

An Example of Text Data Representation

- Each text (e.g., document, paper, webpage, etc.) can be represented by a set of n-grams
- For example, a sentence "This is a short sentence"

 - □ n = 1: { "This", "is", "a", "short", "sentence" } □ n = 2: { "This is", "is a", "a short", "short sentence" } □ n = 3: { "This is a", "is a short", "a short sentence" }

 - □ In practice, it is common to adopt $n \ge 5$
- Using n-grams will lead to extremely high-dimensional feature vectors: $D = (10^5)^5 = 10^{25} = 2^{83}$
- In current practice, $D = 2^{64}$ seems sufficient

Computation of Similarity

- Computation of data distance is essential in machine learning and thus big data analytics
 - □ Nearest Neighbor (NN) search for retrieval

$$x^* = \arg\min_{x_n \in S} ||x_q - x_n||^2$$

☐ Similarity (Distance) based clustering

$$\min \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{n,k} ||x_n - \mu_k||^2$$

- Computation of inner product is common in linear kernel methods
 - Support Vector Machine
 - Gaussian Process
 - Kernel PCA

Linear Kernel Methods

■ Recall the objective function for a linear regression

$$\min_{w} \frac{1}{N} \sum_{n=1}^{N} (y_n - w^{\mathsf{T}} x_n)^2 + \lambda ||w||^2$$

■ Set the derivatives of the objective w.r.t. w to zero

$$\frac{\partial J(w)}{\partial w} = \frac{2}{N} \sum_{n=1}^{N} (w^{\mathsf{T}} x_n - y_n) x_n + 2\lambda w = 0$$

$$\Rightarrow w = \frac{1}{\lambda N} \sum_{n=1}^{N} (y_n - w^{\mathsf{T}} x_n) x_n = \sum_{n=1}^{N} \alpha_n x_n$$

■ Substitute $w = \sum_{n=1}^{N} \alpha_n x_n$ into the objective function we can obtain the dual representation

$$\min_{\alpha} (Y - XX^{\top}\alpha)^{\top} (Y - XX^{\top}\alpha) + \lambda \alpha^{\top} XX^{\top}\alpha$$

Challenges with High-dimensional Data

- High computational cost: Increase matrix operations and increase search space
- High storage cost: Too large to store high-dimensional data and difficult to load the big model into memory
- The curse of dimensionality: The volume of the space increases so fast that the available data become sparse

Random Projection

- Recall that dimensionality reduction methods (e.g., PCA) are themselves learning based
- Are there methods that is able to generate a projection matrix without learning and satisfies $dist(x_i, x_j) \approx dist(\tilde{x}_i, \tilde{x}_j)$
 - $\mbox{\ensuremath{\square}}\ \tilde{x}_n = H^\top x_n,$ where $H \in R^{D \times d}$ $(d \ll D)$ is a projection matrix
 - \Box $dist(\cdot,\cdot)$ is a distance function (or similarity measure)

Random Projection: JL Lemma

■ Johnson-Lindenstrauss Lemma^[1]: Given $0 < \epsilon < 1$, a set X of N points in R^D , and a number $d > 8 \ln N / \epsilon^2$, there exists a linear mapping $H: R^D \to R^d$ such that for all $x_i, x_j \in X$

$$(1 - \epsilon)||x_i - x_j||^2 \le ||Hx_i - Hx_j||^2 \le (1 + \epsilon)||x_i - x_j||^2$$

- The JL-lemma states that a small set of points in a high-dimensional space can be embedded into a space of much lower dimension in such a way that distances between the points are nearly preserved.
- The JL-Lemma also holds for dot products

$$x_i^{\mathsf{T}} x_i - \epsilon \le (H x_i)^{\mathsf{T}} H x_i \le x_i^{\mathsf{T}} x_i + \epsilon$$

[1] Johnson & Lindenstrauss (1984). "Extensions of Lipschitz mappings into a Hilbert space".

The Random Projection Algorithm

- Random Projection: Fast, efficient and distance-preserving dimensionality reduction technique!
- The core idea behind random projection is given in the Johnson-Lindenstrauss lemma
- Canonical (Gaussian) Random Projection:
 - □ Construct a random matrix $H' \in \mathbb{R}^{D \times d}$ $(d \ll D)$ by picking the entries from a univariate Gaussian $N(0, \sigma^2)$
 - \square Orthonormalize the rows of H' to get H
 - lacktriangle Project a data point x_n in the original D-dimensional space into the new d-dimensional space: $\tilde{x}_n = H^{\mathsf{T}} x_n$

Random Projection Example

- Apply Gaussian random projection to the 20-Newsgroups dataset with different configuration of dimensions
 - ☐ From 100.000 features to 300 (0.3%)
 - ☐ From 100.000 features to 1.000 (1%)
 - ☐ From 100.000 features to 10.000 (10%)

[1] https://www.cs.toronto.edu/~duvenaud/talks/random-kitchen-sinks-tutorial.pdf

Document Classification

- In a document classification task, the input to the machine learning algorithm is raw text, represented by a bag of words (BoW) representation:
 - ☐ The individual tokens are extracted and counted, and each distinct token in the training set defines a feature.
 - ☐ The BoW for a set of documents is regarded as a term-document matrix where each row is a single document, and each column is a single feature (word).
 - The entry i, j in such a matrix captures the frequency (or weight) of the jth term of the vocabulary in document i.
 - □ The common approach is to construct a dictionary of the training set, and use that to map words to indices.

