

USCUniversity of 1 Neural Program Synthesis from Diverse Demonstration Videos POSTECH 2 Shao-Hua Sup*1 Hygopuga Nab*2 Street C

Shao-Hua Sun*1, Hyeonwoo Noh*2, Sriram Somasundaram1, Joseph Lim1

shaohuas@usc.edu shgusdngogo@postech.ac.kr

sriramso@usc.edu

limjj@usc.edu

https://shaohua0116.github.io/demo2program/

Problem Statement

Q: Could we infer underlying program of a behavior from diverse demonstration videos?

Our approach: Neural Program Synthesis

- Contribution
- Program synthesis for explicit modeling of underlying programs
- Architecture for summarizing diverse demonstrations
- Auxiliary objectives enhancing program synthesis

Experimental Setting

- ViZDoom:
- Movement
- Kill monster
- Select weapon
- ☐ Induction baseline (Few-shot imitation)
- Implicit modeling of programs by learning to imitate

- ☐ Synthesis baseline
- Program synthesis without summarizer / multi-task loss

Proposed Model Overall architecture

Summarizer module

- Summarizer module:
- Inferring actions and underlying conditions from demonstrations
- Multi-task loss:
- Learning representation for inferring action / perception from demonstrations

Qualitative Results

f run():

else:

attack()

attack()

if inTarget Demon:

moveRight()

putMarker()

turnRight()

putMarker()

turnRight()

putMarker()

- Baseline run(): move() move() turnLeft() turnRight() putMarker() turnRight() putMarker()
- □ ViZDoom Demo 1 Demo 2 Underlying program f run(): if inTarget HellKnight: attack() not inTarget Demoi inTarget HellKnight moveRight() and inTarget Demon attack() Synthesized program

inTarget Demon → attack()

Experimental Results

- Advantage of explicit modeling of program
- ☐ Effect of summarizer / multi-task loss
- Karel

Methods	Execution	Program	Sequence
Induction baseline	62.8% (69.1%)		-
Synthesis baseline	64.1%	42.4%	35.7%
+ summarizer (ours)	68.6%	45.3%	38.3%
+ multi-task loss (ours-full)	72.1%	48.9%	41.0%

ViZDoom

Methods	Execution	Program	Sequence
Induction baseline	35.1% (60.6%)		-
Synthesis baseline	48.2%	39.9%	33.1%
Ours-full	78.4%	62.5%	53.2%

- Generalization to more / less demonstrations
 - Training with 25 demos, generalization to more / less demos

- ☐ Effect of summarizer with more demonstrations
 - Advantage of summarizer is bigger with more demonstrations NA - Al-

Methods	K=3	K=5	k=10
Synthesis baseline	58.5%	60.1%	64.1%
+ summarizer (ours)	60.6%	63.1%	68.6%
Improvement	2.1%	3.0%	4.5%

- ☐ If-else experiment inferring condition
- Single IFELSE statement with 1 condition, 2 different actions
- Inferring correct condition is essential

Methods	Execution	Program	Sequence
Induction baseline	26.5% (83.1%)		-
Synthesis baseline	59.9%	44.4%	36.1%
Ours-full	89.4%	69.1%	58.8%

Neural Program Synthesis from Diverse Demonstration Videos

Shao-Hua Sun*1, Hyeonwoo Noh*2, Sriram Somasundaram1, Joseph Lim1

shaohuas@usc.edu shgusdngogo@postech.ac.kr

sriramso@usc.edu

limjj@usc.edu

https://shaohua0116.github.io/demo2program/

Problem Statement

Q: Could we infer underlying program of a behavior from diverse demonstration videos?

Our approach: Neural Program Synthesis

- Contribution
- Program synthesis for explicit modeling of underlying programs
- Architecture for summarizing diverse demonstrations
- Auxiliary objectives enhancing program synthesis

Experimental Setting

- Karel:
- Movement Put / pick marker

- Vizdoom:
 - Movement
- Kill monster
- Select weapon
- ☐ Induction baseline (Few-shot imitation)
- Implicit modeling of programs by learning to imitate

- ☐ Synthesis baseline
- Program synthesis without summarizer / multi-task loss

Proposed Model

Overall architecture

☐ Summarizer module

turnRight()

turnRight()

move()

turnRight()

while frontlsClear():

- Summarizer module:
- Inferring actions and underlying conditions from demonstrations
- Multi-task loss:
- Learning representation for inferring action / perception from demonstrations

