MA3265 Notes

Lou Yi

Last Edited by: April 17, 2024

Contents

1	Con	gruence	1
2	Solving Equations in Congruence Systems		5
	2.1	Solving Linear Equations	5
	2.2	Monomial Equation / Discrete Logs	6
	2.3	Quadratic Reciprocity	7
	2.4	Jacobi Symbol	13
	2.5	Two Interesting Problems	14
	2.6	Negative Results For Diophantine Equations	15
	2.7	Pell's Equation	17
	2.8	Continued Fractions and Rational Approximations	18
	2.9	Transcendental Numbers	22
	2.10	Solution of Pell's Equation	22
3	Bina	ary Quadratic Form	24

1 Congruence

Lemma 1.1 Suppose $a, b, k, n \in \mathbb{Z}$, and $ka \equiv kb \mod n$, then $a \equiv b \mod \frac{n}{\gcd(k,n)}$.

Proof: Suppose $ka \equiv kb \mod n$, then $n|(ka-kb) \Rightarrow n|k(a-b)$, then $\frac{n}{\gcd(k,n)}|a-b$.

Corollary 1.1.1 Suppose $a, b, k, n \in \mathbb{Z}$, and gcd(k, n) = 1. Then $ka \equiv kb \mod n$ implies $a \equiv b \mod n$.

Lemma 1.2 If $a \equiv b \mod n$, then gcd(a, n) = gcd b, n.

Proof: n|a - b, then a = b + nq, so (a, n) = (b + nq, n) = (b, n).

Definition: set of integers $\{0, 1, 2, ..., n-1\}$ is called the least residue system modulo n. Any set of n integers, no two of which are congruent modulo n, is called a complete residue system modulo n.

Definition: a subset R of the integers is called a reduced residue system modulo n if the following holds:

- 1. gcd(r, n) = 1 for each r in R;
- 2. R contains $\varphi(n)$ elements, where $\varphi(n)$ is the number of nonnegative integer less than n that is also coprime to n;
- 3. no two elements of R are congruent modulo n.

Lemma 1.3 Fix n > 0. Suppose $S = \{r_1, \dots, r_n\}$ is a CRS modulo n. Pick $a, b \in \mathbb{Z}$, s.t., $\gcd(a, n) = 1$. Then $S' = \{ar_1 + b, ar_2 + b, \dots, ar_n + b\}$

is also an CRS modulo n.

Proof: Suppose $ar_i + b \equiv ar_j + b \mod n$, then $r_i \equiv r_j \mod n$, so i = j.

Definition: fix n > 0. Then an multiplicative inverse of a modulo n is a solution to the equation $ax \equiv 1 \mod n$.

Theorem 1.4 a has an inverse iff (a, n) = 1.

Proof: $ax = 1 \mod n$ has a solution iff $\exists b \in \mathbb{Z}$, s.t., ax + bn = 1. By Bezout's Lemma, this can only happen iff $\gcd(a, n) = 1$.

Remark 1.4.1 This gives an algorithmic way to compute the multiplicative inverse of an element (if it exists). Using Euclid's Algorithm, we can find x and b such that ax + bn = 1, then x (x mod n) is an inverse of a.

Theorem 1.5 (Wilsom's Theorem) Let p be a prime, then $(p-1)! \equiv -1 \mod p$.

Proof: If p = 2 or 3, then the result is trivial, so let p > 2. Consider the RRS modulo p: $R = \{1, 2, \dots, p-1\}$. For any $b \in R$, there is an unique element $b \in r$, s.t., $ab = 1 \mod p$. Note that if $a \neq 1, -1$, then the inverse of a is not itself. Hence $(p-1)! = 1 \cdot (p-1) = -1 \mod p$.

Theorem 1.6 (Fermat's Little Theorem) Let p be a prime, $a \in \mathbb{Z}$. If (a, p) = 1, then $a^{p-1} = 1 \mod p$. In general, if a is arbitrary, then $a^p = a \mod p$ for all a.

Proof: Consider $R = \{1, 2, \dots, p-1\}$ which is an RRS module p. Since (a, p) = 1, note $aR = \{a, 2a, \dots, (p-1)a\}$ is also an RRS, so it contains the same elements as R. Then $2 \cdots (p-1) = a \cdot (2a) \cdots (p-1)a \mod p$, hence $a^{p-1} = 1 \mod p$ by Wilson's Theorem.

Some Primality Test:

Lemma 1.7 (Converse of Wilson's Theorem) If $n \geq 2$, and $(n-1)! \equiv -1 \mod n$, then n is a prime.

Proof: We claim that if n is a composite number, then it has a factor $\leq \sqrt{n}$. Since n = ab for some ab, and if $a, b > \sqrt{n}$, then ab > n contradiction.

Next suppose $(n-1)! \equiv -1 \mod n$. For any $1 \leq a \leq n-1$, there is a b, s.t., $a \cdot b \equiv -1 \mod b$, so every number between $1 \leq a \leq n-1$ has a multiplicative inverse mod n. But recall the criterion for having an multiplicative inverse, this implies that all numbers between 1 to n-1 are coprime to n, which implies n is a prime.

Suppose we want to check whether n is a prime: if we can find $1 \le a \le n-1$ for which $a^{n-1} \ne 1 \mod n$, then n is not a prime by Fermat's Theorem. However, there are composite numbers n, s.t., $a^{n-1} = 1 \mod n$ for all $1 \le a \le n-1$ with (a,n) = 1. If $a^{n-1} = 1 \mod n$ for all $1 \le a \le n-1$, we say n passes the test. Such numbers are called Carmichel's Numbers.

Theorem 1.8 Let p be a prime, then $n^2 = -1 \mod p$ if and only if p = 2 or $p = 1 \mod 4$.

Proof: \Rightarrow : Assume p is not 2, then we show that p must be 1 mod 4. Suppose $\exists n$, s.t., $x^2 = (-1)$ mod p. Then by Fermat's theorem, we have

$$(-1)^{\frac{p-1}{2}} = (x^2)^{\frac{p-1}{2}} = 1 \mod p.$$

But this can only happen iff $\frac{p-1}{2}$ is even, i.e., $p=1 \mod 4$.

 \Leftarrow : If p=2, then n=1 solves the system. Now suppose $p=1 \mod 4$, by Wilson's, we know under modulo p,

$$-1 = (p-1)! = \left(1 \cdot 2 \cdots \frac{p-1}{2}\right) \left(\frac{p+1}{2}\right) \cdots (p-2)(p-1).$$

Note we can group the terms, so

$$(p-1)! = \left(1 \cdot 2 \cdots \frac{p-1}{2}\right) \left[\left(-\frac{p-1}{2}\right) \cdots (-2)(-1) \right] = (-1)^{\frac{p-1}{2}} \left(1 \cdot 2 \cdots \frac{p-1}{2}\right)^2 = \left(1 \cdot 2 \cdots \frac{p-1}{2}\right)^2.$$

Hence
$$n = \left(\frac{p-1}{2}\right)!$$
, is a solution to $n^2 = -1 \mod p$.

Fun application: we can use this theorem to prove a special case of Dirichilet's theorem. Let $\mathfrak{P}_{1,4} = \{1 + 4m : m \in \mathbb{Z}\}$, then $\mathfrak{P}_{1,4}$ contains infinitely many primes. Suppose $\{p_1, \dots, p_r\}$ are all the primes in $\mathfrak{P}_{1,4}$, then $N = 4(p_1 \dots p_r)^2 + 1$ is composite and does not have $2, p_1, \dots, p_r$ as its prime factors. N must have some other prime p as its factors, i.e., p|N, then

$$4(p_1 \cdots p_r)^2 + 1 = 0 \Rightarrow (2p_1 \cdots p_r)^2 = 0 \mod p.$$

Then it must follows p = 2 or $p = 1 \mod 4$. But p is not 2, hence $p = 1 \mod 4$, so p must be in $\mathfrak{P}_{1,4}$ which is a contradiction.

Definition: we define the Euler-Totient function $\varphi(n)$ by $\varphi(1) := 1$, and for n > 1, $\varphi(n) :=$ the number of elements in the RRS modulo n, which is also the number of positive integers less than n and is coprime to n.

Theorem 1.9 (Euler's Theorem) Let n > 1 be an integer, $a \in \mathbb{Z}$, then $a^{\varphi(n)} = 1 \mod n$ if (a, n) = 1

Proof: Given n > 1, consider the RRS R of n, which has $\varphi(n)$ elements. Then aR is still the same set, since $a \in R$ and R is a group under multiplication. So the product of elements R is equal to the product of aR, hence $a^{\varphi(n)} = 1$.

Remark 1.9.1 The |RRS| = |CRS| - 1 if and only if n is a prime.

Properties of the Euler Phi function:

- $\varphi(0) = 1$. This is by convention.
- $\varphi(1) = 1$. This is by convention/definition.
- $\varphi(p) = p 1$. p is only divisible by p if it is a prime.
- $\varphi(p^k) = p^k p^{k-1}$. Proof: there are p^k positive integers not greater than p^k , and $gcd(m, p^k) \neq 1$ if and only if p|m, hence there are $p^k/p = p^{k-1}$ such m.
- If gcd(m, n) = 1, then $\varphi(m)\varphi(n) = \varphi(mn)$. Proof: Let M and N be the set of numbers $\leq n$

Proof: Let M and N be the set of numbers $\leq m$ or n and coprime to m or n respectively, and U be the set of numbers coprime to mn and not greater than mn. We show |M||N| = |K|, if $\gcd(m,n) = 1$. If (b,m) = (b,n), then (a,mn) = 1. So if $a' \in M$, $a'' \in N$, then $a = a'a'' \in K$. On the other hand, if $a \in N$, (a,mn) = 1, and then $(a \mod m, m) = 1$, and $(a \mod n, n) = 1$, so for every a in K, it corresponds to a distinct element in $M \times N$, i.e., $(a \mod m, a \mod n)$.

- If $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$, then $\varphi(n) = (p_1^{a_1} p_1^{a_1-1}) \cdots (p_k^{a_k} p_k^{a_k-1})$. This follows directly from the previous property.
- $\bullet \ \varphi(n) = \prod_{p|n} (1 \frac{1}{p}).$
- $\varphi(n)\varphi(m)\frac{\gcd(m,n)}{\varphi(\gcd(m,n))} = \varphi(mn).$
- $\varphi(2m) = 2\varphi(m)$ if m is even; $\varphi(2m) = \varphi(m)$ if m is odd.
- $\bullet \ \varphi(n^m) = n^{m-1}\varphi(n).$

- If a|b, then $\varphi(a)|\varphi(b)$.
- $m|\varphi(a^m-1)$.
- $\bullet \ \varphi(\operatorname{lcm}(m,n)) \cdot \varphi(\operatorname{gcd}(m,n)) = \varphi(m) \cdot \varphi(n).$

2 Solving Equations in Congruence Systems

2.1 Solving Linear Equations

Definition: an equation of the form $a_1x_1 + \cdots + a_kx_k = b \mod n$ has an unique solution mod n if the following happens:

- (x'_1, \dots, x'_k) is a solution.
- If (x_1'', \dots, x_k'') is another solution, then $x_i' = x_i'' \mod n$, for $i = 1, \dots, k$.

Theorem 2.1 Fix n > 0; let $d = \gcd(a, n)$, then $ax = b \mod n$ has a solution if and only if d|b. In this case, this solution is unique mod $\frac{n}{d}$.

Proof: ax + ny = b has a solution iff gcd a, n|b. The rest follows.

Remark 2.1.1 Module n, there are d solutions. Namely, if x_0 is a solution mod $\frac{n}{d}$, then all the solution mod n are

$$x_0, x_0 + \frac{n}{d}, x_0 + 2\frac{n}{d}, \cdots, x_0 + (d-1)\frac{n}{d}.$$

Next we have move onto a system of linear equations. Note given any linear system $ax = b \mod n$, we can convert it into a more standard form, namely $x = c \mod n'$ by the previous theorem.

