Lab 6: Graph's Bridges

Yang Zheng

Minhan Chen

Instructor: Yanran Li

Catalog

- Problem and Model
- Ford-Fulksonff
- Edmonds-Karp
- Dinic
- Efficient Solution With Difference
- Experiments

Problem and Model

Problem

k holidays(k = 2)

New year's Day

1.1

1.2

Labor Day

5.1

 $n \ doctors(n = 3)$

c: Maximum days on duty

Model

Idea

Theorem 26.6 (Max-flow min-cut theorem)

If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c(S, T) for some cut (S, T) of G.

Process

Process

Process

New distribution scheme

Time Complexity

find an augmented path in the residual network: O(V + E') = O(E)

Least increased flow per time: 1

 $Max\ searching\ times: |f^*|$

 $O(E|f^*|)$

FF's Problem

Optimization---BFS to find the shortest paths

Optimization---BFS to find the shortest paths

Time Complexity

$$G_f$$
 $c_f(p) = c_f(u, v) \Rightarrow (u, v) \text{ is critical } c_f(p) = c_f(u, v) = 4$

 $p \longrightarrow 4 \longrightarrow 6 \longrightarrow b \longrightarrow t$

Find an augmented path in the $G_f: O(V + E') = O(E)$

Lemma 26.7

If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and sink t, then for all vertices $v \in V - \{s, t\}$, the shortest-path distance $\delta_f(s, v)$ in the residual network G_f increases monotonically with each flow augmentation.

Consequently, from the time (u, v) becomes critical to the time when it next becomes critical, the distance of u from the source increases by at least 2.

Max searching times of v to be critical:
$$\frac{|V|}{2} - 1$$

$$O(VE^2)$$

- Optimization
 - Multichannel Augmentation

Problem

- Optimization
 - Current Arc Optimization

$$cur[3] = 4$$

Time Complexity

V vertices, E edges

dfs: cur[i] most change E, O(VE)

 $bfs: depth \ most \ change \ V-1, \qquad O(V)$

 $O(V^2E)$

Experiment

Experiment


```
duty doctor of date 1: Doctor 1
duty doctor of date 2: Doctor 3
duty doctor of date 3: Doctor 2
请按任意键继续. . .
```

Experiment

Holiday Number: 20, dates of each holiday: 5, Maximum number of shift days per doctor: 5

DoctorNumber	200	400	600	800	1000
EK(ms)	89.37	177. 27	262. 23	366.44	443. 79
dinic+Multichannel(ms)	23. 50	85.96	199. 19	377.65	565. 35
dinic+CurrentArc(ms)	3.88	6.40	11. 18	14.83	17.61

2022.6.22