Grado en Ingeniería Informática

Dispositivos Hardware e Interfaces DHI

Práctica 05: Generador de Ondas

Profesores de la asignatura

- Objetivos.- Conseguir que el alumno se familiarice con el cálculo y generación de algunas señales y el envío para su presentación en la pantalla del PC con el visor del IDE de Arduino.
- Material. Arduino Uno con cable USB a PC.
- **Descripción**.- Se trata de generar seis ondas mediante cálculo y su envío por el puerto serie al PC para su visualización en el Serial Plotter del IDE del Arduino. Solo se visualizará una señal en cada momento, y se irán secuenciando en el orden establecido dando un tiempo de presentación de 5 s a cada una. Se generarán muestras con intervalo entre muestras de T_s= 5 ms (F_s= 200 muestras/s), de las siguientes señales:

Onda 1: Onda seno de una amplitud de 1,25 V sobre un nivel de continua de 2,5 V de frecuencia F_1 = 1 Hz. Se calculan N= F_s/F_1 = 200 muestras por ciclo:

Onda 2: Onda coseno de una amplitud de 1,25 V sobre un nivel de continua de 2,5 V de frecuencia F_2 = 10 Hz. Se calculan N= $10F_s/F_2$ = 200 muestras por 10 ciclos.

Onda 3: Onda modulada en amplitud (AM) usando portadora la onda 2 y moduladora la onda 1 con un índice de modulación del 50% sobre un nivel de continua de 2,5 V. Se calculan $N = F_s/F_1 = 200$ muestras por ciclo:

Onda 4: Onda triangular de una amplitud de 1,25 V sobre un nivel de continua de 2,5 V de frecuencia F_1 = 1 Hz. Se calculan N= F_s/F_1 = 200 muestras por ciclo:

Onda 5: Onda PWM de una amplitud de 5,0 V, de frecuencia F_1 = 1 Hz y ciclo de trabajo del 20%. Se calculan N= F_s/F_1 = 200 muestras por ciclo:

Onda 6: Onda BPSK (modulación por desplazamiento de fase binaria) usando onda 2 de portadora y onda 5 de moduladora. Se calculan $N=F_s/F_1=200$ muestras por ciclo:

