

基于 OpenFlow的 服务器集群 动态流量调度

应用简介和摘要

应用场景介绍

应用具体设计论述

应用实现过程

应用简介和摘要 Introduction and summary

● 负载均衡现况

价格昂贵,缺乏灵活性; 业务量提升迅速,升级 成本高昂;

OpenFlow

数控分离,灵活控制;

● 服务器监测

合理负载,提升性能。

应用场景简介

Application scenarios

目前的主流方法

基于客户端的负载均衡

- 单点故障

基于网络诊角领外数沙獭

-缺乏灵活性

基于贬捐敝务罄的负载均衡-性能瓶颈、服务限制

应用场景示例

scenarios

调度更加实时,自动, 能很快的根据实时状态 进行负载均衡.

基于OpenFlow的流表 天然支持"流"粒度 的统计和控制.

方案特色和创新

features and innovation

服务器负载优先

● 加权算法,实时计算服务器负载,动态分配流量;

服务器代理化

● 类NAT技术,实现控制器承担虚拟代理服务器角色,集群对外透明化;

集群易于拓展

●添加撤出服务器,配置简单,集群性能不受影响。

研究背景与问题

解决方法

设计架构图

预期实现目标

问题研究及解决方案 Research problems & Solutions

控制器如何搜集服务器状态

- SNMP
- 外部应用
- 度量算法

PEST-API 控制器如何将流量导向最优服务器

- 流表设计
- 下发流表

应用实现过程

Processing

使用Floodlight(带自己编写的loadbalance模块)作为 实验的控制器;

使用mininet作为网络仿真工具,在ubuntu 14.04 版虚 拟机中运行;

使用自研发的负载均衡管理系统,获取服务器状态并向控制器发送控制参数;

使用wireshark作为检测实验结果的工具。

应用实现过程 Processing

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Hel

实验

结果

Result of Experiment

应用实现过程 Processing

Filter: http			Expr	
No.	No. Time Source		Destination	
194	9 200./22/34	Ut 1U.U.U.Z	10.0.0.3	
196	7 500.757298	96 10.0.0.3	10.0.0.2	
202	8 518.845793	0010.0.0.2	10.0.0.4	
204	6 518.886101	96 10.0.0.4	10.0.0.2	
205	6 522.711953	06 10.0.0.1	10.0.0.6	
207	4 522.905810	96 10.0.0.6	10.0.0.1	
208	2 524.988991	0010.0.0.2	10.0.0.3	
208	8 525.016372	96 10.0.0.3	10.0.0.2	
209	4 529.010496	00 10.0.0.1	10.0.0.5	
211	2 529.014952	96 10.0.0.5	10.0.0.1	
212	0 531.093080	96 10.0.0.2	10.0.0.3	
212	6 531.121748	06 10.0.0.3	10.0.0.2	
213	2 535.101303	00 10.0.0.1	10.0.0.4	
213	8 535.128174	96 10.0.0.4	10.0.0.1	
214	6 537.186748	06 10.0.0.2	10.0.0.3	
216	4 537.188027	06 10.0.0.3	10.0.0.2	
217	2 541.187303	96 10.0.0.1	10.0.0.6	
219	A 541 256752	9610006	10 0 0 1	

实验结果

Result of Experiment

课题总结与展望 Summary & Expectation

创新点

- 全局把控服务器集群状 态;
- 负载均衡高可用,提高 网络吞吐率;
- 易拓展,提供对外接口;
- 服务器性能算法优化, 提升网络服务质量。

待发掘

- 针对网络服务类型 进行优化;
- 主动流量调节,对 服务器集群更精细 化调度;
- 针对TCP连接的优化。

