

CAS Practical Machine Learning Introduction

Machine Learning Overview

Prof. Dr. Jürgen Vogel (juergen.vogel@bfh.ch)

Machine Learning

Learning

- observe the real world
- and derive knowledge
 - facts ("this image shows a person")
 - rules ("images show a person if there is a shape with the properties X, Y, and Z")
- that can be applied to new situations

Machine Learning

- informal an algorithm that implements learning
- formal an algorithm learns from experience $\mathbb E$ to solve some tasks $\mathbb T$ with performance $\mathbb P$ if $\mathbb P$ improves with $\mathbb E$

Machine Learning vs. Al

```
Artificial Intelligence (AI)
= Systems that...
...act...
    ...like a human (Turing test)
    ...rationally (optimization)
...think...
    ...like a human (cognitive science)
                                                               Kismet @ MIT
    ...rationally (logic)
...can...
    ...solve problems (search solutions)
    ...derive new knowledge from prior one (reasoning)
    ...learn from experience
    ...interact with their environment (sense and manipulate)
```

Machine Learning Models

an algorithm learns from experience \mathbb{E} to solve some tasks \mathbb{T} with performance \mathbb{P} if \mathbb{P} improves with \mathbb{E}

- Model
 - ightharpoonup represents the solution to the tasks au
 - is learnt by the ML algorithm
 - \triangleright is adapted by the ML algorithm based on $^{\rm E}$
 - can be evaluated with respect to P
 - can be stored
 - may be human-readable or not (white box vs. black box)
- Features
 - are the relevant part of the data E for creating the model
 - may have to be designed explicitly depending on the ML algorithm

```
Spectac
                    Astigma
                                Tear
                                          Recomm
                                           ended
            le
                      tism
                               product
                               ion rate
                                           lenses
         prescrip
           tion
Young
          Myope
                       No
                               Reduced
                                           None
Young
         Hyperme
                       No
                                Normal
                                            Soft
           trope
 Pre-
                       No
                               Reduced
          Hyperme
                                           None
presbyo
           trope
Presbyo
                                            Hard
          Myope
                                Normal
 pic
```

```
If tear production rate =
    reduced
    then recommendation = none
Otherwise, if age = young and
    astigmatic = no
    then recommendation = soft
```

Machine Learning vs. Traditional Programming

Traditional Programming

- transforms input data into output data via a series of fixed instructions (conditions, loops etc.)
- white box problem solving

benefits

- deterministic and relatively easy to test in well-defined environments
- avoid errors introduced by random noise
- deterministic results

Machine Learning

- maps input data to output data via an adaptive model
- black box problem solving

- encounter complex or even unknown environments or situations
- avoid misconceptions about the real world
- continuous result improvements

Machine Learning vs. Statistics

Statistics

- theoretical foundations for analyzing and interpreting data
- formalizes relationships between variables via mathematical equations

Machine Learning

- algorithms that improve automatically through experience
- facilitates statistical and mathematical methods
- sacrifices correctness for computability

some terms

- estimation
- hypothesis testing
- data point
- independent variable
- dependent variable

- learning
- classification
- instance/example
- feature
- class/label

Machine Learning Applications

- information retrieval
 - personalized search
- marketing and sales
 - product recommendation
- meteorology
 - weather forecast
- medicine
 - diagnosis
- finance
 - (stock) portfolio management buy or sell
- industry
 - predictive maintenance
- transport
 - self-driving cars
- security and law enforcement
 - biometric authorization and identification
- ...

Different Machine Learning Approaches (1)

What experience \mathbb{E} can be exploited for learning?

- 1. Supervised Learning
 - ▶ the ML algorithm infers the model from sample data E for which the task T has been solved with optimal performance P
 - the algorithm is taught by example
- 2. Unsupervised Learning
 - ▶ the ML algorithm infers the model from data E based on some adaptation to distinctive features of E
 - the algorithm does not have access to P
- 3. Reinforcement Learning
 - b the ML algorithm starts with a baseline model to solve ${\mathbb T}$ and continuously improves it based on feedback ${\mathbb P}$
 - feedback may be in the form of (short-term/long-term) rewards or punishments
 - the algorithm interacts with its environment and explores the consequences of its actions

Different Machine Learning Approaches (2)

What type of task T is to be solved?

