

DUODIODE-PENTODE with variable mutual conductance for use as H.F. or I.F. amplifier DUODIODE-PENTHODE a pente variable pour utilisation comme amplificatrice H.F. ou M.F. DUODIODE-PENTODE mit veränderlicher Steilheit zur Verwendung als HF- oder ZF-Verstärker

Heating : indirect by A.C. or D.C. parallel or series supply

Chauffage: indirect par C.A. ou C.C. alimentation parallele ou

série

Heizung : indirekt durch Wechsel-

oder Gleichstrom; Serienoder Parallelspeisung

Dimensions in mm Dimensions en mm Abmessungen in mm

Vr = 6.3 V

Ir = 300 mA

Base, culot, Sockel: NOVAL

Capacitances Capacités Kapazitäten Pentode section Partie penthode Pentodenteil

 C_a = 5,2 pF C_{g1} = 5,0 pF C_{ag1} < 0,0025 pF C_{g1f} < 0,05 pF Diode section Partie diode Diodenteil

Cd1 = 2,5 pF Cd2 = 2,5 pF Cd1d2 < 0,25 pF Cd1f < 0,015 pF Cd2f < 0,003 pF

Between pentode and diode section Entre les parties pentode et diode Zwischen Pentoden- und Diodenteilen

Typical charac Caractéristiqu Kenndaten		stics types				
٧a	=	250	250	200	170	V
v_{g2}	=	100	80	100	100	V
v_{g3}	=	0	0	0	0	٧
V _{g1}	=	-2	-1 ¹)	-1,5	-1 ¹)	A
Ia	=	9	9	11	12	mA
I_{g2}	=	2,7	2,7	3,3	4	mA
S	=	3,8	4,5	4,5	5	mA/V
μg2g1	=	20	20	20	20	-
Ri	=	1.0	0.9	0.6	0.4	MΩ

Operating characteristics as H.F. or I.F. amplifier Caractéristiques d'utilisation comme amplificateur H.F. ou M.F. Betriebsdaten als HF- oder ZF-Verstärker

$v_b = v_a$	=	2	50	2	200	2	50	٧
v_{g3}	=		0		0		0	٧
R_{g2}	=		56		3,0		62	kΩ
Vg1	= '	-2,0	-20	-1,5	-20	-1)	-20	∇
Ia	=	9		11	-	9	-	mA
Ig2	=	2,7	-	3,3	-	2,7	-	mA
S	=	3,8	0,2	4,5	0,12	4,5	0,2	ma/V
R ₁	=	1,0	-	0,6	-	0,9	-	MΩ

¹⁾In this case control grid current may occur. If this is not permissible, the negative grid bias should be increased to a value of 1.5 V at least

Dans ce cas il peut se présenter de courant de grille. Si celui-ci n'est pas permis, il faut augmenter la polarisation négative jusqu'à une valeur de 1,5 V au moins

Bei dieser Einstellung kann Gitterstrom fliessen; wenn das unzulässig ist, muss man eine Einstellung mit -1,5 V Gittervorspannung wählen

Limiting values of the pentode section Caractéristiques limites de la partie pentode Grenzdaten des Pentodenteils

```
550 V
Vao
                        = max.
                                   300 v2)
٧a
                        = max.
                        = max. 2,25 W
Wa
                                  550 V
Vg20
                        = max.
                                  300 v<sup>2</sup>)
V_{g2} (Ia < 4 mA)
                        = max.
V_{g2} (Ia > 8 mA)
                                125 V
                        = max.
                        = max.
                                 0.45 W
Wg2
                        = max. 16.5 mA
Ιĸ
                                    3 MΩ<sup>3</sup>)
Re1
                        = max.
                        = max.
                                   10 kΩ
Rg3
                                   20 kΩ
Rkf
                        = max.
Vkf
                                  100 V
                        = max.
-V_{g1} (I_{g1} = +0.3 \mu A) = mex.
                                   1,3 V
```

Limiting values of the diode sections Caractéristiques limites des parties diodes Grenzdaten der Diodenteile

²⁾When the tube is fed from a storage battery and vibrator the max. value of the positive voltages is 250 V Si le tube est alimenté par un accumulateur et un vibrateur, la valeur max. des tensions positives et de 250 V Wenn die Röhre von einer Batterie und einem Vibrator gespeist wird, ist der max. Wert der positiven Spannungen 250 V

³⁾ With grid current biasing $R_{g1} = \max$. 22 M Ω Si V_{g1} est obtenue seulement par moyen de R_{g1} , $R_{g1} = \max$. 22 M Ω Wenn V_{g1} nur mittels R_{g1} erhalten wird, ist $R_{g1} = \max$.22 M Ω

EBF 89

EBF 89

PHILIPS

EBF 89

EBF 89

PHILIPS

	EBF89	
page	sheet	date
1	1	1958.01.01
2	2	1958.01.01
3	3	1958.01.01
4	Α	1956.04.04
5	В	1956.04.04
6	С	1956.04.04
7	D	1956.04.04
8	FP	1999.06.15