1. MASOVNE INSTRUKCIJE MATEMATIKA 1 24.10.2015. ZADACI

MATEMATIČKA INDUKCIJA

Školska zadaća 2014/2015, 12h, A grupa

 (3 boda) Matematičkom indukcijom dokažite da za svaki prirodan broj n ∈ N vrijedi

$$\frac{1}{4 \cdot 5} + \frac{1}{5 \cdot 6} + \dots + \frac{1}{(n+3)(n+4)} = \frac{n}{4(n+4)}.$$

Školska zadaća 2014/2015, 12h, B grupa

(3 boda) Matematičkom indukcijom dokažite da je

$$4 \cdot 6^n + 5n - 4$$

djeljivo s 25 za svaki $n \in \mathbb{N}$.

Školska zadaća 2012/2013, Parne grupe, A grupa

1. (2 boda)

Matematičkom indukcijom dokažite da je

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} \ge \sqrt{n}, \forall n \in \mathbb{N}.$$

Školska zadaća 2013/2014, 13h, B grupa

(3 boda) Matematičkom indukcijom dokažite da vrijedi

$$\cos x \cdot \cos(2x) \cdot \cos(2^2x) \cdots \cos(2^nx) = \frac{\sin(2^{n+1}x)}{2^{n+1}\sin x}.$$

Školska zadaća 2012/2013, Neparne grupe, B grupa

1. (2 boda)

Matematičkom indukcijom dokažite da je

$$3^n < n!,$$

za sve prirodne brojeve $n \ge 7$.

Ljetnji ispitni rok 2014/2015

03.07.2015.

 (4 boda) Koristeći princip matematičke indukcije, dokažite da za svaki n∈ N vrijedi:

$$\sum_{i=1}^{n} \ln\left(1 + \frac{1}{i}\right) = \ln(1+n).$$

KOMPLEKSNI BROJEVI

Školska zadaća 2014/2015, 12h, A grupa

(3 boda) Odredite sve kompleksne brojeve z za koje vrijedi

$$z^3 \cdot \overline{z} - 1 - i = 0.$$

Školska zadaća 2014/2015, 12h, B grupa

(3 boda) Odredite sve kompleksne brojeve z za koje vrijedi

$$\operatorname{arg}\left(\frac{z}{1+i}\right) = \frac{\pi}{4}$$
 $i \quad z \cdot \overline{z} = 4.$

Školska zadaća 2014/2015, 13h, A grupa

2. (3 boda) Odredite sve kompleksne brojeve z takve da vrijedi

$$\frac{z}{\overline{z}^3} + i = 0.$$

Školska zadaća 2013/2014, 13h, A grupa

2. (3 boda) Odredite sve kompleksne brojeve z takve da vrijedi

$$z^4 + (1+i)^{10} = 0.$$

MI 2011/2012

[5 bodova] (a) (2 boda) Grafički riješite sustav jednadžbi

$$|z+1+i|=2, |z+1-i|=4$$

u skupu kompleksnih brojeva.

(b) (3 boda) Nadite sve kompleksne brojeve z koji zadovoljavaju oba sljedeća uvjeta:

$$|z| = 1$$
, $Im(z^4) = 4 Re(z^2)$.

Prva DZ 19. (sličan kao Školska zadaća 2013, 12h, B grupa)

19. Riješi jednadžbu u skupu \mathbb{C} : $z^8 + 2z^4 + 4 = 0$.

MI 2014/2015

- [6 bo dova]
 - a) (1 bod) Ako je $z = r(\cos \varphi + i \sin \varphi)$, napišite \overline{z} u trigonometrijskom obliku.
 - b) (5 bodova) Odredite sve $z \in \mathbb{C}$ za koje vrijedi

