Devoir surveillé n°02

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

1 1.a Remarquons que pour tout entier $n \ge n_0$,

$$\gamma_{n+1} - \gamma_n = f(n+1) - \int_n^{n+1} f(t) dt$$

Par décroissance de f, pour tout $t \in [n, n + 1]$,

$$f(n+1) \le f(t)$$

puis en intégrant sur [n, n+1],

$$f(n+1) \le \int_{n}^{n+1} f(t) \, \mathrm{d}t$$

de sorte que $\gamma_{n+1} - \gamma_n \ge 0$. La suite $(\gamma_n)_{n \ge n_0}$ est donc décroissante.

A nouveau, si on fixe $n \ge n_0$ et que l'on se donne $k \in [n_0, n-1]$, pour tout $t \in [k, k+1]$,

puis en intégrant sur [k, k+1]

$$\int_{k}^{k+1} f(t) \, \mathrm{d}t \le f(k)$$

et enfin

$$\int_{n_0}^n f(t) dt = \sum_{k=n_0}^{n-1} \int_k^{k+1} f(t) dt \le \sum_{k=n_0}^{n-1} f(k) \le \sum_{k=n_0}^n f(k) = S_n$$

car $f(n) \ge 0$. Par conséquent, (γ_n) est minorée par 0.

D'après le théorème de convergence monotone, (γ_n) converge.

1.b La fonction $f: t \mapsto \frac{1}{t \ln(t)}$ est continue, décroissante et positive sur $[2, +\infty[$. D'après la question précédente, la suite de terme général γ_n converge. Notons ℓ sa limite de sorte que $\gamma_n = \ell + o(1)$. Or

$$\gamma_n = S_n - \int_2^{+\infty} f(t) dt = \sum_{k=2}^n \frac{1}{k \ln k} - \int_2^n \frac{dt}{t \ln t} = \sum_{k=2}^n \frac{1}{k \ln k} - \left[\ln(\ln(t))\right]_2^n = \sum_{k=2}^n \frac{1}{k \ln k} - \ln(\ln n) + \ln(\ln 2)$$

En posant $C = \ell - \ln(\ln 2)$, on a donc bien

$$\sum_{k=2}^{n} \frac{1}{k \ln k} = \ln(\ln n) + C + o(1)$$

1

REMARQUE. On aurait pu se passer de la question précédente.

$$\begin{split} \ln(\ln(n)) - \ln(\ln(n-1)) &= -\ln\left(\frac{\ln(n-1)}{\ln(n)}\right) \\ &= -\ln\left(\frac{\ln(n) + \ln(1-1/n)}{\ln(n)}\right) \\ &= -\ln\left(1 + \frac{\ln(1-1/n)}{\ln(n)}\right) \\ &= -\ln\left(1 - \frac{1}{n\ln(n)} + \mathcal{O}\left(\frac{1}{n^2\ln(n)}\right)\right) \\ &= \frac{1}{n \to +\infty} \frac{1}{n\ln(n)} + \mathcal{O}\left(\frac{1}{n^2\ln(n)}\right) \end{split}$$

ou encore

$$\frac{1}{n\ln(n)} = \ln(\ln(n)) - \ln(\ln(n-1)) + u_n$$

avec $u_n = \mathcal{O}\left(\frac{1}{n^2\ln(n)}\right)$. A fortiori, $u_n = \mathcal{O}\left(\frac{1}{n^{3/2}}\right)$ de sorte que $\sum u_n$ converge. Il existe donc $\mathbf{D} \in \mathbb{R}$ tel que $\sum_{k=3}^n u_k = \mathbf{C} + o(1)$. Par télescopage, $\sum_{k=3}^n \ln(\ln(k)) - \ln(\ln(k-1)) = \ln(\ln(n)) - \ln(\ln(2))$. Ainsi

$$\sum_{k=2}^{n} \frac{1}{k \ln(k)} = \frac{1}{2 \ln(2)} + \ln(\ln(n)) - \ln(\ln(2)) + D + o(1) = \ln(\ln(n)) + C + o(1)$$

en posant C = $\frac{1}{2 \ln(2)} - \ln(\ln(2)) + D$.

1.c Une primitive de $t\mapsto \frac{1}{t\ln^2(t)}$ sur $[2,+\infty[$ est $t\mapsto -\frac{1}{\ln t}$. Comme cette dernière fonction admet une limite en $+\infty$, l'intégrale $\int_2^{+\infty} \frac{\mathrm{d}t}{t\ln^2(t)}$ converge.

La fonction $t \mapsto \frac{1}{t \ln^2(t)}$ est décroissante et positive sur $[2, +\infty[$. On peut donc utiliser la question **1.a**. En conservant les mêmes notations que dans cette question, la suite de terme général $S_n = \gamma_n + \int_{n_0}^n f(t) dt$ converge en tant que somme de deux suites convergentes. Ceci signifie que la série $\sum \frac{1}{k \ln^2(k)}$ converge.

2 On remarque par exemple que $\frac{\ln k}{k(k-1)} = o\left(\frac{1}{k^{3/2}}\right)$ et $\sum \frac{1}{k^{3/2}}$ est une série à termes positifs convergente (série de Riemann).