Theorem 2.2 (Chinese Remainder Theorem) Fix $n_1, \dots, n_k > 0$ which are pairwise coprime. Then the system of linear congruence equation,

$$\begin{cases} x = a_1 \mod n_1, \\ x = a_2 \mod n_2, \\ \vdots \\ x = a_k \mod n_k \end{cases}$$

Has a unique solution mod $n_1 n_2 \cdots n_k$.

Proof: For $i = 1, \dots, k$, consider $A_i = n_1 \dots n_{i-1} n_{i+1} \dots n_k$, then $\gcd n_i, A_i = 1$, because the $n'_j s$ are pairwise coprime. Then exists an inverse of $A_i \mod n_i$, denote it y_i , and let $z_i = a_i y_i A_i$. Then $x = \sum_{i=1}^k z_i$ is a solution to the system. As $x \mod n_i = a_i y_i A_i \mod n_i = a_i$.

Next, suppose x' is another solution to the system. Then $x'-x=0 \mod n_i$, $i=1,2,\cdots,k$. So $n_i|x'-x$, since the numbers $n_i's$ are pairwise coprime, then $n_1\cdots n_k|x'-x$, i.e. the solution is unique mod $n_1\cdots n_k$.

Remark 2.2.1 The CRT shows that $\mathbb{Z}/n_1 \cdots n_k \mathbb{Z} \cong \mathbb{Z}/n_1/\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/n_k \mathbb{Z}$ if n_1, \dots, n_k are pairwise coprime.

Remark 2.2.2 Suppose n_1, \dots, n_k is not pairwise coprime, we can break the equation involving n'_i s that are not pairwise coprime down. And if the system is consistent we will have a solution, otherwise we will not have a solution.

I.e., if $x = a \mod pq$, then $x = a \mod p$, $x = a \mod q$.

Example: Solve $x = 34 \mod 36$ and $x = 7 \mod 15$ and $x = 2 \mod 40$. Then equivalent to solve $x = 2 \mod 4$, $x = 7 \mod 9$, $x = 2 \mod 5$, $x = 1 \mod 3$, $x = 2 \mod 5$, $x = 2 \mod 8$. But then $x = 2 \mod 8$ implies $x = 2 \mod 4$ and similarly for the others. So we just need to solve $x = 2 \mod 4$, $x = 2 \mod 5$, $x = 1 \mod 3$.

2.2 Monomial Equation / Discrete Logs

Definition: fix n > 0; if $a^{\varphi(n)} = 1 \mod n$ and φ is the smallest such exponent, then a is a primitive root mod n.

Theorem 2.3 There is a primitive root modulo n if and only if n is of the form $1, 2, 4, p^k$, $2p^k$ for odd prime p.

Lemma 2.4 If a is a primitive root modulo n, then the reduced residue system of n is $\{a_i : 1 \le i \le \varphi(n)\}$.

Proof: Follows from the definition of the primitive roots.

Corollary 2.4.1 If U_n has one primitive root, then it has $\phi(\phi(n))$ many primitive roots.

How to use primitive root:

Suppose we want to solve a congruence equation of the form $x^d = c \mod n$, where n is a prime. We can first find a primitive root of n. Suppose a is such a primitive root, then $c = a^p$ for some $p \in \mathbb{Z}$. And not x must also be in the RRS of n, so $x = a^q$ for some $q \in \mathbb{Z}$. Hence we can turn this congruence equation into a linear one, i.e., $dq = p \mod \varphi(n)$.

Lemma 2.5 Suppose a is a primitive root mod n. Then $a^k = a^j \mod n$ if and only if $k = j \mod \varphi(n)$.

Proof: Group theory.

Corollary 2.5.1 In general, for general a (not necessarily primitive root, but still invertible). $a^k = a^j \mod n$, if and only if $k = j \mod \operatorname{ord}(a)$, where $\operatorname{ord}(a)$ is the smallest positive number such that $a^{\operatorname{ord}(a)} = 1$.

Next, for the general case, if we want to solve $x^m = c \mod n$, where n is not a prime. We do the following:

- Break this equation into several equations mod the prime powers that are factors of n.
- Solve the ones corresponding to odd primes using primitive roots (they exists).
- For modulo 2^k : use Theorem 2.6.
- "Glue" the result for each equation together by Chinese Remainder Theorem.

Theorem 2.6 If $k \geq 3$, then

$$RRS(2^k) = \{\pm 3^i \, : \, 0 \le j < 2^{k-2}\} = \{\pm 5^j \, : \, 0 \le j < 2^{k-2}\}.$$

I.e., this is generated by $\{-1,3\}$, or $\{-1,5\}$.

El Gammal Scheme (An encryption scheme):

Alice chooses

- 1. a "large" prime.
- 2. a primitive element of a RRS
- 3. an integer $1 \le d \le p-1$.

And computes

1. a^d modulo p, call the residue b.

The public key (p, a, b) is sent to every one, and the private key (d) is kept private. Bob encrypts a message M < p and sends to Alice as follows:

- 1. chooses random integer k
- 2. computes $a^k \mod p = r$, $b^k M \mod p = t$.

Bob sends to Alice these two numbers (r, t).

To decrypt it, Alice computes $tr^{-d} \mod p$. Note $a^d = b$, then

$$tr^{-d} = b^k M(a^k)^{-d} = (a^d)^k M(a^k)^{-d} = M.$$

2.3 Quadratic Reciprocity

Given $a \in \mathbb{Z}$, find n such that $x^2 = a \mod n$ has a solution?

Algebraic structure of U_n (=RRS(n)). We know that for which n, the primitive roots exists, i.e., U_n is cyclic. To understand the relationship between $\mathbb{Z}_l = \operatorname{CRS}(l)$ and \mathbb{Z}_n , where l|n. Consider the map $\varphi_{n,z} : \mathbb{Z}_n \to \mathbb{Z}_l$, $[a]_n \mapsto [a]_l$. Note $\varphi_{n,z}$ is a group homomorphism. In fact, $[a]_l = [a]_n \cup [a+l]_n \cup \cdots \cup [a+(m-1)l]$, where $m = \frac{n}{l}$. Since $\varphi_{n,z} : \mathbb{Z}_n \to \mathbb{Z}_l$ is also a ring homomorphism, it sends units in \mathbb{Z}_n to the units in \mathbb{Z} . Then $\varphi_{n,z} : U_n \to U_l$ is also a group homomorphism. We can even have group homomorphism sending to the direct group. When n = lm, $\varphi = (\varphi_{n,1}, \varphi_{n,m}) : \mathbb{Z}_n \to \mathbb{Z}_l \oplus \mathbb{Z}_m$, $[a]_n \mapsto ([a]_l, [a]_m)$. The Chinese remainder theorem tells us that the map is surjective if $\gcd(l,m) = 1$, hence bijective (as the domain and codomain have the same cardinality), so φ is a ring isomorphism. Then as before, we have $U_n \cong U_l \oplus U_m$ under the group isomorphism φ . Comparing cardinality, we have $\varphi(n) = \varphi(l)\varphi(m)$, whenever $\gcd(l,m) = 1$ and n = lm.

Theorem 2.7 If $n = p_1^{e_1} \cdots p_k^{e_k}$, then

$$Z_n \cong \mathbb{Z}_{p_1^{e_1}} \oplus \cdots \oplus \mathbb{Z}_{p_r^{e_k}}$$

as rings, and

$$U_n \cong U_{p_1^{e_1}} \oplus \cdots \oplus U_{p_k^{e_k}}.$$

Definition: suppose G is a group that acts on a set X, then $X^G := \{x \in X : gx = x, \text{ for all } g \in G\}.$

Theorem 2.8 If $|G| = p^n$, and G acts on X, then $|X| = |X^G| \mod p$.

Proof: Since $X = O(x_1) \cup O(x_2) \cdots \cup O(x_n)$, the union of disjoint orbits. X^G is the union of singleton orbits. Note that for any orbit that is not a singleton, it is divisible by p, as it is equal to $|G: \operatorname{stab}(x_i)|$, and the stabilizer of x_i is a proper subgroup of G so $|G: \operatorname{stab}(x_i)|$ is divisible by p. Then the order of the singleton orbits $= |X^G| = |X| \mod p$.

Question: which primes $p = x^2 + y^2$?

Question: when does $-1 = z^2 \mod p$ have a solution? (We already know the answer).

Note suppose $p = x^2 + y^2$, then $p \nmid x, y$, otherwise if $p \mid x, y$, then $p^2 \mid x^2, y^2$, so $p^2 \mid x^2 + y^2$. Mod p, $0 = x^2 + y^2$, so $(y^{-1})^2 = x^2 \cdot (y^{-1})^2 + 1 \Rightarrow z^2 = -1 \mod p$. Then p must be 1 mod 4.

Suppose X is a set, $\sigma_1, \sigma_2 : X \to X$ are automorphisms, and $\sigma_1^2 = \sigma^2 = 1$, then

$$|\{x \in X : \sigma_1(x) = x\}| = |\{x \in X : \sigma_2(x) = x\}| \mod 2.$$

Remark: $G_1 = \{\sigma_1, 1\}, G_2 = \{\sigma_2, 1\}$ are groups acting on X. Then $|X^{G_1}| = |X| = |X^{G_2}|$.

Definition: an involution is a map $\sigma: X \to X$ such that $\sigma \circ \sigma = id$.

Now back to our first problem:

Let $X = \{(x, y, z) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{>0} \times \mathbb{Z}_{>0} : x^2 + 4yz = p\}$ (Note X is finite). Define involution $\sigma_1(x, y, z) = (x, z, y)$. Note $\sigma_1(x, y, z) = (x, y, z)$ if and only if y = z. I.e., $(x, y, y) \in X$ such that $x^2 + 4yy = p$, so $p = x^2 + (2y)^2$. So if the fix point of $\sigma_1 \neq \emptyset$, then the problem has a solution.

Next, we define another involution $\sigma_2: X \to X$, by

$$(x, y, z) \mapsto \begin{cases} (x + 2z, z, y - x - z), & \text{if } x < y - z \\ (2y - x, y, x + z - y), & \text{if } y - z < x < 2y \\ (x - 2y, x + z - y, y), & \text{if } x > 2y \end{cases}.$$

One can check that σ_2 is well defined, and $\sigma_2^2 = 1$. Note the fixed points of σ_2 cannot come from case 1 and case 3, but only case 2. In this case (x, y, z) = (2y - x, y, x + z - y), so x = y, which implies $x^2 + 4xz = p \Rightarrow x|p$, so x = 1. So 1 + 4z = p, then $z = \frac{p-1}{4}$. Since $p = 1 \mod 4$. So the fixed points of $\sigma_2 \neq$, in particular it has one fixed point $(1, 1, \frac{p-1}{4})$. Then σ_1 has an odd number of fixed points, so it must have at least one fixed point.

Remark: if $p = x^2 + ny^2$, then mod p, we have $0 = x^2 + ny^2 \Rightarrow 0 = z^2 + n$, where $z = xy^{-1}$. So -n is a square mod p. (Converse is not true; but do have an extra hypothesis to go in reverse direction).

Next we want to solve any quadratic polynomial mod n. By Chinese Remainder Theorem, we can solve mod p^e 's and combine the solutions together.

Lemma 2.9 (Hensel's Lemma) If polynomial f(x) has integer coefficients; $f(a) = 0 \mod p^e$ and $f'(a) \neq 0 \mod p$. Then there is a unique $k \pmod p$, s.t., $f(a + kp^e) = 0 \mod p^{e+1}$.

