Hypergraph Modularity and Clustering

Bogumił Kamiński Valérie Poulin Paweł Prałat Przemysław Szufel François Théberge* theberge@ieee.org

August 2019

Outline

- Graph Modularity and the Chung-Lu model
- Hypergraph Modularity
 - Chung-Lu model for hypergraphs
 - strict H-modularity
 - other H-modularity
- Hypergraph Clustering

Graph modularity

We can write the modularity of a partition $\bf A$ of graph $\bf G$ as:

$$q_G(\mathbf{A}) = \sum_{A_i \in \mathbf{A}} \left(\frac{e_G(A_i)}{|E|} - \frac{(vol(A_i))^2}{4|E|^2} \right)$$
$$= \frac{1}{|E|} \sum_{A_i \in \mathbf{A}} \left(e_G(A_i) - \underset{G \in \mathcal{G}}{\mathbb{E}} (e_G(A_i)) \right)$$

 $e_G(A_i) = |\{e \in E : e \subseteq A_i\}|$ is the *edge contribution* and, $\mathbb{E}_{G \in \mathcal{G}}(e_G(A_i))$ is the *degree tax*.

Chung-Lu Model

In model II, we select m edges $e = (u_1, u_2)$ where each u_i is independently sampled from V according to the multinomial distribution where $p(v_i) = deg_G(v_i)/vol(V)$.

Let $\mathcal{CL}_2(G)$, the distribution of graphs obtained with model II. For $G' = (V, E') \sim \mathcal{CL}_2(G)$:

- $\mathbb{E}_{G' \sim \mathcal{CL}_2(G)}(deg_{G'}(v_i)) = deg_G(v_i), 1 \leq i \leq n.$
- we always have |E'| = |E| = m,
- there can be multi-edges,
- there can be self-edges,
- complexity is O(m).

Chung-Lu Model

Lemma

The degree tax term in the modularity function for graph G is the expected value of the edge contribution term over the graphs $G' \sim \mathcal{CL}_2(G)$.

Can we generalize this model for hypergraphs?

More complex relations

Relations may involve several entities ...

```
{ • • • • • }
```

More complex relations

Relations may involve several entities ...

which are often represented via 2-section subgraphs (loss of information).

Hypergraphs

- H = (V, E) where |V| = n, |E| = m
- $e \in E$: (hyper)-edges where $e \subseteq V$, $|e| \ge 2$
- Edges can have weights
- We consider undirected hypergraphs

Why Hypergraphs?

Some data are better modeled with hypergraphs, such as:

- email exchanges
- tracking co-locations
- categorical data modeling
- numerical linear algebra (ref: P.A. Papa and I.L. Markov)

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Figure 1: An example of a nearly block-diagonal matrix and corresponding hypergraph. Each row of the matrix corresponds to a hyperedge, and each column corresponds to vertices v1 through v8. Recursively bisecting the graph aligns the blocks of the matrix on the diagonal.

Hypergraphs

- Few hypergraph-based algorithms exist in data science
- They are typically slower
- Some have an equivalent graph representation
- (q) Can we define a modularity function on hypergraphs?

Chung-Lu Model for Hypergraphs

Consider a hypergraph H = (V, E) with $V = \{v_1, \dots, v_n\}$.

Hyperedges $e \in E$ are subsets of V of cardinality greater than one where:

$$e = \{(v, m_e(v)) : v \in V\}$$

and $m_e(v) \in \mathbb{N} \cup \{0\}$ is the multiplicity of the vertex v in e

 $|e| = \sum_{v} m_e(v)$ is the *size* of hyperedge e, and

$$deg(v) = \sum_{e \in E} m_e(v)$$
, and

 $vol(A) = \sum_{v \in A} deg(v)$ as for graphs.

Chung-Lu Model for Hypergraphs

Let F_d be the family of multisets of size d; that is,

$$F_d := \left\{ \{ (v_i, m_i) : 1 \le i \le n \} : \sum_{i=1}^n m_i = d \right\}.$$

The hypergraphs in the random model are generated via independent random experiments. For each d such that $|E_d| > 0$, the probability of generating $e \in F_d$ is given by:

$$P_{\mathcal{H}}(e) = |E_d| \cdot {d \choose m_1, \ldots, m_n} \prod_{i=1}^n \left(\frac{deg(v_i)}{vol(V)} \right)^{m_i}.$$

where $m_i = m_e(v_i)$.

Chung-Lu Model for Hypergraphs

We can show that:

$$\mathbb{E}_{H' \sim \mathcal{H}}[deg_{H'}(v_i)] = \sum_{d \geq 2} \frac{d \cdot |E_d| \cdot deg(v_i)}{vol(V)} = deg(v_i),$$

with
$$vol(V) = \sum_{d>2} d \cdot |E_d|$$
.

We use this generalization of the Chung-Lu model as our null model (*degree tax*) to define hypergraph modularity.