Qualitative Results

attack()

moveRight()

else:

Demo 1 Demo 2 Underlying program if inTarget HellKnight:

inTarget HellKnight and inTarget Demon

not inTarget Demon

→ attack()

inTarget Demon

Experimental Results

- Advantage of explicit modeling of program
- ☐ Effect of summarizer / multi-task loss
- Karel

Methods	Execution	Program	Sequence
Induction baseline	62.8% (69.1%)	-	-
Synthesis baseline	64.1%	42.4%	35.7%
+ summarizer (ours)	68.6%	45.3%	38.3%
+ multi-task loss (ours-full)	72.1%	48.9%	41.0%

Vizdoom

Methods	Execution	Program	Sequence
Induction baseline	35.1% (60.6%)		-
Synthesis baseline	48.2%	39.9%	33.1%
Ours-full	78.4%	62.5%	53.2%

- Generalization to more / less demonstrations
- Training with 25 demos, generalization to more / less demos

- ☐ Effect of summarizer with more demonstrations
- Advantage of summarizer is bigger with more demonstrations

Methods	k=3	k=5	k=10
Synthesis baseline	58.5%	60.1%	64.1%
+ summarizer (ours)	60.6%	63.1%	68.6%
Improvement	2.1%	3.0%	4.5%

- ☐ If-else experiment inferring condition
- Single IFELSE statement with 1 condition, 2 different actions
- Inferring correct condition is essential

Methods	Execution	Program	Sequence
Induction baseline	26.5% (83.1%)	-	_
Synthesis baseline	59.9%	44.4%	36.1%
Ours-full	89.4%	69.1%	58.8%

USCUniversity of ¹ Neural Program Synthesis from Diverse Demonstration Videos POSTECH² Southern California Shao-Hua Sup*1 Hygopuse Neb*2 Order C

Shao-Hua Sun*1, Hyeonwoo Noh*2, Sriram Somasundaram1, Joseph Lim1

Program Sequence

35.7%

shaohuas@usc.edu shgusdngogo@postech.ac.kr

sriramso@usc.edu

limjj@usc.edu

https://shaohua0116.github.io/demo2program/

Experimental Results

Problem Statement

Q: Could we infer underlying program of a behavior from diverse demonstration videos?

Our approach: Neural Program Synthesis

- Contribution
- Program synthesis for explicit modeling of underlying programs
- Architecture for summarizing diverse demonstrations
- Auxiliary objectives enhancing program synthesis

Experimental Setting

- Vizdoom:
- Movement
- Kill monster
- Select weapon

def run():

turnRight()

turnRight()

move()

turnRight()

while frontlsClear():

- ☐ Induction baseline (Few-shot imitation)
- Implicit modeling of programs by learning to imitate

- ☐ Synthesis baseline
- Program synthesis without summarizer / multi-task loss

Proposed Model

Overall architecture

Summarizer module

- Summarizer module:
- Inferring actions and underlying conditions from demonstrations
- Multi-task loss:
- Learning representation for inferring action / perception from demonstrations

Demo 1

Qualitative Results

☐ Vizdoom Underlying program

if inTarget Demon:

moveRight()

attack()

else:

not inTarget Demon

inTarget HellKnight

→ attack()

Demo 2

inTarget HellKnight

and inTarget Demon

inTarget Demon → attack()

Induction baseline 62.8% (69.1%) Synthesis baseline 42.4% + summarizer (ours) 68.6% + multi-task loss (ours-full) 72.1% 48.9% 41.0%

☐ Advantage of explicit modeling of program

☐ Effect of summarizer / multi-task loss

Vizdoom

Karel

Methods

Methods	Execution	Program	Sequence
Induction baseline	35.1% (60.6%)	-	-
Synthesis baseline	48.2%	39.9%	33.1%
Ours-full	78.4%	62.5%	53.2%

Generalization to more / less demonstrations

Training with 25 demos, generalization to more / less demos

- ☐ Effect of summarizer with more demonstrations
- Advantage of summarizer is bigger with more demonstrations

Methods	k=3	k=5	k=10
Synthesis baseline	58.5%	60.1%	64.1%
+ summarizer (ours)	60.6%	63.1%	68.6%
Improvement	2.1%	3.0%	4.5%

- ☐ If-else experiment inferring condition
- Single IFELSE statement with 1 condition, 2 different actions
- Inferring correct condition is essential

