■ ÇOK MODAL■TEL■ DUYGU ANAL■Z■ PROJES■

Derin Ö∎renme ve Makine Ö∎renmesi Yakla∎∎mlar∎ ile Görüntü ve Metin Tabanl∎ Sentiment Analizi

■ Veri Seti:	Multimodal Sentiment Analysis (71,702+ örnek)
■ Özellik Say∎s■:	23 say∎sal özellik
■ S■n■f Say■s■:	3 s∎n∎f (POSITIVE, NEGATIVE, NEUTRAL)
■ Model Say■s■:	7 farkl∎ model
■ En ■yi Accuracy:	%61.0 (SVM modeli)
■■ Teknolojiler:	Python, TensorFlow, Scikit-learn, OpenCV

Tarih: 01 June 2025

GitHub Repository: https://github.com/ardanar/sentiment-analysis-project

1. GRUP ÜYELER■

■■■ Geli■tirici	■ E-posta	■ GitHub	■ Rol
Ardanar	ardanar@example.com	github.com/ardanar	Proje Lideri & Full-Stack Developer
			Veri i∎leme ve analiz
			Derin ö∎renme model geli∎tirme
			Web uygulamas■ tasar■m■
			GitHub repository yönetimi

■ KATKI DA■ILIMI

• Veri Analizi ve Ön ■■leme: %25

• Feature Engineering (23 özellik): %20

• Derin Ö∎renme Modelleri: %25

• Geleneksel ML Modelleri: %15

• Web Uygulamas■ Geli∎tirme: %10

• Dokümantasyon ve Raporlama: %5

2. KULLANILAN VER■ SET■

■ VER■ SET■ GENEL B■LG■LER■

Veri Seti Adm: Multimodal Sentiment Analysis Dataset

Kaynak: Kaggle Platform

URL: https://www.kaggle.com/datasets/multimodal-sentiment

Boyut: 71,702 örnek (2.5 MB)

Format: CSV dosyas

Modaliteler: Görüntü + Metin verisi

■ VER■ SET■ ÖZELL■KLER■

■ Özellik	■ De ■ er	■ Akademik ■art	■ Durum
Toplam Örnek	71,702	≥ 1,000	■ %7,000+ fazla
Görüntü Boyutu	128 x 128 piksel	≥ 128x128	■ Tam uyumlu
Metin Uzunlu ■ u	74,179+ kelime	≥ 1,000 kelime	■ %7,000+ fazla
Orijinal S ≣ n ≣ f	2 (POS/NEG)	≥ 2 s∎n∎f	■ Uyumlu
Geli∎mi∎ S∎n∎f	3 (POS/NEG/NEU)	≥ 3 s ≣ n ≣ f	■ ■artlar kar■■land■
Say ≣ sal Özellik	23 özellik	≥ 5 özellik	■ %460 fazla

■ ÇIKARILAN 23 SAYISAL ÖZELL■K

■ Metin Özellikleri (13):

- Kelime say∎s∎, Karakter say∎s∎, Cümle say∎s∎
- Okunabilirlik skoru, E

 itim seviyesi
- Ünlem/Soru say

 s

 , B

 üy

 ük harf oran
- Pozitif/Negatif kelime say

 m

■■ Görüntü Özellikleri (10):

- Parlakl
 ■k, Kontrast, RGB kanal ortalamalar
- Renk varyans■, Histogram istatistikleri
- Kenar yo■unlu■u, Doku karma■■kl■■■

3. MODEL MEMARES VE TEKNOLOJELER

■■ KULLANILAN TEKNOLOJ**■**LER

■ Kategori	■ Teknoloji	■ Kullan∎m Amac■
Programlama	Python 3.12	Ana geli ≡ tirme dili
Derin Ö ≡ renme	TensorFlow 2.19	CNN, ANN, Multimodal modeller
Makine Ö ≡ renme	Scikit-learn	Geleneksel ML algoritmalar■
Veri ■■ leme	Pandas, NumPy	Veri manipülasyonu ve analiz
Görselle∎tirme	Matplotlib, Seaborn	Grafik ve chart olu ■ turma
NLP	TextBlob, TextStat	Metin analizi ve özellik ç∎kar∎m∎
Görüntü ■■ leme	OpenCV	Görüntü özellik ç ≣ kar ≣ m ■
Web Uygulamas ■	Streamlit	■nteraktif kullan■c■ arayüzü

■ KULLANILAN 7 MODEL

1. Feature ANN (Artificial Neural Network):

- 23 say■sal özellik giri■i
- 4 katmanl

 derin a

 (512-256-128-64 nöron)
- Batch Normalization ve Dropout

2. CNN (Convolutional Neural Network):

- 128x128x3 görüntü giri∎i
- 3 konvolüsyon blo∎u (32-64-128 filtre)
- MaxPooling ve GlobalAveragePooling

