1. Напоминание о площади и квадрируемых множествах

1. Напоминание о площади и квадрируемых множествах Рассмотрим ограниченное плоское множество D ($D \subset \mathbb{R}^2$).

1. Напоминание о площади и квадрируемых множествах

Рассмотрим ограниченное плоское множество D ($D \subset \mathbb{R}^2$). Пусть P — произвольный вписанный в D многоугольник ($P \subseteq D$) и Q — произвольный многоугольник, описанный вокруг D ($Q \supseteq D$).

1. Напоминание о площади и квадрируемых множествах

Рассмотрим ограниченное плоское множество D ($D \subset \mathbb{R}^2$). Пусть P — произвольный вписанный в D многоугольник ($P \subseteq D$) и Q — произвольный многоугольник, описанный вокруг D ($Q \supseteq D$). Будем обозначать S(P) площадь многоугольника P.

1. Напоминание о площади и квадрируемых множествах

Рассмотрим ограниченное плоское множество D ($D \subset \mathbb{R}^2$). Пусть P — произвольный вписанный в D многоугольник ($P \subseteq D$) и Q — произвольный многоугольник, описанный вокруг D ($Q \supseteq D$). Будем обозначать S(P) площадь многоугольника P.

Определение 1. Множество D называется $\kappa \epsilon a d p u p y \epsilon m \omega M$, если его внутренняя и внешняя площади совпадают:

1. Напоминание о площади и квадрируемых множествах

Рассмотрим ограниченное плоское множество D ($D \subset \mathbb{R}^2$). Пусть P — произвольный вписанный в D многоугольник ($P \subseteq D$) и Q — произвольный многоугольник, описанный вокруг D ($Q \supseteq D$). Будем обозначать S(P) площадь многоугольника P.

Определение 1. Множество D называется $\kappa \epsilon a d pupyemым,$ если его внутренняя и внешняя площади совпадают:

$$S_*(D) = S^*(D),$$
 где $S_*(D) = \sup_{P \subseteq D} S(P),$ $S^*(D) = \inf_{Q \supseteq D} S(Q).$

1. Напоминание о площади и квадрируемых множествах

Рассмотрим ограниченное плоское множество D ($D \subset \mathbb{R}^2$). Пусть P — произвольный вписанный в D многоугольник ($P \subseteq D$) и Q — произвольный многоугольник, описанный вокруг D ($Q \supseteq D$). Будем обозначать S(P) площадь многоугольника P.

Определение 1. Множество D называется $\kappa \epsilon a d pupyemым,$ если его внутренняя и внешняя площади совпадают:

$$S_*(D) = S^*(D),$$
 где $S_*(D) = \sup_{P \subseteq D} S(P),$ $S^*(D) = \inf_{Q \supseteq D} S(Q).$

При этом общее значение внутренней и внешней площадей называется nлощадью $\kappa в a d p u p y e$ мого mножесmва D и обозначается S(D):

$$S(D) := S_*(D) = S^*(D).$$

Критериями $\kappa вадрируемости$ множества D служат следующие условия:

 $Критериями \ \kappa вадрируемости \ множества \ D$ служат следующие условия:

$$1) \ \forall \, \varepsilon > 0 \ \exists \, P \subseteq D \ \exists \, Q \supseteq D \ : \ S(Q) - S(P) < \varepsilon$$

 $Критериями \ \kappa вадрируемости \ множества \ D$ служат следующие условия:

- 1) $\forall \varepsilon > 0 \ \exists P \subseteq D \ \exists Q \supseteq D : S(Q) S(P) < \varepsilon$
- 2) граница множества D, ∂D , имеет площадь ноль

Критериями κ вадрируемости множества D служат следующие условия:

- 1) $\forall \varepsilon > 0 \ \exists P \subseteq D \ \exists Q \supseteq D : S(Q) S(P) < \varepsilon$
- 2) граница множества $D,\,\partial D,$ имеет площадь ноль, т.е. для любого наперёд взятого $\varepsilon>0$ найдётся многоугольник площади меньше $\varepsilon,$ покрывающий кривую $\partial D.$

 $Критериями \ \kappa вадрируемости \ множества \ D$ служат следующие условия:

- 1) $\forall \varepsilon > 0 \ \exists P \subseteq D \ \exists Q \supseteq D : S(Q) S(P) < \varepsilon$
- 2) граница множества $D,\,\partial D,$ имеет площадь ноль, т.е. для любого наперёд взятого $\varepsilon>0$ найдётся многоугольник площади меньше $\varepsilon,$ покрывающий кривую $\partial D.$

Напомним, что

Kритериями квадрируемости множества D служат следующие условия:

