Machine Learning Trees, Bagging and Random forests

Audrey Poterie
Univ. Bretagne Sud – LMBA Vannes .

October 19, 2021

Part II: Model averaging - Bagging and random forests

Content

Introduction: model averaging

Bagging

Random forests

Algorithm

Out-Of-Bag sample

Variable importance

Model averaging

Motivation: Decision trees can be simple, but often produce unstable models with weak performance compared to other supervised methods.

→ Use decision trees as building blocks to construct more powerful prediction models → Model averaging.

Model averaging

Motivation: Decision trees can be simple, but often produce unstable models with weak performance compared to other supervised methods.

→ Use decision trees as building blocks to construct more powerful prediction models → Model averaging.

Model averaging

- Bagging [Breiman, 1996]: fit many large trees to bootstrap-resampled versions of the train set, and average the predictions.
- Random forests [Breiman, 2001]: a fancier version of bagging that uses features sampling.
- Boosting [Freund et al., 1996]: fit many large or small trees to reweighted versions of the train set (no bootstrap resampling) and use a weighted average of the predictions.

Model averaging

Some remarks:

- In general (in terms of performance), Boosting ➤ Random forests ➤ Bagging ➤ single decision tree.
- Synonym of model averaging: ensemble learning.
- Here, we will only focus on bagging and random forests.

Content

Introduction: model averaging

Bagging

Random forests

Algorithm

Out-Of-Bag sample

Variable importance

What is bagging?

Principle: Bagging or **B**ootstrap **Agg**regating averages a given procedure over many samples.

→ Example: build lots of large and unpruned CART trees to bootstrap resampled versions of a data set.

Two steps: (1) bootstrappping, (2) aggregation.

Motivations:

- To improve model stability and so model accuracy.
- To avoid overfitting.
 - → **A** Important since we use large and unpruned trees¹.

 $^{^{1}}$ Reminder: very large trees = trees that fit almost perfectly the data, i.e. trees with almost no bias but large variance.

Bootstrapping

Data available: only one data set $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots (\mathbf{X}_n, Y_n)\}$ to train the model.

A We need many samples and we cannot create and/or get additionnal data.

Solution: use bootstrapping = generate "new" data sets by randomly drawing observations (with or without replacement) into the original data set \mathcal{D}_n .

→ We say that we generate bootstrap samples.

Bootstrapping

Bootstrap algorithm

• **Input**: one data set \mathcal{D}_n with 8 observations.

\mathcal{D}_n	obs 1	obs 2	obs 3	obs4	obs 5	obs 6	obs 7	obs 8

• **Do bootstrapping**: repeat independently the following procedure B times: draw randomly and with replacement observations into \mathcal{D}_n .

\mathcal{D}_n^1	obs2	obs 6	obs 5	obs 5	obs 2	obs 4	obs 8	obs 7
\mathcal{D}_n^2	obs 6	obs 8	obs 2	obs 4	obs 2	obs 7	obs 8	obs 1
				:				
\mathcal{D}_n^B	obs 7	obs 8	obs 3	obs 7	obs 2	obs 3	obs 3	obs 1

• Output: B bootstrap-resampled versions of the original data set $\mathcal{D}_n \Leftrightarrow B$ "new" data sets made up of observations from \mathcal{D}_n :

$$\mathcal{D}_n^1,\ldots,\mathcal{D}_n^B$$
.

Bootstrapping

Important: the *B* boostrap samples are drawn independently.

Two sampling strategies:

- 1. Draw with replacement $a_n = n$ observations into \mathcal{D}_n , $(n = \text{size of } \mathcal{D}_n)$.
- 2. Draw without replacement $a_n \leq n$ observations into \mathcal{D}_n (also called subsampling).

Bagging algorithm

 $\textbf{Reminder} : \ \mathsf{Bagging} = \mathsf{bootstrapping} + \mathsf{aggregation}.$

Bagging algorithm

Inputs:

- An original sample \mathcal{D}_n .
- A learning method/algorithm: here CART algorithm.
- Bagging parameters: B, a_n.

For b = 1 to B, repeat INDEPENDENTLY the two following steps:

- 1. Draw a bootstrap sample \mathcal{D}_n^b of size a_n .
- 2. Build a large and unpruned CART tree using \mathcal{D}_n^b and call it \mathcal{T}_n^b .

end.

Output: For an observation x, the bagging prediction = aggregation of the predictions obtained with the B trees.

Bagging algorithm

Bagging prediction

For an observation x, the bagging prediction is:

- In regression: the prediction average over the B trees

$$f_n^B(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^B f_n^b(\mathbf{x}),$$

where $f_n^b(\mathbf{x})$ is the prediction of the *b*th tree T_n^b for observation \mathbf{x} .

