Cosmology, Black Holes and Gravity Homework 4 due Mon, Dec. 9

Problem 1 – Reionization: Gunn–Peterson Bound on Neutral Hydrogen

Consider a photon emitted with wavelength $\lambda_{\alpha}=1200\text{Å}$ by a quasar at z=3. Assume that all the hydrogen in the Universe is in neutral form, and calculate the probability τ_{α} that this photon is absorbed on its way to us. (Hint: you have to integrate over redshift, similar to the calculation of the electron scattering optical depth from reionization, which I discussed in class). Assume, for simplicity, a flat $\Omega_m=1$ universe, with $H_0=72$ km/s/Mpc, $\Omega_b=0.04$, and a hydrogen mass fraction $Y_H=0.76$. Feel free to either look up the Lyman α absorption cross-section (for a temperature of 10^4 K appropriate for photoionized gas); or, for simplicity, you may approximate it as a function of wavelength by a narrow "top-hat" with $\sigma_{\alpha}=6\times10^{-14}$ cm² for photons with wavelengths $\lambda_{\alpha}=1215\pm0.05\text{Å}$ and $\sigma_{\alpha}=0$ outside this range. Observations show that $\tau_{\alpha}<0.05$. What does this imply for the fraction of hydrogen that can be in neutral form at $z\approx3$?

Problem 2 – Recombination: Hydrogen vs. Helium Recombination

As shown in class, hydrogen recombined at a redshift of approximately z=1200, with recombination starting already at $z\sim1600$.

- a) What was the ratio of the number density of hydrogen-ionizing photons (i.e. photons with energies $E \ge 13.6 \text{eV}$) to the number density of hydrogen atoms at z = 1200? Explain why this ratio does not have to equal unity at recombination.
- b) What was the ratio of the number density of helium–ionizing photons (i.e. photons with energies $E \ge 24.6 \text{eV}$) to the number density of helium atoms at z = 1600? Does your answer imply that helium recombines before or after hydrogen?

For this problem, assume the following: at the present day, baryons contribute a fraction $\Omega_b = 0.04$ of the critical density, of which $Y_{\rm H} = 76\%$ by mass is hydrogen, and $Y_{\rm He} = 24\%$ is helium. Assume a Hubble constant of $H_0 = 70$ km/s/Mpc. The temperature of the cosmic microwave background (CMB) today is $T_0 = 2.725$ K.

Problem 3 – BBNS: Gamow's Estimate for the Present–Day CMB Temperature

The photo-dissociation threshold of deuterium is 2.22 MeV, corresponding to a temperature of $T \sim 2 \times 10^{10}$ K. Roughly, deuterium should form at the epoch when the CMB temperature drops below this value. At this epoch, the Universe is flat and dominated by the CMB. The condition that a trace amount of deuterium should be produced is $\langle \sigma v \rangle n_b t \sim 1$, where σ is the cross-section for $n + p \to D + \gamma$, v is the relative velocity of n and p, $\langle \sigma v \rangle \approx 5 \times 10^{-20}$ cm³ s⁻¹ is a velocity-average collision rate, and t is the age of the Universe at deuterium formation.

- a) Compute t at the epoch when the radiation temperature is $T \sim 2 \times 10^{10} \text{K}$, and therefore obtain an estimate of the baryon density n_b at the epoch of deuterium formation.
- **b)** Compare your answer above to the present-day baryon density ($\Omega_b = 0.04$), derive the scale factor a at deuterium formation, and use $T \propto a^{-1}$ to find the present-day CMB temperature.
- c) Comment on why your answer might be different from the measured value of 2.7K (i.e., which of the above assumptions is suspect)?

Problem 4: Power-Law Inflation

Inflation is usually associated with a scalar field whose potential is a power–law $(V \propto \phi^n)$, which, as we discussed, can lead to exponential inflation with $a(t) \propto \exp(Ht)$ with $H \sim \text{constant}$. An alternative is a steeper, exponential potential, which results in a slower "power–law inflation".

- a) Consider a scalar field ϕ with the potential $V(\phi) = V_0 \exp(\phi/\phi_0)$. Show that this potential, with $a(t) = a_0(t/t_0)^n$, is a solution of both the Friedmann equation (for simplicity, assume a flat universe) and the equation of motion for ϕ (ignore spatial gradients). Find an expression for n as a function of ϕ_0 and V_0 .
- **b)** In order to solve the horizon problem, the expansion must be "superluminal", or equivalently, the integral for the particle horizon must diverge. Show that this requires n > 1, and find the corresponding lower limit on ϕ_0 .