Probability Theory

Ikhan Choi

August 4, 2022

Contents

Ι	Probability distributions	2
1	Random variables 1.1 Sample spaces and distributions	3 3 3 3
2	Conditional probablity	4
3	Convergence of probability measures 3.1 Weak convergence in ℝ	5 5 8 9
II	Discrete stochastic process	10
4	Limit theorems 1.1 Laws of large numbers	11 11 13 13
5	Martingales 5.1 Submartingales 5.2 Martingale convergence theorem 5.3 Convergence in L^p and uniform integrability 5.4 Optional stopping theorem	15 15 15 15 15
6	Markov chains	16
III	Continuous stochastic processes	17
7	Brownian motion 7.1 Kolomogorov extension	18
IV	Stochastic calculus	19

Part I Probability distributions

Random variables

1.1 Sample spaces and distributions

sample space of an "experiment" random variables distributions expectation, moments, inequalities equally likely outcomes coin toss dice roll ball drawing number permutation life time of a light bulb joint distribution transformation of distributions distribution computations

1.2 Discrete probability distributions

1.3 Continuous probability distributions

1.4 Independence

- **1.1** (Dynkin's π - λ lemma). Let \mathcal{P} be a π -system and \mathcal{L} a λ -system respectively. Denote by $\ell(\mathcal{P})$ the smallest λ -system containing \mathcal{P} .
 - (a) If $A \in \ell(\mathcal{P})$, then $\mathcal{G}_A := \{B : A \cap B \in \ell(\mathcal{P})\}$ is a λ -system.
 - (b) $\ell(\mathcal{P})$ is a π -system.
 - (c) If a λ -system is a π -system, then it is a σ -algebra.
 - (d) If $\mathcal{P} \subset \mathcal{L}$, then $\sigma(\mathcal{P}) \subset \mathcal{L}$.
- 1.2 (Monotone class lemma).

Conditional probablity

2.1 (Monty Hall problem). Suppose you're on a game show, and you're given the choice of three doors *A*, *B*, and *C*. Behind one door is a car; behind the others, goats. You pick a door, say *A*, and the host, who knows what's behind the doors, opens another door, say *B*, which has a goat. He then says to you, "Do you want to pick door *C*?" Is it to your advantage to switch your choice?

Proof. Let A, B, and C be the events that a car is behind the doors A, B, and C, respectively. Let X be the event that the challenger picked A, and Y the event that the game host opened B. Note $\{A, B, C\}$ is a partition of the sample space Ω , and X is independent to A, B, and C. Then, P(A) = P(B) = P(C) = P(X) = 1/3, and

$$P(Y|X,A) = \frac{1}{2}, \quad P(Y|X,B) = 0, \quad P(Y|X,C) = 1.$$

Therefore,

$$P(C|X,Y) = \frac{P(X \cap Y \cap C)}{P(X \cap Y)}$$

$$= \frac{P(Y|X,C)P(X \cap C)}{P(Y|X,A)P(X \cap A) + P(Y|X,B)P(X \cap B) + P(Y|X,C)P(X \cap C)}$$

$$= \frac{1 \cdot \frac{1}{9}}{\frac{1}{2} \cdot \frac{1}{9} + 0 \cdot \frac{1}{9} + 1 \cdot \frac{1}{9}} = \frac{2}{3}.$$

Similarly, $P(A|X,Y) = \frac{1}{3}$ and P(B|X,Y) = 0.

Convergence of probability measures

3.1 Weak convergence in \mathbb{R}

- **3.1** (Portemanteau theorem). Let F_n and F be distribution functions $\mathbb{R} \to [0,1]$. We will define the *weak convergence* as follows: F_n converges weakly to F if $F_n(x) \to F(x)$ for every continuity point x of F(x).
 - (a) $F_n(x) \to F(x)$ for all continuity points x of F.
- 3.2 (Skorokhod representation theorem).
- 3.3 (Continuous mapping theorem).
- 3.4 (Slutsky's theorem).
- **3.5** (Helly's selection theorem). (a) Monotonically increasing functions $F_n : \mathbb{R} \to [0,1]$ has a pointwise convergent subsequence.
 - (b) If $(F_n)_n$ is tight, then
- **3.6** (Properties of probability Borel measures). Let *S* be a topological space.
 - (a) Every single probability Borel measure is regular if *S* is perfectly normal. (inner approximateion by closed sets)
 - (b) Every single probability Borel measure is tight if *S* is Polish. (inner approximation by compact sets)

3.2 Weak topology in the space of probability measures

3.7 (Local limit theorems). Suppose f_n and f are density functions.

