## Задача 9-3

## «Зажигай!»

Пожарная служба тел. 101

Символ Олимпийских Игр – чаша с огнём — инженерное сооружение, которое обеспечивает полную безопасность для зрителей и участников игр. Для технических расчетов пламени пожарные, технологи и инженеры



используют химические уравнения. Уравнение стехиометрического горения метана CH<sub>4</sub> в воздухе специалист запишет так:

$$CH_4 + 2O_2 + 2 \cdot 3.762N_2 = CO_2 + 2H_2O + 2 \cdot 3.762N_2$$

- 1. Определите объёмную долю кислорода  $\Phi(O_2)$  в воздухе по мнению пожарных (парами воды пренебречь), а также объёмную долю метана  $\Phi(CH_4)$  в стехиометрической смеси с воздухом.
- **2.** Составьте уравнение (*p-ция 1*) стехиометрического сгорания углеводорода состава  $C_aH_b$  в чистом кислороде (коэффициент при  $C_aH_b$  равен 1, прочие коэффициенты выразить через a, b).
- **3.** Стехиометрическая смесь с воздухом содержит 3.13% С<sub>n</sub>Н<sub>2n+2</sub> (n целое) по объёму. Найдите n.

Безопасность обращения с горючими газами определяется НЕвозможностью образования горючих смесей с воздухом. Пламя не распространится в резервуаре при высокой объёмной доле топлива  $(>\phi^B)$  или слишком низкой  $(<\phi^H)$  при утечке в вентилируемом помещении. Величины  $\phi^B$  и  $\phi^H$  для каждого топлива определяются экспериментально (см. таблицу).

| Топливо            | $C_4H_{10}$ | C <sub>4</sub> H <sub>8</sub> | C <sub>3</sub> H <sub>8</sub> | C <sub>3</sub> H <sub>6</sub> | C <sub>2</sub> H <sub>6</sub> | C <sub>2</sub> H <sub>4</sub> | CH <sub>4</sub> | CO   | $H_2$ |
|--------------------|-------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------|------|-------|
| φ <sup>B</sup> , % | 8.5         | 9.9                           | 9.5                           | 9.7                           | 12.5                          | 28.6                          | 15              | 75   | 75    |
| φ <sup>H</sup> , % | 1.75        | 1.7                           | 2.1                           | 2.0                           | 3.1                           | 3.0                           | 5               | 12.5 | 4     |

При протекании технологических процессов приходится иметь дело со смесями газов, при расчёте  $\phi^H$  и  $\phi^B$  смеси горючих газов используют формулу Ле-Шателье:

$$\varphi_{cM} = 100\% / (\Phi_X/\varphi_X + \Phi_Y/\varphi_Y),$$

 $\Phi_{X},\ \Phi_{Y}$  — концентрации горючего в % по объёму,  $\phi_{X},\ \phi_{Y}$ — их пределы воспламенения.

Смеси горючих газов **A** и **B** в объёмном соотношении 1:1 (смесь 1,  $\phi^H = 6.06\%$ , получают из **C**), 1:2 (смесь 2,  $\phi^H = 5.17\%$ , получают из **D**) либо 1:3 (смесь 3, получают из **E**) являются промежуточными продуктами в промышленном синтезе. Эти смеси получают в реакции стехиометрических количеств одного и того же топлива и второго вещества (**C**, **D** либо **E**). Стехиометрия образующихся смесей 1-3 определяется ВТОРЫМ веществом (**C**, **D**, **E**).

- **4.** Определите вещества **A** и **B** и составьте реакции (*p-ции 2-4*) получения этих смесей.
- **5.** Какое общее название имеют смеси 1-3? Приведите общее название процессов их получения.

Смесь 2 превращают в единственный продукт, ядовитую жидкость  $\mathbf{F}$ , реакция которой с  $\mathbf{A}$  (кат  $\mathrm{Rh}^{+1}$ ) приводит к уксусной кислоте (p- $\mu$ uu  $\mathbf{5}$ , $\mathbf{6}$ ). Смеси 1 и 3 взятые в необходимой пропорции превращают в пропан  $\mathrm{C}_3\mathrm{H}_8$  (p- $\mu$ uя  $\mathbf{7}$ ). Каждая из смесей 1-3 в реакции с  $\mathbf{E}$  обогащается  $\mathbf{B}$  (p- $\mu$ uя  $\mathbf{8}$ ).

**6.** Составьте уравнения *реакций* **5-8**. В каком объёмном соотношении необходимо взять смеси 1 и 3 для реакции 7. Можно ли использовать смеси 2 и 3 для проведения этой реакции, ответ обоснуйте, подтвердите расчетом объёмного соотношения, если возможно.

