Social network Graph Link Prediction - Facebook Challenge (Featurizations)

In [1]:

```
#Importing Libraries
# please do go through this python notebook:
import warnings
warnings.filterwarnings("ignore")
import csv
import pandas as pd#pandas to create small dataframes
import datetime #Convert to unix time
import time #Convert to unix time
# if numpy is not installed already : pip3 install numpy
import numpy as np#Do aritmetic operations on arrays
# matplotlib: used to plot graphs
import matplotlib
import matplotlib.pylab as plt
import seaborn as sns#Plots
from matplotlib import rcParams#Size of plots
from sklearn.cluster import MiniBatchKMeans, KMeans#Clustering
import math
import pickle
import os
# to install xgboost: pip3 install xgboost
import xgboost as xgb
import warnings
import networkx as nx
import pdb
import pickle
from pandas import HDFStore,DataFrame
from pandas import read_hdf
from scipy.sparse.linalg import svds, eigs
import gc
from tqdm import tqdm
```

Reading Data

In [2]:

```
if os.path.isfile('data/after_eda/train_pos_after_eda.csv'):
    train_graph=nx.read_edgelist('data/after_eda/train_pos_after_eda.csv',delimiter=','
,create_using=nx.DiGraph(),nodetype=int)
    print(nx.info(train_graph))
else:
    print("please run the FB_EDA.ipynb or download the files from drive")
```

Name:

Type: DiGraph

Number of nodes: 1780722 Number of edges: 7550015 Average in degree: 4.2399 Average out degree: 4.2399

Similarity measures

Jaccard Distance:

http://www.statisticshowto.com/jaccard-index/ (http://www.statisticshowto.com/jaccard-index/)

$$j = \frac{|X \cap Y|}{|X \cup Y|}$$

In [3]:

```
In [4]:
```

```
#one test case
print(jaccard_for_followees(273084,1505602))
```

0.0

In [5]:

```
#node 1635354 not in graph
print(jaccard_for_followees(273084,1505602))
```

0.0

In [6]:

```
In [7]:
```

```
print(jaccard_for_followers(273084,470294))
0
```

In [8]:

```
#node 1635354 not in graph
print(jaccard_for_followees(669354,1635354))
```

6

Cosine distance

$$CosineDistance = \frac{|X \cap Y|}{|X| \cdot |Y|}$$

In [9]:

In [10]:

```
print(cosine_for_followees(273084,1505602))
```

0.0

In [11]:

```
print(cosine_for_followees(273084,1635354))
```

0

In [12]:

```
In [13]:
```

0

```
print(cosine_for_followers(2,470294))

0.02886751345948129

In [14]:
print(cosine_for_followers(669354,1635354))
```

Ranking Measures

https://networkx.github.io/documentation/networkx-

<u>1.10/reference/generated/networkx.algorithms.link_analysis.pagerank_alg.pagerank.html</u> (https://networkx.github.io/documentation/networkx-

1.10/reference/generated/networkx.algorithms.link_analysis.pagerank_alg.pagerank.html)

PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links.

Mathematical PageRanks for a simple network, expressed as percentages. (Google uses a logarithmic scale.) Page C has a higher PageRank than Page E, even though there are fewer links to C; the one link to C comes from an important page and hence is of high value. If web surfers who start on a random page have an 85% likelihood of choosing a random link from the page they are currently visiting, and a 15% likelihood of jumping to a page chosen at random from the entire web, they will reach Page E 8.1% of the time. (The 15% likelihood of jumping to an arbitrary page corresponds to a damping factor of 85%.) Without damping, all web surfers would eventually end up on Pages A, B, or C, and all other pages would have PageRank zero. In the presence of damping, Page A effectively links to all pages in the web, even though it has no outgoing links of its own.

Page Ranking

https://en.wikipedia.org/wiki/PageRank (https://en.wikipedia.org/wiki/PageRank)

```
In [15]:
```

```
if not os.path.isfile('data/fea_sample/page_rank.p'):
    pr = nx.pagerank(train_graph, alpha=0.85)
    pickle.dump(pr,open('data/fea_sample/page_rank.p','wb'))
else:
    pr = pickle.load(open('data/fea_sample/page_rank.p','rb'))
```

In [16]:

```
print('min',pr[min(pr, key=pr.get)])
print('max',pr[max(pr, key=pr.get)])
print('mean',float(sum(pr.values())) / len(pr))

min 1.6556497245737814e-07
max 2.7098251341935827e-05
mean 5.615699699389075e-07

In [17]:

#for imputing to nodes which are not there in Train data
mean_pr = float(sum(pr.values())) / len(pr)
print(mean_pr)
```

