

706.088 INFORMATIK 1

TEILGEBIETE DER INFORMATIK

WIEDERHOLUNG

- > Funktionen
- › Geschichte:
 - » Mechanische Rechenmaschinen
 - » Elektronische Rechenmaschinen
- > Aufbau eines Computers
- Moore's Law

RELAIS ELEKTRONENRÖHRE TRANSISTOR

RELAIS

- Mechanischer Schalter
 - » Probleme:
 - > Umschalten dauert einige Sekuntenbruchteile
 - > Benötigt viel Platz
 - Taktfrequenz sehr beschränkt
 - Mechanische Abnutzung

RELAIS

Von Stefan Riepl in der Wikipedia auf Deutsch - Eigenes Werk, CC BY-SA 2.0 de, https://commons.wikimedia.org/w/index.php?curid=10663175

Spule wird unter Strom gesetzt, Magnetfeld zieht Anker, Arbeitskontakte werden geschlossen, Strom kann fließen

ELEKTRONENRÖHRE

- > ist auch Schalter
- > 1000 mal schneller als Relais
- > Probleme:
 - » benötigt viel Strom
 - » Lebensdauer gering
 - » Programmierer für ENIAC waren eher Mechaniker

ELEKTRONENRÖHRE

Stromführende Kathode, Stromaufnehmende Anode, Spannungsgefälle: Elektronen wandern von Kathode zu Anode, Strom fließt. Ist Gitter unter Strom werden Elektronen abgestoßen, Stromfluss stoppt.

Von Svjo; German translation: Wdwd - File:Triode-english-text.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=50578519

TRANSISTOR

- Kleiner Strom zwischen B asis und E mitter schaltet großen Strom zwischen
 C ollektor und Emitter
- > Basis ist im Sperrbetrieb
 - » kein Strom fließt
 - » Kollektor wartet auf Strom
- > Wenn Spannung an Basis anliegt schaltet der Transistor
 - » Strom fließt zwischen Collector und Emitter
 - » Transistor leitet

TRANSISTOR

Von Stefan Riepl (Quark48 21:02, 2. Dez. 2007 (CET)) - Eigenes Werk (Originaltext: selbst erstellt), CC BY-SA 2.0 de, Link

MOORE'S LAW

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Date of introduction

By Wgsimon - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15193542

TEILGEBIETE DER INFORMATIK

TEILGEBIETE DER INFORMATIK

Die Informatik lässt sich in folgende Teilgebiete gliedern:

- > Theoretische Informatik
- > Technische Informatik
- > Praktische Informatik
- Angewandte Informatik
- > Interdisziplinäre Informatik

THEORETISCHE INFORMATIK

Beschäftigt sich mit (theoretischen) Grundlagenfragen der Informatik über formale Sprachen wie

- › Berechenbarkeitstheorie
- > Komplexitätstheorie
- > Logik
- Graphentheorie
- > Kryptologie

BERECHENBARKEITSTHEORIE

Prinzip: Welche Probleme sind mittels einer Maschine lösbar?

Ein Problem gilt als entscheidbar, wenn es durch einen Algorithmus gelöst werden kann.

- > Beispiel:
 - » Aussage der Prädikatenlogik erster Stufe

 $\forall x: x \leq y$

> Alonzo Church und Alan Turing führten den Beweis, dass diese Beispiele nicht automatisch gelöst werden können.

KOMPLEXITÄTSTHEORIE

Befasst sich mit der Klassifikation der Menge aller algorithmisch behandelbaren Problemen.

- > Laufzeit
- > Speicherbedarf

Verschiedene "Schwierigkeitsstufen"

> Konstant, linear, quadratisch, polynomial

KOMPLEXITÄTSTHEORIE

P-NP Problem

- > P: Praktisch lösbar
- > NP: Praktisch (vermutlich) nicht lösbar
 - » Lösungen basieren auf nichtdeterministischem Modell
 - » Probleme in NP wachsen stärker als polynomiell mit ihrem Input (=NP-Vollständig)

AUTOMATEN UND FORMALE SPRACHEN

Automaten stellen ein abstraktes Modell eines Computers dar

- Verhalten sich gemäß bestimmter Regeln
- > Regeln sind in formalen Sprachen definiert
- > Werden verwendet um gewisse Eigenschaften von Algorithmen zu testen und zu beweisen.