3. Soit un entier $k \ge 2$. Par croissance de ln sur [k-1, k],

$$\forall t \in [k-1,k], \ln(k) \ge \ln(t)$$

puis, par croissance de l'intégrale

$$\ln(k) = \int_{k-1}^{k} \ln(k) \, dt \ge \int_{k-1}^{k} \ln(t) \, dt$$

Enfin, d'après la relation de Chasles

$$\sum_{k=2}^{n} \ln(k) \ge \int_{1}^{n} \ln(t) \, dt = n \ln(n) - n + 1$$

3.b D'après la question précédente, pour tout entier $n \ge 2$;

$$\ln(n!) = \sum_{k=1}^{n} \ln(k) = \sum_{k=2}^{n} \ln(k) \ge n \ln(n) - n + 1$$

Par ailleurs, par croissance de ln,

$$\ln(n!) = \sum_{k=1}^{n} \ln(k) \le n \ln(n)$$

On en déduit que

$$|\ln(n!) - n\ln(n)| = n\ln(n) - \ln(n!) \le n - 1 \le n$$

ce qui prouve que

$$\ln(n!) = n \ln(n) + O(n)$$

4 4.a Soit $\varphi : x \in \mathbb{R}_+^* \mapsto x \ln x - \lambda x$. φ est dérivable sur \mathbb{R}_+^* et, pour tout $x \in \mathbb{R}_+^*$, $\varphi'(x) = \ln(x) + 1 - \lambda$. Posons $\mu = e^{\lambda - 1} > 0$. On en déduit que φ est strictement décroissante sur $]0, \mu]$ et strictement croissante sur $[\mu, +\infty[$. On sait aussi que $\lim_{n \to \infty} \varphi = 0 \le \ln(n)$. Ainsi, par stricte décroissance de φ sur $]0, \mu]$, φ ne prend pas la valeur $\ln(n)$ sur $]0, e^{\lambda - 1}]$. Par ailleurs, $\varphi(\mu) = -\mu < \ln(n)$. Enfin, $\lim \varphi = +\infty$ et φ est strictement croissante et continue sur $[\mu, +\infty[$. D'après le corollaire du théorème des valeurs intermédiaires pour les fonctions strictement monotones, φ prend la valeur $\ln(n)$ une unique fois sur $[\mu, +\infty[$ et donc également sur \mathbb{R}_+^*

4.b Par définition, $\varphi(r_n) = \ln(n)$. D'après la question précédente, φ induit une bijection de $[\mu, +\infty[$ sur $[-\mu, +\infty[$. En notant ψ la bijection réciproque, $r_n = \psi(\ln(n))$. Or $\lim_{h \to +\infty} \varphi = +\infty$ donc $\lim_{h \to +\infty} \psi = +\infty$. On en déduit que $\lim_{n \to +\infty} r_n = +\infty$. A nouveau, $\varphi(r_n) = \ln(n)$ i.e. $r_n (\ln(r_n) - \lambda) = \ln(n)$. Puisque $\lim_{n \to +\infty} \ln(r_n) = +\infty$, $\ln(r_n) - \lambda \sim \lim_{n \to +\infty} \ln(r_n)$ puis $r_n \ln(r_n) \sim \lim_{n \to +\infty} \ln(n)$. On peut aussi écrire $r_n \ln(r_n) = \lim_{n \to +\infty} \ln(n)$. On a donc

$$\begin{split} \ln(r_n \ln(r_n)) &= \underset{n \to +\infty}{\ln(\ln(n)) + \ln(1 + o(1))} \\ &= \underset{n \to +\infty}{\ln(\ln(n)) + o(1))} \\ &= \underset{n \to +\infty}{\ln(\ln(n)) + o(\ln(n)))} \\ &\sim \underset{n \to +\infty}{\ln(\ln(n))} \end{split}$$

Or $\ln(r_n \ln(r_n)) = \ln(r_n) + \ln(\ln(r_n)) \sim \lim_{n \to +\infty} \ln(r_n)$ par croissances comparées $(\ln(r_n) \to +\infty)$. On a donc $\ln(r_n) \sim \lim_{n \to +\infty} \ln(r_n)$ $\ln(\ln(r_n))$. Or on a vu que $r_n \ln(r_n) \sim \ln(n)$ donc $r_n \sim \frac{\ln(n)}{\ln(\ln(n))}$.

5 5.a 5.a.i Pour tout entier $n \in \mathbb{N}^*$, $F_n \subset F$ de sorte que $0 \le d_n(F) \le \frac{\operatorname{card} F}{n}$. D'après le théorème des gendarmes, F admet une densité nulle.

5.a.ii Pour tout $n \in \mathbb{N}^*$, $d_n(a\mathbb{N}^*) = \frac{1}{n} \lfloor n/a \rfloor$. Notamment,

$$\forall n \in \mathbb{N}^*, \ \frac{1}{n} \left(\frac{n}{a} - 1 \right) < d_n(a \mathbb{N}^*) \le \frac{1}{n} \cdot \frac{n}{a}$$

Par encadrement, $a\mathbb{N}^*$ admet une densité égale à $\frac{1}{a}$.