5.615699699389075e-07

Other Graph Features

Shortest path:

Getting Shortest path between twoo nodes, if nodes have direct path i.e directly connected then we are removing that edge and calculating path

In [18]:

```
#if has direct edge then deleting that edge and calculating shortest path
def compute_shortest_path_length(a,b):
    p=-1
    try:
        if train_graph.has_edge(a,b):
            train_graph.remove_edge(a,b)
            p= nx.shortest_path_length(train_graph,source=a,target=b)
            train_graph.add_edge(a,b)
    else:
        p= nx.shortest_path_length(train_graph,source=a,target=b)
    return p
except:
    return -1
```

```
In [19]:
```

```
#testing
compute_shortest_path_length(77697, 826021)
```

Out[19]:

10

```
In [20]:
```

```
#testing
compute_shortest_path_length(669354,1635354)

Out[20]:
-1
```

Checking for same community:

In [21]:

```
#getting weekly connected edges from graph
wcc=list(nx.weakly_connected_components(train_graph))
def belongs_to_same_wcc(a,b):
    index = []
    if train_graph.has_edge(b,a):
        return 1
    if train_graph.has_edge(a,b):
            for i in wcc:
                if a in i:
                    index= i
                    break
            if (b in index):
                train_graph.remove_edge(a,b)
                if compute_shortest_path_length(a,b)==-1:
                     train_graph.add_edge(a,b)
                    return 0
                else:
                    train_graph.add_edge(a,b)
                    return 1
            else:
                return 0
    else:
            for i in wcc:
                if a in i:
                     index= i
                    break
            if(b in index):
                return 1
            else:
                return 0
```

```
In [22]:
```

```
belongs_to_same_wcc(861, 1659750)

Out[22]:
0
In [23]:
belongs_to_same_wcc(669354,1635354)

Out[23]:
0
```

Adamic/Adar Index:

Adamic/Adar measures is defined as inverted sum of degrees of common neighbours for given two vertices.

$$A(x,y) = \sum_{u \in N(x) \cap N(y)} rac{1}{log(|N(u)|)}$$

In [24]:

```
#adar index
def calc_adar_in(a,b):
    sum=0
    try:
        n=list(set(train_graph.successors(a)).intersection(set(train_graph.successors(b)))))
    if len(n)!=0:
        for i in n:
            sum=sum+(1/np.log10(len(list(train_graph.predecessors(i)))))
        return sum
    else:
        return 0
    except:
        return 0
```

```
In [25]:
```

```
calc_adar_in(1,189226)

Out[25]:
0

In [26]:
calc_adar_in(669354,1635354)

Out[26]:
0
```

Preferential attachment

Compute the preferential attachment score of all node pairs in ebunch.

Preferential attachment score of u and v is defined as

```
|\Gamma(u)| |\Gamma(v)|
```

where \Gamma(u) denotes the set of neighbors of u.

```
In [27]:
```

```
# preferential attachment
def pref_attach(a,b):
    try:
        if len(set(train_graph.successors(a))) == 0 | len(set(train_graph.successors(b)))
        == 0:
            return 0

            pref = len(set(train_graph.predecessors(a))) * len(set(train_graph.predecessors(b)))
            except:
            return 0
            return pref
```

```
In [28]:
```

```
print(pref_attach(273084,1505602))
```

66

```
In [29]:
```

```
print(pref_attach(59,1560))
```

2

Is person was following back:

```
In [30]:
```

```
def follows_back(a,b):
   if train_graph.has_edge(b,a):
      return 1
   else:
      return 0
```

```
In [31]:
```

```
follows_back(1,189226)
```

Out[31]:

1

In [32]:

```
follows_back(669354,1635354)
```

Out[32]:

0

Katz Centrality:

https://en.wikipedia.org/wiki/Katz_centrality_(https://en.wikipedia.org/wiki/Katz_centrality)

https://www.geeksforgeeks.org/katz-centrality-centrality-measure/ (https://www.geeksforgeeks.org/katz-centrality-centrality-measure/) Katz centrality computes the centrality for a node based on the centrality of its neighbors. It is a generalization of the eigenvector centrality. The Katz centrality for node i is

$$x_i = lpha \sum_j A_{ij} x_j + eta,$$

where A is the adjacency matrix of the graph G with eigenvalues

λ

The parameter

β

controls the initial centrality and

$$\alpha < \frac{1}{\lambda_{max}}.$$

In [33]:

```
if not os.path.isfile('data/fea_sample/katz.p'):
    katz = nx.katz.katz_centrality(train_graph,alpha=0.005,beta=1)
    pickle.dump(katz,open('data/fea_sample/katz.p','wb'))
else:
    katz = pickle.load(open('data/fea_sample/katz.p','rb'))
```

