MATH 10A with Prof. Stankova Prepared by Yirong Zhen (GSI) 08/23/2018

Discussion on Sets and Functions

1 Practice Problems

- 1. Describe the following sets in words:
 - $A = \{2x | x \in \mathbb{Z}\}$ A is all even numbers.
 - $B = \{x \in \mathbb{R} | x^2 5x + 6 = 0\}$ $B = \{2, 3\}$
 - $C = \{x \in \mathbb{R} | x^2 + 1 = 0\}$ $C = \emptyset$
 - $D = \mathbb{R} \setminus \mathbb{Q}$ D contains all irrational numbers.
- 2. Are the functions $f(x) = \frac{x^2 1}{x + 1}$ and g(x) = x 1 equal? No, they have a different domain. Specifically, D(f) doesn't contain -1.
- 3. What are the domains of the following functions?
 - $f(x) = \frac{x+1}{1+\frac{1}{x+1}}$ $(-\infty, -2) \cup (-2, -1) \cup (-1, \infty)$
 - $g(x) = \sqrt{2 \sqrt{p}}$ [0, 4]
 - $h(x) = \arcsin(x)$ [-1,1]
- 4. What are the ranges of the following functions?
 - $f(x) = (x+1)^2$ $[0, \infty]$
 - $g(x) = +\sqrt{9 (x 3)^2}$ [0, 3]
 - $h(x) = \frac{x+1}{1+\frac{1}{x+1}}$ $(-\infty, -4) \cup (0, \infty)$
- 5. Are the following functions even or odd (or neither)?

 - $g(x) = (x+2)^2 + (x-2)^2$ even
 - $h(x) = \cos(x) + \sin(x)$ neither

2 Additional Practice Problems

1. Find the domain of the following functions

(a)
$$f(x) = \frac{2x+1}{x^2+x-2}$$

 $x \neq -2 \text{ or } 1$

(b)
$$g(x) = \frac{x^{\frac{1}{3}}}{x^2+1}$$
 all real numbers

(c)
$$k(x) = \sqrt{4-x} + \sqrt{x^2-1}$$

 $(-\infty, -1] \cup [1, 4]$

2. Find the range of the following functions

(a)
$$f(x) = x^2 + x - 2$$

(b)
$$g(x) = \frac{x^2 - 1}{x^2 + 1}$$

(c)
$$k(x) = \sqrt{x^2 - 1}$$

- 3. Find the result of the following set operations:
 - (a) $\mathbb{Z} \setminus \mathbb{Q}$ empty set
 - (b) $\mathbb{R} \setminus \mathbb{Q}$ irrational numbers
 - (c) $\mathbb{Z} \setminus (\mathbb{N} \cup 0)$ all negative integers
 - (d) $\mathbb{Z} \setminus (\mathbb{N} \cap 0)$ all integers except 0
- 4. True or False:
 - (a) $f(x) = \pm x$ is a function.
 - (b) f(x) = |x| is a function. true
 - (c) $\mathbb{Z} \subset (\mathbb{C} \setminus \mathbb{N})$ false
 - (d) For function $f(x) = \sqrt{x}$, the range is equal to the domain. true