Bayesian Model Averaging Meta Analysis

Sophie Berkhout

3/2/2020

library(metaBMA)
library(ggplot2)

BFrf or BFfr?

```
library(knitr)
library(kableExtra)
library(papaja)
ggplot2::theme_set(theme_apa(base_size = 10))
default.prior
                   <- prior(family = "t",
                            param = c(0, 0.707, 1)
oosterwijk.prior <- prior(family = "t",</pre>
                            param = c(0.35, 0.102, 3)
                   <- prior(family = "norm",
vohs.prior
                            param = c(0.3, 0.15)
priors <- list(default = default.prior,</pre>
               oosterwijk = oosterwijk.prior,
               vohs = vohs.prior
# lower truncate priors at zero?
.bmaCalculateBFHeterogeneity <- function(prior_models, posterior_models){</pre>
# Returns the heterogeneity Bayes factor
 post0dds <- (posterior_models["random_H0"] + posterior_models["random_H1"]) /</pre>
               (posterior_models["fixed_HO"] + posterior_models["fixed_H1"])
 priorOdds <- (prior_models[3] + prior_models[4]) / (prior_models[1] + prior_models[2])</pre>
 BFheterogeneity <- postOdds/priorOdds</pre>
 return(BFheterogeneity)
```

```
.runRema <- function(y, SE, priors, extrainfo = FALSE){</pre>
# Returns a list containing:
# BFmu: dataframe with 1 row/3columns (BF per prior)
# BFtau: dataframe with 1 row/3columns (BF per prior)
# est: list containing 3 dataframes per prior
       with effect size and 95% credible interval estimates
 BFmu <- BFtau <- data.frame(default = 0,
                               oosterwijk = 0,
                               vohs = 0
  empty.dataframe <- data.frame(est.es = numeric(),</pre>
                                 est.lower = numeric(),
                                 est.upper = numeric()
  est <- list(default = empty.dataframe,</pre>
              oosterwijk = empty.dataframe,
              vohs = empty.dataframe
              )
  for(i in 1:length(priors)){
    rema <- meta_bma(y, SE, d = priors[[i]])</pre>
    BFmu[, i] <- 1/rema$inclusion$incl.BF # BF in favour of the null model
    if(extrainfo){
      BFtau[i] <- .bmaCalculateBFHeterogeneity(rema$prior_models, rema$posterior_models)
      est.es <- rstan::summary(rema$meta$random$stanfit_dstudy)$summary[3:(length(y) + 2), "mean"]
      est.lower <- rstan::summary(rema$meta$random$stanfit_dstudy)$summary[3:(length(y) + 2), "2.5%"]
      est.upper <- rstan::summary(rema$meta$random$stanfit_dstudy)$summary[3:(length(y) + 2), "97.5%"]
      est[[i]] <- rbind(est[[i]], cbind(est.es, est.lower, est.upper))</pre>
    }
  if(!extrainfo){
    return(BFmu)
  } else {
    remaResult <- list(BFmu = BFmu,
                        BFtau = BFtau,
                        est = est
    return(remaResult)
 }
}
remaForest <- function(obs.data, est.data){</pre>
# Returns a forest plot with observed and estimated effects
I <- nrow(obs.data)</pre>
ord <- order(obs.data$yi)</pre>
es <- obs.data$yi[ord]
est.es <- est.data[ord, "est.es"]</pre>
est.lower <- est.data[ord, "est.lower"]</pre>
est.upper <- est.data[ord, "est.upper"]</pre>
```

```
studyLabels <- obs.data[ord, "source"]</pre>
lower \leftarrow es - qnorm(1.95/2) * obs.data$sei
upper \leftarrow es + qnorm(1.95/2) * obs.data$sei
y.obs <- I:1
y.est \leftarrow rev(seq(.6, I - .4, 1))
dfBoth <- data.frame(es = c(es, est.es),</pre>
                      y = c(y.obs, y.est),
                      studyLabels = c(studyLabels, studyLabels),
                      lower = c(lower, est.lower), upper = c(upper, est.upper),
                      g = rep(c("Observed", "Estimated"), each = I)
plot <- ggplot(dfBoth, aes(x = es, y = y)) +</pre>
        geom_vline(xintercept = 0, linetype = "dotted") +
        geom_point(aes(shape = as.factor(dfBoth$g)), colour = as.factor(dfBoth$g))) +
        geom_errorbarh(aes(xmin = dfBoth$lower, xmax = dfBoth$upper, colour = as.factor(dfBoth$g)),
                         height = .1, show.legend = FALSE) +
        scale_y_continuous(breaks = I:1, labels = as.character(studyLabels),
                                     expand = c(0, 0.5) +
        scale_color_manual("", values = c("black", "slategrey"),
                                     labels = c(gettext("Estimated"), gettext("Observed"))) +
        scale_shape_manual("", values = c(16, 15)) +
        guides(shape = guide_legend(reverse=TRUE, override.aes = list(size=3)),
               colour = guide_legend(reverse=TRUE)) +
        xlab("Mortality Salience Effect") +
        ylab(" ")
return(plot)
}
```

