628.168 Champion International
W3/cf
Frenchtown Mill

Discharge Permit MT-0000035

PLEASE RETURN

STATE DOCUMENTS COLLECTION

MAY 2 1098

MONTANA STATE LIBRARY 1515 E. 6th AVE. HELENA, MONTANA 59620

Data Report - Volume I

Montana
Department of Health

MONTANA STATE LIBRARY
S 628. 16837 W3Lc1 1985 c. 1 v 1 Ingman
Lower Clark Fork River water quality mon
3 0864 00053725 1

- DATA REPORT -

LOWER CLARK FORK RIVER

WATER QUALITY MONITORING

1984 - 1985

VOLUME I

CHEMICAL, PHYSICAL AND BIOLOGICAL DATA

Prepared by
Gary L. Ingman
Water Quality Bureau
Montana Department of Health and Environmental Sciences
Helena, Montana 59620

December 1985

,	(

Dedication

This report is dedicated to the memory of Robert N. Greene, Jr., an eight-year employee of the Montana Water Quality Bureau, who died on September 30, 1985 at the age of 34.

Rob was a true professional who cared. In his work with various sections of the Water Quality Bureau, he consistently went out of his way to investigate new development activities in order to insure compliance with water quality laws. He was a familiar face on the scene at every new mine, cyanide leach facility, train derailment or tank truck spill where surface or ground waters and fisheries were threatened. Rob set an example to others in the regulatory field, as he wholeheartedly pursued his commitment to water quality protection. He was admired by his many friends, acquaintances and contacts for his direct, honest style. Rob will be deeply missed.

Volume I: Chemical, Physical and Biological Data

Table of Contents

I.	Introduction	Page 1
	Purpose and Scope Study Objectives	1 2
II.	General Description of Study	3
III.	Monitoring Activities and Results	13
	Chemical and Physical Water Quality Monitoring:	13
	Shallow-water Monitoring Deep water Monitoring Bottom Sediments Diurnal Dissolved Oxygen Monitoring	13 99 119 135
	Biological Water Quality Monitoring:	160
	Shallow-water Monitoring Deep-water Monitoring Open-water Monitoring	160 445 447
IV.	MPDES Self-Monitoring Data	455
	City of Missoula Wastewater Treatment Plant Champion International Frenchtown Mill	456 457
V.	Clark Fork River Watchers River Monitoring Data	522
VI.	Streamflow Data	534
VII.	Appendices:	
	A. River Travel Time Study B. Analytical Quality Assurance Limits C. Additional Lab and Field Methods D. Condensed Field Notes	541 546 556 572

List of Tables

<u>Table</u>	
1	Lower Clark Fork River Study Monitoring Station Descriptions
2	Monitoring Activities, Frequency and Water Quality Variables
3	Stations at Which Each Monitoring Activity Was Performed
4	Sample Collection and Analysis Methods for Chemical/ Physical Shallow Water Monitoring
5	Shallow-water Chemical/Physical Monitoring Results
6	Shallow-water Chemical/Physical Monitoring - Statistical Summary
7	Results of Organic Analysis of Clark Fork River and Champion Wastewater Samples
8	Sample Collection and Analysis Methods for Chemical/ Physical Deep-water Monitoring
9	Deep-water Chemical/Physical Monitoring Results
10	Deep-water Chemical/Physical Monitoring - Statistical Summary
il	Sample Collection and Analysis Methods for Bottom Sediment Monitoring
12	Sediment Chemical/Physical Monitoring Results
13	Sediment Chemical/Physical Monitoring - Statistical Summary
14	Diurnal Dissolved Oxygen and Temperature Monitoring Results
15	Sample Collection and Analysis Methods for Shallow-water Biological Monitoring
16	Benthic Macroinvertebrate Sample Counts and Identifications for Shallow-water and Deep-water Monitoring Stations
17	Benthic Macroinvertebrate Sample Percentage Distribution and Diversity Data for Shallow-water and Deep-water Monitoring Stations

List of Tables (Continued)

<u>Table</u>	
18	Benthic Macroinvertebrate Sample Similarity Coefficients for Shallow-water Monitoring Stations in the Clark Fork River and Tributaries
19	Genera of Soft-bodied (Non-diatom) Algae Tound in Periphyton Samples from the Lower Clark Fork Rive and Tributaries
20	Structure and Composition of Benthic Diatom Associations from the Lower Clark Fork River Including Shannon Diversity Index and Percent of Cells Representing Species in the Three Pollution Tolerance Groups of Lange-Bertalot (1979)
21	Relative Abundance and Estimated Rank y Volume of Diatoms and Genera of Soft-bodied Algae in Composite Samples of Periphyton from Natural Substrates
22	Chlorophyll and Biomass Data for Non-quantitative Periphyton Samples Collected from Natural Substrates (Stream Cobbles)
23	Chlorophyll and Biomass Data for Periphyton Collected on Artificial Substrates (Glass Slides)
24	Sample Collection and Analysis Methods for Deep- water and Open-water Biological Monitoring
25	Density of Viable Algae Cells in Surface-water Phytoplankton Grab Samples
26	Reservoir Phytoplankton Chlorophyll Results
27	Reservoir Secchi Disc Transparency Data
2°	City of Missoula Wastewater Treatment Plant Discharge Self-monitoring Data
29	Champion International Frenchtown Mill Self- Monitoring Data
30	Clark Fork River Watchers Dissolved Oxygen and Temperature Monitoring Data and Field Observations
31	Monthly Average Streamflows at Selected Gaging Stations in the Lower Clark Fork Basin, Water Years 1984-1985

List of Figures

Figure	1	Map of Study Area Showing Fixed Water Quality Monitoring Stations
Figures	2-21	Diurnal Curves of River Dissolved Oxygen and Temperature for Each of 12 Stations Monitored in Summer 1984 and 1985

Figures 22-25 Hydrographs for Water Years 1984 and 1985

I. INTRODUCTION

A. Purpose and Scope

In the fall of 1983, the Water Quality Bureau of the Montana Department of Health and Environmental Sciences (DHES) prepared a Preliminary Environmental Review (PER) on the proposed modification of an existing waste discharge permit for Champion International's Frenchtown Mill. The decision before the agency was whether Champion's existing permit should be revised to allow the direct discharge of treated wastewater to the Clark Fork River throughout the year rather than only during spring runoff.

During the public review process, it became apparent that people were concerned about whether adequate data existed to conduct such an evaluation. The majority of public comments received during that public review process were relative to long term impacts rather than the impact associated with the proposed modification. While most of the comments received could not be supported by scientific documentation, it was obvious that people as far downstream as Idaho were concerned with possible downstream impacts.

Following considerable modification of the PER and a review of all existing technical data, the decision was made to temporarily modify the Champion permit for the period April 1984 to March 1986 to allow a year-round discharge of treated wastewater and to allow increases in annual loading rates for certain wastewater constituents. During the two year life of the temporary permit, the Water Quality Bureau agreed to conduct a detailed study of the lower Clark Fork to provide the additional information needed to address the public concerns which had been expressed. The data gathered during that time would serve as the basis for an Environmental Impact Statement (EIS) to be prepared by the Water Quality Bureau prior to a reissuance of the Champion permit in April 1986.

Since March of 1984, 18 months have been spent studying the lower Clark Fork, its three major tributaries, two major point-source discharges and four impoundments. At the same time, the State of Idaho has been conducting investigations on Lake Pend Oreille, into which the Clark Fork flows after leaving Montana.

The study of the river-lake system will continue, at least through 1986. However, for the purposes of preparing the EIS on the reissuance of Champion's temporary wastewater discharge permit in April 1986, the data used will represent study findings for the period early spring 1984 to early fall 1985.

This report presents the results of the lower Clark Fork study to date. Volume I describes the monitoring activities and

gives tabulated results for the Water Quality Bureau's lower Clark Fork study. Also included are listings of other pertinent data such as streamflow records, self-monitoring data for permitted municipal and industrial discharges to the Clark Fork (City of Missoula, Champion Frenchtown Mill), and liver data compiled by the Plains Chapter of the Clark Fork River Watchers. Not included are interpretations of the information by the DHES, those analyses can be found in the department's draft environmental impact statement.

Volume II is a collection of reports presenting the findings of special studies conducted for the Water Quality Bureau by various agencies and individuals. Each of these examined an area of special concern in the lower Clark Fork system and include:

- 1. Reports by EPA Region X on three <u>algal bloassays</u> or Clark Fork River water which were conducted to determine nutrient limitations in the river and to predict the growth response of river algae under various nutrient loading rates.
- 2. The results of <u>chronic bioassays</u> of Clark Fork water and Champion wastewater conducted by EPA Region VIII using juvenile rainbow trout and a water flea, <u>Ceriodaphnia</u>. This information will help to predict the effects of the wastewater and other river contaminants on the growth and reproduction of the river's aquatic life.
- A status report on a <u>major fisheries study</u> being conducted by the Montana Department of Fish, Wildlife and Parks. This study will inventory the kinds and numbers of fish present in the lower Clark Fork system and assess the effects of pollutants on fish numbers, reproduction and general health.
- 4. A report on the University of Montana's riffle community metabolism study designed to measure the effects of Champion's wastewater discharge on metabolic rates of benthic plants and animals in the river.
- 5. The findings of an extensive Clark Fork reservoir sediment study by the University of Montana which examined the chemical makeup of bottom sediments, and particularly metals, in the river's impoundments.

Also included is a summary of the findings of Idaho's independent study of the water quality and tropic status of Lake Pend Oreille.

B. Study Objectives

It has already been stated that the WQB's lower Clark Fork study was intended to provide information regarding the long-term effects of Champion wastewater discharge on the health of the river. In order to answer these questions, the study had to be sufficiently broad-based to quantify the overall health of the river throughout its lower length and to allow the examination of other major contaminant sources and their effects on the river. The specific objectives of the monitoring program as outlined in the Lower Clark Fork River Monitoring Plan (Water Quality Bureau, 1984) are as follows:

- 1. To establish a chemical, physical, and biological water quality baseline for the lower Clark Fork River in Montana.
- 2. To measure any changes in water quality resulting from modifications in the Champion International Frenchtown Mill wastewater discharge permit (year-round discharge).
- 3. To determine the contributions, environmental effects and downstream fate of water quality contaminants from various wastewater sources and tributaries along the river.

II. GENERAL DESCRIPTION OF THE STUDY

The study encompasses about 225 miles of the lower Clark Fork River from Turah (upstream from Milltown Dam) downstream to the Idaho Border, including the Blackfoot, Bitterroot and Flathead rivers. Idaho's water quality study, also described herein, began in the Clark Fork River near the Montana-Idaho Border and continued into Lake Pend Oreille. In Montana, 31 fixed water quality stations were established on the river, its four mainstem reservoirs and three major tributaries (Figure 1). In addition, 11 stations were established in deepwater pools between Frenchtown and Thompson Falls Reservoir. Descriptions of the 42 stations, a river mile index and the site location rationale are given in Table 1.

A variety of chemical, physical and biological water quality variales have been measured in the hundreds of samples collected from both shallow waters and from the bottoms of deepwater pools and reservoirs between March 1984 and August 1985. The actual monitoring approach has been described in detail in the monitoring plan (Water Quality Bureau, 1984). Tables 2 and 3 summarize the monitoring activities, sampling frequency, water quality variables that have been measured and the stations at which each type of monitoring activity was conducted.

Figure 1. Map of Study Area Showing fixed Water Quality Monitoring Stations

Table 1. Lower Clark Fork River Study Amitoring Station Descriptions.

A. Shallow-water fonitoring Stations

Station detionale	Control station above dilltown deservoir. Known metals problem from nistoric mining and smelting activities in readwaters.	Major tributary to the Clark Fork and a control station above Milltown Aeservoir.	Millown Reservoir is a designated Superfund site and nas trapped large quantities of Letals originating upstream in the Clark Fork drainage	station allows comparison of metals and other pullutants from above to below reservoir.	Control station above City of Aissoula.	Station allows examination of effects of City of Missoula on Clark Fork water quality.	large volume point source municipal discharge co Clark Fork.	Station located in the plume of the WMP discharge prior to complete muxing. Worst-case situation.	Station allows examination of effects of dissoula WMFP after complete aixing.	Major tributary to the Clark Fork.	Control station above Champion Frenchtown Hill.	Large volume point source industrial discharge to Clark Fork and the primary focal point of this study.
Average Annual Flow (cfs)	1712	16+5	1	3051	3051	315i (Esc.)	۶۲. ۵	3170 (Est.)	3170 (Est.)	2377 (Est.)	5547	9.2 (Averaged combined flow)*
River Mile	ი.ი	o•9	0.9		12.5	15.9	16.0	16.1	18.0	21.0	28.5	31.0 32.0
Legal Description	112% klów Sec. 01 w	TIBN RIW Sec. 09 BDD	TIN RISM Sec. 20 DAA	TIBN RIBW Sec. 18 CBC	T13N R19W Sec. 22 DOD	TIJN RIGM SEC. 18 DDA	TIBN RLYM Sec. 18 DDA	TLM RUM Sec. 18 DDD	T13N 12UM Sec. 24 AAD	F13N R20W Sec. 26 CBD	TI4N K2IW Sec. 35 ADA	rian reiw sec. 23 ubb Tian Reiw sec. 14 bbc
Station Name	Ulark Fork at Tiran	Blackfoot kiver near mouth	Clark Fork in Ailitown Asservoir	Clark Fork below filltown Dam	Clark Fork above Assoula	Clark fork above dissoula wastewater treatment plant (AMIP)	Aissoula AATP iischarge to Clark Fork	Clark Fork just below Missoula WMP discoarge	Clark Fork at Stiffield's (Schmidt Construction W.)	bitterroot River near mouth	Olark Fork at Harper's Bridge	champion International frenchtown Hill wastewater surface discharge Discharge 901 Discharge 902
Station	01	02	03	3	95	90	07	200	60	10	11	12

Table 1.A. (cont'd.)

Station Nationale	*Orst-case situation (mixing incomplete) below introdion surface discharge, rapid infiltration pasins and storage ponds seepage areas.	station located below additional seepage areas. Acting of surface discoarge well underway.	station where routine champion self-monitoring and State compliance monitoring is performed. Surface discharge and seepage well-mixed.	Stations 10-21 allow examination of the effects of the Missoula AMTP and Champion discharges and other pollutants (e.g. metals) with increasing distance from their sources. They also allow the identification of any new significant water quality contaminant sources.						lanter. tation for Clark Pork water quality above Flathead Kiver.	.Ajor cributary to the the Clark Fork.	station allows examination of Clark Fork water gamits with Flatmead River.	unino, station above Thompson Falls Reservoir.	Classon at we examination of changes in Class form ster pality at passes through the thesity to
Average Annual Flow (cfs)	5560 (Est.)	5560 (Est.)	5360 (Est.)			}		1	7580	7580	12400	19930	1999e1	1
River Mile	32.5	36.0	39.0 40.5	0.44	51.0	70.07	79.0	ი•68	105.0	128.5	129.0	138.0	153.0	109.0
legal Description	1141 1214 Sec. 11 Bub	rian Rziw Sec. 03 Ba	TIŚN RZW SEC. 36 BAB TIŚN RZW SEC. 25 ACB	TI5N K22W Sec. 32 DBB	TI4N R23W Sec. 12 AAB	NISN RZSW Sec. 34 ADC	rigi R234 Sec. 29 DBA	117N R264 Sec. 34 ABb	N&W R274 Sec. 39 000	Tiya R254 sec. 33 Bw	118w 124wi Sec. 35 DUC	1200, 1264 330, 34 ABB	1215 R274 Sec. 33 ods	721n r254 3ec. 30 300
Station Name	Clark Fork at Marcure (0.5 miles below Champion surface discharge)	Clark Fork near Frenchtown (4 miles pelow Champion surface discharge)	Clark Fork at Husonخخ Sheffer Ranch Sixmile Station	Clark Fork at Winemile	Clark Fork near Alberton	Clark Fork at Tarkio	Clark Fork at Lozeau	Clark Fork at Superior	Jark Fork near St. Regis	Clark Fork above Flatnead River confluence	Flatnead River near mouth	Clark Fork at Plains	Clark Fork above Thompson Falls Reservoir	Clark Fork in Trompson Falls Reservoir
Station	13	14	J	lo	17	18	19	20	21	22	23	7 ,7	25	26

Station Rationale	Station allows comparison of water quality from above to below the reservoir. It also serves as a control station above Noxon Rapids Reservoir.	Same rationale as for 26 above.	Station allows comparison of water quality from above to below reservoir and acts as a control station above Cabinet Gorge Reservoir.	Same rationale as for 26 above.	Station allows comparison of water quality from above to below Cabinet Gorge Reservoir. It also indicates quality of Clark Fork as it enters
Average Amual Flow (cfs)	20702	l	21220	1	22410
River vii le	173.0	198.0	209.0 210.0	224.0	232.0
legal Description	T2Zi 830/1 Sec. 30 BDC	124N R32W Sec. 01 DDD	126N R3ZW Sec. 32 AAC 126N R3ZW Sec. 19 DAB	IZ7N R34W Sec. 28 DDB	127N RJE Sec. 20 DOC
Station Name	Clark Fork below Thompson Falls Dem	Clark Fork in Noxon Rapids Reservoir	Clark Fork below Noxon Rapids Dar*** Above Rock Greek At Noxon Bridge	Clark Fork in Cabinet Gorge Reservoir	Clark Fork below Cabinet Gorge Dem
Station	27	70	59	જ્ઞ	31

lake Pend Oreille. Station is monitored by both

Montana and Idaho and serves as a check on each

state's data quality.

Average flow rates for Missoula WMTP and Champion discharges are averages for the period July 1984 - June 1985.

Shefer Manch station sampled during seasonal comprehensive monitoring runs. Routine water chanistry monitoring conducted at Sixmile Station because of easier access. 长

to Noxon bridge in 1985 to provide baseline data for proposed developments in the Station above Rock Greek sampled through 1934. Station relocated downstream Rock Creek drainage. State.

B. Deep-water Monitoring Stations

Station Rationale	Hign concentrations of metals in oottom sediments.	Stations 13-22 are located between the	Confluence. These stations were established	to examine whether there is appreciable settling of organic solids from the dissoula MMP and	whether such deposition affects Clark Fork water	quality. A second objective was to investigate the fate of metal-bearing sediments originating	upstrežm and their subsequent elrects.						Deep water reservoir stations were selected to examine fate and effects of metals and organic solids originating upstream and which are rave	was to examine oxygen depletion due to reservoir stratification.	
Station	Hign c vottom	Station	conflue	of org	whether	quality the fat	upstre						Deep we examine solids	was to strati	
Average Annual Flow (cfs)	1		ļ	ļ	1	ļ	1	1	ı	1	1	1	I	ı	I
River Mile	0.9	32.5	0.04	0.94	5.69	71.0	85.0	91.5	100.0	105.0	107.0	123.0	169.0 169.0	198.0 200.0	225.0 230.0
Legal Description	TI3N RUSW Sec. 21 CA	TI4N RZIW Sec. 3 DB	T15N R224 Sec. 26 DC	TISN R224 Sec. 32 ACC	TI4N R25W Sec. 1 C	T15N R25W Sec. 27 B	TIÓN R254 Sec. 13 CD	TIN RZW Sec. 19 D	TITM R27M Sec. 5 BB	118N R274 Sec. 20 AC	TISN RZW Sec. 10 DC	T18N K254 Sec. 9 AA	T21N R294 Sec. 8 DB T21N R294 Sec. 9 CBC	124N RJIJ SEC. 16 BC 124N RJZN SEC. 12 AAD	T26N K33W Sec. 9 DA T27N K24W Sec. 26 DC
Station Name	Clark Fork arm of Milltown Reservoir	Clark Fork - Marcure Pool	Clark Fork - Huson Pool	Clark Fork - Ninemile Pool	Clark Fork - Fish Creek Pool	Clark Fork – Tarkío Pool	Clark Fork - Superior Pool	Clark Fork - LaVista Pool	Clark Fork - Red Hill Pool	Clark Fork - Boxcar Pool	Clark Fork - Toole Pool	Clark Fork - Flathead Pool	Thompson Falls Reservoir Near boat dock Below sawmill	Noxon Rapids Reservoir Near Trout Creek North Shore Campground	Cabinet Gorge Reservoir Near Bull River Near Heron
Station	03	13	51	16	17	18	19.5	20	20.5	77	21.5	22	26	28	30

Table 2. Monitoring Activities, Frequency and Water Quality Variables

- A. Chemical and Physical Water Quality Monitoring
 - 1. Shallow-water Monitoring: Monthly during low streamflow and bi-weekly during spring runoff

Streamflow
Field temperature
Metals (total recoverable and/or acid
soluble iron, copper, zinc, cadmium,
arsenic and manganese)
Nutrients (nitrate + nitrite, ammonia and
Kjedahl nitrogen, ortho-phosphorus and

total phosphorus)
Total suspended solids
Volatile suspended solids
Hardness

Shallow-water Monitoring: Seasonally (spring, summer, fall)

Streamflow
Field temperature
Field pH
Field dissolved oxygen
Biochemical oxygen demand
Chemical oxygen demand
Color (natural pH and pH adjusted)
Metals (total recoverable copper, zinc,
cadmium, arsenic and manganese)
Nutrients (nitrate + nitrite, ammonia and
Kjeldahl nitrogen, ortho-phosphorus
and total phosphorus)
Total suspended solids

Volatile suspended solids Lab pH Specific conductance Hardness

3. Deep-water Monitoring: Seasonally (spring, summer, fall)

Top water and bottom water samples for:

Field temperature
Field pH
Field dissolved oxygen
Metals (total recoverable or acid-soluble and dissolved iron, copper, zinc, cadmium, arsenic, manganese, lead, chromium and silver)

Table 2. Monitoring Activities, Frequency and (cont'd) Water Quality Variables

Lab pH Specific conductance Hardness

4. Bottom Sediment: Seasonally (spring, summer, fall)

Field hydrogen sulfide (qualitative)
Percent organic content
Metals (total recoverable and total iron, copper, zinc, cadmium, arsenic, manganese, lead, chromium and silver)

5. Surface Diurnal Dissolved Oxygen: Once annually in summer -- every 3 hours for 24 hours

Field temperature Field dissolved oxygen

6. Organic Analysis: Four times in 1984-1985

Analysis for organic priority pollutants Scan analysis for other organic constituents

- B. Biological Water Quality Monitoring
 - Shallow-water Monitoring: Seasonally (spring, summer, fall)

Macroinvertebrate traveling kicknet samples Composite periphyton collections Periphyton chlorophyll/biomass grab samples Periphyton chlorophyll/biomass accrual on artificial substrates (summer 1984 only)

Deep-water Monitoring: Seasonally (spring, summer, fall)

Macroinvertebrate dredge (grab) samples

 Open-water Monitoring: Seasonally (spring, summer, fall)

> Phytoplankton tow samples Phytoplankton chlorophyll samples Secchi Disc transparency

- Table 2. Monitoring Activities, Frequency and (cont'd) Water Quality Variables
- C. Aesthetics Monitoring (included in Volume II)
 - 1. Aesthetics Reconnaisance: Continuously throughout study
 - 2. Foaming, Tendency and Stability: Once in 1984
 - 3. Quantitative Surfactant Testing: Once in 1985
 - 4. River and Wastewater Foam Analysis: Once in 1985

Analysis for organic priority pollutants Scan analysis for other organic constituents Microscopic analysis of constituent solids

5. Fish Flesh Taste Tests: Once each in 1985

Taste and odor analysis of hatchery trout exposed to various dilutions of Champion wastewater

Taste and odor analysis of resident Clark Fork River trout

6. Champion Wastewater Microscopic Analysis: Monthly or bi-weekly from October 1984 to July 1985

Identification of constituent organic solids

Table 3. Stations at Which Each Monitoring Activity was Performed

Table 3. Stations at Which Ea	ch Mo	onitoi	ing I	lc t 1 v	vity	was	Perto	rmed					
	Thomas	a a 1 / DE	oior	1 M.		rina	Hio.	logic	an La	1i+			sthetics nitoring
	nemi	cal/Pb	lysica	1 140	T	ring) —	logic	T	Tonic	orin	3 MO	nitoring
	ng	Monitoring			Oxygen	}	Monitoring						
	Monitoring iweekly	ri	b		γg		ri	b	b	-	ic		Tests
	Monitor biweekly	t t	Monitoring		ŏ	1	유	Monitoring	Monitoring	ial	copi	S	S S
	ni	ni	OY		ט		ni	or	or	fic	l m	Analysis	H
	MO W	Mo	ri Č	t s	Ve	1.8	Mo	i,t	٦. ب	tif	Cro	17	ste
	Π Ω		no	en	01	S Z		on	on	Art	ic	na	S
	ter or]	ter 1y		Sediments	ssolved	Analysi	t e	1	1	1 10	Mi		
	ll d		er	ed	Di	An	w w	er	er	on	er	am	esh
	low-wa nthly	ow-wal	a tt	1 '	1	O	3	at	at	Y t	at	Foam	9
	10 11	llow-wa	'<	EIO	E E	ani	10.	3	3	on	ew 17	بخ	E-I
	hallow-w -Yonthly	(0 (1)	Deep-water	ttom	Diurnal	101	Shallow-water	ep-wate	Open-water	Periphyton Substrates	st	River	Sh
Station	Sh	1 D	De	BO	Di	O K	Sh	De	Q	പ് വ	Wastewater Analysis	Ri.	F 1:
01 Clark Fork at Turah	X	X		 	X	+	X	+	+	X			
02 Blackfoot River	Х	X		-	1		X	1	 	1			
03 Milltown Reservoir	#	X	X	X	+	+		$+_{\rm X}$	+ _x	+			
04 Clark Fork blw. Milltown Dam	X	X	-		-	 -	X	+	+~	+			
05 Clark Fork abv. Missoula	1	X			+	1	X	+	+	-			
06 Clark Fork abv. Missoula WWTP	X	X	1		X	 	X	+	 -	X		X	-
07 Missoula WWTP	X	X	-		1	+		+	 	+			
08 Clark Fork blw. Missoula WWTP		X			1	-	X	-	+	X			
09 Clark Fork at Shuffields	Х	X			X		X			X			
10 Bitterroot River	X	Х	-		1		X			1		Х	
11 Clark Fork at Harper Bridge	X	X			Х	Х	X	 	 	X			X
12 Champion discharge(s)	X	X			Α	X	A .	 	 		X	Х	X
13 Clark Fork at Marcure	11	X				A	X	-		X	_ <u>, </u>		X
14 Clark Fork nr. Frenchtown		X			+		X	1		1			X
15 Clark Fork at Huson	X	X	_		X	-	X	1		X			
lo Clark Fork at Ninemile		Х			X							Х	
17 Clark Fork nr. Alberton		X	_		X						-		
18 Clark Fork at Tarkio		X											
19 Clark Fork at Lozeau		X			X		Х						
20 Clark Fork at Superior		Х			Х	-				X			
21 Clark Fork nr. St. Regis	X	X		-	X		X	-				Х	
22 Clark Fork abv. Flathead		Х		200	X								
23 Flathead River	X	X			X		Х		1				
24 Clark Fork at Plains		X			X		Х			X			
25 Clark Fork abv. T. Falls Res.	X	X					Х						
26 f. Falls Reservoir		Х	Х	X		-		X	X				
27 Clark Fork blw. T. Falls Dam	X	X					Х						
28 Noxon Rapids Reservoir		X	Х	X				X	X				
29 Clark Fork blw. Noxon Dam	Х	X	-			1	Х						
30 Cabinet Gorge Reservoir	+ 11.	Х	Х	Х		100		X	Х				
31 Clark Fk. blw. Cab. Gorge Dam	Х	X		-			Х						
13 Marcure Pool			X	X				X					
15 Huson Pool	,		X	X				X					
16 Ninemile Pool			Х	X		100		Х	1				
17 Fish Creek Pool			X	X		1	L-1.+	Х					
la Tarkio Pool	1111		Х	Х		7-1	1	Х					
19.5 Superior Pool			Х	X		1-1		X					
20 LaVista Pool	100		Х	Х				Х					
20.5 Red Hill Pool			Х	Х				X					
21 Boxcar Pool			X	X				X					
21.5 Toole Pool			X	Х				X					
22 Flathead Pool	1		Х	X	-			X					

III. MONITORING ACTIVITIES AND RESULTS

Rationale, sample collection and analysis methods, stations sampled, sampling frequency and tabulated results for each grouping of water quality variables are presented in the following pages. Quality assurance measures taken to assure data precision, accuracy, representativeness and completeness are described in the Quality Assurance Project Plan: Lower Clark Fork River Monitoring (Water Quality Bureau, 1984). Quality assurance limits (precision, accuracy and detection limits) for chemical/ physical analyses performed by the Chemistry Laboratory Bureau of the Montana Department of Health and Environmental Sciences are given in Appendix B of this report. Quality assurance limits for heavy metals analyses performed by Energy Labs, Inc. of Billings are also included in Appendix B. Quality assurance data pertaining to the organic analyses performed by the EPA Region VIII laboratory are included with the analysis results in Table 7.

A. Chemical and Physical Water Quality Monitoring

1. Shallow-water Monitoring: River, Effluent and Reservoir Stations.

a. Rationale

Water samples for chemical and physical analysis were collected on a regular basis at 29 river and reservoir stations and from the two primary wastewater discharges (City of Missoula and Champion). These samples allowed the bureau to quantify the contributions of water quality contaminants from various waste sources and the major tributaries. They also helped to establish nutrient and suspended solids budgets for the river and assess the instream consequences of cumulative contaminant loading. Sampling during high streamflows helped estimate the amount of deposition of organic and inorganic solids in the mainstem reservoirs when retention time was shortest and Champion International was discharging directly to the river.

b. Methods

The 29 river and reservoir stations and two primary wastewater discharges were sampled for a variety of chemical and physical parameters between March 1984 and August 1985. Unfiltered surface grab samples for heavy metals and algal nutrients, and depth-integrated samples for total and volatile suspended solids were collected monthly during low stream flows and at least twice monthly during high flows at 16 of the 31 stations. Three times annually (spring, summer, fall), synoptic water quality monitoring (using estimates of river travel time to follow the same "slug" of water downstream) was conducted at all 31 stations. During the synoptic monitoring runs, a more extensive list of water quality variables were analyzed. Several

times during the course of the study, samples of Champion wastewater and a river control station (Harper Bridge) were collected for analysis of a lengthy list of organic compounds called priority pollutants. The samples were also "screened" for the presence of all other organic constituents not on the priority pollutant list.

Sample collection and analysis methods for each chemical/physical water quality variable and the analyzing laboratory are summarized in Table 4. Sample preservation and handling methods and the scheme for determining streamflows at each station are described in Appendix C.

c. Results

Individual chemical and physical analysis data are presented in tabular form by sampling date in Table 5. A statistical summary of the data giving ranges and means is given in Table 6. Results of Champion wastewater and river water organic analyses are tabulated in Table 7. The reviewer is referred to Appendix D of this report for a summary of field observations recorded at the time of sample collection which may have affected analysis results.

Table 4. Sample Collection and Analysis Methods for Chemical/Physical Shallow-water Monitoring

Variable	Collection Method	Analytical Method	Lacuratory
Water Temperature (°C) (T(C))	**************************************	Instream field determination	Field personnel
Suspended Solids (mg/l) Total Suspended Solids (TSS) Volatile Suspended Solids (WL ISS)	Effluents grab sampled. Streams depth-integrated from shore to limit of wadeability. EVI method. USOS p. 3-26 3).	EPA 160.2 2) EPA 160.4 2)	MDHES Gren Lab
Nutrients (mg/l) Nitrate + Nitrite (NO ₃ + NO ₂ as N) Annonia Nitrogen (NH ₃ as N) Kjeldahl Nitrogen (KJLD N) Ortho Phosphorus (ORTHO P) Total Phosphorus (TUTAL P)		EPA 353.2 2) EPA 350.1 2) EPA 351.2 2) EPA 365.1 2) EPA 365.1 2)	MDHES Coem Lab
Hardness (mg/1) as ${ m Ca}{ m CO}_3$) (HARD)	Grab Sample	EPA 200.7 2)	MDHES Chem Lab
Total Recoverable Metals (mg/l) Iron (FE T.R.) Copper (CU T.R.) Zinc (ZN T.R.) Manganese (MN T.R.) Cadmium (CD T.R.) Arsenic (AS T.R.)	Grab Sample	EPA 200.7 2) (autoritical expension of the content of the conte	MDHES Chem Lab
pH, Field and Lab (standard pH units) (PH FLD, PH LAB)	Grab Sample	EPA 351.2 2)	Field personnel and MDHES Chem Lao
Specific winductance (umhos/cm@25°C) (SPEC (DND)	Grab Sample	EPA 120.1 ²⁾	MDHES Chem Lab
Dissolved Oxygen (mg/l) (D.O.)	Grao Sample	EPA 360.2 2)	Field personnel
Biochemical Oxygen Demand (mg/l) (BOD ₅)	Grab Sample	EPA 405.1 2)	MDHES Chem Lab
Chemical Oxygen Demand (mg/l) (ധാവ)	Grab Sample	EPA 410. 2)	MDHGS Chem Lab
Color (standard color units) (COLOR NAT, COLOR PH AD)	Grab Sample	EPA 110.1 2)	MDHES Chem Lab
Sulfate (mg/1) (SO ₄)	Grab Sample	EPA 375.2 2)	MDHES Chem Lab

Table 4. (cont'd.)

Variable	Collection Method	Analytical Method	Laboratory
Acid Soluble Metals (mg/l) Copper (CU A.S.) Zinc (ZN A.S.) Cadmium (CD A.S.) Lead (PB A.S.)	Grab Sample followed by lab filtration (0.45 µ) after 48 hours.	EPA 220.2 2) EPA 289.2 2) EPA 213.2 2) EPA 2 1 2 23	Energy Labs, Inc.
CC/MS Priority Pollutant and Scan Analysis (ug/1)	Grab Sample	EPA 60% 1) EPA 624 1) EPA 625 1) EPA 1624 1) EPA 1625 1)	EPA Region, 7111 Chem Lan

References

- 1) Federal Register, Vol. 49, No. 209, Appendix A, October 26, 1984.
- 2) "Methods for Chemical Analysis of Water and Wastes," EPA-600/4-79-020 U.S. Environmental Protection Agency, 1983 (Revised).
- 3) "National Handbook of Recommended Methods for Water-data Acquisition," U.S. Geological Survey, June, 1978.

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESOLIS - PART + RESOLIS OF SAMPLES TAKEN ON MARCH 5-9, 1984

AS T.R.	9.007 0.001 0.001 0.004 0.004	0.004	0.004	<0.001	000	0.007		0.003	0.003	0.003	0.002	0.002	0.003	0.003	<0.001	<0.001	<0.001	0.031	<0.0ml	0.001	100.00	0.001
CD T.R.	<pre><0.005 <0.005 <0.005 <0.005 <0.005 <0.005</pre>	<0.005	0.005	<0.005	900	0.00.0		0.005	0.005	0.005	0.000	0.006	0.008	0.007	0.005	0.006	<0.005	0.008	0.006	<0.005	<0.005	<0.005
MN T.R.	0.03				07 0	0.03					0.03											
ZH T.R.	0.03 0.08 0.02 0.02	0.02	0.03	<0.005		0.03		0.05	0.0	0.0	0.0	0.007	0.03	0.006	+0.005	<0.005	<0.005	<0.005	0.012	<0.005	<0.005	<0.005
CU 1.R.	50000 10000	0.0	<0.01 <0.01	<pre><0.03</pre>		0.0					0.05											
FE T.R.	0.12 0.08 0.11 0.11	0.08	0.07	0.10	0 0 0	0.30		0.12	0.11	0.13	0.0	0.07	0.08	0,05	0.05	0.03	0.03	0.05	0.04	0.04	0.05	0.03
HARD	190 134 185 168	165	158 158	123	100	121					123											
TOTAL P	0.02 0.03 0.03 0.04	0.01	0.78	<0.01	000	0.04		0.03	0.05	0.03	0.03	0.02	0.05	0.05	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
ORTHO P	0.016 0.004 0.014 0.009	0.001	0.79	0.008	70 0	0.80		0.017	0.014	0.014	0.018	0.010	0.005	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	0.005	<0.001	<0.001
KJLD N	0.000	0.1	0.0	0.1	0 [0.3		0.4	⊅. 0	D. 4	 	2.3	0.3	0.3	0.2	0.2	0.3	C	0.3	0.1	0.1	0.1
N N N	60.00 60.00 60.00 60.00 60.00	0.02	4.20	<0.01	,	0.02		<0.01	<0.01	70.07	0.07	0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	0.01	<0.03	<0.01
NO3+ NO2 N	0.06	0.02	0.02	0.09	0,	0.06		0.07	0.06	0.05	0.05	0.03	0.02	<0.01	0.05	0.01	<0.01	<0.01	<0.01	0.05	0.08	0.03
VOL 7.55	6.000	1.0	1.4	1.0		1.2		1.4	9.	∞ .		1.4	1.2		. 5	6.	.5	5.	9.	5.	. 3	. 5
188	88.27 8.23 7.38 7.38				ŭ	6.2				٠	L. 01			•							9.	1.7
(C)	2.1.5	12.0	0.0 5.0	3.0 4.5	-	0.0 7.7		0.4	3.0	2.0	± 4	 	3.0	0.4	3.0	3.5	4.5	4.0	0.4	Ċ. Ţ	0.9	3.0
CES)		. 92			-	0.0		0.					0.	0.	0.				7.			
L _	851. 552. 1420.	1420	1430	1040 2470		2470.		2470					322	3220.	1108	14300	14300		1531		10300.	
1 1 MF	1000 851. 1100 552. 1230 0700 1420. 0830 1420.	1420		1545 1040 1745 2470	11, 30	2000 247		2	0300	0500	1130	1800		1045 322				1630	0845 1531	1130	1215 10300	1330
	05 1000 05 1100 05 1230 06 0700	06 1000 1420 06 0930 9	06 1030 06 1115	05 1545 06 1745		06 2000	07 1430	07 0015 2			07 1130	0.7	0060 80	08 1045	08 1145	08 1300	08 1530	08	60		09 1215	60
TIME (1000 1100 1230 0700 0830	STP 06 1000 1420 EFFLNT 06 0930 9	06 1030 06 1115	1545 1745		06 2000	OWN 07 1430	07 0015 2	0 7	BERT 07	70	0.7	0060 80 9	08 1045	08 1145	₩S 08 1300	08 1530	90 9	11 09		09 1215	

ALL VALUES ARE IN MG/L EXCEPT FLOW(GES) AND TEMPERATURE (DEG. C). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. WHEN CHAMPION WAS NOT DIRECT DISCHARGING AS INDICATED BY 0.0 FLOW, SAMPLES WERE COLLECTED FROM STORAGE PONDS. NOTE:

TABLE 5

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART II RESULTS OF SAMPLES TAKEN ON MARCH 5-9, 1984

PB A.S.																														
CD A.S.																														
ZN A.S.																														
CU A.S.																														
t ₁ 0S																														
COLOR PH AD	6.3	.00	6.1	6.7	9.9	25.7	10.6	4.9	5.8	5.7		755.	19.8		9.0	8.4	8.9	1 .თ	8.7	9.0	7.4	6.6	0.5	1.9	2.4	6.5	1.9	1.9	0.3	2.5
COLOR	6.1	7.0	6.8	6.9	7.6	27.5	11.3	8.4	5.9	9.9		787.	21.6		9.1	9.1	9.3	8.4	8.6	9.4	C1	0.4	0.5	2.0	2.2	5.0	6	8.	0.5	1.7
000	12.1	13.2	. 6	<5.	<5.	34.3	11.1	5.	11.5	<5.		852.	18.4		<5.	<5.	<5.	<5.	<5.	<5.	<5.	ς ₅ .	<5.	<5·	<5.	75.	<5.	<5.	<5.	<5.
8005	<2.0	<2.0	<2.0	2.5	<2.0	8.6	3.5	<2.0	<2.0	2.3		113.	<2.0		<2.0	<2.0	<2.0	<2.0	<2.0	< 5.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
D.0.	12.5	11.6	12.1	12.2	12.9	5.7	11.8	13.5	12.6	13.7			12.3		12.0	12.1	12.5	12.6	13.1	13.3	11.8	12.5	12.6	13.2	13.0	12.6	12.7	12.5	11.9	12.9
SPEC	410	397	351	349	342	753	413	344	148	271		2528	316		284	280	281	270	277	268	273	262	174	195	192	200	202	194	195	190
PH LAB	8.37	8.17	8.114	8.45	8.52	7.66	8.16	8.67	8.15	8.66		8.05	8.45		8.44	8.34	8.33	8.32	8.46	8.65	8.30	8.56	8.26	8.41	8.37	8.36	8.44	8.29	8.20	8.27
PH F1.0	8.30	8.02	8.25	8.30	8.38	7.20	7.75	8.50	8.05	8.60		7.67	8.44		8.25	8.32	8.20	8.20	8.45	8.67	8.15	8.33	8.05	8.36	8.28	8.23	8.5.7	8.13	8.1	8.074
TIME	1000	1230	0.200	0830	1000	0830	1030	1115	1545	1745		1430	2000	1430	0015	0300	0.200	1130	1600	1800	0060	1045	1145	1300	1530	1630	0845	1130	1215	1330
DAY	05	0.5	90	90	90	90	90	90	05	90		90	90	10	7.0	0.3	20	10	7.0	0.7	08							60		
STATION	TURAH RI ACK FOOT	IN MILLIWIN	BEL MILLIN	ABV MSLA	ABV STP	STP EFFLNI	BEL STP	SHUFFIELDS	BITTERROOT	HARPER BR	CHAMP 001	CHAMP 003	MARCURE	FRENCHTOWN	HUSON	9-MILE	ABV ALBERI	1ARF 10	LOZEAU	SUPERIOR	BEL ST REC	ABV FLATHU	FLATHEAD R	PLAINS	ABV T FALL	IN T FALLS	BEL I FALL	-	BEL NOXON	IN CAB GOR BEL CAB GO
	0.1	03	ħΟ	0.5	90	0.7									15	16	17	18	19	50	21	22	23	54	25	26	27	28	53	30 31

SOLUBLE. A.S. MEANS A. NOTE: ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C.(UMHOS/CM), AND COLORE FOR UNITS).

TABLE 5

ALL VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. C). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. WHEN CHAMPION WAS NOT DIRECT DISCHARGING AS INDICATED BY 0.0 FLOW, SAMPLES WERE COLLECTED FROM STORAGE PONDS.

NOTE:

AS. I.R. C0 T.R. NE I ZN T.R. CU T.R. FE . R. P HARD TOTAL 0.02 0.01 0.01 7.500.03 0.01 0.02 4.30 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 0.010 0.001 ORTHO P 0.001 0.0090.006 $0.025 \\ 0.006$ 0.001 900.0 0.001 0.002 0.021 0.0122.30 0.3 0.2 0.3 KJLD 0.2 0.4 0.3 0.4 0.4 0.2 ٥. 24. 0.01 0.01 0.01 0.06 0.01 0.01 0.01 0.01 0.01 0.01 <0.01 <0.01 0.02 NH3 11 . 11 NO3+ NH3 NO2 N N 0.01 0.04 0.04 <0.01 0.01 0.01 0.01 <0.01 0.01 1.6 0.01 0.01 0.03 0.02 0.01 <0.01 . 7 V0L 1.4 1.6 48.2 2.0 0.1 6. 1.7 9. 5 151. 188 10.2 7.7 8.9 54.8 12.0 166.3 4.6 7.8 .8 4.6 3.5 1.8 φ. 8.5 7.5 3.6 ÷. 0.9 e. e 7.0 8.0 12.5 232 ÷. 5.5 - (c) 11.14 FLOW (CFS) 0.0 967. 816. 1440. 1890. 6620. 1900. 3340. 3340. 1890. 4380. 11200. BEL T FALL 05 1130 11063. BEL NOXON 06 1530 15500. L CAB GO 06 1330 16600. 1730 2015 PLAINS ABV T FALL 05 0845 IN T FALLS 1230 1330 1400 1000 1030 1545 1430 1500 DAY TIME BEL MILLIN ON 1200 FLATHEAD R 04 04 70 07 0.4 0.4 0.4 70 07 04 BEL S1 REG 04 0.4 STP EFFLNI BEL SIP SHUFF LELDS BITTERROOT ABV FLATHD IN MILLIWN IN CAB GOR FRENCH TOWN ABV ALBERT CHAMP 003 STATION BLACK FOOT HARPER BR CHAMP 001 ABV MSLA NOXON NI ABV STP SUPERIOR MARCURE 9-MILE TARKIO LOZEAU HUSON

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART RESULTS OF SAMPLES TAKEN ON APRIL 4-6, 1984

19

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11 RESULTS OF SAMPLES TAKEN ON APRIL 4-6, 1984

A.S.							
CD A.S.							
ZN A.S.							
CU A.S.							
SOL							
COLOR PH AD							
COLOR NAT							
000							
8005							
D.0.							
SPEC							
PH LAB							
PH FL0							
DAY TIME	1000 1030 1200	1230	1330 1400 1430 1500	1545	1730	04 2015 05 0845	06 1530 06 1330
DAY	04 04 04	0.4 0.4	7000 0000		04	, 1 2	06
STALLON	TURAH BLACKFOOT IN MILLIWN BEL MILLIN	ABV MSLA ABV STP STP EFFLNT BEL STP	SHOFFIELDS BITTERROOT HARPER BR CHAMP OOT	MARCURE FRENCHTOWN HUSON 9-MILE	ABV ALBERT TARKIO LOZEAU SUPERIOR BEL SI REG	ABV FLATHD FLATHEAD R (PLATNS ABV T FALL (
					17 18 20 21 21	22 23 24 25 25	22 B 22 B 30 B 31 B

ALE VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C.(UMHOS/CM), AND CO.ORE TEOR UNIES). A.S. MEARS ACID SOLUBLE. NOTE:

TABLE 5

TABLE 5

SHALLOW-WAIER CHEMICAL/PHYSICAL MONITORING RESULIS - PART I RESULIS OF SAMPLES TAKEN ON APRIL 17-18, 1984

AS T.R.														BLE.
CD T.R.														ECOVERA
Ξ α Ξ α														TOTAL R
ZN.														FANS 1
cu 1.R.														T. R.
FE T.R.														JINGS,
TOTAL P HARD	0.11	0.03	0.03	0.04 0.06 0.06	1.0	0.07		0.04	0.01	0.05	0.02	0.01	0.02	IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE.
ORTHO P	0.053	0.018	0.017	0.019 0.022 0.024		0.033		0.013	0.002	.0.001	0.001	<0.001	<0.001	
F JLD	0.5	0.2	0.2	0.2 0.4 0.4	7.0	0.4		0.5	0.1	0.1	0.1	0.1	0.1	FLOW(CFS) AND TEMPERATURE(DEG. C).
	0.02	0.02	0.01	0.05 0.02 0.02		0.05		0.01	0.01	0.01	0.01	0.01	<0.01	PERATU
иоз+ инз иог и n	<0.01	<0.01	<0.01	<pre></pre>	0.1	9.4 <0.01		3.7 <0.01	0.01	1.2 <0.01	1.3 <0.01	.8 <0.01	.9 <0.01 <0.01	ND TEM
VOL	10.4 4.0	5.9	3.8	4.0 9.1 4.9	91.9	4.6		3.7	.5	1.2	1.3	8.	6.	CFS) A
188	71.2	19.4	25.3	30.4 56.0 38.0	6.79	7.49		25.1	3.2	5.6	7.2	2.2	2.7	FLOW(
1 (C)	9.5	10.5	10.5 14.0	11.0		12.0		11.0	8.5	10.5	10.01	12.0	8.0	EXCEPT
FLOW (CFS)	1765. 1270.	2950.	2950. 13.30	2960. 2080. 5040.	1.60	5040.		.0509	6350.	12400.	14874.	1000-13900.	1045 18300.	ALL VALUES ARE IN MG/L
TIME	0930 1030	1100	1130	1215 1245 1400	1000	17 1540		1700	1745	1830	0845			S ARE
DAY	17	17	17	17	17		_	7	3 17	17	2 18	- 82	7 18	ALUE
STATION	TURAH BLACKFOOT	BEL MILLIN	ABV MSLA ABV STP STP EFFLNT		CHAMP 001 CHAMP 003 MARCURF			LOZE SUPE BEL					IN CAB GOR BEL CAB GO	
	01	004	000	08 09 11	12 12 13	1 1 1 1 1 1	18	19 20 21	23	25	27	200	31	NOTE

TABLE 5

ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C.(UMHOS/CM), AND COLOR(COLOR UNITS).

NOTE:

A.S. MEANS ACID SOLUBLE.

	PB A.S.	
	CD A.S.	
	ZN A.S.	
	CU A.S.	
- PARI 184	hOS	
SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11 RESULTS OF SAMPLES TAKEN ON APRIL 17-18, 1984	CDLOR PH AD	1060.
ITORING APRIL 1	COLOR NAT	1130.
AL MON KEN ON	COD	
/PHYSIC	8005	34,1
IEMICAL OF SAM	D.0.	
ATER CH ESULTS	SPEC	
LLOW-W,	PH LAB	
SHAI	PH FLD	2.
	DAY TIME	17 0930 17 1030 17 1130 17 1245 17 1245 17 1246 17 1000 17 1745 17 1745 17 1830 18 1000 18 1045
	DAY	7
	STATION	TURAH BLACKFOOT BLACKFOOT BEL MILLTWN BEL MILLTWN ABV MSLA ABV STP
		33222222222222222222222222222222222222

SHALLOW-WATER CHEMICAL, PHYSICAL MONTIORING RESULTS - PART I RESULTS OF SAMPLES TAKEN ON MAY 16-17, 1984

CD AS I.R. I.R.	<0.005 0.045 <0.005 0.001	<0.005 0.020	<0.005 0.019 <0.005 0.001	<0.005 0.020 <0.001				<0.005 0.010				<0.004	<0.005 <0.001	<0.005 0.004		<0.005 <0.001	<0.005 <0.001
MN T.R.	0.84 0.10	0.49	0.48	0.48	0.28	0.09		0.32						0.21		0.02	
ZN T.R.	0.40	0.22	0.24	0.22	0.12	0.04		0.15			:	0.05 0.08 0.28	<0.005 0.01	90.0		<0.005	<0.01 <0.005 0.02
cu T.R.	0.23	0.12	0.12	0.12	0.06	0.01		2.36 0.08					<0.01	0.03	0.01	<0.01	<0.01
. R.	4.41	2.54	2.62	2.69	1.68	0.40		2.36			•	1.92	0.11	1.40	09.0	0.05	90.0
ORIHO TOTAL P P HARD	0.51	0.27	0.25 4.00	0.26	0.17	1.98		0.21				0.16	0.02	0.12	0.07	0.01	0.01
ORTHO P	0.37	0.19	0.19 3.07	0.19	0.10	0.87		0.17			0	0.096	0.007	0.075	0.031	0.003	<0.001
KJI D	1.9	1.3	1.3	1.6	0.1.0	11.		1.2				-	0.2	0.8	9.0	0.1	0.2
	0.04	0.05	0.03	0.03	0.03	20.0		0.05			(0.05	0.01	0.05	0.02	<0.01	0.02
NO3+ NH3 NO2 N N	0.03	0.03	0.02	0.03	0.04	0.01		22.8 0.06			0	0.00	0.03	0.06	0.07	0.03 <0.01	0.03
V0L TSS	47.1	26.5	27.9	27.2	19.7	111.		22.8				21.6	1.1			0.8	0.8
158	555. 138.	256.	269. 20.7	254. 116.				246.			6	.650	10.2		61.1	3.1	3.3
_ (°)	7.0	7.0	7.0	7.0	7.0	13.0		8,0 246			•	8.055.0	9.0	8.0 137	8.1	10.0	6.6
FLOW (CFS)	7150. 5110.	1130 11300.	11300. 12.06	11310.	214	48.12		16 1700 21480.			:	23000.	6300.	34000.	33044.	1300 40800.	17 1140 45900.
DAY TIME	1000 1045	1130	1200 1220	1300	1440	1530		1700				1845	1845	17 0845	1015	1300	1140
DAY	16	16	16	16		0 4		16				9 .	91	17	17	17	
STATION	TURAH BLACH FOOT	IN MILLIWN BEL MILLIN ADV MSIA	ABV MSEA ABV STP STP EFFLMT	BEL STE SHUFFTELDS BLITERROOT	HARPER BE	CHAMP 003	MARGURE FRENCHTOWN	HUSON 9-MILE	ABV ALBERT	LOZEAU	SUPERIOR	ABV FLATHD	FLATHEAD R	PLAINS ABV I FALL	IN T FALLS BEL T FALL	IN MOXON BEL NOXON	IN CAB GOR BEL CAB GO
		000		10						8 <u>6</u>			23		26		

TABLE 5

TABLE 5

ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C. (UMHOS/CM), AND COLOR(CULOR UNITS).

NOTE:

A.S. MFANS ACID SOLUBLE.

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11 RESULTS OF SAMPLES TAKEN ON MAY 16-17, 1984

PB A.S.																										
CD A.S.																										
ZN A.S.																										
CU A.S.																										
804																										
COLOR PH AD																										
COLOR																										
COD																										
8005																										
D.0.																										
SPEC																										
PH LAB																										
PH F1.0																										
DAY TIME	1000 1045	1130	1200	1220	1300	1330	1440	1600	1530			1700					2,01	040	1845		0845		1015	1300		1140
γ	16	16		16		16	16	16	16			16					4	٥	9)	17		17	17		17
STATION D	TURAH BLACKFOOT	IN MILLTWN BEL MILLTN	ABV MSLA ABV SIP	STP EFFLNT	BEL STP SHUFFIFLDS	BITTERROOT	HARPER BR	CHAMP 001	CHAMP 003	MARCURE	FRENCHTOWN	HUSON	9-M11 E	ABV ALBERT	TARKIO	LOZEAU	SUPERIOR	ARV FLATHO	FLATHEAD R	PLAINS	ABV T FALL	IN T FALLS	BEL I FALL	BEI NOKON	IN CAB GOR	BEL CAB GO
	01					10			12	13					- 2								27	28	30	31

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART I RESULTS OF SAMPLES TAKEN ON JUNE 4-5, 1984

s.	006	0.003	0.003	003	004 007	0.002		0.002	100	0.005	0.001	0.001	0.001
AS 1.R.	0.006			0.003					<0.001				
CD T.R.	<0.005 <0.005	<0.005	<0.005 <0.005	<0.005 <0.005 <0.005	<0.005 <0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
M. T. R.	0.06	0.05	0.04	0.05	0.69	0.04		0.04	0.01	0.04	0.03	0.02	0.02
ZN T.R.	0.03	0.05	0.02	0.02 <0.005 0.02	0.04	0.02		0.01	<0.005	0.09	0.01	0.008	0.009
CU T.R.	0.02	<0.01	<0.01	60.01 60.01 60.01		<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
FE T.R.	0.31	0.27	0.28	0.29	34	0.39		0.36 <0.01	0.05	0.34	0.28	0.13	0.12
TOTAL P HARD	0.05	0.04	0.04 6.10	0.05 0.003 0.04	4.20 3.75	90.0		0.05	0.02	0.04	0.04	0.03	0.03
ORTHO P	0.041	0.024	0.024 4.68	0.036	2.18	0.036		0.034	0.007	0.024	0.024	0.023	0.016
KJLD N	0.4 0.3	0.3	0.3	0.3	19. 14.	0.3		0.3	0.2	4.0	0.3	0.3	0.2
N N	<0.01	<0.01	<0.01 17.9	0.02 <0.01 0.02	4.2 4.5	0.05		0.02	<0.01	0.01	0.01	0.02	0.02
NO3+ NO2 N	0.02	0.02	$0.02 \\ 0.03$	0.02 0.04 0.04	0.01	0.04		0.04	<0.01	0.03	0.04	0.05	0.05
V0L TSS	3.6	3.3	3.2	33.6	149. 128.	4.3		4.0	1.4	3.5	3.6		1.4
188	28.8 29.0	30.6	30.0	32.6 37.2 29.5	170. 146.	55.6		48.9	10.0	9.44	41.4	6.6	8.7
(C)	9.5	10.0	10.0 14.0	10.0 9.0 10.0	16.0 15.0	10.5		10.5	13.0	11.0	11.0	11.0	11.0
FLOW (CFS)	4090. 4620.	8750.	8750.	8760. 1 9840. 18600. 1	6.37 44.55	18651.		24200.	13300.	37500.	38122.	38000.	05 1030 45100.
DAY TIME	1015 1045	1115	1145	1300 1320 1415	1500 1450	1630		1820	1900	2000	9470	0060	1030
DAY	04 04	04	0.04		70 70	0.4		70	ħ0 :	0.4	. 05	0.5	
STATION	TURAH BLACKFOOT	BEL MILLTN	ABV M3CA ABV STP STP EFFLNT	SHUFFIELDS SHUFFIELDS BITTERROOT HARPER BR	CHAMP 001 CHAMP 003	FRENCHTOWN HUSON 9-MILE	ABV ALBERT TARKIO LOZEAU	BEL ST REG	FLATHEAD R	ABV T FALL	BEL T FALL	BEL NOXON	BEL CAB GO
	01	004	00 07			2 2 2 2 2 2 2 2 2 2	18 19 20 20	210	23	25	27	29	31

ALL VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. C). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. NOTE:

TABLE 5

NOTE: ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C.(UMHOS/CM), AND COLOR(COLOR UNITS).

A.S. MEANS ACID SOLUBLE.

PB A.S.		
CD A.S.		
ZN A.S.		
CU A.S.		
80 ⁴		
COLOR PH AD		
COLOR		
COD		
8005		
D.0.		
SPEC		
PH LAB		
PH FLD		
DAY TIME	1015 1045 1045 11145 1215 1320 1415 1500 1450 1450 1450 1900 0745	,
DAY	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
STATION	TURAH BLACKFOOT IN MILLTWN BEL MILLTWN ABV MSLA ABV STP STP EFFLNT STP EFFLNT STP EFFLNT STP EFFLNT STP EFFLNT STP EFFLNT ABV STP CHAMP 001 CHAMP 003 HARPER BR CHAMP 003 HARPER BR CHAMP 003 HARPER BR CHAMP 003 CHAMP 003 FRECHTOWN HUSON CHAMP 003 FRECHTOWN FLATHEAD	
	00000000000000000000000000000000000000)

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11 RFSULTS OF SAMPLES TAKEN ON JUNE 4-5, 1984

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULIS - PART I RESULTS OF SAMPLES TAKEN ON JUNE 20-21, 1984

AS T.R.	0.008	0.004	0.004	0.005 <0.001 0.003	0.004	0.002			0.002	<0.001	0.001	0.001	0.001	.001	
	<0.005 0 <0.005 <0	<0.005 0	<0.005 0 <0.005 0	<0.005 0 <0.005 <0 <0.005 0	<0.005 0	<0.005			<0.005 0	<0.005 <0	<0.005 0	<0.005 0		<0.005 <0.001	
CD T.R.										<0.	<0.	-	<00.005	<0.	
Α. 	$0.08 \\ 0.02$	0.06	$0.06 \\ 0.02$	$\begin{array}{c} 0.06 \\ 0.01 \\ 0.04 \\ \end{array}$	0.79	0.04			0.04	0.01	0.03	0.03	0.02	0.01	
TOTAL FE CU ZN P HARD T.R. T.R. T.R.	0.36 0.02 0.04 0.08 0.14 <0.01 <0.005 0.02	0.08	0.03	0.07 0.005 0.02	0.04	0.04			0.01	0.01	90.0	0.03	<0.005	0.06 <0.01 <0.005 0.01	THE STATE OF THE PERSON OF THE STATE OF THE
CU T.R.	0.02	0.02	0.01	0.02 <0.01 0.01	<0.01	0.01			0.01	<0.01	<0.01	<0.01	<0.01	<0.01	6
FE T.R.	0.36	0.28	0.28	0.29 0.27 0.25	0.36 <0.01	50 0.31 0.01			0.32 0.01	0.06 <0.01	0.24 < 0.01	0.26	0.08	90.0	0
HARD	87	84	149	80 18 59	203	50			20	83	69	49	99	49	4
TOTAL P	0.04	0.03	0.03	0.03 0.02 0.03	3.81	0.03			0.03	0.01	0.03	0.03	0.01	0.01	7117
ORTHO P	$0.036 \\ 0.014$	0.024	0.024	0.027 0.014 0.020	0.92	0.024			0.024	0.008	0.017	0.020	0.008	0.011	
KJLD	0.3	0.2	0.2	0.3	16.4	0.3			0.2	0.5	0.2	0.3	0.2	0.3	010110
NO3+ NH3 NO2 N N	0.02	0.01	0.03	0.06 <0.01 <0.01	3.37 16.4	0.04			0.05	0.09	<0.01	0.02	<0.01	0.09	TAGIG
NO3+ NO2 N	$0.02 \\ 0.01$	0.01	$0.01 \\ 0.23$	0.02	0.01	3.9 0.02 0.04 0.3			0.02 0.02	0.05	0.02	0.02	0.02	0.02 0.09	TWG E
VOL TSS	3.5	3.1	3.0	3.1 2.4 2.5	68.8	3.9			5.9	0.7	5.6	2.8	0.7	0.7	1010
155	34.9 19.8	28.8	28.0 13.	30.2 29.4 25.6	83.1	44.3		!	47.0	7.8	37.6	40.3	7.5	7.1	610117
(C)	12.0 12.4	12.5	12.2	13.0 12.0 14.0	20.0	14.0		!	13.5 47.0	15.5	14.0	14.0	14.0	14.0	EXCEDT ELOUGES AND TEMPERATURES OF
FLOW (CFS)	5030. 4180.	.0068	8900. 12.68	8910. 11390. 20300.	15.59 20.0	20 1645 20320.			20 1830 24400.	20 1915 18500.	20 2000 42900.	21 0845 42376.	21 1000 45600.	BEL CAB G0 21 1100 51800.	NOTE: ALL VALUES ARE IN MC/L
DAY TIME	20 0945 20 1020	1100	20 1130 20 1200	1230 1300 1515	1445	1645			1830	1915	2000	1 51,80	1000	1100	ARF
DAY	20	20	20	20 20 20	20	20			20	20	20		21	21	FS
)0T	AT A	FLNT	ELDS ROOT BR	03	LOWN	3ERT)R	XEG VIHD	10 R	ALL	ALL	(0.12 GOR	00 8	\ \
STATION	TURAH BLACKFOOT IN MILITUN	I S	ABV STP STP EFFLNT RFI STP	SHUFFIELDS BITTERROOT HARPER BR	CHAMP 003	FRENCHTOWN HUSON	Y=MILE ABV ALBERT TARKIO	LOZEAU SUPERIOR	BEL SI REG ABV FLATHD	FLATHEAD R 2	ABV T FALL	BEL T FALL	BEL NOXON	CAE	٦
ST	TURAH BLACK	BEL	ABV STP	SHU BIT HAR					BEL ABV	FLA	ABV				14
	01	0.00	00/0	00011	12	12 12 1	17	19	22	23	25	27	29	3.1	2

IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. NOTE: ALL VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. C).

TABLE 5

ALL VALUES AFE IN MG/L EXCEPT PH(STANDARD UNITS), S.C. (UMHOS/CM), AND COLOR(COLOR UNITS).

NOTE:

A.S. MEANS ACID SOLUBLE.

CD A.S. ZN A.S. CU A.S. SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART III RESULTS OF SAMPLES TAKEN ON JUNE 20-21, 1984 \$01 COLOR PH AD COLOR NAT COD 8005 D.0. SPEC PH LAB PH FLD | N MILLTWN | BEL MILLTWN | BEL MILLTN | 20 1100 |
ABV MSLA	20 1130	
ABV STP	20 1130	
STP EFFLNT	20 1200	
BEL STP	20 1200	
BEL STP	20 1200	
BEL STP	20 1200	
CHAMP	001	20 1445
CHAMP	003	20 1445
MARCURE	FRENCHTOWN	
HUSON	20 1645	BEL ST REG 20 1830
ABV FLATHD
FLATHEAD R 20 1915
PLAINS
ABV T FALL 20 2000
1N T FALLS
BEL T FALL 21 0845 IN NOXON
BEL NOXON 21 1000
IN CAB GOR
BEL CAB GO 21 1100 20 0945 20 1020 DAY TIME ABV ALBERT TARKIO LOZEAU SUPERIOR BLACKFOOT STATION

PB A.S.

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART I RESULTS OF SAMPLES TAKEN ON JULY 10-11, 1084

STATION	DAY	DAY TIME	FLOW (CFS)	(C)	155	VOL TSS	N03+	VOL NO3+ NH3 KJLD TSS NO2 N N N	KJLD N	ORTHO P	ORTHO TOTAL P P HARD	FE T.R.	cu T.R.	FE CU ZN MN T.R. T.R. T.R. T.R.	™ WN.	CD T.R.	AS T.R.
TURAH BLACKF001	10	0945 1015	1911. 1940.	14.0 14.5	8.5 5.6	1.9	1.9 0.01 <0.01 1.1 <0.01 <0.01	<0.01	0.5	0.019	0.03	0.12	<0.01	0.02	0.03	0.12 <0.01 0.02 0.03 <0.005 0.06 <0.01 0.005 0.009 <0.005	0.007
IN MILLTWN BEL MILLTN	10	1050	3840.	14.5	11.8	1.9	<0.01	1.9 <0.01 <0.01 0.3	0.3	0.016	0.02	0.15	0.15 <0.01	0.01 0.03		<0.005	0.004
ABV MSLA ABV STP 1 STP EFFLNT 1	01	10 1130 10 1200	3840. 15.0 12.38 16.5	15.0 16.5	11.8	10.5	<0.01	1.8 <0.01 <0.01 10.5 1.84 3.33	0.3	0.015	0.02 5.94	0.23	<0.01	0.23 <0.01 0.01 0.03 0.005 0.07 0.07 0.008 <0.005	0.03	0.005	0.005
BEL STP SHUFFIELDS BITTERROOT HARPER BR	0100	10 1220 10 1250 10 1600	3850. 3920. 7770.	15.0 16.5 18.0	11.7 7.8 9.0	2.0 1.5 1.4	0.01 0.04 0.04	2.0 0.01 <0.01 1.5 0.04 <0.01 1.4 0.04 <0.01	0.5	0.031 0.012 0.017	0.04 0.02 0.03	0.17 0.15 0.13	<0.01 <0.01 <0.01	0.17 <0.01 0.02 0.03 0.03 0.15 <0.01 <0.005 0.01 0.13 <0.01 0.008 0.02		<pre><0.005 0.005 <0.005 <0.001 0.005 0.003</pre>	0.005 <0.001 0.003
CHAMP 001 CHAMP 003	10	1515	1.26		64.5	58.8	<0.01	58.8 < 0.01 2.59 15.8	15.8	19.0	3.04	0.39	<0.01	0.39 <0.01 0.04 8.0	8.0	0.008	900.0
MARCURE FRENCHTOWN HUSON 9-MILE ABV ALBERT TARK10		10 1645	7770.	18.5	13.6	2.3	0.03	2.3 0.03 <0.01 0.3	0.3	0.019 0.03	0.03	0.16	<0.01	0.005	0.03	0.16 <0.01 0.005 0.03 <0.005 0.002	0.002
SUPERIOR BEL ST REG		10 1830	9710.	18.0	5.8	1.1	0.02	1.1 0.02 <0.01 0.5	0.5	0.014 0.02	0.02	0.08	<0.01	<00.005	0.01	0.08 <0.01 <0.005 0.01 <0.005 0.009	0.002
ABV FLATHD FLATHEAD R 10 1915 12590.	10	1915	12590.	20.5	3.6	6.0	<0.01	0.9 <0.01 <0.01	0.2	0.007	0.01	0.05	<0.01	<00.005	0.008	0.05 <0.01 <0.005 0.008 <0.005 <0.001	<0.001
PLAINS ABV T FALL 10 2015	10	2015	22300.	18.5	6.4	6.0	0.01	0.9 0.01 <0.01 0.2	0.2	900.0	0.01	0.05	<0.01	<0.005	0.01	0.05 <0.01 <0.005 0.01 <0.005 0.00	0.001
IN I FALLS BEL T FALL	=	11 0900	23789.	17.5	8.9	1.4	0.01	1,4 0.01 <0.01 0.3	0.3	0.007	0.01	0.09	<0.01	<0.00>	0.01	0.09 <0.01 <0.005 0.01 <0.005 0.01	0.001
IN NOXON BEL NOXON		1030	11 1030 24500.	17.5	5.9	0.7	0.02	0.7 0.02 <0.01 0.2	0.2	0.007	0.02	0.07	<0.01	0.07 <0.01 <0.005 0.02	0.02	<0.005 0.001	0.001
IN CAB GOR BEL CAB GO	=	1130	11 1130 25900.	17.5	5.6	0.7	0.01	0.7 0.01 <0.01 0.4	0.4	900.0	0.01	0.04	<0.01	<0.005	0.01	0.04 <0.01 <0.005 0.01 <0.005 0.001	0.001
LY OH MI DOM STREET, THE STREET	1	L C		101070	211013	V () J (NO TEN	IPERATI	IRFIDEC		EVENT FLOWINGES AND TEMPERATURE CO. IN THE HEADINGS. T.R. MEANS TOTAL RECOVERABLE.	NGS	T. R.	FAMS TO	TAL RE	COVERAB	г. Г

IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. NOTE: ALL VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. C).

TABLE 5

																A.S. MEANS ACID SOLUBLE.
	PB A.S.															EANS AC
	CD A.S.															A.S. M
	ZN A.S.															UNITS).
Ξ	CU A.S.															AND COLOR(COLOR UNITS).
S - PAR 384	SO4															0 100 0
RESULT: -11, 19	COLOR PH AD															CM), AM
SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART RESULTS OF SAMPLES TAKEN ON JULY 10-11, 1984	COLOR															STANDARD UNITS), S.C.(UMHOS/CM),
AL MON KEN ON	000), S.C.
/PHYSIC, PLES TA	8005															D UNITS
HEMICAL OF SAM	0.0.															STANDAR
ATER CH FSULTS	SPEC															
LOW-W	PH LAB															- EXCE
SHAI	PH FLD															N MG/I
	DAY TIME	0945 1015	1050	1130 1200	1220 1250 1600	1515	10 1645			10 1830	10 1915	2015	11 0900	1030	1130	ALL VALUES ARE IN MG/L EXCEPT PH(
	DAY	10	N 10	10 11 10	S 10 10 10		_	Ε.				10		11	=	/ALUES
	STATION	TURAH BLACK FOOT	IN MILLTWN BEL MILLTN	ABV MSLA ABV STP STP EFFLNT	BEL SIP SHUFFIELDS BITTERROOT HARPFR BR	CHAMP 001 CHAMP 003	MARCURE FRENCHTOWN HUSON	9-MILE ABV ALBERT	LOZEAU SIIPERIOR	BEL ST REG	FLATHEAD R	ABV T FALL	BEL T FALL	NOXON NOXON	CAB GO	ALL V
	STA									BEL				- 8 - 8 - 8	BEL	NOTE:
		01	0.70	000	0001	22	13	16	2,5	22%	233	100	200	252	31	Š

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULIS - PART I RESULIS OF SAMPLES TAKEN ON JULY 16-17, 1994

· · ·	0.006	0.009	0.006	006 001 004	700	203		103	100	101	101	101	100	
AS 1.R.				0.006 <0.001 0.004	0.004	0.0		0.003	<0.001	0.001	0.001	0.001	0.001	BLE.
CD I.R.	0.005	<0.005	<0.005 <0.005	<0.005 <0.005 <0.005	0.005	0.02 0.04 <0.005 0.003		<0.00>	<0.005	<0.005	<0.005	<0.005	<0.005	IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE.
MN T.R.	0.02	0.18	0.08	0.08 0.006 0.03	0.68	0.04		0.01	<0.005 0.006	0.006 0.009	0.01	0.005 0.02	0.01	OTAL RE
ZN T.R.	0.01 0.02 <0.005 0.009	0.10	0.05	0.05	0.04	0.02		0.006 0.01	<0.005	0.006	<0.005 0.01	0.005	<0.01 <0.005 0.01	EANS T
CU T.R.	0.08 <0.01 0.04 <0.01	0.70 0.05	9.02	0.03 <0.01 0.01	0.34 <0.01	0.16 <0.01		0.05 <0.01	<0.01	<0.01	<0.01	<0.01	<0.01	7.R. ₹
fг. Г.Р.	0.08	0.70	0.31	0.38 0.66 0.14	0.34	0.16		0.05	0.04	0.03	0.05	0.03	0.03	HNGS,
HARD														HEAL
ORIHO 10TAL P P HARD	0.03	0.05	0.04	0.05 0.01	2.83	0.03		0.02	0.01	0.01	<0.01	0.01	0.01	IN THE
ORTHO P	0.017 0.004	0.048	0.028 4.13	0.046 0.007 0.014	0.53	0.017		0.006	0.004	<0.001	<0.001	<0.001	<0.001	FLOW(CFS) AND TEMPERATURE(DEG. C).
KJLD N	0.2	0.3	0.3	0.3	7.1	0.2		0.1	0.1	0.1	0.1	0.1	0.1	JRE (DE (
NH3	<0.01	0.03	<0.01	0.03 <0.01 <0.01	2.3	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	IPERATU
NO3+ NH3	0.01 <0.01 <0.01 <0.01	9.0 <0.01	5.1 <0.01 10.6 5.00	0.03 0.02 0.03	0.01	2.4 0.02 <0.01		1.2 <0.01 <0.01	0.5 <0.01 <0.01	0.6 < 0.01 < 0.01	0.8 <0.01	0.02	0.6 <0.01 <0.01	NO TEP
VOL 1SS	1.5	0.6	5.1 10.6	4.9 1.0 2.2	6.84	2.4		1.2	0.5	9.0	0.8	0.5	9.0	FS) A
188	6.9 4.2	8.62	38.8	35.2 5.3 13.4	55.1	15.9		5.2	1.9	2.6	4.2	2.0	2.1	FLOW(C
(C)	15. <i>i</i> 16.5	16.5	17.0	17.4 19.0 19.6	22.5	20.4		20.5	22.8	21.0	20.6	17.7	18.0	EXCEPT
(CFS)	14 <i>7</i> 6. 1390.	2860.	2860. 13.15	2870. 2605. 5480.	17.15	5500.		.0069	16 1950 10200.	2040 17100.	0900-18175.	1000 14500.	17 1100 17100.	ALL VALUES ARE IN MG/L
DAY TIME	1000 1045	1130	1200 1230	1315 1400 1630	1545	1715		16 1845	1950	2040	0060	1000	1100	ARE
DAY	16	16	91	919	16	16				16	17	17		LUES
)0T	N N N	LNI LNI	ELDS 300T BR	101	TOWN	3ERT	SUPERIOR BEL ST REG	ABV FLAIMD FLAIHEAD R PLAINS	ABV T FALL	BEL T FALLS	200 000 000 000 000 000 000 000 000 000	CAB GO	\ \
STATION	TURAH BLACKFOOT IM MILITUM	BEL MILLTN	STI	SHUFFIELDS BITTERROOT HARPER BR	CHAMP 001 CHAMP 003 MARCHRE	MARCURE FRENCHIOWN HUSON	7-MYCE ABV ALBERT TARFIO	SUPERIOR BEL ST REG	ABV TEV FLATHEA PLAINS	ABV T FALL	BEL T FA	BEL NOXON)	ALI
ST		BEL ABV	ABV STP 5 ABV STP 7 STP EFFLNT	SHU										NOTE:
	01		000	96-11	7 6 7	2457	187	2000	23.	250	000	500	0 K 0 T	N

TABLE 5

TABLE 5

	PB A.S.																	A.S. MEANS ACID SOLUBLE.
	CD A.S.																	A.S. ME
	ZN A.S.																	STANDARD UNITS), S.C. (UMHOS/CM), AND COLOR(70LOR UNITS).
PART 11	CU A.S.																	RETUR
	804																	ND COLO
RESULTS -17, 19	COLOR PH AD																	CM), A
CHEMICAL/PHYSICAL MONITORING RESULTS - 'S OF SAMPLES TAKEN ON JULY 16-17, 1984	COLOR																	.(UMHOS/
AL MON KEN ON	000), S.C
/PHYSIC PLES TA	8005																	D UNITS
HEMICAL OF SAM	0.0.																	STANDAR
WATER CH RESULTS	SPEC																	
SHALLOW-WATER RESULI	PH LAB																	EXCEP
SHAL	PH FLD																	ALL VALUES ARE IN MG/L EXCEPT PH(
	DAY TIME	1000 1045	1130	1200 1230	1315	1630	1545	1715				1845	1950	2040	0060	1000	1100	ARE
	DAY	16	16	16	16		16	16				16	16	16	17	17	17	LUES
		100	MILLIN	r FLNT	F ELDS ROOT	. BR 001	003	TOWN	BFRT		OR	REG ATHD	AD R	FALL	r ALLS T FALL	NOXON	CAB GOR CAB GO	L VA
	STATION	TURAH BLACKFOOT	IN MILLIWN BEL MILLIN	ABV MSLA ABV STP STP EFFLNT	BEL SIP SHUFFIELDS BITTERROOT	ARPER IAMP	CHAMP 003	FRENCH	9-MILE ABV ALBFRT	TARKIO	JEERI JPERI	EL ST ≫ FL	FLATHEAD R	ABV T FALL	- :			
	Ø	_		06 AB	08 BE	11 HZ	12 CF	15 HU			30 SL	21 BE	23 FL	25 AF			30 - N 31 BE	NOTE:
			(`							. •		•		• `			

TABLE 5

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART I RESULTS OF SAMPLES TAKEN ON JUL 30-AUG 2,1984

AS I.R.	0.0038 0.0038 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.0000000000000000000000000000000000000
CD 1.R.	005 005 0005 0005 0005 0005 0005 0005	0.005 0.005
HN T.R.	0.05 0.03 0.03 0.03 0.03 0.03 0.03	1.02 0.03 0.03 0.03 0.03 0.002 0.009 0.009 0.009 0.009 0.009
ZN T.R.	0.02 0.005 0.01 0.03 0.06 0.01 0.09 0.02 0.02 0.07 0.005	0.00 0.003 0.0
CU T.R.	000000000000000000000000000000000000000	
FE I.R.	0.15 0.09 0.09 0.11 0.09 0.09 0.09	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
L HARD	139 1339 1339 1301 1301 1301 1301 1301	217 1062 1064 1065 1068 1068 1068 1068 1068 1068 1068 1068
TOTAL P	60.03 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01	3.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ORTHO P	0.017 0.003 0.013 0.009 0.008 6.65 6.77 0.047 0.042	1.10 0.028 0.016 0.016 0.012 0.014 0.014 0.004 0.003 0.004 0.004 0.004 0.004 0.004 0.004
KJL0 N	200.00 200.00 200.00 200.00 200.00 200.00	0.000000000000000000000000000000000000
Z Z	0.03 0.03 0.03 0.01 0.01 1.08 0.04 0.03	0.000000000000000000000000000000000000
NO3+ NO2 N	0.02 0.02 0.02 0.03 0.01 3.68 0.04 0.06	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
VOL 15S	2000 1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0	31 00 00 00 00 00 00 00 00 00 00 00 00 00
188	2000 2000 2000 2000 2000 2000 2000 200	33 20 20 20 20 20 20 20 20 20 20 20 20 20
(C)	16.0 17.0 17.0 17.0 18.0 19.0 19.0 19.0	2010 2010 2010 2010 2010 2010 2010 2010
FLOW (CFS)	1235. 1080. 2320. 2320. 2320. 11.14 2330. 1730. 4060.	1.06 4060. 3980. 3980. 4630. 7370. 12000. 12000. 17500.
11.1	1030 1145 1310 12310 12310 1535 1555 1655 1745	22230 2330 1465 00410 00410 00410 10830 1386 1430 1430 1430 1445 1145 1145
DAY	000000000000000000000000000000000000000	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
STATION	TURAH BLACKFOOT IN MILLTWN BEL MILLTWN ABV MSLA ABV STP STP EFFLNT BEL STP SHUFFIELDS BITTERROOT HARPER BR.	CHAMP 003 MARCURE FRENCHTOWN HUSON 9-MILE ABV ALBERT 1ARLO LOZEAU SEL ST REG ABV FLATHD FLATHEAD R FLATHEAD R FLATHEAD R PLAINS ABV T FALLS HN T FALLS BEL 7 FALLS IN NOXON BEL NOXON BEL CAB GOR
	01 02 03 04 05 00 00 10 11	30000000000000000000000000000000000000

ALL VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. C). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. NOTE:

TABLE 5

NOTE: ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C. (UMHOS/CM), AMD COLOR(COLOR UNITS)

A.S. MEANS ACID SOLUBLE.

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART II RESULTS OF SAMPLES TAKEN ON JUL 30-AUG 2,1984

PB A.S.																																
CD A.S.																																
ZN A.S.																																
CU A.S.																																
804																																
COLOR PH AD												1510.	14.7	•	11.8																	
COLOR													16.5		12.9																	
000	2.8												<5.0	0	<5.0	<5.0	7.4	5.3	<5.0	<5.0	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
8005	<2.0	<2.0	<2.0	<2.0	<2,0	38.1	8.0	<2.0	<2.0	<2.0		38.9	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
0.0.	9.10					•	•	•	•				œ	10	7	7	Φ	6	Φ	7	6	∞	10	∞	6	7	∞	Φ	1	Φ	8.20	
SPEC	322	319	287	289	280	669	325	306	130	229		3154	546	232	240	244	248	226	225	220	224	220	164	188	187	190	187	186	175	170	171	
PH LAB	8.36			•	•	•		•	•	•			•	8.44		•					•			•	•	•	•			•		
PH FL D	8.30		•				•							8.40									4								8.25	
TIME	1030	1300	1230	1420	1535	1535	1550	1655	1745	2130		2230	2330	1650	0040	0710	0060	1845	2230	0330	1320	2200	1430	1600	1730	2000	0060	1045	1145	1300	1400	
DAY	30											30	30	3.1												0.1	05	05	0.5	05	0.5	
STATION	TURAH BLACKFOOT	IN MILLIWN	BEL MILLTN	ABV MSLA	ABV STP	STP EFFLNT	BEL STP	SHUFFIELDS	BITTERROOT	HARPER BR	CHAMP 001	CHAMP 003	MARCURE	FRENCHTOWN	HUSON	9-MILE	ABV ALBERT	TARKIO	LOZEAU	SUPERIOR	BEL ST REG	ABV FLATHD	FLAIHEAD R	PLAINS	ABV T FALL		BEL I FALL		BEL NOXON	N CAB	BEL CAB GO	
	01	03	04	05	90	0.7	08	60	10	1	12	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	29	30	31	

SHALLOW-WAIER CHEMICAL/PHYSICAL MONITORING RESULIS - PART I RESULIS OF SAMPLES TAKEN ON AUG. 14-15, 1984

	STATION	₹ DAY	TIME	FLOW (CFS)	(C)	TSS	VOL	NO3+ NH3 NO2 N N	NH3	KJLD N	ORTHO TOTAL P	TOTAL P HARD	FE . R.	FE CU 1.R. 1.R.	ZN T.R.	7 . R.	CD 1.R.	AS T.R.
02	TURAH BLACKFOOT	14)T 14	1000 11040	893. 846.	15.0	3.8	1.2	0.02	0.02 <0.01 0.02 <0.01	0.3	0.015	0.01	0.11	0.11 <0.01 0.03 <0.01	0.01	0.04	<0.005	0.008
000		1 N 14	11115	5 1760.	17.0	5.7	1.2	0.02	0.01	0.3	0.012	0.01	0.07	0.07 <0.01	0.008	0.04	0.005	0.005
9000	ABV SIP	14 NT 14	1 1245 1 1315	5 1760. 5 12.07	18.4 7 18.4	6.1	1.2	0.01 0.01 1.02 13.2	0.01	0.3	0.005	0.01	0.06	0.06 <0.01 0.11 0.03	0.007 0.03	0.03	<0.005	0.004
00000	SHUF BITT HARF	DS 14	1 1345 1 1415 1 1445	5 1770. 5 1200. 5 2970.	18.6 18.7 18.5	6.0 2.9 5.5	1.3 0.9 1.4	0.03 0.06 0.06	0.05	0.4	0.046 0.014 0.014	0.06 0.01 0.01	0.06 0.09 0.07	<0.01 <0.01 <0.01	0.008 0.03 <0.005 0.01 0.009 0.02		<0.005 <0.005 <0.005	0.005 <0.001 0.003
772		14	1545	1.40	9.61 (45.5	41.4	0.02	3.03 34.	34.	0.44	3.10	0.76	0.76 <0.01	0.03 0.87	0.87	0.005	0.009
192 192 197	FRENCHTOWN HUSON 9-MILE ABV ALRERI	z -	14 1615	5 2970.	19.0	6.0	1.3	1.3 0.05 0.02 0.3	0.02	0.3	0.020	0.03	0.08	<0.01	0.005	0.03	0.08 <0.01 0.005 0.03 <0.005 0.003	0.003
2000																		
2100		EG 14	1830	3680.	19.5	4.4	1.2	1.2 0.02 0.02	0.02	4.0	0.006 0.01	0.01	0.04	<0.01	0.04 <0.01 <0.005 0.02		<0.005	0.003
23		1 K 14	1930	5390.	23.0	1.7	0.6	0.6 0.01 <0.01	<0.01	0.5	<0.001 <0.01	<0.01	0.05	<0.01	0.02 <0.01 <0.005 0.008		<0.005 <0.001	(0.001
25.5		1 L 14	1 2030	9070.	52.0	2.7	0.8	0.01	0.02	4.0	<0.001 <0.01	<0.01	0.03	0.03 <0.01	<0.005 0.03	0.01	0.006 <0.001	<0.001
220	_	11 15	0200	9031.	19.8	2.8	0.8	0.8 <0.01 <0.01	<0.01	9.0	0.009 <0.01	<0.01	0.04	<0.01	0.04 < 0.01 < 0.005 0.02	0.02	<0.005	0.001
23		115 OR	0615	10600.	19.2	1.0	0.5	0.5 0.05	0.01	4.0	0.007 <0.01		0.02	<0.01	0.02	0.03	<0.005	0.001
3.5	BEL CAB GO		0730	15 0730 12200.	19.2	1.0	9.0	0.03	0.03 <0.01	4.0	<0.001	<0.01	0.02 <0.01	<0.01	0.009 0.02		<0.005	0.001
NO	NOTE: ALL	VALUE	S ARE	ALL VALUES ARE IN MG/L	ExCEPT	FLOW(C	SFS) A.	ND TEM	PERATU	FLOW(CFS) AND TEMPERATURE(DEG. C).		IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE.	NGS,	1.K. MI	FANS TO	TAL RE	COVERABL	Н

TABLE 5

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11 RESULTS OF SAMPLES TAKEN ON AUG. 14-15, 1984

PB A.S.																	
CD A.S.																	
ZN A.S.																	
CU A.S.																	
804																	
COLOR PH AD																	
COLOR																	
000																	
8005																	
0.0.															8.40	6.45	7.85
SPEC																	
PH LAB																	
PH FLO																	
DAY TIME	1000 1040	1115	1245 1315	1345	1445	1545		1615			,	14 1830	1930	2030	0200	0615	0730
λΑΥ	1 t	14	1 <u>t</u>	14	17	14		14				=	⇉	=	5	5	5
STATION	TURAH BLACKFOOT	BEL MILLIN	ABV STP STP EFFLNT	BEL STP SHUFFIELDS BITTFRROOT	HARPER BR	CHAMP 003	MARCURE FRENCHTOWN	HUSON	ABV ALBERT	TARKIO LOZEAU	SUPERIOR	BEL ST REG ABV FLATHD	FLATHEAD R	PLAINS ABV T FALL	BEL T FALLS	BEL NOXON	BEL CAB GO
	100	000	60 70 70	80 00 01	1 - 0	12	133	15	17	8 6	50	22	53	25 52 52	57.0	23	31

NOTE: ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C. (UMHOS/CM), AND COLOR(COLOR UNITS). A.S. MEANS ACID SOLIBLE.

TABLE 5

SHALLOW-WATER CHEMICAL/PHYSICAL MONTORING RESULTS - PAPT (RESULTS OF SAMPLES TAKEN ON SEPT 13-14, 1984

	6-	5	3 -	3 - 6	1	8		23	-	_		_	_
AS I.R.	0.009	0.005	0.005	0.006 <0.001 0.003	0.007	0.003		0.003	<0.00	<0.001	<0.00	<0.00	0.00
CD 1.R.	<0.005	<0.00>	<0.005	<0.005<0.005<0.005<0.005	<0.005	<0.005		<0.00>	<0.005<0.005 <0.005 <0.005 <0.001	<0.005<0.005 <0.005	<0.005 0.005 <0.005 <0.001	<0.005 <0.001	0.02 <0.01 <0.005 0.009 <0.005 0.001
T. R.	0.02	0.03	0.03	0.02 <0.005 0.006	0.03 0.92	0.02		0.01	<0.005	<0.005	0.005	0.05	0.009
ZN MW T.R. T.R.	0.006 0.02	<0.005 0.03	0.16	0.02 0.02 <0.005<0.005 <0.005 0.006	0.03	0.01		0.005 0.01	<0.005	<0.005	<0.005	<0.005 0.02	<0.00
FE CU I.R. T.R.	0.05 <0.01 0.03 <0.01	0.06 <0.01	0.06 <0.01 0.09 <0.01	<0.01 <0.01 <0.01	<0.01	0.06 <0.01		0.06 <0.01	<0.01	<0.01	<0.01	<0.01	<0.01
7 73 73	0.05	90.0	0.06 n.09	0.05	0.49	90*0		0.06	0.03	0.03	0.03	0.04	0.05
AL HARD		_		M ===	.0	0:		_	_	_	_	_	
101A	0.01	<0.01	<0.01 4.80	0.03	3.75	0.05		0.01	<0.0>	<0.01	<0.01	<0.01	<0.01
ORTHO TOTAL P PARD	0.014	0.012	0.008 4.04	0.027 0.007 0.010	1.62	0.015		0.011	<0.001 <0.01	0.002 <0.01	0.002 <0.01	0.005	0.006
KJLD N	0.2	0.1	9.8	0.2	14.	0.3		0.3	0.1	0.2	0.1	0.2	0.1
NH3	<0.01	<0.01	<0.01 8.42	0.03	3.63	<0.01		<0.01	<0.01	<0.01	<0.01	<0,01	0.02
NO3+ NH3	1.6 0.02 <0.01 1.0 <0.01 0.02	<0.01 <0.01	1.2 <0.01 7.1 <0.01	0.01 0.03 0.03	79.6 <0.01	1.3 0.03 <0.01 0.3		1.5 < 0.01 < 0.01	0.7 <0.01 <0.01	1.0 <0.01 <0.01	1.0 <0.01 <0.01	1.0 <0.01 <0.01	0.7 0.02 0.02
V0L 15S	1.6	1.3	1.2	1.3	79.6	1.3		1.5	0.7	1.0	1.0	1.0	0.7
155	3.0	5.8	5.6	5.3	87.7	5.7		5.5	1.3	3.0	3.7	3.0	1.5
T (C)	10.2	11.4	12.1	12.8 12.6 13.0	15.0	13.6		13.9	15.2	15.0	14.0	17.3	17.2
FLOW (CFS)	987. 683.	1710.	1710.	1720. 1430. 3150.	94.46	3155.		3810.	7390.	11200.	12701.	.0068	8810.
DAY TIME	0930 1040	11110	1245 1300	1210 1445		13 1645		1815	1910	2000	0830	0830	1030
)AY	13	13	13	1333	13	13		13	13	13	114	77	14
	0.1	N N I	δ Ξ	LDS 001 BR	030	OWN	SER4	SUPERIOR BEL ST REG	ABV FLAIHU FLATHEAD R	ALL	FALLS F FALL	0 N 0 N 0 N	N CAB GUR EL CAB GO
STALION	AH SE FO	IN MILLIWN BEL MILLIN	ABV MSLA ABV SIP SIP EFFIN	BEL SIP SHUFFIELDS BITTERROOT HARPER BR	CHAMP 001 CHAMP 003 MADCHDE	FRENCHIOWN HUSON	ABV ALBERT TARFIO LOZEAU	SUPERIOR BEL ST R	ABV FLAIHD FLAIHEAD R	FLAINS ABV T FALL	_ :	IN MOXON BEL MOXON	IN CAB GUR BEL CAB GO
SIA	TURAH BLACK FOOT	IN MILLIWN BEL MILLIN	ABV MSLA ABV SIP STP EFFI	BEL SIP SHUFFIELDS BITTERROOT HARPER BR	CHAMP 001 CHAMP 003 Marcher	FRENCH	ABV AL TARF10 LOZEAU	SUP	ABV FLA	FLAINS ABV T	- BEL - BEL	BEL	BEL
							0 7 9 0 7	212	23	25		2000	31

NOTE: ALL VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. C). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE.

TABLE 5

NOTE: ALL VALUES ARE IN MG/L EYCEFT PH(STANDARD UNITS), S.G.(UMHOS/CM), AND COLOR(COLOR UNITS).

A.S. MEANS ACIT SOLUBLE.

	PB A.S.																						
	CD A.S.																						
	ZN A.S.																						
=	CU A.S.																						
- PART 34	SO4																						
SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULIS - RISULTS OF SAMPLES TAKEN ON SEPT 13-14, 1984	COLOR PH AD																						
TORING SEPT 13	COLOR																						
AL MONI KEN ON	COD																						
/PHYSIC, PLES TA	8005																						
TEMICAL OF SAM	D.0.																						
ATER CH I SULTS	SPEC																						
LLOW-W R	PH LAB																						
SHA	PH FLD																						
	TIME	0930 1040	1110	1245	2	1210	1445				1645					1815	1910		2000	14 0830	14 0930		14 1030
	DAY	13	13	2 2	•	د د	_	,	2		13					13	13		13				14
	STATION	TURAH BLACKFOOT	BEL MILLTN	ABV STP	EL STP	SHUFFIELDS BITTERROOT	ARPER BR	HAMP 001	ARCURE	RENCHTOWN	NOSO	-MILE	ABV ALBER!	TARKIO	UPERIOR	BEL ST REG	LATHEAD R	LAINS	ABV I FALL	BEL T FALL	IN NOXON BEL NOXON	N CAB GOR	BEL CAB GO
		01 TO			08 B	09 10 в	11 H	12 C	<u>ک</u> ن ۳ ر	14 F	15 H	16 9		_	20 E	21 B.	23 F	24 P.					

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART I RESULTS OF SAMPLES TAKEN ON OCT 15-16, 1984

	STATION	JAY	DAY TIME	FLOW (CFS)	(C)	188	VOL TSS	NO3+ NH3 NO2 N N		KJ L D N	0R1H0 Р	ORTHO TOTAL P P HARD	FE. T.R.	CU T.R.	ZN T.R.	MN T.R.	CD 1.R.	AS T.R.
· -	TURAH BLACKFOOT	15	1015	1092. 667.	5.0	6.3	7.4 1.4	0.01 <0.01	<0.01	0.1	0.012	0.02	0.09	<0.01	0.01	0.03	<0.005	0.006
	BEL MILLTN	15	1130	1820.	5.7	3.6	1.0	0.01	<0.01	0.1	0.008	0.02	0.06	<0.01	0.01	0.05	<0.005	0.004
000	ABV MOLA ABV SIP SIP EFFLMT	15	1215 1300	1820. 11.37	5.9	3.9	0.9	0.01	0.01 <0.01 4.43 8.64	0.1	0.008	0.01	0.06	<0.01	0.007	0.007 0.02 0.05 <0.005	<0.005 <0.005	0.004
3865	BEL SIF SHUFFIELDS BITTERROOT HARPER BR	2 55	1330 1430 1515	1830. 1430. 3260.	6.3	4.2 1.4 3.1	1.0 0.6 0.9	0.04 0.03 0.04 0.01 0.04 <0.01	0.03 <0.01 <0.01	000	0.039 0.007 0.012	0.05 0.02 0.03	0.06	<0.01 <0.01 <0.01	0.006 0.01 <0.005<0.005 0.007 0.009 ·	0.01	<0.005 <0.005 <0.005	0.004 <0.001 0.003
	CHAMP 001 CHAMP 003	15	1600	5.57	0.6	84.	84.	0.05	3.82 12.7	12.7	2.62	4.07	0.45	0.45 <0.01	0.03	0.85	0.03 0.85 <0.005	0.005
_	MARCURE FRENCHTOWN HUSON	15	15 1645	3265.	7.2	3.6	1.2	1.2 0.03 <0.01		0.1	0.018	0.03	0.07	0.07 <0.01		0.02	0.02 0.02 <0.005 0.002	0.002
2507	9-MILE ABV ALBERT TARKIO LOZEAU																	
	SUPERIOR BEL ST REG	15	1815	3820.	7.6	3.2	1.1	1.1 <0.01 <0.01	<0.01	0.1	0.012	0.05	0.05	0.05 <0.01	0.008	0.008	0.008 0.008 <0.005	0.005
	ABY FLAIMD FLATHEAD R PLAINS	15	1915	11680.	9.8	0.8	9.0	0.01 <0.01	<0.01	0.1	<0.003	<0.01	0.05	<0.01	<0.005<0.005	<0.005	<0.005 <0.001	<0.001
	ABV T FALL	16	0060	15000.	8.0	2.1	0.7	0.01 <0.01	<0.01	0.1	<0.003	<0.01	0.04	<0.01	900.0	0.005	0.006 0.002 <0.005 <0.001	<0.001
_		16	1000	15875.	8.5	2.1	0.8	0.01 <0.01	<0.01	0.1	<0.003 <0.01	<0.01	0.04	<0.01	0.006<	<0.005	0.006<0.005 <0.005 <0.001	<0.001
	BEL NOXON	16	11115	14300.	11.1	1.1	0.5	0.01	0.01	0.1	<0.003	<0.01	0.03	<0.01	<0.005<	<0.005	<0.005<0.005<0.005<0.001	<0.001
	BEL CAB GO	16	1200 16300	16300.	11.1	1.2	9.0	0.02 <0.01	<0.01	0.1	<0.003 <0.01	<0.01	0.03	<0.01		900.0	0.008 0.006 <0.005 <0.001	<0.001
_	NOTE: ALL VAL	LUES	ARE	ALL VALUES ARE IN MG/L E	EXCEPT	FLOW(C	FS) AI	VO TEM	PERATU	IRE (DEG). C).	FLOW(CFS) AND TEMPERATURE(DEG. C). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE.	DINGS,	1.R. M	TEANS TO	JAL RE	COVERAB	LE.

ALL VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. C). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERBLE.

TABLE 5

CD PB A.S. A.S.																	A.S. MEANS ACHD SOLUBLE.
ZN A.S.																	UNITS).
CU A.S.																	OR (COLOR
908																	0 100 O
COLOR PH AD																	M), AN
COLOR																	AEL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C. (UMHOS/CM), AND COLOR(COLOR UNITS).
COD), s.c
8005																	D UNITS
D.O.																	STANDAR
SPEC																	PT PH(
PH LAB																	L EXCE
FH F1 0																	N MG/
DAY TIME	1015 1100	1130	1215 1300	1330 1430	1515	0091 51	15 1645			15 1815	15 1915	16 0900	16 1000	1116		1200	ARF
DAY	15	15	15	15						15	15	16	. 16	16	2 ~	91 (LUES
STATION	TURAH BLACKFOOT	IN MILLIWN Bel Millin Abv msia	STP SEFFLNI	BEL SIP SHUFFIELDS BITTERROOT	RER BRAME OO1	CHAMF UUS MARCURE FRENCHIOWN	HUSON 9-MILE	ABV ALBERT	LOZFAU	BEL SI REG	FLATHEAD R	PLAINS ABV T FAFL	I FALLS - T FALL	BY NOXON	CAB GOF	BEL CAB GO 16 1200	
S1	_	03 -N 04 BE1 05 ABV	06 ABV 07 STF	08 BEI 09 SHL 10 BIT	12 CHZ	13 MAR			19 LOZ	21 BEL	23 FLA	PLZ ABV	26 IN 27 BEL				NOTE:

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11 RESULTS OF SAMPLES TAKEN ON OCT 15-16, 1984

TABLE 5

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULIS - PART I RESULIS OF SAMPLES TAKEN ON OCT 29-NOV 1,1984

02 BLACKFOOL 29 1140 03 1079. 4,0 5.5 2.0 0.01 <0.01 0.01 0.01 185 0.07 <0.01 0.008 0.03 <0.009 04 BL MILLING 29 1220 1840 14.0 3.2 1.4 0.01 0.02 0.01 0.01 0.01 184 0.06 <0.01 0.02 0.01 0.02 05 BL MY STA		STATION	DAY	TIME	FLOW (CFS)	(C)	188	VOL TSS	NO3+	NH3 N	KJLD N	ORTHO P	10TAL P	HARD	FE T.R.	CU T.R.	ZN T.R.	MN T.R.	CD T.R.	AS T.R.
Name		TURAH BI AGE FOOT	200	1030	1079.		5.	2.0			0.1	0.010	0.01	185		<0.01	0.008	0.03	<0.005	0.006
N 25 1320 1840. 4.0 3.1 1.5 0.01 0.01 0.1 0.1 0.01 184 0.05 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00		IN MILLIWS		1220	•		٠ ،	1.0				0.003	<0.01	143		<0.01	0.02	<0.00>	<0.005	0.001
29 1510 1840. 4.0 3.4 1.6 0.01 <0.01 0.1 0.005 0.01 168 0.05 0.01 <0.01 0.005 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <		BEL MILLIN		1320	1840.		J -					0.009		1 U		<0.01 60.01	0.01	0.04	<0.005	0.006
29 1700 1810. 4.0 3.2 1.5 0.01 <0.01 0.01 0.00 0.01 164 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0		ABV MSLA		1510	1840.		7					0.00		160		<0.01	70.005	0.02	<0.00	0.004
17.29 77.10 18.50 6.6 7.1 4.5 6.2 6.2 6.2 6.0		ABV STP		1700	1840.		2					000.0		161		10.07	<0.005	20.0	<0.005	0.004
29 1720 1850. 6.0 7.1 4.5 0.03 2.12 3.2 1.07 7.25 166 0.05 6.010 0.009 0.000 0		STP EFFLAT		1710	7 .	ı,	. 2.	42.3			- 50	20.00	- ~	177		0.0	* U. UUS	0.01	<0.00>	0.004
S S S S S S S S S S		BEL SIP		1720		0	_	4.5			, c	1.07	1.25	166		20.07	20.00	0.009	<0.005	0.001
29 2036 3140. 6.0 1.1 1.4 0.04 0.01 0.1 0.005 6.01 64 0.04 6.01 6.005 0.005 6.01 6.01 6.005 0.005 6.01 6.005 6		SHUFFIELDS		1800	1850.		6.	1.0			0.0	0.052	0.07	165			0.07	0.02	40.005	0.004
\$\text{20} 2345 \\ \frac{5}{31} 6.24 \\ \frac{5}{5} \\ \frac{68.2}{31} \\ \frac{7}{31} 6.24 \\ \frac{5}{5} \\ \frac{68.2}{31} \\ \frac{7}{31} 6.24 \\ \frac{5}{5} 6.6 \\ \frac{7}{2} 6.0		BITTERROOT		1845	1340.	0.	-	1.4			0.1	0.005	<0.07	19		0.07		0.01	2007	0.004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HARPER BR Champ onl	53	2030	3190.	5.0	6.	1.7			0.1	0.05	0.05	129		<0.01	<0.007	0.007	<0.005	0.002
$\begin{array}{c} 3.5479 \\ 3.7701 \\ 3.81 \\ 3.7701 \\ 3.82 \\ 3.8$				1																
March Marc		CHAMP UUS		2545	6.24					4.63		2.67	3.81				0.02	0.81	105	200 0
Main of the color of the colo		MAKCOKE	200	0015	3170					0.03		0.033	0.03				<0.00	0.06	105	0.003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		FRENCHIOMN	C m	0145	3170.					0.02		0.027	0.05				20.0		200	0.003
30 0700 4.5 3.3 1.7 0.03 0.01 0.01 129 0.04 0.01 0.005 0.02 0.01 0.005 0.01 0.01 0.005 0.01 0.01 0.005 0.01 0.01 0.005 0.01 0.01 0.005 0.01 0.01 0.005 0.01 0.01 0.005 0.01 0.01 0.005 0.01 0.005 0.01 0.01 0.005 0.01 0.01 0.005 0.01 0.0		HUSOR		0315	3170.					:0.01		0.012	0.02				200.0>	0.05	700	0.002
30 2100	-	ا . لد		00/0						:0.01		0.018	0.01				<0.00.005	20.0	300	0.002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ALBI		0060						0.07		0.016	0.01				40 005	20.0	200	200.0
$\begin{array}{c} 36.\ 2520 \\ 31.\ 2520 \\ 31.\ 2520 \\ 4.0 \\ 2.7 \\ 4.0 \\$		AKKIO		2100						0.01		0.016	0.02				<0.00	0.0	500	0.002
$\begin{array}{c} 31\ 0.003 \\ 31\ 1.000 \\ 3770. \end{array} \begin{array}{c} 4.0\ 0.2.7 \\ 4.0\ 1.5 \\ 0.06 \\ 0.011 \\ 0.02 \\ 0.011 \\ 0.011 \\ 0.02 \\ 0.011 \\ 0.005 \\ 0.012 \\ 0.02 \\ 0.011 \\ 0.005 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.012 \\ 0.02 \\ 0.013 \\ 0.013 \\ 0.011 \\ 0.005 \\ 0.012 \\ 0.$		LUZEAU		2320						0.01		0.012	0.01				700.07	0.005	32	0.002
$\begin{array}{c} 1.31 & 1.00 & 3/70. \\ 0.11 & 1.00 & 1.00 & 1.00 \\ 0.11 & 1.00 & 1.00 \\ 0.11 & 1.00 & 1.00 \\ 0.003 & 1.00 & 1.00 \\ 0.003$		SUPERIOR	2	00/0						0.01		0.012	0.05				<0.00.0>	0.005	50.5	0.002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		DEL SI REG	~ r	1100	3//0.	0.4.				0.05		0.010	0.05				<0.0015<	0.005	25	0.002
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	ABY FLAIMU	- ·	2017	3//0.	4.0				0.01		0.005	0.02				<0.005<	0.005	50	200.0
FALL 31 1500 11500. 4.5 1.9 1.3 0.02 0.01 0.1 <0.003 0.01 97 0.06 <0.01 <0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005		FLAIMEAD K	5		7.50.	0.0	,			0.01		0.003	<0.01				<0.00.0>	0.005	1.5	00.02
PAY FALL 31 1530 11540. 5.0 1.3 0.4 0.02 <0.01 0.1 <0.003 <0.01 98 0.02 <0.01 <0.00550.005 <0.01 N T FALLS 31 1630		FLAINS			11500.	4.5	6.1			0.01		<0.003	0.01				<0.005<	0.005	10.5	0.001
FALLS 51 1650 FALL 01 0915 11846. 5.5 1.0 0.4 0.01 0.01 0.1 <0.003 <0.01 121 0.02 <0.01 <0.005<0.005<0.005<0.005<0.005 FALL 01 0915 11846. 4.0 1.0 0.4 0.01 0.01 0.1 <0.003 <0.01 98 0.02 <0.01 <0.005<0.005<0.005<0.005 FALL 01 0915 11846. 6.5 1.4 1.0 0.01 0.02 0.1 <0.003 <0.01 98 0.02 <0.01 <0.005<0.005<0.005 FALL NOXON 01 1345 7230. 7.5 0.7 0.3 0.03 0.02 0.1 <0.003 <0.01 95 0.02 <0.01 <0.005<0.005<0.005<0.005 FALL NOXON 01 1550 9190. 8.0 0.9 0.02 0.01 0.1 <0.003 <0.01 95 0.02 <0.01 <0.005<0.005<0.005<0.005<0.005 FALL NOXON 01 1550 9190. 8.0 0.9 0.03 0.01 0.1 <0.003 <0.01 95 0.02 <0.01 <0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.	_	> n :	2		11500.	5.0	1.3			0.01		<0.003	<0.01				<0.00.0>	0.005	25.7	00.0
FEL 1 FALL 01 0915 11846. 4.0 1.0 0.4 0.01 0.01 0.1 <0.003 <0.01 98 0.02 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.007 <0.01 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005		2 (~			5.5	1.0			0.01		<0.003	<0.01				0050 V	0.055	2 2	0.001
F #0*ON 01 1145 6.5 1.4 1.0 0.01 0.02 0.1 <0.003 <0.01 94 0.03 <0.01 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.	_	: د لد	5		11846.	4.0	1.0			0.01		<0.003	<0.01				<0.005<	0.05	3 2	0.00
EL NOXUN UI 1549 7230. 7.5 0.7 0.3 0.03 0.02 0.1 <0.003 <0.01 95 0.02 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.007 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.01 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.00		z zi	.	1145		6.5	1.4			0.02		<0.003	<0.01				<0.002<	0 0.05	2 2	0.00
M CAB GO 01 1530 9100. 8.0 0.9 0.0 0.03 0.01 0.1 <0.003 <0.01 95 0.02 <0.01 <0.007 <0.	-	J 2	= 6	1545	(230.	7.5	0.7			0.05		<0.003	<0.01				<0.005<	0.00%	5.5	0.001
EL CAB GO 01 1230 3170. 8:0 0.9 0.9 0.03 0.01 0.1 <0.003 <0.01 96 0.02 <0.01 <0.005 0.005 <0.	- 12	Z [= =	1500	3010	\ \ '				0.01		<0.003	<0.01				<0.00>	0.007	0.5	0.001
	_	ر ا ا	5	1230	9100.	Ξ.				0.01		<0.003	<0.01				<0.005	0.005	0.5	0.001

ALL VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. G). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. NOTE:

TABLE 5

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11 RESULTS OF SAMPLES TAKEN ON OCT 29-NOV 1,1984

PB A.S.

•	
CD A.S.	
ZN A.S.	
CU A.S.	
SO4	
COLOR PH AD	3.6 16.5 8.4 8.4
COLOR	3.6 1640. 17.0 9.7 8.5
000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
8005	% % % % % % % % % % % % % % % % % % %
0.0.	12. 40 12. 40 12. 40 12. 40 12. 40 13. 40 14. 45 15. 40 16. 75 16. 75 16
SPEC	288333333334 282333334 2833334 2833334 2833334 2833334 283334 283334 283334 283334 283334 283334 283334 283334 283334 283334 283334 283334 283334 28334 28334 28334 28334 28334 28334 28334 28334 28334 2834 28
PH LAB	88888888888888888888888888888888888888
PH F1.0	88 88 88 88 88 88 88 88 88 88 88 88 88
TIME	1030 1140 11520 1320 1710 1710 1720 1720 1720 1720 1720 17
DAY	229 229 229 229 229 229 230 231 231 231 231 231 231 231 231 231 231
STATION	TURAH BLACKFOOT BLACKFOOT BL MILLTN ABV MSLA ABV STP STP EFFLNT BEI STP STUFFIELDS BLITERROOT HARPER BR CHAMP 003 MARCURE FRENCHTOWN 9-MILE ABV ALBERT 1ARK10 LOZEAU SUPERIOR SUPERIOR SUPERIOR FLAINS ABV FLALLS ABV FLALLS BLAINS ABV T FALL IN I FALLS IN I FALLS IN T FALLS IN
	33098765723712937056572710987657373707577777777777777777777777777777

NOTE: ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C.(UMHOS/CM), AND COLOR(COLOR UNITS). A.S. MEANS ACIP SOLUBLE.

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART I RESULTS OF SAMPLES TAKEN ON DEC 10-12, 1984

	STATION	DAY	DAY TIME	(CFS)	(C)	155	VOL TSS	NO3+ NH3 NO2 N N		KJLD N	ORTHO P	ORTHO TOTAL P P HARD	FE . R.	CU 1.R.	ZN MN T.R. T.R.		CD T.R.	AS I.R.
01	TURAH BLACKFOOT IN MIZITUN	10 10	1315 1400	955.	0.0	20.8	4.3 1.5	0.18	0.01	0.3	0.018	0.045	0.26	0.01	0.03 0.06 <0.005 0.005<0.005 <0.005	0.06	<0.005	0.006
700	BEL MILLIN		10 1500	1860.	0.0	5.6	1.8	0.10	0.03	0.2	0.01	0.016	0.12	<0.01	0.016 0.07		<0.005	0.004
900	ABV STP STP EFFINT	11 11	0830	1860. 11.45	0.0	3.1	31.8	0.11	0.02 0.2 9.2 13.0	13.0	0.007 4.84	0.013	0.10	<0.01	0.017 0.06 <0.005 0.076 0.006 <0.005	0.06	<0.005	0.004
00 01 10 10 10	SHUFFIELDS BITTERROOT HARPER BR	S 11 01 10	0945 1630 1030	1870. 980. 2850.	0.0	3.7 2.7 4.0	1.8	$0.13 \\ 0.07 \\ 0.12$	0.05 0.01 0.02	0.3	0.030 <0.003 6.013	0.037 0.009 0.020	0.11	0.01	0.012 0.06 <0.005 0.01 0.012 0.03		<0.005 <0.005 <0.005	0.004 <0.001 0.002
27.5	CHAMP 003	Ξ	1130	4.70	0.1.0	72.6	72.6	72.6 0.02 8.6 16.9	8.6	6.91	3.14	4.2	0.48	0.48 < 0.01	0.043 0.92		<0.005 0.004	0.004
14 15 16	FRENCHTOWN HUSON 9-MILE		11 1300	2855.	0.0	4.6	2.2	2.2 0.12 0.03 0.3	0.03	0.3	0.023 0.032	0.032	0.09	<0.01	0.09 <0.01 0.007 0.04 <0.005 0.003	0.04	<0.005	0.003
18 19 20 21	ABV ALBENT TARK (O LOZEAU SUPERIOR BEL ST REG	G 11	1445	3550.	0.0	2.7	1.9	0.08 0.01 0.06 0.01	0.01	0.2	0.012	0.022 0.015	0.06	<0.01 <0.01	0.06 <0.01 <0.005 0.02 0.09 0.09 0.09 0.09 <0.01 <0.005 0.01		<0.005	0.002
223	ABV FLATHD FLATHEAD R	R 11		1715 10250.	0.0	1.7	1.3	0.03 0.01	0.01	0.1			0.03	<0.01	<0.01 <0.005<0.005 <0.005	10	<0.005	<0.001
522	-	L 12	1430	13800.	0.0	1.6	1.6	0.03 <0.01	:0.01	0.2	<0.003	0.005	0.03	<0.01	<0.01 <0.005<0.005 <0.005 <0.001	0.005	<0.005	<0.001
227		L 12	0830	14761.	0.0	0.8	0.8	0.02 <0.01	:0.01	0.1	<0.003	0.003	0.02	<0.01	<0.01 <0.005<0.005 <0.005	0.005	<0.005	0.008
29 30			1000	12 1000 15000.	1.0	1.3	1.3	0.02 0.01	0.01	0.2	<0.003	0.003	0.02	<0.01	<0.01 <0.005<0.005 <0.005 <0.001	0.005	<0.005	<0.001
31	BEL.	0 12	1130	CAB GO 12 1130 16700.	1.7	1.0	1.0	1.0 0.02 <0.01	:0.01	0.2	0.2 <0.003	0.003	0.03	<0.01	0.03 <0.01 <0.005<0.005 <0.005 <0.001	0.005	<0.005	<0.001
NOI	NOTE: ALE V	ALUE	S ARE	ALE VAEUES ARE IN MG/L EXCEPT		FLOW(C	SES) A	ND TEM	ERATU	RE (DEG	W(CFS) AND TEMPERATURE(DEG. C).	IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE	NGS,	T.R. ME	EANS TO	TAL RE	COVERABI	-

TABLE 5

TABLE 5

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULIS - PART 11 RFSULIS OF SAMPLES TAKEN ON DEC 10-12, 1984

PB A.S.																											MEANS ACID SOLUBLE.
CD A.S.																											A. S.
ZN A.S.																											UNITS).
CU A.S.																											R (COLOR
804																											0 IOO 01
COLOR PH AD																											M), Ah
COLOR																											STANDARD UNITS), S.C. (UMHOS/CM), AND COLOR(COLOR UNITS).
COD), S.C
8005																											D UNITS
D.0.																											STANDAR
SPEC																											
PH LAB																											EXCER
PH FLD																											ALL VALUES ARE IN MG/L EXCEPT PH(
TIME	1315 1400	1500	0830	0060	11700	0945 1630	1030		1130		1300)				1445	1600		41/1	1430		0830		12 1000	, ,	1130	ARE
DAY TIME	10	10	-	Ξ	-	- 0	Ξ		_		Ξ					Ξ	11	;	=	12		12				2	LUES
	001	L I W	۲A	FLN	الم	ROOT	BR	001	003	TOWN			BERT	_	_	OR	ST REG	FLATHD	AU K	FALL	FALLS	FALL	2	NOX	200 C	CAB GO 12 1130	L VA
STATION	TURAH BLACKFOOT	IN MILLIWN BEL MILLIN	ABV MSLA	E E	EL ST	BITTERROOT	ARPER	CHAMP 001	CHAMP 003	FRENCHTOWN	HUSON	9-MILE	ABV ALBERT	TARKIO	JZEAU			3V FL	FLAIMEAD K	Z ⊢ ~ ≥	1 -	BEL T FALL	Š		(A)	1	
0,		U3 1N O4 BE																		25 ABV		27 BE				2 - BE	NOTE:
	<u> </u>	ب ب	ت ب	<u>ں</u> ر	<u> </u>	 ر	_	-	_ •		_	_	_	_	,-	W	(U)	· u (u c	u (V	6.7	LVI C	. •	'/ c		;	2

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULIS - PART I RESULTS OF SAMPLES TAKEN ON JAN 14-15, 1985

ST	STATION	DAY	TIME	FLOW (CFS)	(C)	188	VOL TSS	NO3+ NO2 N	NH3 N	KJLD R	ORTHO P	TOTAL P HARD	FE . R.	CU 1.R.	ZN T.R.	∓ .R.	CD 1.R.	AS 1.R.
CV C	TURAH BLACKFOOT	77.	1015	760. 480.	0.0	1.0	1.0	0.20	0.02	0.1	0.017	0.016	$0.03 \\ 0.01$	<0.01 <0.01	0.011 0.009 <0.005<0.005	0.009	<0.005 <0.005	0.008
	BEL MILLIN	7 7 7	1200	1400.	0.0	1.1	1.0	0.14	0.03	0.1	0.011	0.010	0.03	<0.01	0.011 0.02	0.02	<0.005	900.0
>> 4 .	ABV M3CA ABV STP STP EFFENT	14	14 1230 14 1300	1400. 12.38	0.0	0.7	0.7	0.15	0.03	0.1	0.010	0.009 5.98	$0.02 \\ 0.04$	<0.01	0.010	0.008	0.010 0.008 <0.005 0.051 0.005 <0.005	0.007 0.003
ココトは・	BEL SIP SHUFFIELDS BITTERROOT HARPER BR	14 14 14	1430 1340 1515	1410. 250. 1660.	0.0	1.2 2.2 2.5	1.6	0.25 0.16 0.20	0.06 0.04 0.03	0.1	0.065 0.008 0.020	0.060 0.011 0.022	0.02 0.06 0.04	<0.01 <0.01 <0.01	0.011 0.009 <0.005 0.02 0.010 0.013	0.009 0.02 0.013	<0.005 <0.005 <0.005	0.007 <0.001 0.004
$\alpha < \alpha$	CHAMP 001 CHAMP 003 MARCURE	14	1600	0.	0.0	8.66	8.66	0.02	6.73 19.6	19.6	2.84	4.12	0.50	0.50 <0.01	0.046 0.78		<0.005	0.001
$\exists S \equiv S$	FRENCHTOWN HUSON 9-MILE ABV ALBERT	- L	14 1645	1660.	0.0	8.	1.5	1.5 0.20 0.03	0.03	0.1	0.026 0.023	0.023	0.04	<0.01	0.04 <0.01 0.006 0.04 <0.005	0.04	<0.005	0.004
R M G 上;	TARKIO LOZEAU SUPERIOR BEL ST REG	15	9460	2430.	0.0	-	<u>.</u>	0.10	0.03	0.1	0.013 0.009	0.009	0.02	<0.01	0.02 <0.01 <0.005 0.006 <0.005	0.006	<0.005	0.004
> < <	ABV FLAIHD FLATHEAD R PLAINS		1100	15 1100 10870.	0.0	1.3			0.02	0.1	0.002	0.013	0.02	<0.01	<0.005<0.005<0.005	0.005		<0.001
> -	ABV I FALL IN I FALLS BEL I FALL		15 1215 13300 15 1320 14141	15 1215 13300. 15 1320 14141.	0.0	0.8	0.8	0.03	0.02	0.1	<0.001 <0.001 0.005 0.001	<0.001	0.01	<0.01	<0.005<0.005<0.005<0.005<0.005<0.005	0.005	<0.005	<0.001
BEL BEL	IN NOXUN BEL NOXON IN CAB GOR BEL CAB GO		1545	15 1545 14600. 15 1630 16800.	0.0	0.2	0.2	0.04	0.03	0.1	0.001	<0.001	0.01	<0.01	<0.005<0.005<0.005 <0.005<0.005<0.005	0.005		<0.001
NOTE:	ALL V	4LUE!	3 ARE	ALL VALUES ARE IN MG/L E	EXCEPT	FLOW(C	FS) AN	VO TEMP	PERATU	IRE (DEG		IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE.	INGS,	T.R. M	EANS TO	TAL RE	COVERABI	·

TABLE 5

ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C. (UMHOS/CM), AND COLOR(COLOR UNITS). A.S. MEANS ACID SOLUBLE.

NOTE:

Ξ	CU ZN CD PB A.S. A.S. A.S. A.S.																						
- PARI	804																						
SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULIS - PART RESULTS OF SAMPLES TAKEN ON JAN 14-15, 1985	COLOR PH AD																						
TORING JAN 14-	COLOR																						
AL MONI	COD																						
/PHYSIC PLES TA	8005																						
HEMICAL OF SAM	0.0.																						
ATER CH ESULTS	SPEC																						
LOW-W	PH LAB																						
SHA	PH F 1 D																						
	DAY TIME	1015	1200	1230	1430	1340	1515	14 1600		14 1645					15 0945	15 1100		15 1215	0	15 (320	1545		15 1630
	DAY	14	14	14 14	=======================================	17	14	14		14					15	15		15	Ļ	5	5		15
	STATION	TURAH BLACKFOOT	N MILLTWN EL MILLTN	ABV MSLA ABV STP STP FFFINT	EL STP HUFFIELDS	ITTERROOT	ARPER BR	CHAMP 003	MARCURE FRENCHTOWN	HUSON	9-MILE	BV ALBERT	ARK10	UPFRIOR	BEL SI REG 1	LATHEAD R	LAINS	BV T FALL	IN T FALLS	EL - FAEL N NOXON	EL NOXON	N CAB GOR	EL CAB GO
		01 I 02 B	03 1 04 B	05 A 007 A 0	08 B	10 B	11 12 12	12 C			169	17 A	18 1	20 5	22 22 20 20 20 20 20 20 20 20 20 20 20 2	23 F	24 P	25 A	26 1				

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART I RESULTS OF SAMPLES TAKEN ON FEB 13-14, 1985

AS T.R.	0.007	0.005	0.004	0.005 <0.001 0.003	0.001	0.003	0.003	.001	0.001	0.001
CD 1. R.	<0.005 (<0.005	<0.005 (<0.005 (<0.005 <0.005 <0.005 <0.005	<0.005	<0.005		<0.005<0.005<0.005<0.005 <0.005<0.005	<0.005<0.005<0.005<0.001	0.02 <0.01 0.005 0.006 <0.005 <0.001
							<0.01 <0.005 0.006 <0.005	0.005 <	> 500.00	0.006 <
ZN MN I.R. I.R.	0.024 0.03 <0.005<0.005	0.016 0.02	0.013 0.02 0.111 0.01	0.013 0.02 <0.005 0.02 0.008 0.02	0.039 0.78	0.008 0.05	<0.005	<0.005<	<0.005<	0.005
CU I.R.	0.01	<0.01	0.06 <0.01 0.12 0.02	<0.01 <0.01 <0.01	<0.01	0.12 <0.01	<0.01	<0.01	<0.01	<0.01
M. R.	0.11	0.08	0.06	0.07 0.08 0.07	0.46	0.12	0.05	0.02	0.02	0.02
ORTHO TOTAL P P HARO	0.033	0.023	0.018 3.64	0.045 0.020 0.033	4.00	0.056	0.023	0.002	0.004	0.001
ORTHO P	0.023	0.015	0.011	0.036 0.013 0.025	2.70	0.041	0.018	<0.001	<0.001	0.001
KJ LD	0.2	0.2	0.2	0.3	20.	0.4	0.2	0.1	0.1	0.1
	0.28 <0.01 0.06 <0.01	0.02	0.18 0.01 1.21 10.2	0.10 0.02 0.04	6.68	2.5 0.23 0.06 0.4	0.17 <0.01	0.03 <0.01	<0.01	0.03 < 0.01
NO3+ NH3	0.28	0.18	1.21	0.18 0.20 0.22	<0.01	0.23	0.17	0.03	0.05	0.03
VOL TSS	2.3	1.3	1.3	1.8 1.7 1.4	119.0 <0.01	2.5	1.1	1.1	0.9	0.3
155	7.8	4.0	3.6	6.0 3.6 3.8	0.0 119.0	10.1	1.3	2.6	0.9	0.3
(C)	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0
FLOW (CFS)	707. 580.	1740.	1740. 11.06	1750. 250. 2000.	0.	2000.	2500.	14 1100 12900.	15537.	14 1530 16700.
DAY TIME	1015	1200	1240 1300	1440 1345 1515	1600	13 1645	14 1000	1100	14 1400 15537.	14 1530
	£ £	N 13	13 I 13	S 13 T 13	13					$\propto c$
STATION	TURAH BLACKFOOT	BEL MILLIN	ABV MSLA ABV STP STP EFFLNT	BEL SIP SHUFFIELDS BITTERPOOT HARPER BR	CHAMP 001 CHAMP 003 MARCURE	FRENCHTOWN HUSON 9-MILE ABV ALBERT	LOZEAU SUPERIOR BEL ST REG	ABV FLATHU FLATHEAD R PLAINS ABV I FALL	IN T FALLS BEL T FALL IN NOXON	BEL NOYON IN CAB GOR
ST	TURAH BLACE			SHU SHU BIT HAR						
	01	0.40	007	000	5775	100	20.00	35 5 5 V	26	33,0

IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. ALL VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. C). NOTE:

TABLE 5

ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C.(UMHOS/CM), AND COLOR(COLOR UNITS).

NO1E:

A.S. MEANS ACID SOLUBLE.

	CD A.S.																		
	ZN A.S.																		
<u>-</u>	CU A.S.																		
- PAR	\$0 ₁																		
SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11 RESULTS OF SAMPLES TAKEN ON FEB 13-14, 1985	COLOR PH AD																		
ITORING FEB 13-	COLOR NAT																		
SAL MON AKEN ON	COD																		
/PHYSIC	8005																		
EMICAL OF SAN	D.0.																		
ATER CH	SPEC																		
LLOW-h R	РН LAB																		
SHA	PH FLD																		
	T + ME	1015 1100	1200	1240 1300	1440	1345	6161	1600		1645			6	1000	1100	14 1300	14 1400	1530	14 1630
	DAY	13	13	13		13		13		13			;	7	14	14	14	14	
	STAFION		BEL MILLTN	ABV STP STP EFFLNT	BEL SIP SHUFFIELDS	BITTERROOT	HARFER BR CHAMP 001	CHAMP 003 MARCHRF	FRENCHTOWN		9-MILE ABV ALBERT	1ARK 10	SUPERIOR	BEL SI REG ABV FLATHD		ABV T FALL			BFI
		01	0.4	90	08	10	- 2	12	7	5	- 10	18	20	22	23	25	27	53 53	31

SHALLOW-WAIER CHEMICAL/PHYSICAL MONJIURING RESULIS - PARI I RESULIS OF SAMPLES TAKEN ON MARCH 18-21, 1985

AS T.R.	0.013 0.001 0.007 0.005	0,000 0,006 0,000	0,006	0.001	0.001	0.00%	0.004	0.004	0.004	0.004	0.004	0.003	0,003	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.00
CD T.R.	<0.005 <0.005 <0.005 <0.005				_	_	-	-	<0.005	-	_				_	_		_	_	_	_
T.R.	0.18 0.02 0.10 0.06	000	00	0.0	,	=	Ċ	0	0.09	$\bar{\mathbb{C}}$	0	0 0	$_{\vec{\cdot}}$	0.0		$\bar{}$	0	Ξ.	_ :	0	
ZM 1. R.	0.078 <0.005 0.029 0.025	0.019	0.031	<0.005	0.033	0.016	0.014	0,020	0.020	0.024	0.012	0.019	0.01	<0.005	0.006	0.027	<0.005	<0.005	0.009	0.123	<0.00
cu I.R.	0.04 0.03 0.01 0.01	6 6 8 2 2 2	0.02	<0.01	<0.01	0.01	<0.01	0.0	0.01	0.01	<0.01	(0.03 (0.03	<0,01	60.01	<0.01	<0.01	<0.03	<0.01	<0,01	<0.01	<0.01
FF	0.56 0.17 0.19 0.23	0.15	0.20	0.08	0.44	0.23	0.18	0.23	0.22	0.20	0.19	0.13	0.11	0.10	0.12	0.12	0.00	0.14	0.07	0.07	0.05
L HARD	176 118 175 152								128												
TOTAL	0.15 0.10 0.091 0.080	0.080 0.080 8.23	0.91	0.038	3.90	0.103	0.092	0.097	0.093	0.110	0.083	0.079	0.059	0.023	0.024	0.022	0.021	0.020	0.014	0.013	0.012
ORTHO P	0.102 0.067 0.062 0.051				3.16	0.067	0.061	0.058	0.054	640.0	0.046	0,044	0.024	0.006	0.007	0.005	0.005	0.006	0.005	0.002	<0.091
KJLD R	0.08	0.5	2.2	0.5	16.8	0.8	9.0	0.7). 0 0	9.0	0.6	9.7	0.3	0	0.3	0.2	0.1	0.1	0.1	0	0.0
NH3	0.03 (0.01 0.02 0.02	0.02	1.21	0.01	8.22	0.04	0.03	0.02	0.02	0.01	0.01	0.02	<0.01	0.01	<0.0>	<0.01	<0.01	0.01	<0.01	<0.03	<0.01
NO3+ NO2-N	0.23	10	12.5	10					0.14												
VOL	11.1 5.9 4.3 5.1	5.6	4.3	3.2	86.5	5.5	5.4	5.5	5.7	5.2	5.5	5.2	4.3	2.4	2	1.6	2.7	2.0	1.4	7.	1.0
155	56.4 14.3 15.3	15.8	15.7	12.8	86.5	19.9	19.7	22.4	23.5	20.02	19.8	17.9	15.6	20.4	10.2	6.9	7 . 1	11,3	2.3	6.1	2.5
(C)	4.0 5.0 4.0	5.0	6.3	8.0	2.5				いらい		4	4 4				6.1					
FLOW (CFS)	1120. 658. 1790.	1790.		880.	2.76		2685.	00				3680.	3690.	7320.	11000.		112/0.		15700.		18900.
TIME	0945 1115 1320 1230	1430 1620 1630	1645	1830	2315	2345	0100	0330	00/0	2030	1115	0615	2200			1445	1515	1330	1000	1145	1230
DAY	8 8 8 8	8 6 8	0 0 0	18	18	8	19		0,0	19		202	20	20	20	20	20		21		53
STATION	TURAH BLACKFOOT IN MILLIWN BEL MILLTN	ABV MSLA ABV STP STP FEFINT	BEL STP SHUFFTELDS	BITIERROOF HARPER BR	CHAMP 001	MARCURE	FRENCHIOWN	HUSON	9-MILE Abvarbert		LOZIAU	SUPERIOR BFI ST RFG	ABV ILATHD	FLATHEAD R	ABV T FALL	_	BEL I FALL	z	_	N CAB	EL CAB GO
				10 B					16 9 17 A											_	318

ALL VALUES ARE IN MG/L FXCEPT FLOW(GFS) AND TEMPERATURE(DEG. C). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. NOIE:

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11 RESULTS OF SAMPLES TAKEN ON MARCH 18-21, 1985

PB A.S.	0.005	0.003), 0013	0.003	0.004	0.014	0.008	0.017			0.043					,	0.002		0.003	0.002		0.004		0.004		0.064
CD A.S.	0.0008 C	0.0002		0.0004		0.0002		0.0032			0.0043 0						0.0001		1000.0	0.0001		1,0006		0.0001		0.0004
ZN A.S.	0.0885 0.0098	0.0274		0.0679	0.0347 (0.0618			0.0574						0.017%	Ċ		0,00				0.10		0.0116
CU A.S.	0.047	0.015	0.020	0.017		0.003		0.012			0.028						0.007	6	0.003	0.002		0.002		0.002		0.001
708																										
COLOR PH AD							17.	835.	28.	22.	20.															
COLOR							18.	798.	29.	23.	21.															
COD	15.2	9.7	13.6	51.6	11.8	5.6	12.0	755.	15.3	11.0	11.5	13.3	15.3	11.4	0.8	9.6	7.7	11.3		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
8005	3.6	2.2	2.0	13.8	2.5	<2.0	<2.0	67.5	2.5	2.5	2.5	5.9	2.7	2.4	3.6	5.6	3.0	2.7	0.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
D.0.	11.95	12.40	13.25	6.50	13.10	11.70	11.50												12.35							
SPEC	386 249	330	328 328	764	328	148	275	2991	322	596	293	292	290	284	284	279	270	270	184	213	216	211	221	207	206	205
PH LAB	8.05			•						•	•	•				•		•	α 3,3 3,3 3,3				•	•	•	•
PH FLD	8.05		8.35	7.20	8.40	8.05	8.45	8.40	8.35	8.05	8.05	8.00	8.15	8.00	8.25	7.95	8.20	8.20	8.60 25.55	8.25	8.40	8.70	8.05	8.10	8.05	8.10
T I ME	0945	1230	1430	1630	1715	1830	2150	2315	2345	0100	0330	0020	0060	2030	1115	0615	0915	2200	2300	1330	1445	1515	1330	1000	1145	1230
DAY	8 8 9	Σ ε	<u>∞</u> ∞	8 2	<u>8</u>	18	18	80	18	19	19	19	19	19	19	20	20	20	25	502	20	20	-	-		-
STATION	TURAH BLACKFOOT							CHAMP 003	MARCURE	FRENCHTOWN	HUSON	9-MILE	ABV ALBERT	TARKIO	LOZEAU	SUPERIOR	BEL ST REG	ABV FLATHD		•	_	ш	_	ш	_	
	01							12	13	14	15	16	17	18	19	20	51	22	25	25	26	27	28	29	30	31

A.S. MEANS ACIC SOLUBLE. ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C.(UMHOS/CM), AND COLOR(COLOR UNITS) NOTE:

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART I RESULTS OF SAMPLES TAKEN ON APRIL 10, 1985

AS I.R.	0.010	0.005	0.005	0.005 <0.001 0.004	0.001	0.003		0.003	<0.001	0.002	0.001	0.001	0.001
CD I.R.													
E E													
ZN I.R.													
CU T.R.													
FE I.R.													
IARO	167	142	138	142 47 110	170	110		89	84	91	88	96	96
TOTAL P HARD	0.091	0.049	0.031	0.070 0.054 0.063	2.85	0.065		0.052	0.008	0.024	0.024	0.012	0.013
ORTHO P	0.059	0.030	0.030	0.046 0.021 0.032	2.20	0.026		0.030	<0.001	0.009	0.008	0.003	0.002
KJLD R	0.3	0.1	9.4	0.2	15.3	0.1		0.2	0.1	0.1	0.1	0.1	0.1
NH3	0.14 <0.01 0.02 <0.01	<0.01	<0.01 7.56	0.03 <0.01 <0.01	5.85	0.052<0.01		0.056<0.01	0.02 <0.01	0.02 <0.01	0.02 <0.01	0.02 <0.01	0.03 < 0.01
NO3+ NH3	$0.14 \\ 0.02$	0.08	0.07	0.08 0.04 0.07	0.81				0.05	0.05			
VOL TSS	6.9	2.9	3.0	2.6 5.4 3.9	52.7	4.2		3.4	1.1	2.0	1.5	1.2	1.1
188	44.0 14.8	16.8	18.2	15.1 33.7 27.1	52.7	25.2		19.3	2.9	7.7	4.8	2.5	2.5
(C)	7.0	8.0	8.6	9.2	8.2	10.5		10.0	9.5	10.6			
FLOW (CFS)	1407. 1020.	2380.	2380. 11.68	2390. 1690. 4080.	6.19	4090.		5750.	5950.	10 1715 11700.	10 1800 12990.	10 2000 14600.	10 1900 17100.
DAY TIME	10 0800 10 0845	0660	1015 1030	10 1200 10 1115 10 1230	10 1300	10 1345		10 1530	10 1615	1715	1800	2000	1900
DAY		1.0	10	01 01	=								
STATION	TURAH BLACH FOOT	IN MILLIWN BEL MILLIN	ABV MSLA ABV STP STP EFFLNT	BEL SIP SHUFFIELDS BITTERROOT HARPER BR				BEL				-	IN CAB GUR BEL CAB GO
	01		050		12	2 <u>4 C</u> .	15 18 19 19	21	22	25	26	23	31

NOTE: ALL VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. C). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE.

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11 RESULTS OF SAMPLES TAKEN ON APRIL 10, 1985

PB A.S.	0.010	0.039	0.019	0.008	.003	0.013	0.004			0.005	0.006	6.004	0,002	0.005	0.005
CD A.S.	0.0001 0	0.0007	0.0016 0.0047	0.0005		0.063	0.0020 (0.0014 (0.0010	0.0019 (0.0003 6	0.0008 (0.0015
A. S.	0.0652 (0.0045)	0,0299	0.0281 (0.0573 (0.0255 0		0.0413 (0,0251 (0.0116 0	0.00ny (0 2010 0	1	11,000,0	0.0083 (
CU A.S.	0.034	0.014	0.016	0.012		0.008	0.010			0.008	<0.001	0.035	0.005	<0.001	0.002
70S															
COLOR PH AD															
COLOR															
COD															
8005															
0.0.															
SPEC															
PH LAB															
PH FL0															
T I ME	0800 0845	0860	1015	1200	1230	1300	10 1345			1530	10 1615	1715	1800	2000	1900
DAY	0t 0t	10	010	10	10	10		_		3 10			10	10	10
STATION	TURAH BLACKFOOT	IN MILLTWN BEL MILLTN	ABV MSLA ABV STP STP EFFLNT	BEL STP SHUFFIELDS RITTERROOT	HARPER BR CHAMP 001	CHAMP 003 MARCURE	HUSON	9-MILE ABV ALBERT	TARKIO LOZEAU	SUPERIUR BEL SI REG	ABV FLATHD FLATHEAD R	PLAINS ABV I FALL	IN T FALLS BEL T FALL	BEL NOXON	IN CAB GUR BEL CAB GO
	01			08 09 10		13	± £ '	16	100	202	22	24 25	26	53 53 53 53 53	31

ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C. (UMHOS/CM), AND COLOR COLOR UNITS). A.S. MEARS ACID SOLUBLE. NOIE:

TABLE 5

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULIS - PART I RESULIS OF SAMPLES TAKEN ON APRIL 23-24, 1985

· · ·	007	003	003	003 001 002	200	302	102	001	101	100	100	100
AS 1.R.	0.007	0.003	0.003	0.003 <0.001 0.002	0.007	0.0	0.005	<0.0>	0.001	0.001	0.001	0.0
CD T.R.	<0.005	<0.005	<0.005	<0.005 <0.005 <0.005	<0.005	<0.005 0.002	<0.005	<0.005 <0.001	<00.005	<0.005	<0.005	<0.005 0.001
T. R.												
ZN T.R.	0.028	0.008	0.012	0.010 <0.005 0.008	0.047	0.007	0.007	<0.005	<0.01 <0.005	<0.005	<0.01 <0.005	<0.01 <0.005
CU T.R.	0.02	<0.01	<0.01	<0.01 <0.01 <0.01	<0.01	<0.01	<0.03	<0.01	<0.01	<0.01	<0.01	<0.01
FE T.R.												
IARD	130	98	94 163	95 32 79	144	74	99	88	92	73	62	63
ORTHO TOTAL P P HARD	0.048 130 0.019 78	0.036	0.028	0.044 0.018 0.031	2.37	0.023 0.041 74	0.020 0.035	0.011	0.022	0.020	0.026	0.010 0.019
ORTHO P	0.029	0.014	0.014 6.35	0.032 0.009 0.017	1.56	0.023	0.020	0.003	0.012	0.010	0.013	0.010
KJ L D	0.4 0.4	η.0	0.4 19.8	0.4	17.0	0.4	0.3	0.3	0.3	0.3	0.3	0.3
NH3	<0.01	<0.01	<0.01 10.8	0.03 <0.01 <0.01	4.98	0.02	<0.01	<0.01	<0.01	<0.01	0.03	0.03
NO3+ NH3 NO2 N N	5.2 0.05 <0.01 3.5 <0.01 <0.01	0.02 <0.01	0.02 <0.01 6.85 10.8	0.03 0.03 0.03 0.03 0.05 <0.01 0.04 <0.01	<0.01	4.2 0.04 0.02 0.4	4.8 0.06 <0.01	3.0 < 0.01 < 0.01	3.9 0.03 <0.01	0.03 <0.01	0.06 0.03	1.2 0.06 0.03 0.3
V0L TSS	3.5	4.3	3.9	3.9	95.7 <0.01	4.2	4.8	3.0	3.9	3.4	1.3	1.2
158	20.0 8.4	12.4	10.8 23.9	11.7	9.76	13.5	15.8	14.1	10.1	6.6	5.7	4.9
(C)	5.0	5.0	6.0	6.0	10.0	7.3	7.0	0.9	7.0	7.0	8.0	0.6
FLOW (CFS)	1701. 2430.	4140.	4140.	4150. 3405. 7560.	20.73 10.0	7590.	1700 10500.	8800.	1845 19300.	1930-29145.	1130 21500.	24 1015 27700.
DAY TIME	0900	1100	1230 1300	1330 1200 1400	1430	23 1530	1700	1745	1845	1930		1015
DAY	23	23	233	23	23	23	23	23	23	23	24	54
STATION		S IN MILLIWR 4 BEL MILLIN	5 ABV MSLA 6 ABV STP 7 STP EFFLNT		2 CHAMP 001 2 CHAMP 003 3 MARCURE			22 ABV TLATHU 23 FLATHEAD R 35 BLATHS	24 FLAINS 25 ABV I FALL	7 BEL T FALLS	_	31 BEL CAB GO
	01		000	09			 200	2 2 V	<i>100</i>	/ (\) (12	÷ (X)

IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. NOTE: ALL VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. C).

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART II RESULTS OF SAMPLES TAKEN ON APRIL 23-24, 1985

PB A.S.	0.003	900.0	0.003	$0.008 \\ 0.014 \\ 0.016$	0.010	0.003		0.023	0.005	0.011	0.010	0.003	0.006
CD A.S.	0.0007	0.0008	0.0004	0.0017 0.0033 0.0028	0.0015	0.0005		0.0004	0.0002	0.0009	0.0010	0.0002	0.0004
ZN A.S.	0.0381	0.0155	0.0146	0.0261 0.0134 0.0241	0.0329	0.0149		0.0115	0.0 54	26 (0. 0)	0.0045	0.004	0.0050
CU A.S.	0.017	900.0	0.007	0.009 0.005 0.006	<0.001	0.004		0.002	<0.001	0.001	0.003	<0.001	<0.401
804	·				v				·			·	·
COLOR PH AD													
COLOR NAT													
COD													
8005													
0.0.													
SPEC													
РН LAB													
PH FLD													
DAY TIME	0900 1000	1100	1230 1300	1330 1200 1400	1430	1530		1700	1745	1845	1930	1130	1015
λΑΥ	23	23	23	23 23	23	23		23	23	23	23	24	24
	01	N N N	LNT	LDS 00T BR	03	OWN	ER T	REG	0 R	T FAIL	AIL AIL	NO 2	000
STATION	TURAH BLACKFOOT	SEL MILLTN	STP	BEL SIP SHUFFIELDS BITTERROOT HARPER BR	CHAMP 001 CHAMP 003 MARCHRF	FRENCHTOWN HUSON 9-MILE	ABV ALBER TARKIO LOZEAU	SUFERIOR BEL ST REG	FLATHEAD R	2	T FALLS	NOXON	CAB
817	TURAH BLACK	BEL	ABV STP	BEL SHUI BITI HARF	CHAR	FRENCH HUSON 9-MILE	ABV AL TARKIO LOZEAU	BEL	FLA	ABV T	_		BEL
	01	0.04	90		727		18 19	220	53	252	27	53	3

A.S. MEANS ACID SOLUBLE. ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C. (UMHOS/CM), AND COLOR(COLOR UNITS). NOTE:

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULIS - PART I RESULIS OF SAMPLES TAKEN ON MAY 8-9, 1985

AS T.R.	0.006	0.001	0.002	0.001	0.002	0.002		0.002	<0.001	0.001	0.001	0.001	0.001
CD T.R.	<0.005	<0.005	<0.005 <0.005	<0.005 <0.005 <0.005	<0.005	<0.005 0.002		<0.005 0.002	<0.005 <0.001	<0.005 0.001	<0.005 0.001	<0.005	<0.005 0.001
F. R.													
	0.026	0.008	0.011	0.012 <0.005 0.009	0.032	0.01 0.005		<0.01 0.005	<0.01 <0.005	<0.01 <0.005	<0.01 <0.005	<0.01 <0.005	<0.01 <0.005
FE CU ZN T.R. T.R. T.R.	0.01	<0.01	<0.01 0.01	<0.01 <0.01 <0.01	<0.01	0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
ARD	131	122	85 166	83 25 68	152	61		69	88	74	7.1	61	64
ORTHO TOTAL P P HARD	0.051 131 0.032 121	0.043 122	0.041 4.50	0.050 0.021 0.036	2.96 152	0.024 0.049 61			0.004	0.026	0.030	0.018	0.013
0R1H0 P	0.027	0.019	0.020	0.024 0.009 0.019	1.30	0.024		0.022 0.042	<0.001 0.004	0.012 0.026	0.013 0.030	0.007	0.005 0.013
kJLD N	0.4	0.3	0.3	0.3	21.0	4.0		0.3		0.2	0.2	0.2	0.2
NO3+ NH3 NO2 N N	0.01	0.02	0.02	0.01	5.10 21.0	0.04		0.02	<0.01	0.03 0.02 0.2	0.02	0.02	0.01
NO3+	7.7 0.02 0.01 5.5 0.01 <0.01	5.8 0.01 0.02	6.6 <0.01 0.02 22.2 3.44 3.35	6.2 <0.01 4.3 0.03 5.6 0.02	<0.01	0.03		5.5 0.05 0.02 0.3	2.4 0.01 <0.01 0.1	0.03	4.4 0.03 0.02 0.2	1.2 0.03 0.02 0.2	2.3 0.03 0.01 0.2
VOL 15S	7.7	5.8	6.6	6.2 4.3 5.6	5 103.5 <0.01	6.2 0.03 0.04 0.4		5.5	2.4	4.8	4.4	1.2	2.3
TSS	29.2 28.0	28.0	27.1 22.2	27.2 13.7 22.8	103.5	26.2		27.2	6.2	18.1	20.3	5.5	5.2
(C)	9.0	0.6	8.7	9.0 8.0 9.6	33.93 14.0 103.	10.0		9.0	8.6	8.8	8.7	10.0	9.5
H 0W (CFS)	2600. 4230.	.0099	6600. 12.07	6610. 4890. 11500.	33.93	08-1645-11540.		08 1820 15700.	13300.	29000.	30672.	09 1645 36700.	40400.
TIME	0915 1000	1100	1200 1215	1345 1300 1415	1500	1645		1820	1915	2015	2045	1645	1545
DAY TIME	08 0	80	0.8	0.8	0.8	08			08	0.8	60	60	60
STATION	01 TURAH 02 BLACKFOOT	OS IN FIELTWA O4 BEL MILLIN O5 ABY MSIA	00 ABV H3CA 06 ABV STP U7 STP EFFLNT		12 CHAMP 001 12 CHAMP 003 13 MARCURF	14 FRENCHTOWN 15 HUSON 16 9-MILE	17 ABV ALBERT 18 TARK 10 19 EOZEAU 20 SUPERIOR		23 FLATHEAD R				
						•			'				

NOTE: ALL VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. C). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE.

TABLE 5

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART II RESULTS OF SAMPLES TAKEN ON MAY 8-9, 1985

PB A.S.	0.003 0.005	0.003	0.003	0.006	0.009	0,003	0.014	0.004	0.010	0.005	0.010	0.051
CD A.S.	<0.0001 0.0020	0.0002	0.0009	0.0007			0.0014	900000	0.0008	0.0005	01.00.0	0.0275 0.0096 (.051
ZN A.S.	0.0354	0.0261	0.0171	0.0613		0.0180	0.0266	0.0135	660 0	0.01122	0.0054	0.0275
CU A.S.	0.015	0.005	0.006	0.014 <0.001	<0.001	0.004	0.008	0.004	0.001	0.001	<0.001	0.003
\$0¶												
COLOR PH AD												
COLOR												
000												
8005												
D.0.												
SPEC												
PH LAB												
PH FLD												
TIME	0915 1000	1100	1200 1215	1345 1300 1415	1500	1645	1820	1915	2015	2045	1645	1545
DAY	08	08	08	08	08	08	98	08	08	60	60	60
STATION	1URAH BLACKFOOT		ABV STP STP EFFLNT	SHUI		MARCURE FRENCHTOWN HUSON		ABV FLATHU FLATHEAD R	ABV T FALL	BEL T FALL	BEL NOXON	BFI CAB GO
			90	000				222			29	31

NOTE: ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C.(UMHOS/CM), AND COLOR(COLOR UNITS). A.S. MEANS ACID SOLUBLE.

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART I RESULTS OF SAMPLES TAKEN ON MAY 22-23, 1985

AS T.R.	0.004	0.002	0.002	0.002 <0.001 0.001	0.004	0.001		0.001	<0.001	<0.001	<0.001	<0.001	<0.001	LE.
CD 1.R.														IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE.
MN T.R.														OTAL R
74 T.R.														EANS T
CU T.R.														T.R.
FE T.R.														INGS,
IARD	80	91	68 170	7.1 1.2 5.0	170	43		42	87	58	99	62	62	HEAL
TOTAL P HARD	0.043	0.043	0.037 4.67	$0.034 \\ 0.025 \\ 0.050$	4.17	0.073		0.075	0.012	0.042	0.039	0.014	0.010	IN THE
ORTHO P	$0.025 \\ 0.025$	0.023	0.021	0.028 0.020 0.027	1.42	0.038		0.045	0.010	0.024	0.022	0.007	0.003	W(CFS) AND TEMPERATURE(DEG. C).
KJLD ™	0.2	0.3	0.3	0.4 0.3 0.3	22.3	0.5		0.4	0.1	0.4	0.3	0.1	0.1	JRE (DEG
Z Z	<0.01	<0.01	<0.01 3.74	0.01	4.11	0.02		0.02	<0.01	0.01	0.01	0.01	<0.01	PERATI
NO3+ ИН3 NO2 И N	6.4 <0.01 <0.01 7.5 <0.01 <0.01	6.8 <0.01 <0.01		<0.01 0.01 <0.01	0.01	0.01		0.03	3.6 <0.01 <0.01	0.02		0.02	2.9 0.02 <0.01	ND TEM
VOL TSS	6.4	6.8	6.8 <0.01 32.6 3.47	7.2 . 8.1 . 6.6	101.	7.7		4.6	3.6	6.8	7.0	5.9	5.9	CFS) A
155	19.2	41.5	33.6 32.6	36.2 40.5 37.2	101.	50.8		64.1	7.2	39.7	33.9	٥.4	4.4	FLOW(
(C)	11.0	11.5	11.5	12.3 11.0 13.3	20.4	13.5		12.0	11.5	13.5	13.5	13.0	12.2	EXCEPT
FLOW (CFS)	2358. 5350.	7440.	7440. 11.76	7450. 8750. 16200.	45.19	22 1800 16240.		2015 23200.	2100 11500.	34700.	38730.	30500.	23 1530 33000.	ALL VALUES ARE IN MG/L
LIME	1000	1200	1300	1500 1415 1600	1700	1800		2015	2100	2140	2245	1645	1530	ARE
DAY TIME	22	25	22	22 22 22 22	22	22		22	22	22	22	23		LUES
STAT10N [TURAH BLACFF00T	BEL MILLIN	ABV MSLA ABV STP STP EFFLNT	BEL SIP SHUFFIELDS BITTERROOT HARPEP BP	CHAMP 001 CHAMP 003	MARCURE FRENCHTOWN HUSON	9-MILE ABV ALBERT TARKIO	LOZEAU SUPERIOR BEL ST REG	ABV FLATHD FLATHEAD R	PLAINS ABV T FALL	IN T FALLS BEL T FALL	IN NOYOR BEL NOYOR	IN CAB GOR BEL CAB GO	ALL VA
ST	_								Z ABV 3 FLA					NOTE:
	c c	0.3	05 06 07	08 09 10 11	12	13 14 15	16	25.02	20	2 2	26	NÃ	mm	ž

TABLE 5

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART II RESULTS OF SAMPLES TAKEN ON MAY 22-23, 1985

PB A.S.	0.002	0.002	0.003 0.004	0.00 3 0.00 6 0.005	0.010	0.008		0.005	0.009	0.007	0.014	600.0	900.0
CD A.S.	0.0006 0.0003	0.0008	0.0003 0.0004	0.0011 0.0005 0.0023	0.0022	0.0017		0.0056	0.0012	0.0017	0.0022	0.0012	0.0010 0.006
ZN A.S.	0.0384 0.0146	0.0183	0.0172	0.0439 0.049 0.0427	0.0533	0.0276		0.0433	0.0140	0.0244	0.0197	0.0138	0.0195
cu A.S.	0.008	0.005	0.007	0.007 0.004 0.011	0.005	0.007		0.010	400.0	0.007	0.005	0.005	400.0
\$04		,											
COLOR PH AD													
COLOR													
COD													
8005													
0.0.													
SPEC													
РН LAB													
PH FLD													
DAY TIME	1000	1200	1300 1330	1500 1415 1600	1700	1800		2015	2100	2140	2245	1645	1530
	22	N 22	22 T 22	s 22 1 22 22	22	N 22		6 22	R 22	L 22	.s .L 22	23	0 23
STATION	TURAH BI ACKFOOT	BEL MILLIN	ABV MSLA ABV SIP SIP EFFLN	BEL SIP SHUFFIELDS BITTERROOT HARPER BR	CHAMP 001 CHAMP 003 MARCURE	FRENCHTOWN HUSON 9-MILE ABV ALRFRT	-		FLAIHEAD R	ABV T FAL	BEL T FALLS	BEL NOYON	BEL CAB GO
	01	004	000	000	12 13	14 15 16	186	21	23.	25	279	29	31

A.S. MEANS ACID SOLUBLE. NOTE: ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C. (UMHOS/CM), AND COLOR(COLOR UNITS).

