Alexandrov-Krümmung, Hadamard-Räume und der Satz von Cartan-Hadamard

Tim Baumann

Seminar Metrische Geometrie

3. Juni 2014

Wiederholung

Sei (X, d) ein Längenraum.

Definition

Eine Teilmenge $U \subseteq X$ heißt CAT(0)-Gebiet, falls gilt:

- Für alle $x,y\in U$ gibt es eine Geodäte $\sigma_{xy}:[0,1]\to U$ der Länge d(x,y).
- Alle Dreiecke Δabc mit Eckpunkten und Seiten in U erfüllen die CAT(0)-Vergleichseigenschaft:

Für alle $d \in \operatorname{Bild}(\sigma_{ac})$ mit Vergleichspunkt \overline{d} in $\Delta \overline{abc}$ gilt $d(b,d) \leq d_{\mathbb{R}^2}(\overline{b},\overline{d}).$

und analog für $d' \in \sigma_{ab}$, $d'' \in \sigma_{bc}$.

Definition

Der Längenraum X heißt CAT(0)-Raum, falls X eine Überdeckung mit offenen CAT(0)-Gebieten besitzt.

Man sagt auch, der Raum habe Alexandrov-Krümmung ≤ 0

Wiederholung

Sei (X, d) ein Längenraum.

Definition

Eine Teilmenge $U \subseteq X$ heißt CAT(0)-Gebiet, falls gilt:

- Für alle $x,y\in U$ gibt es eine Geodäte $\sigma_{xy}:[0,1]\to U$ der Länge d(x,y).
- Alle Dreiecke Δabc mit Eckpunkten und Seiten in *U* erfüllen die CAT(0)-Vergleichseigenschaft:

Für alle $d \in \operatorname{Bild}(\sigma_{ac})$ mit Vergleichspunkt \overline{d} in $\Delta \overline{abc}$ gilt $d(b,d) \leq d_{\mathbb{R}^2}(\overline{b},\overline{d}).$

und analog für $d' \in \sigma_{ab}$, $d'' \in \sigma_{bc}$.

Definition

Der Längenraum X heißt CAT(0)-Raum, falls X eine Überdeckung mit offenen CAT(0)-Gebieten besitzt.

Man sagt auch, der Raum habe Alexandrov-Krümmung ≤ 0 .

Sei (X, d) ein Längenraum. Eine Geodäte $\gamma: [a, b] \to X$ heißt linear parametrisiert, wenn für alle $a \le s < t \le b$ gilt:

$$\frac{L(\gamma|_{[s,t]})}{\gamma} = \frac{t-s}{b-a}$$

Lemma (BBI, 9.2.3)

Sei (X, d) ein Längenraum, $U \subseteq X$ ein CAT(0)-Gebiet und $\alpha, \beta: I \to U$ zwei durch dasselbe Intervall I und linear parametrisierte Geodäten in U. Dann ist die Distanzfunktion

konvex

Korollar (Eindeutigkeit)

Sei oben $I = [t_1, t_2]$ und $\alpha(t_1) = \beta(t_1)$, $\alpha(t_2) = \beta(t_2)$. Dann gilt $\alpha \equiv \beta$.

Sei (X, d) ein Längenraum. Eine Geodäte $\gamma: [a, b] \to X$ heißt linear parametrisiert, wenn für alle $a \le s < t \le b$ gilt:

$$\frac{L(\gamma|_{[s,t]})}{\gamma} = \frac{t-s}{b-a}$$

Lemma (BBI, 9.2.3)

Sei (X,d) ein Längenraum, $U\subseteq X$ ein CAT(0)-Gebiet und $\alpha,\beta:I\to U$ zwei durch dasselbe Intervall I und linear parametrisierte Geodäten in U. Dann ist die Distanzfunktion

$$\delta: I \to \mathbb{R}_{\geq 0}, \quad t \mapsto d(\alpha(t), \beta(t))$$

konvex.

Korollar (Eindeutigkeit)

Sei oben $I = [t_1, t_2]$ und $\alpha(t_1) = \beta(t_1)$, $\alpha(t_2) = \beta(t_2)$. Dann gilt $\alpha \equiv \beta$.

