Diagnóstico asistido con algoritmos de clasificación: Caso de retinopatía diabética.

Dalia Camacho García Formentí

Colaboradores

Dr. Alejandro Noriega Campero (MIT)

Dr. Abdullah Almaatouq (MIT)

Dra. Daniela Meizner (APEC)

Rami Manna (MIT)

Houssam Kherraz (MIT)

Contenido

- Introducción
 - Puedo confiar en los algoritmos?
 - Retinopatía diabética (RD).
- Objetivo del proyecto
- Metodología
 - Algoritmo de clasificación y métodos de explicación
 - Experimento
- Resultados
- Conclusiones
- Referencias

1. Introducción

Importancia de los algoritmos

¿Puedo confiar en ellos?

¿Lobo o Husky?

Clasificador de nieve

(a) Husky classified as wolf

(b) Explanation

(Ribeiro 2016)

¿Y en diagnósticos médicos?

En 2015 Caruana buscó conocer la probabilidad de muerte de pacientes con neumonía

Modelo 1: AUC=0.77

Modelo 2: AUC=0.86

Es necesario generar explicaciones del funcionamiento de los algoritmos

Las predicciones de un algoritmo son correctas...

Pero no queremos que la decisión dependa sólo del algoritmo.

Esquema de decisión

1.2. Retinopatía Diabética

Diabetes

2014 8.5% (OMS 2018)

Diabetes

2016

9.4% diagnosticados (ENSANUT MC 2016)

2030

11.97%-18.29%

(Meza, 2015)

Retinopatía Diabética

2016

11% de individuos con diabetes diagnosticada ≈1% de la población (ENSANUT MC 2016)

Segunda causa de ceguera y primera causa de deficiencia visual en mayores de 50 años (López-Star 2018)

Lesiones

2. Objetivo del proyecto

Objetivo

Encontrar la mejor forma de presentar el resultado del algoritmo y su explicación para que los médicos realicen diagnósticos más acertados.

Preguntas intermedias

- ¿El desempeño de los médicos es mejor antes o después de conocer los resultados del algoritmo?
- ¿Es mejor presentar la explicación o solamente el resultado?
- ¿Cuál es la percepción que tienen sobre el algoritmo y su utilidad?

3. Metodología

¿Con qué voy a predecir?

Datos

	$\mathbf{EyePACS}$	APEC
RD no referible	$71,\!584$	112
RD referible	17,154	103
Total	88,702	215
	Entrenamiento Validación Prueba	Prueba

Datos: EyePACS

Arquitectura y parámetros

Regularización	Semilla numpy	Semilla tensorflow	Tasa de Aprendizaje	Decaímiento	Tamaño de Lote
Ridge con $\lambda = 0.01$	1	2	$1e^{-5}$	0	16
Ridge con $\lambda = 0.01$	958	384	$1e^{-5}$	0	32
Ridge con $\lambda = 0.02$	1	2	$1e^{-5}$	0	16

Modelo	ROC-AUC	
1	0.974	
2	0.960	
3	0.969	
Ensamble	0.977	

Image 224 × 224 × 3
•
(64 3×3 Convolution)
64 3×3 Convolution
*
Max pooling
*
128 3 × 3 Convolution
128 3 × 3 Convolution
*
Max pooling
256 3 × 3 Convolution
ZSG 3 × 3 CONVOIUTION
256 3 × 3 Convolution
(050.00.0
256 3 × 3 Convolution
Max pooling
+
512 3 × 3 Convolution
512 3 × 3 Convolution
*
512 3 × 3 Convolution
*
Max pooling
512 3 × 3 Convolution
*
512 3 × 3 Convolution
512 3 × 3 Convolution
▼ Convolution
Max pooling
4,096 fully connected
4,096 fully connected
1,000 fully connected
1,000 rully connected
Softmax

VGG16

Image $224 \times 224 \times 3$

Used Architecture

Resultados del modelo en APEC

¿Y la explicación?

