

OPERATION AND SERVICE MANUAL

MODEL 4145A SEMICONDUCTOR PARAMETER ANALYZER

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 2149J- and above.

COPYRIGHT: YOKOGAWA-HEWLETT-PACKARD, LTD., 1982 9-1, TAKAKURA-CHO, HACHIOJI-SHI, TOKYO, JAPAN

Manual Part No. 04145-90000 Microfiche Part No. 04145-90050

Printed: JAN. 1983

TABLE OF CONTENTS

Section	on	Title	Page	Section	Title	Page
I	GENERA	L INFORMATION				
	1-1. 1-4. 1-11. 1-13. 1-16. 1-21. 1-23. 1-25. 1-27.	Introduction	1-1 1-2 1-3 1-3 1-4 1-4 1-4	3-37. 3-40. 3-42. 3-45. 3-47. 3-49. 3-51.	Auto-Calibration Display Pages Page Control MENU Page CHANNEL DEFINITION Page COURCE SETUP Page MEAS & DISP MODE SETUP Page GRAPHICS PLOT Page LIST DISPLAY Page	3-27 3-28 3-28 3-30 3-30 3-30 3-30 3-30
II	INSTALI	Accessories	1-4	3-57. 3-59. 3-61.	MATRIX DISPLAY Page SCHMOO PLOT Page AUTO SEQUENCE SETUP Page.	3-30 3-30 3-31
	2-1. 2-3. 2-5. 2-6. 2-8.	Introduction	2-1 2-1 2-1 2-1 2-1	3-63. 3-65. 3-67. 3-69. 3-71. 3-73.	OUTPUT SEQUENCE SETUP Page	' 3-31 3-31 3-31 3-31 3-31 3-31
	2-10. 2-12. 2-16. 2-19. 2-21.	Line Frequency Filter Power Cable Operating Environment Installation Instructions. Installation of Options 907, 908 and 909	2-1 2-2 2-2 2-2 2-2	3-75. 3-77. 3-79.	Time Domain Measurement Setup DUT Connection DUT Connection Using the 16058A DUT Connection Using the	3-74. 3-76 3-76
	2-23. 2-24. 2-26.	Storage and Shipment Environment Packaging	2-4 2-4 2-4	3-83. 3-85. 3-87. 3-89.	Connector Plate Floating Measurement Guarding Applications Package HP-IB Interface	3-80 3-82 3-82 3-83 3-86
III	3-1. 3-3. 3-5.	ION Introduction Panel Features Flexible Disc Handling	3-1 3-2 3-10	3-91. 3-93. 3-95. 3-97. 3-99.	Connection to HP-IB HP-IB Status Indicators . LOCAL Key HP-IB Control Switch HP-IB Interface	3-86 3-86 3-86 3-86
	3-7. 3-10. 3-12. 3-14. 3-16.	CRT Display	3-12 3-12	3-103.	Capabilities HP-IB Control Modes HP-GL Control of the CRT Remote Program Codes and Parameter Setting	3-87 3-87 3-87
	3-18. 3-21. 3-23.	Operations	3-19	3-109. 3-111.	HP-GL Commands Device Clear Data Output Service Request Status	3-97 3-100 3-101
•	3-25.	Units (SMU)			Byte	3-102
i,	3-27. 3-29. 3-33. 3-35.	Compliance	3-23 3-24 3-26	3-119. 3-121. 3-123.	PLOT PRINT External Display Disc Copy Head Cleaning	3-111 3-112

TABLE OF CONTENTS

Sect	ion	Title	Page	Sect	ion	Title	Page
	3-127	 Protection againt Hazard- ous Voltage Exceeding 			5-34. 5-36.	Disc Check	5-23
	3-129	±42V PLOT/PRINT Operations			5-38.	and Adjustments Sure Flexible-disc Drive	
	3-131	Using HP-IB Controller Measurement Ranges and			5-40.	Checks and Adjustment . MSU DIAGNOSTICS Mode	5-24
	3-133.	Resolution	3-116		5-43. 5-46. 5-49.	MSU Read Test MSU Write Test	5-28
		Output	3-118		5-52.	MSU EXERCISER Drive Belt Tension Check and Adjustment	
IV		RMANCE TEST			5-53.	Index Timing Check and Adjustment	
	4-1. 4-3.	Introduction Equipment Required	. 4-1		5-54.	Track Alignment Check and Adjustment	
	4-5. 4-7.	Test Record	. 4-1 . 4-1		5-55.	Track Zero Switch Check and Adjustment	
	4-9.	Graphics Display Unit Intensity and Focus			5-56.	Jitter Check and Adjustment	
	4-10.	CheckPage and Key Function			5-57.	Index Detector Alignment Check and Adjustment	
	4-11. 4-12.	Check SMU Accuracy Test VS Accuracy Test	. 4-5	VI	REPLAC	EABLE PARTS	
	4-13. 4-14.	VM Accuracy Test External CRT X-Y-Z Output	4-13		6-1. 6-3.	Introduction	6-1 6-1
	4-15.	Check			6-5. 6-7.	Replaceable Parts List Ordering Information	6-1 6-2
٧	ADJUST				6-10.	Direct Mail Order System .	6-2
	5-1. 5-3.	Introduction	5-1 5-1	VII	MANUAL	CHANGES	
	5-7. 5-9.	Equipment Required Adjustment Relationships .	5-1 5-1		7-1. 7-3.	Introduction	7-1 7-1
	5-11. 5-13.	Adjustment Locations Initial Operation		VIII	SERVIC		
	5-15.	Procedure	5-3		8-1. 8-3.	Introduction	8-1 8-1
	5-17. 5-19.	Top Cover Removal Bottom Cover Removal	5-3		8-5. 8-7.	Recommended Test Equipment Troubleshooting	8-1 8-1
	5-21. 5-23.	A3 Board Access Graphics Display Unit	5-3		8-9. 8-11.	Repair	8-1· 8-2
	5-24.	Intensity and Focus Check and Adjustment DC Power Supply Adjustment			8-13. 8-15. 8-17.	Board Level Theory Troubleshooting Guide	8-4 8-6
	5-25.	Sample Hold Switch AC Offset Adjustment			8-17. 8-18. 8-20.	Assembly Removal Assembly Locations Al through A8 Board Removal	8-8 8-8
	5-26.	Demultiplexer Noise Rejection Adjustment			8-22.	A13 through A16 Board Removal	8-9
	5-27.	D-A Converter Gain Adjustment			8-24. 8-26.	Front Panel Removal Display (1345A) Removal	8-9
	5-28.	A-D Converter Gain Adjustment			8-28.	Rear Assembly A Removal 8 All and Al2 Board Removal. 8	8-11
	5-29. 5-30.	VM Range Adjustment Mass Storage Unit Test	5-20		8-32.	Rear Assembly B Removal . 8 FDD and A9 Board Removal . 8	8-12
	5-32.	Flexible-disc Drive Access				Al Graphic Display Control Board	

TABLE OF CONTENTS

Section	Title	Page	Section	Title	Page
8-38.	A2 Microprocessor Digital Control Board	872	8-48.	AlO Keyboard and Display Control Board	0 775
8-40.	A3 SMU Control and A-D		8-50.	All Switching Power	
	Converter Board	8-84	8-52.	Supply Board	8-120
	A5 SMU Board	8-98	8-54.	Board	
	Control Board	8-111			0 100

LIST OF TABLES

Number	Title	Page	Number	Title	Page
1-1. 1-2. 1-3.	Specifications	1-5 1-13 1-16	4-12. 4-13.	HP-IB Interface Test Program Controller Instructions and Operator Response for HP-IB Interface Test Program	4-29 4-33
3-1. 3-2. 3-3.	4145A Self Test Error Messages Operational Error-Codes	3-12 3-13 3-15	4-14.	Error Messages for HP-IB Interface Test Program	4-35
3-4. 3-5. 3-6. 3-7.	Self Test Error-Codes Arithmetic Operators SMU Source Ranges Application Package Setups	3-17 3-19 3-22 3-83	5-1. 5-2. 5-3. 5-4.	Adjustable Components Adjustment Requirements Check Points and Limits Test Point/Trimmer Capacitor	5-2 5-4 5-10
3-8. 3-9. 3-10.	HP-IB Interface Capabilities HP-GL Commands Recommended HP-IB Plotters	3-87 3-97 3-108	5-5. 5-6.	Combination	5-14 5-24 5-30
3-11. 3-12. 3-13.	Recommended HP-IB Printers Recommended External Displays . Number of Oupput/Sisplay Digits	3-110 3-111 3-118	5-7. 6-1.	MSU EXERCISER Softkey Prompts . List of Reference Designators	5-31
4-1. 4-2. 4-3.	Recommended Test Equipment Source Parameter Changes Test Limits for Voltage Control Accuracy Test	4-A 4-8 4-8	6-2. 6-3.	and Abbreviations Manufacturers Codes Replaceable Parts	6-1 6-2 6-3
4-4. 4-5. 4-6.	Source Parameter Changes Test Limits for Voltage Measurement Accuracy Test Source Parameter Changes	4-12 4-12 4-15	7-1.	Manual Changes by Serial Number	7-1
4-7.	Test Limits for Current Measurement Accuracy Test	4-15	8-1.	Hardware-related Error Codes	8-6
4-8. 4-9.	Source Parameter Changes Test Limits for Current Control Accuracy Test	4-18 4-18	8-2. 8-3. 8-4.	SMU Status Codes Jumper Settings List of Digital Section	8-6 8-19
4-10.	Accuracy Test Test Limits for SU Accuracy Test	4-18	8-5.	Troubleshooting Flow Diagrams Program Locations	8-22 8-76
4-11.	Test Limits for MU Accuracy Test	4-24	8-6. 8-7.	Relationship between Current and Range Resistors V Monitor Amplifier Ranging	8-103

LIST OF ILLUSTRATIONS

Number	Title	Page	Number	Title	Page
1-1. 1-2.	Model 4145A and Accessories Serial Number Plate	1-1 1-3	3-38. 3-39.	HP-IB Control Switch Remote Program Codes and	
			3-40.	Parameter Setting Data Output Format	3-88 3-100
2-1.	Voltage and Fuse Selection	2-2	3-41.	Status Byte for the 4145A	3-102
2-2.	Power Cable Supplied	2-3	3-42.	Sample Program 1	3-105
2-3.	Rack Mount Kit	2-5	3-43.	Sample Program 2	3-107
			3-44. 3-45.	Plot Function	3-108 3-110
3-1.	Contents of Section III	3-1	3-45. 3-46.	Print Function External Display	3-111
3-2.	Front Panel Features	3-2	3-47.	Disc Copy	3-112
3-3.	Rear Panel Features	3-8	3-48.	Head Cleaning	3-113
3-4.	Disc Installation and Removal		3-49.	Programs for HP-IB controlled	0 115
3-5.	Useable Display Area		2 50	PLOT Operations	3-115
3-6. 3-7.	Operator Adjustment Byte Size of Arithmetic	3-11	3-50.	Measurement Ranges and Resolution	3-116
5 7.	Expressions	3-20	3-51.	Display/Output Format	
3-8.	Source and Measurement Channels	·		2.25,137,133,131	
	of the 4145A	3-21	4 7	T	4 0
3-9.	Simplified Circuit Diagram of	2 21	4-1. 4-2.	Test Pattern for GDU GDU Connector Location	4-2 4-3
3-10.	One of the Four SMUs Specifiable Voltage/Current	3-21	4-2.	Display for Key Function Check.	4-4
	Output	3-22	4-4.	Voltage Control Accuracy Test	
3-11.	Simplified Circuit Diagram of Vs	3-23		Setup	4-5
3-12.	Simplified Circuit Diagram of Vm	3-23	4-5. 4-6.	Measurement Setup	4-6
3-13.	Voltage/Current Output Specified by the COMPLIANCE.	3-23	4-0.	Voltage Measurement Accuracy Test Setup	4-9
3-14.	Staircase Sweep Output		4-7.	Measurement Setup	4-10
3-15.	Relationship Between VAR1 and		4-8.	Measurement Setup	4-13
	VAR2	3-25	4-9.	Measurement Setup	4-16
3-16.	Relationship Between VAR1 and VAR1'	2 26	4-10. 4-11.	SU Accuracy Test Setup Measurement Setup	4-19 4-21
3-17.	VAR1' Time Domain Measurement		4-11.	MU Accuracy Test Setup	4-22
3-18.	Page Control Keys	3-28	4-13.	Measurement Setup	4-23
3-19.	Page Flow and the Relationship .	3-29	4-14.	External CRT X-Y-Z Output	
3-20.	MENU Page		4 15	Check Setup	4-25
3-21. 3-22.	CHANNEL DEFINITION Page		4-15.	Scope Displays of X-Y-Z Output (Example)	4-26
3-23.	SOURCE SETUP Page MEAS & DISP MODE SETUP Page		4-16.	HP-IB Interface Test Setup	4-27
3-24.	GRAPHICS PLOT Page		4-17.	Program Listing of HP-IB	
3-25.	LIST DISPLAY Page	3-54		Interface Test	4-30
3-26.	MATRIX DISPLAY Page				
3-27. 3-28.	SCHMOO PLOT Page AUTO SEQUENCE SETUP Page		5-1.	Test Pattern for GDU	5-6
3-29.	OUTPUT SEQUENCE SETUP Page		5-2.	INTENSITY and FOCUS Locations .	5-6
3-30.	4145A FILE CATALOG Page	3-67	5-3.	Connector Location	5-7
3-31.	OPERATION GUIDE Page	3-70	5-4.	DC Power Supply Adjustment	
3-32.		3-71	c c	Setup	5-8 5-9
3-33. 3-34.	Time Domain Measurement Setup DUT Connection Using the 16058A.		5-5. 5-6.	A5J1 Check	5-10
3-34. 3-35.	DUT Connection Using the	3-70	5-7.	Check Point Locations	5-10
	Connector Plate	3-80	5-8.	Sample Hold Switch AC Offset	
3-36.	Example of Guarding	3-82	F 0	Adjustment Setup	5-11
3-37.	Connection Examples for	2 05	5-9. 5-10.	AC Offset Adjustment Check/Adjustment Point	5-12
	Application Package	J~0J	J	Locations	5-12

LIST OF ILLUSTRATIONS

Number	Title	Page	Number	Title	Page
5-14.	D-A Converter Gain Adjustment		8-1.	Four Major Sections of the 4145A	8-3
5-15.	Setup		8-2. 8-3.	Overall Block Diagram Assembly Level Trouble Isolation	8-5
5-16. 5-17.	Results from LED Annunciators Check/Adjustment Point		8-4. 8-5.	Flow Diagram	8-8
5-18.	Vm Range Adjustment Setup	5-20	8-6. 8-7.	1345A Removal	8-10
5-19. 5-20.	Test Point Locations Flexible-disc Drive Access		8-8. 8-9.	All and Al2 Board Removal Rear Assembly B Removal	8-12
5-21.	Component Locations for MSU DIAGNOSTICS Mode Setting	5-25	8-10. 8-11.	Al9 Board Assembly FDD and A9 Board Removal	8-13
5-22. 5-23.	CRT Display of MSU DIAGNOSTICS Page	5-25	8-12. 8-13.	Flow Diagram Notes	
5-24. 5-25.	CRT Display of MSU Read Test CRT Display of MSU Write Test CRT Display fo MSU EXERCISER		8-14.	Al Board Troubleshooting Flow Diagram	8-25
5-26.	Page	5-30	8-15. 8-16.	A2 Board Troubleshooting Folw Diagram A3 Board Troubleshooting	8-31
5-27.	Adjustment Setup Index Timing Checks and	5-32	8-17.	Flow Diagram	8-43
5-28.	Adjustment		8-18.	Folw Diagram	8-53
5-29.	Track Alignment Check and Adjustment	5-34	8-19.	Flow Diagram	8-59
5-30. 5-31.	Scope Display of Bursts Check/Adjustment Point Locations		8-20.	Flow Diagram	
5-32.	Track Zero Switch and Adjustment Setup	5-38	8-21. 8-22.	Block Diagram of Al Board Al Graphic Display Control Board	
5-33.	Scope Display of Track Zero Switch Switching	5-39	8-23.	Assembly Component Locations. Al Graphic Display Control Board	
5-34. 5-35.	Check/Adjustment Point Locations Jitter Check and Adjustment Setup		8-24.	Assembly Schematic Diagram Block Diagram of the A2 Board	
5-36. 5-37.	Scope Display of Jitter Check/Adjustment Point Locations	5-42	8-25.	A2 Microprocessor Digital Control Board Assembly	0 74
5-38.	Index Detector Alignment Check and Adjustment Setup		8-26.	Component Locations A2 Microprocessor Digital Control Board Assembly	8-74
5-39. 5-40.	Index Detector Alignment Gap Check/Adjustment Point Locations	5-44	8-27.	Schematic Diagram	
			8-28.	A3 SMU Control and A-D Converter Board Assembly Component	0,0
6-1.	Major Mechanical Parts (Exploded View)	6-29	8-29.	A3 SMU Control and A-D Converter Board Assembly Schematic	8-80
			8-30.	Diagram	
			8-31. 8-32.	I-V Converter Output	8-85
			8-33.	Analog Switch	
			8-34.	Component Locations A4 D-A Converter Board Assembly	
			8-35.	A5 Board Troubleshooting Flow Diagram	

LIST OF ILLUSTRATIONS

Number	Title	Page	Number	Title	Page
8-36.	Self-Test Waveform		8-69.	Als Floating Power Supply Board	0 60
8-37. 8-38.	SMU Board Block Diagram SMU V Mode Operation	. 8-99	8-70.	Assembly Schematic Diagram . Al6 Board Troubleshooting Flow Diagram	8-69
8-39. 8-40. 8-41.	SMU I Mode Operation Current Compliance in V Mode V Engage Applifican	8-100	8-71. 8-72.	Vs Block Diagram	8-138
8-42. 8-43.	V Error Amplifier	8-101	8-73.	A16 Vs/Vm Board Assembly Component Locations	
8-44. 8-45.	Power Amplifier Output Stage Range Resistors	8-102	8-74.	Al6 Vs/Vm Board Assembly Schematic Diagram 8	
8-46. 8-47.	Range Resistor Circuit			3	
8-48.	Component Locations A5 SMU Board Assembly	8-106			
8-49.	Schematic Diagram				
8-50.	Assembly Component Locations A9 HP-IB and MSU Control Board				
8-51.	Assembly Schematic Diagram . Block Diagram of Key Control				
8-52. 8-53.	AlO Keyboard and Display Board Assembly Component Locations AlO Keyboard and Display Board	8-116			
8~54.	Assembly Component Locations All Board Troubleshooting	8-117			
8-55.	Flow Diagram				
8-56. 8-57.	Switching Circuit				
8-58.	All Switching Power Supply Board Assembly				
8-59.	Component Locations All Switching Power Supply Board Assembly	8-122			
8-60.	Schematic Diagram				
8-61.	Flow Diagram				
8-62.	Assembly Component Locations Al2 DC Power Supply Board Assembly Schematic Diagram.				
8-63.	Als Board Troubleshooting Folw Diagram	-			
8-64. 8-65.	Voltage Change Sequence Al3 SMU Power Source Board	8-129			
8-66.	Assembly Component Locations. Als SMU Power Source Board				
8-67.	Assembly Schematic Diagram . Als Board Troubleshooting Flow Diagram				
8-68.	Als Floating Power Supply Board Assembly Component Locations				

	i '	
		1

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This operation and service manual contains the information required to install, operate, test, adjust, and service the Hewlett-Packard Model 4145A Semiconductor Parameter Analyzer. Figure 1-1 shows the instrument and supplied accessories. This section covers specifications, instrument identification, description, options, accessories, and other basic information.

1-3. Listed on the title page of this manual is a microfiche part number that can be used to order 4 x 6 inch microfilm transparencies of the manual. Each microfiche contains up to 60 photo-duplicates of the manual pages. The microfiche package also includes the latest manual changes supplement as well as all pertinent service notes. To order an additional manual, use the part number listed on the title page of this manual.

Figure 1-1. Model 4145A and Accessories.

1-4. DESCRIPTION

1-5. The Hewlett-Packard Model 4145A Semiconductor Parameter Analyzer is a fully automatic, high performance, programmable test instrument designed to measure, analyze, and graphically display the DC characteristics of a wide range of semiconductor devices, such as bipolar transistors. field-effect transistors, wafers, ICs, etc. Main applications include computer-aided design (CAD) of ICs, new device evaluation, materials evaluation. component selection for circuit design, incoming/outgoing inspection, semiconductor process control, quality control, and quality assurance. Ιt is equipped with stimulus/measurement programmable units (SMU), two programmable voltage source units (Vs), two voltage monitor units (Vm), a fully interactive graphics display, removable flexible-disc storage, softkeys, full arithmetic keyboard, and HP-IB. And it can be used on the bench or as part of a complete measurement system in the laboratory or on the production line.

1-6. For device stimulation and characteristics measurement, the 4145A has eight channels. Channels 1 through 4 are stimulus/measurement units (SMU); channels 5 and 6 are voltage source units (Vs); and channels 7 and 8 are voltage monitor units (Vm).

Each SMU channel has three modes of operation: voltage source/current monitor (V), current source/voltage monitor (I), and common (COM). Source voltage and source current can be held constant or swept linearly or logarithmically. When used as a voltage source/current monitor (V mode), each SMU can be programmed to output DC voltages from 0V to ±100V over three ranges--0V to ±19.999V, ±20V to ±39.998V, and ±40V to ±100V—with a resolution of lmV, 2mV, and 5mV, respectively. When used as a current source/voltage monitor (I mode), each SMU can be programmed to output currents from ±1pA to ±100mA over nine ranges, with a resolution of lpA max. (current measurement resolution is 50fA max.), depending on the current range. Current through the sample in V mode and voltage across the sample in I mode can be limited to prevent damage to the sample.

The two Vs channels are programmable voltage sources. Output voltage can be held constant or linearly or logarithmically swept from 0V to ±20V with lmV resolution. The voltage sources are used when many bias and voltage sources are required.

Of the six source channels (four SMUs, two Vs), any combination of three can be automatically swept in a linear or logarithmic staircase manner within the range of each channel. Hold times from 0 to 650 seconds and delay times from 0 to seconds can be programmed. In a multi-channel sweep one setup, channel functions as the main sweep channel. One of the other channels can be swept synchronously with the main channel, while one other channel can be swept subordinately to the main channel. SMUs not swept can be used as constant current or constant voltage sources.

The two Vm channels are used to measure voltages up to ± 20 V.

1-7.Measurement results, measurement setups, operator prompts, error messages, and diagnostics are displayed on a fully interactive, microprocessor based graphics display. Measurement results can be displayed in one of four modes: graphic, list, matrix, and schmoo. Front Panel softkeys provide a wide range of automatic display control functions, such as AUTO SCALE, STORE, RECALL, CURSOR, MARKER, vertical and horizontal ZOOM, LINE (two), GRAD, 1/GRAD, X intercept, Y intercept, and INTERPOLATE. Softkeys are used in all phases of instrument operation-from measurement setup to measurement analysis—and make overall instrument operation quick and easy.

By pressing the PLOT key or PRINT key, the presently displayed screen, whether a measurement result or measurement setup, can be dumped directly onto an HP-IB compatible printer/plotter, providing clear, inexpensive hard copies. The plot area is user selectable within the limits of the printer/plotter, and if a multi-pen plotter is used, multi-color plots can be made automatically. All PLOT and PRINT operations are done automatically, without a controller. Also, the 4145A's display is equipped with X-Y-Z outputs to allow connection of a large-screen graphics display.

The 4145A is fluent in HP-GL (Hewlett- Packard Graphics Language), permitting external control of its display via the HP-IB.

Cursor and marker positioning is user controllable via the front panel, and X-Y1-Y2 coordinates are digitally displayed on the CRT.

The 4145A is equipped with a flexible-disc drive unit that accommodates a single-sided, single-density, 13.3cm (5.25 in.), 92K byte disc. One cleaning disc and five work-discs--each containing the necessary operating system software, four general purpose measurement programs, and 36.6K bytes of user area-are with the 4145A. Up to measurement setup programs or 11 sets of measurement data, plus auto sequence programs, can be stored (SAVE) in the user area and recalled (GET) later. Additional discs can be purchased to increase storage capability, and the entire user area of each disc can be quickly copied.

1-9. All instrument functions are handled by a high speed microprocessor, under the control of the operating system software stored on each furnished flexible disc. Measurement setup, display mode selection, graphic scaling, diagnostics, operation guide, menu, and catalog are arranged as individual display pages. Paging is controlled by the MENU, PREV, and NEXT keys. Instructions, softkey labels, and error messages and codes are displayed on each page. Also, the 4145A is remotely controllable via the HP-IB and the 4145A's display can be used as an independent display via the HP-IB.

1-10. Furnished with the 4145A is the 16058A, a specially designed shielded test fixture which connects to the 4145A's rear panel. Eight different interchangeable DUT boards are provided, allowing measurement of diodes; 3-terminal and 4-terminal transistors; 8-pin, 10-pin, and 12-pin devices; and 18-pin and 24-pin The 16058A is equipped with a DIP ICs. light-shielded lid to allow stable measurement of light-sensitive devices, such as photo diodes, photo transistors, and photo resistors. Also, to operator safety when potentially dangerous voltages are applied to a sample, a warning will be displayed on the 4145A if the test fixture lid is open and measurement will not made until the lid is closed. user-fabricated test fixtures and jigs, a special connector, four 3-meter triaxial cables, and four 3-meter coaxial cables are also furnished.

1-11. SPECIFICATIONS

1-12. Complete specifications of the Model 4145A Semiconductor Parameter Analyzer are given in Table 1-1. These specifications are the performance standards or limits against which the instrument is tested. The test procedures for the specifications are covered in Section IV, Performance Tests. Table 1-2 lists Reference Data. Reference Data are not specifications but are typical characteristics included as additional information for the operator. When the 4145A Semiconductor Parameter Analyzer is shipped from the factory, it meets the specifications listed in Table 1-1.

1-13. SAFETY CONSIDERATIONS

1-14. The Model 4145A Semiconductor Parameter Analyzer has been designed to conform to the safety requirements of an IEC (International Electromechanical Committee) Safety Class I instrument and is shipped from the factory in a safe condition.

1-15. This operation and service manual contains information, cautions, and warnings which must be followed by the user to ensure safe operation and to maintain the instrument in a safe condition.

1-16. INSTRUMENTS COVERED BY MANUAL

1-17. Hewlett-Packard uses a two-section nine character serial number which is stamped on the serial number plate (Figure 1-2) attached to the instrument's rear-panel. The first four digits and the letter are the serial prefix and the last five digits are the suffix. The letter placed between the two sections identifies the country where the instrument was manufactured. The prefix is the same for all identical instruments; it changes only when a change is made to the instrument. The suffix, however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the serial number prefix(es) listed under SERIAL NUMBERS on the title page.

Figure 1-2. Serial Number Plate.

- 1-18. An instrument manufactured after the printing of this manual may have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates the instrument is different from those described in this manual. The manual for this new instrument may be accompanied by a yellow Manual Changes supplement or have a different manual part number. This supplement contains "change information" that explains how to adapt the manual to the newer instrument.
- 1-19. In addition to change information, the supplement may contain information correcting errors (called Errata) in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with the manual print date and part number, both of which appear on the manual's title page. Complimentary copies of the supplement are available from Hewlett-Packard. If the serial prefix or number of an instrument is lower than that on the title page of this manual, see Section VII, Manual Changes.
- 1-20. For information concerning a serial number prefix that is not listed on the title page or in the Manual Change supplement, contact the nearest Hewlett-Packard office.

1-21. OPTIONS

1-22. Options are modifications to the standard instrument that implement the user's special requirements for minor functional changes. The 4145A has four options:

Option 907: Front Handle Kit.

> Furnishes Carrying handles for both ends of front-panel.

Option 908: Rack Frange Kit.

> Furnishes for flanges rack mounting for both ends of

front-panel.

Option 909: Rack Flange and Front Handle

Kit. Furnishes both front handles and rack flanges for instrument.

Option 910: An extra copy of the Operation

and Service Manual.

Installation procedures for these options are given in Section II.

1-23. ACCESSORIES SUPPLIED

1-24. The Model 4145A Semiconductor Parameter Analyzer, along with its furnished accessories, is shown in Figure 1-1. Additionally, a spare fuse (HP Part 2110-0015 or 2110-0305) and an Operation and Service Manual (HP Part No. 04145-90000) are furnished with the 4145A.

1-25. ACCESSORIES AVAILABLE

1-26. The Model 16261A Software Disc Set. containing five software discs, is available when extra discs are required.

1-27. Warranty Limitation for Accessories

1-28. The Personality Board (P/N: 16058-60003) and eight Boards (P/N: 16058-60004 through 16058-60011) furnished with the 16058A Test Fixture are warranted against defects in material and workmanship for a period of three months from the date of During delivery. the warranty period, Hewlett-Packard Company will, at its option, either repair or replace components which prove to be defective. This warranty does not apply to defects resulting from improper inadequate maintenance.

* Specifications listed below are for the 4145A only. For 16058A specifications, refer to the 16058A Operation Note.

GENERAL INFORMATION

Basic Functions: Measures the DC current through voltage-biased devices and the DC voltage across current-biased devices; Arithmetic calculation; Displays measurement results and calculation results on a built-in CRT display; graphics analysis capabilities; storage and recall of measurement setups, measurement data, and auto-sequence programs.

Source and Measurement Units:

- Stimulus/Measurement Units (SMU): Four SMU channels. Each SMU can be programmed to function as a variable or constant DC voltage source/current monitor or as a variable or constant DC current source/voltage monitor.
- Voltage Sources (Vs): Two Vs channels. Each Vs can be programmed to function as a variable or constant DC voltage source.
- Voltage Monitors (Vm): Two Vm channels. Each Vm can measure DC voltages up to ± 20 V.

SOURCE/MEASUREMENT FUNCTIONS

Measurement and output accuracies are specified at $23\,^{\circ}\pm5\,^{\circ}\mathrm{C}$ after the instrument has been allowed to warm up for at least 40 minutes, with AUTO CAL set to ON, INTEG TIME set to SHORT and referenced to SMU common. Specified accuracy doubles for operation between 10 $^{\circ}\mathrm{C}$ and 40 $^{\circ}\mathrm{C}$.

Stimulus/Measurements Units (SMU): Four SMU channels. Each SMU measures current when operating as a voltage source, or measures voltage when operating as a current source. Source and measurement ranges, resolution, and accuracy specifications are given in the tables below.

Accuracy specifications in the below tables are given as $\pm n\%$ of specified output or measured value, $\pm n\%$ of range value. Io is output current (I), Vo is output voltage (V).

Voltage Range	Resolution	Accuracy	Max. Current
±20V	1mV		100mA
±40V	2mV	0.1%+0.05%+0.4Ω*Ιο	50mA
±100V	5mV		20mA

Table 1-1. Specifications (Sheet 2 of 8)

Current Range	Resolution	Accuracy	Max. Voltage
			20V (>50mA)
±100mA	100μΑ		40V (>20mA)
AND			
±10mA	10μΑ	0.3%+(0.1+0.2*Vo/100)%	
±1000μA	1µА		
±100μA	100nA		
±10μA	10nA		100V (≦20mA)
±1000nA	lnA	0.5%, (0.1,0.2,1/-/100)%	
±100nA	100pA	0.5%+(0.1+0.2*Vo/100)%	
±10nA	10pA	10. (0.1.0.2.1/ /100) 7. 7.	
±1000pA	1pA	1%+(0.1+0.2*Vo/100)%+5pA	

Setting Resolution:

Voltage, 4.1/2 digits (1mV max.);

Current, 4 digits (lpA max.).

Measurement Resolution:

Voltage, 4.1/2 digits (1mV max.); Current, 4 digits (50fA max.).

Ranging: Au

Automatic.

Current/Voltage Limiting (Compliance):

Current output from an SMU operating as a voltage source and voltage output from an SMU operating as a current source can be limited.

Compliance Range:

Current, 50pA to maximum allowable output current of each voltage range; Voltage, 0V to maximum allowable output voltage of each current range.

Accuracy: Current compliance, accuracy of current source+1% of range +10pA; Voltage compliance, accuracy of voltage source.

Residual Resistance (Voltage Source/Current Measurement Mode): 0.4Ω.

Input Resistance (Current Source/Voltage Measurement Mode): $\ge 10^{12} \Omega$.

Capacitive Load: ≤1000pF.

Table 1-1. Specifications (Sheet 3 of 8)

Voltage Sources (Vs): Two Vs channels. Each Vs can be programmed to function as a variable or constant DC voltage source. Output ranges, resolution, and accuracy specifications are given in the table below.

ſ	Output Voltage Range	Resolution	Accuracy	Max. Output Current
Ì	±20V	1mV	0.5% of setting +10mV	10mA

Output Impedance: Less than 0.2Ω

Capacitive Load: ≤ 1000pF

Voltage Monitors (Vm): Two Vm channels. Output ranges, resolution, and accuracy specifications are given in the table below.

Measurement Voltage Range	Resolution	Accuracy
±2V	100µV	0.5% of reading + 10mV
±20V	1mV	0.2% of reading + 10mV

Input Impedance: $1M\Omega\pm1\%$

Capacitance in Parallel with Output: 150pF±10%

Table 1-1. Specifications (Sheet 4 of 8)

SPECIFICATIONS COMMON TO ALL CHANNELS

Maximum Withstand Voltage: 100V (SMU, guard terminal, Vs, and Vm)

Maximum Voltage Between Common and GND: Less than ±42V.

Source Modes (SMUs Only): V (

V (voltage source/current monitor),

I (current source/voltage monitor), and COM*.

Source Functions (SMUs Only):

VAR1, staircase sweep:

VARI', synchronous (VARI) staircase sweep; VAR2, subordinate (VARI) staircase sweep; CONST, constant source (voltage or current).

*: In COM mode, output voltage is 0V and compliance is 105mA.

Voltage/Current Sweep: Output from each SMU (voltage or current) and each Vs (voltage) can be swept by assigning source function VAR1, VAR1, or VAR2.

Max. Number of Steps: 512 in single-sweep measurements, up to 575 in multi-sweep measurements.

VAR1: Main sweep. Linear or logarithmic sweep is selectable.

<u>Linear Sweep</u>: Staircase sweep in accordance with the user specified START, STOP, and STEP values.

Log Sweep: Staircase sweep in accordance with the user specified START and STOP values and selected LOG step (10, 25, or 50 points per decade).

VAR2: Subordinate linear staircase sweep in accordance with the user specified START, STEP, an NO. OF STEPS values. VAR2 source channel output is incremented one STEP each time the VAR1 source channel completes one sweep.

VARI': Staircase sweep synchronized with the VARI sweep. Sweep is made with a user specified, fixed ratio or offset value. VARI' output is calculated as:

VAR1' = a x VAR1 (fixed ratio) VAR1' = b + VAR1 (fixed offset)

where "a" is the user-specified ratio (from ± 0.01 to ± 10) and "b" is the user-specified offset value. Ratio and offset must be such that the VAR1' source channel does not exceed its maximum output limit.

HOLD TIME: 0 to 650 seconds, 10ms resolution (max.). Accuracy is ±0.5%+9ms.

DELAY TIME: 0 to 6.5 seconds, lms resolution. Accuracy is $\pm 0.1\% + 5xN$ for GRAPHICS and SCHMOO plots and $\pm 0.1\% + 10xN$ for LIST and MATRIX displays. Where N is the number of measurement channels used in the measurement.

Output Sequence: The order in which the source channels begin output is fully programmable.

Measurement Modes: SINGLE, REPEAT, APPEND

Integration Time (at each measurement point): SHORT, 3.6ms; MED, 20ms at 50Hz line frequency, 16.7ms at 60Hz line frequency; LONG, 16 times MED.

DISPLAY FUNCTIONS

Display: CRT. Electrostatic focus and deflection, post accelerated. Aluminized P-31 phosphor.

Screen Size: 16cm (6.25in) diagonal. Screen Resolution: 2048 x 2048 points.

- Display Characters and Symbols: Upper-case alphabetic characters, numerics, comma, (,), 0, Ω , ° (deg), ", %, #, q, k, e, m, μ , n, p, +, -, *, /, $\sqrt{}$, Δ . All are entered from the front panel.
- Display Modes: GRAPHICS, LIST, MATRIX, SCHMOO, and TIME DOMAIN.
 - GRAPHICS Display: Two-axes (X-Y) or three-axes $(Y-Y_1-Y_2)$ plot of measured parameters and USER FUNCTION calculations.
 - LIST Display: Used in conjunction with VAR1 sweep. Up to six measurement parameters and USER FUNCTION results can be displayed for each step of the VAR1 source channel.
 - MATRIX Display: Used in conjunction with VAR1 and VAR2 sweeps. Up to six columns of sweep-dependent measurement results or USER FUNCTION results can be displayed.
 - SCHMOO Display: Used in conjunction with VAR1 and VAR2 sweeps. Sweep-dependent measurement results or calculation results are displayed on an X-Y-Z graph.
 - TIME DOMAIN Display: Measurement and calculation results are displayed on a two-axes (X-Y) or three-axes $(X-Y_1-Y_2)$ graph as a function of time. VAR1 sweep is replaced by time.

Parameters: Initial Wait Time, 0 to 100 seconds (10ms resolution); Measurement Interval, 10ms to 10 seconds (10ms resolution); Number of Readings, 512.

ARITHMETIC AND ANALYSIS FUNCTIONS

- Arithmetic Functions: Arithmetic expressions can be entered and executed directly from the front panel. Results are displayed on the CRT.
 - Arithmetic Operators: +, -, *, /, $\sqrt{\ }$, EXP (Napierian constant), LOG (common log), LN (natural log), ** (exponentiation), ABS (absolute), EEX (scientific notation), and Δ (differential calculation).
 - Keyboard Operation: Arithmetic expressions are executed by pressing the EXECUTE key. Results are displayed on the CRT.
 - USER FUNCTION: Up to two USER FUNCTION can be defined as arithmetic expressions. USER FUNCTIONS are executed during measurement and the results are displayed with measurement results.
 - Physical Constants: Three commonly used physical constants are permanently stored in memory. The stored value of each constant has seven-digit accuracy but only the five most significant digits are displayed.
 - q: Electron Charge, 1.602189x10⁻¹⁹ C
 - k: Boltzmann's Constant, $1.380662x10^{-23}$ J/°K
 - e: Dielectric Constant of vacuum, 8.854185x10⁻¹²F/m.

Engineering Units: m (10^{-3}), μ (10^{-6}), n (10^{-9}), p (10^{-12})

Analysis Functions:

- Overlay Graph Comparison: A GRAPHIC plot can be stored and later recalled to obtain an overlay comparison of two measurements. A SCHMOO plot can also be stored, but when the RECALL key is pressed, only the stored plot is displayed. Pressing RECALL a second time redisplays the previous plot. Only one set of data can be stored and scaling information is not included.
- Auto Retrieve Function: Measurement data obtained in any display mode is automatically redisplayed whenever the display mode is changed. However, when the value of a measurement setup parameter is changed, all measurement data is cleared.
- MARKER: On a GRAPHICS plot, the MARKER can be moved along a plotted curve or line. The X, Y_1 , and Y_2 coordinates at the MARKER location are digitally displayed on the CRT.
- INTERPOLATE: Allows positioning of the MARKER between two measurement points. The X, Y_1 , and Y_2 coordinates at the MARKER location are estimated and digitally displayed on the CRT.
- CURSOR: On a GRAPHICS plot, the CURSOR is two intersecting and perpendicular lines which can be positioned at any point on the graph. There are two GRAPHICS cursors: LONG and SHORT. The X, Y_1 , and Y_2 coordinates at the CURSOR location are digitally displayed on the CRT.

On a SCHMOO plot the CURSOR highlights the symbol at a measurement point and only the Z-axis value is digitally displayed on the CRT.

On LIST and MATRIX displays the CURSOR is a moveable pointer (►).

- AUTO SCALE: GRAPHIC plots can be automatically rescaled after meassurement, providing optimum display of measurement results.
- ZOOM Function $(\leftrightarrow, \leftrightarrow, \uparrow, \uparrow, \uparrow)$: Used in conjunction with the CURSOR on GRAPHIC plots. Expands $(\leftrightarrow, \uparrow)$ or contracts $(\leftrightarrow, \uparrow)$ the graph in the indicated direction and in reference to the CURSOR location.
- MOVE WINDOW: Repositions the LONG or SHORT CURSOR to the exact center of the plot area and moves displayed plots in reference to the CURSOR.
- LINE: Draws a straight line between two moveable cursors. X and Y axes intercepts are digitally displayed, as are the line gradient (GRAD) and gradient reciprocal (1/GRAD) values.

MASUREMENT/DISPLAY SETUP AND STORAGE FUNCTIONS

- Measurement/Display Setup: Interactive fill-in-the-blank programming of channel definitions, source outputs, and measurement/display modes.
- Measurement Setup Storage: The existing measurement setup can be stored in the user-area on the flexible disc and recalled later by using the SAVE and GET keys, respectively.
- Measurement Data Storage: The existing measurement results can be stored in the user-area on the flexible disc and recalled later by using the SAVE and GET key, respectively.
- Auto-Sequence Program: A series of different measurements can be programmed for automatic execution. The maximum number of program steps is 24, and useable commands are GET, SINGLE, SAVE D, PLOT, PRINT, PAUSE, WAIT, and PAGE.
- Storage Medium: 5.25 in. single-sided, single-density, soft-sectored mini flexible disc.

User-Area: 92K bytes.

Number of User Records: 131

Record Allocation:

Measurement setup (file type P), 3 records; Measurement data (file type D), 12 records; Auto-sequence program (file type S), 1 record.

Table 1-1. Specifications (Sheet 8 of 8)

GENERAL SPECIFICATIONS

Data Input/Output:

External CRT Analog Output: From 0 to +1 Vdc, X and Y outputs (in series with approx. 330 Ω) Z output (in series with approx. 240 Ω), via rear panel BNC connectors. Frequency Bandwidth, DC - 2MHz.

External Plotter/Printer Output: Measurement data and all data appearing on the CRT may be output via the HP-IB to an HP plotter/printer operated in the LISTEN ONLY Mode. Output is initiated using the PLOT or PRINT key.

HP-GL Control: The CRT of the 4145A may be program controlled in the Graphics Display Mode via an HP-IB compatible Controller.

HP-IB and Remote-Control Functions: The 4145A may be interfaced to any HP controller or other instrument having HP-IB interface capability. (HP-IB is Hewlett-Packard's implementation of IEEE-488 and ANSI-MC.1.1 standards.)

