Отчёт по лабораторной работе № 7

Распределение молекул воздуха по высоте

Цель:
Исследовать распределение молекул воздуха по высоте

Используемое оборудование:

ПК, Microsoft Excel

Задача:

Исследовать распределение молекул воздуха по высоте, построить графики зависимостей давления воздуха от высоты и концентрации молекул воздуха от высоты

Задача 1

Математическая модель:

$$p(h) = p_0 \exp(-\mu g h / RT)$$

где

р – давление;

ро- давление на нулевом уровне;

 μ – молярная масса;

g – ускорение свободного падения;

h – высота;

R – универсальная газовая постоянная;

Т – температура.

Задание 1.1

График зависимости давления от высоты:

Начальные значения:

μ	0,029
g	9,8
R	8,31
Т	300
Po	101325

Вычисления и график зависимости давления от высоты:

	5413
h	P(h)
0	101325
200	99041
400	96808
600	94626
800	92493
1000	90408
1200	88370
1400	86378
1600	84431
1800	82528
2000	80667
2200	78849
2400	77072
2600	75334
2800	73636
3000	71976
3200	70354
3400	68768
3600	67218
3800	65702
4000	64221
4200	62774
4400	61359
4600	59976

Анализируя данный график можно сделать вывод, что с увеличением высоты, давление воздуха падает, а зависимость давления от высоты является гиперболической.

Задание 1.2

На какой высоте давление уменьшится в е раз?

Дано:

$$p(h) = p_0 \exp(-\mu g h / RT)$$

Величина $RT / \mu g = 8.8 \text{ км}$

Значит:
$$\frac{p}{p_0} = \exp\left(\frac{-\mu gh}{RT}\right)$$

Тогда, принимая значение p/po за единицу, можно сказать, что новое значение будет равно 1/e: $\frac{1}{e} = \exp\left(\frac{-\mu g h}{RT}\right)$

Возьмём натуральный логарифм от ПЧ и ЛЧ: $\ln\left(\frac{1}{e}\right) = \frac{-\mu gh}{RT}$

Значит: $-1 = \frac{-\mu gh}{RT}$, то есть: $h = \frac{RT}{\mu g}$, а значит из условия получаем, что h=8.8км.

Задание 1.3

На какой высоте давление практически равно нулю?

С увеличением высоты воздух становится более разряженным, а значит, давление уменьшается. Из проведённого вычислительного эксперимента можно сказать, что давление приблизительно равно нулю уже на высоте в 60 км.

Задача 2

Задание 2.1

Проведите вычислительный эксперимент и выясните, как изменяется концентрация молекул воздуха в атмосфере.

Математическая модель:

$$n(h) = n_0 \exp(-m g h / kT)$$

где

n – концентрация молекул;

 n_0 – концентрация на нулевом уровне;

т – масса молекулы;

g – ускорение свободного падения;

h – высота;

k – постоянная Больцмана;

Т – температура.

Начальные значения:

m	5E-26
g	9,8
k	1E-23
Т	300
n0	1,225

Вычисления и график зависимости концентрации молекул от высоты:

h	n(h)
0	1,225
200	1,1974
400	1,1703
600	1,1439
800	1,1181
1000	1,0929
1200	1,0683
1400	1,0442
1600	1,0206
1800	0,9976
2000	0,9751
2200	0,9531
2400	0,9316
2600	0,9105
2800	0,89
3000	0,8699
3200	0,8503

Анализируя полученный график можно сказать, что с увеличением высоты, концентрация молекул воздуха будет уменьшаться по принципу гиперболы.

Стоит отметить, что концентрация молекул будет сильно приближаться к нулю, но не станет абсолютным нулём аналогично с давлением.

Вывод: При выполнении данной лабораторной работы были проведены два вычислительных эксперимента по поиску зависимости давления и концентрации молекул от высоты, а также даны ответы на вопросы дополнительных заданий.