Математический анализ

Харитонцев-Беглов Сергей

20 июня 2022 г.

Содержание

1. Ин	гегральное исчисление функции одной переменной	1
1.1	Первообразная и неопределенный интеграл	1
1.2	Определенный интеграл	3
1.3	Свойства интеграла	5
1.4	Приложения формулы интегрирования по частям	9
Отсту	пление. Равномерная непрерывность	12
Продо	олжение главы 1	14
1.5	Интегральные суммы	14
1.6	Несобственные интегралы	18
2. AH	ализ в метрических пространствах	26
2.1	Метрические и нормированные пространства	26
2.2	Компактность	35
2.3	Непрерывные отображения	39
2.4	Длина кривой	42
2.5	Линейные операторы	46
3. Ряд	цы	49
3.1	Ряды в нормированных пространствах	49
3.2	Знакопостоянные ряды	50
3.3	Знакопеременные ряды	53
3.4	Бесконечные произведения	57
3.5	Функциональные последовательности и ряды	58
3.6	Свойства равномерно сходящихся последовательностей и рядов	63
3.7	Степенные ряды	65
4. Ди	фференциальное исчисление функции многих переменных	70
4.1	Дифференцируемость функции многих переменных	70

СОДЕРЖАНИЕ СОДЕРЖАНИЕ

4.2	Непрерывная дифференцируемость	73
4.3	Частные производные высших порядков	74
4.4	Обратные и неявные функции	76
4.5	Вступление к неявным функциям	80
4.6	Экстремум	81

1. Интегральное исчисление функции одной переменной

1.1. Первообразная и неопределенный интеграл

Определение 1.1. $f:\langle a,b\rangle\to\mathbb{R}$. Функция $F:\langle a,b\rangle\to\mathbb{R}$ — первообразная функции f, если $F'(x)=f(x)\forall x\in\langle a,b\rangle$

Теорема 1.1. Непрерывная на промежутке функция имеет первообразную.

Доказательство. Позже.

Замечание. $\operatorname{sign} x = egin{cases} 1 & \operatorname{если} x > 0 \\ 0 & \operatorname{если} x = 0. \ \operatorname{Не} \ \operatorname{имеет} \ \operatorname{первообразной}. \\ -1 & \operatorname{если} x < 0 \end{cases}$

Доказательство. От противного: пусть нашлась $F:\langle a,b\rangle\to\mathbb{R}$ и F'(x)=sign(x).

Тогда воспользуемся теоремой Дарбу для F на отрезке [0;1].

Пусть
$$k = \frac{1}{2} \in (\text{sign }(0), \text{sign }(1))$$
. Значит $\exists c \in (0,1) \colon F'(c) = k = \frac{1}{2}$. Противоречие.

Теорема 1.2. $f, F: \langle a, b \rangle \to \mathbb{R}$ и F — первообразная для f. Тогда:

- 1. F + C первообразная для f.
- 2. Если $\Phi: \langle a, b \rangle \to \mathbb{R}$ первообразная для f, то $\Phi = F + C$.

Доказательство.

1.
$$(F(x) + C)' = F'(x) + C' = f(x)$$

2.
$$(\Phi(x)-F(x))'=\Phi'(x)-F'(x)=f(x)-f(x)=0\Rightarrow (\Phi-F)'\equiv 0\implies \Phi-F$$
 — константа.

Определение **1.2.** Неопределённый интеграл — множество всех первообразных.

$$\int f(x) dx = \{F: F$$
 — первообразная f $\}$. Но мы будем записывать $\int f(x) dx = F(x) + C$

Табличка интегралов.

1.
$$\int 0 \, dx = C$$
.

2.
$$\int x^p dx = \frac{x^{p+1}}{p+1} + C$$
, при $p \neq -1$.

$$3. \int \frac{dx}{x} = \ln|x| + C.$$

4.
$$\int a^x dx = \frac{a^x}{\ln a} + c$$
, при $a > 0, a \neq 1$.

$$5. \int \sin x \, dx = -\cos x + C.$$

6.
$$\int \cos x \, dx = \sin x + C.$$

Автор: Харитонцев-Беглов Сергей

7.
$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C.$$

8.
$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C$$

9.
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C.$$

10.
$$\int \frac{dx}{1+x^2} = \arctan x + C$$
.

11.
$$\int \frac{dx}{\sqrt{x^2+1}} = \ln|x + \sqrt{x^2 \pm 1}| + C.$$

12.
$$\int \frac{dx}{1-x^2} = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| + C$$
.

Доказательство. Для 3. Если x>0 $\int \frac{dx}{x}=\ln x+C$. Если x<0 $\int \frac{dx}{x}=\ln(-x)+C$, то есть $(\ln(-x))' = (\frac{1}{-x})(-x)' = \frac{-1}{x}.$

Для 11.
$$(\ln|x+\sqrt{x^2\pm 1}|)'=\frac{1}{x+\sqrt{x^2\pm 1}}(x+\sqrt{x^2\pm 1})'=\frac{1+\frac{x}{\sqrt{x^2\pm 1}}}{x+\sqrt{x^2}}=\frac{\frac{\sqrt{x^2pm^1}+x}{\sqrt{x^2\pm 1}}}{\sqrt{x^2\pm 1}+x}=\frac{1}{\sqrt{x^2\pm 1}}$$
 Для 13. $(\frac{1}{2}(\ln|1+x|-\ln|1-x|))'=\frac{1}{2}(\frac{1}{1+x}+\frac{1}{1-x})=\frac{1}{1-x^2}$

Замечание. $A+B := \{a+b: a \in A, b \in B\}, cA := \{ca: a \in A\}.$

$$\int f(x) \, dx + \int g(x) \, dx = \{F + C\} + \{G + \widetilde{C}\} = \{F + G + C\}.$$

Теорема 1.3 (Арифметические действия с неопределенными интегралами). Пусть $f, g: \langle a, b \rangle \to$ \mathbb{R} имеют первообразные. Тогда:

- 1. f+g имеет первообразную и $\int (f+g) dx = \int f dx + \int g dx$
- 2. αf имеет первообразную и $\int \alpha f dx = \alpha \int f dx$

Доказательство. Пусть F и G первообразные для f и g.

- 1. Тогда F + G первообразная для f + g. Тогда $\int (f + g) = F + G + C = \int f + \int g$.
- 2. Тогда αF первообразная для $\alpha f \implies \int \alpha F = \alpha F + C = \alpha (F + \frac{C}{\alpha}) = \alpha \int f$.

Следствие Линейность неопрделенного интеграла. $f,g:\langle a,b\rangle\to\mathbb{R}$ имеют первообразную $\alpha, \beta \in \mathbb{R}$, $|\alpha| + |\beta| \neq 0$. Тогда $\int (\alpha f + \beta g) = \alpha \int f + \beta \int g$.

Доказательство. Прямое следствие из теоремы выше.

Теорема 1.4 (Теорема о замене переменной в непопределенном интеграле). $f:\langle a,b\rangle\to\mathbb{R},\varphi:$ $\langle c,d \rangle \to \langle a,b \rangle$, f имеет первообразную F. φ дифференцируемая. Тогда $\int f(\varphi(t))\varphi'(t)\,dt = F(\varphi(t))+$ C.

Доказательство. Надо проверить, что $F(\varphi(t))$ — первообразная для $f(\varphi(t))\varphi'(t)$.

$$(F(\varphi(t)))' = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t))\varphi(t)...$$

Cnedembue. $\int f(\alpha x + \beta) dx = \frac{1}{\alpha} F(\alpha x + \beta) + C$

Доказательство. $\int \alpha f(\alpha x + \beta dx) = F(\alpha x + \beta) + C$. И делим обе части на α .

Теорема 1.5 (Форумла интегрирования по частям). $f, g: \langle a, b \rangle \to \mathbb{R}$, дифференцируемые, f'g имеет первообразную.

Тогда fg' имеет первообразную и $\int fg' = fg - \int f'g$

Доказательство. H — первообразная для f'g. Тогда H' = f'g.

Надо доказать, что fg - H — первообразная для fg'.

$$(fg - H)' = f'g + gh' - H' = f'g + fg' - f'g = fg'.$$

1.2. Определенный интеграл

Пусть \mathcal{F} — совокупность (множество) ограниченных плоских фигур.

 ${\it Onpedenehue}$ 1.3. Площадь: $\sigma \colon {\mathcal F} \to [0; +\infty)$, причём

- 1. $\sigma([a;b] \times [c,d]) = (b-a)(d-c)$
- 2. (Аддитивность). $\forall E_1, E_2 \in \mathcal{F} : E_1 \cap E_2 = \emptyset \Rightarrow \sigma(E_1 \cup E_2) = \sigma(E_1) + \sigma(E_2)$

 ${m C}$ войство Монотонность площади. $\forall E, \widetilde{E} \colon E \subset \widetilde{E} \Rightarrow \sigma(E) \leqslant \sigma(\widetilde{E}).$

Доказательство.
$$\widetilde{E} = E \cup (\widetilde{E} \setminus E) \Rightarrow \sigma(\widetilde{E}) = \sigma(E) + \sigma(\widetilde{E} \setminus E)$$
.

Определение **1.4.** Псевдоплощадь: $\sigma: \mathcal{F} \to [0; +\infty)$, причём

- 1. $\sigma([a;b] \times [c,d]) = (b-a)(d-c),$
- 2. $\forall E, \widetilde{E} \in \mathcal{F} : E \subset \widetilde{E} \Rightarrow \sigma(E) \leqslant \sigma(\widetilde{E}),$
- 3. Разобьем E вертикальной или горизонтальной прямой, в том числе теми прямыми, которые правее или левее E. Тогда $E = E_- \cup E_+, E_- \cap E_+ = \varnothing$ и $\sigma(E) = \sigma(E_-) + \sigma(E_+)$.

Свойства. 1. Подмножество вертикального или горизонтального отрезка имеет нулевую площадь.

2. В определении E_{-} и E_{+} неважно куда относить точки из l.

Доказательство. Пусть
$$\widetilde{E} = E_- \cup (E \cap l) = (E_- \setminus l) \cup (E \cap l)$$
. Тогда $\sigma(\widetilde{E}) = \sigma(E_- \cup (E \cap l)) = \sigma(E_- \setminus l) + \underbrace{\sigma(E \cap l)}_{=0} \Rightarrow$ вообще не имеет разницы куда относить точки из l .

Пример.

1.
$$\sigma_1(E) = \inf \left\{ \sum_{k=1}^n |P_k| \colon P_k - \text{прямоугольник}, \bigcup_{k=1}^n P_k \supset E \right\}.$$

2.
$$\sigma_2(E)=\infiggl\{\sum_{k=1}^\infty |P_k|\colon P_k$$
 — прямоугольник, $\bigcup_{k=1}^\infty P_k\supset Eiggr\}$.

Упражнение.

- 1. Доказать, что $\forall E \ \sigma_1(E) \geqslant \sigma_2(E)$.
- 2. $E = ([0,1] \cap \mathbb{Q}) \times ([0,1] \cap \mathbb{Q})$. Доказать, что $\sigma_1(E) = 1, \sigma_2(E) = 0$.

Теорема 1.6.

- 1. σ_1 квазиплощадь.
- 2. Если E' сдвиг E, то $\sigma_1(E) = \sigma_1(E')$.

Доказательство.

2. E' — сдвиг E на вектор v. Пусть P_k — покрытие $E \iff P'_k$ — покрытие E'. Знаем, что площади прямоугольников не меняются при сдвиге, а значит:

$$\sigma_1(E) = \inf\{\sum_{k=1}^n |P_k|\} = \inf\{\sum |P'_k|\} = \sigma_1(E').$$

1. \Rightarrow монотонность. Пусть есть $E \subset \widetilde{E}$. Тогда возьмем покрытие P_k для \widetilde{E} . $E \subset \widetilde{E} \subset \bigcup_{k=1}^n P_k$.

А теперь заметим, что σ_1 — inf, и любое покрытие для \widetilde{E} является покрытием и для E, т.е. все суммы из $\sigma_1(\widetilde{E})$ есть в $\sigma_1(E)$, а значит $\sigma_1(E) \leqslant \sigma_1(\widetilde{E})$ как инфинум по более широкому множеству.

1'. Докажем теперь аддитивность.

«<»:
$$\sigma_1(E) = \sigma_1(E_-) + \sigma_1(E_+)$$
. Пусть P_k — покрытие E_- , Q_j — покрытие E_+ .

Тогда
$$\bigcup_{k=1}^n P_k \cup \bigcup_{j=1}^n Q_j \supset E_- \cup E_+ = E.$$

А значит
$$\sigma_1(E) \leqslant \inf \left\{ \sum_{k=1}^n |P_k| + \sum_{j=1}^n |Q_j| \right\} = \inf \{ \sum |P_k| \} + \inf \{ \sum |Q_j| \} = \sigma_1(E_-) + \sigma(E_+).$$

Заметим, Что переход с разделением инфинумов возможен, так как P и Q выбираются независимо.

«»»: Пусть P_k — покрытие E. Тогда можно пересечь прямой (покрытие и само E) и разбить P_k на P_k^- и P_k^+ , а тогда: $|P_k| = |P_k^-| + |P_k^+|$, $\sum |P_k| = \sum |P_k^-| + \sum |P_k^+|$.

$$\sum |P_k^-|\geqslant \sigma_1(E_-), \sum |P_k^+|\geqslant \sigma_1(E^+)\Rightarrow \sum |P_k|\geqslant \sigma_1(E_-)+\sigma_1(E_+)$$
 для любого покрытия P_k , а значит и $\sigma_1(E)\geqslant \sigma_1(E_-)+\sigma_1(E_+)$

Таким образом $\sigma_1(E) = \sigma_1(E_-) + \sigma_1(E_+)$

1". Проверим, что сама площадь прямоугольника не сломалась: $\sigma_1([a,b] \times [c,d]) = (b-a)(d-c)$. Заметим, что $\sigma_1(P) \leqslant |P|$, т.к. прямоугольник можно покрыть им самим.

Чтобы доказать $\sigma_1(P)\geqslant |P|$, посмотрим на P_k . Проведем прямые содержащие все стороны прямоугольников из покрытия (и P). Заметим, что такими прямыми каждый прямоугольник разбивается на подпрямоугольники, сумма площадей которых равна площади исходного прямоугольника. Тогда заметим, что и площадь P это сумма «кусочков из нарезки» P, и некоторые части разбиения встречаются в P_k несколько раз. А значит выкинув все лишнее мы как раз получим |P|, а значит $\sigma_1(P)\geqslant |P|$.

Формально: Если
$$\bigcup_{k=1}^n P_k \supset P$$
, то $\sum_{k=1}^n |P_k| \geqslant P \Rightarrow \inf \left\{ \sum_{k=1}^n |P_k| \right\} \geqslant |P|$.

Таким образом $\sigma_1(P) = |P|$.

Определение 1.5. Пусть $f:[a,b]\to\mathbb{R}$. Тогда $f_+,f_-:[a,b]\to[0;+\inf)$. Причем $f_+(x)=\max\{f(x),0\},\ f_-=\max\{-f(x),0\}.\ f_+$ — положительная составляющая, а f_- — отрицательная составляющая.

Ceouchea. 1. $f = f_{+} - f_{-}$.

- 2. $|f| = f_+ + f_-$
- 3. $f_+ = \frac{f+|f|}{2}$, $f_- = \frac{|f|-f}{2}$. (Сложили и вычли первые два свойства)
- 4. Если $f \in C([a,b])$, то $f_{\pm} \in C([a,b])$. (Видно из 3-го пункта)

Определение 1.6. Пусть $f: [a, b] \to [0; +\infty)$.

Тогда подграфик $P_f([a;b]) := \{(x,y) \in \mathbb{R}^2 \mid x \in [a,b], 0 \leqslant y \leqslant f(x)\}$. Подграфик может быть взят и от какого-то подотрезка области определения функции!

Определение 1.7. Пусть $f \in C([a,b])$. Зафиксируем произвольную квазиплощадь σ . Тогда Определённый интеграл: $\int\limits_a^b f = \int\limits_a^b f(x) dx = \sigma(P_{f_+}([a;b])) - \sigma(P_{f_-}([a;b]))$.

Определение корректно, поскольку, раз функция непрерывна, то и составляющие непрерывны на отрезке, значит ограничены, значит под σ ограниченые множества, на которых σ определена. А позже проверим, что результат не зависит и от выбора σ .

$$m{Ceoйcmea.} \qquad 1. \int\limits_a^a f = 0. \; (\Pi$$
лощадь отрезка $= 0)$

2. $\int_{a}^{b} c = c(b-a), c \geqslant 0$ (для отрицательных будет следовать из пунктов ниже)

Доказательство. По графику очевидно :)

3.
$$f \geqslant 0 \Rightarrow \int_{a}^{b} = \sigma(P_f)$$
.

4.
$$\int_{a}^{b} (-f) = -\int_{a}^{b} f$$
.

Доказательство.
$$(-f)_+ = \max\{-f,0\} = f_-$$
. $(-f)_- = \max\{f,0\} = f_+$, откуда $\int_a^b (-f) = \sigma(P_{(-f)_+}) - \sigma(P_{(-f)_-}) = \sigma(P_{f_-}) - \sigma(P_{f_+}) = -\int_a^b f$

5.
$$f \geqslant 0 \land \int_{a}^{b} f = 0 \land a < b \Rightarrow f = 0$$
.

Доказательство. От противного. Пусть $\exists c \in [a,b] \colon f(c) > 0$. Тогда, возьмем $\varepsilon \coloneqq \frac{f(c)}{2}, \delta$ из определения непрерывности в точке c. Если $x \in (c-\delta,c+\delta)$, то $f(x) \in (f(c)-\varepsilon,f(c)+\varepsilon) = (\frac{f(c)}{2};\frac{3f(c)}{2}) \Rightarrow f(x) \geqslant \frac{f(c)}{2}$ при $x \in (c-\delta;c+\delta) \Rightarrow P_f \supset [c-\frac{\delta}{2};c+\frac{\delta}{2}] \times [0;\frac{f(c)}{2}] \Rightarrow \int\limits_a^b f = \sigma(P_f) \geqslant \delta \cdot \frac{f(c)}{2} > 0$, противоречие.

1.3. Свойства интеграла

Теорема 1.7 (Аддитивность интеграла). Пусть $f: [a, b] \to \mathbb{R}, c \in [a, b]$.

Тогда
$$\int_a^b f = \int_a^c f + \int_c^b f$$
.

Доказательство. $\int_a^b f = \sigma(P_{f_+}([a,b])) - \sigma(P_{f_-}([a,b]))$. Разделим наш [a,b] и соответствующие множества вертикальной прямой x = c. Тогда $\sigma(P_{f_+}[a,b]) - \sigma(P_{f_-}[a,b]) = \sigma_{P_{f_+}[a,c]} + \sigma_{P_{f_+}[c,b]} - \sigma(P_{f_-}[a,c]) - \sigma(P_{f_-}[c,b]) = \int_a^c f + \int_c^b f$

Теорема 1.8 (Монотонность интеграла). Пусть $f,g:[a,b]\to\mathbb{R}$ и $\forall x\in[a,b]\colon f(x)\leqslant g(x)$.

Тогда
$$\int_{a}^{b} f \leqslant \int_{a}^{b} g$$
.

Доказательство. $f_{+} = \max\{f, 0\} \leqslant \max\{g, 0\} = g_{+} \Rightarrow P_{f_{+}} \subset P_{g_{+}} \Rightarrow \sigma(P_{f_{+}}) \leqslant \sigma(P_{g_{+}}).$ $f_{-} = \max\{-f, 0\} \geqslant \max\{-g, 0\} = g_{-} \Rightarrow P_{f_{-}} \supset P_{g_{-}} \Rightarrow \sigma(P_{f_{-}}) \geqslant \sigma(P_{g_{-}}).$ $\int_{g}^{b} f = \sigma(P_{f_{+}}) - \sigma(P_{f_{-}}) \leqslant \sigma(P_{g_{+}}) - \sigma(P_{g_{-}}) = \int_{g}^{b} g.$

Credemeue. 1. $|\int_a^b f| \leqslant \int_a^b |f|$.

2.
$$(b-a) \min_{x \in [a,b]} f(x) \leqslant \int_{a}^{b} f \leqslant (b-a) \max_{x \in [a,b]} f(x)$$
.

Доказательство. 1. $-|f| \le f \le |f| \Rightarrow$ (Применим теорему к двум неравенствам) $\int_{a}^{b} -|f| \le \int_{a}^{b} f \le \int_{a}^{b} |f| \Rightarrow |\int_{a}^{b} f| \le \int_{a}^{b} |f|.$

2.
$$m := \min_{x \in [a,b]} f(x), M := \max_{x \in [a,b]} f(x). \ m \leqslant f(x) \leqslant M \Rightarrow \int_a^b m \leqslant \int_a^b f \leqslant \int_a^b M \Rightarrow m(b-a) \leqslant \int_a^b f \leqslant M(b-a).$$

Теорема 1.9 (Интегральная теорема о среднем). Пусть $f \in C([a,b])$.

Тогда
$$\exists c \in (a,b) : \int_a^b f = (b-a)f(c).$$

Доказательство. $m \coloneqq \min f = f(p), M \coloneqq \max f = f(q)$ (по теореме Вейерштрасса). Тогда $\frac{1}{b-a} \int\limits_a^b f = f(c) \Rightarrow f(p) \leqslant \frac{1}{b-a} \int\limits_a^b f \leqslant f(q) \xrightarrow{\text{т. B-K}} \exists c \in (p,q)$ или $(q,p) \colon f(c) = \frac{1}{b-a} \int\limits_a^b f$.

Определение 1.8. $I_f \coloneqq \frac{1}{b-a} \int\limits_a^b f$ — среднее значение f на отрезке [a,b].

Определение 1.9. $f:[a,b]\to\mathbb{R}$. Интеграл с переменным верхним пределом $\Phi(x)\coloneqq\int\limits_a^x f$, где $x\in[a,b]$.

Определение 1.10. $f:[a,b] \to \mathbb{R}$. Интеграл с переменным нижним пределом $\Psi(x) := \int_{x}^{b} f$, где $x \in [a,b]$.

Замечание. $\Phi(x) + \Psi(x) = \int\limits_{a}^{b} f.$

Автор: Харитонцев-Беглов Сергей

Теорема 1.10 (Теорема Барроу). Пусть $f \in C([a,b])$. Тогда $\Phi'(x) = f(x) \quad \forall x \in [a,b]$. То есть Φ — первообразная функции f.

Доказательство. Надо доказать, что $\lim_{y\to x} \frac{\Phi(y)-\Phi(x)}{y-x} = f(x)$. Проверим для предела справа (слева аналогично, но, возможно, с чуть другим порядком точек).

Тогда
$$\Phi(y) - \Phi(x) = \int_{a}^{y} f - \int_{a}^{x} f = \int_{x}^{y} f.$$

Тогда $\frac{\Phi(y)-\Phi(x)}{y-x}=\frac{1}{y-x}\int\limits_{x}^{y}f=f(c)$ для некоторого $c\in(x,y)$ по интегральной теореме о среднем.

Проверяем определение по Гейне. Берем $y_n > x$ и $y_n \to x$. Тогда $\frac{\Phi(y_n) - \Phi(x)}{y_n - x} = f(c_n)$, где $c_n \in (x, y_n), \ x < c_n < y_n \to x \Rightarrow c_n \to x \Rightarrow$ в силу непрерывности $f(c_n) \to f(x)$.

Credemeue. $\Psi'(x) = -f(x) \quad \forall x \in [a, b].$

Доказательство.
$$\Psi(x) = \int\limits_a^b f - \Phi(x) = C - \Phi(x) \Rightarrow \Psi' = (C - \Phi(x))' = -\Phi'(x) = -f(x).$$

Теорема 1.11. Непрерывная на промежутке функция имеет первообразную.

Доказательство. $f: \langle a, b \rangle \to \mathbb{R}$.

Возьмём
$$c \in (a,b)$$
 Рассмотрим $F(x) \coloneqq \begin{cases} \int\limits_{c}^{x} f & \text{при } x \geqslant c \\ -\int\limits_{x}^{c} f & \text{при } x \leqslant c \end{cases}$

Утверждаем, что F(x) — первообразная f(x). Если x > c, то F'(x) = f(x). Если x < c, то F'(x) = -(-f(x)) = f(x) Если x = c, то, так как производные слева и справа считаются правильно и равны, то и в этой точке производная есть f(x).

Теорема 1.12 (Формула Ньютона-Лейбница). $f:[a,b]\to \mathbb{R}$ и F – её первообразная. Тогда $\int\limits_a^b f=F(b)-F(a)$.

Доказательство. $\Phi(x) = \int_{a}^{x} f$ — первообразная и $F(x) = \Phi(x) + C$ (знаем, что две первообразные отличаются на константу)

Тогда
$$F(b) - F(a) = (\Phi(b) + C) - (\Phi(a) + C) = \Phi(b) - \Phi(a) = \int_a^b f$$

И ровно в этот момент мы поняли, что от выбора псевдоплощади не зависим, поскольку первообразные от них не зависят (отсылка к первому билету/началу конспекта про псевдоплощади)

Определение 1.11. $F \mid_a^b := F(b) - F(a)$

Теорема 1.13 (Линейность интеграла). $\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$.

Доказательство. Пусть F, G — первообразные для f, g.

Тогда $\alpha F + \beta G$ — первообразная для $\alpha f + \beta g$. Тогда воспользуемся формулой Ньютона-Лейбница:

$$\int_a^b \alpha f + \beta g = (\alpha F + \beta G)|_a^b = \alpha F(b) + \beta G(b) - \alpha F(a) - \beta G(a) = \alpha \int_a^b f + \beta \int_a^b g.$$

Теорема 1.14 (Формула интегрирования по частям). Пусть $f, g \in C^1[a, b]$.

Тогда
$$\int_{a}^{b} fg' = fg \mid_{a}^{b} - \int_{a}^{b} f'g.$$

Доказательство. Докажем при помощи формулы Ньютона-Лейбница. Пусть H — первообразная f'g. Тогда fg - H — первообразная для fg'.

Проверим данный факт: (fg - H)' = f'g + fg' - f'g = fg'. А значит нам можно воспользоваться формулой Ньютона-Лейбница.

$$\int_{a}^{b} fg' = (fg - H) \mid_{a}^{b} = fg \mid_{a}^{b} - H \mid_{a}^{b} = fg \mid_{a}^{b} - \int_{a}^{b} f'g.$$

Замечание Соглашение. Если a>b, то $\int\limits_a^bf:=-\int\limits_b^af.$

Мотивация: Если F — первообразная, то $\int_a^b f = F \mid_a^b$.

Теорема 1.15 (Формула замены переменной). Пусть $f \in C[a,b], \varphi : [c,d] \to [a,b], \varphi \in C^1[c,d], p,q \in [c,d].$

Тогда
$$\int_{p}^{q} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(p)}^{\varphi(q)} f(x)dx.$$

Доказательство. Пусть F — первообразная f. Тогда $\int_{\varphi(p)}^{\varphi(q)} f(x) \mathrm{d}x = F \mid_{\varphi(p)}^{\varphi(q)} = F \circ \varphi \mid_p^q$. Заметим, что $F \circ \varphi$ — первообразная для $f(\varphi(t))\varphi'(t)$.

Проверим это: $(F(\varphi(t)))' = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t))\varphi'(t)$.

Тогда:
$$\int_{\varphi(p)}^{\varphi(q)} f(x) dx = F \circ \varphi|_{\varphi(p)}^{\varphi(q)} = \int_{p}^{q} f(\varphi(t)) \varphi'(t) dt$$

Пример.

$$\int_0^{\frac{\pi}{2}} \frac{\sin 2t}{1 + \sin^4 t} dt. \tag{1}$$

Произведем замену $\varphi(t)=\sin^2 t,\ f(x)=\frac{1}{1+x^2},\ \varphi'(t)=2\sin t\cos t=\sin 2t,\ \varphi(0)=0, \varphi(\frac{\pi}{2})=1$:

$$(1) = \int_0^{\frac{\pi}{2}} \frac{\varphi'(t)}{1 + (\varphi(t))^2} = \int_0^{\frac{\pi}{2}} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(0)}^{\varphi(\frac{\pi}{2})} f(x)dx = \int_0^1 f(x)dx = \int_0^1 \frac{dx}{1 + x^2} = \operatorname{arctg} x \mid_0^1 = \frac{\pi}{4}.$$

1.4. Приложения формулы интегрирования по частям

Пример. $W_n := \int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2}} \cos^n t dt = (1)$ Докажем этот момент:

Положим $x = \frac{\pi}{2} - t =: \varphi(t), \ \varphi'(t) = -1, \sin(\frac{\pi}{2} - t) = \cos t.$

Тогда (1) =
$$-\int\limits_0^{\frac{\pi}{2}}\sin^n\varphi(t)\cdot\varphi'(t)\mathrm{d}t=\int\limits_{\frac{\pi}{2}}^0\sin^nx\mathrm{d}x$$

Частные случаи $W_0 = \frac{\pi}{2}$, $W_1 = \int\limits_0^{\frac{\pi}{2}} \sin x \mathrm{d}x = -\cos \mid_0^{\frac{\pi}{2}} = 1$

Общее решение: $W_n = \int\limits_0^{\frac{\pi}{2}} \sin^n x \mathrm{d}x = -\int\limits_0^{\frac{\pi}{2}} \sin^{n-1} x \cdot (\cos x)' \mathrm{d}x = (*)$. Воспользовались тем, что $\sin x = -(\cos x)', \ f'(x) = (n-1)\sin^{n-2} x \cdot \cos x$.

Тогда получаем:

$$(*) = -\left(\underbrace{\sin^{n-1}x \cdot \cos x \mid_{0}^{\frac{\pi}{2}}}_{=0} - \int_{0}^{\frac{\pi}{2}} (n-1)\sin^{n-2}x \underbrace{\cos^{2}x}_{=1-\sin^{2}x} dx\right) =$$

$$= (n-1)\left(\int_{0}^{\frac{\pi}{2}} \sin^{n-2}x dx - \int_{0}^{\frac{\pi}{2}} \sin^{n}x dx\right) = (n-1)(W_{n-2} - W_{n}).$$

Посчитаем для четных: $W_{2n}=\frac{2n-1}{2n}\cdot W_{2n-2}=\frac{2n-1}{2n}\cdot \frac{2n-3}{2n-2}W_{2n-4}=\ldots=\frac{(2n-1)!!}{(2n)!!}\frac{\pi}{2}$, где k!! произведение натуральных чисел $\leqslant k$ той же четности, что и k.

Для нечетных:
$$W_{2n+1} = \frac{2n}{2n+1}W_{2n-1} = \frac{2n}{2n+1} \cdot \frac{2n-2}{2n-1}W_{2n-3} = \dots = \frac{(2n)!!}{(2n+1)!!}W_1 = \frac{(2n)!!}{(2n+1)!!}$$

Теорема 1.16 (Формула Валлиса).

$$\lim_{n \to +\infty} \frac{(2n)!!}{(2n-1)!!} \cdot \frac{1}{\sqrt{2n+1}} = \sqrt{\frac{\pi}{2}}.$$

Доказательство. $\sin^n x \geqslant \sin^{n+1} x$ на $[0, \frac{\pi}{2}]$. Тогда $W_n = \int_0^{\frac{\pi}{2}} \sin^n x dx \geqslant \int_0^{\frac{\pi}{2}} \sin^{n+1} x dx = W_{n+1}$.

Заметим, что $W_{2n+2}\leqslant W_{2n+1}\leqslant W_{2n}\iff \frac{\pi}{2}\frac{(2n+1)!!}{(2n+2)!!}\leqslant \frac{(2n)!!}{(2n+1)!!}\leqslant \frac{\pi}{2}\frac{(2n-1)!!}{(2n)!!}.$ Поделим на $\frac{(2n-1)!!}{(2n)!!}$:

$$\frac{\pi}{2} \frac{2n+1}{2n+2} \leqslant \frac{((2n)!!)^2}{(2n+1)((2n-1)!!)^2} \leqslant \frac{\pi}{2} \implies \lim \left(\frac{(2n)!!}{\sqrt{(2n+1)(2n-1)!!}}\right)^2 = \frac{\pi}{2}.$$

Последний переход — по двум милиционерам, т.к. при $n \to +\infty$ $\frac{2n+1}{2n+2} \to 1$

Следствие.

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \sim \frac{4^n}{\sqrt{\pi n}}.$$

Доказательство. Заметим, что $(2n)! = (2n)!! \cdot (2n-1)!!$, а $(2n)!! = 2 \cdot 4 \cdot 6 \cdot \ldots \cdot (2n) = 2^n \cdot n!$. Тогда подставим в Сшку:

$$\binom{2n}{n} = \frac{(2n)!!(2n-1)!!}{\frac{(2n)!!}{2^n}\frac{(2n)!!}{2^n}} = 4^n \cdot \frac{(2n-1)!!}{(2n)!!}.$$

При этом из Валлиса, заметим, что $\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\frac{\pi}{2}}\sqrt{2n+1} \sim \sqrt{\frac{\pi}{2}}\sqrt{2n} = \sqrt{\pi n}$. А значит все сойдется.

Теорема 1.17 (Формула Тейлора (с остатком в интегральной форме)). Пусть $f \in C^{n+1}[a,b]$, $x, x_0 \in [a,b]$. Тогда:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt.$$

Доказательство. Индукция по n:

- База. $n = 0, f(x) = f(x_0) + \int_{x_0}^x f'(t) dt = f(x_0) + f \mid_{x_0}^x$
- Переход. $n \to n+1$.
- Доказательство. $f(x) = T_n(x) + \frac{1}{n!} \int_{x_0}^x \underbrace{(x-t)^n}_{g'} \underbrace{f^{(n+1)}(t)}_f dt$. Проинтегрируем интеграл по частям. $g(t) = -\frac{(x-t)^{n+1}}{n+1}$.

Подставим:
$$\int_{x_0}^x (x-t)^n f^{(n+1)}(t) dt = -\frac{(x-t)^{n+1}}{n+1} \cdot f^{(n+1)}(t) \mid_{t=x_0}^{t=x} + \int_{x_0}^x \frac{1}{n+1} (x-t)^{n+1} \cdot f^{(n+2)}(t) dt = \underbrace{\frac{1}{n+1} (x-x_0)^{n+1} f^{(n+1)}(x_0)}_{x_0} + \int_{x_0}^x \frac{1}{n+1} (x-t)^{n+1} \cdot f^{(n+2)}(t) dt$$

Вспомнив, что у нас там ещё был $\frac{1}{n!}$ перед исходным интегралом заметим, что мы действительно получили новый член суммы и новый интеграл с $\frac{1}{(n+1)!}$, что доказывает индукционный переход.

Пример.

 $H_j := \frac{1}{j!} \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2} \right)^2 - x^2 \right)^j \cos x \mathrm{d}x. \tag{2}$

Свойство 1. $0 < H_j \leqslant \frac{1}{j!} \left(\frac{\pi}{2}\right)^{2j} \int_{0}^{\frac{\pi}{2}} \cos x dx = \frac{\left(\frac{\pi}{2}\right)^{2j}}{j!}.$

Свойство 2. $\forall c > 0 : c^j \cdot H_j \xrightarrow{j \to \infty} 0. \ 0 < c^j H_j \leqslant \frac{\left(\frac{\pi}{2}\right)^{2j} \cdot c^j}{j!} = \frac{\left(\frac{\pi^2}{4}c\right)^j}{j!} \to 0.$

Свойство 3. $H_0 = 1, H_1 = 2$ (упражнение).

Свойство 4. $H_j = (4j-2)H_{j-1} - \pi^2 H_{j-2}$, при $j \geqslant 2$.

Доказательство.

$$j!H_j = \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2} \right)^2 - x^2 \right)^j (\sin x)' dx$$
 (3)

Заметим, что
$$\left(\left(\left(\frac{\pi}{2}\right)^2-x^2\right)^j\right)'=j\left(\left(\frac{\pi}{2}\right)^2-x^2\right)^{j-1}\cdot(-2x).$$
 Тогда:
$$(3)=\underbrace{\left(\left(\frac{\pi}{2}\right)^2-x^2\right)^j\sin x\mid_{x=0}^{x=\frac{\pi}{2}}}_{=0}+2j\int_0^{\frac{\pi}{2}}\left(\left(\frac{\pi}{2}\right)^2-x^2\right)^{j-1}x\underbrace{\sin x}_{=(-\cos x)'}\mathrm{d}x=\\ =2j\underbrace{\left(\left(\frac{\pi}{2}\right)^2-x^2\right)^{j-1}\cdot x\cdot(-\cos x)\mid_{x=0}^{x=\frac{\pi}{2}}-\\ -\int_0^{\frac{\pi}{2}}\left((j-1)\left(\left(\frac{\pi}{2}\right)^2-x^2\right)^{j-2}(-2x)x+\left(\left(\frac{\pi}{2}\right)^2-x^2\right)^{j-1}\right)(-\cos x)\mathrm{d}x\right)\\ =2j\left((j-1)!H_{j-1}-2(j-1)\int_0^{\frac{\pi}{2}}\left(\left(\frac{\pi}{2}\right)^2-x^2\right)^{j-2}x^2\cos xdx\right).$$

В процессе мы дважды интегрировали по частям, а теперь нужно избавиться во втором слагаемом от x^2 . Для этого заметим, что $x^2 = \left(\frac{\pi}{2}\right)^2 - \left(\left(\frac{\pi}{2}\right)^2 - x^2\right)$, подставим и разобьём интеграл на два, которые есть H_{j-2} и H_{j-1} с нужными коэффициентами:

$$j!H_j = 2j(j-1)!H_{j-1} - 4j(j-1)\left(((j-2)!\left(\frac{\pi}{2}\right)^2)H_{j-2} - (j-1)!H_{j-1}\right)$$

Откуда с легкостью получаем $j!H_j=2j!H_{j-1}-\pi^2j!H_{j-2}+4(j-1)j!H_{j-1}\iff H_j=(4j-2)H_{j-1}-\pi^2H_{j-2}.$

Свойство 5. Существует многочлен P_n с целыми коэффициентами степени $\leqslant n$, такой что $H_j = P_j(\pi^2)$.