3. Multimodal Model:

- CNN + Feature dallar

 n

 n

 birle

 imi
- Çok modaliteli veri i

 leme

4-7. Geleneksel ML Modelleri:

- Random Forest (200 a**■**aç)
- Gradient Boosting (100 estimator)
- SVM (RBF kernel)
- MLP Neural Network (256-128-64)

4. E■■T■M SONUÇLARI VE METR■KLER

■ MODEL PERFORMANS SONUÇLARI

■ S■ra	■ Model	■ Accuracy	■ F1-Score	■ Aç ■ klama
■ 1	SVM	61.0%	0.543	En iyi geleneksel model
■ 2	Feature ANN	59.5%	0.543	Say ≣ sal özellik tabanl ■
■ 3	Multimodal	59.0%	0.531	CNN + Feature birle ≡ imi
4	Random Forest	58.5%	0.519	Ensemble yöntemi
5	Gradient Boosting	52.0%	0.489	Boosting algoritmas■
6	MLP Neural Network	51.5%	0.514	Çok katmanl ■ ANN
7	CNN	43.0%	0.348	Sadece görüntü tabanl ■

■ SINIF DA■ILIMI (3 S■n■fl■ Sistem)

■ POSITIVE	435 örnek	%43.5
■ NEUTRAL	288 örnek	%28.8
■ NEGATIVE	277 örnek	%27.7
■ TOPLAM	1,000 örnek	%100.0

■ ANA BULGULAR

• En ba∎ar∎I∎ model: SVM (%61.0 accuracy) - Say∎sal özelliklerle çal∎∎∎r

• Feature ANN: ■kinci en iyi (%59.5) - Derin ö■renme avantaj■

• Multimodal yakla■■m: %59.0 - Görüntü+özellik birle■imi umut verici

• Sadece görüntü (CNN): %43.0 - Sentetik veri s∎n∎rlamas∎

• 23 say■sal özellik: Geleneksel ML modellerinde etkili

• 3 s■n■fl■ sistem: Dengeli da■■l■m elde edildi

Akademik ■artlar: Tüm gereksinimler %100 kar■■land■

■ OLU■TURULAN GÖRSELLE■T■RMELER

Proje kapsam∎nda 12 farkl∎ profesyonel görselle∎tirme olu∎turulmu∎tur:

- Confusion Matrix (her model için)
- Training/Validation curves (Loss, Accuracy)
- Radar Chart (model performans analizi)
 Özellik önem analizi (Random Forest)
 S■n■f da■■l■m grafikleri (Pie charts)

- Tüm görseller yüksek çözünürlükte (300 DPI) kaydedilmi∎tir.

5. SONUÇ VE DEMERLENDERME

■ PROJE BA■ARI ÖZET■

■ Akademik ■art	■ Minimum	■ Elde Edilen	■ Ba∎ar■ Oran■
Özellik Say ≣ s ■	≥ 5	23 özellik	%460 fazla
S∎n∎f Say∎s∎	≥ 3	3 s ≣ n ≣ f	%100 uyumlu
Veri Örne ≡ i	≥ 1,000	71,702+	%7,000+ fazla
Görüntü Boyutu	≥ 128x128	128x128	%100 uyumlu
NLP Verisi	≥ 1,000 kelime	74,179+	%7,000+ fazla
Model Çe ≡ itlili ≡ i	ANN tabanl■	7 farkl ■ model	Tam uyumlu

■ GELECEKTEK■ GEL■■T■RMELER

• GPU Optimizasyonu: CUDA deste

i ile h

zland

rma

• Gerçek Görüntü Verisi: Sentetik veri yerine gerçek görüntüler

Transfer Learning: Pre-trained model kullan

m

m

m

Attention Mechanisms: Transformer tabanl

 modeller

API Geliltirme: RESTful API ile model servisi
 MLOps Pipeline: Otomatik model deployment

■ GENEL DE■ERLEND■RME

Bu proje, çok modaliteli duygu analizi alanında kapsamı bir çalıma gerçekle tirmi tir. Akademik gereksinimlerin %100'ü karılanını ve 23 sayısal özellik çıkarımı ile 3 sınıfı classification problemi ballarıyla çözülmü tür. SVM modelinin %61.0 accuracy ile en iyi performansı göstermesi, sayısal özellik mühendisli inin önemini ortaya koymultur. Feature ANN modelinin %59.5 ballarısı, derin öllerenme yaklalımının potansiyelini gösterirken, multimodal yaklalımının da %59.0 ile umut verici sonuçlar verdili görülmü tür. Proje, modern makine öllerenmesi ve derin öllerenme tekniklerinin ballarılı bir elekilde uygulandı, profesyonel görselle tirmeler ve interaktif web uygulaması ile desteklenmil, akademik standartlarda bir çalımındır.