A Tutorial on Gaussian Processes (or why I don't use SVMs)

Zoubin Ghahramani

Department of Engineering University of Cambridge, UK

Machine Learning Department Carnegie Mellon University, USA

zoubin@eng.cam.ac.uk
http://learning.eng.cam.ac.uk/zoubin/

MLSS 2011

Nonlinear regression

Consider the problem of nonlinear regression:

You want to learn a function f with error bars from data $\mathcal{D} = \{\mathbf{X}, \mathbf{y}\}$

A Gaussian process defines a distribution over functions p(f) which can be used for Bayesian regression:

$$p(f|\mathcal{D}) = \frac{p(f)p(\mathcal{D}|f)}{p(\mathcal{D})}$$

Gaussian Processes

A Gaussian process defines a distribution over functions, p(f), where f is a function mapping some input space \mathcal{X} to \Re .

$$f: \mathcal{X} \to \Re$$
.

Notice that f can be an infinite-dimensional quantity (e.g. if $\mathcal{X}=\Re$)

Let $\mathbf{f} = (f(x_1), \dots, f(x_n))$ be an n-dimensional vector of function values evaluated at n points $x_i \in \mathcal{X}$. Note \mathbf{f} is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset $\{x_1, \ldots, x_n\} \subset \mathcal{X}$, the marginal distribution over that finite subset $p(\mathbf{f})$ has a multivariate Gaussian distribution.

Gaussian process covariance functions (kernels)

p(f) is a Gaussian process if for any finite subset $\{x_1, \ldots, x_n\} \subset \mathcal{X}$, the marginal distribution over that finite subset $p(\mathbf{f})$ has a multivariate Gaussian distribution.

Gaussian processes (GPs) are parameterized by a mean function, $\mu(x)$, and a covariance function, or kernel, K(x,x').

$$p(f(x), f(x')) = N(\mu, \Sigma)$$

where

$$\mu = \begin{bmatrix} \mu(x) \\ \mu(x') \end{bmatrix} \quad \Sigma = \begin{bmatrix} K(x,x) & K(x,x') \\ K(x',x) & K(x',x') \end{bmatrix}$$

and similarly for $p(f(x_1), \ldots, f(x_n))$ where now μ is an $n \times 1$ vector and Σ is an $n \times n$ matrix.

Gaussian process covariance functions

Gaussian processes (GPs) are parameterized by a mean function, $\mu(x)$, and a covariance function, K(x,x').

An example covariance function:

$$K(x_i, x_j) = v_0 \exp\left\{-\left(\frac{|x_i - x_j|}{r}\right)^{\alpha}\right\} + v_1 + v_2 \delta_{ij}$$

with parameters $(v_0, v_1, v_2, r, \alpha)$

These kernel parameters are interpretable and can be learned from data:

 $egin{array}{ccccc} v_0 & ext{signal variance} \ v_1 & ext{variance of bias} \ v_2 & ext{noise variance} \ r & ext{lengthscale} \ lpha & ext{roughness} \ \end{array}$

Once the mean and covariance functions are defined, everything else about GPs follows from the basic rules of probability applied to mutivariate Gaussians.

Samples from GPs with different $K(x,x^\prime)$

Using Gaussian processes for nonlinear regression

Imagine observing a data set $\mathcal{D} = \{(\mathbf{x}_i, y_i)_{i=1}^n\} = (\mathbf{X}, \mathbf{y}).$

Model:

$$y_i = f(\mathbf{x}_i) + \epsilon_i$$

$$f \sim \mathsf{GP}(\cdot|0,K)$$

$$\epsilon_i \sim \mathsf{N}(\cdot|0,\sigma^2)$$

Prior on f is a GP, likelihood is Gaussian, therefore posterior on f is also a GP.

