

Art of Problem Solving 2005 USA Team Selection Test

USA Team Selection Test 2005

Day 1	
1	Let n be an integer greater than 1. For a positive integer m , let $S_m = \{1, 2,, mn\}$. Suppose that there exists a $2n$ -element set T such that (a) each element of T is an m -element subset of S_m ; (b) each pair of elements of T shares at most one common element; and (c) each element of S_m is contained in exactly two elements of T .
	Determine the maximum possible value of m in terms of n .
2	Let $A_1A_2A_3$ be an acute triangle, and let O and H be its circumcenter and orthocenter, respectively. For $1 \le i \le 3$, points P_i and Q_i lie on lines OA_i and $A_{i+1}A_{i+2}$ (where $A_{i+3} = A_i$), respectively, such that OP_iHQ_i is a parallelogram. Prove that $\frac{OQ_1}{OP_1} + \frac{OQ_2}{OP_2} + \frac{OQ_3}{OP_3} \ge 3.$
3	We choose random a unitary polynomial of degree n and coefficients in the set $1, 2,, n!$. Prove that the probability for this polynomial to be special is between 0.71 and 0.75, where a polynomial g is called special if for every $k > 1$ in the sequence $f(1), f(2), f(3),$ there are infinitely many numbers relatively prime with k .
Day 2	
4	Consider the polynomials
	$f(x) = \sum_{k=1}^{n} a_k x^k$ and $g(x) = \sum_{k=1}^{n} \frac{a_k}{2^k - 1} x^k$,
	where a_1, a_2, \ldots, a_n are real numbers and n is a positive integer. Show that if 1 and 2^{n+1} are zeros of g then f has a positive zero less than 2^n .
5	Find all finite sets S of points in the plane with the following property: for any three distinct points A , B , and C in S , there is a fourth point D in S such that

A, B, C, and D are the vertices of a parallelogram (in some order).

Contributors: N.T.TUAN, harazi, mikeynot, Fang-jh, rrusczyk

Art of Problem Solving

2005 USA Team Selection Test

6

Let ABC be an acute scalene triangle with O as its circumcenter. Point P lies inside triangle ABC with $\angle PAB = \angle PBC$ and $\angle PAC = \angle PCB$. Point Q lies on line BC with QA = QP. Prove that $\angle AQP = 2\angle OQB$.

These problems are copyright © Mathematical Association of America (http://maa.org).

www.artofproblemsolving.com/community/c4635

Contributors: N.T.TUAN, harazi, mikeynot, Fang-jh, rrusczyk