Содержание				Euclidean Burunduk-1					
1	Con	nmon	65	Euclidean Burunduk-2	2				
	1	Setup	Stri	ings	2				
	2	Template							
	3	Stress							
	4	Java	68.						
2	Big	numbers	70	Hashes	_				
_	5	Big Int							
	6	FFT	72.	· Suffix Array (+stable) · · · · · · · · · · · · · · · · · · ·	4				
	7	FFT by mod and FFT with digits up to 10^6	73	$\cdot \; Suffix \cdot Automaton \cdot \ldots \cdot $. 5				
2	Dot	a Structures	74	Suffix Tree	Ė				
3	8	Centroid Decomposition	C	1. Twicks	5				
	9	Convex Hull Trick	. U+ . 75	Fast allocation	5				
	10	DSU	76	Hash of pair	6				
	11	Fenwick Tree	77.	· Ordered-Set- · · · · · · · · · · · · · · · · · · ·	. 6				
	12	Hash Table	78	· Hash Map	. 6				
	13	Heavy Light Decomposition	79	$\cdot \ Fast \cdot I/O \cdot \ldots \cdot $. 6				
	14	Next Greater in Segment Tree			7				
	15 16	Fenwick Tree 2D							
	17	Segment Tree 2D							
				Гранди					
4	Dyn	amic Programming	83	Потоки	8				
	18	LIS	84	- ДП	. 8				
	19	DP tree	85	- Комбинаторика	. 8				
	20	Masks tricks							
5	Flov	vs	87 88	Числа Белла					
	21	Utilities	80	· Martidulutie drifu	8				
	22	Ford-Fulkerson	90	· Mixed · · · · · · · · · · · · · · · · · · ·	8				
	23	Dinic	91.	· Ideas · · · · · · · · · · · · · · · · · · ·	8				
	24	Hungarian							
	25	Min Cost Max Flow	• •		9				
6	Gan				9				
	26	Retrograde Analysis			9				
7	C				9				
,	27	metry ClosestPoints (SweepLine)			9				
	28	ConvexHull							
	29	GeometryBase							
	30	GeometryInterTangent			11				
	31	GeometrySimple							
	32	Halfplanes Intersection			12				
8	Gra	phs		1	12				
Ü	33	2-SAT							
	34	Bridges			13				
	35	Cactus			13				
	36	Cut Points							
	37	Dominator Tree							
	38 39	Eulerian Cycle							
	40	Hamilton Cycle							
	41	Karp with cycle							
	42	Kuhn's algorithm							
	43	Blossom algorithm							
	44	LCA							
	45 46	LCA offline (Tarjan)							
	47	Matroid Intersection							
	77	Mation intersection			1 /				
9	Mat				18				
	48	CRT (KTO)							
	49	Discrete Logarithm							
	50 51	Discrete Root							
	51 52	Eratosthenes							
	53	Gauss							
	54	Gauss binary							
	55	Gcd							
	56	Gray							
	57	Miller-Rabin Test							
	58	Phi							
	59 60	Pollard							
	61	Primitive Root							
	62	Simpson							
	63	Simplex							

1 Common

1 Setup

```
1. F9 \rightarrow Commands \rightarrow File Associations \rightarrow Ins \rightarrow 1st line: *.cpp, 3rd line: g++ -O2 -Wall -Wshadow -Wextra -Wno-unused-result -Wconversion -std=gnu++17 -g -DLOCAL !.! -o !.exe
```

2. $F9 \rightarrow Options \rightarrow Editor settins$

Auto indent, Tab size, Cursor beyond end of line, Show white space (disable).

2 Template

try {

```
#include <bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
#define fst first
#define snd second
#define sz(x) (int) ((x).size())
#define form(i, n) for (int i = 0; i < (n); ++i)
#define form: (i, n) for (int i = (n) - 1; i \ge 0; --i)
#define forab(i, a, b) for (int i = (a); i < (b); ++i)
\#define \ all(c) \ (c).begin(), \ (c).end()
using ll = long long;
using vi = vector<int>;
using pii = pair<int, int>;
#define FNAME ""
int main() {
#ifdef LOCAL
  freopen(FNAME".in", "r", stdin);
  freopen(FNAME".out", "w", stdout);
#endif
  cin.tie(0);
  ios_base::sync_with_stdio(0);
 return 0:
    Stress
@echo off
for /L %%i in (1,1,10000000) do (
gen.exe || exit
main.exe || exit
stupid.exe || exit
fc .out 2.out || exit
echo Test %%i OK
    Java
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Main {
  FastScanner in:
 PrintWriter out;
  void solve() {
   int a = in.nextInt();
    int b = in.nextInt();
   out.print(a + b);
  void run() {
```

```
in = new FastScanner("input.txt");
     out = new PrintWriter("output.txt");
      solve();
      out.flush();
     out.close():
   } catch (FileNotFoundException e) {
      e.printStackTrace();
      System.exit(1);
   }
 class FastScanner {
   BufferedReader br;
   StringTokenizer st;
   public FastScanner() {
     br = new BufferedReader(new InputStreamReader(System.in));
   public FastScanner(String s) {
       br = new BufferedReader(new FileReader(s));
     } catch (FileNotFoundException e) {
        e.printStackTrace();
     }
   String nextToken() {
      while (st == null || !st.hasMoreElements()) {
          st = new StringTokenizer(br.readLine());
       } catch (IOException e) {
          e.printStackTrace();
       }
     }
     return st.nextToken();
   }
   int nextInt() {
     return Integer.parseInt(nextToken());
   long nextLong() {
     return Long.parseLong(nextToken());
   double nextDouble() {
     return Double.parseDouble(nextToken());
   }
   char nextChar() {
     try {
       return (char) (br.read());
     } catch (IOException e) {
        e.printStackTrace();
     }
     return 0;
   7
   String nextLine() {
     try {
       return br.readLine();
     } catch (IOException e) {
        e.printStackTrace();
     }
     return "";
   }
 public static void main(String[] args) {
    new Main().run();
}
```

2 Big numbers

5 Big Int

```
constexpr int BASE = 1000000000;
constexpr int BASE_DIGITS = 9;
struct BigInt {
 // value == 0 is represented by empty z
 vi z; // digits
  // sign == 1/-1 <==> value >=/< 0
 int sign;
   BigInt(): sign(1) {}
 BigInt(ll v) { *this = v: }
   {\tt BigInt\&\ operator=(11\ v)\ \{}
    sign = v < 0 ? -1 : 1; v *= sign;
    z.clear(); for (; v > 0; v = v / BASE) z.pb((int) (v \%
→ BASE)):
   return *this;
 }
   BigInt& operator+=(const BigInt& other) {
    if (sign == other.sign) {
     for (int i = 0, carry = 0; i < sz(other.z) || carry; ++i) {</pre>
       if (i == sz(z)) z.pb(0);
       z[i] += carry + (i < sz(other.z) ? other.z[i] : 0);
        carry = z[i] >= BASE;
       if (carry) z[i] -= BASE;
   } else if (other != 0 /* prevent infinite loop */) {
      *this -= -other;
    }
   return *this;
   friend BigInt operator+(BigInt a, const BigInt& b) { return a
   BigInt& operator-=(const BigInt& other) {
    if (sign == other.sign) {
     if ((sign == 1 && *this >= other) || (sign == -1 && *this
  <= other)) {
       for (int i = 0, carry = 0; i < sz(other.z) || carry; ++i)</pre>
          z[i] = carry + (i < sz(other.z) ? other.z[i] : 0);
          carry = z[i] < 0;
          if (carry)
           z[i] += BASE;
       }
       trim():
      } else {
        *this = other - *this:
        this->sign = -this->sign;
     }
   } else
      *this += -other;
   return *this;
   friend BigInt operator-(BigInt a, const BigInt% b) { return a
   BigInt& operator*=(int v) {
    if (v < 0) sign = -sign, v = -v;
    for (int i = 0, carry = 0; i < sz(z) || carry; ++i) {
      if (i == sz(z))
       z.pb(0);
      11 cur = (11) z[i] * v + carry;
      carry = (int) (cur / BASE);
     z[i] = (int) (cur \% BASE);
    }
   trim();
   BigInt operator*(int v) const { return BigInt(*this) *= v; }
    friend pair < BigInt, BigInt > divmod(const BigInt & a1, const
→ BigInt& b1) {
    int norm = BASE / (b1.z.back() + 1);
   BigInt a = a1.abs() * norm;
    BigInt b = b1.abs() * norm;
   BigInt q, r;
    q.z.resize(sz(a.z));
    fornr (i, sz(a.z)) {
     r *= BASE, r += a.z[i];
      int s1 = sz(b.z) < sz(r.z) ? r.z[sz(b.z)] : 0;
```

```
int s2 = sz(b.z) - 1 < sz(r.z) ? r.z[sz(b.z) - 1] : 0;
      int d = (int) (((11) s1 * BASE + s2) / b.z.back());
     r -= b * d;
     while (r < 0) r += b, --d;
     q.z[i] = d;
   q.sign = a1.sign * b1.sign, r.sign = a1.sign;
   q.trim(), r.trim();
   return {q, r / norm};
   BigInt operator/(const BigInt& v) const { return divmod(*this,

→ v).fst; }
   BigInt operator%(const BigInt& v) const { return divmod(*this,

    v).snd: }

   BigInt& operator/=(int v) {
   if (v < 0) sign = -sign, v = -v;
    int rem = 0;
   formr (i, sz(z)) {
     11 \text{ cur} = z[i] + \text{rem} * (11) BASE;
     z[i] = (int) (cur / v);
     rem = (int) (cur % v);
   trim();
   return *this;
 }
   BigInt operator/(int v) const { return BigInt(*this) /= v; }
   int operator%(int v) const {
   if (v < 0) v = -v;
   int m = 0;
   formr (i, sz(z))
     m = (int) ((z[i] + m * (11) BASE) % v);
   return m * sign;
   BigInt\& operator*=(const BigInt\& v) { return *this = *this *}
   v; }
 BigInt& operator/=(const BigInt& v) { return *this = *this / v;
→ }
   bool operator<(const BigInt& v) const {</pre>
   if (sign != v.sign) return sign < v.sign;</pre>
    if (sz(z) != sz(v.z)) return sz(z) * sign < sz(v.z) * v.sign;
   formr (i, sz(z))
      if (z[i] != v.z[i])
       return z[i] * sign < v.z[i] * sign;</pre>
   return false;
   bool operator>(const BigInt& v) const { return v < *this; }</pre>
 bool operator<=(const BigInt& v) const { return !(v < *this); }</pre>
 bool operator>=(const BigInt& v) const { return !(*this < v); }</pre>
   bool operator==(const BigInt& v) const { return !(*this < v)</pre>
bool operator!=(const BigInt& v) const { return *this < v || v</pre>
void trim() {
   while (!z.empty() \&\& z.back() == 0) z.pop_back();
    if (z.empty()) sign = 1;
 bool isZero() const { return z.empty(); }
 friend BigInt operator-(BigInt v) {
   if (!v.z.empty()) v.sign = -v.sign;
   return v;
 BigInt abs() const {
   return sign == 1 ? *this : -*this;
 void read(const string& s) {
   sign = 1, z.clear();
   int pos = 0;
   while (pos < sz(s) && (s[pos] == '-' || s[pos] == '+')) {
      if (s[pos] == '-') sign = -sign;
     ++pos;
   }
   for (int i = sz(s) - 1; i >= pos; i -= BASE_DIGITS) {
     int x = 0;
     forab (j, max(pos, i - BASE_DIGITS + 1), i)
       x = x * 10 + s[j] - '0';
     z.pb(x);
   }
   trim();
 friend ostream &operator << (ostream & stream, const BigInt & v) {
```

```
if (v.sign == -1)
      stream << '-';
    stream << (v.z.empty() ? 0 : v.z.back());
    fornr (i, sz(v.z) - 1)
      stream << setw(BASE_DIGITS) << setfill('0') << v.z[i];</pre>
    return stream;
  }
  static vi convertBase(const vi& a, int oldDigits, int
\hookrightarrow newDigits) {
    vector<ll> p(max(oldDigits, newDigits) + 1);
    p[0] = 1;
    for (int i = 1; i < sz(p); i++)
     p[i] = p[i - 1] * 10;
    vi res;
    11 cur = 0;
    int curDigits = 0;
    for (int v : a) {
     cur += v * p[curDigits];
      curDigits += oldDigits;
      while (curDigits >= newDigits) {
       res.pb(int(cur % p[newDigits]));
        cur /= p[newDigits];
        curDigits -= newDigits;
      }
    }
    res.pb((int) cur);
    while (!res.empty() && res.back() == 0) res.pop_back();
    return res;
  7
  static vll karatsubaMultiply(const vll& a, const vll& b) {
    int n = sz(a);
    vll res(n + n):
    if (n <= 32) \{
      for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
         res[i + j] += a[i] * b[j];
      return res;
    int k = n >> 1;
    vll a1(a.begin(), a.begin() + k), a2(a.begin() + k, a.end());
    vll b1(b.begin(), b.begin() + k), b2(b.begin() + k, b.end());
    vll a1b1 = karatsubaMultiply(a1, b1);
    vll a2b2 = karatsubaMultiply(a2, b2);
    forn (i, k) a2[i] += a1[i];
    forn (i, k) b2[i] += b1[i];
    vll r = karatsubaMultiply(a2, b2);
    forn (i, sz(a1b1)) r[i] -= a1b1[i];
    forn (i, sz(a2b2)) r[i] -= a2b2[i];
    form (i, sz(r)) res[i + k] += r[i];
    forn (i, sz(a1b1)) res[i] += a1b1[i];
    forn (i, sz(a2b2)) res[i + n] += a2b2[i];
    return res;
  BigInt operator*(const BigInt& v) const {
    vi a6 = convertBase(this->z, BASE_DIGITS, 6);
    vi b6 = convertBase(v.z, BASE_DIGITS, 6);
    vll a(all(a6)), b(all(b6));
    while (sz(a) < sz(b)) a.pb(0);
    while (sz(b) < sz(a)) b.pb(0);
    while (sz(a) & (sz(a) - 1)) a.pb(0), b.pb(0);
    vll c = karatsubaMultiply(a, b);
    BigInt res;
    res.sign = sign * v.sign;
    int carry = 0;
    forn (i, sz(c)) {
     ll cur = c[i] + carry;
      res.z.push_back((int) (cur % 1000000));
      carry = (int) (cur / 1000000);
    res.z = convertBase(res.z, 6, BASE_DIGITS);
    res.trim();
    return res:
};
```

