Vorlesungsaufgaben

Übung zu regulären Grammatiken

Gegeben ist eine Sprache $L \subset \Sigma^*$ mit $\Sigma = \{a, b\}$. Zu der Sprache L gehören alle Wörter, die die Zeichenfolge abba beinhalten.

(a) Gib eine Grammatik an, die diese Sprache erzeugt.

```
S \rightarrow aS \mid aB \mid bS \mid bA

A \rightarrow aB

B \rightarrow bC

C \rightarrow bD

D \rightarrow aE

E \rightarrow aE \mid bE \mid a \mid b \mid \epsilon
```

(b) Gib eine Ableitung/Syntaxbaum zu deiner Grammatik für das Wort aabbab an.

$$S
ightarrow aS
ightarrow aaB
ightarrow aabC
ightarrow aabbD
ightarrow aabbaE
ightarrow aabbab$$

Übungen zu regulären Ausdrücken

(a) Gegeben ist eine Sprache $L \subset \Sigma^*$ mit $\Sigma = \{a,b\}$. Zu der Sprache L gehören alle Wörter, die die Zeichenfolge abba beinhalten.

Gib einen regulären Ausdruck für diese Sprache an.

```
(a|b)*abba(a|b)*
```

(b) Gebe möglichst einfache reguläre Ausdrücke für die folgenden Sprachen $L_x \subset \Sigma^*$ mit $\Sigma = \{a,b\}$ und $x \in \{1,2,3\}$.

 $L_1 = \{x | x \text{ beinhaltet eine gerade Anzahl von } a\}$

 $L_2 = \{x | x \text{ beinhaltet eine ungerade Anzahl von } b\}$

```
.*b(bb)*.* oder (a|b)*b(bb)*(a|b)*
```

 $L_3 = \{x | x \text{ beinhaltet an seinen geradzahligen Positionen ausschließlich } a\}$

```
((a|b)a)*
```

(c) Gib einen regulären Ausdruck der eine syntaktisch gültige E-Mail-Adresse erkennt. (mindestens 1 Zeichen (Groß-/Kleinbuchstabe oder Zahl) vor dem @; mindestens 1 Zeichen (Groß-/Kleinbuchstabe oder Zahl) nach dem @; alle E-Mail-Adressen sollen auf .de oder .com enden.

[a-zA-Z0-9]+0[a-zA-Z0-9]+(de|com)

Übungen zu Automaten

Stelle einen Automaten zu den folgenden Sprachen auf:

- (a) $L_1 = \{x | x \text{ beinhaltet eine gerade Anzahl von } a\}$
- (b) $L_2 = \{x | x \text{ beinhaltet eine ungerade Anzahl von } b\}$
- (c) Gib einen DEA der eine syntaktisch gültige E-Mail-Adresse erkennt. (mindestens 1 Zeichen (Groß-/Kleinbuchstabe oder Zahl) vor dem @; mindestens 1 Zeichen (Groß-/Kleinbuchstabe oder Zahl) nach dem @; alle E-Mail-Adressen sollen auf .de oder .com enden.

Übungen zu NEA

(a) Stelle einen nichtdeterministischen endlichen Automaten auf, der alle durch 2 teilbaren Binärzahlen akzeptiert.

Exkurs: Wann ist eine Binärzahl durch 2 teilbar?

(b) Stelle einen NEA auf, der alle Wörter über einem Alphabet $\Sigma = \{a, b\}$ akzeptiert, die als vorletztes Zeichen ein b besitzen.

Übung Potenzmengenalgorithmus

Gegeben ist der folgende NEA:

- (i) Überführe den gegebenen NEA mit dem Potenzmengenalgorithmus in einen DEA.
- (ii) Gib den gegebenen NEA in das Programm AutoEdit ein und lasse diesen in einen DEA konvertieren. Überprüfe, ob deine Lösung mit der des Programms übereinstimmt.

Übung zur Minimalisierung

Minimalisiere den gegebenen DEA:

Übung zum Pumping-Lemma

- (i) Zeige, dass die Sprache $L=\{a^nb^m|n\geq m\geq 1\}$ nicht regulär ist.
- (ii) Zeige, dass die Sprache $L=\{a^nb^m|n>m\geq 1\}$ nicht regulär ist.