

MATH0471-MULTIPHYSICS INTEGRATED COMPUTATIONAL PROJECT

C. GEUZAINE R. BOMAN

Intermediate report 1

DELCOURT ARNAUD DESSERS CHRISTOPHE HEUCHAMPS ALEXANDRE TOMASETTI ROMIN

FEBRUARY 18, 2018

Contents

0.1	Questions to ask on February, 20	4
0.2	Database for human tissues	

List of Figures

List of Tables

0.1 Questions to ask on February, 20

- Do we have to take into account the frequency-dependency of the electromagnetic properties of the materials? (see https://em.geosci.xyz/content/physical_properties/magnetic_permeability/magnetic_permeability_frequency_dependent.html)
- Regarding the already-written code:
 - Comments on the created classes?
 - Is speed affected? Or we don't care?
 - Especially, ask if Array_3D_Template<Node> nodes is a good way to start!
- Regarding testing, what are the simplest tests? Could we compare our results with other simulations? Do we have to compare with something that can be hand-solved?
- Check our reasoning on the nodes. They all have:
 - 3 coordinates (3 doubles) How are we going to mesh ??? (we think we are obliged to keep rectangular parallelepiped because of the numerical scheme)
 - 6 fields (3 for \vec{E} and 3 for \vec{H} so 6 doubles)
 - 1 temperature (1 double)
 - 1 unsigned char for the ID of the material
 - $-\Rightarrow$ That would make 10 doubles and one unsigned char or 10*4+1 bytes per node.

0.2 Database for human tissues

https://www.itis.ethz.ch/virtual-population/tissue-properties/downloads/database-v3-1/