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART I RESULTS OF SAMPLES TAKEN ON JUNE 5-6, 1985

AS T.R.	0.006	0.002	0.003	0.003	0.002	0.004	0.002			0.001	<0.001	<0.001	<0.001	<0.001	<0.001
CD T.R.	<0.005	<0.005	<0.005	<0.005		<0.005	<0.005			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
MN T.R.															
ZN T.R.	0.016	<0.005	$0.005 \\ 0.063$	0.007	<0.005	0.038	<0.005			<0.01 <0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cu T.R.	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
1. R.															,
TOTAL P HARD	0.042	0.025	0.028 4.23	0.034	0.025	3.38 1.89	0.036			0.030	0.011	0.022	0.025	0.015	0.015
ORTHO P	0.025	0.014	0.015	0.019	0.014	0.64	0.018			0.016	<0.001	0.007	0.011	0.004	0.003
KJLO N	0.3	0.3	0.4 4.0	0.3	0.2	14.1	0.2			0.8	0.1	0.2	0.2	0.2	0.2
N N N	<0.01	<0.01	<0.01	<0.01	<0.01	3.79	0.01			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
NO3+ NO2 N	<0.01	<0.01	<0.01	<0.01	0.02	<0.0>	0.03			0.04	0.02	0.03	0.03	0.03	0.03
VOL 15S	4.8	3.7	3.9	4.2	3.6	61.7	4.1			3.5	2.3	3.3	3.9	2.5	2.3
155	14.1 12.5	13.7	13.5	13.4	- 0		13.5			14.5	9.8	12.0	16.7	4.7	5.6
- (°)	15.0	10.4	10.0	10.5	- :	16.0	11.2			11.4	12.8	12.2	12.0	12.	12.0
FLOW (CFS)	2289. 3380.	5520.	5520. 12.84	5530.		13.59	1645 11540.			15700.	20000.	35700.	40546.	35800.	1230 41900.
1 I ME	1015 1100	1145	1215 1230	1400	1445	1600	1645			1830	1915	2000	9480	1030	1230
ρΑΥ	05	4 05	05	3 05		05		_		3 05	3 05	50 ·	90 -	90	90 (
STATION	<u>⊢</u> m ·	BEL		SHU		CHAMP 001 CHAMP 003						AB.	- au -	- W -	BEL CAB GO
	01	70	050	000	-	25	13	15	19	220	23	25	27	23	31

IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. ALL VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. C). NOTE:

PB A.S.

CD A.S.

ZN A.S.

CU A.S.

80th

COLOR PH AD

COLOR

000

8005

0.0

SPEC

PH LAB

PH FLD

DAY TIME

STATION

- PART II

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS RESULTS OF SAMPLES TAKEN ON JUNE 5-6, 1985

A.S. MEANS ACID SOLUBLE. ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C. (UMHOS/CM), AND COLOR(SOLOR UNITS). NOTE:

TABLE

60

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART I RESULTS OF SAMPLES TAKEN ON JUNE 18-19, 1985

AS I.R.	0.005	0.003	0.003	0.003	0.004	0.001	(0.001	<0.001	<0.001	<0.001	0.001
CD 1.R.	<0.005	<0.005	0.005	<0.005 <0.005 <0.005 <0.005	<0.005	<0.005		<0.005	<0.005 <	<0.005 <	<0.005 <	<0.005 <0.001
ын Т. В.												
ZN I.R.	0.008	0.011	0.024	0.009	0.017	<0.01 <0.005		<0.01 <0.005	0.018	<0.005	<0.005	0.008
cu T.R.	<0.01	<0.01	0.01	<pre><0.01 <0.01 <0.01 <0.01</pre>	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01
FE T.R.												
TOTAL P HARD	0.024 0.011	0.029	0.023 4.28	0.041 0.017 0.024	2.52	0.026	,	0.016	0.011	0.013	0.009	0.009
ORTHO P	0.014	0.013	0.010 4.01	0.024 0.005 0.009	19.0	0.010		0.006	0.001	0.002	<0.001	<0.001
KJI D	0.2	0.2	0.2	0.00	15.7	0.2	,	0.3	0.1	0.2	0.1	0.1
	<0.01	<0.01	<0.01	<pre><0.01 <0.01 <0.01 <0.01</pre>	4.34	<0.01	;	<0.01	<0.01	<0.01	<0.01	<0.01
NO3+ NH3 NO2 N N	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01	<0.01	0.01	<0.01	3.5 <0.01 <0.01	;	3.3 <0.01 <0.01	2.9 <0.01	<0.01	<0.01	2.3 0.01 <0.01
VOL TSS	3.1	0.4	3.9	4.1 3.5 3.2	177.2	3.5	,	3.3	2.9	3.1	2.1	2.3
155	4.7	15.6	13.3 4.5	12.8 7.8 8.1	177.2	8.6		6.3	8.4	10.4	5.6	3.4
T (C)	12.1	13.0	13.5	14.5 14.3 15.4	20.0	16.0		15.4 16.0	16.6	16.0	14.0	14.2
FLOW (CFS)	1063. 2200.	3290.	3290. 12.99	3300. 4170. 7470.	7.42	7480.		10100. 23400.	33500.	34133.	29300.	19 1900 35200.
DAY TIME	0900	1030	1130	1330 1240 1415	1500	18 1600		1330		19 1630	1745	1900
DAY	8 5	18	18	81 81	18	18		9 6			19	
STATION		BEL SEL		U8 BEL SIP 09 SHUFFIELDS 10 BITTERROOT 11 HARPER BR	2 CHAMP 001 2 CHAMP 003 3 MARCURE		17 ABV ALBERT 18 TARKIO 19 LOZEAU 20 SUPERIOR	1 BEL ST REG 2 ABV FLATHO 3 FLATHFAD R			8 IN MUXUN 9 BEL NOXON	
	00	0 24	000	000			2	000	100	200	VOI	o 60

IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. ALL VALUES ARE IN MG/L EXCEPT FLOW(GFS) AND TEMPERATURE(DEG. C). NOTE:

TABLE 5

CD PB A.S. A.S.																							A.S. MEANS ACID SOLUBLE.
ZN A.S.																							UNITS).
CU A.S.																							ORLCOLOR
\$0¢																							D CO
COLOR PH AD). AN
COLOR C																							STANDARD UNITS), S.C. (UMHOS/CM), AND COLORLCOLOR UNITS).
COD																							s.c.
8005 (UNITS),
0.0.																							STANDARD
SPEC																							
PH S																							ALL VALUES ARE IN MG/L EXCEPT PH(
PH FLD																							1/9H
ME	0460 0060	1030	1130	000	1330	115	1500		0	000				0	1330	130		1530	530	1745		006	ARE IP
DAY TIME	18 09 18 09	18 10	18		18		18		10 1600	0					5	19 1430		19	19 1630	19 1		19 19	UES /
	701		۷,	> FLNT	ELDS 3001	BR	001 003	Let	LOWN		3ERT			JR Pro	XEC TIL				I FALL	~	GOR	CAB GO 19 1900	VAL
STATION	TURAH BLACKFOOT	IN MILLIWN 3EL MILLIN	ABV MSLA ABV STP	P EFF	UFF11 TTFRF	RPER	AMP (RCURE	ENCHI	100	NICE VALE	TARKIO	LOZEAU	PER10	BEL SI REG	ABV TLAIMU FLAIHEAD R	_	_		SEL NOXON	$\overline{}$		ALI
S			05 AB 06 AB			11 HA	12 CH	13 MA	14 FR	7 7 7 7	10 9-							-	-			31 BEL	NOTE:

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART II RESULTS OF SAMPLES TAKEN ON JUNE 18-19, 1985

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART I RESULTS OF SAMPLES TAKEN ON JULY 10-11, 1985

AS T.R.	0.003	0.002	0.003	0.002	0.002	00.0	0.002			0.001	<0.001	30.001	<0.001	rn.001	<0.001
CD 1.R.	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005 0.002			<0.005	<0.005 <0.001	<0.005 <0.001	<0.005 <0.001	<0.005 <0.001	<0.005 <0.001
MN T.R.															
ZN T.R.	0.006	0.006	0.023 0.033	0.005	0.040		0.015			<0.01 <0.005	<0.01 <0.005	<0.01 <0.005	<0.01 <0.005	<0.01 <0.005	<0.01 <0.005
CU T.R.	<0.01	<0.01	<0.01		0.05		<0.01			<0.01	<0.01	<0.01	<0.01	<0.0>	<0.01
FE T. R.															
ORTHO TOTAL P P HARD	0.015	0.013	0.012	0.039	0.021	7.7	0.027			0.017	0.008	0.008	0.009	0.008	0.009
ORTHO P	0.005	0.005	0.003	0.033	0.012	2	0.016			0.004	<0.001	<0.001	<0.001	<0.001	1.4 <0.01 0.01 0.2 <0.001 0.009
KJLD	0.4	0.2	0.2	0.3	0.2	۲۰۰۶	0.4			0.2	0.2	0.2	0.1	0.1	0.2
	<0.01 <0.01	<0.01	0.03	0.05	0.02	77.7	7.0 20.04 0.05 0.4			1.8 <0.01 0.03 0.2	1.4 <0.01 <0.01 0.2	0.03	<0.01	0.01	0.01
NO3+ NH3 NO2 N N	0.03 <0.01 <0.01 <0.01	1.5 < 0.01 < 0.01	1.4 <0.01 0.03 8.2 0.15 4.55	0.01	0.05	0.0	0.04			<0.01	<0.01	1.6 < 0.01 0.03	1.7 <0.01 <0.01	1.1 <0.01 0.01	<0.01
V0L 1SS	1.7	1.5	1.4	5.5			1.4			1.8	1.4	1.6	1.7	1.	1.4
TSS	4.1	4.6	4.0 30.0	4.2	6.		3.5			2.3	1.5	1.7	3.7	-:	1.5
T (C)	17.0 18.0	20.0	20.5 14.0	21.0	19.8		21.1			19.5	21.5	21.7	22.0	18.5	18.8
FLOW (CFS)	481. 824.	1310.	1310.	1320.	2140.	0.0	2140.			3300.	.0066	13200.	13826.	1515 13000.	11 1615 15000.
DAY TIME	0945	1045	1130 1200	1415	1515	1000	10 1645			11 1030	1130	11 1300 13200	11 1400 13826	1515	1615
DA∀	10	0	10	10							=			-	
STATION	TURAH BLACH FOOT	BEL MILLIN	ABV MSLA ABV STP STP EFFLNT	BEL SIP SHUFFIELDS	HARPER BR	CHAMP 003		9-MILE ABV ALBERT	TARK 10 LOZEAU			PLA I ABV	-		IN CAB GUR BEL CAB GO
	01	03	000			7 0	137	16	18	20	23	25	27	23	31 31

ALL VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. C). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. STP FFFLUENT INCLUDES APPROXIMATELY 0.77 GFS DILUTION FROM CONSTRUCTION DEWATERING. NOTE:

TABLE 5

ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C.(UMHOS/CM), AND COLOR(COLOR UNITS).

NOTE:

A.S. MEANS ACID SOLUBLE.

PB A.S.	
CD A.S.	
ZN A.S.	
CU CU A.S.	
5 Sout A.	
RESULTS OF SAMPLES TAKEN ON JULY 10-11, 1985 H PH SPEC COD COLOR COLOR COLOR COLOR SAMPLES COD NAT PH AD S	
JULY 10- COLOR NAT	
AKEN ON	
PLES T/ BO05	
OF SAM	
ESULTS SPEC COND	
PH LAB	! 1
PH FLD	
DAY TIME	10 0945 10 0845 10 1045 10 1200 10 1330 10 1515 10 1645 11 1030 11 1300 11 1400 11 1515
λΑΥ	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
STATION	SA F SE S F SE S S F S S S S S S S S S S S
	33000000000000000000000000000000000000

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULIS - PART I RESULTS OF SAMPLES TAKEN ON JUL 29-AUG 1,1985

AS I.R.	0.004 0.001 0.005 0.006	0.003	0.003	0.004	0.002	0.003	0.003	0.002	0.002 <0.001 <0.001	0.001	0.00	0.001
CD I.R.	<0.005 <0.005 <0.005 <0.005	005	005 005 005	005	0005	000	<0.005 <0.005 <0.005	005	005	0005	000 000 7	005
MR T.R.												
ZN T.R.	<pre><0.005 <0.005 0.010 </pre>	<0.005 <0.005 0.053	<0.005 <0.005 <0.005 <0.005	0.049	<0.005	<0.005	<0.005 <0.005 <0.005	<0.005	<0.043 0.043 <0.005	<0.005	<0.005	<0.005 <0.005 <0.005
CU T.R.	0.00.00	<0.01 <0.01 <0.01	0.000	0.01	0.00	<0.07	60.03 60.03 60.03	60.05 0.03	0.00	<0.01	<0.01 <0.01	<pre><0.01 <0.01 <0.01 </pre>
FE I.R.												
HARD	147 131 151 139	138 135 161	135 133 295				116					
TOTAL P	0.017 0.009 0.039	0.017 0.016 4.46	0.34 0.079 0.016	7.01	0.045	0.027	0.023 0.019 0.021	0.019	0.005	0.007	0.009	0.011 0.009 0.013
ORTHO P	0.005 0.001 0.018 0.009	0.006 0.006 3.31	0.26 0.060 0.007	2.06	0.025	0.014	0.013 0.007 0.004	0.001	\$0.00 \$0.00	<0.001	<0.001 <0.001	0.004 <0.001 <0.001
KJLD R	0.2	5000	8.000	21.9		0.7	0.00	0.3	7.4.0	0.2	000	0.5
NH3	<0.01 <0.01 0.04 0.04	000	0000	6.18	0.05	<0.03 <0.01	6.0.0 0.0.0 0.0.0	<0.01	0.00	<0.01	<0.01 <0.01	<pre></pre>
NO3+ NO2 H	0.02 <0.01 0.01 0.01	<0.01 <0.01 1.69	0.04	0.01	0.07	<0.03	<pre></pre>	<0.01	0.00	<0.01	<0.01 <0.01	0.02 <0.01 <0.01
VOL TSS	2.9						- 6.6					
158	5.6 2.2 10.0 4.9						3.4					
(C)	15.4 17.1 19.0	21.5 21.9 16.1	21.3 21.4 21.6	21.9	18.8	20.6	20.9 19.1 18.7	20.5	-8.9 23.6 22.3	21.8	23.1	22.3 23.0 21.5
FLOW (CFS)	349. 534.	1020. 1020. 12.53	1030. 1030. 310.	.11	1430.	.0041		2140.	2110. 10060. 12500.	12500.	13205.	12500. 15200.
TIME	0945 1115 1215 1300	1530 1730 1815	1830 1915 1630	2100	1550 1500	1330	1530 0515 0915	1300			1300	1345 1500 1600
DAY	23	5362	23	29	30		30 20	33	0 8 0	010	55	
STATION	I TURAH 2 BLACKFOOT 3 IN MILLTWN 1 RFI MILITN		BEL STP 9 SHUFFIELDS 1 BITTERROOT 1 HARRE RP			HUSON 9-MILE	7 ABV ALBERT 3 TARKIO 9 LOZEAU		2 ABV FLAIHD 3 FLATHEAD R 4 PLAINS		= 2	9 BEL NOXOM 3 IN CAB GOR 1 BEL CAB GU
	0000	050	08	- (-) (-)			18 19	55	だんだ	55	~~~	m m

ALL VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. C). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. CHAMPION WASTEWATER SAMPLE IS FROM DISCHARGE 002. SEE FIELD NOTES IN APPENDIX TO REPORT. STP EFFLUENT INCLUDES APPROXIMATELY 1.55 GFS DILUTION FROM CONSIRUCTION PEWATERING. NOTE:

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11 RESULTS OF SAMPLES TAKEN ON JUL 29-AUG 1,1985

PB A.S.	
CD A.S.	
ZN A.S.	
CU A.S.	
SOlt	67-60-60-60-60-60-60-60-60-60-60-60-60-60-
COLOR PH AD	8.0 1230. 12.2 11.8
COLOR	8.8 11.8 10.9 10.5
000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
8005	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0.0.	99 .40 .90 .90 .90 .90 .90 .90 .90 .90 .90 .9
SPEC	2310 22066 22066 22066 22066 22066 2206 2206 2207 2207
PH LAB	22222222222222222222222222222222222222
PH F1.0	20000000000000000000000000000000000000
TIME	0945 1115 1215 1300 1430 1630 1630 1630 001 100 100 100 100 100 100 100 100 1
DAY	00000000000000000000000000000000000000
STATION	TURAH BLACKFOOT IN MILLTWN BEL MILLTWN ABV STP STP EFFLNT BEL STP SHUFFIELDS HATTERROOT
	33.00 33.00 33.00 33.00 34.00 35.00 35.00 36.00

TABLE 5

NOTE: ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C. (UMHOS/CM), AND COLOR(COLOR UNITS). A.S. MEANS ACID SOLUBLE.

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUMMARY - PART I

STATION STAT	AS T.R.	0.045 0.003 0.008 23	0.001 0.001 0.001 23	0.008 0.005 0.006 5	0.020 0.001 0.005 23	0.006 0.003 0.004 5	0.019 0.00 2 0.00 5	0.003 0.001 0.001 23	0.006 0.003 0.004 5	0.020 0.001 0.005 23
THINGH MAX: 1190. 1.0 575. 41.1 0.28 0.01 1.9 0.34 0.01 0	CD T.R.	9995	200.5	0000	2665					
The color of the	MR.	.84 .00 .10 .15		. 10 . 04 . 05	.49 .02 .07 .15	.05 .02 .03	. 48 . 00 . 06 . 15	.03 .00 .01	.06 .02 .03	.48 .00 .06 .15
FLOW MAX: 7150: 48 71 72 72 72 72 72 72 72	Ν.	\cdots	(1)			.00.	. 24 . 00 . 03 21	. 111 . 033 . 065 21	0.000	. 22 . 00 . 02 2 1
STATION C(5) C(5) 155 VOL MO3+ NH3 KJLD OR1HO TOIL CURAH NHX: 7150. 17.0 555. 47.1 0.28 0.04 0.19 0.10 0.05 0.01 0.00 0.01 0.00	CU T.R.	2.0.	2.00	0000	2.0	0.00	.0.21	0.0.5	0.00%	2.0.5
TURAH MINI: 1490. 17.0 555. 15.8 NUS NH3 KJLD ORTHO TOTL MINI: 1490. 17.0 555. 15.8 NUS NH3 KJLD ORTHO TOTL MINI: 1490. 17.0 555. 15.8 NUS NH3 KJLD ORTHO TOTL MINI: 1490. 17.0 555. 15.8 NUS NH3 KJLD ORTHO TOTL MINI: 1480. 18.0 18.0 18.0 18.0 18.0 18.0 18.0 1		40.45	8. 0. 1.5		2.0 	-0-7	.0 .3 .3	-0.0.5	2.0.4	.0 .3 .75
TURAH MILLINN MAX: 1750. 155. 47.1 0.28 0.01 0.10 0.01 0.01 0.00 0.00 0.00 0.0	HRD	190 80 143.	143 74 112.	5 6 3	9 7 9	553	900	174 149 165.	543	0770
STATION TELOW T TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL NOTAL N	701L P	.51 .01 .05 25	0.10 0.003 0.021 25	.03 .03 .53	 0.0 25	.08 .01 .02 .02	25 00 03 5	.93 .49 .25	. 25 . 34 . 83	V2 W 10
STATION FLOW (CFS) (C) 15S VOL H03+ NH3 NH3<	ORTHO P	.37 .00 .03 .25		.06 .02 .02 .05	. 19 . 00 . 02 . 25		-0.0.	.30 .49 .43	.07 .26 .73	
STATION FLOW TURAH MAX: 7150. 17.0 555. 47.1 0.28 0.0 1.0 1.0 1.0 0.01 0.01 0.01 0.01 0.	KJLD N	e	25.2	9.1.8	. 1 . 2 . 2 . 5 . 5 . 5	5.	$\cdots \sim$	3. 2.3 3.4 25	c	6.1.6
FLOW I TO TOOL HOST NOT TURAH MAX: 7150. 17.0 555. 47.1 0.28 BLACKFOOT MAX: 7150. 17.0 555. 47.1 0.28 BLACKFOOT MAX: 1772.64 8.9 39.7 5.5 0.00 MEAN: 1772.64 8.9 39.7 5.5 0.00 MEAN: 1772.64 8.9 39.7 5.5 0.00 MEAN: 1845.60 8.5 15.7 2.8 0.02 MEAN: 1845.60 8.5 15.7 2.8 0.02 MEAN: 1300. 0.00 9.4 7.3 2.9 0.01 MEAN: 1020. 0.00 1.1 8 0.00 MEAN: 1020. 1.5 15.8 5.6 0.01 MEAN: 1020. 0.0 0.0 7.6 5.5 0.01 MEAN: 1020. 1.5 15.8 5.6 0.01 MEAN: 1020. 1.1 8.0 0.7 0.7 0.7 0.01 MEAN: 1020. 1.1 8.0 0.7 0.7 0.7 0.01 MEAN: 1020. 1.1 8.4 1.1 0.01 MEAN: 11300. 2.1 9 2.9 2.7 3.7 0.01 MEAN: 1030. 4.0 4.8 1.4 0.02 MEAN: 1030. 4.0 4.8 1.4 0.03 MEAN: 1030. 0.0 11.3 8.7 3.1 0.35 MEAN: 1030. 0.0 11.3 10.3 0.3 0	Z Z		25	0.000	\cdots	0.00	3000	9.3 0.8 8.8 25	5. E. B. P.	0.11 <0.01 0.04 25
FLOW I CFS) (C) ISS I TURAH MAX: 7150. 17.0 555. 477 BLACKFOOT MAX: 5350. 18.0 138. 12 BLACKFOOT MAX: 1725.64 8.9 39.7 5 IN MILLIWN MAX: 1845.60 8.5 15.7 2 BEL MILLIN MAX: 17300. 20.0 256. 25 ABV MSLA MAX: 1300. 20.0 256. 25 ABV STP MAX: 11300. 21.5 15.8 5 MEAN: 1020. 15.3 44 MIN: 1020. 15.3 44 MEAN: 15594.00 9.4 24.9 3 ABV STP MAX: 11300. 21.5 15.8 5 STP EFFENT MAX: 11300. 21.9 269. 25 STP MIN: 1020. 0.0 0.0 0.1 MEAN: 3594.00 9.9 23.7 3 BEL STP MAX: 11300. 21.9 269. 25 STP MIN: 1020. 0.0 0.0 0.1 MEAN: 3594.00 10.0 6.5 25 BEL STP MAX: 11310. 21.3 15.7 44 MIN: 1030. 4.0 4.8 11 MEAN: 1030. 4.0 4.8 11 MEAN: 1030. 11.3 15.7 44 MIN: 1030. 11.3 15.7 44 MEAN: 1688.00 11.3 8.7 3 MEAN: 1688.00 11.3 8.3 3 MEAN: 1889.1 8.4 3	+	NOON	0.06 <0.01 0.02 25	5000	25.0	-0.0.2	0.05	. 0 . 8 25	0.2	2005
FLOW (CFS) (C) TURAH MAX: 7150. 17.0 59 BLACKFOOT MAX: 5350. 18.0 17 MEAN: 1772.64 8.9 25 IN MILL TWN MAX: 5350. 18.0 17 MEAN: 1020. 20.0 55 ABV MSLA MAX: 11300. 20.0 9.4 78 ABV STP MAX: 11300. 21.5 75 MIN: 1020. 11.5 75 MEAN: 1020. 11.5 75 MEAN: 1020. 21.5 75 MEAN: 1020. 21.3 75 BEL STP MAX: 11310. 21.3 78 MEAN: 1030. 41.0 75 MEAN: 1030. 41.0 75 MEAN: 1030. 41.0 75 MEAN: 1030. 00.0 70.2 75	VOL TSS		12.0 0.4 2.8 25	4.3 .9 2.1 5			7. 0. 25		4.5 1.4 3.1 5	7. 3.
FLOW (CFS) (C) TURAH MAX: 7150. 17.0 BLACKFOOT MAX: 5350. 25. BLACKFOOT MAX: 5350. 8.5 BEL MILLTWN MAX: 11300. 25.0 MEAN: 3594.00 9.9 ABV NSLA MAX: 11300. 20.0 MEAN: 1020. 1.5 MEAN: 1020. 1.5 MEAN: 1020. 20.0 MEAN: 1330. 21.9 MIN: 1020. 20.0 MEAN: 11300. 21.9 MIN: 1020. 20.0 MEAN: 11300. 21.9 MIN: 1020. 20.0 MEAN: 11300. 21.9 MIN: 1030. 4.0 MEAN: 1030. 4.0 MEAN: 1030. 4.0 MEAN: 1030. 4.0 MEAN: 1030. 21.3 MEAN: 1030. 21.3 MEAN: 1030. 4.0 MEAN: 1030. 0.0 MEAN: 3604.00 10.2	158	555. 1.0 39.7 25		15. 3. 7.	256. 1.1 24.9 25		269. 0.7 23.7 25	54.8 4.5 20.2 25	15.7 4.8 8.7 5	
STATION TURAH MAX: 7150. BLACKFOOT MIN: 349. 349. 349. 349. 349. 349. 349. 349.	(C)		18.0 0.0 8.5 25	19.0 2.0 9.4 5	20.0 0.0 9.4 25	21.5 1.5 10.0		18.4 11.0 14.4 25	21.3 4.0 11.3	21.4 0.0 10.2 25
STATION TURAH MEAN BLACKFOOT MIN MAX MIN MAX BEL MILLIN MAX MIN MEAN ABV MSLA MAX MIN MEAN STP EFEENT MEAN BEL STP MIN MEAN SHUFFIELDS MAX MAX MEAN MEAN MEAN MEAN MEAN MEAN MAX MAX MAX MAX MAX MAX MAX M	FLOW (CFS)	7150. 349. 1772.64 25	5350. 480. 1845.60 25		11300. 1020. 3594.00 25	2320. 1020. 1678.00 5	00		2330. 1030. 1688.00 5	11310. 1030. 3604.00 25
		MAX: MIN: NEAN:	MAK: MIN: MEAN: N:	MAX: MIH: MEAH: R:	MAX: MIN: MEAN: R:	MAK: MIN: MEAN: R:	MAX: MEAN: NEON:	MAX: MEAN: N:	MA : MIN: MEAN: N:	MAX: MIN: MEAN: R:
	STATION	TURAH	BLACKFOOT	IN MIELTWN		ABV MSLA	SI		SI	SHUFFIELDS
		01		03						

ALL VALUES ARE IN MG/L FXCEPT FLOW(GIS) AND TEMPERATURE(DEG. G). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. VALUES LESS THAN THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN. NOTE:

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUMMARY - PART II

PB A.S.	$\begin{array}{c} 0.010 \\ 0.002 \\ 0.0046 \\ \end{array}$	0.009 <0.001 0.0044 5	0.0000	0.039 0.002 0.0106 5	0.0000	0.019 0.003 0.0062 5	0.058 0.003 0.0200 5	0.0000	0.008 0.003 0.0058
CD A.S.	0.0008 0.0001 0.0005 5	0.0020 0.0001 0.0008 5	0.0000	0.0008 0.0002 0.0005 5	0.0000	0.0016 0.0003 0.0007 5	0.0047 0.0004 0.0023	0.0000	0.0017 0.0005 0.0010 5
ZN A.S.	0.0885 0.0354 0.0531	0.0146 0.0045 0.0095	0.0000	0.0299 0.0155 0.0234 5	0.0000	0.0334 0.0146 0.0221 5	0.0890 0.0573 0.0765	0.0000	0.0613 0.0255 0.0383
CU A.S.	0.047 0.008 0.0242 5	0.002 <0.001 0.0016	0.0000	0.015 0.005 0.0090	0.0000	0.020 0.006 0.0112 5	0.033 0.013 0.0224 5	0.000.0	0.018 0.007 0.0120 5
804	47.6 47.6 47.6	5.2	44.1 44.1 44.1	25.9 25.9 25.9	24.0 24.0 24.0	23.6 23.6 23.6	29.4 29.4 29.4	24.5 24.5 24.5	23.3 23.3
COLOR PH AD	6.1	8.9 8.9 1.9	6.8 6.8 1	6.1	6.7 6.7 6.7	6.6 6.6 1	25.7 25.7 25.7	10.6 10.6 10.6	6.4 6.4 1.4 1.4
COLOR	6.1	9.0	7.0 7.0 7.0	6.8 6.8 1	6.9 6.9 6.9	7.6	27.5 27.5 27.5 27.5	11.3	3.8 4.8 4.8 1.8
COD	15.2 <5.0 8.8 5	13.4 <5.0 8.9	13.2 <5.0 8.4	9.2 <5.0 7.5	9.6 <5. 6.7	13.6 <5. 6.7	115. 28.4 67.3	21.6 9.0 14.1	11.8 <5. 6.5
8005	3.6 <2.0 2.3 5	3.1 <2.0 5.2	<2.0 <2.0 2.0 5	2.2 <2.0 2.0 5	2.5 2.0 5.2	2.6 2.0 2.1 5	55.7 9.8 32.6	10.5 3.3 5.8 5	2.5 <2.0 2.1
0.0.	12.5 9.10 10.99	13.35 9.30 11.47 5	11.6 8.20 10.06	12.40 8.95 10.93	12.95 9.40 11.43	13.25 9.40 11.54	6.7 5.05 5.97 5	12.55 9.10 10.86	13.5 9.25 11.47
SPEC	410 311 363.	273 237 256.	397 310 359. 5	351 276 317.	349 266 316.	342 260 310.	764 525 695. 5	413 278 358.	344 265 317.
PH LAB	8.37 7.95 8.20 5	8.48 8.18 8.35	8.23 8.08 8.16	8.56 8.22 8.36	8.76 8.28 8.47 5	8.84 8.37 8.54 5	7.66 6.91 7.17	8.63 7.25 7.87 5	8.78 8.25 8.49 5
PH FL.D	8.40 7.85 8.18 5	8.60 8.00 8.31 5	8.35 7.80 8.05 5	8.40 8.15 8.26 5	8.60 8.30 8.49 5	8.80 8.35 8.57	7.60 7.20 7.37 5	8.65 7.75 8.18	8.80 8.40 8.60
	MAN: MIN: MEAN: N:	MAX: MEAN: MEAN:	MAX: MIN: MEAN: R:	MAX: MIN: MEAN: N:	MAX: MIN: MEAN:	MAX: MIR: MEAR: R:	MAX: MIN: MEAU: N:	MAX: MIN: MEAN: R:	MAN.: MEAR: NEAR:
STATION	01 TURAH	02 BLACKFOOT	03 IN MILLTWN	04 BEL MIELTN	05 ABV MSLA	06 ABV STP	07 STP EFFLNT	08 BEL STP	09 SHUFFIELDS

ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C.(UMHOS/CM), AND COLOR(COLOR UNITS). A.S. MEANS ACID SOLUBLE. VALUES LESS THAN THE DETECTION LIMIT ARE TAKEN TO BE AT THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN. NOTE:

SHALLOW-WAIER CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUMMARY - PART I

STATION		FLOW (CFS)	(C)	155	VOL TSS	NO3+ NO2 N	NH3	KJLD N	ORTHO P	T01E	HRD	٠ ١ ١	CU T.R.	ZN T.R.	MN T.R.	CD T.R.	AS T.R.
10 BITTERROOT	MAX: MIN: MEAN: N:	11390. 250. 3275.80 25	21.6 0.0 10.4 25	116. 1.1 16.6 25	12.5 0.6 3.1 25	0.20 0.01 0.06 25	0.04 <0.01 0.01 25	0.7 0.1 0.25 25	0.048 <0.003 0.013	0.09 0.003 0.022 25	95 12 47.	1.11 · 0.04 · 0.18 · 15	<0.01 <0.01 0.01 21	0.01 <0.005 0.005 21	0.07 <0.005 0.016	<0.05 <0.05 0.05 21	0.003 <0.001 0.001 23
11 HARPER BR	MAX: MIN: MEAN: N:	21400. 1480. 6886.00 25	19.8 0.0 10.8 25	175. 2.5 19.7 25	19.7 0.9 3.4 25	0.22 0.01 0.06 25	0.04 0.01 0.02 25	1.0 0.1 0.32 25	0.10 0.009 0.023 25	$\begin{array}{c} 0.17 \\ 0.01 \\ 0.038 \\ 25 \end{array}$	129 50 97.	1.68 0.04 0.21 15	0.06 <0.01 0.01 21	0.12 <0.005 0.016 21	0.28 0.006 0.040 15	<0.005 <0.005 <0.005 <0.005 <	0.01 <0.001 0.003
12 CHAMP 001	MAX: MIN: MEAN: N:	28.96 0.0 9.81 5	34.2 13.0 20.0 5	206. 103.2 148.0	206. 93.7 139.0 5	0.01 0.01 5	6.43 2.22 5.05 5.05	26.5 19. 22.08 5	2.43 1.10 1.924 5	7.01 3.38 4.702	165 165 165.	0.34 0.33 0.33	<0.01 <0.01 0.01 5	0.063 0.038 0.046	0.69 0.69 0.690	<0.005 <0.005 0.005	0.007 0.002 0.004 5
12 CHAMP 003	MAN: MEAN: N:	48.12 0.0 12.76 23	22.5 0.0 12.3 22	177.2 33.1 95.5 23	177.2 31.8 90.7 23	0.81 <0.01 0.05 23	8.6 2.3 4.52	34. 7.0 16.52 23	3.16 0.44 1.601 22	$\begin{array}{c} 4.30 \\ 1.0 \\ 3.213 \\ 23 \end{array}$	217 128 174.	0.76 0.34 0.45	<0.01 <0.01 0.01 19	0.13 0.017 0.040 19	8.0 0.68 1.334 15	0.008 <0.005 0.005	0.009 0.001 0.004 21
13 MARCURE	MAAX: MEAN: N:	4060. 1480. 2773.00 5	19.3 4.0 10.7	19.9 2.9 9.1	5.5 0.9 2.3	0.15 0.04 0.07	0.13 0.01 0.05	0.8 0.1 0.42 5	0.067 0.023 0.035	0.103 0.03 0.048 5	131 102 122. 5	0.23 0.06 0.13	<0.01 <0.01 0.01 5	0.016 <0.005 0.009 5	0.12 0.05 0.085	0.006 <0.005 0.005	0.005 0.002 0.003
14 FRENCHTOWN	MEAN:	3170. 2 1480. 2445.00	21.0 5.0 12.8 4	19.7 3.5 8.7	5.4 1.0 2.3 4	0.15 0.03 0.07	0.03 <0.01 0.02 4	4.3 0.1 1.32	0.061 0.016 0.032 4	0.092 0.02 0.044 0.044	131 104 122. 4	0.18 · 0.04 · 0.10 · 3	<0.01 <0.01 0.01 #	0.014 <0.005 0.007	0.08 0.02 0.043	<0.005 <0.005 0.005 4	0.004 0.002 0.003
15 HUSON	MAK: MIN: MEAN: N:	21480. 1480. 6896.44 25	21.1 0.0 10.9 25	246. 1.8 27.0 25	22.8 0.4 4.0 25	0.23 0.01 0.06 25	0.08 <0.01 0.02 25	1.2 0.1 0.35 25	0.17 0.010 0.030 25	0.21 0.02 0.047 25	130 43 95.	2.36 0.04 0.29 15	0.08 <0.01 0.01	0.15 0.005 0.018 21	0.32 0.02 0.057 15	0.005 0.005 0.005	0.010 0.001 0.003 23
16 9-MILE	MPAK: MIR: MFAN: N:	3980. 3980. 3980.00	20.6 3.0 10.3	23.5 2.3 10.2	5.1 1.1 2.4 5	0.14 <0.01 0.06	0.02 <0.01 0.01 5	0.7 0.1 0.42	0.054 0.014 0.024 5	0.093 0.01 0.042 5	129 105 121. 5	0.22 · 0.04 · 0.13	<0.01 <0.01 0.01 5	0.020 <0.005 0.009 5	0.09 0.02 0.052	0.005 0.005 0.005	0.004 0.002 0.003
17 ABV ALBERT	MAX: MHM: MEAN: N:	0.00	20.9 3.0 0.00 10.4 0 5	23.8 1.7 9.2 5	5.7	0.16 <0.01 0.06 5	0.07 <0.01 0.02 5	$0.6 \\ 0.1 \\ 0.38$	0.053 0.013 0.023	0.093 0.01 0.037 5	128 106 120. 5	0.24 0.04 0.12	<0.01 <0.01 0.01 5	0.020 0.005 0.009 5	0.09 0.01 0.045	0.405 0.905 0.005	0.004 0.002 0.003

69

ALL VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. C). IN THE HEADINGS, T.R. MEANS 10TAL RECOVERABLE. VALUES LESS THAN THE DETECTION OF THE MEAN. NOTE:

TABLE 6

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUMMARY - PART II

8.18 155. 11.31 2.0 5 5 5 5 5 8.66 275 13.7 2.3 8.19 229 8.20 <2.0 8.40 258. 10.80 2.1
5 5 5 12 2810 1 12 2810 0.00 1 1 00 1
8.05 3154 11. 7.39 2528 31 7.79 2842. 0.00 65
8.45 322 12.3 2.5 8.06 246 7.40 <2.0 8.26 292, 10.01 2.1 5 5 5
8.44 296 11.20 2.5 8.05 232 7.15 <2.0 8.22 273. 9.80 2.1 4 4 4
8.44 293 12.0 2.5 8.09 240 7.40 <2.0 8.24 273, 9.86 2.1 5 5 5
8.41 292 12.1 2.9 8.09 244 7.55 <2.0 8.23 271, 10.28 2.2 5 5
8.64 290 12.5 2 8.10 248 8.10 <2 8.30 271. 10.78 2 5 5 5

ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C.(UMHOS/CM), AND COLOR(COLOR UNITS). A.S. MEANS ACID SOLUBLE. VALUES LESS THAN THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN. NOTE:

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUMMARY - PART I

STATION	NOIL		FLOW (CFS)	(C)	155	VOL TSS	NO3+ NO2 N	NH3	KJL0 N	0RT840 P	T01L P	HRD	FE T.R.	CU T.R.	ZM T.R.	MN T.R.	CD T.R.	AS I.R.
18 TARK10	0	MA :: MIN: MEAN: N:	0.00	19.6 4.0 10.9	20.0 3.0 8.3	2.2	0.12 <0.01 0.04 5	<0.01 <0.01 0.01 5	0.6 0.1 0.34 5	0.049 0.007 0.021 5	0.110 0.019 0.040 5	123 103 11 <i>1</i> / .	0.20 · 0.03 · 0.10	<0.01 <0.01 0.01 5	0.024 <0.005 0.010 5	0.07 0.01 0.032	0.006 <0.005 0.005	0.004 0.002 0.003
19 LOZEAU	۸0	MAK: MIR: MEAR: R:	0.00	19.2 5.0 10.8	19.8 2.5 8.2 5	5.2	0.12 <0.01 0.04	<0.01 <0.01 0.01 5	0.6 0.1 0.38	0.046 0.004 0.018	0.083 0.01 0.033 5	124 103 118. 5	0.19 · 0.10 · 0.10 · 4	<0.01 <0.01 0.01 5	0.02 <0.005 0.012	0.07 0.005 0.039	0.006 0.005 0.005	0.004 0.002 0.003
20 SUPERIOR	RIOR	MAX: MIN: MEAN:	0.00	20.5 0.0 8.9 6	20.1 2.2 6.7	5.2	0.11 <0.01 0.04 6	0.02 <0.01 0.01 6	0.6 0.1 0.32 6	0.044 0.001 0.015	0.079 0.019 0.030 6	123 103 116.	0.19 0.03 0.08	<0.01 <0.01 0.01 6	0.019 <0.005 0.008 6	0.07 0.005 0.027	0.006 <0.005 0.005 6	0.003 0.002 0.002 6
21 BEL S	ST REG	MAN: MIN: MEAN: N:	24400. 2140. 8804.80 25	20.7 0.0 10.7 25	220. 1.1 22.4 25	21.2 0.6 3.4 25	0.17 0.01 0.04 25	0.03 0.01 0.01 25	1.1 0.1 0.29 25	0.096 <0.001 0.018 25	0.16 0.009 0.034 25	123 42 87.	1.92 0.02 0.22 15	0.05 <0.01 0.01 21	0.08 <0.005< 0.011 21	0.28 <0.005 0.036 15	0.008 <0.005 0.005	0.004 0.001 0.002 23
22 ABV F	FLATHD	MAXX MARUS MEARS RE	4630. 2110. 3482.00 5	18.9 4.0 10.3	15.6 1.8 5.8	4.3 0.6 1.8	0.03 <0.01 0.02 5	0.13 <0.01 0.03	0.4 0.1 0.24 5	0.024 0.001 0.008	0.059 0.01 0.025 5	118 100 1111.	0.11	<0.01 <0.01 0.01 5	0.01 <0.005< 0.007 5	0.05 <0.005 0.024	0.007 <0.005 0.005	0.003 0.002 0.002 5
23 FLATH	FLATHEAO R	MAN. MIR: MEAN: N:	23400. 5390. 10750.00	23.6 0.0 11.6 25	20.4 0.8 5.1 24	3.6 .5 1.3 24	0.03 0.01 0.02 25	0.09 <0.01 0.01 25	0.5 0.1 0.16 25	0.010 <0.001 0.003 25	0.023 0.002 0.010 25	91 79 86.	0.11 0.02 0.04 15	<0.01 <0.01 0.01 21	0.043 <0.005 0.007 21	0.01 0.005 0.007 15	0.005 0.005 0.005	<0.001 <0.001 0.001 23
24 PLAINS	S	MAX: MIR: MEAR: R:	14300. 11000. 12260.00	22.3 3.5 11.5	14.9 1.9 5.3	2.8 0.8 1.4	0.02 0.01 0.02 5	<0.01 <0.01 0.01 5	0.2 0.1 0.14	0.010 <0.001 0.004 5	0.04 0.007 0.019 5	101 90 94.	0.13 0.03 0.06	<0.01 <0.01 0.01 5	<0.005 <0.005 0.005 5	0.02 <0.005 0.009	0.006 <0.005 0.005	<0.001 <0.001 0.001 5
25 ABV T	T FALL	MAY: MIN: MEAN: N:	42900. 9070. 19742.80	22.0 0.0 11.5 25	137. 0.8 14.5 25	13.4 0.4 2.4 25	0.06 <0.01 0.02 25	0.03 <0.01 0.01 25	0.8 0.1 0.23 25	0.075 <0.001 0.009 25	0.12 <0.001 0.020 25		0 - 9	0.03 <0.01 0.01 21	0.09 <0.005 0.015 21		0.006 <0.005 0.005	0.004 <0.001 0.001 23
26 IN T	FALLS	MAX: MIR: MEAN: N:	0.00	22.8 4.0 12.0 5	6.9 1.0 3.9	1.6 0.4 1.0	<0.01 <0.01 0.01 5	<pre><0.01 <0.01 0.01 5</pre>	0.2 0.1 0.14 5	0.007 <0.001 0.003	0.022 <0.03 0.014	121 88 98.	0.12 0.02 0.05	<0.01 <0.01 0.01 5	0.027 <0.005< 0.010	0.02 <0.005 0.011	0.008 <0.005 0.006	0.001 0.001 0.001 5
- L	1 4 2 4	104	FOLIONI IN THE INT	TOTOTI	1110111	V 1010	Mat CM	10EDATE	DELIDEC	(I M THE	1000	SON	7 B	MEANS IO	TOTAL RE	COVERABLE	4

ALI VALUES ARE IN MG/L EXCEPT FLOW(CFS) AND TEMPERATURE(DEG. C). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. VALUES LESS THAN THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN. NOTE:

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUMMARY - PART II

			_	3.		ā	_	u.	
PB A.S.	0.0000	0.0000	0.0000	0.023 0.002 0.0098	0.0000	$\begin{array}{c} 0.009 \\ 0.003 \\ 0.005 \\ 0\end{array}$	0.000	0.011 0.002 0.006	0.0000
CD A.S.	0.0000	0.0000	0.0000	0.0056 0.0001 0.0018 5	0.0000	$0.0012 \\ 0.0001 \\ 0.0006$	0.0000	0.0019 0.0001 0.0011	0.0000
ZN A.S.	0.0000	0.0000	0.0000	0.0433 0.0115 0.0221	0.0000	0.0140 0.0054 0.0104 5	0.0000	0.0244 0.0068 0.0120 5	0.0000
CU A.S.	0.0000	0.0000	0.0000	0.010 0.002 0.0070 5	0.0000	0.004 <0.001 0.0026 5	0.0000	0.035 0.001 0.0092 5	0.0000
804	174.4 144.4 174.4	13.4 13.4 13.4	13.5 13.5 13.5	12.6 12.6 12.6	11.5	3.2	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4.2 4.2 1.2	4.0 4.0 4.0
COLOR PH AD	8.4 4.8 4.1	8.7 8.7 8.7	9.0 9.0 9.0	7.4 7.4 7.4	6.6 6.6 1	0.5 2.0 5.0	9.1.9	2.4 2.4 2.4	1.9
COLOR	88.4 4.4 1.4	8.6 8.6 1.6	8.8 4.8 4.1 1.0	7.2	7.0 7.0 7.0	0.5 0.5 1	2.0 2.0 1	2.2 2.2 2.2	2.0 2.0 1
COD	11.4 <5. 6.4	8.0 <5. 5.6	9.6 <5. 6.2	7.7 <5. 5.5	11.3 <5.	<5. <5. 5.0	\$5. 5.0 5.0	<5. <5. 5.0	5.2 <5. 5.0
8005	2.6 <2.0 2.2 5	3.6 62.0 2.3 5	2.6 <2.0 2.1	3.0 62.0 5.2	2.7 <2.0 2.1 5	<2.0 <2.0 2.0 5	2.2 <2.0 2.0 5	<2.0 <2.0 2.0 5	<2.0 <2.0 2.0 5
0.0.	12.6 8.10 10.67	13.1 8.40 10.56	13.3 7.85 10.55	12.45 9.05 10.86 5	12.5 7.50 10.40 5	12.70 10.40 11.69	13.2 7.90 10.65	13.0 8.10 11.07 5	12.6 7.80 10.57
SPEC	284 226 261.	284 225 262. 5	279 220 256.	273 224 253.	270 220 250. 5	184 152 170.	213 177 196.	213 184 196.	216 175 196.
PH LAB	8.52 8.20 8.34	8.49 8.13 8.34 5	8.65 8.05 8.33	8.66 8.09 8.34	8.56 8.17 8.37	8.89 8.26 8.49	8.48 8.18 8.37	8.64 8.26 8.39	8.47 8.25 8.39
PH FLD	8.55 8.00 8.36	8.55 8.25 8.43	8.67 7.95 8.36	8.75 8.15 8.39	8.45 8.10 8.29 5	8.80 8.05 8.55	8.45 8.20 8.34 5	8.60 8.25 8.45	8.45 8.23 8.37
	MAX: MIN: MEAN: N:	MAX: MIN: MEAN: N:	MAX: MIN: MEAN: N:	MAAX: MEAN: N:	MAX: MIN: MEAN: N:	MAX: MIN: MEAN: N:	MAX: MIN: MEAN: N:	MAX: MIN: MEAN: N:	MAX: MEAN: N:
STATION	18 TARKIO	19 LOZEAU	20 SUPERIOR	21 BEL ST REG	22 ABV FLATHD	23 FLATHEAD R	24 PLAINS	25 ABV T FALL	26 IN T FALLS

ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C.(UMHOS/CM), AND COLOR(COLOR UNITS). A.S. MEANS ACID SOLUBLE. VALUES LESS THAN THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN. NOTE:

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUBMARY - PART I

AS T.R.	0.008 <0.001 0.001	0.001 0.001 0.001 5	0.002 <0.001 0.001 23	0.002 0.001 0.001	0.002 <0.001 0.001 22
C0 T.R.	0.006 <0.005 0.005	<0.005 <0.005 0.005 5	<0.005 <0.005 0.005 21	<0.005 <0.005 0.005	<0.005 <0.005 0.005
E.R.	0.09 0.005 0.018 15	0.02 0.005 0.010	0.03 5<0.005 0.014 15	0.02 0.007 0.014	0.02 0.005 0.011
ZN T.R.	0.03 <0.005 0.007 21	<0.005 <0.005 0.005 5	0.02 <0.005 0.006 21	0.123 <0.005 0.029 5	0.009 <0.005 0.006 20
CU 1.R.	40.0170.010.0121	<0.01 <0.01 0.01 5	<0.01 <0.01 0.01 21	<pre><0.01 <0.01 0.01 5</pre>	<0.01 <0.01 0.01 20
FE . R.	0.60 7.01 111	0.14 0.02 0.06	0.13 0.01 0.04 15	0.07	0.12 0.01 0.04 14
HRD	100 56 82.	106 88 94.	100 61 80.	98 82 90.	98 62 79.
101L P	0.07 0.001 0.018 25	0.020 <0.01 0.013	0.03 <0.001 0.012 25	0.013 0.009 0.010 5	0.03 <0.001 0.011 24
ORTHO P	0.031 <0.001 0.008 25	0.006 <0.001 0.003	0.023 <0.001 0.005 25	0.003 <0.001 0.002 5	0.016 <0.001 0.004
kJLD N		0.2 0.1 0.12	0.4 0.1 0.15 25	0.2 0.1 0.14 5	0.4 0.1 0.17 24
N N	0.03 <0.01 0.01 25	0.02 0.01 0.01	0.03 <0.01 0.01 25	<0.01 <0.01 0.01 5	0.09 <0.01 0.02 24
NO3+ NO2 N	0.07 <0.01 0.02 24	0.04 0.01 0.02	0.08 <0.01 0.03 25	0.04 <0.01 0.02 5	0.06 0.01 0.02 24
V0L 15S	7.0 0.4 2.1 25	2.0 .5 1.1	2.9 0.2 1.0 25	1.4 .5 0.9 5	2.9 0.4 1.1 24
\$\$1	61.1 0.8 11.9 25	11.3 1.2 3.5 5	9.9 0.2 2.7 25	1.9 0.7 1.4	8.7 0.4 2.8 24
(C)	23.1 0.0 11.2 24	24.0 4.0 12.5	22.1 0.0 11.3 24	23.0 3.0 0.00 11.4 0 5	21.5 0.0 11.4 23
FLUW (CFS)	42376. 9031. 21108.08 25	$\begin{array}{c} 24.0 \\ 4.0 \\ 0.00 \\ 12.5 \\ 0 \end{array}$	45600, 22.1 7230, 0.0 20701.20 11.3 25 24	0.00	51800. 21.5 8810. 0.0 24475.00 11.4 24 23
	MAX: MIN: MEAN: N:	MAK: MIN: MEAN: N:	MA+: MIR: MEAN: R:	MEAN: MEAN: R:	MAN: MIN: MEAN: N:
z.	AI L	z	N.O	GOR	09
STATION	27 BFL T FALL	28 IN MOXON	29 BEL NOYON	30 IN CAB GOR	31 BEL CAB
ST	BFI	z -	. BEL	<u>z</u>	BEL
	27	28	5,0	30	3.1

ALL VALUES ARE IN MG/L EXCEPT FLOW(GFS) AND TEMPERATURE(DEG. C). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. VALUES LESS THAN THE DETECTION OF THE MEAN. NOTE:

TABLE 6

SHALLOW-WATER CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUMMARY - PART 11

PB A.S.	0.014 0.002 0.0070 5	0.0000	0.010 0.003 0.0062 5	0.0000.0	0.051 0.001 0.0138
	0.0022 0.0003 0.0009 5				
			0.0138 0.0041 0.0076 5		
CU A.S.	0.005 0.001 0.0026 5	0.0000	0.005 <0.001 0.0020 5	0.0000	0.004 0.001 0.0022 5
\$105			2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
COLOR PH AD	1.9	9.1.9	0.3	5.5.1	0.0
COLOR NAT	9.1.9	8.1.8	0.5 0.5 0.5	1.7	0.0
COD	<5. 5.0 5.0	<5. 5.0 5	<5. 5.0 5	\$5°.0 5.0	<5.0 <5.0 5.0
8005	<2.0 <2.0 2.0 5	<2.0 <2.0 2.0 5	<2.0 <2.0 2.0 5	<2.0 <2.0 2.0 5	<2.0 <2.0 2.0 4
0.0.	12.7 8.30 10.44	12.5 8.55 10.61 5	12.20 6.45 9.36	12.9 7.70 10.33	12.85 7.85 9.53
SPEC	211 175 196.	221 176 195.	207 174 189.		
PH LAB	8.50 8.24 8.42 5	8.56 8.17 8.36 5	8.33 8.15 8.21 5	8.43 8.14 8.25 5	8.48 8.11 8.27 4
PH FLD	8.27 8.27 8.45 5	8.60 8.05 8.32 5	8.35 8.00 8.18 5	8.40 8.04 8.18 5	8.25 8.10 8.19
	MAX: MIN: MEAN: N:	MAX: MIN: MEAN: N:	MAX: MIN: MEAN: N:	MAK: M+N: MEAN: N:	MA X: MEAN: N:
STATION	27 BEL T FALL	28 IN NOXON	29 BEL NOXON	30 IN CAB GOR	31 BEL CAB GO

ALL VALUES ARE IN MG/L EXCEPT PH(STANDARD UNITS), S.C.(UMHOS/CM), AND COLOR(COLOR UNITS). A.S. MEANS ACLD SOLUBLE. VALUES LESS THAN THE DETECTION LIMIT ARE TAKEN TO BE AT THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN. NOTE:

TABLE 6

Table 7.A. Results of Organic* Analysis of Clark Fork River and Champion Wastewater Samples, Fall 1984

Sample	Number
CLARK	FORK

STATION

	Samp	le	Numbe	1
CL	ARI	K	FOR	K
			PER	

ORGANICS	ANALYSIS	DATA	SHEET
-----------------	----------	------	-------

Laboratory Name: USEPA REGION 8	Case Not — 9-13-85
Lab Sample ID No: CHAMPION INTERNATIONAL	QC Report No:
Sample Matrix: AQUEOUS	Contract No.:
Data Release Authorized By: A. CURTIS	Date Sample Received: 11-29-84

SEMIVOLATILE COMPOUNDS

CONCENTRATION: LOT MEDIUM HIGH (circle one) DATE EXTRACTED/PREPARED: __ /2 -6-84 DATE ANALYZEDI 12-6-84 PERCENT MOISTUREI ____ CONCIDILUTION FACTORI 1000

			الالعاب
PP #	CAS #		(cricle ous)
(21A)	18-06-2	2,4,6- trichlorophenal	< 2
(22A)	39-30-7	p-chloro-m-cresol	
(24A)	95-57-1	2- chlorophenal	
()(A)	120-83-2	2,4-dichlorophenat	
(34 A)	105-67-9	2,4-dimethylphenol	
(37A)	88-75-5	2- nitrophenal	
(58A)	100-02-7	4-nitrophenol	
(59A)	31-28-3	2,4-dinitrophenol	
(60A)	534-52-1	4,6-dinitro-2-methylphenol	
(64A)	87-86-5	pentachlorophenol	
(63A)	108-95-2	phenol	
	63-85-0	benzoic acid	
	95-48-7	2-methylphenol	
	108-39-4	4-methylphenol	
	95-95-0	2,9,5-trichlorophenol	
(1B)	83-32-9	acenaphthene	
(58)	92-17-5	benzidine	
(8B)	120-12-1	1,2,4-trichlorobenzene	
(98)	118-74-1	hexachlorobenzene	
(12B)	J7-72-1	hexachloroethane	
(18B)	111-44-4	bis(2-chloroethyl)ether	
(20B)	91-38-7	2-chloronaphthalene	
(25B)	93-50-1	1,2-dichlorobenzene	
(26B)	541-73-1	1,3-dichlorobenzene	
(27B)	106-46-7	1,4-dichlorobenzene	
(288)	91-94-1	3,3'-dichlorobenzidine	
(35B)	121-14-2	2,=-dinitrotoluene	
(36B)	606-20-2	2,6-dinitrotoluene	
(378)	122-66-7	1,2-diphenylhydrazine	
(398)	206-44-0	Iluoranthene	
140B)	7005-72-3	4-chlorophenyl phenyl ether	
(41B)	101-33-3	4-bromophenyl phenyl ether	
(42B)	396 38- 32-9	bis (2-chloroisopropyl) ether	
(4 1B)	111-91-1	bis (2-chloroethoxy) methane	

PO 4	C		or ug/kg
PP //	CAS /	No control to the state of the state of	(circle one
(528)	\$7-68-3	hexachlorobutadiene	<
	77-47-4	hexachlorocyclopentadiene	
(54B)	78-39-1	isophorone	
(558)	91-20-3	naphthalene	
(568)	98-95-3	nitrobenzene	
(61B)	62-75-9	N-nitrosodimethylamine	
(628)	86-30-6	N-nitrosodiphenylamine	
(63B)	621-64-7	N-nitrosodipropylamine	<u>~</u>
(66B)	117-81-7	bis (2-ethylhexyl) phthalare	2.5
(678)	85-68-7	benzyl butyl phthalate	< 2
(688)	84-74-2	di-n-butyl phthalate	
(698)	117-84-0	di-n-octyl phthalate	
(70B)	84-66-2	diethyl phthalate	
(718)	131-11-3	dimethyl phthalate	
(72B)	56-55-3	benzo(a)anthracene	
(735)	50-32-8	benzo(a)pyrene	
(74B)	203-99-2	benzo(b)(Iuoranthene	
(73B)	207-03-9	benzo(k)fluoranthene	
(76B)	218-01-9	chrysene	
(778)	208-96-3	acenaphthylene	
(788)	120-12-7	anthracene	
(798)	191-24-2	benzo(ghi)perylene	
(308)	86-73-7	Huorene	
(818)	85-01-8	phenanthrene	
(12B)	33-70-3	dibenzo(a_h)anthracene	
(835)	193-39-3	indeno(1,2,3-cd)pyrene	
(84B)	129-00-0	pyrene	
	62-53-5	aniline	
	100-51-6	benzyl alcohol	
	106-47-8	1-chloroaniline	
	132-64-9	dibenzoluran	
	91-57-6	2-methylnaphthalene	
	88-74-4	2-nitroaniline	
	99-09-2	3-nitroaniline	
	100-01-6	4-nitroaniline	

	,		STATION	J
			Sample Nurr	b:
			CLARK FO.	RK
	A SHEET		AT HARP	ER BR.
Case			9-13	- 95
	port No:			
	ict No.:		30.04	
Date !	iample Receiv	ed: //	- 17-84	-
		PESTI	CIDES	
CO	NCENTRATIO		DIUM HIGH (circle	t one)
			DI _ /2 -6-	
	E ANALYZEI		12-6-84	
PER	CENT MOIST	URE		
CON	C)DILUTION	N FACTOR:	1000	
`				(=11)
				or ug/kg
PP #	CAS #			(circle che)
89P)	309-00-2	aldrin		< 2
90P)	60- 57-1	dieldrin		
91P)	57-76-9	chlordane		
92P)	50-29-3	4,4'-DDT		
93P)	72-55-9	•,•'-DDE		
94P)	72-54-8	4,4'-DDD		
95P)	115-29-7	ο⊂ -endosulfa		
96P)	113-29-7	β -endosulfa	л	
97P)	1031-07-8	endosullan su	lfate	
98P)	72-20-8	endrun		
99P)	7421-93-4	endrun aldehy	de	
100P)	76-44-8	heptachlor		
101P)	1024-57-3	heptachlor et	oxide	
102P)	319-84-6	≪C-BHC		
103P)	319-85-7	B -BHC		
104P)	319-86-8	S-BHC		
103P)	58-89-9	7 -BHC (lin	dane)	<u> </u>
106P)	53469-21-9	PCB-1242		N/C
107P)	11097-69-1	PCB-1234		
(9801	11104-28-2	PCB-1221		
109P)	11141-16-3	PCB-1232		

	LYSIS DATA SHEET AT HARPER BR
aboratory Name: USEPA REGION 8	Case No:
ab Sample ID No: <pre><pre>Sample ID No: <pre><pre></pre></pre><pre></pre><pre>AMPION INTERNATIONAL</pre></pre></pre>	QC Report No:
sample Watrix: AQUEOUS	Contract No.:
Data Release Authorized By: A. CURTIS	Date Sample Received: // - 29-84
VOLATRIES ALA	BESTICINES

VOLATILES N/M

CONCENTRATION: LOW MEDIUM HIGH (circle one)
DATE EXTRACTED/PREPARED:
DATE ANALYZED:
PERCENT MOISTURE:
CONC /DILLITION FACTOR.

CON	C., 012011011	- ug/1
		or ug/kg
PP #	CAS #	. (circle one)
(2V)	107-02-8	acrolein
(3V)	107-13-1	acrylonitrile
(+V)	71-43-2	benzene
(6V)	56-23-5	carbon tetrachloride
(7V)	108-90-7	Chlorobenzene
(10V)	107-06-2	1,2-dichloroethane
(11V)	71-55-6	1,1,1-trichloroethane
(13V)	75-34-3	1,1-dichloroethane
(14V)	79-00-3	1,1.2-trichloroethane
(15V)	79-34-5	1,1,2,2-tetrachloroethane
(16V)	75-00-3	chloroethane
(19V)	110-75-8	2-chloroethylvinyl ether
(23V)	67-66-3	chloroform
(29V)	75-35-4	1,1-dichloroethene
(30V)	156-60-5	trans-1,2-dichloroethene
(32V)	78-87-3	1,2-dichloropropane
(33V)	10061-02-6	trans-1,3-dichloropropene
	10061-01-05	cis-1,3-dichloropropene
(38V)	100-41-4	ethylbenzene
(44Y)	75-09-2	methylene chloride
(45V)	74-87-3	chloromethane
(46V)	74-83-9	bromomethane
(47V)	75-25-2	bromoform
(48V)	75-27-4	bromodichloromethane
(49V)	75-69-4	fluorotrichloromethane
(50V)	75-71-8	dichlorodifluoromethane
(51V)	124-48-1	chlorodibromomethane
(85V)	127-18-4	tetrachloroethene
(86V)	108-88-3	toluene
(87Y)	79-01-6	trichloroethene
(88V)	75-01-4	vinyl chloride
	67-64-1	acetone
	78-93-3	2-butanone
	75-15-0	Carbondisulfide
	519-78-6	2-hexanone
	108-10-1	4-methyl-2-pentanone
	100-42-3	styrene
	108-05-4	vinyl acetate
	1330-20-7	total xylenes
		5 - Pristadade

2 - PENTANONE

			or ug/kg
PP #	CAS #		(circle che
(89P)	309-00-2	aldrin	< 2
(90P)	60-57-1	dieldrin	
(91P)	57-70-9	chlordane	
(92P)	50-29-3	4,4'-DDT	
(93P)	72-55-9	4,4'-DDE	
(94P)	72-54-8	4,4'-DDD	
(95P)	115-29-7	σC -endosulfan	
(96P)	115-29-7	β -endosulfan	
(97P)	1031-07-8	endosullan sulfate	
(98P)	72-20-8	endrun	
(99P)	7421-93-4	endrun aldehyde	
(100P)	76-44-8	heptachlor	
(101P)	1024-57-3	heptachlor epoxide	
(102P)	319-84-6	≪C-BHC	
(103P)	319-85-7	B-BHC	
(104P)	319-86-8	δ -BHC	
(103P)	58-89-9	7-BHC (lindane)	Ψ
(106P)	53469-21-9	PCB-1242	N/A
(107P)	11097-69-1	PCB-1234	
(108P)	11104-28-2	PCB-1221	
(109P)	11141-16-3	PCB-1232	
(110P)	12672-29-6	PCB-1248	
(111P)	11096-82-5	PCB-1260	
(112P)	12674-11-2	PCB-1016	
(113P)	8001-35-2	toxaphene	

NIA DIOXINS CONCENTRATION: LOW MEDIUM HIGH (circle one) DATE EXTRACTED/PREPARED: DATE ANALYZED: PERCENT MOISTURE: CONC./DILUTION FACTOR:

PP 0 CAS #

(129B) 1746-01-6 2,3,7,8-tetrachlorodibenzo-p-dloxin

December 1983

er ug/kg

(circle one)

STA	-	T	ţ	ON
)	2	2	

Sample Mumber	-
DISCHARGE	
003	

ORGANICS ANALYSIS DATA SHEET

Laboratory Name: USEPA REGION 8	Case Not 8-14-85
Lab Sample ID No: CHANGION INTERNATIONAL	QC Report No:
Sample Matrixi BQUEOUS	Contract No.:
Data Release Authorized By: A- CURTIS	Date Sample Received: 11-29-84

SEMIVOLATILE COMPOUNDS

			THE TENT
PP #	CAS /		(circle one)
(21 A)	88-06-2	2,4,6- trichlorophenol	< 20
(22A)	39-30-7	p-chloro-m-cresol	
(24A)	95-37-8	2- chlorophenol	
(MIV)	120-83-2	2,4-dichlorophenol	
(34 A)	103-67-9	2,4-dimethylphenol	
(57A)	88-73-3	2- nitrophenal	
(38A)	100-02-7	4-nitrophenol	
(39A)	31-28-3	2,4-dinitrophenol	·
(60A)	534-32-1	4,6-dinitro-2-methylphenol	
(64A)	87-86-5	pentachlorophenol	
(65A)	108-95-2	phenol	
	65-85-0	benzoic acid	
	93-48-7	2-methylphenol	
	108-39-4	4-methylphenol	
	93-93-4	2,4,5-trichlorophenol	
(15)	83-32-9	acenaphthene	
(3B)	92-87-3	benzidine	
(88)	120-82-1	1,2,4-trichlorobenzene	
(98)	118-74-1	hexachlorobenzene	
(12B)	7-72-1ء	hexachloroethane	
(18B)	[]]-44-4	bis(2-chloroethyl)ether	
(20B)	91-38-7	2-chloronaphthalene	
(23B)	95-30-1	1,2-dichlorobenzene	
(26B)	341-73-1	1,3-dichlorobenzene	
(27B)	106-46-7	1,4-dichlorobenzene	
(78B)	91-94-1	3,3'-dichlorobenzidine	
(35B)	121-14-2	2,#-dinitrotoluene	
(36B)	606-20-2	2,6-dinitrotoluene	
(37B)	122-66-7	1,2-diphenylhydrazine	
(39B)	206-44-0	fluoranthene	
(#0B)	7005-72-3	4-chlorophenyl phenyl ether	
(41B)	101-35-3	4-bromophenyl phenyl ether	
1428)	39638-32-9	bis (2-chloroisopropyl) ether	
(4)8)	111-91-1	bis (2-chloroethoxy) methane	\downarrow

			car rate year
PP #	CAS		(circle one)
(528)	87-68-3	hexachlorobutadiene	<20
(338)	77-47-4	hexachlorocyclopentadiene	
(54B)	78-39-1	isophorone	
(338)	91-20-3	naphthalene	
(56B)	98-95-3	nitrobenzene	
(61B)	62-75-9	N-nitrosodimethylamine	
(628)	86-30-6	N-nitrosodiphenylamine	
(638)	621-64-7	N-nitrosodipropylamine	
(66B)	117-81-7	bis (2-ethylhexyl) phthalate	
(67B)	85-68-7	benzył butyl phthalate	
(688)	84-74-2	di-n-butyl phthalate	
(69B)	117-84-0	di-n-octyl phthalate	
(70B)	89-66-2	diethyl phthalate	
(715)	131-11-3	dimethyl phthalate	
(72B)	36-33-3	benzo(a)anthracene	
(738)	30-32-8	benzo(a)pyrene	
(74B)	203-99-2	benzo(b)fluoranthene	
(738)	207-08-9	benzo(k)/luoranthene	
(76B)	218-01-9	chrysene	
(778)	208-96-8	acenaphthylene	
(78B)	120-12-7	anthracene	
(79B)	191-24-2	benzo(ghi)perylene	
(80B)	86-73-7	Iluorene	
(818)	85-01-8	phenanthrene	
(828)	33-70-3	dibenzo(a,h)anthracene	
(8)8)	193-39-3	indeno(1,2,3-cd)pyrene	
(84B)	129-00-0	pyrene	
	62-35-3	aniline	
	100-51-6	benzyl alcohol	
	106-47-1	4-chloroaniline	
	132-64-9	dibenzofuran	
	91-37-6	2-methylnaphthalene	
	88-74-4	2-nitroaniline	
	99-09-2	1-nitroaniline	
	100-01-6	4-nitroaniline	1

STAT	ION
12	

Sample Number

		ORGANICS ANALY	SIS DATA	A SHEET		10-85
		USEPA REGION B	Case N	No:	<u> </u>	111-85
Lab Sa	mple ID No: _	CHAMPION INTERNATIONAL	QC Re	port No:		
	Matrix:	AQUEOUS	-	ict No.:		
Data R	elease Author	rized By: A. CURTIS	Date 5	ample Recei	ved: 11-29-	84
		VOLATILES N/A			PESTICIDES	
CON	CENTRATIO	N: LOW MEDIUM HIGH (circle one)	CON	CENTRATIC	N: LOW MEDIUM HIGH	H (circle one)
DAT	E EXTRACTE	D/PREPARED:			ED/PREPAREDI / 2	
DAT	E ANALYZED)1	DAT	E ANALYZE	D: 12-6-	84
PER	CENT MOIST	URE:	PER	CENT MOIST	TURE:	
CON	C./DILUTION	FACTOR:	CON	FADILUTIO	N FACTORI /C	00
		ug/l orug/lg				58/1
PP #	CAS #	(circle one)	PP #	CAS #		(CITC) TO
(2V)	107-02-8	acrolein	(89P)	309-00-2	aldrin	425
(3V)	107-13-1	acrylonitrile	(90P)	60-37-1	dieldrin	
(-V)	71-43-2	benzene	(91P)	57-74-9	chlordane	
(6V)	36-23-5	carbon tetrachloride	(92P)	50-29-3	4,4'-DDT	
(7V)	108-90-7	chlorobenzene	(93P)	72-55-9	4,4'-DDE	
(10V)	107-06-2	1,2-dichloroethane	(94P)	72-54-8	6,4'-DDD	
(117)	71-55-6	I,I,I-trichloroethane	(95P)	115-29-7	≪ -endosulfan	
(137)	75-34-3	I,I-dichloroethane	(96P)	115-29-7	β -endosulfan	
(14V)	79-00-5	1,1,2-trichloroethane	(97P)	1031-07-8	endosulfan sulfate	
(15V)	79-34-5	1,1,2,2-tetrachloroethane	(98P)	72-20-8	endrin	
(16V)	75-00-3	chloroethane	(99P)	7421-93-4	endrin aldehyde	
(19V)	110-75-8	2-chloroethylvinyl ether	(100P)	76-44-8	heptachlor	•
(23Y)	67-66-3	chloroform	(101P)	1024-57-3	heptachior epoxide	
(29V)	75-35-4	1,1-dichloroethene	(102P)	319-84-6	≪-BHC	
(30V)	156-60-5	trans-1,2-dichloroethene	(103P)	319-85-7	B-BHC	
(32V)	78-87-5	1,2-dichloropropane	(104P)	319-86-8	δ -BHC	
(33V)	10061-02-6	trans-1,3-dichloropropene	(105P)	58-89-9	7-BHC (lindane)	
	10061-01-05	cis-1,3-dichloropropene		53469-21-9	PC8-1242	NIA
(38V)	100-41-4	e thylbenzene		11097-69-1	PCB-1254	
(44Y)	75-09-2	methylene chloride		11104-28-2	PC8-1221	
(45V)	74-87-3	chloromethane:		11141-16-5	PC8-1232	
(46V)	74-83-9	bromomethane		12672-29-6	PCB-1248	
(47V)	75-25-2	bromolorm		11096-82-5	PCB-1260	
(48V)	75-27-4	bromodichloromethane		12674-11-2	PCB-1016	
(49Y)	75-69-4	Iluorotrichloromethane		8001-35-2	toxaphene	
(50V)	75-71-8	dichlorodifluoromethane	111217	0001-77-2	to apricine	
(51V)	124-48-1	chlorodibromomethane				
(85V)	127-18-4	tetrachloroethene			DIOXINS A	10
(86V)	108-88-5				DIOXINS N	/ 74
(87V)		toluene	CON	CENTRATIO	N: LOW MEDIUM HIGH	(circle one)
	79-01-6	trichloroethene	DATE	E EXTRACTE	D/PREPARED:	
(88V)	75-01-4	vinyl chloride	DATE	E ANALYZE):	
	67-64-1	acetone	PERC	CENT MOIST	UREI	
	78-93-3	2-butanone	CON	C./DILUTION	FACTOR:	
	75-15-0	Carbondisullide				ug/1
	519-78-6	2-hexanone				or up/kg
	108-10-1	4-methyl-2-pentanone	PP #	CAS #		(circle one)
	100-42-5	styrene	(129B)	1746-01-6	2,3,7,8-tetrachlorodiben	zo-p-dioxin
	108-05-4	vinyl acetate				
	1330-20-7	total sylenes				December 1983

Table 7.A. Continued

Organics Analysis Data Sheet (Page 4)

Sample Number

003

STATION 12 8-14-85

Tentatively Identified Compounds

CAS Number	Compound Name	Fraction	RT or Scan Number	Estimated Concentration (ug/Lor ug/kg)
1	ETHYLDIMETHYLBENZENE	AIBIN	10.95	16.5
2	TRIMETHYLCYCLOPENTEN-1-ONE	"	11-92	26.8
3	BECAHYOROTRIMETHYLMETHYLENE-1,4-	10	18.83	34.9
4	METHANDAZULENE CISHZ4	<u> </u>		
5	1,4-BIMETHOXYANTHRACENE	"	28.85	340
6	ISOPIMARIC ACID	//	31.27	57.1
7	PIMARIC ACID	/)	31,72	500
8	DEHYBROABIETIC ACID	,,	32.87	1030
9	ERGOST -5-EN-3-OL C28 H400	/1	41.98	345
10	57; GMAST-5-EN-3-01 C29 H500	"	43.75	1130
11				
12				
13	·			
14	•			
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

Table 7.A. Continued

PLOJECT: CHI. PION INTERNATIONAL

6ATE: 12-11-84

SMESTRATE: AQUEOUS

CPIRE LEVEL: CLARK FORK (CONTROL) 50 Mg/l bischarge 003 500 Mg/l

(% RECOVERY)

		(%	VECONFXI	/		
EILE FILE	SAMPLE	66 - PHENOL	2-FLUORO PhENOL	bio-PYRENE	Z-FLUORO BIPHENYL	\$5 - Ni7Kc: £ €
9/78	CLARK FORK (CONTROL)	+40.6	55.6	105	72.4	72.0
9/79	bischarge 003	58.6	58.6	104	82.2	68.6
						and A Principal Confession
USUM	Ē	65.8	75.6	95-6	80.1	83,7
RIA	C. A.		11.8	83	10 3	10.6
ASE	17 1 2 5 1	46.4-83.3	52,1-47.2	77.0 - 112	59.5 101	02.4-10
	P + 356	36.6-95.0		70.7-121		
	# OF BATA POINTS			49		
	+ = 0075	IDE THE	75 % con	PIBENCE	LIMITS, B	UT WITHI.
	THE 99	% LIMIT	ر ک			
				The state of the second		
					A242	
and the second s			00	entreplante and make the state of the state	an day to appropriate the second seco	
	1	ļ	80	!		

Table 7.B. Results of Organic* Analysis of Clark Fork River and Champion Wastewater Samples, Winter 1985

Environmyntal Protection Agency CLP Sample Management Office P. O. Box/818 Alexandria Virginia 22313 703 (\$87-2480)

STATION II

Organics Analysis Data Sheet (Page 1)

Laboratory Name KIN PACTON THE	Case No
Lab Sample ID No Auri - Halling Bridge	OC Report No
Sample Matrix	Contract No
Data Release Authorized By LONA 1 MIRKANT	Date Sample Received
Volatile	Compounds DAYL COLLECTED: 2-21-85
Concentration (Low	Medium (Circle One)
	ed
Date Analyzed3	-13 35
Conc/Dil Factor	pH
Percent Moisture	
Percent Moisture (Dec	ented)
CAS ug/lorug/K	g CAS ug/lorug/Kg

CAS Number		ug/lorug/Kg (Circle One)
74 87 3	Chicromethane	a=< 4
74-82 9	Bromomethane	
75 01-4	Vinyl Chloride	
75-00 3	Chioroethane	
75 09 2	Methylene Chloride	V
67-64-1	Aceione	AR
75 15 0	Carbon Disulfide	24
75 35-4	1 1-Dichloroethene	
75-34-3	1 1-Dichloroethane	-
15€ 60 5	Trans 1 2-Dichloroethene	
€7-6€ 3	Chloroform	
107-05 2	1 2-Dichloroethane	
78 93 3	2 Butanone	
71-55-6	1 1 1-Trichloroethane	
56-23 5	Carbon Tetrachloride	
108-05-4	Viny etate	
75 27-4	Bromodichloromethane	V

CAS Number		eg/lorug/Kg (Circle One)
79 34 5	1 1 2 2 Tetrachioroethane	and 4/
76 87 5	1 2-Dichloropropane	
100E1 02 6	Trans 1 3 Dichtoropropene	
79 01-6	Trichloroethene	
124 48 1	Dibromocnioromethane	
79 00 5	1 1 2 Trichlorpethane	
71-43 2	Benzene	
10061-01-5	cis 1 3 Dichloropropene	V
110-75-8	2-Chloroethylvinylether	NA
75 25 2	Bromoform	24
591-78 6	2-Hexanone	
108 10 1	4-Methyl-2-Pentanone	
127-18 4	Tetrachloroethene	
108 88 3	Toluene	
108 90 7	Chlorobenzene	
100 41 4	Ethylbenzene	
100 42 5	Styrene	
	Total Xylenes	\\

Data Reserving Qualifiers

For reporting results to EPA, the fellowing results audithers are used Additions. Flags or feotinoiss aspisining results are encouraged. However, the definition of each flag must be explicit.

81

Value: If the result is a value greater than or equal to the descript front freport the value.

- U Indicates compound was analyzed for but not detected Report the minimum detection limit for the sample with the U is g. 1001 based on necessary sonce wration district actions. (This is not necessarily the instrument detection limit.) The footnote should read. U Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample.
- J Indicases an estimated value. This flog is used either when estimating a concentration for tentatively identified compounds where a 1-3 response is assumed at what the mess spectral data indicates the presence of a compound that meets the identification criticis but the result is less than the specified detection limit but

- C. This flag applies to awai-cide parameters where the identification has been confirmed by GC. MS. Bingle component pesticides 210 ng. ul in the final extract should be confirmed by GC. MS.
- This flag is used when the shelves is found in the block as well as a semple it indicates peasible probable blane contamination and warns the data user to take appropriate action.

Other specific flags and feathers may be required to properly define the results. If used they must be fulfy described and such description attached to the detal summery report.

*Note: Volatile Compounds Not Analyzed

6 mm)

Table 7.B. Continued

C. CANG ANALYSIS DATA SCLI. For 3

STATION 1 2-21-85

SCA REGION THE

Blank - Harpers Bridge 170.

B. Temetively Identified Compounds

das No	Compound Name	Fraction	Scan No. or Retention Time	R Maximum Score Attained Mass Matching Routine: (Specify:)	Estimas Coccentias (lug'L o up ke
926	NONAME, 3, 7-DIRIFYHYL		333	715	7
· · · · · · · · · · · · · · · · · · ·					-
		 	-		
		 			1
		<u> </u>			
		ļ			
			-		
					
		1			
		 			1
		+			
		 	-		
		+	- 		
,		+	1		1
					1
		1			

4/87

vironme(stat Protection Agency - CLP Sample Management Office O-Box 988 - Alexandria Virginia 22313 703 (\$67-2480) STATION 12

Organics Analysis Data Sheet (Page 1)

	ome 27/2 3/26/00		Case No		
ab Sample I	D No Mentin Chambe	en Unglis Kall	QC Report No		
	1x hotes 063		Contract No		
	Authorized By JOAN K	PIANUART	2	Received WAL COLLECTED	2/21/85
		Volatile Co	mpounds		
	Concent	ration (Low)	Medium (Cire	cle One)	
	Date Ext	racted/Prepared			
	Date And	lyzed			
	Conc/Di	l Factor	pH		
		Moisture			
	Percent	Moisture (Decenti	PO)		
CAS Number		(Direle One)	CAS Number		(Circle One)
74 67 3	Chicromethane	~11	79 34 5	1 1 2 2 Tetrachloroethane	~ '/
74 83 9	Bromomethane		78 87 5	1 2-Dichloropropane	
75 01-4	Vinyl Chloride		100E1 02 6	Trans 1 3 Dichtoropropene	
75 00 3	Chioroethane		79 01-6	Trichloroethene	
75 09 2	Methylene Chloride	V	124 48 1	Dibromochioromethane	
£7-64-1	Acetone	NA	79 00 5	1 1 2 Trichloroethane	
75 15-0	Carbon Disulfide	<4	71-43 2	Benzene	
75 35-4	1 1-Dichloroethene		10061-01-5	cis 1 3 Dichipropropene	V
75-34-3	1 1-Dichiproethane		110 75 B	2 Chloroethylvinylether	NA -
156 60 5	Trans 1, 2-Dichloroethene		75 25 2	Bromoform	24
£7-68 3	Chloroform		591-78 6	2-Hexanone	
107-05 2	1 2-Dichlorpethane		108 10-1	4-Methyl-2-Pentanone	

Data Resenting Qualifiers

For reporting results to EPA, the following results auditions are used.
Additional flags or featheres existening results are encouraged. However, the
definition of each flag must be explicit.

Value If the result is a value greater than ar equal to the derection timit, report the value.

2 Butanone

Vinyl Acetate

1 1 1-Trichloroethane

Bromodichloromethane

Cartich Tetrachloride

78 93 3

71-55 6

56 23 5

108 05 4

75 27.4

- U Indicates compound was analyzed for but not detected Report the minimum detection limit for the sample with the U (e.g. 10U) based on recessarily concentration distribution actions. (This is not necessarily the instrument detection limit.) The footnote should lead. U.

 Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample.
- J Indicates an estimated value. This flag is used either when estimating a concentration for sentetively stentified compounds where a 1-1 response is assumed as when the mass sectral flate indicates the procent of a compound that meets the stemtification criteria but the ratio in less than the specified distoction finite but

This flag applies to pasticide parameters where the imentification has been confirmed by GC IMS. Single component pasticides 210 ng. ut in the final extract should be confirmed by GC IMS.

Tetrachloroethene

Chlorobenzene

Ethylbenzene

Toluene

Styrene Total Xylenes

This flag is used when the anethre is found in the blank as well as a sample. It indicates possible, probable blank contamination and waths the state user to take appropriate action.

Other specific flags and feathers may be required to preperly define the results. If used, they must be fully described and such description attached to the data summary raport.

127-18-4

108 88 3

108 90 7

100 41-4

100 42-5

Table 7.B. Continued

C. CANGO ANALYSIN DATA SICLIT . For 3

Tage 20 of 42

STATION 12

JAS BIGION' TILL	Car No:	Свинран	1/4 5	liste _	azilla.
------------------	---------	---------	-------	---------	---------

B. Tents thely Morritised Compounds

isariAo.	Compound Name	Fraction	Scan No. or Retention Time	M. Maximum Score Attained Mass Matching Routine: (Specify:)	Estiment Corre trans (ug'll or ug'
40	1- Butanol		320	923	2.50
					ı
					1
!					
					-1
					1
					1

Misser Champion Paper Montona Prix March 19, 148. 1. 85 CONTE Males Table 7.B. Continued SPIKE LEVEL Josephiles Bhomo UHLURO - 154-DICHLORO -Sample MEVANE BUTANE 90.5 Sample 10.30 Hank 95.5 107.5 105.3 Mean 106,7 9.7 5 9ND DEV 10.8 837-126.3 37,3 126,0 142x5 * 7 3xc, 71.7-135,7 12.4-137.6 Ve of Wain's 113 113 85

Table 7.C. Results of Organic* Analysis of Clark Fork River Champion Wastewater Samples, Spring 1985.

STAT	b	6	Ŋ	
5.1				

FRN 9362

ORGANICS ANALYSIS DATA SHEET

Laboratory Name: USEPA REGION 8	Case Not
Lab Sample ID Noi SILVER BOW	QC Report No.
Sample Matria: AQUEOUS	Contract No.:
Data Release Authorized By: A. CURTIC	Date Sample Received: 5-17-85

SEMIVOLATILE COMPOUNDS

CONCENTRATION: LOW MEDIUM	HIGH (circle one)
DATE EXTRACTED/PREPARED	5-29-85
DATE ANALYZEDI 6-	7-85
PERCENT MOISTURE	
CONCIDENTION FACTORS	1000

CAS Circle one				المالية	
(22A) 39-50-7 p-chloro-m-cresol (24A) 93-57-8 2- chlorophenol (31A) 120-83-2 2,&-dichlorophenol (34A) 103-67-9 2,&-dimethylphenol (35A) 88-73-3 2- nitrophenol (35A) 100-02-7 &-nitrophenol (35A) 100-02-7 &-nitrophenol (39A) 31-28-3 2,&-dinitrophenol (60A) 334-32-1 &,6-dinitro-2-methylphenol (60A) 334-32-1 pentachlorophenol (63A) 108-93-2 phenol (63B) 93-84-7 2-methylphenol (108-39-4 &-methylphenol (108-39-4 &-methylphenol (108-39-4 &-methylphenol (108-39-30-1 1,2,4-trichlorophenol (18B) 120-22-1 1,2,4-trichlorophenol (18B) 120-22-1 1,2,4-trichlorobenzene (12B) 67-72-1 hexachloroethane (12B) 67-72-1 hexachloroethane (12B) 91-38-7 2-chloronaphthalene (12B) 91-38-7 2-chloronaphthalene (12B) 91-38-7 1,3-dichlorobenzene (12B) 91-94-1 3,3'-dichlorobenzene (12B) 91-94-1 3,3'-dichlorobenzene (13B) 121-14-2 2,4-dinitrotoluene (13B) 122-66-7 1,4-dichlorobenzene (13B) 122-66-7 1,2-diphenylhydrazine (13B) 122-66-7 1,2-diphenylhydrazine (13B) 101-33-3 4-biromophenyl phenyl ether (41B) 101-33-3 4-biromophenyl phenyl ether	PP #	CAS /		(circle one)	
(24A) 93-37-8 2-chlorophenol (31A) 120-83-2 2,4-dichlorophenol (34A) 103-67-9 2,4-dimethylphenol (37A) 88-73-3 2-nitrophenol (38A) 100-02-7 4-nitrophenol (39A) 21-02-3 2,4-dinutrophenol (39A) 21-22-3 2,4-dinutrophenol (60A) 334-32-1 4,6-dinitro-2-methylphenol (64A) 87-86-3 pentachlorophenol (65A) 108-93-2 phenol 63-83-0 benzoic acid 93-48-7 2-methylphenol 108-39-4 4-methylphenol 93-93-8 2,4,3-trichlorophenol (18B) 83-32-9 acenaphthene (38B) 120-22-1 1,2,4-trichlorobenzene (18B) 120-22-1 1,2,4-trichlorobenzene (19B) 118-74-1 hexachloroethane (11B) 67-72-1 hexachloroethane (11B) 67-72-1 hexachloroethane (12B) 67-72-1 hexachloroethane (12B) 91-38-7 2-chloronaphthalene (20B) 91-38-7 1,3-dichlorobenzene (20B) 91-38-7 2,4-dinitrotoluene (20B) 91-94-1 3,3'-dichlorobenzene (28B) 91-94-1 3,3'-dichlorobenzene (28B) 91-94-1 3,3'-dichlorobenzene (38B) 121-14-2 2,4-dinitrotoluene (38B) 122-66-7 1,2-diphenylhydrazune (39B) 206-44-0 fluoranthene (40B) 7003-72-3 4-chlorophenyl phenyl ether (41B) 101-33-3 4-bromophenyl phenyl ether	(21A)	88 -06-2	2,4,6- trichlorophenol	< 2.	
	(22A)	39- 50 - 7	p-chloro-m-cresol		
(34A) 103-67-9 2,4-dimethylphenol (37A) 88-73-3 2- nitrophenol (38A) 100-02-7 4-nitrophenol (39A) 51-28-3 2,4-dimitrophenol (60A) 534-52-1 4,6-dimitro-2-methylphenol (64A) 87-86-3 pentachlorophenol (65A) 108-93-2 phenol (65A) 2-methylphenol	(24A)	95-57-8	2- chlorophenol		
(37A) 88-73-3 2- nitrophenol (38A) 100-02-7 4-nitrophenol (39A) 51-28-3 2,8-dinitrophenol (60A) 534-52-1 4,6-dinitro-2-methylphenol (64A) 87-86-3 pentachlorophenol (65A) 108-93-2 phenol 65-83-0 benzoic acid 95-48-7 2-methylphenol 108-39-4 4-methylphenol 93-93-4 2,4,3-trichlorophenol (18) 83-32-9 acenaphthene (38) 92-87-3 benzidine (88) 120-82-1 1,2,4-trichlorobenzene (98) 118-74-1 hexachlorobenzene (128) 67-72-1 hexachloroethane (138) 111-44-4 bis(2-chloroethyllether (208) 91-38-7 2-chloronaphthalene (258) 93-30-1 1,2-dichlorobenzene (268) 341-73-1 1,3-dichlorobenzene (27B) 106-46-7 1,4-dichlorobenzene (38B) 91-94-1 3,3'-dichlorobenzene (38B) 91-94-1 3,1-dichlorobenzene (38B) 91-94-1 3,1-diphenylhydrazine (39B) 206-48-0 fluoranthene (40B) 7003-72-3 4-chlorophenyl phenyl ether (41B) 101-33-3 4-bromophenyl phenyl ether	(31A)	120-83-2	2,4-dichlorophenol		
(38A) 100-02-7 &-nitrophenol (19A) 31-28-3 2,8-dinitrophenol (60A) 334-32-1 &16-dinitro-2-methylphenol (64A) 27-86-3 pentachlorophenol (65A) 108-93-2 phenol 63-83-0 benzoic acid 93-48-7 2-methylphenol 108-39-8 4-methylphenol 108-39-8 4-methylphenol (18B) 83-32-9 acenaphthene (18B) 120-82-1 1,2,8-trichlorophenol (18B) 120-82-1 1,2,8-trichlorobenzene (19B) 118-74-1 hexachlorobenzene (12B) 67-72-1 hexachloroethane (13B) 111-48-8 bis(2-chloroethyl)ether (20B) 91-38-7 2-chloronaphthalene (20B) 93-30-1 1,2-dichlorobenzene (26B) 341-73-1 1,3-dichlorobenzene (27B) 106-46-7 1,4-dichlorobenzene (28B) 91-94-1 3,3'-dichlorobenzene (33B) 121-14-2 2,8-dinitrotoluene (33B) 122-66-7 1,2-diphenylhydrazine (39B) 206-48-0 fluoranthene (40B) 7003-72-3 4-chlorophenyl phenyl ether (40B) 39638-32-9 bis {2-chloroisopropyl} ether	(34A)	105-67-9	2,4-dimethylphenol		
(199A) 31-28-3 2,8-dinitrophenol (60A) 334-32-1 8,6-dinitro-2-methylphenol (64A) 27-86-3 pentachlorophenol (65A) 108-93-2 phenol 63-83-0 benzoic acid 95-48-7 2-methylphenol 108-39-4 8-methylphenol 108-39-4 2,8,3-trichlorophenol (18) 23-32-9 acenaphthene (38) 92-87-3 benzidine (88) 120-82-1 1,2,8-trichlorobenzene (98) 118-74-1 hexachlorobenzene (128) 67-72-1 hexachloroethane (138) 111-44-4 bis(2-chloroethyl)ether (208) 91-38-7 2-chloronaphthalene (208) 93-30-1 1,2-dichlorobenzene (268) 341-73-1 1,3-dichlorobenzene (278) 106-46-7 1,4-dichlorobenzene (288) 91-94-1 3,3'-dichlorobenzene (388) 121-14-2 2,4-dinitrotoluene (378) 122-66-7 1,2-diphenylhydrazine (378) 122-66-7 1,2-diphenylhydrazine (378) 122-66-7 1,2-diphenylhydrazine (378) 206-44-0 fluoranthene (408) 7003-72-3 4-chlorophenyl phenyl ether (418) 101-33-3 4-bromophenyl phenyl ether	(37A)	88-73-5	2- nitrophenol		
(60A) 334-32-1 4,6-dinitro-2-methylphenol (64A) 27-86-3 pentachlorophenol (65A) 108-93-2 phenol 63-83-0 benzoic acid 95-48-7 2-methylphenol 108-39-4 4-methylphenol 108-39-4 2,4,3-trichlorophenol (1B) 23-32-9 acenaphthene (3B) 92-27-5 benzidine (8B) 120-22-1 1,2,4-trichlorobenzene (9B) 118-74-1 hexachlorobenzene (12B) 67-72-1 hexachloroethane (13B) 111-44-4 bis(2-chloroethyl)ether (20B) 91-38-7 2-chloronaphthalene (25B) 93-30-1 1,2-dichlorobenzene (26B) 341-73-1 1,3-dichlorobenzene (27B) 106-46-7 1,4-dichlorobenzene (28B) 91-94-1 3,3'-dichlorobenzene (38B) 121-14-2 2,4-dinitrotoluene (37B) 122-66-7 1,2-diphenylhydrazine (37B) 122-66-7 1,2-diphenylhydrazine (37B) 122-66-7 1,2-diphenylhydrazine (37B) 122-66-7 1,2-diphenylhydrazine (41B) 101-33-3 4-chlorophenyl phenyl ether	(A8K)	100-02-7	4-nitrophenol		
(64A) 87-86-3 pentachlorophenol (63A) 108-93-2 phenol 63-83-0 benzoic acid 93-48-7 2-methylphenol 108-39-8 4-methylphenol 93-95-8 2,8,3-trichlorophenol (1B) 83-32-9 acenaphthene (3B) 92-87-3 benzidine (8B) 120-82-1 1,2,8-trichlorobenzene (9B) 118-78-1 hexachlorobenzene (12B) 67-72-1 hexachloroethane (13B) 111-48-8 bis(2-chloroethyl)ether (20B) 91-38-7 2-chloronaphthalene (23B) 93-30-1 1,2-dichlorobenzene (26B) 341-73-1 1,3-dichlorobenzene (27B) 106-46-7 1,8-dichlorobenzene (28B) 91-94-1 3,3'-dichlorobenzene (31B) 606-20-2 2,6-dinitrotoluene (37B) 121-14-2 2,8-dinitrotoluene (37B) 122-66-7 1,2-diphenylhydrazine (37B) 120-66-7 1,2-diphenylhydrazine (37B) 120-66-7 1,2-diphenylhydrazine (37B) 120-68-0 fluoranthene (40B) 7003-72-3 4-chlorophenyl phenyl ether (41B) 101-33-3 4-bromophenyl phenyl ether	(59A)	51-28-5	2,4-dirutrophenal		
(63A) 108-93-2 phenol 65-83-0 benzoic acid 93-48-7 2-methylphenol 108-39-4 4-methylphenol 93-93-8 2,4,3-trichlorophenol (1B) 83-32-9 acenaphthene (3B) 92-87-3 benzidine (8B) 120-82-1 1,2,4-trichlorobenzene (9B) 118-74-1 hexachlorobenzene (12B) 67-72-1 hexachloroethane (13B) 111-44-4 bis(2-chloroethyl)ether (20B) 91-38-7 2-chloronaphthalene (23B) 93-30-1 1,2-dichlorobenzene (26B) 341-73-1 1,3-dichlorobenzene (27B) 106-46-7 1,4-dichlorobenzene (28B) 91-94-1 3,3'-dichlorobenzidine (33B) 121-14-2 2,4-dinitrotoluene (37B) 122-66-7 1,2-diphenylhydrazine (37B) 122-66-7 1,2-diphenylhydrazine (39B) 206-44-0 fluoranthene (40B) 7003-72-3 4-chlorophenyl phenyl ether (41B) 101-33-3 4-bromophenyl phenyl ether	(60A)	534-52-1	4,6-dinitro-2-methylphenol		
63-83-0 benzoic acid 95-82-7 2-methylphenol 108-39-4 4-methylphenol 93-93-4 2,4,3-trichlorophenol (1B) 83-32-9 acenaphthene (3B) 92-87-3 benzidine (8B) 120-82-1 1,2,4-trichlorobenzene (9B) 118-74-1 hexachlorobenzene (12B) 67-72-1 hexachloroethane (13B) 111-44-4 bis(2-chloroethyl)ether (20B) 91-38-7 2-chloroaphthalene (23B) 93-30-1 1,2-dichlorobenzene (26B) 341-73-1 1,3-dichlorobenzene (27B) 106-46-7 1,4-dichlorobenzene (28B) 91-94-1 3,3'-dichlorobenzene (31B) 121-14-2 2,4-dinitrotoluene (37B) 122-66-7 1,2-diphenylhydrazine (37B) 122-66-7 1,2-diphenylhydrazine (39B) 206-44-0 fluoranthene (40B) 7003-72-3 4-chlorophenyl phenyl ether (41B) 101-33-3 4-bromophenyl phenyl ether	(64A)	27-86-5	pentachlorophenol		
95-48-7 2-methylphenol 108-39-8 4-methylphenol 93-93-8 2,8,3-trichlorophenol (1B) 83-32-9 acenaphthene (3B) 92-87-3 benzidine (8B) 120-82-1 1,2,8-trichlorobenzene (9B) 118-78-1 hexachlorobenzene (12B) 67-72-1 hexachloroethane (13B) 111-48-8 bis(2-chloroethylbether (20B) 91-38-7 2-chlorophthalene (23B) 93-30-1 1,2-dichlorobenzene (26B) 341-73-1 I,3-dichlorobenzene (27B) 106-46-7 1,8-dichlorobenzene (28B) 91-94-1 3,3'-dichlorobenzene (33B) 121-14-2 2,8-dinitrotoluene (37B) 122-66-7 1,2-diphenylhydrazine (37B) 122-66-7 1,2-diphenylhydrazine (39B) 206-48-0 fluoranthene (40B) 7003-72-3 4-chlorophenyl phenyl ether (41B) 101-33-3 4-bromophenyl phenyl ether	(65A)	108-95-2	phenol		
108-39-8		65-85-0	benzoic acid		
93-93-8 2,8,3-trichlorophenol (1B) 83-32-9 acenaphthene (3B) 92-87-3 benzidine (8B) 120-82-1 1,2,8-trichlorobenzene (9B) 118-78-1 hexachlorobenzene (12B) 67-72-1 hexachloroethane (13B) 111-48-8 bis(2-chloroethane (13B) 111-48-8 bis(2-chloroethyl)ether (20B) 91-38-7 2-chloronaphthalene (23B) 93-30-1 1,2-dichlorobenzene (26B) 341-73-1 1,3-dichlorobenzene (27B) 106-46-7 1,8-dichlorobenzene (28B) 91-94-1 3,3'-dichlorobenzidine (33B) 121-14-2 2,8-dinitrotoluene (37B) 606-20-2 2,6-dinitrotoluene (37B) 122-66-7 1,2-diphenylhydrazine (39B) 206-48-0 fluoranthene (40B) 7003-72-3 8-chlorophenyl phenyl ether (41B) 101-33-3 8-bromophenyl phenyl ether		95-48-7	2-methylphenol		
(1B) 83-32-9 acenaphthene (1B) 92-87-3 benzidine (8B) 120-82-1 1,2,8-trichlorobenzene (9B) 118-74-1 hexachlorobenzene (12B) 67-72-1 hexachloroethane (13B) 111-44-4 bis(2-chloroethyl)ether (20B) 91-58-7 2-chloronaphthalene (25B) 93-30-1 1,2-dichlorobenzene (26B) 341-73-1 1,3-dichlorobenzene (27B) 106-46-7 1,4-dichlorobenzene (28B) 91-94-1 3,3'-dichlorobenzene (38B) 91-94-1 3,3'-dichlorobenzene (38B) 121-14-2 2,4-dinitrotoluene (37B) 122-66-7 1,2-diphenylhydrazine (37B) 122-66-7 1,2-diphenylhydrazine (37B) 122-66-7 1,2-diphenylhydrazine (48B) 7003-72-3 4-chlorophenyl phenyl ether (40B) 7003-72-3 4-chlorophenyl phenyl ether		108-39-4	4-methylphenol		
(3B) 92-87-3 benzidine (8B) 120-82-1 1,2,4-trichlorobenzene (9B) 118-74-1 hexachlorobenzene (12B) 67-72-1 hexachloroethane (13B) 111-44-4 bis(2-chloroethyl)ether (20B) 91-38-7 2-chloronaphthalene (25B) 93-30-1 1,2-dichlorobenzene (26B) 341-73-1 1,3-dichlorobenzene (27B) 106-46-7 1,4-dichlorobenzene (28B) 91-94-1 3,3'-dichlorobenzene (38B) 91-94-1 3,3'-dichlorobenzidine (37B) 121-14-2 2,4-dinitrotoluene (37B) 606-20-2 2,6-dinitrotoluene (37B) 122-66-7 1,2-diphenylhydrazine (37B) 206-44-0 fluoranthene (40B) 7003-72-3 4-chlorospenyl phenyl ether (41B) 101-33-3 4-bromophenyl phenyl ether		95-95-4	2,4,5-trichlorophenol		
(8B) 120-82-1 1,2,4-trichlorobenzene (9B) 118-74-1 hexachlorobenzene (12B) 67-72-1 hexachloroethane (13B) 111-44-4 bis(2-chloroethyl)ether (20B) 91-38-7 2-chloronaphthalene (25B) 93-30-1 1,2-dichlorobenzene (26B) 341-73-1 1,3-dichlorobenzene (27B) 106-46-7 1,4-dichlorobenzene (28B) 91-94-1 3,3'-dichlorobenzidine (31B) 121-14-2 2,4-dinitrotoluene (37B) 606-20-2 2,6-dinitrotoluene (37B) 122-66-7 1,2-diphenylhydrazine (37B) 122-66-7 1,2-diphenylhydrazine (39B) 206-44-0 fluoranthene (40B) 7003-72-3 4-chlorophenyl phenyl ether (41B) 101-33-3 4-bromophenyl phenyl ether	(18)	83-32-9	acenaphthene		
(128) (138-74-1 hexachlorobenzene (128) (127-72-1 hexachloroethane (138) (11-44-4 his(2-chloroethyl)ether (138) (11-44-4 his(2-chloroethyl)ether (138) (11-44-4 his(2-chloroethyl)ether (138) (11-44-4 his(2-chlorobenzene (138) (13-73-1 his-dichlorobenzene (138) (13-46-7 his-dichlorobenzene (138) (13-46-7 his-dichlorobenzene (138) (13-14-2 his-dichlorobenzene (138) (13-14-2 his-dichlorobenzene (138) (13-14-2 his-dichlorobenzene (138) (13-46-7 his-dic	(38)	92-27-5	benzidine		
(12B) 67-72-1 hexachloroethane (13B) 111-44-4 bis(2-chloroethyl)ether (20B) 91-58-7 2-chloronaphthalene (23B) 93-30-1 1,2-dichlorobenzene (26B) 341-73-1 1,3-dichlorobenzene (27B) 106-46-7 1,4-dichlorobenzene (28B) 91-94-1 3,3'-dichlorobenzidine (33B) 121-14-2 2,4-dinitrotoluene (36B) 606-20-2 2,6-dinitrotoluene (37B) 122-66-7 1,2-diphenylhydrazine (39B) 206-44-0 fluoranthene (40B) 7003-72-3 4-chlorophenyl phenyl ether (41B) 101-33-3 4-bromophenyl phenyl ether	(8B)	120-82-1	1,2,4-trichlorobenzene		
(188) 111-44-4 bis(2-chloroethyl)ether (208) 91-38-7 2-chloronaphthalene (258) 93-30-1 1,2-dichlorobenzene (268) 341-73-1 1,3-dichlorobenzene (278) 106-46-7 1,4-dichlorobenzene (288) 91-94-1 3,3'-dichlorobenzidine (338) 121-14-2 2,4-dinitrotoluene (368) 606-20-2 2,6-dinitrotoluene (378) 122-66-7 1,2-diphenylhydrazine (398) 206-44-0 fluoranthene (408) 7003-72-3 4-chlorophenyl phenyl ether (418) 101-33-3 4-bromophenyl phenyl ether	(98)	118-74-1	hexachlorobenzene		
(208) 91-38-7 2-chloronaphthalene (238) 93-30-1 1,2-dichlorobenzene (268) 341-73-1 1,3-dichlorobenzene (278) 106-46-7 1,8-dichlorobenzene (288) 91-94-1 3,3'-dichlorobenzidine (338) 121-14-2 2,4-dinitrotoluene (368) 606-20-2 2,6-dinitrotoluene (378) 122-66-7 1,2-diphenylhydrazine (398) 206-44-0 fluoranthene (408) 7003-72-3 4-chlorophenyl phenyl ether (418) 101-33-3 4-bromophenyl phenyl ether	(128)	67-72-1	hexachloroethane		
(238) 93-30-1 1,2-dichlorobenzene (268) 341-73-1 1,3-dichlorobenzene (278) 106-46-7 1,4-dichlorobenzene (288) 91-94-1 3,3'-dichlorobenzidine (288) 121-14-2 2,4-dinitrotoluene (288) 606-20-2 2,6-dinitrotoluene (288) 122-66-7 1,2-diphenylhydrazine (288) 122-66-7 1,2-diphenylhydrazine (288) 206-44-0 (288) 100-372-3 4-chlorophenyl phenyl ether (288) 39638-32-9 bis (2-chloroisopropyl) ether (288) 38638-32-9 bis (2-chloroisopropyl) ether (288)	(188)	111-44-4	bis(2-chloroethyl)ether		
(26B) 341-73-1 1,3-dichlorobenzene (27B) 106-46-7 1,4-dichlorobenzene (28B) 91-94-1 3,3'-dichlorobenzidine (33B) 121-14-2 2,4-dinitrotoluene (36B) 606-20-2 2,6-dinitrotoluene (37B) 122-66-7 1,2-diphenylhydrazine (39B) 206-44-0 fluoranthene (40B) 7003-72-3 4-chlorophenyl phenyl ether (41B) 101-33-3 4-bromophenyl phenyl ether (42B) 39638-32-9 bis (2-chloroisopropyl) ether	(208)	91-58-7	2-chloronaphthalene		
106-46-7 1,4-dichlorobenzene	(258)	93-30-1	1,2-dichlorobenzene		
(288) 91-94-1 3,3'-dichlorobenzidine (338) 121-14-2 2,4-dinitrotoluene (368) 606-20-2 2,6-dinitrotoluene (378) 122-66-7 1,2-diphenylhydrazine (398) 206-44-0 fluoranthene (408) 7003-72-3 4-chlorophenyl phenyl ether (418) 101-33-3 4-bromophenyl phenyl ether (428) 39638-32-9 bis (2-chloroisopropyl) ether	(26B)	541-73-1	1,5-dichlorobenzene		
(33B) 121-14-2 2,4-dinitrotoluene (36B) 606-20-2 2,6-dinitrotoluene (37B) 122-66-7 1,2-diphenylhydrazine (39B) 206-44-0 fluoranthene (40B) 7003-72-3 4-chlorophenyl phenyl ether (41B) 101-33-3 4-bromophenyl phenyl ether (42B) 39638-32-9 bis (2-chloroisopropyl) ether	(Z7B)	106-46-7	1,4-dichlorobenzene		
136B 606-20-2 2,6-dinitrotoluene	(28B)	91-94-1	3,3'-dichlorobenzidine		
(378) 122-66-7 1,2-diphenylhydraxine (398) 206-44-0 fluoranthene (408) 7005-72-3 4-chlorophenyl phenyl ether (418) 101-33-3 4-bromophenyl phenyl ether (428) 39638-32-9 bis (2-chloroisopropyl) ether	(33B)	121-14-2	2,4-dinitrotoluene		
(39B) 206-44-0 fluoranthene (40B) 7003-72-3 4-chlorophenyl phenyl ether (41B) 101-33-3 4-bromophenyl phenyl ether (42B) 39638-32-9 bis (2-chloroisopropyl) ether	(36B)	606-20-2	2,6-dinitrataluene		
(408) 7003-72-3 4-chlorophenyl phenyl ether (418) 101-33-3 4-bramophenyl phenyl ether (428) 39638-32-9 bis (2-chloroisopropyl) ether	(37B)	122-66-7	1,2-diphenylhydrazine		
(418) 101-33-3 4-bramophenyl phenyl ether (418) 39638-32-9 bis (2-chloroisopropyl) ether	(39B)	206-44-0	fluoranthene		
[428] 39638-32-9 bis [2-chloroisopropy]] ether	(40B)	7005-72-3	4-chlorophenyl phenyl ether		
	(418)	101-53-3	4-bromophenyl phenyl ether		
[43B] [11-91-] bis [7-chloroethoxy] methane	1428)	39638-32-9	bis (2-chloroisopropyl) ether		
	16381	111-91-1	bis 12-chloroethoxy) methane		

PP #	CAS#			ircle	
(528)	87-62-3	hexachlorobutadiene	<	< 2	
(538)	77-47-8	hexachlorocyclopentadiene			
(34B)	78-59-1	isophorone			
(558)	91-20-3	naphthalene			
(56B)	98-95-3	nitrobenzene			
(618)	62-75-9	N-nitrosodimethylamine			
(628)	86-30-6	N-nitrosodiphenylamine			
(63B)	621-64-7	N-nitrosodipropylamine			
(66B)	117-81-7	bis (2-ethylhexyl) phthalate			
(67B)	33-62-7	benzyl butyl phthalate			
(61B)	84-74-2	di-n-butyl phthalate			
(698)	117-84-0	di-n-octyl phthalate			
(708)	84-66-2	diethyl phthalate		/	
(715)	131-11-3	dimethyl phthalate	2.0)	
(72B)	56-55-3	benzolalanthracene	< 7	2	
(73B)	50-32-8	benzo(a)pyrene			
(748)	205-99-2	benzolbilluoranthene			
(75B)	207-08-9	benzo(k)[]uoranthene			
(76B)	218-01-9	chrysene			
(778)	208-96-8	acenaphthylene			
(785)	120-12-7	anthracene			
(79B)	191-24-2	benzo(ghi)perylene			
(808)	86-73-7	fluorene			
(818)	83-01-8	phenanthrene			
(825)	53-70-3	dibenzola,hlanthracene			
(835)	193-39-3	indeno(1,2,3-cd)pyrene -			
(888)	129-00-0	pyrene			
	62-53-5	aniline			
	100-51-6	benzyl alcohol			
	106-47-1	4-chloroaniline			
	132-64-9	dibenzoluran			
	91-57-6	2-methylnaphthalene			
	88-74-4	2-nitroaniline			
	99-09-2	3-nitroaniline			
	100-01-6	h-nitroaniline	\	<u>, </u>	

*Note: Volatile Compounds Not Analyzed

1983

STATION

Environmental Protection Agency, CLP Sample Management Office, P. O. Box 818, Alexandris, Virginia 22313, 703/657-2490

FRN 9362

Sample Number CLARK FORK RIVER

Organics Analysis Data Sheet (Page 3)

Pesticide/PCBs

Concentration		
Date Extracte		9-85
Date Analyze	1000	35
Conc Dil Fac	tor:	
CAS Number		ug/ler ug/Kg (Circle One)
319-84-6	Alpha-8HC	<2
319-85-7	8eta-8HC	
319-86-8	Delta-BHC	
58-89-9	Gamma-8HC (Lindane)	
76-44-8	Haptachior	
309-00-2	Aldrin	
1024-57-3	Haptachlor Epoxide	
959-98-8	Endosulfan I	
60-57-1	Dieldrin	
72-55-9	4 4 - DDE	
72-20-8	Endrin	
33213-65-9	Endosulfan il	
72-54-8	4, 4'-000	
7421-93-4	Endrin Aldehyde	
1031-07-8	Endosulfan Sulfate	
50-29-3	4 4 -DOT	
72-43-5	Methoxychlor	
53494-70-5	Endrin Ketone	
57-74-9	Chlordane	V
8001-35-2	Toxagnena	NIA
12674-11-2	Aroctor-1016	
11104-28-2	Arocior-1221	
11141-16-5	Aroclar-1232	
53469-21-9	Aroclor-1242	
12672-29-6	Aroclor-1248	
11097-69-1	Arocior-1254	
11096.82.5	Arocior, 1260	J

V_a = Volume of extract injected (ul)

V_{g.} = Volume of water extracted (ml)

W_g = Weight of sample axtracted (g)

V₁ = Volume of total extract (ul)

V_g ______ or W_g _____ V₁ _____ V₁ _____

Form 1

4 84

Form I. (continued).

B-30

STATION 12

FRN 9371

Semple Number
CHAMPION WACT

ORGANICS ANALYSIS DATA SHEET

	3 / /
Laboratory Names USEPA REGION 8	Case Nos
Lab Sample ID No:	QC Report No:
Sample Matrixs <u>AQUEOUS</u>	Contract No.1
Data Release Authorized By: A. CURTIS	Date Sample Received: 5-18-85

SEMIVOLATILE COMPOUNDS

CONCENTRATION: (OW MEDIUM HIGH (circle one)
DATE EXTRACTED/PREPARED: 5-29-85
DATE ANALYZED: 6-10-85
PERCENT MOISTURE:
CONSTDILUTION FACTOR: 200

			ug/1
PP #	CAS #		(circle one)
(21A)	88-06-2	2,4,6- trichlorophenol	<10
(22A)	19-10-7	p-chloro-m-cresol	
(24A)	95-37-8	2- chlorophenol	
(31A)	120-83-2	2,4-dichlorophenol	
(34A)	105-67-9	2,4-dimethylphenol	
(57A)	88-75-5	2- nitrophenal	
(58A)	100-02-7	⊫nitrophenol	
(39A)	51-28-5	2,4-dirutrophenol	•
(60A)	534-52-1	4,6-dinitro-2-methylphenol	
(64A)	27-86-3	pentachlorophenol	
(63A)	108-95-2	phenol	
	65-85-0	benzoic acid	
	95-48-7	2-methylphenal	
	108-39-4	4-methylphenal	
	95-95-4	2,4,3-truchlorophenol	
(IB)	83-32-9	acenaphthene	
(3B)	92-87-5	benzidine	
(8B)	120-82-1	1,2,4-trichlorobenzene	
(9B)	118-74-1	hexachlorobenzene	
(12B)	67-72-1	hexachioroethane	
(18B)	111-44-4	bis(2-chloroethyl)ether	
(20B)	91-58-7	2-chloronaphthalene	
(23B)	95-10-1	1,2-dichlorobenzene	
(26B)	541-73-1	1,3-dichlorobenzene	
(27B)	106-46-7	1,4-dichlorobenzene	
(28B)	91-94-1	3,3'-dichlorobenzidine	
(33B)	121-14-2	2,4-dinitrotoluene	
(36B)	606-20-2	2,6-dinitrotoluene	
(37B)	122-66-7	1,2-diphenylhydrazine	
(39B)	206-44-0	fluoranthene	
(40B)	7005-72-3	4-chlorophenyl phenyl ether	
(41B)	101-55-3	4-bromophenyl phenyl ether	
(428)	39638-32-9	bis (2-chloroisopropyll ether	
(43B)	111-91-1	bis (2-chloroethoxy) methane	V

			or vy/kg
PP @	CAS #		(curcle one
(528)	87-68-3	hexachlorobutadlene	<10
(53B)	77-47-4	hexachlorocyclopentadiene	
(548)	78-59-1	13 ob pict, oue	
(338)	91-20-3	naphthalene	
(368)	98-95-3	nitrobenzene	
(61B)	62-73-9	N-nitrosodimethylamine	
(62B)	86-30-6	N-nitrosodiphenylamine	
(638)	621-64-7	N-natrosodipropylamine	
(66B)	117-81-7	bis (7-ethylhexyl) phthalate	
(67B)	85-68-7	benzyl butyl phthalate	
(688)	80-74-2	di-n-butyl phthalate	
(698)	117-84-0	di-n-octyl phthalate	
(70B)	84-66-2	diethyl phthalate	
(715)	131-11-3	dimethyl phthalate	
(72B)	16-15-3	benzo(a)anthracene	
(73B)	50-32-8	benzo(a)pyrene	
(74B)	205-99-2	benzo(b)/Iuoranthene	
(758)	207-08-9	benzo(k)IIuoranthene	
(768)	218-01-9	chrysene	
(778)	208-96-8	acenaphthylene	
(78B)	120-12-7	-anthracene	
(798)	191-24-2	benzo(ghi)perylene	
(808)	86-73-7	Iluorene	
(818)	85-01-8	phenanthrene	
(825)	53-70-3	dibenzo(a,h)anthracene	
(835)	193-39-5	indeno(1,2,3-cd)pyrene	
(84B)	129-00-0	pyrene	
	62-33-3	aniline	
	100-51-6	benzyl alcohol	
	106-47-8	#-chloro-uniline	
	132-64-9	dibenzofuran	
	91-57-6	2-methylnaphthalene	
	88-74-4	2-nitroaniline	
	99-09-2	3-nitroaniline	
	100-01-6	4-nitroaniline	\downarrow

FRN 9371

STATION 12

Environmental Presection Agency. CLP Sample Management Office. P. O. Box 818. Alexandria, Virginia 22313-703/567-2490 Sample Number CHAMPION WASTE

Organics Analysis Data Sheet (Page 3)

Pesticide/PCBs

Concentration		(Circle One)
Date Extracte	d/Prepared: 5-2	9-85
Date Analyze	d <u>6-10-</u>	85
Conc/ Dil Fac	10r:	
CAS		
Number		(Circle One)
319-84-6	Alpha-8HC	<10
319-85-7	Beta-BHC	
319-86-8	Delta-BHC	
58-89-9	Gamma-BHC (Lindane)	
76-44-8	Heptachlor	
309-00-2	Aldrin	
1024-57-3	Heptachlor Epoxide	
959-98-8	Endosulfan i	
60-57-1	Dieldrin	
72-55-9	4 4'-DDE	
72-20-8	Endrin	
33213-65-9	Endosulfan II	
72-54-8	4, 41-000	
7421-93-4	Endrin Aldehyde	
1031-07-8	Endosultan Sulfate	
50-29-3	4 4 -DDT	
72-43-5	Methaxychlor	
53494-70-5	Endrin Ketone	
57-74-9	Chlordane	4
8001-25-2	Toxaphene	NIA
12874-11-2	Aroclor-1016	
11104-28-2	Araclar-1221	
11141-16-5	Aroclor-1232	
53469-21-9	Aroclor-1242	
12672-29-6	Aroclor-1248	
11097-69-1	Arocior-1254	
11096-82-5	Aroclor-1260	1

V_i = Volume of extract injected (ul)

V_x = Volume of water extracted (ml)

W_a = Weight of sample extracted (g)

V, = Volume of total extract (ul)

Form 1

4 84

Form I. (continued).

FRN 9371

Sample Number

CHAMPION WASTE

Table 7.C. Continued

Organics Analysis Data Sheet (Page 4)

STATION 12

Tentatively Identified Compounds

CAS Number	Compound Name	Fraction	RT or Scan Number	Estimated Concentration (ug/Dor ug/kg)
1	1[2-(2-METHOXY-1-METHYLETHOXY)-1-	ALEIN	16.53	480
2	METHYLETHOXY] -2 - PROPADOL CIOHAD CY			
3 . 2	ISOMER OF #1		16.70	145
4.3	METHYLPENTABECANOIC ACID		26.82	188
5 .4	ANGROST-16-EN-3-ONE		26.98	79.5
6 .5	1-EICOSENE CZO HAG MW 280		30.73	164
7.6	ISOPIMARIC ACID MW 302		31.30	216
e .7	PIMARIC ACID MW302		31.77	804
9.8	SIMILAR TO PIMARIC ACIL MW 302		32.52	1050
10.9	REHYDROABIETIC ACID MW300		32.97	1120
11.10	15-HYLROXY-ANDROST-4-ENE-3, 17-bioNE		33,42	538
12.//	UNRHOWN ACIL MW340		33.75	336
13./2	1-TETRACOSANOL CZ4 HGO: O		34.95	/7/
14./3	ERGOST-5-EN-3-01 Cx8H480 MW 400		41.92	743
15./4	STIGNAST-5-EN-3-OL CZO HOO MWYY		43.65	847
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30			_	

NATURAL ACIDS, KETONES AND ALCOHOLS.

Laboratory Name: USEPA REGION 8

Data Release Authorized By: A. CURTIS

AQUEOUS

Lab Sample ID No: SILVER BOW

Sample Matrixi

FRN 9366

Date Sample Received:

STATION

Sample Humber CLARK FORK RIVER 5-31-85

ORGANICS ANALYSIS DATA SHEET

			- /	-	
_	Case Not	 			
_	QC Report No:				
	Contract No.				

SEMIVOLATILE COMPOUNDS

CONCENTRATION: LOW MEDIL	JM HIGH (circle one)
DATE EXTRACTED/PREPARED	6-5-85
DATE ANALYZEDI 6-	7-85
PERCENT MOISTURE	
CONC. POILUTION FACTOR:	1000

			or un/lon
PP #	CAS #		(circle one)
(21A)	88-06-2	2,4,6- trichlorophenol	< 2
(22A)	59-50-7	p-chloro-m-cresol	
(24 A)	95-57-8	2- chlorophenol	
(31A)	120-83-2	2,4-dichlorophenol	
(34 A)	105-67-9	2,4-dimethylphenol	
(57A)	88-75-5	2- nitrophenol	
(58A)	100-02-7	4-nitrophenol	
(59A)	51-28-5	2,4-dirutrophenol	•
(60A)	534-52-1	4,6-dinitro-2-methylphenol	
(64A)	87-86-5	pentachlorophenol	
(65A)	108-95-2	phenol	
	63-85-0	benzoic acid	
	95-48-7	2-methylphenol	
	108-39-4	4-methylphenol	
	93-95-4	2,4,5-trichlorophenol	
(IB)	83-32-9	acenaphthene	
(5B)	92-87-5	benzidine	
(88)	120-82-1	1,2,4-trichlorobenzene	
(96)	118-74-1	hexachlorobenzene	
(12B)	67-72-1	hexachloroethane	
(18B)	111-44-4	bis(2-chloroethyl)ether	
(20B)	91-58-7	2-chloronaphthalene	
(23B)	95-50-1	1,2-dichlorobenzene	
(26B)	341-73-1	1,3-dichlorobenzene	
(278)	106-46-7	1,4-dichlorobenzene	
(28B)	91-94-I	3,3'-dichlorobenzidine	
(35B)	121-14-2	2,4-dinitrataluene	
(368)	606-20-2	2,6-dinitratalu ene	
(37B)	122-66-7	1,2-diphenylhydrazine	
(398)	206-44-0	fluoranthene	
(40B)	7005-72-3	4-chlorophenyl phenyl ether	
(41B)	101-55-3	4-bromophenyl phenyl ether	
(428)	39638-32-9	bis (2-chloroisopropyl) ether	
(43B)	111-91-1	bis (2-chloroethoxy) methane	

			or unfley
PP #	CAS #		(circle one
(52B)	87-68-3	hexachlorobutadiene	< 2
(53B)	77-47-4	hexachlorocyclopentadiene	
(54B)	78-59-1	isophorone	
(558)	91-20-3	naphthalene	
(56B)	98-95-3	nitrobenzene	
(618)	62-75-9	N-nitrosodimethylamine	
(628)	86-30-6	N-nitrosodiphenylamine	
(63B)	621-64-7	N-nitrosodipropylamine	
(66B)	117-81-7	bis (2-ethylhexyl) phthalate	
(67B)	85-68-7	benzyl butyl phthalate	
(68B)	84-74-2	di-n-butyl phthalate	
(698)	117-84-0	di-n-octyl phthalate	
(70B)	84-66-2	diethyl phthalate	
(715)	131-11-3	dimethyl phthalate	
(728)	56-55-3	benzo(a)anthracene	
(73B)	50-32-8	benzo(a)pyrene	
(74B)	205-99-2	benzolbilluoranthene	
(738)	207-08-9	benzo(k)fluoranthene	
(76B)	218-01-9	chrysene	
(775)	208-96-8	acenaphthylene	
(735)	120-12-7	anthracene	
(79B)	191-24-2	benzo(ghi)perylene	
(80B)	16-73-7	fluorene	
(818)	85-01-8	phenanthrene	
(128)	53-70-3	dibenzola,h)anthracene	
(8)8)	193-39-5	indeno(1,2,3-cd)pyrene ·	
(\$4B)	129-00-0	pyrene	
	62-53-3	aniline	
	100-51-6	benzyl alcohol	
	106-47-8	4-chloroaniline	
	132-64-9	dibenzofuran	
	91-57-6	2-methylnaphthalene	
	88-74-4	2-nitroaniline	
	99-09-2	3-nitroaniline	
	100-01-6	4-nitroaniline	<u> </u>

Environmental Protection Agency CLP Sample Management Office P.O. Box 818, Alexandria Virginia 22313, 703/557-2490

FRN 9366

STATION 11 Sample Number CLARK FORK RIVER

Organics Analysis Data Sheet (Page 3)

Pesticide/PCBs

Concentration	o/Kg
Date Analyzed 6 - 7 - 85	g/Kg
Cond/Dil Factor	
CAS Number 319-84-6 Alpha-BHC < 2 319-85-7 Beta-BHC 319-86-8 Delta-BHC 58-89-9 Gamma-BHC (Lindane)	
CAS Number 319-84-6 Alpha-BHC 319-85-7 Beta-8HC 319-86-8 Delta-BHC 58-89-9 Gamma-BHC (Lindane)	
319-85-7 Beta-BHC	
319-86-8 Delta-BHC 58-89-9 Gamma-BHC (Lindane)	
58-89-9 Gamma-BHC (Lindane)	
	-
76-44-8 Heptachlor	6
309 00-2 Aldrin	
1024-57-3 Heptachlor Epoxide	
959-98 8 Endosulfan I	
60-57-1 Dieldrin	
72-55 9 4 4 - ODE	
72-20-8 Endrin	
33213-65-9 Endosulfan II	
72-54-8 4 4'-DDD	
7421-93-4 Endrin Aldehyde	
1031-07-8 Endosulfan Sulfate	
50-29-3 4 4 -ODT	
72-43 5 Methoxychlor	
53494-70-5 Endrin Ketone	
57-74-9 Chlordane	
8001 35-2 Toxaphene N/A	
12674-11-2 Aroctor-1016	
11104-28 2 Arocior-1221	
11141-16-5 Aroctor-1232	
53469 21-9 Aroclor-1242	
12672 29 6 Arocior-1248	
11097 69-1 Aroclor-1254	
11096-82-5 Aroctor-1260	

V_i = Volume of extract injected (ul)

V_e = Volume of water extracted (ml)

W_g * Weight of sample extracted (g)

V, ... Volume of total extract (ul)

Form 1

4 84

Form I. (continued).

5/84

FRN 9372

STATION 12

Sample Number	
CHAMPION WA	STE
5-31-85	

ORGANICS ANALYSIS DATA SHEET

Laboratory Name: USEPA REGION 8	Case Not
Lab Sample ID Noi SILVER BOW	QC Report No:
Sample Matrix: <u>AQUEOUS</u>	Contract No.t
Data Release Authorized By: A CURTIS	Date Sample Received: 5-31-85

SEMIVOLATILE COMPOUNDS

CONCENTRATION: LOW MED	IUM HIGH (circle one)
DATE EXTRACTED/PREPARED	6-5-85
DATE ANALYZED:	-10-85
PERCENT MOISTURE	
CONCODILUTION FACTOR.	200

			العا
PP #	CAS #		(circle one)
(21A)	88-06-2	2,4,6- trichlorophenol	< 2_
(22A)	59-50-7	p-chloro-m-cresol	
(24A)	95-37-8	2- chlorophenol	
(31A)	120-83-2	2,4-dichlorophenal	
(34 A)	105-67-9	2,4-dimethylphenol	
(57A)	88-75-5	2- nitrophenol	
(58A)	100-02-7	4-nitrophenol	
(59A)	51-28-5	2,4-dinitrophenol	•
(60A)	334-52-1	4,6-dinitro-2-methylphenol	
(64A)	17-86-5	pentachlorophenol	
(65A)	108-95-2	phenol	
	65-85-0	benzoic acid	
	95-48-7	2-methylphenol	
	108-39-4	4-meshylphenal	
	95-95-4	2,4,5-trichlorophenol	
(18)	83-32-9	acenaphthene	
(5B)	92-87-5	benzidine	
(8B)	120-82-1	1,2,4-trichlorobenzene	
(9B)	118-74-1	hexachlorobenzene	
(12B)	67-72-1	hexachloroethane	
(18B)	111-44-4	bis(2-chloroethyl)ether	
(20B)	91-58-7	2-chloronaphthalene	
(25B)	95-50-1	1,2-dichlorabenzene	
(26B)	541-73-1	1,3-dichlorobenzene	
(27B)	106-96-7	1,4-dichlorobenzene	
(28B)	91-94-1	3,3'-dichlorobenzidine	
(35B)	121-14-2	2,4-dinitrotoluene	
(56B)	606-20-2	2,6-dinitratalu ene	
(37B)	122-66-7	1,2-diphenylhydrazine	
(398)	206-44-0	fluoranthene	
(40B)	7005-72-3	4-chlorophenyl phenyl ether	
(41B)	101-55-3	4-bromophenyl phenyl ether	
(428)	39638-32-9	bis (2-chloroisopropyl) ether	
(43B)	111-91-1	bis (2-chloroethoxy) methane	<u> </u>

			42/1
PP #	CAS#		(circle one)
(528)	87-68-3	hexachlorobutadiene	< 2
(538)	77-47-4	hexachlorocyclopentadiene	
(54B)	78-59-1	isophorane	
(53B)	91-20-3	naphthalene	
(56B)	98-95-3	nitrobenzene	
(61B)	62-75-9	N-nitrosodimethylamine	
(628)	86-30-6	N-nitrosodiphenylamine	
(63B)	621-64-7	N-nitrosod@ropylamine	
(668)	117-81-7	bis (2-ethylhexyl) phthalate	
(678)	15-61-7	benzyl butyl phthalate	
(688)	84-74-2	di-n-butyl phthalate	
(698)	117-84-0	di-n-octyl phthalate	
(70B)	89-66-2	diethyl phthalate	
(718)	131-11-3	dimethyl phthalate	
(72B)	56-55-3	benzolalanthracene	
(738)	50-32-8	benzo(a)pyrene	
(74B)	205-99-2	benzo(b)fluoranthene	
(758)	207-08-9	benzo(k)Iluoranthene	
(76B)	218-01-9	chrysene	
(778)	208-96-8	acenaphthylene	
(78B)	120-12-7	anthracene	
(798)	191-24-2	benzo(ghi)perylene	
(\$0B)	86-73-7	Iluorene	
(818)	85-01-8	phenanthrene	
(82B)	33-79-3	dibenzo(a,h)anthracene	
(838)	193-19-5	indeno(1,2,3-cd)pyrene	
(\$4B)	129-00-0	pyrene	
	62-53-3	aniline	
	100-51-6	benzyl alcohol	
	106-47-1	%-chloroaniline	
	132-64-9	dibenzoluran	
	91-37-6	2-methylnaphthalene	
	88-74-4	2-nitroaniline	
	99-09-2	3-nitroaniline	
	100-01-6	4-nitroaniline	
			1911

Environmental Protection Agency, CLP Sample Management Office, FR J 9372 P.O. Box B18, Alexandria, Virginia 22313 703/857-2490

STATION 12 Sample Number CHAMPION

Organics Analysis Data Sheet (Page 3)

Pasticide/PCBs

	~	
Concentratio		(Circle One)
Date Extracte	10/ Freperau.	5-85
Date Analyze	6-10-	85
Conc Dil Fac	nor:	
CAS Number		ug/lor ug/Kç (Circle One
319-84-6	Alpha-BHC	< 2
319-85-7	Bets-BHC	
319-86-8	Delta-8HC	
58-89-9	Gamma-BHC (Lindane)	
76-44-8	Heptachlor	
309-00-2	Aldrin	
1024-57-3	Heptachlor Epoxide	
959-98-8	Endosulfan f	
6D-57-1	Dieldrin	
72-55-9	4 4 - DDE	
72-20-8	Endrin	
33213-65-9	Endosulfan II	
72-54-8	4.4-000	
7421-93-4	Endrin Aldehyde	
1031-07-8	Endosulian Sulfate	
50-29-3	4 4 -001	
72-43-5	Methoxychior	
53494-70-5	Endrin Ketone	
57-74-9	Chlordane	1
8001-35-2	Toxaghene	NIA
12674-11-2	Arocfor-1016	
11104-28-2	Aroclor-1221	
11141-16-5	Aroctor-1232	
53469-21-9	Aroclor-1242	
12672-29-6	Arocior-1248	
11097-69-1	Arocior-1254	
11096-82-5	Aroclor-1260	

V, = Volume of extract injected (ul)

V_{s.} * Volume of water extracted (ml)

W_a * Weight of sample extracted (g)

V₁ = Volume of total extract (ul)

Form 1

4 84

Form I. (continued).

Table 7.C. Continued

FRN 9372

Sample Number CHAMPION WASTE

5-31-85

Organics Analysis Data Sheet (Page 4)

STATION 12

Tentatively Identified Compounds

CAS Number	Compound Name	Fraction	AT or Scan Number	Estimated Concentration (ug/) or ug/kg)
1	1-[2-(2-METHOXY-1-METHYLETHOXY)-		16.58	547
2	1-METHYLETHOXY]-2-PROPANOL CIOH2204			
3 <u>`</u>	ISOMER OF #1		16.93	190
4	METHYLPENTANECANOIC ACID		26-78	116
5	ANDROST-16-EN-3-ONE		26.98	62.6
6	1-EICOSENE CZOHUD MW 280		30.68	94.6
7	ISOPIMARIC ACID MW 302		31.22	155
8	PIMARIC ACID MW 302		31.65	375
9	SIMILAR TO PIMARIC ACID MW302		32.37	570
0	LEHYLROABIETIC ACIL MW 300		32.83	905
1	15-HYBROXY-ANBRUST-4-ENE-3, 17-BIONE		33.18	340
2	UNKNOWN ACIE MW 340		33.65	285
3	1-TETRACOSANOL CZ4H500		34.90	160
4	ERGOST-5-EN-3-06 G28 H480 MW400		4-1-88	194
5	STIGMAST-5-EN-3-OL CZO HEOD MW 414		43.57	695
6				
7				
8				
9				
0				
1				
2				
3				
4				
5				
6	357-754 V - 6-446-4464			
,		and American and American		
8				
9				
0				

NATURAL ACIDS, KETONES + ALCOHOLS.

FRN 9358

San	nple Number	_
LAB	BLANK	

ORGANICS	ANALYSIS	DATA	SHEET

Laboratory Name: USEPA REGION 8	Case Nos
Lab Sample ID No: SILVER BOW LAB BLANK	QC Report No:
Sample Matrix: <u>AQUEOUS</u>	Contract No.:
Data Release Authorized By: A. CURTIS	Date Sample Received:

SEMIVOLATILE COMPOUNDS

CONCENTRATION: LOW MEDIUM HIGH (circle one)

DATE EXTRACTED/PREPARED: 5-30-85

DATE ANALYZED: 6-85

PERCENT MOISTURE: /000

			Curle
PP #	CAS #		er ug/log (circle one)
(21A)	88-06-2	2,4,6- trichlorophenol	< 2
(22A)	59-50-7	p-chloro-m-cresol	1
(24A)	95-57-8	2- chlorophenol	
(31A)	120-83-2	2,6-dichlorophenol	
(34 A)	105-67-9	2,4-dimethylphenol	
(57A)	88-75-5	2- nitrophenal	
(58A)	100-02-7	4-nitrophenol	
(59A)	51-28-5	2,4-dirutrophenol	
(60A)	534-52-1	4,6-dinitro-2-methylphenol	
(64A)	87-86-5	pentachlorophenol	
(65A)	108-95-2	phenol	
	65-85-0	benzoic acid	
	95-48-7	2-methylphenol	
	108-39-4	4-methylphenol	
	95-95-4	2,4,5-trichlorophenol	
(18)	83-32-9	acenaphthene	
(5B)	92-87-5	benzidine	
(8B)	120-87-1	1,2,4-trichlorobenzene	
(9B)	118-74-1	hexachlorobenzene	
(12B)	67-72-1	hexachloroethane	
(18B)	111-44-4	bis(2-chloroethyl)ether	
(20B)	91-58-7	2-chloronaphthalene	
(258)	95-50-1	1,2-dichlorobenzene	
(26B)	541-73-1	1,3-dichlorobenzene	
(27B)	106-46-7	1,4-dichlorobenzene	
(28B)	91-94-1	3,3'-dichlorobenzidine	
(35B)	121-14-2	2,4-dinitrotoluene	
(36B)	606-20-2	2,6-dinitrotoluene	
(37B)	122-66-7	1,2-diphenylhydrazine	
(398)	206-44-0	fluoranthene	
(+OB)	7005-72-3	4-chlorophenyl phenyl ether	
(41B)	101-55-3	4-bromophenyl phenyl ether	
(42B)	39638-32-9	bis (2-chloroisopropyl) ether	
(4)B)	111-91-1	bis (2-chloroethoxy) methane	

			(4) L
PP #	CAS /		(circle on
(528)	87-68-3	hexachlorobutadiene	< 2
(338)	77-47-8	hexachiorocyclopentadiene	
(54B)	78-59-1	isophorone	
(55B)	91-20-3	naphthalene	
(56B)	98-95-3	nitrobenzene	
(61B)	62-75-9	N-nitrosodimethylamine	
(62B)	86-30-6	N-nitrosodiphenylamine	
(63B)	621-64-7	N-nitrosod:propylamine	
(66B)	117-11-7	bix (2-ethylhexyl) phthalate	
(67B)	85-68-7	benzyl butyl phthalate	
(6EB)	84-74-2	di-n-butyl phthalate	
(69B)	117-84-0	di-n-octyl phthalate	
(70B)	84-66-2	diethyl phthalate	
(715)	131-11-3	dimethyl phthalate	
(72B)	56-55-3	benzo(a)anthracene	
(73B)	30-32-8	benzo(a)pyrene	
(74B)	205-99-2	benzo(b)(luoranthene	
(75B)	207-08-9	benzo(k)Huoranthene	
(76B)	218-01-9	chrysene	
(77B)	208-96-8	acenaphthylene	
(78B)	120-12-7	-anthracene	
(79B)	191-24-2	benzo(ghi)perylene	
(808)	86-73-7	Nuorene	
(815)	85-01-8	phenanthrene	
[\$2B)	53-70-3	dibenzola,hbanthracene	
(235)	173-19-5	indeno(1,2,3-cd)pyrene -	
(84B)	129-00-0	pyrene	
	62-33-3	aniline	
	100-51-6	benzyl alcohol	
	106-47-3	4-chloroaniline	
	132-64-9	dibenzofuran	
	91-37-6	2-methylnaphthalene	
	88-74-4	2-nitroaniline	
	99-09-2	3-nitroaniline	
	100-01-6	4-nitroaniline	

Environmental Protection Agency, CLP Sample Management Office, P. O. Box 818. Alexandria, Virginia 22313, 703/657-2490.

FRN 9358

Semple Number

LAB BLANK

Organics Analysis Data Sheet (Page 3)

Pesticide/PCBs

Date Analyzed. 6-6-85 Cond/Dil Factor: 1000 CAS	Concentratio	n: (Lovy Medium	(Circle One)
CAS Number 319-84-6 Alphe-BHC 319-85-7 Beta-BHC 319-86-8 Delta-BHC 58-89-9 Gamma-BHC (Lindane) 76-44-8 Heptachlor 309-00-2 Aldrin 1024-57-3 Heptachlor Epoxide 959-98-8 Endosulfan I 60-57-1 Dieldrin 72-55-9 4 4 -DDE 72-20-8 Endrin 33213-65-9 Endosulfan II 72-54-8 4 4'-000 7421-93-4 Endrin Aldehyde 1031-07-8 Endosulfan Sulfate 50-29-3 4 4-DDT 72-43-5 Methoxychlor 53494-70-5 Endrin Ketone 57-74-9 Chlordane № 106-104-28-2 Aroclor-1212 11141-16-5 Aroclor-1232 53469-21-9 Aroclor-1242 12672-29-6 Aroclor-1248	Date Extracte		
Number Indicate Indicate	Date Analyze	d <u>6-6-8</u>	25
Number	Cong/Dil Fac	10r:	
319-85-7 Beta-8HC 319-86-8 Delta-BHC 58-89-9 Gamma-BHC (Lindane) 76-44-8 Heptachlor 309-00-2 Aldrin 1024-57-3 Heptachlor Epoxide 959-98-8 Endosulfan I 60-57-1 Dieldrin 72-55-9 4 4 -DDE 72-20-8 Endrin 33213-65-9 Endosulfan II 72-54-8 4, 4'-DDD 7421-93-4 Endrin Aldehyde 1031-07-8 Endosulfan Sulfate 50-29-3 4 4-DDT 72-43-5 Methoxychlor 53494-70-5 Endrin Ketone 57-74-9 Chlordane 8001-25-2 Toxsonene 12674-11-2 Aroctor-1016 11104-28-2 Aroctor-1221 11141-16-5 Aroctor-1242 12672-29-6 Aroctor-1248			ug/ler ug/Kg (Circle One)
319.86-8 Delta-BHC 58-89-9 Gamma-BHC (Lindene) 76-44-8 Heptachlor 309-00-2 Aldrin 1024-57-3 Heptachlor Epoxide 959-98-8 Endosulfan I 60-57-1 Dieldrin 72-55-9 4 4 -DDE 72-20-8 Endrin 33213-65-9 Endosulfan II 72-54-8 4, 4'-DDD 7421-93-4 Endrin Aldehyde 1031-07-8 Endosulfan Sulfate 50-29-3 4 4-DDT 72-43-5 Methoxychlor 53494-70-5 Endrin Ketone 57-74-9 Chlordane 8001-25-2 Toxsonene 12674-11-2 Aroctor-1016 11104-28-2 Aroctor-1221 11141-16-5 Aroctor-1242 12672-29-6 Aroctor-1248	319-84-6	Alphe-8HC	<2
58-89-9 Gamma-BHC (Lindene) 76-44-8 Heptachior 309-00-2 Aldrin 1024-57-3 Heptachior Epoxide 959-98-8 Endosulfan I 60-57-1 Dieldrin 72-55-9 4 4 -DDE 72-20-8 Endrin 33213-65-9 Endosulfan II 72-54-8 4, 4'-ODD 7421-93-4 Endrin Aldehyde 1031-07-8 Endosulfan Sulfate 50-29-3 4 4 -DDT 72-43-5 Methoxychlor 53494-70-5 Endrin Ketone 57-74-9 Chlordane 8001-25-2 Toxsonene 12674-11-2 Aroctor-1016 11104-28-2 Aroctor-1221 11141-16-5 Aroctor-1242 12672-29-6 Aroctor-1248	319-85-7	Beta-BHC	
76.44-8 Heptachlor 309-00-2 Aldrin 1024-57-3 Heptachlor Epoxide 959-98-8 Endosulfan I 60-57-1 Dieldrin 72-55-9 4 4 -DE 72-20-8 Endrin 33213-65-9 Endosulfan II 72-54-8 4, 4'-ODD 7421-93-4 Endrin Aldehyde 1031-07-8 Endosulfan Sulfate 50-29-3 4 4 -DDT 72-43-5 Methoxychlor 53494-70-5 Endrin Ketone 57-74-9 Chlordane W 8001-35-2 Toxaonene 12674-11-2 Aroctor-1016 11104-28-2 Aroctor-1232 53469-21-9 Aroctor-1242 12672-29-6 Aroctor-1248	319-86-8	Delta-BHC	
309-00-2 Aldrin 1024-57-3 Heptachlor Epoxide 959-98-8 Endosulfan I 60-57-1 Dieldrin 72-55-9 4 4 -DE 72-20-8 Endrin 33213-65-9 Endosulfan II 72-54-8 4, 4'-ODD 7421-93-4 Endrin Aldehyde 1031-07-8 Endosulfan Sulfate 50-29-3 4 4 -DDT 72-43-5 Methoxychlor 53494-70-5 Endrin Ketone 57-74-9 Chlordane \$001-35-2 Toxaonene \$12674-11-2 Arcclor-1016 \$11104-28-2 Arcclor-1221 \$11141-16-5 Arcclor-1242 \$12672-29-6 Arcclor-1248	58-89-9	Gamma-BHC (Lindane)	
1024-57-3 Heptachlor Epoxide 959-98-8 Endosulfan I 60-57-1 Oieldrin 72-55-9 4 4 - DDE 72-20-8 Endrin 33213-65-9 Endosulfan II 72-54-8 4. 4'-ODD 7421-93-4 Endrin Aldehyde 1031-07-8 Endosulfan Sulfate 50-29-3 4 4 - DDT 72-43-5 Methoxychlor 53494-70-5 Endrin Ketone 57-74-9 Chlordane 8001-25-2 Toxaonene 12674-11-2 Aroctor-1016 11104-28-2 Aroctor-1221 11141-16-5 Aroctor-1232 53469-21-9 Aroctor-1242 12672-29-6 Aroctor-1248	76-44-8	Heptachior	
959-98-8 Endosulfan I 60-57-1 Oieldrin 72-55-9 4 4 - DDE 72-20-8 Endrin 33213-65-9 Endosulfan II 72-54-8 4.4'-DDD 7421-93-4 Endrin Aldehyde 1D31-07-8 Endosulfan Sulfate 50-29-3 4 4 - DDT 72-43-5 Methoxychlor 53494-70-5 Endrin Ketone 57-74-9 Chlordane 8001-25-2 Toxaonene 12674-11-2 Aroctor-1016 11104-28-2 Aroctor-1221 11141-16-5 Aroctor-1232 53469-21-9 Aroctor-1242 12672-29-6 Aroctor-1248	309-00-2	Aldrin	T
60-57-1 Dieldrin 72-55-9 4 4 - DDE 72-20-8 Endrin 33213-65-9 Endosulfan II 72-54-8 4.4'-DDD 7421-93-4 Endrin Aldehyde 1D31-07-8 Endosulfan Sulfate 50-29-3 4 4 - DDT 72-43-5 Methoxychlor 53494-70-5 Endrin Ketone 57-74-9 Chlordane 8001-25-2 Toxaonene 12674-11-2 Aroctor-1016 11104-28-2 Aroctor-1221 11141-16-5 Aroctor-1232 53469-21-9 Aroctor-1242 12672-29-6 Aroctor-1248	1024-57-3	Heptachlor Epoxide	
72-55-9	959.98.8	Endosulfan I	
72-20-8 Endrin 33213-65-9 Endosulfan II 72-54-8 4.4'-000 7421-93-4 Endrin Aldehyde 1031-07-8 Endosulfan Sulfate 50-29-3 4-4-00T 72-43-5 Methoxychlor 53494-70-5 Endrin Ketone 57-74-9 Chlordane 8001-35-2 Toxaonene 12674-11-2 Aroctor-1016 11104-28-2 Aroctor-1221 11141-16-5 Aroctor-1232 53469-21-9 Aroctor-1242 12672-29-6 Aroctor-1248	60-57-1	Dieldrin	
33213-65-9 Endosulfan II 72-54-8	72-55-9	4 4 -DDE	
72-54-8	72-20-8	Endrin	
7421-93-4 Endrin Aldehyde 1031-07-8 Endosullan Sulfate 50-29-3 4 4 -DDT 72-43-5 Methoxychlor 53494-70-5 Endrin Ketone 57-74-9 Chlordane 8001-25-2 Toxaonene 12674-11-2 Aroctor-1016 11104-28-2 Aroctor-1221 11141-16-5 Aroctor-1232 53469-21-9 Aroctor-1242 12672-29-6 Aroctor-1248	33213-65-9	Endosulfan li	
1031-07-8 Endosulian Sulfate 50-29-3 4 4 - DOT 72-43-5 Methoxychlor 53494-70-5 Endrin Ketone 57-74-9 Chlordane 8001-25-2 Toxbonene 12674-11-2 Aroctor-1016 11104-28-2 Aroctor-1221 11141-16-5 Aroctor-1232 53469-21-9 Aroctor-1242 12672-29-6 Aroctor-1248	72-54-8	4. 4'-000	
50-29-3	7421-93-4	Endrin Aldehyde	
72-43-5 Methoxychlor 53494-70-5 Endrin Ketone 57-74-9 Chlordane 8001-25-2 Toxaonene 12674-11-2 Aroctor-1016 11104-28-2 Aroctor-1221 11141-16-5 Aroctor-1232 53469-21-9 Aroctor-1242 12672-29-6 Aroctor-1248	1031-07-8	Endosulfan Sulfate	
53494-70-5 Endrin Ketone 57-74-9 Chlordane 8001-25-2 Toxaonene 12674-11-2 Aroctor-1016 11104-28-2 Aroctor-1221 11141-16-5 Aroctor-1232 53469-21-9 Aroctor-1242 12672-29-6 Aroctor-1248	50-29-3	4 4 -DDT	
57-74-9 Chlordane 8001-25-2 Toxaonene 12674-11-2 Aroctor-1016 11104-28-2 Aroctor-1221 11141-16-5 Aroctor-1232 53469-21-9 Aroctor-1242 12672-29-6 Aroctor-1248	72-43-5	Methoxychlor	
8001-25-2 ToxBonene N/A 12674-11-2 Aroctor-1016 11104-28-2 Aroctor-1221 11141-16-5 Aroctor-1232 53469-21-9 Aroctor-1242 12672-29-6 Aroctor-1248	53494-70-5	Endrin Ketone	
12674-11-2 Aroctor-1016 11104-28-2 Aroctor-1221 11141-16-5 Aroctor-1232 53469-21-9 Aroctor-1242 12672-29-6 Aroctor-1248	57-74-9	Chlordane	1
11104-28-2 Aroctor-1221 11141-16-5 Aroctor-1232 53469-21-9 Aroctor-1242 12672-29-6 Aroctor-1248	8001-25-2	Toxaonene	NIA
11141-16-5 Aroctor-1232 53469-21-9 Aroctor-1242 12672-29-6 Aroctor-1248	12674-11-2	Aroclor-1016	
53469 21-9 Aroctor-1242 12672-29-6 Aroctor-1248	11104-28-2	Aroclor-1221	
12672-29-6 Arocior-1248	11141-16-5	Aroclar-1232	
	53469 21-9	Aroclor-1242	
11097-69-1 Arocior-1254	12672-29-6	Arocior-1248	
	11097-69-1	Arocior-1254	
11096-82-5 Aroclor-1260	11096-82-5	Arocior-1260	1

V_j = Volume of extract injected (ui)

V_g = Volume of water extracted (ml)

W_g = Weight of sample extracted (g)

V_t = Volume of total extract (ul)

Form 1

4 84

Form I. (continued).

97

Table 7.C. Continued

DATE: 6-25-85

PROJECT: SILVER BOW/CHAMPION

SUBSTRATE: AQUEOUS

SPIKE LEVEL: 50 Mg/R

GCIMS	SAMPLE	2-FLUORO PHENOL	DG- PHENOL N	15- NITROBENZENE	QUINOXALINE	2-FLUORO BIPHENYL	PHENANTHREN
FILE	LAB BLANK	57.6	43.2	62.8	66.6	71.0	80.2
9358	CLARK FORK	55.0	41.2	63.4	64-2	72.0	79.8
9361	5-8-85 TAYLOR CREEK	53.1	37.0	59.3	86.1	75.6	90.2
9362	5-31-85 CHAMPION RIVER	51,4	42.1	60.0	59.0	63.1	111
9363	5-17-85 CHAMPION WELL	49.0	39.5	55.8	57.0	67.6	94.1
9364	5-17-85 CLARK FORK	51.0	38.5	66.3	67.2	74.3	98.4
9365	TAYLOR CREEK	55.1	42.5	66.7	68.5	75. 2	99.9
9366	5-22-85 CHAMPION	58.7	47.0	66.7	65.0	72.2	90.8
9367	5-31-85 CLARK FORK	59.6	44.1	68.4	69.7	80.3	108
9368	TAYLOR CREEK	53.1	43.8	66.5	71.5	81.2	115
9369	5-8-85 CLARK FORK WELL	54.9	40.3	59.7	56.8	67.0	99.6
9371	5-31-85 CHAMPION WASTE		4.9.2	56.8	86.4	78.5	95.8
9372	5-17-85 CHANNION WASTE	65.9	56.3	70.1	87.5	84.4	86.7
9377	CLARK FORK	72.0	59.6	83.0	83.8	85.8	97.6
9378	6-6-85 TAYLOR CREEK 6-6-85	74.8	58.8	86.4	89.2	92.6	99.2
/3 /0	6-6-85	77.0					
9379	ELISWORTH AFB	65.8	52.6	73.8	75.0	72.8	111
1311	51,0000 281-5	03.0					
4.1.42	ē	69.8	58.9	78.5	78.6	79-2	95.5
LOSUM	5.6.	12.9	12.3	12.9	11.5	10.6	10.5
BASE	P+256	44:0-95.5	34.3-83.5	526-104	55.7-101	57.9-101	74.6-116
0735	P+350	31.2-108	22.0-95.8	39.6-117	44.2-113	47.3-111	64.2-127
	# OF BATA	92	91	92	92	92	31
	ALL RECO	VERIES WI	THIN 95	Vo CONF.	SENCE !	iMirs.	
	1		1	98 ———			

2. Deep-water Sampling: Reservoir and River Pool Stations

a. Rationale

Identical water samples were collected at the same time from the surface and near the bottom of the four mainstem impoundments (Milltown, Thompson Falls, Noxon Rapids and Cabinet Gorge Reservoirs) and from up to 11 deepwater pools between Frenchtown and Thompson Falls. This type of sampling was designed to determine whether dissolved oxygen and pH are depressed near the bottom of deepwater areas and whether such depressions result in a mobilization (solution) of heavy metals that may be contained in the bottom sediments.

b. Methods

Top and bottom water samples for metals and dissolved oxygen analysis were collected from the four reservoirs and several river pools on a seasonal basis (spring, summer, fall). The reservoirs were sampled a total of five times; however, river pool sampling was discontinued after two runs.

