Elementos extremos

Clase 14

IIC 1253

Prof. Cristian Riveros

Recordatorio: Ordenes parciales

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

Decimos que *R* es un **orden parcial** si *R* cumple ser:

- 1. Refleja: $\forall a \in A. (a, a) \in R.$
- 2. Antisimétrica: $\forall a, b \in A$. $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$.
- 3. Transitiva: $\forall a, b, c \in A$. $((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R$.

Notación

Un orden parcial sobre A los denotaremos como (A, \leq) .

Recordatorio: Ordenes totales

Sea A un conjunto y (A, \leq) un orden parcial.

Definición

Decimos que un orden parcial (A, \leq) es un orden total si \leq cumple ser:

Conexo: $\forall a, b \in A$. $(a, b) \in R \lor (b, a) \in R$.

Recordatorio: Ejemplos de ordenes parciales

Definición

Se define la relación \leq_2 entre pares en $\mathbb{N} \times \mathbb{N}$ como:

$$(i_1,i_2) \leq_2 (j_1,j_2)$$
 si, y solo si, $(i_1 \neq j_1 \rightarrow i_1 < j_1) \land (i_1 = j_1 \rightarrow i_2 \leq j_2)$

¿qué propiedades cumple \leq_2 ?

- 1. $es \le 2$ refleja?
- 2. $es \le 2$ antisimétrica?
- 3. $es \le 2 transitiva$?

Por lo tanto, \leq_2 es un **orden parcial**.

Recordatorio: Otro ejemplo de ordenes parciales

Definición

Sea Σ un alfabeto. Se definen las siguientes relaciones entre palabras en Σ^* :

$$u \leq_p v$$
 si, y solo si, $\exists w \in \Sigma^*$. $u \cdot w = v$

$$u \le_s v$$
 si, y solo si, $\exists w \in \Sigma^*$. $w \cdot u = v$

$$u \le_i v$$
 si, y solo si, $\exists w_1, w_2 \in \Sigma^*$. $w_1 \cdot u \cdot w_2 = v$

¿qué propiedades cumple \leq_p , \leq_s o \leq_i ?

- 1. j es \leq_p , \leq_s o \leq_i refleja?
- 2. j es \leq_p , \leq_s o \leq_i anti-simétrica?
- 3. j es \leq_p , \leq_s o \leq_i transitiva?

Outline

Representación

Elementos extremos

Ínfimos y supremos

Outline

Representación

Elementos extremos

Ínfimos y supremos

¿podemos simplificar la visualización de este grafo?

Para simplificar la visualización del grafo podemos:

- Remover loops.
- Remover aristas "transitivas"

Definición

El diagrama de Hasse de (A, \leq) es el diagrama del grafo de \leq pero:

- se omiten los loops.
- $(a,b) \in \subseteq$ se omite si existe un c tal que $(a,c) \in \subseteq$ y $(c,b) \in \subseteq$.

orden < sobre \mathbb{N}

$$0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots$$

Diagrama de Hasse de (\mathbb{N}, \leq)

Definición

El diagrama de Hasse de (A, \leq) es el diagrama del grafo de \leq pero:

- se omiten los loops.
- $(a,b) \in \Delta$ se omite si existe un c tal que $(a,c) \in \Delta$ y $(c,b) \in \Delta$.

¿cómo se ve el orden parcial ⊆?

Diagrama de Hasse de $(\mathcal{P}(\{1,2,3\}),\subseteq)$

¿cómo se ve el orden lexicográfico \leq_2 ?

Diagrama de Hasse del orden lexicográfico $(\mathbb{N} \times \mathbb{N}, \leq_2)$

¿cómo se ve el orden parcial \leq_p sobre palabras?

Diagrama de Hasse de (Σ^*, \leq_p)

¿qué tienen de parecido todos estos grafos?

