数季电路与逻辑设计

Digital circuit and logic design

● 第三章 集成门电路与触发器

主讲教师 于俊清

■提纲

数字集成电路的分类

半导体器件的开关特性

门电路

触发器

■门电路

简单逻辑门电路

TTL集成逻辑门电路

典型TTL与非门 🔣

常用的集成TTL门电路

两种特殊的门电路

CMOS集成逻辑门电路

MOS晶体管的静态开关特性

CMOS集成门电路

正逻辑和负逻辑

■三极管的工作原理

参考阅读: http://www.elecfans.com/yuanqijian/sanjiguang/20171129588601_a.html

数字电路 与逻辑设计

■电路结构

扰信号,起保护作用

■电路结构

多发射极晶体管

■电路结构

输入级

- 3个输入信号通过的发射结实 现与功能

中间级

- R 晶体管 T_2 和电阻 R_2 和 R_3 组成
- T₂集电极和发射极分别控制T₃和T₄

输出级(推拉式)

- 副体管 T_3 、 T_4 、二极管 D_4 和电阻 R_4
- 优点:提高开关速度和负载能力

 $V_{\rm CC}$ (+5V)

输入全部为高电平(3.6V)

- T₁的集电结导通、T₂和T₄饱和导通
- T₁的基极电压

$$v_{b1} = v_{bc1} + v_{be2} + v_{be4}$$

 $\approx 0.7 + 0.7 + 0.7 = 2.1 \text{V}$

T₁的集电极电压 $v_{c1} = v_{be2} + v_{be4}$ $\approx 0.7 + 0.7 = 1.4$ V

> T₁的发射结反向偏置 -"倒置"状态 T₁的集电结正向偏置

 $V_{\rm CC}$ (+5V)

输入全部为高电平(3.6V)

T₂的集电极电压

$$v_{c2} = v_{be4} + v_{ce2}$$

 $\approx 0.7 + 0.3 = 1.0 \text{V}$

- 1.0V的电压不足以使T₃和D₄导通 处于截止状态
- 输出电压等于T₄的集电极电压

$$v_F = v_{ce4}$$
 $\approx 0.3 \text{V}$

输入电压为高、输出电压为低

输入至少一个低电平(0.3V)

T₁的发射结导通

T₁的基极电压

$$v_{b1} = v_{be1} + 0.3V$$

 $\approx 0.7 + 0.3 = 1.0V$

1.0V的电压不足以使T2和T4导通

 $V_{\rm CC}$ (+5V)

输入至少一个低电平(0.3V)

- 电源 V_{CC} 通过 R_2 驱动 T_3 和 D_4 导通
- 输出电压 F

$$v_F = V_{CC} - v_{be3} - v_{D4}$$

 $\approx 5.0 - 0.7 - 0.7 = 3.6 \text{V}$

输入电压有低、输出电压为高

▶外部参数

输出高电平VoH

指至少有一个输入端接低电平时的输出电平

典型值:3.6V 规范值: V_{OH} ≥ 2.4V

输出低电平Vol

指输入全为高电平时的输出电平

典型值:0.3V 规范值: V_{OI} ≤0.4V

开门电平Von

确保与非门输出为低电平时所允许的最小输入高电平

典型值:1.5V 规范值: V_{ON}≤1.8V

关门电平Voff

确保与非门输出为高电平时所允许的最大输入低电平

典型值:1.3V 规范值: V_{OFF}≥0.8V

■外部参数

扇入系数 N_t

与非门允许的输入端数目 一般为2~5,最多不超过8 输入端数目超过N₁时,通过分级方法减少对扇入系数要求

扇出系数No

与非门输出端连接同类门的最多个数,反映了与非门的带负载能力 -般N_O≥8

输入短路电流I_{IS}

某一个输入端接地而其余输入端悬空时,流过接地输入端的电流 流入前级与非门的灌电流 一般I_{IS}≤1.6mA

输入漏电流I_H

某输入端接高电平,而其他输入端接地时,流入高电平输入端的电流 -般I_{TH}≤50μA

▶外部参数

平均传输 延迟时间 t_{pd}

电路在输入脉冲波形的作用下,输出波形相对于输入波形的延迟时间

t_{PHL}:门电路输出由低电平转换到高电平所经历的时间

t_{PLH}:门电路输出由高电平转换到低电平所经历的时间

平均传输延迟时间: t_{Pd} = (t_{PLH} + t_{PHL})/2

典型值约10ns,一般小于40ns

平均功率

空载功耗是当与非门空载工作时所消耗的功率

空载导通功耗Pon:输出为低电平时的功耗

空载截止功耗Poff:输出为高电平时的功耗

平均功耗: P = (P_{ON} + P_{OFF})/2

一般P < 50mW, 如74H系列门电路平均功耗为22mW

■TTL与非门集成电路芯片

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师 于俊清