Water was brought up from the bottom using a Kemmerer depth sampler lowered from a boat. The importance of dissolved (and biologically effective) metals in this type of monitoring approach required filtering one set of metals samples in the field.

Sample collection and analysis methods and the analyzing laboratory are summarized in Table 8. Methods for sample preservation and handling are included in Appendix C.

c. Results

Reservoir and river pool water analysis data are listed in Table 9. A statistical summary of the data follows in Table 10. Field notations at the time of sampling are summarized in Appendix C.

Table 8. Sample Collection and Analysis Methods for Chemical/Physical Deep-water Monitoring

<u>Variable</u>	Collection Method	Analytical Method	taboratory
Water Temperature (°C) (T(C))	Kemmerer sample (bottom)	Instream field determination (surface)	Field personnet
Hardness (mg/1) as $ ext{Ca} ext{ω_3}$) (HARD)	Grab sample (surface) and Kemmerer sample (bottom)	EPA 200.7 1)	addles than Lab
Total Recoverable and Dissolved Metals (mg/l) Iron (FE T.R., FE DISS) Copper (CU T.R., CU DISS) Zinc (ZN T.R., ZN DISS) Marganese (MN T.R., MN DISS) Cadminm (CD T.R. CD DISS) Arsenic (AS T.R., AS DISS) Chromium (CR T.R., CR DISS) Lead (PB f.R., PB DISS) Silver (AG T.R., AG DISS)	Grab, Kennerer samples. Dissolved metals sample field filtered (0.45 u) prior to preservation.	EPA 200.7 1) EPA 200.7 1; EPA 200.7 1; EPA 200.7 1) EPA 200.7 1) EPA 200.7 1)	MDHES Countrio
pH, Field and Lab (standard pH units) (PH FLD, PH LAB)	Grab, Kennerer samples.	EPA 351.2 1)	Field personnel and aDOHS Chem two
Specific Conductance (umhos/cm @ 25°C) (SPEC COND)	Grab, Kennerer samples.	EPA 120.1 1)	MDHES Chem Lab
Dissolved Oxygen (mg/l) (D.O.)	Grab, Kemmerer samples.	EPA 360.2 1)	Field personnel
Acid Soluble Metals (mg/l) Copper (CU A.S.) Zinc (ZN A.S.) Cadmium (CD A.S.) Lead (PB A.S.)	Grab, Kemmerer samples followed by lab filtration (0.45 u) after 48 hours.	EPA 220.2 1) EPA 289.2 1) EPA 213.2 1) EPA 239.2 1)	Energy tabs, Inc.

References

^{1) &}quot;Methods for Chemical Analysis of Water and Wastes," EPA-000/4-79-020 U.S. Environmental Protection Agency, 1983 (Revised).

TABLE 9

DEEP-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART I RESULTS OF SAMPLES TAKEN ON MARCH 5-8, 1984

MN DISS	0.02	0.03	0.04	0.04	0.03	0.05	0.04	0.03	0.03	0.02	0.02											0.01		0.01	0.01	0.006	0.005
3 . F.	0.63	0.03	0.04	0.05	0.04	0.04	0.03	0.04	0.04	0.05	0.03											0.01			0.05		
SSIO	0.009	500.05	<0.005	<0.005	500.05	<0.005	0.007	0.01	<0.005	<0.005	<0.005											<0.005		<0.005	<0.005	0.008	<0.005
ZN T.R.	0.02			0.02			0.008															0.006			<0.005		
CU	<0.01 <0.01 <0.01			<0.01			<0.01															<0.01			<0.01		
cu 1.R.	<0.01 <0.01	10.05	<0.01	<0.01	10.07	<0.01	<0.01	<0.01	70.01	<0.01	<0.01											<0.01			<0.01		
FE D1SS	0.01	20.0	0.05	0.02	0.02	0.05	<0.01	0.05	0.05	0.01	0.05											<0.01		<0.03	<0.01	0.01	<0.01
FE T.R.	0.11	0.07	0.10	0.16	0.10	0.11	0.05	0.12	0.10	0.10	0.09											0.03		0.04	0.04	0.05	0.03
HARD	185	123	123	124	771	121	122	121	122	122	121											95		88	91	91	91
0.0.	13.6	5.5	12.5	12.1	0	12.2	12.1	12.3	12.3	13.3	13.3											12.3		12.3	12.4	12.8	12.8
SPEC	391	707	280	282	0/2	276	274	275	277	271	272											204		187	193	196	192
PH	8.36	6.39	8.23	8.24	0	8.33	8.26	8.32	8.33	8.50	8.55											8.35		8.29	8.32	8.28	8.29
PH	0	0.,				7.9	1.7	6.7	7.9	8.1	8.1											7.8		7.7	7.8	7.8	7.1
(C)	4.5	0.0	4.0). #	0.4		5.0														4.0		4.0		3.0	
TOTAL DEPTH	00 00 n	n	22	22		50	50	20	20	27	27											17		22	22	27	27
T ME	1401	004:1	1100	1101	0060	1000	1001	1200	1155	1501	1500											1315		1115	1105	1700	1701
DAY	0.05			90			10 8		10		107	•				•					•	0.8		0.8		0.8	
STATION	MILLIOWN-T MILLIOWN-B	MARCURE-BT	HUSON-TOP	HUSON-801	9M1LE-80T	BEL FISH- I	BEL FISH-B	1ARK 10-TOF	TARKIO-BOT	SUPERIOR-I	SUPERIOR-B	LAVISTA-TF	LAVISTA-BT			BOXCAR-TOF	BUXCAR-BOT	100LE-70P	T00LE-80T	AB FHEAD-T	AB FHEAD-B	T FALLS-IP	T FALLS-BI	NOXON-10P	NOXON-BOT	CAB GORG-1	CAB CORG-B
	03	13	15	5,	9	17				S	5			5	5			5	5		22	26	56	28	28	30	30

NOTE: ALL VALUES ARE IN MG/L EXCEPT DEPTH(FEET), TEMPERATURE(DEG. C), PH(PH UNITS), AND S.C. (UMHOS/CM). IN THE HEADINGS, I.R. MEANS TOTAL RECOVERABLE. FIELD PH VALUES ARE QUESTIONABLE FOR THIS RUN.

DEEP-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - FART 11 FESULTS OF SAMPLES TAKEN ON MARCH 5-8, 1984

PB A.S.	
CD A.S.	
ZN A.S.	
CU A.S.	
AG D1SS	\$\\ \frac{0.00}{0.00} \\ \frac
AG T.R.	000 0
PB D1SS	\$\begin{align*} \cdot 0.05 \\
PB 1.R.	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
CR D1SS	60.02 60.05 <td< th=""></td<>
CR T.R.	0000 0000 0000 0000 0000 0000 0000 0000 0000
AS DISS	0.005
AS T.R.	00.00000000000000000000000000000000000
(D)	 <u. 605<="" li=""> <l><u. 605<="" li=""> <u. 605<="" li=""> <l< th=""></l<></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></l></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.></u.>
CD T.R.	0.000 0.000
T - ME	1400 1400 1400 11100 1000 1150 1150 1500 1115 1115
ΥA	005 005 006 007 007 007 008 008
STATION DAY TIME	MILLTOWN- 105 MILLTOWN- 105 MARCURE- 1F 06 MARCURE- 1F 06 MARCURE- 16 HUSON- 107 HUSON- 108 HUSON-
	003 003 003 003 003 003 003 003 003 003

TABLE 9

DEEP-VATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART I FESULTS OF SAMPLES TAKEN ON JULY 23-26, 1984

MN DISS	0.05	0.05	0.02	0.01 0.01 0.01 0.01	0.009 0.005 0.008	0.005 0.05 0.05 0.05 0.01 0.007 0.005 0.005 0.008
۲ ۳	0.02	9∪.0	0.03 0.64 0.03	0.02 0.94 0.02 0.03	0.01	0.02 0.03 0.02 0.02 0.03 0.03 0.04 0.05
SSIO	900.0	0.008	0.008 0.007 0.009	<0.005<0.005<0.005<0.005	<0.005 <0.005 <0.005	0.006 0.007 0.008 0.006 0.006 0.006 0.006 0.006
ZM 1.R.	0.01	0.01	0.098 0.01 0.04	<0.005 0.02 0.005 0.007	<0.607 0.007 0.04 0.04	0.097 0.027 0.02 0.014 0.05 0.05 0.02 0.03
CU D1SS	<0.01	0.01	0.01	0.01	<0.01 <0.01 <0.01	0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03
CU T.R.	0.01	.0.01	0.00	0.01 0.02 0.01 0.02	6.01 0.01 0.01	0.00
FE DISS	0.01	0.02	0.02 0.02 0.02	0.02 0.02 0.02 0.02	0.02 0.02 0.01	0.02 0.03 0.03 0.03 0.03 0.01 0.01
۲. ۳.	90.0	0.05	0.10 0.12 0.07	0.06 0.18 0.08 0.12	0.04 0.06 0.06	0.06 0.05 0.05 0.05 0.05 0.05 0.05
HARD	149	66	103 101 102	102 102 102 102	93 99 100	93 1001 1001 998 992 895 788 788
0.0.	8.2	7.7	8.7	9.05 9.0 9.05	10.1 10.0 9.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SPEC	320	228	231 235 226	227 223 221 222	215 214 218	2002 2002 2002 2003 2003 1185 1185 167
PH LAB	7.96	8.05	8.22 8.27 8.24	8.44 8.47 8.46 8.42	8.60 8.58 8.55	88.258 88.258 88.258 88.258 88.258
PH	8.1	7.9	8.3 8.4 7.8	8.25 8.2 8.6 8.6	8.75 8.75 8.6	88.05 88.05 88.05 88.05 88.05 88.05 88.05
(C)		17.5	17.	20. 20. 20.	20. 20.5 20.5	199.5 199.5 198.5
TOTAL DF PTH	10	5	18	45 45 10	14 14 6	21 22 17 17 20 20 40 40 40 27
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1110	13:10	1040 1040 0830	1910 1915 2000 200 5	1650 1655 1600	44000000000000000000000000000000000000
DAY	7 26	1 ≥ 3 ±		24 24 24 24 24 24		2222225 522225 52225 5325 5325 56
ő		1 + 01 7 1 1 1 (1) (1 1 (1) (1)	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	-	0 4 1 4 0 4 4 1 4 0 4 4 1 4 1 6 0 0 0 1	00
ςς +) 2, 2	100 100 - 114 E E E	HUSS HUSS 1979	948-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	SUP: LA. RED	
	03	0 6 6	5555		20.5 20.5 20.5	2002 2002 3008 3008 3008 3008 3008

ALL ALUES APE IN MG/L EXCEPT DEPTH(FEET), TEMPERATURE(DEG. C), PH(PH UNITS), AND S.C.(UMHOS/CM). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. NOTE:

DEEP-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11 FESULTS OF SAMPLES TAKEN ON JULY 23-26, 1984

اب ش س																												
CD A.S.																												
ZN A.S.																												
CU A.S.																												
AG D+SS	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01							<0.01									<0.01					
AG I.R.	<0.01	<0.01	<0.01	<0.01	<0.01		<0.03	<0.01	<0.0>	<0.01			<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	0.01	70.01	.0.01	70.01	<0.01	<0.01	0.0×	<0.07
PB D1SS	<0.05	<0.05	<0.0>				<0.0>	<0.05	<0.05	<0.0>			<0.05	<0.05	<0.05								<0.05					
PB T.R.	<0.05	<0.05	<0.05				<0.05						<0.05	<0.05	<0.05								<0.05					
CR D1SS	<0.02	<0.02	<0.02	<0.02	<0.02		<0.05	<0.02	<0.02	<0.02			<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	<0.02	<0.02	<0.02
CR T.R.	<0.02	<0.05	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	<0.02			<0.02	<0.02	<0.05								<0.02					
AS DISS	900.0	0.003			0.004		0.002							0.002									0.001					
AS I.R.	0.006	0.003	0.003	0.003	0.003		0.003	0.003	0.003	0.003			0.003	0.003	0.002		0.002	0.005	0.005	0.002	0.002	0.002	0.001	0.001	0.001	0.002	0.001	0.001
rD D'S S	<0.005	<0.00	<0.00.05	<0.00	<0.005		<0.005	<0.00	<0.00	<0.00			<0.005	<0.005	<0.00		200°02	Z011, 0105	<0.00 J	<0.005	<0.00	400.002	<0.00	<0.00	<0.00	<0.00	<0.00	40°'∪2
CD I.R.	<0.005	<0.005	<0.005	<0.005	<0.00>		<0.005						70.0H5	<0.005	<0.00.0		70.005	-0.005	0.005	70.005	<0.005	-9.005	<0.00.05	70.005	70.005	-0.005	<0.005	600.00
7 I ME	1110	1300	1000	1040	0830		1910	1915	2000	2005			1650	1655	16.00		1420	1425	1330	1335	1100	1105	0460	6460	1240	1245	1700	1705
DAY	26	23	23	23	23		54	24	24	54			24	24	24		24	24	54	24	54	24	25	25	25	25		
STATION DAY TIME	MILLIOWN-T	MARCURE-IP	HUSON-TOP	HUSON-BOT	941 LE-TOP	9MILE-BOT	BEL FISH-T	BEL FISH-B	1 ARK 10- TOP	TARK10-801	SUPERIOR-1		LAVISIA-IP	LAVISTA-BI	RED HILL-T		BOXCAR-10P	BOXCAR-BOT	100LE-10P	100LE-B01	AB FHEAD-T	AB FHFAD-B	T FALLS-TP	I FALLS-BI	NOXON-TOP	NOXON-BOT	CAB GORG-I	
	03	13.0	ا ت	<u> </u>	9	16	17	17	18	18	19.5	19.5	50	20	20.5	20.5	21	21	21.5	21.5	22	22	26	26	28	28	30	30

NOTE: ALL VALUES ARE IN MG/L. IN THE HEADINGS, T.R. MEANS TOTAL FECOVERABLE AND A.S. MEANS ACID SOLUBLE.

TABLE 9

BLE 9

ALL VALUES ARE IN WE - EXCEPT DEPTH(FEET), TEMPERATURE(DEG. C), PH(PH UNITS), AND S.C. (UMHOS/CM). IN THE HEADINGS, - E. MEANS TOTAL RECOVERABLE.

	M MN	0.01					1 <0.005
	H. R.	0.04					0.01
	ZN DISS	0.02					0.04
	ZN T.R.	0.05	0 10	0.14	0.0	<0.0015	<0.005
_	CU DISS	× 0.03 × 0.03					<0.01
PART	cu T.R.	0.00					0.00
- 18 - - 984	FE	0.00					0.02
ING PES 25-26.	7 F.E.	0.0	0.02	0.04	0.0	0.0	0.04
ONITOR ON OCT	. HARD	184					36 96
ICAL MO TAKEN (0.0	10.3	11.2]]]	11.4	11.4	9.75
L/PHYS MPLES	SPEC	3 3 7 9 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	195	199	200	200	196 188
-WATER CHEMICAL/PHYSICAL MONITORING PES RESULTS OF SAMPLES TAKEN ON OCT 25-26.	PH LAB	88 	8.42	8.41	8.45	8.40	8.32
ATER C ESULTS	PH FLD	N. N. ∞ ∞	8.2	8.2	8.1	8.1	~
OEEP-Y	(C)	·	7	_	9		9.
	71.	σ , σ					0 0 0 0
	ы У —	2.005	1220	1225	0300	0305	0945
	DAY	- 1	\sim	2	\sim	\sim	T 26 B 26
	STATION	MILLTOWN-1 MILLTOWN-8 MARCURE-TP MARCURE-BI HUSON-10P 9MILE-10P 9MILE-10P 9MILE-10P 12RK-10-80T 12RK-1	AB FHEAU-1	I FALLS-B	NOXON-TOP	NOXON-BOT	CAB GORG-T
		033 033 113 114 115 116 118 118 118 119 118 118 118 118 118 118					30 30

DEEP-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11 FESULTS OF SAMPLES TAKEN ON OCT 25-26, 1984

PB A.S.

CD A.S.							
ZN A.S.							
cu A.S.							
AG 01SS	0.00 0.01	<0.01	<0.01	<0.01	<0.01	<0.07	40.01
AG T.R.	<0.03 <0.03	70.01	0.5	0.	0.01	0.01	70.01
PB D1SS	<0.05	77.15	^^ . ت	67.07	61.15	40.05	40.05
P.B.	<0.05 <0.05	<6.15	<0.75	<0. 5	<0.15	<0.05	<0.05
CR D1SS	<0.02<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
CR T.R.	<0.02 <0.03 <0.04	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02
AS DISS	0.005		<0.001				
AS.T.R.	0.0060	<0.001	<0.001	<0.001	70.001	0.001	0.001
(D)	<0.00	<0.00>	<0.00.05	r0.005.	70,005	<0.00	500.00
CD T.R.	<pre></pre>	.005	70.005	.005	.005	.005	. 0.005
DAY TIME	1005	1220	1225	0300	0305	0460	9460
DAY		56	56				
STATION	5555IIQQBBHHQQJJKKBBHHQA	T FALLS-TP	I FALLS-BI	NOXON-10P	NOXON-BOI		CAB GORG-B
	03 113 113 113 113 113 113 113 113 113 1	26	\$ \$ \$	82	82	30	30

NOTE: ALL VALUES ARE IN MG/L. IN THE HEADINGS, T.R. MEANS TOTAL PECOLEPABLE AND A.S. MEANS ACID SOLUBLE.

TABLE 9

DEEP-WAIER CHEMICAL/PH7SICAL MONITORING RESULTS - PAPT I RESULTS OF SAMPLES TAKEN ON MARCH 25-26, 1985

MN DISS							
MN T.R.	90.00	0.05	0.02	0.02	0.02	0.02	0.02
SSIO							
ZH T.R.	0.026	0.006	0.01	<0.005	<0.005	<0.00>	0.009
CU D1SS							
CU 1.P.	0.02	<0.01	<0.01	<0.0>	<0.01	0.01	<0.01
FE 015S			•	•	•	·	
FE T.R.	0 0 0 8 8 8	90.0	0.07	0.08	0.09	0.07	0.08
HARD	471 471	46	46	95	95	96	96
0.0.	12.0	11.9	11.9	11.7	11.7	11.8	11.6
SPEC	394 394	506	207	219	207	201	206
PH LAB	8.18	8.27	8.29	8.21	8.19	8.13	8.13
PH FLO	7.80	7.75	7.75	8.05	8.05	7.9	7.9
ر (C)	т. Э	4.7		5.0		4.2	
TOTAL DEPTH							
T : ME	1200	1630	1645	1330	1400	1015	1045
DAY	25	25	25	56			56
STATION	MILLTOWN-T MARCURE-TP MARCURE-BT MARCURE-BT HUSON-BOI 9MILE-10P 9MILE-10P 9MILE-10P 9MILE-10P 1ARK 10-10P TARK 10-	T FALLS-IP	T FALLS-BT	NO.ºON-10P	NOXCN-BOT		CAB GORG-B
	03 60 77 77 75 75 75 75 75 75 75 75 75 75 75	56	26	28			30

DEEP-VATER CHEMICAL/PHYSICAL WOMITORING RESULTS - PART II RESULTS OF SAMPLES TAREN GN MARCH 25-26, 1985

	93	3	\sim	4	or:	~ ±	
PB.	0.004	0.00	0.00	0.204	0.13	0.003	
4 () ()	0.0000	0.6351	0.0	0.1.17	0.5 13	0.0003	
ZN A.S.	0.0297	0.0054	0.0086	0.0310	0.0614	0.0041	
CU A.S.	0.013	0.002	0.0013	0.011	0.003	0.067	
AG D1SS							
AG T.R.							
PB D1SS							
PB T.R.	<0.05 <0.05 <0.05	<0.02	<0.05	<0.02	50.05	<0.05	
CR DISS		•		•			
CF. T. P.							
AS D1SS							
AS I.R.	0.008	0.001	0.001	0.001	0.001	0.001	
CD D1SS							
CD T.R.	0.005 0.005	00.0	.005	.005	500.0	0.005	
34.1 AVO	25. -	165	(1) (4) (4) (4)	n.	7.	-1	
DAY		25	22		56	3 26	
STATION	MILLTOWN-T MARCURE-TP MARCURE-TP MARCURE-TP HUSON-BOT 9MILE-BOT 9MILE-BOT 9MILE-BOT 1ARN-10-TOP 1ARN-10-TOP 1ARN-10-TOP 1ARN-10-TOP 1ARN-10-TOP 1ARN-10-TOP 1ARN-10-TOP 1AV-1STA-TP LAV-1STA-TP LAV-1STA-TP RED HILL-T SUPER-10R-B 1AV-1STA-TP NOCAP-TOP 100LE-20T 100LE-20T AB FHEAD-TB	T FALLS-IP	PALLS-BI	MOXOM-MOXOM	MOXOM-BOA	CAB GOPS-8	
	22 22 22 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25						
		C) (:u c	'U (J.C.	4) (4)	

IN THE HEADINGS, T.R. MELYS TOTAL PFCOVERABLE AND A.S. MEANS ACID SOLUBLE. ALL .ALUES ARE '' 'IG/L. NOTE:

0. HB H

TABLE 9

DEEP-WATER CHEMICAL/PHYSICAL MONITORING RESULIS - PART I RESULTS OF SAMPLES TAKEN ON JULY 29-30,1985

MN DISS	90.00	<0.005	<0.005	<0.005
AN T.R.	90.00	0.0	0.007	0.02 0.02 0.04
ZH DISS	 0.0017 0.017 0.017 	<0.005	<0.005	<0.005
ZN T.R.				<0.005
CU	0.00			<0.01
CU 1.R.				<0.01
FE DISS				<0.01
FE T.R.	0.08	0.03	0.01	0.02
HARD	145	87	8 8 5 7	884
D.0.	0.80	90.0	8.5	7.1
SPEC	33.00	173	170	169
PH LAB	88.13	8.45	8.49	8.18
PH		ω 1 ω	8.5	7.6
(C)		m	mm	21.5
J T				
T ME	1130	1715	1120	0915 0930
DA1	2 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	561	30	30
STATION	MILL TOWN-B MARCURE-TP MARCURE-TP MARCURE-BI HUSON-BOT 9MILE-TOP 9MILE-BOT 8EL FISH-T BEL FISH-T TARKIO-BOT TOOLE-BOT TOOLE-BOT TOOLE-BOT TARKIO-BOT TOOLE-BOT TOOLE-BOT TARKIO-BOT TOOLE-BOT TOOLE-BOT TARKIO-BOT TOOLE-BOT TOOLE-BOT TARKIO-BOT TOOLE-BOT TARKIO-BOT TOOLE-BOT TOOLE-BOT TARKIO-BOT TOOLE-BOT TARKIO-BOT TOOLE-BOT TARKIO-BOT TOOLE-BOT TOOLE-BOT TARKIO-BOT TOOLE-BOT TOOLE-BOT TOOLE-BOT TOOLE-BOT TOOLE-BOT TARKIO-BOT TOOLE-BOT TOOLE-BOT TOOLE-BOT	T FALLS-BI	NO 201-10F NO 201-801	CAB GORG-1 CAB GORG-B
	003 003 003 003 003 003 003 003 003 003			

DEEP-WATER CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11 RESULTS OF SAMPLES TAKEN ON JULY 29-30, 1985

PB A.S.																												
CD A.S.																												
ZN A.S.																												
∂ (a) ∀																												
AG D1SS																												
AG T.R.																												
PB D1SS	<0.05																						<0.05	<0.05	<0.05	<0.0>	<0.05	<0.02
PB T.R.	<0.05																						<0.02	<0.0%	<0.05	<0.05	<0.0>	<0.05
CR DISS																												
CR T.R.																												
AS DISS	0.004																						<0.001	<0.691	<0.101	<0.001	0.001	0.001
AS T.R.	0.004																									<0.001		
CD 0188	<0.005																						<0.00	<0.005	0.005	<0.00	<0.005	<0.005
CD 1.R.	0.005																						<0.005	70.005	0.005	-0.005	.0.005	+0.005
1 I ME	1130																						1655	1715	1120	1145	0915	0830
DAY	27	•						~	,			~	^			~	_					~	29	59	30	30	30	30
	MILLTOWN-T	MARCURE-TP	MARCURE-BI	40G	001	-B0T	I SH-	F1SH-B	TARKIO-TOP	TARK 10-801	SUPERIOR-1	SUPERIOR-B	LAVISTA-TP	LAVISTA-BI	RED HILL-T	RED HILL-B	BOXCAR-TOP	BOYCAR-BOT	-10P	-B01	tEAD-1	FHEAD-B	FALLS-TP	T FALLS-BT	1-10P	1-B0T	CAB GORG-I	GORG-B
STATION					HUSON-BOL	9MILE-BOT	BEL E	BEL F												100LE-B01	AB FH	AB FH					CAB	CAB
	03	13	13	5	27	19	17	17	18	18	19.5	19.5	20	20	20.5	20.5	21	21	21.5	21.5	25	22	56	56	28	28	30	30

SELUBLE. NOTE: ALL VALUES ARE IN MG/L. IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE AND A.S. MEANS AL

DEEP-WATER CHEMICAL/PHASICAL MONITORING - 814 57 34 SUMMARA - PART I

	STATION		TOTAL	(C)	PH	РН LAB	SPEC	D.C.	T (2)	(4) (3 6) (1	FE DISS	r. B. C	CU 015S 1	ZN 1.R. [ZN T SSIO	MN T.R. D	MM DISS
03	MILLIOWN-T	MAKK MEAK MEAK	080.8	17.5 4.2 7.8	8.2 7.6 7.92 4	8.36 7.96 8.18 5	396 310 359. 5	13.6 8.0 10.42	€ + 4		0.02 0.01 0.02 4	4.02 <0.01 0.01 5	<0.01 <0.01 0.01 4	0.029 0.01 0.021 5	0.02 0.006 0.010 4	0.06 0.02 0.042 5	0.06 0.01 0.027
03	MILLTOWN-B	MAK: MIN: MEAN: N:	000,0	17.0	8.2 7.5 7.83	8.31 8.16 8.24 4	397 312 371.	13.3 7.8 10.02	1410	ar vo m	0.02 0.02 0.02 3	0.02 0.01 0.01	<0.01 <0.01 0.01	0.10 0.013 0.040 4	0.02 <0.005 0.011	0.07 0.03 0.055	0.06 0.01 0.030
13	MARGURF-1P	MEAN:	n tenz	17.5	7.9 7.8 7.85 2	8.35 8.05 8.20 2	282 228 255.	13.3 7.7 10.50	123	5	0.02 0.02 0.02	0.01 0.01 0.01	<0.01 <0.01 0.01 2	0.01 0.009 0.010 2	0.008 <0.005 0.006	0.06 0.03 0.045	0.05 0.03 0.040 2
13	MARCURE-BI	MAX MIN: MFAN:	0.0	0.0	0.00	0.00	0.0	0.00	0.	(· :	0.00	0.00	0.00	0.000	0.000	0.000	0,000
15	HUSON-TOP	MEAN:	22 18 20.	17. 4.0 10.5	8.3 8.3 1	8.23 8.22 8.22	280 231 256.	12.5 8.7 10.60	1133	+ + + + + + + + + + + + + + + + + + +	0.02 0.02 0.02	<0.01 <0.01 0.01 2	<0.01 <0.01 0.01 2	0.008 0.007 0.008	0.008 <0.005 0.006	0.04 0.03 0.035	0.04 0.02 0.030
15	HUSON-BOT	MEAN:	22 18 20.	17.0	8.4 8.4 8.40	8.27 8.24 8.25 2	282 235 259.	12.1 8.7 10.40	317 - Q	たい。	0.02	69.01 0.01 2	<0.01 <0.01 0.01 2	0.02 0.01 0.015	0.007 <0.005 0.006	0.05 0.04 0.045	0.04 0.02 0.030 2
16	9MILE-TOP	MAY: MIN: MEAN: N:	mmm-	18. 11.0	7.8 7.8 7.80	8.24 8.18 8.21	278 226 252.	11.8 8.0 9.0	122 102 112.		0.02 0.02 0.02 2	<0.01 <0.01 0.01 2	<0.01 <0.01 0.01 2	0.04 <0.02 0.030 2	0.009 <0.005 0.007	0.04 0.03 0.035 2	0.03 0.02 0.025
16	9M1LE-80T	MAX: MIN: MEAN: N:	0.0	0.0	00.00	0.00	0.0	0.00	· 0	00	0.00	0.00	0.00	0.000	0.000	0.000	0.000
MOTE	NOTE: ALL WATER ABOVE HE STON	A P P A A	3 1/ 0/1	TOIJ	DEDIL	(T L L L L L	70110	10 A T L D L	(L		411	()	-		(

ALL VALUES ARE IN MG/L EXCEPT DEPTH(FEET), TEMPERATURE(DEG. C. PH(PH UNITS), AND S.C.(UMHOS/CM). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. SOME F ELD PHIALUES ARE QUESTIONABLE. VALUES LESS THAY THE DETECTION LIMIT ARE TAKEN TO BE AT THE DETECTION LIMIT ARE TAKEN TO BE AT THE DETECTION LIMIT AND THE MEAN. MOTE:

DEEP+WATER CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUMMARY - PART 11

	STATION		CD T.R.	CD D1SS	AS T.R.	AS D1SS	CR T.R.	CR D1SS	PB T.R.	PB D1SS	AG T.R.	AG 015S	CU A.S.	ZN A.S.	CD A.S.	A P
03	MILLIOWN-T	MAX: M+R: MEAN: N:	0.005 0.005 0.005 5	<0.005 <0.005 0.005 0.005	0.008 0.004 0.006	0.006 0.004 0.005 4	<0.02 <0.02 0.02 3	<0.02 <0.02 0.02 3	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 0.05 4	<0.01 <0.01 0.01 3	<0.01 <0.01 0.01 3	0.013 0.013 0.0130	0.9383 0.0383 0.0383	0.0009 0.0009 0.0009	0.035
03	MILLTOWN-B	MAX: MEAN: N:	<0.005 <0.005 0.005 4	<0.005 <0.005 0.005 2	0.006 0.005 0.006 4	0.005 0.005 0.005 3	<0.02 <0.02 0.02 2	<0.02 · · · · · · · · · · · · · · · · · · ·	<0.05 <0.05 0.05 0.05 4	<0.05 · · · · · · · · · · · · · · · · · · ·	<0.01 <0.01 0.01 2	<0.01 <0.01 0.01 2	0.015 0.015 0.0150	0.0297 0.0297 0.0297	0.0002 0.0002 0.0002	0.00-0 0.00-0 0.00-0
13	MARCURE-TP	MAX: MIN: MEAN: N:	<0.005 <0.005 0.005 2	<0.005 <0.005 0.005 2	0.003 0.002 0.002 2	0.003 0.002 0.002 2	<0.02 <0.02 0.02 2	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.05 <0.05 0.05 0.05 2	<0.05 <0.05 <0.05 <0.05 <	<0.01 <0.01 0.01	<0.01 <0.01 0.01 2	0.0000 0	0.0000	0.0000	0°00.0
13	MARCURE-BT	MAV: M+N: MEAN: N:	0.000	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.00
15	HUSON-TOP	MAX: MIN: MEAN: N:	<0.005 <0.005 0.005 2	<0.005 <0.005 0.005	0.003 0.002 0.002	0.003 0.002 0.002 2	<0.02 70.02 0.02 2	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <	<0.01 <0.01 0.01	<0.01 <0.01 0.01 2	0.0000 0	0.0000	0.0000	9.0 0
15	HUSON-BOT	MAAX: MEAN: N:	<0.005 .0.005 .0.005 .005	<0.005 <0.005 0.005	0.003 0.002 0.002 2	0.003 0.002 0.002	<0.02 <0.02 0.02 5.02	<0.02 <0.02 <0.02 <	<0.05 <0.05 <0.05 <	<0.05 < 0.05 < 0.05 < 0.05 < 2	<0.01 · 0.01 · 0.01 · 3	<0.01 <0.01 0.01 2	0.000 0	0 0000 0	0.0000	0.00
16	9M!LE~10P	MAX: MIN: MEAN: N:	70.005 70.005 0.005	<0.005 <0.005 0.005	0.003 0.002 0.002 2	0.004 0.002 0.003	76.02 79.02 0.02	<0.02 <0.02 <0.02 <0.02 <	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 < 0.05 < 0.05 < 0.05 < 2	<0.01 <0.01 0.01	<0.01 <0.61 0.01 2	0.00 <u>c</u> m 0	0,0500	0.0000	0.00
16	9M1LE-80T	MAK: Min: MEAN: N:	0.000	0.000	0.000	0.000	0.00	0.00	00.00	0.00	0.00	0.00	0.096	0.90.00	0.0000	0.6
NOTE	NOTE: ALL VALUES ARE IN MG/L.	ARE IN		N THE	THE HEADINGS	α 	O E V E D	TOTAL	RECOVE	1 1 0 V 0 :	< C1 <	RECOVERABLE AND A C MEANS	Q U V V V V V V V V V V V V V V V V V V	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

ALL VALUES ARE IN MG/L. IN THE HEADINGS, T.R. "EANS TOTAL RECOVERABLE AND A.S. MEANS ACID SOLUBLE. VALUES LESS THAN THE DETECTION LIMIT ARE TAKEN TO BE AT THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN. MOTE:

DEEP-WATER CHEMIC/ /PHYSICAL MONITORING - STATISTICAL SUMMARY - PART I

		^			_			2 2 2	
MN DISS	0.02 0.01 0.015 2	0.04 0.01 0.025 2	0.03 0.01 0.020 2	0.03 0.01 0.020 2	0.02 0.02 0.020	0.02 0.02 0.020	0.005 0.009 0.009	0.005 0.005 0.005	
MN .R. E	0.04 0.02 0.030 2	0.04 0.03 0.035	0.04 0.02 0.030	0.04 0.03 0.035	0.05 0.05 0.050	0.03 0.03 0.030	0.01 0.01 0.010	0.02 0.02 0.020	
ZM R 0.185 T	<0.005 <0.005 0.005 2	0.007 <0.005 0.006	0.01 <0.005 0.008 2	0.008 <0.005 0.006	<0.005 <0.005 0.005	<0.005 <0.005 0.005	<0.005 <0.005 0.005	<0.005 <0.005 0.005	/CM).
Z# Z .R. 01	0.04 <0.05 <0.022 <0.022 <0.022	0.02 0.698 < 0.014	0.068 0.005 < 0.006	0.067 <0.005 0.006	0.02 < 0.02 < 0.02 < 0.02 < 1.00 < 0.02 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.	<0.005 < 0.005 < 0.005 < 0.005	<0.007 <0.007 <0.007 <0.007 <0.007	0.006 < 0.006 < 0.006 < 0.006	AND S.C. (UMHOS/CM).
CU Z DESS I.	<pre><0.01 <0.01 </pre>	<0.01 70.01 0.01 2	<0.01 <0.01 0.01 2	<0.01 < 0.01 < 0.01 < 2	<0.01 <0.01 0.01	0.01	<0.01 <0.01 <0.01 1.01	<0.01 <0.01 0.01	AND S.C
cu 1.R. D	<pre><0.01 <0.01 0.01 2</pre>	0.02 <0.01 0.02	<0.01 <0.01 0.01 2	0.02 <0.01 0.02 2	<0.01 <0.01 0.01	<0.01 <0.01 0.01	<0.01 <0.01 0.01	0.01	
FE 01SS	0.02 0.02 0.02 2	0.02 <0.01 0.02	0.02 0.02 0.02	0.02 0.02 0.02	0.01	0.02 0.02 0.02	0.02 0.02 0.02	0.02 0.02 0.02	C), PH(PH UNITS),
FE T.R.	0.11 0.06 0.08 2	0.18 0.02 0.10	0.12 0.08 0.10 2	0.12 0.10 0.11 2	0.10 0.10 0.10	0.09 0.09 0.09	0.04 0.04 0.04 1	0.06	C), Pt
044	121 102 112.	122 102 112.	121 102 112.	122 102 112.	122 122 122.	121	93 93 93.	99 99 99.	(DFG.
D.0.	12.2 9.05 10.63	12.1 9.0 10.55	12.3 9.05 10.67 2	12.3 9.0 10.65	13.3 13.3 13.30	13.3 13.3 13.30	10.1 10.1 10.10	10.0 10.0 10.00	TEMPERATURE (DEG
SPEC	276 227 252.	274 223 249.	275 221 248.	277 222 250. 250.	271 271 271.	272 272 272.	215 215 215.	214 214 214.	, TEMP
PH LAB	8.44 8.33 8.38 2	8.47 8.26 8.36	8.46 8.32 8.39	8.42 8.33 8.38	8.50 8.50 1	8.55 8.55 8.55	8.60 8.60 8.60	8.58 8.58 1	DEPTH(FEET)
PH FL0	8.25 7.9 8.07 2	8.2 7.7 7.95 2	8.6 7.9 8.25 2	8.6 7.9 8.25 2	8.1 8.1 1.0	8.1 8.10	8.75 8.75 8.75	8.75 8.75 8.75	
(C)	20. 4.0 12.0	20. 20. 20.0	20. 5.0 12.5	20. 20. 20.0	0.0	0.0	20. 20. 20.0	20.5 20.5 20.5 1	EXCEPT
TOTAL DEPTH	50 45 48.	50 45 48.	20 10 15.	20 10 15.	27 27 27.	27 23 27.	14 14 14	14 14 14.	1/9W
	MEAN:	**************************************	MEAN:	MAAV:	7	2 2 M 4 2 M X 2 M X 2 M X 2 M	 	MEAN:	ARE IN
10R	F1SH-T	F1SH-B	TARK10-10P	0-801	10R-1	10R-B	TA-TP	TA-8T	ALL VALUES ARE IN MG/L EXCEPT
STATION	BEL F	BEL F	TARKI	TARK10-B01	SUPERIOR-T	SUPER10R-B	LAVISTA-TP	LAVISTA-BI	
	21	2.	α: •	€	.9.5	5.6.	52	Ŝ	WOTE:

ALL VALUES ARE IN MG/L EXCEPT DEPTH(FEET), TEMPERATURE(DFG. C), PH(PH UNITS), AND S.C.(UMHOS/CM). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. SOME FIELD PH VALUES ARE QUESTIONABLE. VALUES LESS THAN THE DETECTION LIMIT ARE TAKEN TO BE AT THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN. *C+E:

TEER-WATER CHEMICAL/PHYSICAL MUNITORING - STATISTICAL SUMMARY - PART II

PB A.S.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CD A.S.	0.0000	0.0000 0	0.0000	0.0000	0.0000	0.0000	0.0000	ο.0000 0
. S. 1	000000	000.	0000	000000	0.0000 0.0000	0.0000	0000	
CU A.S.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
AG D1SS	<0.01 <0.01 0.01 2	<0.01 <0.01 0.01 2	<0.01 <0.01 0.01 2	<0.01 <0.01 0.01 2	<0.01 <0.01 0.01	<0.01 <0.01 0.01	<0.01 <0.01 0.01	<0.01 <0.01 0.01
AG T.R.	<0.01 <0.01 0.01 2	<0.01 <0.01 0.01 2	<0.01 <0.01 0.01 2	<0.01 <0.01 0.01 2	60.01 0.01 0.01	<0.01 <0.01 0.01	60.01 60.01 10.01	00.01
PB D1SS	<0.05 <0.05 0.05 2	<0.05 <0.05 0.05 2	<0.05 <0.05 0.05 2	<0.05 <0.05 0.05 2	<0.05 <0.05 0.05	<0.05 <0.05 0.05	<0.05 <0.05 0.05	<pre></pre>
PB T.R.	<0.05 <0.05 0.05	<0.05 <0.35 0.25	<0.05 <0.05 0.05	0.05 0.05 0.05 0.05	<0.05 <0.95 0.05	<0.65 60.65 6.65	<0.05 6.05 6.05	2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
CR D1SS	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02
CR T.R.	<0.02 <0.02 0.02 2	<0.02 <0.02 0.02	<0.02 <0.02 0.02 2	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02 1
AS Diss	0.002 0.002 0.002 2	0.002 0.002 0.002 2	0.002 0.002 0.002	0.003 0.002 0.002 2	0.002 0.002 0.002	0.002 0.002 0.002 1	0.002 0.002 0.002	0.002 0.002 0.002
AS T.R.	0.003 0.002 0.002 2	0.003 0.002 0.002 2	0.003 0.002 0.002 2	0.003 0.002 0.002 2	0.003 0.003 0.003	0.002 0.002 0.002	0.003 0.003 0.003	0.003
CD D1SS	<0.005 <0.005 0.005 2	<0.005 <0.005 0.005 2	<0.005 <0.005 0.005 2	<0.005 <0.005 0.005	<0.005 <0.005 0.005	<0.005 <0.005 0.005	<0.005 <0.005 0.005	<0.005 -0.005 0.005
CO T.R.	<0.005 <0.005 0.005 2	<00,005 <00,005 0,005	<0.005 <0.005 0.005 2	<0.005 <0.005 0.005 2	<0.005 <0.005 0.005	<0.005<0.005<0.005	<0.005<0.005<0.005	555
	7 7 7 7 7 7 7 7 4 1 3 14 2 2	지 : : : : : : : : : : : : : : : : : : :	* * * * * * * * * * * * * * * * * * *	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7 P P P P P P P P P P P P P P P P P P P	* * * * * * * * * * * * * * * * * * *	1 2 2 2 2 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4	
STATION	BEL FISH-T	BEL FISH-B	1ARki0-TOF	1ARK10-801	19.5 SUPERIOR-I	19.5 SUPERIOR-B	LAVISTA-TP	20 LAVISTA-B1 6.23 <0.00 P. 34
	17	17	81	18	19.5	19.5	20	20

ALL VALUES 435 4 MOZZ. THITHE HEADINGS, T.R. MEANS TOTAL RECOVERABLE AND A.S. MEANS ACID STUBLE. VALUES LESS THAN THE DETECTION LIMIT ARE TAKEN TO BE AT THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN. NOTE:

DEEP-WATER CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUMMARY - PART I

MN 018S	0.02 0.008 0.02 0.008 0.020 0.008	000 0 000)3)3)30	0.01 0.005 0.01 0.005 0.010 0.005	0.02 0.05 0.02 0.05 0.020 0.050	0.02 0.01 0.02 0.01 0.020 0.010	01 0.007 01 0.007 010 0.007	2 <0.005 22 <0.005 20 0.005	-
ZN MN OISS T.R.	<0.005 0. <0.005 0. 0.005 0.	0.000 0.0		0.007 0.0 0.007 0.0 0.007 0.0	0.008 0.0 0.008 0.0 0.008 0.0	0.006 0.0 0.006 0.0 0.006 0.0	0.006 0.01 0.006 0.01 0.006 0.010	0.005 0.02 0.005 0.02 0.005 0.02	
ZN Z T.R. 01	0.04 < 0.04 < 0.040	000.00		0.007 0.007 0.007 1	0.02 0.02 0.020 1	0.01	0.01	0.04 0 0.04 0 0.040 0	
CU	<0.01 <0.01 0.01	0.00	0.02 0.02 0.02	<0.01 <0.01 0.01	0.02 0.02 0.02	0.01	0.01	0.01 0.01 0.01	
CU 1.R.	<pre></pre>	00.00	0.01	<0.01 <0.01 0.01	0.01	0.02 0.02 0.02	0.01	0.02 0.02 0.02	
FE DISS	0.01	0.00	0.02 0.02 0.02	0.01	0.04 0.04 0.04 1	0.02 0.02 0.02	0.02 0.02 0.02	0.02	
FE 1.R.	0.06 0.06 0.06	00.00	0.06 0.06 0.06	0.05 0.05 0.05	0.06 0.06 0.06	0.08 0.08 0.08	0.05 0.05 0.05	0.06 0.06 0.06	
HRD	100 100 100.	0.0	93 93 93.	101 101 101.	100 100 100.	94 94 94.	98 98 98.	98 98 98.	(
D.0.	9.8 9.8 1	0.00	9.6 9.6 9.60	0.00	8.7 8.7 8.70	8.7 8.7 8.70	8.6 8.6 1	8.5 8.5 8.50	
SPEC	218 218 218.	0.0	205 205 205.	215 215 215.	222 222 222.	208 208 208.	210 210 210.	217 217 217.	į,
PH LAB	8.55 8.55 1.55	0.00	8.47 8.47 8.47	8.45 8.45 8.45	8.37 8.37 8.37	8.48 8.48 8.48	8.52 8.52 8.52	8.47 8.47 8.47 1	1
FLO	8.6 8.6 8.60	0.00	8.6 8.6 8.60	8.55 8.55 8.55	8.45 8.45 8.45	8.55 8.55 8.55	8.4 8.4 8.40	0.00	OFFILE
(C)	20. 20. 20.0	0.0	19. 19.	19. 19. 19.0	19.5 19.5 19.5	19.5 19.5 7.61	8 18 2.8 2.5 5.5	19. 19. 19.0	VOEDT
TOTAL DEPTH	999-1-	00.	21.	221.	17.17.	17 17 17.	20 20 20.	20 20 20.	3 1/ 08
	MEAN: MEAN: MEAN:	MAX MEAN: MEAN:	MAX: MEAN: N:	MAX: MIN: MEAN: N:	MAX: MEAN: N:	MAX: MIN: MEAN: N:	MAX: MIN: MEAN:	MEAN:	ARE
STATION	20.5 RED HILL-T	5 RED HILL-B	BOXCAR-10P	BOXCAR-BOT	21.5 TOOLE-FOP	21.5 TOOLE-BOT	AB FHEAD-T	AB FHEAD-B	NOTE: ALL VALUES ARE IN MCZE EVERDE
	20.	20.5	21	21	21.	21.	22	22	NOTE

ALL VALUES ARE IN MG/L EXCEPT DEPTH(FEET), TEMPERATURE(DEG. C), PH(PH UNITS), AND S.C.(UMHOS/CM). IN THE HEADINGS, T.R. MFANS TOTAL RECOVERABLE. SOME FIFLD PH VALUES ARE QUESTIONABLE. VALUES LESS THAN THE DETECTION LIMIT ARE TAKEN TO BE AT THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN. NO F:

DEEP-WATER CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUMMARY - PART II

РВ А. S.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CD A.S.	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000
ZN A.S.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0	0.0000 0.0000
CU A.S.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
AG D1SS	<0.01 <0.01 0.01	0.00	<0.01 <0.01 0.01	<0.01 <0.01 0.01	<0.01 <0.01 0.01	<0.01 <0.01 0.01	<0.01 <0.01 0.01	<0.01 <0.01 0.01
AG T.R.	<0.01 <0.01 0.01	0.00	<0.01 <0.01 0.01	<0.01 <0.01 0.01	<0.01 <0.01 0.01	<0.01 <0.01 0.01	<0.01 <0.01 0.01	<0.01 <0.01 0.01
PB D1SS	<0.05 <0.05 0.05	0.00	<0.05 <0.05 0.05	<0.05 <0.05 0.05	<0.05 <0.05 0.05	<0.05 <0.05 0.05	<0.05 <0.05 0.05	<0.05 <0.05 0.05
PB T.R.	<0.05 <0.05 0.05	0.00	<0.05 <0.05 0.05	<0.05 <0.05 0.05	<0.05 <0.05 0.05	<0.05 <0.05 0.05	<0.05 <0.05 0.05	<0.05 <0.05 0.05
CR D1SS	<0.02 <0.02 0.02	0.00	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02
CR T.R.	<0.02 <0.02 0.02	0.00	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02	<0.02 <0.02 0.02 1
AS DISS	0.002 0.002 0.002	0.000	0.002 0.002 0.002	0.002 0.002 0.002	0.002 0.002 0.002	0.002 0.002 0.002	0.002 0.002 0.002	0.002 0.002 0.002
AS T.R.	0.002 0.002 0.002	0.000	0.002 0.002 0.002	0.002 0.002 0.002	0.002 0.002 0.002	0.002 0.002 0.002	0.002 0.002 0.002	0.002 0.002 0.002
CD D1SS	<0.005 <0.005 0.005	0.000	<0.005 <0.005 0.005	<0.005 <0.005 0.005	<0.005 <0.005 0.005	<0.005 <0.005 0.005	<0.005 <0.005 0.005	<0.005 <0.005 0.005
CD T.R.	<0.005 <0.005 0.005	0.000	<0.005 <0.005 0.005	<0.005 <0.005 0.005	0.005 0.005 0.005	<0.005 <0.005 0.005	<0.005 <0.005 0.005	<0.005<0.005<0.005<0.005
	MAX: MIN: MEAN: N:	MAX: MIN: MEAN: N:	MAX: MIN: MEAN: N:	MAX: MIN: MEAN: N:	MAX: MIN: MEAN: N:	MAX: MHR: MEAN: N:	MAX: MIN: MEAN: N:	MAXX MIN: MEAN: N:
STATION	20.5 RED HILL-T	20.5 RED HILL-B	21 BOXCAR-TOP	21 B0XCAR-B0T	21.5 TOOLE-TOP	21.5 TOOLE-BOT	22 AB FHEAD-T	22 AB FHEAD-B

ALL VALUES ARE IN 116/L. IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE AND A.S. MEANS ACID SOLUBLE. VALUES LESS THAN THE DETECTION LIMIT ARE TAKEN TO BE AT THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN. NOTE:

DEEP-WATER CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUMMARY - PART I

MN DISS	0.01 <0.005 0.008 4	0.008 <0.005 0.006 3	0.02 <0.005 0.010	0.05 <0.005 0.018	0.006 <0.005 0.005	0.008 0.005 0.006 4
MN I.R. D	0.02 0.01 0.016 5	0.02 0.01 0.015	0.05 0.007 0.023 5	0.04 0.01 0.022 5	0.02 0.01 0.016 5	0.08 0.01 0.034 5
ZN F SSIO	0.08 <0.005 0.024 4	0.008 <0.005 0.006 3	0.01 <0.005 0.006 4	0.05 <0.005 0.017	0.04 <0.005 0.014 4	0.006 <0.005 0.005
ZN 1.R. [0.12 <0.005 0.037 5	0.03 <0.005 0.013 4	0.02 0.005 0.009 5		<0.005 <0.005 0.005 5	
CU SS10	0.02 <0.01 0.01	0.01 0.01 0.01 3	<0.01 <0.01 0.01 4	<0.01 <0.01 0.01 4	0.02 <0.01 0.01 4	
CU 1.R. (0.01 0.01 0.01			0.02 <0.01 0.01 5	
FE DISS		0.02 0.01 0.01 3				
FE T.R.	0.06 0.02 0.04 5	0.07 0.03 0.04 4	0.08 0.01 0.05 5	0.09 0.02 0.05	0.07 0.02 0.04 5	0.36 0.03 0.13 5
HRD	100 87 93.	100 87 93.	103 85 91.	101 83 91.	96 36 77.	96 79 89.
0.0.	12.3 8.3 10.42 5	11.9 8.4 9.97 4	12.3 8.4 10.46 5	12.4 7.1 9.94 5	12.8 7.1 10.01 5	12.8 6.7 9.92 5
SPEC	206 173 193.	207 173 192.	219 170 192.	207 171 191.	207 167 187.	206 166 185. 5
РН LAB	8.50 8.27 8.39 5	8.45 8.29 8.40	8.49 8.21 8.37 5	8.51 8.19 8.34 5	8.42 8.13 8.27 5	8.34 8.08 8.23 5
PH FLD	8.2 7.75 8.03 5	8.35 7.75 8.15 4	8.25 7.7 8.04 5	8.2 7.8 8.04 5	8.2 7.6 7.92 5	8.2 7.1 7.78 5
(C)	24.0 4.0 12.2 5	23.0 7. 17.2	23.6 4.0 12.4 5	23.0 20.8 21.9 2	21.5 3.0 11.8	21.5 21.3 21.3
TOTAL DEPTH	40 17 28.	40 28 34.	48 22 37.	48 22 37.	29 27 28.	29 27 28.
	MAX: MIN: MEAN: N:	MAX: MIN: MEAN: N:	MAX: MIN: MEAN:	MAX: MEN: MEAN: N:	HAX: MIN: MEAN: N:	MAX: MEAN: MEAN: N:
STATION	T FALLS-TP	T FALLS-BT	NOXON-TOP	NOX0N-B01	CAB GORG-1	CAB GORG-B
	26	26	28	28	30	30

ALL VALUES ARE 111 MG/L EXCEPT DEPTH(FEET), TEMPERATURE(DEG. C), PH(PH UNITS), AND S.C.(UMHOS/CM). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE. SOME FIELD PH VALUES ARE QUESTIONABLE. VALUES LESS THAN THE DETECTION LIMIT ARE TAKEN TO BE AT THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN. NOTE:

TABLE 10

DEEP-WATER CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUMMARY - PART II

STATION		CD T.R.	CD D1SS	AS T.R.	AS DISS	CR. T.R.	CR D1SS	PB T.R.	PB D1SS	AG T.R.	AG D I SS	CU A.S.	ZN A.S.	CD A.S.	PB A.S.
T FALLS-TP	MAX: MIN: MEAN: N:	<0.005 <0.005 0.005 5	<0.005 <0.005 0.005 h	0.001 0.001 0.001 5	0.001 0.001 0.001	<0.02 <0.02 0.02 3	<0.02 <0.02 0.02 3	<0.05 <0.05 0.05 5		<0.01 <0.01 0.01 3	<0.01 <0.01 0.01 3	0.002 0.002 0.0020	0.0054 0.0054 0.0054 1	0.0001 0.0001 0.0001	0.003 0.003 0.0030
T FALLS-BT	MAX: MIN: MEAN: N:	<0.005 <0.005 0.005 4	<0.005 <0.005 0.005	0.001 0.001 0.001	0.001 0.001 0.001	<0.02 <0.02 0.02 2	<0.02 <0.02 0.02 2	<0.05 <0.05 0.05	<0.05 <0.05 0.05 3	<0.01 <0.01 0.01 2	<0.01 <0.01 0.01 2	0.003 0.003 0.0030	0.0086 0.0086 0.0086	0.0001 0.0001 0.0001	0.002 0.002 0.0020
NOXON-TOP	MAX: MIN: MEAN: N:	<0.005 <0.005 0.005 5	<0.005 <0.005 0.005 t	0.001 0.001 0.001 5	0.001 0.001 0.001	<0.02 <0.02 0.02 3	<0.02 <0.02 0.02 3	<0.05 <0.05 0.05 5	<0.05 <0.05 0.05 4	<0.01 <0.01 0.01 3	<0.01 <0.01 0.01 3	0.011 0.011 0.0110	0.0310 0.0310 0.0310	0.0007 0.0007 0.0007	0.204 0.204 0.2040
NOXON-BOT	MAX: MIN: MEAN: N:	<0.005 <0.005 0.005 5	<0.005 <0.005 0.005	0.002 <0.001 0.001 5	0.002 <0.001 0.001 4	<0.02 <0.02 0.02 3	<0.02 <0.02 0.02 3	<0.05 <0.05 0.05 5	<0.05 <0.05 0.05 4	<0.01 <0.01 0.01	<0.01 <0.01 0.01 3	0.003 0.003 0.0030	0.0614 0.0614 0.0614	0.0013 0.0013 1	0.138 0.138 0.1380
CAB GORG-T	MAXX MEAN: N:	<0.005 <0.005 0.005 5	<0.005 <0.005 0.005 4	0.001 0.001 0.001 5	0.001 0.001 0.001	<0.02 <0.02 0.02 3	<0.02 <0.02 0.02 3	<0.05 <0.05 0.05 5	<0.05 <0.05 0.05 h	<0.01 <0.01 0.01 3	<0.01 <0.01 0.01 3	0.001 0.001 0.0010	0.0041 0.0041 0.0041	0.0003 0.0003 0.0003	0.003 0.003 0.0030
CAB GORG-B	MEAN MEAN MEAN:	<0.005 <0.005 0.005 5	<0.005 <0.005 0.005 0.005	0.001 0.001 0.001 5	0.001 0.001 0.001	<0.02 <0.03 0.02 3	<0.02 <0.02 0.02 3	<0.05 <0.05 0.05 5	<0.05 <0.05 0.05 4	<0.01 <0.01 0.01 3	<0.01 <0.01 0.01 3	0.005 0.005 0.0050	0.0091 0.0091 0.0091	0.0001 0.0001 0.0001	0.074 0.074 0.0740

ALL VALUES ARE IN MG/L. IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE AND A.S. MEANS ACID SOLUBLE. VALUES LESS THAN THE DETECTION LIMIT ARE TAKEN TO BE AT THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN. NOTE:

3. Bottom Sediments

a. Rationale

In light of the quantities of heavy metals in the sediments behind Milltown Dam, it is reasonable to assume that there are elevated levels of heavy metals in the sediments of downstream pools and reservoirs. Comparing the organic content of sediments from behind Milltown Dam to those of still, deep waters downstream may indicate whether there is appreciable deposition and accumulation of organic solids originating from the Missoula wastewater treatment plant, Champion International, terrestrial or instream sources (algae production).

b. Methods

Samples of sediment were collected with a Petite Ponar Grab (bottom dredge) from the same 15 pools and reservoirs sampled for bottom and surface grabs. Sediments were analyzed for total and acid-leachable concentrations of heavy metals and percent organic content.

Sample collection and analysis methods are summarized in Table 11.

c. Results

Reservoir and river pool sediment analysis data are given in Table 12. A statistical summary of the results is presented in Table 13.

Table 11. Sample Collection and Analysis Methods for Bottom Sediment Annitoring

Variable	Collection Method	Analytical Method	laboratory
Organic Content (%) (PVDWS)	Petite Ponar grab sample	АРНА 208 G. ¹⁾	MDNES Chem 120
Acid-Leachable and Total Metals ($\mathrm{ug/g}$)	Petite Ponar grab sample	Sample preparation prior to analysis described in Append	
Iron (FE T.R., FE TOT) Copper (CU T.R., CU TOT) Manganese (MN T.R., MN TOT) Cadmium (CD T.R., CD TOT) Arsenic (AS T.R., AS TOT) Chronium (CR T.R., CR TOT) Lead (PB T.R., PB TOT) Silver (AG T.R., AG TOT)		EPA 200.7 2)	

References

^{1) &}quot;Standard Methods for the Examination of Water and Wastewater,"
Joint Editorial Board, American Public Health Association, American
Water Works Association and Water Pollution Control Federation,
15th Edition, 1981.

^{2) &}quot;Methods for Chemical Analysis of Water and Waste," EPA-600/4-79-020 U.S. Environmental Protection Agency, 1983 (Revised).

PART SEDIMENT CHEMICAL/PHYSICAL MONITORING RESULTS

			SEDIME	NT CHEM RESI	ICAL/PH JLTS OF	SEDIMENT CHEMICAL/PHYSICAL MONITORING RESULTS - RESULTS OF SAMPLES TAKEN ON MARCH 5-8,	ON TOR	NG RESU ON MARC		PART 1 1984		
	STATION	DAY	DEPTH	PVDWS	FE T.R.	FE TOT	cu T.R.	CU 101	ZN T.R.	ZN T01	₹ .	TOT
03	MILLIOWN	90	8	0.5	2290. 2510.	5543. 4451. 6665	55. 49.	51.6 52.9 115	251. 246.	277. 269. 458	174. 181.	292.
13	MARCURE	90	m m m	0.35	2670. 2400. 3170.	5064. 5131. 4710.	38. 38. 68.	24.8 35.6 28.5	123. 113.	132. 129. 135.	262. 215. 311.	236. 249. 260.
15		90	mmm	0.7	2410. 2440. 4390.	7632. 5544. 6820.	55. 50. 162.	117. 54.6 167.	140. 127. 362.	251. 147. 339.	219. 190. 519.	602. 284. 447.
17 19.5 20.5 21.5 22.5	BEL FISH C TARKIO SUPERIOR LAVISTA RED HILL TOOLE ABV FLHEAD	07 07	15 25 25	0.2	1840. 4010. 3700.	3981. 7598. 6583.	10. 90. 63.	<2.6 114. 42.	42. 211. 182.	55.3 251. 161.	199. 431. 324.	303. 508. 247.
26 30	T FALLS NOXON CAB GORGE	08 08 08	57 17 17 22 25 27 43	0.6 1.9 0.4 0.6 1.0	3960. 7540. 6470. 5740. 3340. 4070. 5400.	9583. 12100. 12600. 14400. 8224. 8918.	55. 146. 63. <5. 34.	108. 150. 149. 65.7 <2.4 <2.4	129. 353. 297. 114. <5. 134.	230. 321. 313. 162. 26.0 31.8	270. 904. 840. 235. 202. 198.	329. 802. 795. 377. 163. 252.

ALL VALUES ARE IN UG/G EXCEPT DEPTH(FEET) AND PERCENT VOLATILE DRY WEIGHT SOLIDS (%). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE AND TOT MEANS TOTAL. NOTE:

TABLE 12

SEDIMENT CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11
RESULTS OF SAMPLES TAKEN ON MARCH 5-8 1084

STATION DAY T.S. CARPLES TAKEN ON MARCH 5-8, 1984 MILLTOWN 05 <5. <1.2 6. 0.6 <20. <50. <10. <10. <10. <10. <10. <10. <10. <1								
STATION DAY MILLTOWN 05 MARCURE 06 HUSON NINEMILE 06 TARKIO 07 TARKIO 07 SUPERIOR 07 LAVISTA RED HILL BOXCAR TOOLE ABV FLHEAD T FALLS O8 NOXON 08	184	AG T.R.	×10.	0000	< 10.		^ ^ \ . 	
STATION DAY MILLTOWN 05 MARCURE 06 HUSON NINEMILE 06 TARKIO 07 TARKIO 07 SUPERIOR 07 LAVISTA RED HILL BOXCAR TOOLE ABV FLHEAD T FALLS O8 NOXON 08	5-8, 19	PB TOT						
STATION DAY MILLTOWN 05 MARCURE 06 HUSON NINEMILE 06 TARKIO 07 TARKIO 07 SUPERIOR 07 LAVISTA RED HILL BOXCAR TOOLE ABV FLHEAD T FALLS O8 NOXON 08	MARCH	РВ Т. R.	<50.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<50. <50.		<50. <50.	\$\$\$\$. \$\$0. \$\$0.
STATION DAY MILLTOWN 05 MARCURE 06 HUSON NINEMILE 06 TARKIO 07 TARKIO 07 SUPERIOR 07 LAVISTA RED HILL BOXCAR TOOLE ABV FLHEAD T FALLS O8 NOXON 08	AKEN ON	CR T.R.	<20.	<20. <20. <20. <20.	<20. <20.	<20. <20. <20.	<20. <20.	200. 200. 200.
STATION DAY MILLTOWN 05 MARCURE 06 HUSON NINEMILE 06 TARKIO 07 TARKIO 07 SUPERIOR 07 LAVISTA RED HILL BOXCAR TOOLE ABV FLHEAD T FALLS O8 NOXON 08	APLES T	AS TOT	9.6	 	2.3	2.4 3.1 3.0	33.4	22.4 20.4 20.4 20.4 20.4
STATION DAY MILLTOWN 05 MARCURE 06 HUSON NINEMILE 06 TARKIO 07 TARKIO 07 SUPERIOR 07 LAVISTA RED HILL BOXCAR TOOLE ABV FLHEAD T FALLS O8 NOXON 08	OF SAN	AS T.R.	٠٠٠,٥	 	÷.v.7		5.	4 3
STATION DAY MILLTOWN 05 MARCURE 06 HUSON NINEMILE 06 TARKIO 07 TARKIO 07 SUPERIOR 07 LAVISTA RED HILL BOXCAR TOOLE ABV FLHEAD T FALLS O8 NOXON 08	RESULTS	C0 TOT	2:5	2-2-2			 	
STATION MILLTOWN MARCURE HUSON NINEMILE TARKIO SUPERIOR LAVISTA RED HILL RED HILL RED HILL RED HILL RED HILL ROCCAR TOOLE TOOLE NOXON CAB GORGE	35014541	CD T.R.	Λ. 	৾৽৻৽৻	\$\$\$	\$ \$\$\$	\$ \$ \$	
STATION MILLTOWN MARCURE HUSON NINEMILE BEL FISH C TAKHO 5 SUPERIOR LAVISTA 5 RED HILL BOXCAR 5 NOCAR 7 FALLS 1 FALLS NOXON CAB GORGE		DAY	90	90	90			
~ ~ ~		STATION	MILLTOWN	MARCURE	HUSON NINEMILE	BEL FISH C TARKIO SUPERIOR LAVISTA	RED HILL BOXCAR TOOLE ABV FLHEAC T FALLS	NOXON CAB GORGE
03 17 17 17 17 18 18 19 19 19 19 19			03			17 18 19.5	20.5 21.5 22.5 26	

NOTE: ALL VALUES ARE IN UG/G. IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE AND TOT MEANS TOTAL.

TABLE 12

SEDIMENT CHEMICAL/PHYSICAL MONITORING RESULTS - PART I RESULTS OF SAMPLES TAKEN ON JULY 23-26, 1984

TOT	146.	169. 150.	139.	213.		180.	149.	137.	147.	138.	200.	138.	134.	159.	162.	217.			
Ä. R.	150.	130. 120.	100.	160.		160.	120.	120.	120.	110.	160.	120.	110.	160.	120.	220.			
ZN T01	65.3	119.	48.7	138.		80.2	37.2	29.1	39.4	36.5	49.4	37.4	40.7	90.2	0.96	115.			
ZN T.R.	59.	104. 56.	42.	100.		74.	30.	40.	35.	30.	45.	38.	38.	93.	71.	120.			
CU TOT	13.1	37.4 16.3	13.2	62.7		17.5	13.1	9.4	7.7	4.9	4.9	5.3	4.8	21.2	21.8	34.0			
cu r.R.	10.	30. 10.	<10.	30.		20.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	20.	20.	30.			
FE 101	3928.	5631. 4724.	5235.	6917.		6915.	4300.	4444.	4770.	5165.	6749.	4436.	4087.	5135.	5389.	5935.			
FE T.R.	1460.	1980. 1140.	1190.	2040.		1940.	1050.	1170.	1220.	1130.	1360.	1270.	1190.	2280.	1760.	2440.			
PVDWS	0.13	0.24 0.14	0.10	0.39		0.17	0.11	0.10	0.10	0.18	0.15	0.10	0.10	0.42	0.32	0.55			
0EPTH	7	99	3	20		12	80	80	80	∞	18	32	28	5	15	3			
DAY	23	23	2 24	54		19	19				20) 20			
STATION	MILLTOWN MARCURE HUSON	NINEMILE	BEL FISH (TARKIO	LAVISTA	RED HILL	BOXCAR				T00LE					ABV FLHEAL	T FALLS	NOXON	CAB GORGE
	13 15 1			2 C							21.5						. 92		

NOTE: ALL VALUES ARE IN UG/G EXCEPT DEPTH(FEET) AND PERCENT VOLATILE DRY WEIGHT SOLIDS (%).
IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE AND TOT MEANS TOTAL.
SOME OF THE SAMPLES IN THIS SET WERE COLLECTED BY U. OF MONTANA PERSONELL.

TABLE 12

SEDIMENT CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11 RESULTS OF SAMPLES TAKEN ON JULY 23-26, 1984

	STATION	DAY	CD T.R.	CD TOT	AS T.R.	AS TOT	CR T.R.	рВ Т.R.	PB T0T	AG T.R.	
03	M1LLTOWN MARCURE HUSON	23	< 5 .	<1.2	<u></u>	1.3					
16	NINEMILE	23	\$5. \$5.	< 1.2	2.	25.1					
17	BEL FISH	O		<1.2	· <u>-</u> -	2.2					
19.5	TARKIO SUPERIOR	54	< 5 .	<1.2	2.	5.6					
20.5	RED HILL		<5.	<1.2	2	3.0					
21.	BOXCAR	19		<1.2	<u>.</u>	·					
			<5.	<1.2	<u>.</u> 1	1.6					
			.5.	<1.2 5.1.2	<u>.</u> ;	1.3					
7	1001	C	٠, ٠,	5.1.2		2.9					
	CI.) IUULE	(12		×1.5	<u>. ^</u>	o					
			<5.	<1.2		3.3					
			<5.	<1.3	2.	3.0					
			< 5 .	<1.1	2.	2.2					
25	ABV FLHEAD	D 20	<5.	<u>~1.1</u>	3.	2.7					
28	NOXON										
30	CAB GORGE										

ALL VALUES ARE IN UG/G. IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE AND TOT MEANS TOTAL. SOME OF THE SAMPLES IN THIS SET WERE COLLECTED BY U. OF MONTANA PERSONELL. NOTE:

TABLE 12

SEDIMENT CHEMICAL/PHYSICAL MONITORING RESULTS - PART I

	MN TOT	244. 197.	- / t-							200.	62.8	96.3	429.	393. 406	462.	490.	478.	277.	219. 266.	
	T. M.	290.	710.							210.	.09	100.	370.	370.	440.	420.	420.	320.	220. 270.	
1984 1984	ZN TOT	332. 289.	.062							202.	48.8	57.8	291.	288.	297.	346.	302.	99.4	73.8	
	ZN T.R.	351. 314.	. 066							203.	59.	63.	257.	283.	287.	300.	279.	96.	59. 118.	
RESULTS OF SAMPLES TAKEN ON OCT 25-26,	CU TOT	90.6	0.60							87.7	7.0	9.6	38.	129.	144.	174.	144.	18.9	<2.1 27.6	
TAKEN	CU T.R.	90.								80.	10.	. 50.	120.	120.	140.	150.	140.	20.	30.	
SAMPLES	FE 101	6090. 5160. 5025								7457.	3811.	3925.	13/40.	13090.	15260.	19000.	16300.	9567.	1690. 10450.	
ULTS OF	FE T.R.	2010. 2530.								2420.	1600.	1650.	7070.	5340.	5880.	5990. 1	6040.	3490.	3970.	
RESI	PVDWS	0.67 0.41 0.58								0.93	0.23	2.70	2.00	1.42	1.20	1.50	1.16	1.64	1.34	
	DEPTH	000	`							32	32	70	φ α 2	£ 40	38	38	¢; (20 (20)	50	29	
	DAY	25								26		L	7				(56		
	STATION	MILLTOWN	MARCURE HUSON	NINEMILE BEL FISH C	TARKIO	SUPERIOR	RED HILL	BOXCAR	ABV FLHEAD	T FALLS			NOVON					CAB GURGE		
		03	13	16 17	18	19.5	20.5	21	22.7	56		000	-					30		

ALL VALUES ARE IN UG/G EXCEPT DEPTH(FEET) AND PERCENT VOLATILE DRY WEIGHT SOLIDS (%). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE AND TOT MEANS TOTAL. NOTE:

SEDIMENT CHEMICAL/PHYSICAL MONITORING RESULTS

81 11 184	AG T.R.														
S - PAF -26, 19	PB TOT														
RESULT OCT 25	PB T.R.														
AKEN ON	CR T.R.														
ICAL MON AMPLES T	AS TOT	2.6	.,						3.1	2.3	2.7	2 t c	0.7	2.5.	2.7
-/PHYS	AS T.R.	. 7.0	<u>:</u>								.6.	. % ~	. 60	. m. c	t.
CHEMICAI RESULT	CD TOT	\$1.2 \$1.3 \$	J -						<1.2	<1.2	7.7.	7		7.0.5	<1.2
SEDIMENT CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11 RESULTS OF SAMPLES TAKEN ON OCT 25-26, 1984	CD T.R.	25.5							<5.	ζ <u>ς</u> ,					\$
	DAY	25							56		25			56	
	STATION	MILLTOWN	MARCURE HUSON		SUPERIOR	LAVISTA			ABV FLHEAU T FALLS		NOXON			CAB GORGE	
		03	13	16 71	19.5	20 2	21.5	21.5	56 26		28			30	

IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE AND TOT MEANS TOTAL. NOTE: ALL VALUES ARE IN UG/G.

TABLE 12

SEDIMENT CHEMICAL/PHYSICAL MONITORING RESULTS - PART I RESULTS OF SAMPLES TAKEN ON MARCH 25-26, 1985

STATION DAY MILLTOWN 25 MARCURE HUSON NINEMILE BEL FISH C TARKIO SUPERIOR LAVISTA RED HILL BOXCAR TOOLE BOXCAR TOOLE ABV FLHEAD T FALLS T FALLS

ALL VALUES ARE IN UG/G EXCEPT DEPTH(FEET) AND PERCENT VOLATILE ORY WEIGHT SOLIDS (%). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE AND TOT MEANS TOTAL. NOTE:

SEDIMENT CHEMICAL/PHYSICAL MONITORING RESULTS - PART 11

985	AG T.R.												
25-26, 1	PB TOT	49.8 58.7 35.5						0	<12.0 <12.0 <12.0	25.6 17.0	31.0	34.4 <12.0	<12.0
MARCH	PB T.R.	60. 80. 70.						į,	<50. <50. <50.	<50. <50.	60. 70.	80. 50.	<50°.
KEN ON	CR T.R.												
IPLES TA	AS TOT	31.6 39.6 30.4						ı	5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9.2	12.6	3.62	4.0
OF SAN	AS T.R.	26. 36. 28.						ı	2-5	9.9	.01	o. =, c	
RESULTS	CD TOT	_ <u>^ ^ ^ </u>							<u>^ ^ ^ ^ </u>	<1.5 <1.5	^ ^ ^ ?.1.5	<u>^</u>	
RESULTS OF SAMPLES TAKEN ON MARCH 25-26, 1985	CD T.R.	\$.5.5							\$. \$. \$.	<2. <2.	\$5.		\$
	DAY	25						•	25	56		56	
	STATION	MILLTOWN	MARCURE HUSON NINEMILE	BEL FISH C TARKIO	SUPER IOR LAVISTA	RED HILL	BUACAR TOOLE	ABV FLHEAD	T FALLS	NOXON		CAB GORGE	
		03	13	173	19.5	20.5	21.5	22	56	28		30	

IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE AND TOT MEANS TOTAL. NOTE: ALL VALUES ARE IN UG/G.

TABLE 12

TABLE 12

SEDIMENT CHEMICAL/FH.3 CAL MONITORING RESULTS - PART I

			SEUIME	AI CHEMI RESU	LTS OF	SEDIMENT CHEMICAL/PTTS CAL MUNTIONING RESULTS - PART RESULTS OF SAMPLES TAKEN ON JULY 29-30, 1985	TAKEN	ON JULY	7 29-30	,1985		
	STATION D	DAY	DEPTH	PVDWS	H.R.	7.2T	cu T.R.	CU TOT	ZN T.R.	ZN	A. R.	MN TOT
0.3	MILLTOWN	29			6500. 6240. 5620	1870 1870 1900	460. 430.	495. 441.	1060. 991. 925	1027.	1040.	1018.
13									76.).		.020	. 1 20
16	NINEMILE BFI FISH C											
- 80												
19.5												
20												
20.5												
21.5												
22												
97	T FALLS	29			3130.	. 66.	30.	29.3	101.	102.	100.	119.
						. TO 20 CT	70.	65.8	158.	150.	190.	198.
28	NOXON	30				7-330.	90.	89.7	224.	226.	490.	460.
						- C+55-	100.	105.	222.	233.	270.	298.
						.0603	.06	135.	237.	274.	130.	162.
						16130.	140.	149.	317.	325.	470.	470.
						.53.0.	140.	146.	300.	309.	410.	422.
30	CAB GORGE	30				. (+::.	40.	49.3	197.	213.	300.	301.
						02-	40.	49.8	197.	205.	300.	305.
						1.330.	40.	49.9	201.	203.	290.	301.

ALL VALUES ARE IN UG/G EXCEPT DEPTH(FEET AND PERCENT VOLATILE DRY WEIGHT SOLIDS (%). IN THE HEADINGS, T.R. MEANS TOTAL RECC.EDABLE AND TOT MEANS TOTAL. NOTE:

			SEUIMENI	CHEMICAL/PHYSICAL MONITORING RESULIS - PART RESULTS OF SAMPLES TAKEN ON JULY 29-30,1985	L/PH,SI S OF SA	CAL MON MPLES TV	LORING AKEN ON	RESULT JULY 2	S - PARI 9-30,198	
	STATION	DAY	CD T.R.	CD TOT	AS T.R.	AS TOT	CR T.R.	PB T.R.	PB T0T	AG T.R.
03 13 15 16 17 19 19 20 20 20 20 21 5	MILLTOWN MARCURE HUSON HUSON BEL FISH C TARKIO SUPERIOR LAVISTA RED HILL BOOKER	59 C	÷	0 π π π π π π π π π π π π π π π π π π π	1 - 9e	23.5 23.5 23.5 23.5		80. 80.	77.2 83.4 64.9	
	ABV FLHEA	4D 29	7,	0	0	۰ -		7.50	, c	
		67	\$ \$	\$ 5.0	.	- 2		<50°.	23.5	
28	NOXON	30	, Ç, Ĉ	0.0	ru.	, , ,		<50°.	27.3	
			, 4, 4, 4,	0000		11.2		, , , , , , , , , , , , , , , , , , ,	388.5 398.5 49.5 79.5	
30	CAB GORGE	30	, ^ ^ /	000		7.7			22.9	
				76.0	٦.	t		٠٥٥٠.	6.0	

NOTE: ALL VALUES ARE IN UG/G. IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE AND TOT MEANS TOTAL.

TABLE 12

SEDIMENT CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUMMARY - PART I

MN TOT	1027. 174. 535.1	260. 146. 222.7 4	0.0	602. 150. 330.4 5	139. 139. 139.0	303. 213. 258.0 2	508. 247. 377.5	0.0
M. H.	1080. 174. 567.6 12	311. 150. 234.5	0.0	519. 120. 235.6 5	100. 100. 100.0	199. 160. 179.5	431. 324. 377.5	0.0
ZN TOT	1027. 269. 590.2 12	135. 65.3 115.3	0.0	339. 70.2 185.2 5	48.7 48.7 48.7	138. 55.3 96.6 2	251. 161. 206.0 2	0.0
ZN T.R.	1060. 246. 623.7 12	141. 59. 109.0 4	0.0	362. 56. 157.8	42. 42. 42.0	100. 42. 71.0	211. 182. 196.5 2	0.0
CU 101	495. 51.6 225.1 12	35.6 13.1 25.5	0.0	167. 16.3 78.5 5	13.2	62.7 <2.6 32.6 2	114. 42. 78.0	0.0
cu T.R.	460. 49. 219.5	68. 10. 38.5	0.0	162. 10. 61.4 5	<10. <10. 10.0	30. 10. 20.0	90. 63. 76.5	0.0
FE TOT	13510. 4451. 8413.4	5131. 3928. 4708.2	0.0	7632. 4724. 6070.2 5	5235. 5235. 5235.0	6917. 3981. 5449.0	7598. 6583. 7090.5	0.0
FE T.R.	6910. 2010. 4361.7	3170. 1460. 2425.0	0.0	4390. 1140. 2472.0 5	1190. 1190. 1190.0	2040. 1840. 1940.0	4010. 3700. 3855.0	0.0
PVDWS	1.0 0.2 0.54 6	0.5 0.13 0.34 4	0.00	0.8 0.14 0.52 5	0.10 0.10 1.10	0.39 0.2 0.29 2	1.1 0.7 0.90 2	0.00
DEPTH	0804	ភ េសសភ	0.0	2.50	m m m ←	20 15 18.	25 25.	0.0
	M MAX M M M M M M M M M M M M M M M M M M M	MAX MEAN: N:	M MAX MEAN: MEAN:	MAX MEAN: MEAN:	MAX: MIN: MEAN: N:	MAX: MIN: MEAN: N:	MAX: MIN: MEAN: N:	MAX: MEN: MEAN: N:
STATION	MILLTOWN	MARCURE	HUSON	NINEMILE	BEL FISH C	TARKIO	SUPERIOR	LAVISTA
	03	13	15	16	17	8	19.5	20

ALL VALUES ARE IN UG/G EXCEPT DEPTH(FEET) AND PERCENT VOLATILE DRY WEIGHT SOLIDS (%). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE AND TOT MEANS TOTAL. VALUES LESS THAN THE DETECTION LIMIT ARE TAKEN TO BE AF THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN. NOTE:

TABLE 13

SEDIMENT CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUMMARY - PART II

	STATION		C0 T.R.	TOT	T.R.	101	₽. R.		101	T.R.
03	MILLTOWN	MEAN::	. 5.5 . 5.2	5.6 1.1. 2.1	44. 5. 21.4	49.2 0.6 21.1	<20. <20. 20.0	80. <50. 60.0	83.4 35.5 61.6	<10. <10. 10.0
13	MARCURE	M M M M M M M M M M M M M M M M M M M	65. 65. 4.0	<pre><!-- </pre--> <pre></pre> <pre></pre> <pre></pre> <pre>4 </pre> <pre></pre> <pre></pre></pre>	43.3 43.3	3.1 1.3 2.4 4	<20. <20. 20.0 3	<50. <50. 50.0 3	0.0	<10. <10. 10.0
51	HUSON	MAX: MEAN: N:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16	NINEMILE	MEAN:	\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	5.1.2	16. 5.6 5.6	2.3 5.2	<20. <20. 20.0 3	<50. <50. 50.0 3	0.0	<10. <10. 3.0
11	BEL FISH C	MEAN:	\$\$\$. 			2.2	0.0	0.0	0.0	0.0
18	TARKIO	MEAN:	25°.	<pre>2.1.3 2.1.3</pre>	2.5	25.50	<20. <20. 20.0	<50. <50. 50.0	0.0	<15. <15.
19.5	SUPERIOR	MEAN: N::	<5. <5. 5.0	2.1.2	25.50	3.0	<20. <20. 20.0	<50. <50. 50.0	0.0	10.0 20.0
20	LAVISTA	MAAX: MEAN: N:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0

ALL VALUES ARE IN UG/G. 14 THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE 240 TOT MEANS TOTAL. VALUES LESS THAN THE DETECTION LIMIT ARE TAKEN TO BE AT THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN.

TABLE 13

SEDIMENT CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUMMARY - PART |

	STATION		DEРТН	PVOWS	FE T.R.	FE TOT	CU T.R.	CU TOT	ZN 1.R.	ZN TOT	Σ. Υ. Α.	MN TOT
20.5	RED HILL	MAXX MEAN: MEAN:	12 12 12.	0.17 0.17 0.17	1940. 1940. 1940. 1940.	6915. 6915. 6915.0	20. 20. 20.0	17.5 17.5 17.5	74. 74. 74.0	80.2 80.2 80.2	160. 160. 160.0	180. 180. 180.0
21	BOXCAR	MAXX MINX MEAN:	8883	0.18 0.10 0.12 4	1220. 1050. 1142.5	5165. 4300. 4669.7 4	<10. <10. 10.0	13.1 4.4 6.7	40. 30. 33.8 4	39.4 29.1 35.5 4	120. 110. 117.5	149. 137. 142.7
21.5	TOOLE	MAXX MEAN: N:	32 5 20.	0.42 0.10 0.22 5	2280. 1190. 1572.0 5	6749. 4087. 5159.2 5	20. <10. 14.0	21.8 4.8 11.6 5	93. 38. 57.0	96.0 37.4 62.7 5	160. 110. 134.0 5	200. 134. 158.6 5
22	ABV FLHEAD	MAXX: MIN: MEAN: N:	m m m −	0.55 0.55 0.55 1	2440. 2440. 2440.0	5935. 5935. 5935.0	30. 30. 30.0	34.0 34.0 34.0	120. 120. 120.0	115. 115. 115.0	220. 220. 220.0	217. 217. 217.0
56	T FALLS	MAX MEAN: N:	57 17 32.	2.98 0.23 1.37 6	7540. 1600. 3899.1	12600. 3811. 8135.2	175. 10. 64.2	150. 7.0 67.3	353. 59. 157.5	321. 48.8 162.8 11	904. 60. 294.0	802. 62.8 288.9 11
28	NOXON	MAXX MIN: MEAN: N:	48 22 40.	1.6 1.16 1.38	9720. 4910. 6802.9	19000. 13030. 15302.4 17	170. 63. 120.8	174. 65.7 131.2	364. 114. 267.4 17	372. 162. 284.4	630. 130. 412.6 17	597. 162. 430.8 17
30	CAB GORGE	MAX: MEAN: N:	43 25 30.	1.64 0.4 1.02 6	5570. 2600. 4177.5	12000. 6650. 10091.6	40. 3. 12.7	49.9 2.0 21.3	201. <5. 106.0	213. 26.0 116.7 12	590. 198. 308.2	587. 163. 313.2
NOTE:	: ALL VALUES ARE IN UG/G EXCEPT DEPTH(FEET) AND PERCENT VOLATILE DRY WEIGHT SOLIDS (%).	AREIN	UG/G EXC	SEPT DEP	TH(FEET)	AND PER	CENT VOI	ATILE	ORY WELL	SHT SOL	108 (%)	

ALL VALUES ARE IN UG/G EXCEPT DEPTH(FEET) AND PERCENT VOLATILE DRY WEIGHT SOLIDS (%). IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE AND TOT MEANS TOTAL. VALUES LESS THAN THE DETECTION LIMIT ARE TAKEN TO BE AT THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN.

TABLE 13

SEDIMENT CHEMICAL/PHYSICAL MONITORING - STATISTICAL SUMMARY - PART II

AG T.R.	0.0	0.0	0.0	0.0	<10. <10. 3	<10. <10. 10.0	<10. <10. 3
PB TOT	0.0	0.0	0.0	0.0	23.5 <12.0 17.9 5	39.6 17.0 30.4	24.9 <12.0 17.0 6
PB T.R.	0.0	0.0	0.0	0.0	<50. <50. 50.0	80. <50. 55.5	<50. <50. 50.0
CR T R.	0.0	0.0	0.0	0.0	<20. <20. 20.0 3	<20. <20. 20.0	<20. <20. 20.0
AS TOT	3.0	2.9 1.3 1.8	4.22.2 5.22	2.7 2.7 1.7	7.85.5	13.2 0.7 6.2	7.7 2.1 4.4
AS T.R.	25.0 1.0	±	2. 7. t	3. 13.0	15. 1. 11.8	10. 3. 6.7	5. 1. 3.2
CD TOT	\$1.2 1.2 1.2	4 1.2 4 4 1.2 4	5 - 2 - 3	<u></u>	<pre><2.0 <1.2 1.5 11.5</pre>	<2.0 <1.2 1.5	<2.0 <1.2 1.5 12
CD T.R.	\$5. 55.	65. 45.	\$\$. 0.0.	55.	<5. <5. 15.0	7. <5. 5.6	<5. <5. 5.0
	MAX: MEAN: N:	MEAN:	MEAN:	MAXX MEAN: MEAN:	MAXX: MEAN: N:	MAX MEAN: MEAN:	MEAN: MEAN:
STATION	5 RED HILL	BOXCAR	21,5 TOOLE	ABV FLHEAD	T FALLS	NOXON	CAB GORGE
	20.5	21	21.!	22	26	28	30

ALL VALUES ARE IN UG/G. IN THE HEADINGS, T.R. MEANS TOTAL RECOVERABLE AND TOT MEANS TOTAL. VALUES LESS THAN THE DETECTION LIMIT ARE TAKEN TO BE AT THE DETECTION LIMIT FOR COMPUTATION OF THE MEAN. NOTE:

4. Diurnal Dissolved Oxygen Monitoring

a. Rationale

Dissolved oxygen and water temperature were measured every three hours over a 24-hour period at low flow in midsummer of 1984 and 1985. Twelve stations were established to bracket the Missoula wastewater treatment plant and Champion International with most stations clustered below the latter facility in order to pinpoint the reach of river subject to the maximum depression in dissolved oxygen. The data collected from this intensive effort will help to model and predict dissolved oxygen concentrations at different stations under varying conditions and to determine the probability of violation of the State's dissolved oxygen standard at different levels of organic loading.

b. Methods

Dissolved oxygen and water temperature were determined in the field at each of 12 stations every three hours over a 24-hour period in early August of 1984 and 1985. Dissolved oxygen was measured on water samples collected in moving water near shore using the azide modification of the Winkler method. Temperature was recorded to the nearest tenth of a degree Centigrade with a calibrated field thermometer.

c. Results

Diurnal dissolved oxygen and temperature data for the 1984 and 1985 monitoring runs are presented in Table 14. Diurnal curves of dissolved oxygen and temperature are shown in Figures 2-21. An explanation of the time-weighted mean dissolved oxygen and temperature values used in Table 14 and Figures 6, 11, 16 and 21 is given in Appendix C.

DIURNAL 3 SOLVED OXYGEN AND TEMPERATURE MONITORING RESULTS BESULTS OF SAMPLES TAKEN ON AUGUST 8-9, 1984

STATION		MEASUR	UREMENT @	ESULTS										
O1 TURAH	DAY: 08 TIME: 0905 T: 15.50 D.O.: 8.50 TIME-WEIGHTED	08 0905 15.50 8.50 ICHTED	1200 1400 MEAN 1	08 1504 20.00 9.60	08 1803 21.00 9.00 3.48; TH	08 09 09 2105 0017 0250 0 19.50 18.50 17.50 0 8.00 7.50 7.60 THME-WEIGHTED MEAN T =	09 0017 18.50 7.50 HTED ME	09 0250 17.50 7.60 AN T =	09 0601 16.50 7.90	09 0903 17.00 8.70				
06 ABV STP	DAY: 08 TIME: 0938 T: 18.00 D.O.: 8.60 TIME-WEIGHTED	08 0938 18.00 8.60 IGHTED	1222 1222 19.00 MEAN 50	08 1531 20.00 9.80 3. = 8	08 20.00 9.80	08 08 08 1834 1932 2139 0 19.50 19.00 18.50 0 9.70 9.50 9.00 TIME-WEIGHTED MEAN T =	08 1932 19.00 9.50 HTEO ME	08 2139 18.50 9.00	09 0046 18.50 8.10 18.96	09 0340 18.50 7.90	09 0500 18.50 7.90	09 0624 19.00 7.90	09 0738 19.00 8.00	09 0946 19.50 8.50
09 SHUFFIELDS	DAY: 08 TIME: 1002 T: 18.50 D.O.: 8.70 TIME-WEIGHTED	08 1002 18.50 8.70 1GHTED	100E 100E 100E MEAN 1	08 1551 20.50 9.75	08 1709 20.50 9.70 9.71	08 08 08 09 1709 1850 2200 0109 0 20.50 20.00 19.00 18.00 5 9.70 9.50 8.40 7.90 8.61; TIME-WEIGHTED MEAN T = 1	2200 19.00 8.40 HTED ME	09 0109 18.00 7.90 AN T =	09 0404 18.00 7.70	09 0519 18.00 7.80	09 0647 18.50 7.80	09 0726 19.00 7.70	09 1004 19.00 8.50	
11 HARPER BR	DAY: TIME: T: D:0.: TIME-WE	E: 0805 1 17.60 1 7.90 F-WEIGHTED ME	\$ 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	08 1500 20.00 9.72	08 1600 20.50 9.85 8.55; TII	08 1755 21.30 9.90 ME-WEIG	08 1900 21.50 9.75 HTED ME	08 2100 21.00 9.12 AN T =	08 2400 20.00 8.00	09 0300 18.80 7.50	09 0430 18.50 7.40	09 0530 18.00 7.38	09 0600 17.80 7.40	09 0845 17.40 7.70
15 HUSON	DAY: 08 TIME: 0945 T: 17.80 D.O.: 8.10 TIME-WEIGHTED M	08 0945 17.80 8.10 IGHTED	122 to 12	08 -530 20.40 9.55	08 1630 20.70 9.72 .60: TI	08 1830 21.10 9.80 ME-WEIG	08 1930 21.00 9.76 HTED ME	08 2135 20.80 9.10 AN T =	09 0035 20.30 8.20	09 0340 19.70 7.70	09 0500 19.40 7.50	09 0630 18.80 7.50	09 0915 18.30 7.75	
17 ABV ALBERT	0AY: TIME: T: 0.0.: TIME-WE	E: 0850 17.50 : 8.00 E-WEIGHTED	1112 1914 1914 MEDA: CO.	08 1415 20.00 8.90	08 1630 20.00 9.35 8.39; TI	08 08 08 1805 2045 2355 0 20.00 19.50 18.00 5 9.30 8.90 8.10 TIME-WEIGHTED MEAN T =	08 2045 19.50 8.90 HTED ME	08 2355 18.00 8.10 AN T =	09 0255 18.00 7.80	09 0510 17.00 7.50	09 0715 18.00 7.40	09 0840 18.00 7.80		
19 LOZEAU	DAY: 08 TIME: 0930 T: 15.00 D.O.: 8.60 TIME-WEIGHTED	08 0930 15.00 8.60 1GHTED	MEAR 350	.8 .450 .9.50 .9.72	08 1700 19.50 10.00	08 1845 19.00 9.95 IME-WEIGH	08 09 2125 0035 00 18.00 17.00 95 9.00 8.05 EIGHTED MEAN T =	09 0035 17.00 8.05 AN T =	09 0335 17.00 7.80	09 0550 17.00 7.85	09 0745 17.00 7.80	09 0925 17.50 7.90		

TEMPERATURE UNITS ARE DEGPESS SELCIUS AND DISSOLVED OXYGEN UNITS ARE MG/L. NOTE:

DIURMAL DISSOL.ED OXYGEM AND TEMPERATURE MONITORING RESULTS RESULTS OF SAMPLES TAKEN ON AUGUST 8-9, 1984

NOTE: TEMPERATURE UNITS ARE DEGREES CELCIUS AND DISSOLVED OXYGEN UNITS ARE MG/L.

DIURNAL DISSOLVED OXYGEN AND TEMPERATURE MONITORING RESULTS RESULTS OF SAMPLES TAKEN ON AUGUST 7-8, 1985

NOTE: TEMPERATURE UNITS ARE DEGREES CELCIUS AND DISSOLVED OXYGEN UNITS ARE MG/L.

TABLE 14

DIURNAL DISSOLVED OXYGEN AND TEMPERATURE MONITORING RESULTS RESULTS OF SAMPLES TAKEN ON AUGUST 7-8, 1985 ASUREMENT RESULTS	0845 1200 1530 1745 2100 2355 0245 0550 0845 17.00 18.30 19.80 17.90 17.50 17.30 17.30 17.50 18.00 9.25 9.75 9.90 8.80 8.25 8.00 7.70 7.95 EIGHTED MEAN D.O. = 8.70; TIME-WEIGHTED MEAN T = 18.05		07 07 07 07 08 08 08 08 08 1200 1445 1800 2120 0010 0315 0505 0755 0755 0720 17.80 19.40 19.40 17.80 16.20 16.70 16.70 15.60 09.20 9.50 9.50 9.50 9.20 8.00 7.80 8.10 0.00 0.00 0.00 0.00 0.00 0.00 0		07 07 07 07 07 08 08 08 1245 1245 1840 2045 2335 0245 0435 0720 20.60 21.10 20.60 20.00 19.40 18.90 18.90 18.90 8.10 MEAN D.O. = 8.50; TIME-WEIGHTED MEAN T = 19.78
DIURNAL DISSOLVED OX: RESULTS OF SAI MEASUREMENT RESULTS	0845 1200 1530 11 17.00 18.30 19.80 19 8.00 9.25 9.75 9 GHIED MEAN D.O. = 8.70	07 07 07 07 09 0930 1230 1600 18 15.80 17.40 19.40 19 10 05	07 07 07 07 09 0930 1200 1445 18 16.70 17.80 19.40 19 8.20 9.50 9.50 9.50 9.50 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.7	07 07 07 07 09 0843 1115 1415 17 20.00 20.60 20.60 21 9.10 7.66 8.40 9 3HTED MEAN D.O. = 8.40	07 07 07 07 0 1000 1245 1545 18 19.40 20.60 21.10 20 8.30 8.40 8.80 8 3HTED MEAN D.O. = 8.50
STATION	19 LOZEAU DAK: 08 11ME: 08 17 17 17 17 17 17 17 17 17 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	20 SUPERIOR DA7: 09 TIME: 09 1: 15 D.O.: 8	22 ABV FLATHD DAY: 0 11ME: 09 1: 16 0.0.: 8 11ME-WEIGH	23 FLATHEAD R DAY: 07 11ME: 0843 7: 20.00 0.0.: 9.10 11ME-WEIGHTED	24 PLAINS DAY: 07 TIME: 1000 T: 19.40 D.O.: 8.30 TIME-WEIGHTED

NOTE: TEMPERATURE UNITS ARE DEGREES CELCIUS AND DISSOLVED OXYGEN UNITS ARE MG/L.

FIGURE 2

DIURNAL MONITORING RESULTS AUG. 8-9, 1984 MONTANA MATER QUALITY BUREAU

DIURNAL MONITORING RESULTS RUG. 8-9, 1984 MONTRNA MATER QUALITY BUREAU

DIURNAL MONITORING RESULTS AUG. 8-9, 1984 MONTANA MATER QUALITY BUREAU

FIGURE 5

DIURAMAL MONITORING RESULTS AUG. 8-9, 1984 MONTANA MATER QUALITY BUREAU

LOWER CLARK FORK RIVER

DIURNAL MONITORING RESULTS RUG. 8-9, 1984 MONTANA MATER DUALITY BUREAU

--- TIME WEIGHTED MEAN
--- MAXIMUM
--- MINIMUM

FIGURE 7

DIURNAL NONITORING RESULTS RUG. 8-9, 1984 NONTRNA NATER QUALITY BUREAU

--- AT TURAH
--- ABOVE STP
--- BELOW STP

DIURNAL MONITORING RESULTS RUG. 8-9, 1984 MONTANA MATER QUALITY BUREAU

LOWER CLARK FORK RIVER BASIN

DIUMMAL MONITORING RESULTS AUG. 8-9, 1984 MONTANA MATER GUALITY BUREAU

DIURNAL MONITORING RESULTS RUG. 0-9, 1984 MONTANA NATER QUALITY BURERU

LOWER CLARK FORK RIVER

DJURNAL MONITORING RESULTS AUG. 8-9, 1984 MONTANA WATER OURLITY BUREAU

LIGURE 12

DIURNAL MONITORING RESULTS RUG. 7-8, 1985 MONTANA NATER QUALITY BUREAU

FIGURE 13

DIURNAL MONITORING RESULTS NUG. 7-8, 1985 MONTANA WATER QUALITY BUREAU

FIGURE 14

DJURNAL MONITORING RESULTS AUG. 7-8, 1985 MONTANA WATER QUALITY BUREAU

--- ABOVE ALBERTON --- AT LOZEAU --- AT SUPERIOR

DIURNAL MONITORING RESULTS AUG. 7-8, 1985 MONIANA MATER QUALITY BUREAU

FIGURE 16

LOWER CLARK FORK RIVER

DIURNAL MONITORING RESULTS AUG. 7-8, 1985

MONTANA MATER QUALITY BUREAU

FIGURE 17

DIURANI MONITORING RESULTS AUG. 7-8, 1985 MONTANA MATER DURLITY BUREAU

DIURNAL MONITORING RESULTS AUG. 7-8, 1985 MONTANA MATER QUALITY BUREAU

DJURNAL MONITORING RESULTS Aug. 7-8, 1985 Montana nater Quality Bureau

--- ABOVE ALBERTON
--- AT LOZEAU
--- AT SUPERIOR

DIURNAL MONITORING RESULTS Aug. 7-8, 1985 Montana Mater Quality Bureau

--- ABOVE FLATHEAD R. --- FLATHEAD R. AT MOUTH --- AT PLAINS

LOWER CLARK FORK RIVER

DJURNAL MONITORING RESULTS AUG. 7-8, 1985 MONTANA MATER QUALITY BUREAU

B. Biological Water Quality Monitoring

1. Shallow-water Monitoring: River Stations

a. Rationale

Riffles are the most productive habitats in rivers for benthic algae and macroinvertebrates. The kinds and diversity of organisms living in these habitats tell a great deal about the nature and degree of stress placed upon a river by various water quality contaminants. Analysis of chlorophyll and biomass in grab samples of slime (microbial growth) from natural substrates on the river bottom will indicate the relative importance of producers (algae) and consumers (bacteria, fungi, etc.) in the benthic community and, in turn, the significance and cumulative effects of organic loading to the river. Measurements of algae production on artificial substrates (glass slides) will indicate the biostimulation effects of nutrients discharged by the Missoula Wastewater Treatment Plant and Champion International.

b. Methods

Biological sampling was conducted seasonally (spring, summer, fall) at each of 20 river stations. Samples routinely collected included traveling-kick macroinvertebrate samples and a composite sampling of the periphyton present at each station. A periphyton scraping from the natural substrates was collected for chlorophyll and biomass measurements at each station during the first three monitoring runs. Additionally, artificial substrates (periphytometers) were placed in the river at nine stations during the fall of 1983 and summer of 1984 for periphyton colonization and subsequent quantitative chlorophyll and biomass determinations.

Biological sample collection and analysis methods and the analyzing laboratory are summarized in Table 15. For some tests, references are made to the Appendix C. where lengthier methods are described.

c. Results

Species identifications and counts are given for each traveling-kick macroinvertebrate sample by season in Table 16. Shannon's species diversity (Margalef, 1958) and percent relative abundance data are given in Table 17. Note that for both Tables 16 and 17, the number at the beginning of each sample code denotes the sampling station number. Also note that the spring 1984 sampling consisted of one sample at each station. During successive seasonal samplings, four replicate samples were collected at each station (see description of macroinvertebrate sampling technique in Appendix C.). Czekanowski's similarity coefficients (Goodall, 1978) computed for pairs of stations are listed in the matrices in Table 18.

Periphyton analysis results and various community structure data are presented in Tables 19-21.

Chlorophyll and biomass data and various indices computed for both the natural and artificial substrate samples are tabulated in Tables 22 and 23.

Table 15. Sample Collection and Analysis Methods for Shallow-water Biological Monitoring

Variable	Collection Method	Analytical <u>Pk-thed</u>	Liboratory
Benthic Macroinvertebrate Community Structure	Modified traveling kicknet method described in Appendix B.	Species identifications and counts made using numerous current taxonomic references.	C. Evan Hornig (contractor)
Periphyton Community Structure	Composite sampling technique described in Appendix B.	Species identifications and counts made using numerous current taxonomis references.	MDHES WQB
Periphyton Unlorophyll and Bioma (mg/m² and mg/m²/day) Natural Substrates Artificial Substrates	ss Sample collection and ana described in Appendix B.	lysis techniques	MDUES Chem Lab and WQB

Table 16. Benthic Macroinvertebrate Sample Counts and Identifications Spring, 1984

Shallow Water Stations - Kick Samples

HEXATOMA SP. 6	OTTUR3 BAETIS TRICAUDAT DRUNELLA GRANDIS EPHEMERELLA INFR CINYGMULA SP. A RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS SPARSAT AMELETUS VELOX CAPNIA-GROUP SP. ALLOPERLA-GROUP PROSTOIA BESAMET ZAPADA CINCTIPES CLAASSENI SABULO CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA FULVA ISOPERLA QUINQUE PTERONARCELLA BA PTERONARCYS CALI TAENIONEMA PACIF BRACHYCENTRUS AM ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPSYCHE C SYMPHITOPSYCHE S LEPIDOSTOMA SP. A OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT MICROTENDIPES A ORTHOCLADIUS (EU ORTHOCLADIUS A SIMULIUM SP. A	206 1344 207 21 123 34 50 123 32 133 14 131 131 14 15 17 14 11 13 14 15 17 11 11 11 11 11 11 11 11 11	D2BLW3 BAETIS TRICAUDAT DRUNELLA DODDSI DRUNELLA GRANDIS EPHEMERELLA INFR RHITHROGENA HAGE AMELETUS VELOX ALLOPERLA-GROUP PROSTOIA BESAMET CALINEURIA CALIF CLAASSENI SABULO HESPEROPERLA PAC CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA PTERONARCYS CALI TAENIONEMA PACIF BRACHYCENTRUS OC GLOSSOSOMA SP. ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPSYCHE C SYMPHITOPSYCHE C SYMPHITOPSYCHE S PSYCHOMYIA FLAVI RHYACOPHILA BIFI PARARGYRACTIS SP OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT MICROTENDIPES A CRICOTOPUS SP. A CRICOTOPUS SP. A CRICOTOPUS SP. A EUKIEFFERIELLA A ORTHOCLADIUS (EU ORTHOCLADIUS MAL SIMULIUM SP. A	313 6 98 128 38 8 27 14 18 9 208 46 18 17 17 164 12 108 137 3 3 1 22 49 7 2 1 1 8 2 3 1
	TIPULA SP.	1		•

DACETIS TRICAUDAT DRUNELLA GRANDIS EPHEMERELLA INFR RHITHROGENA HAGE AMELETUS VELOX CAPNIA-GROUP SP. ALLOPERLA-GROUP PROSTOIA BESAMET CALINEURIA CALIF CLAASSENI SABULO HESPEROPERLA PAC CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA QUINQUE SKWALA PARALLELA PTERONARCELLA BA PTERONARCYS CALI TAENIONEMA PACIF BRACHYCENTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPSYCHE C SYMPHITOPSYCHE S LEPIDOSTOMA SP.A OECETIS SP. PSYCHOMYIA FLAVI RHYACOPHILA BIFI OREODYTES SCITIL OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT MICROTENDIPES A DIAMESA SP. A BRILLIA SP. ORTHOCLADIUS OBU TRISSOCLADIUS A	3 12 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D5MIS3 BAETIS TRICAUDAT DRUNELLA GRANDIS EPHEMERELLA INFR RHITHROGENA HAGE AMELETUS SPARSAT AMELETUS VELOX CAPNIA-GROUP SP. ALLOPERLA-GROUP PROSTOIA BESAMET CALINEURIA CALIF CLAASSENI SABULO HESPEROPERLA PAC CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA FULVA ISOPERLA PARALLELA PTERONARCELLA BA PTERONARCELLA BA PTERONARCYS CALI TAENIONEMA PACIF ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPSYCHE C SYMPHITOPSYCHE S PSYCHOMYIA FLAVI RHYACOPHILA BIFI ZAITZEVIA PARVUL ATHERIX VARIEGAT ORTHOCLADIUS (EU SIMULIUM SP. A	547 81 125 24 30 21 136 242 17 89 44 19 11 11 11 1

O6MIW3		08BMW3	
BAETIS TRICAUDAT	174	BAETIS TRICAUDAT	119
DRUNELLA GRANDIS	1	DRUNELLA GRANDIS	4
EPHEMERELLA INFR	125	EPHEMERELLA INFR	463
CINYGMULA SP. A	2	RHITHROGENA HAGE	. 10
RHITHROGENA HAGE	15	AMELETUS VELOX	2
AMELETUS VELOX	2	CAPNIA-GROUP SP.	14
CAPNIA-GROUP SP.	20	ALLOPERLA-GROUP	1
ALLOPERLA-GROUP	4	PROSTOIA BESAMET	3
PROSTOIA BESAMET	2	ZAPADA COLUMBIAN	1 2 8
CALINEURIA CALIF	1	CALINEURIA CALIF	2
CLAASSENI SABULO	1	CLAASSENI SABULO	
HESPEROPERLA PAC	2	HESPEROPERLA PAC	4
CULTUS PILATUS	11	CULTUS PILATUS	68
ISOGENOIDES ELON	10	ISOGENOIDES ELON	40
ISOPERLA FULVA	58	ISOPERLA FULVA	130
ISOPERLA QUINQUE	30	ISOPERLA QUINQUE	93
SKWALA PARALLELA	5	PTERONARCELLA BA	19
PTERONARCELLA BA	8	PTERONARCYS CALI	2
PTERONARCYS CALI	8	TAENIONEMA PACIF	18
TAENIONEMA PACIF	12	ARCTOPSYCHE GRAN	8
ARCTOPSYCHE GRAN	9	CHEUMATOPSYCHE	84
CHEUMATOPSYCHE	79	HYDROPSYCHE OCCI	63
HYDROPSYCHE OCCI	37	SYMPHITOPSYCHE C	50
SYMPHITOPSYCHE C	70	SYMPHITOPSYCHE S	7
SYMPHITOPSYCHE S		HYDROPTILA SP.	2
PSYCHOMYIA FLAVI	3 8	PSYCHOMYIA FLAVI	4
RHYACOPHILA BIFI	1	PARARGYRACTIS SP	8
ZAITZEVIA PARVUL	14	OPTIOSERVUS SPP.	2 4 8 2 11
DIAMESA SP. A	3	ZAITZEVIA PARVUL	11
DIAMESA SP. B	$oldsymbol{\widetilde{4}}$	MICROTENDIPES A	3
CRICOTOPUS SP. A	1	PHAENOPSECTRA SP	
CRICOTOPUS SP. B	3	DIAMESA SP. A	1
ORTHOCLADIUS (EU	12	DIAMESA SP. B	16
ORTHO ADIUS A	2	PAGASTIA SP.	1
ORTHOCLADIUS B	1	CRICOTOPUS SP. B	5 2
ORTHOCLADIUS C	1	EUKIEFFERIELLA A	2
ORTHOCLADIUS MAL	1	ORTHOCLADIUS (EU	4
ORTHOCLADIUS OBU	6	ORTHOCLADIUS B	7
HEXATOMA SP.	3	ORTHOCLADIUS OBU	12
	-	ABLABESMYIA SP.	1
		WIEDEMANNIA SP.	1
		SIMULIUM SP. A	1
		HEXATOMA SP.	2
		OLIGOCHAETA	4

0 9 SHE3		10BRM3	_
BAETIS TRICAUDAT	77	BAETIS TRICAUDAT	98
EPHEMERELLA INFR	326	DRUNELLA GRANDIS	15
RHITHROGENA HAGE	7	EPHEMERELLA INFR	316
PARALEPTOPHL MEM	1	RHITHROGENA HAGE	72
AMELETUS VELOX	8	PARALEPTOPHL MEM	3
CAPNIA-GROUP SP.	43	CAPNIA-GROUP SP.	50
ALLOPERLA-GROUP	1	ALLOPERLA-GROUP	1
PROSTOIA BESAMET	1	CLAASSENI SABULO	18
CLAASSENI SABULO	3	CULTUS PILATUS	6
CULTUS PILATUS	$\bar{oldsymbol{\mu}}$	ISOGENOIDES LON	5
ISOGENOIDES ELON	43	ISOPERLA FULVA	35
ISOPERLA FULVA	72	ISOPERLA QUINQUE	21
ISOPERLA QUINQUE	41	SKWALA PARALLELA	2
SKWALA PARALLELA		PTERONARCELLA BA	23
PTERONARCELLA BA	9 3 9 1	TAENIONEMA PACIF	53
TAENIONEMA PACIF	á	GLOSSOSOMA SP.	1
ARCTOPSYCHE GRAN	1	ARCTOPSYCHE GRAN	5
CHEUMATOPSYCHE	66	CHEUMATOPSYCHE	206
HYDROPSYCHE OCCI	34	HYDROPSYCHE OCCI	298
SYMPHITOPSYCHE C	20	SYMPHITOPSYCHE C	31
SYMPHITOPSYCHE S	6	SYMPHITOPSYCHE S	5
OECETIS SP. A	1	HYDROPTILA SP.	8
PSYCHOMYIA FLAVI	6		4
PARARGYRACTIS SP		LEPIDOSTOMA SP.A	2
OPTIOSERVUS SPP.	5 2	PARARGYRACTIS SP	
ZAITZEVIA PARVUL	4	OREODYTES SCITIL	1
ATHERIX VARIEGAT	2	OPTIOSERVUS SPP.	104
MICROTENDIPES A	2	ZAITZEVIA PARVUL	32
PARACLADOPELMA	1	ATHERIX VARIEGAT	6
DIAMESA SP. A	1	MICROPSECTRA SP.	5 3 5
		DIAMESA SP. B	3
DIAMESA SP. B	8	PAGASTIA SP.	5
CRICOTOPUS SP. B	1	CRICOTOPUS SP. A	12
CRICOTOPUS SP. C	1	CRICOTOPUS SP. B	14
EUKIEFFERIELLA A	1	EUKIEFFERIELLA C	5
EUKIEFFERIELLA B	2	ORTHOCLADIUS (EU	8
EUKIEFFERIELLA C	1	ORTHOCLADIUS OBU	5
ORTHOCLADIUS (EU	13	SIMULIUM SP. A	67
ORTHOCLADIUS B	2	HEXATOMA SP.	3
ORTHOCLADIUS OBU	25	TIPULA SP.	õ
WIEDEMANNIA SP.	1	OLIGOCHAETA LUMB	15
HEXATOMA SP.	2	TURBELLARIA	3

BAETIS TRICAUDAT DRUNELLA GRANDIS EPHEMERELLA INFR RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS SPARSAT CAPNIA-GROUP SP. CALINEURIA CALIF CLAASSENI SABULO HESPEROPERLA PAC CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA FULVA ISOPERLA PARALLELA PTERONARCELLA BA PTERONARCELLA BA PTERONARCELLA BA PTERONARCELLA BA PTERONARCYS CALI TAENIONEMA PACIF BRACHYCENTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPSYCHE CHYDROPTILA SP. OECETIS SP. A PSYCHOMYIA FLAVI PARARGYRACTIS SP OREODYTES SCITIL OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT MICROTENDIPES A DIAMESA SP. A DIAMESA SP. B EUKIEFFERIELLA C ORTHOCLADIUS (EU ORTHOCLADIUS (EU ORTHOCLADIUS OBU TRISSOCLADIUS A ABLABESMYIA SP. DIPTERA-DOLICHOP SIMULIUM SP. A HEXATOMA SP. TIPULA SP.	153 616 296 15 15 16 15 16 17 18 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	BAETIS TRICAUDAT DRUNELLA GRANDIS EPHEMERELLA INFR HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL MEM CAPNIA-GROUP SP. PROSTOIA BESAMET CLAASSENI SABULO HESPEROPERLA PAC CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA QUINQUE SKWALA PARALLELA PTERONARCYS CALI TAENIONEMA PACIF BRACHYCENTRUS OC CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPSYCHE C HYDROPTILA SP. PSYCHOMYIA FLAVI OPTIOSERVUS SPP. MICROPSECTRA SP. MICROPSECTRA SP. MICROPSECTRA SP. CRICOTOPUS SP. A DIAMESA SP. A DIAMESA SP. A DIAMESA SP. B PAGASTIA SP. CRICOTOPUS SP. B EUKIEFFERIELLA A ORTHOCLADIUS (EU ORTHOCLADIUS D ORTHOCLADIUS D ORTHOCLADIUS OBU TRISSOCLADIUS A	265 87 95 10 10 10 10 10 10 10 10 10 10
---	---	--	---

Table 16. Continued

21STR3	605	24APL3 BAETIS TRICAUDAT	23
BAETIS TRICAUDAT DRUNELLA GRANDIS	3	EPHEMERELLA INFR	8
EPHEMERELLA INFR	1492	HEPTAGENIA SOLIT	6
HEPTAGENIA SOLIT	4	RHITHROGENA HAGE	6
RHITHROGENA HAGE	314	STENONEMA SP.	1
PARALEPTOPHL MEM	115	PARALEPTOPHL MEM	74
AMELETUS VELOX	6	ISOGENOIDES ELON	2
CAPNIA-GROUP SP.	4	TAENIONEMA PACIF	10
PROSTOIA BESAMET	6	CHEUMATOPSYCHE	1
CULTUS PILATUS	13	ZAITZEVIA PARVUL	1
ISOGENOIDES ELON	18	DICROTENDIPES SP	1
ISOPERLA FULVA	38	MICROPSECTRA SP.	2
ISOPERLA QUINQUE	61	DIAMESA SP. A	1
TAENIONEMA PACIF	61	DIAMESA SP. B	53
CHEUMATOPSYCHE	10	PAGASTIA SP.	7
HYDROPSYCHE OCCI	10 2 1 3 1 1 2 3 1 5	CRICOTOPUS SP. B	58
SYMPHITOPSYCHE C	2	EUKIEFFERIELLA D	2
SYMPHITOPSYCHE S	1	ORTHOCLADIUS (EU	220
HYDROPTILA SP.	3	ORTHOCLADIUS B	8
LEPIDOSTOMA SP.A	1	ORTHOCLADIUS D	5
PSYCHOMYIA FLAVI	1	ORTHOCLADIUS MAL	4
OPTIOSERVUS SPP.	2	ORTHOCLADIUS OBU	269
ZAITZEVIA PARVUL	3	TRISSOCLADIUS A	81
MICROPSECTRA SP.	1	SIMULIUM SP. A	9
MICROTENDIPES A	5		
DIAMESA SP. A	3 24		
DIAMESA SP. B	24		
PAGASTIA SP.	19		
CRICOTOPUS SP. B	5		
ORTHOCLADIUS (EU	149		
ORTHOCLADIUS B	15 7		
ORTHOCLADIUS D ORTHOCLADIUS MAL	6		
ORTHOCLADIUS OBU	57		
TRISSOCLADIUS A	24		
SIMC_IUM SP. A	2		
SINCTION SI. N	۷		

27TFR3	
BAETIS TRICAUDAT	1
DRUNELLA GRANDIS	1
EPHEMERELLA INFR	2
CINYGMULA SP. A	1
HEPTAGENIA SOLIT	11
STENONEMA SP.	132
PTERONARCYS CALI	1
TAENIONEMA PACIF	
OPHIOGOMPHUS SP.	3 2
GLOSSOSOMA SP.	1
CHEUMATOPSYCHE	76
HYDROPSYCHE SP.A	14
HYDROPSYCHE OCCI	10
SYMPHITOPSYCHE C	44
HYDROPTILA SP.	25
ZUMATRICHIA NOTO	1
CERACLEA SP.	34
OECETIS SP. A	1
PSYCHOMYIA FLAVI	20
PARARGYRACTIS SP	7
OPTIOSERVUS SPP.	
ZAITZEVIA PARVUL	2 13
MICROPSECTRA SP.	Ī
MICROTENDIPES A	17
DIAMESA SP. B	5
PAGASTIA SP.	68
CRICOTOPUS SP. A	
CRICOTOPUS SP. B	5 1
EUKIEFFERIELLA A	1
EUKIEFFERIELLA C	6
ORTHOCLADIUS (EU	9
ORTHOCLADIUS B	10
ORTHOCLADIUS MAL	3
ORTHOCLADIUS OBU	5 6
TRISSOCLADIUS A	10
SIMULIUM SP. A	1
FERRISSIA SP.	1

09C-10Q		090-100	
BAETIS INSIGNIFI	20	DARTIS INSTGNIET	1.2
BAETIS THICAUDAT	16	BAFTIS TRICAUDAT	8
EPHEMERELLA INTE	844	FPHEMERELLA INCP	511.11
HEPTAGENIA SOLIT	16	HEPTAGENIA SOLIT	Э т т
EHTTUROGENA HAGE	180	RHITTIROGENA HACE	11.2
PAREL PROPER MEM	211	PARALEPTODIL MEM	Q Q
, MELETHS VELOY	14	ABELETHS VELOV	10
CLANCERSE SABILO	ß	CAPMEA CHOID ST	1.4
HERESON OF A PAC	1 2	OTTNIN-GINGOT ST.	10
123021 201 202 201 001	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* 1 * 1
FROP SALA PHI MA	60	12000000000000000000000000000000000000	
TSOPERLA DUTNOUF	11	O9D-10Q DAETIS INSIGNIFI BAETIS TRICAUDAT EPHEMERELLA INFR HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS VELOX CAPNIA-GROUP ST. HESPEROPERLA PAC ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA FULVA ISOPERLA PARALLELA ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPILA SP. OECETIS SP. A PSYCHOMYIA FLAVI MICROTENDIPES SP PHAENOPSECTRA SP TANYTARSUS SP. B CRICOTOPUS SP. B EUKIEFFERIELLA H ORTHOCLADIUS OBU SYNORTHOCLADIUS) i
SYWALA 25 RALLEL I	Ŕ	CINTA DANALIST	* -1 /1
PTERON DOYS CALL	$\widetilde{\eta}_1$	NACH TAHABEEN	Q
ARCTOPSICLE GRAN	8	CHELOLOLOLOUR ANTE	101
CHERMATOP WORL	ики	HVDDODSVSHE OSST	704
HYDROPSYCHE D. CT	380	HIDNOLDICUS OCCI	16
STIPHTTOPS COCKE	11 S	DIOLITE OF COOKE	3 O
HVDROPT I A SP	1.03	ORCEPTS OF A	144
ARPATIS SP A	100	OBCULIO OF A	0
PSYCHOUSIA RIMAI	16	MICROPELLIA PLAVI	14
PARARCYRACTES SP	11	DHARMODEROTES SE	2 O
Apringhaum app	1 2	THARMOPARCINA SP	40
WAIPS AVIA DARWHI	22	TANTIARSUS SY. B	04
THE SHE THANGE	60	CMICOTOPOS SY. B	12
DUATEO CECTDA SE	16	EUKIEFFEKIELLA H	4
TAMENOLDECINA DE	2	OKIHOCLADIUS B	12
CRICORORUS CR. B	1.2	OKIHOCLADIUS OBU	140
MICROTENDIPES SP PHAENOPSECTRA SP TANYTARSUS SP. B CRICOTOPUS SP. 3 EUKIEFFERIELLA B	12	SYNORTHOCLADIUS	8
ORTHOCLADIUS 3	∠ () h	OLIGOCHAETA	11
ORTHOGLADIUS ORU	4		
ORTHOCLADIUS OBU	32		
CHELIFERA SP.	14		

Table 16. Continued

10.4-100		100-100	
BARRIS INSIGNIET	()	BARTIS INSTUNTED	()()
	21 21	BAETIS TRICAUDAT	43:
CENTROPTILU SP.A	11		74
EPHEMERELLA INFR	n 184	EPHENDRELLA INFR	4 468
HEPTAGENIA SOLIT	24	CINYGHULA SP.	11
RHITHROGENA HAGE	114		1.
PARALEPTOPHL MEH	32	RHITHROGENA HAGE	4 132 16
AMELETUS VELOX	12 12	PARALEPTOPHL MEM	16
CLAASSENI SABULO	12	AMELETUS VELOX	3
TOUGHT STOLES OF	Tr.	CLAASSENI SABULO	36
ISOPERLA FULVA	1 6 1;	HESPEROPERLA PAC	4
Premonarcella BA	P_{t}	CULTUS PILATULE	14
TAUTHOLEMA PACIF	1	ISOPERLA FULVA	ñ(
BRACHYCENTRUS OC	1 to	SEWALA PARALLELA	*
		-TERONARGELLA DA	1 1
CHEUMATOPSYCHE	148	TAENIOHEMA PACIE	17
- (1+1)3(1)6 (3)((HE - ()(G))	243	BRACHYCE ATTRUE OC	1,,
SYMPHITOPS COCKE	$\eta \eta$	ARCTOPSYCHE GRAN	46
SYMPHITOPS SLOSS	4	CHEUMATOPSYCHE	300
HIDROPTILA SP.	10ਰ ਮ	HYDROPSYCHE OCCI	460
PSYCHOMYIA FLAVI	-1	SYMPHITOPS COCKE	150
PARARGYRACTIS SP	8	SYMPHITOPS SLOSS	ठ
OPTIOSERVUS SPP.	8 152 36	HYDROPTILA SI'.	360
ZAITZEVIA PARVUL	36	LEUCOTRICHIA PIC	4
A THE DIV WARTED A TO	1.	OECETIS SP. A	S
MICROPSECTR SP.A	16 4	PSYCHOMYIA FLAVI	8
TAHYTARSUS SP. B	4	PARARGYRACTIS SP	3
CRICOTOPUS SP. B	32	OPTIOSERVUS SPP.	280
EUKIEFFERIELLA B	104	ZAITZEVIA PARVUL	84
EUKIEFFERIELLA H	104 12	MICROPSECTR SP.A	24
CT:IIII TIII' CD	84	MICROTENDIPES SP	14
ANTOCHA SP.	14	POLYPEDILUM SP.A	4
HIRUDINEA	14 14	TANYTARSUS SP. B	11
		PAGASTIA SP.	71
		CRICOTOPUS SP. B	74
		EUKTEFFERTELLA B	3 1
		ORTHOCLADIU.; D	11
		ORTHOCLADIUS OBU	12
		THIENEMANIELE SP	74
		CHELIFERA SP.	8
		WIEDSHAMMIA SP.	8
		SIMULIUM SP. ANTOCHA MP	20
			35
		SELIGOCHAETA LOUR	16

Table 16. Deep Water Monitoring Stations - Petite Ponar Grab Samples

PO3MT3 CHIRONOMUS SP. ORMOSIA SP. OLIGOCHAETA	1 1 9	P28NR3 LEPTOPHLEBIA GRA PALPOMYIA-GP SP. DICROTENDIPES SP MICROPSECTRA SP. ORTHOCLADIUS OBU PROCLADIUS SP. OLIGOCHAETA	1 2 1 2 1 31 48
P16BN3 CHIRONOMUS SP. CRYPTOCHIRONOMUS PHAENOPSECTRA SP MONODIAMESA SP. HETEROTRISSOCLAD ORTHOCLADIUS OBU TRISSOCLADIUS A HEXATOMA SP. OLIGOCHAETA	3 2 1 1 1 5 1 1 126	P30CG3 OECETIS SP. B PALPOMYIA-GP SP. CRYPTOCHIRONOMUS MICROPSECTRA SP. POLYPEDILUM SP.B PSEUDOCHIRONOMUS HETEROTRISSOCLAD ORTHOCLADIUS E ORTHOCLADIUS NIG ORTHOCLADIUS OBU PROCLADIUS SP. OLIGOCHAETA	1 1 2 1 19 1 18 1 1 9
P26TF3 ISCHNURA SP. PARARGYRACTIS SP ZAITZEVIA PARVUL CHIRONOMUS SP. CRYPTOCHIRONOMUS MICROPSECTRA SP. PHAENO: ECTRA SP PSEUDOCHIRONOMUS MONODIAMESA SP. CRICOTOPUS SP. B EUKIEFFERIELLA B ORTHOCLADIUS (EU TRISSOCLADIUS A PROCLADIUS SP. OLIGOCHAETA	1 1 45 1 2 10 2 1 1 1 1 6 4		

Table 16. Benthic Macroinvertebrate Sample Counts and Identifications Summer, 1984.

Shallow Water Stations - Kick Samples

	Shallow Water Star	tions - Kick Samples	
01A-8H*		01B-8H	
BARTIS INSTANTET	134	BARTIS INSTANTED	124
BAETIS TRICAUDAT	252	BAETIS TRICAUDAT	218
ATTENELLA MARGAR	104	CENTROPTILU SP.A	4
DRUNELLA FLAVILI	4	ATTENELLA MARGAR	88
DRUNELLA GRANDIS	10	SERRATELLA TIBIA	48
SERRATELLA TIBIA	44	NIXE SIMPLICIOID	40
NIXE CRIDDLET	?	BAETIS TRICAUDAT CENTROPTILU SP.A ATTENELLA MARGAR SERRATELLA TIBIA NIXE SIMPLICIOID RHITHROGENA HAGE TRICORYTHODES MI	14
NIXE SIMPLICIOID	26	TRICORYTHODES MI	104
RHITHROGENA HAGE	14	ALLOPERLA-GROUP	14
TRICORYTHODES MI	108	CLAASSENI SABULO	12
ALLOPERLA-GROUP	6	CLAASSENI SABULO ISOGENOIDES ELON	28
ZAPADA CINCTIPES	2	SKWALA PARALLELA	2
CLAASSENI SABULO	12	PTERONARCELLA BA	46
ISOPERLA QUINQUE	2	ARCTOPSYCHE GRAN	50
SKWALA PARALLELA	26	CHEUMATOPSYCHE	4
PTERONARCELLA BA	90	HYDROPSYCHE OCCI	26
ARCTOPSYCHE GRAN	64	SYMPHITOPS COCKE HYDROPTILA SP.	24
CHEUMATOPSYCHE	6 2 12 2 6 9 6 8 8 8 8 8 8 8 8 8 8 8 8 8 1 6 2 4 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	HYDROPTILA SP.	52
HYDROPSYCHE OCCI	82	NEOTRICHIA SP.	6
SYMPHITOPS COCKE	30	OPTIOSERVUS SPP.	14
HYDROPTILA SP.	42	ZAITZEVIA PARVUL	16
NEOTRICHIA SP.	8	ATHERIX VARIEGAT	4
OPTIOSERVUS SPP.	40	MICROPSECTR SP.A	6
ZAITZEVIA PARVUL	28	MICROPSECTR SP.C	2
ATHERIX VARIEGAT	16	MICROTENDIPES SP	2
MICROPSECTR SP.A	2	POLYPEDILUM SP.A	56
MICROPSECTR SP.C	4	PAGASTIA SP.	2
PARACLADOPE SP.B	2	CARDIOCLADI SP.C	2
POLYPEDILUM SP.A	50	EUKIEFFERIELLA B	90
PHOHOLIA SP.	2	EUKIEFFERIELLA E	24
CARDIOCLADI SP.C	2	HETEROTRISSOCLAD	4
CRICOTOPUS SP. B	6	ORTHOCLADIUS B	2
EUKIEFFERIELLA B	86	ORTHOCLADIUS NIG	102
EUKIEFFERIELLA E	36	ORTHOCLADIUS OBU	2
HETEROTRISSOCLAD	24	ABLABESMYIA SP.	2
ORTHOCLADIUS F	2	SIMULIUM SP.	34
ORTHOCLADIUS NIG		HEXATOMA SP.	4
ORTHOCLADIUS OBU	2		
ABLABESMYIA SP.	2		
SIMULIUM SP.	44		
HEXATOMA SP.	4		

^{*}H= half-sorted samples, counts here have been corrected (X2) Q= quarter-sorted samples, counts here have been corrected (X4)

RHITHROGENA HAGE 24 ALLOPERLA-GROUP TRICORYTHODES MI 92 CLAASSENI SABULO ALLOPERLA-GROUP 4 HESPEROPERLA PAC MALENKA SP. 2 ISOGENOIDES ELON CLAASSENI SABULO 8 SKWALA PARALLELA ISOGENOIDES ELON 56 PTERONARCELLA BA SKWALA PARALLELA 6 PTERONARCYS CALI PTERONARCELLA BA 108 BRACHYCENTRUS OC PTERONARCYS CALI 2 ARCTOPSYCHE GRAN ARCTOPSYCHE GRAN 84 CHEUMATOPSYCHE CHEUMATOPSYCHE 16 HYDROPSYCHE OCCI HYDROPSYCHE OCCI 80 SYMPHITOPS COCKE SYMPHITOPS COCKE 40 HYDROPTILA SP. NEOTRICHIA SP. 48 NEOTRICHIA SP. OPTIOSERVUS SPP. 30 ZAITZEVIA PARVUL ZAITZEVIA PARVUL 18 ATHERIX VARIEGAT ATHERIX VARIEGAT 8 MICROPSECTR SP.A MICROPSECTR SP.A 6 MICROPSECTR SP.C MICROPSECTR SP.A 6 POLYPEDILUM SP.A POLYPEDILUM SP.A 66 POLYPEDILUM SP.A POLYPEDILUM SP.A 66 POLYPEDILUM SP.C CARDIOCLADI SP.C 2 CRICOTOPUS SP. B EUKIEFFERIELLA B EUKIEFFERIELA B EUKIEFFERIELA B EUKIEFFERIELA B EUKIEFFERIELA B EUK	32 426 43236 11822 12252 4246
--	--

Table 16. Continued

EPEORUS ALBERTAE NIXE CRIDDLEI RHITHROGENA HAGE ALLOPERLA-GROUP CALINEURIA CALIF CLAASSENI SABULO HESPEROPERLA PAC PTERONARCYS CALI GLOSSOSOMA SP. ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE NEOTRICHIA SP. DICOSMOECUS SP. WORMALDIA SP. OPTIOSERVUS SPP. ZAITZEVIA PARVUL ANACAENA SP.	31 1 9 7 7 15 1 27 8 11 31 27 9 3 7 34 68	D2D-8 BAETIS FLAVISTRI BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR DRUNELLA GRANDIS SERRATELLA TIBIA EPEORUS ALBERTAE RHITHROGENA HAGE ALLOPERLA-GROUP CALINEURIA CALIF CLAASSENI SABULO PTERONARCYS CALI GLOSSOSOMA SP. HELICOPSYCHE BOR ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE NEOTRICHIA SP. DICOSMOECUS SP. WORMALDIA SP. PSYCHOMYIA FLAVI OPTIOSERVUS SPP. ZAITZEVIA PARVUL CLADOTANYSARSU B MICROTENDIPES SP POLYPEDILUM SP.A TANYTARSUS SP.B CARDIOCLADI SP.C CORYNONEURA SP. CRICOTOPUS SP.B EUKIEFFERIELLA E ORTHOCLADIUS C SIMULIUM SP. ANTOCHA SP. HEXATOMA SP. PHYSA SP. OLIGOCHAETA LUMB	5 11 8 4 1 7 17 1 2 1 1 1 3 5 1 1 2
PHYSA SP. OLIGOCHAETA LUMB	10 2 2	OLIGOCHAETA LUMB	1

BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT CENTROPTILU SP.A ATTENELLA MARGAR EPHEMERELLA INFR SERRATELLA TIBIA TIMPANOGA HECUBA EPEORUS ALBERTAE NIXE SIMPLICIOID RHITHROGENA HAGE TRICORYTHODES MI ALLOPERLA-GROUP ZAPADA CINCTIPES HESPEROPERLA PAC ISOGENOIDES ELON SKWALA PARALLELA PTERONARCELLA BA PTERONARCELLA BA PTERONARCYS CALI RHAGOVELIA SP. ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. WORMALDIA SP. PSYCHOMYIA FLAVI OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROPSECTR SP.A MICROTENDIPES SP PHAENOPSECTRA SP POLYPEDILUM SP.A TANYTARSUS SP.B EUKIEFFERIELLA B EUKIEFFERIELLA E ORTHOCLADIUS B ORTHOCLADIUS OBU SIMULIUM SP.	57 2 30 2 27 1 3 3 3 3	BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR DRUNELLA DODDSI DRUNELLA GRANDIS SERRATELLA TIBIA EPEORUS ALBERTAE NIXE GIMPLICIOID RHITTHROGENA HAGE ALLOPERLA-GROUP CALINEURIA CALLE CLAAGSENI GABULO HESPEROPERLA PAC ISOGENOIDES ELON ISOPERLA QUINQUE SKWALA PARALLELA PTERONARCELLA BA PTERONARCELLA SP. NEOTRICHIA SP. NEOTRICHIA SP. ANICROPSECTR SP. A MICROPSECTR SP. A MICROPSECTR SP. A MICROPSECTR SP. A MICROPSECTR SP. B MICROTENDIPES SP PARACLADOPE SP. B MICROTENDIPES SP PARACLADOPE SP. B MICROTENDIPES SP PARACLADOPE SP. B POLYPEDILUM SP. C TANYTARSUS SP. B PAGASTIA SP. CARDIOCLADIUS SP. C CRICOTOPUS SP. B EUKIEFFERIELLA E EUKIEFFERIELLA B EUKIEFFERIELLA B EUKIEFFERIELLA E EUKIEFFERIELLA B EUKIEFFERIELA B	3 0 5 3 1 2 1 2 1 1 1 5 2 4 8 1 1 3 3 2 5 3 6 2 3 1 8 0 5 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 2 2 2 1 4 1 2 6 7 1 1 1 2 1 1 1 1 2 2 2 2 1 4 1 2 1 1 1 2 1 1 1 2 2 2 2
---	---	---	---

04C-8 BAETIS HAGENI BAETIS INSIGNIFI	4 1 4 4	04D-8 BAETIS HAGENI BAETIS INSIGNIFI	4 135
BAETIS TRICAUDAT	153	BAETIS TRICAUDAT	228
CENTROPTILU SP.A	5	ATTENELLA MARGAR	24
	29	DRUNELLA FLAVILI	1
DRUNELLA GRANDIS	4	DRUNELLA GRANDIS	4
SERRATELLA TIBIA	87	EPHEMERELLA INFR	1
TIMPANOGA HECUBA	1	SERRATELLA TIBIA	200
EPEORUS ALBERTAE	12	EPEORUS ALBERTAE	16 8
NIXE CRIDDLEI NIXE SIMPLICIOID	3 9	NIXE SIMPLICIOID RHITHROGENA HAGE	0 13
RHITHROGENA HAGE	7	TRICORYTHODES MI	8
PARALEPTOPHL DEB	1	ALLOPERLA-GROUP	1
TRICORYTHODES MI	6	ZAPADA CINCTIPES	1
ALLOPERLA-GROUP	2	CALINEURIA CALIF	1
CALINEURIA CALIF	2	CLAASSENI SABULO	1
CLAASSENI SABULO	1	HESPEROPERLA PAC	1
HESPEROPERLA PAC	1	ISOGENOIDES ELON	42
ISOGENOIDES ELON	41	SKWALA PARALLELA	2
SKWALA PARALLELA	5	PTERONARCELLA BA PTERONARCYS CALI	87 13
PTERONARCELLA BA PTERONARCYS CALI	33 5	BRACHYCENTRUS OC	2
ARCTOPSYCHE GRAN	25	ARCTOPSYCHE GRAN	37
CHEUMATOPSYCHE	37	CHEUMATOPSYCHE	45
HYDROPSYCHE OCC1	r ₅	HYDROPSYCHE OCCI	14
	217	SYMPHITOPS COCKE	294
HYDROPTILA SP.	12	HYDROPTILA SP.	11
NEOTRICHIA SP.	2.	NEOTRICHIA SP.	1
	18	OECETIS SP. A	1
PSYCHOMYIA FLAVI	5	WORMALDIA SP.	15
RHYACOPHILA ANGE	1	PSYCHOMYIA FLAVI OPTIOSERVUS SPP.	27
OPTIOSERVUS SPP. ZAITZEVIA PARVUL	17 21	ZAITZEVIA PARVUL	19 17
ATHERIX VARIEGAT	1	MICROPSECTR SP.A	4
MICROPSECTR SP.A	2	MICROTENDIPES SP	
MICROTENDIPES SP	2	PHAENOPSECTRA SP	5 3
POLYPEDILUM SP.A	19	POLYPEDILUM SP.A	3 1
TANYTARSUS SP. B	2	TANYTARSUS SP. B	4
CRICOTOPUS SP. B	1	CRICOTOPUS SP. B	3
EUKIEFFENIELLA B	13	EUKIEFFERIELLA B	14
EUKIEFFERIELLA E EUKIEFFERIELLA G	1 O 1	EUKIEFFERIELLA E ORTHOCLADIUS B	25 19
EUKIEFFERIELLA H	1	ORTHOCEADIUS NIG	4
ORTHOCLADIUS B	13	ORTHOCLADIUS OBU	14
ORTHOCLADIUS NIG	1	ABLABESMYIA SP.	1
ORTHOCLADIUS OBU	7	SIMULIUM SP.	30
CHELIFERA SP.	1	HEXATOMA SP.	1
SIMULIUM SP.	33		
ANTOCHA SP.	5 3		
HEXATOMA SP.	3 1		
OLIGOCHAETA	I		

05 A - 7		05B-7
BAETIS HAGENI	1	BAETIS INSIGNIFI 7
BAETIS INSIGNIFI	1 1	BAETIS TRICAUDAT 3
BAETIS TRICAUDAT	4	CENTROPTILU SP.A 4
ATTENELLA MARGAR	11	ATTENELLA MARGAR 10
SERRATELLA TIBIA	15	DRUNELLA FLAVILI
EPEORUS ALBERTAE	4	serratella tibia 8
NIXE SIMPLICIOID	15	TIMPANOGA HECUBA 2
RHITHROGENA HAGE	2	EPEORUS ALBERTAE 1
TRICORYTHODES MI	8	NIXE SIMPLICIOID 23
CLAASSENI SABULO	1	PARALEPTOPHL BIC 1
ISOGENOIDES ELON	9	TRICORYTHODES MI 13
SKWALA PARALLELA	6	ALLOPERLA-GROUP 1
PTERONARCELLA BA	1	CLAASSENI SABULO 2
PTERONARCYS CALI	4	ISOGENOIDES ELON 7
ARCTOPSYCHE GRAN	12	SKWALA PARALLELA 1
CHEUMATOPSYCHE	24	PTERONARCELLA BA 1
HYDROPSYCHE OCCI	3	PTERONARCYS CALI 1
SYMPHITOPS COCKE	112	ZAITZEVIA PARVUL 1
HYDROPTILA SP.	1	CRYPTOCHIRONOMUS 2
NEOTRICHIA SP.	1	MICROPSECTR SP.A 1
WORMALDIA SP.	3	MICROTENDIPES SP 4
PSYCHOMYIA FLAVI	ī	PARACLADOPE SP.B 2
OPTIOSERVUS SPP.	2	POLYPEDILUM SP.A 1
ZAITZEVIA PARVUL	2	TANYTARSUS SP. B 2
MICROPSECTR SP.A	8	EUKIEFFERIELLA E 3
MICROTENDIPES SP	1	EUKIEFFERIELLA G 1
POLYPEDILUM SP.A	15	ORTHOCLADIUS B 1
STEMPELLINELLA	1	ORTHOCHADIUS OBU .'
TANYTARBUS BP. B	6	HEXATOMA SP. 1
CORYNONEURA SP.	1	PACIFASTICUS SP. 1
EUKIEFFERIELLA B	2	
EUKIEFFERIELLA E	1 4	
ORTHOCLADIUS B	5	
ORTHOCLADIUS NIG	1	
PSECTROCLADIUS B	1	
HEXATOMA SP.	2	

Table 16. Continued

05C-7 BAETIS INSIGNIFI BAETIS TRICAUDAT CENTROPTILU SP.A ATTENELLA MARGAR		05D-7	
BAETIS INSIGNIFI	22	BAETIS HAGENI	6
BAETIS TRICAUDAT	12	BAÈTIS HAGENI BAÈTIS INSIGNIFI	26
CENTROPTILU SP.A	1	BAETIS TRICAUDAT	23
ATTENELLA MARGAR	28	ATTENELLA MARCAR	22
SERRATELLA TIBIA	28	SERRATELLA TIBIA	42
TIMPANOGA HECUBA	1	TIMPANOGA HECUBA	2
EPEORUS ALBERTAE	6	SERRATELLA TIBIA TIMPANOGA HECUBA EPEORUS ALBERTAE NIXE SIMPLICIOID RHITHROGENA HAGE	6
NIXE SIMPLICIOID	18	NIXE SIMPLICIOID	18
RHITHROGENA HAGE	2	RHITHROGENA HAGE	1
TRICORYTHODES MI	4	PARALEPTOPHL BIC	1
ISOGENOIDES ELON	21	TRICORYTHODES MI	9
SKWALA PARALLELA		ALLOPERLA-GROUP	í
PTERONARCELLA BA	ž	CLAASSENT SABULO	ż
	1	HESPEROPERLA PAC	3
PTERONARCYS CALI ARCTOPSYCHE GRAN	24	ISOGENOIDES ELON	14
CHEUMATOPSYCHE	23	CLAASSENI SABULO HESPEROPERLA PAC ISOGENOIDES ELON SKWALA PARALLELA	~
HYDROPSYCHE OCCI	3	PTERONARCELLA BA	10
SYMPHITOPS COCKE	162	PTERONARCYS CALI	2
HYDROPTILA SP.	1	BRACHYCENTRUS OC	2
WORMALDIA SP.	6	PTERONARCELLA BA PTERONARCYS CALI BRACHYCENTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI	26
OPTIOSERVUS SPP.	2	CHEUMATOPSYCHE	31
ZAITZEVIA PARVUL	2	HYDROPSYCHE OCCI	2
MICROPSECTR SP.A	3	SYMPHITOPS COCKE	213
MICROTENDIPES SP	1	HYDROPTILA SP.	2
PHAENOPSECTRA SP	1	WORMALDIA SP.	3
POLYPEDILUM SP.A	6	OPTIOSERVUS SPP.	1
TANYTARSUS SP. B	1	ZAITZEVIA PARVUL	6
EUKIEFFERIELLA A	1	MICROPSECTR SP.A	1
EUKIEFFERIELLA E	5	MICROPSECTR SP.A MICROTENDIPES SP PHAENOPSECTRA SP	1
ORTHOCLADIUS B	3	PHAENOPSECTRA SP	2
ORTHOCLADIUS NIG	3	POLYPEDILUM SP.A	11
ORTHOCLADIUS OBU	3	TANYTARSUS SP. B	2
PARAMETRIOCNE SP	1	EUKIEFFERIELLA A	1
CHELIFERA SP.	1	EUKIEFFERIELLA E	18
HEXATOMA SP.	1	EUKIEFFERIELLA E HETEROTRISSOCLAD	1
SYMPHITOPS COCKE HYDROPTILA SP. WORMALDIA SP. OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROPSECTR SP.A MICROTENDIPES SP PHAENOPSECTRA SP POLYPEDILUM SP.A TANYTARSUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA E ORTHOCLADIUS B ORTHOCLADIUS NIG ORTHOCLADIUS OBU PARAMETRIOCNE SP CHELIFERA SP. HEXATOMA SP. OLIGOCHAETA	1	ORTHOCLADIUS B	3
		ORTHOCLADIUS NIG	1
		ORTHOCLADIUS OBU	2
		ABLABESMYIA SP.	1

Table 16. Continued

ORTHOCLADIUS F 1 ABLABESMYIA SP.	BAETIS TRICAUDAT CENTROPTILU SP.A ATTENELLA MARGAR SERRATELLA TIBIA TIMPANOGA HECUBA NIXE SIMPLICIOID TRICORYTHODES MI CLAASSENI SABULO ISOGENOIDES ELON SKWALA PARALLELA PTERONARCELLA BA ARCTOPSYCHE GRAN CHEUMATOPSYCHE SYMPHITOPS COCKE HYDROPTILA SP. NEOTRICHIA SP. OECETIS SP. A PSYCHOMYIA FLAVI OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT CRYPTOCHIRONOMUS MICROPSECTR SP.A MICROTENDIPES SP PHAENOPSECTRA SP POLYPEDILUM SP.A TANYTARSUS SP. B PAGASTIA SP. EUKIEFFERIELLA E ORTHOCLADIUS B ORTHOCLADIUS OBU	22 2 30 3 1 32 37 1 18 3 1 95 1 1 1 5 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CHELIFERA SP.	60 24 50 12 51 35 18 18 18 12 7 11 14 13 12 13 11 12 12 13 13 13 14 14 16 17 17 17 17 17 17 17 17 17 17 17 17 17
ORTHOCLADIUS F 1 ABLABESMYIA SP. ORTHOCLADIUS OBU 5 CHELIFERA SP. 2	ORTHOCLADIUS F ORTHOCLADIUS OBU CHELIFERA SP. ANTOCHA SP. HEXATOMA SP.	1 5 3 1 1	ABLABESMYIA SP. CHELIFERA SP.	1 2

Table 16. Continued

O6C-7 BAETIS HAGENI BAETIS INSIGNIFI BAETIS INSIGNIFI BAETIS INSIGNIFI BAETIS INSIGNIFI BAETIS INSIGNIFI BAETIS TRICAUDAT CENTROPTILU SP.A ATTENELLA MARGAR BAETIS TRICAUDAT CENTROPTILU SP.A ATTENELLA MARGAR SP.A BERRATELLA TIBIA TIMPANOGA HECUBA BEFORUS ALBERTAE CONTROLE C
--

BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT CENTROPTILU SP.A ATTENELLA MARGAR TIMPANOGA HECUBA EPEORUS ALBERTAE NIXE SIMPLICIOID PARALEPTOPHL BIC TRICORYTHODES MI MALENKA SP. ISOGENOIDES ELON SKWALA PARALLELA PTERONARCELLA BA PTERONARCELLA BA PTERONARCYS CALI ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. NEOTRICHIA SP. PSYCHOMYIA FLAVI ZAITZEVIA PARVUL CHIRONOMUS SP. MICROPSECTR SP.A MICROTENDIPES SP PHAENOPSECTRA SP POLYPEDILUM SP.A POLYPEDILUM SP.A POLYPEDILUM SP.C TANYTARSUS SP. B PAGASTIA SP. CRICOTOPUS SP. B EUKIEFFERIELLA G ORTHOCLADIUS B ANTOCHA SP. OLIGOCHAETA	4 84 120 60 4 43 16 47 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	DAB-TQ BAETIS FLAVISTRI BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR TIMPANOGA HECUBA NIXE SIMPLICIOID PARALEPTOPHL BIC TRICORYTHODES MI ISOGENOIDES ELON SKWALA PARALLELA ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. OECETIS SP. A WORMALDIA SP. PSYCHOMYIA FLAVI PARARGYRACTIS SP OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROPSECTR SP.A MICROTENDIPES SP POLYPEDILUM SP.A TANYTARSUS SP. B PAGASTIA SP. CARDIOCLADI SP.C EUKIEFFERIELLA E ORTHOCLADIUS B ORTHOCLADIUS NIG ORTHOCLADIUS OBU ABLABESMYIA SP. OLIGOCHAETA	4 8 2 2 8 4 4 3 1 6 1 2 4 4 4 4 4 4 4 4 4 3 1 6 2 4 8 4 9 6 2 4 8 4 9 6 2 4 8 4 9 6 2 4 8 4 9 6 2 4 8 4 9 6 2 4 8 4 9 6 6 2 4 8 4 9 6 2 4 8 4 8 4 9 6 2 4 8 4 8 4 9 6 2 4 8 4 8 4 9 6 2 4 8 4 8 4 9 6 2 4 8 4 8 4 9 6 2 4 8 4 8 4 9 6 2 4 8 4 8 4 9 6 2 4 8 4 8 4 9 6 2 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4
---	---	---	---

Table 16. Continued

nk.