LOGIK

"Lehre des vernünftigen Schlussfolgerns"

> Formale Logik: Untersucht Aussagen (nicht den Inhalt) auf ihre Gültigkeit.

> Aussagenlogik

» Befasst sich mit Aussagen (Atomen mit Richtig/Falsch zuweisung) und deren Verknüpfung (Junktoren)

> Prädikatenlogik

» Erlaubt die Darstellung der inneren Struktur von Sätzen über Prädikate (über Termen, Funktoren, Prädikatoren, Quantoren).

KRYPTOLOGIE

Die Wissenschaft der Informationssicherheit.

- Digitale Signaturen
- Identifikationsprotokolle
- Geheimnisteilung
- > Symmetrische Kryptosysteme
 - » DES, AES Verschlüsselungen
- Asymmetrische Kryptosysteme
 - » PGP, RSA Verschlüsselungen
 - > Private Key, Public Key

SYMMETRISCHE KRYPTOSYSTEME

ein Schlüssel für Ver- und Ent-Schlüsselung

- › Beispiele:
 - » ROT13, 'Caesar cipher' 🔒 🔔
 - » DES 🔒 👃

 - » AES

LIVE CODING

Funktionen um 'Caesar cipher' automatisch zu knacken.

ASYMMETRISCHE KRYPTOSYSTEME (1/2)

Bestehend aus 2 Schlüsseln

- > Public Key
 - » Öffentlich zugänglicher Schlüssel
 - » Ergänzt mathematische Operationen des Private Key.
 - » Verwendet zum Verschlüsseln von Nachrichten an Eigentümer des Private Key

ASYMMETRISCHE KRYPTOSYSTEME (2/2)

- > Private Key
 - >> Zum Signieren von Nachrichten
 - » Signatur: um Urheberschaft und Integrität zu prüfen
 - » Zum Entschlüsseln von verschlüsselten Nachrichten (zum zugehörigen Public Key)

GRAPHENTHEORIE

Analysiert die Eigenschaften von Graphen und ihre Verbindungen zueinander.

- Social Network Analysis
- Verkehrsnetze
- **>** ...

TECHNISCHE INFORMATIK

Beschäftigt sich mit der Hardware der Informatik zur Lösung verschiedenster Anforderungen wie

- Echtzeitsysteme
- > Eingebettete Systeme
- Mikroprozessoren
- > Rechnerarchitektur
- > Rechnerkommunikation

ECHTZEITSYSTEME

Computer oder Systeme die in Echtzeit gewisse Werte überwachen/berechnen und bei Bedarf reagieren müssen.

- > Temperaturüberwachung
- > Eingabe in Computer-Terminals
- › Airbag-Steuerung und
- > ABS für Autos

EINGEBETTETE SYSTEME

Sind Computer die in einen technischen Kontext eingebunden ist und im Hintergrund Arbeiten übernimmt.

- > Blu-Ray Player
- > Fernseher
- › Kühlschrank
- Mobiltelefon
- > Board-Computer im Auto
- > ... Kleinstcomputer und ICs

RECHNERARCHITEKTUR & MIKROPROZESSOREN

Design und Organisation von Rechnern

- > Ziel: Erstellung eines Bauplanes für einen Computer
 - » Architektur des Prozessors
 - » Design der Hauptplatine
 - » Verbund von Prozessor mit Arbeitsspeicher (BUS-System)
 - » Entwicklung von Speicherchips, Festplatten, Bildschirmen etc.

