Impagliazzo's Five Worlds

Lecture 1

January 8, 2019

1/54

Outline

Worst case complexity Average case complexity Impagliazzo's five worlds

Impagliazzo's Five Worlds

Algorithmica Heuristica Pessiland Minicrypt Cryptomania

Worst-Case Complexity

P NP

Problems

Add two *n*-digit numbers

Algorithms

Algorithm A(x, y): starting from rightmost digit, add digit by digit with carry return the answer example: A(12345, 54321) returns 66666

Worst-Case Time Complexity

Adding two n-digit numbers using algorithm A takes n steps. Worst-case time complexity of algorithm A for adding two n-digit numbers is O(n)

Languages

$$L_{add} = \{(x, y, z) | z = x + y\}$$

(12345, 54321, 66666) $\in L_{add}$
(12345, 54321, 66667) $\notin L_{add}$

8 / 54

Languages

```
Algorithm B(x,y,z): if z=A(x,y) then output 1 else output 0 (x,y,z)\in L_{add}\Leftrightarrow B(x,y,z)=1 We say that algorithm B recognizes L_{add} Worst-case time complexity of algorithm B for adding is O(n), where n is the input size: n=|(x,y,z)|
```

Lecture 1

P

We say that a language L belongs to the class \mathbf{P} if we can find an algorithm B such that:

$$x \in L \Leftrightarrow B(x) = 1$$
,

and worst-case time complexity of algorithm B is $O(n^c)$, where n is the input size, and c is a constant

example: $L_{add} \in \mathbf{P}$

P

example:
$$L_{mult} = \{(x, y, z) | z = xy\}$$

 $(2, 3, 6) \in L_{mult}$
 $(2, 3, 7) \notin L_{mult}$
example: $L_{mult} \in \mathbf{P}$

two n digit numbers can be multiplied in $O(n^2)$ time using the well known multiplication algorithm

P

Problems in $\boldsymbol{\mathsf{P}}$ can be efficiently solved

NP

Problems in $\ensuremath{\mathbf{NP}}$ can be efficiently $\ensuremath{\textit{verified}}$

NP

We say that a language L belongs to the class **NP** if we can find an algorithm B such that:

if $x \in L$ then there exists a certificate u (u may be a possible solution of the problem corresponding to input x) of size $O(|x|^d)$ such that B(x, u) = 1,

and if $x \notin L$ then there there does not exist any certificate u of size $O(|x|^d)$ such that B(x, u) = 1,

and worst-case time complexity of algorithm B is $O(n^c)$, where n is the input size, and c, d are constants

$P \subseteq NP$

Algorithm B(x, u) use the algorithm A for $L \in \mathbf{P}$: return A(x)

Example of NP

Factorization problem: given an integer n, find its prime factorization example: for n=30, its prime factorization is 2.3.5

Example of **NP**

```
L_{fact} = \{(n, l, u) | \text{ there exists a prime } p \text{ such that } p | n, \text{ and } l \leq p \leq u \} example: (30, 2, 6) \in L_{fact} example: (30, 6, 10) \notin L_{fact}
```

17 / 54

Polynomial-Time Reduction

```
If there exists a polynomial-time algorithm A such that:
x \in L_1 \Leftrightarrow A(x) \in L_2
then we say that L_1 reduces to L_2 in polynomial-time:
L_1 \leq_p L_2
example:
L_{odd} = \{1, 3, 5...\}
L_{even} = \{2, 4, 6...\}
A(x) = x + 1
L_{odd} <_{p} L_{even}
L_{even} \leq_{p} L_{odd}
\leq_p is transitive:
if L_1 \leq_p L_2 and L_2 \leq_p L_3 then L_1 \leq_p L_3
```

NP-Complete

If $L \in \mathbf{NP}$ and for all $L_1 \in \mathbf{NP}$:

 $L_1 \leq_{p} L$

then *L* is called **NP-Complete**

Example: SAT:

find whether a Boolean formula in CNF form is satisfiable or not

NP-Complete

An **NP-Complete** problem L is called complete for **NP** because an algorithm for solving that problem (B) can be used to solve any problem $L_1 \in \mathbf{NP}$ (A is a polynomial-time reduction from L_1 to L) Algorithm C(x) return B(A(x))

Algorithmica

P = NP

To prove the world to be Algorithmica, find a polynomial-time algorithm (B) for any **NP-Complete** problem (for example SAT) the polynomial-time algorithm B can be used to make a polynomial-time algorithm for any problem in **NP**

Algorithmica

Problems that can be verified easily can also be solved easily ${\bf P}={\bf NP}$ implies no cryptography

22 / 54

Negligible Functions

A function $\epsilon(N) \to [0,1]$ is called negligible if for every c and sufficiently large n:

$$\epsilon(n) < 1/n^c$$

One-way functions

A function $f:\{0,1\}^* \to \{0,1\}^*$ that can be computed in polynomial-time is called a one-way function if for every probabilistic algorithm A that runs in polynomial-time there exists a function $\epsilon(N) \to [0,1]$ which is a negligible function such that for every n:

$$P_{x \in_R \{0,1\}^n, y=f(x)}[A(y) = x_1, f(x_1) = y] < \epsilon(n)$$

One-way functions

Example:

mult(x,y) = xy mult(12345,54321) = 670592745 is easy to calculate Finding the factors of 670592745 is difficult

