アフィン群スキームのリー環

天野勝利

(2012年1月12日~1月27日)

参考文献

W.C. Waterhouse, "Introduction to affine group schemes", Graduate Texts in Mathematics 66, Springer, New York, 1979.

この原稿は Part III, The Infinitesimal Theory の Ch. 12 にあたる部分の講義ノートです.

12.1 左不変な線形作用素とリー環の定義

$$gx: A \xrightarrow{\Delta} A \otimes_k A \xrightarrow{(g,id)} A \xrightarrow{x} k, \quad f \mapsto f(gx) = (T_q f)(x)$$

(ここで, Δ は A の余積, $(g, id): f \otimes h \mapsto f(g)h$) となるので, 次の可換図式を得る:

これが任意の $x \in Alg_k(A, k)$ について成立するので、

$$T_g f - ((g, \mathrm{id}) \circ \Delta)(f) \subset \bigcap_{x \in \mathrm{Alg}_k(A, k)} \mathrm{Ker} \, x = 0 \quad (\forall f \in A).$$

すなわち $T_g=(g,\mathrm{id})\circ\Delta$ を得る. (つまり, この T_g は 11.4 節の定理の証明で使ったものと同じであることがNえた.)

ここで, k-線形写像 $T:A \rightarrow A$ に対し,

$$T$$
 が左不変 $\stackrel{\text{def.}}{\Leftrightarrow} T \circ T_q = T_q \circ T \ (\forall g \in S)$

と定義する.

命題 12.1 $T:A \to A$ を k-線形写像とするとき, T が左不変 $\Leftrightarrow \Delta \circ T = (\mathrm{id} \otimes T) \circ \Delta$.

[証明] 任意の $g \in S$ に対し, $T_q = (g, id) \circ \Delta$ であったから,

T が左不変 \Leftrightarrow $(g, \mathrm{id}) \circ \Delta \circ T = T \circ (g, \mathrm{id}) \circ \Delta = (g, \mathrm{id}) \circ (\mathrm{id} \otimes T) \circ \Delta \quad (\forall g \in S).$

よって、あとは

$$\bigcap_{g \in S} \operatorname{Ker}(g, \operatorname{id}) = 0$$

を示せばよい. $A\otimes_k A$ の任意の元 w を $w=\sum_{i=1}^n f_i\otimes h_i$ $(h_1,\ldots,h_n$ は k-線形独立) と書くとき、

$$(g, id)(w) = 0 \quad (\forall g \in S) \quad \Leftrightarrow \quad \sum_{i=1}^{n} f_i(g)h_i = 0 \quad (\forall g \in S)$$

$$\Leftrightarrow \quad f_i(g) = 0 \quad (\forall g \in S, \ i = 1, \dots, n) \quad \Leftrightarrow \quad f_i = 0 \quad (i = 1, \dots, n) \quad \Leftrightarrow \quad w = 0.$$

これで、一般の可換ホップ代数について "左不変" な線形作用素を定義する手がかりが見つかった.

定義 12.2 一般に, k を体, A を可換 k-ホップ代数とする. k-線形作用素 $T:A\to A$ が左不変とは, $\Delta\circ T=(\mathrm{id}\otimes T)\circ\Delta$ を満たすことをいう.

この左不変性は写像の合成や k-線形結合でも保たれる. 実際, T,U が左不変な線形作用素ならば,

$$\Delta \circ T \circ U = (\mathrm{id} \otimes T) \circ \Delta \circ U = (\mathrm{id} \otimes T) \circ (\mathrm{id} \otimes U) \circ \Delta = (\mathrm{id} \otimes (T \circ U)) \circ \Delta$$

だから $T \circ U$ も左不変であるし, $a,b \in k$ に対し aT + bU も左不変である.

定義 12.3 G を体 k 上のアフィン群スキーム, A = k[G] とする. このとき,

$$Lie(\mathbf{G}) := \{ D \in Der_k(A, A) \mid \Delta \circ D = (id \otimes D) \circ \Delta \}$$

を G のリー環という.

演習 12.4 $\text{Lie}(\mathbf{G})$ が実際に、ブラケット積 $[D_1,D_2]=D_1\circ D_2-D_2\circ D_1$ によって k 上のリー環になっていることを確かめよ。

k の標数が p>0 のときは、 $\mathrm{Lie}(\mathbf{G})$ はさらに次で定義する意味で制限リー環 (restricted Lie algebra) (または p-リー環) となる.

