Intro to Data Wrangling & Scraping Using R

Mochamad Kautzar Ichramsyah
https://www.linkedin.com/in/kautzarichramsyah/
ICW-HDDA-X 2020

About Data Wrangling

About Data Wrangling (1)

"Anything you **need** to do **before** doing data **analysis**."

- Spot variables and observations
- Derive new variables and observations
- Reshape into best format
- Join multiple datasets
- Group-wise summarize

The New York Times

For Big-Data Scientists, 'Janitor' Work' Is Key Hurdle to Insights

Yet far too much handcrafted work — what data scientists call "data wrangling," "data munging" and "data janitor work" — is still required. Data scientists, according to interviews and expert estimates, spend from 50 percent to 80 percent of their time mired in this more mundane labor of collecting and preparing unruly digital data, before it can be explored for useful nuggets.

Data Wrangling Using R

Data Wrangling Using R (1)

https://rstudio.com/products/rstudio/download/

Two **packages** to help us doing magic with the structure of data.

tidyr dplyr

install.packages(c('tidyr', 'dplyr'))
library(tidyr)
library(dplyr)

Data Wrangling Using R (3)

Another packages we may need.

devtools EDAWR

```
install.packages('devtools')
library(devtools)
install_github('rstudio/EDAWR')
library(EDAWR)
```

?storms ?cases ?pollution ?tb

Data Wrangling Using R (4)

storms: storm_name, wind_speed, air_pressure, date storms\$storm storms\$wind storms\$pressure storms\$date

cases:

country, year, count

cases\$country names(cases)[-1] unlist(cases[1:3, 2:4])

pollution:

city, large particle amount, small particle amount

pollution\$city[1, 3, 5] pollution\$amount[1, 3, 5] pollution\$amount[2, 4, 6]

Data Wrangling Using R (5)

>	storms			
	storm	wind	pressure	date
1	Alberto	110	1007	2000-08-03
2	Alex	45	1009	1998-07-27
3	Allison	65	1005	1995-06-03
4	Ana	40	1013	1997-06-30
5	Arlene	50	1010	1999-06-11
6	Arthur	45	1010	1996-06-17

$$ratio = \frac{pressure}{wind}$$

storms\$pressure / storms\$wind

1007		110	9.15
1009		45	22.42
1005	/	65	15.46
1013		40	25.32
1010		50	20.2
1010		45	22.44

Tidying Data Using tidyr

Tidying Data Using tidyr (1)

- 1. Each **variable** saved in its own **column**
- 2. Each **observation** saved in its own **row**
 - Each type of observation saved in single table

Tidy Data!

Easy to access
Preserves observations

tidyr

Package **to reshape** layout of tables. Two main functions:

gather()
spread()

install.packages('tidyr')
library('tidyr')
?gather
?spread

30 seconds to guess, raise your hand please!

```
> cases
  country 2011 2012 2013
1   FR 7000 6900 7000
2   DE 5800 6000 6200
3   US 15000 14000 13000
```

If dataset **cases** has been tidied up with 3 variables: country, year, and count, how the data would look like?

Tidying Data Using tidyr (5)

key = 'year' (former column names) value = 'count' (former cells)

```
> cases
  country 2011 2012 2013
1   FR 7000 6900 7000
2   DE 5800 6000 6200
3   US 15000 14000 13000
```



```
country year count
                7000
       FR 2011
       DE 2011
                5800
       US 2011 15000
       FR 2012
                6900
       DE 2012
                6000
6
       US 2012 14000
       FR 2013
                7000
8
       DE 2013
                6200
9
       US 2013 13000
```

Tidying Data Using tidyr (6)

Collapses multiple columns into two columns.

gather(cases, 'year', 'count', 2:4)

Function to reshape the data frame.

Data frame to reshape.

Name of the new key column. String.

Name of the new value column. String.

Names or numeric indexes of columns to collapse.

30 seconds to guess, raise your hand please!

```
> pollution
      city size amount
1 New York large 23
2 New York small 14
3 London large 22
4 London small 16
5 Beijing large 121
6 Beijing small 56
> |
```

If dataset *pollution* has been tidied up with 3 variables: city, large, and small, how the data would look like?