Document Classification

- An example of BoW representation of documents
 - □ Document 1: "He studies machine learning".
 - □ Document 2: "Machine learning is interesting".
 - □ Document 3: "Machine learning supports big data".

	Dictionary								
	He	studies	machine	learning	is	interesting	supports	big	data
Doc1	1	1	1	1	0	0	0	0	0
Doc2	0	0	1	1	1	1	0	0	0
Doc3	0	0	1	1	0	0	1	1	1

■ The problem with this process is that such dictionaries take up a large amount of storage space and grow in size as the training set grows.

Locality-Sensitive Hashing

- Locality-Sensitive Hashing (LSH) hashes input items so that similar items map to the same "buckets" with high probability
 - \blacksquare If $d(x_1,x_2) \leq R,$ then $h(x_1) = h(x_2)$ with high probability at least P_1
 - □ If $d(x_2, x_3) \ge cR$, then $h(x_2) = h(x_3)$ with low probability at most P_2
 - An LSH family is interesting only $P_1 > P_2$
- Alternative definition of LSH

$$E_h[h(x_i) = h(x_i)] = sim(x_i, x_i)$$

LSH: SimHash

- SimHash is designed to approximate the cosine similarity $cos(\theta(x_i, x_i))$ between vectors x_i and x_i .
- SimHash is used by the Google Crawler to find near duplicate pages
- Given an input vector x_i and a random hyperplane specified by a normal unit vector r, the SimHash function is defined as $h(x_i) = \operatorname{sgn}(r^{\mathsf{T}}x_i)$
- Randomly choose multiple hyperplanes and the limit of the collision ratio equals to the probability of hyperplane falling in the angle between the two vectors $\frac{\theta(x_l, x_j)}{\pi}$

$$\frac{1}{N} \sum\nolimits_k 1(h_k(x_i) = h_k(x_j)) \stackrel{k \to \infty}{\Longrightarrow} E_h \big[h(x_i) = h(x_j) \big] = 1 - \frac{\theta(x_i, x_j)}{\pi}$$

[1] Charikar (2002), Similarity Estimation Techniques from Rounding Algorithms.

LSH: MinHash

- MinHash is designed to approximate the Jaccard similarity $J(S_i, S_j) = \frac{|S_i \cap S_j|}{|S_i \cup S_j|}$ between sets S_i and S_j .
- MinHash is the first position of element after a random permutation $h(S_i) = \min(\pi(S_i))$.
- Property of MinHash

$$J(S_i, S_j) = \frac{|S_i \cap S_j|}{|S_i \cup S_j|} = E_{\pi} [1(\min(\pi(S_i)) = \min(\pi(S_j)))]$$

■ Empirically use *K* independent random permutations for approximation

$$J(S_i, S_j) \approx \frac{1}{K} \sum\nolimits_{k=1}^{K} 1(\min(\pi_k(S_i)) = \min(\pi_k(S_j)))$$

MinHash Example

- MinHash based text classification
 - Represent each text as a bag-of-words
 - ☐ Compute pairwise Jaccard similarities based on MinHashes
 - ☐ Construct the kernel matrix

Summary

- Random Projection $\rightarrow E[\langle Hx_i, Hx_j \rangle] = \langle x_i, x_j \rangle$
 - □ Johnson-Lindenstrauss transform
 - ☐ Gaussian random projection
 - □ etc.
- Locality-Sensitive Hashing $\rightarrow E_h[h(x_i) = h(x_j)] = sim(x_i, x_j)$
 - □ SimHash
 - MinHash
 - □ etc.

Kernel Methods

- We can efficiently embed high-dimensional data satisfying $E[\langle Hx_i, Hx_j \rangle] = \langle x_i, x_j \rangle$ or $E_h[h(x_i) = h(x_j)] = sim(x_i, x_j)$ now.
- Recall the linear kernel methods introduced before

 - □ The classifier $f(x) = w^{\mathsf{T}} x = \sum_{n=1}^{N} \alpha_n x_n^{\mathsf{T}} x$ □ The objective $\min_{\alpha} (Y XX^{\mathsf{T}} \alpha)^{\mathsf{T}} (Y XX^{\mathsf{T}} \alpha) + \lambda \alpha^{\mathsf{T}} XX^{\mathsf{T}} \alpha$
- Only the inner product appears in both the objective function and the classifier
 - \square No need to know the exact form of x
 - ☐ The inner product can be replaced by any (approximate) similarity measure

Kernel Methods

- Replace the inner product by the kernel function

 - □ The classifier becomes $f(x) = w^{\mathsf{T}} x = \sum_{n=1}^{N} \alpha_n \kappa(x_n, x)$ □ The objective becomes $\min_{\alpha} (Y K\alpha)^{\mathsf{T}} (Y K\alpha) + \lambda \alpha^{\mathsf{T}} K\alpha$, where $K_{i,j} = \kappa(x_i, x_j)$
- Now we only need to let the kernel function be
 - Random projection: $\kappa(x_i, x_j) = \langle Hx_i, Hx_j \rangle$
 - □ SimHash: $\kappa(x_i, x_j) = \frac{1}{\kappa} \sum_{k=1}^{\kappa} 1(h_k(x_i) = h_k(x_j))$
 - $\square \text{ MinHash: } \kappa(x_i, x_j) = \frac{1}{K} \sum_{k=1}^{K} 1(\min(\pi_k(S_i))) = \min(\pi_k(S_j)))$
- \blacksquare A valid kernel The kernel matrix K must be positive semi-definite

Thanks

Email: libin@fudan.edu.cn