定義 12.5~k を標数 p>0 の体, L を k 上のリー環とする. L の普遍包絡環 U(L) に独立変数 ξ を添加した環 $U(L)[\xi]$ (ξ と U(L) の元は可換とする) において

$$(\xi X + Y)^p = \xi^p X^p + Y^p + \sum_{i=1}^{p-1} s_i(X, Y) \xi^i \quad (\forall X, Y \in L)$$

を満たす $s_i:L\times L\to U(L)$ $(i=1,\ldots,p-1)$ をとる. L が制限リー環 (restricted Lie algebra) であるとは, ある写像 $L\to L,$ $x\mapsto x^{[p]}$ があって,

(i)
$$(cx)^{[p]} = c^p x^{[p]} \ (\forall c \in k, \ \forall x \in L),$$

(ii)
$$(x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x,y) \ (\forall x,y \in L),$$

(iii)
$$(\operatorname{ad} x)^p(y) = (\operatorname{ad} x^{[p]})(y) \ (\forall x, y \in L)$$

を満たすことをいう. このとき $x\mapsto x^{[p]}$ のことを p-演算 (p-operation) と呼ぶことがある.

命題 12.6 k を標数 p>0 の体, G を k 上のアフィン群スキームとするとき, $\mathrm{Lie}(G)$ は p 冪写像 $D\mapsto D^p$ を p-演算とする制限リー環である.

[証明] $D \in \text{Lie}(\mathbf{G}), a, b \in k[\mathbf{G}]$ に対し,

$$D^{p}(ab) = \sum_{i=0}^{p} \binom{p}{i} D^{i}(a) D^{p-i}(b) = aD^{p}(b) + D^{p}(a)b$$

より, $D^p \in \text{Lie}(\mathbf{G})$. よって $\text{Lie}(\mathbf{G})$ は $D \mapsto D^p$ で閉じている.

(i), (ii) は定義より明らか. また, n に関する帰納法で

$$(\operatorname{ad} D_1)^n(D_2) = \sum_{i=0}^n \binom{n}{i} (-1)^{n-i} D_1^i D_2 D_1^{n-i} \quad (n = 1, 2, 3, \dots)$$

がいえるので、上式で n=p とすれば

$$(\operatorname{ad} D_1)^p(D_2) = D_1D_2 + (-1)^pD_2D_1^p = (\operatorname{ad} D_1^p)(D_2)$$

となり、(iii) を得る.

12.2 リー環の計算

定理 12.7 G を体 k 上のアフィン群スキーム, $k[\tau] = k[T]/(T^2)$ (τ は T の像とする. つまり $\tau^2 = 0$) とする. このとき, $\rho: k[\tau] \to k$ を $\rho(a+b\tau) = a$ により定めると,

$$\operatorname{Lie}(\mathbf{G}) \stackrel{\sim}{\longleftrightarrow} \operatorname{Der}_k(k[\mathbf{G}], \varepsilon k) \stackrel{\sim}{\longleftrightarrow} \{ \sigma \in \mathbf{G}(k[\tau]) \mid \rho \circ \sigma = \varepsilon \}$$

$$D = (\operatorname{id} \otimes d) \circ \Delta \quad \leftrightarrow \quad \varepsilon \circ D = d \quad \mapsto \quad [x \mapsto \varepsilon(x) + d(x)\tau].$$

(ここで, ε は k[G] の余単位射.)

[証明] A = k[G] とおく.

(右側の $\stackrel{\sim}{\longleftrightarrow}$) $\sigma\in\mathbf{G}(k[\tau])=\mathrm{Alg}_k(A,k[\tau]),\ \rho\circ\sigma=\varepsilon$ とすると、ある線形写像 $d:A\to k$ があって $\sigma=[x\mapsto\varepsilon(x)+d(x)\tau]$ と書ける.このとき明らかに d(k)=0. また $a,b\in A$ について、

$$\sigma(ab) = \sigma(a)\sigma(b) = (\varepsilon(a) + d(a)\tau)(\varepsilon(b) + d(b)\tau) = \varepsilon(ab) + (\varepsilon(a)d(b) + \varepsilon(b)d(a))\tau$$

より,

$$d(ab) = \varepsilon(a)d(b) + \varepsilon(b)d(a).$$

よって $d \in \mathrm{Der}_k(A, \varepsilon k)$ を得る. 逆に $d \in \mathrm{Der}_k(A, \varepsilon k)$ が与えられたとき, $\sigma : A \to k[\tau]$ を $\sigma(x) = \varepsilon(x) + d(x)\tau$ により定めれば $\sigma \in \mathbf{G}(k[\tau])$ となるので, 右側の全単射が得られた.

