

Mark Scheme (Results)

October 2019

Pearson International Advanced Level In Chemistry (WCH11) Paper 01 Structure, Bonding and Introduction to Organic Chemistry

Section A (Multiple Choice)

Question number	An	swer	Mark
number			
1	Th	e only correct answer is C (iron)	(1)
	A	is incorrect because argon is in the p-block	
	В	is incorrect because chlorine is in the p-block	
	D	is incorrect because sodium is in the s-block	

Question number	Answer	Mark
2	The only correct answer is C $(Al^{2+}(g) \rightarrow Al^{3+}(g) + e^{-})$	(1)
	A is incorrect because ionisation energies are successive so only one electron is lost at a time	
	B is incorrect because the state symbols are incorrect and ionisation energies are successive so only one electron is lost at a time	
	D is incorrect because the state symbols are incorrect	

Question number	Answer	Mark
3	The only correct answer is B (6200)	(1)
	 A is incorrect because successive ionisation energies always increase C is incorrect because this is too big an increase 	
	D is incorrect because this very large value indicates a new quantum shell	

Question number	Answer	Mark
4	The only correct answer is B (600)	(1)
	A is incorrect because the first ionisation energy of aluminium is greater than that of sodium	
	<i>c</i> is incorrect because the first ionisation energy of aluminium is less than that of magnesium	
	D is incorrect because the first ionisation energy of aluminium is less than that of magnesium	

Question	Answer	Mark
number		
5	The only correct answer is D (shielding of the outer electron from the nuclear charge)	1
	A is incorrect because the force of attraction between the nucleus and outer electron decreases	
	B is incorrect because neutrons do not affect ionisation energy	
	c is incorrect because if this were the only reason, the ionisation energies would increase	

Question	Answer	Mark
number		

6	The only correct answer is D (392)	(1)
	A is incorrect because this does not include 6H₂O	
	B is incorrect because this only includes one H₂O	
	c is incorrect because this includes 6H₂ but only one O	

Question number	Ans	swer	Mark
7	The	e only correct answer is D (3.612 x 10 ²⁴)	(1)
	A	is incorrect because this is the number of molecules in 0.5 mol of water	
	В	is incorrect because this is the number of molecules of water	
	С	is incorrect because this is the answer if there are 2 atoms in a molecule	

Question	Answer	Mark
number		
8	The only correct answer is A (sodium fluoride)	(1)
	B is incorrect because the strongest ionic bonding is between the smallest ions	
	<i>c</i> is incorrect because the strongest ionic bonding is between the smallest ions	
	D is incorrect because the strongest ionic bonding is between the smallest ions	

Question number	Answer	Mark
9	The only correct answer is A (Ca ²⁺ and S ²⁻)	(1)
	B is incorrect because K⁺ has 18 electrons and Br⁻ has 36 electrons	
	C is incorrect because Li ⁺ has 2 electrons and F [−] has 10 electrons	
	D is incorrect because Mg²⁺ has 10 electrons and Cl⁻ has 18 electrons	

Question	Answer	Mark
number		
10	The only correct answer is B (covalent and dative covalent bonding)	(1)
	A is incorrect because there is a dative bond between the nitrogen atom and H^{+} ion	
	c is incorrect because dative bonding is missing and ionic bonding is between ions, not within an ion	
	D is incorrect because ionic bonding is between ions, not within an ion	

Question	Answer	Mark
number		
11	The only correct answer is C	(1)
	A is incorrect because this is the electron density map showing two ions	
	B is incorrect because this is the electron density map with a polarised anion	
	D is incorrect because this is the electron density map of a covalent molecule with two identical atoms	

Question	Answer	Mark
number		
12	The only correct answer is C (polar bond, non-polar molecule)	(1)
	A is incorrect because the Al-Cl bond is polar	
	B is incorrect because the Al-Cl bond is polar and the molecule is symmetrical so the bond polarities cancel	
	D is incorrect because the molecule is symmetrical so the bond polarities cancel	