In [34]:

```
print('min',katz[min(katz, key=katz.get)])
print('max',katz[max(katz, key=katz.get)])
print('mean',float(sum(katz.values())) / len(katz))
```

```
min 0.0007313532484065916
max 0.003394554981699122
mean 0.0007483800935562018
```

In [35]:

```
mean_katz = float(sum(katz.values())) / len(katz)
print(mean_katz)
```

0.0007483800935562018

Hits Score

The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links.

https://en.wikipedia.org/wiki/HITS_algorithm (https://en.wikipedia.org/wiki/HITS_algorithm)

In [36]:

```
if not os.path.isfile('data/fea_sample/hits.p'):
    hits = nx.hits(train_graph, max_iter=100, tol=1e-08, nstart=None, normalized=True)
    pickle.dump(hits,open('data/fea_sample/hits.p','wb'))
else:
    hits = pickle.load(open('data/fea_sample/hits.p','rb'))
```

In [37]:

```
print('min',hits[0][min(hits[0], key=hits[0].get)])
print('max',hits[0][max(hits[0], key=hits[0].get)])
print('mean',float(sum(hits[0].values())) / len(hits[0]))
```

min 0.0 max 0.004868653378780953 mean 5.615699699344123e-07

Featurization

Reading a sample of Data from both train and test

In [3]:

```
import random
if os.path.isfile('data/after_eda/train_after_eda.csv'):
    filename = "data/after_eda/train_after_eda.csv"
    # you uncomment this line, if you dont know the lentgh of the file name
    # here we have hardcoded the number of lines as 15100030
    # n_train = sum(1 for line in open(filename)) #number of records in file (excludes header)
    n_train = 15100028
    s = 100000 #desired sample size
    skip_train = sorted(random.sample(range(1,n_train+1),n_train-s))
    #https://stackoverflow.com/a/22259008/4084039
```

In [4]:

```
if os.path.isfile('data/after_eda/train_after_eda.csv'):
    filename = "data/after_eda/test_after_eda.csv"
    # you uncomment this line, if you dont know the lentgh of the file name
    # here we have hardcoded the number of lines as 3775008
    # n_test = sum(1 for line in open(filename)) #number of records in file (excludes h
eader)
    n_test = 3775006
    s = 50000 #desired sample size
    skip_test = sorted(random.sample(range(1,n_test+1),n_test-s))
    #https://stackoverflow.com/a/22259008/4084039
```

In [5]:

```
print("Number of rows in the train data file:", n_train)
print("Number of rows we are going to elimiate in train data are",len(skip_train))
print("Number of rows in the test data file:", n_test)
print("Number of rows we are going to elimiate in test data are",len(skip_test))
```

Number of rows in the train data file: 15100028 Number of rows we are going to elimiate in train data are 15000028 Number of rows in the test data file: 3775006 Number of rows we are going to elimiate in test data are 3725006

In [6]:

```
df_final_train = pd.read_csv('data/after_eda/train_after_eda.csv', skiprows=skip_train,
names=['source_node', 'destination_node'])
df_final_train['indicator_link'] = pd.read_csv('data/train_y.csv', skiprows=skip_train,
names=['indicator_link'])
print("Our train matrix size ",df_final_train.shape)
df_final_train.head(2)
```

Our train matrix size (100002, 3)

Out[6]:

	source_node	destination_node	indicator_link
0	273084	1505602	1
1	933781	125939	1

In [7]:

```
df_final_test = pd.read_csv('data/after_eda/test_after_eda.csv', skiprows=skip_test, na
mes=['source_node', 'destination_node'])
df_final_test['indicator_link'] = pd.read_csv('data/test_y.csv', skiprows=skip_test, na
mes=['indicator_link'])
print("Our test matrix size ",df_final_test.shape)
df_final_test.head(2)
```

Our test matrix size (50002, 3)

Out[7]:

	source_node	destination_node	indicator_link
0	848424	784690	1
1	1850227	1314566	1

Adding a set of features

we will create these each of these features for both train and test data points

- 1. jaccard followers
- 2. jaccard_followees
- 3. cosine followers
- 4. cosine followees
- 5. num_followers_s
- 6. num_followees_s
- 7. num followers d
- 8. num followees d
- 9. inter followers
- 10. inter_followees