(左側の $\stackrel{\sim}{\longleftrightarrow}$) $D\in \mathrm{Der}_k(A,A)$ を任意にとるとき, $d=\varepsilon\circ D$ とすれば $d\in \mathrm{Der}_k(A,\varepsilon k)$ となる. さらに D が左不変であれば,

$$D = (\mathrm{id} \otimes \varepsilon) \circ \Delta \circ D = (\mathrm{id} \otimes \varepsilon) \circ (\mathrm{id} \otimes D) \circ \Delta = (\mathrm{id} \otimes d) \circ \Delta$$

となるので, D は d から一意的に決まってしまう. 従って, 単射 $\mathrm{Lie}(\mathbf{G}) \to \mathrm{Der}_k(A, \varepsilon k)$, $D \mapsto \varepsilon \circ D$ が得られた. 逆に $d \in \mathrm{Der}_k(A, \varepsilon k)$ に対し $D = (\mathrm{id} \otimes d) \circ \Delta$ とすると, $a,b \in A$ に対し

$$D(ab) = \sum a_{(1)}b_{(1)} \otimes d(a_{(2)}b_{(2)}) = \sum a_{(1)}b_{(1)} \otimes (\varepsilon(a_{(2)})d(b_{(2)}) + \varepsilon(b_{(2)})d(a_{(2)}))$$

= $a \sum b_{(1)} \otimes d(b_{(2)}) + b \sum a_{(1)} \otimes d(a_{(2)}) = aD(b) + bD(a)$

となり、 $D \in \operatorname{Der}_k(A, A)$ がわかる. さらに、任意の $a \in A$ について、

$$(\mathrm{id}\otimes D)(\Delta(a)) = \sum a_{(1)}\otimes a_{(2)}d(a_{(3)}) = \Delta(D(a)).$$

よって D は左不変でもあり, $D \in \text{Lie}(\mathbf{G})$ を得る.

注意 12.8 G を体 k 上の代数的アフィン群スキーム, $A = k[\mathbf{G}], I = A^+$ とする. このとき, 11.3 節の議論を思い出すと,

$$\operatorname{Der}_{k}(A, A) \simeq \operatorname{Hom}_{A}(A \otimes_{k} I/I^{2}, A) \simeq \operatorname{Hom}_{k}(I/I^{2}, A)$$

$$\simeq A \otimes_{k} \operatorname{Hom}_{k}(I/I^{2}, k) \simeq A \otimes_{k} \operatorname{Der}_{k}(A, \varepsilon k)$$

$$\simeq A \otimes_{k} \operatorname{Lie}(\mathbf{G}). \tag{12.1}$$

 $\pi:A\to I/I^2,\ a\mapsto (a-\varepsilon(a))+I^2$ とする. 上の式 (12.1) において, $\mathrm{Hom}_k(I/I^2,k)$ の部分から左向きにたどって $\mathrm{Der}_k(A,A)$ の中に入る単射を考えると次のようになる:

$$\operatorname{Hom}_k(I/I^2, k) \hookrightarrow \operatorname{Der}_k(A, A)$$

 $\psi \mapsto [a \mapsto \sum a_{(1)} \otimes \psi(\pi(a_{(2)}))].$

一方, そこから右向きにたどる同型は次のような Lie(G) への同型写像に他ならない:

$$\operatorname{Hom}_k(I/I^2, k) \xrightarrow{\sim} \operatorname{Der}_k(A, \varepsilon k) \xrightarrow{\sim} \operatorname{Lie}(\mathbf{G})$$

 $\psi \mapsto [a \mapsto \psi(\pi(a))] \mapsto [a \mapsto \sum a_{(1)} \otimes \psi(\pi(a_{(2)}))].$

(これの逆写像は $D\mapsto \varepsilon\circ D\mapsto [a+I^2\mapsto \varepsilon(D(a))]$.) よって、上の同型 (12.1) は $\mathrm{Lie}(\mathbf{G})$ に制限すると恒等写像になる。 特に、 $\mathrm{Der}_k(A,A)$ は A-module として $\mathrm{Lie}(\mathbf{G})$ で生成されていることが分かる。

演習 12.9 G を体 k 上のアフィン群スキームとする.