We can use this to make predictions

$$p(y_*|\mathbf{x}_*, \mathcal{D}) = \int p(y_*|\mathbf{x}_*, f, \mathcal{D}) \, p(f|\mathcal{D}) \, df$$

We can also compute the marginal likelihood (evidence) and use this to compare or tune covariance functions

$$p(\mathbf{y}|\mathbf{X}) = \int p(\mathbf{y}|f, \mathbf{X}) p(f) df$$

Prediction using GPs with different K(x, x')

A sample from the prior for each covariance function:

Corresponding predictions, mean with two standard deviations:

gpdemo

Gaussian process (GP) priors

GP: consistent Gaussian prior on any set of function values $\mathbf{f} = \{f_n\}_{n=1}^N$, given corresponding inputs $\mathbf{X} = \{\mathbf{x}_n\}_{n=1}^N$

one sample function

Covariance: $\mathbf{K}_{nn'} = K(\mathbf{x}_n, \mathbf{x}_{n'}; \boldsymbol{\theta})$, hyperparameters $\boldsymbol{\theta}$

$$\mathbf{K}_{nn'} = \mathbf{v} \exp \left[-\frac{1}{2} \sum_{d=1}^{D} \left(\frac{x_n^{(d)} - x_{n'}^{(d)}}{r_d} \right)^2 \right]$$

Gaussian process (GP) priors

GP: consistent Gaussian prior on any set of function values $\mathbf{f} = \{f_n\}_{n=1}^N$, given corresponding inputs $\mathbf{X} = \{\mathbf{x}_n\}_{n=1}^N$

$$p(\mathbf{f}|\mathbf{X}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_N)$$

$$\mathbf{K}_N$$

Covariance: $\mathbf{K}_{nn'} = K(\mathbf{x}_n, \mathbf{x}_{n'}; \boldsymbol{\theta})$, hyperparameters $\boldsymbol{\theta}$

$$\mathbf{K}_{nn'} = \mathbf{v} \exp \left[-\frac{1}{2} \sum_{d=1}^{D} \left(\frac{x_n^{(d)} - x_{n'}^{(d)}}{r_d} \right)^2 \right]$$

GP regression

Gaussian observation noise: $y_n = f_n + \epsilon_n$, where $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$

sample data

marginal likelihood

$$p(\mathbf{y}|\mathbf{X}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_N + \sigma^2 \mathbf{I})$$

$$p(y_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(\mu_*, \sigma_*^2)$$

$$\mu_* = \mathbf{K}_{*N} (\mathbf{K}_N + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$$

$$\sigma_*^2 = K_{**} - \mathbf{K}_{*N} (\mathbf{K}_N + \sigma^2 \mathbf{I})^{-1} \mathbf{K}_{N*} + \sigma^2$$

GP regression

Gaussian observation noise: $y_n = f_n + \epsilon_n$, where $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$

sample data

marginal likelihood

$$p(\mathbf{y}|\mathbf{X}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_N + \sigma^2 \mathbf{I})$$

predictive distribution

$$p(y_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(\mu_*, \sigma_*^2)$$

$$\mu_* = \mathbf{K}_{*N} (\mathbf{K}_N + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$$

$$\sigma_*^2 = K_{**} - \mathbf{K}_{*N} (\mathbf{K}_N + \sigma^2 \mathbf{I})^{-1} \mathbf{K}_{N*} + \sigma^2$$

GP learning the kernel

Consider the covariance function K with hyperparameters $\theta = (v_0, v_1, r_1, \dots, r_d, \alpha)$:

$$K_{\boldsymbol{\theta}}(\mathbf{x}_i, \mathbf{x}_j) = v_0 \exp \left\{ -\sum_{d=1}^{D} \left(\frac{|x_i^{(d)} - x_j^{(d)}|}{r_d} \right)^{\alpha} \right\} + v_1$$

Given a data set $\mathcal{D} = (\mathbf{X}, \mathbf{y})$, how do we learn $\boldsymbol{\theta}$?