Clustering

- input data should be divided into distinctive groups
- model often based on similarity: members in one group are similar
- e.g., identifying similar genes in a genome
- usually solved via unsupervised learning

Classification

- input data should be assigned a certain class/category/label
- model often based on distinctive features
- e.g., an email is classified as spam or not-spam
- usually solved via supervised learning

3. Regression

- estimates the relationship between input data (independent variables) and the output we are interested in (dependent variable)
- model is a regression function, often for continuous variables
- e.g., prediction of birth rate
- usually solved via supervised learning / statistical methods

Machine Learning Workflow (CRISP-DM)

Business Understanding

Defining the Problem

- machine learning is about solving a very distinctive problem
 - predict the remaining lifetime of a machine
 - classify an email as spam or not spam
 - detect a human face in an image
- unfortunately, we often hear something like: we have a ton of XYZ data - can you make something interesting out of it?
 - data science: iteratively addressing the information need
- machine learning not necessarily means automation
 - machine learning generates information
 - e.g., in a supermarket many shoppers buy beer and chips
 - different actions and decisions may be taken based on this
 - e.g., place beer and chips together ("easy shopping") or further apart ("maximize store time")

Will people wait in line for eating in a restaurant?

Understanding and Preparing Data (1)

- collecting data
 - internal or external sources
 - from target or related domain
 - need to be labeled for supervised training
- understanding data
 - which aspects of available data can be utilized as features
 - feature types: Boolean, nominal (categorial), or numeric
 - often helpful to look at basic statistics to develop a "feeling"
 - histograms and frequency distributions
 - graphs
 - many classification problems are unbalanced
 - classes are not evenly distributed but a class may be very rare or very frequent
 - e.g., detecting rare diseases: only x cases in a million
 - may not even occur in dataset at hand

Understanding and Preparing Data (2)

- preparing (cleaning) data
 - data integration: data from different sources may use different schema (syntax) or semantics
 - data transformation: e.g., turn numeric feature ("age") into nominal ("age category")
 - data may be missing: e.g., some features have not been recorded for some instances
 - data may be wrong: typos, measurement errors, duplicates, deliberate errors, ...
 - data may be obsolete: e.g., too old
 - feature generation: processing low-level data into higher-level features, e.g., from pixels to edges in image analysis
 - feature selection: selecting the best features from a (too) large set

Sample	Alternative	Bar	Fri/Sat	Hungry	Patrons	Price	Rain	Reservation	Туре	Estimated Waiting Time	Wait
1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F
3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
10	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
11	F	F	F	F	None	\$	F	F	Thai	0-10	F
12	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т

Boolean features: (T)rue or (F)alse

Modeling

- 1. Selecting an appropriate ML algorithm
 - black box or white box
 - ...
- 2. Building the Model
 - via training (=automatically)
 - via configuration (=manually)

Decision Tree (DT)

- supervised classification algorithm
 - here: binary classification (= 2 classes: true/false)
- core idea
 - tree leaves represent class labels
 - all other nodes represent a decision based on a certain feature
 - decision: feature take(s) certain value(s) or not

- path between parent to child node represents next relevant decision
- path from root to leaf node represents conjunctive decisions
- white box
 - DT can be visualized and is easy to understand
 - the tree can be easily transformed into logical rules
 - here: e.g., if there are no patrons in the restaurant we do not (need to) wait

DT construction

- challenge: many alternative and equivalent DT exist
- correct but inefficient DT: all samples are leaf nodes with path utilizing all present features
- instead: smallest tree possible
- core idea
 - for the next node, choose the feature that splits the sample data into the most homogeneous subsets
 - formally: the feature that minimizes the remaining entropy
- different DT algorithms around this core idea: ID3, C4.5, C5, ...

Evaluating a Model

Is the model good (enough)?

- good may relate to many criteria (metrics)
 - average quality of results
 - error rate
 - best worst case
 - worst task result is still acceptable
 - processing time and scalability
 - offers a human-understandable explanation
- in real-world scenarios (virtually) impossible to have error-free model
 - missing or noisy data
 - model tries to generalize but there may be exceptions

DT fits all samples

→ no errors ©

Productizing a Model

Some aspects to consider

- (human and computational) resources
 - while building the model may be costly in labor and processing time/storage, executing it on new data usually is not
 - unless applied to big streaming data
 - unless costly feature generation
- updatability
 - some models may be incrementally updated
 - reinforcement learning
 - others have to be retrained
- technical and project considerations (ML Ops)
 - runtime environment
 - interface
 - versioning
- application development
 - model provides useful feature(s) of a larger application
 - human factors: trust, bias, accountability, security, ...

Summary: Machine Learning Challenges

For ML to work, we need

- a defined task with a quantifiable result
 - many tasks have highly subjective and qualitative results
- large amounts of high quality data
 - data may be garbled or missing
 - dataset may be too small for the task at hand
 - dataset may not be representative or biased
- distinctive features (if needed)
 - which ones in which combination
- decisive pattern(s)
 - patterns may be inexact (or spurious)
 - most patterns are not interesting
- appropriate ML algorithm
 - which one in which configuration
 - needs to scale to the amount of data
- to accept a certain amount of errors
 - basically no model is free of errors
 - max. acceptable error rate depends on application