Feuille d'exercices n°7 Espaces euclidiens I, II et III

(du lundi 1^{er}février 2010 au vendredi 19 février 2010)

Exercice 1

Soient $n \in \mathbb{N}^*$ et $E = \{P \in \mathbb{R}_n[X], \ P(0) = P(1) = 0\}$. On considère l'application $\phi : E \times E \longrightarrow \mathbb{R}$ définie pour tout $(P,Q) \in E^2$ par

$$\phi(P,Q) = -\int_0^1 [P(x)Q''(x) + P''(x)Q(x)]dx$$

- 1. Montrer que E est un \mathbb{R} -ev et préciser sa dimension.
- 2. Montrer que ϕ est un produit scalaire sur E.

Exercice 2

Soient (E, <>) un espace euclidien et ||.|| la norme associée à <,>.

1. Montrer que

$$\forall (x,y) \in E^2 : 1 + ||x+y||^2 \le 2(1+||x||^2)(1+||y||^2)$$

2. Montrer que

$$\forall (x,y) \in E^2 : \left| \left| \frac{1}{||x||^2} x - \frac{1}{||y||^2} y \right| \right| = \frac{1}{||x|| ||y||} ||x - y||$$

3. Soit $u \in \mathcal{L}(E)$. Pour $(x,y) \in E^2$, on pose

$$\phi(x,y) = \langle u(x), u(y) \rangle$$

Donner une condition nécessaire et suffisante sur u pour que ϕ soit un produit scalaire sur E.

Exercice 3

On considère E=C([0,1]) l'ensemble des fonctions à valeurs réelles continues sur [0,1] et pour tout $x\in[0,1]:\phi_x:E\times E\to\mathbb{R}$ définie par

$$\phi_x(f,g) = \int_0^x f(t)g(t)dt$$

- 1. Montrer que pour tout $x \in [0,1]$, ϕ_x est bilinéaire symétrique positive. Montrer que ϕ_1 est un produit scalaire sur E.
- 2. Soit $f \in E$ de classe C^1 telle que f(0) = 0.

a. Montrer que pour tout $x \in [0, 1]$,

$$f^2(x) \leqslant x \int_0^1 (f'(t))^2 dt$$

b. En déduire que :

$$2\int_{0}^{1} f^{2}(t)dt \leqslant \int_{0}^{1} (f'(t))^{2}dt$$

Exercice 4

Considérons l'application $\varphi: \mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ définie par $\varphi(A, B) = tr(A^tB)$.

- 1. Montrer que φ est un produit scalaire.
- 2. Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$. Montrer que

$$\left| \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \right| \leqslant n \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}}$$

Exercice 5

On considère un espace vectoriel E de dimension finie et un produit scalaire sur E noté < .,. >. Dans la suite, f désigne un endomorphisme de E. On dit que f est une isométrie si $\forall x \in E, ||f(x)|| = ||x||$.

1. Soient x et y deux vecteurs de E. Montrer que

$$\langle x, y \rangle = \frac{1}{2} (||x + y||^2 - ||x||^2 - ||y||^2).$$

- 2. Montrer que si f est une isométrie alors f est bijectif.
- 3. Montrer que

f est une isométrie
$$\Leftrightarrow \forall (x,y) \in E^2, \langle f(x), f(y) \rangle = \langle x,y \rangle$$
.

- 4. Soit f une isométrie telle que $f^2 = -id$. Montrer que pour tout x dans E, f(x) est orthogonal à x.
- 5. Soit f une isométrie telle que pour tout x dans E, f(x) est orthogonal à x.
 - a. Développer $\langle f(x) + x, f^2(x) + f(x) \rangle$ et en déduire que $\langle x, f^2(x) \rangle = -||x||^2$.
 - b. En développant $||f^2(x) + x||^2$, montrer que $f^2 = -id$.
- 6. Soit f un endomorphisme de E vérifiant $f^2 = -id$ et tel que pour tout x dans E, f(x) est orthogonal à x. Montrer que f est une isométrie.

Exercice 6

Soit (E, <>) un espace euclidien et $f: E \to E$ une application.

1. Supposons que f vérifie $\forall (x,y) \in E^2 : \langle f(x), y \rangle = -\langle x, f(y) \rangle$. Montrer que

$$\forall (x, y, z) \in E^3, \forall \lambda \in \mathbb{R} : \langle f(\lambda x + y) - (\lambda f(x) + f(y)), z \rangle = 0$$

2. Montrer que les deux assertions suivantes sont équivalentes :

(i)
$$\forall (x,y) \in E^2 : \langle f(x), y \rangle = -\langle x, f(y) \rangle$$

(ii)
$$f \in \mathcal{L}(E)$$
 et $\forall x \in E < f(x), x >= 0$

On dit que f est antisymétrique si f vérifie (i) ou (ii)

- 3. Supposons $f \in \mathcal{L}(E)$ antisymétrique.
 - a. Montrer que $Ker(f) \perp Im(f)$
 - b. Notons $s = f \circ f$. Montrer que s est symétrique (c'est à dire $\forall (x,y) \in E^2 : \langle s(x), y \rangle = \langle x, s(y) \rangle$) et que $Sp(s) \subset \mathbb{R}^-$ où Sp(s) désigne l'ensemble des valeurs propres réelles de s.

Exercice 7

Soient (E, <, >) un espace euclidien et p la projection d'image F de noyau G. Montrer que

$$G = F^{\perp} \iff \forall (x, y) \in E^2 : \langle p(x), y \rangle = \langle x, p(y) \rangle$$

Exercice 8

Soit $E = \mathbb{R}_2[X]$ muni du produit scalaire

$$< P, Q > = \int_{-1}^{1} P(t)Q(t) dt$$

Soient $F = \mathbb{R}_1[X]$ et $P = X^2$.

- 1. A partir de la base canonique de E, construire par la méthode de Gram-Schmidt une base orthogonale de E.
- 2. Calculer le projeté orthogonal P_0 de P sur F.
- 3. En déduire

$$\inf_{(a,b)\in\mathbb{R}} \int_{-1}^{1} (x^2 - ax - b)^2 dx$$

Exercice 9

Soit $E = \mathbb{R}_2[X]$. On définit l'application < , > : $E \times E \to \mathbb{R}$ par

$$\langle P, Q \rangle = \int_0^{+\infty} P(x)Q(x)e^{-x}dx$$

- 1. Montrer que < , > est un produit scalaire sur E.
- 2. Posons pour tout $n \in \mathbb{N}$, $I_n = \int_0^{+\infty} x^n e^{-x} dx$. Déterminer I_n pour tout $n \in \mathbb{N}$.
- 3. A partir de la base canonique de E, construire, par la méthode de Gram-Schmidt, une base orthogonale de E.
- 4. Déterminer le projeté orthogonal de X^2 sur $\mathbb{R}_1[X]$.
- 5. Déterminer

$$\inf_{(a,b)\in\mathbb{R}^2} \int_0^{+\infty} (x^2 - ax - b)^2 e^{-x} dx$$

Exercice 10

Soient (E, <, >) un espace euclidien et $(e_1, ..., e_n)$ une famille de vecteurs telle que pour tout $i \in [1, n]$, $||e_i|| = 1$ et pour tout $x \in E$, $||x||^2 = \sum_{i=1}^n (< x, e_i >)^2$

Montrer que $(e_1, ..., e_n)$ est une base orthonormale de E.