In [43]:

```
if not os.path.isfile('data/fea_sample/storage_sample_stage1.h5'):
        #mapping jaccrd followers to train and test data
    df_final_train['jaccard_followers'] = df_final_train.apply(lambda row: jaccard_for_
followers(row['source_node'], row['destination_node']), axis = 1)
    df_final_test['jaccard_followers'] = df_final_test.apply(lambda row: jaccard_for_fo
llowers(row['source_node'],row['destination_node']),axis=1)
        #mapping jaccrd followees to train and test data
    df_final_train['jaccard_followees'] = df_final_train.apply(lambda row:jaccard for f
ollowees(row['source node'],row['destination node']),axis=1 )
    df_final_test['jaccard_followees'] = df_final_test.apply(lambda row:jaccard_for_fol
lowees(row['source_node'],row['destination_node']),axis=1)
    #mapping cosine followers to train and test
    df_final_train['cosine_followers'] = df_final_train.apply(lambda row: cosine_for_fo
llowers(row['source node'],row['destination node']),axis=1)
    df_final_test['cosine_followers'] = df_final_test.apply(lambda row: cosine_for_foll
owers(row['source node'],row['destination node']),axis=1)
    #mapping cosine followees to train and test data
    df_final_train['cosine_followees'] = df_final_train.apply(lambda row: cosine_for_fo
llowees(row['source node'],row['destination node']),axis=1)
    df final test['cosine followees'] = df final test.apply(lambda row: cosine for foll
owees(row['source_node'],row['destination_node']),axis=1)
```

In [44]:

```
def compute features stage1(df final):
    #calculating no of followers followees for source and destination
    #calculating intersection of followers and followees for source and destination
    num followers s=[]
    num_followees_s=[]
    num_followers_d=[]
    num_followees_d=[]
    inter_followers=[]
    inter_followees=[]
    for i,row in df final.iterrows():
            s1=set(train_graph.predecessors(row['source_node']))
            s2=set(train_graph.successors(row['source_node']))
        except:
            s1 = set()
            s2 = set()
        try:
            d1=set(train_graph.predecessors(row['destination_node']))
            d2=set(train_graph.successors(row['destination_node']))
        except:
            d1 = set()
            d2 = set()
        num_followers_s.append(len(s1))
        num_followees_s.append(len(s2))
        num_followers_d.append(len(d1))
        num_followees_d.append(len(d2))
        inter followers.append(len(s1.intersection(d1)))
        inter_followees.append(len(s2.intersection(d2)))
    return num_followers_s, num_followers_d, num_followees_s, num_followees_d, inter_fo
llowers, inter_followees
```

In [45]:

```
if not os.path.isfile('data/fea_sample/storage_sample_stage1.h5'):
    df_final_train['num_followers_s'], df_final_train['num_followers_d'], \
    df_final_train['num_followees_s'], df_final_train['num_followees_d'], \
    df final train['inter followers'], df final train['inter followees']= compute featu
res stage1(df final train)
    df_final_test['num_followers_s'], df_final_test['num_followers_d'], \
    df_final_test['num_followees_s'], df_final_test['num_followees_d'], \
    df_final_test['inter_followers'], df_final_test['inter_followees']= compute_feature
s_stage1(df_final_test)
    hdf = HDFStore('data/fea sample/storage sample stage1.h5')
    hdf.put('train_df',df_final_train, format='table', data_columns=True)
    hdf.put('test_df',df_final_test, format='table', data_columns=True)
    hdf.close()
else:
    df final train = read hdf('data/fea sample/storage sample stage1.h5', 'train df',mo
de='r')
    df_final_test = read_hdf('data/fea_sample/storage_sample_stage1.h5', 'test_df',mode
='r')
```

In [46]:

```
if not os.path.isfile('data/fea sample/storage sample stage1.h5'):
    df_final_train['num_followers_s'], df_final_train['num_followers_d'], \
    df_final_train['num_followees_s'], df_final_train['num_followees_d'], \
    df_final_train['inter_followers'], df_final_train['inter_followees']= compute_featu
res_stage1(df_final_train)
    df_final_test['num_followers_s'], df_final_test['num_followers_d'], \
    df_final_test['num_followees_s'], df_final_test['num_followees_d'], \
    df_final_test['inter_followers'], df_final_test['inter_followees']= compute_feature
s_stage1(df_final_test)
    hdf = HDFStore('data/fea sample/storage sample stage1.h5')
    hdf.put('train_df',df_final_train, format='table', data_columns=True)
    hdf.put('test_df',df_final_test, format='table', data_columns=True)
    hdf.close()
    df_final_train = read_hdf('data/fea_sample/storage_sample_stage1.h5', 'train df',mo
de='r')
    df_final_test = read_hdf('data/fea_sample/storage_sample_stage1.h5', 'test_df',mode
='r')
```

