

Optimization for Machine Learning 08.08.2023 from 14h15 to 16h45

Duration: 150 minutes

Name:		
Student ID:		

Wait for the start of the exam before turning to the next page. This document is printed double sided, 18 pages. Do not unstaple.

- This is a closed book exam. No electronic devices of any kind.
- Place on your desk: your student ID, writing utensils, one double-sided A4 page cheat sheet if you have one; place all other personal items below your desk or on the side.
- Place out of reach: Please put your **mobile phone in flight mode** (or silent—no vibration) and put it on the desk (but out of reach—e.g. two seats to your left).
- For technical reasons, do use black or blue pens for the MCQ part, no pencils! Use white corrector if necessary.
- You find two scratch papers for notes on your desk (you can ask for more). Do not hand in scratch papers, only the answers on the exam sheets count.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien							
choisir une réponse select an a Antwort auswählen	answer ne PAS	choisir une réponse NICHT Antwort		Corriger une réponse Correct an answer Antwort korrigieren			
ce	qu'il ne faut PAS	faire what should <u>l</u>	NOT be done w	as man <u>N</u>	ICHT tun sollte		
			•				

First part, multiple choice

There is **exactly one** correct answer per question. 2 points for each correct answer.

Gradient Descent

For a differentiable function $f: \mathbb{R}^d \to \mathbb{R}$, a starting point $\mathbf{x}_0 \in \mathbb{R}^d$, and a stepsize $\gamma > 0$, the gradient descent algorithm generates a sequence $(\mathbf{x}_0, \mathbf{x}_1, \dots)$ of iterates, satisfying:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t) \,,$$

where $\nabla f(\mathbf{x})$: $\mathbb{R}^d \to \mathbb{R}^d$ denotes the *gradient* of the function f.

Question 1 For a vector $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$, consider the function $f(\mathbf{x}) = x_1^2 + 4x_1x_2 + 4x_2^2$.

Which of the following statements is true?

None of the other four choices.

Question 2 Consider the function $f: \mathbb{R} \to \mathbb{R}$, defined as $f(x) = x^2$. When running gradient descent from $x_0 \in \mathbb{R}$, with a stepsize $\gamma = \frac{1}{8}$, it holds $x_1 = x_0 - \gamma \nabla f(x) = \frac{3}{4}x_0$, and generally:

$$x_t = \left(\frac{3}{4}\right)^t x_0.$$

For a parameter $\varepsilon > 0$, we define the *iteration complexity* $\mathcal{T}_{\varepsilon}$ to be number of iterations it takes to be sure that it holds $|x_t| \leq \varepsilon$, for all $t \geq \mathcal{T}_{\varepsilon}$.

Which of the following statements is **true**?

$$\square \mathcal{T}_{\varepsilon} = \mathcal{O}\left(\frac{4}{3}\log\left(\frac{\varepsilon}{|x_0|}\right)\right)$$

$$\int_{\mathcal{E}} \mathcal{T}_{arepsilon} = rac{\left(rac{3}{4}
ight)^t}{arepsilon}$$

None of the other four choices.

$$\bigcap \ \mathcal{T}_{arepsilon} = \mathcal{O}\left(rac{1}{arepsilon}
ight)$$

$$\mathcal{T}_{\mathcal{A}} = \mathcal{O}\left(\frac{1}{\varepsilon}\right)$$
, $\mathcal{T}_{\mathcal{B}} = \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$,

where ε denotes the desired accuracy.

Which of the following statements is **true**?

Let $a \in$	$\in \mathcal{A}.$	Then it	is not	possible	that	gradient	descent	finds an	ε-accui	ate solut	tion o	of the	function a
in $\frac{42}{\sqrt{\varepsilon}}$ i	iterat	tions.											

None of the other four choices.

Let $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Then gradient descent reaches ε -accuracy strictly faster (in less iterations) on function a than on function b.

Let $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Then gradient descent reaches ε -accuracy strictly faster (in less iterations) on function b than on function a.

