Oct 24, 2016

# Active stereo vision system for object position estimation

Lab Seminar

Han Sol Kang

### **Contents**

### Introduction

Active Stereo Vision

### Progress of the Project

- Color Code
- Periodic Color Code
- Experimental Results

### Conclusion

### Introduction

Conventional Stereo Vision

#### Conventional Stereo Vision

: Stereo vision is the extraction of 3D information from digital images, such as obtained by a CCD camera. **By comparing information about a scene from two vantage points**, 3D information can be extracted by examination of the relative positions of objects in the two panels. This is similar to the biological process **stereopsis**.







### Introduction

Active Stereo Vision

#### Active Stereo Vision

: The active stereo vision is a form of stereo vision which actively employs a light such as a laser or a structured light to simplify the stereo matching problem.



Color Code

#### Debruijn sequence

Alphabet: {0, 1} Subsequence length: 2

#### Subsequences:



$$2^2 = 4$$



Color Code

#### Debruijn sequence

n=3, k=3 (alphabet is  $\{0, 1, 2\}$ )  $3^3 = 27$ 

000111222012022110021210102

n=3, k=3 (alphabet is  $\{b, g, r\}$ )

bbbgggrrrbgrbrrggbbrgrgbgbr



Color Code

Debruijn sequence – Occlusion problem





Color Code

### Debruijn sequence – Occlusion problem



000, 001, 010, 011, 100, 101, 110, 111

000, 001, 011, 110, 101, 010, 100

We obtain wrong codes

Periodic Color Code

#### Periodic Color Code

Stereo matching using line scanning



Stereo matching using periodic color code



matching using coded pattern

Periodic Color Code

#### Flow Chart



\*PCC: Periodic Color Code

Periodic Color Code

### Processing ROI





ROI image

Periodic Color Code

#### Processing ROI



Original Image



Projection Image





Processing ROI

Periodic Color Code

#### Disparity ROI





Periodic Color Code

### Problem of prior threshold





We can obtain a good result using adaptive threshold

Periodic Color Code

#### Adaptive Threshold Flow Chart



n(HG): the number of high groups n(LG): the number of low groups

Periodic Color Code

### Adaptive Threshold Example



Threshold value: use a nearby threshold value

| 220 | 230 | 240 | 240 | 230 |
|-----|-----|-----|-----|-----|
| 220 | 230 | 240 | 240 | 230 |
| 220 | 230 | 240 | 240 | 230 |
| 220 | 230 | 240 | 240 | 230 |
| 220 | 230 | 240 | 240 | 230 |

mean: 232

high group mean: 240 low group mean: 226.67

threshold value: -1



Threshold value: use a mean value

| 20 | 50 | 240 | 240 | 50 |
|----|----|-----|-----|----|
| 20 | 50 | 240 | 240 | 50 |
| 20 | 50 | 240 | 240 | 50 |
| 20 | 50 | 240 | 240 | 50 |
| 20 | 50 | 240 | 240 | 50 |

mean: 120

high group mean: 240 low group mean: 40

threshold value: 120

Periodic Color Code

#### Adaptive Threshold Result



Input Image



Prior threshold method



Adaptive threshold method

Periodic Color Code

### Decoding



Periodic Color Code

### **Decoding - HSV Threshold**



$$H = \begin{cases} H1 & \text{if } B \le G \\ 360^{\circ} - H1 & \text{if } B > G \end{cases}$$

$$H = \begin{cases} H1 & \text{if } B \le G \\ 360^{\circ} - H1 & \text{if } B > G \end{cases} \qquad H1 = \cos^{-1} \left\{ \frac{0.5[(R - G) + (R - B)]}{\sqrt{(R - G)^{2} + (R - B)(G - B)}} \right\}$$

$$S = \frac{Max(R,G,B) - Min(R,G,B)}{Max(R,G,B)}$$

$$V = \frac{Max(R, G, B)}{255}$$

Use hue and saturation value

example

H(i,j) < Hth1 & H(i,j) > = Hth2 & S(i,j) > Sth

H(i,j): hue value at i, j S(i,j): saturation value at i, j

Periodic Color Code

### Decoding result



before unwrapping



after unwrapping

Experimental Results

#### PCC method





distance btw camera and object: 250mm

base line: 30mm

Experimental Results

#### PCC method – residual error filtering



distance btw camera and object: 250mm

base line: 30mm

Experimental Results

#### Line scan method



distance btw camera and object: 250mm

base line: 30mm

### **Conclusion**

Perform the PCC method

- Use the adaptive threshold for finding disparity ROI
- Use the residual error filtering to reduce the error
- PCC of error is about 0.0568949 mm (f to b and b to f)

