Obstacle Detection in USVs

Kovid Sharma 21ME01026

Under the Supervision of Dr. Yogesh Bhumkar and Dr. Debi Prosad Dogra

> School of Mechanical Sciences Indian Institute of Technology, Bhubaneswar

Content / Outlines

Introduction and Motivation Literature Review and Literature Gap Objectives and Methodology Experimentation Details and Model Description Results and Discussions Conclusion and Future Scope References

Introduction and Motivation

- Unmanned Surface Vessels(USVs) are generally used in perimeter monitoring and surveillance tasks.
- USVs can be navigated either through manual control or autonomously following a trajectory.
- They come in various dimensions but usually less than 2 meters.
- They are portable and can be easily navigated in narrow marinas.
- In the majority of applications, they are required to navigate along a pre-determined path.
- May be required to perform some tasks autonomously.

Fig. 1

Image credits: https://www.defenceprocurementinternational.com/features/maritime/are-unmanned-surface-vehicles-a-paradigm-shift-in-naval-warfare

Introduction and Motivation

- An autonomous system necessitates the use of an obstacle detection system and requires excessive computation.
- Computation can be performed either at the ground station or via an onboard computing device.
- Performing computation on the ground station and information transfer using telemetry limits the range of the USV.
- For autonomous navigation, variety of sensors are used such as LiDAR, Sonar, Radar, Camera etc.
- The compact size of the USVs constraints the power consumption and payload capacity which limits the use of sensors.

Fig. 2

Image credits: https://defense.info/defense-systems/unmanned-surface-vehicles-in-support-of-the-sustainment-mission/

Introduction and Motivation

- USV needs situational awareness to identify obstructions.
- General obstructions in USVs scenarios are other vessels, people (Scuba divers), objects such as trash and most importantly the shoreline or water-edge line.
- In certain instances (particularly those beyond India), satellite provides seashore maps^[3]
- When combined with a GPS, enable the management of seashore obstacles.
- No publicly available datasets of USVs for Indian Scenarios

Fig-3a
Image credits: https://danandholly.com/2021/01/indian-fishing-

Fig-3b
Image taken from MODS dataset[21]

- Obstacle detection was previously addressed in the field of Unmanned Ground Vehicles (UGVs).
- The research for it in USVs is still in the early stages.
- Methods designed for UGVs cannot be easily applied to USVs for the following reasons:
 - They depend on estimating the ground plane. Not applicable to the underwater environment of USVs.
 - Maritime environment exhibit greater diversity as even a little submerged object pose a risk.
- A lot of methods for detecting obstacles in marine environments is the use of range sensors like Radar, Sonar or LiDAR. Size and power restrictions.
- Therefore, cameras combined with computer vision algorithms may be a promising alternative.

Authors	Contribution	
Larson et al. ^[4] (2007)	Used a monocular camera and Estimated horizon using trigonometric calculations and nautical charts.	
Gal, O. ^[5] (2011)	 Used edge detection approach to detect the horizon line. Assumed sea-edge as a straight line. 	
Wang et al. ^[6] (2011)	 Used pixel profile analysis and RANSAC regressor to estimate sea-sky line. Created a real-time obstacle detection system for a monocular and stereo camera system based on saliency detection 	

- Most of these approaches approximate the edge of water by the horizon line.
- In coastal scenarios, water-edge doesn't align with the horizon.

Authors	Contribution
Kristan et al. ^[7] (2015)	 Introduced a graphical model for monocular obstacle detection by constrained semantic segmentation Partitions an image into three distinct and approximately parallel regions: sky, ground and water. Does not presume a straight water edge and operates in real-time Constructed the first large annotated dataset - MODD
Bovcon et al. ^[8, 9] (2018, 2019)	 Included sensor data like roll and pitch value from the Inertial Measurement Unit(IMU). Improved the segmentation model by introducing stereo verification. Constructed a new dataset with time-synchronizatized data streams – MODD2. Proposed another dataset MaSTr1325 which was per-pixel semantically labelled and a data augmentation protocol
Bovcon et al. ^[10] (2022)	Proposed a large unified dataset – MODS for obstacle detection and estimate depth maps.

Authors	Contribution
Ahmed et al. ^[11] (2023)	 Used a generative adversarial network(GAN) model for image de-hazing and de-noising. YOLOv5 based object detection system to detect objects from enhanced images.

- Majority of approaches used are segmentation based and cannot give real time inference on Embedded GPUs.
- Accuracy of the existing approaches will significantly vary when implemented in Indian Scenarios.
- Deep learning-based object detectors have a significant potential for real-time obstacle detection.
- There is no publicly available dataset for USVs that cater to Indian scenarios.

Objectives and Methodology

With this research, we plan to complete the following objectives:

- 1. To manufacture a USV equipped with a camera, LiDAR and IMU sensor synchronization.
- 2. To explore and experiment existing approaches in Indian scenarios.
- 3. To create a large annotated dataset for Indian waters to boost the research in this field.
- 4. To develop a robust obstacle detection system that can work on an Embedded GPU.

