Supplementary data

Load

Table 1 は 30 機モデルの電力ネットワークの中の主要なバス周辺に属する人口をあらわしている(文献lacktriangle). Table 2 は各アグリゲータが有しているバスを示している. Table 1 と 2 より,各アグリゲータに属する需要家の人口を計算した結果が Table 3 である.文献 [1] より 2015 年 8 月 1 日の東日本エリアの総負荷データ $d \in \mathbb{R}^{24}$ (1 時間値) を入手し,以下の式

$$d^{\text{Agg.}i} = \frac{d_{\text{R}}^{\text{Agg.}i}}{d_{\text{R}}^{\text{Agg.}1} + \dots + d_{\text{R}}^{\text{Agg.}5}} \times d \tag{1}$$

を用いて各アグリゲータの負荷データ $d^{\text{Agg},i} \in \mathbb{R}^{24}, i \in \{1,...,5\}$ を作成した.

Table 1: 主要バス近辺の人口データ

City	Bass number	Population
Higashi Nigata	37	1827467
Kamikita	40	604093
Iwate	41	1215672
Miyagi	42	605195
Nishi Sendai	44	725629
Minamisoma	45	241231
Hachinohe · Noshiro	46	1829277
Onagawa	47	615053
Sendai	48	1235566
Joetsu	49	2440400
Shin Sawara	59	416387
Naka	83	1624727
Kashima Kyodo	85	1337371
Joso	86	1435524
Shin Keiyo	88	3412787
Boso (Goi)	90	1447914
Boso (Anegasaki)	91	341760
Kisarazu	92	399549
Yokohama	94	5151414
Minami Yokohama	96	1263622
Shin Tochigi	97	1828154
Shin Furukawao	98	6027618
Shin Noda	99	2048267
Shin Nitta	101	3871767
Shin Sakado	102	6977492
Higashi Yamanashi	103	975329
Shin Hadano	104	1339121
Shin Fuji	105	2601868
Shin Toyosu	106	947049
Nishi Gunma (Haruna)	107	1729729

Table 2: 各アグリゲータの有するバス

танс 2. д	7 7 7 7 7 9 13 3 3 7 7 7
Agg. number	Bass number
Agg.#1	40, 41, 42, 46, 47
Agg.#2	37, 44, 45, 48, 49
Agg.#3	83, 85, 86, 97, 98, 99, 101, 102
Agg.#4	59, 88, 90, 91, 92, 106
Agg.‡5	94, 96, 103, 104, 105, 107

Table 3: 各アグリゲータが有する需要家の人口

Agg. number	人口	Symbol
Agg.#1	4869290	$d_{ m R}^{ m Agg.1}$
Agg.#2	6470293	$d_{ m R}^{ m Agg.2}$
Agg.#3	25150920	$d_{ m R}^{ m Agg.3}$
Agg.#4	5618848	$d_{ m R}^{ m Agg.4}$
Agg.#5	13061083	$d_{ m R}^{ m Agg.5}$

PV

Table 4 は 30 機モデルの電力ネットワークの中の主要なバス周辺に導入された PV の量を表している(文献●). Table 4 と Table 2 から各アグリゲータに対して PV 導入量が計算できる.一方,PV 出力データ(2015 年 8 月 1 日~2015 年 8 月 16 日)は Table 5 のバスに対してのみ入手可能だった.そこで,PV 出力データは Table 2, 4, 5 を考慮して作成する.例えば,アグリゲータ \sharp 3 の 8 月 1 日の PV 出力データは

$$p_{\text{Aug1}}^{\text{Agg.3}} = \frac{C^{\text{Bass83}} + C^{\text{Bass85}} + C^{\text{Bass86}} + C^{\text{Bass97}} + C^{\text{Bass98}} + C^{\text{Bass99}} + C^{\text{Bass101}} + C^{\text{Bass102}}}{C^{\text{Bass101}} + C^{\text{Bass102}}} \times (p_{\text{Aug1}}^{\text{Bass101}} + p_{\text{Aug1}}^{\text{Bass102}})$$
(2)

として計算した.ただし, $p_{\text{Augl}}^{\text{Bass}101}$, $p_{\text{Augl}}^{\text{Bass}102}$ は 8 月 1 日のバス 101,102 での PV 出力データである(文献 lacktriangle).本稿では,PV の導入レベルを 3 段階設定しているが,PV 出力 $p_{\text{Augl}}^{L1,\text{Agg.3}}$, $p_{\text{Augl}}^{L2,\text{Agg.3}}$, $p_{\text{Augl}}^{L3,\text{Agg.3}}$ は以下のように係数倍している.