Self-Test Function: At power ON, the 4145A automatically verifies its own operational status. HP-IB and DIAGNOSTICS page allow Self-Test to be performed at any time.

Operating Temperature Range: 10 °C to +40 °C; ≤70% RH (40 °C)

Permissible Temperature Change:≤1 ° C/5 min.; Maximum Wet-bulb temperature: 29 ° C

Power Requirements: 100/120/220V±10%: 240V -10% + 5%;

48 - 66Hz; Max. 270VA

Dimensions: 426W x 235H x 612D (mm) (approx.)

Weight: Approx. 27kg

Approx. 33kg (incuding accessories)

Table 1-2. Reference Data (Sheet 1 of 3)

REFERENCE DATA

(The following information is reference data only. It is not guaranteed specifications, nor does it include Test Fixture specifications.)

Measurement Time : (Response time + ranging time + integration time)/l point measurement

Response Time: The following calculation is applicable where current range does not change (settling and set-up time + SMU wait time).

Current Range	Settling and Set-Up Time	SMU Wait Time
100nA - 100mA	0. 7	0.2ms
lnA - 10nA	2.7ms	47.5ms

Ranging Time: 4ms - 74ms (depending on range)

Measurement Time: (Ranging time must be added.)

Settling and	Delay	SMU	Ranging	Integration
Set-Up Time	Time	Wait Time	Time	Time
←—— 2.7ms ——>	<pre>Setting</pre>	0.2ms ← or → 47.5ms	4ms	3.6ms - } 320ms

Example: Minimum measurement time = 2.7ms + 0.2ms + 3.6ms = 6.5ms. In the Graphics Display Mode, write time (≥5.6ms) must be added.

Table 1-2. Reference Data (Sheet 2 of 3)

STIMULUS/MEASUREMENT UNIT (SMU)

Offset Current when operated as a Voltmeter: 6pA + 2pA x Vo/100

Offset Voltage when operated as a Current Meter: $10\text{mV} + 0.4\Omega \times 10$

Noise Characteristics: (all values typical)

Voltage Source Noise: 0.01% of range (RMS)

Current Source Noise: 0.1% of range+3pA+0.0lpAxCg (RMS)

(Cg: Guard capacitance in pF)

Voltage Monitor: 0.02% of range (peak-to-peak)

Current Monitor: 0.3% of range + 10pA

(peak-to-peak)

Output Overshoot: (all values typical)

Voltage Source Overshoot: 5mV

Current Source Overshoot: 1% or less

Current Range Switching Transient Noise: (All values typical)

Range Increment: 0.01% of voltage range +10mV

Range Decrement: When switching into 10nA or lnA range, 10mV + 100/(10 +

Cx)mV where Cx = load capacitance (pF); when switching into

all other ranges, 10mV.

Guard Capacitance: ≤ 700pF

Guard Potential Offset: 1mV (typical)

Guard Current Induced Potential Error: 100ΩxIg (Ig = guard current)

Voltage Sources (Vs)

Output Noise: 6 mVrms (typical)

Voltage Monitors (Vm)

Noise Level:

0.3mVp-p at 2V-range (when Integration time is set to MED or

LONG), 3mVp-p at 20V range.

REFERENCE DATA COMMON TO ALL UNITS

Noise Rejection: (Integration time set to MED or LONG.)

Normal Mode Rejection: ≥ 60dB (typical)

Common Mode Rejection: (all values typical)
Current Source/Measurement: ≤ 1pA/1V

Table 1-2. Reference Data (Sheet 3 of 3)

ACCESSORIES FURNISHED WITH 4145A

16058A Test Fixture (includes the following subcomponents)

16058-60003	Personality Board
16058-60004	Teflon Blank Board
16058-60005	Socket Board (Transistor)
16058-60006	Socket Board (24-pin DIP)
16058-60007	Socket Board (18-pin DIP)
16058-60008	Socket Board (Diode)
16058-60009	Socket Board (8-pin package)
16058-60010	Socket Board (10-pin package)
16058-60011	Socket Board (12-pin package)
16058-61600	Connection Cable (large-to-small), 12 ea.
16058-61601	Connection Cable (small-to-small), 8 ea.
16058-61602	Miniature Clip Lead, 8 ea.
16058-61603	Triaxial Cable (1.5m), 4 ea.
16058-61604	Fixture System Cable
16058-60100	Accessory Case

04145-60001 Connector Plate

04145-61622 Triaxial Cable (3m), 4 ea.

04145-61630 BNC Cable (3m), 4 ea.

04145-61623 Shorting Connector

04145-61100 Software Discs (5 per box)

(including P/N 9164-0168 Head Cleaning Disc)

OPTIONS

Option 907: Front Handle Kit (HP P/N 5061-0091)
Option 908: Rack Flange Kit (HP P/N 5061-0079)
Option 909: Rack and Handle Kit (HP P/N 5061-0085)
Option 910: Extra Manual (HP P/N 04145-90000)

Table 1-3. Accessories Supplied (Sheet 1 of 5)

Table 1-3. Accessories Supplied (Sheet 1 of 5)				
	Configuration	Description		
		Shielded Test Fixture for measurement of discrete components. Equipped with safety lid. Following subcomponents are furnished with the 16058A. 16058-60003 Personality Board 16058-61603 Triaxial Cables, 1.5m, 4 ea. 16058-61604 System Cable		
* Socket Board/Connection Cable Set* (Contents are shown below.) * Socket Board/Connection Cable Set (included in the 16058A)				
_	3 10			
No.	Dimension of Socket (Unit in mm)	HP P/N and Description		
1)		Blank teflon board for measurement of high resistance devices.		
2	0.6 Ø	Socket Board with two sockets. For measurement of four-pin devices, such as transistors.		

Table 1-3. Accessories Supplied (Sheet 2 of 5)

Table 1-3. Accessories Supplied (Sheet 2 of 5)					
No.	Dimension of Socket (Unit in mm)	HP P/N and Description			
3	2.54	16058-60006: Socket Board for 24 pin DIP ICs.			
4	2.54 []]]]	16058-60007: Socket Board for 18 pin DIP ICs.			
5	20 H 30 H	16058-60008: Socket Board with two pairs of sockets for measurement of axial lead devices such as diodes.			
6	5.08 \$	16058-60009: Socket Board with an 8-pin socket.			
1	5.84 Ø	16058-60010 : Socket Board with a 10-pin socket.			
8	5.84%	16058-60011: Socket Board with a 12-pin socket.			

Table 1-3. Accessories Supplied (Sheet 3 of 5)

Table 1-3. Accessories Supplied (Sheet 3 of 5)				
No.	Dimension of Socket (Unit in mm)	HP P/N and Description		
9	Cable length: Approx. 115	16058-61600: Connection Cable (large-to-Small) used for interconnecting the Personality Board to the Socket Board. Twelve cables are furnished.		
(10)	Cable length: Approx. 115	16058-61601: Connection Cable (small-to-small) used for interconnecting the Connection Switch to the Socket Board. Eight cables are furnished.		
11)	Cable length: Approx. 115	16058-61602: Miniature Clip Lead used for direct connection to DUT. Eight leads are furnished.		
(12)		16058-60100: Carrying-case for all 16058A accessories.		
	Configuration	Description		
		Connector Plate (04145-60001): Connector Plate for measurements made without the 16058A. For example, direct connection for a wafer probe. Dimensions are given below.		

Table 1-3. Accessories Supplied (Sheet 4 of 5)

Table 1 0. Accessories bappined (blicet 4 of 0)				
Configuration	Description			
	Three-meter triaxial (m) Cable (04145-61622): Triaxial (m) cable for connection between the 4145A's SMU terminals and the Connector Plate. Cable length is 3m. Four cables are furnished. Refer to Figure 3-35 for the usage.			
	Three-meter BNC (m) Cable (04145-61630): BNC (m) cable for connection between the 4145A's Vs or Vm terminals and the Connector Plate. Cable length is 3m. Four cables are furnished. Refer to Figure 3-35 for the usage.			
	Shorting Connector (04145-61623): Allows SMU output voltage to exceed ±42V when the 16058A Test Fixture is not used. With the Shorting Connector connected to the System Cable connector on the rear panel, the instrument's fixture-lid-open detector is disabled, and the instrument assumes a fixture-lid-closed condition. WARNING A POTENTIAL SHOCK HAZARD EXISTS WHEN THE SHORTING CONNECTOR IS CONNECTED TO THE 4145A. DO NOT TOUCH THE OUTPUT TERMINAL OR INNER CONDUCTOR OF SMU DURING MEASUREMENT.			

Table 1-3. Accessories Supplied (Sheet 5 of 5)

Configuration

Description

Software Discs (04145-61100):

Disc set includes 5 Software Discs, Cleaning Disc (P/N: 9164-0168), labels, and write-protect tabs. If extra discs are required, order the 16261A. Software Disc Set. It contains 5 software Discs.

Note

Software discs cannot be purchased individually.

SECTION II INSTALLATION

2-1. INTRODUCTION

2-2. This section provides installation instructions for the Model 4145A Semiconductor Parameter Analyzer. This section also includes information on initial inspection and damage claims, preparation for using the 4145A, and packaging, storage, and shipment.

2-3. INITIAL INSPECTION

The 4145A Semiconductor Parameter Analyzer, as shipped from the factory, meets all the specifications listed in Table 1-1. Upon receipt, inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. contents of the shipment should be as shown in Figure 1-1. The procedures for checking the general electrical operation are given in Section 3-10 SELF (Paragraph TEST) and procedures for checking the 4145A Semicon-Parameter Analyzer against specifications are given in Section IV. First, do the self test. If the 4145A is electrically questionable, then do the Performance Tests to determine whether the 4145A has failed or not.

If the contents are incomplete, if there is mechanical damage or defects (scratches, dents, broken switches, etc.), or if the performance does not meet the self test or performance tests, notify the nearest Hewlett-Packard office (see list at back of this manual). The HP office will arrange for repair or replacement without waiting for claim settlement.

2-5. PREPARATION FOR USE

2-6. POWER REQUIREMENTS

2-7. The 4145A requires a power source of 100, 120, 220 Volts ac +10%, or 240 Volts ac +5%-10%, 48 to 66Hz single phase; power consumption is 270VA maximum.

WARNING

IF THE INSTRUMENT IS TO BE ENERGIZED VIA AN EXTERNAL AUTOTRANSFORMER UNIT FOR VOLTAGE REDUCTION, BE SURE THAT THE COMMON TERMINAL IS CONNECTED TO THE NEUTRAL POLE OF THE POWER SUPPLY.

2-8. Line Voltage and Fuse Selection

CAUTION

BEFORE TURNING THE 4145A LINE SWITCH TO ON, VERIFY THAT THE INSTRUMENT IS SET TO THE VOLTAGE OF THE POWER TO BE SUPPLIED.

2-9. Figure 2-1 provides instructions for line voltage and fuse selection. The line voltage selection switch and the proper fuse are factory installed for 100 or 120 volts ac operation.

CAUTION

USE PROPER FUSE FOR LINE VOLTAGE SELECTED.

CAUTION

MAKE SURE THAT ONLY FUSES THE REQUIRED FOR RATED CURRENT AND OF THE SPECIFIED USED FOR RE-TYPE ARE USE PLACEMENT. THE OF MENDED THE **FUSES** AND SHORT-CIRCUITING OF FUSE-HOLDERS MUST BE AVOIDED.

2-10. LINE FREQUENCY FILTER

2-11. To reject the effects of line-frequency noise, set the FILTER switch on the rear panel to the frequency of the ac power source.

2-12. POWER CABLE

2-13. To protect operating personnel, the National Electrical Manufacturer's Association (NEMA) recommends that the instrument panel and cabinet be grounded. The Model 4145A is equipped with a three-conductor power cable which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable is the ground wire.

2-14. To preserve the protection feature when operating the instrument from a two contact outlet, use a three prong to two prong adapter (HP Part No. 1251-0048) and connect the green pigtail on the adapter to power line ground.

CAUTION

THE MAINS PLUG MUST ONLY BE INSERTED IN A SOCKET OUTLET PROVIDED WITH A PROTECTIVE EARTH CONTACT. THE PROTECTIVE ACTION MUST NOT BE NEGATED BY THE USE OF AN EXTENSION CORD (POWER CABLE) WITHOUT PROTECTIVE CONDUCTOR (GROUNDING).

2-15. Figure 2-2 shows the available power cords, which may be used in various countries including the standard power cord furnished with the instrument. HP Part number, applicable standards for power plug, power cord color, electrical characteristics and countries using each power cord are listed in the figure. If

assistance is needed for selecting the correct power cable, contact the nearest Hewlett-Packard office.

2-16. OPERATING ENVIRONMENT

2-17. Temperature. The instrument may be operated in temperatures from +10°C to +40°C.

2-18. Humidity. The instrument may be operated in environments with relative humidities to 70% at 40°C. However, the instrument should be protected from temperature extremes which cause condensation within the instrument.

2-19. INSTALLATION INSTRUCTIONS

2-20. The HP Model 4145A can be operated on the bench or in a rack mount. The 4145A is ready for bench operation as shipped from the factory. For bench operation a two-leg instrument stand is used. For use, the instrument stands are designed to be pulled towards the front of instrument.

2-21. Installation of Options 907, 908 and 909.

2-22. The 4145A can be installed in a rack and be operated as a component of a measurement system. Rack mounting information for the 4145A is presented in Figure 2-3.

Figure 2-1. Voltage and Fuse Selection.

Figure 2-2. Power Cables Supplied.

2-23. STORAGE AND SHIPMENT

2-24. ENVIRONMENT

2-25. The instrument may be stored or shipped in environments within the following limits:

Storage:

Humidity 8% to 80% (RH)

Shipment:

Temperature \cdots -40 °C to +62 °C (-40 °C to +50 °C with discs)

Humidity 8% to 80% (RH)

The instrument should be protected from temperature extremes which cause condensation inside the instrument.

2-26. PACKAGING

2-27. Original Packaging. Containers and materials identical to those used in factory packaging are available from Hewlett-Packard. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by model number and full serial number.

- 2-28. Other Packaging. The following general instructions should be used for re-packing with commercially available materials:
 - a. Wrap instrument in heavy paper or plastic. If shipping to Hewlett-Packard office or service center, attach tag indicating type of service required, return address, model number, and full serial number.
 - b. Use strong shipping container. A double-wall carton made of 350 pound test material is adequate.
 - c. Use enough shock absorbing material (3 to 4 inch layer) around all sides of instrument to provide firm cushion and prevent movement inside container. Protect control panel with cardboard.

- d. Seal shipping container securely.
- e. Mark shipping container FRAGILE to ensure careful handling.
- f. In any correspondence, refer to instrument by model number and full serial number.

Option	Kit Part Number	Parts Included	Part Number	Q'ty	Remarks
907	Handle Kit 5061-0091	Front Handle Trim Strip X8-32 x 3/8 Screw	3 5060-9901 4 5020-8898 2510-0195	2 2 6	9.525mm
908	Rack Flange Kit 5061-0079	Rack Mount Flange X8-32 x 3/8 Screw	② 5020-8864 2510-0193	2 6	9.525mm
909	Rack Flange & Handle Kit 5061-0085	Front handle Rack Mount Flange X8-32 x 3/8 Screw	③ 5060-9901 ⑤ 5020-8876 2510-0194	2 2 6	15.875mm

- Remove adhesive-backed trim strips ① from side at right and left front of instrument.
- 2. HANDLE INSTALLATION: Attach front handle ③ to sides at right and left front of instrument with screws provided and attach trim ④ to handle.
- 3. RACK MOUNTING: Attach rack mount flange (2) to sides at right and left front of instrument with screws provided.
- 4. HANDLE AND RACK MOUNTING: Attach front handle ③ and rack mount flange ⑤ together to sides at right and left front of instrument with screws provided.
- 5. When rack mounting (3 and 4 above), remove all four feet (lift bar at inner side of foot, and slide foot toward the bar).

Figure 2-3. Rack Mount Kit.

SECTION III OPERATION

3-1. INTRODUCTION

3-2.This section provides all the information necessary to operate the Model Semiconductor Parameter Analyzer. Included are descriptions of the front and rear panels, graphics display, lamps, and connectors; discussions on operating procedures measuring techniques for typical applications; and instructions on the instruments self-test function and HP-IB capabilities. A breakdown of the contents of this section is given in Figure 3-1. Warnings and cautions are given throughout; they must be observed to insure operator safety and continued instrument serviceability.

WARNING

BEFORE THE INSTRUMENT IS ALLTURNED PROTECTIVE ON, TERMINALS, EARTH EXTENSION CORDS, AUTO-TRANSFORMERS AND CONNECTED DEVICES TO INSTRUMENT MUST BE CONNECTED

TO Α PROTECTIVE EARTH-GROUNDED SOCKET. ANY INTER-RUPTION OF THE PROTECTIVE EARTH GROUNDING WILL CAUSE A POTENTIAL SHOCK HAZARD THAT COULD RESULT IN **SERIOUS** PERSONAL INJURY.

ONLY FUSES OF THE REQUIRED RATED CURRENT AND OF THE SPECIFIED TYPE SHOULD BE USED. DO NOT USE REPAIRED FUSES OR SHORTED FUSEHOLDERS. TO DO SO CAN CAUSE A SHOCK OR FIRE HAZARD.

CAUTION

BEFORE THE INSTRUMENT IS TURNED ON, IT MUST BE SET TO THE VOLTAGE OF THE POWER SOURCE (MAINS), OR DAMAGE TO THE INSTRUMENT MAY RESULT.

Figure 3-1. Contents of Section III.

3-3. PANEL FEATURES

3-4. The front and rear panels of the 4145A are briefly described in Figures 3-2 and 3-3, respectively. Detailed information is given starting in paragraph 3-5.

(I) LINE ON/OFF:

Applies ac line power to the instrument when set to the ON (_____) position. Removes ac line power when set to the OFF (_____) position. SELF TEST is performed each time the instrument is turned on. After SELF TEST is performed, the start-up MENU is displayed.

(2) CRT DISPLAY:

Displays all measurement setups, measurement results, softkey labels, special user functions, operator messages, error codes and messages, and warnings. All displays can be dumped directly onto an HP-IB plotter, without a controller, by pressing the PLOT key 9. If an HP-IB controller, fluent in HP-GL (Hewlett-Packard Graphics Language), is connected, the CRT can be used as an independent graphics display. Refer to paragraph 3-103 and 3-107 for details.

3 SOFTKEYS:

These eight keys are used for measurement setup, parameter selection, and function selection. The function of each softkey is defined by the operating system software and changes depending on the page displayed. Softkeys labels are displayed on the CRT (2) in the form of a "softkey prompt" (SKP). Each time the SKP changes, the functions of the corresponding softkey changes. Pressing the EXTN (extended) displays additional softkey functions. A description for each softkey function is provided in the description of the page on which it appears.

(4) PAGE CONTROL Keys:

These three keys control paging on the CRT ②. Refer to paragraph 3-40 for a description of the PAGE concept.

MENU: When pressed, returns the display to the start-up menu. Can be used anytime except during measurement or auto-calibration or other functioning.

Figure 3-2. Front Panel Features (Sheet 1 of 6).

NEXT: Advances the display to the next page. Each time this key is pressed, the instrument checks the presently displayed page for any illegal settings, and if it detects any errors, it displays the corresponding error message and does not advance to the next page, or automatically changes the settings.

PREV: Returns the display to the previous page. Each time this key is pressed, the instrument checks the presently displayed page for any illegal settings.

(5) MEASUREMENT Keys:

These keys start and stop the measurement. After all measurement conditions have been set and the GRAPHICS PLOT page, LIST DISPLAY page, MATRIX DISPLAY page, or SCHMOO PLOT page is displayed, measurement is started by pressing SINGLE, REPEAT, or APPEND. Measurement can be stopped by pressing STOP. Measurement is a sequential operation consisting of voltage or current sweep, measurement, and storage of the measurement result.

SINGLE: When this key is pressed, results of the previous measurement are erased from memory, the new measurement is made, and the results are stored in memory.

REPEAT: When this key is pressed, measurement is repeatedly made until STOP is pressed. Results of the previous measurement are updated during each new measurement.

APPEND: Functions similarly to the SINGLE key except that results of the previous measurement are not erased from memory of the CRT. Results of a measurement made using this key are stored in the remaining unused portion of memory and are displayed over (overlay plot) the previous plot. Measurement can be made using this key until "Buffer full" is displayed.

STOP: Immediately stops the measurements.

6 AUTO SEQ Key:

These keys start and stop the ASP (Auto Sequence Program) listed on the SETUP AUTO SEQUENCE page. Refer to paragraph 3-61 for details on Auto Sequence Programs.

START/STOP: Starts the ASP from line 1.

If pressed during the ASP, the ASP stops immediately.

Once stopped, the ASP cannot be continued from the stop point.

CONT: If the ASP contains a PAUSE statement, this key continues the program from the line immediately following the PAUSE statement.

① INTEG TIME Keys:

These keys are used to select the digital integration time. When MED or LONG integration is selected, the integration time is an integral number of the line frequency period, eliminating line frequency noise. SHORT is the initial control setting. The integration time can be changed at any time, even during measurement.

SHORT: Measurement data is stored directly into memory without integration.

MED: Integration time is set to one line frequency period. Sixteen samples are taken at each measurement point.

LONG: Integration time is set to sixteen line frequency periods. A total of 256 samples are taken at each measurement point.

(8) HP-IB Status Indicators and LOCAL Key:

These four LED lamps—SRQ, LISTEN, TALK, and REMOTE—indicate the status of the 4145A when interfaced with a controller via the HP-IB, or connected directly to a printer/plotter. The LOCAL key, when pressed, releases the 4145A from remote (HP-IB) control and enables control from the front panel. The LOCAL key does not function when the instrument is set to local lockout by the controller or in the GL mode.

(9) PLOT and PRINT Keys

The PLOT key is used to dump whatever is displayed on the CRT directly onto an HP-IB without plotter (e.g., HP9872C), controller. Plot area can be set from the 4145A's front panel. Plotting starts when EXECUTE is pressed. Pressing PLOT a second time stops the plot immediately. to paragraph 3-117 for more information on the PLOT function. The PRINT key functions similarly to the PLOT key except that a printer is used instead of a plotter and only alphanumeric data is output. If the PRINT key is used to output the results of a graphic plot, for example, numeric value of each the measurement point is printed. Refer to paragraph 3-119 for more information on the PRINT function.

(10) BLUE Key and GREEN Key:

These keys are used to access additional key functions. Additional key functions are labeled in blue and green.

BLUE Key:

This key is used when entering comments, variables, and program names. Once this key is pressed (key indicator lamp on), it remains on until pressed again. When the CHANNEL DEFINITION page is displayed or when a SAVE/GET operation, COMMENT operation or PURGE operation is being performed, the BLUE key is automatically set to ON (key indicator lamp on).

GREEN Key: This key is used when entering physical constants and certain special symbols. It is valid for one key-in operation only; that is, it must be pressed each time a green-labeled key

function is desired.

(1) ENTER Key:

This key is used to enter parameter values, alphanumeric characters, special characters, and unit indicators displayed on the Keyboard Input Line (see Figure 3-5) into the internal display buffer. When this key is pressed, data displayed on the Keyboard Input Line is moved to the display field indicated by the field pointer (▶) and stored in the display buffer. Data stored in the display buffer by the ENTER key can be recalled (re-displayed on the Keyboard Input Line) by pressing the RECALL Key (19). Up to 60 characters can be entered into the buffer, but only 27 characters can be displayed at one time. To display the rest of the buffer contents, use the BACK key or FORWARD key.

(12) EXECUTE Key:

This key executes GET, SAVE, PRINT, PLOT, PURGE, and REPACK commands, and arithmetic expressions displayed on the Keyboard Input Line.

Note: The PURGE and REPACK commands are available only when the USER FILE CATALOG is displayed.

(3) CURSOR Control Keys:

These keys control the positioning of the field pointer (▶) and the long and short cursors. (They do not control the cursor on the Keyboard Input Line.)

Field Pointer Control:

Pressing the ☆, ▽, ⇔, or ▷ key moves the field pointer (▶) in the indicated direction. The FAST key cannot be used for field pointer control.

Long/Short Cursor Control:

Pressing the ①, ①, or □ key moves the cursor in the indicated direction. Movement continues until the key is released. Two direction-keys can be pressed simultaneously to move the cursor diagonally. Pressing the FAST key in conjunction with one or two of the direction keys, causes the cursor to move more rapidly.

(14) MARKER Control Dial:

This dial controls the marker (© or *) on the GRAPHICS PLOT page. Rotating the dial clockwise moves the marker from the sweep start point to the sweep stop point.

(15) AUTO CAL KEY:

This key enables continuous auto-calibration of the 4145A. The AUTO CAL function is set to ON (key indicator lamp on) when the instrument is turned on. Refer to paragraph 3-37 for details.

(6, (7), (8) DATA ENTRY Keys:

These keys are used to enter numeric values, arithmetic operators, and engineering units. Data entered with these keys is displayed on the CRT's Keyboard Input Line and entered into the display buffer by pressing the ENTER key (1). An arithmetic expression entered with these keys is executed by pressing the EXECUTE key.

(6) Engineering Unit Keys:

Four engineering units are available—m (milli, 10^{-3}), μ (micro, 10^{-6}), n (nano, 10^{-9}), and p (pico, 10^{-12})—for use with the numeric keys 18.

(17) Arithmetic Operator and Function Keys:

Nine arithmetic operators and functions are available—+, -, *, /, $\sqrt{}$, \triangle , (,), EEX (scientific notation)—for use in arithmetic calculations. Five additional operator and functions are available with the alphabetic (blue) keys: ** (exponentiation), LOG, LN (natural log), EXP (natural base), and ABS (absolute). The SPACE key is also included in this key group.

(18) Numeric Keys:

These keys—0 through 9 and decimal point—are used for entering measurement parameter values and for making quick arithmetic calculations.

(19) EDIT Keys:

These keys are used to edit data displayed on the Keyboard Input Line.

BACK:

Moves the Keyboard Input Line cursor (__) left one position. If this key is pressed while the cursor is at the left-most position, the displayed text will move to the right.

FORWARD:

Moves the Keyboard Input Line cursor (__) right one position. If this key is pressed while the cursor is at the right-most position, the displayed text will move to the left.

DELETE:

Causes the character at the position of the cursor to be deleted. The cursor remains at the same position and all text to the right of the deleted character moves one position to the left as each character is deleted.

INSERT:

Causes the character at the position of the cursor and all text to the right of the cursor to move right one position, leaving a space at the position of the cursor and allowing insertion of additional characters. To exit from this mode, press INSERT a second time.

RECALL:

Causes previous entries or executions to be re-displayed on the Keyboard Input Line.

CLEAR:

Clears all text from the Keyboard Input Line and returns the cursor to the home (left-most) position.

Figure 3-2. Front Panel Features (Sheet 5 of 6).

20) USER FILE Keys:

These keys are used to store program or data files onto the disc or to recall them.

SAVE:

Used to store the existing measurement setup, mearesult, surement auto-sequence program onto the flexible disc. Press SAVE, enter the file type (P for a measurement setup, D for a measurement result, S for an auto-sequence program), file name, and comment (if necessary), and then press EXECUTE (12).

GET:

Used to recall a measurement setup, measurement result, or auto-sequence program from the flexible disc. Press GET, enter the file type (P for a measurement setup, D for a measurement result, S for an auto-sequence program), and file name, and then press EXECUTE (12).

(21) MEASURING Lamp:

This lamp comes on when the 4145A is measuring. When measurement is completed or when the STOP key is pressed, this lamp goes off immediately.

22 CRT Adjustment:

INTENSITY determines the brightness of traces displayed on the CRT. FOCUS adjusts the writing beam for sharp, well-defined traces.

(23) FLEXIBLE DISC DRIVE:

Accommodates a 92K byte, single-sided, single-density, 5·1/4 inch flexible disc, and functions as the 4145A's mass storage unit (MSU). The lamp, located in the upper left-hand corner of the drive unit door, comes on when the 4145A is reading data from the disc. To open the door, press firmly on the center of the door until an audible click is heard, then release the door. Refer to paragraph 3-5 for information on proper handling of the flexible disc.

① Voltage Monitor (Vm) Input Connectors:

Two female BNC connectors for input to Vml and Vm2. Used in applications in which a user-fabricated test fixture is used. These connectors cannot be connected to the 16058A Test Fixture. Maximum allowable input voltage is ±20V dc.

(2) Voltage Source (Vs) Output Connectors:

Two female BNC connectors for Vsl and Vs2. Used in applications in which a user-fabricated test fixture is used. These connectors cannot be connected to the 16058A Test Fixture. Maximum output voltage is $\pm 20 \, \text{V}$ dc.

③ SMU Output Connectors:

Four triaxial connectors for SMU1 through 4. Can be connected to the 16058A Test Fixture or to a user-fabricated test fixture. Each connector outputs or measures up to $\pm 100 \text{V}$ or $\pm 100 \text{mA}$.

(4) COM (COMMON)-GROUND Terminals:

Common $(\sqrt{})$ and Ground (\bot) for floating and grounded measurements. The common terminal is tied directly to the outer-conductor of the Vm (1), Vs (2), and SMU (3) connectors; the ground terminal is tied directly to the instrument chassis. For grounded measurements, these terminals must be interconnected using the shorting-bar. For floating measurements, disconnect the shorting-bar.

WARNING

A POTENTIAL SHOCK HAZARD MAY EXIST WHEN COMMON IS NOT CONNECTED TO GROUND (SHORTING-BAR DISCON-NECTED). DO NOT, REGARDLESS OF THE OUTPUT VOLTAGE, TOUCH THE COMMON TERMINAL OR OUTER CONDUCTOR OF THE SMU, Vs, OR Vm CONNECTORS DURING A FLOATING MEA-SUREMENT (SHORTING-BAR DISCONNECTED).

(5) FILTER Switch:

This switch determines the measurement integration time, to reduce the effects of line-frequency noise. Set this switch to the frequency of the ac power source.

(6) System Cable Connector:

Twenty-four pin connector for interconnection between the 16058A Test Fixture and the 4145A. Vsl, Vs2, Vm1, Vm2, and the fixture-lid-open detector are connected to this connector. When the 16058A is not used, this connector should be terminated with the furnished shorting-termination if voltages exceeding ±42V are to be output.

WARNING

THE SHORTING-WHEN TERMINATION IS CONNECTED TO THE SYSTEM CABLE CONNECTOR. THE 4145 A'S PROTECTIVE CIRCUIT DISABLED. VOLTAGES AT THE SMU AND VS OUTPUTS CAN ±100V AND ±20V, REACH DO NOT RESPECTIVELY. TOUCH THE POINT OR POINTS WHICH THE SMU'S OR VOLTAGE SOURCES ARE CONNECTED.

(7) LINE FUSE Holder:

The 4145A's power-line fuse is installed in this holder.

100V/120V operation: 2.5AT, 250V (HP P/N: 2110-0015)

200V/240V operation: 1.25AT, 250V (HP P/N: 2110-0305) (8) LINE VOLTAGE SELECTOR Switches

These switches select the appropriate ac operating voltage. Selectable voltages are $100V/120V\pm10\%$ and $220V\pm10\%$ / 240V+5% -10% (48 - 66Hz). Refer to paragraph 2-5.

(9) LINE Input Receptacle:

AC power cable is connected to this receptacle. Refer to paragraph 2-5.

(10) HP-IB Control Switch:

This switch sets the 4145A's HP-IB address (0 - 30), data output format (COMMA or CR/LF), and interface capability (EOI ON or OFF). Specific information on this switch is given in paragraph 3-97.

(1) HP-IB Connector:

Twenty-four pin connector; connects the 4145A to the HP-IB for remote operations. Also used to connect a printer/plotter.

(12) External CRT Output Connectors:

Three BNC (f) connectors for connection to an external X-Y-Z display. Refer to paragraph 3-121.

3-5. FLEXIBLE DISC HANDLING

3-6. Five work-discs and one head-cleaning disc are furnished with the 4145A. Each work-disc contains the required operating system software, four general purpose measurement setups, and 33.5K bytes of user area. Installation and removal procedures for the disc are shown in Figure 3-4. Precautions on handling and storing the flexible discs are given below.

- When not in use, each disc should be placed in its own outer jacket. Exposed areas of the disc should be completely covered by the jacket.
- 2. Store discs in an upright position. Do not stack or pile discs.
- Store discs in a clean, dry, fireproof cabinet. Do not expose to direct sunlight, extremes of temperature or humidity, or magnetic fields.
- 4. Do not touch the exposed surface of the disc.
- 5. Do not apply strong pressure to the protective jacket. When labelling a disc, use a felt-tip pen. Do not use a pencil or ball-point pen.
- 6. Do not bend the discs.

CAUTION

DO NOT INSERT ANYTHING OTHER THAN FLEXIBLE DISCS INTO THE DISC DRIVE.

Note

Use only the discs furnished with the 4145A.

3-7. CRT DISPLAY

3-8. The 4145A is equipped with the HP Model 1345A Digital Display. For complete information on the 1345A, refer to the 1345A Operation and Service Manual, included in this binder.

3-9. Useable display area on the CRT is shown in Figure 3-5. Operator adjustments are given in Figure 3-6.

Figure 3-4. Disc Installation and Removal.

The CRT is sectioned into five areas, as shown in the figure. Description for each area is as follows:

- Page Display Area:
 The instrument's various pages are displayed in this area. When the PLOT key is pressed, only this area is output to the plotter.
- Command Display Area: The SAVE, GET, PLOT, PRINT, PURGE and REPACK commands are displayed in this area.
- (3) Keyboard Input Line:
 All keyboard (front panel) entries are displayed in this area. Up to 60 characters can be entered but only 27 can be displayed. To edit the displayed characters, use the BACK, FORWARD, DELETE and INSERT keys. When the RECALL key is pressed, the previous entry is re-displayed.
- 4 System Message Line:
 Displays instructions, error messages, and error codes. When the instrument is turned on, instrument status is displayed.
- 5 Softkey Prompt Display Area: Displays Softkey Prompts (SKP).

Note

(2), (3), and (4) are erased by pressing the CLEAR key.

Figure 3-5. Useable Display Area.

CRT intensity and focus adjustment. (Requires a small flat-tip screwdriver.)

- (1) Turn on the 4145A. The MENU page will be displayed on the CRT.
- (2) Press the EXTN softkey and the DIAG softkey.
- (3) Press the GDU TEST softkey. Display will be as shown in the figure.
- (4) Adjust INTENSITY ② until all three lines (each line has a different intensity) are visible. (())
- (5) Adjust FOCUS (3) until the corners of the displayed trace are sharp.
- (6) Press the MENU key.

Figure 3-6. Operator Adjustment.

3-10. SELF TEST

3-11. The 4145A is equipped with an automatic self-diagnostic function that is initiated each time the instrument is turned on to confirm normal operation of the instrument's basic functions. The SELF TEST can also be initiated from the DIAGNOSTICS page or via the HP-IB. When SELF TEST is performed at instrument turn-on, the five tests listed in Table 3-1 are automatically performed. If the instrument is operating normally, the MENU page will be displayed when the SELF TEST is completed. If an error is detected, an error code will be displayed on the CRT. When SELF TEST is initiated from the DIAGNOSTICS page or via the HP-IB, only two tests are performed (MPU test and SMU test). If the instrument fails the SELF TEST, contact the nearest Hewlett-Packard Service Office (see list at back of this manual).

3-12. ERROR MESSAGES/ERROR CODES

3-13. Error messages and error codes are displayed on the System Message Line of the CRT whenever an illegal operation or out-of-range measurement is made, or whenever an internal circuit fails. Error messages and error codes related to operator errors (not instrument failure) are listed in Table 3-2 and 3-3, respectively. Error codes related to instrument failure are listed in Table 3-4. If the instrument displays one of the error codes listed in Table 3-4, contact the nearest Hewlett-Packard Sales/Service Office.

Note

One of the error codes listed in Table 3-4 may be displayed if the instrument is turned on after experiencing an extreme change of ambient temperature. In this case, allow the instrument to fully warm up (ignore the displayed error code), and then turn it off and on one time.

Table 3-1. 4145A SELF TEST

Test Name	t Name Description			
MPU test Checks the basic functions of the MPU (Microprocessor Unit) by chefour ROMs (Read-Only Memory) and sixteen RAMs (Randam-A Memory).				
GDU test	Checks the functions of the GDU (Graphics Display Unit).			
MSU test	Checks the MSU (Mass Storage Unit: Flexible Disc Drive and Disc).			
HP-IB test	Checks all HP-IB interface capabilities.			
SMU test	Checks the basic functions of the four SMUs.			

Table 3-2. Error Messages (Sheet 1 of 2)

Error Message Meaning		Corrective Action	
No source name An SMU that has been assigned a source mode (COM, V, or I) has not been assigned a corresponding V or I source name.		If the source mode is COM or V, enter a source name in the V column; if the source mode is I, enter a source name in the I column.	
Duplicate name	Two or more channels have the same name.	Re-assign the channel names.	
Illegal function	VAR1, VAR1', or VAR2 is specified more than once.	Specify VAR1, VAR1', and VAR2 only once.	
	VAR1 and VAR1' are not in the same source mode.	Set VAR1 and VAR1' to the same source mode.	
Overflow	Number of steps for VAR1 exceeds 512.	Change the value of START/STOP or STEP.	
	An attempt was made to input a value that is outside specified limits.	Enter a value that is within specified limits.	
No name	No name is entered in the NAME field on the MEAS/DISP MODE SETUP page.	Select a name from those displayed in the softkey prompt area.	
No monitor channel	No monitor channel name is entered in the NAME field on the MEAS/DISP MODE SETUP page, or the name entered in the NAME field cannot be used as a monitor channel name.	Select a monitor channel name from those displayed in the softkey prompt area.	
Illegal setup	LOG Sweep: START and STOP (Display) (MIN and MAX) values have different signs.	Change one of the signs.	
	Current value is too high because source mode has been changed from V to I.	Change the current (I) value setting.	
	INTERVAL or NO. OF RDNGS for a time domain measurement is set to 0.	Enter correct value: Up to 10s for INTERVAL and from 1 to 512 for NO. OF RDNGS.	
	Duplications on the OUTPUT SEQUENCE SETUP page.	Rearrange the output sequence.	
Buffer full Measurement data exceeds the capacity of the data buffer.		Data buffer capacity is 512 measurement points for a single sweep, or up to 575 (depends on the number of monitor channels used, VAR2 steps and the number of times APPEND is used) in other cases.	

Table 3-2. Error Messages (Sheet 2 of 2)

Error Message Meaning		Corrective Action	
Syntax error	An illegal name was entered in a GET or SAVE command.	The first character of a file name must be alphabetic, and all succeeding characters must be alphanumeric.	
	PLOT area is not specified, contains one or more alphabetic characters, or is missing coordinate delimiters (comma or space).	Re-enter the PLOT area correctly.	
	Illegal file type.	Use P, D, or S for the file type.	
Busy	Auto calibration is being performed.	Auto calibration is performed every 5 minutes.	
No data	PRINT Key was pressed with no measurement data in the data buffer.	Perform a measurement.	
Printer/ Plotter is not connected	No printer or plotter is con- nected to the instrument, or the printer or plotter is not set to LISTEN.	Connect the printer or plotter.	
Not compatible	The discs used in the copy operation have different system labels, or one of the discs is not a 4145A useable disc.	Copy cannot be performed.	
Close the fixture lid	The fixture lid is open at the start of a measurement in which the output voltage may exceed ±42V or lid is open during the User Mode (See Fig. 39).	Close the lid or change the setup. Make sure the system cable is properly connected.	
Output disabled, close the fixture lid	The fixture lid was opened during a measurement in which the output voltage may exceed ±42V.	Close the fixture lid and make the measure- ment again. Do not open the fixture lid during measurement. Make sure the system cable is properly connected.	
Emergency	Output was shut down to pre- vent SMU damage.	Make sure the setup and all connections are correct.	
Recovered from power down	Indicates that there was a mo- mentary power loss.	When a power loss occurs during measurement, output is shut down. Press MEA-SUREMENT key to continue the measurement.	
Step overflow	NO OF STEPS for VAR1 exceeds 512.	Change START value, STOP value, or STEP value.	
Disabled function	A disabled softkey was pressed.	The softkey cannot be used in the existing measurement setup.	

Table 3-3. Operational Error-Codes (Sheet 1 of 2)

Display	Meaning			
Error E01	Arithmetic operator (-, +, /, *) or parenthesis is required.			
Error E02	EXECUTE was pressed with no executable text on the Keyboard Input Line.			
Error E03	Object buffer overflow.			
Error E04	Improper ⊿ (delta) operation.			
Error E05	User function is used in the expression. (User function cannot be used in an arithmetic expression.)			
Error E06	No variable or constant following an arithmetic operator.			
Error E07	Arithmetic expression contains an undefined variable.			
Error E08	Too many signs or parentheses.			
Error E09	Constant value is too large.			
Error I01	Stack Register overflow.			
Error IO2	Improper calculation was attempted. For example, the divisor is zero.			
Error I03	Insufficient ⊿ data.			
Error M02	Disc is not inserted or is not correctly inserted.			
Error M03	The disc is write protected.			
Error M04	Illegal file name or file type.			
Error M05	The file name specified in the SAVE command has already been reserved for the specified file type.			
Error M06	Number of total files exceeds 96.			
Error M07	Number of total records exceeds 131.			
Error M08	User area may be lost. Copy immediately onto another disc.			
Error M19	The disc was not initialized for the 4145A.			
Error Z01	The program specified by the GET command in the auto-sequence program contains an error. Press CONT to perform the next step of the auto-sequence program.			
Error Z02	The SINGLE command can be executed from the GRAPHICS, MATRIX, LIST, or SCHMOO page only. Press CONT to perform the next step of the auto-sequence program.			
Error Z03	PLOT or PRINT was performed by the auto-sequence program but no printer/plotter is connected to the 4145A or the printer/plotter is not set to LISTEN. Press CONT to perform the next step of the auto-sequence program.			

