentation)	https://www.kaggle.com/arpit jain007/game-of-deep-learni ng-ship-datasets - 80 MB		Clasificación de 6252 imágenes de navíos para ser clasificadas en 5 categorías diferentes
4	Detección de Sarcasmo (RNN)	https://www.kaggle.com/rmis ra/news-headlines-dataset-f or-sarcasm-detection/code 11 MB		Identificación de títulos de noticias que sean sarcásticos o satíricos, en contra a titulares reales identificando el lenguaje.
5	Instalación y uso de Spark	3 nodos virtuales con CPU y GPU c/u		Tutorial de instalación y uso del sistema Spak para aplicarse al Deep Learning
6	Instalación y uso de HDFS	3 nodos virtuales con CPU y GPU c/u		Tutorial de instalación y uso del sistema Hadoop para aplicarse al Deep Learning
7	Instalación y uso	3 nodos virtuales con CPU y		Tutorial de instalación y uso de Pytorch en Spark

	de Pytorch en Spark	GPU c/u	para aplicarse al Deep Learning
9	Retinopatía	https://www.kaggle.com/sovi trath/diabetic-retinopathy-20 15-data-colored-resized - 2 GB	

Fase 1: Entender el problema.

Fase 2: Definir un Criterio de Evaluación.

Fase 3: Evaluación de la solución actual.

Fase 4: Preparar los datos.

Fase 5: Construir el modelo.

Fase 6: Análisis de Errores.

Fase 7: Implementación

-Segmentación de Imágenes - Determinar, para cada pixel, ¿a qué corresponde? Pytorch - U-Net Autoencoders?

https://adeshpande3.github.io/assets/deconvnet.png https://pbs.twimg.com/media/BZXLHmLCEAAhZ8O.jpg