RECHNERKOMMUNIKATION

Beschäftigt sich mit dem Datenaustausch zwischen verschiedenen Computern. Ein Rechnernetz stellt den Zusammenschluss mehrerer Computer (oder Sensoren/Agenten/Aktoren) dar.

- › Kommunikation über bekannte Protokolle
- › Aufgabe: Software und Hardware für effizienten Datenaustausch erstellen.
 - » Aufbau des Netzes
 - » Verwendete Protokolle

PRAKTISCHE INFORMATIK

Beschäftigt sich mit konkreten und praktischen Problemen der Informatik wie

- > Programmiersprachen & Softwareentwicklungsprozess
- Algorithmen
 - » Suchen und
 - » Sortieren von Daten
- > Datenstrukturen
- > Betriebssysteme
- › Datenbanken

PROGRAMMIERSPRACHEN

Entwicklung von Programmiersprachen die Menschen helfen dem Computer Anweisungen zu geben.

- Compiler oder Interpreter übersetzen ein Programm in Maschinensprache.
- › Jede Programmiersprache hat eigene Compiler oder Interpreter.
- > Große Menge an Programmiersprachen mit vielen Unterschieden untereinander vorhanden (C, C++, Python, Ruby, Java etc.)

SOFTWAREENTWICKLUNGSPROZESS

Von Paul Hoadley, Paul Smith and Shmuel Csaba Otto Traian, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=29119277

ALGORITHMEN

Ein Algorithmus beschreibt den Lösungsweg für ein Problem für (z.B.)

- Sortieren von Daten
- Suchen von Daten

Verschiedene Algorithmen arbeiten unterschiedlich effizient und benötigen unterschiedlich viele Ressourcen.

- Viel Speicher, kurze Laufzeit vs.
- > Längere Laufzeit mit wenig Speicherbedarf

DATENSTRUKTUREN

Legen fest, wie gewisse Daten gespeichert und darauf zugegriffen werden kann.

- › Beispiel: Stack (Stapelspeicher)
- > LIFO Prinzip
 - » Last In (Letztes drauf)
 - » First Out (Erstes weg)
- › Komplexe Datenstrukturen
 - » Bäume
 - » Graphen

BETRIEBSSYSTEM

Ermöglicht das Verwenden des Computers

- > Verwaltet die Betriebsmittel (Hardware) wie Arbeitsspeicher, CPU, Ein-/Ausgabegeräte etc.
- Management und Strategien für:
 - » Multiprocessing
 - » Arbeitsspeicher-Verwaltung
 - » Ein-/Ausgabegeräte Steuerung
 - » Prozess-Abläufe (Wer darf wann, was und wie lange machen!)

DATENBANKEN

Elektronische Sammlung von Daten, die aus Benutzersicht zusammen gehört, strukturiert gespeichert.

- › Kontodatenbank einer Bank
- › Personaldatenbank einer Firma
- > Aufgaben: Schnell und zuverlässig auf große (zusammengehörige) Datensätze zugreifen.
- > z.B. auf alle Kunden die ein Konto nach dem 01.01.2016 bei einer bestimmten Filiale erstellt haben.

ANGEWANDTE INFORMATIK

Die Angewandte Informatik beschäftigt sich mit der Erforschung und Entwicklung von Anwendungen von Rechnern wie

- › Grafische Datenverarbeitung
- Datenbanksysteme
- > Numerik
- > Künstliche Intelligenz
- > Wirtschaftliche, kommerzielle Anwendungen
- Technisch-wissenschaftliche Anwendungen

WIRTSCHAFTLICHE, KOMMERZIELLE ANWENDUNGEN

Programme als Produkte

- > Buchhaltung
- > Rechnungswesen
- Office-Suiten
- > Terminverwaltung
- > etc.

