An Architecture for YANG-Push to Message Broker Integration

draft-ietf-nmop-yang-message-broker-integration

Motivation and architecture of a native YANG-Push notifications and YANG Schema integration into Message Broker and YANG Schema Registry

IETF YANG-Push

A 22 years journey

IAB Workshop	YANG 1.0	gNMI	Data Mesh Integration Vendor-specific implementations and IETF YANG-Push are hard to manage. New requirements emerged for integrating with the message broker and an automated data processing chain. New specifications are proposed to resolve these challenges.			
Defines operators' requirements in RFC 3535 to lifecycle CLI and SNMP. YANG, Netconf and Restconf development started.	6020. 1.1 in RFC 7950.	gNMI was presented to IETF NETCONF and implementations started at major network vendors.				
2002	2010	2017		2022		
	2015	20	019	2024		
	IETF YANG-Push Specification Starte	IETF YANG-Push ed Specification Fin		IETF YANG-Push Major Implementations Started		
	Development of RFC 8 and RFC 8641 started NETCONF.	•	IETF NETCONF	Questions arise. Proposing a simplified IETF YANG-Push and an Agile Incremental Driven		

implementations.

Development.

Handling Operational YANG Modelled Data

State of the Union

Nowadays network operators are using machine and human readable YANG RFC 7950 to model their configurations and obtain YANG modelled data from their networks.

Network operators organize their data in a Data Mesh where a message broker such as Apache Kafka facilitates the exchange of messages among data processing components.

Today, subscribing to a YANG datastore, publishing a YANG modeled notifications message from the network and viewing the data in a time series database, manual labor is needed to perform data transformation to make a message broker and its data processing components with YANG notifications interoperable.

« Even though YANG is intented to ease data management, this promise has not yet been fulfilled for Network Telemetry RFC 9232 »

From YANG-Push to Network Analytics

Aiming for an automated data processing pipeline

A network operator aims for:

- An automated data processing pipeline which starts with YANG-Push, consolidates at Data Mesh and ends at Network Analytics.
- Operational metrics where IETF defines the semantics.
- Analytical metrics where network operators gain actionable insights.

We achieve this by integrating YANG-Push into Data Mesh to:

- Produce metrics from networks with timestamps when network events were observed.
- Hostname, publisher ID and sequence numbers help us to understand from where metrics were exported and measure its delay and loss.
- Forward metrics unchanged from networks
- Learn semantics from networks and validate messages.
- Control semantic changes end to end.

Elements of the Architecture

And Document Relationships

4.1. YANG-Push Subscription

Thanks to <u>RFC 9196</u> based YANG modules describing capabilities for systems and notifications, transport (<u>draft-netana-netconf-yp-transport-capabilities</u>), notification extensions (<u>draft-netana-netconf-notif-envelope</u>) and supported xpaths can be discovered.

4.2. YANG-Push Publisher

For configured subscriptions, <u>udp-notif</u>, <u>distributed-notif</u> and <u>https-notif</u> are the <u>RFC 8639</u>, <u>RFC 8641</u> based YANG-Push transport protocols. <u>draft-netana-netconf-notif-envelope</u> provides the notification header with hostname, sequence and observation timestamp extensions.

4.3. YANG-Push Receiver

Discovers subscription state changes by detecting changes in xpath/sub-tree, module name, revision, revision-label and YANG library content-id defined in <u>draft-ietf-netconf-yang-notifications-versioning</u> and discovers YANG schema tree through <u>YANG library</u> with <u>ietf-netconf-yang-library-augmentedby</u> extension.

• 4.6. YANG Message Broker Consumer

Validates YANG notifications against schema. Anydata described in <u>Section 7.10 of RFC 7950</u>, validation described in <u>draft-aelhassany-anydata-validation</u>.

4.7. YANG Data Consumer

Thanks to hostname, sequence-number and event-time from <u>draft-netana-netconf-notif-envelope</u>, loss and serialization delay can be measured.

4.8. YANG Data Storage

Metrics can be indexed in timeseries database thanks to observation timestamp defined in <u>draft-netana-netconf-notif-envelope</u>.

Addressing YANG Specification and Integration Gaps

9 documents at NMOP, NETCONF and NETMOD

YANG-Push Transport Gaps:

Passed working group last call. Moving to IESG

- UDP-based Transport for Configured Subscriptions draft-ietf-netconf-udp-notif
- Subscription to Distributed Notifications draft-ietf-netconf-distributed-notif

Passed working group adoption call.

