

Stark 101: Part 2

Polynomial Constraints

What Do We Want to Prove?

There is a number *x* such that:

$$a_0 = 1$$

$$a_1 = x$$

$$a_{1022} = 2338775057$$

For $\{a_n\}$ FibonacciSq: $a_{n+2} = a_{n+1}^2 + a_n^2$, for any n

We will use part I:

Trace - α

Generator of G - g

Trace Polynomial - f(x)

Constraints on $\{a_n\}$

We need:

$$a_0 = 1$$

$$\alpha_{1022} = 2338775057$$

$$a_{n+2} = a_{n+1}^{2} + a_{n}^{2}$$

Constraints on $\{a_n\}$:

$$a_0 = 1$$

$$a_{1022} = 2338775057$$

$$a_{n+2} = a_{n+1}^{2} + a_{n}^{2}$$

Reductions

---- Another statement

Implies

Constraints on $\{a_n\}$:

$$a_0 = 1$$

$$\alpha_{1022} = 2338775057$$

$$a_{n+2} = a_{n+1}^{2} + a_{n}^{2}$$

Reductions

Exists a polynomial f(x)

such that:

3 rational functions

 $p_0(x)$, $p_1(x)$, $p_2(x)$ are **polynomials**

Constraints on $\{a_n\}$:

$$a_0 = 1$$

$$\alpha_{1022} = 2338775057$$

$$a_{n+2} = a_{n+1}^{2} + a_{n}^{2}$$

Reductions

Exists a polynomial f(x)

such that:

3 rational functions

 $p_0(x)$, $p_1(x)$, $p_2(x)$ are **polynomials**

Trace polynomial

Step I - From $\{a_n\}$ to f(x)

3 constraints on $\{a_n\}$ ---- \triangleright 3 constraints on f(x)

$$a_0 = 1$$

$$---- f(x) = 1$$
, for $x = g^0$

$$a_{n+2} = a_{n+1}^{2} + a_{n}^{2}$$

for
$$x = g^i$$
, $0 \le i \le 1020$

X	f(x)	
$g^{\scriptscriptstyle O}$	a _0	
g^1	a ₁	
g^2	a ₂	
g ¹⁰²²	a ₁₀₂₂	

Third f(x) Constraint

$$a_{n+2} = a_{n+1}^{2} + a_{n}^{2}$$
 $--- f(g^{2}x) = f(gx)^{2} + f(x)^{2}$, for $x = g^{i}$, $0 \le i \le 1020$

Example: for $x = g^5$:

$$f(g^{2} \cdot g^{5}) = f(g \cdot g^{5})^{2} + f(g^{5})^{2}$$

$$g^{7} \qquad g^{6} \qquad g^{5}$$

			_
	X	f(x)	
	$g^{\scriptscriptstyle O}$	a _0	
	g^1	a ₁	
	g^2	a ₂	
	g^5	a ₅	
(g^6	a ₆	
	g^7	a ₇	
	g ¹⁰²²	a ₁₀₂₂	

Step I - From $\{a_n\}$ to f(x)

3 constraints on $\{a_n\}$ ---- \Rightarrow 3 constraints on f(x)

Step I - From $\{a_n\}$ to f(x)

3 constraints on
$$\{a_n\}$$
 ---> 3 constraints on $f(x)$

$$a_0 = 1 \qquad f(x) = 1, \text{ for } x = g^0$$

$$a_{1022} = 2338775057 \qquad ---> f(x) = 2338775057, \text{ for } x = g^{1022}$$

$$a_{n+2} = a_{n+1}^2 + a_n^2 \qquad ---> f(g^2x) = f(gx)^2 + f(x)^2,$$

$$\text{for } x = g^i, \ 0 \le i \le 1020$$

If f(x) satisfies constraints \longrightarrow Original statement is true

Step II - From Constraints to Roots

$$f(x) - 1 = 0$$
, for $x = g^0 - - - - \rightarrow \text{root: } g^0$

$$f(x) - 2338775057 = 0$$
, for $x = g^{1022} - - - - \rightarrow$ root: g^{1022}

$$f(g^2x) - f(gx)^2 - f(x)^2 = 0$$
, for $x = g^i$, $0 \le i \le 1020 - - - - - \longrightarrow$ roots: $\{g^i \mid 0 \le i \le 1020\}$

Step II - From Constraints to Roots

$$f(x) - 1 = 0$$
, for $x = g^0 - - - - - \triangleright$ root: g^0

$$f(x) - 2338775057 = 0$$
, for $x = g^{1022} - - - - \triangleright$ root: g^{1022}

$$f(g^2x) - f(gx)^2 - f(x)^2 = 0$$
, for $x = g^i$, $0 \le i \le 1020 - - - - \triangleright$ roots: $\{g^i \mid 0 \le i \le 1020\}$

$$g^0$$
 is a root of $f(x)$ - 1

 g^{1022} is a root of $f(x)$ - 2338775057

Original statement is $\{g^i \mid 0 \le i \le 1020\}$ are roots of $f(g^2x)$ - $f(gx)^2$ - $f(x)^2$
 $f(x)$ - 1

