Algoritmos y Estructuras de Datos I

Primer Cuatrimestre 2020

Guía Práctica 1 **Lógica Resuelto**

Comentarios:

Hola, este no es un resuelto oficial, tiene el logo del DC porque me parecio divertido copiar el formato de la guia, los ejercicios que dicen "Determinar blabla" deberian estar justificados.

1. Lógica binaria (Verdadero o Falso)

Ejercicio 1. ★ Sean p y q variables proposicionales. ¿Cuales de las siguientes expresiones son formulas bien formadas?

a) $(p \neg q)$

 $d) \neg (p)$

 $g) (\neg p)$

b) $p \bigvee q \bigwedge True$

e) $(p \bigvee \neg p \bigwedge q)$

h) $(p \bigvee False)$

c) $(p \rightarrow \neg q \rightarrow q)$

- f) $(True \bigwedge True \bigwedge True)$
- i) (p = q)

Respuesta

- a) No está bien formada.
- d) No está bien formada.
- g) No está bien formada.

- b) No está bien formada.
- e) No está bien formada.
- h) Está bien formada.

- c) No está bien formada.
- f) Está bien formada.
- i) Está bien formada.

Ejercicio 2. \bigstar Sean $x : \mathbb{Z}, y : \mathbb{Z}$ y z : **Bool** tres variables. ¿Cuales de las siguientes expresiones pueden tiparse correctamente?

a) $(1=0) \lor (x=y)$

d) $z = true \leftrightarrow (y = x)$

b) (x + 10) = y

e) $(z = 0) \lor (z = 1)$

c) $(x \vee y)$

f) y + (y < 0)

Respuesta

a) Tipa.

d) Tipa.

b) Tipa.

e) No tipa.

c) No tipa.

f) No tipa.

Ejercicio 3. La fórmula $(3+7=\pi-8) \wedge True$ es una fórmula bien formada ¿Por qué? Justifique informal, pero detalladamente, su respuesta.

Respuesta

Lo que esta en el parentesis pregunta si esos dos números son iguales y devuelve un booleano al que se le aplica una AND con True, no tiene errores de tipo, por lo que esta bien formulado.

Ejercicio 4. \bigstar Determinar el valor de verdad de las siguientes proposiciones

a) $(\neg a \lor b)$

e) $((c \lor y) \land (x \lor b))$

b) $(c \lor (y \land x) \lor b)$

f) $(((c \lor y) \land (x \lor b)) \leftrightarrow (c \lor (y \land x) \lor b))$

c) $\neg (c \lor y)$

. .

d) $(\neg(c \lor y) \leftrightarrow (\neg c \land \neg y))$

g) $(\neg c \land \neg y)$

cuando el valor de verdad de a,b y c es verdadero, mientras que el de x e y es falso.

Respuesta

- a) True
- b) True
- c) False
- d) True

f) True

e) True

g) False

Ejercicio 5. Determinar, utilizando tablas de verdad, si las siguientes fórmulas son tautologias, contradicciones o contingencias.

- a) $(p \vee \neg p)$
- b) $(p \land \neg p)$
- c) $((\neg p \lor q) \leftrightarrow (p \rightarrow q))$
- d) $((p \lor q) \to p)$
- e) $(\neg(p \land q) \leftrightarrow (\neg p \lor \neg q))$

- f) $(p \rightarrow p)$
- g) $((p \land q) \to p)$
- h) $((p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r)))$
- i) $((p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow) \rightarrow (p \rightarrow r)))$

Respuesta

Armar Tablas de la Verdad es un plomazo y no aporta en nada, chiau.

	p	$\neg p$	$(p \lor \neg p)$	
a)	0	1	1	Tautologia
	1	0	1	

	p	$\neg p$	$(p \land \neg p)$	
b)	0	1	0	Contradicción
	1	0	0	

	p	q	$(\neg p \lor q)$	$(p \to q)$	$(\neg(p \land q) \leftrightarrow (\neg p \lor \neg q))$
	0	0	1	1	1
c)	0	1	1	1	1
	1	0	0	0	1
	1	1	1	1	1