Sei (X, d) ein Längenraum. Eine Geodäte $\gamma : [a, b] \to X$ heißt linear parametrisiert, wenn für alle $a \le s < t \le b$ gilt:

$$\frac{L(\gamma|_{[s,t]})}{\gamma} = \frac{t-s}{b-a}$$

Lemma (BBI, 9.2.3)

Sei (X,d) ein Längenraum, $U\subseteq X$ ein CAT(0)-Gebiet und $\alpha,\beta:I\to U$ zwei durch dasselbe Intervall I und linear parametrisierte Geodäten in U. Dann ist die Distanzfunktion

$$\delta: I \to \mathbb{R}_{\geq 0}, \quad t \mapsto d(\alpha(t), \beta(t))$$

konvex.

Korollar (Eindeutigkeit)

Sei oben $I = [t_1, t_2]$ und $\alpha(t_1) = \beta(t_1)$, $\alpha(t_2) = \beta(t_2)$. Dann gilt $\alpha \equiv \beta$.

Lemma

Sei X ein vollständiger CAT(0)-Raum und $(\gamma_n:[0,1]\to X)_{n\in\mathbb{N}}$ eine Cauchy-Folge bestehend linear parametrisierten Geodäten bzgl. der Maximumsmetrik

$$d(\alpha, \beta) := \max_{t \in [0,1]} d(\alpha(t), \beta(t)).$$

Dann ist die Grenzfunktion

$$\gamma: [0,1] \to X, \quad t \mapsto \lim_{n \to \infty} \gamma_n(t)$$

eine linear parametrisierte Geodäte.

Sei (X,d) ein vollständiger CAT(0)-Raum und $c:[0,1] \to X$ eine Geodäte von x:=c(0) nach y:=c(1). Sei $\epsilon>0$ so klein, dass $\overline{B_{2\epsilon}(c(t))}$ für alle $t\in[0,1]$ eine CAT(0)-Umgebung ist. Dann gilt:

- Seien $\alpha, \beta: [0,1] \to X$ linear parametrisierte Geodäten mit $d(\alpha(t),c(t)) < \epsilon$ und $d(\beta(t),c(t)) < \epsilon$ f. a. $t \in [0,1]$. Dann ist die Abstandsfunktion $\delta(t) \coloneqq d(\alpha(t),\beta(t))$ konvex.
- **2** Für alle $\overline{x} \in B_{\epsilon}(x)$ und $\overline{y} \in B_{\epsilon}(y)$ gibt es genau eine Geodäte $\overline{c} : [0,1] \to X$ von \overline{x} nach \overline{y} , sodass

$$t\mapsto d(c(t),\overline{c}(t))$$

konvex ist.

3 Außerdem gilt: $L(\overline{c}) \le d(x, \overline{x}) + L(c) + d(\overline{y}, y)$

Bemerkung

Sei (X,d) ein vollständiger CAT(0)-Raum und $c:[0,1] \to X$ eine Geodäte von x:=c(0) nach y:=c(1). Sei $\epsilon>0$ so klein, dass $\overline{B_{2\epsilon}(c(t))}$ für alle $t\in[0,1]$ eine CAT(0)-Umgebung ist. Dann gilt:

- Seien $\alpha, \beta: [0,1] \to X$ linear parametrisierte Geodäten mit $d(\alpha(t),c(t)) < \epsilon$ und $d(\beta(t),c(t)) < \epsilon$ f. a. $t \in [0,1]$. Dann ist die Abstandsfunktion $\delta(t) \coloneqq d(\alpha(t),\beta(t))$ konvex.
- ② Für alle $\overline{x} \in B_{\epsilon}(x)$ und $\overline{y} \in B_{\epsilon}(y)$ gibt es genau eine Geodäte $\overline{c} : [0,1] \to X$ von \overline{x} nach \overline{y} , sodass

$$t\mapsto d(c(t),\overline{c}(t))$$

konvex ist.

