EMSB: Nach dem Lemma kann man sich nur auf Delaunay-Kanten beschränken, davon gibt es linear viele, weiter Kruskal \leadsto insgesamt $O(n \log n)$ Zeit.

Das nächste Problem, das schon in der 1. Vorlesung angesprochen wurde:

Nächstes-Paar-Problem

(NP, aber wir werden es selbstverständlich als **PN** bezeichnen).

Gegeben: $S \subset \mathbb{R}^2$, |S| = n

Finde: ein Paar $(x, y) \in S^2$ mit ||x - y|| minimal

Lösung: in der 1. Vorlesung haben wir einen Algorithmus mit der Laufzeit $\Theta(n^2)$ gefunden. Verallgemeinerung:

Alle-Nächsten-Nachbarn (ANN)

Finde: für jedes $x \in S$ das nächste $y \in S$, $y \neq x$.

<u>Satz</u>: Sei $S \subset \mathbb{R}^2$, |S| = n. Dann ANN (und damit PN) lassen sich in Zeit O(n) lösen, falls VD(S) (oder Delaunay-Triangulierung) gegeben ist, d.h. insgesamt (falls nicht gegeben) in $O(n \log n)$ Zeit.

Beweis: Das ist eine einfache Folgerung aus dem Lemma. Für alle x bestimme ||x - y|| für alle y, deren VR(y) an die VR(x) grenzt. Nach dem Lemma: minimale davon ist min insgesamt. Laufzeit: Anzahl der Tests und Berechnungen von ||x - y|| ist gleich 2 mal Anzahl der Voronoi-Kanten, also O(n).

Bemerkung: PN (und damit ANN) haben eine untere Schranke in der Laufzeit von $\Omega(n \log n)$. Modell: reelle Zahlen, Operationen $\{\leq, +, -, \cdot, \div\}$; Reduktion von "element uniqueness" (d.h. gegeben n Zahlen, Frage: Sind alle verschieden?), bekannte untere Schranke $\Omega(n \log n)$.

Kapitel 3. Sweepline - Verfahren

Für *sweepline* gibt es kein gebräuchliches deutsches Wort, man sagt manchmal *scanline* oder auch *Fegegerade* (G.Rote).

Anwendung:

Gegeben: Menge S von Strecken in der Ebene

Finde: Alle Schnittpunkte von Strecken in S

Frage: In welcher Zeit kann man das machen?

Mit brute-force-Ansatz ist Laufzeit $\binom{n}{2} = \Theta(n^2)$. Es kann auch $\binom{n}{2}$ Schnittpunkte geben, diese Zeit ist also **nicht** zu verbessern!

Andere Fragestellung: wenn es "wenig" Schnittpunkte gibt, $k \in \mathbb{N}$, geht es dann besser? Laufzeitanalyse in Abhängigkeit von n und k (öfter $k \ll n^2$). Solche Algorithmen werden output-sensitiv genannt.

Verallgemeinerung: Berechnung des Arrangements von S, d.h. des geometrischen Graphen (Facetten, Kanten, Ecken), der durch die Einbettung von S entsteht (zusätzliche Ecken sind Schnittpunkte).

Idee von sweepline-Verfahren: Streiche mit vertikaler Geraden (sweepline, SL) von links nach rechts über die Szene. Aufrechterhalten wird die Information: Welche Strecken von S schneiden SL in welcher Reihenfolge. Wir konstruieren entsprechende Datenstruktur: SLS, sweepline-status. Zunächst ("ganz" links) ist SLS leer; beim ersten Endpunkt einer Strecke wird diese in SLS eingefügt. SLS ändert sich an den Endpunkten (Einfügung, Streichung) und an den Schnittpunkten (Reihenfolge von 2 Strecken ändert sich). Sie heißen Ereignispunkte (event-points): x-Koordinaten dieser Punkte werden in einer zusätzlichen Datenstruktur EPS (event-point-schedule) gespeichert.

Datenstruktur für SLS: Wörterbuch \rightsquigarrow balancierte Suchbäume: Operationen in $O(\log n)$ Zeit (einfügen, streichen, vertauschen als Kombination aus 2 mal streichen und 2 mal

einfügen).

Datenstruktur für EPS: PrioritätsWS \leadsto Heap: Operationen in $O(\log n)$ Zeit.

Insgesamt: $O((n+k)\log n)$ Zeit.

Wir schauen nun genauer hin:

 $Zur\ Vereinfachung$: Angenommen, S in $\underline{allgemeiner}$ Lage: x-Koordinaten der Endpunkte sind paarweise verschieden, es gibt keine mehrfachen Schnittpunkte, Koordinaten von Schnittpunkten stimmen nicht mit denen von Endpunkten überein usw.

Algorithmus

 $SLS := \{-\infty, \infty\};$

EPS := Menge aller Punkte von Strecken in S;

while $EPS \neq 0$ do

p := deleteMin(EPS); /* Min wird ausgegeben und gestrichen

 $\underline{\mathbf{if}}$ p
 rechter Endpunkt einer Strecke $s \in S$
 $\underline{\mathbf{then}}$

bestimme obere und untere Nachbarn von s in SLS: s_1 , s_2 ;

streiche s aus SLS;

teste, ob Schnittpunkt $s_1 \cap s_2$ existiert und füge ihn ggf. in EPS ein;

<u>if</u> p linker Endpunkt einer Strecke $s \in S$ then

füge s in SLS ein;

bestimme obere und untere Nachbarn von s in SLS: s_1 , s_2 ;

teste, ob $s \cap s_1$, $s \cap s_2$ existieren und füge sie ggf. in EPS ein;

<u>if</u> p Schnittpunkt von $s_1, s_2 \in S$ <u>then</u>

gib p aus;

vertausche s_1, s_2 in SLS; /*streichen und umgekehrt wieder einfügen

bestimme die Nachbarn: s_3 (oberhalb von s_1 bisher) und

 s_4 (unterhalb von s_2 bisher);

teste, ob $s_1 \cap s_4$ oder $s_2 \cap s_3$ existieren und füge sie ggf. in EPS ein;

Analyse: insgesamt 2n + k Ereignispunkte, für jeden $O(\log n)$ Zeit für Operationen \leadsto $O((n+k)\log n)$ Zeit (es geht sogar in $O(n\log n + k)$ Zeit).

<u>Satz</u>: Die Menge aller Schnittpunkte einer Menge von n Strecken kann in $O((n+k)\log n)$ Zeit gefunden werden, wobei k= Anzahl der Schnittpunkte.

(gilt auch für nicht allgemeine Lage \rightarrow Übung).

Triangulierung eines einfachen Polygons

Def: Triangulierung einer Menge S von Punkten heißt ein triangulierter geometrischer Graph G = (V, E) mit V = S.

Triangulierung eines einfachen Polygons P:

Suchen Triangulierung der Eckenmenge $\bigcup \{\infty\}$, die alle Kanten von P enthält.

Die äußere Facette muss auch Dreieck sein \leadsto (- - -) Kanten. Innere Triangulierung: Teil der Triangulierung, der im Inneren von P liegt.