Table 3-3. Operational Error-Codes (Sheet 2 of 2)

Display	Meaning			
Error Z04	The test fixture lid is open during an auto-sequence program in which the output voltage may exceed ±42V. Press CONT to perform the next step of the auto-sequence program.			
Data Errors	Depending on the number of channels used in the measurement, up to six 2-digit numbers are displayed, in the format shown below, whenever the measurement cannot be performed correctly.			
	Error DXX XX XX XX XX			
	Here, XX is a 2-digit number which represents channel status. The left-to-right order in which the 2-digit error codes appear corresponds to the order in which the channels are assigned on the MEAS/DISP MODE SETUP page. Also, the number of 2-digit error codes that appear is identical to the number of channels used in the measurement. The left digit of XX is hexadecimal and must be converted into a 4-digit binary number, as described below. The right digit is decimal and requires no conversion. Also, zero means no error.			
	 XX 1: Stack register overflow 2: Calculation error 3: Insufficient data for △ measurement 7: Undefined user-function 8: INTERVAL in a time domain measurement is too short. Complete measurement data cannot be stored before the next measurement begins. 			
	Convert hexadecimal number into binary. A/D converter saturated. Oscillation Other channel has reached compliance limit. This channel has reached compliance limit.			
	Channel correspondence is shown below:			
	GRAPHICS PLOT:			
	Error DXX XX XX X axis Y1 axis Y2 axis			
	LIST DISPLAY:			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	MATRIX DISPLAY, SCHMOO PLOT:			
	Error DXX			

Model 4145A SECTION III

Table 3-4. Hardware-Related Error-Codes

Display	Meaning		
Error P01 - P04	One of the four ROMs (Read Only Memory) is not functioning properly.		
P05 - P20	One of the sixteen RAMs (Ramdom Access Memory) is not functioning properly.		
P21	MPU's (Microprocessor Unit) peripheral circuit is not functioning properly.		
M08 - M18	MSU (Mass Storage Unit: Flexible Disc and drive) is not functioning properly. Try another disc.		
A01 CHAN (!!!DOWN!!!)	SMU controller is not functioning properly.		
CHAN (XX,XX,XX,XX)	SMU itself is not functioning properly. (XX indicates the SMU number and error code. Refer to Fig. 3-20.)		

Note

If a momentary power loss occurs, the $4145\,\mathrm{A}$'s display may go blank. To recover, turn off the instrument, wait a few seconds, and then turn on the instrument.

3-14. INITIAL CONTROL SETTINGS

3-15. To facilitate operation, the instrument is automatically set to the following initial control settings each time it is turned on:

Front Panel Controls:

MEASUREMENT keys	OFF
AUTO SEQ key	OFF
INTEG TIME keys	
PLOT/PRINT keys	OFF
AUTO CAL key	ON
BLUE key	OFF

Internal Setup:

CRT Display	MENU
	Page
Measurement Program	GENL
	(see note)
PLOT Area	Previously
(for external plotter)	specified
	values

Note

Each flexible disc contains four different application programs, of which GENL is one. Refer to paragraph 3-87 for details on the furnished applications programs.

All data stored on the disc is retained; that is, the disc is not erased when the instrument is turned off.

3-16. USER-AREA FILING OPERATIONS

3-17. The 4145A uses a 5.25 inch, single-sided, single-density flexible disc as the storage medium for its MSU (mass storage unit). Each of the five work-discs furnished with the 4145A contains the necessary operating system software, four general purpose measurement programs, and enough user area for 131 records. Up to 96 files can be stored in the user-area.

Note

A record is the minimum unit for storage on the disc. A file consists of 1, 3, or 12 records, depending on the file type.

Three types of files can be stored in the user-area:

- 1. Measurement program files—file type P:
 Specifying file type P in the SAVE command
 reserves 3 records on the disc and stores the
 existing measurement setup (channel
 assignments, parameter settings, graphic
 scaling, output sequence, etc.) at the
 reserved 3-record location.
- 2. Measurement data files—file type D:
 Specifying file type D in the SAVE command
 reserves 12 records on the disc and stores
 the measurement setup and measurement
 results (GRAPHICS, LIST, MATRIX, or
 SCHMOO) at the reserved 12-record
 location.
- 3. Auto-sequence program files—file type S: Specifying file type S in the SAVE command reserves 1 record on the disc and stores the existing auto-sequence program at the reserved 1-record location.

For more information on file types, number of records used, etc., refer to Figure 3-30, 4145A FILE CATALOG Page.

Four filing operations—SAVE, GET, PURGE, and REPACK—can be performed from the front panel. Each is described below:

SAVE:

Used to store the existing measurement setup (except INTEG TIME, AUTO CAL, and softkey functions), the existing auto-sequence program, output sequence setup, or the measurement results. SAVE cannot be used when the disc write-protected. Before saving measurement setup, a page check must be performed (refer to para. 3-44). To SAVE a file, press the SAVE key (SAVE will appear on the Keyboard Input Line of the CRT) and input the file type (P, D, or S) and file name. The file name can contain up to six characters, of which the first must be alphabetic and the last five must be alphanumeric.

GET:

Used to recall user-stored files from the disc. GET cannot be used to recall any of the furnished measurement programs. To GET a file from the user-area of the disc, press the GET key (GET will appear on the Keyboard Input Line of the CRT) and input the file type (P, D, or S) and file name.

PURGE:

Used to delete user-stored files from the disc. PURGE cannot be used with a write-protected disc, nor can it be used to delete any of the furnished measurement programs. It is available only when the 4145A FILE CATALOG page is displayed. To PURGE a file from the user-area of the disc, go to the MENU and select CAT softkey. When the 4145A FILE CATALOG page appears on the display, press the PURGE softkey (PURGE will appear on the Keyboard Input Line of the CRT) and input the file type (P, D, or S) and file name. DO NOT turn off the instrument during PURGE.

REPACK:

Used to repack all files stored in the user-area of the disc. REPACK cannot be used when the disc is write-protected, and is available only when the 4145A FILE CATALOG page is displayed. To REPACK the user-area, go to the MENU and select CAT softkey. When the 4145A FILE CATALOG page appears on the display, press the REPACK softkey (REPACK will appear on the Keyboard Input Line of the CRT) and then press EXECUTE.

SAVE, GET, PURGE, and REPACK cannot be input using the alphabetic keys and can be used for user-area filing operations only. No filing operations can be performed on the operating system software or the furnished applications programs.

3-18. ARITHMETIC CAPABILITIES

3-19. Arithmetic operations that can be performed on the 4145A are listed in Table 3-5. To perform an arithmetic operation, first key in the expression (it will appear on the display as you do so), then press EXECUTE. The result will be displayed on the Keyboard Input Line of the CRT in a floating decimal format (scientific notation).

Example: $\sqrt{2} + 1$ Key strokes: $\sqrt{2} + 1$ Displayed Result: 2.4142E+00

Results of arithmetic operations are always displayed in scientific notation consisting of a 5-digit base and 2-digit exponent, regardless of the expression's complexity. Thus, if 1+2 is executed, the result is displayed as 3.0000E+00. Also, the exponent is always a multiple of three, regardless of the exponent used in the original expression. For example, if 1E+07 is executed, the result is displayed as 10.000E+06. The decimal point is always positioned so that the exponent is a multiple of three.

Results are always rounded before being displayed if they contain more than 5 digits. The first excess digit is checked, and if its value is 6 or greater, the digit to the left (the fifth digit) is incremented (rounded up) by one; if its value is 5 or less, the fifth digit is unchanged. For example, executing 1+1.00001 will result in 2.0000E+00, but executing 1+1.00006 will result in 2.0001E+00.

Table 3-5. Arithmetic Operators

Sim	Name	Example		
Sign	мате	Equation	Key Strokes	
+	Addition	5+3	5 + 3 EXECUTĘ	
-	Subtraction	5-3	5 - 3 EXECUTE	
*	Multiplication	5*3 (5x3)	5 * 3 EXECUTE	
/	Division	5/3 (5÷3)	5 / 3 EXECUTE	
<u></u>	Square Root	√ 5	√ 5 EXECUTE	
**	Exponentiation	5**3 (5 ³)	5 * * 3 EXECUTE	
log	Common Logarithm	1og 5	L O G (5) EXECUTE	
l n	Natural Logarithm	1n5	L O G (5) EXECUTE	
EXP	Base of Natural Log	e 5	E X P (5) EXECUTE	
	Absolute	-5	A B S (5) EXECUTE	
EEX	Scientific Notation	5x10 ³	5 E E X 3 EXECUTE	

Arithmetic hierarchy is as follows:

- ** exponentiation
- *,/ multiplication and division
- +, addition and subtraction

Parentheses can be used to change this hierarchy; when used, they take highest priority. However, parentheses cannot be used for implied multiplication. The * operator must always be used to indicate multiplication. Thus, executing 2(3+5) will result in error E01. The correct format is 2*(3+5).

A delta (1) function is also provided, but it is not intended for general keyboard calculations. It is used in defining user functions (see paragraph 3-20) or in certain keyboard calculations on the GRAPHICS, MATRIX, LIST, or SCHMOO page.

There are limits to the size of arithmetic expressions that can be executed. Refer to Figure 3-7.

The maximum allowable length of an arithmetic expression is determined by the number of bytes it contains, not by the number of characters. If an expression contains more than 78 bytes, error E03 (object buffer overflow) will appear on the CRT (below the expression) when EXECUTE is pressed. The work area for user-function arithmetic expressions, however, is 124 bytes, of which 78 bytes (max.) are used for the object buffer.

Arithmetic operators:	1 5
+, -, *, /, **	l byte
Variables and other operators	3 bytes
Constants	5 bytes
1	

Figure 3-7. Byte Size of Arithmetic Expressions.

3-20. Up to two user functions can be defined as arithmetic expressions in the USER FCTN field on the CHANNEL DEFINITION page. This allows automatic calculation of secondary parameters, such as hFE and gm, which are functions of applied and measured voltages and currents. For example, if the static collector characteristics of a bipolar transistor are to be measured and plotted, the transistor's forward current transfer ratio, $h_{\rm FE}$, can be defined as HFE=IC/IB in the USER FUNCTION field on the CHANNEL DEFINITION page. HFE will appear as a softkey prompt on the MEAS&DISP MODE SETUP page and can be selected as the Y2 axis. When measurement is made on the GRAPHICS page, HFE will be plotted along with the primary characteristics-IC, IB, and VCE. Similarly, the transconductance, gm, of a field-effect transistor can be defined as GM=\(\D\)/\(\D\)VG.

The delta (Δ) function can be used in userfunction definitions or for keyboard calculations on the GRAPHICS, LIST, MATRIX, or SCHMOO page. In the latter case the value returned by executing Δ A (where A is the name of one of the source or monitor channels) depends on the location of the marker (GRAPHICS page) or cursor (MATRIX, LIST, and SCHMOO pages). Here, Δ A is calculated as half the difference between the values of A above and below the cursor (marker) location. In equation form

$$\Delta A = \frac{A_1 - A_2}{2}$$

where A_1 is the value of A at the measurement step following the cursor (marker) position and A_2 is the value of A at the measurement step preceeding the cursor (marker) position.

Note

The result of the arithmetic function may include a rounding error.

Model 4145A SECTION III

3-21. SOURCE AND MEASUREMENT CHANNELS

3-22. The 4145A is equipped with eight channels for device stimulus and measurement. Channels 1 through 4 are stimulus/measurement units (SMUs), channels 5 and 6 are voltage sources (VS1 and VS2), and channels 7 and 8 are voltage monitors (Vml and Vm2). Refer to Figure 3-8. By correctly combining and setting up the source and measurement channels, a wide range of semiconductor devices can be measured. The SMUs are described in paragraph 3-23; the voltage sources and voltage monitors, in paragraph 3-25.

Figure 3-8. Source and Measurement Channels of the 4145A.

Note

When the current source SMU is set to 0 ampare, a slight positive current flows out.

3-23. Stimulus/Measurement Units (SMU)

3-24. A simplified circuit diagram of one of the four SMUs is illustrated in Figure 3-9. Each SMU can be set up to function as a voltage source/current monitor, current source/voltage monitor, or source common by specifying source mode V, I, or COM, respectively, in the SOURCE MODE field on the CHANNEL DEFINITION page (see Figure 3-21). Output voltage (SOURCE MODE V) and output current (SOURCE MODE I) can be held constant or can be swept (linearly or logarithmically) by specifying source function CONST or VARI, VARI, VAR2, respectively, in the SOURCE FCTN field on the CHANNEL DEFINITION page. When the source mode is COM, source function is automatically set to CONST. Refer to paragraph 3-29 for details on swept measurements.

Output in either SOURCE MODE is internally limited to 2 watts on each output range. Refer to Table 3-6 for range limits, range resolution, and output limits. Also, refer to paragraph 3-131 for measurement ranges and resolution. Figure 3-10 graphically illustrates the specifiable voltage/current out-put. Voltages and currents enclosed by the bold line can be specified.

Output voltage and current, sweep mode (linear or log), START, STOP, STEP, and COMPLIANCE for each SMU are specified on the SOURCE SETUP page (see Figure 3-22).

Notes: 1) Range change is performed automatically.

- 2) If the Current Source can't output specified current, output voltage increases up to its voltage compliance.
- 3) If a voltage exceeding 100V is applied to the SMU, 199.99V may be displayed as the measurement result.

Figure 3-9. Simplified Circuit Diagram of One of the Four SMUs.

Table 3-6. SMU Source Rang	res
----------------------------	-----

Source Mode	Range		Resolution	Maximum Output
	±20V		1mV	100mA
V	±40V		2mV	50mA
	±10	0V	5 mV	20mA
	±l	nA	lpA	
	±10nA		10pA	
	±100nA		100pA	
	±1μA		1nA	
-	<u>+</u> 10μA		10nA	100V
I	±100μA		100nA	
	±1mA		1μA	
	±10mA		10μΑ	
		20mA		
	±100mA*	50mA	100μΑ	40V
		100mA		20V

*: The 100mA range consists of three subranges.

Figure 3-10. Specifiable Voltage/Current Output.

3-25. Voltage Sources (Vs) and Voltage Monitors (Vm)

3-26. Simplified circuit diagrams of the voltage sources (Vs) and the voltage monitors (Vm) are shown in Figures 3-11 and 3-12, respectively. Output voltage from each Vs can be held constant or can be swept (linearly or logarithmically) by specifying source function CONST or VAR1, VAR1', VAR2, respectively, in the SOURCE FUNCTION field on the CHANNEL DEFINITION page (see Figure 3-21). Refer to paragraph 3-29 for details on swept measurements. Maximum output voltage is ±20V with 1mV resolution. Maximum output current is 10mA.

Up to ± 20 V can be measured by the voltage monitors. There are two measurement ranges: 20V and 2V. Resolution for each range is 1mV and $100\,\mu\text{V}$, respectively.

Figure 3-11. Simplified Circuit Diagram of Vs.

Figure 3-12. Simplified Circuit Diagram of Vm.

3-27. COMPLIANCE

3-28. To prevent over-voltage or over-current damage to the device under test, several levels of output protection, termed COMPLIANCE, have been incorporated into the 4145A. The maximum output current from an SMU operating in SOURCE MODE V (voltage source/current monitor) can be specified by entering the desired limit in the COMPLIANCE field of each source channel on the SOURCE SETUP page. Similarly, the maximum output voltage from an SMU operating in SOURCE MODE I (current source/voltage monitor) can be specified. Maximum specifiable compliance depends on the voltage or current range at which the source channel is operating. Refer to the Maximum Output column in Table 3-6. Setting resolution for current and voltage compliance is 50pA and

lmV, respectively. When an SMU is operating in SOURCE MODE COM, its current compliance is automatically set to 105mA and cannot be changed.

If a source channel reaches compliance during measurement, an error code (see Table 3-3) will appear on the CRT. Measurement data obtained prior to this point is valid, but measurement data obtained after compliance is reached may not be valid. The reason for this is that once a source channel reaches compliance, it tends to act as a constant source. Consider, for example, an SMU that is set to SOURCE MODE V (voltage source/current monitor) and SOURCE FCTN VAR1 (variable voltage source). START voltage, STOP voltage, and COMPLIANCE are 0V, +20V, and 10mA, respectively. Also, assume that the device under test has a resistance of 1000 ohms. When the measurement is started, the SMU will be begin sweeping its output voltage toward +20V. But when the output voltage reaches +10V, the current through the device under test is 10mA. Compliance has been reached. The SMU will continue to try to sweep toward the +20V STOP voltage, but because the current through the device under test is now constant at 10mA, the voltage across it must be constant at +10V.

The specified compliance is valid for positive and negative values, regardless of the polarity specified in the COMPLIANCE field; that is, specifying a current compliance of, say, 40mA, as in Figure 3-13, is valid for +40mA and -40mA. Output currents greater than ±40mA (shaded areas in Figure 3-13) are not possible.

Figure 3-13. Voltage/Current Output Specified by the COMPLIANCE.

3-29. SWEEP MEASUREMENT

3-30. Output from the SMUs and voltage sources (Vs) can be swept in a staircase manner, as shown in Figure 3-14, by specifying VARI, VARI', or VAR2 in the SOURCE FCTN field on the CHANNEL DEFINITION page. The maximum number of source channels that can be swept is three. VAR1, VAR1', and VAR2 can be specified only once on the CHANNEL DEFINITION page and VAR1' cannot be specified without VAR1. VAR1, VAR1', and VAR2 are described in paragraph 3-31.

Sweep setup is made on the SOURCE SETUP page by selecting the SWEEP MODE and entering the desired START, STOP, STEP, DELAY, and HOLD values. Each sweep parameter is described below:

START: Voltage or current value at which sweep begins

STOP: Voltage or current value at which sweep stops

STEP: Sweep incremental or decremental value. Can be specified in LINEAR SWEEP MODE only.

DELAY: Wait time before measurement is made at each step (softkey function).

HOLD: Wait time before sweep begins (softkey function).

SWEEP MODE:

LINEAR or LOG. In LINEAR mode, output is swept linearly in accordance with the specified STEP value. In LOG mode, output is swept logarithmically at 10 steps, 25 steps or 50 steps (selectable with softkeys) per decade. LOG cannot be specified for VAR2. Refer to paragraph 3-32 for further details on LOG sweeps.

The above sweep parameters are for VAR1 only. Sweep parameters available for VAR2 are START, STEP, and NO. OF STEPS. Sweep parameters available for VAR1' are OFFSET (specifiable in linear sweep mode only) and RATIO, both of which are softkey functions. Also, when displaying measurement results on the GRAPHICS page, either LINEAR or LOG scaling can be specified on the MEAS/DISP MODE SETUP page, regardless of the SWEEP MODE of VAR1.

Figure 3-14. Staircase Sweep Output.

3-31. Of the six source channels (four SMUs, two voltage sources), three can be swept by specifying VAR1, VAR1', or VAR2 in the SOURCE FCTN field on the CHANNEL DEFINITION page. The remaining three source channels are either "not used" or are set to CONST source function. The VAR1 source channel is the main sweep channel and VAR2 and VAR1' are VAR1 dependent, as shown in Figures 3-15 and 3-16, respectively, and as described below:

VAR2 (subordinate sweep):

At the completion of the VAR1 sweep, VAR2 is incremented or decremented by the specified STEP value (5) in Figure 3-15) and VAR1 is swept again. The total number of VAR1 sweeps is determined by the NO. OF STEPS (6)

in Figure 3-15) specified for VAR2. VAR2 cannot be swept logarithmically. Also, VAR1 and VAR2 can have different source functions. START, STEP, and NO. OF STEPS must be specified.

VAR1' (synchronous sweep):

VAR1' can be used only when VAR1 is used and it must have the same source mode (V or I) as that specified for VAR1. VAR1' is swept in synchronism with VAR1 at either a constant offset value or constant ratio. VAR1' offset and ratio values are entered with the corresponding softkey. The offset value and ratio must be such that the VAR1' source channel does not exceed its maximum output limits.

Figure 3-15. Relationship Between VAR1 and VAR2.

Figure 3-16. Relationship Between VAR1 and VAR1'.

3-32. The number of measurement points per decade in LOG sweep is selectable at 10, 25, or 50. The output at each point is determined by the number of measurement points per decade and the sweep START value. The output at the nth measurement point is calculated as:

Output at nth point=START value x $10^{\frac{n-1}{a}}$ (3-1)

where α is the number of measurement points per decade (10, 25, 50).

3-33. TIME DOMAIN MEASUREMENT

3-34. A time domain measurement is one in which the voltages and/or currents applied to the device under test are held constant and the desired device parameter is measured as a function of time. Only one source channel can be swept and only with the VAR2 source function. All other channels are either "not used" or must be set to CONST source function. Selectable TIME DOMAIN parameters are WAIT TIME, INTERVAL, and NO. OF RDNGS (number of readings). Each is described below:

WAIT TIME:

Time before source channels begin outputting voltage or current. Also valid for the VAR2 source channel. Setting range is from 0 to 100 seconds and resolution is 10 milliseconds.

INTERVAL:

Time between each measurement point. Setting range is from 10 milliseconds to 10 seconds and resolution is 10 milliseconds.

NO. OF RDNGS:

Total number of measurement points. If VAR2 is used, NO. OF RDNGS per each step of VAR2. Up to 512 measurement points can be specified, depending on the number of VAR2 steps.

To make a TIME DOMAIN measurement, do not assign VAR1 to any of the source channels on the CHANNEL DEFINITION page. (Assigning VAR2 is optional.) Output values for all CONST sources must still be entered on the SOURCE SETUP page. If VAR2 is used, its START, STEP, and NO. OF STEPS must also be entered. Also, HOLD TIME and DELAY TIME are not used in a TIME DOMAIN measure-ment.

TIME DOMAIN parameters—WAIT TIME, INTERVAL, and NO. OF RDNGS—must be entered on the MEAS/DISP MODE SETUP page. Refer to Figure 3-33. Integration time during TIME DOMAIN measurement is automatically set to SHORT and cannot be changed.

Figure 3-17. Time Domain Measurement.

3-35. INTEGRATION TIME

3-36. To prevent line frequency noise and other noise sources from affecting the accuracy of measurements, the 4145A is equipped with three digital integration times, which are selectable from the front panel. Each is described below:

Digital integration is not per-SHORT: formed.

Measurement result is the average MEDIUM: value of 16 samples taken during

one line frequency period.

Measurement result is the average LONG: value of 256 samples taken during sixteen line frequency periods.

Integration time can be changed measurement, but cannot be changed while the 4145A is in TALK mode (PLOT or PRINT), when the disc drive's read/write lamp first comes on, or during auto scaling. In time domain measurements only SHORT integration time is available.

3-37. AUTO-CALIBRATION

3-38. To both monitor and compensate for transient changes in output voltage and current caused by ambient temperature changes, each SMU is equipped with an auto-calibration function. This function allows each SMU to periodically monitor its own output and, if necessary, provide appropriate compensation.

3-39. The auto-calibration function of the SMUs is controlled by the AUTO CAL key on the front panel. With AUTO CAL turned on (key indicator lamp on), calibration is automatically performed every five minutes for about six seconds. If one of the MEASUREMENT keys or the AUTO CAL key is pressed during auto-calibration, "Busy" will be displayed on the CRT until autocalibration is completed.

3-40. DISPLAY PAGES

3-41. The 4145A displays thirteen different screens. Each screen is called a page and each has a different purpose in relation to instrument operation. By changing from one page to another, different functions and capabilities, such as measurement set up, measurement, diagnostics, certain filing functions, etc., are made available. PAGE control is described in paragraph 3-42. Detailed explanations of each page are given Figures 3-20 through 3-32.

3-42. PAGE CONTROL

3-43. Display paging is controlled by the PAGE CONTROL keys-MENU, NEXT, and PREV-or the softkeys, as shown in Figure 3-18. (Softkeys for PAGE control are available only when the MENU is displayed.) Page-flow and relationship between pages are shown in Figure 3-19. The solid lines (_____) show page changes that are possible with the NEXT key or PREV key; the dashed lines (----) show page changes that are possible with the softkeys. To go to the GRAPHICS, LIST, MATRIX, or SCHMOO page from the MEAS/DISP MODE SETUP page, it is first necessary to select the desired display mode with the softkeys and then press the NEXT key.

All pages except the GRAPHICS, LIST, MATRIX, and SCHMOO pages can be displayed directly from the MENU page by pressing the appropriate softkey. For example, pressing softkey 3 while the MENU page is displayed automatically displays the MEAS/DISP MODE SETUP page. Pressing the MENU key automatically returns the display to the MENU page, regardless of the present display page. To change from the GRAPHICS page to, say, the LIST page, press the PREV key to display the MEAS/DISP MODE SETUP page, select LIST with the softkeys, and then press the NEXT key. Paging cannot be performed during measurement, printing, or plotting.

3-44. When the NEXT key or PREV key is pressed while the CHANNEL DEFINITION page, SOURCE SETUP page, MEAS/DISP MODE SETUP, or OUTPUT SEQUENCE SETUP page is displayed, the page is checked for completeness and correctness. If an illegal setup is detected, an error message will be displayed and no page change will occur. In this case you must either correct the setup or press the MENU key. Changes made on the CHANNEL DEFINITION, SOURCE SETUP, MEAS/DISP MODE SETUP and OUTPUT SEQUENCE SETUP pages are not valid for SAVE until the PREV or NEXT key is pressed.

Figure 3-18. Page Control Keys.

Figure 3-19. Page Flow and the Relationship.

3-45. MENU PAGE

3-46. The start-up menu is displayed when the instrument is turned on and each time the MENU key is pressed. Displayed on the MENU page are the accessible pages, corresponding softkey prompts (SKP), the instrument's present HP-IB status, line frequency filter setting, and the status of each SMU. A detailed description of the MENU page is given in Figure 3-20.

3-47. CHANNEL DEFINITION PAGE

3-48. The CHANNEL DEFINITION page is displayed when softkey 1 or the NEXT key is pressed while the MENU page is displayed. On this page the operator must define the name, mode, and function of each channel that is to be used in the measurement. User functions are also defined on this page. A detailed description of the CHANNEL DEFINITION page is given in Figure 3-21.

3-49. SOURCE SETUP PAGE

3-50. The SOURCE SETUP page is displayed when softkey 2 is pressed on the MENU page or when the NEXT key is pressed on the CHANNEL DEFINITION page. On this page the operator must enter the output parameters (START, STOP, STEP, COMPLIANCE, etc.) for the source channels (SMUs and voltage sources) defined on the CHANNEL DEFINITION page. A detailed description of the SOURCE SETUP page is given in Figure 3-22.

3-51. MEAS/DISP MODE SETUP PAGE

3-52. The MEAS/DISP MODE SETUP page is displayed when softkey 3 is pressed on the MENU page or when the NEXT key is pressed on the SOURCE SETUP page. On this page the operator must select the desired display mode (GRAPHICS, LIST, MATRIX, SCHMOO), enter the appropriate source and monitor names, and enter the desired scaling factors. A detailed description of the MEAS/DISP MODE SETUP page is given in Figure 3-23.

3-53. GRAPHICS PLOT PAGE

3-54. The GRAPHICS PLOT page is displayed when the MEAS/DISP MODE SETUP page has been set up for GRAPHICS MODE DISPLAY and the NEXT key is pressed. On this page the operator can make the measurement by pressing the SINGLE, REPEAT, or APPEND key and can analyze the measurement results with the softkeys. A detailed description of the GRAPHICS PLOT page is given in Figure 3-24.

3-55. LIST DISPLAY PAGE

3-56. The LIST DISPLAY page is displayed when the MEAS/DISP MODE SETUP page has been set up for LIST mode display and the NEXT key is pressed. On this page the operator can make the measurement by pressing the SINGLE, REPEAT, or APPEND key and can analyze the measurement results with the softkeys. A detailed description of the LIST DISPLAY page is given in Figure 3-25.

3-57. MATRIX DISPLAY PAGE

3-58. The MATRIX DISPLAY page is displayed when the MEAS/DISP MODE SETUP page has been set up for MATRIX mode display and the NEXT key is pressed. On this page the operator can make the measurement by pressing the SINGLE, REPEAT, or APPEND key and can analyze the measurement results with the softkeys. A detailed description of the MATRIX DISPLAY page is given in Figure 3-26.

3-59. SCHMOO PLOT PAGE

3-60. The SCHMOO PLOT page is displayed when the MEAS/DISP MODE SETUP page has been set up for SCHMOO mode display and the NEXT key is pressed. On this page the operator can make the measurement by pressing the SINGLE or REPEAT key and can analyze measurement results with the softkeys. A detailed description of the SCHMOO PLOT page is given in Figure 3-27.

3-61. AUTO SEQUENCE SETUP PAGE

3-62. The AUTO SEQUENCE SETUP page is displayed when softkey 4 is pressed on the MENU page. On this page the operator can set up an auto-sequence program (ASP). A detailed description of the AUTO SEQUENCE SETUP page is given in Figure 3-28.

3-63. OUTPUT SEQUENCE SETUP PAGE

3-64. The OUTPUT SEQUENCE SETUP page is displayed when softkey 5 is pressed on the MENU page. On this page the operator can specify the order in which the SMUs and voltage sources begin output. A detailed description of the OUTPUT SEQUENCE SETUP page is given in Figure 3-29.

3-65. USER FILE CATALOG PAGE

3-66. The USER FILE CATALOG page is displayed when softkey 6 is pressed on the MENU page. On this page the operator can PURGE or REPACK files stored on the flexible disc. The number of records available, stored files, file type, comments, file addresses, number of records reserved for each file, and number of records actually used by each file are displayed. A detailed description of the USER FILE CATALOG page is given in Figure 3-30.

3-67. OPERATION GUIDE PAGE

3-68. The OPERATION GUIDE page is displayed when softkey 7 is pressed on the MENU page. This page provides brief paging information and brief descriptions of error messages and error codes. A detailed description of the OPERATION GUIDE page is given in Figure 3-31.

3-69. DIAGNOSTICS PAGE

3-70. The DIAGNOSTICS page is displayed when softkey 8 (press EXTN softkey to display softkey 8) is pressed on the MENU page. On this page the operator can perform SELF TEST, front panel test, graphics display test, disc cleaning, and disc copy (user-area only). A detailed description of the DIAGNOSTICS page is given in Figure 3-32.

3-71. SOFTKEY PROMPTS (SKP)

3-72. Softkey prompts (the function of each softkey) are displayed along the right side of the CRT display. There are eight softkeys, and the softkey prompts for the lower seven keys change depending on the page being displayed and the position of the Field Pointer (▶) on the CHANNEL DEFINITION, SOURCE SETUP, and MEAS/DISP MODE SETUP pages. The softkey prompt of the top softkey is always EXTN (extended), regardless of the page being displayed or the position of the Field Pointer. EXTN is displayed only when additional softkey functions exist.

3-73. SYSTEM MESSAGES

3-74. System messages are instructions to the operator and are displayed on the System Message Line (refer to Figure 3-5), which is located at the bottom of the CRT display. System messages guide the operator through all phases of instrument operation, and make measurement setup a simple matter of filing in blanks on the CHANNEL DEFINITION, SOURCE SETUP, and MEAS/DISP MODE SETUP pages.

MENU PAGE

Figure A

Initial Condition:

When the 4145A is turned on, the display will be blank while SELF TEST is being performed. When SELF TEST has been completed and no fatal error have been detected, the MENU page will be displayed as shown in Figure A. The status of the instrument, as detected by the SELF TEST, is displayed at the bottom of the CRT.

- 1: HP-IB Address (0 30):
 Shows the setting of the HP-IB Control Switch (located on the rear panel). To change the address, turn the instrument off, set the desired address, and turn the instrument on again.
- 2: Output data delimiter: COMMA or CR/LF is displayed depending on the setting of the HP-IB Control Switch.
- 3: EOI (End or Identify): EOI is displayed when bit 7 of the HP-IB Control Switch is set to EOI ON.
- 4: Line Filter setting:
 Indicates the setting of the Line Filter Switch on the rear panel. (50Hz) indicates that the instrument is set for operation from a 50Hz AC source. The LINE FILTER switch on the rear panel should be set to the frequency of the AC source if accurate measurements are to be obtained.

5: SMU Status:

Displays each SMU channel number and its status. (10, 20, 30, 40) indicates that all SMUs are functioning properly. Each 2-digit number represents the channel number and the channel status.

For example, (10, 20, 31, 40) indicates that SMU 3 has a V offset error and should not be used. SMUs 1, 2, and 4, however, are functioning properly and can be used for measurement. When (!!!DOWN!!!) is displayed, the SMU control circuit is not functioning properly and, thus, measurement can not be made.

Softkey Prompts (SKP):

The MENU page has two softkey prompts (SKP1 and SKP2), as shown in Figure A. SKP1 is displayed when the MENU page first appears. To display SKP2, press the EXTN softkey; to re-display SKP1, press the EXTN softkey again.

Note

If the instrument is turned on after experiencing an extreme change of ambient temperature, one of error code may be displayed. In this case, allow the instrument to fully warm up (ignor the displayed error code), and then turn it off and on one time.

CHANNEL DEFINITION PAGE

Figure A

Purpose and function of this Page:

- 1. To assign voltage (V) and current (I) names to each channel that will be used in the measurement.
- 2. To set the source mode of each SMU. (Determines whether the SMU will be used as a V source or I source.)
- 3. To set the source function of each SMU. (Determines whether the SMU will be used as a constant source or variable source.)
- 4. To define User Functions.

Initial Condition:

When the 4145A is turned on, the CHANNEL DEFINITION page is automatically setup as shown in Figure A and the field-pointer (▶) will be located in the V column of SMU1. (This setup is the GENL measurement setup stored on each disc. Refer to paragraph 3-87.)

Field-Pointer (▶):

Changing or entering a V NAME, I NAME, SOURCE MODE, SOURCE FUNCTION, or USER FUNCTION can be accomplished only by positioning the field-pointer at the field to be changed. New information can then be entered with the appropriate front panel keys or softkeys. Positioning of the field-pointer is controlled by the CURSOR keys (FAST cannot be used on this page). When one of these keys is pressed the field-pointer will move one field in the direction of the arrow labelled on the key. Also, each time new information is entered into a field, the field-pointer will automatically move to the next field, as shown in Figure B.

Figure 3-21. CHANNEL DEFINITION Page (Sheet 1 of 4).

[hp] *** CHANNEL DEFINITION ***

	NAME		SOURCE		
CHAN	V	I	MODE		
SMU1	>				
SMU2				F	
SMU3					
SMU4				-	
Ve 1				-	
Ve 2				-	
Vm 1					
Vm 2					
USER	MANE CUNITY	EXPRESSIO	N		
1					
2	\longrightarrow				
t	L				

Figure B

NAME and USER FUNCTION Entry:

- (1) Position the field-pointer at the desired field.
- (2) Key in the desired name or user-function expression (it will appear on the Keyboard Input Line on the CRT as you do so).
- (3) Press ENTER. The name or expression will be moved from the Keyboard Input Line to the field at which the field-pointer is positioned and the field-pointer will move to the next field.

Note

V NAME, I NAME, and USER FCTN NAME can be up to six characters long, of which the first character must be alphabetic and the remaining characters must be alphanumeric. A NAME can be used only once on this page. USER FCTN expressions can be up to sixty characters long and can contain channel names (V or I), numerics, and arithmetic operators.

SOURCE MODE and SOURCE FCTN Entry:

- (1) Position the field-pointer at the desired field.
- (2) Select the desired mode or function from those listed on the softkey prompts. (The softkey prompts will change depending on the location of the field-pointer.)
- (3) When the softkey is pressed, the selected mode or function will appear in the field and the field-pointer will move to the next field.

Note

SOURCE MODE and SOURCE FCTN can be entered only with the softkeys.

V NAME and I NAME:

These are unique names used to identify each channel that is to be used in the measurement. Each SMU has two names: one for its source function and one for its monitor function. Both must be entered if the SMU has been assigned a SOURCE MODE. If no V NAME is entered for a voltage source (Vs) or voltage monitor (Vm), the channel is considered as not used. The NOT USE softkey can be used to delete the NAMEs, SOURCE MODE, and SOURCE FCTN of a channel and effectively turn it off. The NOT USE softkey is available only when the field-pointer is in the V NAME column.

SOURCE MODE:

Each SMU used in the measurement must be assigned a SOURCE MODE. Three SOURCE MODEs are available: V (voltage source/current monitor), I (current source/voltage monitor), and COM (common). A COM source is regarded as a voltage source whose output is 0V and compliance is 105mA. SOURCE MODE selection can be made only with the softkeys and only when the field-pointer is in the SOURCE MODE column.

SOURCE FCTN:

Each SMU and each Vs used in the measurement must be assigned a SOURCE FCTN. Four SOURCE FCTNs are available: VAR1 (main sweep), VAR1' (synchronous sweep), VAR2 (subordinate sweep), and CONST (constant source). SOURCE FCTN selection can be made only with the softkeys and only when the field-pointer is in the SOURCE FCTN column. Refer to paragraph 3-29 for details on VAR1, VAR1', and VAR2.

Note

If the SOURCE MODE of an SMU is COM, SOURCE FCTN is automatically set to CONST.

USER FCTN:

The user function is an extremely versatile, useful analysis aid. It is a user-defined arithmetic expression consisting of variables (V NAMES and I NAMES only) and constants and is executed at each measurement point during measurement. The results can be displayed (GRAPHICS PLOT, LIST, MATRIX, SCHMOO) along with measurement results. Any of the arithmetic operators listed in Table 3-5, plus \triangle and parentheses, can be used in USER FCTN expressions. The only variables that can be used in a USER FCTN expression are the names listed in the V NAME and I NAME columns on the CHANNEL DEFINITION page. Two USER FCTNs can be defined and each can be up to 60 characters long.

SOFTKEY PROMPTS and SOFTKEYS FUNCTIONS:

The softkey prompts (SKP) displayed on the CRT automatically change as the field-pointer is moved to different areas of the page. The relationship between field-pointer location and the softkey prompts is shown in Figures C and D. For example, when the field-pointer is at 4 in Figure C, SKP 6 in Figure D, will be displayed on the CRT. SKP 8 and SKP 9 are displayed only after the CHAN ASSIGN softkey has been pressed on SKP3.

Figure C

(I) SKP3	5 6 SKP 4	③ SKP 5	4 SKP6	278 skp7	SKP 8	SKP9
GENL			[VAR1		SMU1	V= 1
VēĒ⊆1c			VARZ		SMUZ	V= 2
ÇEŞ-10		СОМ	CONST		еима	
PFOOF			VAR1'		SMU4	
XESYGN					CHANGN	XSSIGN
08 <u>F</u>	78G					

Figure D

CHANGN (Channel Assignment):

This softkey allows you to quickly rearrange the SMU and Vs channel assignments, without having to reassign channel names (V and I), SOURCE MODEs, and SOURCE FCTNs. It is extremely helpful when DUT connections have been made or when measuring devices which require the same measurement setup but which have different pin-outs. The procedure is given below.

- (1) Move the field-pointer to area (1) in Figure C. SKP 3 in Figure D, will be displayed.
- (2) Press the CHAN ASSIGN softkey. The field-pointer will automatically move to the first row in the CHAN column, rows 1 through 6 in the CHAN column will be blank, and SKP8 will be displayed.
- (3) Assign the channel numbers in the desired order. The field-pointer will move down the CHAN column as you do so. When the field-pointer reaches the fifth row, SKP9 will be displayed.
- (4) Press the CHAN ASSIGN softkey again to enter the new channel assignments. The field-pointer will move back to area (1) in Figure C.

SECTION III Model 4145A

SOURCE SETUP PAGE

Figure A

Purpose and function of this page:

- 1. Select the sweep mode (linear or log) for the VAR1 source channel.
- 2. Set the START, STOP, and STEP values for the VAR1 source channel.
- 3. Set the START and STEP values and NO. OF STEP for the VAR2 source channel.
- 4. Set the RATIO and OFFSET values for the VAR1' source channel.
- 5. Set the HOLD TIME and DELAY TIME.
- 6. Set the source (output) value for the CONST channels.
- 7. Set the COMPLIANCE value for each source channel.

Setup:

To change or enter source channel parameters on this page, move the field-pointer (\blacktriangleright) to the desired field and enter the parameter value with the ENTRY keys. Each time an entry is made the field-pointer will automatically move to the next field, as shown in Figure B. Except for SWEEP MODE, only numeric values and engineering units (m, μ, n, p) can be entered on this page. The source name assigned to each source channel on the CHANNEL DEFINITION page is automatically entered on this page.

Note

Entered value may be automatically changed to acceptable value when the ENTER key is pressed or the page is changed.

Figure B

Parameter Entry:

When entering numeric values on this page, it is not necessary to enter the value unit. The unit for voltage values is V (volt); for current values, A (ampere); and for time values, s (seconds). For example, the key strokes required to enter a current value of 10.5mA are

This value, 10.5m, will be displayed on the Keyboard Input Line. When the ENTER key is pressed the entered value will be moved to the field at which the field-pointer is located and the unit A will be automatically entered. Voltage and current limits for the SMUs and voltage sources (Vs) are listed below. Refer to Table 3-6 for specifiable voltage and current.

SMU	Voltage Range	0 to ±100V
	Current Range	0 to ±100mA
Vs	Voltage Range	0 to ±20V

Note

Values can be entered in fixed decimal format or floating decimal format (scientific notation).

SWEEP MODE Selection:

SWEEP MODE can be selected only with the softkeys and only when the field-pointer is in the SWEEP MODE row of the VAR1 column.

LINEAR: Linear staircase sweep at the specified STEP value

LOG 10: `

LOG 25: Logarithmic staircase sweep at 10, 25, or 50 measurements per decade

LOG 50:)

START, STOP, STEP Values for VARI:

START and STOP determine the sweep range for the VAR1 source channel. START value can be less than, equal to, or greater than the STOP value. If LOG has been selected as the SWEEP MODE, START and STOP must have the same signs. If the specified START and STOP values are identical, no sweep is performed and measurement is made at one point only. STEP determines the number of measurement points for LINEAR sweep. If LOG has been selected as the SWEEP MODE, the instrument's operating system software automatically calculates and enters the appropriate STEP value. In LINEAR SWEEP MODE, if the STEP value is greater than the START/STOP range (STEP>|STOP-START|), no sweep is performed and measurement is made at the START value only. NO. OF STEP (number of steps) for VAR1 is automatically calculated by the instrument as

NO. OF STEP =
$$\left| \frac{\text{STOP-START}}{\text{STEP}} \right| + 1$$
 (3-2)

The START, STOP, and STEP values must be such that NO. OF STEP does not exceed 512. Also, both the START and STOP values for LOG sweep must be greater than zero. Even if zero is entered, it is automatically changed to 1mV or 1pA.

START, STEP, and NO. OF STEP for VAR2:

START, STEP, and NO. OF STEP (number of steps) determine the sweep range for the VAR2 source channel. VAR2 sweeps are VAR1 dependent; that is, VAR2 is swept one STEP for each complete sweep of VAR1. The maximum NO. OF STEP for VAR2 is 32. When only one monitor channel (SMU or Vm) is used the maximum number of measurement points is

Measurement Points = (NO. OF STEP VAR1) x (NO. OF STEP VAR2) (3-3)

If the number of measurement points exceeds 570, "Buffer full" will be displayed on the CRT.