Methods	Execution	Program	Sequence
Induction baseline	26.5% (83.1%)		_
Synthesis baseline	59.9%	44.4%	36.1%
Ours-full	89.4%	69.1%	58.8%

Neural Program Synthesis from Diverse Demonstration Videos

ICML 2018

Thirty-fifth International Conference on Machine Learning

POSTEH

Shao-Hua Sun*1, Hyeonwoo Noh*2, Sriram Somasundaram1, Joseph Lim1

shaohuas@usc.edu shgusdngogo@postech.ac.kr

sriramso@usc.edu

limjj@usc.edu

https://shaohua0116.github.io/demo2program/

Problem Statement

Q: Could we infer underlying program of a behavior from diverse demonstration videos?

Our approach: Neural Program Synthesis

- Contribution
- Program synthesis for explicit modeling of underlying programs
- Architecture for summarizing diverse demonstrations
- Auxiliary objectives enhancing program synthesis

Experimental Setting

- Vizdoom:
- Movement
- Kill monster
- Select weapon

turnRight()

move()

turnRight()

while frontlsClear():

- ☐ Induction baseline (Few-shot imitation)
- Implicit modeling of programs by learning to imitate

- ☐ Synthesis baseline
- Program synthesis without summarizer / multi-task loss

Proposed Model

Overall architecture

☐ Summarizer module

- Summarizer module:
- Inferring actions and underlying conditions from demonstrations
- Multi-task loss:
- Learning representation for inferring action / perception from demonstrations

Qualitative Results

attack()

moveRight()

else:

Demo 1 Demo 2

inTarget HellKnight

→ attack() → attack()

not inTarget Demon

inTarget Demon

→ attack()

Experimental Results

- ☐ Advantage of explicit modeling of program
- ☐ Effect of summarizer / multi-task loss
- Karel

Methods	Execution	Program	Sequence
Induction baseline	62.8% (69.1%)	-	-
Synthesis baseline	64.1%	42.4%	35.7%
+ summarizer (ours)	68.6%	45.3%	38.3%
+ multi-task loss (ours-full)	72.1%	48.9%	41.0%

Vizdoom

Methods	Execution	Program	Sequence
Induction baseline	35.1% (60.6%)	_	-
Synthesis baseline	48.2%	39.9%	33.1%
Ours-full	78.4%	62.5%	53.2%

- Generalization to more / less demonstrations
- Training with 25 demos, generalization to more / less demos

- ☐ Effect of summarizer with more demonstrations
- Advantage of summarizer is bigger with more demonstrations

50 5M	60 4 04	The state of the s
58.5%	60.1%	64.1%
60.6%	63.1%	68.6%
2.1%	3.0%	4.5%
_	60.6%	60.6% 63.1%

- ☐ If-else experiment inferring condition
- Single IFELSE statement with 1 condition, 2 different actions
- Inferring correct condition is essential

Methods	Execution	Program	Sequence
Induction baseline	26.5% (83.1%)		_
Synthesis baseline	59.9%	44.4%	36.1%
Ours-full	89.4%	69.1%	58.8%

Neural Program Synthesis from Diverse Demonstration Videos ICML | 2018

Shao-Hua Sun^{*1}, Hyeonwoo Noh^{*2}, Sriram Somasundaram¹, Joseph Lim¹

Lim¹
Thirty-fifth International Conference on Machine Learning

shaohuas@usc.edu shgusdngogo@postech.ac.kr

sriramso@usc.edu

limjj@usc.edu

Problem Statement

Q: Could we infer underlying program of a behavior from diverse demonstration videos?

☐ Our approach: Neural Program Synthesis

Experimental Setting

- Environments
- Common DSL with different action / perception
- DSL (domain specific language) including IF, WHILE,
 IFELSE, REPEAT, binary perceptions and NOT operator

- Karel:
- Movement Put / pick marker
- 90 1008 2 3 4 3 0 8 3 200 50 50 50
- Vizdoom:
- Movement
- Perceive / kill monster
- ☐ Induction baseline (Few-shot imitation)
- Implicit modeling of programs by learning to imitate

- ☐ Synthesis baseline
- Program synthesis without summarizer / multi-task loss

Evaluation Result

- ☐ Evaluation Metric
- Execution accuracy: accuracy of execution result on unseen initial states
- Program accuracy: accuracy based on program behavior space measured by enumerating program syntax
- Sequence accuracy: accuracy of synthesized program token sequence
- ☐ If-else experiment inferring condition