(a) If $f_n \to f$ a.s., then $f_n \to f$ in L^1 .

(Scheffé's theorem)

- (b) $f_n \to f$ in L^1 if and only if in total variation.
- (c) If $f_n \to f$ in total variation, then $f_n \to f$ weakly.
- **3.8** (Portmanteau theorem). Let *S* be a normal space and, μ_{α} be a net in Prob(*S*). We define the *weak convergence* as follows: μ_{α} converges weakly to μ if

$$\int f \, d\mu_{\alpha} \to \int f \, d\mu$$

for every $f \in C_b(S)$. The following statements are all equivalent.

- (a) $\mu_{\alpha} \Rightarrow \mu$
- (b) $\mu_a(g) \to \mu(g)$ for every uniformly continuous $g \in C_b(S)$.
- (c) $\limsup_{\alpha} \mu_{\alpha}(F) \leq \mu(F)$ for every closed F.
- (d) $\liminf_{\alpha} \mu_{\alpha}(U) \ge \mu(U)$ for every open U.
- (e) $\lim_{\alpha} \mu_{\alpha}(A) = \mu(A)$ for every Borel A such that $\mu(\partial A) = 0$.

Proof. (a) \Rightarrow (b) Clear.

(b)⇒(c) Let *U* be an open set such that $F \subset U$. There is uniformly continuous $g \in C_b(S)$ such that $\mathbf{1}_F \leq g \leq \mathbf{1}_U$. Therefore,

$$\limsup_{\alpha} \mu_{\alpha}(F) \leq \limsup_{\alpha} \mu_{\alpha}(g) = \mu(g) \leq \mu(U).$$

By the outer regularity of μ , we obtain $\limsup_{\alpha} \mu_{\alpha}(F) \leq \mu(F)$.

- (c)⇔(d) Clear.
- $(c)+(d)\Rightarrow(e)$ It easily follows from

$$\limsup_{\alpha} \mu_{\alpha}(\overline{A}) \leq \mu(\overline{A}) = \mu(A) = \mu(A^{\circ}) \leq \liminf_{\alpha} \mu_{\alpha}(A^{\circ}).$$

(e) \Rightarrow (a) Let $g \in C_b(S)$ and $\varepsilon > 0$. Since the pushforward measure $g_*\mu$ has at most countably many mass points, there is a partition $(t_i)_{i=0}^n$ of an interval containing $[-\|g\|, \|g\|]$ such that $|t_{i+1} - t_i| < \varepsilon$ and $\mu(\{x: g(x) = t_i\}) = 0$ for each i. Let $(A_i)_{i=0}^{n-1}$ be a Borel decomposition of S given by $A_i := g^{-1}([t_i, t_{i+1}))$, and define $f_\varepsilon := \sum_{i=0}^{n-1} t_i \mathbf{1}_{A_i}$ so that we have $\sup_{x \in S} |g_\varepsilon(x) - g(x)| \le \varepsilon$. From

$$\begin{split} |\mu_{\alpha}(g) - \mu(g)| &\leq |\mu_{\alpha}(g - g_{\varepsilon})| + |\mu_{\alpha}(g_{\varepsilon}) - \mu(g_{\varepsilon})| + |\mu(g_{\varepsilon} - g)| \\ &\leq \varepsilon + \sum_{i=0}^{n-1} |t_{i}| |\mu_{\alpha}(A_{i}) - \mu(A_{i})| + \varepsilon, \end{split}$$

we get

$$\limsup_{\alpha} |\mu_{\alpha}(g) - \mu(g)| < 2\varepsilon.$$

Since ε is arbitrary, we are done.

- **3.9** (Embedding by Dirac measures). Let *S* be a normal space.
 - (a) $S \to \text{Prob}(S)$ is an embedding.
 - (b) $S \subset \text{Prob}(S)$ is sequentially closed.
 - (c)

Proof. (a) It uses Urysohn.

