



## **ELETRÔNICA I**

Computação, Elétrica, Controle & Automação e Mecânica

Prof<sup>o</sup> Me. Alexsandro M. Carneiro

Corrente Alternada "Números Complexos"



# DEFINIÇÃO



- Conceito
  - Numero complexo ou números imaginários
    - → Representa a raiz quadrada de números negativos
    - → Estes números não fazem parte do conjunto dos números reais

#### **Exemplos:**

$$\sqrt{-4}$$
;  $\sqrt{-9}$ ;  $\sqrt{-10}$ ;  $\sqrt{-4} = \sqrt{j^2 4} = j\sqrt{4} = j2$ 

Unidade imaginária = j

$$j = \sqrt{-1}$$
 ou  $j^2 = -1$ 



# DEFINIÇÃO



• É possível representar a raiz quadrada de um número negativo pelo imaginário da seguinte forma:

$$-\sqrt{-x} = \sqrt{j^2 x} = j\sqrt{x}$$

Exemplos

a. 
$$\sqrt{-4} = \sqrt{j^2 4} = j\sqrt{4} = j2$$

b. 
$$\sqrt{-9} = \sqrt{j^2 9} = j\sqrt{9} = j3$$

c. 
$$\sqrt{-10} = \sqrt{j^2 10} = j\sqrt{10} = j3.16227$$



# REPRESENTAÇÃO



Plano Cartesiano





# REPRESENTAÇÃO

#### Forma cartesiana





# NOTAÇÕES



- Polar
  - Z | ângulo º
  - Exemplos
    - 10|45º
    - 110|180º
    - 4| -709
- Retangular
  - -A+jB
  - Exemplos: 3+j5, -7-j9, -8,-j10





# NOTAÇÕES NÚMEROS COMPLEXO

## Polar - Cartesiana



- $Z \mid \theta \rightarrow Z = A + jB$ 
  - A: parte real (abcissa)
    - $A = Z^* coseno(\theta)$
  - B: parte complexa (ordenada)
    - $B = Z*seno(\theta)$

Eixo Imaginário (Im)

(ângulo)seno\*Z= B



Eixo Real (R)



## Exemplos

z2=7=7+0j



Converter de retangular → polar

z1=4+j4  

$$Z = \sqrt{4^2 + 4^2}$$
  
 $Z = 5.65$   
Fi = arctg(4/4) = 45°

$$Z = 5.65$$
Fi = arctg(4/4) = 45°

$$z = \sqrt{0^2 + 3^2}$$
  
 $z = 3$   
 $z = 3$ 

$$Z = \sqrt{-3^2 + 2^2} = 3.60$$
  
Fi = arctg(2/-3)=-33.69°  
 $Z = 3.6 \mid -33.69°$   
 $Z = 3.6 \mid -33.69°$ 



# CALCULADORA Retangular → Polar

Pressionar tecla pool(A,B)

=

Vai aparecer o valor de Z

**RCL+TAN** 

Vai aparecer o ângulo fi

Ex: 3+j4 -> Z|ângulo = 5|53,13º

pool(3,4) =

5 : z

Rcl+tan → 53,13°









• Ex: Z=-4+j2

- 1) POOL(-4,2) =
- 2) 4,47
- 3) Tecla rcl e depois tangente
- 4) F = 153,43°

5) Z|teta → 4,47| 153,43º



# CALCULADORA Polar → Retangular

• Ex 5 | 53,13 $^{\circ}$   $\rightarrow$  A+jB

AGORA REC(Z,θ) geralmente acima do poo

- -REC(5,52.13) =
  - 3.0000007146 → 3 =A
- RCL+TANG = 3.99999994641 = B
- -A+Bj = 3+4j









- Calculadora (4 | 75º)
- 1. Shift pool
  - 1.  $REC(4,75^{\circ}) =$
  - 2. 1.035 → A
  - 3. RCL a Tangente

RESPOSTA = 1.035 + j 3.86



## Cartesiana > Polar

Eixo Real (R)



- $Z = A + jB \rightarrow Z \mid \theta$ 
  - Z: módulo (magnitude)
  - Θ (fi): ângulo ou fase de z

• 
$$Z = \sqrt{a^2 + b^2}$$
;  $e \theta = arctg(\frac{b}{a})$ 

# Eixo Imaginário (Im)





# Polar - Retangular



- Z = Z | Θ → A + Bj
  - A: Parte real → A = Z\* coseno(Θ)
  - B: parte Imaginária → B = Z\*seno(Θ)





## Exemplos



Converter de Polar→ Retangular

- Rcl+tang
  - 8,66

$$Z1 = 5+j8.66$$

$$z2=50|-30^{\circ}:43.3-j25$$
 $A = 50*cos(-30^{\circ}) = 43.3$ 
 $B = 50*seno(-30^{\circ}) = -25$ 
 $Z2 = 43.3-25j$ 
 $rec(50,-30) = Usando Calculadora rcl+tan -25$ 

z4=6|-90º



#### **REGRAS**



- Fique atento
  - z minúsculo é o z=a+jb
  - Z maiúsculo é o módulo de Z | θ
- Conversão graus (º) e Radianos (rd)
  - $-\pi \to 180^{\circ}$

$$-45^{\circ} = \pi/4 \text{ (rd)}, 270^{\circ} = 3\pi/2 \text{ (rd)}, 30^{\circ} = \pi/6 \text{ (rd)}$$

