

КУРСОВА РАБОТА

ПО

Небесна механика

Избираема дисциплина, летен семестър, учебна година 2020/2021

10.06.2021 г.

гр. София

Изготвил: Георги Събев

Спец. "Софтуерно инженерство"

Ф. No. 62380

Група 3.

Съдържание:

Съдържание	.2
Задача 1. Координати и скорости на планетите в деня на раждане	.3
Задача 2. Елементи на Поанкаре от 1. и 2. вид и елементи на Делоне в деня на раждане	.6
Приложение 1. Код на Задача 1	.8
Приложение 2. Код на Задача 2.	.9

Задача 1. Да се пресметнат координатите и скоростите на планетите в деня на раждане.

Тук от нас се изисква да решим Задача на Кеплер.

В тази задача орбитата на дадена планета зависи от следните шест елемента:

- a дължина на голямата полу-ос на орбитата;
- e ексцентрицитета на орбитата;
- i наклонеността на плоскостта на орбитата;
- l средна аномалия, където l_0 е средната аномалия в момента t_0 ;
- $g + \theta$ дължина на перихелия;
- θ дължина на възела.

Всички от посочените елементи освен средната аномалия l са константи.

Средната аномалия l е линейна функция на времето t.

Допълнителен елемент е ексцентричната аномалия u.

В сила е уравнението на Кеплер:

$$l = u - e * \sin(u)$$

Ексцентрицитетът e характеризира сплеснатостта на елипсата:

$$e = \sqrt{1 - \frac{b^2}{a^2}} \in [0,1), \, b$$
 — дължина на малката полу-ос

Връзката на елиптичните елементи с декартовите координати в R^3 :

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos i & -\sin i \\ 0 & \sin i & \cos i \end{pmatrix} \begin{pmatrix} \cos g & -\sin g & 0 \\ \sin g & \cos g & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ 0 \end{pmatrix}$$

Кеплерови елементи и техните стойности:

Mercury	0.38709927	0.20563593	7.00497902	252.25032350	77.45779628	48.33076593
	0.00000037	0.00001906	-0.00594749	149472.67411175	0.16047689	-0.12534081
Venus	0.72333566	0.00677672	3.39467605	181.97909950	131.60246718	76.67984255
N. W. S.	0.00000390	-0.00004107	-0.00078890	58517.81538729	0.00268329	-0.27769418
EM Bary	1.00000261	0.01671123	-0.00001531	100.46457166	102.93768193	0.0
-50/	0.00000562	-0.00004392	-0.01294668	35999.37244981	0.32327364	0.0
Mars	1.52371034	0.09339410	1.84969142	-4.55343205	-23.94362959	49.55953891
10-25-27-12-2	0.00001847	0.00007882	-0.00813131	19140.30268499	0.44441088	-0.29257343
Jupiter	5.20288700	0.04838624	1.30439695	34.39644051	14.72847983	100.47390909
126	-0.00011607	-0.00013253	-0.00183714	3034.74612775	0.21252668	0.20469106
Saturn	9.53667594	0.05386179	2.48599187	49.95424423	92.59887831	113.66242448
	-0.00125060	-0.00050991	0.00193609	1222.49362201	-0.41897216	-0.28867794
Uranus	19.18916464	0.04725744	0.77263783	313.23810451	170.95427630	74.01692503
Scarce, Sedented 1.0	-0.00196176	-0.00004397	-0.00242939	428.48202785	0.40805281	0.04240589
Neptune	30.06992276	0.00859048	1.77004347	-55.12002969	44.96476227	131.78422574
1211 1020 113 12 12 12 12 12 12 12 12 12 12 12 12 12	0.00026291	0.00005105	0.00035372	218.45945325	-0.32241464	-0.00508664
Pluto	39.48211675	0.24882730	17.14001206	238.92903833	224.06891629	110.30393684
SANGEROOF	-0.00031596	0.00005170	0.00004818	145.20780515	-0.04062942	-0.01183482

Източник на таблицата: https://ssd.jpl.nasa.gov/txt/aprx pos planets.pdf

Обръщаме θ и $g + \theta$ в радиани.

Обръщаме i в градуси.

Стойностите на μ за планетите са:

Планета	μ	
Меркурий	1/6023600	
Венера	1/408523	
Земя	1/328900.5	
Mapc	1/3098708	
Юпитер	1/1047.34	
Сатурн	1/3497.8	
Уран	1/22902.9	
Нептун	1/19402	
Плутон	1/135000000	

$$\gamma = 1 + \mu$$
, където $\gamma = Gm_A = 6.670*10^{-8} \frac{sm^3}{g*sec^2}$ е грвитационна константа.

$$n = \sqrt{\frac{\gamma}{a^3}}$$

Величината n наричаме средно движение.

Връзката между средната и ексцентрична аномалия наричаме Уравнение на Кеплер, което показахме и по-горе.

