The Even Subalgebras of Euclidean Geometric Spaces

A Geometric Proof of the Frobenius Classification of Finite-Dimensional Associative Division Algebras over the Reals

Marcelo Guimarães Neto

A thesis presented for the degree of Bachelor of Science

Department of Mathematics and Statistics
Faculty of Science
University of Helsinki
Finland
May 9, 2022

The Even Subalgebras of Euclidean Geometric Spaces

A Geometric Proof of the Frobenius Classification of Finite-Dimensional Associative Division Algebras over the Reals

Marcelo Guimarães Neto

Abstract

Lorem ipsum dolor...

Acknowledgements

I want to thank...

Contents

1	Introduction			7	
	1.1	Histor	rical Background	7	
	1.2 Aim and Content			7	
2	Mathematical Background				
	2.1 Abstract Algebra: A Brief Primer				
		2.1.1	Groups, Rings and Fields	9	
		2.1.2	Modules, Vector Spaces and Algebras	9	
3	Geometric Algebra				
	3.1	The U	Iniversal Geometric Algebra	11	
		3.1.1	The UGA as an Abstract Algebra $Template[CATEGORY]$	11	
		3.1.2	The Axioms	12	
		3.1.3	The Universal Property	12	
		3.1.4	The Elements	12	
		3.1.5	The Products	12	
	3.2 Clifford Algebras		rd Algebras	12	
3.3 The Euclidean Geometric Algebras: $\mathcal{G}(\mathbb{E}_1), \mathcal{G}(\mathbb{E}_2)$			Suclidean Geometric Algebras: $\mathcal{G}(\mathbb{E}_1), \mathcal{G}(\mathbb{E}_2), \mathcal{G}(\mathbb{E}_3)$	12	
		3.3.1	$\mathcal{G}(\mathbb{E}_1)$	12	
		3.3.2	$\mathcal{G}(\mathbb{E}_2)$	12	
		3.3.3	$\mathcal{G}(\mathbb{E}_3)$	12	

4	1 Classification of the Scalar Algebras		
	4.1	The Even Subalgebras $\mathcal{G}_+(\mathbb{E}_1), \mathcal{G}_+(\mathbb{E}_2), \mathcal{G}_+(\mathbb{E}_3)$	13
	4.2	Divisibility of the Even Subalgebras	13
	4.3	Non-divisibility of $\mathcal{G}_+(\mathbb{E}_n)$ for $n \leq 3 \ldots \ldots \ldots \ldots \ldots$	13
	4.4	The Geometric Isomorphism Theorem of Scalar Algebras	13
5	Cor	aclusion	14

List of Figures

List of Tables

Introduction

1.1 Historical Background

1.2 Aim and Content

We start with an overview of the field, aiming to address the following questions: what is a Geometric Algebra? How is it defined? What are its main components? How do different Geometric Algebras relate to one another?

I should preface this discussion by noting that Geometric Algebra - as the mathematical project proposed by *David Hestenes* and *Garret Sobczyk* in [HS84] - is a relatively new subject: as such, there seems to be no consolidated consensus as to the precise manner in which it ought to be presented. This paper will follow most closely the original approach in [HS84]; nonetheless, I have taken the liberty to formulate and present some of these concepts in a slightly different manner (though only superficially so). In particular, this applies to the choice of axioms (the equivalence of which will be demonstrated), inspired by *Eric Chisolm*'s take on the topic [Chi12]. I have also taken care to discuss a couple of points which I think have been overlooked in other treatments of the topic: mainly, the **Universal Geometric Algebra** as a **template[CATEGORY]** and the relationship of **Geometric Algebra** to **Clifford Algebra**.

Geometric Algebra concerns itself with the construction of a family [CATEGORY] of abstract algebras which adequately extend the arithmetic of the real numbers to higher-dimensional, coordinate-free settings, under the guidance of geometric intuition. In a Geometric Algebra elements are fully characterised by three (geometric) properties: magnitude, direction and orientation. In practice, the theory identifies linear spaces with Euclidean geometric primitives, and in doing so equips any (finite-dimensional) linear space with a powerful algebra whose elements are the subspaces themselves.

This is reminiscent of the Greek view of mathematics in terms of geometric

constructions: numbers as segments, ...

