44

Claims

We claim:

1. A process for the preparation of a compound of formula (IV),

5

25

$$\begin{array}{c|c}
R^1 & R^2 \\
R^5 & R^6 \\
R^4 & S & Z
\end{array}$$

$$\begin{array}{c|c}
R^5 & R^6 \\
R^7 & R^7 \\
R^7 & R$$

wherein,

R¹ is seiected from the group consisting of H, -Si(R⁹)₃, -C(R¹⁰F; ¹⁰)C(O)₂H, 10 benzyl, allyl, and C₁₋₆alkyl;

R², R³, and R⁴ are independently selected from the group consisting of H, C₁₋₃alkyl, -OCH₃, -CF₃, allyl, and halogen;

15 R⁵ and R⁶ are independently selected from the group consisting of H, phenyl, benzyl, C₁₋₆alkyl, and allyl;

each R⁷ is independently -CF₃, C₁₋₃alkyl, -OCH₃, or halogen;

20 R⁸ is selected from the group consisting of H, -CF₃, and C₁₋₆alkyl;

one of Y and Z is N and the other is S or O;

each R⁹ is independently C₁₋₆alkyl, or arylC₁₋₆alkyl, or two R⁹ groups together with the silicon atom to which they are attached form a 5-7 membered ring;

each R^{10} is independently H or C_{1-3} alkyl, or both R^{10} groups together with the carbon atom to which they are attached form a 3-6 membered ring; and

5 n = 0, 1, 2, 3, 4, or 5;

said method comprising the steps of:

a) treating of a compound of formula (I) with an alkyl lithium reagent, magnesium (0), or magnesium (0) followed by treating with a dihalo zinc (II)

reagent,

10

15 wherein,

20

 R^1 , R^2 , R^3 , and R^4 are as defined above; and

X¹ is selected from the group consisting of Cl, Br, and I;

- b) followed by treating with sulfur; and
- c) followed by treating with a compound of formula (III),

wherein,

5

10

15

R⁵, R⁶, R⁷, R⁸, Y, Z, and n are as defined above;

 R^{11} is Cl, Br, I, or $-OS(O)_2R^{12}$; and

 R^{12} is selected from the group consisting of $C_{1\text{-}6}$ alkyl, $C_{6\text{-}10}$ aryl, $C_{6\text{-}10}$ aryl $C_{1\text{-}6}$ alkyl, and $-CF_3$.

- 2. A process according to Claim 1, wherein said process is performed without isolation of intermediate compounds between steps (a) and (b) or (b) and (c).
 - 3. A process according to either one of Claims 1 or 2, wherein R¹ is -Si(R⁹)₃.
 - A process according to either one of Claims 1 or 2, wherein R¹ is −Si(CH₃)₂t-Bu.
- 5. A process according to either one of Claims 1 or 2, wherein R^1 is $-C(R^{10}R^{10})C(O)_2H$.
 - 6. A process according to Claim 5, wherein R¹⁰ is -CH₃.
- 7. A process according to either one of Claims 1 or 2, wherein R¹¹ is Cl or –OS(O)₂R¹², and R¹² is C₁₋₆alkyl.
 - 8. A process according to either one of Claims 1 or 2, wherein:

R¹ is -Si(CH₃)₂t-Bu;

R² is -CH₃:

5 R³ and R⁴ are H;

R⁵ and R⁶ are H;

n is 2;

one R⁷ is fluorine in the *ortho* position and the other is –CF₃ is the *para* position;

R⁸ is -CH₃:

15

Y is S; and

Z is N.

9. A process according to either one of Claims 1 or 2, wherein:

 R^1 is $-C(R^{10}R^{10})C(O)_2H$;

 R^2 is $-CH_3$;

25

R³ and R⁴ are H;

R⁵ and R⁶ are H;

30 n is 2;

one R⁷ is fluorine in the *ortho* position and the other is –CF₃ is the *para* position;

 R^8 is $-CH_3$;

Y is S;

5

Z is N; and

each R¹⁰ is -CH₃.