YANG-Push Specifications Gaps:

- Extensible YANG model for YANG-Push Notifications draft-netana-netconf-notif-envelope
- YANG Notification Transport Capabilities <u>draft-netana-netconf-yp-transport-capabilities</u>
- Validating anydata in YANG Library context draft-aelhassany-anydata-validation

YANG-Push Integration Gaps and Arch:

- Support of Versioning in YANG Notifications Subscription draft-ietf-netconf-yang-notifications-versioning
- Augmented-by Addition into the IETF-YANG-Library draft-ietf-netconf-yang-library-augmentation

YANG-Push Simplification:

 YANG-Push Operational Data Observability Enhancements draft-wilton-netconf-yp-observability

YANG-Push Message Broker:

- An Architecture for YANG-Push to Message Broker Integration <u>draft-ietf-nmop-yang-message-broker-integration</u>
- Extensible YANG Model for Network Telemetry Notifications draft-netana-nmop-message-broker-telemetry-message

IETF YANG-Push Implementations and Next Steps

Who we are and what we like...

The group consisting of: **34 colleagues** from Bell Canada, Deutsche Telekom, NTT International, Swisscom, Huawei, Cisco, 6Wind, Ciena Blueplanet, Juniper, Nokia, and INSA Lyon.

Development on first major vendor implementations started at IETF 118. Throughout IETF 119 - 121, vendor implementation and network operator testing scope and interest from other vendors and operators is steadily growing.

This is where we noticed WT-508 at BBF and its potential synergies.

What we like about IETF YANG-Push

- Interoperable
- Unified with Netconf and Restconf
- Transport independent
- Push based

What is unique to IETF YANG-Push

- Capabilities are discoverable which enables subscription automation
- Subscription state change notifications enables the discovery of schema changes
- YANG Library enables discovery of schema dependencies
- Standardized notification metadata

IETF YANG-Push Implementations

Incremental development...

MVP 1 - Works

4 major vendor implemen tations finalized.

- <u>draft-ietf-netconf-udp-notif</u> transport (with segmentation option) and notifications encoded in RFC 7951 IETF-JSON.
- RFC 8641 periodic subscription with anchor-time configurable in ietf-subscribed-notifications.
- YANG notifications as defined in <u>draft-netana-netconf-notif-envelope</u>, YANG module name, version and yang-library-content-id as in <u>draft-ietf-netconf-yang-notifications-versioning</u> and notification capabilities (<u>RFC 9196</u>) discoverable as defined in their documents.
- YANG-Library as defined in RFC 8525 and draft-ietf-netconf-yang-library-augmentedby.

MVP 2 - Scales and Secures

2 major vendor implemen tations started.

- Distributed notifications as defined in draft-ietf-netconf-distributed-notif.
- YANG notifications encoded in CBOR (named identifiers) as defined in RFC 9254.
- YANG notifications DTLS (1.2 MUST <u>RFC 6347</u>, 1.3 SHOULD <u>RFC 9147</u>) encrypted as defined in <u>draft-ietf-netconf-udp-notif</u>.

MVP 3 - Optimizes

- <u>RFC 8641</u> on-change subscription configurable in ietf-subscribed-notifications.
- <u>RFC 8641</u> on-change and periodical subscription in <u>RFC 9196</u> defined capabilities discoverable.
- <u>draft-ietf-netconf-udp-notif</u> transport, encoding and encryption capabilities (<u>RFC 9196</u>) discoverable with <u>draft-netconf-yp-transport-capabilities</u>.

Part 2

Our collaboration goes into the next step in 2026 This allows Swisscom

to transition from SNMP to YANG

IETF YANG Model Implementations

Incremental development...

"Starting 2026, Swisscom onboards new network platforms with YANG-Push only. Initiating the SNMP to YANG lifecycle and the standardization of YANG models."

