Probability Distributions and Moment Matching

Models for Socio-Environmental Data

Chris Che-Castaldo, Mary B. Collins, and N. Thompson Hobbs

August 14, 2017

Housekeeping

Errors in text:

http://www.stat.colostate.edu/~hooten/papers/pdf/ Hobbs_Hooten_Bayesian_Models_2015_errata.pdf

Also in root directory of ESS_575_2017

Roadmap

- ► The rules of probability
 - conditional probability
 - independence
 - the law of total probability
- Factoring joint probabilities
- Probability distributions for discrete and continuous random variables
- Marginal distributions
- Moment matching

Motivation: A general approach to scientific research

Motivation: Why do we need to know this stuff?

Concept to be taught	Why do you need to understand this concept?	
Conditional probability	It is the foundation for Bayes' Theorem and all	
	inferences we will make.	
The law of total	Basis for the denominator of Bayes' Theorem $[y]$	
probability		
Factoring joint	This is the procedure we will use to build models.	
distributions		
Independence	Allows us to simplify fully factored joint	
	distributions.	
Probability distributions	Our toolbox for representing uncertainty	
Moments	The way we summarize distributions.	
Marginal distributions	Bayesian inference is based on marginal	
	distributions of unobserved quantities.	
Moment matching	Allows us to embed the predictions of models into	
	any statistical distribution.	

Motivation: The essence of Bayes

Bayesian analysis is the *only* branch of statistics that treats all unobserved quantities as random variables. We seek to understand the characteristics of the probability distributions governing the behavior of these random variables.

Motivation: models of data

$$\mu_i = g(\boldsymbol{\theta}, x_i)$$

A model of the data describes our ideas about how the data arise.

Deterministic models

general linear

nonlinear
differential equations
difference equations
auto-regressive
occupancy
state-transition
integral-projection

Types of data

real numbers
non-negative real numbers
counts
0 to 1
0 or 1
counts in categories
proportions in categories

univariate and multivariate

Probability model	Support for random variable	
normal	real numbers	
lognormal	non-negative real numbers	
gamma	non-negative real numbers	
beta	0 to 1 real numbers	
Bernoulli	0 or 1	
binomial	counts in 2 categories	
Poisson	counts	
multinomial	counts in > 2 categories	
negative binomial	counts	
Dirichlet	proportions in ≥ 2 categories	
Cauchy	real numbers	

Work flow: probability distributions

- General properties and definitions
 - discrete random variables
 - continuous random variables
- Specific distributions
- Marginal distributions
- Moment matching

How will we use probability distributions?

Used to fit models to data, to represent uncertainty in processes and parameters, and to portray prior information

Used to make inferences about models.

Board work on probability distributions for discrete random variables

- Probability mass function, z, PMF (also called probability function, discrete destiny function)
 - ▶ notation [z], f(z)
 - $lackbox{}[z]$ is a function that returns the probability of a specific value of the random variable =z
 - ▶ Support of random variable z is defined as all values of z for which [z] > 0 and defined.

Probability distributions

- requirements to be a PMF
 - $ightharpoondown [z] \ge 0$
 - $ightharpoonup \sum_{z \in s} z = 1$, where s is the support of the random variable
- moments of PMF
 - ▶ first moment, the expected value (or mean) = $E(z) = \mu = \sum_{z \in s} z[z]$, approximated from many (n) random draws from [z] using $E(z) \simeq \frac{1}{n} \sum_{i=1}^{n} z_i$
 - second central moment, the variance = $\mathrm{E}\left((z-\mu)^2\right) = \sigma^2 = \sum_{z \in s} (z-\mu)^2[z]$, approximated from many (n) random draws from [z] using $\mathrm{E}\left((z-\mu)^2\right) \simeq \frac{1}{\pi} \sum_{i=1}^n (z_i-\mu)^2$
- cumulative distribution function for z
- quantile function for z

Board work on probability distributions for continuous random variables

- Probability density function, PDF, [z]
 - ▶ notation $[z], f(z), z \sim \text{normal()}$
 - [z] gives the probability density of a specific value of the random variable
 z.
 - Support of random variable z is defined as all values of z for which [z] > 0 and defined.
 - requirements
 - $[z] \ge 0$

