School of Computing and Information Systems The University of Melbourne Output Outp

COMP90049 Introduction to Machine Learning (Semester 2, 2022)

Workshop: week 10

1. Approximately 1% of women aged between 40 and 50 have breast cancer. 80% of mammogram screening tests detect breast cancer when it is there. 90% of mammograms DO NOT show breast cancer when it is **NOT** there¹. Based on this information, complete the following table.

Cancer	Probability	
No	99%	
Yes	1%	

Cancer	Test	Probability		
Yes	Positive	80%		
Yes	Negative	? 20%		
No	Positive	? 10%		
No	Negative	90%		

- 2. Based on the results in question 2, calculate the **marginal probability** 'positive' results in a Mammogram Screening Test. P(P) = P(P | C) * P (C) + P(P | NC) * P(NC) = 0.8 * 0.01 + 0.1 * 0.99 = 0.107
- 3. Based on the results in question 2, cal Pole tere = 'Yes' | Test = 'Positive'), using the Bayes Rule. $P(C \mid P) = P(C) * P(P \mid C) / P(P) = 0.01 * 0.8 / 0.107 = 0.074$
- 4. For the following dataset:

ID	Outl	Тетр	Humi	Wind	PLAY		
TRAINING INSTANCES							
A	s	h	h	F	N		
В	\mathbf{s}	h	h	T	N		
C	O	h	h	F	Y		
D	r	m	h	F	Y		
E	r	c	n	F	Y		
F	r	c	n	T	N		
TEST INSTANCES							
G	О	С	n	T	?		
Н	S	m	h	F	?		

Classify the test instances using the ID3 Decision Tree method and Gain Ratio as a splitting criterion. H(R) = 1

$$H(s) = 0$$

 $H(o) = 0$
 $H(r) = -(1/3 * log(1/3) + 2/3 * log(2/3)) = 0.9183$
mean-info(outl) = 0 * 1/3 + 0 * 1/6 + H(r) * 1/2 = 0.4592

.

¹ Remember these numbers are not accurate and simplified to ease the calculations in this question.