炎德·英才大联考雅礼中学 2023 届高三月考试卷(四)

数学参考答案

一、二、选择题

题 号	1	2	3	4	5	6	7	8	9	10	11	12
答案	С	D	С	A	D	С	С	D	ACD	CD	ABD	AD

- 1. C 【解析】集合 $A = \{1,2\}$, $B = \{2,3\}$, 则集合 $C = \{3,4,5\}$, 集合元素个数为 3 个, 故集合 $C = \{z \mid z = x + y, x \in A, y \in B\}$ 的真子集个数为 $2^3 1 = 7$. 故选: C.
- 2. D 【解析】:z(1+i)=2,: $z=\frac{2}{1+i}=\frac{2(1-i)}{(1+i)(1-i)}=1-i$,:在复平面内复数 z 对应的点(1,-1)位于第四象限、故选:D.
- 3. C 【解析】由于 $N=4^5 \cdot 9^{10} \Rightarrow \lg N = 5\lg 4 + 10\lg 9 = 10\lg 2 + 20\lg 3 \approx 12.552$,所以 N 所在的区间为 $(10^{12}, 10^{13})$,故选:C.
- 4. A 【解析】设 5a+b=x(a-b)+y(a+b),

可得
$$\begin{cases} x+y=5, \\ y-x=1, \end{cases}$$
解得 $\begin{cases} x=2, \\ y=3, \end{cases}$

因为 $2 \le a - b \le 4.4 \le a + b \le 8.$ 所以 $4 \le 2(a - b) \le 8.12 \le 3(a + b) \le 24.$

所以 $16 \le 2(a-b) + 3(a+b) \le 32$,即 $5a+b \in [16,32]$,故选:A.

5. D 【解析】据图可知,A=2,因为 $\triangle QAB$ 的面积是 $\triangle PAB$ 面积的 2 倍,故 P(0,1),

且
$$\frac{T}{2}$$
> $\frac{5\pi}{3}$,可得 0 < ω < $\frac{3}{5}$,

所以
$$f(0) = 2\sin \varphi = 1$$
,故 $\sin \varphi = \frac{1}{2}$,又 $|\varphi| < \frac{\pi}{2}$,所以 $\varphi = \frac{\pi}{6}$,

结合
$$f\left(\frac{5\pi}{3}\right) = 0$$
,即 $2\sin\left(\frac{5\pi}{3}\omega + \frac{\pi}{6}\right) = 0$,故 $\frac{5\pi}{3}\omega + \frac{\pi}{6} = \pi + 2k\pi, k \in \mathbb{Z}$,

当
$$k=0$$
 时, $\omega=\frac{1}{2}$,符合题意,故 $f(x)=2\sin\left(\frac{1}{2}x+\frac{\pi}{6}\right)$,

要求该函数的单调递增区间,只需
$$-\frac{\pi}{2}+2k\pi \leqslant \frac{1}{2}x+\frac{\pi}{6} \leqslant \frac{\pi}{2}+2k\pi,k \in \mathbf{Z}$$
,

解得
$$-\frac{4\pi}{3}+4k\pi \leqslant x \leqslant \frac{2\pi}{3}+4k\pi, k \in \mathbb{Z},$$

故单调递增区间为
$$\left[4k\pi-\frac{4\pi}{3},4k\pi+\frac{2\pi}{3}\right],k\in\mathbf{Z}.$$

故选:D.

