- 1. <u>Dennard Scaling</u>: Consider a basic NMOS device with quadratic I/V-relation that we studied in the first week $(I_{DS} = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{GS} V_{TH})^2)$. Now suppose that every next generation of this CMOS technology will benefit from scaling down all the dimensions (W, L, thicknesses) by a factor of namely s (s is smaller than 1).
 - **a.** What should be the nominal s value for Moore's law to be true (i.e. transistor density will be doubled in every new generation)?
 - **b.** If we want to keep all the electrical fields constant (in particular, the field in gate oxide capacitance), how should the voltages scale? What about threshold voltage?
 - c. Explain how the following parameters change in this type of scaling: Density of transistors per mm², drain-source current (in saturation regime), transconductance (g_m), device capacitances (C_{GS}, C_{GD}, C_{DB}), output resistance (r_o)
 - d. If the speed of circuits can be estimated from charging/discharging time of the device capacitances, how does the speed (f) scale up? (Hint: you can estimate the time from I = \frac{c_{GS}dV}{dt}\$ and estimate f to be linearly proportionate to \frac{1}{dt}\$)
 e. If power consumption for each MOS device can be estimated from
 - e. If power consumption for each MOS device can be estimated from charging/discharging energy of gate capacitance (C_{GS}) as $P = C_{GS}V_{DD}^2f$. How does a single transistor's dynamic power consumption scale? How about the total power per area?
 - **f.** What are the obstacles and challenges of this scaling down trend? How far do you think we can benefit from this?
- **2.** <u>Switch Cap:</u> We can sample an analog signal using a simple MOS switch and store the analog value on a capacitor. Circuit diagram below shows a simple "switch cap" circuit during the charging cycle:

- **a.** If the cap is discharged initially ($V_X = 0$), describe how V_X changes after the switch turns on, and identify PMOS working regions (assume $V_{TH} = -0.4V$, $\mu_p C_{ox} = \frac{100 \mu A}{V^2}$, W/L = 1um/65nm, C = 100fF).
- **b.** Write down governing I/V equations for each regime and draw the plot of V_X over time. (*Hint*: MOS can be modeled as a current source in the saturation region and a resistor in the triode)
- c. What will happen if the input voltage (V_{in}) is at 0.3V instead of 1V? Does the sampling circuit still work? If not, how can we solve this issue by using another circuit? (*Hint*: what if the switch was an NMOS?)

- 3. <u>Razavi 2.13 (parts a and c)</u>: The transit frequency, f_T , of a MOSFET is defined as the frequency at which the small-signal current gain of the device drops to unity while the source and drain terminals are held at ac ground.
 - **a.** Prove that:

$$f_T = \frac{g_m}{2\pi (C_{GD} + C_{GS})}$$

Note that f_T does not include the effect of the S/D junction capacitance. *Hint:* Small-signal current gain can be derived by calculating drain current using the small-signal model when we have an ac current source at the gate.

c. For a given bias current, the minimum allowable drain-source voltage for operation in saturation can be reduced only by increasing the width and hence the capacitances of the transistor. Using square-law characteristics, prove that

$$f_T = \frac{\mu_n}{2\pi} \frac{V_{GS} - V_{TH}}{L^2}$$

This relation indicates how the speed is limited as a device is designed to operate with lower supply voltages.

- **4.** <u>Razavi 2.2:</u> For $\frac{W}{L} = \frac{50}{0.5}$ and $|I_D| = 0.5$ mA, calculate the transconductance and output impedance of both NMOS and PMOS devices. Also, find the "intrinsic gain", defined as $g_m r_o$. Use the device data shown in Table 2.1 from Razavi (copied below) and assume $V_{DD} = 3V$.
- 5. <u>Razavi 2.3:</u> Derive expressions for $g_m r_o$ in terms of I_D and W/L. Plot $g_m r_o$ as a function of I_D with L as a parameter. Note that $\lambda \propto 1/L$. Use the device data shown in Table 2.1 from Razavi (copied below) and assume $V_{DD} = 3V$.

Table 2.1 Level 1 SPICE models for NMOS and PMOS devices.

NMOS Model			
$\label{eq:LEVEL} \begin{split} \text{LEVEL} &= 1 \\ \text{NSUB} &= 9\text{e}{+}14 \\ \text{TOX} &= 9\text{e}{-}9 \\ \text{MJ} &= 0.45 \end{split}$	VTO = 0.7 LD = 0.08e-6 PB = 0.9 MJSW = 0.2	GAMMA = 0.45 UO = 350 CJ = 0.56e-3 CGDO = 0.4e-9	PHI = 0.9 LAMBDA = 0.1 CJSW = 0.35e-11 JS = 1.0e-8
PMOS Model			
LEVEL = 1 $NSUB = 5e+14$ $TOX = 9e-9$ $MJ = 0.5$	VTO = -0.8 $LD = 0.09e-6$ $PB = 0.9$ $MJSW = 0.3$	GAMMA = 0.4 $UO = 100$ $CJ = 0.94e-3$ $CGDO = 0.3e-9$	PHI = 0.8 LAMBDA = 0.2 CJSW = 0.32e-11 JS = 0.5e-8