5.3 Adding new set of features

we will create these each of these features for both train and test data points

- 1. adar index
- 2. is following back
- 3. Preferential Attachment
- 4. belongs to same weakly connect components
- 5. shortest path between source and destination

In []:

```
#maping preferential attachment
    #df_final_train['pref_path'] = df_final_train.apply(lambda row: pref_attach(row['so
urce_node'], row['destination_node']), axis = 1)
    #df_final_test['pref_path'] = df_final_test.apply(lambda row: pref_attach(row['sour
ce_node'], row['destination_node']), axis = 1)
```

In [49]:

```
if not os.path.isfile('data/fea sample/storage sample stage2.h5'):
    #mapping adar index on train
    df_final_train['adar_index'] = df_final_train.apply(lambda row: calc_adar_in(row['s
ource node'],row['destination node']),axis=1)
    #mapping adar index on test
    df_final_test['adar_index'] = df_final_test.apply(lambda row: calc_adar_in(row['sou
rce_node'],row['destination_node']),axis=1)
    #mapping followback or not on train
    df_final_train['follows_back'] = df_final_train.apply(lambda row: follows_back(row[
'source_node'],row['destination_node']),axis=1)
    #mapping followback or not on test
    df_final_test['follows_back'] = df_final_test.apply(lambda row: follows_back(row['s
ource_node'],row['destination_node']),axis=1)
    #mapping same component of wcc or not on train
    df_final_train['same_comp'] = df_final_train.apply(lambda row: belongs_to_same_wcc(
row['source_node'],row['destination_node']),axis=1)
    ##mapping same component of wcc or not on train
    df_final_test['same_comp'] = df_final_test.apply(lambda row: belongs_to_same_wcc(ro
w['source_node'],row['destination_node']),axis=1)
    #mapping shortest path on train
    df_final_train['shortest_path'] = df_final_train.apply(lambda row: compute_shortest
_path_length(row['source_node'],row['destination_node']),axis=1)
    #mapping shortest path on test
    df_final_test['shortest_path'] = df_final_test.apply(lambda row: compute_shortest_p
ath_length(row['source_node'],row['destination_node']),axis=1)
    #maping preferential attachment
    df_final_train['pref_path'] = df_final_train.apply(lambda row: pref_attach(row['sou
rce node'], row['destination node']), axis = 1)
    df_final_test['pref_path'] = df_final_test.apply(lambda row: pref_attach(row['sourc
e_node'], row['destination_node']), axis = 1)
    hdf = HDFStore('data/fea_sample/storage_sample_stage2.h5')
    hdf.put('train_df',df_final_train, format='table', data_columns=True)
    hdf.put('test df',df final test, format='table', data columns=True)
    hdf.close()
else:
    df_final_train = read_hdf('data/fea_sample/storage_sample_stage2.h5', 'train_df',mo
de='r')
    df_final_test = read_hdf('data/fea_sample/storage_sample_stage2.h5', 'test_df',mode
='r')
```

```
In [ ]:
```

```
df_final_train.head()
```

Adding new set of features

we will create these each of these features for both train and test data points

- 1. Weight Features
 - · weight of incoming edges
 - · weight of outgoing edges
 - · weight of incoming edges + weight of outgoing edges
 - weight of incoming edges * weight of outgoing edges
 - 2*weight of incoming edges + weight of outgoing edges
 - · weight of incoming edges + 2*weight of outgoing edges
- 2. Page Ranking of source
- 3. Page Ranking of dest
- 4. katz of source
- 5. katz of dest
- 6. hubs of source
- 7. hubs of dest
- 8. authorities s of source
- 9. authorities_s of dest

Weight Features

In order to determine the similarity of nodes, an edge weight value was calculated between nodes. Edge weight decreases as the neighbor count goes up. Intuitively, consider one million people following a celebrity on a social network then chances are most of them never met each other or the celebrity. On the other hand, if a user has 30 contacts in his/her social network, the chances are higher that many of them know each other. credit - Graph-based Features for Supervised Link Prediction William Cukierski, Benjamin Hamner, Bo Yang

$$W=rac{1}{\sqrt{1+|X|}}$$

it is directed graph so calculated Weighted in and Weighted out differently

In [50]:

```
#weight for source and destination of each link
Weight_in = {}
Weight_out = {}
for i in tqdm(train_graph.nodes()):
    s1=set(train_graph.predecessors(i))
    w_in = 1.0/(np.sqrt(1+len(s1)))
    Weight_in[i] = w_in

    s2=set(train_graph.successors(i))
    w_out = 1.0/(np.sqrt(1+len(s2)))
    Weight_out[i]=w_out

#for imputing with mean
#for imputing with mean
mean_weight_in = np.mean(list(Weight_in.values()))
mean_weight_out = np.mean(list(Weight_out.values()))
```