- 6. C 【解析】: $(1+2x-x^2)^n$ 展开式中各项系数的和为 $2^n=64$, .: n=6,
 - $\therefore (1+2x-x^2)^6$ 展开式中含 x^3 项为 $C_6^3 \cdot (2x)^3 \cdot 1^3 + C_6^1 \cdot (2x) \cdot C_5^1 \cdot (-x^2) \cdot 1^4 = 100x^3$,
 - \therefore 该展开式中的 x^3 项的系数为 100. 故选:C.
- 7. C 【解析】三棱锥 A-BCD 中, P 为 $\triangle BCD$ 内一点, 如图所示:

延长 $PB \subseteq B_1$, 使得 $PB_1 = 2PB$, 延长 $PC \subseteq C_1$, 使得 $PC_1 = 3PC$,

连接 DB_1 , B_1C_1 , C_1D ,

因为
$$S_{\triangle PBC} = 1$$
, $S_{\triangle PCD} = 2$, $S_{\triangle PBD} = 3$, 所以 $S_{\triangle PB_1C_1} = S_{\triangle PC_1D} = S_{\triangle PB_1D}$,

所以 P 为 $\land B_1C_1D$ 的重心,所以 $\overrightarrow{PD}+\overrightarrow{PB_1}+\overrightarrow{PC_1}=\mathbf{0}$,

即
$$\overrightarrow{PD}+2\overrightarrow{PB}+3\overrightarrow{PC}=\mathbf{0}$$
,所以($\overrightarrow{AD}-\overrightarrow{AP}$)+2($\overrightarrow{AB}-\overrightarrow{AP}$)+3($\overrightarrow{AC}-\overrightarrow{AP}$)= $\mathbf{0}$,

所以 $\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC} + \frac{1}{6}\overrightarrow{AD}$. 故选:C.

8. D 【解析】对于①,因为 $e = \frac{c}{a} = \frac{\sqrt{5} - 1}{2}$,所以 $c = \frac{\sqrt{5} - 1}{2}a$,

又
$$b^2 = a^2 - c^2 = \frac{\sqrt{5} - 1}{2} a^2$$
,故 $b^2 = ac$,故①正确;

对于②,如图,由题可知 $|EB| = \sqrt{a^2 + b^2}$, $|F_1B| = c + a$, $|F_1E| = \sqrt{b^2 + c^2} = a$, 又因为 $|F_1B|^2 = (a+c)^2 = a^2 + c^2 + 2ac = a^2 + c^2 + 2b^2 = 2a^2 + b^2$, $|EB|^2 = a^2 + b^2$,所以 $|F_1B|^2 = |EB|^2 + |F_1E|^2$,

所以 $\triangle F_1 EB$ 为直角三角形,即 $/F_1 EB = 90^\circ$,故②正确;

对于③,如图所示,设EB与内切圆相切于点Q,连接OQ,

由切线性质可知 OQ | EB,

则
$$|OQ| = \frac{|OE| \times |OB|}{|EB|} = \frac{b \times a}{\sqrt{a^2 + b^2}} = \frac{\sqrt{a^3 c}}{\sqrt{a^2 + b^2}},$$

将
$$c = \frac{\sqrt{5} - 1}{2}a$$
, $b = \sqrt{\frac{\sqrt{5} - 1}{2}}a$ 代入上式, 可得 $|OQ| = \frac{\sqrt{5} - 1}{2}a = c$,

即内切圆半径为c,所以内切圆过两个焦点,故③正确.故选:D.

D同A,选择的两点关于原点对称即可,如图(2)中的 B_1,B_2 ;

C如图(3)中的 $C_1, C_2, y=1$ 与f(x)的交点,满足题意;

B 没有满足条件的点对,假设存在 $x_1, x_2 \in \mathbf{R}$,使得 $f\left(\frac{x_1+x_2}{2}\right) = \frac{f(x_1)+f(x_2)}{2}$,即 $\left(\frac{x_1+x_2}{2}\right)^2 = \frac{x_1^2+x_2^2}{2}$,得 $x_1 = x_2$,与 $x_1 \neq x_2$ 矛盾,故 B 不满足题意,故选:ACD.