5.a.iii Pour tout $n \in \mathbb{N}^*$, $d_n(C) = \frac{\lfloor \sqrt{n} \rfloor}{n}$. En particulier,

$$\forall n \in \mathbb{N}^*, \ 0 \le d_n(\mathbb{C}) \le \frac{\sqrt{n}}{n}$$

On en déduit que C admet une densité nulle.

5.b On désignera l'union disjointe par le symbole \sqcup . Pour tout $n \in \mathbb{N}^*$,

$$\llbracket 1,n \rrbracket = ((\mathbb{N}^* \setminus \mathsf{E}_1) \sqcup \mathsf{E}_1) \cap \llbracket 1,n \rrbracket = ((\mathbb{N}^* \setminus \mathsf{E}_1) \cap \llbracket 1,n \rrbracket) \sqcup (\mathsf{E}_1 \cap \llbracket 1,n \rrbracket)$$

On en déduit que $d_n(\mathbb{N}^* \setminus E_1) + d_n(E_1) = 1$ pour tout $n \in \mathbb{N}^*$. Ainsi $\mathbb{N}^* \setminus E_1$ possède une densité et $d(\mathbb{N}^* \setminus E_1) = 1 - d(E_1)$. Pour tout $n \in \mathbb{N}^*$,

$$(E_1 \sqcup E_2) \cap [\![1, n]\!] = (E_1 \cap [\![1, n]\!]) \sqcup (E_2 \cap [\![1, n]\!])$$

On en déduit que $d_n(E_1 \sqcup E_2) = d_n(E_1) + d_n(E_2)$. Ainsi, si E_1 et E_2 possèdent une densité $E_1 \sqcup E_2$ possède également une densité et $d(E_1 \sqcup E_2) = d(E_1) + d(E_2)$.

5.c On peut mettre en défaut la σ -additivité. D'après la question précédente, d(n) = 0 pour tout $n \in \mathbb{N}^*$ mais

$$d\left(\bigsqcup_{n\in\mathbb{N}^*} \{n\}\right) = d(\mathbb{N}^*) = 1 \neq \sum_{n\in\mathbb{N}^*} d(\{n\})$$

On peut aussi constater que d n'est pas définie pour toutes les parties de \mathbb{N}^* . Par exemple, en posant $E = \bigsqcup_{n \in \mathbb{N}} [2^{2n}, 2^{2n+1} - 1],$ pour tout $n \in \mathbb{N}^*$,

$$d_{2^{2n+1}-1} = \frac{1}{2^{2n+1}-1} \sum_{k=0}^{n} 2^{2k} = \frac{2^{2(n+1)}-1}{3(2^{2n+1}-1)} \xrightarrow[n \to +\infty]{} \frac{2}{3}$$
$$d_{2^{2n}-1} = \frac{1}{2^{2n}-1} \sum_{k=0}^{n-1} 2^{2k} = \frac{2^{2n}-1}{3(2^{2n}-1)} = \frac{1}{3}$$

Ainsi E ne possède pas de densité.

D'une manière ou d'une autre, d n'est pas une probabilité sur $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$.

6.a Soit $m \in \mathbb{N}^*$. Comme les coefficients binomiaux sont positifs.

$$2^{2m+1} = (1+1)^{2m+1} = \sum_{k=0}^{2m+1} {2m+1 \choose k} \ge {2m+1 \choose m} + {2m+1 \choose m+1} = 2{2m+1 \choose m}$$

6.b Soit $r \in \mathbb{N}^*$. Remarquons que

$$r! \binom{2r+1}{r} = (2r+1)2r \dots (r+2)$$

Soit $p \in [r+2, 2r+1]$ un nombre premier. Alors p divise $r! \binom{2r+1}{r}$. Mais p est premier avec tous les entiers compris entre 1 et r (un nombre premier est premier avec un nombre qu'il ne divise pas) donc p est premier avec r!. D'après le lemme de Gauss, p divise $\binom{2r+1}{r}$. Enfin, tous les nombres premiers compris entre r+2 et 2r+1 sont premiers entre eux deux à deux donc leur produit divise $\binom{2r+1}{r}$.

6.c Notons HR(n) l'assertion « $\prod_{\substack{p \le n \\ p \le n}} p \le 4^n$ ». HR(2) est vraie puisque 2 \le 16.

Supposons qu'il existe un entier $n \ge 2$ tel que HR(k) est vraie pour tout $k \in [2, n]$. Si n + 1 n'est pas premier, alors

$$\prod_{\substack{p \le n+1 \\ p \in \mathcal{P}}} p = \prod_{\substack{p \le n \\ p \in \mathcal{P}}} p \le 4^n \le 4^{n+1}$$

Sinon n+1 est premier et impair $(n+1 \ge 3)$. Il existe donc $r \in \mathbb{N}^*$ tel que n+1=2r+1. Ainsi

$$\prod_{\substack{p \leq n+1 \\ p \in \mathcal{P}}} p = \left(\prod_{\substack{p \leq r+1 \\ p \in \mathcal{P}}} p\right) \left(\prod_{\substack{r+1$$

Comme $r+1 \le 2r = n$, on peut appliquer $\operatorname{HR}(r+1)$ pour affirmer que $\prod_{\substack{p \le r+1 \\ p \in \mathcal{P}}} p \le 4^{r+1}$. Par ailleurs, d'après les deux questions précédentes,

$$\prod_{\substack{r+1$$

Finalement,

$$\prod_{\substack{p \le n+1 \\ p \in \mathcal{P}}} p \le 4^{r+1} \cdot 2^{2r} = 4^{2r+1} = 4^{n+1}$$

Dans tous les cas, HR(n+1) est vraie, ce qui permet de conclure par récurrence forte que HR(n) est vraie pour tout entier $n \ge 2$.