6 FFT

```
int rev[N];
//using Num = complex<dbl>;
struct Num {
  dbl x, y;
  Num() {}
  Num(dbl _x, dbl _y): x(_x), y(_y) {}
  inline dbl real() const { return x; }
  inline dbl imag() const { return y; }
 inline Num operator+(const Num &B) const { return Num(x + B.x, y
\rightarrow + B.y); }
 inline Num operator-(const Num &B) const { return Num(x - B.x, y
→ - B.y); }
 inline Num operator*(dbl k) const { return Num(x * k, y * k); }
 inline Num operator*(const Num &B) const { return Num(x * B.x -
\hookrightarrow y * B.y, x * B.y + y * B.x); }
 inline void operator+=(const Num &B) { x += B.x, y += B.y; }
 inline void operator/=(dbl k) { x /= k, y /= k; }
 inline void operator*=(const Num &B) { *this = *this * B; }
};
Num rt[N];
inline Num sqr(const Num &x) { return x * x; }
inline Num conj(const Num &x) { return Num(x.real(), -x.imag());
inline int getN(int n) {
 int k = 1;
  while(k < n)
   k <<= 1;
  return k:
}
void fft(Num *a, int n) {
  assert(rev[1]); // don't forget to init
  int q = N / n;
  forn (i, n)
    if(i < rev[i] / q)
     swap(a[i], a[rev[i] / q]);
  for (int k = 1; k < n; k <<= 1)
    for (int i = 0; i < n; i += 2 * k)
     forn (j, k) {
        const Num z = a[i + j + k] * rt[j + k];
        a[i + j + k] = a[i + j] - z;
        a[i + j] += z;
void fftInv(Num *a, int n) {
 fft(a, n);
  reverse(a + 1, a + n);
  forn (i, n)
    a[i] /= n;
void doubleFft(Num *a, Num *fa, Num *fb, int n) { // only if you
\hookrightarrow need it
 fft(a, n);
  const int n1 = n - 1;
 forn (i, n) {
    const Num &z0 = a[i], &z1 = a[(n - i) & n1];
    fa[i] = Num(z0.real() + z1.real(), z0.imag() - z1.imag()) *
   fb[i] = Num(z0.imag() + z1.imag(), z1.real() - z0.real()) *
 }
}
Num tmp[N];
template<class T>
void mult(T *a, T *b, T *r, int n) { // n = 2 \text{ k}
  forn (i, n)
    tmp[i] = Num((dbl) a[i], (dbl) b[i]);
  fft(tmp, n);
  const int n1 = n - 1;
  const Num c = Num(0, -0.25 / n);
  fornr (i, n / 2 + 1) {
```

```
const int j = (n - i) \& n1;
    const Num z0 = sqr(tmp[i]), z1 = sqr(tmp[j]);
   tmp[i] = (z1 - conj(z0)) * c;
    tmp[j] = (z0 - conj(z1)) * c;
 fft(tmp, n);
 forn (i, n)
   r[i] = (T) round(tmp[i].real());
void init() { // don't forget to init
 forn(i, N)
    rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (LOG - 1));
 rt[1] = Num(1, 0);
 for (int k = 1, p = 2; k < LOG; k++, p *= 2) {
   const Num x(cos(PI / p), sin(PI / p));
    forab (i, p / 2, p)
     rt[2 * i] = rt[i], rt[2 * i + 1] = rt[i] * x;
 }
```

7 FFT by mod and FFT with digits up to 10^6

```
Num ta[N], tb[N], tf[N], tg[N];
const int HALF = 15:
void mult(int *a, int *b, int *r, int n, int mod) {
 int tw = (1 << HALF) - 1;</pre>
  forn (i, n) {
    int x = int(a[i] % mod);
    ta[i] = Num(x \& tw, x >> HALF);
  forn (i, n) {
   int x = int(b[i] % mod);
    tb[i] = Num(x \& tw, x >> HALF);
  fft(ta, n), fft(tb, n);
  forn (i, n) {
    int j = (n - i) & (n - 1);
    Num a1 = (ta[i] + conj(ta[j])) * Num(0.5, 0);
    Num a2 = (ta[i] - conj(ta[j])) * Num(0, -0.5);
    Num b1 = (tb[i] + conj(tb[j])) * Num(0.5 / n, 0);
    Num b2 = (tb[i] - conj(tb[j])) * Num(0, -0.5 / n);
    tf[j] = a1 * b1 + a2 * b2 * Num(0, 1);
    tg[j] = a1 * b2 + a2 * b1;
  fft(tf, n), fft(tg, n);
  forn (i, n) {
    11 aa = 11(tf[i].x + 0.5);
    11 bb = 11(tg[i].x + 0.5);
    11 cc = 11(tf[i].y + 0.5);
   r[i] = int((aa + ((bb \% mod) << HALF) + ((cc \% mod) << (2 *)
  HALF))) % mod);
 }
int tc[N], td[N];
const int MOD1 = 1.5e9, MOD2 = MOD1 + 1;
void multLL(int *a, int *b, ll *r, int n){
 mult(a, b, tc, n, MOD1), mult(a, b, td, n, MOD2);
    r[i] = tc[i] + (td[i] - tc[i] + (11)MOD2) * MOD1 % MOD2 *
   MOD1;
}
```

3 Data Structures

8 Centroid Decomposition

```
vi g[N];
int d[N], par[N], centroid;
//d and par - in centroid tree
int find(int v, int p, int total) {
```

```
int size = 1, ok = 1;
  for (int to : g[v])
   if (d[to] == -1 \&\& to != p) {
      int s = find(to, v, total);
      if (s > total / 2) ok = 0;
      size += s;
    }
  if (ok && size > total / 2) centroid = v;
  return size;
void calcInComponent(int v, int p, int level) {
  // do something
 for (int to : g[v])
   if (d[to] == -1 && to != p)
      calcInComponent(to, v, level);
//fill(d, d + n, -1)
//decompose(0, -1, 0)
void decompose(int root, int parent, int level) {
  find(root, -1, find(root, -1, INF));
  int c = centroid;
  par[c] = parent, d[c] = level;
  \verb| calcInComponent(centroid, -1, level); \\
  for (int to : g[c])
    if (d[to] == -1)
      decompose(to, c, level + 1);
}
```

9 Convex Hull Trick

```
struct Line {
  int k. b:
  Line() {}
  Line(int _k, int _b): k(_k), b(_b) {}
  ll get(int x) { return b + k * 111 * x; }
  bool operator<(const Line &1) const { return k < 1.k; } //</pre>
→ change to > in case of different order
};
// Checks if intersection of (a, b) is on the left from (a, c).
inline bool check(Line a, Line b, Line c) {
 return (a.b - b.b) * 111 * (c.k - a.k) < (a.b - c.b) * 111 *
\hookrightarrow (b.k - a.k);
struct Convex {
  vector<Line> st:
  inline void add(Line 1) {
    while (sz(st) \ge 2 \&\& !check(st[sz(st) - 2], st[sz(st) - 1],
      st.pop_back();
    st.pb(1);
  int get(int x) {
    int 1 = 0, r = sz(st);
    while (r - 1 > 1) {
      int m = (1 + r) / 2; // change to > in case of different
\hookrightarrow order
     if (st[m - 1].get(x) < st[m].get(x))
        1 = m;
      else
    }
    return 1;
  Convex() {}
  Convex(vector<Line> &lines) {
    st.clear();
    for(Line &1 : lines)
      add(1);
  Convex(Line line) { st.pb(line); }
  Convex(const Convex &a, const Convex &b) {
    vector<Line> lines:
    lines.resize(sz(a.st) + sz(b.st));
    merge(all(a.st), all(b.st), lines.begin());
    st.clear():
    for(Line &l : lines)
```

forn (j, 2)

toPush[path][2 * v + j] = toPush[path][v];

```
add(1);
 }
};
     DSU
10
int pr[N];
int get(int v) {
 return v == pr[v] ? v : pr[v] = get(pr[v]);
bool unite(int v, int u) {
 v = get(v), u = get(u);
 if (v == u) return 0;
 pr[u] = v;
 return 1:
void init(int n) {
 forn (i, n) pr[i] = i;
                                                                        return;
     Fenwick Tree
                                                                        return;
int t[N];
int get(int ind) {
 int res = 0;
 for (; ind >= 0; ind &= (ind + 1), ind--)
                                                                    }
   res += t[ind]:
 return res;
void add(int ind, int n, int val) {
 for (; ind < n; ind |= (ind + 1))
    t[ind] += val;
int sum(int 1, int r) { // [l, r)
 return get(r - 1) - get(1 - 1);
12 Hash Table
using H = 11;
const int HT_SIZE = 1<<20, HT_AND = HT_SIZE - 1, HT_SIZE_ADD =</pre>

    HT_SIZE / 100;

H ht[HT_SIZE + HT_SIZE_ADD];
int data[HT_SIZE + HT_SIZE_ADD];
                                                                      return ans;
                                                                    }
int get(const H &hash){
 int k = ((11) hash) & HT_AND;
 while (ht[k] \&\& ht[k] != hash) ++k;
 return k:
                                                                      size[v] = 1:
                                                                      pr[v] = p;
void insert(const H &hash, int x){
 int k = get(hash);
 if (!ht[k]) ht[k] = hash, data[k] = x;
bool count(const H &hash){
 int k = get(hash);
 return ht[k] != 0;
    Heavy Light Decomposition
vi g[N];
int size[N], comp[N], num[N], top[N], pr[N], tin[N], tout[N];
vi t[N], toPush[N], lst[N];
int curPath = 0, curTime = 0;
void pushST(int path, int v, int vl, int vr) {
  if (toPush[path][v] != -1) {
                                                                      dfs(0, 0);
   if (vl != vr - 1)
```

```
t[path][v] = toPush[path][v];
    toPush[path][v] = -1;
int getST(int path, int v, int vl, int vr, int ind) {
  pushST(path, v, vl, vr);
  if (vl == vr - 1)
   return t[path][v];
  int vm = (vl + vr) / 2;
  if (ind >= vm)
    return getST(path, 2 * v + 1, vm, vr, ind);
  return getST(path, 2 * v, v1, vm, ind);
void setST(int path, int v, int vl, int vr, int l, int r, int val)
 if (vl >= l && vr <= r) {
    toPush[path][v] = val;
    pushST(path, v, vl, vr);
  pushST(path, v, v1, vr);
  if (vl >= r || l >= vr)
  int vm = (vl + vr) / 2;
  setST(path, 2 * v, vl, vm, l, r, val);
  setST(path, 2 * v + 1, vm, vr, 1, r, val);
  t[path][v] = min(t[path][2 * v], t[path][2 * v + 1]);
bool isUpper(int v, int u) {
 return tin[v] <= tin[u] && tout[v] >= tout[u];
int getHLD(int v) {
  return getST(comp[v], 1, 0, sz(t[comp[v]]) / 2, num[v]);
int setHLD(int v, int u, int val) {
  int ans = 0, w = 0;
  forn (i, 2) {
    while (!isUpper(w = top[comp[v]], u))
      setST(comp[v], 1, 0, sz(t[comp[v]]) / 2, 0, num[v] + 1,
\hookrightarrow val), v = pr[w];
    swap(v, u);
  setST(comp[v], 1, 0, sz(t[comp[v]]) / 2, min(num[v], num[u]),

    max(num[v], num[u]) + 1, val);

void dfs(int v, int p) {
 tin[v] = curTime++;
  for (int u : g[v])
   if (u != p) {
      dfs(u, v);
      size[v] += size[u];
  tout[v] = curTime++;
void build(int v) {
  if (v == 0 \mid \mid size[v] * 2 < size[pr[v]])
    top[curPath] = v, comp[v] = curPath, num[v] = 0, curPath++;
    comp[v] = comp[pr[v]], num[v] = num[pr[v]] + 1;
  lst[comp[v]].pb(v);
  for (int u : g[v])
    if (u != pr[v])
      build(u):
void initHLD() {
  build(0);
```

```
forn (i, curPath) {
  int curSize = 1;
  while (curSize < sz(lst[i]))
    curSize *= 2;
  t[i].resize(curSize * 2);
  toPush[i] = vi(curSize * 2, -1);
  //initialize t[i]
}</pre>
```

14 Next Greater in Segment Tree

```
int t[4 * N], tSize = 1;

// Find position > pos with val > x.
int nextGreaterX(int v, int l, int r, int pos, int x) {
  if (r <= pos + 1 || t[v] <= x) return INF;
  if (v >= tSize) return v - tSize;
  int ans = nextGreaterX(2 * v, l, (l + r) / 2, pos, x);
  if (ans == INF)
    ans = nextGreaterX(2 * v + 1, (l + r) / 2, r, pos, x);
  return ans;
}
```

15 Sparse Table

```
int st[N][LOG];
int lg[N];

int get(int 1, int r) { // [l, r)
    int curLog = lg[r - 1];
    return min(st[1][curLog], st[r - (1 << curLog)][curLog]);
}

void initSparseTable(int *a, int n) {
    lg[1] = 0;
    forab (i, 2, n + 1) lg[i] = lg[i / 2] + 1;
    forn (i, n) st[i][0] = a[i];
    forn (j, lg[n])
        forn (i, n - (1 << (j + 1)) + 1)
            st[i][j + 1] = min(st[i][j], st[i + (1 << j)][j]);
}</pre>
```

16 Fenwick Tree 2D

 \hookrightarrow get(x_1 - 1, y_1 - 1);

```
ll a[4][N][N];
int n, m;
inline int f(int x) { return x & ~(x - 1); }
inline void add(int k, int x, int y, ll val) {
  for (; x \le n; x += f(x))
   for (int j = y; j \le m; j += f(j))
      a[k][x][j] += val;
inline ll get(int k, int x, int y) {
 11 s = 0;
 for (; x > 0; x -= f(x))
   for (int j = y; j > 0; j -= f(j))
     s += a[k][x][j];
 return s;
inline ll get(int x, int y) {
 return ll(x + 1) * (y + 1) * get(0, x, y) - (y + 1) * get(1, x, y)
      -(x + 1) * get(2, x, y) + get(3, x, y);
inline void add(int x, int y, ll val) {
 add(0, x, y, val);
 add(1, x, y, val * x);
 add(2, x, y, val * y);
 add(3, x, y, val * x * y);
inline ll get(int x_1, int y_1, int x_2, int y_2) {
```

return get(x_2, y_2) - get(x_1 - 1, y_2) - get(x_2, y_1 - 1) +

```
// Adds val to corresponding rectangle
inline void add(int x_1, int y_1, int x_2, int y_2, ll val) {
   add(x_1, y_1, val);
   if (y_2 < m) add(x_1, y_2 + 1, -val);
   if (x_2 < n) add(x_2 + 1, y_1, -val);
   if (x_2 < n && y_2 < m) add(x_2 + 1, y_2 + 1, val);
}</pre>
```

