Introduction to R

Venkat Reddy

Contents

- What is R
- R basics
- Working with R
- R packages
- R Functions
- Importing & Exporting data
- Creating calculated fields
- R Help & Tutorials

R

- Programming "environment"
- Runs on a variety of platforms including Windows, Unix and MacOS.
- Provides an unparalleled platform for programming new statistical methods in an easy and straightforward manner.
- Object-oriented
- Open source
- Excellent graphics capabilities
- Supported by a large user network

Downloading

- Google it using R or CRAN (Comprehensive R Archive Network)
- http://www.r-project.org

_ & ×

R

R Studio

R-Demo

- 2+2
- log(10)
- help(log)
- summary(airquality)
- demo(graphics) # pretty pictures...

R-Basics: Naming convention

- must start with a letter (A-Z or a-z)
- can contain letters, digits (0-9), and/or periods "."
- R is a case sensitive language.
 - mydata different from MyData

R-Basics: Assignment

- "<-" used to indicate assignment
 - x < -c(1,2,3,4,5,6,7)
 - x < -c(1:7)
 - x < -1:4
- Assignment to an object is denoted by "<-" or "->" or "=".
- If you see a notation "= =", you'll looking at a comparison operator.
 - Many other notations can be found from the documentation for the Base package or R.

Workspace

- during an R session, all objects are stored in a temporary, working memory
- Commands are entered interactively at the R user prompt. Up and down arrow keys scroll through your command history.
- list objects ls()
- remove objects rm ()
- data()

Demo: Working with R

- x <- round(rnorm(10,mean=20,sd=5)) # simulate data
- X
- mean(x)
- m <- mean(x)
- m
- x- m # notice recycling
- (x m)^2
- sum((x m)^2)
- data()
- UKgas

R Packages

- R consists of a core and packages. Packages contain functions that are not available in the core.
- Collections of R functions, data, and compiled code
- Well-defined format that ensures easy installation, a basic standard of documentation, and enhances portability and reliability
- When you download R, already a number (around 30) of packages are downloaded as well.
- You can use the function search to see a list of packages that are currently attached to the system, this list is also called the search path.
- search()

R packages

- Select the `Packages' menu and select `Install package...', a list
 of available packages on your system will be displayed.
- Select one and click `OK', the package is now attached to your current R session. Via the library function
- The library can also be used to list all the available libraries on your system with a short description. Run the function without any arguments

Demo: R packages

- Install cluster package
- Install plyr package (for string operations)

Importing Data

- Reading CSV file
 - X <-read.csv("file.csv")
- read.table()
 - reads in data from an external file
 - d <- read.table("myfile", header=TRUE)
- R has ODBC for connecting to other programs
- R gets confused if you use a path in your code like
 c:\mydocuments\myfile.txt
- This is because R sees "\" as an escape character. Instead, use
 c:\\my documents\\myfile.txt

or

c:/mydocuments/myfile.txt

Demo: Importing data

- Reading CSV file
 - petrol<-read.csv("C:\\Users\\VENKAT\\Google
 Drive\\Training\\R\\Data\\Petrol_Consuption.csv")
 - sales_data<-read.table("C:\\Users\\VENKAT\\Google Drive\\Training\\R\\Data\\sales.txt")
 - sales_data<-read.table("C:\\Users\\VENKAT\\Google
 Drive\\Training\\R\\Data\\sales.txt",header=TRUE)

Exporting data

- To A Tab Delimited Text File
 - write.table(mydata, "c:/mydata.txt", sep="\t")
- To an Excel Spreadsheet
 - library(xlsReadWrite)
 - write.xls(mydata, "c:/mydata.xls")
- To SAS
 - library(foreign)
 - write.foreign(mydata, "c:/mydata.txt", "c:/mydata.sas", package="SAS")

Demo: Exporting data

- write.table(sales_data, "C:\\Users\\VENKAT\\Google
 Drive\\Training\\R\\Data\\sales_export.txt", sep="\t")
- write.table(sales_data, "C:\\Users\\VENKAT\\Google Drive\\Training\\R\\Data\\sales_export.csv", sep=",")

