305 Lecture 19 - Truth Tables and Validity

Brian Weatherson

July 13, 2020

Carnap Book, Chapter 10, second half

The Rules

- An argument is invalid if there is a row on the truth table where all the premises are true and the conclusion is false. (Roughly!)
- It is valid if all the rows where the premises are all true, the conclusion is true as well.

Another Relevance Failure

Is this argument valid?

$$A \models B \lor \neg B$$

Another Relevance Failure

Is this argument valid?

$$A \models B \lor \neg B$$

Yes!

- · There is no line where the conclusion is false.
- So there are no lines where the premise is true and the conclusion false.
- · So it is not invalid.
- · So it is valid.

Terminology

Say a **valuation** is a function v from sentences to $\{T, F\}$ satisfying these constraints.

- 1. $v(\neg A) = T$ if v(A) = F, and $v(\neg A) = F$ otherwise.
- 2. $v(A \lor B) = T \text{ if } V(A) = T \text{ or } v(B) = T \text{, and } v(A \lor B) = F \text{ otherwise.}$
- 3. $v(A \land B) = T$ if V(A) = T and v(B) = T, and $v(A \land B) = F$ otherwise.
- 4. $v(A \rightarrow B) = T$ if V(A) = F or v(B) = T, and $v(A \rightarrow B) = F$ otherwise.

Restating

• An argument is valid relative to a class of valuations V iff any valuation $v \in V$ that makes all the premises T also makes the conclusion T.

Restating

- An argument is valid relative to a class of valuations V iff any valuation $V \in V$ that makes all the premises T also makes the conclusion T.
- An argument is truth functionally valid when the class *V* is the class of valuations satisfying the constraints on the previous slide.

Very Technical Terminology

- I'll use $\Gamma \vDash A$ to mean that the argument with premises Γ and conclusion A is valid in this sense i.e., all valuations that make all of Γ come out T also make A come out T.
- The double bar in

 is to represent that this is a kind of validity
 defined in terms of valuations (or, as we'll start calling them, models),
 and not proofs.
- For purposes of 305, the difference between ⊢ and ⊨ is not important, and if this is the last logic/mathematical philosophy course you plan to take, you don't have to worry about this.
- But I like being pedantic even when it isn't relevant to the course.

If
$$\Gamma \vDash {\it A}$$
 and $\Gamma \vDash {\it A} \to {\it B}$ then $\Gamma \vDash {\it B}$

If
$$\Gamma \vDash A$$
 and $\Gamma \vDash A \rightarrow B$ then $\Gamma \vDash B$.

Proof: Assume this is false. So Assume that $\Gamma \nvDash B$. So there is a valuation function v that makes everything in Γ come out Γ and B come out Γ

If
$$\Gamma \vDash A$$
 and $\Gamma \vDash A \rightarrow B$ then $\Gamma \vDash B$.

Proof: Assume this is false. So Assume that $\Gamma \nvDash B$. So there is a valuation function v that makes everything in Γ come out T and B come out F . Either $v(A) = \mathsf{T}$ or $v(A) = \mathsf{F}$

If
$$\Gamma \vDash A$$
 and $\Gamma \vDash A \rightarrow B$ then $\Gamma \vDash B$.

Proof: Assume this is false. So Assume that $\Gamma \nvDash B$. So there is a valuation function v that makes everything in Γ come out \top and B come out F. Either $v(A) = \top$ or v(A) = F. If $v(A) = \top$, then $v(A \to B) = F$, contradicting $\Gamma \vDash A \to B$

If
$$\Gamma \vDash A$$
 and $\Gamma \vDash A \rightarrow B$ then $\Gamma \vDash B$.

Proof: Assume this is false. So Assume that $\Gamma \nvDash B$. So there is a valuation function v that makes everything in Γ come out Γ and B come out Γ . Either $v(A) = \Gamma$ or $v(A) = \Gamma$. If $v(A) = \Gamma$, then $v(A \to B) = \Gamma$, contradicting $\Gamma \vDash A \to B$. If $v(A) = \Gamma$, then v is a counterexample to $\Gamma \vDash A$, but we know $\Gamma \vDash A$ is true. Either way, such a v cannot exist, so $\Gamma \vDash B$ is true.