10. CD 【解析】对于 A 选项,记事件 A_i , B_i 分别表示第一次、第二次取到 i 号球, i=1,2,3,

则第一次抽到 3 号球的条件下,第二次抽到 1 号球的概率 $P(B_1|A_3) = \frac{3}{6} = \frac{1}{2}$,故 A 错误;

对于 B 选项,记事件 A_i , B_i 分别表示第一次、第二次取到 i 号球,i=1,2,3,

依题意 A_1 , A_2 , A_3 两两互斥,其和为 Ω ,并且 $P(A_1)=\frac{2}{4}$, $P(A_2)=P(A_3)=\frac{1}{4}$,

所以 $P(B_1|A_1) = \frac{2}{4}$, $P(B_1|A_2) = \frac{2}{4}$, $P(B_1|A_3) = \frac{3}{6}$,

应用全概率公式,有 $P(B_1) = \sum_{i=1}^{3} P(A_i) P(B_1 | A_i) = \frac{2}{4} \times \frac{2}{4} + \frac{2}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{3}{6} = \frac{1}{2}$,故 B 错误;

对于 C 选项,依题设知,第二次的球取自口袋的编号与第一次取的球上的号数相同,

$$\mathbb{N} P(A_1|B_1) = \frac{P(A_1) \cdot P(B_1|A_1)}{P(B_1)} = \frac{2}{4} \times \frac{2}{4} \times 2 = \frac{1}{2};$$

$$P(A_2|B_1) = \frac{P(A_2) \cdot P(B_1|A_2)}{P(B_1)} = \frac{1}{4} \times \frac{2}{4} \times 2 = \frac{1}{4};$$

$$P(A_3|B_1) = \frac{P(A_3) \cdot P(B_1|A_3)}{P(B_1)} = \frac{1}{4} \times \frac{3}{6} \times 2 = \frac{1}{4}.$$

故在第二次取到1号球的条件下,它取自编号为1的口袋的概率最大,故 C 正确;

对于 D 选项, 先将 5 个不同的小球分成 1,1,3 或 2,2,1 三份, 再放入三个不同的口袋, 则不同的分配方法有 $\sqrt{C!C!}$ C!C!

$$\left(\frac{C_5^1C_4^1C_3^3}{A_2^2} + \frac{C_5^2C_3^2C_1^1}{A_2^2}\right) \cdot A_3^3 = 150$$
,故 D 正确. 故选:CD.

11. ABD 【解析】对于 A,设正方体的棱长为 1,在正方体中 $\langle \overrightarrow{AB_1}, \overrightarrow{AC} \rangle = 60^\circ$,

則
$$|\overrightarrow{AB_1} \times \overrightarrow{AC}| = |\overrightarrow{AB_1}| |\overrightarrow{AC}| \sin(\overrightarrow{AB_1}, \overrightarrow{AC}) = \sqrt{2} \times \sqrt{2} \times \frac{\sqrt{3}}{2} = \sqrt{3}$$
,

因为 $BD//B_1D_1$,且 $/AD_1B_1=60^\circ$,所以 $\langle \overrightarrow{AD_1}, \overrightarrow{DB} \rangle = 120^\circ$,

所以
$$|\overrightarrow{AD_1} \times \overrightarrow{DB}| = |\overrightarrow{AD_1}| |\overrightarrow{DB}| \sin(\overrightarrow{AD_1}, \overrightarrow{DB}) = \sqrt{2} \times \sqrt{2} \times \frac{\sqrt{3}}{2} = \sqrt{3}$$
,

所以 $|\overrightarrow{AB_1} \times \overrightarrow{AC}| = |\overrightarrow{AD_1} \times \overrightarrow{DB}|$,故A正确;

对于C,由a,b和 $a \times b$ 构成右手系知, $a \times b$ 与 $b \times a$ 方向相反,

由 $a \times b$ 模的定义知, $|a \times b| = |a| |b| \sin\langle a, b\rangle = |b| |a| \sin\langle a, b\rangle = |b \times a|$,

所以 $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$,则 $\overrightarrow{AB} \times \overrightarrow{AD} = -\overrightarrow{AD} \times \overrightarrow{AB}$,故 C 错误;

对于 B, $A_1C_1 \perp B_1D_1$, $A_1C_1 \perp BB_1 \Rightarrow A_1C_1 \perp$ 平面 $BB_1D_1D_1$

