

Facultatea de Automatică si Calculatoare Automatică și Informatică Aplicată

ELEMENTE DE INGINERIE MECANICĂ

Proiect

Student: Molnár Zsolt

Grupa: 30123

An universitar: 2022-2023

Îndrumător:

Prof. dr. ing. Tătar Mihai Olimpiu

Cuprins

3.	Tema proiectului
4.	Structura proiectului
5.	Reductorul
10.	Mecanismul cu camă și tachet de translație
18.	Mecanismul pentru transmiterea intermitenta a mișcării
25.	Bibliografie

Tema proiectului

Proiectarea unui sistem mecanic ce are in componenta un reductor,un mecanism cu cama si tachet de translație și un mecanism pentru transmiterea intermitenta a mișcării (mecanism cu cruce de Malta).

Structura proiectului

Reductorul:

- 1. Calculul elementelor geometrice ale angrenajului cilindric cu dinți drepți cunoscându-se:
 - nr. ord. al studentului din catalog: *i* = 13;
 - turația motorului de antrenare: $n_m = n_1 = 1460$ [rot/min];
 - modulul m = 3.5 [mm];
 - numerele de dinți ale roților dințate:
 - $z_1 = 34$;
 - $z_2 = 42$;
- 2. Desen

Mecanismul cu camă și tachet de translație:

- 3. Să se realizeze analiza cinematică a mecanismului cu cama și tachet de translație (diagramele de variație ale spațiului $s(\varphi)$, vitezei reduse $v/\omega(\varphi)$ și accelerației reduse $a/\omega^2(\varphi)$) și profilul camei, cunoscându-se:
 - cursa maximă a tachetului h = 14.5 [mm];
 - unghiurile de rotatieaferente fazelor de functionare:

```
(\varphi_u = 90, \ \varphi_R = 80, \ \varphi_c = 68, \ \varphi_r = 122);
```

- legile de mișcare: la urcare *Cosinusoidală*; la coborâre *Sinusoidală*;
- unghiului de presiune: $\alpha = 45^{\circ}$;

Mecanismul pentru transmiterea intermitenta a mișcării:

- 4. Elemente teoretice și de calcul. Cinematica mecanismului. Se cunosc:
 - turația elementului de antrenare/conducător ($n_6 = n_2 = n_3$);
 - numărul de antrenori: $n_a = 2$;
 - numărul de canale ale Crucii de Malta: z = 4;
 - -distanța dintre centrele de rotație(O₆O₇): L = [mm];
- 5. Desen mechanism
- Diagrama de variație a vitezei unghiulare și a accelerației unghiulare la Crucea de Malta
- 7. Bibliografie

1. Calculul elementelor geometrice ale angrenajului

Nr.crt	Demunirea	Sim-	Dimen-	Relația de calcul	Valoarea
1	mărimii Numărul de	bol	siune		24
1.	dinți	Z ₁	-	-	34
		Z ₂	-	-	42
2.	Coeficienții de plasare a	X ₁	-	Se alege din tabelul 9.2 sau din conturele de blocare in funcție de ce se urmărește a	1
	profilurilor			fi îmbunătățit la angrenaj	
		X ₂	-		1.16
3.	Modulul	m	mm	Se rotunjește conform STAS 822-61	3.5
4.	Unghiul de angrenare	α	grade	$inv\alpha = inv\alpha 0 + 2\frac{x_1 + x_2}{z_1 + z_2} tan\alpha 0$	26.39°
	6 6			unde α0=20°	
5.	Coeficientul de modificare a distanței	у	-	$y = \frac{z_1 + z_2}{2} \left(\frac{\cos \alpha_0}{\cos \alpha} - 1 \right)$	1.8624
6.	Distanța	а	mm	$z_1+z_2\cos\alpha_0$	139.5184
0.	axială			$a=m{2}{cos\alpha}$	133.3101
7.	Coeficientul de scurtare a înălțimii dinților	ψ	-	$\psi = x1 + x2 - y$	0.2976
8.	Înălțimea dinților	h	mm	h = m(2.25 – ψ)	6.8334
9.	Diametrul cercurilor	d1	mm	d ₁ =mz ₁	119
	de divizare	d2	mm	d ₂ =mz ₂	147
10.	Diametrul				
	cercurilor de bază	d_{b_1}	mm	d_{b_1} = mz ₁ cos α_0	111.8234
		d_{b_2}	mm	d_{b_2} = mz ₂ cos α_0	138.1348
11.	Diametrul cercurilor	d_{w_1}	mm	$d_{w_1} = mz_1 \frac{\cos \alpha 0}{\cos \alpha}$	124.8323
	de rostogolire	d_{w_2}	mm	$d_{w_2} = mz_2 \frac{\cos \alpha 0}{\cos \alpha}$	154.2046
12.	Diametrul	d_{a_1}	mm	$d_{a_1} = m(z_1 + 2 + 2x_1 - 2\psi)$	130.9168
	cercurilor de cap	d_{a_2}	mm	$d_{a_2} = m(z_2 + 2 + 2x_2 - 2\psi)$	160.0368