The marginal likelihood is a function of θ

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_{\boldsymbol{\theta}} + \sigma^2 \mathbf{I})$$

where its log is:

$$\ln p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = -\frac{1}{2} \ln \det(\mathbf{K}_{\boldsymbol{\theta}} + \sigma^2 \mathbf{I}) - \frac{1}{2} \mathbf{y}^{\top} (\mathbf{K}_{\boldsymbol{\theta}} + \sigma^2 \mathbf{I})^{-1} \mathbf{y} + \text{const}$$

which can be optimized as a function of θ and σ .

Alternatively, one can infer θ using Bayesian methods, which is more costly but immune to overfitting.

From linear regression to GPs:

• Linear regression with inputs x_i and outputs y_i :

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

ullet Linear regression with M basis functions:

$$y_i = \sum_{m=1}^{M} \beta_m \, \phi_m(x_i) + \epsilon_i$$

• Bayesian linear regression with basis functions:

$$\beta_m \sim \mathsf{N}(\cdot|0,\lambda_m)$$
 (independent of β_ℓ , $\forall \ell \neq m$), $\epsilon_i \sim \mathsf{N}(\cdot|0,\sigma^2)$

• Integrating out the coefficients, β_i , we find:

$$E[y_i] = 0, \qquad Cov(y_i, y_j) = K_{ij} \stackrel{\text{def}}{=} \sum_{m=1}^{M} \lambda_m \, \phi_m(x_i) \, \phi_m(x_j) + \delta_{ij} \sigma^2$$

This is a Gaussian process with covariance function $K(x_i, x_j) = K_{ij}$.

This GP has a finite number (M) of basis functions. Many useful GP kernels correspond to infinitely many basis functions (i.e. infinite-dim feature spaces).

A multilayer perceptron (neural network) with infinitely many hidden units and Gaussian priors on the weights \rightarrow a GP (Neal, 1996)

Using Gaussian Processes for Classification

Binary classification problem: Given a data set $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$, with binary class labels $y_i \in \{-1, +1\}$, infer class label probabilities at new points.

There are many ways to relate function values $f_i = f(\mathbf{x}_i)$ to class probabilities:

$$p(y_i|f_i) = \begin{cases} \frac{1}{1 + \exp(-y_i f_i)} & \text{sigmoid (logistic)} \\ \Phi(y_i f_i) & \text{cumulative normal (probit)} \\ \boldsymbol{H}(y_i f_i) & \text{threshold} \\ \epsilon + (1 - 2\epsilon)\boldsymbol{H}(y_i f_i) & \text{robust threshold} \end{cases}$$

Non-Gaussian likelihood, so we need to use approximate inference methods (Laplace, EP, MCMC).

Support Vector Machines

Consider soft-margin Support Vector Machines:

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (1 - y_i f_i)_+$$

where $()_+$ is the hinge loss and $f_i = f(\mathbf{x}_i) = \mathbf{w} \cdot \mathbf{x}_i + w_0$. Let's kernelize this:

$$\mathbf{x}_i \to \phi(\mathbf{x}_i) = k(\cdot, \mathbf{x}_i), \quad \mathbf{w} \to f(\cdot)$$

By reproducing property:

$$\langle k(\cdot, \mathbf{x}_i), f(\cdot) \rangle = f(\mathbf{x}_i).$$

By representer theorem, solution:

$$f(\mathbf{x}) = \sum_{i} \alpha_i k(\mathbf{x}, \mathbf{x}_i)$$

Defining $\mathbf{f} = (f_1, \dots f_N)^T$ note that $\mathbf{f} = \mathbf{K} \boldsymbol{\alpha}$, so $\boldsymbol{\alpha} = \mathbf{K}^{-1} \mathbf{f}$

Therefore the regularizer $\frac{1}{2} \|\mathbf{w}\|^2 \to \frac{1}{2} \|f\|_{\mathcal{H}}^2 = \frac{1}{2} \langle f(\cdot), f(\cdot) \rangle_{\mathcal{H}} = \frac{1}{2} \boldsymbol{\alpha}^\top \mathbf{K} \boldsymbol{\alpha} = \frac{1}{2} \mathbf{f}^\top \mathbf{K}^{-1} \mathbf{f}$

