Abstract Interpreter in Rust

Brugnera Luca

Content

- requirements
- code parsing
- interpreter implementation
 - o propagation algorithm
- $Int_{m,n}$ domain
 - partial order
 - widening
 - narrowing

Requirements

- develop an interpreter based on abstract denotational semantic for a generic non-relational numerical abstract domain
- numerical abstract domain is a complete lattice
- compute loops and program invariants as output
- instantiate the interpreter to the $Int_{m,n}$ domain

Code parsing

- lexer: logos
- parser: lalrpop
- language:
 - Aexp \ni e ::= x | n | e₁ op e₂, where n \in Z, op \in {+,-,*,/}
 - Bexp \Rightarrow b ::= true | false | $e_1 = e_2 | e_1 < e_2 | b_1 \wedge b_2 | !b_1$
 - While \Rightarrow S ::= x := e | skip | S₁; S₂ | if b then S₁ else S₂ | while b do S
- boolean expression simplifications:
 - ! operator
 - expression \bowtie 0, \bowtie ∈ {<, \geq , =, \neq }
- initial state (optional):
 - 1st program line: assume (var := [low, upper];)*, where low := -inf | n, upper := n | inf, n \subseteq Z
 - bad casting or no initial state: ⊤

Code parsing - example

```
assume x := [10, 10]

#will be simplified to x ≥ 1

while ! x < 1 do {
    x := x - 2
}
```

```
Program: While {
    pos: Position {
        clm: 0,
    guard: ArithmeticCondition(
        ArithmeticCondition {
            lhs: BinaryOperation {
                lhs: Variable(
                    "x",
                operator: Sub,
                rhs: Integer(
            operator: GreaterOrEqual,
    body: Assignment(
        Assignment 
            value: BinaryOperation {
                lhs: Variable(
                    "x",
                operator: Sub,
                rhs: Integer(
```

Interpreter<D>

- based on abstract denotational semantics
- uses generic non-relational numerical abstract domain: AbstractDomain trait
- its initialization requires:
 - o non-relational abstract numerical domain
 - program AST
 - initial state (optional)
- stores invariants discovered throughout the analysis
- state<D> abstraction:
 - o implemented as an hashmap
 - implements some AbstractDomain methods trait var-wise

AbstractDomain trait

- represents the generic non-relational abstract domain
- methods:
 - o top
 - bottom
 - o union
 - intersection
 - partial ordering
 - arithmetic operators (forward and backward)
 - widening with thresholds (optional)
 - narrowing (intersection as default)
 - constant and interval abstraction

Loops abstract denotational semantic

- optional: widening with thresholds
 - depending on the satisfiability of ACC
 - set of thresholds = $\{c \in Z \mid c \text{ appears in the code}\} \cup \{0\}$
- narrowing:
 - o until fixpoint and for a finite amount of steps (NARROWING_STEPS env. variable)

Boolean expressions abstract denotational semantic

- trivial cases for *true* and *false*
- propagation algorithm for expression of the form ⋈ 0
- fixpoint for & and I, i.e. given a state $s^{\#}$, enforce $s^{\#} = \text{cond}[B_1 \& B_2] s^{\#}$ (same for I)
 - & and | aren't idempotent

Propagation algorithm

- expression ⋈ 0 as binary tree
 - internal nodes: arithmetic operators
 - leaves: constant and variables
 - \circ variable nodes are unique: multiple refinements are aggregated together using $\cap^{\#}$
- algorithm:
 - forward analysis: bottom-up tree traversal evaluates the expression
 - root node value V intersected with the test condition

 - $\bowtie = \{ < \} \rightarrow [-\inf,-1]^{\#}$
 - \bowtie \bowtie = $\{ \geq \} \Rightarrow [0,\inf]^{\#}$
 - $\bowtie = \{ \neq \} \Rightarrow V < 0 \cup^{\#} V \cap^{\#} [1,\inf]^{\#}$
 - o backward analysis: top-down tree traversal pushes the refinement to leaves
 - lacktriangle checking if the leaf refinement is ot

Propagation algorithm example - 1

• $C^{\#}[(x+y)-z \le 0]R^{\#}, R^{\#}=\{x=[0,10], y=[2,10], z=[3,5]\}$

Propagation algorithm example - 2

- $(x+y)-z \le 0 = ! (! (x+y)-z < 0 & (x+y)-z = 0) using While syntax$
- !(!(x+y)-z < 0 & (x+y)-z = 0) becomes (x+y)-z < 0 | (x+y)-z = 0
- focus on lhs: (x+y)-z < 0

```
After forward analysis
- [-3,3]
+ [2,6]
| Var [0,2]
| Var [2,4]
Var [3,5]
After backward analysis
- [-3,-1]
+ [2,4]
| Var [0,2]
| Var [2,4]
Var [3,5]
```

Propagation algorithm example - 3

• focus on rhs: (x+y)-z=0

```
After forward analysis
- [-3,5]
+ [2,8]
| Var [0,3]
| Var [2,5]
Var [3,5]
After backward analysis
- [0,0]
+ [3,5]
| Var [0,3]
| Var [2,5]
Var [3,5]
```

