WST211 Notes: Simulations in SAS

- 1. Introduction to simulations
- 2. DO LOOPS in the Data step

1. Introduction to simulations

Example 1.1

Generate a random sample of 5 observations from a N(0,1) distribution. Print the data.

SAS Program

```
data normal;
  do j=1 to 5;
  z=rannor(0);
  output;
  end;
proc print;
run;
```

SAS Output

0bs	j	Z
1	1	-2.08410
2	2	-1.85358
3	3	-1.66878
4	4	-0.75558
5	5	1.46857

Example 1.2

Generate a random sample of 1000 observations from a N(0,1) distribution. Calculate the average and standard deviation for the data. Calculate P(Z < 0.7) empirically.

SAS Program

```
data normal;
  do j=1 to 1000;
   z=rannor(0);
  if z<0.7 then ind=1; else ind=0;
   output;
  end;

proc means n mean;
var z ind;
run;</pre>
```

The MEANS Procedure

Variable	N	Mean
z ind	1000 1000	0.0255254 0.7690000

Example 1.3

Generate 200 samples, each consisting of 1000 observations generated randomly from a UNIF(0,1) distribution.

Create a variable AVERAGE, which calculates the average for each sample of 1000 observations. Do a PROC UNIVARIATE on the variable AVERAGE and test for normality of this variable. What is the parameters for the theoretical distribution of the variable AVERAGE. Compare the empirical results with the theoretical values.

SAS Program

```
data limit;
do i=1 to 200;
  total=0;
  do j=1 to 1000;
    u=ranuni(0);
    total=total+u;
  end;
  average=total/1000;
  output;
end;
proc univariate normal plot; var average; run;
```

SAS Output

The UNIVARIATE Procedure Variable: average

Мо	me	nt	s
IVIU	ШC	ווע	J

N	200	Sum Weights	200
Mean	0.50104796	Sum Observations	100.209591
Std Deviation	0.00841733	Variance	0.00007085
Skewness	-0.1491082	Kurtosis	0.09038876
Uncorrected SS	50.2239105	Corrected SS	0.01409944
Coeff Variation	1.67994535	Std Error Mean	0.0005952

Basic Statistical Measures

Location Variability

Mean	0.501048	Std Deviation	0.00842
Median	0.501763	Variance	0.0000709
Mode		Range	0.04896
		Interquartile Range	0.01123

Tests for Normality

rest	Sta	TISTIC	p val	ue
Shapiro-Wilk	W	0.994485	Pr < W	0.6733
Kolmogorov-Smirnov	D	0.043214	Pr > D	>0.1500
Cramer-von Mises	W-Sq	0.088182	Pr > W-Sq	0.1653
Anderson-Darling	A-Sq	0.474195	Pr > A-Sq	0.2434

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	0.523836
99%	0.520728
95%	0.514188
90%	0.511165
75% Q3	0.506733
50% Median	0.501763
25% Q1	0.495500
10%	0.489903
5%	0.486033
1%	0.481145
0% Min	0.474875

C+om	Leaf	#	Payplo+
			Boxplot
522	=	1	0
520		3	
518	=	1	
516	-	1	
514	222306	6	
512	10025	5	
510	678901226	9	
508	3770125	7	
506	00123446692344445566667899	26	++
504	12571124456668	14	
502	0001225666678888901234569	25	
500	01224467890224566789	20	*+ *
498	123446678990145788	18	
496	01334635799	11	
494	3456004678	10	++
492	012000146689	12	
490	00023711129	11	
488	2634689	7	
486	219	3	
484	580889	6	
482	38	2	
480	0	1	
478			
476			
474	9	1	0
	++-		
Mult	tiply Stem.Leaf by 10**-3		
	•		

Test for normality:

H₀: Data have a normal distribution

H₁: Data do not have a normal distribution

Since the p-value for the Shapiro-Wilk statistic is greater than 0.05 it can be concluded that the distribution of the data do not deviate significantly from a normal distribution.

From the central limit theorem the variable AVERAGE will have a normal distribution with a mean of 0.5 and a standard deviation of 0.00913.

The theoretical mean of the variable AVERAGE is 0.5. The empirical value is 0.501.

The theoretical standard deviation of the variable AVERAGE is .00913. The empirical value is 0.00842.

Example 1.4

The following 3 programs illustrates the different data sets created depending on the position of the OUTPUT statement in the data step. Three samples, each consisting of 5 observations from a UNIF(0,1) distribution were generated and the average calculated for each of the 3 samples.

SAS Program (1)

```
data limit;
do i=1 to 3;
  total=0;
    do j=1 to 5;
        u=ranuni(15);
        total=total+u;
    end;
    average=total/5;
    output;
end;
proc print; run;
```

SAS Output

OBS	Ι	TOTAL	J	U	AVERAGE
1	1	4.03815	6	0.82404	0.80763
2	2	3.40463	6	0.99850	0.68093
3	3	2.31188	6	0.35536	0.46238

SAS Program (2)

```
data limit;
do i=1 to 3;
total=0;
    do j=1 to 5;
        u=ranuni(15);
        total=total+u;
        output;
    end;
    average=total/5;
    output;
end;
proc print; run;
```