So we can rewrite the kernelized SVM loss as:

$$\min_{\mathbf{f}} \frac{1}{2} \mathbf{f}^{\top} \mathbf{K}^{-1} \mathbf{f} + C \sum_{i} (1 - y_i f_i)_{+}$$

Support Vector Machines and Gaussian Processes

We can write the SVM loss as:

$$\min_{\mathbf{f}} \ \frac{1}{2} \mathbf{f}^{\top} \mathbf{K}^{-1} \mathbf{f} + C \sum_{i} (1 - y_i f_i)_{+}$$

We can write the negative log of a GP likelihood as: $\frac{1}{2}\mathbf{f}^{\top}\mathbf{K}^{-1}\mathbf{f} - \sum_{i} \ln p(y_i|f_i) + c$ Equivalent? No.

With Gaussian processes we:

- Handle uncertainty in unknown function f by averaging, not minimization.
- Compute $p(y = +1|\mathbf{x}) \neq p(y = +1|\hat{\mathbf{f}}, \mathbf{x})$.
- Can learn the kernel parameters automatically from data, no matter how flexible we wish to make the kernel.
- Can learn the regularization parameter C without cross-validation.
- Can incorporate **interpretable** noise models and priors over functions, and can sample from prior to get intuitions about the model assumptions.
- We can combine automatic feature selection with learning using ARD.

A picture

Kernel

Matlab Demo: Gaussian Process Classification

matlab/gpml-matlab/gpml-demo

demo_ep_2d

demo_gpr

Sparse Approximations: Speeding up GP learning

(Snelson and Ghahramani, 2006a, 2006b; Naish-Guzman and Holden 2008)

We can approximate GP through M < N inducing points $\bar{\mathbf{f}}$ to obtain this Sparse Pseudo-input Gaussian process (SPGP) prior: $p(\mathbf{f}) = \int \mathrm{d}\bar{\mathbf{f}} \, \prod_n p(f_n|\bar{\mathbf{f}}) \, p(\bar{\mathbf{f}})$

- SPGP covariance inverted in $\mathcal{O}(M^2N) \ll \mathcal{O}(N^3) \Rightarrow$ much faster
- ullet SPGP = GP with non-stationary covariance parameterized by ${f X}$
- Given data $\{X, y\}$ with noise σ^2 , predictive mean and variance can be computed in $\mathcal{O}(M)$ and $\mathcal{O}(M^2)$ per test case respectively

Builds on a large lit on sparse GPs (see Quiñonero Candela and Rasmussen, 2006).

Some Comparisons

Table 1: Test errors and predictive accuracy (smaller is better) for the GP classifier, the support vector machine, the informative vector machine, and the sparse pseudo-input GP classifier.

Da	ta set	GPC	SVM	IVM	SPGPC
name	train:test dim	err nlp	err #sv	err nlp M	err nlp M
synth	250:1000 2	0.097 0.227	0.098 98	0.096 0.235 150	0.087 0.234 4
crabs	80:120 5	0.039 0.096	0.168 67	0.066 0.134 60	0.043 0.105 10
banana	400:4900 2	0.105 0.237	0.106 151	0.105 0.242 200	0.107 0.261 20
breast-cancer	r 200:77 9	0.288 0.558	0.277 122	0.307 0.691 120	0.281 0.557 2
diabetes	468:300 8	0.231 0.475	0.226 271	0.230 0.486 400	0.230 0.485 2
flare-solar	666:400 9	0.346 0.570	0.331 556	0.340 0.628 550	0.338 0.569 3
german	700:300 20	0.230 0.482	0.247 461	0.290 0.658 450	0.236 0.491 4
heart	170:100 13	0.178 0.423	0.166 92	0.203 0.455 120	0.172 0.414 2
image	1300:1010 18	0.027 0.078	0.040 462	0.028 0.082 400	0.031 0.087 200
ringnorm	400:7000 20	0.016 0.071	0.016 157	0.016 0.101 100	0.014 0.089 2
splice	1000:2175 60	0.115 0.281	0.102 698	0.225 0.403 700	0.126 0.306 200
thyroid	140:75 5	0.043 0.093	0.056 61	0.041 0.120 40	0.037 0.128 6
titanic	150:2051 3	0.221 0.514	0.223 118	0.242 0.578 100	0.231 0.520 2
twonorm	400:7000 20	0.031 0.085	0.027 220	0.031 0.085 300	0.026 0.086 2
waveform	400:4600 21	0.100 0.229	0.107 148	0.100 0.232 250	0.099 0.228 10

