Part B

ER Diagram

Initial Design:

Problems:

1. When removing redundant data, there are several attributes in entites that can be derived from other attributes in vaccination.csv and us_state_vaccinations.csv. For example: Total_vaccinations_per_hundred can be derived from the formula:

$$Sampling_population = \frac{Total_vaccinations_per_hundred \times 100}{Total_vaccinations}$$

By using the formula above, we can derive other attributes that end with "per_hundred" or "per_million" with their corresponding attributes. However, I found out that the calculated sampling population value for each attribute is different in vaccination entity which means I cannot derive all other attributes with a single sampling population. Therefore, I decided to keep every attributes that ends with "per_hundred" or "per_million".

- 2. In country_data entity, there are several data repetition in the attributes (Total_vaccinations, People_vaccinated People_fully_vaccinated, Total_boosters). They can be found in the vaccination entity which is then removed.
- 3. In vaccination entity, the Iso_code attribute can be derived directly from the C_name in Country entity. As there exist a FD where C_name -> Iso_code. Therefore, it is removed from the vaccination entity.
- 4. In location.csv, last_observation_date column of each country can be derived from the date column last row of each country in the vaccination.csv which means it can be removed.
- 5. In country_data entity and country entity, there is a multi-valued attributes named vaccine. One country in location.csv can have multiple vaccines while one vaccine can be used in different countries. Therefore, there is a M:N relationship between country entity and vaccine entity. The same case goes for country_data entity.
- 6. Notice that country entity has source_website attribute that can be found at the source_url column in the last row of each country in country_data entity. However, there are only four countries in the country_data entity which does not cover other countries in the country entity. Therefore, they are kept in their original state

Final Design:

Assumptions:

- 1. Not all dates stored in the date entity exist in the state_vaccinations relationship
- 2. Not all dates stored in the date entity exist in the vaccination relationship
- 3. Not all dates stored in the date entity exist in the country data relationship
- 4. Not all dates stored in the date entity exist in the vaccination_by_manufacturer relationship
- 5. Not all dates stored in the date entity exist in the vaccination by age group relationship
- 6. Some countries may not have states (i.e. we only keep states information in United States)
- 7. Some countries may not have country_data relationship with date (i.e. we only keep four countries data)
- 8. Not all countries are included in the vaccination by manufacturer relationship
- 9. Not all countries are included in the vaccination_by_age_group relationship
- 10. Not all countries stored in the vaccine entity exist in the country_data relationship
- 11. Not all vaccines stored in the vaccine entity exist in the vaccination_by_manufacturer relationship

Mapping ER Model to Relational Model

1. Map Strong Entities

```
Country (<u>C_name</u>, Iso_code, Source_name, Source_url)
State (<u>S_name</u>)
Date (<u>Date</u>)
Vaccine (<u>V_name</u>)
Age_group (<u>Age_group</u>)
```

2. Map Weak Entities

No weak entities found

3. Map 1:1 Relationships

No 1:1 Relationships found

4. Map 1:N Relationships

State (<u>S_name</u>, L_name*)

5. Map M:N Relationships

```
State_vaccinations (<u>S_name*</u>, <u>Date*</u>, Total_vaccinations, Total_distributed People_vaccinated, People_fully_vaccinated_per_hundred, Total_vaccinations_per_hundred, People_fully_vaccinated, People_vaccinated_per_hundred, Distributed_per_hundred, Daily_vaccinations_raw, Daily_vaccinations, Daily_vaccinations_per_million, Share_doses_used, Total_boosters, Total_boosters_per_hundred)
```

Vaccination (<u>C name*, Date*, Total_vaccinations</u>, People_vaccinated,
People_fully_vaccinated, Total_boosters, Daily_vaccinations_raw, Daily_vaccinations,
Total_vaccinations_per_hundred, People_vaccinated_per_hundred,
People_fully_vaccinated_per_hundred, Total_boosters_per_hundred,
Daily_vaccinations_per_million, Daily_people_vaccinated,
Daily_people_vaccinated_per_hundred)
Country_data (<u>C name*, Date*, Source_url</u>)
Country_data_vaccine (<u>C name*, Date*, V name*</u>)
Country_vaccine (<u>C name*, V name*</u>)

