State-feedback stabilization of Markov jump linear systems with randomly observed Markov states

Masaki Ogura University of Pennsylvania

Ahmet Cetinkaya Tokyo Institute of Technology

Victor M. Preciado University of Pennsylvania

Markov jump linear systems

$$x(k+1) = A_{r(k)}x(k) + B_{r(k)}u(k)$$

- r: time-homogeneous Markov chain (Markov state)
- Example: Networked control system

- Feedback control
 - Need to measure both the state and the Markov state

State-feedback control

If the controller knows the Markov state:

- Well-developed theory
 - Stabilization, H^2 control, H^∞ control, ... [Costa et al. '05]
 - Linear matrix inequalities
- Can we always measure the Markov state?

Observation through filters

- Filter models
 - Deterministic case
 - Cluster observation [Val et al. '02], Periodic observation [Cetinkaya & Hayakawa '15]
 - Stochastic case
 - Unreliable observation [Costa et al. '15]
 - Deterministic + Stochastic?
 - Periodic observation with probabilistic failures

General filter model

- Sampler
 - has its own Markov chain
 - samples when and only when the chain hits a subset
- Examples

Sampling with period three

$$\begin{array}{c|c} p & 1-p \\ p & 1-p \end{array}$$

Sampling with success probability *p*

General filter model

State-feedback control (cont'd)

- \Box σ is **not** a Markov chain
 - cannot use the theory of Markov jump linear systems
- \square But, the triple (r, s, σ) is a Markov chain
 - Extended Markov chain
 - Embed the closed-loop system into another Markov jump linear system with a big mode space

Equivalent system

Stabilization

□ Theorem Assume that the matrices $R_{\alpha,\beta,\gamma}$, G_{γ} , and F_{γ} satisfy the linear matrix inequalities

$$\begin{bmatrix} R_{\alpha,\beta,\gamma} & A_{\alpha}G_{\gamma} + B_{\alpha}F_{\gamma} \\ G_{\gamma}^{\top}A_{\alpha}^{\top} + F_{\gamma}^{\top}B_{\alpha}^{\top} & G_{\gamma} + G_{\gamma}^{\top} - \mathcal{D}_{\alpha,\beta,\gamma}(R) \end{bmatrix} > 0$$

$$\mathcal{D}_{\alpha,\beta,\gamma}(R) = \sum_{\alpha',\beta',\gamma,} \bar{p}_{(\alpha',\beta',\gamma'),(\alpha,\beta,\gamma)} R_{\alpha',\beta',\gamma'}$$

Define the feedback gains by

transition prob. of extended Markov chain

$$K_{\gamma} = F_{\gamma} G_{\gamma}^{-1}$$

Then, $E[||x(k)||^2]$ converges to zero exponentially fast.

Proof: Use the idea in cluster observation [Val et al. '02]

Example

Markov jump linear system with 3 modes

$$A_{1} = \begin{bmatrix} -0.45 & -0.3 \\ 1.2 & 0.45 \end{bmatrix}, A_{2} = A_{3} = \begin{bmatrix} -0.7 & 0.7 \\ 0.2 & 0.8 \end{bmatrix},$$

$$B_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, B_{2} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, B_{3} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$$

Transition probabilities

$$\begin{bmatrix} 0.6 & 0.2 & 0.2 \\ 0.2 & 0.6 & 0.2 \\ 0.2 & 0.2 & 0.6 \end{bmatrix}$$

Observation: Periodic (T=4) observation with failure probability 0.5

Numerical simulation

Sample paths

Conclusion

- State feedback stabilization of Markov jump linear systems
 - General model of Markov-state observation
 - Extends various frameworks in the literature
 - Feedback gains via solving linear matrix inequalities