Question number	Answer	Mark
13	The only correct answer is B (45.8%)	(1)
	A is incorrect because the relative atomic mass of Fe on the right-hand side has not been multiplied by 2	
	<i>c</i> is incorrect because the relative atomic mass of Fe has not been multiplied by 2 and the relative molecular mass of CO ₂ has not been multiplied by 3	
	D is incorrect because the relative molecular mass of CO₂ has not been multiplied by 3	

Question number	Answer	Mark
14	The only correct answer is A (8×10^{-2})	(1)
	B is incorrect because 2000 has been divided by 40 instead of 40 by 2000	
	<i>c</i> is incorrect because 2 kg has not been converted to 2000 g	
	D is incorrect because 2 kg has not been converted to 2000 g and 2 has been divided by 40	

Question number	Answer	Mark
15	The only correct answer is B (2)	(1)

A C	is incorrect because the ratio of CaSO ₄ to H_2O is the wrong way round is incorrect because this is 3.405 x 0.900 to the nearest whole number and masses have not been converted to	
	moles	
D	is incorrect because this is 3.405 /0.900 to the nearest whole number and masses have not been converted to moles	

Question number	Answer	Mark
16	The only correct answer is B (C ₆ H ₁₄)	(1)
	A is incorrect because this would show the loss of two ethane molecules	
	C is incorrect because this would show the loss of one ethane molecule	
	D is incorrect because this would show the loss of one ethene molecule	

Question number	Ans	swer	Mark
17	The	e only correct answer is D (a pair of electrons from a bond to an atom, forming ions)	(1)
	A	is incorrect because movement of an electron is represented by a curly arrow with a half arrow-head and ions are formed when a pair of electrons moves	
	В	is incorrect because movement of an electron is represented by a curly arrow with a half arrow-head	
	С	is incorrect because ions are formed when a pair of electrons moves	

Question	Answer	Mark
number		
18	The only correct answer is C (9 σ bonds and 2 π bonds)	(1)
	A is incorrect because all single bonds are σ bonds, one of each double bond is a σ bond and one of	

	each double bond is a π bond	
В	is incorrect because all single bonds are σ bonds, one of each double bond is a σ bond and one of each double bond is a π bond	
D	is incorrect because all single bonds are σ bonds, one of each double bond is a σ bond and one of each double bond is a π bond	

Question number	Answer	Mark
19	The only correct answer is D (a secondary carbocation is more stable than a primary carbocation)	(1)
	A is incorrect because the stability of the compound does not determine which product is formed	
	B is incorrect because the stability of the compound does not determine which product is formed	
	c is incorrect because the secondary carbocation is more stable	ļ

Question	Answer	Mark
number		
20	The only correct answer is A (2.04 (g))	
	B is incorrect because this is the mass when the yield is 100%	
	c is incorrect because this is just the masses expressed as a percentage without converting them into moles	
	D is incorrect because this is the mass of propene formed with the molar masses reversed	

Section B

Question	Answer	Additional guidance	Mark
number			

21(a)	•	2 correct skeletal formulae	(1)	Example of equation:	(2)
		2 correct skeletal formulae	(1)	+ H ₂	
				Ignore molecular, displayed or structural formulae as working for M1	
	•	balanced equation	(1)	Allow balanced equation using molecular, displayed or structural formulae e.g. $C_6H_{14} \rightarrow C_6H_{12} + H_2$	
				Allow TE on any other C ₆ H ₁₂ cycloalkane	
				Ignore state symbols / conditions	

Question number	Answer	Additional guidance	Mark
21(b)(i)	1,3-dimethylcyclopentane	Allow 1,3 dimethylcyclopentane 1 3-dimethylcyclopentane 1 3 dimethylcyclopentane cyclopentane-1,3-dimethyl Allow methy / methly for methyl Do not award 1,3-dimethylpentane	(1)

Question Number	Answer	Additional guidance	Mark
21(b)(ii)	• C ₇ H ₁₄	Allow H ₁₄ C ₇ / C7H14 / H14C7	(1)
		Ignore any other symbols as working e.g. CH ₂ CHCH ₃ CH ₂ CH ₂ CHCH ₃	
		Do not award superscripts e.g. C ⁷ H ¹⁴	