Methods	Execution	Program	Sequence
Induction baseline	26.5% (83.1%)		-
Synthesis baseline	59.9%	44.4%	36.1%
Ours-full	89.4%	69.1%	58.8%

- ☐ Inferring conditions from diverging demonstrations
 - Sequence of programs qualitative result by sri

☐ Generalization to more / less demonstrations

Neural Program Synthesis from Diverse Demonstration Videos ICML | 2018

Shao-Hua Sun*1, Hyeonwoo Noh*2, Sriram Somasundaram1, Joseph Lim1

Thirty-fifth International Conference on Machine Learning

POHANG UNIVERSITY OF SCIENCE AND TO

shaohuas@usc.edu shgusdngogo@postech.ac.kr

sriramso@usc.edu

limjj@usc.edu

Problem Statement

Q: Could we infer underlying program of a behavior from diverse demonstration videos?

☐ Our approach: Neural Program Synthesis

- Contribution
- Program synthesis for explicit modeling of underlying programs
- Architecture for summarizing diverse demonstrations
- Auxiliary objectives enhancing program synthesis

Proposed Model

Overall architecture

☐ Summarizer module

- Summarizer module:
 - Inferring actions and underlying conditions from demonstrations
- Multi-task loss:
- Learning representation for inferring action / perception from demonstrations
- > Effect of summarizer module:

Methods	k=3	k=5	k=10
Synthesis baseline	58.5%	60.1%	64.1%
+ summarizer (ours)	60.6%	63.1%	68.6%
Improvement	2.1%	3.0%	4.5%

Baselines

- ☐ Induction baseline (Few-shot imitation)
- Implicit modeling of programs by learning to imitate

- ☐ Synthesis baseline
- Program synthesis without summarizer / multi-task loss
- ☐ If-else experiment inferring condition

Methods	Execution	Program	Sequence
Induction baseline	26.5% (83.1%)		-
Synthesis baseline	59.9%	44.4%	36.1%
Ours-full	89.4%	69.1%	58.8%

Experimental Setting

Karel: Movement

Put / pick

marker

- Vizdoom:
- Movement
- Perceive / kill monster
- ☐ Induction baseline (Few-shot imitation)
- Implicit modeling of programs by learning to imitate

- ☐ Synthesis baseline
- Program synthesis without summarizer / multi-task loss

☐ Inferring conditions from diverging demonstrations

Sequence of programs - qualitative result - by sri

☐ Generalization to more / less demonstrations

Neural Program Synthesis from Diverse Demonstration Videos ICML | 2018

Shao-Hua Sun*1, Hyeonwoo Noh*2, Sriram Somasundaram1, Joseph Lim1

shaohuas@usc.edu shgusdngogo@postech.ac.kr

sriramso@usc.edu

limjj@usc.edu

Thirty-fifth International Conference on Machine Learning

Problem Statement

Q: Could we infer underlying program of a behavior from diverse demonstration videos?

Our approach: Neural Program Synthesis

- Contribution
- Program synthesis for explicit modeling of underlying programs
- Architecture for summarizing diverse demonstrations
- Auxiliary objectives enhancing program synthesis

Proposed Model Overall architecture Program def run(): turnLeft() ... pickupMarker(if leftIsClear(): turnLeft() Demo turnLeft() Demo 2 Encoder Decoder REPEAT R=5: turnRight() · · · pickupMarker() turnRight() if MarkersPresent(): pickupMarker() frontIsClear() else: rightIsClear() Demo Decoder Demo k | | Encoder MarkersPresent() yes... move() ☐ Summarizer module Summarizer Z \rightarrow LSTM \rightarrow ... LSTM \rightarrow v_{demo}^{1} Demo 1 Relation

Baselines

- ☐ Induction baseline
- ☐ Synthesis baseline
- ☐ Proposed model
- ☐ If-else experiment inferring condition

Methods	Execution	Program	Sequence
Induction baseline	26.5% (83.1%)		_
Synthesis baseline	59.9%	44.4%	36.1%
Ours-full	89.4%	69.1%	58.8%

Experimental Setting

☐ Inferring conditions from diverging demonstrations

Sequence of programs - qualitative result - by sri

☐ Generalization to more / less demonstrations