3 Außerdem gilt: $L(\overline{c}) \le d(x, \overline{x}) + L(c) + d(\overline{y}, y)$

Bemerkung

Sei (X,d) ein vollständiger CAT(0)-Raum und $c:[0,1] \to X$ eine Geodäte von x:=c(0) nach y:=c(1). Sei $\epsilon>0$ so klein, dass $\overline{B_{2\epsilon}(c(t))}$ für alle $t\in[0,1]$ eine CAT(0)-Umgebung ist. Dann gilt:

- Seien $\alpha, \beta: [0,1] \to X$ linear parametrisierte Geodäten mit $d(\alpha(t),c(t)) < \epsilon$ und $d(\beta(t),c(t)) < \epsilon$ f. a. $t \in [0,1]$. Dann ist die Abstandsfunktion $\delta(t) \coloneqq d(\alpha(t),\beta(t))$ konvex.
- ② Für alle $\overline{x} \in B_{\epsilon}(x)$ und $\overline{y} \in B_{\epsilon}(y)$ gibt es genau eine Geodäte $\overline{c} : [0,1] \to X$ von \overline{x} nach \overline{y} , sodass

$$t\mapsto d(c(t),\overline{c}(t))$$

konvex ist.

3 Außerdem gilt: $L(\overline{c}) \le d(x, \overline{x}) + L(c) + d(\overline{y}, y)$

Bemerkung

Sei (X,d) ein vollständiger CAT(0)-Raum und $c:[0,1] \to X$ eine Geodäte von x:=c(0) nach y:=c(1). Sei $\epsilon>0$ so klein, dass $\overline{B_{2\epsilon}(c(t))}$ für alle $t\in[0,1]$ eine CAT(0)-Umgebung ist. Dann gilt:

- Seien $\alpha, \beta: [0,1] \to X$ linear parametrisierte Geodäten mit $d(\alpha(t),c(t)) < \epsilon$ und $d(\beta(t),c(t)) < \epsilon$ f. a. $t \in [0,1]$. Dann ist die Abstandsfunktion $\delta(t) \coloneqq d(\alpha(t),\beta(t))$ konvex.
- ② Für alle $\overline{x} \in B_{\epsilon}(x)$ und $\overline{y} \in B_{\epsilon}(y)$ gibt es genau eine Geodäte $\overline{c} : [0,1] \to X$ von \overline{x} nach \overline{y} , sodass

$$t\mapsto d(c(t),\overline{c}(t))$$

konvex ist.

3 Außerdem gilt: $L(\overline{c}) \leq d(x, \overline{x}) + L(c) + d(\overline{y}, y)$

Bemerkung

Sei X ein topologischer Raum, $\gamma_1, \gamma_2 : [0,1] \to X$ stetige Wege mit $p = \gamma_1(0) = \gamma_2(0)$ und $q = \gamma_1(1) = \gamma_2(1)$. Eine Homotopie der Wege γ_1 und γ_2 relativ der Endpunkte ist eine stetige Abbildung

$$H: [0,1] \times [0,1] \to X$$

mit

- $H(-,0) = \gamma_1$,
- $H(-,1) = \gamma_2$,
- H(0,t) = p für alle $t \in [0,1]$,
- H(1, t) = q für alle $t \in [0, 1]$.

Definition

Ein topologischer Raum X heißt einfach zusammenhängend, falls

- er wegzusammenhängend ist und
- jeder geschlossene Weg $\gamma:[0,1]\to X$ (d. h. $\gamma(0)=\gamma(1)$) homotop relativ der Endpunkte zum konstanten Weg $t\mapsto \gamma(0)$ ist.

Sei X ein topologischer Raum, $\gamma_1, \gamma_2: [0,1] \to X$ stetige Wege mit $p=\gamma_1(0)=\gamma_2(0)$ und $q=\gamma_1(1)=\gamma_2(1)$. Eine Homotopie der Wege γ_1 und γ_2 relativ der Endpunkte ist eine stetige Abbildung

$$H:[0,1]\times[0,1]\to X$$

mit

- $H(-,0) = \gamma_1$,
- $H(-,1) = \gamma_2$,
- H(0,t) = p für alle $t \in [0,1]$,
- H(1,t) = q für alle $t \in [0,1]$.

