Notes on PRB.67.092408

1 spin field effect transistor

A type of quantum field effect transistor that operates purely on the flow of spin current in the absence of charge current. The rotating field induces a time-independent dc spin current, and at the same time generates no charge current. The physical principle of our SFET is due to a spin flip mechanism provided by the field.

2 Hamiltonian

A rotating magnetic field is

$$B_x = B_0 \sin\theta \cos(\omega t) \tag{1}$$

$$B_{y} = B_{0} \sin \theta \, \sin(\omega t) \tag{2}$$

$$B_z = B_0 \cos\theta. \tag{3}$$

The Hamiltonian of system is

$$H = \sum_{k,\sigma,\alpha=L,R} \epsilon_k C_{k\alpha\sigma}^+ C_{k\alpha\sigma} + \sum_{n\sigma} \left[\epsilon_n + \sigma B_0 \cos \theta \right] d_{n\sigma}^+ d_{n\sigma}$$
$$+ H'(t) + \sum_{k,n,\sigma,\alpha=L,R} \left[T_{k\alpha n} C_{k\alpha\sigma}^+ d_{n\sigma} + \text{c.c.} \right]$$
(4)

We assume that there are multiple orbits in the scattering region, which is different from the original paper, in which only one orbit is considered. The level energy is

$$\epsilon_n(t) = \epsilon_n^0 - qV_q(t),\tag{5}$$

which can be controlled by the gate voltage V_g . Energy level of lead $\epsilon_{Lk} = \epsilon_{Rk} = \epsilon_k$.

A counterclock-wise rotating field allows a spin-down electron to absorb a photon and flip to spin-up, and it does not allow a spin-up electron to absorb a photon and flip to spin-down.

$$H'(t) = \sum_{n} \gamma \left[\exp(-i\omega t) d_{n\uparrow}^{+} d_{n\downarrow} + \exp(i\omega t) d_{n\downarrow}^{+} d_{n\uparrow} \right]$$
 (6)

$$\gamma = B_0 \sin \theta \tag{7}$$

We solve the transport properties (charge and spin currents) of the model in both adiabatic and nonadiabatic regimes using the standard Keldysh nonequilibrium Green's function technique.

3 Operator evolution

EoM of d_{σ}^{\dagger} is

$$\partial_{t'}d_{n\sigma}^{\dagger}(t') = i[H, d_{n\sigma}^{\dagger}] \tag{8}$$

central dot part:

$$\left[\sum_{n'\sigma'} \left[\epsilon_{n'} + \sigma B_0 \cos \theta\right] d^{\dagger}_{n'\sigma'} d_{n'\sigma'}, d^{\dagger}_{n\sigma}\right] = \left(\epsilon_n + \sigma B_0 \cos \theta\right) d^{\dagger}_{n\sigma} \tag{9}$$

rotating magnetic field part:

$$[d_{n'\uparrow}^{\dagger}d_{n'\downarrow}, d_{n\sigma}^{\dagger}] = d_{n'\uparrow}^{\dagger}\{d_{n'\downarrow}, d_{n\sigma}^{\dagger}\} - \{d_{n'\uparrow}^{\dagger}, d_{n\sigma}^{\dagger}\}d_{n'\downarrow}$$

$$= d_{\uparrow}^{\dagger}\delta_{nn'}\delta_{\sigma\downarrow}, \tag{10}$$

$$[d_{n'\downarrow}^{\dagger}d_{n'\uparrow}, d_{n\sigma}^{\dagger}] = d_{n'\downarrow}^{\dagger} \{d_{n'\uparrow}, d_{n\sigma}^{\dagger}\} - \{d_{n'\downarrow}^{\dagger}, d_{n\sigma}^{\dagger}\} d_{n'\uparrow}$$

$$= d_{n'\uparrow}^{\dagger} \delta_{nn'} \delta_{\sigma\uparrow}. \tag{11}$$

Then

$$[H'(t), d_{n\sigma}^{\dagger}] = \gamma (e^{-i\omega t} d_{n\uparrow}^{\dagger} \delta_{\sigma\downarrow} + e^{i\omega t} d_{n\downarrow}^{\dagger} \delta_{\sigma\uparrow})$$
(12)

Coupling part

$$\sum_{k,n',\sigma',\alpha=L,R} \left[T_{n'k\alpha} C_{k\alpha\sigma'}^{\dagger} d_{n'\sigma'} + \text{c.c.}, d_{n\sigma}^{\dagger} \right] = \sum_{k,\alpha=L,R} T_{k\alpha n} C_{k\alpha\sigma}^{\dagger}$$
(13)

Substitute these three parts into Eq. (8), we get

$$\partial_{t'} d_{n\sigma}^{\dagger}(t') = i[(\epsilon_n^0 + \sigma B_0 \cos \theta) d_{n\sigma}^{\dagger} + \gamma (e^{-i\omega t} d_{n\uparrow}^{\dagger} \delta_{\sigma\downarrow} + e^{i\omega t} d_{n\downarrow}^{\dagger} \delta_{\sigma\uparrow}) + \sum_{k,\alpha = L,B} T_{k\alpha n} C_{k\alpha\sigma}^{\dagger}]$$
(14)