MVP 2 – Physical & Essential

- ietf-interfaces.yang (inventory, state and statistic)
- ietf-hardware.yang (inventory, state and statistic)
- ietf-alarms.yang (state)

Already

by OLT

supported

MA5800.

ieee802-dot1ab-lldp.yang (inventory and state)

MVP 3 – Logical Relationships

- ieee802-dot1ax.yang (inventory, state and statistic)
- ietf-bfd-ip-sh.yang (state)
- ietf-bfd-ip-mh.yang (state)
- ietf-bfd-lag.yang (state)
- ietf-isis.yang (state)

Gabriele Di Piazza and Markus Reber signing the Network Analytics MoU at MWC 2025

Blue Planet and Swisscom signed **Network Analytics MoU**

Distinguished Network Engineer and Network Analytics

March 7, 2025

Dear colleagues,

I like to share a highlight of the 2025 Mobile World Congress.

It is a great honor and pleasure to announce that Blue Planet and Swisscom signed a Memorandum of Understanding in Network Analytics, collaborating in the area of:

• YANG-Push Messaging Integration into Apache Kafka Message Broker

Both companies understand the importance of moving network management lifecycle from using SNMP to using YANG for seamless integration into today's Data Mesh Big Data architectures.

RFC 8343 – ietf-interfaces.yang

YANG Data Model for Interface Management

With IETF YANG-Push we like to subscribe

with on-change sync-on-start

For inventory and alert use cases the state of the interface.

and periodically

• For performance measurement use cases the interface statistics.

RFC 8348 – ietf-hardware.yang

YANG Data Model for Hardware Management

hardwaro la	are st-cha	nge? yang:	date-aı	nd-time
		t* [name]		_
+rw			string	<u> </u>
	class			ityref
		cal-index?		{entity-mib}?
		iption?	string	-
	paren			<pre>//component/name</pre>
		t-rel-pos?	int32	
+ro	conta	ins-child*	->,	<pre>//component/name</pre>
		are-rev?	string	<mark>3</mark>
+ro	firmw	are-rev?	string	<mark>3</mark>
+ro	softw	are-rev?	string	3
		l-num?	string	3
+ro	mfg-n	ame?	string	3
+ro	model	-name?	string	3
+rw	alias	?	string	9
+rw	asset	-id?	string	9
+ro	is-fr	u?	boolea	<mark>an</mark>
+ro	mfg-d	ate?	yang:	date-and-time
+rw	uri*		inet:	uri
+ro	uuid?		yang:	uuid
+rw	state	{hardware-s		
1 +	-ro st	ate-last-cha	nged?	yang:date-and-time
		min-state?		admin-state
		er-state?		oper-state
		age-state?		usage-state
		arm-state?		alarm-state
		andby-state?		standby-state
		r-data {hard		
	-ro va			sensor-value
		lue-type?		sensor-value-type
		lue-scale?		sensor-value-scale
		lue-precisio	n?	sensor-value-precision
		er-status?		sensor-status
		its-display?		string
		lue-timestam		yang:date-and-time
		lue-update-r	-	uint32
7.2	10 va	rae apaate-1	ace:	ullic32

With IETF YANG-Push we like to subscribe

with on-change sync-on-start

- For inventory use cases the state of the hardware.
- For alert use cases the hardware state notifications.

and periodically

• For performance measurement use cases the hardware sensor-data.

RFC 8632 – ietf-alarms.yang

YANG Data Model for Alarm Management

notifications: +---n alarm-notification | +--ro resource resource | +--ro alarm-type-id alarm-type-ic | +--ro alarm-type-qualifier? alarm-type-qualifier | +--ro alt-resource* resource +--ro related-alarm* [resource alarm-type-id alarm-typequalifier] {alarm-correlation}' | | +--ro resource -> /alarms/alarmlist/alarm/resource | | +--ro alarm-type-id -> /alarms/alarmlist/alarm[resource=current()/../resource]/alarm-type-ic | | +--ro alarm-type-qualifier -> /alarms/alarmlist/alarm[resource=current()/../resource][alarm-typed=current()/../alarm-type-id]/alarm-type-qualifier | +--ro impacted-resource* resource {service-impact analysis}? | +--ro root-cause-resource* resource {root-cause-analysis}? +--ro time yang:date-and-time | +--ro perceived-severity severity-with-clear | +--ro alarm-text alarm-text +---n alarm-inventory-changed

With IETF YANG-Push we like to subscribe

with on-change

For alert use cases the alarm notifications.