RATIO and OFFSET Values for VARI':

VAR1' can be swept in unison with VAR1 at a constant RATIO or OFFSET. The output from the VAR1' source channel is calculated as

$$VAR1' = (RATIO) \times VAR1$$
 (3-4)
 $VAR1' = VAR1 + (OFFSET)$ (3-5)

To enter RATIO and OFFSET, move the field-pointer to area ② or ③ in Figure C, press the VAR1' RATIO or VAR1' OFFSET softkey, enter the desired value, and press EXECUTE. The entered value will be displayed on the CRT, between the two tables. Both RATIO and OFFSET can be entered, but only the one displayed on this page is valid during measurement.

Note

The specified RATIO or OFFSET values must be such that the VAR1' source channel does not exceed its maximum output (SMU, $\pm 100V$; Vs, $\pm 20V$). Also, output from VAR1' may lead or lag the VAR1 output by 1ms in V mode and from 4ms to 50ms in I mode. For log sweep measurements, only VAR1' RATIO can be specified.

HOLD TIME and DELAY TIME:

HOLD TIME is the initial wait time and the wait time after a VAR2 step change. DELAY TIME is the wait time after VAR1 step change. To enter HOLD TIME and DELAY TIME, move the field-pointer to area (2) or (3) in Figure C, press the HOLD TIME or DELAY TIME softkey, enter the desired value, and press EXECUTE.

SOURCE Value for CONSTANT Channels:

The NAME and SOURCE MODE of all source channels that were assigned the CONST SOURCE FCTN on the CHANNEL DEFINITION page are listed in the CONSTANT column on this page. The order in which they are listed is identical to the order on the CHANNEL DEFINITION page. To enter the SOURCE value, move the field-pointer to the desired field, key in the value, and press ENTER. The SOURCE value for a COM source channel is set to 0V by the instrument and cannot be changed.

COMPLIANCE Value:

COMPLIANCE is a special feature for protecting samples against over-voltage or over-current damage. Refer to paragraph 3-27. It limits the current output from a voltage source or the voltage output from a current source. COMPLIANCE for a COM source is set to 105mA by the instrument. The COMPLIANCE for a CONSTANT Vs is 10mA but is not displayed on this page.

Softkey Prompts (SKP):

Depending on the position of the field-pointer, the softkey prompts automatically change. Figure C shows the relationship between the position of field-pointer and softkey prompts.

Figure C

MEAS & DISP MODE SETUP PAGE

SKPI3	SKP14	SKPI5	SKP16	SKP17
MEASUREMENT MODE: SWEEP REAPH-	LINEAR		EXIN	
LTST	Lac	Ţī .		
DISPLAY MODE: GRAPHICS X axie Ylaxie Y2axie		VZ		
NAME		Ia		
MAX 1.0000V 10.00mA		14		
		VMI		
		AM5	DBE	NSI

Figure A

Purpose and function of this page:

- 1. Select the Display Mode for the measurement.
- 2. Select the monitor channels.
- 3. Set up the display parameters.

MEASUREMENT MODE:

The existing MEASUREMENT MODE — SWEEP or TIME DOMAIN — is displayed on this page but cannot be changed on this page. MEASUREMENT MODE depends on whether or not VAR1 is assigned to a source channel (SMU or Vs) on the CHANNEL DEFINITION page. If VAR1 is assigned, MEASUREMENT MODE is SWEEP; if not, MEASUREMENT MODE is TIME DOMAIN. Refer to paragraph 3-75 for details on TIME DOMAIN measurements.

DISPLAY MODE Selection:

When this page is initially displayed, the field-pointer (*) will be located on the DISPLAY MODE line and the display modes — GRAPHICS, LIST, MATRIX, SCHMOO — will be listed in the softkey prompt area of the CRT. The table below the DISPLAY MODE line will change depending on which display mode is selected. The field-pointer will automatically move as names are selected and values are input and the softkey prompts will change depending on the location of the field-pointer.

DISPLAY MODE can be selected only when the field-pointer is on the DISPLAY MODE line. To select the DISPLAY MODE, press the desired softkey. The field-pointer will automatically move to the NAME field of the DISPLAY MODE table.

GRAPHICS PLOT Setup:

Pressing the NEXT key when this page is as shown in Figure A will display the GRAPHICS PLOT page, as shown in Figure B. The name and scaling of each axis is determined by the NAME, SCL, MIN, and MAX information appearing on the MEAS/DISP MODE SETUP page.

Figure B

NAME:

Can be entered only with the softkeys. Determines the channels that will be used in the measurement. Only those channels whose names are listed in the softkey prompt area can be selected. The channel names or user-function names (press EXTN) selected on this page will be $X,\ Y_1$, and, if used, Y_2 axes on the GRAPHICS PLOT page.

SCL (Scale):

Determines the grid scaling on the GRAPHICS PLOT page. LINEAR or LOG can be selected with the softkeys. Not related to the SWEEP MODE selected on the SOURCE SETUP page.

MIN/MAX:

Determines the minimum and maximum values of each axis. Value units (V or A) are automatically entered by the instrument.

Note

MIN and MAX must have the same sign for an axis that is to be displayed with LOG scaling. Also, if 0 is entered for MIN or MAX in LOG scale, 0.1mV, 0.01pA, or 1E-35 is assumed.

GRAPHICS DISPLAY Scaling:

Scaling on the GRAPHICS PLOT page depends on the selected SCL and the MIN and MAX values.

1. When LINEAR has been selected and 0 is not within the MIN/MAX range (i.e., $0 \le MIN$ or MAX ≥ 0), MIN and MAX will be located as shown in Figure C.

When setup for LINEAR scaling, the X axis has 10 divisions and the Y axes, 11. The value per division is calculated as

$$Value/div. = \frac{|Max-Min|}{10}$$
 (3-6)

- 2. When LINEAR has been selected and 0 is within the MIN/MAX range (i.e., MIN<0<MAX), the MIN and MAX values specified on the MEAS/DISP MODE SETUP may be different from those displayed on the GRAPHICS PLOT page. This occurs when the MIN or MAX value is not a multiple of Value/div. in equation 3-6. Division scaling is always in reference to 0. For example if the MIN and MAX values on the MEAS/DISP MODE SETUP page are -.2 and 1, respectively, the MIN and MAX values displayed on the GRAPHICS PLOT page are -.12 and .96, respectively.
- 3. When LOG has been selected, the number of divisions depends on the number of decades between the MIN and MAX values. For example, when the MIN and MAX values are 1 and 9, respectively, only one division is displayed and the displayed MIN and MAX values are 1E00 and 1E+01; when the MIN and MAX values are 0.9 and 10, respectively, two divisions are displayed and the displayed MIN and MAX values are 1E-01 and 1E+01.
- Notes: 1) If Y1 and Y2 have different scale modes (SCL), the division lines displayed on the GRAPHICS PLOT page are for Y1, and Y2 will have a separate set of tick marks.
 - 2) In LOG scale, an extra decade may be displayed because of the quantum error, and also if the MIN/MAX range is very large, part of the graph will not have division lines.
 - 3) If MIN and MAX are close, their displayed value may include quantum error, and if they are so close that the difference between them is smaller than best resolution, the maximum allowable resolution is used.

lmV (voltage)
50pA (current)
100ms (time)
1E-34 (user function units)

Also, 1 division can not be less than 0.1 in LOG scale:

LIST DISPLAY Setup:

When LIST is selected on the DISPLAY MODE line, the MEAS/DISP MODE SETUP page will be as shown below.

[HP] ** MEAS & DISP MODE SET UP **

MEASUREMENT MODE: SWEEP

Figure D

The field-pointer will be in the top row of the NAMES table. Up to six of the names listed in the softkey prompt area can be entered. Measurement results of each name listed here will be digitally listed on the LIST DISPLAY page. The measurement results are those obtained at each VAR1 step.

MATRIX DISPLAY Setup:

When MATRIX is selected on the DISPLAY MODE line, the MEAS/DISP MODE SETUP page will be as shown below.

[hp] ** MEAS & DISP MODE SET UP **

MEASUREMENT MODE: SWEEP

Figure E

The field-pointer will be in the top row of the NAMES table. Only one of the names listed in the softkey prompt area can be entered. Measurement results of the name listed here will be digitally listed on the MATRIX DISPLAY page. The measurement results are those obtained at each VAR1 and VAR2 step.

Note

If VAR2 is not assigned on the CHANNEL DEFINITION page, only one sweep will be made and thus only one set of measurement results will be listed.

SCHMOO PLOT Setup:

When SCHMOO is selected on the DISPLAY MODE line, the MEAS/DISP MODE SETUP page will be as shown below.

[Hp] ** MEAS & DISP MODE SET UP **
MEASUREMENT MODE: SWEEP

DISPLAY MO	DE.	SCHMOD
NAME		HFE
	М	150. E+00
LIMIT	Δ	140. E+00
1	+	130. E+00
	1	120. E+00

Figure F

A SCHMOO PLOT is a three dimensional display, where VAR1 is the X-axis, VAR2 is the Y-axis, and the channel whose name is listed in the NAME field is the Z-axis. When measurement is made, the results are distinguished by the symbols listed in the SCHMOO table. X-axis and Y-axis scaling is determined by the VAR1 and VAR2 sweep parameters. The LIMIT for each symbol is the lower limit. For example, if the LIMITs for M and Δ are .500 and .100, respectively, M represents measurement results greater than .500 and Δ represents measurement results between .100 and .500. For measurement results less than the LIMIT for :, - is used. To enter a LIMIT, move the field-pointer to the M, Δ , +, or : field, enter the value with the ENTRY keys, and press ENTER.

SCHMOO PLOT Scaling:

X and Y axes scaling is determined by the VAR1 and VAR2 sweep parameters. The X-axis can have up to 41 points and the Y axis, up to 21 points. MIN and MAX values for each axis are calculated as follows:

1. SWEEP MODE of VAR1 is LINEAR:

X-axis (VAR1): MIN = a, MAX = a+40xb
Y-axis (VAR2): MIN = c, MAX = c+20xd
$$(3-7)$$
where $n = START$ value of VAR1

where a = START value of VAR1
b = STEP value of VAR1
c = START value of VAR2
d = STEP value of VAR2

when STEP = 0, MIN and MAX = START.

2. SWEEP MODE of VAR1 is LOG:

X-axis (VAR1): MIN = a, MAX = ax10
$$\frac{40}{\alpha}$$

Y-axis (VAR2): MIN = c, MAX = c+20xd (3-8)

where

a = START value of VAR1

 α = Number of steps per decade (10, 25, 50)

c = START value of VAR2

d = STEP value of VAR2

Note

Equation 3-8 applies only when START \leq STOP. When START > STOP, X-axis MAX value is calculated as

X-axis: MAX =
$$ax10^{-\frac{40}{\alpha}}$$
 (3-9)

GRAPHICS PLOT PAGE

Figure A

Function of this page:

- 1. Graphically display measurement results.
- 2. Allow analysis of measurement results with the softkeys and arithmetic capabilities.

MEASUREMENT:

Each time this page is displayed, the results of the previous measurement are automatically re-displayed, regardless of the display mode used in the previous measurement. If any change is made on the CHANNEL DEFINITION page or SOURCE SETUP page or if a NAME on the MEAS/DISP MODE SETUP page is changed, the results of the previous measurement are erased from the data buffer and a new measurement must be made. To make a new measurement, press the SINGLE, REPEAT, or APPEND key. Measurement results will be displayed as the measurement progresses.

Notes: 1) If the X axis value or Y axis value of a measurement point is outside the plot area, no trace will be drawn between it and the previous and succeeding measurement points.

- 2) In LOG scale, if the measurement data has two polarities, result is not correctly displayed.
- 3) Only 576 measurement points can be displayed.

Softkey Prompts (SKP):

Softkey prompts displayed on the GRAPHICS PLOT page are shown in Figure B.

SKP 18 is displayed when this page is first displayed. The other SKPs (19 through 23) can be displayed by pressing the EXTN softkey. When EXTN is pressed on SKP23, SKP18 is displayed. SKP23 (blank) can be used when taking photographs of the CRT.

SKP 18	SKP 19	SKP20	SKP2 I	SKP 22	SKP23
STORE	MARKER	CORSOR	<u>cursor</u>	START	
RECALL		← →	LINE	¥964	
COMMNT	PRITE	→ 4-	LINE	Yaey	
			LINES	SPART	
SEIPE	HARKER		9882	STEB	
		WYXEOW]	₹£	HAME	1 1
GRICK		SURBUR	SHANGE	PEHEY	L

Figure B

Softkey Functions:

STORE: Stores displayed measurement results.

RECALL: Recalls (re-displays) stored measurement results.

These two softkeys provide overlay comparisons of two measurement results. To store the results of a measurement, press the STORE softkey. The frame around the STORE softkey prompt will be highlighted until the data is completely stored, after which it will return to normal intensity. Measurement results are stored in the display buffer as background data, and when recalled, will be of slightly less intensity than normal. Two important points to remember are (1) scaling information is not stored and (2) rescaling is not performed on recalled measurement results, even if the AUTO SCALE function is used. Thus, if the plot to be overlaid is scaled differently from the stored plot, any comparison between the two is meaningless. To recall a stored plot, press the RECALL softkey. The frame around the softkey prompt will be highlighted and will remain so until the softkey is pressed again.

COMMNT :

User-entered comments of up to 30 characters can be displayed on the CRT. The procedure is as follows:

- 1. Press the COMMNT softkey. The frame around the softkey prompt will be highlighted and the BLUE key will be set to on.
- 2. Key in the comment (up to 30 characters). There is no restriction on character type.
- 3. Press the ENTER key. The comment will be displayed directly below the page title and the frame around the COMMNT softkey prompt will be de-highlighted (normal intensity).

With the comment function set to on (COMMNT softkey prompt highlighted), anything displayed on the Keyboard Input Line will be entered and displayed as a comment if the ENTER key is pressed, even if a comment is already displayed below the page title. This allows you to change or delete an existing comment. For example, to delete a comment, press the COMMNT softkey, CLEAR the Keyboard Input Line, and press ENTER.

Figure 3-24. GRAPHICS PLOT Page (Sheet 2 of 6).

SEXE:

Re-scales the plot area to provide optimum display of the existing measurement results. When auto-scaling is performed, the minimum and maximum measured values are used as the plot-area scaling factors. The MIN and MAX values specified on the MEAS/DISP MODE SETUP page, however, are not changed and the new scaling factors are cancelled when the PREV or MENU key is pressed. To re-scale the existing plot, press the AUTO SCALE softkey. The frame around the softkey prompt will be highlighted and will remain so until auto-scaling is completed, about 5 seconds.

野IGL :

Graticule or tick mode control. When this softkey is pressed, grid lines are replaced by tick-marks along each axis. To return to graticule mode, press this softkey again.

MARKER :

Displays a marker (@) which can be moved along plotted curves by rotating the MARKER dial. X, Y_1 , and Y_2 coordinates of the marker location are digitally displayed above the plot area. When the Y_2 axis is used, two markers (@,*) are displayed. Both have the same X-axis coordinates and move in unison. The marker can be used for keyboard calculations. Instead of entering the numeric value of a measurement result, the channel name can be entered.

Note

When a log sweep is made, marker location displayed may include quantum error.

PNTERE:

Used for higher resolution marker positioning. Normally the marker moves from one measurement point to the next and cannot be positioned between two measurement points. With the INTERPOLATE function, however, the marker can be positioned at any point between two measurement points.

MARKER :

Moves the marker or markers to the next VAR2 step. VAR1 does not change. If this softkey is pressed when the marker is at the last VAR2 step, the marker will return to the first VAR2 step. Also, INTERPOLATE is turned off when MARKER SKIP is performed.

LONGOR :

Displays the LONG CURSOR. When this softkey is pressed, the frame around the softkey prompt will be highlighted and the LONG CURSOR will be displayed at the center of the plot area. The LONG CURSOR can be moved to any point in the plot-area by pressing the appropriate CURSOR keys. Pressing the FAST CURSOR key while pressing one of the directional CURSOR keys moves the cursor faster. The X, Y₁, and Y₂ coordinates of the cursor location are digitally displayed above the plot area. The LONG CURSOR is turned off by pressing this softkey again, by turning on the SHORT CURSOR, or by pressing the PREV or MENU key.

→	:	Horizontal zoom-in (x2).
	:	Horizontal zoom-out (x2)
‡	:	Vertical zoom-in (x2).
	:	Vertical zoom-out (x2).

These softkeys are used in conjunction with the LONG and SHORT cursors to zoom-in on or zoom-out from the cursor location. When one of these keys is pressed, the cursor will be repositioned at the center of the plot-area and the whole plot-area, including the plotted curves, will be enlarged or reduced in the indicated direction. The relative position of the cursor and plotted curves remains the same. That is, when the cursor is centered by the zoom function, the plotted curves are moved in reference to the cursor. Vertical zooming is performed on the Y_1 -axis only.

₩₽X₽ow :

Moves the LONG CURSOR or SHORT CURSOR to the center of the plot area, maintaining the relative position of the cursor and plotted curves.

EHREJR:

Displays the SHORT CURSOR. When this softkey is pressed, the frame around the softkey prompt will be highlighted and the SHORT CURSOR will be displayed at the center of the plot-area. The CURSOR can be moved to any point in the plot-area by pressing the appropriate CURSOR keys. Pressing the FAST CURSOR key while pressing one of the directional keys moves the cursor faster. The X, Y_1 , and Y_2 coordinates of the cursor location are digitally displayed above the plot area. The SHORT CURSOR is turned off by pressing this softkey again, by turning on the LONG CURSOR, or by pressing the PREV or MENU key.

Note

When the LINE is displayed and either SHORT or LONG CURSOR is on, the location of the CURSOR may change if AUTO-SCALE, ZOOM or MOVE WINDOW is performed.

Moves the LONG CURSOR or SHORT CURSOR to the position of the MARKER. MARKER must be turned on.

LINE

Turns on the instrument's graphics analysis functions — LINE 1, LINE 2, GRAD MODE, GRAD VALUE, and CHANGE POINT. When this softkey is pressed, LINE 1 (solid line) and two SHORT CURSORS are displayed. The GRAD, 1/GRAD, X-intercept, and Y-intercept values are also displayed, below the plot area. The graphics analysis functions are available only when this softkey is turned on (frame highlighted).

: Displays LINE 1 (solid line)

LINEZ: Displays LINE 2 (dashed line)

Each line has two SHORT CURSORS. One cursor is moveable and the other is fixed. The gradient, or slope, of each line can be changed by moving the moveable cursor with the CURSOR keys. Both lines can be displayed at the same time, but only one (frame highlighted) can be moved. The gradient (GRAD), gradient reciprocal (1/GRAD), X-intercept, and Y-intercept values for both lines are displayed below the plot area. The moveable cursor and fixed cursor can be interchanged by pressing the CHANGE POINT softkey.

SESE

Fixed gradient value. When this key is pressed, the fixed cursor is turned off (only the moveable cursor remains), and the line moves at a constant gradient value.

₹CEE

Line gradient entry. The desired line gradient can be entered from the front panel. When this softkey is pressed, the existing gradient value will be displayed on the Keyboard Input Line. To enter a new value, press the CLEAR key, key in the desired value, and press ENTER. The line will automatically adjust to the new gradient.

SHANGE:

Interchanges the moveable and fixed cursors of the line.

Note

GRAD value and 1/GRAD value display 170E+39 and 5.88E-39 instead of overflow and zero, respectively.

START value for VARI.

' Changes the STOP value for VARI.

: Changes the STEP value for VARI.

START : Changes the START value for VAR2.

STEP value for VAR2.

学品 : Changes the HOLD TIME (0 - 655.35 sec).

무료 : Changes the DELAY TIME (0 - 6.500 sec).

These softkeys allow the operator to check or change the existing measurement parameters, without having to return to the SOURCE SETUP page. The new values are automatically entered on the SOURCE SETUP page. Measurement parameter values can be changed during measurement but only DELAY TIME is valid immediately; HOLD TIME is valid for the next VAR2 step; VAR1 and VAR2 parameters are valid for the next measurement.

Notes

- 1: Range and resolution are the same as those on the SOURCE SETUP page.
- 2: Error message "Step overflow" will be displayed when an attempt is made to enter a value that causes the number of steps for VAR1 to exceed 512.
- 3: VAR1 START, STOP, and STEP softkeys are disabled when VAR1 has not been assigned (e.g., Time Domain measurement), and when VAR1' is assigned VAR2 START and STEP softkeys are disabled when VAR2 has not been assigned. VAR1 STEP is disabled in log sweeps. Also, HOLD TIME and DELAY TIME are disabled in Time Domain measurements.

LIST DISPLAY PAGE

- a. VAR1 START, STOP, STEP values
- b. VAR2 START, STOP, STEP values
- c. VAR2 value for measurement results in the top row of the list
- d. Line number of the measurement results in the top row of the list
- e. VAR1 step values
- f. Measurement results obtained at each VAR1 and VAR2 step

Figure A

Function of this page:

- 1. Display the measurement results obtained at each VAR1 and VAR2 (if used) step for all monitor channels selected on the MEAS/DISP MODE SETUP page.
- 2. Allow analysis of measurement results with the softkeys and arithmetic capabilities.

MEASUREMENT:

Each time this page is displayed, the results of the previous measurement are automatically re-displayed, regardless of the display mode used in the previous measurement. If any change is made on the CHANNEL DEFINITION page or SOURCE SETUP page or if a NAME on the MEAS/DISP MODE SETUP page is changed, the results of the previous measurement are erased from the data buffer and a new measurement must be made. To make a new measurement, press the SINGLE, REPEAT, or APPEND key. Measurement results of the first three monitor channels selected on the MEAS/DISP MODE SETUP page will be displayed as the measurement progresses. The list contains four columns. Each VAR1 step is listed in the left-most column. The VAR2 STEP corresponding to the top line VAR1 STEP is displayed in brackets above the list (c in Figure A). The remaining three columns list the measurement results of the first three monitor channels selected on the MEAS/DISP MODE SETUP page. If more than three monitor channels are selected on the MEAS/DISP MODE SETUP page, measurement results for the fourth, fifth, and sixth monitor channels can be displayed by pressing the LEFT softkey. Only ten lines can be displayed. To display additional lines, use the ROLL UP or ROLL DOWN softkeys.

DISPLAY:

Measurement results are displayed in a 3x10 "window", as shown in Figure B. The "field" can be moved left, right, up, or down by pressing the LEFT, RIGHT, ROLL UP, or ROLL DOWN softkey to view other measurement results.

Figure B

Softkey Functions:

This page has only one softkey prompt (shown in Figure A). The function of each softkey is described below.

CURSOR

Turns on the line cursor (▶). When this softkey is pressed, the cursor will be displayed in the VAR1 column and it can be moved up or down with the CURSOR keys. The cursor is used when making keyboard calculations. Instead of entering the numeric value of a measurement result or VAR1 or VAR2 step, the channel name can be used in arithmetic expressions. Using the values listed in Figure A, suppose you want to calculate the square roof of IC when VCE is .1200V. Simply move the cursor down the VCE column and stop at VCE = .1200V, then key in

The square root of 86.06 µA will then be displayed on the Keyboard Input Line.

COMMNT

User-entered comments of up to 30 characters can be displayed on the CRT. The procedure is as follows:

- 1. Press the COMMNT softkey. The frame around the softkey prompt will be highlighted and the BLUE key will be set to on.
- 2. Key in the comment (up to 30 characters). There is no restriction on character type.
- 3. Press the ENTER key. The comment will be displayed directly below the page title and the frame around the COMMNT softkey prompt will be de-highlighted (normal intensity).

With the comment function set to on (COMMNT softkey prompt highlighted), anything displayed on the Keyboard Input Line will be entered and displayed as a comment if the ENTER key is pressed, even if a comment is already displayed below the page title. This allows you to change or delete an existing comment. For example, to delete a comment, press the COMMNT softkey, CLEAR the Keyboard Input Line, and press ENTER.

RIGHT

: Shifts the monitor channel columns to the right.

LEFT

: Shifts the monitor channel columns to the left.

ROLL

: Rolls the list up.

1884H

: Rolls the list down.

These softkeys allow the operator to view all measurement results. (Refer to Figure B.) When the ROLL UP or ROLL DOWN softkey is pressed and held, line movement is continuous.

Note

When ROLL UP/DOWN is performed during measurement which has more than 100 steps, displayed values may include rounding errors.

MATRIX DISPLAY PAGE

- a. VAR1 START, STOP, STEP values
- b. VAR2 START, STOP, STEP values
- c. Monitor Channel or User Function NAME
- d. Line number of the top line
- e. VAR1 step values
- f. Measurement results obtained at each VAR1 and VAR2 step
- g. VAR2 step values

Figure A

Function of this page:

- 1. Display the measurement results obtained at each VAR1 and VAR2 step for the monitor channel selected on the MEAS/DISP MODE SETUP page.
- 2. Allow analysis of measurement results with the softkeys and arithmetic capabilities.

MEASUREMENT:

Each time this page is displayed, the results of the previous measurement are automatically re-displayed, regardless of the display mode used in the previous measurement. If any change is made on the CHANNEL DEFINITION page or SOURCE SETUP page or if NAME on the MEAS/DISP MODE SETUP page is changed, the results of the previous measurement are erased from the data buffer and a new measurement must be made. To make a new measurement, press the SINGLE, or REPEAT, key. Measurement results of the monitor channel selected on the MEAS/DISP MODE SETUP page will be displayed as the measurement progresses. Results are displayed for each VAR1 step (e in Figure A) and VAR2 step (f in Figure A). Only three VAR2 steps and ten VAR1 steps can be displayed at one time. Measurement results not displayed can be viewed by pressing the LEFT, RIGHT, ROLL UP, or ROLL DOWN softkey.

DISPLAY:

Measurement results are displayed in a 3 x 10 "window," as shown in Figure B. The "field" can be moved left, right, up, or down by pressing the LEFT, RIGHT, ROLL UP, or ROLL DOWN softkeys to view other measurement results.

Figure B

Softkey Prompts:

This page has only one softkey prompt (shown in Figure A). Refer to the Softkey Functions description given in Figure 3-25 for the function of each softkey.

SCHMOO PLOT PAGE

- a. Monitor channel name selected on the MEAS/DISP MODE SETUP.
- b. Limits specified on the MEAS/DISP MODE SETUP page.
- c. VAR2 source name
- d. VAR1 source name

Figure A

Function of this page:

- 1. Plot measurement results on an X-Y-Z graph.
- 2. Allow analysis of measurement results with the softkeys and arithmetic capabilities.

MEASUREMENT:

To make a measurement, press the SINGLE or REPEAT key (APPEND can not be used). Measurement results will be displayed as the measurement progresses.

X-Axis and Y-Axis Scaling:

Scaling for the X and Y axes is determined by the START and STEP values of VAR1 and VAR2 and by the VAR1 SWEEP MODE. The maximum number of measurement points along the X-axis is 41; along the Y-axis, 21. However, 41x21 measurement points cannot be displayed, because the display buffer can hold only 575 measurement points.

l. Linear VAR1 Sweep:

X-axis (VAR1): Min. = a, Max. = $a + 40 \times b$ Y-axis (VAR2): Min. = c, Max. = $c + 20 \times d$

where

a = VAR1 START value
b = VAR1 STEP value
c = VAR2 START value
d = VAR2 STEP value

Note

STOP value is not used in determining axes scaling. Also, if the VAR1 STEP value or VAR2 STEP value is 0, the minimum and maximum scale values for the respective axis are set to the START value.

2. Logarithmic VAR1 Sweep:

X-axis (VAR1): Min. = a, Max. = a x $10^{\frac{40}{a}}$ Y-axis (VAR2): Min. = c, Max. = c + 20 x d

where

a = VAR1 START value

 α = Number of step per decade (10, 25, or 50)

c = VAR2 START value d = VAR2 STEP value

Note

If VAR1 START>STOP, the exponent in the equation for X-axis Max. becomes as follows.

X-axis Max. = a x $10^{-\frac{40}{\alpha}}$

Softkey Functions:

This page has only one softkey prompt (shown in Figure A). The function of each softkey is described below.

CURSOR :

Similar to the CURSOR on the GRAPHICS PLOT page. The cursor highlights the symbol at a measurement point. To move the cursor, use the CURSOR keys. The cursor can be used to simplify keyboard calculations.

Note

When the cursor is moved to a part of the plot area where there are no symbols, * is displayed and no Z-axis value is displayed.

COMMNT

Same as the COMMNT softkey on the other display pages.

: Stores displayed measurement results.

Replaces displayed measurement results with stored measurement results.

These softkeys are similar to the STORE and RECALL softkeys on the GRAPHICS PLOT page (Figure 3-24). The only difference is that recalled measurement results are not displayed over the existing measurement results; that is, only one set of measurement results is displayed. When the frame around the RECALL softkey prompt is highlighted, only stored measurement results are displayed. Conversely, when the frame is not highlighted only the results of the last measurement are displayed. STORE and RECALL operations on this page are unrelated to those on the GRAPHICS PLOT page. For example, measurement results stored on the GRAPHICS PLOT page cannot be recalled on this page.

AUTO SEQUENCE SETUP PAGE

Figure A

Function of this page:

Set up or edit an auto-sequence program.

Auto-Sequence Program:

An auto-sequence program is setup (written) by the operator and can perform a series of instrument operations, without operator assistance. An auto-sequence program can

- 1. call pre-stored measurement setups from the disc (GET P command),
- 2. perform a SINGLE measurement (SINGLE command),
- 3. store measurement results onto the disc (SAVE D command),
- 4. dump measurement results onto an HP-IB plotter (PLOT command),
- 5. print out measurement results onto an HP-IB printer (PRINT command),
- 6. half execution until CONT is pressed (PAUSE command),
- 7. wait a specified time (WAIT command), and
- 8. advance the page on an HP-IB plotter (PAGE command).

Programming:

Setting up the auto-sequence programs requires no special programming knowledge. When this page is first displayed, the field-pointer will be on line 1 and the auto-sequence commands will be listed in the softkey prompt area of the CRT. To enter a command, simply press the desired softkey. The selected command will be displayed on the line and if the command requires no parameters, the field-pointer will automatically move to the next line. If the command requires parameters (plot area, file name, wait time), the field-pointer will not move, indicating that the operator must enter parameters from the front panel. After the parameters have been keyed in and the ENTER key pressed, the field-pointer will move to the next line. Up to twenty-four lines can be entered. Blank lines are allowed but are ignored during auto-sequence program execution.

Program Commands:

There are eight program commands — GET P, SINGLE, SAVE D, PLOT, PRINT, PAUSE, WAIT, PAGE. They are available with the softkeys only. Each is described below.

GET P : GET P file name

This command calls the specified (file name) measurement setup from the disc and displays the display page (GRAPHICS, LIST, MATRIX, or SCHMOO) specified in the measurement setup. To enter this command, press the GET P softkey, key in the desired file name, and press ENTER.

SINGLE :

This command executes one measurement. Equivalent to pressing the SINGLE key on the front panel. If SINGLE is entered on line 1 of an auto-sequence program, the program can be executed only on the GRAPHICS PLOT, LIST, MATRIX, or SCHMOO PLOT page. Execution on any other page will result in error Z02. To enter this command, press the SINGLE softkey.

SAVE D : SAVE D file name

This command stores measurement results into the specified (file name) data file on the disc. The file name specified in this command must be unique; that is, the file name of an existing data file cannot be used. To enter this command, press the SAVE D softkey, key in the desired file name, and press ENTER.

PLOT : PLOT Xmin, Ymin, Xmax, Ymax

This command dumps the existing display (GRAPHICS PLOT, LIST, MATRIX, or SCHMOO PLOT) onto an HP-IB plotter. Scaling parameters (Xmin, Ymin, Xmax, Ymax) must be delimited by a comma or a space. To enter this command, press the PLOT softkey, key in the scaling parameters, and press ENTER.

PRINT

This command outputs measurement results to an HP-IB printer. To enter this command press the PRINT softkey.

PAUSE :

This command halts program execution until the CONT key is pressed. While the program is halted, the operator can change paper on the plotter, change test samples, etc. To enter this command, press the PAUSE softkey.

WAIT : WAIT time

This command stops program execution for the specified time. Specifiable time is from 0 to 65535 seconds. Fractional values are rounded to the nearest whole number. To enter this command, press the WAIT softkey, key in the desired wait time, and press ENTER.

PAGE

This command advances the plotter paper to the top of the next page. The plotter used must be equipped with automatic paper advance.

Program Edit Functions:

There are three program edit functions — ASP CLEAR, LINE DELETE, LINE INSERT. They are available with the softkeys only. Each is described below.

ASEAR :

Clears the entire auto-sequence program and returns the field-pointer to line 1.

HELETE :

Deletes the program line indicated by the field-pointer.

YNSERT :

Inserts one blank line between the line at which the field-pointer is located and the preceding line. The field-pointer remains at the blank line and a new command can be entered. If a line is inserted into a 24-line program, the last line is deleted.

Program Execution:

To execute an auto-sequence program, press the AUTO SEQ START/STOP key. The program will begin and the AUTO SEQ START/STOP indicator lamp will come on. The line number and the command being executed are displayed on the Keyboard Input Line during program execution. The program continues execution until it comes to a PAUSE command or until all lines have been executed. When the program is halted by the PAUSE command, press the AUTO SEQ CONT key to continue the program. To stop the program, press AUTO SEQ START/STOP key again. The indicator lamp will go off and the program will stop at the present line.

Note

An auto-sequence program cannot be executed when the instrument is measuring, plotting, printing, or in GL1 mode (under HP-GL control). The AUTO SEQ STOP key cannot be pressed when the auto-sequence program is executing a GET P or SAVE D command.

Note

Once an auto-sequence program containing a SAVE D command is executed, it can not be executed again. If it is executed again, error M05 (file name already reserved) will be displayed on the CRT. To run the auto-sequence program again, change the file name specified in the SAVE D command.

Note

If an error-code ZXX is displayed, the auto-sequence program stops and waits as if a PAUSE command was executed. Refer to Table 3-3 for meaning of the error-code. To continue the program, press the CONT key. The program continues from the next line.

Note

If the length of PLOT command exceeds 26 characters, line number is not displayed when the ASP is executed.

OUTPUT SEQUENCE SETUP PAGE

Figure A

Function of this page:

Specify the order in which source channels begin output. When measurement begins, the source channels used in the measurement are turned on in the order specified on this page. The source channels' output sequence is important when measuring devices such as MOSFET transistors or operational amplifier ICs that have FET inputs.

Setup:

When the instrument is turned on, the output sequence setup is as shown above. To change the setup use the CURSOR keys (to move the field-pointer) and the softkeys.

Note

To include the OUTPUT SEQUENCE SETUP when storing a measurement setup onto the disc, you must return to the MENU after setting up this page. Only then will the new OUTPUT SEQUENCE SETUP be valid for a SAVE P operation.

USER FILE CATALOG PAGE

- a. Available records
- b. File name
- c. File type
- d. File comments
- e. File address
- f. Number of records reserved
- g. Number of records used
- h. System files
- i. User-area files

Figure A

Function of this Page:

- 1. Display information pertaining to files stored on the disc.
- 2. PURGE (delete) files from the user-area and REPACK the user-area.

Each of the five work-discs furnished with the 4145A has a user-area in which up to 131 records or 96 files can be stored. The number of records per file depends on the file type, as listed below.

Program files (measurement setups)

Data files (measurement results with setups)

ASP files (auto-sequence program files)

3rcd/file
12rcd/file

Information for up to 12 files can be displayed on this page. To display information on other files, press the ROLL UP or ROLL DOWN softkey. Each item — a through i — in Figure A is described below.

a. Available records:

Shows the number of unreserved records.

b. File name:

Lists the names of all files stored on the disc.

c. File type:

Lists the file-type of each file stored on the disc.

Sys: System file

Pro: Program file (measurement setups), file type P Dat: Data file (measurement results), file type D Seq: ASP file (auto-sequence program), file type S

When storing or recalling a file, the file type — P, D, or S — must be specified in the SAVE or GET command. System files can be recalled only when the CHANNEL DEFINITION page is displayed and only with the softkeys.

d. File comments:

Lists any comments that were specified in the SAVE command when the file was stored. When specifying a comment in the SAVE command, it must be entered after the file name, must be preceded by a space, and must not be more than eight characters long.

e. File address:

Shows the address of the first record of each file. The first user-area address is 229. Addresses below 229 are used for operating system software and system files.

f. Number of records reserved:

Shows the number of records reserved for each file. Normally, the number of records reserved is equal to the number of records used, but there are cases when this is not true. For example, if a program file (3 records) is stored after a data file (12 records) has been purged, the new file will have 12 records but will use only 3. The 9 unused records are wasted. They cannot be used for storage of additional files. To delete reserved but unused records, press the REPACK softkey.

g. Number of records used:

Shows the number of records used by each file. This number depends on the file type.

h. System files:

Four general purpose application programs. They can be recalled only when the CHANNEL DEFINITION page is displayed and only with the softkeys. System files cannot be purged.

Softkeys:

This page has only one softkey prompt (shown in Figure A). The function of each softkey is described below.

PURGE :

This softkey is for deleting files from the disc. To purge a file, press the PURGE softkey, key in the file type and file name, and press EXECUTE. If the CLEAR key is pressed before EXECUTE, the PURGE operation is cancelled.

REPACK :

This softkey repacks all files in the user-area. Unused records resulting from a PURGE operation are closed. To repack the user-area, press the REPACK softkey and then press EXECUTE. The time required to complete the REPACK operation depends on the number of unused records, ranging from a few seconds to a few minutes.

CAUTION

DO NOT TURN OFF THE INSTRUMENT WHILE REPACK IS BEING PERFORMED. TO DO SO MAY ERASE THE USER-AREA FILES.

Note

When REPACK is performed, the file order may change.

CAT

If the disc is changed while the FILE CATALOG page is displayed, this softkey displays the FILE CATALOG of the new disc.

RULL:

This softkey rolls-up the file list. If this softkey is pressed and held, continuous roll-up is performed.

B8Wh :

This softkey rolls-down the file list. If this softkey is pressed and held, continuous roll-down is performed.

OPERATION GUIDE PAGE

Figure A

Function of this page:

Provide basic operating instructions. Included are descriptions of the display control keys, display relationships, and a list of error messages and error codes. This page has seven screens. To view screens 2 through 7, use the NEXT or PREV key.

Construction:

Screen flow is as shown below. The MENU key can be pressed at any time.

Figure B

Figure 3-31. OPERATION GUIDE Page.

DIAGNOSTICS PAGE

Figure A

- a. System name
- b. Revision number
- c. Software data code

Functions of this page:

- 1. Display the disc's system label.
- 2. Perform Disc-Drive Head cleaning.
- 3. Copy all files in the user-area onto another disc.

Softkey functions:

One Softkey Prompt (SKP31) is displayed on this page.

1 SELF : Self Test

Two Self-Tests are performed when this softkey is pressed. They are as follows:

- 1. MPU Test: Checks the ROMs and RAMs. If an abnormality is detected, an error-code will be displayed in the center of CRT.
- 2. SMU Test: Checks SMUs 1 through 4 and their control circuit. If an abnormality is detected, CHAN (!!! DOWN!!!) or CHAN (10, 20, 31, 40) will be displayed. In the latter, SMU3 is down.

If the SELF TEST detects an abnormality, contact the nearest Hewlett-Packard Sales or Service Office.

Figure 3-32. DIAGNOSTICS Page (Sheet 1 of 3).

2 FEST : Front Panel Test

This softkey is used for testing the operation of the front panel controls. When this key is pressed, the display will change to that shown in Figure B and the front panel lamp test will begin. In the lamp test, all lamps on the front panel are momentarily turned on and then turned on one at that time. During the lamp test no keyboard operations can be performed. When the lamp test is completed, the rotary dial test and key test can be performed. To perform the rotary dial (MARKER) test, rotate the dial and observe the COUNT display on the CRT. Rotating the dial clockwise 360 degrees increases COUNT by 120; rotating the dial counterclockwise 360 degrees decreases COUNT by 120. COUNT can be reset to zero by pressing the CLEAR key. In the key test, NEXT KEY number of the key that should be pressed next; LAST KEY shows the number of the key that was just pressed. Key numbers are shown in Figure C. To perform this test, press key 1; LAST KEY should change to 1 and NEXT KEY , to 2. Continue in this manner until all the keys have been checked. When key 66 (EXECUTE) is pressed, NEXT KEY and LAST KEY will both be 66, and when key 66 is released, the display will change back to that shown in Figure A.

Figure B

Figure C

Figure 3-32. DIAGNOSTICS Page (Sheet 2 of 3).

3 G.D.: Graphic Display Test

This softkey is used for INTENSITY and FOCUS adjustments. Adjustment procedure is given in Figure 3-6.

4ctean : Head Cleaning

This softkey provides Disc Drive Head cleaning. The procedure is given in Figure 3-48.

5 USER : User File Copy

This softkey is used for copying the user-area files onto another disc. The procedure is given in Figure 3-47.

3-75. TIME DOMAIN MEASUREMENT SETUP

3-76. The 4145A can measure voltage or current as a function of time. This is called a time domain measurement and is made possible by replacing the main sweep, VAR1, with time. Measurement is made at constant, user-specified time intervals and results can be displayed on the GRAPHICS PLOT, LIST DISPLAY, MATRIX DISPLAY, or SCHMOO PLOT page, just as in a normal VAR1 sweep measurement. (If results are to be displayed on a SCHMOO PLOT, VAR2 must be used.) The page-by-page setup for a typical time domain measurement, along with measurement results, is shown in Figure 3-33.

- 1) Do not select VAR1 as the source function for any of the source channels. VAR2, however, can be selected, if desired. VAR1' can not be used.
- 2 Because VAR1 is not assigned on the CHANNEL DEFINITION page, the VAR1 column on the SOURCE SETUP page is blank.
- 3 Enter the SOURCE and COMPLIANCE values for each CONSTANT source. If VAR2 is to be used, enter the sweep parameters.
- 4 WAIT TIME: Identical to the HOLD TIME of a VAR1 sweep measurement. Settable range is 0 to 100 seconds with 10 millisecond resolution.
- (5) INTERVAL: The time between measurements. Settable range is .01 to 10 seconds with 10 millisecond resolution.
- 6 NO. OF RDNGS: The number of measurements to be made. If VAR2 is used, this is the number of measurements to be made at each VAR2 step. Settable range is 1 to 512. However, if VAR2 NO. OF STEP x NO. OF RDNGS 570, "buffer full" will be displayed when measurement is made.