08C-7Q		08D-7Q	
BAETIS HAGENI	žį	BAETIS INSIGNIFI	100
BAETIS INSIGNIFI	80	BAETIS TRICAUDAT	12
BAETIS TRICAUDAT	20	CENTROPTILU SP.A	20
CENTROPTILU SP.A	16	ATTENELLA MARGAR	44
CENTROPTILU SP.A ANTROPFILUM SP.B	4	EPHEMERELLA INFR	4
ATTENELLA MARGAR	40	SERRATELLA TIBIA	11
DRUNELLA GRANDIS	4	TIMPANOGA HECUBA	4
SERRATELLA TIBIA	8	NIXE CRIDDLEI	12
TIMPANOGA HECUBA	12	NIXE SIMPLICIOID	36
EPEORUS ALBERTAE	4	TRICORYTHODES MI	304
NIXE CRIDDLEI	8	ISOGENOIDES ELON	12
NIXE SIMPLICIOID	12	ISOPERLA QUINQUE	4
PARALEPTOPHL BIC	4	PTERONARCELLA BA	4
TRICORYTHODES MI	180	PTERONARCYS CALI	4
ISOGENOIDES ELON	8	ARCTOPSYCHE GRAN	16
ISOPERLA QUINQUE	4	CHEUMATOPSYCHE	56
PTERONARCELLA BA	4	HYDROPSYCHE OCCI	12
PTERONARCYS CALI	12	SYMPHITOPS COCKE	160
ARCTOPSYCHE GRAN	8	HYDROPTILA SP.	4
CHEUMATOPSYCHE	68	NEOTRICHIA SP.	4
HYDROPSYCHE OCCI	14	PSYCHOMYIA FLAVI	12
SYMPHITOPS COCKE	148	OPTIOSERVUS SPP.	8
HYDROPTILA SP.	8	ZAITZEVIA PARVUL	8
OECETIS SP. A	4	MICROTENDIPES SP	28
PSYCHOMYIA FLAVI	8	PHAENOPSECTRA SP	8
OPTIOSERVUS SPP.	12	POLYPEDILUM SP.A	132
ZAITZEVIA PARVUL	4	POLYPEDILUM SP.C	12
MICROPSECTR SP.A	4	TANYTARSUS SP. B	44
MICROTENDIPES SP	12	TANYTARSUS SP. C	4
PHAENOPSECTRA SP	4	MONODIAMESA SP.	4
POLYPEDILUM SP.A	80	CARDIOCLADI SP.C	4
POLYPEDILUM SP.C	4	CRICOTOPUS SP. B	8
TANYTARSUS SP. B	20	EUKIEFFERIELLA E	24
TANYTARSUS SP. C	4	EUKIEFFERIELLA H	4
CARDIOCLADI SP.C	12	ORTHOCLADIUS B	64
CRICOTOPUS SP. B	8	ORTHOCLADIUS OBU	20
EUKIEFFERIELLA B	4	ANTOCHA SP.	4
EUKIEFFERIELLA E	16	OLIGOCHAETA	316
ORTHOCLADIUS B	12	OLIGOCHAETA LUMB	8
ABLA. SMYIA SP.	14		
OLIGOCHAETA	112		

09A-7Q		09B-7Q	
BAETIS HAGENI	4	BAETIS HAGENI	12
BAETIS INSIGNIFI	128	BAETIS INSIGNIFI	236
BAETIS TRICAUDAT	4	BAETIS TRICAUDAT	64
ATTENELLA MARGAR	52	ATTENELLA MARGAR	40
SERRATELLA TIBIA	4	EPHEMERELLA INFR	4
TIMPANOGA HECUBA	4	SERRATELLA TIBIA	40
EPEORUS ALBERTAE	8	TIMPANOGA HECUBA	8
NIXE CRIDDLEI	4	EPEORUS ALBERTAE	16
NIXE CRIDDLEI	44	NIXE CRIDDLEI	4
TRICORYTHODES MI	60	NIXE SIMPLICIOID	28
ISOGENOIDES ELON	20	RHITHROGENA HAGE	11
ISOPERLA QUINQUE	4	PARALEPTOPHL BIC	14
PTERONARCYS CALI	14	PARALEPTOPA DEB	12
BRACHYCENTRUS OC	' ' '4	TRICORYTHODES MI	60
ARCTOPSYCHE GRAN	4	ISOGENOIDES ELON	24
CHEUMATOPSYCHE	36	ARCTOPSYCHE GRAN	24
HYDROPSYCHE OCCI	8	CHEUMATOPSYCHE	140
	44	HYDROPSYCHE OCCI	24
SYMPHITOPS COCKE	32	SYMPHITOPS COCKE	152
HYDROPTILA SP.	3 <i>4</i> 8	HYDROPTILA SP.	36
PSYCHOMYIA FLAVI	0 4		8
OPTIOSERVUS SPP.		OREODYTES SCITIL	12
ZAITZEVIA PARVUL	4	ZAITZEVIA PARVUL	_
MICROPSECTR SP.A	12	MICROPSECTR SP.A	4
MICROPSECTR SP.C	4	MICROTENDIPES SP	8
MICROTENDIPES SP	12	PHAENOPSECTRA SP	4
PHAENOPSECTRA SP	4	POLYPEDILUM SP.A	100
POLYPEDILUM SP.A	40	POLYPEDILUM SP.C	4
EUKIEFFERIELLA B	4	TANYTARSUS SP. B	8
EUKIEFFERIELLA E	16	CRICOTOPUS SP. B	4
ORTHOCLADIUS B	36	EUKIEFFERIELLA E	28
ORTHOCLADIUS OBU	20	ORTHOCLADIUS B	32
ANTOCHA SP.	4	ORTHOCLADIUS OBU	20
HEXATOMA SP.	16	ABLABESMYIA SP.	4
		CHELIFERA SP.	4
		HEXATOMA SP.	4
		OLIGOCHAETA	4

Table 16. Continued

SIMULIUM SP. 4 ANTOCHA SP. 4	O9C-7Q BAETIS INSIGNIFI BAETIS TRICAUDAT CENTROPTILU SP.A ATTENELLA MARGAR SERRATELLA TIBIA TIMPANOGA HECUBA EPEORUS ALBERTAE NIXE CRIDDLEI NIXE SIMPLICIOID PARALEPTOPHL BIC PARALEPTOPHL DEB TRICORYTHODES MI ISOGENOIDES ELON SKWALA PARALLELA PTERONARCYS CALI ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. PSYCHOMYIA FLAVI OREODYTES SCITIL OPTIOSERVUS SPP. ZAITZEVIA PARVUL CRYPTOCHIRONOMUS MICROPSECTR SP.A MICROTENDIPES SP PHAENOPSECTRA SP POLYPEDILUM SP.A TANYTARSUS SP.B EUKIEFFERIELLA E ORTHOCLADIUS B ORTHOCLADIUS OBU	124 412 36 12 44 40 44 40 44 44 44 44 44 44 44 44 44		244 486 486 481 482 1188 281 486 848 824 334 486 848 848 848 848 848 848 848 848 84
---------------------------------	---	--	--	---

10A-7		10B-7	
BAETIS INSIGNIFI	5 1	AMETROPUS SP.	1
BAETIS TRICAUDAT	16	BAETIS INSIGNIFI	6.1
ATTENELLA MARGAR	44	BAETIS TRICAUDAT	35
DRUNELLA FLAVILI	1	ATTENELLA MARGAR	36
EPHEMERELLA INFR	9	DRUNELLA GRANDIS	í
SERRATELLA TIBIA	1 2	EPHEMERELLA INFR	11
EPEORUS ALBERTAE	2	SERRATELLA TIBIA	16
NIXE SIMPLICIOID	16	NIXE SIMPLICIOID	44
RHITHROGENA HAGE	16	RHITHROGENA HAGE	13
TRICORYTHODES MI	1	TRICORYTHODES MI	1
CLAASSENI SABULO	1	CLAASSENI SABULO	1
ISOGENOIDES ELON	5 6	ISOGENOIDES ELON	
SKWALA PARALLELA	6	SKWALA PARALLELA	3 2
PTERONARCELLA BA	4	PTERONARCELLA BA	
PROTOPTILA SP.	1	GLOSSOSOMA SP.	3
ARCTOPSYCHE GRAN	4	ARCTOPSYCHE GRAN	5 3 3
CHEUMATOPSYCHE	10	CHEUMATOPSYCHE	6
HYDROPSYCHE OCCI	2	HYDROPSYCHE OCCI	1
SYMPHITOPS COCKE	16	SYMPHITOPS COCKE	13
HYDROPTILA SP.	1	OPTIOSERVUS SPP.	42
OPTIOSERVUS SPP.	23	ZAITZEVIA PARVUL	20
ZAITZEVIA PARVUL	6	MICROPSECTR SP.A	2
MICROPSECTR SP.A	6	POLYPEDILUM SP.A	4
MICROTENDIPES SP	1	TANYTARSUS SP. B	1
PHAENOPSECTRA SP	1	EUKIEFFERIELLA E	4
POLYPEDILUM SP.A	8	ORTHOCLADIUS B	1
TANYTARSUS SP. B	8	ORTHOCLADIUS NIG	1
CARDIOCLADI SP.B	1	ORTHOCLADIUS OBU	3
EUKIEFFERIELLA B	4	CHELIFERA SP.	1
EUKIEFFERIELLA E	3	OLIGOCHAETA LUMB	б
ORTHOCLADIUS B	4	HIRUDINEA	2
ORTHOCLADIUS C	1		
ORTHOCLADIUS NIG	3		
ORTHOCLADIUS OBU	8		
SYNORTHOCLADIUS	1		
CHELIFERA SP.	2		
SIMULIUM SP.	12		
HEXATOMA SP.	1		
PISIDIUM SP.	1		
OLIGOCHAETA LUMB	8		

Table 16. Continued

10C-7		10D-7	
BAETIS INSIGNIFI BAETIS TRICAUDAT	28	BAETIS INSIGNIFI	127
BAETIS TRICAUDAT	22	BAETIS TRICAUDAT	
ATTENELLA MARGAR	4 <i>7</i> 11	ATTENELLA MARGAR DRUNELLA GRANDIS	97
EPHEMERELLA INFR	11	DRUNELLA GRANDIS	1
SERRATELLA TIBIA	13	EPHEMERELLA INFR	25
EPEORUS ALBERTAE	2	EPHEMERELLA INFR SERRATELLA TIBIA TIMPANOGA HECUBA	24
NIXE SIMPLICIOID	23	TIMPANOGA HECUBA	1
RHITHROGENA HAGE	34	EPEORUS ALBERTAE	1 78
TRICORYTHODES MI	3	NIXE SIMPLICIOID RHITHROGENA HAGE	17
ISOGENOIDES ELON	12	RHIIHKUGENA HAGE	3
SKWALA PARALLELA	l	PARALEPTOPHL BIC TRICORYTHODES MI	າ 15
PTERONARCELLA BA	0	TRICORYTHODES MI CLAASSENI SABULO	2
GLOSSOSOMA SP.	D D	TSOCENOIDES FLON	10
ARCIOPSICHE GRAN	3	ISOGENOIDES ELON SKWALA PARALLELA	4
UNDDODSYGUE OCCI	1	PTERONARCELLA RA	8
MIDROPSICHE OCCI	6	RRACHYCENTRUS OC	2
UVDDOPTIA SP	2	PTERONARCELLA BA BRACHYCENTRUS OC GLOSSOSOMA SP.	1
OPTIOSERVIIS SEP	3E	ARCTOPSYCHE GRAN	
ZATTZEVIA PARVIII	13	CHEUMATOPSYCHE	22
CLADOTANYTA SP A	4	HYDROPSYCHE SP.A	1
MICROPSECTE SP.A	ž	HYDROPSYCHE OCCI	1
MICROTENDIPES SP	1	SYMPHITOPS COCKE	21
POLYPEDILUM SP.A	2	HYDROPTILA SP.	10
TANYTARSUS SP. B	6	NEOTRICHIA SP.	1
EUKIEFFERIELLA B	1	OPTIOSERVUS SPP.	46
EUKIEFFERIELLA E	2	ZAITZEVIA PARVUL CLADOTANYTA SP.A	33
ATTENELLA MARGAR EPHEMERELLA INFR SERRATELLA TIBIA EPEORUS ALBERTAE NIXE SIMPLICIOID RHITHROGENA HAGE TRICORYTHODES MI ISOGENOIDES ELON SKWALA PARALLELA PTERONARCELLA BA GLOSSOSOMA SP. ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. OPTIOSERVUS SPP. ZAITZEVIA PARVUL CLADOTANYTA SP.A MICROPSECTR SP.A MICROPSECTR SP.A MICROTENDIPES SP POLYPEDILUM SP.A TANYTARSUS SP.B EUKIEFFERIELLA B EUKIEFFERIELLA E ORTHOCLADIUS OBU THIENEMANIELL SP ABLABESMYIA SP. CHELIFERA SP. SIMULIUM SP. PROTANYDERUS SP. HEXATOMA SP. OLIGOCHAETA OLIGOCHAETA	2	CLADOTANYTA SP.A	1
ORTHOCLADIUS OBU	2	MICROPSECTR SP.A	16
THIENEMANIELL SP	1	MICROTENDIPES SP	1
ABLABESMYIA SP.	1	PHAENOPSECTRA SP POLYPEDILUM SP.A TANYTARSUS SP. B	2
CHELIFERA SP.	1	POLYPEDILUM SP.A	7
SIMULIUM SP.	29	TANYTARSUS SP. B	6
PROTANYDERUS SP.	1	TANYTARSUS SP. C	1
HEXATOMA SP.	1	CRICOTOPUS SP. B	3
OLIGOCHAETA	5	EUKIEFFERIELLA B	3 3 6
OLIGOCHAETA LUMB	3	EUKIEFFEKIELLA E	
		ORTHOCLADIUS B ORTHOCLADIUS OBU	4
		CUELTEEDA SE	4
		CHELICENA DE.	5 3
		HEYATOMA SP) 1
		OLIGOCHAFTA	5
		MICROPSECTR SP.A MICROTENDIPES SP PHAENOPSECTRA SP POLYPEDILUM SP.A TANYTARSUS SP. B TANYTARSUS SP. C CRICOTOPUS SP. B EUKIEFFERIELLA B EUKIEFFERIELLA E ORTHOCLADIUS B ORTHOCLADIUS OBU CHELIFERA SP. SIMULIUM SP. HEXATOMA SP. OLIGOCHAETA OLIGOCHAETA	4
		ODIOCOMALIA ECHD	•

Table 16. Continued

11A-7		11B-7	
BAETIS HAGENI	1	BAETIS INSIGNIFI	149
BAETIS INSIGNIFI	225	BAETIS TRICAUDAT	67
	63	ATTENELLA MARGAR	28
	50	DRUMFILA CRANDIS	1
EPHEMERELLA INFR	15	EPHEMERELLA INFR	ġ
SERRATELLA TIBIA	30	GERRATELLA TIBLA	17
EDEORUS AL DERTAE		EPEORUS ALBERTAE	1
	193	NIXE SIMPLICIOID	1.1
RHITHROGENA HAGE	16	RHITHROGENA HAGE	64
PARALEPTOPHL BIC	1	TRICORYTHODES MI	9
PARALEPTOPHL DEB		ISOGENOIDES ELON	12
CLAASSENI SABULO	1	SKWALA PARALLELA	5
ISOGENOIDES ELON	25	PTERONARCELLA BA	7
SKWALA PARALLELA	1	PTERONARCY CALI	1
PTERONARCELLA BA	6	ARCTOPSYCHE GRAN	7
PTERONARCES CALI	1	CHEUMATOPSYCHE	10
	4	HYDROPSYCHE OCCI	125
BRACHYCENTRUS OC	12	SYMPHITOPS COCKE	11
	14		22
CHEUMATOPSYCHE	188	HYDROPTILA SP.	1
HYDROPSYCHE OCCI		NEOTRICHIA SP.	
SYMPHITOPS COCKE	20	OREODYTES SCITIL	3 1
HYDROPTILA SP.	38	OPTIOSERVUS SPP.	6
OECETIS SP. A	1	ZAITZEVIA PARVUL	
OPTIOSERVUS SPP.	8	ATHERIX VARIEGAT	1
ZAITZEVIA PARVUL	3	MICROPSECTR SP.A	6
ATHERIX VARIEGAT	3	MICROPSECTR SP.C	1 5
MICROPSECTR SP.A	18	MICROTENDIPES SP	-
MICROTENDIPES SP	3	PARATANYTARSUS	1 4
POLYPEDILUM SP.A	35	PHAENOPSECTRA SP	
POLYPEDILUM SP.C	2	POLYPEDILUM SP.A	14
CRICOTOPUS SP. B	11	POLYPEDILUM SP.C	3 5 8
EUKIEFFERIELLA B	4	CRICOTOPUS SP. B	3
	13	EUKIEFFERIELLA B	5
ORTHOCLADIUS B	19	EUKIEFFERIELLA E	
	12	ORTHOCLADIUS B	5
SYNORTHOCLADIUS	2	ORTHOCLADIUS NIG	1
CHELIFERA SP.	7	ORTHOCLADIUS OBU	1 1
SIMULIUM SP.	15	CHELIFERA SP.	8
PROTANYDERUS SP.	1	SIMULIUM SP.	59
HEXATOMA SP.	5	HEXATOMA SP.	1

Table 16. Continued

BAETIS INSIGNIFI BAETIS TRICAUDAT CENTROPTILU SP.A ATTENELLA MARGAR EPHEMERELLA INFR SERRATELLA TIBIA NIXE SIMPLICIOID PARALEPTOPHL BIC PARALEPTOPHL DEB TRICORYTHODES MI ISOGENOIDES ELON SKWALA PARALLELA CHEUMATOPSYCHE HYDROPSYCHE OCCI HYDROPTILA SP. OECETIS SP. A OREODYTES SCITIL OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT MICROPSECTR SP.A MICROTENDIPES SP PHAENOPSECTRA SP POLYPEDILUM SP.A TANYTARSUS SP.B CARDIOCLADIUS B ORTHOCLADIUS OBU	92 8 7 2 8 1 4 8 2 2 2 2 6 0 2 1 4 2 2 8 2 2 6 6 1 2 1 4 2 2 8 2 2 2 6 6 1 2 1 4 2 2 8 2 2 2 6 6 1 2 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 4 2 2 8 2 2 2 6 6 1 2 2 4 1 2 4 2 2 8 2 2 2 6 6 1 2 2 4 1 2 4 2 2 8 2 2 2 6 6 1 2 2 4 1 2 4 2 2 8 2 2 2 6 6 1 2 2 4 1 2 4 2 2 8 2 2 2 6 6 1 2 2 4 1 2 4 2 2 8 2 2 2 6 6 1 2 2 4 1 2 4 2 2 8 2 2 2 6 6 1 2 2 4 2 6 6 1 2 2 4 2 6 6 2 2 4 2 6 6 1 2 2 4 2 6 6 2 2 4 2 6 6 2 2 4 2 6 6 2 2 4 2 6 6 2 2 4 2 6 6 2 2 4 2 6 6 2 2 4 2 6 6 2 2 4 2 6 6	13B-7H BAETIS INSIGNIFI BAETIS TRICAUDAT CENTROPTILU SP.A ATTENELLA MARGAR DRUNELLA GRANDIS EPHEMERELLA INFR NIXE SIMPLICIOID PARALEPTOPHL BIC PARALEPTOPHL DEB TRICORYTHODES MI ISOGENOIDES ELON ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. OECETIS SP. A OREODYTES SCITIL MICROPSECTR SP.A POLYPEDILUM SP.A POLYPEDILUM SP.C EUKIEFFERIELLA B ORTHOCLADIUS B ORTHOCLADIUS OBU ABLABESMYIA SP. HEXATOMA SP. OLIGOCHAETA	51048 1214 1214 1214 1214 1214 1214 1214 12
	2		2
	∠ 8	OLIGOCHAETA	_
ABLABESMYIA SP.	2		
	2		
CHELIFERA SP.	2		
HEXATOMA SP.	6		

Table 16. Continued

Table 10. Concinue	:u		
13C-7H BAETIS INSIGNIFI BAETIS TRICAUDAT CENTROPTILU SP.A ATTENELLA MARGAR EPHEMERELLA INFR NIXE SIMPLICIOID PARALEPTOPHL BIC PARALEPTOPHL DEB TRICORYTHODES MI ISOGENOIDES ELON ISODERLA QUINQUE	62 20 106 18 294 18 290 214 28 46 24 46 24 46 24 410 212	BAETIS INSIGNIFI BAETIS TRICAUDAT CENTROPTILU SP.A ATTENELLA MARGAR EPHEMERELLA INFR NIXE SIMPLICIOID PARALEPTOPHL DEB TRICORYTHODES MI CLAASSENI SABULO ISOGENOIDES ELON BRACHYCENTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. OECETIS SP. A OPTIOSERVUS SPP. ATHERIX VARIEGAT MICROPSECTR SP.A MICROPSECTR SP.C MICROTENDIPES SP PHAENOPSECTRA SP POLYPEDILUM SP.C EUKIEFFERIELLA B ORTHOCLADIUS OBU ABLABESMYIA SP. OLIGOCHAETA	2 36 58 18 20 280 4 4 10 52 4 22 22 22 23 6 26 26 26 26 26 22 22 22 22 22 22 22 2
OL PROCHING IA	, O		

14C-7Q		14D-7Q	
BAETIS INSIGNIFI	164	BAETIS HAGENI	4
BAETIS TRICAUDAT	28	BAETIS INSIGNIFI	248
CENTROPTILU SP.A	4	BAETIS TRICAUDAT	16
ATTENELLA MARGAR	36	CENTROPTILU SP.A	4
NIXE CRIDDLEI	8	ATTENELLA MARGAR	80
NIXE SIMPLICIOID	140	EPHEMERELLA INFR	4
TRICORYTHODES MI	28	SERRATELLA TIBIA	8
ISOGENOIDES ELON	16	NIXE SIMPLICIOID	160
BRACHYCENTRUS OC	8	TRICORYTHODES MI	28
CHEUMATOPSYCHE	24	CLAASSENI SABULO	4
HYDROPSYCHE OCCI	12	ISOGENOIDES ELON	16
SYMPHITOPS COCKE	4	ARCTOPSYCHE GRAN	11
HYDROPTILA SP.	32	CHEUMATOPSYCHE	32
OECETIS SP. A	4	HYDROPSYCHE OCCI	32
MICROPSECTR SP.A	4	SYMPHITOPS COCKE	4
MICROPSECTR SP.C	4	SYMPHITOPS SLOSS	11
MICROTENDIPES SP	16	HYDROPTILA SP.	116
POLYPEDILUM SP.A	4	OECETIS SP. A	14
CARDIOCLADI SP.C	4	MICROPSECTR SP.A	1.2
ORTHOCLADIUS B	14	MICROTENDIPES SP	30
ORTHOCLADIUS OBU	12	POLYPEDILUM SP.A	16
SIMULIUM SP.	4	POLYPEDILUM SP.C	4
OLIGOCHAETA	12	CRICOTOPUS SP. B	4
		EUKIEFFERIELLA E	12
		ORTHOCLADIUS B	12
		ORTHOCLADIUS OBU	24
		HEXATOMA SP.	4
		0	4.0

OLIGOCHAETA

Table 16. Continued

15A-7H BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR EPHEMERELLA INFR SERRATELLA TIBIA NIXE SIMPLICIOID RHITHROGENA HAGE PARALEPTOPHL DEB TRICORYTHODES MI CLAASSENI SABULO ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. OREODYTES SCITIL OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROPSECTR SP.A MICROTENDIPES SP PHAENOPSECTRA SP POLYPEDILUM SP.A ROBACKIA SP. CRICOTOPUS SP. B EUKIEFFERIELLA E ORTHOCLADIUS BORTHOCLADIUS ABLABESMYIA SP. SIMULIUM SP.	156 94 26 400 22664160 24442182162 444210	158-7H BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR EPHEMERELLA INFR SERRATELLA TIBIA NIXE SIMPLICIOID RHITHROGENA HAGE PARALEPTOPHL BIC PARALEPTOPHL DEB TRICORYTHODES MI CLAASSENI SABULO SKWALA PARALLELA BRACHYCENTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. OREODYTES SCITIL OPTIOSERVUS SPP. MICROPSECTR SP.A PARATANYTARSUS PHAENOPSECTRA SP POLYPEDILUM SP.A TANYTARSUS SP.B CRICOTOPUS SP.B EUKIEFFERIELLA B EUKIEFFERIELLA B EUKIEFFERIELLA E EUKIEFFERIELLA H ORTHOCLADIUS B ORTHOCLADIUS OBU SYNORTHOCLADIUS SIMULIUM SP. HEXATOMA SP.	156 40 40 40 40 40 40 40 40 40 40 40 40 40
---	---	--	---

Table 16. Continued

19A-7		19B-7	
BAETIS INSIGNIFI	118	BAETIS INSIGNIFI	76
BAETIS TRICAUDAT	9	BAETIS TRICAUDAT	1
CENTROPTILU SP.A	10	CENTROPTILU SP.A	135
ATTENELLA MARGAR	97	CENTROPTILU SP.A MX ANTROPTILUM SP.B	41
DRUNELLA GRANDIS	3	ATTENELLA MARGAR	63
EPHEMERELLA INFR	1	DRUNELLA GRANDIS	2
SERRATELLA TIBIA	3	EPHEMERELLA INFR	1
NIXE CRIDDLEI	5	SERRATELLA TIBIA	2
	75	NIXE CRIDDLEI	2
PARALEPTOPHL BIC	7	NIXE SIMPLICIOID	39
PARALEPTOPHL DEB	2	PARALEPTOPHL BIC	2
TRICORYTHODES MI	7	PARALEPTOPHL DEB	14
HESPEROPERLA PAC	i	TRICORYTHODES MI	37
ISOGENOIDES ELON	11	ISOGENOIDES ELON	10
ISOPERLA QUINQUE	1	SKWALA PARALLELA	3
SKWALA PARALLELA	ָ ^ˆ ,	SIGARA SP.	<u> 6</u>
BRACHYCENTRUS OC	1	GLOSSOSOMA SP.	1
ARCTOPSYCHE GRAN	6	CHEUMATOPSYCHE	190
CHEUMATOPSYCHE	222	HYDROPSYCHE OCCI	147
HYDROPSYCHE OCCI	89	SYMPHITOPS COCKE	58
	105	HYDROPTILA SP.	43
HYDROPTILA SP.	59	OECETIS SP. A	3
PSYCHOMYIA FLAVI	53	PSYCHOMYIA FLAVI	13
OREODYTES SCITIL	2	OREODYTES SCITIL	
OPTIOSERVUS SPP.	3	OPTIOSERVUS SPP.	2
ZAITZEVIA PARVUL	3	ZAITZEVIA PARVUL	2
BRYCHIUS SP.	1	CRYPTOCHIRONOMUS	2
CRYPTOCHIRONOMUS	1	MICROPSECTR SP.A	19
MICROPSECTR SP.A	31	MICROTENDIPES SP	88
MICROTENDIPES SP	60	POLYPEDILUM SP.A	20
POLYPEDILUM SP.A	18	TANYTARSUS SP. A	2
			1
TANYTARSUS SP. A	3	PAGASTIA SP. EUKIEFFERIELLA B	1
XENOCHIRONOMUS	3 2		12
PAGASTIA SP. EUKIEFFERIELLA B	4	EUKIEFFERIELLA E ORTHOCLADIUS B	4
8011281100110001100	9	ORTHOCLADIUS C	1
	9 14		
		ORTHOCLADIUS NIG	3 1
ORTHOCLADIUS C	2	ORTHOCLADIUS OBU	2
ORTHOCLADIUS OBU	3	ABLABESMYIA SP.	2 1
SYNOL HOCLADIUS	2	ANTOCHA SP.	1
ANTOCHA SP.	5		
OLIGOCHAETA	1		

Table 16. Continued

19C-7 BAETIS INSIGNIFI BAETIS TRICAUDAT CENTROPTILU SP.A ATTENELLA MARGAR EPHEMERELLA INFR EPEORUS ALBERTAE NIXE CRIDDLEI NIXE SIMPLICIOID PARALEPTOPHL DEB TRICORYTHODES MI ISOGENOIDES ELON SKWALA PARALLELA OPTIOSERVUS SPP. ZAITZEVIA PARVUL CLADOTANYTA SP.A CRYPTOCHIRONOMUS MICROPSECTR SP.A MICROTENDIPES SP POLYPEDILUM SP.A TANYTARSUS SP. A PAGASTIA SP. EUKIEFFERIELLA E ORTHOCLADIUS C ORTHOCLADIUS OBU SYNORTHOCLADIUS ABLABESMYIA SP.	34 5 10 81 1 3 9 15 10 1 3 3 1 4 7 125 7 5 1 8 6 2 4 1	BAETIS INSIGNIFI BAETIS TRICAUDAT CENTROPTILU SP.A ANTROPTILUM SP.B ATTENELLA MARGAR DRUNELLA GRANDIS SERRATELLA TIBIA EPEORUS ALBERTAE NIXE CRIDDLEI NIXE SIMPLICIOID PARALEPTOPHL BIC PARALEPTOPHL BEB PARATEPLOPH'EBIA TRICORYTHOLIS MI CLAASSENI SABULO ISOGENOIDES ELON SKWALA PARALLELA ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. NEOTRICHIA SP. NEOTRICHIA SP. OECETIS SP. A PSYCHOMYIA FLAVI OREODYTES SCITIL OPTIOSERVUS SPP. ZAITZEVIA PARVUL LENZIELLA SP. MICROPSECTR SP.A CORYNONEURA SP. CORYNONEURA SP. EUKIEFFERIELLA B EUKIEFFERIELLA B ORTHOCLADIUS B ORTHOCLADIUS OBU SYNORTHOCLADIUS ABLABESMYIA SP. ANTOCHA SP.	77 3 14 2 73 1 65 3 1 20 1 1 3 159 71 102 1 3 3 2 1 21 80 16 1 1 7 8 2 3 1 1 1
--	---	--	--

21A-8 BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT CENTROPTILU SP.A TATABRITIUM SP.B ATTENELLA MARGAR DRUNELLA GRANDIS EPHEMERELLA INFR SERRATELLA TIBIA TIMPANOGA HECUBA EPEORUS ALBERTAE HEPTAGENIA SOLIT NIXE CRIDDLEI NIXE SIMPLICIOID PARALEPTOPHL DEB TRICORYTHODES MI CLAASSENI SABULO ISOGENOIDES ELON SKWALA PARALLELA PTERONARCYS CALI BRACHYCENTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. NEOTRICHIA SP. CERACLEA SP. OECETIS SP. A PSYCHOMYIA FLAVI OREODYTES SCITIL OPTIOSERVUS SPP. ZAITZEVIA PARVUL CRYPTOCHIRONOMUS MICROPSECTR SP.A MICROTENDIPES SP POLYPE ILUM SP.C TANYTARSUS SP. B PAGASTIA SP. EUKIEFFERIELLA E ORTHOCLADIUS B	BAETIS TRICAUDAT FINTENTILU SP.A INCHITATION SP.B ATTENELLA MARGAR DRUNELLA GRANDIS EPHEMERELLA INFR SERRATELLA TIBIA TIMPANOGA HECUBA TIMPANOGA HECUBA EPEORUS ALBERTAE HEPTAGENIA SOLIT NIXE SIMPLICIOID PARALEPTOPHL BIC PARALEPTOPHL BES TRICORYTHODES MI CLAASSENI SABULO ISOGENOIDES ELON ISOGENOIDES ELON SKWALA PARALLELA RHAGOVELIA SP. BRACHYCENTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE ARCTOPSYCHE OCCI SYMPHITOPS COCKE SYMPHITOPS COCKE SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. CERACLEA SP. OECETIS SP. A PSYCHOMYIA FLAVI OPTIOSERVUS SPP. ZAITZEVIA PARVUL CRYPTOCHIRONOMUS MICROPSECTR SP.A MICROPSECTR SP.A MICROPSECTR SP.A MICROPSECTR SP.A MICROPSECTR SP.A 11 MICROPSECTR SP.A MICROPSECTR SP.A 12 TANYTARSUS SP.B PHAENOPSECTRA SP POLYPEDILUM SP.A 12 TANYTARSUS SP.B 2 PAGASTIA SP. EUKIEFFERIELLA B EUKIEFFERIELLA B 12 ORTHOCLADIUS B 14 ORTHOCLADIUS B 14
---	---

210-8		21D-8	
BAETIS HAGENI	4	BAETIS INSIGNIFI	10
BAETIS INSIGNIFI	10	BAETIS TRICAUDAT	14
BAETIS TRICAUDAT	1	CENTROPTILU SP.A	1
	1	ANTROPTITION SP.B	8
MK CENTROPTILU SP.A	7	ATTENELLA MARGAR	33
ATTENELLA MARGAR	101	DRUNELLA GRANDIS	2
DRUNELLA GRANDIS	1	EPHEMERELLA INFR	1
EPHEMERELLA INFR	,	SERRATEULA TIBIA	1/4
SERRATELLA TIBIA	1 }	TIMPANOGA HECUBA	6
TIMPANOGA HECUBA	15	EPEORUS ALBERTAE	15
EPEORUS ALBERTAE	20	HEPTAGENIA SOLIT	8
HEPTAGENIA SOLIT	1 1	NIXE SIMPLICIOID	32
NIXE SIMPLICIOID	43	PARALEPTOPHL BIC	15
PARALEPTOPHL BIC	15	PARALEPTOPHL DEB	7
PARALEPTOPHL DEB	6	TRICORYTHODES MI	30
TRICORYTHODES MI	47	ISOGENOIDES ELON	18
CLAASSENI SABULO	2	BRACHYCENTRUS OC	2
ISOGENOIDES ELON	14	ARCTOPSYCHE GRAN	13
PTERONARCYS CALI	3	CHEUMATOPSYCHE	85
BRACHYCENTRUS OC	6	HYDROPSYCHE OCCI	10
ARCTOPSYCHE GRAN	17	SYMPHITOPS COCKE	55
CHEUMATOPSYCHE	119	SYMPHITOPS SLOSS	5
HYDROPSYCHE OCCI	11	HYDROPTILA SP.	49
SYMPHITOPS COCKE	53	NEOTRICHIA SP.	
SYMPHITOPS SLOSS	3	CERACLEA SP.	2 5 22
HYDROPTILA SP.	51	OECETIS SP. A	5
OECETIS SP. A	6	PSYCHOMYIA FLAVI	.J.J
DICOSMOECUS SP.	1	OPTIOSERVUS SPP.	3
PSYCHOMYIA FLAVI	20	CRYPTOCHIRONOMUS	ې
OREODYTES SCITIL	1	MICROPSECTR SP.A	2
OPTIOSERVUS SPP.	1	MICROTENDIPES SP	89
ZAITZEVIA PARVUL	3	PHAENOPSECTRA SP	7
MICROPSECTR SP.A	1	POLYPEDILUM SP.A	12
MICROTENDIPES SP	125	TANYTARSUS SP. B	2
PHAENOPSECTRA SP	7	PAGASTIA SP.	1
POLYPEDILUM SP.A	10	EUKIEFFERIELLA E	10
EUKIEFFERIELLA E	8	ORTHOCLADIUS B	9
ORTHOCLADIUS B	6	ORTHOCLADIUS OBU	2
ORTHOCLADIUS OBU	1	PSECTROCLADIUS B	2
SYNORTHOCLADIUS	3	OLIGOCHAETA	1
OLIGOCHAETA	4	OLIGOCHAETA LUMB	4
OLIGOCHAETA LUMB	3		
	-		

NIXE SIMPLICIOID PARALEPTOPHL BIC TRICORYTHODES MI OPHIOGOMPHUS SP. CHEUMATOPSYCHE MICROTENDIPES SP	1 1 1 1 1 1 6 1 1 1 1 4 3 25	23-3/8 BAETIS TRICAUDAT CENTROPTILUM SP. CAENIS SIMULANS ATTENELLA MARGAR HEXAGENIA LIMBAT NIXE SIMPLICIOID STENONEMA SP. PARALEPTOPHL BIC PARALEPTOPHL DEB TRICORYTHODES MI AESHNA SP. DUBIRAPHIA SP. DICROTENDIP SP.B MICROTENDIPES SP PARACHIRONOMUS POLYPEDILUM SP.A	1 1 7 1 15 5 9 1 1 3 2 17 4 1
PARACHIRONOMUS HYALELLA AZTECA	3 1 5 3 2 4 1 4 1 2 17 1	ORTHOCLADIUS B ABLABESMYIA SP. HYALELLA AZTECA GYRAULUS SP. LYMNAEA SP. PHYSA SP. OLIGOCHAETA DINA SP. 23-4/8 ATTENELLA MARGAR NIXE SIMPLICIOID	10 2 23 1 2
GYRAULUS SP. LYMNAEA SP.	7 2 1 4 1 1 1	STENONEMA SP. PARALEPTOPHL BIC PARALEPTOPHL DEB AESHNA SP. CHEUMATOPSYCHE HYDROPTILA SP. LEPIDOSTOMA SP.A CERACLEA SP. DICOSMOECUS SP. PARARGYRACTIS SP OREODYTES SCITIL DUBIRAPHIA SP. PALPOMY-GP SP. B MICROTENDIPES SP PAGASTIA SP. HYALELLA AZTECA GYRAULUS SP. PHYSA SP. OLIGOCHAETA LUMB DINA SP.	2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 3 4 1 4 1 5 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1

BAETIS INSIGNIFI ATTENELLA MARGAR TIMPANOGA HECUBA NIXE CRIDDLEI NIXE SIMPLICIOID STENONEMA SP. PARALEPTOPHL BIC TRICORYTHODES MI PTERONARCYS CALI CHEUMATOPSYCHE SYMPHITOPS COCKE HYDROPTILA SP. OREODYTES SCITIL ZAITZEVIA PARVUL CHIRONOMUS SP. MICROPSECTR SP.A MICROTENDIPES SP POLYPEDILUM SP.A EUKIEFFERIELLA E ORTHOCLADIUS B ORTHOCLADIUS OBU ABLABESMYIA SP. SIMULIUM SP.	1 7 1 2 8 3 2 4 1 3 8 1 2 8 3 1 2 8 3 1 2 8 3 1 2 8 3 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CENTROPTILUM SP. ATTENELLA MARGAR NIXE SIMPLICIOID STENONEMA SP. TRICORYTHODES MI ISOGENOIDES ELON ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. OREODYTES SCITIL ZAITZEVIA PARVUL CRYPTOCHIRONOMUS MICROPSECTR SP. A MICROTENDIPES SP POLYPEDILUM SP. A ORTHOCLADIUS B ORTHOCLADIUS OBU HYALELLA AZTECA OLIGOCHAETA LUMB	1 4 12 9 1 1 2 1 1 1 3 1 1 1 7 4 1 1
CENTROPTILUM SP. ATTENELLA MARGAR HEPTAGENIA SOLIT NIXE SIMPLICIOID STENONEMA SP. PARALEPTOPHL BIC PARALEPTOPHL DEB TRICORYTHODES MI CHEUMATOPSYCHE SYMPHITOPS COCKE HYDROPTILA SP. OREODYTES SCITIL ZAITZEVIA PARVUL CRYPTOCHIRONOMUS MICROPSECTR SP.A MICROTENDIPES SP PHAENOPSECTRA SP POLYPEDILUM SP.A SYMPOTTHASTIA SP EUKIEFFERIELLA E ORTHOCLADIUS B ORTHOCLADIUS OBU SYNORTHOCLADIUS	1 8 1 31 1 17 2 15 21 2 1 5 5 1 17 1 2 1 1 1 1 1 1 1 1 1 1 1 1	24-4/8 BAETIS INSIGNIFI BAETIS TRICAUDAT CENTROPTILUM SP. ATTENELLA MARGAR EPEORUS ALBERTAE HEPTAGENIA SOLIT NIXE SIMPLICIOID STENONEMA SP. TRICORYTHODES MI OPHIOGOMPHUS SP. CHEUMATOPSYCHE SYMPHITOPS COCKE HYDROPTILA SP. MICROPSECTR SP.A MICROTENDIPES SP POLYPEDILUM SP.A EUKIEFFERIELLA E ORTHOCLADIUS B ORTHOCLADIUS OBU ABLABESMYIA SP. OLIGOCHAETA LUMB	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PROCLADIUS SP. A 1

BAETIS INSIGNIFI CENTROPTILUM SP. ATTENELLA MARGAR SERRATELLA TIBIA TIMPANOGA HECUBA EPEORUS ALBERTAE HEPTAGENIA SOLIT NIXE SIMPLICIOID STENONEMA SP. TRICORYTHODES MI OPHIOGOMPHUS SP. SIGARA SP. CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. OECETIS SI. A PSYCHOMYIA FLAVI OREODYTES SCITIL MICROPSECTR SP.A MICROTENDIPES SP POLYPEDILUM SP.A XENOCHIRONOMUS CARDIOCLADIUS B ORTHOCLADIUS B ORTHOCLADIUS OBU ABLABESMYIA SP. HYALELLA AZTECA LYMNAEA SP. OLIGOCHAETA LUMB	4 1 27 2 1 3 1 2 1 9 0 1 7 1 2 1 2 1 1 1 6 5 2 1 3 6	BAETIS INSIGNIFI BAETIS TRICAUDAT CENTROPTILUM SP. ATTENELLA MARGAR SERRATELLA TIBIA TIMPANOGA HECUBA HEPTAGENIA SOLIT NIXE SIMPLICIOID STENONEMA SP. TRICORYTHODES MI CLAASSENI SABULO ISOGENOIDES ELON OPHIOGOMPHUS SP. CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. DICOSMOECUS SP. OREODYTES SCITIL ZAITZEVIA PARVUL CRYPTOCHIRONOMUS MICROPSECTR SP.A MICROTENDIPES SP POLYPEDILUM SP.A CARDIOCLADIUS SP ORTHOCLADIUS B ORTHOCLADIUS OBU HEXATOMA SP. LYMNAEA SP. OLIGOCHAETA LUMB	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR TIMPANOGA HECUBA EPEORUS ALBERTAE TXE SIMPLICIOID STENONEMA SP. TRICORYTHODES MI OPHIOGOMPHUS SP. GLOSSOSOMA SP. CHEUMATOPSYCHE SYMPHITOPS COCKE HYDROPTILA SP. PSYCHOMYIA FLAVI PARARGYRACTIS SP OREODYTES SCITIL ZAITZEVIA PARVUL CRYPTOCHIRONOMUS MICROPSECTR SP. A MICROTENDIPES SP ORTHOCLADIUS B ORTHOCLADIUS OBU SYNORTHOCLADIUS ABLABESMYIA SP. OLIGOCHAETA LUMB	1 1 30 4 1 1 3 1 2 2 1 9 1 3 3 1 2 2 5 9 1 4 7 1 7 1 7	25-4/8 CENTROPTILUM SP. ATTENELLA MARGAR TIMPANOGA HECUBA EPEORUS ALBERTAE HEPTAGENIA SOLIT NIXE SIMPLICIOID STENONEMA SP. TRICORYTHODES MI OPHIOGOMPHUS SP. CHEUMATOPSYCHE PSYCHOMYIA FLAVI OREODYTES SCITIL ZAITZEVIA PARVUL CRYPTOCHIRONOMUS MICROTENDIPES SP POLYPEDILUM SP.A ORTHOCLADIUS NIG ORTHOCLADIUS OBU ABLABESMYIA SP. SIMULIUM SP. LYMNAEA SP. OLIGOCHAETA LUMB	5 2 5 1 1 3 6 4 3 5 1 3 1 7 2 1 1 3 4 1 2 4

Table 16. Continued

27-1/8 CENTROPTILUM SP. STENONEMA SP.	5 1	31-1/8 OLIGOCHAETA LUMB	10
TRICORYTHODES MI PARARGYRACTIS SP DUBIRAPHIA SP. MICROTENDIPES SP	2 1 1 2	31-2/8 OLIGOCHAETA LUMB	15
PARACHIRONOMUS OLIGOCHAETA LUMB	1 8	31-3/8 OLIGOCHAETA LUMB	14
27-2/8 CENTROPTILUM SP. HEPTAGENIA SOLIT OPTIOSERVUS SPP. OLIGOCHAETA LUMB	3 1 1 36	31-4/8 HELOPHORUS SP. OLIGOCHAETA LUMB	1 4
27-3/8 BAETIS TRICAUDAT CENTROPTILUM SP. ATTENELLA MARGAR NIXE SIMPLICIOID OLIGOCHAETA OLIGOCHAETA LUMB	1 1 1 1 1 1 7		
27-4/8 CENTROPTILUM SP. PARACHIRONOMUS HYALELLA AZTECA OLIGOCHAETA LUMB	1 1 1 3		

03-2/7 CRICOTOPUS SP. E	1	17/7 BAETIS TRICAUDAT NIXE SIMPLICIOID	1 4
13/7 BAETIS TRICAUDAT CENTROPTILUM SP. NIXE SIMPLICIOID RHITHROGENA HAGE	1 2 1 1	RHITHROGENA HAGE HYDROPSYCHE SP.B SYMPHITOPS SP. A RHEOTANYTARSUS CARDIOCLADIUS SP	1 1 1 1
TRICORYTHODES MI HYDROPTILA SP. OPTIOSERVUS SPP. CHIRONOMUS SP. CRYPTOCHIRONOMUS MICROTENDIPES SP PARACLADOPE SP.C PARATANYTARSUS PHAENOPSECTRA SP	15 3 1 2 3 24 1 4 87	18/7 BAETIS INSIGNIFI NIXE SIMPLICIOID TRICORYTHODES MI MICROTENDIPES SP PSECTROCLADIUS B OLIGOCHAETA	1 1 2 5 1
RHEOTANYTARSUS ORTHOCLADIUS OBU OLIGOCHAETA	2 1 6	20/7 CENTROPTILUM SP. NIXE SIMPLICIOID MICROTENDIPES SP	1 1 1 1
15/7 NIXE SIMPLICIOID PARALEPTOPHL DEB TRICORYTHODES MI CHEUMATOPSYCHE MICROTENDIPES SP PHAENOPSECTRA SP	4 1 3 1 18 16	PHAENOPSECTRA SP POLYPEDILUM SP.A MONODIAMESA SP. ODONTOMESA SP. OLIGOCHAETA	2 1 2 1 10
RHEOTANYTARSUS ORTHOCLADIUS OBU PSECTROCLADIUS B OLIGOCHAETA	1 1 3 39	20.5/7 NIXE SIMPLICIOID PARACLADOPE SP.B PHAENOPSECTRA SP POLYPEDILUM SP.A MONODIAMESA SP.	1 2 3 1 8
BAETIS INSIGNIFI CENTROPTILUM SP. NIXE SIMPLICIOID RHITHROGENA HAGE PARALEPTOPHL DEB TRICORYTHODES MI HYDROPTILA SP. PSYCHOMYIA FLAVI CRYPTOCHIRONOMUS MICROTENDIPES SP PARACLADOPE SP.B PARACLADOPE SP.C PHAENOPSECTRA SP ROBACKIA SP. RHEOTANYTARSUS CORYNONEURA SP. ORTHOCLADIUS B ORTHOCLADIUS B ORTHOCLADIUS OBU PSECTROCLADIUS B	1 1 4 1 1 1 5 1 3 4 1 3 1 9 1 3 1 2 4 3 1	ODONTOMESA SP. EUKIEFFERIELLA F OLIGOCHAETA	1 4 62
SYNORTHOCLADIUS OLIGOCHAETA	5 4 1	205	

211/7 NIXE SIMPLICIOID CRYPTOCHIRONOMUS MICROTENDIPES SP PARACLADOPE SP.B POLYPEDILUM SP.A OLIGOCHAETA 21-2/7 MICROTENDIPES SP PARACLADOPE SP.B POLYPEDILUM SP.A RHEOTANYTARSUS CORYNONEURA SP.	1 1 5 1 5 6 8 3 5 1 2	26-1/7 CHIRONOMUS SP. CRYPTOTENDIPE SP MICROPSECTR SP.B PARALAUTERBORNIE PARATANYTARSUS PHAENOPSECTRA SP POLYPEDILUM SP.C STEMPELLINELLA TANYTARSUS SP. MONODIAMFSA SP. PSECTROCLADIUS A PROCLADIUS A PROCLADIUS P. A OLIGOCHAETA	9 2 1 50 1 22 154 2 2 3 1 5 320
213/7 CRYPTOCHIRONOMUS MICROTENDIPES SP PARACLADOPE SP.B POLYPEDILUM SP.A ORTHOCLADIUS NIG ORTHOCLADIUS OBU PSECTROCLADIUS B SYNORTHOCLADIUS OLIGOCHAETA 21.5/7 NIXE SIMPLICIOID	1 6 2 1 1 1 2 1 6	26-2/7 EPEORUS ALBERTAE SYMPHITOPS COCKE OPTIOSERVUS SPP. CHIRONOMUS SP. CRYPTOCHIRONOMUS CRYPTOTENDIPE SP PARALAUTERBORNIE PHAENOPSECTRA SP POLYPEDILUM SP.C STEMPELLINELLA TANYTARSUS SP. MONODIAMESA SP. ORTHOCLADIUS OBU PROCLADIUS SP. A	1 1 10 1 11 56 48 256 1 6 2
TRICORYTHODES MI CRYPTOCHIRONOMUS MICROTENDIPES SP POLYPEDILUM SP.A RHEOTANYTARSUS OLIGOCHAETA 22/7 CENTROPTILUM SP. ATTENELLA MARGAR NIXE SIMPLICIOID NEOTRICHIA SP. RHEOTANYTARSUS	1 2 7 1 1 28	OLIGOCHAETA 26-3/7 CHIRONOMUS SP. CRYPTOTENDIPE SP PARALAUTERBORNIE PHAENOPSECTRA SP POLYPEDILUM SP.C STEMPELLINELLA TANYTARSUS SP. PROCLADIUS SP. A OLIGOCHAETA	360 11 10 17 35 1 1 5 38

28A-1/7 CHIRONOMUS SP. PROCLADIUS SP. A	1	30-1/7 HARNISCHIA SP. PAGASTIELLA SP. PARATANYTARSUS HETEROTRISSOCLAD	1 2 2 2
28A-2/7 PROCLADIUS SP. A OLIGOCHAETA	9 1	CLADOCERA HYALELLA AZTECA LYMNAEA SP.	1 1 1
28A-3/7 CHIRONOMUS SP. CRYPTOTENDIPE SP PROCLADIUS SP. A OLIGOCHAETA	3 1 18 93	30-2/7 PALPOMY-GP SP. A CLADOTANYTARSUS CRYPTOTENDIPE SP HARNISCHIA SP. LENZIELLA SP. MICROPSECTR SP.B	1 5 4 2 2 2
28B-1/7 CHIRONOMUS SP. CRYPTOTENDIPE SP HARNISCHIA SP. TANYTARSUS SP. PROCLADIUS SP. A OLIGOCHAETA	8 1 3 3 6 123	PAGASTIELLA SP. POLYPEDILUM SP.B STEMPELLINA SP. PROCLADIUS SP. A	7 2 2 2
28B-2/7 CHIRONOMUS SP. CRYPTOTENDIPE SP HARNISCHIA SP. PROCLADIUS SP. A PROCLADIUS SP. B OLIGOCHAETA	1 1 3 6 3 18	CRYPTOTENDIPE SP OLIGOCHAETA	1
28B-3/7 CHIRONOMUS SP. HARNISCHIA SP. PROCLADIUS SP. A OLIGOCHAETA	3 4 12 131		
28B-4/7 PALPOMY-GP SP. A CHIRONOMUS SP. HARNISCHIA SP. TANYTARSUS SP. PROCLADIUS SP. A OSTRACODA UNIONICOLA SP. OLIGOCHAETA	1 5 2 2 8 2 1		

Table 16. Benthic Macroinvertebrate Sample Counts and Identifications Fall 1984

Shallow Water Stations - Kick Samples

	Bhailen mace. Beaele		
01.4-110		01B-11.	
BAETIS INSIGNIFI	24	BAETIS INSIGNIFI	1:
BAETIS TRICAUDAT	76	BAETIS TRICAUDAT	30
DRUMELLA GRANDIS	ĹĻ	DRUNELLA GRANDIS	ri
EPHENERELLA INFR	2728	EPHEMERELLA ENTR	2111
CTHYGHHLA SP	8	RHITHROGENA HAGT	168
RHITHROGENA HAGE	204	PARALEPTOPHL HES	16
PARALEPTAPHI MEM	16	AGELETUS VELOX	1,
AMELITHS VELOX	16	ALLOPERL \- GROUP	16
ALLOPERIA - GROUP	8	PROSTO LA MESAMET	-
PROSTUTA BESAULT	16	ZAPADA CINCTIPES	54
CHI PHE DESKINI	4	CLAASSENT CALIFO	, spi
CLAACCELL SABILO	311	TSOCISIO EDECE SE ON	
	16	I COPPERLA RIL OF	1/10
- 1 - 5 CO 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	$1 \rightarrow R$	TOP SIRE OF THE	1
HOUTHOUT A COLUMN	1 - 1	STATE A PARGULITA	ii .
PERONALISM QUINQUI	56	PTEROMARCELLA BA	4,11
ROTOPSVOHE GRAN	710	PTEROUARCYS CALT	11
PHELLIATODGVOUR	20	TARMIONSMA PACIR	
EVDOODSVCUG OCCT	700	ARCTODSVCHE GRAIL	6.11
SA THILLIGHE COOKE	28	CHEUMATORSVOUR	27
STITEMETORS COCKE	30	HAD SUBSACTE OCCI	. DOK
SIMPRITUPS SLUSS	36	OVERDER CORE	1330
LEFIDUSIONA SP.A	30	SIMINITIONS COOKE	20
UPITUSERVUS SPP.	34	21M4411AL2 2F022	10
ZALIZEVIA PARVUL	30	HIDROPITER ST.	14
HICKOPSECTR SP.A	4	LEPIDOSTOMA SP.A	20
DIAMESA SP. B	12	OECETIS SP. A	4 C H
EUKTEFFERIELLA E	52	OPTIOSERVUS SPP.	04
ORTHOCLADIUS OBU	16	ZAITZEVIA PARVUL	50
HEXATOMA SP.	24	ATHERIX VARIEGAT	16
		DIAMESA SP. B	21
		CRICOTOPUS SP. B	12
		EUKIEFFERIELLA B	36
		EUKTEFFERIELLA E	1.2
		EUKIEFFERIELLA H	11
		ORTHOCLADIUS B	1‡
		SIMULIUM SP.	40
		O1B-117 BAETIS INSIGNIFI BAETIS TRICAUDAT DRUNELLA GRANDIS EPHEMERELLA EN AR RHITHROGENA HAGO PARALEPTOPHL HEM AMELETUS VELOX ALLOPERLA-GROUP PROSTOIA SESAMET ZAPADA CINCTIPES CLAASSENT SAMEDO ISOGENO PES MUST INOPERLA PUR AR INOPERLA PUR AR INOPERLA PARALLELA PTERONARCYS CALI TAENIONEMA PACIF ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. LEPIDOSTOMA SP. A OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT DIAMESA SP. B CRICOTOPUS SP. B EUKIEFFERIELLA B EUKIEFFERIELLA E EUKIEFFERIELLA H ORTHOCLADIUS B SIMULIUM SP. HEXATOMA SP.	28

DIC-11Q BAETIS INSIGNIFI BAETIS TRICAUDAT EPHEMERELLA INFR EPEORUS ALBERTAE RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS VELOX CAPNIA-GROUP SP. ALLOPERLA-GROUP ZAPADA CINCTIPES CLAASSENI SABULO MESPEROPERLA PAC ISOGENOIDES ELON ISOPERLA SULVA ISOPERLA GUINQUE SKWALA PARALLELA PTERONARCELLA DA TAENIONEDA PACIF BRACHYCENTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. LEPIDOSTOMA SP.A OECETIS SP. A OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT MICROTENDIPES SP CRICOTOPUS SP. B EUKIEFFERIELLA H ORTHOCLADIUS B ORTHOCLADIUS OBU SIMULIUM SP. HEXATOM. SP.	36 164 4812 1260 36 4 16 1240 4 16 4 21 4 4 28 80 24 31 8 4 36 8 24 8 24 8 24 8 24	OID-IIQ BAETIS INSIGNIFI BAETIS TRICAUDAT DRUNELLA GRANDIS EPHEMERELLA INFR CINYGMULA SP. EPEORUS ALBERTAE RHITHROGENA HAGE PARALEPTOPIL MEM AMELITUS VELOX CAPNIA-GROUP SP. ZAPADA CINCTIPES ISOPERLA FULVA ISOPERLA QUINQUE PTEROMARCELLA DA TAENTOMEMA PACIF ARCTOPSYCHE GRAW CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. LEPIDOSTOMA SP.A CERACLEA SP. OECETIS SP. A OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT POLYPEDILUM SP.A CRICOTOPUS SP. B EUKIEFFERIELLA B EUKIEFFERIELLA E EUKIEFFERIELLA H ORTHOCLADIUS OBU SIMULIUM SP. HEXATOMA SP.	284 24 4 28 4 4 5 9 5 4 8 5 6 1 4 1 1 28 4 4 8 5 2 1 8 1 4 6 0 6 8 1 4 1 1 2 8 1 4 1 4 4 1 4 4 8 5 2 1 8 1 4 1 4 1 4 4 1 4 1 4 1 4 1 4 1 4 1
--	---	--	--

02A-11!I		O2B-11H BAETIS THICAUDAT DRUNELLA GRANDIS EPHEMERELLA INFR EPEORUS ALBERTAE RHITHROGENA HAGE PARALEPTOPHL MEH AMELETUS VELOX CAPNIA-GROUP SP. ALLOPERLA-GROUP ZAPADA CINCTIPES CALIBERTA CALTE GLAASSERT ANDRO HESPEROPES A PAU ISOPERLA FULVA SKWALA PARALLELA HELICOPSYCHE BOR ARCTOPSYCHE BOR ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCE SYMPHITOPS GOCKE SYMPHITOPS GOCKE SYMPHITOPS SLOGS HYDROPTILA SP. LEFIDOSTOMA SP. A OECETIS SP. A APATANTA SP. PSYCHOMYIA FLAVI RHYACOPHILA BIFT OREODYTES SCITTL OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROTENDIPES SP POLYPEDILUM SP. A RHEOTAMYTARSUS	
BAETIS INSIGNIFI BAETIS TRICAUDAT	6	BAETIS INSIGNIFI	22
BASTIS TRICAUDAT	18	BAETIS TRICAUDAT	50
EPHEMERELLA INFR	416	DRUNELLA GRANDIS	2
EPEORUS ALBERTAE	2	EPHEMERELLA INFR	441
RHTTHROGENA HAGE	164	EPEORUS ALBERTAE	2
PARALEPTOPHL MEK	80	RHITHROGENA HAGE	202
AMELETUS VELOX	!}	PARALEPTOPHL 1 EH	13
CAPHIA-GROUP SP.	4	AMELETUS VELOX	2
ALLOPERLA-GROUP	30	CAPNIA-GROUP SP.	!}
ZAPADA CINCTIPES	Ĭį	ALLOPERLA-GROUP	2.2
CALINEURIA CALIF	12	ZAPADA CINCPERES	2
CLAASSENI SABULO	72 4 2	CALIMEUNTA CALIF	13
HESPEROPERLA PAC	I_{\downarrow}	CLAASSER SATURO	3 G
CULTUS PILATUS	2	HESPLROPID A PAC	7,
ISOPEKLA FULVA	12	ISOPERLA FULVA	11.
ISOPERLA QUINQUE	2	SHWALA PARALLELA	Ġ
SKWALA PARALLELA	2	HELICOPSYCHE BOR	22
PTERONARCYS CALI	ර්	ARCTOPSICHE GRAD	2
CHEUMATOPSYCHE	54	CHEUMATOPSICHE	94
HYDROPSYCHE OCCI	112	HYDROPSYCHE OCCI	:12
SYMPHITOPS COCKE	6	SYMPHITOPS COCKE	26
SYMPHITOPS SLOSS	62	SYMPHITOPS SLOSS	244
HYDROPTILA SP.	43	HYDROPTELA SP.	43
EPHEMERELLA INFR EPEORUS ALBERTAE RUITHROGENA HAGE PARALEPTOPHL MEM AMELETUS VELOX CAPNIA-GROUP SP. ALLOPERLA-GROUP ZAPADA CINCTIPES CALINEURIA CALIF CLAASSENI SABULO HESPEROPERLA PAC CULTUS PILATUS ISOPERLA FULVA ISOPERLA QUINQUE SKWALA PARALLELA PTERONARCYS CALI CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. LEUCOTRICHIA PIC LEPIDOSTOMA SP.A OECETIS SP. A PSYCHOMYIA FLAVI RHYACOPHILA BIFI PARARGYRACTIS SP OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROTENDIPES SP	2	LEFIDOSTOMA SP.A	6
LEPIDOSTOMA SP.A	12	OECETIS SP. A	ડ
OECETIS SP. A	2	APATANIA SP.	2
PSYCHOMYIA FLAVI	14	PSYCHOMYIA FLAVI	2
RHYACOPHILA BIFI	4	RHYACOPHILA BIFT	2
PARARGYRACTIS SP	2	OREODYTES SCITIL	2
OPTIOSERVUS SPP.	46	OPTIOSERVUS SPP.	38
ZAITZEVIA PARVUL	30	ZATTZEVIA PARVUL	38
MICROTENDIPES SP	٢١	MICROTENDIPES SP	2
POLYPEDILUM SP.C	2	POLYPEDILUM SP.A	4
MICROTENDIPES SP POLYPEDILUM SP.C RHEOTANYTARSUS CRICOTOPUS SP. B	6	RHEOTANYTARSUS	30
CRICOTOPUS SP. B	44	POTTHASTIA SP.	2
EUKIEFFERIELLA B	6	CRICOTOPUS SP. B	21.24
EUKIEFFERIELLA H	12	EUKIEFFERIELLA B	2
ORTHOCLADIUS B	10	EUKTEFFERTELLA E	2 2 4
ORTHOCLADIUS OBU	14	EUKIMPFERIELLA H	11
WIEDEMANNIA SP.	2	ORTHOCLADIUS B	14
ANTOCHA SP.	1}	ORTHOCLADIUS OBU	12
HEXATOLIA SP.	13	WIEDEMANNIA SP.	2
PHYSA SP.	21	ANTOCHA SP.	2
OLIGOCHAETA LUMB	2	HEXATONA ST.	26
TURBELLARI	2	SPERCHON SP.	2
		PHYSA 3P.	18
		OLIGOCHAETA LUAB	2
		TURBELLARE	71

Table 16. Continued

O2C-11H BAETIS THSTGNIFT BAETIS TRICAUDAT DRUNELLA DODDSI DRUNELLA GRANDIS EPHEMERELLA INFR EPEORUS ALBERTAE HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL NEW CAPNIA-GROUP SP. ALLOPERLA-GROUP ZAPADA CINCTIPES CALINEURIA CALIF CLAASSEHI SABULO HESPEROPERLA PAC ISOPERLA FULVA SKWALA PARALLELA	24 102 2 2 560 10 2 238 36 4 42 2 20 36 2 4 4 6	O2D-11II BAETIS INSIGNIFI BAETIS TRICAUDAT DRUNELLA DODDSI EPHEMERELLA INFR EPEORUS ALBERTAE RHITHROGENA HAGE PARALEPTOPHL MEM CAPNIA-GROUP SP. ALLOPERLA-GROUP ZAPADA CINCTIPES CALINEURIA CALIF CLAASSENI SABULO HESPEROPERLA PAC CULTUS PILATUS ISOPERLA FULVA PTERONARCYS CALI ARCTOPSYCHE GRAN	10 48 2550 268 106 8 14 40 64 26 4
HELICOPSYCHE BOR ARCTOPSYCHE GRAN CHEUNATOPSYCHE	ll 2	HYDROPSYCHE OCCI SYMPHITOPS COCKE	140 24 32
HYDROPSYCHE OCCI	176 28	SYMPHITOPS SLOSS HYDROPTILA SP.	328 32
SYMPHITOPS COCKE SYMPHITOPS SLOSS	30 240	LEPIDOSTOMA SP.A	12
HYDROPTILA SP.	70	PSYCHOMYIA FLAVI RHYACOPHILA BIFI	2 2
LEUCOTRICHIA PIC	2	OPTIOSERVUS SPP.	42
LEPIDOSTONA SP.A	24	ZAITZEVIA PARVUL	50
PSYCHOMYIA FLAVI	14	ATHERIX VARIEGAT	2
RHYACOPHILA 31F1	10	MICROTENDIPES SP	6
PARARGYRACTIS SP	2	POLYPEDILUM SP.A	24
OPTIOSERVUS SPP. ZAITZEVTA PARVUL	42	RHEOTANYTARSUS	2
MICROTENDIPES SP	76 მ	TANYTARSUS SP. B	2
RHEOTANYTARSUS	2	POTTHASTIA SP. CRICOTOPUS SP. B	2 1; 4
CRICOTOPUS SP. E	14	CRICOTOPUS SP. B EUKIEFFERIELLA B	14
EUKIEFFERIELLA D	10	EUKIEFFERIELLA H	10
EUKLEFFERIELLA H	8	ORTHOCLADIUS B	6
ORTHOCLIUS B	16	ORTHOCLADIUS OBU	12
ORTHOCLADIUS OBU	3	THIENEMANIELL SP	2
ABLADESMYIA SP.	2	ABLABESMYIA SP.	2
WIEDEMANHIA SP. HEXATOMA SP.	2 40	WIEDEMANNIA SP.	2
SPERCHON SP.	2	SIHULIUM SP. ANTOCHA SP.	4 2
PHYSA SP.	10	HEXATOMA SP.	2 14
OLIGOCHAETA	2	PHYSA SP.	8
OLIGOCHAETA LUMB	S	OLIGOCHAETA LUHB	8
TURBELLARI	2	TURBELLARI	2

04A-11Q		04B-110	
DARRIE THETCHET	11	BARTIS TRICAUPAT	′)
BAETIS TRICAUDAT DRUNELLA DODDSI DRUNELLA GRANDIS	24	DRUNELLA GRANDIA	16
DRUNELLA DODDSI	11	EPHATERELLA LEFR	1.:4
DRUNELLA GRANDIS	4	RHITHROG JUA MAGE	()
EPHEMERELLA INFR	292	PARALEPTOPAL 1881	12
RHITHROGENA HAGE	56	RHITHHOG HA MAGE PARALETTOPHL 18M CAPSLA-GROUP 50.	L,
ALLOPERLA-GROUP	2‡	ZAPADA CEHCTEPES	12
HESPEROPERLA PAC	3	ZAPADA CIECTEPES CLAASSENI SABULO	16
ISOGENOIDES ELON ISOPERLA FULVA	14	HESPEROPERLA PAC	3
ISOPERLA FULVA	32	LSOGEHOIDES ELON	24
PTERONARCELLA BA	14	ISOPERLA FULVA	68
PTERONARCYS CALI	14	PTEROMARCHILA BA PTEROMARCYU MALI	12
TAENTOJEMA PACTE	1 6	PTEROUGHCYS "ALT	15
ARCTOPSYCHE GRAN	12	TARNIONAL PACIF BRACHICRATADA OC	16
ARCTOPSYCHE GRAN CHEUMATOPSYCHE	204	BRACHACEAE OC	31
HVDDOD EVENT OCCI	E 9 h	ARCTOPSYCHE GRAD	23
SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. PSYCHOMYIA FLAVI RHYACOPHILA BIFT	120 88	ARCTOPSYCHE GRAD CHEUDATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. PSYCHONY LA FLAVI	410
SYMPHITOPS SLOSS	88	HYDROPSYCHE OCCI	6)2
HYDROPTILA SP.	5 é	SYMPHITOPS COCKE	208
PSYCHOMYIA FLAVI	16 12	SYMPHITOPS SLOSS	16
RHYACOPHILA BIFI	12	HYDROPTILA 32.	124
PARARGYRACTIS SP	4	PSYCHOMY LA FLAVI	32
ZAITZEVIA PARVUL	40	PSYCHONYLA FLAVI RHYACOPHILA DIFI PARARGYRACTIS SP OPTIOSERVUS SPP. ZATTZEVIA FARVUL MICROTENDIPES SP	ර්
HICROTEHDIPES SP	16	PARARGYRACTIS JP	3
POLYPEDILUM SP.A	3	OPTIOSERVUS SPP.	23
	12	ZATTZEVIA PARVUL	110
EUKIEFFERIELLA B	52	MICROTENDIPES SP	80
EUKIEFFERIELLA E	1 4	TOPLIFILED STA	- 1
ORTHOCLADIUS B	14	CRICOTOPUS SP. B	11
ORTHOCLADIUS OBU	4	EUKIEFFERIELLA B	28
SIMULIUM SP.	12	EUKIEFFERIELLA E	24
ANTOCHA SP.	8	EUKIEFFERIELLA H	14
		ORTHOCLADIUS B	0
		ABLABESHYIA SP.	21
		SHIULIUH SP.	14

04C-11Q BAETIS TRICAUDAT DRUNELLA GRANDIS APHEMERELLA INFR RHITHROGENA HAGE PARALEPTOPHL HEM AMELETUS VELOX CAPNIA-GROUP SP. ZAPADA CINCTIPES ISOGENOIDES ELON	32 14 3114 68 4 8 8	DAD-11Q BAETIS INSIGNIFI BAETIS TRICAUDAT DRUNELLA GRANDIS EPHEMERELLA INFR RHITHROGENA HAGE PARALEPTOPHL MEM CAPNIA-GROUP SP. ALLOPERLA-GROUP CLAASSENI SABULO HESPEROPERLA PAC ISOGENOIDES ELOH ISOPERLA GUINQUE PTERONARCELLA BA PTERONARCELLA BA PTERONARCELLA BA PTERONARCYS CALT TAENIONEMA PACIT ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS SLOSS HYDROPTILA SP. PSYCHOMYIA FLAVI PARARGYRACTIS SP OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROTENDIPES SP EUKIEFFERIELLA B EUKIEFFERIELLA B EUKIEFFERIELLA E EUKIEFFERIELLA B ORTHOCLADIUS B ORTHOCLADIUS B ORTHOCLADIUS OBU ABLABESMYIA SP. WIEDEMAUNIA SP. SIMULIUM SP. OLIGOCHAETA LUMB	4 40 16 240 48 8 12 4
DEBROMALA PARALLELA	4	ISOGENOIDES ELON	16
PTERONAROSLIA SA	10	ISOPERLA FULVA	68
TARNIONAROIS CREI	21	DEBDOIL SOME LA DA	9
ARCTOPSICHE GRAD	10	PTEROURICELLA BA	0 !!
CHEUMATORSYCHE	230	TIERCHARCIS CHIT	6
HYDROPSYCHE OCCI	520	ARCTOPSYCHE GRAH	3
SYMPHITOPS COCKE	1 4 4	CHEUMATOPSYCHE	276
SYMPHITOPS SLOSS	44	HYDROPSYCHE OCCI	492
HYDROPTILA SP.	100	SYMPHITTOPS COCKE	140
LEPIDOSTONA SP.A	21	SYMPHITOPS SLOSS	32
PSYCHOLYIA FLAVI	20	HYDROPTILA SP.	34
RHYACOPHILA LIFI	11	PSYCHOMYIA FLAVI	20
PARARGYRACTIS SP	4	PARARGYRACTIS SP	12
MICHOSENVUS SPP.	36	OPTIOSERVUS SPP.	24
MICHOLEMPIES 25	30	ZATTZEVIA PARVUL	44
RHROTABVEADORS	11	MICROTENDIPES SP	24
CRICOTARIIARSUS	11	EUKIEFFERIELLA B	28
EUKIESEEBIELIA B	28	EUKIEPPERIELLA E	<i>'</i> 4
FILL SELECT TO THE	2 U	CONTERPERED A	0
CHKTERFERTELLA H	12	ORTHOCLADIUS B	4
ORTHOCLADIUS OBU	8	ABLABROMVIA OD	11
ABLABESNYIA SP.	Ĭį	MIEDEMONIA SP.	h 'r
	•	SIMULIUM SP.	3
		OLIGOCHAETA LUMB	lj
		CB1300HHB1H B0HB	- (

Table 16. Continued

BARTIS INSIGNIFI BARTIS INSIGNIFI BARTIS TRICAUDAT EPHEMERELLA INFR RHITHROGENA HAGE PARALUTTOPHL MEM AMELETUS VELOX CAPRIA-GROUP SP. HESPEROPERLA PAC ISOGENOIDES ELON ISOPERLA FULVA PTERONARCELLA BA PTERONARCYS CALI ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. OECETIS SP. A PSYCHOMYIA FLAVI OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROTENDIPES SP POLYPEDILUM SP. A CRICOTOPUS SP. B EUKIEFFERIELLA B EUKIEFFERIELLA H ORTHOCLADIUS B ORTHOCLADIUS OBU ABLABESMYIA SP. WIEDEMANNIA SP. HEXATOMA SP.	29.2 4 6 2 2 4 40 2 4 10 78 230	OSB-IOH BARTIS INSIGNIFI BARTIS TRICAUPAT DRUNELLA GRANDIS EPHEMERFILLA DER RESTUROGENZ WAGE PARALEPTOPHL MEM ANGLETUS VELOX CLAASSENI SABULO ISOPERLA GUINQUE SKWALM OF LLELA ARCTOPHY GRAN CHEUMATOPS FORM CHEUMATOPS FORM CHEUMATOPS GOCKE SYMPHITOPS GOCKE SYMPHITOPS GOCKE SYMPHITOPS BLOSS HYDROPTILA SP. OECETIS SP. A PSYCHOMYIA FLAVI RHYACOPHILA BIFI ZAITZEVIA PARVUL CRICOTOPUS SP. B EUKIEFFERIELLA B EUKIEFFERIELLA E ORTHOCLADIUS OBU WIEDEMANNIA SP. ANTOCHA SP. HEXATOMA SP.	174 30 4 6 164 16 10 2 4 10 2 4 26 2
--	--	---	---

CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. LEPIDOSTOMA SP.A PSYCHOMYIA FLAVI RHYACOPHILA BIFI OPTIOSERVUS SPP. ZAITZEVIA PARVUL POLYPEDILUM SP.A CRICOTOPUS SP. B EUKIEFFERIELLA B EUKIEFFERIELLA H	10 53 2 56 8 6 12 2 8 2 14 2 4 2 4 2 8 8 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O5D-10H BAETIS INSIGNIFI BAETIS TRICAUDAT EPHEMERELLA INFR RHITHROGENA HAGE PARALEPTOPHL MEM CAPNIA-GROUP SP. ALLOPERLA-GROUP HESPEROPERLA PAC CULTUS PILATUS ISOGENOIDES ELON ISOPERLA GUINQUE ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. LEPIDOSTOMA SP. A OECETIS SP. A OPTIOSERVUS SPP. ZAITZEVIA PARVUL CRICOTOPUS SP. B EUKIEFFERIELLA B ORTHOCLADIUS B HEXATOMA SP.	34 6 10 4 2 2 6 30 2 2 4 8 5 10 2 2 2 4 8 4
---	--	---	---

Table 16. Continued

RHITHROGENA HAGE PARALEPTOPHL MEM HESPEROPERLA PAC ISOPERLA FULVA PTERONARCELLA BA PTERONARCELLA BA PTERONARCYS CALI OPHIOGOMPHUS SP. ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPTILA SP. LEPIDOSTOMA SP. A OECETIS SP. A OECETIS SP. A OECETIS SP. A OECETIS SP. A OFTIOSERVUS SPP. PARACYS CALI SYMPHITOPS COCKE RHYACOPHILA BIFI PARACYS CALI BY CREWNARCH ACTIS BY A BYCHOMYIA FLAVI BYCHOMYIA BYCHOMYI	54 16 4 2 8 16 4 2 17 3 16 2 2 18 2 18 2 18 2 18 2 18 2 18 2 18
--	--

Table 16. Continued

DACTIS INSIGNIFI BAETIS TRICAUDAT EPHEMERELLA INFR HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL MEN ALLOPERLA-GROUP CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA PTERONARCELLA BA BRACHYCENTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. OECETIS SP. A PSYCHOMYIA FLAVI OPTIOBERVUS SPP. ZAITZEVIA PARVUL MICROTENDIPES SP CRICOTOPUS SP. B EUKIEFFERIELLA E EUKIEFFERIELLA E EUKIEFFERIELLA H ORTHOCLADIUS OBU ABLABESMYIA SP. ANTOCHA SP. HEXATOMA SP.	10 398 14 20 8 2 2 8 12 2 2 126 84 36	DADETIS INSIGNIFI BAETIS TRICAUDAT EPHEMERELLA INFR HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL MEM ALLOPERLA-GROUP CLAASSENI SABULO CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA QUINQUE PTERONARCELLA BA PTERONARCELLA BA PTERONARCYS CALI BRACHYCENTRUS AM CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. CERACLEA SP. OECETIS SP. A PSYCHOMYIA FLAVI OREODYTES SCITIL OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT MICROTENDIPES SP POLYPEDILUM SP.A CRICOTOPUS SP. B ORTHOCLADIUS B ORTHOCLADIUS OBU ABLABESMYIA SP. CHELIFERA SP. WIEDEMANNIA SP. HEXATOMA SP.	10
---	--	---	----

Table 16. Continued

080-100		()81)=1()()	
BAETIS INSIGNIFI		BARTIS ENSIGNIFI	14
BAETIS TRICAUDAT	8	DRUNELLA GRANDIS	71
DRUNELLA GRANDIS	14	EPHEMERELLA INFR	356
EPHEMERELLA INFR	440	RHITHROGENA HAGE	24
RHITHROGENA HAGE	14	AMELETUS VELOX	11
CAPNIA-GROUP SP.	16	TRICORYTHODES MI	4
ISOGENOIDES ELON		CAPNIA-GROUP SP.	24
PTERONARCYS CALI	8	EPHEMERELLA INFR RHITHROGENA HAGE AMELETUS VELOX TRICORYTHODES MI CAPNIA-GROUP SP. HESPEROPERLA PAC ISOPERLA FULVA	24
ARCTOPSYCHE GRAN	12		8
CHEUMATOPSYCHE	84	PTERONARCELLA BA	4
HYDROPSYCHE OCCI	204	ARCTOPSYCHE GRAN	8
SYMPHITOPS COCKE		CHEUMATOPSYCHE	120
HYDROPTILA SP.	76	HYDROPSYCHE OCCI	196
OECETIS SP. A	12	SYMPHITOPS COCKE	68
PSYCHOHYIA FLAVI	24	HYDROPTILA SP.	64
PARARGYRACTIS SP	4	LEPIDOSTOMA SP.A	8
OPTIOSERVUS SPP.		OECETIS SP. A	4
ZAITZEVIA PARVUL	2‡	PSYCHOMYIA FLAVI	8
CHIRONOHUS ST.	12	DADADCVDACTIC CD	16
MICROTENDIPES SP		OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROTENDIPES SP	16
PHAENOPSECTRA SP	10	MAITZEVIA PARVUL	11
POLYPEDILUM SP.A	8	MICROTENDIPES SP	52
TANYTARSUS SP. B	72	POLYPEDILUM SP.A	12
DIAMESA SP. B	4	TANYTARSUS SP. B	24
CRICOTOPUS SP. B	36	DIAMESA SP. B	4
EUKIEFFERIELLA B		CRICOTOPUS SP. B	12
EUKIEFFERIELLA H	4	EUKIEFFERIELLA B	20
ORTHOCLADIUS OBU	16	EUKIEFFERIELLA H	12
WIEDEMANNIA SP.	L)	ORTHOCLADIUS B	4
EPHYDRIDAE	4	ORTHOCLADIUS NIG	4
		ORTHOCLADIUS OBU	20
		ABLABESMYIA SP.	4
		OLIGOCHAETA	8

Table 16. Continued

094-100		09B-10Q	
BAETIS INSIGNIFI	12	BAETTS TRICAUDAT	()
BAETIS TRICAUDAT	14	EPHEMERELLA INER	
EPHEMERELLA INFR	420	HEPTAGENIA GOLIT	11
HEPTAGENIA SOLIT	20	RHITHROGENA HAGE	64
RHITHROGENA HAGE	28	PARALEPTOPHI MEN	11
PARALEPTOPHI. MEM	14	AMELETUS VELOX	16
CAPNIA-GROUP SP.	12	CAPNIA-GROUP SP.	14
ISOGENOIDES ELON	12	ISOPERLA FULVA	28
ISOPERLA FULVA	4	PTERONARCELLA BA	4
SKWALA PARALLELA	4	PTERONARCYS CALI	24
CHEUMATOPSYCHE	108	CHEUMATOPTYCHE	272
HYDROPSYCHE OCCI	28	HYDROPSYCH OCCI	184
SYMPHITOPS COCKE	14	SYMPHITOPS COCKE	
HYDROPTILA SP.	132	HYDROPTILA SP.	140
OECETIS SP. A	24	LEPIDOSTOMA SP.A	21
PSYCHOMYIA FLAVI	84	OECETIS SP. A	24
MICROTENDIPES SP	48	PSYCHOMYIA FLAVI	36
PHAENOPSECTRA SP	4	PARARGYRACTIS SP	14
TANYTARSUS SP. B	36	OPTIOSERVUS SPP.	ಕ
CRICOTOPUS SP. B	4	ZAITZEVIA PARVUŁ	~'()
EUKIEFFER fELL A B	{}	MICROTENDIPES SP	14
ORTHOCLADIUS B	14	PHAENOPSECTRA SP	71
ORTHOCLADIUS OBU	72	TANYTARSUS SP. B	,14
HEXATOMA SP.	ij	CRICOTOPUS SP. B	11
OLIGOCHAETA	ή.	RUETLEFERIELLA	1
		ORTHOCLADIUS OBU	11 14
		WIEDEMANNIA SP.	11

Table 16. Continued

10C-10Q BAETIS INSIGNIFI	28	10D-10Q BAETIS INSIGNIFI	16
BAETIS TRICAUDAT	11 11	BAETIS TRICAUDAT	
DRUNELLA GRANDIS		DRUNELLA GRANDIS	8
EPHENERELLA INER	jge	EPHEMERELLA INFR	296
RHITHROGENA HAGE	့်းရွိ	HEPTAGENIA SOLIT	
PARALEPTOPHL MEM		RHITHROGENA HAGE	92
CLAASSENI SABULO	Ŕ	PARALEPTOPHL MEM	12
ISOPERLA FULVA	20	AMELETUS VELOX	14
SKWALA PARALLELA	14	CLAASSENI SABULO	36
PTEROMARCELLA BA	14 8 20 4 3 4	ISOPERLA FULVA	24
PARMIONUMA PACIF	14	SKWALA PARALLELA	8
BRACHYCENTRUS OC	12	PTERONARCELLA BA	20
PROTOPTILA SP.	lį	TAENTONEMA PACIF	
ARCTOPSYCHE GRAN	16	BRACHYCENTRUS OC	16
CHEUMATOPSYCHE	364	ARCTOPSYCHE GRAN	24
HYDROPS/CHE OCCI	4 16 364 272	CHEUMATOPSYCHE	468
SYMPHITOPS COCKE	80	HYDROPSYCHE OCCI	520
SYMPHITOPS SLOSS	4	SYMPHITOPS COCKE	
HYDROPTILA SP.	460	HYDROPTILA SP.	296
LEPIDOSTOMA SP.A	1[PSYCHOMYIA FLAVI	8
PSYCHOMYIA FLAVI	32	PARARGYRACTIS SP	24
PARARGYRACTIS SP	60	OPTIOSERVUS SPP.	188
OPTIOSERVUS SPP.	184	ZAITZEVIA PARVUL	92
ZAITZEVIA PARVUL	44	ATHERIX VARIEGAT	4
MICROPSECTR SP.A	12	MICROPSECTR SP.A	20
POLYPEDILUM SP.A	11	MICROTENDIPES SP	4
TANYTARBUS SP. B	11	POLYPEDILUM SP.A	4
CRICOTOPUS SP. B	24	TANYTARSUS SP. B	4
EUKIEFFERIELLA B	156	CRICOTOPUS SP. B	24
ORTHOCLADIUS B	8	EUKIEFFERIELLA B	52
ORTHOCLADIUS OBU	12	EUKIEFFERIELLA E	12
THIENEMANIELL SP	4	HETEROTRISSOCLAD	8
SIMULIUM SP.	4	ORTHOCLADIUS OBU	8
ANTOCHA SP.	4	ABLABESMYIA SP.	4
OLIGOCHAETA LUMB	4 4 4 8	CHELIFERA SP.	12
		WIEDEMANNIA SP.	8
		SIMULIUM SP.	16
		ANTOCHA SP.	16
		OLIGOCHAETA LUMB	4

Table 16. Continued

Table 16. Continued

110-100		11D-10Q	
BAETIS INSIGNIFI	12	BAETIS INSIGNIFI	20
BAETIS TRICAUDAT	8	BAETIS TRICAUDAT	4
EPHEMERELLA INFR	708	EPHEMERELLA INFR	660
RHITHROGENA HAGE	112	HEPTAGENIA SOLIT	4
PARALEPTOPHL MEM	8	RHITHROGENA HAGE	64
AMELETUS VELOX	8	PARALEPTOPHL MEM	16
ZAPADA CINCTIPES	4	AMELETUS VELOX	28
ISOGENOIDES ELON	8	CLAASSENI SABULO	8
ISOPERLA FULVA	24	ISOGENOIDES ELON	8
ISOPERLA QUINQUE	4	ISOPERLA FULVA	16
SKWALA PARALLELA	4	ISOPERLA QUINQUE	4
PTERONARCELLA BA	8	SKWALA PARALLELA	4
ARCTOPSYCHE GRAN	24	TAENIONEMA PACIF	4
CHEUMATOPSYCHE		ARCTOPSYCHE GRAN	12
HYDROPSYCHE OCCI	704	CHEUMATOPSYCHE	112
SYMPHITOPS COCKE	36	HYDROPSYCHE OCCI	260
HYDROPTILA SP.	384	SYMPHITOPS COCKE	20
LEPIDOSTOMA SP.A	4	HYDROPTILA SP.	516
PSYCHOMYIA FLAVI	8	LEPIDOSTOMA SP.A	4
OPTIOSERVUS SPP.	32	PARARGYRACTIS SP	ų
ZAITZEVIA PARVUL	28	OPTIOSERVUS SPP.	16
ATHERIX VARIEGAT	28	ZAITZEVIA PARVUL	16
MICROPSECTR SP.A	24	ATHERIX VARIEGAT	8
MICROTENDIPES SP	60	MICROPSECTR SP.A	8
POLYPEDILUM SP.A	4	MICROTENDIPES SP	160
TANYTARSUS SP. B	16	TANYTARSUS SP. B	12
CRICOTOPUS SP. B	88	PAGASTIA SP.	4
EUKIEFFERIELLA B	28	CRICOTOPUS SP. B	76
EUKIEFFERIELLA E	24	EUKIEFFERIELLA B	8
ORTHOCLADIUS B	16	ORTHOCLADIUS B	20
ORTHOCLADIUS OBU	100	ORTHOCLADIUS OBU	104
ABLABESMYIA SP.	4	WIEDEMANNIA SP.	4
WIEDEMANNIA SP.	4	HEXATOMA SP.	16
HEXATOMA SP.	· 1 ₄	OLIGOCHAETA	1
-			,

13A-10)		13B-10Q	
BARTIS INSIGNIFI	14	BAETIS INSIGNIEL	14
RAETES TRICAUDAT	8	EPHEMERELLA INFR	136
EPHEMERELLA INFR	200	HEPTAGENIA SOLIT	11
HEPTAGENIA SOLIT	11	RHITHROGENA HAGE	11
RHITHROGENA HAGE	24	PARALEPTOPHL MEM	8
PARALEPTOPHL MEM	4	AMELETUS VELOX	16
CAPNIA-GROUP SP.	4	PROSTOIA BESAMET	4
ISOGENOIDES ELON	16	ISOGENOIDES ELON	4
ISOPERLA FULVA	8	SKWALA PARALLELA	
SKWALA PARALLELA	8	CHEUMATOPSYCHE	36
PTEROMARCELLA BA	4	HYDROPSYCHE OCCI	24
ARCTOPSYCHE GRAN	8	HYDROPTILA SP.	908
CHEUMATOPSYCHE	84	MICROPSECTR SP.A	8
HYDROPSYCHE OCCI	116	MICROTENDIPES SP	388
SYMPHITOPS COCKE	8	PHAENOPSECTRA SP	28
HYDROPTILA SP.	1044	TANYTARSUS SP. B	12
ZUMATRICHIA NOTO	4	DIAMESA SP. B	16
OECETIS SP. A	12	DIAMESA SP. C	4
PSYCHOMYIA FLAVI	4	CRICOTOPUS SP. B	
PARARGYRACTIS SP	4	EUKIEFFERIELLA B	4
OPTIOSERVUS SPP.	8	ORTHOCLADIUS OBU	30
ZAITZEVIA PARVUL	8	HEXATOMA SP.	14
ATHERIX VARIEGAT	14	OLIGOCHAETA	11.11
CRYPTOCHIRONOMUS	14		
MICROTENDIPES SP	568		
DIAMESA SP. B	12		
CRICOTOPUS SP. B	16		
EUKIEFFERIELLA B	4		
ORTHOCLADIUS OBU	40		
ABLABESMYIA SP.	4		
OLIGOCHAETA	16		
OLIGOCHAETA LUMB	4		

Table 16. Continued

14A-10Q BAETIS INSIGNIFI EPHEMERELLA INFR RUITHROGENA HAGE PARALEPTOPHL MEH THOGENOIDES ELON ISOPERLA FULVA SKWALA PARALLELA CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. CERACLEA SP. OECETIS SP. A OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT MICROPSECTR SP.A MICROTENDIPES SP PHAENOPSECTRA SP CRICOTOPUS SP. B EUKIEFFERIELLA B ORTHOCLADIUS OBU SYNORTHOCLADIUS HYALELLA AZTECA	396 12 11 11	HB-10Q BAETTS TRICAUDAT EPHEMERELLA INFR HEPTAGENIA GOLIF RHITHROGENA HAGE PARALEPTOPHL MEM ISOPERLA FULVA TAENIONEMA PACIF CHEUMATOPSYCHE HYDROPSYCHE OCCT HYDROPTILA SP. OPTIOSERVUS SPP. MICROPSECTR GP.A MICROTENDIPES GF PARACLADOPE GP.A TANYTARSUS SP. B CRICOTOPUS SP. B CRICOTOPUS SP. B HETEROTRISSOCLAD ORTHOCLADIU. OBU THIENEMANIELL GP WIEDEMANNIA SP. HEXATOMA SP. HYALELLA AZTECA OLIGOCHAETA	й 4 4 4 24 24 24 6 6 14 8 3 4 6 4
HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS VELOX	8 4 84 36 28 4 8 4 8 4 8 4 8 4 8 4 16 4 16 4 16 4 16 4 16 8 16 8 16 8 16 8 16 8 16 8 16 8 16 8	14D-10Q BAETIS INSIGNIFI CAENIS SIMULANS EPHEMERELLA INFR HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL MEM ISOGENOIDES ELON ISOPERLA FULVA PTERONARCELLA BA CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. OECETIS SP. A OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT MICROPSECTR SP. A MICROTENDIPES SP TANYTARSUS SP. B CRICOTOPUS SP. B EUKIEFFERIELLA H ORTHOCLADIUS B ORTHOCLADIUS OBH ABLABESMYIA SP. HEXATOMA SP. HYALELLA AZTECA OLIGOCHAETA	24 4 96 120 4 4 4 8 8 1 4 8 8 4 4 4 4 8 8 1 4 8 8 1 4 8 4 4 4 4

Table 16. Continued

15A-10Q		15B-10Q	
BAETIS INSIGNIFI	20	BAETIS INSIGNIFI	36
BAETIS TRICAUDAT	36	BAETIS TRICAUDAT	71
EPHEMERELLA INFR	2748	EPHEMERELLA INFR	588
RHITHROGENA HAGE	263	RHITHROGENA HAGE	64
PARALEPTOPHI, MEM	28	AMELETUS VELOX	12
AMELETUS VELOX	20	CLAASSENI SABULO	16
CLAASSENT SABULO	211	CLAASSENI SABULO ISOGENOIDES ELON	8
ISOGTNOIDES ELON	20	PTERONARCELLA BA	16
ISOPERLA FULVA	84	TAENIONEMA PACIF	
ISOPERLA FULVA ISOPERLA QUINQUE SKWALA PARALLELA	4	CHEUMATOPSYCHE	72
SKWALA PARALLELA	8	HYDROPSYCHE OCCI	184
ARCTOPSYCHE GRAN	4	SYMPHITOPS COCKE HYDROPTILA SP.	24
CHEUNATOPHYCHE	420	HYDROPTILA SP.	388
HYDROPSICLE OCCI	1776	OECETIS SP. A	12
SYMPHITOPS COCKE	4	OPTIOSERVUS SPP. MICROPSECTR SP.A	12
HYDROPTILA SP.	1204	NATATION DISTINCTOR OF THE A	()
OPTIOSERVUS SPP.	60	MICROPSECTR SP.A MICROTENDIPES SP POLYPEDILUM SP.A TANYTARSUS SP. B	72
ZAITZEVIA PARVUL	44	POLYPEDILUM SP.A	4
ATHERIX VARIEGAT	8	TANYTARSUS SP. B	4
MICROPSECTR SP.A	16	CRICOTOPUS SP. B	64
MICROTENDIPES SP	264	EUKIEFFERIELLA F	12
TANYTARSUS SP. B		EUKIEFFERIELLA H	16
CRICOTOPUS SP. B		ORTHOCLADIUS B	8
EUKIEFFERIELLA B	8	ORTHOCLADIUS OBU	36
EUKIEFFERIELLA E	12	PSECTROCLADIUS B	4
EUKIEFFERIELLA H		WIEDEMANNIA SP.	4
ORTHOCLADIUS B	4	HEXATOMA SP.	8
ORTHOCLADIUS OBU	48		-
SIMULIUM PP.	8		
TIPULA SP.	ĺΙ		
	•		

BAETIS TRICAUDAT EPHEMERELLA INFR HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS VELOX TRICORYTHODES MI CAPNIA-GROUP SP.	4 12 16 32 8 4 176 205 4 788 4 36 12	15D-10Q BAETIS INSIGNIFI BAETIS TRICAUDAT EPHEMERELLA INFR RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS VELOX CAPNIA-GROUP SP. CLAASSENI SABULO CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA PTERONARCELLA BA CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. OPTIOSERVUS SPP. ZAITZEVIA PARVUL CLADOTANYTA SP.A MICROTENDIPES SP POLYPEDILUM SP.A TANYTARSUS SP. B CRICOTOPUS SP. B EUKIEFFERIELLA E EUKIEFFERIELLA E EUKIEFFERIELLA E ORTHOCLADIUS B ORTHOCLADIUS OBU WIEDEMANNIA SP. SIMULIUM SP. HEXATOMA SP. OLIGOCHAETA	16 868 136 4 32 12 12 12 12 12 8 140 608
---	--	---	--

Table 16. Continued

100 - 1011		1911-1011	
BARTER HISTORIEL	71	BAETIS INSIGNIFI	6
BAETIS TRICAUDAT	24	BAETIS TRICAUDAT	52
EPHEMERELLA INFR	236	DRUNELLA GR INGE	2
HEPTAGENIA SOLIT	6	EPHENERELLA INFR	532
RHITHROGENA HAGE	12	HEPTAGENIA SOLIT	24
PARALEPTOPHL MEM	6	RHITHROGENA HAGE	14
AMELETUS VELOX	4	PARALEPTOPHL MEM	26
ISOGENOIDES ELON	6	ISOGENOIDES ELON	8
ISOPERLA FULVA	6	ISOPERLA FULVA	8
SKWALA PARALLELA	2	BRACHYCENTRUS OC	4
BRACHYCENTRUS OC	2	ARCTOPSYCHE GRAN	6
CHEUMATOPSYCHE	54	CHEUMATOPSYCHE	196
HYDROPSYCHE OCCI	90	HYDROPSYCHE OCCI	136
SYMPHITOPS COCKE	8	SYMPHITOPS COCKE	32
HYDROPTILA SP.	150	SYMPHITOPS SLOSS	2
ZUMATRICHIA NOTO	2	HYDROPTILA SP.	202
PSYCHOMY LA FLAVI	43	LEUCOTRICHIA PIC	2
OPTIOSERVUS SPr.	2	PSYCHOMYIA FLAVI	46
ZAITZEVIA PARVUL	4	OPTIOSERVUS SPP.	6
MICROPSECTR SP.A	2	ZAITZEVIA PARVUL	4
MICROTENDIPES SP	30	MICROTENDIPES SP	54
POLYPEDILUM SP.A	14	CRICOTOPUS SP. B	14
CRICOTOPUS SP. B	8	EUKIEFFERIELLA B	2
EUKIEFFERIELLA B	8	EUKIEFFERIELLA F	2 6
EUKIEFFERIELLA F	2	EUKIEFFERIELLA H	6
EUKIEFFERIELLA H	2 8	ORTHOCLADIUS B	4
ORTHOCLADIUS 3	8	ORTHOCLADIUS OBU	18
ORTHOCLADIUS OBU	18		

Table 16. Continued

19C-10H		19D-10H	
BAETIS INSIGNIFI	2	BAETIS INSIGNIFI	2
BAETIS TRICAUDAT	42	BAETIS TRICAUDAT	50
DRUNELLA GR INGE	6	EPHEMERELLA INFR	246
EPHEMERELLA INFR	400	CINYGMULA SP.	2
HEPTAGENIA SOLIT	8	HEPTAGENIA SOLIT	20
RHITHROGENA HAGE	12	RHITHROGENA HAGE	16
PARALEPTOPHL MEM	14	PARALEPTOPHL MEM	30
ISOGENOIDES ELON	4	AMELETUS VELOX	4
ISOPERLA FULVA	4	ISOGENOIDES ELON	6
SKWALA PARALLELA	2	ISOPERLA FULVA	6
TAENIONEMA PACIF	2	SKWALA PARALL	2
CHEUMATOPSYCHE	108	ARCTOPSYCHE GRAN	2
HYDROPSYCHE OCCI		CHEUMATOPSYCHE	100
SYMPHITOPS COCKE	36	HYDROPSYCHE OCCI	92
HYDROPTILA SP.	134	SYMPHITOPS COCKE	20
LEUCOTRICHIA PIC	2	SYMPHITOPS SLOSS	2
OECETIS SP. A	4	HYDROPTILA SP.	150
PSYCHOMYIA FLAVI	34	OECETIS SP. A	6
OPTIOSERVUS SPP.	10	PSYCHOMYIA FLAVI	22
ZAITZEVIA PARVUL	12	PARARGYRACTIS SP	2
MICROPSECTR SP.A	2	OPTIOSERVUS SPP.	2
MICROTENDIPES SP	34	ZAITZEVIA PARVUL	2
CRICOTOPUS SP. B	2	MICROTENDIPES SP	1 පි
EUKIEFFERIELLA B	6 2 8	POLYPEDILUM SP.A	4
EUKIEFFERIELLA E	2	CRICOTOPUS SP. B	2
ORTHOCLADIUS OBU		EUKIEFFERIELLA B	2
SYNORTHOCLADIUS	2	EUKIEFFERIELLA F	4
OLIGOCHAETA LUMB	2	ORTHOCLADIUS B	2
		ORTHOCLADIUS OBU	6

Table 16. Continued

21A-10H		21B-10H	
BAETIS INSIGNIFI	2	BAETIS TRICAUDAT	4
BAETIS TRICAUDAT		DRUNELLA DODDSI	2
DRUNELLA GR INGE	4	DRUNELLA GR INGE	2
EPHENERELLA INFR	632	EPHEMERELLA INFR	642
CINYGMULA SP.	8	CINYGMULA SP.	2
HEPTAGEDIA SOLIT	6	HEPTAGENIA SOLIT	14
RHITTHROGENA HAGE	8	RHTTHROGENA HAGE	12
	3()	CLAASSENT SABULO	2
AMELETUS VELOX		HESPEROPERLA PAC	11
CAPNIA-GROUP 33P.	()	ISOGENOIDES ELON	2
IBOPERLA FULVA	16	ISOPERLA FULVA	12
PIERONARCIS CALI	24	BRACHYCENTRUS OC	6
TAENIOHEMA PACIF	4	ARCTOPSYCHE GRAN	8
BRACHYCENTRUS OC	6	CHEUMATOPSYCHE	112
ARCTOPSYCHE GRAN	12	HYDROPSYCHE OCCI	90
CHEUMATOPSYCHE	70	SYMPHITOPS COCKE	28
HYDROPSYCHE OCCI	88	SYMPHITOPS SLOSS	6
SYMPHITOPS COCKE	26	HYDROPTILA SP.	186
SYMPHITOPS SLOSS	2	LEPIDOSTOMA SP.A	2
HYDROPTILA SP.	198	CERACLEA SP.	2 2 6
LEPIDOSTOMA SP.A	2 8	OECETIS SP. A	6
CERACLDA SP.	8	PSYCHOMYIA FLAVI	22
OECETIS SP. A	2	OPTIOSERVUS SPP.	8
PSYCHOMY LA FLAVI		ZAITZEVIA PARVUL	12
ZALTZEVIA PARVUL	16	MICROTENDIPES SP	168
MICROTENDIPES SP	36	CRICOTOPUS SP. B	2
POLYPEDILUM SP.A	2	ORTHOCLADIUS OBU	14
EUK EEFFERIELLA E	5	ABLABESMYIA SP.	4
EUKIEFFERIELLA F	2 2	OLIGOCHAETA LUMB	2
ORTHOCLADIUS B	2		
ORTHOCLADIUS OBU	2 6		
ANTOCHA SP.	2		
OLIGOCHAETA LUMB	6		

Table 16. Continued

21C-IOH EPHEMERELLA INFR CINYGMULA SP. HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS VELOX CAPNIA-GROUP SP. CLAASSENI SABULO ISOGENOIDES ELON ISOPERLA FULVA TAENIONEMA PACIF ARCTOPSYCHE GRAN	2 2 2 14 8 2 8 4 10 8	PID-10H DRUHELLA GR 18GE EPHEMERELLA INFR EPEORUS ALBERTAE HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS VELOX CLAASSENI SABULO ISOGENOIDES ELON ISOPERLA FULVA SKWALA PARALLELA PTERONARCYS GALI	63r 2 10 2 18 10 10 12 14 2
HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. LEPIDOSTOMA SP.A CERACLEA SP. PSYCHOMYIA FLAVI OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROTENDIPES SP PHAENOPSECTRA SP ORTHOCLADIUS B OKTHOCLADIUS OBU	22 164 2 10 20 20 14 28 2	ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. LEPIDOSTOMA SP.A CERACLEA SP. PSYCHOMYIA FLAVI ZAITZEVIA PARVUL MICROTENDIPES SP ORTHOCLADIUS OBU OLIGOCHAETA LUMB TURBELLARI	40

BAETIS INSIGNIFI BAETINOSEN Y CHE HYDROPTILA SP. OXYETHIRA SP. OXYETHIRA SP. OPTIOSENTA SP. OPTIOSENTA SP. OPTIOSENTA SP. GYRINUS SP. BICROTENDIP SP.A MICROPSECTR SP.A TANYTARSUS SP. B EUKIEFFERIELLA F ORTHOCLADIUS B ORTHOCLADIUS B ORTHOCLADIUS D SYNORTHOCLADIUS WIEDEMANNIA SP. SIMULIUM SP. HYALELLA AZTECA GYRAULUS SP. LYMNAEA SP. OLIGOCHAETA OLIGOCHAETA OLIGOCHAETA OLIGOCHAETA OLIGOCHAETA SP. TURBELLARI	1 1 2 1 1 1 1 2 4 1 2 5	BAETIS INSIGNIFI BAETIS TRICAUDAT HYDROPTILA SP. OXYETHERA SP. PARARGYRACTIS SP DICROTENDIP SP.A POTTHASTIA SP. CORYNONEURA SP. CRICOTOPUS SP. B EUKIEFFERIELLA F ORTHOCLADIUS B ORTHOCLADIUS OBU PSECTROCLADIUS B SYNORTHOCLADIUS ABLABESMYIA SP. SIMULIUM SP. HYALELLA AZTECA GYRAULUS SP. PHYSA SP. OLIGOCHAETA GLOSSIPHONIA SP TURBELLARI	7 1 2 1 3 13 13 13 14 1 65
---	--	---	--

Table 16. Continued

230-10		23D-10	
BAETIS INSIGNIFI	7	BAETIS INSIGNIFI	2
SPHEMERELLA INFR	1	BAETIS TRICAUDAT	1
STENONEMA SP.	1	RHITHROGENA HAGE	1
HYDROPTILA SP.	5	CHEUMATOPSYCHE	1
OXYETHIRA SP.	1	HYDROPTILA SP.	5
PARARGYRACTIS SP	2	OXYETHIRA SP.	1
ZAITZEVIA PARVUL	1	TRIAENODES SP.	1
DICROTENDIP SP.A	3	ZAITZEVIA PARVUL	1
PAGASTIA SP.	6	GYRINUS SP.	2
POTTHASTIA SP.	1	TANYTARSUS SP. B	1
CORYMONEURA SP.	1	DIAMESA SP. B	1
CRICOTOPUS SP. B	12	PAGASTIA SP.	11
EUKIEFFERIELLA F	6	CORYNONEURA SP.	1
ORTHOCLADIUS B	17	CRICOTOPUS SP. 1	22
ORTHOCLADIUS OBU	8	EUKIEFFERIELLA F	6
PSECTROCLADIUS B	36	ORTHOCLADIUS B	22
SYNORTHOCLADIUS	1	ORTHOCLADIUS OBU	16
WIEDEMANNIA SP.	1	PSECTROCLADIUS B	33
SIMULIUM SP.	4	WIEDEMANNIA SP.	2
HYALELLA AZTECA	10	SIMULIUM SP.	2
GYRAULUS SP.	31	HYALELLA AZTECA	3
LYMNAEA SP.	2	LEBERTIA SP.	$\overline{1}$
PHYSA SP.	13	GYRAULUS SP.	14
OLIGOCHAETA	14	LYMNAEA SP.	4
OLIGOCHAETA LUMB	2	PHYSA SP.	11
TURBELLARI	60	BAETIS INSIGNIFI BAETIS TRICAUDAT RHITHROGENA HAGE CHEUMATOPSYCHE HYDROPTILA SP. OXYETHIRA SP. TRIAENODES SP. ZAITZEVIA PARVUL GYRINUS SP. TANYTARSUS SP. B PAGASTIA SP. CORYNONEURA SP. CRICOTOPUS SP. EUKIEFFERIELLA F ORTHOCLADIUS B ORTHOCLADIUS B ORTHOCLADIUS B WIEDEMANNIA SP. SIMULIUM SP. HYALELLA AZTECA LEBERTIA SP. GYRAULUS SP. LYMNAEA SP. PHYSA SP. OLIGOCHAETA OLIGOCHAETA OLIGOCHAETA LUMB TURBELLARI	1)
		OLIGOCHAETA LUMB	8
		TURBELLARI	39
			3,

0.14.4.0		0 11 5 4 0	
24A-10		24B-10	
BAETIS INSIGNIFI	71	BAETIS INSTGUIFT	1
EPHIEMEROULLA HIFR		BARTES TRICAUDAT	1
HERT AGLETA - OLTA RIFT THROCO HA HAGE	11	EPHEELERLI.A IMER	1
RHTTHROG HA HAGE	11	HEPTAGENIA SOLIT	2
NTHOUGHA HIP	34	RHITHROGENA HAGE	8
OPHEOGORPHUS SP.	1	STENONEMA SP.	24
CHEUMA FORMY JUE	10	CHEUMATOPSYCHE	26
HYDROPES CHE OCCL	11	HYDROPSYCHE OCCI	3
SYLPHITOPS COCKE	1)	SYMPHITOPS COCKE	2
CERACLEA SP.	2	HYDROPTILA SP.	1
UECETIS SP. A	1	CERACLEA SP.	2
·FTIOSERVUS SPP.	1	ZAITZEVIA PARVUL	2
SYMPHITOPS COCKE CERACLEA SP. DECETIS SP. A PTIODERVUS SPP. ZAITZEVIA PARVUL MICROPSEUTA SP.A MICROTONDIPES SP TANYTARSUS SP. B	1	MICROTENDIPES SP	9
MICROPSECTA SP.A	1	DIAMESA SP. B	1
MICROTANDIAES SP	17	PAGASTIA SP.	2
TANYTARSUS SP. B	1 1 23	CRICOTOPUS SP. B	58
PAGASTIA SP.	1	EUKIEFFERIELLA F	5
CRICOTOPUS JP. B	23	ORTHOCLADIUS B	4
EUKIEFFERIELLA F	2	ORTHOCLADIUS OBU	13
ORTHOCLADIUS B	7	SYNORTHOCLADIUS	1
ORTHOCLADIUS OBU	18	SIMULIUM SP.	108
SIMULIUN SP.	32	LYMNAEN SP.	6.1
LYTINADA UP.	70	OLIGOCHAETA LUMB	1
OLIGOCHAETA	2	TURBELLARI	6
TURBELLARI	1]		

24D-10 BAETIS INSIGNIFI BAETIS INSIGNIFI EPHEMERELLA INFR EPHEMERELLA INFR HEPTAGENIA SOLIT 1 5 HEPTAGENIA SOLIT 6 RHITHROGENA HAGE RHITHROGENA HAGE 55 STENONEMA SP. STENONEMA SP. WHELETUS VELOK CHEUMATOPSYCHE GLOSSOSOMA SP. 1 5 HYDROPSYCHE OCCI CHEUMATORSTCHE 14 1 SYMPHITOPS COCKE HYDROP. THE OCCI HYDROPTILA SP. 1 CERACLEA SP. OEGETIS SP. A SYDPHIYO M. COCKE. 1.3 CERACLUA UP. OSCETTO DEL A 1 ZATEZEVIA PARVUL 1.) OPTIONIRVES MPP LENZIELLA SP. 1 ZAITZEVIA PARVUL MICROPSECTR SP.A MICROTEMBIZES SP MICROTENDIPES SP 49 DIAMESA SP. 3 CRICOTOPUS SP. B DIAMESA SP. B 2 CRICOTOPUS SP. B 36 EUKIEFFERIELLA F 4 2 EUKIEFFERIELLA F 17 ORTHOCLADIUS 3 1 EUKIEFFERIELLA H ORTHOCLADIUS OBU 20 ORTHOCLADIUS B 10 SIMULIUM SP. 47 ORTHOCLADIUS OBU 15 LYMNAEA SP. 52 WIEDEMANNIA SP. 1 OLIGOCHAETA LUMB SIMULIUM SP. LYMNAEA SP. 70 7 TURBELLARI 61 OLIGOCHAETA LUMB 2 TURBELLARI 1

MICROTENDIPES SP STENOCHIRONOM SP CRICOTOPUS SP. B ORTHOCLADIUS B ORTHOCLADIUS OBU SYNORTHOCLADIUS SIMULIUM SP. SPERCHON SP. GYRAULUS SP. LYMMAEA SP. PHYSA SP. OLIGOCHAETA LUMB TURBELLARI	82 8 12 8 12 30 2 6 2 16 12 4 4 2	EPHEMERICA THER HEPTAGENTA GOLTT STERONEMA GOLT STERONEMA GOLT STERONEMA GOLT OPHLOGOMPHUS SPL CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHLYOPS COCKE HYDROPTILA SPL CERACLEA SPL PSYCHOMYTA PLAVE ZAITZEVIA PARVUL DICROTENDIP STLA MICROTEMDIPES ST TANYTARSUS SPL S CRICOTOPUS SPL S CRICOTOPUS SPL S CRICOTOPUS SPL S CRICOTOPUS SPL S ORTHOCLADIUS B ORTHOCLADIUS OBU SYNORTHOCLADIUS SIMULIUM SPL GYRAULUS SPL LYMNAEA SPL OLIGOCHAETA LUMB TURBELLARI	52 2 14 8 4 2 8 7 4
RHITHROGENA HAGE STEPOHEMA SP. OPHIOGOMPHUS SP. CHEUMATOPSYCHE	6 .' .356 .4 332 10 6	25D-10H BAETIS INSIGNIFI EPHEMERELLA THER HEPTAGENTA SOLIT STENOMENA ST. OPHLOGOMPHUS SP. BRACHYCENTRUS OC CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. CERACLEA SP. OECETIS SP. A PSYCHOMYIA FLAVI	4 6 46.1 2 7110
PARARGYRACTIS SPOPTIOSERVUS SPPZALTZEVIA PARVUL DICNOTENDIP SP. A MICROTENDIPES SPORTHOCLADIUS BORTHOCLADIUS BORTHOCLADIUS OBUSIMULIUM SP. LEBERTIA SP. FERRISSIA SP. GYRAULUS SP. LYMBAEA SP. PHYSA SP. OLIGOCHAETA LUMBTURBELLARI	30 4 2 10 60 16 10 48 12 2 8 24 16 2 10 2	PSYCHOMYTH FLAVI PARARGYRACTIC SP ZATTZEVIA PARVUL DICROTENDIP SP.A MICROTENDIPES SP STENOCHIRONOM SP TANYTARSUS SP. B CRICOTOPUS SP. B ORTHOCLADIUS B ORTHOCLADIUS OBU SIMULIUM SP. FERRISSIA SP. GYRAULUS SP. LYMNAEA SP. OLIGOCHAETA LUMB TURBELLARI	14 10 2 144 2 18 40 34 22 18 6 2
- UNDINGERINE	4.4	235	

Table 16. Continued

27-11	
BAETIS LUSIGNIEL	1
HEPTAGENIA SOLIT	1
STENDUELIA SP.	1.1
CHEUMATOPSYCHE	57
HYDROPSYCHE SP.A	27
HYDROPSYCHE OCCI	5
SYMPHITOPS COCKE	6
HYDROPTILA SP.	7
ZUMATRICHIA NOTO	1
CERACLEA MP.	56
PSYCHOLYIA FLAVI	9
PARARGYRACTIS SP	10
ZAITZEYJA PARVUL	1
EICROTENDIPES SP	1 2
STENOCHIRONOH SP	1
DIAMESA SP. B	1
CRICOTOPUS SP. 3	3
ORTHOCKAPIUS B	1
ORTHOCLADIUS OBU	5
WIEDEWANNIA	2
FERRISSIA SP.	1
LYHNAEA SP.	1
TURBELLARI	3

Table 16. Deep Water Monitoring Stations - Petite Ponar Grab Samples

O3-1-10 CHIROHOMUS SP. PHAEMOPSECT SP.B POLYPEDILUM SP.D STICTOCHIRONO SP TANYTARSUS SP. B EUKISFFERIELLA 1 OLIGOCHAETA	12 1 1 1 1 1 25	26-1-10 CRYPTOCHIRONORUS PHAENOPSECT SP. 3 ORTHOCLADIUS OBU PROCLADIUS SP. A OLIGOCHAETA	3 1 1 .*0 #1 3 3
O3-2-10 CHIRONOMUS SP. PHAENOPSECTRA SP PHAENOPSECT SP.B	12 1 1	26-2-10 CERACLEA SP. PSEUDOCHIRONOMUS	2 2
POLYPEDILUM SP.D STICTOCHIRONO SP TANYTARSUS SP. B OLIGOCHAETA	3 1 1 6	26-3-10 CRYPTOCHTRONOLUS PHAENOPSEUT SP.8 POLYPEDIEUM SP.D OLIGOCHAETA	7 3 13 22
03-3-10 CHIRONOMUS SP. PHAENOPSECTRA SP POLYPEDILUM SP.D OLIGOCHAETA	11 1 1		
28A-1-10 CHIRONOMUS SP. PROCLADIUS SP. A OLIGOCHAETA	19 14 225	28B-1-10 CHIRONOMUS SP. PROCLADIUS SP. A OLIGOCHAETA	4 1 107
28A-2-10 CHIRONOMUS SP. PROCLADIUS SP. A OLIGOCHAETA	9 15 191	28B-2-10 CHIRONOMUS SP. PROCEADEUS SP. A OLIGOCHAETA	7 112
28A-3-10 CHIRONOMUS SP. PROCLADIUS SP. A OLIGOCHAETA	10 8 139	28B-3-10 CHIRONOMUS SP. PROCLADIUS SP. A OLIGOCHAETA	6 4 65

Table 16. Continued

30-1-10		30-3-10	
OECETIS SP. B	14	NECTOPSYCHE SP.	2
PALPONY-GP SP. A	6	OECETIS SP. B	1
CRYPTOCHIRONOMUS	3	PALPOHY-GP SP. A	7
PARACLADOPE SP.B	6	CRYPTOCHIRONOMUS	11
PARACLAPOPE SP.C	1	PARACLADOPE SP.B	14
PARALAUTERBORNIE	1	PARALAUTERBORNIZ	1
POLYPEDILUM SP.B	1	POLYPEDILUM SP.B	2
POLYPEDILUL SP.D	23	POLYPEDILUM SP.D	24
PSEUDOCHIROHOHUS	25	PSEUDOCHIRONOMUS	22
PROCEADIUS SP. A	2	PROCLADIUS SP. A	3
ARRELURJS SP.	1	PISIDIUM SP.	1
OLIGOCHAETA	22	OLIGOCHAETA	20

30210	
OF HIGGORIPHUS SP.	1
ONCETIS SP. B	2
PALPOHY-GP SP. A	10
CRYPTOCHEROMOMUS	b
PARACLADOPE 3P.B	1
PARALAUTERBORNIE	5
POLYPEDILUA SP.B	2
POLYPEDILUH SP.D	32
PSEUDOCHIROJOMUS	31
PROCLADIUS SP. A	5
OLIGOCHAETA	36

Table 16. Benthic Macroinvertebrate Sample Counts and Identifications Spring 1985

Shallow Water Stations - Kick Samples

1/A-53			
BAETIS TRICAUDAT	204	1/3-53	
EPHEMERELLA INFR	568	BAETIS TRICAUDAT	296
RHITHROGENA HAGE	36	EPHENERELLA INFR	916
CAPNIA-GROUP SP.	48	RHITHROGENA HAGE	20
ALLOPERLA-GROUP	8	PARALEPTOPHL MEM	I_1
PROSTOIA BESAMET	116	AMELLITUS VILOX	14
CULTUS PILATUS	11	CAPILLA-GROUP ST.	1.)
ISOGENOIDES ELON	1	PROSTOLA BESAMET	116
ISOPERLA FULVA	20	CULTUS PILATUS	4
ISOPERLA QUINQUE	8	ISOPERLA FULVA	. 1;1
TAENIONEMA PACIF	12	ISOPHALA QUIHQUE	10
CHEUMATOPSYCHE	12	SKWALA PARALLELA	1
HYDROPSYCHE OCCI	32	PTEROBARCHIA BA	11
HYDROPTILA SP.	24	TARNED LUA PACIF	11
LEPIDOSTOMA SP.A	40	BRACHYCENTRUS AM	
OPTIOSERVUS SPP.	3	ARCTOPSYCHE GRAD	1)
ZAITZEVIA PARVUL	12	CHEUMATOPSYCHI	20
ATHERIX VARIEGAT	4	HYDROPSYCHE OCCE	112
MICROTENDIPES SP	4	HYDROFTILA SP.	1
PARACLADOPE SP.B	14	LEPIDOSTOHA SOLA	7:2
TANYTARSUS SP. B	12	OFCETIS SP. A	0
DIAMESA SP. B	24	OPTIOSERVUS SPP.	12
PAGASTIA SP.	3	ZAITZEVIA PARVUL	1 _†
CRICOTOPUS SP. B	223	ATHERIX VARIEGAT	13
EUKIEFFERIELLA B	56	POLYPIDELUH SP.A	4
EUKIEFFERIELLA E	4	DIALEDA SP. B	10
EUKIEFFERIELLA I	4	CRICOTOPUS SP. B	1号()
ORTHOCLADIUS (EU	24	EUKIEPFERIELLA A	11
ORTHOCLADIUS B	32	EUK LEFFERIELLA B	4,0
ORTHOCLADIUS MAL	3	EUKLEFFERIELLA C	14
ORTHOCLADIUS OBU	203	ORTHOCLADIUS (EU	24
TRISSOCLADIUS SP	8	ORTHOCLADIUS B	24.21
SIMULIUM SP.	4	ORTHOCLADIUS OBU	96
HEXATOMA SP.	4	TRISSOCLADIUS SP	;†
		SIMULIUM SP.	11 O

JACTOS BACTIS TRICAUDAT EPHEMERELLA INFR RHITHROGENA HAGE CAPNIA-GROUP SP. PROSTOIA BESAMET CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA QUINQUE PTERONARCELLA BA PTERONARCELLA BA PTERONARCELLA BA PTERONARCELLA AN CHEUTATOPSYCHE HYPROPSYCHE OCCI SYMPHITOPS SLOSS LEPIDOSTOMA SP.A OPTIOSERVUS SPP. ZAITZEVIA PARVUL PARACLADOPE SP.B PHAENOPSECTRA SP TANYTARSUS SP. B CRICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA B EUKIEFFERIELLA E HETEROTRISSOCLAD ONTHOCLADIUS (EU ORTHOCLADIUS MAL ORTHOCLADIUS OBU	4764 7296 116 128 4 16 8 8 4 4 20 94 103 104 104 105 107 108 108 108 108 108 108 108 108 108 108	BAETIS TRICAUDAT EPHEMERELLA INFR RHITHROGENA HAGE CAPNIA-GROUP SP. ALLOPERLA-GROUP PROSTOIA BESAMET CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA QUINQUE PTERONARCELLA BA TAENIONEMA PACIF BRACHYCENTRUS AM ARCTOPSYCHE GRAH CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. LEPIDOSTONA SP.A OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROPSECTR SP.A TANYTARSUS SP. B DIAMESA SP. B PAGASTIA SP. CRICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA E ORTHOCLADIUS (EU ORTHOCLADIUS (EU	180 950 324 328 124 160 40 40 40 40 40 40 40 40 40 40 40 40 40
ORTHOCLADIUS MAL ORTHOCLADIUS OBU	4	ORTHOCLADIUS (EU	32
SIMULIUM SP. HEKATOMA SP. FIPULA SP.	12 12 4	ORTHOCLADIUS MAL ORTHOCLADIUS OBU THIENEMANIELL SP	12 17.2
• • • • • • •	1	1 (1 1 1 1 1 1 1 1 1 1 1 1 1 (4 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1

Table 16. Continued

2/A-53*		2/3-55	
CAPNIA-GROUP SP.	71	BAETIS TRICAUDAT	())
ALLOPERLA-GROUP	64	EPHEMERELLA IMER	9.1
PROSTOIA BESAMET	43	EPEORUS ALBERTAE	11
CALINEURIA CALIF	28	RHITHROGENA HAGE	260
CLAASSENI SABULO	3	PARALEPTOPHL HEM	10
CULTUS PILATUS	28	AMELETUS VELOX	44
ISOGENOIDES ELON	ž į	CAPNIA-GROUP SP.	20
ISOPERLA FULVA	16	ALLOPERLA-GROUP	8
ARCTOPSYCHE GRAN	14	PROSTOIA BESAMET	14.74
CHEUMATOPSYCHE	44	CALINEURIA CALIF	12
HYDROPSYCHE OCCI	12	CLAASSENT SABULO	4
SYMPHITOPS SLOSS		CULTUS PILATUS	16
LEPIDOSTOMA SP.A	1 ს	ISOPERLA FULVA	7.
OECETIS SP. A	4	CHEUMATOPSYCHE	24
HICROPSECTR SP.C	204	HYDROPSYCHE OCCL	44
DIAMESA SP. B	164	SYMPHITOPS COCKE	z*
PAGASTIA SP.	Л	EMPHITOPS SLOSE	
CRICOTOPUS SF. B	184	OPTIOSERVUS SEP.	1
EUKTEFFERTELLA A	, 1 용	DIAMESA SP. B	1, 1
EUKTEFFERTELLA B		CRICOTOPUS SP. B	100
EUKIEFFERIELLA E	33	EUKTEFERTELLA A	V
ORTHOCLADIUS (EU		EUKIEFFERIELLA B	4
ORTHOCLADIUS B	4	ORTHOCLADIUS (EU	4 4
ORTHOCLADIUS MAL	256	ORTHOCLADIUS MAL	32
ORTHOCLADIUS OBU	20	ORTHOCLADIUS OBU	1†
		SIMULTUM SP.	68
V			

^{*}Mayflies/mise. counts missing; lost in shipment.

2/0-53 *	
CAPHIA-GROUP SP.	12
ALLOPERLA-GROUP	24
PROSTOIA BESAMET	48
CLAASSENI SABULO	11
CULTUS PILATUS	74
ISOPERLA FULVA	16
TAENIOJINA PACLE	11
CHEULATOPSYCHE	11
SYMPHITOPS SLOSS	1‡
HYDROPTILA SP.	211
LEPIDOSTOMA SP.A	4

*Hayflies/mise. and midge counts missing; lost in unipment.

2/D-53	
BARTIS TAICAUDAT	96
CAUDATELLA HYSTR	8
DRUNELLA GRANDIS	i_{4}
EPHENERELLA INFR	136
EPEORUS ALBERTAE	4
RHITHROGEMA HAGE	164
PARALEPTOPHL HEH	12
AMELETUS VELOX	12
CAPNIA-GROUP SP.	8
ALLOPERLA-GROUP	24.24
PROSTOL BESAMET	20
CALINEURIA CALIF	L)
CLAASSENI SABULO	12
HESPEROPERLA PAC	1,
CULTUS PILATUS	1
ISOPERLA FULVA	56
PTERONARCYS CALI	_
	20
CHEUMATOPSYCHE	4
HYDROPSYCHE OCCI	8
SYMPHITOPS SLOSS	48
HYDROPTILA SP.	21
PSYCHOMYIA FLAVI	24
OREODYTES SCITIL	24
OPTIOSERVUS SPP.	12
ZAITZEVIA PARVUL	7)
MICROPSECTR SP.C	32
PHAENOPSECTRA SP	11
DIAMESA SP. B	196
CRICOTOPUS SP. B	192
EUKIEFFERIELLA A	211
EUKIEFFERIELLA B	36
ORTHOCLADIUS (EU	144
ORTHOCLADIUS B	11
ORTHOCLADIUS HAL	272
ORTHOCLADIUS OBU	24
DOLICHOPODIDAE	11
SIMULTUM SP.	30
ANTOCHA SP.	74
HEXATOHA SP.	8

4/A-53		4/B-53	
BAETIS TRICAUDAT	86	BAETIC TRECAUDAT	174
EPHEMERELLA INFR	1()	EPHEMERELLA INFR	
RHITHROGENA HAGE	2	RHTTHROGENA HAGE	
CAPULA CROUP SP	2.8	PARALEITOPHL MEH	6
TSOPERLA FULVA	+ 7	AMELETUS VILOX	
TARMIONEMA PACIF	1/1	CAPHIA-GROUP Sr.	96
ISOPERLA FULVA TAEMIONEMA PACIF BRACHYCENTRUS OC	\tilde{c}	ALLOPERLA-GROUP	,
ARCTOPBYCHE GRAN	2 24	ISOGEHOIDES ELOR	, ,
CHEUMATOPSYCHE	24	ISOPARLA FULVA	10
HYDROPSYCHE OCCI	100	PTER MARCELLA BA	2
SYMPHITOPS COCKE		TARIHOLIMA PACIS	22
SYMPHITOPS SLOSS	2	CHEUTETOPSYCHE	26
HYDROPTILA SP.	2) 4	HYDROPSYCHE OCCI	1; 6;
PARARGYRACTIS SP	2	SYMPHITOPS COCKE	10
OPTIOSERVUS SPP.	2	SYMPHITOP LOSS	6
ZAITZEVIA PARVUL	6	HYDROPTILA SP.	16
HICROTENDIPES SP	20	PSYCHONYIA FLAVI	16
DIAMESA SP. B	Ц	PARARGYRACTIS SP	U
CRICOTOPUS SP. B	12	OREODYTES SCITIL	2
EUKIEFFERIELLA A	6	OPTIOSERVUS SPP.	6
EUKIEFFERIELLA B	1 පි	ZAITZEVIA PARVUL	¿.
EUKIEFFERIELLA E	2	HICROTENDIPES SP	1 σ
EUKIEFFERIELLA F	2	DIAMEDA SP. B	12
ORTHOCLADIUS (EU	8	CRICOTOPUS SP. B	30
ORTHOCLADIUS OBU	14	EUKIEFFERIELLA A	$\overline{\iota}_{i}$
WIEDEMANNIA SP.	4	EUKIEFFERIELLA B	7‡
SIMULIUM SP.	82	EUKIEFFERIELLA E	2
STATE STATE	4.2	ORTHOCLADIUS (EU	10
		ORTHOCLADIUS HAL	2
		ORTHOCLADIUS OBU	32
		SIMULIUM SP.	8

Table 16. Continued

DARTIS TRICAUDAT MHITHROGEHA HAGE CAPMIA-GROUP SP. ALLOPERLA-GROUP PROSTOIA BESAMET TROPERLA FULVA TARBTOHEMA PACIF CHEUHATOPSYCHE HYDROPSYCHE OCCL SYMPHITOPS SLOSS HYDROPTILA SP. PRYCHOLYTA FLAVI OPTIOSERVUS SPP. LICROTENDIPES SP PARACLADOPE SP.C MIMESA SP. B CRICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA B ORTHOCLADIUS (EU ORTHOCLADIUS OBU TRISSOCLADIUS SP SIMULIUM SP.	84 4 64 8 2 4 70 164 2 10 6 18 6 2 4 6 12 4 2 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4	BACTIS TRICAUDAT EPHEMERELLA INFR RHITHROGENA HAGE CAPNIA-GROUP SP. ALLOPERLA-GROUP PROSTOIA BESAMET HESPEROPERLA PAC CULTUS PHATUS ISOGENOIDES BLON ISOPERLA FULVA PTERONARCELLA BA PTERONARCELLA BA PTERONARCYS CALI TAENIONESA PACIF ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYNPHITOPS COCKE HYDROPTILA SP. PSYCHOSYIA FLAVI OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROTENDIPES SP DIAMESA SP. B PAGASTIA SP. CRICOTOPUS SP. B EUKIEFFERIELLA B	216 110 12 10 10 10 10 10 10 10 10 10 10 10 10 10
TRISSOCLADIUS SP	2	PAGASTIA SP. CRICOTOPUS SP. B	2 80

5/A-53		5/B-53	
BAETIS TRICAUDAT	15 2	BAETIS TRICAUDAT	238
EPHEMERELLA INFR	96	EPHEMERELLA INET	1841
RHITHROGENA HAGE	38	RHITHROGENA HAGE	4 n 21
PARALEPTOPHL MEH	2	PARALEPTOPHL MENT	6
PARALEPTOPHL MEH CAPNIA-GROUP SP.	410	RHITHROGENA HAGE PARALEPTOPHL MEN AMELETUS VELOX CAPNIA-GROUP SP. ALLOPERLA-GROUP PROSTOIA BESAMET	2
PROSTOIA BESAMET CULTUS PILATUS	1()	CAPNIA-GROUP SP.	94
CULTUS PILATUS	2	ALLOPERLA-GROUP	2
ISOGENOIDES ELON	10	PROSTOIA BESAHET CULTUS PILATUS	2 11
ISOPERLA FULVA	36		
ISOPERLA QUINQUE	7	130PERCEA FOR (A.V.)	1 (
ISOPERLA QUINQUE PTERONARCELLA BA TAENIOBEBA PACIE	;)	ISOPERLA QUITTOUE Taento della 1920 F	. 1
TAENIOUEHA PACIE	36	TARILO IRTIA CONTR	76
CHEUMARADOVEHE	2	CHEUMATOPS - SHE	11
HYDROPSYCHE OCCL	8	HYDROPSYCHL OCCI HYDROPTILA SP.	
HYDROPTILA SP.	14	HYDROPTILA SP.	1
HYDROPSYCHE OCCI HYDROPTILA SP. PSYCHOMYIA FLAVI TANYTARSUS SP. B DIAMESA SP. B CRICOTOPUS SP. B	8	OPTIOSERVUS SPP.)
TANYTARSUS SP. B	2	CRICOTOPUS SP B	1 .
DIAMESA SP. B	6	EUKIEFFERIELLA B	ਹੁੰ
CRICOTOPUS SP. B	26	ORTHOCLADIUS (EU	
EUKIEFFERIELLA A	ő	EUKIEFFERIELLA B ORTHOCLADIUS (EU ORTHOCLADIUS B	5
EUKIEFFERIELLA A EUKIEFFERIELLA B EUKIEFFERIELLA E HETEROTRISSOCLAD	8	ORTHOCLADIUS OBU	11
EUKIEFFERIELLA E	74	SIMULTUH SP.	74
HETEROTRISSOCLAD	Σţ	OLIGOCHAETA	1.0 8.2
ORTHOCLADIUS (EU	14		
ORTHOCLADIUS B	4		
ORTHOCLADIUS MAL	2		
ORTHOCLADIUS OBU	20		
SIMULIUM SP.	6		

5:0-53		5/0-53	
		BAETIS TRICAUDAI	146
EPHERERELLA ENFR	90	EPHERERELLA INFR	134
THI THROGENA HAGE	28	RHITHROGENA HAGE	64
PARALEPTOPHL MEA	8	PARALEPTOPHL MEM	2
AHELETUS VELOX	2	AMELITUR VELOX	2
CAPHIA-GROUP SP.	88	CAPHEA-GROUP SP.	64
ALLOPERLA-GROUP	71	PROSTOTA BESAMET	71
PROSTOIA BESAMET	2	CULTUS PILATUS	8
CULTUS PILATUS	24	ISOPERLA FULVA	26
1SOGEMOIDES ELON	2	ISOPERLA QUINQUE	20
ISOPERLA FULVA	12	TAENIONEMA PACIF	52
ISOPERLA QUINQUE	34	CHEUMATOPSYCHE	2
SKWALA PARALLELA	2	HYDROPSYCHE OCCI	24
PTERONARCELLA BA	2		
PTERONARCELLA BA TAENTOMENA PACIF	42	OPTIOSERVUS SPP.	
CHEUMATOPSYCHE	10	CRICOTOPUS SP. B	18
HYDROPHACHE OCCI	38	EUKTEFFERTELLA B	18
SYMPHITOPS COCKE	7	ORTHOGLADIUS GIU	
AYDROPTILA SP.	1()	ORTHOCLADAUS B	
PSYCHOMYIA FLAVI	2	ORTHOCLADIUS OBU	1.74
HYDROPTILA SP. PSYCHOMYIA FLAVE ZAITZEVIA PARVUL DIAMESA SP. B	71	SIMULTUH SP.	2
DIAMESA SP. B	6		
PAGASTIA SP. CRICOTOPUS SP. B	2		
CRICOTOPUS SP. B	45		
MUKIEFFERIELLA A			
EUKIEFF IELLA B	21		
HETEROTRISSOCLAD	2		
ORTHOCLADIUS (EU	12		
ORTHOCLADIUS B	6		
ORTHOCLADIUS MAL	4		
OATHOCLADIUS OBU	4 42		
ABLABESMYIA SP.	2		
DOLICHOPODIDAE	2		
SIMULIUM SP. Oligochaeta	12		
OLIGOCHAETA	11		

6. A-53		6/1-53	
BAETIS TRICAUDAT	32	BAETIS TRIVAUDAT	
EPHEMERELLA INFR	270	EPHESERELLA JAFA	264
HEPTAGENIA SOLIT	4	RHITHROGENA HAGE	20
HEPTAGENIA SOLIT RHITHROGENA HAGE	10	AMELETUS VELOX	16
AMELETUS VELOX	6	CAPNIA-GROUP SP.	10
	74	PROSTOLA BESAMET	, ,
CULTUS PILATUS	Ġ	CULTUS PILATUS	1.71
ISOPERLA FULVA	16	ISOGENO IDES ELON	, ,
TAENIONEHA PACIF	, ,	ISOPERLA FULVA	*
ARCTOPSYCHE GRAN	4	IMOPERIA OUTHOUS	
CHEUITATOPBYCHE	HH	TALNIOHEMA PACIE	ŧ.
HYDROPHY CHE OCCI	, 'O	CHEUL A POESSY CHE	Ext
SYMPHITOPS COCKE	16	HYLROLLYCHE OCCI	
SYMPHITOPS SLOSS	2	SYFPHITOPS COCKE	
HYDROPTILA SP.	10	HYDROPTILA SP.	411
HYDROPTILA SP. OEGETIS SP. A	10 10 8	ORCETTS BP. A	. ()
PSYCHOMYIA FLAVI	118	PBYCHOMYIF FLAVI	4.2
PARARGYRACTIS SP		PARARGYRACTIS SP	12
OPTIOSERVUS SPP.	2	OPTICSERVUS SPP.	Li
ZAITZEVIA PARVUL	12	ZAITZEVIA PARVUL	1)
MICROTENDIPES SP	14	MICROTENDIPES SP	1.6
TANYTARSUS SP. B	10	PHAEHOPSECTRA SP	3
PAGASTIA SP.	2	TANYTARSUS SP. B	12
CRICOTOPUS SP. B	30	DIAMESA SP. B	2
EUKIEFFERIELLA A	6	PAGASTIA SP.	10
EUKIEFFERIELLA E	2	CRICOTOPUS SP. B	25
ORTHOCLADIUS (EU	24	EUKIEFFERIELLA A	21
ORTHOCLADIUS B	12	EUKIEFFERJELLA B	6
ORTHOCLADIUS MAL	2	EUKIEFFERIELLA E	4
ORTHOCLADIUS OJU	18	ORTHOCLADIUS (EU	1:
CHELIFERA SP.	2	ORTHOCLADIUS B	1,)
SIMULIUM SP.	2	ORTHOCLADIUS OBU	ار

Table 16. Continued

8/A-53		8/8-53	
BARTIS TRICAUDAT	84	BAETTS TRICAUDAT	11.6
EPHEMERELLA INFR	836	EPHEGERELLA INFR	41,20
RHITHROGENA HAGE	48	EPEORUS ALBERTAE	1
PARALEPTOPHL MEM	14	RHITHROGENA HAGE	ਰੋ
AMELETUS VELOX	12	AMELETUS VELOX	74
PROSTOIA BESAHET	16	CAPNIA-GROUP SP.	4
CULTUS PILATUS	20	CULTUS PILATUS	1.2
ISOPERLA FULVA	56	ISOPERLA FULVA	,
ISOPERLA QUINQUE	28	ISOPERLA QUINQUE	1.2
SKWALA PARALLELA	14	PTERONARCYS CALI	I_{π}
TAENIONEMA PACIF	20	ARCTOP YCHE GRAN	
ARCTOPSYCHE GRAD	8	CHEUN TOTAL	
CHEUMATOPSYCHE	36	HYDROP: Ye OUCI	9.7
HYDROPSYCHE OCCI	92	SYMPHITOPS COULT	:,2
SYMPHITOPS COCKE	48	HYDROPTILA SP.	4
SYMPHITOPS SLOSS	4	PSYCHOMYIA FLAVI	1;
HYDROPTILA SP.	16	RHYACOPHILA BIFI	21
PSYCHOMYIA FLAVI	12	PARARGYRACTIS SP	16
OPTIOSERVUS SPP.	12	OPTIOSARVUS SPP.	• 1
MICROTENDIPES SP	24	MICROPSECTE SP.A	
TANYTARSUS SP. B	20	HICHOTEADIPES SP	32
DIAMESA SP. B	24	POLYFEDILUM SP.A	4.7
PAGASTIA SP.	8	TANYTARSUS SP. 3	I_{\downarrow}
BRILLIA SP.	71	DIAMESA SP. B	1
CRICOTOPUS SP. B	450	CRICOTOPUS SP. B	150
EUKIEFFERIELLA A	60	EUKIEFFERIELLA A	32
EUKIEFFERIELLA B	60	EUKIEFFERLELLA D	ċυ
EUKIEFFERILLLA E	11	ORTHOCLADIUS (EU	14.11
ORTHOCLADIUS (EU	მ0	ORTHOCLADIUS B	46
ORTHOCLADIUS B	116	ORTHOCLADIUS MAL	12
ORTHOCLADIUS MAL	40	ORTHOCLADIUS OBU	32
ORTHOCLADIUS OBU	4 4	WIEDEMANNIA SP.	L_{\dagger}
ABLABESMYIA SP.	11	PACIFASTICUS SP.	11
SIMULIUM SP.	12	OLIGOCHAETA	112
OLIGOCHAETA	140	OLIGOCHAETA LUMB	12
OLIGOCHAETA LUMB	8		

BAETIS TRICAUDAT EPHEMERELLA INFR RMITHROGENA HAGE AMELETUS VELOX PROSTOIA BESAMET CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA FULVA ISOPERLA QUINQUE PTERONARCELLA BA TAEHIONEMA PACIF ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI STHPHITOPS COCKE HYDROPSYCHE OCCI STHPHITOPS OCCI STHPHIT	36 588 44 84 84 10 44 10 44 10 44 10 44 10 44 10 44 10 44 11 44 11 44 11 44 11 44 11 44 11 44 11 44 11 44 11 44 11 44 11 44 11 11	BACTIS TRICAUDAT EPHEMERELLA INFR RHITHROGENA HAGE AMELETUS VELOX CAPNIA-GROUP SP. PROSTOIA BESAMET CULTUS PILATUS ISOPERLA FULVA ISOPERLA QUINQUE TAENIONEMA PACIF ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. OECETIS SP. A PSYCHOMYIA FLAVI PARARGYRACTIS SP ZAITMEVIA PARVUL MICROTENDEPES SP PHAEMOPSECTRA SP POLYPEDILUM SP.A TANYTARSUS SP. B CRICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA E HETEROTRISSOCLAD ORTHOCLADIUS HAL ORTHOCLADIUS BOTHOCLADIUS OBU ABLABESMYIA SP. SIMULIUM SP. OLIGOCHAETA LUMB	144 1616 1616 1616 1616 1616 1616 1616
--	---	--	---

9/A-53		9/B - 53	
BAETIS TRICAUDAT	82	BAETIS TRICAUDAT)()
EPHEMERELLA INFR	176	EPHEMERELLA TAFR	7.
HEPTAGENIA SOLIT	2	HEPTAGENIA SOLIT	4
RHITHROGENA HAGE	26	RHITHROGENA HAGE	10
PARALEPTOPHL MEM		PARALEPTOPHL HEH	Ü
AMELETUS VELOX	11	CAPNIA-GROUP SP.	100
CAPNIA-GROUP SP.	96	ISOGEHOIDES ELON	A.
PROSTOIA BESAMET	11	ESOPERIA FULVA	()
CULTUS PHLATUS	4	ISOPERLA QUINQUE	()
LOGENOIDES ELON	И В	SKWALA PARALLELA	21
ISOPERLA FULVA	32	TAENIONEMA PACIF	
ISOPERLA QUINQUE	12	CHEUMATOPS/CHE	>;
TAENIONEMA PACIF	10	HYDROPSYCHE CCCI	
CHEUMATOPSYCHE	26	HYDROPTIL. : '.	· ;
HYDROPSYCHE OCCI	12	OECETIS SI. A	10
SYMPHITOPS COCKE	LĮ	PSYCHOMYIA FLAVI	15
HYDROPTILA SP.	40	MICROTENDIPES SP	,
PSYCHOMYIA FLAVI	24	TANYTTASUS SP. D	14
ZAITZEVIA PARVUL	2	DIANESA SP. B	
MICROTENDIPES SP	2	CRICOTOPUS SP. 3	63
	102	EUKIEPFERIELLA A	f r
DIAMESA SP. B	16	EUKIELFERIELLA D	1)
CRICOTOPUS SP. B	143	EUKI FFERINLA L	
EUKIEFFERIELLA A	2	ORTHOGEADIUS .UU	
EUKIEFFERIELLA B	14	ORTHOCLADIUS B	,
ORTHOCLADIUS (EU	66	ORTHOGEADIUS OBU	j / ;
ORTHOCLADIUS B	O)	STAULIME SP.	1
ORTHOCLADIUS MAL	11		
ORTHOCLADIUS OBU	30		
ABLABESHYIA SP.	, , , , , , , , , , , , , , , , , , ,		

TSOPERLA FULVA TSOPERLA QUINQUE TAENIONEMA PACIF CHEUMATOPSYCHE BYPROPSYCHE OCCI HYPROPTILA SP. HIZE HYDROPSYCHE OCCI HYPROPTILA SP. HIZE HYDROPSYCHE OCCI HYPROPTILA FLAVI HIGHORITA FLAVI HIGHORITA FLAVI HIGHORITA PARVUL HIGHORITA SP. HIZE HYDROPSYCHE OCCI HYPROPTILA SP. HIZE HYDROPSYCHE OCCI HYPROPTILA SP. HIZE HYPROPTILA SP. HICHORITA FLAVI HICHORITA FLAVI HICHORITA SP. HIZE HYPROPTILA SP. HIZE HYPROPSYCHE HYPROPSYCH HYPROPSYCHE HYPROPSYCH HYPROPSYCHE HYPROPSYCH HYPRO	TAENIONEMA PACIF CHEUMATOPSYCHE HYDROPSYCHE OCCI HYDROPTILA SP. PEYCHOMYLA FLAVI ZAITZEVIA PARVUL HICROTENDIPES SP TANYTARSUS SP. B DIAHESA SP. B CRICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA B ORTHOCLADIUS B ORTHOCLADIUS OBU	16 42 8 14 42 16 2 6 136 50 32 8 18 134 12 62	ISOPERLA QUINQUE SKWALA PARALLELA PTERONARCELLA BA CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. OECETIS SP. A PSYCHOMYIA FLAVI OREODYTES SCITIL OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROTENDIPES SP PARACLADOPE SP.B TANYTARSUS SP. B CRICOTOPUS SP. B CRICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA B HETEROTRISSOCLAD ORTHOCLADIUS B ORTHOCLADIUS OBU	4 2 4 13 22 4 128 26 30 2 2 4 4 2 13 8 12 30 4 2 30 2 30 2 4 2 4 2 3 6 3 6 3 6 3 6 3 6 4 2 6 3 6 4 2 6 3 6 4 6 6 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
--	--	--	--	--

EPEORUS ALBERTAE RHTTHROGENA HAGE PARALEPTOPHL HEN CAPHEA GROUP ME, PROMTOTA BEMARIET GULTHS PHLATUS ESOPERLA PULVA EMOPERLA QUELQUE PTERONARCELLA PA TAENTONEHA PACTE AECTOPSYCHE GRAH CHEUHAFOPSYCHE	8 720 32 52 4 4 7 16 72 4 16 48	10/B-53 BAETTS TRICAUDAT CAUDATELLA HYSTR EPHEMERELLA INFR PARALEPTOPHI, MET CAPRIA-GROUP SP. PROSTOIA METABULO CULTUS PHIATUS LISOCEROIDES TILOU LISOPIALA GUINOUS PTERONARCELLA BA TAERIOLES TACTI PROTOTTIL SI	7) 1.000 1.1 24 34 31 31 41 41 41 41 41 41 41 41 41 41 41 41 41
CHEUMATOPSYCHE	16	PROTOFFILE BY	7,1(1)
HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. OECETIS SP. A	48 12 24	ARCTOPSICAL GRAN CHEUMATOPSYCHE NYDROPSYCHE OCCI	4 (47) 200
OECETIS SP. A PARARGYRACTIS SP	14 14	SYMPHITOPS COCKE HYDROPTILA SP.	67.
OPTIOSERVUS SPP. ZAITZEVIA PARVUL	60 24	ZUMATRICHIA NOTO PSYCHOMYIA FLAVI	4.
POLYPEDILUM SP.A TANYTARSUS SP. B	4 8	PARARGYRACTIS SP OPTIO ERVUS SPP.	4 156
DIAMESA SP. B PAGASTIA SP.	16 12	ZATTZEVIA + ARVUL ATHERIA - VARIAGAT	32
CRICOTOPUS SP. B EUKIEFFERIELLA A	12 88 28	MICROPSECTE SP.A TANYTARSUS SP. B	64
EUKIEFFERIELLA B EUKIEFFERIELLA E	52 60	DIAMESA SP. B PAGASTIA SP.	.
ORTHOCLADIUS (EU ORTHOCLADIUS B	48 12	CRICOTOPUS SP. B EUKIEFFERIELLA A	52
ORTHOCLADIUS MAL	48 28	EUKIEFFERIELLA B EUKIEFFERIELLA E	9.0
THIENEMANIELL SP DOLICHOPODIDAE	ц 8 12	EUKTEFFERIELLA F ORTHOCLADIUS (EU	16 20 1
WIEDEMANNIA SP. SIMULIUM SP. ANTOCHA SP.	12 556 12	ORTHOCLADIUS OBU	1 0 0 20
		CHELIFERA SP. WIEDEMANNIA SP. SIMULIUM SP. ANTOCHA SP. TURBELLARI	и ц 320

BAETIS TRICAUDAT DRUNELLA GRANDIS EPHEMERELLA INFR HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL NEM CAPNIA-GROUP SP. CULTUS PILATUS TSOGENOIDES ELON TSOPERLA FULVA TAENIONEMA PACIF CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. ZUMATRICHIA NOTO PARARGYRACTIS SP OPTIOSERVUS SPP. ZAITTEVIA PARVUL ATHERIX VARIEGAT TANYTARSUS SP. B DIAMESA SP. B PAGASTIA SP. C.ICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA B EUKIEFFERIELLA E ORTHOCLADIUS B ORTHOCLADIUS B ORTHOCLADIUS OBU ABLABESHYIA SP. MINDEHANNIA SP. SIMULIUM SP. ANTOCHA SP. OLIGOCHAETA LUMB	68 420 436 40 488 644 894 1242 16 41 16 16 16 16 18 16 44 18 18 18 18 18 18 18 18 18 18 18 18 18	BAETIS TRICAUDAT EPHEMERELLA INFR EPEORUS ALBERTAE RHITHROGENA HAGE PARALEPTOPHL MEM CAPNIA-GROUP SP. PROSTOIA BESAMET CLAASSENI SABULO HESPEROPERLA PAC CULTUS PILATUS ISOPERLA FULVA ISOPERLA QUINQUE SKWALA PARALLELA PTERONARCELLA BA TAENIONEMA PACIF CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. LEPIDOSTOMA SP.A PSYCHOMYIA FLAVI PARARGYRACTIS SP OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT HICROPSECTR SP.A TANYTARSUS SP. B PAGASTIA SP. CRICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA E EUKIEFFERIELLA E EUKIEFFERIELLA E EUKIEFFERIELLA F ORTHOCLADIUS (EU ORTHOCLADIUS OBU TRISSOCLADIUS SP SYNORTHOCLADIUS WIEDEMANNIA SP. SIMULIUM SP. ANTOCHA SP.	168 168 168 168 168 168 168 168 168 168
--	---	---	--

Table 16. Continued		11/D 62	
BAETIS TRICAUDAT EPHEMERCLLA INFR RHITHROGENA HAGE PARALEPTOPHL MEM ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA QUINQUE TAENIOMENA PACIF CHEUHATOPEYCHE HYDROPSYCHE OGCI MYDROPTILA SP. OPTIOSERVUS SPP. PHAENOPSECTRA SP TANYTARSUS SP. B DIAMESA SP. B CRICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA B EUKIEFFERIELLA E ORTHOCLADIUS (EU ORTHOCLADIUS MAL ORTHOCLADIUS OBU SIMULIUM SP.	104 143 34 4 8 120 8 124 168 4 8 108 4 168 4 8 108 148 168 168 168 168 168 168 168 168 168 16	BARTIS TRICAUDAT EPHEMERELLA INFR RHITHROGENA HAGE PARALEPTOPIL HER CAPATA-GROUP SP. PROSTOTA BUSALET CULTUL PILATUS LEOF ALT FULLY ISOPERLA QUINQUE PTEROMARCELLA BA TAENTOMERIA PACTE CHEUELTOTT TOR HYPROTTYCHE OCCI HYPROTTYCHE OCCI HYPROTTILA SP. PARACLADOPE SP.B TANYTARSUS AT A B PAGASTIA SP. CRICO POPUS SP. B EUKIEFFERIELLA E HETEROTRISSOCLAD ORTHOCLADIUS (EU ORTHOCLADIUS MAL ORTHOCLADIUS OBU SIMULIUM SP.	404 260 20 3 124 12 12 12 13 14 12 14 13 16 12 18 18 18 18 18
BAETIS TRICAUDAT EPHEMERELLA INFR HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL MEM ALLOPERLA-GROUP CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA GUINQUE PTERONARCELLA BA TAENIONEMA PACIF CHEUMATOPSYCHE HYDROPSYCHE OCCI HYDROPTILA SP. PARACLAPOPE SP.B TANYTARSUS SP. B DIAMESA SP. B PAGASTIA SP. BRILLIA SP. CRICOTOPUS SP. B EUKIEFFERIELLA B EUKIEFFERIELLA E ORTHOCLADIUS (EU ORTHOCLADIUS MAL ORTHOCLADIUS OBU WIEDEMANNIA SP. SIMULIUM SP.	312 276 4 104 4 16 8 8 16 12 8 8 32 13 12 8 8 8 8 13 13 13 13 14 8 15 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18	BAETIS TRICAUDAT EPHEMERELLA INFR RHITHROGENA HAGE PARALEPTOPHL MEM CAPNIA-GROUP SP. ISOPERLA FULVA ISOPERLA QUIUQUE TAENIONEMA PACIF HYDROPSYCHE OCCI HYDROPTILA SP. PHAENOPSECTRA SP TANYTARSUS SP. B DIAMESA SP. B CRICOTOPUS SP. B EUKIEFFERTELLA L ORTHOGLADIUS OBU SIMULIUM SP.	300 216 4 4 126 24 4 126 24 8 4 102 136 136

PARACLADOPE SP.B	2 112 2 12 8 2 14 8 14 18 18 18 18 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	BAETIS TRICAUDAT EPHEMERELLA INFR RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS VELOX CAPNIA-GROUP SP. CLAASSENI SABULO CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA QUINQUE SKWALA PARALLELA PTERONARCELLA BA TAENIONEMA PACIF CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. PSYCHOMYTA FLAVI OREODYTES SCITIL ZAITZEVIA PARVUL MICROTENDIPES SP PARACLADOPE SP.B PHAENOPSECTRA SP TANYTARSUS SP. B CRICOTOPUS SP. B CRICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA B HETEROTRISSOCLAD ORTHOCLADIUS B ORTHOCLADIUS OBU SIMULIUM SP. OLIGOCHAETA	
------------------	---	--	--

PARALEPTOPIIL MEH CAPNIA-GROUP SP. CULTUS PILATUS ISOPERLA FULVA ISOPERLA QUINQUE PTERONARCELLA BA TAENIONENA PACIF	196 17 4 10 14 4 6 2 0 2 2 2 4 2 4 8 4	RHITHROGENA HAGE PARALEPTOPHL HEH CAPRIA-GROUP SPI ALLOPERLA-GROUP CULTUS PILATUS ISOGEROIDES ELON ISOPERLA FULVA ISOPERLA QUINQUE PTERONARCELLA DA TAENTONEHA PACTE BRACHOGENTRUS OC CHEURITOTO CHE HYDROPSYCHOCCI HYDROPTILA CPI OPTIOSERVUS SPPI ZAITENVIA PARVUL	2012 12014 04531137 0
HYDROPSYCHE OCCI	26	TAENTONEHA FACTE	J
SYMPHITOPS SLOSS	2	BRACHS GENTRUS OC	
HYDROPTILA SP.	$\eta\eta$		
OECUTIS SP. A	2		
OPTIOSERVUS SPP.	4	HYDROPTILA SP.	١٠ز
MICROTENDIPES SP	ડે		6
PARACLADOPE SP.B	4		
PHAENOPSECTRA SP	71	HICROCLADIPES SP	
LANY LARSILS SI' 13	O	PHAEMOPSECTRA SP	Ð
DIAMESA SP. B	16		10
DIAMESA SP. B PAGASTIA SP.	4	DIAMESA SP. B	3
CRICOTOPUS SP. B	56	ragnolia or.	O .
EUKIEFFERIELLA A	8	CHICOTOLOGO SI • D	1 '
EUKIEFFERIELLA B	16	EUKIEFFERILLLA A	<u>'</u> I
EUKIEFFERIELLA E	6	EUKIEFFEHIELLA B	16
ORTHOCLADIUS (EU	40	EUKIEFFERIELLA E	2
ORTHOCLADIUS B	16	ORTHOCLADIUS EU	20
ORTHOCLADIUS MAL	12		12
ORTHOCLADIUS OBU	196		12
ABLABESMYIA SP.	4	ORTHOCLADIUS OBU	203
SIMULIUM SP.	4 8 4	ABLABESMYIA Sr.	2
HEXATOMA SP.	4	HEXATOMA SP.	21

Table 10. Concluded			
DAZA SA BAETIS TRICAUDAT CAENIS SIMULANS EPHEMERELLA INFR RHITHROGENA HAGE PARALEPTOPHL MEM CAPNIA-GROUP SP. ALLOPERLA-GROUP LEOGENOTDES ELON LEOPERLA FULVA FAENTONEMA PACIF HYDROPTILA SP. OECETIS SP. A EAITZEVIA PARVUL HICROTENDIPES SP PARACLADOPE SP. B TANYTARSUS SP. B EIGHESA SP. B CRICOTOPUS SP. B EUKIEFFERTELLA B EUKIEFFERTELLA E HETEROTRISSOCLAD ORTHOCLADIUS (EU ORTHOCLADIUS MAL ORTHOCLADIUS OBU WIEDEMANNIA SP.	28 48000 418 442 44120 4412 4414 4414 4414 4414 4414	BAETIS TRICAUDAT EPHEMERELLA INFR RHITHROGENA HAGE CAPNIA-GROUP SP. SKWALA PARALLELA TAENIONEMA PACIF HYDROPSYCHE OCCI HYDROPTILA SP. MICROTENDIPES SP. B PARATANYTARSUS TANYTARSUS TANYTARSUS SP. B CRICOTOPUS SP. B CRICOTOPUS SP. B HETEROTRISSOCLAD ORTHOCLADIUS (EU ORTHOCLADIUS MAL ORTHOCLADIUS OBU WIEDEMANNIA SP. SIMULIUH SP OLIGOCHAETA	76 20 20 4 4 12 4 12 4 12 4 12 4 18 8 9 4 8 8
DAETIS TRICAUDAT CHENIS SIMULANS EPHEMERELLA INFR RHITHROGENA HAGE CAPNIA-GROUP SP. HESPEROPERLA PAC CULTUS PILATUS ISOPERLA GUINQUE SEWALA PARALLELA TAENIONEMA PACIF CHEUMATOPSYCHE HYDROPTILA SP. OECETIS SP. A HICROTENDIPES SP TAMYTARSUS SP. B DIAMESA SP. B CRICOTOPHS SP. B EUKIEFFERIELLA E ORTHOCLADIUS B ORTHOCLADIUS B ORTHOCLADIUS OBU SIMULTUM SP.	4 4 9 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1	BAETIS TRICAUDAT EPHEMERELLA INFR RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS VELOX CAPNIA-GROUP SP. CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA QUINQUE SKWALA PARALLELA TAENIONEMA PACIF HYDROPTILA SP. PSYCHOMYIA FLAVI OREODYTES SCITIL OPTIOSERVUS SPP. MICROTENDIPES SP PHAENOPSECTRA SP TANYTARSUS SP. B CRICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA B HETEROTRISOCLAD ORTHOCLADIUS B ORTHOCLADIUS OBU SIMULIUM SP.	20 84 4 4 312 8 14 4 20 21 4 4 8 4 12 8 4 8 16 16 16 16 16 16 16 16 16 16 16 16 16

Table 16. Continued			
CHEUNATOPSYCHE OCCI HYDROPSYCHE OCCI HYDROPTILA SP. OECETIS SP. A OPTIOSERVUS SPP. PHAENOPSECTRA SP TANYTARSUS SP. B DIAMESA SP. B PAGASTIA SP. CRICOTOPUS SP. B EUKIEFFERIELLA E ORTHOCLADIUS (EU ORTHOCLADIUS OBU SIMULIUM SP.	144 72 12 52 12 8 12 8 12 8 12 8 12 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	RHITHROGENA HAGE PARALEPTOPHL MEN AMELETUS VELOX CAPNTA-GROUP SP. ALLOPERLA-GROUP CULTUS PILATES INOGEWOIDES ELON ISOPERLA QUINQUE SKWALA PARALLELA PTERONARCELLA DA TAENIONEMA PACIF CHEUMATOPSYCHE HYDROPSYCHE OCCI HYDROPTILA SP. OPTIOSERVUS SPP. ZAITZEVIA PARVUL PARACLADOPE SP.B TANYTARSUS SP. B CRICOTOPUS SP. B EUKIEFFERIELLA A ORTHOCLADIUS GEU ORTHOCLADIUS OBU ABLABESMYIA SP.	308 128 55 127 127 127 147 120 147 120 147 120 147 120 147 147 147 147 147 147 147 147 147 147
BAETIS TRICAUDAT EPHEMERELLA INFR RUITHROGENA HAGE PARALEPTOPHL NEM AMELETUS VELOX CAPNIA-GROUP SP. CLAASSENI SABULO CULTUS PILATUS ISOPERLA FULVA ISOPERLA QUINQUE TAENIONEMA PACIF CHEUMATOPSYCHE HYDROPSYCHE OCCI HYDROPTILA SP. OECETIS SP. A ZAITZEVIA PARVUL PARACLADOPE SP.B PHAENOPSECTRA SP TANYTARSUS SP. B CRICOTOPUS SP. B EUKIEFFERIELLA E HETEROTRISSOCLAD ORTHOCLADIUS B ORTHOCLADIUS OBU OLIGOCHAETA	124 124 64 32 4 4 20 12 8 21 8 23 6 4 13 6 4 8 3 6 4 8 8 9 9 4	SIMULIUM SP. HEXATOMA SP. OLIGOCHAETA 1 D-53 PAETIS TRICAUDAT EPHEMERELLA INFR RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS VELOX CAPNIA-GROUP SP. ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA FULVA ISOPERLA QUINQUE SKWALA PARALLELA TAENIONEMA PACIF HYDROPTILA SP. ZAITZEVIA PARVUL PARACLADOPE SP.B PHAENOPSECTRA SP TANYTARSUS SP. B CRICOTOPUS SP. B EUKIEFFERIELLA B ORTHOCLADIUS (EU ORTHOCLADIUS OBU	54

19/A-53		19/8-53	
BAETIS TRICAUDAT	140	SAETIS TRICAUDAT	200
	130	EPHEMERELLA INFR	
HEPTAGUNIA SOLIT	8	HEPTAGENIA SOLIT	14
RHITHROGENA HAGE	16	RHITHROGENA HAGL	3
PARALEPTOPHL MEH	24	PARALEPTOPHL MEM	12
PROSTOIA BESAMET	14	CAPHIA-GROUP SP.	16
CULTUS PILATUS	4	PROSTOLA BESAMET	8
EGOPURLA FULVA	14	CULTUS PILATUS	11
ISOPERLA QUINQUE	16	ISOGENOIDES ELON	24
TAENIONENA PACIF	14	ISOPERLA FULVA	16
CHEUMATOPSYCHE	8	ISOPERLA QUINQUE	8
HYDROPSYCHE OCCI	8	TAENIONEMA PACIF	8
HYDROPTILA SP.	48	CHEUMATOPSYCHE	λļ
PSYCHOMYIA FLAVI	8	HYDROPTILA SP.	80
POLYPEDILUM SP.A	24	PSYCHOMYIA FLAVI	16
DIAMESA SP. B	76	DIAMESA SP. B	52
CRICOTOPUS SP. B		CRICOTOPUS SP. B	144
EUKIEFFFRIELLA A	8	EUKIEFFERIELLA B	32
EUKIEFFERIELLA B	76	EUKIEFFERIELLA E	8
ORTHOCLADIUS (EU	52	ORTHOCLADIUS (EU	132
ORTHOCLADIUS MAL	24	ORTHOCLADIUS MAL	56
ORTHOCLADIUS OBU	48	ORTHOCLADIUS OBU	40
ABLABESMYIA SP.	11		
SIMULIUM SP.	4		

DAETIS TRICAUDAT EPHEMERELLA INFR RHITHROGENA HAGE AMELETUS VELOX CAPNIA-GROUP SP. CULTUS PILATUS ISOPERLA QUINQUE CHEUMATOPSYCHE TYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. PSYCHOMYIA FLAVI DIAMESA SP. B CRICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA B ORTHOCLADIUS (EU ORTHOCLADIUS MAL ORTHOCLADIUS OBU	84 68 16 4 16 8 4 8 12 88 4 14 76 24 76 24 76 4 32 63	19/D-53 BAETIS TRICAUDAT EPHEMERELLA INFR HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS VELOX CAPNIA-GROUP SP. PROSTOIA BESAMET CULTUS PILATUS ISOPERLA GUINQUE TAENIONEMA PACIF CHEUMATOPSYCHE OCCI HYDROPSYCHE OCCI HYDROPTILA SP. CERAGLEA SP. PSYCHOMYIA FLAVI ZAITZEVIA PARVUL TANYTAKSUS SP. B CRICOTOPUS SP. B EUKIEFFERIELLA B ORTHOCLADIUS CEU	12 4 12 32 16 4 64 64 5
		CRICOTOPUS SP. 5 EUKIEFFERIELLA B ORTHOCLADIUS (EU ORTHOCLADIUS MAL ORTHOCLADIUS OBU	48 76 20 36
		SIMULIUM SP.	3

21/A-53		21/3-50	
BARTIS TRICAUDAT	40	BAETIS TRICAUDAT	40
DRUMELLA GRAUDIS	1.1	EPHELERELLA INFK	9.J
EPHEMERELLA INFR	912	RHITHROGEHA HAGE	1
PROSTOIA DEBAHET	Ŝ	PARALEP FORHL ME.I	
CLAASSENT SABULC	41	ARELETUS VELOX	1
CULTUS PILATUS	11	PROSTOIA BESALET	1)
ISOGENOIDES ELON	24	CLAASSENT SABULO	1
PTERONARCYS CALI	11	COLTUIT PILATUIT	21
TAENTONEHA PACIE	8	EMOTERLA FOLVA	1
ARCTOPSYCHE GRAN	11	PTEROLARCY: CALL	1
CHEUHATOPSYCHE	16	TAENTONEHA PACTE	11
HYDROPSYCHE OCCI	()	ARCTOR SOH . MA	1 <
SYMPHITOPS COCKE	1.:	CHEULTO LIFE HE	
HYDROPELLA SP.	1.2.1	HYDROL COST	
PSYCHOHYIA FLAVI	1.7	SYMPHERON OF SE	
ZAITZEVIA PARVUL	8	SYMPHITOPS JUCKS	
MICROTENDIPES SP	16	HYDROPTILA SP.	1 - 1
PHAENOPSECTRA SP	24	CERACULA DP.	1
PAGASTIA SP.	20	PSYCHO IYIA FLAVI	16
CRICOTOPUS SP. B	14 14	ZAITZEVIA PARVUL	<u>()</u>
EUKIEFFERIELLA B	4	MICROTENDIPES SP	1.0
EUKIEFFERIELLA E	14	PHAELOPSECT SP.1	
ORTHOCLADIUS (EU	32	TANEL	
ORTHOCLADIUS MAL	24	PAGAS IN S	
ORTHOCLADIUS OBU	50	CRICOT PET LT. 3	0
TRISSOCLADIUS SP	Ö	CRICOTORUE SP C	1
OLIGOCHAETA	14	ORTHOCLADIUS COU	i
OLIGOCHAETA LUHB	3	ORTHOGRAPHUS II	11
TURBSELARI	.)	ORTHOCLAPTUD BOLL	1
		ORTHOGRAPHUS ORU	1 4
		TRISHOULADIUS SP	1.4
		UULLAARI	1

BAETIS TRICAUDAT CAENIS SIMULANS EPHEMERELLA INFR RHITHROGENA HAGE STENONEHA SP. TAENIOHEHA PACIF AESHHA SP. DUBIRAPHIA SP. MICROPSECTR SP.A PHAENOPSECT SP.B DIAMESA SP. B PAGASTIA SP. CRICOTOPUS SP. B ORTHOCLADIUS G ORTHOCLADIUS G ORTHOCLADIUS OBU SYNORTHOCLADIUS SP SIMULIUM SP. HYALELLA AZTECA GYRAULUS SP. OLIGOCHAETA	24 4 4 8 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BAETIS TRICAUDAT CAENIS SIMULANS EPHEMERELLA INFR RHITHROGENA HAGE STEHOMEHA SP. CAPHIA-GROUP SP. TAENIOHEHA PACIF AESHNA SP. HYDROPTILA SP. MYSTACIDES SP. DUBIRAPHIA SP. PHAENOMSECT SP.S DIAMERA SP. PAGASTLA DE. POTTHAMELA DE. CRICOTOPHS SP. D ORTHOCHADIUS GONTHOCHADIUS GONTHOCHADIUS OBS SYNORTHOCHADIUS TRISSOCIADIUS SP. SIMUL G ST. HYALELLA ALTECA GYRAUF WORLD	8 2 0 4 4 4 4 3 1 6 4 4 6 4 7 7 7 7 7 8 2 6 5 5 1 2 1 3 5 1 3 5 1 2 1 3 5 1 3
BAETIS TRICAUDAT CAENIS SIMULANS RHITHROGENA HAGE TAENIONEMA PACIF HYDROPTILA SP. POLYCENTROPUS SP TANYTARSUS SP. B DIAMESA SP. B PAGASTIA SP. CRICOTOPUS SP. B ORTHOCLADIUS (EU ORTHOCLADIUS G ORTHOCLADIUS MIG ORTHOCLADIUS OBU SYNORTHOCLADIUS SIMULIUM SP. HYALELLA AZTECA GYRAULUS SP. PHYSA SP.	8 4 8 4 12 16 40 12 4 30 18 16 16 15 4 12	23/D-53 BAETIS TRICAUDAT CAENIS SINULASS RHTTHHOGENA HAGG TAENIOUMHA PACH HYDROTTILA SP. TRIAENODES SP. MICROPSECTR SP.A MICROPSECTR SP.C DIAMESA SP. B PAGASTIA SP. CORYNONEURA SP. CRICOTOPUS SP. B ORTHOCLADIUS (EU ORTHOCLADIUS G ORTHOCLADIUS OBU SYNORTHOCLADIUS SP. SIMULIUS SP. HYALELLA AZTEGA	10 3 3 4 12 4 12 4 12 4 28 14 36 12 12 12 12 14 12 16 21 18 18 18 18 18 18 18 18 18 18 18 18 18

 η

GYRAULUS SP.