Monotony

If
$$\Gamma \vDash A$$
, and $\Gamma \subset \Delta$, then $\Delta \vDash A$.

That is, adding premises can't turn an argument from being valid to invalid.

- Assume that for all $B \in \Delta, v(B) = T$.
- We need to prove that v(A) = T.

- Assume that for all $B \in \Delta, v(B) = T$.
- We need to prove that v(A) = T.
- · Assume $\mathit{C} \in \Gamma$.
- Then $C \in \Delta$, since $\Gamma \subset \Delta$.

- Assume that for all $B \in \Delta$, v(B) = T.
- We need to prove that v(A) = T.
- Assume $C \in \Gamma$.
- Then $C \in \Delta$, since $\Gamma \subset \Delta$.
- · So by hypothesis, v(C) = T, since everything in Δ is T.

- Assume that for all $B \in \Delta$, v(B) = T.
- We need to prove that v(A) = T.
- Assume $C \in \Gamma$.
- Then $C \in \Delta$, since $\Gamma \subset \Delta$.
- So by hypothesis, v(C) = T, since everything in Δ is T.
- So v is such that everything in Γ is T .

- Assume that for all $B \in \Delta$, v(B) = T.
- We need to prove that v(A) = T.
- Assume $C \in \Gamma$.
- Then $C \in \Delta$, since $\Gamma \subset \Delta$.
- So by hypothesis, v(C) = T, since everything in Δ is T.
- So v is such that everything in Γ is T .
- And since $\Gamma \vDash A$, that implies $v(A) = \top$, as required.

Monotony Commentary

- This idea, that adding premises doesn't destroy validity, only works for logical arguments.
- It isn't true for good arguments in general.

Tweety the First

1. Tweety is a bird.

Tweety flies.

That's a perfectly good, though not logically valid, argument.

Tweety the Second

- 1. Tweety is a bird.
- 2. Tweety is black and white, lives in Antarctica, and lays large eggs.

Tweety flies.

That's not a very good argument!

Transitivity

If
$$\Gamma \vDash A$$
 and $\Delta \cup A \vDash B$ then $\Gamma \cup \Delta \vDash B$

If some premises entail A, and some other premises plus A entail B, then the two sets of premises between them entail B.

Transitivity

If
$$\Gamma \vDash A$$
 and $\Delta \cup A \vDash B$ then $\Gamma \cup \Delta \vDash B$

If some premises entail *A*, and some other premises plus *A* entail *B*, then the two sets of premises between them entail *B*. This is crucial for being able to chain together lines of reasoning.

Transitivity Proof

- Assume that for all $\mathit{C} \in \Gamma \cup \Delta, \mathit{v}(\mathit{C}) = \mathsf{T}.$
- We need to prove v(B) = T.

Transitivity Proof

- Assume that for all $C \in \Gamma \cup \Delta$, v(C) = T.
- We need to prove v(B) = T.
- Since everything in Γ is T according to v, and $\Gamma \vDash A$, it follows that $v(A) = \mathsf{T}.$

Transitivity Proof

- Assume that for all $C \in \Gamma \cup \Delta$, v(C) = T.
- We need to prove v(B) = T.
- Since everything in Γ is T according to v, and $\Gamma \vDash A$, it follows that $v(A) = \mathsf{T}$.
- Since everything in ∆ is T according to v, and A is T according to v, and ∆ ∪ A ⊨ B, it follows that v(B) = T, as required.

Deduction Theorem

This is why we define \rightarrow the way we do.

$$\Gamma \vDash A \rightarrow B$$
 if and only if $\Gamma \cup A \vDash B$.

Note that there are two claims here - one each direction. We need to prove each.

Deduction Theorem Left-to-Right

- Assume $\Gamma \vDash A \rightarrow B$, and prove $\Gamma \cup A \vDash B$.
- So assume $v(C)=\mathsf{T}$ for all $C\in \Gamma$, and $v(A)=\mathsf{T}$, and aim to prove $v(B)=\mathsf{T}$.