Tidying Data Using tidyr (8)

key = size (former column1 names)
value = amount (former column2 names)

ı		city	large	small
	1	Beijing	121	56
	2	London	22	16
	3	New York	23	14

Tidying Data Using tidyr (9)

Generates multiple columns from two columns.

spread(pollution, size, amount)

Function to reshape the data frame.

Data frame to reshape.

Column to use for keys, create new column names.

Column to use for values, create new column cells.

Tidying Data Using tidyr (8)


```
city large small
1 Beijing 121 56
2 London 22 16
3 New York 23 14
```

x <- spread(pollution, size, amount)

gather(x, 'size', 'amount', 2:3)

Tidying Data Using tidyr (9)

Do you know we still have three more variables hidden in storms?

>	storms			
	storm	wind	pressure	date
1	Alberto	110	1007	2000-08-03
2	Alex	45	1009	1998-07-27
3	Allison	65	1005	1995-06-03
4	Ana	40	1013	1997-06-30
5	Arlene	50	1010	1999-06-11
6	Arthur	45	1010	1996-06-17

- year
- month
- day

Tidying Data Using tidyr (10)

separate()

Splits a column by a character string operator.

separate(storms, date, c('year', 'month', 'day'), sep = '-')

```
> storms
    storm wind pressure
                               date
 Alberto
           110
                   1007 2000-08-03
     Alex
            45
                   1009 1998-07-27
 Allison
            65
                   1005 1995-06-03
      Ana
            40
                   1013 1997-06-30
  Arlene
            50
                   1010 1999-06-11
  Arthur
            45
                   1010 1996-06-17
```

```
> separate(storms, date, c('year', 'month', 'day'), sep = '-')
  storm
           wind pressure year month day
1 Alberto
            110
                    1007 2000
                                      03
2 Alex
             45
                    1009 1998
                               07
                                     27
3 Allison
             65
                    1005 1995
                                     03
                                     30
  Ana
             40
                    1013 1997
 Arlene
             50
                    1010 1999
                                     11
6 Arthur
             45
                    1010 1996
                                      17
```

Tidying Data Using tidyr (10)

unite()

Unites columns into a single column.

unite(y, 'date', year, month, day, sep = '-')

```
<- separate(storms, date, c('year', 'month', 'day'), sep = '-')</pre>
         wind pressure year month day
storm
Alberto
          110
                  1007 2000
                                     03
                               08
Alex
           45
                   1009 1998
                              07
Allison
            65
                   1005 1995
                                     03
                   <u>1</u>013 1997
Ana
                                     30
Arlene
            50
                   1010 1999
                                     11
                              06
Arthur
            45
                   1010 1996
                                     17
```

```
> unite(y, 'date', year, month, day, sep = '-')
           wind pressure date
 storm
 Alberto
            110
                    1007 2000-08-03
2 Alex
             45
                    1009 1998-07-27
3 Allison
                    1005 1995-06-03
                    1013 1997-06-30
 Ana
             40
             50
                    1010 1999-06-11
5 Arlene
6 Arthur
             45
                    1010 1996-06-17
```

Tidying Data Using tidyr (11)

Recap

tidyr Package to reshape layout of data sets

gather() Make observations from variables

spread() Make variables from observations

separate() Split single column to many columns

unite() Merge many columns to single column

Manipulate Data Using dplyr

dplyr

Package to transform tabular data.

Manipulate Data Using dplyr (2)

How to access information?

