STAT 431 — Applied Bayesian Analysis — Course Notes

Regression Models

Spring 2019

Consider regression of a response Y (random) on a predictor X (fixed).

Data come in pairs

$$(x_1, Y_1), (x_2, Y_2), \dots (x_n, Y_n)$$

Let y be the vector of the y_i values (observed Y_i values).

-

Predictor Centering

It is customary to **center** the predictor, i.e. to use

$$x_i^{\text{cent}} = x_i - \bar{x}$$

where \bar{x} is its sample mean.

Advantages:

- Computationally: may improve Gibbs sampler mixing (because regression parameters are less correlated)
- Analytically: makes it easier to define and implement (semi-)conjugate priors (simpler expressions)

1

Linear Regression

$$Y_i = \beta_0 + \beta_1(x_i - \bar{x}) + \varepsilon_i \qquad i = 1, ..., n$$

$$\varepsilon_i \sim \text{i.i.d. N}(0, \sigma^2)$$

Alternatively (but equivalently),

$$Y_i \mid \beta_0, \beta_1, \sigma^2 \sim \text{indep. } N(\beta_0 + \beta_1(x_i - \bar{x}), \sigma^2)$$

Standard noninformative prior:

$$p(\beta_0, \beta_1, \sigma^2) \propto \frac{1}{\sigma^2}$$

that is,

$$\beta_0, \beta_1, \sigma^2 \sim \frac{1}{\sigma^2} d\beta_0 d\beta_1 d\sigma^2$$

If $\hat{\beta}_0$ and $\hat{\beta}_1$ are the usual ordinary least squares estimates of β_0 and β_1 , and

$$SSR = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1(x_i - \bar{x}))^2$$

then the posterior (under the noninformative prior) is

(See Cowles for derivation.)

Since the pairs (β_0, σ^2) and (β_1, σ^2) have normal-inverse gamma posteriors, the posterior marginals for β_0 and β_1 are

$$\beta_0 \mid \mathbf{y} \sim t(\hat{\beta}_0, s^2/n, n-2)$$

 $\beta_1 \mid \mathbf{y} \sim t(\hat{\beta}_1, s^2/\sum (x_i - \bar{x})^2, n-2)$

where

$$s^2 = SSR/(n-2)$$

Accordingly, the posterior credible intervals turn out to be equivalent to confidence intervals (just as in the case of a normal sample).

(See Cowles for a data example.)

Remarks:

- ► There is also a (fully) conjugate prior, based on normal-inverse gamma distributions.
- Normal priors are semi-conjugate for β_0 and β_1 , and an inverse gamma prior is semi-conjugate for σ^2 .
- As in the normal sample model, a (multivariate) Jeffreys prior exists, but is rarely used.

GLM Regression

Idea: Express a mean-related parameter of the model distribution of Y as a (transformed) linear regression on X.

Eg: Logistic Regression

$$Y_i \mid \pi_i \sim \text{binomial}(n_i, \pi_i)$$

$$\ln\left(\frac{\pi_i}{1 - \pi_i}\right) = \log \operatorname{it}(\pi_i) = \beta_0 + \beta_1(x_i - \bar{x})$$

۶

Eg: Poisson Loglinear Regression

$$Y_i \mid \lambda_i \sim \text{Poisson}(\lambda_i)$$

$$\ln(\lambda_i) = \beta_0 + \beta_1(x_i - \bar{x})$$

Priors on β_0 and β_1 can be specified similarly to linear regression, e.g.

$$\beta_0, \beta_1 \sim 1 d\beta_0 d\beta_1$$

Q

Example: Shark Attacks

 Y_i = number of shark attacks (worldwide) x_i = year (2005–2017)

- ► Are shark attacks becoming more frequent?
- ► How many were predicted for 2018? (Actual: 66)

Since attacks are "rare" and usually unrelated, suppose

$$Y_i \mid \lambda_i \sim \text{indep. Poisson}(\lambda_i)$$

$$\ln(\lambda_i) = \beta_0 + \beta_1(x_i - \bar{x})$$

We will choose "vague" but proper priors:

$$\beta_0, \beta_1 \sim \text{indep. N}(0, 100^2)$$

[Draw preliminary model graph ...]

The data:

Х

Note the response of NA for the year 2018.