Tautologia

	p	q	$(p \lor q)$	$((p \lor q) \to)p$
	0	0	0	1
d)	0	1	1	0
	1	0	1	1
	1	1	1	1

Contingencia

р	q	$\neg(p \land q)$	$(\neg p \lor \neg q)$	$(\neg(p \land q) \leftrightarrow (\neg p \lor \neg q))$
0	0	1	1	1
0	1	1	1	1
1	0	1	1	1
1	1	0	0	1
	p 0 0 1	p q 0 0 0 1 1 0 1 1	$ \begin{array}{c cccc} p & q & \neg (p \wedge q) \\ \hline 0 & 0 & 1 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 0 \\ \hline \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Tautologia

	p	q	$(p \wedge q)$	$((p \land q) \to p)$	
	0	0	0	1	
g)	0	1	0	1	Tautologia
	1	0	0	1	
	1	1	1	1	

	р	q	r	$(p \land (q \lor r))$	$((p \land q) \lor (p \land r))$	$((p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r)))$
	0	0	0	0	0	1
	0	0	1	0	0	1
	0	1	0	0	0	1
h)	0	1	1	0	0	1
	1	0	0	0	0	1
	1	0	1	1	1	1
	1	1	0	1	1	1
	1	1	1	1	1	1

Tautologia

	p	q	r	$(p \to (q \to r))$	$((p \to q) \to (p \to r))$	$((p \to (q \to r)) \leftrightarrow ((p \to q) \to (p \to r)))$	
	0	0	0	1	1	1	
	0	0	1	1	1	1	
	0	1	0	1	1	1	
i)	0	1	1	1	1	1	Tautologia
	1	0	0	1	1	1	
	1	0	1	1	1	1	
	1	1	0	0	0	1	
	1	1	1	1	1	1	

Ejercicio 6. \bigstar Dadas las proposiciones lógicas α y β , se dice que α es más fuerte que β si y sólo si $\alpha \to \beta$ es una tautologia. En este caso, tambien decimos que β es más debil que α . Determinar la relacion de fuerza de los siguientes pares de fórmulas:

a) True, False

e) False, False

b) $(p \wedge q), (p \vee q)$

f) $p, (p \lor q)$

c) True, True

g) p, q

d) $p, (p \wedge q)$

h) $p, (p \rightarrow q)$

¿Cuál es la proposición más fuerte y cuál la más debil de las que aparecen en este ejercicio?

Respuesta

a) False

e) False

b) $(p \wedge q)$

f) p

c) True

g) Inmesurable

d) $(p \wedge q)$

h) Ninguna es tautologica, Inmesurable

La más fuerte es False, y la más debil es True, y ya me olvide el porque.

Ejercicio 7. ★ Usando reglas de equivalencia (conmutatividad, asociatividad, De Morgan, etc) determinar si los siguientes pares de fórmulas son equivalencias.Indicar en cada paso qué regla se utilizó

a) \bullet $((\neg p \lor \neg q) \lor (p \land q)) \to (p \land q)$

 $(p \land q)$

b) \bullet $(p \lor q) \land (p \lor r)$

 $\neg p \rightarrow (q \land r)$

c) $\neg (\neg p) \rightarrow (\neg (\neg p \land \neg q))$

■ q

d) \blacksquare $((True \land p) \land (\neg p \lor False)) \rightarrow \neg(\neg p \lor q)$

