Valutazione sperimentale di una legge sulle altezze massime dei rimbalzi di una sfera

Alessandro Di Meglio Francesco Angelo Fabiano Antonacci

January 10, 2024

1 Scopo dell'esperienza

Lo scopo dell'esperienza è quello di valutare l'accuratezza di una legge nel modellizzare l'altezza raggiunta in rimbalzi successivi da una sfera lasciata cadere.

2 Cenni teorici

Assumiamo che ciascun rimbalzo assorba la stessa frazione di energia. L'altezza massima di ogni rimbalzo seguirà la seguente equazione:

$$h_n = h_0 \gamma^n \tag{1}$$

Dove h_0 è il numero di rimalzi, γ è il rapporto tra due altezza massime successive, n è il numero di rimbalzi. Questa è la legge che in questa relazione ci si prefigge di verificare.

Inoltre è possibile determinare l'altezza raggiunta fra 2 rimbalzi consecutivi come segue:

$$h_n = \frac{1}{8}g[(t_n - t_{n-1})^2]$$
 (2)

3 Apparato strumentale

3.1 Misure di tempi

Le misure di tempi sono state effettuate mediante uno smartphone con risoluzione di un 0.1ms . Ciononostante, si è stimato che l'incertezza sulle misure dei tempi $\sigma_t=1.5~[\mathrm{ms}]$ fosse la metà del tempo di contatto . Per l'incertezza sulle differenze dei tempi(dt) in cui sono avventuti gli urti è stata usata la seguente equazione: $\sigma_{dt}=\sigma_t\sqrt{2}$.

3.2 Misure di lunghezza

Le misure di lunghezza sono state prese con un metro a nastro con risoluzione di un millimetro. Per calcolare le incertezza (σ_h) delle altezze massime stimate(h) è stata usata la seguente equazione:

$$\sigma_h = \frac{\sigma_{dt} h 2\sqrt{2}}{dt} \tag{3}$$

3.3 Materiale

Una biglia di acciaio è stato l'oggetto con cui cercare di verificare la legge.

4 Descrizione delle misure

4.1 Misura dei periodi dei rimbalzi

E'stata misurata l'altezza del supporto. E' stata avviata una registrazione audio dei rimbalzi con lo smartphone. E' stata lasciata cadere la biglia da un supporto.

4.2 Misura altezza iniziale

L'altezza iniziale è stata misurata con un metro a nastro. La relativa incertezza è stata presa di 5 millimetri anziché di 1 in quanto non è stato garatito un rilascio perfetto.

$$h_0(misurata) = 0.373 \pm 0.005 \text{ m}$$

5 Analisi dei dati

5.1 Algoritmo di best fit

Il numero di rimbalzi non ha incertezza, pertanto è stato usato come variabile di incertezza trascurabile per l'algoritmo di best-fit. La funzione su cui fare il fit utilizzata non è stata (1) ma:

$$h_n = h_0 \gamma^n + c \tag{4}$$

Dove c è una costante, utile per scovare un potenziale errore sistematico, che desideriamo sia quanto più vicino a 0 possibile.

6 Conclusioni

Dai risultati dell'algoritmo di best-fit si osserva che: il parametro c è assai inferiore all'incertezza dell'altezza stimata e la sua incertezza fa sì che c=0 sia possibile; l'altezza iniziale misurata e quella stimata sono distanti non più di una barra di errore: le due sono compatibili. Inoltre da (Figure 2) si osserva

Figure 1: Altezze stiamate mediante l'occorrenza degli urti e previsioni di (4) con i parametri dati dall'algoritmo di best-fit

Figure 2: Grafico dei residui

h_0 (misura diretta) [m]	h_0 (algoritmo di best-fit) [m]	γ	c (algoritmo di best-fit) [m]
0.373 ± 0.005	0.364 ± 0.009	0.741 ± 0.008	0.001 ± 0.002

Table 1: Risultati dell'algoritmo di best-fit

che le previsioni non si discostano dai dati stimati per non più di due barre di errore. Di conseguenza l'equazione (1) è compatibile con quanto è stato misurato.