1.4

OLIGOCHAETA

Table 16. Continued			
BAETIS TRICAUDAT EPHENERELLA INFR HEPTATENIA SOLIT HHITHROGENA HAGE STENOMENA SP. ISOGENOIDES ELON CHEUNATOPSYCHE MYDPHITOPS COCKE HYDPHITOPS COCKE HYDPHITOPS COCKE HYDPHITOPS COCKE HYDPHITOPS COCKE HYDPHITOPS COCKE HYDPHITOPS SP. A HICROTENDIPES SP THAENOPSECTR SP. A HICROTENDIPES SP THAENOPSECTRA SP POLYPEDILUM SP. A DIMESA SP. B PAGASTIA SP. CRICOTOPUS SP. B EUKIEFFEAIELLA B EUKIEFFEAIELLA E ORTHOCLADIUS (EU ORTHOCLADIUS OBU TRISSOCLADIUS SP SYMORTHOCLADIUS SIMULIUM SP. FERRISSIA SP.	4 12 4 10 48 6 56 4 2 10 4 6 2 2 2 4 8 3 8 4 8 8 8 8 8 8 8	BAETIS TRIGAUDAT CAUDATELLA HYSTR EPHEMERALLA HYSTR EPHEMERALLA HAFR RHITHROGENA HAGE STENOHENA SP. PARALEPTOPHL HEM PROSTOLA BASALET TAEHTOHELIA PACIF CHEUMATOPSYCHE HYDROPTILA ST. PSYCHOMY LA FLAVI ZAITZEVIA PARVUL MICROPSECTR SP. A DIAMESA SP. B CRICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA B ORTHOCLADIUS (EU ORTHOCLADIUS OBU TRISSOCLADIUS SP SYNORTHOCLADIUS ABLABESHYIA SP. SIMULIUM SP. LYMNAEA SP. OLIGOCHAETA LUMB	14 26 4 10 4 20 4 4 4 4 4 4 10 4 4 10 4 10 4
DAETIS TRICAUDAT EPHEMERELLA INFR RHITHROGENA HAGE STENONEHA SP. PROSTOIA BESAMET TAENIONEHA PACIF CHEUMATOPSYCHE HYDROPTILA SP. HICROPSECTR SP.A DIAMESA SP. B CHICOTOPUS SP. B EUKTEFFERIELLA B ORTHOCLADIUS (EU ORTHOCLADIUS OBU TRISSOCLADIUS SP SYNORTHOCLADIUS SIMULIUM SP. LIMMEA SP.	30 6 10 22 4 2 2 8 40 216 18 168 13 264 14 12 58 4	BAETIS TRICAUDAT EPHEMERELLA INFR HEPTAGENIA SOLIT RHITHROGENA HAGE STENONEMA SP. PARALEPTOPHL MEM ISOGENOIDES ELON TAENIONEMA PACIF CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. CERACLEA SP. PSYCHOMYIA FLAVI ZAITZEVIA PARVUL MICROPDECTR SP.A PICROTEMPIPES SP PAGASTIA SP. CRICOTOPUS SP. B PAGASTIA SP. CRICOTOPUS SP. B EUKIEFFERIELLA E ORTHOCLADIUS GEU ORTHOCLADIUS GEU ORTHOCLADIUS OBU TRISSOCLADIUS SP SYNORTHOCLADIUS SIMULIUM SP FERRISSIA SP. LYHNAEA SP.	16 10 26 78 21 80 60 64 14 14 18 44 21 10 11 11 11 11 11 11 11 11 11 11 11 11

25/A-53		25/8-53	
STENOMEMA SP.	40	STELDLENA SP.	1
CHEUMATOPSYCHE	20	CHEUHATOPS (Chr	,
HYDROPTILA SP.	16	HYDROP.SYCHE OCCI	
PSYCHONYIA FLAVI	11	PSYCHORY: FLAVE	,
DICROTENDIP SP.A	11	MICROPSECIR SP.A	.'U
MICROPSECTR SP.A	24	EICKOTENDIPES SP	12
MICROTENDIPES SP	8	DIAMEGA SP. B	11
DIAMESA SP. B	12	CRICOTOPUS SP. B	120
PAGASTIA SP.	4	ORTHOCLADIUS (EU	11
CRICOTOPUS SP. B	332	ORTHOCLADIUS OBU	133
EUKIEFFERIELLA A	$\tilde{\eta}$	TRISSOCLADIUS IP	41
EUKIEFFERIELLA E	Д	OLUGOCHACTA LUHB	1;
ORTHOCLADIUS (EU	$I_{[I]}$		
ORTHOCLADIUS OBU	603		
TRISSOCLADIUS SP	32		
SYNORTHOCLADIUS	Ĭį		
SIMULIUM SP.	12		
GYRAULUS SP.	12		
LYHNABA SP.	ji.		
OLIGOCHAETA LUHB	ή.		

CHEUMATOPSYCHE HYDROPTILA SP. CERACLEA SP. PSYCHOMYIA FLAVI DICROTENDIP SP.A MICROPSECTH SP.A MICROTENDIPED SP DIAMESA SP. B CRICOTOPUS SP. B EUKIEFFERIELLA B	8 4 16	25/D-53 RHITHROGENA HAG STENDHENA SC. CHEUN (TOPMYCHE HYDROPTLLA SP. CERACLEA SP. DICROTENDIP SP.A HICROPS.CTA SP.A CRICOPOUS SP.B HETEROTHISSOCLAD ORTHOCLADIUS OBU TRISSOCLADIUS SP. WIEDEHARNTA SP.	1970年 1970
ormeboo or .		ABLABESTYIA SP.	1 2 2 2 2 4 4

21/14-53		27/13-53	
PARTIS TRICAUDAT	4	HEPTAGERIA SOLIT	6
COMPANIES ELLA ECEPTE	2	STERONEHA SP.	58
HERTAGENIA SOLTT	18	CHEUJATOPSYCHE	16
RHITTIROGERA HAGE	?	HYDROPSYCHE OCCL	2
STENOMENA SP.	92	HYDROPTTLA SP	1 //
PTEROMARCYS CALT	2	CHEUMATOPSYCHE HYDROPSYCHE OCCL HYDROPFILA SP. CERACLEA SP.	14 10 2
TARTIONEHA PACTE	5	PARCEGARACITE SP	2
OPHIOGOMPHUS SP	11	CERACLEA SP. PARARGYRACTI: SP DUBIRAPHIA SP.	2
CHEED ATORSYCHE	16	ZAITZEVIA PARVUL	2
TAENIONEHA PACIF OPHTOGOMPHUS SP. CHEUNATOPSYCHE UVD OPSYCHE SP. 1	5		
TYPETETOPS COURS	2	UTCORCIONAL SI . N	20
TRADUTTE A TO	22	WALLY OR THE CD D	20 3
A MARK TOTAL TOTAL	2	DIGROTEMBLE SP.A HTGROT MDIPUS SP TAUYTARSUD SP. B DIAMEDA SP. B PAGASTIA SP. CRICOTOTUS SP. D HULLIANS ORTHOGRAPHS HAD ORTHOGRAPHS HAD ORTHOGRAPHS HAD	(C)
TO TO TAKE	ے ا		6
1 53 ONORT TW 1 134 CT	2.0		26
	11	THE COURT OF THE STATES	20
	.1	72 (2012) - 12 (2013) - 12 (20	Now.
	12	(A1212117)	1.5
The state of the second state of the second state of the second s	· · · · · · · · · · · · · · · · · · ·	VIA FILE (1.12.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
	() 	(REG. OCLA) (P.1-3P	
		31401.001.600.31	1 -
	1.0	> 1/10(/10)// > 1/2	20
	10	PACIFASTICUS SP.	11
MICOTO. 03 SF. D	ý Ú		
SUMEDIFICATION A	Ů.		
	6 2		
EUKIEFFERIELLA E	2		
ONTHOCLADIUS (LU	22		
ORTHOCLADIUS B	2		
	12		
	124		
TRISCOCLADIUS SP			
AGLELESHYII SP.	2		
UH IPENAPALA SP.	ij		
Cladhum SP.	66		

Table 16. Continued			
27/0-53		ATTACHMA SOLIT	
EPHERERELLA LUER		HEPT.AUGH SOLIT	1
HUPTAGERIA SOLET	1.7	STALOLIAM DIL	121
STENOMEL, A SP.	150	OPHICGOLL JUL 32.	
PROSTOIA BESAMET	5	CHEUELTOISIECH	1
TAENIOHERA PACIE	2	HYDROPSYONE STEE	í
OPHIOGO WHUS SP.	()	APPROPSICAL OCCI	,
CHLUMATOPSTCHE	20	SZHPHLTOPU COCK :	1
RYDROPSYCHE SPIA	10	Habrorysta Sr.	1
SYMPHITORS COCKE	2)	CERACLEA SP.	U
HYDROPTILA SP.	14	CERACLEA DP. CERACLEA DP. PSYCHOLYIA PLAVI	10
SYMPHITORS COCKE HYDROPTILA SP. CERACLEA SP. PSYCHOMYIA FLAVI	ਹ	PARARGYRACTE: 31 1	n g
PSYCHOMYIA FLAVI	71	DICROTADE ST.	1 11
PARARGYRACTIS SP	6	DICROT: DI :	_
DICROTEHDEP SP.A		HICRO's '	
DICROTELDIF SP.C		TANYTON: I. II	ί
MICROPSECTR SP.A	11	XEHOCHERO (CITILE	
MICROTENDIPES SP	つえ	DTALIESA SP 3	
PARATANYTARSUS TAHYTARSUS SP. B PIAMESA SP. B PAGASTIA SP.	2	PAGESTIE SP. CRUCOTOPUS SP. P	
TALIYTARSUS SP. b	13	CRICOTORUS SP. T	
DIAMESA S. B	12	DUK PERTURKALAN A	
PACASTIA SP.	1,1	AMERICA CONTRACTOR	
CRICOPOPUS SP. B	111	EUL ESTELL MALA	
EUKTEFFERUMLLA A	(1)	ORTH A CH. 10	
SUKIEFFCAIGLUA 5	Ó	ORTHOLD IN A CITY	
LUKTEFFERUHLLA E	(-)	$O_{i}(\Omega)(\Omega) = \{i \in \mathcal{U} \mid \mathcal{U}_{i} \in \mathcal{U}_{i}\}$	
C KIEFFERLEIMA F		Carlona . 12 Has see	
HETEROTHESSOCIAD	• 1	31.101 - 0.1 - 3.	
ORTHOCLADIUS (EU	20		
	\ \		
ORTHOCLADIUS HAL	Com.		
ONTHOCKADIUS OBU	6 62 5 2 58		
TRISSOCLADIUS SP	-5		
WIEDEMAMLIA SP	2		
SIMULIUM SP.	53		

Table 16. Deep Wa	ter Monitoring	Stations - Petite Ponar Gr	ab Samples
20/1-03 CATROLOMUS SP. CLYPTOCHTROHOM PARLLAUTERBORNS PHAENOPSECTRA S	IE 5	28A/1-53 PROCLADIUS SP. / OLIGOCHAETA	1 11
POLYPEDILUM SP. TAM TARSUS MP. DIMHUMA SP. L ORTHOGLADIUS OF	C 12 1 3U 2	28A/2-53 PROCLADIUS SP. / OLIGOCHAETA	10 2
TRISSOCLADIUS SP. PROCLADIUS SP. CLIGOCHAETA		28A/3-53 CHIROJOLUS SP. PROCLADIUS SP. / OLIGOCHAETA	11 1 29 21
26 12-53 CHERO FORIUS BP. CALPIDON FRONCAL CHEROPOLECTAN I MATHO MADEUS OF THE FACOLAR US BP. OF EGOLAR PA	3P 4 2U 2 32 I	268/1-53 CHIRORO DS SP PROCLADIUS SP: / OLIGOUDA TA	16 1 3 2
do. 7-55 GRYPTOCHIROHOMU PARALAUTERBORNI POLYPEDILUN SP.	.3 1	POB/2-53 CHIROLOHUS SI PROCLADIUS SP. / OLIGOCHAETA	21 1 2
THEYTARSUS SP. OFTHOCKADIUS E THISSOCIADIUS S PROCEADIUS SP. OLIGOCHAETA	2 SP 1	28d/3-53 CHIRONOMUS SP. PROCLADIUS SP. A OLIGOCHAETA	27 5 6
		30/2-53* ORTHOCLADIUS OBU	2

#30/1 and 30/3 have

zero counts.

31/A-53 HYDROPTILA SP. ORTHOCLADIUS OBU LYMNAEA SP.	2 4 1	3, 1-53 CHIROROGUS SP. MONODIANUSA SP. EUKISFFERIAUIA D ORTHO MADIUS DAG OLIGOCHASTA	
31/5-53 HYDROPTILA SP. EUKIEFFERTELLA E ORTHOCLAPIUS OBU GYRAULUS SP.	2 1 1 4	J72-55 CHTROLOLOG SPL TANYTALOUS SPL U DIAMESIL SP OR MOGL ON US S OLIGO CHINO	<i>i</i> 1
31/C-53 CHEUMATOPSYCHE HYDROPTILA SP. CRICOTOPUS SP. B ORTHOCLADIUS OBU GYRAULUS SP.	1 2 1 5 3	3/3-53 CHTROLOGUS SP. OLIGOCHAETA	9 5
31/D-53 HYDROPTILA SP. DICROTENDIP SP.A HICROTENDIPES SP DIAMESA SP. B CRICOTOPUS SP. B EUKIEFFERIELLA B ORTHOCLADIUS OBU HYALELLA AZTECA GYRAULUS SP.	5 1 1 2 5 4 1		

Table 16. Benthic Macroinvertebrate Sample Counts and Identifications Summer 1985

Shallow Wat	er Stations	-	Kick	Samples
-------------	-------------	---	------	---------

1/C-57 BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR DRUNELLA GRANDIS SERRATELLA TIBIA EPEORUS ALBERTAE RHITHROGENA HAGE PARALEPTOPHL DEB TRICORYTHODES MI ALLOPERLA-GROUP ZAPADA CINCTIPES CLAASSENI SABULO ISOGENOIDES ELON SKV.LA PARALLELA PT_RONARCELLA BA ARCTOPSYCHE GRAN CHEUMATOPSYCHE	200 144 72 8 20 40 40 4 28 4 20 12 16 20 56 24	1/D-57 BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR DRUNELLA GRANDIS SERRATELLA TIBIA TIMPANOGA HECUBA NIXE CRIDDLEI NIXE SIMPLICIOID RHITHROGENA HAGE PARALEPTOPHL DEB ALLOPERLA-GROUP CLAASSENI SABULO ISOGENOIDES ELON SKWALA PARALLELA PTERONARCELLA BA PTERONARCYS CALI	8 6 8 4 4 0 2 2 8 4 4 6 0 4 4 4 4 4 8 3 8
ATHERIX VARIEGAT MICROPSECTR SP.C POLYPEDILUM SP.A TANYTARSUS SP. C PAGASTIA SP. EUKIEFFERIELLA A EUKIEFFERIELLA B EUKIEFFERIELLA E EUKIEFFERIELLA G ORTHOCLADIUS B ORTHOCLADIUS MAL ORTHOCLADIUS NIG	20 8 136 20 8 4 12 44 4 8	OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT MICROPSECTR SP.A MICROPSECTR SP.C POLYPEDILUM SP.A TANYTARSUS SP. C EUKIEFFERIELLA B EUKIEFFERIELLA C HETEROTRISSOCLAD ORTHOCLADIUS MAL	16 52 4 20 44 8 4 8 4 8
ORTHOCLADIUS OBU PSECTROCLADIUS B SYNORTHOCLADIUS ABLABESMYIA SP. CHELIFERA SP. SIMULIUM SP. HEXATOMA SP.	12 8 4 8 8 8 8	ORTHOCLADIUS OBU SIMULIUM SP. PROTANYDERUS SP. ANTOCHA SP. HEXATOMA SP.	12 4 4 28

2/A-57		2/B - 57	
BAETIS HAGENI	24	BAETIS HAGENI	16
BAETIS INSIGNIFI	18	BAETIS INSIGNIFI	36
BAETIS TRICAUDAT	14	BAETIS TRICAUDAT	14
DRUNELLA DODDSI	2	ATTENELLA MARGAR	2
SERRATELLA TIBIA	74	DRUNELLA DODDSI	4
EPEORUS ALBERTAE	Ź	DRUNELLA GRANDIS	4
NIXE CRIDDLEI	2 6	SERRATELLA TIBIA	58
RHITHROGENA HAGE	6	EPEORUS ALBERTAE	6
ALLOPERLA-GROUP	4	RHITHROGENA HAGE	14
CALINEURIA CALIF	20	ALLOPERLA-GROUP	4
CLAASSENI SABULO	26	CALINEURIA CALIF	18
SKWALA PARALLELA	8	CLAASSENI SABULO	16
PTERONARCYS CALI	10	PTERONARCYS CALI	6
ARCTOPSYCHE GRAN	12	ARCTOPSYCHE GRAN	8
CHEUMATOPSYCHE	44	CHEUMATOPSYCHE	52
HYDROPSYCHE OCCI	40	HYDROPSYCHE OCCI	34
SYMPHITOPS COCKE	20	SYMPHITOPS COCKE	28
LEPIDOSTOMA SP.A	2	HYDROPTILA SP.	4
DICOSMOECUS SP.	6	NEOTRICHIA SP.	2
WORMALDIA SP.	18	WORMALDIA SP.	10
OPTIOSERVUS SPP.	72	OPTIOSERVUS SPP.	54
STELENMIS SP.	2	ZAITZEVIA PARVUL	64
ZAITZEVIA PARVUL	74	MICROPSECTR SP.A	2
PALPOMY-GP SP. A	2	MICROPSECTR SP.C	370
MICROPSECTR SP.C	588	MICROTENDIPES SP	12
MICROTENDIPES SP	22	POLYPEDILUM SP.A	14
POLYPEDILUM SP.A	44	TANYTARSUS SP. C	8
TANYTARSUS SP. C	2 6	EUKIEFFERIELLA A	6
EUKIEFFERIELLA A		EUKIEFFERIELLA B	4
EUKIEFFERIELLA E	4	EUKIEFFERIELLA E	8
ORTHOCLADIUS B	2	HETEROTRISSOCLAD	4 8 2 8 2 6
ORTHOCLADIUS MAL	4	ORTHOCLADIUS MAL	8
THIENEMANIELL SP	2 2 2	ORTHOCLADIUS OBU	2
ABLABESMYIA SP.	2	SIMULIUM SP.	
CHELIFERA SP.	2	ANTOCHA SP.	2
ANTOCHA SP.	10	HEXATOMA SP.	14
HEXATOMA SP.	16	PHYSA SP.	34
PHYSA SP.	46	OLIGOCHAETA LUMB	2
OLIGCTHAETA LUMB	14		

2/0-57		2/D-57	
BAETIS INSIGNIFI	60	BAETIS HAGENI	10
BAETIS TRICAUDAT	32	BAETIS INSIGNIFT	36
DRUNELLA DODDSI	8	BAETIS TRICAUDAT	30
DRUNELLA GRANDIS	8	ATTENELLA MARGAR	Ź
SERRATELLA TIBIA	42	DRUNELLA DODDSI	10
EPEORUS ALBERTAE	12	DRUNELLA GRANDIS	2
RHITHROGENA HAGE	2	EPHEMERELLA INFR	2
ALLOPERLA-GROUP	2	SERRATELLA TIBIA	58
CALINEURIA CALIF	6	EPEORUS ALBERTAE	12
CLAASSENT SABULO	8	RHITHROGENA HAGE	, ,
PTERONARCYS CALI	2	ALLOPERLA-GROUP	غ ا
ARCTOPSYCHE GRAN	8	CALINEURIA CALIF	10
CHEUMATOPSYCHE	64	CLAASSENI SABULO	8
HY KOPSYCHE OCCI	42	PTERONARCYS CALI	2
S' .IPHITOPS COCKE	44	ARCTOPSYCHE GRAN	18
LEUCOTRICHIA PIC	2 8	CHEUMATOPSYCHE	26
NEOTRICHIA SP.	8	HYDROPSYCHE OCCI	42
WORMALDIA SP.	2 2 2	SYMPHITOPS COCKE	46
PSYCHOMYIA FLAVI	2	LEUCOTRICHIA PIC	4
RHYACOPHILA ANGE	2	OECETIS SP. '	4
OPTIOSERVUS SPP.	12	DICOSMOECU: 3P.	4
ZAITZEVIA PARVUL	84	WORMALDIA SP.	14
MICROPSECTR SP.C	284	RHYACOPHILA ANGE	2
MICROTENDIPES SP	2	OPTIOSERVUS SPP.	18
PHAENOPSECTRA SP	2	ZAITZEVIA PARVUL	58
POLYPEDILUM SP.A	10	MICROPSECTR SP.C	226
TANYTARSUS SP. C	6	MICROTENDIPES SP	4
EUKIEFFERIELLA A	4	POLYPEDILUM SP.A	18
EUKIEFFERIELLA B	4	TANYTARSUS SP. C	10
EUKIEFFERIELLA E	6	EUKIEFFERIELLA B	2
ORTHOCLADIUS MAL	2	EUKIEFFERIELLA E	2 6
ABLABESMYIA SP.	2	ORTHOCLADIUS MAL	2
SIMULIUM SP.	2	ORTHOCLADIUS OBU	2 8
ANTOCHA SP.	2	CHELIFERA SP.	2
HEXATOMA SP.	4 6 2 2 2 2 2	HEXATOMA SP.	12
- -		PHYSA SP.	52
		OLIGOCHAETA LUMB	2

4/A-57		4/E-57	
BAETIS HAGENI	20	BAETIS INSIGNIFI	60
BAETIS INSIGNIFI	64	BAETIS TRICAUDAT	156
BAETIS TRICAUDAT	372	ATTENELLA MARGAR	4
DRUNELLA DODDSI	32	DRUNELLA GRANDIS	4
SERRATELLA TIBIA	148	SERRATELLA TIBIA	40
EPEORUS ALBERTAE	28	EPEORUS ALBERTAE	4
RHITHROGENA HAGE	24	NIXE CRIDDLEI	4
HESPEROPERLA PAC	8	RHITHROGENA HAGE	4
ISOGENOIDES ELON	12	TRICORYTHODES MI	12
SKWALA PARALLELA	12	CLAASSENI SABULO	12
PTERONARCELLA BA	32	ISOGENOIDES ELON	4
PTERONARCYS CALI	32	SKWALA PARALLELA	4
ARCTOPSYCHE GRAN	20	PTERONARCELLA BA	8
CHEUMATOPSYCHE	348	PTERONARCYS CALI	4
HYDROPSYCHE OCCI	140	ARCTOPSYCHE GRAN	24
SYMPHITOPS COCKE	444	CHEUMATOPSYCHE	144
HYDROPTILA SP.	48	HYDROPSYCHE OCCI	52
NEOTRICHIA SP.	4	SYMPHITOPS COCKE	188
	12	HYDROPTILA SP.	60
PSYCHOMYIA FLAVI	16	NEOTRICHIA SP.	4
OPTIOSERVUS SPP.	56	PSYCHOMYIA FLAVI	40
ZAITZEVIA PARVUL	120	PARARGYRACTIS SP	4
MICROPSECTR SP.A	4	OPTIOSERVUS SPP.	28
MICROPSECTR SP.C	52	ZAITZEVIA PARVUL	28
POLYPEDILUM SP.A	240	MICROPSECTR SP.C	52
TANYTARSUS SP. C	4	POLYPEDILUM SP.A	84
PAGASTIA SP.	8	PAGASTIA SP.	4
EUKIEFFERIELLA B	144	CRICOTOPUS SP. B	4
EUKIEFFERIELLA E	8	EUKIEFFERIELLA B	68
EUKIEFFERIELLA G	8	EUKIEFFERIELLA E	4
ORTHOCLADIUS B	28	EUKIEFFERIELLA G	4
ORTHOCLADIUS MAL	12	ORTHOCLADIUS B	16
ORTHOCLADIUS NIG	8	ORTHOCLADIUS MAL	48
ORTHOCLADIUS OBU	16	ORTHOCLADIUS OBU	8
SIMULIUM SP.	40	ANTOCHA SP.	16
ANTOCHA SP.	16	OLIGOCHAETA	4
OLIGOCHAETA	4		
TURBELLARI	8		

BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR SERRATELLA TIBIA TIMPANOGA HECUBA EPEORUS ALBERTAE TRICORYTHODES MI CLAASSENI SABULO HESPEROPERLA PAC PTERONARCYS CALI BRACHYCENTRUS OC AECTOPSYCHE GRAN CHF'MATOPSYCHE HYLROPSYCHE OCCI SYMPHITOPS COCKE SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. WORMALDIA SP. PSYCHOMYIA FLAVI PARARGYRACTIS SP OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROPSECTR SP.C MICROTENDIPES SP POLYPEDILUM SP.A TANYTARSUS SP. C EUKIEFFERIELLA B EUKIEFFERIELLA E ORTHOCLADIUS MAL ORTHOCLADIUS OBU ANTOCHA SP. TURBELLARI	8 72 84 20 36 4 12 4 12 4 12 4 12 4 12 4 12 4 5 20 4 8 16 8 8 8 16 8 8 8 8 8 8 8 8 8 8 8 8 8	BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR DRUNELLA GRANDIS SERRATELLA TIBIA EPEORUS ALBERTAE RHITHROGENA HAGE CLAASSENI SABULO HESPEROPERLA PAC ISOGENOIDES ELON PTERONARCELLA BA PTERONARCELLA BA PTERONARCYS CALI BRACHYCENTRUS OC AFCTOPSYCHE GRAN CHEUMATOPSYTHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. NEOTRICHIA SP. NEOTRICHIA SP. VORMALDIA S. PSYCHOMYIA FLAVT OPTIOSERVUS SPP. ZAITZEVIA PARVUL CRYPTOCHIRONOMUS MICROPSECTR SP.A MICROPSECTR SP.A MICROPSECTR SP.C MICROTENDIPES SP POLYPEDILUM SP.A TANYTARSUS SP. C PAGASTIA SP. EUKIEFFERIELLA A EUKIEFFERIELLA B EUKIEFFERIELLA B EUKIEFFERIELLA B ORTHOCLADIUS B ORTHOCLADIUS OBU SIMULIUM SP. ANTOCHA SP.	126 16 16 16 16 16 16 16 16 16 16 16 16 16
--	---	---	--

5/A-57		5/E-57	
BAETIS INSIGNIFI	164	BAETIS HAGENI	8
BAETIS TRICAUDAT	148	BAETIS INSIGNIFI	96
DRUNELLA GRANDIS	8	BAETIS TRICAUDAT	104
EPHEMERELLA INFR	4	SERRATELLA TIBIA	32
SERRATELLA TIBIA	68	TIMPANOGA HECUBA	4
EPEORUS ALBERTAE	12	RHITHROGENA HAGE	12
HEPTAGENIA SOLIT	4	TRICORYTHODES MI	4
RHITHROGENA HAGE	4	CLAASSENI SABULO	4
TRICORYTHODES MI	8	SKWALA PARALLELA	12
CLAASSENI SABULO	12	ARCTOPSYCHE GRAN	8
HESPEROPERLA PAC	4	CHEUMATOPSYCHE	268
ISOGENOIDES ELON	8	HYDROPSYCHE OCCI	80
SKWALA PARALLELA	4	SYMPHITOPS COCKE	276
RHAGOVELIA SP.	8	HYDROPTILA SP.	8
AFCTOPSYCHE GRAN	12	PSYCHOMYIA FLAVI	20
CHEUMATOPSYCHE	372	OPTIOSERVUS SPP.	20
HYDROPSYCHE OCCI	124	ZAITZEVIA PARVUL	24
SYMPHITOPS COCKE	620	MICROPSECTR SP.C	32
PSYCHOMYIA FLAVI	4	POLYPEDILUM SP.A	4
OPTIOSERVUS SPP.	12	EUKIEFFERIELLA B	16
ZAITZEVIA PARVUL	40	ORTHOCLADIUS B	8
MICROPSECTR SP.A	4	SIMULIUM SP.	56
MICROPSECTR SP.C	60	HEXATOMA SP.	4
POLYPEDILUM SP.A	52		
CRICOTOPUS SP. B	4		
EUKIEFFERIELLA B	12		
EUKIEFFERIELLA E	12		
ORTHOCLADIUS B	8		
ORTHOCLADIUS OBU	4		
SIMULIUM SP.	20		
HEXATOMA SP.	8		

BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT DRUNELLA GRANDIS EPEORUS ALBERTAE TRICORYTHODES MI CLAASSENI SABULO SKWALA PARALLELA SKWALA PARALLELA PIERONARCYS CALI ARCTOPSYCHE GRAN CHEUMATOPSYCHE CHEUMATOPSYCHE CHEUMATOPSYCHE CHEUMATOPSYCHE CHEUMATOPSYCHE CHEUMATOPSYCHE COMBER BAETIS HAGENI BAETIS HAGENI 4 BAETIS HACHUDAE 120 BAETIS INSIGNIFI 1236 BAETIS INSIGNIFI 124 BAETIS INSIGNIFI 125 BAETIS I
BAETIS INSIGNIFI 80 BAETIS INSIGNIFI 236 BAETIS TRICAUDAT 100 BAETIS TRICAUDAT 120 DRUNELLA GRANDIS 4 SERRATELLA TIBIA 28 SERRATELLA TIBIA 32 RHITHROGENA HAGE 8 EPEORUS ALBERTAE 4 ISOGENOIDES ELON 4 RHITHROGENA HAGE 8 SKWALA PARALLELA 8 TRICORYTHODES MI 8 PTERONARCYS CALI 4 CLAASSENI SABULO 8 RHAGOVELIA SP. 4 SKWALA PARALLELA 4 ARCTOPSYCHE GRAN 4 PIERONARCYS CALI 4 CHEUMATOPSYCHE 280 ARCTOPSYCHE GRAN 20 HYDROPSYCHE OCCI 88 CHEUMATOPSYCHE 404 SYMPHITOPS COCKE 328
DRUNELLA GRANDIS 4 SERRATELLA TIBIA 28 SERRATELLA TIBIA 32 RHITHROGENA HAGE 8 EPEORUS ALBERTAE 4 ISOGENOIDES ELON 4 REITHROGENA HAGE 8 SKWALA PARALLELA 8 TRICORYTHODES MI 8 PTERONARCYS CALI 4 CLAASSENI SABULO 8 RHAGOVELIA SP. 4 SKWALA PARALLELA 4 ARCTOPSYCHE GRAN 4 PTERONARCYS CALI 4 CHEUMATOPSYCHE 280 ARCTOPSYCHE GRAN 20 HYDROPSYCHE OCC1 88 CHEUMATOPSYCHE 404 SYMPHITOPS COCKE 328
DRUNELLA GRANDIS 4 SERRATELLA TIBIA 28 SERRATELLA TIBIA 32 RHITHROGENA HAGE 8 EPEORUS ALBERTAE 4 ISOGENOIDES ELON 4 REITHROGENA HAGE 8 SKWALA PARALLELA 8 TRICORYTHODES MI 8 PTERONARCYS CALI 4 CLAASSENI SABULO 8 RHAGOVELIA SP. 4 SKWALA PARALLELA 4 ARCTOPSYCHE GRAN 4 PTERONARCYS CALI 4 CHEUMATOPSYCHE 280 ARCTOPSYCHE GRAN 20 HYDROPSYCHE OCC1 88 CHEUMATOPSYCHE 404 SYMPHITOPS COCKE 328
EPEORUS ALBERTAE 4 ISOGENOIDES ELON 4 REITHROGENA HAGE 8 SKWALA PARALLELA 8 TRICORYTHODES MI 8 PTERONARCYS CALI 4 CLAASSENI SABULO 8 RHAGOVELIA SP. 4 SKWALA PARALLELA 4 ARCTOPSYCHE GRAN 4 PTERONARCYS CALI 4 CHEUMATOPSYCHE 280 ARCTOPSYCHE GRAN 20 HYDROPSYCHE OCCI 88 CHEUMATOPSYCHE 404 SYMPHITOPS COCKE 328
EPEORUS ALBERTAE 4 ISOGENOIDES ELON 4 RRITHROGENA HAGE 8 SKWALA PARALLELA 8 TRICORYTHODES MI 8 PTERONARCYS CALI 4 CLAASSENI SABULO 8 RHAGOVELIA SP. 4 SKWALA PARALLELA 4 ARCTOPSYCHE GRAN 4 PTERONARCYS CALI 4 CHEUMATOPSYCHE 280 ARCTOPSYCHE GRAN 20 HYDROPSYCHE OCCI 88 CHEUMATOPSYCHE 404 SYMPHITOPS COCKE 328
TRICORYTHODES MI 8 PTERONARCYS CALI 4 CLAASSENI SABULO 8 RHAGOVELIA SP. 4 SKWALA PARALLELA 4 ARCTOPSYCHE GRAN 4 PTERONARCYS CALI 4 CHEUMATOPSYCHE 280 ARCTOPSYCHE GRAN 20 HYDROPSYCHE OCCI 88 CHEUMATOPSYCHE 404 SYMPHITOPS COCKE 328
CLAASSENI SABULO 8 RHAGOVELIA SP. 4 SKWALA PARALLELA 4 ARCTOPSYCHE GRAN 4 PIERONARCYS CALI 4 CHEUMATOPSYCHE 280 ARCTOPSYCHE GRAN 20 HYDROPSYCHE OCC1 88 CHEUMATOPSYCHE 404 SYMPHITOPS COCKE 328
SKWALA PARALLELA 4 ARCTOPSYCHE GRAN 4 PIERONARCYS CALI 4 CHEUMATOPSYCHE 280 ARCTOPSYCHE GRAN 20 HYDROPSYCHE OCCL 88 CHEUMATOPSYCHE 404 SYMPHITOPS COCKE 328
PIERONARCYS CALI 4 CHEUMATOPSYCHE 280 ARCTOPSYCHE GRAN 20 HYDROPSYCHE OCCL 88 CHEUMATOPSYCHE 404 SYMPHITOPS COCKE 328
ARCTOPSYCHE GRAN 20 HYDROPSYCHE OCCI 88 CHEUMATOPSYCHE 404 SYMPHITOPS COCKE 328
CHEUMATOPSYCHE 404 SYMPHITOPS COCKE 328
THE ADDRESS AND AD
HYLAOPSYCHE OCCI 92 PSYCHOMYLA FLAVI 16
SYMPHITOPS COCKE 388 PARARGYRACTIS SP 8
WORMALDIA SP. 4 OPTIOSERVUS SPP. 20
OPTIOSERVUS SPP. 8 ZAITZEVIA PARVUL 68
ZAITZEVIA PARVUL 112 MICROPSECTR SP.C 28
MICROPSECTR SP.A 4 POLYPEDILUM SP.A 32
MICROPSECTR SP.C 24 EUKIEFFERIELIA B 60
POLYPEDILUM SP.A 40 EUKIEFFERIL LA E 12
EUKIEFFERIELLA B 24 ORTHOCLADIUS B 40
ORTHOCLADIUS B 4 SIMULIUM SP. 68
ORTHOCLADIUS OBU 4 HEXATOMA SP. 4
CHELIFERA SP. 4
SIMULIUM SP. 96
HEXATOMA SP. 16

6/C-57		6/D-57	
BAETIS HAGENI	8	BAETIS HAGENI	4
BAETIS INSIGNIFI	128	BAETIS INSIGNIFI	110
BAETIS TRICAUDAT	58	BAETIS TRICAUDAT	16
ATTENELLA MARGAR	4	CENTROPTILU SP.A	2
EPHEMERELLA INFR	2	ATTENELLA MARGAR	8
SERRATELLA TIBIA	30	EPHEMERELLA INFR	2
EPEORUS ALBERTAE	8	SERRATELLA TIBIA	14
HEPTAGENIA SOLIT	6	TIMPANOGA HECUBA	
NIXE SIMPLICIOID		EPEORUS ALBERTAE	2
RHITHROGENA HAGE	2 2	HEPTAGENIA SOLIT	2
PARALEPTOPHL BIC	6	NIXE CRIDDLEI	2
TRICORYTHODES MI	6 6	NIXE SIMPLICION	2 2 2 8
HESPEROPERLA PAC	2	RHITHROGENA HAGE	2
ISOGENOIDES ELON	2 6	PARALEPTOPHL BIC	4
SKI ALA PARALLELA	2	TRICORYTHODES MI	24
ARCTOPSYCHE GRAN	8	CLAASSENI SABULO	2
CHEUMATOPSYCHE	162	ISOGENOIDES ELON	2
HYDROPSYCHE OCCI	22	SKWALA PARALLELA	4
SYMPHITOPS COCKE	134	BRACHYCENTRUS OC	2
HYDROPTILA SP.	8	CHEUMATOPSYCHE	136
PSYCHOMYIA FLAVI	14	HYDROPSYCHE DCC1	16
OPTIOSERVUS SPP.	8	SYMPHITOPS COCKE	114
ZAITZEVIA PARVUL	16	HYDROPTILA ().	6
MICROPSECTR SP.C	,	ORCETAS SP. A	()
POLYPEDILUM SP A	18	PSYCHOMYIA FLAVI	16
TANYTARSUS SP. C	2	NARPUS CONCOLOR	2
EUKIEFFERIELLA B	4	ZAITZEVIA PARVUL	6
EUKIEFFERIELLA E	8	ATHERIX VARIEGAT	2
ORTHOCLADIUS B	4	MICROPSECTR SP.A	2
ORTHOCLADIUS OBU	4	MICROPSECTR SP.C	18
SYNORTHOCLADIUS	4	MICROTENDIPES SP	4
THIENEMANIELL SP		POLYPEDILUM SP.A	38
SIMULIUM SP.	2 6 2 2	TANYTARSUS SP. C	
ANTOCHA SP.	2	EUKIEFFERIELLA B	2 2 6
PACIFASTICUS SP.	2	EUKIEFFERIELLA E	6
		ORTHOCLADIUS B	10
		ORTHOCLADIUS OBU	10
		SYNORTHOCLADIUS	2
		THIENEMANIELL SP	2
		ANTOCHA SP.	2

8/A-57		8/B-57	
BAETIS HAGENI	24	BAETIS HAGENI	36
BAETIS INSIGNIFI	140	BAETIS INSIGNIFI	76
BAETIS TRICAUDAT	128	BAETIS TRICAUDAT	148
CENTROPTILU SP.A	4	CENTROPTILU SP.A	4
SERRATELLA TIBIA	12	SERRATELLA TIBIA	8
TIMPANOGA HECUBA	8	TIMPANOGA HECUBA	8
NIXE SIMPLICIOID	12	NIXE CRIDDLEI	4
PARALEPTOPHL BIC	4	NIXE SIMPLICIOID	12
PARALEPTOPHL DEB	4	PARALEPTOPHL BIC	4
TRICORYTHODES MI	40	PARALEPTOPHL DEB	8
ISOGENOIDES ELON	8	TRICORYTHODES MI	72
SKWALA PARALLELA	8	CLAASSENI SABULO	4
BRACHYCENTRUS OC	4	HESPEROPERLA PAC	4
ARCTOPSYCHE GRAN	24	ISOGENOIDES ELON	4
CHEUMATOPSYCHE	488	SKWALA PARALLELA	8
HYDROPSYCHE OCCI	116	ARCTOPSYCHE GRAN	28
SYMPHITOPS COCKE	544	CHEUMATOPSYCHE	384
ZUMATRICHIA NOTO	4	HYDROPSYCHE OCCI	84
WORMALDIA SP.	12	SYMPHITOPS COCKE	324
PSYCHOMYIA FLAVI	20	HYDROPTILA SP.	4
PARARGYRACTIS SP	32	PSYCHOMYIA FLAVI	12
OPTIOSERVUS SPP.	4	OPTIOSERVUS SPP.	32
ZAITZEVIA PARVUL	28	ZAITZEVIA PARVUL	20
CHIRONOMUS SP.	124	CHIRONOMUS SP.	48
MICROPSECTR SP.C	4	MICROPSECTR SP.C	4
PHAENOPSECTRA SP	8	POLYPEDILUM SP.A	156
POLYPEDILUM SP.A	100	PAGASTIA SP.	4
TANYTARSUS SP. A	4	CRICOTOPUS SP. B	12
TANYTARSUS SP. C	4	EUKIEFFERIELLA A	12
CRICOTOPUS SP. B	16	EUKIEFFERIELLA B	24
EUKIEFFERIELLA B	52	EUKIEFFERIELLA E	8
EUKIEFFERIELLA E	16	EUKIEFFERIELLA G	8
EUKIEFFERIELLA F	4	ORTHOCLADIUS B	20
ORTHOCLADIUS B	20	ORTHOCLADIUS MAL	8
ORTHOCLADIUS MAL	16	ORTHOCLADIUS NIG	4
ORTHOCLADIUS OBU	4	ORTHOCLADIUS OBU	8
SIMULIUM SP.	12	PSECTROCLADIUS C	8
PHYSA SP.	8 4	CHELIFERA SP.	4
OLIGOCHAETA	4	SIMULIUM SP.	8 4
		OLIGOCHAETA	4

8/C-5 7		8/D-57	
BAETIS HAGENI	32	BAETIS HAGENI	24
BAETIS INSIGNIFI	76	BAETIS INSIGNIFI	64
BAETIS TRICAUDAT	84	BAETIS TRICAUDAT	32
CENTROPTILU SP.A	4	CENTROPTILU SP.A	$\bar{4}$
ATTENELLA MARGAR	4	DRUNELLA GRANDIS	4
DRUNELLA DODDSI	4	SERRATELLA TIBIA	8
EPHEMERELLA INFR	4	EPEORUS ALBERTAE	4
SERRATELLA TIBIA	8	HEPTAGENIA SOLIT	8
TIMPANOGA HECUBA	4	TRICORYTHODES MI	52
EPEORUS ALBERTAE	8	MALENKA SP.	4
NIXE SIMPLICIOID	16	HESPEROPERLA PAC	4
PARALEPTOPHL BIC	4	ISOGENOIDES ELON	16
TRICORYTHODES MI	28	SKWALA PARALLELA	12
HESPEROPERLA PAC	4	PTERONARCELLA BA	4
ISO ENOIDES ELON	8	PTERONARCYS CALI	12
SKWALA PARALLELA	8	BRACHYCENTRUS OC	4
BRACHYCENTRUS OC	4	ARCTOPSYCHE GRAN	40
ARCTOPSYCHE GRAN	44	CHEUMATOPSYCHE	332
CHEUMATOPSYCHE	260	HYDROPSYCHE OCCI	52
HYDROPSYCHE OCCI	60	SYMPHITOPS COCKE	208
SYMPHITOPS COCKE	236	HYDROPTILA SP	28
HYDROPTILA SP.	32	ZUMATRICHIA JOTO	4
PSYCHOMYIA FLAVI	8	PSYCHOMYIA FLAVI	16
PARARGYRACTIS SP	44	PARARGYRACTIS SY	28
OPTIOSERVUS SPP.	12	OPTIOSERVUS SPP.	4
ZAITZEVIA PARVUL	28	ZAITZEVIA PARVUL	24
CHIRONOMUS SP.	4	CHIRONOMUS SP.	16
MICROPSECTR SP.C	4	POLYPEDILUM SP.A	96
POLYPEDILUM SP.A	92	CRICOTOPUS SP. B	20
CRICOTOPUS SP. B	8	EUKIEFFERIELLA A	4
EUKIEFFERIELLA A	8	EUKIEFFERIELLA B	28
EUKIEFFERIELLA B	52	EUKIEFFERIELLA E	8
EUKIEFFERIELLA E	16	ORTHOCLADIUS B	24
ORTHOCLADIUS B	36	ORTHOCLADIUS MAL	20
ORTHOCLADIUS MAL	28	ORTHOCLADIUS OBU	12
ANTOCHA SP.	8	SYNORTHOCLADIUS	4
OLIGOCHAETA	40	ANTOCHA SP.	4
		OLIGOCHAETA	8

9/A-57		9/B-57	
BAETIS HAGENI	16	BAETIS HAGENI	12
BAETIS INSIGNIFI	64	BAETIS INSIGNIFI	72
BAETIS TRICAUDAT	4	BAETIS TRICAUDAT	8
CENTROPTILU SP.A	4	ATTENELLA MARGAR	16
ATTENELLA MARGAR	20	EPHEMERELLA INFR	4
EPHEMERELLA INFR	16	SERRATELLA TIBIA	8
SERRATELLA TIBIA	12	TIMPANOGA HECUBA	4
TIMPANOGA HECUBA	12	EPEORUS ALBERTAE	8
HEPTAGENIA SOLIT	20	HEPTAGENIA SOLIT	12
NIXE SIMPLICIOID	8	NIXE SIMPLICIOID	20
RHITHROGENA HAGE	12	PARALEPTOPHL BIC	12
PARALEPTOPHL BIC	16	PARALEPTOPHL DEB	4
PARALEPTOPHL DEB	8	TRICORYTHODES MI	104
TRICORYTHODES MI	148	CLAASSENI SABULO	4
ISOGENOIDES ELON	28	HESPEROPERLA PAC	8
SKWALA PARALLELA	24	ISOGENOIDES ELON	32
PTERONARCYS CALI	4	SKWALA PARALLELA	20
CHEUMATOPSYCHE	256	BRACHYCENTRUS OC	4
HYDROPSYCHE OCCI	36	ARCTOPSYCHE GRAN	8
SYMPHITOPS COCKE	68	CHEUMATOPSYCHE	296
HYDROPTILA SP.	24	HYDROPSYCHE OCCI	84
OECETIS SP. A	4	SYMPHITOPS COCKE	188
PSYCHOMYIA FLAVI	32	HYDROPTILA SP.	68
PARARGYRACTIS SP	28	ZUMATRICHIA NOTO	4
OREODYTES SCITIL	4	OECETIS SP. A	20
OPTIOSERVUS SPP.	12	PSYCHOMYIA FLAVI	32
ZAITZEVIA PARVUL	28	PARARGYRACTIS SP	40
HYDROCHUS SP.	4	OREODYTES SCITIL	4
MICROPSECTR SP.A	4	OPTIOSERVUS SPP.	8
MICROPSECTR SP.C	16	ZAITZEVIA PARVUL	40
MICROTENDIPES SP	16	CHIRONOMUS SP.	4
PHAENOPSECTRA SP	12	MICROPSECTR SP.A	4
POLYPEDILUM SP.A	120	MICROPSECTR SP.C	4
TANYTARSUS SP. C	24	MICROTENDIPES SP	4
PAGASTIA SP.	4	POLYPEDILUM SP.A	84
CRICOTOPUS SP. B	8	TANYTARSUS SP. C	4
EUKIEFFERIELLA A	4	PAGASTIA SP.	4
EUKIEFFERIELLA B	4	CRICOTOPUS SP. B	4
ORTHOCLADIUS B	124	EUKIEFFERIELLA E	8
ORTH CLADIUS MAL	12	ORTHOCLADIUS B	32
PSECTROCLADIUS B	4	ORTHOCLADIUS MAL	8
PSECTROCLADIUS C	4	PSECTROCLADIUS B	8
ABLABESMYIA SP.	12	PSECTROCLADIUS C	4
CHELIFERA SP.	12	ABLABESMYIA SP.	4
ANTOCHA SP.	8		·

9/C-57		9/D-57	
BAETIS HAGENI	28	BAETIS HAGENI	20
BAETIS INSIGNIFI	32	BAETIS INSIGNIFI	72
BAETIS TRICAUDAT	24	BAETIS TRICAUDAT	28
ATTENELLA MARGAR	28	ATTENELLA MARGAR	16
EPHEMERELLA INFR	20	EPHEMERELLA INFR	16
SERRATELLA TIBIA	8	TIMPANOGA HECUBA	12
TIMPANOGA HECUBA	η	HEPTAGENIA BOLIT	16
HEPTAGENIA SOLIT	8	NIXE SIMPLICIOID	8
NIXE CRIDDLEI	4	RHITHROGENA HAGE	12
NIXE SIMPLICIOID	8	PARALEPTOPHL BIC	4
RHITHROGENA HAGE	16	TRICORYTHODES MI	48
PARALEPTOPHL BIC	20	HESPEROPERLA L'A	8
TRICORYTHODES MI	116	ISOGENOIDES ELOI	28
HESTEROPERLA PAC	4	SKWALA PARALLELA	8
ISCJENOIDES ELON	12	CHEUMATOPSYCHE	188
ISOPERLA QUINQUE	4	HYDROPSYCHE OCCI	44
SKWALA PARALLELA	8	SYMPHITOPS COCKE	76
ARCTOPSYCHE GRAN	8	HYDROPTILA SP.	28
CHEUMATOPSYCHE	220	NEOTRICHIA SP.	4
HYDROPSYCHE OCCI	68	OECETIS SP. A	12
SYMPHITOPS COCKE	100	WORMALDIA SP.	4
	44	PSYCHOMYIA FLAVI	12
HYDROPTILA SP.	44	PARARGYRACTIC SP	24
NEOTRICHIA SP.			8
PSYCHOMYIA FLAVI	32	OPTIOSERVUS SPP.	28
PARARGYRACTIS SP	28	ZAITZEVIA PARVUL	8
OREODYTES SCITIL	4 8	MICROPSECTR SP.C	6 8
OPTIOSERVUS SPP.		POLYPEDILUM SP.A	
ZAITZEVIA PARVUL	56	TANYTARSUS SP. C	4
HYDROCHUS SP.	8	EUKIEFFERIELLA B	16
MICROPSECTR SP.C	4	EUKIEFFERIELLA G	4
MICROTENDIPES SP	8	ORTHOCLADIUS B	8
PHAENOPSECTRA SP	8	ORTHOCLADIUS MAL	12
POLYPEDILUM SP.A	56	ORTHOCLADIUS NIG	4
TANYTARSUS SP. C	4	ORTHOCLADIUS OBU	16
EUKIEFFERIELLA B	8	PSECTROCLADIUS B	4
EUKIEFFERIELLA E	12	ABLABESMYIA SP.	4
ORTHOCLADIUS B	36		
ORTHOCLADIUS MAL	8		
PSECTROCLADIUS B	4		
WIEDEMANNIA SP.	4		
HEXATOMA SP	4		

10/A-57		10/B-57	
BAETIS INSIGNIFI	116	BAETIS INSIGNIFI	88
BAETIS TRICAUDAT	160	BAETIS TRICAUDAT	40
ATTENELLA MARGAR	40	ATTENELLA MARGAR	20
DRUNELLA GRANDIS	32	DRUNELLA GRANDIS	28
SERRATELLA TIBLA	81,	SERRATELLA TIBIA	36
NIXE SIMPLICIOID	4	RHITTUROGENA HAGE	56
RHITTIROGENA HAGE	60	TRICORYTHODES MI	12
PARALEPTOPHL DEB	4	CLAASSENI SABULO	12
TRICORYTHODES MI	24	SKWALA PARALLELA	16
CLAASSENI SABULO	12	PTERONARCELLA BA	40
ISOGENOIDES ELON	20	PROTOPTILA SP.	4
SKWALA PARALLELA	16	ARCTOPSYCHE GRAN	20
PTERONARCELLA BA	72	CHEUMATOPSYCHE	132
ARCTOPSYCHE GRAN	8	HYDROPSYCHE OCCI	80
CHEUMATOPSYCHE	72	SYMPHITOPS COCKE	44
HYDROPSYCHE OCCI	80	HYDROPTILA SP.	4
SYMPHITOPS COCKE	44	NEOTRICHIA SP.	8
HYDROPTILA SP.	12	ZUMATRICHIA NOTO	4
NEOTRICHIA SP.	4	OPTIOSERVUS SPP.	96
PARARGYRACTIS SP	4	ZAITZEVIA PARVUL	80
OPTIOSERVUS SPP.	160	MICROPSECTR SP.A	24
ZAITZEVIA PARVUL	124	MICROPSECTR SP.C	28
MICROPSECTR SP.A	24	POLYPEDILUM SP.A	48
MICROPSECTR SP.C	28	EUKIEFFERIELLA B	16
POLYPEDILUM SP.A	104	EUKIEFFERIELLA E	8
PAGASTIA SP.	4	EUKIEFFERIELLA G	4
EUKIEFFERIELLA A	4	ORTHOCLADIUS NIG	4
EUKIEFFERIELLA B	24	ORTHOCLADIUS OBU	4
EUKIEFFERIELLA E	16	CHELIFERA SP.	8
EUKIEFFERIELLA G	4	SIMULIUM SP.	240
ORTHOCLADIUS MAL	4	ANTOCHA SP.	4
PSECTROCLADIUS B	4	OLIGOCHAETA LUMB	8
SYNORTHOCLADIUS	4	TURBELLARI	4
THIENEMANIELL SP	4		
ABLABESMYIA SP.	16		
SIMULIUM SP.	212		
OLIGOCHAETA	4		
TURBELLARI	4		

BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR DRUNELLA GRANDIS EPHEMERELLA INFR SERRATELLA TIBIA NIXE CRIDDLEI NIXE SIMPLICIOID HITHROGENA HAGE PARALEPTOPHL DEB TRICORYTHODES MI CLA^SSENI SABULO ISO,ENOIDES ELON SKWALA PARALLELA BRACHYCENTRUS OC PROTOPTILA SP. ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. ZUMATRICHIA NOTO PARARGYRACTIS SP OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT MICROPSECTR SP.C MICROPSECTR SP.C MICROTENDIPES SP POLYPEDILUM SP.A EUKIEFFERIELLA E ORTHOCLADIUS B ORTHOCLADIUS MAL ORTHOCLADIUS OBU ABLABESMYIA SP. SIMULIUM SP. ANTOCHA SP. OLIGOCHAETA LUMB 8	BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR DRUNELLA GRANDIS SERRATELLA TIBIA EPEORUS ALBERTAE RHITHROGENA HAGE TRICORYTHODES MI CLAASSENI SABULO ISOGENOIDES ELON SKWALA PARALLELA PTERONARCELLA BA BRACHYCENTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. NEOTRICHIA SP. OPTIOSERVUS SPP. ZAITZEVIA PAP UL MICROPSECTR SP.A MICROPSECTR SP.A MICROPSECTR SP.A POTTHASTIA SP. EUKIEFFERIELLA B EUKIEFFERIELLA B EUKIEFFERIELLA E ORTHOCLADIUS B ORTHOCLADIUS MAL THIENEMANIELL SP CHELIFERA SP. SIMULIUM SP. OLIGOCHAETA LUMB TURBELLARI	120 148 148 141 168 168 168 168 168 168 168 168 168 16
---	---	---

Table 16. Continued

BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR DRUNELLA GRANDIS SERRATELLA TIBIA HEPTAGENIA SOLIT RHITHROGENA HAGE TRICORYTHODES MI CALINEURIA CALIF PTERONARCELLA BA PTERONARCYS CALI ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE OECETIS SP. A OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT MICROPSECTR SP.A MICROPSECTR SP.C PHAENOPSECTRA SP POLYPEDILUM SP.A TANYTARSUS SP. C EUKIEFFERIELLA B EUKIEFFERIELLA B EUKIEFFERIELLA B EUKIEFFERIELLA E ORTHOCLADIUS OBU ABLABESMYIA SP. CHELIFERA SP. SIMULIUM SP. PROTANYDERUS SP. HEXATOMA SP.	2566 10 10 10 10 10 10 10 10 10 10 10 10 10	BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR DRUNELLA GRANDIS SERRATELLA TIBIA RHITHROGENA HAGE PARALEPTOPHL DEB TRICORYTHODES MI CALINEURIA CALIF CLAASSENI SABULO PTERONARCELLA BA ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT MICROPSECTR SP.A MICROPSECTR SP.C PHAENOPSECTR SP.C PHAENOPSECTRA SP POLYPEDILUM SP.A TANYTARSUS SP. C EUKIEFFERIELLA B EUKIEFFERIELLA B EUKIEFFERIELLA E ORTHOCLADIUS OBU ABLABESMYIA SP. CHELIFERA SP. SIMULIUM SP. HEXATOMA SP.	4 2 2 4 4 2 2 4 1 1 2 2 5 4 1 4 2 3 4 4 1 4 1 4 2 2 6 2 2 1 4 1 4 2 2 6 2 2 1 4 1 4 2 2 6 2 2 1 4 1 4 1 4 2 2 6 2 2 1 4 1 4 1 4 2 2 6 2 2 1 4 1 4 1 4 2 2 6 2 2 1 4 1 4 1 4 2 2 6 2 2 1 4 1 4 1 4 2 2 6 2 2 1 4 1 4 1 4 2 2 6 2 2 1 4 1 4 1 4 2 2 6 2 2 1 4 1 4 1 4 2 2 6 2 2 1 4 1 4 1 4 2 2 6 2 2 1 4 1 4 1 4 2 2 6 2 2 1 4 1 4 1 4 2 2 6 2 2 1 4 1 4 1 4 2 2 6 2 2 1 4 1 4 1 4 2 2 6 2 2 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
--	--	--	--

BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR DRUNELLA GRANDIS SERRATELLA TIBIA TIMPANOGA HECUBA NIXE SIMPLICIOID RHITHROGENA HAGE TRICORYTHODES MI CLAASSENI SABULO ISOGENOIDES ELON SKWALA PARALLELA PTERONARCELLA BA BRI HYCENTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE ZUMATRICHIA NOTO HYDROPTILA SP. OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT MICROPSECTR SP.A MICROPSECTR SP.C MICROTENDIPES SP PHAENOPSECTRA SP POLYPEDILUM SP.A TANYTARSUS SP. C EUKIEFFERIELLA B EUKIEFFERIELA B	10 510 516 32 4 22 116 6 32 4 4 4 2 2 3 18 2 3 8 4 4 4 4 3 6 3 8 4 1 6 3 8 4 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR DRUNELLA GRANDIS SERRATELLA TIBIA NIXE SIMPLICIOID RHITHROGENA HAGE TRICORYTHODES MI CLAASSENI SABULO ISOGENOIDES ELON PTERONARCELLA BA BRACHYCENTRUS OJ ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE OECETIS SP. A OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIECAT MICROPSECTH SP.A MICROPSECTH SP.A MICROPSECTR SP.C MICROTENDIPES SP PHAENOPSECTRA SP POLYPEDILUM SP.A TANYTARSUS SP. C EUKIEFFERIELLA B EUKIEFFERIELLA B EUKIEFFERIELLA B CORTHOCLADIUS MAL ORTHOCLADIUS MAL ORTHOCLADIUS OBU PSECTROCLADIUS B ABLABESMYIA SP. CHELIFERA SP. SIMULIUM SP. PROTANYDERUS SP. HEXATOMA SP.	210 410 410 410 410 410 8122 810 810 810 810 810 810 810 810 810 810
---	--	--	--

13/A-57		13/B-57	
BAETIS HAGENI	2	BAETIS INSIGNIFI	104
BAETIS INSIGNIFI	118	BAETIS TRICAUDAT	10
BAETIS TRICAUDAT	70	CENTROPTILU SP.A	6
ATTENELLA MARGAR	76	ATTENELLA MARGAR	72
EPHEMERELLA INFR	2	HEPTAGENIA SOLIT	8
SERRATELLA TIBIA	6	NIXE SIMPLICIOID	50
HEPTAGENIA SOLIT	2	RHITHROGENA HAGE	18
NIXE SIMPLICIOID	28	TRICORYTHODES MI	22
RHITHROGENA HAGE	18	CALINEURIA CALIF	4
PARALEPTOPHL BIC	4	CLAASSENI SABULO	6
TRICORYTHODES MI	28	ISOGENOIDES ELON	20
CLAASSENI SABULO	12	SKWALA PARALLELA	10
ISOGENOIDES ELON	30	PTERONARCELLA BA	4
ISOPERLA QUINQUE	2	PTERONARCYS CALI	4
SKWALA PARALLELA	8	BRACHYCENTRUS OC	2
PTERONARCELLA BA	2	ARCTOPSYCHE GRAN	10
BRACHYCENTRUS OC	6	CHEUMATOPSYCHE	64
ARCTOPSYCHE GRAN	6	HYDROPSYCHE OCCI	62
CHEUMATOPSYCHE	90	SYMPHITOPS COCKE	38
HYDROPSYCHE OCCI	88	HYDROPTILA SP.	12
SYMPHITOPS COCKE	46	CERACLEA SP.	4
HYDROPTILA SP.	10	OECETIS SP. A	4
ZUMATRICHIA NOTO	4	OPTIOSERVUS SPP.	12
OECETIS SP. A	10	ZAITZEVIA PARVUL	14
OPTIOSERVUS SPP.	24	HYDROCHUS SP.	2
ZAITZEVIA PARVUL	26	ATHERIX VARIEGAT	8
ATHERIX VARIEGAT	8	MICROPSECTR SP.A	32
MICROPSECTR SP.A	24	MICROPSECTR SP.C	Ž
MICROPSECTR SP.C	8	MICROTENDIPES SP	12
MICROTENDIPES SP	18	PHAENOPSECTRA SP	12
PHAENOPSECTRA SP	6	POLYPEDILUM SP.A	14
POLYPEDILUM SP.A	32	TANYTARSUS SP. C	6
TANYTARSUS SP. C	4	XENOCHIRONOMUS	2
EUKIEFFERIELLA B	12	CRICOTOPUS SP. B	2
EUKIEFFERIELLA E	10	EUKIEFFERIELLA B	16
ORTHOCLADIUS B	4	HETEROTRISSOCLAD	2
ORTHOCLADIUS MAL	8	ORTHOCLADIUS B	4
ORTHOCLADIUS OBU	6	ORTHOCLADIUS MAL	6
PSECTROCLADIUS B	10	ORTHOCLADIUS OBU	2
ABLABESMYIA SP.	10	ABLABESMYIA SP.	10
SIMULIUM SP. ·	4	HEXATOMA SP.	4
HEXATOMA SP.	6		

13/C-57		13/D-57	
BAETIS INSIGNIFI	140	BAETIS HAGENI	4
BAETIS TRICAUDAT	26	BAETIS INSIGNIFI	62
CENTROPTILU SP.A	2	BAETIS TRICAUDAT	34
ATTENELLA MARGAR	38	ATTENELLA MARGAR	62
EPHEMERELLA INFR	2	DRUNELLA GRANDIS	4
SERRATELLA TIBIA	8	SERRATELLA TIBIA	4
HEPTAGENIA SOLIT	4	NIXE SIMPLICIOID	42
NIXE SIMPLICIOID	40	RHITHROGENA HAGE	16
RHITHROGENA HAGE	14	PARALEPTOPHL DEB	2
TRICORYTHODES MI	24	TRICORYTHODES MI	28
CLAASSENI SABULO	6	CLAASSENI SABULO	6
ISOGENOIDES ELON	24	ISOGENOIDES ELON	14
SKWALA PARALLELA		SKWALA PARALLELA	12
PTERONARCELLA BA	2	PTERONARCELLA BA	2
PTE ONARCYS CALI	2	ARCTOPSYCHE GRAN	8
SIGARA SP.	2	CHEUMATOPSYCHE	48
BRACHYCENTRUS OC	2 2 2 2 2	HYDROPSYCHE OCCI	90
ARCTOPSYCHE GRAN	10	SYMPHITOPS COCKE	38
CHEUMATOPSYCHE	84	HYDROPTILA SP.	2
HYDROPSYCHE OCCI	76	OECETIS SP. A	8
SYMPHITOPS COCKE	28	PSYCHOMYIA FIAVI	4
HYDROPTILA SP.	10	OREODYTES SCITIL	2
OECETIS SP. A	2	OPTIOSERVUS SPP.	6 8
OREODYTES SCITIL	2	ZAITZEVIA PARVUL	8
OPTIOSERVUS SPP.	8	ATHERIX VARIEGAT	2
ZAITZEVIA PARVUL	16	MICROPSECTR SP.A	18
ATHERIX VARIEGAT	2	MICROPSECTR SP.C	6
DICROTENDIP SP.C	2	MICROTENDIPES SP	6
MICROPSECTR SP.A	26	PHAENOPSECTRA SP	6
MICROPSECTR SP.C	8	POLYPEDILUM SP.A	34
MICROTENDIPES SP	14	TANYTARSUS SP. C	6
PHAENOPSECTRA SP	4	EUKIEFFERIELLA B	6
POLYPEDILUM SP.A	22	EUKIEFFERIELLA E	8
TANYTARSUS SP. C	8	ORTHOCLADIUS B	14
CORYNONEURA SP.	2	PSECTROCLADIUS B	6
CRICOTOPUS SP. B	2	SYNORTHOCLADIUS	2
EUKIEFFERIELLA B	16	ABLABESMYIA SP.	10
EUKIEFFERIELLA E	2	HEXATOMA SP.	6
ORTHOCLADIUS B	4	OLIGOCHAETA	2
ORTHOCLADIUS MAL	6	OLIGOCHAETA LUMB	2
ORTHOCLADIUS OBU	2		
ABLABESMYIA SP.	2		
CHELIFERA SP.	2		
HEXATOMA SP.	20		
C_IGOCHAETA	2		

14/A-57		14/B-57	
BAETIS HAGENI	2	BAETIS INSIGNIFI	88
BAETIS INSIGNIFI	70	CENTROPTILU SP.A	4
BAETIS TRICAUDAT	24	CAENIS SIMULANS	2
CENTROPTILU SP.A	14	ATTENELLA MARGAR	20
ATTENELLA MARGAR	82	EPHEMERELLA INFR	2
TIMPANOGA HECUBA	4	HEPTAGENIA SOLIT	2
HEPTAGENIA SOLIT	16	NIXE SIMPLICIOID	18
NIXE CRIDDLEI	2	PARALEPTOPHL BIC	4
NIXE SIMPLICIOID	54	TRICORYTHODES MI	40
RHITHROGENA HAGE	6	ISOGENOIDES ELON	2
PARALEPTOPHL BIC	26	CHEUMATOPSYCHE	24
PARALEPTOPHL DEB	16	HYDROPSYCHE OCCI	14
TRICORYTHODES MI	110	SYMPHITOPS COCKE	2
CLAASSENI SABULO	8	HYDROPTILA SP.	12
ISOGENOIDES ELON	28	ZUMATRICHIA NOTO	2
SKWALA PARALLELA	6	OECETIS SP. A	2
OPHIOGOMPHUS SP.	4	PSYCHOMYIA FLAVI	2 2 2
BRACHYCENTRUS OC	2	OREODYTES SCITIL	2
ARCTOPSYCHE GRAN	2	ZAITZEVIA PARVUL	4
CHEUMATOPSYCHE	44	ATHERIX VARIEGAT	2
HYDROPSYCHE OCCI	10	MICROPSECTR SP.A	10
SYMPHITOPS COCKE	8	MICROTENDIPES SP	32
HYDROPTILA SP.	18	PHAENOPSECTRA SP	2
OECETIS SP. A	6	POLYPEDILUM SP.A	14
PSYCHOMYIA FLAVI	2	TANYTARSUS SP. C	6
OPTIOSERVUS SPP.	4	MONODIAMESA SP.	2
ZAITZEVIA PARVUL	2	CORYNONEURA SP.	2 2 6
BRYCHIUS SP.	4	EUKIEFFERIELLA B	
CRYPTOCHIRONOMUS	2	ORTHOCLADIUS B	6
MICROPSECTR SP.A	12	ORTHOCLADIUS NIG	2 8 2 2
MICROPSECTR SP.C	12	ORTHOCLADIUS OBU	8
MICROTENDIPES SP	128	PSECTROCLADIUS B	2
PHAENOPSECTRA SP	48	SYNORTHOCLADIUS	
POLYPEDILUM SP.A	26	ABLABESMYIA SP.	4
TANYTARSUS SP. C	16	HEXATOMA SP.	4
CRICOTOPUS SP. B	2	OLIGOCHAETA	18
ORTHOCLADIUS B	12		
ORTHOCLADIUS OBU	10		
SYNORTHOCLADIUS	2		
ABLABESMYIA SP.	12		
HEXATOMA SP	6		
OLIGOCHAETA	24		

14/C-5 7		14/D-57	
BAETIS INSIGNIFI	62	BAETIS INSIGNIFI	106
BAETIS TRICAUDAT	4	BAETIS TRICAUDAT	2
CENTROPTILU SP.A	2	CAENIS SIMULANS	2
ATTENELLA MARGAR	10	ATTENELLA MARGAR	36
EPEORUS ALBERTAE	2	SERRATELLA TIBIA	2
HEPTAGENIA SOLIT	4	TIMPANOGA HECUBA	4
NIXE SIMPLICIOID	24	HEPTAGENIA SOLIT	4
RHITHROGENA HAGE	2	NIXE CRIDDLEI	8
PARALEPTOPHL BIC	4	NIXE SIMPLICIOID	42
TRICORYTHODES MI	22	PARALEPTOPHL BIC	20
CLAASSENI SABULO	6	PARALEPTOPHI. DEB	2
ISOGENOIDES ELON	4	TRICORYTHODE MT	78
SKWALA PARALLELA	2	CALINEURIA C. 1.1	2
CHEUMATOPSYCHE	12	CLAASSENI SABULO	14
HYI KOPSYCHE OCCI	6	ISOGENOIDES ELON	18
SYMPHITOPS COCKE	2	SKWALA PARALLELA	4
HYDROPTILA SP.	18	CHEUMATOPSYCHE	24
ZAITZEVIA PARVUL	2	HYDROPSYCHE OCCI	6
MICROPSECTR SP.C	2	SYMPHITOPS COCKE	2
MICROTENDIPES SP	28	HYDROPTILA SP.	14
PHAENOPSECTRA SP	4	ZUMATRICHIA MOTO	2
POLYPEDILUM SP.A	14	CERACLEA SF.	2
TANYTARSUS SP. C	4	OECETIS SP. A	4
EUKIEFFERIELLA B	4	PSYCHOMYIA FLAVI	8
ORTHOCLADIUS B	10	PARARGYRACTIS SP	4
ORTHOCLADIUS MAL	2	OPTIOSERVUS SPP.	4
ORTHOCLADIUS OBU	4	ZAITZEVIA PARVUL	6
PSECTROCLADIUS B	2 2 6 2 2	BRYCHIUS SP.	2
SYNORTHOCLADIUS	2	MICROPSECTR SP.A	8
ABLABESMYIA SP.	6	MICROPSECTR SP.C	4
CHELIFERA SP.	2	MICROTENDIPES SP	40
HYALELLA AZTECA	2	PHAENOPSECTRA SP	2
OLIGOCHAETA	4	POLYPEDILUM SP.A	6
		TANYTARSUS SP. C	2
		CRICOTOPUS SP. B	Ц
		EUKIEFFERIELLA A	2
		ORTHOCLADIUS B	6
		ORTHOCLADIUS OBU	2
		PSECTROCLADIUS B	6
		ABLABESMYIA SP.	2
		LEBERTIA SP.	2
		OLIGOCHAETA	6

Table 16. Continued

15/A-57		15/B-57	
BAETIS INSIGNIFI	54	BAETIS HAGENI	8
BAETIS TRICAUDAT	2	BAETIS INSIGNIFI	80
CENTROPTILU SP.A	6	BAETIS TRICAUDAT	86
ATTENELLA MARGAR	46	CENTROPTILU SP.A	2
HEPTAGENIA SOLIT	8	ATTENELLA MARGAR	40
NIXE CRIDDLEI	6	EPHEMERELLA INFR	2
NIXE SIMPLICIOID	34	SERRATELLA TIBIA	10
RHITHROGENA HAGE	4	TIMPANOGA HECUBA	4
PARALEPTOPHL BIC	10	HEPTAGENIA SOLIT	6
PARALEPTOPHL DEB	2	NIXE CRIDDLEI	2
TRICORYTHODES MI	106	NIXE CHIDDLEI NIXE SIMPLICIOID	60
	6		96
CLAASSENI SABULO		RHITHROGENA HAGE	
ISOGENOIDES ELON	32	PARALEPTOPHL DEB	2
SIGARA SP.	10	AMELETUS VELOX	2
BRACHYCENTRUS OC	2	TRICORYTHODES MI	34
CHEUMATOPSYCHE	26	CLAASSENI SABULO	50
HYDROPSYCHE OCCI	4	HESPEROPERLA PAC	2
SYMPHITOPS COCKE	2	ISOGENOIDES ELON	70
HYDROPTILA SP.	18	SKWALA PARALLELA	12
ZUMATRICHIA NOTO	2	PTERONARCELLA BA	12
CERACLEA SP.	2	PROTOPTILA SP.	2
PSYCHOMYIA FLAVI	2	CHEUMATOPSYCHE	64
OREODYTES SCITIL	10	HYDROPSYCHE OCCI	90
OPTIOSERVUS SPP.	б	SYMPHITOPS COCKE	2
ZAITZEVIA PARVUL	2	OREODYTES SCITIL	10
CRYPTOCHIRONOMUS	2	OPTIOSERVUS SPP.	16
MICROPSECTR SP.A	6	ZAITZEVIA PARVUL	18
MICROPSECTR SP.C	24	MICROPSECTR SP.A	24
MICROTENDIPES SP	18	MICROPSECTR SP.C	40
PHAENOPSECTRA SP	10	MICROTENDIPES SP	16
POLYPEDILUM SP.A	28	PHAENOPSECTRA SP	18
TANYTARSUS SP. C	30	POLYPEDILUM SP.A	78
CORYNONEURA SP.	2	TANYTARSUS SP. C	20
CRICOTOPUS SP. B	4	EUKIEFFERIELLA E	4
ORTHOCLADIUS B	8	HETEROTRISSOCLAD	2
ORTHOCLADIUS OBII	8	ORTHOCLADIUS B	,>
PERCEROCLADADE B	, 1	PRECTROCLADIUS B	24
ABLABESMYIA SP.	28	ABLABESMYIA SP.	24
· · · · · · · · · · · · · · · · · · ·		CHELIFERA SP.	2
		SIMULIUM SP.	40
		HEXATOMA SP.	4
•			,

19/A-57		19/B-57	
BAETIS INSIGNIFI	72	BAETIS INSIGNIFI	72
BAETIS TRICAUDAT	24	BAETIS TRICAUDAT	24
ATTENELLA MARGAR	20	ATTENELLA MARGAR	16
DRUNELLA GRANDIS	4	EPHEMERELLA INFR	4
EPEORUS ALBERTAE	4	SERRATELLA TIBIA	8
HEPTAGENIA SOLIT	28	EPEORUS ALBERTAE	16
TRICORYTHODES MI	4	HEPTAGENIA SOLIT	28
CLAASSENI SABULO	4	RHITHROGENA HAGE	4
ISOGENOIDES ELON	4	TRICORYTHODES MI	8
SKWALA PARALLELA	4	CLAASSENI SABULO	4
PROTOPTILA SP.	12	SKWALA PARALLELA	8
ARCTOPSYCHE GRAN	4	OPHIOGOMPHUS SP.	4
CHEUMATOPSYCHE	404	PROTOPTILA SP.	12
HYDROPSYCHE OCCI	184	ARCTOPSYCHE GRAN	4
SYMPHITOPS COCKE	56	CHEUMATOPSYCHE	348
SYMPHITOPS SLOSS	20	HYDROPSYCHE OCCI	152
HYDROPTILA SP.	20	SYMPHITOPS COCKE	72
ZUMATRICHIA NOTO	4	SYMPHITOPS SLOSS	40
CERACLEA SP.	12	HYDROPTILA SP.	8
PSYCHOMYIA FLAVI	12	ZUMATRICHIA NOTO	4
OPTIOSERVUS SPP.	12	OECETIS SP. A	4
ZAITZEVIA PARVUL	16	PSYCHOMYIA FLAVI	20
MICROPSECTR SP.A	24	PARARGYRACTIS SP	4
MICROTENDIPES SP	12	OPTIOSERVUS SPP.	12
POLYPEDILUM SP.A	84	ZAITZEVIA PARVUL	8
XENOCHIRONOMUS	8	MICROPSECTR SP.A	16
PAGASTIA SP.	4	MICROTENDIPES SP	16
EUKIEFFERIELLA E	4	PHAENOPSECTRA SP	8
ORTHOCLADIUS B	12	POLYPEDILUM SP.A	104
ORTHOCLADIUS OBU	8	TANYTARSUS SP. C	4
ABLABESMYIA SP.	4	EUKIEFFERIELLA A	8
NBBNBBBNIII et.	•	EUKIEFFERIELLA B	8
		EUKIEFFERIELLA E	20
		ORTHOCLADIUS B	12
		ORTHOCLADIUS MAL	8
		ORTHOCLADIUS NIG	4
		ORTHOCLADIUS OBU	20
		PSECTROCLADIUS B	4
		TURBELLARI	4
			•

19/C-57 BAETIS INSIGNIFI	92	19/D-57 BAETIS INSIGNIFI	36
BAETIS TRICAUDAT	76	BAETIS TRICAUDAT	12
ATTENELLA MARGAR	32	ATTENELLA MARGAR	8
DRUNELLA GRANDIS	24	DRUNELLA GRANDIS	4
SERRATELLA TIBIA	8	EPHEMERELLA INFR	4
EPEORUS ALBERTAE	4	SERRATELLA TIBIA	8
HEPTAGENIA SOLIT	32	TIMPANOGA HECUBA	4
NIXE SIMPLICIOID	4	HEPTAGENIA SOLIT	20
BRACHYCENTRUS OC	14	ISOGENOIDES ELON	11
PROTOPTILA SP.	16	PROTOPTILA SE	20
ARCTOPSYCHE GRAN	4	CHEUMATOPSYCHE	520
CHEUMATOPSYCHE	660	HYDROPSYCHE OCCI	220
HYDROPSYCHE OCCI	312	SYMPHITOPS COCKE	64
SYM HITOPS COCKE	104	SYMPHITOPS SLOSS	32
SYMPHITOPS SLOSS	36	HYDROPTILA SP.	4
HYDROPTILA SP.	8	CERACLEA SP.	8
LEUCOTRICHIA PIC	4	OECETIS SP. A	4
NEOTRICHIA SP.	4	PSYCHOMYIA FLAVI	16
ZUMATRICHIA NOTO	4	PARARGYRACTIS SP	12
CERACLEA SP.	4	OPTIOSERVUS SPP.	8
OECETIS SP. A	16	MICROPSECTE 3P.A	24
PSYCHOMYIA FLAVI	16	MICROPSECTR SP.C	4
ZAITZEVIA PARVUL	16	MICROTENDIPES SP	8
MICROPSECTR SP.A	40	PHAENOPSECTRA SP	4
MICROPSECTR SP.C	8	POLYPEDILUM SP.A	88
MICROTENDIPES SP	8	TANYTARSUS SP. C	1.6
POLYPEDILUM SP.A	164	CORYNONEURA SP.	4
TANYTARSUS SP. C	4	EUKIEFFERIELLA B	20
XENOCHIRONOMUS	4	EUKIEFFERIELLA E	8
EUKIEFFERIELLA A	12	ORTHOCLADIUS B	20
EUKIEFFERIELLA E	16	ORTHOCLADIUS MAL	4
ORTHOCLADIUS B	12	ORTHOCLADIUS NIG	11
ORTHOCLADIUS NIG	4	ORTHOCLADIUS OBU	24
ORTHOCLADIUS OBU	8	ABLABESMYIA SP.	8
ANTOCHA SP.	4	TURBELLARI	16
TURBELARI	24		

21/A-57 BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR EPHEMERELLA INFR SERRATELLA TIBIA TIMPANOGA HECUBA EPEORUS ALBERTAE HEPTAGENIA SOLIT CLAASSENI SABULO ISOGENOIDES ELON PTERONARCYS CALI BRACHYCENTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. NEOTRICHIA SP. CERACLEA SP.	4 32 28 8 8 28 12 12 8 4 4 4 8 16 27 20 12 16 48 8 12	BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR EPHEMERELLA INFR SERRATELLA TIBIA TIMPANOGA HECUBA EPEORUS ALBERTAE HEPTAGENIA SOLIT PARALEPTOPHL BIC TRICORYTHODES MI CLAASSENI SABULO ISOGENOIDES ELON PTERONARCYS CALI SIGARA SP. BRACHYCENTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS SLOSS HYDROPTILA SP.	4 4 0 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6
			8
	4 8		
	*		
OECETIS SP. A	4 12	CERACLEA SP.	4 4
PSYCHOMYIA FLAVI ZAITZEVIA PARVUL	8	OECETIS SP. A PSYCHOMYIA FLAVI	4
CRYPTOCHIRONOMUS	4	ZAITZEVIA PARVUL	4
MICROPSECTR SP.A	4	MICROPSECTR SP.A	4
MICROPSECTR SP.C	32	MICROPSECTR SP.C	8
MICROTENDIPES SP	88	MICROTENDIPES SP	80
PHAENOPSECTRA SP	4	POLYPEDILUM SP.A	40
POLYPEDILUM SP.A	152	EUKIEFFERIELLA A	8
EUKIEFFERIELLA E	20	EUKIEFFERIELLA E	4
ORTHOCLADIUS NIC	8	ORTHOCLADIUS NIG	36
ORTHOCLADIUS OBU	40	ORTHOCLADIUS OBU	16
SYNORTHOCLADIUS	4	ABLABESMYIA SP.	8
ABLABESMYIA SP.	40	OLIGOCHAETA	4
SIMULIUM SP.	Ţ	TURBELLARI	16
TURBELLARI	4		

Table 16. Continued

23/A-57		23/B-57	
BAETIS HAGENI	1	BAETIS INSIGNIFI	2
BAETIS INSIGNIFI	2 2	BAETIS TRICAUDAT	5
BAETIS TRICAUDAT	2	CENTROPTILU SP.B	1
CENTROPTILU SP.B	4	HEPTAGENIA SOLIT	1
CAENIS SIMULANS	1 5 2 6	NIXE CRIDDLEI	1
HEPTAGENIA SOLIT	5	STENONEMA SP.	2
NIXE SIMPLICIOID	2	PARALEPTOPHL BIC	2 3 2
STENONEMA SP.	6	PARALEPTOPHL DEB	2
PARALEPTOPHL BIC		OPHIOGOMPHUS SP.	1
PARALEPTOPHL DEB	13	LEPIDOSTOMA SP.A	1
CHEUMATOPSYCHE	1	OREODYTES SCITIL	1
LEPIDOSTOMA SP.A	1	DUBIRAPHIA SP.	8
POLYCENTROPUS SP	1	ZAITZEVIA PARVUL	1
OREODYTES SCITIL	1 6	CRYPTOCHIRONOMUS	1
DUBIRAPHIA SP.	6	MICROPSECTR SP.C	6
MICROTENDIPES SP	3 2	MICROTENDIPES SP	1
PARACHIRONOMUS	2	CORYNONEURA SP.	1
PAGASTIA SP.	1 1	EUKIEFFERIELLA E	1
CORYNONEURA SP.	1	ORTHOCLADIUS OBU	9
ORTHOCLADIUS OBU		SYNORTHOCLADIUS	9 3
PSECTROCLADIUS B	1	THIENEMANIELL SP	1
SYNORTHOCLADIUS	2	HYALELLA AZTECA	15
HYALELLA AZTECA	$\frac{-7}{7}$	GYRAULUS SP.	12
GYRAULUS SP.	10	LYMNAEA HP.	<u> </u>
PHYSA SP.	19	PHYSA SP.	23 1
OLIGOCHAETA	2	PHYSA SP. PISIDIUM SP.	1
OLIGOCHAETA LUMB	10	OLIGOCHAETA	2
TURBELLARI	1	OLIGOCHAETA LUMB	2 8
		TURBELLARI	2

23/C-57		23/0~57	
BAETIS TRICAUDAT	5	BAETIS TRICAUDAT	5
CENTROPTILU SP.B	1	NIXE CRIDDLEI	2
ATTENELLA MARGAR	1	NIXE SIMPLICIOID	9
NIXE CRIDDLEI	1	STENONEMA SP.	í8
NIXE SIMPLICIOID	1	PARALEPTOPHL BIC	12
STENONEMA SP.	8	PARALEPTOPHL DEB	3
PARALEPTOPHL BIC	4	ISOGENOIDES ELON	1
PARALEPTOPHL DEB	1	CHEUMATOPSYCHE	8
LEPIDOSTOMA SP.A	1	HYDROPTILA SP.	2
CERACLEA SP.	8	LEPIDOSTOMA SP.A	4
MYSTACIDES SP.	1	CERACLEA SP.	3
POLYCENTROPUS SP	1	PARARGYRACTIS SP	1
OREODYTES SCITIL	1	OREODYTES SCITIL	1
DUBIRAPHIA SP.	2	DUBIRAPHIA SP.	2
ZAITZEVIA PARVUL	1	BAETIS TRICAUDAT NIXE CRIDDLEI NIXE SIMPLICIOID STENONEMA SP. PARALEPTOPHL BIC PARALEPTOPHL DEB ISOGENOIDES ELON CHEUMATOPSYCHE HYDROPTILA SP. LEPIDOSTOMA SP.A CERACLEA SP. PARARGYRACTIS SP OREODYTES SCITIL DUBIRAPHIA SP. OPTIOSERVUS SPP. DICROTENDIP SP.B MICROPSECTR SP.C MICROTENDIPES SP PAGASTIA SP. ORTHOCLADIUS OBU PROCLADIUS SP. A CHELIFERA SP. WIEDEMANNIA SP. SIMULIUM SP. HYALELLA AZTECA GYRAULUS SP. LYMNAEA SP.	1
CRYPTOCHIRONOMUS	1	DICROTENDIP SP.B	1
MICROPSECTR SP.C	2	MICROPSECTR SP.C	1
MICROTENDIPES SP	9	MICROTENDIPES SP	14
ORTHOCLADIUS OBU	5	PAGASTIA SP.	1
THIENEMANIELL SP	1	ORTHOCLADIUS OBU	2
CHELIFERA SP.	1	PROCLADIUS SP. A	1
HYALELLA AZTECA	9	CHELIFERA SP.	1
GYRAULUS SP.	28	WIEDEMANNIA SP.	1
LYMNAEA SP.	1	SIMULIUM SP.	1
PHYSA SP.	4 1	HYALELLA AZTECA	17
OLIGOCHAETA LUMB	11	GYRAULUS SP.	22
TURBELLARI	1	HYALELLA AZTECA GYRAULUS SP. LYMNAEA SP. PHYSA SP.	3
		PHYSA SP.	31
	1	OLIGOCHAETA LUMB	5
		HELOBDELLA SP.	
		TURBELLARI	2

24/A-57 BAETIS INSIGNIFI BAETIS TRICAUDAT DRUNELLA GRANDIS EPHEMERELLA INFR HEPTAGENIA SOLIT RHITHROGENA HAGE STENONEMA SP. TRICORYTHODES MI OPHIOGOMPHUS SP. PROTOPTILA SP. CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. LEUCOTRICHIA PIC ZUMATRICHIA NOTO CERACLEA SP. PSYCHOMYIA FLAVI OPTIOSERVUS SPP. ZAITZEVIA PARVUL CRYPTOCHIRONOMUS MICROPSECTR SP.A MICROPSECTR SP.C MICROTENDIPES SP POLYPEDILUM SP.A TANYTARSUS SP. C XENOCHIRONOMUS PAGASTIA SP. CRICOTOPUS SP. B EUKIEFFERIELLA B SORTHOCLADIUS B ORTHOCLADIUS MAL ORTHOCLADIUS B ORTHOCLADIUS B ORTHOCLADIUS B SYNORTHOCLADIUS B	24/B-57 BAETIS INSIGNIFI BAETIS TRICAUDAT DRUNELLA GRANDIS STENONEMA SP. TRICORYTHODES MI PROTOPTILA SP. ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE OFFICE OF SP. NARPUS CONCOLOR OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROPSECTR SP.A MICROPSECTR SP.C MICROTENDIPES SP POLYPEDILUM SP.A TANYTARSUS SP. C XENOCHIRONOMUS PAGASTIA SP. EUKIEFFERIELLA A EUKIEFFERIELLA A EUKIEFFERIELLA E ORTHOCLADIUS NIG ORTHOCLADIUS OBU PSECTROCLADIUS B SYNORTHOCLADIUS B SYNORTHOCLADIUS 1 SIMULIUM SP. LYMNAEA SP. ULIGOCHAETA LUMB 4
---	--

BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR TIMPANOGA HECUBA HEPTAGENIA SOLIT NIXE SIMPLICIOID RHITHROGENA HAGE STENONEMA SP. PARALEPTOPHL BIC TRICORYTHODES MI ISOGENOIDES ELON PROTOPTILA SP. CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE CERACLEA SP. OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROPSECTR SP.A MICROPSECTR SP.C MICROTENDIPES SP POLYPEDILUM SP.A TANYTARSUS SP.C XENOCHIRONOMUS CRICOTOPUS SP.B EUKIEFFERIELLA B EUKIEFFERIELLA E ORTHOCLADIUS OBU PSECTROCLADIUS B SYNORTHOCLADIUS CHELIFERA SP. SIMULIUM SP. FERRISSIA SP. LYMNAEA SP. OLIGOCHAETA LUMB	9 3 2 1 1 1 2 4 2 1 2 5 7 2 10 16 1 1 3 7 11 6 2 1 1 1 8 2 1 1 8 1 2 1 8 1 8 1 8 1 8 1	BAETIS INSIGNIFI HEPTAGENIA SOLIT RHITHROGENA HAGE STENONEMA SP. PARALEPTOPHL BIC TRICORYTHODES MI CLAASSENI SABULO CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE CERACLEA SP. PARARGYRACTIS SP OREODYTES SCITIL OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROPSECTR SP.C MICROTENDIPES SP POLYPEDILUM SP.A TANYTARSUS SP.C CRICOTOPUS SP.B EUKIEFFERIELLA E ORTHOCLADIUS MAL ORTHOCLADIUS MAL ORTHOCLADIUS OBU PSECTROCLADIUS B SYNORTHOCLADIUS ABLABESMYIA SP. SIMULIUM SP. FERRISSIA SP. LYMNAEA SP. OLIGOCHAETA LUMB	2 1 4 1 6 1 7 9 1 1 2 1 1 6 7 4 9 3 1 8 1 1 7 2 1 2 1 4 3 3 3 3 4 3 3 4 3 3 4 3 4 3 4 3 4 3
---	---	---	--

ATTENELLA MARGAR TIMPANOGA HECUBA EPEORUS ALBERTAE HEPTAGENIA SOLIT NIXE SIMPLICIOID STENONEMA SP. TRICORYTHODES MI CHEUMATOPSYCHE SYMPHITOPS COCKE CERACLEA SP. PSYCHOMYIA FLAVI OREODYTES SCITIL OPTIOSERVUS SPP. ZAITZEVIA PARVUL DICROTENDIP SP.B 2 MICROPSECTR SP.C MICROPSECTR SP.C MICROTENDIPES SP POLYPEDILUM SP.A STICTOCHIRONO SP TANYTARSUS SP. C EUKIEFFERIELLA E ORTHOCLADIUS OBU SYNORTHOCLADIUS ABLABESMYIA SP. FERRISSIA SP. GYRAULUS SP. LYMNAEA SP. OLIGOCHAETA LUMB	2 0 2 2 4 2 7 6 2 1 8 1 6 1 0 4 2 2 1 2 6 2 6 2 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ATTENELLA MARGAR TIMPANOGA HECUBA HEPTAGENIA SOLIT STENONEMA SP. CLAASSENI SABULO ISOGENOIDES ELON PROTOPTILA SP. CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. CERACLEA SP. PARARGYRACTIS SP ZAITZEVIA PARVUL DICROTENDIP SP.C MICROPSECTR SP.A MICROPSECTR SP.A MICROPSECTR SP.C MICROTENDIPES SP TANYTARSUS SP. C EUKIEFFERIELLA E ORTHOCLADIUS OBU ABLABESMYIA SP. GYRAULUS SP. LYMNAEA SP. OLIGOCHAETA LUMB	10 628 52228 412824483234425912 10 10 10 10 10 10 10 10 10 10 10 10 10
ATTENELLA MARGAR TIMPANOGA HECUBA HEPTAGENIA SOLIT STENONEMA SP. TRICORYTHODES MI CHEUMATOPSYCHE SYMPHITOPS COCKE HYDROPTILA SP. CERACLEA SP. PSYCHOMYIA FLAVI ZAITZEVIA PARVUL DICROTENDIP SP.B MICROPSECTR SP.C MICROTENDIPES SP POLYPEDILUM SP.A STICTOCHIRONO SP TANYTARSUS SP. C EUKIEFFERIELLA E ABLABESMYIA SP. LEBERTIA SP. GYRAULUS SP. LYMNAEA SP. PHYSA SP. OLIGOCHAETA LUMB	2 4 10 30 462 4 4 4 4 2 16 2 2 16 4 2 7 6 6 2 4	BAETIS INSIGNIFI SERRATELLA TIBIA TIMPANOGA HECUBA HEPTAGENIA SOLIT STENONEMA SP. TRICORYTHODES MI OPHIOGOMPHUS SP. PROTOPTILA SP. CHEUMATOPSYCHE SYMPHITOPS COCKE CERACLEA SP. ZAITZEVIA PARVUL MICROPSECTR SP.A MICROPSECTR SP.C MICROTENDIPES SP POLYPEDILUM SP.A TANYTARSUS SP. C EUKIEFFERIELLA E ORTHOCLADIUS OBU ABLABESMYIA SP. CYRAULUS SP. LYMNAEA SP. PHYSA SP. OLIGOCHAETA LUMB	22644 42414 18264482229126

OLIGOCHAETA LUMB

CENTROPTILU SP.B TIMPANOGA HECUBA HEPTAGENIA SOLIT NIXE SIMPLICIOID ZAITZEVIA PARVUL DICROTENDIP SP.B MICROPSECTR SP.A MICROPSECTR SP.C PARACHIRON SP. B PHAENOPSECTRA SP TANYTARSUS SP. C CLADOCERA OLIGOCHAETA LUMB	1 3 4 1 2 8 1 5 2 1 1 5 6	CENTROPTILU SP.B TIMPANOGA HECUBA HEPTAGENIA SOLIT CHEUMATOPSYCHE SYMPHITOPS COCKE ZAITZEVIA PARVUL CRYPTOTENDIPE SP DICROTENDIP SP.B MICROPSECTR SP.A MICROPSECTR SP.C PARACHIRON SP.B PHAENOPSECTRA SP POLYPEDILUM SP.D TANYTARSUS SP. C ORTHOCLADIUS OBU PSECTROCLADIUS B CLADOCERA OLIGOCHAETA LUMB	2 2 2 1 1 1 2 1 1 2 1 4 1 2 1 4 1 2 2 5
27/C-58 CENTROPTILU SP.B TIMPANOGA HECUBA STENONEMA SP. TRICORYTHODES MI ZAITZEVIA PARVUL DICROTENDIP SP.B DICROTENDIP SP.C MICROPSECTR SP.A MICROPSECTR SP.A MICROTENDIPES SP POLYPEDILUM SP.A POLYPEDILUM SP.A POLYPEDILUM SP.C EUKIEFFERIELLA E ORTHOCLADIUS OBU SIMULIUM SP. CLADOCERA	2 3 1 1 9 1 1 1 2 1 1 1 1 6 0	Z7/D-58 ZAITZEVIA PARVUL DICROTENDIP SP.B MICROPSECTR SP.A MICROPSECTR SP.C MICROTENDIPES SP PARACLADOPE SP.B PHAENOPSECTRA SP POLYPEDILUM SP.D TANYTARSUS SP. C ORTHOCLADIUS OBU PSECTROCLADIUS B CLADOCERA LEBERTIA SP. OLIGOCHAETA LUMB	23 12 2 5 2 1 1 1 3 1 2 46 1

12

CENTROPTILU SP.A NIXE SIMPLICIOID PARALEPTOPHL BIC PARALEPTOPHL DEB TRICORYTHODES MI CHEUMATOPSYCHE HYDROPTILA SP. CERACLEA SP. DICROTENDIP SP.B MICROPSECTR SP.A MICROPSECTR SP.C MICROTENDIPES SP PARACLADOPE SP.B PHAENOPSECTRA SP TANYTARSUS SP. C BRILLIA SP. ORTHOCLADIUS OBU SYNORTHOCLADIUS SIMULIUM SP. CLADOCERA GAMMARUS SP. LEBERTIA SP. GYRAULUS SP. LYMNAEA SP. PHYSA SP. OLIGOCHAETA LUMB	2 4 104 17 19 8 5 4 3 1 1 1 1 1 1 1 1 8 1 4	GENTROPTILU SP.A NIXE SIMPLICIOID STENONEMA SP. PARALEPTOPHL BIC PARALEPTOPHL DEB TRICORYTHODES MI CHEUMATOPSYCHE SYMPHITOPS COCKE HYDROPTILA SP. CERACLEA SP. CRYPTOCHIRONOMUS DICROTENDIP SP.B MICROPSECTR SP.C MICROPSECTR SP.C MICROTENDIPES SP PARATANYTAR SP.B PHAENOPSECTRA SP TANYTARSUS SP. C ORTHOCLADIUS OBU SYNORTHOCLADIUS ABLABESMYIA SP. SIMULIUM SP. GAMMARUS SP. LEBERTIA SP. GYRAULUS SP. LYMNAEA SP. PHYSA SP.	1 3 3 8 9 5 1 1 0 1 3 3 1 3 1 2 2 2 1 1 1 0 9 2 4 1 1 8 12 1
CENTROPTILU SP.A NIXE SIMPLICIOID STENONEMA SP. PARALEPTOPHL BIC PARALEPTOPHL DEB TRICORYTHODES MI CHEUMATOPSYCHE SYMPHITOPS COCKE HYD TILA SP. CERACLEA SP. CRYPTOCHIRONOMUS MICROPSECTR SP.A MICROTENDIPES SP TANYTARSUS SP. C POTTHASTIA SP. ORTHOCLADIUS OBU PSECTROCLADIUS B SYNORTHOCLADIUS ABLABESMYIA SP. TIPULA SP. CLADOCERA GAMMARUS SP. LYMNAEA SP. PHYSA SP. OLIGOCHAETA LUMB	2 5 144 30 36 6 2 7 4 1 1 5 3 6 1 2 2 1 8 1 6 1 6 2 2 2 1 8 1 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	31/D-58 CENTROPTILU SP.A NIXE SIMPLICIOID STENONEMA SP. PARALEPTOPHL BIC PARALEPTOPHL DEB TRICORYTHODES MI CHEUMATOPSYCHE HYDROPTILA SP. CERACLEA SP. CRYPTOCHIRONOMUS MICROTENDIPES SP PARACHIRON SP. B TANYTARSUS SP. C ORTHOCLADIUS OBU SYNORTHOCLADIUS ABLABESMYIA SP. SIMULIUM SP. TIPULA SP. CLADOCERA GAMMARUS SP. LEBERTIA SP. GYRAULUS SP. LYMNAEA SP. PHYSA SP. OLIGOCHAETA LUMB	1 8 1 1 1 1 8 2 5 3 3 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1

			•
3/1-57 CHIRONOMUS SP. OLIGOCHAETA	6 19	28B/1-57 CHIRONOMUS SP. PROCLADIUS SP. A OLIGOCHAETA	4 3 390
3/2-57 CHIRONOMUS SP. OLIGOCHAETA	10 16	28B/2-57 CHIRONOMUS SP.	11
3/3-57 CHIRONOMUS SP. OLIGOCHAETA	3 142	TANYTARSUS SP. A PROCLADIUS SP. A OLIGOCHAETA	1 5 334
26/1-57 CHIRONOMUS SP. CRYPTOCHIRONOMUS CRYPTOTENDIPE SP	1 1 5	28B/3-57 CHIRONOMUS SP. PROCLADIUS SP. A OLIGOCHAETA	6 9 746
DICROTENDIP SP.A PARALAUTERBORNIE POLYPEDILUM SP.C TANYTARSUS SP. A PROCLADIUS SP. A OLIGOCHAETA	1 13 31 1 2 471	30B/1-57 PALPOMY-GP SP. A LENZIELLA SP. PARALAUTERBORNIE POLYPEDILUM SP.B PROCLADIUS SP. A	2 1 9 1
26/2-57 CRYPTOCHIRONOMUS CRYPTOTENDIPE SP	4 2	CLADOCERA COPEPODA OLIGOCHAETA	լ 4 36
DICROTENDIP SP.A PARACLADOPE SP.B PARALAUTERBORNIE POLYPEDILUM SP.C TANYTARSUS SP. A OLIGOCHAETA	1 1 11 19 1 418	30B/2-57 PALPOMY-GP SP. A LENZIELLA SP. PARALAUTERBORNIE POLYPEDILUM SP.B CLADOCERA COPEPODA	4 2 7 1 7
26/3-57 CRYPTOCHIRONOMUS CRYPTOTENDIPE SP	4 6	OSTRACODA OLIGOCHAETA	1 4 3
DICROTENDIP SP.A PARALAUTERBORNIE POLYPEDILUM SP.C MONODIAMESA SP. PROCLADIUS SP. A OLIGOCHAETA	6 6 51 2 2 353	30B/3-57 OECETIS SP. B PALPOMY-GP SP. A CRYPTOCHIRONOMUS DICROTENDIP SP.A PARALAUTERBORNIE	1 2 2 1 8
28A/1-57 TANYTARSUS SP. A PROCLADIUS SP. A CLADOCERA OSTRACODA OLIGOCHAETA	7 10 1 1 36	TANYTARSUS SP. A PROCLADIUS SP. A CLADOCERA COPEPODA OLIGOCHAETA	1 2 8 4 67
28A/2-57 PALPOMY-GP SP. A PROCLADIUS SP. A OLIGOCHAETA	1 6 22		
28A/3-57 TANYTARSUS SP. A PROCLADIUS SP. A CLADOCERA OLIGOCHAETA	3 10 1 51		

Table 17. Benthic Macroinvertebrate Sample Percent Distribution and Diversity Data, Spring 1984

Shallow Water Monitoring Stations - Kick Samples

	DISTRIBUTION DATA NO. SPECIES NAME BAETIS TRICAUDAT DRUNELLA GRANDIS EPHEMERELLA INFR CINYGMULA SP. A RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS SPARSAT AMELETUS VELOX CAPNIA-GROUP SP. ALLOPERLA-GROUP PROSTOIA BESAMET ZAPADA CINCTIPES CLAASSENI SABULO CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA QUINQUE PTERONARCELLA BA PTERONARCELLA BA	PERCENTAGE 19.4 .1 32.4 .2 6.6 .2 .1 .1 2.2 3.2 4.7 .1 .8 .4 .5 11.6 3.1 3
21 22 23 24 25 27 28 29 31 33 33 35 36	BRACHYCENTRUS AM ARCTOPSYCHE GRAN CHEUMATOPSYCHE OCCI SYMPHITOPSYCHE C SYMPHITOPSYCHE S LEPIDOSTOMA SP. A OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT MICROTENDIPES A ORTHOCLADIUS (EU ORTHOCLADIUS A SIMULIUM SP. A HEXATOMA SP. TIPULA SP.	.1 .3 .2 2.9 .5 1.6 .1 .4 .1 .3 .1 .1

Table 17. Continued

SAMPLE:		
	DISTRIBUTION DATA	
SPECIES		PERCENTAGE
1	BAETIS TRICAUDAT	18.4
2 3	DRUNELLA DODDSI	.1
3	DRUNELLA GRANDIS	.4
4	EPHEMERELLA INFR	5.8
5 6	RHITHROGENA HAGE	7.5
	AMELETUS VELOX	.2
7	ALLOPERLA-GROUP	4
8	PROSTOIA BESAMET	.5
9	CALINEURIA CALIF	1.6
10	CLAASSENI SABULO	8
11	HESPEROPERLA PAC	1.1
12	CULTUS PILATUS	.5
13	ISOGENOIDES ELON	. 1
14	ISOPERLA FULVA	12.2
15	PTERONARCYS CALI	2.7
16	TAENIONEMA PACIF	1.1
17	BRACHYCENTRUS OC	.1
18	GLOSSOSOMA SP.	1
19	ARCTOPSYCHE GRAN	1
20	CHEUMATOPSYCHE	9.6
21	HYDROPSYCHE OCCI	. (
22	SYMPHITOPSYCHE C	ϵ .3
23	SYMPHITOPSYCHE S	0.1
24	PSYCHOMYIA FLAVI	.2
25	RHYACOPHILA BIFI	.2
26	PARARGYRACTIS SP	.1
27	OPTIOSERVUS SPP.	1.3
28	ZAITZEVIA PARVUL	2.9
29	ATHERIX VARIEGAT	. 4
30	MICROTENDIPES A	.1
31	DIAMESA SP. A	. 1
32	CRICOTOPUS SP. A	.1
33	EUKIEFFERIELLA A	•5
34	ORTHOCLADIUS (EU	.1
35	ORTHOCLADIUS MAL	.2
36	SIMULIUM SP. A	10
37	HEXATOMA SP.	.4

Table 17. Continued

SAMPLE:		
SPECIES	DISTRIBUTION DATA	
SPECIES	NO. SPECIES NAME	PERCENTAGE
1	BAETIS TRICAUDAT	30.9
2	DRUNELLA GRANDIS	1
3	EPHEMERELLA INFR	11.6
4	RHITHROGENA HAGE	1
5 6	AMELETUS VELOX	.3
	CAPNIA-GROUP SP.	8
7	ALLOPERLA-GROUP	1.2
8	PROSTOIA BESAMET	.7
9	CALINEURIA CALIF	.1
10	CLAASSENI SABULO	.1
11	HESPEROPERLA PAC	.5
12	CULTUS PILATUS	.2
13 14	ISOGENOIDES ELON	1.6
15	ISOPERLA FULVA ISOPERLA QUINQUE	12.4
16	SKWALA PARALLELA	1.2 .4
17	PTERONARCELLA BA	1.7
18	PTERONARCYS CALI	.3
19	TAENIONEMA PACIF	8.5
20	BRACHYCENTRUS OC	.2
21	ARCTOPSYCHE GRAN	.3
22	CHEUMATOPSYCHE	4 . 4
23	HYDROPSYCHE OCCI	3.8
24	SYMPHITOPSYCHE C	4.4
25	SYMPHITOPSYCHE S	.6
26	LEPIDOSTOMA SP.A	.1
27	OECETIS SP. A	.1
28	PSYCHOMYIA FLAVI	. 4
29	RHYACOPHILA BIFI	.2
30	OREODYTES SCITIL	. 1
31	OPTIOSERVUS SPP.	• 7
32	ZAITZEVIA PARVUL	.6
33	ATHERIX VARIEGAT	• 3
34	MICROTENDIPES A	.6
35	DIAMESA SP. A	.2
36	BRILLIA SP.	.2
37	ORTHOCLADIUS (EU	.2
38	ORTHOCLADIUS OBU	.2
39	TRISSOCLADIUS A	.1
40	SIMULIUM SP. A	.2
41	HEXATOMA SP.	- 4

Table 17. Continued

SAMPLE:	O5MIS3	
	DISTRIBUTION DATA	
SPECIES		PERCENTAGE
1	BAETIS TRICAUDAT	44
2	DRUNELLA GRANDIS	. 1
2 3	EPHEMERELLA INFR	6.5
4	RHITHROGENA HAGE	10
5	AMELETUS SPARSAT	.2
5 6	AMELETUS VELOX	.2
	CAPNIA-GROUP SP.	1.9
7 8	ALLOPERLA-GROUP	2.4
9	PROSTOIA BESAMET	.2
10	CALINEURIA CALIF	. 1
11	CLAASSENI SABULO	.1
12	HESPEROPERLA PAC	.2
13	CULTUS PILATUS	.5
14	ISOGENOIDES ELON	2.2
15	ISOPERLA FULVA	19.5
16	ISOPERLA QUINQUE	1.4
17	SKWALA PARALLELA	.6
18	PTERONARCELLA BA	. 7
19	PTERONARCYS CALI	. 3
20	TAENIONEMA PACIF	3.5
21	ARCTOPSYCHE GRAN	. 1
22	CHEUMATOPSYCHE	.7
23	HYDROPSYCHE OCCI	1.7
24	SYMPHITOPSYCHE C	1.7
25	SYMPHITOPSYCHE S	.7
26	PSYCHOMYIA FLAVI	.1
27	RHYACOPHILA BIFI	.1
28	ZAITZEVIA PARVUL	.1
29	ATHERIX VARIEGAT	.1
30	ORTHOCLADIUS (EU	. 1
31	SIMULIUM SP. A	. 1

Table 17. Continued

1 4	ible 17. Continued	
SAMPLE:	O6MIW3 DISTRIBUTION DATA	
SPECIES		PERCENTAGE
1	BAETIS TRICAUDAT	23.2
	DRUNELLA GRANDIS	.1
2		
3 4	EPHEMERELLA INFR	16.7
	CINYGMULA SP. A	
5 6	RHITHROGENA HAGE	2
	AMELETUS VELOX	.3
7	CAPNIA-GROUP SP.	2.7
8	ALLOPERLA-GROUP	.5
9	PROSTOIA BESAMET	.3
10	CALINEURIA CALIF	.1
11	CLAASSENI SABULO	.1
12	HESPEROPERLA PAC	.3
13	CULTUS PILATUS	1.5
14	ISOGENOIDES ELON	1.3
15	ISOPERLA FULVA	7.7
16	ISOPERLA QUINQUE	4
17	SKWALA PARALLELA	.7
18	PTERONARCELLA BA	1.1
19	PTERONARCYS CALI	1.1
20	TAENIONEMA PACIF	1.6
21	ARCTOPSYCHE GRAN	1.2
22	CHEUMATOPSYCHE	10.5
23	HYDROPSYCHE OCC1	4.9
24	SYMPHITOPSYCHE C	9.3
25	SYMPHITOPSYCHE S	_ 4
26	PSYCHOMYIA FLAVI	1.1
27	RHYACOPHILA BIFI	.1
28	ZAITZEVIA PARVUL	1.9
29	DIAMESA SP. A	. 4
30	DIAMESA SP. B	.5
31	CRICOTOPUS SP. A	.1
32	CRICOTOPUS SP. B	. 4
33	ORTHOCLADIUS (EU	1.6
34	ORTHOCLADIUS A	.3
3 1 35	ORTHOCLADIUS B	.1
36 37	ORTHOCLADIUS C	.1
37	ORTHOCLADIUS MAL	.1
38	ORTHOCLADIUS OBU	.8
39	HEXATOMA SP.	. 4

Continued

Ta	able 17. Continued	
SAMPLE: SPECIES SPECIES 1 2 3 4 5 6 7	O8BMW3 DISTRIBUTION DATA NO. SPECIES NAME BAETIS TRICAUDAT DRUNELLA GRANDIS EPHEMERELLA INFR RHITHROGENA HAGE AMELETUS VELOX CAPNIA-GROUP SP. ALLOPERLA-GROUP	PERCENTAGE 9.1 .3 35.6 .8 .2 1.1
8 9 10 11 12 13	PROSTOIA BESAMET ZAPADA COLUMBIAN CALINEURIA CALIF CLAASSENI SABULO HESPEROPERLA PAC CULTUS PILATUS ISOGENOIDES ELON	.2 .1 .2 .6 .3
15 16 17 18 19	ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA QUINQUE PTERONARCELLA BA PTERONARCYS CALI TAENIONEMA PACIF ARCTOPSYCHE GRAN	3.1 10 7.1 1.5 .2 1.4
21 22 23 24 25 26	CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPSYCHE C SYMPHITOPSYCHE S HYDROPTILA SP. PSYCHOMYIA FLAVI	6.8 4.8 3.7 .5
27 28 29 30 31 32 33	PARARGYRACTIS SP OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROTENDIPES A PHAENOPSECTRA SP DIAMESA SP. A DIAMESA SP. B	.3 .6 .2 .8 .2 .1 .1
34 35 36 37 38 39 40 41 43 44	PAGASTIA SP. CRICOTOPUS SP. B EUKIEFFERIELLA A ORTHOCLADIUS (EU ORTHOCLADIUS B ORTHOCLADIUS OBU ABLABESMYIA SP. WIEDEMANNIA SP. SIMULIUM SP. A HEXATOMA SP. OLIGOCHAETA	.1 .4 .2 .3 .5 .9 .1 .1

Table 17. Continued

	09SHE3	
SPECIES	DISTRIBUTION DATA	
SPECIES	NO. SPECIES NAME	PERCENTAGE
1	BAETIS TRICAUDAT	9
2	EPHEMERELLA INFR	38.1
2 3	RHITHROGENA HAGE	.8
4	PARALEPTOPHL MEM	. 1
5	AMELETUS VELOX	.9
6	CAPNIA-GROUP SP.	5
7	ALLOPERLA-GROUP	
8	PROSTOIA BESAMET	.1
9	CLAASSENI SABULO	. 4
10	CULTUS PILATUS	•5
11	ISOGENOIDES ELON	5
12	ISOPERLA FULVA	8.4
13	ISOPERLA QUINQUE	4.8
14	SKWALA PARALLELA	1.1
15	PTERONARCELLA BA	. 4
16	TAENIONEMA PACIF	1.1
17	ARCTOPSYCHE GRAN	.1
18	CHEUMATOPSYCHE	7.7
19	HYDROPSYCHE OCCI	4
20	SYMPHITOPSYCHE C	2.3
21	SYMPHITOPSYCHE S	. 7
22	OECETIS SP. A	. 1
23	PSYCHOMYIA FLAVI	.7
24	PARARGYRACTIS SP	.6
25	OPTIOSERVUS SPP.	.2
26	ZAITZEVIA PARVUL	.5
27	ATHERIX VARIEGAT	.2
28	MICROTENDIPES A	.2
29	PARACLADOPELMA	.1
30	DIAMESA SP. A	. 1
31	DIAMESA SP. B	.9
32	CRICOTOPUS SP. B	. 1
33	CRICOTOPUS SP. C	. 1
34	EUKIEFFERIELLA A	.1
35	EUKIEFFERIELLA B	.2
36	EUKIEFFERIELLA C	.1
37	ORTHOCLADIUS (EU	1.5
38	ORTHOCLADIUS B	.2
39	ORTHOCLADIUS OBU	2.9
40	WIEDEMANNIA SP.	.1
41	HEXATOMA SP.	.2

Table 17. Continued

1	table 17.	Continued	
SAMPLE:	10BRM3		
SPECIES	DISTRIB	JTION DATA	
SPECIES	NO.	SPECIES NAME	PERCENTAGE
1		BAETIS TRICAUDAT	6.2
2		DRUNELLA GRANDIS	1
3 4		EPHEMERELLA INFR	20.1
		RHITHROGENA HAGE	4.6
5 6		PARALEPTOPHL MEM	.2
		CAPNIA-GROUP SP.	3.2
7		ALLOPERLA-GROUP	.1
8		CLAASSENI SABULO	1.1
9		CULTUS PILATUS	.4
10		ISOGENOIDES ELON ISOPERLA FULVA	2.2
11 12		ISOPERLA QUINQUE	1.3
13		SKWALA PARALLELA	.1
14		PTERONARCELLA BA	1.5
15		TAENIONEMA PACIF	3.4
16		GLOSSOSOMA SP.	.1
17		ARCTOPSYCHE GRAN	•3
18		CHEUMATOPSYCHE	13.1
19		HYDROPSYCHE OCCI	19
20		SYMPHITOPSYCHE C	2
21		SYMPHITOPSYCHE S	_ 11
22		HYDROPTILA SP.	.5
23		LEPIDOSTOMA SP.A	3
24		PARARGYRACTIS SP	.1
25		OREODYTES SCITIL	.1
26		OPTIOSERVUS SPP.	6.6
27		ZAITZEVIA PARVUL	2
28		ATHERIX VARIEGAT	• 4
29 30		MICROPSECTRA SP. DIAMESA SP. B	.3
31		PAGASTIA SP.	.3
32		CRICOTOPUS SP. A	.8
33		CRICOTOPUS SP. B	.9
34		EUKIEFFERIELLA C	• 3
35		ORTHOCLADIUS (EU	•5
36		ORTHOCLADIUS OBU	.3
37		SIMULIUM SP. A	.3
38		HEXATOMA SP.	.2
39		TIPULA SP.	•3
40		OLIGOCHAETA LUMB	1
41		TURBELLARIA	.2

Table 17. Continued

•		
	11HAR3	
	DISTRIBUTION DATA	
SPECIES	NO. SPECIES NAME	PERCENTAGE
1	BAETIS TRICAUDAT	12.5
2	EPHEMERELLA INFR	28.1
3	RHITHROGENA HAGE	
) 1		6
4	AMELETUS VELOX	.1
5 6	CAPNIA-GROUP SP.	0
6	CLAASSENI SABULO	. 4
7	CULTUS PILATUS	2.8
8	ISOGENOIDES ELON	2.3
9	ISOPERLA FULVA	8.4
10		
	ISOPERLA QUINQUE	4.2
11	SKWALA PARALLELA	0
12	PTERONARCELLA BA	1.2
13	PTERONARCYS CALI	.2
14	TAENIONEMA PACIF	2.3
15	ARCTOPSYCHE GRAN	•3
16	CHEUMATOPSYCHE	2.9
17	HYDROPSYCHE OCCI	5.6
18	SYMPHITOPSYCHE C	
19	SYMPHITOPSYCHE S	.1
		0
20	HYDROPTILA SP.	3.3
21	LEPIDOSTOMA SP.A	.1
22	OECETIS SP. A	.1
23	PARARGYRACTIS SP	0
24	OPTIOSERVUS SPP.	. 1
25	ZAITZEVIA PARVUL	.2
26	ATHERIX VARIEGAT	.3
27	MICROPSECTRA SP.	0
28	MICROTENDIPES A	
29		0
	DIAMESA SP. A	0
30	DIAMESA SP. B	.6
31	PAGASTIA SP.	.1
32	CRICOTOPUS SP. A	.5
33	CRICOTOPUS SP. B	.6
34	EUKIEFFERIELLA B	0
35	EUKIEFFERIELLA C	.1
36	ORTHOCLADIUS (EU	3
37		
	ORTHOCLADIUS A	0
38	ORTHOCLADIUS B	.1
39	ORTHOCLADIUS MAL	0
40	ORTHOCLADIUS OBU	2.3
4 1	TRISSOCLADIUS A	0
42	CHELIFERA SP.	Ö
43	PROSIMULIUM SP.	0
44	SIMULIUM SP. A	
45	HEXATOMA SP.	9.3
7.7	HEARTONE SF.	1

Table 17. Continued

	13BCH3	
SPECIES	DISTRIBUTION DATA NO. SPECIES NAME	PERCENTAGE
1	BAETIS TRICAUDAT	8.1
	EPHEMERELLA INFR	21.7
2 3	RHITHROGENA HAGE	16
4	PARALEPTOPHL MEM	.2
5 6	AMELETUS VELOX	.2
	CAPNIA-GROUP SP.	1.4
7 8	ALLOPERLA-GROUP CALINEURIA CALIF	.5 .1
9	CLASSENI SABULO	2.3
1Ó	HESPEROPERLA PAC	•
1 1	CULTUS PILATUS	1.9
12	ISOGENOIDES ELON	7.8
13 14	ISOPERLA FULVA ISOPERLA QUINQUE	11.8
15	SKWALA PARALLELA	·5
16	PTERONARCELLA BA	2.3
17	PTERONARCYS CALI	.1
18	TAENIONEMA PACIF	3.8
19	BRACHYCENTRUS OC	.1
20	ARCTOPSYCHE GRAN	.5 2.8
21 22	CHEUMATOPSYCHE HYDROPSYCHE OCCI	2.8 4.3
23	SYMPHITOPSYCHE C	.4
24	HYDROPTILA SP.	1.2
25	LEPIDOSTOMA SP.A	.1
26	OECETIS SP. A	.5
27	PSYCHOMYIA FLAVI	.2
28 29	OREODYTES SCITIL OPTIOSERVUS SPP.	.2 .6
30	ZAITZEVIA PARVUL	.7
31	ATHERIX VARIEGAT	.9
32	CHIRONOMUS SP.	. 1
33	MICROTENDIPES A	.8
34	DIAMESA SP. B	.2
35 36	PAGASTIA SP. POTTHASTIA SP.	.3
30 37	CRICOTOPUS SP. A	.2
38	ORTHOCLADIUS (EU	.4
39	ORTHOCLADIUS D	.1
40	ORTHOCLADIUS OBU	.6
41	TRISSOCLADIUS A	.1
42 43	SIMULIUM SP. A	5.2 3.1
43	HEXATOMA SP. TIPULA SP.	3.1 .2
1	III OLA SI .	• -

	Table 17.	Continued	
SAMPLE:	15HUS3		
		TION DATA	
SPECIES		SPECIES NAME	PERCENTAGE
1		BAETIS TRICAUDAT	9.5
2		DRUNELLA GRANDIS	.1
3		EPHEMERELLA INFR	38.1
4		RHITHROGENA HAGE	18.3
		PARALEPTOPHL MEM	.1
5 6		AMELETUS SPARSAT	.9
7		CAPNIA-GROUP SP.	.9
8		CALINEURIA CALIF	.1
9		CLAASSENI SABULO	. 4
10		HESPEROPERLA PAC	.4
11		CULTUS PILATUS	.9
12		ISOGENOIDES ELON	2.8
13		ISOPERLA FULVA	6.9
14		ISOPERLA QUINQUE	2.3
15		SKWALA PARALLELA	.7
16		PTERONARCELLA BA	1.4
17		PTERONARCYS CALI	.3
18		TAENIONEMA PACIF	1.4
19		BRACHYCENTRUS OC	.1
20		ARCTOPSYCHE GRAN	.1
21		CHEUMATOPSYCHE	.7
22		HYDROPSYCHE OCCI	1.4
23		SYMPHITOPSYCHE C	.2
24		HYDROPTILA SP.	3.6
25		OECETIS SP. A	. 1
26		PSYCHOMYIA FLAVI	.1
27		PARARGYRACTIS SP	.1
28		OREODYTES SCITIL	.1
29		OPTIOSERVUS SPP.	. 4
30		ZAITZEVIA PARVUL	. 4
31		ATHERIX VARIEGAT	•3
32		MICROTENDIPES A	3
33		DIAMESA SP. A	. 1
34		DIAMESA SP. B	.1
35		EUKIEFFERIELLA C	.1
36		ORTHOCLADIUS (EU	.8
37		ORTHOCLADIUS B	.1
38		ORTHOCLADIUS D	.1
39		ORTHOCLADIUS OBU	.3
40		TRISSOCLADIUS A	.1
41		ABLABESMYIA SP.	.1
42		DIPTERA-DOLICHOP	.1
43		SIMULIUM SP. A	.9
44		HEXATOMA SP.	1.4
45		TIPULA SP.	.1

Table 17. Continued

SAMDIE.	19L0Z3	
	DISTRIBUTION DATA	
SPECIES		PERCENTAGE
1	BAETIS TRICAUDAT	14.3
2	DRUNELLA GRANDIS	.4
3	EPHEMERELLA INFR	51.3
4	HEPTAGENIA SOLIT	
5	RHITHROGENA HAGE	2
6	PARALEPTOPHL MEM	3.2
7	CAPNIA-GROUP SP.	.5
ė.	PROSTOIA BESAMET	• 3
9	CLAASSENI SABULO	. 1
10	HESPEROPERLA PAC	. 1
11	CULTUS PILATUS	4.2
12	ISOGENOIDES ELON	÷
13	ISOPERLA FULVA	€.8
14	ISOPERLA QUINQUE	2.9
15	SKWALA PARALLELA	. 1
16	PTERONARCYS CALI	.1
17	TAENIONEMA PACIF	1.2
18	BRACHYCENTRUS OC	.1
19	CHEUMATOPSYCHE	2.2
20	HYDROPSYCHE OCCI	2.1
21	SYMPHITOPSYCHE C	•5
22	HYDROPTILA SP.	.3
23	PSYCHOMYIA FLAVI	.1
24	OPTIOSERVUS SPP.	.1
25	MICROPSECTRA SP.	.1
26	MICROTENDIPES A	.1
27	DIAMESA SP. A	.3
28	DIAMESA SP. B	.1
29	PAGASTIA SP.	.2
30 31	CRICOTOPUS SP. A CRICOTOPUS SP. B	.1
32	EUKIEFFERIELLA A	.1
33	ORTHOCLADIUS (EU	3.2
34	ORTHOCLADIUS B	.6
35	ORTHOCEADIUS D	.2
36	ORTHOCLADIUS MAL	.2
37	ORTHOCLADIUS OBU	.8
38	TRISSOCLADIUS A	.1
) 0	1112000DAD100 A	• 1

Table 17. Continued

SAMPLE:	21STR3	
	DISTRIBUTION DATA	
SPECIES		PERCENTAGE
1	BAETIS TRICAUDAT	19.6
	DRUNELLA GRANDIS	19.0
2 3	EPHEMERELLA INFR	48.3
5 4	HEPTAGENIA SOLIT	-
	RHITHROGENA HAGE	.1
5 6	PARALEPTOPHL MEM	
7	AMELETUS VELOX	3.7
8	CAPNIA-GROUP SP.	.1
9	PROSTOIA BESAMET	.2
10	CULTUS PILATUS	• <u>-</u> 4
11	ISOGENOIDES ELON	.6
12	ISOPERLA FULVA	1.2
13	ISOPERLA QUINQUE	
14	TAENIONEMA PACIF	2 2
15	CHEUMATOPSYCHE	
16	HYDROPSYCHE OCCI	.3
17	SYMPHITOPSYCHE C	.1
18	SYMPHITOPSYCHE S	· '
19	HYDROPTILA SP.	.1
20	LEPIDOSTOMA SP.A	o'
21	PSYCHOMYIA FLAVI	Ö
22	OPTIOSERVUS SPP.	.1
23	ZAITZEVIA PARVUL	. 1
24	MICROPSECTRA SP.	0
25	MICROTENDIPES A	.2
26	DIAMESA SP. A	.1
27	DIAMESA SP. B	. 8
28	PAGASTIA SP.	.6
29	CRICOTOPUS SP. B	.2
30	ORTHOCLADIUS (EU	4.8
31	ORTHOCLADIUS B	.5
32	ORTHOCLADIUS D	.2
33	ORTHOCLADIUS MAL	.2
34	ORTHOCLADIUS OBU	1.8
35	TRISSOCLADIUS A	.8
36	SIMULIUM SP. A	.1
J -		• ,

Table 17. Continued

	24AP1.3	
SPECIES	DISTRIBUTION DATA	
SPECIES	NO. SPECIES NAME	PERCENTAGE
1	BAETIS TRICAUDAT	2.7
2	EPHEMERELLA INFR	.9
3	HEPTAGENIA SOLIT	- 7
4	RHITHROGENA HAGE	. 7
5	STENONEMA SP.	.1
6	PARALEPTOPHL MEM	8.7
2 3 4 5 6 7 8	ISOGENOIDES ELON	.2
	TAENIONEMA PACIF	1.2
9	CHEUMATOPSYCHE	.1
10	ZAITZEVIA PARVUL	•
11	DICROTENDIPES SP	. 1
12	MICROPSECTRA SP.	2
13	DIAMESA SP. A	, i
14	DIAMESA SP. B	6.2
15	PAGASTIA SP.	.8
16	CRICOTOPUS SP. B	6.8
17	EUKIEFFERIELLA D	.2
18	ORTHOCLADIUS (EU	25.8
19	ORTHOCLADIUS B	.9
20	ORTHOCLADIUS D	. 6
21	ORTHOCLADIUS MAL	• ''
22	ORTHOCLADIUS OBU	31.6
23	TRISSOCLADIUS A	9.5
24	SIMULIUM SP. A	1.1

Table 17. Continued

DISTRIBUTION DATA NO. SPECIES NAME BAETIS TRICAUDAT DRUNELLA GRANDIS EPHEMERELLA INFR CINYGMULA SP. A HEPTAGENIA SOLIT STENONEMA SP. PTERONARCYS CALI TAENIONEMA PACIF OPHIOGOMPHUS SP. GLOSSOSOMA SP. CHEUMATOPSYCHE HYDROPSYCHE SP.A HYDROPSYCHE OCCI SYMPHITOPSYCHE C HYDROPTILA SP. ZUMATRICHIA NOTO CERACLEA SP. OECETIS SP. A PSYCHOMYIA FLAVI PARARGYRACTIS SP OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROPSECTRA SP. MICROTENDIPES A DIAMESA SP. B PAGASTIA SP. CRICOTOPUS SP. A	PERCENTAGE .2 .3 .2 .3 .2 .1.8 .22.1 .2 .5 .3 .2 .2 .12.8 .2 .3 .4 .2 .2 .3 .4 .2 .2 .3 .4 .2 .2 .3 .4 .2 .2 .3 .4 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2
EUKIEFFERIELLA A EUKIEFFERIELLA C	.2
ORTHOCLADIUS B ORTHOCLADIUS MAL	1.5 1.7 .5
ORTHOCLADIUS OBU TRISSOCLADIUS A SIMULIUM SP. A FERRISSIA SP.	9.4 1.7 .2 .2
	BAETIS TRICAUDAT DRUNELLA GRANDIS EPHEMERELLA INFR CINYGMULA SP. A HEPTAGENIA SOLIT STENONEMA SP. PTERONARCYS CALI TAENIONEMA PACIF OPHIOGOMPHUS SP. GLOSSOSOMA SP. CHEUMATOPSYCHE HYDROPSYCHE SYMPHITOPSYCHE CHYDROPTILA SP. ZUMATRICHIA NOTO CERACLEA SP. OECETIS SP. A PSYCHOMYIA FLAVI PARARGYRACTIS SP OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROPSECTRA SP. MICROTENDIPES A DIAMESA SP. B PAGASTIA SP. CRICOTOPUS SP. A CRICOTOPUS SP. A CRICOTOPUS SP. B EUKIEFFERIELLA CORTHOCLADIUS (EU ORTHOCLADIUS (EU ORTHOCLADIUS MAL ORTHOCLADIUS A SIMULIUM SP. A

Table 17. Deep Water Monitoring Stations - Petite Ponar Grab Samples

SAMPLE:	PO3MT3	
SPECIES	DISTRIBUTION DATA	
SPECIES	NO. SPECIES NAME	PERCENTAGE
1	CHIRONOMUS SP.	9.1
2	ORMOSIA SP.	9.1
3	OLIGOCHAETA	81.8

SAMPLE:	P16BN3	
SPECIES	DISTRIBUTION DATA	
SPECIES	NO. SPECIES NAME	PERCENTAGE
1	CHIRONOMUS SP.	2.1
2	CRYPTOCHIRONOMUS	1.4
3	PHAENOPSECTRA SP	.7
4	MONODIAMESA SP.	.7
5	HETEROTRISSOCLAD	.7
6	ORTHOCLADIUS OBU	3.5
7	TRISSOCLADIUS A	.7
8	HEXATOMA SP.	.7
9	OLIGOCHAETA	89.4

DIVERSITY INDEX .77

SAMPLE:	P26TF3		
SPECIES	DISTRIBUTION DATA		
SPECIES	NO. SPECIES NAME		PERCENTAGE
1	ISCHNURA SP.		• 5
2	PARARGYRACTIS SP		•5
3	ZAITZEVIA PARVUL		.5
4	CHIRONOMUS SP.		21.3
~	CRYPTOCHIRONOMUS		.5
6	MICROPSECTRA SP.		.9
7	PHAENOPSECTRA SP		4.7
8	i iiii da	.9	7 • (
9	MONODIAMESA SP.	•)	.5
10	CRICOTOPUS SP. B		• 5 • 5
11	EUKIEFFERIELLA B		• 5 • 5
12	ORTHOCLADIUS (EU		.5
13	TRISSOCLADIUS A		2.8
14	PROCLADIUS SP.		1.9
15	OLIGOCHAETA		63.5
• >	OBIGOCHALIA		03.7

Table 17. Continued

CAMPIE	DOONDO	
SAMPLE:	P201113	
SPECIES	DISTRIBUTION DATA	
SPECIES	NO. SPECIES NAME	PERCENTAGE
1	LEPTOPHLEBIA GRA	1.2
2	PALPOMYIA-GP SP.	2.3
3	DICROTENDIPES SP	1.2
4	MICROPSECTRA SP.	2.3
5	ORTHOCLADIUS OBU	1.2
6	PROCLADIUS SP.	36
7	OLIGOCHAETA	55.8

SAMPLE:	P30CG3		
	DISTRIBUTION DATA		
SPECIES	NO. SPECIES NAME		PERCENTAGE
1	OECETIS SP. B		1.8
2	PALPOMYIA-GP SP.		1.8
3	CRYPTOCHIRONOMUS		1.8
4	MICROPSECTRA SP.		3.6
5	POLYPEDILUM SP.B		1.8
6		33.9	
7	HETEROTRISSOCLAD		1.8
8	ORTHOCLADIUS E		32.1
9	ORTHOCLADIUS NIG		1.8
10	ORTHOCLADIUS OBU		1.8
11	PROCLADIUS SP.		16.1
12	OLIGOCHAETA		1.8

Table 17. Benthic Macroinvertebrate Sample Percentage Distribution and Diversity Data, Summer 1984

Shallow Water Monitoring Stations - Kick Samples

	S84-01	
	DISTRIBUTION DATA	5 5 5 5 5 5 5 5 4 5 5
SPECIES	SPECIES MALE BAUTIS INTIGNITE	PERCENTAGE 10.1
1 2	BAETIS TALCAUDAT	15.2
2 3	CONTROPTILU SP.A	.1
4	ATTENSULA MARGAR	7.3
5	DRUMELLA FLAVILI	. 1
6	DRUNELLA GRANDIS	.4
7 8	SERRATELLA TIBIA	3.5 0
9	TIHPANOGA HECUBA EPEORUS ALBERTAE	.2
10	HIXE CRIDDLEI	.2
11	MIXE SIMPLICIOID	2.6
12	RHITHROGENA HAGE:	1.3
13	TRICORYTHODES MI	6.7
14	ALLOPERLA-GROUP	.5
15 16	MALENKA SP. ZAPADA CIUCTIPES	O O
17	CLAASSENI SABULO	.3
18	HESPEROPERLA PAC	0
19	ISOGENOIDES ELON	2.1
20	ISOPERLA QUINQUE	0 _
21	SKWALA PARALLELA	. 8 5 . 8
22 23	PTERONARGELLA DA PTERONARGYS CALI	.1
24	BRACHYCENTRUS OC	o
25	ARCTOPSYCHE GRAN	5.4
26	CHEUMATOPSYCHE	. 7
27	HYDROPSYCHE OCCI	4.4
28 29	SYMPHITOPS COCKE HYDROPTILA SP.	2.4 3.7
30	MEOTRICHIA SP.	.5
31	OPTIOSERVUS SPP.	2
32	ZAITZEVIA PARVUL	1.5
33	ATHERIX VARIEGAT	.7
34	MICROPSECTR SP.A	.3
35 36	MICROPSECT? SP.C MICROPENDIPES SP	.3
37	PARACLADORE SP.3	C
33	A. 92 MILITER YOUR	3.7
39	POLYPEDILUM SP.C	. 1
40	PAGASTTA SP.	.1 .2 .3 .2 5.1 2.5
41 42	CARDIOCLADI SP.C	
# 3	CRICOTOPUS SP. D EUNIEFPERIELLA A	• 5
1, E	EUKIETTERIEULA D	5.1
# 3 # 5 # 6	LUKIEFFERIELLA D	2.6
46	HETEROTRISSOCLAD	.7
4 7	CRIHOCLADIUS B	.7
110	ORTHOCLADIUS F ORTHOCLADIUS HIG	
47 43 49 50	UCO SUICALSONARO	
51	ABLABESUMIA SP.	. 2
51 52	SINULIUN 32.	.1 .2 2.3
53	HEXATOMA SP.	. 4

SAMPLE:	S84-02	
SPECIES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 34 25 26 27 28 29 30 31 31 32 33 34 36 37 38 38 38 38 38 38 38 38 38 38	SPECIES NAME BAETIS BICAUDATU BAETIS FLAVISTRI BAETIS HAGENI BAETIS INSIGNIFI BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR DRUNELLA DODDSI DRUNELLA FLAVILI DRUNELLA GRANDIS EPHEMERELLA TIBIA TIMPANOGA HECUBA EPEORUS ALBERTAE NIXE CRIDDLEI RHITHROGENA HAGE PARALEPTOPHL DEB ALLOPERLA-GROUP AMPHINEMURA SP. CALINEURIA CALIF CLAASSENI SABULO HESPEROPERLA PAC SKWALA PARALLELA PTERONARCYS CALI GLOSSOSOMA SP. HELICOPSYCHE BOR ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE LEUCOTRICHIA PIC NEOTRICHIA SP. DICOSMOECUS SP.	PERCENTAGE 0 1.6 2.2 13.7 10.4 .4 .3 .1 .3 0 12.9 .1 3.2 .2 1.2 0 1.4 1.9 .3 .1 1.6 .5 0 1.3 2.7 .3 3.3
16	PARALEPTOPHL DEB	0
18	AMPHINEMURA SP.	0
20	CLAASSENI SABULO	1.9
23	PTERONARCYS CALI	.1
25	HELICOPSYCHE BOR	0
27	CHEUMATOPSYCHE	2.7
2)	SYMPHITOPS COCKE	3.3
3 1	NEOTRICHIA SP.	.9
34 33 34	ONOCOSMOECUS SP. WORMALDIA SP.	0 .5
35 36	PSYCHOMYIA FLAVI NARPUS CONCOLOR	.2
37 30	OPTIOSERVUS SPP. ZAITZEVIA PARVUL	5.9 7.7
39 40	AMACAEMA SP. ATHERIX VARIEGAT	0
41 42	CLADOTANYSARSU B MICROTENDIPES SP	. 4
43 44	PHAENOPSECTRA SP POLYPEDILUM SP.A	0 2.4
45 46	TANYTARSUS SP. B MONODIAMESA SP.	12.8
4 7 48	PAGASTIA SP. CORYNONEURA SP.	0.1
49 50 51	CARDIOCLADI SP.C CRICOTOPUS SP. B EUKISFFERIELLA A	0
52	EUKIEFFERIELLA B EUKIEFFERIALLA E	0
5H 55	ORTHOCLADIUS B PSECTROCLADIUS C	.1
50	THE AMEMANTELL SP ABLABESTY LA SP.	. 1

Table 17. Continued

58 ·	CHELIFERA 3P.	.1
59	SIAULIUA SP.	.2
6 0	ANTOCHA SP.	.2
61	HEXATOMA SP.	1.მ
62	PHYSA SP.	.6
63	OLIGOCHAETA LUMB	.2

SPECIES DISTRIBUTION DATA SPECIES SPECIES NAME PERCENTAC 1 • BAETIS HAGENI 2 BAETIS INSIGNIFI 3 BAETIS TRICAUDAT 14	.3 1.4 1.2 .2 .2
	1.4
BAETIS TRICAUDAT	.2
4 CENTROPTILU SP.A	
6 DRUNELLA DODDSI 7 DRUNELLA FLAVILI	0
8 DRUNELLA GRANDIS 9 EPHEMERELLA INFR	.5
10 SERRATELLA TIBIA 10 11 TIMPANOGA HECUBA).8 .1
12 EPEORUS ALBERTAE 13 NIXE CRIDDLEI	.9
	1.4
16 PARALEPTOPHL DEB 17 TRICORYTHODES MI	0
18 ALLOPERLA-GROUP 19 ZAPADA CINCTIPES	.2
20 CALINEURIA CALIF 21 CLAASSENI SABULO	.1
22 HESPEROPERLA PAC	.2
24 ISOPERLA QUINQUE 25 SKWALA PARALLELA	.1
26 PTERONARCELLA BA 27 PTERONARCYS CALI	4.2 .7
28 RHAGOVELIA SP. 29 BRACHYCENTRUS OC	.4
30 ARCTOPSYCHE GRAN	2.2
32 HYDROPSYCHE OCCI	.8
	1 .2
36 OECETIS SP. A	0 1.3
38 PSYCHOMYIA FLAVI 39 RHYACOPHILA ANGE	1.2
40 PARARGYRACTIS SP	0
42 ZAITZEVIA PARVUL 43 ATHERIX VARIEGAL	1.5
44 PALPONY-GP SP. A 45 MICROPSECTR SP.A	0
46 MICROPSECTR 3P.B 47 MICROTENDIPES SP	0 .4
48 PARACLADOPE SP.B 49 PHAENOPSECTRA SP	0 . 1
50 POLYPEDILUM S2.A 51 POLYPEDILUM S2.C	2.3
52 TANYTARSUS SP. B 53 PAGASTIA SP.	.6 .1
CARDIOCLADI SP.C CRICOTOPUS SP. B	.1
56 EUKIEFFERIELLA B	1.3

Table 17. Continued

58	EUKIEFFERIELLA G	0
59 •	EUKIEFFERIELLA H	. 1
60	ORTHOCLADIUS B	1.3
ó 1	ORTHOCLADIUS NIG	.2
62	ORTHOCLADIUS OBU	1
63	ABLABESMYIA SP.	. 1
64	CHELIFERA SP.	. 1
65	SIMULIUM SP.	2.2
66	ANTOCHA SP.	• 3
67	HEXATOMA SP.	.3
68	OLIGOCHAETA	0

	•		
CAMBIE.	S84-05		
SAMPLE:			
	DISTRIBU	JTION DATA	
SPECIES		SPECIES NAME	PERCENTAGE
1 .		BAETIS HAGENI	.6
2			
2			
3		BAETIS TRICAUDAT	3.2
14		CENTROPTILU SP.A	. 1
5 6		ATTENELLA MARGAR	5
Ŕ		SERRATELLA TIBIA	6.9
7			
7		TIMPANOGA HECUBA	.2
8		EPEORUS ALBERTAE	1.3
9		NIXE SIMPLICIOID	4.1
10		RHITHROGENA HAGE	. 4
11		PARALEPTOPHL BIC	. 1
12			
		TRICORYTHODES MI	1.7
13		ALLOPERLA-GROUP	.1
14		CLAASSENI SABULO	.2
15		HESPEROPERLA PAC	.2
16		ISOGENOIDES ELON	3.6
17		SKWALA PARALLELA	
			.9
18		PTERONARCELLA BA	1.1
19		PTERONARCYS CALI	.6
20		BRACHYCENTRUS OC	.2
21		ARCIOPSYCHE GRAN	5
22		CHEUMATOPSYCHE	6.3
23		HYDROPSYCHE OCCI	.6
24		SYMPHITOPS COCKE	39.5
25		HYDROPTILA SP.	.3
26		MEOTRICHIA SP.	.1
27		WORMALDIA SP.	1
28			'
		PSYCHOMYIA FLAVI	.1
29		OPTIOSERVUS SPP.	. 4
30		ZAITZEVIA PARVUL	.8
31	,	MICROPSECTR SP.A	1
32		MICROTENDIPES SP	.2
			• 4
33		PHAENOPSECTRA SP	.2
34		POLYPEDILUM SP.A	2.6
35		STEMPELLINELLA	. 1
36		TANYTARSUS SP. B	.7
37		CORYNONEURA SP.	. 1
38		EUKTEFFERTELLA A	.2
, ,		EUKIEFFERIELLA B	.2
40		EUKIEFFERIELLA E	3
4.1		HETEROTRISSOCLAD	. 1
42		ORTHOCLADIUS B	.9
43		ORTHOCLADIUS HIG	. 4
44			
		ORTHOCLADIUS ONU	- 14
45		PARAMETRIOCNE SP	. 1
46		PJECTROCLADIUS B	. 1
47		ABLABESHYIA SP.	. 1
48		CHELIFERA SP.	. 1
110		HEXATOMA SP.	.2
30		OLIGOCHAETA	. 1
` n = : : : : : : : : : : : : : : : : : :			

	334-06	
SPECIES SPECIES	DISTRIBUTION DATA SPECIES NAME	PERCENTAGE
1	BAETIS HAGENI	0
2 3	BAETIS INSIGNIFI BAETIS TRICAUDAT	9.6
4 5	CENTROPTILU SP.A ATTENELLA HARGAR	1.5 3.1
6	EPHEMEELA INFR	0
7 8	SERRATELLA TIBIA TIMPANOGA HECUBA	.6 2
9	EPEORUS ALBERTAE	.1
10 11	NIXE CRIDDLEI NIXE SIMPLICIOID	.2 6.5
12	RHITHROGENA HAGE	0
13 14	PARALEPTOPHL BIC TRICORYTHODES MI	.5 +1.5
15 16	CLAASSENI SABULO HESPEROPERLA PAC	0
17	ISOGENOIDES ELON	2.4
18 19	SKWALA PARALLELA PTERONARCELLA DA	.4
20	PTERONARCYS CALI	. 1
21 22	OPHIOGOMPHUS SP. SIGARA SP.	0 .3
23 24	RMAGOVELIA GP. BRACHYCENTRUS OC	0 .2
25	ANCTOPSYCHE GRAN	.7
26 2 7	CHEUNATOPSYCHE HYDROPSYCHE OCCI	15.7
28	SYMPHITOPS COCKE	17.3
29 30	HYDROPTILA SP. NEOTRICHIA SP.	2.4
31 32	OECETIS SP. A DICOSMOECUS SP.	.1
33	WORMALDIA SP.	. 1
34 35	PSYCHOMYIA FLAVI OREODYTES SCITIL	1. ^կ .5
36	OPTIOSERVUS SPP.	.7
37 38	ZAITZEVIA PARVUL ATHERIX VARIEGAT	2.1
39 40	CRYPTOCHIRONOMUS NIGROPSECTR SP.A	0 •9
41	HICROTENDIPES SP	1.9
42 43	PHAENOPSECTRA SP POLYPEDILUM SP.A	.3 2.5
44 45	TANYTARSUS SP. B	. 4
46	TANYTARSUS 3P. C PAGASTIA SP.	.2 .1 0
47 48	CORYMONEURA 3P. EUKIEFFERIELLA B	0.2
49	EUKIEFFERIELLA E	1.3
50 51	EUKIEFFERIELLA G ORTHOCLADIUS B	.1
52 - 53	ORTHOCLADIUS F ORTHOCLADIUS OBU	1 . 4
54	ABLABESHYIA SP.	.2
54 55 56	CHELITERA SP. ANTOCHA SP.	.4
57 58	HEXATOMA SP.	. 1
20	OLIGOCHAETA	. ti

SPECIES DISTRIBUTION DATA SPECIES SPECIES NAME 1	PERCENTAGE
---	------------

	SON-09	
SPECIES SPECIES	DISTRIBUTION DATA SPECIES NAME	PERCENTAGE
1	BAETIS HAGENI	.4
2 .	BAETIS INGIGNIFI	19.1
3 4	BAETIS TRECAUDAT CENTROPIELU SP.A	2.3
5	ATT HELLA MARGAR	5
6	EPHEMERELLA INFR	.1
7 8	SERRATELLA TIBIA TINPANOGA HECUBA	2.3
9	EPEORUS ALBERTAE	.3
10	NIXE CRIDDLEI	.3
11 12	NIXE SIMPLICIOID RHITHROGENA NAGE	3.3
13	PARALEPTOPHL BIC	.2
14 15	PARALEPTOPHL DEB TRICORYTHODES HI	6.1
16	ISOGENOIDES ELON	1.6
17	ISOPERLA QUINQUE	. 1
18 19	SKWALA PARALLELA PTERONARCELLA BA	.3
20	PTERONARCYS CALI	.2
21	BRACHYCENTRUS OC	.2
22 23	ARCTOPSYCHE GRAN THEUMATOPSYCHE	1.6
24	HYDROPSYCHE OCCI	3.7
25 26	GYMPHITOPS COCKE HYDROPTILA SP.	10.4
27	OECETIS SP. A	.2
28	PSYCHOMYIA FLAVI	. 3
29 30	OREODYTES SCITIL OPTIOSERVUS SPP.	•3 •5
31	ZAITZEVIA PARVUL	.9
32	CRYPTOCHIRONOMUS	.2
33 34	MICROPSECTR SP.A MICROPSECTR SP.C	.7
35	MICROTEMDIRES SP	1.4
36 27	FARATANYTARJUS	.1
37 38	PHAENOPSECTRA SP POLIPEDILUM SP.A	. 6 0 . 4
39	POLYPEDILUM SP.C	.3 .5 .2
# O # 1	TAMYTARSUS SP. B PASASTIA SP.	•5
42	CRICOTOPUS SP. D	.1
43 44	EUNIEFFERIALLA B	. 3
4 4 4 5	EUKIEPPERIELLA E EUKIEPPERIELLA G	1.9
45 46	ORTHOCL NDIUS 3	2.)
47 43	JRTHOCLADIUS OBU ABLADISHYIA SP.	2.2
11)	CHELIFERA SO.	. 1
50	SINULIUM GO.	. 1
51 ∞ 5ā	ANTOCHA SP. Hemarona SP.	.?
53	OLIGOCHAETA	.1

JAMPLE:	334-10	
SPECIES	DISTREBUTION DATA	
SPECILS	SPECIES NAME	PERCENTAGE
1 2 -	AMETROPUS SP. BAETIS INSIGNIFI	.1
	BAETIS TRICAUDAT	16.3 5.3
3	ATTENELLA MARGAR	13.7
5	DRUNELLA FLAVILI	.1
$\tilde{\mathfrak{O}}$	DRUNELLA GRANDIS	. 1
7	EPHEMERELLA IMFR	3.4
8 9	SERRATELLA TIBIA	4
10	TIMPANOGA HECUBA EPEORUS ALBERTAE	.1
1 1	MIKE SIMPLICIOID	9.9
12	RHI PHROGEMA HAGE	4.9
13	PARALEPTOPHL BIC	.2
14 15	IN CECORTYNCES III CLAASSENI SABULO	1.2
16	ISOGENOIDES ELON	1.8
17	SKWALA PARALLELA	.8
13	PTERONARCELLA BA	1.4
19	BRACHYCENTRUJ OC	. 1
20 21	GLOSSOSOMA SP. PROTOPTILA SP.	.6 .1
22	ARCTOPSYCHE GRAN	. 3
23	CHEUMATOPSYCHE	.8 2.6
24	HYDROPSYCHE SP.A	. 1
25 26	HYDROPSYCHE OCCI SYMPHITOPS COCKE	.3
27	HYDROPTILA SP.	3.4 .8
28	NEOTRICHIA SP.	.1
29	OPTIOSERVUS SP?.	ċ.9
30	ZAITZEVIA PARVUL	4.4
31 32	JLADOTANYTA SP.A MICROPSECTR SP.A	.3 1.6
33	MICROTENDIPES SP	.2
33 34	PHAZHOPSECTRA SP	.2
35	POLYPEDILUM SP.A	1.3
36	TANYTARSUS SP. B	1.3
3 / 30	FAMYTARSUS SP. C CARDIOGLADI SP.B	.]
) () J	GRICOTOPUS SP. B	. 1
Ĭ. Ó	EUKIEFFERIELLA B	.5
41	SUKIEFTERIOLLA E	1.3 .1 .1 .2 .5 .9
42	ORTHOULADIUS D	.5
÷3	ORTHOCLADIUS C DIVERNOCATOR	.1
45	ORTHOCLADIUS 03U	1
46 47 43	SYMORIMOCLADIUS	. 1
47	IMIGNEMANIELL SP	. 1
43	ABLADESMYIA SP.	. 1
49 50	CHELIZEAN DE.	.6 2.7
۰۰۰ ار	SINULIUN SI. FADIMIYA NVI SP. REWATONA SP. PISIDIUM SP.	. 1
51 52 53 54	askareda 32.	, Ĉ
53	PIGIDIUM 32.	. 1
54 53	OLIGOCHAETA OLIGOCHAETA LUGB	.6 1.3
56	HERUDI VEA	.1
, , ,	11 611 57 17 6 41714	• .

