

AutoSF: Searching Scoring Functions for Knowledge Graph Embedding

Yongqi Zhang*, Quanming Yao $^{\circ}$, Wenyuan Dai $^{\circ}$, Lei Chen*

*Hong Kong University of Science and Technology $^{\gamma}$ 4Paradigm Inc.

*{yzhangee, leichen}@cse.ust.hk, $^{\gamma}$ {yaoquanming, daiwenyuan}@4paradigm.com

Introduction

- Introduction to KG Embedding
- Introduction to AutoML

Proposed method - AutoSF

- Problem definition
- Search space and algorithm

> Experiments

Knowledge Graph

Knowledge structure as graph

- Each node = an entity
- Each edge = a relation

Fact (triplet):

• (head, relation, tail)

Typical KGs:

- WordNet: Linguistic KG
- Freebase, DBpedia, YAGO: World KG

DA VINCI Painted Mona Lisa Mona Lisa Person is a friend of Is a friend of Jan 11984

Fig. from [Yashu Seth, 2019]

Applications:

- Structured search [Dong et.al. KDD 2014]
- Question answering [Lukovnikov et.al.WWW 2017]
- Recommendation [Zhang et.al. KDD 2016]

KG embedding

Encode entities and relations in KG into low-dimensional vector spaces \mathbb{R}^{d_1} and \mathbb{R}^{d_2} , while capturing nodes' and edges' connection properties.

Advantages:

- Inject into downstream ML pipelines.
- Provide efficient similarity search.
- Discover latent properties in missing links.

Learning framework

➤ Objectives:

$$\max_{\boldsymbol{w}} f^{+}(\boldsymbol{w}; S^{+}) + f^{-}(\boldsymbol{w}; S^{-}) \quad \text{iterative optimization} \quad \text{Improve performance}$$

Observed triplet S^+ : increase score

Unobserved triplet *S*⁻: decrease score

Triplet with higher score is more likely to be positive.

Predict missing links.

Introduction

- Introduction to KG Embedding
- Introduction to AutoML

Proposed method - AutoSF

- Problem definition
- Search space and algorithm

> Experiments

Automated machine learning

General deep learning practice

AutoML: true end-to-end learning

Search space: what to be searched

• hyper-parameters, neural network structures.

Search algorithm: how to search efficiently

Reinforcement learning, Bayes optimization, evolution algorithm.

> Introduction

- Introduction to KG Embedding
- Introduction to AutoML

Proposed method - AutoSF

- Problem definition
- Search space and algorithm

> Experiments

Scoring functions

 \triangleright A large amount of scoring functions (SFs) $f(\mathbf{h}, \mathbf{r}, \mathbf{t})$ are defined to measure the plausibility of triplets $\{(h, r, t)\}$ in KG.

			10 0		
Summary of	Translational Dis	stance Models	(See Section	n 3.1 for Details)	

