EE561: Power Electronics Laboratory

Experiment 6: Three-phase Rectifiers

Objective: The objective of this experiment is to study the operation of Three-phase uncontrolled and controlled rectifiers using MATLAB/SIMULINK.

Parameters:

Parameter	Value
Input voltage	400 V, 50 Hz, Three-phase
Source Inductance	10 mH
Load Parameters	20Ω in series with 20 mH Inductance

Procedure

- 1. Simulate a Three-phase uncontrolled rectifier (with six diodes) with no source inductance. Take the snapshots for source voltages, source currents, load voltage, and load current. Note down the average value, peak-peak ripple in load voltage and load current.
- 2. Repeat step 2 with source inductance. Observe the change in load voltage and source current waveforms. Note down the commutation angle 'u' and match with the theoretical value.
- 3. Simulate a Three-phase controlled rectifier (with six Thyristors) with no source inductance. Consider four values of Firing angles: $\alpha = 30$ deg, $\alpha = 60$ deg, $\alpha = 120$ deg, and $\alpha = 150$ deg. Take the snapshots for source voltages, source currents, load voltage, and load current. Note down the average value, peak-peak ripple in load voltage and load current.
- 4. Repeat step 2 with source inductance. Observe the change in load voltage and source current waveforms. Note down the commutation angle 'u' and match with the theoretical value.

Report

Prepare the report with the results obtained for each case and your observations. Report should also contain snapshot of the simulated circuit, Snapshot of the simulation configuration parameters

Note: (1) In Simulink, the circuit has to be simulated using a fixed time-step solver

(2) To find the commutation angle 'u', the following expression can be used:

$$\cos(\alpha + u) = \cos\alpha - \frac{2\omega L_s I_o}{400\sqrt{2}}$$

 I_o is average load current; L_S is source inductance; ω is source voltage frequency;