

Searching for and replacing missing values

Nicholas Tierney Statistician

What we are going to cover

- How to look for hidden missing values
- Replacing missing value labels with NA
- Checking your assumptions on missingness

Searching for and replacing missing values

- Ideal = NA
- Missing values can be coded incorrectly: e.g. "missing", "Not Available", "N/A"
- Assuming that missing values are coded as NA. This is a mistake.

Understanding Chaos

score	grade	place
3	N/A	-99
-99	Е	97
4	missing	95
-99	na	92
7	n/a	-98
10		missing
12		88
16		
9	N/a	86

Searching for missing values

3 place

Searching for missing values

7 n/a

10 " "

12 .

16 ""

9 NA

-98

88

86

missing

Replacing missing values

"scoped variants" of replace_with_na

- replace_with_na can be repetitive:
 - Use it across many different variables and values
 - Complex cases, replacing values less than -1, only affect character columns.
- replace with na all() All variables.
- replace_with_na_at() A subset of selected variables.
- replace_with_na_if() A subset of variables that fulfill some condition (numeric, character).

Using scoped variants of replace_with_na

```
chaos %>%
replace with na all(condition = \sim .x == -99)
# A tibble: 9 x 3
 score grade place
 <dbl> <chr> <chr>
     3 N/A
              NA
    NA E
               97
   4 missing 95
   NA na
   7 n/a
            -98
   10 " "
            missing
               88
    12.
    16 ""
     9 N/a
               86
```


Using scoped variants of replace_with_na

```
chaos %>%
replace with na all(condition = \sim .x \%in\% c("N/A", "missing", "na"))
# A tibble: 9 x 3
 score grade place
 <dbl> <chr> <chr>
     3 NA -99
   -99 E
   4 NA 95
   -99 NA
   7 n/a
           -98
   10 " "
            NA
    12 .
    16 ""
    9 N/a 86
```


Let's practice!

Missing, missing data

Nicholas Tierney Statistician

Another perspective on missing data

name	time	value
robin	morning	358
robin	afternoon	534
robin	evening	100
sam	morning	139
sam	afternoon	177
blair	morning	963
blair	afternoon	962
blair	evening	929

name	afternoon	evening	morning
blair	962	929	963
robin	534	100	358
sam	177	NA	139

Explicit and Implicit missing values

• explicitly: They are missing with NA

• implicitly: Not shown in the data, but implied

Making implicit missings explicit

```
tetris %>%
  tidyr::complete(name, time)
```

```
# A tibble: 9 x 3
 name time
                  value
 <fct> <fct>
                  <dbl>
1 blair afternoon
                    962
2 blair evening
                    929
3 blair morning
                    963
4 robin afternoon
                    534
5 robin evening
                    100
                   358
6 robin morning
       afternoon
                    177
7 sam
     evening
 sam
                    NA
9 sam
       morning
                    139
```


Handling explicitly missing values

name	time	value
robin	morning	936
NA	afternoon	635
NA	evening	438
sam	morning	208
NA	afternoon	92
NA	evening	79
blair	morning	969
NA	afternoon	918
NA	evening	954

name	time	value
robin	morning	936
robin	afternoon	635
robin	evening	438
sam	morning	208
sam	afternoon	92
sam	evening	79
blair	morning	969
blair	afternoon	918
blair	evening	954

Handling explicitly missing values

name	time	value
robin	morning	936
NA	afternoon	635
NA	evening	438
sam	morning	208
NA	afternoon	92
NA	evening	79
blair	morning	969
NA	afternoon	918
NA	evening	954

```
tetris %>%
  tidyr::fill(name)
```

```
# A tibble: 9 x 3
 name time
                 value
 <chr> <chr>
                 <dbl>
1 robin morning
                   936
                   635
2 robin afternoon
3 robin evening
                   438
                   208
4 sam morning
5 sam afternoon
                  92
      evening
                   79
6 sam
7 blair morning
                   969
8 blair afternoon
                   918
9 blair evening
                   954
```


A Warning

```
tetris %>%
  tidyr::fill(name)
# A tibble: 9 x 3
 name time
                  value
 <chr> <chr>
                  <dbl>
                    936
1 robin morning
                    635
2 robin afternoon
3 robin evening
                    438
                    208
       morning
4 sam
5 sam
       afternoon
                    92
                     79
       evening
6 sam
                    969
7 blair morning
8 blair afternoon
                    918
9 blair evening
                    954
```


Let's practice!

Missing Data dependence

Nicholas Tierney Statistician

Outline

- MCAR Missing Completely at Random
- MAR Missing At Random
- MNAR Missing Not At Random

MCAR: What is it?

Missingness has no association with any data you have observed, or not observed.

test	vacation
NA	TRUE
11.533340	FALSE
10.126115	TRUE
NA	FALSE
NA	TRUE
8.551881	FALSE
NA	FALSE
NA	TRUE
10.608264	TRUE
8.611877	TRUE

MCAR: What are the implications

Implications

- Imputation is advisable
- Deleting observations may reduce sample size, limiting inference, but will not bias
- You should be imputing data

MAR: What is it?

Missingness depends on data observed, but not data observed

Implications:

- Impute
- Deleting observations not ideal, may lead to bias

test	vacation	depression
NA	TRUE	87.93109
11.533340	FALSE	40.02708
10.126115	TRUE	48.62883
NA	FALSE	88.21743
NA	TRUE	90.29282
8.551881	FALSE	44.77343
NA	FALSE	89.48865
NA	TRUE	89.99209
10.608264	TRUE	45.56832
8.611877	TRUE	42.41686

MNAR: What is it?

Missingness of the response is related to an unobserved value relevant to the assessment of interest.

Implications:

- Data will be biased from deletion and imputation
- Inference can be limited, proceed with caution.

test	vacation	depression
NA	TRUE	NA
11.533340	FALSE	11.533340
10.126115	TRUE	10.126115
NA	FALSE	NA
NA	TRUE	NA
8.551881	FALSE	8.551881
NA	FALSE	NA
NA	TRUE	NA
10.608264	TRUE	10.608264
8.611877	TRUE	8.611877

Example: MCAR

vis_miss(mt_cars, cluster = TRUE)

Example: MAR

oceanbuoys %>% arrange(year) %>% vis_miss()

Example: MNAR

vis_miss(ocean, cluster = TRUE)

Let's practice!