Method	Ent. embe	edding Rel	. embedding	Scoring function	$f_r(h,t)$ Constraints/Regularizat	ion			
ΓransE [14]				$-\ \mathbf{h} + \mathbf{r} - \mathbf{t}\ _{1/2}$					
TransH [15]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	_	Sı	ummary of Semantic M	ils)				
TransR [16]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	Method	Ent. embedding	Rel. embedding	Scoring function $f_r(h,t)$	Constraints/Regularization			
TransD [50]	$\mathbf{h},\mathbf{w}_h \in \mathbb{R}$	RESCAL [13] $\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$		$\mathbf{M}_r \in \mathbb{R}^{d imes d}$	$\mathbf{h}^T \mathbf{M}_r \mathbf{t}$	$\begin{split} &\ \mathbf{h}\ _2 \leq 1, \ \mathbf{t}\ _2 \leq 1, \ \mathbf{M}_r\ _F \leq 1 \\ &\mathbf{M}_r = \sum_i \pi_r^i \mathbf{u}_i \mathbf{v}_i^\top \text{ (required in [17])} \end{split}$			
FranSparse [51]	$\mathbf{t}, \mathbf{w}_t \in \mathbb{R}^d$ $\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	TATEC [64]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d, \mathbf{M}_r \in \mathbb{R}^{d imes d}$	$h^{\top}M_{r}t + h^{\top}r + t^{\top}r + h^{\top}Dt$	$\begin{split} \ \mathbf{h}\ _2 & \leq 1, \ \mathbf{t}\ _2 \leq 1, \ \mathbf{r}\ _2 \leq 1 \\ \ \mathbf{M}_r\ _F & \leq 1 \end{split}$			
Transparse [51]	$n, t \in \mathbb{R}$	DistMult [65]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$\mathbf{h}^{T}\mathrm{diag}(\mathbf{r})\mathbf{t}$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1, \ \mathbf{r}\ _2 \le 1$			
		HolE [62]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$\mathbf{r}^{T}(\mathbf{h}\star\mathbf{t})$	$\ \mathbf{h}\ _2 \le 1, \ \mathbf{t}\ _2 \le 1, \ \mathbf{r}\ _2 \le 1$			
TransM [52]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	-ComplEx [66]	$\mathbf{h},\mathbf{t}\in\mathbb{C}^d$	$\mathbf{r} \in \mathbb{C}^d$	$\operatorname{Re}(\mathbf{h}^{T}\operatorname{diag}(\mathbf{r})\overline{\mathbf{t}})$	$\ \mathbf{h}\ _2 \le 1, \ \mathbf{t}\ _2 \le 1, \ \mathbf{r}\ _2 \le 1$			
ManifoldE [53] TransF [54] TransA [55]			$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{M}_r \in \mathbb{R}^{d imes d}$	$\boldsymbol{h}^{\top}\boldsymbol{M}_{r}\boldsymbol{t}$	$\ \mathbf{h}\ _{2} \le 1, \ \mathbf{t}\ _{2} \le 1, \ \mathbf{M}_{r}\ _{F} \le 1$ $\mathbf{M}_{r}\mathbf{M}_{r}^{T} = \mathbf{M}_{r}^{T}\mathbf{M}_{r}$ $\mathbf{M}_{r}\mathbf{M}_{r'} = \mathbf{M}_{r'}\mathbf{M}_{r}$			
KG2E [45]	$\mathbf{h} \sim \mathcal{N}(\boldsymbol{\mu}_t)$ $\mathbf{t} \sim \mathcal{N}(\boldsymbol{\mu}_t)$ $\boldsymbol{\mu}_h, \boldsymbol{\mu}_t \in \mathbb{R}$		$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$\begin{split} &(\mathbf{M}_{u}^{1}\mathbf{h} + \mathbf{M}_{u}^{2}\mathbf{r} + \mathbf{b}_{u})^{\top}(\mathbf{M}_{v}^{1}\mathbf{t} + \mathbf{M}_{v}^{2}\mathbf{r} + \mathbf{b}_{v}) \\ &\left((\mathbf{M}_{u}^{1}\mathbf{h}) \circ (\mathbf{M}_{v}^{2}\mathbf{r}) + \mathbf{b}_{u}\right)^{\top}((\mathbf{M}_{v}^{1}\mathbf{t}) \circ (\mathbf{M}_{v}^{2}\mathbf{r}) + \mathbf{b}_{v}) \end{split}$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$			
TransG [46]	$\Sigma_h, \Sigma_t \in \mathbb{R}^d$ NTN [19] h.:		$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r}, \mathbf{b}_r \in \mathbb{R}^k, \underline{\mathbf{M}}_r \in \mathbb{R}^{d \times d \times k}$ $\mathbf{M}_r^1, \mathbf{M}_r^2 \in \mathbb{R}^{k \times d}$	$r^{T} \mathrm{tanh}(h^{T} \underline{M}_{r} t + M_{r}^{1} h + M_{r}^{2} t + b_{r})$	$\begin{split} &\ \mathbf{h}\ _2 \leq 1, \ \mathbf{t}\ _2 \leq 1, \ \mathbf{r}\ _2 \leq 1 \\ &\ \mathbf{b}_r\ _2 \leq 1, \ \underline{\mathbf{M}}_r^{[:::,i]}\ _F \leq 1 \\ &\ \mathbf{M}_r^1\ _F \leq 1, \ \mathbf{M}_r^2\ _F \leq 1 \end{split}$			
UM [56]	$oldsymbol{\mu}_h, oldsymbol{\mu}_t \in \mathbb{R}^d$ $\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$	SLM [19]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^k, \mathbf{M}_r^1, \mathbf{M}_r^2 \in \mathbb{R}^{k \times d}$	$\mathbf{r}^T \mathrm{tanh}(\mathbf{M}_r^1 \mathbf{h} + \mathbf{M}_r^2 \mathbf{t})$	$\begin{split} \ \mathbf{h}\ _2 &\leq 1, \ \mathbf{t}\ _2 \leq 1, \ \mathbf{r}\ _2 \leq 1 \\ \ \mathbf{M}_r^1\ _F &\leq 1, \ \mathbf{M}_r^2\ _F \leq 1 \end{split}$			
SE [57]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	MLP [69]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$\boldsymbol{w}^T \mathrm{tanh}(\boldsymbol{M}^1\boldsymbol{h} + \boldsymbol{M}^2\boldsymbol{r} + \boldsymbol{M}^3\boldsymbol{t})$	$\ \mathbf{h}\ _2 \leq 1, \ \mathbf{t}\ _2 \leq 1, \ \mathbf{r}\ _2 \leq 1$			
		NAM [63]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$\begin{aligned} & f_r(h,t) = \mathbf{t}^{T} \mathbf{z}^{(L)} \\ & \mathbf{z}^{(\ell)} = \mathrm{ReLU}(\mathbf{a}^{(\ell)}), \ \mathbf{a}^{(\ell)} = \mathbf{M}^{(\ell)} \mathbf{z}^{(\ell-1)} + \mathbf{b}^{(\ell)} \\ & \mathbf{z}^{(0)} = [\mathbf{h}; \mathbf{r}] \end{aligned}$	_			