Figure 3-33. Time Domain Measurement Setup (Sheet 1 of 2).

Example Measurement

Note

If INTERVAL is too short, error-code (e.g. Error D08) will be displayed. In this case, data is meaningless because the next measurement begins before the present measurement is completed. This meaningless data is not displayed.

Figure 3-33. Time Domain Measurement Setup (Sheet 2 of 2).

3-77 DUT CONNECTION

3-78. DUTs can be connected to the 4145A through the 16058A Test Fixture or through the furnished connector plate (P/N: 04145-60001). Connection using the 16058A is described in paragraph 3-79 and connection using the furnished connector plate, in paragraph 3-81.

3-79. DUT Connection Using the 16058A

3-80. The 16058A Test Fixture is designed to connect packaged devices, such as transistors, diodes and ICs, to the SMUs, voltage sources, and voltage monitors on the 4145A. Eight different, interchangeable DUT Socket Boards are furnished with the 16058A. Connection between the 4145A and 16058A is shown in Figure 3-34. Also shown are examples using four of the furnished DUT Socket Boards.

The procedure for connecting the 16058A is as follows:

- 1. Turn off the 4145A. If the 24-pin Shorting Connector (P/N: 04145-61623) is connected to the System Cable connector on the rear panel, remove it.
- 2. Connect the 16058A to the 4145A as shown below. Use the furnished System Cable (P/N: 16058-61604) and triaxial cables (P/N: 16058-61603). The System Cable contains the Vs lines, Vm lines, and the fixture-lid-open detection line.

CAUTION

THE SYSTEM CABLE CONNECTOR AND THE HP-IB CONNECTOR, BOTH OF WHICH ARE LOCATED ON THE 4145A'S REAR PANEL, ARE IDENTICAL. DO NOT CONNECT THE 16058A TO THE HP-IB CONNECTOR OR THE HP-IB CABLE TO THE 4145A'S SYSTEM CABLE CONNECTOR.

3. Select a DUT Socket Board suitable for the device to be measured, and insert it into the 16058A's Personality Board. To insert the board, pull out the two black fasteners, place the socket board on the Personality Board so that it covers the opening, and press the two black fasteners.

4. To connect the SMU, Vs, and Vm terminals on the Personality Board to the terminals on the DUT Socket Board, use the furnished connection leads (P/N's: 16058-61600, 16058-61601, and 16058-61602). Examples are given below.

Example 1: Transistor Socket Board

Connect SMUs 1 through 4 directly to terminals 1 through 4, respectively, as shown below.

terminal 1 to SMU1 terminal 2 to SMU2 terminal 3 to SMU3 terminal 4 to SMU4

Example 2: 8-pin Socket Board

Connect SMUs 1 through 4 directly to terminals 1, 3, 5, and 7, respectively, as shown below.

terminal 1 to SMU1 terminal 3 to SMU2 terminal 5 to SMU3 terminal 7 to SMU4

Figure 3-34. DUT Connection Using the 16058A (Sheet 2 of 4).

Example 3: Using the CONNECTION SWITCH

Connect the Socket Board terminals and SMUs 1 and 2 to the CONNECTION SWITCH, as shown below. When the switch is set to position 1, the SMUs are connected to the top two terminals (NARROW) of the Socket Board and when it sets to position 2, the SMUs are connected to the lower two terminals. When the switch is set to the center position, the Socket Board is not connected to the SMUs.

The Connection Switch is as shown below:

Example 4: Blank Teflon Board

This board is used when measuring high resistance components or components that can not be measured with the other Socket Boards. To connect the component, use the miniature-clip leads (P/N: 16058-61602).

Figure 3-34. DUT Connection Using the 16058A (Sheet 3 of 4).

- 5. Turn on the 4145A and set up the measurement as required.
- 6. Close the test fixture lid and press SINGLE, REPEAT, or APPEND to start the measurement.

Note

If the output voltage from an SMU or Vs will exceed ±42V during the measurement, the test fixture lid must be closed to start the measurement. If an attempt is made to start the measurement while the test fixture lid is open, "Close the fixture lid" will be displayed on the CRT and measurement will not begin.

Note

If the test fixture lid is opened during a measurement in which the output voltage exceeds $\pm 42V$, measurement will stop immediately and all sources will be turned off (0V) as if the STOP key had been pressed.

7. The figure below shows the connections between the 4145A and the 16058A.

Figure 3-34. DUT Connection Using the 16058A (Sheet 4 of 4).

3-81. DUT Connection Using the Connector Plate

3-82. The furnished connector plate (P/N: 04145-60001) has four BNC connectors and four triaxial connector. It is intended for use with user-fabricated or user-furnished test fixtures. For best measurements results, the test fixture should be enclosed in a shielding-box and the connector plate should be mounted on the box, as shown in Figure 3-35. This significantly reduces the effects of RFI and EMI, and is especially important when making low-current measurements on wafers at the probe station. The procedure for connecting the connector plate, shielding-box and 4145A is given in Figure 3-35.

Mounting the Connector Plate and Connecting the 4145A:

- 1. Drill the holes required to mount the connector plate onto the shielding-box. Hole spacing is given in Table 1-3.
- 2. Mount the connector plate on the shielding-box. Make sure there is good electrical contact between the plate and the box.
- 3. Turn off the 4145A.
- 4. Connect the furnished 24-pin Shorting Connector (P/N: 04145-61623) to the System Cable connector (labelled TO 16058A TEST FIXTURE) on the rear panel.

Note

If the Shorting Connector is connected, output from the SMUs is not limited to ±42V; that is, the 4145A assumes a fixture-lid-closed condition.

5. Connect the 4145A to the connector plate with the four furnished 3-meter triaxial cables (P/N: 04145-61622) and the four furnished 3-meter BNC cables (P/N: 04145-61630), as shown below.

Figure 3-35. DUT Connection Using the Connector Plate (Sheet 1 of 2).

- 6. Turn on the 4145A and make the necessary measurement setup.
- 7. The figure below shows the connections between the 4145A and the connector plate.

WARNING

A POTENTIAL SHOCK HAZARD EXISTS WHEN THE SHORTING CONNECTOR IS CONNECTED TO THE 4145A. DO NOT TOUCH THE OUTPUT TERMINAL OR INNER CONDUCTOR OF SMU DURING MEASUREMENT.

Note

Do not connect the inner shield (guard) of an SMU to ground (\bot) or common (\diamondsuit).

3-83. FLOATING MEASUREMENT

3-84. When the DUT is grounded or when the external voltage source or shield case for DUT is connected to ground, measurement can not be performed or measurement results may be affected by ground loops. The 4145A can be used for floating measurements by disconnecting the shorting-bar on the rear-panel. In this condition, the measurement and source circuit is floating above chassis ground, and voltages over ±42V may be present on the COM terminal.

WARNING

A POTENTIAL SHOCK HAZARD MAY COMMON IS NOT EXIST WHEN CONNECTED TO GROUND (SHORT-DISCONNECTED). ING-BAR NOT, REGARDLESS OF THE OUTPUT VOLTAGE, TOUCH THE COMMON TERMINAL OR OUTER CONDUCTOR OR THE SMU, ۷s, CONNECTORS DURING A FLOATING (SHORTING-BAR MEASUREMENT DISCONNECTED).

CAUTION

DO NOT FLOAT THE INSTRUMENT AT VOLTAGES EXCEEDING 42V.

Note

When the 16058A Test Fixture is used, floating measurements can not be made, because source common is connected to chassis ground inside the test fixture.

3-85. GUARDING

3-86. When low-current measurements are made (SMU's set to I monitor), guarding can be used to reduce the effects of leakage current. Voltage at the guard terminal is held at the same potential as the SMU output voltage. Connect the guard terminal (GD1 through 4 terminals on the Personality Board) of the SMU used for I monitor to the outer shield of the DUT. Figure 3-36 shows an example of guarding.

WARNING

GUARD POTENTIAL IS THE SAME AS SMU OUTPUT. DO NOT TOUCH THE GUARD TERMINAL DURING MEASUREMENT.

Note

Do not connect the guard terminal to the common terminal.

Figure 3-36. Example of Guarding.

Model 4145A SECTION III

3-87. APPLICATIONS PACKAGE

3-88. Each disc furnished with the 4145A contains the following four setups for frequently made measurements:

- 1. GENL
- 2. B-Tr VCE-IC
- 3. FET VDS-ID
- 4. DIODE VF-IF

When the 4145A is turned on, GENL is automatically loaded. The other furnished measurement setups can be loaded by pressing the appropriate softkey on the CHANNEL DEFINITION page. These furnished setups can not be loaded with the GET command, nor can they be purged from the disc. The contents (channels used, sweep parameters, etc.) of each furnished measurement setup are listed in Table 3-7. Connection examples for each setup are given in Figure 3-37.

Table 3-7. Application Package Setups (Sheet 1 of 2)

	GENL	B-Tr VCE-IC	FET VDS-ID	DIODE VF-IF
SMU1 (V NAME/I NAME) MODE / FCTN	V1/I1 COM/CONST	VE/IE COM/CONST	VS/IS COM/CONST	VF/IF V/VAR1
SMU2 (V NAME/I NAME) MODE / FCTN	V2 / I 2 I /VAR 2	VB/IB I /VAR2	VDS/ID V /VAR1	
SMU3 (V NAME/I NAME) MODE / FCTN	V3/I3 V /VAR1	VCE/IC V /VAR1	VG/IG V /VAR2	V / I COM/CONST
SMU4 (V NAME/I NAME) MODE / FCTN	V4/I4 V /CONST			
Vs1 (NAME / FCTN) Vs2 (NAME / FCTN)	VS1/CONST VS2/CONST			
Vm 1 NAME / Vm 2 NAME	VM1/VM2			
USER FUNCTION		HFE = IC/IB		

Table 3-7. Application Package Setups (Sheet 2 of 2)

VAR1	SWEEP MODE START STOP STEP COMPLIANCE	LINEAR .000 V 1.000 V .010 V 100.0 mA	LINEAR .000V 1.000V .010V 100.0mA	LINEAR -2.5000 V 2.5000 V .0500 V 20.00mA	LINEAR5000 V 2.0000 V .0100 V 40.0 mA
VAR2 START NO OF STEP COMPLIANCE		20 .00 μA 20 .00 μA 5 2 .0000 V	10.00 µA 10.00 µA 5 2.0000 V	.0000 V -1.0000 V 5 1.000mA	
	NAME SOURCE / COMPLI	V 1 0 V / 1 05 m A	VE 0V/105mA	VS 0V/105mA	V 0V/105mA
CONST	NAME SOURCE/COMPLI	V4 0 V / 100mA			
CONST	NAME SOURCE/COMPLI	VS1 0V/			
	NAME SOURCE/COMPLI	VS2 0V/			
DISPLAY MODE			GRAP	HICS	
X axis	NAME SCALE MIN MAX	V3 LINEAR .0000 V 1.0000 V	VCE LINEAR .0000 V 1.0000 V	VDS LINEAR -2.5000 V 2.5000 V	VF LINEAR 5000 V 2.0000 V
Y axis	NAME SCALE MIN MAX	I 3 LINEAR .000 A 10.00mA	IC LINEAR .000A 10.00mA	IG LINEAR .000 A 1.000 A	IF LINEAR 10.00mA 40.00mA

A. GENL:

General setup assigning all V names and I names.

B. B-Tr VCE-IC:

Setup for measurement of NPN bipolar transistors. When the transistor is connected to the 16058A test fixture, as shown below, V_{CE} -Ic (collector/emitter voltage — collector current) characteristics common emitter Bipolar Transistor can be measured. Also, HFE (= IC/IB) is assigned as the User Function.

C. FET VDS-ID:

Setup for measurement of N-channel junction FETs (Field-Effect Transistor). When the FET is connected to the 16058A test fixture, as shown below, V_{DS} -I $_{D}$ (drain/source voltage — drain current) characteristics of a common drain FET can be measured.

D. DIODE VF-IF:

Setup for measurement of general PN junction diodes. When the diode is connected as shown below, $V_F - I_F$ (forward bias voltage — forward current) characteristics can be measured.

Figure 3-37. Connection Examples for Application Package.

3-89. HP-IB INTERFACE

3-90. The 4145A can be remotely controlled via the HP-IB, a carefully defined instrument interface which simplifies integration of instruments and a calculator or computer into a system.

Note

HP-IB is Hewlett-Packard's implementation of IEEE Std. 488, Standard Digital Interface for Programmable Instrumentation.

3-91. CONNECTION TO HP-IB

3-92. The 4145A can be connected into an HP-IB bus configuration with or without a controller (i.e., with or without an HP calculator). In an HP-IB system without a controller, the instrument functions as a "talk only" device (refer to paragraph 3-117 and 3-119.)

3-93. HP-IB STATUS INDICATORS

3-94. The HP-IB Status Indicators are four LED lamps located on the front panel. When lit, these lamps show the existing status of the 4145A in the HP-IB system as follows:

SRQ: SRQ signal from the 4145A to the

controller is on the HP-IB line.

Refer to paragraph 3-113.

LISTEN: The 4145A is set to listen.

TALK: The 4145A is set to talk.

REMOTE: The 4145A is under remote control.

3-95. LOCAL KEY

3-96. The LOCAL key releases the 4145A from HP-IB remote control and allows measurement conditions to be set from the front-panel. The REMOTE lamp will go off when this key is pressed. LOCAL control is not available when the 4145A is set to "local lockout" status by the controller.

Note

The 4145A is set to "local lockout" when the 4145A is in GL1 mode.

3-97. HP-IB CONTROL SWITCH

3-98. The HP-IB Control Switch, located on the rear panel, has seven bit switches as shown in Figure 3-38. Each bit has two settings: logical 0 (down position) and logical 1 (up position). The switch has three functions as follows:

- (1) Bit switches 1 through 5 (Address Bits) are used to set the HP-IB address (in binary) of the 4145A. Any address between 0 (00000) and 30 (11110) can be set.
- (2) Bit switch 6 (Data Form Bit) determines the output data delimiter. When the bit switch is set to 0, the delimiter is a comma (,); when set to 1, the delimiter is a carriage return and line feed (CR/LF).
- (3) Bit switch 7 (EOI; End or Identify) determines whether or not the 4145A sends the EOI signal when data transfer ends.

The HP-IB Control Switch settings are displayed when the 4145A is turned on. Refer to Figure 3-20.

Note

The HP-IB Control Switch, as set at the factory, is shown in Figure 3-38.

Figure 3-38. HP-IB Control Switch.

3-99. HP-IB INTERFACE CAPABILITIES

3-100. The 4145A has eight HP-IB interface functions. Refer to Table 3-8.

Table 3-8. HP-IB Interface Capabilities

Code	Interface Function* (HP-IB Capabilities)
SH1** AH1 T5	Source Handshake Acceptor Handshake Talker (basic talker, serial poll, talk only mode, unaddress to talk
L4	if addressed to listen) Listener (basic listener, unaddress to listen if addressed to talk)
SR1	Service Request
RLl	Remote/local (with local lockout)
DCl	Device Clear
DT1	Device Trigger
E1	End Message Sending

- * Interface functions provide the means for a device to receive, process, and transmit messages over the bus.
- ** The suffix number of the interface code indicates the limitation of the function capability as defined in Appendix C of IEEE Std. 488.

3-101. HP-IB CONTROL MODES

3-102. When controlled via the HP-IB, the 4145A has two modes:

(1) System Mode:

Setup and measurement is made by a controller via the HP-IB. This is much like manual setup and measurement operation.

(2) User Mode:

Direct control of the CRT and each SMU, Vs, and Vm via the HP-IB. The instrument is set to this mode when program code "US" is sent. Output from each SMU or Vs can be set, and measurement can be made by triggering the desired SMU or Vm. The CRT is blank in this mode, but can be used as a programmable graphics display by sending program code "GL2". To exit from this User Mode (return to System Mode), send a device CLEAR command or a paging command (DE, SS, SM, or MD).

3-103. HP-GL CONTROL OF THE CRT

3-104. The 4145A's CRT can be controlled via the HP-IB by using HP-GL (Hewlett-Packard Graphics Language) commands. There are two HP-GL modes: GLl, which can be used only when the 4145A is operating in System Mode; and GL2, which can be used only in User Mode. Each HP-GL mode is described below.

1. GLl Mode (Overlay Write):

This mode is set by sending program code "GLl." It is available only in the System Mode and only on the GRAPHICS PLOT page. In GL1 mode, additional information, such as labels, comments, lines, and curves, can be displayed on graphs plotted by the 4145A. Also, in GL1 mode the 4145A is set to "local lockout."

2. GL2 Mode (Blank):

This mode is set by sending program code "GL2." It is available only in the User Mode (programming code "US"). In GL2 mode, the CRT is completely independent from the 4145A's CRT control circuit and can be operated as a stand-alone graphics display.

If the display RAM contains too much display data, the 1345A may not be able to complete the display process within one refresh cycle. The display will be incomplete. To exit from the GL1 mode or GL2 mode, send program code "GL0."

To exit from the GL1 mode or GL2 mode, send program code "GL0."

3-105. Remote Program Codes and Parameter Setting

3-106. Figure 3-39 shows the available remote program codes and parameter settings. Program codes are divided into three categories: (1) System Mode program codes, (2) User Mode program codes, and (3) program codes common to both modes. User functions, OUTPUT SEQUENCE, PURGE, REPACK, DISC COPY, and HEAD CLEAN can not be programmed.

Programming notes:

1. Numeric values can be entered in fixed decimal format or floating decimal format. (max. 12 char and max. 2 digits exponent.)

Example: Fixed decimal: 25.32 Floating decimal: 2.532E+01

- 2. Voltage (V), current (A), and time (s) units are not required when entering numeric values.
- 3. Terminator (; or CR or LF) is required at the end of each parameter setting on a program line. In the examples given below, (TERM) represents the terminator.
- 4. Channel names must be enclosed in apostrophes (' ').

SYSTEM MODE PROGRAM CODES

Following program codes are used when the 4145A is set to System Mode.

Direct Paging (to change page):

DE: CHANNEL DEFINITION Page

SS: SOURCE SETUP Page

SM: MEAS & DISP MODE SETUP Page

MD: Display Page (page selected for DISPLAY MODE)

US: User Mode

Notes

- 1. When the 4145A receives a Direct Paging command, it checks the setup on the displayed page before proceeding to the specified page. If an illegal setup is detected, an error message will be displayed, the SRQ bit will be turned on, and the page will not be changed.
- 2. Display returns to the MENU page when the 4145A receives a Device Clear command.

Figure 3-39. Remote Program Codes and Parameter Setting (Sheet 1 of 9).

CHANNEL DEFINITION Page (program code "DE")

Setup for SMUs 1 through 4

CH
$$\frac{N^*}{(1)}$$
, $\frac{'XXXXXX'}{(2)}$, $\frac{'XXXXXX'}{(3)}$, $\frac{N}{(4)}$, $\frac{N}{(5)}$ (TERM)

- (1) SMU channel number (1 4)
- (2) V NAME (up to 6 characters)
- (3) I NAME (up to 6 characters)
- (4) SOURCE MODE (1-3)
 - 1: V
 - 2: I
 - 3: COM**
- (5) SOURCE FUNCTION (1-4)
 - 1: VAR1
 - 2: VAR2
 - 3: CONST
 - 4: VAR1'
 - * If nothing is specified after the channel number, the channel is turned off (NOT USE).
 - ** When SOURCE MODE is set to 3 (COM), SOURCE FUNCTION must be set to 3 (CONST).

Setup for Vsl and Vs2

- (1) Vs channel number (1 or 2)
- (2) V NAME (up to 6 characters)
- (3) SOURCE FUNCTION (1-4)
 - 1: VAR1
 - 2: VAR2
 - 3: CONST
 - 4: VAR1'
 - * If nothing is specified after the channel number, the channel is turned off (NOT USE).

Setup for Vml and Vm2

- (1) Vm channel number (1 or 2)
- (2) V NAME (up to 6 characters)
 - * If nothing is specified after the channel number, the channel is turned off (NOT USE).

Figure 3-39. Remote Program Codes and Parameter Setting (Sheet 2 of 9).

SOURCE SETUP Page (program code "SS")

Setup for VAR1

$$\frac{XX}{(1)}\frac{N}{(2)}$$
, $\frac{\pm NN.NNN}{(3)}$, $\frac{\pm N.NNNN}{(4)}$, $\frac{N.NNNN}{(5)}$, $\frac{N.NNN}{(6)}$ (TERM)

- (1) SOURCE MODE of VARI (VR or IR)
 - VR: Voltage Source

IR: Current Source

- (2) SWEEP MODE (1 4)
 - l: LINEAR
 - 2: LOG 10
 - 3: LOG 25
 - 4: LOG 50
- (3) START value
- (4) STOP value
- (5) STEP value*
- (6) COMPLIANCE value
 - * If SWEEP MODE (2) is set to 2, 3, or 4, omit STEP (5).

Setup for VAR2

$$\frac{XX}{(1)}$$
 $\frac{\pm N.NNNN}{(2)}$, $\frac{\pm N.NNNN}{(3)}$, $\frac{NN}{(4)}$, $\frac{N.NNN}{(5)}$ (TERM)

- (1) SOURCE MODE or the VAR2 (VP or IP)
 - VP: Voltage Source

IP: Current Source

- (2) START value
- (3) STEP value
- (4) Number of steps
- (5) COMPLIANCE value

Setup for CONSTANT SMUs

$$\frac{XX}{(1)}\frac{N}{(2)}$$
, $\frac{\pm N.NNNN}{(3)}$, $\frac{N.NNNN}{(4)}$ (TERM)

- (1) SOURCE MODE of the channel (VC or IC)
 - VC: Voltage Source

IC: Current Source

- (2) SMU channel number (1 4)
- (3) Output value
- (4) COMPLIANCE value

Setup for CONSTANT Vs

SC
$$\frac{N}{(1)}$$
, $\frac{\pm N.NNNN}{(2)}$ (TERM)

- (1) Vs channel number (1 or 2)
- (2) Output value

Figure 3-39. Remote Program Codes and Parameter Setting (Sheet 3 of 9).

HOLD TIME Setting

HT $\frac{\text{N.NN}}{(1)}$ (TERM)

(1) HOLD TIME

DELAY TIME Setting

DT $\frac{\text{N.NN}}{(1)}$ (TERM)

(1) DELAY TIME

VARI' RATIO/OFFSET Setting

$$\frac{XX}{(1)} \frac{\pm N.NN}{(2)} (TERM)$$

(1) RATIO/OFFSET (RT or FS)

RT: RATIO

FS: OFFSET

(2) Value

MEAS & DISP MODE SETUP Page (program code "SM")

Time Domain Measurement Setup (only when VAR1 is not selected on the CHANNEL DEFINITION page)

WAIT TIME Setting

WT
$$\frac{N.NNN}{(1)}$$
 (TERM)

(1) WAIT TIME

INTERVAL Setting

IN
$$\frac{\text{N.NN}}{\text{O}}$$
 (TERM)

(1) INTERVAL Time

NO. OF RDNGS Setting

NR
$$\frac{NNN}{(1)}$$
 (TERM)

(1) No. of Readings

DISPLAY MODE Selection

DM1: GRAPHICS

DM2: LIST

DM3: MATRIX

DM4: SCHMOO

Figure 3-39. Remote Program Codes and Parameter Setting (Sheet 4 of 9).

Setup for GRAPHICS mode ("DM1")

 $\frac{XX}{(1)}$ $\frac{'XXXXXX'}{(2)}$, $\frac{N}{(3)}$, $\frac{\pm N.NNN}{(4)}$, $\frac{\pm N.NNN}{(5)}$ (TERM)

(1) AXES

XN: X axis YA: Yl axis

YB: Y2 axis*

XT: X axis for time domain measurement**

- (2) Monitor channel NAME for the specified axis (must be one of the monitor channel names specified on the CHANNEL DEFINITION page).
- (3) SCALE 1: LINEAR 2: LOG
- (4) MIN value
- (5) MAX value

* Y2 axis is optional.

** For time domain measurements, (2) and (3) should be omitted.

Setup for LIST mode ("DM2")

LI
$$\frac{'XXXXXX'}{(1)}$$
, $\frac{'XXXXXX'}{(2)}$, $\frac{'XXXXXX'}{(3)}$, $\frac{'XXXXXX'}{(4)}$, $\frac{'XXXXXX'}{(5)}$, $\frac{'XXXXXX'}{(6)}$

(1) ∿ (6) Monitor channel NAMES. At least one NAME must be specified (must be the monitor channel names specified on the CHANNEL DEFINITION page).

Setup for MATRIX mode ("DM3")

(1) Monitor channel NAME (must be one of the monitor channel names specified on the CHANNEL DEFINITION page).

Setup for SCHMOO mode ("DM4")

SH
$$\frac{\mathsf{YXXXXXY}}{(1)}$$
, $\frac{\pm \mathsf{NN}.\,\mathsf{NN}}{(2)}$, $\frac{\pm \mathsf{NN}.\,\mathsf{NNN}}{(3)}$, $\frac{\pm \mathsf{N}.\,\mathsf{NNNN}}{(4)}$, $\frac{\pm \mathsf{N}.\,\mathsf{NNNN}}{(5)}$ (TERM)

- (1) Monitor channel NAME (must be one of the monitor channel names specified on the CHANNEL DEFINITION page).
- (2) Minimum value for "M"
- (3) Minimum value for "Δ"
- (4) Minimum value for "+"
- (5) Minimum value for ":"
 - * If no minimum value is specified for (2), (3), (4), or (5), the corresponding symbol will not be used in the SCHMOO PLOT. A comma(,) must be entered, however.

MEASUREMENT Codes (program code "MD")

ME1: SINGLE*
ME2: REPEAT
ME3: APPEND
ME4: STOP

* The GET (Get Execute Trigger) command can be used in place of the MEl program code. An example of the GET command is the TRIGGER command on the 85A or 9845A.

Following progam codes are valid on any page.

AUTO SEQ codes

AS1: START

AS2: CONTINUE

AS3: STOP

SAVE Function

SV
$$\frac{1}{(1)}\frac{X}{(2)}\frac{XXXX}{(3)}\frac{XXXXXX}{(4)}\frac{XXXXXXX}{(5)}$$
 (TERM)

- (1) File type
 - P: Program file
 - D: Program/Data file
 - S: ASP file
- (2) Space
- (3) File name (up to 6 characters)
- (4) Space
- (5) Comment (up to 8 characters)
- * (4) and (5) are optional.

GET Function

$$GT \frac{'X}{(1)} \frac{XXXX'}{(3)} (TERM)$$

- (1) File type
- (2) Space
- (3) File name

Assignment of Data Output Channel

(1) Monitor channel NAME (must be one of the monitor channel names specified on the CHANNEL DEFINITION page).

PRINT Function

PR: PRINT function ON*
PF: PRINT function OFF

* Refer to paragraph 3-129 for instructions covering HP-IB controlled plot operations.

Graphics Language (GL1) Mode (only on the GRAPHICS PLOT Page)

GL1: Graphics Display mode ON

GL0: Graphics Display mode OFF

Figure 3-39. Remote Program Codes and Parameter Setting (Sheet 6 of 9).

USER MODE PROGRAM CODES

Following program codes are used when the 4145A is set to User Mode.

User Mode

US: User mode ON*

To release the 4145A from this mode, send a page command ("DE", "SS", "SM", or "MD") or a device clear command.

Output command for SMUs

$$\frac{XX}{(1)} \frac{N^*}{(2)}$$
, $\frac{N}{(3)}$, $\frac{\pm N.NNNN}{(4)}$, $\frac{N.NNNN}{(5)}$ (TERM)

(1) SOURCE MODE (DV or DI)

DV: Voltage Source DI: Current Source

- (2) SMU channel number (1 - 4)
- (3) Output Range

For voltage source (0 - 3)

AUTO 0:

l: 20V

40V 2:

100V 3:

For current source (0 - 9)

AUTO 0:

1: lnA

2: 10nA

3: 100nA

4: 1 μA

10 µA

5:

6: 100 μΑ 7:

1 mA10mA8:

9: 100mA

- (4) Output value
- (5) COMPLIANCE value
 - * If nothing is specified after the channel number, the channel is turned off (NOT USE).

Figure 3-39. Remote Program Codes and Parameter Setting (Sheet 7 of 9).

Output command for Vs

DS
$$\frac{N}{(1)}$$
, $\frac{\pm N.NNNN}{(2)}$ (TERM)

- (1) Vs channel number (1 or 2)
- (2) Output value

Triggering (Measurement)

 $\frac{XX}{(1)}\frac{N}{(2)}$

(1) Measurement mode of the channel to be triggered

TV: Voltage Monitor

TI: Current Monitor

(2) Channel number

1: SMU1

2: SMU2

3: SMU3

4: SMU4

5: Vml

6: Vm2

Graphics Language (GL2) Mode

GL2: Graphic Display mode ON GL0: Graphic Display mode OFF

Note

In User Mode, measurement cannot be performed with the fixture lid open because of the protective function. To perform the measurement without closing the fixture lid, use the Shorting Connector as shown in Figure 3-35.

Figure 3-39. Remote Program Codes and Parameter Setting (Sheet 8 of 9).

COMMON PROGRAM CODES

Following program codes are available in the System Mode or in the User Mode.

INTEGRATION TIME

IT1: SHORT

IT2: MEDIUM

IT3: LONG

SELF TEST

SF

Data Ready Service Request

If "DR1" is sent (Data Ready Service Request ON), bit 1 (Data Ready) and bit 7 (RQS) of the 4145A's STATUS BYTE are set to 1 when measurement data is valid.

DR0: OFF DR1: ON

HP-IB Data Buffer Clear

To clear the HP-IB data output buffer and bit 1 (Data Ready) of the Status Byte. Buffer Clear must be performed before data output from the 4145A.

BC

Auto Calibration

CA0: OFF CA1: ON*

* Auto calibration in the User Mode is performed only once when "CA1" is sent. Also, if the mode is changed, Auto Calibration is set to OFF.

PLOT function

PL
$$\frac{NNN}{(1)}$$
, $\frac{NNN}{(2)}$, $\frac{NNNN}{(3)}$, $\frac{NNNN}{(4)}$ (TERM)

- (1) Xmin
- (2) Ymin
- (3) Xmax
- (4) Ymax

PF: PLOT function OFF

* Refer to paragraph 3-129 for instructions covering HP-IB controlled plot operations.

Figure 3-39. Remote Program Codes and Parameter Setting (Sheet 9 of 9).

3-107. HP-GL COMMANDS

3-108. HP-GL commands that can be used when the 4145A is set to User Mode (refer to paragraph 101) are listed in Table 3-9.

For more detailed information on HP-GL, refer to the operation manual of any HP-IB compatible plotter.

Table 3-9. HP-GL Commands (Sheet 1 of 3)

		Table 3-9. HP-GL Commands (She	eet 1 of 3)
Code	Name	Meaning	Coding Example *1
VECTO	R Group		
PU	Pen Up	Turns off the beam.	PU
PD	Pen Down	Turns on the beam.	PD
PA	Plot Absolute	Moves the beam to the point	PA X -coordinate, Y -coordinate,
		specified by the X- and Y-coordinates.	X -coorinate, Y -coordinate
PR	Plot Relative	Moves the beam the specified units.	PR X -increment, Y -increment, X -increment, Y -increment
CHARA	CTER Group		
CS	Designates	Selects the character set. *2	CS Character Set#
	Standard		
	Character Set		
LB	Labe1	Writes characters using the	LB(Characters) [ETX] *3
		assigned character set.	
DR	Relative	Selects the writingdirection. *4	DR run, rise
an	Direction	$(-128 \le \underset{rise}{\text{run}} \le 127)$	
SR	Relative	Selects the character size. *5	SR width, height.
CD	Character Size	N .1 1 .1 .1	
CP	Character Plot	Moves the beam the specified of characters.	CP horizontal, vertical
		(-128 ≤ number ≤ 127)	
LINE 7	TYPE Group		
LT	Line Type	Selects the line type.	LT pattern number *6
SP	Pen Select	Selects the beam intensity.	SP intensity number *7
VS	Velocity Select	Selects the beam writing speed.	VS velocity *8, beam intensity
	· .	0 1	number.
AXES (Group *9		
XT I	X Tick	Writes an X-axis tick mark	1 XT
X .	A IICK	at the present beam position	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
YT	Y Tick	Writes a Y-axis tick mark at	YT
- "		the present beam position.	
,	ı	the present beam position.	l i
SETUP	Group *10		
IP	Input P1 and P2 P2	Sets up the scaling points, P1 and P2.	IP Plx, Ply, P2x, P2y
OP	Output P1 and P2	Outputs the scaling points.	OP
IW	Input Window	Limits the plot area.	IW X _{LL} , Y _{LL} , X _{UR} , Y _{UR}

	Table 3-9. HP-GL Commands (Sheet 2 of 3)					
Code	Name	Meaning	Coding Example *1			
CONFIGURATION and STATUS Group						
DF	Default	Returns the CRT setup to the	DF			
IN	Initialize	default condition. *11 Returns to the default condition and clears the display.	IN			
IM	Input Mask	Selects mask value of the error number *12 which can cause an SRQ.	IM mask value			
OE	Output Error	Outputs the error number *12 that caused an SRQ.	OE			
0S	Output Status	Outputs the CRT's status byte. *13	os			
OPTCT	NAL INSTRUCTION G	roup *14				
MA	Memory Address	Sets the memory pointer to the specified address.	MA address number			
MJ	Memory Jump	Sets the "Memory Jump" command to the address.	MJ jump address			
MC	Memory Count	Outputs the memory count to which the memory pointer points.	MC			
MK	Memory Clear	Clears the user memory and resets the memory pointer.	MK			
PG	Page	= MK(Memory Clear)	PG			
AF	Advance Full Page	= MK(Memory Clear)	AF			
*1	Terminater (;	or LF) is required at the end of ea	ch command.			
*2	*2 Only one Character set is available on the 4145A.					
*3	Example fo	of Terminator (use ASCII CODE ETX). or LB command sent by HP85 (displays 717; "LB 4145A" & CHR \$ (3)	s 4145A)			
* 4	All run and ri	se values are converted into 0°, 90 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 45^{\circ} & \longrightarrow & 0^{\circ} \\ 135^{\circ} & \longrightarrow & 90^{\circ} \\ 225^{\circ} & \longrightarrow & 180^{\circ} \end{array}$			
* 5	Four character larger value o	f sizes (x1.0, x1.5, x2.0, and x2.5) f width or height as follows: $0 \le 1$ arger value $< 3 \longrightarrow x1.0$ s $3 \le 1$ arger value $< 4 \longrightarrow x1.5$ s $4 \le 1$ arger value $< 5 \longrightarrow x2.0$ s $5 \le 1$ arger value $\le 127 \longrightarrow x2.5$ s	ize ize ize			
*6	1	os are selectable as follows: 0: Line with dot at the last po or 2: Short dashed line 0: Long dashed line 7: Solid line	int			
* 7	Four beam inte	ensities are selectable as follows:				

0: Blank 1: Dim

2: Half brightness3: Full brightness

Table 3-9. HP-GL Commands (Sheet 3 of 3)

*8 Four beam speeds are selectable as follows:

5: 0.05 inch/µsec 10: 0.10 inch/µsec 15: 0.15 inch/µsec 20: 0.20 inch/µsec

- *9 Tick length is fixed at 0.8% of |P2x P1x| or |P2y P1y|.
- *10 IP, OP, and IW are fixed at P1 = (0,0), P2 = (2047, 2047). Also, the limits of the GRAPHICS PLOT page is LL = (220, 493), UR = (1570, 1725)
- *11 Default condition is as follows:

: 0° Relative Direction DR : Xl size SR Relative Character Size : Solid line LT Line Type SP Pen Select : Full brightness VS Velocity Select : 0.20 inch/usec IM Input Mask

- *12 Error number that occurs first is output. Error meanings are as follows:
 - 1: Instruction is not recognized (mask value=1)
 - 2: Wrong number of parameter (mask value=2)
 - 3: Bad parameter (mask value=4)
 - 4: Illegal character (mask value=8)
 - 7: All of the display memory has been used (mask value=64)
- *13 Status values output from the CRT status byte have the following meanings (more than one may exist):
 - 1: Beam is ON
 - 8: Initialized
 - 32: Error
- ORIGINAL INSTRUCTION Group controls the vector memory using the memory pointer. The vector memory outputs (to the CRT) the display data at the address designated by the memory pointer. The memory pointer scans the vecter memory. Using "MA", "MJ", "MC", and "MK", the display can be controlled. Available memory addresses are 2453 through 4094 in GL1 mode, and 410 through 4094 in GL2 mode.

3-109. DEVICE CLEAR

3-110. The 4145A's control settings return to the initial control settings described in paragraph 3-14 when it receives a Selected Device Clear or Group Device Clear.

3-111. DATA OUTPUT

3-112. The 4145A outputs measurement and status data to external devices via the HP-IB. The data output format depends on whether the 4145A is set to System Mode or User Mode. In System Mode, all measurement and status data stored in the data buffer are output when the 4145A receives program code "DO". In user mode, measurement and status data for the triggered channel are output when the 4145A receives program code "DO". The output formats are shown in Figure 3-40.

Data Output Format for the System Mode When the remote program code "DO" is sent, the 4145A outputs data in following format*1.

$$\frac{X}{(1)} \stackrel{\pm NN. \, NNN}{(2)} \stackrel{E\pm NN}{(3)} \stackrel{(4)}{(4)}$$
 X±NN. NNNE±NN, ···· X±NN. NNNE±NN $\underline{(CR)(LF)}$ (5)

- (1) Data Status*2
- (2) Measurement Data
- (3) Exponent*3
- (4) Comma (data delimiter)*4
- (5) Data Terminator
- 2. Data Output Format for the User Mode When the remote program code "TI 'CH#" or "TV 'CH#" is sent, the SMU makes a measurement and the 4145A outputs data in the following format.

$$\begin{array}{c|cccc} \underline{X} & \underline{X} & \underline{X} & \underline{\pm NN.NNN} & \underline{E\pm NN} & \underline{(CR)(LF)} \\ \hline (1) & (2) & (3) & (4) & (5) & (6) \end{array}$$

- (1) Data Status*2
- (2) Monitor Channel
 - A: SMUl
 - B: SMU2
 - C: SMU3
 - D: SMU4
 - E: Vml
 - F: Vm2
- (3) Measurement mode (V or I)
- (4) Measurement data
- (5) Exponent*3
- (6) Data Terminator

Figure 3-40. Data Output Format (Sheet 1 of 2).

- *1 The order of data output is the same as the displayed order.
- *2 Data Status indicates the condition of the monitor channel and is output in code, as listed below.
 - N: Normal
 - L: INTERVAL is too short.
 - V: A-D converter saturation
 - X: Oscillation
 - C: This channel compliance error
 - T: Other channel compliance error

Priority is as follows:

L>V>X>C>T>N

*3 Scientific notation is used.

10°	***************************************	E+00
$10^{-3}(m)$	***************************************	E-03
$10^{-6}(\mu)$	***************************************	E-06
10 ⁻⁹ (n)		E-09
$10^{-12}(p)$	•••••	E-12

*4 The delimiter, bit switch 6 on the HP-IB Control Switch (Figure 3-38), is set at the factory to comma (,). This causes the 4145A in the System Mode to output all data as a continuous string. When the data delimiter is set to CR/LF, a carriage return and line feed signal is output after each field. This is useful when outputting data to certain peripherals, such as a strip-printer.

3-113. SERVICE REQUEST STATUS BYTE

3-114. The 4145A outputs an RQS (Request Service) signal whenever bit 1, 2, 3, 4, 6, or 8 of the Service Request Status Byte is set. The make-up of the Status Byte is shown in Figure 3-41.

Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1
Emergency	RQS	Self-Test Fail	Busy	Illegal Program	END Status	Syntax Error	Data Ready

Bit 7 (RQS) indicates whether or not a service request exists. Following are the service request states of the 4145A.

Bit 1: Data Ready

This bit is set when complete measurement data is ready for output onto the HP-IB. It is reset when data transfer starts or when the 4145A receives program code "BC" (Buffer Clear).

Bit 2: Syntax Error

This bit is set when the 4145A receives an errorneous remote program code. If this bit is set while bit 8 is set, it has another meaning. Refer to the description for bit 8.

Bit 3: End Status

This bit is set when Self-Test, PLOT, or PRINT is completed.

Bit 4: Illegal Program

This bit is set when the 4145A receives an invalid program. If this bit is set while bit 8 is set, it has another meaning. Refer to the description for bit 8.

Bit 5: Busy

This bit is set when measurement or auto calibration is being performed. It is automatically reset when measurement or calibration ends. This bit does not set the RQS bit.

Bit 6: Self-Test Fail

This bit is set when Self-Test fails. It is reset when Self-Test is performed again and the result is pass. If this bit is set while bit 8 is set, it has another meaning. Refer to the description for bit 8.

Figure 3-41. Status Byte for the 4145A (Sheet 1 of 2).

Bit 7: RQS (Request Service)

This bit is set whenever bit 2, 3, 4, 6, or 8 is set. Also set when bit 1 is set if program code "DR1" (Data Ready ON) has been sent.

Bit 8: Emergency

This bit is set when a potentially dangerous condition exists. The meaning of this bit depends on whether bit 2, bit 4 or bit 6 is set. Each is described below.

Bit 2: Fixture lid open

This bit and bit 8 are set when the fixture lid is opened during or at the start of a measurement in which the output voltage will exceed ±42V. In user mode, regardless the output voltage, this bit is set if the fixture lid is open or shorting connector is not connected.

Bit 4: SMU shut down

This bit and bit 8 are set when SMU output is shut down by the instrument to prevent damage to SMU.

Bit 6: Power Failure

This bit and bit 8 are set when the SMU output was reset by a momentary power loss.

Note

All bits except bit 5 are reset by a Serial Poll, and all bits except bit 1 and 5 are reset by a Device Clear.

3-115. Programming Guide for 4145A

3-116. Sample programs for the HP Model 9825B Desktop Computer and HP Model 85A Personal Computer are provided in Figures 3-42 and 3-43, respectively.