Outline

Representación

Elementos extremos

Ínfimos y supremos

Cotas superiores

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

■ $c \in A$ es una cota superior de S ssi $\forall y \in S$. $y \le c$

Cotas superiores

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

■ $c \in A$ es una cota superior de S ssi $\forall y \in S$. $y \leq c$

 $c \in A$ es una cota superior si es mayor o igual a todos los elementos de S

Cotas superiores y maximales

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

- $c \in A$ es una cota superior de S ssi $\forall y \in S$. $y \leq c$
- $\hat{x} \in S$ es un maximal ssi $\forall y \in S$. $\hat{x} \le y \rightarrow \hat{x} = y$

Cotas superiores y maximales

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

- $c \in A$ es una cota superior de S ssi $\forall y \in S$. $y \leq c$
- $\hat{x} \in S$ es un maximal ssi $\forall y \in S$. $\hat{x} \leq y \rightarrow \hat{x} = y$

¿cuál es un **maximal** para S_1 ?

Sea
$$(2^{\{1,2,3\}},\subseteq)$$
 y
$$S_1 = \{\{1\},\{3\},\{1,2\},\{1,3\}\}.$$

 $\hat{x} \in S$ es un maximal si **ningún elemento es mayor que** \hat{x}

Cotas superiores, maximales y máximo

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

- $c \in A$ es una cota superior de S ssi $\forall y \in S$. $y \leq c$
- $\hat{x} \in S$ es un maximal ssi $\forall y \in S$. $\hat{x} \leq y \rightarrow \hat{x} = y$
- $\mathbf{x}^{\uparrow} \in S$ es un máximo ssi $\forall y \in S$. $y \leq x^{\uparrow}$

¿cuál es un máximo para S_1 ?

Sea $(2^{\{1,2,3\}},\subseteq)$ y $S_1 = \{\{1\},\{3\},\{1,2\},\{1,3\}\}.$

Cotas superiores, maximales y máximo

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

- $c \in A$ es una cota superior de S ssi $\forall y \in S$. $y \leq c$
- $\hat{x} \in S$ es un maximal ssi $\forall y \in S$. $\hat{x} \leq y \rightarrow \hat{x} = y$
- $\mathbf{x}^{\uparrow} \in S$ es un máximo ssi $\forall y \in S$. $y \leq x^{\uparrow}$

; cuál es un **máximo** para S_2 ?

Sea $(2^{\{1,2,3\}},\subseteq)$ y

 $S_2 = \{\{1\}, \{3\}, \{1,3\}\}.$

Cotas superiores, maximales y máximo

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

- $c \in A$ es una cota superior de S ssi $\forall y \in S$. $y \leq c$
- $\hat{x} \in S$ es un maximal ssi $\forall y \in S$. $\hat{x} \le y \rightarrow \hat{x} = y$
- $\mathbf{x}^{\uparrow} \in S$ es un máximo ssi $\forall y \in S$. $y \leq x^{\uparrow}$

 $x^{\uparrow} \in S$ es un máximo si x^{\uparrow} es mayor o igual a cualquier elemento en S

Cotas inferiores

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

• $c \in A$ es una cota inferior de S ssi $\forall y \in S$. $c \le y$

Cotas inferiores

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

• $c \in A$ es una cota inferior de S ssi $\forall y \in S$. $c \le y$

Cotas inferiores y minimales

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

- $c \in A$ es una cota inferior de S ssi $\forall y \in S$. $c \le y$
- $\mathbf{x} \in S$ es un minimal ssi $\forall y \in S$. $y \leq \mathbf{x} \rightarrow \mathbf{x} = \mathbf{y}$

¿cuál es un **minimal** para T_2 ?

Sea
$$(\mathbb{N} - \{0\}, |)$$
 y $T_2 = \{2, 3, 5, 10, 15, 20\}.$

 $\breve{x} \in S$ es un minimal si **ningún elemento es menor que** \breve{x}

Cotas inferiores, minimales y mínimo

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

- $c \in A$ es una cota inferior de S ssi $\forall y \in S$. $c \le y$
- $\mathbf{z} \in S$ es un minimal ssi $\forall y \in S$. $y \leq \mathbf{x} \rightarrow \mathbf{x} = \mathbf{y}$
- $\mathbf{z}^{\downarrow} \in S$ es un mínimo ssi $\forall y \in S$. $x^{\downarrow} \leq y$

¿cuál es un **mínimo** para T_2 ?