By previous steps, suffices to solve any quadratic polynomial modulo $p: f(x) = ax^2 + bx + c = 0 \mod p$. We complete the square and get

$$4af(x) = (2ax + b)^2 + (4ac - b^2) = 0 \mod p.$$

Since $a \neq 0 \mod p$ (otherwise it will not be a quadratic polynomial). Further, if $p \neq 2$ (if p = 2, then the equation is trivial), then 4a is a unit. Let y = 2ax + b, and $D = b^2 - 4ac$, so we just need to solve $y^2 = D \mod p$.

Definition: if a is a unit modulo n ($n \in \mathbb{Z}^*$), then a is called quadratic residue (QR) if $x^2 = a \mod n$ has solution, otherwise it is called a quadratic nonresidue (QNR).

Theorem 2.10 Let p > 2 be a prime, then:

- 1. Let e > 1; a is a QR mod p iff a is QR mod p^e .
- 2. $QR \mod p = \{1^2, 2^2, \cdots, \left(\frac{p-1}{2}\right)^2\} \mod p$. I.e., exactly half are QR.
- 3. If u is a primitive root, then $QR \mod p = \{u^{2k} : k \in \mathbb{Z}\} \mod p$. The $QNR \mod p = \{u^{2k+1} : k \in \mathbb{Z}\}$.

Proof:

1. If $x^2 = a \mod p^e$ has a solution, then $x^2 = a \mod p$ has a solution, as $p|p^e$. For the converse, say $b^2 = a \mod p^d$, then $b^2 = a + rp^d$; define $k := -r \cdot (2b)^{-1}$, i.e., (2b)k = -r. Check $b' = b + kp^d$ satisfies $(b')^2 = a \mod p^{d+1}$.

$$(b')^2 = (b + kp^d)^2 = a + rp^d + 2bkp^d + k^2p^{2d} = a + rp^d - rp^d + k^2p^{2d} = a \mod p^{d+1}$$

- 2. the units mod p are $\{1, 2, \dots, p-1\}$, then the quadratic residues mod p are $\{1^2, 2^2, \dots, (p-1)^2\}$ but one can verify this set is just $\{1^2, 2^2, \dots, \left(\frac{p-1}{2}\right)^2\}$ modulo p.
- 3. This is clear, as every unit is of the form u^k , $k \in \mathbb{Z}$. We also show that u^{2k+1} cannot equal to $u^{2k'}$, as otherwise, we would have $2k+1=2k' \mod \phi(p)$, which is not possible as $\phi(p)$ is even.

Definition: suppose p is an odd prime; $a \in \mathbb{Z}_p$, we define the Legendre Symbol:

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} := \begin{cases} 0, & a = 0 \mod p \\ 1, & a = \square \\ -1, & a \neq \square \end{cases}.$$

Then $\left(\frac{\cdot}{p}\right): \mathbb{Z}_p \to \{0, \pm 1\}$ is a function.

Remark: instead, if we define $\left(\frac{\cdot}{p}\right): U_p \to \{\pm 1\}$, we would get a group homomorphism.

Note: $\#\{x \in \mathbb{Z}_p : x^2 = a \mod p\} = 1 + \left(\frac{a}{p}\right)$. This only works if p is a prime.

Theorem 2.11 If p is odd, then $\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}} \mod p$.

Proof: It is clear that if $a=0 \mod p$, then the statement holds trivially. By Fermat's theorem, if $a\neq 0 \mod p$, then $\left(a^{\frac{p-1}{2}}\right)^2=a^{p-1}=1 \mod p$, then $a^{\frac{p-1}{2}}=\pm 1$. If $a=\square$, then $a=u^{2k}$, where u is a primitive root. Then $a^{\frac{p-1}{2}}=u^{k(p-1)}=(u^{p-1})^k=1^k=1$ as desired. If $a\neq \square$, then $a=u^{2k+1}$, then

$$a^{\frac{p-1}{2}} = (u^{2k} \cdot u)^{\frac{p-1}{2}} = (u^{2k})^{\frac{p-1}{2}} \cdot u^{\frac{p-1}{2}} = 1 \cdot u^{\frac{p-1}{2}}.$$

Now u is primitive, then P-1 is the smallest exponential k for which $u^k=1$, so $u^{\frac{p-1}{2}}\neq 1 \Rightarrow u^{\frac{p-1}{2}}=-1$.

Corollary 2.11.1 $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$, i.e., $\left(\frac{\cdot}{p}\right) : U_p \to \{\pm 1\}$ is a homomorphism.

Proof: Since

$$\left(\frac{ab}{p}\right) = (ab)^{\frac{p-1}{2}} = a^{\frac{p-1}{2}} \cdot b^{\frac{p-1}{2}} = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).$$

Remark: this gives a way to compute $\left(\frac{n}{p}\right)$, one can factorize $n = p_1^{e_1} \cdots p_k^{e_k}$ and apply the corollary. But then we want to develop a theorem of computing $\left(\frac{q}{p}\right)$.

Notation: let Q_n denote the set of quadratic residues mod n.

Recall: that if G is a group acting on a set X and $|G| = p^n$ for some n. Then $|X| = |X^G| \mod p$ where $|X^G|$ is all the fixed point of X under G.

Notation: Let $S_n^p(a)$ denote the set

$$S_n^p(a) := \{(x_1, \dots, x_n) \in \mathbb{Z}_p^n : x_1^2 + \dots + x_n^2 = a\}.$$

Remark: $S_1^p(a) = \{x \in \mathbb{Z}_p : x^2 = a\}$, then $|S_1^p(a)| = 1 + \left(\frac{a}{p}\right)$.

Theorem 2.12 (Gauss)

1. (Reciprocity Law) If p, q are distinct odd primes, then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}.$$

Equivalently,

$$\left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \left(\frac{q}{p}\right).$$

I.e., $\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)$ are equal whenever p, q are not both 3 mod 4.

2. $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$, i.e., $2 = \square$ iff $p = 1, 7 \mod 8$.

3. $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$, i.e., -1 is a square iff $p = 1 \mod 4$.

Proof: Fix two odd primes p, q, then

$$S_q^p(1) = \{(x_1, \dots, x_q) \in \mathbb{Z}_p^q : x_1^2 + \dots + x_q^2 = 1\}$$

Note \mathbb{Z}_p acts on $s_q^p(1)$ by cyclic shift, to give $\varphi: \mathbb{Z}_q \to \operatorname{Aut}(s_q^p(1))$ we just need to define $\varphi(1)$, which is defined by

$$\varphi(1) \cdot (x_1, \dots, x_q) := (x_q, x_1, x_2, \dots, x_{q-1}).$$

By Theorem 2.8, we have $|S_q^p(1)| = |\text{Fixed points}| \mod q$. But if (x_1, \dots, x_q) is fixed by the action, then $x_1 = \dots = x_q$. So $x_1^2 + \dots + x_q^2 = 1 \Rightarrow qx^2 = 1$, i.e., $q = \square$, (x, \dots, x) is fixed if $q = x^{-2} \mod p$. So the number of fixed points is $1 + \binom{p}{q}$. So $|S_q^p(1)| = 1 + \binom{q}{p} \mod q$.

Now we try to count $|S_q^p(1)|$ via recursion and we would get $\left(\frac{p}{q}\right)$ somewhere. Express $|S_n^p(a)|$ in terms of $|S_{n-2}^p(a)|$, then $|S_{n-4}^p(a)|$ and so on. To make this recursive formula effective, need to know $|S_1^p(a)|$ and $|S_2^p(a)|$. We know $|S_1^p(a)| = 1 + \left(\frac{a}{p}\right)$. We claim

$$|S_2^p(a)| = |\{(x_1, x_2) \in \mathbb{Z}_p^2 : x_1^2 + x_2^2 = a\}| = \begin{cases} p - (-1)^{\frac{p-1}{2}}, & \text{if } a \neq 0, \\ p + (-1)^{\frac{p-1}{2}}(p-1) & \text{if } a = 0 \end{cases}.$$

For the case a = 0,

$$|S_2^p(0)| = \begin{cases} 2p-1, & \text{if } p=1 \mod 4\\ 1, & \text{if } p=3 \mod 4 \end{cases}$$

The case where $p=3 \mod 4$ is clear. If $p=1 \mod 4$. x=y=0 contributes to one solution, if $x,y\neq 0$, then $(y^{-1}x)^2+1=0 \mod p \Rightarrow y^{-2}x^2=-1 \mod p$, but $-1=k^2 \mod p$ for two values of k. Hence there would be x=yk can take 2(p-1) values. Then in total there are 2p-1 solutions.

We show that $|S_2^p(a)| = |S_2^p(1)|$ whenever $a \neq 0$. Note $|S_2^p(a)| =$ the number of solutions $x^2 + y^2 = a$. This is equal to

$$\begin{split} &= \sum_{\alpha \in \mathbb{Z}_p, \beta \in \mathbb{Z}_p, \alpha + \beta = p} |S_1^p(\alpha)| |S_1^p(\beta)| \\ &= \sum_{\alpha + \beta = a} \left(1 + \left(\frac{\alpha}{p} \right) \right) \left(1 + \left(\frac{\beta}{p} \right) \right) \\ &= p + \sum_{\alpha \in \mathbb{Z}_p} \left(\frac{\alpha}{p} \right) + \sum_{\beta \in \mathbb{Z}_p} \left(\frac{\beta}{p} \right) + \sum_{\alpha + \beta = \alpha} \left(\frac{\alpha}{p} \right) \left(\frac{\beta}{p} \right) \\ &= p + 0 + 0 + \sum_{\alpha + \beta = \alpha} \left(\frac{\alpha}{p} \right) \left(\frac{\beta}{p} \right) \end{split}$$

Whenever $a \neq 0$, we show

$$\sum_{\alpha+\beta=\alpha} \left(\frac{\alpha}{p}\right) \left(\frac{\beta}{p}\right) = \sum_{\alpha+\beta=1} \left(\frac{\alpha}{p}\right) \left(\frac{\beta}{p}\right).$$

Since $a \neq 0$, then a^{-1} exists in \mathbb{Z}_p , let $\alpha' = a^{-1}\alpha$, and $\beta' = a^{-1}\beta$, then $\alpha' + \beta' = 1$. Furthermore,

$$\left(\frac{\alpha'}{p}\right)\left(\frac{\beta'}{p}\right) = \left(\frac{a^{-1}\alpha}{p}\right)\left(\frac{a^{-1}\beta}{p}\right) = \left(\frac{a^{-1}}{p}\right)^2\left(\frac{\alpha}{p}\right)\left(\frac{\beta}{p}\right) = \left(\frac{\alpha}{p}\right)\left(\frac{\beta}{p}\right).$$

Now we formulate a recursive formula:

$$x_1^2 + \dots + x_n^2 = a \Leftrightarrow x_1^2 + \dots + x_{n-2}^2 = a - x_{n-1}^2 - x_n^2 = a'.$$

Here

$$a' = a - x_{n-1}^2 - x_n^2 = \begin{cases} a, & \text{for } p + (p-1)(-1)^{\frac{p-1}{2}} \text{ values} \\ \text{other arbutrant values,} & \text{for } p - (-1)^{\frac{p-1}{2}} \text{ values} \end{cases}.$$

Since

$$|S_n(a)| = \sum_{x_n=0}^{p-1} \sum_{x_{n-1}=0}^{p-1} |S_{n-2}(a')|.$$

Then

$$|S_n(a)| = \left[p + (p-1)(-1)^{\frac{p-1}{2}}\right] |S_{n-2}(a)| + \left[p - (-1)^{\frac{p-1}{2}}\right] \sum_{b=0, b \neq a}^{p-1} |S_{n-2}(b)|$$