1. Extract existing variables. select()

2. Extract existing observations. filter()

3. Derive new variables (from existing variables) mutate()

4. Change the unit of analysis summarise()

Manipulate Data Using dplyr (3)

select()

```
> storms
    storm wind pressure
                              date
1 Alberto
                   1007 2000-08-03
          110
    Alex
           45
                   1009 1998-07-27
 Allison
                   1005 1995-06-03
      Ana
            40
                   1013 1997-06-30
  Arlene
           50
                   1010 1999-06-11
   Arthur
            45
                   1010 1996-06-17
```



```
> select(storms, storm, pressure)
    storm pressure
1 Alberto     1007
2 Alex     1009
3 Allison     1005
4     Ana     1013
5 Arlene     1010
6 Arthur     1010
```

select(storms, storm, pressure)

Manipulate Data Using dplyr (4)

select()

```
> storms
    storm wind pressure
                              date
1 Alberto
          110
                   1007 2000-08-03
    Alex
            45
                   1009 1998-07-27
3 Allison
            65
                   1005 1995-06-03
      Ana
            40
                   1013 1997-06-30
  Arlene
            50
                   1010 1999-06-11
  Arthur
            45
                   1010 1996-06-17
```


>	selec	ct(storms,	, - storm)
	wind	pressure	date
1	110	1007	2000-08-03
2	45	1009	1998-07-27
3	65	1005	1995-06-03
4	40	1013	1997-06-30
5	50	1010	1999-06-11
6	45	1010	1996-06-17

select(storms, - storm)
select(storms, wind:date)

Manipulate Data Using dplyr (5)

Useful select() functions

* Blue colored functions come in dplyr

-	Select everything but	
:	Select range	
contains()	Select columns whose name contains a character string	
ends_with()	Select columns whose name ends with a string	
everything()	Select every column	
matches()	Select columns whose name matches a regular expression	
num_range()	Select columns named X1, X2, X3, X4, X5	
one_of()	Select columns names are in group of names	
starts_with()	Select columns whose name starts with a string	

Manipulate Data Using dplyr (6)

filter()

```
> storms
    storm wind pressure
                               date
1 Alberto
           110
                   1007 2000-08-03
     Alex
            45
                   1009 1998-07-27
 Allison
                   1005 1995-06-03
      Ana
            40
                   1013 1997-06-30
   Arlene
           50
                   1010 1999-06-11
   Arthur
            45
                   1010 1996-06-17
```



```
storm wind pressure date
1 Alberto 110 1007 2000-08-03
2 Allison 65 1005 1995-06-03
3 Arlene 50 1010 1999-06-11
```

filter(storms, wind >= 50)

Manipulate Data Using dplyr (7)

filter()

```
> storms
    storm wind pressure
                               date
1 Alberto
           110
                   1007 2000-08-03
                                                        storm wind pressure
                                                                                   date
     Alex
            45
                   1009 1998-07-27
                                                    1 Alberto
                                                              110
                                                                       1007 2000-08-03
 Allison
                   1005 1995-06-03
                                                    2 Allison
                                                                       1005 1995-06-03
            40
                   1013 1997-06-30
      Ana
   Arlene
           50
                   1010 1999-06-11
   Arthur
            45
                   1010 1996-06-17
```

filter(storms, wind >= 50, storm %in% c('Alberto', 'Alex', 'Allison'))

Manipulate Data Using dplyr (8)

Logical Tests in R ?Comparison

<	Less than	
>	Greater than	
==	Equal to	
<=	Less than or equal to	
>=	Greater than or equal to	
!=	Not equal to	
%in%	Group membership	
is.na	Is NA (Not Available)	
!is.na	Is not NA (Not Available)	

Manipulate Data Using dplyr (9)

Logical Tests in R ?base::Logic

&	Boolean AND
I	Boolean OR
xor	Exactly OR
!	Not
any	Any true
all	All true

Manipulate Data Using dplyr (10)

mutate()

```
> storms
                                                        storm wind pressure
                                                                                    date
                                                                                              ratio
   storm wind pressure
                              date
                                                      Alberto
                                                                110
                                                                        1007 2000-08-03
                                                                                           9.154545
1 Alberto
          110
                   1007 2000-08-03
                                                                             1998-07-27 22,422222
                                                         Alex
                                                                 45
     Alex
                   1009 1998-07-27
                                                      Allison
                                                                        1005 1995-06-03 15.461538
 Allison
                   1005 1995-06-03
            65
                                                          Ana
                                                                 40
                                                                        1013 1997-06-30 25.325000
                   1013 1997-06-30
4
      Ana
                                                       Arlene
                                                                        1010 1999-06-11 20.200000
            50
                   1010 1999-06-11
  Arlene
                                                       Arthur
                                                                        1010 1996-06-17 22.444444
                   1010 1996-06-17
  Arthur
```

mutate(storms, ratio = pressure / wind)