Question 4 For a function class \mathcal{F} of differentiable functions $f \colon \mathbb{R}^d \to \mathbb{R}$, the following inequality holds after T iterations of gradient descent (with appropriately chosen stepsize):

$$f(\mathbf{x}_T) - f^* \le \frac{A}{\sqrt{T}} + \frac{B}{T^3}$$

where $A, B \geq 0$ are parameters (depending on the objective function), $\mathbf{x}_T \in \mathbb{R}^d$ the output of the algorithm after T iterations, and f^* the optimum value of f.

After which number T of iterations does it hold $f(\mathbf{x}_T) - f^* \leq \varepsilon$, for any arbitrary $\varepsilon > 0$?

For none of the other four choices.

Convexity

Question 5 Consider the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{|x|}$, defined on the interval I = [-1, 1] (see Figure 1 on the next page). Which of the following statements is **true**?

The function f is concave in the interval I.

The function f is convex in the interval I.

The function f is smooth in the interval I.

None of the other four choices.

The function f is star convex w.r.t x = 0 in the interval I.

Figure 1: The function value $f(x) = \sqrt{|x|}$ (y-axis) on the interval $x \in [-1, 1]$ (x-axis).

Question 6 Let the differentiable function $f \colon \mathbb{R}^d \to \mathbb{R}$ be μ -strongly convex and L-smooth. Which of the following statements is **true**?

The function $g(\mathbf{x}) = f(\mathbf{x}) + L \|\mathbf{x}\|^2$ is also L-smooth.

The function $g(\mathbf{x}) = f(\mathbf{x}) - \mu \|\mathbf{x}\|^2$ is convex.

None of the other four choices.

We always have that $L \ge \mu$, and if $L = \mu$, then f must be of the form $f(\mathbf{x}) = \frac{L}{2} \|\mathbf{x} - \mathbf{b}\|^2 + c$ for some $\mathbf{b} \in \mathbb{R}^d$ and $c \in \mathbb{R}$.

Let $A \in \mathbb{R}^{d \times d}$ be a matrix. If A is negative definite, i.e. $A \prec 0$, then $g(\mathbf{x}) = f(A\mathbf{x})$ is not smooth.

Recall the notation: $A \prec 0$ means that $\mathbf{x}^{\top} A \mathbf{x} < 0$, for all $\mathbf{x} \in \mathbb{R}^d$.

Nonconvex optimization

Figure 2: The function value $f(x) = 2 - \exp(-|x|)$ (y-axis) on the interval $x \in [-4, 4]$ (x-axis).

Question 7 Define the univariate function $f(x) = 2 - \exp(-|x|)$ (see Figure 2 above). We consider (any) $x_t \in \mathbb{R}$ and $x_{t+1} = x_t - \nabla f(x_t)$. Which of the following statements is **true**?

None of the other four choices.