6. Multi-valued Attributes

No multi-valued attributes found

7. Map higher-degree relationships

Vaccination_by_manufacturer (<u>C_name*, Date*, V_name*</u>, Total_vaccinations)
Vaccination_by_age_group (<u>C_name*, Date*, Age_group*</u>,
People_vaccinated_per_hundred, People_fully_vaccinated_per_hundred,
People_with_booster_per_hundred)

Complete Relational Model

Country (C name, Iso_code, Source_name, Source_url)

State (S name, L name*)

Date (Date)

Vaccine (V name)

Age_group (Age_group)

State_vaccinations (<u>S_name*</u>, <u>Date*</u>, Total_vaccinations, Total_distributed, People_vaccinated, People_fully_vaccinated_per_hundred, Total_vaccinations_per_hundred, People_fully_vaccinated, People_vaccinated_per_hundred, Distributed_per_hundred, Daily_vaccinations_raw, Daily_vaccinations, Daily_vaccinations_per_million, Share_doses_used, Total_boosters, Total_boosters_per_hundred)

Vaccination (<u>C_name*, Date*, Total_vaccinations</u>, People_vaccinated, People_fully_vaccinated, Total_boosters, Daily_vaccinations_raw, Daily_vaccinations, Total_vaccinations_per_hundred, People_vaccinated_per_hundred, People_fully_vaccinated_per_hundred, Total_boosters_per_hundred, Daily_vaccinations_per_million, Daily_people_vaccinated, Daily_people_vaccinated_per_hundred)

Country_data (C_name*, Date*, Source_url)

Country_data_vaccine (C_name*, Date*, V_name*)

Country_vaccine (C_name*, V_name*)

Vaccination_by_manufacturer (<u>C_name*</u>, <u>Date*</u>, <u>V_name*</u>, <u>Total_vaccinations</u>)

Vaccination_by_age_group (<u>C_name*</u>, <u>Date*</u>, <u>Age_group*</u>, People_vaccinated_per_hundred, People_fully_vaccinated_per_hundred, People_with_booster_per_hundred)

Normalization

Constructing FDs

1. Country

FD1: C_name -> Iso_code, Source_name, Source_url

Note that it is found that one source_name can have different source_url and one
source_url can have different name

2. State

FD1: S Name -> L name

3. Date

No FDs

4. Vaccine

No FDs

5. Age_group

No FDs

6. State_vaccinations

FD1: S_name, Date -> Total_vaccinations, Total_distributed, People_vaccinated, People_fully_vaccinated_per_hundred, Total_vaccinations_per_hundred, People_fully_vaccinated, People_vaccinated_per_hundred, Distributed_per_hundred, Daily_vaccinations_raw, Daily_vaccinations, Daily_vaccinations_per_million, Share_doses_used, Total_boosters, Total_boosters_per_hundred

7. Vaccination

FD1: C_name, Date -> Total_vaccinations, People_vaccinated, People_fully_vaccinated, Total_boosters, Daily_vaccinations_raw, Daily_vaccinations, Total_vaccinations_per_hundred, People_vaccinated_per_hundred, People_fully_vaccinated_per_hundred, Total_boosters_per_hundred, Daily_vaccinations_per_million, Daily_people_vaccinated, Daily_people_vaccinated_per_hundred

8. Country_data

FD1: C_name, Date -> Source_url

9. Country_data_vaccine

No FDs

10. Country_vaccine No FDs

11. Vaccination_by_manufacturer

FD1: Vaccine_name, C_name, Date -> Total_vaccinations_per_vaccine

12. Vaccination_by_age_group

FD1: Age_group, C_name, Date -> People_vaccinated_per_hundred, People_fully_vaccinated_per_hundred, People_with_booster_per_hundred

Primary Keys for relations

1. Country

PK: C_name

2. State

PK: S_name

3. Date

PK: Date

4. Vaccine

PK: V_name

5. Age_group

PK: Age_group

6. State_vaccinations

PK: S_name, Date

7. Vaccination

PK: L_name, Date

8. Country_data

PK: L_name, Date

9. Country_data_vaccine

PK: L_name, Date, V_name

10. Country_vaccine

PK: L_name, V_name

11. Vaccination_by_manufacturer

PK: V_name, L_name, Date

12. Vaccination_by_age_group PK: Age_group, L-name, Date

Decomposition

- 1. Country Relation already in 3NF
- 2. State Relation already in 3NF
- 3. Date Relation already in 3NF
- 4. Vaccine Relation already in 3NF
- Age_group Relation already in 3NF
- 6. State_vaccinations
 Relation already in 3NF
- 7. Vaccination
 Relation already in 3NF
- 8. Country_data PK: L_name, Date
- 9. Country_data_vaccine Relation already in 3NF
- 10. Country_vaccine
 Relation already in 3NF
- 11. Vaccination_by_manufacturer Relation already in 3NF
- 12. Vaccination_by_age_group Relation already in 3NF