Note

- Specific information for HP-IB programming with the 9825B or 85A is provided in the 9825B or 85A programming manual.
- 2. Equipment required for these sample programs includes:
 - 9825B Desktop Computer with 98210A String-Advanced Programming ROM, 98213A General I/O + Extended I/O ROM, and 98034B HP-IB Interface Card.
 - 85A Personal Computer with 00085-15003 I/O ROM, 00085-15004 Matrix ROM, and 82937A HP-IB Interface Card.
- 3. Before executing the sample programs, set the HP-IB control switch as follows:

Address: 17 Delimiter: comma

4. Before executing sample program 2, close the fixture lid or connect the shorting connecter.

Sample Program 1

Description:

These programs are examples of remote control, data output for a Bi-polar Transistor measurement made in the System Mode. The programs have three capabilities:

- (1) Control of the 4145A via the HP-IB
- (2) Measurement via the HP-IB
- (3) Data output from the 4145A via the HP-IB

9825B Program:

10: dim A\$[1100] 20: wrt717,"IT1 CA1 DR0 BC" 30: wrt717, "DE CH1, 'VE', 'IE', 3, 3; CH2,'VB','IB',2,2;CH3,'VC','IC',1,1 CH4" 40: wrt717, "VS1; VS2; VM1; VM2" 50: wrt717,"SS VR1,0,1,.05,50E-3;IP 10E-6,10±-6,4,3" 60: wrt717,"SM DM1,XN'VC',1,0,1;YA'IC', 1,0,10E-3" 70: wrt717, "MD ME1" 80: $rds(717) \rightarrow A$ 90: if bit (0,A)=0;gto 80 100: wrt 717,"DO 'IC' " 110: red717,A\$ 120: prtA\$ 130: end

85A Program:

130 END

10	DIMA\$ [1100]
20	OUTPUT717; "IT1 CA1 DR0 BC"
30	OUTPUT717; "DE CH1, 'VE', 'IE', 3,
	3;CH2,'VB','IB',2, 2; CH3, 'VC',
	'IC', 1, 1; CH4"
40	OUTPUT717; "VS1; VS2; VM1; VM2"
50	OUTPUT717;"SS VR1,0,1,.05,50E-3;
	IP 10E-6,10E-6,4,3"
60	OUTPUT717;"SM DM1 XN 'VC',1,0,
	1;YA 'IC',1,0,10E-3"
70	OUTPUT717;"MD ME1"
80	A=SPOLL(717)
90	IF BIT (A,0)=0 THEN 80
100	OUTPUT717;"DO 'IC' "
110	ENTER717;A\$
120	DISP A\$

These programs perform the following:

Line	Description
10	Define a string variable, A\$, to store measurement data.
20	Set measurement integration time (IT1), auto calibration (CA1), data ready
	(DR0), and data buffer clear (BC).
30/40	Setup the CHANNEL DEFINITION Page (DE).
50	Setup the SOURCE SETUP Page (SS).
60	Setup the MEAS & DISP MODE SETUP Page (SM).
70	Preceed to the GRAPHICS PLOT Page (MD) and perform one measurement
	(ME1).
80	Read the 4145A's Status Byte and assign the result to variable A.
90	Wait until bit 0 of variable A set to 1 (Data Ready).
100	Send a data output (DO) command to obtain the measurement data from the 'IC'
	monitor channel.
110	Enter the measurement data into the string variable, A\$.
120	Display (85A) or print (9825B) the string variable A\$.

The proceeding two programs can be modified, as follows, to make overlay plots on the GRAPHICS PLOT Page.

9825B Program: 85A Program: 100: dim G\$ [20] 100 DIM G\$ [20] 110: wrt 717, "GL1;IN" 110 OUTPUT717; "GL1;IN" 120: wrt 717, "PA1570, 493;PD; 120 OUTPUT717; "PA1570, 493;PD; PA220, 1725;PU" PA220, 1725;PU" 130: wrt 717,"PA1000, 1000; 130 OUTPUT 717; "PA1000, 1000; PD; SR 0, 3" PD; SR0,3" G\$ = "4145A"140: "4145A"→G\$ 140 150: wrt 717, "LB" & G\$ 150 OUTPUT717; "LB" & G\$ & char (3) & CHR\$ (3) 160: wrt 717, "GLO" 160 OUTPUT717;"GL0" 170: end 170 END

These program modifications perform the following.

Line Description

110 Set the 4145A to GL1 mode (GL1), and initialize the CRT (IN).

120 Draw a line from lower right corner to upper left corner of the plot area.

130 Move the beam (PA), and select the character size (SR).

140 Enter the data to be displayed into the string variable G\$.

150 PLOT"4145A" (LB).

160 Release the 4145A from GL1 mode.

These program modifications make overlay plots as shown below.

Figure 3-42. Sample Program 1 (Sheet 2 of 2).

Sample Program 2

Description

These programs are examples of remote control, data output in the User Mode. The programs have three capabilities:

- (1) Control of an SMU via the HP-IB
- (2) Trigger of the SMU via the HP-IB
- (3) Data output from the SMU via the HP-IB

Note

Before executing the program, close the fixture lid or connect the Shorting Connecter to the rear panel.

9825B Program:

85A Program:

These programs perform the following:

Line Description

- Define a string variable, A\$, to store measurement data.
- 20 Set the 4145A to User Mode (US).
- 30 Set measurement integration time (IT1), auto calibration (CA1), and data buffer clear (BC).
- 40/50 Set up SMU1 (DV1).
 - 60 Set up SMU2 (DV2).
 - 70 Trigger for I measurement of SMU1 (TII).
 - 80 Enter measurement data into the string variable, A\$.
 - 90 Display the string variable A\$.
- 100 STOP the output for SMU1 and SMU2.

Also, CRT Display can be used as a Graphic Display when program code "GL2" is sent and HP-GL program codes are used, as shown in Figure 3-42.

3-117. PLOT

3-118. The 4145A can directly dump an existing display onto an HP-IB plotter, without the aid of a controller. A list of recommended plotters is given in Table 3-10.

Note

Other plotters can be used, but they must have a LISTEN ONLY mode. Also, on some older type plotters, it may not be possible to precisely position alphabetic or numeric strings, such as labels, within a specified plot area.

Table 3-10. Recommended HP-IB Plotters

HP7225B	PLOTTER
HP7245B	PLOTTER PRINTER
HP9872C/T	PLOTTER
HP7580A	PLOTTER

Operating instructions for the PLOT function are given in Figure 3-44.

Connection to the Plotter:

- (1) Equipment:
 - An HP-IB plotter (setable to LISTEN ONLY) and an HP-IB Cable (e.g., 10631B).
- (2) Interconnect the 4145A and the plotter as shown below:

- (3) Turn off the plotter.
- (4) Set the plotter to LISTEN ONLY mode and then turn it on.

Plotting:

- (1) Select the desired page. If the GRAPHICS PLOT, LIST DISPLAY, MATRIX DISPLAY, or SCHMOO PLOT page is to be plotted, measurement can be made before the plot.
- (2) Press the PLOT key.
- (3) The following will be displayed on the Keyboard Input Line.

PLOT <u>200</u>, <u>200</u>, <u>7400</u>, <u>4800</u> Xmin Ymin Xmax Xmax

These values represent the lower-left (Xmin and Ymin) and upper-right (Xmax and Ymax) coordinates of the plot area that was used in the last PLOT operation. (Whenever a PLOT is made, the new plot area parameters are automatically stored on the disc.)

Figure 3-44. Plot Function (Sheet 1 of 2).

Note

The values displayed on the Keyboard Input Line when the PLOT key is pressed are in .025mm units. Note that the maximum value of the X coordinate and Y coordinate for the recommended plotters are different. Refer to the plotter's manual.

- (4) If necessary, change the displayed values with the EDIT Keys. ENTER key is not required.) The following limitations must be observed:
 - A. Xmin, Ymin, Xmax, and Ymax must not exceed 32767.
 - B. The specified plot area must be within the limits of the plotter.
 - C. Each value must be delimited by a comma (,) or space.
- (5) Press the EXECUTE Key to start plotting. "Plotting" will be displayed on the CRT's System Message Line. During plotting, the 4145A is in TALK ONLY mode, and the TLK lamp (HP-IB status indicators) will be lit. In this condition, only the PLOT or PRINT Key is available. Also, the Xmin, Ymin, Xmax, and Ymax values in effect when the EXECUTE key is pressed are stored on the disc, except when the disc is write-protected.
- (6) When the plot is completed, the instrument automatically returns to normal operation mode.

Note

To stop the PLOT, press the PLOT key or PRINT key. If the CLEAR key is pressed before the EXECUTE key is pressed, the PLOT operation will be cancelled. Plotting can not be temporarily stopped.

PLOT Contents:

- (1) Following are not plotted.
 - A. Softkey Prompts
 - B. Data on the Keyboard Input Area
 - C. Data on the System Message Line
- (2) Following are plotted when measurement data is in the Data Buffer and the CRT is displaying the GRAPHICS PLOT, LIST DISPLAY, MATRIX DISPLAY, or SCHMOO PLOT page.
 - A. Setup conditions for VAR1, VAR2, and CONSTANT Sources.
 - B. User Function expresions

Pen Selection:

When a multi-color plotter is used, pen# is selected as follows:

Pen#	Used for:
1	Grid Lines
2	Recalled Traces
3	Existing Traces
4	Plot Area Frame, Marker, Cursors, Lines

Note

Refer to paragraph 3-129 for instructions covering HP-IB controlled plot operations.

3-119. PRINT

3-120. The 4145A can directly print out measurement data on an HP-IB printer, without the aid of a controller. A list of recommended printers is given in Table 3-11.

Note

The printer must have a LISTEN ONLY mode.

Table 3-11. Reocommended HP-IB Printers

Operating instructions for the PRINT function are given in Figure 3-45.

Connection to the Printer:

Refer to steps (1) through (4) of "Connection to the Plotter" in Figure 3-44.

Printing:

- (1) Press the PRINT key. "PRINT" will be displayed on the Keyboard Input Line.
- (2) Press the EXECUTE key to start printing. "Printing" will be displayed on the CRT's System Message Line. During printing, the 4145A is in TALK ONLY mode, and TLK lamp (HP-IB status indicators) will be lit. In this condition, only the PLOT or PRINT key is available.
- (3) All measurement data stored in the Data Buffer is printed out.

Note

If no data is in the data buffer, nothing will be printed.

(4) When printing is completed, the instrument automatically returns to normal operation mode.

Note

To stop the PRINT, press the PRINT key or PLOT key. If the CLEAR key is pressed before the EXECUTE key is pressed, the PRINT operation is cancelled. Printing can not be temporarily stopped.

Print Contents:

- 1. Setup conditions for VAR1, VAR2 and CONSTANT Sources.
- 2. Measurement data

Note

User functions are not printed out.

Note

Refer to paragraph 3-129 for instructions covering HP-IB controlled plot operations.

3-121. EXTERNAL DISPLAY

3-122. The 4145A's CRT is equipped with X-Y-Z analog outputs which can be connected directly to a large screen graphics display. With the X, Y, and Z EXTERNAL CRT OUTPUTS (located on the rear panel) connected to an external display, the displays on the 4145A's CRT will be displayed on the external display also. Recommended external displays are listed in Table 3-12.

Note

The bandwidth of the external display must be at least 2MHz.

Note

Output impedance of the EXTERNAL CRT OUTPUTS is 330Ω (X and Y) and 240Ω (Z). Thus, the input impedance of the external display must be sufficiently higher to obtain satisfactory display results.

Table 3-12. Recommended External Displays

Model No.	Screen Size (HxW)
HP1304A	20cmx25cm
HP1311B	22cmx28cm
HP1317A	26cmx35cm
HP1310B	28cmx38cm
HP1321B	30cmx35cm

Figure 3-46 shows the interconnections between the 4145A and the external display. Details on the X-Y-Z analog outputs are described in the 1345A's operating and service manual.

Connection:

- (1) Equipment
 - External Display (equips X-Y-Z analog inputs) and three BNC-BNC cables
- (2) Interconnect the 4145A and External Display as shown below.

(3) In this condition, displays on the 4145A's CRT are also displayed on the external display.

Figure 3-46. External Display.

3-123. DISC COPY

3-124. All files in the user area of a 4145A disc can be copied onto another disc, either one at time or all at once. The procedure is given in Figure 3-47. The operating system software and the system files, however, can not be copied. Also, only 4145A replacement discs (P/N: 04145-61100) can be used.

Note

The 4145A is automatically reset after a disc copy operation.

Copy One File:

- (1) Load a desired file using the GET function.
- (2) Change discs and store the file by using the SAVE function.

Full User Area Copy:

(1) On the MENU page press the DIAGNOSTICS softkey. Display will be as shown below.

[hp]	***** DIAGNOSTICS *****	
1	REGULAR SELFTEST	1 SELE
2	FRONT PANEL TEST	
3	GRAPHIC TEST PATTERN	2 FEST
MAS	S STORAGE UNIT UTILITIES	3 G D
	SYSTEM LABEL Volume name : 45AGNL Revieton : A142	*cHEAR
4	Date code . :141081 HEAD CLEANING	S USER
5	USER FILE COPY	

- (2) Press the USER COPY softkey.
- Insert the Master Disc (disc to be copied) and press the CONTINUE softkey. A portion of the user area files will be loaded into the 4145A's RAM. This takes a few seconds.
- (4) Insert the Copy Disc (target disc) and press the CONTINUE softkey. The files loaded into the 4145A's RAM in step 3 will be copied onto the disc.
- (5) Repeat steps (3) and (4) if instructed to do so.
- (6) Copy is finished. To copy additional discs, repeat steps (3) and (4). To return to the initial condition, press the RESET softkey.

3-125. HEAD CLEANING

3-126. The read/write head in the flexible-disc drive unit should be cleaned every six months. If the 4145A is used in a dusty environment, head cleaning should be performed more frequently. Also, if the instrument does not properly perform the SAVE and GET operations, head cleaning should be performed immediately. The head-cleaning procedure is given in Figure 3-48.

Head Cleaning Procedure

Turn on the 4145A.

(1)

***** DIAGNOSTICS ***** [hp]REGULAR SELFTEST 1 FELF --- PASS ----FRONT PANEL TEST GRAPHIC TEST PATTERN 2 FEST a GLOT MASS STORAGE UNIT UTILITIES SYSTEM LABEL 4ctean Valume name : 45AGNL Revision . A142 Date code 141081 2 58kb HEAD CLEANING USER FILE COPY

Press the DIAGNOSTICS softkey on the MENU Page. Display will be as shown

- (3) Press the HEAD CLEAN softkey.
- (4) Remove the disc and insert the cleaning disc.
- (5) Press the HEAD CLEAN softkey again.
- (6) Head cleaning takes only a few seconds.

Note

Do not touch the exposed surface of the cleaning disc.

3-127. Protection Againt Hazardous Voltage Exceeding ±42V

3-128. To insure operator safety, the 4145A is equipped with a high voltage detect circuit that shuts down the SMUs and voltage sources when a potentially dangerous condition exists. If the lid of the 16058A Test Fixture is not closed at the start of a measurement in which there is a possibility that the voltage output from at least one SMU will equal or exceed ±42V, or if the lid is opened during such a measurement, the measurement will be aborted as if the STOP key had been pressed.

A switch inside the 16058A Test Fixture detects whether the fixture lid is open or closed. When the lid is closed, the switch connects the OPEN/CLOSE line of the system cable to ground, allowing the output voltage from any or all of the SMUs to exceed ±42V. When the lid is open, however, the OPEN/CLOSE line is open circuited, limitting output voltage to ±42V.

When the 4145A is used for an application that does not require the 16058 Test Fixture, the Shorting Connector (PN: 04145-61623, furnished with the 4145A) should be connected to the system cable connector on the 4145A's rear panel. The Shorting Connector grounds the OPEN/CLOSE to allow maximum output from the SMUs.

Note

The ±42V limit applies to both voltage source operation and I mode current source operation of the SMUs. For example, if the voltage compliance of an SMU operating in I mode is set at 50V, there is a possibility the output voltage will exceed 42V.

3-129. PLOT/PRINT Operations Using HP-IB Controller

3-130. When performing a PLOT or PRINT operation using an HP-IB controller, use the following procedure.

- (1) Set the plotter or printer to "addressable."
- (2) Interconnect the 4145A, HP-IB plotter or printer, and controller with HP-IB cables.
- (3) Send the PLOT or PRINT command to the 4145A.
- (4) Set the 4145A to TALKER and set plotter or printer to LISTENER.
- (5) Set the ATN (Attention) Line to "Inactive" to start the plot or print operation. (REMOTE or RESUME command sets the ATN line "Inactive".)
- (6) End of plot or print can be detected by monitoring the EOI Line or SRQ Line.

Note

If the controller attempts an HP-IB operation during a plot or print operation, an error may result or data may be incorrectly plotted or printed. Therefore, you cannot detect the end of a plot or print operation by reading the status byte of the 4145A.

Figure 3-49 shows programming examples of HP-IB controlled plot operations with the HP85 and HP9845 controllers.

Note

To execute the HP85 and HP9845 programs, the controller's I/O ROM and an HP-IB interface card are required.

HP85 (HP86/HP87) program

```
10 ON INTR 7 GOTO 70 ! Interrupt (PLOT END) handling Instructions 20 ENABLE INTR 7;8 ! Enables controller to respond to an SRQ 30 OUTPUT 717 :"PL100.100.5000.3000"
40 SEND 7 ; UNT UNL TALK 17 LISTEN 5 ! Asigns TALKER and LISTENER 50 RESUME 7 ! Sets ATN line to "Inactive" 60 GOTO 60 70 A=SPOLL(717) 80 IF BIT(A,2) THEN PRINT "END" 90 STATUS 7,1 ; B ! Reads and clears the interface register 100 BEEP 110 END
```

HP9826 (HP9836) program

```
CONTROL MASK 7:128!Permits interrupt only for an SRQ
10
         ON INT #7 GOTO 80!Interrupt(PLOT END) handling instructions
20
        CARD ENABLE 7!Enables controller to respond to an interrupt OUTPUT 717:"PL100,100,5000.3000"
CONFIGURE 7 TALK = 17 LISTEN = 5
REMOTE 7!Sets ATN line to "Inactive"
30
40
50
60
70
         GOTO: 70
80
         STATUS 717:A
90
         IF BIT(A.2) THEN PRINT "END"
         BEEP
100
110
        END
```

HP9845 (HP9835) Program

```
10
          ON INTR 7 GOTO 70 !Interrupt (PLOT END) handling instructions
         ENABLE INTR 7;2 !Enables controller to respond an SRQ DUTPUT 717:"PL100,100,5000,3000"

SEND 7;UNT UNL TALK 17 LISTEN 5 ! Asigns TALKER and LISTENER REMOTE 7 !Sets ATN line to "Inactive"
20
30
40
50
60
          GOTO 60
70
          A=SPOLL (717)
80
          IF BIT(A,2) THEN PRINT "END"
          BEEP
90
100
          END
```

Figure 3-49. Programs for HP-IB controlled PLOT Operations.

3-131. Measurement Ranges and Resolution

3-132. The 4145A measures dc voltage and current with (1) the voltage monitor function of each SMU, (2) the current monitor function of each SMU and (3) the voltage monitors (Vm). The measurement ranges and resolution for the SMUs and voltage monitors are shown in Figure 3-50.

Figure 3-50. Measurement Ranges and Resolution.

Figure 3-50. Measurement Ranges and Resolution.

SECTION III Model 4145A

3-133. Resolution and Format for Displayed Data and Data Output.

3-134. Measurement results are stored as raw data. The 4145A then manipulates the stored raw data with (1) the user functions (i.e., to calculate HFE or GM) or (2) the analysis functions (Marker, Cursor, and Line).

Display resolution may differ depending on the measurement resolution because of the inherent errors of the digital data manipulations. The raw data are stored using a 3-byte 2's complement format (one byte has 8 bits; the first byte is for the exponent, the second and third bytes are for the mantissa). Therefore, the display resolution may be higher than that given in the specifications because of the conversion from 2's complement to decimal. The number of output/display digits and the display format are listed in Tables 3-13 and Figure 3-51.

Table 3-13. Number of Output/Display Digits

	Display Digits and Format						
Output/Display Functions	Voltage		Current		User Function		
	Digits	Format	Digits	Format	Digits	Format	
Marker/Cursor in GRAPHICS Display							
LIST Display					3	С	
MATRIX Display	5	a	4	b			
Cursor in SCHMOO Display							
PRINT Function							
HP-IB Data Output		е	5	е	not ava	ilable	
Keyboard Execution	4	d	4	d			
Line in GRAPHICS Display	3 Digits, Format: c						

a. Voltage Display Format (5 digits, Min. = 0.1mV)

V < 10V	sn.nnnv
10V ≤ V < 100V	snn.nnnV
V = 100V	snnn.nnV
s: Polarity (bl	lank or "-")
n: Numeric (O t	to 9)
.: Decimal poir	nt
V: Unit (volt)	

b. Current Display Format (4 digits, Min. = 0.05pA)

All currnet values	s d d d d u A
s: Polarity (blank or "-")	
d: Numeric (0 to 9) or dic	imal point
u: Engineering unit	("m", "μ", "n", or "p")
A: Unit (Ampere)	

c. User Function Display Format (3 digits)

1.00 ≤ Mantissa < 99.9	sdddnE±mm
100 ≤ Mantissa < 999	snnnE±mm
s: Polarity (blank or "-") d: Numeric ("0" to "9") or n: Numeric ("0" to "9") E: Exponent	decimal point
±mm: 2-digit exponent(Engine multiples of 3, from -	ering notation, 39 to +36)

d. Display Format for Keyboard-Executed Calculations

All variable values				s d d d d n E ± mm				
Designations	are	the	same	as	those	of	format o	g.,

e. HP-IB Data Output Format (5 digits)

All variable values			•	snddo	d n ı	ı E±mm	
Designations are	the	same	as	those	of	format	c.

Figure 3-51. Display/Output Format.

Table 4-1. Recommended Test Equipment

Equipment	Critical Specifications	Recommended Model	Use* ¹
Digital DC Voltmeter	Voltage range : 100mV to 200V f.s. Sensitivity : 100μV Accuracy : 0.002% Input impedance: > 10MΩ	HP 3455A	Р, А, Т
Oscilloscope	Band width : > 10MHz Vertical Sensitivity: 0.001 Volt/DIV Channel : dual	HP 1740A* ²	Р, А, Т
RC Box	Range : 10 ² Ω - 10 ¹¹ Ω Accuracy: 0.1% - 1% Furnished accessories: (1) Triaxial (Male) -to- Triaxial (Male) Cable (HP P/N: 16053-61002) (2) BNC (Male) -to-BNC (Male) Cable (HP P/N: 16053-61003) (3) Triaxial (Male) -BNC (Female) Adapter (HP P/N: 1250-0595) (4) BNC T Type Adapter (HP P/N: 1250-0781)	HP 16340A	Р
Desktop Computer	For HP-IB controller	HP 9825B	P
HP-IB Interface Card with cable		HP 98034B	Р
I/O ROMs		HP 98210A HP 98213A	P
Test Fixture with Furnished Accessories		HP 16058A	P, A
	Alligator Clips-to-Dual Banana Plug Test Lead	HP 11002A	
	Probe and Alligator Clip-to-Dual Banana Test Lead	HP 11003A	
Cables	BNC (Male)-to-BNC (Male), 61cm	HP 11170B	Р, А, Т
	BNC (Male)-to-Dual Banana Plug Test Lead	HP 11001A	
	BNC (Male)-to-BNC (Male), 23cm	HP 10502A	

^{*1:} P = Performance Test, A = Adjustment, T = Troubleshooting

 $^{^{\}star 2}\colon$ The waveforms shown in Section V were obtained with the 1741A.

Table 4-1. Recommended Test Equipment (Cont'd)

Equipment	Critical Specifications	Recommended Model	Use*¹
Probes		HP 10004A	А, Т
	1:1 Probe	HP 10007B	
4145A Product Support Package	Tools included: (1) CE Disc	HP P/N 04145-65100	P, A, T
Shorting Connector		HP P/N 04145-61623	P
Signature Analyzer		HP 5004A	Т

SECTION IV

PERFORMANCE TESTS

4-1. INTRODUCTION

4-2. This section describes the tests and procedures used to verify the instrument specifications listed in Table 1-1. All tests can be performed without access to the interior of instrument. simpler, automatic Α operational test is presented in Section III under Self Test (paragraph 3-10). The performance tests described here can also be used to perform incoming inspection of the instrument and to verify that the instrument meets specified performance after troubleshooting adjustment. If the performance tests indicate that the instrument is operating outside specified limits, check that the controls on the instruments used in the test and the test set-up itself are correct, then proceed with adjustments and/or troubleshooting.

Note

- 1. To ensure proper test results and instrument operation, Hewlett-Packard suggest a 40 minute warm-up and stabilization period before performing any of the performance tests.
- 2. Initial control settings described in paragraph 3-14 must be used for each performance test. Exceptions to these settings will be noted as they occur. After completing a performance test, return 4145A controls to the initial control settings.

4-3. EQUIPMENT REQUIRED

4-4. Equipment required for performance tests is listed in Table 4-1. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model(s).

Note

Equipment should be calibrated by an instrument traceable to NBS or an equivalent standards; or calibrated directly by an authorized calibration organization such as NBS. The

calibration cycle should be in accordance with stability specifications of each component.

4-5. TEST RECORD

4-6. Performance test results can be recorded on the Test Record at the completion of the test. The Test Record is at the end of this section. It lists all test specifications and acceptable limits. The results recorded at incoming inspection can be used for comparison in periodic maintenance, troubleshooting, and after repairs or adjustments.

4-7. CALIBRATION CYCLE

4-8. This instrument requires periodic verification of performance. Depending on the conditions under which the instrument is used, e.g., environmental conditions or frequency of use, the instrument should be checked with the performance tests described here, at least once a year. To keep instrument down-time to a minimum and to insure optimum operation, preventive maintenance should be performed at least twice a year.

4-9. GRAPHICS DISPLAY UNIT INTENSITY AND FOCUS CHECK

PURPOSE: This check visually verifies that the writing beam of the Graphics Display Unit (GDU) has the correct intensity and is properly focused.

PROCEDURE:

- 1. Turn on the 4145A, then display the DIAGNOSTICS page by pressing the DIAG softkey.
- 2. Display the test pattern for the GDU as shown in Figure 4-1 by pressing the G.D. TEST softkey.
- 3. Verify that the brightness of the writing beam for lines 1, 2, 3, and 4 is as described below:

line 1: full brightness

line 2: dim

line 3: half brightness second brightness

4. Verify that the writing beam is properly focused for sharp, well-defined trace at points A, B, C, and D, and over the entire CRT display.

Figure 4-1. Test Pattern for GDU.

Note

If intensity and focus of the writing beam need adjustment, perform Graphic Display Unit Intensity and Focus Adjustment in Section V of this manual. If any trace distortion is observed, perform performance tests and adjustments in Section IV and V of the 1345A's Operating and Service Manual, located at the back of this binder.

Note

When the procedures in Section IV and V of the 1345A's manual are performed, the connector on the Al GDU Control Board must be disconnected. Refer to Figure 4-2 for its location.

Figure 4-2. GDU Connector Location.

4-10. PAGE AND KEY FUNCTION CHECK

PURPOSE: This check verifies that the thirteen pages, including MENU, CHANNEL DEFINITION, DIAGNOSTICS, and so on, can be displayed without error codes or error messages. Also, this check verifies that the sixty-six keys function properly.

PROCEDURE:

- 1. Insert one of the discs (software discs furnished with the 4145A) into the flexible-disc drive, then turn on the 4145A.
- 2. Verify that each of the thirteen pages is displayed without any error codes or error messages, by pressing the MENU key, PREV key, NEXT key, and softkeys. Refer to Section III of this manual for details on page control.
- 3. Repeat step 2 for the rest of the discs.
- 4. Display the MENU page, then display the DIAGNOSTICS page by pressing the DIAG softkey.
- 5. Obtain the display shown Figure 4-3 by pressing the F.P. TEST softkey.
- 6. Check that the LED indicator lamps and sixty-six keys function properly as described in Figure 3-32 in Section III of this manual.

Figure 4-3. Display for Key Function Check.

4-11. SMU ACCURACY TEST

DESCRIPTION:

The SMU Accuracy Test consists of four tests:

- (1) Voltage Control Accuracy Test
- (2) Voltage Measurement Accuracy Test
- (3) Current Measurement Accuracy Test
- (4) Current Control Accuracy Test

(1) VOLTAGE CONTROL ACCURACY TEST

PURPOSE: This test verifies that the specified output voltage is correctly output from each SMU channel.

Figure 4-4. Voltage Control Accuracy Test Setup.

EQUIPMENT:

DVM	HP	MODEL 3455A*
SMU Test Adapter	ΗP	P/N 04145-65001
BNC (Male)-to-Dual Banana Plug Test Lead	ΗP	MODEL 11001A
Shorting Connector	ΗP	P/N 04145-61623

^{*} The 3455A must be calibrated before testing.

PROCEDURE:

- 1. Connect the adapter (HP P/N: 04145-65001) to the 4145A's SMU channel 1 connector on the rear panel.
- 2. Connect the shorting connector to the 24 pin connector (labeled "TO 16058A TEST FIXTURE") on the rear panel.
- 3. Connect the 3455A to the adapter's BNC connector and set the adapter's SELECTOR switch to V_0 .
- 4. Set the 3455A's controls* as follows:

FUNCTION	=== V
RANGE	
TRIGGER	INTERNAL
MATH	OBB
AUTO CAL	OFF
HIGH RESOLUTION	ON

- * This setting is the same for all SMU accuracy tests.
- 5. Set the 4145A's controls as follows:

	N/	ME	SOURCE	
CHAN	٧	I	MODE	FCTN
SMU1	V1		٧	VAR1
SMU2				
EUMZ				
SMU4				
Vs 1			V	
Vs 2			V	
Vm 1	VM			
Vm 2				
USER	1			
FCTN		= EXPRESSION	N	

Figure 4-5. Measurement Setup.

i) On the CHANNEL DEFINITION page:

Set up the page as shown in Figure 4-5. To define SMUl, press the NOT USE softkey to delete the line, then assign V name, SOURCE MODE, and SOURCE FCTN. VM is used as a dummy to display Vl's output after measurement.

[<i>hp</i>] ***** S	VAR1	VAR2
NAME	V1	17411
SWEEP MODE	LINEAR	LINEAR
START	.0000٧	
STOP	20.000V	
STEP	20.000V	
NO. OF STEP	2	
COMPLIANCE	100.0mA	
CONSTANT	SOURCE	COMPLIANCE
5,000	Delay T	ime (5s)
[hp] ** MEAS		
MAT AV MENO	G DIOL MODE	JE OE! Of A
MEASUREMENT	MODE: SWE	EP
DISPLAY MOD	F: LTST	
<u> </u>	¥0-	Do WORRY
	VM	INU a 1-1-1
NAMES		
NAMES		

ii) On the SOURCE SET UP page:

Set the source channel parameters as shown in Figure 4-5. Set HOLD TIME and DELAY TIME to 0 seconds and 5 seconds, respectively.

iii) On the MEAS & DISP MODE SET UP page:

Select LIST as the display mode for the measurement results.

Figure 4-5. Measurement Setup (Cont'd).

- iv) INTEG TIME LONG DET (WINC
- 6. Perform measurement by pressing the REPEAT key.
- 7. Record the readings on the 3455A for the start voltage (0 volts) and stop voltage (20 volts) when they are output, then verify that the recorded readings satisfy the test limits listed in Table 4-3.
- 8. Press the STOP key to end measurement.
- 9. Repeat steps 5 through 8 for each Source Setup listed in Table 4-2. The source parameters--START, STOP, and STEP--on the SOURCE SET UP page in step 4 must be changed as listed in the table.
- 10. Repeat steps 5 through 9 for SMU channels 2, 3, and 4.

Table 4-2. Source Parameter Changes

	Source Setup (xxx Volts to xxx volts)				
Source Parameters	-20 to -20	0 to 40	-40 to -40	0 to 100	-100 to -100
START	-20.000V	.0000V	-40.000V	.0000V	-100.00V
STOP	-20.000V	40.000V	-40.000V	100.00V	-100.00V
STEP	20.000V	40.000V	40.000V	100.00V	100.00V
DELAY TIME	0 s	5 s	0 s	5 s	0 s

Table 4-3. Test Limits for Voltage Control Accuracy Test

Range of SMU Channel Tested	Voltage Sweep (xxx volts to xxx volts)	Output Voltage from SMU (Volt)	Test Limit
			0 volts ± 0.01 volts
20 volt	20 volt 0 to 20	20.000	20 volts ± 0.03 volts
	-20 to -20	-20.000	-20 volts ± 0.03 volts
	0 to 40 -40 to -40	.0000	0 volts ± 0.02 volts
40 volt		40.000	40 volts ± 0.06 volts
		-40.000	-40 volts ± 0.06 volts
100 volt	00 volt 0 to 100	.0000	0 volts ± 0.05 volts
		100.00	100 volts ± 0.15 volts
	-100 to -100	-100.00	-100 volts ± 0.15 volts

(2) VOLTAGE MEASUREMENT ACCURACY TEST

PURPOSE: This test verifies that the SMU accurately performs voltage measurements.

Figure 4-6. Voltage Measurement Accuracy Test Setup.*

* This setup is the same as for the Current Measurement Test and Current Control Accuracy Test.

EQUIPMENT:

DVM HP	MODEL 3455A
RC Box HP	MODEL 16340A
SMU Test Adapter HP	P/N 04145-65001
BNC (Male)-to-Dual Banana Plug Test Lead HP	
Triaxial (Male)-to-Triaxial (Male) Cable HP	P/N 16053-61002*
BNC (Male)-to-BNC (Male) Cable HP	P/N 16053-61003*
Shorting Connector HP	P/N 04145-61623
Shorting Terminator HP	

^{*} furnished with the 16340A

PROCEDURE:

- 1. Connect the adapter (HP P/N: 04145-65001) to the 4145A's SMU channel 1 connector on the rear panel.
- 2. Connect the 3455A and the 16340A's female triaxial connector (for the $10^2\Omega$ $10^{10}\Omega$ range) to the female BNC connector (labeled "MONITOR") and the female triaxial connector (labeled "TO 16340A") of the adapter, respectively. Use BNC (male)-to-dual banana test lead and triaxial (male)-to-triaxial (male) cable.
- 3. Connect the BNC-to-BNC cable (furnished with the 16340A) to the female BNC connector (for the $10^2\,\Omega$ - $10^{10}\,\Omega$ range), then terminate the cable with the shorting terminator.
- 4. Connect the shorting connector to the 24 pin connector (labeled "TO 16058A TEST FIXTURE") on the rear panel.
- 5. Set the adapter's SELECTOR switch to $V_{\text{G}},$ then set the 16340A's range to $10^{8}\,\Omega_{\text{*}}$
- 6. Set the 3455A's controls as described in step 2 of the Voltage Control Accuracy Test.
- 7. Set the 4145A's controls as follows:

	NA	ME	SOURCE	
CHAN	V	I	MODE	FCTN
SMU1	V1	I1	I	VAR1
SMU2				ĺ
SUMZ				
SMU4				
Vs 1			V	
Vs 2		T	V	
Vm 1				
Vm 2			T	
USER FCTN	NAME (UNIT) -	- EXPRESSION	N	
1	().	•		
2	().	•		

Figure 4-7. Measurement Setup.

- i) On the CHANNEL DEFINITION page:
 - Set up the page as shown in Figure 4-7.
- ii) On the SOURCE SET UP page:
 - Set up the page as shown in Figure 4-7.
- iii) On the MEAS & DISP MODE SET UP page:
 - Select LIST as the display mode for measurement results.

	VAR1	VAR2	
NAME	I1		MEASUREMENT MODE: SWEEP
SWEEP MODE	LINEAR	LINEAR	
START	150.0nA		
STOP	150.0nA		
STEP	150.0nA		
NO. OF STEP	1		DISPLAY MODE: LIST
COMPLIANCE	20.000V		V1
CONSTANT	SOURCE	COMPLIANCE	NAMES

Figure 4-7. Measurement Setup (Cont'd).

- 8. Perform the first measurement for the SMU's 20 volt range by pressing the REPEAT key.
- 9. Record the readings on the 4145A for the monitored voltage value VIa and on the 3455A for Va, then end measurement by pressing the STOP key.
- 10. Change the source parameters--START and STOP--to -150.0nA on the SOURCE SET UP page for the second measurement.
- 11. Perform the second measurement by pressing the REPEAT key.
- 12. Record the readings on the 4145A for the monitored voltage value VIb and on the 3455A for Vb, then end measurement by pressing the STOP key.
- 13. Verify that the error and offset defined by the following equations satisfy the test limit listed in Table 4-5.

error =
$$\frac{V1a - V1b}{Va - Vb} - 1$$

offset = $(V1a) - ((1 + error) *Va)$

- 14. Repeat steps 7 through 13 for the 40 volt range and 100 volt range. The source parameters—START, STOP, STEP, and COMPLIANCE—on the SOURCE SET UP page must be changed as listed in Table 4-4.
- 15. Repeat steps 7 through 14 for SMU channels 2, 3, and 4.

Table 4-4. Source Parameter Changes

	SMU Range Tested	40 v	olt	100 v	olt
	Measurement	lst	2nd	lst	2nd
Source Parameter	START	350.0nA	-350.0nA	900.0nA	-900.0nA
	STOP	350.0nA	-350.0nA	900.0nA	-900.0nA
	STEP	350.0nA	350.0nA	900.0nA	900.0nA
	COMPLIANCE	40.000V	40.000V	100.00V	100.00V

Table 4-5. Test Limits for Voltage Measurement Accuracy Test

SMU Range Tested	20 volt	40 volt	100 volt
Error (%)	±0.1	±0.1	±0.1
Offset	±10mV	± 20 mV	±50mV

(3) CURRENT MEASUREMENT ACCURACY TEST

PURPOSE: This test verifies that the SMU accurately performs current measurements.

EQUIPMENT:

The equipment required is the same as that for the Voltage Measurement Accuracy Test.

PROCEDURE:

- 1. Perform steps 1 through 6 of the Voltage Measurement Accuracy Test described on pages 4-9 to 4-12.
- 2. Set the adapter's SELECTOR switch to V_0 , and the 16340A's range to $10^2\Omega$.

[hp] *** CHANNEL DEFINITION ***

	NAME		SOU	ACE
CHAN	٧	I	MODE	FCTN
SMU1	V1	I1	٧	VAR1
SMU2				
EUMR				
SMU4				
Vs 1			V	
Vs 2			٧	
Vm 1				
Vm 2				

USER	NAME (UNIT) = EXPRESSION
1	() -
2	()-

[hp] ***** SOURCE SET UP *****

VAR1	VAR2
V1	
LINEAR	LINEAR
9.10007	
9.1000V	
9.1000V	
1	
100.0mA	
	V1 LINEAR 9.1000V 9.1000V 9.1000V

CONSTANT	SOURCE	COMPLIANCE
		_
		

Figure 4-8. Measurement Setup.

- 3. Set the 3455A's controls as described in step 3 of the Voltage Control Accuracy Test.
- 4. Set the 4145A's controls as follows:
 - i) On the CHANNEL DEFINITION page:

Set up the page as shown in Figure 4-9.

ii) On the SOURCE SET UP page:

Set up the page as shown in Figure 4-9.

[<i>hp</i>]** MEAS &	DISP	MODE	SET	UP	××
_MEASUREMENT_M	ODE:	SWEER	<u> </u>		
DISPLAY MODE:	LIST	<u> </u>			_
NAMES					

Figure 4-8. Measurement Setup (Cont'd).

iii) On the MEAS & DISP MODE SET UP page:

Select LIST as the display mode for the measurement results.

iv) INTEG TIME LONG

- 5. Perform measurement by pressing the REPEAT key.
- 6. Record the readings on the 4145A for monitored current value IIa and on the 3455A for Va.
- 7. End measurement by pressing the STOP key.
- 8. Change the source parameters—START, STOP, and STEP—on the SOURCE SET UP page to -9.1000V, then perform measurement by pressing the REPEAT key.
- 9. Record the readings on the 4145A for monitored current value Ilb and on the 3455A for Vb, then end measurement by pressing the STOP key.
- 10. Verify that the error and offset defined by the following equations satisfy the test limits listed in Table 4-7.

$$error = \frac{I1a - I1b}{\frac{Va - Vb}{R}} - 1$$

R: Calibrated value of the 16340A's resistor

offset = Ila - (1+error) *
$$\frac{Va}{R}$$

- 11. Repeat steps 2 through 8 for ranges $10^3\,\Omega$ through $10^9\,\Omega$. The required source parameter and adaptor SELECTOR switch position must be changed as listed in Table 4-6.
- 12. Repeat steps 2 through 9 for SMU channels 2, 3, and 4.

Table 4-6. Source Parameter Changes

				16340.	A's Range				
Source Parameter	$10^3\Omega$	104Ω	10 ⁵ Ω	10 ⁶ Ω	10 ⁷ Ω	10 ⁸ Ω	10 ⁹ Ω	10), Ω
START								.91	91
STOP								.91	91
STEP								.91	-,91
COMPLIANCE	10.00mA	1.000mA	100.0µА	10.00μΑ	1.000μΑ	100.0nA	10.00nA	1.0	00nA
Selector Switch Position		Vo				V _G			

Table 4-7. Test Limits for Current Measurement Accuracy Test

16340A's Range	$10^2\Omega$	10 ³ Ω	$10^4\Omega$	10 ⁵ Ω	10 ⁶ Ω	10 ⁷ Ω	10 ⁸ Ω	10 ⁹ Ω	10 ⁹ Ω
Error (%)	±0.3	±0.3	±0.3	±0.3	±0.3	±0.5	±0.5	±l	±1
Offset	±0.12mA	±12μA	±1.2μΑ	±0.12μA	±12nA	±1.2nA	±0.12nA	±17pA	±6.2pA

(4) CURRENT CONTROL ACCURACY TEST

PURPOSE: This test verifies that the specified output current is correctly output from each SMU channel.

EQUIPMENT:

Same as that for the Voltage Measurement Accuracy Test.

PROCEDURE:

- 1. Perform steps 1 through 4 of the Voltage Measurement Accuracy Test described on pages 4-9 to 4-12.
- 2. Set the adapter's SELECTOR switch to V_0 , and the 16340A's range to $10^2\Omega$.