13.	Diametrul cercurilor	d _{f1}	mm	$d_{f_1} = m(z_1-2+2x_1-0.5)$	117.2500
	de picior	d _{f2}	mm	$d_{f_2} = m(z_2-2+2x_2-0.5)$	146.3700
14.	Arcele dinților pe	S ₁	mm	$S_1 = \frac{\pi m}{2} + 2mx_1 \operatorname{tg} \alpha_0$	8.0456
	cercurile de divizare	S ₂	mm	$S_2 = \frac{\pi m}{2} + 2mx_2 \operatorname{tg} \alpha_0$	8.4532
15.	Gradul de acoperire	ε	-	$\varepsilon = \frac{\sqrt{r_{a2}^2 - r_{b_2}^2} + \sqrt{r_{a1}^2 - r_{b_1}^2} - a \sin \alpha}{\pi m \cos \alpha 0}$	1.2032
16.	Corzile	$\overline{S_{C_1}}$	mm	$\overline{S_{C_1}} = m(\frac{\pi}{2}\cos^2\alpha_0 + x_1\sin2\alpha_0)$	7.1044
	constante	$\overline{S_{C_2}}$	mm	$\overline{S_{C_2}} = m(\frac{\pi}{2}\cos^2\alpha_0 + x_2\sin2\alpha_0)$	7.4644
17.	Inaltimea la coarda	$\overline{h_{c_1}}$	mm	$\overline{h_{c_1}} = m(x_1 \cos^2 \alpha_0 + 1 - \Psi - \frac{\pi}{8} \sin 2\alpha)$	4.4545
	constanta	$\overline{h_{c_2}}$	mm	$\overline{h_{c_2}} = m(x_2 \cos^2 \alpha_0 + 1 - \Psi - \frac{\pi}{8} \sin 2\alpha)$	4.9490
18.	Lungimile peste dinti	w_{N_1}	mm	$w_{N_1} = [(N_1 - 0.5) - \pi + 2x_1 tg \alpha_0 + z_1 \text{ inv } \alpha_0] \cos \alpha_0$	29.8920
				N ₁ =3 conform tabelului 9.3 $w_{N_2} = [(N_2 - 0.5) - \pi + 2x_2 tg \alpha_0]$	
				$ w_{N_2} - \lfloor (N_2 - 0.5) - n + 2\lambda_2 t g u_0 + z_2 \operatorname{inv} \alpha_0 \cos \alpha_0 $	
		w_{N_2}	mm	N_2 =3 conform tabelului 9.3	92.6619
				142-3 comorni tabelalai 3.3	

