Figure 1: Double bootstrap Simulation with $B=500,\,p=13,\,\mu_{\alpha}=10,\,X_{i,t}\stackrel{iid}{\sim}\Gamma(1,10),\,\delta_i\sim\mathcal{N}(2\mathbf{1}_p,\sigma_\delta^2\mathbf{I}_p),\,\gamma_i\sim\mathcal{N}(2\mathbf{1}_p,\sigma_\gamma^2\mathbf{I}_p)$ with $\sigma_\delta=\sigma_\gamma=1$ and $\sigma=1$

	σ_{α}	$\frac{\text{Bi}}{ \hat{\alpha}_{\text{adj}}^{\dagger} - \text{E}(\hat{\alpha}_{\text{adj}}) }$	Bias $ \hat{\alpha}_{\mathrm{wadj}}^{\dagger} - \mathrm{E}(\alpha_1) $	$\hat{lpha}_{ m adj}$	$\frac{\text{Guess}}{\hat{\alpha}_{\text{wadj}}}$	$\hat{lpha}_{ m IVW}$	Consistency $\hat{lpha}_{ m adj}$	Proposition $\hat{\alpha}_{ m wadj}$	âıvw
ಌ	1 5 10 25 100	28.742 (2.911) 28.742 (2.9) 28.742 (2.913) 29.323 (3.024) 43.439 (4.457)	87.932 (8.292) 87.346 (8.312) 86.615 (8.357) 84.986 (8.495) 87.463 (9.793)	1 (0) 1 (0) 1 (0) 1 (0) 1 (0)	1 (0) 1 (0) 1 (0) 1 (0)	1 (0) 1 (0) 1 (0) 1 (0)	0.98 (0.02) 0.98 (0.02) 0.98 (0.02) 0.98 (0.02) 0.98 (0.02)	1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 0.98 (0.02)	0.98 (0.02) 0.98 (0.02) 0.98 (0.02) 0.98 (0.02) 0.98 (0.02)
10	1 5 10 25 100	18.541 (2.258) 18.456 (2.265) 18.463 (2.277) 19.307 (2.306) 31.557 (3.223)	77.577 (8.909) 77.457 (8.969) 77.504 (9.026) 77.706 (9.29) 88.11 (11.057)	1 (0) 1 (0) 1 (0) 1 (0)	1 (0) 1 (0) 1 (0) 1 (0)	1 (0) 1 (0) 1 (0) 1 (0) 1 (0)	1 (0) 1 (0) 1 (0) 1 (0) 0.96 (0.028)	1 (0) 1 (0) 1 (0) 1 (0) 0.98 (0.02)	1 (0) 1 (0) 1 (0) 1 (0) 0.96 (0.028)
15	1 5 10 25 100	15.152 (1.58) 15.411 (1.608) 15.734 (1.66) 17.168 (1.833) 29.884 (2.977)	86.296 (9.39) 86.145 (9.396) 85.957 (9.417) 85.911 (9.467) 95.744 (9.65)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 (0) 1 (0) 1 (0) 1 (0) 0.9 (0.043)	1 (0) 1 (0) 1 (0) 0.98 (0.02) 0.9 (0.043)	1 (0) 1 (0) 1 (0) 1 (0) 0.9 (0.043)
25	1 5 10 25 100	11.834 (1.157) 11.708 (1.182) 11.758 (1.189) 12.425 (1.221) 20.426 (2.156)	66.679 (8.566) 66.752 (8.542) 66.863 (8.517) 67.218 (8.496) 75.549 (8.53)	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 (0) (1) (0) (1) (0) (1) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	1 (0) 1 (0) 1 (0) 1 (0) 0.94 (0.034)	$ \begin{array}{c} 1 (0) \\ 1 (0) \\ 1 (0) \\ 1 (0) \\ 0.98 (0.02) \end{array} $	1 (0) 1 (0) 1 (0) 1 (0) 0.94 (0.034)