7 7.a Soit $k \in \mathbb{N}^*$. α_k est également le nombre d'entiers m tels que $1 \le mp^k \le n$ i.e. $\frac{1}{p^k} \le m \le \frac{n}{p^k}$. Comme $\frac{1}{p^k} \le 1$, c'est également le nombre d'entiers m tels que $1 \le m \le \frac{n}{p^k}$, c'est-à-dire $\left\lfloor \frac{n}{p^k} \right\rfloor$.

7.b Tout d'abord,

$$\nu_p(n!) = \nu_p\left(\prod_{j=1}^n j\right) = \sum_{j=1}^n \nu_p(j)$$

Posons alors $I_k = \{j \in \llbracket 1, n \rrbracket, \ \nu_p(j) = k\}$. Alors $\llbracket 1, n \rrbracket = \bigsqcup_{k \in \mathbb{N}} I_k$. Par sommation par paquets,

$$\nu_p(n!) = \sum_{k=0}^{+\infty} \sum_{j \in \mathbf{I}_k} \nu_p(j) = \sum_{k=0}^{+\infty} k \operatorname{card}(\mathbf{I}_k) = \sum_{k=1}^{+\infty} k \beta_k$$

7.c Posons $J_k = \{j \in [\![1,n]\!], \ \nu_p(j) \ge k\}$. Alors $J_{k+1} \sqcup I_k = J_k$ donc $\operatorname{card}(J_{k+1}) + \operatorname{card} I_k = \operatorname{card} J_k$ ou encore $\beta_k = \alpha_k - \alpha_{k+1}$. Ainsi

$$\sum_{k=1}^{+\infty}k\beta_k=\sum_{k=1}^{+\infty}k\alpha_k-\sum_{k=1}^{+\infty}k\alpha_{k+1}=\sum_{k=1}^{+\infty}k\alpha_k-\sum_{k=0}^{+\infty}k\alpha_{k+1}=\sum_{k=1}^{+\infty}k\alpha_k-\sum_{k=1}^{+\infty}(k-1)\alpha_k=\sum_{k=1}^{+\infty}\alpha_k=\sum_{k=1}^{+\infty}\left\lfloor\frac{n}{p^k}\right\rfloor$$

Il s'agit de la formule de Legendre.

Remarque. Les opérations précédentes sont licites car toutes les sommes intervenant plus haut ne comportent qu'un nombre fini de termes non nuls.

7.d Par majoration de la partie entière,

$$\nu_p(n!) \le \sum_{k=1}^{+\infty} \frac{n}{p^k} = \frac{n}{p} \cdot \frac{1}{1 - \frac{1}{p}} = \frac{n}{p-1}$$

De plus, s'agissant d'une somme de termes positifs, on peut la minorer par son premier terme :

$$\nu_p(n!) = \sum_{k=1}^{+\infty} \alpha_k = \sum_{k=1}^{+\infty} \left\lfloor \frac{n}{p^k} \right\rfloor \ge \left\lfloor \frac{n}{p} \right\rfloor \ge \frac{n}{p} - 1$$

8 L'énoncé nous demande d'effectuer ce que l'on appelle une transformation d'Abel.

$$\begin{split} \sum_{k=1}^n \varepsilon_k a_k &= \sum_{k=1}^n \varepsilon_k (\mathbf{A}_k - \mathbf{A}_{k-1}) \qquad \text{en convenant que } \mathbf{A}_0 = 0 \\ &= \sum_{k=1}^n \varepsilon_k \mathbf{A}_k - \sum_{k=1}^n \varepsilon_k \mathbf{A}_{k-1} \\ &= \sum_{k=1}^n \varepsilon_k \mathbf{A}_k - \sum_{k=0}^{n-1} \varepsilon_{k+1} \mathbf{A}_k \\ &= \varepsilon_n \mathbf{A}_n + \sum_{k=1}^{n-1} \varepsilon_k \mathbf{A}_k - \sum_{k=1}^{n-1} \varepsilon_{k+1} \mathbf{A}_k \qquad \text{car } \mathbf{A}_0 = 0 \\ &= \varepsilon_n \mathbf{A}_n + \sum_{k=1}^{n-1} (\varepsilon_k - \varepsilon_{k+1}) \mathbf{A}_k \end{split}$$

