Aluno do Embarcatech_37 no IFMA

Nome: Manoel Felipe Costa Furtado

Matrícula: 20251RSE.MTC0086

Residência Profissional em FPGA – Turma DELTA - 2025.2

Atividade – Referente ao capítulo 01 da unidade 04

Tema do Capítulo – Linguagem VHDL

Prazo dia 21/09/2025 as 23:59

Objetivo: Desenvolver a capacidade de projetar, modelar, simular e implementar circuitos digitais por meio da linguagem VHDL (VHSIC Hardware Description Language), promovendo a compreensão dos conceitos de lógica digital e sua aplicação prática no desenvolvimento de sistemas embarcados e dispositivos programáveis, como FPGAs.

Enunciado: Para que um alimento seja classificado como light, seu valor calórico deve corresponder, no máximo, a 50% das calorias presentes no produto original. Considera-se, neste contexto, a adição de ingredientes opcionais utilizados para realçar o sabor e a coloração do alimento, os quais contribuem com diferentes percentuais calóricos em relação ao produto normal, conforme descrito a seguir:

- A contém 40%
- B contém 30%
- C contém 20%
- D contém 10%

A partir dessas definições, monte a tabela-verdade, o mapa de Karnaugh e implemente em linguagem VHDL a solução do problema. Projete um circuito para acender uma lâmpada cada vez que a combinação dos produtos misturados em um tanque ultrapassar 50% das calorias de um produto normal.

Instruções:

Ação	Função					
01	Analise o enunciado e identifique as combinações de					
	ingredientes que resultam em mais de 50% das calorias do produto					
	original.					
02	Construa a tabela-verdade representando todas as possíveis					
	combinações dos ingredientes A (40%), B (30%), C (20%) e D (10%).					
03	Monte o mapa de Karnaugh e simplifique a lógica booleana.					
04	Implemente a expressão lógica em VHDL, projetando um circuito					
	que acione uma lâmpada sempre que o limite de 50% for					
	ultrapassado.					
05	Utilize o terminal do Visual Studio Code (VSCode), em conjunto					
	com o simulador GHDL, para compilar e simular o código VHDL e					
	o testbench.					

Solução

- GitHub: <u>Segunda_Fase_FPGA/Unidade_04/Cap_01</u>
- Link do Vídeo: https://youtu.be/q3qJEAzaRho
- Link do Código Completo: <u>Unid_04_Cap_01.zip</u>
- 1) Analise o enunciado e identifique as combinações Explicação

O objetivo é acender uma lâmpada (L) sempre que a soma dos percentuais calóricos dos ingredientes adicionados ultrapassar 50%.

- Dado que: A contém 40%; B contém 30%; C contém 20%; D contém 10%
- Condição para a Lâmpada Acender (Saída L = 1): Soma dos percentuais > 50%

Vamos identificar as combinações que satisfazem essa condição:

- A + B = 70% (> 50%) -> L=1
- A + C = 60% (> 50%) -> L=1
- A + D = 50% (não passa 50%) -> L=0
- B + C = 50% (não passa 50%) -> L=0
- B + D = 40% -> L=0
- C + D = 30% -> L=0

Qualquer outra combinação (um ingrediente sozinho ou combinações que somam 50% ou menos) resultará em L=0.

2) Tabela Verdade e Reduzindo o circuito

Α	В	С	D	Soma	L
(40%)	(30%)	(20%)	(10%)	(%)	(Lâmpada)
0	0	0	0	0	0
0	0	0	1	10	0
0	0	1	0	20	0
0	0	1	1	30	0
0	1	0	0	30	0
0	1	0	1	40	0
0	1	1	0	50	0
0	1	1	1	60	1
1	0	0	0	40	0
1	0	0	1	50	0
1	0	1	0	60	1
1	0	1	1	70	1
1	1	0	0	70	1
1	1	0	1	80	1
1	1	1	0	90	1
1	1	1	1	100	1

3) Simplificando o Mapa de karnaugh

Expressão Booleana Simplificada

4) Implementação a expressão lógica em VHDL

```
Atividade: Unidade 03, Capítulo 01
 - Autor: Manoel Felipe Costa Furtado
 -- Arquivo: unid_03_cap_01.vhd
            A saída é ativada quando a soma calórica dos ingredientes
LIBRARY ieee;
 - Usa o pacote std logic 1164, que define os tipos STD LOGIC e STD LOGIC VECTOR.
USE ieee.std_logic_1164.all;
ENTITY unid_03_cap_01 IS
       -- Entradas que representam a presença de cada ingrediente.
       A, B, C, D : IN STD_LOGIC;
            : OUT STD LOGIC
END ENTITY unid_03_cap_01;
ARCHITECTURE logica OF unid_03_cap_01 IS
BEGIN
   -- A lâmpada (L) será '1' (acesa) se a combinação de ingredientes
   L <= (A AND B) OR (A AND C) OR (B AND C AND D);
END ARCHITECTURE logica;
```

5) Código em VHDL para a Simulação no GHDL

```
Atividade: Unidade 03, Capítulo 01
LIBRARY ieee;
 - Pacote padrão para os tipos STD_LOGIC.
USE ieee.std_logic_1164.all;
 - Pacote para funções de conversão entre tipos numéricos e STD_LOGIC_VECTOR.
USE ieee.numeric_std.all;
ENTITY unid_03_cap_01_tb IS
END ENTITY unid_03_cap_01_tb;
ARCHITECTURE teste OF unid_03_cap_01_tb IS
   COMPONENT unid_03_cap_01 IS
           A, B, C, D : IN STD_LOGIC;
   END COMPONENT unid_03_cap_01;
   SIGNAL s_A, s_B, s_C, s_D : STD_LOGIC := '0';
   SIGNAL s_L
```

```
PORT MAP(
             A \Rightarrow s_A, B \Rightarrow s_B, C \Rightarrow s_C, D \Rightarrow s_D, L \Rightarrow s_L
    stimulus_process : PROCESS
        VARIABLE i_vec : STD_LOGIC_VECTOR(3 DOWNTO 0);
        FOR i IN 0 TO 15 LOOP
            i_vec := std_logic_vector(to_unsigned(i, 4));
            s_B <= i_vec(2);
             s_C <= i_vec(1);</pre>
             s_D <= i_vec(0); -- Bit menos significativo</pre>
            WAIT FOR 10 ns;
        END LOOP;
    END PROCESS stimulus_process;
END ARCHITECTURE teste;
```

6) Compilação

--- Comandos GHDL para Simulação VHDL ---

Analisa (compila) o arquivo VHDL do seu circuito principal.

• ghdl -a unid_03_cap_01.vhd

Analisa (compila) o arquivo VHDL do seu testbench.

• ghdl -a unid_03_cap_01_tb.vhd

Elabora (constrói) o modelo de simulação a partir dos arquivos compilados.

• ghdl -e unid_03_cap_01_tb

Roda (executa) a simulação e cria o arquivo de forma de onda.

• ghdl -r unid_03_cap_01_tb --vcd=waveform.vcd

Visualiza o arquivo de forma de onda gerado.

gtkwave waveform.vcd

7) Simulação

Fica claro pelas imagens abaixo que a forma de onda está de acordo com a tabela.