Manipulate Data Using dplyr (11)

mutate()

```
> storms
    storm wind pressure
                               date
1 Alberto
           110
                   1007 2000-08-03
     Alex
                   1009 1998-07-27
 Allison
                   1005 1995-06-03
            65
                   1013 1997-06-30
      Ana
                   1010 1999-06-11
   Arlene
                   1010 1996-06-17
   Arthur
```



```
storm wind pressure date ratio inverse
1 Alberto 110 1007 2000-08-03 9.154545 0.10923535
2 Alex 45 1009 1998-07-27 22.422222 0.04459861
3 Allison 65 1005 1995-06-03 15.461538 0.06467662
4 Ana 40 1013 1997-06-30 25.325000 0.03948667
5 Arlene 50 1010 1999-06-11 20.200000 0.04950495
6 Arthur 45 1010 1996-06-17 22.444444 0.04455446
```

mutate(storms, ratio = pressure / wind, inverse = ratio ^ -1)

Manipulate Data Using dplyr (12)

Useful mutate() functions

*All take a vector of values and return a vector of values **Blue colored functions come in dplyr

An take a vector of values and return a vector of values — Dide colored functions come in upry		
pmin(), pmax()	Element-wise min and max	
cummin(), cummax()	Cumulative min and max	
cumsum(), cumprod()	Cumulative sum and product	
between()	Are values between a and b?	
cume_dist()	Cumulative distribution of values	
cumall(), cumany()	Cumulative all and any	
cummean()	Cumulative mean	
lead(), lag()	Copy with values one position	
ntile()	Bin vector into n buckets	
<pre>dense_rank(), min_rank(), percent_rank(),row_number()</pre>	Various ranking methods	

Manipulate Data Using dplyr (13)

"Window" Functions

Manipulate Data Using dplyr (14)

summarise()

```
> pollution
      city size amount
1 New York large 23
2 New York small 14
3 London large 22
4 London small 16
5 Beijing large 121
6 Beijing small 56
>
```



```
> summarise(pollution, median = median(amount), variance = var(amount))
  median variance
1 22.5 1731.6
```

summarise(pollution, median = median(amount), variance = var(amount))

Manipulate Data Using dplyr (15)

summarise()

```
> summarise(pollution, average = mean(amount), sum = sum(amount), count = n())
   average sum count
1    42 252    6
```

summarise(pollution, average = mean(amount), sum = sum(amount), count = n())

Manipulate Data Using dplyr (16)

Useful summary() functions

*All take a vector of values and return a single value **Blue colored functions come in dplyr

min(), max()	Minimum and maximum values
mean(), median()	Mean and median values
sum()	Sum of values
var(), sd()	Variance and standard deviation of a vector
first(), last()	First and last value in a vector
nth()	N-th value in a vector
n()	The number of values in a vector
n_distinct()	The number of unique values in a vector

Manipulate Data Using dplyr (17)

arrange()

```
> storms
    storm wind pressure
                              date
 Alberto
          110
                   1007 2000-08-03
     Alex
                   1009 1998-07-27
3 Allison
                   1005 1995-06-03
                   1013 1997-06-30
      Ana
   Arlene
                   1010 1999-06-11
                   1010 1996-06-17
   Arthur
```


	storm	wind	pressure	date
1	Ana	40	1013	1997-06-30
2	Alex	45	1009	1998-07-27
3	Arthur	45	1010	1996-06-17
4	Arlene	50	1010	1999-06-11
5	Allison	65	1005	1995-06-03
6	Alberto	110	1007	2000-08-03

arrange(storms, wind)

Manipulate Data Using dplyr (18)

arrange()

```
> storms
    storm wind pressure
                               date
 Alberto
           110
                   1007 2000-08-03
     Alex
                   1009 1998-07-27
                   1005 1995-06-03
3 Allison
      Ana
                   1013 1997-06-30
                   1010 1999-06-11
  Arlene
   Arthur
                   1010 1996-06-17
```


arrange(storms, desc(wind))