9. 9.a Soit $(x, a, b, d) \in \mathbb{R}^3 \times \mathbb{R}$. Par inégalité triangulaire,

$$|x - a| = |x - (a + b) + b| \le |x - (a + b)| + |b|$$

Ainsi

$$|x - (a+b)| < d \implies |x-a| < d + |b|$$

Notamment

$$\left[|\mathbf{X}_{\mathbf{N}} - \mathbb{E}(\mathbf{X}_n)| \leq \frac{1}{2} a_{\mathbf{N}}^{2/3} \right] = \left[|\mathbf{X}_{\mathbf{N}} - (a_{\mathbf{N}} + b_{\mathbf{N}})| \leq \frac{1}{2} a_{\mathbf{N}}^{2/3} \right] \subset \left[|\mathbf{X}_{\mathbf{N}} - a_{\mathbf{N}}| \leq \frac{1}{2} a_{\mathbf{N}}^{2/3} + |b_{\mathbf{N}}| \right]$$

Mais (b_N) est bornée et $(a_N^{2/3})$ diverge vers $+\infty$, donc $|b_N| \le \frac{1}{2}a_N^{2/3}$ pour N suffisamment grand. On en déduit finalement que

$$\left\lceil |\mathbf{X}_{\mathbf{N}} - \mathbb{E}(\mathbf{X}_{\mathbf{N}})| \leq \frac{1}{2}a_{\mathbf{N}}^{2/3} \right\rceil \subset \left[|\mathbf{X}_{\mathbf{N}} - a_{\mathbf{N}}| \leq a_{\mathbf{N}}^{2/3} \right]$$

9.b En passant au complémentaire, on a donc à partir d'un certain rang

$$\left[|X_{N} - a_{N}| > a_{N}^{2/3} \right] \subset \left[|X_{N} - \mathbb{E}(X_{N})| > \frac{1}{2} a_{N}^{2/3} \right]$$

de sorte que

$$\mathbb{P}\left(|\mathbf{X}_{\mathbf{N}} - a_{\mathbf{N}}| > a_{\mathbf{N}}^{2/3}\right) \leq \mathbb{P}\left(|\mathbf{X}_{\mathbf{N}} - \mathbb{E}(\mathbf{X}_{\mathbf{N}})| > \frac{1}{2}a_{\mathbf{N}}^{2/3}\right)$$

Mais, par inégalité de Bienaymé-Tchebychev,

$$\mathbb{P}\left(|X_{N} - \mathbb{E}(X_{N})| > \frac{1}{2}a_{N}^{2/3}\right) \le \frac{4\mathbb{V}(X_{N})}{a_{n}^{4/3}}$$

Mais, par hypothèse, $\mathbb{V}(X_N) = \mathcal{O}(a_N)$ donc

$$\mathbb{P}\left(|X_{\mathbf{N}} - \mathbb{E}(X_{\mathbf{N}})| > \frac{1}{2}a_{\mathbf{N}}^{2/3}\right) \underset{\mathbf{N} \to +\infty}{=} \mathcal{O}\left(\frac{1}{a_{\mathbf{N}}^{1/3}}\right)$$

Comme (a_N) diverge vers $+\infty$, $\lim_{n\to+\infty} \frac{1}{a_n^{1/3}} = 0$ puis

$$\lim_{N\to+\infty} \mathbb{P}\left(|X_N - \mathbb{E}(X_N)| > \frac{1}{2}a_N^{2/3}\right) = 0$$

10 10.a Soit p un diviseur premier de $n! = 1 \times 2 \cdots \times n$. Comme n est premier, n divise alors l'un des entiers 1, 2, ..., n. On en déduit que tout diviseur premier de n! est inférieur ou égal à n. Ainsi

$$n! = \prod_{\substack{p \le n \\ n \in \mathcal{P}}} p^{\nu_p(n!)}$$

puis

$$\ln(n!) = \sum_{\substack{p \le n \\ n \in \mathcal{P}}} \nu_p(n!) \ln(p)$$

10.b D'après la question **7.d**:

$$\sum_{\substack{p \le n \\ p \in \mathcal{P}}} \left(\frac{n}{p} - 1\right) \ln(p) \le \ln(n!) \le \sum_{\substack{p \le n \\ p \in \mathcal{P}}} \left(\frac{n}{p} + \frac{n}{p(p-1)}\right) \ln(p)$$

On en déduit que

$$\frac{\ln(n!)}{n} - \sum_{\substack{p \leq n \\ p \in \mathcal{P}}} \frac{\ln(p)}{p(p-1)} \leq \sum_{\substack{p \leq n \\ p \in \mathcal{P}}} \frac{\ln(p)}{p} \leq \frac{\ln(n!)}{n} + \frac{1}{n} \sum_{\substack{p \leq n \\ p \in \mathcal{P}}} \ln(p)$$

D'une part, les termes des sommes étant positifs,

$$\sum_{\substack{p \le n \\ p \in \mathcal{P}}} \frac{\ln(p)}{p(p-1)} \le \sum_{k=2}^{+\infty} \frac{\ln(k)}{k(k-1)} = K$$

et, d'autre part, d'après la question 6.c

$$\sum_{\substack{p \le n \\ p \in \mathcal{P}}} \ln(p) \le n \ln(4)$$

ce qui permet d'établir les inégalités voulues.

