

ACADGILD

SESSION 3: FOUNDATIONAL R PROGRAMMING

Assignment 4

Submitted by: Munmun Ghosal

Login Id: munmun55@gmail.com (M):+91-8007178659

Data Analytics

Table of Contents

1. Problem Statement	3)
2 Solution	3	į

1. Problem Statement

- A. Implement user defined functions within apply function using the mtcars data set and produce column wise summary statistics using apply function and mtcars dataset.
- B. Write a program to extract the names of the list.

2. Solution

A. Implement user defined functions within apply function using the mtcars data set and produce column wise summary statistics using apply function and mtcars dataset.

Apply function returns a vector or array or list of values obtained by applying a function to margins of an array or matrix.

Here mtcars.csv dataset is imported using readr package

The R-script for the given problem is as follows:

```
library(readr)
mtcars <- read csv("C:/Users/Munmun/Downloads/mtcars.csv")
View(mtcars)
# show first few(6) rows of mtcars
head(mtcars)
# get the mean of each column
apply(mtcars, 2, mean)
# get the sum of each row
apply(mtcars, 2, sum)
# get column quantiles
apply(mtcars, 2, quantile, probs = c(0.10, 0.25, 0.50, 0.75, 0.90))
# get the mean of the mpg column grouped by cylinders
tapply(mtcars$mpg, mtcars$cyl, mean)
# get the mean of all columns grouped by cylinders
apply(mtcars, 2, function(x) tapply(x, mtcars$cyl, mean))
#Sort the columns of a matrix
apply(mtcars, 2, sort)
```

The output of the R-Script (from Console window) is given as follows:

```
> library(readr)
> mtcars <- read_csv("C:/Users/Munmun/Downloads/mtcars.csv")</pre>
Parsed with column specification:
cols(
 mpg = col_double().
  cyl = col_double(),
  disp = col_double(),
  hp = col_double(),
  drat = col_double(),
 wt = col_double(),
  qsec = col_double(),
  vs = col_double().
  am = col_double(),
  gear = col_double().
  carb = col_double()
)
> View(mtcars)
> head(mtcars)
# A tibble: 6 x 11
         cyl disp
                       hp drat
                                   wt qsec
                                                     am gear
   mpg
                                               ٧S
  <db1> <
  21
                160
                      110 3.9
                                 2.62
                                       16.5
                                                0
                                                      1
                                                            4
                                                                   4
1
            6
2 21
                160
                      110 3.9
                                 2.88
                                       17.0
                                                0
                                                                   4
            6
                                                      1
                                                             4
3
  22.8
                      93 3.85 2.32
                                                      1
            4
                108
                                       18.6
                                                1
                                                             4
                                                                   1
4 21.4
            6
                258
                      110 3.08 3.22
                                       19.4
                                                1
                                                      0
                                                             3
                                                                   1
5 18.7
                                                             3
            8
                360
                      175 3.15 3.44
                                       17.0
                                                0
                                                      0
                                                                   2
                      105 2.76 3.46 20.2
                                                1
                                                      0
                                                             3
                                                                   1
6 18.1
            6
                225
> apply(mtcars, 2, mean)
                            disp
       mpg
                  cyl
                                         hp
                                                  drat
                                                               wt
                                                                         qsec
VS
 20.090625
             6.187500 230.721875 146.687500
                                                         3.217250 17.848750
                                              3.596563
0.437500
                 gear
                            carb
        am
             3.687500
  0.406250
                        2.812500
> apply(mtcars, 2, sum)
    mpg
              cyl
                      disp
                                 hp
                                        drat
                                                   wt
                                                          qsec
                                                                      ٧S
       gear
 642.900 198.000 7383.100 4694.000 115.090 102.952 571.160
                                                                  14.000
13.000 118.000
    carb
  90.000
> apply(mtcars, 2, quantile, probs = c(0.10, 0.25, 0.50, 0.75, 0.90))
                  disp
                          hp drat
       mpg cyl
                                        wt
                                              qsec vs am gear carb
            4 80.610 66.0 3.007 1.95550 15.5340 0
10% 14.340
                                                      0
                                                                  1
             4 120.825 96.5 3.080 2.58125 16.8925 0 0
                                                                  2
25% 15.425
                                                             3
50% 19.200
             6 196.300 123.0 3.695 3.32500 17.7100 0 0
                                                             4
                                                                  2
             8 326.000 180.0 3.920 3.61000 18.9000
75% 22.800
                                                             4
                                                                 4
                                                       1
90% 30.090
             8 396.000 243.5 4.209 4.04750 19.9900 1
                                                                  4
> tapply(mtcars$mpg, mtcars$cyl, mean)
       4
                6
26.66364 19.74286 15.10000
> apply(mtcars, 2, function(x) tapply(x, mtcars$cyl, mean))
       mpg cyl
                   disp
                               hp
                                      drat
                                                 wt
                                                        qsec
                                                                     ٧S
am
       gear
```

```
4 105.1364 82.63636 4.070909 2.285727 19.13727 0.9090909
4 26.66364
0.7272727 4.090909
            6 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286
6 19.74286
0.4285714 3.857143
8 15.10000
           8 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000
0.1428571 3.285714
     carb
4 1.545455
6 3.428571
8 3.500000
> apply(mtcars, 2, sort)
      mpg cyl disp hp drat wt qsec vs am gear carb
 [1,] 10.4
           4 71.1 52 2.76 1.513 14.50 0
                                           0
                                                 3
                                                     1
            4 75.7 62 2.76 1.615 14.60 0
                                                 3
                                                     1
 [2,] 10.4
                                            0
 [3,] 13.3
           4 78.7 65 2.93 1.835 15.41 0
                                            0
                                                 3
                                                     1
 [4,] 14.3
           4 79.0 66 3.00 1.935 15.50 0
                                            0
                                                 3
                                                     1
            4 95.1 66 3.07 2.140 15.84 0 0
                                                 3
 [5,] 14.7
                                                     1
 [6,] 15.0
           4 108.0 91 3.07 2.200 16.46 0
                                                 3
                                            0
                                                     1
 [7,] 15.2
           4 120.1 93 3.07 2.320 16.70 0 0
                                                 3
                                                     1
 [8,] 15.2
           4 120.3 95 3.08 2.465 16.87 0
                                            0
                                                 3
                                                     2
 [9,] 15.5
            4 121.0 97 3.08 2.620 16.90 0
                                            0
                                                 3
                                                     2
[10,] 15.8
            4 140.8 105 3.15 2.770 17.02 0
                                            0
                                                 3
                                                     2
[11,] 16.4
            4 145.0 109 3.15 2.780 17.02 0 0
                                                 3
                                                     2
[12,] 17.3
                                                     2
            6 146.7 110 3.21 2.875 17.05 0
                                                 3
                                            0
                                                     2
[13,] 17.8
           6 160.0 110 3.23 3.150 17.30 0 0
                                                 3
[14,] 18.1
           6 160.0 110 3.54 3.170 17.40 0
                                                 3
                                                     2
                                            0
[15,] 18.7
            6 167.6 113 3.62 3.190 17.42
                                                 3
                                                     2
                                        0
                                            0
                                                     2
[16,] 19.2
            6 167.6 123 3.69 3.215 17.60 0 0
                                                 4
                                                     2
[17,] 19.2
            6 225.0 123 3.70 3.435 17.82 0
                                            0
                                                 4
[18,] 19.7
            6 258.0 150 3.73 3.440 17.98 0
                                            0
                                                 4
                                                     3
                                                     3
[19,] 21.0
            8 275.8 150 3.77 3.440 18.00 1 0
                                                 4
[20,] 21.0
            8 275.8 175 3.85 3.440 18.30 1
                                            1
                                                 4
                                                     3
[21,] 21.4
            8 275.8 175 3.90 3.460 18.52
                                        1
                                            1
                                                 4
                                                     4
[22,] 21.4
            8 301.0 175 3.90 3.520 18.60 1
                                            1
                                                 4
                                                      4
[23,] 21.5
            8 304.0 180 3.92 3.570 18.61 1
                                            1
                                                 4
                                                      4
[24,] 22.8
            8 318.0 180 3.92 3.570 18.90 1
                                            1
                                                 4
                                                     4
[25,] 22.8
           8 350.0 180 3.92 3.730 18.90 1 1
                                                 4
[26,] 24.4
            8 351.0 205 4.08 3.780 19.44 1
                                                 4
                                            1
                                                     4
[27,] 26.0
                                        1
            8 360.0 215 4.08 3.840 19.47
                                            1
                                                 4
                                                     4
                                                 5
[28,] 27.3
            8 360.0 230 4.11 3.845 19.90 1 1
[29,] 30.4
            8 400.0 245 4.22 4.070 20.00 1
                                            1
                                                 5
                                                     4
[30,] 30.4
           8 440.0 245 4.22 5.250 20.01 1
                                                 5
                                                     4
                                            1
[31,] 32.4 8 460.0 264 4.43 5.345 20.22 1 1
                                                 5
                                                     6
[32,] 33.9
            8 472.0 335 4.93 5.424 22.90 1 1
                                                 5
                                                     8
```

