▲ Try again once you are ready

Retake the assignment in 23h 48m

Grade received 60% Latest Submission Grade 50% To pass 80% or higher

1. What does a neuron compute?

1/1 point

- A neuron computes an activation function followed by a linear function z=Wx+b
- lacksquare A neuron computes a linear function z=Wx+b followed by an activation function
- A neuron computes the mean of all features before applying the output to an activation function
- A neuron computes a function g that scales the input x linearly (Wx + b)

⊘ Correct

Correct, we generally say that the output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU, ...).

2. Suppose that $\hat{y} = 0.9$ and y = 1. What is the value of the "Logistic Loss"? Choose the best option.

0 / 1 point

- 0.105
- $\bigcirc \quad \mathcal{L}(\hat{y},y) = -\left(\hat{y} \ \log y + (1-\hat{y}) \ \log(1-y)\right)$

	\bigcirc $+\infty$	
	0.005	
	Expand	
	No. This is not the definition of the Logistic Loss function.	
3.	Suppose img is a $(32,32,3)$ array, representing a $32x32$ image with 3 color channels red, green and blue. How do you reshape this into a column vector x ?	1 / 1 point
	x = img.reshape((32*32,3))	
	x = img.reshape((32*32*3,1))	
	x = img.reshape((1,32*32,3))	
	x = img.reshape((3,32*32))	
	∠ [™] Expand	

4. Consider the following random arrays a and b, and c:

1/1 point

$$c = a + b$$

What will be the shape of c?

- The computation cannot happen because the sizes don't match. It's going to be "Error"!
- c.shape = (2, 1)
- \bigcirc c.shape = (3, 2)
- c.shape = (2, 3)

∠ Expand

⊘ Correct

Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.

0 / 1 point

5. Consider the two following random arrays *a* and *b*:

$$a = np.random.randn(1,3) \, \# \, a.shape = (1,3)$$

$$b = np.random.randn(3,3) \, \# \, b.shape = (3,3)$$

$$c = a * b$$

What will be the shape of c?

- c.shape = (3, 3)
- c.shape = (1, 3)
- The computation cannot hannen because it is not nossible to broadcast more than one dimension

No. It is possible to do broadcasting, multiplying the row a element-wise with each row of b to form c.

6. Suppose our input batch consists of 8 grayscale images, each of dimension 8x8. We reshape these images into feature column vectors \mathbf{x}^j . Remember that $X = \left[\mathbf{x}^{(1)}\mathbf{x}^{(2)}\cdots\mathbf{x}^{(8)}\right]$. What is the dimension of X?

1/1 point

0 / 1 point

- (64, 8)
- (8, 64)
- (512, 1)
- (8, 8, 8)

⊘ Correct

Yes. After converting the 8x8 gray scale images to a column vector we get a vector of size 64, thus X has dimension (64, 8).

7. Consider the following array:

$$a=np.array([[2,1],[1,3]])$$

What is the result of np.dot(a, a)?

 \bigotimes Incorrect

No, recall that * indicates the element-wise multiplication and that np.dot() is the matrix multiplication.

8. Consider the following code snippet:

0 / 1 point

$$a.shape=(4,3)$$

$$b.shape = (4,1)$$

for	i	in	range	(3))
101			runge	(-	,

for j in range(4):

$$c[i][j] = a[j][i] + b[j]$$

How do you vectorize this?

- \bigcirc c = a.T + b
- c = a + b.T
- c = a.T + b.T
- \bigcirc c=a+b

⊗ Incorrect

No. The a[j][i] being assigned to a[i][j] indicates that we are using a.T.

9. Consider the following code:

a = np.random.randn(3,3)

b = np.random.randn(3,1)

$$c = a * b$$

What will be c? (If you're not sure, feel free to run this in python to find out).

1/1 point

- This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3)
- It will lead to an error since you cannot use "*" to operate on these two matrices. You need to instead use np.dot(a,b)
- This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)

10. Consider the following computational graph.

What is the output of J?

$$(a-1), (b+c)$$

 $(c-1), (a+c)$

$$(c-1), (a+c)$$

0 / 1 point

- $\bigcirc \quad (a+c), (b-1)$

∠ **Expand**

$$\bigotimes$$
 Incorrect

No. J = u - v + w = ab - (a + c) + bc = ab - a + bc - c = a(b - 1) + c(b - 1) = (a + c)(b - 1)