Definition

Ein topologischer Raum X heißt einfach zusammenhängend, falls

- er wegzusammenhängend ist und
- jeder geschlossene Weg $\gamma:[0,1]\to X$ (d. h. $\gamma(0)=\gamma(1)$) homotop relativ der Endpunkte zum konstanten Weg $t\mapsto \gamma(0)$ ist.

Eine Überlagerung eines topologischen Raumes X ist ein Tupel (\tilde{X},π) bestehend aus einem topolischen Raum \tilde{X} und einer surjektiven Überlagerungsabbildung $\pi:\tilde{X}\to X$, für die gilt: Für alle $x\in X$ gibt es eine Umgebung $U_x\subseteq X$, sodass

$$\pi^{-1}(U_{x}) = \bigcup_{i \in I} V_{i}$$

für disjunkte offene Mengen $(V_i)_{i \in I}$, für die jeweils gilt:

$$\pi|_{V_i}:V_i\to U$$

ist ein Homöomorphismus.

Beispie

Jeder Homöomorphismus ist auch eine Überlagerung.

Eine Überlagerung eines topologischen Raumes X ist ein Tupel (\tilde{X},π) bestehend aus einem topolischen Raum \tilde{X} und einer surjektiven Überlagerungsabbildung $\pi: \tilde{X} \to X$, für die gilt: Für alle $x \in X$ gibt es eine Umgebung $U_x \subseteq X$, sodass

$$\pi^{-1}(U_{x}) = \bigcup_{i \in I} V_{i}$$

für disjunkte offene Mengen $(V_i)_{i \in I}$, für die jeweils gilt:

$$\pi|_{V_i}:V_i\to U$$

ist ein Homöomorphismus.

Beispiel

Jeder Homöomorphismus ist auch eine Überlagerung.

Überlagerungsabbildungen $\pi: \tilde{X} \to X$ besitzen folgende Hochhebungseigenschaften:

Lemma (Hochheben von Wegen)

Sei $\gamma:[0,1] \to X$ ein stetiger Weg und $z \in \tilde{X}$ mit $\pi(z) = \gamma(0)$. Dann gibt es genau einen Weg $\tilde{\gamma}:[0,1] \to \tilde{X}$ mit $\tilde{\gamma}(0) = z$ und $p \circ \tilde{\gamma} = \gamma$.

Lemma (Hochheben von Weghomotopien)

Seien $\gamma_1, \gamma_2: [0,1] \to X$ zwei stetige Wege mit $p:=\gamma_1(0)=\gamma_2(0)$ und $\gamma_1(1)=\gamma_2(1)$ zusammen mit einer Homotopie $H:[0,1]\times [0,1]\to X$ zwischen γ_1 und γ_2 relativ der Endpunkte. Sei $z\in \tilde{X}$ mit $\pi(z)=p$ und $\tilde{\gamma_1}, \tilde{\gamma_2}: [0,1]\to \tilde{X}$ die Hochhebungen von γ_1 bzw. γ_2 wie in obigem Lemma. Dann gibt es genau eine Homotopie

$$\tilde{H}:[0,1]\times[0,1]\to\tilde{X}$$

von $\tilde{\gamma_1}$ und $\tilde{\gamma_2}$ relativ der Endpunkte

Überlagerungsabbildungen $\pi: \tilde{X} \to X$ besitzen folgende Hochhebungseigenschaften:

Lemma (Hochheben von Wegen)

Sei $\gamma:[0,1]\to X$ ein stetiger Weg und $z\in \tilde{X}$ mit $\pi(z)=\gamma(0)$. Dann gibt es genau einen Weg $\tilde{\gamma}:[0,1]\to \tilde{X}$ mit

$$\tilde{\gamma}(0) = z$$
 und $p \circ \tilde{\gamma} = \gamma$.

Lemma (Hochheben von Weghomotopien)

Seien $\gamma_1,\gamma_2:[0,1]\to X$ zwei stetige Wege mit $p:=\gamma_1(0)=\gamma_2(0)$ und $\gamma_1(1)=\gamma_2(1)$ zusammen mit einer Homotopie $H:[0,1]\times[0,1]\to X$ zwischen γ_1 und γ_2 relativ der Endpunkte. Sei $z\in \tilde{X}$ mit $\pi(z)=p$ und $\tilde{\gamma_1},\tilde{\gamma_2}:[0,1]\to \tilde{X}$ die Hochhebungen von γ_1 bzw. γ_2 wie in obigem Lemma. Dann gibt es genau eine Homotopie

$$\tilde{H}:[0,1]\times[0,1]\to \tilde{X}$$

von $\tilde{\gamma}_1$ und $\tilde{\gamma}_2$ relativ der Endpunkte.