IES IES IES IES IES IES IES IES	BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT CENTROPTILU SP.A ATTEMELLA MARGAR DRUMELLA GRAMDIS EPHEMERELLA IMFR SERRATELLA TIBIA EPEORUS ALUBERTA MIME CRIDDLEI MIXE SIMPLICIOID RHITHROGEMA HAGE PARALEPTOPHL DEB TRICORYTHODES MI CLAASSENI SABULO ISOGENOIDES ELON SKWALA PARALLELA PTERONARCELLA BA PTERONARCELLA BA PTERONARCELLA BA PTERONARCELLA BA CHEUMA TOPSYCHE HYDROPSYCHE GRAN CHEUMA TOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. NEOTRICHIA SP. OECETIS SP. A OREODYTES SCITIL OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARITGAT CRYPTOCHIRONOMUS MICROPSECTR SP.C MICR	PERCENTAGE 0 21.2 7 .2 4.4 .1 1.5 2 .1 1.6 .3 0 .1 1.1 1.2 1.9 .1 1.1 1.2 15.8 1.7 2.3 0 0 1.2 .1 .6 0 .2 2.3 .1 1 .5 1 1 .6 0 .2 2.3 .1 1 .5 1 .6 0 .2 2.3 .1 1 .5 1 .6 0 .2 2.3 .2 .1 1 .5 .6 0 .2 2.3 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2
49 49 51 52 53	UCC EUIALIOOHARO CUIALIOOHAROUX	1.2

SPECIES 1 2 3 + 56 7 3 9 10 1 12 13 4 15 6 17 8 19 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DISTRIBUTION DATA SPECIES MAME BASTIS INSIGNIFI BASTIS TRICAUDAT CENTROPTILU 32.A ATTENDELA MARGAR DRUNELLA GRANDIS EPHEMERBLA IMER SERRATELLA TIBIA MIXE SIMPLICIOID PARALEPTOPHL DEC PARALEPTOPHL DEC PARALEPTOPHL DEB TRICORYTHODES MI CLAASSENI SABULO ISOGEMOIDES ELON ISOPERLA QUINQUE SKWALA PARALLELA ERACHYCENTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. LEPIDOSTOMA SP.A OECETIS SP. A ORMODYTES SCITIL OPTIOSMRYUS 32P. ZAITZEVIA PARVUL ATMERIX VARIEGAT MICROPSECTR SP.A MICROPSECTR SP.A	PERCENTAGE 9.5 0.7 10.1 1.9 .1 40.6 1.4 1.2 7.6 .1 .1 .1 .9 .4 4.2 .1 .6 .6 .2 .2 .1 .3 .1 .9
23 24 25 26 27 26	OBCETIS SP. A ORLODYTES SCIFIL OPTIOSORYUS SCP. ZAITZCVIA PARVUL ATHERIX VARIEGAT HICROPSECTR SP.A HICROPSECTR SP.C HICROTENDIPES SP PARACLADOPE SP.B PHAEMOPSECTRA SP POLYPEDILUM SP.A POLYPEDILUM SP.C TANYTARSUS SP. B CARDIOCLADI SP.C EUKIEFFERIELLA B EUKIEFFERIELLA B	.6 .2 .1 .3 .1 .9 .1 .6 1.2 .4 .3 .1
# 1 # 1 # 2 # 3 # 4	ORTHOCLADIUS BU ORTHOCLADIUS BBU ABLADESHYIA SP. CHELIFERA SP. HUMAROUA BP. OMIGO MA TO	.4 .9 .2 .1 .5

ETTSTEM LOUNCE 10

Table 17. Continued

SAMPLE:		
SPECIES SPECIES	DISTRIBUTION DATA SPECIES NAME	PERCENTAGE
1	BAETIS HAGENI	.1
2	BAETIS INSIGNIFI	23.3
3 11	BAETIS TRICAUDAT	2.2
	CENTROPTILU SP.A	.3
5 6	ATTEHBULA HARGAR EPHEHBREULA INFR	5.5
7	SERRATELLA TOPIA	• 11
င်	TIMPANOGA MECUBA	.3 .3 .3
9	NIXE CRIDDLEI	•3
10	NIXE SIMPLICIOID	17.5
11	PARALEPTOPHL DEB	.1
12 13	TRICORYTHODES MI CLAASSENI SABULO	4.7
, 4	ISOGENOIDES ELON	.1 1.3
15	BRACHYCENTRUS OC	.3
16	ARCTOPSYCHE GRAN	. 1
17	CHEUMATOPSYCHE	2.2
18	HYDROPSYCHE OCCI	2
19 20	SYMPHITOPS COCKE SYMPHITOPS SLOSS	.3
21	NYDROPTILA SP.	.1 10.8
22	OECETIS SP. A	.5
23	OPTIOSERVUS SPP.	.1
24	ZAITZEVIA PARVUL	.1
25	CRYPTOCHIRONOMUS	• 4
26 27	DIGROFENDIP SP.C MICROPSECTR SP.A	.1
28	MICROPSECTR SP.A	.7
29	MICROTENDIZES SP	15.1
30	PHASHOPSECTRA SP	.3
3 1	. POLYPEDILUM SP.A	2.7
32	POLYPEDILUM SP.C	.1
33	TANYTARSUS SP. B	.1
34 35	CARDIOCLADI SP.C CRICOTOPUS SP. B	.1
36	EUKIEFFERIELLA E	• 1
37	ORTHOCLADIUS B	.8
38	ORTHOCLADIUS OBU	1.7
39	ABLABESMYIA SP.	.1
÷0	SIMULIUM SP.	.3
41 42	MEKATOMA SP. OLIGOCHAETA	.4 2.3
76	OUTGOCARSIA	٤.∪

Table 17. Continued

SAMPLE:	S34-15	
	DISTRIBUTION DATA	
SPECIES		PERCENTAGE
1 -	BAETIS INSIGNIFI	26.2
2 3 4	BAETIS TRICAUDAT	7.3
3	GENTROPTILU SP.A	_ • 4
11	ATTENELLA MARGAR	5.3
5 ნ	EPHENERELLA INFR	.7
	SERRATELLA TIBIA	1
7	MIKE CRIDDLEI	.1 15.3
ઇ 9	NIXE SIMPLICIOID RHITHROGENA HAGE	.2
10	PARALEPTOPHL BIC	1
11	PARALEPTOPHL DEB	.2
12	TRICORYTHODES MI	1.2
13	CLAASSENI SABULO	. 1
14	ISOGENOIDES ELON	.1
15	SKWALA PARALLELA	.1
16	BRACHYCENTRUS OC	.1
17	ARCTOPSYCHE GRAN	.6
18	CHEUMATOPSYCHE	1.3
19	HYDROPSYCHE OCCI	14.4
20	SYMPHITOPS COCKE	.5
21 2 2	HYDROPTILA SP. OECETIS SP. A	1.2
23	OREODYTES SCITIL	1.1
24	OPTIOSERVUS SPP.	.6
25	ZAITZEVIA PARVUL	.1
26	MICROPSECTR SP.A	1.3
27	HICROPSECTR SP.C	
23	MICROTENDIPES SP	.1
29	PARATANYTARSUS	.1
30	PHAENOPSECTRA SP	2.1
31	POLYPEDILUA SP.A	l;;
3.2	POLYPEDILUM BP.C	.1
33	ROBACKIA SP.	. 1
34	TANYTARSUS SP. B	.1
35 36	CORYNOJEURA SP. GRICOTOPUS SP. B	.1
36 37	EUKIEFFERIELLA B	.2
37 33 33	EUKIEFFERIELLA E	1.7
3.	EUKIEFFERIELLA H	. 1
40	ORTHOCLADIUS B	5
41	ORTHOCLADIUS NIG	.2
'·2	ORTHOCLADIUS OBU	2.3 2.3 .4 .2
43	STHORPHOCLADIUS	. 14
44	ABLADEONYIA 3P.	.2
85 16	SIMULIUM 32.	1.3
To	HEXADDA JP.	. 1
7	OLIGOCHA TI	. 1

. DIVIL STIY IN .W 3.7

Table 17. Continued

	534-19	
SPECIES	DISTRIBUTION DATA SPECIES MAKE	PERCENTAGE
1	BARTIS INSTGNIFI	9.1
2 .	DARTES TRICAUDAT CENTROPTILU SP.A	5.3
3	CENTROPTILU SP.B	1.4
5	ATTENELLA JARGAR DRUNELLA GRANDIS	7.3
7	EPHEMERELLA IMER	. 1
გ 9	SERMATELLA TIBLA EPSORUS ALBERTAE	. 4 . 1
10	NIXE CRIDDLEI	.3
1 I 12	MIXE SIMPLICIOID FARALEPTOPHL BIC	6.4
13	PARALEPTOPHL DEB	.9
14	PARATEPLOPHLEBIA TRICORYTHODES MI	0 2.1
15 15	CLAASSENI SADULO	0
17 13	HESPEROPERLA PAC ISOGENOIDES RLON	0
19	ISOPERLA QUINQUE	0
20 21	SKWALA PARALLELA SIGARA SP.	.2
22	SRACHYCENTRUS OC	0
23 24	GLOSSOSOMA SP. ARCTOPSYCHE GRAN	0
25	CHEUMATOPSYCHE	.3 19.1
26 27	MYDROPSYCHE OCCI SYLPHITOPS COCKE	9.9 7.8
23	HYDROPTILA SP.	6.8
29	MEOTRICHIA SP.	0
30 31	OECETIS SP. A PSYCHOMYIA FLAVI	.2 3.3
32 33 34	OREODYTES SCITIL	.2
33 34	OPTIOSERVUS SPP. ZAITZEVIA PARVUL	.3
35	DRYCHIUS SP.	0
36 37	CRYPTOCHIRONOHUS LENZIELLA 3P.	.1
33	HIGROPSECTR SP.A	2.4
33 39	MICROTENDINES SP POLYPEDILUM SP.A	7.6 1.0
41	FAMYFARSUS SP. A	.2
42 43	KENGCHIROLOMUS PAGASTIA SP.	.1
11 11	CORYMONIURA SP.	0
45 46 47 43	EUKIERFERIOLLA B DUMISEFARIOLLA B	.2
1:7	ORTHOCLADIUS D	. ģ
₩ 3 ₩ 3	ORTHOCLADIUS C ORTHOCLADIUS HIG	.1
50	ORTHOCLADIUS ORU	.2
51 52	SYMORTHOCLADIUS ABLACESHYIA SP.	. 1
51 52 53 54	ANTOCHA SP.	.2
54	OLIGOUANETA	O

Table 17. Continued

	384-21	
SPECIES	DISTRIBUTION DATA SPECIES NAME	PERCENTAGE
1	BAETIS HAGENI BAETIS INSIGHIFI	.3 2.5
3	BAETIS TRICAUDAT	1.4
2 3 4 5 7 3	CENTROPTILU SP.A CENTROPTILU SP.B	•3
5	ATTEMELLA MARGAR	11.3
3	DRUMELLA GRAMDIS EPHEMARELLA INFR	.2
9 10	SERRATELLA PIBIA TIMPANOGA HECUBA	2.7
1 1	EPEORUS ALBERTAE	2.7
12 13	HEPTAGENTA SOLIT VIKE GRIDDLEI	1 0
1 1 15	NIKE SIMPLICIOID PARALEPTOPHL BIC	3.3 1.5
16	PARALEPIOPHL DEB	.9
17 18	TRICORYTHODES MI CLAASSEMI SABULO	5.3
19 20	ISOGENOIDES ELOM SKWALA PARALLELA	. iq 1. 6 . 1
21	PTEROMARCYS CALI	.2
22 23	RHAGOVELIA SP. BRACHYCENTRUS OC	0 8.
24	ARCTOPSYCHE GRAN	2.6 17.3
25 26	CHEUMATOPSYCHE HYDROPSYCHE OCCI	2.5
27 23	STAPHITOPS COCKE SYMPHITOPS SLOSS	6.7 .6
29	MYDROPFILA SP.	5.3
30 31	MEOTRICHIA SP. CERACLEA SP.	1.2
3:2 3:3	ONCETES SP. A DICOSHONCUS SP.	.7
34	PSYCHONYIA FLAVI	1.9
3 <i>5</i> 36	OREODYTES SCIFIL OPTIOSERVUS SPP.	.1
37 33	ZAITZEVIA PARVUL CRYPTO JHIROMOMUS	.3
37 33 3.0	MICROPSECTR SP.A	.1 .5 .3 .2 .5
41	MICROTENDIPES SP PHAEMOPSECTRA SP	12.5 .5 1.6
# 2 # 3 # 4	POLYPEDILUM SP.A POLYPEDILUM SP.C	1.6
4 4	TANY FARGUS SP. B	.3
45 46	PAGASTIA SP. LUKIDFFERIELLA D	.3 0
113	BUKTOSFORIOLLA C Ommodi, delum B	1.,
11-)	Charles of the contract of the	- 1
, i) 1	7. 40. 1.10 M. 1010 1 J. 3 1. 40. 1.10 M. 201 J.3	.1
23	ABLAD ANYTA GA. Si uliun sa.	.2
53 54 55 50	OLIGOCHAET.	2
56 56	DLIGOCHAZIA LUHZ HIRUDINZA	.5

Table 17. Continued

SAMPLE:	S04-23 DISTRIBUTION DATA	
SPECIES	SPECIES NAME	3LFJENIGE
1 -	3 MEYES TRICAUDAT	• -
Ĵ	CEMEROPTELU SP.A	
_3	C 15 (ST. 671.747)	,
1	Δ CT $\sim 1000.1.\Delta \sim 114.00$ MeV	,
5	MERIAS ALIMONT	.5
5 7 8	WIME CRIDDLEI MIME SIMPLICIOID	5.1
4	STEMONEHA SP.	3.1 2.5 3.2
9	PARALEPTOPHL BIG	3
10	PARAL PROPERTY DED	,
1-1	FRICORY MODES HE	. /
13	ABMAMA 32.	.)
1 3,	OPHIOGOMPHUS JP.	1.2
14	CHEUMATOPSYCHE	.)
15 16	MYDROPTILA SP. LEPIDOSTOMA SP.A	•
17	CERACLEA SP.	·
18	DICOSMOECUS 37.	.2 .2 .5
19	PARANGTRADLIS SP	. 2
20	CREODYTES SCITIL	2.2
21	DUDIRAPHIA 39.	2.2
22	P.EPOMY-GP SP. D DICROTOMDIP SP.B MICPOPEMDIPMS SP	.5 17.3
23 24	DICROTANDIP SP.B	.5
24	MICZOFEMDIRAS SP	17.3
25 26	PARACHIADNO.UJ POLYPUDILUM JP.A	1.2
27	KENOCHIRONOLUS	• • • · · · · · · · · · · · · · · · · ·
23	21G1811A S2.	1
29	ONTHOCLADIUS B	· · ;
29 30	ADLARESTIA JA.	1
31	HYALELLA AZTECA	10.3
32	GYRAULUS SP.	11.5
33	LYMMAEA SP.	1.7
31 33 33 34 56 70	PHYSA CP.	26.2
55 56	OLIBOCH, STA OLIBOCH STA LUMB	1.2
50 27	DIIGOON BIY BOND	1 • -
3.5	DINA SP.	1
J.5	E Lifit ALL .	,

DEVERSITY INDER 3.7

Table 17. Continued

:SANCIES SANCIES 12345671301123456789012345678 1011234567890122345678 333333333333333333333333333333333333	DATIS INSIGNIFI BACTIS TRICAUDAT CENTROPTILU SP.A AFTENELLA MARGAR TIMPAMOGA HECUBA EPPORUS ALDERTAE HEPTOGOTIA SOULT TIME GROPPILOTOD GTENOMENA SP. PARALEPTOPHL BIC PHARITICAL SP. POLYPEDILUM SP.A SYMPOTOMASTIA SP. PUNIEFFERIELLA E ORTHOCLADIUS PUNIEFFERIELLA E ORTHOCLADIUS PUNIEFFERIELLA SP. POCCLADIUS SP. A SIMULIUM SP.	PERCENTAGE .4 .2 .4 .3 .1 .1 .4 .2 .3 .1 .1 .6 .4 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1
2	OLIGOCHAET/ LUHB	.2

Table 17. Continued

SAMPLE:	384-25	
SPECIES	DISTRIBUTION DATA	
	SPECIES NAME	PERCENT OF
1	DAETIS INGIGATEI	.7
2	- BAETIS TRICAUDAT	.2
3	CENTROPTILU SP.A	.0
11	ATTENELLA MARGAR	13.1
5	SERRATELLA FIBIA	./1
5 6	TIMPAMOGA HECUBA	1.4
7	EPEORUS ALBERTAR	.6
8	HEPTAGENIA SOLIT	16
9	WIXE SIMPLICIOID	9.6
10	STEMONEMA ST.	1.3
11	TRICONYTHODES HI	, 1
		,
12	CLAASSENI SABULO	.
13	ISGGEMOIDES SLON	. 1
1.4	OPHIOGOMPHUS SP.	• • •
15	SIGARA SP.	• !
15	SIGARA SP. GLOJJOSOMA SP.	33
17	CHEUNATOPSYCHE	3.3
13	HYDROPSYCHE OCCI	.2 2.1
19	GLOGGOMA GP. CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPFILA S2.	
30	HYDROPTILA SP.	.)
.21	OUCETIS SP. A	,
17,3	DICOSMOROUS AR.	* *
. ' }	PSYCHOLIYIA FILATI	. (1
24	PARARGYRACTIC SP	• 1
25	OREODYTES SUITTL	1 4 4
26	ZAITZEVIA PARVUL	1.1
27	CRYPTOCHIRONOMUS	1.6
28	MICROPSECTR SP.A	1.5
29	MICROTENDIPES SP	5.5
30	POLYPEDILUM SP.A	i.5
3 1	MEHOCHIROHOMUS	. 1
32	CARDIOCLADIUS SP	,
33	ORTHOCLADIUS B	1.3
3 N	ORTHOGLADIUS HIG	. 1
33 34 35	ORTHOGEAD THE	. 1
36	SYNORTHOGLADIUS	1
37	ABLABESHYEN SP.	1.)
37 30 39	GINULIUN SP.	. 1
20	CENTRO A CO	• 1
40	HEMATOLA SP.	. (
11.1	HYALDLEA AZTEGA	.1
12	LYCHA SO.	1.2
1 <	OLIGOUMET V LUM	2.5

SAMPLE:	584-27	
SPECIES	DISTRIBUTION DATA	
SPECIES	SPECIES MANE	PERCENTAGE
1	DAETIS TRICAUDAT	1.1
2	CENTROPPILU SP.A	1 /}
3	ATTENELLA MARGAR	1.1
14	HEPTAGENIA BOLIT	1.1
5	MIKE SIMPLICIOID	1.1
6	STEMOMEMA SP.	1.1
7	TRICORYTHODES HI	2.2
ડે	PARARGYRACTIS SP	1.1
)	DUBIRAPHIA SP.	1.1
10	OPTIOSERVUS SPP.	1.1
1 1	MICROTENDIPES SP	2.2
12	PARACHIRCMOHUS	2.2
13	HYALELLA AZTECA	1.1
1 4	OLIGOCHAETA	1.1
15	OLIGOCHAETA LUNB	63.8

DIVERSITY HHDEX 1.03

Samplar:	304-31	
SPECIES.	PISTRIBUTION DATA	
APECIAS	SPECIALS NAME	PERCEITAGE
1	MELONMORUS 32.	2.9
2	OLIGOCHAETA LUMB	97.1

DIVERSITY THREE .19

Table 17. Deep Water Monitoring Stations - Petite Ponar Grab Samples

SAMPLE: 03-2/7

SPECIES DISTRIBUTION DATA

SPECIES SPECIES NAME PERCENTAGE
1 CRICOTOPUS SP. E 100

DIVERSITY INDEX O

SAMPLE: 13/7

SPECIES	DISTRIBUTION DATA		
SPECIES	SPECIES HATE		PARCELERAR
1	BARTES TRICAUDAT		.tı
?	CENTROPTILU SP.A		1.3
3	MIXE SIMPLICIOID		ċ.
4	RHITHROGENA HAGE		. ó
5	TRICORYTHODES MI		9.7
6	HYDROPTILA SP.		1.9
7	OPTIOSERVUS SPP.		. ó
ટ	CHIROMOMUS SP.	1.3	
9	CRYPTOCHIRONOMUS		1.9
10	MICROTENDIPES SP		15.5
1 1	PARACLADOPE SP.C		. 6
12	PARATANYTARSUS		2.6
13	PHAENOPSECTRA SP		56.5
14	RHEOTANYTARSUS		1.3
15	ORTHOCLADIUS OBU		. 6
16	OLIGOCHAETA		3.9

DIVERSITY INDEX 2.28

SA.IPLE: 15/7

SPECIES	DISTRIBUTION DATA	
SPECIES	SPECIES NAME	PERCENTAGE
1	NIXE SIMPLICIOID	4.6
2	PARALEPTOPHL DEB	1.1
3	TRICORYTHODES MI	3.4
21	CHEUMATOPSYCHE	1.1
5	MICROTEMDIPES SP	20.7
5	PHAENOPSECTRA SP	13.7
7	RHEOLAMYTARSUS	1.1
3	ORTHOCLADIUS OBU	1.1
9	PSECTPOCLADIUS B	3.4
10	OLIGOCHAETA	44.0

DIVERSITY THOEK 2.27

Table 17. Contin	acu	
6 7 3 9 10 11 12 13 14 15 16 17 18 19 20 21 22	SPECIES MAME BAETIS INSIGNIFT CENTROPTILU SP.A MIXE SIMPLICIOID RHITHROGENA HAGE PARALEPTOPHL DEB TRICORYTHODES MI HYDROPTILA SP. PSYCHOMYIA FLAVI CRYPTOCHIRONOMUS MICROTENDIPES SP PARACLADOPE SP.B PARACLADOPE SP.C PHAENOPSECTRA SP ROBACKIA SP. RHEOTAMYTARSUS CORYNONEURA SP. ORTHOCLADIUS B ORTHOCLADIUS OBU PSECTROCLADIUS B SYMORTHOCLADIUS OLIGOCHAETA	PERCENTAGE .9 .9 3.8 .9 .9 4.7 .9 2.8 3.8 .9 2.8 17.9 2.8 17.9 2.8 .9 1.9 3.8 2.8 .9 1.9 3.8 2.7
DIVERSITY INDEX SAMPLE: 17/7 SPECIES DISTRIBUTE SPECIES 1 2 3 4 5 6 7		PERCENTAGE 10 40 10 10 10 10
DIVERSITY INDEX CAMPLE: 1877 CONCLES DISTRIB C. DIES 1 2 3 4 5 6		25700NTLQU 9.1 9.1 19.2 -5.5 9.1 9.1
DIVERSITY LUDEX SAMPLE: 2047 SPECIES DISCRIS SPECIES 1 2 3 4 5 6 7 3		9 17 3 Unit (12 3.8 3.8 37.9 6.9 3.4 6.9 3.4

343

4 5 6		PERCENTAGE 1.2 2.4 3.7 1.2 9.3 1.2 4.9 75.6
DIVERSITY INDEX	1.38	
3 4 5 6 7 3		PERCENTAGE 1.7 3.4 32.2 10.2 13.6 1.7 3.4 1.7 1.7 20.3
DIVERSITY INDEX	2.73	
SAMPLE: 21.5/7 SPECIES DISTRIB SPECIES 1 2 3 4 5 6 7	UTION DATA SPECIES NAME NIXE SIMPLICICID TRICORYTHODES MI CRYPTOCHIRONOMUS MICROTENDIPES SA POLYPEDILUM SP.A RMEOTAMYTARSUS OLIGOCHAETA	PERCENTAGE 2.4 4.0 17.1 2.4 2.4 63.3
DIVERSITY INDEX JAMPLE: 22/7 SPUCIES DISTRIB SPUCIES 1 2 5 5		2 DROWNTAGE: 7.7 7.7 15.7 15.4 53.3

Table 17. Conti	nued		
11 12 13 14 15	UTION DATA SPECIES NAME EPEORUS ALBERTAE SYMPHITOPS COCKE OPTIOSERVUS SPP. CHIROMOMUS SP. CRYPTOCHIROMOMUS CRYPTOTENDIPE SP MICROPSECTR SP.B PARALAUTERBORNIE PARATANYTARSUS PHAEMOPSECTRA SP POLYPEDILUM SP.C STEMPELLINELLA TANYTARSUS SP. A MONODIAMESA SP. ORTHOCLADIUS OBU PSECTROCLADIUS A PROCLADIUS SP. A OLIGOCHAETA	1.0	PERCENTAGE .1 .1 .1 .1 .1 8 .1 6 .3 .6 .3 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1
2 3	A	3.1	PERCENTAGE .8 22 74
DIVERSINY INDUK	1.01		
3APLU: 35A23 3PLOIDS DIST.NID 3PLOIES 1 2 3 4 6 7 6 7 6 9 10	CONTRACODA PAUPONY-GP SP. A CHIRONOMUS SP. CRYPTOTENDIPE SP. HARNISCHIA SP. PROCLADIUS SP. A PROCLADIUS SP. B OSTRACODA UMIOMICOLA SP. OLIGOCHAETA	4.2	PERCENTAGE .2 .5 3 1.2 7.9 .7 .5 .2

DIVERSITY HORE 1.12

Table 17. Continued

SAMPLE:	584-30	
SPECIES	DISTRIBUTION DATA	
SPECIES	SPECIES MAME	PERCENTAGE
1 .	PALPOMY-GP SP. A	2.4
5	CLADOTANYTA SP.A	12.2
3	CRYPTOTEMDIPS GP	12.2
4 5 6	HARMISCHIA SP.	7.3
5	LENZIELLA SP.	1.9
Ó	MICROPSECTR SP.3	4.9
7	PAGASTIELLA SP.	22
3	PARATANYTARSUS	4.9
9	POLYPEDILUM SP.D	4.9
10	STEMPELLIMA SP.	4.9
1 1	HETEROTRISSOCLAD	4.9
12	PROCLADIUS SP. A	4.9
13	CLADOCERA	2. ;
14	HYALELLA AZTECA	2.4
15	LYMNAEA SP.	2.4
16	OLIGOCHAETA	2.4

Table 17. Benthic Macroinvertebrate Sample Percentage Distribution and Diversity Data, Fall 1984

Shallow Water Monitoring Stations - Kick Samples

SAMPLE:		
	DISTRIBUTION DATA	DEDGENMAGE
SPECIES	SPECIES NAME BAETIS INSIGNIFI	PERCENTAGE .4
1 2	BAETIS TRICAUDAT	1.8
2 3	DRUNELLA GRANDIS	.1
4	EPHEMERELLA INFR	57.5
5 6	CINYGHULA SP.	. 1
	EPEORUS ALBERTAE	.1
7,	RHTTHROGENA HAGE Paraleptophi, mem	6.1 .11
•)	AMELETUS VILOX	.1
1()	CAPNIA-GROUP SP.	()
11	ALLOPARLA-GROUP	.2
17	PROSTOLA BESAMET	.1
13	ZAPADA CINCTIPES	. 2
14	CLAASSENI SABULO	. 4
15 16	HESPEROPERLA PAC CULTUS PILATUS	0
17	ISOGENOIDES ELON	.3
18	ISOPERLA FULVA	2.5
19	ISOPERLA QUINQUE	.3
20	SKWALA PARALLELA	. 1
21	PTERONARCELLA BA	1
22 23	PTERONARCYS CALI TAENIONEMA PACIF	0
24	BRACHYCENTRUS OC	.2
25	ARCTOPSYCHE GRAN	. ধ
26	CHEUMATOPSYCHE	.6
27	HYDROPSYCHE OCCL	19
28	SYMPHITOPS COCKE	.5
29	SYMPHITOPS SLOSS	1.7
30 31	HIDROPTILA SP. LEPIDOSTOMA SP.A	.2
31 32	CERACLEA SP.	0
33 34 35	OECETIS SP. A	.1
34	OPTIOSERVUS SPP.	.7
35	ZAITZEVIA PARVUL	.7
36	ATHERIX VARIEGAT	.1
37 38	MICROPSECTR SP.A MICROTENDIPES SP	0
39	POLYPEDILUM SP.A	0
40	DIAMESA SP. B	. 1
41	GRICOTOPUS SP. B	.3
42	EUKIEFFERTELLA B	. 9
43	EUKTEFFERIELLA E	.2
44 45	EUKI FFERIELLA II ORTHOCLADIUS B	.1
46	ORTHOCLADIUS OBU	, ,
47	STAULTUL CP.	. 4
741,	THEADOLA T	.6

	F84-02	
	DISTRIBUTION DATA	
SPECIES		PERCENTAGE
1	BAETIS INSIGNIFI	.9
2	BAETIS TRICAUDAT DRURELLA DODDEI	ے <u>ب</u>
5 4	DRUNELLA GRANDIS	• 1
5	EPHEMERELLA INFR	28.0
6	EPEORUS ALBERTAE	
7	MERTAGETEA SOLAT	7
Ü	RHITHROGENA HAGE	- 1
9	PARALEPTOPHL MEN	.2.5
10	AMELETUS VELOX	-]
11	CAPNIA-GROUP SP.	.3
1 1 1 3	ALLOPERLA- GROUP ZAPADA CINCTIPES	2.2
14	CALINEURIA CALIF	.3 1.3
15	CLAASSENI SABULO	3
10	HESPEROPERLA PAC	.2
17	CULTUS PILATUS	. 1
1 8	ISOPERLA FULVA	1.1
19	ISOPERLA QUINQUE	J
20	SKWALA PARALLELA	• -
21	PTERONARCYS CALI	. 3
22	HELICOPSYCHE BOR	- 11
23	ARCTOPSYCHE GRAN	.2
24 25	CHEUMATOPSYCHE HYDROPSYCHE OCCI	6.7 2
26	SYMPHITOPS COCKE	1.4
27	SYMPHITOPS SLOSS	12.7
28	HYDROPTILA SP.	2.9
29	LEUCOTRICHIA PIC	.1
30	LEPIDOSTOMA SP.A	8.
31	OECETIS SP. A	. 7
32	APATANIA SP.	0
33	PSYCHOMYIA FLAVI	.5
34	RHYACOPHILA BIFI	•3
35 36	PARARGYRACTIS SP	.1
36 37	OREODYTES SCITIL OPTIOSERVUS SPP.	2.4
38	ZAITZEVIA PARVUL	2.8
39	ATHERIX VARIEGAT	0
40	MICROTENDIPES SP	.3
41	POLYPEDILUM SP.A	. 1
42	POLYPEDILUM SP.C	0
43	RHEOTANYTARSUS	. 6
1) 1)	TANYTARSUS SP. B	0
45 56	POTTHASTIA SP.	. 1
46 47	CRICOTOPUS SP. B EUKIEFFERILLLA B	2.1
4.	EURTEFFERITALA E	()
1)	EUKTEFFERTULLA H	. 5
50	ORTHOCLADIUS D	
51	ORTHOCLADIUS OBU	. 7
52	THIENEMANIELL SP	0

Table 17. Continued

53	ABLAGESTYIA SP.	. 1
54	WIEDEMANNIA SP.	. 1
55	SIMULIUM 3P.	. 1
56	ANTOCHA SP.	. 1
57	HEXATOLA SP.	1.4
58	SPERCHON SP.	.1
59	PHYSA SP.	.6
60	OLIGOCHAETA	0
61	OLIGOCHAETA LUMB	. 3
62	TURBELLARI	.1

Table 17. Continued

SAMPLE:	$[F:\mathcal{Y}] = O^{T_1}$	
SPECIES	DISTRIBUTION DATA	
WECLES	SPECLES NAME	PERCENTAGE
7	BAETIS INSIGNIFI	. 1
2	BAETIS TRICAUDAT	1.6
3	DRUHELLA DODDSI	. 1
4	DRUNELLA GRANDIS	.5
5	EPHERERLAINER	17.2
6)		1
7 8	PARALEPTOPHE MEN AMELETUS VILOX	- <u>`</u>
9	CAPETA-GROUP SP.	. 1
10	ALLOPERLA-GROUP	. 1
1 1	ZAPADA CIECTIPES	. 1
12	CLAASSENT JATULO	•
15	HESPIROPERI PAC	* <u>-</u> /
. 4	ISOGENOIDES ELON	. 1 . 3 . 1 . 5
15	ISOPERLA FULVA	3.1
10	ISOPARLA QUI.EQUE	. 1
17	SKWALA PARALLELA	. 1
10	PTERONARCHLLA BA	. ,
19	PTERONARCY: CALL	. 4
20	TRENIONELLA PACIF	_ O
21	ERACHYCENTRUS OC	• !
22	ARCTOPSICHE GRAN	. † . 3 14.9
23	CHEUMATOPSYCHE	14.9
24	HYDROPSYCHE OCCI	.28.9
25	SYMPHITOPS COCKE	7.7
26	SYMPHITOPS SLOSS	· 3 5.4
27 23	HYDROPTILA SP.	
29 29	LEPIDOSTOMA SP.A PSYCHOMYIA FLAVI	.1 1.1
30	RHYACOPHILA BIFI	.3
31	PARARGYRACTIS SP	. 4
32	OPTIOSERVUS SPP.	1.1
33	ZAITZEVIA PARVUL	1.6
34 34	MICROTENDIPES SP	2
35	POLYPEDILUM SF.A	.2
36	RHEOTANYTARSUS	.1
37	CRICOTOPUS SP. B	.3
3:	EUK LEFFERIELLA B	1.7
39	EURTEFFERTELLA E	!
40	EUKTEFFUR CELLA H	. 3
41	ORTHOCLADIUS B	.2
42	ORTHOCLADIUS OBU	. 3
43	ABLADESMY.EA CP.	.?
71.71	WIEDEMANUIA SP.	_ 1
45	SIMMLIUL SPL	. 3
4.6 47	AUTOCHA SP.	. 1 _ 1
#1 <i>(</i>	OLEGOCHAETA LUM	- 1

Table 17. Continued

SAMPLE:	F84-05 DISTRIBUTION DATA	
		PERCENTAGE
	SPECIES NAME	
1	BALTIS TRICAUDAT	1.2
2 3	DRUNELLA GRANDIS	. 0
.5 1	EPHEMERELLA INFR	31.9
	CINYGMULA SP.	.1
5	HEPTACENIA SOLIT	. 1
6,	RHITHROGENA HAGE	4.1
5 6 7 8	PAPALEPTOPHL MEH	.6
Ó	AMELETUS VELOX	. 1
10	CAPNTA-GROUP SP.	
11	ALLOPERLA-GROUP	.6 .2 .1 .2
12	Z/PADA CINCTIPES	1
13	CLAASSENI SABULO	2
14	HESPEROPERLA PAC	.3
15	CULTUS PILATUS	.1
15	ISOGENOILES ELON	.6
17	ISOPLALA FULVA	4.5
18	ISOPERLA QUINQUE	. 2
19	SKWALA PARALLELA	.2
20	PTEROMARCELLA BA	.2
21	PTERONARCYS CALL	.2
· · · · ·	TARRIONENA PACIF	. 1
24	ARCTOPSYCHE GRAM	1.2
24	CHEUMATOPSYCHE	9
25	HYDROPSYCHE OCCI	23.7
26	SYMPHITOPS COCKE	8.9
27	SYMPHITOPS SLOSS	1.6
28	HYDROPTILA SP.	8.
29	LEPIDOSTOMA SP.A	. 1
30	OECETIS SP. A	.2
31	PSYCHOMYIA FLAVI	. 4
32	RHYACOPHILA BIFI	.2
3 3	OPTIOSERVUS SPP.	.6
34	ZAITZEVIA PARVUL	.7
35	MICROTENDIPES SP	. 1
36	POLYPEDILUM SP.A	. 1
37	CRICOTOPUS SP. B	1.4
38	EUKTEFFERTELLA B	2.3
31	EUK (DEPERIELLA E	. 1
40	EUKIMFFERIELLA H	.2
4.1	HETEROTRESSOCIAD	. 1
42	ORTHOCLADIUS B	. 7
43	ORTHO MADJUS OBU	. 4
47	ABLAUESHYIA SP.	. 1,
114,	WIEDEGAMNIA SP.	.3
46 47	STAULLUH SP.	.1
47	ANTOCHA SP. HEXATOHA SP.	.9
40	HEAR OTH SI.	• 9

Table	17. Continued F84-06	
	DISTRIBUTION DATA	
SPECIES		PERCENTAGE
1	BAETIS INSIGNIFI	.9
2	BAETIS TRICAUDAT	1.1
3	DRUNELLA GRANDIS	.2
	EPHEMERELLA INFR	45.2
5	CINYGMULA SP.	. 1
6	HEPTAGENIA SOLIT	1.9
7	RHITHROGENA HAGE	3.3
8	PARALEPTOPHI. MEH	- '
1()	AMELITUS VELOX Alloperla- group	- !
1.1	CLAASSEN (SABILO	- 1
1.1	HESPELOPERLA PAC	. 1
1.3	CULTUS PILATUS	1
1 24	ISOGENOIDES ELON	
15	ISOPLKLA FULVA	1.6
. i	ISOPERLA QUINQUE	.2
17	SKWALA PARALLELA	. 1
18	PTERONARCELLA BA	.3
19	PTERONARCYS CALI	. 1
20	OPHIOGOMPHUS SP.	.]
21 22	BRACHYCE.TRUS AM BRACHYCENTRUS OC	. !
23	ARCTOPSYCHE GRAN	• 1
24	CHEUMATOPSYCHE	15.7
25	HYDROPSYCHE OCCI	7.5
26	SYMPHITOPS COCKE	3
27	HYDROPTILA SP.	1.7
28	ZUMATRICHIA NOTO	. 1
29	LEPIDOSTOMA SP.A	. 1
30	CERACLEA SP.	. 1
31	OECETIS SP. A	1(- ()
35	PSYCHOMYIA FLAVI	3
33	RHYACOPHILA BIFI PARARGYRACTIS SP	.1
34	OREODYTES SCITIL	.1
35 36	OPTIOSERVUS SPP.	.5
37	ZAITZEVIA PARVUL	1.6
38	ATHERIX VARIEGAT	.2
39	CRYPTOCHIRONOMUS	.1
40	MICROTENDIPES SP	2.2
41	POLYPEDILUM SP.A	. 1
42	CRICOTOPUS SP. B	.2
43	EUKIEFFERIELLA B	. 1
1, 1,	EUKIEFFERIELLA E	.1
45 46	EUKIEFFERTELLA H	. ?
11.7	ORTHOCLAIGUS B ORTHOCLADIUS OBU	. 3
48	SYNORTHOCLADIUS	. 1
49	THIENEMANIELL SP	. 1
50	ABLABECHYTA SP.	
51	CHELIFERA SP.	. 1
52	WIEDEMANNIR BP.	. 1
53	SIMULTUH SP.	. 1
54	ANTOCHA SP.	. 1
55	HEXATOMA SP.	. 4

Table 17. Continued

Sm.PLE:	F34-00	
SPECIES	DISTRIBUTION DATA	
SPECIES	SPECIES NAME	PERCENTAGE
1	BAETIS INSIGNIFI	• 4
2 3	BAETIS TRICAUDAT DRUNELLA GRANDIS	.3
) []	EPHENERELLA INFR	35.9
Ļ	RHITHROGENA HAGE	.5
(v	AMELETUS VELOX	. 1
7	TRICORYTHODES HI	. 1
8	CAPNIA-GROUP SP.	.6
9	ALLOPERI.A-GROUP	.1
1 () J 1	ZAPADA CINCTIPES HESPEROPERLA PAC	.3
1.	foodhallas Elon	.2
	ISOPERLA FULVA	. (-
1 1	PTEROJARCELLA BA	. 3
15	PTEWONARCYS CALL	.3
16	ARCTOPSYCHE GRAM	.6
17	CHEUTIATOPSYCHE	7.2
13	HYDROPSYCHE OCCI CYMPHITOPS COCKE	15.4 6.2
20	HYDROPTILA SP.	4.6
21	LEPIDOSTOMA SP.A	.2
22	OECETIS SP. A	.5
23	PSYCHOHYIA FLAVI	1.9
24	PARARGYRACTIS SP	.9
52	OPTIOSERVUS SPP.	.9
, 6	ZAITZEVIA PARVUL	. 3
27 23	CAIRONOHUS SP. DECROTENDIP SP.C	1.1
29	ALCROTENDIPES SP	5.3
30	PHAEHOPSECTRA SP	.9
31	POLYPEDILUM SP.A	1
32	TANYTARSUS SP. B	5.1
33	DIAMESA SP. B	.3
34	POTTHASTIA SP.	.1
35 36	CRICOTOPUS SP. B	3.1
37	EUKIEFFERIELLA B EUMIEFFERIELLA E	.9
33	EUKIEFFERIELLA H	.7
	ORTHOCLADIUS B	• 5
	ORTHOCLADIUS NIG	. 1
41	ORTHOCLADIUS OBU	1.2
1;2	ABLABESMY LA SP.	.2
43 44	WIEDERAUNIA SP.	.2
44 打り	EPHYDRIDAE OLIGOCHAETA	. 1
刊り 計り	OLIGOCIERETA LUGB	• ')
1 4 1	***************************************	• •

PIVOR ITY INDEX 3.5 .

Table 17. Continued

	17. Continued	
	F84-09	
	DISTRIBUTION DATA	
SPECIES		PERCENTAGE
1	BAETIS INSIGNIFI	.7
2	BAETIS TRICAUDAT	. 6
3	EPHEMERELLA INFR	55 . 5
14	HEPTAGENIA BOLIT RHITHROGENA HAGE	. 7
5	RHITHROGENA HAGE	1(- 9
1,	PARALEPTOPHI. HEH	. ()
7	AMELETUS VELOX CAPNIA-GROUP SP.	_ 1 ₃
()	CAPNIA-GROUP SP.	. ()
()	CI,AADBENI DABULO	. 1
10	HESPEROPLELA PAC	:
1 1	1 3 () () () () () () () () () (. 11
12	LEOPERLA FULVA	V . 4.
13	ISOPERLA QUINTUR	. 1
14	ISOPERLA QUINDUE SKWALA PARALLULA PTERONARCELLA BA	1 .2 .1 .1 .2 14.6
15	PTERONARCHLLA BA	. 1
I C	PTERONARCYS CALI	. 1
17	ARCTOPSYCHE GRAII CHEULATOPSYCHE	. 2
10	CHEULATOPSYCHE	14.6
19	HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP.	10.2
20	SYMPHITOPS COCKE	2.5
21	HYDROPTILA SP.	€.1
22	LEPIDOSTOHA SP.A	. 1
23	OECETIS SP. A PSYCHOMYTA FLAVI	5.2 .1 .3 .8 2.2
24	PSYCHOMYTA FLAVI	5.2
25	PARARGYRACTES SP OPTLOSERVUS SPP. ZAITZEVIA PARVUL MICROTENDIPES SP	- 1
26	OPTROSERVUS SPP.	. 3
27	ZAITZEVIA PARVUL	. C
28	MICROTENDIPES SP	2.2
29	PHAENOPSECIKA SP	1.1
30	TANYTARSUS SP. B	2.3
31	CRICOTOPUS SP. B	.5
32		.6
33	EUKIEFFERIELLA II	.1 .3 4.4
34	ORIHOCEVDIO2 B	• 3
35	ORTHOCLADIUS OBU	
36	SYNORTHOCLADIUS	.1
37	CHELIFERA SP.	.1
38	WIEDEMANNIA SP.	.1
39	HEXATOMA SP.	. 1
40	OLIGOCHAETA	. 1

Table 17. Continued

Тарте		
SAMPLE:	F84-10	
SPECIES	DISTRIBUTION DATA	
SPECIES	SPECIES NAME	PERCENTAGE
1	BAETIS INSIGNIFI	.8
	BAETIS TRICAUDAT	1.9
2 3		
3	CENTROPTILU SP.A	0
14	DRUNELLA GRANDIS	.2
5 6	EPHEMERELLA INFR	12.8
6	CINYGMULA SP.	0
	HEPTAGENIA SOLIT	. 5
7 8	RHITHROGENA HAGE	3.3
9	PARALEPTOPHL MEM	.7
10	AMELETUS VELOX	•3
11	CLAASSENI SABULO	1
12	HESPEROPERLA PAC	0
13	CULTUS PILATUS	0
14	ISOGE TOTAL ELON	0
	ISOGENOIDES ELON	
15	ISOPERLA FULVA	1.3
16	SKWALA PARALLELA	.2
17	PTERONARCELLA BA	.9
18	TARRETORERA PACIF	.2
19	BRACHYCENTRUS OC	1 1
.20	PROTOPTILA SP.	Ü
21	ARCTOPSYCHE GRAN	1.1
22	CHEUMATOPSYCHE	14.4
23	HYDROPSYCHE OCCI	16.
24	SYMPHITOPS COCKE	4.6
_ 25	SYMPHITOPS SLOSS	.2
26	HYDROPTILA SP.	13.7
27	LEUCOTRICHIA PIC	O
23	LEPIDOSTOMA SP.A	0
29	OECETIS SP. A	.1
30	PSYCHOMYIA FLAVI	.6
31	PARARGYRACTIS SP	1.1
32	OPTIOSERVUS SPP.	9
33	ZAITZEVIA PARVUL	2.9
34	ATHERIX VARIEGAT	.1
35	MICROPSECTR SP.A	8.
36	MICROTENDIPES SP	. 1
37	POLYPEDILUM SP.A	.1
26	TANYTARSUS SP. B	
38		.2
	PAGASTIA SP.	0
40	CRICOTOPUS SP. B	.9
41	EUKIEFFERIELLA B	3.9
42	EUKIEFFERIELLA E	. 1
43	EUKIEFFERIELLA H	1
1414	HETEROTRISSOCLAD	• 1
		. 1
45	ORTHOCLADIUS B	. 1
46	ORTHOCLADIUS OBU	.3
47	THIENEHANIELL SP	. 1
42	ABLABESHYIA SP.	0
49	CHELIFERA SP.	.2
50	WIEDEMANNIA SP.	• 4
51	SIMULIUM SP.	1.4
52	ANTOCHA SP.	. 6
53	OLIGOCHAETA LUMB	• 3
54	HIRUDINEA	0
J =1	HIRODIHAN	O

Table 17. Continued

Table 1/.	Continued	
	4-11	
SPRICIES DIS	TRIMUTION DATA	
PECTES	SPECIES NAIN	PERCENTAGE
1	BARTIS INGIGNITI	.7
1	BAETIS TRICAUDAT	.7
3	EPHEMERELLA INFR	(11.4)
$\overline{I_1}$	HEPTAGENIA SOLIT	
	HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL HEM	3.9
6	PARALEPTOPHL HEM	14
7	AMELETUS VELOX	. Ů
7 3	ZAPADA CINCTIPES	0
9	CLAASSENI SABULO	1 4 4
1Ĵ	HESPEROPERLA PAC	()
11	ISOGEMOIDES ELON	, t
12	ISOPERLA FULVA	1
13	ISOPERLA QUINQUE	. 1
1.1	SKMALA PARALLELA	1
14,	PTERONARCELLA BA	
10	1 18:5 PV VS ALOMETERS	Ü
17	TAUNIOUREA PACIF ARCTOPSYCHE GLAN	Ü
18	ARCTOPSYCHE GLAN	. 6
19	CHEUMATOPSYCHE	3.3
20	HYDROPSYCHE OCCI	17.1
21	SYMPHITOPS COCKE	_ ()
22	SYMPHITOPS GLOSS	
23	HYDROPTILA SP.	22.1
24	LEPIDOSTOMA SP.A	.2
25	PSYCHOMYIA FLAVI	.1
26	PARARGYRACTIS SP	0
27	OPTIOSERVUS SPP.	.7
25	ZAITZEVIA PARVUL	.9
29	ATHERIX VARIEGAT	1.1
20	HICROPSECTE SP.A	.5
21	MICROTENDIPES SP	3.7
30	POLYPEDILUM SP.A	3.1
22	TANYTARSUS SP. B	· li
30 31 32 33 34	DIAMESA SP. B	0
35	PAGASTIA SP.	Ö
36		2.8
37 38	EUKIEFFERIELLA B	. 6
20	EUKIEFFERIELLA E	. 11
39	EUKIEFFERIELLA H	. 1
40	ORTHOCLADIUS B	. 1
41	ORTHOCLADIUS OBU	3.5
42	ABLABESMYIA SP.	0
43 41	WIEDEMANNIA SP.	.2
	HEXATOMA SP.	. 11
45	OLTGOCHAETA	. 1

SAUPLE:	F84-13	
	DISTRIBUTION DATA	
SPECIES		PERCENTAGE
1	BAETIS INSIGNIFI	. 2
2	BAETIS TRICAUDAT	. 1
3	EPHEMORELLA INER	9.7
11	HEPTAGENIA BOLIT	• •
1,	RHITHROGENA HAGE	- 7
()	STENONEHA SP.	()
7 1.	PARALEPTOPHI, MEM	• '
	AMELETUS VELOX	· .
9	CAPNIA-GROUP SP.	. 1
1()	PROSTOIA BESAMET	0
11	CULTUS PILATUS ISOGENOIDES ELON	
12	ISOGENOIDES ELON ISOPERLA FULVA	. 4
13	SKWALA PARALLELA	. 4
1. 15	PTERONARCELLA BA	. 1
10	ARCTOPSYCHE GRAN	•
17	CHEUNATOPSYCHE	2.8
18	HYDROPSYCHE OCCI	2
19	SYMPHITOPS COCKE	4- 1
20	HYDROPTILA SP.	49.1
21	ZUMATRICHIA NOTO	0
22	OECETIS SP. A	. 1
23	PSYCHOMYIA FLAVI	• 6
24	PARARGYRACTIS SP	0
25	OPTIOSERVUS SPP.	. 2
26	ZAITZEVIA PARVUL	. 1
27	ATHERIX VARIEGAT	0
28	CRYPTOCHIRONOMUS	0
29	MICROPSECTR SP.A	. 3
30	MICROTENDIPES SP	23.7
31	PHAENOPSECTRA SP	• 5
32	TANYTARSUS SP. B	
33	DIAMESA SP. B	. (
34	DIAMESA SP. C	•
35	CRICOTOPUS SP. B	1.5
36	EUKIEFFERIELLA B	•
37	ORTHOCLADIUS B	• (
38	ORTHOCLADIUS OBU	2.1
3	THIENEMANIELL SP	0
40	ABLABESMYIA SP.	•
4.1	CHELIFERA SP.	0
42	HEXATOMA SP.	•
43	TIPULA SP.	0
1 1 1 =	OLIGOCHAETA OLIGOCHAETA LUMB	1.2
45	OFIGORUREIN FOUR	U

Table 17. Continued

A. R.E.	F84-14 DISTRIBUTION DATA SPECIES NAME BAETIS INSIGNIFI BAETIS TRICAUDAT CAEHIS SIMULANS EPHEGERELLA LIFR HEPTAGENIA SOLIT	
OLI OLE	DISTRIBUTION DATA	DUD OF HOLD A CHI
J. ACIES	SPECIES HAHR	PERCENTAGE
1	BARTIS INSIGNIFI	.1
5	BARTES TRICAUDAT	•3
3	CAETTS STRULANS	.1
	ETHERISKELLA THEK	19
5 6	HIPTAGENIA SOLIT	.7
0	RHITHROGENA HAGE	}
7	PARALEPTOPHIL MEM	• 5
	AMELETUS VELOX	. 1
9	CLAASSER1 SABULU	. I
10	ESOGENOTIES ALON	• !
11 12	TOOLEMPY FOR A	. 0
	DEMAIN FARMERSEA	. i
13 14	PIENUINPOSTER BA	. 1
	CLAASSENT SABULO ISOGENOTDES ELON ISOPERLA FULVA SKWALA PARALLELA PTERONAPUELLA BA TAERIORENA PACIF ARCTOPSYCHE GRAN	. 1
5	ARCIONSTONE GRAN	10.0
16	CHEULIATOPS (CHE	13.2
17 13	HYDROPJYCHE OCCI	16.0
19	SYMPHITOPS COUKE HYDROPTILA SE.	20.1
20	CUDACTEA SO	٠٠٠) ١
21	ORGANIC CL.	• !
()	OPTION OF A TO	- J
))) () () () () () () () () (CERACLEA SP. CERACLEA SP. OECETIS OF A OPTIOSERVUS SPP. ZATTZEVIA PARVUL ATHERIX VARIEGAT HIGROFSECTE SP.A MICROTENDISES SP	19 .7 .7 .5 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1
1.4	APPERED V MARRINGAR	•
*) ,	ATTEMERA VARVINAL	- 1
20	MICROTEMBLERS SP	10.0
21	PARACLADOPE SP.A	10.9
25	PHAENOPSECTRA SP	1
29	TAHYTARSUS SP. B	• 1
30	STICTOCHIROMO SP	• - - 1
31	CRICOTOPUS SP. B	1 2
32	EUKIEFFERIELLA B	1.2
23	EUKIEFFERIELLA E	• - - 1
33)\{	EUKINFFENCELLA H	1
55	HETEROTRTUSOCLAD	- 1
36	ORTHOCLADIU.: B	.2
37	ORTHOCLADIUS OBU	2
3/	SYNORTHOCLADIUS	.1
5 Q	THIANEHAMIELL SP	.1
39 40	ABLAGESMY LA SP.	• 1
41	WIEDEMANNIA SP.	. 1
	SINULIUL SP.	. 1
43	HEXATOLA SP.	.1
44	HYALELLA AZTEGA	.2
0.5	GYRAULUS SP.	.1
0.5 14.	OLIGOCHAETA	3
17	OLIJOC META LUMB	.1
,	OBLUCK MEIN HOND	. !

JAVURSITY INDUX 3.09

Table	17. Continued	
	F84-15	
	DISTRIBUTION DATA	
SPECIES	SPECIES NAME	PERCENTAGE
1	BAETIS INSIGNIFI	
2	BAETIS TRICAUDAT	. 4
3	EPHENERELLA INFR	36.8
4	HEPTAGENIA SOLIT	.3
5 6	RHITHROGENA HAGE	4.7
	PARALEPTOPHL MEM	14
7	AMELETUS VELOX	3.
8	TRICORYTHODES MI	0
9	CAPNIA-GROUP SP.	. 1
10	CLAASSENI SABULO	. 1,
1 1	CULTUS PILATUS	ଚ
12	ISOGENOIDES ELON	. 14
13	ISOPERLA FULVA	. (1
14	ISOPERLA QUINQUE	0
15	SKWALA PARALLELA	. 1
16	PTERONARCELLA BA	. 2
17	TAEHIONEHA PACIF	0
18	ARCTOPSYCHE GRAN	. 1
19	CHEUMATOPSYCHE	5.5
20	HYDROPSYCHE OCCI	19.2
21	SYMPHITOPS COCKE	. 1
22	HYDROPTILA SP.	17.9
23 24	OECETIS SP. A	. 1
25	OPTIOSERVUS SPP.	. 9
26	ZAITZEVIA PARVUL	.5
27	ATHERIX VARIEGAT	. 1
28	CLADOTANYTA SP.A	0
29	MICROPSECTR SP.A MICROTENDIPES SP	.2
30	POLYPEDILUM SP.A	4.6
31	TANYTARSUS SP. B	. 1
32	DIAMESA SP. B	. 1
33	CRICOTOPUS SP. B	.1
34	EUKIEFFERIELLA B	
35	BUKIEFFERIELLA E	.2
35 36 37 38	EUKIEFFERIELLA F	. 1
37	EUKIEFFERIELLA H	.2
3.8	ORTHOCLADIUS B	.1
39	ORTHOCLADIUS OBU	1.2
40	PSECTROCLADIUS B	0
41	ABLABESHYIA SP.	0
42	WIEDEMANNIA SP.	.1
43	SIMULIUM SP.	.2
411	HEXATOMA SP.	. 1
45	TIPULA SP.	Ô
46	OLIGOCHAETA	0
		•

Table 17. Continued

SPECIES 1 2 3 4 5 6 7 8 9 10 112 13 14 15 16 18 19 20 22 23 24 25 26 27 28 29 31 33 34 35	DISTRIBUTION DATA SPECIES NAME BAETIS INSIGNIFI BAETIS TRICAUDAT DRUNELLA GR INGE EPHEMERELLA INFR CINYGMULA SP. HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS VELOX ISOGENOIDES ELON ISOPERLA FULVA SKWALA PARALLELA TAENIOMEMA PACIF BRACHYCHTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS GOCKE SYMPHITOPS GOCKE SYMPHITOPS SLOSS HYDROPTILA SP. LEUCOTRICHIA PIC ZUMATRICHIA NOTO OECETIS SP. A PSYCHOMYIA FLAVI PARARGYRACTIS SP OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROPSECTR SP. A MICROTENDIPES SP POLYPEDILUM SP. A CRICOTOPUS SP. B EUKIEFFERIELLA B EUKIEFFERIELLA F EUKIEFFERIELLA H	PERCENTAGE .3 4.1 .2 34.8 0 1.4 1.3 1.9 .2 .6 .6 .6 .1 1.1 15.6 .1 15.6 .1 0 .2 3.7 0 .5 .1 3.3 .2 .4 0 .2 .4 0 .2 .2
32	EUKIEFFERIELLA B	.4
33	EUKIEFFERIELLA E	0
34	EUKIEFFERIELLA F	.2

Table 17. Continued

Table	17. Continued	
SAMPLE:	F84-21	
SPECIES	DISTRIBUTION DATA	
SPECIES	SPECIES NAME	PERCENTAGE
1	BAETIS INSIGNIFI	0
2	BAETIS TRICAUDAT	.2
3	DRUNELLA DODDSI	0
3 4	DRUNELLA GR INGE	.2
	EPHEMERELLA INFR	52
5 6	CINYGMULA SP.	.2
7	EPEORUS ALBERTAE	0
8	HEPTAGENIA SOLIT	.6
9	RHITHROGENA HAGE	.5
10	PARALEPTOPHL NEM	1.2
11	AMELETUS VELOX	1.2
12	CAPNIA-GROUP SP.	. 1
	CLAASSENI SABULO	- 1
13		
14	HESPEROPERLA PAC	. 1
15	ISOGENOIDES ELON	• 4
16	ISOPERLA FULVA	1
17	SKWALA PARALLELA	0
1 გ	PTERONARCYS CALI	.1
19	TAENIONEMA PACIF	.2
20	BRACHYCENTRUS OC	.3
21	ARCTOPSYCHE GRAN	.6
22	CHEUMATOPSYCHE	8.7
23	HYDROPSYCHE OCCI	6.2
24	SYMPHITOPS COCKE	2
25	SYMPHITOPS SLOSS	.2
26	HYDROPTILA SP.	13.5
27	LEPIDOSTOMA SP.A	.2
28	CERACLEA SP.	.5
29	OECETIS SP. A	. 2
30	PSYCHOMYIA FLAVI	1.4
31	OPTIOSERVUS SPP.	.6
32	ZAITZEVIA PARVUL	1
33	MICROTENDIPES SP	5.6
34	PHAENOPSECTRA SP	0
35 36	POLYPEDILUM SP.A	0
36	CRICOTOPUS SP. B	0
37	EUKIEFFERIELLA E	0
38	EUKIEFFERIELLA F	0
39	ORTHOCLADIUS B	.2
40	ORTHOCLADIUS OBU	.5
41	ABLABESMYIA SP.	. 1
45	ANTOCHA SP.	0
43	OLIGOCHAETA LUMB	•3
44	TURBELLARI	0
	A 412-1123-744-31- G	9

	F84-23 DISTRIBUTION DATA SPECIES NAME	PERCENTAGE
1 2 3	BAETIS INSIGNIFI BAETIS TRICAUDAT EPHEMERELLA INFR	1.8
4 5	RHITHROGENA HAGE STENONEHA SP.	· d . 2 . 3
6 7	ARSHNA JP. CHEUMATOPSYCHE	.1
o 9	HYDROPTILA SP. OXYETHIRA SP.	2.5
10 11	CERACLEA SP. TRIAENODES SP.	. 1
12 13	POLYCENTROPUS SP PARARGYRACTIS SP	.1
14 15	DUBIRAPHIA SP. OPTIOSERVUS SPP.	. <i>i</i> ;
16 17	ZAITZEVIA PARVUL GYRINUS SP.	:2 :4
13 19	DICROTENDIP SP.A MICROPSECTR SP.A	1.1
20 21 22	TANYTARSUS SF. 3 DIAMESA SP. B PAGASTIA SP.	. 1
23 24	PAGNSTIN SP. POTTHASTIA SP. CORYNONEURA SP.	1.9 .2 .4
25 26	CRICOTOPUS SP. B EUKIEFFERIELLA F	6 1.9
27 23	ORTHOCLADIUS B ORTHOCLADIUS OBU	6.5 4.3
29 30	PSECTROCLADIUS B SYNORTHOCLADIUS	14.9
31 32	ABLABESMYIA SP. WIEDEMANNIA SP.	. 1 . 4
33 34	SIMULIUM SP. HYALELLA AZTECA	.9 5.6
35 36 37	LEBERTIA SP. GYRAULUS SP. LYMNAEA SP.	.1 8
36 39	PHYSA SP. OLIGOCHAETA	3.9 5.5
40 41	OLIGOCHAETA LUMB TURBELLARI	1.5 26.4
42	GLOSSIPHONIA SP	.2

Table 17. Continued

	EU4-24 LISTRIBUTION DATA	
SPECIES	SPECIAS NA IE	PERCENTAGE
1	BAETIS INDIGNIEL	.6
2	BARTIS THICAUDAT	1
1	EMERITARILA LIFA	.5
3 4	HEPTAGENIA HOLIT	.9
	KHITHMOGENA HAGE	1.6
6	STENONELIA SP.	10.9
7 ĉ	AMELETUS VELOX	. 1
à	OPHIOGOMPHUS SP.	. 1
9	GLOSSOSOMA SP.	. 1
10	CHEUMATO/SICHE	7.1
1 1	HYDROPSYCHE OCCI	1
12	SYMPHITOPS COCKE	1.1
13	HYDROPTILA SP.	.2
14	CERACLEA SP.	ć
15	OECETIS SP. A	.2
16	OPTIOSLRVUS SPP.	.2
17	ZAITZEVIA PARVUL	1.2
18	LENZIELLA SP.	.1
19	MICROPSECTR SP.A	.2
20	MICROTENDIPES SP	6
21	TANYTARSUS SP. B	. 1
22	DIAMESA SP. B	. 4
23	PAGASTIA SP.	.2
54	CRICOTOPUS SP. B	15
25	EUKIEFFERIELLA F	1
26	EUKIEFFERIELLA H	. 1
27	ORTHOCLADIUS B	2.9
28	ORTHOCLADIUS OBU	5.1
29	SYMORTHOCLADIUS	. 1
30	MIEDEHANNIA SP.	. 1
30 31 32 33	SIGULIUM SP.	19.8
32	LYMMAGA SP.	13,8
33	OLIGOCHAETA	.2
31i 35	OLIGOCICAE CA. LUMB	.6
35	TURMULLART	1.4

	£34-25	
SPECIES	DISTRIBUTION DATA SPECIES NAME BAETIS INSIGNIFI	PERCENTAGE
SPECIES	SPECIES NAME BAETIS INSIGNIFI	rencentage . 1
2	EPHEMERELLA INFR	.5
2	HEPTAGENIA SOLIT	• J
3 4	RHITHROGENA HAGE	• _/ 1
	STENONEMA SP.	36
5 6	OPHIOGO::PIUS SP.	20
7	BRACHYCENTRUS OC	• 6
8	CHEUMATOPSYCHE	23.4
9	HYDROPSYCHE OCCI	.3
10	SYNPHITOPS COCKE	. ú
1 1	HYDROPTILA SP.	о. О.4
12	CERACLEA SP.	4.2
13	OECETIS SP. A	1
14	PSYCHOMYIA FLAVI	2 2
15	PARARGYRACTIS SP	· • · · · · · · · · · · · · · · · · · ·
16	OPTIOSERVUS SPP.	. 1
17	ZAITZEVIA PARVUL	• · ·
18	DICROTENDIP SP.A	.6
19	MICROTENDIPES SP	8.3
20	TANYTARSUS SP. B	. 1
21	STENOCHIRONOM SP	. 1
22	DIAMESA SP. B	0
23	CRICOTOPUS SP. B	1 _ 4
24	EUKIEFFERIELLA B	. 1
25	ORTHOCLADIUS B	.8
26	ORTHOULADIUS OBU	3.9
27	SYMORTHOCLADIUS	.1 1.5
28	SIMULIUM SP. SPERCHON SP.	1.5
29	SPERCHON SP.	U
29 30 31 32	LEBERTIA SP.	()
31	FERRISSIA SP.	.2
32	GYRAULUS SP.	2.1
33	LYMNAEA SP.	1.5
34	PHISA SP.	.1
33 34 35 36	SIMULIUM SP. SPERCHON SP. LEBERTIA SP. FERRISSIA SP. GYRAULUS SP. LYMNAEA SP. PHYSA SP. OLIGOCHAETA LUMB TURBELLARI	.7
30	TURBELLARI	.2

D1.ERSITY INDEX 3.06

Table 17. Continued

	E01 02	
	F24-27	
	DISTRIBUTION DATA	
SPECIES	SPECIES NAME	PERCENTAGE
1	BAETIS INSIGNIFI	- 11
2	HEPTAGENIA SOLIT	<u>.</u> 4
3	STENONEHA SP.	4.9
11	CHEUMATOPSYCHE	25.4
5	HYDROPSYCHE SP.A	12.1
6	HYDROPSYCHE OCCI	2.2
2 3 5 6 7 3	SYMPHITOPS COCKE	2.7
3	HYDROPTILA SP.	3.1
9	ZUMATRICHIA NOTO	. 4
10	CERACLEA SP.	25
1 1	PSYCHOLYIA FLAVI	<i>L</i> }
12	PARARGYRACTIS SP	4.5
13	OPTIUSERVUS SPP.	. 4
1 1	MICROTEHDIPES SP	6.3
15	STENOCHERONO.1 SP	. 4
16	DIAHESA SP. B	. 11
17	CRICOTOPUS SP. B	1.3
13	ORTHOCLADIUS B	. 4
1)	ORTHOCLADIUS OBU	2.2
20	WIEDEHANNIA SP.	.9
21	FERRISSIA SP.	. 4
22	LYMNAEA SP.	. 4
23	TURBELLARI	1.3
		3

Table 17. Deep Water Monitoring Stations - Petite Ponar Grab Samples

3 4 5 6 7	SPECIUS NAME CHIRONOMUS SP. PHAENOPSECTRA SP PHAENOPSECT SP.3 POLYPEDILUM SP.D TANYTARSUS SP. B STICTOCHIRONO SP EUKIEFF GRIELLA 1 OLICOCHINTA		PURCENTAGL 2.5 2.5 6.2 2.5 2.5 39.5
2 3 4 5 6	UTION DATA SPECIES HALE GERACLEA SP. CHYPTOCHIRONOMUS PHAENOPLECT SP.B POLYPEDILUM SP.D PSEUDOCHIRONOMUS ORTHOCLADIUS OBU PROCLADIUS SP. A OLIGOCHAETA		FERCAL TAGA 1 .8 3.5 .4 .2 5.0 88.2
DIVERSITY INDEX	.76		
SAMPLE: F84-28 SPECIES DISTRIBU SPECIES 1 2 3	UTION DATA SPECIES NAME CHIRONOMUS SP. PROCLADIUS SP. A OLIGOCHAETA	6	PERCENTAGE 6.3 87.7
DIVERSITY INDEX	.66		
SAMPLE: FS4-281 SPECIES DISTRIBUTE SPECIES 1 2 3 DIVERSITE INDEX	UTION DATA SPECIES NAME CHIRONOMUS SP. PROCLADIUS SP. A OLIGOCHAETA	5.4	PERCENTAGE 4.1 90.4
TOTAL STATE TO THE STATE OF			

Table 17. Continued

StairLL:	F811-30	
	DISWRIBUTION DATA	
SPECIE	SPECIES NAME	PERCENTAGE
1	OPHIOGOMPHUS SP.	• 3
2	NECTOPSYCHE SP.	.6
3	OECETIS SP. B	2.2
‡	PALPOHY-GP SP. A	7.3
5	CRYPTOCHIROHOMUS	4.1
6	PARACLADOPE SP.B	3.5
7	PARACLADOPE SP.C	. 3
Ö	PARALAUTERBORNIE	2.2
õ	POLYPEDILUM SP.3	1.6
10	POLYPEDILUM SP.D	24.9
1.1	PSEUDOCHIRONOMUS	24.6
12	PROCLADIUS SP. A	3.2
13	ARRENURUS SP.	•3
14	PISIDIUM SP.	.3
15	OLIGOCHAETA	24.6

Table 17. Benthic Macroinvertebrate Sample Percentage Distribution and Diversity Data, Spring 1985

Shallow Water Monitoring Stations - Kick Samples

	Shallow water	monitoring Stations - Ki
SAMPLE:		
	DISTRIBUTION DATA	DDD05V#105
SPECIES		PERCENTAGE
1	BAETIS TRICAUDAT	13.6
2	EPHEMERELLA INFR	35.4
2 3 4	RHITHROGENA HAGE	1.9
4	PARALEPTOPHL MEM	0
5	AMELETUS VELOX	0
5 6	CAPNIA-GROUP SP.	2.8
7	ALLOPERLA-GROUP	.2
8	PROSTOIA BESAMET	6.7
9	CULTUS PILATUS	.4
10	ISOGENOIDES ELON	.2
11	ISOPERLA FULVA	٥.
12	ISOPERLA QUINQUE	.8
13	SKWALA PARALLELA	.1
14	PTERONARCELLA BA	.4
15	PTERONARCYS CALI	0
16	TAENIONEMA PACIF	.4
17	BRACHYCENTRUS AM	.4
18	ARCTOPSYCHE GRAN	. 1
19	CHEUMATOPSYCHE	.6
20	HYDROPSYCHE OCCI	7
21	SYMPHITOPS COCKE	• ¹ ;
22	SYMPHITOPS SLOSS	٠.5
23	HYDROPTILA SP.	.6
24	LEPIDOSTOMA SP.A	1.5
25	OECETIS SP. A	.1
26	OPTIOSERVUS SPP.	.6
27	ZAITZEVIA PARVUL	.3
28	ATHERIX VARIEGAT	.1
2 9	MICROPSECTR SP.A	.1
30	MICROTENDIPES SP	0
31	PARACLADOPE SP.B	.1
32	PHAENOPSECTRA SP	0
3 3	POLYPEDILUM SP.A	0
34	TANYTARSUS SP. B	.3
35	DIAMESA SP. B	.9
36	PAGASTIA SP.	.1
37	CRICOTOPUS SP. B	8.9
38	EUKIEFFERIELLA A	.6
39	EUKIEFFERIELLA B	4.3
40	EUKIEFFERIELLA E	.3
4 1	HETEROTRISSOCLAD	0
42	EUKIEFFERIELLA I	0
43	ORTHOCLADIUS (EU	1.3
44	ORTHOCLADIUS B	1.6
45	ORTHOCLADIUS MAL	.3
46	ORTHOCLADIUS OBU	6.8
47	THIENEMANIELL SP	0
48	TRISSOCLADIUS SP	.1
49	SIMULIUM SP.	. 7
50	HEXATOMA SP.	.2
51	TIPULA SP.	0

SAMPLE:		
SPECIES SPECIES	DISTRIBUTION DATA SPECIES NAME	PERCENTAGE
1	BAETIS TRICAUDAT	4.7
	DRUNELLA GRANDIS	. 1
2	EPHEMERELLA INFR	5.5
4	EPEORUS ALBERTAE	.2
5 6	RHITHROGENA HAGE PARALEPTOPHL MEM	10.5 .7
7	AMELETUS VELOX	. 4
8	CAPNIA-GROUP SP.	1.1
9	ALLOPERLA-GROUP	3.4
10	PROSTOIA BESAMET	3.9
11 12	CALINEURIA CALIF CLAASSENI SABULO	1.1
13	HESPEROPERLA PAC	. 1
14	CULTUS PILATUS	1.3
15	ISOGENOIDES ELON	.1
16	ISOPERLA FULVA	3.9
17 18	PTERONARCYS CALI TAENIONEMA PACIF	.5
19	ARCTOPSYCHE GRAN	.1
20	CHEUMATOPSYCHE	1.4
21	HYDROPSYCHE OCCI	.6
22	SYMPHITOPS COCKE	.2
23 24	SYMPHITOPS SLOSS HYDROPTILA SP.	2
25	LEPIDOSTOMA SP.A	.7
26	OECETIS SP. A	.1
27	PSYCHOMYIA FLAVI	. 1
28	OREODYTES SCITIL	.1
29	OPTIOSERVUS SPP.	.4
30 31	ZAITZEVIA PARVUL MICROPSECTR SP.C	.1 5.7
32	PHAENOPSECTRA SP	.1
33	DIAMESA SP. B	10
34	PAGASTIA SP.	.1
35	CRICOTOPUS SP. B	11.5
36 37	EUKIEFFERIELLA A EUKIEFFERIELLA B	1.5 1.8
38	EUKIEFFERIELLA E	
39	ORTHOCLADIUS (EU	.2 6.8
40	ORTHOCLADIUS B	.2
41	ORTHOCLADIUS MAL	13.6
42 43	ORTHOCLADIUS OBU DOLICHOPODIDAE	1.2
43 44	SIMULIUM SP.	2.5
45	ANTOCHA SP.	.1
46	HEXATOMA SP.	.2
47	CAUDATELLA HYSTR	.2

Table 17. Continued

SAMPLESS SPECI 123456789011234567890123222222233333333333333442	SPECIES NAME BAETIS TRICAUDAT EPHEMERELLA INFR RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS VELOX CAPNIA-GROUP SP. ALLOPERLA-GROUP PROSTOIA BESAMET HESPEROPERLA PAC CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA PTERONARCELLA BA PTERONARCELLA BA PTERONARCELLA BA PTERONARCELLA BA PTERONARCYS CALI TAENIONEMA PACIF BRACHYCENTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. PSYCHOMYIA FLAVI PARARGYRACTIS SP OREODYTES SCITIL OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROTENDIPES SP PARACLADOPE SP.C DIAMESA SP. B PAGASTIA SP. CRICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA B EUKIEFFERIELLA F HETEROTRISSOCLAD ORTHOCLADIUS (EU ORTHOCLADIUS (EU ORTHOCLADIUS SP WIEDEMANNIA SP.	PERCENTAGE 19.8 1.2 .8 .1 13.2 .4 .1 .1 .1 .2 1 .4 .1 .1 .1 .1 .1 .1 .1 .1
42	SIMULIUM SP.	5.7

Table 17. Continued

Table 17. Continued

	oone mac a	
SPECIES 1 2 3 4 5 6 7 8 9 0 1 1 2 1 3 4 5 6 7 8 9 0 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3	DISTRIBUTION DATA SPECIES NAME BAETIS TRICAUDAT EPHEMERELLA INFR HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS VELOX CAPNIA-GROUP SP. PROSTOIA BESAMET CALINEURIA CALIF CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA QUINQUE SKWALA PARALLELA TAENIONEMA PACIF ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. ZUMATRICHIA NOTO OECETIS SP. A PSYCHOMYIA FLAVI PARARGYRACTIS SP OPTIOSERVUS SPP. ZAITZEVIA PARVUL MICROTENDIPES SP PHAENOPSECTRA SP POLYPEDILUM SP.A TANYTARSUS SP. B DIAMESA SP. B PAGASTIA SP. CRICOTOPUS SP. B EUKIEFFERIELLA A	PERCENTAGE 4.1 32.4 .3 2.5 .1 1.8 .2 .1 1.2 .8 1 .3 .1 9.9 1.9 1.5 .1 3.6 .1 2.1 5.3 1 4.8 6.3 .7 .5
30 31 32 33 34	POLYPEDILUM SP.A TANYTARSUS SP. B DIAMESA SP. B PAGASTIA SP. CRICOTOPUS SP. B	.1 1.8 .1 .8 6.3

Table 17. Continued

iddie 171 Continued	
	PERCENTAGE 3.6 29 0 1.4 0 3.1 .5 .8 0 1.4 1 0 0 .5 .3 1.5 3.7 1.7 0 .7 .1 .4 0 .5 .2 .1 0 0 1.1 .1 .4 .9 1.7 .2 0 19.5 2.9 4.3 .2 .1 5 4.4 1.4 3 .2 0 0
ORTHOCLADIUS OBU ABLABESMYIA SP. CHELIFERA SP.	3 .2 0
	DISTRIBUTION DATA SPECIES NAME BAETIS TRICAUDAT EPHEMERELLA INFR EPEORUS ALBERTAE RHITHROGENA HAGE PARALEPTOPHL MEM AMELETUS VELOX CAPNIA-GROUP SP. PROSTOIA BESAMET CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA FULVA ISOPERLA PARALLELA PTERONARCELLA BA PTERONARCELLA BA PTERONARCELLA BA PTERONARCYS CALI TAENIONEMA PACIF ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE SYMPHITOPS SLOSS HYDROPTILA SP. OECETIS SP. A PSYCHOMYIA FLAVI RHYACOPHILA BIFI PARARGYRACTIS SP OPTIOSERVUS SPP. ZAITZEVIA PARVUL DICROTENDIP SP. C MICROPSECTR SP. A MICROTENDIPES SP PHAENOPSECTRA SP POLYPEDILUM SP. A TANYTARSUS SP. B DIAMESA SP. B PAGASTIA SP. BRILLIA SP. CRICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA A EUKIEFFERIELLA E HETEROTRISSOCLAD ORTHOCLADIUS (EU ORTHOCLADIUS MAL ORTHOCLADIUS MAL ORTHOCLADIUS OBU ABLABESMYIA SP. WIEDEMANNIA SP. SIMULIUM SP. PACIFASTICUS SP. OLIGOCHAETA

Table 17. Continued

SAMPLE: SPECIES SPECIES	9-53C DISTRIBUTION DATA SPECIES NAME	PERCENTAGE
1	BAETIS TRICAUDAT	11.8
2	EPHEMERELLA INFR	15
3 4	HEPTAGENIA SOLIT RHITHROGENA HAGE	.1 2.9
5	PARALEPTOPHL MEM	.5
6	AMELETUS VELOX	.3
7	CAPNIA-GROUP SP.	10.2
8 9	ALLOPERLA-GROUP PROSTOIA BESAMET	0 .7
10	CALINEURIA CALIF	o '
11	CULTUS PILATUS	.2
12	ISOGENOIDES ELON	.6 1.7
13 14	ISOPERLA FULVA ISOPERLA QUINQUE	.9
15	SKWALA PARALLELA	.1
16	PTERONARCELLA BA	.1
17 18	TAENIONEMA PACIF CHEUMATOPSYCHE	1.4 1.4
19	HYDROPSYCHE OCCI	1.4
20	SYMPHITOPS COCKE	.2
21	HYDROPTILA SP.	6.2
22 23	OECETIS SP. A PSYCHOMYIA FLAVI	2
24	OREODYTES SCITIL	ō
25	OPTIOSERVUS SPP.	0
26	ZAITZEVIA PARVUL	.2
27 28	MICROTENDIPES SP PARACLADOPE SP.B	0
29	TANYTARSUS SP. B	10.8
30	DIAMESA SP. B	2.2
31	CRICOTOPUS SP. B	15.2
32 33	EUKIEFFERIELLA A EUKIEFFERIELLA B	.5
34	EUKIEFFERIELLA E	o Î
35	HETEROTRISSOCLAD	_0
36 37	ORTHOCLADIUS (EU	5.9 .7
37 38	ORTHOCLADIUS B ORTHOCLADIUS MAL	.1
39	ORTHOCLADIUS OBU	3.8
40	ABLABESMYIA SP.	0
41 42	SIMULIUM SP. PHYSA SP.	.2
46	riii on or.	· ·

ESSS 111111111111111111111111111111111	DISTRIBUTION DATA SPECIES NAME BAETIS TRICAUDAT DRUNELLA GRANDIS EPHEMERELLA INFR EPEORUS ALBERTAE HEPTAGENIA SOLIT RHITHROGENA HAGE PARALEPTOPHL MEM CAPNIA-GROUP SP. PROSTOIA BESAMET CLAASSENI SABULO HESPEROPERLA PAC CULTUS PILATUS ISOGENOIDES ELON ISOPERLA FULVA ISOPERLA FULVA ISOPERLA PACIF PROTOPTILA SP. ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. ZUMATRICHIA NOTO LEPIDOSTOMA SP.A OECETIS SP. A PSYCHOMYIA FLAVI PARARGYRACTIS SP OPTIOSERVUS SPP. ZAITZEVIA PARVUL ATHERIX VARIEGAT MICROPSECTR SP.A POLYPEDILUM SP.A TANYTARSUS SP. B DIAMESA SP. B PAGASTIA SP. CRICOTOPUS SP. B PAGASTIA SP. CRICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA E ORTHOCLADIUS MAL ORTHOCLADIUS MAL ORTHOCLADIUS MAL ORTHOCLADIUS SP ABLABESMYIA SP. DOLICHOPODIDAE CHELIFERA SP.	PERCENTAGE 5.3 0 26.5 .1 0 14.6 8 1.1 .4 0 .5 .7 0 43.3 0 2 2.2 8 2.8 2.1 0 1.3 2.5 7 .1 2 0 1.4 8 2.3 1.6 1.4 2 2.2 1.3 0 0 1 0 1 0 3
49	TRISSOCLADIUS SP	.1
50	ABLABESMYIA SP.	0
51	DOLICHOPODIDAE	.1

SAMPLE:	11-53C	
SPECIES	DISTRIBUTION DATA	
SPECIES	SPÈCIES NAME	PERCENTAGE
1	BAETIS TRICAUDAT	17.5
2	EPHEMERELLA INFR	14.1
3 4	HEPTAGENIA SOLIT	. 1
	RHITHROGENA HAGE	2.6
5 6	PARALEPTOPHL MEM	.3
	CAPNIA-GROUP SP.	.5
7	ALLOPERLA-GROUP	- 1
8	PROSTOIA BESAMET	. 1
9	CULTUS PILATUS	. 4
10	ISOGENOIDES ELON	.2
11	ISOPERLA FULVA	1.6
12	ISOPERLA QUINQUE	.8
13 14	PTERONARCELLA BA	. 3
15	TAENIONEMA PACIF	7 ,,
16	CHEUMATOPSYCHE HYDROPSYCHE OCCI	.4
17	HYDROPTILA SP.	
18	OPTIOSERVUS SPP.	1.9
19	PARACLADOPE SP.B	.1
20	PHAENOPSECTRA SP	. 1
21	TANYTARSUS SP. B	.4
22	DIAMESA SP. B	.6
23	PAGASTIA SP.	.2
24	BRILLIA SP.	.1
25	CRICOTOPUS SP. B	6.8
26	EUKIEFFERIELLA A	.3
27	EUKIEFFERIELLA B	1.6
28	EUKIEFFERIELLA E	. 4
29	HETEROTRISSOCLAD	. 1
30	ORTHOCLADIUS (EU	4.9
31	ORTHOCLADIUS B	7.6
32	ORTHOCLADIUS MAL	.3
33	ORTHOCLADIUS OBU	20
34	WIEDEMANNIA SP.	.1
35	SIMULIUM SP.	7.3

	13-53C DISTRIBUTION DATA SPECIES NAME	PERCENTAGE
1	BAETIS TRICAUDAT	3.6
	EPHEMERELLA INFR	21.4
2 3 4	HEPTAGENIA SOLIT	.1
4	RHITHROGENA HAGE	2.1
5 6	PARALEPTOPHL MEM	. 4
6	AMELETUS VELOX	.1
7 8	CAPNIA-GROUP SP.	1.8
9	ALLOPERLA-GROUP CLAASSENI SABULO	.1
10	CULTUS PILATUS	1.3
11	ISOGENOIDES ELON	.6
12	ISOPERLA FULVA	1
13	ISOPERLA QUINQUE	.8
14	SKWALA PARALLELA	. 1
15 16	PTERONARCELLA BA TAENIONEMA PACIF	.4 1.3
17	BRACHYCENTRUS OC	.1
18	CHEUMATOPSYCHE	1.7
19	HYDROPSYCHE OCCI	1.8
20	SYMPHITOPS COCKE	.1
21	SYMPHITOPS SLOSS	.1
22 23	HYDROPTILA SP. OECETIS SP. A	5.2
24	PSYCHOMYIA FLAVI	.1
25	OREODYTES SCITIL	.1
26	OPTIOSERVUS SPP.	.2
27	ZAITZEVIA PARVUL	.5
28	CRYPTOCHIRONOMUS	.1
29 30	MICROTENDIPES SP PARACLADOPE SP.B	2.8
31	PHAENOPSECTRA SP	1.3
32	TANYTARSUS SP. B	1.7
33	DIAMESA SP. B	1.6
34	PAGASTIA SP.	.7
35	CRICOTOPUS SP. B	6.9
36 37	EUKIEFFERIELLA A EUKIEFFERIELLA B	.7 1.6
37 38	EUKIEFFERIELLA E	.4
39	HETEROTRISSOCLAD	.1
40	ORTHOCLADIUS (EU	3.2
41	ORTHOCLADIUS B	1.3
42	ORTHOCLADIUS MAL	1.2
43 44	ORTHOCLADIUS OBU ABLABESMYIA SP.	28.9
44	WIEDEMANNIA SP.	.1
46	SIMULIUM SP.	. 4
47	HEXATOMA SP.	. 4
48	OLIGOCHAETA	.6

SAMPLE:	14-53C	
SPECIES SPECIES	DISTRIBUTION DATA SPECIES NAME	PERCENTAGE
1	BAETIS TRICAUDAT	6
	CAENIS SIMULANS	. 4
2 3 4	EPHEMERELLA INFR	12.7
	RHITHROGENA HAGE	2.6
5 6	PARALEPTOPHL MEM AMELETUS VELOX	.2
7	CAPNIA-GROUP SP.	5.8
8	ALLOPERLA-GROUP	.2
9	HESPEROPERLA PAC	.2
10	CULTUS PILATUS	.7
11	ISOGENOIDES ELON	1.1
12 13	ISOPERLA FULVA ISOPERLA QUINQUE	1 - 3 - 4
14	SKWALA PARALLELA	.6
15	TAENIONEMA PACIF	1.7
16	CHEUMATOPSYCHE	.2
17	HYDROPSYCHE OCCI	.9 6.5
18	HYDROPTILA SP.	6.5 .4
19 20	OECETIS SP. A PSYCHOMYIA FLAVI	.2
21	OREODYTES SCITIL	.2
22	OPTIOSERVUS SPP.	.2
23	ZAITZEVIA PARVUL	.2
24	MICROTENDIPES SP	2.8
25	PARACLADOPE SP.B PARATANYTARSUS	.4
26 27	PHAENOPSECTRA SP	. 4
28	TANYTARSUS SP. B	1.1
29	DIAMESA SP. B	1.9
30	CRICOTOPUS SP. B	6
31	EUKIEFFERIELLA A	.4
32	EUKIEFFERIELLA B EUKIEFFERIELLA E	.4
33 34	HETEROTRISSOCLAD	.6
35	ORTHOCLADIUS (EU	1.9
36	ORTHOCLADIUS B	2
37	ORTHOCLADIUS MAL	.7 35.4
38	ORTHOCLADIUS OBU WIEDEMANNIA SP.	30.4
39 40	SIMULIUM SP.	. 9
40	OLIGOCHAETA	. 4
• •		

	15-53C	
	DISTRIBUTION DATA	DEDGENMAGE
SPECIES		PERCENTAGE
1	BAETIS TRICAUDAT	5.5
2 3	EPHEMERELLA INFR RHITHROGENA HAGE	10.4
3 4	PARALEPTOPHL MEM	5.9 1.3
	AMELETUS VELOX	.3
5 6	CAPNIA-GROUP SP.	6.2
7	ALLOPERLA-GROUP	.1
8	CLAASSENI SABULO	.1
9	CULTUS PILATUS	1.1
10	ISOGENOIDES ELON	.6
11	ISOPERLA FULVA	.8
12	ISOPERLA QUINQUE	.6
13	SKWALA PARALLELA	.2
14	PTERONARCELLA BA	. 1
15	TAENIONEMA PACIF	.8
16	CHEUMATOPSYCHE	.7
17	HYDROPSYCHE OCCI	.5
18	HYDROPTILA SP.	10.3
19	OECETIS SP. A	.2
20	OPTIOSERVUS SPP.	.1
21	ZAITZEVIA PARVUL	.2
22	PARACLADOPE SP.B PHAENOPSECTRA SP	.5 .6
23 24	TANYTARSUS SP. B	1.9
25	DIAMESA SP. B	3.6
26	PAGASTIA SP.	.1
27	CRICOTOPUS SP. B	7.2
28	EUKIEFFERIELLA A	.1
29	EUKIEFFERIELLA B	.2
30	EUKIEFFERIELLA E	.1
31	HETEROTRISSOCLAD	.1
32	ORTHOCLADIUS (EU	4.3
33	ORTHOCLADIUS B	.8
34	ORTHOCLADIUS OBU	34
35	ABLABESMYIA SP.	. 1
36	SIMULIUM SP.	.1
37	HEXATOMA SP.	. 1
38	OLIGOCHAETA	.2

SAMPLE:	19-53C	
	DISTRIBUTION DATA	
SPECIES	SPECIES NAME	PERCENTAGE
1	BAETIS TRICAUDAT	20.7
2 3	EPHEMERELLA INFR	17.7
3 4	HEPTAGENIA SOLIT RHITHROGENA HAGE	.4
	PARALEPTOPHL MEM	1.6 1.7
5 6	AMELETUS VELOX	.2
7 8	CAPNIA-GROUP SP.	2.1
	PROSTOIA BESAMET	.8
9	CULTUS PILATUS	1 , 1
10	ISOGENOIDES ELON	. 1
11	ISOPERLA FULVA	.8
12	ISOPERLA QUINQUE	1
13 14	TAENIONEMA PACIF	.6
15	CHEUMATOPSYCHE HYDROPSYCHE OCCI	.5
16	SYMPHITOPS COCKE	.7
17	HYDROPTILA SP.	6.4
18	CERACLEA SP.	. 1
19	PSYCHOMYIA FLAVI	1.1
20	ZAITZEVIA PARVUL	.1
21	POLYPEDILUM SP.A	. 1
22	TANYTARSUS SP. B	.1
23 24	DIAMESA SP. B	8.7
24 25	CRICOTOPUS SP. B	11
26	EUKIEFFERIELLA A EUKIEFFERIELLA B	.4 3.6
27	EUKIEFFERIELLA E	.2
28	ORTHOCLADIUS (EU	8.7
29	ORTHOCLADIUS B	.1
30	ORTHOCLADIUS MAL	
3 1	ORTHOCLADIUS OBU	3.4 5
32	ABLABESMYIA SP.	.1
33	SIMULIUM SP.	.3

	21-53C	
	DISTRIBUTION DATA	PERCENTAGE
SPECIES		
1	BAETIS TRICAUDAT	3.4
2 3 4	DRUNELLA GRANDIS	.5 64.1
3	EPHEMERELLA INFR	• • • •
	HEPTAGENIA SOLIT	.1
5 6	RHITHROGENA HAGE	.9
	PARALEPTOPHL MEM	. 4
7	AMELETUS VELOX	.1
8	PROSTOIA BESAMET	.2
9	CLAASSENI SABULO	•3
10	HESPEROPERLA PAC	.1
11	CULTUS PILATUS	.2
12	ISOGENOIDES ELON	•3 •5
13	ISOPERLA FULVA	•5
14	ISOPERLA QUINQUE	.1
15	SKWALA PARALLELA	.1
16	PTERONARCYS CALI	.2
17	TAENIONEMA PACIF	.5
18	BRACHYCENTRUS AM	. 1
19	ARCTOPSYCHE GRAN	.4
20	CHEUMATOPSYCHE	2.7
21	HYDROPSYCHE OCCI	1.2
22	SYMPHITOPS COCKE SYMPHITOPS SLOSS	.7
23		.2 8.3
24	HYDROPTILA SP. CERACLEA SP.	
25		.2
26 27	PSYCHOMYIA FLAVI OPTIOSERVUS SPP.	.2
27	ZAITZEVIA PARVUL	.7
28	MICROTENDIPES SP	
29		1.3
30 31	PHAENOPSECTRA SP PHAENOPSECT SP.B	.1
31	TANYTARSUS SP. B	.1
32	DIAMESA SP. B	.1
33	PAGASTIA SP.	.9
34	CRICOTOPUS SP. B	2
35 36	CRICOTOPUS SP. C	.1
36 27	EUKIEFFERIELLA B	.2
37	EUKIEFFERIELLA E	.1
38	ORTHOCLADIUS (EU	2.4
39	ORTHOCLADIUS B	.1
40		2
41 42	ORTHOCLADIUS MAL ORTHOCLADIUS OBU	1.9
		1.9
43	TRISSOCLADIUS SP SIMULIUM SP.	'.1
44		· · . 1
45	OLIGOCHAETA OLIGOCHAETA LUMB	· ! ?
46	OLIGOCHAETA LUMB	ر خ

DIV METTY INDEX 2.48

TURBLLLARI

47

	23-53C DISTRIBUTION DATA SPECIES NAME BAETIS TRICAUDAT	PERCENTAGE 1.8
2 3 4	CAENIS SIMULANS EPHEMERELLA INFR RHITHROGENA HAGE	1.4 .4 .8
5 6	STENONEMA SP. CAPNIA-GROUP SP.	.3
7 8	TAENIONEMA PACIF AESHNA SP.	.1 .9 .4
9	HYDROPTILA SP. TRIAENODES SP.	Ì
11 12	POLYCENTROPUS SP DUBIRAPHIA SP.	.1
13	MICROPSECTR SP.A MICROPSECTR SP.C	.3
15 16	PHAENOPSECT SP.B TANYTARSUS SP. B	.1
17 18	DIAMESA SP. B PAGASTIA SP.	.1 1.2 1.4
19 20	POTTHASTIA SP. CORYNONEURA SP.	.1
21 22	CRICOTOPUS SP. B ORTHOCLADIUS (EU	3.5 2.5
23 24	ORTHOCLADIUS B ORTHOCLADIUS NIG	.1 2.6
25 26	ORTHOCLADIUS OBU SYNORTHOCLADIUS	17.8 2.1
27 28	TRISSOCLADIUS SP SIMULIUM SP.	2.3
29 30	HYALELLA AZTECA GYRAULUS SP.	25.6 1.7
31 32	PHYSA SP. OLIGOCHAETA	.4
33 34	TURBELLARI MYSTACIDES SP.	.4
35	ORTHOCLADIUS G	26.4

SAMPLE: 24-53C	
SPECIES DISTRIBUTION DATA	
	ENTAGE
1 BAETIS TRICAUDAT 2 EPHEMERELLA INFR	1.5
3 HEPTAGENIA SOLIT	.1
RHITHROGENA HAGE	. 7
5 STENONEMA SP.	3.7
6 PARALEPTOPHL MEM	1.1
7 PROSTOIA BESAMET	.1
8 ISOGENOIDES ELON	. 4
9 TAENIONEMA PACIF	.3
10 CHEUMATOPSYCHE	3.4
11 HYDROPSYCHE OCCI	. 1
12 SYMPHITOPS COCKE	.6
13 HYDROPTILA SP.	. 4
14 CERACLEA SP.	.2
15 PSYCHOMYIA FLAVI	.1
16 ZAITZEVIA PARVUL	.6
17 MICROPSECTR SP.A	.9
18 MICROTENDIPES SP 19 PHAENOPSECTRA SP	.6
20 POLYPEDILUM SP.A	0 0
21 DIAMESA SP. B	3.6
22 PAGASTIA SP.	.2
23 CRICOTOPUS SP. B	24.3
24 EUKIEFFERIELLA A	0
25 EUKIEFFERIELLA B	1.6
26 EUKIEFFERIELLA E	_4
27 ORTHOCLADIUS (EU	9
28 ORTHOCLADIUS B	.3
29 ORTHOCLADIUS MAL	2.5
30 ORTHOCLADIUS OBU	33.8
31 SYNORTHOCLADIUS	. 9
32 TRISSOCLADIUS SP	2.6
33 ABLABESMYIA SP.	.1
34 SIMULIUM SP. 35 FERRISSIA SP.	4.6
36 LYMNAEA SP.	.3
37 OLIGOCHAETA LUMB	0
38 CAUDATELLA HYSTR	0

	25-53C	
	DISTRIBUTION DATA	
SPECIES		PERCENTAGE
1	RHITHKOGENA HAGE	. 1
2	STENONEMA SP.	2.2
2 3 4	CHEUMATOPSYCHE	1.2
4	HYDROPSYCHE OCCI	.2
5	HYDROPTILA SP.	1.4
5 6 7 8	CERACLEA SP.	. • 3
7	PSYCHOMYIA FLAVI	• 14
	DICROTENDIP SP.A	.9
9	MICROPSECTR SP.A	4.1
10	MICROTENDIPES SP	1.2
1 1	PHAENOPSECTRA SP	.1
12	DIAMESA SP. B	.9
13	PAGASTIA SP.	.3
14	CRICOTOPUS SP. B	2 6. 5
15	EUKIEFFERIELLA A	.1
16	EUKIEFFERIELLA B	. 1
17	EUKIEFFERIELLA E	. 1
18	HETEROTRISSOCLAD	.1
19	ORTHOCLADIUS (EU	3.1
20	ORTHOCLADIUS OBU	53.5
21	SYNORTHOCLADIUS	.2
22	TRISSOCLADIUS SP	1.8
23	ABLABESMYIA SP.	.1
24	WIEDEMANNIA SP.	.1
25	SIMULIUM SP.	.3
26	GYRAULUS SP.	.5
27	LYMNAEA SP.	.2
28	OLIGOCHAETA	.1
29	OLIGOCHAETA LUMB	.2
•		

Table 17. Continued

	27-53C	
	DISTRIBUTION DATA	DEDCENTACE
SPECIES	SPECIES NAME BAETIS TRICAUDAT	PERCENTAGE
1	EPHEMERELLA INFR	.2
2 3	HEPTAGENIA SOLIT	2.8
4	RHITHROGENA HAGE	.1
	STENONEMA SP.	21.3
5 6	PROSTOIA BESAMET	.1
7	PTERONARCYS CALI	.1
8	TAENIONEMA PACIF	.3
9	OPHIOGOMPHUS SP.	. 7
10	CHEUMATOPSYCHE	3.5
11 12	HYDROPSYCHE SP.A HYDROPSYCHE OCCI	.9
13	SYMPHITOPS COCKE	.5
14	HYDROPTILA SP.	3.7
15	CERACLEA SP.	1.2
16	POLYCENTROPUS SP	.1
17	PSYCHOMYIA FLAVI	.8
18	PARARGYRACTIS SP	.5
19	DUBIRAPHIA SP.	. 1
20	ZAITZEVIA PARVUL	- 1
21 22	DICROTENDIP SP.A DICROTENDIP SP.C	4.6
23	MICROPSECTR SP.A	.2 .4
24	MICROPSECTR SP.C	.1
25	MICROTENDIPES SP	3.4
26	PARATANYTARSUS	.1
27	TANYTARSUS SP. B	3.8
28	XENOCHIRONOMUS	.1
29	DIAMESA SP. A	.1
30	DIAMESA SP. B	2.2
31	PAGASTIA SP.	1.7
32 33	CRICOTOPUS SP. B EUKIEFFERIELLA A	11.5
33 34	EUKIEFFERIELLA B	1
35	EUKIEFFERIELLA E	.3
36	EUKIEFFERIELLA F	.1
37	HETEROTRISSOCLAD	.1
38	ORTHOCLADIUS (EU	3.4
39	ORTHOCLADIUS B	.2
40	ORTHOCLADIUS MAL	.9
41	ORTHOCLADIUS OBU	16.9
42 43	TRISSOCLADIUS SP ABLABESMYIA SP.	1.9
43 44	WIEDEMANNIA SP.	.3
45	SIMULIUM SP.	8.3
46	PACIFASTICUS SP.	.2
		• -

Table 17. Continued

SAMPLE:	31 - 530	
SPECIES	DISTRIBUTION DATA	
SPECIES	SPECIES NAME	PERCENTAGE
1	CHEUMATOPSYCHE	2
2	HYDROPTILA SP.	21.6
3	DICROTENDIP SP.A	2
4	MICROTENDIPES SP	2
5	DIAMESA SP. B	2
6	CRICOTOPUS SP. B	5.9
7	EUKIEFFERIELLA B	9.8
8	EUKIEFFERIELLA E	2
9	ORTHOCLADIUS OBU	2 7. 5
10	HYALELLA AZTECA	2
11	GYRAULUS SP.	21.6
12	LYMNAEA SP.	2

SAMPLE:	26 - 53C		
SPECIES	DISTRIBUTION DATA		
SPECIES	SPECIES NAME		PERCENTAGE
1	CHIRONOMUS SP.	2	
2	CRYPTOCHIRONOMUS		.9
3	PARALAUTERBORNIE		1.3
4	PHAENOPSECTRA SP		1.3
5	POLYPEDILUM SP.B		2
6	TANYTARSUS SP. C		5.5
7	DIAMESA SP. B		.2
8	ORTHOCLADIUS E		_ 4
9	ORTHOCLADIUS OBU		.9
10	TRISSOCLADIUS SP		.9
11	PROCLADIUS SP. A		27.1
12	OLTGOCHAETA		57.6

DIVERSITY INDEX 1.82

SAMPLE:	28A-53C		
SPECIES	DISTRIBUTION DATA		
SPECIES	SPECIES NAME		PERCENTAGE
1	CHIRONOMUS SP.	14.1	
2	PROCLADIUS SP. 1	A	51.3
3	OLIGOCHAETA		34.6

DIVERSITY INDEX 1.42

	28B-53C		
SPECIES	DISTRIBUTION DATA		
SPECIES	SPECIES NAME		PERCENTAGE
1	CHIRONOMUS SP.	77.1	
2	PROCLADIUS SP.	A	10.8
3	OLIGOCHAETA		12

DIVERSITY INDEX 1

SAMPLE:	30 - 53C	
SPECIES	DISTRIBUTION DATA	
SPECIES	SPECIES NAME	PERCENTAGE
1	ORTHOCLADIUS	OBU 100

Table 17. Benthic Macroinvertebrate Sample Percentage Distribution and Diversity Data, Summer 1985.

SAMPLE: 1-57-(. Shallow Water Monitoring Stations - Kick Samples SPECIES DISTRIBUTION DATA

	DISTRIBUTION DATA	
SPECIES	SPECIES NAME	PERCENTAGE
1	BAETIS HAGENI	.2
2	BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR DRUNELLA GRANDIS	10.4
3	BAETIS TRICAUDAT	7.2
4	ATTENELLA MARGAR	3.6
5	DRUNFLLA GRANDIS	1.3
2 3 4 5 6	SERRATELLA TIBIA	2.4
7	TIMPANOGA HECUBA	
8		. 1
	EPEORUS ALBERTAE	.1
9	NIXE CRIDDLEI	. 1
10	NIXE SIMPLICIOID	. 4
11	RHITHROGENA HAGE	2.6
12	PARALEPTOPHL DEB	.2
13	TRICORYTHODES MI ALLOPERLA-GROUP ZAPADA CINCTIPES	1.5
14	ALLOPERLA-GROUP	. 3
1.)	ZAPADA CINCTIPES	. 1
16	CLAASSENI SABULO	• · ·
17	ISOGENOIDES ELON	. 5
18	ISOPERLA QUINQUE	.0
19	SKWALA PARALLELA	, l
20		.5
	PTERONARCELLA BA	2.6 .2 1.5 .3 .1 .5 .6 .1 .5
21	PTERONARCYS CALI	• -
22	BRACHYCENTRUS OC	.1
23	ARCTOPSYCHE GRAN	3.3
24	CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE	2.5
25	HYDROPSYCHE OCCI	18.3
26	SYMPHITOPS COCKE	13.2
2.1	HYDROPTILA SP.	.8
28	NEOTRICHIA SP.	.4
29	OECETIS SP. A	.1
30	OPTIOSERVUS SPP.	2.5
31	ZAITZEVIA PARVUL	
		4.3
32	ATHERIX VARIEGAT	1.7
33	MICROPSECTR SP.A	.2
34	MICROPSECTR SP.C	.8
35	MICROTENDIPES SP	.2
36	POLYPEDILUM SP.A	6.2
37	THUITHUOUS SE. C	1
38	PAGASTIA SP.	.2
39	EUKIEFFERIELLA A	.2
40	EUKIEFFERIELLA B	1.3
41	EUKIEFFERIELLA E	2.2
42	EUKIEFFERIELLA G	.2
43	HETEROTRISSOCLAD	. 1
44	ORTHOCLADIUS B	.7
45	ORTHOCLADIUS MAL	.6
46		
	ORTHOCLADIUS NIG	.1
47	ORTHOCLADIUS OBU	.6
48	PSECTROCLADIUS B	.2
49	SYNORTHOCLADIUS	.1
50	ABLABESMYIA SP.	.2
51	CHELIFERA SP.	.2
52	SIMULIUM SP.	.8
53	PROTANYDERUS SP.	. 1
54	ANTOCHA SP.	.1
55	HEXATOMA SP.	1.8
56	OLIGOCHAETA	.1
) U	OLIGOCHAEIA	. !

Table 17. Continued

SAMFLE: 2-57-C	ن
----------------	---

SAMFLE:	2-57-C	
	DISTRIBUTION DATA	
SPECIES	SPECIES NAME	PERCENTAGE
1	BAETIS HAGENI	1.3
2	BAETIS INSIGNIFI	4
3	BAETIS TRICAUDAT	2.4
4	ATTENELLA MARGAR	. 1
5	DRUNELLA DODDSI	.6
6	DRUNELLA GRANDIS	. 4
7	EPHEMERELLA INFR	. 1
8	SERRATELLA TIBIA	6.1
9	EPEORUS ALBERTAE	.8
10	NIXE CRIDDLEI	.1
11	RHITHROGENA HAGE	.6
12	ALLOPERLA-GROUP	•3
13	CALINEURIA CALIF	1.4
14	CLAASSENI SABULO	1.5
15	SKWALA PARALELA	.2
16	PTERONARCYS CALI	.5
17	ARCTOPSYCHE GRAN	1.2
18	CHEUMATOPSYCHE	4.9
19	HYDROPSYCHE OCCI	4.2
20	SYMPHITOPS COCKE	3.7
21	HYDROPTILA SP.	. 1
22	LEUCOTRICHIA PIC	.2
23	NEOTRICHIA SP.	.3
24	LEPIDOSTOMA SP.A	.1
25	OECETIS SP. A	.1
26	DICOSMOECUS SP.	.3
27 28	WORMALDIA SP. PSYCHOMYIA FLAVI	1.2
20 29	RHYACOPHILA ANGE	.1
30	OPTIOSERVUS SPP.	4.1
31	ZAITZEVIA PARVUL	7.4
32	PALPOMY-GP SP. A	.1
33	MICROPSECTR SP.A	.1
34	MICROPSECTR SP.C	38.8
35	MICROTENDIPES SP	1.1
36 36	PHAENOPSECTRA SP	. 1
37	POLYPEDILUM SP.A	2.3
38	TANYTARSUS SP. C	.7
39	EUKIEFFERIELLA A	. 4
40	EUKIEFFERIELLA B	.3
41	EUKIEFFERIELLA E	.6
42	HETEROTRISSOCLAD	.1
43	ORTHOCLADIUS B	. 1
44	ORTHOCLADIUS MAL	.4
45	ORTHOCLADIUS OBU	.3
46	THIENEMANIELL SP	. 1
47	ABLABESMYIA SP.	. 1
48	CHELIFERA SP.	. 1
49	SIMULIUM SP.	.2
50	ANTOCHA SP.	. 4
51	HEXATOMA SP.	1.7
52	PHYSA SP.	3.5
53	OLIGOCHAETA LUMB	.5
54	STELENMIS SP.	.1

	4-57-C	
SPECIES	DISTRIBUTION DATA SPECIES NAME	PERCENTAGE
1	BAETIS HAGENI	.6
2 3 4 5 6	PAETIS INSIGNIFI	3.6
3 h	BAETIS TRICAUDAT ATTENELLA MARGAR	11.3
7	DRUNELLA DODDSI	.6 .5
	DRUNELLA GRANDIS	.3
7 8	SERRATELLA TIBIA	4.5
	TIMPANOGA HECUBA	.1
9 10	EPEORUS ALBERTAE NIXE CRIDDLEI	.6
11	RHITHROGENA HAGE	.5
12	TRICORYTHODES MI	•3
13	CLAASSENI SABULO	.4
14 15	HESPEROPERLA PAC	.4
16	ISOGENOIDES ELON SKWALA PARALLELA	.3
17	PTERONARCELLA BA	.7
18	PTERONARCYS CALI	1.4
19	BRACHYCENTRUS OC	.1
20 21	ARCTOPSYCHE GRAN	.9
22	CHEUMATOPSYCHE HYDROPSYCHE OCCI	14.5 4.5
23	SYMPHITOPS COCKE	16.8
24	SYMPHITOPS SLOSS	.1
25	HYDROPTILA SP.	3.8
26 27	NEOTRICHIA SP.	.3
28	WORMALDIA SP. PSYCHOMYIA FLAVI	.9 1.8
29	PARARGYRACTIS SP	.2
30	OPTIOSERVUS SPP.	2.1
31	ZAITZEVIA PARVUL	4.1
32 33	CRYPTOCHIRONOMUS MICROPSECTR SP.A	.1
34	MICROPSECTR SP.C	.2 3.5
35	MICROTENDIPES SP	.3
36	POLYPEDILUM SP.A	7.4
37	TANYTARSUS SP. C	.2
38 39	PAGASTIA SP. CRICOTOPUS SP. B	.3
40	EUKIEFFERIELLA A	.1
41	EUKIEFFERIELLA B	4.4
42	EUKIEFFERIELLA E	.3
43 44	EUKIEFFERIELLA G	.2 1.8
45	ORTHOCLADIUS B ORTHOCLADIUS MAL	2.2
46	ORTHOCLADIUS NIG	.1
47	ORTHOCLADIUS OBU	.7
48	SIMULTUM SP.	.6
49 50	ANTOCHA SP. OLIGOCHAETA	.9
51	TURBELLARI	.1
J .	4 O 11 12 11 11 11 11 1	• 4

	5-57-C	
SPECIES	DISTRIBUTION DATA	
SPECIES		PERCENTAGE
1	BAETIS HAGENI	• 3
2	BAETIS INSIGNIFI	9.8
3	BAETIS TRICAUDAT	8
4	DRUNELLA GRANDIS	.2
5 6	EFHEMERELLA INFR	.1
	SERRATELLA TIBIA	2.7
7	TIMPANOGA HECUBA	.1
8	EPEORUS ALBERTAE	.3
9	HEPTAGENIA SOLIT	.1
10	RHITHROGENA HAGE	.5
11	TRICORYTHODES MI	.3
12	CLAASSENI SABULO	.4
13	HESPEROPERLA PAC	.1
14	ISOGENOIDES ELGN	.2
15	SKWALA PARALLELA	.5
16	PTERONARCYS CALI	.1
17	RHAGOVELIA SP.	.2
18	ARCTOPSYCHE GRAN	.7
19	CHEUMATOPSYCHE	22.5
20	HYDROPSYCHŁ OCCI	6.5
21	SYMPHITOPS COCKE	27.3
22	HYDROPTILA SP.	. 1
23	WORMALDIA SP.	.1
24	PSYCHOMYIA FLAVI	.7
25	PARARGYRACTIS SP	.1
26	OPTIOSERVUS SPP.	1
27	ZAITZEVIA PARVUL	4.1
28	MICROPSECTR SP.A	.1
29	MICROPSECTR SP.C	2.4
30	POLYPEDILUM SP.A	2.2
3 1	CRICOTOPUS SP. B	.1
32	EUKIEFFERIELLA B	1.9
33	EUKIEFFERIELLA E	. 4
34	ORTHOCLADIUS B	1
35	ORTHOCLADIUS OBU	.1
36	CHELIFERA SP.	.1
37	SIMULIUM SP.	4.1
38	HEXATOMA SP.	. 5

	6.57-C	
SPECIES	DISTRIBUTION DATA SPECIES NAME	PERCENTAGE
1	BAETIS HAGENI	δ.
2	BAE'IS INSIGNIFI	15.9
3	BAETIS TRICAUDAT	5.8
4	CENTROPTILU SP.A	.7
5	ATTENELLA MARGAR	1.1
6	EPHEMERELLA INFR	.3
7	SERRATELLA TIBLA	3. ⁴
8	TIMPANOGA HECUBA	- 3
9 10	ELEORUS ALBERTAE	.7
11	HEFTAGENIA SOLIT NIXE CRIDDLEI	.9
12	NIXE SIMPLICIOID	.;
13	RHITHROGENA HAGE	.5
14	PARALEPTOPHL BIC	.5
15	PARALEPTOPHL DEB	.3
16	TRICORYTHODES MI	3.7
17	CLAASSENI SABULO	. 1
18	HESPEROPERLA PAC	. 1
19 20	ISOGENOIDES ELON SKWALA PARALLELA	.5
21	PTERONARCELLA BA	.7
22	PTERONARCEELA DA	.1
23	BRACHYCENTRUS OC	. 1
24	PROTOPTILA SP.	.1
25	ARCTOPSYCHE GRAN	.7
26	CHEUMA FOPSYCHE	22.5
27	HYDROPSYCHE OCCI	3.9
28	SYMPHITOPS COCKE	16.5
29 30	HYDROPTILA SP. ZUMATRICHIA NOTO	.6
31	OECETIS SP. A	.1
32	PSYCHOMY1A FLAVI	2
33	PARARGYRACTIS SP	.1
34	NARPUS CONCOLOR	. 1
35	OPTIOSERVUS SPP.	.5
36	ZAITZEVIA PARVUL	2.3
37	ATHERIX VARIEGAT	.1
38 39	MICROPSECTR SP.A	.3
39 40	MICROPSECTR SP.C MICROTENDIPES SP	. 4
41	PHAENOPSECTRA SP	.2
42	POLYPEDILUM SP.A	4.5
43	TANYTARSUS SP. C	•3
44	PAGASTIA SP.	. 1
45	CORYNONEURA SP.	. 1
46	EUKIEFFERIELLA A	. 1
47	EUKIEFFERIELLA B	• 3
48 49	EUKIEFFERIELLA E	1.2
49 50	OKTHOCLADIUS B ORTHOCLADIUS MAL	1.1
51	ORTHOCLADIUS OBU	.7
		•

Table 17. Continued

52	PSECTROCLADIUS B	. 3
53	SYNORTHOCLADIUS	. 4
54	THIENEMANIELL SP	. 1
55	ABLABESMYIA SP.	. 1
56	CHELIFERA SP.	. 1
57	SIMULIUM SP.	. 3
58	PROTANYDERUS SP.	. 1
59	ANTOCHA SP.	.2
00	HEXATOMA SP.	_ 4
61	PACIFASTICUS SP.	.1

SAMPLE:	9 -57- (,	
SPICIS	Local Tabulion DATA	
SPECIES	SPECIES NAME	PERCENTAGE
1	BAETIS HAGENI	1.9
2	BAETIS INSIGNICI	5.7
3	DAETIS TRICAUDAT	6.3
4	CENTROPTILU SP.A	. 3
5	AITENELLA MARGAR	. 1
6	DEUNELLA DODDS1	. 1
7	DRUNELLA GRANDIS	. 1
8	EPHEMERELLA INFR	. 1
9	SERRATELLA TIBIA	.6
10	TIMPANOGA HECUBA	.3
11	EPEORUS ALBERTAE	.2
12	HEPTAGENIA SOLIT	.1
13	NIXE CRIDDLEI	
14	NIXE CRIDDLEI NIXE SIMPLICIOID	.1
	PARALEPTOPHL BIC	.2
15		
16	PARALEPTOPHL DEB	
17	TRICORYTHODES MI	3.1
18	MALENKA SP.	.1
19	CLAASSENI SABULO	.1
20	HESPEROPERLA PAC	.2
21	ISOGENOIDES ELON	.6
22	SKWALA PARALLELA	.6
23	PILEONARCELLA BA	. 1
24	PTERONARCYS CALI	.2
25	BRACHYCENTRUS UC	.2
26	AFC'OPSYCHE GRAN	2.2
27	CHEUMATOPSYCHE	23.4
28	HYDROPSYCHE OCCI	5
29	SYMPHITOPS COCKE	21
30	HYDROPTILA SP.	1
31	ZUMATRICHIA NOTO	. 1
32	WORMALDIA SP.	.2
33	PSYCHOMYIA FLAVI	.9
34	PARARGYRACTIS SP	1.7
35	OFTIOSERVUS SPP.	.8
36	ZAITZEVIA PARVUL	1.6
37	CHIRONOMUS SP.	3.1
38	MICROPSECTR SP.C	.2
39	PHAENOPSECTRA SP	. 1
40	FOLYPEDILUM SP.A	7.1
41	TANYTARSUS SP. A	.1
42	TANYTARSUS SP. C	.1
43	PAGASTIA SP.	.1
44	CRICOTOPUS SP. B	.9
45	EUKIEFFERIELLA A	.4
46	EUKIEFFERIELLA B	2.5
47	EUKIEFFERIELLA E	٠. ٤
¬ 1	DOMINITARINE D	• •

Table 17. Continued

4 E	EUKIEFFERIELLA F	. 1
49	EUKIEFFEHIELLA G	. 1
50	ORTHOCLADIUS B	1.6
51	ORTHOCLADIUS MAL	1.2
52	CATHOCLADIUS NIG	.1
53	ORTHOCLADIUS OBU	.4
54	PSECTROCLADIUS C	. 1
55	SYNORTHOCLADIUS	. 1
56	CHELIFERA SP.	.1
5/	SIMULIUM SP.	.3
58	ANTOCHA SP.	.2
59	PHYSA SP.	.1
60	OLIGOCHAETA	.9

SAMFLE		
	11: 1: 6: 11: 1: (1)	
. 111 :S	SPECIES NAME	PERCENTAGE
1	SPECIES NAME BAETIS HAGENI PAET S INSIGNIFI BAETIS TRICAUDAT CENTROPTILO SP.A ATTENELLA MARGAR EPHEMERELLA INFR	1.7
2	BAET S INSIGNIEL	5.2
3	BAETIS TRICAUDAT	1.4
4	CENTROPTILO SP.A	. 1
5	ATTENELLA MARGAR	1.7
6	EPHEMERELLA INFR	1.2
7	SERRATELLA TIBIA	.6
8	EPHEMERELLA INFR SERRATELLA TIBIA TIMFANOGA HECUBA	. 7
9	EPEORUS ALBERTAE HEPTAGENIA SOLIT NIXE CRIDDLEI NIXE SIMPLICIOID RHITHROGENA HAGE PARALEPTOPHL BIC PARALEPTOPHL DEB	
10	HEPTAGENIA SOLIT	1.2
1.1	NIXE CRIDDLEI	. 1
12	NIXE SIMPLICIOID	1
13	RHITHROGENA HAGE	.9
14	PARALEPTOPHL BIC	1.1
15	PARALEPTOPHL DEB	.3
16	TEICODVEUODEC MI	9.1
17	CLAASSENT SABILO	. 1
18	HESPEROPERLA PAC	ų
19	ISOGENOIDES FLON	2.2
20	ISOPERIA OUTNOUE	.1
21	SKMALA PARALIFIA	1.3
22	PTERONARCYS CALL	.1
23	BRACHYCENTRUS OC	• ' 1
24	ARCTOPSVCHE GRAM	• ! • 3
25	CLAASSENI SABULO HESPEROPERLA PAC ISOGENOIDES ELON ISOPERLA QUINQUE SKWALA PARALLELA PTERONARCYS CALI BRACHYCENTRUS OC ARCTOPSYCHE GRAN CHEUMATOPSYCHE	21
26	HYDROPSYCHE OCCI	5.1
27	SYMPHITOPS COCKE	9.4
28	HYDROPTILA SP.	9.4 3.6
29	NECTRICHIA SP.	_
30	ZUMATRICHIA NOTO	.2
31		. 1
32	OECETIS SP. A	.8
	WORMALDIA SP.	.1
33	PSYCHOMYIA FLAVI	2.4
34	PARARGYRACTIS SP	2.6
35	OREODYTES SCITIL	.3
36	CPTIOSERVUS SPP.	.8
37	ZAITZEVIA PARVUL	3.3
38	CHIRONOMUS SP.	.1
39	MICKOPSECTR SP.A	.2
4(MICROPSECTR SP.C	• 7
41	MICROTENDIPES SP	.6
42	PEAENOPSECTRA SP	. 4
43	POLYPEDILUM SP.A	7.2
44	TANYTARSUS SP. C	.8
45	FAGASTIA SP.	.2
46	CRICOTOPUS SP. B	.3
47	EUKIEFFERIELLA A	. 1
48	EGKI FFERIELLA B	.6
49	EUK1EFFERIELLA E	. 4
50	EUKIEFFERIELLA C	. 1

Table 17. Continued

51	GETHOCLADIUS B	4.4
52	ORTHOCLADIUS MAL	.9
53	ORTHOCLADIUS NIG	. 1
54	GRTHOCLADIUS OBU	. 3
55	PSECTROCLADIUS B	. 4
56	PSECTRUCLADIUS C	. 2
5?	APLABESMYIA SP.	.4
58	CHELIFERA SP.	• 3
59	WIEDEMANNIA SP.	.1
6C	ANTOCHA SP.	.2
6.1	HEXATOMA SP.	.1
62	HYDROCHUS SP.	.3

S	Α	M	Ľ	Į.	E	:		1	0	-	5	7	-	C		
_	_		_	_	_	_	-	-	_	_	_	-	-		~	_

	10-57-C	
	DISTRIBUTION DATA	DED//PNEAGE
SPECIES	SPECIES NAME	PERCENTAGE
1	BAETIS HAGENI	.1 7.5
2	BAETIS INSIGNIFI BAETIS TRICAUDAT	7.8
2 3 4	ATTENELLA MARGAR	3.8
4 5	DRUNELLA GRANDIS	2.5
6	EPHEMERELLA INFR	.1
7	SERRATELLA TIBIA	3.6
5 6 7 8	EPEORUS ALBERTAE	.1
9	NIXE CRIDDLEI	.18
10	NIXE SIMPLICIOID	.1 .
11	RHITHROGENA HAGE	4.3
12	PARALEPTOPHL BIC	. 1
13	PARALEPTOPHL DEB	.1
14	TRICORYTHODES MI	1.1
15 16	CLAASSENI SABULO	1.4
16 17	ISOGENOIDES ELON SKWALA PARALLELA	.7 1.3
18	PTERONARCELLA BA	4.4
19	BRACHYCENTRUS OC	. 4
20	PROTOPTILA SP.	. 1
21	ARCTOPSYCHE GRAN	1.2
22	CHEUMATOPSYCHE	5.8
23	HYDROPSYCHE OCCI	4.8
24	SYMPHITOPS COCKE	5
25	HYDROPTILA SP.	.9
26	NEOTRICHIA SP.	.3 .1
27 28	ZUMATRICHIA NOTO PARARGYRACTIS SP	. 1
29	OPTIOSERVUS SPP.	.2 9.5
30	ZAITZEVIA PARVUL	6.7
31	ATHERIX VARIEGAT	.1
32	MICROPSECTR SP.A	2.5
33	MICROPSECTR SP.C	1.6
34	. MICROTENDIPES SP	1
35	POLYPEDILUM SP.A	6.1
36	PAGASTIA SP.	- 1
37	POTTHASTIA SP.	.1
38 39	EUKIEFFERIELLA A EUKIEFFERIELLA B	.1 1.4
40	EUKIEFFERIELLA E	1.2
41	EUKIEFFERIELLA G	.1
42	ORTHOCLADIUS B	.1
43	ORTHOCLADIUS MAL	.3
44	ORTHOCLADIUS NIG	.1
45	ORTHOCLADIUS OBU	.1
46	PSECTROCLADIUS B	. 1
47	SYNORTHOCLADIUS	.1
48 49	THIENEMANIELL SP ABLABESMYIA SP.	.2 .4
50	CHELIFERA SP.	.3
51	SIMULIUM SP.	9.6
52	ANTOCHA SP.	.1
53	OLIGOCHAETA	.1
54	OLIGOCHAETA LUMB	• 4
55	TURBELLARI	.2

Table 17. Continued SAMPLE: 11-57-C SPECIES NAME PERCENTAGE
BAETIS HAGENI SPECIES DISTRIBUTION DATA SPECIES 1 BAETIS INSIGNIFI
BAETIS TRICAUDAT
ATTENELLA MARGAR
DRUNELLA GRANDIS
SERRATELLA TIBIA 2 25 3 9.7 1.5 5 .2 6 1.4 7 TIMPANOGA HECUBA 0 8 HEPTAGENIA SOLIT 0 NIXE SIMPLICIOID RHITHROGENA HAGE PARALEPTOPHL DEB 9 .2 10 3.9 PARALEPTOPHL DEB
TRICORYTHODES MI
CALINEURIA CALIF
CLAASSENI SABULO
ISOGENOIDES ELON
SKWALA PARALLELA
PTERONARCELLA BA
PTERONARCYS CALI
BRACHYCENTRUS OC
ARCTOPSYCHE GRAN
CHEUMATOPSYCHE
HYDROPSYCHE OCCI
SYMPHITOPS COCKE
HYDROPTILA SP. 11 . 1 12 .7 13 . 1 14 .9 15 . 1 16 . 1 1.7 17 18 . 1 19 . 1 20 2.1 21 6.1 22 16 23 1.7 24 HYDROPTILA SP. ZUMATRICHIA NOTO ZUMATRICHIA NOTO
OECETIS SP. A
OPTIOSERVUS SPP.
ZAITZEVIA PARVUL
ATHERIX VARIEGAT 0 25 0 26 27 1.4 28 2 29 ATHERIX VARILUAT
MICROPSECTR SP.A
MICROPSECTR SP.C
MICROTENDIPES SP
PHAENOPSECTRA SP
POLYPEDILUM SP.A 3.2 30 1.4 31 2.1 .2 32 33 1.6 34 3 .8 35 TANYTARSUS SP. C
EUKIEFFERIELLA A
EUKIEFFERIELLA B
EUKIEFFERIELLA E
HETEROTRISSOCLAD
ORTHOCLADIUS MAL
ORTHOCLADIUS OBU
PSECTROCLADIUS B
ABLABESMYIA SP.
CHELIFERA SP.
SIMULIUM SP.
PROTANYDERUS SP TANYTARSUS SP. C 36 0 .6 37 38 39 40 .2 41 .3 42 . 1 43 44 . 1 45 7.6

DIVERSITY INDEX 3.91

46

47

. 1

1.8

PROTANYDERUS SP.

HEXATOMA SP.

Table 17. Continued

SAMPLE: 13-57-C	;
-----------------	---

	13-57-C	
	DISTRIBUTION DATA	
SPECIES	SPECIES NAME	PERCENTAGE
1	BAETIS HAGENI	.2
2	BAETIS INSIGNIFI	14.5
й 3	BAETIS TRICAUDAT	4.8
ri ri	CENTROPTILU SP.A ATTENELLA MARGAR	.3
5 6	DRUNELLA GRANDIS	.1
7	EPHEMERELLA INFR	. 1
8	SERRATELLA TIBIA	.6
9	HEPTAGENIA SOLIT	.5
1Ó	NIXE SIMPLICIOID	5.5
11	RHITHROGENA HAGE	2.2
12	PARALEPTOPHL BIC	. 1
13	PARALEPTOPHL DEB	.1
14	TRICORYTHODES MI	3.5
15	CALINEURIA CALIF	. 1
16	CLAASSENI SABULO	1
17	ISOGENOIDES ELON	3
18	ISOPERLA QUINQUE	.1
19	SKWALA PARALLELA	1.1
20	PTERONARCELLA BA	.3
21	PTERONARCYS CALI	.2
22	SIGARA SP.	.1
23	BRACHYCENTRUS OC	.3
24 25	ARCTOPSYCHE GRAN CHEUMATOPSYCHE	1.2 9.7
26	HYDROPSYCHE OCCI	10.8
27	SYMPHITOPS COCKE	5.1
28	HYDROPTILA SP.	1.2
29	ZUMATRICHIA NOTO	.1
30	CERACLEA SP.	. 1
31	OECETIS SP. A	. 8
32	PSYCHOMYIA FLAVI	. 1
33	OREODYTES SCITIL	. 1
34	OPTIOSERVUS SPP.	1.7
35	ZAITZEVIA PARVUL	2.2
36 37	ATHERIX VARIEGAT	.7
3 7	DICROTENDIP SP.C	.1
38	MICROPSECTR SP.A	3.4
39	MICROPSECTR SP.C	.8
40	MICROTENDIPES SP	1.7
41	PHAENOPSECTRA SP	1
42 43	POLYPEDILUM SP.A	3.5
4 4	XENOCHIRONOMUS TANYTARSUS SP. C	.1
45	CORYNONEURA SP.	.1
46	CRICOTOPUS SP. B	. 1
47	EUKIEFFERIELLA B	1.7
48	EUKIEFFERIELLA E	.7
49	HETEROTRISSOCLAD	. 1
50	ORTHOCLADIUS B	.5
51	ORTHOCLADIUS MAL	.7
		- 1

Table 17. Continued

52	ORTHOCLADIUS OBU	.3
53	PSECTROCLADIUS B	.5
54	SYNORTHOCLADIUS	. 1
55	ABLABESMYIA SP.	1.1
56	CHELIFERA SP.	. 1
57	SIMULIUM SP.	. 1
58	HEXATOMA SP.	1.2
59	OLIGOCHAETA	. 1
60	OLIGOCHAETA LUMB	. 1
61	HYDROCHUS SP.	.1

CAMPIE.	111 57 0	
	14-57-C DISTRIBUTION DATA	
SPECIES	SPECIES NAME	PERCENTAGE
1	BAETIS HAGENI	_ 1
	BAETIS INSIGNIF1	16
2 3	BAETIS TRICAUDAT	1.5
4	CENTROPTILU SP.A	1
5 6	CAENIS SIMULANS	.2
	ATTENELLA MARGAR	7.3
7	EPHEMERELLA INFR	.1
8	SERRATELLA TIBIA	.1
9 10	TIMPANOGA HECUBA EPEORUS ALBERTAE	. 1
11	HEPTAGENIA SOLIT	1.3
12	NIXE CRIDDLEI	.5
13	NIXE SIMPLICIOID	6.8
14	RHITHROGENA HAGE	. 14
15	PARALEPTOPHL BIC	2.7
16	PARALEPTOPHL DEB	.9
17	TRICORYTHODES MI	12.3
18	CALINEURIA CALIF	. 1
19	CLAASSENI SABULO	.9
20	ISOGENOIDES ELON	2.6
21	SKWALA PARALLELA	.6
22	OPHIOGOMPHUS SP.	.2
23 24	BRACHYCENTRUS OC ARCTOPSYCHE GRAN	.1
25	CHEUMATOPSYCHE	5.1
26	HYDROPSYCHE OCCI	1.8
27	SYMPHITOPS COCKE	.7
28	HYDROPTILA SP.	3
29	ZUMATRICHIA NOTO	.2
30	CERACLEA SP.	. 1
31	OECETIS SP. A	.6
32	PSYCHOMYIA FLAVI	.6
33	PARARGYRACTIS SP	.2
34	OREODYTES SCITIL OPTIOSERVUS SPP.	. 1 . 4
35 36	ZAITZEVIA PARVUL	.7
37	BRYCHIUS SP.	.3
38	ATHERIX VARIEGAT	.1
39	CRYPTOCHIRONOMUS	.1
40	MICROPSECTR SP.A	1.5
41	MICROPSECTR SP.C	.9
42	MICROTENDIPES SP	11.2
4.5	PHAENOPSECTRA SP	2.8
44	POLYPEDILUM SP.A	2.9
45	TANYTARSUS SP. C	1.4
46 47	MONODIAMESA SP. CORYNONEURA SP.	.1
48	CRICOTOPUS SP. B	.3
49	EUKIEFFERIELLA A	.1
50	EUKIEFFERIELLA B	.5
51	ORTHOCLADIUS B	1.7
52	ORTHOCLADIUS MAL	. 1

Table 17. Continued

53	ORTHOCLADIUS NIG	.1
54	ORTHOCLADIUS OBU	1.2
55	PSECTROCLADIUS B	.5
56	SYNORTHOCLADIUS	.3
57	ABLABESMYIA SP.	1.2
58	CHELIFERA SP.	.1
59	HEXATOMA SP.	.5
60	HYALELLA AZTECA	.1
61	LEBERTIA SP.	.1
62	OLIGOCHAETA	2:6

Tab	le 17. Continued	
SAMPLE:	15-57-C DISTRIBUTION DATA	PERCENTAGE .4 11.5 5.9 .3 5.7 .1 .6 .1 .1
12 13 14 15 16 17 18 19 20 21 22 23 24 25	NIXE SIMPLICIOID RHITHROGENA HAGE PARALEPTOPHL BIC PARALEPTOPHL DEB AMELETUS VELOX TRICORYTHODES MI CLAASSENI SABULO HESPEROPERLA PAC ISOGENOIDES ELON SKWALA PARALLELA PTERONARCELLA BA SIGARA SP. BRACHYCENTRUS OC PROTOPTILA SP.	5.7 6.1 .7 .2 .1 8.9 2.4 .1 4.5 .5 .5 .6 .2
26 27 29 31 33 33 33 33 37 38 40 41 41 41 41 41 41 41 41	ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. ZUMATRICHIA NOTO CERACLEA SP. PSYCHOMYIA FLAVI PARARGYRACTIS SP OREODYTES SCITIL OPTIOSERVUS SPP. ZAITZEVIA PARVUL CRYPTOCHIRONOMUS MICROPSECTR SP.A MICROPSECTR SP.C MICROTENDIPES SP PHAENOPSECTRA SP POLYPEDILUM SP.A TANYTARSUS SP. C CORYNONEURA SP.	.3 6.8 5.9 .5 1.5 .3 .1 .1 .9 1.2 1.2 2.2 2.3 .5 2.3 1.1 6.5 2.7

CRICOTOPUS SP. B

EUKIEFFERIELLA B

EUKIEFFERIELLA E

HETEROTRISSOCLAD

ORTHOCLADIUS MAL

ORTHOCLADIUS B

46

47

48

49

50

51

. 1

. 4

. 1

Table 17. Continued

ORTHOCLADIUS NIG	.1
ORTHOCLADIUS OBU	.5
PSECTROCLADIUS B	.5
SYNORTHOCLADIUS	. 1
ABLABESMYIA SP.	2.4
CHELIFERA SP.	. 1
SIMULIUM SP.	1.2
PROTANYDERUS SP.	.1
HEXATOMA SP.	. 4
OLIGOCHAETA	.1
	ORTHOCLADIUS OBU PSECTROCLADIUS B SYNORTHOCLADIUS ABLABESMYIA SP. CHELIFERA SP. SIMULIUM SP. PROTANYDERUS SP. HEXATOMA SP.