B. Write a program to extract the names of the list.

The R-script for the given problem is as follows:

```
#EXAMPLE 1:
list_data <- list(c("jan","feb","mar"),matrix(c(1,9,7,4,5,7),nrow=2),list("green",1.2,3))
names(list_data) <- c("3months","my_matrix","inner_list")
list_data
print(list_data[1])
print(list_data[2])
print(list_data[3])
names(list_data)

#EXAMPLE 2:
x <- list("Los Angeles" = 1, Boston = 2, London = 3)
x
names(x)</pre>
```

Explanation:

- Lists are the R objects which contain elements of different types like numbers, strings, vectors and another list inside it. A list can also contain a matrix or a function as its elements. List is created using list() function.
- Elements of the list can be accessed by the index of the element in the list. In case of named lists it can also be accessed using the names.
- o The names of the list can be extracted using names() function

The output of the R-Script (from Console window) is given as follows:

```
Write a program to extract the names of the list
> #B.
> #EXAMPLE 1:
> list_data <-
list(c("jan","feb","mar"),matrix(c(1,9,7,4,5,7),nrow=2),list("green",1.2)
> names(list_data) <- c("3months","my_matrix","inner_list")</pre>
> list_data
$`3months
[1] "jan" "feb" "mar"
$my_matrix
     [,1] [,2] [,3]
[1,]
        1
             7
[2,]
                   7
$inner_list
$inner_list[[1]]
[1] "green"
```

```
$inner_list[[2]]
[1] 1.2
$inner_list[[3]]
[1] 3
> print(list_data[1])
$`3months`
[1] "jan" "feb" "mar"
> print(list_data[2])
$`my_matrix`
 [,1] [,2] [,3]
[1,] 1 7 5
[2,] 9 4 7
> print(list_data[3])
$`inner_list`
$`inner_list`[[1]]
[1] "green"
$`inner_list`[[2]]
[1] 1.2
$`inner_list`[[3]]
[1] 3
> names(list_data)
[1] "3months" "my_matrix" "inner_list"
> #EXAMPLE 2:
> x <- list("Los Angeles" = 1, Boston = 2, London = 3)</pre>
$`Los Angeles`
[1] 1
$Boston
[1] 2
$London
[1] 3
> names(x)
[1] "Los Angeles" "Boston"
                                "London"
```