Objectives and Methodology

Methodology to be followed:

- Experimentation with a multi-modal approach for obstacle detection. Semantic segmentation for detecting the wateredge and an object detection model to detect obstacles.
- Exploring multiple segmentation and object detection models to test their real-time performance.
- Since the USV in under development, we plan to experiment on the MODS^[10] dataset.
- Developing an IMU camera calibration system and employing an Embedded GPU. Testing the USV on various water-bodies.
- Construct a dataset with visual and sensor data, and experiment with the models created.

Fig. 4: CAD Model

Experimentation Details and Model Description

Dataset Modification

- The MODS dataset contained annotations in JSON format.
- The dataset was modified for water-edge segmentation task and contains 8175 images.
- Binary Masks of the images were created using OpenCV library.
- The images were resized to 640 x 640 pixels for training.

Fig. 5: Image and its mask

Experimentation Details and Model Description

Model Description

- The model used for the segmentation task is a modified U-Net Architecture^[12].
- An input size of 640 is used instead of 572.
- Batch Normalization layers are included to prevent overfitting.
- Model was created using the PyTorch library and Python Programming language.
- The final model contains 118,577,922 trainable parameters.

Fig. 6: U-Net Architecture^[12]

Experimentation Details and Model Description

Experimentation Details

- Model was trained for 4 hours and in total 25 Epochs.
- Two NVIDIA T4 GPUs provided by kaggle are used parallelly.
- The loss-function used in Binary cross entropy with logits loss.
- Optimizer used is the Adam Optimizer.
- The learning rate schedule can be seen in table-1
- Data Augmentations were applied using the albumentations library.

Epoch No.	Learning Rate
1-10	0.001
11-15	0.0001
16-20	0.00001
21-25	0.000001

Table-1: Learning Rate Schedule

Results and Discussions

- Model achieved 99.5 % accuracy and a dice score of 0.68
- We observed that the accuracy and dice score increases as we reduce the learning rate
- Accuracy is misleading due to unbalanced dataset. Therefore, considering only dice score as a metric.
- Dice score > 0.8, considered good.
- Can be further improved by pre-training on a large dataset.
- The input image, ground truth mask, and predicted mask is shown in the next slides

Results and Discussion

Input Image

Ground Truth Mask

Predicted Mask

Results and Discussion

Input Image

Ground Truth Mask

Predicted Mask

Conclusion and Future Scope

- The segmentation performed using U-Net was successful.
- Further experimentation can be done by using modern segmentation models like other models like SegFormer
- Performance can be improved by using sensor data
- Sophisticated loss-functions can be used to increase water-obstacle separation
- Construction of an Indian dataset is extremely necessary
- For object detection, the following approaches can be used:
 - A completely different model
 - Use the segmentation features learnt, and train only a detection head

References

- 1. Title slide image Credits: https://www.oglemodels.com/case-studies/unmanned-surface-vessel/
- 2. Title slide image Credits: https://www.unmannedsystemstechnology.com/expo/autonomous-surface-vehicles-asv/
- 3. Heidarsson et al. (2011). Obstacle detection from overhead imagery using self-supervised learning for Autonomous Surface Vehicles. IEEE International Conference on Intelligent Robots and Systems. 3160-3165. 10.1109/IROS.2011.6048233.
- 4. Larson et al. (2007). Advances in Autonomous Obstacle Avoidance for Unmanned Surface Vehicles.
- 5. Gal, O. (2011). Automatic Obstacle Detection for USV's Navigation Using Vision Sensors. In A.Schlaefer & O. Blaurock (Eds.), Robotic Sailing (pp. 127–140). Springer Berlin Heidelberg.
- 6. Wang et al. (2011). Real-time obstacle detection for Unmanned Surface Vehicle. 2011 Defense Science Research Conference and Expo (DSR)
- 7. Kristan et al. (2015). Fast image-based obstacle detection from unmanned surface vehicles.
- 8. Bovcon et al. (2018). Stereo obstacle detection for unmanned surface vehicles by IMU-assisted semantic segmentation. Robotics and Autonomous Systems, 104, 1–13.
- 9. Bovcon et al (2019). The MaSTr1325 dataset for training deep USV obstacle detection models. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3431–3438.
- 10. Bovcon et al. (2022). MODS—A USV-Oriented Object Detection and Obstacle Segmentation Benchmark. IEEE Transactions on Intelligent Transportation Systems, 23(8),13403–13418.
- 11. Ahmed et al. (2023). Vision-Based Autonomous Navigation for Unmanned Surface Vessel in Extreme Marine Conditions.

19

12. Olaf Ronneberger, Philipp Fischer, Thomas Brox. "U-Net: Convolutional Networks for Biomedical Image Segmentation." (2015).

21 September 2024, SMS, IIT Bhubaneswar

THANK YOU