Доказательство.
$$P_0 \equiv 1, P_1 \equiv 2, P_n(x) = (4n-2)P_{n-1}(x) - xP_{n-2}(x).$$

Теорема 1.18 (Ламберта, доказательство: Эрмит). Числа π и π^2 иррациональные.

Доказательство. От противного. Пусть π^2 — рационально. Тогда пусть $\pi^2 = \frac{m}{n}$. Тогда $H_j = P_j(\frac{m}{n}) = \frac{\text{целое число}}{n^j} > 0$. $n^j H_j = \text{целое число} > 0 \Rightarrow n^j H_j \geqslant 1$

Ho, по свойству 2, при $j \to +\infty$ $n^j H_i \to 0$, противоречие.

Отступление. Равномерная непрерывность

Определение 1.12. $f: E \subset \mathbb{R} \to \mathbb{R}$ равномерно непрерывна на E, если $\forall \varepsilon > 0 \exists \delta > 0 \forall x, y \in E$: $|x-y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$

Определение 1.13. f непрерывна во всех точках из E: $\forall x \in E \forall \varepsilon > 0 \exists \delta > 0 \forall y \in E : |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$

Концептуальное отличие в том, что в первом случае у нас $\delta(\varepsilon)$, а во втором — $\delta(x,\varepsilon)$, т.е. при равномерной непрерывности у нас есть общая дельта по эспилону на всю область, а при непрерывности во всех точках для каждой точки своё δ по ε

Пример. $\sin x$ и $\cos x$ равномерно непрерывны на \mathbb{R} .

$$|\sin x - \sin y| \le |x - y| \Rightarrow \delta = \varepsilon$$
 подходит. $|\cos x - \cos y| \le |x - y|$.

Пример. $f(x) = x^2$ не является равномерно непрерывной на \mathbb{R} . Рассмотрим $\varepsilon = 1$, никакое $\delta > 0$ не подходит. x и $x + \frac{\delta}{2}$. $f(x + \frac{\delta}{2}) - f(x) = (x + \frac{\delta}{2})^2 - x^2 = \ldots = \delta x + \frac{\delta^2}{4} > \delta x$. При $x = \frac{1}{\delta}$ противоречие.

Теорема 1.19 (Теорема Кантора). Пусть $f \in C[a,b]$, тогда f равномерно непрерывна на [a,b].

Доказательство. Берем $\varepsilon > 0$ и предположим, что $\delta = \frac{1}{n}$ не подходит, то есть $\exists x_n, y_n \in [a, b]$: $|x_n - y_n| < \frac{1}{n}$ и $|f(x_n) - f(y_n)| \ge \varepsilon$. По теореме Больцано-Вейерштрасса у последовательности x_n есть сходящаяся подпоследовательность $x_{n_k} \to c$, то есть $\lim x_{n_k} = c \in [a, b]$.

$$\underbrace{x_{n_k} - \frac{1}{n_k}}_{\to c} < y_{n_k} < \underbrace{x_{n_k} + \frac{1}{n_k}}_{\to c} \implies \lim y_{n_k} = c. \text{ Ho } f \text{ непрерывна в точке } c \implies \lim f(x_{n_k}) = f(c) = \lim_{t \to c} f(y_{n_k}) \implies \lim_{t \to c} f(x_{n_k}) - f(y_{n_k}) = 0, \text{ но } |f(x_{n_k}) - f(y_{n_k})| \geqslant \varepsilon.$$

Замечание. Для интервала или полуинтервала неверно. $f(x) = \frac{1}{x}$ на (0;1]. Докажем, что нет равномерной непрерывности на (0;1].

Пусть
$$\varepsilon = 1$$
 и $\delta > 0$. Пусть $0 < x < \delta, \ y = \frac{x}{2}, \ |x-y| = \frac{x}{2} < \delta.$ Тогда $f(y) - f(x) = \frac{2}{x} - \frac{1}{x} = \frac{1}{x} > 1$.

Определение 1.14. Пусть $f: E \subset \mathbb{R} \to \mathbb{R}$.

Тогда $\omega_f(\delta)\coloneqq \sup\{|f(x)-f(y)|\mid \forall x,y\in E, |x-y|\leqslant \delta\}$ — модуль непрерывности f.

Coo*i*cm**b**a. 1. $\omega_f(0) = 0$,

- 2. $|f(x) f(y)| \le \omega_f(|x y|)$.
- 3. $\omega_f \uparrow$.
- 4. Если f липшицева функция с константой L, то $\omega_f(\delta) \leqslant L\delta$. В частности, если $|f'(x)| \leqslant L \quad \forall x \in \langle a,b \rangle$.
- 5. f равномерна и непрерывна на $E \iff \omega_f$ непрерывна в нуле $\iff \lim_{\delta \to 0+} \omega_f(\delta) = 0.$
 - Доказательство. $1 \to 2$. $\forall \varepsilon > 0 \exists \gamma > 0 \forall x, y \in E : |x y| < \gamma \implies |f(x) f(y)| < \varepsilon$. Возьмем $\delta < \gamma$. Тогда $|x y| \leqslant \delta \implies |x y| < \gamma \implies |f(x) f(y)| < \varepsilon \implies \sup \leqslant \varepsilon$. Тогда с одной стороны $\omega_f \geqslant 0$, а с другой ограничена ε . Следовательно предел ω_f равен 0.

- 2 \rightarrow 1. Из $\lim_{\delta \to 0+} \omega_f(\delta) = 0$. Возьмем $\delta > 0$ для $\omega_f(\delta) < \varepsilon$: $|f(x) f(y)| \leqslant \omega_f(\delta) < \varepsilon \ \forall \varepsilon$, $\forall x, y \in E \colon |x y| \leqslant \delta$.
- 6. $f \in C[a,b] \iff \omega_f$ непрерывен в нуле $\iff \lim_{\delta \to 0+} \omega_f(\delta) = 0.$

Доказательство. Для функции на отрезке равномерная непрерывность \iff непрерывность \iff теорема Кантора.

Продолжение главы 1

1.5. Интегральные суммы

Определение **1.15.** Пусть есть [a,b]. Тогда дробление (разбиение, пунктир) отрезка: набор точек: $x_0 = a < x_1 < x_2 < \ldots < x_n = b$.

Определение 1.16. Ранг дробления: $\max_{k=1,2,...,n} (x_k - x_{k-1}) \eqqcolon |\tau|, \ \tau = (x_0, x_1, \ldots, x_n)$

Определение 1.17. Оснащение дробления — набор точек $\xi = (\xi_1, \xi_2, \dots, \xi_n)$, такой что $\xi_k \in [x_{k-1}, x_k]$.

Определение 1.18. Интегральная сумма (сумма Римана) $S(f, \tau, \xi) := \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}),$

По факту просто сумма площадей прямоугольников под графиком

Теорема 1.20 (Теорема об интегральных суммах). Пусть $f \in C[a, b]$,

тогда
$$\left|\int\limits_a^b -S(f,\tau,\xi)\right|\leqslant (b-a)\omega_f(|\tau|).$$

Доказательство.

$$\Delta := \int_{a}^{b} f - \sum_{k=1}^{n} f(\xi_{k})(x_{k} - x_{k-1}) = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(t) dt - \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(\xi_{k}) dt = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} (f(t) - f(\xi_{k})) dt.$$

$$|\Delta| \leq \sum |\int \dots| \leq \sum_{k=1}^{n} \int_{x_{k}}^{x_{k}} |f(t) - f(\xi_{k})| dt \leq \sum_{k=1}^{n} (x_{k} - x_{k-1})\omega_{f}(|\tau|) = (b - a)\omega_{f}(|\tau|).$$

$$\int_{x_{k-1}}^{x_k} |f(t) - f(\xi_k)| dt \leqslant \int_{x_{k-1}}^{x_k} \omega_f(|\tau|) dt = (x_k - x_{k-1}) \omega_f(|\tau|).$$

Следствие. $\forall \varepsilon>0 \exists \delta>0 \forall$ дробления ранга $\leqslant \delta \ \forall$ оснащения $|\int\limits_a^b -S(f,\tau,\xi)|<\varepsilon$

Глава #1

Следствие. Если τ_n — последовательность дроблений, ранг которых $\to 0$, то $S(f, \tau_n, \xi_n) \to \int\limits_a^b f$.

Пример. $S_p(n) := 1^p + 2^p + \ldots + n^p$. Посчитаем $\lim_{n \to \infty} \frac{S_p(n)}{n^{p+1}}$.

Возьмем $f:[0,1] \to \mathbb{R}$ $f(t) = t^p \frac{S_p(n)}{n^{p+1}} = \frac{1}{n} \cdot \sum_{k=1}^n \left(\frac{k}{n}\right)^p = S(f,\tau,\xi)$, где $x_k = \xi_k = \frac{k}{n}$.

Тогда $\lim \frac{S_p(n)}{n^{p+1}} = \int\limits_0^1 t^p \mathrm{d}t = \frac{t^{p+1}}{p+1} \mid_{t=0}^{t=1} = \frac{1}{p+1}$

Определение 1.19. Пусть $f:[a,b]\to\mathbb{R}$, тогда f интегрируема по Риману, если $\exists I\in\mathbb{R}\forall \varepsilon>0$ $\exists \delta>0$ дробления ранга $<\delta$ его оснащения $|S(f,\tau,\xi)-I|<\varepsilon$.

I — интеграл по Риману $\int\limits_a^b f.$

Лемма. $f \in C^2[\alpha, \beta]$. Тогда

$$\int_{\alpha}^{\beta} f(t)dt - \frac{f(\alpha) + f(\beta)}{2}(\beta - \alpha) = -\frac{1}{2} \int_{\alpha}^{\beta} f''(t)(t - \alpha)(\beta - t)dt.$$

Доказательство. Пусть $\gamma \coloneqq \frac{\alpha+\beta}{2}$. Тогда:

$$\int_{\alpha}^{\beta} f(t)dt = \int_{\alpha}^{\beta} f(t)(t-\gamma)'dt = f(t)(t-\gamma) \Big|_{t=\alpha}^{t=\beta} - \int_{\alpha}^{\beta} f'(t)(t-\gamma)dt.$$

Заметим, что $f(t)(t-\gamma)\mid_{t=\alpha}^{t=\beta}=f(\beta)(\beta-\gamma)-f(\alpha)(\alpha-\gamma)=\frac{f(\alpha)+f(\beta)}{2}(\beta-\alpha)$. Продолжим:

левая часть
$$= -\int_{\alpha}^{\beta} f'(t)(t-\gamma) \mathrm{d}t = \frac{1}{2} \int_{\alpha}^{\beta} f'(t)((t-\alpha)(\beta-t))' \mathrm{d}t =$$
$$= \frac{1}{2} f'(t)(t-\alpha)(\beta-t) \mid_{t=\alpha}^{t=\beta} -\frac{1}{2} \int_{\alpha}^{\beta} f''(t)(t-\alpha)(\beta-t) \mathrm{d}t.$$

Переход к $((t-\alpha)(\beta-t))'$:

$$((t - \alpha)(\beta - t))' = (-t^2 + (\alpha + \beta)t - \alpha\beta)' = -2t + (\alpha + \beta) = -2(t - \gamma).$$

Замечание. $\frac{f(\alpha)+f(\beta)}{2}(\beta-\alpha)$ — площадь трапеции:

 Γ лава #1 15 из 82 Автор: XБ

Теорема 1.21 (Оценка погрешности в формуле трапеции). Пусть $f \in C^2[a,b]$.

Тогда:

$$\left| \int_{a}^{b} f(t) dt - \sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) \right| \leq \frac{|\tau|^2}{8} \int_{a}^{b} |f''|$$

Доказательство. $\Delta\coloneqq\int\limits_a^b-\sum\ldots=\sum\limits_{k=1}^n\int\limits_{x_{k-1}}^{x_k}f(t)\mathrm{d}t-\sum\limits_{k=1}^n\frac{f(x_{k-1})+f(x_k)}{2}(x_k-x_{k-1})$

$$|\Delta| \leqslant \sum_{k=1}^{n} \left| \int_{x_{k-1}}^{x_k} f(t) dt - \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) \right| = \frac{1}{2} \sum_{k=1}^{n} \left| \int_{x_{k-1}}^{x_k} f''(t) (t - x_{k-1}) (x_k - t) dt \right|. \tag{4}$$

Тогда вспомним, что $(t-x_{k-1})(x_k-t) \leqslant \left(\frac{x_k-x_{k-1}}{2}\right)^2 \leqslant \frac{|\tau|^2}{4} \implies (4) \leqslant \frac{1}{2} \sum_{k=1}^n \int_{x_{k-1}}^{x_k} |f''(t)| \cdot \frac{|\tau|^2}{4} dt =$

$$\frac{|\tau|^2}{8} \sum_{x_{k-1}} \int_{x_{k-1}}^{x_k} |f''| = \frac{|\tau|^2}{8} \cdot \int_a^b |f''|$$

Замечание. Пусть разбиение на n равных отрезков $x_k - x_{k-1} = \frac{b-a}{n} = |\tau|$:

$$\sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) = \frac{b-a}{n} \sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} = \frac{b-a}{n} (\frac{f(x_0)}{2} + \sum_{k=1}^{n-1} f(x_k) + \frac{f(x_n)}{2}).$$

Замечание. Возьмем разбиение на равные отрезки и $\xi_k = x_k$:

$$S(f,\tau,\xi) = \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) = \frac{b-a}{n} \sum_{k=1}^{n} f(x_k).$$

Теорема 1.22 (формула Эйлера-Маклорена). Пусть $f \in C^2[m,n]$, тогда

$$\sum_{k=m}^{n} f(k) = \frac{f(m) + f(n)}{2} + \int_{m}^{n} f(t)dt + \frac{1}{2} \int_{m}^{n} f''(t)\{t\}(1 - \{t\})dt.$$

Доказательство. Подставим $\alpha = k$ и $\beta = k + 1$ в лемму:

$$\int_{k}^{k+1} f(t)dt = \frac{f(k) + f(k+1)}{2} - \frac{1}{2} \int_{k}^{k+1} f''(t)(t-k)(k+1-t)dt =$$

$$= \frac{f(k) + f(k+1)}{2} - \frac{1}{2} \int_{k}^{k+1} f''(t)\{t\}\{1 - \{t\}\}dt.$$

Дальше суммируем по k от m до n-1:

$$\int_{m}^{n} f(t)dt = \sum_{k=m}^{n-1} \frac{f(k) + f(k+1)}{2} - \frac{1}{2} \int_{m}^{n} f''(t)\{t\}(1 - \{t\})dt.$$

Заметим, что $\sum\limits_{k=m}^{n-1} rac{f(k)+f(k+1)}{2} = rac{f(m)+f(n)}{2} + \sum\limits_{k=m+1}^{n-1} f(k)$. И тогда:

$$\sum_{k=m}^{n} f(k) = \frac{f(m) + f(n)}{2} + \int_{m}^{n} f(t)dt + \frac{1}{2} \int_{m}^{n} f''(t)\{t\}(1 - \{t\})dt.$$

Пример. $S_p(n) = 1^p + 2^p + \ldots + n^p$, $f(t) = t^p$, m = 1, $f''(t) = p(p-1)t^{p-2}$.

$$S_p(n) = \frac{1+n^p}{2} + \int_1^n t^p dt + \frac{1}{2} \int_1^n p(p-1)t^{p-2} \{t\} (1 - \{t\}) dt.$$

При $p \in (-1,1)$ $\int_1^n t^p dt = \frac{t^{p+1}}{p+1} \mid_1^n = \frac{n^{p+1}}{p+1} - \frac{1}{p+1} = \frac{n^{p+1}}{p+1} + \mathcal{O}(1).$

$$\int_{1}^{n} t^{p-2} \underbrace{\{t\}(1-\{t\})}_{\leqslant \frac{1}{4}} dt \leqslant \frac{1}{4} \int_{1}^{n} t^{p-2} dt = \frac{1}{4} \cdot \frac{t^{p-1}}{p-1} \mid_{1}^{n} = \frac{1}{4} \cdot \frac{n^{p-1}-1}{p-1} = \mathcal{O}(1).$$

То есть $S_p(n) = \frac{n^{p+1}}{p+1} + \frac{n^p}{2} + \mathcal{O}(1)$.

При p > 1 $S_p(n) = \frac{n^{p+1}}{p+1} + \frac{n^p}{2} + \mathcal{O}(n^{p-1}).$

Пример. Гармонические числа: $H_n \coloneqq 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$. $m = 1, f(t) = \frac{1}{t}, f''(t) = \frac{2}{t^3}$.

$$H_n = \frac{1 + \frac{1}{n}}{2} + \int_1^n \frac{\mathrm{d}t}{t} + \frac{1}{2} \int_1^n \frac{2}{t^3} \{t\} (1 - \{t\}) \mathrm{d}t$$

Откуда получаем $(a_n := \int_1^n \frac{\{t\}(1-\{t\})}{t^3}; \int_1^n \frac{\mathrm{d}t}{t} = \ln t \mid_1^n = \ln n)$:

$$H_n = \ln n + \frac{1}{2} + \frac{1}{2n} + a_n.$$

Заметим, что $a_{n+1} = a_n + \int\limits_n^{n+1} \frac{\{t\}(1-\{t\})}{t^3} \mathrm{d}t > a_n$. То есть $a_n \uparrow$. Причем $a_n \leqslant \int\limits_1^n \frac{\mathrm{d}t}{t^3} = -\frac{1}{2t^2} \mid_1^n = \frac{1}{2} - \frac{1}{2n^2} < \frac{1}{2}$.

А значит a_n имеет предел, а значит $a_n = a + o(1)$.

Вывод: $H_n = \ln n + \gamma + o(1)$, где $\gamma \approx 0.5772156649$ — постоянная Эйлера.

Замечание. $H_n = \ln n + \gamma + \frac{1}{2n} + \mathcal{O}(\frac{1}{n^2})$ — точная формула.

Пример Формула Стирлинга. $m=1, f(t)=\ln t, f''(t)=-\frac{1}{t^2}.$

$$\ln n! = \sum_{k=1}^{n} \ln k = \underbrace{\frac{\ln 1 + \ln n}{2}}_{=\frac{1}{2} \ln n} + \underbrace{\int_{1}^{n} \ln t dt}_{=t \ln t - t|_{1}^{n} = n \ln n - n + 1}_{=t \ln n - n + 1} + \underbrace{\int_{1}^{n} \frac{\{t\}(1 - \{t\})}{t^{2}} dt}_{:=b_{n}} \Rightarrow \ln n! = \frac{1}{2} \ln n + n \ln n - n + 1 - b_{n}.$$

Посмотрим на b_n :

$$b_n \leqslant \frac{1}{2} \int_1^n \frac{\mathrm{d}t}{t^2} = \frac{1}{2} (-\frac{1}{t}) \mid_1^n = \frac{1}{2} (1 - \frac{1}{n}) < \frac{1}{2} \implies b_n = \underbrace{b}_{=\lim b_n} + o(1).$$

A значит $\ln n! = n \ln n - n + \frac{1}{2} \ln n + (1-b) + o(1)$.

Можем найти b, для этого представим обе части как экспоненты: $n! = n^n e^{-n} \sqrt{n} e^{1-b} e^{o(1)} \sim n^n e^{-n} \sqrt{n} C$.

Вспомним (из следствия формулы Валлиса): $\binom{2n}{n} \sim \frac{4^n}{\sqrt{\pi n}}$. А еще знаем, что $\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \sim \frac{(2n)^{2n}e^{-2n}\sqrt{2n}C}{(n^ne^{-n}\sqrt{n}C)^2} = \frac{4^n\sqrt{2}}{\sqrt{n}C}$.

Тогда получаем, что $\frac{4^n}{\sqrt{\pi n}} \sim \frac{4^n \sqrt{2}}{\sqrt{n}C} \implies C \sim \frac{4^n \sqrt{2}}{\sqrt{n}} \cdot \frac{\sqrt{\pi n}}{4^n} = \sqrt{2\pi}$.

Итоговый результат (Формула Стирлинга):

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

$$\ln n! = n \ln n - n + \frac{1}{2} \ln(2\pi n) + o(1).$$

Замечание. Если посчитать точнее, то получим $\ln n! = n \ln n - n + \frac{1}{2} \ln(2\pi n) + \mathcal{O}(\frac{1}{n})$.

1.6. Несобственные интегралы

Определение 1.20. Пусть $-\infty < a < b \leqslant +\infty$ и $f \in C[a,b)$.

Тогда определим $\int\limits_a^{\to b} f \coloneqq \lim\limits_{B \to b-} \int\limits_a^B f$ (если он существует).

Если $-\infty \leqslant a < b < +\infty, f \in C(a,b],$ то $\int\limits_{\to a}^b f \coloneqq \lim_{A \to a+} \int\limits_A^b f$ (опять же, если он существует).

Замечание. Если $b<+\infty$ и $f\in C[a,b],$ то определение не дает ничего нового:

$$\int_{a}^{b} f = \lim_{B \to b^{-}} \int_{a}^{B} f$$

$$\left| \int_{a}^{b} f - \int_{a}^{B} f \right| = \left| \int_{B}^{b} f \right| \leqslant M(b - B) \to 0, M = \max_{x \in [a, b]} f(x).$$

Пример. 1. $\int\limits_{1}^{+\infty} \frac{\mathrm{d}x}{x^{p}} = \lim_{y \to +\infty} \int\limits_{a}^{y} \frac{\mathrm{d}x}{x^{p}} = \lim_{\substack{y \to +\infty \\ \text{при } p \neq 1}} -\frac{1}{(p-1)x^{p-1}} \mid_{x=1}^{x=y} = \frac{1}{p-1} - \lim_{y \to +\infty} \frac{1}{(p-1)y^{p-1}} = \frac{1}{p-1} \text{ при } p > 1,$ при p < 1 получаем $+\infty$, а при p = 1 $\lim_{y \to +\infty} \ln x \mid_{1}^{y} = \lim_{y \to +\infty} \ln y = +\infty$

To есть, при $p\leqslant 1\int\limits_1^{+\infty}\frac{\mathrm{d}x}{x^p}=+\infty,$ при $p>1\int\limits_0^1\frac{\mathrm{d}x}{x^p}=\frac{1}{1-p}.$

 $2. \int\limits_0^1 \frac{\mathrm{d}x}{x^p} = \lim\limits_{y \to 0+} \int\limits_y^1 \frac{\mathrm{d}x}{x^p} = \lim\limits_{y \to 0+} -\frac{1}{(p-1)x^{p-1}} \mid_{x=y}^{x=1} = -\frac{1}{p-1} + \lim\limits_{y \to 0+} = \frac{y^{1-p}}{p-1} = \frac{1}{1-p} \text{ при } p < 1, \text{ при } p > 1$ получаем $+\infty$, а вот при $p = 1 \lim\limits_{y \to 0+} \ln x \mid_y^1 = \lim\limits_{y \to 0+} -\ln y = +\infty.$

То есть, при $p < 1 \int_0^1 \frac{\mathrm{d}x}{x^p} = \frac{1}{1-p},$ при $p \geqslant 1 \int_0^1 \frac{\mathrm{d}x}{x^p} = +\infty.$

Замечание. Если $f\in C[a,b)$ и F — его первообразная, то $\int\limits_a^b f=\lim_{B o b-}F(B)-F(a).$

Если $f \in C(a,b]$ и F — его первообразная, то $\int\limits_a^b f = F(b) - \lim\limits_{A \to a+} F(A)$.

Доказательство. Очевидно по формуле Ньютона-Лейбница.

Oпределение 1.21. $F\Big|_a^b := \lim_{B \to b-} F(B) - F(a)$.

Определение 1.22. $\int\limits_a^{\to b} f$ сходится, если lim в его определении существует и конечен. Иначе расходится.

Теорема 1.23 (Критерий Коши). Пусть $-\infty < a < b \leqslant +\infty, \ f \in C[a,b)$.

Тогда $\int\limits_a^{\to b}f$ сходится $\iff \forall \varepsilon\exists c\in(a,b)\colon \forall A,B\in(c,b)$ $\left|\int\limits_A^Bf\right|<\varepsilon.$

Замечание. 1. Если $b=+\infty$ это означает, что $\forall arepsilon\exists c>a \forall A,B>c\colon \left|\int\limits_A^B f\right|<arepsilon.$

2. Если $b<+\infty$ это означает, что $\forall \varepsilon>0 \exists \delta>0 \forall A,B\in (b-\delta;b)\colon \left|\int\limits_A^B f\right|<\varepsilon.$

Доказательство. Для $b < +\infty$ (то есть для конечной точки).

• " \Rightarrow " $\int\limits_a^b f$ сходится \Longrightarrow \exists конечный $I\coloneqq\lim_{B\to b-}\int\limits_a^B f$, обозначим $\int\limits_a^B f$ за g(B). Воспользуемся критерием Коши для функций:

$$\forall \varepsilon > 0 \\ \exists \delta > 0 \ \, \begin{cases} \forall B \in (b-\delta,b) & |g(B)-I| < \frac{\varepsilon}{2} \\ \forall A \in (b-\delta,b) & |g(A)-I| < \frac{\varepsilon}{2} \end{cases} \implies |g(B)-g(A)| \leqslant |g(B)-I| + |I-g(A)| < \varepsilon \end{cases}$$

• " \Leftarrow " $\int\limits_a^B f=:g(B).$ $\forall \varepsilon>0 \exists \delta>0 \forall A,B\in (b-\delta,b): |g(B)-g(A)|<\varepsilon -\text{a это условие из критерия Коши для}\lim_{B\to b-}g(B).$

Замечание. Если существуют $A_n, B_n \in [a,b)$: $\lim_{n \to \infty} A_n = \lim_{n \to \infty} B_n = b$: $\int_{A_n}^{B_n} f \not\to 0$, то $\int_a^b f$ расходится.

Доказательство. Возьмем A_{n_k} и $B_{n_k} \colon |\int\limits_{A_{n_k}}^{B_{n_k}} f| \to C > 0 \implies |\int\limits_{A_{n_k}}^{B_{n_k}} f| > \frac{C}{2}$ при больших k. Но это противоречит критерию Коши.

Свойства несобственных интегралов. 1. Аддитивность. Пусть $f \in C[a,b), c \in (a,b).$ Если $\int\limits_a^b f$ сходится, то $\int\limits_c^b f$ сходится и $\int\limits_a^b f = \int\limits_a^c f + \int\limits_c^b f.$

- 2. Если $\int\limits_a^b f$ сходится, то $\lim\limits_{c \to b-} \int\limits_c^b f = 0$
- 3. Линейность $\alpha, \beta \in \mathbb{R}$ и $\int\limits_a^b f$ и $\int\limits_a^b g$ сходятся. Тогда $\int\limits_a^b (\alpha f + \beta g)$ сходится и $\int\limits_a^b (\alpha f + \beta g) = \alpha \int\limits_a^b f + \beta \int\limits_a^b g$.
- 4. Монотонность. Пусть $\int\limits_a^b f$ и $\int\limits_a^b g$ существуют в \overline{R} и $f\leqslant g$ на [a,b). Тогда $\int\limits_a^b f\leqslant \int\limits_a^b g$.
- 5. Интегрирование по частям. $f,g\in C^1[a;b)\implies \int\limits_a^b fg'=fg\Big|_a^b-\int\limits_a^b f'g.$
- 6. Замена переменных. $\varphi \colon [\alpha,\beta) \to [a,b), \ \varphi \in C^1[\alpha,\beta)$ и $\exists \lim_{\gamma \to \beta^-} \varphi(\gamma) \eqqcolon \varphi(\beta^-)$ и $f \in C[a,b)$. Тогда $\int\limits_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) \mathrm{d}t = \int\limits_{\varphi(\alpha)}^{\varphi(\beta^-)} f(x) \mathrm{d}x$. «Если существует один из \int , то существует второй и они равны»

Доказательство. 1.
$$\int_a^b f = \lim_{B \to b^-} F(B) - F(a) \implies \lim_{B \to b^-} F(B)$$
 существует и конечен \implies $\int_c^b = \lim_{B \to b^-} F(b) - F(c) - \text{сходится } (F(c) - \text{просто число какое-то}).$ $\int_c^b = \lim_{B \to b^-} F(B) - F(a) = \lim_{B \to b^-} F(b) - F(b) - F(b) = \lim_{B \to b^-} F(b) - F(b) - F(b) = \lim_{B \to b^-} F(b) - F(b) - F(b) = \lim_{B \to b^-} F(b) - F(b) = \lim_{B \to b^$

- 2. $\int\limits_{c}^{b}f=\int\limits_{a}^{b}f-\int\limits_{a}^{c}f\underset{c\rightarrow b-}{\longrightarrow}\int\limits_{a}^{b}f\Rightarrow$ разность $\rightarrow 0$
- 3. $\int_{a}^{b} (\alpha f + \beta g) = \lim_{B \to b^{-}} \int_{a}^{B} (\alpha f + \beta g) = \lim_{B \to b^{-}} (\alpha \int_{a}^{B} f + \beta \int_{a}^{B} g) = \alpha \lim_{B \to b^{-}} \int_{a}^{B} f + \beta \lim_{B \to b^{-}} \int_{a}^{B} g = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g.$
- 4. $\int\limits_a^B f \leqslant \int\limits_a^B g$ (монотонность собственных интегралов), а дальше предельный переход: $\lim\limits_{B \to b-} \int\limits_a^B f \leqslant \lim\limits_{B \to b-} \int\limits_a^B g$
- 5. a < B < b и пишем формулу интегрирования по частям: $\int_{a}^{B} fg' = fg \Big|_{a}^{B} \int_{a}^{B} f'g$ и переходим к пределу при $B \to b-$. Так как f, g непрерывные функции, то $\lim_{B \to b-} fg \Big|_{a}^{B} = fg \Big|_{a}^{b}$ и получаем, что нужно.
- 6. $F(y) \coloneqq \int_{\varphi(\alpha)}^{y} f(x) dx$, $\Phi(\gamma) \coloneqq \int_{\alpha}^{\gamma} f(\varphi(t)) \varphi'(t) dt$. Знаем, что $F(\varphi(\gamma)) = \Phi(\gamma)$ при $\alpha < \gamma < \beta$.

Пусть существует правый \int , то есть $\exists \lim_{y \to \varphi(\beta -)} F(y)$. Возьмем $\gamma_n \nearrow \beta \implies \varphi(\gamma_n) \to \varphi(\beta -) \implies \Phi(\gamma_n) = F(\varphi(\gamma_n)) \to \int\limits_{\varphi(\alpha)}^{\varphi(\beta -)} f(x) \mathrm{d}x$. При этом $\Phi(\gamma_n) \to \int\limits_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) \mathrm{d}t$.

Пусть существует левый \int , то есть $\exists \lim_{\gamma \to \beta-} \Phi(\gamma)$. Докажем, что \exists правый \int . При $\varphi(\beta-) < b$ нечего доказывать.

Пусть $\varphi(\beta-)=b$. Тогда возьмем $b_n\nearrow b$. Можно считать, что $b_n\in [\varphi(\alpha),b)$. Тогда $\exists \gamma_n\in [\alpha,\beta)\colon \varphi(\gamma_n)=b_n$. Докажем, что $\gamma_n\to\beta$. Пусть это не так. Тогда найдется $\gamma_{n_k}\to\widetilde{\beta}<\beta\Longrightarrow \varphi(\gamma_{n_k})\to \varphi(\widetilde{\beta})< b$ по непрерывности φ в точке $\widetilde{\beta}$. Противоречие.

Итак,
$$\gamma_n \to \beta$$
, $F(b_n) = F(\varphi(\gamma_n)) = \Phi(\gamma_n) \to \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt$.

- Замечание к третьему свойству. 1. Если $\int_a^b f$ сходится, а $\int_a^b g$ расходится, то $\int_a^b (f+g)$ расходится. Доказательство от противного, пусть интеграл сходится, тогда $g = (f+g) f \implies \int_a^b g$ сходится.
 - 2. Если $\int\limits_a^b f$ и $\int\limits_a^b g$ расходятся, то $\int\limits_a^b (f+g)$ может сходиться. $\int\limits_1^{+\infty} \frac{\mathrm{d}x}{x}$ и $\int\limits_1^{+\infty} -\frac{\mathrm{d}x}{x}$ расходятся.

Замечание к шестому свойству. $\int\limits_a^b f(x)\mathrm{d}x$. Сделаем замену $x=b-\frac{1}{t}=\varphi(t),\ \varphi'(t)=\frac{1}{t^2}, \varphi(\alpha)=a, \alpha=\frac{1}{b-a}$.

Тогда
$$\int_a^b f(x) dx = \int_{\frac{1}{b-a}}^{+\infty} f(b-\frac{1}{t}) \frac{1}{t^2} dt$$
.

Определение 1.23. Пусть f непрерывна на (a,b) за исключением некоторого количества точек $c_1 < c_2 < \ldots < c_n$.

 $\int_{a}^{b} f$ сходится, если сходятся интегралы по всем маленьким отрезкам (содержащим только одну выколотую точку).

Несобственные интегралы от неотрицательных функций

Теорема 1.24. Пусть $f \in C[a,b)$ и $f \geqslant 0$.

Тогда $\int_a^b f$ сходится $\iff F(y) \coloneqq \int_a^y f$ ограничена сверху.

Доказательство. $f\geqslant 0\implies F$ монотонно возрастает. $\int\limits_a^b f$ сходится \iff \exists конечный $\lim\limits_{y\to b^-}F(y)\iff F$ ограничена сверху.

Замечание. $f\in C[a;b), f\geqslant 0.$ Если $\int\limits_a^b f$ расходится, это означает, что $\int\limits_a^b f=+\infty.$

Следствие Признак сравнения. $f,g\in C[a,b),\,f,g\geqslant 0$ и $f\leqslant g.$

- 1. Если $\int\limits_a^b g$ сходится, то и $\int\limits_a^b f$ сходится.
- 2. Если $\int_a^b f$ расходится, то и $\int_a^b g$ расходится.

Доказательство. $F(y)\coloneqq\int\limits_a^y f$ и $G(y)\coloneqq\int\limits_a^y g$.

- 1. Пусть $\int\limits_a^b g$ сходится $\Longrightarrow G(y)$ ограничена, но $F(y)\leqslant G(y) \Longrightarrow F(y)$ ограничена $\Longrightarrow \int\limits_a^b f$ сходится.
- 2. От противного. Пусть $\int\limits_a^b g$ сходится \Rightarrow см. первый пункт противоречие.

Замечание. 1. Неравенство $f \leq g$ может выполняться лишь для аргументов, близких к b.

2. Неравенство $f \leqslant g$ можно заменить на $f = \mathcal{O}(g)$.

$$f = \mathcal{O}(g) \implies f \leqslant cg. \int_a^b g$$
 сходится $\implies \int_a^b cg$ сходится $\implies \int_a^b f$ – сходится.

3. Если $f=\mathcal{O}(\frac{1}{x^{1+\varepsilon}})$ для $\varepsilon>0,$ то $\int\limits_a^{+\infty}f-$ сходится.

$$f\in C[a,+\infty), g(x)=rac{1}{x^{1+arepsilon}}$$
 и можно считать, что $a\geqslant 1\int\limits_{1}^{+\infty}g(x)\mathrm{d}x$ — сходится.

Следствие. $f,g \in C[a,b), \ f,g \geqslant 0$ и $f(x) \sim g(x)$ при $x \to b-$. Тогда $\int\limits_a^b f$ и $\int\limits_a^b g$ ведут себя одинаково (либо оба сходятся, либо оба расходятся).

Доказательство. $f \sim g \implies f = \varphi \cdot g$, где $\varphi(x) \xrightarrow{x \to b^-} 1 \implies$ в окрестности $b \stackrel{1}{\underline{2}} \leqslant \varphi \leqslant 2 \implies f \leqslant 2g \land g \leqslant 2f$ в окрестности $b \implies$ из сходимости $\int\limits_a^b g$ следует сходимость $\int\limits_a^b f$, и наоборот. \square

Определение 1.24. $f \in C[a,b)$. $\int\limits_a^b f$ абсолютно сходится, если $\int\limits_a^b |f|$ сходится.

Теорема 1.25. $\int_a^b f$ сходится абсолютно $\Longrightarrow \int_a^b f$ сходится.

Доказательство. $f = f_{+} - f_{-}, \ |f| = f_{+} + f_{-}. \ |f| \geqslant f_{\pm} \geqslant 0.$ Если $\int_{a}^{b} f$ сходится абсолютно $\implies \int_{a}^{b} |f|$ сходится $\implies \int_{a}^{b} f_{\pm}$ сходится $\implies \int_{a}^{b} f = \int_{a}^{b} f_{+} - \int_{a}^{b} f_{-}$ сходится.

Теорема 1.26 (Признак Дирихле). $f, g \in C[a, +\infty)$. Если

- 1. f имеет ограниченную первообразную на $[a, +\infty)$ (то есть $\left|\int\limits_a^y f(x) \mathrm{d}x\right| \leqslant K \quad \forall y)$
- 2. g монотонна
- $3. \lim_{x \to +\infty} g(x) = 0$

 \Rightarrow то $\int\limits_{a}^{+\infty}f(x)g(x)\mathrm{d}x$ сходится.

Доказательство. Только для случая $g \in C^1[a; +\infty)$.

Надо доказать, что \exists конечный $\lim_{y\to +\infty} \int\limits_a^y f(x)g(x)\mathrm{d}x,\ F(y)\coloneqq \int\limits_a^y f(x)\mathrm{d}x.$

$$\int_{a}^{y} f(x)g(x)dx = \int_{a}^{y} F'(x)g(x)dx = F(x)g(x)\Big|_{a}^{y} - \int_{a}^{y} F(x)g'(x)dx = F(y)g(y) - \int_{a}^{y} F(x)g'(x)dx.$$

Чтобы доказать существование предела у разности каких-то штук, нужно доказать, что он существует у них по отдельности.