## Решение задачи 9-3 (автор: Серяков С.А.)

1. По уравнению стехиометрического горения метана в воздухе, на 1 моль кислорода приходится 3.762 моль азота, откуда объёмная доля (для смесей газов совпадает с мольной) кислорода:

$$\Phi(O_2) = \frac{1.100\%}{1+3.762} \approx 21\%.$$

Аналогично, объёмная доля метана в стехиометрической смеси с воздухом определяется коэффициентами в уравнении его сгорания:

$$\Phi(CH_4) = \frac{1.100\%}{1+2+2.3.762} \approx 9.50\%$$
.

**2.** реакция 1:  $C_aH_b + (a + b/4)O_2 \rightarrow a CO_2 + b/2 H_2O$ 

Коэффициент при  $CO_2$  и  $H_2O$  определяются из баланса по углероду и водороду, соответственно.

**3.** Составим уравнение сгорания  $C_nH_{2n+2}$  в воздухе по аналогии с п. 2 и с учетом азота:

$$C_nH_{2n+2} + (3n+1)/2 (O_2 + 3.762N_2) \rightarrow nCO_2 + (n+1)H_2O + 1.881 \cdot (3n+1)N_2$$

Согласно уравнению, объёмная доля горючего  $C_nH_{2n+2}$  в стехиометрической смеси:

$$\Phi(C_nH_{2n+2}) = \frac{1\cdot 100\%}{1+0.5(3n+1)\cdot (1+3.762)} = 3.13\%$$
, откуда 12.998 =  $(3n+1)$ , значит  $\underline{n=4}$ .

Для проверки составим уравнение сгорания:

$$C_4H_{10} + 6.5 (O_2 + 3.762N_2) \rightarrow 4CO_2 + 5H_2O + 24.353N_2,$$

 $\Phi(\text{CH}_4) = \frac{1.100\%}{1+6.5.4.762} = 3.1296\%$  - сходится. Решение методом подбора

**п** считать верным, если в работе показаны расчеты, соответствующие уравнениям сгорания.

4. В смеси 1 объёмные доли компонентов  $\Phi(A) = \Phi(B) = 50\% = \frac{1\cdot100\%}{1+1}$ . Смесь 2 обогащена В:  $\Phi(B) = \frac{2\cdot100\%}{2+1} = 67\%$ ,  $\Phi(A) = 100\%$  - 67% = 33%. Система уравнений для нахождения  $\phi^H(A)$  и  $\phi^H(B)$ :

$$\phi_1^H = \frac{100\%}{50\%/\varphi(A) + 50\%/\varphi(B)} = 6.06\%$$
, откуда  $1/\varphi(A) + 1/\varphi(B) = 0.33$ ;

$$\varphi_2^{H} = \frac{100\%}{33\%/\varphi(A) + 67\%/\varphi(B)} = 5.17\%$$
, откуда  $1/\varphi(A) + 2/\varphi(B) = 0.58$ .

$$\varphi_2^H - \varphi_1^H = 0.58 - 0.33 = 0.25 = 1/\varphi(B),$$

значит  $\phi^{H}(B) = 3.996 \approx 4$ , следовательно **B** = H<sub>2</sub> по таблице  $\phi^{H}$ ;

 $1/\phi(A)=0.33$  -  $1/\phi(B)=0.08$ , откуда  $\phi^H(A)=12.5$ , то есть по таблице  ${\bf A}={\rm CO}.$ 

Проанализируем какие вещества из упомянутых в условии годятся на роль «второго вещества» C, D, E в реакциях получения смесей 1-3. Единственным топливом, упоминаемым в условии и содержащим кислород является CO — продукт этих реакций, значит состав неизвестного топлива (CxHy). Тогда каждое из веществ C, D, E является источником кислорода, т.е. содержит его в своем составе. Таких веществ в условии (в уравнении горения метана) всего три:  $O_2$ ,  $CO_2$  и  $H_2O$ . Вывод что  $E = H_2O(\text{пар})$  следует из последнего абзаца условия: любая из смесей в присутствии E обогащается водородом — другие кандидаты на роль E водород не содержат. Также известно, что в реакции с топливом E даёт 3 моль водорода в смеси с 1 моль CO. Запишем уравнение образования смеси 3:

$$C_xH_y + dH_2O \rightarrow xCO + (0.5y + d)H_2$$

Из баланса по углероду и кислороду  $\mathbf{d} = \mathbf{x}$ , а по данным о составе образующейся смеси  $(0.5\mathbf{y} + \mathbf{d})/\mathbf{x} = 3$ , значит  $0.5\mathbf{y}/\mathbf{x} + 1 = 3$ , следовательно,  $\mathbf{y} = 4\mathbf{x}$ , единственный подходящий вариант  $C_{\mathbf{x}}H_{\mathbf{y}}$  – метан  $CH_4$ . Допустимо качественное решение — конверсия метана водяным паром это один из основных способов получения водорода — для этого следует указать это обстоятельство и отметить что смесь 3 как раз соответствует стехиометрии продуктов реакции  $H_2O(\text{пар}) + CH_4$ . Топливо определено, осталось определить по составу смесей 1 и 2 вещества  $\mathbf{C}$  и  $\mathbf{D}$ :

**реакция 2**:  $CH_4 + CO_2 \rightarrow 2CO + 2H_2 -$ это смесь 1 (1 : 1),

 $\mathbf{C} = \mathrm{CO}_2$ , углекислотная конверсия.