Forma cartesiano

$$-Z = \sqrt{a^2 + b^2}$$
;  $e \theta = arctg(\frac{b}{a})$ 



## **EXECÍCIOS 01**



Transformar de cartesiana para polar. Plotar no plano cartesiano

| Z1 = 4+j4 | Z2 = 7 +j0 |
|-----------|------------|
| Z3 = j3   | Z4 = -3+j2 |

2. Transformar de Polar em Cartesiano. Plotar no plano cartesiano.

| Z1 = 20   120º  | Z2 = 50   - 30º |
|-----------------|-----------------|
| Z3 = 100   180º | Z4 = 6   -90º   |
| Z5 = 20 240º    |                 |





• 
$$Z4 = -3+j2$$

$$-Z = \sqrt{-3^2 + 2^2} = 3.60$$

$$-\theta = arctg(\frac{2}{-3}) = 146.39$$





$$-F = 146.309^{\circ}$$





• 
$$Z3 = j3 = 0+j3$$
  
-  $Z3 = 3|+90°$ 

$$-Z = \sqrt{0^2 + 3^2}$$

$$-Z=3$$

$$-\theta = arctg(\frac{3}{0})$$

$$-\Theta = 90^{\circ}$$







- $Z1 = 20 \mid 120^{\circ}$ 
  - $-A = 20 * coseno(120^{\circ}) = -10$
  - $-B = 20 * seno(120^{\circ})=17.32$

$$-Z = -10+j17.32$$



-10 = A







•  $Z4 = 6 \mid -90^{\circ}$ 

$$-A = 6 * coseno(-90^{\circ}) = 0$$

$$-B = 6 * seno(-90^{\circ}) = -6$$

$$- Z = 0-j6$$
  
 $- Z = -j6$ 



## Operações com NC



Operações matemáticas

#### 1. Soma e Subtração

- Forma cartesiana ( retangular)
- Some ou subtraia parte real com parte real e a parte imaginária com a imaginária

• EX: 
$$z1 = 10+j10 \mid Z2=4+j4$$

$$10 + j10$$

$$+$$
  $4 + j4$ 

$$14 + j14 = 19.7 | 45^{\circ}$$



## Exemplos

-5 + 15j



#### MAIS EXEMPLOS

$$Z1=10+j10 | z2 = 5+j4 | z3 = -5+j15 | z4= -10-j20$$

c) 
$$Z2+z3$$

$$\begin{array}{r}
 10 + 10j \\
 + 5 + 4j \\
 \hline
 15 + 14j
 \end{array}$$

## Resolução



$$-Z1=10+j10 | z2 = 5+j4 | z3 = -5+j15 | z4= -10-j20$$

-j5

$$-5 + j15$$

$$-15 - j5$$

15.8|-161.59

15.8|-161.59

Pool(-15,-5) = 15.81

IM

-15



## Resolução



$$-Z1=10+j10 | z2 = 5+j4 | z3 = -5+j15 | z4= -10-j20$$

$$10 + j10$$

+ 5 + j4

15 + j14

20.51 | 43º

Pool(15,14) = 20.51ECL+TANG =  $43^{\circ}$ 





## Resolução



$$-Z1=10+j10 | z2 = 5+j4 | z3 = -5+j15 | z4= -10-j20$$

$$10 + j10$$

$$5 + j4$$

7.81|50.199

7.81|50.19º

ÌΜ

R



# Operações com NC



- Operações matemáticas
- 2. Multiplicação e Divisão
  - Forma Polar
    - Multiplique ou divida Z com Z
    - Já os ângulos faça:
      - Se multiplicação soma os ângulos
      - II. Se divisão subtraia os ângulos
  - EX:  $z1 = 10+j10 \mid Z2=4+j4$ 
    - ✓ Z1 | θ1 & Z2 | θ2
    - $\checkmark$  Z1/Z2 = (Z1)/(Z2) |  $\theta$ 1  $\theta$ 2
    - $\checkmark$  Z1\*Z2 = (Z1)\*(Z2) |  $\theta$ 1 +  $\theta$ 2



## Exemplos

78.61



- EX:  $z1 = 10+j10 \mid Z2=4+j4$ 
  - ✓ Z1\*Z2
- Z1: 10+j10 → 14.14 | 45°
- Z2: 4+j4 → 5.65 | 45°
- MULTIPLICAR
  - Z1 \* Z2 | ang1 + ang2
  - **14.14\*5.56 | 45 + 45**
  - 78.61 | 90° → 0+j78.61
  - $-\operatorname{Rec}(78,61,50)=0$
  - Rcl+ tang = 78.61



## Exemplos



- EX:  $z1 = 10+j10 \mid Z2=4+j4$ 
  - ✓ Z1/Z2
- Z1: 10+j10 → 14.14 | 45°
- Z2: 4+j4 → 5.65 | 45°
- DIVIDIR
  - Z1 / Z2 | ang1 ang2
  - **14.14/5.56 | 45 45**
  - $-2.50 \mid 0^{\circ} \rightarrow 0+j19.79 = 19.79j$
  - $-\operatorname{Rec}(2.5,0) = 2.5$
  - Rcl+ tang = 0

2.50



## **Exercícios Casa**



Dados os números Z1 e Z2 calcule:

- a) Z1\*Z2
- b) Z1-Z2
- c) Z1\*(Z1+Z2)
- d) (Z1/Z2)\*z2



## Exercícios Casa



Dados os números Z1 e Z2 calcule:

$$-Z2 = -2 - j10 \rightarrow z2$$
 angulo2

c) 
$$Z1*(Z1+Z2)$$

1ª parte : z1+z2

$$4 + 7j$$

-2 - 10j



Pool(2,-3) = 3.60

3.60 | -56.309

**RCL+TAN** F = -56.30° 2ª parte : z1\* 3.6 | -56,3º

4 +7j → 8.06 | 60.25°

8.06 \* 3.60 | 60.25+(-56.13)

29.01 | 4.129