Figure 2: Monte Carlo simulation for \mathcal{B}_c with $B=100,\,k=10,\,p=13,\,\mu_{\alpha}=2,\,X_{i,t}\stackrel{iid}{\sim}\Gamma(1,2),\,\delta_i\sim\mathcal{N}(2\mathbf{1}_p,\sigma_{\delta}^2\mathbf{I}_p),\,\gamma_i\sim\mathcal{N}(\mathbf{1}_p,\sigma_{\gamma}^2\mathbf{I}_p)$ with $\sigma_{\delta}=\sigma_{\gamma}=0.5$ and $\sigma=10$

			Guess			Consi	stency		k	-fold cross valid	ation consistence	ey
n	σ_{lpha}	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	Best	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	Best
-	5	1 (0)	1 (0)	1 (0)	0.97 (0.017)	0.97 (0.017)	0.96 (0.02)	0.21 (0.041)	0.93 (0.01)	$0.936\ (0.009)$	0.926 (0.01)	0.338 (0.023
	10	0.99(0.01)	1 (0)	0.99(0.01)	$0.93\ (0.026)$	$0.94 \ (0.024)$	0.92(0.027)	0.27(0.045)	$0.902 \ (0.012)$	0.918(0.011)	$0.906 \ (0.012)$	0.35 (0.024)
5	25	$0.94 \ (0.024)$	1 (0)	0.95 (0.022)	0.8 (0.04)	$0.85 \ (0.036)$	0.79(0.041)	0.38 (0.049)	$0.79\ (0.016)$	$0.832\ (0.014)$	$0.788 \; (0.017)$	0.334 (0.024
	50	$0.88 \; (0.033)$	0.99(0.01)	$0.88 \; (0.033)$	0.67 (0.047)	0.69 (0.046)	0.67 (0.047)	0.5 (0.05)	$0.58 \; (0.025)$	$0.644 \ (0.024)$	$0.582 \ (0.025)$	$0.376 \ (0.026$
	100	$0.75 \ (0.044)$	$0.97 \ (0.017)$	$0.77 \ (0.042)$	$0.51\ (0.05)$	$0.52 \ (0.05)$	0.5 (0.05)	$0.52 \ (0.05)$	$0.47 \; (0.025)$	$0.484 \ (0.027)$	$0.466 \ (0.026)$	0.364 (0.026
	5	0.99(0.01)	1 (0)	0.99(0.01)	0.91 (0.029)	$0.92 \ (0.027)$	0.91 (0.029)	0.22 (0.042)	0.927 (0.007)	$0.938 \; (0.007)$	$0.927 \ (0.007)$	0.3 (0.016)
	10	0.99(0.01)	1 (0)	0.99(0.01)	0.87 (0.034)	$0.91 \ (0.029)$	$0.88 \; (0.033)$	0.26 (0.044)	0.897 (0.009)	$0.903 \; (0.008)$	$0.898 \; (0.009)$	0.319 (0.018
10	25	0.96 (0.02)	0.99(0.01)	0.96(0.02)	$0.76 \ (0.043)$	0.8(0.04)	$0.78 \; (0.042)$	0.3 (0.046)	0.755 (0.012)	$0.78 \; (0.011)$	$0.758 \ (0.012)$	$0.382 \ (0.02)$
	50	$0.81 \ (0.039)$	0.97 (0.017)	0.82 (0.039)	$0.61 \ (0.049)$	$0.66 \ (0.048)$	0.62 (0.049)	0.32 (0.047)	$0.619 \ (0.018)$	$0.663 \ (0.015)$	$0.616 \ (0.017)$	$0.418 \ (0.02)$
	100	$0.75 \ (0.044)$	$0.94 \ (0.024)$	$0.74 \ (0.044)$	$0.52\ (0.05)$	$0.52 \ (0.05)$	$0.54\ (0.05)$	$0.39 \ (0.049)$	0.543 (0.019)	$0.524 \ (0.018)$	$0.547 \ (0.019)$	$0.438 \ (0.019$
