06;08

Прямое наблюдение релаксации проводимости в γ -облученном кремнии n-типа под влиянием импульсов ультразвука

© Я.М. Олих, Н.Д. Тимочко

Институт физики полупроводников им. В.Е. Лашкарева НАН Украины, Киев

E-mail: jaroluk3@ukr.net

Поступило в Редакцию 4 августа 2010 г.

В облученном и частично отожженном (280° C) n-Si-Fz в интервале температур $T=110-180\,\mathrm{K}$ впервые обнаружено обратимое изменение электропроводимости σ_{US} при импульсном ультразвуковом нагружении (продольные волны: частота $6-10\,\mathrm{MHz}$, интенсивность до $4\cdot 10^3\,\mathrm{Wt\cdot m^{-2}}$, длительность импульса $10^{-5}-10^{-3}\,\mathrm{s}$). Установлено, что температурные зависимости акустоиндуцированных изменений σ_{US} (времена нарастания — τ_i и спада — τ_d) описываются уравнениями Аррениуса. Из наклона экспериментальных $\tau_{i,d}(T)$ определены энергии активации соответствующих процессов $U_i\approx 0.09\,\mathrm{eV},\ U_d\approx 0.13\,\mathrm{eV},\ \tau_i^0\approx 4\cdot 10^{-8}\,\mathrm{s},\ \tau_d^0\approx 10^{-9}\,\mathrm{s}$. Наблюдаемый эффект интерпретирован как акустоиндуцированный переход метастабильного дефекта между его состояниями.

Многие дефекты в полупроводниках характеризуются би- и метастабильным характером поведения [1–3]. Интерес к метастабильным дефектам (МД) с практической точки зрения обусловлен возможностью управления физическими параметрами полупроводниковых приборов за счет обратимой перестройки подобных комплексов, в частности использования явления бистабильности для создания ячеек памяти нового поколения. Благодаря интенсивным исследованиям с применением электронного парамагнитного резонанса, инфракрасной спектроскопии, нестационарной емкостной спектроскопии и других методик наблюдается значительный прогресс в понимании механизма метастабильности. Было показано, что процессы перестройки атомной конфигурации дефекта и изменение его зарядового состояния часто взаимосвязаны и происходят комплексно. Причиной таких процессов могут быть локаль-

ная деформация, изменение температуры, электромагнитное поле, радиация, а также ультразвук (УЗ) [4-6]. При исследовании возможностей практического применения УЗ для управления структурой дефектов в полупроводниковых кристаллах получен целый ряд экспериментальных результатов. Например, обработка УЗ стимулирует распад [4] и образование [5] различных комплексов, перегруппировку дефектов [6,7], формирование наночастиц [8]. Основной механизм акустоиндуцированных (АИ) изменений характеристик материала в бездислокационных кристаллах, по нашему мнению, как раз и связан с метастабильным характером отдельных дефектных комплексов. Однако теория взаимодействия УЗ с МД пока отсутствует. Остается неизученной, в частности, и кинетика АИ-изменений электрофизических и фотоэлектрических параметров полупроводников, которая могла бы помочь уточнить механизм воздействия УЗ. Трудности таких исследований связаны с традиционным использованием волн УЗ в непрерывном режиме [4–10], что делает невозможным наблюдение быстрых переходных процессов. В данной работе впервые использован новый методический подход, который состоит в применении УЗ в форме прямоугольных имульсов, что позволяет наблюдать и исследовать динамические (in situ) изменения характеристик материала в процессе нагружения УЗ.

Исследовались образцы бездислокационного тигельного кремния n-типа проводимости n-Si-Fz: P; концентрация примесных атомов фосфора, кислорода и углерода составляла: $N_{\rm P} \approx 4.8 \cdot 10^{19} \, {\rm m}^{-3}$, $N_{\rm O} < 5 \cdot 10^{21} \, {\rm m}^{-3}, \, N_{\rm C} \approx 1.0 \cdot 10^{22} \, {\rm m}^{-3}$ соответственно. Акустоактивные дефекты, чувствительные к действию УЗ, создавались путем радиационного облучения γ -квантами 60 Со-дозой $\sim 10^8$ rad при комнатной температуре и дальнейшим специальным отжигом образцов до $T=280^{\circ}\mathrm{C}$ (с шагом 40°C, длительностью 20 min). Предварительная подготовка обусловлена тем, что, как показано ранее [10], эффективность влияния УЗ в отожженных образцах по сравнению с неотожженными увеличивается. Измерения концентрации n_0 и подвижности μ_0 электронов в образцах кремния проводились методом эффекта Холла в температурном диапазоне 100-300 К на стандартных прямоугольных образцах в режиме постоянного тока $I_0 \sim 10^{-6} {
m A}$ и постоянного магнитного поля $B = 0.45 \,\mathrm{T}$. Волна УЗ распространялась вдоль толщины образца 0.45 Т параллельно кристаллографическому направлению (110). Для измерений температурных холловских зависимостей электрофизических параметров использовался азотный криостат, оснащенный акустически-

