Travail individuel de rédaction en temps libre À rendre le lundi 8 janvier 2024

Exercice 1

À tout réel α , on associe la suite $(S_n(\alpha))_{n>1}$ de terme général

$$S_n(\alpha) = \sum_{k=1}^n \frac{1}{k^{\alpha}}.$$

- **1.** Montrer que $(S_n(\alpha))_{n\in\mathbb{N}}$ est croissante.
- **2.** Dans cette question, $\alpha = 1$ et on pose pour simplifier $S_n = S_n(1)$.
 - (a) En minorant $S_{2n} S_n$, montrer que la suite (S_n) diverge vers $+\infty$.
 - (b) Montrer que, pour $x \ge 0$,

$$\frac{x}{1+x} \le \ln(1+x) \le x.$$

(c) On pose pour $n \ge 1$,

$$a_n = S_n - \ln(n)$$
 et $b_n = S_n - \ln(n+1)$.

Montrer que les suites (a_n) et (b_n) sont adjacentes.

- (d) La limite commune de (a_n) et (b_n) est notée γ et s'appelle la constante d'Euler. Justifier que $\gamma > 0$, puis donner une valeur approchée de γ à 10^{-3} près.
- (e) En déduire

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1) \quad \text{lorsque} \quad n \to +\infty.$$

- 3. Dans cette question, $\alpha = 2$ et on pose pour simplifier $S_n = S_n(2)$. On définit pour $n \ge 1$, $S'_n = S_n + \frac{1}{n}$. Montrer que les suites $(S_n)_{n \in \mathbb{N}}$ et $(S'_n)_{n \in \mathbb{N}}$ sont adjacentes.
- **4.** Déterminer la nature de $(S_n(\alpha))_{n\in\mathbb{N}}$ pour $\alpha \geq 2$.

Exercice 2 EML 1995

Soit

$$f: [0, +\infty[\to \mathbb{R} \\ x \mapsto x \ln(1+x)].$$

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in]0,+\infty[$ et, pour tout n de $\mathbb{N},$ $u_{n+1}=f(u_n).$

- 1. (a) Montrer que f est de classe \mathscr{C}^2 sur $[0, +\infty[$ et calculer, pour tout x de $[0, +\infty[$, f'(x) et f''(x).
 - (b) Étudier les variations de f', puis celle de f.
 - (c) Tracer la courbe représentative de f dans un repère orthonormé.
- **2.** Résoudre l'équation f(x) = x d'inconnue $x \in [0, +\infty[$.
- **3.** On suppose dans cette question que $u_0 \in]e 1, +\infty[$.
 - (a) Montrer que, pour tout n de \mathbb{N} , $e 1 < u_n \le u_{n+1}$.
 - (b) En déduire que u_n tend vers $+\infty$ lorsque n tend vers $+\infty$.
- **4.** On suppose dans cette question que $u_0 \in (0, e-1)$.
 - Étudier la convergence de $(u_n)_{n \in \mathbb{N}}$.