Shell LNG Transport Agentic System: Future Cargo Planning and Scheduling (Demand Spike)

LNG Transport System

August 15, 2025

1 Introduction

The LNG Transport Agentic System optimizes LNG operations by forecasting storage levels and scheduling cargos across multiple storage facilities, carriers, and cargos. This document presents a functional scenario simulating a **demand spike** that reduces storage levels by 500 m³ per facility. The system forecasts 90-day storage levels and assigns cargos to carriers to prevent shortages. Results include before and after data, agent actions, and a chart of forecasted storage levels. Outputs are saved as lng_visualization_demand_spike.html and lng_data_demand_spike.csv.

2 Scenario Setup

• **Objective**: Forecast storage levels for 90 days and schedule cargos to address a demand spike.

• Setup:

- Storage facilities: Storage_A, Storage_B, Storage_C.
- Carriers: Carrier_1 (3000 m³), Carrier_2 (4000 m³), Carrier_3 (2500 m³).
- Cargos: Cargo_1 (3000 m³, Storage_A), Cargo_2 (5000 m³, Storage_B),
 Cargo_3 (2000 m³, Storage_C).
- Thresholds: BOG > 0.15%/day, temperature > -160°C, storage < 1000 m³, emissions > 50 trigger alerts.
- Scenario: Demand spike (reduces storage by 500 m³ per facility).
- Run: One iteration, max runtime 300 seconds, max 5 agent errors.

3 Before State (Initial Data)

Initial data for each storage facility, generated by initialize_default_data:

Table 1: Initial Data Before Demand Spike

Sto	rage ID	Time (s)	Temp (°C)	Pressure (bar)	BOG (%/day)	Speed (knots)	Distan
Sto	rage_A	1726318920	-162.0	1.10	0.10	18.0	50
Sto	rage_B	1726318920	-161.9	1.08	0.09	17.7	49
Sto	rage_C	1726318920	-162.2	1.12	0.11	18.3	50

- Emissions: Not yet calculated (NaN).
- Alerts: None.
- Thresholds: BOG max = 0.15%/day, temperature max = -160°C, storage min = 1000 m³, emissions max = 50.

4 System Actions

The system processes the demand spike scenario as follows:

- 1. **Collect Data**: Updates speed, distance, and emissions. Example: Emissions for Storage_A = $0.10 \times 0.05 + 5000 \times 0.1 = 500.005$.
- 2. **Apply Demand Spike**: Reduces storage levels by 500 m³ per facility (e.g., Storage_A: 5000 to 4500 m³).
- 3. **BOG Agent**: Detects high emissions (500.005 > 50). Decision: "Notify Route and Cargo Agents."
- 4. **Route Agent**: Adjusts speeds (e.g., Carrier_1: 18.0 to 17.8 knots). Decision: "Maintain current route, adjust speed slightly."
- 5. **Cargo Agent**: Forecasts 90-day storage levels (e.g., Storage_A: \sim 4500 to 4300 m³) and schedules:
 - Carrier_1 to Cargo_1 for Storage_A (3000 m³).
 - Carrier_2 to Cargo_2 for Storage_B (5000 m³).
 - Carrier_3 to Cargo_3 for Storage_C (2000 m³).

Decision: "Schedule cargos to maintain storage levels."

- 6. **Act**: Logs alert: "High emissions detected. Route action: Maintain route..., Cargo: Schedule cargos...".
- 7. **Learn**: Updates thresholds: BOG max $0.15 \rightarrow 0.14\%$ /day, emissions max 50 \rightarrow 49, storage min $1000 \rightarrow 1050$ m³.

5 After State (Post-Iteration Data)

Data after applying the demand spike and scheduling:

Sto	orage ID	Time (s)	Temp (°C)	Pressure (bar)	BOG (%/day)	Speed (knots)	Distan
Sto	orage_A	1726318922	-162.0	1.10	0.10	17.8	50
Sto	orage_B	1726318922	-161.9	1.08	0.09	17.5	49
Sto	orage_C	1726318922	-162.2	1.12	0.11	18.1	50

- **Changes**: Storage levels reduced (e.g., 5000 to 4500 m³ for Storage_A), speeds adjusted, emissions calculated.
- · Alerts: "High emissions detected."
- **Shared Context**: Actions include emissions detection, speed adjustments, and cargo scheduling.

6 Chart: Forecasted Storage Levels

The interactive visualization is saved as lng_visualization_demand_spike.html. Below is a static representation of forecasted storage levels (90 days):

Figure 1: Forecasted Storage Levels (90 Days) After Demand Spike

For interactive charts (BOG, temperature, storage levels, cargo schedules), view lng_visualization_demand_spike.html in a browser.

7 Outputs

• Log File (log.txt):

INFO:Starting run_loop with 1 scenarios, 1 iterations, max_runtime=30
INFO:Starting scenario: demand_spike

```
INFO:Initialized data: (3, 10)
INFO:Iteration 1/1 (Scenario: demand_spike)
INFO:Collected data for 3 storage facilities
INFO:Simulating scenario: demand_spike
INFO:BOG Agent decision: High emissions detected...
INFO:Route adjusted to 17.8 knots for Carrier_1
INFO:Calling forecast_storage_level with tool_input={'historical_data
INFO:Cargo scheduled: [{"carrier_id": "Carrier_1", "cargo_id": "Cargo
INFO:ALERT: High emissions detected...
INFO:Updated thresholds: BOG=0.14, Emissions=49, Storage=1050
INFO:Iteration 1 completed in X.XXs
INFO:Highcharts visualization saved to lng_visualization_demand_spike
INFO:Data exported to lng_data_demand_spike.csv
INFO:run_loop completed in Y.YYs
```

• Files:

- lng_visualization_demand_spike.html: Interactive charts for BOG, temperature, storage levels, and cargo schedules.
- lng_data_demand_spike.csv: Exported data table.

8 Conclusion

The system forecasted storage levels, detected high emissions, and scheduled Cargo_1, Cargo_2, and Cargo_3 to Carrier_1, Carrier_2, and Carrier_3 to maintain storage levels above 1050 m³. Updated thresholds ensure stricter monitoring. For further analysis, review lng_visualization_demand_spike.html and lng_data_demand_spike.csv in C:.