

F-CAM: Full Resolution Class Activation Maps via Guided Parametric Upscaling (#1177)

The Goodman Cancer Research Centre

Soufiane Belharbi^{1*} & Aydin Sarraf³ & Marco Pedersoli¹ & Ismail Ben Ayed¹ & Luke McCaffrey² & Eric Granger¹

¹LIVIA, Dept. of Systems Engineering, École de technologie supérieure, Montreal, Canada ²Rosalind and Morris Goodman Cancer Research Centre, Department of Oncology, McGill University ³Ericsson, Global Al Accelerator, Montreal, Canada

Context

State-of-the-art methods for weakly supervised object localization (WSOL) rely on CAMs because they are:

easy to obtain, interpretable, require only global class-image labels

However, they have several drawbacks:

- low resolution (downscale factor up to 32), inaccurate boundaries, cover minimal discriminant regions of object, sensitive to thresholding
- the low resolution of CAM limits their localization potential (see paper for simulations). Interpolation is required for full resolution, leading to bloby localization, and inaccurate boundaries

Figure 1. Example of a CAM localization with bloby, inaccurate boundaries.

This work aims to improve the resolution of CAMs using parametric upscaling with priors, allowing to improve localization accuracy

F-CAM: Full Resolution CAMs

Figure 2. An illustration of the differences between interpolation and our trainable parametric upscaling with priors. C is the interpolated CAM, and S^2 is the F-CAM produced using our proposed trainable decoder architecture.

- Avoid interpolation. Use parametric upscaling
- Guide upscale learning using priors: seeds, texture, size

Proposed Approach: Architecture

Figure 3. Our proposal: training (left), inference (right).

Proposed Approach: Training

Exploit a pre-trained classifier.

Priors:

- Align pixels via sampled pseudo-labels from the low resolution CAM.
- Use image color/texture to yield consistent boundaries.
- Use unsupervised size prior to yield complete object.

Total training loss:

$$\min_{\boldsymbol{\theta}} -\log(\boldsymbol{g}(\boldsymbol{X})[y]) + \alpha \sum_{p \in \Omega'} \boldsymbol{H}(Y_p, \boldsymbol{S}_p) + \lambda \, \mathcal{R}(\boldsymbol{S}, \boldsymbol{X}) ,$$
s.t.
$$\sum \boldsymbol{S}^r \ge 0 , \quad r \in \{1, 2\} ,$$
(2)

CRF: \mathcal{R} . partial cross-entropy: \mathbf{H} .

Results

Datasets: CUB, OpenImages.

Methods	VGG	CUB (Max Inception				OpenImag Inception		
CANA (2) 1121 201()	71.1	/ 0 1	70.0	/0.0	<i></i>	/1 /	F0.0	FO 1
CAM (cvpr,2016)	71.1	62.1	73.2	68.8	58.1	61.4	58.0	59.1
HaS (iccv,2017)	76.3	57.7	78.1	70.7	56.9	59.5	58.2	57.8
ACoL (cvpr,2018)	72.3	59.6	72.7	68.2	54.7	63.0	57.8	58.4
SPG (eccv,2018)	63.7	62.8	71.4	66.0	55.9	62.4	57.7	58.6
ADL (cvpr,2019)	75.7	63.4	73.5	70.8	58.3	62.1	54.3	58.2
CutMix (eccv,2019)	71.9	65.5	67.8	68.4	58.2	61.7	58.7	59.5
Best WSOL	76.3	65.5	78.1	70.8	58.3	63.0	58.7	59.5
FSL baseline	86.3	94.0	95.8	92.0	61.5	70.3	74.4	68.7
Center baseline	59.7	59.7	59.7	59.7	45.8	45.8	45.8	45.8
CSTN (icpr,2020)		Resnet10	01: 76.0		_	_	_	-
TS-CAM (corr,2021)		Deit-S	: 83.8		_	_	_	_
MEIL (cvpr,2020)	73.8	_	_	-	_	_	_	_
DANet (iccv,2019)	67.7	67.03	_	-	_	_	_	_
SPOL (cvpr,2021)		_	96.4	-		_	_	_
CANA* (QUIDE 2014)	Z1 Z	F0 0	71 5	420	E2.0	40.7	E	E7 E
CAM* (cvpr,2016)	61.6	58.8	71.5	63.9	53.0	62.7	56.8	57.5
GradCAM (iccv,2017)	69.3	62.3	73.1	68.2			60.1	61.2
GradCAM++ (wacv,2018)	84.1	63.3	81.9	76.4	60.5	64.0	60.2	61.5
Smooth-GradCAM++ (corr,2019)		66.9	76.3	70.9	52.2	61.7	54.3	56.0
XGradCAM (bmvc,2020)	69.3	60.9	72.7	67.6	59.0	63.9	60.2	61.0
LayerCAM (ieee,2021)	84.3	66.5	85.2	78.6	59.5	63.5	61.1	61.3
				0 / 5				- 0 (
CAM* + ours	87.3	82.0	90.3	86.5	67.8	71.9	72.1	70.6
GradCAM + ours	87.5	84.4	90.5	87.4	68.6	70.0	70.9	69.8
GradCAM++ + ours	91.5	84.6	91.0	89.0	64.8	67.1	66.3	66.0
Smooth-GradCAM++ + ours	89.1	86.8	90.7	88.88	60.3	65.4	64.4	63.3
XGradCAM + ours	86.8	84.4	90.4	88.88	68.7	71.3	70.4	70.1
LayerCAM + ours	91.0	85.3	92.4	89.7	64.3	64.9	65.3	64.8
Best WSOL + ours	91.5	86.8	92.4	89.7	68.7	71.9	72.1	70.6

Table 1. Performance on MaxBoxAcc and PxAP metrics.

Qualitative results: First row: WSOL baseline. Second row: WSOL baseline + ours. First column: CAM. Next column: localization. Colors: predicted boxes in red, and true box in green. Thresholded mask is in red. $\sigma = 50\%$.

Figure 4. Test samples from CUB (CAM* method).

Figure 5. Test samples from OpenImages (LayerCAM method).