Level 1: $p_{\text{Aug1}}^{L1, \text{Agg.3}} = p_{\text{Aug1}}^{\text{Agg.3}} \times 1.0$

Level 2: $p_{\text{Aug1}}^{L2,\text{Agg.3}} = p_{\text{Aug1}}^{\text{Agg.3}} \times 3.9$

Level 3: $p_{\text{Aug1}}^{L3,\text{Agg.3}} = p_{\text{Aug1}}^{\text{Agg.3}} \times 7.8$

さらに、本稿では PV 予測値はシナリオ集合として扱う必要がある。ここでは、8月1日から 8月10日の PV 出力を 8月1日の予測値シナリオ集合として用いている。 すなわち、PV レベル1の場合のアグリゲータ $\sharp 3$ の 8月1日の PV 予測シナリオ集合は $p_{\mathrm{Aug1}}^{L1,\mathrm{Agg.3}},\ p_{\mathrm{Aug2}}^{L1,\mathrm{Agg.3}},\ldots,p_{\mathrm{Aug10}}^{L1,\mathrm{Agg.3}}$ となる。

Table 4: 主要バス近辺の PV 導入量データ

Table 4: 土安/	^N A 近 辺 の P V 等	
Bass number	PV 導入量 [kW]	Symbol
37	305564	$C^{\mathrm{Bass}37}$
40	208004	$C^{\mathrm{Bass}40}$
41	401163	C^{Bass41}
42	195803	$C^{\mathrm{Bass}42}$
44	132176	$C^{\mathrm{Bass}44}$
45	127300	$C^{\mathrm{Bass}45}$
46	306628	$C^{\mathrm{Bass}46}$
47	207231	$C^{\mathrm{Bass}47}$
48	313258	C^{Bass48}
49	667157	C^{Bass49}
59	218132	$C^{\mathrm{Bass}59}$
83	294419	$C^{\mathrm{Bass}83}$
85	1054414	$C^{\mathrm{Bass}85}$
86	289718	$C^{\mathrm{Bass}86}$
88	160413	C^{Bass88}
90	257781	$C^{\mathrm{Bass}90}$
91	183839	$C^{\mathrm{Bass}91}$
92	298640	$C^{\mathrm{Bass}92}$
94	176100	$C^{\mathrm{Bass}94}$
96	54614	$C^{\mathrm{Bass}96}$
97	1185157	$C^{\mathrm{Bass}97}$
98	1800047	$C^{\mathrm{Bass}98}$
99	248235	$C^{\mathrm{Bass}99}$
101	740923	$C^{\mathrm{Bass}101}$
102	332850	$C^{\mathrm{Bass}102}$
103	522857	$C^{\mathrm{Bass}103}$
104	137838	$C^{\text{Bass}104}$
105	414405	$C^{\text{Bass}105}$
106	7709	$C^{\mathrm{Bass}106}$
107	997095	$C^{\mathrm{Bass}107}$

Table 5: 入手可能な PV 出力データを有するバス

Agg. number	Bass number
Agg.#1	40, 41, 42, 46, 47
Agg.#2	37, 44, 45, 48, 49
Agg.#3	83 , 85 , 86 , 97 , 98 , 99 , 101, 102
Agg.#4	59, 88, 90, 91, 92, 106
$Agg.\sharp 5$	94 , 96 , 103, 104, 105, 107

火力機の構成

文献 [2] には 30 機モデルの火力機の定格容量が記載されている (Table 6 の 1 列目と 2 列目). 一方,東北エリアと東京エリアに存在する火力機を大雑把に分類すると,Table 7 のように 13 種類になる.なお,燃料費に関しては 2016 年時の燃料輸入価格を考慮して設定している.この 13 種類の火力機(主に価格)を適当に G1 から G30 に割り当てた (Table 6 の 3 列目). 各アグリゲータ内で定格出力が大きいものほど低い価格にしている.また,Table 8 は各アグリゲータが所有する火力機を示している.さらに,2015 年 8 月 1 日の各アグリゲータ内の需要に対して,全ての火力機がバランス良く稼動するように Table 6 の定格容量を Table 9 に基づいてスケール倍した.具体的には,G1,G4,G5 はアグリゲータ 1 が所有する火力機であるが,その定格容量は Table 6 では 4000,3000,2000[MW]である.これを Table 9 に基づいて 0.75 倍する.その結果,G1,G4,G5 の定格出力は 3000,2250,1500[MW] となる.