Manipulate Data Using dplyr (19)

arrange()

```
> storms
    storm wind pressure
                              date
 Alberto
          110
                   1007 2000-08-03
     Alex
                   1009 1998-07-27
3 Allison
                   1005 1995-06-03
                   1013 1997-06-30
      Ana
                   1010 1999-06-11
  Arlene
                   1010 1996-06-17
  Arthur
```


	storm	wind	pressure	date
1	Ana	40	1013	1997-06-30
2	Arthur	45	1010	1996-06-17
3	Alex	45	1009	1998-07-27
4	Arlene	50	1010	1999-06-11
5	Allison	65	1005	1995-06-03
6	Alberto	110	1007	2000-08-03

arrange(storms, wind, date)

Manipulate Data Using dplyr (20)

%>% pipe operator

```
select(storms, storm, pressure)
storms %>% select(storm, pressure)
```

```
filter(storms, wind >= 50)
storms %>% filter(wind >= 50)
```

```
mutate(storms, ratio = pressure / wind)
storms %>% mutate(ratio = pressure / wind)
```

```
summarise(storms, median = median(amount))
storms %>% summarise(median = median(amount))
```

Manipulate Data Using dplyr (21)

%>% pipe operator

```
storms %>%

select(storm, pressure, wind) %>%
filter(wind >= 50) %>%
mutate(ratio = pressure / wind) %>%
summarise(median_ratio = median(ratio))
```

```
storm pressure wind ratio
1 Alberto 1007 110 9.154545
2 Allison 1005 65 15.461538
3 Arlene 1010 50 20.200000
```

```
# A tibble: 1 x 1

median_ratio

<dbl>
1 15.5
```



```
# A tibble: 3 x 4
city mean sum count
<chr> <chr> <dbl> <dbl> <dbl> <int></d></d></d></d></d>
1 Beijing 88.5 177 2
2 London 19 38 2
3 New York 18.5 37 2
```

```
# A tibble: 2 x 4
size mean sum count
<chr> <chr> <dbl> <dbl> <dbl> <int></d></d></d></d></d></d>

1 large 55.3 166 3
3 small 28.7 86 3
```

```
pollution %>%
group_by(size) %>%
group_by(city) %>%
summarise(
mean = mean(amount),
sum = sum(amount),
count = n())

pollution %>%
group_by(city) %>%
summarise(
mean = mean(amount),
sum = sum(amount),
count = n())
```

Please check about ungroup() function (type ?ungroup in your R console)

```
country
                                                                              year sum_cases
> tb
                                                                <chr>
                                                                             <int>
                                                                                         <int>
# A tibble: 3,800 x 6
                         child adult elderly
                                                              1 Afghanistan 1995
  country
              year sex
             <int> <chr>
                         <int> <int>
                                      <int>
                                                              2 Afghanistan 1996
1 Afghanistan 1995 female
                                                              3 Afghanistan
                                                                             1997
                                                                                          128
2 Afghanistan 1995 male
                                                              4 Afghanistan
                                                                             1998
                                                                                         1778
3 Afghanistan 1996 female
                                                              5 Afghanistan 1999
                                                                                          745
4 Afghanistan
             1996 male
                                 96
5 Afghanistan 1997 female
                                         1
                                                              6 Afghanistan
                                                                              2000
                                                                                         2666
6 Afghanistan 1997 male
                                 26
                                                               Afghanistan
                                                                              2001
                                                                                         4639
7 Afghanistan 1998 female
                               1142
                                         20
                                                              8 Afghanistan
                                                                              2002
                                                                                         6509
8 Afghanistan 1998 male
                                         41
                                500
                                                              9 Afghanistan
                                                                              2003
                                                                                         6528
9 Afghanistan 1999 female
                                484
                                                               Afghanistan
                                                                              2004
                                                                                         8245
10 Afghanistan 1999 male
                                212
  ... with 3,790 more rows
                                                                   with 1,890 more rows
```