Equation of motion of particle operator $\hat{N}_{\alpha k\sigma}$ in the lead α is

$$\frac{d}{dt}\hat{N}_{\alpha k\sigma} = \frac{i}{\hbar} [H, C_{\alpha k\sigma}^{\dagger} C_{\alpha k\sigma}] = \left[\sum_{k', \sigma', \alpha' = L, R} \left[T_{k'\alpha'} C_{k'\alpha'\sigma'}^{\dagger} d_{\sigma'} + \text{c.c.} \right], C_{\alpha k\sigma}^{\dagger} C_{\alpha k\sigma} \right]
= \frac{i}{\hbar} \sum_{k', \sigma', \alpha' = L, R} \left[-T_{k'\alpha'} C_{k'\alpha'\sigma'}^{\dagger} d_{\sigma'} \delta_{\alpha \alpha'} \delta_{kk'} \delta_{\sigma \sigma'} + \text{c.c.} \right]
= \frac{i}{\hbar} \left[-T_{k\alpha} C_{k\alpha\sigma}^{\dagger} d_{\sigma} + T_{k\alpha}^{*} d_{\sigma}^{\dagger} C_{k\alpha\sigma} \right]$$
(15)

4 Charge current

So, the charge current due to L(R) lead with spin σ is given by

$$I_{L\sigma}(t) = e \langle \frac{d}{dt} \hat{N}_{\sigma}(t) \rangle$$

$$= \frac{ie}{\hbar} \sum_{kn\alpha \in L} (\langle -T_{k\alpha n} C_{k\alpha \sigma}^{\dagger}(t) d_{n\sigma}(t) \rangle + \langle T_{k\alpha n}^{*} d_{n\sigma}^{\dagger}(t) C_{k\alpha \sigma}(t) \rangle)$$
(16)

Define the lesser Green's function

$$G_{n\sigma',k\alpha\sigma}^{<}(\tau,\tau') = i\langle C_{k\alpha\sigma}^{\dagger}(\tau')d_{n\sigma'}(\tau)\rangle, \tag{17}$$

the current becomes

$$I_{L\sigma}(t) = \frac{-e}{\hbar} \sum_{kn\alpha \in L} (T_{k\alpha n} G_{n,k\alpha\sigma}^{\langle}(t,t) - T_{k\alpha n}^* G_{k\alpha,n}^{\langle}(t,t)\rangle)$$
(18)

More generally, we define the contour Green's function

$$G_{n\sigma',k\alpha\sigma}(\tau,\tau') = -i\langle d_{n\sigma'}(\tau)C_{k\alpha\sigma}^{\dagger}(\tau')\rangle. \tag{19}$$

EoM of operator $C_{k\alpha\sigma}^{\dagger}$ is

$$\partial_{t'}C_{k\alpha\sigma}^{\dagger}(t') = i[H, C_{k\alpha\sigma}^{\dagger}] = i(\varepsilon_k C_{k\alpha\sigma}^{\dagger} + \sum_{n} T_{k\alpha n} d_{n\sigma}^{\dagger})$$
(20)

The equation-of-motion for the time-ordered Green function

$$-i\frac{\partial}{\partial t'}G_{n\sigma',k\alpha\sigma}^{t}(t,t') = \delta(t-t')\langle\{d_{n\sigma'},C_{k\alpha\sigma}^{\dagger}\}\rangle - \langle T_{c}d_{n\sigma'}\partial_{t'}C_{k\alpha\sigma}^{\dagger}\rangle$$

$$= \varepsilon_{k}G_{n\sigma',k\alpha\sigma}^{t}(t,t') + \sum_{m}T_{k\alpha m}^{*}G_{n\sigma',m\sigma}^{t}(t,t')$$
(21)

So, we have

$$(-i\frac{\partial}{\partial t'} - \varepsilon_k)G^t_{n\sigma',k\alpha\sigma}\left(t,t'\right) = \sum_m T^*_{k\alpha m}G^t_{n\sigma',m\sigma}(t,t')$$
(22)

in which

$$G_{n\sigma',m\sigma}^{t}(t,t') = -i\langle T_{c}d_{n\sigma'}(t)d_{m\sigma}^{\dagger}(t')\rangle.$$
(23)

Similarly, we evaluate the EoM for free Green's function $g_{k\alpha\sigma}^t(t,t')$ in lead α (note that $H=\sum_{k\sigma\alpha}\epsilon_k C_{k\alpha\sigma}^{\dagger}C_{k\alpha\sigma}$).

$$-i\frac{\partial}{\partial t'}g_{k\alpha\sigma}^{t}(t,t') = \delta(t-t')\langle\{C_{k\alpha\sigma},C_{k\alpha\sigma}^{\dagger}\}\rangle - \langle T_{c}C_{k\alpha\sigma}\partial_{t'}C_{k\alpha\sigma}^{\dagger}\rangle$$
$$= \delta(t-t') + \varepsilon_{k}g_{k\alpha\sigma}^{t}(t,t'),$$
(24)

we have

$$(-i\frac{\partial}{\partial t'} - \varepsilon_k)g_{k\alpha\sigma}^t(t, t') = \delta(t - t'). \tag{25}$$

