Homework #5

29 a)
$$A_1 = \{0^n 1^n 2^n \mid n \ge 0\}$$

We first assume that A_1 is regular. We will let p be the pumping length given by the pumping lemma. We also will let s be the string $0^p1^p2^p$. (s = $0^p1^p2^p$)

Since s is the member of A_1 and s is longer than p, the pumping lemma guarantees s is able to be split into 3 parts, s = xyz for any $i \ge 0$ the string xy^iz is in A_1 .

We can consider 2 possibilities:

- 1) String y consists only of 0s, only of 1s, only of 2s. xy^2z won't have equal numbers of 0s, 1s, and 2s. Hence xy^2z isn't a member of A_1
- 2) String y consists of more than one kind of symbol. xy^2z have 0s, 1s, or 2s in a different order. Hence xy^2z isn't a member of A_1

Looking at both these cases we arrive and a contradiction. Therefore A₁ isn't regular.

b) $A_2 = \{www \mid w \in \{a,b\}^*\}$

We first assume that A_2 is regular. We will let p be the pumping length given by the pumping lemma. We will also let s be the string $a^pba^pba^pb$

s ϵ A₂ since s=(a^pb)³ and |s| = 3(p+1) \geq p so the pumping lemma holds. We can further split the string into 3 pieces, s = xyz satisfying the conditions xyⁱz ϵ A₂ for each i \geq 0, |y| > 0, |xy| \leq p.

The first p symbols of s are all a's, the condition implies x and y consists only of a's. |y| > 0 y has at least one a. Thus we may say: $x = a^j$ for $j \ge 0$

$$y = a^k$$
 for $k \ge 1$
 $z = a^m b a^p b a^p b$ for $m \ge 0$

s = xyz we take the individual value of x, y, and z multiply them out to get $a^{j+k+m}ba^pba^pb$ thus j+k+m=p. We implied $xy^2z=a^{p+k}ba^pba^pb$ since j+k+m=p. Thus $xy^2z \not \in A_2$ because $k \ge 1$ we get a contradiction, and hence A_2 is a nonregular language.

c)
$$A_3 = \{a^{2^n} \mid n \ge 0\}$$

First we will assume A_3 is regular. We will let p be the pumping length given by the pumping lemma. We will then choose s to be the string $a^{2^{n}p}$. Since s is a member of A_3 and s is longer than p, we can say the pumping lemma guarantees s can be split into 3 parts s = xyz thus we satisfy the 3 conditions of the pumping lemma.

The 3rd condition tells us that $|xy| \le p$. Further, $p < 2^p$ and so $|y| < 2^p$. Therefore $|xy|^2 = |xy|^2 + |y| < 2^p + 2^p = 2^{p+1}$. The second condition requires |y| > 1 so $2^p < |xy|^2 = 2^{p+1}$. The length of $|xy|^2 = 2^{p+1}$ are the second condition of $|xy|^2 = 2^p + 2^p = 2^{p+1}$. The length of $|xy|^2 = 2^p + 2^p = 2^{p+1}$. The length of $|xy|^2 = 2^p + 2^p = 2^{p+1}$. The length of $|xy|^2 = 2^p + 2^p = 2^{p+1}$. The length of $|xy|^2 = 2^p + 2^p = 2^{p+1}$. The length of $|xy|^2 = 2^p + 2^p = 2^{p+1}$. The length of $|xy|^2 = 2^p + 2^p = 2^{p+1}$. The length of $|xy|^2 = 2^p + 2^p = 2^{p+1}$. The length of $|xy|^2 = 2^p + 2^p = 2^{p+1}$. The length of $|xy|^2 = 2^p + 2^p = 2^{p+1}$. The length of $|xy|^2 = 2^p + 2^p = 2^{p+1}$. The length of $|xy|^2 = 2^p + 2^p = 2^{p+1}$. The length of $|xy|^2 = 2^p + 2^p = 2^{p+1}$. The length of $|xy|^2 = 2^p + 2^p = 2^{p+1}$. The length of $|xy|^2 = 2^p + 2^p = 2^{p+1}$. The length of $|xy|^2 = 2^p + 2^p = 2^{p+1}$. The length of $|xy|^2 = 2^p + 2^p 2^p$

30) We first will set p to be the pumping length of 0^*1^* and string s to be 0^p1^p . In other words s = 0^p1^p . We can further split s into 3 parts xyz. We can take an example and set xy^iz is equal to 0^{p+1} (j-1) |y| 1 p this is a flaw since xy^iz is still contained within in 0^*1^* .

