Quantum Mechanics

김현철^{1,*}

¹Hadron Theory Group, Department of Physics, Inha University, Incheon 22212, Republic of Korea (Dated: 2021)

Due date: March 2. 2022

Problem Set 1

Problem 1. The wave function for a free particle is given by

$$\psi(x, 0) = N \exp\left(i\frac{p_0 x}{\hbar} - \frac{(x - x_0)^2}{4\sigma^2}\right),\,$$

where $\sigma \in \mathbb{R}$ is a contant and N is a normalization constant.

- (1) Derive the normalization constant N.
- (2) Derive the wave function $\phi(0,0)$ in momentum space.
- (3) Find $\phi(p, t)$.
- (4) Find $\psi(xt)$.
- (5) Show that the spread in the spatial probability distribution increases with time t. Note that the spread is defined as

$$S(t) = \frac{|\psi(x, t)|^2}{|\psi(0, t)|^2}.$$

Solution

(1) From the normalization of the wave function,

$$\int_{-\infty}^{\infty} |\psi(x,0)|^2 dx = N^2 \int_{-\infty}^{\infty} \exp\left(-2\left(\frac{x-x_0}{2\sigma}\right)^2\right) dx = 1.$$
 (1)

Since a range of integration is all space, the translation about x can be ignored. To make a compact form, it needs to change an integral variable.

$$t \equiv \left(\frac{x - x_0}{\sqrt{2}\sigma}\right), \quad dt = \frac{1}{\sqrt{2}\sigma}dx$$
 (2)

Then the wave function changes into more comfort form to integrate.

$$N^2 \int_{-\infty}^{\infty} \exp\left(-2\left(\frac{x-x_0}{2\sigma}\right)^2\right) dx = \sqrt{2}\sigma N^2 \int_{-\infty}^{\infty} e^{-t^2} dt$$
 (3)

^{*}Electronic address: hchkim@inha.ac.kr

To calcualte this integration, we use a idea of double integration,

$$\int_{-\infty}^{\infty} e^{-(x^2 + y^2)} dx dy = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^2} r dr d\theta$$
 (4)

$$= \int_0^{2\pi} \frac{1}{2} \, d\theta = \pi. \tag{5}$$

First double integration about coordinate space can be decomposed.

$$\int_{-\infty}^{\infty} e^{-(x^2 + y^2)} dx dy = \int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-y^2} dy = \left(\int_{-\infty}^{\infty} e^{-x^2} dx \right)^2$$
 (6)

From this result,

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}, \quad \sqrt{2\pi}\sigma N^2 = 1.$$
 (7)

Finally we obtain the normalization constant,

$$N = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{1}{4}}.\tag{8}$$

(2) We will find $\phi(p,0)$ first. $\phi(p,0)$ is the Fourier transform of $\psi(x,0)$.

$$\phi(p,0) = \frac{1}{\sqrt{2\pi\hbar}} \int \psi(x,0) e^{-\frac{i}{\hbar}px} dx = \frac{N}{\sqrt{2\pi\hbar}} \int \exp\left(i\frac{p_0 x}{\hbar} - \left(\frac{x - x_0}{2\sigma}\right)^2\right) e^{-\frac{i}{\hbar}px} dx \tag{9}$$

$$= \frac{N}{\sqrt{2\pi\hbar}} \int \exp\left(-\left(\frac{x-x_0}{2\sigma}\right)^2 - \frac{i}{\hbar}(p-p_0)x\right) dx \tag{10}$$

To make it compact form, let us erase the translation term and change the variable.

$$u \equiv \frac{x - x_0}{2\sigma}, \quad du = \frac{1}{2\sigma} dx \tag{11}$$

Then, a $\phi(p,0)$ is,

$$\phi(p,0) = \frac{2\sigma N}{\sqrt{2\pi\hbar}} \int \exp\left(-u^2 - \frac{i}{\hbar}(p - p_0)(2\sigma u + x_0)\right) du$$
 (12)

$$= \left(\frac{2\sigma^2}{\pi^3\hbar^2}\right)^{\frac{1}{4}} e^{-\frac{i}{\hbar}(p-p_0)x_0} \int \exp\left(-u^2 - 2\frac{i}{\hbar}\sigma(p-p_0)u\right) du. \tag{13}$$

And, a exponential of integrated function can be expressed in terms of complete square form about u.

$$-u^{2} - 2\frac{i}{\hbar}\sigma(p - p_{0})u = -\left(u + \frac{i}{\hbar}\sigma(p - p_{0})\right)^{2} - \frac{\sigma^{2}}{\hbar^{2}}(p - p_{0})^{2}$$
(14)