IEEE LLDP — ieee802-dot1ab-lldp.yang

YANG Data Model for LLDP Neighbor Discovery

module: ieee802-dot1ab-lldp +--rw lldp +--ro local-system-date +--ro chassis-id-subtype? ieee:chassis-id-subtype-type ieee:chassis-id-type | +--ro chassis-id? | +--ro system-name? strin | +--ro system-description? strin lldp-types:system-capabilities-ma +--ro system-capabilities-supported? | +--ro system-capabilities-enabled? lldp-types:system-capabilities-m +--rw port* [name dest-mac-address +--rw name if:interface-re +--rw dest-mac-address ieee:mac-addres +--ro port-id? ieee:port-id-typ +--ro remote-systems-data* [time-mark remote-index +--ro time-mark yang:timetick +--ro remote-index +--ro remote-too-many-neighbors? +--ro remote-changes? ieee:chassis-id-subtype-type +--ro chassis-id-subtype? ieee:chassis-id-type +--ro chassis-id? ieee:port-id-subtype-type +--ro port-id-subtype? +--ro port-id? ieee:port-id-type +--ro port-desc? string +--ro system-name? strin +--ro system-description? string +--ro system-capabilities-supported? lldp-types:system-capabilities-may +--ro system-capabilities-enabled? lldp-types:system-capabilities-ma

With IETF YANG-Push we like to subscribe

with on-change sync-on-start

 For inventory use cases the local and remote-systemsdata.

IEEE dot1ax - ieee802-dot1ax.yang

YANG Data Model for LAG Interface Management

module: ieee802-dot1ax +--rw lag-system +--rw aggregating-system* [agg-system +--rw agg-system +--rw system-id? ieee:mac-addres +--rw system-priority? augment /if:interfaces/if:interface: +--rw aggregator +--rw name? strin +--rw agg-system-name? strin +--rw admin-state? enumeration +--rw link-up-down-notification? enumeratio +--rw collector-max-delay? +--rw aggregator-lacp +--rw actor-admin-key? intl augment /if:interfaces/if:interface: +--rw aggregation-port +--rw aggregation-port-lacg +--rw actor-system-priority? +--rw actor-admin-key? +--rw partner-admin-system-priority? int1 +--rw partner-admin-system-id? ieee:mac-addres +--rw partner-admin-key? int1 +--rw actor-port-priority? int1 +--rw partner-admin-port? int1 +--rw partner-admin-port-priority int1 +--rw actor-admin-state? bit +--rw partner-admin-state? bit

With IETF YANG-Push we like to subscribe

with on-change sync-on-start

For inventory use cases the state of the hardware.

RFC 9127 – ietf-bfd.yang

YANG Data Model for Bidirectional Forwarding Detection

BFD IP Single-Hop Hierarchy

https://datatracker.ietf.org/doc/html/rfc9127#section-2.6

notifications:

+n sing	glehop-notification	
+ro I	local-discr?	discriminator
+ro 1	remote-discr?	discriminator
+ro r	new-state?	state
+ro s	state-change-reason?	<pre>iana-bfd-types:diagnostic</pre>
+ro t	time-of-last-state-change?	<pre>yang:date-and-time</pre>
+ro c	dest-addr?	<pre>inet:ip-address</pre>
+ro s	source-addr?	<pre>inet:ip-address</pre>
+ro s	session-index?	uint32
+ro p	path-type?	identityref
+ro	interface?	if:interface-ref
+ro e	echo-enabled?	boolean

BFD-over-LAG Hierarchy

https://datatracker.ietf.org/doc/html/rfc9127#section-2

notifications:

+n lag-notification	
+ro local-discr?	discriminator
+ro remote-discr?	discriminator
+ro new-state?	state
+ro state-change-reason?	iana-bfd-types:diagnostic
+ro time-of-last-state-change?	yang:date-and-time
+ro dest-addr?	inet:ip-address
+ro source-addr?	inet:ip-address
+ro session-index?	uint32
+ro path-type?	identityref
+ro lag-name?	if:interface-ref
+ro member-link?	if:interface-ref

With IETF YANG-Push we like to subscribe

with on-change sync-on-start

• For alert use cases the hardware state notifications.

