74AHC1G79; 74AHCT1G79

Single D-type flip-flop; positive-edge trigger Rev. 05 — 2 July 2007

Product data sheet

General description 1.

74AHC1G79 and 74AHCT1G79 are high-speed Si-gate CMOS devices. They provide a single positive-edge triggered D-type flip-flop.

Information on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock pulse. The D input must be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation.

The AHC device has CMOS input switching levels and supply voltage range 2 V to 5.5 V.

The AHCT device has TTL input switching levels and supply voltage range 4.5 V to 5.5 V.

2. **Features**

- Symmetrical output impedance
- High noise immunity
- Low power dissipation
- Balanced propagation delays
- SOT353-1 and SOT753 package options
- ESD protection:
 - HBM JESD22-A114E: exceeds 2000 V
 - MM JESD22-A115-A: exceeds 200 V
 - CDM JESD22-C101C: exceeds 1000 V
- Specified from -40 °C to +125 °C

Ordering information 3.

Table 1. **Ordering information**

Type number	Package						
	Temperature range	Name	Description	Version			
74AHC1G79GW	–40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package; 5 leads;	SOT353-1			
74AHCT1G79GW			body width 1.25 mm				
74AHC1G79GV	$-40~^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$	SC-74A	plastic surface-mounted package; 5 leads	SOT753			
74AHCT1G79GV							

4. Marking

Table 2. Marking codes

Type number	Marking
74AHC1G79GW	AP
74AHC1G79GV	A79
74AHCT1G79GW	CP
74AHCT1G79GV	C79

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
D	1	data input
СР	2	clock pulse input
GND	3	ground (0 V)
Q	4	data output
V _{CC}	5	supply voltage

7. Functional description

Table 4. Function table[1]

Inputs		Output
СР	D	Q + 1
\uparrow	L	L
\uparrow	Н	Н
L	X	Q

[1] H = HIGH voltage level;

L = LOW voltage level;

↑ = LOW-to-HIGH CP transition;

X = don't care:

Q + 1 = state after the next LOW-to-HIGH CP transition.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
V_{I}	input voltage		-0.5	+7.0	V
I_{IK}	input clamping current	$V_{I} < -0.5 \text{ V}$	-20	-	mA
I_{OK}	output clamping current	$V_O < -0.5 \text{ V}$ or $V_O > V_{CC} + 0.5 \text{ V}$	<u>[1]</u> -	±20	mA
Io	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{CC}	supply current		-	75	mA
I_{GND}	ground current		-75	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$	[2] _	250	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol Parameter		arameter Conditions			74AHC1G79			74AHCT1G79		
			Min	Тур	Max	Min	Тур	Max		
V_{CC}	supply voltage		2.0	5.0	5.5	4.5	5.0	5.5	V	
VI	input voltage		0	-	5.5	0	-	5.5	V	
Vo	output voltage		0	-	V_{CC}	0	-	V_{CC}	V	
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C	
$\Delta t/\Delta V$	input transition rise	V_{CC} = 3.3 V \pm 0.3 V	-	-	100	-	-	-	ns/V	
and fall rate	and fall rate	$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	-	-	20	-	-	20	ns/V	

10. Static characteristics

Table 7. Static characteristics

Voltages are referenced to GND (ground = 0 V).

Symbol Parameter		Conditions		25 °C		_40 °C t	o +85 °C	-40 °C to +125 °C		Unit
Cymbol	on and an		Min	Тур	Max	Min	Мах	Min	Max	
For type	74AHC1G79				•					
V_{IH}	HIGH-level	$V_{CC} = 2.0 \text{ V}$	1.5	-	-	1.5	-	1.5	-	V
	input voltage	$V_{CC} = 3.0 \text{ V}$	2.1	-	-	2.1	-	2.1	-	V
		$V_{CC} = 5.5 \text{ V}$	3.85	-	-	3.85	-	3.85	-	V
V_{IL}	LOW-level	$V_{CC} = 2.0 \text{ V}$	-	-	0.5	-	0.5	-	0.5	V
input voltage	$V_{CC} = 3.0 \text{ V}$	-	-	0.9	-	0.9	-	0.9	V	
		V _{CC} = 5.5 V	-	-	1.65	-	1.65	-	1.65	V

74AHC_AHCT1G79_5 © NXP B.V. 2007. All rights reserved.