Codul din Matlab:

```
%% Reductorul
%Numarul de ordine i:
i=13
%Turatie motorului de antrenare:
ni=(55+7*i)*10 %[rad/min]
%1. Numerele de dinti ale rotii dintate:
z1=34
z2 = 42
%2. Coeficentii de deplasare a profilurilor
x2=1.16
%3. Modulul:
m=3.5 \%[mm]
%4. Unghiul de angrenare
alfa0=(20*pi)/180
invalfa0=tan(alfa0)-alfa0
invalfa=invalfa0+(2*(x1+x2)*tan(alfa0))/(z1+z2)
alfa=(26.39*pi)/180
%5. Coeficientul de modificare a distanteti dintre axe:
y=((z1+z2)*(cos(alfa0)/cos(alfa)-1))/2
%6. Distnata axiala:
a=(m*(z1+z2)*cos(alfa0))/(2*cos(alfa)) %[mm]
%7. Coeficientul de scurtare a inaltimii dintilor:
psi=x1+x2-y
%8. Inlatimea dintilor:
h=m*(2.25-psi) %[mm]
%9. Diametrul cercurilor de divizare:
d1=m*z1 %[mm]
d2=m*z2 %[mm]
%10. Diametrul cercurilor de baza:
db1=m*z1*cos(alfa0) %[mm]
db2=m*z2*cos(alfa0) %[mm]
%11. Diametrul cercurilor de rostogolire:
dw1 = m*z1*cos(alfa0)/cos(alfa) %[mm]
dw2 = m*z2*cos(alfa0)/cos(alfa) %[mm]
%12. Diametrul cercurilor de cap:
da1 = m*(z1+2+2*x1-2*psi) %[mm]
da2 = m*(z2+2+2*x2-2*psi) %[mm]
%13. Diametrul cercurilor de picior:
df1 = m*(z1-2+2*x1-0.5) %[mm]
df2 = m*(z2-2+2*x2-0.5) %[mm]
```

```
%14. Arcele dintilor pe cercurile de divizare:
s1=pi*m/2+2*m*x1*tan(alfa0) %[mm]
s2=pi*m/2+2*m*x2*tan(alfa0) %[mm]
%15. Gradul de acoperire:
epsilon=(sqrt(ra2^2 - rb2^2) + sqrt(ra1^2-rb1^2) - a*sin(alfa))/(pi*m*cos(alfa0))
%16. Corzile constante:
sc1 = m*(pi/2 * cos(alfa0)^2 + x1*sin(2*alfa0)) %[mm]
sc2 = m*(pi/2 * cos(alfa0)^2 + x2*sin(2*alfa0)) %[mm]
%17. Inaltimea la coarda constanta:
hc1 = m*(x1*(cos(alfa0)^2) + 1 - psi - pi/8 * sin(2*alfa)) %[mm]
hc2 = m*(x2*(cos(alfa0)^2) + 1 - psi - pi/8 * sin(2*alfa)) %[mm]
%18. Lungimile peste dinti:
N1 = 3;
N2 = 9;
WN1 = m * ((N1-0.5)*pi+2*x1*tan(alfa0)+z1*invalfa0)*cos(alfa0) %[mm]
WN2 = m * ((N2-0.5)*pi+2*x2*tan(alfa0)+z2*invalfa0)*cos(alfa0) %[mm]
```

2. Desen

Mecanismul cu cama si tachet de translatie

- cursa maximă a tachetului h = 14.5 [mm];

- unghiurile de rotație aferente fazelor de funcționare:

 $\phi u = 90 - la urcare$

 $\dot{\phi}$ c = 122 - la coborâre

 $\phi R = 80$ - repaus superior

 $\phi r = 68 - repaus inferior$

- legile de miscare:

la urcare: cosinusoidală;

la coborâre: sinusoidală;

- unghiului de presiune: $\alpha = 45^{\circ}$.

Analiza cinematica

Denumire	Simbol	Dimensiune	Relație de	Valoare
mărime			calcul	
Număr de	i	-	-	13
ordine				
Număr de dinți	z 1	-	-	34
	z2	-	-	42
Turație motor	n1	rot/min	n1 =	1460
			(55+7*i)*10	
Turația de iesire	n2	Rot/min	n2 = z1/z2 *	1181.90
din reductor			<i>n</i> 1	
Raport de	i1,2	-	I1,2=+-z2/z1	+-1.2353
transmitere				
Înălțimea	h	mm	h = 10 + 0.2*i	14.5
maximă				
Unghiul fazei-la	φu	grade	$\phi u = 77 + i$	90°
urcare				
Unghiul fazei-la	фс	grade	$\phi c = 360 - \phi u -$	122°
coborâre			φR - φr	
Unghiul fazei-	φR	grade	-	80°
repaus superior				
Unghiul fazei-	φr	grade	-	68°
repaus inferior				
Unghiul de	α	grade	-	45°
presiune				

Codul din Matlab

```
i=13
 %2. Numerele de dinti ale rotii dintate:
 z1=34
 z2=42
 %3. Turatie motorului:
 n1=(55+7*i)*10 %[rad/min]
 %4. Turatia de iesire din reductor
 n2=z1/z2*n1
 %5. Raport de transmitere
 i1=z2/z1
 i2=-z2/z1
 %6. Inaltimea maxima
 h=8+0.5*i
 %7. Unghiul fazei la urcare
 phiu=77+i;
 %8. Unghiul fazei la coborare
 phic=360-phiu-phiR-phir
 %9. Unghiul fazei repaus superior
 phiR=80
 %10. Unghiul fazei repaus inferior
 phir=68
 %11. Unghiul de presiune
 alpha=(45*pi)/180
```

Legile de mișcare

La urcare - cosinus

```
Spaţiul: S = C_1 \cdot \cos(k \cdot \varphi) + C_2 \cdot \varphi + C_3
Viteza redusă: \frac{v}{\omega} = -k \cdot C_1 \cdot \sin(k \cdot \varphi) + C_2
Acceleratia redusă: \frac{a}{\omega^2} = -k^2 \cdot C_1 \cdot \cos(k \cdot \varphi)
Condiţiile de limită iniţială: \varphi = 0; S = 0; v = 0; Condiţiile de limită finală: \varphi = \varphi_u; S = h; v = 0;
```

