STAT 421 Assignment #2

Duncan Gates 08 October, 2020

Problem 2.54

There are $\binom{8}{4}$ ways to choose 4 students from the 8 overall students.

There are $\binom{3}{2}$ ways to choose 2 undergraduates and $\binom{5}{2}$ graduate student selections possible if two undergraduates are selected.

So we have $\frac{\binom{3}{2}\binom{5}{2}}{\binom{8}{4}}$ as the probability that two undergraduates will be among the four chosen.

$$\frac{\binom{3}{2}\binom{5}{2}}{\binom{8}{4}} = \frac{3*10}{70}$$

$$\frac{3}{7}$$

The numbers 1,2,3,4,5, and 6 can be arranged in 6! ways, and if the die is tossed 6 times then the number of samples will be 6^6

Therefore we have,

$$(\frac{6!}{6})^6 = \frac{720}{46656} = 0.0154$$

Problem 2.72

a. Are the events A and M independent?

We have
$$P(A)=0.6$$
 and $P(M)=0.4$, $P(\overline{A})=0.4$, and $P(\overline{M})=0.6$

The tables gives that $P(A\cap M)=0.24$

Events A and M are independent if P(A/M)=P(A), P(M/A)=P(M), and $P(A\cap M)=P(A)P(M)$

For
$$P(A/M) = rac{P(A \cap M)}{P(M)}$$

We have
$$=\frac{0.24}{0.4}$$

$$= 0.6 = P(A)$$

For
$$P(M/A) = rac{P(M\cap A)}{P(A)}$$

We have $\frac{0.24}{0.6}$

$$= 0.4 = P(M)$$

For
$$P(A \cap M) = P(A)P(M)$$

We have
$$= 0.6 * 0.4$$

$$= 0.24$$

Therefore all conditions of independence are satisfied and events A and M are independent.

b. Are the events \overline{A} and F independent?

The events \overline{A} and F are independent if $P(\overline{A}/F)=P(\overline{A})$, $P(F/\overline{A})=P(F)$, and $P(\overline{A}\cap F)=P(\overline{A})P(F)$

For
$$P(\overline{A}/F)=P(\overline{A})$$

We have $=\frac{0.24}{0.6}$

$$=0.4=P(\overline{A})$$

For
$$P(F/\overline{A})=P(F)$$

We have $\frac{0.24}{0.4}$

$$= 0.6 = P(F)$$

For
$$P(\overline{A}\cap F)=P(\overline{A})P(F)$$

We have 0.4*0.6

$$= 0.24$$

Therefore all three conditions are satisfied and events \overline{A} AND F are independent.

Problem 2.80

Given $A\subset B$ and that P(A)>0 and P(B)>0

Let $A \subset B$, then by probability we have, P(A) < P(B)

$$A\cap B$$
 and $A\cup B=B$

$$P(A \cap B) = P(A)$$
 and

$$P(A \cup B) = P(B)$$

$$P(B|A) = \frac{A \cap B}{P(A)}$$

$$=rac{P(A)}{P(A)}$$
 (since $A\subset B$, $A\cap B=A$ and $P(A\cap B)=P(A)$)

=1

Therefore, P(B|A) = 1

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

=
$$rac{P(A)}{P(B)}$$
 (since $A\subset B, A\cap B=A$ and $P(A\cap B)=P(A)$)

Therefore
$$P(A|B)=rac{P(A)}{P(B)}$$

Problem 2.88

a.

It is possible that $P(A \cap B) = 0.1$, the intersection of events has to be at least 0 and at most 0.3. Therefore it is possible that it will be 0.1 since 0 < 0.01 < 0.3.

b.

The smallest possible value for the intersection of events A and B is 0 since the sets could be disjoint.

C.

It is not possible that $P(A\cap B)=0.7$ since this is greater than the probability of either A or B, 0<0.6<0.7

The largest possible value of $P(A \cap B)$ is 0.3, since the intersection of events A and B is the subset of individual events A and B. Therefore the maximum value is equal to the lowest probability of individual events.