 - $\Pr(a < z < b) = \int_a^b [z] dz$
 - What is probability density?
 - moments
 - first moment, the expected value (or mean) = $\mathsf{E}(z) = \mu = \int_{-\infty}^{\infty} z[z] dz$, approximated from many (n) random draws from [z] using $\mathsf{E}(z) \simeq \frac{1}{n} \sum_{i=1}^{n} z_i$
 - second central moment, the variance = $\mathsf{E}\left((z-\mu)^2\right) = \sigma^2 = \int_{-\infty}^{\infty} (z-\mu)^2 [z] dz, \text{ approximated from many } (n)$ random draws from [z] using $\mathsf{E}\left((z-\mu)^2\right) \simeq \frac{1}{n} \sum_{i=1}^n (z_i \mu)^2$
- cumulative distribution function, CDF

Work flow: probability distributions

- General properties and definitions (today)
 - discrete random variables
 - continuous random variables
- Specific distributions
- Marginal distributions
- Moment matching

A bit about notation

Ours	Others	Meaning
[z]	f(Z=z)	The probability or probability
		density of z .
$[z \alpha,\beta]$	$p(z \pmb{lpha},\pmb{eta})$, $P(z \pmb{lpha},\pmb{eta})$	The probability or probability
		density of z conditional on $lpha$
		and β .
[z]	p(z),P(z)	The probability or probability
		density of z where its
		parameters are <i>numeric</i> . Used
		for priors.
$z \sim Poisson(\lambda)$	$z \sim Poisson(\lambda)$	\boldsymbol{z} is distributed Poisson with
		mean λ
$z \sim beta(\pmb{lpha}, \pmb{eta})$	$z\simbeta(\pmb{lpha},\pmb{eta})$	z is distributed beta with
		parameters $lpha$ and eta .

Marginal distributions of discrete random variables

Marginal distributions of discrete random variables

If we have a function [A,B] specifying the joint probability of the discrete random variables A and B, then $\sum_A [A,B]$ is the marginal probability of B and $\sum_B [A,B]$ is the marginal probability of A. This same idea applies to any number of jointly distributed random variables. We simply sum over all but one.

Marginal distributions of continuous random variables

Exercise: If A and B are continuous random variables and we have a function [A,B] that gives their joint probability density, what is the marginal distribution of A? Of B?

Marginal distributions of continuous random variables

If we have a function [A,B] specifying the joint probability of the discrete random variables A and B, then $\int\limits_A [A,B] \, dA \text{ is the marginal probability of B}$ and $\int\limits_A [A,B] \, dB \text{ is the marginal probability of A.}$ This same idea applies to any number of jointly distributed random variables. We simply integrate over all but one.

Integrating over all but one random variable is often referred to as "integrating out."

Marginal distributions of continuous random variables

Marginal distributions

Do marginal distribution problem

Deterministic models

general linear

nonlinear
differential equations
difference equations
auto-regressive
occupancy
state-transition
integral-projection

Types of data

real numbers
non-negative real numbers
counts
0 to 1
0 or 1
counts in categories
proportions in categories

univariate and multivariate

Probability model	Support for random variable	
normal	all real numbers	
lognormal	non-negative real numbers	
gamma	non-negative real numbers	
beta	0 to 1 real numbers	
Bernoulli	0 or 1	
binomial	counts in 2 categories	
Poisson	counts	
multinomial	counts in > 2 categories	
negative binomial	counts	
Dirichlet	proportions in ≥ 2 categories	
Cauchy	real numbers	

$$\mu_i = g(\boldsymbol{\theta}, x_i)$$

A familiar approach

$$\boldsymbol{\theta} = (\beta_0, \beta_1)'$$

$$\mu_i = g(\boldsymbol{\theta}, x_i) = \beta_0 + \beta_1 x_i$$

The problem

All distributions have parameters:

lpha and eta are parameters of the distribution of the random variable z .

