Contents

1	Sequences 1			
	1.1	1	1	
	1.2	$a_n \text{ as } n \to \infty$	1	
	1.3	9 / 9	1	
	1.4	Monotone and Bounded Sequences	2	
2	Series 2			
	2.1	Notation	2	
	2.2	Partial Sum	2	
	2.3	Types of Series	2	
	2.4	Telescoping	2	
3	Convergence Tests 2			
	3.1		2	
	3.2	Comparison	2	
	3.3	Limit Comparison Test	2	
	3.4	Ratio Test	2	
	3.5	Root Test	2	
	3.6	Integral Test	2	
	3.7	<u> </u>	2	
	3.8	Absolute vs Conditional Convergence	2	
4	Power Series 2			
	4.1		$\frac{1}{2}$	
	4.2		2	
	4.3	Differentiation and Integration	2	
5	Taylor and Maclaurin Series 2			
	5.1		2	
	5.2	· ·	2	
	5.3		3	
	5.4	1	3	
	5.5	Limits and Approximations	3	
6	Applications 3			
-	6.1		3	
	6.2	**	3	
	6.3	Non-elementary Integrals	3	

1 Sequences

1.1 Definition of Sequences

A sequence is an ordered list of numbers written in the form

$$a_1, a_2, a_3, \dots, a_n$$
, or a_n or $\{a_n\}_{n=1}^{\infty}$

It is usually represented as a function whose domain is the set of positive integers:

$$a_n = f(n)$$

1.2 a_n as $n \to \infty$

The **limit of a sequence** as $n \to \infty$ describes the long-term behavior of the sequence:

$$\lim_{n \to \infty} a_n = L$$

means that the terms of the sequence get arbitrarily close to L as n becomes large. If such a number L exists, we say the sequence **converges** to L. Otherwise, it **diverges**.

1.3 Convergence/Divergence

A sequence $\{a_n\}$ converges to $L \in \mathbb{R}$ if

$$\lim_{n \to \infty} a_n = L \quad \Longleftrightarrow \quad \forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n > N, \ |a_n - L| < \varepsilon.$$

Otherwise, the sequence diverges.

1.4 Monotone and Bounded Sequences

- 2 Series
- 2.1 Notation
- 2.2 Partial Sum
- 2.3 Types of Series
- 2.4 Telescoping

3 Convergence Tests

- 3.1 Divergence Test
- 3.2 Comparison
- 3.3 Limit Comparison Test
- 3.4 Ratio Test
- 3.5 Root Test
- 3.6 Integral Test
- 3.7 Alternating Series Test
- 3.8 Absolute vs Conditional Convergence

4 Power Series

- 4.1 Definition
- 4.2 Radius and Interval of Convergence
- 4.3 Differentiation and Integration

5 Taylor and Maclaurin Series

5.1 Taylor Series

A Taylor series is an infinite sum that represents a function as a power series centered at a point a. If a function f(x) is infinitely differentiable at x = a, then its Taylor series is given by:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x - a)^n$$

This expansion approximates the function near x = a

5.2 Maclaurin Series

A Maclaurin Series is a special case of Taylor Series centered at x = 0

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

- 5.3 Common Expansions
- 5.4 Lagrange Error Bound for Taylor Series
- 5.5 Limits and Approximations
- 6 Applications
- 6.1 Numerical Approximation
- 6.2 Solving ODEs
- 6.3 Non-elementary Integrals