

Identification de titres musicaux

Méthode de fingerprinting

Othman EL HOUFI Mohamed DIAWARA

M1 Ingénierie des Systèmes Complexes et Intelligents 16/06/2021

Rapporteur Dan VODISLAV Tuteur technique Dimitris KOTZINOS Encadrant de Gestion de Projet Tianxiao LIU

Sommaire

- Mise en scénario et objectif du projet
- Fonctionnement général
- Problématiques et besoins techniques
- Traitement du signal acoustique
 - Différentes représentations d'un signal acoustique
 - Extraction des pics spectraux
- Création d'une empreinte acoustique
 - Principe de Superposition
 - Hachage Combinatoire Rapide
- Tests et Certifications
- Gestion de Projet

Mise en scénario et objectif du projet

- Identifier des titres musicaux en temps réel en utilisant un microphone.
- Utiliser peu de ressources computationnelles.
- La tâche doit pouvoir être effectuée dans des milieux très perturbés.

Fonctionnement général

Problématiques

Bruit

Les autres sources <u>s'ajoutent</u> <u>linéairement</u> au signal

Désynchronisation

La <u>localisation</u> de l'extrait dans le signal complet

Mémoire et temps de calcul

Recherche rapide et utilisation le minimal de mémoire possible

Besoins techniques

Traitement de Signal

- Choisir la bonne représentation de signal.
- Identifier les information nécessaires dans notre signal.
- Résoudre le problème du bruit et de désynchronisation.

Base de données avancée

- Une solution pour stocker l'information extraite du signal – Une empreinte.
- Recherche réalisable dans un temps raisonnable – millisecondes.
- La mémoire est précieuse!

Traitement du signal acoustique

Temporelle temps et amplitudes	Fréquentielle fréquences et amplitudes	Spectrogramme temps, fréquences et amplitudes
Simple et directe.	Robuste au bruit.	Robuste au bruit.
Elle est peu robuste au bruit et aux distorsions.	Peu robuste à une désynchronisation car elle ne représente aucune évolution temporelle.	Robuste à la désynchronisation. Très coûteuse en mémoire.

Spectrogramme: création

On utilise une **STFT** (Short-Time Fourrier Transform, transformée de Fourrier à court terme) :

- 1) analyse le signal par fenêtres temporelles,
- 2) décompose le spectre localement sur un certain nombre de bandes fréquentielles.

Spectrogramme: création

On utilise une STFT (Short-Time Fourrier Transform, transformée de Fourrier à court terme) :

- 1) analyse le signal par fenêtres temporelles,
- 2) décompose le spectre localement sur un certain nombre de bandes fréquentielles.

exemple de Spectrogramme de la chanson « Drake – Know Yourself » WINWOW_SIZE = 4069 OVERLAP_RATIO = 0.5

Spectrogramme: conclusion

Un Spectrogramme contient <u>un nombre immense de points</u> (informations) ce qui pose problème du point de vue de mémoire et vitesse de recherche.

On stocke tout dans la base de données?

Extraction des pics spectraux : procédure

Un pic spectral : une paire (temps, fréquence) avec une amplitude localement supérieure à ses voisins.

Donc résistible aux bruits.

- 1) Considérer le <u>Spectrogramme</u> comme une <u>image</u>,
- 2) Appliquer un filtre pour trouver les <u>maximas</u> <u>locaux</u> (amplitudes),
- 3) Garder les <u>amplitudes</u> supérieures à un <u>seuil</u> donné,
- 4) Retourner seulement les paires (temps, fréquences).

Constellation de la chanson « Drake – Know Yourself »

AMP MIN = 10 NEIGHBORHOOD SIZE = 10

Extraction des pics spectraux : résultats

Différence de taille finale et de temps de traitement entre les deux opérations : Spectrogramme et Extraction des pics spectraux

Toujours pour la même musique Drake – Know Yourself

operaton	execution time (sec)	output size			
spectrogram	0.91859579	12 169 011			
peaks extraction	11.18466210	6 128			

la réduction de la taille finale est considérablement **bénéfique** car nous avons économisé **99.95%**

Traitement complet du signal

Création d'une Empreinte Acoustique

un résumé numérique qui peut être utilisé pour identifier un échantillon audio

Superposition des constellations

- Les pics spectraux directement enregistrés dans la BDD.
- L'identification consiste sur une comparaison point à point.

Superposition des constellations

- Les pics spectraux directement enregistrés dans la BDD.
- L'identification consiste sur une comparaison point à point.

Comparaison individuelle : spécificité faible et recherche lente

Hachage Combinatoire Rapide

- 1) Choisir un point d'ancrage,
- 2) Définir une zone cible,
- 3) Itérer sur les paires (point ancrage, point cible)
- 4) Retourner le triple (fréquence ancrage, fréquence cible, différence temporelle)

Hachage Combinatoire Rapide

hash(frequencies of peaks, time difference between peaks) = fingerprint hash value

- Reproductibles même avec un bruit ou une compression.
- Chaque hache est associé à un point de début (temps) : pas de désynchronisation.
- On <u>accélère</u> la recherche.