Substitute Eq. (25) into Eq. (22) and integrate on both sides, we get an equation analogous to Jauho's notation [2],

$$G_{n,k\alpha}(\tau,\tau') = \sum_{m} \int d\tau_1 G_{nm}(\tau,\tau_1) t_{k\alpha m}^* g_{k\alpha}(\tau_1,\tau'),$$

we have

$$G_{n\sigma',k\alpha\sigma}^{t}(t,t') = \sum_{m} \int dt_1 G_{n\sigma',m\sigma}(t,t_1) T_{k\alpha m}^* g_{k\alpha\sigma}^{t}(\tau_1,\tau').$$
(26)

When there is only one orbit presents, this equation reduces to

$$G_{\sigma',k\alpha\sigma}^{t}(t,t') = \int dt_1 G_{\sigma',\sigma}(t,t_1) T_{k\alpha}^* g_{k\alpha\sigma}^{t}(\tau_1,\tau').$$
(27)

Since the contour Green's function has the same structure as real-time Green's function, the we have relation

$$G_{n\sigma',k\alpha\sigma}(\tau,\tau') = \sum_{m} \int d\tau_1 G_{n\sigma',m\sigma}(\tau,\tau_1) T_{k\alpha m}^* g_{k\alpha\sigma}(\tau_1,\tau')$$
(28)

where $G_{n\sigma',k\alpha\sigma}(\tau,\tau')$ is contour Green's function defined in Eq. (17), and similarly the contour Green's function for non-interacting lead is defined as

$$g_{k\alpha\sigma}(\tau,\tau') = -i\langle T_c C_{k\alpha\sigma}(\tau) C_{k\alpha\sigma}^{\dagger}(\tau') \rangle \tag{29}$$

After analytic continuation, the current is formulated as

$$I_{\alpha\sigma}(t) = -\frac{e}{\hbar} \int dt_1 \operatorname{Tr} \left[G^r(t, t_1) \, \Sigma_{\alpha}^{<}(t_1, t) + G^{<}(t, t_1) \, \Sigma_{\alpha}^a(t_1, t) + c.c. \right]$$

$$= -\frac{e}{\hbar} \int dt_1 \operatorname{Tr} \left[G^r(t, t_1) \, \Sigma_{\alpha}^{<}(t_1, t) + G^{<}(t, t_1) \, \Sigma_{\alpha}^a(t_1, t) \right]$$

$$+ G^a(t_1, t) \, (-1) \Sigma_{\alpha}^{<}(t, t_1) + (-1) G^{<}(t_1, t) \, \Sigma_{\alpha}^r(t, t_1) \right]$$

$$= -\frac{e}{\hbar} \int dt_1 \operatorname{Tr} \left[G^r(t, t_1) \, \Sigma_{\alpha}^{<}(t_1, t) + G^{<}(t, t_1) \, \Sigma_{\alpha}^a(t_1, t) \right]$$

$$- \Sigma_{\alpha}^{<}(t, t_1) \, G^a(t_1, t) - \Sigma_{\alpha}^r(t, t_1) \, G^{<}(t_1, t) \right]$$
(30)

Following Eq. (224) in WangJ's note, its Fourier transformation is

$$I_{\alpha\sigma}(\omega_{1}) = -\frac{e}{\hbar} \int \frac{dE}{2\pi} \frac{dE'}{2\pi} \operatorname{Tr} \left[G^{r} \left(E + \omega_{1}, E' \right) \Sigma_{\alpha}^{<} \left(E', E \right) + G^{<} \left(E + \omega_{1}, E' \right) \Sigma_{\alpha}^{a} \left(E', E \right) + c.c. \right]$$

$$= -\frac{e}{\hbar} \int \frac{dE}{2\pi} \frac{dE'}{2\pi} \operatorname{Tr} \left[G^{r} \left(E + \omega_{1}, E' \right) \Sigma_{\alpha}^{<} \left(E', E \right) + G^{<} \left(E + \omega_{1}, E' \right) \Sigma_{\alpha}^{a} \left(E', E \right) - \Sigma_{\alpha}^{r} \left(E + \omega_{1}, E' \right) G^{<} \left(E', E \right) \right].$$

$$(31)$$

$$- \Sigma_{\alpha}^{<} \left(E + \omega_{1}, E' \right) G^{a} \left(E', E \right) - \Sigma_{\alpha}^{r} \left(E + \omega_{1}, E' \right) G^{<} \left(E', E \right) \right].$$

Here, $G^{r,<} \equiv G^{r,<}_{n\sigma',m\sigma}$, notation Tr means sum over QD level index n, and matrix element

$$\Sigma_{\alpha,mn}^{\gamma}(t_1, t_2) = \sum_{k} T_{k\alpha m}^*(t_1) g_{k\alpha}^{\gamma}(t_1, t_2) T_{k\alpha n}(t_2), \tag{32}$$

and

$$\Sigma_{\alpha,mn}^{\gamma}(t_1, t_2) = \sum_{k} T_{k\alpha m}^{*}(t_1) g_{k\alpha}^{\gamma}(t_1, t_2) T_{k\alpha n}(t_2)$$
(33)

in which, $g_{k\sigma}$ is the free propagator of lead, and γ is $\{\xi, \xi, r, a\}$. From Keldysh equation, we have (different from Eq. (33) in Chap. II?)