- (b) It uses (b)=>(c) of Portmanteau.
- **3.10** (Lévy-Prokhorov metric). Let *S* be a metric space, and Prob(*S*) be the set of probability (regular) Borel measures on *S*. Define $\pi : \text{Prob}(S) \times \text{Prob}(S) \to [0, \infty)$ such that

$$\pi(\mu, \nu) := \inf\{\alpha > 0 : \mu(A) \le \nu(A^{\alpha}) + \alpha, \ \nu(A) \le \mu(A^{\alpha}) + \alpha, \ \forall A \in \mathcal{B}(S)\},\$$

where A^{α} is the α -neighborhood of a.

- (a) π is a metric.
- (b) $\mu_n \to \mu$ in π implies $\mu_n \Rightarrow \mu$.
- (c) $\mu_a \Rightarrow \mu$ implies $\mu_a \rightarrow \mu$ in π , if S is separable.

- (d) (S,d) is separable if and only if $(Prob(S), \pi)$ is separable.
- (e) (S,d) is compact if and only if $(Prob(S), \pi)$ is compact
- (f) (S, d) is complete if and only if $(Prob(S), \pi)$ is complete.

Proof. (c)

3.11 (Direct direction of Prokhorov's theorem). Let S be a Polish space. Let Prob(S) be the space of probability measures on S endowed with the topology of weak convergence. Prokhorov's theorem states that a subset of Prob(S) is relatively compact if and only if it is tight. We prove one direction, in which the construction of a sufficiently large compact set is a main issue.

Let $\mu \in \text{Prob}(S)$ and let M be a relatively compact subset of Prob(S).

(a) Every open cover $\{B_{\alpha}\}_{\alpha}$ of S has a finite subcollection $\{B_i\}_i$ for each $\varepsilon > 0$ such that

$$\mu\left(\bigcup_{i}B_{i}\right)>1-\varepsilon.$$

(b) Every open cover $\{B_{\alpha}\}_{\alpha}$ of S has a finite subcollection $\{B_i\}_i$ for each $\varepsilon > 0$ such that

$$\inf_{\mu\in M}\mu\Big(\bigcup_i B_i\Big)>1-\varepsilon.$$

(c) *M* is tight: there is a compact $K \subset S$ for each $\varepsilon > 0$ such that

$$\inf_{\mu \in M} \mu(K) > 1 - \varepsilon.$$

Proof. (a) Since a separable metric space is Lindelöf, we may assume $\{B_{\alpha}\}_{\alpha} = \{B_i\}_{i=1}^{\infty}$ is countable. Then, we can deduce the conclusion from the continuity from below and the fact $\mu_0(S) = 1$.

(b) Suppose that the conclusion is not true so that there are $\varepsilon > 0$ and a sequence $\mu_n \in M$ such that

$$\mu_n\left(\bigcup_{i=1}^n B_i\right) \leq 1 - \varepsilon.$$

If we take a subsequence $(\mu_{n_k})_k$ that converges weakly to $\mu \in \overline{M}$ using the compactness of \overline{M} , then by the Portmanteau theorem we have for any n that

$$\mu\left(\bigcup_{i=1}^{n} B_{i}\right) \leq \liminf_{k \to \infty} \mu_{n_{k}}\left(\bigcup_{i=1}^{n} B_{i}\right) \leq \liminf_{k \to \infty} \mu_{n_{k}}\left(\bigcup_{i=1}^{n_{k}} B_{i}\right) \leq 1 - \varepsilon.$$

By taking n sufficiently large, we lead a contradiction to the part (a).

(c) Here we need metrizability, which leads to the exitence of countable fundamental system of uniformity for $\frac{\varepsilon}{2^m}$ argument. Also we need the completeness to change the total boundedness to compactness.

