Examen: tema 1^A – bloques de diseño digital (15%)

Fecha: viernes 15 de septiembre de 2023

Duración: una hora y cuarenta y cinco minutos (1h:45m)

NOMBRE: Solución

endmodule

EJERCICIOS PARA RESOLVER

1) (16%) La operación R=A-B de un sistema de cómputo, así como las entradas y salidas, han sido descritas usando lenguaje SystemVerilog de la siguiente manera:

```
input logic [3:0] A, B;
output logic [3:0] R;
output logic cout;
always_comb
{cout, R} = {1'b0, A} + ({1'b0, ~B} + 1'b1);
```

Sí a las entradas **A** y **B** se les asigna los valores dados en la tabla de la derecha, indique, en decimal, el valor de la salida R y sí en la operación con los datos dados se presenta condición de *Overflow*:

Α	В	R (decimal)	Overflow
-2	7	7	Si
-4	-8	4	No
7	-1	-8	Si

2) (16%) Una empresa de la ciudad lo quiere contratar a usted para que genere el código en SystemVerilog de una memoria RAM de 4kbytes de capacidad, con bus de datos compartido (data) de 32-bits. Para probar sus habilidades, se le solicita definir los puertos de entrada y salida del módulo RAM, así también como la definición del arreglo de almacenamiento para la memoria llamado mRAM:

```
module ram (clk, rw, address, data);

// Definición del bus de direcciones (address)

input logic [9:0] address;

// Definición del bus de datos compartido (data)

inout logic [31:0] data;

// Definición de las señales de read/write (rw) y reloj (clk)

input logic clk, rw;

// Definición del arreglo (mRAM)

logic [31:0] mRAM [0:2**10-1];

...
```

3) (8%) Un grupo de estudiantes ha cometido un error en la definición del tipo de dato **State**, empleada para definir las señales **currentState** y **nextState** de una máquina de 5 estados en SystemVerilog. Indique el error y brinde una solución.

```
typedef enum logic [1:0] {S0, S1, S2, S3, S4} State;
State currentState, nextState;
```

Problema: Número de bits incorrecto, se requieren 3 bits

Corrección: typedef enum logic [2:0]...

Examen: tema 1^A – bloques de diseño digital (15%)

Fecha: viernes 15 de septiembre de 2023

Duración: una hora y cuarenta y cinco minutos (1h:45m)

4) (30%) Un nuevo formato para representar números de punto flotante empleando 12-bits ha sido generado. En este nuevo formato se reservó un bit para el signo, 5 bits para el exponente y 6 bits para la fracción de la mantisa normalizada como se muestra a continuación:

Representación de punto flotante (12-bits)

S	EXPONENTE	FRACCIÓN
1b	5b	6b

Las siguientes son las características del formato:

- a. Exponente sesgado. Rango del exponente sesgado (se suma 15): $[1, 2^5 2]$.
- b. El valor en decimal se representa como: $Dec = (-1)^S x$ 1. fracción x $2^{exponente-SESGO}$.
- c. La mantisa está normalizada. En el formato se guarda la fracción en 6 bits.

Sabiendo lo anterior, responda las siguientes preguntas dados los valores A = 0xCAD y B = 0x50D en representación de punto flotante de 12-bits.

- a) (4%) Indique los exponentes de cada operando sin sesgo: ExpA = 3, ExpB = 5
- b) (5%) Indique las mantisas de cada operando (binario): MantA = 1.101101, MantB = 1.001101
- c) (2%) Indique cada operando en valor decimal: DecA = -13.625, DecB = 38.5

Realice la operación R = A * B y responda las siguientes preguntas:

- d) (5%) Indique el exponente de R sin sesgo: ExpR = 9
- e) (8%) Indique la mantisa de R (binario): MantR = 1.000001
- f) (2%) Indique el valor decimal de R: DecR = -520

Responda las siguientes preguntas en relación con el formato de punto fijo de 12-bits:

- g) (2%) En la expresión del nuevo formato de 12-bits: $Dec = \pm mantisa \ x \ 2^{EXP}$, indique el rango de valores para EXP: [-14, 15]
- h) (2%) Valor máximo que se puede representar en el nuevo formato (decimal): 65024
- 5) (30%) Una empresa de la ciudad requiere desarrollar el controlador de la máquina expendedora de botellas de agua natural y con gas que se muestra en el lado izquierdo de la siguiente figura:

La entidad del controlador a desarrollar se muestra en la parte derecha de la figura anterior. Dicho módulo se llama FSM y corresponde a una máquina de estados finitos. Este módulo cuenta con las señales de salida:

Examen: tema 1^A – bloques de diseño digital (15%)

Fecha: viernes 15 de septiembre de 2023

Duración: una hora y cuarenta y cinco minutos (1h:45m)

Seleccione, Ingrese_dinero y Retire_botella, y de entrada: Agua_natural, Agua_gas, Dinero_OK y Retiro_OK. A continuación, se detalla cómo el módulo FSM deberá generar las señales de salida de acuerdo con las acciones del cliente:

- a. Cuando la señal de **reset** es igual a 1'b1, el módulo FSM pondrá la señal **Seleccione** en 1'b1. Las demás salidas del módulo FSM deberán estar a 1'b0.
- b. Cuando el cliente seleccione el tipo de botella de agua a comprar, el módulo FSM deberá poner la señal Ingrese_dinero en 1'b1. El módulo FSM será notificado del evento mediante el valor en 1'b1 en la señal Agua_natural o en la señal Agua_gas. Las demás salidas del módulo FSM deberán estar a 1'b0.
- c. Cuando el cliente introduzca el valor adecuado de dinero, el módulo FSM deberá poner la señal **Retire_botella** en 1'b1. El módulo FSM será notificado del evento mediante el valor en 1'b1 en la señal **Dinero_OK**. Las demás salidas del módulo FSM deberán estar a 1'b0.
- d. Cuando el cliente retire la botella de la máquina, el módulo FSM pondrá nuevamente la señal **Seleccione** en 1'b1, iniciándose una nueva compra. El módulo FSM será notificado del evento mediante el valor en 1'b1 en la señal **Retiro_OK**. Las demás salidas del módulo FSM deberán estar a 1'b0.

A usted se le encarga completar las siguientes porciones de código para tener listo el módulo FSM:

a) (8%) Complete la definición del tipo de dato State con los estados de la FSM y bits requeridos: typedef enum logic [1:0] {S_seleccion, S_dinero, S_retiro} State; State currentState, nextState;

b) (4%) Complete la descripción del proceso de actualización de currentState

```
always_ff @(posedge clk, posedge reset)
  if (reset)
    currentState <= S_seleccion;
else
    currentState <= nextState;</pre>
```

c) (10%) Complete la descripción del proceso de actualización de nextState

always comb begin

```
nextState = currentState;
case (currentState)
   S_seleccion:
    if (Agua_natural || Agua_gas)
        nextState = S_dinero;
   S_dinero:
    if (Dinero_OK)
        nextState = S_retiro;
   S_retiro:
    if (Retiro_OK)
        nextState = S_seleccion;
endcase
```

end

d) (8%) Complete la descripción del proceso de actualización de las salidas always comb begin

```
Seleccione = 1'b0;
Ingrese_dinero = 1'b0;
Retire botella = 1'b0;
```


case (currentState)
 S_seleccion:
 Seleccione = 1'b1;
 S_dinero:
 Ingrese_dinero = 1'b1;
 S_retiro:
 Retire_botella = 1'b1;
 endcase
end

Examen: tema 1^A – bloques de diseño digital (15%)

Fecha: viernes 15 de septiembre de 2023

Duración: una hora y cuarenta y cinco minutos (1h:45m)