Combine Relations

R1: Country (<u>C_name</u>, Iso_code, Source_name, Source_url)

```
R2: State (S name, L name*)
```

R3: Date (Date)

R4: Vaccine (V_name)

R5: Age_group (Age_group)

R6: State_vaccinations (<u>S_name*</u>, <u>Date*</u>, Total_vaccinations, Total_distributed, People_vaccinated, People_fully_vaccinated_per_hundred, Total_vaccinations_per_hundred, People_fully_vaccinated, People_vaccinated_per_hundred, Distributed_per_hundred, Daily_vaccinations_raw, Daily_vaccinations, Daily_vaccinations_per_million, Share_doses_used, Total_boosters, Total_boosters per_hundred)

R7: Vaccination (<u>C_name*</u>, <u>Date*</u>, <u>Total_vaccinations</u>, <u>People_vaccinated</u>, <u>People_fully_vaccinated</u>, <u>Total_boosters</u>, <u>Daily_vaccinations_raw</u>, <u>Daily_vaccinations</u>, <u>Total_vaccinations_per_hundred</u>, <u>People_vaccinated_per_hundred</u>, <u>People_fully_vaccinated_per_hundred</u>, <u>Total_boosters_per_hundred</u>, <u>Daily_people_vaccinated_per_hundred</u>, <u>Daily_people_vaccinated_per_hundred</u>)

R8: Country_data (<u>C_name*, Date*,</u> Source_url)

R9: Country_data_vaccine (<u>C_name*</u>, <u>Date*</u>, <u>V_name*</u>)

R10: Country_vaccine (C_name*, V_name*)

R11: Vaccination_by_manufacturer (C_name*, Date*, V_name*, Total_vaccinations)

R12: Vaccination_by_age_group (<u>C_name*</u>, <u>Date*</u>, <u>Age_group*</u>, People_vaccinated_per_hundred, People_fully_vaccinated_per_hundred, People_with_booster_per_hundred)

Final relational database schema

R1: Country (C name, Iso_code, Source_name, Source_url)

R2: State (S name, L_name*)

R3: Date (Date)

R4: Vaccine (V name)

R5: Age_group (Age_group)

R6: State_vaccinations (<u>S_name*</u>, <u>Date*</u>, Total_vaccinations, Total_distributed, People_vaccinated, People_fully_vaccinated_per_hundred, Total_vaccinations_per_hundred, People_fully_vaccinated, People_vaccinated_per_hundred, Distributed_per_hundred, Daily_vaccinations_raw, Daily_vaccinations, Daily_vaccinations_per_million, Share_doses_used, Total_boosters, Total_boosters_per_hundred)

R7: Vaccination (<u>C_name*</u>, <u>Date*</u>, <u>Total_vaccinations</u>, <u>People_vaccinated</u>, <u>People_fully_vaccinated</u>, <u>Total_boosters</u>, <u>Daily_vaccinations_raw</u>, <u>Daily_vaccinations</u>, <u>Total_vaccinations_per_hundred</u>, <u>People_vaccinated_per_hundred</u>, <u>People_fully_vaccinated_per_hundred</u>,

Total_boosters_per_hundred, Daily_vaccinations_per_million, Daily_people_vaccinated, Daily_people_vaccinated_per_hundred)

R8: Country_data (<u>C_name*, Date*,</u> Source_url)

R9: Country_data_vaccine (<u>C_name*, Date*, V_name*</u>)

R10: Country_vaccine (<u>C_name*</u>, <u>V_name*</u>)

R11: Vaccination_by_manufacturer (<u>C_name*</u>, <u>Date*</u>, <u>V_name*</u>, Total_vaccinations)

R12: Vaccination_by_age_group (<u>C_name*, Date*, Age_group*</u>, People_vaccinated_per_hundred, People_fully_vaccinated_per_hundred, People_with_booster_per_hundred)