Let $\{x_i\}_{i=1}^{\infty}$ be a dense set in S. Then, since $\{B(x_i, \frac{1}{m})\}_{i=1}^{\infty}$ is a countable open cover of S for each integer m > 0, there is a finite $n_m > 0$ such that

$$\inf_{\mu\in M}\mu\Big(\bigcup_{i=1}^{n_m}B(x_i,\frac{1}{m})\Big)>1-\frac{\varepsilon}{2^m}.$$

Define

$$K:=\bigcap_{m=1}^{\infty}\bigcup_{i=1}^{n_m}\overline{B(x_i,\frac{1}{m})}.$$

It is closed and totally bounded in a complete metric space S, so K is compact. Moreover, we can verify

$$1 - \mu(K) = \mu\left(\bigcup_{m=1}^{\infty} \bigcap_{i=1}^{n_m} \overline{B(x_i, \frac{1}{m})}^c\right) \leq \sum_{m=1}^{\infty} \left(1 - \mu\left(\bigcup_{i=1}^{n_m} B(x_i, \frac{1}{m})\right)\right) < \varepsilon$$

for every $\mu \in M$, so M is tight.

3.12 (Converse direction of Prokhorov's theorem). The "converse" direction of Prokhorov's theorem is related to a construction of measure and considered to be more difficult. However, it holds in a general setting.

Let S be a normal space. Let $\operatorname{Prob}(S)$ be the space of probability measures on S endowed with the topology of weak convergence. Let M be a tight subset of $\operatorname{Prob}(S)$ and let $(\mu_{\alpha})_{\alpha} \subset M$ be a net. We want to show that it has a convergent subnet in $\operatorname{Prob}(S)$.

(a) *M* is relatively compact.

Proof. Let βS be the Stone-Čech compactification of S. The inclusion $\iota: S \to \beta S$ is a topological embedding because S is completely regular. Pushforward the measures μ_{α} to make them probability Borel measures $\nu_{\alpha} := \iota_* \mu_{\alpha}$ on βS . We want to take a convergent subnet of $\nu_{\alpha} \in \operatorname{Prob}(\beta S)$, and to show the limit is in fact contained in $\operatorname{Prob}(S)$.

Our first claim is that the measure ν_{α} is regular for each α , that is, $\nu_{\alpha} \in \operatorname{Prob}(\beta S)$. For any Borel $E \subset \beta S$ and any $\varepsilon > 0$, there is $F \subset E \cap S$ that is closed in S such that $\mu_{\alpha}(E \cap S) < \mu_{\alpha}(F) + \varepsilon/2$ by inner regularity, and there is K that is compact in S such that $\mu_{\alpha}(S \setminus K) < \varepsilon/2$ by tightness. Then, the inequality

$$\nu_{\alpha}(E) = \mu_{\alpha}(E \cap S) < \mu_{\alpha}(F) + \frac{\varepsilon}{2} < \mu_{\alpha}(F \cap K) + \varepsilon = \nu_{\alpha}(F \cap K) + \varepsilon$$

proves the regularity of ν_{α} since $F \cap K$ is compact in both S and βS with $F \cap K \subset E$. The space $\operatorname{Prob}(\beta S)$ is compact by the Banach-Alaoglu theorem and the Riesz-Markov-Kakutani representation theorem. Therefore, ν_{α} has a subnet ν_{β} that converges to $\nu \in \operatorname{Prob}(\beta S)$.

Recall that μ_{β} is tight. For each $\varepsilon > 0$, there is a compact $K \subset S$ such that $\nu_{\beta}(K) = \mu_{\beta}(K) \ge 1 - \varepsilon$ for all β . Then, by the Portmanteau theorem, we have

$$\nu(S) \ge \nu(K) \ge \limsup_{\beta} \nu_{\beta}(K) \ge 1 - \varepsilon.$$

Since ε is arbitrary, ν is concentrated on S, i.e. $\nu(S) = 1$. Now we restrict ν to S in order to obtain μ , which is a probability Borel measure on S.

From the definition of weak convergence we have

$$\int_{\beta S} f \, d\nu_{\beta} \to \int_{\beta S} f \, d\nu$$

for all $f \in C(\beta S)$. Since $\nu_{\beta}(\beta S \setminus S) = \nu(\beta S \setminus S) = 0$ and the restriction $C(\beta S) \to C_b(S)$ is an isomorphism due to the universal property of βS ,

$$\int_{S} f \, d\mu_{\beta} \to \int_{S} f \, d\mu$$

for all $f \in C_b(S)$, so μ_{β} converges weakly to $\mu \in Prob(S)$.