Note $\sum_{b=0}^{p-1} |S_{n-2}(b)| = p^{n-2}$,

$$|S_n(a)| = \left[p + (p-1)(-1)^{\frac{p-1}{2}}\right] |S_{n-2}(a)| + \left[p - (-1)^{\frac{p-1}{2}}\right] \left[p^{n-2} - |S_{n-2}(a)|\right]$$
$$= \left(p - (-1)^{\frac{p-1}{2}}\right) \cdot p^{n-2} + p \cdot (-1)^{\frac{p-1}{2}} |S_{n-2}(a)|$$

Repeat this process we get

$$S_n(a) = p^{n-1} - (-1)^{\frac{p-1}{2} \cdot 2} p^{n-3} + p^2 |S_{n-4}(a)| (-1)^{\frac{p-1}{2} \cdot 2}$$

$$S_n(a) = p^{n-1} - (-1)^{\frac{p-1}{2} \cdot k} p^{n-1-k} + p^k |S_{n-2k}(a)| (-1)^{\frac{p-1}{2} \cdot k}$$
(*)

Specialize to n = q = 2k + 1, a = 1, where $S_1(1) = 1$:

$$(*) \Longrightarrow S_a(1) = p^{2k} + p^k(-1)^{\frac{p-1}{2} \cdot k}.$$

Apply modulo q, by Fermat, we have $p^{2k} = p^{q-1} = 1$ and by Euler's criterion, $p^k = p^{q-1} = \left(\frac{p}{q}\right)$. So $S_q^p(1) = 1 + (-1)^{\frac{p-1}{2} \cdot k} \cdot \left(\frac{p}{q}\right) \mod q$. But since $S_q^p(1) = 1 + \left(\frac{q}{p}\right) \mod q$, so

$$(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \left(\frac{p}{q}\right) = \left(\frac{q}{p}\right) \mod q.$$

Since $q \neq 2$, then

$$(-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)$$

Lastly, we show that $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$. Consider $S_2(a)$. Like before:

$$S_2(1) = p - (-1)^{\frac{p-1}{2}} = \begin{cases} 0, & p = 1 \mod 8 \\ 4, & p = 3 \mod 8 \\ 4, & p = 5 \mod 8 \\ 0, & p = 7 \mod 8 \end{cases}$$

Now if $x^2 + y^2 = 1$, so is $(\pm x, \pm y)$ and $(\pm y, \pm x)$, i.e., if the solutions are in packets of 8 unless it is of the form (x, x), (x, 0), (0, y) or (x, -x):

- $(x,0) \Longrightarrow x^2 = 1$, so 2 solutions;
- $(0,y) \Longrightarrow y^2 = 1$, so 2 solutions;
- $(x,x) \Longrightarrow 2$ is QR mod p, so $1 + \left(\frac{2}{p}\right)$
- $(x, -x) \Longrightarrow 1 + \left(\frac{2}{p}\right)$ solutions.
- So $6 + 2\left(\frac{2}{p}\right)$ solutions in total.

Consider modulo 8, we have

$$6+2\left(\frac{2}{p}\right) = \begin{cases} 0, & p=1 \mod 8\\ 4, & p=3 \mod 8\\ 4, & p=5 \mod 8\\ 0, & p=7 \mod 8 \end{cases}$$

Then we can see the supplementary law holds.

2.4 Jacobi Symbol

Definition: if b is an odd positive integer with prime factorization $b=p_1\cdots p_k$ (repetition allowed) and a is any integer, the Jacobi symbol $\left(\frac{a}{b}\right)_J$ is defined by setting

$$\left(\frac{a}{b}\right)_J := \left(\frac{a}{p_1}\right) \cdots \left(\frac{a}{p_k}\right).$$

Where $\left(\frac{\cdot}{p}\right)$ is the Legendre symbol.

Proposition 2.13 The following are easy to verify:

1. If
$$x = \mod b$$
, then $(\frac{x}{b})_J = (\frac{y}{b})_J$.

- 2. $(\frac{a}{b})_J$ is always 0 or ± 1 , and it will only be 0 if and only if gcd(a,b) > 1.
- 3. The Jacobi symbol is multiplicative on top and bottom: $(\frac{x}{b})_J(\frac{y}{b})_J = (\frac{xy}{b})_J$ and $(\frac{x}{a})_J(\frac{x}{b})_J = (\frac{x}{ab})_J$.
- 4. If a is a quadratic residue modulo b and is relative prime to b, then $(\frac{a}{b}) = 1$.

Lemma 2.14 Let $b = p_1 \cdots p_k$ be a product of odd prime, then

- $\sum_{i=1}^{k} \frac{p_i 1}{2} = \left[\left(\prod_{i=1}^{k} p_i \right) 1 \right] / 2 \mod 2.$
- $\sum_{i=1}^k \frac{p_i^2 1}{8} = \left[\left(\prod_{i=1}^k p_i^2 \right) 1 \right] / 8 \mod 2.$

Proposition 2.15 Suppose b is an odd integer, then

- 1. $\left(\frac{-1}{b}\right)_J = \left(-1\right)^{\frac{b-1}{2}}$.
- $2. \ (\frac{2}{b})_J = (-1)^{\frac{b^2-1}{8}}.$
- 3. If a is another odd positive integer with gcd(a, b) = 1, then

$$\left(\frac{a}{b}\right)_J \left(\frac{b}{a}\right)_I = (-1)^{\frac{(a-1)(b-1)}{4}}.$$

2.5 Two Interesting Problems

Mcnugget Problem: given two relatively prime positive integer, m, n. What is the biggest number than cannot be represented as non-negative linear combination of m, n?

Ans: mn - m - n.

Proof: Given $N \in \mathbb{N}^+$, find $a, b \geq 0$, s.t., am + bn = N. Define $X_N = \{(a, b) \in \mathbb{Z}_{\geq 0}^2 : am + bn = N\}$. Note X_N is a strict subset of $Y_N = \{(a, b) \in \mathbb{Z}^2 : am + bn = N\}$.

Theorem 2.16 Fix a solution (x_0, y_0) , i.e., $(x_0, y_0) \in Y_n$, then $Y_N = \{(x_0 + kn, y_0 - km) : k \in \mathbb{Z}\}$.

Observation 1: $\exists ! x \in \mathbb{Z} \text{ and } y \in \{0, 1, \dots, m-1\}, \text{ s.t., } xm + yn = N.$

Observation 2: N is representable nonnegatively iff $x \ge 0$. Proof: x > 0, then N = xm + yn is a viable representation. Conversely, if x < 0, then the solution set is of the form $(x_0 + kn, y_0 - km)$, so at least one component is negative.

Observation 3: Non representable set is the following:

$$\{mx + ny : x < 0, y \in \{0, 1, \dots, m - 1\}\}.$$

Then the maximum of the set happens when x = -1 and y = m - 1, i.e., -m + n(m - 1) = mn - m - n.

Problem 2: Given any positive integer N, describe whether its area of a Right-Angled Triangle having rational side length, i.e., $N = \frac{1}{2}ab$ and $a^2 + b^2 = c^2$, for some $a, b, c \in \mathbb{Q}$.

We can characterize a, b, c, i.e., Pythagorean triplets. Suppose $a, b, c \in \mathbb{Z}$, $a^2 + b^2 = c^2$, then scaling leaves the equation invariable. I.e., $(ka)^2 + (kb)^2 = (kc)^2$, $\forall k \in \mathbb{Z} \setminus \{0\}$ if and only if $a^2 + b^2 = c^2$. Call (a, bc) primitive, if a, b, c has no common divisor.

Theorem 2.17 (a,b,c) is a primitive triple if and only if $(a,b,c) = (s^2 - t^2, 2st, s^2 + t^2)$ for some relatively prime integers, with s > t and $s \neq t \mod 2$.

Proof: Easy to see that a, b both cannot be even or odd (mod 4). WLOG, let a be odd, b even, then c is odd. Method 1: $a^2 + b^2 = c^2$ if and only if $b^2 = (c - a)(c + a)$, since b is even, then $\left(\frac{b}{2}\right)^2 = \frac{c - a}{2} \cdot \frac{c + a}{2}$. Primitive condition implies $\gcd\left(\frac{c - a}{2}, \frac{c + a}{2}\right) = 1$. Note if we use a suitable substitution, then $xy = z^2$, $\gcd(x, y) = 1 \Rightarrow$ both x and y are perfect squares (By unique factorization in Z.) So $\frac{c - a}{2} = s^2$, $\frac{c + a}{2} = s^2$ for some $s, t \in \mathbb{Z}$, then $c = s^2 + t^2$, $a = s^2 - t^2$ and b = 2st. It is also clear that the extra conditions are also true.

Method 2: solve $a^2 + b^2 = c^2$ in \mathbb{Z} is equivalent to solve $\left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 = 1$ in \mathbb{Q} , i.e., finding primitive triples is equivalent to finding rational points on $x^2 + y^2$.

Pick an (obvious) rational point on \mathbb{C} , draw secant line with rational slope passing through \mathbb{C} . Check that the other point on the intersection $x^2 + y^2 = 1$ and the previous line is also rational. Note all rational points can be obtained in this way. Then we would get

$$(x,y) = \left(\frac{s^2 - t^2}{s^2 + t^2}, \frac{2st}{s^2 + t^2}\right).$$

Congruent number problem: more generally, $N \in \mathbb{Q}_{\geq 0}$ is congruent if and only if $N = \frac{1}{2}ab$ and $a^2 + b^2 = c^2$, for some $a, b, c \in \mathbb{Q}$.

Remark: N is congruent if and only if $N \cdot \left(\frac{p}{q}\right)^2$ is also congruent, for any $\frac{p}{q}$, i.e., condition only depends on $\bar{N} \in \mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^2$.

Since we can always find suitable $\frac{p}{q}$ to make $N \cdot \left(\frac{p}{q}\right)^2 \in \mathbb{Z}_{>0}$ and square-free, so we only interested in characterizing square-free N as congruent numbers.

2.6 Negative Results For Diophantine Equations

Example 1: $x^2 + y^2 + z^2 = 4^a(8b + 7)$, for some fixed $a, b \in \mathbb{Z}_{\geq 0}$ has no integer solutions.

We show this using induction on a:

Suppose a = 0, then $x^2 + y^2 + z^2 = 8b + 7$, taking mod 8 on both sides, we can see that $x^2 + y^2 + z^2 = 8b + 7$ has

15

no solutions.

Next assume there is no solution for a, we show that $x^2+y^2+z^2=4^{a+1}(8b+7)$ has no solutions. Reduce $\mod 4$, we have $x^2+y^2+z^2=0$, $x^2=y^2=z^2=0 \mod 4$, then 2 is a divisor of x,y,z. So we can divide 4 on both sides of the equation, we have $\left(\frac{x}{2}\right)^2+\left(\frac{y}{2}\right)^2+\left(\frac{z}{2}\right)^2=4^a(8b+7)$, which has no solutions. Hence $x^2+y^2+z^2=4^{a+1}(8b+7)$ must have no solution as well.

Remark: for any integer n not of the form $4^a(8b+7)$, $x^2+y^2+z^2=n$ has a solution.

Let S_2 denote the set of numbers n, s.t., $x^2 + y^2 = n$ has a solution, then S_2 is closed under multiplication. I.e., if $m \in S_2$ and $n \in S_2$, then $mn \in S_2$.

Example 2: $y^2 = x^3 + 7$ has no integer solution, however, it has a solution mod n for every $n \in \mathbb{Z}_{>0}$.

If x is even, then x = 2k, so $y^2 = 8xk^3 + 7$, and taking modular 3 on both sides, we have $y^2 = 3$ which is a contradiction. Hence x can only be odd. By adding 1 on both sides, we have $y^2 + 1 = (x + 2)(x^2 - 2x + 4)$. We can see x cannot be negative (check -1) is enough, so x + 2 is positive. We can also see $x = 1 \mod 4$, as if $x = 3 \mod 4$, then $y^2 = 2 \mod 4$.

