Üzleti Elemzések Módszertana

4. Gyakorlat: Osztályozás

Kuknyó Dániel Budapesti Gazdasági Egyetem

> 2023/24 2.félév

Bevezetés

2 Tanítás

Oöntési fák tulajdonságai

Bevezetés

2 Tanítás

3 Döntési fák tulajdonságai

Döntési fák a gépi tanulásban

A döntési fák olyanok, mint a svájci bicska: nagyon sok mindenre jó, de szinte semmire sem a legalkalmasabb.

A döntési fák kifejezetten hasznosak gyors taníthatóságuk, jól értelmezhetőségük és pontosságuk miatt.

Döntési fák alapjai

A döntési fák képesek mind regressziós és osztályozási problémákat is végrehajtani. Könnven illeszthetők komplex adathalmazokra

Az algoritmus alapja, hogy mintaegyedeket osztályoz változóikban felvett értékeik alapján.

Egy kezdeti döntési fa

A folyamat a fa gyökerénél kezdődik.

A mintaegyedek a csomópontok kérdéseire válaszolnak változóikban felvett értékeik alapján.

A végső osztály lehet folytonos és diszkrét változó is.

A döntési fa komponensei

Gyökér csomópont

Csak outputja van.

Internális csomópont

Van inputja és outputja is.

Levél csomópont

Csak inputja van.

Döntési fa az Írisz adathalmazon

Az első szeparálási változó szirom hossz, aminek a küszöbértéke 2.45 cm. Ha az adott virág szirom hossza kevesebb mint ez az érték akkor a modell szerint a becsült osztály Setosa.

Ha viszont nagyobb akkor a következő szeparálási ponthoz ér az osztályozás, ami szerint a következő kérdés, hogy a szirom szélesség kisebb-e mint 1.75 cm. Ha igen, a becsült osztály versicolor, egyébként pedig Virginica.

A fa ábrázolása

A vastag vonal a gyökérből származó határ. Mivel a bal oldali halmaz teljesen tiszta, nem lehet tovább bontani. De a jobb oldali részhalmaz továbbra is kevert, ezért a jobb oldali első szintű belső nódus tovább bontja 1.75cm küszöbnél.

Bevezetés

2 Tanítás

Oöntési fák tulajdonságai

Tisztátalanság

Azok a változók, amelyek nem képesek 1 : 0 arányban szeparálni az egyedeket tisztátalannak számítanak. Ennek egyik mutatószáma a Gini-index.

Gini

$$G(x) = 1 - P(A)^{2} - P(B)^{2}$$

• $P(\cdot)$: adott levélbe kerülés valószínűsége

Egy változó Gini-indexe leveleinek Gini-indexeinek súlvozott átlaga.

$$G(A) = 1 - \left(\frac{98}{98 + 30}\right)^2 - \left(\frac{30}{98 + 30}\right)^2 = 0.35$$

$$G(B) = 1 - \left(\frac{22}{22 + 123}\right)^2 - \left(\frac{123}{22 + 123}\right)^2 = 0.25$$

$$G(x) = \left(\frac{128}{128 + 145}\right) \cdot 0.35 \left(\frac{145}{128 + 145}\right) \cdot 0.25 = 0.3$$

Szeparáció folytonos változó esetén

A folytonos változónak minden értékéhez tartozik egy Gini-index.

Egy adott x változóra a t_x küszöbérték menti szeparáció, hogy az egyik partícióba azon mintaegyedek kerülnek, amelyekre $x \leq t_x$ a másikba pedig amelyekre $x > t_x$.

Szeparáció folytonos változó esetén

Ennek megfelelően a szeparáció ott a legjobb, ahol a $G(t_x)$ függvénynek minimuma van.

Mikor érdemes szeparálni?

Amikor egy csomópontnak magasabb a tisztátalansága tovább bontáskor, felesleges a szeparáció és levélcsomópont válik belőle.

Gyökércsomópont abból a változóból válik, amelynek a legalacsonyabb a tisztátalansága.

Ebben az esetben szeparációval G=0.29

Mikor érdemes szeparálni?

Amikor egy csomópontnak magasabb a tisztátalansága tovább bontáskor, felesleges a szeparáció és levélcsomópont válik belőle.