 $||\nabla f(x_{t+1})|| \le ||\nabla f(x_t)||$

Question 8 Consider a differentiable L-smooth function $f: \mathbb{R}^d \to \mathbb{R}$. Which of the following statements is true ?
It holds $\ \nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\ ^2 \le 2L(f(\mathbf{x}) - f(\mathbf{y}))$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$. It holds $\ \nabla f(\mathbf{y}) - \nabla f(\mathbf{x})\ ^2 \le L\ \mathbf{x} - \mathbf{y}\ ^2$, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, for $d \ge 2$, be two points such that $\ \nabla f(\mathbf{x})\ = 0$, $\ \nabla f(\mathbf{y})\ = 0$. Then it must hold $f(\mathbf{x}) = f(\mathbf{y})$. It holds $f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle - \frac{L}{2} \ \mathbf{y} - \mathbf{x}\ ^2$, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, for $d \ge 2$, be two points such that $\ \nabla f(\mathbf{x})\ = 0$, $\ \nabla f(\mathbf{y})\ = 0$. Then $\ \nabla f(\mathbf{z})\ = 0$, for all $\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$, $\lambda \in [0, 1]$.
Distributed Optimization
Question 9 Consider a distributed optimization problem of the form $f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x})$ for an integer $n \ge 1$, where each $f_i : \mathbb{R}^d \to \mathbb{R}$ is L -smooth. Let $\mathbf{x}^* \in \mathbb{R}^d$ be such that $\nabla f(\mathbf{x}^*) = 0$ (i.e. the all-0-vector). Which of the following statements is true ?
It must hold $\nabla f_i(\mathbf{x}^*) = 0$ for all $i \in [n]$.
For every pair, $i, j \in [n], i \neq j$, it must hold $\nabla f_i(\mathbf{x}^*) = -\nabla f_j(\mathbf{x}^*)$.
By the optimality condition, the point \mathbf{x}^* must be a minimizer of the function f , $f(\mathbf{x}^*) = \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$. It must hold $\ \nabla f_i(\mathbf{x}^*)\ \leq L$, for all $i \in [n]$. None of the other four choices.
Question 10 Consider a distributed convex optimization problem of the form $f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x})$ for an integer $n \geq 1$, where each $f_i \colon \mathbb{R}^d \to \mathbb{R}$ is L -smooth, f is convex, and there exists stochastic gradient oracles $\mathbf{g}^{(i)} \colon \mathbb{R}^d \to \mathbb{R}^d$ with $\mathbb{E}[\mathbf{g}^{(i)}] = \nabla f_i(\mathbf{x})$, $\forall \mathbf{x} \in \mathbb{R}^d$, $i \in [n]$ and $\mathbb{E}[\mathbf{g}^{(i)}(\mathbf{x}) - \nabla f_i(\mathbf{x}) ^2] \leq M \nabla f_i(\mathbf{x}) ^2 + \sigma^2 \mathbf{g}^2$. $\forall \mathbf{x} \in \mathbb{R}^d$, $i \in [n]$. Suppose we have n machines and each machine i has access only to $\mathbf{g}^{(i)}$. Consider the following algorithm: For a stepsize $\gamma > 0$, and $\mathbf{x}_t \in \mathbb{R}^d$,
$\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{\gamma}{ S_t } \sum_{i \in S_t} \left(\frac{1}{B} \sum_{b=1}^B \mathbf{g}_b^{(i)} \right)$
where $\mathbf{g}_b^{(i)}$ for $b=1,\ldots,B$ denote independent realizations of the random variable $\mathbf{g}^{(i)}(\mathbf{x}_t)$, $B\geq 1$ denotes the local batch size, and $S_t\subseteq [n]$ denotes a set of indices. Which of the following statements is true ?
To determine a good (maybe optimal) stepsize γ , it suffices to consider problem specific parameters (such as L, M and σ). The best stepsize does not depend on the algorithm's parameters S_t and B .
None of the other four choices.
When $S_t \neq [n]$, this algorithms suffers from drift which can be addressed by Scaffold or Prox-Skip/Scaffnew.
When $\sigma > 0$ and $S_t = [n]$, then the dominant terms (i.e. the terms decreasing slowest in T) in the convergence guarantee after T iterations depend only on the product of T and B , that is, (BT) , but not on the individual values of B or T .
When $B > 1$, this algorithm is identical to LocalSGD (when $S_t = [n]$), or Federated Averaging (when $S_t \subseteq [n]$.)

Optimization in Machine Learning

Question 11 Consider the logistic regression loss $L \colon \mathbb{R}^d \to \mathbb{R}$ for a binary classification task with data $(\mathbf{a}_i, b_i) \in \mathbb{R}^d \times \{0, 1\}$ for $i \in [n]$:

$$L(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \left(\log \left(1 + e^{\mathbf{a}_{i}^{\top} \mathbf{x}} \right) - b_{i} \mathbf{a}_{i}^{\top} \mathbf{x} \right).$$

Which of the following statements is **true**?

$$\square \nabla L(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{a}_{i} \frac{e^{\mathbf{a}_{i}^{\top} \mathbf{x}}}{1 + e^{\mathbf{a}_{i}^{\top} \mathbf{x}}} - b_{i} \mathbf{a}_{i}^{\top} \mathbf{x} \right)$$

None of the other four choices.