Explicaciones interpretables localmente agnósticas a modelos: LIME

Ventanas deslizantes

Propagación de relevancia a través de las capas: LRP

Experimento

Participantes

 17 estudiantes de la subespecialidad de retina en la APEC

Año de especialidad	Participantes		
2	3		
3	12		
4	2		

Esquemas de tratamiento

- Solitario
- Respuesta binaria
- Mapa de calor y respuesta numérica

4. Resultados

Desempeño general

Modalidad	${f Algoritmo}$	Médicos	Médicos con algoritmo	Mejora porcentual	
Todas	0.92 (0.90, 0.925)	0.82 (0.80, 0.85)	ē	120	
Solitario	0.93 (0.91, 0.96)	0.87 (0.83, 0.91)		TO TO	
Respuesta binaria	$0.92\ (0.89,\ 0.95)$	$0.87\ (0.83,\ 0.90)$	$0.91\ (0.88,\ 0.95)$	$5.53\ (2.91,\ 8.02)$	
Respuesta numérica	$0.89\ (0.85,\ 0.92)$	$0.79\ (0.75,\ 0.83)$	$0.85 \ (0.8,\ 0.89)$	$7.39\ (2.91,\ 12.46)$	
y mapa de calor					

Apreciación de los médicos

Modalidad		A veces	Sí	$\frac{\mathbf{N}\mathbf{A}}{4}$
Respuesta binaria	1 4			
Respuesta numérica y mapas de calor	3	1	7	6

Desempeño individual

I think that it could be a useful screening tool for technicians for a quick referral.

It doesn't recognize the vascular proliferations near the nerve.

For me, the most useful element would be the attention maps. The confidence percentages are ambiguous

5. Conclusiones

Preguntas intermedias

- ¿El desempeño de los médicos es mejor antes o después de conocer los resultados del algoritmo? El desempeño es mejor después de conocer los resultados.
- ¿Es mejor presentar la explicación o solamente el resultado? Parece ser que el presentar el mapa de calor da mejores resultados, pero no es estadísticamente mejor que el resultado binario.
- ¿Cuál es la percepción que tienen sobre el algoritmo y su utilidad? La mayoría creen que les ayudó en al menos algunos casos y que es una buena herramienta, aunque no es perfecta.

Objetivo

Encontrar la mejor forma de presentar el resultado del algoritmo y su explicación para que los médicos realicen diagnósticos más acertados.

- Es mejor presentar los resultados del algoritmo que no hacerlo.
- El mapa de calor es útil y les da mayor información sobre cómo funciona el algoritmo.
- Los niveles de confianza son confusos.
- Combinar mapas de calor con respuesta binaria (escenario no evaluado)

Trabajo futuro

- Definir un algoritmo que distinga imágenes de buena calidad y de mala calidad.
- Extender el algoritmo de clasificación de RD a otras enfermedades de la retina haciendo uso de transfer learning.
- Llevar el diagnóstico a zonas donde no hay médicos especialistas en retina.
- Llevar esta herramienta a los médicos para que cuenten con más información al momento de hacer el diagnóstico.

6. Referencias

Referencias

- Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?": Explaining the predictions of any classifier. ArXiv, 2016. http://arxiv.org/abs/1602.04938.
- Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '15, pages 1721–1730, New York, NY, USA, 2015. ACM. http://doi.acm.org/10.1145/2783258.2788613.
- World Health Organization. Diabetes, Oct 2018.
 https://www.who.int/es/news-room/fact-sheets/detail/diabetes.
- Rosalba Rojas-Martinez, Ana Basto-Abreu, Carlos A Aguilar-Salinas, Emiliano Zárate-Rojas, Salvador Villalpando, and Tonatiuh Barrientos-Gutiérrez. Prevalencia de diabetes por diagnóstico médico previo en México. 2018. Salud Pública de México, 60:224 – 232, 06 http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342018000300003&nrm=iso.

Referencias

- R. Meza, T. Barrientos-Gutierrez, R. Rojas-Martinez, N. Reynoso-Noveron, L. S. Palacio-Mejia, E. Lazcano-Ponce, and M. Hernandez-Avila. Burden of type 2 diabetes in Mexico: past, current and future prevalence and incidence rates. Prev Med, 81:445–450, Dec 2015.
- EM López-Star, K Allison-Eckert, H Limburg, I Brea-Rodríguez, and VC Lansingh. Evaluación rápida de la ceguera evitable, incluida la retinopatía diabética, en Querétaro, México. Rev Mex Oftalmol, 92(2):8493, marzo-abril 2018
 https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=85
- 759.

 Kaggle. Diabetic retinopathy detection.

 https://www.kaggle.com/c/diabetic-retinopathy-detection/data.
- Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition, 2014.
- Mike Voets, Kajsa Mollersen, and Lars Ailo Bongo. Replication study: Development and validation of deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. CoRR, abs/1803.04337, 2018. http://arxiv.org/abs/1803.04337.

Referencias

 Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models, 2017.