0110	O u	rput			
0BS	I	TOTAL	J	U	AVERAGE
1	1	0.77444	1	0.77444	
2	1	1.32577	2	0.55133	
3	1	2.32313	3	0.99736	
4	1	3.21411	4	0.89098	
5	1	4.03815	5	0.82404	
6	1	4.03815	6	0.82404	0.80763
7	2	0.53916	1	0.53916	0.80763
8	2	0.68385	2	0.14469	0.80763
9	2	1.65922	3	0.97538	0.80763
10	2	2.40613	4	0.74691	0.80763
11	2	3.40463	5	0.99850	0.80763
12	2	3.40463	6	0.99850	0.68093
13	3	0.28978	1	0.28978	0.68093
14	3	1.14784	2	0.85806	0.68093
15	3	1.94875	3	0.80091	0.68093
16	3	1.95652	4	0.00777	0.68093
17	3	2.31188	5	0.35536	0.68093
18	3	2.31188	6	0.35536	0.46238

```
SAS Program (3)
data limit;
do i=1 to 3;
total=0;
    do j=1 to 5;
        u=ranuni(15);
        total=total+u;
        output;
    end;
average=total/5;
end;
proc print;
```

proc means n mean;

var u; by i;

run;

SAS Output

OBS	ı '	TOTAL	J	U	AVERAGE
1	1	0.77444	1	0.77444	
2	1	1.32577	2	0.55133	
3	1	2.32313	3	0.99736	
4	1	3.21411	4	0.89098	
5	1	4.03815	5	0.82404	
6	2	0.53916	1	0.53916	0.80763
7	2	0.68385	2	0.14469	0.80763
8	2	1.65922	3	0.97538	0.80763
9	2	2.40613	4	0.74691	0.80763
10	2	3.40463	5	0.99850	0.80763
11	3	0.28978	1	0.28978	0.68093
12	3	1.14784	2	0.85806	0.68093
13	3	1.94875	3	0.80091	0.68093
14	3	1.95652	4	0.00777	0.68093
15	3	2.31188	5	0.35536	0.68093

Analysis Variable : U

	I=1	
N		Mean
5		0.8076304
	T-0	
	1=2	
N		Mean
5		0.6809265
	I=3	
N		Mean
5		0.4623755

2. DO LOOPS in the Data step

DO, Iterative

DO index-variable = specification -1 <,... specification-n>;

index-variable

Names a variable whose value governs execution of the DO group. Unless dropped, the index variable is included in the data set being created.

specification

Denotes an expression or series of expressions in the following form: start <TO stop> <BY increment> <WHILE | UNTIL(expression)>

start

specifies the initial value of the index variable. When used with TO stop or BY increment, start must be a number or an expression that yields a number.

TO stop

specifies the ending value of the index variable. Stop can be a number or an expression that yields a number.

BY increment

specifies a number (or an expression that yields a number) to control incrementing of of a index-variable.

WHILE(expression)

UNTIL(expression)

evaluates, either before or after execution of DO group, any SAS expression you specify enclosed in parentheses.

```
DO UNTIL (expression);
DO WHILE (expression);
```

Example 2.1: DO, TO, BY

Write a SAS program which generates the values 2, 4, 6, ..., 20.

SAS Program

```
data example1;
  do j=2 to 20 by 2;
  output;
  end;
proc print; run;
```

```
DBS J
1 2
2 4
3 6
4 8
5 10
6 12
7 14
8 16
9 18
10 20
```

Example 2.2: DO, UNTIL

Write a SAS Program which generates values from a UNIF(0, 1) distribution. Stop once a value greater than 0.9 is generated.

SAS Program

```
data example2;
  do until (t>0.9);
  t=ranuni(0);
  output;
  end;
proc print;
run;
```

SAS Output

OBS	Т
1	0.01576
2	0.85953
3	0.34019
4	0.38242
5	0.72255
6	0.16656
7	0.63342
8	0.85155
9	0.91175

Example 2.3: DO, TO, UNTIL

Write a SAS Program which generates values from a UNIF(0, 1) distribution. Stop once a value greater than 0.9 is generated with a maximum of 5 values generated.

SAS Program

```
data example3;
  do j=1 to 5 until (t>0.9);
  t=ranuni(0);
  output;
  end;
proc print;
run;
```

0BS	J	T
1	1	0.03701
2	2	0.20093
3	3	0.01544

Example 2.4: DO, WHILE

Write a SAS Program which generates values from a UNIF(0, 1) distribution. Stop when 4 values greater than 0.4 have been generated.

SAS Program

```
data example4;
  count=0;
  do while (count<4);
  t=ranuni(0);
  if t>0.4 then count=count+1;
  output;
  end;
proc print; run;
```

SAS Output

COUNT	T	
1	0.66793	
1	0.00068	
1	0.09333	
1	0.33756	
1	0.26585	
2	0.80662	
2	0.32132	
2	0.03510	
3	0.83897	
4	0.60180	
	1 1 1 1 1 2 2 2 2	1 0.66793 1 0.00068 1 0.09333 1 0.33756 1 0.26585 2 0.80662 2 0.32132 2 0.03510 3 0.83897

Example 2.5: IF THEN ELSE, IF AND

Write a SAS Program which generates values from a UNIF(0, 1) distribution. Determine the frequencies of values in the interval (0; 0.4] and (0.4; 1). Stop when at least 4 values have been generated from both these intervals.

SAS Program

```
data example5;
  count1=0;
  count2=0;
  true=0;
  do until (true=1);
  t=ranuni(0);
  if t>0.4 then count1=count1+1; else count2=count2+1;
  if count1>3 and count2>3 then true=1;
  output;
  end;
proc print;
run;
```

OBS	COUNT1	COUNT2	TRUE	J	Т
1	1	0	0	1	0.78427
2	2	0	0	2	0.58021
3	3	0	0	3	0.92821
4	3	1	0	4	0.13608
5	4	1	0	5	0.99199
6	5	1	0	6	0.55421
7	5	2	0	7	0.26266
8	5	3	0	8	0.25433
9	5	4	1	9	0.07796