Неточные алгоритмы

22/04/2023

План лекции

Стандартная проблема

Есть задача оптимизации функции $f(\theta)$ - надо найти $argminf(\theta)$, такое θ , что $f(\theta)$ минимально.

Мы не можем перебрать все возможные θ , и не имеем достаточно информации, чтобы оставить "перебираемое" множество.

heta может быть одним целым числом, перестановкой, маской, вектором вещественных чисел, графом, строкой - чем угодно.

Виды неточных алгоритмов

- С гарантиями (approximation algorithms)
- Без гарантий (heuristics)

Пример известной нам эвристики: $\alpha \beta$ -отсечение

ϵ -приближения ответа

Для NP-полных задач очень часто пытаются придумать эвристики, которые будут получать *какой-то ответ*, не очень уж и далекий от верного.

Например, можно показать, что разные жадные алгоритмы для задачи о рюкзаке могут давать суммарную стоимость, всего в 1.5 раза ниже оптимальной.

MAX-3-SAT

- Возьмем $x_1 = x_2 = \ldots = 1$
- ullet Возьмем $x_1 = x_2 = \ldots = 0$
- Хотя бы одно из решений выполнит половину скобок.

Существует и более умное $\frac{7}{8}$ приближение

Обмен скорости на точность

Для задачи о рюкзаке существует алгоритм с точностью $(1+\frac{1}{k})$ и асимптотикой $O(kn^{k+1})$. Таким образом, можно делать *размен* скорости на точность.

Численное интегрирование

Хотим уметь посчитать площадь какой-то фигуры.

Интегрирование - разбиение на тривиальные фигуры и подсчет приблизительной площади.

Мы знаем, что в пределе получается хороший ответ.

Метод Симпсона

Для интегрирования есть несколько сравнительно простых методов

- Метод прямоугольников
- Метод трапеций
- Метод Симпсона (приближение параболой)

Алгоритм

```
def calc(f, l, r, eps):
    if r - l < eps:
        return (r - l) / 6 * (f(l) + f(r) + 4 * f((r+l)/2))
    m = (l + r) / 2
    return calc(f, l, m, eps) + calc(f, m, r, eps)</pre>
```

Вопрос: Как обобщить на 2d (хотя бы метод прямоугольников)?

Метод Монте-Карло

- Пусть фигура жутко сложная, и вообще ничего непонятно
- Сделаем случайный классификатор: будем генерировать элемент пространства (точку) и проверять, что она находится в заданном множестве.
- Тогда, если мы знаем размер пространства, мы можем оценить, какую долю этого пространства занимало множество.

Эвристики

Стандартная история с эвристиками: взять какое-то базовое θ , а потом постепенно улучшать, чтобы в какой-то момент получить θ_{opt} .

Локальная оптимизация

Берем $heta_0$. И учимся генерировать случайное $heta^*=change(heta)$ - небольшое изменение. Меняем heta на $heta^*$, если случилось улучшение.

```
while True:
    theta_new = change(theta)
    if f(theta_new) < f(theta):
        theta = theta_new</pre>
```

Через много итераций мы получим решение, которое уже не улучшить случайными изменениями. Можно верить, что это локальный минимум.

Глобальный минимум

Есть высокий риск "застрять" в локальном минимуме

nobody:

algorithm: ah yes the solution

Метод отжига

Будем делать локальную оптимизацию, но иногда разрешать себе делать "невыгодную" замену. Вероятность такой замены будем постепенно уменьшать.

```
T = 100
while True:
    theta_new = change(theta)
    if f(theta_new) <= f(theta) or exp((f(theta) - f(theta_new)) / T) > random(0, 1):
        theta = theta_new
    T *= 0.99
```

Генетический алгоритм

Идея заимствована из эволюции. Можно взять θ , и получить случайными мутациями набор θ_1,\ldots,θ_n . Дальше с помощью сравнений $f(\theta_1),\ldots,f(\theta_n)$ можно выяснить, какие мутации были самыми удачными, взять топ-N мутаций и попробовать для них следующий шаг эволюции.

Покоординатный метод

Если мы знаем вид функции f и можем посчитать ее частные производные по каждому числу в параметре θ , можно делать сдвиг вдоль частных производных:

$$heta^* = (heta_1, \dots, heta_i + rac{\partial f}{\partial heta_i}(heta), \dots, heta_n)$$

Градиентный спуск

Если мы знаем вид функции f и можем посчитать ее градиент в параметре θ , можно делать сдвиг вдоль антиградиента:

$$heta^* = heta -
abla f(heta)$$

Широко используется в нейронных сетях для оптимизации параметров.

Оффтоп + идея для пет-проекта - нейронные сети

Нейронная сеть состоит из нескольких частей:

- 1. DAG вычислений (считает $g_{ heta}(x)$)
- 2. Функция ошибки (например, $f(heta, x, y) = (g_{ heta}(x) y)^2$)
- 3. Оптимизация f
 - 3.1. Генетический алгоритм: просто и наглядно, но не очень мощно
 - 3.2. Градиентный спуск: понадобится разобраться, как работает backpropagation, чтобы правильно искать градиент параметра

Если интересно 3.1, прикольно делать интерактивных агентов: собрать ИИ для игры, вот так это выглядит.

Пример статьи, которую можно взять за основу, если интересно 3.2.

Мем байка

ABSTRACT

An O(n³) heuristic algorithm is described for solving n-city travelling salesman problems (TSP) whose cost matrix satisfies the triangularity condition. The algorithm involves as substeps the computation of a shortest spanning tree of the graph G defining the TSP, and the finding of a minimum cost perfect matching of a certain induced subgraph of G. A worst-case analysis of this heuristic shows that the ratio of the answer obtained to the optimum TSP solution is strictly less than 3/2. This represents a 50% reduction over the value 2 which was the previously best known such ratio for the performance of other polynomial-growth algorithms for the TSP.

A (Slightly) Improved Approximation Algorithm for Metric TSP

Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan University of Washington

March 16, 2022

Abstract

For some $\epsilon>10^{-36}$ we give a randomized $3/2-\epsilon$ approximation algorithm for metric TSP.

Для дальнейшего изучения

- https://en.wikipedia.org/wiki/Karloff–Zwick_algorithm
- https://rtime.ciirc.cvut.cz/~hanzalek/KO/knapsack_e.pdf
- https://en.wikipedia.org/wiki/Genetic_algorithm
- https://ru.wikipedia.org/wiki/Стохастический_градиентный_спуск