 $\lim_{y\to +\infty}F(y)g(y)=0$ — произведение бесконечно малой и ограниченной функции.

Хотим показать, что $\int\limits_a^y F(x)g'(x)\mathrm{d}x$ имеет конечный lim, то есть $\int\limits_a^{+\infty} F(x)g'(x)\mathrm{d}x$ сходится.

Тогда докажем, что он абсолютно сходится. $\int\limits_a^{+\infty} |F(x)||g'(x)|\mathrm{d}x, \ |F(x)||g'(x)| \leqslant K|g'(x)| = Kg'(x).$ (считаем, что g(x) возрастает) $\int_a^{+\infty} g'(x)\mathrm{d}x = g \mid_a^{+\infty} = \lim_{y \to +\infty} g(y) - g(a) = -g(a) \implies \text{сходится.}$

Теорема 1.27 (Признак Абеля). $f, g \in C[a, +\infty)$, Если

- 1. $\int_{a}^{+\infty} f(x) dx$ сходится
- 2. g монотонна
- 3. д ограничена

$$\Rightarrow$$
 то $\int_{a}^{+\infty} f(x)g(x)dx$ сходится.

Доказательство. 2) + 3) $\implies g$ имеет конечный предел $l \in \mathbb{R} \coloneqq \lim_{x \to +\infty} g(x)$.

Пусть $\widetilde{g}(x)\coloneqq g(x)-l\implies \lim_{x\to +\infty}\widetilde{g}(x)=0$ и \widetilde{g} монотонна.

Пусть $F(x) \coloneqq \int\limits_a^x f(t) \mathrm{d}t$. Тогда 1) \iff существует конечный предел $\lim_{x \to +\infty} F(x) \implies F$ ограничена.

Тогда f и \widetilde{g} удовлетворяют условиям признака Дирихле $\Longrightarrow \int\limits_a^{+\infty} f(x)\widetilde{g}(x)\mathrm{d}x$ — сходится. Тогда:

$$\int_{a}^{+\infty} fg = \int_{a}^{+\infty} f(\widetilde{g} + l) = \int_{a}^{+\infty} f\widetilde{g} + l \int_{a}^{+\infty} f.$$

Где $\int\limits_a^{+\infty}f\widetilde{g}$ сходится по доказанному, а $\int\limits_a^{+\infty}f$ — по условию.

Утверждение 1.28. f — периодическая функция с периодом T. Тогда неважно, по какому периоду интегрировать $\Rightarrow \int\limits_a^{a+T} f = \int\limits_b^{b+T} f$

Доказательство. см. картинку:

$$\int_{b}^{a+kT} f = \int_{b-(k-1)T}^{a+T} f. \int_{a+kT}^{b+T} f = \int_{a}^{b-(k-1)T} f$$

Следствие. $f,g\in C[a;+\infty),\ f$ — периодическая с периодом $T,\ g$ монотонная и $g\xrightarrow{x\to +\infty} 0$ $\int_{-\infty}^{+\infty} g(x) dx$ расходится.

Тогда
$$\int\limits_a^{+\infty}fg$$
 сходится $\iff \int\limits_a^{a+T}f=0.$

Доказательство.
$$\Leftarrow$$
. $F(x) = \int\limits_a^x f$ — периодична с периодом T :
$$F(x+T) = \int\limits_a^{x+T} f = \int\limits_a^x f + \int\limits_{x=0}^{x+T} f = F(x). \ F$$
 — непрерывна и периодична \implies ограничена \implies

 $\int\limits_{-\infty}^{+\infty}fg$ сходится по признаку Дирихле.

 \Rightarrow . Пусть $\int\limits_{a}^{a+T}f$ =: $K\neq 0$. $\widetilde{f}(x)$ =: $f(x)-\frac{K}{T}$ — периодична с периодом T. Тогда $\int\limits_{a}^{a+T}\widetilde{f}=$ $\int\limits_{0}^{a+T}(f-\frac{K}{T})=K-T\cdot\frac{K}{T}=0\implies\int\limits_{0}^{+\infty}\widetilde{f}g$ сходится.

Тогда $\int\limits_a^{+\infty}fg=\int\limits_a^{+\infty}(\widetilde{f}+\frac{K}{T})g=\int\limits_a^{+\infty}\widetilde{f}g+\frac{K}{T}\int\limits_a^{+\infty}g\implies \int\limits_a^{+\infty}fg$ расходится как сумма сходящегося и

Пример. Рассмотрим $\int_{1}^{+\infty} \frac{\sin x}{x^{p}} dx$.

- 1. p > 1 интеграл сходится абсолютно: $|\sin x| \leqslant 1 \implies \left|\frac{\sin x}{x^p}\right| \leqslant \frac{1}{x^p}$, а значит $\int\limits_{0}^{+\infty} \frac{\mathrm{d}x}{x^p}$ сходится.
- 2. $0 интеграл сходится, но не абсолютно. <math>\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^p}$ расходится, $\frac{1}{x^p} \searrow 0$. $g(x)\coloneqq \frac{1}{x^p}, f(x)\coloneqq \sin x.$ $\int\limits_0^{2\pi}\sin x\mathrm{d}x=0 \implies \int\limits_1^{+\infty}\frac{\sin x}{x^p}\mathrm{d}x$ сходится.

Если взять $f(x) = |\sin x|$, то интеграл по периоду равен $4\left(\int\limits_{0}^{2\pi} |\sin x| \mathrm{d}x = 2\int\limits_{0}^{\pi} \sin x \mathrm{d}x = 4\right)$. Значит исходный интеграл расходится.

3. $p \leqslant 0$ интеграл расходится.

$$a_n \coloneqq \frac{\pi}{6} + 2\pi n, b_n \coloneqq \frac{5\pi}{6} + 2\pi n.$$
 Тогда $\int\limits_{a_n}^{b_n} \frac{\sin x}{x^p} \mathrm{d}x \geqslant \frac{1}{2} \int\limits_{a_n}^{b_n} \frac{\mathrm{d}x}{x^p} \geqslant \frac{1}{2} \int\limits_{a_n}^{b_n} \mathrm{d}x = \frac{b_n - a_n}{2} = \frac{\pi}{3}.$ Предъявили сколь угодно далеко такие отрезки, что интеграл по ним превосходит $\frac{\pi}{3}$ — это

отрицание критерия Коши.

 Γ лава #1

2. Анализ в метрических пространствах

2.1. Метрические и нормированные пространства

Определение 2.1. Метрика (расстояние) $\rho: X \times X \to [0; +\infty)$, если выполняются следующие условия:

- 1. $\rho(x,y) = 0 \iff x = y$,
- 2. $\rho(x, y) = \rho(y, x)$,
- 3. (неравенство треугольника) $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$.

Определение 2.2. Метрическое пространство — пара (X, ρ) .

Пример. Дискретная метрика (метрика Лентяя) $\rho(x,y) = \begin{cases} 0, & x=y\\ 1 & x \neq y \end{cases}$

Пример. На \mathbb{R} : $\rho(x,y) = |x-y|$.

Пример. На \mathbb{R}^d (пространство столбцов = векторов): $\rho(x,y) = \sqrt{\sum_{k=1}^d (x_k - y_k)^2}$. Неравенство треугольника здесь — неравенство Минковского.

Пример. C[a,b]. $\rho(f,g) = \int_{a}^{b} |f-g|$.

Неравенство треугольника:

$$\rho(f,h) = \int_{a}^{b} |f - h| \leqslant \int_{a}^{b} (|f - g| + |g - h|) = \rho(f,g) + \rho(g,h).$$

 $(*) \iff |f(x)-h(x)|\leqslant |f(x)-g(x)|+|g(x)-h(x)| - \text{неравенство треугольника для } (\mathbb{R},|x-y|).$

Пример. Манхэтеннская метрика: \mathbb{R}^2 , $\rho((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$ (с точки зрения пешехода расстояние равно такой штуке).

Пример. Французская железнодорожная метрика. \mathbb{R}^2 . Есть точка P (Париж), тогда $\rho(A,B) = AB$, если A,B,P на одной прямой, иначе $\rho(A,B) = |AP| + |PB|$.

Определение 2.3. (X, ρ) — метрическое пространство. $B_r(x) \coloneqq \{y \in X \mid \rho(x, y) < r\}$ — открытый шар радиуса r с центром в точке x.

Определение 2.4. (X, ρ) — метрическое пространство. $\overline{B}_r(x) \coloneqq \{y \in X \mid \rho(x, y) \leqslant r\}$ — закрытый шар радиуса r с центром в точке x.

 ${
m To}$ есть если берём контур — это замкнутый шар.

Ceoùcmea. 1. $B_{r_1}(a) \cap B_{r_2}(a) = B_{\min\{r_1, r_2\}}(a)$.

2.
$$x \neq y \implies \exists r > 0 \colon B_r(x) \cap B_r(y) = \emptyset \wedge \overline{B}_r(x) \cap \overline{B}_r(y) = \emptyset$$
.

Доказательство. 1. $x \in B_{r_1}(a) \cap B_{r_2}(a) \iff \begin{cases} \rho(x,a) < r_1 \\ \rho(x,a) < r_2 \end{cases} \iff \rho(x,a) < \min\{r_1,r_2\} \implies x \in B_{\min\{r_1,r_2\}}(a).$

2. $r := \frac{1}{3}\rho(x,y) > 0$. Пусть $\overline{B}_r(x) \cap \overline{B}_r(y) \neq \emptyset$.

Тогда $\exists z \in \overline{B}_r(x) \cap \overline{B}_r(y) \implies \rho(x,z) \leqslant r \wedge \rho(y,z) \leqslant r \implies \rho(x,y) \leqslant \rho(x,z) + \rho(z,y) \leqslant 2r = \frac{2}{3}\rho(x,y) \implies 1 \leqslant \frac{2}{3}$. Противоречие.

При этом, $B_r(x) \subset \overline{B}_r(x) \implies \exists r : B_r(x) \cap B_r(y) = \emptyset$. То есть если замкнутый шар не пересекает, то и открытый — тем более.

Определение 2.5. $A \subset X$. A — открытое множество, если $\forall a \in A \exists B_r(a) \subset A \ (r > 0)$. То есть для любой точки-центра из A находится шарик, который целиком тоже лежит в A.

Теорема 2.1 (О свойствах открытых множеств). 1. \emptyset, X — открытые.

- 2. Объединение любого числа открытых множеств открытое.
- 3. Пересечение конечного числа открытых множеств открытое.
- 4. $B_R(a)$ открытое.

Доказательство. 2. Пусть A_{α} — открытые, $\alpha \in I$. $B =: \bigcup_{\alpha \in I} A_{\alpha}$. Берем $b \in B \implies b \in A_{\beta}$ для некоторого β . Но A_{β} — открытое $\implies \exists r > 0$ $B_r(b) \subset A_{\beta} \subset B$.

- 3. Пусть A_1, A_2, \ldots, A_n открытые. $B \coloneqq \bigcap_{k=1}^n A_k$. Берем $b \in B \implies b \in A_k \forall k = 1, 2, \ldots, n$. Но A_k открытое $\implies \exists r_k > 0 B_{r_k} \subset A_k$. $r \coloneqq \min\{r_1, r_2, ..., r_n\} > 0 \implies B_r(b) \subset B_{r_k}(b) \subset A_k \forall k \implies B_r(b) \subset \bigcap_{k=1}^n A_k = B \implies B$ открытое.
- 4. $\rho(a,x) < R$, $r := R \rho(a,x) > 0$. Докажем, что $B_r(x) \subset B_R(a)$. Возьмем $y \in B_r(x)$, то есть $\rho(x,y) < r \implies \rho(y,a) \leqslant \rho(y,x) + \rho(x,a) < r + \rho(x,a) = R \implies y \in B_R(a)$.

Замечание. В 3 существенна конечность. \mathbb{R} . $\bigcap_{n=1}^{\infty}(-\frac{1}{n},1)=[0,1)$. А для нуля любой открытый шарик плохой.

Определение 2.6. $A \subset X, \ a \in A. \ a$ — внутренняя точка множества A, если $\exists r > 0 \colon B_r(a) \subset A.$ Замечание. A — открытое \iff все его точки внутренние.

Определение 2.7. Внутренность множества $\operatorname{Int} a := \{ a \in A \mid a - \operatorname{внутренняя} \operatorname{точка} \}.$

Пример. $A = [0, 1] \subset \mathbb{R}$. Тогда Int A = (0, 1).

Свойства внутренности. 1. Int $A \subset A$.

- 2. Int $A \bigcup$ всех открытых множеств, которые содержатся в A.
- 3. Int A открытое множество. (Следствие из предыдущего)
- 4. A открытое $\iff A = \text{Int } A$.
- 5. Если $A \subset B$, то $\operatorname{Int} A \subset \operatorname{Int} B$.
- 6. $\operatorname{Int}(A \cap B) = \operatorname{Int} A \cap \operatorname{Int} B$
- 7. Int(Int A) = Int A.

Доказательство.

2. $B := \bigcup_{\alpha \in I} A_{\alpha}, A_{\alpha} \subset A, A_{\alpha}$ открытые.

 $B\subset {
m Int}\,A.$ (Потому что:) Берем $b\in B\implies\exists \beta\in I:b\in A_{\beta}$ — открытое $\implies\exists r>0:B_r(b)\subset A_{\beta}\subset A\implies b$ — внутренняя точка $A\implies b\in {
m Int}\,A.$

Int $A \subset B$. Берем $b \in \operatorname{Int} A \Longrightarrow \exists r > 0 B_r(b) \subset A$, но $B_r(b)$ — открытое множество \Longrightarrow оно участвует в объединении $\bigcup_{\alpha} A_{\alpha} \Longrightarrow B_r(b) \subset B \Longrightarrow b \in B$.

4. ⇐: пользуемся пунктом 3.

 \Rightarrow : Если A — открытое, то все его точки внутренние \implies все из внутренности \implies A = Int A.

6. \subset : $A \cap B \subset A$, $\subset B \implies \operatorname{Int}(A \cap B) \subset \operatorname{Int} A \wedge \operatorname{Int}(A \cap B) \subset \operatorname{Int} B$.

$$\supset$$
. Пусть $x \in \operatorname{Int} A \cap \operatorname{Int} B \implies \begin{cases} \exists r_1 > 0 & B_{r_1}(x) \subset A \\ \exists r_2 > 0 & B_{r_2}(x) \subset B \end{cases} \implies \operatorname{если} r = \min\{r_1, r_2\} \implies B_r(x) \subset A \wedge B_r(x) \subset B \implies x \in \operatorname{Int}(A \cap B).$

7. Пусть $B := \operatorname{Int} A$ — открытое $\implies B = \operatorname{Int} B$.

Oпределение **2.8.** $A \subset X$. A — замкнутое, если $X \setminus A$ — открытое.

Теорема 2.2 (о свойствах замкнутых множеств). 1. \varnothing и X — замкнуты.

- 2. Пересечение любого числа замкнутых множеств замкнуто.
- 3. Объединение конечного числа замкнутых множеств замкнуто.
- 4. $\overline{B}_R(a)$ замкнуто. (\iff замкнутый шар замкнутое множество)

Доказательство. 2. A_{α} — замкнуты $\Longrightarrow X \setminus A_{\alpha}$ — открытые $\Longrightarrow \bigcup_{\alpha \in I} X \setminus A_{\alpha}$ — открыто $\Longrightarrow X \setminus \bigcup_{\alpha \in I} (X \setminus A_{\alpha}) = \bigcap_{\alpha \in I} A_{\alpha}$ — замкнутое.

- 3. Аналогично.
- 4. $X\setminus \overline{B}_R(a)$ открытое. Берем $x\notin \overline{B}_R(a)$ (то есть берём точку из дополнения \iff она не лежит в шарике). Возьмем $r\coloneqq \rho(a,x)-R>0$. Покажем, что $B_r(x)\subset X\setminus \overline{B}_R(a)$.

От противного. Пусть $B_r(x) \cap \overline{B}_R(a) \neq \emptyset$. Берем $y \in B_r(x) \cap \overline{B}_R(a) \implies \rho(x,y) < r \land \rho(a,y) \leqslant R \implies \rho(a,x) \leqslant \rho(a,y) + \rho(y,x) < R + r = \rho(a,x)$. Противоречие.

Замечание. В 3 важна конечность. \mathbb{R} . $\bigcup_{n=1}^{\infty} [\frac{1}{n}, 1] = (0, 1]$ — не является замкнутым.

Onpedenehue 2.9. Замыкание множества ClA (Closure A) — пересечение всех замкнутых множеств, содержащих A.

Теорема 2.3. $X \setminus \operatorname{Cl} A = \operatorname{Int}(X \setminus A)$ и $X \setminus \operatorname{Int} A = \operatorname{Cl}(X \setminus A)$.

Доказательство. Int $(X \setminus A) = \bigcup B_{\alpha}$. B_{α} — открытые, $B_{\alpha} \subset X \setminus A \iff X \setminus B_{\alpha}$ — замкнутое. $X \setminus B_{\alpha} \supset A$.

$$\bigcap (X \setminus B_{\alpha}) = \operatorname{Cl} A \implies \underbrace{X \setminus \bigcap (X \setminus B_{\alpha})}_{= \bigcup B_{\alpha}} = X \setminus \operatorname{Cl} A \iff \bigcup (B_{\alpha}) = \operatorname{Int}(X \setminus A).$$

Следствие. Int $A = X \setminus Cl(X \setminus A)$ и $Cl A = X \setminus Int(X \setminus A)$.

Свойства. 1. $\operatorname{Cl} A \supset A$.

- 2. ClA замкнутое множество.
- 3. A замкнуто \iff $A = \operatorname{Cl} A$.

Доказательство. \Leftarrow — пункт 2. \Rightarrow A — замкнутое \Rightarrow оно участвует в пересечении из определения \Longrightarrow $\operatorname{Cl} A \subset A \Longrightarrow \operatorname{Cl} A = A$.

 $4. \ A \subset B \implies \operatorname{Cl} A \subset \operatorname{Cl} B.$

Доказательство.
$$X \setminus A \supset X \setminus B \implies \operatorname{Int}(X \setminus A) \supset \operatorname{Int}(X \setminus B) \implies \underbrace{X \setminus \operatorname{Int}(X \setminus A)}_{=\operatorname{Cl} A} \subset \underbrace{X \setminus \operatorname{Int}(X \setminus B)}_{=\operatorname{Cl} B}$$

- 5. $Cl(A \cup B) = Cl A \cup Cl B$.
- 6. Cl(Cl A) = Cl A.

Доказательство.
$$B \coloneqq \operatorname{Cl} A - \operatorname{замкнуто} \implies \operatorname{Cl} B = B.$$

Упражнение. Cl Int Cl Int $\ldots A$. Какое наибольшее количество различных множеств может получиться.

Теорема 2.4. $x \in \operatorname{Cl} A \iff \forall r > 0$ $B_r(x) \cap A \neq \emptyset$.

Доказательство. Запишем отрицание условия теоремы: $x \notin \operatorname{Cl} A \iff \exists r > 0 B_r(x) \cap A = \varnothing$.

Что означает, что $x \notin A$? Это значит, что $x \in X \setminus \operatorname{Cl} A = \operatorname{Int}(X \setminus A) \iff x \in \operatorname{Int}(X \setminus A) \iff x$ — внутренняя точка $X \setminus A \iff \exists r > 0 \colon B_r(x) \subset X \setminus A \iff \exists r > 0 \colon B_r(x) \cap A = \emptyset$.

Следствие. U — открытое, $U \cap A = \emptyset \implies U \cap \operatorname{Cl} A = \emptyset$.

Доказательство. Возьмем
$$x \in U \implies \exists r > 0 : B_r(x) \subset U \implies B_r(x) \cap A = \varnothing \implies x \notin \operatorname{Cl} A \implies U \cap \operatorname{Cl} A = \varnothing.$$

Определение 2.10. Окрестностью точки x будем называть шар $B_r(x)$ для некоторого r>0. Обозначать будем U_x

Определение 2.11. Проколотой окрестностью точки $x - B_r(x) \setminus \{x\}$. Обозначать будем \dot{U}_x .

Определение 2.12. x — предельная точка множества A, если $\forall \dot{U}_x \colon \dot{U}_x \cap A \neq \varnothing$.

Обозначим через A' — множество предельных точек для A.

Свойства.

1. $\operatorname{Cl} A = A \cup A'$.

Доказательство.
$$x \in \operatorname{Cl} A \iff \forall U_x \colon U_x \cap A \neq \varnothing \iff \begin{bmatrix} x \in A \\ \forall \dot{U_x} \cap A \neq \varnothing \iff x \in A' \end{bmatrix}$$

- 2. $A \subset B \implies A' \subset B'$. Очевидно.
- 3. A замкнуто $\iff A \supset A'$.

Доказательство.
$$A$$
 — замкнуто \iff $A = \operatorname{Cl} A \iff A = A \cup A' \iff A \supset A'$.

4. $(A \cup B)' = A' \cup B'$.

Доказательство. Докажем " \subset ". Возьмем $x \in (A \cup B)'$: $x \notin A' \implies \exists \dot{U}_x : \dot{U}_x \cap A = \emptyset$, но $\dot{U}_x \cap (A \cup B) \neq \emptyset \implies \dot{U}_x \cap B \neq \emptyset \implies x \in B'$.

Докажем ">". $A \cup B \supset A \implies (A \cup B)' \supset A'$. Провернем тот же фокус для B, получим $(A \cup B)' \supset A' \cup B'$.

Теорема 2.5. $x \in A' \iff \forall r > 0$ $B_r(x)$ содержит бесконечное количество точек из A.

Доказательство. Докажем " \Leftarrow ". $B_r(x) \cap A$ содержит бесконечное количество точек $\implies \dot{B}_r(x) \cap A$ содержит бесконечное число точек $\implies \dot{B}_r(x) \cap A \neq \varnothing \Rightarrow x \in A'$.

"⇒". Возьмем радиус r=1. Тогда $\dot{B}_r(x)\cap A\neq\varnothing\implies\exists x_1\in A:0<\rho(x,x_1)<1$. Возьмем $r=\rho(x,x_1)\ \dot{B}_r(x)\cap A\neq\varnothing\implies\exists x_2\in A:0<\rho(x,x_2)<\rho(x,x_1)$. Тогда можно взять $r=\rho(x,x_2),$ и так далее.

В итоге получили, что $r > \rho(x, x_1) > \rho(x, x_2) > \rho(x, x_3) > \ldots > 0 \implies$ все x_n различны.

Следствие. Конечное множество не имеет предельных точек. (Потому что их должно быть ∞)

Доказательство. Предположим предельная точка существует $\iff \exists r > 0 : B_r(x) \cap A$ содержит бесконечное количество точек. Но это невозможно, так как в A конечное число точек. \square

Определение 2.13. (X, ρ) — метрическое пространство $Y \subset X$.

Тогда $(Y, \rho\mid_{Y\times Y})$ — подпространство метрического пространства $(X, \rho).$

Пример. $(\mathbb{R}, |x-y|)$. $Y = [a, b] \subset \mathbb{R}$, например, Y = [0, 1].

$$B_1(1)=(0,1], B_2(0)=[0,1].$$
 $B_r^Y(a)=Y\cap B_r^X(a).$ $(B_r^A-$ шарик радиуса r на множестве $A)$

Теорема 2.6 (об открытых и замкнутых множествах в пространстве и подпространстве). (X, ρ) — метрическое пространство, (Y, ρ) — его подпространство, $A \subset Y$. Тогда

- 1. A открыто в $Y \iff \exists G$ открытое в $X : A = G \cap Y$.
- 2. A замкнуто в $Y \iff \exists F$ замкнутое в $X : A = F \cap Y$.

Доказательство.

1. "
$$\Rightarrow$$
" A — открыто в Y \Longrightarrow $\forall x \in A \exists r_x > 0 \colon B^Y_{r_x}(x) \subset A \implies A = \bigcup_{x \in A} B^Y_{r_x}(x)$.

То есть наше множество будет объединением большего числа шариков (возможно бесконечного). Найдем теперь $G\colon G:=\bigcup_{x\in A}B^X_{r_x}(x)$ — открыто в X. Посмотрим теперь на $G\cap Y=\bigcup_{x\in A}(B^X_{r_x}(x)\cap Y)=\bigcup_{x\in A}B^Y_{r_x}(x)=A.$

В обратную сторону. Пусть $A=G\cap Y$, где G открыто в X. Возьмем $x\in G\cap Y$. G — открыто в X \Longrightarrow $\forall x\in G\cap Y\exists r>0$: $B_r^X(x)\subset G$ \Longrightarrow $B_r^X(x)\cap Y\subset G\cap Y=A$ \Longrightarrow $B_r^Y(x)\subset A$ \Longrightarrow x — внутренняя точка A \Longrightarrow A — открыто в Y.

- 2. A замкнутое в $Y \iff Y \setminus A$ открыто в $Y \iff \exists G$ открытое в X, такое что $Y \setminus A = Y \cap G \iff A = Y \setminus (Y \cap G) \stackrel{(1)}{=} Y \setminus G \stackrel{(2)}{=} Y \cap (X \setminus G) \iff \exists G$ открытое в X, такое что $A = Y \cap (X \setminus G) \iff \exists F$ замкнуто в X, такое что $A = Y \cap F$.
 - (1) Можно забить на пересечение с Y, потому что, если элемент G не лежит в Y, то и в $Y\setminus G$ он участия не принимает. (2) Помним, что $Y\subset X$, а значит такая операция корректна.

Пример. (
$$\mathbb{R}, |x-y|$$
). $Y = [0,3)$. $[0,1)$ — открыто в $[0,3)$: $[0,1) = \underbrace{[0,3)}_{Y} \cap \underbrace{(-1,1)}_{G}$. $[2,3)$ — замкнуто в $[0,3)$: $[2,3) = \underbrace{[0,3)}_{Y} \cap \underbrace{[2,3]}_{F}$.

Определение **2.14.** X — векторное пространство над \mathbb{R} .

 $\|.\|:X \to \mathbb{R}$ — норма, если (. — аргумент)

- 1. $||x|| \geqslant 0 \quad \forall x \in X$ и $||x|| = 0 \iff x = \overrightarrow{0}$.
- 2. $\|\lambda x\| = |\lambda| \cdot \|x\| \quad \forall x \in X \ \forall \lambda \in \mathbb{R}.$
- 3. (неравенство треугольника): $\forall x, y \colon ||x + y|| \le ||x|| + ||y||$.

Пример. 1. |x| в \mathbb{R} ,

- 2. $||x||_1 = |x_1| + |x_2| + \ldots + |x_d|$ B \mathbb{R}^d .
- 3. $||x||_{\infty} = \max_{k=1,2,\dots,d} |x_k|$.

Неравенство треугольника: $||x+y||_{\infty} = \max\{|x_k+y_k|\} \leqslant \max\{|x_k|+|y_k|\} \leqslant \max\{|x_k|+|y_k|\} + \max\{|y_k|\} = ||x||_{\infty} + ||y||_{\infty}$

- 4. $||x||_2 = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$
- 5. $||x||_p = \left(\sum_{k=1}^d |x_k|^p\right)^{\frac{1}{p}}$ в \mathbb{R}^d при $p\geqslant 1$. Неравенство треугольника неравенство Минковского.
- 6. C[a, b]. $||f|| = \max_{t \in [a, b]} |f(t)|$.

Определение 2.15. X — векторное пространство над \mathbb{R} . $\langle .,. \rangle$: $X \times X \to \mathbb{R}$ скалярное произведение, если

1.
$$\langle x, x \rangle \geqslant 0$$
 и $\langle x, x \rangle = 0 \iff x = \overrightarrow{0}$.

2.
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

3.
$$\langle x, y \rangle = \langle y, x \rangle$$
.

4.
$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle \quad \lambda \in \mathbb{R}$$
.

Пример. 1. \mathbb{R}^d . $\langle x, y \rangle = \sum x_i y_i$.

2. Возьмем $w_1, \ldots, w_d > 0$. Тогда $\langle x, y \rangle = \sum w_i x_i y_i$.

3.
$$C[a,b]$$
. $\langle f,g\rangle = \int_a^b f(x)g(x)dx$.

Свойства. 1. Неравенство Коши-Буняковского. $\langle x,y\rangle^2\leqslant\langle x,x\rangle\cdot\langle y,y\rangle$.

Доказательство. $f(t) \coloneqq \langle x + ty, x + ty \rangle \geqslant 0$. $f(t) = \langle x, x \rangle + t \langle x, y \rangle + t \langle x, y \rangle + t^2 \langle y, y \rangle = t^2 \langle y, y \rangle + 2t \langle x, y \rangle + \langle x, x \rangle -$ квадратный трехчлен (если $\langle y, y \rangle = 0 \implies y = 0 \implies$ везде нули). Тогда $0 \geqslant D = (2\langle x, y \rangle)^2 - 4\langle x, x \rangle \cdot \langle y, y \rangle = 4(\langle x, y \rangle^2 - \langle x, x \rangle \cdot \langle y, y \rangle)$. Потому что иначе есть два корня и где-то есть отрицательное значение, а $f(t) \ge 0$.

$$\langle x, \overrightarrow{0} \rangle = \langle x, 0 \cdot y \rangle = 0 \cdot \langle x, y \rangle = 0.$$

2.
$$||x|| := \sqrt{\langle x, x \rangle}$$
 — норма.

Доказательство.
$$\|\lambda x\| = \sqrt{\langle \lambda x, \lambda x \rangle} = \sqrt{\lambda^2 \langle x, x \rangle} = |\lambda| \sqrt{\langle x, x \rangle} = |\lambda| \cdot \|x\|$$
.

Неравенство треугольника: $||x+y|| \le ||x|| + ||y||$. Возведем в квадрат, получим $\langle x+y, x+y \rangle \le \langle x, x \rangle + \langle y, y \rangle + 2\sqrt{\langle x, x \rangle \langle y, y \rangle}$, но теперь вспомним, что $\langle x+y, x+y \rangle = \langle x, x \rangle + \langle y, y \rangle + 2\langle x, y \rangle$. А, сократив общие слагаемые, получим доказанное неравенство Коши-Буняковского. \square

3. $\rho(x,y) = ||x-y||$ — метрика.

Доказательство. $\rho(x,y) \geqslant 0$. $\rho(x,y) = 0 \iff \|x-y\| = 0 \iff x-y = \overrightarrow{0} \iff x = y$. $\rho(y,x) = \|y-x\| = \|(-1)(x-y)\| = |-1|\|x-y\| = \rho(x,y)$. $\rho(x,z) \leqslant \rho(x,y) + \rho(y,z)$: $\|(x-y) + (y-z)\| = \|x-z\| \leqslant \|x-y\| + \|y-z\|$.

4. $||x - y|| \ge |||x|| - ||y|||$.

Доказательство. Надо доказать, что $-\|x - y\| \le \|x\| - \|y\| \le \|x - y\|$.

Левое: $||y|| = ||(y - x) + x|| \le ||y - x|| + ||x||$

Правое: $||x|| = ||(x - y) + y|| \le ||x - y|| + ||y||$

5. Упражненение. Если норма порождается скалярным произведением $\iff \|x+y\|^2 + \|x-y\|^2 = 2\|x\|^2 + 2\|y\|^2$. Тождество параллелограмма.

Определение 2.16. (X, ρ) — метрическое пространство. $x_1, x_2, \ldots \in X, a \in X$.

 $\lim x_n = a$, если

- 1. Вне любого открытого шара с центром в точке a содержится лишь конечное число членов последовательности.
- 2. $\forall \varepsilon > 0 \exists N \forall n \geqslant N \quad \rho(x_n, a) < \varepsilon \iff x_n \in B_{\varepsilon}(a)$.

Oпределение 2.17. $A \subset X$.

Тогда A — ограничено, если оно содержится в некотором шаре (\iff его можно запихать в шар).

Ceoucmea. 1. $a = \lim x \iff \rho(x_n, a) \to 0$.

Доказательство.
$$\forall \varepsilon > 0 \exists n \geqslant N \quad |\rho(x_n, a)| < \varepsilon$$
 — предел равен 0.

2. Предел единственный.

Доказательство. Пусть
$$a = \lim x_n$$
 и $b = \lim x_n$. Тогда возьмем шарики такие, что $B_r(a) \cap B_r(b) = \varnothing \implies \exists N_1, N_2, \forall n \geqslant \max\{N_1, N_2\} \ x_n \in B_r(a) \land x_n \in B_r(b)$ — противоречие.

- 3. Если $a = \lim x_n, a = \lim y_n$. То для перемешанной последовательности x_n и y_n предел такой же.
- 4. $a = \lim x_n \implies$ для последовательности, в которой x_n взяты с конечной кратностью, a будет пределом.
- 5. Если $a = \lim x_n$, то $\lim x_{n_k} = a$.
- 6. Последовательность имеет предел \implies она ограничена

Доказательство.
$$\varepsilon = 1 \exists N \forall n \geqslant N \rho(x_n, a) < 1$$
. Тогда $R = \max \{ \rho(x_1, a), \dots, \rho(x_{N-1}, a) \} + 1 \implies x_n \in B_R(a)$.

- 7. Если $a = \lim x_n$, то последовательность, полученная из $\{x_n\}$ перестановкой членов имеет тот же предел (было конечное \to стало конечное).
- 8. a предельная точка $A \iff \exists \{x_n\} \neq a \in A \colon \lim x_n = a$.

Более того, x_n можно выбирать так, что $\rho(x_n, a)$ строго убывает.

Доказательство. " \Leftarrow " Пусть $\lim x_n = a$. Возьмем $B_r(a) \implies \exists N \forall n \geqslant N x_n \in B_r(a) \implies \exists x_n \in \dot{B}_r(a) \implies \dot{B}_r(a) \cap A \neq \varnothing \implies a$ — предельная точка.

"⇒" (строим последовательность) Берем $r_1=1$. $\dot{B_{r_1}}(a)\cap A\neq\varnothing$. Берем оттуда точку, называем $x_1\neq a$. $r_2=\frac{\rho(x_1,a)}{2}$ (для надежности поделили на 2). $\dot{B_{r_2}}(a)\cap A\neq\varnothing$. Берем оттуда точку $x_2\neq a$. $r_3=\frac{\rho(x_2,a)}{2}$. И так далее.

Получили:
$$x_n \neq a$$
 и $\rho(x_n, a) < \frac{\rho(x_{n-1}, a)}{2} < \rho(x_{n-1}, a)$. $\rho(x_n, a) < \frac{1}{2^n} \to 0 \implies \lim x_n = a$.

Теорема 2.7 (об арифметических действиях с пределами). X — нормированное пространство, $x_n, y_n \in X, \ \lambda_n \in \mathbb{R}. \ \lim x_n = a, \lim y_n = b, \lim \lambda_n = \mu. \$ Тогда:

- 1. $\lim (x_n + y_n) = a + b$.
- 2. $\lim (x_n y_n) = a b$.
- 3. $\lim \lambda_n x_n = \mu a$.
- 4. $\lim ||x_n|| = ||a||$.
- 5. Если в X есть скалярное произведение, то $\lim \langle x_n, y_n \rangle = \langle a, b \rangle$.

Доказательство. 1. $\rho(x_n + y_n, a + b) = \|(x_n + y_n) - (a + b)\| = \|(x_n - a) + (y_n - b)\| \le \|x_n - a\| + \|y_n - b\| = \rho(x_n, a) + \rho(y_n, b) \to 0.$

- 2. Аналогично.
- 3. $\rho(\lambda_n x_n, \mu a) = \|\lambda_n x_n \mu a\| = \|\lambda_n x_n \lambda_n a + \lambda_n a \mu a\| \leqslant \|\lambda_n x_n \lambda_n a\| + \|\lambda_n a \mu a\| = |\lambda_n| \|x_n a\| + |\lambda_n \mu| \|a\| \to 0$, так как $|\lambda_n|$ ограниченная, $\|x_n a\| = \rho(x_n a) \to 0$, $|\lambda_n \mu| \to 0$, $\|a\|$ константа.
- 4. $|||x_n|| ||a||| \le ||x_n a|| = \rho(x_n, a) \to 0 \implies \lim ||x_n|| = ||a||$
- 5. $\langle x,y \rangle = \frac{1}{4}(\|x+y\|^2 \|x-y\|^2) = \frac{1}{4}(\langle x+y,x+y \rangle \langle x-y,x-y \rangle) = \frac{1}{4}(\langle x,x \rangle + 2\langle x,y \rangle + \langle y,y \rangle (\langle x,x \rangle 2\langle x,y \rangle + \langle y,y \rangle)) = \frac{1}{4} \cdot 4\langle x,y \rangle$. Тогда получаем $4\langle x_n,y_n \rangle = \|x_n+y_n\|^2 \|x_n-y_n\|^2 \rightarrow \|a+b\|^2 \|a-b\|^2 = 4\langle a,b \rangle$.

Определение **2.18.** \mathbb{R}^d — пространство с нормой $\sqrt{x_1^2 + x_2^2 + \ldots + x_d^2}$.

Определение **2.19.** Покоординатная сходимость в \mathbb{R}^d :

$$x_n \in \mathbb{R}^d$$
. $x_n = (x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(d)}) \xrightarrow{\text{покоординатно}} a = (a^{(1)}, a^{(2)}, \dots, a^{(d)})$, если $\lim x_n^{(k)} = a^{(k)}$ $\forall k = 1, 2, \dots, d$.

Теорема 2.8. в \mathbb{R}^d сходимость по метрике и покоординатная сходимость совпадают.