17 Segment Tree 2D

```
int tSize = (1 << 10);</pre>
struct Node1D {
 Node1D *1, *r;
  ll val, need;
  Node1D(): l(nullptr), r(nullptr), val(0), need(0) {}
 inline void norm() {
   if(!1) 1 = new Node1D();
    if(!r) r = new Node1D();
  11 get(int q1, int qr, int v1 = 0, int vr = tSize) {
   if(vl >= qr || ql >= vr)
      return 0;
    if(ql <= vl && vr <= qr)
     return val;
    int a = max(vl, ql), b = min(vr, qr), vm = (vl + vr) / 2;
    norm():
    return l->get(ql, qr, vl, vm) + r->get(ql, qr, vm, vr) + need
\rightarrow * 11(b - a);
 }
  void add(int ql, int qr, int x, int vl = 0, int vr = tSize) {
    if (ql >= vr || vl >= qr)
     return;
    if (ql <= vl && vr <= qr){
      need += x;
      val += x * ll(vr - vl);
      return;
   int vm = (v1 + vr) / 2;
    norm();
    1->add(q1, qr, x, v1, vm), r->add(q1, qr, x, vm, vr);
    val = 1->val + r->val + need * (vr - vl);
 }
};
struct Node2D {
 Node2D *1, *r;
  Node1D *val, *need;
 Node2D(): 1(nullptr), r(nullptr), val(new Node1D()), need(new
 \rightarrow Node1D()) {}
 inline void norm() {
    if(!1) 1 = new Node2D();
    if(!r) r = new Node2D();
 ll get(int q10, int qr0, int q11, int qr1, int v1 = 0, int vr =
if(vl >= qr0 || ql0 >= vr)
     return 0:
    if(q10 <= v1 && vr <= qr0)
     return val->get(ql1, qr1);
    int a = max(v1, q10), b = min(vr, qr0), vm = (v1 + vr) / 2;
    norm():
    return 1->get(q10, qr0, q11, qr1, v1, vm) + r->get(q10, qr0,
    ql1, qr1, vm, vr) + need->get(ql1, qr1) * ll(b - a);
 void add(int q10, int qr0, int q11, int qr1, int x, int v1 = 0,

    int vr = tSize) {

    if (ql0 >= vr || vl >= qr0)
     return:
    if (ql0 <= vl && vr <= qr0){
      need->add(ql1, qr1, x);
      val->add(ql1, qr1, x * ll(vr - vl));
      return;
    }
    int a = max(q10, v1), b = min(qr0, vr), vm = (v1 + vr) / 2;
    norm();
   l->add(ql0, qr0, ql1, qr1, x, v1, vm), r->add(ql0, qr0, ql1,
\hookrightarrow qr1, x, vm, vr);
```

```
val->add(ql1, qr1, x * ll(b - a));
  }
};
```

Dynamic Programming

LIS 18

```
int longestIncreasingSubsequence(vi a) {
 int n = sz(a);
 vi d(n + 1, INF);
 d[0] = -INF;
 forn (i, n)
   *upper_bound(all(d), a[i]) = a[i];
 fornr (i, n + 1) if (d[i] != INF) return i;
 return 0;
```

DP tree 19

```
int dp[N][N], a[N];
vi g[N];
int dfs(int v, int n) {
 form (i, n + 1)
    dp[v][i] = -INF;
 dp[v][1] = a[v];
  int curSz = 1;
 for (int to : g[v]) {
   int toSz = dfs(to, n);
   for (int i = curSz; i >= 1; i--)
     fornr (j, toSz + 1)
        dp[v][i + j] = max(dp[v][i + j], dp[v][i] + dp[to][j]);
   curSz += toSz;
 7
 return curSz;
```

20 Masks tricks

```
int dp[(1 << MASK)][MASK];</pre>
void calcDP(int n) {
  forn(mask, 1 << n) {
    dp[mask][n] = 1;
    fornr(i, n) {
      dp[mask][i] = dp[mask][i + 1];
      if ((1 << i) & mask)
        dp[mask][i] += dp[mask ^ (1 << i)][i + 1];
    }
```

Flows

21 Utilities

```
vi g[N];
// for directed unweighted graph
struct Edge {
 int v, u, c, f;
 Edge() {}
 Edge(int _v, int _u, int _c): v(_v), u(_u), c(_c), f(0) {}
vector<Edge> edges;
inline void addFlow(int e, int flow) {
   edges[e].f += flow, edges[e ^ 1].f -= flow;
inline void addEdge(int v, int u, int c) {
  g[v].pb(sz(edges)), edges.pb(Edge(v, u, c));
 g[u].pb(sz(edges)), edges.pb(Edge(u, v, 0)); // for undirected 0
 \rightarrow should be c
```

}

```
22 Ford-Fulkerson
int used[N], pr[N];
int curTime = 1;
int dfs(int v, int can, int toPush, int t) {
 if (v == t) return can;
  used[v] = curTime;
 for (int edge : g[v]) {
    auto &e = edges[edge];
   if (used[e.u] != curTime && e.c - e.f >= toPush) {
      int flow = dfs(e.u, min(can, e.c - e.f), toPush, t);
      if (flow > 0) {
        addFlow(edge, flow), pr[e.u] = edge;
        return flow;
     }
   }
 }
 return 0;
int fordFulkerson(int s, int t) {
 int ansFlow = 0, flow = 0;
  // Without scaling
 while ((flow = dfs(s, INF, 1, t)) > 0)
   ansFlow += flow, curTime++;
  // With scaling
 fornr (i, INF_LOG)
   for (curTime++; (flow = dfs(s, INF, (1 \ll i), t)) > 0;

    curTime++)

      ansFlow += flow;
 return ansFlow;
23 Dinic
int pr[N], d[N], q[N], first[N];
int dfs(int v, int can, int toPush, int t) {
 if (v == t) return can;
  int sum = 0;
  for (; first[v] < (int) g[v].size(); first[v]++) {</pre>
   auto &e = edges[g[v][first[v]]];
    if (d[e.u] != d[v] + 1 \mid \mid e.c - e.f < toPush) continue;
   int flow = dfs(e.u, min(can, e.c - e.f), toPush, t);
    addFlow(g[v][first[v]], flow);
   can -= flow, sum += flow;
    if (!can)
   return sum:
  return sum;
bool bfs(int n, int s, int t, int curPush) {
  forn (i, n) d[i] = INF, first[i] = 0;
  int head = 0, tail = 0;
  q[tail++] = s;
  d[s] = 0;
  while (tail - head > 0) {
   int v = q[head++];
   for (int edge : g[v]) {
     auto &e = edges[edge];
      if (d[e.u] > d[v] + 1 \&\& e.c - e.f >= curPush)
        d[e.u] = d[v] + 1, q[tail++] = e.u;
  }
  return d[t] != INF;
int dinic(int n, int s, int t) {
 int ansFlow = 0;
  // Without scaling
  while (bfs(n, s, t, 1))
   ansFlow += dfs(s, INF, 1, t);
  // With scaling
 fornr (j, INF_LOG)
    while (bfs(n, s, t, 1 \ll j))
     ansFlow += dfs(s, INF, 1 \ll j, t);
  return ansFlow;
```

24 Hungarian

```
const int INF = 1e9;
int a[N][N];
// min = sum of a[pa[i],i]
// you may optimize speed by about 15%, just change all vectors to
  static arrays
vi Hungarian(int n) {
 vi pa(n + 1, -1), row(n + 1, 0), col(n + 1, 0), la(n + 1);
 forn (k, n) {
    vi u(n + 1, 0), d(n + 1, INF);
   pa[n] = k;
   int 1 = n, x;
    while ((x = pa[1]) != -1) {
     u[1] = 1:
      int minn = INF, tmp, 10 = 1;
     forn (j, n)
        if (!u[j]) {
          if ((tmp = a[x][j] + row[x] + col[j]) < d[j])
           d[j] = tmp, la[j] = 10;
          if (d[j] < minn)
           minn = d[j], 1 = j;
       }
     forn (j, n + 1)
        if (u[j])
         col[j] += minn, row[pa[j]] -= minn;
          d[j] -= minn;
   while (1 != n)
     pa[1] = pa[la[1]], 1 = la[1];
 return pa;
```

25 Min Cost Max Flow

```
int pr[N], in[N], q[N * M], used[N], d[N], pot[N];
vi g[N];
struct Edge {
  int v, u, c, f, w;
  Edge() {}
 Edge(int _v, int _u, int _c, int _w): v(_v), u(_u), c(_c),
   f(0), w(_w) {}
vector<Edge> edges;
inline void addFlow(int e, int flow) {
  edges[e].f += flow, edges[e ^ 1].f -= flow;
}
inline void addEdge(int v, int u, int c, int w) {
  g[v].pb(sz(edges)), edges.pb(Edge(v, u, c, w));
  g[u].pb(sz(edges)), edges.pb(Edge(u, v, 0, -w));
int dijkstra(int n, int s, int t) {
  forn (i, n) used[i] = 0, d[i] = INF;
  d[s] = 0;
  while (1) {
    int v = -1;
    forn (i, n)
      if (!used[i] && (v == -1 \mid \mid d[v] > d[i]))
        v = i;
    if (v == -1 \mid \mid d[v] == INF) break;
    used[v] = 1;
    for (int edge : g[v]) {
      auto &e = edges[edge];
      int w = e.w + pot[v] - pot[e.u];
      if (e.c > e.f && d[e.u] > d[v] + w)
        d[e.u] = d[v] + w, pr[e.u] = edge;
    }
  }
  if (d[t] == INF) return d[t];
 forn (i, n) pot[i] += d[i];
  return pot[t];
```

```
int fordBellman(int n, int s, int t) {
  forn (i, n) d[i] = INF;
  int head = 0, tail = 0;
  d[s] = 0, q[tail++] = s, in[s] = 1;
  while (tail - head > 0) {
   int v = q[head++];
    in[v] = 0;
   for (int edge : g[v]) {
     auto &e = edges[edge];
      if (e.c > e.f \&\& d[e.u] > d[v] + e.w) {
        d[e.u] = d[v] + e.w;
        pr[e.u] = edge;
        if (!in[e.u])
          in[e.u] = 1, q[tail++] = e.u;
      }
   }
  }
 return d[t];
}
int minCostMaxFlow(int n, int s, int t) {
 int ansFlow = 0, ansCost = 0, dist;
  while ((dist = dijkstra(n, s, t)) != INF) {
   int curFlow = INF;
   for (int cur = t; cur != s; cur = edges[pr[cur]].v)
     curFlow = min(curFlow, edges[pr[cur]].c -

    edges[pr[cur]].f);

   for (int cur = t; cur != s; cur = edges[pr[cur]].v)
     addFlow(pr[cur], curFlow);
    ansFlow += curFlow;
   ansCost += curFlow * dist;
 }
 return ansCost;
```

6 Games

26 Retrograde Analysis

```
int win[N], lose[N], outDeg[N];
vi rg[N];
void retro(int n) {
  queue<int> q;
  forn (i, n)
   if (!outDeg[i])
     lose[i] = 1, q.push(i);
  while (!q.empty()) {
   int v = q.front();
   q.pop();
   for (int to : rg[v])
     if (lose[v]) {
        if (!win[to])
          win[to] = 1, q.push(to);
      } else {
        outDeg[to]--;
        if (!outDeg[to])
          lose[to] = 1, q.push(to);
      }
 }
}
```