- In classification: the majority class over the B trees

$$f_n^B(\mathbf{x}) = majority \ vote \{\hat{C}_b(\mathbf{x})\}_1^B,$$

where $\hat{C}_b(\mathbf{x})$ is the class prediction of the *b*th tree T_n^b for observation \mathbf{x} .

Important remarks

- > The B boostrap samples are independent and the B trees are built independently.
- Choose B as large as possible, often around 500.
 - → Larger B is, more stable bagging predictions are.
- ightharpoonup Bagging does not impact the bias: suppose all trees have the same bias θ then the bias of the bagging model will still equal θ .
- Bagging reduces model variance and so model stability (bagging properties).

Variance reduction with bagging

Idea: suppose we have B regression trees with same variance σ^2 and a positive pairwise correlation ρ . Then the variance of the tree average (= variance of bagging for regression) is

$$V_{ ext{bagging}} =
ho \sigma^2 + rac{1-
ho}{B} \sigma^2.$$

As B increases, the second term disappears and so we have

$$V_{bagging} \approx \rho \sigma^2$$
.

Since $0 < \rho < 1$, we obtain

$$V_{bagging} < \sigma^2$$
.

→ Conclusion: the bagging variance is (generally) lower than the variance of a single tree:

$$V_{bagging} < V_{single tree}$$
.

Illustration with a toy example (1/5)

• No noise: Bayes error=0.

→ We will compare performance of a single CART tree and bagging.

Example drawn from https://web.stanford.edu/ hastie/TALKS/boost.pdf

Illustration with a toy example (2/5)

Figure 1: The single CART tree based on a train set of size 200.

Figure 2: The partition associated with the previous single CART tree.

Illustration: a toy example (4/5)

Figure 3: Single tree vs. Bagging.

Figure 4: The partition obtained with bagging.

Illustration: a toy example (5/5)

- → The decision boundaries are smoothers (consequence of aggregation).
- → Bagging error is lower.

Figure 4: The partition obtained with bagging.

Content

Introduction: model averaging

Bagging

Random forests

Algorithm

Out-Of-Bag sample

Variable importance

Content

Introduction: model averaging

Bagging

Random forests

Algorithm

Out-Of-Bag sample

Variable importance

What is random forests?

Author: Phill Cutler

Principle: Random forest = bagging + features sampling.

Motivations:

- Same as bagging: performance improvement (by reducing variance) and no overfitting.
- Additional motivation: greater variance reduction than bagging.
 - → **Strategy:** encouraging diversity among trees by using random features sampling.

Variance reduction with random forests

Idea: suppose we have B regression trees with same variance σ^2 and a positive pairwise correlation ρ . Then the variance of the tree average (= variance of bagging for regression) is

$$V_{bagging} = \rho \sigma^2 + \frac{1 - \rho}{B} \sigma^2.$$

As B increases, the 2nd term disappears (= gagging benefit) and so we have

$$V_{bagging} pprox
ho \sigma^2$$
.

→ Random forests idea: use features sampling to reduce the tree correlation ρ :

$$ho_{rf}\sigma^2 <
ho\sigma^2$$
 $V_{rf} < V_{bagging}$

with $\rho_{\rm rf} < \rho$ denoting the tree correlation after using features sampling.

→ Conclusion: Random forests achieves (generally) greater variance reduction than bagging.

Features sampling

Features sampling in random forests

- Modification of the CARTalgorithm.
- Features sampling performed during the tree building process and specifically when splitting a node:
 - (1) Random selection of $max_features < d$ features among the d features.
 - (2) Selection of the best split by using only this subset.

Remarks: we can say that RF use rCART trees with a 'r' for random.

Random forests algorithm

Reminder: Random forests = Bagging + Features sampling.

RF algorithm

Inputs:

- An original sample \mathcal{D}_n .
- A learning method/algorithm: CART algorithm.
- RF parameters: B, an, max_features, nodesize.

For b = 1 to B, repeat INDEPENDENTLY the two following steps:

- 1. Draw a bootstrap sample \mathcal{D}_n^b of size a_n .
- 2. Build a large and unpruned rCART tree T_n^b using \mathcal{D}_n^b by repeating the following steps on each terminal node until reaching the minimun node size (nodesize):

To split a node,

- a) Draw randomly max_features features.
- b) Select the best split based only on the max_features selected features.

end.

Output: For an observation **x**, the RF prediction = aggregation of the predictions obtained with the B trees.