10.c Les inégalités de la question précédente permettent d'affirmer que

$$\sum_{\substack{p \le n \\ p \in \mathcal{P}}} \frac{\ln(p)}{p} = \frac{\ln(n!)}{n} + \mathcal{O}(1)$$

Mais, d'après la question 3.b,

$$\frac{\ln(n!)}{n} = \ln(n) + \mathcal{O}(1)$$

ce qui permet de conclure.

11 11.a On pose $\varepsilon_k = \frac{1}{\ln(k)}$ dans la question 8 pour obtenir

$$\sum_{k=1}^{n} \frac{\chi(k)}{k} = \sum_{k=1}^{n-1} \left(\frac{1}{\ln(k)} - \frac{1}{\ln(k+1)} \right) A_k + \frac{A_n}{\ln(n)}$$

Mais, par définition de χ , ceci s'écrit également :

$$\sum_{\substack{p \le n \\ n \in \mathcal{P}}} \frac{1}{p} = \sum_{k=1}^{n-1} \frac{\ln(k+1) - \ln(k)}{\ln(k)\ln(k+1)} A_k + \frac{A_n}{\ln(n)} = \sum_{k=1}^{n-1} \frac{\ln(1+1/k)}{\ln(k)\ln(k+1)} A_k + \frac{A_n}{\ln(n)}$$

11.b D'après la question 10.c,

$$A_k = \sum_{\substack{p \le k \\ p \in \mathcal{P}}} \frac{\ln(p)}{p} \underset{k \to +\infty}{=} \ln(k) + \mathcal{O}(1)$$
$$\underset{k \to +\infty}{=} \ln(k) \left(1 + \mathcal{O}\left(\frac{1}{\ln(k)}\right) \right)$$

Par ailleurs,

$$\ln(1+1/k) = \frac{1}{k \to +\infty} \frac{1}{k} + \mathcal{O}\left(\frac{1}{k^2}\right)$$
$$= \frac{1}{k \to +\infty} \frac{1}{k} \left(1 + \mathcal{O}\left(\frac{1}{k}\right)\right)$$
$$= \frac{1}{k \to +\infty} \frac{1}{k} \left(1 + \mathcal{O}\left(\frac{1}{\ln(k)}\right)\right)$$

Enfin

$$\ln(k+1) = \ln(k(1+1/k)) = \ln(k) + \ln(1+1/k)$$

$$= \ln(k) + \mathcal{O}\left(\frac{1}{k}\right)$$

$$= \ln(k) \left(1 + \mathcal{O}\left(\frac{1}{k\ln(k)}\right)\right)$$

$$= \ln(k) \left(1 + \mathcal{O}\left(\frac{1}{k\ln(k)}\right)\right)$$

$$= \ln(k) \left(1 + \mathcal{O}\left(\frac{1}{\ln(k)}\right)\right)$$

On en déduit que

$$\begin{split} \frac{\ln(1+1/k)}{\ln(k)\ln(k+1)} \mathbf{A}_k &= \frac{1}{k\ln(k)} \left(1 + \mathcal{O}\left(\frac{1}{\ln(k)}\right)\right) \\ &= \frac{1}{k\ln(k)} + \mathcal{O}\left(\frac{1}{k\ln^2(k)}\right) \end{split}$$

11.c D'après la question précédente et la question **1.c**, $\frac{\ln(1+1/k)}{\ln(k)\ln(k+1)}A_k - \frac{1}{k\ln(k)}$ est le terme général d'une série converge. La suite des sommes partielles de cette série est donc bornée i.e.

$$\sum_{k=2}^{n-1} \frac{\ln(1+1/k)}{\ln(k)\ln(k+1)} A_k = \sum_{k=2}^{n-1} \frac{1}{k \ln(k)} + \mathcal{O}(1)$$

On a vu à la question **1.b** que

$$\sum_{k=2}^{n} \frac{1}{k \ln(k)} = \ln(\ln(n)) + \mathcal{O}(1)$$

On en déduit que

$$\sum_{k=2}^{n-1} \frac{1}{k \ln(k)} = \sum_{k=2}^{n} \frac{1}{k \ln(k)} - \frac{1}{n \ln(n)} = \ln(\ln(n)) + \mathcal{O}(1)$$

Enfin, on a vu précédemment que $A_n = \ln(n) + \mathcal{O}(1)$. A fortiori, $\frac{A_n}{\ln(n)} = \mathcal{O}(1)$. On en déduit avec la question **11.a** que

$$\sum_{\substack{p \le n \\ n \in \mathcal{P}}} \frac{1}{p} = \ln(\ln(n)) + \mathcal{O}(1)$$

12 12.a Tous les α_k sont supérieurs ou égaux à 1 et tous les p_k sont supérieurs ou égaux à 2. On en déduit que $n \ge 2^r$ et donc $r \le \frac{\ln(n)}{\ln(2)}$.

12.b On peut supposer les p_k rangés par ordre croissant. On a donc $p_1 \ge 2$. Mais comme 2 est le seul nombre premier pair, $p_{k+1} \ge 2k+1$ pour tout $k \ge 1$. On en déduit que $n \ge 2 \prod_{k=1}^{r-1} (2k+1)$.