^[2] For both TSSOP5 and SC-74A packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K.

Table 7. Static characteristics ...continued Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Uni
			Min	Тур	Max	Min	Max	Min	Max	
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}	1						'	
	output voltage	$I_{O} = -50 \mu\text{A}; V_{CC} = 2.0 \text{V}$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_O = -50 \mu\text{A}; V_{CC} = 3.0 \text{V}$	2.9	3.0	-	2.9	-	2.9	-	V
		$I_O = -50 \mu A$; $V_{CC} = 4.5 \text{ V}$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.58	-	-	2.48	-	2.40	-	V
		$I_{O} = -8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.94	-	-	3.8	-	3.70	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_O = 50 \mu A; V_{CC} = 2.0 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 50 \mu A; V_{CC} = 3.0 \text{ V}$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 50 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V
		$I_O = 8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V
I _I	input leakage current	$V_I = 5.5 \text{ V or GND};$ $V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	-	-	0.1	-	1.0	-	2.0	μΑ
СС	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	1.0	-	10	-	40	μΑ
Cı	input capacitance		-	1.5	10	-	10	-	10	pF
For type	74AHCT1G79									
V _{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	-	-	2.0	-	2.0	-	V
V_{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	-	8.0	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	$I_{O} = -50 \mu\text{A}$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_0 = -8.0 \text{ mA}$	3.94	-	-	3.8	-	3.70	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = 50 μA	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 8.0 \text{ mA}$	-	-	0.36	-	0.44	-	0.55	V
lı	input leakage current	V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	-	-	0.1	-	1.0	-	2.0	μΑ
lcc	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	1.0	-	10	-	40	μΑ
ΛI _{CC}	additional supply current	per input pin; $V_I = 3.4 \text{ V}$; other inputs at V_{CC} or GND; $I_O = 0 \text{ A}$; $V_{CC} = 5.5 \text{ V}$	-	-	1.35	-	1.5	-	1.5	m/
Cı	input capacitance		-	1.5	10	-	10	-	10	рF

74AHC_AHCT1G79_5 © NXP B.V. 2007. All rights reserved.

11. Dynamic characteristics

Table 8. Dynamic characteristics

GND = 0 V; $t_f = t_f = \le 3.0$ ns. For test circuit see Figure 6. For waveforms see Figure 5.

Symbol	Parameter	Conditions			25 °C		-40 °C	to +85 °C	-40 °C to +125 °C		Unit
•				Min	Тур	Max	Min	Max	Min	Max	
For type	74AHC1G79										
t _{pd}	propagation	CP to Q	[1]								
	delay	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[2]								
		C _L = 15 pF		-	4.9	8.4	1.0	9.8	1.0	11.5	ns
		$C_L = 50 pF$		-	6.9	12.0	1.0	14.0	1.0	15.5	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	[3]								
		C _L = 15 pF		-	3.5	5.6	1.0	7.0	1.0	8.0	ns
		C _L = 50 pF		-	5.1	8.0	1.0	10.0	1.0	11.0	ns
t _{su}	set-up time	D to CP		3.0	1.0	-	3.0	-	4.0	-	ns
t _h	hold time	D to CP		+2.0	-1.0	-	2.0	-	3.0	-	ns
t_{W}	pulse width	clock HIGH or LOW		3.0	-	-	3.0	-	4.0	-	ns
f _{max}	maximum frequency			90	-	-	90	-	70	-	MHz
C _{PD}	power dissipation capacitance	per buffer; $C_L = 50 \text{ pF}$; $f = 1 \text{ MHz}$; $V_I = \text{GND to } V_{CC}$	<u>[4]</u>	-	15	-	-	-	-	-	pF
For type	74AHCT1G7	9									
t _{pd}	propagation	CP to Q	<u>[1]</u>								
	delay	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	[3]								
		C _L = 15 pF		-	3.5	5.0	1.0	6.0	1.0	8.0	ns
		$C_L = 50 pF$		-	5.0	8.0	1.0	10.0	1.0	11.0	ns
t _{su}	set-up time	D to CP		3.0	1.0	-	3.0	-	4.0	-	ns
t _h	hold time	D to CP		+2.0	-1.0	-	2.0	-	3.0	-	ns
t _W	pulse width	clock HIGH or LOW		3.0	-	-	3.0	-	4.0	-	ns
f _{max}	maximum frequency			90	-	-	90	-	70	-	MHz
C_{PD}	power dissipation capacitance	per buffer; $C_L = 50 \text{ pF}$; $f = 1 \text{ MHz}$; $V_I = \text{GND to } V_{CC}$	[4]	-	16	-	-	-	-	-	pF