$$(1 - i\sqrt{3})z^2 = (-2\sqrt{3} + 2i)(\overline{z})^3.$$

MI 2012/2013

- [6 bodova] (a) (2 boda) Izvedite izraz za umnožak kompleksnih brojeva z₁ i z₂ koji su dani u trigonometrijskom obliku. Koristeći dobiveni izraz, matematičkom indukcijom dokažite formulu za računanje n-te potencije (n ∈ N) kompleksnog broja danog u trigonometrijskom obliku.
 - (b) (4 boda) Kompleksni broj $w = -\cos\left(\frac{5\pi}{12}\right) + i\sin\left(\frac{5\pi}{12}\right)$ zapišite u trigonometrijskom obliku, zatim u skupu $\mathbb C$ riješite jednadžbu $z^4 = w^8$, te dobivena rješenja skicirajte u kompleksnoj ravnini.

ZIR 2012/2013

- 1. [5 bodova] (a) (1 bod) Napišite formulu za računanje izraza $\sqrt[n]{z}$, $z \in \mathbb{C}$. Koliko različitih vrijednosti ima $\sqrt[n]{z}$?
 - (b) (4 boda) U skupu $\mathbb C$ riješite jednadžbu $z^3+i=e^{-\ln 2-i\frac{7\pi}{6}}.$

JIR 2014/2015

1. (4 boda) Neka je $z\in\mathbb{C}$ takav da vrijedi $z+z^{-1}=1$. Odredite $z^{2008}+z^{2009}+z^{2010}+z^{2011}+z^{2012}.$

DIR 2012/2013

[5 bodova] Odredite sve kompleksne brojeve z za koje vrijedi

$$arg(3i\overline{z}) = arg(z^2)$$
 i $|\overline{z} \cdot (z+1)| = |z+zi|^2$.

Zadnja dva ovisno o vremenu.

FUNKCIJE

MI 2011/2012

- 2. [5 bodova] (a) (2 boda) Dokažite da je kompozicija tri padajuće funkcije također padajuća funkcija.
 - (b) (3 boda) Zadane su funkcije $f(x) = -\ln x$ i $g(x) = e^{-x} + 3$.

Skicirajte grafove funkcija f i g.

Odredite prirodno područje definicije (domenu) funkcije $f \circ g$.

Je li $f \circ q$ rastuća funkcija? Obrazložite odgovor!

MI 2012/2013

- 2. **[5 bodova]** Zadane su funkcije $f(x) = 2 \operatorname{ch}(x-3) e^{-3} i \ g(x) = \sqrt{e^3 x}$.
 - (a) (2 boda) Odredite prirodno područje definicije funkcije $g \circ f$.
 - (b) (3 boda) Na kojem dijelu svoj
g prirodnog područja definicije je $g \circ f$ strogo rastuća funkcija? Odredite sliku funkcije $g \circ f$.

MI 2013/2014

2. [4 boda] Zadana je funkcija $f(x) = 2 + 2\arcsin(3x - 1)$. Odredite prirodno područje definicije D(f), sliku Im(f), te skicirajte graf funkcije f. Da li je $f: D(f) \to Im(f)$ bijekcija? Obrazložite svoj odgovor!

MI 2014/2015

b) (3 boda) Odredite prirodno područje definicije i sliku funkcije, te skicirajte graf funkcije

$$f(x) = 2\arccos(3x) - \pi.$$

KPZ 2013. neparna (13h) A

3. (2 boda) Odredite domenu i sliku te skicirajte graf funkcije

$$f(x) = \operatorname{ch} x - 1.$$

KPZ 2014. parne (12h) A

3. (2 boda) Odredite prirodno područje definicije funkcije

$$f(x) = \arcsin\left(\frac{1}{x+2}\right).$$

ZIR 2013./2014.

2. [4 boda] Zadana je funkcija $f(x) = \arcsin(x-1) + \frac{\pi}{2}$. Odredite prirodno područje definicije i sliku funkcije f te nacrtajte njezin graf. Odredite f^{-1} i skicirajte graf funkcije f^{-1} .

LJIR 2014./2015.

