Module Fouille de données

2h.

Seule une feuille A4 manuscrite est autorisée.

NB: La notation tient compte de la présentation. Elle est donnée à titre indicatif.

Exercice 1: (8 pts)

Soient O un ensemble fini d'exemples ou de transactions ; A un ensemble fini d'attributs ou d'items, X et Y sont des sous-ensembles de A.

- Un ensemble d'items X est dit fréquent si le nombre de transactions contenant les items de X est supérieur au seuil de support minimum (minsup).
- Une règle associative (ou d'association) est une implication de la forme « si X alors Y » (notée $X \rightarrow Y$, X est la prémisse, et Y est la conclusion) et l'intersection de X et Y est vide, traduisant le fait que si les items X sont présents dans une transaction, alors les items Y le sont avec une certaine probabilité (confiance).
- Le support d'une règle est la mesure indiquant le pourcentage de transactions qui vérifient une règle associative.
- La confiance d'une règle est la mesure indiquant le pourcentage de transactions qui vérifient la conclusion d'une règle associative parmi celles qui vérifient la prémisse.

Soit l'ensemble des transactions : {P, L}, {P, C, B, O}, {L, C, B, K}, {P, L, C, B}, {P, L, C, K}.

Questions:

- 1- Calculer les itemsets candidats et fréquents pour un support minimum égal à 2. (2,5 pts)
- 2- Donnez:
 - a. la liste des itemsets fréquents fermés (1 pt)
 - b. la liste des générateurs minimaux fréquents (1,5 pt)
- 3- Etant donné un seuil de confiance minimum égal à 60%, lister **au moins 2** règles associatives valides, à partir d'un 3-itemset. (0,5 pt)
- 4- A partir de la bordure négative (BN) :
 - a. Donner un pseudo-code qui permet de lister tous les itemsets fréquents. (1,5 pt)
 - b. Peut-on dériver le support de ces itemsets fréquents ? Justifiez. (0.5 pt)
 - c. Que peut-on en déduire entre la BN et la liste des itemsets fréquents ? (0,5 pt)

Exercice 2: (12 pts)

RID	age	income	student	credit	C_i : buy
1	youth	high	no	fair	C_2 : no
2	youth	high	no	excellent	C_2 : no
3	middle-aged	high	no	fair	C_1 : yes
4	senior	medium	no	fair	C_1 : yes
5	senior	low	yes	fair	C_1 : yes
6	senior	low	yes	excellent	C_2 : no
7	middle-aged	low	yes	excellent	C_1 : yes
8	youth	medium	no	fair	C_2 : no
9	youth	low	yes	fair	C_1 : yes
10	senior	medium	yes	fair	C_1 : yes
11	youth	medium	yes	excellent	C_1 : yes
12	middle-aged	medium	no	excellent	C_1 : yes
13	middle-aged	high	yes	fair	C_1 : yes
14	senior	medium	no	excellent	C_2 : no

Janvier 2016 - 1/4 -

1 pt

On dispose du fichier ci-dessus possédant une variable de classe BUY. On découpe l'ensemble en 3 : D₁, D₂ et D₃. **D₁ contient les 6 premiers objets**, **D₂ contient les 4 derniers (11 à 14)**.

La *précision* pour une classe donnée mesure le taux d'exemples corrects parmi les exemples prédits dans cette classe. Le *rappel* mesure le taux d'exemples corrects parmi les exemples de la classe. Le taux de *faux positifs* d'une classe mesure le nombre d'objets positifs parmi ceux n'appartenant pas à la classe. Le taux de *vrais positifs* d'une classe mesure le nombre d'objets positifs parmi les vrais objets de la classe.

Pour les questions 3) à 7), vous devez indiquer la formule de calcul.

Questions:

13- Comparer ces deux méthodes.

