k-means Algorithm

- 1.Intialise the number of clusters (K).
- 2.randomly choose 'k' object from data set and assign its cluster centre
- 3.Assign / Reassign the data points to the cluster using similarity distance measure (Eucledian measure)
- 4.Find new cluster centre (updating cluster centre by taking means of all datapoints) 5.Repeat 3 and 4 till the stop criteria

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets

iris = datasets.load_iris()
iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)
iris_df.head()
```

_	sepal	length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	
	0	5.1	3.5	1.4	0.2	11.
	1	4.9	3.0	1.4	0.2	
	2	4.7	3.2	1.3	0.2	
	3	4.6	3.1	1.5	0.2	
	4	5.0	3.6	1 4	0.2	

Next steps: Generate code with iris_df

• View recommended plots

New interactive sheet

iris_df.shape

→ (150, 4)

iris df.describe()

Optimum number of clusters of k-means algorithm

```
x = iris_df.iloc[:,[0,1,2,3]].values
from sklearn.cluster import KMeans
wcss = []

for i in range(1,11):
    kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0)
    kmeans.fit(x)
    wcss.append(kmeans.inertia_)
```

Applying k-means to the dataset

```
plt.plot(range(1,11), wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
```

```
plt.ylabel('WCSS')
plt.show()
```


Double-click (or enter) to edit

```
kmeans = KMeans(n_clusters=3, init='k-means++', max_iter=300, n_init=10, random_state=0)
y_kmeans = kmeans.fit_predict(x)
```

Visualising the cluster

```
plt.scatter(x[y_kmeans == 0, 0], x[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Iris-setosa')
plt.scatter(x[y_kmeans == 1, 0], x[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Iris-versicolour')
plt.scatter(x[y_kmeans == 2, 0], x[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Iris-virginica')
# plotting the centroids of the clusters
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:,1], s = 100, c = 'yellow', label = 'Centroids')
plt.legend()
```


<matplotlib.legend.Legend at 0x7ed2c4b207d0>

from sklearn.preprocessing import StandardScaler from scipy.cluster.hierarchy import linkage, dendrogram, fcluster # Import linkage, dendrogram, and fcluster

Load the Iris dataset

```
iris = load_iris()
X = iris.data
y = iris.target

# Standardize the data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Perform hierarchical/agglomerative clustering
Z = linkage(X_scaled, method='ward') # 'ward' minimizes the variance of clusters

# Plot the dendrogram
plt.figure(figsize=(10, 7))
dendrogram(Z, labels=iris.target_names[y])
plt.title('Hierarchical Clustering Dendrogram (Iris dataset)')
plt.xlabel('Sample Index')
plt.ylabel('Distance')
plt.show()
```


Hierarchical Clustering Dendrogram (Iris dataset)