	5	1 (0)	1 (0)	1 (0)	0.94 (0.024)	0.95 (0.022)	0.94 (0.024)	0.37 (0.049)	0.906 (0.011)	0.928(0.01)	0.907 (0.011)	0.325 (0.019
	10	1 (0)	1 (0)	1 (0)	0.9(0.03)	$0.93 \ (0.026)$	0.91 (0.029)	0.37(0.049)	$0.879 \ (0.012)$	$0.904\ (0.011)$	0.883 (0.012)	0.317 (0.022
15	25	$0.98 \; (0.014)$	1 (0)	$0.98 \; (0.014)$	0.8 (0.04)	0.79(0.041)	0.8(0.04)	0.42 (0.05)	$0.763 \ (0.018)$	$0.788 \; (0.016)$	$0.766 \ (0.018)$	0.365 (0.019)
	50	0.89 (0.031)	0.99(0.01)	0.89(0.031)	$0.61 \ (0.049)$	0.67 (0.047)	$0.61 \ (0.049)$	$0.41 \ (0.049)$	$0.614\ (0.02)$	$0.635 \ (0.019)$	$0.613\ (0.02)$	0.391 (0.018
	100	$0.74 \ (0.044)$	$0.95 \ (0.022)$	$0.75 \ (0.044)$	0.5 (0.05)	0.5 (0.05)	0.5 (0.05)	$0.42 \ (0.05)$	$0.514\ (0.02)$	$0.472 \ (0.018)$	$0.515 \ (0.02)$	0.421 (0.019
	5	1 (0)	1 (0)	1 (0)	0.94 (0.024)	0.97 (0.017)	0.95 (0.022)	0.35 (0.048)	0.92 (0.01)	0.925 (0.01)	0.92(0.01)	0.323 (0.017
	10	1 (0)	1 (0)	1 (0)	$0.94 \ (0.024)$	$0.94 \ (0.024)$	$0.94 \ (0.024)$	$0.33 \ (0.047)$	0.9(0.011)	$0.915 \ (0.011)$	$0.901 \ (0.011)$	$0.334 \ (0.017$
25	25	0.97 (0.017)	1 (0)	0.97 (0.017)	$0.82\ (0.039)$	$0.84 \ (0.037)$	$0.82\ (0.039)$	0.38 (0.049)	$0.788 \; (0.015)$	$0.827 \ (0.013)$	$0.787 \ (0.015)$	$0.356 \ (0.018$
	50	0.89 (0.031)	0.99(0.01)	0.89(0.031)	$0.65 \ (0.048)$	$0.73 \ (0.045)$	0.65 (0.048)	0.4 (0.049)	$0.673\ (0.019)$	$0.698 \; (0.017)$	$0.671\ (0.019)$	0.404 (0.02)
	100	0.74(0.044)	0.96(0.02)	0.74(0.044)	0.52(0.05)	0.55(0.05)	0.52(0.05)	0.43(0.05)	0.565 (0.021)	0.567 (0.019)	0.57(0.021)	0.419 (0.021

Figure 3: Simulation with $B=200,\,p=13,\,\mu_{\alpha}=2,\,X_{i,t}\stackrel{iid}{\sim}\Gamma(1,2),\,\delta_{i}\sim\mathcal{N}(\mathbf{1}_{p},\sigma_{\delta}^{2}\mathbf{I}_{p}),\,\gamma_{i}\sim\mathcal{N}(\mathbf{1}_{p},\sigma_{\gamma}^{2}\mathbf{I}_{p})$ with $\sigma_{\delta}=\sigma_{\gamma}=0.5$ and $\sigma=10$

		_			•				
u	σ_{lpha}	$\hat{lpha}_{ m adj}$	Distance to $lpha_1$ $\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	Original	$\hat{lpha}_{ m adj}$	Distance to $y_{1,T_{1}^{*}+1}$	$\hat{\alpha}_{\rm IVW}$	