Now we show that $y^2 + 1 = (x + 2)(x^2 - 2x + 4)$ has no solution. If $p|y^2 + 1$, which happens when -1 is a QR mod p, that is when $p = 1 \mod 4$. Since x is $1 \mod 4$, $x + 2 = 3 \mod 4$, and is a positive divisor of $y^2 + 1$. Then \exists a prime divisor of x + 2 that is $3 \mod 4$. The divisor of x + 2 that is $3 \mod 4$ is also a divisor of $y^2 + 1$ which is a contradiction, as if $q = 3 \mod 4$ is a prime that divides $y^2 + 1$, then $y^2 = -1 \mod q$, which cannot happen.

Example 3: Fermat's Last Theorem case n=4, i.e., $x^4+y^4=z^4$, $xyz\neq 0$, has no integer solution.

We can prove this using "descent" and parametrization and Pythagorean triples. Instead, we show $x^4 + y^4 = z^2$, $xyz \neq 0$ has no solution.

If $d = \gcd(x, y)$, then $d^4|x^4+y^4$, so $d^2|z$, then $\left(\frac{x}{d}\right)^4 + \left(\frac{y}{d}\right)^4 = \left(\frac{z}{d^2}\right)^2$. Hence WLOG, we can assume that $\gcd(x, y) = 1$. Both x, y cannot be even and both cannot be odd, as otherwise we get $2 = z^2 \mod 4$. WLOG, let x be even, y odd.

By Pythagorean Triple Parametrization, $(x^2)^2 + (u^2)^2 = z^2$, we have $x^2 = 2st$, $y^2 = s^2 - t^2$ and $z = s^2 + t^2$, where $\gcd(s,t)=1$, s>t, $s\neq t \mod 2$. From $y^2=s^2-t^2$, we get s is odd, t is even, so let t=2k, then $x^2=4sk$, which yields $\left(\frac{x}{2}\right)^2=sk$. Since $\gcd(s,k)=1$, then both s and k are squares. So we can let $s=a^2$ and $k=b^2$, so $y^2=(a^2)^2-(2b^2)^2$.

Therefore, $(2b^2)^2 + y^2 = (a^2)^2$ which is again a Pythagorean triple $(y, 2b^2, a^2)$. So $y = m^2 - n^2$, $2b^2 = 2mn$ and $a^2 = m^2 + n^2$, for some $m, n \in \mathbb{Z}$, $\gcd(m, n) = 1$, $m \neq n \mod 2$. Then $b^2 = mn$, so m, n are squares. Let $m = v^2, n = w^2$, then $a^2 = v^4 + w^4$.

Note a < z, therefore start with a solution, we get a "smaller" solution. Then by "descent", no such solution exists.

2.7 Pell's Equation

Consider the diophantine equation of the form $x^2 - dy^2 = 1$, it will always have trivial solution of the form $(\pm 1, 0)$. Note if d is negative, then the equation becomes $x^2 + cy^2 = 1$, where $c \ge 1$, so it will have no non-trivial solutions. If d is a perfect square, i.e., $d = c^2$, then the equation becomes (x - cy)(x + cy) = 1, and we can easily get the solutions. Hence we consider the case where d is positive and not a perfect square. In this case, there is always a solution, in fact there are infinitely many solutions. The set of solutions form a group isomorphic to \mathbb{Z} . Then to get all the solution, it suffices to find the solution corresponding to 1 or -1 under this isomorphism. To do this, we must use Diophantine approximation, i.e., to get rational approximations to \sqrt{d} .

Finding solutions to $x^2 - dy^2 = 1$ is the same as studying $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}$ and find the elements in $\mathbb{Z}[\sqrt{d}]$ that has norm 1.

Observations:

- 1. $\mathbb{Z}[\sqrt{d}]$ is a ring.
- 2. $x + y\sqrt{d} = x' + y'\sqrt{d}$ if and only if x = x' and y = y'.
- 3. If $x^2 dy^2 = 1$ has a solution, (a, b), (a', b'). Then the coefficients of $(a + b\sqrt{d})(a' + b'\sqrt{d}) = (aa' + bb'd) + \sqrt{d}(ab' + a'b)$ gives another solutions. Then the norm one element of $\mathbb{Z}[\sqrt{d}]$ forms a subgroup.
- 4. If (a,b) is a solution, then coefficients of $(a+b\sqrt{d})^k$, $k \in \mathbb{Z}$ also gives a solution. If k>0, then apply 3 repeatedly. If k=0, we get the trivial solution. If k<0: $(a+b\sqrt{d})^{-1}=a-b\sqrt{d}$ which clearly solves $x^2-dy^2=1$.
- 5. We need to find a "generating solution" (a, b) such that procedure 4 gives all the solutions. Intuitively, find the" smallest positive solution", nonetheless in the ring $\mathbb{Z}[\sqrt{d}]$, it is not necessarily the case that $a + b\sqrt{d} \ge a' + b'\sqrt{d}$ if and only if $a \ge a'$ and $b \ge b'$.

Proposition 2.18 Let (a,b) be a solution and $a+b\sqrt{d}>1$. Then $a \geq 2, b \geq 1$. If (x,y), (a,b) are two solutions, $x,y,a,b \geq 0$. Then $a+b\sqrt{d} < x+y\sqrt{d}$ if and only if a < x and b < y, if and only if a < x or b < y.

Proof: $a + b\sqrt{d} > 1$ if $\frac{1}{a + b\sqrt{d}} = a - b\sqrt{d} < 1$. So $a + b\sqrt{d} > a - b\sqrt{d}$, so $2b\sqrt{d} > 0 \Rightarrow b \ge 1$. $a^2 - db^2 = 1$, $b \ge 1$, then $a^2 = 1 + db^2$, so $a \ge 2$.

If a < x and b < y, then clearly $a + b\sqrt{d} < x + y\sqrt{d}$. Now suppose $x, y, a, b \ge 0$, we have $a, x \ge 1$. We have $a + b\sqrt{d} < x + y\sqrt{d}$, so $a - b\sqrt{d} > x - y\sqrt{d}$. Then $(a + x) + (b - y)\sqrt{d} < (a + x) + (y - b)\sqrt{d}$. So y > b. Then using the fact (a, b), (x, y) are solutions, then we get a < x.

Theorem 2.19 Assume $(x_1, y_1) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$ is a solution with y_1 minimal, then all the solutions are coefficients of numbers of the form $\pm (x_1 + y_1 \sqrt{d})^k : k \in \mathbb{Z}$.

Proof: Suppose $(x,y) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$ is a positive solution, then $x_1 + y_1\sqrt{d} > 1 \Rightarrow (x_1 + y_1\sqrt{d})^k \to \infty$ as $k \to \infty$. To show $x + y\sqrt{d} = (x_1 + y\sqrt{d})^k$ for some k, we argue via contradiction. That is we can find k > 0, s.t., $(x_1 + y_1\sqrt{d})^k < x + y\sqrt{d} < (x_1 + y_1\sqrt{d})^{k+1}$. Then divide $(x_1 + y_1\sqrt{d})^k$, we get $1 < x' + y'\sqrt{d} < x_1 + y_1\sqrt{d}$, which contradicts the minimality of y_1 . Hence it must be the case that $x + y\sqrt{d} = (x - 1 + y_1\sqrt{d})^k$ for some k. Similarly, we can show for the negative case.

Then it remains to obtain the "minimal solution". Earlier we saw $x^2 - dy^2 = 1$, then $x^2 = 1 + dy^2 \Leftrightarrow \frac{x}{y} = \sqrt{d + \frac{1}{y^2}} \approx \sqrt{d}$. So we need "good" rational approximation to the irrational number \sqrt{d} .

2.8 Continued Fractions and Rational Approximations

We can get rational approximation to irrationals (more specifically \sqrt{a} in this case) via continued fraction. Any rational number can be written in forms of

$$a_1 + \frac{1}{a_2 + \frac{1}{a_{k-1} + \frac{1}{a_k}}}$$
.

This expression can be calculated using Euclidean Algorithm and is essentially unique. Note the process will eventually terminate, so it can be denoted by $[a_1, a_2, \dots, a_{k-1}, a_k]$, where $a_k > 1$. Since the expression is unique, then the tuple $[a_1, a_2, \dots, a_k]$ is also unique.

Next, if we consider an irrational number, we can do the same process, its just that it will never end. For example $\sqrt{2} = [1, 2, 2, \cdots]$.

Definition: for an finite continued fraction $c = [a_0, a_1, \dots, a_k]$, its truncation $c_n = [a_0, \dots, a_n]$, (n < k), is called a convergent.

Proposition 2.20 $c = [a_0, \dots, a_k], \ a_i > 0.$ Let $p_{-1} = 1, \ p_0 = a_0, \ q_{-1} = 0, \ q_0 = 1, \ and \ p_n = a_n p_{n-1} + p_{n-2}, \ q_n = a_n q_{n-1} + q_{n-2}.$ Then

- 1. $p_n > p_{n-1}, q_n > q_{n-1}$.
- $2. c_n = \frac{p_n}{q_n}.$
- 3. $p_n q_{n-1} q_n p_{n-1} = (-1)^{n-1}$.
- 4. $\frac{p_n}{q_n} \frac{p_{n-1}}{q_{n-1}} = \frac{(-1)^{n-1}}{q_n q_{n-1}}$.
- 5. $p_n q_{n-2} p_{n-2} q_n = (-1)^{n-2} a_n$, $c_n c_{n-2} = \frac{(-1)^{n-2} a_n}{q_n q_{n-2}}$.
- 6. $c_1 > c_3 > c_5 \cdots > \cdots > c_6 > c_4 > c_2$.
- 7. For n < k, we have $|c c_n| \le \frac{1}{q_n q_{n+1}} < \frac{1}{q_n^2}$.

Proof:

- 1. Trivial.
- 2. Verify from the definition of c_n

3.

$$p_n q_{n-1} - q_n p_{n-1} = (a_n p_{n-1} + p_{n-2}) q_{n-1} - (a_n q_{n-1} + q_{n-2}) p_{n-1}$$

$$= p_{n-2} q_{n-1} - q_{n-2} p_{n-1}$$

$$= \cdots$$

$$= (-1)^n (a_0 \cdot 0 - 1 \cdot 1)$$

$$= (-1)^{n-1}$$

- 4. This is by direct computation.
- 5. Similar to the previous two statements.
- 6. By 5, if n is even, then $c_n c_{n-2} > 0$, hence $c_2 < c_4 < \cdots$. If n is odd, then $c_n c_{n-2} < 0$, so $c_1 > c_3 > \cdots$. Also we want to show $c_{2n+1} > c_{2n}$, by 4, we have $c_{2n+1} c_{2n} = \frac{(-1)^{2n}}{q_{2n+1}q_{2n}} > 0$.
- 7. If k is odd, then $c_1 > c_3 > \cdots > c = c_k > c_{even}$. Similarly, if k is even, then $c_{odd} > c = c_k > \cdots > c_4 > c_2$. If n < k, then $|c c_n| \le |c_{n+1} c_n|$, since c is between c_n and c_{n-1} . So $|c c_n| \le \frac{1}{q_n q_{n+1}} < \frac{1}{q_n^2}$.

Definition: for a sequence (a_0, a_1, \dots) , $a_i > 0$. Define the infinite continued fraction $a = [a_0, a_1, \dots] := \lim_{n \to \infty} [a_0, a_1, \dots, a_n]$. Similar to 2.20, we can check that both the even and odd terms converges to a limit. These two limits are equal since $|c_n - c_{n-1}| = \frac{1}{q_n q_{n-1}}$, then letting $n \to \infty$, we have the two limits are equal.

Proposition 2.21 Different positive numbers have different continued fraction expression.