7 Geometry

27 ClosestPoints (SweepLine)

```
SPb HSE (Bogomolov, Labutin, Podguzov)
 return (ll)x * x;
inline void relax(const Pnt &a, const Pnt &b){
 ll tmp = sqr(a.x - b.x) + sqr(a.y - b.y);
  if (tmp < d2)
    d2 = tmp, d = (11)(sqrt(d2) + 1 - 1e-9); // round up
inline bool xless(const Pnt &a, const Pnt &b){
 return a.x < b.x;
int main() {
  int n;
  scanf("%d", &n);
  forn(i, n)
   scanf("%d%d", &p[i].x, &p[i].y), p[i].i = i;
  sort(p, p + n, xless);
  set <Pnt> s:
  int 1 = 0;
  forn(r, n){
    set<Pnt>::iterator it_r = s.lower_bound(p[r]), it_l = it_r;
    for (; it_r != s.end() && it_r->y - p[r].y < d; ++it_r)
     relax(*it_r, p[r]);
    while (it_l != s.begin() && p[r].y - (--it_l)->y < d)
     relax(*it_l, p[r]);
    s.insert(p[r]);
    while (1 <= r \&\& p[r].x - p[1].x >= d)
      s.erase(p[1++]);
 printf("%.9f\n", sqrt(d2));
 return 0;
    ConvexHull
using vpnt = vector<Pnt>;
inline bool by Angle (const Pnt& a, const Pnt& b) {
  dbl x = a \% b;
  return eq(x, 0) ? a.len2() < b.len2() : x < 0;
vpnt convexHull(vpnt p) {
 int n = sz(p);
  assert(n > 0):
  swap(p[0], *min_element(all(p)));
 forab(i, 1, n)
 p[i] = p[i] - p[0];
  sort(p.begin() + 1, p.end(), byAngle);
/* To keep 180 angles (1) (2)
  int k = p.size() - 1;
  \label{eq:while} \textit{while}(k > 0 \; \textit{SM} \; eq((p[k - 1] - p.back()) \; \% \; p.back(), \; 0))
  reverse(pi.begin() + k, pi.end());*/
 int rn = 0;
  vpnt r(n);
  r[rn++] = p[0];
  forab(i, 1, n){
   Pnt q = p[i] + p[0];
    while(rn >= 2 && geq((r[rn - 1] - r[rn - 2]) % (q - r[rn -
\leftrightarrow 2]), 0)) // (2) ge
      --rn:
   r[rn++] = q;
 7
 r.resize(rn):
 return r;
29
     GeometryBase
const dbl EPS = 1e-9;
const int PREC = 20;
inline bool eq(dbl a, dbl b) { return abs(a-b)<=EPS; }</pre>
```

```
inline bool gr(dbl a, dbl b) { return a>b+EPS; }
```

```
inline bool geq(dbl a, dbl b) { return a>=b-EPS; }
inline bool ls(dbl a, dbl b) { return a < b - EPS; }</pre>
inline bool leq(dbl a, dbl b) { return a <= b + EPS; }</pre>
struct Pnt {
    dbl x,y;
    Pnt(): x(0), y(0) {}
    Pnt(dbl xx, dbl yy): x(xx), y(yy) {}
    inline Pnt operator +(const Pnt &p) const { return Pnt(x +
\hookrightarrow p.x, y + p.y); }
    inline Pnt operator -(const Pnt &p) const { return Pnt(x -
    p.x, y - p.y); }
    inline dbl operator *(const Pnt &p) const { return x * p.x + y

    * p.y; } // ll

    inline dbl operator \%(const Pnt &p) const { return x * p.y - y
\hookrightarrow * p.x; } // ll
    inline Pnt operator *(dbl k) const { return Pnt(x * k, y * k);
→ }
    inline Pnt operator /(dbl k) const { return Pnt(x / k, y / k);
    }
    inline Pnt operator -() const { return Pnt(-x, -y); }
    inline void operator +=(const Pnt &p) { x += p.x, y += p.y; }
    inline void operator -=(const Pnt &p) { x -= p.x, y -= p.y; }
    inline void operator *=(dbl k) { x*=k, y*=k; }
    inline bool operator ==(const Pnt &p) const { return
\rightarrow abs(x-p.x)<=EPS && abs(y-p.y)<=EPS; }
    inline bool operator !=(const Pnt &p) const { return
\rightarrow abs(x-p.x)>EPS || abs(y-p.y)>EPS; }
    inline bool operator <(const Pnt &p) const { return
\rightarrow abs(x-p.x)<=EPS ? y<p.y-EPS : x<p.x; }
    inline dbl angle() const { return atan2(y, x); } // ld
    inline dbl len2() const { return x*x+y*y; } // ll
    inline dbl len() const { return sqrt(x*x+y*y); } // ll, ld
    inline Pnt getNorm() const {
        auto 1 = len();
        return Pnt(x/1, y/1);
    }
    inline void normalize() {
        auto 1 = len();
        x/=1, y/=1;
    inline Pnt getRot90() const { //counter-clockwise
        return Pnt(-y, x);
    inline Pnt getRot(dbl a) const { // ld
        dbl si = sin(a), co = cos(a);
        return Pnt(x*co - y*si, x*si + y*co);
    inline void read() {
        int xx, vv;
    cin >> xx >> yy;
        x = xx, y = yy;
    }
    inline void write() const{
        cout << fixed << (double)x << " " << (double)y << '\n';</pre>
    Pnt bmul(const Pnt& r) const {
    return Pnt(x*r.x - y*r.y, y*r.x + x*r.y);
}:
struct Line{
    dbl a, b, c;
    Line(): a(0), b(0), c(0) {}
    // normalizes
    Line(dbl aa, dbl bb, dbl cc) {
      dbl norm = sqrt(aa * aa + bb * bb);
      aa /= norm, bb /= norm, cc /= norm;
      a = aa, b = bb, c = cc;
    Line(const Pnt &A, const Pnt &p){ // it normalizes (a,b),
\hookrightarrow important in d(), normalToP()
```

```
SPb HSE (Bogomolov, Labutin, Podguzov)
                                                                      Team reference document. Page 11 of 25
        Pnt n = (p-A).getRot90().getNorm();
                                                                       dbl C = (a*a+d*d-b*b)/(2*a*d);
        a = n.x, b = n.y, c = -(a * A.x + b * A.y);
                                                                       if (abs(C) > 1+EPS) return {};
                                                                       dbl S = sqrt(max(1-C*C,(dbl)0)); Pnt tmp = (y.p-x.p)/d*x.r;
                                                                       if (eq(S, 0)) return {x.p+tmp.bmul(Pnt(C,0))};
                                                                       \texttt{return } \{ \texttt{x.p+tmp.bmul(Pnt(C,S)),x.p+tmp.bmul(Pnt(C,-S))} \}; \\
    inline dbl d(const Pnt &p) const { return a*p.x + b*p.y + c; }
    inline Pnt no() const {return Pnt(a, b);}
    inline Pnt normalToP(const Pnt &p) const { return Pnt(a,b) *
\hookrightarrow (a*p.x + b*p.y + c); }
                                                                     dbl circle_isect_area(const Circle &x, const Circle &y) {
                                                                       dbl d = (x.p-y.p).len(), a = x.r, b = y.r; if (a < b)
    inline void write() const{
                                                                      \rightarrow swap(a,b);
      cout << fixed << (double)a << " " << (double)b << " " <<
                                                                       if (geq(d, a+b)) return 0;
    (double)c << '\n';</pre>
                                                                       if (leq(d, a-b)) return PI*b*b;
                                                                       dbl ca = acos((a*a+d*d-b*b)/(2*a*d)), cb =
}:
                                                                     \rightarrow acos((b*b+d*d-a*a)/(2*b*d)):
                                                                       return (ca*a*a-0.5*a*a*sin(ca*2))+(cb*b*b-0.5*b*b*sin(cb*2));
                                                                     }
30 GeometryInterTangent
inline dbl sqr(dbl x) { return x * x; }
                                                                     // Squared distance between point p and segment [a..b]
                                                                     dbl dist2(Pnt p, Pnt a, Pnt b){
                                                                         if ((p - a) * (b - a) < 0) return (p - a).len2();
                                                                         if ((p - b) * (a - b) < 0) return (p - b).len2();
struct Circle {
                                                                         dbl d = fabs((p - a) \% (b - a));
   Pnt p;
                                                                         return d * d / (b - a).len2();
    dbl r;
                                                                     }
};
Pnt tangent(Pnt x, Circle y, int t = 0) {
                                                                     31 GeometrySimple
  y.r = abs(y.r); // abs needed because internal calls y.s < 0
  if (y.r == 0) return y.p;
                                                                     int sign(dbl a) { return (a > EPS) - (a < -EPS); }</pre>
  dbl d = (x - y.p).len();
  Pnt a = (x - y.p) * pow(y.r / d, 2) + y.p;
                                                                     // Checks, if point is inside the segment
 Pnt b = ((x - y.p).getNorm() * sqrt(d * d - y.r * y.r) / d *
                                                                     inline bool inSeg(const Pnt &p, const Pnt &a, const Pnt &b) {
\rightarrow y.r).bmul(Pnt(0, 1));
                                                                         return eq((p - a) \% (p - b), 0) && leq((p - a) * (p - b), 0);
 return t == 0 ? a+b : a-b;
                                                                     }
                                                                     // Checks, if two intervals (segments without ends) intersect AND
vector<pair<Pnt,Pnt>> external(const Circle &x, const Circle &y)
                                                                     → do not lie on the same line
                                                                     inline bool subIntr(const Pnt &a, const Pnt &b, const Pnt &c,
 vector<pair<Pnt,Pnt>> v;
                                                                     if (x.r == y.r) {
                                                                         return
                                                                                 sign((b - a) \% (c - a)) * sign((b - a) \% (d - a)) ==
   Pnt tmp = ((x.p-y.p).getNorm()*x.r).bmul(Pnt(0,1));
                                                                        -1 &&
    v.pb(mp(x.p+tmp,y.p+tmp));
    v.pb(mp(x.p-tmp,y.p-tmp));
  } else {
                                                                         -1;
   Pnt p = (x.p*y.r-y.p*x.r)/(y.r-x.r);
                                                                     }
   forn(i,2) v.pb(mp(tangent(p,x,i),tangent(p,y,i)));
 return v;
}
                                                                     vector<pair<Pnt,Pnt>> internal(const Circle &x, const Circle &y)
                                                                        inSeg(b, c, d) || subIntr(a, b, c, d);
                                                                     }
 return external({x.p,-x.r},y); }
vector<Pnt> line_line(const Line &1, const Line &m){
                                                                     inline dbl area(vector<Pnt> p){
   dbl z = m.a * l.b - l.a * m.b;
                                                                         dbl s = 0;
  dbl x = m.c * 1.b - 1.c * m.b;
                                                                         int n = sz(p);
  dbl y = m.c * l.a - l.c * m.a;
                                                                         p.pb(p[0]);
    if(fabs(z) > EPS)
                                                                         forn(i, n)
        return \{Pnt(-x/z, y/z)\};
                                                                             s += p[i + 1] \% p[i];
    else if(fabs(x) > EPS || fabs(y) > EPS)
                                                                         p.pop_back();
       return {}; // parallel lines
                                                                         return abs(s) / 2;
        return {Pnt(0, 0), Pnt(0, 0)}; // same lines
                                                                     // Check if point p is inside polygon <n, q[]>
                                                                     int containsSlow(Pnt p, Pnt *z, int n){
                                                                         int cnt = 0;
vector<Pnt> circle_line(const Circle &c, const Line &l){
    dbl d = 1.d(c.p);
                                                                         forn(j, n){
    if(fabs(d) > c.r + EPS)
                                                                             Pnt a = z[j], b = z[(j + 1) \% n];
        return {};
                                                                             if (inSeg(p, a, b))
    if(fabs(fabs(d) / c.r - 1) < EPS) {
                                                                                 return -1; // border
       return {c.p - 1.no() * d};
```

} else {

}

dbl s = sqrt(fabs(sqr(c.r) - sqr(d)));

dbl d = (x.p-y.p).len(), a = x.r, b = y.r;

if (eq(d, 0)) { assert(a != b); return {}; }

return {c.p - 1.no() * d + 1.no().getRot90() * s,

vector<Pnt> circle_circle(const Circle &x, const Circle &y) {

c.p - 1.no() * d - 1.no().getRot90() * s};

```
sign((d - c) \% (a - c)) * sign((d - c) \% (b - c)) ==
// Checks, if two segments (ends are included) has an intersection
inline bool checkSegInter(const Pnt &a, const Pnt &b, const Pnt
    \texttt{return inSeg(c, a, b)} \ | \ | \ \texttt{inSeg(d, a, b)} \ | \ | \ \texttt{inSeg(a, c, d)} \ | \ |
         if (min(a.y, b.y) - EPS \le p.y \&\& p.y \le max(a.y, b.y) -

→ EPS)

             cnt += (p.x < a.x + (p.y - a.y) * (b.x - a.x) / (b.y
   - a.y));
    }
    return cnt & 1; // O = outside, 1 = inside
}
//for convex polygon
//assume polygon is counterclockwise-ordered
```

```
bool containsFast(Pnt p, Pnt *z, int n) {
     Pnt o = z[0];
     if(gr((p - o) \% (z[1] - o), 0) || ls((p - o) \% (z[n - 1] -
\rightarrow o), 0))
          return 0:
     int 1 = 0, r = n - 1;
     while(r - 1 > 1){
          int m = (1 + r) / 2;
          if(gr((p - o) \% (z[m] - o), 0))
               r = m;
           else
               1 = m:
     }
     return leq((p - z[1]) % (z[r] - z[1]), 0);
// Checks, if point "p" is in the triangle "abc" IFF triangle in
inline int isInTr(const Pnt \mbox{\ensuremath{\mbox{$k$}\selember{pht}$}} , const Pnt \mbox{\ensuremath{\mbox{$k$}\selember{quark}$}} , const Pnt \mbox{\ensuremath{\mbox{$k$}\selember{quark}$}} , const Pnt \mbox{\ensuremath{\mbox{$k$}\selember{quark}$}}
→ Pnt &c){
     return
                gr((b - a) % (p - a), 0) &&
                gr((c - b) % (p - b), 0) &&
                gr((a - c) \% (p - c), 0);
}
      Halfplanes Intersection
namespace halfplanes {
Pnt st, v, p[N];
```

```
int n, sp, ss[N], ind[N], no[N], cnt[N], k = 0, a[N], b[N];
dbl ang[N];
Pnt Norm(int j) { return (p[a[j]] - p[b[j]]).getRot90(); }
void AddPlane( int i, int j ){
 a[k] = i, b[k] = j, ind[k] = k;
 ang[k] = Norm(k).angle();
 k++:
bool angLess(int i, int j) { return ang[i] < ang[j]; }</pre>
void Unique() {
 int i = 0, k2 = 0;
 while (i < k)
   int ma = ind[i], st_ = i;
   Pnt no_ = Norm(ma);
   for (i++; i < k && fabs(ang[ind[st_]] - ang[ind[i]]) < EPS;</pre>
     if ((no_* p[a[ma]]) < (no_* p[a[ind[i]]]))
       ma = ind[i];
   ind[k2++] = ma;
 }
 k = k2;
dbl xx, yy, tmp;
#define BUILD(a1, b1, c1, i) \
 tmp = sqrt(a1 * a1 + b1 * b1); \
 a1 /= tmp, b1 /= tmp; \
 dbl \ c1 = -(a1 * p[a[i]].x + b1 * p[a[i]].y);
void FindPoint(int i, int j, dbl step = 0.0) {
 BUILD(a1, b1, c1, i);
 BUILD(a2, b2, c2, j);
 xx = -(c1 * b2 - c2 * b1) / (a1 * b2 - a2 * b1);
 yy = (c1 * a2 - c2 * a1) / (a1 * b2 - a2 * b1);
 dbl no_ = sqrt(sqr(a1 + a2) + sqr(b1 + b2));
 xx += (a1 + a2) * step / no_;
 yy += (b1 + b2) * step / no_;
```

```
void TryShiftPoint(int i, int j, dbl step) {
  FindPoint(i, j, step);
  forn (g, k) {
   BUILD(a1, b1, c1, ind[g]);
    if (a1 * xx + b1 * yy + c1 < EPS)
 puts("Possible");
  printf("%.201f %.201f\n", (double)xx, (double)yy);
  exit(0);
void PushPlaneIntoStack(int i) {
  while (sp >= 2 && ang[i] - ang[ss[sp - 2]] + EPS < M_PI){
   FindPoint(i, ss[sp - 2]);
    BUILD(a1, b1, c1, ss[sp - 1]);
    if ((a1 * xx + b1 * yy + c1) < -EPS)
      break:
    sp--;
  7
  ss[sp++] = i;
void solve() {
  cin >> n;
  forn (i, n)
   cin >> p[i].x >> p[i].y;
  p[n] = p[0];
  // Find set of planes
  forn (i. sp)
   AddPlane(max(ss[i], ss[i + 1]), min(ss[i], ss[i + 1]));
  forn (i, n - 1)
   AddPlane(i + 1, i);
  sort(ind, ind + k, angLess);
  int oldK = k;
  Unique();
  forn (i, oldK)
   no[i] = i;
  forn (i, k){
   int j = oldK + i, x = ind[i];
   ang[j] = ang[x] + 2 * M_PI;
   a[j] = a[x];
   b[j] = b[x];
   ind[i + k] = j, no[j] = x;
  sp = 0:
  form (i, 2 * k)
   PushPlaneIntoStack(ind[i]);
  forn (t, sp)
    if (++cnt[no[ss[t]]] > 1){
      TryShiftPoint(ss[t], ss[t - 1], 1e-5);
      break;
    }
}
}
     Graphs
```