Question 12 Consider the least squares objective

$$f(\mathbf{x}) = \frac{1}{2} \left\| A\mathbf{x} - \mathbf{b} \right\|^2$$

for $A \in \mathbb{R}^{n \times d}$, $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{x} \in \mathbb{R}^d$, and the following algorithm: In iteration t, pick an index $i_t \in [d]$, and update:

$$s_t = \mathbf{a}_{i_t}^{\top} (\mathbf{y}_t - \mathbf{b})$$

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma s_t \mathbf{e}_{i_t}$$

$$\mathbf{y}_{t+1} = \mathbf{y}_t - \gamma s_t \mathbf{a}_{i_t}$$

for variables $\mathbf{x}_t \in \mathbb{R}^d$, $\mathbf{y}_t \in \mathbb{R}^n$ and a stepsize $\gamma > 0$. Where $\mathbf{a}_i \in \mathbb{R}^n$ denotes the *i*-th column of A and $\mathbf{e}_i \in \mathbb{R}^d$ denotes the *i*-th unit vector. One iteration of the algorithm consists of updating all three variables by the equations shown above.

Which of the following statements is **true**?

	When \mathbf{y}_0 is correctly initialized, $\mathbf{y}_0 = 0$, then this algorithm is identical to coordinate descent.
	Given an index i_t , one iteration of the algorithm can be implemented with $\mathcal{O}(d + \log n)$ arithmetic
	operations.
	Given an index i_t , one iteration of the algorithm can be implemented with $\mathcal{O}(n)$ arithmetic operations
	None of the other four choices.
Γ	When \mathbf{x}_0 is correctly initialized, $\mathbf{x}_0 = A^{T} \mathbf{v}_0$, then this algorithm is identical to coordinate descent.

Second part, true/false questions

There is **exactly one** correct answer per question. 1 point for each correct answer.

Question 13 (Lipschitz) Let L_i denote the Lipschitz constant of a Then the function $f(\mathbf{x}) \coloneqq \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x})$ is $\left(\frac{1}{n} \sum_{i=1}^{n} L_i\right)$ -smooth.	function $f_i \colon \mathbb{R}^d \to \mathbb{R}$ for $i \in [n], n \ge 1$.
TRUE FALSE	
Question 14 (Convexity) Let $g: \mathbb{R}^d \to \mathbb{R}$ be a convex and nonnegative $f(\mathbf{x}) = g(\mathbf{x})^2$ is also convex.	ative function (i.e. $g(\mathbf{x}) \geq 0, \forall \mathbf{x} \in \mathbb{R}^d$).
TRUE FALSE	
Question 15 (Variance reduction) Consider a convex and smooth fast worse oracle complexity than SVRG when the target accuracy ε is	
TRUE FALSE	
Question 16 (Adaptive methods) Let $f: \mathbb{R}^d \to \mathbb{R}$ be L-smooth unbiased stochastic gradient of $\nabla f(\mathbf{x}_t)$ with $ \mathbf{g}_t \leq B$. Recall that the is defined as $\gamma_t = \frac{c}{\sqrt{\varepsilon^2 + \sum_{i=0}^t \mathbf{g}_i ^2}}$. For any fixed c and ε , AdaGrad can be defined as c and c are also an analysis and c are also an analysis and c	e stepsize of AdaGrad (scalar version)
TRUE FALSE	
Question 17 (Proximal method) Consider the composite objective $h: \mathbb{R}^d \to \mathbb{R}$ are convex and g is differentiable. A well known property a minimzer \mathbf{x}^* , a gradient step from \mathbf{x}^* stays at \mathbf{x}^* . This does not $\mathbf{x}^* \neq \operatorname{prox}_{h,\gamma}(\mathbf{x}^* - \gamma \nabla g(\mathbf{x}^*))$ for some stepsize $\gamma > 0$, where $\mathbf{x}^* = \arg g(\mathbf{x}^*)$	by of gradient descent on f is that for hold for a proximal gradient step, i.e.
TRUE FALSE	
Question 18 (Nonconvex objective) Let $f: \mathbb{R}^d \to \mathbb{R}$ be a smoothen gradient descent converges to the critical point of f which is also nonconvex (but still smooth), then gradient descent might not converges	o the global minima. However, if f is
TRUE FALSE	
Question 19 (Compression) Consider $f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x})$ where entiable function. Let \mathcal{C}_{δ} be a δ -compressor, i.e. $\mathbb{E} \ \mathcal{C}_{\delta}(\mathbf{x}) - \mathbf{x}\ ^2 \leq \min$ minimizer of f , then $\mathbb{E} \left[\sum_{i=1}^{n} \mathcal{C}_{\delta}(\nabla f_i(\mathbf{x}^{\star})) \right] = 0$.	e each $f_i : \mathbb{R}^d \to \mathbb{R}$ is a convex differ- (1 - δ) $\ \mathbf{x}\ ^2$, $\forall \mathbf{x} \in \mathbb{R}^d$. Let \mathbf{x}^* be a
TRUE FALSE	

