Enseignant es: Blanche Buet, Dominique Hulin et Thomas Letendre.

Feuille 2 – Fonctions-test, distributions, dérivées et ordre

Exercice 1 (Premiers exemples de distributions). Montrer que les applications suivantes définissent des distributions et déterminer leur ordre.

1.
$$T: \varphi \in \mathcal{D}(\mathbb{R}) \mapsto \int_{\mathbb{R}} e^{x^2} \varphi(x) \, \mathrm{d}x.$$

2.
$$T: \varphi \in \mathcal{D}(\mathbb{R}) \mapsto \int_0^{+\infty} \varphi(x^2) \, \mathrm{d}x.$$

3.
$$T: \varphi \in \mathcal{D}(\mathbb{R}) \mapsto \sum_{n \in \mathbb{N}} \varphi^{(n)}(n)$$
.

Exercice 2 (Intégrales tronquées). Soit (X, μ) un espace mesuré et soit $(A_n)_{n \in \mathbb{N}}$ une suite décroissante $(A_{n+1} \subset A_n \text{ pour tout } n)$ de parties mesurables de X telle que $\mu(A_n) \xrightarrow[n \to +\infty]{} 0$.

- 1. Pour tout $f \in L^1(X, \mu)$, montrer que $\int_{X \setminus A_n} f(x) d\mu(x) \xrightarrow[n \to +\infty]{} \int_X f(x) d\mu(x)$.
- 2. (facultatif) Montrer que le résultat reste vrai sans hypothèse de décroissance sur la suite $(A_n)_n$.

Exercice 3 (La valeur principale). On rappelle la définition de la valeur principale de $\frac{1}{x}$:

$$\operatorname{vp}\left(\frac{1}{x}\right) : \varphi \longmapsto \lim_{\varepsilon \to 0} \int_{\mathbb{R} \setminus [-\varepsilon, \varepsilon]} \frac{\varphi(x)}{x} \, \mathrm{d}x.$$

- 1. Rappeler l'argument montrant que $\operatorname{vp}\left(\frac{1}{x}\right)$ définit bien un élément de $\mathcal{D}'(\mathbb{R})$.
- 2. Déterminer l'ordre de la distribution $\operatorname{vp}\left(\frac{1}{x}\right)$.
- 3. Soit $\varphi \in \mathcal{D}(\mathbb{R}^*)$, montrer que $\langle \operatorname{vp}(\frac{1}{x}), \varphi \rangle = \int_{\mathbb{R}} \frac{\varphi(x)}{x} \, \mathrm{d}x$.
- 4. La fonction $I: x \mapsto \frac{1}{x}$ définit une distribution $T_I \in \mathcal{D}'(\mathbb{R}^*)$. Expliquer en quoi $\operatorname{vp}\left(\frac{1}{x}\right)$ peut être vu comme un prolongement de T_I en un élément de $\mathcal{D}'(\mathbb{R})$. Un tel prolongement est-il unique?
- 5. Existe-t-il un prolongement de T_I en une distribution sur \mathbb{R} de la forme T_f avec $f \in L^1_{loc}(\mathbb{R})$?

Notations. • Soit $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}^d$ un multi-indice, on note $|\alpha| = \sum_{i=1}^d \alpha_i$ sa longueur, $\alpha! = \prod_{i=1}^n \alpha_i!$ et $\partial^{\alpha} = \partial_1^{\alpha_1} \dots \partial_n^{\alpha_n}$. Pour tout $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ on note $x^{\alpha} = \prod_{i=1}^d x_i^{\alpha_i}$.

• Soient Ω un ouvert de \mathbb{R}^d et $K \subset \Omega$ un compact, pour toute fonction $f \in \mathcal{C}^l(\Omega)$ on note $N_{K,l}(f) = \max_{|\alpha| \leq l} \|\partial^{\alpha} f\|_{\infty,K} = \sup\{|\partial^{\alpha} f(x)| \mid |\alpha| \leq l \text{ et } x \in K\}.$

Exercice 4 (Lemme de Hadamard). Soient $k \in \mathbb{N}^*$ et $f \in \mathcal{C}^k(\mathbb{R}^d)$.

1. Montrer qu'il existe des fonctions $(\psi_{\alpha})_{|\alpha|=k}$ de \mathbb{R}^d dans \mathbb{C} telles que :

$$\forall x \in \mathbb{R}^d, \qquad f(x) = \sum_{|\alpha| < k} \partial^{\alpha} f(0) \frac{x^{\alpha}}{\alpha!} + \sum_{|\alpha| = k} x^{\alpha} \psi_{\alpha}(x). \tag{1}$$

2. Soit $l \in \mathbb{N}$. Si $f \in \mathcal{C}^{k+l}(\mathbb{R}^d)$, montrer que les $(\psi_{\alpha})_{|\alpha|=k}$ sont \mathcal{C}^l sur \mathbb{R}^d et expliciter leurs dérivées.

- 3. Soit $B \subset \mathbb{R}^d$ une boule fermée centrée en 0. Pour tout α de longueur $|\alpha| = k$, montrer que $N_{B,l}(\psi_{\alpha}) \leq N_{B,l}(\partial^{\alpha} f) \leq N_{B,k+l}(f)$.
- 4. Dans cette question on suppose que d = 1, de sorte que l'équation (1) se ré-écrit :

$$\forall x \in \mathbb{R}, \qquad f(x) = \sum_{j=0}^{k-1} f^{(j)}(0) \frac{x^j}{j!} + x^k \psi_k(x).$$

On suppose que $f \in \mathcal{D}(\mathbb{R})$, à quelle condition a-t-on $\psi_k \in \mathcal{D}(\mathbb{R})$?