Random forests algorithm

RF prediction

For an observation x, the RF prediction is:

- In regression: the prediction average over the B trees

$$f_n^{RF}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^B f_n^b(\mathbf{x}),$$

where $f_n^b(\mathbf{x})$ is the prediction of the *b*th tree T_n^b for observation \mathbf{x} .

- *In classification:* the majority class over the B trees

$$f_n^{RF}(\mathbf{x}) = majority \ vote \{\hat{C}_b(\mathbf{x})\}_1^B,$$

where $\hat{C}_b(\mathbf{x})$ is the class prediction of the *b*th tree T_n^b for observation \mathbf{x} .

Parameters in random forests

- B = the number of trees in the forest.
 - → Take B large (default value: B = 500) to obtain stable/robust estimate.
- $a_n \le n$ = the size of each bootstrap sample and the boostrap strategie.
 - → Two usual bagging strategies:
 - (1) Choose $a_n = n$ and draw with replacement,
 - (2) Choose $a_n \leq n$ and draw without replacement.
- ullet nodesize = the minimum number of observations required to split a node
 - → Take nodesize small to obtain trees with small bias and large variance.
- max_features = the number of features randomly selected when splitting a node.
 - → Almost the most important parameter to be tuned.

What value for max_features?

Parameter max_features: "slighlty controls" the bias-variance tradeoff for the forest.

Explanation:

- Smaller max_features: more different and less correlated trees (smaller $|\rho|$) but tree that do not fit well the data (larger bias).
- Larger max_features: trees that fit correctly the data (= smaller bias) but tree more similar and so more correlated (larger $|\rho|$).

Default values: max_features= d/3 in regression and max_features= \sqrt{d} in classification.

- → Often reported to be good choices.
- → Yet, optimal value for max_features depends mainly on the data: use of the out-of-bag samples to tune this parameter.

Content

Introduction: model averaging

Bagging

Random forests

Algorithm

Out-Of-Bag sample

Variable importance

Random forest performance

As for other machine learning algorithms, we need a criterion to measure performances of a random forest.

Common criteria (reminder):

- The quadratic loss for regression: $\frac{1}{n} \sum_{i=1}^{n} (y_i f_n^{RF}(\mathbf{x}))^2$.
- The misclassification error for classification: $\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{y_i \neq f_n^{RF}(\mathbf{x})}$.

Reminder: to be a good proxy of the *true* error, these criteria must be evaluated on a test set or by using cross validation, leave-one-out, etc.

Boostrapping-step asset: performance criteria can be evaluated directly on the original dataset \mathcal{D}_n by using the Out of Bag samples (OOB).

→ With RF: no need for a test set or to use strategies such as cross validation or leave-one-out)

OOB samples

Bootstrapping step (reminder)

• Input: a data set \mathcal{D}_n with 8 observations

\mathcal{D}_n	obs 1	obs 2	obs 3	obs4	obs 5	obs 6	obs 7	obs 8

• Do bootstrapping: Draw observations randomly and with replacement into \mathcal{D}_n . Repeat independently this procedure B times.

\mathcal{D}_n^1	obs2	obs 6	obs 5	obs 5	obs 2	obs 4	obs 8	obs 7
\mathcal{D}_n^2	obs2 obs 6	obs 8	obs 2	obs 4	obs 2	obs 7	obs 8	obs 1
				:				
\mathcal{D}_n^B	obs 7	obs 8	obs 3	obs 7	obs 2	obs 3	obs 3	obs 1

→ Output: B bootstrap-resampled versions of the original $\mathcal{D}_n \Leftrightarrow B$ "new" data sets made up of observations of \mathcal{D}_n

$$\mathcal{D}_n^1,\ldots,\mathcal{D}_n^B$$
.

OOB samples

Bootstrapping step

• Input: a data set \mathcal{D}_n with 8 observations

\mathcal{D}_n obs 1 obs 2 o	os 3 obs4 obs 5	obs 6 obs 7 o	bs 8

• Do bootstrapping: obtain B bootstrap samples

\mathcal{D}_n^1	obs2	obs 6	obs 5	obs 5	obs 2	obs 4	obs 8	obs 7
\mathcal{D}_n^2	obs 6	obs 8	obs 2	obs 4	obs 2	obs 7	obs 8	obs 1
				:				
\mathcal{D}_n^B	obs 7	obs 8	obs 3	obs 7	obs 2	obs 3	obs 3	obs 1

• B **OOB** samples: observations in \mathcal{D}_n that are not in the B bootstrap samples.

OOB^{1} :			obs 6	ind 6				
<i>OOB</i> ² :	obs 2	obs 5	obs 6					
				:				
OOB^B :	obs 4	obs 5	obs 7					

→ Use the OOB samples to estimate the error of a random forest.