3.3 Characteristic functions

3.13 (Characteristic functions). Let μ be a probability measure on \mathbb{R} . Then, the *characteristic function* of μ is defined by

$$\varphi(t) := Ee^{itX} = \int e^{itx} d\mu(x).$$

Note that $\varphi(t) = \hat{\mu}(-t)$ where $\hat{\mu}$ is the Fourier transform of $\mu \in \mathcal{S}'(\mathbb{R})$.

(a)
$$\varphi \in C_b(\mathbb{R})$$
.

3.14 (Inversion formula). Let μ be a probability measure on \mathbb{R} and φ its characteristic function.

(a) For a < b, we have

$$\mu((a,b)) + \frac{1}{2}\mu(\{a,b\}) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt.$$

(b) For $a \in \mathbb{R}$, we have

$$\mu(\lbrace a\rbrace) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-ita} \varphi(t) dt$$

(c) If $\varphi \in L^1(\mathbb{R})$, then μ has density

$$f(x) = \frac{1}{2\pi} \int e^{-itx} \varphi(t) dt$$

in $C_0(\mathbb{R}) \cap L^1(\mathbb{R})$.

- **3.15** (Lévy's continuity theorem). The continuity theorem provides with a tool to verify the weak convergence in terms of characteristic functions. Let μ_n and μ be probability distributions on \mathbb{R} with characteristic functions φ_n and φ .
 - (a) If $\mu_n \to \mu$ weakly, then $\varphi_n \to \varphi$ pointwise.
 - (b) If $\varphi_n \to \varphi$ pointwise and φ is continuous at zero, then $(\mu_n)_n$ is tight and $\mu_n \to \mu$ weakly.

Proof. (a) For each t,

$$\varphi_n(t) = \int e^{itx} d\mu_n(x) \to \int e^{itx} d\mu(x) = \varphi(t)$$

because $e^{itx} \in C_b(\mathbb{R})$.

(b)

3.16 (Criteria for characteristic functions). Bochner's theorem and Polya's criterion

There are two ways to represent a measure: A measure μ is absolutely continuous iff its distribution F is absolutely continuous iff its density f is integrable. So, the fourier transform of an absolutely continuous measure is just the fourier transform of L^1 functions.

3.4 Moments

moment problem

moment generating function defined on $|t| < \delta$

Exercises

- **3.17.** Let φ_n be characteristic functions of probability measures μ_n on \mathbb{R} . If there is a continuous function φ such that $\varphi_n = \varphi$ on $n^{-1}\mathbb{Z}$, then μ_n converges weakly.
- 3.18 (Convergence determining class).
- **3.19** (Vauge convergence). Let *S* be a locally compact Hausdorff space.
 - (a) $\mu_{\alpha} \to \mu$ vaguely if and only if $\int g d\mu_{\alpha} \to \int g d\mu$ for all $g \in C_c(S)$.
 - (b) $\mu_{\alpha} \rightarrow \mu$ weakly if and only if vaguely.
 - (c) $\delta_n \rightarrow 0$ vaguely but not weakly. (escaping to infinity)

Proof.

Part II Discrete stochastic process

Limit theorems

4.1 Laws of large numbers

Our purpose is to find appropriate a_n and slowly growing b_n such that $(S_n - a_n)/b_n \to 0$ in probability or almost surely.

4.1 (Kolmogorov-Feller theorem). Let X_i be an uncorrelated sequence of random variables such that

$$\lim_{x\to\infty}\sup_i xP(|X_i|>x)=0.$$

This condition is called the *Kolmogorov-Feller* condition. Let $Y_{n,i} := X_i \mathbf{1}_{|X_i| \le c_n}$.

(a) We have

$$\lim_{n\to\infty} P(S_n \neq T_n) = 0$$

if $n \lesssim c_n$.

(b) We have

$$\lim_{n\to\infty} P\left(\left|\frac{T_n - ET_n}{b_n}\right| > \varepsilon\right) = 0$$

if $nc_n \lesssim b_n^2$.

(c) We have

$$\frac{S_n - ET_n}{n} \to 0$$

in probability.

Proof. Write $g(x) := \sup_i x P(|X_i| > x)$ so that $g(x) \to 0$ as $x \to \infty$.