[Wang et. al. TKDE 2017]

Design principles:

- Encode entity and relation into some space to measure the plausibility.
- Capture important properties:
 - symmetric, anti-symmetric, inverse, asymmetric...

General types

- Translation Distance Models (TDMs)
 - TransE, TransH, RotatE, etc.
 - less expressive. [Wang et. al. AAAI 2017]

- ➤ Neural Network Models (NNMs)
 - MLP, ConvE, RSN, etc.
 - complex and difficult to train.
 [Wang et. al. TKDE 2017]

- ➤ BiLinear Models (BLMs)
 - DistMult, ComplEx, Analogy, SimplE, etc.
 - state-of-the-art and fully expressive. [Wang et. al. AAAI 2017], [Lacroix et. al. ICML 2018]

Bilinear models

The BLMs can be written as $f(\mathbf{h}, \mathbf{r}, \mathbf{t}) = \mathbf{h}^T \mathbf{R} \mathbf{t}$, with different form of \mathbf{R} , a square matrix of \mathbf{r} .

For unified representation, we evenly split the embedding into 4 parts, e.g. $r = [r_1; r_2; r_3; r_4]$.

Denote $\mathbf{D}_i^r = \operatorname{diag}(\mathbf{r}_i)$ as the corresponding diagonal matrix.

DistMult: $f(h, r, t) = \langle \mathbf{h}, \mathbf{r}, \mathbf{t} \rangle$

ComplEx: $f(h, r, t) = \text{Re}(\langle \mathbf{h}, \mathbf{r}, \text{conj}(\mathbf{t}) \rangle)$

$\mathbf{D}_1^{\mathbf{r}}$			
	$\mathbf{D}_{2}^{\mathbf{r}}$		
		$\mathbf{D_3^r}$	
			D ₄

```
\begin{array}{ll} \text{symmetric} & \sqrt{} \\ \text{anti-symmetric} & \times \\ \text{asymmetric} & \times \\ \text{inverse} & \times \\ \end{array}
```


symmetric v
anti-symmetric v
asymmetric v
inverse v

Analogy: $f(h, r, t) = \langle \hat{\mathbf{h}}, \hat{\mathbf{r}}, \hat{\mathbf{t}} \rangle + \text{Re}(\langle \check{\mathbf{h}}, \check{\mathbf{r}}, \text{conj}(\check{\mathbf{t}}) \rangle)$