**реакция 3**:  $2CH_4 + O_2 \rightarrow 2CO + 4H_2 -$ это смесь 2(1:2),

 $\mathbf{D} = \mathbf{O}_2$ , кислородная конверсия.

реакция 4:  $CH_4 + H_2O \rightarrow CO + 3H_2 - это смесь 3 (1:3),$ 

 $E = H_2O$ , паровая конверсия.

- **5.** Смеси СО и H<sub>2</sub> называют **синтез-газ**, их получают в результате реакции **конверсии метана**.
- **6.** Один из основных способов получения уксусной кислоты в промышленности присоединение СО к метанолу  $\mathbf{F} = \mathrm{CH_3OH}$ , ядовитой жидкости, получаемой из синтез-газа состава 1:2.

реакция 5: 
$$CO + 2H_2 \rightarrow CH_3OH$$
  
реакция 6:  $CO + CH_3OH \rightarrow CH_3COOH$ 

Ещё в 20-ые годах XX века из-за недостаточной обеспеченности отдельных государств углеводородным сырьём, был разработан процесс Фишера-Тропша, заключающийся в каталитическом синтезе углеводородов из синтез-газа:

реакция 7: 3CO + 7H<sub>2</sub> 
$$\rightarrow$$
 C<sub>3</sub>H<sub>8</sub> + 3H<sub>2</sub>O,

Объёмные доли компонентов в смеси 1:  $\varphi_1(CO) = \varphi_1(H_2) = 1/(1+1) = 0.5$ , а в смеси 3:  $\varphi_3(CO) = 1/(1+3) = 0.25$ ,  $\varphi_3(H_2) = 3/(1+3) = 0.75$ . Согласно приведенному уравнению 7, необходимо достичь  $n(H_2)/n(CO) = 7/3$ . Пусть взято X объёмных долей смеси 1 и (1-X) смеси 3. В таком случае  $n(H_2)/n(CO) = \frac{0.5X+0.75(1-X)}{0.5X+0.25(1-X)} = 7/3$ , откуда X = 0.2 и требуемое объёмное соотношение  $V_1 : V_3 = X : (1-X) = 0.2 : 0.8 = 1 : 4$ .

Рассмотрим возможность получения необходимого соотношения  $n(H_2)/n(CO)$  из смесей 2 и 3, рассчитаем объёмные доли компонентов смеси 2:  $\phi_2(CO) = 1/(1+2) = 1/3$ ,  $\phi_2(H_2) = 2/(1+2) = 2/3$ . Пусть было взято Y объёмных долей смеси 2 и (1-Y) объёмных долей смеси 3.

 $n(H_2)/n(CO) = \frac{2Y/3 + 0.75(1 - Y)}{Y/3 + 0.25(1 - Y)} = 7/3$ , откуда Y = 0.6 и требуемое объёмное соотношение  $V_2: V_3 = Y: (1-Y) = 0.6: 0.4 = 3:2$ . Получение смеси для синтеза пропана из смесей 2 и 3 возможно.

Для более глубокой переработки углеводородного сырья в водород, вслед за паровой конверсией метана проводят превращение CO в CO<sub>2</sub> водяным паром:

реакция 8: CO + 
$$H_2O \rightarrow CO_2 + H_2$$

в результате обогащаются смеси 1-3 водородом.

| A  | В     | C      | D     | E      | F                  |
|----|-------|--------|-------|--------|--------------------|
| CO | $H_2$ | $CO_2$ | $O_2$ | $H_2O$ | CH <sub>3</sub> OH |

## Система оценивания:

|           | Circinati diferination                                                 |           |  |  |  |
|-----------|------------------------------------------------------------------------|-----------|--|--|--|
| 1.        | Верно определены объёмные доли $\Phi(O_2)$ и $\Phi(CH_4)$ (по 1 баллу) | 2 балла   |  |  |  |
| 2.        | 2. Составлено уравнение 1 с верными коэффициентами                     |           |  |  |  |
| <b>3.</b> | Верно определено п                                                     | 2 балла   |  |  |  |
| 4.        | . Верно определены <b>A</b> и <b>B</b> (по 1 баллу за вещество)        |           |  |  |  |
|           | Составлены уравнения реакций 2,3,4 (по 1.5 балла)                      | 6.5 балла |  |  |  |
| <b>5.</b> | 5. Верно указаны оба названия (по 1 баллу),                            |           |  |  |  |
|           | за «водяной газ» оценка 0.5 балла                                      | 2 балла   |  |  |  |
| 6.        | Верно составлены уравнения реакций 5 – 8 (по 1 баллу)                  | 6 баллов  |  |  |  |
|           | Расчёт объёмных соотношений смесей (по 1 баллу)                        |           |  |  |  |
|           | ИТОГО: 20 баллов                                                       |           |  |  |  |