1 Нотация

Рассмотрим на плоскости прямоугольник-стол T, вершины которого имеют координаты

$$\{(0,0), (M_1,0), (0,M_2), (M_1,M_2)\},\$$

где M_1 и M_2 — положительные целые числа. Будем говорить, что вектор из \mathbb{R}^2 является *целым* или лежащим в \mathbb{Z}^2 , если его концы имеют целочисленные координаты.

Определение 1. Многоугольник P называется *полиомино*, если P может быть составлен из блоков размера 1×1 , и все вершины P имеют целочисленные координаты. (Проще говоря, P составлен из "клеточек")

Теперь мы можем определить конфигурацию полиомино $\mathbf{A} = \{\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_H\}$. Для любого $i \in \{1, 2, \dots, H\}$ полиомино-множество \mathcal{A}_i может быть представленно в таком виде

$$\mathcal{A}_i = \{K_1^i, \dots, K_{N_i}^i\},\$$

что каждый многоугольник K_j^i , где $j\in\{1,2,\ldots,N_i\}$, является образом фиксированного опорного полиомино $P_i\subset\mathbb{R}^2$ под действием композиции некоторого поворо-

та с центром в начале координат на угол $\varphi \in \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$ и некоторого параллельного переноса на целый вектор.

Определение 2. Будем называть полиомино-множество **A** *замощением* T, если $\bigsqcup_{i=1}^H \bigsqcup_{j=1}^{N_i} K_j^i \subseteq T$.

2 Формулировка задания

Мы предлагаем вам следующую задачу и ожидаем от Вас решения в виде файловой директории, содержащей исходные файлы, инструкции к запуску Вашей программы на языке Python (3.4 +) и комментарии, относящиеся к логике вашей программы, оценить его сложность и затраченную память.

Проблема. Для данного размера прямоугольника-стола T и данного множества опорных прямоуголных полиомино и опорных L-полиомино P_i с данными соответствующими мощностями N_i узнать, существует ли конфигурация полиомино с этими параметрами, являющееся замощением T.

Входящие параметры алгоритма. Лист из трех элементов:

- 1. (M_1, M_2) размер прямоугольника-стола T, тапл-пара положительных целых чисел;
- 2. $[((S_1^i,S_2^i),N_i)]_{i=1}^{H_1}$ лист из тапл-пар, содержащий информацию об опорных прямоуголных полиомино. Первый элемент такой пары, (S_1^i,S_2^i) размер (ширина с высотой) i-ого прямоугольника-полоимино, представленный в виде тапл-пары положительных целых чисел с условием $S_1^i \geq S_2^i$, второй элемент такой пары мощность полиомино-множества, порожденного этим прямоугольником-полоимино как опорным, представленная в виде положительного целого числа.

3. $[((Q_1^i,Q_2^i),N_i)]_{i=1}^{H_2}$ – лист из тапл-пар, содержащий информацию об опорных L-полиомино. Первый элемент такой пары, (Q_1^i,Q_2^i) – размер i-ого L-полоимино, представленный в виде тапл-пары положительных целых чисел $(Q_1^i$ – длина левой "коемки", Q_2^i – длина нижней "коемки"), второй элемент такой пары – мощность полиомино-множества, порожденного этим L-полоимино как опорным, представленная в виде положительного целого числа.

Выход алгоритма. Существование конфигурации полиомино с параметрами 2-3, являющееся замощением T — булево значение.

Например, входящие параметры алгоритма, проверяющего возможность замощения прямоугольника-стола 3×5 одним L-тетрамино (с 3 блоками слева и двумя блоками снизу), двумя L-тримино и квадратным тетрамино:

- 1. (3,5) размер прямоугольника-стола.
- 2. $\left[\left((2,2),1\right)\right]$ первая тапл-пара кодирует квадратное тетрамино.
- 3. $\left[(3,2),1),(2,2)\right]$ первая тапл-пара кодирует одно L-тетрамино, вторая два L-тримино.

Выход алгоритма: Правда.

Рисунок 1: Пример замощения с рассмотренными значениями параметров.