- 10. A process according to Claim 8, said process further comprising the step cleaving the R¹ silyl group, to afford a compound of formula (IV), wherein R¹ is –H.
- 15 11. A process according to Claim 8, said process further comprising the steps of:
 - d) cleaving the R¹ silyl group to afford a compound of formula (IV), wherein R¹ is –H; and

20

- e) treating with an alkylating agent to afford a compound of formula (IV), wherein R^1 is $-C(R^{10}R^{10})C(O)_2H$, and R^{10} is $-CH_3$.
- 25 12. A process according to Claim 8, said process further comprising the steps of
 - d) cleaving the R¹ silyl group to afford a compound of formula (IV), wherein R¹ is –H; and

30

e) treating with 1,1,1-trichloro-2-methylpropan-2-ol, to afford a compound of formula (IV), wherein R^1 is $-C(R^{10}R^{10})C(O)_2H$, and R^{10} is $-CH_3$.

13. A compound of formula (IV),

5 wherein:

R¹ is --Si(R⁹)₃;

R², R³, and R⁴ are independently selected from the group consisting of H, C₁₋₃alkyl, -OCH₃, -CF₃, allyl, and halogen;

R⁵ and R⁶ are independently selected from the group consisting of H, phenyl, benzyl, C₁₋₆alkyl, and allyl;

each R⁷ is independently selected from –CF₃, C₁₋₃alkyl, -OCH₃, or halogen;

 R^8 is selected from the group consisting of H, -CF₃, and C₁₋₆alkyl;

one of Y and Z is N and the other is S or O;

each R⁹ is independently selected from C₁₋₆alkyl, arylC₁₋₆alkyl, or two R⁹ groups together with the silicon atom to which they are attached form a 5-7 membered ring; and

25 n = 0, 1, 2, 3, 4, or 5.

20

50

14. A compound according to Claim 13, wherein:

$$R^{1}$$
 is --Si(R^{9})₃;

5 R^2 is $-CH_3$;

R³, R⁴, R⁵, and R⁶ are hydrogen;

n is 2;

10

one R⁷ is F in the *ortho* position and the other is –CF₃ in the *para* position;

R⁸ is-CH₃;

15 R⁹ is C₁₋₆alkyl;

Y is S; and

Z is N.

20

- 15. A compound according to either one of Claims 13 and 14, wherein R^1 is $Si(CH_3)_2t$ -Bu.
- 16. A compound of formula (V),

wherein:

 R^{13} is $C_{1\text{-}6}alkyl,\,C_{6\text{-}14}arylC_{1\text{-}6}alkyl,\,or\,C_{6\text{-}14}aryl.$

- 5 17. A compound according to Claim 16, wherein two R¹³ are –CH₃ and the other is t-Bu.
 - 18. In another aspect of the invention is featured a process for the preparation of compounds of formula (III),

10

wherein:

R⁵ and R⁶ are independently selected from the group consisting of H, phenyl, benzyl, C₁₋₆alkyl, and allyl;

each R⁷ is independently selected from -CF₃, C₁₋₃alkyl, -OCH₃, or halogen;

R⁸ is H, -CF₃, or C₁₋₆alkyl;

one of Y and Z is N and the other is S or O;

20

R¹¹ is -OH; and

n = 0, 1, 2, 3, 4, or 5;

said process comprising the step of treating a compound of formula (XVII)

25 with thioacetic acid,

PCT/US03/05723

52

wherein:

each R⁷ is independently selected from -CF₃, C₁₋₃alkyl, -OCH₃, or halogen;

5 and

10

n = 0, 1, 2, 3, 4, or 5.

- 19. A process according to Claim 18, wherein said process further comprises the step of treating with an α -halo- β -ketoester.
- 20. A process according to Claim 19, wherein said process further comprises the step of treating with a reducing agent.
- 21. A process according to any one of Claims 18-20, wherein R⁵ and R⁶ are hydrogen, n is 2, one R⁷ is fluorine and the other is –CF₃, R⁸ is C₁₋₆alkyl, Y is S, Z is N, and R¹¹ is –OH.
- 22. A process according to any one of Claims 18-21, wherein one R⁷ is fluorine in the *ortho* position and the other is -CF₃ in the *para* position, and
 R⁸ is -CH₃.

- 23. A process according to either one of Claims 18-20, wherein the compound of formula (III) is {2-[2-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-1,3-thiazol-5-yl}methanol.
- 5 24. A process according to any one of Claims 1-12, wherein said compound of formula (I) is treated with an alkyl lithium reagent.