Original Analysis

```
m.111 <- read.csv2("data/metaset_111.csv", header = T)
m.211 <- read.csv2("data/metaset_211.csv", header = T)
m.311 <- read.csv2("data/metaset_311.csv", header = T)

rema.111 <- .runRema(m.111$yi, m.111$sei, priors, TRUE)
rema.211 <- .runRema(m.211$yi, m.211$sei, priors, TRUE)
rema.311 <- .runRema(m.311$yi, m.311$sei, priors, TRUE)

remaForest(m.111, rema.111$est$default) + ggtitle("Exlusion Criterion 111")</pre>
```


remaForest(m.211, rema.211\$est\$default) + ggtitle("Exlusion Criterion 211")

remaForest(m.311, rema.311\$est\$default) + ggtitle("Exlusion Criterion 311")

Table 1: Bayes factors for key analyses.

	Effect Size BF			Heterogeneity BF		
	Default	Oosterwijk	Vohs	Default	Oosterwijk	Vohs
Exclusion Criterion 111		37.66	14.57	0.11	0.43	0.44
Exclusion Criterion 211	10.10	15.14	6.63	0.41	0.42	0.42
Exclusion Criterion 311	6.01	3.94	2.45	0.56	0.57	0.57

Note. All Bayes factors are reported in favor of the null model.

col_spanners = colhead)

Analysis for the Main Claim of the Comment

```
m.132 <- read.csv2("data/metaset_132.csv", header = T)
m.232 <- read.csv2("data/metaset_232.csv", header = T)
m.332 <- read.csv2("data/metaset_332.csv", header = T)

rema.132 <- .runRema(m.132$yi, m.132$sei, priors, TRUE)
rema.232 <- .runRema(m.232$yi, m.232$sei, priors, TRUE)
rema.332 <- .runRema(m.332$yi, m.332$sei, priors, TRUE)

remaForest(m.132, rema.132$est$default) + ggtitle("Exlusion Criterion 132")</pre>
```

Exlusion Criterion 132

remaForest(m.232, rema.232\$est\$default) + ggtitle("Exlusion Criterion 232")

remaForest(m.332, rema.332\$est\$default) + ggtitle("Exlusion Criterion 332")

Table 2: Bayes factors for comment analyses.

	Effect Size BF			Heterogeneity BF		
	Default	Oosterwijk	Vohs	Default	Oosterwijk	Vohs
Exclusion Criterion 132	6.50	5.78	2.73	0.40	0.40	0.40
Exclusion Criterion 232	2.65	0.92	0.67	0.49	0.50	0.48
Exclusion Criterion 332	2.63	0.74	0.63	0.54	0.54	0.52

All Other Variants

```
sets <- c(112, 212, 312, 121, 221, 321, 122, 222, 322, 131, 231, 331)
rema.other <- data.frame(metaset = character(),</pre>
```

Table 3: Bayes factors for all other analyses.

	Default	Oosterwijk	Vohs
Exclusion Criterion 112	10.34	15.16	6.38
Exclusion Criterion 212	6.00	4.21	2.30
Exclusion Criterion 312	6.01	3.94	2.45
Exclusion Criterion 121	15.34	30.19	11.62
Exclusion Criterion 221	6.92	5.78	2.95
Exclusion Criterion 321	2.63	0.74	0.63
Exclusion Criterion 122	6.50	5.78	2.73
Exclusion Criterion 222	2.65	0.92	0.67
Exclusion Criterion 322	2.63	0.74	0.63
Exclusion Criterion 131	10.46	15.88	6.21
Exclusion Criterion 231	6.92	5.78	2.95
Exclusion Criterion 331	2.63	0.74	0.63

```
rema.other <- round(rema.other, 2)
rownames(rema.other) <- paste("Exclusion Criterion", sets)
colnames(rema.other) <- c("Default", "Oosterwijk", "Vohs")
apa_table(rema.other, escape = FALSE, caption = "Bayes factors for all other analyses.")</pre>
```