R- Functions

Numeric Functions

Function	Description
abs(x)	absolute value
$\mathbf{sqrt}(x)$	square root
ceiling(x)	ceiling(3.475) is 4
floor(x)	floor(3.475) is 3
trunc(x)	trunc(5.99) is 5
round(x, digits=n)	round(3.475, digits=2) is 3.48
signif(x, digits=n)	signif(3.475, digits=2) is 3.5
$\cos(x)$, $\sin(x)$, $\tan(x)$	also $a\cos(x)$, $\cosh(x)$, $a\cosh(x)$, etc.
$\log(x)$	natural logarithm
log10(x)	common logarithm
exp(x)	e^x

Demo: Numeric Functions

- y<-abs(-20)
- x<-Sum(y+5)
- Z<-Log(x)
- round(x,1)

Character Functions

Function	Description
$\mathbf{substr}(x, \mathbf{start}=n1, \mathbf{stop}=n2)$	Extract or replace substrings in a character vector. $x \leftarrow \text{"abcdef"}$ substr(x, 2, 4) is "bcd" substr(x, 2, 4) $\leftarrow \text{"22222"}$ is "a222ef"
<pre>grep(pattern, x , ignore.case=FALSE, fixed=FALSE)</pre>	Search for <i>pattern</i> in <i>x</i> . If fixed =FALSE then <i>pattern</i> is a <u>regular expression</u> . If fixed=TRUE then <i>pattern</i> is a text string. Returns matching indices. grep("A", c("b","A","c"), fixed=TRUE) returns 2
<pre>sub(pattern, replacement, x, ignore.case =FALSE, fixed=FALSE)</pre>	Find <i>pattern</i> in <i>x</i> and replace with <i>replacement</i> text. If fixed=FALSE then <i>pattern</i> is a regular expression. If fixed = T then <i>pattern</i> is a text string. sub("\\s",".","Hello There") returns "Hello.There"
strsplit(x, split)	Split the elements of character vector <i>x</i> at <i>split</i> . strsplit("abc", "") returns 3 element vector "a", "b", "c"
paste(, sep=""")	Concatenate strings after using <i>sep</i> string to seperate them. paste("x",1:3,sep="") returns c("x1","x2" "x3") paste("x",1:3,sep="M") returns c("xM1","xM2" "xM3") paste("Today is", date())
toupper(x)	Uppercase

Demo: Character Functions

- cust_id<-"Cust1233416"
- id<-substr(cust_id, 5,10)
- Up=toupper(cust_id)

Calculated Fields in R

- Use the assignment operator <- to create new variables. A
 wide array of operators and functions are available here.
 - mydata\$sum <- mydata\$x1 + mydata\$x2
 - mydata\$mean <- (mydata\$x1 + mydata\$x2)/2
 - attach(mydata)
 - mydata\$sum <- x1 + x2
 - mydata\$mean <- (x1 + x2)/2
 - detach(mydata)

Demo Calculated Fields in R

- sales_data\$reduce<-(sales_data\$Sales)*0.2
- View(sales_data)
- sales_data\$new_sales<-sales_data\$Sales- sales_data\$reduce
- attach(petrol)
- ratio=Income/consum_mill_gallons
- View(petrol)
- petrol\$ratio=Income/Consum_mill_gallons
- View(petrol)

R-Help

 If you encounter a new command during the exercises, and you'd like to know what it does, please consult the documentation. All R commands are listed nowhere, and the only way to get to know new commands is to read the documentation files, so we'd like you to practise this youself.

Tutorials

Each of the following tutorials are in PDF format.

- P. Kuhnert & B. Venables, <u>An Introduction to R: Software for Statistical</u>
 Modeling & Computing
- J.H. Maindonald, <u>Using R for Data Analysis and Graphics</u>
- B. Muenchen, <u>R for SAS and SPSS Users</u>
- W.J. Owen, The R Guide
- D. Rossiter, <u>Introduction to the R Project for Statistical Computing for Use at the ITC</u>
- W.N. Venebles & D. M. Smith, <u>An Introduction to R</u>

R-Tutorials

- Paul Geissler's excellent R tutorial
- <u>Dave Robert's Excellent Labs</u> on Ecological Analysis
- Excellent Tutorials by David Rossitier
- Excellent tutorial an nearly every aspect of R (c/o Rob Kabacoff) MOST of these notes follow this web page format
- Introduction to R by Vincent Zoonekynd
- R Cookbook
- Data Manipulation Reference

Thank you