100%| 1780722/1780722 [00:32<00:00, 55326.42 it/s]

In [51]:

```
if not os.path.isfile('data/fea sample/storage sample stage3.h5'):
    #mapping to pandas train
    df_final_train['weight_in'] = df_final_train.destination_node.apply(lambda x: Weigh
t_in.get(x,mean_weight_in))
    df_final_train['weight_out'] = df_final_train.source_node.apply(lambda x: Weight_ou
t.get(x,mean_weight_out))
    #mapping to pandas test
    df_final_test['weight_in'] = df_final_test.destination_node.apply(lambda x: Weight_
in.get(x,mean weight in))
    df_final_test['weight_out'] = df_final_test.source_node.apply(lambda x: Weight_out.
get(x,mean_weight_out))
    #some features engineerings on the in and out weights
    df_final_train['weight_f1'] = df_final_train.weight_in + df_final_train.weight_out
    df_final_train['weight_f2'] = df_final_train.weight_in * df_final_train.weight_out
    df_final_train['weight_f3'] = (2*df_final_train.weight_in + 1*df_final_train.weight
_out)
    df final train['weight f4'] = (1*df final train.weight in + 2*df final train.weight
_out)
    #some features engineerings on the in and out weights
    df_final_test['weight_f1'] = df_final_test.weight_in + df_final_test.weight_out
    df_final_test['weight_f2'] = df_final_test.weight_in * df_final_test.weight_out
    df final test['weight f3'] = (2*df final test.weight in + 1*df final test.weight ou
t)
    df final test['weight f4'] = (1*df final test.weight in + 2*df final test.weight ou
t)
```

In [29]:

```
if not os.path.isfile('data/fea sample/storage sample stage3.h5'):
   #page rank for source and destination in Train and Test
   #if anything not there in train graph then adding mean page rank
   df_final_train['page_rank_s'] = df_final_train.source_node.apply(lambda x:pr.get(x,
mean pr))
   df_final_train['page_rank_d'] = df_final_train.destination_node.apply(lambda x:pr.g
et(x,mean_pr))
   df final test['page rank s'] = df final test.source node.apply(lambda x:pr.get(x,me
an pr))
   df_final_test['page_rank_d'] = df_final_test.destination_node.apply(lambda x:pr.get
(x,mean_pr))
   #-----
   #Katz centrality score for source and destination in Train and test
   #if anything not there in train graph then adding mean katz score
   df_final_train['katz_s'] = df_final_train.source_node.apply(lambda x: katz.get(x,me
an_katz))
   df_final_train['katz_d'] = df_final_train.destination_node.apply(lambda x: katz.get
(x,mean_katz))
   df_final_test['katz_s'] = df_final_test.source_node.apply(lambda x: katz.get(x,mean
_katz))
   df_final_test['katz_d'] = df_final_test.destination_node.apply(lambda x: katz.get(x
,mean_katz))
   #Hits algorithm score for source and destination in Train and test
   #if anything not there in train graph then adding 0
   df_final_train['hubs_s'] = df_final_train.source_node.apply(lambda x: hits[0].get(x
,0))
   df_final_train['hubs_d'] = df_final_train.destination_node.apply(lambda x: hits[0].
get(x,0)
   df_final_test['hubs_s'] = df_final_test.source_node.apply(lambda x: hits[0].get(x,0)
))
   df_final_test['hubs_d'] = df_final_test.destination_node.apply(lambda x: hits[0].ge
t(x,0)
   #Hits algorithm score for source and destination in Train and Test
   #if anything not there in train graph then adding 0
   df_final_train['authorities_s'] = df_final_train.source_node.apply(lambda x: hits[1
].get(x,0))
   df_final_train['authorities_d'] = df_final_train.destination_node.apply(lambda x: h
its[1].get(x,0)
   df_final_test['authorities_s'] = df_final_test.source_node.apply(lambda x: hits[1].
get(x,0)
   df_final_test['authorities_d'] = df_final_test.destination_node.apply(lambda x: hit
s[1].get(x,0)
   hdf = HDFStore('data/fea_sample/storage_sample_stage3.h5')
   hdf.put('train_df',df_final_train, format='table', data_columns=True)
   hdf.put('test_df',df_final_test, format='table', data_columns=True)
   hdf.close()
else:
```

```
df_final_train = read_hdf('data/fea_sample/storage_sample_stage3.h5', 'train_df',mo
de='r')
    df_final_test = read_hdf('data/fea_sample/storage_sample_stage3.h5', 'test_df',mode
='r')
```