Hypergraph Modularities

Let H = (V, E) and $\mathbf{A} = \{A_1, \dots, A_k\}$, a partition of V. For edges of size greater than 2, several definitions can be used to quantify the *edge contribution* given \mathbf{A} , such as:

- (a) all vertices of an edge have to belong to one of the parts to contribute; this is a *strict* definition;
- (b) the majority of vertices of an edge belong to one of the parts;
- (c) at least 2 vertices of an edge belong to the same part; this is implicitly used when we replace a hypergraph with its 2-section graph representation.

Strict Hypergraph Modularity

The edge contribution for $A_i \subseteq V$ is:

$$e(A_i) = |\{e \in E; e \subseteq A_i\}|.$$

The strict modularity of **A** on *H* is then defined as a natural extension of standard modularity in the following way:

$$q_{H}(\mathbf{A}) = \frac{1}{|E|} \sum_{A_i \in \mathbf{A}} \left(e(A_i) - \mathbb{E}_{H' \sim \mathcal{H}}[e_{H'}(A_i)] \right).$$

which can be written as:

$$q_{H}(\mathbf{A}) = \frac{1}{|E|} \left(\sum_{A_{i} \in \mathbf{A}} e(A_{i}) - \sum_{d \geq 2} |E_{d}| \sum_{A_{i} \in \mathbf{A}} \left(\frac{vol(A_{i})}{vol(V)} \right)^{d} \right)$$

Link to Chung-Lu Model

We generalized model II over hypergraphs.

For each d, sample $|E_d|$ edges $e = (u_1, ..., u_d)$ where each u_i is independently sampled from V with $p(v_i) \propto deg(v_i)$.

Let $\mathcal{CL}_2(H)$, the distribution of hypergraphs obtained this way; for $H' = (V, E') \sim \mathcal{CL}_2(H)$:

- $\mathbb{E}_{H' \sim \mathcal{CL}_2(H)}(deg_{H'}(v_i)) = deg_H(v_i), 1 \leq i \leq n.$
- we always have $|E'_d| = |E_d|$,
- there can be multi-edges, and
- there can be repeated vertices within an edge.

Link to Chung-Lu Model

Lemma

The degree tax term in the modularity function for hypergraph H = (G, V) and partition $\mathbf{A} = \{A_1, ..., A_k\}$ of V is the expected value of the edge contribution term over hypergraphs $H' \sim \mathcal{CL}_2(H)$.

Other Hypergraph Modularity

We can adjust the degree tax to many natural definitions of edge contribution, for example the majority definition.

In this case $(vol(A)/vol(V))^d$ (that is equivalent to $\mathbb{P}(\text{Bin}(d, vol(A)/vol(V)) = d)$ becomes $\mathbb{P}(\text{Bin}(d, vol(A)/vol(V)) > d/2)$.

The *majority* modularity function of a hypergraph partition is then:

$$\frac{1}{|E|} \left(\sum_{A_i \in \mathbf{A}} e(A_i) - \sum_{d \geq 2} |E_d| \sum_{A_i \in \mathbf{A}} \mathbb{P} \left(\text{Bin} \left(d, \frac{\text{vol}(A_i)}{\text{vol}(V)} \right) > d/2 \right) \right).$$

Other Hypergraph Modularity

Decomposing H into d-uniform hypergraphs H_d , we get the following degree-independent modularity function:

$$q_H^{DI}(\mathbf{A}) = \sum_{d \geq 2} \frac{|E_d|}{|E|} q_{H_d}(\mathbf{A}).$$

This is as before, but replacing the volumes computed over H with volumes computed over H_d for each d where $|E_d| > 0$.

Finally, we can generalize the modularity function to allow for weighted hyperedges.

We seek $\mathbf{A} = \{A_1, ..., A_k\} \in \mathcal{P}(V)$, which maximize the **strict** hypergraph modularity $q_H()$.

Set $\mathcal{P}(V)$ of all partitions of V is huge.

Let: $S(H) = \{H' = (V, E') \mid E' \subseteq E\}$ and define:

$$p: \mathcal{S}(H) \to \mathcal{P}(V)$$

the function that sends a sub-hypergraph of H to the partition its connected components induce on V.

We define an equivalence relation:

$$H_1 \equiv_p H_2 \iff p(H_1) = p(H_2)$$

and the quotient set $S(H)/_{\equiv_{\rho}}$.

Define the canonical representative mapping

$$f: \mathcal{S}(H)/_{\equiv_{\mathcal{P}}} o \mathcal{S}(H)$$

which maps an equivalence class to the largest member of the class: $f([H']) = H^*$.

Let $\mathcal{P}^*(V)$ be the image of p applied to the canonical representatives H^* .

We'll show the optimal solution lies in $\mathcal{P}^*(V)$, a subset of size at most $2^{|E|}$.

Consider the toy graph:

Here,
$$|\mathcal{P}(V)| = B_5 = 52$$
.

