Lösungen zu den Textaufgaben zu linearen Funktionen

1. Ein Stromanbieter bietet Ökostrom für einen Grundpreis	a. $f(x) = 144 + 0.27 \cdot x$	a. $f(x) = 144 + 0.27 \cdot x$
 von 144 € pro Jahr und einen kWh Preis von 27 Cent an. a. Stelle eine Funktionsgleichung für das erste Jahr auf und beschreibe, was x und f(x) angeben! b. Was muss eine Familie bezahlen, wenn sie nach einem Jahr 4000 kWh verbraucht? c. Familie Meier hat nach einem Jahr eine Rechnung von 1494 € erhalten, wie viele kWh hat sie verbraucht? 	 b. f(4000) = 144 + 0,27 ⋅ 4000 = 1224 c. 1494 = 144 + 0,27 ⋅ x ⇔ 1350 = 0,27 ⋅ x ⇔ x = 5000 	b. Sie muss 1224 € bezahlen.c. Familie Meier hat 5000 kWh verbraucht.
 Ein Verein hat 20.000 Mitglieder. Pro Monat kommen 1.500 Mitglieder hinzu. Stelle den entsprechenden Funktionsterm auf! Nach wie vielen Monaten hat der Verein 68.000 Mitglieder? Nach 3 Jahren verliert der Verein wegen finanzieller Unregelmäßigkeiten 500 Mitglieder pro Monat. Berechne, zu welchem Zeitpunkt der Verein nur noch 50.000 Mitglieder hat! 	Mitglieder b. $1.500x + 20.000 = 68.000$ $\Leftrightarrow 1.500x = 48.000 \Leftrightarrow x = 32$ c. Mitglieder nach 3 Jahren: $f(36) = 1.500 \cdot 36 + 20.000 = 74.000$ $74.000 - x \cdot 500 = 50.000$ $\Leftrightarrow 24.000 = 500 \cdot x \Leftrightarrow x = 48$	 a. f(x) = 1.500x + 20.000 b. Nach 32 Monaten hat der Verein 68.000 Mitglieder. c. Der Verein hat nach weiteren 4 Jahren noch 50.000 Mitglieder (d.h. insgesamt nach 7 Jahren).
 Zwei große Anbieter teilen sich den Markt. Zu Beginn des Jahres 2017 hat der Anbieter "Alpha" 3,4 Millionen Kunden und der Anbieter "Beta" 6 Millionen Kunden. Durch Innovation und Werbung der Firma "Alpha" wechseln pro Monat 150.000 Menschen von der Firma "Beta" zu "Alpha". a. Stelle die entsprechenden Funktionsterme auf! b. Wann hat der Anbieter "Alpha" 6,1 Millionen Kunden? c. Wann hat der Anbieter "Beta" nur noch 3,6 Millionen Kunden? d. Berechne, wann beide Anbieter die gleiche Anzahl von Kunden haben! 	Kunden $g(x) = 6.000.000 - 150.000x$ b. $3.400.000 + 150.000x = 6.100.000$ $\Leftrightarrow 150.000x = 2.700.000 \Leftrightarrow x = 18$ c. $6.000.000 - 150.000x = 3.600.000$ $\Leftrightarrow 2.400.000 = 150.000x \Leftrightarrow x = 16$	 a. f(x) = 3.400.000 + 150.000x g(x) = 6.000.000 - 150.000x b. Nach 18 Monaten hat der Anbieter "Alpha" 6,1 Millionen Kunden. c. Nach 16 Monaten hat der Anbieter "Beta" nur noch 3,6 Mio. Kunden. d. Nach ca. 8,67 Monaten haben beide Anbieter die gleiche Kundenzahl.

4.	In einem Teich sind 4000m³ Wasser. Durch ein Loch in der
	Plastikplane versickert pro Stunde 25m³ Wasser.

- a. Stelle einen Funktionsterm auf!
- b. Wenn weniger als 800m³ Wasser im Teich sind, muss die Folie repariert werden. Wann ist dies der Fall?
- c. Wann wäre das Wasser völlig versickert?
- d. Zeichne den Graphen in ein Koordinatensystem!

a.
$$f(x) = 4000 - 25x$$
, x in Stunden, $f(x)$ in m^3 Wasser im Teich

b.
$$4000 - 25x = 800 \Leftrightarrow 3200 = 25x \Leftrightarrow x = 128$$

c.
$$4000 - 25x = 0 \Leftrightarrow 4000 = 25x \Leftrightarrow x = 160$$

d.