$$G^{<} = G^r \Sigma^{<} G^a \tag{34}$$

whose Fourier transformation gives

$$G^{<}(E_1, E_2) = \int \frac{dE}{2\pi} \frac{dE'}{2\pi} G^r(E_1, E) \Sigma^{<}(E, E') G^a(E', E_2)$$
(35)

5 Calculate G^r

For G^r , the Dyson equation gives (refer to [3])

$$G^{r}(t_{1}, t_{2}) = G^{0r}(t_{1} - t_{2}) + \int dt \ G^{0r}(t_{1} - t)H'(t)G^{r}(t, t_{2})$$
(36)

in which, G^{0r} is not the free propagator of central dot, but the equilibrium Green's function when the pumping potential H' is set to zero, i.e. the hamiltonian is H - H', not $\varepsilon_n d_{n\sigma}^{\dagger} d_{n\sigma}$. Multiply $e^{iE_1t_1 - iE_2t_2}$ and integrate on both sides, we have

$$G^{r}(E_{1}, E_{2}) \equiv \int dt_{1}dt_{2}e^{iE_{1}t_{1} - iE_{2}t_{2}}G^{r}(t_{1}, t_{2})$$

$$= 2\pi G^{0r}(E_{1})\delta(E_{1} - E_{2})$$

$$+ \int dt_{1}G^{0r}(t_{1} - t)e^{iE_{1}(t_{1} - t)}H'(t)e^{i(E_{1} - E)t} \iint dtdt_{2}G^{r}(t, t_{2})e^{iEt - E_{2}t_{2}}$$

$$= 2\pi G^{0r}(E_{1})\delta(E_{1} - E_{2}) + \int \frac{dE}{2\pi}G^{0r}(E_{1})H'(E_{1} - E)G^{r}(E, E_{2}),$$

$$(37)$$

in which, we inserted the inverse Fourier transformation

$$H'(t) = \int \frac{dE}{2\pi} e^{-i(E_1 - E)t} H'(E_1 - E). \tag{38}$$

5.1 Calcualte G^{0r}

Using Eq. (9) and Eq. (13), we have

$$\partial_t d_{n\sigma}^{\dagger} = i(\epsilon_n + \sigma B_0 \cos \theta) d_{n\sigma}^{\dagger} + i \sum_{k,\alpha = L,R} T_{k\alpha n} C_{k\alpha \sigma}^{\dagger}$$
(39)

$$\partial_t d_{n\sigma} = -i(\epsilon_n + \sigma B_0 \cos \theta) d_{n\sigma} - i \sum_{k,\alpha = L,R} T_{k\alpha n}^* C_{k\alpha \sigma}^{\dagger}$$
(40)

then

$$d_{n\sigma}^{\dagger}(t) = d_{n\sigma}^{\dagger}(0)e^{i(\epsilon_n + \sigma B_0 \cos \theta)t} + it \sum_{k,\alpha = L,R} T_{k\alpha n} C_{k\alpha \sigma}^{\dagger}$$

$$\tag{41}$$

$$d_{n\sigma}(t) = d_{n\sigma}(0)e^{-i(\epsilon_n + \sigma B_0 \cos \theta)} - it \sum_{k,\alpha = L,R} T_{k\alpha n}^* C_{k\alpha \sigma}$$

$$\tag{42}$$

Note ϵ_n is time-dependent, $G^{0r}(t,t')$ depends only on time difference.

$$G_{n\sigma}^{0r}(t,t') = -i\theta(t-t')\langle \{d_{n\sigma}(t), d_{n\sigma}^{\dagger}(t')\}\rangle$$
=?
(43)

The hamiltonian H-H' cannot flip spin, so in the spin space $\{d_{1,\uparrow}^{\dagger}, d_{1,\downarrow}^{\dagger}, d_{2\uparrow}^{\dagger}, d_{2\downarrow}^{\dagger}, \dots; d_{1\uparrow}, d_{1\downarrow}, d_{2\uparrow}, d_{2\downarrow}, \dots\}, G^{0r}$ is diagonal

$$G^{0r}(E) = \bigotimes_{n} G_n^{0r}(E) \tag{44}$$

$$G_n^{0r}(E) = \begin{pmatrix} G_{n\uparrow}^{0r}(E) & 0\\ 0 & G_{n\downarrow}^{0r}(E) \end{pmatrix}. \tag{45}$$

5.2 Calcualte G^r

In spin space

$$G^{r} \equiv \begin{pmatrix} G_{n\uparrow,m\uparrow}^{r} & G_{n\uparrow,m\downarrow}^{r} \\ G_{n\downarrow,m\uparrow}^{r} & G_{n\downarrow,m\downarrow}^{r} \end{pmatrix}$$

$$\tag{46}$$

is a matrix of 2N dimension, where N is the total number of levels in central area. H' in Eq. (36) is a matrix of same dimension, given by

$$H' = \bigotimes_{n} H'_{n},\tag{47}$$

$$H_n' = \begin{pmatrix} 0 & \gamma e^{-i\omega t} \\ \gamma e^{i\omega t} & 0 \end{pmatrix}. \tag{48}$$

For simplicity, we consider only one energy level and neglect level index. we have

$$H'(E_1 - E) = \int dt e^{i(E_1 - E)t} H'(t)$$

$$= \begin{pmatrix} 0 & \gamma \int dt e^{i(E_1 - E - \omega)t} \\ \gamma \int dt e^{i(E_1 - E + \omega)t} & 0 \end{pmatrix}$$

$$= 2\pi\gamma \begin{pmatrix} 0 & \delta(E_1 - E - \omega) \\ \delta(E_1 - E + \omega) & 0 \end{pmatrix}$$
(49)