	5	11.725 (0.759) 12.868 (0.926)	11.697 (0.77)	11.729 (0.765) 13.066 (0.926)	55.665 (1.901) 56.708 (1.971)	16.015 (1.355) 17.237 (1.443)	16.785 (1.41) 18.393 (1.573)	16.14 (1.352) 17.336 (1.453)	
22	$\frac{1}{25}$	21.31 (1.64)	23.992 (1.9)	21.809 (1.627)	59.965 (2.691)	23.874 (2.086)	27.642 (2.245)	24.215 (2.083)	
	20	39.875 (3.05)	44.796 (3.512)	$40.643 \ (3.013)$	$69.245 \ (4.068)$	41.799(3.318)	47.423(3.717)	42.346(3.297)	
	100	79.354 (6.01)	88.317 (6.814)	80.151 (5.98)	99.526 (6.566)	80.279 (6.232)	$89.234 \ (7.065)$	81.05 (6.192)	
	ಬ	12.171 (0.986)	$12.072\ (1.056)$	12.148 (0.986)	$54.956 \ (1.938)$	$16.464 \ (1.263)$	17.151 (1.32)	16.414 (1.28)	
	10	13.293 (1.129)	14.209 (1.154)	$13.16 \ (1.138)$	54.657 (2.099)	17.508 (1.381)	18.897 (1.402)	$17.374 \ (1.405)$	
10	25	$22.934 \ (1.754)$	$25.814 \ (1.858)$	22.948 (1.759)	54.068 (3.048)	$25.704 \ (1.974)$	28.494 (2.101)	25.753 (1.985)	
	20	43.573 (3.153)	50.779 (3.219)	43.994 (3.149)	$59.051 \ (4.647)$	44.973 (3.356)	51.829 (3.476)	45.452 (3.352)	
	100	87.16 (6.186)	101.743 (6.331)	87.816 (6.249)	88.642 (7.381)	88.014 (6.334)	102.414 (6.501)	88.669 (6.401)	
	ಬ	10.085 (0.839)	$10.848 \; (0.804)$	$10.114 \ (0.834)$	54.124 (2.011)	$17.094\ (1.557)$	$18.529 \ (1.566)$	17.228 (1.551)	
	10	12.656 (0.992)	$13.691 \ (1.032)$	12.702 (0.992)	54.56 (2.208)	$18.831 \ (1.672)$	20.791 (1.719)	19.003(1.67)	
15	25	23.758 (1.762)	26.584 (1.831)	23.885 (1.769)	56.719(3.114)	28.487 (2.183)	31.651 (2.359)	28.717 (2.197)	
	20	44.848 (3.285)	49.543(3.482)	45.018 (3.313)	$66.12 \ (4.598)$	49.316 (3.368)	53.818 (3.773)	49.558 (3.412)	
	100	87.861 (6.529)	96.61 (6.888)	88.434 (6.557)	$100.28\ (7.164)$	92.031 (6.414)	99.966 (7.08)	92.603 (6.469)	
	ಬ	11.969 (0.833)	$11.934\ (0.887)$	11.95 (0.839)	60.475 (2.649)	17.709 (2.08)	18.296 (2.081)	17.778 (2.091)	
	10	14.268 (0.996)	14.382 (0.991)	14.279 (0.994)	60.614 (2.767)	19.266 (2.149)	19.877 (2.117)	19.365 (2.156)	
25	25	23.987 (1.783)	24.782 (1.67)	23.94 (1.78)	61.974 (3.376)	27.789 (2.532)	28.095 (2.484)	27.86 (2.532)	
	20	42.392 (3.388)	45.205 (3.081)	42.444 (3.362)	67.704 (4.792)	45.163(3.752)	47.252 (3.51)	45.109(3.754)	
	100	81.173 (6.679)	87.99 (6.042)	81.223 (6.638)	94.144 (7.449)	83.225 (6.777)	89.548 (6.134)	83.268 (6.747)	

