老產鄉電大灣

学生实验实习报告册

学年学期:	_ 2020 - 2021学年 □春□秋学期		
课程名称:	信号处理实验		
学生学院:	通信与信息工程学院		
专业班级:	01011803		
学生学号:	2018210215		
学生姓名:	席卓林		
联系电话:	15825944392		

重庆邮电大学教务处制

	课程名称	信号处理实验	课程编号		
4	实验地点	YF304	实验时间	10.27	
7	校外指导		校内指导	邵凯	
,	教师		教师		
	实验名称	z 变换及离散时间 LTI 系统的 z 域分析			
	评阅人签		成绩		
4	学		以须		

一、实验目的

学会运用 MATLAB 求离散时间信号的有理函数 z 变换的部分分式展开;

学会运用 MATLAB 分析离散时间系统的系统函数的零极点;

学会运用 MATLAB 分析系统函数的零极点分布与其时域特性的关系;

学会运用 MATLAB 进行离散时间系统的频率特性分析。

二、实验原理

MATLAB 信号处理工具箱提供了一个对 X (z) 进行部分分式展开的函数 residuez, 其语句格式为

[R,P,K] = residuez(B,A)

其中, B, A 分别表示 X(z)的分子与分母多项式的系数向量; R 为部分分式的系数向量; P 为极点向量; K 为多项式的系数。若 X(z)为有理真分式,则 K 为零。

在 MATLAB 中系统函数的零极点就可通过函数 roots 得到, 也可借助函数 tf2zp 得到, tf2zp 的语句格式为

[Z,P,K] = tf2zp(B,A)

其中, B 与 A 分别表示 H(z)的分子与分母多项式的系数向量。它的作用是 将 H(z)的有理分式表示式转换为零极点增益形式

若要获得系统函数 H(z)的零极点分布图,可直接应用 zplane 函数,其语 句格式为 zplane(B,A) 其中, B 与 A 分别表示 的分子和分母多项式的系数向量。它的作用是在 Z 平面上画出单位圆、零点与极点。

与拉氏变换在连续系统中的作用类似, 在离散系统中, z 变换建立了时域函

数 h(n)与 z 域函数 H(z)之间的对应关系。因此, z 变换的函数 H(z)从形式可以反映 h(n)的部分内在性质。我们仍旧通过讨论 H(z)的一阶极点情况,来说明系统函数的零极点分布与系统时域特性的关系。

三、实验程序及结果分析

题一:

代码:

B = [2,16,44,56,32];

A = [3,3,-15,18,-12];

[R,P,K] = residuez(B,A)

结果:

R =

- 0.0177 + 0.0000i

9.4914 + 0.0000i

- 3.0702 + 2.3398i

- 3.0702 - 2.3398i

P =

- 3.2361 + 0.0000i

1.2361 + 0.0000i

0.5000 + 0.8660i

0.5000 - 0.8660i

K =

- 2.6667

```
题二:
代码:
B1 = [2, -1.6, -0.9];
A1 = [1,-2.5,1.96,-0.48];
B2 = [1,-1];
A2 = [1, 0.9, 0.65, 0.873, 0];
subplot(211)
zplane(B1,A1);
grid on
legend('零点','极点');
title('零极点分布图');
subplot(212)
zplane(B2,A2);
grid on
legend('零点','极点');
title('零极点分布图');
```



```
题三:
代码:
b = [1,0,0];
a = [1,-0.75,0.125];
[H,w] = freqz(b,a,400,'whole');
Hm = abs(H);
Hp = angle(H);
subplot(2,1,1)
plot(w,Hm)
grid on
xlabel('\omega(rad/s)')
ylabel('Magnitude')
title('离散系统幅频特性曲线')
subplot(2,1,2)
plot(w,Hp)
grid on
xlabel('\omega(rad/s)')
ylabel('Phase')
```

title('离散系统相频特性曲线')

四、思考题思考题一:

B = [1,0,0,0,0,0,0,0,- 0.9];

A = [1,0,0,0,0,0,0,0,- 1];

[H,w] = freqz(B,A,400,'whole')

Hm = abs(H);

Hp =angle(H);

subplot(3,1,1) zplane(B,A); grid on legend('零点','极点');

title('零极点分布图');

```
subplot(3,1,2)
plot(w,Hm)
grid on
xlabel('\omega(rad/s)')
ylabel('Magnitude')
title('系统幅频特性曲线')
subplot(3,1,3)
plot(w,Hp)
grid on
xlabel('\omega(rad/s)')
ylabel('Phase')
title('系统相频特性曲线')
运行结果:
```


梳型滤波器: 只能让特定频率范围的信号通过。用于分离色度信号的两个正交分量 U 色差分量和 V 色差信号。

```
思考题二:
代码:
[xn,fs] = audioread('D:\MATLAB\aMATLAB\bin\my\_works\motherland.w
av');
k=[1,0];
n1=[1,0.8];
n2=[1,-1];
n3=[1,1.2];
x1=impz(k,n1,30),grid on;
x2=impz(k,n2,30),gridon;
x3=impz(k,n3,30),grid on;
y1=conv(x1,xn);
x1=0:size(y1)-1;
y2=conv(x2,xn);
x2=0:size(y2)-1;
y3=conv(x3,xn);
x3=0:size(y3)-1;
subplot(411)
plot(xn),grid on;
```

```
subplot(412);
plot(x1,y1),grid on;
subplot(413);
plot(x2,y2),grid on;
subplot(414);
plot(x3,y3),grid on;
sound(y3,fs);
运行结果:
```

