CÁLCULO I

1⁰B, Grado Matemáticas, 2018-19

II. Ejercicios (Raíces, intervalos, densidad de \mathbb{Q} y de $\mathbb{R}\backslash\mathbb{Q}$ en \mathbb{R} . Tema 4.)

1. Probar que:

$$\sqrt{n} \le \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \le 2\sqrt{n} \quad \forall n \in \mathbb{N}$$

2. Sea $\emptyset \neq A \subset \mathbb{R}$ y $\alpha \in \mathbb{R}$; pruébense las siguientes afirmaciones:

$$\alpha = \operatorname{Sup} A \iff \left\{ \begin{array}{l} a \leq \alpha, \forall a \in A \\ \forall \varepsilon \in \mathbb{R}^+ \; \exists a \in A : \alpha - \varepsilon < a \end{array} \right.$$

$$\alpha = \operatorname{Inf} A \iff \left\{ \begin{array}{l} a \geq \alpha, \forall a \in A \\ \forall \varepsilon \in \mathbb{R}^+ \ \exists a \in A : a < \alpha + \varepsilon \end{array} \right.$$

3. En cada uno de los siguientes casos, comprobar que el conjunto que se indica está acotado, calcular su supremo e ínfimo, y justificar si tiene máximo y mínimo:

$$A = \{x \in \mathbb{R} : x^2 + x < 2\};$$
 $B = \{x \in \mathbb{Q} : x^2 \le 3\};$ $C = \{x \in \mathbb{R}^+ \setminus \mathbb{Q} : x^2 \le 2\}$

4. Comprobar las siguientes igualdades:

Sup
$$\left\{1 - \frac{1}{n} : n \in \mathbb{N}\right\} = 1;$$
 Inf $\left\{\frac{1}{m} + \frac{1}{2^n} : m, n \in \mathbb{N}\right\} = 0$

5. Prueba que si $x \in \mathbb{R}$, se verifica que

Sup
$$\{y \in \mathbb{Q} : y < x\} = x = \text{Inf } \{y \in \mathbb{Q} : x < y\},\$$

Sup
$$\{y \in \mathbb{R} \setminus \mathbb{Q} : y < x\} = x = \text{Inf } \{y \in \mathbb{R} \setminus \mathbb{Q} : x < y\},\$$

6. Probar que $\mathbb Q$ no verifica la siguiente versión del axioma de Dedekind, es decir, dar un ejemplo de dos conjuntos $A,B\subset \mathbb Q$ tales que $a\leq b$ para cualesquiera $a\in A$ y $b\in B$, pero no existe $x\in \mathbb Q$ verificando que $a\leq x\leq b$ para todo $a\in A$ y todo $b\in B$.

1

- 7. Pruébese que si $n, m \in \mathbb{N}$ entonces $\sqrt[n]{m} \in \mathbb{N} \cup \mathbb{R} \setminus \mathbb{Q}$.
- 8. Probar que $\frac{\sqrt{5}+2}{3\sqrt{5}+4}$ es un número irracional.

9. Prueba por inducción que para $y_1, y_2, \dots, y_n \in \mathbb{R}^+$ se tiene

$$\prod_{k=1}^{n} y_k = 1 \implies \sum_{k=1}^{n} y_k \ge n$$

dándose la igualdad si, y sólo si, $y_1 = y_2 = \ldots = y_n = 1$.

Deduce la llamada "desigualdad de las medias": para $x_1, x_2, \dots, x_n \in \mathbb{R}^+$, se tiene

$$\sqrt[n]{\prod_{k=1}^{n} x_k} \le \frac{1}{n} \sum_{k=1}^{n} x_k$$

¿Cuándo se da la igualdad?

10. Probar que cualquier natural n tal que n > 1, se verifica:

$$n! < \left(\frac{n+1}{2}\right)^n$$

Indicación: Es una aplicación directa de la desigualdad de las medias.