HYPOTHETICAL EXPECTED UTILITY

Evan Piermont Royal Holloway, University of London

Advances in Behavioural and Experimental Economics Kings College London -- June 2023

Good decision making requires thinking hypothetically

- Auctions
 - ◆ Thaler (JEP, 1988); Eyster and Rabin, (ETCA, 2005); Li (AER, 2017)
- Disclosure
 - Jin, Luca and Martin (WP, 2015), Enke (QJE, 2020)
- Voting
 - ♦ Feddersen (JEP, 2004); Esponda and Vespa (AEJ Micro, 2014)
- Construction of subjective likelihoods
 - Tversky and Kahneman (PsycR., 1983), Tversky and Koehler (PsycR., 1994)
- Interpreting Signals
 - ♦ Araujo et al. (AEJMicro, 2021), Garfagnini and Walker-Jones (WP, 2023)
- Strategic uncertainty
 - Eyster and Rabin, (ETCA, 2005), Esponda, (AER, 2008)

What is hypothetical thinking? How can it be flawed?

- ⋄ Focusing on a subset, H, of the space of all possibilities and understanding
- \diamond what is true given this restriction: what H implies
- \diamond what might be true for the restriction to hold: what implies H

This paper proposes a model of (flawed) hypothetical thinking that is

This paper proposes a model of (flawed) hypothetical thinking that is

simple — minimally extends the usual state-space model of uncertainty / SEU

This paper proposes a model of (flawed) hypothetical thinking that is

simple — minimally extends the usual state-space model of uncertainty / SEU
general — can accommodate all of the examples above (and more); helps us understand what hypothetical thinking is

This paper proposes a model of (flawed) hypothetical thinking that is

simple — minimally extends the usual state-space model of uncertainty / SEU

general — can accommodate all of the examples above (and more); helps us understand *what* hypothetical thinking is

identifiable — is falsifiable and the parameters identifiable from standard economic data

The standard model of uncertainty: (Ω, μ) .

- $\diamond \Omega$ is a state space, $H \subseteq \Omega$ is a **hypothesis**.
- $\diamond \mu$ is a probability over Ω ; DM's uncertainty is captured by $\mu(H)$

The DM does properly interpret the hypothesis $\it H$. Instead she interprets is as some other event:

$$\pi: 2^{\Omega} \to 2^{\Omega}$$

$$\pi: H \mapsto \pi(H)$$

(Interpretation of H)

(Interpretation Map)

The *interpretational* model of uncertainty: (Ω, π, μ) .

- \diamond DM's uncertainty is captured by $\mu(\pi(H))$
- ⋄ This is a model of misinterpretation

ω_1 ω_2 ω_3 ω_4				
	ω_1	ωρ	(1)3	ωA
	ω1	ω ₂		ω ₄

 ${\bf Hypothetical\ Event}-{\cal H}$

The DM is 'almost' rational, restrict π :

Truth (T)
$$H \subseteq \pi(H)$$

♦ Never rule out the true state of affairs.

Introspection (I) $\pi(\pi(H)) = \pi(H)$

♦ Cannot distinguish between an event and its interpretation

$$\text{Distribution (D)} \ \ \pi(H \cup G) = \pi(H) \cup \pi(G)$$

Can combine hypotheses consistently

Call π **coherent** if it satisfies (T), (I) and (D).

The winner of the game show Let's Make a Deal is presented with 3 doors...

behind two of them stands a goat and the third a prize.

The Host, Monty, Knows the contents but the contestants do not.

The contestant gets to choose a door.

Then Monty opens an unchosen door. Critically: he always reveals a goat.

The contestant is afforded a final choice: keep his chosen door or switch to the other unopened door.

What should the contestant do?	
We can analyze this will a simple 4 state model.	

 $\diamond \omega_{ij}$ — prize behind *i*, Monty opens *j*.

 $\diamond \ \omega_{ij}$ — prize behind i, Monty opens j.