 $\frac{i}{\hbar}\sigma p$ is the translation term that can be ignored since the integration range is from $-\infty$ to ∞ ,

$$\phi(p,0) = \left(\frac{2\sigma^2}{\pi^3 \hbar^2}\right)^{\frac{1}{4}} e^{-\frac{i}{\hbar}(p-p_0)x_0} \int \exp\left(-u^2 - 2\frac{i}{\hbar}\sigma(p-p_0)u\right) du$$
 (15)

$$= \left(\frac{2\sigma^2}{\pi^3 \hbar^2}\right)^{\frac{1}{4}} e^{-\frac{i}{\hbar}(p-p_0)x_0} \int \exp\left(-\left(u + \frac{i}{\hbar}\sigma(p-p_0)\right)^2 - \frac{\sigma^2}{\hbar^2}(p-p_0)^2\right) du \tag{16}$$

$$= \left(\frac{2\sigma^2}{\pi^3\hbar^2}\right)^{\frac{1}{4}} \exp\left(-\frac{i}{\hbar}(p-p_0)x_0 - \frac{\sigma^2}{\hbar^2}(p-p_0)^2\right) \int e^{-u^2} du$$
 (17)

So, we obtain a $\phi(p.0)$.

$$\phi(p,0) = \left(\frac{2\sigma^2}{\pi^3 \hbar^2}\right)^{\frac{1}{4}} \exp\left(-\frac{i}{\hbar}(p-p_0)x_0 - \frac{\sigma^2}{\hbar^2}(p-p_0)^2\right) \int e^{-u^2} du$$
 (18)

$$= \left(\frac{2\sigma^2}{\pi\hbar^2}\right)^{\frac{1}{4}} \exp\left(-\frac{i}{\hbar}(p-p_0)x_0 - \frac{\sigma^2}{\hbar^2}(p-p_0)^2\right)$$
 (19)

Finally, $\phi(0,0)$ is,

$$\phi(0,0) = \left(\frac{2\sigma^2}{\pi\hbar^2}\right)^{\frac{1}{4}} \exp\left(-\frac{\sigma^2}{\hbar^2}p_0^2 + \frac{i}{\hbar}p_0x_0\right). \tag{20}$$

(3) Because it is a free particle, the time evolution of $\phi(p,0)$ is $\phi(p,t)=e^{-i\omega t}\phi(p,0)$ and $\omega=\frac{p^2}{2m\hbar}$

$$\phi(p,t) = \left(\frac{2\sigma^2}{\pi\hbar^2}\right)^{\frac{1}{4}} \exp\left(-\frac{\sigma^2}{\hbar^2}(p-p_0)^2 - i\frac{p^2}{2m\hbar}t - \frac{i}{\hbar}(p-p_0)x_0\right)$$
(21)

$$= \left(\frac{2\sigma^2}{\pi\hbar^2}\right)^{\frac{1}{4}} \exp\left(-\left(\frac{\sigma^2}{\hbar^2} + \frac{it}{2m\hbar}\right)p^2 + \left(\frac{2\sigma^2}{\hbar^2}p_0 - \frac{i}{\hbar}x_0\right)p - \frac{\sigma^2}{\hbar^2}p_0^2 - \frac{i}{\hbar}p_0x_0\right) \tag{22}$$

$$= \left(\frac{2\sigma^2}{\pi\hbar^2}\right)^{\frac{1}{4}} \exp\left(-\frac{2m\sigma^2 + i\hbar t}{2m\hbar^2}p^2 - \frac{2\sigma^2 p_0 - i\hbar x_0}{\hbar^2}p - \frac{\left(\sigma^2 p_0 + i\hbar x_0\right)p_0}{\hbar^2}\right) \tag{23}$$

The complete square form of $\phi(p,t)$ is,

$$\phi(p,t) = \left(\frac{2\sigma^2}{\pi\hbar^2}\right)^{\frac{1}{4}} \exp\left(-\frac{2m\sigma^2 + i\hbar t}{2m\hbar^2}p^2 - \frac{2\sigma^2p_0 - i\hbar x_0}{\hbar^2}p - \frac{\left(\sigma^2p_0 + i\hbar x_0\right)p_0}{\hbar^2}\right) \tag{24}$$

$$= \left(\frac{2\sigma^2}{\pi\hbar^2}\right)^{\frac{1}{4}} \exp\left(\alpha(t)\left(p + \beta(t)\right)^2 + \gamma(t)\right) \tag{25}$$

$$\alpha(t) = -\frac{2m\sigma^2 + i\hbar t}{2m\hbar^2}, \quad \beta(t) = \frac{2m\sigma^2 p_0 - im\hbar x_0}{2m\sigma^2 + i\hbar t}, \tag{26}$$

$$\gamma(t) = \frac{-mx_0 \left(\frac{1}{2}\hbar x_0 + 4i\sigma^2 p_0\right) - (\hbar x_0 - i\sigma^2 p_0)p_0 t}{2m\hbar\sigma^2 + i\hbar^2 t}.$$
(27)