Доказательство. Метрика \Longrightarrow покоординатная. $\rho(x_n,a) \to 0 \Longrightarrow 0 \leqslant (x_n^{(1)} - a^{(1)})^2 + \ldots + (x_n^{(d)} - a^{(d)})^2 = \rho(x_n,a)^2 \to 0 \Longrightarrow \lim (x_n^{(k)} - a^{(k)})^2 = 0 \Longrightarrow \lim x_n^{(k)} = a^{(k)} \Longrightarrow$ покоординатная сходимость.

Покоординатная \Longrightarrow метрика. Пусть $|x_n^{(k)} - a^{(k)}| \to 0 \quad \forall k \Longrightarrow (x_n^{(k)} - a^{(k)})^2 \to 0 \Longrightarrow \sum_{k=1}^d (x_n^{(k)} - a^{(k)})^2 \to 0$. А так как $(\ldots)^2 = \rho(x_n, a)^2 \Longrightarrow \rho(x_n, a) \to 0$.

Определение 2.20. $x_n \in X$ — фундаментальная последовательность, если

$$\forall \varepsilon > 0 \exists N \forall m, n \geqslant N : \rho(x_n, x_m) < \varepsilon.$$

Свойства. 1. Сходящаяся последовательность фундаментальна.

- 2. Фундаментальная последовательность ограничена.
- 3. Если у последовательности есть сходящаяся подпоследовательность, то последовательность имеет предел.

Доказательство. Упражнение! Утверждается, что так же, как и в пределах.

Определение 2.21. (x, ρ) — метрическое пространство — полное, если любая фундаментальная последовательность имеет предел.

Пример. \mathbb{R} :, $\rho(x,y) = |x-y|$ — полное.

Упражнение. (X, ρ) — полное метрическое пространство $X \supset Y$ замкнуто. Доказать, что (Y, ρ) — полное.

Пример. (0,1) не полное. $x_n = \frac{1}{n}$ — фундаментальная, но $\lim \frac{1}{n} = 0 \notin (0;1)$.

Теорема 2.9. \mathbb{R}^d — полное.

Доказательство. Пусть x_n — фундаментальная, то есть

$$\forall \varepsilon > 0 \exists N \forall m, n \geqslant N : \rho(x_n, x_m) = \sqrt{(x_n^{(1)} - x_m^{(1)})^2 + \ldots + (x_n^{(d)} - x_m^{(d)})^2} < \varepsilon.$$

Но мы знаем, что $\rho(x_n,x_m)\geqslant |x_n^{(k)}-x_m^{(k)}|$, так как, могут быть еще координаты, а значит еще неотрицательные слагаемые.

Тогда заметим, что $x_n^{(k)}$ — фундаментальная $\implies \exists a^{(k)} = \lim_{n \to \infty} x_n^{(k)}$. Значит и x_n сходится к a покоординатно $\implies \rho(x_n, a) \to 0 \implies x_n$ сходится к a по метрике.

2.2. Компактность

Определение 2.22. $A, U_{\alpha}, \alpha \in I$.

Множества U_{α} — покрытие множества A, если $A \subset \bigcup_{\alpha \in I} U_{\alpha}$.

Определение 2.23. Открытое покрытие — покрытие открытыми множествами.

Определение 2.24. (X, ρ) — метрическое пространство, $K \subset X$.

K — компакт, если из любого его открытого покрытия можно выделить конечное подпокрытие.

То есть для любого покрытия можно выбрать $\alpha_1, \alpha_2, \dots, \alpha_n \in I \colon K \subset \bigcup_{i=1}^n U_{\alpha_i}$

Теорема 2.10 (Теорема о свойствах компактных множеств). 1. $K \subset Y \subset X$. Тогда K — компакт в $(X, \rho) \iff K$ — компакт в (Y, ρ) .

- 2. $K \text{компакт} \implies K$ замкнуто и ограничено.
- 3. Замкнутое подмножество компакта компакт.

Доказательство. 1. \Leftarrow . Пусть G_{α} покрытие K множествами, открытыми в X. Тогда $U_{\alpha} = G_{\alpha} \cap Y$ — открыты в Y и $K \subset \bigcup_{\alpha \in I} U_{\alpha} = \bigcup_{\alpha \in I} G_{\alpha} \cap Y = (\bigcup_{\alpha \in I} G_{\alpha}) \cap Y$.

 U_{α} — открытое покрытие в $(Y, \rho) \implies$ можно выделить конечное подпокрытие $\alpha_1, \ldots, \alpha_n$, такое что $K \subset \bigcup_{i=1}^n U_{\alpha_i} \subset \bigcup_{i=1}^n G_{\alpha_i}$ — конечное подпокрытие $G_{\alpha} \implies K$ компакт в (X, ρ) .

- \Rightarrow . Воспользуемся тем же наблюдением: $U_{\alpha} = G_{\alpha} \cap Y$. Следовательно можно выбрать $\alpha_1, \alpha_2, \ldots, \alpha_n$ в X и они же подойдут и в Y.
- 2. Ограниченность. Возьмем $a \in X$. Тогда $K \subset \bigcup_{n=1}^{\infty} B_n(a) = X$ открытое покрытие K.

Выделим конечное подпокрытие $K \subset \bigcup_{n=1}^N B_n(a) \implies K \subset B_N(a) \implies K$ — ограничено (то есть объединили в один большой шар).

Замкнутость. Надо доказать, что $X \setminus K$ — открытое. Возьмем $a \in X \setminus K$ и $x \in K$ и докажем, что a лежит в $X \setminus K$ вместе с некоторым шариком.

Пусть $U_x = B_{\frac{\rho(x,a)}{2}}(x)$. Причем он не пересекается с $B_x = B_{\frac{\rho(x,a)}{2}}(a)$. Возьмем тогда $K \subset \bigcup_{x \in K} U_x$ — открытое покрытие (поскольку каждый шарик точно покрывает свой центр и ещё что-то). Выделим конечное подпокрытие $K \in \bigcup_{i=1}^n U_{x_i}, \ r = \min\{\frac{\rho(x_i,a)}{2}\}$. Тогда $B_r(a) =$

$$\bigcap_{i=1}^n B_{x_i}.\ B_r(a)\cap \bigcup_{i=1}^n U_{x_i}=\varnothing\implies B_r(a)\cap K=\varnothing\implies B_r(a)\subset X\setminus K\implies a-$$
 внутренняя точка $X\cap K.$

3. Пусть \widetilde{K} — компакт, K — замкнуто и $K \subset \widetilde{K}$.

Рассмотрим открытое покрытие K U_{α} . Тогда \widetilde{K} покрыто $(X\setminus K)\cup\bigcup_{\alpha}U_{\alpha}$ — открытое покрытие \widetilde{K} . Выделим конечное подпокрытие $X\setminus K, U_{\alpha_1},\dots,U_{\alpha_n}$. $K\subset \underbrace{X\setminus K}_{i=1}\cup \bigcup_{i=1}^n U_{\alpha_i}\implies$

 $K \subset \bigcup_{i=1}^n U_{\alpha_i}$ — конечное подпокрытие K, а значит K — компакт.

Теорема 2.11. K_{α} — семейство компактов, такое что пересечение любого конечного числа из них непусто. Тогда $\bigcap_{\alpha \in I} K_{\alpha} \neq \emptyset$.

Следствие. $K_1 \supset K_2 \supset K_3 \supset \dots$ непустые компакты. Тогда $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$.

Доказательство теоремы. От противного. Пусть $\bigcap_{\alpha} K_{\alpha} = \emptyset$. Зафиксируем компакт $K_{0} \implies$ $K_0 \cap \bigcap_{\alpha \in I} K_\alpha = \varnothing \implies K_0 \subset X \setminus \bigcap_{\alpha \in I} K_\alpha = \bigcup_{\alpha \in I} X \setminus K_\alpha \stackrel{\alpha \in I}{-}$ открытое покрытие K_0 . Выделим конечное подпокрытие $K_0\subset \bigcup_{i=1}^n X\setminus K_{\alpha_i}=X\setminus \bigcap_{i=1}^n K_{\alpha_i}\implies K_0\cap \bigcap_{i=1}^n K_{\alpha_i}=\varnothing.??!$

 $Onpedenehue\ 2.25.\ K$ — секвенциально компактное множество, если из любой последовательности точек из K можно выделить подпоследовательность, которая сходится к какой-то точке из K.

Пример. $[a,b] \in \mathbb{R}$ секвенциально компактно.

 $x_n \in [a;b] \xrightarrow{\text{Т. B-B}} \exists$ подпоследовательность x_{n_k} , имеющая предел $\Longrightarrow \lim x_{n_k} \in [a,b]$, так как неравенства сохраняются

Теорема 2.12. Бесконечное подмножество компакта имеет предельную точку.

Доказательство. K — компакт. $A \subset K$. Пусть A' (предельные точки) = \emptyset . Тогда A — замкнуто $\implies A$ — компакт и ни одна из его точек не является предельной. $a \in A$ не предельная \implies $\exists r_a > 0 \ B_{r_a}(a) \cap A = \emptyset \implies B_{r_a}(a) \cap A = \{a\}$. Рассмотрим открытое покрытие $A \subset \bigcup_{a \in A} B_{r_a}(a)$, но из этого покрытия нельзя убрать ни одного множества, так как мы выбрали радиусы так, что каждый шар в пересечении с A дает только одну точку \implies нет конечного подпокрытия ⇒ противоречие.

Следствие. Компактность \implies секвенциальная компактность.

Доказательство. $x_1, x_2, \ldots \in K$. $D = \{x_1, x_2, x_3, \ldots\}$ — множество значений последовательности.

- 1. $|D| < +\infty \implies$ в последовательности есть элемент, повторяющийся бесконечно много раз, оставим только его — это нужная подпоследовательность.
- 2. $|D| = +\infty \implies$ у D есть предельная точка. Пусть a — предельная точка $D \implies$ найдутся различные $y_1, y_2, \ldots \in D$, такие что $\lim y_n =$ a.

Но y_i — это какой-то x_{n_i} и $\lim x_{n_i} = a$. Осталось переставить x_{n_i} так, что получится подпоследовательность. Ну, а так как K — замкнуто, то $a \in K$.

Лемма (Лемма Лебега). K — секвенциальный компакт, $K \subset \bigcup_{\alpha \in I} U_{\alpha}$ — открытое покрытие.

Тогда $\exists r > 0 \colon \forall x \in K \quad B_r(x)$ целиком покрывается каким-то U_α .

Доказательство. От противного. Тогда $r = \frac{1}{n}$ не подходит $\Longrightarrow \exists x_n \in K : B_{\frac{1}{n}}(x_n)$ не содержится целиком ни в каком U_{α} .

Выберем подпоследовательность x_{n_k} , такую что $\lim x_{n_k} = a \in K$.

Тогда $a\in U_\beta$ для некоторого $\beta\in I\Longrightarrow\exists B_\varepsilon(a)\subset U_\beta.$ Возьмем $N_1\colon\forall k\geqslant N_1\quad \rho(x_{n_k},a)<\frac{\varepsilon}{2}.$ А еще можно взять $N_2\colon\forall k\geqslant N_2\quad \frac{1}{n_k}<\frac{\varepsilon}{2}.$ А значит $B_{\frac{1}{n_k}}(x_{n_k})\subset B_\varepsilon(a)\subset U_\beta$ при $k\geqslant \max\{N_1,N_2\}?!!$

Докажем
$$B_{\frac{1}{n_k}}(x_{n_k}) \subset B_{\varepsilon}(a)$$
: Если $x \in B_{\frac{1}{n_k}}(x_{n_k})$ $\rho(x_{n_k},x) < \frac{1}{n_k} < \frac{\varepsilon}{2} \wedge \rho(x_{n_k},a) < \frac{\varepsilon}{2} \implies \rho(x,a) \leqslant \rho(x_{n_k},x) + \rho(a,x_{n_k}) < \varepsilon$

Теорема 2.13. Компактность = секвенциальная компактность.

Доказательство. \Leftarrow Пусть $K \subset \bigcup_{\alpha \in I} U_{\alpha}$ — открытое покрытие. Возьмем r>0 из леммы Лебега. Рассмотрим открытое покрытие $K \subset \bigcup_{x \in K} B_r(x)$.

Достаточно из него выделить конечное подпокрытие. Возьмем $x_1 \in K$. Если $B_r(x_1) \supset K$, то выбрали конечное покрытие. Иначе берем $x_2 \in K \setminus B_r(x_1)$. Если объединение шариков $\supset K$, то выбрали конечное подпокрытие. Иначе продолжаем процесс: $x_n \in K \setminus \bigcup_{i=1}^{n-1} B_r(x_i)$. Если процесс оборвался, то выделили конечное подпокрытие.

Если он не оборвался, то мы построили подпоследовательность x_1, x_2, \ldots Причем $\rho(x_n, x_k) \geqslant r \forall n > k \implies \rho(x_i, x_j) \geqslant r \forall i \neq j$. Из такой последовательности не выбрать сходящуюся подпоследовательность, так как любая подпоследовательность не фундаментальная, — противоречие с секвенциальной компактностью.

Определение 2.26. $A \subset X$. (X, ρ) — метрическая пространство.

 $E \subset A$, ε -сеть множества A, если $\forall a \in A \exists x \in E : \rho(x, a) < \varepsilon$.

Конечная ε -сеть — E-конечное множество.

То есть $\{x_1, x_2, ..., x_n\} \subset A - \varepsilon$ -сеть, если $\forall a \in A \exists k \quad \rho(a, x_k) < \varepsilon$.

Определение 2.27. A — вполне ограничено, если $\forall \varepsilon > 0 \exists$ конечная ε -сеть A.

Свойства. 1. Вполне ограниченность \implies ограниченность.

Доказательство.
$$\varepsilon = 1$$
 и конечная 1-сеть x_1, x_2, \dots, x_n . $A \subset \bigcup_{k=1}^n B_1(x_k) \subset B_{r+1}(x_1)$, где $r = \max_{i \neq j} \rho(x_i, x_j)$.

2. В \mathbb{R}^d ограниченность \Longrightarrow вполне ограниченность.

Доказательство. $A \subset \mathbb{R}^d$ — ограниченное. $A \subset B_R(O) \subset [-R, R]^d$.

Зафиксируем $\varepsilon > 0$ и возьмем $n \in \mathbb{N}$. $\rho(x_i, a) \leqslant$ главная диагональ $= \sqrt{d} \frac{2R}{n} < \varepsilon$ при $n > \frac{\sqrt{d}2R}{\varepsilon}$ получается ε -сеть (\sqrt{d} — диагональ в d-мерном кубе).

Теорема 2.14 (Хаусдорфа). 1. Компактное множество вполне ограничено.

2. Если (X, ρ) — полное метрическое пространство, то замкнутое вполне ограниченное подмножество X — компактно.

Доказательство. 1. Берем $\varepsilon > 0$ $K \subset \bigcup_{x \in K} B_{\varepsilon}(x)$ — открытое покрытие. Выделим конечное подпокрытие $\implies K \subset \bigcup_{i=1}^n B_{\varepsilon}(x_i) \implies x_1, \dots, x_n - \varepsilon$ -сеть.

2. Проверим секвенциальную компактность. Берем $x_1, x_2, \ldots \in K$. Возьмем 1-сеть $K \subset \bigcup_{i=1}^{n_1} B_1(y_{1i})$. В каком-то шарике $B_1(z_1)$ бесконечное число членов последовательности. Выкинем все, кроме них, останутся $x_{11}, x_{12}, x_{13}, \ldots$ Возьмем $\frac{1}{2}$ -сеть. $K \subset \bigcup_{i=1}^{n_2} B_{\frac{1}{2}}(y_{2i})$. В каком-то шарике $B_{\frac{1}{2}(z_2)}$ бесконечное число членов последовательности...

На j-ом шаге $K \subset B_{\frac{1}{2}}(y_{ji})$. Пусть на каждом шаге выбирали шарик $B_{\frac{1}{2}}(z_i)$.

В итоге получили:

Воспользуемся диагональным методом Кантора. Пусть $a_n \coloneqq x_{nn}$. Заметим, что $a_n, a_{n+1}, a_{n+2}, \ldots$ — подпоследовательность $x_{n1}, x_{n2}, x_{n3}, \ldots \Longrightarrow$ все лежат в $B_{\frac{1}{n}}(z_n) \Longrightarrow \rho(a_i, a_j) \leqslant \rho(a_i, z_n) + \rho(a_j, z_n) < \frac{1}{n} + \frac{1}{n} = \frac{2}{n}$, при $i, j \geqslant n \Longrightarrow a_i$ — фундаментальная \Longrightarrow у нее есть предел \Longrightarrow $a = \lim a_n \in K$, так как K — замкнуто \Longrightarrow K — секвенциально компактно.

Следствие Характеристика компактов в \mathbb{R}^d . $K \subset \mathbb{R}^d$. K - компакт $\iff K -$ замкнуто и ограничено.

Доказательство. ⇒ верна всегда и доказана выше.

А вот \Leftarrow верна не всегда. Поэтому докажем эту штуку для \mathbb{R}^d . Мы знаем, что \mathbb{R}^d — полное. А еще мы знаем, что в \mathbb{R}^d ограниченность \Longrightarrow вполне ограниченность, а значит понятно, что K — компакт.

Упражнение. (K, ρ) — метрическое пространство, K — компакт. Доказать, что (K, ρ) — полное.

Глава #2

Теорема 2.15 (Теорема Больцано-Вейерштрасса в \mathbb{R}^d). Из любой ограниченной последовательности в \mathbb{R}^d можно выбрать сходящуюся подпоследовательность.

Доказательство. $\{x_n\}$ — ограничено $\implies \exists R \ x_n \in B_R(a) \subset \overline{B}_R(a)$ — замкнуто и ограничено \implies компактно \implies секвенциально компактно $\implies x_n$ — последовательность точек секвенциального компакта \implies у нее есть сходящаяся подпоследовательность.

2.3. Непрерывные отображения

Определение 2.28. (X, ρ_X) и (Y, ρ_Y) — метрические пространства, $E \subset X$. $f : E \to Y$, a — предельная точка $E, b \in Y$.

 $b = \lim_{x \to a} f(x)$ означает, что

По Коши: $\forall \varepsilon > 0 \exists \delta > 0 \forall x \colon \rho_X(x,a) < \delta \land a \neq x \in E \implies \rho_Y(f(x),b) < \varepsilon.$

В терминах окрестностей: $\forall \varepsilon>0 \exists \delta>0 \colon f(\underline{\dot{B}_\delta(a)} \cap E) \subset \underbrace{B_\varepsilon(b)}_{\in Y}$

По Гейне: \forall последовательности $a \neq x_n \in E$: $\lim x_n = a \implies \lim f(x_n) = b$ единственный.

Теорема 2.16. Все определения равносильны.

Доказательство. Упражнение (смотри доказательство для функций).

Теорема 2.17 (Критерий Коши). $f: E \subset X \to Y, Y$ — полное, a — предельная точка E. Тогда $\exists \lim_{x \to a} f(x) \iff \forall \varepsilon > 0 \exists \delta > 0 \forall x, y \in \dot{B}_{\delta}(a) \cap E \implies \rho_{Y}(f(x), f(y)) < \varepsilon$.

Доказательство. \Rightarrow . Упражнение: взять доказательство и заменить модуль на ρ .

 \Leftarrow . Проверим определение по Гейне. Надо доказать, что $a \neq x_n \in E \wedge \lim x_n = a \implies \lim f(x_n)$ существует.

 $f(x_n)$ — последовательность в Y — полное. Поэтому достаточно проверить, что $f(x_n)$ — фундаментальная последовательность. Возьмем $\varepsilon > 0$, по нему $\delta > 0$ из условия. По $\delta > 0$ берем N, такое что $\forall n \geqslant N : \rho_X(x_n,a) < \delta \implies x_n \in \dot{B}_{\delta}(a) \cap E$ при $n \geqslant N \implies \forall m,n \geqslant N : \rho_Y(f(x_n),f(x_m)) < \varepsilon \implies f(x_n)$ фундаментальная $\implies f(x_n)$ имеет предел.

Теорема 2.18 (об арифметических действиях с пределами). $f, g: E \subset X \to Y, Y$ — нормированное пространство, a — предельная точка E.

Пусть $\lim_{x\to a} f(x) = b, \lim_{x\to a} g(x) = c \land \alpha, \beta \in \mathbb{R}$. Тогда

- 1. $\lim_{x \to a} \alpha f(x) + \beta g(x) = \alpha b + \beta c$.
- 2. Если $\lambda \colon E \to \mathbb{R}$, такое что $\lim_{x \to a} \lambda(x) = \mu \in \mathbb{R}$, то $\lim_{x \to a} \lambda(x) f(x) = \mu b$.
- 3. $\lim_{x \to a} ||f(x)|| = ||b||$
- 4. Если Y пространство со скалярным произведением, то $\lim_{x\to a}\langle f(x),g(x)\rangle=\langle b,c\rangle$.
- 5. Если $Y = \mathbb{R}$ и $c \neq 0$, то $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{b}{c}$.

Доказательство. Проверка по Гейне. Берем $x_n \to a$,, тогда $f(x_n) \to b, g(x_n) \to c$ и теорема про пределы последовательности.

Определение 2.29. (X, ρ_X) и (Y, ρ_Y) — метрические пространства, $E \subset X$, $a \in E$. $f : E \to Y$, f непрерывна в точке a, если

- 1. a не предельная точка или a предельная и $\lim_{x \to a} f(x) = f(a)$.
- 2. По Коши. $\forall \varepsilon > 0 \exists \delta > 0 \forall x \in E : \rho_X(x,a) < \delta \Rightarrow \rho_Y(f(x),f(a)) < \varepsilon$.
- 3. С окрестностями. $\forall B_{\varepsilon}(f(a)) \exists B_{\delta}(a) : f(B_{\delta}(a)) \subset B_{\varepsilon}(f(a))$.
- 4. По Гейне: $\forall x_n \in E : \lim x_n = a \implies \lim f(x_n) = f(a)$.

Доказательство. Упражнение! Все определения равносильны. В прошлом доказательстве надо заменить модуль на расстояние.

Теорема 2.19 (о непрерывности композиции). $(X, \rho_X), (Y, \rho_Y), (Z, \rho_Z) - D \subset X, E \subset Y, a \in D, f : D \to E, g : E \to Z$. Если f непрерывна в точке a, а g непрерывна в точке f(a), то $g \circ f$ непрерывна в точке a.

Доказательство. Запишем определения непрерывности для g и f в терминах окрестностей (в определении для f мы дописали $\cap E$, но заметим, что это никак не повлияет по определению E):

$$\forall B_{\varepsilon}(g(f(a))) \; \exists B_{\delta}(f(a)) \; \text{такой, что} \; g(\underline{B_{\delta}(f(a))} \cap \underline{E}) \subset B_{\varepsilon}(g(f(a)))$$
 $\exists B_{\gamma}(a) \; \text{такой, что} \; f(B_{\gamma}(a) \cap D) \subset B_{\delta}(f(a)) \cap \underline{E}$ $\Rightarrow g(f(\underline{B_{\gamma}(a)} \cap D)) \subset g(B_{\delta}(f(a)) \cap E) \subset \underline{B_{\varepsilon}(g(f(a)))} \Rightarrow g \circ f \; \text{непрерывна в точке} \; a$

Теорема 2.20 (Характеристика непрерывности в терминах открытых множеств). $f: X \to Y$. Тогда

f непрерывна во всех точках $\iff \forall U$ — открытого в $Y \colon f^{-1}(U) \coloneqq \{x \in X \mid f(x) \in U\}$ — открыто в X (то есть они переходят в U).

Доказательство. \Rightarrow . Берем $a \in f^{-1}(U) \implies f(a) \in U$ – открыто $\implies \exists \varepsilon > 0$ $B_{\varepsilon}(f(a)) \subset U$.

f непрерывна в точке $a \Longrightarrow \exists \delta > 0 \colon f(B_{\delta}(a)) \subset B_{\varepsilon}(f(a)) \subset U \Longrightarrow B_{\delta}(a) \subset f^{-1}(U) \Longrightarrow a$ внутренняя точка $f^{-1}(U) \Longrightarrow f^{-1}(U)$ — открыто.

$$\Leftarrow. \ U \coloneqq B_\varepsilon(f(a)) - \text{открытое множество} \implies f^{-1}(B_\varepsilon(f(a))) - \text{открыто и } a \in f^{-1}(B_\varepsilon(f(a))) \implies$$

$$\exists \delta > 0 \quad B_{\delta}(a) \subset f^{-1}(B_{\varepsilon}(f(a))) \implies f(B_{\delta}(a)) \subset B_{\varepsilon}(f(a)) \implies f$$
 непрерывна в точке a .

Теорема 2.21 (Непрерывный образ компакта — компакт). $(X, \rho_X), (Y, \rho_Y)$ — метрические пространства, $K \subset X, K$ — компакт.

 $f\colon K o Y$ непрерывна во всех точках. Тогда f(K) — компакт.

Доказательство. Рассмотрим открытое покрытие $f(K) \subset \bigcup_{\alpha \in I} U_{\alpha}$ — открытые $\implies K \subset f^{-1}(\bigcup_{\alpha \in I} U_{\alpha}) = \bigcup_{\alpha \in I} f^{-1}(U_{\alpha})$ по непрерывности $f(K) \subset \bigcup_{\alpha \in I} U_{\alpha}$ — открытое покрытие

$$K$$
, но K — компакт \implies выбираем конечное подпокрытие $K \subset \bigcup_{j=1}^n f^{-1}(U_{\alpha_j}) = f^{-1}(\bigcup_{j=1}^n U_{\alpha_j}) \implies$

$$f(K)\subset \bigcup_{j=1}^n U_{\alpha_j}$$
. Нашли конечное подпокрытие $\implies f(K)$ — компакт.

Определение 2.30. $f: E \subset X \to Y$ — ограниченное отображение, если f(E) — ограниченное множество.

Следствие. Непрерывный образ компакта замкнут и ограничен.

Доказательство. Знаем, что непрерывный образ компакта — компакт. А следовательно, образ замкнут и ограничен. \Box

Следствие. Если K — компакт и f непрерывна на K, то f — ограниченное отображение.

Следствие Теорема Вейерштрасса. $f: K \to \mathbb{R}, K$ — компакт, f непрерывна на K.

Тогда $\exists a, b \in K : f(a) \leqslant f(x) \leqslant f(b) \quad \forall x \in K.$

Доказательство. f(K) — ограниченное множество в $\mathbb{R} \implies B \coloneqq \sup_{x \in K} f(x) \in \mathbb{R} \implies \exists x_n \in K : \lim f(x_n) = B$. При этом $x_n \in K$ — секвенциальный компакт \implies существует сходящаяся подпоследовательность x_{n_k} .

Тогда
$$\lim x_{n_k} =: b \in K \implies \underbrace{\lim f(x_{n_k})}_{=B} = f(b) \implies f(b) = \sup_{x \in K} f(x) = B \implies f(x) \leqslant f(b) \quad \forall x \in K.$$

Теорема 2.22. $f: X \to Y$ непрерывна во всех точках, биекция и X — компакт. Тогда f^{-1} непрерывна во всех точках.

Доказательство. Проверяем непрерывность f^{-1} в терминах открытых множеств. Надо для f^{-1} проверить, что прообраз открытого — открыт, то есть для f проверить, что образ открытого открыт.

$$U$$
— открыто в $X \Longrightarrow X \setminus U$ — замкнуто и С X — компакт $\Longrightarrow X \setminus U$ — компакт $\Longrightarrow f(X \setminus U) = Y \setminus f(U)$ — компакт $\Longrightarrow Y \setminus f(U)$ — замкнуто $\Longrightarrow f(U)$ — открыто. \square

Определение 2.31. $f: E \subset X \to Y$ равномерно непрерывна, если $\forall \varepsilon > 0 \exists \delta > 0 \forall x,y \in E:$ $\rho_X(x,y) < \delta \implies \rho_Y(f(x),f(y)) < \varepsilon.$

Теорема 2.23 (Теорема Кантора). $f: K \to Y$ непрерывна, K — компакт. Тогда f равномерно непрерывна.

Доказательство. Берем $x \in K$, f непрерывна в точке $x \implies \exists r_x > 0 \colon f(B_{r_x}(x)) \subset B_{\frac{\varepsilon}{2}}(f(x))$.

Тогда $K \subset \bigcup_{x \in K} B_{r_x}(x)$ — открытое покрытие K. Возьмем $\delta > 0$ из леммы Лебега, то есть $\forall x \in K \ B_{\delta}(x)$ целиком попал в какой-то элемент покрытия.

Проверим, что это $\delta > 0$ подходит в определение равномерной непрерывности.

$$\forall x,y \in K \ \rho_X(x,y) < \delta \implies y \in B_\delta(x) \implies \exists a \in K : B_\delta(x) \subset B_{r_a}(a) \implies x,y \in B_{r_a}(a) \implies f(x),f(y) \in B_{\frac{\varepsilon}{2}}(f(a)) \implies \rho_Y(f(x),f(a)) < \frac{\varepsilon}{2} \wedge \rho_Y(f(y),f(a)) < \frac{\varepsilon}{2} \implies \rho_Y(f(x),f(y)) < \varepsilon$$
 по неравенству треугольника.

Определение **2.32.** X — векторное пространство и $\|.\|$ и $\|.\|$ — нормы в X.

Нормы эквиваленты, если $\exists C_1, C_2 > 0$

$$C_1||x|| \leqslant |||x||| \leqslant C_2||x|| \quad \forall x \in X.$$

Замечание. 1. Это отношение эквивалентности. (упражнение)

- 2. Пределы последовательности для эквивалентных норм совпадают. Док-во: Пусть $\lim x_n = a$ по норме $\|.\|$, т.е. $\lim \|x_n a\| = 0$. А $0 \le \||x_n a\|| \le C_2 \|x_n a\| \to 0$, значит $\lim x_n = a$ и по норме $\|.\|$.
- 3. Непрерывность отображений для эквивалентных норм совпадают (записываем по Гейне, а для последовательностей мы всё знаем).

Теорема 2.24. В \mathbb{R}^d все нормы эквивалентны.

Доказательство. $||x|| = \sqrt{x_1^2 + x_2^2 + \ldots + x_d^2}$. Достаточно доказать, что остальные нормы эквиваленты ||.||,.

Пусть p(x) — другая норма в \mathbb{R}^d . e_k — вектор с нулями и единицей на k-ой позиции.

$$x = (x_1, x_2, \dots, x_d) = \sum_{k=1}^{d} x_k e_k.$$

$$p(x-y) = p(\sum_{k=1}^{d} (x_k - y_k)e_k) \overset{(1)}{\leqslant} \sum_{k=1}^{d} p((x_k - y_k)e_k) =$$

$$= \sum_{k=1}^{d} |x_k - y_k|p(e_k) \leqslant (\text{Коши-Буняковский}) \left(\sum_{k=1}^{d} (x_k - y_k)^2\right)^{\frac{1}{2}} \left(\sum_{k=1}^{d} p(e_k)^2\right)^{\frac{1}{2}} =$$

$$= \left(\sum_{k=1}^{d} p(e_k)^2\right)^{\frac{1}{2}} \|x - y\| \xrightarrow{(2)} p(x) \leqslant \left(\sum_{k=1}^{d} p(e_k)^2\right)^{\frac{1}{2}} \|x\|.$$

$$(1) \iff ||a+b|| \leqslant ||a|| + ||b|| \text{ if } p(a+b) \leqslant p(a) + p(b)$$

 $(2) \iff p(x)$ — непрерывная функция.

$$S \coloneqq \{x \in \mathbb{R}^d \colon x_1^2 + x_2^2 + \ldots + x_d^2 = 1\} \quad \text{ компакт} \implies \exists a \in S \colon 0 < p(a) \leqslant p(x) \quad \forall x \in S.$$

$$p(x) = p(\frac{x}{\|x\|} \cdot \|x\|) = \|x\|p(\underbrace{\frac{x}{\|x\|}}_{\in 1-Sphere}) \geqslant \|x\|p(a)$$
, так как норма $\frac{x}{\|x\|}$ будет равна 1.

Тогда $p(a)||x|| \leq p(x) \leq M||x|| \quad \forall x \in \mathbb{R}^d$.

2.4. Длина кривой

Определение 2.33. (X, ρ) — метрическое пространство. (\mathbb{R}^d — ключевой случай).

Непрерывное $\gamma \colon [a,b] \to X$ непрерывное — путь.

 $\gamma(a)$ — начало пути, $\gamma(b)$ — конец пути. $\gamma([a,b])$ носитель пути.

Замкнутый путь $\gamma(a)=\gamma(b)$. Простой (самонепересекающийся) путь: $\gamma(u)\neq\gamma(v)\quad \forall u,v\in[a,b]$. Возможно, за исключением равенства $\gamma(a)=\gamma(b)$.

Определение 2.34. Эквивалентные пути: $\gamma_1: [a,b] \to X, \ \gamma_2: [c,d] \to X.$ Если $\exists u: [a,b] \to [c,d],$ u — непрерывна и строго монотонно возрастает, u(a) = c, u(b) = d, такой, что $\gamma_1 = \gamma_2 \circ u$.

Неформально говоря, мы считаем, что пути эквивалентны, если у них отличается только время прохождения.

(*) u — допустимое преобразование параметра.

Определение 2.35. Класс эквивалентных путей — кривая.

Конкретный представитель класса — параметризация кривой.

$$extbf{Onpedenenue 2.36.} \ \gamma\colon [a,b] o \mathbb{R}^d$$
. r -гладкий путь, если $\gamma=egin{pmatrix} \gamma_1\\ \gamma_2\\ \vdots\\ \gamma_d \end{pmatrix}, \gamma_j\colon [a,b] o \mathbb{R}-r$ -гладкие

функции, то есть $\gamma_i \in C^r[a,b]$.

Кривая гладкая, если у нее есть гладкая параметризация. Если r опущено, то r=1.

Определение 2.37. Длина пути $l(\gamma) = \sup_{k=1}^{n} \rho(\gamma(t_k), \gamma(t_{k-1}))$, где t_k — дробление отрезка. То есть считаем все и берем супремум.

Замечание. Длины эквивалентных путей равны.

Свойства. 1. $l(\gamma) \geqslant \rho(\gamma(a), \gamma(b))$ (то есть \geqslant прямой). Можно просто взять дробление состоящее из двух точек.

2. $l(\gamma) \geqslant$ длина вписанной в нее ломаной.

Теорема 2.25. Пусть есть $\gamma: [a, b] \to X. \ c \in [a, b].$

$$l(\gamma) = l(\gamma \Big|_{[a,c]}) + l(\gamma \Big|_{[c,b]}).$$

Обозначим куски за γ_1, γ_2 .

Доказательство. Нам нужно доказать какое-то равенство, поэтому докажем два неравенства!

• \geqslant . Давайте вписывать ломанные. Впишем какую-то ломанную в γ_1 и еще какую-то в γ_2 . Пусть получились дробления $a=t_0 < t_1 < t_2 < \ldots < t_n = u_0 < \ldots < u_m = b$ — получилось дробление [a,b].

Тогда посчитаем сумму: $\sum_{k=1}^{n} \rho(\gamma(t_{k-1}), \gamma(t_k)) + \sum_{k=1}^{n} \rho(\gamma(u_{k-1}), \gamma(u_k)) \leqslant l(\gamma)$. Заменим первое слагаемое на sup: $\sup \ldots + \sum_{k=1}^{n} \rho(\gamma(u_{k-1}), u_k) \leqslant l(\gamma)$. А этот $\sup -$ длина γ_1 . Встает вопрос почему можно переходить. Мы знаем, что все числа меньше, то и супремум меньше, поэтому переход корректный. Дальше заменяем правый sup. В итоге получаем $l(\gamma_1) + l(\gamma_2) \leqslant l(\gamma)$.

• Возьмем дробление γ t_i . Посмотрим на сумму $S = \sum_{j=1}^n \rho(\gamma(t_{j-1}), \gamma(t_j))$.

Возьмем дробление t_i и добавим в него точку c. Получаем:

$$S \leqslant \sum_{j=1}^{k} \rho(\gamma(t_{j-1}), \gamma(t_j)) + \rho(\gamma(t_k), \gamma(c)) + \rho(\gamma(c), \gamma(t_{k+1})) + \sum_{j=k+2}^{n} \rho(\gamma(t_{j-1}), \gamma(t_j))$$

А теперь увидим, что первые два слагаемых $\leqslant l(\gamma_1)$, а вторые два $\leqslant l(\gamma_2)$. То есть $l(\gamma) \leqslant l(\gamma_1) + l(\gamma_2)$.

Теорема 2.26. $\gamma\colon [a,b] o \mathbb{R}^d$ — гладкий путь. $\gamma=\begin{pmatrix} \gamma_1\\ \gamma_2\\ \vdots\\ \gamma_d \end{pmatrix}$. Тогда:

$$l(\gamma) = \int_{a}^{b} \sqrt{\gamma_1'(t)^2 + \gamma_2'(t)^2 + \ldots + \gamma_d'(t)^2} dt = \int_{a}^{b} ||\gamma'(t)|| dt$$

 $\begin{array}{l} \mathbf{Лемма.} \ \Delta \ \subset \ [a,b] \ - \ \mathrm{отрезоk}, \ \gamma : \ [a,b] \ \rightarrow \ \mathbb{R}^d. \ m_{\Delta}^{(i)} \ \coloneqq \ \min_{t \in \Delta} |\gamma_i'(t)|, M_{\Delta}^{(i)} \ \coloneqq \ \max_{t \in \Delta} |\gamma_i'(t)|, \ m_{\Delta} \ \coloneqq \\ \sqrt{\sum\limits_{i=1}^d (m_{\Delta}^{(i)})^2}, M_{\Delta} \ \coloneqq \sqrt{\sum\limits_{i=1}^d (M_{\Delta}^{(i)})^2} \end{array}$

Тогда $m_{\Delta}l(\Delta) \leqslant l(\gamma \Big|_{\Delta}) \leqslant M_{\Delta}l(\Delta).$

Доказательство. Впишем в $\gamma \Big|_{\Lambda}$ ломаную. Пусть a_k — длина k-го звена.