Proof: Since the limit of the continuous fraction expression is unique.

Fact: any recurring infinite continued fraction must be a quadratic irrational, i.e., it satisfies a degree 2 equation and irrational. The converse is also true (Not trivial).

Theorem 2.22 (Dirichlet) For arbitrary irrational α , there exists infinitely many $\frac{p}{q}$, $p,q \in \mathbb{Q}$, such that

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{2q^2} \quad (*).$$

And if (*) is true, then $\frac{p_n}{q_n}$ must be a convergent of the continued fraction for α .

Proof: Let $\frac{p_n}{q_n} = c_n$ be a convergent for c_n . Suppose that none of c_n, c_{n+1} satisfies *. $|c_n - c_{n+1}| = |c_n - \alpha| + |c_{n+1} - \alpha|$, since α is in between c_n and c_{n+1} . Then

$$(c_n - c_{n+1})^2 \ge 4|c_n - \alpha||c_{n+1} - \alpha|.$$

But equality cannot happen, because otherwise we have $|c_n-\alpha|=|c_{n+1}-\alpha|$, so α is rational, which is a contradiction. So we have

$$|c_n - c_{n+1}|^2 > 4\frac{1}{2q_n^2} \cdot \frac{1}{2q_{n+1}^2} = \frac{1}{q_n^2 q_{n+1}^2} \Rightarrow |c_n - c_{n+1}| > \frac{1}{q_n q_{n+1}}.$$

This contradicts with the fact that $|c - c_n| \leq \frac{1}{q_n q_{n+1}}$.

Lemma 2.23 If $\alpha \in \mathbb{R} - \mathbb{Q}$ and $\frac{p}{q}$ is a non-convergent that satisfies $\left|\alpha - \frac{p}{q}\right| < \frac{1}{2q^2}$. If $\frac{p_n}{q_n}$, $\frac{p_{n+1}}{q_{n+1}}$ are two continuous fraction convergent with $q < q_{n+1}$, then $|q_n \alpha - p_n| < |q\alpha - p|$.

Proof: Suppose towards a contradiction $|q\alpha - p| \leq |q_n\alpha - p_n|$. Since

$$\begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} p_n & p_{n+1} \\ q_n & q_{n+1} \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}.$$

Since the determinant of the matrix is ± 1 , so invertible in \mathbb{Z} . So $p = x_{p_n} + yp_{n+1}$, $q = xq_n + yq_{n+1}$. Since $q < q_{n+1}$, x, y have opposite signs (as $\frac{p}{q}$ is not a convergent). Recall, $\alpha - \frac{p_n}{q_n}$ and $\alpha - \frac{p_{n+1}}{q_{n+1}}$ have opposite signs. So $x(\alpha - \frac{p_n}{q_n})$ and $y(\alpha - \frac{p_{n+1}}{q_{n+1}})$ have the same sign. So,

$$|q\alpha - p| = |(xq_n + yq_{n+1})\alpha - (xp_n + yp_{n+1})|$$

$$= |x(q_n\alpha - p_n) + y(q_{n+1})\alpha - p_{n+1})|$$

$$= |x||q_n\alpha - p_n| + |y||q_{n+1}\alpha - p_{n+1}|$$
 (same sign)
$$> |q_n\alpha - p_n|$$

However, this is a contradiction. Then it must be the case $|q_n\alpha - p_n| < |q\alpha - p|$.

Proposition 2.24 If $\alpha \in \mathbb{R} - \mathbb{Q}$ and $\frac{p}{q}$ is a rational number that satisfies $\left| \alpha - \frac{p}{q} \right| < \frac{1}{2q^2}$, then $\frac{p}{q}$ has to be continuous fraction convergent of α .

Proof: Suppose not, let $\left\{\frac{p_n}{q_n}\right\}_{n\geq 1}$ be the sequence of convergence. $p_n, q_n \to \infty$ as $n \to \infty$. Let n be such that $q_n \leq q < q_{n+1}$. Suppose $q_n < q < q_{n+1}$. Then applying Lemma 2.23, we have

$$|q_n \alpha - p_n| < q|\alpha - \frac{p}{q}| < q \cdot \frac{1}{2q^2} = \frac{1}{2q}.$$

Hence $|\alpha - \frac{p_n}{q_n}| < \frac{1}{2qq_n}$. But notice

$$\left|\frac{1}{q_nq} \le \left|\frac{p_nq - pq_n}{q_nq}\right| = \left|\frac{p_n}{q_n} - \frac{p}{q}\right| \le \left|\frac{p}{q} - \alpha\right| + \left|\alpha - \frac{p_n}{q_n}\right| < \frac{1}{2q^2} + \frac{1}{2qq^n} = \frac{q_n + q}{2q^2q_n}.$$

Hence we have $2q < q_n + q$, but then we have $q < q_n$ contradicting $q_n < q$. So, it must be the case $q_n = q$.

Remark: this shows that any solution to the Pell's Equation has to come from a convergent.

Theorem 2.25 One of the three consecutive convergents satisfies

$$\left|\alpha - \frac{p_n}{q_n}\right| < \frac{1}{\sqrt{5}q_n^2}.$$

Proof: Suppose towards a contradiction, $|\alpha - \frac{p_i}{q_i}| \ge \frac{1}{\sqrt{5}q_i^2}$ for i = n, n+1, n+2.

$$\begin{vmatrix} \alpha - \frac{p_n}{q_n} \end{vmatrix} + \begin{vmatrix} \alpha - \frac{p_{n+1}}{q_{n+1}} \end{vmatrix} = \begin{vmatrix} \frac{p_n}{q_n} - \frac{p_{n+1}}{q_{n+1}} \end{vmatrix} = \frac{1}{q_n q_{n+1}}$$
$$\frac{1}{\sqrt{5}q_n^2} + \frac{1}{\sqrt{5}q_{n+1}^2} \le \frac{1}{q_n q_{n+1}}$$
$$\frac{q_{n+1}}{q_n} + \frac{q_n}{q_{n+1}} \le \sqrt{5}$$

Then $\frac{q_{n+1}}{q_n} < \frac{\sqrt{5}+1}{2}$, as $x \mapsto x + \frac{1}{x}$ is strictly increasing function on $(1, \infty)$, so if $x \ge \frac{\sqrt{5}+1}{2}$, then $x + \frac{1}{x} \ge \sqrt{5}$. But in this case $\frac{q_{n+1}}{q_n}$ cannot be irrational, so it cannot be $\frac{\sqrt{5}+1}{2}$.

Similarly, we have

$$\frac{q_{n+2}}{q_{n+1}} < \frac{\sqrt{5}+1}{2} \Rightarrow \frac{a_{n+2}q_{n+1}+q_n}{q_{n+1}} < \frac{\sqrt{5}+1}{2}.$$

Since $a_{n+2} > 1$, then $1 + \frac{q_n}{q_{n+1}} < \frac{\sqrt{5}+1}{2}$. So

$$\frac{\sqrt{5}+1}{2} > 1 + \frac{q_n}{q_{n+1}} > 1 + \frac{\sqrt{5}-1}{2}$$

Which is a contradiction.

Remark: note the best approximation we can have is $\sqrt{5}$. That is That is if $\lambda > \sqrt{5}$, then $\alpha = \frac{\sqrt{5}+1}{2}$ and any number "equivalent" to it: $\alpha \sim \beta$ if CF of α and CT of β agrees after a finite stage only has finitely many $\frac{p}{q}'s$, s.t., $|\alpha - \frac{p}{q}| < \frac{1}{\lambda q^2}$.

Since a good enough approximation must be a convergent as $\frac{1}{\lambda q^2} < \frac{1}{2q^2}$, then CF of $\frac{1+\sqrt{5}}{2} = [1,\bar{1}]$. Then the convergent are $\frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \cdots$, which are ratio's of consecutive Fibonacci numbers.

To test this inequality, we can find the general formula for convergent,

$$F_n = \frac{\phi^n - \psi^n}{\phi - \psi}$$
, where $\phi = \frac{\sqrt{5} + 1}{2}$, $\psi = \frac{1 - \sqrt{5}}{2}$.

Compute

$$\lim_{n \to \infty} q_n^2 |\alpha - \frac{p_n}{q_n}| = \frac{1}{\sqrt{5}}.$$

This means, all but finitely many $\frac{p_n}{q_n}$ are such that

$$\left|\alpha - \frac{p_n}{q_n}\right| \ge \frac{1}{\lambda q_n^2}.$$

Proposition 2.26 A real number α is approximable by infinitely many rational $\frac{p}{q}$ with $|\alpha - \frac{p}{q}| < \frac{1}{q^2}$, then α is irrational.

Proof: Suppose α is irrational, then the statement holds. Next, suppose $\alpha = \frac{a}{b}$, then

$$\left| \frac{a}{b} - \frac{p}{q} \right| = \left| \frac{aq - bp}{bq} \right|.$$

If $b \leq q$, this can give at most finitely many solutions.

If q > b, then we need |aq - bp| < 1, i.e., aq = bp. But then $\frac{a}{b} = \frac{p}{q}$, which means at most 1 solution in this case. Hence combined, there can have at most finitely many such $\frac{p'}{q}s$.

2.9 Transcendental Numbers

Criterion for testing Transcendence:

Note a rational number is a solution of a degree 1 equation with integer coefficient, that is $\frac{p}{q}$ satisfies qx - p = 0. An algebraic number is one that is a solution of some polynomial with integer coefficient.

Transcendental numbers are real numbers that is not an algebraic numbers.

Theorem 2.27 (Liouville) Suppose α is algebraic number of deg d > 1, that is the minimal degree of a polynomial that the number satisfies is of degree d. Then there is a positive real constant A (depending on α), s.t.,

$$\left|\alpha - \frac{p}{q}\right| > \frac{A}{q^d} \text{ for all } \frac{p}{q}.$$

Using this we can check that $\alpha = \sum_{n>0} \frac{1}{10^{n!}}$ is not algebraic.

Say α is algebraic, then $|\alpha - \frac{p}{q}| > \frac{\overline{A}}{q^d}$. If we can produce a sequence of $\frac{p_n}{q_n}$, s.t., $|\alpha - \frac{p_n}{q_n}| < \frac{1}{q_n^n}$. Then for any n, we must have, $\frac{1}{q_n^n} > \frac{A}{q_n^\alpha}$, but this is a contradiction, as d is fixed, and $n \to \infty$, so $\frac{1}{q_n^{n-d}} \to 0 < A$. And of course this can be done by taking the partial sums of α .

2.10 Solution of Pell's Equation

Algebraic Comment: The solutions of $x^2 - dy^2 = \pm 1$ are exactly the units of $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}$. This is seen using the norm map $N : \mathbb{Z}[\sqrt{d}] \to \mathbb{Z}$, $a + b\sqrt{d} \mapsto a^2 - d^2b = (a + b\sqrt{d})(a - b\sqrt{d})$. Note N is multiplicative, that is $N(\alpha\beta) = N(\alpha)N(\beta)$. Then if α is a unit, then $\exists \beta \in \mathbb{Z}[\sqrt{d}]$, s.t., $\alpha\beta = 1$, so we must have $N(\alpha\beta) = N(1)$, $N(\alpha) = \pm 1$, i.e., $a^2 - db^2 = \pm 1$, so (a,b) is a solution to $x^2 - dy^2 = \pm 1$. Conversely, if $N(\alpha) = \pm 1$, then $\alpha\bar{\alpha} = \pm 1$, then one of $\pm \bar{\alpha}$ is the inverse of α .

Theorem 2.28 Pell's Equation $(x^2 - dy^2 = 1)$ has a non-trivial solution.