From (Naish-Guzman and Holden, 2008), using exactly same kernels.

Feature Selection

Example: classification

input
$$\mathbf{x} = (x_1, \dots, x_D) \in \mathbb{R}^D$$

output $y \in \{+1, -1\}$

 2^D possible subsets of relevant input features.

One approach, consider all models $m \in \{0,1\}^D$ and find

$$\hat{m} = \underset{m}{\operatorname{argmax}} \ p(\mathcal{D}|m)$$

Problems: intractable, overfitting, we should really average

Feature Selection

- Why are we doing feature selection?
- What does it cost us to keep all the features?
- Usual answer (overfitting) does not apply to fully Bayesian methods, since they don't involve any fitting.
- We should only do feature selection if there is a cost associated with measuring features or predicting with many features.

Note: Radford Neal won the NIPS feature selection competition using Bayesian methods that used 100% of the features.

Feature Selection using ARD in GPs

Problem: Often there are *many* possible inputs that might be relevant to predicting a particular output. We need algorithms that automatically decide which inputs are relevant.

Automatic Relevance Determination:

Consider this covariance function:

$$\mathbf{K}_{nn'} = v \exp \left[-\frac{1}{2} \sum_{d=1}^{D} \left(\frac{x_n^{(d)} - x_{n'}^{(d)}}{r_d} \right)^2 \right]$$

The parameter r_d is the length scale of the function along input dimension d.

As $r_d \to \infty$ the function f varies less and less as a function of $x^{(d)}$, that is, the dth dimension becomes *irrelevant*.

Given data, by learning the lengthscales (r_1, \ldots, r_D) it is possible to do automatic feature selection.

Bayesian Discriminative Modeling

Terminology for classification with inputs x and classes y:

- Generative Model: models prior p(y) and class-conditional density $p(\mathbf{x}|y)$
- Discriminative Model: directly models the conditional distribution $p(y|\mathbf{x})$ or the class boundary e.g. $\{\mathbf{x}: p(y=+1|\mathbf{x})=0.5\}$

Myth: Bayesian Methods = Generative Models

For example, it is possible to define Bayesian kernel classifiers (i.e. Gaussian processes) analogous to support vector machines (SVMs).

Conclusions

- Gaussian processes define distributions on functions which can be used for nonlinear regression, classification, ranking, preference learning, ordinal regression, etc.
- GPs are closely related to many other models. We can derive them from:
 - Bayesian kernel machines
 - Linear regression with basis functions
 - Infinite multi-layer perceptron neural networks
 - Spline models
- Compared to SVMs, GPs offer several advantages: learning the kernel and regularization parameters, integrated feature selection, fully probabilistic predictions, interpretability.

Appendix

An example of ARD for classification

Data set: 6-dimensional data set with three *relevant* features and three *irrelevant* features. For each data point $\vec{x_i}$, the relevant features depend on its class label: $x_i^1, x_i^2, x_i^3 \sim \mathcal{N}(y_i, 1)$, while the irrelevant features do not: $x_i^4, x_i^5, x_i^6 \sim \mathcal{N}(0, 1)$.

Result: $r_4, r_5, r_6 \rightarrow \infty$ improving the likelihood and classification error rates, compared to a single-lengthscale model.