 BD_1 二平面 $BB_1D_1D\Rightarrow BD_1\perp A_1C_1$,由题易得 $BD_1\perp A_1D$,

由右手系知, $\overrightarrow{A_1C_1} \times \overrightarrow{A_1D} \rightarrow \overrightarrow{BD_1}$ 同向,故 B 正确;

对于 D,设正方体棱长为
$$a$$
,6 $|\overrightarrow{BC}\times\overrightarrow{AC}|=6|\overrightarrow{BC}||\overrightarrow{AC}|\sin 45^{\circ}=6a \cdot \sqrt{2}a \cdot \frac{\sqrt{2}}{2}=6a^{2}$,

正方体表面积为 6a2,故 D 正确. 故选: ABD.

12. AD **【解析】**:
$$f(x) = \sin x + \sin(1-x)$$
, $f(1-x) = \sin(1-x) + \sin x = f(x)$,

$$f(x)$$
的图象关于直线 $x=\frac{1}{2}$ 对称,故 A 正确;

令 $x=\pi$,求得 $f(x)=\sin \pi + \sin(1-\pi)=0-\sin 1=-\sin 1\neq 0$,故 B 错误;

由 $f(x) = \sin x + \sin(1-x)$,得 $f'(x) = \cos x - \cos(1-x)$,

而函数 $y=\cos x$ 在 $\left(0,\frac{\pi}{2}\right)$ 上为减函数, : $f'(x)=\cos x-\cos(1-x)<0$,

可得 f(x)在区间 $\left[\frac{1}{2},1\right]$ 上单调递减,故 C 错误;

:
$$f(x) = \sin x + \sin(1-x) = 2\sin \frac{1}{2}\cos \frac{2x-1}{2}$$
,

又 $\frac{1}{2} < \frac{\pi}{6}$, $\therefore 2\sin \frac{1}{2} < 2\sin \frac{\pi}{6} = 1$, 可得 $f(x) = 2\sin \frac{1}{2}\cos \frac{2x-1}{2} < 1$, 故 D 正确. 故选: AD.

三、填空题:本题共4小题,每小题5分,共20分.

13. $\frac{\sqrt{6}}{4}$ 【解析】根据题意,原图为边长为 2 的正 $\triangle ABC$,其面积 $S = \frac{1}{2} \times 2 \times 2 \times \frac{\sqrt{3}}{2} = \sqrt{3}$,则其直观图 $\triangle A'B'C'$ 的面积 $S' = \frac{\sqrt{2}}{4} \times \sqrt{3} = \frac{\sqrt{6}}{4}$.

14. 90 【解析】:等差数列 $\{a_n\}$ 的公差为3,以数据 a_1 , a_2 , a_3 ,…, a_{11} 为样本,则此样本的平均数为 $\frac{1}{11}(a_1+a_2+\cdots+a_{11})=a_6$,:此样本的方差为 $S^2=\frac{1}{11}[(a_1-a_6)^2+(a_2-a_6)^2+\cdots+(a_{11}-a_6)^2]=\frac{1}{11}(15^2+12^2+\cdots+0^2+\cdots+12^2+15^2)=90$.

15. $\frac{\sqrt{5}+1}{2}$ 【解析】设双曲线 $C_1: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a>0,b>0) 的左、右焦点为 $F_1(-c,0), F_2(c,0),$

由题意可得两曲线在第一象限的交点坐标为A(c,c),易知四边形为正方形,

则
$$|AF_2| = c$$
, $|AF_1| = \sqrt{c^2 + (2c)^2} = \sqrt{5}c$, 故 $|AF_1| - |AF_2| = (\sqrt{5} - 1)c = 2a$,

故双曲线的离心率 $e = \frac{2c}{2a} = \frac{2c}{(\sqrt{5}-1)c} = \frac{\sqrt{5}+1}{2}$.