Sea
$$(\mathbb{N} - \{0\}, |)$$
 y
 $T_2 = \{2, 3, 5, 10, 15, 20\}.$

Cotas inferiores, minimales y mínimo

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

- $c \in A$ es una cota inferior de S ssi $\forall y \in S$. $c \le y$
- $\mathbf{z} \in S$ es un minimal ssi $\forall y \in S$. $y \leq \mathbf{x} \rightarrow \mathbf{x} = \mathbf{y}$
- $x^{\downarrow} \in S$ es un mínimo ssi $\forall y \in S$. $x^{\downarrow} \leq y$

¿cuál es un **mínimo** para T_1 ?

Sea $(\mathbb{N} - \{0\}, |)$ y $T_1 = \{5, 10, 15, 20\}.$

Cotas inferiores, minimales y mínimo

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

- $c \in A$ es una cota inferior de S ssi $\forall y \in S$. $c \le y$
- $\check{x} \in S$ es un minimal ssi $\forall y \in S$. $y \leq \check{x} \rightarrow \check{x} = y$
- $\mathbf{x}^{\downarrow} \in S$ es un mínimo ssi $\forall y \in S$. $x^{\downarrow} \leq y$

 $x^{\downarrow} \in S$ es un mínimo si x^{\downarrow} es menor o igual a cualquier elemento en S

Sobre minimales y mínimos

Preguntas

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

- 1. Si S tiene un elemento mínimo, entonces ¿es único?
- 2. ¿tiene S siempre un mínimo?
- 3. Si x es mínimo, entonces ¿es x minimal?
- 4. Si x es minimal, entonces ¿es x mínimo?
- 5. ¿tiene S siempre un elemento minimal?

Demuestre o de un contra-ejemplo.

...lo mismo es cierto sobre maximales / máximos.

Outline

Representación

Flementos extremos

Ínfimos y supremos

Ínfimo de un conjunto

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

Definición

Decimos que $c^* \in A$ es un **ínfimo** de S si:

- 1. c^* es una cota inferior de S y
- 2. para toda cota inferior c de S se cumple que $c \le c^*$.

Ínfimo de un conjunto

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

Definición

Decimos que $c^* \in A$ es un **ínfimo** de S si:

- 1. c^* es una cota inferior de S y
- 2. para toda cota inferior c de S se cumple que $c \le c^*$.

Para cualquier $T \subseteq \mathbb{N} - \{0\}$, ¿quién es el **ínfimo** de T según $(\mathbb{N} - \{0\}, |)$?

Ínfimo de un conjunto

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

Definición

Decimos que $c^* \in A$ es un **ínfimo** de S si:

- 1. c^* es una cota inferior de S y
- 2. para toda cota inferior c de S se cumple que $c \le c^*$.

c* es la mayor de las cotas inferiores

Definición alternativa

Decimos que $c^* \in A$ es un **infimo** de S si c es un máximo del conjunto:

$$S_{\geq} = \{ c \mid c \text{ es una cota inferior de } S \}$$

Supremo de un conjunto

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

Definición

Decimos que $c^* \in A$ es un supremo de S si:

- 1. c^* es una cota superior de S y
- 2. para toda cota superior c de S se cumple que $c^* \le c$.

¿cuál es un supremo para T_2 ?

Sea
$$(\mathbb{N} - \{0\}, |)$$
 y
 $T_2 = \{2, 3, 5, 10, 15, 20\}.$

Para cualquier $T \subseteq \mathbb{N} - \{0\}$, ¿quién es el **supremo** de T según $(\mathbb{N} - \{0\}, |)$?

Supremo de un conjunto

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

Definición

Decimos que $c^* \in A$ es un supremo de S si:

- $1. \ c^*$ es una cota superior de S y
- 2. para toda cota superior c de S se cumple que $c^* \le c$.

c* es el menor de las cotas superiores

Definición alternativa

Decimos que $c^* \in A$ es un supremo de S si c es un mínimo del conjunto:

$$S_{\leq} = \{ c \mid c \text{ es una cota superior de } S \}$$

Sobre ínfimos y supremos

Preguntas

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

- 1. Si S tiene un ínfimo, entonces ¿es único?
- 2. Si x es el mínimo, ¿es x el ínfimo?
- 3. Si S NO tiene mínimo, ¿entonces tiene ínfimo?

Demuestre o de un contra-ejemplo.

...lo mismo es cierto sobre máximos / supremos.