По теореме Лагранжа:
$$\gamma_i(t_k) - \gamma_i(t_{k-1}) = \underbrace{\gamma_i'(\xi_{ik})(t_k - t_{k-1})}_{\geqslant m_{\Delta}^{(i)}(t_k - t_{k-1})} \leqslant M_{\Delta}^{(i)}(t_k - t_{k-1})$$

Тогда $m_{\Delta}(t_k-t_{k-1})\leqslant a_k\leqslant M_{\Delta}(t_k-t_{k-1}).$ Просуммируя все такие неравенства получим исходное.

Доказательство теоремы. По лемме длина звена:

$$m_{k}(x_{k} - x_{k-1}) \leq l(\gamma \Big|_{[x_{k-1}, x_{k}]}) \leq M_{k}(x_{k} - x_{k-1})$$

$$\sum_{k=1}^{n} m_{k}(x_{k} - x_{k-1}) \leq l(\gamma) \leq \sum_{k=1}^{n} M_{k}(x_{k} - x_{k-1})$$

$$m_{k}(x_{k} - x_{k-1}) \leq \int_{x_{k-1}}^{x_{k}} \sqrt{\gamma'_{1}(t)^{2} + \dots + \gamma'_{d}(t)^{2}} dt \leq M_{k}(x_{k} - x_{k-1})$$

$$\sum_{k=1}^{n} m_{k}(x_{k} - x_{k-1}) \leq \int_{x_{k-1}}^{x_{k}} ||\gamma'(t)|| dt \leq \sum_{k=1}^{n} M_{k}(x_{k} - x_{k-1})$$
(*)

Заметим, что (*) получается просто из того, что m_k — минимум, а M_k — максимум. Также заметим, что суммы в первой и четвертой строчке равны.

Докажем, что сумма с M_k минус сумма с m_k стремится к нулю. По факту хотим доказать, что $\sum_{k=1}^n (M_k - m_k)(x_k - x_{k-1}) \to 0$.

$$M_k - m_k = \sqrt{\sum_{i=1}^d (M_{[x_{k-1},x_k]}^{(i)})^2} - \sqrt{\sum_{i=1}^d (m_{[x_{k-1},x_k]}^{(i)})^2} \leqslant (\text{Минковский}) \sqrt{\sum_{i=1}^d (M_{[x_{k-1},x_k]}^{(i)} - m_{[x_{k-1},x_k]}^{(i)})^2} \leqslant$$

$$\leqslant \sum_{i=1}^d (M_{[x_{k-1},x_k]}^{(i)} - m_{[x_{k-1},x_k]}^{(i)}) = \sum_{i=1}^d (\gamma_i(\xi_k) - \gamma_i(\eta_k)) \leqslant \sum_{l=1}^d \omega_k(|\tau|). \qquad (\xi_k,\eta_k \in [x_{k-1},x_k]).$$

$$0 \leqslant \sum_{k=1}^n (M_k - m_k)(x_k - x_{k-1}) \leqslant \underbrace{\sum_{i=1}^d \omega_k(|\tau|)}_{\to 0} \cdot \underbrace{\sum_{k=1}^n (x_k - x_{k-1})}_{=b-a}$$

Следствие. 1. $\|\gamma'\| \leqslant C \implies l(\gamma) \leqslant C(b-a)$. Бежали со скоростью $\leqslant C \Rightarrow$ пробежали $\leqslant C \cdot (b-a)$.

- 2. Длина графика функции $f:[a,b]\to\mathbb{R}$ $l=\int\limits_a^b\sqrt{1+f'(x)^2}\mathrm{d}x.$
- 3. Длина в полярных координатах. $r: [\alpha, \beta] \to \mathbb{R}$. Тогда $l = \int\limits_{\alpha}^{\beta} \sqrt{r(\varphi)^2 + r'(\varphi)^2} \mathrm{d}\varphi$.

Доказательство. 2. $\gamma(x) = \begin{pmatrix} x \\ f(x) \end{pmatrix}, \gamma_1'(x) = 1, \gamma_2'(x) = f'(x)$, а дальше применить функцию.

3. $\gamma(\varphi) = \binom{r(\varphi)\cos\varphi}{r(\varphi)\sin\varphi}$. Подставим и возьмем производную.

Определение 2.38. A — связное множество, если \forall покрытие из U, V $A \subset U \cup V, U \cap V = \varnothing \implies$ либо $A \subset U$, либо $A \subset V$, где U, V — открытые.

Пример. 1. [a, b] — связное множество в \mathbb{R} .

2. \mathbb{Q} — несвязное множество в \mathbb{R} . Пример $\mathbb{Q}\subset (-\infty;\sqrt{2})\cup (\sqrt{2};+\infty)$.

Теорема 2.27. Непрерывный образ связного множества — связное множество.

Доказательство. A — связное, $f: A \subset X \to Y$ непрерывное. Хотим показать, что $f(A) \subset U, V$ — открытые множества в Y, причем $U \cap V = \varnothing$. Тогда образ лежит либо в U, либо в V. Так как множества открытые, то и $f^{-1}(U), f^{-1}(V)$ будут открытыми, причем $A \subset f^{-1}(U) \cup f^{-1}(V)$ и пересечение прообразов будет пустым.

Так как A связно, то оно будет лежать ровно в одном из прообразов, а значит и образ будет лежать ровно в одном множестве.

Следствие Теорема Больцано-Коши. Пусть A — связное, $a,b \in A$. $f:A \to \mathbb{R}$ непрерывная. Тогда f принимает все промежуточные значения, лежащие между f(a) и f(b).

Доказательство. От противного. Пусть f(a) < C < f(b) и C — не значение. Тогда $f(A) \subset (-\infty, C) \cup (C, +\infty)$. Заметим, что данные множества открытые и не пересекаются. Тогда получили противоречие со связностью f(A).

Теорема 2.28. $\langle a,b\rangle$ — связное подмножество $\mathbb{R}, a,b\in\overline{\mathbb{R}}.$

Доказательство. От противного. Пусть $\langle a,b\rangle\subset U\cup V,\,U\cap V=\varnothing.$

Пусть $f\colon \langle a,b\rangle \to \mathbb{R} = f(x) = \begin{cases} 0 & x\in\langle a,b\rangle\cap U\neq\varnothing \\ 1 & x\in\langle a,b\rangle\cap V\neq\varnothing \end{cases}$ — непрерывная функция. Её прообразы:

 \emptyset , $\langle a,b \rangle$, $\langle a,b \rangle \cap U$, $\langle a,b \rangle \cap V$ — открытые в $\langle a,b \rangle$ множества, но значение $\frac{1}{2}$ не принимается, а значения 0 и 1 точно принимаются, так как иначе бы $\langle a,b \rangle$ лежал бы ровно в 1 множестве. \square

Определение 2.39. A — линейно связно, если $\forall u, v \in A \exists \gamma \colon [a, b] \to A \colon \gamma(a) = u, \gamma(b) = v$.

Теорема 2.29. Линейно связное множество связно.

Доказательство. A — линейно связно, пусть оно не связно $\implies A \subset U \cup V \quad U \cap V = \varnothing$. $A \cap U \neq \varnothing$ и $A \cap V \neq \varnothing$.

Возьмем $u \in A \cap U, v \in A \cap V$ и соединим их путем γ . $\gamma[a,b]$ — связное (как образ отрезка), $\gamma[a,b] \subset A \subset U \cup V \implies \underbrace{\gamma[a,b] \subset U}_{\text{нет}\gamma(b)}$ или $\underbrace{\gamma[a,b] \subset V}_{\text{нет}\gamma(a)}$. Противоречие.

Определение **2.40.** Область — открытое, линейно связное множество (из теоремы область связна).

Замечание. Если A открыто, то A — связно $\iff A$ — линейно связно.

2.5. Линейные операторы

Определение **2.41.** X, Y — векторные пространства,

 $A: X \to Y$ — линейный оператор, если $\forall x, y \in X, \forall \alpha, \beta \in \mathbb{R} A(\alpha x + \beta y) = \alpha A(x) + \beta A(y)$.

Свойства. 1. $A0_X = 0_Y$. Доказательство: $\alpha = 0, \beta = 0$.

2. $A(\sum_{k=1}^{n} \lambda_k x_k) = \sum_{k=1}^{n} \lambda_k A(x_k)$. Доказательство: индукция.

 ${\it Onpedenehue}$ 2.42. A,B- линейный оператор: $X \to Y.$

$$(A+B)(x) := A(x) + B(x).$$

$$(\lambda A)(x) = \lambda A(x).$$

То есть получили векторное пространство линейных операторов.

Определение 2.43. $A\colon X\to Y, B\colon Y\to Z$ — линейные операторы $B\circ A\colon X\to Z.$ $(B\circ A)(x):=B(A(x)).$

Замечание. Это линейный оператор.

Определение 2.44. Обратный оператор: $A: X \to Y, B: Y \to X$ обратный к A, если $A \circ B = Id_Y$ и $B \circ A = Id_x$. Обозначается A^{-1} .

Свойства. 1. Если обратный оператор ∃, то он единственный.

- 2. $(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$.
- 3. $A: X \to X$ обратимые операторы образуют группу по операции композиции.

Доказательство. 1. $B \circ A = Id_X \implies A$ — инъекция. Если $A(x) = A(y) \implies x = B(A(x)) = B(A(y)) = y$.

 $A \circ B = Id_Y \implies A$ — сюръекция. $A(B(y)) = y \implies$ просто биекция.

Пусть B,C — обратные к A. $B(A(x))=B\circ A(x)=x=C\circ A(x)=C(A(x))\implies B=C$ на множестве значений A, но A — сюръекция.

2.
$$((\frac{1}{\lambda}A^{-1}) \circ (\lambda A))(x) = \frac{1}{\lambda}A^{-1}(\lambda A(x)) = x$$
.

Пример для 3 свойства. $X = \mathbb{R}^n, Y = \mathbb{R}^m$. Можно рассматривать линейные операторы как матрицы $\Rightarrow Ax = y \ (m \text{ на } n \text{ матрица}).$

Определение 2.45 (Матричная запись). $A: \mathbb{R}^n \to \mathbb{R}^m$. Возьмем базисный вектор e_k — везде 0, кроме k-ой позиции —там 1.

Пусть
$$x=\sum\limits_{i=1}^nx_ie_i$$
. Тогда $Ax=A(\sum\limits_{k=1}^nx_ke_k)=\sum\limits_{k=1}^nx_k$ $\underbrace{A_{e_k}}_{:=A_k\in\mathbb{R}^m}$.

То есть получили набор столбцов. Из которого можно получить матрицу.

Определение 2.46. X и Y — нормированные пространства. $A \colon X \to Y$ — линейный оператор.

$$||A|| \coloneqq \sup_{||x||_X \leqslant 1} ||A_x||_Y.$$

Оператор ограниченный, если его норма конечна.

Замечание. Ограниченный оператор ≠ ограниченное отображение.

Линейное отображение + ограниченность $\Longrightarrow = 0$.

Доказательство. Пусть $Ax \neq 0$, тогда $A(\lambda x) = \lambda Ax$, а это уже не ограничено.

Ceoùcmea. 1. $||A + B|| \le ||A|| + ||B||$

- $2. \|\lambda A\| = \lambda \|A\|.$
- $3. ||A|| = 0 \iff A \equiv 0.$

Доказательство. 1. $\|(A+B)x\|_Y = \|Ax+Bx\|_Y \leqslant \|Ax\|_Y + \|Bx\|_Y \iff \sup_{\|x\|_x \leqslant 1} \|(A+B)x\| = \|A+B\| \leqslant \sup_{\|x\|_x \leqslant 1} \|Ax\|_Y + \sup_{\|x\|_x \leqslant 1} \|Bx\|_Y = \|A\| + \|B\|.$

- $2. \ \|\lambda Ax\| = |\lambda| \cdot \|Ax\|. \sup_{\|x\|_x \leqslant 1} \|\lambda Ax\| = |\lambda| \sup_{\|x\|_x \leqslant 1} \|Ax\| = |\lambda| \|A\|.$
- $3. \Rightarrow ||A|| = 0 \implies ||Ax|| = 0 \implies Ax = 0 \implies Ax = A(\frac{x}{||x||} \cdot ||x||) = ||x||A(\frac{x}{||x||}) = 0.$

Теорема 2.30. $A \colon X \to Y$ — линейный оператор. Тогда

$$||A|| = \sup_{\|x\|_{x} < 1} ||Ax||_{Y} = \sup_{\|x\|_{x} = 1} ||Ax||_{Y} = \sup_{x \neq 0} \frac{||Ax||_{Y}}{\|x\|_{x}} = \inf\{c > 0 \mid ||A_{x}||_{Y} \leqslant C||x||_{X}\}.$$

Доказательство. Обозначим за N_i *i*-ый элемент этой цепочки.

 $N_1\geqslant N_2$ и $N_1\geqslant N_3$, так как $N_2,N_3\subset N_1$.

$$N_3 \geqslant N_4$$
. $\frac{\|Ax\|_Y}{\|x\|_X} = \frac{1}{\|x\|} \|Ax\|_Y = \|A\frac{x}{\|x\|}\|_X \leqslant N_3$.

$$N_4 = N_5$$
. $N_5 = \inf\{c > 0 \mid \frac{\|Ax\|_Y}{\|x\|_X} < c\}$

Теперь докажем, что $N_1\leqslant N_2$. Пусть $\|x\|\leqslant 1 \implies \|(1-\varepsilon)x\|<1 \implies \|A((1-\varepsilon)x)\|\leqslant N_2$. Воспользуемся линейностью A: вытащим $(1-\varepsilon)$ за скобку. После этого устремим ε к 0. Тогда $\|Ax\|\leqslant N_2 \implies N_1=\sup_{\|x\|\leqslant 1}\|Ax\|\leqslant N_2$.

Теперь докажем, что
$$N_1\leqslant N_4$$
. $\|x\|\leqslant 1$. Тогда $y\coloneqq\frac{x}{\|x\|},\ \|y\|=1\implies\|A_y\|\leqslant N_4\implies\|Ax\|\leqslant\frac{1}{\|x\|}\cdot\|Ax\|\leqslant N_4\implies\|A_x\|\leqslant N_4\implies N_1=\sup_{\|x\|\leqslant 1}\|Ax\|\leqslant N_4.$

Теорема 2.31. $A: X \to Y$ — линейный оператор. Следующие условия равносильны:

- 1. A ограниченный оператор.
- 2. A непрерывен в нуле.
- 3. A непрерывен во всех точках.
- 4. А равномерно непрерывен.

Доказательство. $4 \implies 3 \implies 2$ — очевидно.

 $1\implies 4\;\|Ax-Ay\|_Y=\|A(x-y)\|_Y\leqslant \|A\|\cdot\|x-y\|_X.$ Если $\|x-y\|_X<rac{arepsilon}{\|A\|},$ то $\|Ax-Ay\|<arepsilon,$ а это есть равномерность.

 $2\implies 1.$ Возьмем $\varepsilon=1$ и $\delta>0$ из определения непрерывности. $\forall x\in X\colon \|x\|<\delta\implies \|Ax\|<1.$

Пусть
$$\|y\| < 1$$
. Тогда $\|\delta y\| < \delta \implies \|A(\delta y)\| < 1 \implies \|Ay\| < \frac{1}{\delta} \implies \sup_{\|y\| < 1} \|Ay\| \leqslant \frac{1}{\delta}$.

Credcmeue. 1. $||Ax||_Y \leqslant ||A|| ||x||_X \quad \forall x \in X$.

2. $||AB|| \leq ||A|| \cdot ||B||$.

Доказательство. 2. $||A(Bx)|| \le ||A|| \cdot ||Bx|| \le ||A|| ||B|||x||$. $||AB|| = \inf\{c > 0 \mid ||A(Bx)|| \le C||x||\} \implies ||AB|| \le ||A|| ||B||$.

1. а где

Теорема 2.32.
$$A: \mathbb{R}^n \to \mathbb{R}^m$$
. $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$.

Тогда $||A||^2 \leqslant \sum_{k=1}^n \sum_{j=1}^m a_{jk}^2$. В частности, все такие операторы ограничены.

Доказательство.
$$\|Ax\|^2 = \sum_{j=1}^m \underbrace{\left(\sum_{k=1}^n a_{jk} x_k\right)^2}_{\text{Минковский}} \leqslant ($$
Коши-Буняковский $) \sum_{j=1}^m \sum_{k=1}^n a_{jk}^2 \underbrace{\sum_{k=1}^n x_k^2}_{=\|x\|^2}$. Следова-

тельно,
$$||Ax|| \le ||x|| \sqrt{\sum_{k=1}^m \sum_{j=1}^n a_{jk}^2} \ge ||A||$$
.

Замечание. В бесконечномерном случае бывают неограниченные операторы.

3. Ряды

3.1. Ряды в нормированных пространствах

Определение 3.1. X — пространство с нормой, $x_n \in X$.

$$\sum\limits_{k=1}^{\infty}x_k$$
 — ряд. Частичная сумма ряда $S_n\coloneqq\sum\limits_{k=1}^nx_k.$

Если $\exists \lim_{n \to \infty}$, то он называется суммой ряда.

Ряд сходится, если у него есть сумма (и для \mathbb{R} эта сумма конечна), иначе она бесконечна.

Теорема 3.1 (Необходимое условие сходимости). Если ряд $\sum_{n=1}^{\infty} x_k$ — сходится, то $\lim x_n = 0$.

Доказательство.
$$S_n := \sum_{k=1}^n x_k \to S \implies \underbrace{S_n - S_{n-1}}_{x_n} \to S - S = 0.$$

Свойства. 1. Линейность.
$$\sum_{n=1}^{\infty} (\alpha x_n + \beta y_n) = \alpha \sum_{n=1}^{\infty} x_n + \beta \sum_{n=1}^{\infty} y_n.$$

2. Расстановка скобок. В ряду произвольным образом можно ставить скобки, расстановка скобок дает тот же результат.

Набросок доказательства: мы просто смотрим на предел подпоследовательности.

3. В \mathbb{C} и \mathbb{R}^n сходимость равносильна покоординатной сходимости.

Теорема 3.2 (Критерий Коши). X — полное нормированное пространство.

Тогда ряд
$$\sum\limits_{n=1}^{\infty}x_n$$
 сходится $\iff \forall \varepsilon>0 \exists N \forall m,n\geqslant N: \|\sum\limits_{k=m}^nx_k\|<\varepsilon.$

Доказательство. $S_n \coloneqq \sum_{k=1}^n x_k$. Последовательность S_n сходится $\iff S_n$ — фундаментальная

$$\iff \forall \varepsilon > 0 \exists N \forall m, n > N : ||S_n - S_m|| < \varepsilon \iff ||\sum_{k=m+1}^n x_k|| < \varepsilon.$$

Определение 3.2. Ряд $\sum_{n=1}^{\infty} x_n$ сходится абсолютно, если $\sum_{n=1}^{\infty} \|x_n\|$ сходится.

Замечание. В частности, в $\mathbb R$ абсолютная сходимость — сходимость ряда $\sum\limits_{n=1}^\infty |x_n|.$

Теорема 3.3. X — полное нормированное пространство.

Если $\sum_{n=1}^{\infty} x_n$ абсолютно сходится, то он сходится.

Доказательство. Пусть $\sum\limits_{n=1}^{\infty}\|x_n\|$ — сходится. Тогда $\forall \varepsilon>0 \exists N \forall m,n\geqslant N$: $\sum\limits_{k=m+1}^{n}\|x_k\|<\varepsilon$. Воспользуемся свойством о том, что сумма норм не меньше, чем норма суммы. А значит получили $\forall \varepsilon>0 \exists N \forall m,n\geqslant N$: $\|\sum\limits_{k=m+1}^{n}x_k\|<\varepsilon$, что является критерием Коши для исходной последовательности.

Теорема 3.4. 1. X — нормированное пространство. Если $\lim x_n = 0$ и в каждой скобке $\leq M$ слагаемых то из сходимости ряда после расстановки скобок следует сходимость исходиного

 $2. \ \mathbb{R}. \$ Если в каждой скобке все члены одного знака, то из сходимости ряда после расстановки скобок следует сходимость исходного.

Доказательство. $S_n := \sum_{k=1}^n x_k$ и $S_{n_k} \to S$.

- 1. Возьмем $n: n_k \leqslant n < n_{k+1}.$ $S_n = S_{n_k} + x_{n_k} + x_{n_k+1} + x_{n_k+2} + \ldots + x_n.$ $\|S_n S\| \leqslant \|S_{n_k} S\| + \|x_{n_k+1}\| + \ldots + \|x_n\|.$ Мы знаем, что $S_{n_k} \to S \implies \exists K \forall k \geqslant K: \|S_{n_k} S\| < \varepsilon.$ $\lim x_j = 0 \implies \exists J \forall j \geqslant J \|x_j\| < \varepsilon.$ Следовательно исходная сумма не более $(M+1)\varepsilon.$
- 2. $n_k \leqslant n < n_{k+1}$. Пусть в этом блоке неотрицательные слагаемые. $S_n = S_{n_k} + x_{n_k+1} + x_{n_k+2} + \dots + x_n \geqslant S_{n_k}$. А еще знаем, что $S_n = S_{n_{k+1}} x_{n_{k+1}} x_{n_{k+1}-1} \dots x_{n+1} \leqslant S_{n_{k+1}}$. Откуда получаем, что $S_{n_k} \leqslant S_n \leqslant S_{n_{k+1}}$, где всё $\to S$.

3.2. Знакопостоянные ряды

Теорема 3.5. Пусть $a_n \geqslant 0$.

Тогда сходимость ряда $\sum_{n=1}^{\infty} a_n$ равносильная ограниченности последовательности $S_n = \sum_{k=1}^n a_k$.

Доказательство. $S_1 \leqslant S_2 \leqslant \dots$ Монотонная возрастающая последовательность имеет предел \iff она ограничена.

Теорема 3.6 (Признак сравнения). Пусть $0 \le a_n \le b_n$. Тогда

- 1. Если $\sum_{n=1}^{\infty} b_n$ сходится, то $\sum_{n=1}^{\infty} a_n$ сходится.
- 2. Если $\sum\limits_{n=1}^{\infty}a_n$ расходится, то $\sum\limits_{n=1}^{\infty}b_n$ расходится.

Доказательство. 1. $A_n := \sum_{k=1}^n a_k \leqslant \sum_{k=1}^n b_k = B_n$.

 $\sum b_n -$ сходится $\implies B_n -$ ограничена $\implies A_n$ ограничена $\implies \sum a_n$ сходится.

2. Отрицание 1.

Следствие. 1. Пусть $a_n, b_n \geqslant 0$. Если $a_n = \mathcal{O}(b_n)$ и $\sum_{n=1}^{\infty} b_n$ — сходится, то $\sum_{n=1}^{\infty} a_n$ — сходится.

2. Пусть $a_n, b_n \geqslant 0$, Если $a_n \sim b_n$, то ряды ведут себя одинаково.

Доказательство. 1. $a_n = \mathcal{O}(b_n) \implies 0 \leqslant a_n \leqslant Cb_n$. $\sum_{n=1}^{\infty} Cb_n = C\sum_{n=1}^{\infty} b_n - \text{сходится} \implies \sum a_n - \text{сходится}$.

2. $a_n = b_n c_n$, где $\lim c_n = 1 \implies \frac{1}{2} \leqslant c_n \leqslant 2$ при $n \geqslant N$. Тогда $a_n = \mathcal{O}(b_n)$ и $b_n = \mathcal{O}(a_n)$.

Теорема 3.7 (Признак Коши). Пусть $a_n \ge 0$.

- 1. Если $\sqrt[n]{a_n} \leqslant q < 1$, то ряд сходится.
- 2. $\sqrt[n]{a_n} > 1$, то ряд расходится.
- 3. Пусть $\overline{\lim} \sqrt[n]{a_n} =: q^*$. Если $q^* > 1$, то ряд расходится, если $q^* < 1$, то ряд сходится.

Замечание. Если $q^* = 1$, то ряд может сходиться, а может расходиться. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ — сходится, $\sqrt[n]{\frac{1}{n(n+1)}} \to 1$.

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 — расходится. $\sqrt[n]{a_n} = \frac{1}{\sqrt[n]{n}} \to 1$.

Доказательство. 1. $\sqrt[n]{a_n} \leqslant q < 1 \implies a_n \leqslant q^n$. По признаку сравнения с геометрической прогрессией $\sum_{n=1}^{\infty} q^n - \text{сходится}$.

- 2. $\sqrt[n]{a_n} \geqslant 1 \implies a_n \not\to 0 \implies$ расходится.
- 3. Если $q^* > 1$. Найдется $n_k : \sqrt[n_k]{a_{n_k}} \to q^* > 1$ (по определению верхнего предела) \Longrightarrow начиная с некоторого номера $\sqrt[n_k]{a_{n_k}} > 1 \Longrightarrow a_{n_k} > 1 \Longrightarrow a_n \not\to 0$ и ряд расходится. Если $q^* < 1$, $q^* = \lim_{n \to \infty} \sup_{k \ge n} \sqrt[k]{a_k} \Longrightarrow$ для больших $n \sup_{k \ge n} \sqrt[k]{a_k} < q < 1$. Но при этом $\sqrt[n]{a_n} \leqslant \sup_{k \ge n} \sqrt[k]{a_k}$, а значит $\sqrt[n]{a_n} < q$ при больших $n \Longrightarrow$ ряд сходится.

Теорема 3.8 (Признак Даламбера). Пусть $a_n > 0$. Тогда

- 1. $\frac{a_{n+1}}{a_n} \leq d < 1$, то ряд сходится.
- 2. Если $\frac{a_{n+1}}{a_n} \geqslant 1$, то ряд расходится.
- 3. Пусть $\lim \frac{a_{n+1}}{a_n} = d^*$. Если $d^* < 1$, то ряд сходится. Если $d^* > 1$, то ряд расходится.

Замечание. С единицей все еще ничего непонятно. Смотри предыдущие примеры.

Доказательство. 1. $\frac{a_n}{a_1} = \frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \ldots \cdot \frac{a_2}{a_1} \leqslant d^{n-1}$. $a_n \leqslant d^{n-1} \cdot a_1$ и ряд мажорируется геометрической прогрессией $\sum_{n=1}^{\infty} a_1 \cdot d^{n-1}$. Она сходится $\Longrightarrow \sum_{n=1}^{\infty} a_n$ — сходится.

- 2. $a_{n+1}\geqslant a_n\implies a_n\geqslant a_1>0$ и $a_n\not\to 0\implies$ ряд расходится.
- 3. Если $d^* > 1$. Тогда $\frac{a_{n+1}}{a_n} \geqslant 1$ при $n \geqslant N \implies a_n \geqslant a_N > 0 \quad \forall n \geqslant N \implies a_n \not \to 0$ и ряд расходится.

Если $d^* < 1$. Так как $\lim \frac{a_{n+1}}{a_n} = d^* \implies \frac{a_{n+1}}{a_n} < d$ при $n \geqslant N \implies$ ряд сходится по признаку 1.

Пример. $\sum_{n=0}^{\infty} \frac{x^n}{n!}$.

Даламбер. $\frac{a_{n+1}}{a_n}=\frac{x^{n+1}}{(n+1)!}:\frac{x^n}{n!}=\frac{x}{n+1}\to 0<1.$ Ряд сходится.

Коши. $\sqrt[n]{a_n} = \sqrt[n]{\frac{x^n}{n!}} = \frac{x}{\sqrt[n]{n!}} \sim \frac{x}{\sqrt[n]{n^n}e^{-n}\sqrt{2\pi n}} = \frac{x}{ne^{-1}\sqrt[2n]{2\pi n}} \sim \frac{xe}{n} \to 0.$

Теорема 3.9. Пусть $a_n > 0$ и $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = d^*$. Тогда $\lim \sqrt[n]{a_n} = d^*$.

Доказательство. $\lim \frac{a_{n+1}}{a_n} = d^* \implies \lim \frac{\ln a_{n+1} - \ln a_n}{(n+1)-n} = \ln d^* \xrightarrow{\text{т. Штольца}} \lim \frac{\ln a_n}{n} = \ln d^* \implies \lim \sqrt[n]{a_n} = d^*.$

Теорема 3.10. Пусть f неотрицательная монотонная : $[1, +\infty) \to \mathbb{R}$. Тогда:

$$\left| \sum_{k=a}^{b} f(k) - \int_{a}^{b} f(x) dx \right| \leq \max\{f(a), f(b)\}.$$

Доказательство. $\sum\limits_{k=a}^{b-1}f(k)\geqslant\int\limits_a^bf(x)\mathrm{d}x\geqslant\sum\limits_{k=a+1}^bf(k)$. Не поняли? Рисуем картинку!

$$\sum\limits_{k=a}^b f(k) - \int\limits_a^b \leqslant \sum\limits_{k=a}^b - \sum\limits_{k=a-1}^b = f(a)$$
 (аналогично $f(b) = \sum\limits_{k=a}^b - \sum\limits_{k=a}^{b-1})$

Теорема 3.11 (интегральный признак сходимости ряда). Пусть $f:[1,+\infty)\to\mathbb{R}$ неотрицательная, монотонно убывающая.

Тогда $\sum_{n=1}^{\infty} f(n)$ и $\int_{1}^{\infty} f(x) dx$ ведут себя одинаково.

Доказательство. По предыдущей теореме $S_n := \sum_{k=1}^n f(k) \geqslant \int_1^n f(x) dx \geqslant \sum_{k=2}^n f(k) = S_n - f(1)$.

Если ряд сходится, то S_n — ограничена $\implies \int\limits_1^n f(x) \mathrm{d}x$ ограничена $\implies F(x) = \int\limits_1^x f$ — ограничена $\implies \int\limits_1^\infty f(x)$ сходится.

Если \int сходится $\Longrightarrow \int_1^n f$ — ограничена $\Longrightarrow S_n$ — ограничена \Longrightarrow ряд сходится. \square

Пример. 1. $\sum_{n=1}^{\infty} \frac{1}{n^p}$, p > 0 (иначе члены ряда $\neq 0$ и ряд расходится).

 $f(x)=rac{1}{x^p}$. Монотонно убывает. $\sum rac{1}{n^p}$ и $\int\limits_1^\infty rac{\mathrm{d}x}{x^p}$ ведут себя одинаково: сходятся при p>1.

 $2. \sum_{n=2}^{\infty} \frac{1}{n \ln n}. \ f(x) = \frac{1}{x \ln x}$ монотонно убывает. Поэтому $\int\limits_{2}^{\infty} \frac{\mathrm{d}x}{x \ln x}$ и $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ ведут себя одинаково.

Там можно посчитать интеграл (разойдется).

Следствие. 1. Если $a_n>0$ и $a_n=\mathcal{O}(\frac{1}{n^p})$ при p>1 — ряд $\sum a_n$ — сходится.

2. Если $a_n>0$ и $a_n\sim \frac{c}{n^p},$ то при p>1 ряд $\sum a_n$ — сходится, а иначе расходится.

3.3. Знакопеременные ряды

Определение 3.3. $\sum a_n$ — сходится, но не абсолютно = ряд сходится условно.

Теорема 3.12 (Преобразование Абеля). $\sum_{k=1}^{n} a_n b_n$. $A_k := a_1 + a_2 + \ldots + a_k$. Хочется заменить $a_n \to A_n$.

Формулу сложнее запомнить, чем вывести, поэтому сначала выпишем её.

Доказательство.

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n} (A_k - A_{k-1}) b_k = \sum_{k=1}^{n} A_k b_k - \sum_{j=2}^{n} A_{j-1} b_j \stackrel{k=j-1}{=} \sum_{k=1}^{n} A_k b_k - \sum_{k=1}^{n-1} A_k b_{k+1} = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}).$$

Теорема 3.13 (Признак Дирихле). 1. A_n (частичные суммы) — ограничены ($|A_n| \leqslant M$),

- $2. b_n$ монотонны,
- 3. $b_n \to 0$.

Тогда $\sum_{n=1}^{\infty} a_n b_n$ — сходится.

Доказательство.

$$S_n := \sum_{k=1}^n a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1})$$

Надо показать, что $\sum_{k=1}^{\infty} A_k(b_k-b_{k+1})$ — сходится. Для этого докажем, что ряд абсолютно сходится: $\sum_{k=1}^{\infty} |A_k| |b_k-b_{k+1}|$ — сходится.

Мы знаем, что $\sum_{k=1}^{\infty} |A_k| |b_k - b_{k+1}| \leqslant \sum_{k=1}^{\infty} M \cdot |b_k - b_{k+1}| \stackrel{(*)}{=} M |\sum_{k=1}^{\infty} (b_k - b_{k+1})| \leqslant M |b_1|$. А еще мы знаем, что из ограниченности суммы знакопостоянного ряда следует его сходимость. Следовательно ряд абсолютно сходится.

(*) — у нас постоянная монотонность, следовательно все слагаемые одного знака. \Box

Теорема 3.14 (Признак Абеля). 1. Ряд $\sum_{n=1}^{\infty} a_n - \cos \alpha$

- $2. b_n$ монотонны,
- 3. b_n ограничены.

Следовательно, $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Доказательство. $2)+3) \implies \exists \mathbb{R} \ni b \coloneqq \lim b_n$. Тогда $\widetilde{b}_n \coloneqq b_n - b$ монотонны и $\to 0$.

$$\sum_{n=1}^{\infty} a_n$$
 — сходится $\implies A_n$ имеет предел $\implies A_n$ — ограничены.

Тогда
$$\sum_{n=1}^{\infty} a_n \widetilde{b}_n$$
 — сходится по признаку Дирихле. $\sum_{n=1}^{\infty} a_n \widetilde{b}_n = \sum_{n=1}^{\infty} a_n (b_n - b) \implies \sum_{n=1}^{\infty} a_n b_n = b \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} a_n \widetilde{b}_n$.

Пример. $\sum_{n=1}^{\infty} \frac{\sin n}{n^p}$ - сходится при p>0 : $a_n=\sin n, b_n=\frac{1}{n^p}, |A_n|\leq 2.$

 Π ример. $\sum_{n=1}^{\infty} \frac{1}{n^3 \sin^2 n}$ - сходимость неизвестна.

Определение 3.4. Знакочередующийся ряд $\sum_{n=1}^{\infty} (-1)^{n-1} a_n, \ a_n \geqslant 0.$

Теорема 3.15 (Признак Лейбница). Пусть есть ряд $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$. $a_n \geqslant 0$ и монотонно стремится к 0.

Тогда ряд $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ сходится (по Дирихле: $a_n = (-1)^{n-1}, b_n = a_n$). Более того, $S_{2n} \leqslant S \leqslant S_{2n+1}$.

Доказательство.
$$S_{2n+2} = S_{2n} + a_{2n+1} - a_{2n+2} \geqslant S_{2n}$$
. $S_{2n+3} = S_{2n+1} - a_{2n+2} + a_{2n+3} \leqslant S_{2n+1}$.
$$[0, S_1] \supset [S_2, S_3] \supset [S_4, S_5] \supset \ldots \supset [S_{2n}, S_{2n+1}] \supset \ldots S_{2n+1} - S_{2n} = a_{2n+1} \to 0.$$
 Пусть S их общая точка. Тогда $\lim S_{2n} = \lim S_{2n+1} = S$.

Пример Ряд Лейбница.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}.$$

$$S_{2n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n} = H_{2n} - 2(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n}) = H_{2n} - H_n = \ln 2n + \gamma + o(1) - (\ln n + \gamma + o(1)) = \ln 2 + o(1).$$

Здесь заменили в изначальной сумме все отрицательные слагаемые на положительные и вычли их удвоенную сумму.

Пример.
$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \frac{1}{5} - \frac{1}{10} - \frac{1}{12} + \dots$$

$$\widetilde{S}_{3n} = (1 - \frac{1}{2} - \frac{1}{4}) + (\frac{1}{3} - \frac{1}{6} - \frac{1}{8}) + (\frac{1}{5} - \frac{1}{10} - \frac{1}{12}) + \dots + (\frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n}) = \sum_{k=1}^{n} (\frac{1}{4k-2} - \frac{1}{4k}) = \frac{1}{2} \sum_{n=1}^{n} (\frac{1}{2k-1} - \frac{1}{2k}) = \frac{S_{2n}}{2} \rightarrow \frac{\ln 2}{2}.$$

 ${\it Onpedenehue}$ 3.5. $\varphi\colon \mathbb{N} \to \mathbb{N}$ — биекция $\sum\limits_{n=1}^{\infty} a_{\varphi(n)}$ — перестановка ряда $\sum\limits_{n=1}^{\infty} a_n$.

Теорема 3.16. Если $\sum_{n=1}^{\infty} a_n$ абсолютно сходится, то $\sum_{n=1}^{\infty} a_{\varphi(n)} = \sum_{n=1}^{\infty} a_n$.

Доказательство. 1. $a_n \geqslant 0$. $S_n \coloneqq \sum_{k=1}^n a_k \leqslant S \coloneqq \sum_{k=1}^\infty a_k$.

 $\widetilde{S}_n \coloneqq \sum_{k=1}^n a_{\varphi(k)} \leqslant S_{\max \varphi(1),\dots,\varphi(n)} \leqslant S \implies \lim \widetilde{S}_n \leqslant S \implies \widetilde{S} \leqslant S$. Но ϕ - биекция и, т.к. любая перестановка не увеличивает сумму ряда, то можем сделать обратную перестановку и получим $S \leqslant \widetilde{S} \implies S = \widetilde{S}$

2. $a_n \in \mathbb{R}$. $a_n = (a_n)_+ - (a_n)_-$, где $(a)_+ := \max\{a, 0\}, (a)_- := \max\{-a, 0\}.$ $|a_n| = (a)_- + (a)_+ \geqslant (a_n)_{\pm} \geqslant 0$.