BFD IP Multihop Hierarchy

https://datatracker.ietf.org/doc/html/rfc9127#section-2.7

notifications:

+n mu	ltihop-notification	
+ro	local-discr?	discriminator
+ro	remote-discr?	discriminator
+ro	new-state?	state
+ro	state-change-reason?	iana-bfd-types:diagnostic
+ro	time-of-last-state-change?	yang:date-and-time
+ro	dest-addr?	inet:ip-address
+ro	source-addr?	inet:ip-address
+ro	session-index?	uint32
+ro	path-type?	identityref

RFC 9130 – ietf-isis.yang

YANG Data Model for the IS-IS Protocol

notifications: +---n database-overload +--ro routing-protocol-name? -> /rt:routing/ control-plane-protocols/ control-plane-protocol/name | +--ro isis-level? level | +--ro overload? enumeration +---n if-state-change +--ro routing-protocol-name? -> /rt:routing/ control-plane-protocols/ control-plane-protocol/name +--ro isis-level? level +--ro interface-name? if:interface-ref +--ro interface-level? +--ro extended-circuit-id? extended-circuit-id | +--ro state? if-state-type +---n adjacency-state-change | +--ro routing-protocol-name? -> /rt:routing/ control-plane-protocols/ control-plane-protocol/name +--ro isis-level? if:interface-ref +--ro interface-name? | +--ro interface-level? level +--ro extended-circuit-id? extended-circuit-id | +--ro neighbor? string +--ro neighbor-system-id? system-id | +--ro state? adj-state-type +--ro reason?

With IETF YANG-Push we like to subscribe

with on-change sync-on-start

For alert use cases the hardware state notifications.

An Architecture for YANG-Push to Message Broker Integration

IETF 122 Hackathon

Validate Configured Subscription YANG-Push Publisher Implementations

Champion(s)

Thomas Graf (thomas.graf @ swisscom.com □)

Yannick Buchs (yannick.buchs @ swisscom.com ☑)

Daniel Voyer (danvoyerwork @ gmail.com ☑)

Holger Keller (holger.keller @ $\underline{\text{telekom.de}}$ \square)

Rob Wilton (rwilton @ cisco.com ☑)

Benoit Claise (benoit.claise@huawei.com)

Qiufang Ma (maqiufang1 @ $\underline{\text{huawei.com}}$ \square)

Jérémie Leska (jeremie.leska @ 6wind.com 🗹)

Samuel Gauthier (samuel.gauthier @ $\underline{6wind.com}$ \square)

Draft Specifications

https://datatracker.ietf.org/doc/html/rfc8639

https://datatracker.ietf.org/doc/html/rfc8641

https://datatracker.ietf.org/doc/html/rfc9196 🗹

https://datatracker.ietf.org/doc/html/draft-netana-netconf-notif-envelope

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-yang-notifications-versioning

 $\underline{\text{https://datatracker.ietf.org/doc/html/draft-ietf-netconf-udp-notif}} \ \square$

 $\underline{\text{https://datatracker.ietf.org/doc/html/draft-ietf-netconf-distributed-notif}} \ \ \underline{\square}$

https://datatracker.ietf.org/doc/html/draft-netana-netconf-yp-transport-capabilities

Project Info

Validates and verify 3 YANG-Push vendor implementations in the area of:

Subscription automation

Discover YANG-Push systems and notifications capabilities and configure periodical and on-change subscriptions with netconf.

Notification integration

Validate subscription state change and push-update and push-change-update notifications for draft-ietf-nmop-yang-message-broker-integration 🗵 integration.

Configured subscription transport integration

 $\label{eq:validate} \ \underline{\text{draft-ietf-netconf-udp-notif}} \ \square \ \ \text{and} \ \underline{\text{draft-ietf-netconf-distributed-notif}} \ \square \ \ \text{packet format on the wire.}$

Repository

https://github.com/network-analytics/ietf-network-analytics-document-status/tree/main/122/Hackathon

YANG-Push Implementation Status

IETF 121 – MVP 1

	6WIND VSR	Huawei VRP	Cisco IOS XR	Open- Source
RFC 8639 YANG-Push Subscription	✓	Р	Р	
RFC 8641 YANG-Push Notification	✓	Р	✓	
draft-ietf-netconf-udp-notif	✓	✓	✓	✓
draft-ietf-netconf-yang-notifications-versioning	✓	✓	✓	
draft-tgraf-netconf-notif-sequencing	✓	✓	✓	
draft-tgraf-netconf-yang-push-observation-time	✓	✓	✓	
RFC 7895 YANG Library		✓		
RFC 8525 YANG Library (NMDA)	✓		✓	
draft-ietf-netconf-yang-library-augmentation		Р		✓
RFC 9196 System and Notification Capabilities				
draft-netana-netconf-notif-envelope				

Green marked describes new capability at IETF 121. "P" to partially implemented.