(1) 定理 12.7 の同型により $\mathrm{Lie}(\mathbf{G})$ から $\mathrm{Der}_k(k[\mathbf{G}], \varepsilon k)$ に誘導されるブラケット積は, $d_1, d_2 \in \mathrm{Der}_k(k[\mathbf{G}], \varepsilon k)$ に対し

$$[d_1, d_2] = (d_1 \otimes d_2 - d_2 \otimes d_1) \circ \Delta$$

で与えられることを示せ.

- (2) $S: k[\mathbf{G}] \to k[\mathbf{G}]$ を $k[\mathbf{G}]$ の対合射 (antipode) とする. 任意の $d \in \mathrm{Der}_k(k[\mathbf{G}], \varepsilon k)$ および $a \in k[\mathbf{G}]$ について d(S(a)) = -d(a) となることを示せ.
- (3) R=k[u,v] $(u^2=v^2=0)$ とする. $d_1,d_2\in \mathrm{Der}_k(k[\mathbf{G}],_{\varepsilon}k)$ に対し、 $g_1,g_2\in \mathbf{G}(R)=\mathrm{Alg}_k(k[\mathbf{G}],R)$ を

$$g_1 = [a \mapsto \varepsilon(a) + d_1(a)u], \quad g_2 = [a \mapsto \varepsilon(a) + d_2(a)v]$$

により定める. このとき g_1 と g_2 の交換子 $g_1g_2g_1^{-1}g_2^{-1}$ は

$$g_1g_2g_1^{-1}g_2^{-1}(a) = \varepsilon(a) + [d_1, d_2](a)uv \quad (\forall a \in k[\mathbf{G}])$$

を満たすことを示せ (ヒント: G の逆元を与える自然変換 (functorial morphism) に対応する代数射は S であったから, $g \in \mathbf{G}(R)$ に対して $g^{-1} = g \circ S$ であることに注意. そして (2) を用いる).

(4) 定理 12.7 の同型により $\mathrm{Lie}(\mathbf{G})$ から $\{\sigma\in\mathbf{G}(k[\tau])\mid\rho\circ\sigma=\varepsilon\}$ に誘導されるリー環構造 (ベクトル空間構造とブラケット積) を求めよ. 特に, $\mathrm{Lie}(\mathbf{G})$ の和が $\mathbf{G}(k[\tau])$ の積に対応することを確かめよ.

上の演習で述べられていることから、Lie(G) のブラケット積の非自明性が G の非可換性と密接に関係していることが分かる. 特に、G が可換群スキーム (i.e. k[G] が余可換ホップ代数) なら Lie(G) は可換リー環である.

さてここで、とりあえず GL_n のリー環を求めてみよう:

例 12.10 G = GL_n とし, E を n 次の単位行列とすると,

$$\operatorname{Lie}(\mathbf{G}) \simeq \{E + \tau M \mid M \in M_n(k) \text{ s.t. } E + \tau M \in \operatorname{\mathbf{GL}}_n(k[\tau])\}$$

$$= \{E + \tau M \mid M \in M_n(k)\} \quad (E + \tau M)(E - \tau M) = E \text{ に注意})$$

$$\simeq M_n(k).$$

この同型により $\mathrm{Lie}(\mathbf{G})$ から $M_n(k)$ に誘導されるブラケット積は何になるだろうか? 先程の演習の $\mathbf{G}(R)$ を考えると、

$$(E+uM)(E+vN)(E-uM)(E-vN) = E+uv(MN-NM).$$

というわけで結局, $M_n(k)$ の k-代数構造から普通に定義されるブラケット積 [M,N]=MN-NM と一致する.

さらに次の系から、 GL_n の閉部分群スキームのリー環が $M_n(k)$ の部分リー環として計算できることがわかる:

系 12.11 $\Phi: \mathbf{G} \to \mathbf{H}$ を体 k 上のアフィン群スキームの準同型, $\varphi: k[\mathbf{H}] \to k[\mathbf{G}]$ を Φ に対応するホップ代数射とする. このとき Φ から, 次の図式を可換にするようなリー環の準同型 $d\Phi: \mathrm{Lie}(\mathbf{G}) \to \mathrm{Lie}(\mathbf{H})$ が誘導される $(d\Phi)$ を $\mathrm{Lie}(\Phi)$ と書くこともある):

$$\operatorname{Lie}(\mathbf{G}) \xrightarrow{\sim} \operatorname{Der}_{k}(k[\mathbf{G}], \varepsilon k) \xrightarrow{\sim} \{ \sigma \in \mathbf{G}(k[\tau]) \mid \rho \circ \sigma = \varepsilon \} \\
\downarrow d\Phi \downarrow \qquad \qquad -\circ \varphi \downarrow \qquad \qquad -\circ \varphi \downarrow \\
\operatorname{Lie}(\mathbf{H}) \xrightarrow{\sim} \operatorname{Der}_{k}(k[\mathbf{H}], \varepsilon k) \xrightarrow{\sim} \{ \sigma \in \mathbf{H}(k[\tau]) \mid \rho \circ \sigma = \varepsilon \}$$

また、もし Φ が閉埋め込み (closed embedding) ならば $d\Phi$ は単射である.

