UNIVERSIDADE PRESBITERIANA MACKENZIE

- Faculdade de Computação e Informática -

Curso: Ciência da Computação Disciplina: Teoria dos Grafos – Turma 6N Atividade Prova 1 --- outubro de 2020

Nome: Samuel Kenji Ochiai Gomes da Silva		TIA: 31817106
Nota:	Visto:	

Questão 01. (1,5 ponto) Considerando uma classe chamada Grafo, usada para manipular grafos em geral e considerando que esta classe apresenta os seguintes métodos:

```
boolean eConexo();// Retorna true sse o grafo é conexo
int ordem(); // Retorna a ordem do grafo
int tamanho(); // Retorna o tamanho do grafo
int grauMinimo(); // Retorna δ(G)
int grauMaximo(); // Retorna Δ(G)
```

escreva um método para decidir se um grafo é regular.

```
boolean eRegular(){
    int min = grauMinimo();
    int max = grauMaximo();
    if(min == max){
        return true;
    }
}
```

Questão 02. Considerando que a lista de adjacência abaixo representa um grafo não orientado:

- a) (0,5 ponto) Desenhe o grafo representado pela estrutura acima.
- b) (0,5 ponto) Construa a matriz de adjacência que representa o mesmo grafo.

	1	2	3	4	5
1	0	1	1	1	1
2	1	0	1	0	0
3	1	1	0	1	1
4	1	0	1	0	1
5	1	0	1	1	0

Questão 03. (2,0 pontos) O grafo G abaixo é euleriano? Justifique sua resposta.

R: O grafo acima não é euleriano, pois possui vértices de grau ímpar (v6,v8).

- a) Caso afirmativo, apresente uma trilha de Euler fechada em G.
- b) Caso contrário, qual a quantidade mínima de arestas que devem ser acrescentadas a AG, obtendo um grafo chamado G', de tal forma que o G' seja euleriano? Apresente tal grafo G' e uma trilha de Euler fechada em G'.

Trilha T = (v4,v4v7,v7,v7v8,v8,v8v6,v6,v6v9,v9,v9v8,v8,v8v5,v5,v5v6,v6,v6v3,v3,v3v2,v2,v2v4,v4,v4v5,v5,v5v 2,v2,v2v1,v1,v1v4,v4)

Questão 03. (1,0 ponto) O grafo G abaixo é hamiltoniano? Justifique sua resposta..

R: O grafo G acima é hamiltoniano, pois possui um circuito hamiltoniano C = (v4,v4v7,v7,v7v8,v8,v8v9,v9,v9v6,v6,v6v3,v3,v3v2,v2,v2v5,v5,v5v1,v1,v1v4,v4)

Questão 05. (1,5 ponto) Considerando o grafo H ao lado, com custos associados nas arestas, apresente a árvore geradora de custo mínimo obtida pelo algoritmo de Kruskal. (Na ordenação inicial, no caso de "empate", considere como menor aquela cuja letra que a identifica ocorre antes na ordem alfabética.).

		1	
Arestas	Custo	Resultado	Justificativa
a	1	OK	Não forma
			circuito
c	4	OK	Não forma
			circuito
k	4	OK	Não forma
			circuito
b	5	OK	Não forma
	_		circuito
j	5	OK	Não forma
J		011	circuito
d	6	_	Forma
u u	O		C=(b,d,c)
g	6	OK	Não forma
5	O		circuito
e	7	_	Forma
C	,		C=(a,g,e,b)
i	8		Forma
1	O	_	
			C=(g,i,j)
1	8	-	Forma
			C=(a,j,k,l,c)
h	9	-	Forma
			C=(a,j,h,b)

Custo Mínimo = 25

Questão 07. Dado o grafo H abaixo:

a) (1,0 ponto) Apresente, exclusivamente no espaço abaixo e usando uma representação textual de conjuntos, um emparelhamento máximo de H.

Resp: $E = \{k,a,g,f\}$

b) (1,0 ponto) Apresente, exclusivamente no espaço abaixo e usando uma representação textual de conjuntos, uma cobertura mínima de H.

Resp: $K = \{v0, v2, v4, v6\}$

c) (1,0 ponto) Justifique, objetivamente e exclusivamente no espaço abaixo, usando algum resultado teórico visto em aula, as respostas obtidas nos itens anteriores.

Resp:

- a) O emparelhamento máximo de H representado no item "a" é válido pois, além de ser um subconjunto E de arestas distintas de laços tal que todo vértice em H é extremo de, no máximo, uma aresta em E, também contempla o maior número de pares conforme a regra citada anteriormente.
- b) A cobertura mínima de H representada no item "b" é válida pois possui o mesmo tamanho do emparelhamento máximo de H (tamanho = 4).