

MATH 165B - Introduction to Complex Variables

Midterm Exam

Midletti Exam		
Prob. #	Points	Score
1	25 points	
2	25 points	
3	25 points	
4	25 points	
Extra Credit	20 points	

Show your work

Total

100 points

Problem 1: In each case, write the principal part of the function at its isolated singular point and determine whether that point is a pole, a removable singular point, or an essential singular point:

(a)
$$\exp\left(\frac{1}{z^2}\right)$$

(b)
$$\frac{z^3}{1-z}$$

(c)
$$\frac{\sin 2z}{z}$$

(d)
$$\frac{\cos z - 1}{z^2}$$

(e)
$$\frac{1}{(1-z)^3}$$

Problem 2: Find

(a) The residue of $f_1(z) = \frac{\pi}{z-z^2}$ at z=0

(b) The residue of $f_2(z)=z\cos\left(\frac{1}{z}\right)$ at z=0

(c) The residue of $f_3(z) = \frac{z - \sin z}{2z}$ at z = 0

(d) A function f_4 with a simple pole at z=0 such that the residue of f_4 at z=0 is π .

(e) A function f_5 with a pole of order 3 at z=0 such that the residue of f_5 at z=0 is 17.

Problem 3: Consider the integral

$$\int_{C} \frac{2z^{3} + 3}{(z+1)(z^{2} + 4)} dz$$

taken counterclockwise around the curve C.

(a) Find the value of the integral when the curve ${\cal C}$ is the circle |z-1|=2

(b) Find the value of the integral when the curve ${\cal C}$ is the circle |z|=4

(c) Give a curve ${\cal C}$ such that the value of the integral is 0.

Problem 4: Show that the image of the right half plane $\text{Re}(z) > \frac{1}{2}$, under the mapping $w = \frac{1}{z}$, is the disk |w-1| < 1.

Extra Credit Problem

Show that all four zeros of the polynomial $g(z) = z^4 - 7z - 1$ lie in the disk |z| < 2

Extra Credit STAR PROBLEM

Show that the parabola $2x=1-y^2$ is mapped onto the cardioid $\rho=1+\cos\phi$ by the reciprocal transformation $w=\frac{1}{z}$.