 $16. (-\infty, 0] \cup \left\{1 + \frac{1}{e}\right\}$ 【解析】方程 $x^2 e^{-x} = ax - \ln x - 1$ 可转化为 $\frac{x}{e^x} = a - \frac{\ln(ex)}{x}$ 存在唯一实数根,

$$\Leftrightarrow f(x) = \frac{x}{e^x}, x > 0, g(x) = -\frac{e\ln(ex)}{e^{\ln(ex)}}, x > 0,$$

由
$$f'(x) = \frac{1-x}{e^x}$$
, 当 $x \in (0,1)$, $f'(x) > 0$, $f(x)$ 单调递增,

当 $x \in (1, +\infty)$ 时, f'(x) < 0, f(x) 单调递减,

当 x=1 时, f(x) 取得极大值, 极大值为 $f(1)=\frac{1}{6}$,

由 $g(x) = -ef(\ln(ex))$,所以,当 $x \in (0,1)$,g(x) 单调递减,当 $x \in (1,+\infty)$ 时,g(x) 单调递增,

(x)单调递增, 当 x=1 时,g(x)取得极小值,极小值为 g(1)=-1,

如图所示,而 g(x)图象可由 $y=a-\frac{\ln(ex)}{x}$ 图象平移可得,

显然,
$$a \le 0$$
 或 $a = 1 + \frac{1}{e}$,

所以 a 的取值范围为 $(-\infty,0]$ $\bigcup \left\{1+\frac{1}{e}\right\}$.

四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.

17.【解析】(1)因为 $\sin(A+C)\cos B = \sqrt{3}\cos^2 B - \frac{\sqrt{3}}{2}$,

所以
$$\sin B\cos B = \frac{\sqrt{3}(1+\cos 2B)}{2} - \frac{\sqrt{3}}{2}$$
,

整理得 $\frac{1}{2}\sin 2B = \frac{\sqrt{3}}{2}\cos 2B$,所以 $\tan 2B = \sqrt{3}$,

(2)由(1)可知 $B = \frac{\pi}{6}$,根据余弦定理得 $b^2 = a^2 + c^2 - 2ac \cdot \cos B$,

整理得 $1=a^2+c^2-\sqrt{3}ac$ 》(2 $-\sqrt{3}$)ac,即 ac《 $\frac{1}{2-\sqrt{3}}=2+\sqrt{3}$,

所以 $S_{\triangle ABC} = \frac{1}{2} ac\sin \frac{\pi}{6} \leqslant \frac{2+\sqrt{3}}{4}$.

18. 【解析】(1) 设数列 $\{a_n\}$ 的公差为 $d(d \neq 0), a_1 = 1$,

$$(2)b_n = \frac{1}{a_{n+1}^2 - 1} + 3^{a_n} = \frac{1}{(2n+1)^2 - 1} + 3^{2n-1} = \frac{1}{4} \left(\frac{1}{n} - \frac{1}{n+1} \right) + 3^{2n-1}, \dots 8$$

可得数列 $\{b_n\}$ 的前 n 项和 $S_n = \frac{1}{4} \left(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1}\right) + (3^1 + 3^3 + \dots + 3^{2n-1})$

$$=\frac{1}{4}\left(1-\frac{1}{n+1}\right)+\frac{3(1-9^n)}{1-9}=\frac{n}{4n+4}+\frac{3}{8}(9^n-1).$$
 12 $\hat{\sigma}$

19.【解析】(1)证明:在等腰梯形 ABCD 中,

$$AB//CD$$
, $DE \perp AB$, $AB=5$, $CD=3$, $\angle DAB=\frac{\pi}{3}$,

:.
$$AE=1$$
, $AD=BC=2$, $DE=\sqrt{3}$, $CE=\sqrt{3+9}=2\sqrt{3}$, $BE=4$,

 $\therefore CE^2 + BC^2 = BE^2, \therefore BC \mid EC,$

- ∵BC⊂平面 BCDE,∴BC | AE,
- **∵**AE∩CE=E, ∴BC⊥平面 ACE. 6 分

(2)解:以E为原点,EB为x轴,ED为y轴,EA为z轴,建立空间直角坐标系,

由已知得 $A(0,0,1),B(4,0,0),C(3,\sqrt{3},0),$

$$\overrightarrow{AB} = (4.0, -1) \cdot \overrightarrow{AC} = (3.\sqrt{3}, -1)$$
.