Substitute these equations into Eq. (37), we get

$$\begin{pmatrix}
G_{\uparrow,\uparrow}^{r}(E_{1}, E_{2}) & G_{\uparrow,\downarrow}^{r}(E_{1}, E_{2}) \\
G_{\downarrow,\uparrow}^{r}(E_{1}, E_{2}) & G_{\downarrow,\downarrow}^{r}(E_{1}, E_{2})
\end{pmatrix} = \begin{pmatrix}
G_{\uparrow}^{0r}(E_{1}) & 0 \\
0 & G_{\downarrow}^{0r}(E_{1})
\end{pmatrix} 2\pi\delta(E_{1} - E_{2})$$

$$+ \gamma \int dE \begin{pmatrix}
G_{\uparrow}^{0r}(E_{1}) & 0 \\
0 & G_{\downarrow}^{0r}(E_{1})
\end{pmatrix}$$

$$\times \begin{pmatrix}
0 & \delta(E_{1} - E - \omega) \\
\delta(E_{1} - E + \omega) & 0
\end{pmatrix} \begin{pmatrix}
G_{\uparrow,\uparrow}^{r} & G_{\uparrow,\downarrow}^{r} \\
G_{\downarrow,\uparrow}^{r} & G_{\downarrow,\downarrow}^{r}
\end{pmatrix}$$

$$= \begin{pmatrix}
G_{\uparrow}^{0r}(E_{1}) & 0 \\
0 & G_{\downarrow}^{0r}(E_{1})
\end{pmatrix} 2\pi\delta(E_{1} - E_{2})$$

$$+ \begin{pmatrix}
G_{1}(E_{1}, E_{2}) & G_{2}(E_{1}, E_{2}) \\
G_{3}(E_{1}, E_{2}) & G_{4}(E_{1}, E_{2})
\end{pmatrix}.$$
(50)

where we have omitted the independent variables (E, E_2) of $G^r_{n\sigma,m\sigma'}$ for sake of convenience. In the above equations G_1, G_2, G_3, G_4 are

$$G_1(E_1, E_2) = \gamma \int dE G_{\uparrow}^{0r}(E_1) \,\delta(E_1 - E - \omega) G_{\downarrow,\uparrow}^r(E, E_2)$$

$$\tag{51}$$

$$G_2(E_1, E_2) = \gamma \int dE G_{\uparrow}^{0r}(E_1) \,\delta(E_1 - E - \omega) G_{\downarrow,\downarrow}^r(E, E_2)$$

$$(52)$$

$$G_3(E_1, E_2) = \gamma \int dE G_{\downarrow}^{0r}(E_1) \,\delta(E_1 - E + \omega) G_{\uparrow,\uparrow}^r(E, E_2)$$

$$\tag{53}$$

$$G_4(E_1, E_2) = \gamma \int dE G_{\downarrow}^{0r}(E_1) \,\delta(E_1 - E + \omega) G_{\uparrow,\downarrow}^r(E, E_2)$$

$$\tag{54}$$

So, the G_1 term

$$G_{\uparrow,\uparrow}^{r}(E_{1}, E_{2}) = G_{\uparrow}^{0r}(E_{1}) 2\pi\delta(E_{1} - E_{2}) + G_{1}(E_{1}, E_{2})$$

$$= 2\pi G_{\uparrow}^{0r}(E_{1}) \delta(E_{1} - E_{2}) + \gamma G_{\downarrow}^{0r}(E_{1}) G_{\downarrow,\uparrow}^{r}(E_{1} - \omega, E_{2})$$
(55)

The G_2 term

$$G_{\uparrow,\downarrow}^{r}(E_{1}, E_{2}) = G_{2}(E_{1}, E_{2})$$

$$= \gamma G_{\uparrow}^{0r}(E_{1}) G_{\downarrow,\downarrow}^{r}(E_{1} - \omega, E_{2})$$
(56)

The G_3 term

$$G_{\downarrow,\uparrow}^{r}(E_{1}, E_{2}) = G_{3}(E_{1}, E_{2})$$

$$= \gamma G_{\downarrow}^{0r}(E_{1}) G_{\uparrow,\uparrow}^{r}(E_{1} + \omega, E_{2})$$
(57)

and the G_4 term

$$G_{\downarrow,\downarrow}^{r}(E_{1}, E_{2}) = g_{\downarrow}^{r}(E_{1}) 2\pi\delta (E_{1} - E_{2}) + G_{4}(E_{1}, E_{2})$$

$$= 2\pi G_{\downarrow}^{0r}(E_{1}) \delta (E_{1} - E_{2}) + \gamma G_{\downarrow}^{0r}(E_{1}) G_{\uparrow,\downarrow}^{r}(E_{1} + \omega, E_{2})$$
(58)