Tab	le 17. Continued	
SAMPLE:	19-57-C	
	DISTRIBUTION DATA	222222422
SPECIES	SPECIES NAME	PERCENTAGE
1	BAETIS INSIGNIFI	5.2 2.6
2	BAETIS TRICAUDAT	1.4
3 4	ATTENELLA MARGAR DRUNELLA GRANDIS	.6
	EPHEMERELLA INFR	.2
5 6	SERRATELLA TIBIA	.5
7	TIMPANOGA HECUBA	.1
7 8	EPEORUS ALBERTAE	.5.
9	HEPTAGENIA SOLIT	2.1.
10	NIXE SIMPLICIOID	.1
11	RHITHROGENA HAGE	. 1
12	TRICORYTHODES MI	.2
13	CLASSENI SABULO	.2
14	ISOGENOIDES ELON	.2
15	SKWALA PARALLELA	.2
16	OPHIOGOMPHUS SP.	.1
17	BRACHYCENTRUS OC	.1
18	PROTOPTILA SP. ARCTOPSYCHE GRAN	.2
19 20	CHEUMATOPSYCHE	36.8
21	HYDROPSYCHE OCCI	16.5
22	SYMPHITOPS COCKE	5.6
23	SYMPHITOPS SLOSS	2.4
24	HYDROPTILA SP.	.8
25	LEUCOTRICHIA PIC	.1
26	NEOTRICHIA SP.	.1
27	ZUMATRICHIA NOTO	.2
28	CERACLEA SP.	.5
29	OECETIS SP. A	.5
30	PSYCHOMYIA FLAVI	1.2
31	PARARGYRACTIS SP	.3
32	OPTIOSERVUS SPP.	.8
33	ZAITZEVIA PARVUL MICROPSECTR SP.A	2
34 35	MICROPSECTR SP.C	.2
36	MICROTENDIPES SP	.8
37	PHAENOPSECTRA SP	.2
38	POLYPEDILUM SP.A	8.4
39	XENOCHIRONOMUS	.2
40	TANYTARSUS SP. C	.5
41	PAGASTIA SP.	.1
42	CORYNONEURA SP.	.1
43	EUKIEFFERIELLA A	. 4
44	EUKIEFFERIELLA B	.5
4-	EUKIEFFERIELLA E	.9
46	ORTHOCLADIUS B	1.1
47	ORTHOCLADIUS MAL	.2
48	ORTHOCLADIUS NIG	1.1
49 50	ORTHOCLADIUS OBU	1.1

PSECTROCLADIUS B

ABLABESMYIA SP. ANTOCHA SP. TURBELLARI

DIVERSITY INDEX 3.57

50

51 52 53

.1 .2 .1 .8

	21-57-C DISTRIBUTION DATA	
SPECIES	SPECIES NAME	PERCENTAGE
1	BAETIS HAGENI	.7
2 3	BAETIS INSIGNIFI BAETIS TRICAUDAT	2.3 1.9
1) 2	ATTENELLA MARGAR	.7
5	DRUNELLA GRANDIS	.4
	EPHEMERELLA INFR	.9
7 8	SERRATELLA TIBIA TIMPANOGA HECUBA	1.8
9	EPEORUS ALBERTAE	1.2
10	HEPTAGENIA SOLIT	1.1
11	PARALEPTOPHL BIC	.2
12 13	PARALEPTOPHL DEB TRICORYTHODES MI	.1
14	CLAASSENI SABULO	. 4
15	ISOGENOIDES ELON	.5
16 17	SKWALA PARALLELA PTERONARCYS CALI	.1
18	SIGARA SP.	.1
19	BRACHYCENTRUS OC	.9
20	PROTOPTILA SP. ARCTOPSYCHE GRAN	.1
21 22	CHEUMATOPSYCHE	1.2 28.2
23	HYDROPSYCHE OCCI	3.7
24 25	SYMPHITOPS COCKE SYMPHITOPS SLOSS	1.6 1.4
26	HYDROPTILA SP.	5.2
27	LEUCOTRICHIA PIC	.1
28	NEOTRICHIA SP.	.3
29 30	LEPIDOSTOMA SP.A CERACLEA SP.	.1
31	OECETIS SP. A	.5
32	PSYCHOMYIA FLAVI	.8
33 34	OPTIOSERVUS SPP. ZAITZEVIA PARVUL	.4 1.2
35	CRYPTOCHIRONOMUS	.1
36	MICROPSECTR SP.A	.4 1.8
37	MICROPSECTR SP.C	1.8 8.2
38 39	MICROTENDIPES SP PHAENOPSECTRA SP	.2
40	POLYPEDILUM SP.A	11.5
41	XENOCHIRONOMUS	.1
42 43	PAGASTIA SP. CORYNONEURA SP.	.1
44	EUKIEFFERIELLA A	.3
45	EUKIEFFERIELLA E	1.2
46 47	EUKIEFFERIELLA G ORTHOCLADIUS MAL	.1
48	ORTHOCLADIUS NIG	2.9
49	ORTHOCLADIUS OBU	6.6
50	PSECTROCLADIUS B	.5
51 52	SYNORTHOCLADIUS ABLABESMYIA SP.	.3 2.9
53	SIMULIUM SP.	- 3
54	OLIGOCHAETA	. 1
55 56	OLIGOCHAETA LUMB TURBELLARI	.2 1.4
70	TOUDDEDAME	1.7

	23-57-C DISTRIBUTION DATA SPECIES NAME BAETIS HAGENI BAETIS INSIGNIFI BAETIS TRICAUDAT CENTROPTILU SP.B	PERCENTAGE .2 .7 3
5 6 7 8 9 10	CAENIS SIMULANS ATTENELLA MARGAR HEPTAGENIA SOLIT NIXE CRIDDLEI NIXE SIMPLICIOID STENONEMA SP. PARALEPTOPHL BIC	.2 .2 1 .7 2.1 5.9 6.6
12 13 14 15 16 17	PARALEPTOPHL DEB ISOGENOIDES ELON OPHIOGOMPHUS SP. CHEUMATOPSYCHE HYDROPTILA SP. LEPIDOSTOMA SP.A CERACLEA SP.	3.3 .2 .2 1.6 .3
19 20 21 22 23 24	POLYCENTROPUS SP PARARGYRACTIS SP OREODYTES SCITIL DUBIRAPHIA SP. OPTIOSERVUS SPP. ZAITZEVIA PARVUL	1.9 .3 .2 .7 3.1 .2
25 26 27 28 29 30	CRYPTOCHIRONOMUS DICROTENDIP SP.B MICROPSECTR SP.C MICROTENDIPES SP PARACHIRONOMUS PAGASTIA SP. CORYNONEURA SP.	.3 1.6 4.7 .3 .3
32 334 35 36 37 38	EUKIEFFERIELLA E ORTHOCLADIUS OBU PSECTROCLADIUS B SYNORTHOCLADIUS THIENEMANIELL SP PROCLADIUS SP. A CHELIFERA SP.	.2 4.7 .2 .9 .3 .2 .3 .2
39 40 41 42 43 44 45	WIEDEMANNIA SP. SIMULIUM SP. HYALELLA AZTECA GYRAULUS SP. LYMNAEA SP. PHYSA SP. PISIDIUM SP.	12.5 1 19.8 .2
46 47 48 49 50	OLIGOCHAETA OLIGOCHAETA LUMB TURBELLARI MYSTACIDES SP. HELOBDELLA SP.	.7 5.9 1 .2 .2

Tab	ole 17. Continued	
	DISTRIBUTION DATA SPECIES NAME BAETIS INSIGNIFI BAETIS TRICAUDAT ATTENELLA MARGAR DRUNELLA GRANDIS EPHEMERELLA INFR TIMPANOGA HECUBA HEPTAGENIA SOLIT NIXE SIMPLICIOID RHITHROGENA HAGE STENONEMA SP. PARALEPTOPHL BIC TRICORYTHODES MI CLAASSENI SABULO ISOGENOIDES ELON OPHIOGOMPHUS SP. PROTOPTILA SP. ARCTOPSYCHE GRAN CHEUMATOPSYCHE HYDROPSYCHE OCCI SYMPHITOPS COCKE HYDROPTILA SP. LEUCOTRICHIA PIC ZUMATRICHIA NOTO CERACLEA SP. PSYCHOMYIA FLAVI PARARGYRACTIS SP OREODYTES SCITIL NARPUS CONCOLOR OPTIOSERVUS SPP. ZAITZEVIA PARVUL CRYPTOCHIRONOMUS MICROPSECTR SP. A MICROPSECTR SP. A MICROPSECTR SP. C MICROTENDIPES SP POLYPEDILUM SP. A XENOCHIRONOMUS TANYTARSUS SP. C PAGASTIA SP. CRICOTOPUS SP. B EUKIEFFERIELLA A EUKIEFFERIELLA E ORTHOCLADIUS B ORTHOCLADIUS MAL ORTHOCLADIUS MAL ORTHOCLADIUS MAL ORTHOCLADIUS MAL ORTHOCLADIUS B SYNORTHOCLADIUS B ORTHOCLADIUS B SYNORTHOCLADIUS B ORTHOCLADIUS B CHELIFERA SP. CHELIFERA SP.	PERCENTAGE 2.1 .7 .1 .2 .1 .4 .1 .3 3.6 .3 1 .1 .1 .1 .1 .1 .3 2.4 .1 .1 .9 2.2 10.9 2.7 .5 2.5 .2 .3 .4 .4 .1 .1 .1 .3 8.6 .3 .3 .1 .1 .1 .1 .3 8.6 .3 .3 .1 .1 .1 .1 .3 8.6 .3 .3 .1 .1 .1 .1 .3 8.6 .3 .3 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

	25-58-C DISTRIBUTION DATA SPECIES NAME BAETIS INSIGNIFI ATTENELLA MARGAR SERRATELLA TIBIA TIMPANOGA HECUBA EPEORUS ALBERTAE HEPTAGENIA SOLIT	PERCENTAGE .1 .6 .1 1.5 .1 2.7
7 8 9 10 11 12 13 14	NIXE SIMPLICIOID STENONEMA SP. TRICORYTHODES MI CLAASSENI SABULO ISOGENOIDES ELON OPHIOGOMPHUS SP. PROTOPTILA SP. CHEUMATOPSYCHE HYDROPSYCHE OCCI	.1 8.6 .4 .1 .1 .1 .3 3 ⁴ .5
16 17 18 19 20 21 22 23 24	SYMPHITOPS COCKE HYDROPTILA SP. CERACLEA SP. PSYCHOMYIA FLAVI PARARGYRACTIS SP OREODYTES SCITIL OPTIOSERVUS SPP. ZAITZEVIA PARVUL DICROTENDIP SP.B	1.9 .3 1.4 .3 .1 .1 .1
25 26 27 28 29 30 31 32 33	DICROTENDIP SP.C MICROPSECTR SP.A MICROPSECTR SP.C MICROTENDIPES SP POLYPEDILUM SP.A TANYTARSUS SP. C STICTOCHIRONO SP EUKIEFFERIELLA E ORTHOCLADIUS OBU	.2 .6 3.4 2.1 .5 3.2 .4 .5
35 34 35 36 37 38 39 41	SYNORTHOCLADIUS ABLABESMYIA SP. LEBERTIA SP. FERRISSIA SP. GYRAULUS SP. LYMNAEA SP. PHYSA SP. OLIGOCHAETA LUMB	.1 .5 .1 .1 12.4 18 .2

Table 17. Continued

	27-58-C DISTRIBUTION DATA	
SPECIES		PERCENTAGE
1	CENTROPTILU SP.B	1.3
	TIMPANOGA HECUBA	2.1
3	HEPTAGENIA SOLIT	1.6
2 3 4	NIXE SIMPLICIOID	•3
5 6	STENONEMA SP.	• 3
6	TRICORYTHODES MI	•3
7 8	CHEUMATOPSYCHE	.3
	SYMPHITOPS COCKE	•3 •3 •5
9	ZAITZEVIA PARVUL	7.9
10	CRYPTOTENDIPE SP	.3
11	DICROTENDIP SP.B	15.3
12	DICROTENDIP SP.C	•3
13	MICROPSECTR SP.A	5.3
14	MICROPSECTR SP.C	6.9
15	MICROTENDIPES SP	1.1
16	PARACLADOPE SP.B	.3
17	PHAENOPSECTRA SP	1.1
18	POLYPEDILUM SP.A	.3
19	POLYPEDILUM SP.D	.8
20	TANYTARSUS SP. C	2.6
21	EUKIEFFERIELLA E	•3
22	ORTHOCLADIUS OBU	4
23	PSECTROCLADIUS B	1.1
24	SIMULIUM SP.	.3
25	CLADOCERA	35.7
26	LEBERTIA SP.	.3
27	OLIGOCHAETA LUMB	9
28	PARACHIRON SP. B	.8

SAMPLE:	31-58-C DISTRIBUTION DATA	
SPECIES	SPECIES NAME	PERCENTAGE
1	CENTROPTILU SP.A	. 5
	NIXE SIMPLICIOID	1.4
3	STENONEMA SP.	.8
4	PARALEPTOPHL BIC	38.3
5	PARALEPTOPHL DEB	5.9
6	. TRICORYTHODES MI	7.2
2 3 4 5 6 7 8	CHEUMATOPSYCHE	2.7
	SYMPHITOPS COCKE	.3
9	HYDROPTILA SP.	1.4
10	CERACLEA SP.	1.3
11	CRYPTOCHIRONOMUS	• 4
12	DICROTENDIP SP.B	.5
13	MICROPSECTR SP.A	.4 .5 .3
14	MICROPSECTR SP.C	.3
15	MICROTENDIPES SP	13.9
16	PARACLADOPE SP.B	.1
17	PHAENOPSECTRA SP	.2
18 19	TANYTARSUS SP. C POTTHASTIA SP.	.1
20	BRILLIA SP.	.1
21	ORTHOCLADIUS OBU	4.3
22	PSECTROCLADIUS B	.1
23	SYNORTHOCLADIUS	2.2
24	ABLABESMYIA SP.	•3
25	SIMULIUM SP.	• 5 • 5
26	TIPULA SP.	.5 .6 .3
27	CLADOCERA	-3
28	LEBERTIA SP.	.3
29	GYRAULUS SP.	6.7
30	LYMNAEA SP.	5.7
31	PHYSA SP.	.6
32	OLIGOCHAETA LUMB	.6
33	PARACHIRON SP. B	.1
34	PARATANYTAR SP.B	.2
35	GAMMARUS SP.	1.3

SAMPLE: SPECIES SPECIES 1 2	DISTRIBU	UTION DATA SPECIES NAME CHIRONOMUS SP. OLIGOCHAETA	PERCENTAGE 9.7 90.3
DIVERSI	ry INDEX	.46	
	26-57C DISTRIBU	JTION DATA SPECIES NAME CHIRONOMUS SP. CRYPTOCHIRONOMUS CRYPTOTENDIPE SP DICROTENDIP SP.A PARACLADOPE SP.B PARALAUTERBORNIE POLYPEDILUM SP.C TANYTARSUS SP. A MONODIAMESA SP. PROCLADIUS SP. A OLIGOCHAETA	PERCENTAGE .1 .6 .9 .6 .1 2.1 7.1 .1 .1 .3
DIVERSI'	TY INDEX	.77	
	28A-570 DISTRIB	C JTION DATA SPECIES NAME PALPOMY-GP SP. A TANYTARSUS SP. A PROCLADIUS SP. A CLADOCERA OSTRACODA OLIGOCHAETA	PERCENTAGE .7 6.7 17.4 1.3 .7
DIVERSI	TY INDEX	1.21	
		C UTION DATA SPECIES NAME CHIRONOMUS SP. TANYTARSUS SP. A PROCLADIUS SP. A OLIGOCHAETA	PERCENTAGE 1.4 .1 1.1 97.4

Table 17. Continued

SAMPLE:	30B-57C	
SPECIES	DISTRIBUTION DATA	
SPECIES	SPECIES NAME	PERCENTAGE_
1	OECETIS SP. B	.5
2	PALPOMY-GP SP. A	3.6
3	CRYPTOCHIRONOMUS	.9
4	DICROTENDIP SP.A	.5
5	LENZIELLA SP.	1.4
6	PARALAUTERBORNIE	10.9
7	POLYPEDILUM SP.B	.9
8	TANYTARSUS SP. A	•5
9	PROCLADIUS SP. A	1.4
10	CLADOCERA	7.3
11	OSTRACODA	.5
12	OLIGOCHAETA	66.4
13	COPEPODA	5. 5

```
Site
Number
                                                             9 10 11 13 15 16 17 18 19 20 21 22 24 27
  1
 2
                    55
54
59
43
40
  4
 5
                                  68
                                 70
55
54
                                        54
40
  8
                                              38
33
44
  9
                                                     835715586765862
                                 45
49
55
42
                           43
10
                                                           53
68
59
68
62
67
60
                           50
49
37
31
11
                                        51
                                                                 59
46
60
51
52
42
42
13
                                                                        72<u>69</u>867665666
                                        44
15
                                                                              73
55
57
51
56
49
16
                                  36
                                        27
                           35
43
                                 42
                                        34
17
                                                                                           72
62
63
60
61
57
16
                                 57
42
                                        47
18
                                                                                                  72
80
60
73
63
                           33
40
                                        36
19
                                                                                                        71
72
74
58
                                 51
                                       5<u>3</u>
4<u>3</u>
20
                                                                                                              <u>71</u>
<u>81</u>
                                                    56
                           36
                                 40
                                                           59
                                                                  39
                                                                                     66
21
                                              35
                                                           58
22
                           22
                                  24
                                        28
                                                    54
                                                                  37
                                                                        52
                                                                              54
                                                                                                              <u>68</u>
                                                                                     69
                                                                                                                           \frac{74}{20}
                                                                                                              16
                                                           12
24
                             7
                                    7
                                          6
                                              10
                                                     10
                                                                  10
                                                                        14
                                                                                 9
                                                                                                    9
                                                                                                          9
                                                                                                                                  22
27
                                                                                           23
                           22
                                  14
                                              27
                                                     19
                                                           21
                                                                  24
                                                                        15
                                                                              11
                                                                                     13
                                                                                                  18
                                                                                                        10
                                                                                                                                    9
```

Figure 18.A. Similarity coefficients for kick samples taken during spring of 1984, Clark Fork River and tributaries (x 100). Coefficients greater than 40 are underlined; those greater than 60 are double-underlined.

```
Site
                                     8 9 10 11 13 14 15 19 21 23 24 25 27 31
Number
                    2
                            5
                                 6
 1
 2
              40
 4
              60 <u>53</u> 43 33
 5
                      63
53
 6
              44 27
                           55
              35 26
 8
                      40 41
                               57
                               <u>67</u>
46
 9
              <u>53</u>
51
                      54
                          54
                                   <u>56</u>
32
                  36
                          42
10
                  47
                      49
                                        50
              <u>51</u>
39
                          36
                                       57
42
                      46
                  35
                              41
11
                                   30
                           27
                  17
                      27
                                   33
                                            44
13
                               48
                      31
                               43
                                       58
14
              39
                 27
                           30
                                    35
                                            47
                                                58
                                                     54
              48
                           33
                                       58
                                            53
15
                 31
                      39
                              41
                                    34
                                                     48
                                            <del>40</del>
              40 24
                           40
                                        61
63
                               <u>66</u>
<u>63</u>
19
                      37
                                                         49
                                   41
                                                     44
                                                             45
                           45
                                   42
                                                34
21
              41
                  26
                      38
                                            40
                                                     40
                                                         50
                                                             35 69
                                        12
              8
                               15
                           10
23
                   6
                        7
                                   12
                                            13
                                                12
                                                     15
                                                             14
24
              20 14 23
                           28 50
                                   32 42
                                            27
                                                25
                                                     25
                                                         41
                                                              29 50
                                                                     56
                                                                          34
25
              25 14 19 27
                              58
                                       41
                                                                 52
                                                                      57
                                   34
                                            38
                                                27
                                                     36
                                                         37
                                                              32
                                                                          24
                                                                               52
                                                                  <del>1</del>3
27
               7
                   5
                        5
                               10
                                         8
                                                                      10
                            6
                                   10
                                              8
                                                  6
                                                     14
                                                           9
                                                               7
                                                                          12
                                                                                9
                                                                                  12
                    0
                        0
31
               0
                            0
                                 0
                                     0
                                         0
                                              1
                                                  0
                                                      0
                                                           0
                                                               0
                                                                        0
                                                                                    2
                                                                   0
```

Figure 18.B. Similarity coefficients for kick samples taken during summer of 1984, Clark Fork River and tributaries (x 100). Coefficients greater than 40 are underlined; those greater than 60 are double-underlined. (Replicate data for each site combined.)

```
Site
Number
                                  5
                                            8
                                                  9 10 11 13 14 15 19 21 23 24 25 27
                   1
                        2
 1
 2
                 49
 4
                      46
 5
6
                     57
54
52
55
44
                           75
59
61
63
                                65
70
68
60
67
21
 8
                                     65
80
53
58
24
 9
                                           53
69
32
10
11
                                                71
33
61
73
81
70
                                                     61
33
59
60
63
52
8
13
                          55
58
60
                                     51
64
                                           55
74
14
                 37
68
57
66
                      38
                                48
                                                          70
87
76
66
12
                     52
54
50
10
                                69
65
57
                                                               44
15
                                     73
67
                                                               39
37
19
                           <del>49</del> 5
21
23
                  3
7
                                  6
                                           11
                                                10
                                                                10
                                                                                      5
                           16
24
                      18
                                16
                                     19
                                          23
                                                22
                                                     18
                                                          21
                                                               18
                                                                               20 20 21
                                                                     22
                                                                          19
                                                35
25
                  5
                           27
                                15
                                     27
                                          25
                      17
                                                     30 24 26
                                                                     36
                                                                         24 31 29
                                                                                         16 40
                  5 17 28 19 31 28 32 27 19 20 30 19 30 25 11 30 51
27
```

Figure 18.C. Similarity coefficients for kick samples taken during fall of 1984, Clark Fork River and tributaries (x 100). Coefficients greater than 40 are underlined; those greater than 60 are double-underlined. (Replicate data for each site combined.)

Figure ^{18.D.} Similarity coefficients for kick samples taken during spring of 1985, Clark Fork River and tributaries (x 100). Coefficients greater than 40 are underlined; those greater than 60 are double-underlined. (Replicate data for each site combined.)

```
Site
                             5
Number
                1
                    2
                         4
                                  6
                                           9 10 11 13 14 15 19 21 23 24 25 27 31
 1
 2
              38
 4
              58
                   44
              57
58
54
64
65
62
36
52
 5
                   <u>36</u>
                   35
31
 6
                           773
56
52
50
                                75
68
50
 8
                   33
45
                                     <u>70</u>
46
 9
10
                                         45
                   34
                       43
                                     37
                                         35
                                49
11
                                              59
                                     <u>50</u>
32
                                         55
49
                   36
                            50
                       47
                                61
                                              56
13
                                              35
55
                            29
                   23
                                47
                                                  41
14
                       28
                                                       <u>62</u>
71
                                52
                                         54
                                                  54
                       43
                            43
                                     44
                   32
15
              50
                                         59
                       49
                            52
                                     58
                   29
                                              41
                                                  44
19
              31
                                52
                                         54
                                              36
21
                   29
                       48
                            44
                                     51
                                                  29
                                                       38
                                                            37
                                                                39
                                 13
                                         12
23
              10
                   13
                       10
                             9
                                     10
                                              11
                                                    9
                                                       13
                                                           21
                                                                17
24
              24
                   24
                        34
                                41
                                     37
                            39
                                         40
                                              30
                                                  27
                                                       33
                                                            34
                                                                30
                                                                         53
                                                                    41
                                                                              25
25
                                33
               12
                   16
                        26
                            31
                                     31
                                          33
                                                       22
                                                                    47
                                                                         44
                                              16
                                                  16
                                                            18
                                                                22
                                                                              31 59
                                      5
27
                9
                   18
                        11
                             9
                                  9
                                         11
                                              14
                                                  10
                                                       13
                                                           12
                                                                15
                                                                      9
                                                                         13
                                                                             16 18 17
31
                9
                    7
                         7
                                 13 10 17
                                                8
                                                    7
                                                       14
                                                            32 20
                                                                      8
                                                                         21
                                                                              35 31 25 10
```

Figure ^{18.E.} Similarity coefficients for kick samples taken during summer of 1985, Clark Fork River and tributaries (x 100). Coefficients greater than 40 are underlined; those greater than 60 are double-underlined. (Replicate data for each site combined.)

Table 19. Genera of soft-bodied (non-diaton) algae found in periphyton samples from the lower Clark Fork River and tributaries.

[axa	March 5-9, 1984	July 31- August 3, 1984	October 30- November 2, 1984	Marcn 18-21, 1985	July 29- August 1,
Green Algae (Unlorophyta) Ankistrodesmus	Х	X	Х	Х	
Botryococcus	Λ	X	^	^	.*
Bulbochaete		X			X
Chaetophora		A			41
Cladophora	X	X	Х	X	Х
Closter .um	X	X	X	X	X
Coelastrum	X		X		
Cosmarium	X	X	X	X	X
Cylindrocapsa				X	-
Gloeocystis			X		
Congrosira		Х			X.
Hormidium					X
Mougeotia	X	X	Λ	X	X
Nephrocytium		X			
Oedogonium	X	X	X	X	X
Occystis					X
Pediastrum	X	X	X	X	X
Planktosphaeria					X
Pseudoulvella		X			
Scenedesinus	X	X	X	X	X
Selenastrum					X
Sphaerocystis			X	X	
Spirogyra	X	Χ	X	X	X
Staurastrum	X	X	X	X	X
Stigeoclonium	X	X	X	X	X
Ulothrix	X	X	X	X	X
Westella					Х
Zygnena			X	X	X
Colden-brown Algae (Chrysophyta)					
Dinobryon	Х				
Hydrurus	X	Х	X	X	
Tribonena	X		•-	X	
Vaucheria	••		Х		
Red Algae (Rhodophyta)					
Audouinella	Х	X	Х	Х	X
Lenanea	Λ	X	46	**	••

Table 19. (Continued)

Tax.i	March 5-9, 1984	July 31- August 3, 1984	October 30- November 2, 1984	March 18-21, 1985	July 29- August 1, 1985
Blue-green Algae (Cyanophyta)					
Calothrix		X	X	X	
Chamaesiphon	X				
Chroceccus	X		X		
Coelosphaerium		X			X
Dactylococcopsis		X	X	X	
Dichothrix		Χ	Χ	X	
Lyngbya	X				
Merismopedia		X			X
Nostoc		X	X	X	X
Oscillatoria	X	Х	X	X	X
Phonnidium	X	X	X	X	X
Rivularia	X	X	X	X	X
Romeria					X
Tolypothrix	X	X	X	X	X
Total Genera	24	30	29	26	28

Table 20. Structure and compositin of benthic diatom associations from the Lower Clark Fork River, Spring 1984, including Sharnon Diversity Index and percent of cells representing species in the three pollution tolerance groups of Lange-Bertalot (1979).

	CFR at Turah	Blackfoot River near mouth	CFR Milltown Dam	CFR Above Missoula	CFR Above Missoula WMTP	CFR Below Missoula WWTP	CFP at Shuffields	Sitterroot River Near Nouth	t CFR at r Harper Bridge	CFR .C: Mi. Blw. Champion
Species Counted	36	27		56	18	23	7	31		υč
Species Diversity	3.581	3,425	3,505	3,043	2,395	3,426	3,350	3,117		2.863
L-B Groups: 1. Nost Tolerant	7.7	7:11	v.	r iri	ر. د ا	21.9	-1	7.1		6.5
2. More Tolerant	58.1	29.3	35.6	42.8	26.5	49.1	31.8	25.5		38.5
3. Sensitive	37.9	59.7	58.1	51.4	70.4	29.2	7.79	73.2		54.8
A Major Species $(\%)^2$ and L-8 Group: Admanthes deflexa 3								\.		
Achmanthes minutissima 3	2.3	9.9	2.4	∞. ⊂	0.8		ω. 0			0.5
Cymbella affinis	0.3	7.4	3.0	5.0	0.5		5.1	1		1.0
Cymbella minuta 2	15.0	4.1	5.6	1.0	3.4		6.5	14.1		14.2
Cymbella sinuata 3	1.6	0.3	α. C	4			+	ir.		0.8
Diatoma terme 2	18.9	+	3.0	14.2	3.4		~!·			4.01
Fragilaria construens 3	1.0	1.3	1.1	+	+		r-1	0.5		
Fragilaria pirmata	0.3	+	+	0:1			ı	0.3		
Fragilaria vaucheriae	11.1	19.6	13.6	17.6	12.		, -1 , -1 , -1	°.		8.4
Comphonema olivaceum 3	19.7	26.5	27.4	39.1	51.7	7.7	· .	+		43.8
Navicula accomoda										
Navicula cryptocephala 1	+	7.6	7.0	F-1 C: I	2.4			9.0		5.5
Nitzschia dissipata 3	4.7	4.1	J*3.	* 1	(2)		١٢,	ۍ. د.		4.7
Nitzschia frustulum 3	1.6	0.3	2.4	١٩	1.6		0	3.1		
Nitzschia paleacea 2	2.1	3,1	3.2	4.6	3.4		C.1	2.1		8.7
Nitzschia perpusilla 2	3.1	8.0	6.3	ت. س	۵ . 0		ŧ	1.7		5.0
Nitzschia romana 3					¿+		7.7			2.1
Surirella evata	0.9	+	2.1	2.6	ت.		r-			0.3
Symedra mazamaensis 3	1.3	4.7	0.5	1.0	0.3		·	3.4		1.0

	CFR at	CFR at Ninemile	CFR at Lozean	CFR Near St. Regis	Flathead River Near Mouth	CFR at Plains	CFR Above T. Falls Reservoir	CFR Below T. Falls Reservoir	
Species Counted	22	25	23	25	55	07	45	봈	
Species Diversity	3.300	3,445	3.353	3.250	75.107	4.329	4.724	3.752	
L-B Groups: 1. Most Tolerant	7.0	1.8	7.9	10.0	9.1	13.8	14.7	4.3	6.2
2. More Tolerant	35.4	25.6	20.6	20.7	24.4	30.6	30.9	30.1	
3. Sensitive	57.4	72.8	71.6	69.1	0*29	55.3	55.0	65.6	
Major Species $(\%)^2$ and L-B Group:									
Achmanthes deflexa 3		+			0.3		0.5		
Admanthes minutissima 3	2.7	3.7	1.8	1.0	14.4	5.9	8.6	32.0	
Cymbella affinis 3	1.9	10.1	1.8	1.0	5.8	10.3	3.9	7.5	
Cymbella minuta 2	8.0	10.4	7.6	5.1	7.7	6. 8	2.1	2.2	
Cymbella sinuata	9.1	1.1	0.3	0.5	0.3	1.2	1.6	+	
Diatoma temue 2	6.2	9.0	2.1	3.7	3.0	6.4	5.7	5.9	
Fragilaria construens	0.5	0.3	+	1.7	10.2	2.3	2.3	0.8	
Fragilaria pinnata 3			0.3	+	5.2	0.2	0.5	1.1	
Fragilaria vaucheriae 2	7.2	2.0	2.9	3.7	8.6	10.1	10.9	13.2	
Comphonema olivaceum	36.7	25.8	27.8	38.6		13.8	0. 9	2.2	
Navicula accomoda 3	+					,	,	1	
Navicula cryptocephala 1	4.8	1.7	1.3	0.5		6.0	1.6	1.1	
Nitzschia dissipata 3	3.8	9.0	7.9	9.5	1.1	10.1	7.3	2.7	
Nitzschia frustulum 3	+	14.3	10.0	9.8	1.1	2.6	6.3	6.2	
Nitzschia paleacea 2	7.5	11.0	11.3	6.1		0.7	1.8	0.8	
Nitzschia perpusilla 2	4.3	8.4	5.0	6. 8		3.5	2.9	1.3	
Nitzschia romana 3	0.8	2.8	15.2	7.3	9.0	5.6	4.7	3.8	
Surirella ovata 2	0.3	+	0.3	+	0.3	+	0.5	0.3	
Symedra mazamaensis 3	1.3	1.4	1.0	1.0	+	1.2	0.8	1.3	

^{1.} Range of cells 356-427
2. + indicates species present but not counted.
3. Predominantly variety veneta.

Table 20 Structure and composition of benthic diatom associations from the Lower Clark Fork River, Summer 1984, including Sharaxan Diversity Index and percent of cells representing species in the three pollution tolerance groups of Lange-Bertalot (1979).

	CFR at Turah	Blackfoot River near mouth	CFR Blw. Milltown Dam	CFR Above Missoula	CFR Above Missoula WWIP	CFR Below Missoula WMTP	CFR at Shuffieids	Bitterroot River Near Youth	CFR at Harper Bridge	CFR 0.5 Mi. Blw. Champion
Species Counted	28	35	32	31	35	27	29	28	23	24
Species Diversity	3.053	3.941	3.743	3.376	3.759	3,483	3.233	2.876	2.775	2,684
L-B Groups: 1. Most Tolerant	6.4	3.2	6.9	8.4	5.1	41.0	0.9	1.4	2.3	2.5
2. More Tolerant	25.4	26.7	20.1	27.7	30.8	36.5	33.6	10.9	27.6	15.4
3. Sensitive	69.2	6*69	72.5	9.79	63.6	22.8	60.3	97.6	69.7	82.1
Major Species $(\%)^2$ and L-B Group:										
Achmanthes deflexa		0.5	+	+	+	+		6.8	2.7	0.2
Actmenthes lanceolata 2	0.2	0.5	+	0.2	+	0.2	0.2	+	0.2	+
Achranthes minutissina 3	3.4	22.0	7.4	9.5	5.1	6.3	8.1	55.9	28.0	22.2
Amphora perpusilla 3	1.0	3.6	0.7	1.2	1.7	+	+	+	7.0	+
Cocconeis placentula 3	1.7	8.8	1.7	1.0	2.0	0.5	1.2	0.7	7.0	1.4
Cymbella affinis 3	12.6	11.0	12.8	6.2	7. 9	8.9	36.0	2.1	30.0	8.95
Cymbella microcephala 2		0.2		+						
Epithemia sorex	41.3	5.3	30.2	35.9	30.6	0.2	7.7	0.5	+	0.5
Fragilaria capucina 3	+ +	; + c	0 7	4	1 2	4	ŭ	u C	-	c
Comphonema olivaceum	1.2	0.7	1.5	2.9	2.7	0.5	7.7		7.0	2.1
Comphonema tenellum 3	+	3.6	1.2	0.7	1.7	0.2	0.5	3.9		0.2
Comphonema tergistinum 3								3.7	0.4	1.2
Navicula radiosa ³ , 2	0.5	14.8	2.7	5.2	7.6	2.3	6.4	0.2	4.5	1.9
Navicula salinarum 2	+	0.7	0.2	0.2	0.2	+	0.2	1.4	0.4	+
Nitzschia dissipata 3	3.6	1.9	3.9	2.9	6.4	2.3	4.7	2.3	4.7	2.5
Nitzschia palea	0.2	0.2	0.7	0.7	0.5	24.0	1.6	+	0.2	
Nitzschia paleacea 2	16.7	5.5	6.9	16.9	14.0	7.5	20.7	3.9	19.9	0.6
Nitzschia perpusilla 2	3.6	1.2	6.9	2.9	4.4	22.9	1.9	1.9	6.0	1.9
Stephanodiscus dubius 3										
Stephanodiscus minutus 2										

Table 20 Continued	(TER 4 Mit.				Flathead		STAN SELECTION	क्षां व्य	Woley KED	CFR Pelow
	Below	CFR at Huson	CFR at Lozeau	CFR Near St. Regis	River Near Nouth	CFR at Plains	T. Falls Reservoir	T. Falls Peservoir	Noxa: Reservoir	Cabinet Corge Res.
Species Countec	32	25	gr c I	34		35	38	77	53	51
Species Diversity	3.042	2.947	(1) (2)	3.736		3.63	C. C	979.7	4.508	4.353
L-B Groups: 1. Most Tolerzon	3.2	3.2	~T • •	10.1	3.5	ν. «	ν. ∞	7.6	4.1	0.7
2. More Toleran	19.3	21.2	38.4	36.4		20.7	34.0	38.0	19.1	21.3
3. Sensitive	77.3	75.5	57.6	53.5		73.2	3.65	7.0	76.7	77.9
Major Species (aliminate I-B Group:										
Actuanthes deflers 3	0.2	+		+		0.5	0.2		0.5	0.5
Achranthes lanceciate 2	0.5	+	1.4	0.2		+	0.2	1.0	5.9	2.3
seire	17.8	28.7	3.2	23.3		15.8	16.7	11.1	24.5	28.2
	0.2	6.0	6.0	0.5		5.6	0.7	0.5	3.6	0.2
Cocconeis placerties 3	1.8	0.7	1.0	1.1		3.1	2.1	3.4	0.5	2.3
Cymbella affinis 3	43.1	32.6	25.1	9.6		24.5	20.0	7.4	4.3	1.1
Cymbella microcepia 2				,		1.4	1.4	0.5	0.7	0.5
Epithemia sorex	1.1	6.0	1.9	7.3		ı.\ بن	7.1	3.0	9.0 0.0	3.4
Fragilaria capucina			(,		(1	i	0.9%	7.5
Fragilaria construers	1.6	+ (٥٠٠	1.1		ກຸ.	0.0	7.0	9.9	7.5
Comphonema olivacer 3	1.1	2.1	2.	0.5		1.4	0.5	2.2	+ (0.2
Gomphonema tenellir	+	+	1.2	0.5		+	0.7		0.0	1.8
Gomphonema tergistini	0.7	0.7	0.2	+					+5	
Navicula radiosa 5	2.5	3.0	6.7	2.1		2.4	3.1	6.4	1.1	0.2
Navicula salinant 2	0.5	0.2	1.2	6.0		1.0	2.1	6.9	2.0	1.6
Nitzschia dissipata 3	4.1	3.9	3.7	2.3		, ∞	6.7	5.9	5.4	6.0
Nitzschia palea	0.2	0.7	0.2	1.8		0.7		2.7	0.7	+
Nitzschia paleacea 2	10.0	11.7	17.9	19.2		7.6	15.8	10.8	+ 0	3.2
Stephanodicare diring	4.1	φ. ₄	o o	9.1		٥. ٢	† ,1	7.7	0.0	ur O
Stephanodiscus minis 2)	3.4

Table 20. Structure and composition of benthic diatom associations from the Lower Clark Fork River, Fall 1984, including Sharmon Diversity Index and percent of cells representing species in the three pollution tolerance groups of Lange-Bertalot (1979).

	CFR at Turah	Blackfoot River near mouth	CFR Milltown Dam	CIR Above Missoula	CFR Above Missoula WMTP	CFR Pelow Missoula WWIP	CFR at Shuffields	Bitterroot River Near Mouth	CFR at Harper Bridge	CFR .05 Mi. Blw. Champion
Species Counted	31	43	41	39	41		31	32		26
Species Diversity	4.022	4.326	4.146	3,791	4.292		3.755	3.099	3.144	3.209
L-B Groups 1. Most Tolerant	4.5	15.4	6.2	7.1	9.3	9.6.0	8.4	1.4		4.7
2. More Tolerant	34.7	27.1	36.3	20.9	37.2		23.8	18.7	14.7	12.2
3. Sensitive	61.5	57.6	58.0	72.3	53.8		71.7	80.2		82.7
Major Species $(\%)^2$ and L-B Group:										
Achiranthes lanceolata	9.0	6.0	0.5	8.0	6.0			9.0		+
Achmanthes minutissima 3	3.6	11.0	7.6	8.7	5.1		2.1	7.97		5.5
Amphora veneta							0.3			
Cocconeis placentula	1.2	6.7	3.4	1.4	4.3		1.3	2.5		7.0
Cycrocerta menegiminana	1.1	0	ס•ָר הינר	1 · 1	۷. ر د ر		000	0.3		ر.0
Cymbella microcephala 2	0.,	0.3	C• 71	7.6	۲.۶		7.77	70.7		3/.2
Cymbella minuta	1.5	3.5	1.0	0.3	1.3		2.6	5.1		1.5
Diatora vulgare	7.6	2.6	5.0	7.1	4.6		5.0	3.4		0.9
Epithemia sorex 3	17.6	1.2	7.0	31.7	12.7		3.4	0.3		1.0
Fragilaria construens	0.3	2.9	2.3	2.5	19		5.0	0.3		1.2
Fragilaria vaucheriae	13.0	1.2	3.7	3,3	2.7		2.6	+		0.7
Navicula accomda	0.3									
Navicula salinarum 3 2	6.0	1.7	0.8	0.3	1.1		0.8	0.3		0.3
Navicula subminuscula	(ć	\ \	i			,	(
NICZSCHIA dissipata	χ.ς	0.2	0.0	٠.٢	 		1.9	2.0		4.0
Nitzschia fonticola 3	1.5	3.2	3.7	2.5	و . :		ى ن د			
Nitzschia paleacea	10.6	17.7	23.0	8.6	20.2		. 6. 6. 6.	10.2		5.7
Nitzschia perpusilla	2.7	+	1.0	1.4	1.3		ээ. С	0.8		1 .
Nitzschia romana		((((10.7	0.4		17.4
Synedra ulna	3.6	9.1 6.1	3.7	5.2	0.3 6.5		-, r=	+	1.1	0.0

	55																											
56		4.7	23.1	72.1		7.3	12.7	3.7	4.2	9.0	9.0	9.0		1.1	10.7	0.3	1.7	C	•	6.8	+	10.2	2.5	0.3	0.6	0.8	9.0	
57	7.807	6.1	34.2	4.09		7.0	11.2	2.1	8.00	3.2	+	1.3	0.5	1.6	8.6	0.5	5.3	۲.		5.1		7.9	3.5	0.5	2.7	1.1	0.8	
73	7.405	7.0	39.5	53.9		1.5	2,1	2.0	3.3	7.6	1.3	1.0	3.3	1.3	3.8	n, n	+	v	۲.,	6.4		1.0	21.9	0.8	2.6	1.0	2.3	
88		4.1	28.2	68.7		9.0	20.	3.6	0.3	10.5	3.6	9.0	1.4	5.2	2.2	3,3		C	1	8.6		2.5	15.5	0.3	3.3	9.0	1.1	
37	4,008	6.	37.1	53.6		0.5	8.0	3.8	0.8	12.4	0.5	0.8	2.2	3.0	2.7	2.2		7	· +	4.3			28.0	0.5	9.4	1.1	6.4	
39	3.318	7.4	20.0	73.1		2.3	49.3	2.0		0.3	8.3	1.1			3.7	9.0		4	-	2.3		2.0	2.0		0.9	3.1	3.7	
*	4.085	4.6	31.4	59.2		1.2	8./	5.8	1.8	12.9		0.7	1.8	3.9	2.5			~	•	6.2		0.2	20.7	1,4	8.1	+	5.3	
32	3.913	13.4	20.2	66.1		0.5	6./	2.5	1.2	13.5			4.7	1.7	1.5	0.5		0 0	(**)	8.4		0.5	12.5	1.5	17.7		9.1	
25	3.028	7 (i)	14.5	2.08		0.3	5.6	0.8	0.3	36.3		0.3	5.6	1.6	0.3		+	9 [· -	6.1			10.4	1.1	21.1		3.2	
30	069.	6.7	16.6	76.8		0.7	7.6	2.8	0.7	25.8		6.0	2.8	1.8	6.0	0.5		2 1	7.7	8.8			7.6	0.7	18.2	+	2.8	
					अल्लाक:	2	m -	- K	C1	3	C1	C1	\sim	\sim	m	7	C1 F	⊣	1 ~1	2	3	~	CI	0	\sim	~	-	
Species Counted	Sopecies Diversity	<pre>1-B Groups 1. Most Tolerant</pre>	2. More Tolerant	3. Sensitive	Major Species (♣) = =================================	Achmanthes lanceolata	Achmanthes minutissize	Amphora veneta Cocconeis placentula	-		Cymbella microcephala	Cymbella minuta	Diatona vulgare	Epithemia sorex	Fragilaria construens	Fragilaria vaucheriae	Melosira varians	Varionia accounte	Navicula submiruscula	Nitzschia dissipata	Nitzschia fonticola	Nitzschia frustulun	Nitzschia paleacea	Nitzschia perpusilla	Nitzschia romana	Symedra numbens	Synedra ulna	
	30 25 32 34 39 37 38 43 57	30 25 32 34 39 37 38 43 57 ity690 3.628 3.913 4.085 3.318 4.008 4.66£ 4.405 4.867	15. 32 34 39 37 38 43 57 5 15. 3.628 3.913 4.085 3.318 4.002 4.65 4.405 4.807 erent 6.7 4.5 13.4 9.4 7.4 9.2 4.4 7.0 6.1	15. 32 34 39 37 38 43 57 5 15. 690 3.628 3.913 4.085 3.318 4.002 4.652 4.405 4.867 4.867 error error 6.7 4.5 13.4 9.4 7.4 9.2 4.4 7.0 6.1 error error 16.6 14.5 20.2 31.4 20.0 37.1 28.2 39.5 34.2 3	ity	30 25 34 39 37 38 43 57 57 090 3.028 3.913 4.085 3.318 4.096 4.656 4.405 4.867 6.7 4.5 13.4 9.4 7.4 9.2 4.45 7.0 6.1 16.6 14.5 20.2 31.4 20.0 37.1 28.2 39.5 34.2 76.8 80.9 66.1 59.2 73.1 53.6 68.7 53.9 60.4 74	30 25 32 34 39 37 38 43 57 57 59 57 59 57 59 57 59 57 59 57 59 57 59 57 59 57 59 57 59 57 59 57 59 59 57 59 59 59 59 59 59 59 59 59 59 59 59 59	30 25 32 34 39 37 38 43 57 57 57 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 58 58 58 58 58 58 58 58 58 58 58 58	30 25 32 34 39 37 38 43 57 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57 58 57	Species Counted 30 25 32 34 39 37 38 43 57 Species Diversity 690 3.025 3.913 4.085 3.318 4.065 4.405 4.65 4.66 4.867 1-B Groups 86 To be Tolerant 6.7 4.5 13.4 9.4 7.4 9.2 4.1 7.0 6.1 2. Nore Tolerant 16.6 14.5 20.2 31.4 20.0 37.1 28.2 34.2 5. 3. Sensitive 3. Sensitive 76.8 80.9 66.1 59.2 73.1 53.6 68.7 53.9 60.4 7.4 Admenties Incoolatic 2 0.7 0.3 0.5 1.2 2.3 0.5 0.6 1.5 4.0 Admenties Interestinics 3 0.7 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.6 1.2 Admenties Interestinics 3 0.8 2.5 5.8 2.0	30	Species Counted 30 25 32 34 39 37 38 43 57 Species Diversity 690 3.028 3.913 4.085 3.318 4.078 4.667 4.867 1-B Groups 1. Most Tolerant 6.7 4.5 13.4 9.4 7.4 9.2 4.1 7.0 6.1 2. More Tolerant 16.6 14.5 20.2 31.4 20.0 37.1 28.2 34.2 6.1 3. Sensitive 5.8 80.9 66.1 59.2 73.1 58.6 68.7 59.9 34.2 Admantles Investing 3 5.6 6.1 59.2 73.1 58.6 8.7 59.0 60.4 70.0 Admantles Investing 3 7.6 5.6 7.9 7.8 49.3 8.6 20 9.2 11.2 Admantles Investing 3 7.6 5.6 7.9 7.8 49.3 8.6 20 9.2 11.2	Species Counted 30 25 34 39 37 38 43 57 Sopecies Diversity 690 3.028 3.913 4.085 3.318 4.08 4.66 4.867 1-B Groups 1-B Groups 1.0 kost Tolerant 6.7 4.5 13.4 9.4 7.4 9.2 4.1 7.0 6.1 2. Nore Tolerant 16.6 14.5 20.2 31.4 20.0 37.1 28.7 39.5 34.2 3. Sensitive 6.8 80.5 66.1 59.2 73.1 28.7 39.5 34.2 Admantise Incolaisa 2 80.5 66.1 59.2 73.1 53.6 68.7 53.9 60.4 Admantise Incolaisa 3 7.6 80.5 66.1 59.2 73.1 53.6 67.9 4.0 Admantise Incolaisa 3 7.6 7.8 49.3 8.6 20.4 9.2 4.0 Admantise Incolaisa 3 2.8	Species Counted 30 25 32 34 39 37 38 43 57 57 59 59 59 59 59 59	Species Counted 30 3.015 3.913 4.065 3.318 4.006 4.665 4.405 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867	Species Counted 30 25 32 34 39 37 38 43 57 Subscripts 690 3.025 3.913 4.085 3.318 4.006 4.665 4.405 4.867 L. B Groups 690 3.025 13.4 9.4 7.4 9.2 4.65 4.405 4.867 1. Nost Tolerant 6.7 4.5 20.2 31.4 20.0 37.1 28.2 34.2 5.7 3. Sensitive 7.8 80.9 66.1 59.2 73.1 58.6 67.4 7.0 61.1 Admentles Increase 3 66.7 5.2 7.3 66.1 59.2 73.1 58.6 67.4 7.0 67.1 Admentles Increases 3 6.8 7.9 7.8 49.3 8.6 2.0 3.2 4.0 Admentles Increases 3 6.8 7.9 7.8 4.9 7.8 4.9 7.8 4.0 7.8 4.0	Species Counted 30 15 34 39 37 38 4.3 57 Supercies Diversity 690 3.026 3.913 4.085 3.318 4.096 4.667 4.405 4.867 9 Coopers	Superies Counted 30 3.025 3.913 4.065 3.318 4.066 4.065 4.405 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.86	Superies Counted 30 25 32 34 39 37 38 43 57 58 59 59 59 59 59 59 59	Species Counted 30 35 34 39 37 38 43 57 Species Diversity 690 3.025 3.913 4.065 3.318 4.066 4.656 4.405 4.867 1-B Groups 160 trainer 6.7 4.5 13.4 9.4 7.4 9.2 4.1 7.0 6.1 18 Groups 18 Groups 18 Groups 1 1 2 3 3 3 4 7.0 6.1 3. Sensitive 1 1 20.2 3 20.2 3 3 3 3 3 3 3 4 7 6.1 4 7 9 6.1 4 7 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 9 9 9 9 9	Supercise Ownrect 30 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.	Supercise Diversity 3 3 3 3 3 3 3 3 3	Species Outted 30 35 36 37 38 47 39 37 38 47 39 37 38 47 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48	Species Counted: 30 35 36 37 38 47 36 37 38 47 36 37 38 47 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486	Species Counted 30	Sepacies Diversity 30 3.035 3.931 4.055 3.318 4.072 4.675 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.605 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.	Species Outcet 30 35 32 36 37 38 47 37 38 47 37 38 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47	Sepecies Counced 30 35 34 39 37 36 4.05 4.05 3.13 4.05 3.13 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 <th< td=""></th<>

^{1.} Range of cells 33%—3—2. tindicates species present but not counted.
3. Predominantly varies: intermedia.

Table 20. Stricture and composition of benthic diatom associations from the Lower Clark Fork River, Spring 1985, including Shamoon Diversity Index and percent of cells representing species in the three pollution tolerance groups of Lange-Bertalot (1979).

6.4 4.4 5.8 7.2 22.9 4.3 1.1 2.6 7.9 42.9 43.0 37.9 43.6 34.6 37.0 52.7 24.2 7.2 50.5 52.0 56.2 49.1 42.0 58.9 46.3 73.0 6.7 6.2 3.5 2.3 4.0 0.9 2.5 15.5 12.9 7.0 6.7 2.9 2.5 13.6 0.5 12.7 9.2 6.7 2.9 2.8 1.4 0.2 13.6 0.5 12.7 9.2 6.7 2.9 2.8 1.4 0.2 1.9 3.2 39.8 10.0 10.4 6.7 2.9 2.5 1.2 3.2 12.7 1.2 9.2 6.7 2.9 0.5 1.9 5.7 4 1.0 1.0 6.5 2.9 4.2 0.5 1.2 1.2 1.2 6.2 2.
43.0 43.6 34.6 37.0 52.7 52.0 56.2 49.1 42.0 58.9 46.3 52.0 56.2 49.1 42.0 58.9 46.3 3.5 2.3 4.0 0.9 2.5 15.5 2.9 4.2 6.3 0.2 19.6 0.5 2.9 4.2 6.3 0.5 7.0 0.5 2.9 4.2 6.3 0.5 7.0 1.9 2.9 2.8 2.6 3.0 0.5 4. 2.9 2.8 3.0 0.5 4. 0.9 2.7 2.3 19.5 6.1 18.1 1.9 2.5 32.2 16.0 12.9 5.5 4.9 1.1 2.6 3.3 0.2 5.5 4.9 1.0.8 9.1 12.1 7.7 7.2 2.4 1.9 3.0 14.3 0.7 2.8 2.4 1.9 8.1 6.1 7.4 4.9 1.1 1.4
52.0 56.2 49.1 42.0 58.9 46.3 3.5 2.3 4.0 0.9 2.5 15.5 2.9 2.8 1.4 0.2 19.6 0.5 2.9 4.2 6.3 0.5 7.0 + 2.9 4.2 6.3 0.5 7.0 + 2.9 4.2 6.3 0.5 7.0 + 1.8 0.5 3.0 0.9 + 0.9 + 27.4 23.3 19.5 6.1 18.1 1.9 25.2 32.2 16.0 12.9 5.5 + 10.8 9.1 12.1 7.7 7.7 7.2 10.8 9.1 12.1 7.4 4.9 10.8 9.1 12.1 7.4 4.9 10.8 1.4 0.5 18.5 + 4.6 1.1 1.4 0.5 3.3 9.3 6.5 1.3 0.5 1.4 4.9 4.9 1.3 0.5 4.9
3.5 2.3 4.0 0.9 2.5 15.5 2.9 2.8 1.4 0.2 19.6 0.5 2.7 3.0 6.7 1.9 3.2 39.8 2.9 4.2 6.3 0.5 7.0 + 0.2 2.6 3.0 0.9 + 0.9 1.8 0.5 3.0 0.9 + 0.9 2.7 23.3 19.5 6.1 18.1 1.9 2.7 23.3 19.5 6.1 18.1 1.9 2.5.2 32.2 16.0 12.9 7.5 + 10.8 9.1 12.1 7.7 7.7 2.8 10.8 9.1 12.1 7.7 7.4 4.9 10.8 9.1 12.1 7.7 7.4 4.9 7.7 5.4 8.1 6.1 7.4 4.6 7.7 5.4 8.1 6.1 7.4 4.9 1.1 1.4 0.5 3.3 9.3 6.5 1.3
2.9 2.8 1.4 0.2 19.6 0.5 2.7 3.0 6.7 1.9 3.2 39.8 2.9 4.2 6.3 0.5 7.0 + 2.9 4.2 6.3 0.5 7.0 + 1.8 0.5 3.0 0.9 + 0.9 27.4 23.3 19.5 6.1 18.1 1.9 25.2 32.2 16.0 12.9 5.5 + 10.8 9.1 12.1 7.7 7.7 7.2 10.8 9.1 12.1 7.7 7.4 4.9 10.9 3.0 14.3 0.7 2.8 7.7 5.4 8.1 6.1 7.4 4.9 1.1 1.4 0.5 18.5 + 4.6 1.3 0.5 3.3 9.3 9.3 6.5 1.3 0.5 3.3 9.3 6.5 2.5 3.3 9.3 9.3 6.5 4.6 4.9 4.6 6.5
2.7 3.0 6.7 1.9 3.2 39.8 2.9 4.2 6.3 0.5 7.0 + 0.2 2.8 2.6 3.0 0.9 + 0.9 1.8 0.5 3.0 0.9 + 0.9 27.4 23.3 19.5 6.1 18.1 1.9 25.2 32.2 16.0 12.9 '5.6 + 1.1 2.6 3.3 0.2 '.7 7.7 1.0.8 9.1 12.1 7.7 7. 7.2 2.4 1.9 3.0 14.3 0.7 2.8 7.7 5.4 8.1 6.1 7.4 4.9 1.1 1.4 0.5 18.5 + 4.6 1.3 0.5 1.4 + 4.6 1.3 0.5 3.3 9.3 6.5 2.5 3.3 4.6 5.5 4 6.5 4.6 5 1.4 4.6 5.5 6.5 3.3 3.3
2.9 4.2 6.3 0.5 7.0 0.2 2.8 2.6 0.7 + 1.8 0.5 3.0 0.9 + 27.4 23.3 19.5 6.1 18.1 1.9 25.2 32.2 16.0 12.9 5.5 + 1.1 2.6 3.3 0.2 5.7 10.8 9.1 12.1 7.7 7. 7.2 2.4 1.9 3.0 14.3 0.7 2.8 7.7 5.4 8.1 6.1 7.4 4.9 1.1 1.4 0.5 18.5 + 4.6 1.3 0.5 1.4 + 2.5
1.8 0.5 3.0 0.9 + 0.9 27.4 23.3 19.5 6.1 18.1 1.9 25.2 32.2 16.0 12.9 '5.5 +? 25.2 32.2 16.0 12.9 '5.5 +? 1.1 2.6 3.3 0.2 +? 10.8 9.1 12.1 7.7 7. 7.2 2.4 1.9 3.0 14.3 0.7 2.8 7.7 5.4 8.1 6.1 7.4 4.9 1.1 1.4 0.5 18.5 + 4.6 1.3 0.5 3.3 9.3 6.5 1.3 0.5 3.3 9.3 6.5
1.8 0.5 3.0 0.9 + 0.9 27.4 23.3 19.5 6.1 18.1 1.9 25.2 32.2 16.0 12.9 '5.6 + 1.1 2.6 3.3 0.2 '.) +? 10.8 9.1 12.1 7.7 7. 7.2 2.4 1.9 3.0 14.3 0.7 2.8 7.7 5.4 8.1 6.1 7.4 4.9 1.1 1.4 0.5 18.5 + 4.6 1.3 0.5 1.4 + 6.5 1.3 0.5 1.4 + 2.5
27.4 23.3 19.5 6.1 18.1 1.9 25.2 32.2 16.0 12.9 '5.5 +? 1.1 2.6 3.3 0.2 +? 10.8 9.1 12.1 7.7 7. 7.2 2.4 1.9 3.0 14.3 0.7 2.8 7.7 5.4 8.1 6.1 7.4 4.9 1.1 1.4 0.5 18.5 + 4.6 1.3 0.5 1.4 + 2.5
25.2 32.2 16.0 12.9 5.5 +? 1.1 2.6 3.3 0.2 5.5 +? 10.8 9.1 12.1 7.7 7. 7.2 2.4 1.9 3.0 14.3 0.7 2.8 1.1 1.4 0.5 18.5 + 4.6 1.3 0.5 1.4 + 0.5 1.4 5.5 1.4 + 0.5 1.4 5.5
1.1 2.6 3.3 0.2 1.7 + 1.7 + 8.9 7.7 7. 7.2 10.3 2.4 1.9 3.0 14.3 0.7 2.8 12.4 7.7 5.4 8.1 6.1 7.4 4.9 1.9 1.1 1.4 0.5 18.5 + 4.6 1.9 1.3 0.5 1.4 + 2.5 0.5
10.8 9.1 12.1 7.7 7.2 10.3 2.4 1.9 3.0 14.3 0.7 2.8 12.4 7.7 5.4 8.1 6.1 7.4 4.9 1.9 1.1 1.4 0.5 18.5 + 4.6 1.9 1.3 0.5 3.3 9.3 6.5 14.1 1.3 0.5 1.4 + 2.5 0.5
10.8 9.1 12.1 7.7 7. 2.4 1.9 3.0 14.3 0.7 2.8 7.7 5.4 8.1 6.1 7.4 4.9 1.1 1.4 0.5 18.5 + 4.6 1.3 0.5 1.4 + 2.5
2.4 1.9 3.0 14.3 0.7 2.8 7.7 5.4 4.9 6.1 1.1 1.4 0.5 18.5 + 4.6 1.3 0.5 1.4 + 2.5
7.7 5.4 8.1 6.1 7.4 4.9 1.1 1.4 0.5 18.5 + 4.6 + 0.5 3.3 9.3 6.5 1.3 0.5 1.4 + 2.5
1.1 1.4 0.5 18.5 + 4.6 + 0.5 3.3 9.3 6.5 1.3 0.5 1.4 + 2.5
+ 0.5 3.3 9.3 6.5 1.3 0.5 1.4 + 2.5
1.3 0.5 1.4 \div 2.5

	CFR 4 Mi. Below Champion	CFR at Huson	CFR at Lozeau	CFR Near St. Regis	Flathead River Near Mouth	CFR at Plains	CFR Above T. Falls Reservoir	CFR Below T. Falls Reservoir	CFR Below Noxon Reservoir	CFR Relow Cabinet Gorge Res.
Species Counted:	35	28	33	27	39	32	42	39	52	07
Species Diversity	4.072	3,995	4.173	3.862	3.606	3.7%	967.7	4.096	4.512	3.794
L-B Groups: 1. Most Tolerant	1.6	0.9	14.4	13.2	2.0	16.3	15.8	8.9	11.7	5.9
2. More Tolerant	31.9	22.6	21.2	20.3	34.4	26.3	34.0	24.8	33.0	22.7
3. Sensitive	58.9	71.2	64.1	7.99	63.4	57.5	50.0	4.99	55.8	71.2
E Major Species (%) ² and L-B Group:										
Admanthes minutissima 3	7.2	9.3	4.1	3.7	40.2	16.1	6.8	25.9	15.4	39.9
Cymbella affinis 3	8.9	12.8	5.5	5.6	3.7	8.2	2.5	1.9	4.0	0.4
Cymbella microcephala 2					4.5	0.3	0.8	9.0		+
Cymbella minuta 2	14.2	6.4	5.5	1.9	2.0	2.3	9.0	0.3	1.7	1.1
Diatoma temus 2	1.4	0.5	2.3	3.7	6.5	4.2	9.3	8.1	13.1	6.7
Epithemia sorex 3	1.2	1.6	0.7	6.0		0.3	0.8	9.0	9.0	1.1
Fragilaria capucina 3	+					+3	+		6.3	
Fragilaria construens 3	1.2	0.7	1.8	0.7	2.3	1.1	3.7	3.1	7.4	5.4
Fragilaria vancheriae 2	6. 8	5.1	1.6	1.4	12.5	16.4	11.3	8.6	6.0	5.9
Comphonema olivaceum 3 3	11.7	5.6	8.5	4.2	8.0	5.9	7.1	1.7	1.1	0.5
Navicula cryptocephala 1	7.2	6.4	11.9	8.8	8.0	11.6	7.6	3.6	9.0	1.1
Nitrochio dioni-oto	6	0	,	C L	,	1	•			
MILZSCILLA dissipara	13.0	×.71	14./	2.8	1.7	11.0	∞ •∞	11.7	3.7	1.3
Mitzschia frustulum	1.6	& &	9.4	11.4	9.0	9.0	0.8	1.1	1.1	0.8
Nitzschia paleacea 2	4.2	3.5	7.8	10.4	+	2.0	6.2	3,3	0.3	1.1
Nitzschia perpusilla 2	2.1	9.4	1.8	1.6		0.3	1.4	0.8		
Nitzschia romana 3	8.4	11.1	10.8	15.1	0.8	5.4	2.5	2.5	0.3	0.3
Synedra mazamaensis 3	1.2	0.2	0.5	+		0.3	9.0	0.8	+	0.3
Synedra ulna	0.7	0.7	2.3	4.4	9.0	8.4	7.9	5.3	9.1	3.8

Range of cells 350-452
 + indicates species present but not counted
 Predominantly variety veneta.

Relative abundance and estimated rank by volume (in parentheses) of diatoms and genera of ∞ft -bodied algae in composite samples of periphyton from natural substrates, March 5-9, 1984. R-rare; C-common; VC-very common; A-abundant; VA = very abundant; VWA = very very abundant. Table 21.

CFR 0.5 Mi. Blw. Champion			R C(3)	C(2) VVA(1)		C(4) R
CFR at Harper Bridge	ш		C(4)	VC(2) VVA(1)		VC(3) C(5)
Bitterroot River Near Mouth	VC(3) R	œ	(5)	R R VVA(1)	(9) OA	VA(2) A(4)
CFR at Shuffields	R(4)		R C(3)	C(2) VVA(1)	к	R C(5)
CFR Below Missoula WWTP	~	K K	C(5)	C(3) VVA(1)	ĸ	VA(2) A(6)
CFR Above Missoula WWTP	æ		VC(3)	A(2) WA(1)	VC(4)	C(5) R
CFR Above Missoula			VC(3)	VA(1) VA(2)	R(4)	84 PK
CFR Blw. Milltown Dem	R(5)		c(3)	A(2) VA(1)	C(4)	R(7) C(6)
Blackfoot River near mouth			R(3) C(2)	R WA(1)	ಜ	K K K
CFR at Turah			R VC(2)	VA(1) VC(3)	∝	œ
	Green Algae (Chlorophyta) Ankistrodesmus Cladophora Closterium Coelastrum Cosmarium		Stigeoclonium Ulothrix Colden-Brown Algae (Chrysophyta)	Hydrurus Tribonema Diatoms (Bacillariophyta)	Sed Algae (Khodophyta) Audouinella Blue-green Algae (Cyanophyta) Chamaesiphon Chrococcus	Lyngbya Oscillatoria Phormidium Rivularia Tolypothrix

Table 21.	CFR at	OFR at	CFR at	E at	CFR at	CFR at	CFR at	CFR Above
	Huson	Ninemile	Alberton	Tarkio	Lozeau	Superior	St. Regis	Flathead R.
Green Algae (Chlorophyta)								
Ankistrodesmus								
Cladophora		R(5)						P(7)
Closterium							ĸ	
Coelastrum							ĸ	
Cosmarium							ĸ	
Mougeotia							ĸ	
Oedogonium								
Pediastrum								C C.
Scenedesmus			ρ:		œ		CK.	
Spirogyra								
Staurastrum								K
Stigeoclonium	ĸ	R			æ	C(5)	C(6)	C(6)
Ulothrix	R(4)	C(4)	C(4)	αί	C(4)	VC(2)	VC(2)	A(2)
Golden-Brown Algae (Chrysophyta)								
Dinobryon								
Hydrurus	A(2)		VC(2)	A(2)	VC(3)	C(3)	VC(5)	VC(3)
Tribonena								
Diatoms (Bacillariophyta)	VVA(1)	VVA(1)	VVA(1)	V:A (1)	VVA(1)	WA(1)	WA(1)	WA(1)
Fed Algae (Rhodophyta)								
Audouine11a		≃	ĸ		C(5)	œ	œ	C(5)
Blue-green Algae (Cyanophyta)								
Chamaesiphon								
Chrococcus						VC(7)		VA(4)
Lyngbya								
Oscillatoria	C(3)	VC(2)	C(5)		A(2)	VC(4)	VC(3)	K
Phormidium	C(5)	A(3)	A(3)		(9) AC(6)	(9)0	A(4)	വ്
Tolypothrix			ĸ		C(7)			

	CFR Pology	Noxon Dam			t	ጟ			ĸ			C(4)			A(2)				(1) (V/A(1)		ĸ			R	C(5)	A(3)	(9)0	
; {	CFK Below T. Falls	Deal		R			ſζ			었		K		C(4)	VC(2)				(TA(1)		VC(3)			ĸ				
1	CFK Above T. Falls	Reservoir		≃	Ē	¥.		R(7)	R(6)		۲Y (C(3)	U	R(8)	VC(2)			R(4)	(1)	7	R(5)					ĸ		
	CFR at	Plains								ద			≃	R	VC(3)			A(2)	WA(1)	7						C(4)		
•	Flathead River	Near Mouth		≃	F	ፈ		М						C(2)	R(3)		ĸ		VC(1)	1						М		
Table 21.			Green Algae (Chlorophyta)	Ankistrodesms	Cladophora	Coelastrum	Cosmarium	Mougeotia	Oedogonium	Pediastrum	Scenedesmus	Spirogyra	Staurastrum	Stigeoclonium	Ulothrix	Golden-Brown Algae (Chrysophyta)	Dinobryon	Hydrurus Tribmens	Diatons (Bacillaricohyta)	Red Algae (Rhodophyta)	Audouinella	Blue-green Algae (Cyanophyta)	Chamaesiphon	Chrococcus	Lyngbya	Oscillatoria	Prormidium	Tolypothrix

Relative abundance and estimated rank by volume (in parentheses) of diatoms and genera of soft-bodied algae in composite sarples of periphyton from natural substrates, July 31 to August 3, 1984. R=rare; C=comon; VC=very comon; A=abundant; VA = very abundant; VA = very abundant. Table 21.

CFR Blw. Cabinet Gorge Dam	(7))		±(1) =(6)	(7)0	(6/3)	8(S) 8(S)
CFR Blw. Noxon Dam	R(3) R(8)	R(5) R(4) R(10)	C(6) A(1)	A(2)	R(12) R(9)	R(7)
CFR Blw. T. Falls Dam	R C(4) C(5)	R(9) R(8) R(15)	VC(6) R(7) R VC(3)	A(1)	R C(14) A(2) R	R(11) R(12) R(13) R(10)
CfR Abv. I. Falls Reservoir	R(9) C(6) VC(4)	C(3) R(12) R	VC(10) R VA(1) R(13)	A(2)	C(11)	R C(7)
CFR at Plains	(6)0	VC(3)	C(9) R(14) A(2) R(11)	7A(1)	3(13)	2 (3) 2 (1) 2 (3)
Flathead Piver Nr. Mruth	VC(3) 3(9) 8(13) R(14)	R(10) F VC(2)	E(E) C(S) C(J) E(11)	(9)2).	S :: (5)	a C
CFR near St. Regis	C(5) C(6)		G(7) VA(1)	A(2) VC(4)	R(8)	R(9) A(3)
CFR at Iozeau	R(5) C(4)		C(3)	VC(2)	ρij	R(6) A(1)
CFR at Huson	C(4) R(9) C(6)		C(8)	VV±(1) R(10)	C(7)	VC(5) A(3)
CFR 4 Mi. Blw. Champion	C(3)	R(6) R(11)	C(8) VC(2) C(4)	(VA(1)	R(12) R(13)	VC(5) C(7)
Table 21. Continued	Green Algae (Chlorophyta) Ankistrodesmus Botryococcus Bulbochaete Cladophora Closterium Cosmarium	Gongrosira Mougeotia Nephrocytium Oedogonium Pediastrum	Scenedesmus Spirogyra Staurastrum Stigeoclonium Ulothrix Colden-brown Aleae (Chrysophyta)	Hydrurus Diatoms (Bacillariophyta) Red Algae (Rhodophyta) Audouinella Lemanea	Blue-green Algae (Cyanophyta) Calothrix Coelosphaerium Dactylococcopsis Dichothrix Merisnopedia	Sostoc Oscillatoria Phormidium Rivularia Tolypothrix

periphyton from natural substrates, October 30 to November 2, 1984. Retare; Oecomon; VOevery comon; Aeabundant; VA = very abundant, VA = very abun Relative abundance and estimated rank by volume (in parentheses) of diatoms and genera of soft-bodied algae in composite samples of Table 21.

CFR 0.5 M. Blu. Champion		C(3)	α,	R C(7)	(9)2	VC(2 <u>)</u> C(4)		(TVA(1)	ρĸ		C(8)	(5)	
CFF at Harper Bridge		(3))		(4)	(8)	(7)0		(1)		R(0)	(7)	(3)	
Bitterroot River Near Mouth	R(1)	C(3) R(10)	R(12)	C(8)	C(7)	R(9) C(4)		VVA(1)			A(5)	(1)	(5))
CFR at Shuffields		C(4) R(10)	R(11)	C(8)	R(7)	VC(3) VC(2)		WA(1)			(6)2	(9))	C(S) VC(5) R(12)
CFR Below Missoula WMTP		R(8)	R(10) R(11)	C(5) R(9) C(7)		VC(3) C(4)		VA(2)			R(12)	(1)	(9)
CFR. Above Missoula WTP		C(2) R(9)	(9)3	(,))		C(4) R(5)		VA(1)	VC(3)		C(8)		
CFR Above Missoula		R(5) R(10)		R(8) R(9) C(6)		VC/3) C(4)		VA(1)	A(2)		C(7)		
CFR Blw. Militown Dem		C(4) R	ĸ	(9)	ر د	R(7) C(5)	α.	R(9) VA(1)	VC(3)		U	VC(2)	R(8)
Blackfoot River rear mouth				R(8) C(7)	VC(2) R(9)	C(4) VC(3)		VA(1)	C(5)		VC(6)	R(10)	
		C/3)	(بر زیر	tx.	tr; i	(T.O)		() () () () () () () () () ()					
	Green Algae (Chlorophyta) Ankistrodesmus	Cladophora Closterium	Cosmartum Closocystis	Oedogonium Pediastrum Scenedesmus	Spirogyra Staurastrum	Stigeoclonium	olde	Vaucheria Diatons (Bacillariophyta)	Audouinella	Calothrix	Dactylococcopsis Dichothrix	Nostro Oscillatoria	Phormidium Rivularia Tolypothrix

Cabinet Corge Dam	R(11) R(9) R(14) R(12)	C(4) C(5) R(10) VC(7) R(13) VC(3)	VA(1)	VC(8) C(6) A(2)
CFR Blw. Noxon Dam	R(5) R(12) R	R(9) R(11) R C(6) C(7)	R(10) A(1)	R VC(8) C(3) C(4)
CFR Blw. T. Falls Dam	R(8)	R(6) VC(4) C(2)	C(3) (VA(1)	VC(5)
CFR Abv. T. Falls Reservoir	P(6) R(13) R(15)	3(10) C(5) VC(8) P(7) R(14) C(4)	VC(2)	C(23) VC(3)
CFR at Plains	R(12) R(9)	R(11) R(10) R(14) C(8)	VC(3)	R(15) VC(7) C(4) C(6) C(5)
Flathead River Nr. Mouth	R(10) R R(12)	A(3) R(8) R C(9) VC(5) R(11)	VC(6) R A(1)	R C VC(4) A(2) C(7)
CFR near St. Regis	C(3) R(8)	R(12) C(5) R(9) R(7)	R(6) R(11) VA(1)	VC(4)
CFR at Lozeau	R(5) R(10) R(12)	R(11) VC(4) C(3) R(7)	C(2)	R(14) VC(6) R(9) R(13) C(8)
CFR at Huson	C(3) R(9) R(13)	R(8) R(12) C(7) C(6) VC(2)	C(4) WA(1)	C(11)
CFR 4 Mi. Blw. Champion	C(3) R(8) R(11)	R(7) C(9) C(6) VC(2)	C(4) (VA(1)	C(10)
	Green Algae (Chlorophyta) Ankistrodesmus Chaetophora Cladophora Closterium Coelastrum Cosmarium		Ulothrix Solden-brown Algae (Chryscphyta) Hydrurus Vaucheria Diatoms (Bacillariophyta) Red Algae (Rhodophyta) Audoninella	Blue-green Algae (Cyanophyta) Calothrix Ghroccoccus Dactylococcopsis Dichothrix Nostoc Oscillatoria Phormidium Rivularia Tolypothrix

Relative abundance and estimated rank by volume (in parentheses) of diatoms and genera of soft-bodied algae in composite samples of periphyton from natural substrates, March 18-21, 1985. R=rare; C=common; VC=very common; A=abundant; VA = very abundant; VA = very abundant. Table 21.

Table 21. Continued

CFR Blw. Cabinet Gorge Dam		VC(3) R(5)	R(7) VC(4)	A(2)	R(8) R(6)	A(1)
CFR Blw. Noxon Dem	R(9)	VC(4) R(10) R(11) R	R(7) R R C(5)	VA(1)	R VC(3)	C(8) A(2) C(6)
CFR Blw. T. Falls Dam	R(4) R(7)	R(5)	R(6)	VA(1)	C(3)	
CFR Abv. T. Falls Reservoir	R(8)	R(4) R(9) C(10)	R(5)	(VA(1)	c(3) c(2)	R(6) R(7)
CFR at Plains	R(5) R(7)	R(6)	(2)	A(2) VVA(1)	C(4)	
Flathead River Nr. Mouth		R(6) R(7) R(10)	R(8) C(4)	A(1)	VC(2)	VC(3) C(5) R(9)
CFR near St. Regis	R(6)		R(9) C(4) C(3)	WA(1)	C(5)	VC(2) R(8) R(7)
CFR at Lozeau	R(4) R(7)	R(6)	c(3)	WA(1)	R(5)	VA(2)
CFR at Huson	C(4) R(9)	R(7)	R(10) C(5) A(2)	(VA(1)		A(3) C(6) R(8)
CFR 4 Mi. Blw. Champion	R(6) R(7)	R(8)	R(9) WC(2)	C(4) WA(1)	R(5)	VC(3)
	Green Algae (Chlorophyta) Anklstrodesmus Cladophora Closterium Cosmarium	Cylindrocapsa Mougeotla Oedogonium Pediastrum Scenedesmus	Sphaerocystis Spirogyra Staurastrum Stigeoclonium Ulothrix Zvgnema	Colden-brown Algae (Chrysophyta) Hydrurus Tribonema Diatous (Bacillariophyta) Red Algae (Rhodophyta)	Audouinella Blue-green Algae (Cyanophyta) Calotrhix Dactylococcopsis Dichothrix	Nostoc Oscillatoria Phormidium Rivularia Tolypothrix

Table 21. Relative abundance and estimated rank by volume (in parentheses) of diatoms and genera of soft-bodied algae in composite samples of periphyton from natural substrates, July 29 to August 1, 1985. R=rare; C=common; VC=very common; A=abundant; VA = very abundant.

VA = very very abundant.

GFR 0.5 Mi. Blw. Champion	(6) 311	VC(2) VC(4)		K K	(9)2	VC(5)		WA(1)		A(3)	
CFR at Harper Bridge	a. C	C(5) R VC(6)		C(7) C(8)	VC(4)	A(2) R		(VA(1)		VC(3)	
Bitterroot River Near Nouth	(6) ***	VA(2) R R VC(4)		K K	A(3) R			VVA(1)		C(5)	
CFR at Shuffields	R	C(<i>5</i>) R A(2)		pc.	C(8)	VC(4) A(3)		WA(1)		VC(6)	VC(7)
OFR Below Missoula WWTP	स १	A(4)	(9)0	æ	C(2)	VA(2)		(VA(1)		A(3)	
CFR Above Missoula WMTP	C(6)	A(2) R VC(3)		CK.	C(5)			VA(1)	ск		VC(4)
CFR Above Missoula	C(7)	vA(2,) C(4) A(3)		CK.	(9)2			VVA(1)	Ω.		C(5)
CFR Blw. Milltown Dam	(C) VIA	VA(2) C(5) A(3)	~		(9)3		R	WA(1)		ĸ	C(4)
Blackfoot River near mouth		æ æ	ಜ ಜ		ድ	A(2) R R		VA(1)		C(4) C(5)	VC(3)
CFR at Turah	C(7)	VA(2) R VC(4)	c:		(9)0		ಜ	(TA(E)		A(3)	K VC(5)
	Green Algae (Chlorophyta) Ankistrodesmus Bulbochaete	Closterium Cosmarium Gongrosira	Hormidium Mongeotia Oedogonium Occeptis	Pediastrum Planktosphaeria	Scenedesmus Selenastrum	Spinogyra Stigeoclonium Ulothrix	Westella Zymana	Diatoms (Bacillariophyta) Red Algae (Rhodophyta)	Axioninella Blue-greenAlgae (Cyanophyta) Coelosphaerium	Nerismpedia Nostoc Oscillatoria	Prormadium Rivularia Roreria Tolypothrix

CFR Blw. Cabinet Gorge Dam	(2(5)	р	C(11)	C(8) C(4)	4	(9)0	VC(3) A(2)	VA(1)	œ	C(7) C(9)	C(10)	R
CFR Blw. Noxon Dam	C(S)	æ		C(7.) R	K D	C(9)	A(2) R	VC(4) A(1)		C(5) VC(3)	(9)30	rc(0) R
CFR Blw. T. Falls Dam	C(3)		껎		K	VC(2)		A(1)	Ω	4		
CFR Abv. T. Falls Reservoir	C(5)			ξĔ		VC(4)	VC(3)	A(1)	D	4	ACD	
CFR at Plains		VC(2)	(9)0			C(5)	C(3)	VA(1)			VC(4)	
Flathead River Nr. Mouth	(5)	(6)		ಜ	ಧ	C(6)	A(2)	VC(3)		A(1)	7) DA	
CFR near St. Regis	(9)0	R (5)	VC(4)		Д	vC(3)		VA(1)			A(2)	
CFR at Lozeau		C(3)	C(2) VC(4) R			(9)0		WA(1)			A(2)	
CFR at Huson		(2)21	VC(3)		ĸ	C(5)	, VC(4)	WA(1)				
CFR 4 Mi. Blw. Chempion		VC(2)	VC(4)		œ	(9)3	VC(3)	WA(1)		C(5)		
	Green Algae (Chlorophyta) Ankistrodesmus	Gladophora	Cosmarium Congrosira	Mongeotia Oedogonium Oemeric	Pediastrum Dimitrombosio	Scenedesms Selenastrum		Westella Colored Zygnema Diatoms (Bacillariophyta) Red Algae (Rhodophyta) Andoninella	Blue-greenAlgae (Cyanophyta) Coelosphaerium	Nostoc Oscillatoria	Rivularia	Tolypothrix

Table 22. Chlorophyll and biomass data for non-quantitative periphyton samples collected from natural substrates (stream cobbles).

SITE	DATE	CHLOROPHYLL a PHEOPHYTIN a	AUTOTROPHIC INDEX	STABILITY INDEX
TURAH	3/5/84	1.62	180.3	2.71
	8/3/84	1.63	369.3	2.29
	11/2/84	1.55	835.4	2.55
выластог	3/5/84	1.52	o5o.4	3.54
	8/3/84	1.68	1535.5	2.48
	11/2/8/	1 - '>/+	1144.9	2./3
BLW THEETOWN	3/5/84	1.57	357.5	3.78
	8/3/84	1.64	507.7	2.30
	11/2/84	1.54	1355.4	2.84
ABV. MISSOUL	···	1.58	919.3	3.96
	8/3/84	1.50	610.5	2.59
	10/29/8/4	1.50	800.5	2.35
ABV. STP	3/5/84	1.40	944.6	4.54
	7/31/84	1.52	589.8	2.38
	10/29/84	1.58	1712.8	2.63
BIM. STP	3/5/84	1.36	388.0	3.44
	7/31/84	1.62	183.6	2.04
	10/29/84	1.51	257.9	2.16
HUFFIELDS	3/5/84	1.48	252.6	3.70
	7/31/84	1.50	562.4	2.30
	10/30/84	1.52	249.5	2.73
31 FTERROOT	3/5/84	1.56	360.8	2.66
	7/30/84	1.41	421.9	2.92
	10/30/84	1.42	480.8	2.63
IARPER	3/6/84	1.38	360.4	4.35
	7/30/84	1.43	375.7	2.84
	10/30/84	1.49	597.8	2.95
1ARCURE	3/6/84	1.55	279.1	3.15
	7/31/84	1.52	522.1	2.94
	10/30/84	1.46	283.7	2.77
RENCHIOWN	7/31/34	1.45	426.3	3.10
	10/30/84	1.45	<i>9</i> 48.9	2.97
HUSON	3/6/84	1.62	209.3	2.94
	7/31/84	1.41	286.4	2.95
	10/30/84	1.28	255.4	2.99

Table 22. (Continued)

	SITE	DATE	CHLOROPHYLL a PHEOPHYTIN a	AUTOTROPHIC INDEX	STABILITY INDEX
16	NINEMILE	3/7/84	1.58	223.2	3.51
17	ALBERTON	3/7/84	1.52	307.3	3.86
18	TARKIO	3/7/84	1.62	155.0	3.84
19	LOZEAU	3/7/84	1.45	321 × d	3.87
		7/31/84	1.56	617.0	2.60
		10/30/84	1.55	497.3	3.01
20	SUPERIOR	3/7/84	1.54	248.2	3.59
21	ST. REGIS	3/8/84	1.51	326.1	3.57
		8/1/84	1.72	1691.9	2.92
		10/31/84	1.57	1478.7	3.04
22	ABOVE FLATHEAD	3/8/84	1.62	265.9	3.36
23	FLATHEAD	8/1/84	1.58	1651.0	3.13
		10/31/84	1.60	1445.6	2.80
24	PLAINS	3/8/84	1.53	843.0	4.62
		8/1/84	1.46	1174.8	2.85
		10/31/84	1.56	1539.9	2.90
25	ABV THOMPSON FALLS	3/8/84	1.41	1242.2	4.87
		8/1/84	1.46	1037.6	2.55
		10/31/84	1.47	756.6	2.93
27	BLW.THOMPSON FALLS	3/9/84	1.48	1977.5	6.70
		8/2/84	1.62	1373.6	2.88
		11/1/84	1.44	875.8	3.86
29	BELOW NOXON	3/9/84	1.56	509.9	3.94
		8/2/84	1.59	620.6	2.69
		11/1/84	1.54	2857.3	2.95
31	BLW. CABINET CORGE	11/1/84	1.62	580.5	2.79

Table 23. Chlorophyll and biomass data for periphyton collected on artificial substrates (glass slides) during October, 1983.

	SIÆ	DAI'E (days exposed)	CHLORO. <u>a</u> (ng/m²)	CHLURO. <u>a</u> ACCRUAL (mg/m²/day)	CHLORO. 2 PHEO. a	BIOMASS (mg/m²)	BIOMASS ACCRUAL AI (mg/m ² /day)	JIOBOPH.)INDEX	STABILITY INDEX
11	HARPER	10/5-10/27/83 mean (22 days)	73.47	3.34	1.73	4806.8	218.5	66.2	2.34
		(rep. 1)	(68.53)	(3.12)	(1.71)	(5085.7)	(231.2)	(74.2)	(—)
		2)	(68.03)	(3.09)	(1.82)	(3824.8)	(173.8)	(56.2)	(—)
		3)	(108.37)	(4.93)	(1.71)	(6681.9)	(303.7)	(61.7)	(_)
		4)	(67.22)	(3.06)	(1.71)	(4373.3)	(198.8)	(65.0)	(2.34)
		5)	(55.22)	(2.51)	(1.68)	(4068.6)	(184.9)	(73.7)	(2.33)
15	HUSON	10/5-10/27/83 mean (22 days)	95.00	4.32	1.73	5089.5	231.3	54.5	2.35
		(rep. 1)	(97.29)	(4.42)	(1.77)	(5161.9)	(234.6)	(53.0)	()
		2)	(88.92)	(4.04)	(1.77)	(4076.2)	(185.3)	(45.8)	()
		3)	(101.23)	(4.00)	(1.74)	(5280.0)	(240.0)	(52.2)	(_)
		4)	(112.38)	(5.12)	(1.65)	(5398.1)	(245.4)	(48.0)	(2.35)
		5)	(75.20)	(3.42)	(1.72)	(5531.4)	(251.4)	(73.6)	(2.34)
								,	

Table 23. Chlorophyll and biomass data for periphyton collected on artificial substrates (glass slides) during July and August, 1984.

	SITE	DATE (days exposed)	CHLORU. <u>a</u> (mg/m²)	CHLORO. <u>a</u> ACCRUAL (mg/m²/day)	<u>СН</u> LОКО. а РНЕО. <u>а</u>	BIOMASS (mg/m²)	BIO4ASS ACCKUAL (mg/m²/day	AUTUTROP INDEX 7)	H. STABILIT INDEX
01	TURAH	7/26-8/10/84 mean (15.2 days)	4.153	.273	1.64	1112.3	73.1	270.3	2.20
		(rep. 1)	(4.756)	(.312)	(1.60)	(1097.1)	(72.1)	(230.0)	(2.23)
		2)	(4.412)	(.290)	(1.61)	(1093.3)	(71.9)	(247.7)	(2.11)
		3)	(3.953)	(.260)	(1.65)	(1142.3)	(75.1)	(289.0)	(2.20)
		4)	(4.030)	(.265)	(1.65)	(11	(73.6)	(277.8)	(2.17)
		5)	(3.614)	(.237)	(1.69)	(1105.5)	(72.9)	(306.6)	(2.10)
06	ABV. STP	7/26-8/9/84 mean (14.2 days)	2.209	.155	1.59	373.1	61.5	395.1	2.23
		(rep. 1)	(2.214)	(.155)	(1.58)	(880.0)	(61.9)	(397.3)	(2.26)
		2)	(2.128)	(.149)	(1.59)	(792.3)	(55.8)	(372.2)	(2.26)
		3)	(2.216)	(.156)	(1.59)	(1055.2)	(74.3)	(476.1)	(2.18)
		4)	(2.216)	(.156)	(1.60)	(792.3)	(55.8)	(357.5)	(2.20)
		5)	(2.270)	(.159)	(1.58)	(845.7)	(59.5)	(372.4)	(2.27)
80	BLW. STP	7/25-8/9/84 mean (14.8 days)	11.328	.765	1.58	1948.1	131.0	212.7	2.07
		(rep. 1)	(12.489)	(.844)	(1.52)	(2354.2)	(156.1)	(188.4)	(2.12)
		2)	(27.830)	(1.880)	(1.56)	(3413.3)	(230.6)	(122.6)	(2.04)
		3)	(8.777)	(.593)	(1.59)	(1980.9)	(133.8)	(225.6)	(2.00)
		4)	(4.425)	(.299)	(1.58)	(1180.9)	(79.8)	(266.8)	(2.09)
		5)	(3.119)	(.211)	(1.63)	(811.4)	(54.8)	(260.0)	(2 . 12)
09	SHUFFIELDS	7/25-8/9/84 mean (14.8 days)	9.969	.673	1.53	1833.8	123.8	185.2	2.06
		(rep. 1)	(5.277)	(.356)	(1.44)	(921.9)	(62.2)	(174.6)	(2.11)
		2)	(7.885)	(.532)	(1.51)	(1462.8)	(98.8)	(185.5)	(2.05)
		3)	(7.987)	(.539)	(1.52)	(1676.1)	(113.2)	(209.8)	(2.03)
		4)	(10.905)	(.736)	(1.57)	(1950.4)	(131.7)	(178.8)	(2.12)
		5)	(17.793)	(1.202)	(1.61)	(3158.0)	(213.3)	(177.4)	(1.99)
11	HARPER	7/25-8/10/84 mean (14.2 days)	12.466	.878	1.57	1849.1	130.2	150.6	2.23
		(rep. 1)	(9.826)	(.692)	(1.59)	(1862.8)	(131.2)	(189.5)	(2.27)
		2)	(12.058)	(.849)	(1.68)	(1733.3)	(122.1)	(143.7)	(2.20)
		3)	(13.513)	(•952)	(1.58)	(1817.1)	(128.0)	(134.4)	(2.22.)
		4)	(14.137)	(.996)	(1.56)	(1893.3)	(133.3)	(133.9)	(2.25)
		5)	(12.795)	(.901)	(1.54)	(1939.0)	(136.5)	(151.5)	(2.20)
13	MARCURE	7/25/-8/10/84 mean (15.8 days)	18.363	1.162	1.68	2246.0	142.1	127.4	2.11
		(rep. 1)	(16.564)	(1.048)	(1.64)	(2140.9)	(135.5)	(129.2)	(2.18
		2)	(12.831)	(.812)	(1.71)	(1798.0)	(113.8)	(140.1)	(2.05
		3)	(31.778)	(2.011)	(1.70)	(3211.4)	(203.2)	(101.0)	(2.10
		4)	(14.987)	(.948)	(1.69)	(2121.9)	(134.2)	(141.5)	(2.14)
		5)	(15.654)	(•990)	(80.1)	(1958.0)	(123.9)	(125.0)	(2.07

Table 23. (Continued)

	SITE	DATE (days exposed)	CHLORO. <u>a</u> (mg/m²)	CHLORO. <u>a</u> ACORUAL (mg/m²/day)	<u>СНГОВО. а</u> РНЕО. <u>а</u>	BIOMASS (mg/m²)	BIONASS ACCRUAL (mg/m²/day)	AUTOTROP INDEX)	PH. STABILITY INDEX
15	HUSON	7/25 - 8/10/84 mean (16.0 days)	11.312	.707	1.64	2012.9	101.7	178.7	2.27
		(rep. 1)	(11.149)	(.696)	(1.63)	(1927.6)	(120.4)	(172.8)	(2.22)
		2)	(11.001)	(.687)	(1.64)	(1847.6)	(115.4)	(167.9)	(2.26)
		3)	(9.208)	(.575)	(1.63)	(1870.4)	(116.9)	(203.1)	(2.30)
		4)	(12.273)	(.767)	(1.65)	(1923.8)	(120.2)	(156.7)	(2.26)
		5)	(12.929)	(808.)	(1.66)	(2495.2)	(155.9)	(192.9)	(2.31)
20	SUPERIOR	7/25-8/9/84 mean (14.8 days)	7.369	•498	1.57	1628.1	110.0	224.8	2.17
		(rep. 1)	(10.449)	(.706)	(1.53)	(2076.1)	(140.2)	(198.6)	(2.13)
		2)	(6.052)	(.408)	(1.51)	(1424.7)	(96.2)	(235.3)	
		3)	(7.214)	(.487)	(1.63)	(1340.9)	(90.7)	(185.8)	
		4)	(6.350)	(.429)	(1.58)	(1775.2)	(119.9)	(279.5)	
		5)	(6.782)	(.458)	(1.59)	(1523.8)	(102.9)	(224.6)	
24	PLAINS	7/24-8/9/84 mean (15.5 days)	5.930	.382	1.61	3385.1	218.4	718.7	2.31
		(rep. 1)	(12.254)	(.790)	(1.59)	(3352.3)	(216.2)	(273.5)	(2.26)
		2)	(4.810)	(.310)	(1.66)	(3440.0)	(221.9)	(715.0)	
		3)	(2.903)	(.187)	(1.60)	(3649.5)	(235.4)	(1256.9)	
		4)	(4.702)	(.303)	(1.60)	(3329.5)	(214.8)	(707.9)	
		5)	(4.928)	(.317)	(1.62)	(3154.2)	(203.5)	(640.0)	(2.32)
1									

2. Deep-water Monitoring: Reservoir and River Pools

a. Rationale

As in all flowing water environments, the kinds and diversity of organisms living on or in the bottom material of the mainstem impoundements and deep river pools can provide much information about the relative health of the environment. Analysis of benthic organisms will allow assessment of environmental conditions in the bottom sediments, including the biological effects of any heavy metals and organic deposits and the presence or absence of dissolved oxygen.

b. Methods

The four mainstem impoundments and up to 11 river pools were sampled for biology during each seasonal monitoring run. Samples of benthic macroinvertebrates were brought up with a Petite Ponar Grab.

Sample collection and analysis methods and the analyzing laboratory are summarized in Table 24.

c. Results

Species identifications, counts, percentage distribution, and Shannon's species diversity values for each Petite Ponar Grab macroinvertebrate sample are given in Tables 16 and 17.

Table 24. Sample Collection and Analysis Methods for Deep-water and Open-water Biological Monitoring

Variable	Collection Method	Analytical Method	Laboratory
Benthic Macroinvertebrate Community Structure	Petite Ponar grab sample	Species identifications and counts made using numerous current taxonomic references.	C. Evan Hornig (contractor)
Anytoplankton Community Structure	Plankton tow sample described in Appendix B.	Species identifications and counts made using numerous current taxonomic references.	MDHES WQB
Phytoplankton Chlorophyll (mg/l)	Grab sample	Analysis technique described in Appendix B.	MDHES Chem Lab and WQB
Secchi Disc transparency (ft.)		On-site field measurement	Field personnel

3. Open-water monitoring

a. Rationale

Analysis of reservoir phytoplankton (suspended algae) species composition and abundance, yields much the same kind of information regarding environmental conditions in the reservoirs and its overall health as does the benthic macroinvertebrate samples. Analysis of phytoplankton chlorophyll concentrations in samples of reservoir water can be compared to ambient nutrient concentrations in order to assess eutrophication potential in the impoundments, according to criteria published by the Environmental Protection Agency.

b. Methods

Phytoplankton was collected seasonally from each of the reservoirs for taxonomic analysis, determination of concentration and chlorophyll content. Secchi disc transparency was also measured as an indication of depth of light penetration.

Sample collection methods and the analyzing laboratory are summarized in Table 24.

c. Results

Reservoir phytoplankton identifications, concentrations and chlorophyll measurements are presented in Tables 25 and 26. Secchi disc transparencies, corresponding weather and sky conditions and time of day are listed in Table 27.

Table 25. Density of viable algae cells in surface-water phytoplankton grab samples collected April 4-5, 1984.

Taxa		Number of Cells per Milliliter					
Autist codes 29	Taxa		r. Falls	Falls	Rapids	Gorge	
Autistrodesmis							
Decystis Scientification			0.			2.0	
Englemoid Algae (Biglemophyta) Englema 36 7 Golden-brown Algae (Chrysophyta) Dinobryon 15 138 36 72 Biglema 398					/	22	
Englemoid Algae (Englemoptyta) Englema 36 7 Golden-broom Algae (Chrysophyta) Dimobryon 15 138 36 72 Bidrums footidus 398 B. Footidus statospores 36 Diamonthes 72 80 29 Actual 36 7 7 Actual 36 7 7 7 Cocooneis 22 29 7 7 Cyclotella 36 72 80 29 7 Cyclotella 36 72 80 20 7 Cyclotella 36 72 80 20 7 Diatom 15 123 123 123 65 7 Epithemia 7 7 Emotia 7 7 Emotia 7 7 Comptonosa 413 94 15 15 15 Harmaca 7 7 Molosira 181 377 275 51 43 Brizosolenia 181 377 275 51 43 Streptunal 18 377 275 36 Streptunal 18 37 225 2,145 1,866 Streptunal 19 37 22 29 29 13 38 87 Tabellaria 116 unidentified centric diatoms 43 72 272 36 29 Blue-green Algae (Cyanophyta) Oscillatoria 72 455 51 336 Microplankton 844 217 333 435			29				
Eglena 36 7	Scenedesmus			29			
Solden-brown Algae (Unysophyta) 15							
Dimbryon Bydrung foctidus 398 B. foctidus statospores 36 36 72 Bydrung foctidus statospores 36 36 37 Diatons (Bacillariophyta)	Euglena	36	7				
Dimbryon Bydrung foctidus 398 B. foctidus statospores 36 36 72 Bydrung foctidus statospores 36 36 37 Diatons (Bacillariophyta)	Golden-brown Algae (Unrysophyta)						
Hydrurus foctidus 14 15 15 15 15 15 15 15	Dinobryon		15	138	36	7 2	
H.	Hydrurus foetidus	398					
Actmanthes 72 80 29 Asterionella 36 7 7 Actorionella 36 7 29 7 Cocconeis 22 29 7 Cynbella 36 72 80 Cymbella 239 174 145 22 7 Diatona 15 123 123 65 7 Epithemia 7 8 7 7 7 8 7 7 7 8 7 7 8 7 7 8 7 15 15 15 15 15 15 15 15 18 18 13<		36					
Actmanthes 72 80 29 Asterionella 36 7 7 Actorionella 36 7 29 7 Cocconeis 22 29 7 Cynbella 36 72 80 Cymbella 239 174 145 22 7 Diatona 15 123 123 65 7 Epithemia 7 8 7 7 7 8 7 7 7 8 7 7 8 7 7 8 7 15 15 15 15 15 15 15 15 18 18 13<	Diatoms (Bacillariophyta)						
Asterionella		72	80	29			
Cyclotella 36 72 80 Cymbella 239 174 145 22 7 Diatona 15 123 123 65 7 Emotia 7 8 7 7 7 8 7 7 8 7 7 8 7 7 8 1 1 3 8 7 1 3 8 7 <td></td> <td></td> <td>36</td> <td>7</td> <td>7</td> <td></td>			36	7	7		
Cymbella 239 174 145 22 7 22 7 23 23 65 7 24 23 23 65 7 25 25 24 24 24 25 24 24	Cocconeis	22		29		7	
Oymbella 239 174 145 22 7	Cyclotella	36	72	80			
Diatoms 15 123 123 65 7 Epithemia 7		239	174	145	22	7	
Emotia 7 7 7 7 7 7 7 7 7		15	123	123	65	7	
Fragilaria	Epithemia			7			
Complement	Emotia		7				
Compromena 413 94 15 15 15 Harmaea 7 7 7 7 7 7 7 7 7	Fragilaria		7				
Hannaea	Comphoneis		7				
Melosira	Compnonema	413	94		15	15	
Navicula				7			
Nitzscnia							
Rnizosolenia							
Stephanodicus 15 36		181					
Surirella 94 7 Synedra 72 239 239 138 87 Tabellaria 116 11826 1182			15	15			
Synedra 72 239 239 138 87 116 11					15	36	
Tabellaria unidentified centric diatons unidentified pennate diatons 87 225 2,145 1,826 unidentified pennate diatons 43 72 72 30 29 Blue-green Algae (Cyanophyta) Oscillatoria 72 435 51 326 Microplankton 304 217 333 435 TOTAL VIABLE ALEAE 1,881 2,455 1,804 3,203 2,774							
unidentified centric diatons 87 225 2,145 1,826 unidentified pennate diatons 43 72 72 36 29 Blue-green Algae (Cyanophyta) Oscillatoria 72 435 51 326 Microplankton 304 217 333 435 TOTAL VIABLE ALGAE 1,881 2,455 1,804 3,203 2,774		7 2	239	2 39	138		
unidentified pennate diatoms 43 72 72 36 29 Blue—green Algae (Cyanophyta) 72 435 51 326 Microplankton 304 217 333 435 TOTAL VIABLE ALGAE 1,881 2,455 1,804 3,203 2,774							
Blue-green Algae (Cyanophyta) Oscillatoria 72 435 51 326 Microplankton 304 217 333 435 TOTAL VIABLE ALGAE 1,881 2,455 1,804 3,203 2,774							
Oscillatoria 72 435 51 326 Microplankton 304 217 333 435 TOTAL VIABLE ALCAE 1,881 2,455 1,804 3,203 2,774	unidentified pennate diatoms	43	72	72	30	29	
Microplankton 304 217 333 435 TOTAL VIABLE ALEAE 1,881 2,455 1,804 3,203 2,774							
TOTAL VIABLE ALGAE 1,881 2,455 1,804 3,203 2,774	Oscillatoria	72	435	51	326		
	Microplankton		304	217	333	435	
<u>Dead Algae</u> 674 732 761 297 420	TOTAL VIABLE ALGAE	1,881	2,455	1,804	3,203	2,774	
	Dead Algae	674	732	761	297	420	

Table 25. (Continued) Density of viable algae cells in surface-water phytoplankton grab samples grab samples collected July 24-26, 1984.

	Number of Cells per Milliliter						
faxa	Milltown Reservoir	Thompson Falls Reservoir	Noxon Rapids Reservoir	Cabinet Gorge Reservoir			
Green Algae (Unlorophyta)		7	1.				
Ankistrodesmis	7	7	15				
Botryococcus Gloecystis	/		3()				
Conium			1.1				
Pediastrum	232						
Scene esmis	45	30	60	30			
Golden-brown Algae (Chrysophyta)							
Dinobryon				7			
Diatoms (Bacillariophyta)							
Achnanthes	68	30					
Asterionella				45			
Cocconeis	7						
Cymbella	2.2	22					
Diatoma	38	15					
Epitnemia	15	15		22			
Fragilaria Comphonema	7	7		22			
Melosira	/	/		128			
Meridion	7			120			
Nitzschia	120	360	45	52			
Knizosolenia			7				
Rhoicosphenia	7						
Synedra	68	60					
unidentified centric diatons	45	180	232	248			
unidentified pennate diatons		52	38	22			
Blue-green Algae (Cyanophyta)							
Dactylococopsis		330					
Miscellaneous Flagellated Algae							
Cryptomonas Peridinium	7	22	7	7			
Microplankton	68	315	202	90			
TOTAL VLABLE ALCAE	741	I,445	786	651			
Dead Algae	525	360	173	187			

Table 25. (Continued) Density of viable algae cells in surface-water phytoplankton grab samples collected October 25-26, 1984.

	Number of Cells per Milliliter						
Taxa	Milltown Reservoir	Thompson Falls Reservoir	Noxon Reservoir at Trout Cr.	Noxon Reservoir at Martin Cr.	Cabinet Gorge Reservoir		
Green Algae (Oilorophyta)							
Ankistrodesmus	7	22	7	7			
Chlanydononas	7	7	,	/			
Cosmarium	,	7					
Mougeotia		60					
Scenedesirus	30	22					
Scenedesitis	30	22					
Colden-brown Algae (Chrysophyta)							
Dinobryon		7	15				
Diatoms (Bacillariophyta)							
Achnanthes	22				7		
Amphora	15		7		•		
Asterionella			,	75			
Cocconeis			15	,,			
Cymbella	7	7	23				
Diatona	52	15					
Epithemia	22	10					
Fragiliaria	75		38	22	22		
Navicula	22	15	7	42	7		
Nitzscnia	45	7	7	7	,		
Rhizosolenia	7	,	,	,			
Rhoicosphenia	7						
Stephanoliscus	,				7		
Synedra	22		7		,		
unidentified centric diatons	15	22	, 38	83	22		
unidentified pennate diatons	60	15	15	03	22		
undentified permate diatons	00	15	15		22		
Blue-green Al_ : (Cyanophyta)							
Chroccoccus		15					
Oscillatoria	60						
Miscellaneous Flagellated Algae							
Cryptomonas		7					
Microplankton	225	240	210	218	195		
TOTAL VIABLE ALEAE	700	468	360	412	282		
Dead Algae	405	112	112	22	97		

fable 25. (Continued) Density of viable algae cells in surface—water phytoplankton grab samples collected March 25-26, 1985. Samples were euphotic zone composites of subsamples taken at the surface, Secchi Disc depth, and mid-depth.

	Number of Cells per Milliliter						
Taxa	Milltown Reservoir	Thompson Falls Keservoir	Noxon Reservoir nr. Trout Cr.	Noxon Reservoir nr. N. Snore	Gibinet Gorge Reservoir		
Green Algae (Chlorophyta)							
Ankistrodesmus Dictyosphaerium Scenedesmus	7	15	7	7	13. (h)		
Colden-brown Algae (Onrysophyta)							
Dino yon		22		52			
Red Algae (Rhodophyta)							
<u>Andouinella</u>	45						
Diatons (Bacillariophyta)							
Achnanthes Asterionella	60		15	22	7 30		
Cocconeis	75		7	22	7		
Cymbella	218	180	128	38	38		
Diatoma	38	30	15	15	30		
Epithemia	60	7					
<u>Fragilaria</u>	112	15	30	7	142		
Comphoneis		7	15				
Comphonena	398	22	22	15			
Hannaea	22	7					
Hantzschia		7					
Melosira	15						
Meridion	38						
Navicula	135	105	52	52			
Nitzschia .	308	83	68	75	30		
Rhizosolenia	5.3	-7	22	22	30		
Nhoicosphenia	52	7	7				
Surirella Smodra	7	v2	7	202			
Synedra	7	83	150	202	68		
unidentified centric diatoms	30	52	83	52	38		
unidentified pennate diatons	45	150	120	97	7		
Miscellaneous Flagellated Algae							
Cryptomonas					7		
Microplankton	810	322	270	232	398		
TOTAL VIABLE ALCAE	2 , 482	1,114	1,018	910	2,062		
Dead Algae	1,748	832	803	772	450		

Table 25. (Continued) Density of viable algae cells in surface-water phytoplankton grab samples collected July 29-30, 1985. Samples were euphotic zone composites of subsamples taken at the surface and the Secchi Disc depth.

	Number of Cells per Milliliter					
Taxa	Milltown Reservoir	Thompson Falls Reservoir	Noxon Reservoir at Trout Cr.	Noxon Reservoir nr. N. Shore	Cabinet Gorge Reservoir	
Green Algae (Chlorophyta)						
Actinastrum		128	0.7	15	170	
Ankistrodesmus	52	142	97 97	15 52	173	
Cosmarium	52	7	37	32	38	
Occystis	72	,		6.1	20	
Pediastrum				60 30	30	
Scenedesmus	52	60				
Westella)2	00		30	120	
unidentified unicell			45	15	120	
difficilitied diffecti			4)	15		
Euglenoid Algae (Englenophyta)						
Eiglena	22					
ing com	44					
Golden-brown Algae (Chrysophyta)						
Dinobryon		15	7	105		
Dinoryon		1)	1	105		
Diatoms (Bacillariophyta)						
Achnanthes	22		7			
Cocconeis	22		,		7	
Cymbella	22	7			7	
Epithenia	15	,				
Comphonema	30	7				
Melosira	30	•	158			
Navicula	30	30	100			
Nitzschia	60	270	45	7	7	
Synedra	22	30	7	/	7	
unidentified centric diatons	38	3,615	263	4.5	202	
unidentified pennate diatons		3,013	203	45	292	
anisometrica (Maniec diffeon)	,					
Blue-green Al _b ae (Cyanophyta)						
Anabaena		30	22			
Oscillatoria	7	,0	22			
	•					
Miscellaneous Flagellated Algae						
Cryptomonas				7		
Peridinium	15		7	•		
Rhodomonas			7			
unidentified unicell	38	105	533	142		
	30	105	<i>)</i>	142		
Microplankton	202	457	390	315	142	
•		.5.	3,0	517	146	
TUTAL VIABLE ALGAE	686	4,903	1,685	823	809	
		.,	-,005	023	507	
Dead Algae	855	457	98	187	173	
<u> </u>		.5.	,,,	20,	213	

Table 26. Reservoir phytoplankton chlorophyll results

	Site	Date	Chlorophyll <u>a</u> (mg/m ³)	<u>Chloro. a</u> Pheo. <u>a</u>	Stability Index	
03	Milltown Reservoir	04/04/84	2.90	1.29	3.41	
		07/26/84	1.10	1 - /	2./3	
		10/25/8/+	3.15	1.22	2.45	
		03/25/85	5.55	1. /	2.17	
		(duplicate)	5.13	1.45	2.16	
		07/29/85	2.30	1.30	2.03	
		(duplicate)	2.45	1.38	2.08	
0.5	m	21/25/21	2 (7	1.70	0.71	
26	Thompson Falls	04/05/84	3.57	1.60	2.7/	
	Reservoir	07/25/84		lost in labora	•	
		10/25/84	3.15	1.0	2.45	
		03/25/85	5.41	1.60	2.31	
		(duplicate)	5.43	1.52	2.42	
		07/29/85	2.93	1.53	2.08	
28	Noxon Reservoir	04/05/84	3.00	1.56	2.47	
	near north shore	07/25/84	0.53	1.81	2.90	
		10/25/84	1.67	1.49	2.48	
		03/26/85	3.97	1.43	2.30	
		(duplicate)	4.08	1.35	2.41	
		07/30/85	1.66	1.42	2.03	
28	Noxon Reservoir	Spring '84	- 1	not sampled —		
	near Trout Creek	Summer '84	i	not sampled —		
		10/25/84	1.24	1.37	2.52	
		03/26/85	3.56	1.40	2.48	
		(duplicate)	3.62	1.43	2.40	
		07/30/85	3.85	1.48	2.21	
30	Cabinet Corge	04/05/84	2.96	1.31	2.68	
	Reservoir	07/25/84		lost in labora		
		10/26/84	1.74	1.43	2.43	
		03/26/85	2.52	1.42	2.63	
		(duplicate)	2.53	1.30	2.90	
		07/30/85	1.17	1.40	2.74	

Table 27. Reservoir Secchi Disc Transparency Data

			Secchi Disc	Weather and
Date	Time	Station*	Reading (ft)	Sky Conditions
4/4/84	11:20 a.m.	03 Milltown Reservoir	7.5	Bright, Sunny
4/5/84	10:45 a.m.	26 Thompson Falls Reservoir	11.5	Bright, Sunny
4/5/84	4:30 p.m.	28 Noxon Rapids Reservoir	11.0	Cloudy
4/5/84	2:15 p.m.	30 Cabinet Gorge Reservoir	12.0	Overcast, Raining
7/26/84	11:00 a.m.	03 Milltown Reservoir		Bright, Sunny.
7/25/84	10:00 a.m.	26 Thompson Falls Reservoir	11.0	Bright, Sunny
7/25/84	1:00 p.m.	28 Noxon Rapids Reservoir	13.0	Bright, Sunny
7/25/84	5:00 p.m.	30 Cabinet Gorge Reservoir	13.0	Bright, Sunny
10/25 t	o 10/26/84	No data recorded		
3/25/85	12:00 p.m.	03 Milltown Reservoir	3.5, 4.5	Bright, Sunny
3/25/85	5:00 p.m.	26 Thompson Falls Reservoir	7.0	Cloudy, Snowing
3/26/85	2:00 p.m.	28 Noxon Rapids Reservoir		
		Near Trout Creek	4.5	Partly Cloudy, Windy
		N. Shore Campground	4.5	Bright, Sunny, Windy
3/26/85	11:00 a.m.	30 Cabinet Gorge Reservoir	6.0	Bright, Sunny, Windy
7/29/85	12:00 p.m.	03 Milltown Reservoir	6.5	Bright, Sunny
7/29/85	5:30 p.m.	26 Thompson Falls Reservoir	7.0	Bright, Sunny
7/30/85	12:00 p.m.	28 Noxon Rapids Reservoir		
		Near Trout Creek	10.0	Partly Cloudy
		N. Shore Campground	12.0	Partly Cloudy
7/30/85	9:30 a.m.	30 Cabinet Gorge Reservoir	15.5	Bright, Sunny

^{*}Actual reservoir measurement location given in Table 1.B. and Appendix C.

IV. MPDES Self-Monitoring Data

All municipal and industrial discharges to state waters must be authorized by the Montana Pollutant Discharge Elimination System (MPDES) permit program administered by the Water Quality Bureau. The permit specifies allowable levels of contaminants in the wastewater discharge and requires monitoring of the levels of those contaminants by the permittee (self-monitoring). In addition, the Water Quality Bureau performs its own compliance monitoring of permitted discharges to ensure compliance with the permit requirements.

The City of Missoula municipal wastewater the ment plant and the Champion Frenchtown Mill are the two paints, astewated dischargers to the reach of the Clark Fork under addy. Self monitoring is performed on a daily or more frequent basis by both facilities for certain parameters and less frequently for other tests. Since these self-monitoring records will be an important part of the information which will be evaluated in the EIS, summaries of the data are tabulated in the following tables. Also included are yearly summaries for Champion's wastewater disposal system for state fiscal years 1984 and 1985.

Table 28. City of Missoula Wastewater Treatment Plant Discharge Self-Monitoring Data

Monthly Averages

Month	Flow (cfs)	BOD ₅ (mg/1)	TSS (mg/1)	Total Ammonia-N (mg/l)	Total KJLD-N (mg/l)	Nitrate+ Nitrite-N (mg/1)	Total Phosphorus-P
January 1984	8.77	23.6	28.7				
February 1984	8.35	40.4	36.9				
March 1984	8.48	32	30		_		
April 1984	8.77	45.0	62.0	12.76	14.14*	2 .7 3*	6.12*
May 1984	9.49	45	42	11.1	13.9*	1.80	6.98*
June 1984	9.53	27	29	10.62*	12.13*	1.88*	5.14*
July 1984	9.27	28.7	29	6.21*	7.69*	2.35*	7.58*
August 1984	9.02	22	16.4	5.35	7.16	3.70	8.26*
September 1984	8.51	23	17.8	5.57	5.14	2.15	6.21*
October 1984	8.68	33.3	24.8	6.8	8.0*	2.4*	3.2*
November 1934	8.84	30.2	23	7.08	8.7	3.27	3.66*
December 1934	8.49	26	29	6.49	10.3*	4.3	
January 1985	8.39	30.1	28	8.19	8.32	2.73	6.48*
February 1985	3.73	26.9	18.6	10.66	12.3	1.8	4.5*
March 1985	8.39	22.5	13.9	11.2	12.1	3.7	5.17*
April 1985	8.76	36	20.8	8.8	8.8	4.9	5.2*
May 1985	9.77	63	38	3.7	5.0	4.8	2.2*
June 1985	9.77	31.5	15	1.47	2.8	3.8	
July 1985	9 . 61	26.5	12.5	1.88	2.01	1.63	4.49%

^{* =} only one value reported

Table 29. Champion International Frenchtown Mill Self-Monitoring Data.

Part 1. Treated Wastewater Direct Discharge OUL.

	Monthly Averages *									
<u>Aonth</u>	Days of Discharge		TSS (<u>mg/1</u>)		Color (SCU)	H ₂ S (mg/1)	Nitrate-N (mg/l)	Nitrite-N (mg/l)	Total KJLD-N (mg/l)	Total Phosphorus-P (mg/1)
January 1984	O									
February 1984	O									
March 1984	U									
April 1984	0									
May 1984	16	62.1	113.2	12.5	1090	.08	.03		7.93	.69
June 1984	12	52.8	107	8.8	1305		.34	•03	5.94	1.85
July 1984	0									
August 1984	0									
September 1984	0									
October 1984	0									
November 1934	0									
December 1984	0									
January 1985	0									
February 1985	0									
March 1985	0									
April 1985	0									
May 1985	9 I	103	112	19.8	1360		N.D.	N.D.	17.4	2.95
June 1985	16	82	102	14.9	1267	•42	N.D.	N.D.	16.4	2.59
July 1985	2	52	92	6.0						
August 1985	O									

st monthly averages calculated by dividing by number of days discharge occurred during the month.

N.D. = Non-detectable

Table 29. Champion International Frenchtown Aill Self-Monitoring Data.

Part 2. Treated Wastewater Direct Discharge 003.

Monthly Averages *

<u>Month</u>	No. of Days of Discharge	BOD (mg/1)	TSS (mg/l)		Color (SCU)	H ₂ S (mg/1)	Nitrate-N (mg/l)	Nitrite-N (mg/l)	Total KJLD-N (mg/l)	Total Phosphorus-P (mg/l)
January 1984	0									
February 1984	U									
March 1984	U									
April 1984	24	35	55	11.6	1172		1.1		3.06	1.14
Мау 1984	31	44	88	34	1092	•06	.09	_	5.78	.83
June 1984	30	56	102	31.8	1088	•02	•30	.07	2.3	2.32
July 1984	30	41	89	6.9	1197	•01	•28	.11	3.7	2.94
August 1984	31	39	80	1.9	1882	•02	•23	•22	4.2	2.08
September 198	4 30	68	70	4.9	1550	.01	.48	•05	7.0	2.80
October 1984	31	6l	60	6.0	1432	•02	< 11	.09	12.7	3.54
November 1984	30	59	68	4.6	1385	•03	<.01	.08	14.8	3.98
December 1934	. 23	61	65	3.0	1372	.01	<. 02	<.01	14.9	3.95
January 1985	13	62	66	1.2	1385	•05	<. 02	•02	15.22	4.00
february 1985	15	70	76	1.1	1330	0.02	<.16	<.01	16.03	3.67
March 1985	31	71	57	1.5	1464	•50	<. 03	•02	16.82	3.50
April 1985	30	60	lo	17.4	1030	1.74	<.01	.04	13.12	2.22
May 1985	31	83	101	32.5	1242	.14	<.04	.05	15.86	2.74
June 1985	25	41	71	21.3	938	•42	<. 05	.01	12.71	1.83
July 1935	O									
August 1985	15	44	75	2.7	1940		N.D.	.06	14.4	3.95

^{*} monthly averages calculated by dividing by number of days discharge occurred during the month.

N.D. = Non-detectable

Table 29. Champion International Frenchtown Mill Self-Monitoring Unita.

Part 3. Cooling Water Direct Discharge 004

Maximum Values

Month	Flow (cfs)	Temp (° F)
January 1984	16.9	75
February 1984	14.3	70
March 1984	15.8	79
April 1984	16.7	88
May 1984	15•4	80
June 1984	15.6	81
July 1934	14.3	პნ
August 1984	14.3	87
September 1984	46.7	83
October 1984	17.2	75
November 1984	16.0	68
December 1984	18.7	77
January 1985	17.4	74
February 1985	13.8	69
March 1985	13.6	78
April 1985	13.6	81
May 1985	15.2	88
June 1985	15.6	84
July 1985	12.3	91
August 1985	17.2	90

29.

Potal P (mg/1)0.45 0.36 (mg/1) X-11-7 Total 2.35 2.27 Groundwater Monitoring Wells \odot lor (SCE) 1210 1430 1300 300 3 1120 122035 960 98 1168 9.50 (mg/1)Sodium 1690 1750 1690 1630 1390 1630 1280 1480 1550 1680 1580 1110 (mg/1) 3 9 Ġ, S 4 Ó 4 ∞ 2 Total P (mg/1) 1.60 1.23 Part 4. Individual Results by Well Number $(m_z/1)$ KILLY Total 7.42 9.18 Champion International Frenchtown Mill Self-Wonitoring Data. (UCK) Color 104 1530 1710 1680 2130 1120 2620 1620 1180 20/10 1700 1620 (mg/1)Sodium 1790 1690 1590 1500 1590 1840 1530 1550 1560 1420 1450 1490 (mg/1) BOD 18 21 42 2 24 28 28 28 36 25 8 26 Total P $(m_2/1)$ 1.14 1.25 (mg/1)Dtal 3.92 3.25 ယ်lor 1380 (SCU) 1320 3 38 1210 1460 1640 2120 1770 1180 1540 1290 $(\pi g/1)$ Sodium 1520 1490 1430 1030 1430 1450 1430 1460 1490 1530 3 1530 (ng/1)**B**S ∞ Ò 9 9 9 2 9 Ŋ 9 9 5 February 1984 December 1984 February 1985 October 1984 August 1984 Month April 1984 tarch 1985 July 1984 June 1984 June 1985 July 1985 May 1985 Table

Table 29. (Continued)

Individual Results by Well Number

514 BOD Sodium Color Total P	$\frac{\text{KJ(L)-N}}{\text{(mg/1)}} \frac{\text{(mg/1)}}{\text{(mg/1)}} \frac{\text{(mg/1)}}{\text{(mg/1)}}$	2 470 280	5 500 290	2 450 210	2 340 180	1 230 150	4 230	2 5W 270 4.17 J.SU	2 600 260	2 570 220 1.62 0.34	1 640 250	4 510 290	550 200
<u>fotal P</u>	(ng/1)		1				1	0.50		0.58			
Total	(mg/1)							1.51		1.93			
423 Color	(801)	1070	1150	550	280	200	450	920	100	620	090	04/9	900
Sodium	(mg/1) (mg/1)	1450	810	610	380	310		1020	1260	1320	1260	1310	1310
BOD	(mg/1)	4	2	2	7	-	9	7	3	er.	3	7	9
	Month	February 1984	April 1984	June 1984	July 1984	August 1984	October 1984	December 1984	February 1985	March 1985	May 1945	June 1985	July 1985

Table 29. (Continued)

Individual Results by Well Number

800 Sodium Color Fotal P	N-CIDA (120) (1)	(mg/1) (mg/1) (mg/1)	5 1550 1340	3 1420 1180	3 1530 1230	4 1500 1060	6 1450 1020	7 1260	4 1500 740 3.25 1.20	200 600 5	4 1530 650 2.63 1.00	4 1580 850	6 1750 1110	4 1220 540
Dotal D		(ng/1)							0.52		0.26	1		
Toral		(mg/1)				İ			1.99		1.29			
			260	420	200	200	270	0+/-1	420	320	190	200	190	210
	mar pos	(mg/1) (mg/1) (SOJ)	620	780	872	820	610		400	340	37	450	450	360
G S		(mg/1)	2	7	2	9	2	3	2	1	1	1	1	4
		Month	February 1984	April 1984	June 1984	July 1984	August 1984	October 1984	December 1984	February 1985	March 1985	May 1985	June 1985	July 1935

Table 29. Part 5

CLARK LORK RIVER DATA

MONTH DICEMBER 19.84

	E1 011	TEMPEDATURE		ED OXYGEN	HAODE		(SCU) SIX-MILE		
DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)		g/1) SIX-MILE	HARPE TIME	COLOP	TIME SIX-M	all E	
1	2659				1:1	4	7:31 .		
					1. ,	4	15:30		
2	2577				8:10	3	8:30	7	
					13:00	4	13:20	8	
3_	2294				7:20	 	7:50	6	
					11:20	3	11:45	8	
4	1852				7:20	4	7:50	9	
5	1596	32.0			7:50	2	8:20	7	
6	1453				7:40	3	8:10	7	
7	1476				7:20	3	7:50	7	
8	1658		12.0	11.7	7:30	3	8:00	7	
9	2190				7:25	4	7:50	77	
					13:30	3	14:00	6	
					18:00	4	18:25	8	
10	2827				7:15	4	7:45	8	
					11:20	2_	11:45	6	
11	2810		11.8	11.7	7:00	5_	7:30	.8	
					11:20	5	11:45	9	
12	2675	32.4			7:15	4	7:45	9	
					11:15	6	11:40	11_	
13	2609				7:25	4	7:55	8	
					11:20	3	11:45	8	
14	2294				7:10	4	7:40	8_	
					11:10	3	11:35	8	
15	2356				7:00	33	7:30	88	
					11:00	4	11:25	8	
16	2433			1	7:00	3	7:30		
					11:00	3	11:25		
17	2003				7:15	3	7:45	8	
	1866				11:15	4	11:45	8	
18	1826		12.0	12.0	7:00	4	7:30	7	
19	1709	32.0			7:20	4	7:50	8	

CLARK FORK RIVER DATA (CONT.)

MONTH DECEMBER 1984

	FLOU	TEMPEDATURE		D OXYGEN	11115	COLOR	(SCU)	
DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	(mg HARPER'S	/1) SIX-MILE	TIME	ER'S COLUR	SIX-M	COLOR
20	1696				8:25	1	8:55	5
21	1786				8:30	3	8:55	6
22	2249				7:00	3	7:25	6
•				. ,	14:15	4	14:35	7
23	2465				6:55	3	7:15	8_
					11:35	3	12:05	8
24	2340				6:35	4	5:55	2
					11:35	4	11:55	8
25	2074		11.8	12.4	7:05	_3	7:40	8
	2088				11:05	3	11:30	S
26	2059			:	8:15	4	2.40	Q
					12:40	3	12:05	8
27	2340				8:15	2	3:45	7
					13:20	2	13:50	7
28	2449	33.6			9:05	2	9:30	6
					13:10	2	13:35	6
29	2356				7:25	4	7:45	9
					12:45	3	13:15	7
30	2325				7:44	3	8:15	8
					11:51	3	12:20	9
31	2325		12.0	12.0	7:15	3	7:45	8
					12:35	3	13:00	8
			and the second					
	i					And apply the Miller of		
				and the second s				

SELF- CRING SIMMRY SHEET Table 29.5

Permittee Horner Walcorf Corp.

Permit No. AT-occoser

NCASL Std Color Unit Calendar Year Color Appendix Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. rameter ie Hangus Mune 6-mile 2 Houpus Manue 6-melo 14 3 1 Housers Marcus 6-mile +4 Huges Marine 6-mile 5 Hayers Mucine 6-mile 17/17 Hayers Marcure 6-mile. Harry Harry. Marcure 16/17 6-mile

465

CLARK FORK RIVER DATA

MONTH NOVEMBER 1984

	FI.OW	TEMPERATURE	DISSOLVE (mg	/1)	HARI	COLOR PER'S	(SCU) SIK-MILE		
DATE	(cfs)	HARPER'S ("F)	HARPER'S	SIX-MILE	TIME	COLOR	TIME	COLO	
	3109		11.7	11.2	6:10	4	6:40	8	
				Page - v	10:20	4	10:45	9	
1	3001				7:05	4	7:35	8	
		to a section company planting age	* ************************************		11:05	4	11:30	8	
- J	3387				8:27	3	8:51	7	
					12:02	3	12:25	7	
4	3760				8:20	7	3:47	10	
					13:16	8	13:38	10	
5	3561				7:25	6	7:55	10	
					11:25	6	11:50	10	
6	3561				7:10	5	7:45	10	
					11:15	5	11:40	9	
7	3218	38.7			7:25	5	7:55	9	
			,		11:30	4	11:55	9	
8	3182		10.7	10.8	6:15	4	6:45	9	
					13:15	4	13:40	9	
9	3127				9:05	4	9:30	8	
		· · · · · · · · · · · · · · · · · · ·			12:00	4	12:50	9	
10	3055		·····		7:30	4	7:50	9	
					11:35	4	12:00	8	
11	3037				7:55	4	8:20	8	
					12:10	4	12:30	9	
12	3019				7:00	4	7:30	8	
					11:25	4	11:50	9	
13	2983				7:15	4	7:45	9	
					11:15	4	11:40	8	
14	3055	40.2			7:20	4	7:50	8	
					11:20	4	11:45	8	
15	3037		11.1	11.2	6:30	4	7:00	8	
					10:30	4	10:55	8	
16	2879				9:10	4	9:30	8	
				1 166 	13:45	4	14:10	9	

CLARK FORK RIVER DATA (CONT.)

MONTH NOVEMBER 1984

7					,			
			DISSOLVE			COLOR	(SCU)	
DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	(mg, HARPER'S	/1) SIX-MILE	HARPI TIML	ER'S LULOR	SIX-	,
17	2827					4	7:21	
					11:	-1	1=1.1:00	
18	2879				6:45	4	7:05	
					11:00		11:25	6
19	2827				7:20	4	7:50	8
					11:15	3	11:40	0
20	2844				7:1:	4	.50	3
					11:15	3	11:40	8
21	2879	37.3			7:10	3	7:40	7
					11:10	33	11:25	8
22	2879		11.2	11.1	5:41	4	7:43	8
					10:30	3	10:48	7
23	2827				7:00	3	7:25	1
					11:00	4	11:20	8
24	2776				7:10	4	7:45	8
					11:00	4	11:20	8
25	2810				7:05	4	7:35	8
					11:00	4	11:20	8
26	2742				8:55	4	9:15	7
					13:30	3	13:55	7
27	2708				7:10	3	7:40	7
					11:10	3	11:35	7
28	2561.	34.4			7:10	3	7:40	7
					11:10	3	11:35	8
2 9	2725		11.6	11.7	6:40	3	7:10	7
					10:50	3	11:15	8
30	2776				7:10	4	7:40	_ 8
			information arranged in artifact that the second		11:10	1	11:35	В_
					1			
				A SECTION AND A				

CLARK FORK RIVER DATA

MONTH OCTOBER 19 84

DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	DISSOLVE (mg HARPER'S		HARP TIME	COLOR ER'S COLOR	(SCU) SIX-MILE TIME COLOR		
1	3740				7:10	4	7:40	8	
					11:10	5	11:35	9	
2	3740				7:05	55_	7:35	9	
					11:10	5	11:35	9	
3	3720	49.7			7:05	6	7:35	10	
					12:40	5	13:05	8	
4	3561				8:15	5	8:35	9	
					11:35	4	11:10	8	
5	3503		8.6	9.0	6:53	5	7:18	10	
					11:00	6	11:25	10	
6	3368		1		7:10	6	7:40	10	
					11:45	6	12:10	10	
7	3330		9.1	9.2	7:00	2	7:40	7	
					11:00	5	11:30	9_	
8	3274				8:30	5	8:55	9	
					14:10	4	14:35	9	
9	3218		9.0	8.7	6:50	5	7:25	9	
					11:05	5	11:30	9	
10	3145				8:35	5	9:00	9	
					13:20	5	13:40	9	
11	3073	51.6	8.4	8.4	7:10	3	7:35	7	
					13:05	4	13:30	9	
12	3163				8:50	4	9:15	8	
					12:40	5	13:05	9	
13	3163		9.0	9.0	7:05	5	7:40	9	
					11:10	5	11:50	10	
14	3200				7:20	5	7:40	9	
					11:16	5	11:30	9	
15	3368				7:15	5	7:45	9	
					11:15	4	11:45	8	
16	3218		9.9	9.9	6:15	5	7:15	9	
					10:55	4	11:20	9	

CLARK FORK RIVER DATA (CONT.)

MONTH OCTOBER 1984

	5, 04	T511050471105		ED OXYGEN		COLOR		
DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	(mg HARPEŖ'S	SIX-MILE	TIME	ER'S COLOR	SIX- TIME	
17	3293	41.4			7:30	4	7 - 5.5	1
					11 ,	4	1:50	1
18	3182		10.4	10.2	6:40	5	:10	
					11:00	7	11:30	9
19	3163				7:35	5	8:00	9
					11:00	4	11:45	88
20	3145				4:20	5	4:45	9
					10:45	5	L1: 10	9
21	3145				9:01	44	9:20	8
					12:40	44	13:05	8
22	3055				8:10	4	8:35	8
					13:15	4	13:40	8
23	3019				8:10	4	8:40	8
					13:05	4	13:25	8_
24	3019				8:40	4	9:00	8
					12:50	4	13:15	8
25	2966	42.6	10.4	10.3	7:20	3	7:45	8
					12:50	44	13:20	8
26	3073		lt .		9:00	6	9:20	9
					13:55	3	14:15	7
27	3255				7:30	4	8:00	88
					12:45	4	13:15	8
28	3312				6:00	44	6:30	8
					12:30	44	13:30	8
29	3274				7:25	4	7:55	88
					11:25	5	11:50	9
30	3127				7:15	4	7:45	8
					11:15	5	11:40	9
31	3109	39.0			7:35	5	8:05	9_
					11:35	5	12:05	9
			_					

CLARK FORK RIVER DATA

MONTH SEPTEMBER 19 84

ATE 2 3 4	(cfs) 2983 3561 3445 3218 3037	HARPER'S (°F)	8.1 7.8	8.2 7.9	8:07 12:54 6:10 12:05 9:20 13:40 6:15	7 7 9 9 9 8	8:30 13:30 6:31 12:25 9:47 14:00	COLOR 9 12 12 13 12
3 4	3561 3445 3218 3037	62.5			12:54 6:10 12:05 9:20 13:40	7 9 9 9	13:30 6:31 12:25 9:47	9 12 12 13
3	3445 3218 3037	62.5			6:10 12:05 9:20 13:40	9 9 9 8	6:31 12:25 9:47	12 12 13
3	3445 3218 3037	62.5			12:05 9:20 13:40	9 9 8	12:25	12
4	3218	62.5	7.8	7.9	9:20 13:40	9	9:47	13
4	3218	62.5	7.8	7.9	13:40	8		
	3037	62.5	7.8	7.9			14:00	12
	3037	62.5	7.8	7.9	6:15	_		1 1 4
5		62.5				8	6:40	12
5		62.5			14:27	8	14:52	12
	3001				7:25	7	7:47	12
	3001				13:55	7	14:25	12
6			7.3	7.2	6:20	7	6:50	11
					13:10	7	13:35	10
7	2948				8:55	7	9:15	11
					13:30	8	13:55	11
8	3182		8.4	8.5	6:25	7	6:45	10
					10:55	7	11:20	10
9	3182				7:25	7	7:45	10
					12:53	7	13:35	10
10	3561		8.3	8.2	5:40	6	6:10	9
					9:40	7	10:10	10
11	3406				8:05	7	8:30	11
	3400				13:00	7	13:25	12
12	3274	52.7	8.3	8.3	6:20	6	6:45	10
12	J2/4	J2.1			9:40	6	10:45	11
10	2100							10
13	3182	1			7:10	6	7:35	9
					12:35	6	13:05	
14	3163		8.7	8.7	5:50	8	6:20	11
					9:50		10:20	10
15	3091				9:07	6	9:30	10
					13:50	5	14:20	9
16	3182		8.3	8.3	6:55	6	7:15	10

CLARK FORK RIVER DATA (CONT.)

MONTH SEPTEMBER 19 84

3127	HARPER'S (°F)	HARPER'S	/1) SIX-MILE	HARP TIME	ER'S COLOR	(SCU) SIX-1	HILE
				7:20	5	.50	1
					5	1:10	14
3037		7.9	7.9	5:00	6	5:30	9
				9:05	6	9:30	10
2913	57.6			7:00	6	7:30	111
				12:15	6	12:40	10
3001		7.8	7.8	5:05	6	5:35	10
				9:35	6	10:00	10
3182				8:55	6	9:20	10
				13:10	6	13:30	10
3821		8.8	8.8	6:45	7	7:15	10
				13:15	8	13:35	10
3966				7:00	8	7:20	11
				11:10	7	11:30	11
3862		9.8	9.9	6:10	7	6:35	11
				10:10	7	10:35	10
3821				7:15	77	7:40	10
				11:15	6	11:40	10
3780	47.7	9.5	9.5	6:10	6	6:40	9
				10:15	7	10:40	11
3821				7:15	5	7:40	9
				11:15	6	11:40	10
3862		10.1	10.1	6:15	5	6:45	9
				10:15	5	10:40	9
3862				6:20	5	6:55	9
				11:00	5	11:30	9
3760				7:00	4	7:30	8
				11:15	4	11:40	8
	2913 3001 3182 3821 3966 3862 3821 3780 3862 3862	2913 57.6 3001 3182 3821 3862 3862 3862	2913 57.6 3001 7.8 3182 8.8 3821 8.8 3862 9.8 3821 9.5 3821 9.5 3862 10.1 3862 10.1	2913 57.6 3001 7.8 7.8 3182 8.8 8.8 3966 9.8 9.9 3821 9.8 9.9 3821 9.5 9.5 3821 3821 10.1 10.1 3862 10.1 10.1 10.1 3862 10.1 10.1 10.1	2913 57.6 7:00 2913 57.6 7:00 12:15 3001 7.8 7.8 5:05 9:35 9:35 9:35 3182 8:95 13:10 3821 8.8 8.8 6:45 3966 7:00 11:10 3862 9.8 9.9 6:10 3821 7:15 11:15 3780 47.7 9.5 9.5 6:10 10:15 10:15 3862 10.1 10.1 6:15 10:15 10:15 6:20 3760 7:00 7:00	9:05 6	2913 57.6 7:00 6 7:30 2913 57.6 7:00 6 7:30 12:15 6 12:40 3001 7.8 7.8 5:05 6 5:35 9:35 6 10:00 3182 8:35 6 9:20 13:10 6 13:30 3821 8.8 8.8 6:45 7 7:15 13:15 8 13:35 8 13:35 3966 7:00 8 7:20 11:10 7 11:30 7 6:35 11:30 7 6:35 3862 9.8 9.9 6:10 7 6:35 7 7:40 7:15 7 7:40 7:15 7 7:40 7:15 7 7:40 7:15 7 7:40 7:15 7 7:40 7:15 7 7:40 7:15 7 7:40 7:15 7 7:40 7:15 7 7:40

CLARK FORK RIVER NUTRIENT DATA

MONTH SEPTEMBER 1984

	TOTAL KONITROGE		TOTAL PHO			RATE		TRITE g/l)
ΑY	HARPER'S	SIX-MILE	HARPER'S	SIX-MILE	HARPER'S	SIX-MILE	HARPER'S	SIX-MILE
1								
2								
3								
4								
5	0.09	0.07	0.13	0.11	0.08	0.05	< 0.01	< 0.01
6								
7								
8								
9								
10								
11	0.16	0.18	0.07	0.07	0.04	0.04	< 0.01	< 0.01
12								
13								
14								
15								
16								
17								
18	0.27	0.24	0.10	0.10	0.04	0.04	< 0.01	< 0.01
19								
2 0								
21								
22								
2 3								
24								
25								
26	0.32*	0.45*	0.07	0.07	0.12	0.10	∠0.01	< 0.01
27	0.00							, , , , , , , ,
2 8								
2 9				 				
30								
	1			1			 	

OMMENTS: *Values reflect increased digestion time.

CLARK FORK RIVER DATA

MONTH AUGUST 1984

				ED_OXYGEN		COLOR	(SCU)	
DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	m) HARPER'S	g/1) SIX-MILE	HARP TIME	ER'S COLOR	TIME	1ILE COLC
1	3560	64.8	7.0	7.1	5:00	9	5:30	10
	3300	04.8	7.0	/	9:10	8	9:40	9
2	3350				7:05	5	7:35	8
	3330				11:05	7	11:30	19
3	3540		7.4	7.3	5:00	7	5:30	10
	3310		, • · · · · · · · · · · · · · · · · · ·	,	9:00	8	9:25	10
4	3350				8:00	8	8:30	10
	-				12:00	7	12:20	10
5	3290		7.3	7.2	5:40	8	6:00	10
					9:55	8	10:20	10
6	3190				7:06	8	7:35	10
					11:05	8	11:30	11
7	3150		7.4	7.5	5:10	8	5:40	10
					9:35	7	10:00	10
8	2990	62.3			7:15	7	7:40	10
					12:15	7	12:45	10
9	2840		7.4	7.4	5:25	7	5:50	10
					11:00	6	11:45	9
10	2913				7:35	6	8:00	10
					11:10	7	11:35	10
	2827		7.4	7.3	5:53	7	6:30	10
					11:17	6	11:58	10
12	2810				10:30	7	11:00	10
					15:45	7	16:20	10
13	2879		7.6	7.4	5:45	7	6:10	10
					12:40	6	13:10	9
14	3019				8:15	7	9:05	9
					14:45	7	15:10	10
15	2931		7.4	7.3	5:50	7	6:15	9
					10:00	6	10:20	9
16	2896	65.5		-	8:00	7	8:20	10
					13:55	7	14:20	Sign

CLARK FORK RIVER DATA (CONT.)

MONTH AUGUST 19 84

					Τ			
DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	DISSOLVE (mg HARPER'S	/1)	HARP TIME	COLOR ER'S COLOR	(SCU) SIX-M TIME	MILE COLOR
17	2879		7.4	7.6	6:00	6	6:25	10
					13:00	8	13:55	10
18	2861				9:45	7	10:15	10
					13:00	7	13:30	10
19	2810		7.3	7.4	5:40	7	6:05	11
					12:35	7	13:15	11
20	2810				11:05	7	11:30	9
					14:05	8	14:35	10
21	2675		7.4	7.4	5:30	6	6:00	10
					9:45	6	10:10	10
22	2642	60.8			7:15	7	7:55	9
					13:05	6	13:35	9
23	2577		7.2	7.6	5:30	6	6:00	10
					9:35	6	10:05	10
24	2544				7:20	5	7:50	9
					13:10	5	13:40	_8
25	2544		7.4	7.6	4:19	7	4:50	10
					8:00	7	8:20	10
26	2561	,			7:16	7	7:46	12
					12:10	7	12:45	11
. 27	2496		7.2	7.4	5:20	6	5:40	10
					9:25	6	9:50	9
28	2465				7:15	4	7:45	7
					12:45	6	13:10	10
29	2402	. 57.5	7.6	8.0	5:25	6	5:55	10
					9:30	6	10:15	10
30	2264				7:15	6	7:45	10
					12:30	5	13:00	9
31	2386		7.6	7.8	5:30	5	6:00	9
					10:15	4	10:40	8
								-

CLARK FORK RIVER NUTRIENT DATA

MONTH AUGUST 1984

	,		<u></u>		 			
	TOTAL K	JELDAHL N (mg/l)	TOTAL PHO (mg/		NITI (mg	RATE /l)		RITE /1)
DAY	HARPER'S	SIX-MILE	HARPER'S	SIX-MILE	HARPER'S	ŚIX-MILE	HARPER 'S	SIX-MILE
1	0.13	0.38	0.09	0.12	0.06	0.04	< 0.01	< 0.01
2						ļ		ļ
3								
4				ļ				
5				ļ				<u> </u>
6		ļ						
7					ļ			
8	0.23	0.13	_*	_*	0.06	0.02	< 0.01	< 0.01
9							<u> </u>	
10					<u> </u>		<u> </u>	-
11				 	<u> </u>	-	<u> </u>	
12								
13							ļ	
14					4			
15	0.17	0.08	0.13	0.15	< 0.01	0.01	0.05	0.05
16					0.02**	0.04**		
17								-
18						-,		
<u>19</u> 				ļ				
21								
22	0.10	0.12	0.11	0.09	0.06	0.05	< 0.01	< 0.01
23	0.10	0.72	0.11	0.03	0.00	0.03	1 0.0.	1 0.01
24								
25						 		
26								
27								
28								
29	0.17	0.18	0.13	0.11	0.03	0.04	0.03	0.04
30								
31								

^{*}Test failed.

CLARK FORK RIVER DATA

MONTH <u>July</u> 19<u>84</u>

	-			D OXYGEN		COLOR	(SCU)	
DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	mg) HARPER'S	SIX-MILE	HARP TIME	ER'S COLOR	SIX-1 TIME	TILE COLOR
1	16600				5:55	11	6:25	14
					10:35	14	11:25	18
2	13900		8.6	8.5	4:15	14	4:45	17
					8:30	12	8:55	16
3	12600				7:10	11	7:40	15
					11:05	11	11:30	15
4	11600		8.2	8.3	4:40	13	5:15	15
					12:00	13	12:30	17
5	10800				13:25	13	13:50	14
					15:18	11	15:40	14_
6	10300		7.7	7.9	4:40	13	5:05	15
					10:45	12	11:10	15
7	9950				10:00	10	10:30	13
					14:00	12	14:30	14
8	9160		7.9	8.2	4:40	10	5:15	13_
					15:45	10	16:15	13
9	8220	·			8:20	10	8:45	11
					13:00	10	13:25	12
10	7700		7.8	8.1	5:20	10	5:45	11
		t,			13:25	8	13:50	10
11	7110	64.0			8:50	8	9:15	10
					13:48	8	14:11	9
12	6540		7.6	7.7	5:15	10	5:40	11
					15:45	6	16:15	8
13	6380				9:30	8	9:50	9
					14:50	8	15:10	10
14	6010		7.6	7.8	5:10	9	5:40	12
					11:50	9	12:10	11
15	5600				6:55	9	7:15	12
			-		14:00	9	14:20	12
16	5260		7.4	7.6	4:40	9	5:10	12
					13:20	9	13:45	13
	+						•	

CLARK FORK RIVER DATA (CONT.)

MONTH <u>July</u> 19<u>84</u>

				D OXYGEN		COLOR	(SCU)	
DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	(mg HARPER'S	SIX-MILE	HARP TIME	ER'S COLOR	SIX-I TIME	MILE COLOR
17	5020_				7:10	8	7:40	12
					11:15	8	11:40	12
18	4790	65.2	7.2	7.3	4:30	8	5:00	12
					10:00	8	10:25	13
19	4560				7:10	88	7:40	11
					11:10	8	11:40	11
20	4430		7.4	7.4	4:40	8	5:10	13
					9:00	8	9:25	12
21	4240				7:04	- 8	7:30	12
					12:25	6	12:53	9
22	4090		7.5	7.7	4:30	9	5:00	11
			••••		10:30	7	11:00	11
23	3790				8:00	7	8:30	11
					15:30	8	15:55	11
24	3730		7.7	7.8	5:20	8	5:45	11
					11:05	7	11:30	8
25	3730	62.0			7:10	10	7:40	12
					12:55	7	14:15	8
26	3590		7.1	7.0	5:00	7	5:50	9
		τ.			8:50	8	9:30	9
27	3440				7:05	7	7:30	9
					11:05	7	11:30	88
28	3590		7.0	7.0	5:20	8	5:45	10
					10:20	8	10:45	9
29	3610				8:00	8	8:20	9
					12:40	7	13:05	9
30	3730		7.3	7.4	4:50	8	5:20	10
					9:00	8	9:25	10
31	3750				7:50	8	8:15	9
			· · · · · · · · · · · · · · · · · · ·		13:30	7	14:00	8

COMMENTS: The river temperature for the week of July 2 was inadvertently missed.

CLARK FORK RIVER NUTRIENT DATA

MONTH July 19 84

	TOTAL	KJELDAHL	TOTAL PHO			RATE		RITE
Y	NITROGI HARPER'S	EN (mg/l) SIX-MILE	(mg/ HARPER'S	SIX-MILE	(mg HARPER'S	/1) SIX-MILE	(mg, HARPER'S	/1) SIX-MILE
2								
3	0.10	0.09	N.D.	N.D.	0.08	0.05	0.0021	0.0020
1								
5								
7								
3								
)							·	
) 	0.17	0.15	0.07	0.06	0.09	0.09	0.0022	0.0022
2								
3								
-								
5								
7								
3	0.24	0.14	0.23	0.32	0.09	0.07	0.0023	0.0026
9		1						
)_ [1	,				•	
2			<u></u>					
3				-				
4								
5	0.35	0.13	0.14	0.16	0.06	0.04	*	*
5 7								
<u>/</u> В								
9								
0_								
1_								

DMMENTS: N.D. = none detected.

*Test failed.

CLARK FORK RIVER DATA

MONTH June 19 84

	51.011	TEMPEDATURE	DISSOLVE		11405	COLOR	(SCU)	T.1
DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	(mg HARPER'S		HARP	COLOR	SIX-M TIME	CO.
1	29700				7:25	34	7:50	
					10:15	32	10:40	37
					14.	29	14:25	₹4
2	24600		9.7	9.5	5:20	22	5:45	. /
					11:00	19	11:45	25
3	20900				7:43	16	8:09	21
					11:20	17	12:35	?2
4	19000		9.2	9.1	4:20	*	4:50	_*
					8:50	18	9:20	23
					1.1	19	12:00	24
					15:55	14	16:15	20
5	18100				7:15	13	7:45	18
					11:10	16	11:40	20
6	19100	49.9	9.4	9.4	4:15	17	4:45	22
					8:55	17	9:50	21
7	18100				7:20	17	7:50	21
м					13:40	16	14:10	22
8	17100	-	9.8	9.7	4:15	15	4:45	19
					9:10	17	10:00	21
9	15700				9:35	16	9:55	20
					13:35	15	13:55	20
10	14400		9.5	9.4	4:45	13	5:10	17
					9:00	13	9:20	18
11	10000				7:20	12	7:50	16
					11:00	12	11:40	15
12	16100		9.5	9.4	4:15	13	4:45	16
					10:15	14	11:10	19
13	17100	52.1			7:15	18	7:45	19
					13:15	18	14:10	21
14	18500		9.1	9.2	4:05	15	4:35	18
					9:40	16	10:40	20
15	20100				7:10	15	7:40	19

^{*}Tests failed - river resampled.

CLARK FORK RIVER DATA (CONT.)

MONTH <u>June</u> 19 84

			DISSOLV	ED OXYGEN		COLOR	(SCU)	
DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)		g/1)	HARP TIME		SIX-M TIME	AILE COLOR
15					10:10	15	11:40	19
16	21200		8.7	8.7	4:35	17	5:10	21
					11:10	17	11:35	21
17	22700				7:10	17	7:30	20
					11:15	17	11:35	21
18	22900		8.9	8.9	4:00	17	4:30	21
					9:45	17	11:00	21
19	20900				7:10	16	7:40	20
					10:40	16	11:35	19
20	20100	57.8	8.8	8.8	4:00	16	4:25	18_
					9:35	15	10:50	17
21	22200				7:15	17	7:45	20
					10:15	17	11:30	20
22	28400		9.2	9.2	4:05	27	4:35	29
					10:15	30	11:30	32
23	26500				7:00	29	7:20	32
					10:45	35	11:30	38
24	22300		8.8	8.9	4:45	25	5:15	29
					8:45	24	9:10	28
25	20700				7:10	17	7:40	21
					11:00	18	11:30	23
:6	21200		8.4	8.4	4:10	20	4:40	25
					9:15	21	9:55	25
.7	20800	60.0			7:05	20	7:35	25
					11:00	21	11:25	27
8	20700		8.6	8.7	4:00	_*	4:30	_*
					9:00	15	9:25	18
					11:00	14	11:30	19
9	19200				7:10	16	7:35	20
					11:10	15	11:35	19
2	18100		8.7	8.8	4:30	12	4:55	17
}					10:05	14	10:30	17

lest failed - river resampTed.

CLARK FORK RIVER DATA

MONTH MAY 1984

DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)		ED OXYGEN g/l) SIX-MILE	HARP TIME	COLOR ER'S COLOR	(SCU) SIX-MILE TIME CULU		
1	5850				7:50	12	8:20	16	
					13:45	12	14:15	1	
2	5750	49.0			7	10	13		
					11:20	11	11:50	16	
3	5480				7:40	12	8:10	17	
					13:35	13	14:15	-18	
4	5480				7:50	11	8:20	15	
					11.20	13	14:40	17	
5	5480				6:50	12	7:29	17	
					12:01	12	12:28	17	
6	5020		9.7	10.0	5:45	12	6:10	16	
					12:20	11	12:50	17	
7	4810				7:40	12	8:10	17	
					11:05	13	11:35	18	
8	4630		9.5	9.8	4:45	11	5:15	15	
					11:20	11	11:50	16	
9	4560	51.3			7:30	11	8:00	15	
					11:00	12	11:30	17	
10	4950		8.8	9.0	5:05	12	5:30	16	
			·		14:25	13	14:50	17	
11	5480				9:25	13	9;50	16	
					14:40	13	15:05	17	
12	5630		9.0	9.0	5:20	13	5:50	18	
					9:30	12	9:55	16	
13	6740		·		9:00	15	9:37	18	
					14:35	16	15:00	20	
14	8930		8.6	8.6	4:45	17	5:15	20	
					14:55	18	15:15	22	
15	13900				7:30	24	8:00	26	
	15300				12:55	25	13:25	30	
16	21200	46.3	10.0	9.7	4:40	39	5:10	42	
					12:45	42	13:15	49	

CLARK FORK RIVER DATA (CONT.)

MONTH ______ MAY ____ 19_84

DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)		ED OXYGEN g/1) SIX-MILE	HARPI TIME	COLOR ER'S COLOR	(SCU) - SIX-MILE TIME COLOR	
16					14:35	38	15:05	43
17	23700				7:30	40	8;05	43
					13:40	38	14:10	43
18	21200		9.8	9.6	4:45	34	5:15	38
					10:05	26	10:35	34
19	18900				7:05	25	7:25	. 32
					13:50	24	14:10	30
20	19100		9.4	9.2	5:15	24	5:45	28
			· · · · · · · · · · · · · · · · · · ·		10:50	22	11:15	27
21	23200				7:25	26	7:55	30
					12:55	32	13:25	37
22	22300		10.0	10.0	4:40	26	5:10	31
					9:15	37	9:45	40
23	19500	49.4			7:30	31	8:00	36
					11:00	29	11:30	40
					13:10	29	13:40	36
24	20100		9.7*	9.8*	7:30	22	8:15	26
					11:45	26	12:15	30
25	19000				7:25	21	7:55	27
					13:45	23	14:13	28
26	16500				7:35	19	8:00	24
					12:30	18	13:00	23
27	15500				7:30	18	7:55	23
					12:01	17	12:53	22
28	15000				7:25	16	7:50	20
					14:05	16	14:30	22
29	14800		8.9	9.2	4:30	20	5:00	25
					9:50	16	10:20	21
30	16600	55.7			7:25	16	7:55	21
					12:45	17	13:15	21

482

CLARK FORK RIVER DATA (CONT.)

MONTH <u>MAY</u> 1984

DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	DISSOLVEE (mg/ HARPER'S	OXYGEN (1) SIX-MILE	HARPE TIME	R'S	(SCU) SIX-MILE TIME (
31	23500		9.0	8.9	4:0	20	4:50	
					9:15	20	9:45	. ?
					1. 10	22	15:10	4
		-						
						-		

CLARK FORK RIVER DATA

MONTH APRIL 1984

DATE	FLOW (cts)	TEMPERATURE HARPER'S (°F)		ID OXYGEN g/l) SIX-MILE	HARPE TIME	COLOR ER'S COLOR	(SCU) SIX-MILE TIME COLOR		
4/1	3330								
4/2	3190								
4/3	3200								
4/4	3170	45.7							
4/5	3150								
4/6	3150								
4/7	3420				1050	3	1120	8	
					1900	4	1925	9	
4/8	3520		8.7	8.8	0526	3	0557	7	
					1052	4	1112	7	
4/9	3610				0750	5	0820	9	
					1320	6	1350	9	
4/10	3710		9.8	10.0	0455	6	0525	10	
					0940	6	1005	7	
					1140	8	1210	12	
4/11	3610	43.5			0730	8	0755	12	
					1400	1	1430	4	
4/12	3540		10.4	10.4	0445	9	0515	11	
					1415	10	1435	15	
4/13	35?				0745	8	0815	13	
					1400	7	1230	12	
4/14	3390		,		0655	8	0715	13	
					1125	6	1145	11	
4/15	3350				0730	5	0755	9	
					1445	4	1509	10	
4/16	3560	in the standard of the Constitution of the standard of the sta	ar a special page of the contract of the contr	a v a re de reside deriva	0815	4	0840	9	
			***************************************		1445	5	1500	10	
4/17	3520				0800	6	0845	12	
					1640	9	1655	11	
4/18	4130	(Sample Missed)	9.0	8.8	0430	12	0505	15	
		(330)			1440	13	1500	16	
 4/19	7700				0700	17	0725	20	

CLARK FORK RIVER DATA (CONT.)

MONTH APRIL 1984

DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	DISSOLVE (mg, HARPER'S		HARP TIME	COLOR ER'S COLOR	(SCU) SIX-MILE TIME COLOR	
4/19	and the same about the same and the same and the same about the sa	and the state of t		Market Market on the Control of Market Marke	1400	20	1420	21
4/20	9430		9.8	9.6	0445	19	0523	23
1		to make the region of a series of tradeless as the series of tradeless as the series of the series o			0930	21	0955	23
4/21	10300				0600	25	0630	27
					1230	27	0255	29
4/22	9640		10.3	10.0	0450	25	0520	29
					0852	24	0910	28
4/23	9330				0805	23	0825	2
					1335	21	1400	25
4/24	9600		<u></u>		1010	21	1030	23
					1415	19	1435	2:
					2115	19	2135	2
4/25	8960	46.0			0830	17	0850	2
					1445	19	1510	2
4/26	8280				0742	20	0805	2
				1	1308	17	1331	2
4/27	7520				0756	14	0821	1
					1335	15	1400	2
4/28	7020				0615	16	0720	2
1/20	7,525				1105	16 -	1130	2
4/29	6630	,	10.6	10.4	0545	16	0610	2
					1120	15	1145	2
4/30	6270				0750	12	0820	1
-// 33	1				1415	11	1445	1
					1,10		1,,5	
,		1		,	1 1			

CHAMPION
Champion International Corporation
Frenchtown Mill

CLARK FORK RIVER DATA

Month March 1984

	F-1	TEMP.		D.O.	(mg/1)	14:3	COLOR (SCU) Harper's Six-Mile			
V	Flow (cfs)	Harper's	Harpi	er's May	Six-	-Mile Max.	Harp	er's	Six-I	Mile Max
y 1	2370		Avy.	riax.	Avy.	riax.	Avy.	nax.	nvy.	i'id X
2	2400									
3	2400									
	2500									
4	2440									
5										
7	2350	37.9		*		*		8		13
		37.9		<u> </u>		- "		0		13
8	2370					-				
9	2490	1								
0	2660	!!		1						1
1	2740									
2	2840	II I								
3	2870		-	`			11			
4	2980	41.7			-					
5	3390									-
6	3520									
7	3330									!
8	3330					<u> </u>			-	
9	3170									
0	3150					-				
1	3290	45.0		n 1 15						
2	3710									
3	3680									
4 5 6	3590									
5	3650									
-	3630	L.								
7	3610									
8	3540	40.8						8		9
9	3540									
9										
1	3330					436				
MMC	ENTS: *	The D.O. tes This missing	st results g data was	were in not dis	advertent covered u	ly discar ntil Apri	ded befor	e being re	ecorded.	