13

Extensible YANG model for YANG-Push Notifications

For XML, JSON or CBOR encoded messages with hostname, sequence-number and observation-time

```
notifications:
 +---n envelope
    +--ro event-time
                                        vang:date-and-time
    +--ro hostname?
                                        inet:host
             {notification-hostname-sequence-number}?
    +--ro sequence-number?
                                        yang:counter32
             {notification-hostname-sequence-number}?
    +--ro notification-contents?
                                        <anydata>
module: ietf-yp-observation-time
 augment /yp:push-update:
                              yang:date-and-time
   +--ro observation-time?
   +--ro point-in-time?
                              enumeration
  augment /yp:push-change-update:
    +--ro observation-time?
                              yang:date-and-time
   +--ro point-in-time?
                              enumeration
  augment /sysc:system-capabilities/notc:subscription-capabilities:
    +--ro yang-push-observation-supported?
           inotifseq:notification-support
            {yang-push-observation-timestamp}?
    "ietf-yp-notification:envelope": {
    "event-time": "2023-03-25T08:30:11.22Z",
   "hostname": "example-router",
   "sequence-number": 1,
    "notification-contents": {
      "ietf-yang-push:push-update": {
        "ietf-yp-observation-time:observation-time": "2023-02-04T16:30:09.44Z",
        "ietf-yp-observation-time:point-in-time": "current-accounting",
        "datastore-contents": {
          "ietf-interfaces:interfaces": [
              "interface": {
                "name": "eth0",
                "type": "iana-if-type:ethernetCsmacd",
                "oper-status": "up",
                "mtu": 1500
```

- <u>draft-netana-netconf-notif-envelope</u> defines new extensible notification structure, defined in YANG, for use in YANG-Push Notification messages enabling any YANG compatible encodings such as XML <u>RFC 7950</u>, JSON <u>RFC</u> 7951 or CBOR RFC 9264.
- New notification envelope can be enabled in "ietf-subscribed-notification" RFC 8639.
- Capability can be discovered through 'ietf-notification-capabilities' <u>RFC 9196</u>.
- Supports the following notification metadata extensions
 - hostname: Describes the node's hostname according to the 'sysName' object definition in RFC 1213 from where the message was published from. This value is usually configured on the node by the administrator to uniquely identify the node in the network.
 - sequence-number: Generates a unique sequence number for each published message by the publisher process. The number counts up at every published notification message as described in RFC 9187.
 - **observation-time:** Describes the measurement observation time for the "push-update" notification in a "periodical" and for the "push-change-update" notification in a "on-change" subscription.
 - point-in-time: Describes at which point in time the value of observation-time was observed.

Support of Versioning in YANG Notifications Subscription

For subscription state change notification messages

```
module: ietf-yang-push-revision
 augment /sn:establish-subscription/sn:input:
   +---w module-version-config* [module-name]
      +---w module-name
                              vang:vang-identifier
                              rev:revision-date-or-label
      +---w revision?
      +---w revision-label?
                              vsver:version
augment /sn:subscription-started:
   +--ro module-version* [module-name]
           {yang-push-revision-supported}?
      +--ro module-name
                              yang:yang-identifier
      +--ro revision
                              rev:revision-date
      +--ro revision-label?
                             vsver:version
                                        -> /yanglib:yang-library/content-id
   +--ro yang-library-content-id?
           {yang-push-revision-supported}?
     "ietf-notification:notification": {
       "eventTime": "2023-03-25T08:30:11.22Z",
      "ietf-notification-sequencing:sysName": "example-router",
       "ietf-notification-sequencing:sequenceNumber": 1,
       "ietf-subscribed-notification: subscription-started": {
         "id": 6666,
         "ietf-yang-push:datastore": "ietf-datastores:operational",
         "ietf-yang-push:datastore-xpath-filter": "/if:interfaces",
         "ietf-yang-push-revision:revision": "2014-05-08",
         "ietf-yang-push-revision:module-name": "ietf-interfaces",
         "ietf-yang-push-revision:revision-label": "",,
        "ietf-yang-push-revision:yang-library-content-id": "1",
         "ietf-distributed-notif:message-observation-domain-id": [1,2],
         "transport": "ietf-udp-notif-transport:udp-notif",
         "encoding": "encode-json",
         "ietf-yang-push:periodic": {
           "ietf-yang-push:period": 100
```