Methods	single lengthscale	multiple lengthscales
	-55.4480	-35.4119
Error rates	0.0600	0.0400

Example from (Kim and Ghahramani, 2004)

More on ARD and feature selection with thousands of inputs: (Qi et al, 2004).

Feature Selection: Automatic Relevance Determination

Bayesian neural network

Data:
$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N} = (X, \mathbf{y})$$

Parameters (weights): $\boldsymbol{\theta} = \{\{w_{ij}\}, \{v_k\}\}$

prior
$$p(\boldsymbol{\theta}|\boldsymbol{\alpha})$$
 posterior $p(\boldsymbol{\theta}|\boldsymbol{\alpha},\mathcal{D}) \propto p(\mathbf{y}|X,\boldsymbol{\theta})p(\boldsymbol{\theta}|\boldsymbol{\alpha})$ evidence $p(\mathbf{y}|X,\boldsymbol{\alpha}) = \int p(\mathbf{y}|X,\boldsymbol{\theta})p(\boldsymbol{\theta}|\boldsymbol{\alpha})\,d\boldsymbol{\theta}$ prediction $p(y'|\mathcal{D},\mathbf{x}',\boldsymbol{\alpha}) = \int p(y'|\mathbf{x}',\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathcal{D},\boldsymbol{\alpha})\,d\boldsymbol{\theta}$

Automatic Relevance Determination (ARD):

Let the weights from feature x_d have variance α_d^{-1} : $p(w_{dj}|\alpha_d) = \mathcal{N}(0,\alpha_d^{-1})$

 $\alpha_d \to \infty$ variance $\to 0$ weights $\to 0$ (irrelevant) Let's think about this: $\alpha_d \ll \infty$ finite variance weight can vary (relevant)

ARD: optimize $\hat{\alpha} = \underset{\boldsymbol{\alpha}}{\operatorname{argmax}} p(\mathbf{y}|X,\boldsymbol{\alpha}).$

During optimization some α_d will go to ∞ , so the model will discover irrelevant inputs.

Sparse GP overview

This work contains 2 key ideas:

- 1. A new sparse Gaussian process approximation based on a small set of M 'pseudoinputs' $(M \ll N)$. This reduces computational complexity to $\mathcal{O}(M^2N)$
- 2. A gradient based learning procedure for finding the pseudo-inputs and hyperparameters of the Gaussian process, in one joint optimization

References

- Qi, Y., Minka, T.P., Picard, R.W., and Ghahramani, Z. (2004) Predictive Automatic Relevance Determination by Expectation Propagation. In **Twenty-first International Conference on Machine Learning** (ICML-04). Banff, Alberta, Canada.
- Quiñonero-Candela, J. and Rasmussen, C.E. (2005) A unifying view of sparse approximate Gaussian process regression. *Journal of Machine Learning Research* **6**:1959.
- Naish-Guzman, A. and Holden, S. (2008) The generalized FITC approximation. Advances in Neural Information Processing Systems 20:1057–1064.
- Neal, R. M. (1996) Bayesian learning for neural networks. Springer Verlag.
- Neal, R. M. (1998). Regression and classification using Gaussian process priors (with discussion). In Bernardo, J. M. et al., editors, **Bayesian statistics 6**, pages 475-501. Oxford University Press.
- O'Hagan, A. (1978). Curve Fitting and Optimal Design for Prediction (with discussion). **Journal** of the Royal Statistical Society B, 40(1):1-42.
- Rasmussen, C.E. and Williams, C.K.I. (2006) Gaussian Processes for Machine Learning. MIT Press.
- Snelson, E. and Ghahramani, Z. (2006a) Sparse Gaussian Processes using Pseudo-Inputs. In Advances in Neural Information Processing Systems 18 (NIPS-2005).
- Snelson, E. and Ghahramani, Z. (2006b) Variable noise and dimensionality reduction for sparse Gaussian processes. In **Uncertainty in Artifical Intelligence 22** (UAI).
- More information and code at: http://www.gaussianprocess.org/