Figure 4: Simulation with $B = 100, k = 5, p = 13, \mu_{\alpha} = 2, X_{i,t} \stackrel{iid}{\sim} \Gamma(1,2), \delta_i \sim \mathcal{N}(\mathbf{1}_p, \sigma_{\delta}^2 \mathbf{I}_p), \gamma_i \sim \mathcal{N}(\mathbf{1}_p, \sigma_{\gamma}^2 \mathbf{I}_p)$ with $\sigma_{\delta} = \sigma_{\gamma} = 0.5$

			Guess		Pea	ve-one-out cross	Leave-one-out cross validation $(k =$	= 5)
Ο	σ_{lpha}	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	$\hat{lpha}_{ m adj}$	$\hat{Q}_{ ext{wadj}}$	$\hat{lpha}_{ m IVW}$	Best
	5	1 (0)	1 (0)	1 (0)	(600.0) 996.0	0.978 (0.007)	(0.07) (0.009)	0.414 (0.027)
	10		1 (0)	1 (0)	0.946 (0.012)	0.95(0.011)	0.946 (0.012)	0.41 (0.025)
5	25	0.96(0.02)	1 (0)	0.96(0.02)	0.796(0.02)	0.814 (0.018)	0.794 (0.02)	0.406(0.027)
	20		0.98(0.014)	0.92 (0.027)	0.622 (0.026)	0.662 (0.024)	0.616 (0.025)	0.398(0.028)
	100		0.96(0.02)	0.77 (0.042)	0.516 (0.028)	0.48(0.026)	0.518(0.028)	0.414 (0.029)
	5	1 (0)	1(0)	1 (0)	0.914 (0.015)	0.932 (0.013)	0.918 (0.015)	0.328 (0.027)
	10		1 (0)	0.99(0.01)	0.898 (0.015)	0.914 (0.014)	0.898(0.015)	0.334 (0.026)
10	25		1 (0)	0.96(0.02)	0.778 (0.02)	0.79(0.021)	0.774 (0.02)	0.384 (0.027)
	20		0.98(0.014)	0.91 (0.029)	0.608 (0.026)	0.648 (0.024)	0.596 (0.026)	0.404 (0.029)
	100		0.95(0.022)	0.77 (0.042)	0.496(0.028)	0.486 (0.028)	0.512 (0.029)	0.402(0.028)
	ಬ	0.97(0.017)	0.99(0.01)	0.97 (0.017)	0.762 (0.023)	0.78(0.02)	0.764 (0.023)	0.272 (0.025)
	10	0.98(0.014)	0.99(0.01)	0.98(0.014)	0.754 (0.022)	0.76(0.021)	0.75(0.022)	0.28(0.028)
25	25	0.96(0.02)	0.97 (0.017)	0.96(0.02)	0.702 (0.023)	0.714 (0.022)	0.688 (0.023)	0.314 (0.026)
	20		0.96(0.02)	0.89(0.031)	0.58(0.027)	0.602 (0.024)	0.586(0.027)	0.346 (0.026)
	100	0.76(0.043)	0.93(0.026)	0.77 (0.042)	0.494 (0.028)	0.482 (0.027)	0.5 (0.029)	0.374 (0.026)
	5	0.78(0.042)	0.81 (0.039)	0.8(0.04)	0.602 (0.028)	0.584 (0.028)	0.612(0.028)	0.204 (0.021)
	10	0.8(0.04)	0.8(0.04)	0.81 (0.039)	0.598 (0.027)	0.59(0.026)	0.608 (0.028)	0.22(0.022)
20	25	0.8(0.04)	0.82(0.039)	0.8(0.04)	0.58(0.026)	0.574 (0.027)	0.584 (0.026)	0.268 (0.024)
	20	0.78 (0.042)	0.86(0.035)	0.8(0.04)	0.546 (0.028)	0.526 (0.029)	0.552 (0.027)	0.298 (0.026)
