Epidemiologische Grundmodelle

Inhaltsverzeichnis

1	Das	Das klassische SIR-Modell		
	1.1	Modelldefinition	1	
	1.2	Beziehung zur Reproduktionszahl	1	
	1.3	Exponentielle Anfangsphase	1	
	1.4	Peakhöhe der Infektiösen	1	

1 Das klassische SIR-Modell

1.1 Modelldefinition

Die Population von N Individuen wird aufgespalten in die Anteile S, I, R mit

$$S + I + R = N. \tag{1.1}$$

Die Ausbreitung der Krankheit verläuft nun gemäß

$$S' = -\frac{1}{N}\beta SI,\tag{1.2}$$

$$I' = \frac{1}{N}\beta SI - \gamma I,\tag{1.3}$$

$$R' = \gamma I. \tag{1.4}$$

Hierbei handelt es sich um ein autonomes System von gewöhnlichen Differentialgleichungen für S(t), I(t), R(t). Wie bei jedem autonomen System ist durch die Gleichungen ein dynamisches System beschrieben.

Weil dieses Modell noch keine demografische Dynamik enthält, ist N eine Konstante. Günstig ist daher die Verwendung der relativen Größen s:=S/N, i:=I/N, r:=R/N. Das System nimmt damit die Gestalt

$$s' = -\beta si,\tag{1.5}$$

$$i' = \beta s i - \gamma i,\tag{1.6}$$

$$r' = \gamma i \tag{1.7}$$

an.

1.2 Beziehung zur Reproduktionszahl

Die effektive Reproduktionszahl ist definiert gemäß $R_q:=R_0s$, wobei R_0 die Basisreproduktionszahl ist. Hierbei ist q:=1-s, so dass man $R_q=R_0$ für q=0 erhält. Man nennt q den immunen Anteil der Population.

Die Reproduktionszahl steht natürlich im Zusammenhang mit dem weiteren Verlauf der Epidemie. Zur Herleitung fragen wir, unter welchem Umstand sich die Epidemie bei $i \neq 0$ nicht weiter ausbreitet. Dazu muss i' = 0 sein. Eingesetzt in (1.6) bedeutet das

$$0 = (\beta s - \gamma)i \iff 0 = \beta s - \gamma \iff s = \gamma/\beta. \tag{1.8}$$

Nun bedeutet i' = 0 aber auch $R_q = 1$, und daher

$$1 = R_q = R_0 s = R_0 \frac{\gamma}{R}. \tag{1.9}$$

Wir finden die Beziehung

$$R_0 = \beta/\gamma. \tag{1.10}$$

1.3 Exponentielle Anfangsphase

Ist am Anfang der Epidemie $s \approx 1$, verläuft die Ausbreitung der Krankheit exponentiell. Dies lässt sich leicht einsehen. Setzt man s = 1 in (1.6) ein, ergibt sich nämlich

$$i' = \lambda i, \quad \lambda := \beta - \gamma.$$
 (1.11)

Das ist die Dgl. von Exponentialfunktionen, d. h. der Lösungen $i(t)=i(0)\,\mathrm{e}^{\lambda t}$.

Mathematisch kann man das noch ein wenig genauer herausarbeiten. Dazu werden die Größen zum Zustandsvektor x = (s, i, r) zusammengefasst. Das System ist dann abstrakt beschrieben in der Form x' = f(x). Ist nun x_0 eine Ruhelage des dynamischen Systems, genügt die Dynamik in der Nähe dieser Ruhelage unter gewissen Voraussetzungen näherungsweise dem linearen System $x' = J_0x$. Hierbei ist $J_0 := Df(x_0)$ die Jacobimatrix von f an der Stelle x_0 .

Eine Ruhelage ist definiert durch x'(t) = 0 und wird bei den epidemiologischen Modellen auch als Gleichgewicht (engl. equilibrium) bezeichnet. Dieses kann stabil oder instabil sein.