Proof: Look into continuous fraction convergents of \sqrt{d} . Let $\frac{p}{q}$ be one such, then $|\sqrt{d} - \frac{p}{q}| < \frac{1}{q^2} < 1$. Also, $|\sqrt{d} + \frac{p}{q}| = |\frac{p}{q} - \sqrt{d}| + 2\sqrt{d} < 1 + 2\sqrt{d}$. So

$$|p^2 - dq^2| = q^2 \left| \frac{p^2}{q^2} - d \right| < q^2 \cdot \frac{1}{q^2} \cdot (1 + 2\sqrt{d}) \Rightarrow |p^2 - dq^2| < 1 + 2\sqrt{d}.$$

Since p,q,d are integers, then $|p^2-dq^2|$ is also an integer, so there is some $0 \le r < 1+2\sqrt{d}$, s.t., $p^2-dq^2=r$ for infinitely many convergent $\frac{p}{q}$. I.e., we have produced infinitely many $\alpha \in \mathbb{Z}[\sqrt{d}]$, s.t., $N(\alpha)=r$, where $r<1+2\sqrt{d}$. We want to find α' with $N(\alpha')=1$. Then for any two different α_1,α_2 , s.t., $N(\alpha_1)=N(\alpha_2)=r$, we have $N(\frac{\alpha_1}{\alpha_2})=\frac{N(\alpha_1)}{N(\alpha_2)}=1$. So it suffices to find α_1,α_2 with the above condition, s.t., $\alpha'=\frac{\alpha_1}{\alpha_2}$ is in $\mathbb{Z}[\sqrt{d}]$. Consider $p \mod r$, there are finitely many possibilities. Pick (p_1,q_1) , (p_2,q_2) satisfying $x^2-dy^2=r$, s.t., $p_1=p_2 \mod r$ and $q_1=q_2 \mod r$. We claim $\frac{p_1+q_1\sqrt{d}}{p_2+q_2\sqrt{d}}=a+b\sqrt{d}\in\mathbb{Z}[\sqrt{d}]$ and (a,b) satisfies $x^2-dy^2=1$. And by direct computation, we have

$$\frac{p_1 + q_1\sqrt{d}}{p_2 + q_2\sqrt{d}} = \frac{p_1p_2 - q_1q_2d + (q_1p_2 - p_1q_2)\sqrt{d}}{p_2^2 - q_2^2d}.$$

Remark: $x^2 - dy^2 = -1$ may not have a solution. Reduce modulo d, we have $x^2 = -1$ mod d, and clearly this doesn't always have a solution. It only has a solution if primes $p = 3 \mod 4$ that divides d appears with even exponents.

Theorem 2.29

- 1. $\sqrt{d} = [a_0, \overline{a_1, \dots, a_{k-1}, 2a_0}]$ if d is positive and not a square.
- 2. All positive solution to $x^2 dy^2 = \pm 1$ are of the form (p_n, q_n) , where $\frac{p_n}{q_n}$ is a continuous fraction convergent of \sqrt{d} .
- 3. We define the period of d to be k. If k is even, then $x^2 dy^2 = -1$ has no solution and all the positive solutions of $x^2 dy^2 = 1$ are given by $x = p_{kr-1}$, $y = q_{kr-1}$, for $r = 1, 2, \cdots$. If k is odd, then $x^2 dy^2 = -1$ has a solution, and all the positive solutions are (p_{kr-1}, q_{kr-1}) , for $r = 1, 3, 5, \cdots$; and the positive solutions for $x^2 dy^2 = 1$ are given (p_{kr-1}, q_{kr-1}) , for $r = 2, 4, 6, \cdots$.

Theorem 2.30 Fix a solution $(a,b) \in \mathbb{Z}^2_{\geq 0}$ of $x^2 - dy^2 = 1$. Then for each $n \in \mathbb{Z} \setminus \{0\}$, every integer solution of $x^2 - dy^2 = n$ can be obtained from $(x' + y'\sqrt{d})(a + b\sqrt{d})^k$, where (x', y') is a solution of $x^2 - dy^2 = n$ with

$$|x'| \le \frac{\sqrt{|n|}}{2}(\sqrt{u} + \frac{1}{\sqrt{u}}), \quad |y'| \le \frac{\sqrt{|n|}}{2\sqrt{d}}(\sqrt{u} + \frac{1}{\sqrt{u}}).$$

where $u=(a+b\sqrt{d})$. If n>0, then we obtain a tighter bound, $|y'|\leq \frac{\sqrt{n}}{2\sqrt{d}}(\sqrt{u}-\frac{1}{\sqrt{u}})$.

3 Binary Quadratic Form

Prelude: which prime $p = x^2 + 2y^2$, for $x, y \in \mathbb{Z}$.

Answer: it happens if and only if $\left(\frac{-2}{p}\right) = 1$ or p = 2.

In general, we ask: what primes or numbers in general can be written as values of a given $ax^2 + bxy + cy^2$.

Definition:

- 1. We say $n \in \mathbb{Z}$ is represented by (a, b, c) form of $ax^2 + bxy + cy^2 = n$ has solutions in integers.
- 2. Discriminant $\Delta = b^2 4ac$.
- 3. f is definite if f > 0 or f < 0 for all values (x, y). It is semidefinite, if $f \ge 0$ or $f \le 0$ for all values (x, y).

Remark: if Δ is a perfect square, then $f(x,y) = (\alpha x + \beta y)(\gamma x + \delta y)$ with

$$\Delta = \left[\det \left(\begin{array}{cc} \alpha & \beta \\ \delta & \gamma \end{array} \right) \right]^2.$$

Solving f(x,y) = n amounts to factoring n and handle two linear equations. Hence in general, we do not consider the case when Δ is a perfect square.

Proposition 3.1 f is definite iff $\Delta < 0$; In this case x is positive definite iff a > 0, negative definite iff a < 0.

Proof: Calculus.

To see whether n can be represented by f is equivalent to see whether $\frac{n}{d^2}$ can be properly represented (x, y) are coprime by $\frac{1}{d^2}f$, for any $d \in \mathbb{Z} \setminus \{0\}$.

Proposition 3.2 Suppose $\Delta = 0$ or $1 \mod 4$, $n \in \mathbb{Z}$. There is a binary quadratic form of discriminant Δ , properly representing n, iff Δ is a quadratic residue mod n.

Proof: $\Leftarrow: \Delta = b^2 \mod 4n$, then $b^2 - \Delta = 4nc$ for some c. So $f(x,y) = nx^2 + bxy + cy^2$ has the same discriminant as Δ and properly represents n, as (1,0) solves f(x,y) = n.

 \Rightarrow : Suppose $ax^2 + bxy + cy^2 = n$ with gcd(x, y) = 1. Then $4a^2x^2 + 4abxy + 4acy^2 = 4an$, completing the square, we have

$$(2ax + by)^2 + (4ac - b^2)y^2 = 4an \Rightarrow (2ax + by)^2 = \Delta \cdot y^2 \mod 4n$$
 (*)

Since $(2ax + by^2) - \Delta y^2 = 4an$. So $a|\gcd(y,4n)$, then multiplying y^{-2} on both sides of (*), we have Δ is a quadratic residue mod $\frac{4n}{\gcd(y,4n)}$. Similarly, we get Δ is a quadratic residue mod $\frac{4n}{\gcd(x,4n)}$.

Notice $\operatorname{lcm}\left(\frac{4n}{\gcd(x,4n)},\frac{4n}{\gcd(y,4n)}\right)=4n$, because (x,y)=1, then Δ is a quadratic residue mod 4n.

Corollary 3.2.1 An odd prime p is (properly) represented by f if and only if $\left(\frac{\Delta}{p}\right) = 1$.

Proof: $\Delta = 0, 1 \mod 4$; and a number is a quadratic residue mod p iff it is a quadratic residue mod 4p.

It makes to collect all the binary quadratic forms with fixed discriminant Δ .

Observe: $f(x,y) = x^2 + y^2 [= g(x+y,y)]$, $g(x,y) = x^2 - 2xy + 2y^2 [= f(x-y,y)]$. Then n is representable by f if and only if n is representable by g. For representability purposes, can identify such forms that can be converted from one to another by integral linear change of variable.

 $f=ax^2+byx+cy^2$ is associated with the matrix $M=\begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix}$. Then $f(x,y)=v^TMv$, where $v=\begin{pmatrix} x \\ y \end{pmatrix}$. Then the change of variable above is via $v\mapsto Av$, so that $M_f=A^{-1}M_gA$. However, we need to ensure that $A\in GL_2(\mathbb{Z})$ and $A^{-1}\in GL_2(\mathbb{Z})$, that is $\det(A)=\pm 1$. For this specific case, we have $A=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.

In general, we will restrict that change of variables matrix A to have determinant 1. Observe that if f(v) has discriminant Δ , then f(Av) also has discriminant Δ . Hence we can define $SL_2(\mathbb{Z}) \curvearrowright$ the set of binary quadratic form having fixed discriminant Δ , $A \cdot f(v) := f(Av)$.

Notation: let S_{Δ} denote the set of all binary quadratic forms having fixed discriminant Δ .

Now consider $f = x^2 + y^2 \Rightarrow \Delta = -4$. Then p is represented by some form in S_{Δ} , iff $\left(\frac{-4}{p}\right)\left(\frac{-1}{p}\right) = 1$ if and only if p = 2 or $p = 1 \mod 4$. We claim without proving here that S_{Δ} has only one orbit under the action by $SL_2(\mathbb{Z})$, i.e., if $f, g \in S_{\Delta}$, then there exists an $A \in SL_2(\mathbb{Z})$, s.t., $A \cdot f = g$. Thus one can convert any form $f \in S_{\Delta}$ to $x^2 + y^2$, so $x^2 + y^2$ can represent any prime that is 1 mod 4, as well as 2.

Definition: we say $f = ax^2 + bxy + cy^2$ which is a BQF is reduced if

- $\bullet -|a| < b \le |a| \le |c|;$
- |a| < |c| if b = |a|;
- $b \ge 0$ if |a| = |c|.

Theorem 3.3 Fix $\Delta = 0$ or 1 mod 4; suppose f is reduced BQF in S_{Δ} . Then

- 1. If $\Delta < 0$: a, c has the same sign, $|a| \leq \sqrt{-\frac{\Delta}{3}}$;
 - If $\Delta > 0$: a, c has opposite signs $|a| \leq \frac{\sqrt{\Delta}}{2}$.

In both cases, there are finitely many reduced in S_{Δ} .

- 2. Every equivalence class in S_{Δ} have at least on reduced forms. But it may happen that two distinct reduced forms are equivalent (in fact, happens when $\Delta > 0$).
- 3. There are finitely many equivalence class in S_{Δ} .

Proof:

2 To show any BQF in S_{Δ} can be converted to a reduced form. Fact: $SL_2(\mathbb{Z})$ is generated by $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. We consider the effect of these generators acting on f(x,y):

$$S \cdot f(x,y) = cx^{2} - bxy + ay^{2}$$

$$S^{2} \cdot f(x,y) = f(x,y)$$

$$T^{m} \cdot f(x,y) = ax^{2} + (b + 2am)xy + (am^{2} + bm + c)y^{2}$$

Then we have a reduction algorithm:

- If $b \notin (-|a|, |a|]$, find the unique integer m_i s.t., $b + 2am \in (-|a|, |a|]$. Then apply T^m to f.
- Now we have $b \in (-|a|, |a|]$. Test if |a| = |c| and $|b| \ge 0$, in this case then f is already reduced. If b < 0 and |a| = |c|, then apply S and the new f is reduced; if |c| < |a|, then apply S and repeat the previous step.
- Eventually the process terminates, as |a| gets smaller than smaller, it can only terminate if it is already reduced, or end by applying S, which would also mean f is reduced.

Definition: we define the class number $h(\Delta)$ as the number of orbits of S_{Δ} under the action of $SL_2(\mathbb{Z})$.