	100	0.73(0.045)	$0.79\ (0.041)$	0.71 (0.046)	0.504 (0.029)	0.484 (0.029)	0.516 (0.029)	0.328 (0.026)
	ಬ	0.59(0.049)	0.52(0.05)	0.58(0.05)	0.488 (0.025)	0.466 (0.028)	0.502 (0.026)	0.2(0.021)
	10	0.57 (0.05)	0.52(0.05)	0.57(0.05)	0.502 (0.026)	0.48(0.027)	0.492 (0.025)	0.2(0.023)
100	25	0.57 (0.05)	0.53(0.05)	0.58(0.05)	0.496(0.026)	0.488 (0.029)	0.51 (0.027)	0.208 (0.022)
	20	0.54 (0.05)	0.49(0.05)	0.53(0.05)	0.524 (0.027)	0.472 (0.027)	0.508 (0.028)	0.258 (0.024)
	100	0.52(0.05)	$0.55\ (0.05)$	$0.52\ (0.05)$	0.51 (0.031)	$0.502\ (0.027)$	0.512(0.03)	0.286 (0.024)

Figure 5: Simulation with B=200, p=13, $\mu_{\alpha}=2$, $X_{i,t}\stackrel{iid}{\sim}\Gamma(1,2)$, $\delta_{i}\sim\mathcal{N}(\mathbf{1}_{p},\sigma_{\delta}^{2}\mathbf{I}_{p})$, $\gamma_{i}\sim\mathcal{N}(\mathbf{1}_{p},\sigma_{\gamma}^{2}\mathbf{I}_{p})$ with $\sigma_{\delta}=\sigma_{\gamma}=0.5$

	$\hat{lpha}_{ m IVW}$	10.883 (0.826)	12.753 (0.958)	21.554 (1.762)	40.114 (3.306)	79.707 (6.462)	13.498 (1.012)	15.225 (1.098)	23.439 (1.802)	40.647 (3.393)	79.225 (6.604)	26.318 (2.147)	27.618(2.15)	33.509 (2.518)	47.981 (3.744)	82.526 (6.903)	51.103 (4.58)	51.926 (4.571)	$56.567 \ (4.618)$	66.957 (5.312)	95.721 (7.788)	103.264 (9.648)	103.924 (9.621)	106.586 (9.627)	114.027 (9.817)	134.575 (11.194)
O $y_1, T_1^* + 1$	$\hat{\alpha}_{ ext{wadj}}$	11.762 (0.803)	$14.068 \ (0.973)$	$24.184 \ (1.844)$	43.957 (3.547)	85.683(7.016)	$15.353\ (1.04)$	17.422 (1.165)	26.504 (1.966)	45.632 (3.607)	86.741 (7.065)	29.723(2.309)	31.274 (2.36)	38.113 (2.828)	54.335 (4.13)	92.688(7.361)	57.203 (4.792)	58.479 (4.801)	$63.934 \ (4.971)$	76.169 (5.792)	109.041 (8.367)	113.875 (10.016)	$114.754\ (10.032)$	$119.472\ (10.011)$	128.767 (10.342)	153.396 (11.937)
Distance to y_{1,T_1^*+1}	$\hat{lpha}_{ m adj}$	10.916 (0.825)	12.714 (0.96)	21.4 (1.763)	40.072 (3.276)	79.395 (6.435)	13.585 (0.997)	$15.261 \ (1.085)$	23.303 (1.798)	40.39(3.388)	79.128 (6.549)	26.276 (2.138)	27.602 (2.136)	33.337 (2.519)	47.644 (3.753)	82.067 (6.899)	$50.899 \ (4.574)$	$51.697 \ (4.569)$	$56.205 \ (4.634)$	66.294 (5.363)	$94.513 \ (7.886)$	102.577 (9.658)	103.06 (9.653)	105.519 (9.688)	113.134 (9.868)	133.272 (11.298)