Therefore this proof is flawed and 0*1* is regular.

42) Let $M_A = (Q_a, \Sigma, \delta a, q_a, F_a)$ be a DFA recognizing A and $M_B = (Q_B, \Sigma, \delta b, q_B, F_B)$ be a DFA recognizing B. The NFA N for the shuffle of A & B, simulate both M_A & M_B .

We can formally mention the definition of N as:

- 1) $Q = (Q_A \times Q_B) \cup \{q_0\}$ where $Q_A \times Q_B$ are all possible current states of M_A and M_B , and q_0 is the state when nothing is read.
- 2) $q = q_0$
- 3) $F = (F_A \times F_B) \cup \{q_0\}$ in which N accepts the string if both $M_A \times M_B$ are in accept states, or N accepts the empty string.
- 4) δ is defined as follows:
- i) $\delta(q_0, \epsilon) = (q_A, q_B)$ which states q_0 is the start state. N can make M_A in q_A and M_B in q_B without reading anything
- ii) (δA (x,a), y) ϵ δ ((x,y),a) which states if the current state of M_B is y, when a is read, we change the state of A to δA (x,a) while state B isn't changed

iii)
$$(x, \delta B(y,a)) \in \delta((x,y),a)$$

46a)
$$\{0^n1^m0^n \text{ I m, } n \geq 0\}$$

To prove that L isn't a regular language, we should use a proof by contradiction. We first assume L is regular, and by the pumping lemma we can say there exists a p(pumping length) for L such that for any string $s \in L$ where $|s| \ge p$, s = xyz contains these following conditions:

- (1) |y| > 0
- $(2) |xy| \leq p$
- (3) $\forall i > 0$, $xy^iz \in L$.

We then choose $s = 0^p 10^p$. We can clearly see, $|s| \ge p$ and $s \in L$.

By condition (2) we can say that x and y are composed solely of zeros.

By condition(1) we can say that $y = 0^k$ for some value k > 0

By condition (3) we can take i to be 0, and the string will still be contained within L.

Thus xy^0z should be in L. $xy^0z = xz = 0^{(p-k)}10^p$. but it clearly isn't contained within L

This is a contradiction, therefore the assumption we made in the beginning is incorrect, and L isn't a regular language.

b)
$$\{0^{m}1^{n} \mid m \neq n\}$$

We shall use a proof by contradiction to show L isn't a regular language. We first assume L is a regular language. Using the pumping lemma for regular languages, we see there exists a p(pumping length) for L such that for any string $s \in L$ where $|s| \ge p$, s = xyz contains these following 3 conditions:

- (1) |y| > 0
- (2) $|xy| \le p$, and
- (3) $\forall i > 0$, $xy^iz \in L$.

We shall choose $s = 0^p 110^p 1$. We can clearly see that $s \in L$ with $w = 0^p 1$ and t = 1, and $|s| \ge p$. By condition (2), it is pretty noticeable that xy is composed solely of 0s

by (1) and (2), if shows that $y = 0^k$ for some k > 0.

By condition (3), we can take any i and xyⁱz will still be contained within in L.

We can set i to be 2, then $xy^2z \in L$. $xy^2z = xyyz = 0^{(p+k)}110^p1$.

There is no possible way to split the string into wtw as required to be in L, thus $xy^2z \not\in L$ This contradicts condition (3) of the pumping lemma.

Thus our assumption in the beginning is false and L isn't a regular language.

c) L = {w| w ε {0,1}* isn't a palindrome}

We will prove L by contradiction. We first assume L is regular, then we set L to its complement L' which says $\{w \mid w \in \{0,1\}^* \text{ is a palindrome}\}$. In this case we can say L' is also regular.