One-way functions

One-way functions are used in cryptography

Average-Case Complexity

distP distNP sampP

Distributions

```
D = \{D_n\} is a sequence of distributions D_n is a distribution over \{0,1\}^n Example: Uniform Distribution: U = \{U_n\} Each element in \{0,1\}^n has probability 1/2^n U_2 = \{((0,0),1/4),((0,1),1/4),((1,0),1/4),((1,1),1/4)\}
```

Distributional Problem

A language L together with a distribution D: (L, D) Example: (L_{add}, U)

Real-Life Distributions

Assumption: nature will not use a sophisticated supercomputer to give us problem instances

P-computable distributions

P-samplable distribution

P-Computable Distributions

Cumulative probability can be computed in polynomial time:

$$\mu D_n(x) = \sum_{y \in \{0,1\}^n : y \le x} P_{D_n}[y]$$

$$P_{D_n}[x] = \mu D_n(x) - \mu \overline{D_n}(x-1)$$

$$PD_n[x] = \mu D_n(x) - \mu D_n(x-1)$$

Example: *U* is **P**-computable:

$$\mu U_n(x) = (x+1)/2^n$$

P-Samplable Distributions

If a polynomial time probabilistic algorithm can produce samples from the distribution, then that distribution is called \mathbf{P} -samplable distribution Example: U is \mathbf{P} -samplable:

Select each sample with uniform probability

P-Samplable Distributions

A **P**-computable distribution is also a **P**-samplable distribution Sample x with probability:

$$P_{D_n}[x] = \mu D_n(x) - \mu D_n(x-1)$$

distP

 $(L,D) \in \mathbf{distP}$ if there exists an algorithm A for L and constants C and $\epsilon > 0$ such that for every n:

 $E_{x \in_R D_n}[time_A(x)^{\epsilon}/n] \leq C$

$P \subseteq \mathbf{distP}$

If
$$time_A(x) = O(|x|^c)$$
, then select $\epsilon = 1/c$

Lecture 1

distNP

 $(L,D) \in \mathbf{distNP}$ if $L \in \mathbf{NP}$ and D is \mathbf{P} -computable

distNP-Complete

```
(L, D) is distNP-Complete if (L, D) \in distNP and for all (L_1, D_1) \in distNP: (L_1, D_1) \leq_p (L, D)
```

sampNP

 $(L, D) \in \mathbf{sampNP}$ if $L \in \mathbf{NP}$ and D is \mathbf{P} -samplable

sampNP-Complete

```
(L, D) is sampNP-Complete if (L, D) \in sampNP and for all (L_1, D_1) \in sampNP: (L_1, D_1) \leq_p (L, D)
```

$\mathsf{distNP} \subseteq \mathsf{sampNP}$

A P-computable distribution is also a P-samplable distribution

$distNP \subseteq sampNP$

If (L, D) is **distNP**-complete then it is also **sampNP**-complete

Heuristica

 $\begin{aligned} \mathbf{P} &\neq \mathbf{NP} \\ \mathbf{sampNP} &\subseteq \mathbf{distP} \end{aligned}$

Heuristica

To prove $P \neq NP$:

prove a super-polynomial lower bound for some **NP-complete** problem To prove $sampNP \subseteq distP$:

find an algorithm for some **sampNP-complete** problem that efficiently solves almost all instances

Heuristica

Every problem in **NP** can be solved efficiently on almost all inputs No cryptography

Pessiland

 $P \neq NP$ $distNP \nsubseteq distP$ One-way functions do not exist

Pessiland

To prove $\mathbf{P} \neq \mathbf{NP}$:

prove a super-polynomial lower bound for some **NP-complete** problem To prove $sampNP \nsubseteq distP$:

prove a super-polynomial average-case lower bound for some sampNP-complete problem

Pessiland

Problems that can be efficiently verified cannot be solved efficiently on many inputs

No cryptography

Minicrypt

 $P \neq NP$ $distNP \nsubseteq distP$ One-way functions exist Public key cryptography does not exist

Minicrypt

Prove a super-polynomial lower bound for some **NP-complete** problem Prove a super-polynomial average-case lower bound for some **sampNP-complete** problem

Prove that no efficient algorithm exists for inverting some one-way function Find polynomial-time algorithm for breaking public key cryptography (for example the factorization problem)

Cryptomania

P ≠ NP
distNP ⊈ distP
One-way functions exist
Public key cryptography exists

Cryptomania

Prove a super-polynomial lower bound for some **NP-complete** problem Prove a super-polynomial average-case lower bound for some **sampNP-complete** problem

Prove that no efficient algorithm exists for inverting some one-way function Prove super-polynomial lower bounds for public key cryptographic functions (for example the factorization problem)

Conclusion

We do not know in which world we live Most researchers believe that the world is Cryptomania

References

- (1) R. Impagliazzo, A Personal View of Average-Case Complexity. In Structure in Complexity Theory Conference, pp. 134-147, 1995.
- (2) L. A. Levin, Average case complete problems, SIAM J. Comput., 15(1):285-286, 1986.
- (3) R. Imgagliazzo, L. A. Levin, No better ways to generate hard NP instances than picking uniformly at random, in FOCS, pp. 812-823, 1990.
- (4) S. Arora, B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009.

Thank You