

# 基于卫星观测定量估计甲烷排放

Quantify methane emissions with satellite observations

张羽中

大气环境遥感与协同分析青年学者论坛 广东珠海 2020.11.29

# 致 谢



#### Harvard

Daniel Jacob, Jianxiong Sheng, Xiao Lu, Tia Scarpelli, Daniel Varon, Lu Shen, Zhen Qu, Hannah Nesser



#### **EDF**

Ritesh Gautam, Mark Omara, Daniel Zavala-Araiza, David Lyon



JPL John Worden, Anthony Bloom, Shuang Ma



SRON Ilse Aben, Bram Maasakkers, Sudhanshu Pandey

# 温室气体甲烷





# 甲烷减排的必要性和可行性

## 必要性



## 可行性

## 能源行业甲烷减排有 较高的可行性:

- 天然气经济价值
- 已有的技术手段
- 现有的法律架构



IPCC, 2018

## 具有挑战的监测需求

## 全球覆盖

世界每个角落的排放 都贡献气候变化



## 不同时空尺度信息整合

全球收支、国家盘点、区域/ 行业热点、设施维修



## 源监测

源数量多、种类多 绝对量较小、但波动很大



# 迅速发展的卫星观测能力

## SWIR波段大气光学厚度



Jacob et al., 2016



Daniel Varon, Harvard

# 迅速发展的卫星观测能力





# 基于卫星观测定量甲烷排放





## Permian 盆地:美国最大油气生产盆地,但其甲烷排放缺少"自上而下"的观测数据

#### REPORT

Assessment of methane emissions from the U.S. oil and gas supply chain

O Ramón A. Alvarez<sup>1,\*</sup>, O Daniel Zavala-Araiza<sup>1</sup>, David R. Lyon<sup>1</sup>, O David T. Allen<sup>2</sup>, Zachary R. Barkley<sup>2</sup>, Adam R. Brandt<sup>4</sup>, Kenneth J. Dav...
+ See all authors and affiliations



Alvarez et al., Science, 2018

#### Permian Basin



## Oil & gas production



# 美国二叠纪盆地甲烷排放

### **Tropospheric Monitoring Instrument (TROPOMI)**

Satellite: Sentinel-5 Precursor; Swath width: 2600 km;

Overpass: ~13:30 LT; Resolution: 7×7 km<sup>2</sup>; Retrieval: "full physics" (*Hu et al., 2016*)



2000

2005

2010

2015

TROPOMI

2025

2020

## TROPOMI卫星反演美国二叠纪盆地甲烷排放

甲烷浓度 TROPOMI 5/2018-3/2019

求解 逆问题

甲烷排放通量





## 甲烷排放的空间分布

## TROPOMI反演



## 石油产量



天然气产量



## Gas flaring in oil & gas fields

Zhang et al., Satellite-Observed Changes in Mexico's Offshore Gas Flaring Activity Linked to Oil/Gas Regulations, *Geophysical Research Letters*, 2019





## 多种方法估计美国二叠纪盆地甲烷排放

## 基于TROPOMI数据

# Atmospheric inverse modeling 0.25x0.3125 GEOS-Chem nested Yuzhong Zhang (Westlake)

Posterior 2.9 Tg a<sup>-1</sup>



#### Mass balance method

Sudhanshu Pandey (SRON) --> 3.2±2.0 Tg a<sup>-1</sup>

### 基于少量地面观测外推

# Site-level measurement extrapolation emission inventory

71 site-level measurements

Mark Omara (EDF)



## 基于EPA排放清单

## Bottom-up emission inventory Extrapolation of EPA gridded inventory to 2018 DI info for O&G

Bram Maasakkers (SRON)



## 迄今报道的甲烷排放量最大的油气盆地



>2x higher than bottom-up estimate 4x higher than Eagle Ford -- the largest flux reported in literature

### Leakage rate vs gas production



High gas production & high leakage rate

# TROPOMI甲烷观测——中国



# 全球大气甲烷排放量和趋势分布



# 利用甲烷卫星观测监测全球OH浓度变化

通过反演解析排放的空间分布和OH(甲烷主要大气汇)的全球均值





联合SWIR和TIR的甲烷观测可取的最优的效果

# 总结

- 通过美国二叠纪盆地的个案研究,展示了利用卫星甲烷观测定量估计热点区域甲烷排放的能力。
- 估计Permian Basin每年排放~2.7 Tg a-1甲烷,大于任何文献报道的单一盆地的排放估计,是用EPA清单方法估计的2倍;反映了油气生产过程中(因为经济原因)天然气处理设施的滞后。
- 卫星观测能与地面观测互补,分析全球甲烷源汇变化和分布。



# 大气甲烷的源















## 大气甲烷的汇



**源** 550 ± 60 Tg a<sup>-1</sup>