 $\quad \blacksquare \ p \wedge \neg q$

e) • $(p \lor (\neg p \land q))$

f) $\neg (p \land (q \land s))$

 $s \to (\neg p \lor \neg q)$

g) $\mathbf{p} \to (q \land \neg (q \to r))$

 $(\neg p \lor q) \land (\neg p \lor (q \land \neg r))$

Respuesta

a) $((\neg p \lor \neg q) \lor (p \land q)) \to (p \land q)$ (De Morgan) $(\neg(p \land q) \lor (p \land q)) \to (p \land q) \qquad (\neg(p \land q) \lor (p \land q)) = True$ $\forall (p,q)$ $True \rightarrow (p \land q) \qquad (True \rightarrow p) = p$ $(p \wedge q)$ b) $\neg p \to (q \land r)$ $(a \to b) = (\neg a \lor b)$ $(\neg(\neg p) \lor (q \land r)$ $\neg(\neg a) = a$ $(p \lor (q \land r))$ Distributiva $(p \lor q) \land (p \lor r)$ c) $\neg(\neg p) \to (\neg(\neg p \land \neg q))$ $\neg(\neg a) = a$ $p \to (\neg(\neg p \land \neg q))$ De Morgan $p \to (\neg(\neg(p \lor q)))$ $\neg(\neg a) = a$ $p \to (p \lor q)$ $(a \to b) = (\neg a \lor b)$ $(\neg p \lor (p \lor q))$ $(\neg a \lor a) = True$ d) $((True \land p) \land (\neg p \lor False)) \rightarrow \neg(\neg p \lor q)$ $(True \wedge a) = a$ $(p \land (\neg p \lor False)) \rightarrow \neg(\neg p \lor q)$ $(False \lor a) = a$ $(p \land \neg p) \to \neg(\neg p \lor q)$ $(a \land \neg a) = False$ $False \rightarrow \neg(\neg p \lor q)$ $(False \rightarrow a) = a$ $\neg(\neg p \lor q)$ Distributiva $p \land \neg q$ e) $(a \to b) = (\neg a \lor b)$ $\neg p \rightarrow q$ $(p \lor q) \land True$ $True = (a \lor \neg a)$ $(p \lor q) \land (p \lor \neg p)$ Distributiva $(p \lor (\neg p \land q))$ f) $s \to (\neg p \lor \neg q)$ $(a \to b) = (\neg a \lor b)$ $(\neg s) \lor (\neg p \lor \neg q)$ De Morgan $(\neg s) \vee \neg (p \wedge q)$ De Morgan $\neg(s \land (p \land q)$ Conmutatividad $\neg (p \land (q \land s))$ g) $p \to (q \land \neg (q \to r))$ $(a \to b) = (\neg a \lor b)$ $\neg p \lor (q \land \neg (q \to r))$ $(a \to b) = (\neg a \lor b)$ $\neg p \lor (q \land \neg (\neg q \lor r))$ De Morgan $\neg p \lor (q \land (q \land \neg r))$ Distributiva $(\neg p \lor q) \land (\neg p \lor (q \land \neg r))$

Ejercicio 8. Decimos que un conectivo es expresable mediante otros si es posible escribir una fórmula utilizando exclusivamente estos últimos y que tenga la misma tabla de verdad que el primero (es decir, son equivalentes). Por ejemplo, la disyunción es expresable mediante la conjunción mas la negación, ya que $(p \lor q)$ tiene la misma tabla de verdad que $\neg(\neg p \land \neg q)$.

Mostrar que cualquier fórmula de la lógica proposicional que utilice los conectivos \neg (negación), \land (conjunción), \lor (disyunción), \rightarrow (implicación), \leftrightarrow (equivalencia) puede reescribirse utilizando sólo los conectivos \neg y \lor .

Respuesta

$$\begin{array}{lll} (a \wedge b) & = & & \neg(\neg a \vee \neg b) \\ (a \rightarrow b) & = & & (\neg a \vee b) \\ (a \leftrightarrow b) & = & & \neg((a \vee b) \vee \neg(\neg(\neg a \vee \neg b))) \end{array}$$

Ejercicio 9. \bigstar Sean las variables proposicionales f, e y m con los siguientes significados:

- $f \equiv .^{\text{es}}$ fin de semana"
- $e \equiv$ "Juan estudia"

■ $m \equiv$ "Juan escucha música"

- a) Escribir usando lógica proposicional las siguientes oraciones:
 - "Si es fin de semana, Juan estudia o escucha música, pero no ambas cosas"
 - "Si no es fin de semana entonces Juan no estudia"
 - Cuando Juan estudia los fines de semana, lo hace escuchando música"
- b) Asumiendo que valen las tres proposiciones anteriores ¿se puede deducir que Juan no estudia?. Justificar usando argumentos de la lógica proposicional.

