Der Linearzeit MST Algorithmus

Ein randomisierter Ansatz für bessere Performanz

Max Springenberg

Proseminar: Randomisierte Algorithmen, TU Dortmund

Table of contents

- 1. MST in gewichteten Graphen
- 2. Bäume vs. Wälder
- 3. Borůvka Phasen
- 4. F-schwere/ -leichte Kanten
- 5. Randomiserte Stichprobem
- 6. Erkenntnis

MST in gewichteten Graphen

Definition MST

Ein Teilgraph T ist genau dann ein minimaler Spannbaum von G, wenn er ein Spannbaum in G ist und die Summe seiner Kantengewichte $\sum_{e \in E_T} w(e) \text{ minimal ist.}$

Definition MST

Ein Teilgraph T ist genau dann ein minimaler Spannbaum von G, wenn er ein Spannbaum in G ist und die Summe seiner Kantengewichte $\sum_{e \in E_T} w(e) \text{ minimal ist.}$

Definition MST

Ein Teilgraph T ist genau dann ein minimaler Spannbaum von G, wenn er ein Spannbaum in G ist und die Summe seiner Kantengewichte $\sum_{e \in E_T} w(e) \text{ minimal ist.}$

Bäume vs. Wälder

Borůvka Phasen

Ablauf

- 1. Kontraktierende Kanten markieren
- 2. Verbundene Komponente bestimmen
- 3. Verbundene Komponenten durch einzelnen Knoten ersetzen
- 4. Selbstschleifen entfernen

Was bedeutes das für den reduzierten Graphen?

 \Rightarrow Knoten werden auf maximal n/2, n = |V| reduziert!

1. Kontraktierende Kanten markieren

2. Verbundene Komponente bestimmen

3. Verbundene Komponenten durch einzelnen Knoten ersetzen

4. Selbstschleifen entfernen

F-schwere/ -leichte Kanten

Definition

Sei $P(e = \{u, v\})$ der Pfad, der die Knoten im MSF verbindet, in Kanten Sei $w : E \to \mathbb{R}$, die Gewichtsfunktion von G Sei ferner definiert $w(E) = \{w(e_1), \dots, w(e_m)\}$

Eine Kante ist F-schwer, wenn gilt:

$$w(e) > w_F(e)$$

, wobei:

$$w_F(e = (u, v)) = \begin{cases} \infty, & \text{u und } v \text{ sind in verschiedenen Komponenten} \\ \max\{w(P(e))\}, & \text{sonst} \end{cases}$$

Randomiserte Stichprobem

Wirf eine Münze!

Quelle: https://melbournechapter.net/explore/coin-flip-clipart/

Kanten 'würfeln'

MSF

MSF:

Erkenntnis

Eleminierung von unnützen Kanten

Aber wie fassen wir das in einen Algorithmus?

... doch:

- Wie erreicht man dadurch eine erwartete lineare Laufzeit?
- Wie kann ein vernünftiger Spannbaum trotzt eliminierung von Kanten erwartet werden?

Diese Antworten erhaltet ihr in meiner finalen Präsentation.