- Network operators need to control semantics in its data processing pipeline. That includes YANG-Push.
- This is today only possible during YANG-Push subscription but not when nodes are being upgraded or when messages are being published for configured subscription.
- draft-ietf-netconf-yang-notifications-versioning extends the YANG push subscription and publishing mechanism defined in RFC 8641:
 - By adding the ability to subscribe to a specific revision or latest-compatible-semversion of one or more yang modules.
 - By extending the YANG push Subscription State Change
 Notifications Message so that the YANG push receiver learns
 beside the xpath and the sub-tree filter also the yang module
 name, revision, revision-label and the yang-library-content-id.
 - With YANG Library content-id a YANG-Push receiver is now able to detect changes in the YANG library. This includes also the imported YANG modules of the subscribed xpath.
 - Extends RFC 9196 defined subscription-capabilities with a yang-push-module-revision-supported leaf.

YANG Notification Transport Capabilities

Extending System Capabilities for YANG-Push Configured Subscription Transport

```
module: ietf-notification-transport-capabilities
 augment /sysc:system-capabilities/notc:subscription-capabilities:
   +--ro transport-capabilities
       +--ro transport-capability* [transport-protocol]
         +--ro transport-protocol
                                     identityref
         +--ro security-protocol?
                                    identityref
         +--ro encoding-format*
                                      identityref
augment "/sysc:system-capabilities/notc:subscription-capabilities" {
   description "Add system level capability.";
   container transport-capabilities {
     description "Capabilities related to YANG-Push transports.";
     list transport-capability {
        key "transport-protocol";
       description "Capability list related to notification transport capabilities.";
       leaf transport-protocol {
          type identityref {
            base sn:transport;
          description "Supported transport protocol for YANG-Push.";
        leaf security-protocol {
          type identityref {
            base security-protocol;
          description "Type of secure transport.";
        leaf-list encoding-format {
          type identityref {
            base sn:encoding;
          description "Supported encoding formats.";
```

- <u>draft-netana-netconf-yp-transport-capabilities</u> augments System Capabilities model and provides additional transport related attributes associated with system capabilities:
 - Specification of transport protocols the client can request to establish a <u>draft-ietf-netconf-udp-notif</u> or <u>draft-ietf-netconf-https-notif</u> configured transport connection;
 - Specification of transport encoding, such as JSON or XML as defined in <u>RFC 8040</u> or CBOR as defined in <u>RFC 9254</u> the client can request to encode YANG notifications;
 - Specification of secure transport mechanisms that are needed by the client to communicate with the server such as DTLS as defined in <u>RFC 9147 TLS</u> as defined in <u>RFC 8446 or SSH</u> as defined in <u>RFC 4254</u>;

Augmented-by Addition

YANG Library Extension

```
module: ietf-yang-library
  +--ro yang-library
     +--ro module-set* [name]
                                     string
        +--ro name
        +--ro module* [name]
                                              yang:yang-identifier
           +--ro name
                                              revision-identifier
           +--ro revision?
                                              inet:uri
           +--ro namespace
           +--ro location*
                                              inet:uri
           +--ro submodule* [name]
                                 yang:yang-identifier
              +--ro name
                                 revision-identifier
              +--ro revision?
                                 inet:uri
              +--ro location*
                                              yang:yang-identifier
           +--ro feature*
                                              -> ../../module/name
           +--ro deviation*
         +--ro yanglib-aug:augmented-by*
                                      -> ../../yanglib:module/name
```

- With YANG-Push xpath or sub-tree a part of the YANG-Push data tree is subscribed.
- With YANG Library the relationship among the subscribed YANG modules can be determined from the top of the YANG tree. What is missing is the ability to discover dependencies within the YANG tree.
- <u>draft-lincla-netconf-yang-library-augmentation</u> extends the YANG library defined in RFC 8525:
 - By adding augmented-by YANG module relation.

Validate anydata schema subtree with YANG Library

RFC 7950 Extension

- With YANG-Push xpath or sub-tree a part of the YANG-Push data tree is subscribed. The subscribed YANG datastore content is published as anydata, event though the content has a valid schema.
- RFC 7950 lacks specification how the data model of anydata content is exposed through YANG library defined in RFC 8525.
- <u>draft-aelhassany-anydata-validation</u> extends <u>RFC 7950</u> by describing:
 - How anydata can be validated with YANG Library.