If L` is regular by the pumping lemma, there exists an integer p > 0 which is the pumping length, such that any word $w \in L`|w| \ |w| \ge p$ can further be split into 3 parts such as $w = xyz(with |xy| \le p$ and |y| > 0) in such a way that, for any $i \ge 0$, the word xy^iz also belongs to L`.

Now we should consider the word $w = 0^p 10^p$, We can see |w| = 2p + 1 so it satisfies the condition $|w| \ge p$ of the theorem. Any partition of w into parts x, y, z must be such that $y = 0^k$ for some integer k > 0, and then $x = 0^{p-k}$ and $z = 10^p$. If the word is formed as $w` = xy^0z$ then we can further say $w` = 0^{p-k} \subseteq 10^p = 0^{p-k} 10^p$ which isn't a palindrome since p-k < p. Thus $w` \not \in L`$ which contradicts the result of the pumping lemma.

d) L =
$$\{wtw \mid w, t \in \{0, 1\} + \}$$

We first want to prove that L is not a regular language, so we use a proof of contradiction. First we assume that L is a regular language. By the pumping lemma for Regular Languages there's a p(pumping length) for L such that for any string $s \in L$ where $|s| \ge p$, s = xyz has the 3 following conditions: (1) |y| > 0

- (2) $|xy| \le p$, and
- (3) $\forall i > 0$, $xy^iz \in L$.

We shall choose $s = 0^p 110^p 1$. We clearly can see that $s \in L$ with $w = 0^p 1$ and t = 1, and $|s| \ge p$. By condition (2), it is obvious that xy is composed only of zeros, and further, by (1) and (2), it follows that $y = 0^k$ for some k > 0. By condition (3), we can take any value i and xy^i z will still be in L.

By taking i to be 2, then $xy^2z \in L$. $xy^2z = xyyz = 0^{(p+k)}110^p1$. We can't find a way to split this string into wtw which is required to be in L thus $xy^2z \notin L$. This is a contradiction with condition (3) of the pumping lemma. Thus L isn't a regular language.

47) Let $\Sigma = \{1, \#\}$ and let

A = {w | w= $x_1 \# x_2 \# \cdots \# x_k$, k≥0, each $x_i \in 1^*$ and (i $\neq j$) \Rightarrow ($x_i \neq x_i$)}

We can let p be a pumping lemma constant for A.

We can let $u = 1^p \# 1^{(p+1)} \# \cdots \# 1^{(2p)}$.

Another way we can write u is as $u = u_0 \# u_1 \# \cdots \# u_k$, where k = p and $u_i = 1^{(p+i)}$.

Let xyz = u such that |y| > 0 and $|xy| \le p$.

Let $v = xy^2z$. Note that we can write $v = v_0 \# v_1 \# \cdots \# v_k$, where k = p, $v_0 = 1^{p+|y|}$ for $1 \le i \le p$, $v_i = 1^{(p+1)}$. Because $1 \le |y| \le p$, we conclude $p + 1 \le (p + |y|) \le 2p$ and $v_0 = v_{p+|y|}$. Thus, $v \not \in A$

We can see that A does not satisfy the conditions of the pumping lemma. Therefore, A is not regular.

55) e) (01)* Let s be the string in the language. S could be ε but it can't be pumped so the length isn't 0. Next s could be 01, if we divide into xyz since x is an empty string ε , y is 01, and z is everything after, then it satisfies the 3 conditions of the pumping lemma

Therefore the minimum pumping length is 1.

f) ϵ Let s be a string in the language then we can say s is in ϵ and according to the pumping lemma it can't be pumped

Therefore the minimum pumping length is 0

i) 1011: Let s be a string in the language. If we divide s into xy^iz we get x as 10, y as 1, and z is an empty string.

Therefore the minimum pumping length is 3

j) Σ^*

We can say s to be a string in the language. According to the pumping lemma if we divide s in xyz then x can be the empty string, y is $(\varepsilon \mid 0 \mid 1)$ and z is the empty string. ε can't be pumped.

Therefore the minimum pumping length is 1