CHAMPION Champion International Corporation Frenchtown Mill

CLARK FORK RIVER DATA

Month February 1984

		TEMP.		D 0	(mg/1)			COLOR (SCU)				
	Flow		Harno	er's	(mg/l)	Mile	Harn	er's	LUR (SCU)	Mile		
lay	(cfs)	Harper's	Avg.	Max.	Six-	Max.	Avg.	Max.	Six-	Max.		
1	3100	32.8										
2	3010							11		14		
_3	2820											
4	2840											
5	2820											
6	2740											
7	2740											
8	2730	34.9										
9	2640											
10	2440											
11	2760											
12	2640											
13.	2640											
14	2730			١								
15	3100	35.6		11.5		11.8		7		10		
16	2740											
17	2780						1					
18	2660											
19	2550											
20	2500											
21	2500											
22	2580	36.4										
23	2500											
24	2430											
25	2410											
26	2410											
27	2350											
28	2320											
29	2350	37.8						5		9		
30										1		
31												

CHAMPION Champion International Corporation Frenchtown Mill

CLARK FORK RIVER DATA

Month January 19 84

	C 3	TEMP.		D.O.	(mg/1)	14:3	COLOR (SCU)				
,	Flow (cfs)	Harper's °F	Harp Avg.	er's Max.	Six- Avg.	Mile Max.	Harp	er's Max.	Six-	-Mile	
/			Avg.	Max.	Avg.	i riax.	Avg.	l'id X .	Avg.	⊦ Max.	
	2380					-			1	1	
-			<u> </u>	<u> </u>	1					<u> </u>	
	2450	22.0	<u> </u>		<u> </u>		<u> </u>	_		1	
	2680	32.0	1				11			1	
	4090		1				11			1	
-	4790			ļ	<u> </u>	1				1	
	8280	li l]			1		-	1		
	7080			1						1	
	5630			 			11		1	1	
	4770			1		11.0	 		<u> </u>		
	4330	32.8	 	11.9		11.8	11	13	1	16	
	4110										
	3870		1			1				1	
	3100								 	<u> </u>	
	2530		<u> </u>			<u> </u>					
	2190		<u> </u>			1					
	2230									1	
	1950	32.0				<u> </u>			ļ		
	1740						<u> </u>			1	
	1750										
	1790										
	2310		<u> </u>								
\rfloor	2790							6		10	
	2980										
	3850	33.8									
	3850										
	3870										
	4030										
	3850										
	3570										
	3240										

CLARK FORK RIVER DATA

MONTH September 1985

	FLOW	TEMPERATURE		/ED OXYGEN	COLOR (SCU) HARPER'S SIX-MILE				
DATE	(cfs)	HARPER'S (°F)		SIX-MILE	TIME	COLOR	TIME	COFC	
9-1-85	1709				6:50	6	7:20	9	
9-2	1696				6:50	6	7:20	9	
9-3	1696				6:55	6	7:20	9	
9-4	1696	60.8	7.6	7.1	6:00	6	6:25	. 9	
9-5	1683				7:00	6	7:25	9	
9-6	1813		7.2	7.6	6:05	5	6:30	8	
9-7	2496				6:30	6	6:50	8	
					12:50	7	13:15	10	
9-8	2659		8.4	8.6	6:20	9	6:50	13	
					10:40	8	11:20	13	
9-9	3145				8:45	9	9:15	11	
					15:40	10	16:05	13	
9-10	3200		8.4	8.4	6:15	10	6:45	14	
					11:00	9	11:20	14	
9-11	3387	58.5			7:00	9	7:20	12	
					12:55	8	13:20	11	
9-12	3700		7.8	7.9	6:10	8	6:35	12	
					10:15	8	10:45	12	
9-13	5130				7:00	14	7:25	17	
					12:55	13	13:20	17	
9-14	5154		8.5	8.5	6:40	14	7:05	18	
					12:10	13	12:35	17	
9-15	4736				7:30	11	7:55	15	
					11:05	11	11:30	15	
9-16	4783		8.6	8.5	6:15	10	6:40	14	
					10:20	10	10:45	14	
9-17	4667				6:55	10	7:20	15	
					10:50	11	11:20	15	
9-18	4598	50.9	9.0	9.0	6:15	9	6:40	12	
					10:15	9	10:40	12	
9-19	4621				7:40	8	8:05	13	
					13:00	8	13:20	12	

MONTH September 1985

	F1 011	TEMPEDATURE	DISSOLVED		11000	COLOR	(SCU)	
ATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	(mg/ HARPER'S	SIX-MILE	HARP TIME	ER'S COLOR	SIX-1 TIME	TILE COLOR
20	4463		9.3	9.4	6:20	7	6:50	11
					11:00	7	11:20	11
21	4221		8.8	9.1	6:55	7	7:20	11
					12:05	7	12:30	11
22	4178				5:00	6	5:45	12
					21:00	7	21:30	11
23	4071		9.2	9.1	6:30	7	7:00	12
					14:35	6	15:15	10
24	4071				7:25	6	8:10	9
					13:05	5	13:30	8
25	3945	50.0	9.1	9.2	6:40	6	7:00	9
					13:40	7	14:10	12
26	3740				7:40	6	8:15	11
					14:20	6	14:40	11
27	3680		8.8	8.8	6:45	6	7:15	10
					13:05	5	13:25	9
2 8	3561				6:50	5	7:30	9
					11:18	5	11:37	10
29	3445		10.0	9.9	6:30	5	7:11	9
					11:11	5	11:33	9
30	3406				9:00	5	9:25	9
					11:10	5	11:35	9
IMENTS	:			490				

CLARK FORK RIVER NUTRIENT DATA

MONTH September 1985

	TOTAL K	JELDAHL N (mg/l)	TOTAL PH	OSPHORUS /1)	NITE (mg,		NITI (mg,	RITE /1)
DAY	HARPER'S	SIX-MÍLE	HARPER'S	SIX-MILE	HARPER'S	ŚIX-MILE	HARPER'S	ŚIX-MILE
1								
2	N.D.	0.82	0.13	0.11	0.07	0.04	< 0.01	< 0.01
3								
4								
5				_				
6								
7								
8								
9	0.34	0.41			0.08	30.0	< 0.01	4 0.01
10			0.04	0.12				
11								
12								
13						! 		
14				-				
15								
16	0.35	0.46	N.D.	0.02	0.09	0.08	< 0.01	∠ 0.01
17								
18								
19								
20								
21								
22								
23								
24	0.33	0.34	0.05	0.10	0.07	0.06	∠ 0.01	∠ 0.01
25								
26				<u> </u>				
27								
28								
29								
30								
31								

COMMENTS:

MONTH August 19.85

DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	(m	ED OXYGEN g/l) SIX-MILE	HARI TIME	COLOR PER'S COLOR	(SCU) Slx- TIME	MILE COLOR
8-1 8-2	1310				7:00	6	7:25	10
	1118				7:05	6	7:30	10
8-3	1524		_		7:00	7	7:25	10
8-4	1893				7:00	8	7:25	10
8-4 8-5 8-6	1975				7:05	10	7:25	11
8-6	1989		6.8	7.2	5:20	10	5:45	12
8 - 7	1975	63.9			7:05	8	7:30	11
8-8 8-9	1893		6.7	7.2	7:05	8	7:30	!!1
8-9	1893				8:50	7	9:15	10
3-10	1826				7:35	6	8:00	9
3-11	2017		8.8*	8.0	6:25	6	6:55	9
		are species of communities and communities are considered to the communities of the communities and communities are communities are communities and communities are communitie			13:30	6	14:00	8
3-12	2249		7.9	8.3	5:45	7	6:10	10
					13:30	7	14:00	10
3-13	2609				7:50	7	8:10	10
					14:30	7	15:15	11
3-14	2708	59.8	7.8	8.1	5:30	9	6:00	13
					10:00	8	10:25	12
3-15	2642				7:25	8	7:50	12
					14:15	7	14:50	11
3-16	2544		7.6	8.0	5:45	8	6:15	12
					10:20	7	10:40	11
3-17	2528				5:40	8	6:05	12
		and a succession of the state o	- Married Andrew St. Company of State Control of		9:35	7	10:00	11
3-18	2449		7.4	7.6	5:45	6	6:15	11
					9:40	6	10:05	11
1-19	2371				7:00	5	7:25	9
					11:00	5	11:25	9
1-20	2340		7.0	7.2	5:40	5	6:05	8
					9:40	5	10:05	8
1-21	2544	58.9			7:05	6	7:30	9
				492	11:05	5	11:30	9

^{*} Air hubbles in bottle, inaccurate results

MONTH August 19 85

	FLOW	TEMPERATURE	(mg	ED OXYGEN	HARP	ER'S	(SCU) SIX-MILL	
DATE	(cfs)	HARPER'S (°F)	HARPER'S	SIX-MILE	TIME	COLOR	TIME	COLOR
8-22	2544		7.6	7.8	5:45	5	6:10	9
					9:45,	5	10:10	5
8-23	2449				6:55	6	7:20	10
					10:15	6	11:20	10
8-24	2351		7.2	7.5	5:45	4	6:15	9
					11:30	5	11:55	9
8-25	2234				6:40	6	7:00	10
					12:00	5	12:30	9
8-26	2190		6.8	7.2	5:50	5	6:15	10
8-27	2102				6.15	5	7:20	8
8-28	2074	63.3			7:00	4	7:25	6
8-29	1947				7:10	5	7:35	8
8-30	1799		6.5	7.2	5:55	6	6:20	9
8-31	1773				6:55	5	7:20	8
			,					
				-				
	1							

CLARK FORK RIVER NUTRIENT DATA

MONTH August 1985

		JELDAHL		HOSPHORUS		RATE		TRITE
DAY	HARPER'S	N (mg/l) SIX-MILE	HARPER'S	SIX-MILE	HARPER'S	SIX-MILE	HARPER'S	g/l) SIX-MILE
1								
2								
3								
4								
5	0.43	0.45	0.90	0.60	0.12	0.09	< 0.01	< 0.01
6								
7								
8								
9								
10								
11								
12	0.40	0.44	.08	0.09	0.09	0.09	< 0.01	< 0.01
13								
14				•				
15								
16								
17								
18								
19								
2 0	0.18	0.18	0.14	0.14	0.09	0.08	< 0.01	< 0.01
21								
22								
23		ļ						
24								
25								
26	0.36	0.36	0.19	0.20	0.12	0.09	<0.01	< 0.01
27								
2 8					=			
2 9								
30					-			
31								

COMMENTS:

MONTH July 19 85

DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)		ED OXYGEN ig/1) SIX-MILE	HARP TIME	COLOR PER'S COLOR	(SCU) SIX-	MILE COLOR
7-1-85	3274		7.2	7.2	4:40	7	5:10	11
					8:45	8	9:10	11
7-2-85	3109				6:40	6	7:05	11
					12:40	6	13:05	10
7-3-85	2948	67.8	6.9	7.0	4:50	7	5:15	10
7-4-85	2759				6:45	7	7:05	9
7-5-85	2642				6:45	8	7:05	10
7-6-85	2544				6:45	8	7:05	10
7-7-85	2418				6:45	8	7:05	10
7-8-85	2340				9:30	7	10:05	9
7-9-85	2371		6.7	6.8	5:10	8	5:35	10
7-10-85	2160	66.3			11:35	6	12:00	9
7-11-85	2102				10:00	7	10:20	8
7-12-85	2031				9:05	7	9:35	10
7-13-85	1893				10:00	7	10:25	10
7-14-85	1879				8:45	6	9:08	9
7-15-85	1813				7:00	2	7:25	5
7-16-85	1799		6.7	7.0	4:57	8	5:25	10
7-17-85	1709	66.3			7:00	8	7:25	11
7-18-85	1773				7:00	7	7:25	10
7-19-85	1683				7:00	8	7:25	10
7-20-85	1646				4:00	7	4:30	8
7-21-85	1572				13:15	8	13:45	10
7-22-85	1524				7:30	6	7:55	9
7-23-85	1476		6.8	7.0	5:05	7	5:30	10
7-24-85	1442	67.2			7:00	7	7:25	9
7-25-85	1406				7:05	5	7:30	8
7-26-85	1394				7:05	7	7:30	10
7-27-85	1382				8:20	5	8:40	9
7-28-85	1334				8:18	6	8:38	9
7-29-85	1334				7:00	6	7:25	10
7-30-85	1358		6.6	7.0	5:15	6	5:45	9

MONTH July 1985

DATE		TEMPERATURE	DISSOLVED (mg/	OXYGEN 1) SIX-MILE	HARP	COLOR ER'S	(SCU) SIX-	MILE
DATE	(cfs)	HARPER'S (°F)	HARPER 3	217-1111	11111	CULUR	IME	CULOR
7-31-85	1334	64.0			7:00	7	7:25	10
			· · · · · · · · · · · · · · · · · · ·					
								[

CLARK FORK RIVER NUTRIENT DATA

MONTH July 1985

							•	
DAY	TOTAL NITROG HARPER'S	KJELDAHL EN (mg/l) SIX-MILE		HOSPHORUS g/1) SIX-MILE	NIT (mg HARPER'S	RATE /1) SIX-MILE		TRITE g/l) SIX-MILE
1	0.52	0.48	N.D.	N.D.	0.08	0.07	< 0.01	< 0.01
2								
3								
4								
. 5								
6								
7								
8	1.09	0.59	N.D.	0.05	0.08	0.06	< 0.01	< 0.01
9								
10								
11								
12								
13								
14								
15								
16	0.40	0.39	0.07	0.05	0.10	0.10	< 0.01	< 0.01
17_								
18								
19								
20								
21								
22	0.38	0.30	0.10	0.09	0.13	0.09	~ 0.01	< 0.01
_23							ļ	
24								
25	-							
26								
27								
28								
29	0.38	0.31	0.16	0.08	0.16	0.05	< 0.01	< 0.01
30								
31			-	1				

COMMENTS:

16

8658

CLARK FORK RIVER DATA

d()

9

10

11:30

7:10

13

13

12:00

7:30

MONTH June 1985 DISSOLVED OXYGEN COLOR (SCU) FLOW TEMPERATURE (mq/1)HARPER'S SIX-MILE ATE (cfs) HARPER'S (°F) HARPER'S TIME SIX-MILE COLOR TIME COLOR 1 13270 6:45 15 7:05 19 12:40 15 13:00 20 12290 6:30 13 6:40 19 12:10 14 12:30 20 13310 6:55 13 18 7:20 10:55 15 11:20 19 11980 6:50 14 7:15 19 10:50 10 11:15 15 5 51.8 11460 6:50 13 7:20 16 12:55 13 13:20 18 11830 7:00 12 7:35 16 11:00 11 15 11:25 9.3 13230 9.3 4:40 12 16 5:05 8:40 11 9:05 16 8 15970 6:30 9 12 6:55 11:00 16 20 11:25 9.2 9 16200 9.1 17 22 4:40 5:05 10:44 16 21 11:05 10 13350 6:45 13 7:10 17 10:45 12 11:10 17 11 8.7 11380 8.9 4:40 11 5:05 15 8:45 10 9:10 15 54.2 12 11020 6:55 11 14 7:20 12:35 11 13:00 14 13 13430 8.4 8.5 5:00 10 5:25 13 14 9:05 10 9:25 7:40 8 8:05 12 14 9564 14:30 9 14:50 13 15 8.4 8.6 5:30 10 13 9008 6:00

498

CLARK FORK RIVER DATA (Continued)

MONTH June 1985

DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	DISSOLVED (mg/ HARPER'S	1)	HARP TIME	COLOR ER'S COLOR	(SCU) SIX-MILE TIME COLOR	
6/16					14:10	10	14:30	13
6/17	8255		8.3	8.4	4:40	9	5:05	10
					9:10	8	9:35	9
6/18	7508				6:40	9	7:05	9
					10:40	8	11:05	9
6/19	7138	56.5	8.0	7.9	4:40	9	5:05	11
					8:40	9	9:05	12
6/20	6695				6:45	3	7:10	5
					10:45	2	11:10	5
6/21	6400		7.7	7.8	4:40	3	5:05	6
					8:40	3	9:05	5
6/22	5934				7:10	7	7:30	10
					11:10	8	11:35	10
6/23	5415		7.8	7.8	5:10	8	5:30	11
					9:45	7	10:05	11
6/24	5084				6:50	8	7:15	12
					12:50	7	13:15	12
6/25	4690		8.0	8.0	4:42	7	5:07	10
					8:45	7	9:10	11
6/26	4156	58.6			6:50	1	7:15	4
					13:05	7	13:30	10
6/27	3903		8.0	8.1	4:45	7	5:10	11
					8:45	6	9:10	10
6/28	3760				6:45	6	7:10	11
					12:35	7	13:00	11
6/29	3541		7.4	7.4	4:45	6	5:18	10
					9:45	7	10:05	11
6/30	3425				6:23	7	6:46	11
					11:59	7	12:24	10

MONTH May 19 85

ATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	(m	ED OXYGEN g/l) SIX-MILE	HARP TIME	COLOR ER'S COLOR	(SCU) SIX-1	MILE COLOR
		53.2						
5/1	6943	53.2	8.8	8.8	5:15 9:15	12	5:45	16
F /2	8721				6:55	13	9:40	17
5/2	0/21					13	7:20	17
5/3	11720		9.0	0.7	13:15	15	13:45	20
3/3	11720		9.0	8.7	5:20 9:20	16	5:45 9:45	19
F //	15010							
5/4	15010				7:10	20	7:30	23
5/5	15800		10.0	10.0	5:25	20		
3/3	13000		10.0	10.0			5:55	24
5.16	12250				10:00	21	10:20	26
5/6	13350				7:00	17	7:25	22
5 /7	11720				11:00	17	11:25	22
5/7	11720				6:55	15	7:20	20
5/8	11350	44.7			12:50	14	13:15	18
	11330	11.7			10:55	15	7:15	19 19
5/9	12090				7:30	14	7:55	18
							 	
5/10	12130				7:45	15 14	13:15 8:10	20 19
	12130				12:15	14	12:40	19
5/11	11350		 		6:40	14		
3/11	11330						7:05	18
5/12	10590		10.0	10.0	10:55	14	11:25 5:55	19 16
	20030			10.0	10:20	11	10:45	16
5/13	11350				7:00	11	7:25	16
-					11:00	11	11:25	16
5/14	9040				7:00	11	7:15	16
-	30.0				11:00	12	11:25	16
5/15	8721	50.2			6:50	10	7:15	14
-					10:50	10	11:15	14
5/16	8502				6:55	11	7:20	16
-				-	10:55	11	11:20	15
				500	1			

MONTH May 1985

DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)		ZED OXYGEN ng/l) S SIX-MILE	HARP TIME	COLOR ER'S COLOR	(SCU) SIX-MILE TIME CCLOR	
5/17	9366		8.8	8.8	5:00	12	5:25	16
					9:00	12	9:25	16
5/18	10590				5:25	13	5:45	18
					9:40	14	10:00	18
5/19	11750		8.5	8.5	5:25	13	5:45	18
					9:25	14	9:50	18
5/20	13670				6:55	16	7:20	21
					10:55	15	11:20	19
5/21	14710		9.2	9.2	4:61	16	5:15	21
					9:30	17	9:55	21
5/22	16240	45.4			7:00	18	7:25	23
					11:00	18	11:25	22
5/23	16880		9.0	9.0	4:50	17	5:15	21
					10:30	16	10:45	21
5/24	18340				6:50	17	7:15	22
					10:55	17	11:20	21
5/25	19620		9.2	8.9	6:15	20	6:45	25
					11:30	19	12:15	24
5/26	20270				7:00	22	7:30	26
					13:40	20	14:15	25
5/27	18190		9.0	9.0	6:15	18	6:40	24
					13:00	18	13:15	23
5/28	16020				6:55	16	7:20	21
					10:55	16	11:20	22
5/29	15310	52.6	9.0	9.1	4:50	14	5:10	19
					9:45	14	10:10	19
5/30	15270				6:55	14	7:20	17
					10:55	14	11:20	18
5/31	14710		10.0	10.0	4:45	16	5:10	20
					9:00	16	9:25	20

MONTH APRIL 19 85

	FLC.	TEMPERATURE	DISSOLVE		11400	COLOR		
ĀTE	(cfs)	HARPER'S (°F)	(mg, HARPER'S		TIME	ER'S COLOR	SIX-	COLOR
1	2465				7:00	6	7:25	10
					11:00	6	11:30	10
2	2690				7:00	66	7:25	10
					11:00	7	11:25	1]
3	3445	48.0			7:00	10	7:25	11
					13:35	12	14:15	14
4	4156		10.0	9.8	5:10	17	5:40	21
					9:30	17	10:00	21
5	3821				5:50	20	6:18	24
					11:15	19	11:35	24
6	3561		10.0	9.9	5:25	15	5:55	19
					9:50	14	10:20	19
7	3541				5:45	12	6:10	1 16
					9:50	11	10:15	16
8	3541		9.8	9.7	4:45	11	5:15	15
					9:10	11	9:45	15
9	3561				6:50	10	7:20	15
					10:50	10	11:20	15
10	3987	49.6	9.5	9.5	5:55	10_	6:20	14
	\				3:00	10	9:30	14
1	4783				7:00	13	7:30	17
					11:00	13	11:25	17
2	6036		9.7	9.4	4:55	16	5:25	18
					9:00	17	9:25	19
3	6454		_		7:10	17	7:30	21
					11:15	18	11:35	22
4	7026		9.5	9.5	5:00	18	5:30	22
					10:20	18	10:40	22
5	8103				7:00	18	7:30	21
-					11:50	19	12:50	22
6	9564		9.7	9.6	4:50	18	5:20	23
					8:50	18	9:30	22

MOHIH APRII 1985

			DISSOLVE			COLOR	(SCU)	-
DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	(mg. HARPER'S		HARPI TIME	COLOR	SIX-:	COL O I
17	10350	51.1			6: 0	20	7:20	1
					10:50	21	11:20	5
18	10840		9.7	9.7	41.45	18	5:10	134
					9:00	18	9:25	23
19	11200				6:45	18	7:10	22
			<u> </u>		10:45	18	11:10	23
20	10630		10.4	10.5	5:15	17	5:40	22
					11:05	1.7	11:30	22
21	9300				7 - ; 5	16	8:05	20
					11:25	16	11:47	19
22	8316		10.6	10.5	4:40	14	5:10	18
					9:00	14	9:25	18
23	7539				6:55	12	7:20	17
					10:55	12	11:20	17
24	7138	41.1			6:55	11	7:20	16
					10:55	12	11:20	16
25	6587				6:55	12	7:20	16
					11:10	12	11:40	18
26	5934				6:55	11	7:30	15
	V				10:55	10	11:20	15
27	5536				7:06	10	7:27	14
					11:10	10	11:30	16
28	5463				7:05	10	7:25	14
					11:05	9	11:25	14
29	5463		9:2	9.3	5:25	10	5:5 5	14
					9:25	10	9:55	15
30	6139				6:55	11	7:20	14
					11:00	11	11:20	15
								<u> </u>

MONTH MARCH 1985

KTE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	DISSOLVEI (mg/ HARPER'S		HARP TIME		(SCU) SIX-	MILE COLOR
		7771						
1	2234_		11.3	11.4	6:45	8	7:15	11
					10:45			12
2	2418				5:00	9	5:30	12
					9:15	9	9:45	13
3	2294				6:30	12	7:00	15
					11:15	11	11:45	13
4	2059				7:05	12	7:35	17
					13:00	12	13:30	17
5	1947				7:05	88	7:35	14
					12:55	5	13:25	9
6	2031	38.9			7:10	6	7:40	11
					11:00	7	11:30	11
7	1975				7:10	5	7:40_	10
					11:00	4	11:30	8
8	1989		11.5	11.4	6:15	4	6:45	8
					10:15	4	10:45	9
9	1920				6:25	4	6:45	8
					10:55	4	_11:20	7
0	1975				6:25	4	6:55	9
					10:40	4	11:00	8
1	2059				6:30	2	7:00	7
					11:00	5	11:20	9
2	2059				7:00	5	7:30	11
					12:45	5	13:15	8
3	2146	37.3	11.1	11.0	5:30	6	6:00	10
					11:10	5	11:40	9
4	2205				8:15	7	8:40	10
					13:05	6	13:35	10
5	2294				8:35	7	9:15	11
	-				12:35	7	13:05	11
6	2481				7:00	8	7:20	12
	2 101				12:25	8	13:00	12
				504	1			

MONTH MARCH 1985

•	FLOW	TEMPERATURE	DISSOLVEI (mg,		HVDE	COLOR PER'S	(SCU) SIX-	MILE
DATE	(cfs)	HARPER'S (°F)		SIX-MILE	TIME	COLOR	TIME	COLOR
_17	2496				6:40	10	7:00	14
					11:30	11	11:50	14
18	2659				7:05	13	7:30	16
			<u> </u>		11:00	12	11:30	10
19	2827		<u> </u>		6:55	14	7:25	18
			<u> </u>		11:05	15	11:30	19
20	3001	39.0			7:10	16	7:40	20
					11:00	1.7	11:25	21
21	3163				7:00	17	7:30	21
					11:00	17	11:25	21
22	3037		10.9	10.9	5:30	18	6:00	21
					9:35	16	10:00	19 -
23	2879				7:15	15	7:40	19
					12:00	15	12:25	19
24	2642				7:25	11	7:45	17
					12:40	11	13:20	17
25	2692				7:00	9	7:30	13
					11:25	10	11:40	15
26	2659				6:55	9	7:25	12
					10:55	88	11:25	12
27	2561	40.6			7:05	8	7:30	12
					11:00	8	11:25	13
28	2481				7:05	8	7:35	13
					10:55	8	11:20	12
29	2402		10.7	10.6	5:40	77	6:10	11
					10:00	7	10:30	12
30	2340				6:10	7	6:50	1]
					11:50	8	12:15	13
31	2356				6:30	7	7:10	11
					11:30	6	12:00	10
								<u>i</u>
i								

DIRECT DISCHARGE SUMMARY

MONTH MARCH 19 85

•	RI	VER			DISCHARGE	
DATE	TIME	△ COLOR (SCU)	TIME	OUTFALL	FLOW (CFS)	FLOW CHANGED TO (CFS)
1	6:45	3	8:05	003	0.5	No Change (NC)
	10:45	4	13:30	003	0.6	NÇ
2	5:00	3	6:00	003	0.6	NÇ
	9:15	4	11:00	003	0.6	NC
3	6:30	3	9:00	003	0.6	0.8
	11:15	2	14:45	003	0.9	1,6
4	7:05	5	8:05	003	1.4	1.0
	13:00	5	14:10	003	1.0	NC
5	7:05	6	8:20	003	1.0	0.7
	12:55	4	15:35	003	0.7	NC
6	7:10	5	8:50	003	.0.7	NC
	11:00	4	13:30	003	0.7	NC
7	7:10	5	8:15	003	0.6	NC
	11:00	4	14:30	003	0.6	0.5
8	6:15	4	8:00	003	0.5	NC
	11:15	5	13:30	003	0.5	0.4
9	6:25	4	8:45	003	0.4	NC
	10:55	3	13:50	003	0.4	NC
_10	6:25	5	8:45	003	0.4	NC ·
	10:40	4	13:40	003	0.4	NC
11	6:30	5	8:05	003	0.4	NC
	11:00	4	13:25	003	0.4	NC
12	7:00	6	8:15	003	0.4	0.4*
	12:45	3	14:30	003	0.4	NC
13	5:30	4	7:35	003	0.4	NC
	11:10	4	14:30	003	0.4	NC
14	8:15	3	9:30	003	0.4	NC
	13:05	4	14:30	003	0.4	NC
15	8:35	4	10:30	003	0.4	NC
	12:35	. 4	14:45	003	0.4	NC
16	7:00	4	9:30	003	0.4	1.0

^{*}Slight cut made.

DIRECT DISCHARGE SUMMARY - CONTINUED

MONTH MARCH 1985

	RI	VER			DISCHARGE	
DATE	TIME	△ COLOR (SCU)	TIME	OUTFALL	FLOW (CFS)	FLOW CHANGED TO (CFS)
16	12:35	4				
17	6:40	4	8:10	003	1.3	2.8
	11:30	3				
18	7:05	3	8:15	003	2.8	NC
	1:00	4	13:30	003	2.8	NC
19	6:55	4	8:00	003	2.7	NC
	11:05	4	14:00	003	2.7	ИС
20	7:10	4	8:40	003	2.7	NC
	11:00	4	13:30	003	2.7	NC
21	7:00	4	8:30	003	2.7	NC
	11:00	4	13:30	003	2.7	NC
22	5:30	3	7:30	003	2.8	NC
	9:35	3	11:30	003	2.8	3,6
23	7:15	4	9:12	004	3.6	NC
	12:00	4	13:30	003	3.6	NC
24	7:25	6	9:18	003	3.6	3.0
	12:40	6	14:10	003	3.0	2.7
25	7:00	4	8:20	003	2.7	NC
	11:25	5	13:50	003	2.7	2.2
26	6:55	3	8:00	003	2.2	NC
	10:55	4	13:10	003	2.2	NC
27	7:05	4	8:15	003	2.2	NC
	11:00	5	14:00	003	2.2	1.8
28	7:05	5	8:15	003	1.8	NC
	10:55	4	13:25	003	1.8	1.6
29	5:40	4	7:30	003	1.7	NC
	10:00	5	12:35	003	1.7	1.3
30	6:10	4	9:00	003	1.4	NC
	11:50	5	15:45	003	1.3	1.2
31	6:30	4	10:00	003	1.2	NC
	11:30	4	14:00	003	1.1	NC

DIRECT DISCHARGE DATA OUTFALL 003

MONTH ___MARCH___19_85

ΑY	AVG FLOW (CFS)	BOD (mg/l)	TSS (mg/l)	COLOR (SCU)	TOTAL KJELDAHL NITROGEN (mg/1)	NITRATE (mg/l)	NITRITE (mg/l)	TOTAL PHOSPHORUS (mg/l)	рН
1	0.5	66	50						
2	0.7	73	62						
3	1.3	67	62		16.24	ND	< 0.01	3.75	
4	1.0	69	58	1390					7.3
5	0.7	49	56						
6	0.7	63	58						
_7	0.5	57	56						
8	0.5	72	62						
9	0.5	71	38						
10	0.4	80	28	1550	17.78	ND	<0.01	3.81	7.4
11	0.3	73	80						
12	0.4	74	50						
13	0.5	67	44						
14	0.4	75	48						
15	0.4	42**	16**						
.6	1.0	69	76						
.7	2.8	74	32	1540	17.70	<0.01	<0.01	3.47	7.8
.8	2.8	75	52						
9	2.8	69	24						
0	2.8	61	52						
1	2.6	74	72		·				
2	3.7	72	78						
3	3.6	73	64						
4	2.6	77	68	1300	15.99	0.03	0.02	3.30	7.6
5	2.3	76	52						
6	2.2	72	94						
			1				1		

1.9

1.6

1.5

1.3

74

76

76

77

79

7

8

9

62 57

70

60

52

46

1464

1540

508 6.03 16.32

ND

0.02

16.38

3.50

_*

3.19

Average 71

^{*}Test missed. **Grab sample.

DIRECT DISCHARGE DATA - OUTFALL 004

MONTH MARCH 19 85

DATE	AVERAGE FLOW (CFS)	AVERAGE TEMPERATURE (°F)	рН
1	10.7	52	
2.	12.3	63	
3	12.7	69	
4	12.3	71	
5	13.4	74	
6	12.9	75	8.4
7	12.0	73	
8	11.8	74	
9	11.8	76	
10	10.7	73	
11	9.4	73	
12	9.1	69	
13	10.5	70	8.0
14	10.0	74	
15	10.2	74	
16	11.1	74	
17	11.1	77	
18	12.0	78	
19	7.6	75	
20	4.2	60	8.3
21	4.7	49	
22	4.5	45	
23	3.8	51	
24	3.1	42	
25	2.9	39	
26	3.1	39	
27	3,6	39	8.5
28	12.5	40	
29	13.6	70	
30	12.5	74	
31	13.1	73	

MONTH FEBRUARY 19 85

				ED OXYGEN		COLOR	(SCU)	
DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)		g/1) SIX-MILE	HARP TIME	ER'S COLOR	SIX-	MILE COLOR
		77.11.12.11.3						
1	1142				7:15	2	7:45	7
2	914				8:47	3	9:09	8
3	1082				9:33	3	9:56	8
4	1058				7:45	3	8:15	8
5	1262				7:20	3	7:50	7
6	1465	32.0	12.0	12.4	7:05	3	7:35	7
7	1658				7:20	3	7:50	6
88	1786				7:20	2	7:55	6
9	1852				7:15	2	7:45	6
10	1852				7:25	2	7:50	6
11	1893				6:45	5	7:15	6
12	2017				7:20	11	7:50	4
					13:00	2	13:25	5
13	1879	32.0			7:15	3	7:45	8
14	1906				7:20	3	7:50	6
					13:20	3	13:50	6
15	1961		12.0	12.0	6:55	4	7:25	8
1					11:02	4	11:30	9
16	1989				8:25	3	8:50	7
			•		12:37	4	13:18	9
17	1961				8:30	6	9:00	10
					12:30	6	12:55	10
18	1989				7:25	7	7:55	11
-					11:10	7	11:40	12
-; <u>19</u>	1893				7:20	6	7:50	11
-: 20	2017	32.7			7:15	4	7:45	88
					13:05	4	13:35	8
21	2017				7:15	4	7:45	8
					11:00	5	11:20	9
22	2003		11.5	11.7	6:50	4	7:20	8
1					10:50	4	11:20	8
23	2003				6:15	3	6:40	7

MONTH FEBRUARY 1985

	51.04	75155047405	DISSOLVED		11100	COLOR	(SCU)	-
DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	(mg/ HARPER'S	SIX-MILE	HARPI TIME	COLOR	SIX-1 TIME	AILE COLON
23					10:20	5	10:40	9
24	2031				7:15	2	7:45	6
					12.05	5	12:35	g.
25	2310				7:20	7	7:40	7
					10:45	7	11:10	9
26	2234				7:10	13	7:40	19
					13:05	12	13:30	17
27	2175	35.6			7:10	11	7:40	16
					11:00	11	11:25	16
28	2146				7:15	9	7:35	13
-					11:00	8	11:30	13
l		i						
		1						
						,		
								l
				1				Ī
	1							
				1			<u> </u>	

MONTH JANUARY 1985

			DISSOLVED				(SCU)	
DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	(mg/ HARPER'S		HARP TIME	ER'S COLOR	SIX-M TIME	COLOR
	2102				7:51	3	8:15	7
					12:01	3	12:53	9
2	1906				9:20	4	9:45	8
	1947				13:45	3	14:10	8
3	1893				7:05	3	7:50	7
.1	1920				7:15	3	7:45	6
					13:35	3	14:05	6
5	1760				8:15	3	8:40	7
. 6	1760				8:50	3	9:15	6
7	1839				7:20	3	7:50	6
8	2059		12.6	12.3	8:50	2	9:15	5
	2117	i .			13:15	3	13:45	6
g	2045	33.8			7:15	3	7:35	6
					11:10	3	11:40	7
10	1893				7:10	3	7:40	7
	1879							
11	1852				7:15	4	7:45	7
12	1826				8:15	3	9:00	5
13	1786				9:10	4	9:40	7
14	1476				8:25	3	8:55	7
15	1813				7:05	3	7:35	7
	1947				14:30	2	15:10	6
16	1893	32.0	12.2	12.3	7:15	3	7:35	6
17	2074				7:05	3	7:35	6
					13:05	2	13:35	6
18	2264		12.0	12.1	7:00	4	7:30	8
	1				10:55	4	11:20	10
					13:15	3	13:40	7
19	2496				6:30	3	7:30	6
					13:50	3	14:15	7
20	2642				7:00	6	8:00	9
					13:00	6	13:30	9

MONTH JANUARY 19 85

DATE	FLOW (cfs)	TEMPERATURE HARPER'S (°F)	DISSOLVE (mg, HARPER'S	/1)	HARPE TIME	COLOR ER'S COLOR	(SCU) SIX-H TIME	MILE COLUR
21	2433				7:15	11	7:45	14
	1 -				11:00	11	11.06	1
22	2190				7:15	4	7:45	9
					10:50	6	11:30	11
2 3	1879	34.0			8:20	5	8:50	10
24	1879				7:10	5	7:40	8
25	1747		12.2	12.6	7:00	4	7:30	7
26	1839				7:20	4	7:50	8
27	1773				7:25	3	7:55	6
28	1975				7:30	4	8:00	7
	1975							
29	2017		11.9	12.2	7:00	4	7:30	7
					13:35	4	14:05	7
30	1709	32.0	12.2	12.4	7:00	3	7:30	7
31	1406				7:30	3	8:00	7

COMMENTS:

Table 29.5.

October 3, 1984

Mr. Steve Pilcher, Chief Water Quality Bureau, DHES Cogswell Building Helena, MT 59620

Dear Mr. Pilcher:

Yearly information on an effluent system for the period July 15, 1983 through July 31, 1984 is as follows:

- 1. Total volume of effluent discharged during pond dumping was 1814.4×10^6 gallons, 30.0 percent of total effluent volume.
- 2. BOD₅ discharged to the Clark Fork River by percolation, infiltration and direct discharge totalled 1,133,600 lbs.
- 3. Pond dumping resulted in a discharge of 1,447,800 lbs. of total suspended solids.
- 4. Effluent disposed of by infiltration was 1162.6×10^6 gallons, 19.2 percent of the total effluent volume.
- 5. Volume disposed of through evaporation and percolation was 3052.3 X 10^6 gallons, 50.5 percent of the total effluent volume.
- 6. BOD5 reduction from the total effluent treatment system was 96.2 percent.

The attached information details the calculations made to derive the values listed above.

Please contact me if you have any questions concerning this report.

Sincerely,

Bill Haudraun

Bill Henderson Environmental Supervisor

sp
Attachment
c: Potts

Marxer ---> Kohl

Ford Pavlick Weeks Brown Kulawinski Volume remaining July 15, $1983 = 122.8 \times 10^6$ gallons.

Volume remaining July 31, $1984 = 142.7 \times 10^6$ gallons.

Total effluent flow July 15, 1983 \longrightarrow July 31, 1984 = 6049.2 X 10^6 gallons Total pounds Na₂SO₄ in effluent = 82.6 X 10^6 lbs.

Test well data, 12-month cumulative average:

$$BOD_5 (mg/1) = 8$$

$$Na_2SO_4 (mg/1) = 1170$$

Pond data, 12-month cumulative average:

$$Na_2SO_4 (mg/1) = 1730$$

Total effluent volume to rapid infiltration:

July 15, 1983
$$\longrightarrow$$
 July 31, 1984 = 1162.6 X 10^6 gallons.

Average effluent Na_2SO_4 concentration =

Total Na₂SO₄ in effluent

Total effluent volume

$$\frac{82.6 \times 10^{6} \text{ lbs.}}{6049.2 \times 10^{6} \text{ gallons}} \times \frac{1 \text{ ppm}}{8.34 \times 10^{-6} \text{lbs./gal.}} = 1640 \text{ ppm}$$

Percent Evaporation = 1 - $\frac{\text{Average effluent Na}_2\text{SO}_4 \text{ concentration}}{\text{Average pond Na}_2\text{SO}_4 \text{ concentration}}$

$$= 1 - \frac{1640}{1730}$$

$$= 0.05$$

Volume Percolated and Evaporated = Pond volume on 7/15/83

- + Total effluent flow
- Volume infiltrated
- Volume direct discharged
- Pond volume on 7/31/84

=
$$(122.8 + 6049.2 - 1162.6 - 1814.4 - 142.7) \times 10^6$$
 gallons

$$= 3052.3 \times 10^6$$
 gallons

3

5 Evaporation:

Volume evaporated = (Total effluent flow + pond volume on
$$7/15/83$$
) $\times 0.05$
= $(6049.2 + 122.8) \times 0.05$
= 308.6×10^6 gallons

Volume percolated =
$$(3052.3 - 308.6) \times 10^6$$

= 2743.7×10^6

BOD₅ Discharged by percolation and infiltration =

$$\frac{\text{Average pond Na}_2\text{SO}_4}{\text{Average test well Na}_2\text{SO}_4} \quad \text{X} \quad \text{Average Test Well BOD}_5$$

$$X = 8.34 \times 10^{-6}$$
 lbs./gal.

=
$$\frac{1730}{1170}$$
 X 8 X [(1162.6 + 2743.7) X 10^6 gallons]

$$X = 8.34 \times 10^{-6}$$
 lbs./gal.

BOD Direct Discharged = 748,200 lbs.

Total BOD_5 Discharged = 1,133,600

Table 29.5.

September 3, 1985

Mr. Steve Pilcher, Chief Water Quality Bureau, DHES Cogswell Building Helena, MT 59620

Dear Mr. Pilcher:

Yearly information on our effluent system for the period July 1, 1984 through June 30, 1985 is as follows:

- 1. Total volume of effluent discharged during pond dumping was 2172.9×10^6 gallons, 39.2 percent of total effluent volume.
- 2. BOD_5 discharged to the Clark Fork River by percolation, infiltration and direct discharge totalled 1,464,850 lbs.
- 3. Pond dumping resulted in a discharge of 1,520,340 lbs of total suspended solids.
- 4. Effluent disposed of by infiltration was 775.2×10^6 gallons, 14.0 percent of the total effluent volume.
- 5. Volume disposed of through evaporation and percolation was 2589.5 X 10⁶ gallons, 46.8 percent of the total effluent volume.
- $6.~~\mathrm{BOD}_5$ reduction from the total effluent treatment system was $95.1~\mathrm{percent}$.

Normal calculation of percent evaporation by using sodium concentration in the effluer $^{+}$ leaving the mill compared to sodium concentration in the storage ponds did not give a realistic value. Therefore, a mass balance around the effluent treatment system was done to calculate a volume combining percolation and evaporation. In order to calculate a BOD5 value for percolation, a 10% evaporation was assumed.

The attached information details the calculations made to derive the values listed.

Please contact me if you have any questions concerning this report.

Sincerely,

Bill Henderson

Bill Henderson Environmental Supervisor

kj
c: Potts, Marxer, Kohl, Pavlick, Weeks, R. Brown, Kulawinski, Stengel, Clem,
Ahles-Kedziora

Volume remaining July 1, $1984 = 225.5 \times 10^6$

Volume remaining June 30, $1985 = 140.4 \times 10^6$ gallons

Total effluent flow July 1, 1984 -----> June 30, 1985 = 5452.5×10^6 gallons Total pounds Na₂ SO₄ in effluent = 68.2×10^6 lbs.

Test well data, 12-month cumulative average:

$$BOD_5 (mg/1) = 9$$

 $Na_2 SO_4 (mg/1) = 1190$

Pond data, 12-month cumulative average:

$$Na_2 SO_4 (mg/1) = 1510$$

Total effluent volume to rapid infiltration:

July 1, 1984 ----> June 30,
$$1985 = 775.2 \times 10^6$$
 gallons

Average effluent Na_2 SO_4 concentration =

$$\frac{68.2 \times 10^6 \text{ lbs}}{5452.5 \times 10^6 \text{ gallons}} \times \frac{1 \text{ppm}}{8.34 \times 10^{-6} \text{ lbs./gal.}} = 1500 \text{ ppm}$$

Percent Evaporation =

$$1 - \frac{\text{Average effluent Na}_2\text{SO}_4 \text{ concentration}}{\text{Average pond Na}_2\text{SO}_4 \text{ concentration}}$$

$$=$$
 1 $\frac{1500}{1510}$

= 0.007

Volume Percolated and Evaporated =

Pond volume on 7/1/84

- + Total effluent flow
- Volume infiltrated
- Volume direct discharged
- Pond volume on 6/30/85

=
$$(225.5 + 5452.5 - 775.2 - 2172.9 - 140.4) \times 10^6$$
 gallons

 $= 2589.5 \times 10^6 \text{ gallons}$

Assume 10% evaporation

Volume evaporated = (Total effluent flow + pond volume on 7/1/84) X 0.10

 $= (5452.5 \times 225.5) \times 0.10$

 $= 567.8 \times 10^6 \text{ gallons}$

Volume percolated = Total volume percolated and evaporated - volume evaporated

 $= (2589.5 - 567.8) \times 10^6 \text{ gallons}$

 $= 2021.7 \times 10^6$ gallons

 BOD_{5} Discharged by percolation and infiltration =

Average pond Na₂SO₄

X Average test well BOD₅

Average test well Na₂SO₄

X (volume infiltrated + volume percolated)

= $\frac{1510}{1190}$ X 9 X [(775.2 + 2021.7) X 10⁶ gallons]

= 266,400 lbs.

BOD Direct Discharged = 1,198,450

Total BOD_5 Discharged = 1,464,850

FIGURE I EFFLUENT FLOW 1984-1985 DISCHARGE SEASON

V. CLARK FORK RIVER WATCHER'S RIVER MONITORING DATA

The Clark Fork River Watchers is a citizen's organization of interested in the maintenance and improvement of the Clark Fork River system. The group, composed of several chapters, is an affiliate of the larger Clark Fork Coalition.

Beginning in the summer of 1984 and following state approval of the temporary modification of Champion's discharge permit to allow nearly year around direct discharge, the Plains Chapter of the River Watcher's began to record observations at several stations on the lower Clark Fork. Additionally, members were trained by Water Quality Bureau staff to analyze river samples for dissolved oxygen. The bureau loaned the group an analysis kit.

Since August 1984, the group recorded detailed information on river dissolved oxygen, temperature, water appearance and other observations on a weekly basis in summer and a monthly basis the remainder of the year.

A somewhat condensed version of their observations and river measurements follows in Table 30.

TABLE 30. Clark Fork River Watche s Dissolved Oxyger and Temperature Monitoring Data and Field Observations

Where Found	Sack Waters (BW) or Main Channel (MC)	51/2	3.8	1	:	ВW	N.B.	BW-Along Shore	EW-Along Shore	3 5	E r B	:
	% Surface Covered	▲ 15.	7. 3.	; ;	;	5,4	3,	∨ 15.	≯ 1€	∨	\	i
	Scum (S) or Foam (F) Present	F-White, Thin Clumps	F-White, Thin Clumps	;	;	F-White, Thin Clumps	F-White, Thin Clumps	F-Small, White Bubbles	F-Small White Bubbles	F-White, Thin Bubbles	F-White, Thin Bubbles	None
	Water Appearance (color, clarity)	Clear, Dark Without Sediments	Cloudy, Green-Brown	Clear	Clear	Slightly Cloudy	Slightly Cloudy	01ear	Murky	Clea:	Very Clear	Clear
PART 1	Surface (S) or Deep Grab (DG)	ω	DG-10' bottom	DG-16' not bottom	S	S	DG-10'	S	DG-10'	DC-10'	0.1	-/1
	Air Terp (OC)	:		;	;	:	:	:	;	;	1 1 1	
	Water Temp (^O C)	21.1	21.1	19.4	19.4	18.9	}	18.3	:	!	18.9	18.6
	Dissolved Oxygen mg/l	7.6	8.6	8.3	8.0	8.0	8.3	8,3	8.6	7.5	7.0	7.8
	Time	9770	0505	0615	0620	0445	0510	0545	0555	9770	0515	0750
	Date	8/1/84	8/1/84	8/1/84	8/1/84	8/8/84	78/8/8	78/8/8	78/8/8	8/15/84	8/15/84	8/22/84 0540
	Location	PFB	PFB	SRCO	SRCO	PFB 55 Beach	PFB Under Bridge	SRCO	SRCO	PFB Under Bridge	PFB Beach	PFB Beach

Table 30. Part 1 Communed

Table 30. Fart a structure	rarr .		7							10 Li
Location	Date	(1) F1 1 1	Dissolved Oxygen mg/l	Water Temp (C)	Air Temp / Co	Surface (S) or Deep Grab (DG)	Water Appearance (color, clarity	Scum (S) or % Foam (F) Present	% Surface Covered	Back Waters (BW) Main Channel (MC
SRCO	8/22, 5-	ij	8.5	17.2	J. 00	S	Clear	F-Ihin, White Clumps	, 25°	Bh
PFB Beach	8/27-8-		7.1	20.0	21.1	w	Mild Turbidity	F-White	8	
PFB	78,62/8	<u>.</u>	8.1	16.7	6.1	S	Clear	F-White	\	BW
SRCO	8/29 5-	1	0.6	15.6	αι •	W	Murky-Quite Turbid	F-White	%	MC
PFB Beach	-3/5/6	11	9.1	16.7	ø. 8	S	Clear	F-Small, Thin White Clumps	Ņ,	BW
02 SECC 524	78/5/6	11) 1 1	0.6	15.6	10.0	W	Mild Turbidicy	F-Small, Thin White Clumps	\	MC
PFB Beach	9/12/8	£.	9.6	12.8	c1 c1	W	Clear	F-White Clumps Larger Than Usual	7%	BK
SRCO	9/12/8-	11 Y	9.6	12.2	9 .	DG	Very Cloudy	F-White Thick, Large Clumps Small Bubbles	5%	MC Bh
SRCO	9/12/8-	"]	8.1	12.2	3.9	ω	Very Cloudy, Heavy Suspended Sediments	F-White Thick, Large Clumps Small Bubbles	5% 10%	MC BW
PFB Beach	9/50/8-	113	9°.3	14.4	12.8	ω	Clear Along Shore	F-Some Very Large Bubbles & Thin Clumps		BW
SRCO	9/20/8=	*	0.6	13.9	12.8	ω	Cloudy	F-White, Thin Bubbles	i i	Primarily MC Some in BW
PFB Beach	10/3/6-	1 <u>.</u> 1	10.5	10.0	1.1	W	Clear	F-White, *"-1%" High Clumps of Bubbles	2% es	BM-Ico Foggy LO See MC
SRCO	10/3/84		10.7	σ. &	4.4	S	Clear	F-Thin, White Bubbles <1	.g < 1.	Ж

Table 30. Part 1 Continued

Location	Date	Time	Dissolved Oxygen mg/l	Water Temp (°C)	Air Temp (^C C	Surface S) or Jeep Crab (DG)	Water Appearance (color, clarity)	Scum (S) or Foam (F) Present	% Surface Covered	Ahere FoundBack Waters (BW) or Main Channel (MC)
PFB Beach	10/17/64 0805	0805	11.0	7.2	-5.6	ιΛ	Clear	F-½" White Bubbles	16%	BW - Too Foggy to See More Than 10 yards
SRCO	10/17/84 0845	0845	11.5	5.6	4.4-	W	Clear	F-Thin Clumps	27.	MC
PFB Beach	11/13/84 0730	0730	11.7	3.9	1.1	IA.	Clear	F-White Mostly, Some Yellowish Brown, ½". 2½" Clumps	اء - اعد	.XA
SRCO	11/13/84 0830	0830	11.7	3.9	1.1	(/)	Clear	F-White ½" Clumps	<u>7</u> .	MC
PFB Beach	12/11/84 0745	0745	13.3	-1.1	-8.9	1/1	Very Clear	لدر	ar.	BN VESTIV
SRC0 525	12/11/84 0825	0825	14.2	-1.7	-6.7	1/)	Clear	1	;	;
PFB Beach	1/29/85	0060	14.3	-1.7	-6.7	1/1	Clear	F-Small, Frozen, Thin Clumps, White	in 25.	Mainiy BW Sobe in MC
SRCO	1/29/85	08 30	13.6	-1.7	-5.6	171	Clear	See Comments	-	;
PFB Beach	2/28/85	0715	14.0	0.0	-3.3	D)	Very Cloudy	F-White, %"-1" Clumps	7-5-5 sdı	BW and MC
SRCO	2/28/85	0750	13.3	No reading	-1.1	171	Very Cloudy	F-White to Light Brown	∂ ¹ ′	MC, 5% Mostly Covered With Ice
PFB	3/29/85	0630	13.3	3.3	3.3	wa.	Murky With Suspended Organic Material	F-Ian Io Brown. Thicker & Dirtier Looking Than Usual	٤.	O >:
SRCO	3/29/85	0705	12.3	4.4	-2.2	to.	Greenish Brown, Very Murky, Suspended Organics	F-Ian to Brown Very Large Clumps ½"-3"	5-20° 5-20° 5-20°	BW MC Mr Eddies

Table 30. Part 1 Continued

Location	Date		Dissolved Oxygen mg/l	kater Temp ^o C)	Air Temp (°C)	Surface (S cr Deep Grab (35,	Water Appearance (color, clarity)	Scum (S) or % S Foar (F) Present Co	% Surface Covered	Where Found: Back Waters (BK) Main Channel (MC
PFB	4,30/85	رن ت ت	11	8.3	-3.3	S	Less Cloudy Than 1 Month Ago	F-Tan, Flat Bubbles 3" and Larger; Large Collections Several Feet Across	10%	BW
SRCO	4/30/85	(A)	10.6	10.0	9.0	Ø	Slightly Murky, Although Much Clearer Than Last Time	F-White, up to 3"	28. %	MC in Eddles
PFB	5/30/85	0530	10.5	10.0	2.2	S	Turbid	F-White, Flat-1"	2%	MC & BY
SRCO	5/30/85	ب د ک	10.6	8.9	2.2	S	Turbid	F-Muddy-Looking	1%	Bk
84 526	7/9/85	£€30	8.6	21.1	13.3	S	Clear	F-White, Thin Clumps	10%	386
SRCO	7/9/85	8	8.6	19.4	14.4	S	Clear	F-White, Flat Clumps	1%	B¥
PFB	8/1/85	0090	7.2	22.2	14.4	w	Some SS	F-White ½", Large Clumps	2-5%	MC Primarily
SRCO	8/1/85	(6-5	8.0	18.9	13.3	S	Slightly Turbid	F-White, 🕍	10%	ЖС

1 PFB - Clark Fork at Plains Fairground Bridge SRCO - Clark Fork at trossing near St. Regis Cutoff Road

t 2
Part
30.
Table

PART 2

Comments-Water Level, Odor, Precipitation, Winds, Events Along River	:	;	;	;	Musty Smell, Heavy Rain during Past Week	Musty Smell, Heavy Rain during Past Week	Musty Smell, Heavy Rain During Past week, "Liming" or "White Washing" of Rocks 6' Above Water	Musty Smell, Heavy Rain Durirg Past Week, "Liming" or "White Washing" of Rocks 6'Above water
Fish-Frequency of Rising, Species & Related Information	None Rising	Single Rise	l Squawfish-18", l Squawfish-14", Rainbow Trout-14", Appears Well Fed, Few Fish Rising	;	Some Fish Rising	Some Fish Rising	No Fish Caught, Some Rising	No Fish Caught, Some Rising
Wildlife and Other Observations	1	Family of Ducks Feeding at 10:30 on Return Trip	8 Canada Geese Noted on Sandbar Between Plains and Paradise at 1000	1	Heard Water Fowl, Swallows & Sandpipers	Heard Water Fowl, Saw Great Blue Heron Fishing East of Bridge		
General Weather Conditions	;	nts	;	1	ts	1	Clear, Breezy, Surface Rippled	Clear, Breezy, Surface Rippled
Streambed G Character	Sandy Beach, Fine Silt	Algae-About 50% Cover, Large Amounts of Sediments	No Algae Seen, Thick Sediment in Backwater	1	Sandy Beach, Some Suspended Sediments	1	Rocks Covered With Green Slime	Rocks Covered With Green Slime
Time	9770	0505	0615	0620	5770	0510	0545	0555
Date	8/1/84	8/1/84	⁷⁸ /1/8 527	8/1/84	8/8/8	8/8/8	78/8/8	8/8/8

2 Continued
Part
30.
Table

Comments-Water Level, Odor, Precipitation, Winds, Events Along River	Water Seems to Have Dropped Several Inches Since Last Week	Water Seems to Have Dropped Several Inches Since Last Week	Water Down Several Inches Again	"White-Wash" Apparent on Freshly Exposed Rocks		Two Previous Days Experienced High Steady Wind, Water Up About 6"	Algae in Clumps & Filaments-Quite Prevalent, Sand has Been Deposited Along Shoreline Rocks, Water Down About 4"	Water up About 10", Strong Musty Odor, Two Days of Steady Rain Between Testings	Water Up About 12", Foam is Heavier Here (Compared to Plains), Strong Musty Odor Even With Good Breeze, Algae Appearing in Larger Clumps Than Last Week, Rock Surfaces Are Slimy & Slippery in Water
Fish-Frequency of Rising, Species & Related Information	A Few Fish Rising	Some Fish Rising	No Fish Rising	Fish Rising Frequently	Some Fish Jumping	Few Fish Rising	Many Fish Jumping, Rising Almost Constantly, Minnows in Shallows	Fish Rising Frequently	Some Rising-Some Clearing the Water
Wildlife and Other Observations	Heard I Duck, Heard Beaver Slap the Water Several Times	Swallows Beginning to Fly	Minnows Present in Shallows, Heard Waterfowl	;		}	;	;	Two Ducks Near Shore, Saw Blue Heron Near Paradise (as Usual)
General Weather Condition	Calm, Clear	Calm, Clear	Calm, Clear	Clear & Windy	Karm & Windy	Overcast & Calm	Overcase With Light Breeze	Cool, Overcast,	Breezy, Overcast
Streambed G	About 50% Algae, Looks Like It'd Be Slippery	Sandy Botton	Sandy	Rocks Covered With Algae	Sandy Botter	Sandy Botton	Algae in Large Quantities, See Comments	Sandy Bottoz	Both Algae & Sediments
Time	0445	0515	0240	0620	1130	0090	9790	0630	0715
Date	8/15/84	8/15/84	8/22/84	8/22/84	8/21/84	⁷⁸ / ₅₂₈ 528	8/29/84	78/5/6	9/5/84

Table 30.		Part 2 Continued			Fish-Frequency of	Comments-Water Lavel.
Date	Time	Streambed G	General Weather Conditions	Wildlife and Other Observations	Rising, Species & Related Information	Odor, Precipitation,
9/12/84	0615	Sandy Botton	Light Fog Rising Partly Cloudy, Calm	Saw 2 Beaver, Heard 1 Duck	Few Fish Rising	Water Down About 6" Since Last Testing Raim During Night & For 2 Days Since Last Test
9/12/84	0705	100% Covered By Algae, Very Slimy	Partly Cloudy, Breezy	:	Very Few Fish Rising	Water Level Seems Unchanged, Rain as Above, Water in Test Vial Very Cooter
9/12/84	0715	Rock Entirely Covered With Algae, By Shore Too	Partly Cloudy, Breeze	Small Flock of Ducks Flew Cver Water	!	Saw Many Areas of the Shoreline Lines with Unbroken Blocks of Foam Collections-Maybe up to 10" High
78/ ₅₀ / ₈ 529	0715	Sandy Bottom	Steady Rain Through Night	Saw l Beaver Swimming	Only a Few Fish Rising, Rising Becoming More Frequent by End of Test	Water Seems up a Few Inches, On 18th Saw Heavy Brown Foam Covering An Area Approximately 100 x 150 Nards in an Eddy-NW of Plains-Took Photo
9/20/84	0745	No Clumps of Algae Where Usually Seen	Summerlike-70s 80s in Day and 50s at Night, Raining Steadily, No Breeze	<u> </u>	Rising Frequently	Water lown About 6", Large Blocks of of Foar Seen on Shoreline, Musty Odor Present
10/3/84	0000	Sandy	Dry, Foggy	Beaver Swirming	None Rising	Have Bad Several Warm Days After A a Leek of Cold Water
10/3/84	0735	Rocks Appear "Clean"	Clear & Windy	į		Water Seems Up About 6"
10/17/84	0805	Sandy	Clear, Cold, Very Foggy	;	Heard Fish Rise	Musiy Garr by Water As Usual

Comments-Water Level, Odor, Precipitation, Winds, Events Along River	The state of the s	Water Down About 6", Heaviest "Liming" on Rocks so Far, Noting Heavy Patches of Foam on Surface of of Running Water-At Riffles-As Well as Large Blocks of Foam on Shoreline that Look Like Styrofoam	Very Little Wind in the Past Month Water Level Seems Up Since Last Month, Mostly Cool Weather With Rain & Snow and Fair Amount of Snow Welt	Some Blocks of Foam Along Shoreline High Winds Concurrent With Test, Water Level Same as 1 Month Ago, Heavy Foam in Eddys Along the Cut-off	Water Up Since Last Test, Has Been Generally Cold With Snow and Rain, Some Ice on River, Some Snowmelt	Many Sections of the River are Covered With Ice, Floating Chunks of Ice Also	Saw About 1% Dozen Pieces of Water Weeks or Grasses Float By, Small Amounts of of Slush and lce Moving, Water Level Same
Fish-Frequency of Rising, Species & Related Information		None Rising	Some Fish Rising	No Fish Rising		:	Saw Many Fish Rising Within A Couple of Minutes
Wildlife and Other Observations	10101		·	w 1 Duck	}	;	;
General Weather Conditions		Clear, Cold, Very Windy	Cold, Cloudy, Foggy	Windy, Cold, Low Clouds	Clear & Cold	Clear & Cold	Cold, Partly Cloudy, Snow Predicted
Part 2 Continued Streambed Gharacter		Heavy Algae On Rocks Out About 4', Heavy Sed- iments on Rocks Closer to Shore	Sandy	Algae on Rocks by Shore	Sandy	Algae on Rocks	Brown Algae Either Growing or Has Been Deposited on Sandy Bottom
30.		10/17/84 0845	11/13/84 0730	11/13/84 0830	12/11/84 0745	12/11/84 0825	0800 53/6
Table Date	282	10/1	11/1	530	12/1	12/1	1/29/85

and a Couple of Days of High Winds, Water Level Remains Low, Down About 6" Since Last Test

Comments-Water Level, Odor, Precipitation, Winds, Events Along River	The Most Foam We've Ever Seen on the River and it has a Much Dirtier Appearance than Usual, Water Down About 6"	Some Fog Rising, Snow Melting in Mountains-% of Baldy Heart is Still Covered, Have Had 6 Very Windy Days, Noxon Reservoir has Been Drawn Down to Increase Power,	Water up at Least 8"-Strong Flow in MC	Current is Very Strong Here- Whirlpools Forming Quickly and Loudly and Then Disappearing,	Incredible Amount of Fast-Moving Water! Rain is Falling Here, Snow at About 3200', Precipitation Off and On for About 6 Days, This Should Help Noxon Reservoir, Down to Almost No Water with Huge Mud Flats, Have had 2 Weeks of Hot, Dry Weather, Remaining Snow Melted from Mountains Around Plains	Water Level up to the Base of Trees 100 Yards to Our Left, Slight Musty Odor
Fish-Frequency of Rising, Species & Related Information	A Few Rising	Saw Several Dozen Rise While Taking Sample		None Rising	None Rising	None
Wildlife and Other Observations	2 Ducks, Saw 30 Bighorn Sheep, 3 Bands on the Other Side of River	Heard 1 Goose, 1 Duck and Meadow Larks		;	Even the Ducks Aren't Out, Only Two Fools in Mobile Test Unit #1	1
General Weather Conditions	Cloudy, Cool Calm for a Change	Clear, Calm, Cold		Windy, Clear Cold	Wet-Steady Rain For the Past 36 Hours	Wet-A Little Snow Mixed With Rain, Windy & Cool
Streambed G Character	Very Heavy Algae, Rocks in Water are Greenish-Brown Rocks Above Water Have Thick Dirty-White ½" Deposits	Sandy With Algae Deposits in Sand Ripples		Algae & Sandy Deposits on Rocky Bottom	Same as Last Month	Looking Cleaner Than Usual
Time	0705	0605		9790	0630	0200
Date	3/29/85	730/82	32	4/30/85	5/30/85	5/30/85

Table 30. Part 2 Continued

Table 30.		Part 2 Continued			T - 40 - 17	
Date	Time	Streambed G. Character	General Weather K	Wildlife and Other Observations	rish rrequency of Rising, Species & Related Information	Comments-water Level, Odor, Precipitation, Winds, Events Along River
7/9/85	0630	Dark Green, Algae & Sed- iments	Clear, Warm	;	None	Unusually Warm with Low Water for so Early in the Year, No Odor, No Precipitation in One Month, High Winds Daily
7/9/85	0200	Sand on Rocks Fairly Clean Looking	Warm, Calm	Swallows in Flight	None Rising	Water 6" Below High Water Mark
8/1/85	0090	The Usual	Rain 4-5 Hours On 7/31 During Night After Two Dry Months, Sprinkling Now	A Few Ducks	Not Many Rising But Are Steady, Saw Some Fry in Flashlight Beam	Dept. of Fish, Wildlife & Parks Electro-Shocked Fish by PFG Two Weeks Ago, Water Level has Dropped About 1' Since Last Testing, At Thompson Falls Daily Flow was Reported at
522						12,000 cfs this Past Week, One Year Ago it was 17,000 cfs, Wet Beach Smells Very Bad, Hot, Dry Winds Off and on Since Last Test, Noxon and Cabinet Dams to be Lowered in the Next Week by WPPS for Work on Dams
8/1/85	9790	Very Large Clumps of Algae, Some Fixed and Some Moving on Down- stream	Sprinkling	<u> </u>	A Few Rising	Water is the Lowest We've Ever Seen at This Spot-a Small Sandbank has been Exposed Close to Shore and the "Island" Across the River is No Longer an Island, Drought Conditions in Most of the State with Many Rivers Down to Bare Trickle, DFWP Negotiating With Water Users to Maintain Enough Flow for Fisheries Survival

The investigators for these data were Charles Woolley and Judy Woolley except for 8/1/84 when it was just Charles Woolley; 8/8/84 when Darryl Olsen joined them.

VI. STREAMFLOW DATA

The water quality data thus far presented together with streamflow records will be the basis for loading calculations for the various pollutants discussed in the EIS. Stream and wastewater discharge flow rates for the days when samples were collected are listed in Table 5. However, monthly average streamflows will be needed to compute monthly average loads of pollutants in the EIS. These data for selected gaging stations in the Clark Fork basin are given in Table 31. Figures 22-25 are hydrographs comparing annual streamflows for water years* 1984 and 1985 at each of four gaging stations in the basin. The hydrographs allow a comparison of runoff patterns between each of the two years of study.

* A water year is a 12-month period beginning in October and ending in September.

Monthly Average Streamflows at Selected Gaging Stations in the Lower Clark Fork Basin, Water Years 1984-1985 Table 31.

584	
arl	
r Ye	
wate	

Source	e <u>Station</u>	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept
1.	Clark Fork Near Clinton	939	851	569	1190	769	784	1153	1992	2632	879	527	725
1.	Rock Creek Near Clinton	291	276	178	269	214	252	260	1721	2338	859	399	338
1.	Blackfoot Near Bonner	700	888	607	753	593	723	1663	3442	2677	1665	828	738
1.	Clark Fork Above Missoula	1981	1927	1154	2044	1561	1856	3458	7065	9278	3360	1742	1802
1.	Clark Fork Below Missoula	3583	3513	2045	3350	2798	3219	5756	13170	20160	9845	2884	3348
1.	Clark Fork At St. Regis	4133	4323	2642	4360	3667	4161	7371	16310	24750	8492	3636	3897
1.	Clark Fork Near Plains	14550	14760	12980	16750	14090	13270	15750	24010	08877	20110	10170	12470
2.	Clark Fork Below Thompson Falls Dam	15215	15390	12180	17190	14840	13570	15540	e*************************************	45572	21440	10770	13030
1.	Prospect Creek at Thompson Falls	52.0	51.3	58.8	127	118	154	272	503	526	148	77.0	60.2
1.	Clark Fork Below Noxon Rapids Dam	14100	14790	12050	16490	14560	13490	16770	26700	46030	21130	10210	12270
1.	Clark Fork at Whitehorse Rapids	15560	16380	13360	18540	16500	15390	19370	30750	51440	24250	11490	14010

Table 31 Continued

Water Year 1985

Source	Station	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Bny	Ser
r n	Clark Fork Near Clinton	825	786	909	514	504	969	1082	777	077	162	286	56
э. М	Rock Creek Near Clinton	288	250	190	137	156	202	7775	1407	889	267	282	36
.e	Blackfoot Near Bonner	899	634	987	767	780	542	1729	7403	2615	751	603	82
3.	Clark Fork Above Missoula	1832	1726	1391	1449	1380	1508	3370	6570	3997	1203	1208	177
3. (Clark Fork Below Missoula	3269	2951	2177	1969	1804	2309	9809	12940	8651	1832	2021	336
3.	Clark Fork At St. Regis	3850	3707		!	t 1 1	!	2798	18450	12730	3064		ë E
3.	Clark Fork Near Plains	13700	12970	13680	13840	12910	10580	16390	34260	34190	13090	!	£ \$
2. (Clark Fork Below Thompson Falls Dam	14230	13350	14470	14280	13240	11030	16590	36206	38013	13879	14018	1690
3.	Prospect Creek At Thompson Falls	9.7.4	55.8	59.6	50.5	42.9	63.8	508	847	518	138	88.0	70.
ř.	Clark Fork Below Noxon Rapids Dam	13520	12600	13450	13280	12530	14160	19210	33610	36020	13360	12880	1642
e e	Clark Fork at Whitehorse Rapids	14760	14030	14900	14810	14160	15850	22490	38670	41070	15520	14190*	f B

Sources 1. U.S. Geological Survey Water Data Report MI-84-2.

Montana Power Company, unpublished records.
 U.S. Geological Survey unpublished provisional records.
 August flow is average of days 1-27. Records for last 4 days of month not available at time of report preparation.

Hydrographs for Clark Fork near Clinton, Water Years 1984 and 1985 Geological Survey) Figure 22.

 \oplus

Hydrographs for Clark Fork Above Missoula, Water Years 1984 and 1985 U.S. Geological Survey) (Source: Figure 24.

ļ H -UNHTED STATES DEPURTIMENT OF THE INTERORICECO, CICICAL, SURVEY (MINTER RESOURCES DIVISION). Semi-Log dally Walles

TRAVEL TIME CALCULATIONS.

The estimation of travel-times for the Clark Fork River from below Milltown dam to above Thompson Falls was done using a simple model. The model was developed by the following steps:

- a field dye-study to measure travel-times for selected reaches;
- 2. comparison of the measured travel-times with ones calculated; and
- 3. development of a procedure for estimating travel-times at other flows and for other reaches of the river.

The field dye-study was performed on July 17-18, 1984. Rhodamine WT was injected at three locations and the travel-time over a total of about 86 river miles was measured. The arrival of the dye at various monitoring points along each of the reaches in the study was monitored using a fluorometer with a chart recorder. The quantity of dye to inject was calculated according to Hubbard, et. al.(1982) and was based on the maximum concentration of dye being 0.5 ppb at the end of the reach.

Pertinent data used for each of the reaches and the results of the study are given below. The river-mileages and elevation changes were estimated from USGS topographic maps. The mileages were compared with published values of U.S. EPA and the Montana Dept. of Natural Resources and Conservation and in some cases adjusted or remeasured until acceptable agreement was reached. The measured travel-times are the times to the peak concentration of dye at the monitoring point.

The flow at the time of the study was 4800 cfs as measured at the USGS guage below Missoula (below the confluence with the Bitterroot River). Flows for the reach through Missoula and the reach below St. Regis were estimated using regression equations. Since 1981 seemed to be a year with similar flow conditions, regressions were done using USGS daily flows at three stations for the period July 11-31, 1981 during which the flow varied from 6660 cfs to 3010 cfs at the station below Missoula. The resulting regression equations are:

Q(bel St Regis) = 1.26Q(bel Missoula) + 350 (r=.99) Q(abv Missoula) = .466Q(bel Missoula) + 710 (r=.99)

where Q is flow at the indicated stations in cfs.

The flows at other locations were estimated using a rough extrapolation from the above three stations.

Injection 1:

Reserve St. Bridge to Harper Bridge: 12.8 river-miles; 97 foot elevation change; flow = 4800 cfs (2950 cfs (est) above the Bitterroot R.); measured travel-time = 5.9 hours; calculated river velocity = 2.25 mph.

Harper Bridge to Champion: 3.5 river-miles; 20 foot elevation change; flow = 4800 cfs (est); measured travel-time = 1.4 hours; calculated river velocity = 2.50 mph.

Champion to Huson: 8.8 river-miles; 48 foot elevation change; flow = 4800 cfs (est); measured travel-time = 3.5 hours; calculated river velocity = 2.43 mph.

Huson to Petty Creek: 10.5 river-miles; 35 foot elevation change; flow = 5200 cfs (est); measured travel-time = 4.9 hours; calculated river velocity = 2.14 mph.

Injection 2:

Petty Creek to Forest Grove: 24 river-miles; 217 foot elevation change; flow = 5400 cfs (est); measured travel-time = 10.5 hours; calculated river velocity = 2 29 mph.

Forest Grove to LaVista: 16.5 river-liles; 68 foot elevation change; flow = 6000 cfs (est); measured travel-time = 6.3 hours; calculated river velocity = 2.62 mph.

Injection 3:

Below St. Regis on highway 135 from mile-post 11 to mile-post 20.5: 10.4 river-miles; 55 foot elevation change; flow = 6400 cfs (est); measured travel-time = 4.2 hours; calculated river velocity = 2.48 mph.

Theoretical calculations of velocities of the river for each of the reaches were made using the equations of Boning (1974). He gives separate equations for "channel-controlled" reaches and for "pool and riffle" reaches. These equations are:

$$V_{cc} = 2.69(Q)^{0.26}(S)^{0.28}$$
 (channel-controlled)
 $V_{pr} = 0.38(Q)^{0.40}(S)^{0.20}$ (pool and riffle)

V is velocity in ft/sec, Q is discharge in cfs, and S is slope in ft/ft. V was converted to mph by multiplying by 0.682.

The results of the calculations were in good agreement with the results of the dye-study and for the most part the two velocities (channel-control and pool-riffle) calculated for each reach bracketed the measured velocity (see table below).

A model was then conceived that consisted of using the two equations above after determining for each reach whether the channel-control equation, the pool-riffle equation, or a combination of the two should be used. To carry this out

a calibration procedure was used in which a weighted-average of the channel-control and pool-riffle results was calculated for the flows at which the dye-study was carried out and the weighting factors were chosen so that the weighted-average equalled the measured velocity. Or in mathematical terms:

$$V_{m} = A(V_{cc}) + B(V_{pr})$$

 $V_{\mbox{\scriptsize m}}$ is the measured velocity, $V_{\mbox{\scriptsize cc}}$ and $V_{\mbox{\scriptsize pr}}$ are the calculated channel-control and pool-riffle results, and A and B are the weighting factors.

The results are summarized in the following table.

				Са	Ic.	Use	e d
Reach	V _m	Vcc	Vpr	Α	В	Α	В
Res. St-Harpers	2.25	2.49	1.90	. 59	. 4 1	. 6	. 4
Harpers-Champion	2.50	2.46	1.96	1.08	08	1.0	0.0
Champion-Huson	2.43	2.44	1.95	. 98	. 02	1.0	0.0
Huson-Petty Cr	2.14	2.15	1.82	. 97	. 03	1.0	0.0
Petty Cr-F Grove	2.29	2.86	2.24	. 08	. 92	0.0	1.0
F Grove-LaVista	2.62	2.48	2.07	1.34	34	1.34	3
Hwy mile 11-20.5	2.48	2.62	2.21	. 66	. 3 4	. 66	. 3

A high value for A indicates that the reach has a predominately channel-control character, while a high value for B indicates a predominately pool-riffle character. The results seem fairly reasonable. The reach with the most channel-control character should probably be the Forest Grove to LaVista; the fact that A exceeds 1.0 and B is negative for this reach indicates that the river may flow abnormally fast through this stretch. The reach with the most pool-riffle character would certainly be Petty Cr. to Forest Grove, which includes Alberton Gorge.

The values for A and B were rounded off to the common fractions which are shown in the "Used" columns. The determination of travel-times at other flows was done by the following procedure:

- 1. divide the river from below Milltown to above Thompson Falls into reaches;
- 2. determine the flow at USGS gauge below Missoula;
- 3. estimate the flow for the other reaches;
- 4. calculate V and V for each reach followed by estimates of v_m^{cc} using the equations given above;
- 5. using the estimates of \boldsymbol{V}_{m} calculate the travel time for each reach and keep a cumulative total.

The table below gives the final results for three flows as measured at $\sqrt{\text{USGS}}$ station below Missoula.

Station (upper		Slope	150	0 cfs	300	0 cfs	400	0 cfs
end of reach)	Mile	Ft/Mi	MPH	Hour	MPH	Hour	MPH	Hour
Bel Milltown	0	9.2	1.6	0	2. 0	0	2.1	0
Abv Missoula	4	н	н	2.5	**	2.0	11	1.9
Missoula STP	7.5	H	11	4.7	44	3.8	11	3.6
Shuffields	9	**	11	5.6	11	4.5	11	4.3
Bitterroot R	11.5	5.6	1.8	7.2	2.2	5.8	2.3	5.5
Harper Bridge	20	5.7	1.8	11.9	2.2	9.5	2.3	9.1
Champion	23.5	5.6	1.8	13.9	2.2	11.1	2.3	10.6
Huson	32	2.5	1.4	18.6	1.7	15.0	1.9	14.3
Ninemile	38	4.0	1.7	22.9	2.0	18.5	2.2	17.5
Abv Alberton	43	10.3	1.5	25.8	1.9	21.0	2.1	19.7
Tarkio	62	3.9	1.3	38.5	2.2	31.0	2.3	28.8
Lozeau	7 1	3.0	1.8	45.	2.0	35.1	2.2	32.7
Superior	8 1	5.3	1.9	51.0	2.2	40.1	2.4	37.2
St Regis	97	5.4	1.8	59.4	2.1	47.3	2.3	43.9
Abv Flathead	120	3.5	2.4	72.2	2.7	58.3	2.9	53.9
Plains	130	2.3	2.1	76.4	2.4	62.0	2.6	57.4
Abv T Falls	145			83.5		68.5		63.1

For the synoptic sampling runs the "Hour" column in the above table was used to determine when to sample at each station. A "window" of + or - 5% of the cumulative hour was allowed. For example, at 3000 cfs the sampling schedule allowed for the station at Superior to be sampled anytime from 38.1 to 42.1 hours after the start of the sampling run below Milltown. Although an attempt was being made to track a slug of water, in actuality the slug disperses greatly as it moves downstream. This was noted in the dye-study and justifies the + or - 5% window.

REFERENCES:

Boning, Charles W., Generalization of Stream Travel Rates and Dispersion Characteristics from Time-of-Travel Measurements: Jour. Research U.S. Geol. Survey, Vol. 2, No. 4,pp. 495-9 (July - Aug., 1974).

Hubbard, E. P., F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr., Measurement of Time of Travel and Dispersion in Streams by Dye Tracing: U.S. Geol. Survey Techniques of Water-Resources Investigations, Book 3, Chap. A9, 44 p.

Chemistry Laboratory

QUALITY ASSURANCE LIMITS

	PRECI	SION	ACCURA	CY	DET. LIMIT
	RANGE	LIMIT	WARNING LIMITS	ACCEPTANCE LIMITS	
PARAMETER	(mg/l)	(+ or -)	(% Recovery)	(% Recovery)	(mg/l)
ACIDITY			-		
EPA 305.1	10 - 1000	10	NOT AVA	ILABLE	10.0
ALKALINITY	10 - 70	2.0	NOT AVA	ILABLE	10.0
EPA 310.2	70 - 200	3.0			
	200 - 300	5.0			
	300 - 500	10.			
ALUMINUM					
71201111011	.16	.27	80 - 123	69 - 134	0.1
EPA 202.1	.6 - 1.2	.39			
EPA 200.7	INSUFFICIENT	DATA BASE	90 - 110	85 - 115	0.3
ANTIMONY					
EPA 204.1	.2 - 15.0	.2	90 - 110	85 - 115	0.2
EPA 200.7	INSUFFICIENT	DATA BASE	90 - 110	85 - 115	.04
ARSENIC					
711021120	.001005	.002			0.001
Automated	.005020	.003	93 - 125	85 - 133	
Gaseous Hydride	.020100	.005			
EPA 200.7	INSUFFICIENT	DATA BASE	90 - 110	85 115	.05
BARIUM					
	0.1 - 0.5	.10			0.1
EPA 208.1	.5 - 1.5	.20	84 - 107	79 - 112	
	1.5 - 5.0	.50			
EPA 200.7	.005 - 0.50	.003	93 - 107	89 - 111	.005

Appendix	В.	Continued

Append:	ix B. Continued				
	PRECIS	ION	ACCURA	<u>ICY</u>	DET. LIMIT
	RANGE	LIMIT	WARNING LIMITS	ACCEPTANCE LIMITS	
PARAMETER	(mg/1)	(+ or -)	(% Recovery)	(% Recovery)	(mg/l)
BERYLLIUM					
DEINTELION	.005050	.002	90 - 110	85 - 115	.005
EPA 210.1	.050250	.004			
EPA 200.7	INSUFFICIENT D	ATA BASE	90 - 110	85 - 115	.001
BIOCHEMICAL					
OXYGEN DEMAND	2 - 10	2	NOT AVA	ILABLE	2.0
EPA 405.1	10 - 45	7			
	45 - 100	15			
	100 - 200	30			
BORON					
DONON	0.1050	.10	90 - 110	85 - 115	.10
EPA 212.3	.5075	.29			
	.75 - 1.0	.35			
EPA 200.7	INSUFFICIENT D	DATA BASE	90 - 110	85 - 115	.005
CADMIUM					
	.00102	.005	90 - 109	86 - 113	.005
EPA 213.1	.020100	.010			
	.10050	.020			
EPA 200.7	.005020	.010	92 - 113	87 - 118	.005
CALCIUM					
	1.00 - 50.0	2.8	87 - 110	81 - 115	.01
EPA 215.1	50.0 - 100.0	5.1			
	100 - 300	18.5			
EPA 200.7	0.1 - 50.0	0.7	89 - 108	84 - 113	0.10
	50.0 - 100.	1.4			
CHEMI CAL					
OXYGEN DEMAND	5 - 50	4.2	90 - 110	85 - 115	5.0
EPA 410.	50 500	17.8			
				Sect. 2 Page 2 (MDHES_	of 9
			547	Rev. 7/8	85

	PRECIS	SION	ACCURA	CY	DET. LIMIT
PARAMETER	RANGE (mg/l)	LIMIT (+ or -)	WARNING LIMITS (% Recovery)	ACCEPTANCE LIMITS (% Recovery)	(mg/1)
- TAXALLER	(1197 17		(% Recovery)	(% Recovery)	(3/ - /
CHLORIDE	1 - 5	.2	96 - 112	92 - 116	1.0
EPA 325.2	5 - 25	. 4			
	25 - 50	1.4			
	50 - 100	2.6			
CHROMIUM					
	.05100	.03	79 - 141	64 - 156	.05
EPA 218.1	.100500	.13			
EPA 200.7	.0210	.02	90 - 112	85 - 117	.02
CHROMIUM, HEXAVALENT	.01100	.05	90 - 110	85 - 115	.01
EPA 218.5	.01100	.03	90 - 110	05 - 115	.01
EPA 210.5					
COBALT	•				
	.05 - 1.00	.05	90 - 110	85 - 115	. 05
EPA 219.1.	1.00 - 5.00	.10			
EPA 200.7	INSUFFICIENT I	DATA BASE	90 - 110	85 - 115	.01
COLOR					
EPA 110.1	INSUFFICIENT	DATA BASE	NOT AVAI	LABLE	1.0
COPPER					
	.0105	.01	94 - 115	88 - 121	.01
EPA 220.1	.0530	.02			
	.30 - 1.00	.03			
EPA 200.7	.01300	.010	85 - 112	78 - 119	.01
CYANIDE					
	.001100	.005	90 - 110	115 - 85	.001
EPA 335.2	.100200	.017		· + •	
	.200500	.070			
	•	-			

Sect. 2.2 Page 3 of 9 MDHES Rev. 7/85

	PRECIS	SION	ACCURA	CY	DET. LIMIT	
	RANGE	LIMIT	WARNING	ACCEPTANCE		
PARAMETER	(mg/l)	(+ or -)	LIMITS (% Recovery)	LIMITS (% Recovery)	(mg/l)	
FLUORIDE						
	.0510	.02	92 - 106	89 - 110	.05	
EPA 340.3	.10 - 1.00	.05				
	1.00 - 1.50	.07				
	1.50 - 2.00	.10				
HARDNESS						
	.05 - 15	1.1	87 - 110	82 - 114	.05	
EPA 130.2	25 - 200	3.1				
	200 - 500	4.0				
	500 - 750	4.4				
IRON						
	.0120	.02	85 - 117	76 - 125	.01	
EPA 236.1	.2050	.03				
	.50 - 1.00	.05				
EPA 200.7	.0120	.010	90 - 111	85 - 116	.01	
217. 200.7	.2050	.020	30 - 111	05 - 110	.01	
	.50 - 1.0	.050				
	.00 1.0	.000				
LEAD						
	.0510	.05	87 - 113	80 - 120	.05	
EPA 239.1	.1050	.10				
EPA 200.7	.0510	.05	82 - 116	74 - 124	.05	
LITHIUM						
ICP	INSUFFICIENT (DATA BASE	90 - 110	85 - 115	.005	
MAGNESIUM						
	1.0 - 20.0	2.1	87 - 111	81 - 117	.01	
EPA 242.1	20 50.0	4.6				
	50: - 100	9.6				
				Sect. 2. Page 4 o MDHES Rev. 7/8	f 9	
			5.40			

P F	PRECIS	SION	ACCURA	ACY	DET. LIMIT
	RANGE	LIMIT	WARNING LIMITS	ACCEPTANCE LIMITS	
PARAMETER	(mg/l)	(+ or -)	(% Recovery)		(mg/1)
EPA 200.7	.50 - 20.0	.40	91 - 107	88 - 110	.01
	20 100	1.8			
MANGANESE					
	.0104	.01	91 - 109	87 - 113	.01
EPA 243.1	.0470	.05			
	.7 - 2.0	.12			
EPA 200.7	.005700	.010	93 - 110	88 - 115	.005
MERCURY					
	.00020005	.0002	87 - 119	78 - 128	.0002
EPA 245.1	.00050100	.0003			
	.01000500	.0007			
ICP	INSUFFICIENT (DATA BASE	90 - 110	85 - 115	.05
MOLYBDENUM					
	.1 - 1.50	.10	90 - 110	85 - 115	0.10
EPA 246.1	1.50 - 7.50	.20			
EPA 200.7	INSUFFICIENT [DATA BASE	90 - 110	85 - 115	.01
NICKEL					
	.0520	.05	88 - 114	81 - 120	.05
EPA 249.1	.20 - 1.0	.06			
	1.0 - 5.0	.12			
EPA 200.7	INSUFFICIENT [DATA BASE	90 - 110	85 - 115	.02
NITROGENS.					
AMMONIA					
	.0110	.01	78 - 122	67 - 133	.01
EPA 350.1	.10 - 1.0	.03			-
1	•				

	PRECI	SION	ACCURA	CY	DET. LIMIT
	RANGE	LIMIT	WARNING LIMITS	ACCEPTANCE LIMITS	
PARAMETER	(mg/l)	(+ or -)	(% Recovery)		(mg/l)
KJELDAHL		,			
	.10 - 1.0	.22	77 - 137	62 - 152	.10
EPA 351.2	1.0 - 10.	.79			
NITRATE +					
NITRITE	.0110	.01	87 - 119	79 - 127	.01
	.1050	.03			
EPA 353.2	.50 - 2.0	.05			
	2.0 - 4.0	.08			
OIL & GREASE EPA 413.1	INSUFFICIENT	DATA BASE	92 - 99	90 - 101	1.0
<u>рН</u> ЕРА 150.1	1 - 14	.10	NOT AVAI	LABLE	x.xx
PHENOLICS .					
	.001010	.003	90 - 110	85 - 115	.001
EPA 420.1	.010100	.010			
PHOSPHORUS:					
ORTHO PHOSPHATE	.001010	.003	88 - 110	83 - 115	.001
	.010020	.006			
EPA 365.1	.020100	.007			
	.100 - 1.00	.01			
TOTAL PHOSPHORUS					
	.001020	.004	86 - 119	77 - 128	.001
	.02010	.020			
EPA 365.1	.10 ~ 1.00	.06			
	•				

Sect. 2.2 Page 6 of 9 MDHES Rev. 7/85

	PRECIS	SION	ACCUR	ACY	DET. LIMIT
	RANGE	LIMIT	WARNING	ACCEPTANCE	
PARAMETER	(mg/l)	(+ or -)	LIMITS (% Recovery)	LIMITS (% Recovery)	(mg/l)
<u>POTASSIUM</u>					
	.25	.48	93 - 113	88 - 118	
EPA 258.1	.5 - 2.5	.73			.10
	2.5 - 6.0	2.2			
	6.0 - 15.0	4.9			
EPA 200.7	INSUFFICIENT D	ATA BASE	90 - 110	85 - 115	.2
NON FILTERAPLE					
RESIDUE (TSS)	7 - 20	3.5	NOT AVAI	LABLE	
	20.0 - 50.0	7.0			
EPA 160.2	50.0 - 150.0	13.0			
	200 - 1000	34.0			
SELENIUM					
	.002010	.002	79 - 115	70 - 124	.002
Automated	.010020	.004			.002
Gaseous Hydride	.020050	.012			
	.050100	.015			
EPA 200.7	INSUFFICIENT DA	ATA BASE	90 - 110	85 - 115	.08
SILICA					
	2.0 - 5.0	.6	90 - 110	85 - 115	2.0
EPA 370.1	5.0 - 15.0	1.5	30 110	03 - 113	2.0
	15 30.0	2.0			
EPA 200.7	INSUFFICIENT DA		90 - 110	85 - 115	.07
SILVER					
SILVEN	.0105	01	00 104	0.5	
EPA 272.1			90 - 104	86 - 108	.01
/_	.0350	INSUFFICIENT			
2171 200.7	.0105	.03	82 - 105	76 - 111	.01

	PRECISION		ACCURA	DET. LIMIT	
	RANGE	LIMIT	WARNING LIMITS	ACCEPTANCE LIMITS	
PARAMETER	(mg/l)	(+ or -)	(% Recovery)	(% Recovery)	(mg/l)
SODIUM					
	1.0 - 15.0	1.0	88 - 108	83 - 113	.10
Flame Emission	15.0 - 100	3.			
S.M. 15th 325B	100 - 300	10.			
EPA 200.7	INSUFFICIENT	DATA BASE	90 - 110	85 - 115	.05
SPECIFIC					
CONDUCTANCE	.10 - 75	11.7	NOT AVAI	LABLE	.10
	75 - 560	13.8			
EPA 120.1	560 - 870	35.7			
	870 - 1500	64.2			
STRONTIUM					
ICP	INSUFFICIENT	DATA BASE	90 - 110	85 - 115	.001
SULFATE .					
EPA 375.2	1.0 - 15.0	1.0	87 - 110	82 - 115	
(low level)	15.0 - 50.0	2.2			
(high level)	20 - 80	4.1			10.0
	80 - 130	5.9			
	130 - 300	15.3			
SULFIDE					
EPA 376.1	INSUFFICIENT	DATA BASE	85 - 118	77 - 126	.20
THALLIUM					
EPA 200.7	INSUFFICIENT	DATA BASE	90 - 110	85 - 115	.05

	PRECISION		ACCURACY		DET. LIMIT
	RANGE	LIMIT	WARNING	ACCEPTANCE	
PARAMETER	(mg/l)	(+ or -)	LIMITS (% Recovery)	LIMITS (% Recovery)	(mg/l)
TIN					
	1.0 - 4.0	.80	90 - 110	85 - 115	.80
EPA 282.2	4.0 - 60.0	1.50			
ICP	INSUFFICIENT DATA BASE		90 - 110	85 - 115	.03
TURBIDITY					
	.10 - 1.0	.2	NOT AVAILAB	LE	.02
EPA 180.1	1.0 - 10.0	.8			
	10.0 - 40.0	2.8			
VANADIUM					
	.5 - 10.0	.3	90 - 110	85 - 115	.2
EPA 286.1	10.0 - 50.0	.6			
EPA 200.7	INSUFFICIENT (DATE BASE	90 - 110	85 - 115	.01
ZINC					
	.005030	.004	94 - 113	89 - 118	.005
EPA 289.1	.030100	.010			
	.100500	.015			
	.500 - 1.00	.050			
EPA 200.7	.005030	.013	88 - 113	82 - 119	.005
	.030100	.039			

KK/war-53

Appendix B. Quality Assurance Limits for Carbon Furnace Metals Analyses Performed by Energy Labs, Inc.

Detection Limits

Metal	Detection Limit (ug/1)
Copper	1
Zinc	0.05
Lead	1
Cadmium	0.1

Achieved Laboratory Precision*

	oncentration (ug/1)**	Precision (+ or - ug/1)
Copper		
< 1-25	(16)	2.4
25-100	(3)	5.4
Zinc		
<. 05-20	(4)	1.1
20-100	(7)	1.9
Lead		
< 1-25	(18)	2.5
25-100	(1)	39
Cadmium		
<. 1-5	(19)	0.4
5-10	(0)	

Achieved Laboratory Accuracy*

Metal*	**	Accuracy (%)
Copper	(18)	101±16
Zinc	(12)	102±13
Lead	(18)	104±17
Cadmiu	n (18)	100±28

- * Laboratory precision and accuracy computed for 3 standard deviations (99% confidence) using performing laboratory duplicate and spike sample analysis data and methods given in the Handbook for Analytical Quality Control in Water and Wastewater Laboratories, Chapter 6, EPA-600/4-79-019, March, 1979, U.S. EPA, Cincinnati, Ohio 45268.
- ** Value in parenthesis following each element is the actual number of paired duplicate or spiked sample analyses from which the corresponding precision or accuracy was computed.

Appendix C. Water Sample Preservation and Handling Methods (Source: "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, Revised March 1983)

SAMPLE PRESERVATION

Complete and unequivocal preservation of samples, either domestic sewage, industrial wastes, or natural waters, is a practical impossibility. Regardless of the nature of the sample, complete stability for every constituent can never be achieved. At best, preservation techniques can only retard the chemical and biological changes that inevitably continue after the sample is removed from the parent source. The changes that take place in a sample are either chemical or biological. In the former case, certain changes occur in the chemical structure of the constituents that are a function of physical cc. ditions. Metal cations may precipitate as hydroxides or form complexes with other constituents; cations or anions may change valence states under certain reducing or oxidizing conditions; other constituents may dissolve or volatilize with the passage of time. Metal cations may also adsorb onto surfaces (glass, plastic, quartz, etc.), such as, iron and lead. Biological changes taking place in a sample may change the valence of an element or a radical to a different valence. Soluble constituents may be converted to organically bound materials in cell structures, or cell lysis may result in release of cellular material into solution. The well known nitrogen and phosphorus cycles are examples of biological influence on sample composition. Therefore, as a general rule, it is best to analyze the samples as soon as possible after collection. This is especially true when the analyte concentration is expected to be in the low ug/l range.

Methods of preservation are relatively limited and are intended generally to (1) retard biological action, (2) retard hydrolysis of chemical compounds and complexes, (3) reduce volatility of constituents, and (4) reduce absorption effects. Preservation methods are generally limited to pH control, chemical addition, refrigeration, and freezing.

The recommended preservative for various constituents is given in Table 1. These choices are based on the accompanying references and on information supplied by various Quality Assurance Coordinators. As more data become available, these recommended holding times will be adjusted to reflect new information. Other information provided in the table is an estimation of the volume of sample required for the analysis, the suggested type of container, and the maximum recommended holding times for samples properly preserved.

TABLE 1

RECOMMENDATION FOR SAMPLING AND PRESERVATION OF SAMPLES ACCORDING TO MEASUREMENT⁽¹⁾

Measurement	Vol. Req. (ml)	Container ²	Preservative 3,4	Holding <u>Time</u> ⁵
100 Physical Properties				
Color	50	P,G	Cool, 4°C	48 Hrs.
Conductance	100	P,G	Cool, 4°C	28 Days
Hardness	100	P,G	HNO_3 to $pH < 2$	6 Mos.
Odor	200	G only	Cool, 4°C	24 Hrs.
pН	25	P,G	None Req.	Analyze Immediately
Residue				
Filterable	100	P,G	Cool, 4°C	7 Days
Non- Filterable	100	P,G	Cool, 4°C	7 Days
Total	100	P,G	Cool, 4°C	7 Days
Voiatile	100	P,G	Cool, 4°C	7 Days
Settleable Matter	1000	P,G	Cool, 4°C	48 Hrs.
Temperature	1000	P,G	None Req.	Analyze Immediately
Turbidity	100	P,G	Cool, 4°C	48 Hrs.
200 Metals				
Dissolved	200	P,G	Filter on site HNO ₃ to pH < 2	6 Mos.
Suspended	200		Filter on site	6 Mos. (8)
Total	100	P,G	HNO_3 to $pH < 2$	6 Mos.

TABLE 1 (CONT)

	Vol.			
Measurement	Req. (ml)	Container ²	Preservative ^{3,4}	Holding Time ⁵
Chromium+6	200	P,G	Cool, 4°C	24 Hrs.
Mercury Dissolved	100	P,G	Filter HNO ₃ to pH < 2	28 Days
Total	100	P,G	HNO_3 to $pH < 2$	28 Days
300 Inorganics, Non-Meta	illics			
Acidity	100	P,G	Cool, 4°C	14 Days
Alkalinity	100	P,G	Cool, 4°C	14 Days
Bromide	100	P,G	None Req.	28 Days
Chloride	50	P,G	None Req.	28 Days
Chlorine	200	P,G	None Req.	Analyze Immediately
Cyanides	500	P,G	Cool, 4°C NaOH to pH >12 0.6g ascorbic acid ⁶	14 Days ⁷
Fluoride	300	P,G	None Req.	28 Days
Iodide	100	P,G	Cool, 4°C	24 Hrs.
Nitrogen	•			
Ammonia	400	P,G	Cool,4°C H_2SO_4 to $pH < 2$	28 Days
Kjeldahl, Total	500	P,G	Cool, 4° C H_2SO_4 to $pH < 2$	28 Days
Nitrate plus Nitrite	100	P,G	Cool, 4° C H_2SO_4 to $pH < 2$	2 8 Days
Nitrate ⁹	100	P,G	Cool, 4°C	48 Hrs.
Nitrite	50	P,G	Cool, 4°C	48 Hrs.

TABLE 1 (CONT)

Measurement	Vol. Req. (ml)	<u>Container</u> ²	Preservative ^{3,4}	Holding Time ⁵
Dissolved Oxygen Probe	300	G bottle and top	None Req.	Analyze
Winkler	300	G bottle and top	Fix on site and store	Immediately 8 Hours
Phosphorus Ortho- phosphate, Dissolved	50	P,G	in dark Filter on site Cool, 4°C	48 Hrs.
Hydrolyzable	50	P,G	Cool, 4° C H_2SO_4 to $pH < 2$	28 Days
Total	50	P,G	Cool, 4° C H_2SO_4 to $pH < 2$	28 Days
Total, Dissolved	50	P,G	Filter on site Cool, 4°C H ₂ SO ₄ to pH < 2	24 Hrs.
Silica	50	P only	Cool, 4°C	28 Days
Sulfate	50	P,G	Cool, 4°C	28 Days
Sulfide	500	P,G	Cool, 4°C add 2 ml zinc acetate plus NaOH to pH >9	7 Days
Sulfite	50	P,G	None Req.	Analyze
400 Organics				Immediately
BOD	1000	P,G	Cool, 4°C	48 Hrs.
COD	50	P,G	Cool, 4°C H ₂ SO ₄ to pH < 2	28 Days
Oil & Grease	1000	G only	Cool, 4° C H_2SO_4 to $pH < 2$	28 Days
Organic carbon	25	P,G	Cool, 4° C H_2SO_4 or HCl to $pH < 2$	28 Days
Phenolics	500	G only	Cool, 4°C H ₂ SO, to pH <2	28 Days

TABLE 1 (CONT)

Measurement	Vol. Req. (ml)	Container ²	Preservative ^{3,4}	Holding Time ⁵
MBAS	250	P,G	Cool, 4°C	48 Hrs.
NTA	50	P,G	Cool, 4°C	24 Hrs.

- 1. More specific instructions for preservation and sampling are found with each procedure as detailed in this manual. A general discussion on sampling water and industrial wastewater may be found in ASTM, Part 31, p. 72–82 (1976) Method D-3370.
- 2. Plastic (P) or Glass (G). For metals, polyethylene with a polypropylene cap (no liner) is preferred.
- 3. Sample preservation should be performed immediately upon sample collection. For composite samples each aliquot should be preserved at the time of collection. When use of an automated sampler makes it impossible to preserve each aliquot, then samples may be preserved by maintaining at 4°C until compositing and sample splitting is completed.
- 4. When any sample is to be shipped by common carrier or sent through the United States Mails, it must comply with the Department of Transportation Hazardous Materials Regulations (49 CFR Part 172). The person offering such material for transportation is responsible for ensuring such compliance. For the preservation requirements of Table 1, the Office of Hazardous Materials, Materials Transportation Bureau, Department of Transportation has determined that the Hazardous Materials Regulations do not apply to the following materials: Hydrochloric acid (HCl) in water solutions at concentrations of 0.04% by weight or less (pH about 1.96 or greater); Nitric acid (HNO₃) in water solutions at concentrations of 0.15% by weight or less (pH about 1.62 or greater); Sulfuric acid (H₂SO₄) in water solutions at concentrations of 0.35% by weight or less (pH about 1.15 or greater); Sodium hydroxide (NaOH) in water solutions at concentrations of 0.080% by weight or less (pH about 12.30 or less).
- 5. Samples should be analyzed as soon as possible after collection. The times listed are the maximum times that samples may be held before analysis and still considered valid. Samples may be held for longer periods only if the permittee, or monitoring laboratory, has data on file to show that the specific types of sample under study are stable for the longer time, and has received a variance from the Regional Administrator. Some samples may not be stable for the maximum time period given in the table. A permittee, or monitoring laboratory, is obligated to hold the sample for a shorter time if knowledge exists to show this is necessary to maintain sample stability.
- 6. Should only be used in the presence of residual chlorine.

- 7. Maximum holding time is 24 hours when sulfide is present. Optionally, all samples may be tested with lead acetate paper before the pH adjustment in order to determine if sulfide is present. If sulfide is present, it can be removed by the addition of cadmium nitrate powder until a negative spot test is obtained. The sample is filtered and then NaOH is added to pH 12.
- 8. Samples should be filtered immediately on-site before adding preservative for dissolved metals.
- 9. For samples from non-chlorinated drinking water supplies conc. H₂SO₄ should be added to lower sample pH to less than 2. The sample should be analyzed before 14 days.

Appendix C. Scheme for Determining Streamflows at Shallow-water Monitoring Stations

Station	Streamflow Determination Method*	Comments
01	Add flows measured by USGS at stations Clark Fork near Clinton and Rock Creek near Clinton.	Recorded as measured flow.
02	Monitoring station located at USGS station Blackfoot River near Bonner.	Recorded as measured flow.
04	USGS station Clark Fork above Missoula.	Recorded as measured flow.
05	Same as station 04.	Lecorded as measured flow.
0€	Same as station 04.	Estimate only. Does not include additions from Rattlesnake Creek or known losses to ground-water above this station.
07	WWTP flow recorder.	Recorded as measured flow.
08	USGS station Clark Fork above Missoula plus WWTP flow (rounded).	Estimate only for same reasons as station 06.
09	Same as station 08.	Estimate only.
10	Subtract flow at station 08 from flow at USGS station Clark Fork below Missoula.	Very rough estimate only. Maybe an underestimation due to overestimation of Station 08 flow.
11	USGS station Clark Fork below Missoula.	Recorded as measured flow.
12	Flowmeter(s) at Champion outfall(s).	Recorded as measured flow.
13	USGS station Clark Fork below Missoula plus Champion flow (rounded).	Recorded as estimate.
14	Same as station 13.	Estimate.
15	Same as station 13.	Estimate.
16-20	No flows recorded.	Estimate.
21	USGS station Clark Fork near St. Regis.	Recorded as measured flow.
22	Same as station 21.	Estimate.
23	Subtract flow at station 21 from flow at USGS station Clark Fork at Plains.	Estimate.
24	USGS station Clark Fork at Plains.	Recorded as measured flow.
25	Same as station 24.	Estimate.

Appendix C. Continued

Station	Streamflow Determination Method*	Comments
.27	Add flow measured by MPC at Thompson Falls Dam to flow at USGS station Prospect Creek at Thompson Falls.	Recorded as measured flow.
29	USGS and WWP station Clark Fork below Noxon Rapids Dam.	Recorded as measured flow.
31	USGS station Clark Fork at Whitehorse Rapids.	Recorded as measured flow.

LEACHABLE TEST:

- Sediment was dried, rocks were removed, and a portion was ground with a mortar and pestle.
- 2. An amount close to 1.00 g was weighed out. The weight differed from 1.00 g by less than 1%.
- 3. The weighed portion was placed in a vessel along with l L of .5% HNO₃.
- 4. The vessel was shaken each day for 10 days.
- on the 10th day, the liquid was decanted off and analyzed for metals on the ICP unit except for Arsenic which was analyzed by the Hydride meth d.

TOTAL TEST:

- 1. Same as Step 1 of LEACHABLE test.
- 2. Approximately .25 g was weighed out.
- 3. The weighed portion was placed in a Teflon digestion vessel along with 1.2 ml of conc. HNO₃ and 3.8 ml of conc. HCl.
- 4. The vessel was capped and microwaved for 3 minutes.
- 5. The contents of the vessel was diluted to 50 ml and analyzed for metals on the ICP unit except Arsenic.
- 6. Note that silica and metals bound in the silica may not be completely recorded by this procedure.

Appendix C. Description of method of Computing Time-Weighted Mean Dissolved Oxygen and Temperature.

The time-weighted dissolved oxygen and temperature values in Table 14 were computed as follows. For each station a 1-day period was chosen that centered around the approximate 1-day period over which the diurnal sampling was done. The time-weighted values were calculated by the following formula:

$$V_{tw} = V_1(dT)_1 + V_2(dT)_2 + ... + V_n(dT)_n$$
, where

 V_1 ... V_n are the measured values of dissolved oxygen or temperature over the approximate 1-day period, and (dT) $_1$... (dT) are the time intervals in days associated with each of the n samples.

The time interval for a given sample begins at the midpoint to the previous sample and ends at the midpoint to the next sample with two exceptions: the first time interval begins at the beginning of the chosen, exact 1-day period and the last time interval ends at the end of that period.

The time-weighted values are close approximations to those that would be obtained if samples were taken at exact, regular intervals and simply averaged without any weighting. Thus the weighting is done to compensate for the irregularity of the time intervals between samples.

Appendix C. Description of the Modified Traveling-Kicknet
Macroinvertebrate Sampling Technique Used in the Lower Clark
Fork Study

The technique used in this study for collection of benthic macroinvertebrate samples was a modification of a method described by Kinney et al (1977). An aquatic "D"-net (Ward's 10W0620) with a 36 centimeter (cm) long nylon net composed of 9 strands/cm (22 mesh) was used to collect untimed, approximately equal-surface area kick samples of Clark Fork mainstem and major tributary macrobenthos.

Samples were collected by holding the net at arms 'ength in front of and downstream from the investigator while traveling slowly downstream and vigorously kicking and overturning the streambed material to a depth of several inches. The entire contents of the net were transferred to pint or quart glass jars, preserved in 70% ethanol and returned to the laboratory for sorting, organism counting and species identifications.

Five samplings were conducted at each of the shallow-water biological monitoring stations on a seasonal basis from March 1984 to August 1985. During the initial sampling (Spring 1984), only one sample was collected from each station. Approximately 4 square feet was disturbed in an area of moderately fast current (about 1.5 to 2.5 ft./sec.) followed by the disturbing of about two square feet in slow to moderate current (about 0.5-1.5 ft./sec.). The combined sampling constituted one sample; the net contents were transferred to the sample jar after each area had been sampled. Where possible, rich sites (those with piles of rocks providing a large area for colonization) were selected at each station. Riffles were selected for the moderately fast water samplings whenever available.

During subsequent seasonal samplings (summer, fall 1984; spring, summer 1985), four smaller surface area replicates were collected at each station in order to increase the statistical reliability of the data. Each replicate was collected by disturbing about two square feet in moderately fast current followed by about one square foot in slow to moderate current. Organisms were identified and counted in each replicate. However, for purposes of data analysis, results of the four replicates were pooled.

References

1) Kinney, W.L. Pollard, J.E. and C.H. Hornig. In Press. Comparison of Macroinvertebrate Sample As They Apply to Streams of Semi-Arid Regions. Proceedings of the Fourth Joint Conference on Sensing of Environmental Pollutants, November 1988, New Orleans, LA 1977.

METHODS OF COLLECTION AND ANALYSIS FOR PERIPHYTON AND PHYTOPLANKTON

Natural Substrate Periphyton-Taxonomic Identification and Enumeration

Sample Collection

Periphyton was collected from natural substrates with the object of obtaining a composite sample of algae roughly in the same proportion as they existed in the stream. Each type of substrate present (rocks, silt, woody material, higher aquatic plants) was sampled in proportion to its importance as a substrate at that site. Substrates exposed to different current velocities and depth (riffles or pools, for example) were sampled, again roughly in proportion to the extent these conditions prevailed at a site.

The collection procedure consisted of scraping the film of attached algae from the substrate with a knife blade or metal spoon. Green filaments and tufts of macroscopic algae and green or brown "slime" (composed largely of microscopic diatom algae) were sampled in proportion to their spatial extent on each substrate type. The periphyton material was composited into a small bottle containing stream water, preserved with several milliliters of Lugol's (IKI) and transported on ice to the laboratory. Samples were refrigerated until analyzed.

Sample Analysis

Analyses consisted of identifying the taxa of soft-bodied (non-diatom) algae to the genus level, estimating the relative abundance and rank by volume of each taxon, and performing detailed taxonomic identifications and proportional counts of diatom algae to the species level.

To prepare a sample for identification of soft-bodied algae, the contents were emptied into a porcelain evaporating dish, and the periphyton material was teased apart with forceps and a disecting needle. Portions of conspicuous filamentous algae and other aggregations were placed on a welled microscope slide, along with 2-3 drops of non-descript periphyton "soup. The latter usually contained large numbers of microscopic soft-bodied and diatom algae. Again, a careful attempt was made to sub-sample each fraction in proportion to their importance in the original collection. A glass cover slip was placed over the material, and the slide preparation was thoroughly scanned under the microscope at 100% and 400%. Diatom algae were not identified at this time, and all taxa were considered collectively for estimating their numbers relative to other algae. Non-diatom algae were identified to genus, and the relative abundance of each was estimated using the following scheme:

- R = rare; alga encountered very few times, < 5% of fields examined.
- C= common; alga encountered frequently, but present in no more than 25% of microscope fields examined.
- VC = very common; alga encountered very frequently, present in up to 50% of microscope fields examined.
- A = abundant; alga present in essentially 100% of fields examined, but usually makes up much less than half of the number of algae in a

given field.

VA = very abundant; alga present in essentially 100% of fields examined often accounting for half or more of the algae in a given field

VVA = very, very abundant; present in large numbers in 100% of fields examined, often comprising 80-90% of algae in a given field.

The latter category was generally applied to diatom algae, which were comprised of many genera and were often present in very large numbers and greatly dominated the total number of algae present.

The soft-bodied genera and the diatom assemblage were ranked numerically by estimating the volume they occupied in the sample. By this system it was possible for a very large filamentous alga, estimated as common, to "outrank" a single-celled form that was abundant, but had a much smaller collective volume.

After soft-bodied analyses were completed, the remainder of the sample was prepared for diatom taxonomy and proportional counts. Cleaning of the diatom material was accomplished with nitric acid and potassium dichromate (A.P.H.A. 1979), and a permanent diatom slide was prepared using Hyrax mounting medium (A.P.H.A. 1979).

Diatoms were scanned under oil immersion at a magnification of 1000X, and all taxa encountered were identified to at least the species level, if possible. A sufficient number of cells were scanned to be reasonably sure that the dominant taxa had been identified (up to one traverse of the cover slip). Between 300 and 450 diatom frustules were then counted, and the percent relative abundance of each taxon was calculated. The Shannon species diversity was calculated for each sample and taxa were ranked according to pollution tolerance by the system of Lange-Bertalot (1979).

Natural Substrate Periphyton - Chlorophyll and Biomass Analyses

Sample Collection

An attempt was made to choose similar conditions at each sample site, i.e. approximately the same substrate size, water depth and current velocity. Generally, large cobbles (15-25 cm in diameter) at 40-50 cm depth and 1-1.5 feet/second current velocity were sampled. These conditions were usually found 1-3 meters from the bank.

A representative rock was removed from the stream bottom, roughly maintaining its orientation. With a metal spatula or spoon, periphyton was scraped from the top surface of the rock and placed into a labeled 50 ml centrifuge tube, until a sample volume of 15 ml was obtained. A minimum amount of water was included with the periphyton material.

The centrifuge tube was then wrapped with aluminum foil to exclude light. Samples were kept on ice for the return trip to the lab, and were stored in the freezer until analyzed.

Sample Analysis

Chlorophy11

Samples to be analyzed were removed from the freezer and allowed to thaw. To each sample, 10 ml of 90% aqueous acetone solution was added, and the periphyton was thoroughly disrupted by grinding the material against the side of the tube with a glass stirring rod. An additional 20 ml of acetone solution was added and the tubes tightly capped. Samples were placed in a cold water sonic bath and sonified on high for 15 minutes. After steeping at 40 C for 24 hours, the sonification was repeated. Samples were clarified by centrifugation at 500G for 20 minutes. Chlorophyll measurements were made with a Perkin-Elmer Model 200 Spectrophotometer having a band width of 1 nm. The optical density (OD) of each sample solution was determined at 750, 664, 647, 630 and 430 nm, and after acidification at 665 nm.

Chlorophyll \underline{a} was calculated using the following trichromatic equation after correcting the optical density values for turbidity (OD 750):

Chlorophyll a (mg/1) = 11.85(OD 664) - 1.54(OD 647) - 0.08 (OD 630)

The ratio of chlorophyll \underline{a} to pheophytin \underline{a} was calculated as the ratio of OD 664 to OD 665 according to Standard Methods (A.P.H.A. 1979).

The Stability Index, the ratio of yellow pigment (carotene) to green pigment (chlorophyll), was calculated as the ratio of OD 430 to OD 664.

Biomass

After analyzing for chlorophyll, the periphyton material and acetone solution were emptied into a Vicor glass crucible, evaporated under a fume hood, and dried to constant weight at 105° C. Ash-free weight (biomass) was obtained according to Standard Methods (A.P.H.A. 1979).

The Autotrophic Index was calculated as the mass ratio of biomass to chlorophyll a.

Artificial Substrate Periphyton - Chlorophyll and Biomass Analyses

Sample Collection

The artificial substrates employed consisted of eight standard microscope slides held in commercial plastic carriages (Periphytometer II). Each carriage was tied to a cement cinder half-block, 8" x 16" x 4" thick. Five replicate substrates were placed at each of nine stream sites. The block/carriage unit was worked into the stream-bottom cobbles deep enough to place the slides slightly above the natural bottom, with their long axes parallel to the current. The water depth and current velocity were measured at each substrate. Placement locations were chosen and adjusted to achieve conditions that were as similar as possible between replicates and when practical between sites. Exposure time was approximately two weeks, but because of sampling logistics, ranged from 14.2 to 16.0 days. At the end of the exposure period the substrates and blocks were removed and the slides carefully removed as not to disturb the attached periphyton. Seven slides from each of the replicates at a site were placed in an opaque

plastic storage box and transported to the laboratory on ice. The slides were stored in a freezer until chlorophyll and biomass analyses were performed. The eighth slide from each replicate was placed in a 50 ml centrifuge tube, preserved with several drops of Lugols solution and stored for future taxonomical identifications.

Sample Analysis

Chlorophyll analyses were performed in the same manner as the natural substrate periphyton samples, with the following procedural exceptions. Slides were removed from the freezer immediately before beginning analyses, and were shielded from direct light and heat to minimize degradation of the chlorophyll. Periphyton from each seven-slide replicate was carefully and thoroughly scraped into a foil-covered beaker, then rinsed into 50 ml foil-covered centrifuge tubes with 25 ml of 90% acetone solution. Chlorophyll a concentration was calculated as milligrams/meter, and accrual as $mg/m^2/day$.

Biomass analyses were performed in the same manner as the natural substrate samples. Biomass was calculated as milligrams/meter and accrual as $mg/m^2/day$.

Phytoplankton-Taxonomic Identification and Enumeration

Sample Collection

Single 250 ml grab samples from the surface (6-10 inches depth) were collected from each reservoir during the April, July and October, 1984 monitoring runs. The March, 1985 samples were euphotoic zone composites taken with a VanDorn water sampler at the surface, Secchi Disc depth and midway between. roughly equal volumes were composited from each depth. The July, 1985 samples were euphotic zone composites taken at the surface and Secchi Disc depth only. All samples were preserved with Lugols (JKI) and iced for transport to the laboratory. Samples were refrigerated until analyzed.

Sample Analysis

A Sedgwick-Rafter counting cell was employed for phytoplankton identification and enumeration according to Standard Methods (A.P.H.A. 1979). Scans and counts were performed at 200%. Algae were identified to genus when possible, and the distinction was made between viable and dead algae. For each genus, the number of cells per milliliter was calculated.

Phytoplankton - Chlorophyll Analyses

Sample Collection

Samples were collected in one gallon collapsible poly containers at the same time and by the same methods as samples for phytoplankton taxonomy and enumeration. They were transported to the laboratory on ice, and were stored in a freezer until analyzed.

Sample Analysis

The same methods were used to determine chlorophyll in phytoplankton as were used for periphyton, with the following variations. Samples were allowed to thaw at room temperature in the dark to minimize degradation of chlorophyll. A foil-wrapped glass Millipore filter holder and funnel with Whatman GF/C glass fiber filters were used to collect the phytoplankton. After thorough agitation, 250 ml aliquots of sample were filtered under vacuum until the filter clogged or the sample was consumed. The total volume filtered was recorded and the filter transferred to a foil-wrapped centrifuge tube. Because of generally low phytoplankton densities, a maximum of 15 ml of 90% acetone was added to minimize dilution of the chlorophyll. Each filter was thoroughly masticated and the samples prepared and analyzed according to the method described for natural substrate periphyton. Chlorophyll was calculated as milligrams per cubic meter.

References

American Public Health Association, et al. 1979. Standard methods for the Examination of Water and Wastewater. Fifteenth Edition. A.P.H.A., Washington, D.C. 1193 pages.

Lange-Bertalot, H. 1979. Pollution Tolerance of Diatoms as a Criterion for Water Quality Estimation. Nova Hedwigia, Beiheft 64, pp. 285-304.

	Station		
Date	Number	Observations and Remarks	Weather
3-5-84	01	River clear. Heavy periphyton growth.	Cloudy, cool, 35°F.
5	02	River clear.	Cloudy, windy, cool.
5	03	Reservoir clear.	
3-6-84	04	Small patches of foam on river.	Clear.High of 45°F.
6	05	River bottom ice-scoured. Some foam.	
6	06	Traces of foam.	
6	07	Substantial foam on discharge.	
6	08	Moderate turbidity. Sewage odor.	
6	09	TSS noticeable. Numerous sloughing cutbanks above site.	
3-5-84	10	River clear. Patches of foam on	
2 6 44	1.1	river. Large accumulation near shore.	
3-6-84	11 12	Very hvy periphyton. Small patches of foam.	
6	12	Sampled Pond 9 outfall. H ₂ S odor	
6	13	apparent. Ponds ice-covered.	
9	13	Heavy periphyton. High color in	
3-7-84	14	seepage areas near shore.	.33
7	15	Station not yet established. No samples.	Clear, sunny, warm.
7	16	Evidence of ice-scouring. Minor surface foam. Large accumulation of foam present.	
7	17	Heavy periphyton.	
7	18	Heavy periphyton.	
7	19	Heavy periphyton. Moderate turbidity	
·	-	due to algal particulate?	
7	20	Heavy periphyton. Slight to mod. turbidity.	
3-8-84	21	Above St. Regis River. Heavy periphyton. Patches of foam.	Clear, sunny.
8	22	Sizeable foam accumulations between 21 and 22.	
8	23	No foam. River clear.	Windy.
8	24	Hvy periphyton. Considerable organic TSS.	,
8	25	Just above Thompson River. Traces of foam.	Cloudy, windy, cool.
8	26	Reservoir clear.	
3-9-84	27	Wet shoreline due to peaking or Noxon Reservoir drawdown.	Cloudy, cool, light rain.
9	28	Reservoir down 4 ft. Considerable ISS.	
9	29	River clr. Hvy periphyton. Traces of foam.	
9	30	Reservoir clear.	
	31	Station not yet established. No samples.	

Date	Station Number	Observations and Remarks	Weatner
4-4-84	01	Slight turbidity. River stage up.	Clear, sunny, warm.
4	02	Slight turbidity.	
4	04	Slight turbidity. Patches of foam.	
4	06	Slight turbidity.	
4	υ7	Discharge highly turbid, colored	
	U 9	and foul smelling.	
4		Slight turbidity. River very clear. Foam	
4	10	accumulations present.	
4	11	River clear.	
4	12	Sampled Pond 9 outfall. Ice off ponds.	
4	15	Very slight turbidity. Small foam accumulation present.	
4	21	Site relocated below St. Regis River. River clear.	
4	23	Wave action causing turbidity.	Windy.
4-5-84	25	River clear. Site relocated several miles above Thompson R.	Cloudy,cool,rain last night.
5	27	River clear but with a greenish- murky cast in deep water.	
4-6-84	29	River clear.	
6	31	River clear.	
4-17-84	01	Runoff beginning. River turbid.	Weather hazy,unseason ably warm. High's 70-75°F.
17	02	River turbid.	, , , , , , , , , , , , , , , , , , , ,
17	04	River quite turbid. Considerable TSS.	
17	U6	River turbid.	
17	υ7	Discharge slightly more turbid	
		than river.	
17	09	River turbid.	
17	10	River stage up only slightly but turbidity is high. Foam accumulations gone.	
17	11	River turbid. Trace of foam on river.	
17	12	Discharge sampled by M. Pasichnyk, Compliance Monitoring.	
17	15	River turbid. Noticeably high TSS.	
17	21	River less turbid than Station 15	
		but noticeable TSS.	
17	23	River low and clear.	Light rain.
17	25	River only slightly turbid but with noticeable TSS.	J
4-18-84	27	River quite clear.	Cloudy, cool. Rain last night.
18	29	River clear.	Č.
18	31	River clear.	

	Station		
Date	Number	Observations and Remarks	Weather
5-16-84	01	High flow. River highly turbid, chocolate milk-colored.	Recent heavy rains Cloudy, cool, income
		Eroding banks.	mittent rain'slec
16	02	High flow. River turbid but less	
16	04	than Station Ol. High flow. River up into willows.	
10	04	Highly turbid.	
16	06	River highly turbid. Much coarse debris.	
16	07	Effluent clearer than river.	
16	09	Highly turbid. Much coarse debris.	
16	10	High flow. River highly turbid,	
		olive green-brown color.	
16	11	River turbid. Trees floating by . No foam.	
16	12	Discharge 001 has stronger odor than 003.	
16	15	River appears more turbid than	
1.6	21	Station 11. Foam present.	
16 16	21 23	St. Regis R. clear. Highly turbid here.	
10	23	River has a very slight turbidity. Milky green but not dirty.	
5-17-84	25	River highly turbid, much fine	Clear, sunny.
3 17 04	23	TSS. Thompson River clear.	orear, suniy.
17	27	River turbid but less so than	
		Station 25.	
17	29	River clear. Runoff has not yet	
		purged lower river.	
17	31	River clear. Bull River clear.	
6-4-84	01	High flow.River turbidity less	Cloudy, light rain.
		tnan 5-16-84. Eroding banks.	
4	02	High flow. Reduced turbidity.	
4	04	High flow. Reduced turbidity.	
4	0.6	Small patches of foam on river.	
	06	High flow. Moderate turbidity.	
4 4	07 09	Effluent turbidity about same as river. Moderate turbidity. Eroding banks upstream.	
4	10	High flow, high turbidity. Large	
4	10	and small patches of foam on river.	
4	11	Moderate turbidity.	
4	12	Foam on river above and below discharges.	
4	15	Moderate turbidity. Numerous small patches of foam on river.	
4	21	St. Regis River clear. Mod. turbid here.	
4	23	Slightly turbid. Glacial flour	
		green colored.	
4	25	Mod.to high turbidity. Much fine TSS.	
6-5-84	27	High turbidity, up from 5-17-84.	Partly cloudy.
5	29	Increased turbidity from 5-17-84.	
		Large patches of foam present.	
		(spilling at dam?)	
5	31	<pre>Increased turbidity. Large patches of foam present. (spilling at dam?)</pre>	

Date	Station Number	Observations and Remarks	Weather
6-20-84	01	River high and turbid.	Partly cloudy, warm.
20	02	River high and turbid but	
20	0/	beginning to clear.	
20	04	Moderately high turbidity.	
20	0.6	Small patches of foam.	
20	06	High turbidity, high TSS.Some foam.	
20	07	Effluent highly turbid. High turbidity and TSS.	
20 20	09 10	River is a turbid green color	
20	10	but beginning to clear.	
20	11	Moderately high turbidity.	
		Small foam patches present.	
20	12	Nothing unusual.	
20	15	Mod. high turbidity like Station	Rain showers.
		11.Larger patches of foam present.	
20	21	Mod. turbidity & clearing. Foam traces.	
20	23	High flow, mod. greenish turbidity.	Wind, raining.
20	25	Moderate turbidity and clearing.	
6-21-84	27	Mod. turbidity.Coarse particulate	Heavy rain.
		debris present.	
21	29	Mod.turbidity.TSS is fine clay.No foam.	
21	31	Mod.turbidity & clearing.Lge patches of	
		white foam (spilling at dam?)	
7-10-84	01	Runoff subsiding. River clear.	Clear, sunny, warm.
10	02	River clear.	
10	04	River mod.turbid due to Milltown drawdown. Traces of foam.	
10	06	River mod. turbid & considerable TSS	
		present due to Milltown drawdown.	
10	07	Effluent highly turbid. Aerator down l	
		hr.after sampling & plant providing	
		only primary treatment	
10	09	Slight turbidity. Traces of foam.	
10	10	River very clear. Only traces of foam.	
10	11	River clear. Traces of foam.	
10	12	Plant down for annual maint.since	
		6-26.Low discharge rate not typical.	
10	15	Slight turbidity.Noticeably more TSS	
		than at Sta.ll. Large bulky patches of foam on river.	
10	21	River very clear but some fine TSS.	
10	23	River warm, low, turbidsoupy looking.	
10	25	River clear.	
7-11-84	27	Banks wet from peaking at dam?	Clear, sunny, warm.
		River cloudy with fine TSS.	
11	29	River cloudy, soupy looking.	
11	31	Very slight cloudiness.No foam.	

	Station		
Date	Number	Observations and Remarks	Weather
7-16-34	01	River low and clear.	Clear, sunny, warm.
16	02	River low and clear.	, ,,
16	04	Milltown drawdown still in progress.	
		River highly turbid. Much TSS.	
16	06	River highly turbid. Traces of foam.	
16	07	Aerator shaft repaired. Plant	
		operating normally.	
16	09	River highly turbid but less than	
		Station 06.	
16	10	River low and clear. Traces of foam.	
16	11	Moderately high turbidity.	
16	12	Plant back in operation.	
16	15	River highly turbid.Appreciable	
		TSS.Large foam patches on river.	
16	21	River very clear.	
16	23	Very slight turbidity, soupiness.	
16	25	River very clear. No foam.	
7-17-84	27	River w/slight turb., soupiness.	Clear, sunny, warm.
17	29	River low and clear.	
17	31	River low and clear. No foam.	
8-14-84	01	River low and clear.	Clear, sunny, warm.
14	02	River low and clear.	
14	04	Very slight turbidity.No foam.	
14	Uб	Very slight turb.Less than Sta.04	
14	07	Effluent highly turbid & foamy.	
14	09	River clear. Traces of foam.	
14	10	River very low & clear. Minor	
		accumulations of foam.	
14	11	River very low & clear.Foam traces.	
14	12	Nothing unusual.	
14	15	River clear but with noticeable TSS.	
1.4	0.1	Lge patches of foam on river.	
14	21	River very low & clear. Small patches of foam on river.	
14	23	River low & very slightly turbid.	
14	25	River low & clear. Foam traces.	
8-15-84	27	River low & very slightly turbid.	Clear, sunny, warm.
15	29	River low and clear.	ozozz, camy, wazm.
15	31	River low & clear. Small patches	
	- -	of foam on river.	

		ondrew water nonreoring	
D., 5 =	Station	Observators and Osmanlis	11
Date	Number	Observations and Remarks	Weather
7-30-84	01	Slight turb.& river stage up due to	Heavy rain yesterday.
		recent rain.Good periphyton growth.	Clr, sunny, warm today
30	02	River clear. Apparently not	
		intluenced by rain.	
30	03	Slight cloudiness due to	
		organic TSS.	
30	04	Very slight turbidity. Noticeable	
		TSS. Traces of foam.	
30	05	River clear.	
30	00	River clear.	
30	υ7	Effluent turbid.	
30	08	Mod. turbidity due to WWTP	
2.0	0.0	discharge. Heavy periphyton.	
30	09	Slight turbidity. Heavy periphyton.	
30	10	River very clear. Foam	
20	3.1	accumulations present.	
30	11	Heavy periphyton growth.	
30	12	Nothing unusual.	
30	13	Sizeable patches of foam on river.Good periphyton growth.	
7-31-84	14	Sizeable patches of foam near	Mostly clear warm
7 31 04	14	right bank. Considerable TSS	Mostly clear,warm.
		& slight to moderate turbidity.	
31	15	Slight to moderate turbidity.	
31	16	Mod.turbidity.Noticeable TSS.	
31	20	Numerous large foam patches.	
31	17	Slight turbidity.Noticeable TSS.	
31	18	River clearer than upstream stations.	
		Foam on river & accumulations nr.shore.	
31	19	Slight turbidity & some TSS.	
8-01-84	20	Slight turp. Noticeable organic TSS.	Cloudy, cooler
01	21	River clear.	
01	22	River clear but w/organic TSS.	
01	23	Slight turbidity, cloudiness.	Rain shower.
01	24	Slight turbidity.Medium-sized	
		patches of foam on river.	
01	25	Slight turbidity. Traces of foam.	
01	26	Slight turbidity.	
8-02-84	27	Slight turbidity.	Partly cloudy,warm.
02	28	Reservoir clear.	
02	29	River clear.	
02	30	River clear.	Light rain.
02	31	River clear.	

Appendix D.

Condensed Field Notes - Part l Shallow-water Monitoring

	Station		
Date	Number	Observations and Remarks	Weather
9-13-84	01	River low & clear. Foam	Clear & cos!
, 13 0.	~ -	accumulations present.	No recent rath.
13	02	River low & clear. Foam	
	~ -	accumulations present.	
13	04	River clear but with fine TSS	
	•	particles. Small foam patches on river.	
13	06	Slight turbidity. No foam.	
13	07	Effluent slightly turbid & foamy.	
13	09	Slight turb. Small foam patches milstream.	
13	10	River low & clear. Large foam accumulations present.	
13	11	Slight turbidity. Traces of foam.	
13	12	Nothing unusual.	
13	15	River clear. Traces of foam.	
13	21	River clear but with noticeable fine	
		TSS. Traces of foam.	
13	23	River clear.Banks wet due to peaking	
13	25	at Kerr Dam?	
9-14-85	23 27	River clear. Minute traces of foam.	Prove look wilde
		River clear. No foam.	Frost last night. Cool & foggy.
14	29	Slight turbidity, soupiness.	
14	31	River clear.	
10-15-84	01	River mod.low & clear. Small	Cloudy, cool w/major
		patches of foam on river.	snow & rain.
15	02	River clear & low.Numerous small	1
		patches of foam on river.	
15	04	River clear, noticeable fine TSS. Numerous small patches of foam.	
15	06	Kiver clear.Small foam patches present.	
15	υ7	Effluent moderately turbid.	
15	09	Traces of foam.	
15	10	River very clear. Large foam	
		accumulations present.	
15	11	Numerous small patches of foam.	
15	12	Nothing unusual.	
15	15	Slight turbidity, more so than Sta.ll Large patches of foam mid-river.	
15	21	River very clear. Traces of foam. Several large accumulations of foam between Stations 21 & 22.	
15	23	River very clear.	
10-16-84	25	River clear.	Partly cloudy, cool, dry
16	27	River clear. Pine pollen on surface.	
16	29	River low and very clear.	
16	31	River stage up and very clear.	
16	31	River stage up and very clear.	

		Shallow-water Monitoring	
	Station		
Date	Number	Observations and Remarks	Weather
10-29-84	01	River stage up but very clear. Heavy periphyton growth. Numerous small patches of foam.	Cloudy, cool, windy, snowing.
29	02	River low & clear. Numerous pine needles on river. A few small patches of foam.	
29	03	Reservoir slightly to mod. turbid.	
29	04	River clear but w/lots of floating debris.Wod.amt.small foam patches.	
29	05	River up & clear. Traces of foam. Heavy periphyton growth.	
29	06	River clear. Traces of foam. Found dead rainbow trout along shore.	
29	07	Effluent highly turbid & very foamy.	
29	80	Very heavy periphyton growth. River very turbid. Sewage odor present. Little or no foam.	
29	09	River clear. Small foam patches present. Very heavy periphyton growth.	
29	10	River clr.Lge.accumulation of foam.	Clearing & cold.
29	11	River clr. Heavy periphyton growth. Mod. large patches of foam on river. Whitefish spawning.	C
29	12	Nothing unusual.	
10-30-84	13	Heavy foam on river & in Marcure Slough.River bottom along right bank is stained.Seepage areas visible by high color.Heavy periphyton.	Cloudy, cool, snow in mountains
30	14	Very slight turbidity. Numerous large patches of foam.	
30	15	Very slight turbidity.Large patches of foam on river.	
30	16	Slight turbidity. Numerous large patches of foam on river & large accumulations along shoreline.	
30	17	Numerous lge.patches of foam on river & lge accumulations along shoreline.	
30	18	River clear.	Snowing heavily.
30	19	River clear. Med-sized foam patches.	
10-31-84	20	River clear. Traces of foam at most.	Clear, cold.
31	21	Water clr. Med-sized patches of foam.	
31	22	Slight turbidity. Traces of foam.	
11-01-84	23	Slight turbidity in part due to wave action.	Windy, cold.
01 10-31-84	24 25	River clr. Foam traces. Heavy periphyton. River clr. Accumulation of dirty foam in backwater.	
31	26	Reservoir clear.	
11-01-84	2 7	River low.	Cloudy,cold, snowing heavily.
01	28	Reservoir clear.	
01	29	River low & clear.	
01	30	Reservoir slightly cloudy. Heavy wave action. Row white foam out from right bank.	
01	31	River very low and clear.	579

Condensed Field Notes - Part l Shallow-water Monitoring

	Station		
Date	Number	Observations and Remarks	Weather
12-10-84	01	River slightly turb. Shelf ice	Cloudy, rain/snow,
		restricting channel. Snow &	fog, 37°F.
_	_	ice floating down river.	
10	02	River below station under 80% ice cover.	
		Station open, water clear. Slush ice present	•
10	04	River open blw dam & slightly turbid.	
12-11-84	06	River clr. Slush ice present. Some shelf ice.	Clear & cold.
11	07	Effluent moderately turbid.	
11	09	River clear. Some slush & shelf ice.	
12-10-84	10	River clr, mostly open. Ice coming down	
1011 07	1.1	river. Foam accumulation present.	
12-11-84	11	Large algal particles in river & in	
11	12	samples. Numerous small foam patches. Champion ponds under ice cover.	
11	15	River clear but large algal TSS	
11	13	particles in river & in samples.	
		Large patches of foam on river.	
11	20	River clear & less algal debris.	
		Much slush ice.	
11	21	River clr w/some algal debris.Slush ice.	
11	2 2	River clr w/some algal debris.River	
		open here but frozen across upstream.	
11	23	River clear, open, no slush ice.	
12-12-84	25	River clear. Minimal algal debris.	Cloudy, cool,
12	27	River high (due to peaking?) & clear.	snowing.
12	29	River clr. Half of reservoir under ice.	
12	31	Wet banks, no shoreline ice.River clr.	
1-14-85	01	River very clear. Channel restricted	Cloudy, cool.
		by shelf ice.	
1-14-85	02	River below station under 100% ice cover.	
1.6	0.4	Open at station. River clr. Lots of slush ic	e.
14 14	04 06	River open, clear, some slush ice. River clear. Shelf ice well out into	
14	00	channel & slush ice plentiful.	
14	07	Effluent moderately to highly turbid.	
14	09	River clear, under 90% ice cover.	
14	10	River froze over at Maclay Bridge.River	
		mostly clear but anchor ice sloughing increases TSS. No foam.	
14	11	River clr & open. Noticeable algal particulate	•
14	12	No surface discharge. Sampled pond 12 outfall	
14	15	River clear but algal particulate present.	
		Channel open but lots of slush ice. No foam.	
1-15-85	21	River clear & very low.	Cloudy, warmer
15	23	River clear & moderately high.	
		Ice jams along shoreline.	
15	25	River very clear.	Windy.
15	27	Reservoir under ice. River clear.	
15	29	River clear.	
15	31	River clear and low. Most of Cabinet Gorge Reservoir ice-free.	

	Station		
Date	Number	Observations and Remarks	Weather
02-13-85	01	Very slight turb.Snow & ice	Partly cloudy, cool.
		4 feet deep along banks.	Recent heavy snow.
13	02	River clr & under 85% ice cover.	
13	04	River clr but w/some algal particulate.	
		Shelf ice prevalent.	
13	06	River clear. Much shelf ice.	
13	07	Effluent mod.to highly turbid.	
13	09	River clear & under 85% ice cover.	Warming
13	10	River very clear & mostly ice free.	
13	11	River clear but w/substantial amount of algal particulate.	
13	12	No direct discharge.Sampled Pond	
13	12	12 overflow. Ponds under ice.	
13	15	Much algal particulate. River	
		channel 95% ice covered.	
02-14-85	21	River clr.w/lots of slush ice.	Clear & above
		Sampled several miles below reg.	freezing.
		site due to 100% ice cover there.	220021118
14	23	River very clr & under 100% ice cover.	
		Sampled several mi.upstream in open area.	
14	25	River very clr & under 90% ice cover.	
14	27	River very clr & under 90% ice cover.	
14	29	River open and very clear.	
14	31	River very clr, very low & channel ice free.	
0/ 10 05	0.3		
04-10-85	01	River mod. turb. Numerous small foam patches.	Clear, sunny.
10	02	River mod.turb.Mod.amt of small	Highs in 70's
		patches of foam. Much sloughing	
10	04	algal particulate in water column. River mod.turb. Numerous small foam patches.	
10	06	River mod.turb. but less so than	
•	0.0	Sta.04. Foam still present.	
10	07	Effluent w/only a very slight turb.	
		Clearer than the river.	
10	09	River w/mod.turb.Traces of foam.	
10	10	Slight to mod.turb. w/fine TSS.	
		Traces of foam but no accumulations.	
10	11	River mod.turb. Moderate amount	
		of small patcnes of foam.	
10	12	Ponds ice free. Effluent looks typical.	
tO	15	River mod.turbid w/considerable TSS.	
		Mod.amt.lge, lofty patches of foam.	
10	21	River mod.turb.Lge.amt.of algal particulate.	
		No foam on river; noticed sm. accum. nr.snore	•
10	23	River low & clr. No foam present.	
10	25	Slightly turb.& appears low.Exposed bars & sh	oreline.
10	27	River low and clear.	
10	29	River clr.No foam.Most of ice off reservoir.	
1	2.1	Reservoir still drawn down but clear now.	
10	31	Very clear. No visible TSS or foam.	
		Most ice off reservoir.	

	Station		
Date	Number	Observations and Remarks	Weather
03-18-85	01	Lowland snowmelt runoff.River stage up	Clear, windy, warm.
		& highly turbid. Traces of foam.	High's in 50's.
18	02	Stage not up like Sta.Ol but highly turbid.	
		Lots of algal particulate & TSS.	
18	03	Reservoir very turb. Clark Fork arm	
		ice free. Blackfoot arm under ice.	
18	04	River highly turb.w/considerable TSS	
1.0		including scoured algal particulate.	
18	05	Mod.high turb.appears less than Sta. 04.	
18	06	High turbidity with considerable TSS, sloughing algae.	
18	07	Effluent only slightly turb.River mostly ice	-free.
ld	08	High turb.in plume of WWTP discharge. No app.	
		odor. Heavy periphyton. Dead sucker near s	
18	09	River mod.turb.Foam traces.Hvy periphyton gr	
18	10	River very clear. Small patches of foam	
		on river & accumulation along shoreline.	
18	11	Turbid with lots of TSS. Heavy	
		periphyton. Traces of foam.	
13	12	Ponds under ice. Effluent typical	
		looking and smelling.	
18	13	River appears turb.& colored by	
		flashlight. Lge patches lofty foam.	
03-19-85	14	River turb. Lge patches lofty foam.	Clear, warm.
19	15	River appears turb. & colored by	
		flashlight. Less foam than Sta.14	
19	16	River quite turb.Lots of TSS.Large patches	
		foam on river & accumulating near shore.	
1.0	1.7	Foam here very unaesthetic.	
19	17	River turb. w/lots of algal particulate.	
10	1 ()	Appreciable foam.	
19 19	18 19	River turbid. Snow & ice along shore.	
19	19	River mod. turb. Heavy periphyton.	
03-20-85	20	Small patches of foam on river.	Cld. and wain about
20	21	Moderate turbidity & TSS.	Cldy,cool,rain shwrs
20	21	River highly turb.w/lots of TSS.Foam accum. along shore between here & Sta. 22	
20	22	Moderately turbid. High TSS.	
20	23	River stage low. High glacial flour	
20	23	green turbidity. Shoreline ice free.	
20	24	River stage down (wet shoreline), turbid.	
20	- '	Lots of TSS. Heavy periphyton.	
20	25	River off color, turbid & Flathead green-	
		tinted. Heavy periphyton.	
20	26	Reservoir turbid & green-tinted.	
20	27	River turbid & stage 8-10 ft.low. Moderate	
		amt of medium-sized patches of foam.	
03-21-85	28	Reservoir drawndown 15 or more feet.	Cloudy, cool, snow.
		Water very turbid a murky green.	•
21	29	River clear.	
21	30	Reservoir clr w/green color.Reservoir ice-fre	ee.
21	31	River clear.	

Date	Station Number	Observations and Remarks	Weather
04-23-85	01	River moderately turbid.	Cloudy, cool, snowing.
23	02	River slightly turbid & stage up.	
23	04	River moderately turbid. Numerous small patches of foam.	
23	06	River moderately turbid. Stage up. No foam.	
23	07	Effluent slightly turbid. Clearer than river.	
23	09	River moderately turbid. No foam.	
23	10	River slightly turbid. Stage up. Traces of foam on river but no accumulations along shore.	
23	11	River only slightly turb. No significant foam.	
23	12	Nothing unusual.	
23	15	Considerable TSS, more than at Station 11.	
		Considerable large, lofty patches of foam.	
23	21	River mod. turb. Numerous small patches foam & several accumulations. St. Regis R. clear.	
23	23	River cloudy green, moderately turbid.	
23	25	Slight to mod. turb. Moderate sized patches	
		of foam on river.	
23	27	River only very slightly turbid. Stage very low due to Noxon drawdown. No foam.	
04-24-85	29	River very slightly turbid. Noxon Reservoir drawn down 30 feet.	Cloudy, cool, humid. Hvy snow/rain lastnigh
24	31	River very slightly turbid. Traces of foam.	nivy show, rain rabenings
05-08-85	01	Spring runoff occurring. River moderately Medium-sized patches of foam.	Cloudy,warm,rainshwrs. High near 70°F.
8	02	River turbid. No appreciable foam.	
8	04	River mod. turbid. Small patches of foam.	
8	0 σ	River moderately turbid. Traces of foam.	
8	07	Effluent very highly turb, colored & foamy.	
8	09	River bank-full and roily.	
8	10	River slightly turbid. Small patches of foam on river but no accumulations.	
8	11	River moderately turbid. Traces of foam.	
8	12	Pond levels low.Surface disch.typical looking	•
8	15	River moderately turbid. Some large patches of foam on river.	£
8	21	River w/slight to mod. turbidity & bank-full. Traces of foam. St.Regis R. up but clear.	
8	23	Very slight turbidity. Stage up.	
8	25	Slight to moderate turbidity. No foam.	
8	27	River mod.turbid & stage back up but still below normal. Intermittent large patches of lofty white foam (spilling at dam?).	
05-09-85	29	Very slight turbidity.	Clear, sunny & warm.
9	31	Slight turbid. Some foam (spilling at dam?).	

Appendix D. Condensed Field Notes - Part I Shallow-water Monitoring

	Station	,		
Date	Number	Observations and Remarks	Weather	
05-22-85	10	River stage up considerably.	Clear gunny	
03-22-03	O1	Slight turbidity.	Clear, sunny, High's near	
22	02	River stage up & very turbid.	ingii b ilear	
	٠	Reddish-brown colored.		
22	04	River very turbid.		
22	U6	River very turbid & stage up.		
22	υ7	Effluent very highly turbid,		
		colored and foamy.		
22	09	River very turbid.		
22	10	River mod. turbid.Brownish-green		
		colored. Lots of floating debris.		
2 1	11	River stage up & turb. Traces of foam.		
22	12	Effluent typical looking. Ponds are low.		
22	15	River mod. turbid. Lots of fine TSS. Minimal foam on river.		
22	21	River moderately turbid. Noticeable TSS.		
22	23	River stage up into the willows &		
22	23	only slightly turbid.		
22	25	River stage high & with a mod. turbidity.		
22	27	River mod.turbid. Stage near normal.		
05-23-85	29	River only slightly turbid. Noxon Rapids	Clear, sunny,	warm.
		Reservoir still down about 5 feet.		
23	31	River clear. Stage low.		
0/- 05 95	0.1	Discon aliabels & seil Con a decreasing	Olanda anal	
06-05-85	01	River slightly turbid. Stage decreasing.	Cloudy, cool, showers.	rain
		Numerous small patches of foam. A small accumulation benind a point bar.	SHOWELS.	
5	02	River stage dropping. Moderate turbidity.		
	02	Reddish-brown color gone.		
5	υ4	Moderate turbid. Numerous small patches of f	oam.	
5	06	Moderate turbidity. Traces of foam.		
5	07	Effluent appearance improved but foamy.		
		Construction of new clarifier begun.		
5	09	Moderate turbidity. Stage declining.		
5	10	Slight turbidity. Stage declining. Small		
_		patches of foam on river but no accumulati	.ons.	
5	11	River moderately turbid. Traces of foam.		
5	12	Effluent typical-looking. Mill down for maint		
5	15	Mod.turb. Line of large lofty foam patches w	niariver.	
5 5	21 23	River slightly to moderately turbid. Moderate turbidity. Stage up.		
5	25	River slightly to moderately turbid.		
06-06-85	27	River stage up. Moderately to highly turbid.	Cloudy, cool,	heavy
00 00 05	2,	Lofty patches of foam near left bank	rain.	neary
		(spilling at dam?).	··	
6	29	River moderately turbid. Noxon Reservoir		
		stage normal.		
6	31	Slight turbidity. Stage up.		

Date	Station Number	Observations and Remarks	Weather
06-18-85	01	River stage declining. Very slight turbidity. Cladophora blooming.	Clear, sunny, hot. High's in 90's OF.
18	02	River stage declining & clearing. Slight turbidity.	
18	04	Milltown drawdown underway. Slight to moderate turbidity.	
18	06	Slight turbidity. Little or no foam.	
13	07	Effluent only slightly turbid. Some foam.	
18	09	Slight turbidity. Traces of foam.	
18	10	River clear but with some algal TSS. Considerable number of small foam patches on river but no accumulations.	
18	11	River clear. Small patches of foam.	
18	12	Effluent typical-looking.	
18	15	River clear. Noticeable TSS & lofty foam.	
06-19-85	21	Very slight turbidity.	Clear, sunny, hot.
19	23	River stage up. Mod. turbidity & TSS.	
19	25	Slight turbidity. Traces of foam.	
19	27	River moderately turbid. Considerable amount of coarse organic TSS. Traces of foam.	
19	29	Slight turbidity.	
19	31	Very slight turbidity. No foam. Stage down.	
			Partly cloudy, not.
07-10-85	01	River clear & very low.	High's 95-100°F.
10	02	River clear & low.	
10	04	River clear & low.	
10	06	River clear & very low.	
10	07	Effluent moderately turbid. Clarifier	
		construction dewatering contributing 0.78 cfs to flow.	
10	09	River very clear & low.	
10	10	River very clear & low.Small patches of foam on river & a large accumulation near shore.	
1.1	11	River clear but w/noticeable algal particulations of foam on river.	е.
10	12	No surface discharge. Sampled Pond 2. Effluent highly colored, almost black.	
10	15	River clear but w/noticeable algal particulate. Traces of lofty foam.	
07-11-85	21	River very low & clear.	Clear, hot, dry.
11	23	River high & moderately turbid.	, , ,
11	25	River very clear & low. Traces of foam.	
11	27	River low & clear. Traces of foam.	
11	29	River low & clear. Hit black bear on highway.	
11	31	River clear. No foam.	
LT	21	NIVEL CLEAL. NO LOAM.	

Appendix D. Condensed Field Notes - Part 1 Shallow-water Monitoring Shallow-water Monitoring

	Station		
Date	Number	Observations and Remarks	Weather
07-29-85	υl	River clear & low.	Partly cloudy, cool.
29	02	River very clear & low.	1
29	03	Reservoir with a slight to moderate	Partly cloudy, warm.
		turbidity due to plankton or wave action.	
29	04	River slightly turbid.	
29	05	River clear & low.	
29	06	River very slightly turbid.	\
29	07	Effluent w/slight to mod. turbidity.Brownish	
		cast.Quality fluctuating diurnall and co	1
		bulking problems & sludge $\operatorname{pressin}_{i'}$. About	
,	0.1	1.55 cfs flow contributed by const.dewateri	
()	80	Slight turbid.in plume. Heavy periphyton growt	li.
29	09	River low & very slightly turbid.	
29	10	River very clr & low.Foam accumulation presen	it.
07-30-85	11	River clear.	
07-29-85	12	No authorized surface discharge Sampled leaka	
		from discharge 002. Apparent high odor, col	or,
07-30-85	1.3	solids content. River clear.	Clear annu man
30	14	Nothing notable or unusual.	Clear, sunny, warm.
30 30	15	Traces of foam. Heavy periphyton.	
30 30	16	River low & clear. Traces of foam.	
30	17	River low & clear. Heavy periphyton.	
07-31-85	18	River clear. Abundant Cladophora.	Cloudy, cool.
31	19	River low & clear.	cloudy, cool.
31	20	River clr. Foam traces.Cladophora sloughing	Cloudy, hot.
31	21	River clear. Abundant Cladophora.	oroddy, noc.
08-01-85	22	River clear.	
07-31-85	23	Very slight hint of turbidity. Stage normal.	1
08-01-85	24	River clear & low.	Cool, cloudy, rainshwrs.
			Heavy rain last night
01	25	River clear.	, and a second
01	26	River clear.	Warming.
01	27	River clear.	
01	28	Reservoir clr but with visible plankton.	
01	29	River clear.	
01	30	Reservoir clear. Floating debris.	
01	31	Nothing notable or unusual.	

Appendix D. Condensed Field Notes - Part 2

Deep-water Monitoring

Date	Station Number	Observations and Remarks	Weather
03-05-84	03	Field notes lost	Cloudy, cool. 35° F.
03-06-84	13	11	Clear, sunny. 45° F.
6	15	II .	
6	lo	II .	
03-07-84	1.7	II.	Clear, sunny, warmer.
7	18	11	
7	19.5	II	
	20	This station not sampled spring 1984	
	20.5	11	
	21	11	
	21.5	11	
	22		
03-08-84	26	Sampled near sawmill.	Clear, mild in a.m.
8	28	Sampled near N.Shore campground.	Cldy, windy, cool in p.m.
8	30	Sampled near Heron.	
07-26-84	03	Mostly sand in Ponar grabs.	Clear & hot. 90's F.
07-23-84	13	Sand, gravel, rocks & traces of organic matter in Ponar grabs.	High 70's F. Light overcast.
23	15	Mostly rocks and some black organic matter in Ponar grabs.	
23	16	Sand, silt, small rocks, some black organic matter in Ponar grabs.	
07-24-84	17	Gravel, rocks in Ponar grabs.	Clear & hot. 90'so F.
24	18	Sand, rocks in Ponar grabs.	
	19.5	This station not sampled summer 1984.	
24	20	No comment recorded.	
24	20.5	Very fine sand in Ponar grabs.	
24	21	No comments recorded.	
24	21.5	Sand, gravel in Ponar grabs.	
24	22	No comments recorded.	
07-25-84	26	Sampled below sawmill. Muck in Ponar grabs.	Clear & hot. 100+°F.
25	28	Sampled near N. Shore campground. No comments on Ponar contents.	
25	30	Sampled below Bull River confluence. No comments on Ponar contents.	

Appendix D.

Condensed Field Notes - Part 2

Deep-water Monitoring

Date	Station Number	Observations and Remarks	Weather
10-25-84	03	Sand, organic material in Ponar grabs.	Cloudy, cool, rain showers. 30°s° F.
		River pool sampling discontinued.	
10-26-84	26	Sampled near boat dock. Ponar grabs	Cloudy, cool, rain
10-25-84	28	contained nothing, rocks or fine silt. Sampled near Town of Trout Creek & below	showers, 30's ^o f.
10-26-84	30	N.Shore Campground. Muck in Ponars. Sampled below Bull River confluence. No comments on Ponar contents.	
03-25-85	03	Black organic material with slight ${\rm H_2S}$ odor in Ponar grab samples.	Clear, sunny, cool.
		River pool sampling discontinued.	
03-25-85	26	Sampled near boat dock. Light-colored sediments in Ponar grab samples.	
03-26-85	28	Sampled near Town of Trout Creek and out from N. Shore Campground. Light-colored sediments in Ponars. Water turbid from Noxon drawdown.	Clear, sunny, windy and cold.
26	30	Sampled near Heron. Light-colored sediments in Ponar grab samples.	
07-29-85	υ3	Mostly organic material with some sand and silt in Ponar grabs.	Partly cloudy, warm.
		River pool sampling discontinued.	
07-29-85	26	Sampled below sawmill. Mostly organic	
07-30-85	28	material with some sand in Ponar grabs. Sampled near Town of Trout Creek and out from N. Shore Campground. Gravel, sand, silt, woody debris & fine detritus in	Clear, sunny, warm.
30	30	Ponar grabs. Sampled near Bull River confluence. Fine organic detritus in Ponar grabs.	

Appendix D. Condensed Field Notes - Part 3

Diurnal Dissolved Oxygen Monitoring

Date	Station Number	Observations and Remarks	Weather
08-08-84 08-09-84	01	Samples collected in a smooth run below a riffle along left bank.	Clear, sunny, warm at all stations throughout study period.
08-08-84 08-09-84	06	Samples collected in a smooth run along riprapped right bank.	
08-08-84 08-09-84	09	Samples collected in a run below a large eddy and along the right bank.	
08-08-34 08-09-84	11	Samples collected downstream of Harper's Bridge, right bank.	
08-08-85 08-09-84	15	Samples collected in a run along the riprapped right bank at Sixmile Station.	
	16	This station not monitored for diurnal dissolved oxygen & temperature in 1984.	
08-08-84 08-09-34	17	Samples collected in a run near the Petty Creek boat launch, left bank.	
08-08-84 03-09-84	19	Samples collected in a run just above the Lozeau Bridge, right bank.	
08-08-84 08-09-84	20	Samples collected in a run at boat launch above LaVista Bridge, right bank.	
08-08-84 03-09-84	21	Samples collected in a run just above the Tamarack Creek confluence, left bank.	
08-08-84 08-09-84	22	Samples collected in a run at the Hwy bridge just above Flathead R. confluence, right ba	nk.
08-08-84 08-09-84	23	Samples collected in a slow run at the boat launch several miles abv.tne mouth, left ba	nk.
08-08-84 08-09-84	24	Samples collected in a run below the Plains Fairgrounds bridge, right bank.	

Appendix D. Condensed Field Notes - Part 3 Diurnal Dissolved Oxygen Monitoring

Date	Station <u>Number</u>	Observations and demarks	Weather
08-07-85 08-08-85	01	Samples collected in same site as 1984 study.	Cloudy, cool, rain shwrs in morning 8-07-65. Clouds increasing in late afternoon. Cldy, windy, lightning storm with rain and/or hail after dark. Cloudy, cool, rain showers morning of 8-08-85. Similar weather at all stations.
08-07-85 03-08-85	06	Samples collected in same site as 1984 study.	
08-07-85 08-08-85	09	Samples collected in same site as 1984 study.	
08-07-85 08-0 8- 85	11	Samples collected in same site as 1984 study.	
08-07-85 08-08-85	15	Samples collected in same site as 1984 study.	
08-07-85 08-03-85	16	Samples collected in a run above Ninemile Creek confluence, right bank.	
08-07-85 08-08-85	17	Samples collected in same site as 1984 study.	
08-07-85 08-08-85	19	Samples collected in same site as 1984 study.	
08-07-85 08-08-85	20	Samples collected in a run just above the Superior bridge, left bank.	
	21	This station not monitored for diurnal dissolved oxygen & temperature in 1985.	
08-07-85 08-08-85	22	Samples collected in same site as 1984 study.	
08-07-85 08-08-85	23	Samples collected in similar location to 1984 study.	
08-07-65 08-08-85	24	Samples collected in similar location to 1984 study.	

100 copies of this public document were published at an estimated cost of \$22.75 per copy, for a total cost of \$2,275.00, which includes \$2,275.00 for printing and \$.00 for distribution.