SimplE: $f(h, r, t) = \langle \hat{\mathbf{h}}, \hat{\mathbf{r}}, \check{\mathbf{t}} \rangle + \langle \check{\mathbf{h}}, \check{\mathbf{r}}, \hat{\mathbf{t}} \rangle$

D_1^r			
	$\mathbf{D_2^r}$		
		$\mathbf{D}_3^{\mathbf{r}}$	$\mathbf{D_4^r}$
		- D ^r ₄	$\mathbf{D}_3^{\mathbf{r}}$

```
\begin{array}{ll} \text{symmetric} & \sqrt{} \\ \text{anti-symmetric} & \sqrt{} \\ \text{asymmetric} & \sqrt{} \\ \text{inverse} & \sqrt{} \end{array}
```


 $\begin{array}{ccc} \text{symmetric} & & \sqrt{} \\ \text{anti-symmetric} & & \sqrt{} \\ \text{asymmetric} & & \sqrt{} \\ \text{inverse} & & \sqrt{} \end{array}$

Key problems

- I. There is no absolute winner among them since KGs exhibit distinct patterns. Even the fully expressive models do not definitely perform the best.
- 2. KG is sparse, thus regularization is important.
- 3. Designing novel and universal SFs becomes harder.

Our solutions:

- Adaptively search how to regularize the BLMs for different KG tasks.
- Design novel and task-aware scoring functions.

AutoSF: Definition

Definition 1 (AutoSF). Let F(g) be a KGE model (with indexed embeddings h, r, t and structure g), $\mathcal{M}(F(g), \mathcal{S})$ measures the performance (the higher the better) of a KGE model F with on a set of triplets \mathcal{S} . The problem of searching the SF is formulated as:

$$g^* \in \arg\max_{g \in \mathcal{G}} \mathcal{M}\left(F^*(g), \mathcal{S}_{val}\right)$$
 (1)

s.t.
$$F^*(g) = \arg\max_F \mathcal{M}(F(g), \mathcal{S}_{tra}),$$
 (2)

where G contains all possible choices of g, S_{tra} and S_{val} denote training and validation sets.

Search space:

What to be searched

Search algorithm:

How to search efficiently

> Introduction

- Introduction to KG Embedding
- Introduction to AutoML

Proposed method - AutoSF

- Problem definition
- Search space and algorithm

> Experiments

Search space

Definition 2 (Search space). Let $g(\mathbf{r})$ return a 4×4 block matrix, of which the elements in each block is given by $[g(\mathbf{r})]_{ij} = diag(\mathbf{a}_{ij})$ where $\mathbf{a}_{ij} \in \{\mathbf{0}, \pm \mathbf{r}_1, \pm \mathbf{r}_2, \pm \mathbf{r}_3, \pm \mathbf{r}_4\}$ for $i, j \in \{1, 2, 3, 4\}$. Then, SFs can be represented by $f_{unified}(\mathbf{h}, \mathbf{r}, \mathbf{t}) = \sum_{i,j} \langle \mathbf{h}_i, \mathbf{a}_{ij}, \mathbf{t}_j \rangle = \mathbf{h}^\top g(\mathbf{r}) \mathbf{t}$.

The location of a block matrix D_i^r represents a multiplicative term.

Challenges

- I. Size of search space is very large: 9¹⁶.
- 2. Cost of training and evaluating a specific model structure is expensive.
- 3. How to capture important properties like symmetric, asymmetric?

Key point: not all scoring functions / structures need to be trained.

Key idea: select better SFs based on matrix structure to train and evaluate.

Search algorithm

Greedy search: progressively evaluate from few blocks to more blocks.

For f^6 , reduces from 2×10^9 to 3×10^4 .

Filter: remove bad and equivalent SFs.

For f^4 , reduces from 9216 to 5.

- Bad: there are zero/repeated rows/columns.
- Equivalent: have the same expressive ability after permutation or slipping signs.
- ➤ Predictor: select promising SFs based on matrix structures.
 - The predictor learns a mapping from structure to performance.

Select $K_2 = 8$ from N = 256.

Key idea: select better SFs based on matrix structure to train and evaluate.