Ein lokaler Homöomorphismus ist eine stetige Abbildung $f:Y\to Z$ zwischen topologischen Räumen, für die gilt: Für alle $y\in Y$ eine Umgebung $U_y\subseteq Y$ von y existiert, sodass $f(U_y)$ offen und

$$f|_{U_y}:U_y\to f(U_y)$$

ein Homöomorphismus ist.

Bemerkung

Jeder Überlagerungsabbildung $p: \tilde{X} \to X$ ist ein lokaler Homöomorphismus, aber nicht jeder lokale Homöomorphismus ist eine Überlagerungsabbildung.

Ein lokaler Homöomorphismus ist eine stetige Abbildung $f:Y\to Z$ zwischen topologischen Räumen, für die gilt: Für alle $y\in Y$ eine Umgebung $U_y\subseteq Y$ von y existiert, sodass $f(U_y)$ offen und

$$f|_{U_y}:U_y\to f(U_y)$$

ein Homöomorphismus ist.

Bemerkung

Jeder Überlagerungsabbildung $p: \tilde{X} \to X$ ist ein lokaler Homöomorphismus, aber nicht jeder lokale Homöomorphismus ist eine Überlagerungsabbildung.

Ein vollständiger, einfach zusammenhängender Längenraum mit Alexandrov-Krümmung ≤ 0 (kurz: ein CAT(0)-Raum) heißt Hadamard-Raum.

Sei X ein metrischer Raum und $p \in X$. Dann wird

$$\tilde{X}_p := \{ \text{Geodäten } \gamma : [0,1] \to X \text{ mit } \gamma(0) = p \}$$

und γ linear parametrisiert $\}$

Raum der Geodäten mit Startpunkt p genannt. Mit der Metrik

$$d(\alpha,\beta) := \max_{t \in [0,1]} |\alpha(t) - \beta(t)|$$

wird (\tilde{X}_p, d) zu einem metrischen Raum.

Der Punkt $\tilde{p} \in X_p$ sei die konstante Geodäte $t \mapsto p$.

Definition

Die Exponentialabbildung ist die Abbildung

$$\exp_p: \tilde{X}_p \to X, \quad \gamma \mapsto \gamma(1)$$

welche jede Geodäte auf ihren Endpunkt abbildet

Sei X ein metrischer Raum und $p \in X$. Dann wird

$$\tilde{X}_p := \{ \mathsf{Geod\"{a}ten} \ \gamma : [0,1] \to X \ \mathsf{mit} \ \gamma(0) = p$$
 und γ linear parametrisiert $\}$

Raum der Geodäten mit Startpunkt p genannt. Mit der Metrik

$$d(\alpha,\beta) := \max_{t \in [0,1]} |\alpha(t) - \beta(t)|$$

wird (\tilde{X}_p, d) zu einem metrischen Raum.

Der Punkt $\tilde{p} \in \ddot{X}_p$ sei die konstante Geodäte $t \mapsto p$.

Definition

Die Exponentialabbildung ist die Abbildung

$$\exp_p: \tilde{X}_p \to X, \quad \gamma \mapsto \gamma(1),$$

welche jede Geodäte auf ihren Endpunkt abbildet.

Sei X ein vollständiger CAT(0)-Raum und $p \in X$. Dann gilt:

- \tilde{X}_p ist zusammenziehbar.
- $\bullet \ \, \text{Für alle} \,\, c \in \tilde{X}_p \,\, \text{gibt es genau eine Geodäte in} \,\, \tilde{X}_p \,\, \text{von} \,\, \tilde{p} \,\, \text{nach} \,\, c.$

Sei X ein vollständiger CAT(0)-Raum und $p \in X$. Dann ist auch \tilde{X}_p vollständig.