30 seconds to guess, raise your hand please!

```
tb %>%
group_by(country, year) %>%
summarise(sum_cases = sum(child + adult + elderly)) %>%
```

filter(!is.na(sum_cases))

```
country
               year sum_cases
   <chr>>
               <int>
                         <int>
  Afghanistan
               1997
                           128
2 Afghanistan
               1998
                          1778
 3 Afghanistan
               1999
                           745
4 Afghanistan
               2000
                          2666
5 Afghanistan
                2001
                          4639
6 Afghanistan
               2002
                          6509
7 Afghanistan
                2003
                          6528
8 Afghanistan
               2004
                          8245
9 Afghanistan
                2005
                          9949
10 Afghanistan 2006
                         12469
     with 1,679 more rows
```

Manipulate Data Using dplyr (27)

Recap

dplyr Package to transform tabular data

select() filter() mutate() summarise() arrange() Main functions you should understand

%>% pipe operator Simplifying workflow using dplyr

group_by() It works like magic with summarise()

Joining Data (still using dplyr)

Joining Data (1)

bind_cols()

y

x1x2abc3

Z

x1	x2
а	1
b	2
С	3

=

x1	x2	x1	x2
а	1	а	1
b	2	b	2
С	3	С	3

bind_cols(y, z)

Joining Data (2)

bind_rows()

У

x1	x2
а	1
b	2
С	3

Z

x1	x2
а	1
b	2
С	3

=

x1	x2
а	1
b	2
С	3
а	1
b	2
С	3

bind_rows(y, z)

Joining Data (3)

union()

y

x1	x2	
а	1	
b	2	
С	3	

Z

x1	x2
а	1
b	2
d	4

x1	x2
а	1
b	2
С	3
d	4

union(y, z)

Joining Data (4)

intersect()

У

x1 x2 a 1 b 2 c 3

Z

x1	x2	
b	2	
С	3	
d	4	

=

x 1	x2
b	2
С	3

intersect(y, z)

Joining Data (5)

setdiff()

y

x1x2abc3

Z

x 1	x2
b	2
С	3
d	4

x1 x2 a 1

setdiff(y, z)

Joining Data (6)

left_join()

У

_

x 1	x2			
а	1			
b	2			
С	3			
d	4			

x1	х3
b	!
С	@
d	#
е	\$

x1	x2	х3
а	1	<na></na>
b	2	!
С	3	@
d	4	#

left_join(y, z, by = 'x1')

Joining Data (7)

inner_join()

У

 x1
 x2

 a
 1

 b
 2

 c
 3

 d
 4

Z

x1	хЗ		
b	!		
С	@		
d	#		
е	\$		

=

x1	x1 x2 x3			
b	2	!		
С	3	@		
d	4	#		

inner_join(y, z, by = 'x1')

Please check other join functions!

```
right_join
semi_join()
anti_join()
```

Recap: Best format for analysis

- 1. Variables in columns
- 2. Observations in rows
- 3. **Separate** all variables
- 4. Unit of analysis matches
- 5. **Single** table

Intro to Data Wrangling Using R (2)

Learn more at:

Data Wrangling with dplyr and tidyr Cheat Sheet

About Data Scraping

About Data Scraping (1)

"Data extracting from websites."

Data Scraping Using R

Data Scraping Using R (1)

One of **package** can help us to do data scraping.

rvest

install.packages('rvest') library(rvest)

Data Scraping Using R (2)

Another packages we may need.

selectr

xml2

jsonlite

stringr

https://cran.r-project.org/web/packages/rvest/vignettes/selectorgadget.html

Data Scraping Using R (3)

We will try to scrap data on this page:

https://sidata-ptn.ltmpt.ac.id/ptn_sb.php?ptn=361

Data Scraping Using R (4)

url <- 'https://sidata-ptn.ltmpt.ac.id/ptn_sb.php?ptn=361' webpage <- read_html(url)

Data Scraping Using R (5)

Details we need from this page are:

- 1. SAINTEK part
- 2. NO
- 3. KODE
- 4. NAMA
- 5. DAYA TAMPUNG 2020
- 6. **PEMINAT 2019**

Data Scraping Using R (6)

We are using Google Chrome web browser in this example. Inspect Element the web page.