> Introduction

- Introduction to KG Embedding
- Introduction to AutoML

Proposed method - AutoSF

- Problem definition
- Search space and algorithm

> Experiments

Effectiveness

Measurements

- Given a triplet (h, r, t);
- Compute the score of $(h', r, t), \forall h' \in \mathcal{E}$;
- Get the rank of h among all h';

Metrics

• MRR (mean reciprocal rank):
• Hit@k:
$$\frac{1}{|S|} \sum_{i=1}^{|S|} \mathbb{I}(\operatorname{rank}_i < 10)$$

		WN18		FB15k		WN18RR		FB15k237			YAGO3-10					
type	model	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10
TDM	TransE [54]	0.500	_	94.1	0.495	_	77.4	0.178	_	45.1	0.256	_	41.9	_	_	
	TransH [54]	0.521	_	94.5	0.452	_	76.6	0.186		45.1	0.233	_	40.1	_	_	_
	RotatE [35]	0.949	94.4	95.9	0.797	74.6	88.4	<u>0.476</u>	42.8	57.1	0.338	24.1	53.3		_	
NNM	NTN [46]	0.53	_	66.1	0.25		41.4		_	_	_	_	_	_	_	
	Neural LP [47]	0.94	_	94.5	0.76	_	83.7	_	_	_	0.24	_	36.2	_	_	_
	ConvE [6]	0.942	93.5	95.5	0.745	67.0	87.3	0.46	39.	48.	0.316	23.9	49.1	0.52	45.	66.
BLM	TuckER [1]	0.953	94.9	95.8	0.795	74.1	89.2	0.470	44.3	52.6	0.358	26.6	54.4	_	_	
	HolEX [45]	0.938	93.0	94.9	0.800	75.0	88.6	_	_	_	_	_	_	_	_	_
	QuatE [53]	0.950	94.5	95.9	0.782	71.1	90.0	0.488	43.8	58.2	0.348	24.8	55.0	_	_	_
	DistMult	0.821	71.7	95.2	0.817	77.7	89.5	0.443	40.4	50.7	0.349	25.7	53.7	0.552	47.6	69.4
	ComplEx	0.951	94.5	95.7	0.831	79.6	<u>90.5</u>	0.471	43.0	55.1	0.347	25.4	54.1	0.566	<u>49.1</u>	70.9
	Analogy	0.950	94.6	95.7	0.829	79.3	<u>90.5</u>	0.472	43.3	55.8	0.348	25.6	<u>54.7</u>	0.565	49.0	<u>71.3</u>
	SimplE/CP	0.950	94.5	<u>95.9</u>	0.830	<u>79.8</u>	90.3	0.468	42.9	55.2	0.350	26.0	54.4	0.565	<u>49.1</u>	71.0
An	yBURL [27]	0.95	94.6	<u>95.9</u>	0.83	80.8	87.6	0.48	44.6	55.5	0.31	23.3	48.6	0.54	47.7	47.3
	AutoSF	0.952	<u>94.7</u>	96.1	0.853	82.1	91.0	0.490	45.1	<u>56.7</u>	0.360	26.7	55.2	0.571	50.1	71.5

- BLMs are better than the other types and rule-based models.
- There is no absolute winner among the BLMs.
- Compared with human-designed ones, the SFs searched by AutoSF always lead the performance. 19

Distinctiveness

The searched SFs are KG dependent and novel to the literature.

Efficiency

- Gen-Approx: a universal approximator MLP as the search space.
- Random: totally random for SF generation.
- Bayes: Tree Parzen Estimator (TPE) algorithm.
- AutoSF: domain-specific search algorithm.

> Introduction

- Introduction to KG Embedding
- Introduction to AutoML

Proposed method - AutoSF

- Problem definition
- Search space and algorithm

> Experiments

Summary

Challenges:

- Designing new and universal SFs are non-trivial.
- Different KG has distinct properties.
- How to design domain specific search space and efficient search algorithm?

Contributions:

- The first AutoML approach for KGE to learn task-aware SFs.
- Well-defined search space and search algorithm with domain knowledge.

Future work:

- Search space beyond bilinear models.
- Enhance search efficiency.

Thank You

Code: https://github.com/yzhangee/AutoSF

Open Positions: Intern and full-time opportunities for Machine Learning Research@4Paradigm.

Please send your CV to yaoquanming@4paradigm.com.