In his original paper, *Hestenes* proposes that Geometric Algebra (and Calculus) can and should provide a unified framework for mathematical physics. In his own words: "Our long-range aim is to see Geometric Calculus established as a unified system for handling linear and multilinear algebra, multivariable calculus, complex variable theory, differential geometry and other subjects with geometric content." (p. ix)[HS84].

The main

Our main focus in this paper, will be in the mathematical development of the theory and its usefulness in the field of Abstract Algebra: specifically, in the classification of Scalar Algebras.

Mathematical Background

2.1 Abstract Algebra: A Brief Primer

2.1.1 Groups, Rings and Fields

Definition 2.1.1 (Group). A group is a set closed under an associative, invertible product.

Definition 2.1.2 (Ring). A ring is an Abelian group (we refer to the group operation as addition) equipped with a second associative and distributive binary operation (we refer to it as multiplication).

Definition 2.1.3 (Field). A field is a commutative ring in which every non-zero element has a multiplicative inverse.

2.1.2 Modules, Vector Spaces and Algebras

Definition 2.1.4 (Module). A module is an Abelian group closed under a left-right multiplication by a ring that is associative and distributive.

Definition 2.1.5 (Vector space). A vector space is a module over a field.

Definition 2.1.6 (Algebra). A real algebra A is a real vector space equipped with a bilinear product; i.e.: a set closed under two operations $(+, \cdot : A \times A \to A)$ and an action $(* : \mathbb{R} \times A \to A)$, with the properties:

+: associative, invertible, commutative

$$\cdot : bilinear : (a * x + y) \cdot (b * z + t) =$$

= ab * xz + a * xt + b * yz + yt

* : associative, distributive

Definition 2.1.7 (Homomorphisms). A homomorphism is a structure-preserving mapping between two algebraic structures, i.e. $\phi: A \to B$ s. that:

$$\varphi(a * xz + y) = a * \varphi(x)\varphi(z) + \varphi(y)$$

If the mapping is 1-to-1, we call it an isomorphism.

DIVISIBILITY

Geometric Algebra

3.1 The Universal Geometric Algebra

3.1.1 The UGA as an Abstract Algebra Template [CATEGORY]

The fundamental concept in Geometric Algebra is that of the **Universal Geometric Algebra** (UGA for short). It is usually formulated as an infinite-dimensional abstract algebra obeying a certain set of axioms, within which all the Geometric Algebras are contained. CITATION?!

We shall do otherwise, and define it as follows:

Definition 3.1.1 (Universal Geometric Algebra). The **Universal Geometric Algebra** is the **category** of algebras obeying a specific set of axioms. Its elements (the Geometric or Clifford Algebras) are specified by the choice of a finite-dimensional inner product space over the reals.

A **UGA** is then a template for Geometric Algebras: given a finite-dimensional linear space, and an inner product, there exists a unique axiom-abiding algebra which contains the linear space and whose symmetrized product corresponds to the prescribed inner product.

- 3.1.2 The Axioms
- 3.1.3 The Universal Property
- 3.1.4 The Elements
- 3.1.5 The Products
- 3.2 Clifford Algebras
- 3.3 The Euclidean Geometric Algebras: $\mathcal{G}(\mathbb{E}_1), \mathcal{G}(\mathbb{E}_2), \mathcal{G}(\mathbb{E}_3)$
- 3.3.1 $\mathcal{G}(\mathbb{E}_1)$
- 3.3.2 $\mathcal{G}(\mathbb{E}_2)$
- 3.3.3 $\mathcal{G}(\mathbb{E}_3)$

Classification of the Scalar Algebras

- 4.1 The Even Subalgebras $\mathcal{G}_+(\mathbb{E}_1), \mathcal{G}_+(\mathbb{E}_2), \mathcal{G}_+(\mathbb{E}_3)$
- 4.2 Divisibility of the Even Subalgebras
- **4.3** Non-divisibility of $\mathcal{G}_+(\mathbb{E}_n)$ for $n \leq 3$
- 4.4 The Geometric Isomorphism Theorem of Scalar Algebras

Conclusion

Bibliography

- [Chi12] Eric Chisolm. "Geometric Algebra". In: *arXiv e-prints*, arXiv:1205.5935 (May 2012), arXiv:1205.5935. arXiv: 1205.5935 [math-ph].
- [HS84] David Hestenes and Garret Sobczyk. "Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics". In: (1984). DOI: 10.1007/978-94-009-6292-7.