- $\diamond \ \omega_{ij}$ prize behind *i*, Monty opens *j*.
- \diamond The event monty opens door 3 is $O_3 = \{\omega_{13}, \omega_{23}\}.$

- $\diamond \omega_{ij}$ prize behind *i*, Monty opens *j*.
- ♦ The event monty opens door 3 is $O_3 = \{\omega_{13}, \omega_{23}\}.$
- ♦ The conditional probability of winning from sticking:

$$\mu(\{\omega_{12}, \omega_{13}\} \mid O_3) = \frac{\mu(\{\omega_{13}\})}{\mu(\{\omega_{13}, \omega_{23}\})} = \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3},$$

♦ And of winning by switching to door 2:

$$\mu(\{\omega_{23}\} \mid O_3) = \frac{\mu(\{\omega_{23}\})}{\mu(\{\omega_{13}, \omega_{23}\})} = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}.$$

What happens if the contestant interprets

 O_3 (door 3 is opened)

as

as $NOT(P_3)$ (the prize is not behind door 3)?

$$\Phi$$
 $\pi(O_3) = \{\omega_{12}, \omega_{13}, \omega_{23}\}.$

$$\mu(\{\omega_{12}, \omega_{13}\} \mid \pi(O_2)) = \frac{\mu(\{\omega_{12}, \omega_{13}\})}{\mu(\{\omega_{12}, \omega_{13}, \omega_{23}\})} = \frac{\frac{2}{6}}{\frac{2}{3}} = \frac{1}{2}$$

- Φ $\pi(O_3) = \{\omega_{12}, \omega_{13}, \omega_{23}\}.$
- The conditional probability of winning from sticking:

$$\mu(\{\omega_{12}, \omega_{13}\} \mid \pi(O_2)) = \frac{\mu(\{\omega_{12}, \omega_{13}\})}{\mu(\{\omega_{12}, \omega_{13}, \omega_{23}\})} = \frac{\frac{2}{6}}{\frac{2}{2}} = \frac{1}{2}$$

And of winning by switching to door 2:

$$\mu(\{\omega_{23}\} \mid \pi(O_2)) = \frac{\mu(\{\omega_{23}\})}{\mu(\{\omega_{12}, \omega_{13}, \omega_{23}\})} = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2}$$

Example: Esponda and Vespa (2014)

Example: Esponda and Vespa (2014)

Subjects with the following decision problem:

- State is RED or BLUE with equal prob
- ⋄ Receive signal **r** or **b** with accuracy $\frac{2}{3}$.
- Must cast a vote for either RED or BLUE. In addition, two computers observe the state and also vote according to specific rule:
 - ♦ If **RED**: vote red
 - \diamond If **BLUE**: vote blue with probability $\frac{2}{3}$ and red with prob $\frac{1}{3}$
- Win if the color chosen by a simple majority matches the color of the state

⋄ The objective state-space

- ⋄ The objective state-space
- ♦ Conditioning event {r, P}

- ⋄ The objective state-space
- ♦ Conditioning event {r, P}
- ♦ Conditional probability of **B** is μ (**B** | {**r**, P}) = 1.

Example

Subjects fail to reason contingently: What must the world be like so that I got the information I did?

- ♦ The subject interprets "The signal is r and I am pivotal" exactly as "The signal is r"
 - The former implies the latter but not the other way around.

Example

Take the interpretation map which ignores pivotally:

```
 \begin{split} \{(\textbf{B}, \textbf{b}, P)\} &\mapsto \{(\textbf{B}, \textbf{b}, P), (\textbf{B}, \textbf{b}, \neg P)\} \\ \{(\textbf{B}, \textbf{r}, P)\} &\mapsto \{(\textbf{B}, \textbf{r}, P), (\textbf{B}, \textbf{r}, \neg P)\} \\ \{(\textbf{B}, \textbf{b}, \neg P)\} &\mapsto \{(\textbf{B}, \textbf{b}, P), (\textbf{B}, \textbf{b}, \neg P)\} \\ \{(\textbf{B}, \textbf{r}, \neg P)\} &\mapsto \{(\textbf{B}, \textbf{r}, P), (\textbf{B}, \textbf{r}, \neg P)\} \\ &\vdots &\vdots \end{split}
```


⋄ Conditioning event {r, P} is interpreted as

$$\pi(\{\mathbf{r},\mathbf{p}\}) = \{(\mathbf{B},\mathbf{r},\mathbf{p}), (\mathbf{B},\mathbf{r},\neg\mathbf{p}), (\mathbf{R},\mathbf{r},\mathbf{p}), (\mathbf{R},\mathbf{r},\neg\mathbf{p})\}$$

♦ Conditioning event {r, P} is interpreted as

$$\pi(\{\mathbf{r},\mathsf{P}\}) = \{(\mathbf{B},\mathbf{r},\mathsf{P}), (\mathbf{B},\mathbf{r},\neg\mathsf{P}), (\mathbf{R},\mathbf{r},\mathsf{P}), (\mathbf{R},\mathbf{r},\neg\mathsf{P})\}$$

 $\qquad \qquad \diamond \ \ \text{Conditional probability of } \ \mathbf{B} \ \text{is} \ \mu(\mathbf{B} \mid \pi(\{\mathbf{r}, \mathbf{P}\})) = \frac{\frac{4}{54} + \frac{5}{54}}{\frac{5}{54} + \frac{5}{64} + \frac{2}{6}} = \frac{1}{3}.$

The bridge between a decision maker's **choices** and her **interpretation of hypotheses** is implication.

- \diamond what is true given a hypothesis: what H implies
- \diamond what must be true for the hypothesis to hold: what implies H

 H_S = "It is snowing" *implies* H_C = "It is cold out"

- ♦ Whenever the first hypothesis is true, so to the second.
- \diamond All the contingencies in H_S are also in H_C .
- \diamond $H_S \subseteq H_C$.

A DM with flawed hypothetical reasoning perceives implications subjectively

A DM with flawed hypothetical reasoning perceives implications subjectively

The DM π perceives that H implies G iff

$$\pi(H) \subseteq \pi(G)$$

The contestant interprets O_3 (door 3 is opened) as NOT (P_3) (the prize is not behind door 3)

- \diamond he correctly perceives $O_3 \Rightarrow NOT(P_3)$
 - \diamond since $\pi(O_3) \subseteq \pi(\mathsf{NOT}(P_3))$
- \diamond incorrectly perceives NOT $(P_3) \Rightarrow O_3$
 - \diamond since $\pi(\operatorname{NOT}(P_3)) \subseteq \pi(O_3)$

Betting Behavior

A decision maker's perception of implication is revealed through her preferences.

Betting Behavior

- $\diamond \ \ b_H$ is a bet on the hypothesis H
 - ♦ Pays 1 on *H* and 0 otherwise
- ♦ Assume we can observe ≽, the DM's ranking over bets

When the DM perceives that H implies G , how does she value b_G and $b_{G \cup H}$?

When the DM perceives that H implies G , how does she value b_G and $b_{G \cup H}$?	
--	--

 \diamond She believes that whenever H is true, G is true as well.

When the DM perceives that H implies G, how does she value b_G and $b_{G \cup H}$?

- \diamond She believes that whenever H is true, G is true as well.
- ⋄ $b_{G \cup H}$ pays if either H is true or G is true.
 - ♦ If G is true, both $b_{G \cup H}$ and b_{G} pay.
 - $\diamond~$ If G is false, then the DM perceives that H must be false too, neither $b_{G \cup H}$ nor b_G pays.

When the DM perceives that H implies G, how does she value b_G and $b_{G \cup H}$?

- \diamond She believes that whenever H is true, G is true as well.
- $\diamond \ b_{G \cup H}$ pays if either H is true or G is true.
 - ♦ If G is true, both $b_{G \cup H}$ and b_{G} pay.
 - $\diamond~$ If G is false, then the DM perceives that H must be false too, neither $b_{G \cup H}$ nor b_G pays.
- \diamond So: $b_G \sim b_{G \cup H}$

A DM, \succcurlyeq , reveals she perceives that H implies G, written $H \Rightarrow G$, if

$$b_G \sim b_{G \cup H}$$

Theorem

Reasonable axioms on \geq identify a unique π such that

$$H \Rightarrow G$$
 if and only if $\pi(H) \subseteq \pi(G)$