Constanta k	ku	-	$\frac{\pi}{}$	0,0349
la urcare			$arphi_u$	
Constanta	C1u	-	h	-7.2500
C1 la			$-\frac{1}{2}$	
urcare				
Constanta	C2u	-	0	0
C2 la				
urcare				
Constanta	C3u	-	h	7.2500
C3 la			$\overline{2}$	
urcare				

```
%%Legile de miscare
phi=0:5:90
ku = pi/phiu
C1u = -h/2
C2u = 0
C3u = h/2
%Spatiul
Su = @(phi)(C1u*cos(ku*phi) + C2u*phi + C3u)
plot(phi, Su(phi)), grid, title('Spatiul la urcare')
ylabel('s_urcare[mm]'), xlabel('phi[grade]')
%Viteza redusa
vu = @(phi)(-ku*C1u*sin(ku*phi)+C2u)
plot(phi, vu(phi)), grid, title('Viteza redusa la urcare')
ylabel('v_urcare[m/s]'), xlabel('phi[grade]')
%Acceleratia redusa
au = @(phi)(-ku^2*C1u*cos(ku*phi))
plot(phi, au(phi)), grid, title('Acceleratia redusa la urcare')
ylabel('a_urcare[m/s^2]'), xlabel('phi[grade]')
```


La coborâre - sinus

```
Spaţiul: S = C_1 \cdot \sin(k \cdot \varphi) + C_2 \cdot \varphi + C_3
Viteza redusă: \frac{v}{\omega} = k \cdot C_1 \cdot \cos(k \cdot \varphi) + C_2
Acceleratia redusă: \frac{a}{\omega^2} = -k^2 \cdot C_1 \cdot \sin(k \cdot \varphi)
Condiţiile de limită iniţială: \varphi = 0; S = 0; v = 0; Condiţiile de limită finală: \varphi = \varphi_c; S = h; v = 0;
```

Constanta k la coborare	kc	-	$\frac{2\pi}{\varphi_c}$	0.0515
Constanta C1 la coborare	C1c	-	$\frac{h}{2\pi}$	2.3077
Constanta C2 la coborare	C2c	-	$rac{-h}{arphi_c}$	-0.1189
Constanta C3 la coborare	C3c	-	h	14.5000

```
%%La coborare
phi = 0:5:120
kc = 2*pi/phic
C1c = h/(2*pi)
C2c = -h/phic
C3c = h
%Spatiul
Sc = @(phi)(C1c*sin(kc*phi) + C2c*phi + C3c)
plot(phi, Sc(phi)), grid, title('Spatiul la coborare')
ylabel('s_coborare[mm]'), xlabel('phi[grade]')
vc = @(phi)(kc*C1c*cos(kc*phi)+C2c)
figure
plot(phi, vc(phi)), grid, title('Viteza redusa la coborare')
ylabel('v_coborare[m/s]'), xlabel('phi[grade]')
%Acceleratia redusa
ac = @(phi)(-kc^2*C1c*sin(kc*phi))
plot(phi, ac(phi)), grid, title('Acceleratia redusa la coborare')
ylabel('a_coborare[m/s^2]'), xlabel('phi[grade]')
```


Mecanismul pentru transmiterea intermitenta a mișcării:

1. Numărul de ordine din catalog

i=13

2. Turația motorului de antrenare

 $n_i = (55+7*i)*10$

 $n_i = 1460 \text{ [rot/min]}$

3. Distanta dintre centrele de rotație

L=6.0 [cm] = 60 [mm]

4. Numărul de antrenori

na = 2

5. Numărul de canale ale crucii de Malta

z = 4

Nr.crt.	Denumirea marimii	Formule de calcul	Valori rezultate
1.	Viteza unghiulară a elementului conducător	$\omega_1 = \frac{\pi n_1}{30}$	123.7688
2.	Constanta mecanismului cu cruce de Malta	$\lambda = \frac{R_1}{L} = \sin \varphi_2 = \sin \frac{\pi}{z}$	0.7071
3.	Lungimea bratului de antrenare (raza elementului de antrenare)	$R_1 = L\sin\varphi_2 = L\sin\frac{\pi}{z}$	42.4264
4.	Timpul de miscare in care elementul conducator antreneaza elementul condus	$t_{\rm m} = \frac{2\varphi_1}{\omega_1} = \frac{\pi\left(1 - \frac{2}{z}\right)}{\omega_1}$	0.0127
5.	Timpul de repaus al elementului condus	$t_{\rm r} = \frac{2\pi - 2\varphi_1}{\omega_1} = \frac{\pi\left(1 + \frac{2}{z}\right)}{\omega_1}$	0.0381
6.	Timpul de rotatie completa al elementului condus	$T = t_{\rm m} + t_{\rm r} = \frac{2\pi}{\omega_1}$	0.0508
7.	Coeficientul de miscare	$k_m = \frac{t_m}{T} = \frac{1}{2} - \frac{1}{z}$	0.2500