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

 $P_D = C_{PD} \times V_{CC}{}^2 \times f_i + \sum{(C_L \times V_{CC}{}^2 \times f_o)}$ where:

f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in Volts.

74AHC_AHCT1G79_5 © NXP B.V. 2007. All rights reserved.

^[2] Typical values are measured at $V_{CC} = 3.3 \text{ V}$.

^[3] Typical values are measured at $V_{CC} = 5.0 \text{ V}$.

^[4] C_{PD} is used to determine the dynamic power dissipation P_D (μW).

12. Waveforms

Measurement points are given in Table 9.

V_{OL} and V_{OH} are typical output voltage levels that occur with the output.

Fig 5. Clock (CP) to output (Q) propagation delay times, clock pulse width, D to set-up times, the CP to D hold times and maximum clock pulse frequency

Table 9. Measurement points

Туре	Inputs	Output	
	VI	V _M	V _M
74AHC1G79	GND to V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
74AHCT1G79	GND to 3.0 V	1.5 V	$0.5 \times V_{CC}$

Test data is given in Table 8. Definitions for test circuit:

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

Fig 6. Load circuitry for switching times

13. Package outline

TSSOP5: plastic thin shrink small outline package; 5 leads; body width 1.25 mm

SOT353-1

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION ISSUE DAT	
SOT353-1		MO-203	SC-88A			-00-09-01 03-02-19

Fig 7. Package outline SOT353-1 (TSSOP5)

Plastic surface-mounted package; 5 leads

SOT753

Fig 8. Package outline SOT753 (SC-74A)

14. Abbreviations

Table 10. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

15. Revision history

Table 11. Revision history

	•					
Document ID	Release date	Data sheet status	Change notice	Supersedes		
74AHC_AHCT1G79_5	20070702	Product data sheet	-	74AHC_AHCT1G79_4		
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 					
	 Legal texts have been adapted to the new company name where appropriate. 					
	 Package SOT353 changed to SOT353-1 in <u>Section 3</u> and <u>Section 13</u>. 					
	 Figure 5 updated to include waveform definitions for set-up, hold, pulse width and maximum frequency. 					
	 Quick reference data and Soldering sections removed. 					
74AHC_AHCT1G79_4	20020606	Product specification	-	74AHC_AHCT1G79_3		
74AHC_AHCT1G79_3	20020218	Product specification	-	74AHC_AHCT1G79_2		
74AHC_AHCT1G79_2	20010222	Product specification	-	74AHC_AHCT1G79_1		
74AHC_AHCT1G79_1	19990518	Product specification	-	-		

74AHC1G79; 74AHCT1G79

Single D-type flip-flop; positive-edge trigger

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

NXP Semiconductors

74AHC1G79; 74AHCT1G79

Single D-type flip-flop; positive-edge trigger

18. Contents

1	General description
2	Features
3	Ordering information 1
4	Marking 2
5	Functional diagram 2
6	Pinning information
6.1	Pinning
6.2	Pin description
7	Functional description 3
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 4
11	Dynamic characteristics 6
12	Waveforms
13	Package outline 8
14	Abbreviations
15	Revision history
16	Legal information11
16.1	Data sheet status
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks11
17	Contact information
18	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

