

OBSTACLE AVOIDANCE

Variables Logic Statements If Then, Else Statements Sonar Sensors Loops, While Loops MATERIALS: Micro:bit CuteBot Computer Internet Access

• How do you think the cute bot might be capable of object avoidance?

In this lesson you will be making a self-driving car, capable of dodging obstacles.

Before starting with the activity, have students answer the introduction questions below:

• What types of blocks do you think we might use today?

VOCAB:

Next, let's discuss some Micro:bit and computer science terminology:

Program – An algorithm that has been coded into something that can be run by a machine.

If, then, else Statements – Compares two or more sets of data and test them for a result. If results are true, then do (what you make the program do if results are true), else do (what you make the program do if results are false).

Variable – A value that can be changed and stores information that can be accessed.

Bug – Part of a program that does not work correctly.

Debugging – Finding and fixing errors in a program.

Loop – A chunk of code that will run over and over based on conditions put in place by the user

INSTRUCTIONAL CONTENT:

Let's get started! First, click or type the following link "https://makecode.microbit.org/" which will take you to today's activity on the Micro:bit website.

Review both the Micro:bits and the MakeCode tool with students if needed.

Once students have their MakeCode program loaded, have students click on "New Project". Name the project "Hot Potato".

Step 1

Click the "Advanced" to see more choices in the MakeCode drawer.

In this step we are setting the microbit up to understand command specific to the cutebot!

This will make the robot go straight at full speed as soon as the program starts

This step can be broken up into a few **pieces:**

- Use sonar to check distance
- Based on the value read from the sonar sensor:
 - o If there is less then 2cm in front of the robot
 - Make a hard turn by setting one of the wheels to max
 - Otherwise go straight at full speed.

Step 4

Allow student to play with the program and see what other behavior they can come up with for their robots, how can we use loops to traverse a predetermined path? (I.E looping straight & right 3 times would make a square.)

By completing this activity, you will learn:

- How sonar distance probes work
- Logic Statements
- Loops

CLOSURE:

Reflect with students on the following questions:

- How could you modify the program to make it your own? What changes would you make?
- How do you think our program differes from real life electric cars?

REFERENCES:

Micro:bit Makecode. (n.d.). Retrieved September 16, 2021, from https://makecode.microbit.org/

ElekFreaks. (n.d.). Retrived May 18, 2022 from

https://www.elecfreaks.com