AESoP

- Advanced Equation Solver for Parallel Systems
 - Solver for a least-squares system of equations
 - Brian Gunter, Delft University of Technology
- Written in C
- Uses PLAPACK for parallel processing
 - Robert van de Geijn, UT Austin
 - High-level language for parallel linear algebra
 - www.cs.utexas.edu/~plapack
 - PLAPACK uses BLAS for the computations on each core

AESoP

- Solution Method
- Parameter "Leveling"
- Efficiency and Speed
- Optimal Weighting
- Future Gravity Fields

AESoP Least Squares Solution Method

- Block Householder Orthogonal Transformation
- Numerically superior to Normal Equations method

Weighted Least Squares

- Normal Equation method "squares" H. That is, you have to form $(H^TWH)x = H^TWy$
 - Forming H^TWH doubles the range in the order of magnitude of the numbers, compared to H
 - Increases computer roundoff error.
- Orthogonal Transformation uses H:

$$QW^{1/2}H = \begin{bmatrix} R \\ 0 \end{bmatrix} \qquad QW^{1/2}y = \begin{bmatrix} b \\ e \end{bmatrix} \qquad Rx = b$$

- Mathematically equivalent to Normal Equations
- Better numerically because it uses H instead of H^TWH

Accuracy of Normal Equations compared to Orthogonal Transformation

Parameter "Leveling"

- Local Parameters
 - For one type of data (we have 3 types) for one day
 - Example: data biases
- Common Parameters
 - For all 3 types of data for one day
 - Example: Satellite position and velocity
- Global Parameters
 - For all data for all days
 - Example: Gravity model

Parameter Leveling

Results in an H matrix with blocks of zeroes.
 For example, for 2 days of data:

 AESoP builds this H matrix based on a user-supplied INPUT file.

Initial diagonal covariance is added on top

Scientific Software Days, Austin TX

AESoP performs Orthogonal Transformation on this matrix

Scientific Software Days, Austin TX

Efficiency and Speed

- Compute Efficient
 - Avoids multiplying zeros as much as possible
- Memory Efficient
 - Has only parts of matrix in memory at any one time.
- Fast Compute Speed
 - Uses a block Householder algorithm to take advantage of BLAS 3 speed
 - Up to 8 Gflops per core on lonestar using 4 nodes.

illiai vveigilillig

Optimal Weighting

Inter-satellite rangerate residuals

Daily weight scaling factors for inter-satellite rangerate

December 12, 2012

Scientific Software Days, Austin TX

Future Gravity Models Will Be Larger

- Future missions (GRAIL, for example) will have higher precision data
- Solve for larger gravity field models
 - Degree 1000. Current monthly GRACE solution is degree 180, so a factor of ~5 increase in degree.
- Date file size would increase by a factor of ~25
 - Largest GRACE data file is currently 5Gb. So this could increase to > 100 Gb.
- Flops would increase by a factor of ~600

Weighted Least Squares

$$y = Hx + \varepsilon$$
m observations n estimated parameters m > n

J = weighted least squares performance index

$$= \sum_{i=1}^{m} w_i \varepsilon_i^2$$
$$= (y - Hx)^T W (y - Hx)$$

December 12, 2012

Normal Equations

Obtain Normal Equations by minimizing J with respect to x

$$(H^T W H) x = (H^T W y)$$

The solution to the Normal Equations gives the estimate for x, which we call \hat{x} :

$$\hat{x} = (H^T W H)^{-1} (H^T W y)$$

Orthogonal Transformation

Insert an orthogonal matrix Q into J, where

$$Q^TQ = I$$

$$J = (y - Hx)^{T} W (y - Hx)$$

$$= (y - Hx)^{T} W^{1/2} W^{1/2} (y - Hx)$$

$$= (y - Hx)^{T} W^{1/2} Q^{T} Q W^{1/2} (y - Hx)$$

$$= ||QW^{1/2} (y - Hx)||^{2}$$

Orthogonal Transformation

$$J = ||QW^{1/2}(y - Hx)||^2 = ||QW^{1/2}(Hx - y)||^2$$

Choose Q such that

$$QW^{1/2}H = \begin{bmatrix} R \\ 0 \end{bmatrix}$$
 and define $QW^{1/2}y = \begin{bmatrix} b \\ e \end{bmatrix}$

where

R is an $n \times n$ upper - triangular matrix

Orthogonal Transformation

$$J = \|QW^{1/2}(Hx - y)\|^2 = \|\begin{bmatrix} R \\ 0 \end{bmatrix}x - \begin{bmatrix} b \\ e \end{bmatrix}\|^2$$
$$= \|Rx - b\|^2 + \|e\|^2$$

Minimize J by choosing x such that Rx = b. This value of x is the weighted least squares estimate \hat{x} .