Homework 2

- Akankshi Mody (MSBA, Class of 2020) am92786

Problem 1:

Came work 2 Now, if he would like to still to his preference of eating at least as many pies as lostes follows: Fried t, P To max 4t + 57 Subject to (30,30) region A => 2+13p=60 3+-3p=0 =60 4t+5p= 100 = 108 max points, Max should eat 12 tostes &

Problem 2:


```
c \leftarrow c(2000,3000)
A \leftarrow matrix(c(1,3,2,1,2,4),3,2)
dir <- c("<=","<=","<=")
b <- c(450, 1000, 1200)
s<-lp("max",c,A,dir,b)</pre>
s$solution
## [1] 200 200
s$objval
## [1] 1e+06
for(i in seq(from=200, to=2200, by=100)){
  c < -c(2000,3000)
  A \leftarrow matrix(c(1,3,2,1,2,4),3,2)
  dir <- c("<=","<=","<=")</pre>
  b \leftarrow c(450, 1000, i)
  s<-lp("max",c,A,dir,b)</pre>
  cat("Solution for",i," fertilizer is:",s$solution)
  print(s$objval)
}
## Solution for 200 fertilizer is: 100 0[1] 2e+05
## Solution for 300 fertilizer is: 150 0[1] 3e+05
## Solution for 400 fertilizer is: 200 0[1] 4e+05
## Solution for 500 fertilizer is: 250 0[1] 5e+05
## Solution for 600 fertilizer is: 300 0[1] 6e+05
## Solution for 700 fertilizer is: 325 12.5[1] 687500
## Solution for 800 fertilizer is: 300 50[1] 750000
## Solution for 900 fertilizer is: 275 87.5[1] 812500
## Solution for 1000 fertilizer is: 250 125[1] 875000
## Solution for 1100 fertilizer is: 225 162.5[1] 937500
## Solution for 1200 fertilizer is: 200 200[1] 1e+06
## Solution for 1300 fertilizer is: 175 237.5[1] 1062500
## Solution for 1400 fertilizer is: 150 275[1] 1125000
## Solution for 1500 fertilizer is: 125 312.5[1] 1187500
## Solution for 1600 fertilizer is: 100 350[1] 1250000
## Solution for 1700 fertilizer is: 50 400[1] 1300000
## Solution for 1800 fertilizer is: 0 450[1] 1350000
## Solution for 1900 fertilizer is: 0 450[1] 1350000
## Solution for 2000 fertilizer is: 0 450[1] 1350000
## Solution for 2100 fertilizer is: 0 450[1] 1350000
## Solution for 2200 fertilizer is: 0 450[1] 1350000
```

As we can see from the output above, the farmer does'nt produce corn till he has 600 tons of fertilizer and discontinues producing wheat when he has 1800 tons of fertilizer.

Problem 3:

		Contract of the second	•	1
				V
				W/
Problem.	2 .	1 4 1	Prototon	W.
	x2, xB, x4, x5	be respective	mestment	W.
let XI,	ke j ke j (j ke	dimin	Find	W.
E = 0 × 1	n2, x2, x4,	725 200 000	n at	V
To one	122 + 11	x2 + 16 x3 + 14:	x4 + 39xc	
10 3000	9/1 3/1 1/16	+ 57 150 +	297 - 5 40	M
Subject 0		+ 573 + 5 74 +		4
	37, + 672	+ 523 + 24 +	3475320	1
	2,20, 92	2,0,237,6,24	7,0,2,0	-
	013			-06
1 3 [00	0-16 0-18 0	7 EXTY IN	For Local	0

Problem 4:

Problem 4!	
Therefore 4:	Short S
Find c, m, b	X +M
To min 0.18c+ 0.23m+ 0.05b Subject to 2000 < 72c+ 121m+65	Said .
Subject to 2000 < 72c + 121 m + 65	652250
5000 < 107 C+ SDOM &	50,000
05 0 5 10 + 88	7
05 x 00 x 00 05 m 0100 00	
For upsouve: CTX > [0.18 0.13 0.05]	
for upsolve! (X = (0.18 0.13 0.03)	c m
	b
A X & b	Lo
[72 121 65] [c] [<] [2250]	
12 121 65 m > 2000	
107 500 B B S S S S S S S S S S S S S S S S S	
1075000 7 5000	•
1000	
0 1 0 2 10	
001	Article Line
	-
On solving, c= 10, m= 10, b= with minimum cost = \$4.35	A. 923077
on solving, compared to the solving,	7 1-50 1 1
with minimum cost - \$4.35	

Problem 5:

106 V 3
Problem 5:
Find x_1, x_2, x_3 and y_1, y_2, y_3 Forest 1 forest 2
Forest 1 Forest 2
To Max 7,+72+23+4,+42+43
Subject to Nit-
$0 \le 2 \le 2 \le 3$ $0 \le 2 \le 2 \le 6 \le 3 \le 3 \le 6$
$0 \le \chi_2 \le 2 \cdot 6 \qquad 0 \le \chi_2 \le 3 \cdot 6$
0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$2 \geqslant 2, + y_1 \geqslant 1/2$ $2 \geqslant 2 \geq 2 \leq 2 \leq 1/5$
37,72+42 2 4
$3 > \lambda_{3} + y_{3} > 2$ $C^{T} \times = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2^{1} \\ \lambda_{1} \\ \lambda_{3} \\ y_{1} \end{bmatrix}$
73 41
1 42
\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
d × A
[1,0.0.0.0.0.] [N,] [2]
010000 22 26 2.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
000001 42 5 3.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
001001
100100
2 /2
(001001)

Thus, x1 = 2, x2 = 2, x3 = 2.8, y1 = 0, y2 = 0, y3 = 0.2 with the total tons of weight extracted = 7