RFC 7950

7.10. The "anydata" Statement

The "anydata" statement defines an interior node in the schema tree. It takes one argument, which is an identifier, followed by a block of substatements that holds detailed anydata information.

The "anydata" statement is used to represent an unknown set of nodes that can be modeled with YANG, except anyxml, but for which the data model is not known at module design time. It is possible, though not required, for the data model for anydata content to become known through protocol signaling or other means that are outside the scope of this document.

YANG-Push Operational Data Observability Enhancements

Simplifies by combining periodic and on-change subscription

```
module: ietf-yp-ext
  augment /sn:subscription-started/yp:update-trigger:
    +--: (periodic-and-on-change) { yp:on-change }?
       +-- periodic-and-on-change!
          +-- period
                                  yp:centiseconds
                                  yang:date-and-time
          +-- anchor-time?
          +-- dampening-period?
                                  yp:centiseconds
          +-- sync-on-start?
                                  boolean
          +-- excluded-change*
                                  yp:change-type
  augment /sn:subscription-started:
    +--ro common-notification-format? boolean
  augment /sn:subscription-modified/yp:update-trigger:
    +--: (periodic-and-on-change) { yp:on-change }?
       +-- periodic-and-on-change!
          +-- period
                                  vp:centiseconds
          +-- anchor-time?
                                  yang:date-and-time
          +-- dampening-period?
                                  yp:centiseconds
          +-- sync-on-start?
                                  boolean
          +-- excluded-change*
                                  yp:change-type
  augment /sn:subscription-modified:
    +--ro common-notification-format?
                                        boolean
  augment /sn:subscriptions/sn:subscription/yp:update-trigger:
    +--: (periodic-and-on-change) { yp:on-change }?
       +--rw periodic-and-on-change!
          +--rw period
                                    yp:centiseconds
          +--rw anchor-time?
                                    yang:date-and-time
          +--rw dampening-period?
                                    yp:centiseconds
          +--rw sync-on-start?
                                    boolean
          +--rw excluded-change*
                                    yp:change-type
  augment /sn:subscriptions/sn:subscription:
    +--rw common-notification-format?
                                        boolean
```

- To reduce complexities in modelling the operational state, the following two YANG-Push enhancements are proposed:
 - A new YANG-Push encoding format that can be used for both on-change and periodic subscriptions that reports the data from the subscription filter point.
 - A combined periodic and on-change subscription that reports events on a periodical cadence and also if changes to the data have occurred.

```
notifications:
 +---n update
     +--ro id?
                                 sn:subscription-id
     +--ro subscription-path?
                                 yang:xpath1.0
     +--ro target-path?
                                 string
     +--ro snapshot-type?
                                 enumeration
     +--ro observation-time?
                                 yang:date-and-time
     +--ro datastore-snapshot?
                                 <anydata>
     +--ro incomplete?
                                 empty
```

- This removes the YANG Patch format RFC 8072 dependency and eases the message broker integration.
- Allows the YANG-Push publisher to split a subscription into smaller child subscriptions for more efficient independent and concurrent processing. Reuses the ideas from <u>draft-ietf-netconf-distributed-notif</u>. Child subscriptions remain encoded from the same subscription point.

IETF YANG-Push Implementations and Next Steps

Challenges and how to solve...

What in IETF YANG-Push could have been defined differently and why? What prevents IETF YANG-Push for being integrated/used efficiently? What in IETF YANG-Push is missing and for which purpose?

- On-change notification schema different than periodical
- Patch-id in On-Change complex to implement.
- Reduce YANG complexity (example: augmentations, deviations, xpath, lists)
- Each subscribed xpath needs normalization. High effort with many vendor specific YANG modules
- Missing end to end open-source implementations

- Extensible YANG-Push header combing notification and subscription. Separation of header and subscribed content is needed to allow partial parsing of message in binary encoding for data processing chain.
- On-change and periodical notification schema should have identical schema and contain the entire schema tree below subscription and represent current state.
- Common alignment on what should be supported in xpath and what not.
- Agile incremental driven development. Deployment guide describing implementers and operators what is/should be supported at which MVP stage.