On en déduit que

$$\ln(n) \ge \ln(2) + \sum_{k=1}^{r-1} \ln(2k+1) \ge \ln(2) + \sum_{k=1}^{r-1} \ln(2k) = r \ln(2) + \sum_{k=1}^{r-1} \ln(k)$$

En utilisant la question 3.a, on montre que

$$\sum_{k=1}^{r-1} \ln(k) \ge (r-1)\ln(r-1) - (r-1) + 1$$

On a donc

$$\ln(n) \ge r \ln(2) + (r-1) \ln(r-1) - (r-1) + 2 \ge (r-1) \ln(r-1) - (r-1)$$

D'après l'étude de fonction effectuée à la question **4.a** avec $\lambda = 1$, on a donc $r - 1 \le r_n$ puis $0 \le \omega(n) = r \le r_n + 1$. Comme (r_n) diverge vers $+\infty$, $\omega(n) = \mathop{\mathcal{O}}(r_n)$. Avec l'équivalent obtenu à la question **4.b**, on a donc bien

$$\omega(n) = \mathcal{O}\left(\frac{\ln(n)}{\ln(\ln(n))}\right)$$

13 | 13.a Comme [1, N]] est muni de la probabilité uniforme,

$$\mathbb{P}(X_{N,r} = 1) = \frac{1}{N} \operatorname{card}(\{X_{N,r} = 1\})$$

Or l'ensemble $\{X_{N,r} = 1\}$ est l'ensemble des multiples de r compris entre 1 et N. On a vu plus haut que le cardinal de cet ensemble était $\lfloor N/r \rfloor$. Comme $X_{N,r}$ est une variable de Bernoulli,

$$\mathbb{E}(X_{N,r}) = \mathbb{P}(X_{N,r} = 1) = \frac{1}{N} \left| \frac{N}{r} \right|$$

13.b Remarquons que

$$X_{\mathrm{N}}^{2} = \left(\sum_{\substack{p \leq \mathrm{N} \\ p \in \mathcal{P}}} X_{\mathrm{N},p}\right) \left(\sum_{\substack{q \leq \mathrm{N} \\ q \in \mathcal{P}}} X_{\mathrm{N},q}\right) = \sum_{\substack{p \leq \mathrm{N} \\ p \in \mathcal{P}}} X_{\mathrm{N},p}^{2} + \sum_{\substack{1 \leq p,q \leq \mathrm{N} \\ (p,q) \in \mathcal{P}^{2}, \, p \neq q}} X_{\mathrm{N},p} X_{\mathrm{N},q}$$

Comme $X_{N,p}$ est une variable de Bernoulli, $X_{N,p}^2 = X_{N,p}$. Ainsi, en posant $Y_{N,p,q} = X_{N,p}X_{N,q}$,

$$X_{N}^{2} = X_{N} + \sum_{\substack{1 \le p,q \le N \\ (p,q) \in \mathcal{P}^{2}, \ p \ne q}} Y_{N,p,q}$$

Par linéarité de l'espérance

$$\mathbb{E}(\mathbf{X}_{\mathbf{N}}^2) = \mathbb{E}(\mathbf{X}_{\mathbf{N}}) + \sum_{\substack{1 \leq p,q \leq \mathbf{N} \\ (p,q) \in \mathcal{P}^2, p \neq q}} \mathbb{E}(\mathbf{Y}_{\mathbf{N},p,q})$$

Mais $Y_{N,p,q}$ est à nouveau une variable de Bernoulli. Remarquons également que $\{Y_{N,p,q}=1\}=\{X_{N,p}=1\}\cap\{X_{N,q}=1\}$. Mais si p et q sont des nombres premiers distincts, ils sont premiers entre eux et un entier est alors divisible par p et q si et seulement si il est divisible par pq. On a donc dans ce cas $Y_{N,p,q}=X_{N,pq}$. Avec la question précédente, on a donc

$$\mathbb{E}(X_N^2) = \mathbb{E}(X_N) + \frac{1}{N} \sum_{\substack{1 \leq p,q \leq N \\ (p,q) \in \mathcal{P}^2, \; p \neq q}} \left\lfloor \frac{N}{pq} \right\rfloor$$

13.c On peut encore écrire

$$\begin{split} \mathbb{E}(\mathbf{X_N})^2 &= \left(\sum_{\substack{p \leq \mathbf{N} \\ p \in \mathcal{P}}} \mathbb{E}(\mathbf{X_{N,p}})\right) \left(\sum_{\substack{q \leq \mathbf{N} \\ q \in \mathcal{P}}} \mathbb{E}(\mathbf{X_{N,q}})\right) \\ &= \left(\frac{1}{\mathbf{N}} \sum_{\substack{p \leq \mathbf{N} \\ p \in \mathcal{P}}} \left\lfloor \frac{\mathbf{N}}{p} \right\rfloor\right) \left(\sum_{\substack{q \leq \mathbf{N} \\ q \in \mathcal{P}}} \left\lfloor \frac{\mathbf{N}}{q} \right\rfloor\right) \\ &= \frac{1}{\mathbf{N}^2} \sum_{\substack{p \leq \mathbf{N} \\ p \in \mathcal{P}}} \left\lfloor \frac{\mathbf{N}}{p} \right\rfloor^2 + \frac{1}{\mathbf{N}^2} \sum_{\substack{1 \leq p, q \leq \mathbf{N} \\ (p, q) \in \mathcal{P}^2, \ p \neq q}} \left\lfloor \frac{\mathbf{N}}{p} \right\rfloor \left\lfloor \frac{\mathbf{N}}{q} \right\rfloor \\ &\geq \frac{1}{\mathbf{N}^2} \sum_{\substack{1 \leq p, q \leq \mathbf{N} \\ (p, q) \in \mathcal{P}^2, \ p \neq q}} \left\lfloor \frac{\mathbf{N}}{p} \right\rfloor \left\lfloor \frac{\mathbf{N}}{q} \right\rfloor \end{split}$$