8

33 2-SAT

```
// VAR - 2 * vars
int cntVar = 0, val[VAR], usedSat[VAR], comp[VAR];
vi topsortSat:
vi g[VAR], rg[VAR];
inline int newVar() {
  cntVar++;
  return (cntVar - 1) * 2;
```

up[v] = min(up[v], up[u]);

```
inline int Not(int v) { return v ^ 1; }
inline void Implies(int v1, int v2) { g[v1].pb(v2),
\rightarrow rg[v2].pb(v1); }
inline void Or(int v1, int v2) { Implies(Not(v1), v2),
\hookrightarrow Implies(Not(v2), v1); }
inline void Nand(int v1, int v2) { Or(Not(v1), Not(v2)); }
inline void setTrue(int v) { Implies(Not(v), v); }
void dfs1(int v) {
  usedSat[v] = 1;
  for (int to : g[v])
    if (!usedSat[to]) dfs1(to);
  topsortSat.pb(v);
void dfs2(int v, int c) {
  comp[v] = c;
  for (int to : rg[v])
    if (!comp[to]) dfs2(to, c);
int getVal(int v) { return val[v]; }
// cntVar
bool solveSat() {
  forn(i, 2 * cntVar) usedSat[i] = 0;
  forn(i, 2 * cntVar)
   if (!usedSat[i]) dfs1(i);
  reverse(all(topsortSat));
  int c = 0;
  for (int v : topsortSat)
   if (!comp[v]) dfs2(v, ++c);
  forn(i, cntVar) {
    if (comp[2 * i] == comp[2 * i + 1]) return false;
    if (comp[2 * i] < comp[2 * i + 1]) val[2 * i + 1] = 1;
    else val[2 * i] = 1;
  return true;
34
    Bridges
int up[N], tIn[N], timer;
vector<vi> comps;
vi st:
struct Edge {
  int to, id;
  Edge(int _to, int _id) : to(_to), id(_id) {}
vector<Edge> g[N];
void newComp(int size = 0) {
  comps.emplace_back(); // new empty
  while (sz(st) > size) {
    comps.back().pb(st.back());
    st.pop_back();
void findBridges(int v, int parentEdge = -1) {
  if (up[v]) // visited
    return;
  up[v] = tIn[v] = ++timer;
  st.pb(v);
  for (Edge e : g[v]) {
   if (e.id == parentEdge)
      continue:
    int u = e.to;
    if (!tIn[u]) {
      int size = sz(st);
      findBridges(u, e.id);
      if (up[u] > tIn[v])
        newComp(size);
    }
```

```
}
// after find_bridges newComp() for root
void run(int n) {
 forn (i, n)
   if (!up[i]) {
     findBridges(i);
      newComp();
    }
}
    Cactus
int used[N];
struct Edge {
  11 1;
   Edge() {}
   Edge(int _1): 1(_1) {}
vector<pair<int, Edge>> g[N], rev[N], path;
pair<int, Edge> pr[N];
void dfsInit(int v, int p, Edge prE) {
 used[v] = 1;
 pr[v] = mp(p, prE);
 for (auto e : g[v]) {
   int u = e.fst;
   if (u == p)
     continue:
   if (used[u] == 1)
     rev[u].pb(mp(v, e.snd));
    else if (used[u] != 2)
     dfsInit(u, v, e.snd);
 }
 used[v] = 2;
void calc(int v) {
  used[v] = 1;
  for (auto e : rev[v]) {
     path.clear();
     int u = e.fst;
      while (u != v) {
        calc(u);
         path.pb(mp(u, pr[u].snd));
         u = pr[u].fst;
      }
      // Calculate answer for cycle -- path and vertex v
   for (auto e : g[v])
     if (!used[e.fst] && e.fst != pr[v].fst) {
       calc(e.fst);
       // Update answer for tree edges
}
36 Cut Points
bool used[M]:
int tIn[N], timer, isCut[N], color[M], compCnt;
vi st;
struct Edge {
  Edge(int _to, int _id) : to(_to), id(_id) {}
vector<Edge> g[N];
int dfs(int v, int parent = -1) {
 tIn[v] = ++timer;
  int up = tIn[v], x = 0, y = (parent != -1);
  for (Edge p : g[v]) {
   int u = p.to, id = p.id;
   if (id != parent) {
```

int t, size = sz(st);

```
if (!used[id])
      used[id] = 1, st.push_back(id);
    if (!tIn[u]) { // not visited yet
      t = dfs(u, id);
      if (t >= tIn[v]) {
        ++x, ++compCnt;
        while (sz(st) != size) {
          color[st.back()] = compCnt;
          st.pop_back();
      }
    } else
      t = tIn[u];
    up = min(up, t);
}
if (x + y >= 2)
  isCut[v] = 1; // v is cut vertex
return up;
```

37 Dominator Tree

```
// clean: forn(i, n+1)!!!
vi adj[N], ans[N]; // input edges, edges of dominator tree
vi radj[N], child[N], sdomChild[N];
int label[N], rlabel[N], sdom[N], dom[N], co = 0;
int par[N], bes[N];
int get(int x) { // DSU with path compression
  // get\ vertex\ with\ smallest\ sdom\ on\ path\ to\ root
  if (par[x] != x) {
    int t = get(par[x]); par[x] = par[par[x]];
    if (sdom[t] < sdom[bes[x]]) bes[x] = t;</pre>
  }
  return bes[x];
void dfs(int x) { // create DFS tree
  label[x] = ++co; rlabel[co] = x;
  sdom[co] = par[co] = bes[co] = co;
  for(auto y : adj[x]) {
    if (!label[y]) {
      dfs(y); child[label[x]].pb(label[y]); }
    radj[label[y]].pb(label[x]);
 }
}
void init(int root) {
  dfs(root):
  for(int i = co; i >= 1; i--) {
    for(auto j : radj[i]) sdom[i] = min(sdom[i], sdom[get(j)]);
    if (i > 1) sdomChild[sdom[i]].pb(i);
    for(auto j : sdomChild[i]) {
      int k = get(j);
      if (sdom[j] == sdom[k]) dom[j] = sdom[j];
      else dom[j] = k;
    }
    for(auto j : child[i]) par[j] = i;
  }
  forab(i,2,co+1) {
    if (dom[i] != sdom[i]) dom[i] = dom[dom[i]];
    ans[rlabel[dom[i]]].pb(rlabel[i]);
```

Eulerian Cycle

```
struct Edge {
  int to, used;
  Edge(): to(-1), used(0) {}
 Edge(int v): to(v), used(0) {}
vector<Edge> edges;
vi g[N], res, ptr;
// don't forget to clear ptr!
void dfs(int v) {
  for(; ptr[v] < sz(g[v]);) {</pre>
    int id = g[v][ptr[v]++];
    if (!edges[id].used) {
      edges[id].used = edges[id ^ 1].used = 1;
```

```
dfs(edges[id].to);
    res.pb(id); // edges
res.pb(v); // res contains vertices
```

return mp(root, pos);

```
Euler Tour Tree
mt19937 rng(239);
struct Edge {
   int v, u;
   Edge(int _v, int _u): v(_v), u(_u) {}
};
struct Node {
 Node *1, *r, *p;
  Edge e;
  int y, size;
 Node(Edge _e): 1(nullptr), r(nullptr), p(this), e(_e), y(rng()),
\rightarrow size(1) {}
inline int getSize(Node* root) { return root ? root->size : 0; }
inline void recalc(Node* root) { root->size = getSize(root->1) +

    getSize(root->r) + 1; }

set<pair<int, Node*>> edges[N];
Node* merge(Node *a, Node *b) {
  if (!a) return b;
  if (!b) return a;
  if (a->y < b->y) {
    a->r = merge(a->r, b);
    if (a->r) a->r->p = a;
    recalc(a):
    return a:
  }
  b->1 = merge(a, b->1);
 if (b->1) b->1->p = b;
 recalc(b);
  return b;
void split(Node *root, Node *&a, Node *&b, int size) {
  if (!root) {
    a = b = nullptr;
    return;
  int lSize = getSize(root->1);
  if (lSize >= size) {
    split(root->1, a, root->1, size);
    if (root->l) root->l->p = root;
    b = root, b->p = b;
    split(root->r, root->r, b, size - 1Size - 1);
    if (root->r) root->r->p = root;
    a = root, a -> p = a;
    a->p = a;
  }
  recalc(root);
inline Node* rotate(Node* root, int k) {
  if (k == 0) return root;
  Node *1, *r;
  split(root, 1, r, k);
  return merge(r, 1);
7
inline pair<Node*, int> goUp(Node* root) {
 int pos = getSize(root->1);
  while (root->p != root)
    pos += (root->p->r == root ? getSize(root->p->l) + 1 : 0),

    root = root->p;
```

return ans;

```
inline Node* deleteFirst(Node* root) {
 Node* a;
 split(root, a, root, 1);
                                                                     41 Karp with cycle
  edges[a->e.v].erase(mp(a->e.u, a));
                                                                     int d[N][N], p[N][N];
 return root:
                                                                     vi g[N], ans;
inline Node* getNode(int v, int u) {
                                                                     struct Edge {
 return edges[v].lower_bound(mp(u, nullptr))->snd;
                                                                       int a, b, w;
                                                                       Edge(int _a, int _b, int _w): a(_a), b(_b), w(_w) {}
inline void cut(int v, int u) { }
 auto pV = goUp(getNode(v, u));
                                                                     vector<Edge> edges:
 auto pU = goUp(getNode(u, v));
 int 1 = min(pV.snd, pU.snd), r = max(pV.snd, pU.snd);
                                                                     void fordBellman(int s. int n) {
 Node *a, *b, *c;
                                                                       forn (i, n + 1)
 split(pV.fst, a, b, 1);
                                                                         forn (j, n + 1)
 split(b, b, c, r - 1);
                                                                           d[i][j] = INF;
 deleteFirst(b);
                                                                       d[0][s] = 0;
 merge(a, deleteFirst(c));
                                                                       forab (i, 1, n + 1)
                                                                         for (auto &e : edges)
                                                                           if (d[i-1][e.a] < INF && d[i][e.b] > d[i-1][e.a] + e.w)
inline pair<Node*, int> getRoot(int v) {
 return !sz(edges[v]) ? mp(nullptr, 0) :
                                                                             d[i][e.b] = d[i - 1][e.a] + e.w, p[i][e.b] = e.a;

    goUp(edges[v].begin()->snd);

                                                                     }
                                                                     ld karp(int n) {
inline Node* makeRoot(int v) {
                                                                       int s = n++;
 auto root = getRoot(v);
                                                                       forn (i, n - 1)
 return rotate(root.fst, root.snd);
                                                                         g[s].pb(sz(edges)), edges.pb(Edge(s, i, 0));
                                                                       fordBellman(s, n);
                                                                       ld ansValue = INF;
inline Node* makeEdge(int v, int u) {
                                                                       int curV = -1, dist = -1;
 Node* e = new Node(Edge(v, u));
                                                                       forn (v, n - 1)
 edges[v].insert(mp(u, e));
                                                                         if (d[n][v] != INF) {
 return e:
                                                                           ld curAns = -INF;
                                                                           int curPos = -1;
                                                                           forn(k, n)
inline void link(int v, int u) {
                                                                             if (curAns \leftarrow (d[n][v] - d[k][v]) * (ld) (1) / (n - k))
 Node *vN = makeRoot(v), *uN = makeRoot(u);
                                                                               curAns = (d[n][v] - d[k][v]) * (ld) (1) / (n - k),
 merge(merge(wN, makeEdge(v, u)), uN), makeEdge(u, v));

    curPos = k;

                                                                           if (ansValue > curAns)
                                                                             ansValue = curAns, dist = curPos, curV = v;
                                                                         }
    Hamilton Cycle
                                                                       if (curV == -1) return ansValue;
                                                                       for (int iter = n; iter != dist; iter--)
// DP in O(n*2^n) for Ham cycle
                                                                         ans.pb(curV), curV = p[iter][curV];
vi g[MASK];
int adj[MASK], dp[1 << MASK];</pre>
                                                                       reverse(all(ans)):
                                                                       return ansValue;
vi hamiltonCycle(int n) {
 fill(dp, dp + (1 << n), 0);
 forn (v, n) {
                                                                     42 Kuhn's algorithm
    adj[v] = 0;
   for (int to : g[v])
                                                                     // sz(LEFT) = n, sz(RIGHT) = m
      adj[v] |= (1 << to);
                                                                     // numbered consequently
                                                                     int n, m, paired[2 * N], used[2 * N];
                                                                     vi g[N];
 dp[1] = 1;
 forn (mask, (1 << n))
                                                                     bool dfs(int v) {
      if (mask & (1 << v) && dp[mask \hat{} (1 << v)] & adj[v])
                                                                       if (used[v]) return false;
       dp[mask] = (1 << v);
                                                                       used[v] = 1;
 vi ans;
                                                                       for (int to : g[v])
  int mask = (1 << n) - 1, v;
                                                                         if (paired[to] == -1 || dfs(paired[to])) {
  if (dp[mask] \& adj[0]) {
                                                                           paired[to] = v, paired[v] = to;
   forab (i, 1, n)
                                                                           return true;
      if ((1 << i) & (mask & adj[0]))</pre>
                                                                         }
       v = i;
                                                                       return false;
    ans.pb(v);
    mask ^= (1 << v);
    while(v) {
                                                                     int kuhn() {
     forn(i, n)
                                                                       int ans = 0;
        if ((dp[mask] & (1 << i)) && (adj[i] & (1 << v))) {
                                                                       forn (i, n + m) paired[i] = -1;
         v = i;
                                                                       for (int run = 1; run;) {
                                                                         run = 0;
          break;
       }
                                                                         fill(used, used + n + m, 0);
     mask ^= (1 << v);
                                                                         forn(i, n)
      ans.pb(v);
                                                                           if (!used[i] && paired[i] == -1 && dfs(i))
                                                                             ans++, run = 1;
 }
```

return ans;

for (int x : adj[v]) {

```
if (vis[x] == -1) { // neither of x, match[x] visited
                                                                                vis[x] = 1; par[x] = v;
// Start from unpaired vertex in Left part, go from Left anywhere,
                                                                                if (!match[x])
\hookrightarrow from Right only to pair
                                                                                  return augment(u,x),1;
// Max Independent -- A+, B-
                                                                                vis[match[x]] = 0;
                  -- A-, B+
// Min Cover
                                                                                q.push(match[x]);
                                                                              } else if (vis[x] == 0 && orig[v] != orig[x]) {
vi minCover, maxIndependent;
                                                                                int a = lca(orig[v],orig[x]); // odd cycle
                                                                                blossom(x,v,a), blossom(v,x,a);
void dfsCoverIndependent(int v) {
                                                                             } // contract O(n) times
 if (used[v]) return;
                                                                           }
 used[v] = 1;
                                                                         }
 for (int to : g[v])
                                                                         return 0;
   if (!used[to])
      used[to] = 1, dfsCoverIndependent(paired[to]);
                                                                       int calc(int _N) { // rand matching -> constant improvement
                                                                         N = N;
// Kuhn first!
                                                                         forn (i, N+1)
void findCoverIndependent() {
                                                                           match[i] = aux[i] = 0;
  fill(used, used + n + m, 0);
                                                                         int ans = 0; vi V(N); iota(all(V),1); shuffle(all(V),rng); //
                                                                      \hookrightarrow find rand matching
 forn (i. n)
    if (paired[i] == -1)
                                                                         for (int x : V) {
     dfsCoverIndependent(i);
                                                                           if (!match[x]) {
                                                                             for (int y : adj[x]) {
   if (used[i]) maxIndependent.pb(i);
                                                                               if (!match[y]) {
    else minCover.pb(i);
                                                                                 match[x] = y, match[y] = x; ++ans;
 forab (i, n, n + m)
                                                                                  break;
    if (used[i]) minCover.pb(i);
                                                                                }
    else maxIndependent.pb(i);
                                                                             }
                                                                           }
                                                                         forab (i, 1, N+1)
     Blossom algorithm
                                                                            if (!match[i] && bfs(i))
                                                                             ++ans:
mt19937 rng(239017);
                                                                         return ans:
template<int SZ> struct UnweightedMatch {
                                                                       }
  int match[SZ], N;
                                                                     };
  vi adj[SZ];
  void ae(int u, int v) {
                                                                     44 LCA
   adj[u].pb(v);
                                                                     int tin[N], tout[N], up[N][LOG], curTime = 0;;
   adj[v].pb(u);
                                                                     vi g[N];
                                                                     void dfs(int v, int p) {
  queue<int> q;
  int par[SZ], vis[SZ], orig[SZ], aux[SZ];
                                                                       up[v][0] = p;
                                                                       forn (i, LOG - 1)
                                                                         up[v][i + 1] = up[up[v][i]][i];
  void augment(int u, int v) { // toggle edges on u-v path
                                                                       tin[v] = curTime++;
   while (1) { // one more matched pair
     int pv = par[v], nv = match[pv];
                                                                       for (int u : g[v])
                                                                         if (u != p)
     match[v] = pv; match[pv] = v;
                                                                           dfs(u, v);
      v = nv; if (u == pv) return;
                                                                       tout[v] = curTime++;
 }
  int lca(int u, int v) { // find LCA of supernodes in O(dist)
                                                                      int isUpper(int v, int u) {
                                                                       return tin[v] <= tin[u] && tout[v] >= tout[u];
   static int t = 0;
    for (++t;;swap(u,v)) {
      if (!u) continue;
      if (aux[u] == t) return u; // found LCA
                                                                     int lca(int v, int u) {
                                                                       if (isUpper(u, v)) return u;
      aux[u] = t; u = orig[par[match[u]]];
                                                                       fornr (i, LOG)
                                                                         if (!isUpper(up[u][i], v))
 }
                                                                           u = up[u][i];
                                                                       return up[u][0];
  void blossom(int u, int v, int a) { // go other way
   for (; orig[u] != a; u = par[v]) { // around cycle
      par[u] = v; v = match[u]; // treat u as if <math>vis[u] = 1
                                                                     void init() {
      if (vis[v] == 1) vis[v] = 0, q.push(v);
      orig[u] = orig[v] = a; // merge into supernode
                                                                       dfs(0, 0);
                                                                     }
                                                                     45 LCA offline (Tarjan)
 bool bfs(int u) { // u is initially unmatched
                                                                     vi g[N], q[N];
    forn (i,N+1)
     par[i] = 0, vis[i] = -1, orig[i] = i;
                                                                     int pr[N], ancestor[N], used[N];
    q = queue<int>();
   vis[u] = 0;
                                                                     int get(int v) {
                                                                       return v == pr[v] ? v : pr[v] = get(pr[v]);
    while (sz(q)) { // each node is pushed to q at most once
     int v = q.front(); q.pop(); // 0 -> unmatched vertex
```