TECHNISCH-WISSENSCHAFTLICHE ANWENDUNGEN

Software für die Durchführung von Simulationen

> Ampelanlagen und Flugüberwachung

Anwendungen für numerische Probleme:

> Effiziente Repräsentation von Daten

INTERDISZIPLINÄRE INFORMATIK

Die Anwendung von erprobten Konzepten der Informatik auf Problemstellungen anderer Disziplinen

- Grafische Datenverarbeitung
- › Biomedizinische Informatik
- Computerlinguistik

GRAFISCHE DATENVERARBEITUNG

Befasst sich mit der Erstellung, Bearbeitung und Erfassung von Bildern am Computer.

- Computer Visualisierung
 - » Hilft dem Computer "zu sehen"
 - » Erkennen von Mustern in Videos etc.
- Computer Grafik
 - » Erstellung und Bearbeitung von Bildern am Computer (= Computergrafiken)
 - » Schattierungen Berechnen, Animationen

BIOMEDIZINISCHE INFORMATIK

Medizinische Problemstellungen mit Hilfe der Informatik zu lösen

- > Entschlüsselung von DNA
- > Früherkennung von Krankenheiten
- Ausbreitung von Krankheiten über Epidemie-Modelle (Ebola)
- Vorhersage und Beratung der WHO über Informatiker

COMPUTERLINGUISTIK

Untersucht ob und wie die natürliche Sprache mit dem Computer verarbeitet werden kann (Natural Language Processing).

- > Wichtige Worte aus Texten extrahieren (z.B. Orte, Namen, Datum)
- > Automatisches Übersetzen von Texten
- > Automatische Zusammenfassungen generieren
- › Kontexte erkennen und zusätzliche Informationen bereitstellen
- > Spracherkennung, Sprachsynthese

DATENSTRUKTUREN

DATENSTRUKTUREN

Dienen dem systematischen Ablegen und Aufrufen von Daten.

- > Speicherung
- Organisation
- > Effizienz
- regelt Art des Zugriffs

DATENSTRUKTUREN BEISPIELE

- Array
- > assoziatives Array (Dictionary)
- > Warteschlange (FiFo)
- > Stapelspeicher (LiFo)
- Graphen
- > Bäume (Binärbaum)

ARRAY

```
a = [1,"b","III",4,5]
a[0]
a[2]
a[5]
```

```
1
'III'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: list index out of range
```

DICTIONARY

```
d = {"element1": 1, "myelement": "python", "python": 3.5}
d['element1']
d['python']
d['myelement']
```

```
1
3.5
'python'
```

WARTESCHLANGE (FIFO)

By This Image was created by User:Vegpuff. - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php? curid=7586271

WARTESCHLANGE (FIFO)

```
import queue
q = queue.Queue()
q.put(1)
q.put(2)
q.put("last")

q.get()
q.empty()
q.get()
q.get()
q.get()
q.get()
```

```
1
False
2
'last'
True
```

STAPELSPEICHER (LIFO)

STAPELSPEICHER (LIFO)

```
import queue
q = queue.LifoQueue()
q.put(1)
q.put(2)
q.put("last")

q.get()
q.empty()
q.get()
q.get()
q.get()
q.get()
```

```
'last'
False
2
1
True
```

GRAPHEN

- bestehen aus Kanten und Knoten
- > Eigenschaften:
 - » gerichtete Graphen: Kanten haben Richtung
 - » ungerichtete Graphen können in beide Richungen 'begangen' werden.
 - » gewichtet: Kanten haben Gewicht
 - » zyklisch: Weg von Knoten A zurück zu A ohne eine Kante mehrfach zu gehen

GRAPHENOPERATIONEN

- > Hinzufügen eines Knotens (mit oder ohne Kanten)
- > Entfernen des Knotens A, entfernt auch alle Kanten zu A
- > Es gibt keine Kanten ohne Knoten an beiden Enden

BÄUME

Sonderform von Graphen

- > Bäume: zusammenhängende, azyklische Graphen
 - » gerichtet
 - » ungerichtet
 - » Binärbaum: maximal 2 Nachkommen pro Knoten

FRAGEN?

NÄCHSTES MAL

2016-11-16 16:00