Question number	Answer	Additional guidance	Mark
21(c)		Examples of isomers:	(2)
	All 3 correct (2)		
	Any 2 correct (1)		
		Allow isomers in any order	
		Allow CH ₃ and C ₂ H ₅ for side chains	
		Ignore bond angles and bond lengths	
		Do not award any structure with 2 or more rings	

Question number	Answer	Additional guidance	Mark
21(d)	• (E is) C ₉ H ₁₈	Allow H ₁₈ C ₉ Allow large numbers Ignore working Do not award superscripts	(1)

Question number	Answer	Additional guidance	Mark
21(e)		Example of calculation:	(3)
	 calculation of volume of CO₂(g) and H₂O(g) (1) 	25 cm ³ of C ₅ H ₁₀ produces $\frac{25 \times 10}{2}$ = 125 (cm ³) CO ₂ 2 and 125 (cm ³) H ₂ O(g)	
	 calculation or working of volume of O₂(g) used (1) 	25 cm ³ of C ₅ H ₁₀ needs $\frac{25 \times 15}{2}$ = 187.5 (cm ³) O ₂	
	 calculation of volume of O₂(g) left (1) 	Volume of O_2 left = 250 – 187.5 = 62.5 (cm ³) TE on volume of O_2 reacted	
		(volume of $C_5H_{10} = 0$)	
		Correct answers with no working scores (3)	
		Allow volumes in dm³ provided unit is given	
		Penalise rounding to 1 or 2 SF once only Penalise correct volumes not linked to specific gases once only Penalise incorrect units e.g. cm once only	

Question number	Answer		Additional guidance	Mark
21(f)(i)			Allow words in either order	(2)
			Mark independently	
	• (free) radical	(1)	Ignore homolytic (fission) / initiation / propagation / termination / photochemical Do not award heterolytic / electrophilic / nucleophilic for M1 only	
	• substitution	(1)	Ignore halogenation / S_N1 / S_N2 Do not award addition / elimination for M2 only	

Question number	Answer		Additional guidance	Mark
21(f)(ii)	both curly half-arrows	(1)	Example of equation:	(2)
	two chlorine (free) radicals with dot	(1)	CI	
			Ignore two dots shown to represent electrons above and below the Cl–Cl bond	
			Full arrow loses M1 only	
			Penalise missing • once only in (f)(ii), (iii), (iv)	

Question	Answer	Additional guidance	Mark
number			

21(f)(iii)		Example of equations:	(2)
	• first propagation step (1)	$C_4H_8 + Cl^{\bullet} \rightarrow C_4H_7^{\bullet} + HCl$	
	• second propagation step (1)	$C_4H_7^{\bullet} + Cl_2 \rightarrow C_4H_7Cl + Cl^{\bullet}$	
		Allow equations in either order	
		Allow displayed or skeletal formulae	
		Ignore curly arrows and state symbols, even if incorrect	
		Do not award any equations involving H•	

Question number	Answer		Additional guidance	Mark
21(f)(iv)	An explanation that makes reference to the following points:	ing	Mark independently Example of skeletal formula:	(2)
	correct skeletal formula ((1)	\Diamond	
			Allow any 2 squares joined by a bond	
			Ignore bond lengths and bond angles	
			No TE on incorrect radicals	
	• (two) C ₄ H ₇ • / cyclobutyl radicals join together	(1)	Allow $2C_4H_7^{\bullet} \rightarrow C_8H_{14}$	
			Allow cyclobutane / hydrocarbon radicals join together	
			Ignore just '(two) radicals join together'	

(Total for Question 21 = 18 marks)

Question number	Answer		Additional guidance	Mark
22(a)(i)	• 17 protons	(1)	Any reference to electrons scores (1) for an answer	(2)
	18 neutrons	(1)	that includes 17 protons and 18 neutrons	

Question number	Answer	Additional guidance	Mark
22(a)(ii)	• (1s²)2s²2p ⁶ 3s²3p ⁶	Allow $2p_x^2 2p_y^2 2p_z^2$ and/or $3p_x^2 3p_y^2 3p_z^2$ Allow numbers of electrons written as subscripts or large numbers Ignore repeated $1s^2$	(1)