[証明] 図式を可換にするような線形写像として $d\Phi$ を定義する. $d\Phi$ がリー環の準同型になることは, $d_1, d_2 \in \mathrm{Der}_k(k[\mathbf{G}], \varepsilon k)$ に対し

$$[d_1 \circ \varphi, d_2 \circ \varphi] = (d_1 \otimes d_2 - d_2 \otimes d_1) \circ (\varphi \otimes \varphi) \circ \Delta = (d_1 \otimes d_2 - d_2 \otimes d_1) \circ \Delta \circ \varphi$$
$$= [d_1, d_2] \circ \varphi$$

となることから分かる. Φ が閉埋め込みのときは図式の一番右の縦射が包含写像となるので、最後の主張は明らか. □

注意 12.12 k の標数が p>0 のときは、上の $d\Phi$ は p-演算 $D\mapsto D^p$ も保存する (i.e. $d\Phi(D^p)=(d\Phi(D))^p$).

[証明] $D \mapsto D^p$ を $Der_k(k[G], \varepsilon k)$ におきかえると,

$$\theta_{\mathbf{G}}: d \mapsto [a \mapsto \sum d(a_{(1)}) \cdots d(a_{(p)})]$$

という写像になる. だから, $\theta_{\mathbf{H}}(d \circ \varphi) = \theta_{\mathbf{G}}(d) \circ \varphi$ をいえばよいが, それは φ がホップ 代数射だから明らか.

系 12.13 G を体 k 上の代数的アフィン群スキームとする.

- (1) Lie(G) は k 上有限次元である.
- (2) $k \subset L$ を任意の体拡大, $\mathbf{G}_L = \operatorname{Spec}(L \otimes_k k[\mathbf{G}])$ (\mathbf{G} の基礎体を L に変更したもの) とすると, $\operatorname{Lie}(\mathbf{G}_L) \simeq L \otimes_k \operatorname{Lie}(\mathbf{G})$.
 - (3) G が滑らか \Leftrightarrow dim $G = \dim_k \operatorname{Lie}(G)$.

[証明] (1)(3) $I=k[\mathbf{G}]^+$ とする. 注意 12.8 で述べたように $\mathrm{Lie}(\mathbf{G})\simeq\mathrm{Hom}_k(I/I^2,k)$ であるから、

$$\dim_k \operatorname{Lie}(\mathbf{G}) = \dim_k I/I^2 = \operatorname{rank} \Omega_{k[\mathbf{G}]} < \infty.$$

(2) $L[\mathbf{G}_L]^+ = L \otimes_k I$ より

$$\operatorname{Lie}(\mathbf{G}_L) \simeq \operatorname{Hom}_L(L \otimes_k I/I^2, L) \simeq L \otimes_k \operatorname{Hom}_k(I/I^2, k) \simeq L \otimes_k \operatorname{Lie}(\mathbf{G}).$$

ちなみに、次が成立する:

命題 12.14 G が体 k 上の代数的アフィン群スキームのとき、常に $\dim_k \mathrm{Lie}(G) \geq \dim G$ である.

