```
Recap
Data (4,,x,), (42, x2), ..., (4n, xn) ER2
Best fit y = bo + b, x where
  Fitted value
   y = bo + b, x;
Residual
  e: = 4: -4:
Sample mean
  y = n Zy:
SSTO = E (4:-4)2
SSE = I (4: - 4.12
55R = \(\hat{q} \cdot - \bar{q}\)^2
Defu Coeticient of determination
Typically a good dit has R? close but
```

Lemma i)
$$\Sigma e_i = 0$$

ii) $\Sigma \hat{q}_i e_i = 0$

Proposition i) $SSTO = SSR + SSE$

ii) $O \leq R^2 \leq 1$.

Proof of Prop (i) \Rightarrow Prop (ii)

(i) implies $R^2 = \frac{SSR}{SSTO} = \frac{SSR}{SSR + SSE} = (-\frac{SSE}{SSTO})$

But $O \leq SSE$, $SSTO$. By (i), $O \leq SSE \leq SSTO$.

So $O \leq R^2 \leq 1$.

Proof of Prop (i)

 $\Sigma (q_i - q_i)^2 = \Sigma [(q_i^2 - q_i) + (q_i - q_i^2)]^2$
 $= \Sigma [(q_i^2 - q_i^2)^2 + (q_i - q_i^2)^2] + 2 \sum [(q_i^2 - q_i^2) + (q_i - q_i^2)]^2$
 $= \Sigma q_i^2 (q_i - q_i^2) - \overline{q} \Sigma [q_i^2 - q_i^2]$
 $= \Sigma q_i^2 e_i - \overline{q} \Sigma e_i$
 $= O \text{ By Lemma 1}$

So $SSTO = SSE + SSR$.

proof of Lemma (i) Ze: = E(4: - 60 - 6,21:) = Eyi - nbo - b, Exi = 0 by first normal equ. proof of Lemma (i) use both

normal equs.

Matrix Notation (P > 2)

$$B = (x^{t}x)^{-1}x^{t}y$$

$$Y = \begin{pmatrix} 41 \\ 4n \end{pmatrix} \quad x = \begin{pmatrix} 1 & x_{11} & \dots & x_{1p-1} \\ \vdots & \vdots & \ddots & \ddots \\ \vdots & \vdots & \ddots & \ddots$$

SSTO =
$$Y^{t}Y - m \tilde{y}^{2}$$

SSR = $B^{t}x^{t}Y - m \tilde{y}^{2}$
SSG = $Y^{t}Y - B^{t}x^{t}Y$
 $R^{2} = \frac{SSR}{R}$, Again $O \leq R^{2} \leq 1$

R² = SSR SSTO, Again OE R² = 1.

Some statisties (stipping proofs)

suppose

y: = Bo + B, x: 1 + --- + Bp-1 xip-1 + E;

where

i=1,2, ---, M

xiii., xipi are known constants

E: are independent N(0, d2),

Boi . , Bpn parameters.

Deta MSR = SSR regression square

MSE = SSE Error meny M-P Square

F* = MSR MSE

Theorem It Bi = Ba = ... = Bn = 0 then
F* follows an F dishribution with

pri and n-p degrees of freedom.

So to choose between the two happothoses

C1 : B1=B2= - = Bn=0

Cz: Bi #0 for at least one i

we use :

If F* \(\xi\) \(F(1-\pi)\), \(n-\p)\) then conclude \(C_1\),

If \(P^*\) \(F(1-\pi)\), \(n-\p)\) then conclude \(C_2\),

If \(C_1-\pi)\) \(C_1-\pi)\) then conclude \(C_2\),

If \(C_2-\pi)\) \(C_1-\pi)\) then conclude \(C_2\),

If \(C_2-\pi)\) then conclude \(C_2\),

If \(C_2-\pi)\) then conclude \(C_2\),

Example using the skin cream example y: sales in district x1: size of district per capitar in come et district one can compute: B = (x+x) x+y = (3.4526) 0.4960 0.0092 MSR = = = (Yby-Btxty) = 26922.4 MSE 2 4.74 = HSE = 5680 Assuming & at 0.05 and assuming the Zi are independ N(0,0), we require

F(0.95, 2, 12) = 3.89

exceeds 3.89 we

Cz: sules are related to populations and income.

But in this relations useful for predictions.

Well

R2 = SSR = 0.9989

SSTO

so when the independent variable x, and x2 and considered, the variation in Soles is explained".