ми элементами [11]. Такая дополнительная оснастка позволяет реализовать возможность последовательных измерений на одном образце при различном состоянии структуры дефектов как в исходном, так и в акустически возмущенном состоянии соответственно. Генерация УЗ производилась с помощью пьезоэлектрического преобразователя — пластины ниобата лития $(Y+36^\circ)$ -среза, на которую подавался синусоидальный сигнал от генератора ВЧ. Как было установлено ранее, проводимость $\sigma_0 = e n_0 \mu_0$ γ -облученных образцов n-Si-Fz: Р в интервале 100-200 К определяется глубокими акцепторными уровнями в запрещенной зоне с энергией $E_c-0.23$ eV [9]. При нагружении УЗ в непрерывном режиме в диапазоне температур T<200 К наклон зависимости $n_{\rm US}(T)$ несколько увеличивается, а концентрация свободных электронов $n_{\rm US}^{-1}$ уменьшается, т.е. наблюдается АИ-изменение $\Delta n = n_0 - n_{\rm US}$. После выключения действия УЗ $\sigma_{\rm US}$ возвращается в исходное состояние [10].

При исследовании в данной работе кинетики акустопроводимости $\sigma_{\rm US}$ частично отожженных (280°C) образцов n-Si-Fz использовался импульсный режим УЗ (несущая частота $f_{\rm US} = 5-10\,{\rm MHz}$, частота повторения импульсов $F_i = 400 \,\mathrm{Hz}$, длительность радиоимпульсов $au_{\rm US} = 10^5 - 10^{-3}\,{\rm s}$ и их амплитуда $V_{\rm US}$ — до 20 V). В этом варианте на цифровой осциллограф, синхронизированный импульсами ВЧ, с потенциальных контактов образца подается измеряемое напряжение $U_{\sigma}^{\rm US} = kI_0/\sigma_{\rm US}$ (коэффициент k определяется размерами образца). При определенных экспериментальных условиях (см. ниже) в случае проявления эффекта акустопроводимости на фоне постоянной компоненты U_{σ} наблюдается "импульс ΔU_{σ} ", соответствующий АИ-уменьшению σ_{US} (см. осциллограмму на рис. 1). Оказалось, что фронты этого "импульса ΔU_{σ} ", определяющиеся продолжительностью нарастания τ_i и спада τ_d АИ-изменений $\sigma_{\rm US}$, значительно превосходят длительность фронтов импульса ВЧ и при постоянной температуре удовлетворительно описываются экспоненциональными зависимостями (1) и (2) соответственно:

$$\Delta U_{\sigma}^{i}(t) = \Delta U_{\sigma}^{\max} (1 - \exp(-t/\tau_{i})), \tag{1}$$

$$\Delta U_{\sigma}^{d}(t) = \Delta U_{\sigma}^{\text{max}} \exp(-t/\tau_{d}). \tag{2}$$

 $^{^1}$ В дальнейшем физические величины, определяемые в условиях отсутствия влияния УЗ, будем обозначать нижним индексом "0", а найденные при нагружении УЗ — индексом "US".

Рис. 1. Температурные зависимости времен релаксации: I — нарастания τ_i ; 2 — спада τ_d . Точки — эксперимент, сплошные линии — аппроксимация в соответствии с (3). Вставки: вверху в кругу выделен акустический узел — пьезоэлектрический преобразователь, акустический буфер и образец; внизу осциллограммы "импульса ΔU_σ " на образце и импульса ВЧ на пьезопреобразователе.

Температурные исследования "импульса ΔU_{σ} ", проведенные при постоянной $W_{\rm US}\approx 4\cdot 10^3{\rm Wt\cdot m^{-2}}$ (интенсивность УЗ в импульсе $W_{\rm US}=c(V_{\rm US})^2$; параметр c определяется экспериментально), показали, что зависимости $\tau_i(T)$ и $\tau_d(T)$ являются термоактивированными, т. е. описываются в координатах Аррениуса:

$$\tau_{i,d}(T) = \tau_{i,d}^0 \exp(E_{i,d}/kT), \tag{3}$$

где $E_{i,d}$ — энергии активации соответствующих процессов. Аппроксимация экспериментальных данных $t_{i,d}(T)$ в соответствии с (3)

Рис. 2. Температурная зависимость коэффициента эффективности воздействия УЗ α . На вставке амплитудные характеристики относительных изменений концентрации электронов при разных T, K: I — 128; 2 — 133; 3 — 142; 4 — 163.