Problem 2.98

The probability that current will flow in the series system is

Let E_1 = Relay 1 is activated, E_2 = Relay 2 is activated

Then
$$P(E_1) = 0.9$$
, $P(E_2) = 0.9$

and
$$P(\overline{E_1})=0.1$$
, $P(\overline{E_2})=0.1$

$$P(E_1) * P(E_2)$$

Therefore, the probability for the series system is $\boxed{0.81}$

The probability that the current will flow in the parallel is

$$P(E_1 \cup E_2) = 1 - P(\overline{E_1 \cup E_2})$$
 by the additional theorem of probability $= 1 - P(\overline{E_1} \cap \overline{E_2})$ by the commutative law of probability $= 1 - P(\overline{E_1})P(\overline{E_2})$ $= 1 - (0.1)(0.1)$

Therefore, the probability that the current will flow in the parallel circuit is $= oxed{0.99}$

Problem 2.132

Let R_1, R_2, R_3 be the event that the plane is in region 1, region 2, or region 3

Let G be the event that a search of region 1 is unsuccessful

Then using that $1-lpha_i$ denotes the probability that the plane will be found on a search of the ith region $P(G|R_1)=lpha_1$

a.

Applying Bayes' Theorem we have that $P(R_1|G)=\frac{P(G|R_1)P(R_1)}{P(G|R_1)P(R_1)+P(G|R_2)P(R_2)+P(G|R_3)P(R_3)}$

$$= \frac{\alpha_{1}(\frac{1}{3})}{\alpha_{1} + 1(\frac{1}{3}) + 1(\frac{1}{3})}$$

$$= \frac{\frac{\alpha_{1}}{3}}{\frac{\alpha_{1} + 1 + 1}{3}}$$

$$= \boxed{\frac{\alpha_{1}}{\alpha_{1} + 2}}$$

b.

Once again using Bayes' Theorem we have that

$$P(R_{2}|G) = \frac{P(G|R_{2})P(R_{2})}{P(G|R_{1})P(R_{1}) + P(G|R_{2})P(R_{2}) + P(G|R_{3})P(R_{3})}$$

$$= \frac{1(\frac{1}{3})}{\alpha_{1}(\frac{1}{3}) + 1(\frac{1}{3}) + 1(\frac{1}{3})}$$

$$= \frac{\frac{1}{3}}{\frac{\alpha_{1}+1+1}{3}}$$

$$= \frac{1}{\alpha_{1}+2}$$

C.

Once again using Bayes' Theorem we have that

$$P(R_3|G) = \frac{P(G|R_3)P(R_3)}{P(G|R_1)P(R_1) + P(G|R_2)P(R_2) + P(G|R_3)P(R_3)}$$

$$= \frac{1(\frac{1}{3})}{\alpha_1(\frac{1}{3}) + 1(\frac{1}{3}) + 1(\frac{1}{3})}$$

$$= \frac{\frac{1}{3}}{\frac{\alpha_1 + 1 + 1}{3}}$$

$$= \frac{1}{\alpha_1 + 2}$$

Problem 3.4

Given that Y is the number of open paths from A to B

Let M_1 be the path from A to B through valve 1, and M_2 be the path from A to B through valves 2 and 3.

Let E_1 represent the water going through the 1st valve, E_2 through the 2nd valve, and E_3 through the 3rd valve.

$$egin{aligned} P(M_1) &= P(E_1) \ &= 0.8 \ P(M_2) &= P(E_1) * P(E_2) \ &= 0.8 * 0.8 \ &= 0.64 \end{aligned}$$

Then the probability that no paths are open from A to B is

$$P(Y = 0) = (1 - P(M_1))(1 - P(M_2))$$

= $(1 - 0.8)(1 - 0.64)$
= $(0.2)(0.36)$
= 0.072

The probability that one path from A to B will be open is

$$P(Y = 1) = (1 - P(M_1))(P(M_2)) + (P(M_1))(1 - P(M_2))$$

$$= (1 - 0.8)(0.64) + (0.8)(1 - 0.64)$$

$$= 0.416$$

The probability that two paths from A to B will open is

$$P(Y = 2) = P(M_1) * P(M_2)$$

= 0.8 * 0.64
= 0.512

Finally we have probability distribution demonstrated below:

Y = y	0	1	2
P(Y = y)	0.072	0.416	0.512