Adding new set of features

we will create these each of these features for both train and test data points

1. SVD features for both source and destination

```
In [31]:
```

```
def svd(x, S):
    try:
    z = sadj_dict[x]
    return S[z]
    except:
       return [0,0,0,0,0,0]
```

In [32]:

```
#for svd features to get feature vector creating a dict node val and inedx in svd vecto
r
sadj_col = sorted(train_graph.nodes())
sadj_dict = { val:idx for idx,val in enumerate(sadj_col)}
```

In [33]:

```
Adj = nx.adjacency_matrix(train_graph,nodelist=sorted(train_graph.nodes())).asfptype()
```

In [34]:

```
U, s, V = svds(Adj, k = 6)
print('Adjacency matrix Shape',Adj.shape)
print('U Shape',U.shape)
print('V Shape',V.shape)
print('s Shape',s.shape)
```

```
Adjacency matrix Shape (1780722, 1780722)
U Shape (1780722, 6)
V Shape (6, 1780722)
s Shape (6,)
```

In [35]:

```
if not os.path.isfile('data/fea sample/storage sample stage4.h5'):
   df_final_train[['svd_u_s_1', 'svd_u_s_2','svd_u_s_3', 'svd_u_s_4', 'svd_u_s_5', 'sv
d u s 6']] = \
   df_final_train.source_node.apply(lambda x: svd(x, U)).apply(pd.Series)
   df_final_train[['svd_u_d_1', 'svd_u_d_2', 'svd_u_d_3', 'svd_u_d_4', 'svd_u_d_5','sv
d u d 6']] = \
   df_final_train.destination_node.apply(lambda x: svd(x, U)).apply(pd.Series)
   df_final_train[['svd_v_s_1','svd_v_s_2', 'svd_v_s_3', 'svd_v_s_4', 'svd_v_s_5', 'sv
d_v_s_6',]] = \
   df_final_train.source_node.apply(lambda x: svd(x, V.T)).apply(pd.Series)
   df_final_train[['svd_v_d_1', 'svd_v_d_2', 'svd_v_d_3', 'svd_v_d_4', 'svd_v_d_5','sv
d_v_d_6'] = \
   df_final_train.destination_node.apply(lambda x: svd(x, V.T)).apply(pd.Series)
   ==========
   df_final_test[['svd_u_s_1', 'svd_u_s_2','svd_u_s_3', 'svd_u_s_4', 'svd_u_s_5', 'svd_u_s_6']
_u_s_6']] = \
   df_final_test.source_node.apply(lambda x: svd(x, U)).apply(pd.Series)
   df_final_test[['svd_u_d_1', 'svd_u_d_2', 'svd_u_d_3', 'svd_u_d_4', 'svd_u_d_5','svd
_u_d_6']] = \
   df_final_test.destination_node.apply(lambda x: svd(x, U)).apply(pd.Series)
   ==========
   df_final_test[['svd_v_s_1','svd_v_s_2', 'svd_v_s_3', 'svd_v_s_4', 'svd_v_s_5', 'svd
_v_s_6',]] = \
   df final test.source node.apply(lambda x: svd(x, V.T)).apply(pd.Series)
   df final test[['svd v d 1', 'svd v d 2', 'svd v d 3', 'svd v d 4', 'svd v d 5','svd
v d 6']] = \
   df_final_test.destination_node.apply(lambda x: svd(x, V.T)).apply(pd.Series)
   hdf = HDFStore('data/fea sample/storage sample stage4.h5')
   hdf.put('train df',df final train, format='table', data columns=True)
   hdf.put('test_df',df_final_test, format='table', data_columns=True)
   hdf.close()
In [3]:
df_final_train = read_hdf('data/fea_sample/storage_sample_stage4.h5', 'train_df',mode=
```

df final test = read hdf('data/fea sample/storage sample stage4.h5', 'test df',mode='r'

```
In [4]:
```

```
df_final_train.head()
```

Out[4]:

	source_node	destination_node	indicator_link	jaccard_followers	jaccard_followed
0	273084	1505602	1	0	0.000000
1	832016	1543415	1	0	0.187135
2	1325247	760242	1	0	0.369565
3	1368400	1006992	1	0	0.000000
4	140165	1708748	1	0	0.000000

