Physics 4310

Exam 1 February 24, 2016

- Turn off your cell phone NOW, if you have one, and put it away. Avoid the appearance of impropriety.
- This test contains 18 questions and 67 points. The point value of each question may be found in a little box, like so: 3.
- If any question seems ambiguous, ask me about it. Raise your hand (and maybe clear your throat if I'm not looking) and I will come to you; please remain seated.
- Partial credit is available *everywhere*; when in doubt, explain your reasoning. If you need more room to write, use the back of a sheet, but tell me that you are continuing on the back.

 Show your work.
- In the event that I have to make a correction or clarification to the exam, I will announce it and write it on the board; if I do so, you are responsible for taking these corrections into account.
- Look out for *emphasized* and **bolded** words; they are usually important.
- Please use the little blank (_____) for your answers, where provided. If there is no blank, please box or circle your final answer.
- When you're done, place the exam in the appropriate pile, and leave quietly; please do not stand outside the doors talking about the exam.

Good luck!

- 3 1. _____ A large number of particles with arbitrary state $|\psi\rangle$ are run through three Stern-Gerlach apparatuses, as shown. N_{\uparrow} particles leave the final S_z apparatus in the state $|\uparrow\rangle$ and N_{\downarrow} particles leave in the state $|\downarrow\rangle$. Which of the following is true?
 - $\mathbf{A}) N_{\uparrow} = 0 \quad \mathbf{B}) N_{\uparrow} \approx N_{\downarrow} \quad \mathbf{C}) N_{\downarrow} = 0$

- 2. In the spin-1/2 system,
- [2] (a) _____ What is $\left| \langle \leftarrow | \rightarrow \rangle \right|^2$? **A)** 0 **B)** $\frac{1}{2}$ **C)** $\frac{1}{\sqrt{2}}$ **D)** 1
- $\boxed{3}$ 3. If P_{\rightarrow} is the projection operator for $|\rightarrow\rangle$, what is $P_{\rightarrow}\Big(3|\rightarrow\rangle-2|\leftarrow\rangle\Big)$?

 $\boxed{3} \ \ \text{4. If } |\psi\rangle = |\!\uparrow\rangle - i|\!\downarrow\rangle \text{ and } |\phi\rangle = 2i|\!\uparrow\rangle + 3|\!\downarrow\rangle, \text{ find } \langle\psi|\phi\rangle.$

- 5. Consider the vector $|\psi\rangle=3i|\uparrow\rangle-|\downarrow\rangle$. (a) Normalize $|\psi\rangle$.
- 3

2 (b) Write $|\psi\rangle$ as a matrix in the S_z basis (normalized or not, as you like).

2(c) Write $\langle \psi |$ as a matrix in the S_z basis (normalized or not, as you like).

- 6. A system's Hamiltonian has three energy states: $E_1=1\,\mathrm{J},\ E_2=2\,\mathrm{J},\ \mathrm{and}\ E_3=3\,\mathrm{J}.$ The system is in the state $|\psi\rangle=\frac{1}{2}|E_1\rangle-|E_2\rangle$, and its energy is then measured.
- [3] (a) _____ What is the probability that the measurement will return the value 1 J? **A)** $\frac{1}{5} = 20\%$ **B)** $\frac{1}{4} = 25\%$ **C)** $\frac{1}{\sqrt{5}} = 45\%$ **D)** $\frac{1}{2} = 50\%$

(b) What is the probability that the measurement will return the value 3 J?

3 7. $\frac{S_x|\uparrow\rangle}{\mathbf{A}}$ is equal to \mathbf{B} $\frac{\hbar}{2}|\downarrow\rangle$ \mathbf{B} $\frac{\hbar}{2}|\downarrow\rangle$ \mathbf{C} $\frac{\hbar}{2}|\odot\rangle$ \mathbf{D} $\frac{\hbar}{2}|\otimes\rangle$ \mathbf{E} $\frac{\hbar}{2}$ \mathbf{F} $\mathbf{0}$ \mathbf{G} $-\frac{\hbar}{2}$

