

Organization: NTRO

PS Code: 1450

Problem Statement Title: Develop and deploy a Large Language Model (LLM) based tool for generating human like responses to natural language inputs for network not connected over internet

Team Name: Aarohan915

Team Leader Name: Samiul Sheikh

Institute Code (AISHE): **C-33641**

Institute Name: V.J.T.I. Mumbai

PROBLEM STATEMENT DETAILS

Dataset

- We have a vast network of information using Microsoft Knowledge Graph and Unarxiv Dataset.
- We have a corpus of 1.5M+ Research papers across 8 categories and 150+ subcategories. Each paper is divided into subsections.
- Each paper is present in .json format. We have over 20+GBs of data present that we are converting into a Knowledge Graph using NebulaGraph

Document Segmentation & Multimedia Information Retrieval:

- The input could be URLs, PDFs, or simple text. These may be multimedia and multilingual.
- Through OCR and image captioning, we can generate a description of the image.
- Through transcript generations and frame-by-frame image segmentation, we can get textual representation. For the Multilingual approach, we employ Neural Machine Translation to convert to English for processing
- We include equations and table information with the help of Document Q&A.
- Using the references we will develop a Citation Network and develop a Knowledge Graph with a Concept Graph for each subsection of a research paper. This is done with the help of Retrieval Augmented Generation(RAG)

SUMMARIZATION

Knowledge Graph Summarization

- Each subsection is converted into a concept map using GNN methods like Retrieval Augmented Generation(RAG). This would make summarization and overview generation easier.
- The incoming S&T paper is put through a clustering method to find categories and subcategories for paper recommendation and citation network
- Now we employ Retrieval Augmented Generation over LLMs for summary generation over each subsection.
- The method of subsection summarization over multiple documents gives a structured overview from basics to advanced of all the novel methods and techniques in that particular research area based on category and subcategory
- An alternate method of using PageRank and Centrality measures on the graph embeddings after cluster generation of concepts. Overview can also be generated with the help of Latent Direchlet Allocation (LDA)

NLP Summarization

- Using open-sourced finetuned LLMs we were able to generate summaries over multiple documents and present them in a structured format of subcategories.
- This was done by employing embedding, clustering, and text-generation methods

MODELS COMPUTATIONAL REQUIREMENTS & INFERENCE TIME

	<u> </u>			
TASKS	model used	memory capacity:	parameters	inference speed (on CPU):
DOCUMENT SEGMENTATION	docsegtr	1GB	-	20s
OCR	pytersseract	13.6 kB	-	3s
IMAGE CAPTIONING	Salesforce/blip-image- captioning-large	1.88GB	-	10s
TRANSCRIPT GENERATION	openai/whisper-large-v2	~6GBs	1550 M	54s-270s
SUMMARY GENERATION	meta-llama/Llama-2-7b- chat-hf	~4GB	70B	5 tokens/min
OVERVIEW GENERATION	meta-llama/Llama-2-7b- chat-hf	~4GB	70B	5 tokens/min
GRAMMER CHECK	meta-llama/Llama-2-7b- chat-hf	~4GB	70B	5 tokens/min
COMMON SENSE REASONING	meta-llama/Llama-2-7b- chat-hf	~4GB	70B	5 tokens/min
DOCUMENT QUESTION AND ANSWERING	meta-llama/Llama-2-7b- chat-hf	~4GB	70B	5 tokens/min

Concurrency Time: 1 min for upto 100 Requests

APPLICATIONS:

- DOWNLINK SATELLITE DATA ANALYSIS
- RESEARCH PAPER CODE GENERATION
- ADVANCED FAKE NEWS DETECTION SYSTEM
- IDENTIFYING & EXPLORING RESEARCH AREAS

- RAG: NebulaGraph, Text2Cypher
- Summarizer: allenai/led-large-16384-arxiv
- clustering or semantic search:
- sentence-transformers/paraphrase-MiniLM-L6-v2
- -sentence-transformers/distilbert-base-nli-mean-token

Team Member Details

Team Leader: Samiul Sheikh

B.Tech, Electronics Engineering, Final Year, VJTI

Team Member 1: Mihir Sahasrabudhe

B.Tech, Electronics Engineering, Final Year, VJTI

Team Member 2: Sheena Dmello

B.Tech, Electronics Engineering, Final Year, VJTI

Team Member 3: Pranav Janjani

B.Tech, Computer Science, Pre-Final Year, VJTI

Team Member 4: Kanak Meshram

B.Tech, Electronics Engineering, Final Year, VJTI

Team Member 5: Yash Deshpande

B.Tech, Electronics Engineering, Final Year, VJTI

Team Mentor 1: Dr. Faruk Kazi

Category: Academic; Expertise: Cybersecurity; Domain Experience: 25 Years

Team Mentor 2: Aum Patil

Category: Industry; Expertise: AI; Domain Experience: 3 Years