The "missing" Y value for 2018 will be sampled as an unobserved random node, to give its posterior predictive distribution.

```
The JAGS code:
data {
  xmean \leftarrow mean(x[1:(length(x)-1)])
  for(i in 1:length(x)) {
    xcent[i] <- x[i] - xmean
  }
model {
  for(i in 1:length(y)) {
    y[i] ~ dpois(lambda[i])
    log(lambda[i]) <- beta0 + beta1 * xcent[i]</pre>
  }
  beta0 ~ dnorm(0, 0.0001)
  beta1 ~ dnorm(0, 0.0001)
  beta1.gt.0 <- beta1 > 0
```

Notes:

▶ To get the centered version of x (xcent), we subtract xmean.

Only the observed cases (1:(length(x)-1)) are used in the mean.

▶ We define beta1.gt.0 so we can calculate the posterior probability that $\beta_1 > 0$.

R/JAGS Example 10.1:

Poisson Regression

Hierarchical Normal Regression

Now suppose that, in addition to X and Y, there is a grouping variable.

Let

$$Y_{ij} = {
m response} \ {
m of} \ j{
m th} \ {
m observation} \ {
m in} \ {
m group} \ i$$
 $x_{ij} = {
m its} \ {
m predictor} \ {
m value}$

Let

$$\bar{x} = \text{average of } all \ x_{ij} \text{ values}$$

(We will use the same covariate centering for all groups.)

Each group can have its own regression line:

$$Y_{ij} = \alpha_{0i} + \alpha_{1i}(x_{ij} - \bar{x}) + \varepsilon_{ij}$$

 $\varepsilon_{ij} \sim \text{i.i.d. N}(0, \sigma_y^2)$

The model becomes

$$Y_{ij} \mid \alpha_{0i}, \alpha_{1i}, \sigma_y^2 \sim \text{indep. N}(\alpha_{0i} + \alpha_{1i}(x_{ij} - \bar{x}), \sigma_y^2)$$

A semi-conjugate prior for the variance:

$$\sigma_y^2 \sim \mathrm{IG}(a_y, b_y)$$

We will assume it is independent of the other parameters.

Two potential prior formulations for α_{0i} and α_{1i} :

- Univariate: assumes α_{0i} and α_{1i} are (a priori) independent
- ▶ Bivariate: allows (conditional) prior correlations between α_{0i} and α_{1i}

Correlations between α_{0i} and α_{1i} are frequently encountered ...

[Illustrate with regression lines ...]

Univariate Formulation

$$\left. \begin{array}{l} \alpha_{0i} \mid \beta_0, \sigma_{\alpha_0}^2 \quad \sim \quad \mathrm{N}(\beta_0, \sigma_{\alpha_0}^2) \\ \alpha_{1i} \mid \beta_1, \sigma_{\alpha_1}^2 \quad \sim \quad \mathrm{N}(\beta_1, \sigma_{\alpha_1}^2) \end{array} \right\} \quad \begin{array}{l} \text{all} \\ \text{conditionally} \\ \text{independent} \end{array}$$

$$\left. \begin{array}{ll} \beta_0 & \sim & \mathcal{N}(\mu_0, \sigma_0^2) \\ \beta_1 & \sim & \mathcal{N}(\mu_1, \sigma_1^2) \\ \\ \sigma_{\alpha_0}^2 & \sim & \mathcal{IG}(a_{\alpha_0}, b_{\alpha_0}) \\ \\ \sigma_{\alpha_1}^2 & \sim & \mathcal{IG}(a_{\alpha_1}, b_{\alpha_1}) \end{array} \right\} \ \ \text{independent}$$

 $[\ \mathsf{Draw} \ \mathsf{model} \ \mathsf{graph} \ \dots \]$

Example: Baby Rat Weights

$$Y_{ij} = \text{mass of rat } i \text{ (g?)} \text{ at } j \text{th measurement}$$
 $x_{ij} = \text{age of rat } i \text{ (days)} \text{ at } j \text{th measurement}$

The measurements were synchronous:

$$x_{ij} = x_j$$
 (8, 15, 22, 29, or 36)

so $\bar{x}=22$.

Rat mass values in file ex10.2data.txt (truncated):

```
151
     199
           246
                 283
                       320
145
     199
           249
                 293
                       354
147
     214
           263
                 312
                       328
155
     200
           237
                 272
                       297
135
     188
           230
                 280
                       323
159
     210
           252
                 298
                       331
. . .
```

Each row is a different rat, and each column is a different age.

Plot of the "growth curves":

We can create the necessary data objects in R:

Y is a data frame, but it can be indexed like a matrix.