Example; h(13) = 1, as for any reduced form, we need to have $|a| \le \frac{\sqrt{13}}{2} < 2$. So the only possible reduced forms are f = (-1, 1, 3) and g = (1, 1, -3). Next, we can check that f and g are equivalent by finding A, s.t., $g(x) = A \cdot f(x) = f(Ax)$, where $x \in \mathbb{R}^2$.

Example: h(-4) = 2, as it has two reduced forms f = (1, 0, 1) and g = (-1, 0, -1), and these two are not equivalent to each other.

Example: h(-40) = 4. There are 4 reduced forms with determinant -40: (1,0,10), (2,0,5), (-1,0,-10), (-2,0,-5), and none of them are equivalent to each other.

Proposition 3.4 Suppose f(x,y) and g(x,y) are equivalent quadratic forms, then f(x,y) and g(x,y) properly represent the same set of numbers.

Proof: Suppose $n \in \mathbb{Z}$ is properly represented by (x_0, y_0) , then $gcd(x_0, y_0) = 1$. Let $A \in SL_2(\mathbb{Z})$, s.t., $A \cdot f = g$, then $g\left(\left(A \cdot \begin{pmatrix} x \\ y \end{pmatrix}\right)\right) = n$. Let (a, b) be such that $ax_0 + by_0 = 1$, then $((a, b)A^{-1})A(x_0, y_0)^T = 1$, hence $A(x_0, y_0)^T$ is coprime.

Lemma 3.5 If f is a positive definite reduced from in S_{Δ} . Then the smallest positive values of f are a, c, a+c-|b| (in ascending order).

Proof: Direct computation.

Theorem 3.6 Suppose $\Delta < 0$ (i.e., the form is definite); $f, g \in S_{\Delta}$ reduced, then $f \sim g \Rightarrow f = g$.

Proof: $f \sim g \Leftrightarrow (-f) \sim (-g)$ by the same matrix A. And clearly, a positive definite form cannot be equivalent to a negative definite form. So, WLOG, we prove the theorem for positive definite forms.

Now suppose $f \sim g$, then by Lemma 3.5, the smallest integers properly represented by f and g are the same. The smallest values for f = (a, b, c) must be $a \leq c \leq a + c - |b|$; the smallest values of g = (a', b', c') must be $a' \leq c' \leq a' + c' - |b'|$. Then it must follow that a = a', a' = c and a + c - |b| = a' + c' - |b'|. So we have a = a', c = c'. Can use the inequalities in reduced forms to rule out the case b = -b', so we must get b = b'.

Corollary 3.6.1 If $\Delta < 0$, then $h(\Delta)$ is equal to the number of reduced forms in S_{Δ} .

For arbitrary Δ , $SL_2(\mathbb{Z})/S_{\Delta}$:= the set of orbits can be made into a group. This group is isomorphic to "ideal class group" of $\mathbb{Q}_{\sqrt{\Delta}} = \{a + b\sqrt{\Delta} \ a, b \in \mathbb{Z}\}.$

Remark: Dirichilet's Theorem: if p > 3 is a prime and $p = 3 \mod 4$, then

$$h(-p) = -\frac{1}{p} \sum_{n=1}^{p-1} \left(\frac{n}{p}\right) n.$$

Remark: $h(\Delta) = 1$ for $\Delta < 0$ happens 9 times, -1, -2, -3, -7, -11, -19, -43, -67, -163. For $\Delta > 0$, there is a conjecture that this happens for infinitely many Δ .

Previously, we have shown that odd prime p is represented by f iff $\left(\frac{\Delta}{p}\right) = 1$. If two forms in S_{Δ} are equivalent, then take the same values. So iff $h(\Delta) = 1$, and $\left(\frac{\Delta}{p}\right) = 1$, then any form in S_{Δ} will represent p. Note $x^2 + ny^2$ is always reduced in S_{-4n} .

When n = 1, $\Delta = -4$, $f = x^2 + y^2$ is reduced. Note h(-4) = 2, and there are only one positive definite form in S_{-4} . And $\left(\frac{-4}{p}\right) = \left(\frac{-1}{p}\right) = 1$ iff p = 2 or $p = 1 \mod 4$. Then $p = x^2 + y^2$ for some integers, iff p = 2 or $p = 1 \mod 4$.

When n = -5, then -20 is a QR of p iff $p = 1, 3, 7, 9 \mod 20$. If this is the case, then p is represented by some quadratic form in S_{-20} , but S_{-20} has two positive quadratic forms: $x^2 + 5y^2$ and $2x^2 + 2xy + 3y^2$.

Theorem 3.7 We can define an operation on the set of equivalent classes of S_{Δ} such that if two equivalence class e_1 and e_2 of S_{Δ} represents integers m_1 and m_2 , then $e_1 * e_2$ represents $m_1 m_2$.

Definition: let f=(a,b,c) and $g=(a',b',c')\in S_{\Delta}$. Assume $\gcd(a,a',\frac{b+b'}{2})=1$, then the composition f*g is $\left(aa',B,\frac{B^2-\Delta}{4aa'}\right)$, where B is the unique solution to

$$\begin{cases} B = b \mod 2a \\ B = b' \mod 2a' \\ B^2 = \Delta \mod 4aa' \end{cases}$$

Remark:

- 1. $\Delta = b^2 4ac = (b')^2 4a'c'$, so b and b' have the same parity, which means 2|b+b'.
- 2. Existence of B: The first two congruence gives $4aa' = 2a \cdot 2a' | (B b)(B b')$. So $B^2 (b + b')B + b'b = 0$ mod 4aa'. Then the third congruence is equivalent to $(\frac{b+b'}{2})B = \frac{bb' + \Delta}{2} \mod 2aa'$. The original equations are equivalent to

$$\begin{cases} a'B = a'b \mod 2aa' \\ AB = ab' \mod 2aa' \\ \frac{b+b'}{2}B = \frac{bb'+\Delta}{2} \mod 2aa' \end{cases}$$

Since $\gcd(a,a',\frac{b+b'}{2})=1$, then $1=pa'+qa+r\cdot\frac{b+b'}{2}$ for some p,q,r. Hence $B=pa'b+qab'+r\frac{bb'+\Delta}{2}$.

3. If $gcd(a, a', \frac{b+b'}{2}) = 1$ is not satisfied, then we need to find equivalent forms such that the condition holds (This can be done).

Theorem 3.8 $S_{\Delta}/SL_2(\mathbb{Z}) = the \ set \ of \ primitive \ equivalence \ classes \ of \ S_{\Delta}, \ is \ a \ group \ with \ respect \ to \ the \ composition \ defined \ above.$

Proof: Well-definedness: Difficult.

Associativity: computationally tedious.

Identity:

$$f_0 = \begin{cases} (1, 1, \frac{1-\Delta}{4}), & \Delta \text{ odd} \\ (1, 0, -\frac{\Delta}{4}), & \Delta \text{ even} \end{cases}.$$

We check that f_0 is the identity, that is given $f \in S_{\Delta}$, then $f * f_0 = f_0 * f = f$.

Inverse:
$$(a, b, c)^{-1} = (a, -b, c)$$
.

Next we consider how many solutions to f(x,y) = n?

E.g. if $p = 1 \mod 4 \Leftrightarrow p = x^2 + y^2$: $(x, y) \to (y, x), (x, y) \to (\pm x, \pm y)$, hence there are eight solutions.

 $\Delta > 0$: e.g. $x^2 - dy^2 = 1$, (d > 0), then there is infinitely many solutions, the solution set is isomorphic to $\{\pm 1\} \times \mathbb{Z}$. Or $x^2 - dy^2 = n$, then it has either no solution or infinitely many solutions.

Definition: $\mathcal{O}_{\Delta} = \{x + y\sqrt{p_{\Delta}} : x, y \in \mathbb{Z}\} \subset \mathbb{Q}(\sqrt{d})$, where

$$p_{\Delta} = \begin{cases} \sqrt{\frac{\Delta}{4}}, & \Delta = 0 \mod 4\\ \frac{1+\sqrt{\Delta}}{2}, & \Delta = 1 \mod 4 \end{cases}$$

And define $M_F = \{xa + y(b + \sqrt{\Delta}) : x, y \in \mathbb{Z}\} \subset \mathbb{Q}(\sqrt{d}).$ Then $\mathcal{O}_{\Delta} \curvearrowright M_f$: $(u + vp_{\Delta}) \cdot (xa + y\frac{b + \sqrt{\Delta}}{2}) = x'a + y'\frac{b + \sqrt{\Delta}}{2}.$

Proposition 3.9 If $\Delta > 0$ for a binary quadratic form f(x,y), then

1. There is a bijection $\psi: \{(x,y) \in \mathbb{Z}^2 : f(x,y) = n\} \leftrightarrow \{\gamma \in M_f : N(\gamma) = an\}, (x,y) \mapsto ax + y \frac{b + \sqrt{\Delta}}{2}, \text{ where } N(a + d\sqrt{b}) = \sqrt{a^2 - db^2}.$

- 2. $\mathcal{O}_{\Delta,1}^x = norm \ 1$ units of $Q_{\Delta} = solutions$ of Pell's Equation. $\mathcal{O}_{\Delta,1}^x \curvearrowright the solution set of <math>f(x,y) = n$ by multiplication. Since $\mathcal{O}_{\Delta,1}^x$ is infinite, then the solution set f(x,y) = n is either empty or infinite.
- 3. The number of orbits of $\mathcal{O}_{\Delta,1}^x$ acting on the solution set of f(x,y) = n is finite and we can give explicit description of representatives in each orbit (in terms of bounds on |y|).

If $\Delta < 0$: then by completing the square, f(x,y) = n can only have finitely many solutions.

Proposition 3.10 f properly represents n if and only if $f \sim (n, b, c)$.

If this is the case, then $b^2 = \Delta \mod 4n$ and b can made such that $0 \le b < 2n$.

Let $\mathcal{G}_f(n)$ = the set of all such g = (n, b, c). Then a proper representation of n gives an element in $\mathcal{G}_f(n)$. If $A \cdot f = f$, then this gives a different representation of n by f.

Upshot: proper representations of n by f is in bijection with $|\mathcal{G}_f(n)||Aut(f)|$, where $Aut(f) = \{A \in SL_2(\mathbb{Z}) : A \cdot f = f\}$.

If $\Delta < 0$, then

$$|Aut(f)| = \begin{cases} 6, & a = b = c \\ 4, & a = c, b = 0 \\ 2, & \text{otherwise} \end{cases}$$

To calculate |Aut(f)|, we note if $f \sim g$, then $Aut(f) \cong Aut(g)$, so |Aut(f)| = |Aut(g)|. So we only need to consider reduced form g.

If we denote $r_f(n) = \mathcal{G}_f(n)$, then

$$r_{\Delta}(n) = \sum_{f \in S_{\Delta} \text{ reduced}} r_f(n) = \#\{b \in \mathbb{Z} : b^2 = \Delta \mod 4n, \ 0 \le b < 2n\}.$$

Class number formula: d < -4, with some conditions, then

$$h = \frac{\sqrt{-d}}{\pi} L(1, \chi_d),$$

where

$$\chi_d(n) = \left(\frac{d}{n}\right)$$

, where (÷) is the generalization of the Jacobi symbol:

$$\left(\frac{a}{2}\right) = \begin{cases} 1, & \pm 3 \mod 8 \\ -1, & \pm 1 \mod 8 \\ 0 & 2|a \end{cases}$$

Theorem 3.11 If $\Delta < 0$, with some conditions then

$$r_{\Delta}(n) = \begin{cases} 0 & \text{if } p^2 | n \text{ for some prime factor } p \text{ of } \Delta \\ \prod_{p|n,(p,d)=1} (1 + \chi_d(p)), & \text{othwerise.} \end{cases}.$$