Machine Learning (CE 40717) Fall 2024

Ali Sharifi-Zarchi

CE Department Sharif University of Technology

December 29, 2024

- 1 Introduction
- 2 Multimodality
- 3 Contrastive Learning
- **4** References

- 1 Introduction
- 2 Multimodality
- 3 Contrastive Learning
- 4 Reference

Self-Supervised Learning

Introduction

"the dark matter of intelligence" 1

- $\{x_1, x_2, \dots, x_k\}$: input features
- $\{w_1, w_2, ..., w_k\}$: feature weights
- *b*: bias term
- $\sigma(\cdot)$: activation function
- *y* : output of the neuron

//ai.meta.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/

lhttps:

Self-Supervised Learning

"the dark matter of intelligence"²

²https://ai.meta.com/blog/self-supervised-learning-the-dark-matter-of+intelligence/

Why Neural Networks?

- Self-supervised learning defines a pretext task based on unlabeled inputs to produce descriptive and intelligible representations [Hastie et al., 2009, Goodfellow et al., 2016]
 - Learn with supervised learning objectives, e.g., classification, regression.
 - Labels of these pretext tasks are generated *automatically*
 - · Can be used in other downstream tasks.

Example Workflow

Introduction

- Training objective: predicting the context surrounding a word
- encourages the model to capture relationships among words
- The same SSL model representations can be used across a range of downstream tasks. e.g.
 - translating text across languages
 - summarizing
 - generating text

0000000000000 Motivation

Introduction

- Problem: Supervised Learning is Expensive!
 - Labeling data is costly
 - SSL: Use signals that can be created automatically from data.
- Labled data is harder to find. There is much more unlabled data.
- Supervised Learning is not how we learn
 - Babies don't get supervision for everything they see!

Comparison

Introduction

Methods that learn from data without annotations.

- **Unsupervised Learning**: Model isn't told what to predict. Older terminology, not used as much today.
- **Self-Supervised Learning**: Model is trained to predict some naturally occurring signal in the raw data rather than human annotations.
- Semi-Supervised Learning: Train jointly with some labeled data and (a lot) of unlabeled data

Evaluation

- We usually don't care about the performance of the self-supervised learning task, e.g., we don't care if the model learns to predict image rotation perfectly.
- Evaluate the learned feature encoders on downstream target tasks

Evaluation Cont.

Introduction 0000000000000

1. Learn good feature extractors from self-supervised pretext tasks, e.g., predicting image rotations

Evaluation Cont.

1. Learn good feature extractors from self-supervised pretext tasks, e.g., predicting image rotations

2. Attach a shallow network on the feature extractor; train the shallow network on the target task with small amount of labeled data

Example

- Pretext task: predict rotations
- Hypothesis: a model could recognize the correct rotation of an object only if it has the "visual commonsense" of what the object should look like unperturbed.
- The model learns to predict which rotation is applied (4-way classification)
- (This slide will be ellaborated on and expanded with diagrams)

Applications

Introduction

NLP

- Models like BERT, GPT, and T5 are based on SSL. They are pre-trained on massive text corpora using tasks like masked language modeling.
- Improving machine translation quality with SSL-based pre-training on multilingual corpora.

Computer Vision

- Models like SimCLR and BYOL achieve state-of-the-art performance in image classification by learning from unlabeled images.
- Learning representations for tasks like disease diagnosis from limited annotated medical datasets.

Applications (Cont.)

Introduction

Speech and Audio Processing

- Models like Wav2Vec and HuBERT use SSL in speech recognition task to learn representations from raw audio data. It's especially useful for languages with limited data.
- Identifying individuals using voice features learned through SSL in speaker identification.

Robotics

 Leveraging SSL in reinforcement learning helps learn useful state representations for control tasks, enabling robots to perform complex actions.

Applications (Cont.)

Healthcare

- Learning representations of DNA sequences to predict mutations or functional regions.
- Identifying diseases from clinical notes, imaging data, or time-series data such as ECGs.

Autonomous Vehicles

- Integrating data from cameras, LiDAR, and radar through SSL.
- Using SSL for anomaly detection in vehicle systems.

16 / 52

- Introduction
- 2 Multimodality
- 3 Contrastive Learning
- 4 References

Idea

- Don't learn from isolated images take images together with some **context**
- Video: Image together with adjacent video frames
- Sound: Image with audio track from video
- 3D Image: Image with depth map or point cloud
- Language: Image with natural-language text (e.g., captions or descriptions)

Why Language?

