Geography-Aware Self-Supervised Learning

Kumar Ayush*, Burak Uzkent*, Chenlin Meng*, Kumar Tanmay, Marshall Burke, David Lobell, Stefano Ermon

Introduction

Self-supervised learning methods such as MoCo-v2 have shown promising results in capturing **good** representations.

One criterion: how linearly separable -- classification accuracy

Introduction

MLP MLP MLP MLP **CNN CNN** CNN CNN augmentation

Contrastive Learning based Self-Supervised Learning

SOTA on various Computer Vision Tasks

PASCAL VOC

However!

Functional Map of the World Dataset (fMoW)

How can we address this?

Spatially Aligned Temporal Data

Number of Temporal Views Distribution 25% 20% 20% 15% 3 5 7 9 11 13 15 17 19 20Number of Temporal Views

Functional Map of the World (fMoW)

Contrastive Learning

Distributions of Images in fMoW

Clustering

Clustering on fMoW

Proposed Framework

Combining Geo-location
Classification and
Temporal Contrastive
Learning Loss

Results

	Backbone	F1-Score ↑ (Frozen/Finetune)	Accuracy ↑ (Frozen/Finetune)
Sup. Learning (IN wts. init.)*	ResNet50	-/64.72	-/69.07
Sup. Learning (Scratch)*	ResNet50	-/64.71	-/69.05
Geoloc. Learning*	ResNet50	48.96/52.23	52.40/56.59
MoCo-V2 (pre. on IN)	ResNet50	31.55/57.36	37.05/62.90
MoCo-V2	ResNet50	55.47/60.61	60.69/64.34
MoCo-V2+Geo	ResNet50	61.60/66.60	64.07/69.04
MoCo-V2+TP	ResNet50	64.53/67.34	68.32/71.55
MoCo-V2+Geo+TP	ResNet50	63.13/66.56	66.33/70.60

Experiments on fMoW on classifying single images. Frozen corresponds to linear classification on frozen features. Finetune corresponds to end-to-end finetuning results for the fMoW classification.

Results

pre-train	$AP_{50} \uparrow$	
Random Init.	10.75	
Sup. Learning (IN wts. init.)	14.44	
Sup. Learning (Scratch)	14.42	
MoCo-V2	15.45 (+4.70)	
MoCo-V2-Geo	15.63 (+4.88)	
MoCo-V2-TP	17.65 (+6.90)	
MoCo-V2-Geo+TP	17.74 (+6.99)	

pre-train	mIOU ↑
Random Init.	74.93
Imagenet Init.	75.23
Sup. Learning (IN wts. init.)	75.61
Sup. Learning (Scratch)	75.57
MoCo-V2	78.05 (+3.12)
MoCo-V2-Geo	78.42 (+3.49)
MoCo-V2-TP	78.48 (+3.55)
MoCo-V2-Geo+TP	78.51 (+3.58)

Object Detection Results on xView

Segmentation Results on SpaceNet

pre-train	Top-1 Accuracy ↑	
Random Init.	51.89	
Imagenet Init.	53.46	
Sup. Learning (IN wts. init.)	54.67	
Sup. Learning (Scratch)	54.46	
MoCo-V2	55.18 (+3.29)	
MoCo-V2-Geo	58.23 (+6.34)	
MoCo-V2-TP	57.10 (+5.21)	
MoCo-V2-Geo+TP	57.63 (+5.74)	

Land Cover Classification on NAIP dataset

GeoImageNet

37.303518, -121.897773, San Jose, United States, California, Santa Clara

10.595525, 76.041355, Guruvayoor, India, Kerala, Thrissur

-18.646245, 24.614868, Botswana, Chobe

21.881018, -102.275360, Aguascalientes, México, Aguascalientes, Aguascalientes

37.345989, -77.645680, Beach, United States, Virginia, Chesterfield

-45.829337, 170.730800, Te Matai, New Zealand, Otago

- We extract the geo-location information of ImageNet images using FLICKR API.
- We were able to find **543,435 images** with their **associated coordinates** across **5150 class** categories.
- This dataset is more challenging than ImageNet-1k as it is highly imbalanced and contains about 5×
 more classes.

Distributions of Images in GeoImageNet

Clustering on GeoImageNet

Results

	Backbone	Top-1 (Accuracy) ↑	Top-5 (Accuracy) ↑
Sup. Learning (Scratch)	ResNet50	35.04	54.11
Geoloc. Learning	ResNet50	22.26	39.33
MoCo-V2	ResNet50	38.51	57.67
MoCo-V2+Geo	ResNet50	39.96	58.71

Experiments on GeolmageNet.

We divide the dataset into 443,435 training and 100,000 test images across 5150 classes. We train MoCo-V2 and MoCo-V2+Geo for 200 epochs whereas Sup. and Geoloc. Learning are trained until they converge.

Conclusion

We close the gap between contrastive and supervised learning on various tasks for remote sensing and other geo-tagged image datasets like GeoImagenet.

We leverage **spatially aligned images** over time to construct **temporal positive pairs** in contrastive learning and **geo-location** to design pre-text tasks.

Thank You!

Website: https://geography-aware-ssl.github.io/

Paper Link: https://arxiv.org/pdf/2011.09980.pdf

Code: https://github.com/sustainlab-group/geography-aware-ssl

Contact: {kayush, buzkent, chenlin}@cs.stanford.edu