Question	Answer	Additional guidance	Mark
number			

22(a)(iii)			Example of calculation:	(2)
	correct working	(1)	(35 x 75.53) + (37 x 24.47) (= 35.4894) 100 or (35 x 0.7553) + (37 x 0.2447) (= 35.4894)	
	answer given to 2 dp	(1)	35.49 TE on working involving two different species Correct answer to 2 dp with no working scores (2)	
			35.50 with no working scores (0)	
			Ignore units, even if incorrect	

Question number	Answer	Additional guidance	Mark
22(b)(i)	dot-and-cross diagram showing three pairs of electrons between one Cl and three F atoms (1) rest of diagram correct conditional on M1 (1)	Example of dot-and-cross diagram: Allow overlapping circles Allow all dots / all crosses Allow 4 non-bonded electrons on Cl shown as: 2 lone pairs together or 2 lone pairs between any two of the bonded pairs or 1 lone pair and 2 unpaired electrons or 3 electrons and 1 electron Ignore inner shell electrons / lines for bonds Penalise a charged species in M2 only	(2)

Question number	Answer	Additional guidance	Mark
22(b)(ii)	there are 10 electrons / 5 pairs of electrons in the outer / valence shell of chlorine	Allow there are more than 8 electrons in the outer / valence shell of chlorine	(1)
		Allow there are 3 bond pairs and 2 lone pairs (in the outer shell of chlorine)	
		Allow chlorine has expanded its octet	
		Allow chlorine does not have a noble gas electronic structure / does not have 8 electrons in the outer / valence shell	
		Allow just 'chlorine has 10 electrons' / 'more than 8 electrons'	
		Ignore chlorine is the central atom	
		Ignore just 'chlorine has 2 lone pairs'	
		Do not award incorrect numbers of electrons / orbitals	

Question	Answer	Additional guidance	Mark
number			

22(b)(iii)				Example of mass spectrum:	(3)
	•	a peak at <i>m/z</i> = 92	(1)		
	•	a peak at $m/z = 94$	(1)	100	
	•	peaks at 92 and 94 are in the ratio 3:1 approximately	(1)	80	
			(.,	70 60	
				Relative 50 abundance 40	
				40 30	
				20	
				10	
				91 92 93 94 95 m/z	
				Allow any 3:1 ratio for the peaks e.g. 100:33, 30:10	
				Ignore any labels on the peaks	
				M3 is a stand alone mark for peaks at 92 and 94 only	

Question	Answer	Additional guidance	Mark
number			
22(b)(iv)		Example of calculation:	(4)
	• conversion of temperature to K (1)	temperature = 60 + 273 = 333 K	
	rearrangement of Ideal Gas Equation (1)	$V = \frac{nRT}{P}$ or $V = \frac{0.0200 \times 8.31 \times 333}{1.28 \times 10^5}$	
	• evaluation to give volume (1)	$V = 4.3238 \times 10^{-4} (m^3)$ TE on temperature	
	• conversion of volume to cm ³ and answer given to 2 or 3 SF (1)	volume = $4.3238 \times 10^{-4} \times 1 \times 10^{6}$ = (432.38) = $432 / 430 / 4.32 \times 10^{2} / 4.3 \times 10^{2}$ (cm ³) TE on volume in M3 Penalise rounding to 1SF once only in M1, M2 and M	3
		Correct answer with no working scores full marks	

(Total for Question 22 = 15 marks)

Question	Answer	Additional guidance	Mark
number			

23(a)	A description that makes reference to the following points:			(2)
	• (propane) yellow (solution)	(1)	Allow brown or orange or any combination of yellow, orange and brown	
			Allow no (colour) change / no change in bromine water / remains yellow / turns yellow	
			Allow upper layer / both layers are yellow / orange / brown etc	
			Ignore just 'no reaction'	
			Do not award any mention of red Do not award lower layer is yellow / orange / brown etc	
	(propene) colourless (solution)	(1)	Allow decolorises / colour disappears	
			Allow (both) layers are colourless	
			Ignore initial colour of red in M2 only	
			Do not award remains colourless	

Question	Answer	Additional guidance	Mark
number			

23(b)(i)		In (b)(i) and (ii) allow names or formulae for reagents but if both are given, both must be correct	(1)
	 steam / H₂O(g) and 	Allow water / H ₂ O and heat for steam Do not award steam and room temperature	
	acid (catalyst) / phosphoric acid / H₃PO₄	Allow name or formula of any strong acid (catalyst) / H ⁺	
		Ignore concentration of acid / pressure	