Rich Semantics

- Just a few words give rich information.
- Acts as a bridge between sensory data and abstract human understanding.

Universality

- · Language can describe almost any concept
- Language can act as a universal medium for aligning other modalities, even structured data.

Why Language? (Cont.)

Large-Scale Data Availability

The internet contains vast amounts of textual data.

Multimodality

- Text data is relatively easier to collect, clean, and annotate (no need to experts) compared to modalities like video or audio.
- Available datasets such as COCO (images and captions)

• Pretrained Language Models (PLMs) as a Strong Foundation

- Large pretrained language models with remarkable capabilities.
- Language models are highly transferable (transfer learning) across tasks, enabling multimodal systems to adapt to various downstream applications efficiently.

- Introduction
- 2 Multimodality
- 3 Contrastive Learning
- 4 Reference

Definition

- A machine learning technique for training models to distinguish between similar and dissimilar data points.
- Key Idea
 - Bring similar data points closer in the embedding space.
 - Push dissimilar data points farther apart.
- Purpose: Learn meaningful representations for downstream tasks like classification, clustering, or retrieval
- Widely Used In: Representation learning across domains such as computer vision, NLP, and multi-modal tasks.

Key Concepts

Embedding Space

- The data points are mapped into a high-dimensional space, called the embedding space.
- Their relative positions encode similarity or dissimilarity.
- **Positive Pairs:** Data points that are semantically similar.
- Negative Pairs: Data points that are semantically different.
- Objectives
 - Minimize the distance between the embeddings of positive pairs.
 - Maximize the distance between the embeddings of negative pairs.
- **Loss Functions:** We'll discuss 2 most commonly used loss functions in contrastive learning in the following slides.

Loss Functions - Contrastive Loss ^{3 4}

- Contrastive loss was first introduced in 2005 by Yann Le Cunn et al.
- Its original application was in Dimensionality Reduction.

³Dimensionality Reduction by Learning an Invariant Mapping

⁴Losses explained: Contrastive Loss

Loss Functions - Contrastive Loss (Cont.)

$$D_W(\vec{X}_1, \vec{X}_2) = \|G_W(\vec{X}_1) - G_W(\vec{X}_2)\|_2$$

- $D_W(\vec{X}_1, \vec{X}_2)$ is dissimilarity between the two data points \vec{X}_1 and \vec{X}_2 .
- G_W is an embedding function parameterized by W.
- Generally, D_W can be any metric that indicates the dissimilarity between \vec{X}_1 and \vec{X}_2 .

Loss Functions - Contrastive Loss (Cont.)

$$L\left(W,\left(Y,\vec{X}_1,\vec{X}_2\right)^i\right) = (1-Y)L_S\left(D_W(\vec{X}_1^i,\vec{X}_2^i)\right) + YL_D\left(D_W(\vec{X}_1^i,\vec{X}_2^i)\right)$$

- $(Y, \vec{X}_1, \vec{X}_2)^i$ is the *i*-th labeled sample pair.
- Y = 0 if \vec{X}_1 and \vec{X}_2 are deemed similar, and Y = 1 if they are deemed dissimilar.
- L_S is the partial loss function for a pair of similar points.
- L_D is the partial loss function for a pair of dissimilar points.
- L_S and L_D must be designed such that minimizing L with respect to W would result in low values of D_W for similar pairs and high values of D_W for dissimilar pairs.

Loss Functions - Contrastive Loss (Cont.)

$$\mathscr{L}(W) = \sum_{i=1}^{P} L(W, (Y, \vec{X}_1, \vec{X}_2)^i)$$

• *P* is the number of training pairs (which may be as large as the square of the number of samples).

- First, we'll explore this loss from a theoretical perspective which has been discussed in its original paper.
- Next, we'll discuss how it can be applied in practice.
- It's the loss in its original paper:

$$\mathcal{L}_{N} = -\mathbb{E}_{X} \left[\log \frac{\frac{p(x_{t+k}|c_t)}{p(x_{t+k})}}{\sum_{x_j \in X} \frac{p(x_t|c_t)}{p(x_t)}} \right]$$

28 / 52

⁵Representation Learning with Contrastive Predictive Coding

- Let's start with mutual information.
- We have a set $X = \{x_1, \dots, x_N\}$ of N random samples containing one positive sample from $p(x_{t+k} | c_t)$ and N-1 negative samples from the **proposal** distribution $p(x_{t+k})$
- Our purpose is to maximize mutual information:

$$I(x_{t+k}; c_t) = \sum_{x_{t+k}, c_t} p(x_{t+k}, c_t) \log \frac{p(x_{t+k} \mid c_t)}{p(x_{t+k})}$$

• c_t is context latent representation.