Types of parameters

Parameter name	Function
intensity, centrality, location	sets position on x axis
shape	controls dispersion and skew
scale, dispersion parameter	shrinks or expands width
rate	scale ⁻¹

The problem

The normal and the Poisson are the only distributions for which the parameters of the distribution are the *same* as the moments. For all other distributions, the parameters are *functions* of the moments.

$$\alpha = m_1(\mu, \sigma^2)$$

 $\beta = m_2(\mu, \sigma^2)$

We can use these functions to "match" the moments to the parameters.

Moment matching

$$\mu_{i} = g(\boldsymbol{\theta}, x_{i})$$

$$\alpha = m_{1}(\mu_{i}, \sigma^{2})$$

$$\beta = m_{2}(\mu_{i}, \sigma^{2})$$

$$[y_{i}|\alpha, \beta]$$

Moment matching the gamma distribution

The gamma distribution: $[z|\alpha,\beta]=\frac{\beta^{\alpha}z^{\alpha-1}e^{-\beta z}}{\Gamma(\alpha)}$ The mean of the gamma distribution is

$$\mu = \frac{\alpha}{\beta}$$

and the variance is

$$\sigma^2 = \frac{\alpha}{\beta^2}.$$

Discover functions for α and β in terms of μ and σ^2 .

Note:
$$\Gamma(\alpha) = \int_0^\infty t^{\alpha} e^{-t} \, \frac{\mathrm{d}t}{t}$$

Answer

$$1)\mu = \frac{\alpha}{h}$$

$$1)\mu = \frac{\alpha}{\beta}$$
$$2)\sigma^2 = \frac{\alpha}{\beta^2}$$

Solve 1 for β , substitue for β in 2), solve for α :

3)
$$\alpha = \frac{\mu^2}{\sigma^2}$$

Substitute rhs 3) for α in 2), solve for β :

4)
$$\beta = \frac{\mu}{\sigma^2}$$

Moment matching the beta distribution

The beta distribution gives the probability density of random variables with support on 0,...,1.

$$[z|\alpha,\beta] = \frac{z^{\alpha-1}(1-z)^{\beta-1}}{B(\alpha,\beta)}$$
$$B = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}$$

$$\mu = \frac{\alpha}{\alpha + \beta}$$

$$\sigma^2 = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$$

$$\alpha = \frac{\mu^2 - \mu^3 - \mu \sigma^2}{\sigma^2}$$

$$\beta = \frac{\mu - 2\mu^2 + \mu^3 - \sigma^2 + \mu\sigma^2}{\sigma^2}$$

You need some functions...

```
#BetaMomentMatch.R
# Function for parameters from moments
shape_from_stats <- function(mu, sigma){
    a <-(mu^2-mu^3-mu*sigma^2)/sigma^2
    b <- (mu-2*mu^2+mu^3-sigma^2+mu*sigma^2)/sigma^2
shape_ps <- c(a,b)
return(shape_ps)
}
# Functions for moments from parameters
beta.mean=function(a,b)a/(a+b)
beta.var = function(a,b)a*b/((a+b)^2*(a+b+1))</pre>
```

Moment matching for a single parameter

We can solve for α in terms of μ and β ,

$$\mu = \frac{\alpha}{\alpha + \beta} \tag{1}$$

$$\mu = \frac{\alpha}{\alpha + \beta}$$

$$\alpha = \frac{\mu \beta}{1 - \mu},$$
(1)

which allows us to use

$$\mu_i = g(\theta, x_i) \tag{3}$$

$$y_i \sim \text{beta}\left(\frac{\mu_i \beta}{1 - \mu_i}, \beta\right)$$
 (4)

to moment match the mean alone.

Moment matching for a single parameter

The first parameter of the lognormal $= \alpha$, the mean of the random variable on the log scale. The second parameter $= \sigma_{\log}^2$, the variance of the random variable on the log scale We often moment match the median the lognormal distribution:

$$median = \mu_i = g(\theta, x_i)$$
 (5)

$$\mu = e^{\alpha} \tag{6}$$

$$\alpha = \log(\mu_i) \tag{7}$$

$$y_i \sim \mathsf{lognormal}(\mathsf{log}(\mu_i), \sigma^2_\mathsf{log})$$
 (8)

In this case, σ^2 remains on log scale.

Problems continued

Do section on Moment Matching