[証明] $\dim_k \operatorname{Lie}(\mathbf{G})$ も $\dim \mathbf{G}$ も基礎体の拡大で変わらないので, $k=\bar{k}$ としてよい. $k[\mathbf{G}]$ のベキ零元根基 $\sqrt{(0)}$ に対応する \mathbf{G} の閉部分スキームを $\mathbf{G}_{\operatorname{red}}$ と書く. すると $k[\mathbf{G}_{\operatorname{red}}]$ は被約であり, k は完全体なので, $k[\mathbf{G}_{\operatorname{red}}]\otimes_k k[\mathbf{G}_{\operatorname{red}}]$ も被約となる. 故に $k[\mathbf{G}] \xrightarrow{\Delta} k[\mathbf{G}] \otimes_k k[\mathbf{G}] \twoheadrightarrow k[\mathbf{G}_{\operatorname{red}}] \otimes_k k[\mathbf{G}_{\operatorname{red}}]$ は $k[\mathbf{G}] \twoheadrightarrow k[\mathbf{G}_{\operatorname{red}}]$ を経由する. また, $k[\mathbf{G}]$ の余単位射 ε と対合射 S は代数射なので $\varepsilon(\sqrt{(0)}) = 0$, $S(\sqrt{(0)}) \subset \sqrt{(0)}$. よって $\sqrt{(0)}$ は $k[\mathbf{G}]$ のホップイデアルであり, 従って $\mathbf{G}_{\operatorname{red}}$ は \mathbf{G} の閉部分群スキームとなる.

11.6 節の定理により $\mathbf{G}_{\mathrm{red}}$ は滑らかであり、また系 12.11 により $\mathrm{Lie}(\mathbf{G}_{\mathrm{red}})$ は $\mathrm{Lie}(\mathbf{G})$ の部分リー環となるので、

$$\dim \mathbf{G} = \dim \mathbf{G}_{\mathrm{red}} = \dim_k \mathrm{Lie}(\mathbf{G}_{\mathrm{red}}) \leq \dim_k \mathrm{Lie}(\mathbf{G}).$$

12.3 具体例

例 12.15 $G_m = GL_1$ と考えれば $Lie(G_m) \simeq k$ である.

演習 $m{12.16} \ \mathbf{G_a}$ を $\lambda \mapsto \left(egin{array}{cc} 1 & \lambda \\ 0 & 1 \end{array} \right)$ により $\mathbf{GL_2}$ の閉部分群スキームとみなし、 $\mathrm{Lie}(\mathbf{G_a}) \simeq k$ を示せ、

演習 12.17 k の標数が p > 0 であったとする.

- (1) Lie(μ_n) \simeq Lie(\mathbf{G}_{m}) $\simeq k$ を示せ.
- (2) Lie(α_p) \simeq Lie(G_a) $\simeq k$ を示せ.

この演習のように、正標数の体上では有限群スキームについても非自明なリー環が出てくることがある.

例 12.18 SL_n のリー環を計算するには, $E+\tau M\in\operatorname{GL}_n(k[\tau])$ のうち, $E+\tau M\in\operatorname{SL}_n(k[\tau])$ となるような M の条件を求めればよい. $M=(a_{ij})$ とすると,

$$\det(E + \tau M) = \det(\delta_{ij} + \tau a_{ij}) = (1 + \tau a_{11}) \cdots (1 + \tau a_{nn}) = 1 + \tau(\operatorname{tr} M).$$

よって, $E + \tau M \in \mathbf{SL}_n(k[\tau]) \Leftrightarrow \operatorname{tr} M = 0$. 従って,

$$\operatorname{Lie}(\mathbf{SL}_n) \simeq \{ M \in M_n(k) \mid \operatorname{tr} M = 0 \}.$$

演習 12.19 (1) 直交群スキーム \mathbf{O}_n を $\mathbf{O}_n: R \mapsto \{g \in \mathbf{GL}_n(R) \mid g^tg = E\}$ により定める. $\mathrm{Lie}(\mathbf{O}_n)$ を求めよ.

$$(2)$$
 $J=\begin{pmatrix}O&E\\-E&O\end{pmatrix}\in M_{2n}(k)$ として、シンプレクティック群スキーム \mathbf{Sp}_{2n} を $\mathbf{Sp}_{2n}:R\mapsto\{g\in\mathbf{GL}_{2n}(R)\mid{}^tgJg=J\}$ により定める、 $\mathrm{Lie}(\mathbf{Sp}_{2n})$ を求めよ、

12.4 閉部分群スキームおよび部分表現について

定理 $12.20~{
m G}$ を体 k 上の連結かつ滑らか 1 な代数的アフィン群スキームとする. H を ${
m G}$ の真閉部分群スキームとすると, $\dim {
m H} < \dim {
m G}$ である.

