Домашняя работа по дискретной математике №3

Вариант 25

Работу выполнил: Шмунк Андрей, Р3108

Исходная таблица соединений R:

V/V	e ₁	$\mathbf{e_2}$	e ₃	e 4	e 5	e 6	e 7	e ₈	e 9	e ₁₀	e ₁₁	e ₁₂
$\mathbf{e_1}$	0			3	2			5	2		2	
e ₂		0	5					1		4		1
e ₃		5	0	1		2		3	1		5	
e ₄	3		1	0	5		5	1		4	1	5
e 5	2			5	0		4		3		5	2
e ₆			2			0		1		5		
e 7				5	4		0			5		
e ₈	5	1	3	1		1		0	1	2	4	
e 9	2		1		3			1	0	5	2	
e ₁₀		4		4		5	5	2	5	0		
e ₁₁	2		5	1	5			4	2		0	
e ₁₂		1		5	2							0

Пусть вершина $e_1 = s$, вершина $e_{12} = t$.

Найдём путь (s-t) с наибольшей пропускной способностью.

1. Проведём разрез *K1*.

$$Q_1 = max[q_{ij}] = 5$$

Закорачиваем все рёбра графа (x_i, x_j) с $q_{ij} \ge Q_I$.

2. Проведём разрез К2.

$$Q_2 = max[q_{ij}] = 4$$

Закорачиваем все рёбра графа (x_i, x_j) с $q_{ij} \ge Q_2$.

Вершины s-t объединены. Пропускная способность искомого пути Q(P) = 4.

3. Строим граф, вершины которого – вершины исходного графа, а рёбра – рёбра с пропускной способностью $q_{ij} \geq Q(P) = 4$.