Если $\sum |a_n|$ — сходится, то $\sum_{n=1}^{\infty} (a_n)_{\pm}$ — сходится. $\sum (a_{\varphi(n)})_{+} = \sum (a_n)_{+}$ и $\sum (a_{\varphi(n)})_{-} = \sum (a_n)_{-}$ \Longrightarrow ряд сходится. Причем после применения пункта 1 мы получаем равенство сумм.

Замечание. 1. Теорема верна в полном нормированном пространстве.

- 2. В \mathbb{R}^d верно обратное: если любая перестановка не меняет суммы, то ряд абсолютно сходится.
- 3. Если ряд $a_n \in \mathbb{R}$ сходится условно, то $\sum_{n=1}^{\infty} (a_n)_+ = \sum_{n=1}^{\infty} (a_n)_- = +\infty$.

Доказательство. Если $\sum (a_n)_+ < +\infty$, то $\sum |a_n| = 2 \sum a_n - \sum (a_n)_+$ — противоречие. $|a_n| = 2(a_n)_+ - a_n$.

4. Если $a_n\geqslant 0$, то $\sum a_{\varphi(n)}=\sum a_n$ верно и для расходящегося.

Теорема 3.17 (Теорема Римана). Пусть $\sum\limits_{n=1}^{\infty}a_n$ сходится условно, тогда $\forall s\in\overline{\mathbb{R}}$ найдется такая перестановка, что $\sum\limits_{r=1}^{\infty}a_{\varphi(n)}=s.$

Так же существует перестановка, для которой нет суммы.

Доказательство. Запишем сумму $a_1 + a_2 + \dots$ Сотрем все отрицательные слагаемые: $b_1 + b_2 + \dots = \sum (a_n)_+ = +\infty$. Сотрем все положительные: $c_1 + c_2 + \dots = \sum (a_n)_- = +\infty$.

1. Случай $s \in \mathbb{R}$. $b_1 + b_2 + \ldots + b_n > s \geqslant b_1 + b_2 + \ldots + b_{n-1}$.

Теперь будем набирать c_i , пока сумма больше s. Потом снова начнем набирать b...

Обозначим за S_i сумму на i-ом шаге. Тогда знаем, что $a_n \to 0$. $S_1 > S \geqslant S_1 - b_{n_1}, S_2 + c_{m_1} \geqslant S > S_2, S_3 > S \geqslant S_3 - b_{n_2}, S_4 + c_{m_2} \geqslant S > S_4$.

$$S_{2n+1} > S \geqslant S_{2n+1} - b_{n_k}$$
. $\underbrace{S + b_{n_k}}_{\rightarrow s} \geqslant S_{2k+1} > \underbrace{S}_{\rightarrow s}$.

2. Случай $\pm \infty$.

Очев + упражнение.

3. Случай безпредела.

Ежу понятно.

Теорема 3.18 (Теорема Коши о произведении рядов). Пусть $A \coloneqq \sum_{n=1}^{\infty} a_n$ и $B \coloneqq \sum_{n=1}^{\infty} b_n$ и ряды абсолютно сходятся.

Тогда ряд, составленный из $a_k b_n$ в произвольном порядке абсолютно сходится и его сумма AB.

Доказательство.
$$A^* := \sum_{n=1}^{\infty} |a_n|, A_n^* := \sum_{k=1}^n |a_k|. A_n^* \leqslant A^*, B_n^* \leqslant B^*.$$

 S_m^* — частичная сумма для ряда из $|a_kb_j|$. $S_N\leqslant (|a_1|+|a_2|+\ldots+|a_n|)(|b_1|+|b_2|+\ldots+|b_m|)=A_n^*B_m^*\leqslant A^*B^*$, где n — максимальный индекс у a_k в слагаемом из S_N^* , m — то же самое для b_k .

 S_N^* ограничены \implies ряд абсолютно сходится. Тогда можем попереставлять ашки и бшки и посмотреть на табличку.

$$a_1b_1$$
 a_1b_2 a_1b_3 a_1b_4 ... a_2b_1 a_2b_2 a_2b_3 a_2b_4 ... a_3b_1 a_3b_2 a_3b_3 a_3b_4 ... a_4b_1 a_4b_2 a_3b_3 a_4b_4 ...

Посмотрим на частичные суммы в квадратиках $i \times i$. $S_{n^2} = \sum_{k=1}^n \sum_{j=1}^n a_k b_j = \sum_{k=1}^n a_k \sum_{j=1}^n b_j = A_n B_n \to AB$.

Определение 3.6. $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ произведение этих рядов — ряд $\sum\limits_{n=1}^{\infty}c_n$, где $c_n=a_1b_n+a_2b_{n-1}+a_3b_{n-2}+\ldots+a_nb_1$.

Теорема 3.19 (Теорема Мертенса). $A = \sum_{n=1}^{\infty} a_n, B = \sum_{n=1}^{\infty} b_n$ — сходятся, причем один из них абсолютно.

Тогда $\sum_{n=1}^{\infty} c_n$ — сходится и его сумма AB.

Доказательство. Не доказывалось в курсе.

Замечание. Абсолютной сходимости нет, важен порядок слагаемых.

Замечание. Обычной сходимости не хватает.

Пример. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ сходится по признаку Лейбница.

$$a_n = b_n = \frac{(-1)^{n-1}}{\sqrt{n}}.$$

$$c_n = (-1)^{n-1} \left(\underbrace{\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{n-1}} + \dots + \frac{1}{\sqrt{n}} 1}_{\geqslant n \cdot \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}}} \right).$$

А значит $|c_n| \geqslant 1$, а необходимое условие сходимости отсутствует.

Теорема 3.20 (Теорема Абеля). $A = \sum_{n=1}^{\infty} a_n, B = \sum_{n=1}^{\infty} b_n$ и $C = \sum_{n=1}^{\infty} c_n$ — произведение рядов.

Если все три ряда сходятся, то AB = C.

Лемма. Пусть $x_n \to x$ и $y_n \to y$. Тогда:

$$\frac{x_1y_n + x_2y_{n-1} + \ldots + x_ny_1}{n} \to xy.$$

Доказательство леммы. Случай y=0. Надо доказать, что $x_1y_n+\ldots+x_ny_1=o(n)$. $|x_n|\leqslant M, |y_n|\leqslant M. \ \forall \varepsilon>0 \ \exists N: |y_n|\leqslant \varepsilon$ при $n\geqslant N$.

Тогда в сумме все слагаемые с y_n , где $n\geqslant N$ будут $\leqslant \varepsilon M$, а первые $N-\leqslant M^2$. Тогда сумма $\frac{|\ldots|}{n}<\varepsilon M+\frac{NM^2}{n}<2\varepsilon M$ при больших n.

Случай $y_n \equiv y$. Тогда сумма $\frac{\dots}{n} = y \frac{x_1 + x_2 + \dots + x_n}{n} \to xy$ по теореме Штольца.

Общий случай: $y_n = y + \widetilde{y_n}, \widetilde{y_n} \to 0$. Тогда сумма с $\widetilde{y_n}$ стремится к нулю, а, следовательно исходная стремится к xy. Складываем и получаем что нужно.

Доказательство теоремы. Рассмотрим $AB \leftarrow \frac{A_1B_n + A_2B_{n-1} + ... + A_nB_2}{n} = \frac{C_1 + C_2 + ... + C_n}{n} \to C.$

Для доказательства равенства посчитаем количество вхождений слагаемых вида a_ib_j в C и AB. c_{i+j} встречается n-(i+j)+1 раз в C_{i+j} и последующих и столько же раз в A_kB_l при $k\geqslant i$ и $l\geqslant j$.

3.4. Бесконечные произведения

Определение 3.7. $\prod_{k=1}^{\infty} b_k$, сходящийся, если $\exists \lim P_n$, он конечен $u \neq 0$. P_n - частичные произведения, аналогично суммам.

Пример. 1. $\prod_{k=2}^{\infty} \left(1 - \frac{1}{k^2}\right)$. Оно очевидным образом равно $\frac{1}{2}$ из того, что $\frac{k^2 - 1}{k^2} = \frac{(k-1)(k+1)}{k^2} \Longrightarrow$ частичная сумма равна $\frac{2 \cdot n \cdot n + 1}{2^2 \cdot n^2} = \frac{1}{2} \frac{n+1}{n} \to \frac{1}{2}$

$$2. \ \prod_{n=1}^{\infty} (1-\tfrac{1}{4n^2}) = \tfrac{1\cdot 3\cdot 3\cdot 5\cdot 5\cdot 7\cdot \ldots\cdot (2n-1)(2n+1)}{2^2\cdot 4^2\cdot 6^2\cdot \cdots\cdot (2n)^2} = \tfrac{((2n-1)!!)^2(2n+1)}{((2n)!!)^2} \xrightarrow{\text{ф-ла Валиса}} \tfrac{2}{\pi}$$

Свойства. 1. Добавление / выкидывание конечного числа ненулевых сомножителей не влияет на сходимость.

2. Если $\prod_{k=1}^{\infty} b_k$ — сходится, то $\lim b_k = 1$.

Доказательство. $b_n = \frac{P_n}{P_{n-1}} \to \frac{P}{P} = 1$, так как $P \neq 0$ и ∞ .

- 3. У сходящегося произведения начиная с некоторого места все множители > 0.
- 4. $\prod_{n=1}^{\infty} b_n$ для $b_n > 0$.

 $\prod_{n=1}^{\infty} b_n$ — сходится $\iff \sum_{n=0}^{\infty} \ln b_n$ — сходится. Причем произведение — ехр от суммы.

Доказательство. $P_n = \prod_{k=1}^n b_k$. $\ln P_n = \sum_{k=1}^n \ln b_k =: S_n$.

 P_n имеет предел из $(0;+\infty)\iff \ln P_n=S_n$ — имеет конечный $\lim\iff\sum \ln b_n$ — сходящийся.

Пример. $\prod_{n=1}^{\infty} \frac{p_n}{p_n-1} = \prod_{n=1}^{\infty} \sum_{i=0}^{\infty} \frac{1}{p_n^i}$ — где p_n — n-ое простое число.

$$\prod_{k=1}^{n} \frac{p_k}{p_k - 1} \geqslant H_n.$$

$$\prod_{k=1}^{n} \frac{p_k}{p_k - 1} = \prod_{k=1}^{n} \frac{1}{1 - \frac{1}{p_k}} > \prod_{k=1}^{n} \sum_{j=0}^{n} \frac{1}{p_k^j} = \sum_{k=1}^{n} \frac{1}{p_k^{\alpha_1} \dots p_n^{\alpha_n}} > \sum_{k=1}^{n} \frac{1}{k} = H_n \to \infty.$$

Теорема 3.21. $\sum_{n=1}^{\infty} \frac{1}{p_n}$ — расходится. Более того $\sum_{k=1}^{n} \frac{1}{p_k} \geqslant \ln \ln n - 2$.

Доказательство. $\sum\limits_{k=1}^{n} rac{1}{1-rac{1}{p_k}} > H_n \implies \sum\limits_{k=1}^{n} \ln(rac{1}{1-rac{1}{p_k}}) > \ln H_n > \ln \ln n.$

Очевидно (по разложению $\ln(1-x)$ по Тейлору), что $\ln(1-x)\geqslant -x-x^2.$

Тогда
$$\sum_{k=1}^{n} \ln(\frac{1}{1-\frac{1}{p_k}}) \leqslant \sum_{k=1}^{n} \frac{1}{p_k} + \sum_{k=1}^{n} \frac{1}{p_k^2}$$

Замечание.

$$\sum_{k=1}^{n} \frac{1}{p_k} = \ln \ln n + O(1).$$

Упражнение. 1. Доказать, что $S(k) = \sum_{k .$

Указание: Посчитать количество чисел $\leq k^2$, которые делятся на такие p.

2. Доказать, что
$$\sum_{\substack{p\geqslant n\\p-\text{простое}}}\frac{1}{p}<2\ln\ln n+4.$$

3.5. Функциональные последовательности и ряды

Определение 3.8. $f, f_n : E \to \mathbb{R}, f_n$ поточечно сходится к f, если $\forall x \in E : \lim_{n \to \infty} f_n(x) = f(x)$.

В кванторах: $\forall x \in E \forall \varepsilon > 0 \exists N = N(x, \varepsilon) : \forall n \geqslant N |f_n(x) - f(x)| < \varepsilon.$

Определение 3.9. f_n равномерно сходится к f на E $f_n \Rightarrow f$ на E:

$$\forall \varepsilon > 0 \exists N = N(\varepsilon) \forall n \geqslant N \forall x \in E : |f_n(x) - f(x)| < \varepsilon.$$

Замечание. Из равномерной сходимости следует поточечная.

Пример. $f_n(x) = x^n, E = (0,1).$

 $\lim f_n(x) = \lim x^n = 0.$ $f(x) \equiv 0 \implies f_n$ поточечно сходится к f. При этом, если взять $x > \sqrt[n]{\varepsilon}$, то мы проиграли, следовательно равномерной сходимости нет.

Замечание. Равномерная сходимость на графике — графики f_n начиная с некоторого места попадают в полоску графика f.

Теорема 3.22. $f_n, f: E \to \mathbb{R}$.

Тогда
$$f_n \underset{E}{\Longrightarrow} f \iff \sup_{x \in E} |f_n(x) - f(x)| \to 0$$

Доказательство. $\Rightarrow: f_n \underset{E}{\rightrightarrows} f \iff \forall \varepsilon > 0 \exists N \forall n \geqslant N : \forall x \in E |f_n(x) - f(x)| < \varepsilon$. Из части с

 $\forall x \in E$ как раз прямо и следует условие на sup.

 $\Leftarrow: \lim_{n \to \infty} \sup_{x \in E} |f_n(x) - f(x)| = 0 \iff \forall \varepsilon > 0 \exists N \forall n \geqslant N \sup_{x \in E} |f_n(x) - f(x)| < \varepsilon.$ Из супремума следует $\forall x \in E |f_n(x) - f(x)| < \varepsilon.$

Здесь мы пользовались тем, что $\sup |f_n(x) - f(x)| \ge |f_n(x) - f(x)|$.

Следствие. 1. Если $\forall x \in E \quad |f_n(x) - f(x)| \leq a_n$ и $\lim a_n = 0$, то $f_n \underset{E}{\Longrightarrow} f$.

2. Если $x_n \in E$: $f_n(x_n) - f(x_n) \not\to 0$, то нет равномерной сходимости $f_n \underset{F}{\Longrightarrow} f$.

Доказательство. 1. $\Longrightarrow 0 \leqslant \sup_{x \in E} |f_n(x) - f(x)| \leqslant a_n \to 0 \implies \sup \to 0 \implies f_n \rightrightarrows_E f.$

2. $\sup_{x \in E} |f_n(x) - f(x)| \geqslant |f_n(x_n) - f(x_n)| \not\to 0 \implies \sup \not\to 0 \implies$ нет равномерной сходимости. Здесь x_n — какая-то конкретная точка.

Пример. $E = (0,1), f(x) \equiv 0, f_n(x) = x^n.$ $x_n = 1 - \frac{1}{n}, f_n(x_n) - f(x_n) = \left(1 - \frac{1}{n}\right)^n \to \frac{1}{e} \neq 0 \implies$ нет равномерной сходимости.

Определение 3.10. $g_n \colon E \to \mathbb{R}$ — равномерно ограничена, если найдется M, такой что $|g_n(x)| \leqslant M \quad \forall x \in E \quad \forall n$

Утверждение 3.23. Произведение равномерно ограниченной и равномерно сходящейся к нулю равномерно — сходится к нулю.

Доказательство. g_n — равномерно ограничена, $|g_n(x)| \leq M, f_n(x) \rightrightarrows 0, \sup_{x \in E} |f_n(x)| \to 0.$

$$\sup_{x \in E} |f_n(x)g_n(x)| \leqslant M \sup \to 0 \implies f_n g_n \rightrightarrows 0.$$

Замечание. 1. $f_n \underset{E}{\Longrightarrow} f \iff f_n - f \underset{E}{\Longrightarrow} 0$.

2. Если $f_n \Rightarrow f, g_n \Rightarrow g \implies \alpha f_n + \beta g_n \Rightarrow \alpha f + \beta g$.

Теорема 3.24 (Критерий Коши для равномерной сходимости последовательности функций). $f_n: E \to \mathbb{R}$ тогда f_n равномерно сходится к некоторой функции $\iff \forall \varepsilon > 0 \exists N \forall m, n \geqslant N \forall x \in E|f_n(x) - f_m(x)| < \varepsilon$.

Доказательство. $\Longrightarrow: f_n \underset{E}{\Longrightarrow} f \iff \forall \varepsilon > 0 \exists N \ \, \frac{\forall n \geqslant N \forall x \in E |f_n(x) - f(x)| < \frac{\varepsilon}{2}}{\forall m \geqslant N \forall x \in E |f_m(x) - f(x)| < \frac{\varepsilon}{2}} \ .$ $\forall m, n \geqslant N \forall x \in E |f_n(x) - f_m(x)| \leqslant |f_n(x) - f(x)| + |f_m(x) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

 $\Leftarrow: \forall \varepsilon > 0 \exists N \forall m, n \geqslant N_e \forall x \in E \quad |f_n(x) - f_m(x)| < \varepsilon$. Зафиксируем $x \in E$. Если $m_n \geqslant N_\varepsilon$, то знаем заклинание $\Longrightarrow f_n(x)$ — фундаментальная последовательность \Longrightarrow она имеет конечный предел. Пусть $f(x) \coloneqq \lim_{n \to \infty} f_n(x)$.

Тогда $\forall \varepsilon > 0 \exists N \forall m \geqslant n \geqslant N \forall x \in E \quad |f_n(x) - f_m(x)| < \varepsilon$ — критерий Коши. Устремим тут $m \to \infty$. Тогда $\forall \varepsilon > 0 \exists N \forall n \geqslant N \forall x \in E |f_n(x) - f(x)| \leqslant \varepsilon \implies f_n$ равномерно сходится к f. \square

Определение 3.11. Пространство C(K), K — компакт.

 $C(K) \coloneqq \{f \colon K \to \mathbb{R} \land f \text{ непрерывна во всех точках}\}$ — векторное пространство.

$$f, g: K \to \mathbb{R}, (\alpha f + \beta g)(x) := \alpha f(x) + \beta g(x).$$

Можно завести норму $||f||_{C(K)} \coloneqq \max_{x \in K} |f(x)|$ — нормированное пространство.

Убедимся, что это действительно норма. Интересно только неравенство треугольника: $||f + g|| = |f(x_0) + g(x_0)| \le |f(x_0)| + |g(x_0)| \le |f| + ||g||$.

Определение 3.12. Пространство $l^{\infty}(E)$.

 $l^\infty(E)\coloneqq\{f\colon E o\mathbb{R}\wedge f$ — ограничена} — векторное пространство.

 $||f||_{l^{\infty}(E)} := \sup_{x \in E} |f(x)|$ — нормированное пространство.

Замечание. $C(K) \subset l^{\infty}(K)$.

Теорема 3.25. $l^{\infty}(E)$ — полное пространство.

Доказательство. f_n — фундаментальная последовательность $\iff \forall \varepsilon > 0 \exists N \forall m, n \geqslant N \sup_{x \in E} |f_n(x) - f_m(y)| = \|f_n - f_m\| < \varepsilon \implies \forall \varepsilon > 0 \exists N \forall m, n \geqslant N \forall x \in E |f_n(x) - f_m(x)| < \varepsilon \implies f_n$ — равномерно сходится на $E \implies \sup_{x \in E} |f_n(x) - f(x)| = \|f_n - f\|_{l^{\infty}(E)} \to 0$. Надо проверить, что $f \in l^{\infty}(E)$.

$$f(x) \leqslant \underbrace{|f(x) - f_n(x)|}_{\leqslant ||f - f_n|| < 1} + \underbrace{|f_n(x)|}_{\leqslant ||f_n||}.$$

Теорема 3.26. $f_n, f: E \to \mathbb{R}, a \in E, f_n \underset{E}{\Longrightarrow} f$ и f_n непрерывна в точке a. Тогда f непрерывна в точке a.

Доказательство. Берем $\varepsilon > 0$. Найдем N, такой что $\forall n \geqslant N \forall x \in E|f_n(x) - f(x)| < \varepsilon$.

$$|f(x) - f(a)| \leqslant \underbrace{|f(x) - f_N(x)|}_{<\varepsilon} + \underbrace{|f_N(x) - f_N(a)|}_{<\varepsilon, \text{ если } |x-a| < \delta} + \underbrace{|f_N(a) - f(a)|}_{<\varepsilon} < 3\varepsilon.$$

$$\exists \delta > 0 \forall |x-a| < \delta \quad |f_N(x) - f_N(a)| < \varepsilon \implies f$$
 — непрерывна в a .

Следствие Теорема Стокса-Зайделя. $f_n \rightrightarrows_E f$ и f_n непрерывна во всех точках $E \implies f$ непрерывна во всех точках из E. Пользуемся предыдущей теоремой для каждой точки.

Теорема 3.27. C(K) — полное.

Лемма. (X, ρ) — полное метрическое пространство, $Y \subset X$ — замкнутое $\implies (Y, \rho)$ — полное.

Доказательство леммы. Возьмем $y_n \in Y$ — фундаментальная последовательность в $Y \Longrightarrow$ она фундаментальна в $X \Longrightarrow \exists y_* \in X \colon y_* = \lim y_n \Longrightarrow y_*$ — предельная точка $Y \Longrightarrow y_* \in Y$. \square

 \mathcal{A} оказательство теоремы. C(K) — замкнутое подпространство $l^{\infty}(K)$. $\sup_{x \in K} |f_n(x) - f(x)| = \|f_n - f\|_{l^{\infty}(K)} \to 0$. Тогда если $f_n \in C(K)$, $f_n \underset{K}{\Longrightarrow} f \implies f \in C(K)$ по т.Стокса-Зайделя.

 ${\it Onpedenehue}$ 3.13. $u_n \colon E \to \mathbb{R}. \ \sum\limits_{n=1}^\infty u_n(x)$ — функциональный ряд.

$$S_n(x)\coloneqq \sum_{k=1}^n u_k(x)\colon E o \mathbb{R}$$
 — частичная сумма ряда.

Если S_n поточечно сходится к S, то ряд сходится поточечно.

Если $S_n \underset{E}{\Longrightarrow} S$, то ряд равномерно сходится на E.

Определение 3.14. Если ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится поточечно, то $r_n(x) \coloneqq \sum_{k=n+1}^{\infty} u_k(x)$ — остаток (хвост) ряда.

Теорема 3.28. Ряд $\sum_{k=1}^{\infty} u_n(x)$ сходится равномерно на $E \iff r_n \rightrightarrows 0$.

Доказательство.
$$S_n \underset{E}{\Longrightarrow} S \iff S - S_n \rightrightarrows 0. \ (S - S_n = r_n).$$

Замечание. Необходимые условия равномерной сходимости. Если $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится, то $u_n \rightrightarrows 0$.

Доказательство. Равномерная сходимость $\Longrightarrow S_n \rightrightarrows S \Longrightarrow S_n - S_{n-1} \rightrightarrows S - S = 0$.

Замечание. Если $x_n \in E$: $u_n(x_n) \not\to 0$, то $\sum_{n=1}^\infty u_n(x)$ не может равномерно сходиться.

Замечание. Из расходимости ряда $\sum_{n=1}^{\infty} u_n(x_n)$ ничего не следует.

$$u_n(x) = \begin{cases} \frac{1}{n} & x \in (\frac{1}{n+1}, \frac{1}{n}] \\ 0 & \text{иначе} \end{cases}.$$

$$x_n = \frac{1}{n} \implies u_n(x_n) = \frac{1}{n}$$
 и ряд $\sum u_n(x_n)$ — расходится.

Но ряд $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится. $0 \leqslant r_n(x) \leqslant \frac{1}{n+1}.r_n \Rightarrow 0$.

Теорема 3.29 (Критерий Коши для равномерной сходимости ряда). $u_n : E \to \mathbb{R}$. Ряд $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится на $E \iff$

$$\forall \varepsilon > 0 \exists N \forall m, n \geqslant N \forall x \in E | \sum_{k=n+1}^{m} u_k(x) | < \varepsilon..$$

Доказательство. $\sum u_n(x)$ равномерно сходится $\iff S_n(x) \coloneqq \sum_{k=1}^n u_k(x)$ равномерно сходится $\iff \forall \varepsilon > 0 \exists N \forall m > n \geqslant N \forall x \in E|S_m(x) - S_n(x)| < \varepsilon$, а эта разность как раз то, что надо. \square

Теорема 3.30 (Признак сравнения). $u_n, v_n \colon E \to \mathbb{R}, |u_n(x)| \leqslant v_n(x) \quad \forall x \in E, \forall n.$

Если $\sum_{n=1}^{\infty} v_n(x)$ сходится равномерно на E, то ряд $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится на E.

Доказательство. Применим к левой части критерий Коши: $\forall \varepsilon > 0 \exists N \forall m > n \geqslant N \forall x \in E \mid \sum_{k=n+1}^m u_k(x) \mid \leqslant \sum_{k=n+1}^m |u_k(x)| \leqslant \sum_{k=n+1}^m v_k(x) < \varepsilon$. Откуда получаем, что ряд $\sum_{k=1}^\infty u_k(x)$ равномерно сходится на E.

Следствие. 1. Если $\sum |u_n(x)|$ сходится равномерно на E, то $\sum u_n(x)$ сходится равномерно на E.

2. Признак Вейерштрасса. Если $|u_n(x)| \le a_n \quad \forall x \in E \forall n \text{ и ряд } \sum a_n - \text{сходится, то } \sum u_n(x)$ сходится равномерно на E.

Пример. $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ равномерная сходимость на \mathbb{R} .

$$\left|\frac{\sin nx}{n^2}\right|\leqslant \frac{1}{n^2}.\sum_{n=1}^{\infty}\frac{1}{n^2}$$
— сходится.

Замечание. Ряд может сходиться равномерно, но не абсолютно $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$

Ряд сходится абсолютно, но не сходится равномерно $\sum_{n=1}^{\infty} x^n$ при $x \in (-1,1)$.

Ряд сходится абсолютно, ряд сходится равномерно, но ряд $\sum |u_n(x)|$ сходится неравномерно.

Теорема 3.31 (Признак Дирихле). $a_n, b_n \colon E \to \mathbb{R}$.

1.
$$\left| \sum_{k=1}^{n} a_k(x) \right| \leqslant M \quad \forall x \in E \forall n.$$

- 2. $b_n(x)$ монотонно при любом фиксированном $x \in E$.
- 3. $b_n \Longrightarrow 0$.

Тогда ряд $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ сходится равномерно на E.

Доказательство. $S_n(x) \coloneqq \sum_{k=1}^n a_k(x)b_k(x) = A_n(x)b_n(x) + \sum_{k=1}^{n-1} A_k(x)(b_k(x) - b_{k+1}(x))$, где A_n — частичная сумма a.

 $A_nb_n \rightrightarrows 0$, так как A_n равномерно ограничена и $b_n \rightrightarrows 0$.

Докажем, что ряд $\sum_{k=1}^{\infty} A_k(x)(b_k(x) - b_{k+1}(x))$ равномерно сходится.

 $|A_k(x)||b_k(x)-b_{k+1}(x)|\leqslant M|b_k(x)-b_{k+1}(x)|=:v_k(x).$ Надо доказать, что $\sum\limits_{k=1}^\infty v_k(x)$ равномерно сходится, то есть $\sum\limits_{k=1}^\infty |b_k(x)-b_{k+1}(x)|$ равномерно сходится. $\sum\limits_{k=1}^n |b_k(x)-b_{k+1}(x)|=|\sum\limits_{k=1}^n (b_k(x)-b_{k+1}(x))|=b_1(x)-b_n(x) \Rightarrow b_1(x)$

Теорема 3.32 (Признак Абеля). $a_n, b_n : E \to \mathbb{R}$.

- 1. $\sum_{n=1}^{\infty} a_n(x)$ равномерно сходится.
- 2. $b_n(x)$ монотонно при любом фиксированном $x \in E$.
- 3. $b_n(x)$ равномерно ограничена.

Тогда $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ сходится равномерно на E.

Доказательство.
$$\sum_{k=n+1}^{n+p} a_k(x)b_k(x) = \sum_{k=1}^p a_{n+k}(x)b_{n+k}(x) = (A_{n+p}(x) - A_p(x))b_{n+p}(x) + \sum_{k=1}^{p-1} (A_{n+k}(x) - A_p(x))(b_{n+k}(x) - b_{n+k+1}(x)).$$

$$\sum_{k=1}^{m} a_{n+k}(x) = A_{n+m}(x) - A_n(x).$$

$$A_n(x) \rightrightarrows A(x) \implies \forall \varepsilon > 0 \exists N \forall m, n \geqslant N \forall x \in E : |A_n(x) - A_m(x)| < \varepsilon.$$

Тогда
$$|A_{n+p}(x) - A_n(x)| < \varepsilon$$
 и $|A_{n+k}(x) - A_n(x)| < \varepsilon$.

$$\left|\sum_{k=n+1}^{n+p} a_k(x)b_k(x)\right| \leqslant \underbrace{\left|A_{n+p}(x) - A_n(x)\right|}_{\leqslant \varepsilon} \cdot \underbrace{\left|b_{n+p}(x)\right|}_{\leqslant M} + \sum_{k=1}^{p-1} \underbrace{\left|A_{n+k}(x) - A_n(x)\right|}_{\leqslant \varepsilon} \left|b_{n+k}(x) - b_{n+k+1}(x)\right| \leqslant \underbrace{\left|A_{n+p}(x) - A_n(x)\right|}_{\leqslant \varepsilon} \cdot \underbrace{\left|A_{n+p}(x)$$

$$\varepsilon M + \varepsilon \sum_{k=1}^{p-1} |b_{n+k}(x) - b_{n+k+1}(x)| = \varepsilon M + \varepsilon |\sum_{k=1}^{p-1} (b_{n+k}(x) - b_{n+k+1}(x))| \leqslant \varepsilon M + \varepsilon \cdot 2M = 3M\varepsilon.$$

По критерию Коши для $\sum a_n b_n$ он равномерно сходится.

Теорема 3.33 (Признак Лейбница). $b_n: E \to \mathbb{R}, b_n \rightrightarrows 0, b_n(x)$ монотонна при любом фиксированном $x \in E$. Тогда ряд $\sum_{k=1}^{\infty} (-1)^k b_n(x)$ равномерно сходится на E.

Доказательство. $a_n(x) = (-1)^n$, $\sum_{k=1}^n a_k(x) = 0$ или $-1 \implies$ равномерно ограничен. Применим признак Дирихле.

Пример. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$ при $x \in (0,1)$.

Ряд абсолютно сходится $\forall x \in (0,1): \left| \frac{(-1)^n}{n} x^n \right| \leqslant x^n$.

Ряд сходится равномерно $b_n(x) = \frac{x^n}{n} \Rightarrow 0, 0 \leqslant b_n(x) \leqslant \frac{1}{n}, x_n(x) \searrow$

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n} x^n \right| = \sum_{n=1}^{\infty} \frac{x^n}{n}.$$

Нет равномерной абсолютной сходимости. $\sum_{k=n}^{2n} \frac{x^k}{k} \geqslant n \frac{x^{2n}}{2n} = \frac{x^{2n}}{2} \to \frac{1}{2e}, x = 1 - \frac{1}{2n}.$

Теорема 3.34 (Признак Дини). $0 \le u_n \in C(K)$, K — компакт и $S_x := \sum_{n=1}^{\infty} u_n(x) \in C(k)$. Тогда ряд сходится равномерно на K.

Доказательство.
$$r_n(x) = S(x) - S_n(x) \in C(K), S(x) - S_n(x) = \sum_{k=n+1}^{\infty} u_k(x), 0 \leqslant r_{n+1} \leqslant r_n(x).$$

Надо доказать, что $r_n \rightrightarrows 0$. $r_n(x_n) = \sup_{x \in K} r_n(x) \to 0$ для некоторого $x_n \in K$.

От противного. Пусть нет стремления к нулю. $r_{n_k}(x_{n_k}) \geqslant \varepsilon, \ x_{n_k} \in K$. Выберем сходящуюся подпоследовательность $x_{m_k} \to x_* \in K$.

 $r_{m_k}(x_{m_k}) \geqslant \varepsilon$. $x_{m_k} \to x_*$. Тогда $r_n(x_{m_k}) \geqslant r_{n+1}(x_{m_k}) \geqslant r_{n+2}(x_{m_k}) \geqslant \ldots \geqslant r_{m_k}(x_{m_k}) \geqslant \varepsilon$, при этом $r_n(x_{m_k}) \to r_n(x_*) \implies r_n(x_*) \geqslant \varepsilon$ $\forall x$. Но $r_n(x_*) \to 0$, так как ряд в точке x_* сходится. Противоречие.

3.6. Свойства равномерно сходящихся последовательностей и рядов

Теорема 3.35. $f_n, f: E \to \mathbb{R}, a$ — предельная точка $E, f_n \rightrightarrows f$ на E и $\lim_{x \to a} f_n(x) \eqqcolon b_n \in \mathbb{R}$. Тогда $\lim b_n, \lim_{x \to a} f(x)$ существуют, конечны и равны.

В частности, $\lim_{x\to a} \lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \lim_{x\to a} f_n(x)$.

Доказательство. Запишем Критерий Коши:

$$\forall \varepsilon > 0 \exists N \forall m, n \geqslant N \forall x \in E : |f_n(x) - f_m(x)| < \varepsilon.$$

Устремим в этом неравенстве $x \to a$ (тогда $f_n(x) \to b_n, f_m(x) \to b_m$):

$$\forall \varepsilon > 0 \exists N \forall m, n \geqslant N \forall x \in E \colon |b_n - b_m| \leqslant \varepsilon.$$

А это критерий Коши для последовательности $b_n \implies \lim b_n = b \in \mathbb{R}$.

Остается показать, что $\lim_{x\to a} f(x) = b$. Честно проверим. Что такое |f(x) - b|? Это $\leq |f_n(x) - f(x)| + |b_n - f_n(x)| + |b - b_n|$. Мы знаем, что $b_n \to b \implies |b - b_n|$ при $n \geq N_1$ не больше ε . При $n \geq N_2$ $|f_n(x) - f(x)| < \varepsilon$.

Тогда, взяв $N := \max(N_1, N_2)$, получаем $|f(x) - b| < 2\varepsilon + |b_n - f_n(x)|$. Но оставшаяся разность стремится к нулю при $x \to a$. Тогда можно выбрать δ -окрестность, чтобы эта разность была меньше ε . Следовательно, $|f(x) - b| < 3\varepsilon$.

Теорема 3.36. $u_n: E \to \mathbb{R}, \sum_{n=1}^{\infty} u_n(x)$ равномерно сходится и $\lim_{x\to a} u_n(x) = c_n, a$ — предельная точка.

Тогда, $\lim_{x\to a} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} \lim_{x\to a} u_n(x)$ и ряд сходится.

То есть, в случае равномерной сходимости ряда мы можем менять предел суммы.

Доказательство. $f_n(x) := \sum_{k=1}^n u_k(x) \implies f(x) = \sum_{n=1}^\infty u_n(x), \ b_n = \lim_{x \to a} f_n(x) \stackrel{(*)}{=} \lim_{x \to a} \sum_{k=1}^n u_k(x) = \sum_{k=1}^n \lim_{x \to a} u_k(x) = \sum_{k=1}^n c_k.$

Тогда $\exists \lim b_n$, то есть ряд $\sum_{n=1}^{\infty} c_n$ сходится и $\lim_{n\to\infty} b_n = \lim_{x\to a} f(x) = \lim_{x\to a} \sum_{n=1}^{\infty} u_n(x)$. (*) — тут конечная сумма, поэтому все переходы конечны.

Следствие. Если u_n непрерывны в точке a и $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится, то $\sum u_n(x)$ непрерывна в точке a.

Доказательство. $c_n = u_n(a)$.

Теорема 3.37. Пусть $f_n \in C[a,b]$ и $f_n \Rightarrow f$ на $[a,b], c \in [a,b]$.

Тогда $\int_{c}^{x} f_n(t) dt \Rightarrow \int_{c}^{x} f(t) dt$. В частности $\lim_{n \to \infty} \int_{c}^{x} f_n(t) dt = \int_{c}^{x} \lim_{n \to \infty} f_n(t) dt$

Доказательство. $F_n(x) := \int_c^x f_n(t) dt$. Тогда $|F_n(x) - F(x)| = \left| \int_c^x f_n(t) dt - \int_c^x f(t) dt \right| \leqslant \int_c^x |f_n(t) - f(t)| dt \leqslant |x - c| \max_{t \in [c,x]} |f_n(t) - f(t)| \leqslant (b - a) \sup_{t \in [a,b]} |f_n(t) - f(t)|$, но по свойству равномерной сходимости $\sup \to 0$. Значит равномерная сходимость есть.

Следствие. $u_n \in C[a,b]$ и $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится, то $\int_{c}^{x} \sum_{n=1}^{\infty} u_n(t) dt = \sum_{n=1}^{\infty} \int_{c}^{x} u_n(t) dt$.

Доказательство. $\int\limits_{c}^{x} \sum\limits_{k=1}^{n} u_k(t) \mathrm{d}t = \sum\limits_{k=1}^{n} \int\limits_{c}^{x} u_k(t) \mathrm{d}t$. А дальше можно просто устремить к бесконечности по предыдущей теореме.

Замечание. Поточечной сходимости не хватает. Пример: $f_n(x) = nxe^{-nx^2}$ на [0,1]. $f_n(x) \xrightarrow{n \to \infty} 0$. Но $\int\limits_0^1 f_n(x) \mathrm{d}x = \int\limits_0^1 nxe^{-nx^2} \mathrm{d}x = \frac{1}{2}\int\limits_0^1 e^{-nx^2}(nx^2) = -\frac{e^{-nx^2}}{2}\Big|_0^1 = \frac{1-e^{-n}}{2} \to \frac{1}{2} \neq 0 = \int\limits_0^1 f(x) \mathrm{d}x$.