Notations:

- $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\},\$
- f_n^{RF} : the prediction function of a RF fitted on \mathcal{D}_n .

OOB error

For each couple (\mathbf{X}_i, Y_i) in \mathcal{D}_n , compute its RF predictor by averaging only the trees associated to boostrap samples that do not included (\mathbf{X}_i, Y_i) :

$$f_n^{RF}(\mathbf{X}_i) = \frac{1}{\sharp \mathcal{I}_i^B} \sum_{b \in \mathcal{I}_i^B} f_n^b(\mathbf{X}_i),$$

where $\mathcal{I}_i^{\mathcal{B}}$ denotes the set of indices for boostrap samples for which (\mathbf{X}_i, Y_i) is out-of-bag.

In regression: $f_n^{RF}(\mathbf{X}_i) = \frac{1}{\sharp \mathcal{I}_i^B} \sum_{b \in \mathcal{I}_i^B} (Y_i - f_n^{RF}(\mathbf{X}_i))^2$.

In classification: $f_n^{RF}(\mathbf{X}_i) = \frac{1}{\sharp \mathcal{I}_i^E} \sum_{b \in \mathcal{I}_i^B} \mathbb{1}_{Y_i \neq f_n^{RF}(\mathbf{X}_i)}$.

Content

Introduction: model averaging

Bagging

Random forests

Algorithm

Out-Of-Bag sample

Variable importance

Model interpretation

One major asset of the single trees: models highly interpretable.

A random forest = aggregation of several single trees.

→ Not directly interpretable.

Alternative with RF: introduction of an importance score that measures the prediction strength of each feature.

- → Importance score used OOB samples.
- → Importance score can be used to rank features and so to perform features selection.

Variable importance

1) Compute the OOB error of each tree.

- OOB_b = the OOB sample of the *b*-th tree T^b
- E_{OOB_b} = the OOB error of T^b on OOB_b .
 - → In regression: $E_{OOB_b} = \frac{1}{\sharp OOB_b} \sum_{i \in OOB_b} (Y_i f_n^b(\mathbf{X}_i))^2$ (quadratic loss),
 - → In classification: $E_{OOB_b} = \frac{1}{\sharp OOB_b} \sum_{i \in OOB_b} \mathbf{1}_{f_n^b(\mathbf{X}_i) \neq Y_i}$ (misclassification error).

Variable importance

- 2) Permute randomly values of the *j*th feature and compute the OOB error on the permuted sample.
 - OOB_b^j = the bth OOB sample with the jth feature permuted.
 - \mathbf{X}_{i}^{j} = the *i*th observation in OOB_{b}^{j} with permuted value for input *j*.
 - $E_{OOB_b^j}$ = the error of T^b on OOB_b^j .
 - ightharpoonup In regression: $E_{OOB_b^j} = \frac{1}{\sharp OOB_b^j} \sum_{i \in OOB_b^j} (Y_i f_n^b(\mathbf{X}_i^j))^2$ (quadratic loss),
 - → In classification: $E_{OOB_b^j} = \frac{1}{\sharp OOB_b^j} \sum_{i \in OOB_b^j} \mathbf{1}_{f_n^b(\mathbf{X}_i^j) \neq Y_i}$ (misclassification error).

3). Compute the importance score for the jth feature

$$VI(\mathbf{X}^{j}) = \frac{1}{B} \sum_{b=1}^{B} (E_{OOB_{b}^{j}} - E_{OOB_{b}})$$

- Meaning: the importance score of the jth feature is defined as the average over the B trees of the difference between the OOB error and the permuted.
- Explanation: Permutations are used to mimics independence (no link) between X^j and Y.
 - → The feature \mathbf{X}^{j} is considered as important if by breaking the link between \mathbf{X}^{j} and Y, the error on the OOB samples increase.
- Interpretation: Large difference between the OOB error and the permuted OOB error ⇒ large VI(X^j) ⇒ X^j is an important feature to predict Y.

Variable importance: example on the land cover data set

The 10 variables with the highest importance score (see TP2):

Conclusion

- Random Forest = an improvement over bagged CART trees.
- Algorithm with few paramters to tune.
- No overfitting problem compared to a single trees.
- Higher performances than a single CART tree or bagged CART trees.
- No need of test set: out-of-bag samples.
- Interpretation tool: variable importance score.
- Large applicability.

References

Breiman, L. (1996).

Bagging predictors.

Machine learning, 24(2):123-140.

Breiman, L. (2001).

Random forests.

Machine learning, 45(1):5-32.

Freund, Y., Schapire, R. E., et al. (1996).

Experiments with a new boosting algorithm.

In icml, volume 96, pages 148-156. Citeseer.