(рис. 1) позволила определить значения величин $E_i \approx 0.09 \pm 0.01$ eV, $E_d \approx 0.13 \pm 0.01$ eV и $\tau_i^{~0} \approx 4 \cdot 10^{-8}$ s, $\tau_d^{~0} \approx 10^{-9}$ s.

В работе исследованы также амплитудные характеристики $\Delta U_{\sigma}==f\left(W_{\mathrm{US}}\right)$. Учитывая, что при фиксированной температуре $U_{\sigma}^{0}==kI_{0}/en_{0}\mu_{0}$ и $U_{\sigma}^{\mathrm{US}}=kI_{0}/en_{\mathrm{US}}\mu_{\mathrm{US}}$, рассчитаны относительные АИ-изменения концентрации свободных электронов в образце $(n_{\mathrm{US}}/n_{0})==(U_{\sigma}^{0}/U_{\sigma}^{\mathrm{US}})$. При расчете, в соответствии с предыдущими нашими экспериментами [9,10], полагалось, что $\mu_{\mathrm{US}}(T)\approx\mu_{0}(T)$. Действительно, в области температур $T>125\,\mathrm{K}$ рассеяние электронов определяется колебаниями решетки, и их подвижность практически не зависит от УЗ. Как видно на рис. 2 (вставка), при всех температурах величина "импульсных" АИ-изменений концентрации электронов проводимости

 $\Delta n_{
m US} = (n_0 - n_{
m US})$ прямо пропорциональна $W_{
m US}$:

$$n_{\rm US}/n_0 = 1 - \alpha W_{\rm US},\tag{4}$$

где коэффициент пропорциональности α , характеризующий эффективность воздействия УЗ, также зависит от температуры (рис. 2). Отметим здесь, что максимальное АИ-изменение $\Delta n^{\rm max} \approx 2 \cdot 10^{18} \, {\rm m}^{-3}$ достигается при $T \approx 150 \, {\rm K}$.

В заключение рассмотрения экспериментальных результатов дополнительно отметим следующие установленные факты: 1) АИ-эффекты не связаны с тепловым воздействием — максимальный разогрев УЗ образца при импульсных нагружениях $< 0.1\,\mathrm{K};\ 2)$ влияние магнитного поля на ΔU_σ не обнаружено; 3) новые дефекты в результате нагружений УЗ как в непрерывном, так и в импульсном режимах не образуются (эффекты обратимы), микроструктура образца не изменяется.

Вопрос идентификации акустоактивного центра $(C_s-C_i, P_s-C_i, P_s-C_i)$, дивакансионные дефекты), обнаруженного в γ -облученных и частично отожженных образцах n-Si-Fz, остается открытым, и для выяснения механизма АИ-переходов потребуются дальнейшие исследования. Наиболее важным результатом работы является впервые наблюдаемый в режиме реального времени (in situ) процесс акустоиндуцированного обратимого перехода дефектной системы полупроводникового кристалла в возбужденное состояние. Это открывает дополнительные возоможности как для изучения акустоактивных дефектов в полупроводниковых материалах, так и для разработки импульсных акустоуправляемых устройств.

Авторы благодарят В.М. Бабича за предоставленные для исследований образцы кремния.

Список литературы

- Song L.W., Zhan X.D., Benson B.W. et al. // Phys. Rev. B. Condensed Matter. 1990. V. 42. N 9. P. 5765–5783.
- [2] Вавилов В.С., Киселев В.Ф., Мукашев Б.Н. Дефекты в кремнии. М.: Наука, 1990. 216 с.
- [3] Мукашев Б.Н., Абдуллин Х.А., Горелкинский Ю.В. // УФН. 2000. Т. 170. В. 2. С. 143–155.
- [4] Подолян А.А., Хиврич В.И. // Письма в ЖТФ. 2005. Т. 31. В. 10. С. 11–16.
- 6^* Письма в ЖТФ, 2011, том 37, вып. 1

- [5] *Парчинский П.Б., Власов С.И., Лигай Л.Г.* // ФТП. 2006. Т. 40. В. 7. С. 829–832
- [6] Romanyuk B., Kladko V., Olikh Ya. et al. // Mater. Sci. in Semicond. Processing. 2005. V. 8. N 4. P. 171–175.
- [7] $\textit{Onux O.H.} // \Phi T \Pi$. 2009. T. 43. B. 6. C. 774–779.
- [8] Romanyuk A., Melnik V., Olikh Ya. et al. // J. Luminescence. 2010. V. 130. N 1. P. 87–91.
- [9] Олих Я.М., Тимочко Н.Д., Долголенко А.П. // Письма в ЖТФ. 2006. Т. 32. В. 13. С. 67–73.
- [10] Babych V.M., Olikh Ja.M., Tymochko M.D. // SPQEO. 2009. V. 12. N 4. P. 375–378
- [11] Олих Я.М., Савкина Р.К. // УФЖ. 1997. Т. 42. № 11–12. С. 1385–1389.