- $1) \ \forall \, \varepsilon > 0 \ \exists \, P \subseteq D \ \exists \, Q \supseteq D \ : \ S(Q) S(P) < \varepsilon$
- 2) граница множества $D,\,\partial D,$ имеет площадь ноль, т.е. для любого наперёд взятого $\varepsilon>0$ найдётся многоугольник площади меньше $\varepsilon,$ покрывающий кривую $\partial D.$

Напомним, что

а) любая спрямляемая кривая имеет площадь ноль

Kритериями квадрируемости множества D служат следующие условия:

- $1) \ \forall \, \varepsilon > 0 \ \exists \, P \subseteq D \ \exists \, Q \supseteq D \ : \ S(Q) S(P) < \varepsilon$
- 2) граница множества $D,\,\partial D,$ имеет площадь ноль, т.е. для любого наперёд взятого $\varepsilon>0$ найдётся многоугольник площади меньше $\varepsilon,$ покрывающий кривую $\partial D.$

Напомним, что

- а) любая спрямляемая кривая имеет площадь ноль
- b) кривая вида $\{(x,f(x))|\ f(x)$ непрерывна на $[a,b]\}$ имеет площадь ноль

Kритериями κ вадрируемости множества D служат следующие условия:

- 1) $\forall \varepsilon > 0 \ \exists P \subseteq D \ \exists Q \supseteq D : S(Q) S(P) < \varepsilon$
- 2) граница множества $D,\,\partial D,$ имеет площадь ноль, т.е. для любого наперёд взятого $\varepsilon>0$ найдётся многоугольник площади меньше $\varepsilon,$ покрывающий кривую $\partial D.$

Напомним, что

- а) любая спрямляемая кривая имеет площадь ноль
- b) кривая вида $\{(x,f(x))|\ f(x)$ непрерывна на $[a,b]\}$ имеет площадь ноль Обратное неверно.

 $\mathit{Критериями}\ \mathit{\kappaeadpupyeмостu}\ \mathit{м}$ ножества D служат следующие условия:

- $1) \ \forall \, \varepsilon > 0 \ \exists \, P \subseteq D \ \exists \, Q \supseteq D \ : \ S(Q) S(P) < \varepsilon$
- 2) граница множества $D,\,\partial D,$ имеет площадь ноль, т.е. для любого наперёд взятого $\varepsilon>0$ найдётся многоугольник площади меньше $\varepsilon,$ покрывающий кривую $\partial D.$

Напомним, что

- а) любая спрямляемая кривая имеет площадь ноль
- b) кривая вида $\{(x,f(x))|\ f(x)$ непрерывна на $[a,b]\}$ имеет площадь ноль Обратное неверно.

Упражнение. Укажите пример неспрямляемой кривой, имеющей площадь ноль.

 $^{^{1} {\}rm Kамилл}$ Жордан (1838–1922), французский математик.

1) Монотонность:

 $^{^{1} {\}rm Kамилл}$ Жордан (1838–1922), французский математик.

 $^{^2}$ Анри Лебег (1875–1941), французский математик.

1) Монотонность:

$$\forall\, D,G\ (D\subseteq G\ \Rightarrow\ S(D)\leqslant S(G))$$

 $^{^2}$ Анри Лебег (1875–1941), французский математик.

¹Камилл Жордан (1838–1922), французский математик.

1) Монотонность:

$$\forall\, D,G\ (D\subseteq G\ \Rightarrow\ S(D)\leqslant S(G))$$

2) Аддитивность:

 $^{^2 \}mbox{Анри Лебег (1875–1941), французский математик.}$

 $^{^{1} {\}rm Kамилл}$ Жордан (1838–1922), французский математик.

1) Монотонность:

$$\forall\, D,G \ (D\subseteq G \ \Rightarrow \ S(D)\leqslant S(G))$$

2) Аддитивность:

$$\forall\, D,G \ (\mathring{D}\cap \mathring{G}=\emptyset \ \Rightarrow \ S(D\cup G)=S(D)+S(G))$$

²Анри Лебег (1875–1941), французский математик.

 $^{^{1}}$ Камилл Жордан (1838–1922), французский математик.

1) Монотонность:

$$\forall\, D,G\ (D\subseteq G\ \Rightarrow\ S(D)\leqslant S(G))$$

2) Аддитивность:

$$\forall D, G \ (\mathring{D} \cap \mathring{G} = \emptyset \Rightarrow S(D \cup G) = S(D) + S(G))$$

3) Инвариантность:

 $^{^2}$ Анри Лебег (1875–1941), французский математик.

 $^{^{1}}$ Камилл Жордан (1838–1922), французский математик.

1) Монотонность:

$$\forall\, D,G\ (D\subseteq G\ \Rightarrow\ S(D)\leqslant S(G))$$

2) Аддитивность:

$$\forall\, D,G \ (\mathring{D}\cap \mathring{G}=\emptyset \ \Rightarrow \ S(D\cup G)=S(D)+S(G))$$

3) Инвариантность: площади конгруэнтных фигур равны

 $^{^2}$ Анри Лебег (1875–1941), французский математик.