Question number	Answer	Additional guidance	Mark
23(b)(ii)	 potassium manganate((VII)) (solution)/ KMnO₄ and sulfuric acid / H₂SO₄ / acid(ified) / H⁺ / sodium hydroxide / NaOH / 	Allow potassium permanganate Do not award K ₂ MnO ₄ Ignore heat / concentration of acid or alkali	(1)
	potassium hydroxide / KOH / alkali(ne) / OH ⁻	Allow (1) in (ii) if reagents and conditions for (i) and (ii) are interchanged	
		If no other mark is awarded: Allow (1) in (ii) if reagents for both (i) and (ii) are correct but conditions are omitted / incorrect	

Question number	Answer	Additional guidance	Mark
23(c)	• structure of <i>Z</i> -3-methylpent-2-ene	Examples of structure: $\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)
		or	
		Allow C ₂ H ₅ / displayed formula	
		Ignore connectivity of methyl and ethyl groups	
		Ignore bond lengths and bond angles on skeletal formula	

Question	Answer	Additional guidance	Mark
number			

23(d)		Example of calculation:	(2)
	 calculation of number of moles of hydrogen or calculation of volume of alkene 	$\frac{720}{24000} = 0.030 \text{ or } \frac{0.72}{24} = 0.030$ 24 000 24) or volume of alkene = 0.01 x 24000 = 240 (cm ³)	
	• deduction of number of double bonds (1	mole ratio alkene: hydrogen = (0.01: 0.03 or 720/240) = 1:3 so there are 3 double bonds TE on mol hydrogen	
		Correct answer with no working scores (1)	

Question	Answer	Additional guidance	Mark
number			

23(e)		Allow the changes in any order and they may be shown on the diagram (3)
		Ignore references to lone pairs
	the dipole on the bromine (molecule) should be the other way around (1)	Allow the top bromine should be $\delta +$ / the bottom bromine should be $\delta -$
	• the arrow should go from the double / pi / π bond to the bromine / (pair of) electrons move from the double bond to the bromine	
	the curly arrow should go from C=C to $Br^{\delta+}$ (1)	
	• the Br ion should have a negative charge (1)	Allow the bromine (atom) should have a negative charge
		Ignore just 'Br is not positive'
		Do not award the bromine molecule should have a negative charge
		Do not award Br ^δ –

Question	Answer	Additional guidance	Mark
number			
23(f)		Example of structure:	(1)
	structure of propene	CH ₃ H	
		Allow any unambiguous structure of propene showing the double bond e.g. CH ₃ CH=CH ₂	
		Ignore name, even if incorrect	
		Ignore n / brackets	
		Ignore connectivity of CH₃ group	

(Total for Question 23 = 11 marks)

Question number	Answer	Additional guidance	Mark
24(a)(i)	correct electronic configuration	Example of electronic configuration: [Ne]	(1)

Question number	Answer	Additional guidance	Mark
24(a)(ii)	An explanation that makes reference to the followin points:	Allow 'electrons-in-boxes' / 3p _x 3p _y 3p _z to show electronic configurations Allow 'box' for orbital as this is in (i) Ignore references to shielding / nuclear charge / lone pairs Penalise 3 or more electrons in a p orbital once only	(2)
	 Phosphorus phosphorus has a half-filled p (sub)shell / one electron in each p orbital / the p orbitals are singly occupied (1) more energy is required to remove an unpaired electron (than a paired electron) or an unpaired electron / electron removed has a lower energy (1) 	Allow '(electron removed is from) a half-filled p orbital' Do not award just 3p³ Allow a half-filled subshell is (more) stable	
	 OR Sulfur the outermost / 3p electron or the electron being removed in sulfur is paired (1) less energy is required to remove a paired electron (than an unpaired electron) or repulsion between paired electrons (reduces the ionisation energy needed to remove it) or the paired electron has a higher energy (1) 	Allow sulfur is 3p ⁴ Allow sulfur forms a half-filled p (sub)shell when it loses 1 electron Note – paired only needs to be mentioned once in M1 or M2 Do not award M2 if answer states more energy needed to remove electron in sulfur	