	Original	53.511 (1.27)	$52.93\ (1.483)$	51.443 (2.557)	$54.765 \ (4.146)$	80.077 (6.869)	54.821 (1.602)	$54.241 \ (1.785)$	52.862 (2.738)	$56.405 \ (4.231)$	81.975 (6.841)	59.351 (3.132)	58.766 (3.248)	58.774 (3.68)	63.675(4.7)	88.763 (6.978)	74.695 (5.392)	74.605 (5.417)	75.993 (5.525)	80.977 (6.141)	$102.92\ (7.947)$	119.273 (9.926)	119.26 (9.943)	$120.012\ (10.042)$	$124.048 \ (10.337)$	$140.309\ (11.461)$
	$\hat{lpha}_{ m IVW}$	10.665 (0.838)	12.433 (0.979)	21.732 (1.717)	40.797 (3.198)	80.575 (6.33)	$10.823 \ (0.873)$	12.551 (1.007)	21.881 (1.718)	40.899(3.192)	80.7 (6.315)	12.151 (1.017)	13.923 (1.097)	22.492 (1.778)	41.18 (3.212)	81.013 (6.286)	$16.924 \ (1.247)$	18.049 (1.324)	24.649 (1.972)	42.197 (3.318)	81.645 (6.292)	28.009 (1.982)	28.582(2.03)	33.127 (2.458)	46.75 (3.692)	83.286 (6.54)
Distance to α_1	$\hat{lpha}_{ m wadj}$	11.021 (0.828)	13.237(1)	23.543 (1.843)	43.698 (3.503)	85.719 (6.94)	12.144 (0.955)	14.325 (1.092)	24.436 (1.867)	44.359 (3.499)	86.246 (6.92)	$17.378 \ (1.46)$	$18.803 \ (1.584)$	28.09(2.11)	47.236 (3.554)	88.466 (6.877)	27.836 (2.508)	28.95 (2.571)	36.601 (2.839)	53.474 (3.968)	93.553 (6.924)	51.9 (4.569)	$52.334 \ (4.636)$	56.764 (4.847)	70.598 (5.416)	105.773 (7.718)
	$\hat{lpha}_{ m adj}$	10.713 (0.844)	12.443 (0.98)	21.696 (1.703)	40.632(3.181)	80.292 (6.296)	10.958 (0.877)	12.63 (1.006)	21.845 (1.705)	40.735 (3.171)	80.41 (6.277)	$12.463 \ (1.038)$	14.178 (1.107)	$22.578 \ (1.765)$	41.151 (3.177)	80.757 (6.239)	17.406 (1.319)	18.49 (1.382)	25.131 (1.961)	42.394 (3.28)	81.388 (6.253)	28.901 (2.136)	29.328 (2.188)	34.061 (2.521)	47.583(3.667)	83.829 (6.444)
	σ_{α}	5	10	25	20	100	5	10	25	20	100	5	10	25	20	100	ಬ	10	25	20	100	5	10	25	20	100
	ρ			5					10					25					20					100		

Figure 6: Monte Carlo simulation for \mathcal{B}_u with $B=200,\ k=5,\ p=13,\ \mu_{\alpha}=2,\ X_{i,t}\stackrel{iid}{\sim}\Gamma(1,2),\ \delta_i\sim\mathcal{N}(2\mathbf{1}_p,\sigma_{\delta}^2\mathbf{I}_p),\ \gamma_i\sim\mathcal{N}(\mathbf{1}_p,\sigma_{\gamma}^2\mathbf{I}_p)$ with $\sigma_{\delta}=\sigma_{\gamma}=0.5$ and $\sigma=10$

			Guess			LOOCV with k	random draws	