(a) It follows from

$$P(S_n \neq T_n) \le \sum_{i=1}^n P(|X_i| > c_n) \le \sum_{i=1}^n \frac{1}{c_n} g(c_n) \lesssim g(c_n).$$

(b) We write

$$P\left(\left|\frac{T_n - ET_n}{b_n}\right| > \varepsilon\right) \le \frac{1}{\varepsilon^2 b_n^2} E|T_n - ET_n|^2$$

$$= \frac{1}{\varepsilon^2 b_n^2} \sum_{i=1}^n E|Y_{n,i} - EY_{n,i}|^2$$

$$\le \frac{1}{\varepsilon^2 b_n^2} \sum_{i=1}^n E|X_i \mathbf{1}_{|X_i| \le c_n}|^2$$

$$= \frac{1}{\varepsilon^2 b_n^2} \sum_{i=1}^n \int_0^{c_n} 2x P(|X_i| > x) dx$$

$$\le \frac{2n}{\varepsilon^2 b_n^2} \int_0^{c_n} g(x) dx$$

$$= \frac{2nc_n}{\varepsilon^2 b_n^2} \int_0^1 g(c_n x) dx$$

$$\lesssim \int_0^1 g(c_n x) dx.$$

Since $g(x) \le x$ and $g(x) \to 0$ as $x \to \infty$, the function g is bounded. By the bounded convergence theorem, we get $\int_0^1 g(c_n x) dx \to 0$ as $n \to \infty$.

4.2 (St. Petersburg paradox). We want see the asymptotic behavior of the partial sums S_n of i.i.d. random variables X_i such that $E|X_i| = \infty$. Let

$$P(X_n = 2^m) = 2^{-m}$$
 for $m \ge 1$.

Let $Y_{n,i} := X_i \mathbf{1}_{|X_i| < c_n}$.

(a) We have

$$\lim_{n\to\infty} P(S_n \neq T_n) = 0$$

if $n \ll c_n$.

(b) We have

$$\lim_{n\to\infty} P\left(\left|\frac{T_n - ET_n}{b_n}\right| > \varepsilon\right) = 0$$

if $nc_n \ll b_n^2$.

(c) We have

$$\frac{S_n - n \log_2 n}{n^{1+\varepsilon}} \to 0$$

in probability for every $\varepsilon > 0$.

Proof. (a) It follows from

$$P(S_n \neq T_n) \leq \sum_{i=1}^n P(X_i \neq Y_{n,i}) = \sum_{i=1}^n P(|X_i| > c_n) \leq \sum_{i=1}^n \frac{2}{c_n} = \frac{2n}{c_n}.$$

(b) It follows from

$$\begin{split} P\left(\left|\frac{T_n - ET_n}{b_n}\right| > \varepsilon\right) &\leq \frac{1}{\varepsilon^2 b_n^2} E|T_n - ET_n|^2 \\ &= \frac{1}{\varepsilon^2 b_n^2} \sum_{i=1}^n E|Y_{n,i} - EY_{n,i}|^2 \\ &\leq \frac{1}{\varepsilon^2 b_n^2} \sum_{i=1}^n E|X_i \mathbf{1}_{|X_i| \leq c_n}|^2 \\ &\leq \frac{1}{\varepsilon^2 b_n^2} n \cdot 2c_n \end{split}$$

4.3 (Borel-Cantelli lemmas).

4.4 (Head runs).

4.5 (Strong laws of large numbers for L^1). Proof by Etemadi

Random series proof

4.2 Renewal theory

4.3 Central limit theorems

4.6 (Central limit theorem for L^3). Replacement method by Lindeman and Lyapunov

4.7 (Lindeberg-Feller theorem). Let X_i be independent random variables such that for every $\varepsilon > 0$ we have

$$\lim_{n\to\infty}\frac{1}{s_n^2}\sum_{i=1}^n E|X_i-EX_i|^2\mathbf{1}_{|X_i-EX_i|>\varepsilon s_n}=0.$$

This condition is called the *Lindeberg-Feller* condition. Let $Y_{n,i} := \frac{X_i - EX_i}{s_n}$

(a) We have

$$|Ee^{it(S_n-ES_n)/s_n}-e^{-\frac{1}{2}t^2}| \leq \sum_{i=1}^n |Ee^{itY_{n,i}}-e^{-\frac{1}{2}E(tY_{n,i})^2}|.$$

(b) For any $\varepsilon > 0$, we have an estimate

$$\left| E e^{itY} - \left(1 - \frac{1}{2} E(tY)^2 \right) \right| \lesssim_t \varepsilon EY^2 + EY^2 \mathbf{1}_{|Y| > \varepsilon}$$

for all random variables *Y* such that $EY^2 < \infty$.

