Process Mining: Data Science in Action

Conformance Checking Using Token-Based Replay

prof.dr.ir. Wil van der Aalst www.processmining.org

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

Conformance checking

- 1. Conformance checking using causal footprints.
- 2. Conformance checking based on token-based replay.
- 3. Alignment-based conformance checking.

Counting tokens while replaying

Quantifying fitness at the trace level

$$fitness(\sigma, N) = \frac{1}{2} \left(1 - \frac{1}{6} \right) + \frac{1}{2} \left(1 - \frac{1}{6} \right) = 0.83333$$

Approach (1/3)

while running p+m-c tokens

Use four counters:

- p = produced tokens
- c = consumed tokens
- m = missing tokens (consumed while not there)
- r = remaining tokens (produced but not consumed)

Approach (2/3)

- Invariants
 - -At any time: $p+m \ge c \ge m$ (also per place)
 - -At the end: r = p + m c (also per place)

Approach (3/3)

Initialization and finalization:

- In the beginning a token is produced for the source place: p = 1.
- At the end a token is consumed from the sink place (also if not there): c' = c + 1.

Replaying
$$\sigma_1 = \langle a, c, d, e, h \rangle$$

Replaying
$$\sigma_1 = \langle a \rangle c, d, e, h \rangle$$

Replaying
$$\sigma_1 = \langle a(c)d, e, h \rangle$$

Replaying
$$\sigma_1 = \langle a, c(d)e, h \rangle$$

Replaying
$$\sigma_1 = \langle a, c, d(e, h) \rangle$$

Replaying
$$\sigma_1 = \langle a, c, d, e \rangle$$

Replaying
$$\sigma_1 = \langle a, c, d, e, h \rangle$$

Replaying
$$\sigma_1 = \langle a, c, d, e, h \rangle$$

Quantifying fitness at the trace level

$$\sigma_1 = \langle a, c, d, e, h \rangle$$

$$fitness(\sigma, N) = \frac{1}{2} \left(1 - \frac{\mathbf{0}}{\mathbf{7}} \right) + \frac{1}{2} \left(1 - \frac{\mathbf{0}}{\mathbf{7}} \right) = \mathbf{1}$$

$$\sigma_3 = \langle a, d, c, e, h \rangle$$

$$\sigma_3 = \langle a | d, c, e, h \rangle$$

$$\sigma_3 = \langle a, d, c, e, h \rangle$$

$$\sigma_3 = \langle a, d(c)e, h \rangle$$

$$\sigma_3 = \langle a, d, c(e)h \rangle$$

$$\sigma_3 = \langle a, d, c, e | h \rangle$$

$$\sigma_3 = \langle a, d, c, e, h \rangle$$

$$\sigma_3 = \langle a, d, c, e, h \rangle$$

$$\sigma_3 = \langle a, d, c, e, h \rangle$$

Quantifying fitness at the trace level

$$\sigma_3 = \langle a, d, c, e, h \rangle$$

$$fitness(\sigma, N) = \frac{1}{2} \left(1 - \frac{1}{6} \right) + \frac{1}{2} \left(1 - \frac{1}{6} \right) = 0.8333$$

Fitness at the log level

47 acdefdbeh

33 acdefbdeh

14 acdefbdeg

11 acdefdbeg 9 adcefcdeh

8 adcefdbeh

5 adcefbdeg

2 adcefdbeg2 adcefbdefbdeg1 adcefdbefbdeh

3 acdefbdefdbeg

1 adbefbdefdbeg

1 adcefdbefcdefdbeg

38 adbeg

?

$$fitness(L,N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N,\sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N,\sigma}} \right)$$

$$fitness(L_{full}, N_1) = 1$$

 $fitness(L_{full}, N_2) = 0.9504$
 $fitness(L_{full}, N_3) = 0.8797$
 $fitness(L_{full}, N_4) = 1$

1391

Diagnostics

Diagnostics

Part I: Preliminaries

Chapter 1 Introduction

Chapter 2

Process Modeling and Analysis

Chapter 3

Data Mining

Part III: Beyond Process Discovery

Chapter 7

Conformance Checking

Chapter 8

Mining Additional Perspectives

Chapter 9

Operational Support

Part II: From Event Logs to Process Models

Chapter 4 Getting the Data

Chapter 5

Process Discovery: An Introduction

Chapter 6

Advanced Process Discovery Techniques

Part IV: Putting

Chapter 10 **Tool Support**

s Mining to Work

apter 11

Analyzing "Lasagna Processes"

Chapter 12

Analyzing "Spaghetti Processes"

Part V: Reflection

Chapter 13

Cartography and Navigation

Chapter 14 **Epilogue**

Wil M. P. van der Aalst

Process Mining