Deduction Theorem Left-to-Right

- · Assume $\Gamma \vDash A \rightarrow B$, and prove $\Gamma \cup A \vDash B$.
- So assume v(C) = T for all $C \in \Gamma$, and v(A) = T, and aim to prove v(B) = T.
- Since $\Gamma \vDash A \to B$ and v(C) = T for all $C \in \Gamma$, it follows that $v(A \to B) = T$.

Deduction Theorem Left-to-Right

- · Assume $\Gamma \vDash A \rightarrow B$, and prove $\Gamma \cup A \vDash B$.
- So assume v(C) = T for all $C \in \Gamma$, and v(A) = T, and aim to prove v(B) = T.
- Since $\Gamma \vDash A \to B$ and v(C) = T for all $C \in \Gamma$, it follows that $v(A \to B) = T$.
- Since $v(A \to B) = T$ and v(A) = T, it must be that v(B) = T, since that's the only line on the truth table where $A \to B$ and A are both T.

- Assume that $\Gamma \cup A \vDash B$, and prove $\Gamma \vDash A \rightarrow B$.
- So assume v(C) = T for all $C \in \Gamma$, and prove $v(A \to B) = T$.

- · Assume that $\Gamma \cup A \models B$, and prove $\Gamma \models A \rightarrow B$.
- So assume v(C) = T for all $C \in \Gamma$, and prove $v(A \to B) = T$.
- Either v(A) = T or v(A) = F. Take each case in turn.

- · Assume that $\Gamma \cup A \vDash B$, and prove $\Gamma \vDash A \rightarrow B$.
- So assume v(C) = T for all $C \in \Gamma$, and prove $v(A \to B) = T$.
- Either v(A) = T or v(A) = F. Take each case in turn.
- If $v(A)=\mathsf{T}$, then since $v(C)=\mathsf{T}$ for all $C\in \Gamma$, and $\Gamma\cup A\models B$, it follows that $v(B)=\mathsf{T}$

- · Assume that $\Gamma \cup A \vDash B$, and prove $\Gamma \vDash A \rightarrow B$.
- So assume v(C) = T for all $C \in \Gamma$, and prove $v(A \to B) = T$.
- Either v(A) = T or v(A) = F. Take each case in turn.
- If $v(A)=\mathsf{T}$, then since $v(C)=\mathsf{T}$ for all $C\in \Gamma$, and $\Gamma\cup A\vDash B$, it follows that $v(B)=\mathsf{T}$, so $v(A\to B)=\mathsf{T}$

- · Assume that $\Gamma \cup A \models B$, and prove $\Gamma \models A \rightarrow B$.
- So assume v(C) = T for all $C \in \Gamma$, and prove $v(A \to B) = T$.
- Either v(A) = T or v(A) = F. Take each case in turn.
- If v(A) = T, then since v(C) = T for all $C \in \Gamma$, and $\Gamma \cup A \models B$, it follows that v(B) = T, so $v(A \to B) = T$.
- · If v(A) = F, it follows directly that $v(A \rightarrow B) = T$

- · Assume that $\Gamma \cup A \vDash B$, and prove $\Gamma \vDash A \rightarrow B$.
- So assume v(C) = T for all $C \in \Gamma$, and prove $v(A \to B) = T$.
- Either v(A) = T or v(A) = F. Take each case in turn.
- If v(A) = T, then since v(C) = T for all $C \in \Gamma$, and $\Gamma \cup A \models B$, it follows that v(B) = T, so $v(A \to B) = T$.
- If v(A) = F, it follows directly that $v(A \rightarrow B) = T$.
- Either way, $v(A \rightarrow B) = T$ as required.

Deduction Theorem Comments

- · This is a striking result.
- It shows that proving $A \to B$ is just the same as proving B, assuming you're allowed to add A as an extra assumption.
- · And that's a good thing, intuitively. That is how we prove conditionals.
- But it only works if you have the (very odd looking) truth table that we're using for →.
- This is the main reason for thinking, despite it's odd appearance, that this truth table is the right one for \rightarrow .

