# Sprawozdanie z obliczeń dokonanych na podstawie artkułu pt. "Wydajność złączeń i zagnieżdżeń dla schematów znormalizowanych i zdenormalizowanych", Studia Informatica

# Jan Skwarczeński

## 1. Wprowadzenie

Celem sprawozdania jest przedstawienie wyników testów wydajności zapytań dla aspektów normalizacji oraz indeksowania baz danych. Rezultaty eksperymentów oparto o porównanie dwóch systemów zarządzania bazami danych - Microsoft SQL Server oraz PostgreSQL. Badania były przeprowadzone na przykładzie tabeli geochronologicznej oraz tablicach pomocniczych zapełnionych liczbami.

### 2. Konfiguracja sprzętowa

Jednostka na której zostały przeprowadzone testy:

- CPU: Intel Core i5-8265U (4 rdzenie, 8 wątków, 1.60-3.90 GHz, 6 MB cache)
- GPU: Intel UHD Graphics 620
- RAM: 8 GB (DDR4, 2400MHz)
- SSD M.2: LiteOn CL1-3D256-Q11 (2100 MB/s / 800 MB/s)
- System operacyjny: Windows 10 Pro 21H2 64-bit

Wszelkie testy zostały wykonane przy ustawieniu komputera w najwydajniejszym trybie.

### Systemy zarządzania bazami danych:

- SQL Server Management Studio v18.11 (15.0.18404.0)
- PostgreSQL 14.3 build 1914

### 3. Przygotowanie danych

W pierwszym etapie została utworzona tabela geochronologiczna w postaci znormalizowanej (postać płatka śniegu). Obliczenia oparto na modelu tabeli ustalony przez Międzynarodową Komisję Stratygrafii (ISC) w wersji 2022/2. Podczas obliczeń został wzięty pod uwagę jedynie okres czasu odpowiadający fanerozoiku.



Rysunek 1: Schemat tabeli geochronologicznej

Znormalizowany schemat tabeli geochronologicznej jest podzielony na 5 tabeli:

- GeoEon 1 element,
- GeoEra 3 elementy,
- GeoOkres 12 elementów,
- GeoEpoka 34 elementy,
- **GeoPietro** 102 elementy.

Kolejnym krokiem było utworzenie tabeli **GeoTabela** w formie zdemoralizowanej (schemat gwiazdy). Dokonano tego na podstawie złączania INNER JOIN (w przypadku MS SQL Server) oraz NATURAL JOIN (w przypadku PostgreSQL), obejmując wszystkie tabele tworzące hierarchię.



Rysunek 2: GeoTabela

GeoTabela podobnie jak GeoPietro składa się z 102 elementów.

Następnie stworzono tabele **Dziesiec** oraz **Milion**, aby móc dokładniej sprawdzić wydajność złączeń oraz zapytań zagnieżdżonych. Tabela Dziesiec była wypełniona cyframi 0 – 9 w postaci dziesiętnej oraz binarnej i służyła do utworzenia tabeli Milion która zawierała milion elementów w postaci liczb od 0 do 999 999.

### 4. Testy

Testy wydajnościowe były podzielone na dwie części:

- pierwsza część obejmowała zapytania bez nałożonych dodatkowych indeksów (jedynymi indeksowanymi danymi były dane w kolumnach będących kluczami głównymi poszczególnych tabel),
- w drugiej części nałożono indeksy na wszystkie kolumny biorące udział w złączeniu
   (tj. id\_eon z tabeli GeoEra, id\_era z tabeli GeoOkres, id\_okres z tabeli GeoEpoka oraz id epoka z tabeli GeoPietro) i ponownie wykonano zapytania.

### Zapytania:

- Zapytanie 1 złączenie syntetyczne tablicy Milion z GeoTabela dodając do warunku złączenia operację modulo, dopasowującą zakresy wartości złączanych kolumn,
- Zapytanie 2 złączenie syntetyczne tablicy Milion z tabelą geochronologiczną w postaci znormalizowanej,
- Zapytanie 3 złączenie syntetyczne tablicy Milion z GeoTabela, ale złączenie jest wykonywane przez zagnieżdżenie skorelowane,
- Zapytanie 4 złączenie syntetyczne tablicy Milion z tabelą geochronologiczną w
  postaci znormalizowanej, ale złączenie jest wykonywane poprzez zagnieżdżenie
  skorelowane, a zapytanie wewnętrzne jest złączeniem tabel poszczególnych
  jednostek geochronologicznych.