void unite(int v, int u, int anc) {

```
v = get(v), u = get(u);
 pr[u] = v, ancestor[v] = anc;
void dfs(int v) {
  used[v] = 1;
  for (int u : g[v])
   if (!used[u])
      dfs(u), unite(v, u, v);
  for (int u : q[v])
    if (used[u])
      \verb"ancestor[get(u)]; // \textit{handle answer somehow}
void init(int n) {
  forn (i, n) pr[i] = i, ancestor[i] = i;
  dfs(0);
46 2 Chinese
struct Edge {
    int fr, to, w, id;
    bool operator<(const Edge& o) const { return w < o.w; }</pre>
// find oriented mst (tree)
// there are no edge --> root (root is 0)
// 0 .. n - 1, weights and vertices will be changed, but ids are
vector<Edge> work(const vector<vector<Edge>>% graph) {
    int n = sz(graph);
    vi color(n), used(n, -1);
    forn (i, n)
        color[i] = i;
    vector<Edge> e(n);
    forn (i, n) {
       if (graph[i].empty())
            e[i] = \{-1, -1, -1, -1\};
            e[i] = *min_element(graph[i].begin(),
\hookrightarrow graph[i].end());
    }
    vector<vi> cvcles:
    used[0] = -2;
    forn (s, n) {
        if (used[s] != -1)
           continue:
        int x = s;
        while (used[x] == -1) {
            used[x] = s;
            x = e[x].fr;
        if (used[x] != s)
            continue:
        vi cycle = \{x\};
        for (int y = e[x].fr; y != x; y = e[y].fr)
            cycle.push_back(y), color[y] = x;
        cycles.push_back(cycle);
    if (cycles.empty())
        return e;
    vector<vector<Edge>> next_graph(n);
    forn (s, n) {
        for (const Edge& edge : graph[s]) {
            if (color[edge.fr] != color[s])
                next_graph[color[s]].push_back({
                    color[edge.fr], color[s], edge.w - e[s].w,
   edge.id
                });
    }
    vector<Edge> tree = work(next_graph);
    for (const auto& cycle : cycles) {
        int cl = color[cycle[0]];
        Edge next_out = tree[c1], out{};
        int from = -1;
        for (int v : cycle) {
            tree[v] = e[v];
```

47 Matroid Intersection

};

```
struct Gmat { // graphic matroid
  int V = 0; vector<pii> ed; vi par;
  Gmat(vector<pii> _ed):ed(_ed) {
   map<int,int> m;
    for(auto &t : ed) m[t.fst] = m[t.snd] = 0;
    for(auto &t : m) t.snd = V++;
    for(auto &t : ed) t.fst = m[t.fst], t.snd = m[t.snd];
  int p(int v) {
    return par[v] == v ? v : par[v] = p(par[v]);
  bool unite(int v, int u) {
   v = p(v), u = p(u);
    if (v != u) { par[v] = u; return true; }
   return false;
  void clear() {
    par.resize(V):
    forn(i,V) par[i] = i;
  void ins(int i) { assert(unite(ed[i].fst,ed[i].snd)); }
  bool indep(int i) { return p(ed[i].fst) != p(ed[i].snd); }
};
struct Cmat { // colorful matroid
  int C = 0; vi col; vi used;
  void clear() { used.assign(C,0); }
  void ins(int i) { used[col[i]] = 1; }
  bool indep(int i) { return !used[col[i]]; }
};
template<class M1, class M2> struct MatroidIsect {
  int n; vi iset; M1 m1; M2 m2;
  bool augment() {
    vi pre(n+1,-1); queue<int> q({n});
   while (sz(q)) {
     int x = q.front(); q.pop();
      if (iset[x]) \{
       m1.clear(); forn(i,n) if (iset[i] && i != x) m1.ins(i);
        forn(i,n) if (!iset[i] && pre[i] == -1 && m1.indep(i))
         pre[i] = x, q.push(i);
     } else {
       auto backE = [&]() { // back edge
         m2.clear();
         forn(c,2)forn(i,n)

    if((x==i||iset[i])&&(pre[i]==-1)==c){
           if (!m2.indep(i))return c?pre[i]=x,q.push(i),i:-1;
           m2.ins(i); }
         return n;
       };
        for (int y; (y = backE()) != -1;) if (y == n) {
         for(; x != n; x = pre[x]) iset[x] = !iset[x];
         return 1; }
     }
   }
    return 0;
  MatroidIsect(int _n, M1 _m1, M2 _m2):n(_n), m1(_m1), m2(_m2) {
    iset.assign(n+1,0); iset[n] = 1;
    m1.clear(); m2.clear(); // greedily add to basis
    fornr(i,n) if (m1.indep(i) && m2.indep(i))
      iset[i] = 1, m1.ins(i), m2.ins(i);
    while (augment());
  }
```

for (int i = 2; i <= n % mod; i++)
rem = mul(rem, i, mod);</pre>

9 Math

48 **CRT (KTO)**

```
vi crt(vi a, vi mod) {
  int n = sz(a);
  vi x(n);
  forn (i, n) {
    x[i] = a[i];
    forn (j, i) {
        x[i] = inverse(mod[j], mod[i]) * (x[i] - x[j]) % mod[i];
        if (x[i] < 0) x[i] += mod[i];
    }
}
return x;
}</pre>
```

49 Discrete Logarithm

```
// Returns x: a^x = b \pmod{mod} or -1, if no such x exists
int discreteLogarithm(int a, int b, int mod) {
 int sq = (int) sqrt(mod);
 int sq2 = mod / sq + (mod % sq ? 1 : 0);
 vector<pii> powers(sq2);
 forn (i, sq2)
   powers[i] = mp(power(a, (i + 1) * sq, mod), i + 1);
 sort(all(powers));
 forn (i, sq + 1) {
   int cur = power(a, i, mod);
   cur = mul(cur, b, mod);
   auto it = lower_bound(all(powers), mp(cur, 0));
   if (it != powers.end() && it->fst == cur)
     return it->snd * sq - i;
 }
 return -1;
```

50 Discrete Root

```
// Returns x: x k = a mod mod, mod is prime
int discreteRoot(int a, int k, int mod) {
   if (a == 0)
      return 0;
   int g = primitiveRoot(mod);
   int y = discreteLogarithm(power(g, k, mod), a, mod);
   return power(g, y, mod);
}
```

51 Eratosthenes

```
vi eratosthenes(int n) {
 vi minDiv(n + 1, 0);
 minDiv[1] = 1;
 forab (i, 2, n + 1)
    if (minDiv[i] == 0)
      for (int j = i; j \le n; j += i)
       if (minDiv[j] == 0) minDiv[j] = i;
 return minDiv;
vi eratosthenesLinear(int n) {
 vi minDiv(n + 1, 0), primes;
 minDiv[1] = 1;
 forab (i, 2, n + 1) {
   if (minDiv[i] == 0)
     minDiv[i] = i, primes.pb(i);
   for (int j = 0; j < sz(primes) && primes[j] <= minDiv[i] && i
   * primes[j] <= n; j++)
     minDiv[i * primes[j]] = primes[j];
 7
 return minDiv;
```

52 Factorial

```
// Returns pair (rem, power), where rem = n! % mod,
// power = k: mod % | n!, mod is prime, O(mod log mod)
pii fact(int n, int mod) {
  int rem = 1, power = 0, nCopy = n;
  while (nCopy) nCopy /= mod, power += nCopy;
```

```
return mp(rem % mod, power);
```

while (n > 1) {

n /= mod:

53 Gauss

rem = (rem * ((n / mod) % 2 ? -1 : 1) + mod) % mod;

```
for (int i = row; i < n; i++)
   if (abs(a[i][col]) > abs(a[best][col]))
      best = i;
 if (abs(a[best][col]) < EPS) continue;</pre>
  par[col] = row;
  forn (i, m + 1) swap(a[row][i], a[best][i]);
  forn (i, n)
   if (i != row) {
     double k = a[i][col] / a[row][col];
      for (int j = col; j <= m; j++)
        a[i][j] -= k * a[row][j];
    }
  row++;
}
int single = 1;
forn (i. m)
 if (par[i] != -1) ans[i] = a[par[i]][m] / a[par[i]][i];
  else single = 0;
```

for (int j = 0; j < m; j++) cur += ans[j] * a[i][j]; if (abs(cur - a[i][m]) > EPS) return 0; } if (!single) return 2; return 1:

54 Gauss binary

forn (i, n) {

double cur = 0;

```
const int MAX = 1024;
int gaussBinary(vector<bitset<MAX>> a, int n, int m) {
 int row = 0, col = 0;
  vi par(m, -1);
 for (col = 0; col < m && row < n; col++) {
   int best = row;
   for (int i = row; i < n; i++)
      if (a[i][col] > a[best][col])
       best = i:
    if (a[best][col] == 0)
      continue;
   par[col] = row;
    swap(a[row], a[best]);
   forn (i, n)
      if (i != row && a[i][col])
       a[i] ^= a[row];
   row++;
 }
  vi ans(m, 0);
  forn (i, m)
   if (par[i] != -1)
     ans[i] = a[par[i]][n] / a[par[i]][i];
  bool ok = 1;
  forn (i, n) {
   int cur = 0;
   forn (j, m) cur ^= (ans[j] & a[i][j]);
```

if (cur != a[i][n]) ok = 0;

while (n % i == 0) n /= i;
result -= result / i;

```
return ok;
                                                                       return result;
55 Gcd
int gcd(int a, int b) {
 return b ? gcd(b, a % b) : a;
                                                                     59 Pollard
int gcd(int a, int b, int &x, int &y) {
 if (b == 0) {
   x = 1, y = 0;
   return a;
                                                                      \hookrightarrow qcd every it
 int g = gcd(b, a \% b, x, y), newX = y;
 y = x - a / b * y;
 x = newX;
 return g;
                                                                       return __gcd(prd, n);
void diophant(int a, int b, int c, int &x, int &y) {
 int g = gcd(a, b, x, y);
 if (c % g != 0) return;
                                                                       if (n == 1) return;
 x *= c / g, y *= c / g;
 // next solutions: x += b / g, y -= a / g
                                                                          ++cnt[n];
                                                                         return;
                                                                       }
int inverse(int a, int mod) { // Returns -1, if a and mod are not
                                                                       ull u = pollard(n);
\hookrightarrow coprime
 int x, y;
 int g = gcd(a, mod, x, y);
 return g == 1 ? (x % mod + mod) % mod : -1;
                                                                     60 Power And Mul
                                                                     template <typename T>
vi inverseForAll(int mod) {
 vi r(mod, 0);
                                                                       a += b:
 r[1] = 1;
 for (int i = 2; i < mod; i++)
   r[i] = (mod - r[mod \% i]) * (mod / i) \% mod;
 return r;
                                                                     template <typename T>
                                                                       a -= b;
     Gray
int gray(int n) {
 return n ^ (n >> 1);
                                                                     template <typename T>
                                                                     T mul(T a, T b, T mod) {
int revGray(int n) {
 int k = 0:
 for (; n; n >>= 1) k \hat{} = n;
                                                                     template <>
 return k;
                                                                       11 r = a * b - mod * q;
     Miller-Rabin Test
                                                                       while (r < 0) r += mod;
bool isPrimeMillerRabin(ull n) { // not ll!
                                                                       return r:
 if (n < 2 | | n \% 6 \% 4 != 1)
   return n - 2 < 2;
 ull A[] = \{2, 325, 9375, 28178, 450775, 9780504, 1795265022\};
                                                                     template <typename T>
 ull s = __builtin_ctzll(n - 1), d = n >> s;
                                                                     T power(T a, T n, T mod) {
 for (ull a : A) { // ^ count trailing zeroes
                                                                       if (!n) return 1;
   ull p = power(a, d, n), i = s;
    while (p != 1 \&\& p != n - 1 \&\& a \% n \&\& i--)
                                                                       b = mul(b, b, mod);
     p = mul(p, p, n);
   if (p != n - 1 && i != s) return 0;
 }
 return 1;
                                                                       int res = 1;
                                                                       while (n) {
                                                                         if (n & 1)
58 Phi
int phi(int n) {
                                                                         a = mul(a, a, mod);
 int result = n:
                                                                         n /= 2;
  for (int i = 2; i * i <= n; i++)
   if (n \% i == 0) {
```

```
if (n > 1) result -= result / n;
int inversePhi(int a, int mod) {
 return power(a, phi(mod) - 1, mod);
ull pollard(ull n) { // return some nontrivial factor of n
 auto f = [n](ull x) \{ return mul(x, x, n) + 1; \};
  ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
 while (t++ \% 40 || __gcd(prd, n) == 1) { /// speedup: don't take
    if (x == y) x = ++i, y = f(x);
   if ((q = mul(prd, max(x, y) - min(x, y), n))) prd = q;
   x = f(x), y = f(f(y));
void factorize(ull n, map<ull,int>& cnt) {
  if (isPrimeMillerRabin(n)) {
  factorize(u, cnt), factorize(n / u, cnt);
inline T add(T a, T b, T mod) {
  return a >= mod ? a - mod : a;
inline T sub(T a, T b, T mod) {
 return a < 0? a + mod : a;
 return T((a * 111 * b) % mod);
11 mul<11>(11 a, 11 b, 11 mod) {
 11 q = 11((1d) a * b / mod);
  while (r >= mod) r -= mod;
 T b = power(a, n / 2, mod);
 return n & 1 ? mul < T > (a, b, mod) : b;
int powerFast(int a, int n, int mod) {
     res = mul(res, a, mod);
  return res;
```