• $C^{\#}[(x+y)-z < 0]R^{\#} \cup {}^{\#}C^{\#}[(x+y)-z = 0]R^{\#} = Q^{\#}$ after one iteration $Q^{\#} = \{ x = [0,3], y = [2,5], z = [3,5] \}.$ recall that I want a fixpoint, but $C^{\#}[(x+y)-z \le 0]Q^{\#} = Q^{\#}$, so $C^{\#}[(x+y)-z \le 0]R^{\#} = Q^{\#}$

$Int_{m,n}$ domain

```
• Int =

m,n
o {∅, Z}U{[k,k] | k∈Z}U

o {[a,b] | a,b∈Z, a < b, [a,b] ⊆[m,n] }U

o {[-inf,k] | k∈Z, k∈[m,n] }U

o {[k,inf] | k∈Z, k∈[m,n] }
```

- regard *m,n* (M and N env. var respectively) values:
 - constant domain
 - o interval integer domain
 - o restricted interval integer domain
- struct Interval {low: Int, upper: Int}, enum Int {NegInf, Num(i64), PosInf}
- most of the domain operations are implemented as in the interval domain
- multiple representations of the same element require the definition of equivalence

$Int_{m,n}$ domain - equivalence operator - 1

- = must be defined properly
- regardless the domain bounds

```
    ○ T=T
    ○ [-inf, inf] =T
    ○ L = L
    ○ [a,b], a > b = L
    ○ a = c, b = d → [a,b] = [c,d]
```

constant domain extension

```
○ [a,b], a < b = \top
```

$Int_{m,n}$ domain - equivalence operator - 2

- restricted interval integer domain extension
 - things get slightly more complicated, given the abstract element [a,b]:
 - $b \le m \rightarrow [a,b] = [-\inf,m]$
 - \circ a $\geq n \rightarrow [a,b] = [n,inf]$
 - \circ a $\leq m$, b $\geq n \rightarrow \top$
 - o therwise [low,upper], low ∈ [m,n] | upper ∈ [m,n]. Given [a,b] and [c,d]
 - a,c $< m \rightarrow [a,b] = [c,d] \Leftarrow \Rightarrow b = d$
 - b,d > $n \rightarrow [a,b] = [c,d] \Leftarrow \Rightarrow a = c$

$Int_{m,n}$ domain - partial order

- partial order relation for $Int_{m,n} \rightarrow \leq$
- regardless domain bounds
- [a,b] = [c,d] → aforementioned equivalence
- [a,b] < [c,d] →
 - Ihs = \bot & rhs $\neq \bot$
 - lhs $\neq \top$ & rhs = \top
 - \circ c < a & b < d

$Int_{m,n}$ domain - widening

- constant domain and restricted interval domain (both ACC): no widening
- interval domain:

$$[a,b] \, \forall_b^T \, [c,d] \stackrel{\text{def}}{=} \begin{bmatrix} a & \text{if } a \leq c \\ \max \left\{ \, x \in T \mid x \leq c \, \right\} & \text{otherwise} \end{bmatrix}$$

$$\begin{cases} b & \text{if } b \geq d \\ \min \left\{ \, x \in T \mid x \geq d \, \right\} & \text{otherwise} \end{cases}$$

 $T = \{c \in Z \mid c \text{ appears in the code}\} \cup \{0\}$

$\operatorname{Int}_{m,n}$ domain - widening example

```
x := 10;
while ! x < 0 do {
   x := x - 1
}</pre>
```

• m = -1, n = 10

```
Seeking loop invariant x \rightarrow [10,10] [9,10] [8,10] [7,10] [6,10] [5,10] [4,10] [3,10] [2,10] [1,10] [0,10] [-1,10]
```

interval domain

```
Seeking loop invariant x \rightarrow [10,10] [1,10] [0,10] [-inf,10]
```

$Int_{m,n}$ domain - narrowing

$$[a,b] \triangle_b [c,d] \stackrel{\text{def}}{=} \begin{bmatrix} c & \text{if } a = -\infty \\ a & \text{otherwise} \end{bmatrix}, \begin{cases} d & \text{if } b = +\infty \\ b & \text{otherwise} \end{bmatrix}$$

- just 1 step required
- example:

```
#source code

x := 1;
while x < 2 do {
    x := x + 4
}</pre>
```

```
#analysis with NARROWING_STEPS = 0

x := 1;
# LOOP INVARIANT: { x := [1,inf] }
while x < 2 do {
    x := x + 4
}

# { x := [2,inf] }</pre>
```

```
#analysis with NARROWING_STEPS = 1

x := 1;
# LOOP INVARIANT: { x := [1,5] }
while x < 2 do {
    x := x + 4
}

# { x := [2,5] }</pre>
```

 $[1,\inf] \triangle ([1,1] \cup [5,5]) = [1,5]$ $[1,5] \triangle ([1,1] \cup [5,5]) = [1,5]$