1. Qualla act la différence entre un encemble de test et un encemble de valid	lation 2.1 nt			
Quelle est la différence entre un ensemble de test et un ensemble de validation ? 1 pt				
2- L'ensemble D ₂ va être utilisé pour tester la méthode des k-plus proch				
Déterminer la classe des 4 objets de D_2 .	4 pts			
3- Donner la matrice de confusion sur D ₂ ;	0,5 pt			
4- Calculer le taux d'erreur apparente de la méthode avec D ₂ ;	0,5 pt			
5- Calculer le taux de faux positifs (FP rate) pour la classe C ₁ ;	0,5 pt			
6- Calculer le taux de vrais positifs (TP rate) pour la classe C ₂ ;	0,5 pt			
7- Calculer la précision de la classe C ₁ sur D ₂ ;	0,5 pt			
8- Calculer le rappel pour la classe C ₂ sur D ₂ ;	0,5 pt			
9- On souhaite calculer la précision totale du modèle k-PPV en tenant compte du poids de				
chacune des classes dans D_2	0,5 pt			
10-Ecrire un algorithme (pseudo-code) qui donne comme résultat le modèle à choisir par				
l'utilisateur pour la résolution de son problème. En entrée on a 2 matric	ces de confusion T ₁			
et T ₂ , obtenues respectivement sur D ₂ et D ₃ , par application respective	des modèles M_1 et			
M_2 , générés à partir de D_1 .	1 pt			
11- Comment peut t-on s'assurer que ce mode de comparaison de modèles est robuste ? 0,5 pt				
12-Citer une autre méthode de classification supervisée autre que la méthode k-PPV. Rappeler				
son principe.	1 pt			

Janvier 2016 - 2/4 -

Annexes:

Naive Bayes : Estimation des probabilités conditionnelles

Ai : une valeur de l'attribut A

Nic: Nombre d'objets ayant la valeur Ai dans la classe c

Nc : Nombre d'objets de la classe c

k : nombre de valeurs de l'attribut A

p: probabilité apriori

m: paramètre

Original: $P(A_i \mid C) = \frac{N_{ic}}{N}$

Laplace: $P(A_i \mid C) = \frac{N_{ic} + 1}{N_i + k}$

m-estimate: $P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$

Given a training dataset \mathcal{D} of N labeled examples (assuming complete data)

1. Estimate $P(c_i)$ for each class c_i

 $\hat{P}(c_j) = \frac{N_j}{N_j}$ N_j - the number of examples of the class c_j

- 2. Estimate $P(X_i = x_k | c_i)$ for each value x_k of the attribute X_i and for each class c_i
 - X discrete

$$\hat{P}(X_i = x_k \mid c_j) = \frac{N_{ijk}}{N_j}$$

 $\hat{P}(X_i = x_k \mid c_j) = \frac{N_{ijk}}{N_i}$ $N_{ijk} - \text{number of examples of the class } c_j$ $\text{having the value } x_k \text{ for the attribute } X_i$

- The attribute is discretized and then treats as a discrete attribute
- A Normal distribution is usually assumed

$$P(X_i = x_k \mid c_j) = g(x_k; \mu_{ij}, \sigma_{ij}) \quad \text{onde} \quad g(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

The mean μ_{ii} e the standard deviation σ_{ii} are estimated from \mathcal{D}

- 2. Estimate $P(X_i = x_k | c_i)$ for a value of the attribute X_i and for each class c_i
 - A Normal distribution is usually assumed

$$P(X_i = x_k \mid c_j) = g(x_k; \mu_{ij}, \sigma_{ij}) \Rightarrow g(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

 $X_i \mid c_i \sim N(\mu_{ij}, \sigma_{ij}^2)$ - the mean μ_{ij} e the standard deviation σ_{ij} are estimated from \mathcal{D}

For a variable $X \sim N(74, 36)$, the probability of observing the value 66 is given by:

$$f(x) = g(66; 74, 6) = 0.0273$$

Janvier 2016 - 3/4 -

k-PPV: Proximité (Similarité, Dissimilarité), Distances

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \begin{cases} 0 & \text{if } p = q \\ 1 & \text{if } p \neq q \end{cases}$	$s = \begin{cases} 1 & \text{if } p = q \\ 0 & \text{if } p \neq q \end{cases}$
Ordinal	$d = \frac{ \hat{p}-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p - q	$s = -d$, $s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_d}{max_d-min_d}$
		$s = 1 - \frac{d - min_d}{max_d - min_d}$

Distance de Minkowski:

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

où r est un paramètre, n est le nombre de dimensions (attributs) et p_k et q_k sont, respectivement, les $k^{\text{èmes}}$ attributs (composants) des objets p et q.

r = 1: City block (Manhattan, taxicab, L_1 norm) distance. Aussi appelée distance de Hamming pour des vecteurs binaires.

r = 2: distance euclidienne

Common situation is that objects, p and q, have only binary attributes

Compute similarities using the following quantities

M₀₁ = the number of attributes where p was 0 and q was 1

M₁₀ = the number of attributes where p was 1 and q was 0

M₀₀ = the number of attributes where p was 0 and q was 0

M₁₁ = the number of attributes where p was 1 and q was 1

Simple Matching and Jaccard Coefficients

SMC = number of matches / number of attributes
=
$$(M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$$

J = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

Janvier 2016 - 4/4 -