

Seminários de Python

Computadores & Sistemas Operacionais

PhD Flavio Lichtenstein

Bioinformatics, Systems Biology, and Biostatistics

CENTD – Institututo Butantan

setembro/2020

Estrutura de um computador

Imagem do chip principal de um computador CPU: central processor unit

Hoje, possui vários 'cores' ~ 8 CPU's em uma só continuará evoluindo

Escalas imporantes

```
1 Byte = 8 bits
1 bit = True / False, On / Off
1 Byte = 2**8 valores lógicos possíveis = 0 até 255

1 KB = 1 Kilo byte ~ 1024 bytes
1 MB = 1 Mega byte ~ 1.000.000 bytes = 1 milhão de bytes
1 GB = 1 Giga byte ~ 1.000.000.000 bytes = 1 bilhão de bytes
1 TB = 1 Tera byte ~ 10**12 = 1 trila de bytes
```

Se uma página contém \sim 80 linhas x 100 char = 8 Kbytes (sem fotos) Se um livro tem 400 páginas \sim 400 * 8 Kbytes = 3.2 Mbytes Então um disco de 1 TB pode conter: $10**12 / 3* 10**6 \sim 3$ milhões de livros

Principais elementos de um computador

Como é dividido um computador:

- CPU (CISC ou RISC) + cache
- Memória (Gbytes / Tbytes, tempo de acesso ~ 10 ns)
- Placas de vídeo (com GPUs graphic processor units)
- Discos de armazenamento:
 - Magnéticos (móveis) são os HD (hard drives)
 - SSD (solid state drives)
- Diversas interfaces como USB

As diversas partes conversando entre si ...

- Data bus: passagem de dados
- Address bus: passagem de endereços
- CPU unidade central
- ROM read-only memory (boot ~ liga)
- RAM memória (randômica)
- I/O interfaces de entrada e saída

RISC: Reduced Instruction Set Computer CISC: Complex Instruction Set Computer

П	CARACTERISTICAS	CISC	RISC
	INSTRUÇÕES POR CICLOS	Instruções complexas executadas em vários ciclos	Instruções simples executadas em um ciclo
	ACESSO À MEMORIA	Qualquer instrução pode referenciar a memória	Apenas operações LOAD/STORE em memória
	PIPELINE	Pouco ou nenhum pipeline	Uso Intenso de pipeline
	EXECUÇÃO DAS INSTRUÇÕES	Instruções executadas pelo hardware	Instruções interpretadas pelo próprio programa
	FORMATO DAS INSTRUÇÕES	Instruções com formato variável	Instruções com formato fixo
	QUANTIDADE DE INSTRUÇÕES E MODOS DE ENDEREÇAMENTO	Varias instruções e modos de endereçamento	Poucas instruções e modos de endereçamento
	COMPLEXIDADES DO SISTEMA	Complexidade está no microprograma	Complexidade está no compilador
	REGISTRADORES	Conjunto de registradores único	Múltiplos conjuntos de registradores

Hoje (2020) as arquiteturas trazem um híbrido entre RISC e CISC

Limitações

Exemplos de Limitações

- Bottleneck (von Neuman) x Paralelismo x Grid
- Acesso a memória:
 - RAM: 10 ns
 - Disco rígido: 5 a 10 milisegundos
 - SSD: 35 a 100 microsegundos
- Espaço em memória
- Espaço em disco (big-data)

Servidor: muitas CPUS + GPUs

HPC: high performance computing Google (GCP), Amazon (AWS), Microsoft (Azure)

GRID computing

Sistemas Operacionais

Principais sistemas operacionais

- Windows (antiga meta podia clonar / ser mais fácil e barato)
- MacOS (antiga meta melhor interface gráfica + agilidade)
- Linux (antigamente: difícil de aprender e comandar):
 - Muito fácil
 - Interface gráfica similar ao Mac e Windows
 - Mais rápido SO
 - A maioria das ferramentas são de livre acesso
 - Têm várias distribuições: Fedora, Ubuntu, Mint, openSuse, Red Hat ...

Obrigado

Dúvidas?

PhD Flavio Lichtenstein

Bioinformatics, Systems Biology, and Biostatistics

CENTD – Institututo Butantan

setembro/2020