

Nomenclatura

V_Z	Tensión en el Zener	I_Z	Corriente en el Zener
V_F	Tensión de la fuente	I_L	Corriente en la carga
i_C	Corriente del colector	ν_{CE}	Tensión en juntura C E
i_B	Corriente de la base	v_{CB}	Tensión en juntura C B
i_E	Corriente del emisor	ν_{BE}	Tensión en juntura B E
β	Ganancia en corriente	α	Parámetro alpha
V_{Th}	Tensión de Thévenin	R_{Th}	Resistencia de Thévenin

Unidad 1 Dispositivos de estado sólido

Diodos

Diodo Zener

ESTADOS DEL ZENER

Condiciones mínimas V_{Fmin} I_{Zmin} $I_{Lmáx}$

Condiciones máximas

UNIDAD 2 TRANSISTORES

Transistor bipolar BJT

Tensión en la juntura B E $v_{BE} = 0.7 \text{ V}$

TIPO CONSTRUCTIVO

Ingresa corriente a E Sale corriente de E

Configuración

Base común

Emisor común

Colector común

Polarización del BJT

ECUACIONES DEL DISPOSITIVO

 $i_C = \alpha i_E$ Si no se especifica: $\alpha = 1$

$$i_C = \beta i_B$$
 $i_E = i_B + i_C$

APLICACIÓN EN CONMUTACIÓN

Garantizar que: $\beta i_B = 5i_C$

Corte Saturación

 $i_B = 0 v_{CE} = 0.2V$

APLICACIÓN PARA AMPLIFICACIÓN

Máxima excursión simétrica en

$$v_{CEQ} = \frac{(v_{CE})_{i_C=0}}{2}$$

Polarización por resistencia de base.

Polarización por divisor de tensión.

Varía con β

$$V = i_C R_C + v_{CE} + i_E R_E$$

$$V = i_b R_B + v_{BE} + i_E R_E$$

No varía con β

$$V_{Th} = V_{CC} \frac{R_2}{R_2 + R_1}$$

$$R_{Th} = \frac{R_1 R_2}{R_1 + R_2}$$

Polarización por análisis aproximado.

Garantizar que: $\beta R_E \ge 10R_2$