• We know:

$$I(x_{t+k}; c_t) \le \log N \to I(x_{t+k}; c_t) \ge \log N - \mathcal{L}_N$$

- \mathcal{L}_N quantifies the gap between the true mutual information and the approximation.
- Minimizing \mathcal{L}_N effectively maximizes the mutual information.

• Categorical cross-entropy of classifying the positive sample correctly, with $\frac{f_k}{\sum_X f_k}$ being the prediction of the model.

$$\mathcal{L}_{N} = -\mathbb{E}_{X} \left[\log \frac{f_{k}(x_{t+k}, c_{t})}{\sum_{x_{j} \in X} f_{k}(x_{j}, c_{t})} \right]$$

We want to optimize it.

• Let's write the optimal probability for this loss as $p(d=i \mid X, c_t)$ with [d=i] being the indicator that sample x_i is the **positive** sample.

Contrastive Learning

• The probability that sample x_i was drawn from the conditional distribution $p(x_{t+k} \mid c_t)$ rather than the proposal distribution $p(x_{t+k})$ can be derived as follows:

$$p(d = i \mid X, c_t) = \frac{p(x_i \mid c_t) \prod_{l \neq i} p(x_l)}{\sum_{j=1}^{N} p(x_j \mid c_t) \prod_{l \neq j} p(x_l)} = \frac{\frac{p(x_i \mid c_t)}{p(x_i)}}{\sum_{j=1}^{N} \frac{p(x_j \mid c_t)}{p(x_j)}}$$

• As we can see, the optimal value for $f_k(x_{t+k}, c_t)$ in \mathcal{L}_N is proportional to $\frac{p(x_{t+k}|c_t)}{p(x_{t+k})}$ and this is independent of the choice of the number of negative samples N-1

• We can evaluate the mutual information between the variables c_t and x_{t+k} as follows:

$$I(x_{t+k}, c_t) \ge \log(N) - \mathcal{L}_N$$

- It becomes tighter as *N* becomes larger.
- Minimizing the InfoNCE loss \mathcal{L}_N maximizes a lower bound on mutual information.

• In practice, we have:

$$\mathcal{L}_{N} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp\left(\operatorname{sim}\left(x_{i}, c_{i}\right) / \tau\right)}{\sum_{j=1}^{N} \exp\left(\operatorname{sim}\left(x_{i}, c_{j}\right) / \tau\right)}$$

- Used in models like SimCLR, MoCo, CLIP, and others.
- Next, we want to derive this formula from the theoretical one.

• Step 1:

$$\frac{p(x \mid c)}{p(x)} = \exp\left(\log\left(\frac{p(x \mid c)}{p(x)}\right)\right)$$

- But in practice, we rarely know the true densities $p(x \mid c)$ and p(x).
- Instead, we learn a function that approximates their log-ratio.
- A common approach is to let a neural network produce embeddings f(x) and g(c).

$$\log\left(\frac{p(x \mid c)}{p(x)}\right) \approx \sin\left(f(x), g(c)\right) \xrightarrow{\text{we annotate it as}} \sin\left(x, c\right) \to \frac{p(x \mid c)}{p(x)} \approx \exp\left(\sin\left(x, c\right)\right)$$
(1)

- sim(x, c) is similarity function (e.g., cosine similarity or dot product).
- Replacing unknown densities with a similarity function, yielding a **softmax** function (which we'll discuss).
- It's straightforward to implement using standard deep-learning toolkits.

- Why sim(x, c) works?
 - It becomes large (positive) for the true **positive** pair (x, c).
 - It becomes relatively small (negative) for **negative** pairs (x, c').

$$sim(x, c) \gg sim(x, c') \longleftrightarrow p(x, c) \gg p(x, c')$$

• This is the property required to approximate the ratio $p(x \mid c) / p(x)$.

- Step 2:
- In practice, we don't have the full distribution *X* or its expectations.
- Instead, we approximate this using batches of size N.
- Each x_{t+k} is treated as the **positive sample**, and the other x_j s in the batch are treated as **negative samples**.
- The expectation becomes a summation over batches:

$$\mathcal{L}_{N} = -\mathbb{E}_{X} \left[\log \frac{f_{k}(x_{t+k}, c_{t})}{\sum_{x_{j} \in X} f_{k}(x_{j}, c_{t})} \right] \approx -\frac{1}{N} \sum_{i=1}^{N} \log \frac{f_{k}(x_{t+k}, c_{t})}{\sum_{x_{j} \in X} f_{k}(x_{j}, c_{t})}$$
(2)

- Step 3:
- To control the sharpness of the similarity distribution, a temperature parameter τ is introduced:

$$sim(x,c) \rightarrow \frac{sim(x,c)}{\tau}$$
 (3)

- τ helps balance gradients during training:
 - With no τ , large similarity scores might dominate the gradients, leading to unstable updates.
 - A carefully chosen τ scales the scores appropriately, ensuring stable convergence.