Der Funktionswert f(x) ist hier die Zusammenfassung der rechten Seiten der Gleichungen (1.5) bis (1.7) zu einem Tupel. Darin darf (1.7) entfallen, redundant weil von den anderen beiden Gleichungen entkoppelt. Das macht

$$f\begin{pmatrix} s \\ i \end{pmatrix} := \begin{pmatrix} -\beta s i \\ \beta s i - \gamma i \end{pmatrix}. \tag{1.12}$$

Somit ergibt sich

$$Df = \begin{pmatrix} -\beta i & -\beta s \\ \beta i & \beta s - \gamma \end{pmatrix}. \tag{1.13}$$

Auswertung der Matrix an der Ruhelage (s, i) = (1, 0) führt zum linearen System

$$\begin{pmatrix} s' \\ i' \end{pmatrix} = \begin{pmatrix} 0 & -\beta \\ 0 & \beta - \gamma \end{pmatrix} \begin{pmatrix} s \\ i \end{pmatrix}. \tag{1.14}$$

Das System enthält (1.11) wie gewünscht.

Es gibt noch eine zweite Ruhelage, nämlich (s, i) = (0, 0). Die Auswertung der Matrix bei dieser führt zum System

$$\begin{pmatrix} s' \\ i' \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & -\gamma \end{pmatrix} \begin{pmatrix} s \\ i \end{pmatrix}. \tag{1.15}$$

Demnach verläuft das Abklingen der Epidemie näherungsweise exponentiell gemäß $i' = -\gamma i$. Zum gleichen Ergebnis gelangt man durch Einsetzen von $s \approx 0$ in (1.6).

1.4 Peakhöhe der Infektiösen

Mit (1.6) und (1.5) gewinnt man die Dgl.

$$\frac{di}{ds} = \frac{i'(t)}{s'(t)} = \frac{\beta si - \gamma i}{-\beta si} = -1 + \frac{1}{R_0 s},$$
(1.16)

deren Lösung

$$i - i_0 = -(s - s_0) + \frac{1}{R_0} (\ln s - \ln s_0)$$
 (1.17)

Größe	Einheit	Erklärung
t	d	Zeit in Tagen
N	indv	Population
S	indv	Anfällige, engl. susceptibles
E	indv	Exponierte, engl. exposed
I	indv	Infektiöse, engl. infectious
R	indv	Erholte, engl. recovered
α	1/d	Kehrwert der Latenzzeit
β	1/d	Transmissionsrate
γ	1/d	Erholungsrate
μ	1/d	Sterberate

Tabelle 1: Größen der Modelle SIR und SEIR.

man durch Separation der Variablen erhält. Umformung dieser Gleichung liefert

$$(i+s)R_0 - \ln s = (i_0 + s_0)R_0 - \ln s_0 = \text{const.}$$
 (1.18)

D. h. die Funktion

$$F(t,(s,i)) := (i+s)R_0 - \ln s \tag{1.19}$$

ist eine erstes Integral der Bewegung. Eine nichtkonstante, stetig differenzierbare, skalarwertige Funktion F(t,x) heißt erstes Integral der Bewegung eines Systems von Differentialgleichungen erster Ordnung, x'=f(t,x), wenn F lokal konstant für jede Lösung x(t) ist, d. h. $\frac{\mathrm{d}}{\mathrm{d}t}F(t,x(t))=0$. Da hier ein dynamisches System vorliegt, bedeutet dies,

Da hier ein dynamisches System vorliegt, bedeutet dies, dass das erste Integral der Bewegung auf den Phasenraum-Trajektorien x(t) := (s(t), i(t)) konstant ist.

Bei i_{max} muss $R_0 s = 1$ bzw. $s = 1/R_0$ sein, womit wir

$$i_{\text{max}} = i_0 + s_0 - \frac{1}{R_0} - \frac{1}{R_0} \ln(R_0 s_0)$$
 (1.20)

aus (1.18) erhalten.

Dieser Text steht unter der Lizenz Creative Commons CC0.