EYE GAZE MOUSE FOR MOTOR IMPAIRED

MINOR PROJECT REPORT

Submitted in partial fulfilment of the requirements for the award of the degree of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE & ENGINEERING

by

Apurv Chaudhary Brayan Abraham

Enrollment No: 01715002716 Enrollment No: 02315002716

Supriya KVS Avantika Mishra

Guided by

Ms. Sonia Rathee

Assistant Professor

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
MAHARAJA SURAJMAL INSTITUTE OF TECHNOLOGY
(AFFILIATED TO GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY,
DELHI)

DELHI - 110058

DECEMBER 2019

CANDIDATE'S DECLARATION

It is hereby certified that the work which is being presented in the B. Tech Minor

Project Report entitled "EYE GAZE MOUSE FOR MOTOR IMPAIRED" in

partial fulfilment of the requirements for the award of the degree of Bachelor of

Technology and submitted in the Department of Computer Science & Engineering

of MAHARAJA SURAJMAL INSTITUTE OF TECHNOLOGY, New Delhi

(Affiliated to Guru Gobind Singh Indraprastha University, Delhi) is an authentic

record of our own work carried out during a period from August 2019 to December

2019 under the guidance of Ms. Sonia Rathee, Assistant Professor.

The matter presented in the B. Tech Major Project Report has not been submitted by

us for the award of any other degree of this or any other Institute.

Apurv Chaudhary

Brayan Abraham

Enrollment No: 01715002716

Enrollment No: 02315002716

Supriya KVS

Enrollment No: 20215002716

Avantika Mishra

Enrollment No: 20315002716

ii

CERTIFICATE

This is to certify that the declaration made by the candidates is correct to the best of my knowledge. They are permitted to appear in the External Minor Project Examination

Ms. Sonia Rathee Assistant Professor Dr. Koyel Datta Gupta HOD, CSE

The B. Tech Minor Project Viva-Voce Examination of Apurv Chaudhary (01715002716), Brayan Abraham (02315002716), Avantika Mishra (20315002716), Supriya KVS (20215002716) has been held on 2nd December 2019.

Dr. Priyanka Nandal Project Coordinator (Signature of External

Examiner)

ACKNOWLEDGEMENT

We express our deep gratitude to Ms. Sonia Rathee, Assistant Professor, Department

of Computer Science & Engineering for her valuable guidance and suggestion

throughout our project work. We are thankful to Dr. Priyanka Nandal, Project

Coordinator, for her valuable guidance.

We would like to extend our sincere thanks to **Head of the Department**, **Dr. Koyel**

Datta Gupta for her time to time suggestions to complete our project work. We are

also thankful to **Dr. K.P. Chaudhary**, **Director** for providing us the facilities to carry

out our project work.

Apurv Chaudhary

Brayan Abraham

Enrollment No: 01715002716

Enrollment No: 02315002716

Supriya KVS

Avantika Mishra

Enrollment No: 20215002716

Enrollment No: 20315002716

iv

TABLE OF CONTENTS

TITLE PAGE		i			
CANDIDATE'S DECLARATION CERTIFICATE		ii iii			
			ACKNOWLE	ACKNOWLEDGEMENT	
TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES		v-vi vii viii			
			ABSTRACT		xi
			CHAPTER 1:	INTRODUCTION	1-2
			1.1. Introd	uction	1
1.2. Object	tives	2			
CHAPTER 2:	LITERATURE SURVEY	3-14			
CHAPTER 3:	EYE GAZE MOUSE	15-3			
3.1. Hardware requirements		15			
3.2. Librar	ies Used	15			
3.2.1.	OpenCV	16			
3.2.2.	Dlib	16			
3.2.3.	SciPy.Spatial	17			
3.2.4.	Pyglet	17			
3.2.5.	Pynput	18			
3.3. Limitations of Previous Methods		18			
3.3.1.	Mouse movement using pupil detection	18			
3.3.2.	Additional Headgear	18			
3.4. Working of Eye Gaze Mouse		18			
3.4.1.	Video Processing	19			
3.4.2.	Image conversion to Grayscale	20			
3.4.3.	Face Detection using HAAR CASCADE CLASSIFIER	21			
3.4.4.	Facial landmarks localization	24			

3.4.:	5. Application Flow Detection	25
3.4.	5. Controls	31
CHAPTER 4: RESULTS		32
4.1. Demonstration		36
CHAPTER 5: CONCLUSION AND FUTURE SCOPE		41-42 43-46
REFERENCES		
Appendix – A: Code		47-51

LIST OF FIGURES

Fig 3.1.	External Webcam	15
Fig 3.2.	OpenCV	16
Fig 3.3.	Dlib	16
Fig 3.4.	SciPy	17
Fig 3.5.	Pyglet	17
Fig 3.6.	Before and after image conversion to Grayscale	20
Fig 3.7.	Edge features	22
Fig 3.8.	Linear features	22
Fir 3.9.	Four rectangle features	22
Fig 3.10.	Facial Markers	24
Fig 3.11.	Eye tracking to give mouse direction	25
Fig 3.12.	Two parts of the eye	26
Fig 3.13.	Eye looking right	26
Fig 3.14.	Eye looking left	26
Fig 3.15.	Eye ratios	28
Fig 3.16.	Points to find out the white region	28
Fig 3.17.	EAR formula	29
Fig 3.18.	Controls	31
Fig 4.1.	Moving up Tracking	32
Fig 4.2.	Looking left	33
Fig 4.3.	Looking center	33
Fig 4.4.	Moving right tracking	34
Fig 4.5.	Moving down tracking	34
Fig 4.6.	Moving left tracking	35
Fig 4.7.	Opening Screen	36
Fig 4.8.	Closing eyes to begin tracking	37
Fig 4.9.	selecting mouse mode	37
Fig 4.10.	Moving the mouse	38
Fig 4.11.	Left Click	38
Fig 4.12.	Right Click	39
Fig 4.13.	Scroll mode selected	39
Fig 4.14.	Scrolling	40

LIST OF TABLES

2.1 Analysis Table 13

ABSTRACT

The project outlines the development and initial testing of a hybrid computer cursor system based on Eye Gaze Tracking and electromyogram (EMG) processing for handsfree control of the computer cursor system. The goal of the system is to provide an efficient computer interaction mechanism for individuals with severe motor disabilities (or specialized operators whose hands are committed to other tasks, such as surgeons, pilots, etc.). Usage of the popular Webcams makes the system inexpensive. The eye gaze mouse enables these motor impaired patients to control the mouse of a computer by using their gaze. The program uses the head movements of the user to map the movement direction of the mouse and uses left and right winks for the respective clicks. The speed of the mouse also varies as we move away from the center anchor point. The farther we go the faster the mouse moves. A special scroll mode is also available where the user can scroll easily through a page without the need for clicking the down button on the scrollbar.