Solving Linear and Transformable Non-linear Recursive Sequences using Generating Functions

Thursday, August 3, 2023 Liu Jingyu

the International Extended Project Qualification

Overview

Introduction

- 2 Solving linear recursions
- Translating non-linear recursions into linear ones
- 4 Conclusion and summary

1.1 Why did I choose this topic?

- The Fibonacci sequence
 - How is its formula derived?
 - Why there is irrational numbers?
- How about $a_n = m_1 a_{n-1} + m_2 a_{n-2}$?
 - Solved

• More generally?

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

1.2 Mathematical terminologies

• Linear recursion order t

•
$$a_n=m_1a_{n-1}+m_2a_{n-2}+\cdots+m_ta_{n-t}+c$$
, $m_t\neq 0$. $\begin{cases} c=0 \text{ Homogeneous} \\ c\neq 0 \text{ Non-Homogeneous} \end{cases}$

- Generating function for a_0 , a_1 , a_2 , a_3 , ... a_n , ...
 - $G(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$
- Characteristic equation
 - $x^t = m_1 x^{t-1} + m_2 x^{t-2} + \dots + m_t x^{t-t}$
 - $\bullet \Leftrightarrow x^t m_1 x^{t-1} m_2 x^{t-2} \dots m_t = 0$
 - Distinct non-zero roots: $\lambda_1, \lambda_2, \lambda_3, ... \lambda_j$, with multiplicity $p_1, p_2, p_3, ... p_j$

2.1 Idea to solve linear recursion

- The recurrence function R(x)
 - So that $G(x) \cdot R(x) = f(x)$ is finite
 - $G(x) = \frac{f(x)}{R(x)}$
 - Then Taylor expansion

- For order t linear recursion
 - $R(x) = 1 m_1 x m_2 x^2 \dots m_t x^t$
 - f(x) is a finite polynomial
 - Taylor expansion of *generating function* of other form

- Example: Fibonacci sequence
- $a_n = a_{n-1} + a_{n-2}$
- $\bullet \iff a_n a_{n-1} a_{n-2} = 0$
- $G(x) = 0 + x + x^2 + 2x^3 + \cdots$
- $\cdot R(x) = 1 x x^2$
- $f(x) = 0 + x + 0x^2 + 0x^3 + \cdots$
- Hence $G(x) = \frac{x}{1-x-x^2}$.

2.2 Solution to homogeneous linear recursion

• Taylor expansion and simplifying gives:

$$a_n = \sum_{s=1}^j \left(C_{s,1} \lambda_s^n + C_{s,2} n \lambda_s^n + C_{s,3} n^2 \lambda_s^n + \dots + C_{s,p_s} n^{p_s - 1} \lambda_s^n \right)$$

• When the roots of the *characteristic equation* are all distinct:

$$a_n = C_1 \lambda_1^n + C_2 \lambda_2^n + C_3 \lambda_3^n + \dots + C_t \lambda_t^n$$

• Manually find the constants

2.3 Solution to non-homogeneous recursion

- General case
- Use recurrence function

•
$$R(x) = 1 - m_1 x - m_2 x^2 - \dots - m_t x^t$$

•
$$G(x) \cdot R(x) = q(x) + \frac{cx^t}{1-x}$$

•
$$G(x) = \frac{q(x) + \frac{cx^t}{1-x}}{R(x)} = \frac{(1-x)q(x) + cx^t}{(1-x)R(x)}$$

• Manually expand the *generating function* using Taylor series

2.4 Special non-homogeneous recursion

- If $m_1 + m_2 + m_3 + \cdots + m_t \neq 1$
- Translate to homogeneous linear recursion

•
$$b_n = a_n - \frac{c}{1 - m_1 - m_2 - m_3 - \dots - m_t}$$

- Homogeneous linear recursion for (b_n)
- $b_n = m_1 b_{n-1} + \dots + m_t b_{n-t}$

• Example: the recursion

$$a_n = 2a_{n-1} + a_{n-2} + 2$$

$$\Leftrightarrow$$
 $(a_n + 1) = 2(a_{n-1} + 1) + (a_{n-2} + 1)$

Hence let
$$b_n = a_n - \frac{2}{1 - 2 - 1} = a_n + 1$$

Then
$$b_n = 2b_{n-1} + b_{n-2}$$

3.1 Methods to translate non-linear recursion to linear ones

• Three methods:

- Substitution method
- Logarithmic method
- Trigonometric method

3.2 Substitution method

- Involving *n*, the term number
- "Pack" a_n and n, and letting it be b_n
- Example:

•
$$na_n = (n-1)a_{n-1} + (n-2)a_{n-2}$$

- Letting $b_n = na_n$
- $\bullet \Leftrightarrow b_n = b_{n-1} + b_{n-2}$

- Noteworthy result:
- The recursive sequence $a_n = m_1 a_{n-1} + m_2 a_{n-2} + \cdots + m_t a_{n-t} + dn + c$

must have a caculable general formula given $m_1 + m_2 + m_3 + \cdots + m_t \neq 1$

 a_n, n Forms a linear recursion

3.3 Logarithmic method

- Involving multiplications
- Logarithms can turn multiplications into sums.

$$a_n = k a_{n-1} a_{n-2} \dots a_{n-t}$$

 $\iff \ln a_n = \ln a_{n-1} + \ln a_{n-2} + \dots + \ln a_{n-t} + \ln k$

• More generally, if $b_n=h(a_n)$ $b_n=kb_{n-1}b_{n-2}\dots b_{n-t}$ $\Leftrightarrow \ln b_n=\ln b_{n-1}+\ln b_{n-2}+\dots+\ln b_{n-t}+\ln k$

3.4 Trigonometric method

- Recursive formula in the form of trigonometric identities
- Consider the *domains* and *codomains* of trigonometric functions carefully

• Example:

•
$$a_n = \frac{2a_n}{1 - a_n^2} \longleftrightarrow \tan b_n = \frac{2 \tan b_{n-1}}{1 - (\tan b_{n-1})^2} = \tan 2b_{n-1}$$

•
$$a_n = a_{n-1} \sqrt{1 - a_{n-2}^2 + \sqrt{1 - a_{n-1}^2 a_{n-2}}}$$

 \longleftrightarrow

$$\sin b_n = \sin b_{n-1} \cos b_{n-2} + \cos b_{n-1} \sin b_{n-2}$$

$$= \sin(b_{n-1} + b_{n-2})$$

Thank you for your patience

Thursday, August 3, 2023 Liu Jingyu

the International Extended Project Qualification