[証明] 仮定より $k[\mathbf{G}]$ は整域で、 $\dim \mathbf{G}$ は $k[\mathbf{G}]$ の商体の k 上超越次数に等しい。また、 \mathbf{H} に対応する $k[\mathbf{G}]$ のホップイデアルを I とすると、I のある随伴素因子 $P \subset k[\mathbf{G}]$ があって $k[\mathbf{G}]/P$ の商体の k 上超越次数が $\dim \mathbf{H}$ と等しい。あとは次の補題から従う。

¹実際には被約であれば十分

補題 12.21 A を体 k 上のアフィン整域 (有限生成な可換 k-代数かつ整域), $P \subset A$ を 0 でない素イデアルとする. Q(A), Q(A/P) をそれぞれ A, A/P の商体とすると, $\operatorname{trdeg}_k Q(A/P) < \operatorname{trdeg}_k Q(A)$.

[証明] ネーターの正規化定理により、ある k 上の多項式環 $k[x_1,\ldots,x_n]\subset A$ $(n=\operatorname{trdeg}_k Q(A))$ があって、A は有限生成 $k[x_1,\ldots,x_n]$ -加群となる。もし $P\cap k[x_1,\ldots,x_n]\neq 0$ なら x_1,\ldots,x_n の A/P における像は代数的に従属となり、補題の主張が従う。そこで、以下 $P\cap k[x_1,\ldots,x_n]=0$ ⇒ P=0 を示す。 $P\cap k[x_1,\ldots,x_n]=0$ のとき、 $S=k[x_1,\ldots,x_n]\setminus\{0\}$ とすると、 $A_P\supset S^{-1}A$ となる。ところが、 $S^{-1}A$ は $S^{-1}k[x_1,\ldots,x_n]=k(x_1,\ldots,x_n)$ 上有限次元な整域なので、体でなければならない。従って、任意の $a\in A\setminus\{0\}$ は $S^{-1}A$ の可逆元、よって A_P の可逆元となる。すなわち $a\in A\setminus P$. これは $A\setminus\{0\}=A\setminus P$ を意味するので、P=0 を得る。

系 12.22 G を体 k 上の連結かつ滑らかな代数的アフィン群スキーム, H を G の滑らかな閉部分群スキームとする. このとき, $\mathrm{Lie}(H) = \mathrm{Lie}(G) \Leftrightarrow H = G$.

[証明] (\Leftarrow) 明らか. (\Rightarrow) もし $\mathbf{H} \neq \mathbf{G}$ とすると定理より $\dim \mathbf{H} < \dim \mathbf{G}$ となり、よって系 12.13 (3) より $\dim_k \mathrm{Lie}(\mathbf{H}) < \dim_k \mathrm{Lie}(\mathbf{G})$.

この系で ${\bf H}$ が滑らかであるという仮定が必要なことは、演習 12.17 の例から分かる. k の標数が 0 のときはすべての代数的アフィン群スキームが滑らかなので、この結果が威力を発揮する.

アフィン群スキームの線形表現に付随するリー環の表現. G を体 k 上のアフィン群スキーム, V を k-ベクトル空間とし, G の V 上の線形表現 $G \to GL_V$ が与えられているとする. V が有限次元のときは $\mathrm{Lie}(GL_V) \simeq \mathrm{End}_k(V)$ だから, 系 12.11 の意味で G の表現から $\mathrm{Lie}(G)$ の表現 $\mathrm{Lie}(G) \to \mathrm{End}_k(V)$ が誘導されるが, これを一般の V についても拡張することができる. 具体的には, $\rho: V \to V \otimes_k k[G]$ を G の表現に対応する k[G]-余加群構造射とするとき, リー環の表現が

$$\operatorname{Lie}(\mathbf{G}) \xrightarrow{\sim} \operatorname{Der}_{k}(k[\mathbf{G}], \varepsilon k) \to \operatorname{End}_{k}(V)$$

$$D \mapsto \varepsilon \circ D = d \mapsto (\operatorname{id} \otimes d) \circ \rho$$

で与えられる.

補題 12.23 G を体 k 上のアフィン群スキーム, V を k-ベクトル空間とし, G の V 上の線形表現 $G \to GL_V$ が与えられているとする. V の k-部分空間 W に対し, W の安定化子 (stabilizer) H_W を, 可換 k-代数 R に

$$\mathbf{H}_W(R) = \{ g \in \mathbf{G}(R) \mid g \cdot (W \otimes_k R) = W \otimes_k R \}$$

を対応させる群関手として定める. このとき H_W は G の閉部分群スキームである.