### 5. Wyniki testów

Każdy z testów został przeprowadzony dziesięciokrotnie. Zostały pomięte wyniki mogące być błędem pomiarowym, wynikającym z chwilowego spadku mocy obliczeniowej poświęconej na wykonanie zapytań na koszt wykonania inny procesów w komputerze. Zostały obliczone wartości średnie oraz minimalne czasy wykonanie

każdego zapytania. W przypadku obu systemów zarządzania bazami danych stabilności i powtarzalność testów była na podobnym poziomie.

|              | 1 ZL |       | 2 ZL |       | 3 ZL  |         | 4 ZL |       |
|--------------|------|-------|------|-------|-------|---------|------|-------|
| BEZ INDEKSÓW | MIN  | SR    | MIN  | SR    | MIN   | SR      | MIN  | SR    |
| SQL SERVER   | 29   | 35.8  | 27   | 30.8  | 27    | 32.6    | 28   | 34.9  |
| POSTGRESQL   | 152  | 162.6 | 304  | 354.6 | 11426 | 12096.6 | 151  | 170.4 |
| Z INDEKSAMI  | MIN  | SR    | MIN  | SR    | MIN   | SR      | MIN  | SR    |
| SQL SERVER   | 27   | 29.6  | 26   | 29.2  | 29    | 30.6    | 28   | 30.4  |
| POSTGRESQL   | 136  | 168.8 | 240  | 267.8 | 11356 | 12004.4 | 149  | 183   |

Tabela 1: Wyniki testów podane w milisekundach

Poniższe wykresy zostały oparte na wartościach średnich.



Dla zapytania pierwszego czas wykonania w MS Server jest około pięciokrotnie niższy niż w PostgreSQL. Po nałożeniu indeksów w przypadku MS Server zyskujemy 6.2 ms. W przypadku PostgreSQL ta operacja powoduję nieznaczne zwolnienie procesu.



W przypadku zapytania drugiego czasy dla MS Server są do siebie bardzo zbliżone. Różnice mogą wynikać z błędów pomiarowych. Jednak w przypadku PostgrSQL widać wyraźną różnice na korzyść tabeli z indeksami, która przy dużej ilości danych może znacząco skrócić czas pracy.



W zapytaniu 3 są widoczne największe różnice pomiędzy opracowywanymi systemami zarządzania bazami danych (około 400 krotnie dłuższy czas obliczania dla PostgreSQL). Poindeksowanie tablic daje nieznaczne różnice biorąc pod uwagę skalę.



Dla zapytania 4 w przypadku MS Server korzystniejszy czas otrzymujemy dla operacji wykonywanych na danych z indeksami (około 15%). Obliczenia w PostgreSQL zajmują znacznie dużej, jednak wykonują się szybciej na danych bez indeksów ( o około 7%).

### 6. Wnioski

- Postać zdenormalizowana w większości przypadków jest wydajniejsza od postaci znormalizowanej. Wyjątek jednak stanowi porównanie zapytania 3 oraz 4 w systemie PostgreSQL, czyli operacji związanej z zagnieżdżeniem skorelowanym. Dla postaci znormalizowanej otrzymujemy tam kilkukrotnie dłuższy czas. Jednak należy pamiętać, że postać znormalizowana jest łatwiejsza w późniejszej edycji i rozbudowie.
- Użycie indeksów w MS Server zawsze przynosiło pozytywny skutek, jednak w dwóch przypadkach był on nieznaczny i mieścił się w granicach błędu

- pomiarowego. W PostgreSQL wyraźną korzyść użycia indeksów było widać tylko podczas zapytania 2.
- System bazo danowy PostgreSQL z przygotowanymi testami radził sobie w każdym przypadku kilkukrotnie mniej wydajnie. Największa różnica była w przypadku operacji związanej z zagnieżdżeniami skorelowanymi (zapytanie 3).

### **BIBLIOGRAFIA**

- 1. WYDAJNOŚĆ ZŁĄCZEŃ I ZAGNIEŻDŻEŃ DLA SCHEMATÓW ZNORMALIZOWANYCH I ZDENORMALIZOWANYCH, STUDIA INFORMATICA Volume 31 2010 Number 2A (89)
- 2. <a href="https://stratigraphy.org/">https://stratigraphy.org/</a> tabela stratygraficzna