 $f(x)$ - 2338775057

True

Thm: z is a root of $p(x) \Leftrightarrow (x - z)$ divides p(x)

<u>Def</u>: (x - z) divides p(x) if p(x) / (x - z) is a polynomial

Polynomial

$$\frac{x^2 - 3x + 2}{x - 2} = \frac{(x - 2)(x - 1)}{x - 2} = x - 1$$

2 is a root

Not polynomial

$$\frac{x^2 - 7x + 6}{x - 2} = \frac{(x - 1)(x - 6)}{x - 2}$$

2 is NOT a root

Thm: z is a root of $p(x) \Leftrightarrow (x - z)$ divides p(x)

<u>Def</u>: (x - z) divides p(x) if p(x) / (x - z) is a polynomial

$$g^0$$
 is a root of $f(x) - 1 - - - \blacktriangleright \frac{f(x) - 1}{x - q^0}$ is a polynomial

$$g^{1022}$$
 is a root of $f(x)$ - 2338775057 - - - \longrightarrow
$$\frac{f(x) - 2338775057}{x - g^{1022}}$$
 is a root of $f(x)$ - 2338775057 is a root of $f(x)$ - 2338775057

is a polynomial

 $\{g^i \mid 0 \le i \le 1020\}$ are roots of $f(g^2x) - f(gx)^2 - f(x)^2 - - - -$

 $\{g^i \mid 0 \le i \le 1020\}$ are roots of $f(g^2x) - f(gx)^2 - f(x)^2 - - - -$

$$\frac{f(g^2x) - f(gx)^2 - f(x)^2}{\prod\limits_{i=0}^{1020} (x - g^i)}$$
 is a polynomial

$$\prod_{i=0}^{1023} (x - g^i) = x^{1024} - 1 \quad \text{fix:}$$

$$\frac{f(g^2x) - f(gx)^2 - f(x)^2}{(x^{1024} - 1)/\left[(x - g^{1021})(x - g^{1022})(x - g^{1023})\right]}$$

3 Rational Functions

$$p_0(x) = \frac{f(x) - 1}{x - g^0}$$

$$p_1(x) = \frac{f(x) - 2338775057}{x - q^{1022}}$$

$$p_2(x) = \frac{f(g^2x) - f(gx)^2 - f(x)^2}{(x^{1024} - 1)/[(x - g^{1021})(x - g^{1022})(x - g^{1023})]}$$

3 Rational Functions

$$p_0(x) = \frac{f(x) - 1}{x - g^0}$$

$$p_1(x) = \frac{f(x) - 2338775057}{x - g^{1022}}$$

$$p_2(x) = \frac{f(g^2x) - f(gx)^2 - f(x)^2}{(x^{1024} - 1)/[(x - g^{1021})(x - g^{1022})(x - g^{1023})]}$$

If $p_0(x)$, $p_1(x)$, $p_2(x)$ are polynomials — Original statement is true!

Constraints on $\{a_n\}$:

$$a_0 = 1$$

$$a_{1022} = 2338775057$$

$$a_{n+2} = a_{n+1}^{2} + a_{n}^{2}$$

Reductions

Exists a polynomial f(x)

such that:

3 rational functions

 $p_0(x)$, $p_1(x)$, $p_2(x)$ are **polynomials**

Reduction Overview - First Constraint

Reduction Overview - First Constraint

3 Rational Functions

$$p_0(x) = \frac{f(x) - 1}{x - g^0}$$

$$p_1(x) = \frac{f(x) - 2338775057}{x - g^{1022}}$$

$$p_2(x) = \frac{f(g^2x) - f(gx)^2 - f(x)^2}{(x^{1024} - 1)/[(x - g^{1021})(x - g^{1022})(x - g^{1023})]}$$

If $p_0(x)$, $p_1(x)$, $p_2(x)$ are polynomials — Original statement is true!

Combining $p_i(x)$'s

Random linear combination:

Composition Polynomial
$$CP = \alpha_0 \cdot p_0(x) + \alpha_1 \cdot p_1(x) + \alpha_2 \cdot p_2(x)$$

With high probability:

CP is a polynomial \Leftrightarrow all p_i 's are polynomials

Commiting on CP with Merkle Tree

What's Next?

Part 3 - how to prove that *CP* is a polynomial?

But first - coding.....

- 1) $p_0(x), p_1(x), p_2(x)$
- 2) $CP = \alpha_0 \cdot p_0(x) + \alpha_1 \cdot p_1(x) + \alpha_2 \cdot p_2(x)$
- 3) Commit on CP

Thank you