

"Система анализа срезов кабелей: автоматизация определения числа жил, их диаметров и толщины изоляционного слоя с использованием машинного обучения"

Проблема

Использования ручного анализа срезов кабелей на кольчугинском заводе "Электрокабель", который требует до 25 минут на каждый срез и имеет до 15% ошибок, производственные процессы сталкиваются с повышенным количеством брака и затрат.

Актуальность

На кольчугинском заводе "Электрокабель" используются ручные методы анализа среза кабеля, что соответственно не гарантирует максимальной точности и быстрого анализа.

Цель и задачи

Цель:

Разработать к 10 февраля 2025 года автоматизированную систему на основе машинного обучения для анализа срезов кабелей, которая с точностью не менее 95% определяет число жил, а также измеряет их диаметры и толщину изоляционного слоя с отклонением не более ±0.1 мм в 90% случаев

Задачи:

- 1. Сбор и разметка базы данных изображений срезов кабелей.
- 2. Разработка алгоритма машинного обучения.
- 3. Тестирование системы на реальных данных.
- 4. Подготовка прототипа к внедрению.

Аналоги

- 1. Ручные методы анализа
- 2. Системы машинного зрения
- **3.** Системы контроля качества
- 4. Промышленные РКД (Роботизированные Контрольные Дисплеи)

Анализ аналогов

Метод анализа	Преимущества	Недостатки
1. Ручные методы анализа	Простота и низкая стоимостьГибкость в нестандартных случаях	Зависимость от человеческого фактораНизкая скорость
2. Системы машинного зрения	Высокая точностьВысокая скорость анализаАвтоматизация	- Высокая стоимость - Необходимость калибровки
3. Системы контроля качества	Комплексный подходИнтеграция с другими системами	Сложность внедренияЛожные срабатывания
4. Промышленные РКД	Полная автоматизацияВысокаяпроизводительность	- Высокие затраты - Сложность настройки

Этапы работы

- 1. Подготовка датасета для обучения нейросети на базе yolo11x(25.11)
- 2. Предвадительное обучение на сайте roboflow.com(5.01)
- 3. Тестирование и отладка(5.01)
- 4. Интеграция в телеграмм бота(в процессе)
- 5. Представление готового продукта заводу "Электрокабель" (в процессе)

Наше решение

- 1. Модель yolo11 обучена на 299 эпохах.
- 2. Имеет mAP 98.4%.
- 3. Уменьшение брака и отходов.

Аспекты на будущее

- 1. Создание аналога телеграмм для работников завода
- 2. Создание устройства с нашей нейросетью
- 3. Сделать модель более точной
- 4. Добавить больше классов для лучшего анализа

Наш сайт

Роли в команде

- Андрей Свиридов тимлид
- Шукюров Ариф эксперт по нейросетям
- Коровин Алексей программист
- Александр Нагайцев дата аналитик
- Петров Сергей программист

Спасибо за внимание!