- a. f(x) = 4000 25x
- b. Nach 128 Stunden, d.h. nach5 Tagen und 8 Stunden muss die Folie repariert werden.
- c. Nach 160 Stunden, d.h. nach6 Tagen und 16 Stunden istder Teich komplett leer.

- 5. Zwei Läufer laufen eine Strecke, die 20 km lang ist. Beide starten gleichzeitig. Läufer A läuft konstant 12km/h. Läufer B ist untrainierter und startet erst 4km nach dem Beginn der Strecke. Er schafft 9,5km/h.
- a. Stelle die Funktionsterme auf!
- b. Berechne, ob und wann Läufer A Läufer B überholt!
- a. $f_A(x) = 12x$, x in Stunden, f(x) in gelaufenen km $f_B(x) = 9.5x + 4$
- b. $12x = 9.5x + 4 \Leftrightarrow 2.5x = 4 \Leftrightarrow x = 1.6$ $f_A(1.6) = 12 \cdot 1.6 = 19.2 < 20$ (d.h. er überholt ihn vor dem Ziel)

- a. $f_A(x) = 12x$ $f_B(x) = 9.5x + 4$
- b. Läufer A überholt Läufer B nach 1,6 Stunden, d.h. nach 1 Stunde und 36 Minuten.

- 6. Ein Taxiunternehmen A verlangt eine Grundgebühr von 4,50 € und 1.90 € pro Kilometer. Ein Taxiunternehmen B verlangt eine Grundgebühr von 2,50 € und 2,10 € pro Kilometer. Ein drittes Taxiunternehmen hat keine Grundgebühr. Für die ersten 8 km werden 2,60 € und nach dem 8. km werden 1,70 € verlangt.
- a. Stelle die entsprechenden Funktionsterme auf!
- b. Wie viel muss man bei den Taxiunternehmen bezahlen, wenn man 30 km fährt?
- c. Ab wieviel Kilometern ist Taxiunternehmen A billiger als das Unternehmen B?
- d. Ab wieviel Kilometern ist Taxiunternehmen A billiger als das Unternehmen C?
- e. Zeichne die Graphen in ein Koordinatensystem!

- a. $f_A(x) = 1.9x + 4.5$ x in km, f(x) in € $f_B(x) = 2.1x + 2.5$ $f_C(8) = 20.8$ $f_C(x) =\begin{cases} 2.6x & \text{für } x \leq 8 \\ 20.8 + 1.7(x - 8) & \text{für } x > 8 \end{cases}$
- b. $f_A(30) = 1.9 \cdot 30 + 4.5 = 61.5$ $f_B(30) = 2.1 \cdot 30 + 2.5 = 65.5$ $f_C(30) = 20.8 + 1.7 \cdot 22 = 58.2$
- c. $1,9x + 4,5 = 2,1x + 2,5 \Leftrightarrow 2 = 0,2x \Leftrightarrow x = 10$
- d. Bis zu 8 Kilometern:

$$2.6x = 1.9x + 4.5 \Leftrightarrow 0.7 x = 4.5 \Leftrightarrow x \approx 6.43$$

Ab 8 Kilometern:

$$[f_A(8) = 1.9 \cdot 8 + 4.5 = 19.7 \text{ und } f_C(8) = 2.6 \cdot 8 = 20.8]$$

 $1.9x + 4.5 = 20.8 + 1.7(x - 8)$

$$\Leftrightarrow$$
 1,9x + 4,5 = 20,8 + 1,7x - 13,6

a.
$$f_A(x) = 1.9x + 4.5$$

 $f_B(x) = 2.1x + 2.5$
 $f_C(x) =$

$$\begin{cases} 2.6x & \text{für } x \leq 8 \\ 20.8 + 1.7(x - 8) & \text{für } x > 8 \end{cases}$$

- b. Beim Taxiunternehmen A
 bezahlt man 61,5 €, bei B 65,5
 €, bei C 58,2 €.
- c. Nach 10 Kilometern ist A günstiger als B.
- d. Das Taxiunternehmen A ist zwischen 6,43 und 13,5 km billiger