Data Scraping Using R (7)

```
nama_kolom <- webpage %>%
html_nodes('#jenis1 th') %>%
html_text() %>%
as.vector()
```

Data Scraping Using R (8)

```
kolom_no <- webpage %>%
html_nodes('#jenis1 td:nth-child(1)') %>%
html_text() %>%
as.integer()
```

```
> kolom_no <- webpage %>%
+    html_nodes('#jenis1 td:nth-child(1)') %>%
+    html_text() %>%
+    as.integer()
> kolom_no
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
[39] 39 40 41 42 43 44 45 46
> |
```

Data Scraping Using R (9)

```
kolom_kode <- webpage %>%
  html_nodes('#jenis1 td:nth-child(2)') %>%
  html_text() %>%
  as.integer()
```

Continue by yourself for the rest!

Merge all of it into one data frame

```
ugm_saintek <- data.frame(</pre>
   NO = kolom_no,
   KODE = kolom_kode,
   NAMA = kolom_nama,
   DAYA_TAMPUNG_2020 = kolom_daya_tampung_2020,
   PEMINAT_2019 = kolom_peminat_2019
 str(ugm_saintek)
'data.frame': 46 obs. of 5 variables:
$ NO
              : int 12345678910...
$ KODE
                  : int 3611012 3611027 3611035 3611043 3611051 3611066 3611074 3611082 3611097 3611101 ...
$ NAMA
                   : chr
                        "BIOLOGI" "FARMASI" "GEOGRAFI LINGKUNGAN" "KARTOGRAFI DAN PENGINDERAAN JAUH" ...
$ DAYA_TAMPUNG_2020: int 79 84 35 27 23 62 35 35 53 70 ...
$ PEMINAT_2019 : int 665 1215 421 328 258 1085 429 596 681 616 ...
```

Simple aggregation using ugm_saintek

>			<- ugm_saintek %>%			
+	+ mutate(rasio_daya_tampung_peminat = PEMINAT_2019 / DAYA_TAMPUNG_2020) %>%					
+			esc(rasio_daya_tampung_peminat))			
>		_saintek				
	NO					rasio_daya_tampung_peminat
1		3611503	ILMU AKTUARIA	14	618	44.142857
2		3611267	PROTEKSI TANAMAN (ILMU HAMA DAN PENYAKIT TUMBUHAN)	23	487	21.173913
3		3611492	TEKNOLOGI INFORMASI	35	728	20.800000
4	28	3611333	ARSITEKTUR	28	576	20.571429
5	14	3611186	ILMU KOMPUTER	26	484	18.615385
6	25	3611302	MANAJEMEN SUMBERDAYA AKUATIK (MANAJEMEN SUMBER DAYA PERIKANAN)	21	383	18.238095
7	42	3611476	HIGIENE GIGI	18	326	18.111111
8	6	3611066	KEDOKTERAN	62	1085	17.500000
9	8	3611082	GIZI KESEHATAN	35	596	17.028571
1	0 2	3611027	FARMASI	84	1215	14.464286
1	1 35	3611406	TEKNIK SIPIL	53	754	14.226415
1	2 29	3611341	PERENCANAAN WILAYAH DAN KOTA	28	391	13.964286
1	3 40	3611453	TEKNOLOGI PANGAN DAN HASIL PERTANIAN	39	533	13.666667
1	4 20	3611252	EKONOMI PERTANIAN DAN AGRIBISNIS	28	371	13.250000
1	5 23	3611283	AKUAKULTUR (BUDIDAYA PERIKANAN)	21	275	13.095238
1	69	3611097	KEDOKTERAN GIGI	53	681	12.849057
1	7 11	3611155	FISIKA	25	315	12.600000
1	8 36	3611414	TEKNIK NUKLIR	23	286	12.434783
1	9 39	3611445	TEKNIK PERTANIAN	35	431	12.314286
2	0 22	3611275	PENYULUHAN DAN KOMUNIKASI PERTANIAN	14	172	12.285714

Check other packages!

RCurl RCrawler