Cog	nome:	Nome:	Matricola:

Elementi di Crittografia

Docente: Paolo D'Arco

Preappello del 22 Dicembre 2020

1)	1) Riduzioni: metodologia. Si descriva concisamente la struttura generale di una riduzione di sicurezza, evidenziando le motivazioni alla base dell'approccio e le proprietà che soddisfa. Inoltre, come caso d'esempio, si dimostri che:					
	• se DDH è difficile nel gruppo G, allora lo schema di cifratura di El Gamal è CPA-sicuro.					
2)	Funzioni hash. Si descriva la trasformata di Merkle-Damgard per estendere il dominio di una funzione di compressione e si provi che trovare efficientemente collisioni per la funzione estesa implica trovare efficientemente collisioni per la funzione di compressione sottostante.					

Opzionale: correzione.	la presentazi	ione della pro	ova sotto forn	ıa di riduzioi	ne formale val	le un bonus in	ı fase
Primalità.	Si spieghi in	modo chiaro	e conciso				

Il generatore interpreta la stringa di input come la rappresentazione di \mathbf{m} interi di \mathbf{n} bit e dà in output la rappresentazione degli stessi \mathbf{m} interi più quella di un ulteriore intero y, dato dalla somma mod 2^n di essi. Precisamente

$$G(x_1...x_m) = x_1...x_my$$
, dove $y = \Sigma_i x_i \mod 2^n$

È G un generatore pseudocasuale? Si supporti la risposta con un argomento rigoroso.

5) **Collision-resistance.** La teoria dei numeri permette di realizzare funzioni hash collision-resistant. Si descriva la costruzione su gruppi ciclici presentata a lezione e si dimostri che, se il problema DL è difficile relativamente al generatore di gruppi prescelto, allora la costruzione risulta resistente a collisioni.