Теорема 3.38. $f_n \in C^1[a,b], c \in [a,b], f_n(c) \to A$ и $f_n' \rightrightarrows g$ на [a,b].

Тогда $f_n \Longrightarrow f$ на $[a,b], f \in C^1[a,b]$ и f'=g.

В частности, $\lim_{n\to\infty} f'_n(x) = (\lim_{n\to\infty} f_n(x))'$

Доказательство. $\int\limits_{c}^{x}g(t)\mathrm{d}t=\int\limits_{c}^{x}\lim_{n\to\infty}f_{n}'(t)\mathrm{d}t\stackrel{(*)}{=}\lim_{n\to\infty}\int\limits_{c}^{x}f_{n}'\mathrm{d}t=\lim_{n\to\infty}(f_{n}(x)-f_{n}(c))=\lim_{n\to\infty}f_{n}(x)-\lim_{n\to\infty}f_{n}(c)=f(x)-A.$ (*) — предыдущая теорема.

Тогда
$$f(x) = A + \int\limits_{c}^{x} g(y) \mathrm{d}t \implies f \in C^{1}[a,b]$$
 и $f'(x) = g(x)$.

Осталось понять, что $f_n \Rightarrow f$.

$$f_n(x) = \int_{c}^{x} f'_n(t)dt + f_n(c), f(x) = \int_{c}^{x} g(t)dt + A.$$

Мы знаем, что
$$\int_{c}^{x} f'_{n}(t) dt \Rightarrow \int_{c}^{x} g(t) dt$$
, а $f_{n}(c) \to A \implies f_{n}(x) \Rightarrow f(x)$.

Следствие. $u_n \in C^1[a,b]$ и $\sum_{n=1}^{\infty} u_n'(x)$ равномерно сходится на $[a,b), \sum_{n=1}^{\infty} u_n(c)$ сходится.

Тогда $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится к дифференцируемой функции и $\left(\sum_{n=1}^{\infty} u_n(x)\right)' = \sum_{n=1}^{\infty} u_n'(x)$.

Доказательство.
$$f_n(x) = \sum\limits_{k=1}^n u_k(x) \in C^1[a,b]$$
 и $f'_n(x) = \sum\limits_{k=1}^n u'_k(x) \Rightarrow \sum\limits_{k=1}^\infty u'_k(x) =: g(x).$

 $f'_n \rightrightarrows g$ и $f_n(c)$ сходятся.

Тогда по теореме $f_n \rightrightarrows f, f$ — дифференцируемая функция и f' = g.

To есть мы поняли, что
$$\left(\sum_{n=1}^{\infty}u_n(x)\right)'=g(x)=\sum_{n=1}^{\infty}u'_n(x).$$

Замечание. Равномерной сходимости исходных функций недостаточно. Пример: $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ равномерно сходится: $\left|\frac{\sin nx}{n^2}\right| \leqslant \frac{1}{n^2}$ и признак Вейерштрасса. $\sum_{n=1}^{\infty} \left(\frac{\sin nx}{n^2}\right)' = \sum_{n=1}^{\infty} \frac{\cos nx}{n}$ расходится в x=0.

3.7. Степенные ряды

Определение 3.15. $a_n \in \mathbb{C}, z, z_o \in \mathbb{C}, \sum_{n=0}^{\infty} a_n (z-z_0)^n$ — степенной ряд. Здесь a_n — закрепленная последовательность, z_0 — константа. Поэтому можно делать формулы проще и использовать $w=z-z_0$.

Теорема 3.39. Пусть ряд $\sum_{n=0}^{\infty} a_n z^n$ сходится при некотором $z = z_0$. Тогда ряд абсолютно сходится $\forall z \colon |z| < |z_0|$.

Доказательство. $\sum\limits_{n=0}^{\infty}a_nz_0^n-$ сходящийся $\implies |a_nz_0^n|\to 0 \implies |a_nz_0^n|\leqslant M.$

Тогда скажем, что $|a_n z^n| = |a_n z_0^n| \cdot \left| \frac{z}{z_0} \right|^n \leqslant M \left| \frac{z}{z_0} \right|^n \Rightarrow$ ряд сходится, так как мажорируется геометрической прогрессией.

Следствие. Если ряд $\sum_{n=0}^{\infty} a_n z^n$ расходится при $z=z_0$, то он расходится $\forall z:|z|>|z_0|$ (от противного).

Определение 3.16. R — радиус сходимости ряда, если ряд $\sum a_n z^n$ сходится $\forall z: |z| < R$ и расходится $\forall z: |z| > R$. Для равного R — непонятно.

Теорема 3.40. Радиус сходимости существует $\in [0, +\infty]$ и $R = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$ — формула Коши-Адамара (Hadamard).

Доказательство. Докажем, что $R=\frac{1}{\overline{\lim}\sqrt[n]{a_n}}$ подходит. Для этого применим к этому ряд признак Коши с $K\coloneqq\overline{\lim}\sqrt[n]{|a_nz^n|}=\overline{\lim}|z|\sqrt[n]{|a_n|}=\frac{|z|}{R}$. Признак Коши: $K<1\Longrightarrow$ ряд сходится, если $K>1\Longrightarrow$ ряд расходится.

Пример. 1. $\sum_{k=0}^{\infty} \frac{z^n}{n!}$. $R = \frac{1}{\overline{\lim}} \sqrt[n]{\frac{1}{n!}} = +\infty$. Ряд расходится всегда.

- $2. \ \sum\limits_{n=0}^{\infty} n! z^n, \ R = \frac{1}{\overline{\lim} \ \sqrt[n]{n!}} = 0.$ Ряд сходится только при z=0.
- 3. $\sum\limits_{n=1}^{\infty}\frac{z^n}{n^p},\,R=\frac{1}{\varlimsup \sqrt[n]{\frac{1}{n^p}}}=1.$ Ряд точно сходится при |z|<1. При $|z|\leqslant 1$ ряд сходится при p=2. А вот при p=1 ряд расходится при z=1 и сходится при z=-1.

Определение 3.17. R — радиус сходимости $\sum\limits_{n=0}^{\infty}a_{n}(z-z_{0})^{n}.$

Круг $\{z \in \mathbb{C} \mid |z - z_0| < R\}$ — круг сходимости.

Теорема 3.41. R — радиус сходимости ряда $\sum_{n=0}^{\infty} a_n z^n$ и 0 < r < R.

Тогда ряд $\sum a_n z^n$ сходится равномерно при $|z| \leqslant r$.

Доказательство. $\sum_{n=0}^{\infty} a_n r^n$ — абсолютно сходится $\implies \sum_{n=0}^{\infty} |a_n| r^n < +\infty$.

Если $|z|\leqslant r$, то $|a_nz^n|\leqslant |a_n|r^n\implies$ равномерно сходится по признаку Вейерштрасса. \square

Следствие. Сумма степенного ряда — непрерывная в круге сходимости функция.

Доказательство. Проверим непрерывность в точке z = w.

 $|w| < r < R \implies$ ряд сходится равномерно в круге $|z| \leqslant r \implies$ сумма ряда непрерывна в круге $|z| < r \implies$ в точке z = w есть непрерывность.

Теорема 3.42 (Теорема Абеля). Пусть $\sum_{n=0}^{\infty} a_n z^n$ сходится при z=R, где R — радиус сходимости.

Тогда ряд сходится равномерно на [0;R] и его сумма непрерывна на [0;R].

B том числе $\lim_{x\to R^-}\sum_{n=0}^{\infty}a_nx^n=\sum_{n=0}^{\infty}a_nR^n.$

Доказательство. $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n R^n \left(\frac{x}{R}\right)^n$.

 $\sum\limits_{n=0}^{\infty}a_{n}R^{n}$ — равномерно сходящийся. $\left(rac{x}{R}
ight)^{n}$ монотонна и равномерно ограничена $\stackrel{\text{пр. Абеля}}{\Longrightarrow}\sum\limits_{n=0}^{\infty}a_{n}x^{n}$

равномерно сходится $\implies f(x) \coloneqq \sum_{n=0}^{\infty} a_n x^n$ непрерывна на [0; R].

Лемма. $x_n, y_n \geqslant 0$. $\lim x_n \in (0; +\infty)$.

Тогда $\overline{\lim} x_n y_n = \lim x_n \overline{\lim} y_n$.

Доказательство. Берем $x_{n_k}y_{n_k} \to \overline{\lim} x_ny_n = b$.

$$x_{n_k} \to a \implies y_{n_k} \to \frac{b}{a} \leqslant c := \overline{\lim} y_n \implies b \leqslant ac.$$

Берем
$$y_{n_k} \to c \implies x_{n_k} y_{n_k} \to ac \leqslant b \implies b = ac.$$

 $\pmb{Cnedcmeue.} \ \sum_{n=0}^{\infty} a_n z^n, \sum_{n=0}^{\infty} a_n rac{z^{n+1}}{n+1} \ \text{и} \ \sum_{n=1}^{\infty} n a_n z^{n-1} \ \text{имеют одинаковые радиусы сходимости.}$

Доказательство. Заметим, что $\sum\limits_{n=0}^{\infty}a_n\frac{z^{n+1}}{n+1}$ и $\sum\limits_{n=0}^{\infty}a_n\frac{z^n}{n+1}$ имеют одинаковые радиусы сходимости, т.к. отличаются домножением на z.

Заметим, что $\sum_{n=0}^{\infty} na_n z^{n-1}$ и $\sum_{n=0}^{\infty} na_n z^n$ имеют одинаковые радиусы сходимости.

$$R_1 = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}, \ R_2 = \frac{1}{\overline{\lim} \sqrt[n]{\frac{|a_n|}{n+1}}}, \ R_3 = \frac{1}{\overline{\lim} \sqrt[n]{|a_n| \cdot n}}.$$

Теорема 3.43 (о почленном интегрировании степенного ряда $\sum_{n=0}^{\infty} a_n (x-x_0)^n = f(x)$). R — его радиус сходимости. Тогда $\int\limits_{x_0}^y f(x) \mathrm{d}x = \sum\limits_{n=1}^{\infty} a_n \frac{(y-x_0)^{n+1}}{n+1}$, где $|y-x_0| < R$.

Доказательство. Ряд $\sum a_n(x-x_0)^n$ равномерно сходится при $|x-x_0| \leqslant |y-x_0|$. На $[x_0,y]$ есть равномерная сходимость. Тогда

$$\int_{x_0}^{y} \sum_{n=0}^{\infty} a_n (x - x_0)^n dx = \sum_{n=0}^{\infty} \int_{x_0}^{y} a_n (x - x_0)^n dx = \sum_{n=0}^{\infty} a_n \frac{(y - x_0)^{n+1}}{n+1}.$$

Определение 3.18. $f: E \to \mathbb{C}, z_0 \in \operatorname{Int} E.$

f — дифференцируема в точке $z_0,$ если $f(z)=f(z_0)+k(z-z_0)+o(z-z_0)$ при $z\to z_0.$

Определение 3.19. $f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$.

Замечание. Дифференцируемость $\iff f'(z_0)$ конечна и $k=f'(z_0).$

Теорема 3.44. $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, |z - z_0| < R$ — радиус сходимости.

Тогда f бесконечно дифференцируема в круге сходимости и $f^{(m)}(z) = \sum_{n=m}^{\infty} a_n n(n-1)\dots(n-m+1)(z-z_0)^{n-m}$

Доказательство. Ряд справа имеет тот же радиус сходимости.

$$\sum_{n=1}^{\infty} n a_n (z-z_0)^{n-1} \implies \text{при } |z-z_0| \leqslant r < R \text{ он равномерно сходится.}$$

$$f'(z) = \lim_{w \to z} \frac{f(w) - f(z)}{w - z} = \lim_{w \to z} \frac{\sum_{n=0}^{\infty} a_n w^n - \sum_{n=0}^{\infty} a_n z^n}{w - z} = \lim_{w \to z} \sum_{n=0}^{\infty} a_n \frac{w^n - z^n}{w - z} = \lim_{w \to z} \sum_{n=1}^{\infty} a_n (w^{n-1} + w^{n-2}z + \dots + wz^{n-2} + z^{n-1}) \stackrel{?}{=} \sum_{n=1}^{\infty} \lim_{w \to z} a_n (w^{n-1} + \dots + z^{n-1}) = \sum_{n=1}^{\infty} a_n n z^{n-1}$$

Разберемся с вопросом: $|a_n(w^{n-1} + \ldots + z^{n-1})| \leq |a_n|nr^{n-1}$, а $\sum_{n=1}^{\infty} n|a_n|r^{n-1}$ сходится, потому что r < R.

Теорема 3.45. Разложение функции в степенной ряд единственно.

Если
$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$$
, то $a_b = \frac{f^{(n)}(z_0)}{n!}$.

Доказательство.
$$f^{(m)}(z_0) = a_m m(m-1) \dots 1 = m! a_m$$
.

Определение 3.20. f аналитическая в точке x_0 , если в окрестности x_0 $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$

Замечание. Бесконечно дифференцируемая функция ⇒ аналитичность.

Пример. $f(x) = \begin{cases} 0, & x = 0 \\ e^{-\frac{1}{x^2}}, & x \neq 0 \end{cases}$. Это бесконечно дифференцируемая функция.

$$f'(x) = e^{-\frac{1}{x^2}} \cdot \frac{2}{x^3}, f'(0) = \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}} - 0}{x} = 0.$$

$$f^{(n)}(x) = e^{-\frac{1}{x^2} \frac{\text{многочлен}}{x^{3n}}}, f^{(n+1)}(0) = 0.$$

Получается, что по индукции все производные в нуле — 0, тогда Тейлор равен 0, а $f \not\equiv 0$.

Пример.
$$e^z \coloneqq \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
, $\cos z \coloneqq \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$, $\sin z \coloneqq \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$.

Упражнение. $e^{iz} = \cos z + i \sin z$, $\cos^2 z + \sin^2 z = 1$, $e^w e^z = e^{w+z}$.

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \sin z = \frac{e^{iz} - e^{-iz}}{2i}.$$

Пример. При |x| < 1.

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n}.$$

$$arctg x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}.$$

Доказательство. $(\ln(1+x))' = \frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$.

$$\ln(1+y) = \int_{0}^{y} \frac{dx}{1+x} = \int_{0}^{y} \sum_{n=0}^{\infty} (-1)^{n} x^{n} = \sum_{n=0}^{\infty} (-1)^{n} \frac{y^{n+1}}{n+1}.$$

$$(\operatorname{arctg} x)' = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}.$$

$$\operatorname{arctg} y = \int_{0}^{y} \frac{dx}{1+x^{2}} = \int_{0}^{y} \sum_{y=0}^{\infty} (-1)^{n} x^{2n} dx = \sum_{n=0}^{\infty} (-1)^{n} \frac{y^{2n+1}}{2n+1}.$$

Пример. $(1+x)^p=1+\sum\limits_{n=1}^{\infty}\frac{p(p-1)...(p-n+1)}{n!}x^n=\sum\limits_{n=0}^{\infty}\frac{p(p-1)...(p-n+1)}{n!}x^n$ при |x|<1.

Доказательство. $(1+x)^p = \sum_{k=0}^n \frac{p(p-1)\dots(p-k+1)}{k!} x^k + \frac{1}{n!} \int_0^x p(p-1)\dots(p-n)(1+t)^{p-n-1} (x-t)^n dt.$

$$\text{Посчитаем } \left| \frac{c_{n+1}}{c_n} \right| = \frac{|p-n-1|}{n+1} \cdot \left| \frac{\int\limits_0^x (x-t)^{n+1} (1+t)^{p-n-2} \mathrm{d}t}{\int\limits_0^x (x-t)^n (1+t)^{p-n-1} \mathrm{d}t} \right| = \frac{|p-n-1|}{n} \left| \frac{\int\limits_0^x (1+t)^{p-n-1} (x-t)^n \frac{x-t}{1+t} \mathrm{d}t}{\int\limits_0^x (1+t)^{p-n-1} (x-t)^n \mathrm{d}t} \right|.$$

Тогда $\left|\frac{x-t}{1+t}\right| \leqslant |x|$ (при x>0 понятно, а при x<0: $\frac{t-x}{1+t} \leqslant -x \iff t-x \leqslant -x-tx \iff t \leqslant -tx \iff t(1+x) \leqslant 0 \iff -1 < x, t \leqslant 0$) А значит отношение $\leqslant \frac{|p-n-1|}{n+1}|x| \to |x| < 1$.

Пример. Частный случай при $p = -\frac{1}{2}$.

$$\frac{1}{\sqrt{1+x}} = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} \cdot \dots \cdot (n-\frac{1}{2})}{n!} x^n = 1 + \sum_{n=1}^{\infty} \frac{(2n-1)!!(-1)^n}{2^n n!} x^n = 1 + \sum_{n=1}^{\infty} \frac{\binom{2n}{n}(-1)^n}{4^n} x^n$$

Пример.

$$\arcsin x = \sum_{n=0}^{\infty} \frac{\binom{2n}{n}}{4^n} \cdot \frac{x^{2n+1}}{2n+1}.$$

Доказательство.

$$\frac{1}{\sqrt{1+x^2}} = 1 + \sum_{k=1}^{\infty} \frac{\binom{2n}{n}}{4^n} x^{2n}$$

Но мы знаем, что $\arcsin y = \int_0^y \frac{\mathrm{d}x}{\sqrt{1-x^2}} = y + \sum_{n=1}^\infty \frac{\binom{2n}{n}}{4^n} \frac{y^{2n+1}}{2n+1}.$

4. Дифференциальное исчисление функции многих переменных

4.1. Дифференцируемость функции многих переменных

Определение 4.1. $f: E \subset \mathbb{R}^n \to R^m$, $a \in \text{Int } E$.

f — дифференцируема в точке a, если $f(a+h)=f(a)+Th+o(\|h\|)$ при $h\to \overrightarrow{0}$, где $T\colon \mathbb{R}^n\to \mathbb{R}^m$ — линейное отображение.

Замечание. Если f дифференцируема в точке a, то T определена однозначно.

Доказательство. $f(a+th) = f(a) + T(th) + o(\|th\|) = f(a) + tTh + o(t\|h\|) = f(a) + tTh + o(t)$. $\|h\|$ — константа, поэтому можно выкинуть.

$$Th = \lim_{t \to 0} \frac{f(a+th) - f(a)}{t}$$

 Замечание. Если f дифференцируем в точке a, то f непрерывна в точке a.

$$f(a+h) = f(a) + Th + o(\|h\|) \xrightarrow{h \to 0} f(a).$$

Определение 4.2. T — дифференциал f в точке a. Обозначается $d_a f$.

Определение 4.3. Матрицу отображения $d_a f$ назовем матрицей Якоби f в точке a.

Важный частный случай m=1. $f(a+h)=f(a)+\langle v,h\rangle+o(\|h\|)$. v — градиент функции f в точке a. Обозначается grad f, $\nabla f(a)$ (набла).

Теорема 4.1. Пусть
$$f = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix} : E \to \mathbb{R}^m, \ a \in \operatorname{Int} E.$$

Тогда f — дифференцируема в точке $a \iff f_j$ дифференцируема в точке $a \forall j$.

Доказательство. $f(a+h) = f(a) + Th + \alpha(h)$, где $\frac{\alpha(h)}{\|h\|} \xrightarrow{h \to 0} 0$.

- \Rightarrow . $f_j(a+h) = f_j(a) + (Th)_j + \alpha_j(h)$. Надо доказать, что $\frac{\alpha_j(h)}{\|h\|} \to 0$. $|\alpha_j(h)| \leqslant \|\alpha(h)\|$. Значит, $\frac{|\alpha_j(h)|}{\|h\|} \leqslant \frac{\|\alpha(h)\|}{\|h\|} \to 0$.
- ullet \Leftarrow . Знаем, что $f_j(a+h)=f_j(a)+T_jh+lpha_j(h)$, где $rac{lpha_j(h)}{\|h\|} o 0.$

$$\alpha(h) = \begin{pmatrix} \alpha_1(h) \\ \vdots \\ \alpha_m(h) \end{pmatrix}$$
. Надо доказать, что $\frac{\|\alpha(h)\|}{\|h\|} \to 0$.

Заметим, что
$$\frac{\|\alpha(h)\|}{\|h\|} = \frac{\sqrt{\alpha_1(h)^2 + \dots + \alpha_m(h)^2}}{\|h\|} \leqslant \frac{|\alpha_1(h)| + \dots + |\alpha_m(h)|}{\|h\|} \to 0.$$

Следствие. Строки матрицы Якоби — градиенты координатных функций

Доказательство.
$$Th = \begin{pmatrix} T_1 \\ T_2 \\ \vdots \\ T_m \end{pmatrix} (h) = \begin{pmatrix} T_1 h \\ \vdots \\ T_m h \end{pmatrix}.$$

Определение 4.4. Производная по направлению. $f: E \to \mathbb{R}, ||h|| = 1.$

$$\frac{\partial f}{\partial h}(a) := \lim_{t \to 0} \frac{f(a+th) - f(a)}{t}.$$

Замечание. $\frac{\partial f}{\partial h}(a) = \mathrm{d}_a f(h)$.

Теорема 4.2 (экстремальное свойство градиента). $\left|\frac{\partial f}{\partial h}(a)\right| \leq \|\nabla f(a)\|$, причем равенство достигается при $h = \pm \frac{\nabla f(a)}{\|\nabla f(a)\|}$.

Доказательство. $\frac{\partial f}{\partial h}(a) = \mathrm{d}_a f(h) = \langle \nabla f(a), h \rangle.$ $\left| \frac{\partial f}{\partial h}(a) \right| = \left| \langle \nabla f(a), h \rangle \right| \leqslant \| \nabla f(a) \| \cdot \| h \| = \| \nabla f(a) \|.$

В неравенстве Коши-Буняковского равенство \iff векторы пропорциональны $\implies h = \pm \frac{\nabla f(a)}{\|\nabla f(a)\|}.$

Определение 4.5. Частные производные. $f: E \to \mathbb{R}$ (это $\iff f$ — скалярная), e_k — базисный вектор (везде нули кроме k-й позиции).

$$\frac{\partial f}{\partial x_k}, f'_{x_k}, D_{x_k} f, \dots \frac{\partial f}{\partial x_k} (a) := \frac{\partial f}{\partial e_k} (a).$$

Замечание. $f(x_1, x_2, \dots, x_n)$. $\frac{\partial f}{\partial x_1}(a) = \lim_{t \to 0} \frac{f(a_1 + t, a_2, \dots, a_n) - f(a_1, a_2, \dots, a_n)}{t} = g'(a_1)$, где $g(s) \coloneqq f(s, a_2, \dots, a_n)$.

Пример. $f(x,y) = x^y$. $\frac{\partial f}{\partial x} = yx^{y-1}$, $\frac{\partial f}{\partial y} = x^y \cdot \ln x$.

Теорема 4.3. $\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \frac{\partial f}{\partial x_2}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right).$

Доказательство. $\frac{\partial f}{\partial h} = \langle \nabla f(a), h \rangle$.

$$\frac{\partial f}{\partial x_k}(a) = \frac{\partial f}{\partial e_k}(a) = \langle \nabla f(a), e_k \rangle = (\nabla f(a))_k.$$

Следствие. $f: E \subset \mathbb{R}^n \to \mathbb{R}^m, a \in \text{Int } E, f$ — дифференцируема в точке a.

Тогда
$$f'(a) = \begin{pmatrix} \frac{\partial f_1}{x_1} & \frac{\partial f_1}{x_2} & \dots & \frac{\partial f_1}{x_n} \\ \frac{\partial f_2}{\partial f_2} & \frac{\partial f_2}{x_2} & \dots & \frac{\partial f_2}{x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{x_1} & \frac{\partial f_m}{x_2} & \dots & \frac{\partial f_m}{x_n} \end{pmatrix}.$$

Теорема 4.4. (линейность дифференциала) $f,g:E\subset\mathbb{R}^n\to\mathbb{R}^m,\ a\in\mathrm{Int}\,E,\ \lambda\in\mathbb{R},\ f,g$ дифференцируемы в точке a.

Тогда f+g, λf — дифференцируемы в a и $d_a(f+g)=d_af+d_ag$ и $d_a(\lambda f)=\lambda d_af$.

Доказательство. $f(a+h) = f(a) + d_a f(h) + \alpha(h), \frac{\alpha(h)}{\|h\|} \to 0, g(a+h) = g(a) + d_a g(h) + \beta(h), \frac{\beta(h)}{\|h\|} \to 0.$

Тогда $f(a+h)+g(a+h)=f(a)+g(a)+\mathrm{d}_a f(h)+\mathrm{d}_a g(h)+\alpha(h)+\beta(h)$. Считаем, что $\alpha(h)+\beta(h)=o(\|h\|)$.

$$\lambda f(a+h) = \lambda f(a) + \lambda d_a f(h) + \lambda \alpha(h).$$

Теорема 4.5 (дифференцируемость композиции). $f: E \subset \mathbb{R}^n \to D \subset \mathbb{R}^m, g: D \subset \mathbb{R}^m \to \mathbb{R}^l, a \in \operatorname{Int} E, b = f(a) \in \operatorname{Int} D.$

Тогда, если f дифференцируема в a, g дифференцируема в b = f(a), то $g \circ f$ дифференцируема в точке a и $d_a(g \circ f) = d_{f(a)}g \circ d_a f$.

Доказательство.
$$f(a+h) = f(a) + d_a f(h) + \alpha(h)$$
, где $\xrightarrow{\alpha(h)} \xrightarrow{h\to 0} 0$.

$$\begin{split} g(b+k) &= g(b) + \mathrm{d}_b g(k) + \beta(k), \text{ где } \xrightarrow{\beta(k)} \xrightarrow{k \to 0} 0. \\ g \circ f(a+h) &= g(b+k) = g(b) + \underbrace{\mathrm{d}_b g(\mathrm{d}_a f(h) + \alpha(h))}_{\mathrm{d}_b g(\mathrm{d}_a f(h)) + \mathrm{d}_b g(\alpha(h))} = g \circ f(a) + \mathrm{d}_b g \circ \mathrm{d}_a f(h) + \mathrm{d}_b g(\alpha(h)) + \beta(k). \end{split}$$

Хотим показать, что все корректно.

$$\frac{\|\mathrm{d}_{b}g(\alpha(h))\|}{\|h\|} \leqslant \|\mathrm{d}_{b}(g)\| \frac{\|\alpha(h)\|}{\|h\|}. \ k = \mathrm{d}_{a}f(h) + \alpha(h). \ \|k\| \leqslant \|\mathrm{d}_{a}f(h)\| + \|\alpha(h)\| \leqslant \|\mathrm{d}_{a}f\| \cdot \|h\| + \|\alpha(h)\| \to 0$$

0, откуда $\frac{\|k\|}{\|h\|} \leqslant \|\mathbf{d}_a f\| + \frac{\|\alpha(h)\|}{\|h\|}$.

B etope,
$$\frac{\|\beta(k)\|}{\|k\|} \cdot \frac{\|k\|}{\|h\|} \xrightarrow{h \to 0} 0.$$

Chedembue. $(g \circ f)'(a) = g'(f(a))f'(a)$.

Теорема 4.6 (Дифферециал произведения скалярной и векторной функции). $E \subset \mathbb{R}^n, a \in \text{Int } E,$ $\lambda \colon E \to \mathbb{R}, f \colon E \to \mathbb{R}^m, \lambda$ и f дифференцируемы в точке a. Тогда λf дифференцируема в точке a и $d_a(\lambda f)(h) = d_a\lambda(h)f(a) + \lambda(a) \cdot d_af(h)$.

Доказательство.
$$f(a+h) = f(a) + \mathbf{d}_a f(h) + \alpha(h), \frac{\alpha(h)}{\|h\|} \to 0. \ \lambda(a+h) = \lambda(a) + \mathbf{d}_a \lambda(h) + \beta(h), \frac{\beta(h)}{\|h\|} \to 0.$$
 $\lambda(a+h)f(a+h) = \lambda(a)f(a) + \mathbf{d}_a \lambda(h)f(a) + \lambda(a)\mathbf{d}_a f(h) + \mathbf{d}_a \lambda(h) \cdot \mathbf{d}_a f(h) + \lambda(a) \cdot \alpha(h) + f(a)\beta(h) + \mathbf{d}_a f(h)\beta(h) + \mathbf{d}_a \lambda(h)\alpha(h) + \alpha(h)\beta(h).$

Заметим, что второе и третье слагаемые очевидно подходят под наше свойство. Теперь заметим, что $\mathrm{const} \cdot \|h\|^2 = o(\|h\|)$ и $\mathrm{const} \cdot \|h\|\beta(h) = o(\|h\|)$ и $\mathrm{const} \|h\|\|\alpha(h)\| = o(\|h\|)$. И всё получается.

Теорема 4.7 (о дифференциале скалярного произведения). $f, g : E \to \mathbb{R}^m, a \in \text{Int } E, f, g -$ дифференцируемы в a.

Тогда $\langle f,g \rangle$ дифференцируемы в $a.\ d_a \langle f,g \rangle(h) = \langle d_a f(h),g(a) \rangle + \langle f(a),d_a g(h) \rangle.$

Доказательство. $\langle f(x), g(x) \rangle = \sum_{j=1}^m f_j(x)g_j(x)$.

$$d_a \langle f, g \rangle (h) = \sum_{j=1}^m d_a (f_j g_j)(h) = \sum_{j=1}^m (d_a g_j(h) f_j(a) + g_j(a) d_a f_j(h)) = \sum_{j=1}^m f_j(a) d_a g_j(h) + \sum_{j=1}^m d_a f_j(h) g_j(a) = \langle f(a), d_a g(h) \rangle + \langle d_a f(h), g(a) \rangle.$$

Замечание. При n=1 $\langle f,g\rangle'(a)=\langle f'(a),g(a)\rangle+\langle f(a),g'(a)\rangle.$

Теорема 4.8 (Лагранжа для векторнозначных функций). $f:[a,b] \to \mathbb{R}^m, f$ — дифференцируема во всех точках из (a,b) и непрерывна на [a,b].

Тогда существует $c \in (a, b)$, такая что $||f(b) - f(a)|| \le ||f'(c)|| (b - a)$.

Доказательство.
$$\varphi(t) \coloneqq \langle f(t), f(b) - f(a) \rangle$$
 — дифференцируемая функция $\implies \exists c \in (a,b)$: $||f(b) - f(a)||^2 = \langle f(b), f(b) - f(a) \rangle - \langle f(a), f(b) - f(a) \rangle = \varphi(b) - \varphi(a) = \varphi'(c)(b-a) = (b-a)\langle f'(c), f(b) - f(a) \rangle$

$$f(a)\rangle \leqslant (b-a)||f'(c)||||f(b)-f(a)||.$$

$$\varphi'(t) = \langle f'(t), f(b)-f(a)\rangle.$$

Пример.
$$m=2, [a,b]=[0,2\pi], f(t)=\begin{pmatrix} \cos t \\ \sin t \end{pmatrix}, f'(t)=\begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}.$$
 $f(2\pi)-f(0)=\overrightarrow{0}, \|f'(t)\|=1.$ Тогда получаем $\|f(2\pi)-f(0)\|=0<2\pi\|f'(c)\|.$

Тут не достигается равенства вообще никогда.

4.2. Непрерывная дифференцируемость

Теорема 4.9. $f: E \subset \mathbb{R}^n \to \mathbb{R}, \ a \in \text{Int } E$. Все частные производные функции f существуют в окрестности a и непрерывны в ней. Тогда f дифференцируема в точке a.

Доказательство.
$$f(a+h) - f(a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)h_i + o(\|h\|), R(h) = f(a+h) - f(a) - \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)h_i.$$

Хочется показать, что $R(h) = o(\|h\|)$, тогда мы победили и дифференцируемость есть.

$$b_0 = a, b_1 = (a_1 + h, a_2, \dots, a_n), b_k = (a_1 + h_1, a_2 + h_2, \dots, a_k + h_k, a_{k+1}, \dots, a_n).$$

 $f(b_k)-f(b_{k-1})=f(a_1+h_1,\ldots,a_{k-1}+h_{k-1},a_k+h_k,a_{k+1},\ldots,a_n)-f(a_1+h_1,\ldots,a_{k-1}+h_{k-1},a_k,\ldots,a_n)=h_k\frac{\partial f}{\partial x_k}(b_{k-1}+\Theta_kh_ke_k)\ (0<\Theta_k<1).$ Здесь $b_{k-1}+\Theta_kh_ke_k$ — какая-то точка из (a_k,a_k+h_k) полученная путем теоремы Лагранжа.

Тогда
$$f(a+h)-f(a)=f(b_n)-f(b_0)=\sum_{k=1}^n h_k \frac{\partial f}{\partial x_k}(b_{k-1}+\Theta_k h_k e_k)=\sum_{k=1}^n h_k \frac{\partial f}{\partial x_k}(a)+\sum_{k=1}^n h_k (\frac{\partial f}{\partial x_k}(b_{k-1}+\Theta_k h_k e_k))=\sum_{k=1}^n h_k \frac{\partial f}{\partial x_k}(a)$$

Тогда
$$|R(h)| = \left| \sum_{k=1}^n h_k \left(\frac{\partial f}{\partial x_k} (b_{k-1} + \Theta_k h_k e_k) - \frac{\partial f}{\partial x_k} (a) \right) \right| \leqslant \|h\| (\sum (...)^2)^{\frac{1}{2}}, \text{ а } (\sum (...)^2)^{\frac{1}{2}} \to 0 \text{ при } h \to 0$$
 из непрерывности частных производных.

Замечание. Дифференциал функции в точке не влечет существования частных производных (и даже непрерывности) в окрестности точки.

Пример:
$$f(x,y) = \begin{cases} x^2 + y^2 & \text{если } x,y \in \mathbb{Q} \\ 0 & \text{иначе} \end{cases}$$
. Дифференциал в точке $(0,0)$: $f(x,y) = f(0,0) + o(\sqrt{x^2 + y^2})$ при $(x,y) \to (0,0)$.

Определение 4.6. $f: E \subset \mathbb{R}^n \to \mathbb{R}^m$ f непрерывно дифференцируема, если она дифференцируема в каждой точке и $\mathrm{d}_x f$ непрерывно зависит от точки, то есть $\|\mathrm{d}_x f - \mathrm{d}_a f\| \to 0$ при $x \to a$.

Теорема 4.10. f непрерывно дифференцируема $\iff f$ дифференцируема во всех точка и все частные производные непрерывны.

Замечание.
$$A = \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n_1} & \dots & a_{nm} \end{pmatrix}, \ a_{jk} = \langle Ae_k, e_j \rangle, \ |a_{jk}| = |\langle A_{e_k}, e_j \rangle| \leqslant \|Ae_k\| \underbrace{\|e_j\|}_{=1} \leqslant \|A\| \cdot \|e_k\| = \|A\|.$$

Доказательство.
•
$$\Rightarrow$$
. $\|\mathbf{d}_x f - \mathbf{d}_a f\| \to 0$.

Матрица для $\mathbf{d}_x f - \mathbf{d}_a f = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) - \frac{\partial f_1}{\partial x_1}(a) & \dots & \frac{\partial f_1}{\partial x_n}(x) - \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) - \frac{\partial f_m}{\partial x_1}(a) & \dots & \frac{\partial f_m}{\partial x_n}(x) - \frac{\partial f_m}{\partial x_n}(a) \end{pmatrix}$. $\left| \frac{\partial f_j}{\partial x_k}(x) - \frac{\partial f_j}{\partial x_k}(a) \right| \leqslant$

 $\|\mathbf{d}_x f - \mathbf{d}_a f\| \xrightarrow{x \to a} 0 \implies \frac{\partial f_j}{\partial x_k}$ непрерывна в a.

•
$$\|\mathbf{d}_x f - \mathbf{d}_a f\|^2 \leqslant \sum_{j=1}^m \sum_{k=1}^n \left(\frac{\partial f_j}{\partial x_k}(x) - \frac{\partial f_j}{\partial x_k}(a)\right)^2 \to 0.$$

 ${\it Cnedcmeue.}\ f$ — непрерывно дифференцируема \iff существуют все частные производные и они непрерывны.

Теорема 4.11. Линейная комбинация, композиция, скалярное произведение, непрерывной дифференцируемой функции — непрерывно дифференцируема.

4.3. Частные производные высших порядков

Определение 4.7. $f: E \subset \mathbb{R}^n \to \mathbb{R}, f(x_1, x_2, \dots, x_n)$.

$$\frac{\partial f}{\partial x_j}$$
: $E \to \mathbb{R}$. Тогда считаем, что $\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial f)j}\right)$

 ${\it Onpedenehue}$ 4.8 (Обозначения). f''_{x_j,x_i} или $D_{x_i,x_j}f$.

$$\frac{\partial^r f}{\partial x_{ir}\partial x_{i_{r-1}}...\partial x_{i_1}} \coloneqq \frac{\partial}{\partial x_{i_r}} \left(\frac{\partial^{r-1}}{\partial x_{i_{r-1}}...x_{i_1}} \right)$$

Замечание. Всего n^r частных производных порядка r.