	N	IAME	SOL	IACE
CHAN	٧	I	MODE	
SMU1	V1	I1	I	VAR1
SMU2				
EUMZ				
SMU4				
Vs 1			V	
Vs 2			٧	
Vm 1				
Vm 2				
USER				
FCTN 1	NAME (UNIT) = EXPRESSION	٧	
2 .) =		
/p] **	*** S	OURCE SE	T UP *	
	*** S			
VAME		VAR1		AR2
NAME SWEEP START		VAR1 I1 LINEAR 91.00m	V LIN	AR2
NAME SWEEP START STOP		VAR1 I1 LINEAR	V LIN	AR2
NAME GWEEP GTART GTOP GTEP	MODE .	VAR1 I1 LINEAR 91.00m	LIN A	AR2
NAME SWEEP START STOP STEP	MODE .	VAR1 I1 LINEAR 91.00m 91.00m	LIN A A	AR2
NAME SWEEP START STOP STEP	MODE .	VAR1 I1 LINEAR 91.00m 91.00m	LIN A A	AR2
NAME SWEEP START STOP STEP NO. OF COMPLI	MODE .	VAR1 I1 LINEAR 91.00m 91.00m	LIN A A A	AR2
NAME SWEEP START STOP STEP NO. OF COMPLI	MODE STEP	VAR1 I1 LINEAR 91.00m 91.00m 1 10.000	LIN A A A	EAR
NAME SWEEP START STOP STEP NO. OF COMPLI	MODE STEP	VAR1 I1 LINEAR 91.00m 91.00m 1 10.000	LIN A A A	EAR
NAME SWEEP START STOP STEP NO. OF COMPLI	MODE STEP	VAR1 I1 LINEAR 91.00m 91.00m 1 10.000	LIN A A A	EAR
NAME SWEEP START STOP STEP NO. OF COMPLI	MODE STEP	VAR1 I1 LINEAR 91.00m 91.00m 1 10.000	LIN A A A	EAR

Figure 4-9. Measurement Setup.

- 3. Set the 3455A's controls as described in step 3 of the Voltage Control Accuracy Test.
- 4. Set the 4145A's controls as follows:
 - i) On the CHANNEL DEFINITION page:

Set up the page as shown in Figure 4-9.

ii) On the SOURCE SET UP
 page:

Set up the page as shown in Figure 4-9.

ii) On the SOURCE SET UP page:

Set up the page as shown in Figure 4-9.

Figure 4-9. Measurement Setup (Cont'd).

iii) On the MEAS & DISP MODE SET UP page:

Select LIST as the display mode for the measurement results.

iv) INTEG TIME LONG

- 5. Perform the first measurement by pressing the REPEAT key.
- 6. Record the reading on the 3455A for Va.
- 7. End the measurement by pressing the STOP key.
- 8. Change the source parameters-START, STOP, and STEP-on the SOURCE SET UP page to 11mA, then perform the second measurement by pressing the REPEAT key.
- 9. Record the reading on the 3455A for Vb, then end measurement by pressing the STOP key.
- 10. Verify that the error and offset defined by the following equations satisfy the test limits listed in Table 4-9.

$$error = \frac{\frac{Va - Vb}{R}}{I1 - I2} - 1$$

R: Calibrated value of the 16340A's resistor

offset =
$$\frac{Va}{R}$$
 - (1+error) * I1

I1,I2: START values set on the SOURCE SET UP page for the measurements of Va and Vb.

- 11. Repeat steps 2 through 8 for ranges $10^2\Omega$ and $10^3\Omega$. The source parameters must be changed as described in Table 4-8.
- 12. Repeat steps 2 through 9 for SMU channels 2, 3, and 4.

Table 4-8. Source Parameter Changes

			Sou	rce Paramete	c
16340A's Range	Meas. (Measurement)	START	STOP	STEP	COMPLIANCE
$10^2\Omega$	lst	-91.0	00mA	91.000mA	
10.70	2nd	-11.0	00mA	11.000mA	
	lst	9.10	0 0mA	9.1000mA	10,000V
$10^3\Omega$	2nd	1.10	00mA	1.1000mA	10.000
10 36	lst	-9.10	00mA	9.1000mA	
	2nd	-1.10	00mA	1.1000mA	

Table 4-9. Test Limits for Current Control Accuracy Test

16340A's Range	$10^2\Omega$	10 ³ Ω
Error (%)	±0.3	±0.3
Offset	±0.12mA	±12μ A

4-12. VS ACCURACY TEST

PURPOSE: This test verifies that the specified output voltage is correctly output from each VS (Voltage Source) channel.

Figure 4-10. VS Accuracy Test Setup.

EQUIPMENT:

DVM	$_{ m HP}$	MODEL 3455A
RC Box	HP	MODEL 16340A
BNC (Male)-to-Dual Banana Plug Test Lead	ΗP	MODEL 11001A
BNC (Male)-to-BNC (Male) Cable	HP	P/N 16053-61003*
Triaxial (Male)-BNC (Female) Adapter	HP	P/N 1250-0595*
BNC T Type Adapter	$_{\mathrm{HP}}$	P/N 1250-0781*
BNC (Male)-to-BNC (Male) Cable	HP	P/N 11170B
Shorting Terminator	$_{ m HP}$	P/N 04145-65002

^{*} furnished with the 16340A

PROCEDURE:

- 1. Connect the triaxial (male)-BNC (female) adapter and BNC (male)-to-BNC (male) cable (HP P/N: 16053-61003) to the $16340\,\mathrm{A}$'s female triaxial connector and female BNC connector for ranges $10^{\,2}\Omega$ to $10^{\,10}\Omega$, respectively.
- 2. Terminate the BNC cable with the shorting terminator. See Figure 4-10.
- 3. Connect the BNC T type adapter to VS channel 1 (Vs1), then connect the 3455A and the 16340A to the VS channel 1 (Vs1) as shown in Figure 4-10.

- 4. Set the 16340A's range to $10^4 \Omega$.
- 5. Set the 3455A's controls as follows:

FUNCTION	 V
RANGE	AUTO
TRIGGER	INTERNAL
MATH	OFF
AUTO CAL	OFF
HIGH RESOLUTION	ON

6. Set the 4145A's controls as follows:

	N/	AME	SOU	ACE
CHAN	٧	TI	MODE	FCTN
SMU1				
SMU2				
SUM2				
SMU4				
Vs 1	VS1		V	CONST
Vs 2			V	
Vm 1	VM1	~~~~~		
Vm 2				
USER FCTN 1	NAME (UNIT)	EXPRESSION	N	

i) On the CHANNEL DEFINITION page:

Set up the page as shown in Figure 4-11. VM1 is used as a dummy to display Vsl's output after measurement.

ii) On the SOURCE SET UP page:

Set up the page as shown in Figure 4-11.

	VAR1	VAR2
NAME		
SWEEP MODE		LINEAR
START		
STOP		
STEP		
NO. OF STEP		
COMPLIANCE		
CONSTANT	SOURCE	COMPLIANCE
VS1 V	.0000٧	

Figure 4-11. Measurement Setup.

[<i>hp</i>] ** MEAS &	DISP	MODE	SET	UP	××
MEASUREMENT M	ODE:	TIME	DOM	MIA	
WAIT TIME		,00s			
INTERVAL		.01s			
NO. OF ADNGS		1			
DISPLAY MODE:	LIST VM1				
NAMES					

Figure 4-11. Measurement Setup (Cont'd).

- iii) On the MEAS & DISP MODE SET UP page:
 - Select LIST as the display mode for measurement results.

- 7. Perform measurement by pressing the REPEAT key.
- 8. Record the reading on the 3455A, then verify that the reading satisfies the test limit listed in Table 4-10.
- 9. End the measurement by pressing the STOP key.
- 10. Repeat steps 6 through 9 for VS's outputs 20 volts and -20 volts.
- 11. Repeat steps 6 through 10 for VS channel 2.

Table 4-10. Test Limits for VS Accuracy Test

VS Output (volt)	0	20	-20	
Test Limit	0V ± 0.01V	20V ± 0.11V	-20V ± 0.11V	

4-13. VM ACCURACY TEST

PURPOSE: This test verifies that each of VM (Voltage Monitor) channels (Vml and Vm2) accurately perform voltage monitoring.

Figure 4-12. MU Accuracy Test Setup.

EQUIPMENT:

DVM	HP	MODEL	3455A
BNC (male)-to-Dual Banana Plug Test Lead	HP	MODEL	11001A
BNC (Male)-to-BNC (Male) Cable	HP	MODEL	10502A
BNC T Type Adapter	HP	P/N 1250	0-0781

PROCEDURE:

- 1. Connect the BNC T type adapter to the 4145A's VS channel 1 (Vs1) connector on the rear panel.
- 2. Connect VM channel 1 (Vm1) and the 3455A to VS channel 1 (Vs1) as shown in Figure 4-12.

3. Set the 3455A's controls as follows:

FUNCTION	=== V
RANGE	
TRIGGER	
F	
MATH	
AUTO CAL	
HIGH RESOLUTION	ON

4. Set the 4145A's controls as follows:

1	N/	ME	Sou	RCE
CHAN	V	Ī		FCTN
SMU1				
SMU2				
SMU3		 		!
SMU4	1101	<u>;</u>	 	COLIGI
Vs 1	VS1		V V	CONST
Vs 2 Vm 1	VM1	+====	\	<u> </u>
Vm 2	AMI			
L	L., ,,	-L	. L	.L
[<i>hp</i>] **	**** S(OURCE SE		
		VAR1	V	AR2
NAME			LIN	E A D
CMEED	MODE		ILTIA	LAH
SWEEP			:	
SWEEP START STOP				
START				
START STOP STEP NO. O	F STEP			
START STOP STEP				
START STOP STEP NO. O COMPL	IANCE	SOURCE	COMP	TANCE
START STOP STEP NO. O COMPL	IANCE	SOURCE	COMP	LIANCE
START STOP STEP NO. O COMPL	IANCE	SOURCE	СОМР	LIANCE
START STOP STEP NO. O COMPL	IANCE	SOUNCE	СОМР	LIANCE
START STOP STEP NO. O COMPL	IANCE	SOURCE 2.0000		LTANCE

Figure 4-13. Measurement Setup.

i) On the CHANNEL DEFINITION page:

Set up the page as shown in Figure 4-13.

ii) On the SOURCE SET UP page:

Set up the page as shown in Figure 4-13.

[<i>hp</i>]** MEAS & D	DISP MODE SET UP **
MEASUREMENT MC	DDE: TIME DOMAIN
WAIT TIME	.00s
INTERVAL	.01s
NO. OF HONGS	1
DISPLAY MODE:	LIST VM1

Figure 4-13. Measurement Setup (Cont'd).

iii) On the MEAS & DISP MODE SET UP page:

Select LIST as the display mode for the measurement results.

- 5. Perform measurement by pressing the REPEAT key.
- 6. Record the readings on the 4145A for monitored voltage value VMla and on the 3455A for Va, then end measurement by pressing the STOP key.
- 7. Repeat steps 4 through 6 for VS output -2 volts, then record the readings on the 4145A for monitored voltage value VM1b and on the 3455A for Vb.
- 8. Verify that the error and offset defined by the following equations satisfy the test limits listed in Table 4-11.

error =
$$\frac{VM1a - VM1b}{Va - Vb} - 1$$

offset = $VM1a - (1 + error) *Va$

9. Repeat steps 4 through 7 for VS outputs 20 volts and -20 volts.

Table 4-11. Test Limits for VM Accuracy Test

VM Range Tested	2 volt		20 volt	
VS Output (volt)	2	-2	20	-20
Error (%)	±0.5		±0,2	
Offset ±10mV ±10m		±10mV		OmV

4-14. EXTERNAL CRT X-Y-Z OUTPUT CHECK

PURPOSE: This check verifies that the external CRT X-Y-Z-signal is properly output.

Figure 4-14. External CRT X-Y-Z Output Check Setup.

EQUIPMENT:

Oscilloscope HP MODEL 1740A BNC (Male)-BNC (Male) Cable HP MODEL 11170B

PROCEDURE:

- 1. Turn off the 4145A.
- 2. Connect channel A (or channel B) input to the EXTERNAL CRT X-output as shown in Figure 4-14.
- 3. Set the 1740A's controls as follows:

VOLT/DIV	0.2
COUPLING	
TIME/DIV ······	
TRICCER	IN COMPONE A

4. Insert one of the discs (software discs furnished with the 4145A) into the flexible-disc drive, then turn on the 4145A and the oscilloscope. The MENU page will be displayed on the CRT display.

- 5. Verify that 0V-1V signal is observed as shown in Figure 4-15.
- 6. Perform steps 1 through 5 for EXTERNAL CRT Y-output and Z-output. Verify that the scope displays are observed as shown in Figure 4-15.

Figure 4-15. Scope Displays of X-Y-Z Output (Example).

4-15. HP-IB INTERFACE TEST

PURPOSE: This test verifies the instrument's HP-IB capabilities (see Table 3-8).

Figure 4-16. HP-IB Interface Test Setup.

EQUIPMENT:

PROCEDURE:

- 1. Turn off both the 4145A and the 9825B.
- 2. Connect the 98034B between the 4145A and the 9825B as shown in Figure 4-16, and the I/O ROM's in the ROM slots.
- 3. Set the HP-IB control switch, located on the rear panel, as follows:

bits 1 - 5: 10101 (2110) bit 6: 0 bit 7: 1

- 4. Turn on the 4145A.
- 5. After the MENU page has been displayed, verify that the HP-IB status message on the system message line is as follows:

HP-IB (21, COMMA,)

6. Turn off the 4145A, then reset the HP-IB control switch as follows:

bits 1 - 5: 01010 (10₁₀) bit 6: 1 bit 7: 0

7. Turn on the 4145A, then verify that the HP-IB status message on the system message line is as follows:

HP-IB (10, CR/LF, EOI)

8. Turn off the 4145A, then reset the HP-IB control switch as follows:

bits 1 - 5: 10001 (1710) bit 6: 0 bit 7: 0

- 9. Turn on the 9825B and the 4145A.
- 10. Load the HP-IB Interface Test Program into the desktop computer (controller). The test program, listed in Figure 4-17, includes eight tests, listed in Table 4-12.
- 11. Execute the program and follow the prompts and instructions output by the controller. Details on controller instructions and appropriate operator responses are given in Table 4-13. An error message is printed out if any step of the test fails, then the test is discontinued. See Table 4-14 for explanations of error messages.

Note

The 16058A Test Fixture or shorting connector (P/N 04145-61623) must be connected to the 4145A and the fixture lid must be closed during the HP-IB interface Test.

Table 4-12. HP-IB Interface Test Program

HP-IB INTERFACE TEST PROGRAMS

DESCRIPTION:

The HP-IB Interface Test Program tests the 4145A's HP-IB interface capabilities. With the test program, The tests listed below are performed in the order listed.

TEST NO.	Test	(HP-IB) Capabilities Tested
1	PLOT & Data Transfer TEST	1. PLOT Function of the 4145A 2. Data Transfer via the HP-IB 3. Talk Only
2	Listener and Remote/Local Test	1. Listener 2. Remote/Local
3	Local Lockout Test	Local Lockout
4	Talker Test*	1. Talker 2. EOI (End or Identify) Output
5	IFC Test	Response of the 4145A to Interface Clear Command from the Controller
6	Device Clear Test	Device Clear
7	Trigger Test	Response of the 4145A to Group Execute Trigger
8	SRQ Line Test*	1. Service Request 2. Serial Poll
	+ The test for FOT sections and the	CDO Line Test one

^{*} The test for EOI output and the SRQ Line Test are performed automatically without operator response.

```
0: "**** 4145A HP-IB PERFORMANCE TEST PROGRAM *** 12/25/1981 ":
1: dim A$[500],B$[500],D$[32],E$[32]
2: 1c1 7
3: 0}U}V}E;cmpU}U
4: time 30000; on err "ERR"
5: "4145A HP-IB PERFORMANCE TEST"}E$;95b "SLOWDSP"
6: "PLOT & Data Transfer TEST"}E$;gsb "SLOWDSP"
7: dsp "Press PLOT then CONTINUE"; beep; stp
8: dsp *Press EXECUTE(4145A)*;beep
9: 1cl 7
10: cmd 7, "U5"
11: 0}E
12: rds(7,J,J,R)}J
13: if bit(7,R);9sb "E0IF3"
14: if E;stp ;gto 6
15: for I=1 to 50
16: gsb "GETDIO"
17: next I
18: gsb "TRNS"
19: if D$[1,15]="H X X X X X X X X";gto "PASS"
20: 95b "PRTDIO"
21: stp ;9to 3
22: "PASS":dsp "
                    *** PASS 1 ***; wait 2000
23: dsp "Press PLOT again, then CONTINUE "; beep; stp ;gto "L3"
24: "GETDIO":rdb(731)}R
25: band(R,U)}U;ior(R,V)}V;ret
26: "ERR":prt E$, "TIMEOUT ERROR"
27: fxd 0;prt " on line",erl
28: prt " ";prt " ";stp ;end
29: "PRTDIO":
30: prt *** STUCK BUS ***
31: prt "** DIO LINES **"
32: prt *8-7-6-5-4-3-2-1*
33: prt D$[1,15]
34: prt " ";prt "DIO8 must be H";prt " ";prt " ";ret
35: "TRNS":
36: eor(U,V)}U
37: "X X X X X X X X X"}D$[1,15]
38: for I=0 to 7
39: 15-2*I}K
40: if bit(I,U)=1;gto 43
41: "H" } D$[K,K]
42: if bit(I,R);"L"}D$[K,K]
43: next I
44: ret
45: end
46: "L3":
47: 0}U}V;cmpU}U
48: 17}Y; beep; ent "HP-IB Address ? (default=17)", Y; 700+Y}Y
49: "LISTENER REMOTE/LOCAL TEST" }E $;95b "SLOWDSP"
50: dsp "LTN & RMT on ? (CONT)"; rem Y; beep; stp
51: dsp "Press LOCAL,RMT } off ? (CONT)";rem Y;beep;stp
52: "LOCAL LOCKOUT TEST" }E$;g=b "SLOWDSP"
```

Figure 4-17. Program Listing of HP-IB Interface Test (Sheet 1 of 3).

```
53: dsp *Press LOCAL,RMT still on ?(CONT)*;rem Y;llo 7;beep;stp
 54: 1cl 7
 55: gto 58
56: 0}E;rds(7,K,L,M)}N;if bit(7,M)=1;gsb "E0IF3"
57: if E=1;9to 49
58: "TALKER TEST" }E$;95b "SLOWDSP"
59: rem 7
60: dsp *TLK on & RMT off ? (CONT)"; cmd 7, "?5"&char(Y-700+64); beep; stp
61: wrt Y, "USBCTV1"; wait 100
62: red Y, A$; wait 100
63: wrt Y, "TV1"; gsb "E0ICHK"
64: "IFC TEST"}E$;95b "SLOWDSP";cli 7
65: dsp "TLK off & RMT on ? (CONT)"; beep; stp
66: gsb "DCLCHK"
67: gsb "TRGCHK"
68: gto "L2"
69: "EOICHK":
70: "EOI TEST (AUTO)"}E$;95b "SLOWDSP"
71: 0}E
72: if rdb(Y)#13;jmp 0
73: if bit(0,rds(7,M,M,M))P)=1;gsb *E0IF1*
74: if E=1;stp ;gto 70
75: if rdb(Y)#10;jmp 0
76: if bit(0,rds(7,M,M,M))Q)=0;gsb "E0IF2"
77: if E=1;stp ;gto 70
78: dsp "*** PASS 2 ***"; wait 2000; ret
79: "L2":
80: clr Y
81: "SRQ LINE TEST (AUTO)"}E$;95b "SLOWDSP"
82: 0}E
83: gsb "GETBUS"
84: if bit(5,R)=1;95b *SRQF1*
85: if E=1;stp ;gto 81
86: wrt Y, "Q"
87: gsb "GETBUS"
88: if bit(5,R)=0;gsb "SRQF2"
89: if E=1; stp ; gto 81
90: rds(Y)}S
91: if S#66;prt "SERIAL POLL ERROR";prt "STATUS BYTE is ",dtoS,"(octal)";stp
92: dsp "*** PASS 5 ***; wait 2000
93: dsp "* 4145A HP-IB TEST COMPLETED *";beep;stp
94: gto 3
95: "DCLCHK":
96: "DEVICE CLEAR TEST (AUTO)"}E$;95b "SLOWDSP"
97: clr 7
98: gsb "MENCHK"
99: if E=1;prt *DEVICE CLEAR (DCL) FAIL*;stp ;gto 97
100: wrt Y, "SS"
101: clr Y
102: gsb "MENCHK"
103: if E=1;prt "SELECTED DEVICE CLEAR (SDC) FAIL";stp ;gto 101
104: dsp **** PASS 3 ***; wait 2000
105: ret
106: "MENCHK":
```

Figure 4-17. Program Listing of HP-IB Interface Test (Sheet 2 of 3).

```
107: wrt Y, "PL"
108: red Y,A$
109: wrt Y, "PF"
110: 1}E
111: for I=1 to 497
112: if A$[I,I+3]="MENU";0}E;gto 114
113: next I
114: ret
115: "TRGCHK":
116: "TRIGGER TEST (AUTO)"}E$;95b "SLOWDSP"
117: wrt Y, "DECH2; CH3; SMIN.5; DM2LI'I1'; MD"
118: trg Y
119: wait 1000
120: wrt Y, "BCDD" I1"
121: red Y,A$
122: "LVXCTH"}B$[1,6]
123: 1}E
124: for I=1 to 6
125: if A$[1,1]=B$[I,I];0}E;gto 126
126: next I
127: if E=1;prt "TRIGGER TEST FAIL";prt "OUTPUT DATA";prt A$;stp ;qto 116
128: dsp " *** PASS 4 ***; wait 300
129: ret
130: "EOIF1":prt "FAIL:EOI LOW FOR [CR]";1}E;ret
131: "EOIF2":prt "FAIL:EOI HIGH FOR (LF]";1}E;ret
132: "EOIF3":prt "FAIL:EOI LINE LOW";1}E;ret
133: *SRQF1*:prt *FAIL:SRQ LINE LOW*;1}E;ret
134: "SRQF2":prt "FAIL:SRQ LINE HIGH";1}E;ret
135: "SLOWDSP":""}D$; len(E$)}W; for W=1 to len(E$); E$[W,W]}D$[W,W]; dsp D$
136: wait 30; next W; wait 600; ret
137: "GETBUS":rds(7,P,Q,R)}S
138: band(R,U))U;ior(R,V))V;ret
139: *#trk1-24":end
```

Figure 4-17. Program Listing of HP-IB Interface Test (Sheet 3 of 3).

Table 4-13. Controller Instructions and Operator Responses for HP-IB Interface Test Program

Controller Instructions Displayed	Operator Response/Description
4145A HP-IB PERFORMANCE TEST	
PLOT & Data Transfer TEST	
Press PLOT then CONTINUE.	Press the PLOT key of the 4145A, then press
Press EXECUTE (4145A).	Press the EXECUTE key of the 4145A within thirty seconds, then verify that the TLK and PLOT lamps of the 4145A are lit.
*** PASS 1 ***	If all steps of the PLOT & Data Transfer Test are correct, this message is displayed.
Press PLOT again, then CONTINUE.	Press the PLOT key of the 4145A, then press
HP-IB Address? (default = 17)	Input the 4145A's HP-IB address (17), then press .
LISTENER REMOTE/LOCAL TEST	
LTN & RMT on? (CONT)	Verify that the LTN and RMT lamps of the 4145A are lit, then press If either of the lamps is not lit, end the test.
Press LOCAL, REMOTE → off?	Press the LOCAL key of the 4145A and verify that RMT lamp goes off. Then press [] . If the RMT lamp does not go off, end the test.
EOI TEST (AUTO)	The EOI Test is performed automatically.
*** PASS 2 ***	If all steps of the EOI Test are correct, this message is displayed.
IFC TEST	
TLK off & RMT on?	Verify that the TLK and RMT lamps of the 4145A are off and on, respectively, then press If the lamps are not in the correct status, end the test.
DEVICE CLEAR TEST (AUTO)	The Device Clear Test is performed automatically.
*** PASS 3 ***	If all steps of the Device Clear Test are correct, this message is displayed.
TRIGGER TEST (AUTO)	The Trigger Test is performed automatically.
*** PASS 4 ***	If all steps of the Trigger Test are correct, this message is displayed.

Table 4-13. Controller Instructions and Operator Responses for HP-IB Interface Test Program (Cont'd)

Controller Instructions Displayed	Operator Response/Description
SRQ LINE TEST (AUTO)	The SRQ Line Test is performed automatically.
*** PASS 5 ***	If all steps of the SRQ Line Test are correct, this message is displayed.
4145A HP-IB TEST COMPLETED	The test has been passed.

Table 4-14. Error Messages for HP-IB Interface Test Program

(1) TIMEOUT ERROR

This error message is displayed if the HP-IB Handshake is not properly performed within thirty seconds*. Examples of the TIMEOUT ERROR message are described below:

PLOT & Data Tran sfer TEST TIMEOUT ERROR on line 27

The ATN line is connected to GND (ground).

PLOT & Data Tran sfer TEST TIMEOUT ERROR on line 10

One of lines NRFD, DAV, or NDAC for three-wire-handshake is connected to GND (ground).

* If the EXECUTE key of the 4145A is not pressed within thirty seconds after "Press EXECUTE (4145A)" has been displayed during the PLOT & Data Transfer Test.

Note

This error message may be displayed when the error is detected in other tests.

(2) STUCK BUS ERROR

This error message is displayed if any of the DIO lines (DIO 1 - 8) are shorted or disconnected. An example of the STUCK BUS ERROR message is described below.

** STUCK BUS **
** DIO LINES **
8-7-6-5-4-3-2-1
H X X X X L X X
DIO8 must be H

The DIO3 line is stuck at low level, but the DIO8 line is at high level.

Note

This message is displayed only in the PLOT & Data Transfer Test.

Table 4-14. Error Messages for HP-IB Interface Test Program (Cont'd)

(3) SRQ LINE ERROR

This error message is displayed if the SRQ line is disconnected or shorted. There are two kinds of SRQ Line Error messages as described below.

FAIL:SRQ LINE LO

The SRQ line stays LOW.

FAIL:SRQ LINE HI GH

The SRQ line stays HIGH.

(4) EOI LINE ERROR

This message is displayed if the EOI line is disconnected or shorted. Examples of the EOI LINE ERROR message are described below:

The EO1 line stays LOW.

The EOI line is at HIGH level when the LF (line feed) signal is output.

Note

When the HP-IB control switch for the EOI is turned off, this message is displayed.

(5) SERIAL POLL ERROR

After the Service Request function of the 4145A has been verified, this message is displayed along with status byte information of the 4145A if Serial Poll is not performed properly. In the test program, the Serial Poll test has been passed when the status byte from the 4145A is 102 (octal). An example of the SERIAL POLL ERROR message described below:

SERIAL POLL ERRO
R
STATUS BYTE is
0.00
(octal)

Table 4-14. Error Messages for HP-IB Interface Test Program (Cont'd)

(6) DEVICE CLEAR (DCL) FAIL

This message is displayed if the 4145A does not respond to universal command DCL.

(7) SELECTED DEVICE CLEAR (SDL) FAIL

This message is displayed if the 4145A does not respond to addressed command SDC.

(8) TRIGGER TEST ERROR

This message is displayed if the 4145A does not respond properly to addressed command GET (Group Execute Trigger).

			4
			1
			\

4145A/B Semiconductor Analyzer Performance Test Sheet

Serial Number	Test Performed By			
Temperature	Date			
Humidity	Custodian			
	Voltage Control Accuracy To	<u>est</u>		
,	SMU 1			
20V Range	40V Range	,	100V Range	
0V = 20V =	0V = 40V =	100V =		
	SMU 2			
20V Range	40V Range		100V Range	
0V =	0V = 40V =	100V =		
	SMU 3			
20V Range	40V Range	_	100V Range	
0V = 20V =	0V = 40V =	0V = 100V = -100V =		
•	SMU 4			
20V Range	40V Range		100V Range	
0V = 20V =	0V = 40V =	100 1		

		·	
. ·			
•			
			ı,
		·	

Voltage Measurement Accuracy Test

	SMU 1	SMU 2
	20V Range	20V Range
(4145) V1a =	V1b =	
(3433) $va =$	Vb =	Va = Vb =
	40V Range	40V Range
V1a =	V1b =	V1a = V1b =
	Vb =	Va = Vb =
	100V Range	100V Range
V1a =	V1b =	V1a = V1b =
Va =	Vb =	Va = Vb =
	SMU 3	· SMU 4
	20V Range	20V Range
V1a=	V1b =	V1a = V1b =
Va =	Vb =	Va = Vb =
	40V Range	40V Range
V1a =	V1b =	V1a = V1b =
Va =	Vb =	Va = Vb =
	100V Range	100V Range
V1a =	V1b =	V1a = V1b =
Va =	Vb =	Va = Vb =
er.		

-					
				·	
		· •			
•					
•					
	:				

Current Measurement Accuracy Test

<u>Current Mea</u>	asurement Accuracy Test
SMU 1	SMU 2
<u>10E2</u>	<u>10E2</u>
I1b =	I1a = I1b =
Vb =	Va = Vb =
10E3	<u>10E3</u>
I1b =	
V D —	Va = Vb =
<u>10E4</u>	<u>10E4</u>
I1b =	I1a = I1b =
Vb =	Va = Vb =
<u>10E5</u>	<u>10E5</u>
I1b=	I1a = I1b =
Vb =	Va = Vb =
· <u>10E6</u>	<u>10E6</u>
T11. —	71 Y11
110 -	Ila= Ilb=
V U	Va = Vb =
<u>10E7</u>	<u>10E7</u>
I1h=	Ila= Ilb=
Nb Vb=	Va = Vb =
<u>10E8</u>	<u>10E8</u>
I1b =	Ila = Ilb =
Vh =	Va = Vb =
	_
<u>10E9</u>	<u>10E9</u>
I1h =	I1a = I1h =
Vh =	Ila = Ilb = Vb = Vb = Vb = Vb = Ilb = Vb = Ilb = Vb = Ilb = Vb = Ilb = I
	, , , , , , , , , , , , , , , , , , ,
<u>10E9</u>	<u>10E9</u>
I1h =	I1a = I1h =
Vb =	$I1a = \underline{\qquad} I1b = \underline{\qquad} Vb = \underline{\qquad}$
	SMU 1 10E2 I1b = Vb = 10E3 I1b = Vb = 10E4 I1b = Vb = 10E5 I1b = Vb = 10E6 I1b = Vb = 10E7 I1b = Vb = 10E8 I1b = Vb = 10E9 I1b = Vb = 10E9 I1b = Vb =

•				
·			·	
		• .		
	•			
· .				
			·	
	,			

Current Measurement Accuracy Test

	Current Mea	surement Accuracy Test	
	SMU 3	S	MU 4
	<u>10E2</u>		0E2
I1a =	I1b =	I1a=	I1b =
Va =			Vb =
	<u>10E3</u>	1	0E3
I1a =	I1b =	I1a =	
va —	Vb =		
	<u>10E4</u>		<u>0E4</u>
I1a =	I1b =	I1a =	I1b =
Va =	Vb =		Vb =
	10E5	1	<u>0E5</u>
Ila=	I1b =	I1a =	I1b=
Va =	Vb =	Va =	Vb =
	<u>10E6</u> ·	<u>1</u>	<u>0E6</u>
I1a =	I1b =		I1b=
Va =	Vb =		Vb =
	<u>10E7</u>	<u>1</u>	<u>0E7</u>
I1a =		Ila=	I1b=
	Vb =		
	<u>10E8</u>	· <u>1</u>	<u>0E8</u>
I1a =	I1b =	I1a=	I1b =
	Vb =		Vb =
	<u>10E9</u>	<u>1</u>	<u>0E9</u>
I1a =	I1b =	I1a =	[1b =
	Vb =		
	<u>10E9</u>	<u>1</u>	0 <u>E9</u>
I1a =	I1b =	I1a=	[1b =
Va =	Vb =	Va =	Vb =

•

Current Control Accuracy Test SMU 2 SMU 1 SMU₃ SMU 4 <u>10E2</u> <u>10E2</u> 10E2 10E2 Va = _____ Va = _____ Va =Va = _____ Vb = ____ Vb = ____ Vb= Vb =10E3 10E3 10E3 10E3 Va = _____ Va = _____ Va = _____ Vb = ____ Vb = ____ Vb = ____ Vb = ____ VS Accuracy Test <u>VS1</u> VS2 0V = ____ 0V = ____ 20V = 20V = _____ -20V = ____ -20V = VM Accuracy Test VM₁ VM2 2V Range 2V Range <u>2V</u> 2VVm1a = _____ . Vm1a = ____ Va = _____ Va = ____ <u>-2V</u> -2V Vm1b = _____ Vm1b = _____

Vb = ____

20V Range

20V

Vm1a = ____

Va=

-20V

Vb = _____

Vm1b = ____

Vb =

Vm1a=____

Va =

Vm1b = _____ Vb = ____

-20V

20V Range

20V

	ŧ			
	·			
			·	
	,			
	·			

4145A/B Semiconductor Analyzer Performance Test Sheet

Test Performed By _____

Serial Number _____

Temperature	Date		
Humidity	Custodian		
	Voltage Control Accuracy Te	<u>st</u>	
	SMU 1		
20V Range	40V Range		100V Range
0V = 20V = -20V =	0V = 40V =	100V =	
	SMU 2		
20V Range	40V Range		100V Range
0V =	0V = 40V = -40V =	100V = 1	
	SMU 3		
20V Range	40V Range		100V Range
0V =	0V = 40V =	100V =	
	SMU 4		
20V Range	40V Range		100V Range
0V = 20V = -20V =	0V = 40V =	0V = _ 100V = _ -100V = _	

	•
· , ·	

Voltage Measurement Accuracy Test

	SMU 1		SMU 2
	20V Range		20V Range
(4145) V1a =	V1b =		V1b =
(3455) Va =	ν _p =	Va =	Vb =
	40V Range		40V Range
	V1b =		V1b =
Va =	Vb =	Va =	Vb =
	100V Range		100V Range
V1a =	V1b =	V1a=	V1b =
	Vb =		Vb =
	SMU 3		SMU 4
	20V Range		20V Range
V1a= .	V1b =	V1a =	V1b=
Va =	Vb =		Vb =
	40V Range		40V Range
V1a=	V1b =	V1a=	V1b =
Va =	Vb =		Vb =
_1	100V Range		100V Range
V1a =	V1b =	V1a =	V1b=
Va =	Vb =		Vb =

	CIANTI 1	surement Accuracy		
	SMU 1 10E2		SMU 2	
Ila=	I1b =	I1a =	<u>10E2</u> 11b =	•
Va =	Vb =	$ V_a = -$	Vb =	
	<u>10E3</u>		<u>10E3</u>	
I1a =	I1b = Vb =	I1a=	I1b = Vb =	
Va =	Vb =	Va =	Vb =	
	<u>10E4</u>		<u>10E4</u>	
I1a=	I1b =	I1a =	I1b =	
Va =	I1b = Vb =	Va =	Vb =	
	<u>10E5</u>		<u>10E5</u>	
I1a=	I1b =	I1a=	I1b =	
Va =	Vb =	Va =	I1b = Vb =	
	<u>10E6</u>		<u>10E6</u>	
I1a =	I1b=	I1a=	I1b=	
Va =	Vb=		Vb =	
	<u>10E7</u>		<u>10E7</u>	
I1a =	I1b =	I1a =	I1b =	
Va =		Va =	Vb =	
	<u>10E8</u>		<u>10E8</u>	
I1a =	I1b=	I1a ≐	I1b =	
Va =	I1b = Vb =	Va =	I1b = Vb =	•
	<u>10E9</u>		10E9	
I1a =	I1b=	I1a =	I1b =	
Va =	I1b = Vb =	Va =	I1b = Vb =	
	<u>10E9</u>		<u>10E9</u>	
I1a =	I1b =	I1a =	I1b = Vb =	

				ļ
			•	-
		·		
				4 1
	•			
				-
,				. •
		•		

Current Measurement Accuracy Test

IIa =		SMU 3	SMU 4	
Ila =				
Va = Vb = 10E3 10E3 II a = II b = Va = Vb = Va = Vb = Va = Vb = 10E4 10E4 10E4 II a = II b = II a = II b = Va = Vb = Va = Vb = 10E5 10E5 10E5 II a = II b = II a = II b = Va = Vb = Va = Vb = 10E6 10E6 10E6 II a = II b = II a = II b = Va = Vb = Va = Vb = 10E7 10E7 10E7 II a = II b = II a = II b = Va = Vb = Vb = Vb = 10E9 10E9 II a = II b = Va = Vb = 10E9 10E9 II a = II b = II a = II b = II a = II b = II a = II b = II a = II b = II a = II b = II a =	T1			
10E3				
IIa =	Va =	Vb=	Va=Vb=	
Va = Vb = 10E4 10E4 IIa = IIb = Va = Vb = 10E5 10E5 IIa = IIb = Va = Vb = 10E6 10E6 IIa = IIb = Va = Vb = 10E7 10E7 IIa = IIb = Va = Vb = 10E8 10E8 IIa = IIb = Va = Vb = Va = Vb = 10E9 10E9 IIa = IIb = Va = Vb = 10E9 10E9 IIa = IIb = 10E9 10E9 IIa = IIb = 10E9 10E9 IIa = IIb =		<u>10E3</u>	<u>10E3</u>	
10E4		I1b =	I1a = I1b =	
IIa = Va = Vb = Vb = IIa = IIb = Vb = 10E5 10E5 IIa = IIb = Va = Vb = IIa = IIb = Vb = 10E6 10E6 IIa = IIb = Va = Vb = IIa = IIb = Vb = 10E7 10E7 IIa = IIb = Va = Vb = IIa = IIb = Vb = 10E8 10E8 IIa = IIb = Va = Vb = IIa = IIb = Vb = 10E9 10E9 IIa = IIb = Va = Vb = IIa = IIb = Va = Vb = 10E9 10E9 IIa = IIb = Va = Vb = IIa = IIb = Va = Vb = 10E9 10E9 IIa = IIb = IIa = IIb = IIb = IIa = IIb = IIb =	Va =	Vb =	Va = Vb =	
Va = Vb = 10E5 10E5 I1a = I1b = I1a = I1b = Va = Vb = Vb = Vb = 10E6 10E6 10E6 I1a = I1b = I1a = I1b = Va = Vb = Vb = Vb = 10E7 10E7 10E7 I1a = I1b = I1a = I1b = Va = Vb = Vb = 10E8 10E8 I1a = I1b = Vb = 10E9 10E9 I1a = I1b = Vb = 10E9 10E9 I1a = I1b = Vb = 10E9 10E9 I1a = I1b = I1a = I1a = I1b = I1b =		<u>10E4</u>	<u>10E4</u>	
Va = Vb = 10E5 10E5 I1a = I1b = I1a = I1b = Va = Vb = Vb = Vb = 10E6 10E6 10E6 I1a = I1b = I1a = I1b = Va = Vb = Vb = Vb = 10E7 10E7 10E7 I1a = I1b = I1a = I1b = Va = Vb = Vb = 10E8 10E8 I1a = I1b = Vb = 10E9 10E9 I1a = I1b = Vb = 10E9 10E9 I1a = I1b = Vb = 10E9 10E9 I1a = I1b = I1a = I1a = I1b = I1b =	I1a =	I1b =	I1a = I1b =	
I1a =	Va =	Vb =	Va = $Vb =$	
Va = Vb = 10E6 10E6 I1a = I1b = I1b = Va = Vb = Vb = 10E7 10E7 I1a = I1b = I1b = Va = Vb = Vb = 10E8 10E8 I1a = I1b = I1b = Va = Vb = Vb = 10E9 10E9 I1a = I1b = Vb = 10E9 10E9 I1a = I1b = I1a = 10E9 10E9 I1a = I1b = I1b =		<u>10E5</u>	<u>10E5</u>	
Va = Vb = 10E6 10E6 I1a = I1b = I1b = Va = Vb = Vb = 10E7 10E7 I1a = I1b = I1b = Va = Vb = Vb = 10E8 10E8 I1a = I1b = I1b = Va = Vb = Vb = 10E9 10E9 I1a = I1b = Vb = 10E9 10E9 I1a = I1b = I1a = 10E9 10E9 I1a = I1b = I1b =	I1a =	I1b=	I1a = I1b =	
I1a =				
Va = Vb = 10E7 10E7 I1a = I1b = I1a = I1b = Va = Vb = Vb = Vb = 10E8 10E8 10E8 I1a = I1b = I1a = I1b = Va = Vb = Vb = Vb = 10E9 10E9 I1a = I1b = Va = Vb = 10E9 10E9 I1a = I1b = I1b = I1a = I1b = I1b =		<u>10E6</u>	<u>10E6</u>	
Va = Vb = 10E7 10E7 I1a = I1b = I1a = I1b = Va = Vb = Vb = Vb = 10E8 10E8 10E8 I1a = I1b = I1a = I1b = Va = Vb = Vb = Vb = 10E9 10E9 I1a = I1b = Vb = 10E9 10E9 I1a = I1b = I1b = I1a = I1b = I1b =	I1a =	I1b =	I1a = I1b =	•
I1a = I1b = I1a = I1b = Va = Vb = Vb = 10E8 10E8 I1a = I1b = I1b = Va = Vb = Vb = 10E9 10E9 I1a = I1b = Va = Vb = 10E9 10E9 I1a = I1b = I1a = I1b = I1a = I1b = I1b = I1b =	Va =	Vb=	Va = Vb =	
Va = Vb = 10E8 10E8 I1a = I1b = I1a = I1b = Va = Vb = I1a = I1b = I1b = I1a = I1b = I1a = I1b = I1b = I1a = I1b = I1a = I1b = I1a = I1b = I1a = I1b =		<u>10E7</u>	<u>10E7</u>	
Va = Vb = 10E8 10E8 I1a = I1b = I1a = I1b = Va = Vb = I1a = I1b = I1b = I1a = I1b = I1a = I1b = I1b = I1a = I1b = I1a = I1b = I1a = I1b = I1a = I1b =	I1a =	I1b =	I1a = I1b =	
Va = Vb = 10E9 10E9 I1a = I1b = Va = Vb = Va = Vb = 10E9 10E9 I1a = I1b = I1a = I1b =		<u>10E8</u>	<u>10E8</u>	
Va = Vb = 10E9 10E9 I1a = I1b = Va = Vb = Va = Vb = 10E9 10E9 I1a = I1b = I1a = I1b =	I1a =	I1b =	I1a = I1b =	
	Va =	Vb =	Va = Vb =	
Va = Vb =		<u>10E9</u>	<u>10E9</u>	
Va = Vb =	Ila=	I1b=	I1a = I1b =	
<u>10E9</u> I1a = I1b = I1b = I1b =	Va =	Vb =	Va = Vb =	
		<u>10E9</u>	·	
	I1a =	I1b =	I1a = I1b =	
Va = Vb = Vb = Vb = Vb = Va = Vb = Vb =				

	,				
			•		
				·	
,	,				
					t :

Current Control Accuracy Test SMU 2 SMU 1 SMU₃ SMU 4 <u>10E2</u> 10E2 10E2 10E2 Va = _____ Va = _____ Va = ____ Va = _____ Vb = ____ Vb = _____ Vb = ____ Vb = ____ 10E3 10E3 10E3 10E3 Va = _____ Va = _____ Va = _____ Va = _____ Vb = Vb = _____ Vb = _____ Vb = ____ VS Accuracy Test <u>VS1</u> VS20V = ____ 0V = ____ 20V = ____ 20V = ____ -20V = ____ -20V = ____ VM Accuracy Test VM1 VM2 2V Range 2V Range <u>2V</u> <u>2V</u> Vmla = _____ Vm1a = _____ Va = _____ Va = _____ -2V -2V Vm1b = _____ Vm1b = _____

Vb = _____

20V Range

<u>20V</u>

Vm1a = _____ Va = _____

-20V

Vb =

Vm1b = _____

Vb =

Vm1a = _____

Vm1b = ____

Vb = _____

-20V

20V Range

20V

. ·
i . .

