Universal Style Transfer via Feature Transforms

Team - 27 Statistical Methods in Artificial Intelligence

The Team

Sreya Mittal - 201501058

Abhijith Nair - 201501169

Kulin Shah - 201501234

Tirth Maniar - 201501051

TA Mentor: Sairam Kolla

Professor: Dr. Vineet Gandhi

The Project

- Transfer any arbitrary visual styles to content images (Style Transfer).
- Can be used for texture synthesis.
- Allows user controls on the amount of stylization.
- Simple yet effective method.
 - o Efficient.
 - o Better results.
 - Does not require learning for each stylization.

Challenges

- Extract effective representations of style
- Preserve actual content
- Generalization to unseen styles
- Efficiency
- Quality of output

Goal

Content Style Result

Architecture

Architecture(contd.)

Algorithm

- Reconstruction Decoder
- Whitening Transform
- Coloring Transform
- Multi-level coarse-to-fine stylization

Reconstruction Decoder

$$L = ||I_{output} - I_{input}||_{2}^{2} + \lambda ||\Phi(I_{output}) - \Phi(I_{input})||_{2}^{2}$$

where I_{input} , I_{output} are the input image and reconstruction output, and Φ is the VGG encoder that extracts the Relu_X_1 features.

- Minimisation of L yields auto-encoder for general image reconstruction.
- 5 different decoders trained for different VGG-19 layers.
- After training, decoder is fixed(will not be fine-tuned).

Whitening Transform

$$\hat{f}_c = E_c D_c^{-\frac{1}{2}} E_c^{\top} f_c$$

where D_c is a diagonal matrix with the eigenvalues of the covariance matrix f_c $f_c^{\top} \in \Re^{C \times C}$, and E_c is the corresponding orthogonal matrix of eigenvectors, satisfying f_c $f_c^{\top} = E_c D_c E_c^{\top}$.

Coloring Transform

$$\hat{f}_{cs} = E_s \ D_s^{\frac{1}{2}} \ E_s^{\top} \ \hat{f}_c$$

where D_s is a diagonal matrix with the eigenvalues of the covariance matrix f_s $f_s^{\top} \in \Re^{C \times C}$, and E_s is the corresponding orthogonal matrix of eigenvectors.

Multi-level coarse-to-fine stylization

- Higher layer features capture more complicated local structures
- Lower layer features carry more low-level information
- Apply WCT at higher layer to obtain coarse stylized image and consider it as new content image to further adjust features in lower

Experimental Results

	Chen et al. [3]	Huang et al. [14]	TNet 26	DeepArt [9]	Ours
Arbitrary	\checkmark	\checkmark	×		
Efficiency		\checkmark	\checkmark	×	
Learning-free	×	×	×	\checkmark	

	Chen et al. 3	Huang et al. [14]	TNet 26	Gatys et al. 9	Ours
$\log(L_s)$	7.4	7.0	6.8	6.7	6.3
Time/sec	2.1	0.20	0.18	21.2	1.5

Our Work

Pipeline of Project

- We did it using Keras from scratch.
- Modules
 - Reconstruction (Training)
 - Separate Encoder and Decoder
 - Make feature from encoder for style image and content image
 - WCT (Whitening and Coloring Transform)
 - Decode the feature to get stylized image

Challenges faced

• Loss function depends on feature of input image, input image, feature of output image and output image.

$$L = ||I_{output} - I_{input}||_{2}^{2} + \lambda ||\Phi(I_{output}) - \Phi(I_{input})||_{2}^{2}$$

• Sequential model cannot be used. Requires functional model.

Reconstruction Architecture

Challenges Faced

- Training heavy
- Tried training VGG 19 decoder (around 100M parameters) on MS Coco
 - 20 small images takes 1 minute for 1 epoch
 - MS Coco contains 330K images
 - Computationally not feasible
- Trained small architecture on MNIST and CIFAR 10 dataset

Challenges faced

- Trained encoder and decoder together for reconstruction module
- Need to separate encoder and decoder after training for WCT
- Models were used as layers

Experiments

- Decoder Training
 - VGG-19 Relu layers
 - Microsoft COCO dataset
 - MNIST dataset
 - CIFAR-10 dataset
- Style Transfer
 - Describable Texture Dataset (DTD)
 - User Control

RESULTS

MNIST RESULTS

Content: 4 Style: 1

Content: 6 Style: 3

Content: 2 Style: 0

Content: 6 Style: 0

Content: 1 Style: 1

Content: 1 Style: 0

RESULTS FROM PRE-TRAINED MODEL

Underexposed image

Overexposed image

Content Style Final Image

Feature matching

Content Style Final Image

Ghosting

Flicker

Content

Style

Final Image

Content

Style

Our photooooo.....

User Control

Alpha = 0.2

Alpha = 0.5

Alpha = 0.8

User Control

Alpha = 0.2 Alpha = 0.5 Alpha = 0.8

Colour dependence on style

Applications

- Style Transfer
- Texture synthesis
- Many other real life applications
 - Neural style transfer to design clothes
 - Displaying images as if it was drawn by an artist.

Tools

- Python
- Keras
- Deep learning library (Tensorflow, Pytorch...)

Few ideas worth trying

- Style transfer in videos
- Interpolation between styles
- Spatial control
- Comparison with other architecture (ResNet, GoogleNet, ...)

References

- Li Y, Fang C, Yang J, et al. Universal Style Transfer via Feature Transforms[J].
- Fashioning with Networks: Neural Style Transfer to Design Clothes. https://arxiv.org/pdf/1707.09899.pdf

THANK YOU!

