Maximum score is 40 points. You have 25 minutes to complete the quiz. Please show your work.

Good luck!

Instructions

- You can attempt the problems in any order as long as it is clear which problem is being attempted and which solution to the problem you want us to grade.
- If you are stuck in any part of a problem do not dwell on it, try to move on and attempt it later.
- Please solve every problem in the space provided.
- You may find the following useful.

$$-\int \exp(ax)dx = \frac{\exp(ax)}{a} + C$$
 where C is an arbitrary constant

$$-||x||_1 = \sum_{i=1}^n |x_i|, ||x||_{\infty} = \max_i |x_i|$$

$$- \frac{d(\ln(x))}{dx} = \frac{1}{x}$$

Your Name:

Your ID Number:

Problem	Score	Possible
1		10
2		14
3		16
Total		40

1. Calculus (10 pts)

(a) Let $f(\mathbf{x}) = \ln(ax_1x_2 + bx_1 + cx_1^2)$. What is the partial derivative of f with respect to x_1 ?

Solution:

$$\frac{\partial f(\mathbf{x})}{\partial x_1} = \frac{1}{ax_1x_2 + bx_1 + cx_1^2} \frac{\partial (ax_1x_2 + bx_1 + cx_1^2)}{\partial x_1}$$
$$= \frac{ax_2 + b + 2cx_1}{ax_1x_2 + bx_1 + cx_1^2}$$

(b) Evaluate $\int_b^\infty a \exp(-a(x-b)) dx$ where a > 0?

Solution:

Substitute x - b = t, dx = dt. We have

$$\int_{b}^{\infty} a \exp(-a(x-b)) dx = \int_{o}^{\infty} a \exp(-at) dt$$
$$= a \left[\frac{\exp(-at)}{-a} \right]_{0}^{\infty}$$
$$= 1$$

2. Probability (14 pts)

Suppose A and B are two events. Which of these statements is $\mathbf{true/false}$? Explain.

(a) A and B are mutually exclusive events then $P(A \cup B) = P(A) + P(B) - P(A)P(B)$ Solution:

False. $P(A \cup B) = P(A) + P(B) - P(A \cap B) = P(A) + P(B)$.

(b) $P(A \cap B \cap C) = P(A)P(B|A)P(C|B)$

Solution:

False. $P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B)$.

(c) A is a Gaussian random variable with $\mu=0$ and $\sigma^2=1$ then P(A=0)=0.5 Solution:

False. For continuous random variable P(A = c) = 0.

(d) If A and A^c are independent, where A^c denotes the complement of event A then 0 < P(A) < 1.

Solution:

False. $P(A \cap A^c) = 0 = P(A)P(A^c) = P(A)(1 - P(A))$. Therefore P(A) must be either 0 or 1.

(e) Assume X is a random variable. The variance of X is defined as $Var(X) = E[(X - E[X])^2]$. Prove that $Var(aX + b) = a^2Var(X)$. Solution:

$$Var(aX - b) = E[(aX + b - E[aX + b])^{2}]$$

$$= E[(a(X - E[X]))^{2}]$$

$$= a^{2}E[(X - E[X])^{2}]$$

$$= a^{2}Var(X)$$

- 3. Linear Algebra (16 pts)
 Consider the vector $\boldsymbol{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$
 - (a) Compute $\frac{||\boldsymbol{x}||_2}{||\boldsymbol{x}||_1}$. Solution:

$$||\mathbf{x}||_{2} = \sqrt{x_{1}^{2} + x_{2}^{2}} = \sqrt{5}$$

$$||\mathbf{x}||_{1} = |x_{1}| + |x_{2}| = 3$$

$$\frac{||\mathbf{x}||_{2}}{||\mathbf{x}||_{1}} = \frac{\sqrt{5}}{3}$$

(b) Compute xx^T . Solution:

$$m{x}m{x}^ op = egin{pmatrix} 1 & 2 \ 2 & 4 \end{pmatrix}$$

(c) Find $c \in \mathbb{R}$ such that $||c\boldsymbol{x}||_2 < 1$

$$||c\mathbf{x}||_2 = |c|||\mathbf{x}||_2 < 1$$
$$|c| < \frac{1}{\sqrt{5}}$$
$$c \in (-\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}})$$