- 2. (6 bodova) Zadana je funkcija $f(x) = \frac{\pi}{2} \arcsin(3x + 3)$.
 - (a) Skicirajte graf funkcije f. Odredite domenu $\mathcal{D}(f)$ funkcije f te njezinu sliku Im(f).
 - (b) Da li je $f: \mathcal{D}(f) \to Im(f)$ bijekcija? Ako jest, odredite f^{-1} te skicirajte njezin graf.

JIR 2012./2013.

3. **[6 bodova]**

- (a) (2 boda) Za zadanu funkciju $f\colon \mathbb{R} \to Im(f)$ definirajte $f^{-1}(x)$. Pod kojim uvjetom postoji $f^{-1}(x)$?
- (b) (4 boda) Odredite f^{-1} , $\mathcal{D}(f)$ i Im(f) ako je $f(x) = \arccos\left(\frac{1}{e^x + 2}\right)$.

NIZOVI

LJIR 2014/2015

- (5 bodova)
 - (a) Nađite primjer konvergentnog niza realnih brojeva čiji je limes jednak 1. Nađite primjer divergentnog niza realnih brojeva.
 - (b) Definirajte gomilište niza realnih brojeva. Odredite sva gomilišta niza

$$a_n = (-1)^n \frac{5n+3}{6n+1}, n \in \mathbb{N}.$$

Da li je niz $(a_n)_{n\in\mathbb{N}}$ konvergentan? Objasnite svoju tvrdnju.

Školska zadaća 2014/2015, 13h, A grupa

4. (2 boda) Odredite

$$\lim_{n\to\infty}\frac{5^n-2^{n-1}}{5^{n+1}}.$$

Školska zadaća 2014/2015, 12h, B grupa

4. (2 boda) Odredite

$$\lim_{n\to\infty} \frac{2n+1}{\sqrt{n^2+1}}.$$

Školska zadaća 2013/2014, 13h A grupa

4. (2 boda) Odredite

$$\lim_{n \to \infty} \frac{(n+2)! + (n+1)!}{(n+3)!}.$$

Školska zadaća 2013/2014, 13h, B grupa

4. (2 boda) Odredite

$$\lim_{n\to\infty} \left(\sqrt{n+\sqrt{n}} - \sqrt{n-\sqrt{n}} \right).$$

Školska zadaća 2013/2014, 12h, A grupa

4. (2 boda) Odredite

$$\lim_{n\to\infty} \frac{1+5^n}{5+5^2+\cdots+5^n}.$$

DZ 3, 6)

6. Izračunati $\lim_{n\to\infty} \left(n-\frac{(n-a)^3}{(n+1)^2}\right)$ u zavisnosti o parametru a.

MI 2014/2015

- [6 bo dova]
 - a) (3 boda) Koje su od sljedećih tvrdnji istinite, a koje neistinite?
 - (T1) Svaki omeđen niz je konvergentan.
 - (T2) Svaki konvergentan niz je omeđen.
 - (T3) Svaki konvergentan niz je monoton.

Za svaku neistinitu tvrdnju navedite jedan protuprimjer te obrazložite zašto je to protuprimjer.

b) (3 boda) Niz (a_n) zadan je rekurzivno

$$a_1 = 1$$
, $a_{n+1} = \frac{n+1}{3n+1}a_n$, $n \ge 1$.

Dokažite da je niz (a_n) konvergentan i odredite njegov limes.

MI 2011/2012

- [5 bodova] (a) (1 bod) Definirajte limes niza realnih brojeva.
 - (b) (2 boda) Niz (a_n) je zadan na sljedeći način:

$$a_1 = 0$$
, $a_{n+1} = \frac{1}{8}(2 + a_n)^2$.

Dokažite da je niz (a_n) rastući i odozgo omeđen s 2.

(c) (2 boda) Izračunajte $\lim_{n\to\infty} a_n$ i objasnite gdje ste pri tome koristili svojstva koja je trebalo dokazati u (b) dijelu zadatka.