Homework 2

Andy Alvarenga

April 7, 2019

1. P is a Knight and Q is a Knave.

There are four potential cases:

- (a) P = knight and Q = knight
- (b) P = knave and Q = knight
- (c) P = knight and Q = knave
- (d) P = knave and Q = knave

Case 1 is impossible beacuse if P is a knight then Q must be a knave.

In cases 2 and 4, if P is a knave, then what he says is untrue, therefore they are impossible. This leaves only case 3, which is the only possible combination because if P is a knight then Q must be a knave since knights do not lie.

2. A is Knave and B is a Knight.

There are four potential cases:

- (a) A = knight and B = knight
- (b) A = knave and B = knight
- (c) A = knight and B = knave
- (d) A =knace and B =knave

Case 1 and 3 are impossible because if A is a knight, then whatever he says is true.

Case 4 is impossible because if B is a knave, he always lies.

Therefore, case 2 is the only possible combination. If A is knave then B must be a knight.

1

1 Logical Identities

1. $\neg (p \to (q \to p))$ = $\neg p \to \neg (q \to p)$ = $\neg p \to (\neg q \to \neg p)$

2.
$$\neg((p \land q) \rightarrow (q \lor p))$$

= $\neg(p \land q) \rightarrow \neg(q \lor p)$
= $(\neg p \lor \neg q) \rightarrow (\neg q \land \neg p)$

2 Logical Equivilances

	p	q	r	$p \to (q \to r)$	$(p \land q) \to r$	$(p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$
	0	0	0	1	1	1
1.	0	0	1	1	1	1
	0	1	0	1	1	1
	0	1	1	1	1	1
	1	0	0	1	1	1
	1	0	1	1	1	1
	1	1	0	0	0	1
	1	1	1	1	1	1

The propositional statements are equivilant beacause the final column of the truth table recieves a value of one for all cases, meaning $(p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$ is always true. Therefore, the pair is equivilant.

	p	q	r	$p \to (q \to r)$	$(p \to q) \to r$	$(p \to (q \to r)) \leftrightarrow ((p \to q) \to r)$
	0	0	0	1	0	0
	0	0	1	1	1	1
	0	1	0	1	0	0
2.	0	1	1	1	1	1
	1	0	0	1	1	1
	1	0	1	1	1	1
	1	1	0	0	0	1
	1	1	1	1	1	1

The propositional statements are not equivilant beacuse the final column of the truth table, $(p \to (q \to r)) \leftrightarrow ((p \to q) \to r)$, does not recieve a value of one for all cases.

3 Logical Consequence

- 1. This is a valid argument because we have no way of knowing if the conclusion is false or not.
- 2. This is a valid argument since Puerto Rico is surrounded by water and since all islands are surrounded by water, then Puerto Rico must be an island.

4 Collaboration

Alberc Ej Salcedo and Spencer Tang