• τ affects the distribution of similarity scores after applying the softmax function; in other words, it influences the sharpness of the softmax.

• Low τ :

- High sharpness.
- · The softmax heavily favors the largest score.
- The distribution becomes more concentrated on the top-scoring pair.
- Encourages the model to focus strongly on the positive sample while ignoring negatives.
- The loss becomes more sensitive to small differences in scores.

• High τ :

- Low sharpness.
- The softmax smooths the distribution, making it more uniform.
- This encourages the model to consider a broader set of samples, not just the top-scoring pair.
- Useful when the data is noisy or when the model needs to generalize better.

• **Finally:** From equations (1) to (3), we derive:

$$\mathcal{L}_{N} = -\mathbb{E}_{X} \left[\log \frac{f_{k}(x_{t+k}, c_{t})}{\sum_{x_{j} \in X} f_{k}(x_{j}, c_{t})} \right] \approx -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp \left(\operatorname{sim}\left(x_{i}, c_{i}\right) / \tau \right)}{\sum_{j=1}^{N} \exp \left(\operatorname{sim}\left(x_{i}, c_{j}\right) / \tau \right)}$$

Common Components

- Dataset:
 - supervised: $D_m = \{(x_1^1, \dots, x_M^1, y^1), \dots, (x_1^n, \dots, x_M^n, y^n)\}$
 - self-supervised: $D_m = \{(x_1^1, \dots, x_M^1), \dots, (x_1^n, \dots, x_M^n)\}$
- The psudo-label or signal generated for SSL can be denoted as $z = P(x_1, \cdot, x_M)$.
- Modality Encoder(s): $c = e_k(x_k^i; \theta_k)$ for each modality k.
- Fusion Module: f_{ψ} to integrate the encoded information of different modalities
- Pretext task head (like a predictive head) : g_{γ} and some SSL loss \mathscr{L}_{SSL}

Architectures

• There many veriations and structures

Figure 1: Figure 1 masked prediction frameworks

Figure 2: Figure 2 instance discrimination objectives

CLIP

- Connecting text and images
- Contrastive Language–Image Pre-training
- CLIP

 a shared representation(embedding) between two modalities (text and images) by training on a large dataset of image-text pairs.

CLIP Cont.

- Image Encoder: a Vision Transformer (ViT) or a ResNet.
- Text Encoder: A Transformer model

(1) Contrastive pre-training

CLIP Goals

- CLIP was designed to mitigate a number of major problems:
- Costly datasets: Deep learning needs a lot of data, manually labeled datasets are expensive to construct.
 - CLIP learns from text-image pairs that are already publicly available on the internet
- Narrow: An ImageNet model excels at predicting the 1000 ImageNet categories but requires additional data and fine-tuning for other tasks.
 - CLIP can be adapted to perform a wide variety of visual classification tasks without needing additional training examples.

Applications

- CLIP enables searching for images by interpreting natural language descriptions.
- It classifies images into categories defined at inference using textual prompts (e.g., "This is a photo of a [label]").
- Visual Question Answering (VQA) becomes possible with CLIP's text-image alignment.
- Integrated into DALL·E or Stable Diffusion, it improves image generation with scoring and feedback loops.
- CLIP enhances robot-human interaction by understanding instructions about objects or scenes.

Applications

- It matches user queries with product images for seamless search and discovery in e-commerce.
- The model enables zero-shot classification to identify new or rare medical conditions.
- CLIP detects anomalies in manufacturing processes or equipment visuals to ensure quality.
- It personalizes digital experiences based on user preferences described in natural language.

- Introduction
- 2 Multimodality
- 3 Contrastive Learning
- 4 References

Contributions

These slides are authored by:

- · Hooman Zolfaghari
- · Amir Mohammad Fakhimi

Machine Learning (CE 40717)

Ali Sharifi-Zarchi (Sharif University of Technology)

References

200

51 / 52

◆□▶◆御≯◆恵▶◆恵▶

December 29, 2024