Primitive Root

```
int primitiveRoot(int mod) { // Returns -1 if no primitive root
\hookrightarrow exists
 vi fact:
 int ph = phi(mod);
 int n = mod;
 for (int i = 2; i * i <= n; i++) {
   if (n % i == 0) {
     fact.pb(i);
     while (n \% i == 0) n /= i;
   }
 }
 if (n > 1) fact.pb(n);
 forab (i, 2, mod + 1) {
   bool ok = 1;
   for (int j = 0; j < sz(fact) && ok; j++)
     ok &= power(i, ph / fact[j], mod) != 1;
   if (ok) return i;
 return -1;
```

Simpson **62**

```
double f(double x) { return x; }
double simpson(double a, double b, int iterNumber) {
 double res = 0, h = (b - a) / iterNumber;
  forn (i, iterNumber + 1)
   res += f(a + h * i) * ((i == 0) || (i == iterNumber) ? 1 :
\hookrightarrow ((i & 1) == 0) ? 2 : 4);
 return res * h / 3;
```

63 Simplex

```
* maximize c^Tx subject to Ax \leq b, x \geq 0.
   * -inf / inf / max c^T x
  * define variables such that x = 0 is viable.
  * vvd A = {{1,-1}, {-1,1}, {-1,-2}};
  * vd b = \{1, 1, -4\}, c = \{-1, -1\}, x;
  * T \ val = LPSolver(A, b, c).solve(x);
 * Time: O(NM \setminus cdot \setminus \#pivots), where a pivot may be e.g. an edge
\rightarrow relaxation. O(2^N) in the general case.
using vi = vector<int>;
using dbl = double;
using vd = vector<dbl>;
using vvd = vector<vd>;
const dbl eps = 1e-8, inf = 1/.0;
 \textit{\#define ltj(X) if (s==-1 || mp(X[j],N[j]) < mp(X[s],N[s])) s=j } 
struct LPSolver {
  int m, n; vi N, B; vvd D; // # contraints, # variables
  LPSolver(const vvd& A, const vd& b, const vd& c) :
    m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2, vd(n+2)) {
    forn(i,m) forn(j,n) D[i][j] = A[i][j];
    forn(i,m) { // B[i]: add basic variable for each constraint,
      B[i] = n+i, D[i][n] = -1, D[i][n+1] = b[i];
      // convert ineqs to eqs
    } // \text{D[i][n]:} artificial variable for testing feasibility
    forn(j,n) {
      N[j] = j; // non-basic variables, all zero
      D[m][j] = -c[j]; // minimize -c^T x
    N[n] = -1; D[m+1][n] = 1;
  void pivot(int r, int s) { // r = row, c = column
    dbl *a = D[r].data(), inv = 1/a[s];
    forn(i,m+2) if (i != r \&\& abs(D[i][s]) > eps) {
      dbl *b = D[i].data(), binv = b[s]*inv;
      forn(j,n+2) b[j] = a[j]*binv;
      // make column corresponding to s all Os
      b[s] = a[s]*binv; // swap N[s] with B[r]
    // equation for r scaled so x_r coefficient equals 1
```

forn(j,n+2) if (j != s) D[r][j] *= inv;

```
forn(i,m+2) if (i != r) D[i][s] *= -inv;
    D[r][s] = inv; swap(B[r], N[s]); // swap basic w/ non-basic
  bool simplex(int phase) {
    int x = m+phase-1;
    while (1) {
     int s = -1; forn(j,n+1) if (N[j] != -phase) ltj(D[x]);
      // find most negative col for nonbasic (nb) variable
      if (D[x][s] >= -eps) return 1;
      // can't get better sol by increasing nb variable
      int r = -1;
      forn(i,m) {
        if (D[i][s] <= eps) continue;</pre>
        if (r == -1 \mid | mp(D[i][n+1] / D[i][s], B[i])
               < mp(D[r][n+1] / D[r][s], B[r])) r = i;
        /\!/\ \mathit{find}\ \mathit{smallest}\ \mathit{positive}\ \mathit{ratio}
      } // \rightarrow max increase in nonbasic variable
      if (r == -1) return 0; // unbounded
      pivot(r,s);
    }
  dbl solve(vd& x) {
    int r = 0; forab(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) { // run simplex, find feasible x!=0
      pivot(r, n); // N[n] = -1 is artificial variable
      // initially set to smth large
      if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
      // D[m+1][n+1] is max possible value of the negation of
      /\!/ artificial variable, optimal value should be zero
      // if exists feasible solution
      forn(i,m) if (B[i] == -1) { // ?
        int s = 0; forab(j,1,n+1) ltj(D[i]);
        pivot(i,s);
    }
    bool ok = simplex(1); x = vd(n);
    forn(i,m) if (B[i] < n) x[B[i]] = D[i][n+1];</pre>
    return ok ? D[m][n+1] : inf;
};
     Euclidean Burunduk-1
```

int x = go(a, k, m, r);

```
* Sergey Kopeliovich (burunduk30@gmail.com)
#include <iostream>
using namespace std;
// finds x:
    a+k*x \mod m --> min, 0 \le x \le r (0 \le a, k \le m, 0 \le r)
//
      +k costs pk, -m costs pm
      return r-x
int go(int a, int k, int m, int pk, int pm, int r) {
  if (!k) return r;
  if (a >= k) { // make a: 0 <= a < k
    int add = (m - a + k - 1) / k;
    if ((int64_t)add * pk + pm > r) return r;
    a += (int64_t)add * k - m, r -= add * pk + pm;
  }
  int m1 = m \% k, pm1 = (m / k) * pk + pm;
  if (!m1) return r;
  int k1 = k \% m1, pk1 = (k / m1) * pm1 + pk;
  if (pm1 * (a / m1) > r) return r % pm1;
  return go(a \% m1, k1, m1, pk1, pm1, r - (a / m1) * pm1);
// finds x: a+k*x \mod m \longrightarrow \min, 0 <= a, k < m, 0 <= r
int go(int a, int k, int m, int r) {
 return r - go(a, k, m, 1, 0, r);
int main() {
  ios_base::sync_with_stdio(false), cin.tie(0);
  int a, k, m, r;
  while (cin >> a >> k >> m >> r) {
```

}

cout << $((int64_t)x * k + a) \% m << ' ' << x << '\n';$

```
Euclidean Burunduk-2
65
 * Sergey Kopeliovich (burunduk30@gmail.com)
#include <iostream>
using namespace std;
// finds min x:
11
    a+k*x \mod m \setminus in [l..r]
      +k costs pk, -m costs pm
     l \ll r \ll a, first tries -m then +k
//
int go(int a, int k, int m, int pk, int pm, int l, int r) {
 int ans = 0, steps;
 while (1) {
   steps = (a - r + m - 1) / m;
   ans += steps * pm, a -= steps * m;
    if (1 <= a) return ans;</pre>
   if (!k) return -1;
    steps = (1 - a + k - 1) / k;
   ans += steps * pk, a += steps * k;
    if (a <= r) return ans;</pre>
    int m1 = m \% k, pm1 = (m / k) * pk + pm;
   if (!m1) return -1;
   int k1 = k % m1, pk1 = (k / m1) * pm1 + pk;
   k = k1, m = m1, pk = pk1, pm = pm1; // recursion =)
 }
int go(int a, int k, int m, int l, int r) {
 if (a < r)
   a += ((r - a) / m + 1) * m;
 return go(a, k, m, 1, 0, 1, r);
int main() {
 ios_base::sync_with_stdio(false), cin.tie(0);
 int a, k, m, l, r;
 while (cin >> a >> k >> m >> 1 >> r)
   cout << go(a, k, m, 1, r) << '\n';
       Strings
10
     Aho-Corasick
struct Node {
 int next[ALPHA], term; //
  int go[ALPHA], suf, p, pCh; //
 Node(): term(0), suf(-1), p(-1) {
   fill(next, next + ALPHA, -1);
   fill(go, go + ALPHA, -1);
```

```
struct Node {
  int next[ALPHA], term; //
  int go[ALPHA], suf, p, pCh; //
  Node(): term(0), suf(-1), p(-1) {
    fill(next, next + ALPHA, -1);
    fill(go, go + ALPHA, -1);
  }
};

Node g[N];
int last;

void add(const string &s) {
  int now = 0;
  for(char x : s) {
    if (g[now].next[x - 'a'] == -1) {
      g[now].next[x - 'a'] = ++last;
      g[last].p = now, g[last].pCh = x;
  }
  now = g[now].next[x - 'a'];
}
g[now].term = 1;
}

int go(int v, int c);
```

```
int getLink(int v) {
    if (g[v].suf == -1) {
        if (!v || !g[v].p) g[v].suf = 0;
        else g[v].suf = go(getLink(g[v].p), g[v].pCh);
    }
    return g[v].suf;
}
int go(int v, int c) {
    if (g[v].go[c] == -1) {
        if (g[v].next[c] != -1) g[v].go[c] = g[v].next[c];
        else g[v].go[c] = !v ? 0 : go(getLink(v), c);
    }
    return g[v].go[c];
}
```

67 Prefix-function

```
vi prefix(const string &s) {
  int n = sz(s);
  vi pr(n);
  forab (i, 1, n + 1) {
    int j = pr[i - 1];
    while (j > 0 && s[i] != s[j]) j = pr[j - 1];
    if (s[i] == s[j]) j++;
    pr[i] = j;
  }
  return pr;
}
```

68 Z-function

```
vi z(const string& s) {
   int n = sz(s);
   vi z(n);
   for (int i = 1, l = 0, r = 0; i < n; i++) {
      if (i <= r) z[i] = min(r - i + 1, z[i - 1]);
      while (i + z[i] < n && s[z[i]] == s[i + z[i]]) z[i]++;
      if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
   }
   return z;
}
```

69 Hashes

```
#include "../math/PowerAndMul.cpp"
const int P = 239017, MOD_X = 1e9 + 7, MOD_Y = 1e9 + 9;
// using H = unsigned long long;
struct H {
 int x, y;
 H() = default;
 H(int _x): x(_x), y(_x) {}
 H(int _x, int _y): x(_x), y(_y) {}
 inline H operator+(const H& h) const { return H(add(x, h.x,
 → MOD_X), add(y, h.y, MOD_Y)); }
 inline H operator-(const H& h) const { return H(sub(x, h.x,

    MOD_X), sub(y, h.y, MOD_Y)); }

 inline H operator*(const H& h) const { return H(mul(x, h.x,

    MOD_X), mul(y, h.y, MOD_Y)); }

 inline bool operator == (const H& h) const { return x == h.x && y
\hookrightarrow == h.y; }
};
H p[N], h[N];
inline H get(int 1, int r) { return h[r] - h[1] * p[r - 1]; }
void init(const string& s) {
 int n = sz(s);
 p[0] = 1;
 forn (i, n)
    h[i + 1] = h[i] * P + s[i], p[i + 1] = p[i] * P;
```

70 Manaker

```
void manaker(const string& s, int *z0, int *z1) {
  int n = sz(s);
```

```
SPb HSE (Bogomolov, Labutin, Podguzov)
  forn (t, 2) {
    int *z = t ? z1 : z0, 1 = -1, r = -1; // [l..r]
    forn (i, n - t) {
      int k = 0;
      if (r > i + t) {
        int j = 1 + (r - i - t);
       k = min(z[j], j - 1);
      while (i - k \ge 0 \&\& i + k + t < n \&\& s[i - k] == s[i + k + t]
\hookrightarrow t])
        k++:
      z[i] = k:
      if (k \&\& i + k + t > r)
        1 = i - k + 1, r = i + k + t - 1;
    }
 }
71 Palindromic Tree
struct Vertex {
  int suf, len, next[ALPHA];
  Vertex() { fill(next, next + ALPHA, 0); }
int vn. v:
Vertex t[N + 2];
int n, s[N];
int get(int i) { return i < 0 ? -1 : s[i]; }</pre>
void init() {
 t[0].len = -1, vn = 2, v = 0, n = 0;
void add(int ch) {
  s[n++] = ch;
  while (v != 0 \&\& ch != get(n - t[v].len - 2))
    v = t[v].suf;
  int& r = t[v].next[ch];
  if (!r) {
    t[vn].len = t[v].len + 2;
    if (!v) t[vn].suf = 1;
    else {
      v = t[v].suf;
      while (v != 0 \&\& ch != get(n - t[v].len - 2))
        v = t[v].suf;
      t[vn].suf = t[v].next[ch];
    }
   r = vn++;
  }
     Suffix Array (+stable)
int sLen, num[N + 1], p[N], col[N], inv[N], lcp[N];
char s[N + 1];
inline int add(int a, int b) {
 a += b:
  return a >= sLen ? a - sLen : a;
inline int sub(int a, int b) {
  a = b;
 return a < 0 ? a + sLen : a;
void buildArray(int n) {
  sLen = n;
  int ma = max(n, 256);
  forn (i, n)
    col[i] = s[i], p[i] = i;
  for (int k2 = 1; k2 / 2 < n; k2 *= 2) {
    int k = k2 / 2;
    memset(num, 0, sizeof(num));
    forn (i, n) num[col[i] + 1]++;
    forn (i, ma) num[i + 1] += num[i];
```

```
forn (i, n)
      inv[num[col[sub(p[i], k)]]++] = sub(p[i], k);
    int cc = 0;
    forn (i, n) {
     bool flag = col[inv[i]] != col[inv[i - 1]];
      flag |= col[add(inv[i], k)] != col[add(inv[i - 1], k)];
      if (i && flag) cc++;
      num[inv[i]] = cc;
   7
    forn (i, n) p[i] = inv[i], col[i] = num[i];
  memset(num, 0, sizeof(num));
 forn (i, n) num[col[i] + 1]++;
  forn (i, ma) num[i + 1] += num[i];
  forn (i, n) inv[num[col[i]]++] = i;
  forn (i, n) p[i] = inv[i];
 forn (i, n) inv[p[i]] = i;
void buildLCP(int n) {
 int len = 0;
 forn (ind, n){
   int i = inv[ind];
   len = max(0, len - 1);
    if (i != n - 1)
     while (len < n && s[add(p[i], len)] == s[add(p[i + 1],
\hookrightarrow len)])
       len++;
   lcp[i] = len;
   if (i != n - 1 & p[i + 1] == n - 1) len = 0;
}
73 Suffix Automaton
struct Vx {
   int len, suf;
   int next[ALPHA];
    Vx() {}
    Vx(int 1, int s): len(1), suf(s) {}
};
struct SA {
    static const int V = 2 * LEN;
   int last, vcnt:
   Vx v[V]:
   SA() { vcnt = 1, last = newV(0, 0); } // root = vertex with
   number 1
    int newV(int len, int suf){
       v[vcnt] = Vx(len, suf);
        return vcnt++;
   }
    int add(char ch) {
        int p = last, c = ch - 'a';
        last = newV(v[last].len + 1, 0);
        while (p && !v[p].next[c]) // added p &&
           v[p].next[c] = last, p = v[p].suf;
        if (!p)
            v[last].suf = 1;
        else {
            int q = v[p].next[c];
            if (v[q].len == v[p].len + 1) v[last].suf = q;
                int r = newV(v[p].len + 1, v[q].suf);
                v[last].suf = v[q].suf = r;
                {\tt memcpy(v[r].next,\ v[q].next,\ sizeof(v[r].next));}
                while (p && v[p].next[c] == q)
                    v[p].next[c] = r, p = v[p].suf;
        }
        return last;
    }
};
74 Suffix Tree
```