Table 6: 発電機の定格容量

Plant number	定格容量 [MW]	Type
G1	4000	Coal (C)
G2	2500	Coal (A)
G3	2000	Coal (B)
G4	3000	LNG (A)
G5	2000	Coal (D)
G6	500	Oil (A)
G7	500	Oil (B)
G8	1000	LNG (B)
G9	2760	Coal (A)
G10	8312	LNGCC (C)
G11	4500	LNGCC (B)
G12	3700	LNGCC (A)
G13	2400	LNG (C)
G14	3700	LNGCC (A)
G15	5000	LNGCC (C)
G16	3400	Coal (D)
G17	2400	LNG (B)
G18	2430	Oil (B)
G19	2800	Oil (A)
G20	1050	LNG (B)
G21	1000	LNG (A)
G22	900	Oil (C)
G23	675	Oil (B)
G24	1200	Oil (A)
G25	7112	Coal (C)
G26	1600	Oil (B)
G27	2148	LNG (C)
G28	2500	LNGCC (B)
G29	5000	Coal (B)
G30	2000	Oil (C)

Table 7: List of thermal generators

Cost [JPY/kWh]	Duration [h]
12.39	1
11.31	1
11.48	1
5.48	1
5.40	1
6.02	1
2.48	1
4.07	1
1.91	6
4.23	12
3.58	12
1.95	12
4.88	12
	12.39 11.31 11.48 5.48 5.40 6.02 2.48 4.07 1.91 4.23 3.58 1.95

Table 8: 各アグリゲータの有する発電機

Agg. number	Generator number
Agg.#1	G1, G4, G5
Agg.#2	G2, G3, G6, G7, G8
Agg.#3	G9, G10, G11, G12, G13, G20, G21, G22, G23
Agg.#4	G14, G15, G16, G17, G18, G19
Agg.#5	G24, G25, G26, G27, G28, G29, G30

Table 9: 各アグリゲータの有する発電機

Agg. number	
Agg.#1	0.75
Agg.#2	1.03
Agg.#3	1.06
Agg.#4	0.342
$Agg.\sharp 5$	0.626

送電容量制約

30機モデルの送電線の種類と容量は Table 10 のようになる(文献 [2,3]). これに従うと送電線 $\sharp 1,\sharp 3,\sharp 4,\sharp 5,\sharp 6,\sharp 7$ の送電容量はいずれも $6.7\mathrm{GW}$ であるが,より詳細に設定するために,インピーダンスの情報(Table 11 の 2 列目)を用いることにした.具体的には送電線のインピーダンスの実部の比に分配しつつ,平均が $6.7\mathrm{GW}$ になるように設定した.その結果,Table 11 の 3 列目のようになった.ただし,このままの制約では全く制約にかからないため,本稿では,この容量の 1/8 倍(Case 1)と 1/4 倍(Case 2)を設定している.

Table 10: 送電線の種類と容量

Type	Capacity [GW]
$500 \text{kV} \text{ TACSR } 810 \text{mm}^2 \times 4$	6.7
$275 \text{kV} \text{ TACSR } 810 \text{mm}^2 \times 4$	3

Table 11: 各アグリゲータの有する発電機

Number	Real part of impedance	Capacity [GW]
Line #1	11.2	5.04
Line #3	6.1	9.25
Line #4	14.3	3.95
Line #5	8.7	6.49
Line #6	8	7.05
Line #7	6.7	8.42

参考文献

- [1] Tokyo Electric Power Co., http://www.tepco.co.jp/forecast/, 2018.
- [2] 電力系統モデル標準化調査委員会,電力系統の標準モデル.電気学会技術報告,第754号,1999.
- [3] The Institute of Electrical Engineers of Japan, http://denki.iee.jp/wp-content/uploads/pes/23-st_model/data/1.pdf, 2018.
- [4] 児玉, 須田, システム制御のためのマトリクス理論, 計測自動制御学会, pp.38-43, 1978