Bipartite graph view

$\overline{E_1} = \{e_1\}$

$E_4 = \{e_1, e_2\}$

$E_7 = \{e_1, e_2, e_3\}$

Lemma

Let H = (V, E) be a hypergraph and $\mathbf{A} = \{A_1, ..., A_k\}$ a partition of V. If there exists $H' \in \mathcal{S}(H)$ such that $\mathbf{A} = p(H')$, then the edge contribution of $q_H(\mathbf{A})$ is $\frac{|E^*|}{m}$, where E^* is the edge set of the canonical representative H^* of [H'].

i.e. the proportion of hyperedges that are subsets of a part.

Lemma

Let H = (V, E) be a hypergraph and A be any partition of V. If B is a refinement of A, then the degree tax of B is smaller than or equal to the degree tax of A with equality if and only if A = B.

Lemma

Let H = (V, E) be a hypergraph and A be any partition of V. If B is a refinement of A, then the degree tax of B is smaller than or equal to the degree tax of A with equality if and only if A = B.

• We prove the following by showing that for any partition, there exists some $H^* \in \mathcal{P}^*(V)$ such that $p(H^*)$ is a refinement of that partition, with the same edge contribution.

Theorem

Let H = (V, E) be a hypergraph. If $\mathbf{A} \in \mathcal{P}(V)$ maximizes the modularity function $q_H(\cdot)$, then $\mathbf{A} \in \mathcal{P}^*(V)$.

Previous results give the steps to define heuristic algorithms:

- for $E' \subseteq E$, let H' = (V, E')
- find $H^* = [H'] = (V, E^*)$ and compute edge contribution part of $q_H()$
- find $\mathbf{A} = p(H^*)$ and compute degree tax part of $q_H()$

Simple ways to search for good candidates $E' \subseteq E$:

- **Greedy random:** shuffle the edges and add edge to E' in turn if $q_H()$ improves; repeat;
- 2 CNM-like: look for best edge to add to E' at each step;

Graph clustering

```
Data: hypergraph H = (V, E)
   Result: A_{opt}, a partition of V with modularity q_{opt}
   Initialize \mathbf{A}_{opt} the partition with all v \in V in its own part, and q_{opt};
   repeat
        foreach e \in E do
3
            set q_e = -\infty
 4
        end
 5
        foreach e \in E touching two or more parts in A_{ont} do
6
            compute the partition A_e obtained when merging all parts in
 7
              \mathbf{A}_{opt} touched by e, and compute its modularity q_e;
        end
8
        select edge e^* with highest q_e;
9
        if q_e^* \geq q_{opt} then
10
            A_{opt} = A_e^*, \ q_{opt} = q_e^*;
11
12
        end
13 until q_e^* < q_{opt};
  output: \mathbf{A}_{opt} and q_{opt}
```

Conclusion

Is it working? Is $q_H()$ a "good" objective function?

Consider the following experiment:

- build hypergraphs with 3 communities of 20 vertices and 50 edges of size 2 ≤ d ≤ 5 each;
- add $3 \le k \le 60$ random edges of same size(s);
- run random algorithm (with 25 repeats) several times over range of k values;
- for each k, compute mean adjusted RAND index;

Synthetic Hypergraphs

[REF: M. Leordeanu, C. Sminchisescu, Efficient Hypergraph Clustering]

- Generate noisy points along 3 lines on the plane with different slopes
- add some random points
- select sets of 3 or 4 points (hyperedges)
 - all coming from the same line ("signal")
 - or not ("noise")
- Sample hyperedges for which the points are well aligned, and so that the expected proportion of signal vs. noise is 2:1.

We consider 3 different regimes: (i) mostly 3-edges, (ii) mostly 4-edges and (iii) balanced between 3 and 4-edges.

Synthetic Hypergraphs

Synthetic Hypergraphs

Cluster vertices via Louvain on (weighted) 2-section graph.

Modularity vs Hcut. We observe a higher correlation with Hcut (number of splitted hyperedges) with the H-modularity.

DBLP Hypergraph

Small co-author hypergraph with 1637 nodes and 865 hyperedges of sizes 2 to 7.

We compare Louvain (over 2-section) and hypergraph-CNM (with strict modularity).

Partitioning the DBLP dataset.

algorithm	<i>q_H()</i>	$q_G()$	Hcut	#parts
Louvain	0.8613	0.8805	0.1181	40
CNM	0.8671	0.8456	0.0945	92

DBLP Hypergraph

Algorithms based on $q_H()$ will tend to cut less of the larger edges, as compared to the Louvain algorithm, at expense of cutting more size-2 edges.

Proportion of edges of size 2, 3 or 4 cut by the algorithms.

Algorithm	2-edges	3-edges	4-edges
Louvain	0.0382	0.1815	0.3158
CNM	0.0590	0.1277	0.1842

Conclusion and Ongoing Work

- Done so far:
 - generalized Chung-Lu model for hypergraphs
 - generalized modularity function to hypergraphs
 - steps toward hypergraph clustering algorithms
 - two simple heuristic algorithms: random and CNM
- Ongoing:
 - better intuition behind modularity functions
 - better, scalable clustering algorithm(s)
 - experiments on real datasets