[証明] $\rho: V \to V \otimes_k k[\mathbf{G}]$ を \mathbf{G} の表現に対応する $k[\mathbf{G}]$ -余加群構造射とする. V の k-基底 $\{v_i \mid i \in I\}$ を, $\{v_i \mid i \in J\}$ $(J \subset I)$ が W の k-基底になるようにとる. また, $a_{ij} \in k[\mathbf{G}]$ $(i \in I, j \in J)$ を

$$\rho(v_j) = \sum_{i \in I} v_i \otimes a_{ij} \quad (\forall j \in J)$$

を満たすようにとる. 任意の可換 k-代数 R と $g \in \mathbf{G}(R)$ に対し, $g \cdot (v_j \otimes 1) = \sum_{i \in I} v_i \otimes g(a_{ij})$ および $g^{-1} \cdot (v_j \otimes 1) = \sum_{i \in I} v_i \otimes g(S(a_{ij}))$ ($\forall j \in J, S$ は $k[\mathbf{G}]$ の対合射) だから,

$$g \cdot (W \otimes_k R) \subset W \otimes_k R \iff g(a_{ij}) = 0 \quad (\forall j \in J, \ \forall i \in I \setminus J),$$

 $g^{-1} \cdot (W \otimes_k R) \subset W \otimes_k R \iff g(S(a_{ij})) = 0 \quad (\forall j \in J, \ \forall i \in I \setminus J).$

よって, \mathbf{H}_W は $\{a_{ij}, S(a_{ij}) \mid j \in J, i \in I \setminus J\}$ で生成される $k[\mathbf{G}]$ のイデアルに対応する \mathbf{G} の閉部分スキームである.

定理 12.24~k を標数 0 の体, G を k 上の連結な代数的アフィン群スキーム, V を k[G]-余加群とする. このとき V の k-部分空間 W について, W が G-不変部分空間 (k[G]-部分余加群) $\Leftrightarrow W$ が $\mathrm{Lie}(G)$ -不変部分空間.

[証明](⇒) は明らか. (⇐) を示すには、W が $\mathrm{Lie}(\mathbf{G})$ の作用で不変であるときに $\mathbf{H}_W = \mathbf{G}$ となることを示せばよい. k の標数が 0 なので \mathbf{G} , \mathbf{H}_W は滑らかである. だから、系 12.22 により、 $\mathrm{Lie}(\mathbf{H}_W) = \mathrm{Lie}(\mathbf{G})$ をいえば証明が終わる. $\varphi: k[\mathbf{G}] \twoheadrightarrow k[\mathbf{H}_W]$ を標準全射(閉埋め込み $\mathbf{H}_W \hookrightarrow \mathbf{G}$ に対応するホップ代数射)とする. このとき、 $\mathrm{Lie}(\mathbf{H}_W) \xrightarrow{\sim} \mathrm{Der}_k(k[\mathbf{H}_W], \varepsilon k) \hookrightarrow \mathrm{Der}_k(k[\mathbf{G}], \varepsilon k)$ の像に $\mathrm{Der}_k(k[\mathbf{G}], \varepsilon k)$ の元 d が含まれるための必要十分条件は、d(a) = 0 ($\forall a \in \mathrm{Ker}\, \varphi$) となる. さらに上の補題の記号を使えば、 $\mathrm{Ker}\, \varphi$ は $\{a_{ij}, S(a_{ij}) \mid j \in J, \ i \in I \setminus J\}$ で生成される $k[\mathbf{G}]$ のイデアルであるから、

$$d(a) = 0 \ (\forall a \in \operatorname{Ker} \varphi) \iff d(a_{ij}) = 0 \ (\forall j \in J, \ \forall i \in I \setminus J)$$

 $((\Rightarrow)$ 明らか. (\Leftarrow) $d(aa_{ij}) = \varepsilon(a_{ij})d(a) = 0$ $(\forall a \in k[\mathbf{G}], \forall j \in J, \forall i \in I \setminus J), d \circ S = -d$ に注意). よって, $\mathrm{Lie}(\mathbf{H}_W)$ は, W を不変にする $\mathrm{Lie}(\mathbf{G})$ の元全体と一致する. 従って, W が $\mathrm{Lie}(\mathbf{G})$ の作用で不変ならば $\mathrm{Lie}(\mathbf{H}_W) = \mathrm{Lie}(\mathbf{G})$ である.

というわけで、基礎体の標数が 0 のときは、 \mathbf{G} の表現を $\mathrm{Lie}(\mathbf{G})$ の表現に置き換えて論じることができる場合が多い.

<u>3 学期のレポート課題</u>. この章の演習問題のうち 1 つ以上を解いて D705 の天野のメールボックスまで提出してください (期限: 2 月 29 日まで).