After collecting terms, we get

$$G_{\uparrow,\uparrow}^{r}(E_{1}, E_{2}) = 2\pi G_{\uparrow}^{0r}(E_{1}) \,\delta(E_{1} - E_{2}) + \gamma G_{\uparrow}^{0r}(E_{1}) \,\gamma G_{\downarrow}^{0r}(E_{1} - \omega) G_{\uparrow,\uparrow}^{r}(E_{1}, E_{2})$$

$$= \frac{2\pi G_{\uparrow}^{0r}(E_{1}) \,\delta(E_{1} - E_{2})}{1 - \gamma^{2} G_{\uparrow}^{0r}(E_{1}) \,G_{\downarrow}^{0r}(E_{1} - \omega)}$$
(59)

and

$$G_{\downarrow,\downarrow}^{r}(E_{1}, E_{2}) = \frac{2\pi G_{\downarrow}^{0r}(E_{1}) \delta(E_{1} - E_{2})}{1 - \gamma^{2} G_{\downarrow}^{0r}(E_{1}) G_{\downarrow}^{0r}(E_{1} + \omega)}$$

$$(60)$$

and

$$G_{\uparrow,\downarrow}^{r}(E_{1}, E_{2}) = \gamma G_{\uparrow}^{0r}(E_{1}) G_{\downarrow,\downarrow}^{r}(E_{1} - \omega, E_{2})$$

$$= \frac{2\pi \gamma G_{\uparrow}^{0r}(E_{1}) G_{\downarrow}^{0r}(E_{1} - \omega) \delta(E_{1} - \omega - E_{2})}{1 - \gamma^{2} G_{\downarrow}^{0r}(E_{1} - \omega) G_{\uparrow}^{0r}(E_{1})}$$
(61)

$$G_{\downarrow,\uparrow}^{r}(E_{1}, E_{2}) = \gamma G_{\downarrow}^{0r}(E_{1}) G_{\uparrow,\uparrow}^{r}(E_{1} + \omega, E_{2})$$

$$= \frac{2\pi \gamma G_{\uparrow}^{0r}(E_{1} + \omega) G_{\downarrow}^{0r}(E_{1}) \delta(E_{1} + \omega - E_{2})}{1 - \gamma^{2} G_{\uparrow}^{0r}(E_{1} + \omega) G_{\downarrow}^{0r}(E_{1})}$$
(62)

Define

$$g_{\sigma}^{r,a}(E) \equiv \frac{G_{\sigma}^{0r,a}(E)}{1 - \gamma^2 G_{\sigma}^{0r,a}(E) G_{\bar{\sigma}}^{0r,a}(E + \bar{\sigma}\omega)},\tag{63}$$

then we can write

$$G_{\uparrow,\uparrow}^r(E_1, E_2) = 2\pi g_{\uparrow}^r(E_1)\delta(E_1 - E_2).$$
 (64)

$$G_{\downarrow,\downarrow}^r(E_1, E_2) = 2\pi g_{\downarrow}^r(E_1)\delta(E_1 - E_2). \tag{65}$$

$$G_{\uparrow,\downarrow}^r(E_1, E_2) = 2\pi\gamma G_{\uparrow}^{0r}(E_1)g_{\downarrow}^r(E_1 - \omega)\delta(E_1 - \omega - E_2). \tag{66}$$

$$G_{\downarrow,\uparrow}^r(E_1, E_2) = 2\pi \gamma G_{\downarrow}^{0r}(E_1) g_{\uparrow}^r(E_1 + \omega) \delta(E_1 + \omega - E_2).$$
 (67)

Thus we get G^r in Eq. (46).

6 Calculate $G^{<}$

6.1 Calcualte Σ_{α}

In Eq. (32),

$$\Sigma_{\alpha}^{\gamma}(t_1, t_2) = \sum_{k} T_{k\alpha}^{*}(t_1) g_{k\alpha}^{\gamma}(t_1, t_2) T_{k\alpha}(t_2).$$
 (68)

Here we consider parametric pumping, thus no bias presents in the leads as demonstrated in the system Hamiltonian, i.e. $\Sigma_a(t_1, t_2) \to \Sigma_a(t_1 - t_2)$. Using free propagators $g_{k\alpha\sigma}^{\gamma}$, Fourier-transform to

$$\Sigma_{\alpha\sigma}^{<}(E_1, E_2) = 2\pi \Sigma_{\alpha\sigma}^{<}(E_1)\delta(E_1 - E_2),\tag{69}$$

in which

$$\Sigma_{\alpha\sigma}^{<}(E) = if(E)\Gamma_{\alpha}(E). \tag{70}$$

The linewidth function Γ is defined as

$$\Gamma_{\alpha}(E) \equiv 2\pi \sum_{k} T_{k\alpha}^{*} T_{k\alpha} \delta\left(E - \epsilon_{k}\right), \tag{71}$$

thus we have Σ_{σ} , which is a number in spin space, not a matrix, since $\Sigma^{<}$ is independent of spin σ . Similarly,

$$\Sigma_{\alpha\sigma}^{a}(E_1, E_2) = 2\pi \Sigma_{\alpha\sigma}^{a}(E_1)\delta(E_1 - E_2), \tag{72}$$

and the retarted(advanced) self-energy is (?)