	O	0	0	0		
		1		0		
均值E	$(\boldsymbol{\xi}) = 0$	$\times \frac{1}{9} +$	$1 \times \frac{3}{9} +$	$+2\times\frac{3}{9}$	$+3\times\frac{1}{9}=\frac{3}{2}$	12 分

将它代入抛物线 H 的方程中,并整理得 $x^2-2px-2p=0$.

由韦达定理得 $x_1+x_2=2p$, $x_1x_2=-2p$, 其 $\Delta=4p^2+8p>0$ 对 p>0 恒成立,

由弦长公式得 $|AB| = \sqrt{2\lceil (x_1 + x_2)^2 - 4x_1x_2 \rceil} = 8\sqrt{3}$,

化简得 $p^2+2p-24=0$ 且 p>0,解得 p=4.

故抛物线 H 的方程为 $x^2 = 8y$

联立
$$\begin{cases} x^2 = 8y, \\ y = \frac{1}{2}x + n, \end{cases}$$
 得 $x^2 - 4x - 8n = 0,$

下面只需证 $x_1 + x_2 > \frac{1}{2}$,

由题意得 $h(x_1) = h(x_2) = m$, 则 $\frac{eb}{4}x_1 \ln x_1 + b(x_1 - \sqrt{x_1}) = \frac{eb}{4}x_2 \ln x_2 + b(x_2 - \sqrt{x_2}) = m$,

$$\mathbb{P}(x_1 - \sqrt{x_1}) \left(\frac{e}{4} \cdot \frac{\sqrt{x_1} \ln x_1}{\sqrt{x_1} - 1} + 1 \right) = (x_2 - \sqrt{x_2}) \left(\frac{e}{4} \cdot \frac{\sqrt{x_2} \ln x_2}{\sqrt{x_2} - 1} + 1 \right) = \frac{m}{b},$$

$$? m(x) = \frac{\sqrt{x \ln x}}{\sqrt{x - 1}}, x \in (0, 1), ? t = \sqrt{x}, y \in (0, 1),$$

$$\text{M} \ m(t) = \frac{2t \ln t}{t-1}, \text{M} \ m'(t) = \frac{2(\ln t + 1)(t-1) - 2t \ln t}{(t-1)^2} = \frac{2(t-1-\ln t)}{(t-1)^2},$$

- :: n(t)在(0,1)上单调递减,n(t) > n(1) = 0,
- :m'(t)>0 成立,即 m(t)在(0,1)上单调递增,也即 m(x)在(0,1)上单调递增,
- $:m(x_2)>m(x_1)>0, x_2-\sqrt{x_2}<0,$

$$\therefore (x_1 - \sqrt{x_1}) \left(\frac{e}{4} \cdot \frac{\sqrt{x_1} \ln x_1}{\sqrt{x_1} - 1} + 1 \right) = (x_2 - \sqrt{x_2}) \left(\frac{e}{4} \cdot \frac{\sqrt{x_2} \ln x_2}{\sqrt{x_2} - 1} + 1 \right) < (x_2 - \sqrt{x_2}) \left(\frac{e}{4} \cdot \frac{\sqrt{x_1} \ln x_1}{\sqrt{x_1} - 1} + 1 \right),$$

$$\therefore \sqrt{x_2} + \sqrt{x_1} > 1, \therefore x_1 + x_2 > 2(\frac{\sqrt{x_1} + \sqrt{x_2}}{2})^2 > \frac{1}{2},$$

综上所述, $\frac{1}{2}$ $< x_1 + x_2 < 2$. 12 分