Въвеждаме времето от рождената дата след 01.01.2000г. – t.

Рождена дата: 18.07.2000 г.

$$t = \frac{200}{365.25} = 0.54757015742$$

От решението на задачата на Кеплер в декартови координати:

$$l = \sqrt{\frac{\gamma}{a^3}}(t - T_0) \Rightarrow l = n(t(2\pi) - T_0) = u - e.\sin(u)$$
$$u = l + e.\sin(l + e.\sin(l))$$

$$r = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = Q. a. \left(cos(u) - e; sin(u); \sqrt{1 - e^2}; 0 \right)$$

$$v = Q \frac{(-sin(u); cos(u)\sqrt{1 - e^2}; 0). a.n}{1 - e. cos(u)}$$

където Q е от Основна формула на сферичната тригонометрия.

[<u>Теорема</u>] Всяка матрица $Q \in SO(3,R)$ може да се представи аналитично във вида:

$$Q = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos i & -\sin i \\ 0 & \sin i & \cos i \end{pmatrix} \begin{pmatrix} \cos g & -\sin g & 0 \\ 0 & \sin i & \cos i \\ 0 & \sin g & \cos g & 0 \\ 0 & \sin i & \cos i \end{pmatrix} = \begin{pmatrix} \cos\theta\cos g & -\sin\theta\sin g & \cos i & -\cos\theta\sin g & -\sin\theta\cos g & \cos i & \sin\theta\sin i \\ \sin\theta\cos g & +\cos\theta\sin g & \cos i & -\sin\theta\sin g & -\sin\theta\cos g & \cos i & -\cos\theta\sin i \\ \sin\theta\sin i & \cos\theta\sin g & -\sin\theta\cos g & \cos i & -\cos\theta\sin i \\ \sin\theta\sin i & \cos\theta\sin g & -\sin\theta\sin g & -\cos\theta\sin g & \cos\theta\cos g & \cos i & \cos\theta\sin i \\ \sin\theta\sin i & \cos\theta\sin i & \cos\theta\sin i & \cos\theta\sin i \end{pmatrix}$$
 където θ , $g \in [0, 2\pi)$ и $i \in [0, \pi]$

Описаните процедури се повтарят за всяка планета поотделно.

Краен резултат:

	Меркурий	Венера	Земя	Mapc	Юпитер	Сатурн	Уран	Нептун	Плутон
	0.33493	-0.57111	0.46315	-0.51236	2.9101	5.5064	14.9441	17.3441	-9.34507
r	-0.20979	0.43464	-0.90373	1.5268	4.0714	7.2828	-13.1959	-24.6102	-28.2663
	-0.047872	0.038898	0	0.04456	-0.081985	-0.34573	-0.242547	0.107092	5.72782
	0.54803	-0.7161	0.87446	-0.7406	-0.36253	-0.27565	0.14957	0.14798	0.17719
v	1.4611	-0.94123	0.45256	-0.19007	0.27582	0.19499	0.16071	0.10603	-0.08649
	0.069048	0.028465	0	0.014216	0.0069735	0.0075609	-0.001341	-0.005593	-0.04199
r	0.3981	0.71874	1.0155	1.6111	5.0052	9.1367	19.9378	30.108	30.317
v	1.562	1.183	0.98462	0.76473	0.45558	0.33773	0.21955	0.18213	0.2016

Задача 2. Пресметнете елементите на Поанкаре от 1. и 2. вид и елементите на Делоне в деня на раждане.

Елементите на Делоне - L, G, Θ , I, g, θ , където (I, L), (G, g) и (Θ , θ) са спрегнати канонични променливи, се изразяват чрез орбиталните елементи:

- a дължина на голямата полу-ос на орбитата;
- e ексцентрицитета на орбитата;
- i наклонеността на плоскостта на орбитата;
- l средна аномалия, където l_0 е средната аномалия в момента t_0 ;
- $g + \theta$ дължина на перихелия;
- θ дължина на възела.

Както следва:

$$L = \mu \sqrt{\gamma a}$$

$$G = \mu \sqrt{\gamma a (1 - e^2)} \Rightarrow G = L \sqrt{1 - e^2}$$

$$\Theta = \mu \sqrt{\gamma \alpha (1 - e^2)} \cos i \Rightarrow \Theta = G. \cos i$$

Като при това I, g и θ съвпадат и в двата случая.

Елементите на Делоне - L, G, Θ , I, g, θ са константи с хамилтони:

$$\widehat{H} = -\frac{\mu^3 \gamma^2}{2L^2} = -\frac{\mu^3 \gamma^2}{2\mu^2 \gamma a} = -\frac{\mu \gamma}{2a}$$

Обръщаме θ в радиани. Обръщаме i в градуси.