Gyökércsomópont abból a változóból válik, amelynek a legalacsonyabb a tisztátalansága.

Szeparáció nélkül G=0.20, tehát a szeparáció felesleges.

A CART tanító algoritmus

A Classification And Regression Trees egy döntési fák tanítására használt algoritmus.

Az eljárás x változóra és t_x küszöbértékre olyan (x,t_x) párokat keres, amelyekre a létrejövő részhalmazoknak a lehető legalacsonyabb a tisztátalansága.

Ezt rekurzívan ismétli kilépésig.

A CART költségfüggvénye

$$J\left(x,t_{x}\right) = \frac{m_{A}}{m}G_{A} + \frac{m_{B}}{m}G_{B}$$

Ahol.

- G_A: Bal oldali nódus Gini-indexe
- G_B: Jobb oldali nódus Gini-indexe
- m_A: Bal oldali nódusba bekerült egyedek száma
- m_B: Jobb oldali nódusba bekerült egyedek száma
- m: Egyedek száma a teljes halmazban

Korai leállás döntési fák esetén

Túltanulás esetén a tanító pontosság nagyon magas lesz, viszont a teszt pontosság alacsony.

Döntési fák esetén annyi változót érdemes meghagyni a modellezés során, amennyivel a lehető legmagasabb a teszt pontosság.

Korai leállás esetén a modell kiszáll a tanításból, ha a validációs pontosság elkezd csökkenni.

Döntési fák regularizálása

A döntési fák meglehetősen kevés előfeltételezéssel élnek az adathalmaz irányába. Ha megkötések nélkül van tanítva, könnyen túltanulhat a modell.

A bal oldali ábrán egy regularizáció nélküli, a jobb oldalon pedig egy min samples leaf=4 paraméterrel tanított döntési fa látható.

Regresszió döntési fákkal

Regresszió esetén a döntési fák leveleikben folytonos változókhoz tartozó értékékeket vesznek fel. Ebben az esetben a predikció a levelekbe bekerült mintaegyedek célváltozóikban felvett értékeinek az átlaga.

Regresszió döntési fákkal

Regresszió esetén a döntési fák leveleikben folytonos változókhoz tartozó értékékeket vesznek fel. Ebben az esetben a predikció a levelekbe bekerült mintaegyedek célváltozóikban felvett értékeinek az átlaga.

Regularizáció regresszor fák esetén

Az osztályozó fákhoz hasonlóan a regresszor fák is hajlamosak a túltanulásra. A regularizáció olyan paraméterek állításával érhető el, mint a min_samples_leaf, min_samples_split, max_leaf_nodes, max_depth.

CART tanító algoritmus regressziós fákra

A regresszor fák a tisztátalanság helyett az MSE mutatót minimalizálják.

Egy V nódus becsült értéke a bele került mintaegyedek célváltozóikban felvett értékeinek átlaga:

$$\hat{y}_V = \frac{1}{m_V} \sum_{i \in m_A} y_i$$

A CART regresszor algoritmus költségfüggvénye

$$J(x, t_x) = \frac{m_A}{m} MSE_A + \frac{m_B}{m} MSE_B$$

Ahol:

- $MSE_A = \sum_{i \in m_A} (\hat{y} y_i)^2$: A csomópont átlagos négyzetes hibája
- $MSE_B = \sum_{i \in m_B} (\hat{y} y_i)^2$: B csomópont átlagos négyzetes hibája

1 Bevezeté:

Tanítás

Oöntési fák tulajdonságai

Instabilitás: rotáció az adathalmazon

Az alábbi példában egy lineárisan szeparálható adathalmazon történt 45° -os forgatás után látható ugyanannak a modellnek a predikciója. A létrejövő döntési határ jóval komplexebb a transzformált adathalmaz esetén.

Instabilitás: rotáció az adathalmazon

Az következő példában az Írisz adathalmazon egy 180° -os forgatás után láthatóak hasonló módon paraméterezett modellek döntési határai. Érdemes megfigyelni, mennyire különbözik a predikció a torzított adathalmazon.

Instabilitás: variációk az adathalmazban

Ebben az esetben a legszélesebb Versicolor (kék) nem került bele a minta adathalmazba. Egyetlen minta adatpont változása is nagy torzítást képes bevinni a modellbe.