Exercice 5 (Partie finie). On considère la forme linéaire suivante sur $\mathcal{D}(\mathbb{R})$, où pf se lit partie finie:

$$\operatorname{pf}\left(\frac{1}{x^2}\right): \varphi \longmapsto \lim_{\varepsilon \to 0} \int_{\mathbb{R} \setminus [-\varepsilon, \varepsilon]} \frac{\varphi(x)}{x^2} \, \mathrm{d}x - 2 \frac{\varphi(0)}{\varepsilon}.$$

- 1. Montrer que pf $\left(\frac{1}{r^2}\right)$ définit une distribution sur \mathbb{R} .
- 2. Conjecturer puis démontrer des expressions plus simples des produits suivants dans $\mathcal{D}'(\mathbb{R})$:

(a)
$$x \operatorname{vp}\left(\frac{1}{x}\right)$$
, (b) $x \operatorname{pf}\left(\frac{1}{x^2}\right)$, (c) $x^2 \operatorname{pf}\left(\frac{1}{x^2}\right)$.

Exercice 6 (Calculs de dérivées). 1. Soit $f: x \mapsto \ln(|x|)$, calculer la dérivée de T_f dans $\mathcal{D}'(\mathbb{R})$.

- 2. Calculer la dérivée de $\operatorname{vp}\left(\frac{1}{r}\right)$ dans $\mathcal{D}'(\mathbb{R})$.
- 3. Soient $H = \mathbf{1}_{[0,+\infty[}$ la fonction de Heaviside et $n \in \mathbb{N}$, calculer les dérivées successives dans $\mathcal{D}'(\mathbb{R})$ de la fonction $x \mapsto \frac{x^n}{n!}H(x)$.

Exercice 7 (Convergence dans $\mathcal{D}(\mathbb{R})$). 1. Soient $\psi \in \mathcal{C}^{\infty}(\mathbb{R})$ et $(\varphi_n)_{n \in \mathbb{N}}$ une suite de $\mathcal{D}(\mathbb{R})$ qui converge vers φ dans $\mathcal{D}(\mathbb{R})$. Montrer que $\psi \varphi_n \xrightarrow[n \to +\infty]{\mathcal{D}} \psi \varphi$.

- 2. Soit $\varphi \in \mathcal{D}(\mathbb{R})$, pour tout $t \neq 0$ on pose $\psi_t : x \mapsto \frac{\varphi(x+t)-\varphi(x)}{t}$. Montrer que ψ_t converge dans $\mathcal{D}(\mathbb{R})$ lorsque $t \to 0$, vers une certaine fonction à déterminer.
- 3. Soient $\varphi \in \mathcal{D}(\mathbb{R})$ et $\psi : x \mapsto x\varphi'(x)$. Pour tout $t \neq 1$ on définit $\varphi_t : x \mapsto \varphi(tx)$ et $\psi_t = \frac{\varphi_t \varphi}{t 1}$. Montrer que $\psi_t \in \mathcal{D}(\mathbb{R})$ pour tout $t \notin \{0, 1\}$ et que $\psi_t \xrightarrow{\mathcal{D}} \psi$.

Exercice 8 (Une forme linéaire sur $\mathcal{D}(\mathbb{R})$ qui n'est pas une distribution — facultatif). Soit f la fonction $\mathcal{C}^{\infty}(\mathbb{R})$ définie par $f(x) = e^{-\frac{1}{x}}$ si x > 0 et f(x) = 0 sinon. Soit $\psi \in \mathcal{D}(\mathbb{R})$ une fonction plateau valant 1 sur [-1,1] et supportée dans [-2,2], on note $\varphi = \psi f$. Soit $\chi \in \mathcal{C}^{\infty}(\mathbb{R})$ une fonction croissante, nulle sur $]-\infty,\frac{1}{2}]$ et constante à 1 sur $[1,+\infty[$. Pour tout $n \in \mathbb{N}^*$, on note $\varphi_n : x \mapsto \chi(nx)\varphi(x)$.

- 1. Comprendre ces fonctions sur un dessin, puis montrer que $\varphi_n \xrightarrow[n \to +\infty]{} \varphi$ dans $\mathcal{D}(\mathbb{R})$.

 Indication. On pourra utiliser sans démonstration que : pour tout $k \in \mathbb{N}$, il existe un polynôme P_k de degré 2k tel que $f^{(k)}: t \mapsto t^{-2k}P_k(t)f(t)$.
- 2. Le sous-espace $\mathcal{D}(\mathbb{R}^*)$ est-il fermé dans $\mathcal{D}(\mathbb{R})$?

Soit E un supplémentaire de $\mathcal{D}(\mathbb{R}^*)$ dans $\mathcal{D}(\mathbb{R})$ et soit T la forme linéaire sur $\mathcal{D}(\mathbb{R}) = \mathcal{D}(\mathbb{R}^*) \oplus E$ définie par :

$$T: g \longmapsto \begin{cases} \sum_{k \geqslant 1} e^k g\left(\frac{1}{k}\right) & \text{si } g \in \mathcal{D}(\mathbb{R}^*) \\ 0 & \text{si } g \in E. \end{cases}$$

- 3. Montrer que $\langle T, \varphi_n \rangle \xrightarrow[n \to +\infty]{} +\infty$.
- 4. En déduire que T ne définit pas une distribution sur \mathbb{R} .