$$\Sigma_{\alpha\sigma}^{r,a}(E) = \Lambda_{\alpha}(E) \mp \frac{i}{2} \Gamma_{\alpha}(E), \tag{73}$$

since

$$\Sigma_{\alpha\sigma}^{a}(E) = [\Sigma_{\alpha\sigma}^{r}(E)]^{*} \tag{74}$$

and

$$\Sigma_{\alpha\sigma}^{a}(E) - \Sigma_{\alpha\sigma}^{r}(E) = i\Gamma_{\alpha\sigma}(E)$$

$$= 2i\operatorname{Im}\{\Sigma_{\alpha\sigma}^{a}(E)\}.$$
(75)

6.2 Calculate G^a

We have relation

$$G_{\sigma,\sigma'}^{a}(E_1, E_2) = (G_{\sigma',\sigma}^{r}(E_2, E_1))^*, \tag{76}$$

$$G^{r}(E_{1}, E_{2}) = \begin{pmatrix} G_{11}^{r}(E_{1}, E_{2}) & G_{12}^{r}(E_{1}, E_{2}) \\ G_{21}^{r}(E_{1}, E_{2}) & G_{22}^{r}(E_{1}, E_{2}) \end{pmatrix}$$

$$(77)$$

so in spin space,

$$G^{a}(E_{1}, E_{2}) = \begin{pmatrix} (G_{11}^{r}(E_{2}, E_{1}))^{*} & (G_{21}^{r}(E_{2}, E_{1}))^{*} \\ (G_{12}^{r}(E_{2}, E_{1}))^{*} & (G_{22}^{r}(E_{2}, E_{1}))^{*} \end{pmatrix}$$

$$(78)$$

6.3 Calculate $G^{<}$

Substitute $G^r, \Sigma^{<}, G^a$ into Eq. (34), we get $G^{<}$,

$$G^{<}(E_{1}, E_{2}) = \int \frac{dE}{2\pi} \frac{dE'}{2\pi} G^{r}(E_{1}, E) \Sigma^{<}(E, E') G^{a}(E', E_{2})$$

$$= \int \frac{dE}{2\pi} G^{r}(E_{1}, E) \Sigma^{<}(E) G^{a}(E, E_{2})$$

$$= \int \frac{dE}{2\pi} i f(E) \Gamma(E) G^{r}(E_{1}, E) G^{a}(E, E_{2})$$
(79)

$$G^{r}(E_{1}, E) G^{a}(E, E_{2}) = \begin{pmatrix} G_{1} & G_{2} \\ G_{3} & G_{4} \end{pmatrix}$$
 (80)

in which, the G_1 term is

$$G_{1} = G_{11}^{r}(E_{1}, E)G_{11}^{r*}(E_{2}, E) + G_{12}^{r}(E_{1}, E)G_{12}^{r*}(E_{2}, E)$$

$$= (2\pi)^{2}g_{\uparrow}^{r}(E_{1})g_{\uparrow}^{r*}(E_{2})\delta(E_{2} - E)\delta(E_{1} - E)$$

$$+ (2\pi\gamma)^{2}G_{\uparrow}^{0r}(E_{1})g_{\downarrow}^{r}(E_{1} - \omega)G_{\uparrow}^{0r*}(E_{2})g_{\downarrow}^{r*}(E_{2} - \omega)\delta(E_{1} - \omega - E)\delta(E_{2} - \omega - E)$$
(81)

the G_2 term is

$$G_2 = G_{11}^r(E_1, E)G_{21}^{r*}(E_2, E) + G_{12}^r(E_1, E)G_{22}^{r*}(E_2, E)$$
(82)

the G_3 term is

$$G_3 = G_{21}^r(E_1, E)G_{11}^r(E_2, E) + G_{22}^r(E_1, E)G_{12}^{r*}(E_2, E)$$
(83)

the G_4 term is

$$G_4 = G_{21}^r(E_1, E)G_{21}^{r*}(E_2, E) + G_{22}^r(E_1, E)G_{22}^{r*}(E_2, E)$$
(84)

So, the matrix element of $G^{<}$ is

$$G^{<}(E_1, E_2) = \begin{pmatrix} G_{11}^{<} & G_{12}^{<} \\ G_{21}^{<} & G_{22}^{<} \end{pmatrix}$$
 (85)

$$G_{11}^{<}(E_{1}, E_{2}) = \int \frac{dE}{2\pi} i f(E) \Gamma(E) (2\pi)^{2} g_{\uparrow}^{r}(E_{1}) g_{\uparrow}^{r,*}(E_{2}) \delta(E_{2} - E) \delta(E_{1} - E)$$

$$+ \int \frac{dE}{2\pi} i f(E) \Gamma(E) (2\pi\gamma)^{2} G_{\uparrow}^{0r}(E_{1}) g_{\downarrow}^{r}(E_{1} - \omega) G_{\uparrow}^{0r*}(E_{2}) g_{\downarrow}^{r*}(E_{2} - \omega) \delta(E_{1} - \omega - E) \delta(E_{2} - \omega - E)$$

$$= 2\pi i f(E_{1}) \Gamma(E_{1}) g_{\uparrow}^{r}(E_{1}) g_{\uparrow}^{r,*}(E_{2}) \delta(E_{2} - E_{1})$$

$$+ 2\pi\gamma^{2} i f(E_{1} - \omega) \Gamma(E_{1} - \omega) G_{\uparrow}^{0r}(E_{1}) g_{\downarrow}^{r}(E_{1} - \omega) G_{\uparrow}^{0r*}(E_{2}) g_{\downarrow}^{r*}(E_{2} - \omega) \delta(E_{2} - E_{1})$$