(c) For any $\varepsilon > 0$, we have an estimate

$$\left|e^{-\frac{1}{2}E(tY)^2}-\left(1-\frac{1}{2}E(tY)^2\right)\right|\lesssim_t EY^2(\varepsilon^2+EY^2\mathbf{1}_{|Y|>\varepsilon}).$$

for all random variables *Y* such that $EY^2 < \infty$.

(d)

Proof. (a) Note

$$Ee^{it(S_n - ES_n)/s_n} = \prod_{i=1}^n Ee^{itY_{n,i}}$$
 and $e^{-\frac{1}{2}t^2} = \prod_{i=1}^n e^{-\frac{1}{2}E(tY_{n,i})^2}$.

(b) Since

$$\left| e^{ix} - \left(1 + ix - \frac{1}{2}x^2 \right) \right| = \left| \frac{i^3}{2} \int_0^x (x - y)^2 e^{iy} \, dy \right| \le \min\{ \frac{1}{6} |x|^3, x^2 \}$$

for $x \in \mathbb{R}$, we have

$$\begin{split} \left| E e^{itY} - \left(1 - \frac{1}{2} E(tY)^2 \right) \right| &\leq E \left| e^{itY} - \left(1 - \frac{1}{2} (tY)^2 \right) \right| \\ &\lesssim_t E \min\{ |Y|^3, Y^2 \} \\ &\leq E |Y|^3 \mathbf{1}_{|Y| \leq \varepsilon} + E Y^2 \mathbf{1}_{|Y| > \varepsilon} \\ &\leq \varepsilon E Y^2 + E Y^2 \mathbf{1}_{|Y| > \varepsilon}. \end{split}$$

(c) Since

$$|e^{-x} - (1-x)| = \left| \int_0^x (x-y)e^{-y} \, dy \right| \le \frac{1}{2}x^2$$

for $x \ge 0$, we have

$$\left| e^{-\frac{1}{2}E(tY)^2} - \left(1 - \frac{1}{2}E(tY)^2\right) \right| \lesssim_t (EY^2)^2 \le EY^2(\varepsilon^2 + EY^2\mathbf{1}_{|Y| > \varepsilon}).$$

4.8. Let $X_n : \Omega \to \mathbb{R}$ be independent random variables. If there is $\delta > 0$ such that the *Lyapunov condition*

 $\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{i=1}^n E|X_i - EX_i|^{2+\delta} = 0$

is satisfied, then

$$\frac{S_n - ES_n}{S_n} \to N(0, 1)$$

weakly, where $S_n := \sum_{i=1}^n X_i$ and $S_n^2 := VS_n$.

Berry-Esseen ineaulity

Exercises

4.9 (Bernstein polynomial). Let $X_n \sim \text{Bern}(x)$ be i.i.d. random variables. Since $S_n \sim \text{Binom}(n,x)$, $E(S_n/n) = x$, $V(S_n/n) = x(1-x)/n$. The L^2 law of large numbers implies $E(|S_n/n-x|^2) \to 0$. Define $f_n(x) := E(f(S_n/n))$. Then, by the uniform continuity $|x-y| < \delta$ implies $|f(x)-f(y)| < \varepsilon$,

$$|f_n(x) - f(x)| \le E(|f(S_n/n) - f(x)|) \le \varepsilon + 2||f||P(|S_n/n - x| \ge \delta) \to \varepsilon.$$

- **4.10** (High-dimensional cube is almost a sphere). Let $X_n \sim \text{Unif}(-1,1)$ be i.i.d. random variables and $Y_n := X_n^2$. Then, $E(Y_n) = \frac{1}{3}$ and $V(Y_n) \leq 1$.
- **4.11** (Coupon collector's problem). $T_n := \inf\{t : |\{X_i\}_i| = n\}$ Since $X_{n,k} \sim \text{Geo}(1 \frac{k-1}{n})$, $E(X_{n,k}) = (1 \frac{k-1}{n})^{-1}$, $V(X_{n,k}) \le (1 \frac{k-1}{n})^{-2}$. $E(T_n) \sim n \log n$
- 4.12 (An occupancy problem).
- **4.13.** Find the probability that arbitrarily chosen positive integers are coprime.