5 rows × 55 columns

Dot product between sourse node svd and destination node svd features:

```
In [11]:
```

```
def svd_dot_product(a,b):
    try:
        dot = np.dot(a,b)
        return dot
    except:
        return 0
```

In [14]:

```
if not os.path.isfile('data/fea sample/storage sample stage5.h5'):
    df_final_train['svd_dot_s1d1'] = df_final_train.apply(lambda row: svd_dot_product(r
ow['svd_u_s_1'], row['svd_u_d_1']), axis=1)
    df_final_train['svd_dot_s2d2'] = df_final_train.apply(lambda row: svd_dot_product(r
ow['svd_u_s_2'], row['svd_u_d_2']), axis=1)
    df_final_train['svd_dot_s3d3'] = df_final_train.apply(lambda row: svd_dot_product(r
ow['svd_u_s_3'], row['svd_u_d_3']), axis=1)
    df_final_train['svd_dot_s4d4'] = df_final_train.apply(lambda row: svd_dot_product(r
ow['svd_u_s_4'], row['svd_u_d_4']), axis=1)
    df final train['svd dot s5d5'] = df final train.apply(lambda row: svd dot product(r
ow['svd_u_s_5'], row['svd_u_d_5']), axis=1)
    df_final_train['svd_dot_s6d6'] = df_final_train.apply(lambda row: svd_dot product(r
ow['svd_u_s_6'], row['svd_u_d_6']), axis=1)
    df_final_test['svd_dot_s1d1'] = df_final_test.apply(lambda row: svd_dot_product(row
['svd_u_s_1'], row['svd_u_d_1']), axis=1)
    df_final_test['svd_dot_s2d2'] = df_final_test.apply(lambda row: svd_dot_product(row
['svd_u_s_2'], row['svd_u_d_2']), axis=1)
    df_final_test['svd_dot_s3d3'] = df_final_test.apply(lambda row: svd_dot_product(row
['svd_u_s_3'], row['svd_u_d_3']), axis=1)
    df_final_test['svd_dot_s4d4'] = df_final_test.apply(lambda row: svd_dot_product(row
['svd_u_s_4'], row['svd_u_d_4']), axis=1)
    df_final_test['svd_dot_s5d5'] = df_final_test.apply(lambda row: svd_dot_product(row
['svd_u_s_5'], row['svd_u_d_5']), axis=1)
    df_final_test['svd_dot_s6d6'] = df_final_test.apply(lambda row: svd_dot_product(row
['svd_u_s_6'], row['svd_u_d_6']), axis=1)
    hdf = HDFStore('data/fea_sample/storage_sample_stage5.h5')
    hdf.put('train_df',df_final_train, format='table', data_columns=True)
    hdf.put('test_df',df_final_test, format='table', data_columns=True)
    hdf.close()
```

In [16]:

df_final_test.columns

Out[16]:

```
Index(['source_node', 'destination_node', 'indicator_link',
        'jaccard_followers', 'jaccard_followees', 'cosine_followers',
        'cosine_followees', 'num_followers_s', 'num_followees_s',
        'num_followees_d', 'inter_followers', 'inter_followees', 'adar_inde
х',
       'follows back', 'same comp', 'shortest path', 'pref path', 'weight
in',
        'weight_out', 'weight_f1', 'weight_f2', 'weight_f3', 'weight_f4',
        'page_rank_s', 'page_rank_d', 'katz_s', 'katz_d', 'hubs_s', 'hubs_
ď',
       'authorities_s', 'authorities_d', 'svd_u_s_1', 'svd_u_s_2', 'svd_u_
s_3',
        'svd_u_s_4', 'svd_u_s_5', 'svd_u_s_6', 'svd_u_d_1', 'svd_u_d_2',
        'svd_u_d_3', 'svd_u_d_4', 'svd_u_d_5', 'svd_u_d_6', 'svd_v_s_1',
       'svd_v_s_2', 'svd_v_s_3', 'svd_v_s_4', 'svd_v_s_5', 'svd_v_s_6', 'svd_v_d_1', 'svd_v_d_2', 'svd_v_d_3', 'svd_v_d_4', 'svd_v_d_5',
       'svd_v_d_6', 'svd_dot_s1d1', 'svd_dot_s2d2', 'svd_dot_s3d3',
        'svd_dot_s4d4', 'svd_dot_s5d5', 'svd_dot_s6d6'],
      dtype='object')
```