(4) $\psi(x,t)$ is the Fourier transform of $\phi(p,t)$.

$$\psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int \phi(p,t)e^{\frac{i}{\hbar}px} dp =$$
 (28)

(5)

Problem 2. The Hamiltonian for a free particle is given by

$$H = \frac{p^2}{2m}.$$

(1) Show

$$\langle p_x \rangle = \langle p_x \rangle_{t=0}.$$

(2) Show

$$\langle x \rangle = \frac{\langle p_x \rangle_{t=0}}{m} t + \langle x \rangle_{t=0}.$$

(3) Show

$$(\Delta p_x)^2 = (\Delta p_x)_{t=0}^2.$$

(4) Find $d(\Delta x)^2/dt$ as a function of time and initial conditions.

Solution

(1) The expectation value of physical quantity can be expressed in coordinate space and momentum space each other. For free particle, the $\phi(p,t)$ is,

$$\phi(p,t) = e^{-i\frac{p^2}{2m\hbar}t}\phi(p,0). \tag{29}$$

And the expectation value of p_x in the momentum space is,

$$\langle p_x \rangle = \int \phi^*(p,t) \, p_x \, \phi(p,t) \, d^3p = \int e^{i\frac{p^2}{2m\hbar}t} \phi^*(p,0) \, p_x \, e^{-i\frac{p^2}{2m\hbar}t} \phi(p,0) \, d^3p$$
 (30)

The time evolutions are canceled out.

$$\langle p_x \rangle = \int \phi^*(p,0) \, p_x \, \phi(p,0) \, d^3 p = \langle p_x \rangle_{t=0}. \tag{31}$$

(2) The expectation value of x also can be described in the momentum space regarding as the operator in the integration.

$$\langle x \rangle = i\hbar \int \phi^*(p,t) \frac{\partial \phi(p,t)}{\partial p_x} d^3p = i\hbar \int e^{i\frac{p^2}{2m\hbar}t} \phi^*(p,0) \frac{\partial}{\partial p_x} \left(e^{-i\frac{p^2}{2m\hbar}t} \phi(p,0) \right) d^3p$$
 (32)

$$=i\hbar\int e^{i\frac{p^2}{2m\hbar}t}\phi^*(p,0)\left(-i\frac{p_x}{m\hbar}t\,e^{-i\frac{p^2}{2m\hbar}t}\phi(p,0)+e^{-i\frac{p^2}{2m\hbar}t}\frac{\partial\phi(p,0)}{\partial p_x}\right)\,d^3p \eqno(33)$$

$$= i\hbar \int -i\frac{p_x}{m\hbar} t |\phi(p,0)|^2 + \phi^*(p,0) \frac{\partial \phi(p,0)}{\partial p_x} d^3p$$
(34)

$$=\frac{\langle p_x\rangle_{t=0}}{m}t + \langle x\rangle_{t=0} \tag{35}$$

(3) The definition of the deviation is,

$$(\Delta p_x)^2 = \langle p_x^2 \rangle - \langle p_x \rangle^2. \tag{36}$$

We calculate $\langle p_x^2 \rangle$ in the momentum space and $\langle p_x \rangle^2 = \langle p_x \rangle_{t=0}^2$ because of a (31).

$$\langle p_x^2 \rangle = \int \phi^*(p,t) \, p_x^2 \, \phi(p,t) \, d^3p \tag{37}$$

From a (29),

$$\int \phi^*(p,t) \, p_x^2 \, \phi(p,t) \, d^3p = \int e^{i\frac{p^2}{2m\hbar}t} \phi^*(p,0) p_x^2 e^{-i\frac{p^2}{2m\hbar}t} \phi(p,0) \, d^3p \tag{38}$$

$$= \int \phi^*(p,0)p_x^2\phi(p,0) d^3p = \langle p_x^2 \rangle_{t=0}$$
 (39)