The JAGS code:

```
data {
  \dim Y \leftarrow \dim(Y)
model {
  for(i in 1:dim.Y[1]) {
    for(j in 1:dim.Y[2]) {
      Y[i,j] ~ dnorm(mu[i,j], tausq.y)
      mu[i,j] \leftarrow alpha0[i] + alpha1[i] * (x[j] - xbar)
    }
    alpha0[i] ~ dnorm(beta0, tausq.alpha0)
    alpha1[i] ~ dnorm(beta1, tausq.alpha1)
  tausq.y ~ dgamma(0.001, 0.001)
  sigma.y <- 1 / sqrt(tausq.y)</pre>
  beta0 ~ dnorm(0.0, 1.0E-6)
  beta1 ~ dnorm(0.0, 1.0E-6)
  tausq.alpha0 ~ dgamma(0.001, 0.001)
  tausq.alpha1 ~ dgamma(0.001, 0.001)
  sigma.alpha0 <- 1 / sqrt(tausq.alpha0)</pre>
  sigma.alpha1 <- 1 / sqrt(tausq.alpha1)</pre>
```

R/JAGS Example 10.2:

Hierarchical Normal Regression: Univariate Formulation

Bivariate Formulation

$$oldsymbol{lpha}_i \ = \ egin{bmatrix} lpha_{0i} \ lpha_{1i} \end{bmatrix} \ egin{bmatrix} oldsymbol{eta}, oldsymbol{\Sigma}_{lpha} & \sim & ext{i.i.d.} \ ext{N}_2(oldsymbol{eta}, oldsymbol{\Sigma}_{lpha}) \end{pmatrix}$$

where

$$oldsymbol{eta} \;\; = \;\; egin{bmatrix} eta_0 \ eta_1 \end{bmatrix} \qquad \qquad oldsymbol{\Sigma}_{lpha} \;\; = \;\; egin{bmatrix} \sigma_{lpha_0}^2 & \sigma_{lpha_{01}} \ \sigma_{lpha_{01}} & \sigma_{lpha_{1}}^2 \end{bmatrix}$$

But we probably want to let $m{\beta}$ and Σ_{α} be chosen by the data, rather than arbitrarily specified, so we add another prior level ...

A semi-conjugate hyperprior specification:

$$\left. egin{array}{lcl} oldsymbol{eta} & \sim & \mathrm{N}_2(oldsymbol{\mu}_0, oldsymbol{\Sigma}_0) \\ oldsymbol{\Sigma}_{lpha}^{-1} & \sim & \mathrm{Wishart}_2(oldsymbol{\Omega},
u) \end{array}
ight.
ight.$$
 independent

where

$$m{\mu}_0$$
 is a $2 imes 1$ vector $m{\Sigma}_0$ and $m{\Omega}$ are $2 imes 2$ matrices (positive definite) and $m{
u}$ is a positive scalar.

The Wishart_p distribution generalizes the gamma distribution to $p \times p$ non-negative definite matrices (see Cowles, Sec. 10.4.7).

Remarks:

▶ Need $\nu > p-1$ for the Wishart_p distribution to be non-degenerate.

This suggests $\nu=p$ might be a good choice — not quite "vague," but at least has relatively little information.

▶ JAGS and OpenBUGS use a special parameterization of the Wishart — see Cowles.

In this parameterization, Ω is like a prior location parameter for Σ_{α} , not for Σ_{α}^{-1} .

 $[\ \mathsf{Draw} \ \mathsf{model} \ \mathsf{graph} \ \dots \]$

Example: Baby Rat Weights (continued)

As before, we define the data in R.

We also add to the data some objects to help specify the prior:

(File ex10.3data.txt contains the mass data, as before.)

The JAGS code:

```
data {
  \dim . Y \leftarrow \dim (Y)
model {
  for(i in 1:dim.Y[1]) {
    for(j in 1:dim.Y[2]) {
      Y[i,j] ~ dnorm(mu[i,j], tausq.y)
      mu[i,j] \leftarrow alpha[i,1] + alpha[i,2] * (x[j] - xbar)
    alpha[i,1:2] ~ dmnorm(beta, Sigma.alpha.inv)
  tausq.y ~ dgamma(0.001, 0.001)
  sigma.v <- 1 / sqrt(tausq.v)</pre>
  beta ~ dmnorm(mu0, Sigma0.inv)
  Sigma.alpha.inv ~ dwish(Omega, 2)
  Sigma.alpha <- inverse(Sigma.alpha.inv)</pre>
  rho <- Sigma.alpha[1,2] / sqrt(Sigma.alpha[1,1] * Sigma.alpha[2,2])</pre>
```


R/JAGS Example 10.3:

Hierarchical Normal Regression: Bivariate Formulation