 T_0 е моментът на преминаване през перихелия на планета (начало на епоха).

$$l = \sqrt{\frac{\gamma}{a^3}}(t - T_0)$$

 $l = u - e.\sin u -$ Уравнение на Кеплер $\Rightarrow u = l + e.\sin(l + e.\sin(l) + e.\sin(l))$

$$n = \sqrt{\frac{\gamma}{a^3}}$$

Взимаме t=0.54757015742 от предната задача и правим $t=t.2\pi=3.44048476775$.

$$l = n(t - T_0)$$

Чрез $\lambda = l + g + \theta$ (дължина на епохата) ще можем да изразим елементите от двете системи на Поанкаре:

Първа система:

$$\begin{array}{c|cccc}
\hline
L & L-G & G-\Theta \\
l+g+\theta & -g-\theta & -\theta
\end{array}$$

Втора система:

$$\begin{pmatrix} L & \xi \coloneqq \sqrt{2(L-G)}\cos(g+\theta) & p \coloneqq \sqrt{2(G-\theta)}\cos\theta \\ \lambda \coloneqq l+g+\theta & \eta \coloneqq -\sqrt{2(L-G)}\sin(g+\theta) & q \coloneqq -\sqrt{2(G-\theta)}\sin\theta \end{pmatrix}$$

Елементи на Делоне:

	L	G	Θ	l	g	θ	Н
Меркурий	1.0328e-07	1.0108e-07	1.0033e-07	17.3414	0.5084	0.8435	-2.1449e-07
Венера	2.0814e-06	2.0814e-06	2.0777e-06	6.4757	0.9586	1.3383	-1.6928e-06
Земя	3.0404e-06	3.0400e-06	3.0400e-06	3.3973	1.7966	0	-1.5202e-06
Марс	3.9826e-07	3.9654e-07	3.9633e-07	2.1689	-1.2829	0.8650	-1.0595e-07
Юпитер	0.0022	0.0022	0.0022	0.6332	-1.4965	1.7536	-9.1860e-05
Сатурн	8.8298e-04	8.8174e-04	8.8091e-04	-0.6274	-0.3676	1.9838	-1.4995e-05
Уран	1.9127e-04	1.9106e-04	1.9104e-04	2.5243	1.6919	1.2918	-1.1377e-06
Нептун	2.8263e-04	2.8262e-04	2.8249e-04	-1.7259	-1.5153	2.3001	-8.5709e-07
Плутон	4.6544e-08	4.5090e-08	4.3088e-08	0.2732	1.9856	1.9252	-9.3807e-11

Първа система на Поанкаре:

	L	L-G	$G-\Theta$	$l+g+\theta$	$-g-\theta$	$-\theta$
Меркурий	1.0328e-07	2.1934e-09	7.5431e-10	18.6933	-1.3519	-0.8435
Венера	2.0814e-06	3.7465e-11	3.6506e-09	8.7726	-2.2969	-1.3383
Земя	3.0404e-06	3.8920e-10	0	5.1939	-1.7966	0
Марс	3.9826e-07	1.7260e-09	2.0646e-10	1.7510	0.4179	-0.8650
Юпитер	0.0022	2.5114e-06	5.6359e-07	0.8903	-0.2571	-1.7536
Сатурн	8.8298e-04	1.2410e-06	8.2918e-07	0.9887	-1.6161	-1.9838
Уран	1.9127e-04	2.1137e-07	1.7343e-08	5.5080	-2.9837	-1.2918
Нептун	2.8263e-04	9.0444e-09	1.3485e-07	-0.9412	-0.7848	-2.3001
Плутон	4.6544e-08	1.4540e-09	2.0026e-09	4.1840	-3.9107	-1.9252

Втора система на Поанкаре:

	L	ξ	p	λ	η	q
Меркурий	1.0328e-07	1.4384e-05	2.5823e-05	18.6933	-6.4652e-05	-2.9014e-05
Венера	2.0814e-06	-5.7473e-06	1.9688e-05	8.7726	-6.4729e-06	-8.3148e-05
Земя	3.0404e-06	-6.2462e-06	0	5.1939	-2.7192e-05	0
Марс	3.9826e-07	5.3698e-05	1.3181e-05	1.7510	2.3844e-05	-1.5466e-05
Юпитер	0.0022	0.0022	-1.9299e-04	0.8903	-5.6977e-04	-0.0010
Сатурн	8.8298e-04	-7.1412e-05	-5.1684e-04	0.9887	-0.0016	-0.0012
Уран	1.9127e-04	-6.4210e-04	5.1285e-05	5.5080	-1.0223e-04	-1.7904e-04
Нептун	2.8263e-04	9.5162e-05	-3.4604e-04	-0.9412	-9.5042e-05	-3.8724e-04
Плутон	4.6544e-08	-3.8747e-05	-2.1959e-05	4.1840	3.7507e-05	-5.9354e-05

