Homework-9

November 21, 2024

- 1. Prove that the irreducible elements in $\mathbb{Z}[i]$ (up to associative) has and only has the following 3 forms:
- (1). 1+i;
- (2). a+bi, where $a, b \in \mathbb{Z}$ satisfy $a^2 + b^2 \equiv 1 \pmod{4}$, $a^2 + b^2$ is prime.
- (3). prime p where $p \equiv 3 \pmod{4}$.
- 2. Let R be a UFD, $K = \operatorname{frac}(R)$, $f(x) \in R[x]$ and monic. If $g(x) \in K[x]$ s.t. g(x) is monic and g(x)|f(x), prove $g(x) \in R[x]$.
- 3. (1). Prove Eisenstein Criterion: Let R be a UFD,
- $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in R[x]$. If there exists irreducible element $p \in R$ s.t.
- $p \nmid a_n, p \mid a_i \ (\forall i < n), p^2 \nmid a_0$. Prove f(x) is irreducible in F[x] where $F = \operatorname{frac}(R)$.
- (2). Determine whether the following polynomials in $\mathbb{Q}(i)[x]$ are reducible:
- (i). $x^{p-1} + x^{p-2} + \cdots + 1$, p is a prime number in \mathbb{Z} ;
- (ii). $x^4 + (8+i)x^3 + (3-4i)x + 5$.
- 4. Let E, F be subfields of K, prove $E \cup F$ is a field iff $E \subseteq F$ or $F \subseteq E$.
- 5. (1). Prove the field automorphism of \mathbb{Q} is only dientity automorphism.
- (2). Give all field embedding from $\mathbb{Q}(i)$ to \mathbb{C} .
- (3). Prove there exists no field embedding from $\mathbb{Q}(i)$ to $\mathbb{Q}(\sqrt{2})$.
- 6. Let K be a field and α is a transcendental element over K. Prove there exists infinitely many field embeddings from $K(\alpha)$ to $K(\alpha)$.
- 7. Give minimal polynomial over \mathbb{Q} for following elements.
- (1). a + bi, $a, b \in \mathbb{Q}$, $b \neq 0$;
- (2). $e^{\frac{2\pi i}{p}}$ where p is an odd prime.
- 8. Let K/F be a finite field extension, [K:F] is a prime, $\alpha \in K-F$, prove $K=F(\alpha)$.
- 9. Find the basis of following field as a vector space over \mathbb{Q} :
- (1). $K = \mathbb{Q}(\sqrt{2}, \sqrt{3});$
- (2). $K = \mathbb{Q}(\sqrt{3}, i, \omega)$ where $\omega = \frac{-1+\sqrt{-3}}{2}$; (3). $K = \mathbb{Q}(e^{\frac{2\pi i}{p}})$ where p is an odd prime.
- 10. Let K/F be a finite field extension. Prove that any F-endomorphism of K is automorphism.

1