University of Hawai'i

Last name:			
D			
First name:			

Question:	1	2	3	4	5	Total
Points:	10	10	10	10	10	50
Score:						

Instructions:

- Make sure to write your complete name on your copy.
- You must answer all 5 questions below and write your answers directly on the questionnaire.
- You have 50 minutes to complete the exam.
- When you are done (or at the end of the 50min period), return your copy.
- Any electronic devices are not allowed during the exam.
- You can use a calculator.
- Turn off your cellphones during the exam.
- Lecture notes and the textbook are not allowed during the exam.
- You must show ALL your work to have full credit.
- Draw a square around your final answer.

Your Signature:	

__ Question 1 ______ (10 pts)

A lamina occupies a region D described as followed:

$$D = \{(x, y) : 0 \le x \le 1, 0 \le y \le x^2\}.$$

The mass density of the lamina is proportional to the distance from the vertical line x = 1 to the y-axis. Compute the mass of the lamina.

QUESTION 2	(10)	pts'
	 (/

A lamina occupies a region D which is a rectangle $D = [0,1] \times [0,2]$ and has a mass density of $\rho(x,y) = y$. Find

- (a) (5 points) the moment M_x about the x-axis. Recall that this is the double integral of the function $y\rho(x,y)$.
- (b) (5 points) the moment M_y about the y-axis. Recall that this is the double integral of the function $x\rho(x,y)$.

	QUESTION 3	(10 pts)
Evaluate the integral	2	
	$\int_0^2 \int_0^{z^2} \int_0^{y-z} (2x - y) dx dy dz.$	

QUESTION 4	(10	pts)
- V	_	1 /

Find the volume of the solid E enclosed by the surface $y = x^2$ and the planes z = 0 and y + z = 1.

Evaluate¹ QUESTION 5 _______ (10 pts)
$$\iiint_E e^{\sqrt{x^2+y^2+z^2}} dV$$

where E is the portion of the unit ball $x^2 + y^2 + z^2 \le 1$ that lies in the first octant.

You can take for granted that $\int t^2 e^t dt = e^t (t^2 - 2t + 2) + C$.

Bonus Question	
Draw the surface given by the equation $\rho = \sin \phi$.	