Алгебра и геометрия

Лисид Лаконский

October 2022

Содержание

1	Алг	ебра и геометрия - 14.10.2022
	1.1	Центр масс
		1.1.1 Пример
		1.1.2 Некоторые нюансы
	1.2	Направляющие косинусы
		1.2.1 Пример
	1.3	Решение практической работы, вариант 21
		1.3.1 Задание 5, нахождение центра тяжести системы
		1.3.2 Задание 6, нахождение длины и направляющих коси-
		нусов

Алгебра и геометрия - 14.10.2022 1

Центр масс 1.1

Если точки A и B заданы координатами $A(x_1;y_1;z_1), B(x_2;y_2;z_2),$ то координаты вектора \overrightarrow{AB} : $\{x_2 - x_1; y_2 - y_1; z_2 - z_1\}$.

Разделить отрезок в соотношении $\lambda \neq -1$ это значит на прямой AB найти такую точку M, что вектор $\overrightarrow{AM} = \lambda \overrightarrow{MB}$.

Если заданы координаты точек $A(x_1; y_1; z_1), B(x_2; y_2; z_2)$, то координаты делящей точки $M(x_m;y_m;z_m)$ находят по формулам: $x_m=\frac{x_1=\lambda x_2}{1+\lambda},y_m=\frac{y_1+\lambda y_2}{1+\lambda},z_m=\frac{z_1+\lambda z_2}{1+\lambda}$

Если M - середина AB, то $\lambda=1$, а формулы $x_m=\frac{x_1+x_2}{2},y_m=\frac{y_1+y_2}{2},z_m=\frac{z_1+z_2}{2}$

1.1.1 Пример

Дано: $A_1(1;3), m_1=10; A_2(7;8), m_2=30; A_3(0;4), m_3=5$. Определить Sцентр масс системы.

Пусть C_1 делит A_1A_2 в соотношении $\lambda=\frac{m_2}{m_1}=3$, тогда $x_c=\frac{1+3*7}{4}=\frac{22}{4},y_c=\frac{27}{4}$ Пусть S делит CA_3 в соотношении $\lambda=\frac{m_3}{m_1+m_2}=\frac{1}{8}$, тогда

$$x_s = \frac{11}{2} * \frac{8}{9} = \frac{44}{9}, y_s = \frac{\frac{27}{4} + \frac{11}{8} * 4 + \frac{1}{8}}{\frac{9}{8}} = \frac{29}{4} * \frac{8}{9} = \frac{58}{9}.$$
Other: $S(\frac{44}{9}; \frac{58}{9})$

1.1.2 Некоторые нюансы

- 1) Можно доказать, что центр масс $S(x_s; y_s; z_s)$ материальной системы точек $A_1(x_1;y_1;z_1), A_2(x_2;y_2;z_2), ..., A_n(x_n;y_n;z_n)$, в которых сосредоточены массы $m_1,m_2,...,m_n$ имеет следующие координаты: $x_s=\frac{x_1*m_1+x_2*m_2+...+x_n*m_n}{m_1+m_2+...+m_n},y_s=\frac{y_1*m_1+...+y_n*m_n}{m_1+...+m_n},z_s=\frac{z_1*m_1+...+z_n*m_n}{m_1+...+m_n}$
- 2) Центры масс треугольника с координатами $A_1(x_1;y_1;z_1), A_2(x_2;y_2;z_2), A_3(x_3;y_3;z_3)$ (то есть, центр масс однородной треугольной пластины) находится в точке пересечения медиан. Если предпложить, что $n=3, m_1=m_2=m_3$, то $S(\frac{x_1+x_2+x_3}{3}; \frac{y_1+y_2+y_3}{3}; \frac{z_1+z_2+z_3}{3})$

1.2Направляющие косинусы

Пусть α, β, γ - углы, которые образуют $\overrightarrow{a} = \{x, z, z\}$ с осями O_x, O_y, O_z . Тогда направляющие косинусы $\cos \alpha, \cos \beta, \cos \gamma$ вектора \overrightarrow{a} связаны соотношением $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ и определяются формулами: $\cos \alpha = \frac{x}{|\overrightarrow{a}|} = \frac{x}{\sqrt{x_2 + y_2 + z_2}}, \cos \beta = \frac{y}{|\overrightarrow{a}|}, \cos \gamma = \frac{z}{|\overrightarrow{a}|}$

1.2.1 Пример

Найти длину и направляющие косинусы \overrightarrow{AM} , если т. M делит AB в соотношении $\lambda = -2$, где A(5; 6; -1), B(0; -3; 2).

Найдем координаты точки M: $x_m = -5, y_m = -12, z_m = 5$. Таким образом, M(-5;-12;5).

$$\overrightarrow{AM} = \{-10; -18; -6\}, |\overrightarrow{AM}| = \sqrt{100 + 324 + 36} = \sqrt{460} = 2\sqrt{115}$$

Найдем направляющие косинусы:
$$\cos\alpha = \frac{-10}{2\sqrt{115}} \approx -0.466, \cos\beta = \frac{-18}{2\sqrt{115}} \approx -0.839, \cos\gamma = \frac{-6}{2\sqrt{115}} \approx 0.28.$$
 Выполним проверку:
$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = \frac{100}{460} + \frac{324}{460} + \frac{36}{460} = 1$$

1.3 Решение практической работы, вариант 21

Задание 5, нахождение центра тяжести системы

Дано:
$$A_1(5;-4), A_2(0;2), A_3(6;6), m_1=25, m_2=45, m_3=15.$$
 Согласно формуле, $S_x=\frac{5*25+0*45+6*15}{25+45+15}=\frac{215}{85}=\frac{43}{17},$ $S_y=\frac{-4*25+2*45+6*15}{25+45+15}=\frac{80}{85}=\frac{16}{17}.$ Ответ: $S(\frac{43}{17};\frac{16}{17})$

Согласно формуле,
$$S_x = \frac{5*25+0*45+0*15}{25+45+15} = \frac{215}{85} = \frac{215}{85}$$

Задание 6, нахождение длины и направляющих косинусов

Дано: $A(-2; -5), B(4; 1), \lambda = \frac{2}{7}$.

Найдем координаты точки
$$M$$
: $M_x=\frac{-2+4}{1+\frac{2}{7}}=\frac{2}{\frac{9}{7}}=\frac{14}{9}, M_y=\frac{-5+1}{1+\frac{2}{7}}=\frac{-4}{\frac{9}{7}}=\frac{-4*7}{9}=-\frac{28}{9},$ таким образом $M(\frac{14}{9};-\frac{28}{9})$

$$\overrightarrow{AM} = \{\frac{14}{9} + 2; -\frac{28}{9} + 5\} = \{\frac{32}{9}; \frac{17}{9}\}, |\overrightarrow{AM}| = \sqrt{\frac{1024}{81} + \frac{289}{81}} = \sqrt{\frac{1313}{81}}$$
 Найдем направляющие косинусы: $\cos \alpha = \frac{\frac{32}{9}}{\sqrt{\frac{1313}{81}}} \approx 0.883, \cos \beta = \frac{\frac{17}{9}}{\sqrt{\frac{1313}{81}}} \approx 0.469.$ Ответ: сами выпишите из того, что написано выше.

$$\cos \alpha = \frac{\frac{32}{9}}{\sqrt{\frac{1313}{81}}} \approx 0.883, \cos \beta = \frac{\frac{17}{9}}{\sqrt{\frac{1313}{81}}} \approx 0.469.$$