Nous avons ainsi obtenu une Empreinte de notre signal acoustique!

table	number of lines	data size (Mo)	index size (Mo)	total size (Mo)	
SONGS	50	0.016	0	0.016	
FINGERPRINTS	7 761 966	459.0	289.0	748.0	

la taille de mémoire occupée par 50 chansons

Tests et Certifications

Base de données : stockage et recherche

résultats en variant le nombre de secondes enregistré à travers le microphone

Number of Seconds	Number Correct	Percentage Accuracy	Average Execution Time (sec)
1	37/50	74 %	0.156
2	48/50	96 %	0.268
3	49/50	98 %	0.386
4	50/50	100 %	0.477
5	50/50	100 %	0.578
6	50/50	100 %	0.684

résultats obtenus en rajoutant un bruit réel à travers un extrait 5 sec en mp3

Crowd Noise Loudness (dBFS)	Number Correct	Percentage Accuracy	Average Execution Time (sec)
-17.22	49/50	98 %	0.610
-12.22	48/50	96 %	0.589
-7.49	46/50	92 %	0.571
-4.03	37/50	74 %	0.582
-2.10	25/50	50 %	0.599
-1.11	2/50	4 %	0.599

Gestion de Projet

Gestion de projet

Répartition des tâches

tâche	réalisée par
Traitement de signal	Othman EL HOUFI
Hachage Combinatoire	Mohamed Diawara
Base de données	EL HOUFI et DIAWARA

Conclusion et Perspectives

Conclusion

De nombreuses <u>techniques</u> de création d'<u>empreintes digitales</u> et <u>d'indexation</u> ont été proposées et sont maintenant utilisées dans des produits commerciaux.

Plusieurs <u>paramètres</u> doivent être ajustés afin de trouver un bon compromis entre les différentes exigences : la <u>robustesse</u>, la <u>spécificité</u>, l'<u>évolutivité</u> et la <u>compacité</u>.

Les aspects importants à traiter/améliorer :

- les paramètres de la STFT
- la stratégie de sélection et d'extraction des pics spectraux
- la taille des zones cibles
- des structures de données appropriées pour le hachage

Perspectives

Utilisation d'un modèle de <u>réseau neurones artificielles</u> :

- en entrée les paramètres de notre application,
- en sortie les différentes <u>exigences</u> voulues tel que la <u>robustesse</u>, la <u>mémoire</u>, et le <u>temps de recherche</u>

Entraînement sur une large base qui provienne des tests déjà effectués.

On pourra ajuster les paramètres de notre application dynamiquement par rapport à chaque situation.

Représentation temporelle

Informations fournies: temps et amplitudes

 Elle est peu robuste au bruit et aux distorsions.

Représentation fréquentielle

Informations fournies : fréquences et amplitudes

- Robuste au bruit.
- Peu robuste à une désynchronisation car elle ne représente aucune évolution temporelle.

$$X(f) = \int_{-\infty}^{\infty} x(t) \times e^{-i2\pi ft} dt$$

Représentation Spectrogramme

Informations fournies : temps, fréquences et amplitudes

- Robuste au bruit.
- Robuste à la désynchronisation.
- Très coûteuse en mémoire.

Spectrogramme: création

On utilise une STFT (Short-Time Fourrier Transform, transformée de Fourrier à court terme) :

- 1) analyse le signal par fenêtres temporelles,
- 2) décompose le spectre localement sur un certain nombre de bandes fréquentielles.

$$STFT = X(\tau, \omega) = \int_{-\infty}^{\infty} x(t)w(t - \tau)e^{-i\omega t}dt$$

Paramètres:

- Taille de la fenêtre temporelle (WINWOW_SIZE)
- Taille du chevauchement des fenêtres (OVERLAP_RATIO)

Spectrogramme: exemple

Voici un exemple de Spectrogramme de la chanson « Drake – Know Yourself » tel que :

- WINWOW_SIZE = 4069
- OVERLAP_RATIO = 0.5

On choisit d'abord une structure ou kernel

On définit l'opération associée au maxima local

lci le noyau doit être plus grand de ces 4 voisins pour qu'il soit considérer comme un maxima local

La taille de la région des voisin est **paramétrable** on peut **étendre** cette région en appliquant une **dilatation morphologique**

La procédure complète du filtre à maxima local

4 - connectivity filter for local maxima

					2	12	3	5	0					
					10	15	4	18	13					
					7	11	25	14	9					
					4	2	8	19	16					
					6	0	10	12	8					
2	12	3	5	0	2	12	3	5	0	2	12	3	5	0
10	15	4	18	13	10	15	4	18	13	10	15	4	18	13
7	11	25	14	9	7	11	25	14	9	7	11	25	14	9
4	2	8	19	16	4	2	8	19	16	4	2	8	19	16
6	0	10	12	8	6	0	10	12	8	6	0	10	12	8

Extraction des pics spectraux (procédure)

Finalement on applique un filtre pour garder des amplitudes qui dépassent un certains seuil donné en paramètre.

Extraction des pics spectraux (résultat)

Constellation Map of Drake – Know Yourself