Answer in the space provided! Your answer must be justified with all steps. Do not cross any checkboxes, they are reserved for correction.

Quadratic Upper Bounds

Recall that a function $f \colon \mathbb{R}^d \to \mathbb{R}$ is L-smooth if f is differentiable and

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|^2 , \qquad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d .$$

Question 20: 3 points. Recall the gradient descent algorithm $\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t)$ (as described earlier). In the lecture we have proven that gradient descent converges for the stepsize $\gamma = \frac{1}{L}$. What happens when using other stepsizes?

Concretely, which is the largest value of $\alpha \geq 0$ for which the decrease condition

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \alpha \|\nabla f(\mathbf{x}_t)\|^2$$

holds, when gradient descent is used with the step size $\gamma = \frac{1}{2L}$ instead?

(If no positive α exists, justify your answer by giving an example function.)

Question 21: 2 points. Your friend Alice has an L-smooth function f that she wants to minimize. Her implementation of gradient descent does only work support either the stepsize $\gamma = \frac{1}{2L}$ or the stepsize $\gamma = \frac{3}{2L}$. Which of these two stepsizes would you recommend her to use in practice, and why?

Extragradient Method and Relative Lipschitzness

In this subsection, we consider a *Variational Inequality*. Suppose we are given an operator $g: \mathbb{R}^d \to \mathbb{R}^d$, we say that \mathbf{x}^* is a solution to the variational inequality if

$$\langle g(\mathbf{x}^*), \mathbf{x}^* - \mathbf{x} \rangle \le 0, \forall \mathbf{x} \in \mathbb{R}^d$$
.

For some tolerance ε , we want to design an algorithm that outputs some $\hat{\mathbf{x}}$ such that $\langle g(\hat{\mathbf{x}}), \hat{\mathbf{x}} - \mathbf{x} \rangle \leq \varepsilon, \forall \mathbf{x} \in \mathbb{R}^d$. We introduce a class of operators for which this task is easy:

Definition A We say that an operator $g: \mathbb{R}^d \to \mathbb{R}^d$ is L-relatively Lipschitz if for every three $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^d$, we have:

$$\langle g(\mathbf{x}) - g(\mathbf{y}), \mathbf{x} - \mathbf{z} \rangle \le \frac{L}{2} \left(\|\mathbf{x} - \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{z}\|^2 \right).$$

Definition B We say that an operator $g: \mathbb{R}^d \to \mathbb{R}^d$ is monotone if

$$\langle g(\mathbf{x}) - g(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge 0, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$$
.