Respuestas

- a) $f \to (\neg(e \leftrightarrow m))$
 - $\bullet \neg f \rightarrow \neg e$
 - $(f \wedge e) \rightarrow m$
- b) Simplificaciones:

$$f \to (\neg(e \leftrightarrow m)) = \neg f \lor (\neg(e \leftrightarrow m))$$

$$= \neg f \lor ((e \lor m) \land \neg(e \land m))$$

$$\neg f \to \neg e = f \lor \neg e$$

$$(f \land e) \to m = \neg(f \land e) \lor m$$

$$= (\neg f \lor \neg e \lor m)$$

Demostración:

$$((\neg f \lor ((e \lor m) \land \neg (e \land m))) \land (f \lor \neg e) \land (\neg (f \land e) \lor m)) \rightarrow \neg e = \neg ((\neg f \lor ((e \lor m) \land \neg (e \land m))) \land (f \lor \neg e) \land (\neg (f \land e) \lor m)) \lor \neg e = ?$$

e	f	m	$A = (\neg f \lor ((e \lor m) \land \neg (e \land m)))$	$B = (f \vee \neg e)$	$C = (\neg f \lor \neg e \lor m)$	$\neg (A \land B \land C) \lor \neg e$
0	0	0	1	1	1	1
0	0	1	1	1	1	1
0	1	0	0	1	1	1
0	1	1	1	1	1	1
1	0	0	1	0	1	1
1	0	1	1	0	1	1
1	1	0	1	1	0	1
1	1	1	0	1	1	1

Ejercicio 10. En la salita verde de un jardin se sabe que las siguientes circunstancias son ciertas:

- a) Si todos conocen a Juan entonces todos conocen a Camila (podemos pensar que esto se debe a que siempre caminan juntos).
- b) Si todos conocen a Juan, entonces que todos conozcan a Camila implica que todos conocen a Gonzalo.

La pregunta entonces es: ¿Es cierto que si todos conocen a Juan entonces todos conocen a Gonzalo? Justificar.

Respuesta

A: todos conocen a Juan, B: todos conocen a Camila, C: todos conocen a Gonzalo

- a) $A \to B$
- b) $A \to (B \to C)$

A	B	C	$A \rightarrow B$	$A \to (B \to C)$	$((A \to B) \land (A \to (B \to C)) \to C$
0	0	0	1	1	1
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	1	0	0
1	1	1	1	1	1

Ejercicio 11. Siempre que Haroldo se pelea con sus compañeritos, vuelve a casa con un ojo morado. Si un dia lo viéramos llegar con el ojo destrozado, podríamos sentirnos inclinados a concluir que se ha tomado a golpes de puño y cabezazos con los otros niñitos. ¿Puede identificar el error en el razonamiento anterior? Pista: Es conocido como falacio de afirmar el consecuente

Respuesta

 $a \to b$ no implica que $b \to a$, ver T.V.

2. Lógica ternaria (Verdadero, Falso o Indefinido)

Ejercicio 12. ★ Asignar un valor de verdad (verdadero, falso o indefinido) a cada una de las siguientes expresiones ariméticas en los reales.

a)
$$5 > 0$$

d)
$$0 \ge 5$$

g)
$$0 \cdot \sqrt{-1} = 0$$

b)
$$1 \le 1$$

e)
$$\frac{1}{0} = \frac{1}{0}$$

h)
$$\sqrt{-1} \cdot 0 = 0$$

c)
$$(5+3-8)^{-1} \neq 2$$

f)
$$0 > log_2(2^{2^0-1} - 1)$$

i)
$$\tan(\frac{\pi}{2}) = \tan(\pi) - \tan(2)$$

Respuestas

a) True

d) False

g) True

b) True

e) Undefined

h) Undefined

c) Undefined

f) Undefined

i) Undefined

Ejercicio 13. \bigstar ¿Cuál es la diferencia entre el operador \land y el operador \land_L ?Describir la tabla de verdad de ambos operadores.

Respuesta

a	b	$a \wedge b$	$a \wedge_L b$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1
0	1		0
1	1		1
T	0	Т	Т
T	1	Т	Т
上	T	1	1

Ejercicio 14. \bigstar ¿Cuál es la diferencia entre el operador \vee y el operador \vee_L ?Describir la tabla de verdad de ambos operadores.