$$(86)$$

7 Spin-up current

The spin-up current (31) is

$$I_{\alpha\uparrow,\uparrow}(\omega_{1}) = -\frac{e}{\hbar} \int \frac{dE}{2\pi} \frac{dE'}{2\pi} \left[G_{11}^{r} \left(E + \omega_{1}, E' \right) 2\pi i f(E') \Gamma_{\alpha}(E') \delta(E' - E) + G_{11}^{<}(E + \omega_{1}, E') 2\pi \Sigma_{\alpha}^{a}(E') \delta(E' - E) \right. \\ \left. - 2\pi i f(E + \omega_{1}) \Gamma_{\alpha}(E + \omega_{1}) \delta(E + \omega_{1} - E') G_{11}^{a} \left(E', E \right) - 2\pi \Sigma_{\alpha}^{r} \left(E + \omega_{1} \right) \delta(E + \omega_{1} - E') G_{11}^{<} \left(E', E \right) \right] \\ = -\frac{e}{\hbar} \int \frac{dE}{2\pi} \left[G_{11}^{r} \left(E + \omega_{1}, E \right) i f(E) \Gamma_{\alpha}(E) + G_{11}^{<}(E + \omega_{1}, E) \Sigma_{\alpha}^{a}(E) \right. \\ \left. - i f(E + \omega_{1}) \Gamma_{\alpha}(E + \omega_{1}) G_{11}^{a} \left(E + \omega_{1}, E \right) - \Sigma_{\alpha}^{r} \left(E + \omega_{1}, E \right) \right].$$

$$(87)$$

Recall that

$$G_{11}^r(E_1, E_2) = 2\pi g_{\uparrow}^r(E_1)\delta(E_1 - E_2) \tag{88}$$

$$G_{11}^a(E_1, E_2) = 2\pi g_{\uparrow}^a(E_1)\delta(E_1 - E_2) \tag{89}$$

$$G_{11}^{\leq}(E_1, E_2) = 2\pi [A(E_1, E_2) + B(E_1, E_2)]\delta(E_2 - E_1), \tag{90}$$

in which

$$A(E_1, E_2) = if(E_1)\Gamma(E_1)g_{\uparrow}^r(E_1)g_{\uparrow}^{r,*}(E_2)$$
(91)

$$B(E_1, E_2) = \gamma^2 i f(E_1 - \omega) \Gamma(E_1 - \omega) G_{\uparrow}^{0r}(E_1) g_{\downarrow}^r(E_1 - \omega) G_{\uparrow}^{0r*}(E_2) g_{\downarrow}^{r*}(E_2 - \omega).$$
(92)

Substitute Eq. (88) (89) and (90) into (87), we have

$$I_{\alpha\uparrow,\uparrow}(\omega_{1}) = -\frac{e}{\hbar} \int dE g_{\uparrow}^{r}(E+\omega_{1}) i f(E) \Gamma_{\alpha}(E) \delta(\omega_{1}) + [A(E+\omega_{1},E) + B(E+\omega_{1},E)] \delta(-\omega_{1}) \Sigma_{\alpha}^{a}(E)$$
$$-i f(E+\omega_{1}) \Gamma_{\alpha}(E+\omega_{1}) g_{\uparrow}^{a}(E+\omega_{1}) \delta(\omega_{1}) - \Sigma_{\alpha}^{r}(E+\omega_{1}) [A(E+\omega_{1},E) + B(E+\omega_{1},E)] \delta(-\omega_{1})$$
(93)

Omit ω_1 , we get

$$I_{\alpha\uparrow,\uparrow} = -\frac{e}{\hbar} \int dE g_{\uparrow}^{r}(E) i f(E) \Gamma_{\alpha}(E) + [A(E) + B(E)] \Sigma_{\alpha}^{a}(E)$$

$$-i f(E) \Gamma_{\alpha}(E) g_{\uparrow}^{a}(E) - \Sigma_{\alpha}^{r}(E) [A(E) + B(E)]$$

$$= -\frac{e}{\hbar} \int dE [g_{\uparrow}^{r}(E) - g_{\uparrow}^{a}(E) + A(E) + B(E)] i f(E) \Gamma_{\alpha}(E),$$
(94)

in which,

$$g_{\sigma}^{r,a}(E) \equiv \frac{G_{\sigma}^{0r,a}(E)}{1 - \gamma^2 G_{\sigma}^{0r,a}(E) G_{\bar{\sigma}}^{0r,a}(E + \bar{\sigma}\omega)},\tag{95}$$

$$A(E) = if(E)\Gamma(E)g_{\uparrow}^{r}(E)g_{\uparrow}^{r,*}(E)$$
(96)

$$B(E) = \gamma^2 i f(E - \omega) \Gamma(E - \omega) G^{0r}_{\uparrow}(E) g^r_{\downarrow}(E - \omega) G^{0r*}_{\uparrow}(E) g^{r*}_{\downarrow}(E - \omega).$$

$$(97)$$

References

- [1] Y, K, Kato. Observation of the Spin Hall Effect in Semiconductors[J]. Science, 2004.
- [2] Antti-Pekka Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, P188.
- [3] PRB 67, 092408 (2003).