Poisson convergence, law of rare events, or weak law of small numbers (a single sample makes a significant attibution)

Martingales

- 5.1 Submartingales
- 5.2 Martingale convergence theorem
- **5.1** (Doob's upcrossing inequality). (a)
- **5.2** (Martingale convergence theorems). (a)
- **5.3.** (a)
- 5.3 Convergence in L^p and uniform integrability
- 5.4 Optional stopping theorem

Markov chains

Part III Continuous stochastic processes

Brownian motion

7.1 Kolomogorov extension

7.1 (Kolmogorov extension theorem). A *rectangle* is a finite product $\prod_{i=1}^n A_i \subset \mathbb{R}^n$ of measurable $A_i \subset \mathbb{R}$, and *cylinder* is a product $A^* \times \mathbb{R}^{\mathbb{N}}$ where A^* is a rectangle. Let \mathcal{A} be the semi-algebra containing \emptyset and all cylinders in $\mathbb{R}^{\mathbb{N}}$. Let $(\mu_n)_n$ be a sequence of probability measures on \mathbb{R}^n that satisfies *consistency condition*

$$\mu_{n+1}(A^* \times \mathbb{R}) = \mu_n(A^*)$$

for any rectangles $A^* \subset \mathbb{R}^n$, and define a set function $\mu_0 : \mathcal{A} \to [0, \infty]$ by $\mu_0(A) = \mu_n(A^*)$ and $\mu_0(\emptyset) = 0$.

- (a) μ_0 is well-defined.
- (b) μ_0 is finitely additive.
- (c) μ_0 is countably additive if $\mu_0(B_n) \to 0$ for cylinders $B_n \downarrow \emptyset$ as $n \to \infty$.
- (d) If $\mu_0(B_n) \ge \delta$, then we can find decreasing $D_n \subset B_n$ such that $\mu_0(D_n) \ge \frac{\delta}{2}$ and $D_n = D_n^* \times \mathbb{R}^{\mathbb{N}}$ for a compact rectangle D_n^* .
- (e) If $\mu_0(B_n) \ge \delta$, then $\bigcap_{i=1}^{\infty} B_i$ is non-empty.

Proof. (d) Let $B_n = B_n^* \times \mathbb{R}^{\mathbb{N}}$ for a rectangle $B_n^* \subset \mathbb{R}^{r(n)}$. By the inner regularity of $\mu_{r(n)}$, there is a compact rectangle $C_n^* \subset B_n^*$ such that

$$\mu_0(B_n \setminus C_n) = \mu_{r(n)}(B_n^* \setminus C_n^*) < \frac{\delta}{2^{n+1}}.$$

Let $C_n := C_n^* \times \mathbb{R}^{\mathbb{N}}$ and define $D_n := \bigcap_{i=1}^n C_i = D_n^* \times \mathbb{R}^{\mathbb{N}}$. Then,

$$\mu_0(B_n \setminus D_n) \leq \mu_0(\bigcup_{i=1}^n B_n \setminus C_i) \leq \mu_0(\bigcup_{i=1}^n B_i \setminus C_i) < \frac{\delta}{2},$$

which implies $\mu_0(D_n) \ge \frac{\delta}{2}$.

(e) Take any sequence $(\omega_n)_n$ in $\mathbb{R}^{\mathbb{N}}$ such that $\omega_n \in D_n$. Since each $D_n^* \subset \mathbb{R}^{r(n)}$ is compact and non-empty, by diagonal argument, we have a subsequence $(\omega_k)_k$ such that ω_k is pointwise convergent, and its limit is contained in $\bigcap_{i=1}^{\infty} D_i \subset \bigcap_{i=1}^{\infty} B_n = \emptyset$, which is a contradiction that leads $\mu_0(B_n) \to 0$.

Part IV Stochastic calculus