Respuesta

a	b	$a \lor b$	$a \vee_L b$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1
0	1	Τ.	\perp
1	1	Τ	1
上	0	Τ.	Τ
\perp	1	1	1
T	1	1	Τ

Ejercicio 15. \bigstar ¿Cuál es la diferencia entre el operador \to y el operador \to_L ?Describir la tabla de verdad de ambos operadores.

Respuesta

a	b	$a \rightarrow b$	$a \rightarrow_L b$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1
0	1		1
1	1	Τ	
	0	Τ	
	1	Τ	
Ĺ	Ţ	Ţ	Ţ

Ejercicio 16. ★ Determinar los valores de verdad de las siguientes proposiciones cuando el valor de verdad de b y c es verdadero, el de a es falso y el de x e y es indefinido

a) $(\neg x \lor_L b)$

e) $((c \vee_L y) \wedge_L (a \vee b))$

b) $((c \vee_L (y \wedge_L a)) \vee b)$

f) $(((c \vee_L y) \wedge_L (a \vee_L b)) \leftrightarrow_L (c \vee_L (y \wedge_L a) \vee_L b))$

c) $\neg (c \lor_L y)$

g) $(\neg c \land_L \neg y)$

d) $(\neg(c \lor_L y) \leftrightarrow (\neg c \land_L \neg y))$

Respuestas

a) Undefined

e) True

b) True

f) True?

c) False

g) False

d) True

Ejercicio 17. Sean p, q y r tres variables de las que se sabe que:

- p y q nunca están indefinidas,
- r se indefine si q es verdadera

Proponer una fórmula que nunca se indefina, utilizando siempre las tres variables y que sea verdadera si y solo si se cumple que:

a) Al menos una es verdadera

d) Sólo p y q son verdaderas

b) Ninguna es verdadera

- e) No todas al mismo tiempo son verdaderas
- c) Exactamente una de las tres es verdadera
- f) r es verdadera

Respuestas

a) $(p \lor q) \lor_L r$

d) $(p \wedge q) \wedge_L \neg r$

b) $\neg((p \lor q) \lor_L r)$

- e) $\neg((p \land q) \land (p \lor_L q))$
- c) $(p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r)$
- f) $\neg q \wedge_L r$

3. Cuantificadores

Ejercicio 18.

- a) ★ Determinar para cada aparición de variables, si dicha aparición se encuentra libre o ligada. En caso de estar ligada, aclarar a qué cuantificador lo está.
 - I) $(\forall x : \mathbb{Z})(0 \le x < n \to x + y = z)$
 - II) $(\forall x : \mathbb{Z})(\forall y : \mathbb{Z})(0 \le x < n \land 0 \le y < m) \to x + y = z))$
 - III) $(\forall j : \mathbb{Z})(0 \le j < 10 \to j < 0)$
 - IV) $s \wedge a < b 1 \wedge ((\forall j : \mathbb{Z})(a \le j < b \rightarrow_L 2 * j < b \vee s))$
 - V) $(\forall j : \mathbb{Z})(j \le 0 \to (\forall j : \mathbb{Z})(j > 0 \to j \ne 0))$
 - VI) $(\forall j : \mathbb{Z})(j \leq 0 \rightarrow P(j))$
 - VII) $(\forall j : \mathbb{Z})(j \le 0 \to P(j)) \land P(j)$
- b) ★ En los casos en que sea posible, proponer valores para las variables libres del item anterior de modo tal que las expresiones sean verdaderas.

Respuestas

- a) I) x ligada a \forall ; n, y, z estan libres.
 - II) x, y ligadas a \forall ; n, m, z estan libres.
 - III) j ligada a \forall .
 - IV) j ligada a \forall ; a, b, s estan libres.
 - V) j, j ligadas a \forall ; (son jotas distintas, yo no escribi el ejercicio...).
 - VI) j ligada a \forall .
 - VII) j ligada a \forall ; la otra j esta libre.
- b) I) n = 20; y = -x; z = 0
 - II) n = 1; m = 1; z = 0
 - III) ∄ ninguna variable libre.
 - IV) nah, muy denso...
 - V) ∄ ninguna variable libre.
 - VI) mmm...
 - VII) mmm...