So, we obtain that,

$$\langle p_x^2 \rangle = \langle p_x^2 \rangle_{t=0}. \tag{40}$$

Finally, the result is,

$$(\Delta p_x)^2 = \langle p_x^2 \rangle_{t=0} - \langle p_x \rangle_{t=0}^2 = (\Delta p_x)_{t=0}^2, \ (\Delta p_x)^2 = (\Delta p_x)_{t=0}^2.$$

$$(41)$$

(4) From a (36), the derivative of the deviation is,

$$\frac{d}{dt}(\Delta x)^2 = \frac{d}{dt}\langle x^2 \rangle - \frac{d}{dt}\left(\langle x \rangle^2\right). \tag{42}$$

Before derivation, let us calculate the expectation value $\langle x^2 \rangle$ first.

$$\langle x^{2} \rangle = -\hbar^{2} \int \phi^{*}(p,t) \frac{\partial^{2} \phi(p,t)}{\partial p_{x}^{2}} d^{3}p = -\hbar^{2} \int e^{i\frac{p^{2}}{2m\hbar}t} \phi^{*}(p,0) \frac{\partial^{2}}{\partial p_{x}^{2}} \left(e^{-i\frac{p^{2}}{2m\hbar}t} \phi(p,0) \right) d^{3}p$$

$$= -\hbar^{2} \int e^{i\frac{p^{2}}{2m\hbar}t} \phi^{*}(p,0) \frac{\partial}{\partial p_{x}} \left(-\frac{p}{m\hbar} t e^{-i\frac{p^{2}}{2m\hbar}t} \phi(p,0) + e^{-i\frac{p^{2}}{2m\hbar}t} \frac{\partial \phi(p,0)}{\partial p_{x}} \right) d^{3}p$$

$$= -\hbar^{2} \int \phi^{*}(p,0) \left[\left(-i\frac{t}{m\hbar} + \left(-i\frac{p_{x}}{m\hbar}t \right)^{2} \right) \phi(p,0) - \left(2i\frac{p_{x}t}{m\hbar} \frac{\partial \phi(p,0)}{\partial p_{x}} + \frac{\partial^{2} \phi(p,0)}{\partial p_{x}^{2}} \right) \right] d^{3}p$$

$$= \frac{t}{m} \int i\hbar |\phi(p,0)|^{2} d^{3}p + \frac{t^{2}}{m^{2}} \int p_{x}^{2} |\phi(p,0)|^{2} d^{3}p$$

$$+ \frac{2t}{m} \int \phi^{*}(p,0) p_{x} \left(i\hbar \frac{\partial}{\partial p_{x}} \phi(p,0) \right) d^{3}p - \hbar^{2} \int \phi^{*}(p,0) \frac{\partial^{2} \phi(p,0)}{\partial p_{x}^{2}} d^{3}p$$

$$(43)$$

Problem 3. The state of a particle is described by the following wavefunction:

$$\psi(x) = C \exp\left[i\frac{p_0 x}{\hbar} - \frac{(x - x_0)^2}{2\sigma^2}\right]$$

where p_0 , x_0 , and a are real parameters.

- (1) Find the normalization constant C.
- (2) Find the mean values of x and p.
- (3) Find the standard deviations Δx and Δp .

Problem 4*. Consider a particle and two normalized energy eigenfunctions $\psi_1(\mathbf{x})$ and $\psi_2(\mathbf{x})$ corresponding to the eigenvalues $E_1 \neq E_2$. Assume that the eigenfunctions vanish outside the two non-overlapping regions Ω_1 and Ω_2 , respectively.

- (1) (a) Show that, if the particle is initially in region Ω_1 then it will stay there forever.
- (b) If, initially, the particle is in the state with wave function

$$\psi(\boldsymbol{x}, 0) = \frac{1}{\sqrt{2}} [\psi_1(\boldsymbol{x}) + \psi_2(\boldsymbol{x})]$$

show that the probability density $|\psi(x,t)|^2$ is independent of time.

- (c) Now assume that the two regions Ω_1 and Ω_2 overlap partially. Starting with the initial wave function of case (b), show that the probability density is a periodic function of time. $(E_2 E_1 = \hbar\omega)$.
- (d) Starting with the same initial wave function and assuming that the two eigenfunctions are real and isotropic, take the two partially overlapping regions Ω_1 and Ω_2 to be two concentric spheres of radii $R_1 > R_2$. Compute the probability current that flows through Ω_1 .

(Problem 4 is a bit difficult. To solve (3), introduce phase factors for $\psi_1(\mathbf{x})$ and $\psi_2(\mathbf{x})$ and consider the interference term when one computes the probability density. To solve (4), consider the current density and continuity equation.