Question number	Answer	Additional guidance	Mark
24(b)	An explanation that makes reference to the following points:		(3)
	 there are intermolecular forces between P₄ / phosphorus (molecules) or phosphorus is made up of small molecules / discrete molecules / is simple molecular 	Allow London / dispersion / van der Waals' forces for intermolecular forces	
	there are covalent bonds between the silicon atoms or silicon is a giant (covalent) structure / giant lattice	Allow macromolecular / giant molecule Do not award ionic / metallic	
	(much) more energy is needed to break the (covalent) bonds in silicon than overcome the intermolecular forces in phosphorus or the (covalent) bonds in silicon are (much) stronger than the (intermolecular) forces in phosphorus (1)	Do not award breaking bonds between phosphorus atoms	

Question number	Answer	Additional guidance	Mark
24(c)(i)	 number of bonding pairs and 	Example of table: Number of bonding pairs 5	(3)
	number of lone pairs (1)	of electrons on phosphorus	
	• shape (1)	Number of lone pairs on electrons on phosphorus	
	• both bond angles (1)	Shape of molecule trigonal bipyramidal	
	(v)	CI-P-CI bond angles 90° 120°	
		Mark independently	
		Allow bond angles in either order Ignore 180°	

Question	Answer	Additional guidance	Mark
number			
24(c)(ii)		lons can be in any order	(2)
	• PCl ₄ ⁺ (1)		
		If no charges are shown or charges are incorrect,	
	• PCI ₆ ⁻ (1)	allow (1) for PCl ₄ and PCl ₆	

Question number	Answer		Additional guidance	Mark
24(d)	calculation of mol of H₃PO₄ and calculation of mol of NaOH	(1)	Example of calculation:	(3)
	• mol ratio	(1)	mol ratio H_3PO_4 : NaOH = 1 : 2 Mol ratio mark can be awarded from equation TE on mol H_3PO_4 and NaOH Do not award M2 if the mol ratio in the balanced equation contradicts the mol ratio from the mol calculations	
	balanced equation	(1)	$H_3PO_4 + 2NaOH \rightarrow Na_2HPO_4 + 2H_2O$ Allow HNa_2PO_4 Allow $H_3PO_4 + 2OH^- \rightarrow HPO_4^{2-} + 2H_2O$ Allow multiples Ignore state symbols, even if incorrect Equation TE on mol ratio provided it is 1:1 or 1:3 $H_3PO_4 + NaOH \rightarrow NaH_2PO_4 + H_2O$ $H_3PO_4 + 3NaOH \rightarrow Na_3PO_4 + 3H_2O$	

Question number	Answer	Additional guidance	Mark
24(e)	calculation of molar mass of hydrated magnesium phosphate (1)	Examples of calculation: Method 1 molar mass = $262.9 \times 100 = 334.9 \text{ (g)}$ 78.5	(2)
	• calculation of y (1)	mass of water = $334.9 - 262.9 = 72$ moles of water = $\underline{72} = 4$ so $\mathbf{y} = 4$ 18 Allow alternative methods, for example Method 2 in 100 g of salt: mol Mg ₃ (PO ₄) ₂ = $\underline{78.5} = 0.29859 \text{ (mol)}$ 262.9 and mol H ₂ O = $\underline{21.5} = 1.1944 \text{(mol)} (1)$ 18 ratio Mg ₃ (PO ₄) ₂ : H ₂ O = $0.29859 : 1.1944$ = 1 : 4 so $\mathbf{y} = 4 (1)$ This could also be done using 0.785 g and 0.215 g Method 3 $\underline{262.9} = 0.785 \text{ or } \underline{262.9} \times 100 = 78.5(1)$ $262.9 + 18y \times 262.9 + 18y \times 262.9 + 18y \times 262.9 = 206.4 + 14.13 \mathbf{y}$ so $\mathbf{y} = 4 (1)$ Correct answer with no working or working that does not involve A_r or M_r or moles scores (0) Allow TE for \mathbf{y} from correct working but an incorrect number used for one of the values	

(Total for Question 24 = 16 marks)