Ejercicio 19. Sean $P(x : \mathbb{Z})$ y $Q(x : \mathbb{Z})$ dos predicados cualesquiera que nunca se indefinen. Considerar los siguientes enunciados y su predicado asociado. Determinar, en cada caso, por qué el predicado no refleja correctamente el enunciado. Corregir los errores.

```
a) "Todos los naturales menores a 10 que cumplen P, cumplen Q": pred a()\{(\forall x:\mathbb{Z})((0 \le x < 10) \to_L (P(x) \land Q(x)))\}
```

```
b) "No hay ningún natural menor a 10 que cumpla P y Q": pred c(\{\neg((\exists x: \mathbb{Z})(0 \le x < 10 \land P(x) \land \neg((\exists x: \mathbb{Z})(0 \le x < 10 \land Q(x))))\}\}
```

Respuestas

```
a) pred a()\{(\forall x: \mathbb{Z})(((0 \le x < 10) \land_L P(x)) \rightarrow Q(x))\}
```

```
b) pred \ c()\{\neg(\exists x : \mathbb{Z})((0 \le x < 10) \land_L (P(x) \land Q(x)))\}
```

4. Funciones auxiliares

Ejercicio 20. ★ Escriba los siguientes predicados y funciones en el lenguaje de especificación:

- a) $aux\ suc\ (x:\mathbb{Z}):\mathbb{Z}$, que corresponde al sucesor de x.
- b) aux suma $(x, y : \mathbb{R}) : \mathbb{R}$, que corresponda a la suma entre $x \in y$.
- c) aux producto $(x, y : \mathbb{R}) : \mathbb{R}$, que corresponda al producto entre $x \in y$.
- d) $pred\ esCuadrado\ (x:\mathbb{Z})$, que sea verdadero si y solo si x es un numero cuadrado.
- e) $pred\ esPrimo\ (x:\mathbb{Z})$, que sea verdadero sii x es primo.
- f) $pred\ sonCoprimos\ (x,y:\mathbb{Z})$, que sea verdadero si y solo si x e y son coprimos.
- g) $pred divisores Grandes (x, y : \mathbb{Z})$, que sea verdadero cuando todos los divisores de x, sin contar el uno, son mayores que y.
- h) pred mayor Primo Que Divide $(x:\mathbb{Z},y:\mathbb{Z})$, que sea verdadero si y es el mayor primo que divide a x.
- i) $pred\ sonPrimosHermanos\ (x:\mathbb{Z},y:\mathbb{Z})$, que sea verdadero cuando x es primo, y es primo, y son primos consecutivos.

Respuestas

i)

```
a) aux \ suc \ (x:\mathbb{Z}):\mathbb{Z}=x+1;
b) aux \ suma \ (x,y:\mathbb{R}):\mathbb{R}=x+y;
c) aux \ producto \ (x,y:\mathbb{R}):\mathbb{R}=x*y;
d) pred \ esCuadrado \ (x:\mathbb{Z})\{
 (\exists a:\mathbb{Z}_0)(a*a=x)
\}
e) pred \ esPrimo \ (x:\mathbb{Z})\{
 (x>1)(\forall i:\mathbb{Z})(1< i< x \rightarrow_L x \ \mathrm{mod} \ i\neq 0)
\}
f) pred \ sonCoprimos \ (x,y:\mathbb{Z})\{
 \neg(\exists i:\mathbb{Z})(1< i< max\{abs(x),abs(y)\} \land (x \ \mathrm{mod} \ i=0) \land (y \ \mathrm{mod} \ i=0))
\}
g) pred \ divisoresGrandes \ (x,y:\mathbb{Z})\{
 (\forall i:\mathbb{Z})(1< i< abs(x) \land_L (x \ \mathrm{mod} \ i=0) \rightarrow i>y)
\}
h) pred \ esPrimo \ (n:\mathbb{Z})\{
 n>1 \land (\forall i:\mathbb{Z})(1< i< n \rightarrow_L n \ \mathrm{mod} \ i\neq 0)
\}
```