char S[N];

int L:

```
struct Node;
struct Pos;
typedef Node *pNode;
typedef map<char,pNode> mapt;
struct Node{
  pNode P, link;
  int L, R;
  mapt next;
  Node(): P(NULL), link(this), L(0), R(0) {}
  Node(pNode P_, int L_, int R_): P(P_), link(NULL), L(L_), R(R_)
  inline int elen() const { return R - L; }
 inline pNode addEdge(int L_, int R_) { return next[S[L_]] = new
\hookrightarrow Node(this, L_, R_); }
struct Posf
  pNode V;
  int up;
  Pos(): V(NULL), up(0) {}
  Pos(pNode V_, int up_): V(V_), up(up_) {}
  pNode splitEdge() const {
    if(!up)
      return V;
    int L_ = V->L, M = V->R - up;
    pNode P = V->P, n = new Node(P, L_, M);
    P->next[S[L_]] = n;
    n->next[S[M]] = V;
    V->P = n, V->L = M;
    return n:
  }
  Pos nextChar(char c) const {
      return S[V\rightarrow R - up] == c ? Pos(V, up - 1) : Pos();
      mapt::iterator it = V->next.find(c);
      return it == V->next.end() ? Pos() : Pos(it->snd,
   it->snd->elen() - 1);
  }
Pos goDown(pNode V, int L_, int R_) {
  if(L_ == R_)
   return Pos(V, 0);
  while (1) {
    V = V->next[S[L_]];
    L_ += V->elen();
    if(L_ >= R_)
      return Pos(V, L_ - R_);
 }
inline pNode calcLink(pNode &V) {
  if (!V->link)
    V->link = goDown(V->P->link, V->L + !V->P->P,
   V->R).splitEdge();
 return V->link;
Pos addChar(Pos P, int k) {
  while(1) {
    Pos p = P.nextChar(S[k]);
    if (p.V)
     return p;
    pNode n = P.splitEdge();
    n->addEdge(k, LEN);
    if (!n->P)
     return Pos(n, 0);
    P = Pos(calcLink(n), 0);
 }
pNode Root;
void make_tree(){
```

```
Root = new Node();
Pos P(Root, 0);
forn (i, L)
   P = addChar(P, i);
```

11 C++ Tricks

75 Fast allocation

```
const int MEM = 100 << 20;
static char buf[MEM];
inline void* operator new(size_t n) {
   static size_t i = sizeof buf;
   assert(n < i);
   return (void*) &buf[i -= n];
}
inline void operator delete(void*) {}
inline void* operator new[](size_t) { assert(0); }
inline void operator delete[](void*) { assert(0); }</pre>
```

76 Hash of pair

77 Ordered Set

78 Hash Map

79 Fast I/O

```
const int BUF_SIZE = 4096;

char buf[BUF_SIZE];
int bufLen = 0, pos = 0;

inline int getChar() {
   if (pos == bufLen) {
     pos = 0, bufLen = (int) fread(buf, 1, BUF_SIZE, stdin);
     if (!bufLen)
        return -1;
   }
   return buf[pos++];;
```

```
SPb HSE (Bogomolov, Labutin, Podguzov)
```

```
inline int readChar() {
  int c = getChar();
  while (c !=-1 \&\& c <= 32)
    c = getChar();
  return c;
template <class T>
inline T readInt() {
  int s = 1, c = readChar();
  T x = 0;
  if (c == '-')
    s = -1, c = getChar();
  while ('0' <= c && c <= '9')
   x = x * 10 + c - '0', c = getChar();
  return s == 1 ? x : -x;
inline void readWord(char *s) {
  int c = readChar();
  while (c > 32)
    *s++ = (char) c, c = getChar();
  *s = 0:
int writePos = 0;
char writeBuf[BUF_SIZE];
inline void flush() {
  if (writePos)
    fwrite(writeBuf, 1, writePos, stdout), writePos = 0;
inline void writeChar(int x) {
  if (writePos == BUF_SIZE)
    flush();
  writeBuf[writePos++] = (char) x;
template <class T>
inline void writeInt(T x, char after = '\0') {
  if (x < 0)
    writeChar('-'), x = -x;
  char s[24];
  int n = 0;
  while (x \mid | !n)
   s[n++] = '0' + x \% 10, x /= 10;
  while (n--)
    writeChar(s[n]):
  if (after)
    writeChar(after);
inline void writeWord(const char *s) {
  while (*s)
    writeChar(*s++);
```

12 Notes

80 Работа с деревьями

Приемы для работы с деревьями:

- 1. Двоичные подъемы
- 2. Поддеревья как отрезки Эйлерова обхода
- 3. Вертикальные пути в Эйлеровом обходе (на ребрах вниз +k, на ребрах вверх -k).
- 4. Храним в вершине значение функции на пути от корня до нее, дальше LCA.
- 5. Спуск с DFS, поддерживаем ДО на пути до текущей вершины.
- 6. Heavy-light decomposition
- 7. Centroid decomposition
- 8. Корневая по запросам

Team reference document. Page 24 of 25

- 9. Тяжелые/легкие вершины
- 10. DFS \rightarrow дерево блоков, размеры $\in [K..2K]$
- 11. У вершины не более $O(\sqrt{N})$ разных поддеревьев
- 12. Сумма размеров поддеревьев без тяжелого ребенка $O(n \log n)$
- 13. Сумма глубин поддеревьев без глубокого ребенка O(n)

81 Маски

Считаем динамику по маскам за $O(2^n \cdot n)$ f[mask] = sum по submask g[submask].

dp[mask][i] — значение динамики для маски mask, если младшие i бит в ней зафиксированы (то есть мы не можем удалять оттуда).

Ответ в dp[mask][0].

dp[mask][len] = g[mask]. Если i-ый бит 0, то dp[mask][i] = dp[mask][i+1], иначе $dp[mask][i] = dp[mask][i+1] + dp[mask^{(1)} < i][i+1]$.

Старший бит: предподсчет.

Младший бит: $x \& \sim (-x)$

Чтобы по степени двойки получить логарифм, можно воспользоваться тем, что все степени двойки имеют разный остаток по модулю 67.

```
for (int mask = 0; mask < (1 << n); mask++)
^^Isubmask : for (int s = mask; s; s = (s - 1) & mask)
^^Isupmask : for (int s = mask; s < (1 << n); s = (s + 1) | mask)</pre>
```

82 Гранди

Теорема Шпрага-Гранди: берем mex всех значений функции Гранди по состояниям, в которые можем перейти из данного.

Если сумма независимых игр, то значение функции Гранди равно хог значений функций Гранди по всем играм.

Бывает полезно вывести первые п значений и поискать закономерность.

Часто сводится к xor по чему-нибудь.

83 Потоки

Потоки:

Name	Asympthotic
Ford-Fulkerson	$O(f \cdot E)$
Ford-Fulkerson with scaling	$O(\log f \cdot E^2)$
Edmonds-Karp	$O(V \cdot E^2)$
Dinic	$O(V^2 \cdot E)$
Dinic with scaling	$O(V \cdot E \cdot \log C)$
Dinic on bipartite graph	$O(E\sqrt{V})$
Dinic on unit network	$O(E\sqrt{E})$

I.—R потоки:

Есть граф с недостатками или избытками в каждой вершине. Создаем фиктивные исток и сток (из истока все ребра в избытки, из недостатков все ребра в сток).

Теперь пусть у нас есть L-R граф, для каждого ребра $e\ (v \to u)$ известны L_e и R_e . Добавим в v избыток L_e , в u недостаток L_e , а пропускную способность сделаем R_e-L_e .

Получили решение задачи о LR-циркуляции.

Если у нас обычный граф с истоком и стоком, то добавляем бесконечное ребро из стока в сток и ищем циркуляцию.

Таким образом нашли удовлетворяющий условиям LR-поток. Если хотим максимальный поток, то на остаточной сети запускаем поиск максимального потока.

В новом графе в прямую сторону пропускная способность равна R_e-f_e , в обратную f_e-L_e .

MinCostCirculation:

Пока есть цикл отрицательного веса, запускаем алгоритм Карпа и пускаем максимальный поток по найденному циклу.

84 ДП

Табличка с оптимизациями для динамики:

Name	Name Original recurrence		
	Sufficient Condition	То	
CHT1	$dp[i] = \min_{j < i} dp[j] + b[j] \cdot a[i]$	$O(n^2)$	
	$b[j] \geqslant b[j+1] \mid\mid a[i] \leqslant a[i+1]$	O(n)	
CHT2	$dp[i][j] = \min_{k < j} dp[i-1][k] + b[k] \cdot a[j]$	$O(kn^2)$	
	$b[k] \geqslant b[k+1] \mid\mid a[j] \leqslant a[j+1]$	O(kn)	
D&C	$dp[i][j] = \min_{k < j} dp[i-1][k] + c[k][j]$	$O(kn^2)$	
	$p[i,j] \leqslant p[i,j+1]$	$O(kn\log n)$	
Knuth	$dp[i][j] = \min_{i < k < j} dp[i][k] + dp[k][j] + c[i][j]$	$O(n^3)$	
	$p[i, j-1] \leqslant p[i, j] \leqslant p[i+1, j]$	$O(n^2)$	
IOI	IOI $f_n(k)$ — best for fixed k O		
	f_n — convex, add penalty $\lambda \cdot k$	$O(n \log C)$	

87 Числа Белла

i	B_i	i	B_i
0	1	12	4,213,597
1	1	13	27,644,437
2	2	14	190,899,322
3	5	15	1,382,958,545
4	15	16	10,480,142,147
5	52	17	82,864,869,804
6	203	18	682,076,806,159
7	877	19	5,832,742,205,057
8	4,140	20	51,724,158,235,372
9	21,147	21	474,869,816,156,751
10	115,975	22	4,506,715,738,447,323
11	678,570	23	44,152,005,855,084,346

85 Комбинаторика

Биномиальные коэффициенты:

Теорема Люка для биномиальных коэффициентов: Хотим посчитать C_n^k , разложим в р-ичной системе счисления, $n=(n_0,n_1,\dots), k=(k_0,k_1,\dots).$ ans = $C_{n_0}^{k_0} \cdot C_{n_1}^{k_1} \cdot \dots$ Способы вычисления C_n^k :

- 1. $C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$ precalc: $O(n^2)$, query: O(1).
- 2. $C_n^k = \frac{n!}{k!(n-k)!}$, предподсчитываем факториалы precalc: $O(n \log n)$, query: $O(\log n)$
- 3. Теорема Люка

precalc: $O(p \log p)$, query: O(log p).

- 4. $C_n^k = C_n^{k-1} \cdot \frac{n-k+1}{k}$
- 5. $C_n^k = \frac{n!}{k!(n-k)!}$, для каждого факториала считаем степень вхождения и оста-

precalc: $O(p \log p)$, query: O(log p).

 $C_n^{\frac{n}{2}} = \frac{2^n}{\sqrt{\frac{\pi n}{2}}}$

Делители

- $\leq 20: d(12) = 6$
- $\leq 50 : d(48) = 10$
- < 100 : d(60) = 12
- $\leq 1000 : d(840) = 32$
- \bullet < 10⁴ : $d(9\ 240) = 64$
- \bullet < 10⁵ : $d(83\ 160) = 128$
- $\bullet \le 10^6 : d(720720) = 240$ \bullet < 10⁷ : d(8648640) = 338
- $\bullet \le 10^8 : d(91891800) = 768$
- $\bullet \le 10^9 : d(931\ 170\ 240) = 1344$
- $\leq 10^{11} : d(97772875200) = 4032$
- $\bullet \le 10^{12} : d(963761198400) = 6720$
- \bullet < 10¹⁵ : $d(866\ 421\ 317\ 361\ 600) = 15360$
- \bullet < 10¹⁸ : d(897612484786617600) = 103680

88 Разбиения

Число неупорядоченных разбиений n на положительные слагаемые.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$

$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

$$\frac{n \quad | \ 0.12345678992050100}{p(n) \quad | \ 11235711152230627 \sim 2e5 \sim 2e8}$$

Матричные игры

Пишем матрицу стратегий $A_{i,j}$ это выигрыш первого и проигрыш второго, i стратегия 1-го. Седловая точка есть для несмешанной стратегии если $\max_i \min A_{i,*} =$ $\min_{j} \max A_{*,j}$. Иначе:

$$f(x) = sum(x_i) \to max, \ Ans = 1/f(x)$$

 $Ax \le 1_n, \ x_i \ge 0$

Для 2×2 , p первый игрок, q — второй:

$$p^* = \left(\frac{a_{22} - a_{21}}{a_{22} - a_{12} + a_{11} - a_{21}}; \frac{a_{11} - a_{12}}{a_{22} - a_{12} + a_{11} - a_{21}}\right)$$
$$q^* = \left(\frac{a_{22} - a_{12}}{a_{22} - a_{12} + a_{11} - a_{21}}; \frac{a_{11} - a_{21}}{a_{22} - a_{12} + a_{11} - a_{21}}\right)$$
$$Ans = \frac{a_{22}a_{11} - a_{12}a_{21}}{a_{11} + a_{22} - a_{12} - a_{21}}$$

90 Mixed

- ullet Формула Пика: S=Inside+Edge/2-1
- Теорема Люка: $0 \le n, m \in \mathbb{Z}$, p простое. $n = n_k p^k + ... + n_1 p + n_0$ и $m=m_kp^k+\ldots+m_1p+m_0$. Тогда $\binom{n}{m}\equiv\prod\limits_{i=0}^k\binom{n_i}{m_i}\pmod{p}$.
- Лемма Бернсайда: |X/G| число орбит $G.~X^g=\{x\in X|gx=x\}$

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

91 **Ideas**

- Generic: binary search, ternary search, sort, dp, meet-in-the-middle, divide&conquer, greedy, sqrt-decomposition, matroids, Gauss, FFT, suffix array, suffix automaton, DSU:
- Graphs: build graph, add vertices / edges, 2-SAT, flows / cut, matching, Hall's theorem, topsort, HLD, centroid decomposition, MST, Euler cycle, Binary lifting,
- Tricks: consider the process from the end / from the middle, try any one, draw on 2D plane, simplify the problem / consider special case / consider more general case, simplify solution, prefix sums, differences of adjacent elements, consider min/max, analyze why a straightforward solution doesn't work, check limitations, consider contribution of separate element, small answer, different solutions for different limitations, consider complement set, maintain sum / sum of squares, convex function, store O(1) top candidates, inversions, inclusionexclusion formula, bounding box, angle sort, Grundy function, Eucklid, Mo's algorithm, iterate over divisors, matrix exponentiation;