Interpretable Machine Learning

Rule-based Models

DECISION TREES > Breiman et al. (1984)

Idea: Partition data into axis-aligned regions via greedy search for feature cut points (minimizing a split criterion), then predict a constant mean c_m in each leaf region \mathcal{R}_m :

$$\hat{f}(x) = \sum_{m=1}^{M} c_m \mathbb{1}_{\{x \in \mathcal{R}_m\}}$$

DECISION TREES > Breiman et al. (1984)

Idea: Partition data into axis-aligned regions via greedy search for feature cut points (minimizing a split criterion), then predict a constant mean c_m in each leaf region \mathcal{R}_m :

$$\hat{f}(x) = \sum_{m=1}^{M} c_m \mathbb{1}_{\{x \in \mathcal{R}_m\}}$$

- Applicable to regression and classification
- Models interactions and non-linear effects
- Handles mixed feature spaces & missing values

INTERPRETATION OF TREE-BASED MODELS

- Interpretation via path of decision rules along tree branches
- Feature importance (quantifies how often and how usefully x_j is used):
 - \bullet For each split on feature x_j , record the decrease in the split criterion
 - ullet Aggregate this over the tree: sum or average over all splits involving x_j
 - Split criterion: variance (regression), Gini index / entropy (classification)

$$x_i$$
: 0.18

$$x_k$$
: $0.07 + 0.10 = 0.17$

DECISION TREES - EXAMPLE

- Fit decision tree with tree depth of 3 on bike data
- E.g., mean prediction for the first 105 days since 2011 is 1798
 → Applies to =15% of the data (leftmost branch)
- days_since_2011: highest feature importance (explains most of variance)

Feature	Importance
days_since_2011	79.53
temp	17.55
hum	2.92

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features
- Splits on any improvement, regardless of significance \rightsquigarrow prone to overfitting

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features
- Splits on any improvement, regardless of significance \rightsquigarrow prone to overfitting

Unbiased recursive partitioning via conditional inference trees (ctree) or model-based recursive partitioning (mob):

- Separate selection of feature used for splitting and split point
- A Hypothesis test as stopping criteria

► Hothorn et al. (2006) ➤ Zeileis et al. (2008) ➤ Strobl et al. (2007)

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features
- Splits on any improvement, regardless of significance \rightsquigarrow prone to overfitting

Unbiased recursive partitioning via conditional inference trees (ctree) or model-based recursive partitioning (mob):

- Separate selection of feature used for splitting and split point
- A Hypothesis test as stopping criteria

Example (selection bias):

Simulate data (n = 200) with $Y \sim N(0, 1)$ and 3 features of different cardinality independent from *Y* (repeat 500 times):

- $X_1 \sim Binom(n, \frac{1}{2})$
- $X_2 \sim M(n, (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}))$
- $X_3 \sim M(n, (\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}))$

Which feature is selected in the first split?

Differences to CART:

- Two-step approach (1. find most significant split feature, 2. find best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leave nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

Differences to CART:

- Two-step approach (1. find most significant split feature, 2. find best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leave nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

Example (ctree): Bike data (constant model in final nodes)

Train error (MSE): 758,844.0 (ctree) 742,244.4 (mob)

Differences to CART:

- Two-step approach (1. find most significant split feature, 2. find best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leave nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

Example (mob): Bike data (linear model with temp in final nodes)

Train error (MSE): 758,844.0 (ctree) 742,244.4 (mob)

OTHER RULE-BASED MODELS

Decision Rules > Holte 1993

- Flat list of simple "if then" statements
 → very intuitive and easy-to-interpret
- Mainly devised for classification (support for regression is limited)
- Numeric features are typically discretised

```
 \begin{aligned} & \text{IF } x_1 \leq 2.3 \text{ AND } x_4 = \text{``A''} & \text{THEN} & \text{y} = 1 \\ & \text{ELSE IF } x_2 > 5.0 & \text{THEN} & \text{y} = 2 \\ & \text{ELSE} & \text{y} = 3 \end{aligned}
```


OTHER RULE-BASED MODELS

Decision Rules Holte 1993

- Flat list of simple "if then" statements
 → very intuitive and easy-to-interpret
- Mainly devised for classification (support for regression is limited)
- Numeric features are typically discretised

$$\begin{aligned} &\text{IF } x_1 \leq 2.3 \text{ AND } x_4 = \text{``A''} & \text{THEN} & \text{y} = 1 \\ &\text{ELSE IF } x_2 > 5.0 & \text{THEN} & \text{y} = 2 \\ &\text{ELSE} & \text{y} = 3 \end{aligned}$$

RuleFit Friedman & Popescu 2008

- Extract binary rules $r_m(\mathbf{x}) \in \{0, 1\}$ from many shallow trees (one per root-to-leaf path)
- Fit an L_1 -regularized LM $\hat{f}(\mathbf{x}) = \beta_0 + \sum_m \beta_m r_m(\mathbf{x}) + \sum_j \gamma_j x_j$
- Regularization retains only a few rules
 ⇒ sparse, non-linear, interaction-aware
- Coefficients relate to rule/feature importance