Alors

$$0 \le \mathbb{V}(X_N) = \mathbb{E}(X_N^2) - \mathbb{E}(X_N)^2 \le \mathbb{E}(X_N) + S_N$$

avec

$$S_{N} = \frac{1}{N} \left[\sum_{\substack{1 \leq p, q \leq N \\ (p,q) \in \mathcal{P}^{2}, \ p \neq q}} \left\lfloor \frac{N}{pq} \right\rfloor \right] - \frac{1}{N^{2}} \left[\sum_{\substack{1 \leq p, q \leq N \\ (p,q) \in \mathcal{P}^{2}, \ p \neq q}} \left\lfloor \frac{N}{p} \right\rfloor \left\lfloor \frac{N}{q} \right\rfloor \right]$$

Tout d'abord,

$$\mathbb{E}(\mathbf{X}_{\mathbf{N}}) = \frac{1}{\mathbf{N}} \sum_{\substack{p \le \mathbf{N} \\ p \in \mathcal{P}}} \left\lfloor \frac{\mathbf{N}}{p} \right\rfloor \le \sum_{\substack{p \le \mathbf{N} \\ p \in \mathcal{P}}} \frac{1}{p}$$

donc, d'après la question 11.c,

$$\mathbb{E}(X_N) = \ln(\ln(N)) + \mathcal{O}(1)$$

A fortiori

$$\mathbb{E}(X_N) \underset{N \to +\infty}{=} \mathcal{O}\left(\ln(\ln(N))\right)$$

Remarquons maitenant que

$$S_{N} = \frac{1}{N^{2}} \left[\sum_{\substack{1 \leq p, q \leq N \\ (p,q) \in \mathcal{P}^{2}, p \neq q}} \frac{N^{2}}{pq} \right] - \frac{1}{N^{2}} \left[\sum_{\substack{1 \leq p, q \leq N \\ (p,q) \in \mathcal{P}^{2}, p \neq q}} \left\lfloor \frac{N}{p} \right\rfloor \left\lfloor \frac{N}{q} \right\rfloor \right] = \frac{1}{N^{2}} \sum_{\substack{1 \leq p, q \leq N \\ (p,q) \in \mathcal{P}^{2}, p \neq q}} \frac{N^{2}}{pq} - \left\lfloor \frac{N}{p} \right\rfloor \left\lfloor \frac{N}{q} \right\rfloor$$

Or pour $(x, y) \in (\mathbb{R}_+)^2$,

$$xy - [x][y] = x(y - [y]) + (x - [x])[y] \le x + [y] \le x + y$$

de sorte que

$$\mathbf{S_{N}} \leq \frac{1}{\mathbf{N}} \sum_{\substack{1 \leq p,q \leq \mathbf{N} \\ (p,q) \in \mathcal{P}^2, \, p \neq q}} \frac{1}{p} + \frac{1}{q} = \frac{2}{\mathbf{N}} \sum_{\substack{1 \leq p,q \leq \mathbf{N} \\ (p,q) \in \mathcal{P}^2, \, p \neq q}} \frac{1}{p} \leq 2 \sum_{\substack{p \leq \mathbf{N} \\ p \in \mathcal{P}}} \frac{1}{p}$$

donc $S_N = \mathcal{O}(\ln(\ln(N)))$ d'après la question **11.c**. Finalement,

$$\mathbb{V}(X_{N}) \underset{N \to +\infty}{=} \mathcal{O}(\ln(\ln(N)))$$

13.d Comme $\mathbb{E}(X_N) = \ln(\ln(N)) + \mathcal{O}(1)$, $\mathbb{E}(X_N) = a_N + b_N$ avec $a_N = \ln(\ln(N))$ et (b_N) bornée. De plus, $\mathbb{V}(X_N) = \mathcal{O}(a_N)$. On peut donc appliquer la question **9.b** et affirmer que

$$\lim_{N \to +\infty} \mathbb{P}(|X_N - \ln(\ln(N))| > \ln(\ln(N))^{2/3}) = 0$$

La probabilité sur [1, N] étant uniforme,

$$\mathbb{P}(|X_{N} - \ln(\ln(N))| > \ln(\ln(N))^{2/3}) = \frac{1}{N} \operatorname{card} \left\{ n \in [[1, N]], |\omega(n) - \ln(\ln(N))| > (\ln(\ln(N)))^{2/3} \right\}$$

ce qui conclut.