Question 22: 3 points. Prove that if the operator g is L-Lipschitz, then g is also L-relatively Lipschitz.

Prove that if a function $f: \mathbb{R}^d \to \mathbb{R}$ is convex, then $g(\mathbf{x}) := \nabla f(\mathbf{x})$ is monotone.

Question 24: 7 points. Consider Algorithm 1 below. This is called the extragradient method. Assume that g is L-relatively Lipschitz monotone. Show that the iterates $\{\mathbf{y}_t\}$ satisfy for all $\mathbf{u} \in \mathbb{R}^d$:

$$\sum_{t=0}^{T-1} \langle g(\mathbf{y}_t), \mathbf{y}_t - \mathbf{u} \rangle \le \frac{L}{2} \|\mathbf{x}_0 - \mathbf{u}\|^2.$$

Hint: Consider $\langle g(\mathbf{x}_t), \mathbf{y}_t - \mathbf{x}_{t+1} \rangle$ and $\langle g(\mathbf{y}_t), \mathbf{x}_{t+1} - \mathbf{u} \rangle$. Recall the identity $\langle \mathbf{a} - \mathbf{b}, \mathbf{b} - \mathbf{c} \rangle = \frac{1}{2} (\|\mathbf{c} - \mathbf{a}\|^2 - \|\mathbf{c} - \mathbf{b}\|^2 - \|\mathbf{b} - \mathbf{a}\|^2)$.

Algorithm 1 Extragradient method

- 1: **Input:** initial point \mathbf{x}_0 , L-relatively Lipschitz mootone $g \colon \mathbb{R}^d \to \mathbb{R}^d$
- 2: **for** $r = 0, 1, 2, \dots, T$ **do**
- 3: $\mathbf{y}_t \leftarrow \mathbf{x}_t \frac{1}{L}g(\mathbf{x}_t)$
- 4: $\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t \frac{1}{L}g(\mathbf{y}_t)$
- 5: end for

Question 25: 1 point. Given a convex L-smooth function $f: \mathbb{R}^d \to \mathbb{R}$, show that you can minimize f using the extragradient method.

When Overparameterization Meets Local Stepsizes

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a function of the form $f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}), n > 1$, and each $f_i(\mathbf{x}) := \frac{1}{2} (\mathbf{x} - \mathbf{b})^T \mathbf{A}_i (\mathbf{x} - \mathbf{b})$ where $\mathbf{b} \in \mathbb{R}^d$ and $\mathbf{A}_i \in \mathbb{R}^{d \times d}$ for each $i \in [n]$ is a positive definite **diagonal** matrix.

Question 26: 4 points. Show that each $f_i(\mathbf{x})$ is L_i -smooth and μ_i -strongly convex and therefore $f(\mathbf{x})$ is L-smooth and μ -strongly convex. Give the closed form of the parameters μ_i , μ , L_i , and L.

Question 27: 4 points. We are given n nodes where each node i has access to $\nabla f_i(\mathbf{x})$ for any $\mathbf{x} \in \mathbb{R}^d$ (where the f_i are still as defined in the previous question).

Consider full-batch gradient descent with the classical **constant** stepsize $\frac{1}{L}$, i.e.,

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{Ln} \sum_{i=1}^n \nabla f_i(\mathbf{x}_t) .$$

Suppose $\|\mathbf{x}_0 - \mathbf{x}^*\|^2 = 1$. How many iterations does gradient descent need to have $||\mathbf{x}_t - \mathbf{x}^*|| \le \varepsilon$? (show the dependence on μ , L and ε .)

Consider now full-batch gradient descent with the **local** stepsize $\frac{1}{L_i}$, i.e.

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{n} \sum_{i=1}^n \frac{1}{L_i} \nabla f_i(\mathbf{x}_t).$$

Can this algorithm converge? If yes, please prove and show the convergence rate. If no, please give an example.

Question 29: 2 points. Are there functions for which local stepsizes can be arbitrarily better than constant stepsize? Can you give an example?