Пример.
$$f(x,y) = x^y$$
, $\frac{\partial f}{\partial x} = yx^{y-1}$, $\frac{\partial f}{\partial y} = x^y \ln x$.

$$\frac{\partial^2 f}{\partial x^2} = y(y-1)x^{y-2}$$

$$\frac{\partial^2 f}{\partial u^2} = x^y (\ln x)^2.$$

$$\frac{\partial^2 f}{\partial u \partial x} = x^{y-1} + yx^{y-1} \ln x.$$

$$\frac{\partial^2 f}{\partial x \partial y} = x^{y-1} + y x^{y-1} \ln x.$$

Пример. $f(x,y) = \begin{cases} xy\frac{x^2-y^2}{x^2+y^2} & \text{если } x^2+y^2 \neq 0 \\ 0 & \text{иначе} \end{cases}$.

$$\tfrac{\partial f}{\partial x}(x,y) = \left(\tfrac{x^2y - xy^2}{x^2 + y^2}\right)_X' = \tfrac{(3x^2y - y^3)(x^2 + y^2) - 2x(x^3y - xy^3)}{(x^2 + y^2)^2} = \tfrac{x^4y - y^5 + 4x^2y^3}{(x^2 + y^2)^2}.$$

$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{0 - 0}{x} = 0.$$

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{y \to 0} \frac{\frac{\partial f}{\partial x}(0,y - \frac{\partial f}{\partial x}(0,0))}{u} = \lim_{y \to 0} \frac{-y - 0}{y} = -1$$
. А если в другом порядке, то 1.

Теорема 4.12. $f: E \subset \mathbb{R}^2 \to \mathbb{R}, (x_0, y_0) \in \operatorname{Int} E.$

 f_x', f_y', f_{xy}'' существуют в окрестности точки (x_0, y_0) и f_{xy}'' непрерывны в точке (x_0, y_0) .

Тогда существует $f''_{yx}(x_0, y_0)$ и $f''_{xy}(x_0, y_0) = f''_{yx}(x_0, y_0)$.

Доказательство. $\varphi(s) \coloneqq f(s, y_0 + k) - f(s, y_0), \ \varphi'(s) = f'_x(s, y_0 + k) - f'_x(s, y_0).$

$$\varphi(x_0+h)-\varphi(x_0)=h\varphi'(x_0+\Theta h)=h(f_x'(x_0+\Theta h,y_0+k)-f_x'(x_0+\Theta h,y_0))=hkf_{xy}''(x_0+\Theta h,y_0+\widetilde{\Theta} k),$$
 где $0<\widetilde{\Theta}<1.$

$$\tfrac{\varphi(x_0+h)-\varphi(x_0)}{hk} - f_{xy}''(x_0,y_0) = f_{xy}''(x_0+\Theta h,y_0+\widetilde{\Theta} k) - f_{xy}''(x_0,y_0) \to 0, \text{ при } (h,k) \to (0,0).$$

Автор: Харитонцев-Беглов Сергей

При малых h и k:

$$\left| \frac{1}{h} \left(\frac{\varphi(x_0 + h)}{k} - \frac{\varphi(x_0)}{k} \right) - f''_{xy}(x_0, y_0) \right| < \varepsilon \xrightarrow{k \to 0} \left| \frac{1}{h} \left(f'_y(x_0 + h, y_0) - f'_y(x_0, y_0) \right) - f''_{xy}(x_0, y_0) \right| \le 0$$

$$\implies \lim_{h \to 0} \frac{f'_y(x_0 + h, y_0) - f'_y(x_0, y_0)}{h} = f''_{xy}(x_0, y_0).$$

Определение 4.9. $f: D \subset \mathbb{R}^n \to \mathbb{R}$ (D — открытое), f r раз непрерывно дифференцируема, если у нее существуют все частные производные порядка $\leqslant r$ и они непрерывны.

Обозначение. $f \in C^r(D)$.

Теорема 4.13. $f \in C^r(D)$ и (i_1, i_2, \dots, i_r) перестановка (j_1, j_2, \dots, j_r) . Тогда $\frac{\partial^r f}{\partial x_{i_r} \dots \partial x_{i_1}} = \frac{\partial^r f}{\partial x_{j_r} \dots \partial x_{j_1}}$.

Доказательство. Достаточно доказать данное утверждение для одной транспозиции $(a, b \rightarrow b, a)$, тогда заметим, что у на есть общий префикс + общий суффикс + пара различных переменных.

Тогда, воспользовавшись предыдущей теоремой можно понять, что все хорошо.

Определение 4.10. Мультииндекс $k = (k_1, k_2, \dots, k_n)$ — набор из n неотрицательных чисел.

$$k! \coloneqq k_1!k_2!\dots k_n!, \ |k| \coloneqq k_1+k_2+\dots+k_n$$
— высота мультииндекса.

$$\binom{|k|}{k_1,k_2,\dots,k_n} = \frac{|k|!}{k!}.$$

$$h = (h_1, h_2, \dots, h_n), h^k \coloneqq h_1^{k_1} \dots h_n^{k_n}.$$

$$f^{(k)} = \frac{\partial^{|k|} f}{\partial x_1^{k_1} \dots \partial x_n^{k_n}}.$$

Лемма. $f \in C^r(D), D \subset \mathbb{R}^n, D$ — открытое, $[x, x+h] \subset D, F(t) \coloneqq f(x+th), t \in [0;1]$. Тогда $F \in C^r[0,1]$ и $F^{(l)}(t) = \sum_{|k|=l} \frac{l!}{k!} f^{(k)}(x+th) h^k$.

Доказательство. $g \in C^1(D), G(t) = g(x+th).$ $G'(t) = \sum_{j=1}^n g'_{x_j}(x+th)h_j.$ $v(t) \coloneqq x+th.$ Тогда, G(t) = g(v(t)), а значит:

$$G'(t) = g'(v(t))v'(t) = g'(x+th)h = \left(g'_{x_1}(x+th) \dots g'_{x_n}(x+th)\right) \begin{pmatrix} h_1 \\ h_2 \\ \vdots \\ h_n \end{pmatrix} = \sum_{j=1}^n g'_{x_j}(x+th)h_j.$$

А значит
$$F^{(l)}(t) = \sum_{j_l=1}^n \sum_{j_l=1}^n \ldots \sum_{j=1}^n f^{(l)}_{x_{j_1},x_{j_2},\ldots,x_{j_l}}(x+th)h_{j_1}h_{j_2}\ldots h_{j_l} = \sum_{|k|=l} \frac{l!}{k!}f^{(k)}(x+th)h^k$$
. Просто в $f^{(l)}_{x_{j_1},x_{j_2},\ldots,x_{j_l}}$ k_1 раз $x_1,\,k_2$ раз $x_2,\,\ldots$

Теорема 4.14 (Многомерная формула Тейлора (с остатком в форме Лагранжа)). $f \in C^{n+1}(D), D \subset \mathbb{R}^n, D$ — открытое, $f: D \to \mathbb{R}, [x, x+h] \subset D$.

Тогда существует
$$\Theta \in (0,1)$$
, что $f(x+h) = \sum_{|k| \leq r} \frac{f^{(k)}(x)}{k!} h^k + \sum_{|k| = r+1} \frac{f^{(k)}(x+\Theta h)}{k!} h^k$.

Доказательство.
$$F(t) \coloneqq f(x+th), \ F(1) = \underbrace{\sum_{l=0}^r \frac{F^{(l)}(0)}{l!} 1^l}_{=\sum\limits_{|k|=l} \frac{f^{(k)}(x)}{k!} h^k} + \underbrace{\frac{f^{(k+1)}(\Theta)}{(k+1)!} 1^{r+1}}_{|k|=r+1}$$

Замечание. 1. Многочлен Тейлора степени $r. \sum_{|k| \leqslant r} \frac{f^{(k)}(a)}{k!} (x-a)^k$.

2. r = 0. Многомерная формула Лагранжа.

$$f(x+h) = f(x) + \sum_{j=1}^{n} f'_{x_j}(x+\Theta h)h_j = f(x) + \langle \nabla f(x+\Theta h), h \rangle.$$

3. n = 2 в координатной записи.

$$f(x,y) = f(a,b) + f'_x(a,b)(x-a) + f'_y(a,b)(y-b) + \frac{1}{2}f''_{xx}(a,b)(x-a)^2 + \frac{1}{2}f''_{yy}(a,b)(y-b)^2 + f''_{xy}(a,b)(x-a)(y-b) + \dots$$

Теорема 4.15 (с остатком в форме Пеано). $f \in C^r(D), a \in D \subset \mathbb{R}^n, D$ — открытое. Тогда при $x \to a$

$$f(x) = \sum_{|k| \le r} \frac{f^{(k)}(a)}{k!} (x - a)^k + o(\|x - a\|^r).$$

Доказательство. Пишем формулу с остатком в форме Лагранжа для r-1.

$$f(x) = \sum_{|k| \leqslant r-1} \frac{f^{(k)}(x)}{k!} (x-a)^k + \sum_{|k|=r} \frac{f^{(k)}(a+\Theta(x-a))}{k!} (x-a)^k =$$

$$= \sum_{|k| \leqslant r} \frac{f^{(k)}(a)}{k!} (x-a)^k + \sum_{|k|=r} \frac{f^{(k)}(a+\Theta(x-a)) - f^{(k)}(a)}{k!} (x-a)^k.$$

$$= o(||x-a||^r)$$

Достаточно проверить, что $\underbrace{(f^{(k)}(a+\Theta(x-a))-f^{(k)}(a))}_{\underline{x\to a}_{>0}}(x-a)^k=o(\|x-a\|^r).$

Надо понять, что $|(x-a)^k| \leq \|x-a\|^r$. Заметим, что $|x_j-a_j| \leq \|x-a\|$, тогда можно воспользоваться определением мультииндекса.

Следствие Полиномиальная (мультиномиальная формула). $(x_1 + x_2 + \ldots + x_n)^r = \sum_{|k|=r} \frac{r!}{k!} x^k = \sum_{|k|=r} {r \choose k_1,k_2,\ldots,k_n} x_1^{k_1} \ldots x_n^{k_n}$.

Доказательство. $f(x) = (x_1 + x_2 + \ldots + x_n)^r = g^r(x)$, где $g(x) = x_1 + \ldots + x_n$.

$$f'_{x_j}(x)=rg^{r-1}(x)g'_{x_j}(x)=rg^{r-1}(x)$$
. Знаем, что если $|k|=r$, то $f^{(k)}(x)=r!$. А если $<$, то $f^{(k)}(x)=\ldots g^{r-|k|}(x), f^{(k)}(0)=0$.

4.4. Обратные и неявные функции

Определение 4.11. (X, ρ) — метрическое пространство, $f: X \to X$. f — сжатие с коэффициентом λ , если $\rho(f(x), f(y)) \leqslant \lambda \rho(x, y)$, где $0 < \lambda < 1$.

Теорема 4.16 (Банаха о сжатии). Пусть X — полное метрическое пространство, f — сжатие. Тогда у f существует единственная неподвижная точка, то есть $\exists! x \colon f(x) = x$.

Доказательство. Единственность. Пусть x и y — неподвижные точка. Тогда $\rho(f(x), f(y)) = \rho(x, y)$, но при это $\rho(f(x), f(y)) \leqslant \lambda \rho(x, y) \implies \rho(x, y) = 0 \implies x = y$.

Существование. Построим последовательность x_n . $x_0 \in X, x_{n+1} := f(x_n)$.

Докажем, что последовательность x_n — фундаментальная. $\rho(x_{n+k}, x_n) = \rho(f(x_{n+k-1}), f(x_{n-1}))) \leqslant \lambda \rho(x_{n+k-1}, x_{n-1}) \leqslant \ldots \leqslant \lambda^n \rho(x_k, x_0).$

Посмотрим на $\rho(x_k,x_0) \leqslant \rho(x_k,x_{k-1}) + \rho(x_{k-1},x_{k-2}) + \ldots + \rho(x_1,x_0) \leqslant (\lambda^{k-1} + \lambda^{k-2} + \ldots + \lambda + 1)\rho(x,x_0) < \frac{\rho(x_1,x_0)}{1-\lambda}$. А значит, $\lambda^n \rho(x_k,x_0) \leqslant \frac{\lambda^n}{1-\lambda} \rho(x_1,x_0) \leqslant C\lambda^n$. А значит последовательность фундаментальная.

Тогда $\exists x_* \in X : \lim x_n = x_*. \ x_* \leftarrow x_{n+1} = f(x_n) \to f(x_*).$

Сжатие непрерывно по определению, тогда $x_* = f(x_*)$.

Замечание. $\rho(x_*,x_n)\leqslant \frac{\lambda^n}{1-\lambda}\rho(x_1,x_0)\implies \rho(x_*,x_n)\leqslant \lambda^n\rho(x_*,x_0).$

Следствие. Пусть f, g — сжатия с коэффициентами λ, x, y их неподвижные точки.

Тогда $\rho(x,y) \leqslant \frac{\rho(f(x),g(x))}{1-\lambda}$.

Доказательство.
$$\rho(x,y) = \rho(f(x),g(y)) \leqslant \rho(f(x),g(x)) + \underbrace{\rho(g(x),g(y))}_{\leqslant \lambda\rho(x,y)} \implies (1-\lambda)\rho(x,y) \leqslant \rho(f(x),g(x)).$$

Пример Метод касательных Ньютона. Мы знаем, что $\exists a \colon f(a) = 0$, но не знаем a, но зато знаем, что $f \colon [a, x_0] \to \mathbb{R}, f \uparrow, f$ — выпукла, $f \in C^2$.

 $g(x) \coloneqq x - \frac{f(x)}{f'(x)}$. Сразу требование: $f'(a) = \mu > 0$. Тогда будем делать $x_{n+1} \coloneqq g(x_n)$, Если x_* — неподвижная точка, то $g(x_*) = x_* \iff x_* - \frac{f(x_*)}{f'(x_*)} \implies f(x_*) = 0$.

Картинка...(Она показывает, что 0 g(x) — пересечение касательной с осью OX), то есть мы так итеративно двигаемся к корню. Или, если формально:

$$y = f'(x_k)(x - x_k) + f(x_k) \implies 0 = f'(x_k)(x - x_k) + f(x_k) \implies x = x_k - \frac{f(x_k)}{f'(x_k)}.$$

f(x) = f(x) - f(a) = f'(c)(x - a) < f'(x)(x - a) (теорема Лагранжа для получения $c \in (a, x)$) $\Leftarrow f'(c) \leqslant f'(x)$, так как f выпукла.

Теперь покажем, что g — хорошая функция $\frac{f(x)}{f'(x)} < x-a \implies a < x-\frac{f(x)}{f'(x)} = g(x) \implies g$: $[a,x_0] \to [a,x_0].$

А теперь покажем, что наша функция — сжатие: $g(x)-g(y)=g'(c)(x-y),\ g'(x)=1-\frac{f'(x)f'(x)-f(x)f''(x)}{f'(x)^2}=\frac{f(x)f''(x)}{f'(x)^2}.\ M=\max_{a\leqslant x\leqslant x_0}f''(x),\ 1>\frac{Mf(x_0)}{\mu^2}=:\lambda\geqslant g'(x).$ Следовательно, $\exists!x^*,\ a$ это значит, что мы можем найти корень!

Но, штука может быть > 1, это регулируется x_0 , которую можно аккуратнее искать. Получили оценку порядка λ^n .

 $f(x) < f'(x)(x-a) \implies 0 \leqslant \frac{f'(x)(x-a)f''(x)}{f'(x)^2} = \frac{f''(x)(x-a)}{f'(x)} \leqslant \frac{M(x_0-a)}{\mu}$ — нашли границу для стартовой точки.

Упражнение. Доказать, что $x_{n+1} - a \leqslant \frac{M}{2\mu}(x_n - a)^2 \implies x_n - a \leqslant \frac{2\mu}{M}(\frac{M}{2\mu}(x_n - a))^{2^n}$.

Замечание. $f(x)=x^k-b, \ g(x)=x-\frac{x^k-b}{kx^{k-1}}=x-\frac{x}{k}+\frac{b}{kx^{k-1}}=(1-\frac{1}{k}x)+\frac{b}{kx^{k-1}}.$

Определение 4.12. $f:D\subset\mathbb{R}^2\to\mathbb{R}, D$ — открытое, $\exists (x_0,y_0)\in D$.

Задача Коши:
$$\begin{cases} y'(x) = f(x,y(x)) \\ y(x_0) = y_0 \end{cases}$$

Теорема 4.17 (Пикара). $f: D \subset \mathbb{R}^2 \to \mathbb{R}, D$ — открытое, $(x_0, y_0) \in D, |f(x, y) - f(x, \tilde{y})| \leq M|y - \tilde{y}| \ \forall x, y, \tilde{y}, f$ — непрерывна.

Тогда $\exists \delta > 0$, что на $[x_0 - \delta, x_0 + \delta]$ задача Коши имеет единственное решение.

Замечание.
$$\begin{cases} y'=-y^2 \\ y(1)=1 \end{cases} \implies y(x)=\frac{1}{x}.$$
 В нуле беды с бедами.

Доказательство теоремы. $\varphi: [x_0 - \delta, x_0 + \delta] \to \mathbb{R}, \ \varphi'(x) = f(x, \varphi(x)) \land \varphi(x_0) = y_0.$ Переформулируем: $\varphi(x) = y_0 + \int\limits_{x_0}^x f(t, \varphi(t)) \mathrm{d}t.$

Тогда
$$T(\varphi) := \psi, \psi(x) := y_0 + \int_{x_0}^x f(t, \varphi(t)) dt$$
. То есть $\varphi_{n+1} := T(\varphi_n)$.

Возьмем $\overline{B}_r(x_0,y_0)\subset D, |f(x,y)|\leqslant K$ на $\overline{B}_r(x_0,y_0)$. Выберем $\delta>0$, такое что

1. $\delta M < 1$,

2.
$$|x - x_0| \leq \delta, |y - y_0| \leq K\delta \implies (x, y) \in \overline{B}_r(x_0, y_0)$$

Возьмем $C_* := \{ \varphi : [x_0 - \delta, x_0 + \delta] \to \mathbb{R}, \varphi \in C[x_0 - \delta, x_0 + \delta] : |\varphi(x) - y_0| \leqslant K\delta \} \subset C[x_0 - \delta, x_0 + \delta].$ Заметим, что C_* — замкнутое, а значит полное.

Надо доказать, что $T: C_* \to C_*$ и это сжатие.

Возьмем
$$\psi = T\varphi$$
, проверим, что $|\psi(x) - y_0| \leqslant K\delta \iff |\int\limits_{x_0}^x f(t,\varphi(t))| \leqslant K\delta$.

$$T - \text{ сжатие} \iff |\psi(x) - \widetilde{\psi}(x)| = |y_0 + \int\limits_{x_0}^x f(t, \varphi(t)) \mathrm{d}t - y_0 - \int\limits_{x_0}^x f(t, \widetilde{\varphi}(t)) \mathrm{d}t| \leqslant \int\limits_{x_0}^x |f(t, \varphi(t)) - f(t, \widetilde{\varphi}(t))| \mathrm{d}t \leqslant \int\limits_{x_0}^x M |\varphi(t) - \widetilde{\varphi}(t)| \mathrm{d}t \leqslant \underbrace{\delta M}_{c,1} \|\varphi - \widetilde{\varphi}\|$$

Теорема 4.18. Пусть $A \colon \mathbb{R}^n \to \mathbb{R}^n$, A — линейное, m > 0, $||Ax|| \geqslant m||x|| \ \forall x$.

Тогда A — обратим и $||A^{-1}|| \leqslant \frac{1}{m}$.

Доказательство. A — инъекция. Так как линейно достаточно понять, что $Ax = 0 \implies x = 0$. $Ax = 0 \implies ||Ax|| = 0, ||Ax|| \geqslant m||x|| \implies ||x|| = 0 \implies x = 0$.

Так как A — инъекция $\implies A$ — суръекция $\implies A$ — биекция, значит обратим.

$$\|A^{-1}\| = \sup_{x \neq 0} \frac{\|A^{-1}x\|}{\|x\|} = \sup_{y \neq 0} \frac{\|A^{-1}Ay\|}{\|Ay\|} = \sup_{y \neq 0} \frac{\|y\|}{\|Ay\|} \leqslant \frac{1}{m}. \text{ Так как } \|Ay\| \geqslant m\|y\|.$$

Теорема 4.19 (Теорема об операторах, близких к обратным). $A, B : \mathbb{R}^n \to \mathbb{R}^n, A$ — обратим и $||B - A|| < \frac{1}{||A^{-1}||}$.

Тогда:

1. B — обратим,

2.
$$||B^{-1}|| \le \frac{1}{\frac{1}{||A^{-1}||} - ||B - A||}$$

3.
$$||B^{-1} - A^{-1}|| \le \frac{||B - A|| \cdot ||A^{-1}||}{\left(\frac{1}{||A^{-1}||} - ||B - A||\right)}$$

Доказательство.

1.
$$||Bx|| = ||(B-A)x + Ax|| \geqslant \underbrace{||Ax||}_{||A^{-1}|| \cdot ||x||} - \underbrace{||(B-A)x||}_{||B-A|| \cdot ||x||} \geqslant \underbrace{\left(\frac{1}{||A^{-1}||} - ||B-A||\right)}_{=m} ||x||.$$

$$||A^{-1}|| \cdot ||Ax|| \ge ||A^{-1}Ax|| = ||x||.$$

3. $\|B^{-1} - A^{-1}\| \leqslant \|B^{-1}\| \|A - B\| \|A^{-1}\|$, а так как $\|B^{-1}\| \leqslant \frac{1}{\frac{1}{\|A^{-1}\|} - \|B - A\|}$.

Теорема 4.20. $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ — дифференцируема во всех точках D и $||f'(x)|| \leqslant C, D$ — выпуклая.

Тогда $||f(x) - f(y)|| \le C||x - y||$.

Доказательство.
$$\varphi(t) = \langle f(x+t(y-x)), f(y)-f(x) \rangle$$
. $\varphi \colon [0,1] \to \mathbb{R}, \ \varphi(0) = \langle f(x), f(y)-f(x) \rangle$, $\varphi(1) = \langle f(y), f(y)-f(x) \rangle$, откуда $\underbrace{\varphi(1)-\varphi(0)}_{\varphi'(c)(1-0)} = \|f(y)-f(x)\|^2$. $\varphi'(c) = \langle f'(x+c(y-x))(y-x), f(y)-f(x) \rangle = \underbrace{\|f'(x+c(y-x))(y-x)\|}_{\leqslant \|f'(...)\|\|y-x\|\leqslant C\|y-x\|} \cdot \|f(y)-f(x)\| \leqslant C\|y-x\|\|f(y)-f(x)\|$.

Теорема 4.21 (теорема об обратной функции). D — открытое $\subset \mathbb{R}^n$, $x_0 \in D$. $f: D \to \mathbb{R}^n$ непрерывно дифференцируема, $y_0 = f(x_0), A := f'(x_0)$ — обратима.

Тогда \exists окрестности U,V точек $x_0,y_0,$ такие, что $f:U\to V$ — обратима и $f^{-1}:V\to U$ непрерывна.

Доказательство. $G_y(x) := x + A^{-1}(y - f(x))$. Если x — неподвижная точка G_y , то $x = x + A^{-1}(y - f(x)) \iff A^{-1}(y - f(x)) = 0$.

Выбираем $B_r(x_0)$ так, что $||A^{-1}|| ||A - f'(x)|| \le \frac{1}{2} \ \forall x \in B_r(x_0)$.

 $G_y'(x)=E+A^{-1}(-f'(x))=E-A^{-1}f'(x)=A^{-1}(A-f'(x)).$ Тогда $\|G_y'(x)\|\leqslant \|A^{-1}\|\|A-f'(x)\|\leqslant \frac{1}{2}\ \forall x\in B_r(x_0).$

Хотим, чтобы $G_y: B_r(x_0) \to B_r(x_0)$. $\|G_y(x) - x_0\| = \underbrace{\|G_y(x) - G_y(x_0)\|}_{\leqslant \frac{1}{2}\|x - x_0\| < \frac{r}{2}} + \|G_y(x_0) - x_0\| < \frac{r}{2} + \underbrace{\|G_y(x) - G_y(x_0)\|}_{\leqslant \frac{1}{2}\|x - x_0\| < \frac{r}{2}}$

$$||A^{-1}(y - \underbrace{f(x_0)}_{y_0})|| \le \frac{r}{2} + ||A^{-1}|| \cdot ||y - y_0|| \stackrel{(*)}{\le} \frac{r}{2} + ||A^{-1}||R < r.$$

(*) — берем y из $B_R(y_0)$ (причем надо хорошо выбирать R, чтобы все оставалось верным), (1) — воспользовались предыдущей теоремой, так как оценили производную.

Если $y \in B_R(y_0)$, то $G_y : \overline{B}_r(x_0) \to \overline{B}_r(x_0)$ и является сжатием $\Longrightarrow \forall y \in B_r(x_0) \exists ! \ x_* -$ неподвижная точка для $G_y \Longrightarrow x_* = G_y(x_*) = x_* + A^{-1}(y - f(x_*)) \Longrightarrow y = f(x_*) \Longrightarrow y \in f(B_r(x_0)).$

 $V \coloneqq B_R(y_0)$ и $U \coloneqq f^{-1}(V)$ — открыто, так как прообраз открыт.

То есть мы поняли, что $f:U\to V$ — биекция. Осталось проверить, что $f^{-1}:V\to U$ — непрерывна.

Пусть
$$\widetilde{y}=f(\widetilde{x})$$
 и $y=f(x),$ x — неподвижная точка G_y и \widetilde{x} — неподвижная в $G_{\widetilde{y}}$. Тогда $\|x-\widetilde{x}\|\leqslant \frac{\|G_y(x)-G_{\widetilde{y}}(x)\|}{1-\frac{1}{2}}=2\|G_y(x)-G_{\widetilde{y}}(x)\|=2\|A^{-1}(y-f(x))-A^{-1}(\widetilde{y}-f(x))\|=2\|A^{-1}(y-\widetilde{y})\|\leqslant 2\|A^{-1}\|\|y-\widetilde{y}\|$

Теорема 4.22. $f: D \subset \mathbb{R}^n \to \mathbb{R}^n$, D — открытое, f(a) = b, f'(a) — обратимая матрица. $f: U \to V$ — биекция, U, V — окрестности в точках a, b. Тогда f^{-1} дифференцируема в b и f^{-1} непрерывна $V \to U$.

Доказательство. $A = f'(a), f(a+h) = f(a) + Ah + \alpha(h) ||h||,$ где $\alpha(h) \xrightarrow{h \to \infty} 0.$

 $k\coloneqq f(a+h)-f(a)=Ah+\alpha(h)\|h\|,\,\|k\|=\|\dots\|\geqslant \|Ah\|-\|\alpha(h)\|h\|\|\geqslant \|h\|(\frac{1}{\|A^{-1}\|}-\|\alpha(h)\|)\geqslant \|h\|m,\,\text{так как }\|Ah\|\geqslant \frac{\|h\|}{\|A^{-1}\|}.$

Тогда $k \to 0 \implies h \to 0$. $A^{-1}k = h + A^{-1}(\alpha(h))\|h\| = f^{-1}(b+k) - f(b) - A^{-1}(\alpha(h))\|h\|$. $f^{-1}(b+k) = f^{-1}(b) + A^{-1}k - A^{-1}(\alpha(h))\|h\|$. Осталось доказать, что $A^{-1}(\alpha(h))\|h\| = o(\|k\|)$.

$$A^{-1}\alpha(h)\frac{\|h\|}{\|k\|}$$
: Первый множитель $\leqslant \|A^{-1}\|\|\alpha(h)\|$, второй $\leqslant \frac{1}{m}$.

Следствие. В условии теоремы об обратной функции $f^{-1}: V \to U$ непрерывно дифференцируема.

Доказательство.
$$(f^{-1})'(b) = (f'(a))^{-1}$$

4.5. Вступление к неявным функциям

 $x \in \mathbb{R}^n, y \in \mathbb{R}^n, (x,y) \in \mathbb{R}^{n+m} \to \mathbb{R}^m$ линейное.

Если $A(h,0) = 0 \implies h = 0$. Тогда уравнение A(x,y) = 0 имеет единственное решение.

 $0 = A(x,y) = A(x,0) + A(0,y) \implies A(x,0) = -A(0,y)$. Получилась функция $y \to x \eqqcolon f(y)$, $A(f(y),y) = 0 \ \forall y \in \mathbb{R}^m$. Это неявная функция, определяемая уравнением A(x,y) = 0.

Нелинейный вариант: $x^2+y^2=1$. $F(x,y)=x^2+y^2=1$, F'=(2x,2y), если $y\neq 0$, то $(2x,2y)\begin{pmatrix} 0\\k \end{pmatrix}=2yk=0\iff k=0$.

Теорема 4.23 (о неявной функции). $f: D \subset \mathbb{R}^{n+m} \to \mathbb{R}^m, (a,b) \in D, f(a,b) = 0.$ f — непрерывно дифференцируема, $A \coloneqq f'(a,b)$, такая, что $A(h,0) = 0 \implies h = 0$.

Тогда существует такая окрестность W такая, что в W единственная функция.

 $g\colon W\to\mathbb{R}^n,$ такая что g(b)=a и f(g(y),y)=0 $\forall y\in W$ и эта функция непрерывно дифференцируема.

Доказательство. $F: D \to \mathbb{R}^{n+m}$, F(x,y) := (f(x,y),y). F(a,b) = (f(a,b),b) = (0,b). F — непрерывно дифференцируема, $F(a+h,b+k) = (f(a+h,b+k),b+k) = (f(a,b),b) + (A(h,k),k) + o(\|(h,k)\|)$.

Проверим, что F'(a,b) — обратима. $(A(h,k),k)=0 \implies k=0 \implies A(h,0) \implies h=0 \implies (h,k)=0 \implies$ обратима.

По теорема об обратной функции $\exists U$ — окрестность $(a,b),\ V$ — окрестность в точке (a,b), такая что $F\colon U\to V$ — биекция, $F^{-1}=G\colon V\to U$ — непрерывно дифференцируема.

(x,y)=G(F(x,y))=G(f(x,y),y), G(u,v)=(g(u,v),v)— непрерывна дифференцируема \Longrightarrow g — непрерывно дифференицируема. Пусть $\varphi(v)\coloneqq g(0,v),\ W$ — такая, что $\{0\}\times W\subset V.\ \varphi:W\to\mathbb{R}^n,\ f(\varphi(v),v)\stackrel{?}{=}0.$

 $F(\varphi(v),v)=(0,v),$ а так как $G(0,v)=(g(0,v),v)=(\varphi(v),v)$

Единственность. Пусть для какого-то v нашлись v и \widetilde{v} , такая что f(u,v)=0 и $f(\widetilde{u},v)=0 \Longrightarrow F(u,v)=(0,v)=F(\widetilde{u},v),$ но F биекция $\Longrightarrow \widetilde{u}=u.$

4.6. Экстремум

Определение 4.13. $f: E \subset \mathbb{R}^n \to \mathbb{R}$, $a \in \text{Int } E$. a — точка строгого локального минимума, если $\exists U \subset E$ — окрестность точки a, такая что $\forall x \in U: f(x) \geqslant f(a)$.

Строгий локальный минимум $x \neq a \implies f(x) > f(a)$.

Максимум тоже самое.

Теорема 4.24 (Необходимые условия экстремума). $f: E \subset \mathbb{R}^n \to \mathbb{R}, a \in \text{Int } E$. Пусть a- точка эстремума. Если существует $\frac{\partial f}{\partial x_k}(a) \implies \frac{\partial f}{\partial x_k}(a) = 0$.

В частности, если f дифференцируема в точке a, то $\frac{\partial f}{\partial x_k}(a)=\ldots=\frac{\partial f}{\partial x_k}(a)=0$, то есть $\nabla f(a)=0$.

Доказательство. Пусть U — окрестность a из определения и a — точка min.

 $g(t) \coloneqq f(t, a_2, a_3, \dots, a_n)$. Тогда $g(a_1) \leqslant g(t) \implies a_1$ — точка минимума для g и g дифференцируема в это точке $\implies g'(a_1) = 0$.

Определение 4.14. Точки, в которой $\nabla f(a) = 0$ — стационарная.

Замечание. Пусть a — стационарная точка. $f: D \subset \mathbb{R}^n$.

$$f(a+h) = f(a) = \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(a) h_i h_j + o(\|h\|^2).$$

 $\frac{f^{(k)}(a)}{k!}h^k, k$ — мультииндекс мощности 2.

 $m{Onpedenetue~4.15.}~Q(h)\coloneqq\sum_{i,j=1}^nc_{ij}\underbrace{b_ib_j}_{=\langle Ch,h
angle}$ — квадратичная форма.

 $C := (c_{ij})$. Всегда можно считать, что $c_{ij} = c_{ji}$, то есть C — симметрическая матрица.

Определение **4.16.** Q(h) — положительно определена, если $Q(h) \geqslant 0 \forall h$. Отрицательно ≤ 0 , строго > / <.

Теорема 4.25. Если Q(h) строго положительно определена, то $\exists m > 0$, такой что $Q(h) \geqslant m\|h\|^2 \ \forall h \in \mathbb{R}^n$.

Доказательство. Q — непрерывна на \mathbb{R}^n . Рассмотрим на $S \coloneqq \{x \in \mathbb{R}^n \mid ||x|| = 1\}$. S — компакт. Тогда $\exists x_0 \in S$, такая что $0 < Q(x_0) \eqqcolon m$ — наименьшее значение на S.

Рассмотрим
$$h \neq 0$$
, $\frac{h}{\|h\|} \in S \implies \frac{1}{\|h\|^2} Q(h) = Q(\frac{h}{\|h\|}) \geqslant m \implies Q(h) \geqslant m \|h\|^2$.

Теорема 4.26 (Достаточные условия экстремума). $f: D \subset \mathbb{R}^n \to \mathbb{R}, a \in \operatorname{Int} D$.

f — дважды дифференцируема в точке a и $\nabla f(a)=0, Q(h)\coloneqq \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(a)h_ih_j$. Тогда:

- 1. Если Q(h) строго положительно определена, то a точка строгого min, если строго отрицательно a строго min.
- 2. Если a точка нестрого min, то Q нестрого положительно определена.
- 3. a нестрого $\max \implies Q$ нестрого отрицательно.
- 4. Если Q не является знакоопределенной, то a не точка эстремума.

Доказательство. 1. Q(h) — строго положительна $\implies \exists m > 0 : Q(h) \geqslant m \|h\|^2$. Тогда $f(a+h) - f(a) \ge \frac{1}{2}m\|h\|^2 + o(\|h\|^2) = \|h^2\|(\frac{m}{2} + o(1)) > 0.$

3. $h := tv, t \in \mathbb{R}, v \in \mathbb{R}^n$. $f(a + tv) - f(a) = \frac{1}{2}Q(tv) + o(t^2)$. При малых t это равно $t^2(Q(v) + o(t^2))$ o(1) $\Longrightarrow Q(v) \geqslant 0$

Теорема 4.27 (Критерий Сильвестера). $Q(h) := \langle Ch, h \rangle$. Q — строго положительно определена матрицы.

 ${\it Onpedenehue}$ 4.17. Условный экстремум. $f:D\subset \mathbb{R}^{n+m}\to \mathbb{R}, \Phi:D\to \mathbb{R}^m,\ a=(b,c)\in D,$ внутренняя точка. $\Phi(a) = 0$.

a точка условного min при условии $\Phi(x) = 0$, если $\exists U$ — окрестность a, такая что $\forall x \in U$: $\Phi(x) = 0, f(a) \leqslant f(x).$

Утверждение 4.28 (Метод неопределенных множителей Лагранжа). $f: D \subset \mathbb{R}^{n+m} \to \mathbb{R}, \Phi:$

$$D \to \mathbb{R}^m$$
 непрерывно дифференцируема то $\Phi = \begin{pmatrix} \Phi_1 \\ \dots \\ \Phi_{n+m} \end{pmatrix}$.

 $\nabla f(a), \nabla \Phi_1(a), \nabla \Phi_2(a), \dots, \nabla \Phi_m(a)$ — линейно зависимые.

1. Если $\nabla \Phi_1(a), \dots, \nabla \Phi_m(a)$ зависимые, то тогда теорема ничего не утверждает. Замечание.

2. Если они линейно независимы, то $\exists \lambda_1, \dots, \lambda_n \in \mathbb{R} \colon \nabla f(a) = \sum_i \lambda_i \nabla \Phi_i(a)$.

3.
$$\Phi'(a) = \begin{pmatrix} \nabla \Phi_1(a) \\ \dots \\ \nabla \Phi_m(a) \end{pmatrix} m$$
, а так как ЛНЗ rank $\Phi'(a) = m$.

Доказательство. a — точка условного локального экстремума (min) и $\Phi'(a)(h,0) = 0 \implies h =$ $0. \ x = (y, z), y \in \mathbb{R}^m, z \in \mathbb{R}^n, \ a = (b, c). \ \Phi(y, z) = 0$ в окрестности (b, c).

По теорема о неявной функции $\exists \varphi \colon W \to \mathbb{R}^m$, такая что $\Phi(\varphi(z), z) \equiv 0 \ \forall z \in W$.

Рассмотрим $g(z) := f(\varphi(z), z), g(c) = f(\varphi(c), c) = f(a) \implies c$ — точка локального min для $q \implies \nabla q(c) = 0.$

$$g'(z) = f'_z(\varphi(z), z) + f'_y(\varphi(z), z)\varphi(z). \ 0 = g'(c) = f'_z(a) + f'_y(a)\varphi'(c).$$

$$\Phi(\varphi(z), z) \equiv 0$$

$$0 = \Phi'_z(a) + \Phi'_y(a)\varphi'(c). \ \lambda = (\lambda_1, \dots, \lambda_n)$$

 $0 = g'(c) = f_z'(a) + f_y'(a)\varphi'(c)$ и $0 = \lambda \Phi_z'(a) + \lambda \Phi_y(a)\varphi'(c)$. Тогда $0 = (f_z'(a) - \lambda \Phi_z'(a)) + \underbrace{(f_y'(a) - \lambda \Phi_y(a))}_{=0 \text{ при подходящих } \lambda} \varphi'(c)$

$$f'_{y}(a) = \lambda \Phi'_{y}(a) \wedge f'_{z}(a) = \lambda \Phi'_{z}(a) \implies f'(a) = \lambda \Phi'(a).$$