n	σ_{lpha}	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	$\bar{\mathcal{C}}^{(k)}(\hat{lpha}_{\mathrm{adj}})$	$\bar{\mathcal{C}}^{(k)}(\hat{lpha}_{\mathrm{wadj}})$	$\bar{\mathcal{C}}^{(k)}(\hat{lpha}_{\mathrm{IVW}})$	$ar{\mathcal{C}}^{(k)}(\mathcal{A})$
	5	1 (0)	1 (0)	1 (0)	$0.92\ (0.021)$	$0.96 \ (0.015)$	$0.92 \ (0.021)$	$0.36 \ (0.046)$
	10	1 (0)	1 (0)	1 (0)	0.9(0.021)	0.92 (0.018)	0.9(0.021)	0.4(0.041)
5	25	$0.967 \ (0.033)$	1 (0)	$0.967 \ (0.033)$	$0.8 \; (0.023)$	$0.813 \ (0.023)$	$0.8 \; (0.025)$	0.427 (0.044)
	50	$0.833 \ (0.069)$	$0.867 \ (0.063)$	$0.867 \ (0.063)$	$0.553 \ (0.05)$	$0.573 \ (0.045)$	0.547 (0.052)	$0.38 \; (0.049)$
	100	$0.467 \ (0.093)$	$0.733 \ (0.082)$	$0.467 \ (0.093)$	$0.48 \; (0.045)$	$0.48 \; (0.042)$	$0.46 \ (0.044)$	$0.373 \ (0.048)$
	5	1 (0)	1 (0)	1 (0)	0.953 (0.016)	0.953 (0.018)	0.953 (0.016)	0.327 (0.041)
	10	1 (0)	1 (0)	1 (0)	$0.92 \ (0.025)$	$0.913 \ (0.027)$	$0.92 \ (0.025)$	0.333 (0.041)
10	25	$0.9 \ (0.056)$	0.967 (0.033)	0.933 (0.046)	0.767 (0.041)	0.787 (0.039)	$0.753\ (0.045)$	0.313 (0.04)
	50	0.767(0.079)	$0.8 \ (0.074)$	$0.767\ (0.079)$	0.553 (0.044)	0.64 (0.043)	0.547(0.045)	$0.307 \ (0.036)$
	100	0.633 (0.089)	$0.7\ (0.085)$	0.633 (0.089)	$0.527\ (0.041)$	0.533(0.046)	$0.507\ (0.043)$	$0.333\ (0.04)$
	5	1 (0)	1 (0)	1 (0)	0.92 (0.021)	0.927 (0.02)	0.92 (0.021)	0.313 (0.046)
	10	1 (0)	1 (0)	1 (0)	0.92(0.021)	0.907(0.023)	0.92(0.021)	0.3(0.034)
15	25	1 (0)	1 (0)	1 (0)	0.827(0.03)	0.833(0.029)	$0.833 \ (0.03)$	0.353 (0.038)
	50	$0.9 \ (0.056)$	0.933(0.046)	0.9(0.056)	$0.707 \ (0.033)$	0.667 (0.038)	0.687 (0.035)	0.333(0.039)
	100	$0.7 \; (0.085)$	$0.733 \ (0.082)$	$0.7 \ (0.085)$	$0.54\ (0.046)$	$0.607 \ (0.039)$	$0.54 \ (0.046)$	$0.313 \ (0.045)$
	5	1 (0)	1 (0)	1 (0)	0.9 (0.027)	0.907 (0.025)	0.9 (0.027)	0.273 (0.035)
	10	1 (0)	1 (0)	1 (0)	0.873 (0.028)	$0.893\ (0.025)$	0.873(0.028)	0.3(0.033)
25	25	1 (0)	1 (0)	1 (0)	0.733(0.034)	0.74(0.042)	0.733(0.034)	0.293(0.031)
	50	$0.833 \ (0.069)$	0.867 (0.063)	0.833(0.069)	$0.553 \ (0.047)$	0.56(0.047)	0.553(0.047)	$0.293\ (0.036)$
	100	0.767 (0.079)	$0.733\ (0.082)$	$0.767 \ (0.079)$	0.48 (0.048)	$0.493\ (0.039)$	0.487 (0.049)	0.307 (0.047)