8.	Coeficientul de repaus	$k_{\mathrm{r}} = \frac{t_r}{T} = \frac{1}{2} + \frac{1}{z}$	0.7500
9.	Coeficientul timpului de lucru al mecanismului k	$k = \frac{k_m}{k_r} = \frac{z - 2}{z + 2}$	0.3333

Nr.	Denumirea mărimii	Formule de calcul
1	Unghiul de rotație al elementului condus	$\varphi_2 = arctg \left(\frac{\lambda \sin \varphi_1}{1 - \lambda \cos \varphi_1} \right)$
2	Viteza unghiulară a elementului condus	$\omega_2 = \frac{\lambda (\cos \varphi_1 - \lambda)}{1 - 2\lambda \cos \varphi_1 + \lambda^2} \omega_1$
3	Accelerația unghiulară a elementului condus	$\varepsilon_2 = -\frac{\lambda (1 - \lambda^2) \sin \varphi_1}{(1 - 2\lambda \cos \varphi_1 + \lambda^2)^2} \omega_1^2$

Codul din Matlab

```
L=60 %[mm]
z1=34
z2=42
%numarul de ordine i:
i=13
%numarul de antrenori:
%numarul de canale:
ni=(55+7*i)*10 %[rad/min]
%turatia motorului ni este egal cu n1:
n1=ni
n2=n1*z1/z2
% n3 turatia antrenorului
n3=n2
%1.Viteza unghiulara a elementului conducator:
w1=pi*n2/30
%2.Constanta mecanismului cu cruce de Malta:
lambda=sin(pi/z)
```

```
%3.Lungimea bratului de antrenare(raza elementului de antrenare):
R1=L*sin(pi/z)
%4.Timpul de miscare in care elementul conducator antreneaza elementul
%condus:
tm=(pi*(1-2/z))/w1
%5.Timpul de repaus al elementului condus:
tr=(pi*(1+2/z))/w1
%6.Timpul de rotatie completa:
T=tm+tr
%7.Coeficientul de miscare km:
km=tm/T
%8.Coeficientul de repaus kr:
kr=tr/T
%9.Coeficientul timpului de lucru al mecanismului k:
k=km/kr
```

```
%%
phi = -pi/2:0.1:pi/2
%unghiul de rotatie al antrenorului:
phi1=-pi/2:0.01:pi/2
%unghiul de rotatie al elem condus:
phi2=(zeros(length(phi),1));
%acceleratia unghiulara a elem condus:
eps2=(zeros(length(phi),1));
%viteza unghiulara a elementului condus:
w2=(zeros(length(phi),1));
w2max=(lambda/(1-lambda))*w3
epsi2=-w3^2*tan(pi/z)
for i=1:length(phi1)
   phi2(i)=atan((lambda*sin(phi1(i)))/(1-lambda*cos(phi1(i))));
   eps2(i) = -((lambda*(1-lambda^2)*sin(phi1(i)))/((1-2*lambda*cos(phi1(i))+lambda^2)^2))*w3^2;
   \label{eq:w2(i)=(lambda*(cos(phi1(i))-lambda)/(1-2*lambda*cos(phi1(i))+lambda^2))*w3;} \\
end
figure
figure
%diagrama de variate a acceleratiei unghiulare
plot(phi1,phi2)
grid
xlabel('phi 1')
ylabel('phi_2')
title('Unghi de rotatie')
figure
%diagrama de variate a acceleratiei unghiulare
plot(phi1,eps2)
grid
xlabel('phi_1')
ylabel('epsilon_2=f(phi_1)[rad/s]')
title('Diagrama de variatie a acceleratiei unghiulare')
%diagrama de variatie a vitezei unghiulare:
figure
plot(phi1,w2)
grid
```

xlabel('phi_1')

ylabel('omega_2=f(phi_1)[rad/s]')

title('Diagrama de variatie a vitezei unghiulare')

Desen

Bibliografie

- -Elemente de inginerie mecanică, Îndrumător de laborator, partea I, edit. U.T.PRESS, 2013, autor Mihai Olimpiu Tatar -Seminarii și cursuri EIM
- -Documentație Proiect EIM part I.pdf