

NYC Trees

Project SQL

Research Questions

- What are some common tree problems in NYC?
- Is there a measurable difference in DBH measured over a 10 year span?
- Can we visualize DBH in variation in different parts of the city?
- Where is data being collected in the city and where is it not? See heat map
- How many trees per borough
- Can we estimate a trees age using DBH? How would this be distributed across a target genus with multiple representative species?
- Which trees have a nice red fall color?
- Can this data be used to understand areas with a similar latitude? (research lead)

Typical Tree Problems in 2015 Survey


```
environmental_tolerance_query_1 = """

SELECT DISTINCT environmental_tolerances
FROM `bigquery-public-data.new_york_trees.tree_species`;
"""
```

environmental_tolerances
Drought and Pollution Tolerant
none
Shade Tolerant
High pH Tolerant
Wet Site and Salt Tolerant

DBH between 2005 and 2015

```
id_join_query = """

SELECT *
FROM bigquery-public-data.new_york_trees.tree_census_2005 AS t_2005

JOIN bigquery-public-data.new_york_trees.tree_census_2015 AS t_2015 ON t_2005.objectid = t_2015.tree_id
"""
```



```
1 dbh_comparison = id_join_results[['objectid', 'tree_dbh_1', 'tree_dbh']]
2
3 plt.plot(dbh_comparison['tree_dbh_1'], label ='2005', alpha= 0.5)
4 plt.plot(dbh_comparison['tree_dbh'], label ='2015', alpha= 0.5)
5
6 plt.xlabel('Tree Index')
7 plt.ylabel('DBH')
8 plt.title('DBH Overview')
9
10 plt.legend()
11
12 plt.show()
```


Spatial Analysis

Heat Map

```
1 # Create a map centered around the mean latitude and longitude
2 map_center = [id_join_results['latitude'].mean(), id_join_results['longitude'].mean()]
3 m = folium.Map(location=map_center, zoom_start=12)
4
5 # Create a list of coordinate points from the latitude and longitude columns
6 locations = id_join_results[['latitude', 'longitude']].values
7
8 # Create a heatmap layer using the coordinate points
9 heatmap_layer = HeatMap(locations)
10
11 # Add the heatmap layer to the map
12 heatmap_layer.add_to(m)
13
14 # Display the map
15 m
```


Trees per Borough


```
tree_boro_query = """

SELECT boroname, COUNT(*) AS total_trees
FROM `bigquery-public-data.new_york_trees.tree_census_2015`
GROUP BY boroname;
"""
```

boroname	total_trees
Bronx	85203
Queens	250551
Brooklyn	177293
Manhattan	65423
Staten Island	105318

Oak Age

```
oak_query = """
    SELECT tree_dbh, spc_latin
    FROM `bigquery-public-data.new_york_trees.tree_census_2015`
    WHERE spc_latin LIKE 'Quer%';
"""
```

```
tree dbh
                        spc latin
                  Quercus phellos
0
          39
                Quercus palustris
2
          38
                  Quercus phellos
              Quercus acutissima
4
          37
                 Quercus velutina
          37
                    Quercus rubra
6
          36
                Quercus palustris
          43
                Quercus velutina
8
                Quercus palustris
          38
                Quercus palustris
9
          39
10
          37
                Quercus shumardii
11
                Quercus palustris
          36
12
          38
                Quercus palustris
13
          39
                Quercus palustris
14
          36
                Quercus palustris
15
          39
                Quercus palustris
16
          40
                    Quercus rubra
17
           1
                 Quercus coccinea
18
                Quercus palustris
          38
          45
                    Quercus rubra
19
20
          37
                    Quercus rubra
21
          39
                Quercus palustris
```

```
1 def estimate_oak_tree_age(dbh):
       Estimate the age of an oak tree based on its Diameter at Breast Height (DBH).
       Args:
           dbh (float): Diameter at Breast Height (in inches).
       Returns:
           float: Estimated age of the oak tree (in years).
10
11
12
       if dbh < 0:
13
           raise ValueError("DBH must be a positive value.")
14
15
       # Convert DBH from inches to centimeters
16
       # dbh cm = dbh * 2.54
17
18
       # Determine the age range based on DBH
19
       if dbh < 5:
20
           age_range = (5, 10)
       elif dbh < 10:
22
           age_range = (10, 20)
23
       elif dbh < 20:
24
           age range = (20, 40)
       elif dbh < 30:
26
           age range = (40, 60)
27
       elif dbh < 40:
28
           age_range = (60, 80)
29
       elif dbh < 50:
30
           age_range = (80, 100)
31
32
           age_range = (100, 120)
33
34
       # Calculate the estimated age within the age range
       age_estimate = sum(age_range) / 2
36
       return age estimate
```

Oak Age

Calculate estimated age for each oak tree
oak_results['estimated_age'] = oak_results['tree_dbh'].apply(estimate_oak_tree_age)
oak_results.head(30)

	tree_dbh	spc_latin	estimated_age
0	39	Quercus phellos	70.0
1	1	Quercus palustris	7.5
2	38	Quercus phellos	70.0
3	1	Quercus acutissima	7.5
4	37	Quercus velutina	70.0
5	37	Quercus rubra	70.0
6	36	Quercus palustris	70.0
7	43	Quercus velutina	90.0
8	38	Quercus palustris	70.0
9	39	Quercus palustris	70.0
10	37	Quercus shumardii	70.0
11	36	Quercus palustris	70.0
12	38	Quercus palustris	70.0
13	39	Quercus palustris	70.0
14	36	Quercus palustris	70.0
15	39	Quercus palustris	70.0
16	40	Quercus rubra	90.0
17	1	Quercus coccinea	7.5

Oak Age

Fall Color

```
1 fall_color1_query = """
2     SELECT species_common_name
3     FROM `bigquery-public-data.new_york_trees.tree_species`
4     WHERE fall_color = 'Maroon' OR fall_color = 'Red';
5 """
```

```
species_common_name

Amur Maple

Northern Red Oak

Pin Oak

Purpleleaf Plum

Hawthorn

Red Maple

Callery Pear

Fastigiata Oak

Schubert Cherry

Black Gum
```


1 fa	all_color_query = """
2	SELECT DISTINCT fall_color
3	FROM `bigquery-public-data.new_york_trees.tree_species`;
4 "	***

fall_color Yellow/Orange Red/Bronze Yellow/Bronze Red/Orange Red Yellow Red/ Yellow Red/ yellow Yellow/ Bronze Maroon 10 Cream 11 Purple/Maroon 12 Orange/Brown

Latitude Comparison

```
latitude1 = 40.912918
latitude2 = 40.498466
# Create a map centered around the latitudes
m = folium.Map(location=[latitude1, 0], zoom start=10)
# Create a dashed red line
line1 = folium.PolyLine(
   locations=[[latitude1, -180], [latitude1, 180]],
   dash_array='10,10',
   color='red'
).add to(m)
# Create a dashed blue line
line2 = folium.PolyLine(
   locations=[[latitude2, -180], [latitude2, 180]],
   dash_array='10,10',
   color='blue'
).add_to(m)
# Display the map
```


Thanks!