 $^{^{1} {\}rm Kамилл}$ Жордан (1838–1922), французский математик.

1) Монотонность:

$$\forall\, D,G\ (D\subseteq G\ \Rightarrow\ S(D)\leqslant S(G))$$

2) Аддитивность:

$$\forall \, D, G \ (\mathring{D} \cap \mathring{G} = \emptyset \ \Rightarrow \ S(D \cup G) = S(D) + S(G))$$

3) Инвариантность: площади конгруэнтных фигур равны

Построенную площадь называют Жордановой мерой плоского множества (площадью множества по $Жордану^1$). Эта мера конечно-аддитивна, но не счётно-аддитивна (в отличие от меры Лебега²).

¹Камилл Жордан (1838–1922), французский математик.

 $^{^2}$ Анри Лебег (1875–1941), французский математик.

Пусть D — квадрируемая плоская фигура и пусть функция f(x,y) определена на D.

Пусть D — квадрируемая плоская фигура и пусть функция f(x,y) определена на D.

Разобьём множество D произвольным образом на n квадрируемых фигур, не имеющих общих внутренних точек:

$$D = \bigcup_{i=1}^n D_i \; : \; D_i -$$
квадрируема, $\stackrel{\circ}{D}_i \cap \stackrel{\circ}{D}_j = \emptyset \;$ при $i \neq j.$

Пусть D — квадрируемая плоская фигура и пусть функция f(x,y) определена на D.

Разобьём множество D произвольным образом на n квадрируемых фигур, не имеющих общих внутренних точек:

$$D = \bigcup_{i=1}^n D_i \; : \; D_i -$$
квадрируема, $\mathring{D}_i \cap \mathring{D}_j = \emptyset \;$ при $i \neq j.$

Построенные таким образом множества $\{D_i\}_{i=1}^n$ называют разбиением множества D.

Пусть D — квадрируемая плоская фигура и пусть функция f(x,y) определена на D.

Разобьём множество D произвольным образом на n квадрируемых фигур, не имеющих общих внутренних точек:

$$D = \bigcup_{i=1}^n D_i \; : \; D_i -$$
квадрируема, $\mathring{D}_i \cap \mathring{D}_j = \emptyset \;$ при $i \neq j.$

Построенные таким образом множества $\{D_i\}_{i=1}^n$ называют разбиением множества D. Будем обозначать его τ

Пусть D — квадрируемая плоская фигура и пусть функция f(x,y) определена на D.

Разобьём множество D произвольным образом на n квадрируемых фигур, не имеющих общих внутренних точек:

$$D = \bigcup_{i=1}^n D_i \; : \; D_i -$$
квадрируема, $\mathring{D}_i \cap \mathring{D}_j = \emptyset \;$ при $i \neq j.$

Построенные таким образом множества $\{D_i\}_{i=1}^n$ называют разбиением множества D. Будем обозначать его τ $(\tau:=\{D_i\}_{i=1}^n).$

Пусть D — квадрируемая плоская фигура и пусть функция f(x,y) определена на D.

Разобьём множество D произвольным образом на n квадрируемых фигур, не имеющих общих внутренних точек:

$$D = \bigcup_{i=1}^n D_i \; : \; D_i -$$
квадрируема, $\stackrel{\circ}{D}_i \cap \stackrel{\circ}{D}_j = \emptyset \;$ при $i \neq j.$

Построенные таким образом множества $\{D_i\}_{i=1}^n$ называют разбиением множества D. Будем обозначать его τ $(\tau:=\{D_i\}_{i=1}^n).$

Для каждого участка разбиения D_i найдём

$$S(D_i)$$
 — площадь и $d_i = \sup_{M,N\in D_i}
ho(M,N)$ — диаметр.

Пусть D — квадрируемая плоская фигура и пусть функция f(x,y) определена на D.

Разобьём множество D произвольным образом на n квадрируемых фигур, не имеющих общих внутренних точек:

$$D = \bigcup_{i=1}^n D_i \; : \; D_i -$$
квадрируема, $\mathring{D}_i \cap \mathring{D}_j = \emptyset \;$ при $i \neq j.$

Построенные таким образом множества $\{D_i\}_{i=1}^n$ называют разбиением множества D. Будем обозначать его τ $(\tau:=\{D_i\}_{i=1}^n).$

Для каждого участка разбиения D_i найдём

$$S(D_i)$$
 — площадь и $d_i = \sup_{M,N\in D_i}
ho(M,N)$ — диаметр.

Введём диаметр разбиения: $d = \max_{i=\overline{1,n}} d_i$.

Пусть D — квадрируемая плоская фигура и пусть функция f(x,y) определена на D.

Разобьём множество D произвольным образом на n квадрируемых фигур, не имеющих общих внутренних точек:

$$D = \bigcup_{i=1}^n D_i \; : \; D_i -$$
квадрируема, $\stackrel{\circ}{D}_i \cap \stackrel{\circ}{D}_j = \emptyset \;$ при $i \neq j.$

Построенные таким образом множества $\{D_i\}_{i=1}^n$ называют разбиением множества D. Будем обозначать его τ $(\tau:=\{D_i\}_{i=1}^n)$.

Для каждого участка разбиения D_i найдём

$$S(D_i)$$
 — площадь и $d_i = \sup_{M,N\in D_i}
ho(M,N)$ — диаметр.

Введём диаметр разбиения: $d = \max_{i=1, n} d_i$.

Выберем произвольную точку на каждом участке разбиения: $N_i(\xi_i, \eta_i) \in D_i$.

Составим интегральную сумму:

$$\sigma = \sigma(\tau, \{N_i\}) = \sum_{i=1}^{n} f(N_i)S(D_i). \tag{1}$$

Составим интегральную сумму:

$$\sigma = \sigma(\tau, \{N_i\}) = \sum_{i=1}^{n} f(N_i)S(D_i). \tag{1}$$

Определение 2. Если существует предел I интегральных сумм (1), не зависящий от способа τ разбиения множества D на части (указанным образом) и от выбора точек N_i , то функция f называется интегрируемой по множеству D, а число I называется интегралом от функции f по множеству D

Составим интегральную сумму:

$$\sigma = \sigma(\tau, \{N_i\}) = \sum_{i=1}^n f(N_i)S(D_i). \tag{1}$$

Определение 2. Если существует предел I интегральных сумм (1), не зависящий от способа τ разбиения множества D на части (указанным образом) и от выбора точек N_i , то функция f называется интегрируемой по множеству D, а число I называется интегралом от функции f по множеству D, обозначается:

$$I = \iint_D f(N) dS = \iint_D f(x, y) dxdy.$$

Интегрируемость и ограниченность

Интегрируемость и ограниченность

Замечание 1. Ограниченность функции на измеримом плоском множестве не является необходимым условием её интегрируемости

Интегрируемость и ограниченность

Замечание 1. Ограниченность функции на измеримом плоском множестве не является необходимым условием её интегрируемости (в отличие от однократного интеграла).

Интегрируемость и ограниченность

Замечание 1. Ограниченность функции на измеримом плоском множестве не является необходимым условием её интегрируемости (в отличие от однократного интеграла).

Теорема 1. Если функция f интегрируема на (квадрируемом) множестве D и неограничена на нём, то найдётся $E\subset D$ такое, что S(E)=0 и f ограничена на $D\setminus E$.

Интегрируемость и ограниченность

Замечание 1. Ограниченность функции на измеримом плоском множестве не является необходимым условием её интегрируемости (в отличие от однократного интеграла).

Теорема 1. Если функция f интегрируема на (квадрируемом) множестве D и неограничена на нём, то найдётся $E\subset D$ такое, что S(E)=0 и f ограничена на $D\setminus E$.

Замечание 2. Существенным в доказательстве ограниченности функции на $D \setminus E$ послужило существование разбиений на сколь угодно мелкие части положительной меры.

Интегрируемость и ограниченность

Замечание 1. Ограниченность функции на измеримом плоском множестве не является необходимым условием её интегрируемости (в отличие от однократного интеграла).

Теорема 1. Если функция f интегрируема на (квадрируемом) множестве D и неограничена на нём, то найдётся $E\subset D$ такое, что S(E)=0 и f ограничена на $D\setminus E$.

Замечание 2. Существенным в доказательстве ограниченности функции на $D \setminus E$ послужило существование разбиений на сколь угодно мелкие части положительной меры.

Следствие. Если f интегрируема на множестве D, имеющем разбиений на сколь угодно мелкие части положительной меры, то f ограниченна на D.

Интегрируемость и ограниченность

Замечание 1. Ограниченность функции на измеримом плоском множестве не является необходимым условием её интегрируемости (в отличие от однократного интеграла).

Теорема 1. Если функция f интегрируема на (квадрируемом) множестве D и неограничена на нём, то найдётся $E\subset D$ такое, что S(E)=0 и f ограничена на $D\setminus E$.

Замечание 2. Существенным в доказательстве ограниченности функции на $D \setminus E$ послужило существование разбиений на сколь угодно мелкие части положительной меры.

Следствие. Если f интегрируема на множестве D, имеющем разбиений на сколь угодно мелкие части положительной меры, то f ограниченна на D.

Теорема 2. Если функция f интегрируема на открытом (квадрируемом) множестве, то она ограничена на нём.