3 8. _____ Which of the following matrices could represent a measurement? A) $\begin{pmatrix} i & 3 \\ -3 & -i \end{pmatrix}$ B) $\begin{pmatrix} 2 & -i+2 \\ i+2 & 2 \end{pmatrix}$ C) $\begin{pmatrix} i & 1-2i \\ 1-2i & -i \end{pmatrix}$ D) None of these (Explain)

- 9. Consider the operator $A \doteq \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix}$ in the S_z basis. Note that $A^2 \doteq \begin{pmatrix} 10 & 9 \\ 9 & 13 \end{pmatrix}$.
- (a) Find the expectation value $\langle A \rangle$ for the state $|\psi\rangle = |\uparrow\rangle$.

(b) Find the standard deviation ΔA for the state $|\psi\rangle = |\uparrow\rangle$.

2 10. _____ Suppose the spin of a particle is $|\nearrow\rangle$, halfway between \uparrow and \rightarrow . What is the probability that $|\nearrow\rangle$, when measured by S_z , will give a value of $+\frac{\hbar}{2}$?

A) 0% B) 15% C) 50% D) 85% E) 100%

 $\boxed{3}$ 11. _____ I measured a particular state $|\psi\rangle$ using Stern-Gerlach equipment, and I got the following results:

$$\Delta S_y = \frac{\hbar}{2}$$
 $\Delta S_z = \frac{2\hbar}{5}$ $\langle S_x \rangle = \frac{2\hbar}{5}$

Does this satisfy the uncertainty principle? (It's possible my results are wrong!) Prove your result.

B) yes, barely (= instead of >) **C)** no A) yes

- 3 12. _____ If the Hamiltonian has an eigenstate $|E_1\rangle = \frac{3}{5}|\uparrow\rangle \frac{4}{5}i|\downarrow\rangle$ with corresponding eigenvalue E_1 , what is the probability that $|\uparrow\rangle$ has energy E_1 (when its energy is measured)?

 - **A)** 36% **B)** 40%

- **C)** 60% **D)** 64% **E)** 80%

- 13. If $A = \begin{pmatrix} 4 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 4 \end{pmatrix}$ represents a measurement in a spin-1 system:
- (a) _____ If a particle in an arbitrary state $|\psi\rangle$ is measured by this operator, which of the following states could the particle be after it is measured by A? You can ignore normalization.
 - $\mathbf{A)} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{B)} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{C)} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

- (b) _____ If the particle comes out in the state given by your answer to part (a), what value will A return?
 - **A)** 1 **B)** 4 **C)** 5 **D)** 17 **E)** $\hbar/2$

3 14. A particle in the state $|\psi(0)\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle + |\downarrow\rangle)$. It is placed in a magnetic field so that its Hamiltonian has the eigenvectors

$$H|\uparrow\rangle = E_0|\uparrow\rangle$$
 and $H|\downarrow\rangle = 4E_0|\downarrow\rangle$

. Write $|\psi(t)\rangle$.

3 15. Given the following:

$$|\psi\rangle = |\uparrow\rangle - 2|\downarrow\rangle$$

$$|a_1\rangle = \frac{\sqrt{3}}{2}|\uparrow\rangle + \frac{i}{2}|\downarrow\rangle$$

$$|a_2\rangle = \frac{1}{2}|\uparrow\rangle - \frac{i\sqrt{3}}{2}|\downarrow\rangle$$

Write $|\psi\rangle$ in the a_1, a_2 basis. (That is, in the form $|\psi\rangle = c_1|a_1\rangle + c_2|a_2\rangle$.)

3 16. Evaluate and fully simplify the commutator $[x^2, \frac{d}{dx}]$.

3 17. If

$$\psi(x) = \begin{cases} x^2 - 1, & -1 \le x \le 1\\ 0, & \text{otherwise,} \end{cases}$$

find the expectation value of the momentum $\langle p \rangle$. $(\hat{p} = \frac{\hbar}{i} \frac{d}{dx})$

3 18. Explain why $\psi(x) = e^{-x}$ is not a valid wavefunction—i.e. why it can't describe the state of a system—over the range $-\infty < x < \infty$.