Исследование свойств случайных графов на выборках из распределений и проверка гипотез

Цель

Построить случайные графы на основе выборок из различных распределений и исследовать поведение числовых характеристик графа в зависимости от параметров построения. Кроме того, реализовать проверку гипотезы H_0 против H_1 на основе статистик графа.

Используемые распределения

- Экспоненциальное распределение: $\mathrm{Exp}(\lambda)$, где $\lambda = \frac{1}{\sqrt{e^2 e}}$;
- Логнормальное распределение: LogNormal $(0, \sigma = 1)$;
- Нормальное распределение: Normal $(0, \sigma = 1)$:
- Несимметричное нормальное распределение: SkewNormal($\sigma = 1$)

Функции и методы

1. Построение графов

- build_knn_graph(data, k) построение графа ближайших соседей (kNN): каждая вершина соединяется с k ближайшими по расстоянию.
- build_distance_graph(data, d) построение графа расстояния: вершины соединяются ребром, если $|x_i x_j| \le d$.

2. Характеристики графа

- $\delta(G)$ минимальная степень вершины в графе;
- $\chi(G)$ приближенное хроматическое число (оценка с помощью жадной раскраски);
- $\Delta(G)$ максимальная степень вершины в графе;
- ullet $\alpha(G)$ размер максимального независимого множества.

Эксперименты

Грид-серч по параметрам графа

Были проведены переборы по параметрам:

- $k \in \{3, 4, 5, 6, 7\}$ для kNN-графов;
- $d \in \{1.0, 1.5, 3.0\}$ для dist-графов.

Для каждого значения параметра строились графы на выборках из $\text{Exp}(\lambda_0)$ и LogNormal(0,1), после чего вычислялись $\delta(G)$ и $\chi(G)$.

Результаты

Графовые характеристики существенно различаются для разных распределений, особенно при росте k или d. Логнормальное распределение, как правило, даёт более плотные графы с большими $\chi(G)$ и $\delta(G)$.

Асимметричное распределение формирует графы с большей плотностью связей и меньшими независимыми множествами, чем нормальное распределение.

Проверка гипотез

Описание

Рассматривается задача проверки гипотезы:

$$H_0: \xi \sim f(x,\theta)$$
 vs $H_1: \xi \sim h(x,\nu)$,

где f и h — плотности экспоненциального/нормального и логнормального/ассиметричного распределений соответственно.

Методика

1. Генерируется N = 1000 выборок из H_0 (Exp), строятся графы и считается T(G);

- 2. Вычисляется критическое значение $T^* = \text{quantile}(T_{H_0}, \alpha)$ при уровне значимости $\alpha = 0.05;$
- 3. Считается доля выборок из H_1 (LogNormal), у которых $T(G) < T^*$ это оценка мощности критерия.

Результаты проверки

При k=5 и n=100 для kNN-графа обе гипотезы не отвергаются.

30 мая 2025 г.

Анализ результатов классификации (Normal и SkewNormal)

1. Средние значения характеристик Δ и α

- Δ : для обоих распределений наблюдается рост значений Δ с увеличением размера выборки. Однако значения Δ для SkewNormal практически совпадают со значениями для Normal и заметно ниже соответствующего порогового значения Δ^* , рассчитанного по правому квантилю распределения при H_0 .
 - Это говорит о том, что характеристика Δ не чувствительна к различиям между Normal(0,1) и SkewNormal $(0,1,\xi=5)$.
- α : значения α растут линейно с n, как и ожидалось. Между Normal и SkewNormal различия минимальны, но α для SkewNormal в среднем чуть ниже. Пороговое значение α^* устанавливается как левый квантиль уровня $\alpha=0.05$.
 - Различие между α -значениями наблюдается, но не является выраженным.

2. Мощность критериев

- Мощность критерия на основе ∆: во всех случаях остаётся близкой к нулю (не превышает 0.0115), что свидетельствует о его неэффективности в задаче различения Normal и SkewNormal.
- Мощность критерия на основе α : возрастает с увеличением n, достигая 0.048 при n=500, что демонстрирует некоторое различие, но всё ещё недостаточное для уверенного отклонения H_0 .

3. Общий вывод

- Ни $\Delta(G)$, ни $\alpha(G)$ не обладают достаточной чувствительностью и мощностью для различения распределений Normal(0,1) и SkewNormal $(0,1,\xi=5)$ при использовании k-ближайших соседей (k=10) и уровне значимости $\alpha=0.05$.
- Однако α показывает потенциальную полезность как характеристика: при большем размере выборки и оптимальном выборе k она может стать основой более мощного критерия.

Ниже представлены результаты исследований:

Анализ результатов классификации (Exponential и LogNormal)

1. Средние значения характеристик δ и χ

- δ : средние значения δ практически не различаются между выборками из распределений Exp и LogNormal, а также близки к пороговым значениям, вычисленным по критерию уровня значимости $\alpha = 0.05$.
 - Это свидетельствует о слабой чувствительности признака δ к различию между распределениями.
- χ : значения метрики χ для распределения LogNormal стабильно выше, чем для Exp. Однако значения χ для LogNormal по-прежнему ниже соответствующих порогов, и различие между ними недостаточно велико.
 - Это означает, что χ является более чувствительным признаком, чем δ , но не обладает достаточной статистической силой.

2. Мощность критериев

- Мощность критерия на основе δ во всех экспериментах оказалась равна 0, что указывает на полное отсутствие способности различать распределения на основе этой метрики.
- Мощность критерия на основе χ была положительной лишь при n=100, где достигала ≈ 0.078 , но в остальных случаях также близка к нулю.

3. Общий вывод

• Ни одна из двух графовых характеристик (δ, χ) не показала достаточную эффективность в задаче различения распределений $\text{Exp}(\lambda_0)$ и LogNormal(0, 1) при фиксированном числе соседей k=10 и уровне значимости $\alpha=0.05$.

Ниже представлены результаты исследований:

