## UGANDA MARTYRS UNIVERSITY

## FACULTY OF SCIENCE

## DEPARTMENT OF MATHEMATICS AND STATISTICS

University Supplementary/ Special Examinations 2013-2014, Semester II

First Year Supplementary/ Special Examination for the Degrees of Bachelor of Science Financial Mathematics and Bachelor of Science General.

# STA 1202 ELEMENTS OF PROBABILITY

WEDNEDAY 13<sup>th</sup> August 2014 Time: **12:**00am - **5**:00 pm

#### Instructions

- (i) Answer Five questions
- (ii) Write on both sides of the paper but begin a new question on a fresh page.

#### 1. Question 1

(a) Give the three rules of Probability.

[3 Marks]

- (b) Define the following as associated to probability
  - (i) Sample points.

[1 Mark]

(ii) Mutually exclusive events.

[1 Mark]

(c) (i) If A and B are two events which are not disjoint in that  $P(A \cap B) \neq 0$ , then

$$P(A \cup B) = ?$$

[1 Mark]

(ii) Let S be a sample space and E is an event from S, then show that

$$P(E') = 1 - P(E).$$

[3 Marks]

(d) Let A and B be events in a sample space S, if

$$P(A) = 0.40, P(A \cap B') = 0.1, \text{ and } P(A \cup B) = 0.8,$$

Represent the information on a venn diagram and use it to compute the following probabilities

(i)  $P(A \cap B)$ .

[2 Marks]

(ii)  $P(A \cup B)'$ .

[2 Marks]

(e) Let A, B and C be events in a sample space S with

$$P(A) = 0.53, P(B) = 0.34, P(C) = 0.28, P(A \cap B') = 0.33,$$

$$P(B \cap C) = 0.13, P(A \cap C) = 0.1 \text{ and } P(A' \cap B \cap C) = 0.06.$$

Represent the given information on a venn diagram and use the venn diagram to compute the following probabilities.

(i)  $P(A \cap B)$ .

[5 Marks]

(ii)  $P(A' \cap B' \cap C')$ 

[2 Marks]

## Question 2

(a) Two wheels of chance are spun. The first is marked with  $\{1, 2, 3, 4\}$  and the second with  $\{1, 2, 3\}$ , on both wheels each number is equally likely to occur. Construct a suitable sample space to describe the outcomes of this random phenomenon.

[2 Marks]

Then use the probability formula to compute the probability of the following events

(i) Exactly one of the numbers is odd.

[2 Marks]

(ii) The sum of the numbers which show up is at most 5.

[3 Marks]

- (b) Three distinguishable dice are rolled.
  - (i) What is the probability of not getting a 1 on any of the dice?

[2 Marks]

(ii) What is the probability of getting at least 1, from the three dice?

[3 Marks]

(iii) What is the probability of getting exactly two 6's or all the three digits that show up are the same?

[3 Marks]

- (c) A student meets the prerequisites for 11 English, 9 History, 4 mathematics, and 3 chemistry courses. Suppose he decides to take one course in each of these subjects,
  - (i) How many different programs are available for this student?

[2 Marks]

(ii) How many programs are available to him if he decides to take one course each in three of these four subjects?

[3 Marks]

#### Question 3

(a) (i) Define a combination of n- objects taking r- of them at a time.

[1 Mark]

(ii) Use the Binomial theorem and Pascal's triangle to expand  $(2x - 3y)^6$ .

[4 Marks]

(b) Determine the number of thirteen letter words that can be formed using the letters of the word "DENOMINATIONS".

[4 Marks]

- (c) A student wants to arrange his 9 different record albums on a shelf.
- (i) In how many ways can this be done?

[2 Marks]

(ii) In how many ways can this be done if his Wilson Bugembe Album and Judith Babirye's album are separated by exactly one other album.

[3 Marks]

(d) (i) How many 3-digit numbers can be formed using 3 different digits from  $\{1,2,3,4,5,6\}$ 

[2 Marks]

(ii) How many of the numbers in d(i) above are divisible by 5?

[2 Marks]

(iii) How many of the numbers in d(i) above are less than 300?

[2 Marks]

## Question 4

(a) Given that  $A_1, A_2, ..., A_n$  are mutually exclusive events and that A is any event, state and prove Baye's Theorem.

#### OR

Suppose A an B are mutually exclusive events of an experiment, state and prove **Baye's Theorem**.

[6 Marks]

- (b) In a certain city 40% of the people are conservatives(C), 35% are Liberals(L) and 25% are Independents (I). During a particular elections 45% of the conservatives voted, 40% of the Liberals voted and 60% of the Independents voted. Suppose a person is randomly selected.
  - (i) Find the probability that the person voted.

[4 Marks]

(ii) If the person voted find the probability that the voter is a conservative.

[3 Marks]

(c) (i) Give the formula defining the binomial probability of an event  $\mathbf{E}$ , happening  $\mathbf{r}$ — times exactly in  $\mathbf{n}$ — trials, with  $\mathbf{p}$ — as the probability of success of the event  $\mathbf{E}$ , and  $\mathbf{q}$ — the probability of failure.

[1 Mark]

(ii) The probability that a man aged 60 years will live to be 70 years is 0.65, what is the probability that out of 10 men now 60 years old atleast 7 will live to be 70 years.

[4 Marks]

(iii) Determine the mean of 10 men, now 60 years old who will live to be 70 years.

[2 Marks]

## Question 5

(a) Let S be a sample space, define a discrete random variable as related to S.

[1 Mark]

(b) The following table gives the values and corresponding probabilities of a random variable X

 $\begin{array}{|c|c|c|c|c|c|c|c|}\hline X_i & -4 & -2 & 0 & 1 & 3 \\\hline P(X=x_i) & 0.2 & 0.25 & 0.15 & 0.10 & 0.30 \\\hline \end{array}$ 

(i) Determine the expectation of X, E(X).

[3 Marks]

[2 Marks]

(iii) Compute E(2X+10).

[3 Marks]

(c) The faces of a fair twelve sided ( $Duo\ decahedron$ ) die are numbered from 1 to 12. Let X be the remainder obtained from dividing the outcome of roll of this die by 6. Compute the probability function of X.

[3 Marks]

- (d) Box 1, contains 14 blue marbles and 10 red marbles and Box 2 contains 10 blue marbles and 2 red marbles. A fair die is rolled, if the outcome of the roll on the die is 1, then Box 1 is selected, otherwise if the outcome on the die is a 2, 3, 4, 5, or 6 then Box 2 is selected. After selecting the box, a marble is randomly selected from it.
  - (i) Given that a red marble is selected, what is the probability that it came from Box 1.

[6 Mark]

(ii) What is the probability of rolling a 1, and a blue marble is selected?

[3 Marks]

### Question 6

(a) Give three geometric properties of a standard normal density curve.

[1 Marks]

(b) (i) Let A(t) denote the area beneath the standard normal curve to the left of t so that P(Z < t) = A(t). Show that P(-t < Z < t) = 2A(t) - 1.

[3 Marks]

(ii) The Weight of new born babies are approximately normally distributed with mean  $\mu=7.5~Kgs$  and a standard deviation  $\sigma=1.25~Kgs$ , what is the probability that a new born baby will weigh more than 9 kgs.

[4 Marks]

(iii) From b(ii) above what is the probability that a new born baby will weigh between 7.9 and 8.6 Kgs.

[4 Marks]

- (b) A box contains 9 balls 2 of which are red, 3 blue and 4 black. 3 balls are drawn from the box at random. what is the probability that
  - (i) The three balls are of different colors.

[4 Marks]

(ii) The 3 balls are of the same color.

[4 Marks]



TABLE A.1 CUMULATIVE AREAS UNDER THE STANDARD NORMAL DISTRIBUTION (cont.)

| Z   | 0      | 1      | 2      | 3      | 4                | 5      | 6      | 7      | 8      | 9      |
|-----|--------|--------|--------|--------|------------------|--------|--------|--------|--------|--------|
|     |        |        | 0.5080 | 0.5120 | 0.5160           | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.0 | 0.5000 | 0.5040 | 0.5478 | 0.5517 | 0.5557           | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.1 | 0.5398 | 0.5438 | 0.5871 | 0.5910 | 0.5948           | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.2 | 0.5793 | 0.5832 | 0.6255 | 0.6293 | 0.6331           | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.3 | 0.6179 | 0.6217 | 0.6628 | 0.6664 | 0.6700           | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.4 | 0.6554 | 0.6591 |        | 0.7019 | 0.7054           | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7357 | 0.7389           | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 |        | 0.7703           | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7995           | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7353           | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8508           | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8729           | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729           | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8923           | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9055           | 0.9265 | 0.9278 | 0.9292 | 0.9306 | 0.9319 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9231           | 0.9394 | 0.9406 | 0.9418 | 0.9430 | 0.9441 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382           | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9493           | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9391           | 0.9678 | 0.9686 | 0.9693 | 0.9700 | 0.9706 |
| 1.8 | 0.9641 | 0.9648 | 0.9656 | 0.9664 | 0.9738           | 0.9744 | 0,9750 | 0.9756 | 0.9762 | 0.9767 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738           | 0.9798 | 0.9803 | 8086.0 | 0.9812 | 0.9817 |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9838           | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9874           | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 |                  | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904<br>0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 |                  | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945           | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959           | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969           | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977           | 0.9978 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 2.9 | 0,9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984           | 0.9984 | 0.9998 | 0.9999 | 0.9999 | 1.0000 |
| 3.  | 0.9987 | 0.9990 | 0.9993 | 0.9995 | 0.9997           | 0.9998 | U.7776 |        |        |        |