Приложение 1. MatLab код на първа задача

```
function taskl
    function kepler_elements(a, e, i, L, w, omega, mu, t)
        theta = omega * pi/180;
        g = (w - omega) * pi/180;
        i = i * pi/180;
        Theta = [ cos(theta) , -sin(theta) , 0 sin(theta) , cos(theta) , 0
                                           , 1 ];
                     0
                                    0
        I = [ 1 , 0 , 0
              0 , cos(i) , -sin(i)
              0 , sin(i) , cos(i) ];
        G = [\cos(g), -\sin(g), 0;
              sin(g) , cos(g) , 0
                         0 , 1 ];
        Q = Theta*I*G;
       gamma = 1 + mu;
        n = sqrt(gamma/a^3);
        to = ((w - L)/n)*pi/180;
        1 = n^*(t^*2^*pi - to);
        u = 1 + e^* sin(1 + e^* sin(1 + e^* sin(1)));
        r = Q*a*[cos(u)-e ; sin(u)*sqrt(1-e^2) ; 0 ];
        v = Q^*[-\sin(u);\cos(u)*sqrt(1-e^2);0]*a*n/(1-e*cos(u));
        disp('Coordinates (r)')
        disp(num2str(r))
        disp(['|r| = ', num2str(norm(r))])
        disp('Speed (v)')
       disp(num2str(v))
       disp(['|v| = ', num2str(norm(v))])
    function calculations (data)
       time = 0.54757015742;
        kepler_elements(data(1), data(2), data(3), data(4), data(5), data(6), data(7), time)
    d = [0.387 0.205 7.004 252.250 77.457 48.330 1/6023600;
         0.723 0.006 3.394 181.979 131.602 76.679 1/408523;
         1 0.016 0 100.464 102.937 0 1/328900.5
1.523 0.093 1.849 -4.553 -23.943 49.559 1/3098708;
        5.202 0.048 1.304 34.396 14.728 100.473 1/1047.34;
9.536 0.053 2.485 49.954 92.598 113.662 1/3497.8;
         19.189 0.047 0.772 313.238 170.954 74.016 1/22902.9;
         30.069 0.008 1.770 -55.120 44.964 131.784 1/19402;
         39.482 0.248 17.140 238.929 224.068 110.303 1/135000000];
    planets = {'Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus', 'Neptune', 'Pluto'};
    for i = 1:9
       disp(char(planets(i)))
        calculations(d(i,:))
    end
```

Приложение 2. MatLab код на втора задача

```
function task2
    function calculate_elements(a, e, i, L, w, Omega, myu, t)
        i = i * pi/180;
        n = sqrt(1 / a^3);
        to = ((w - L) / n) * pi/180;
       gamma = 1 + myu;
       capL = myu * sqrt(gamma*a);
        G = capL * sqrt(1 - e^2);
        cTheta = G * cos(i);
        1 = n * (t*2*pi - to);
        g = (w - Omega) * pi/180;
        sTheta = Omega * pi/180;
        H = -myu*gamma / (2*a);
        Delone = {capL, G, cTheta, 1, g, sTheta, H}
        FirstPoincare = {capL, capL - G, G - cTheta, 1 + g + sTheta, -g - sTheta, -sTheta}
        SecondPoincare = {capL, sqrt(2 * (capL - G)) * cos(g + sTheta), sqrt(2 * (G - cTheta)) * cos(sTheta), ...
            1 + g + sTheta, -sqrt(2 * (capL - G)) * sin(g + sTheta), -sqrt(2 * (G - cTheta)) * sin(sTheta)}
    end
    d = [0.387 0.205 7.004 252.250 77.457 48.330 1/6023600;
         0.723 0.006 3.394 181.979 131.602 76.679 1/408523;
                0.016 0
                              100.464 102.937 0
                                                        1/328900.5:
         1.523 0.093 1.849 -4.553 -23.943 49.559 1/3098708;
         5.202 0.048 1.304 34.396 14.728 100.473 1/1047.34;
9.536 0.053 2.485 49.954 92.598 113.662 1/3497.8;
         19.189 0.047 0.772 313.238 170.954 74.016 1/22902.9;
         30.069 0.008 1.770 -55.120 44.964 131.784 1/19402;
         39.482 0.248 17.140 238.929 224.068 110.303 1/135000000];
    time=0.54757015742;
   planets = {'Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus', 'Neptune', 'Pluto'};
   for i=1:9
        disp(char(planets(i)))
        {\tt calculate\_elements}({\tt d(i,\ 1)},\ {\tt d(i,\ 2)},\ {\tt d(i,\ 3)},\ {\tt d(i,\ 4)},\ {\tt d(i,\ 5)},\ {\tt d(i,\ 6)},\ {\tt d(i,\ 7)},\ {\tt time})
end
```