PERFORMANCE TEST RECORD

Hewlett-Packard Model 4145A SEMICONDUCTOR PARAMETER ANALYZER Test

Tested	bу	
rested	υу	

Serial Number _____ Date ____

Paragraph	Test and Result							
4-9		Graphic Display Unit Intensity and Pass . Fail * Focus Check						
4-10	Page and Ke	y Function C	heck		Pa	ss . Fai	1 *	
4-11	SMU Accurac	y Test						
4-11-(1)	Voltage Coutrol Accuracy Test							
	SMU Range Tested	Output from SMU	Test Limit	SMU1	Actual R	esult SMU3	SMU4	
	20V	0V 20V -20V	0V±0.01V 20V±0.03V -20V±0.03V					
	40V	0V 40V -40V	0V±0.02V 40V±0.06V -40V±0.06V					
	100V	0V 100V -100V	0V±0.05V 100V±0.15V -100V±0.15V					
4-11-(2)	Voltage Mea	surement Acc	uracy Test					
	SMU Range Tested	Error/ Offset	Test Limit	SMU1	Actual R	esult SMU3	SMU4	
	20V	Error Offset	±0.1% ±10mV	% %	%	%	% %	
	40V	Error Offset	±0.1% ±20mV		% 	% 	% %	
	100V	Error Offset	±0.1% ±50mV	% 	% 	% %	% %	

^{*} check (√) either Pass or Fail.

PERFORMANCE TEST RECORD

Paragraph	Test and Result							
4-11-(3)	Current Measurement Accuracy Test							
	16340A Range	Error/ Offset	Test Limit	SMU1	Actual I	Result SMU3	SMU4	
	$10^2\Omega$	Error Offset	±0.3%	%	%	%	%	
	10 ³ Ω	Error Offset	±0.3% ±12μA	26	26	%		
	10 ⁴ Ω	Error Offset	±0.3% ±1.2μA	%	%	%		
	10 ⁵ Ω	Error Offset	±0.3% ±0.12μA	%	%	%		
	10 ⁶ Ω	Error Offset	±0.3% ±12nA			<u></u> %	<u>%</u>	
	10 ⁷ Ω	Error Offset	±0.5% ±1.2nA	9 ₀	% 	%	%	
700000000000000000000000000000000000000	10 ⁸ Ω	Error Offset	±0.5% ±0.12nA	% 	<u>%</u>	% 	% 	
	109 Ω	Error Offset	±1% ±17pA	% 	%		%	
	10 ⁹ Ω	Error Offset	±1% ±6.2pA	% 	% 			
4-11-(4)	Current Control Accuracy Test							
	16340A Range	Error/ Offset	Test Limit	SMU1	Actual R SMU2	esult SMU3	SMU4	
	$10^2\Omega$	Error Offset	±0.3% ±0.12mA	%	<u>%</u>		%	
	10 ³ Ω	Error Offset	±0.3% ±12μΑ	% 		% %		
4-12	VS Accura	acy Test						
	Output Fi VS	Output From Tes		V	Actual Resu VS1			
	0V	0/	/±0.01V					
·	20V -20V	20V 20V						

Paragraph		Test and Result					
4-13	VM Accurac	VM Accuracy Test					
	VM Range Tested	Output from VS	Error/ Offset	Test Limit	Actual R	esult VM2	
		2V	Error Offset	±0.5% ±10mV	⁹ 6	% %	
	2V	-2V	Error Offset	±0.5% ±10mV		%	
		20V	Error Offset	±0.2% ±10mV	º6	%	
	20V	-20V	Error Offset	±0.2% ±10mV	% 		
4-14	External C	RT X-Y-Z Output	Outp	ut	Resul	t*	
	Check		X-out	put	Pass ·	Fai1	
			Y-output		Pass · Fail		
			Z-out	put	Pass · Fail		
4-15	HP-IB Inte	HP-IB Interface Test Result*					
	Funct ''HP ''HP	Control Switch ion -IB (21, COMMA, -IB (21, CR/LF, E played on the CRT			Pass • F	ail	
	(2) PLOT	& Data Transfer T *PASS 1***" is di 9825B.	Cest		Pass • F	ail	
	Local Test,	(3) Listener and Remote/Local Test, Local Lockout Test, and Talker Test, EOI Test "***PASS 2***" is displayed on Pass · Fail					
	the 9825B. (4) IFC Test and Device Clear Test "***PASS 3***" is displayed on Pass • Fail					ail	
	(5) Trigg	the 9825B. (5) Trigger Test "***PASS 4***" is displayed on Pass • Fail the 9825B.					
	(6) SRQ L	ine Test *PASS 5***" is di 9825B.	isplayed on		Pass • F	ail	

^{*} check (\checkmark) either Pass or Fail.

Hewlett-Packard Model 4145A SEMICONDUCTOR PARAMETER ANALYZER Tested by _____ Serial Number _____ Date ____ Paragraph Test and Result Graphic Display Unit Intensity and 4-9 Pass . Fail Focus Check Page and Key Function Check Pass . Fail 4-10 4-11 SMU Accuracy Test 4-11-(1) Voltage Coutrol Accuracy Test Actual Result SMU Range Output Test Limit SMU1 SMU2 SMU3 SMU4 Tested from SMU 0V 0V±0.01V 20V 20V 20V±0.03V -20V $-20V \pm 0.03V$ 0V 0V±0.02V 40V 40V 40V±0.06V

SMU Range	Error/	Tank Limit		Actual R	esult	
Tested	Offset	Test Limit	SMU1	SMU2	SMU3	3
	Error	±0.1%				_
20V	Offset	±10mV				_

-40V

100V

-100V

Voltage Measurement Accuracy Test

Error

0V

±0.1%

-40V±0.06V

QV±0.05V

100V±0.15V

SMU4

 $-100V \pm 0.15V$

100V

4-11-(2)

^{*} check (√) either Pass or Fail.

				1
				T.
	•			

Paragraph		,	Test a	and Result		·			
4-11-(3)	Current Measurement Accuracy Test								
	16340A	Error/	Test		Actual				
	Range	Offset	Limit	SMU1	SMU2	SMU3	SMU4		
		Error	±0.3%	%	%	%	%		
	$10^2\Omega$	Offset	±0.12mA						
	10 ³ Ω	Error	±0.3%		%	%	%		
	10-21	Offset	±12μA				·		
	10 ⁴ Ω	Error	±0.3%	%	%	%	%		
	10.73	Offset	±1.2μA						
	10 ⁵ Ω	Error	±0.3%	%	%	%	%		
	10.25	Offset	±0.12μA						
	10 ⁶ Ω	Error	±0.3%	%	%	%	%		
	10.75	Offset	<u>+</u> 12nA						
	10 ⁷ Ω	Error	±0.5%	<u></u> %	%	%	%		
	10.7%	Offset	±1.2nA			·			
	10 ⁸ Ω	Error	±0.5%	%		- %	%		
	10 %	Offset	±0.12nA						
	10 ⁹ Ω	Error	±1%	\\\%	%	%	%		
•	. 10 %	Offset	±17pA						
	10 ⁹ Ω	Error	±1%	%	%	<u> </u>	%		
	10 %	Offset	±6.2pA						
4-11-(4)	Current	Control Acc	uracy Test				•		
	16340A	Error/	Test		Actual F	lesult			
	Range	Offset	Limit	SMU1	SMU2	SMU3	SMU4		
		Error	±0.3%			- %	%		
	$10^2\Omega$	Offset	±0.12mA						
		Error	±0.3%	96	%		%		
	10 ³ Ω	Offset	±12μA	 					
4-12	VS Accur	acy Test			_				
	Output F: VS	rom Te	st Limit	V	Actual R	esult VS2			
	OV	0)	/±0.01V						
	20V		OV±0.11V		•				
	-20V		OV±0.11V						

. .

Paragraph		Test and Result					
4-13	VM Accurac	y Test					
	VM Range Tested	Output from VS	Error/ Offset	Test Limit		Result VM2	
		2V	Error Offset	±0.5%			
	2V	-2V	Error Offset	±0.5%	%	%	
		20V	Error Offset	±0.2% ±10mV	%	%	
	20V	-20V	Error Offset	±0.2% ±10mV		%	
4-14	External C	RT X-Y-Z Output	Outpu	L	Resul	t*	
	Check	•	X-out;		Pass ·	Fail	
			Y-out	out	Pass · Fail		
	•		Z-out _I	out	Pass .	Fail	
4-15	HP-IB Inter	HP-IB Interface Test Result*					
	(1) HP-IB Functi	Control Switch					
	''HP-	IB (21, COMMA, IB (21, CR/LF, E Dlayed on the CRT	0I)" are		Pass · F	ail	
	11***	Data Transfer T PASS 1***" is di 9825B.			Pass · F	ail	
	(3) Lister Local	er and Remote/Lo Lockout Test, an EOI Test					
	"***PASS 2***" is displayed on the 9825B.					ail	
	(4) IFC Test and Device Clear Test						
	"***PASS 3***" is displayed on Pass · Fail the 9825B.					ail	
	"***PASS 4***" is displayed on Pass • Fail the 9825B.					ail	
	(6) SRQ Li	ne Test					
		PASS 5***" is di: 9825B.	splayed on		Pass · F	ail	

^{*} check (\checkmark) either Pass or Fail.

Hewlett-Packard Model 4145A SEMICONDUCTOR PARAMETER ANALYZER Tested by _____ Serial Number _____ Date ____ Test and Result Paragraph Graphic Display Unit Intensity and Pass . Fail 4-9 Focus Check Pass . Fail * 4-10 Page and Key Function Check 4-11 SMU Accuracy Test Voltage Coutrol Accuracy Test 4-11-(1)Actual Result SMU Range Output Test Limit SMU1 SMU2 SMU3 SMU4 Tested from SMU 0V 0V±0.01V 20V 20V 20V±0.03V -20V -20V±0.03V 0V 0V±0.02V 40V 40V 40V±0.06V ·-40V -40V±0.06V 0V±0.05V 07 100V 100V 100V±0.15V -100V -100V±0.15V 4-11-(2) Voltage Measurement Accuracy Test Actual Result SMU Range Error/ Test Limit SMU1 SMU2 SMU3 Offset Tested ±0.1% Error 20V Offset ±10mV ±0.1% Error 40V ±20mV Offset Error ±0.1% 100V Offset ±50mV

^{*} check (√) either Pass or Fail.

			4
		·	
	·		
			l i

Paragraph			Test	and Result			· · · · · · · · · · · · · · · · · · ·	
4-11-(3)	Current	Current Measurement Accuracy Test						
	16340A	Error/	Test		Actual Result.			
	Range	Offset	Limit	SMU1	SMU2	SMU3	SMU4	
	$10^2\Omega$	Error	±0.3%	%	%	%	%	
	10 10	Offset	±0.12mA					
	10 ³ Ω	Error	±0.3%	%	%	%	%	
	10 44	Offset	±12μA					
	10 ⁴ Ω	Error	±0.3%	%	%		%	
	10 2:	Offset	±1.2μA					
	10 ⁵ Ω	Error	±0.3%	%	%		%	
	10-75	Offset	±0.12μA		,			
	1050	Error	±0.3%	%	%	%	%	
	10 ⁶ Ω	Offset	<u>+</u> 12nA					
	7 -	Error	±0.5%	%	%	%	%	
	10 ⁷ Ω	Offset	±1.2nA					
		Error	±0.5%	%		%	%	
	10 ⁸ Ω	Offset	±0.12nA					
		Error	±1%	%	%	%	%	
	10 ຄ	Offset	±17pA					
		Error	±1%	%	%	%	<u></u> %	
	10 ⁹ Ω	Offset	±6.2pA			***************************************		
4-11-(4)	Current	Control Acc	uracy Test					
	16340A	Error/	Test		Actual R	esult		
	Range	Offset	Limit	SMU1	SMU2	SMU3	SMU4	
		Error	±0.3%	%	%	%	%	
	$10^2\Omega$	Offset	±0.12mA					
		Error	±0.3%	%	%	- %	%	
	10 ³ Ω	. Offset	±12μA					
4-12	VS Accur	S Accuracy Test						
	Output F: VS	rom Te	st Limit	V	Actual R	esult VS2	•	
`	ov	0.	V±0.01V				·	
	20V	2	0V±0.11V .		,			
	-20V	-2	0V±0.11V					

, 1

Paragraph		Test and Result					
4-13	VM Accurac	VM Accuracy Test					
	VM Range Tested	Output from VS	Error/ Offset	Test Limit	Actual F	Result VM2	
		2V	Error	<u>+</u> 0.5%	%	%	
	2V		Offset Error	±10mV	%	%	
	~ `	- 2V	Offset	±10mV			
		20V	Error Offset	±0.2% ±10mV	%	%	
	20V	-20V	Error	±0.2%	90	%	
4-14	Futamal C		Offset	±10mV	Resul	+*	
4-14	Check	RT X-Y-Z Output	Outpu X-out	 -	Pass ·		
			Y-out		Pass · Fail		
			Z-out		Pass .		
4-15	HP-IB Inter	HP-IB Interface Test Result*					
	(1) HP-IB Functi	Control Switch					
	''HP-	IB (21, COMMA, IB (21, CR/LF, E played on the CRT	0I)" are		Pass · F	ail	
	(2) PLOT 8	Data Transfer T	est				
		PASS 1***" is di 9825B.	splayed on		Pass • F	ail	
	Local	ner and Remote/Lo Lockout Test, an EOI Test			_		
	"***PASS 2***" is displayed on the 9825B.						
	(4) IFC Test and Device Clear Test						
	"***PASS 3***" is displayed on Pass • Fail the 9825B.					ail	
		(5) Trigger Test					
		"***PASS 4***" is displayed on Pass • Fail the 9825B.					
	****	ne Test PASS 5***" is di 9825B.	splayed on		Pass • F	ail	

^{*} check (\checkmark) either Pass or Fail.

SECTION V ADJUSTMENT

5-1. INTRODUCTION

This section provides the information 5-2. needed to adjust the 4145A to the specifications listed in Table 1-1. The prime purpose of adjustment is to return the instrument to its peak operating capabilities after repairs have been made. The instrument should be tested and adjusted whenever a part or component has been replaced. If the instrument falls out of adjustment, readjustment alone often returns the instrument to normal operating conditions without repairs. Adjustment procedures should also be performed periodically to maintain top operating performance. The recommended adjustment schedule for the 4145A is every six months. All adjustable components referred to in individual tests are listed in Table 5-1. If proper performance cannot be achieved after adjustment procedures have been performed, troubleshooting to the procedures described in Section VIII.

Note

To ensure proper adjustment and instrument operation, allow 40 minute warm-up time to stabilize operating conditions before performing any of the adjustment procedures described herein.

5-3. SAFETY REQUIREMENTS

5-4. Although the instrument has been designed in accordance with international safety standards, this manual contains supplementary information, cautions, and warnings which must be followed to ensure safe operating conditions (see Section II and III). Adjustments described in this section should be performed only by qualified service personnel.

WARNING

ANY DISTURBANCE OF THE PRO-(GROUNDED) TECTIVE CON-DUCTOR INSIDE OR OUTSIDE THE INSTRUMENT, OR DISCONNECTION OF THE PROTECTIVE GROUND TERMINAL MAKE CAN THE INTEN-INSTRUMENT UNSAFE. TIONAL INTERRUPTION FOR ANY REASON IS PROHIBITED.

- 5-5. Opening covers in order to remove parts, except those which can be accessed by hand, exposes live components and terminals. Use appropriate caution.
- 5-6. Capacitors in the instrument may still be charged after the instrument has been disconnected from the power source.

WARNING

ADJUSTMENTS DESCRIBED IN THIS SECTION ARE PERFORMED SUPPLIED POWER TO THE INSTRUMENT AND WITH PROTECTIVE COVERS REMOVED. ELECTRICAL CURRENT EXISTING MANY POINTS MAY, CONTACTED, RESULT IN SERIOUS PERSONAL INJURY.

5-7. EQUIPMENT REQUIRED

Equipment needed to adjust the 4145A is 5-8. listed in Table 4-1. Each piece of equipment listed in Table 4-1 must be calibrated to satisfy specifications its own and required characteristics. If the recommended model is available, instrument whose not any specifications equal to or surpass the required specifications may be substituted.

5-9. ADJUSTMENT RELATIONSHIPS

5-10. The adjustment procedures described in this section; beginning with paragraph 5-24, should be performed in the order described because each step is interactive. Neglecting or changing the order of the procedures may make it impossible to obtain optimum instrument performance. Table 5-2 lists necessary adjustment procedures after the instrument has been repaired.

5-11. ADJUSTMENT LOCATIONS

5-12. To help locate the appropriate adjustment points, brief descriptions of their locations are given in each adjustment section. Refer to Section VIII for overall component locations. The locations, connectors, and other components related to the adjustment are shown in the individual board assembly component illustrations (fold-out service sheets).

Table 5-1. Adjustable Components

Table 5-1. Adjustable Components					
Paragraph	Reference Disignator	Name of Control	Description		
5-23	INTENSITY FOCUS	INTENSITY FOCUS	Adjusts the writing beam intensity and focus.		
5-24	AllR17	V ADJ	Adjusts the power supply voltage by adjusting switching duty cycle.		
5-25	A3R30	C ADJ	Eliminates AC offset generated in the sample hold switch.		
5-26	A4C1 A4C2 A4C3 A4C4 A4C5 A4C6 A4C7 A4C8 A4C9	I1 V1 I2 V2 I3 V3 I4 V4 E1	Eliminates AC offset generated in the demultiplexer.		
5-27	A4R11	GAIN	Adjusts the gain of the D-A converter for analog output.		
5-28	A3R1	AD GAIN	Adjusts the gain of the A-D converter.		
5-29	A16R4 A16R104	G ADJ G ADJ	Adjusts the gain of Voltage Monitor 1 (Vm 1) and Voltage Monitor (Vm 2).		
5-52	DRIVE MOTOR		Adjusts the drive belt tension for optimum read/write capability of the flexible-disc drive.		
5-53	R47		Adjusts the index timing for correct sector selection.		
5-54	STEPPER MOTOR		Adjusts the track alignment for accessing a specified track.		
5-55	TRACK ZERO SWITCH		Adjusts the switching timing of the track zero switch.		
5-56	R69	- 114	Minimizes jitter in read data for proper read data sampling.		
5-57	INDEX DETECTOR		Adjusts the index detector alignment for correct sector selection.		

5-13. INITIAL OPERATING PROCEDURES

5-14. Before making the adjustments described in paragraph 5-23, perform the starting procedures described in paragraph 5-15 through 5-22 to locate and to gain access to adjustment controls. These procedures provide access to the points adjustment and various thoroughgoing adjustment. The Initial Control Settings described in paragraph 3-14 must be each adjustment, and (COMMON)-GROUND terminals, located on the rear panel, must be shorted using the shorting

5-15. BASIC OPERATING CHECKS

5-16. Check that the instrument's line voltage selector switches, located on the rear panel, are set for the local line voltage. This should be performed before making any adjustments.

After the recommended 40 minute warm-up period, the instrument should pass the SELF TEST (no error messages appear), and the initial control settings should be automatically set in preparation for measurement. If the instrument displays an error message or does not have the correct initial control settings, refer to the troubleshooting procedures given in Section VIII.

5-17. TOP COVER REMOVAL

- 5-18. Remove the top cover in order to gain access to the adjustment controls as follows:
- (1) Fully loosen the retaining screw at the rear of the top cover.
- (2) Slide the top cover towards the rear and lift off.

5-19. BOTTOM COVER REMOVAL

- 5-20. Remove the bottom cover in order to gain access to the adjustment controls as follows:
- (1) Fully loosen the retaining screw at the rear of the bottom cover.
- (2) Slide the bottom cover towards the rear and lift off.

WARNING

WHEN TOP COVER OR BOTTOM COVER IS REMOVED, LIVE COMPONENTS ARE EXPOSED.

5-21. A3 BOARD ACCESS

5-22. The following adjustments procedure and A3S1 switch settings are facilitated by extending the A3 SMU Control and A-D Converter Board with an extender board (HP P/N: 04145-66521). The seven bits of A3S1 are initially set to all zeros (0000000) and changed as necessary to set the 4145A in test mode. Refer to each adjustment procedure for the required setting.

- (1) Sample Hold Switch AC Offset Adjustment
- (2) Demultiplexer Noise Rejection Adjustment
- (3) D-A Converter Gain Adjustment
- (4) A-D Converter Gain Adjustment

Note

For the above adjustments, the following messages are displayed on the system message line in the order given after the 4145A has been turned on.

- (1) Busy
- (2) Error A01
 —about 30 second interval——
- (3)* HP-IB (XX, COMMA, EOI) FILTER (XX HZ) CHAN (|||DOWN!!!)
 - * This message is displayed on the MENU page.

These messages are shown only because the 4145A is in the test mode, and indicate that the 4145A is functioning properly.

WARNING

TO GUARD AGAINST ELECTRICAL SHOCK, USE INSULATED TOOLS FOR ALL ADJUSTMENTS.

Table 5-2. Adjustment Requirements

Assembly Repaired or Replaced	Required Checks/Adjustments
Al Graphics Display Control Board (P/N: 04145-66501)	None
A2 Microprocessor Digital Control Board (P/N: 04145-66502)	None
A3 SMU Control and A-D Converter Board (P/N: 04145-66503)	Para. 5-25 and -28
A4 D-A Converter Board (P/N: 04145-66504)	Para. 5-26 and -27
A5 SMU Board (P/N: 04145-66505)	None
A9 HP-IB and MSU Control Board (P/N: 04145-66509)	None
All Keyboard and Display Control Board (P/N: 04145-66510)	None
All Switching Power Supply Board (P/N: 04145-66511)	Para. 5-24
Al2 DC Power Supply Board (P/N: 04145-66512)	None
A13 SMU Power Source Board (P/N: 04145-66513)	None
Al5 Floating Power Supply Board (P/N: 04145-66515)	None
A16 Vs/Vm Board (P/N: 04145-66516)	Para. 5-29

Table 5-2. Adjustment Requirements (Cont'd)

	Assembly Repaired or Replaced	Required Checks/Adjustments
	Display Unit 1345A)	Refer to the 1345A's manual.
	e-disc Drive U: 0950-0863)	Para. 5-43 and -46
(1)	PC Board Assembly (P/N: 04145-65110) Replacement	Para. 5-53, -56, and -57
(2)	Drive Belt (P/N: 04145-65114) Replacement	Para. 5-52 and -53
(3)	Head Carriage Assembly (P/N: 04145-65112) Replacement	Para. 5-54, -55, and -56
(4)	Front Cabinet Assembly (P/N: 04145-65113) Replacement	Para. 5-53, -56, and -57
(5)	Drive Motor Assembly (P/N: 04145-65111) Replacement	Para. 5-52 and -53
(6)	LED (P/N: 04145-65115) for write-protection	Verify that the write-protect function works properly.
(7)	LED (P/N: 04145-65115) for Index Detector	Para. 5-57
(8)	Phototransistor (P/N: 04145-65116) for write-protection	Verify that the write-protect function works properly.
(9)	Phototransistor (P/N: 04145-65116) for index detection	Para. 5-57

5-23. GRAPHICS DISPLAY UNIT INTENSITY AND FOCUS CHECK AND ADJUSTMENT

PURPOSE: This check and adjustment sets intensity and focus of the 4145A Graphic Display Unit (GDU) for clear display.

PROCEDURE:

Figure 5-1. Test Pattern for GDU.

- 1. Obtain the DIAGNOSTICS page by pressing the EXTN softkey and the DIAG softkey while viewing the MENU page.
- 2. Display the test pattern (Figure 5-1) by pressing the G.D. TEST softkey.
- 3. Adjust INTENSITY with an insulated screwdriver until line 1 (see Figure 5-1) is just barely visible. Refer to Figure 5-2 for the INTENSITY adjustment location.
- Adjust FOCUS for sharp, well-defined trace at points A, B, C, and D first, then over the entire CRT. Refer to Figure 5-2 for the FOCUS adjustment location.

Figure 5-2. INTENSITY and FOCUS Locations.

Note 1

If the writing beam intensity and focus cannot be properly adjusted or if any distortion of trace is observed, refer to Section IV and V of the 1345A's Operating and Service Manual, located at the back of this binder.

Note 2

When the procedures in Section IV and V of the 1345A's Operating and Service manual are performed, the connector on the 4145A's Al GDU Control Board must be disconnected. See Figure 5-3 for the connector location.

Figure 5-3. Connector Location.

5-24. DC POWER SUPPLY ADJUSTMENT

PURPOSE: This adjustment accurately sets the regulated power supply output voltage for all sections of the 4145A.

Figure 5-4. DC Power Supply Adjustment Setup.

EQUIPMENT:

DVM*	HP	MODEL	3455A
Test Lead (alligator clips to dual banana plug)	HP	MODEL	11002A
Test Lead (probe and alligator clip to dual			
banana plug)			

*DVM must have at least 3 1/2 digit display capability.

PROCEDURE:

- 1. Connect the DVM HI input to A2TP16 (+5V) (see Figure 5-7 for the location), and the LOW input to the chassis using an alligator clip-to-dual banana plug test lead.
- 2. Set the 3455A's controls as follows:

FUNCTION ······ ==V
RANGE ····· AUTO
TRIGGER ···· INTERNAL

3. Disconnect the test fixture and cables from the 4145A, then turn on the 4145A and the 3455A.

Note

Perform adjustment and checks while viewing the MENU page.

4. Adjust AllR17 (see Figure 5-6 for location) until the reading on the DVM is between 5.040V and 5.065V when 100 volt power line voltage is used. Use an insulated screwdriver.

Note

When 115 or 220 volt power line voltage is used, the limit is between $5.050\,\mathrm{V}$ and $5.075\,\mathrm{V}$.

WARNING

Aliri7 is Located Beneath the Shield on the Ali Board. Do not remove the Shield for this Adjustment. DC Voltages exceeding 100V are PRESENT ON THE All BOARD.

Figure 5-5. AllR17 Adjustment.

5. Connect the DVM to the points listed in Table 5-3, and verify that the DVM readout at each point is within the limits given in the table. Refer to Figure 5-7 for the locations of the points listed in Table 5-3.

WARNING

WHEN A5J1 PIN 1 AND A5J1 PIN10 ARE CHECKED, THE 11003A TEST LEAD (PROBE AND ALLIGATOR CLIP TO DUAL BANANA) SHOULD BE USED FOR THE CHECK. IF THE TEST LEAD IS NOT AVAILABLE, USE THE 11002A TEST LEAD WITH A SHORT WIRE AS SHOWN IN FIGURE 5-6, BUT BE CAREFUL. DC VOLTAGE EXCEEDING 100V IS PRESENT AT THE CHECK POINT.

Figure 5-6. A5Jl Check.

Figure 5-7. Check Point Locations.

Table 5-3. Check Points and Limits

G	rounded Sect	ion		Floated Sect	ion
Test Lead	Connection	I i mi t	Test Lead	Connection	Timis
HI input	LOW input	Limit	HI input	LOW input	Limit
A2TP14	GND (CHASSIS)	-5V±0.25V	A4TP12	A5TP9 (CM*)	15V±0.5V
A2TP15	GND (CHASSIS)	12V±1.2V	A4TP14	A5TP9 (CM*)	-15V±0.5V
1345A TP1	GND (CHASSIS)	-15V±0.75V	A4TP22	A5TP9 (CM*)	5V±0.25V
1345A TP2	GND (CHASSIS)	15V±0.75V	A5J1 pin 1	A5TP9 (CM*)	130V-13V+26V
			A5J1 pin10	A5TP9 (CM*)	~130V+13V-26V

* CM: COMMON

5-25. SAMPLE HOLD SWITCH AC OFFSET ADJUSTMENT

PURPOSE: This adjustment eliminates AC offset generated by A3U24 (Sample Hold Switch).

Figure 5-8. Sample Hold Switch AC Offset Adjustment Setup.

EQUIPMENT:

Oscilloscope	ΗP	MODEL	1740A
1:1 Probe (2 ea)	HP	MODEL	10007B
Extender Board	HP	P/N 0414	45-66521

PROCEDURE:

- 1. Extend the A3 SMU Control and A-D Converter Board with the extender board (HP P/N: 04145-26521).
- 2. Set A3S1 (SW1) to 1001011. See Figure 5-10 for the location of A3S1.
- 3. Verify that A3W2 through A3W6 are set to N (Normal Mode).
- 4. Connect the channel A or B input to A3TP19 and the EXT TRIGGER input to A3TP20 (see Figure 5-10 for the locations). Obtain channel A or B input GND (ground) from A3TP3.

CAUTION

BE CAREFUL NOT TO TOUCH THE GND CLIP TO A3TP2 and A3TP4. ±15 VOLTS IS PRESENT AT THE TEST POINTS.

5. Set the 1740A's controls as follows:

VOLT/DIV ······	0.005
COUPLING	AC
TIME/DIV	0.1msec
TRIGGER	EXT
SWEEP MODE	NORM
MAGx5	ON

- 6. Disconnect the test fixture and cables from the 4145A, then turn on the 4145A and the 1740A.
- 7. Adjust A3R30 (see Figure 5-10 for the location) until the height of the pulse at A3TP19 is minimized (less than 0.5mV) as shown in Figure 5-9.

Figure 5-9. AC Offset Adjustment.

Figure 5-10. Check/Adjustment Point Locations.

5-26. DEMULTIPLEXER NOISE REJECTION ADJUSTMENT

PURPOSE: This adjustment eliminates AC offset generated by the demultiplexer (Sample Hold Switch) on the A4 board.

Figure 5-11. Demultiplexer Noise Rejection Adjustment Setup.

EQUIPMENT:

Oscilloscope HP MODEL 1740A 1:1 Probe (2ea) HP MODEL 10007B

PROCEDURE:

- 1. Remove the A3 SMU Control and A-D Converter Board and the A4 D-A Converter Board, and set A3S1 (SW1) to 1001011. See Figure 5-13 for the location of A3S1.
- 2. Verify that jumpers A3W2 through A3W6 and A4W1 (see Figure 5-13) are set to N (Normal Mode).
- 3. Reinstall the A3 and A4 boards.
- 4. Connect the channel A or B input to A4TP2 and the EXT TRIGGER input to A4TP15 (see Figure 5-13 for the locations). Obtain channel A or B input GND (ground) from A4TP13.

CAUTION

BE CAREFUL WHEN CONNECTING THE GND CLIP. ±15 VOLTS IS PRESENT AT A4TP12 AND A4TP14.

5. Set the 1740A's controls as follows:

VOLT/DIV	0.005
COUPLING	AC
TIME/DIV	0.2msec
TRIGGER	EXT
SWEEP MODE	NORM
MAGx5	ON

- 6. Disconnect the test fixture and cables from the 4145Aa, then turn on the 4145A and 1740A.
- 7. Adjust A4Cl until the height of the pulse at A4TP2 is minimized (less than $0.5 \, \text{mV}$) as shown in Figure 5-14.
- 8. Perform step 7 for each test point/trimmer capacitor combination listed in Table 5-4.

Table J.4.	rest rount/1rimmer	Capacitor	Combinations
·			

Test Point/Trimmer	Capacitor Combinations
Test Point	Trimmer Adjusted
A4TP3	A4C2
A4TP4	A4C3
A4TP5	A4C4
A4TP6	A4C5
A4TP7	A4C6
A4TP8	A4C7
A4TP9	A4C8
A4TP10	A4C9
A4TP11	A4C10

Figure 5-12. Scope Display for Adjustment.

Figure 5-13. Test Point Locations.

5-27. D-A CONVERTER GAIN ADJUSTMENT

PURPOSE: This adjustment accurately sets the gain of the D-A Converter for analog output.

Figure 5-14. D-A Converter Gain Adjustment Setup.

EQUIPMENT:

DVM	HP	MODEL	3455A*
Test Lead (alligator clips to dual banana plug)	HP	MODEL	11002A
1:1 Probe	ΗР	MODEL.	10007B

^{*} The 3455A must be calibrated before this adjustment.

PROCEDURE:

- Remove the A3 SMU Control and A-D Converter Board and A4 D-A Converter Board, and set A3S1 (SW1) to 1001100. See Figure 5-15 for the location of A3S1.
- 2. Verify that jumpers A3W2 through A3W6 and A4W1 (see Figure 5-15 for the locations) are set to N (Normal Mode).
- 3. Reinstall the A3 and A4 boards.
- 4. Connect DVM HI input to A4TP2 (-10V), LOW input to A4TP13 (AGND: analog ground), and EXT TRIGGER input to A4TP15 (see Figure 5-11 for the locations).

CAUTION

BE CAREFUL WHEN THE LOW INPUT IS CONNECTED TO A4TP13. ±15V IS PRESENT AT A4TP12 AND A4TP14.

5. Set the 3455A's controls as follows:

FUNCTION	=== V
RANGE	AUTO
TRIGGER	EXT

- 6. Disconnect the test fixture and cables from the 4145A, then turn on the 4145A and the 3455A.
- 7. Adjust A4R11 (see Figure 5-11 for location) until the reading on the DVM is $-10.000V\pm0.5$ mV. The voltage at A4TP2 is a staircase signal. Adjust A4R11 only at the -10V step.

Figure 5-15. Check/Adjustment Point Locations.

5-28. A-D CONVERTER GAIN ADJUSTMENT

PURPOSE: This adjustment accurately sets the gain of the A-D converter.

- 1. Remove the A3 SMU Control and A-D Converter Board and the A4 D-A Converter Board, and set A3S1 (SW1) to 1001101. See Figure 5-17 for the location of A3S1.
- 2. Verify that jumpers A3W2 through A3W6 and A4W1 (see Figure 5-16 for the locations) are set to N (Normal Mode).
- 3. Reinstall the A3 and A4 boards.
- 4. Disconnect the test fixture and cables from the 4145A, then turn on the 4145A.
- 5. Adjust A3R1 (see Figure 5-17 for the location) until the LED announciator pattern indicates "pass" as shown in Figure 5-16.

RESULT	Ann	ounc	iato	rs	Description
KLOOLI	DS1	DS2	DS3	DS4	Description
Pass	0	0	0	0	Adjustment is accurately set.
Fail	6	0	0	0	Gain is under-adjusted. Adjust A3Rl clockwise.ckwise.
Fail	0	0	8	0	Gain is over-adjusted. Adjust A3R1 counterclockwise.

o: ON (blinking), • : OFF

Figure 5-16. Results from LED Announciators.

Figure 5-17. Check/Adjustment Point Locations.

5-29. VM RANGE ADJUSTMENT

PURPOSE: This adjustment accurately sets the gain of the Voltage Monitor 1 (Vml) and Voltage Monitor 2 (Vm2).

Figure 5-18. VM Range Adjustment Setup.

EQUIPMENT:

DAW			
Test Fixture (with cables)			
TEST Lead (alligator clips to dual banana plug)	ΗP	MODEL	10007B

PROCEDURE:

- 1. Connect the 16058A and the 4145A with the triaxial cables and the system cable (furnished with the 16058A).
- 2. Set the 4145A's controls as follows:
 - i) On the CHANNEL DEFINITION page:

Set up the page as shown in the figure.

	l NA	ME	SOU	RCE
CHAN	٧	I	MODE	FCTN
SMU1	V1	I1	V	CONST
SMU2	٧2	12	V	CONST
SMU3	٧3	13	٧	VAR1
SMU4				
Vs 1			٧	1
Vs 2			V	
Vm 1	VM1			
Vm 2	VM2		Ī	
USER FCTN 1	MAHE (UNIT)		ж	

ii) On the SOURCE SET UP page and MEAS & DISP MODE SET UP page:

Set up the pages as shown in the figure below:

		VAR1	VAR2
NAME		EV	
SWEEP MODE		LINEAR	LINEAR
START	•	.0000V	
STOP		1.0000V	
STEP		1.0000V	
NO. C	F STEP	2	
COMPL	.IANCE	100.0mA	1
CONSTANT		SOURCE	COMPLIANCE
٧1	٧	20.000V	100.0mA
٧2	٧	20.000V	100.0mA
		•	

- iii) INTEG TIME
- LONG
- 3. Connect the cables between the Personality Board and socket board as shown below. Use any of the socket boards and miniature banana-pin plug cables* (furnished with the 16058A).

4. Set the 3455A's controls as follows:

5. Perform measurement by pressing the REPEAT key.

- Record the readings on the 4145A for offset value VM1. (for Vm1) and VM2. (for Vm2).
- 7. End measurement by pressing the STOP key.
- 8. Change the cable connection to monitor the voltage value between point A and the ground terminal with the 3455A as shown below. Then press the REPEAT key.

9. Adjust A16R4 (see Figure 5-19 for the location) for Vml gain until VMl (value displayed on the 4145A) and Vdvml (reading on the 3455A) satisfy the following inequality. Then press the STOP key.

 $VM1-5/2VM1 \circ -10$ counts $\leq Vdvm1 \leq VM1-5/2VM1 \circ +10$ counts

- 10. Change the 3455A's connection to point B, then press the REPEAT key.
- 11. Adjust Al6R104 (see Figure 5-19 for the location) for Vm2 gain until VM2 (value displayed on the 4l45A) and Vdvm2 (reading on the 3455A) satisfy the following inequality. Then press the STOP key.

 $VM2-5/2VM2 \circ -10$ counts $\leq Vdvm2 \leq VM2-5/2VM2 \circ +10$ counts

Figure 5-19. Adjustment Point Locations.

5-30. MASS STORAGE UNIT TEST

5-31. The Mass Storage Unit (MSU) consists of flexible-disc drive (FDD) and a disc (software disc). The MSU Test includes disc check and flexible-disc drive checks and adjustments described starting in paragraph 5-43.

5-32. FLEXIBLE-DISC DRIVE ACCESS

5-33. To facilitate throughgoing adjustment of the flexible-disc drive, the drive unit must be pulled out (removed but not electrically disconnected) from the 4145A.

- 1. Stand the 4145A on its side, and remove the bottom cover.
- 2. Loosen and remove the four retaining screws from the flexible-disc drive.
- 3. Carefully remove the drive unit from the 4145A through the front panel. Leave all cables connected to the drive unit.
- 4. Place the drive unit on a clean work surface as shown in Figure 5-20.

Figure 5-20. Flexible-disc Drive Access.

5-34. DISC CHECK

5-35. A visual check of the disc should be made periodically. When contamination, wear, bends, or creases are observed, and the 4145A is experiencing an MSU trouble, try the MSU operation again using a new disc. If the anomaly persists, perform the SMU tests described

starting in paragraph 5-43. A good rule of thums is to use a new disc instead of the suspicious disc even if the disc is visually perfect. For troubleshooting the MSU, see to Section VIII in this manual and contact the nearest Hewlett-Packard Sales Office.

5-36. FLEXIBLE-DISC DRIVE CHECKS AND ADJUSTMENTS

5-37. There are eight flexible-disc drive checks and adjustments:

- (1) MSU Read Test (paragraph 5-43)
- (2) MSU Write Test (paragraph 5-46)
- (3) Drive Belt Tension Check and Adjustment (paragraph 5-52)
- (4) Index Timing Check and Adjustment (paragraph 5-53)
- (5) Track Alignment Check and Adjustment (paragraph 5-54)
- (6) Track Zero Switch Check and Adjustment (paragraph 5-55)
- (7) Jitter Check and Adjustment (paragraph 5-56)
- (8) Index Detector Alignment Check and Adjustment (paragraph 5-57)

To perform checks and adjustments 1 through 8, except 3, the 4145A must be set to MSU DIAGNOSTICS Mode. See paragraph 5-40 for details.

5-38. SURE FLEXIBLE-DISC DRIVE CHECKS AND ADJUSTMENTS

5-39. Be aware of the following cautions for your own protection and to avoid damage to the flexible-disc drive.

WARNING

MOST OF THE FLEXIBLE-DISC DRIVE CHECKS AND ADJUSTMENTS DESCRIBED HEREIN ARE FORMED WITH POWER SUPPLIED TO THE INSTRUMENT. SUCH ADJUSTMENTS MUST PER-BE FORMED ONLY BY QUALIFIED SERVICE PERSONNEL.

5-40. MSU DIAGNOSTICS MODE

5-41. When checks and adjustments of the flexible-disc drive (FDD) are performed, the 4145A must be set to MSU (Mass Storage Unit) DIAGNOSTICS Mode. The mode is provided to perform checks and adjustments of the FDD without using special electronic tools. When the 4145A is in MSU DIAGNOSTICS mode, the drive motor of the FDD goes on automatically. MSU DIAGNOSTICS Mode is used for the MSU Read Test, the MSU Write Test, and the MSU EXERCISER listed in Table 5-5.

5-42. Set the 4145A to the MSU

DIAGNOSTICS mode is as follows:

- Turn off the 4145A, and remove the top cover.
- 2. Remove A2U14 and install the MSU Test ROM (A1U8; HP P/N 04145-85018) in its place. The MSU Test ROM is provided on the Al Graphic Display Control Board. See Figure 5-21 for A2U14 and MSU Test ROM locations.
- 3. Set A2S1 to 1010011. See Figure 5-21 for the A2S1 setting and its location. The seven bits of A2S1 are initially set to all ones (1111111). After checks and adjustments of the FDD have been performed, A2S1 must be set to the initial setting.

Table 5-5. MSU DIAGNOSTICS Mode

Mode	Description	Related Paragraph
MSU READ TEST	The MSU Read Test can be performed when the WRITE TEST softkey is pressed.	5-43
MSU WRITE TEST	The MSU Write Test can be performed when the WRITE TEST softkey is pressed.	5-46
MSU EXERCISER	The following checks and adjustments of the FDD can be performed:	5-49
	1. Index Timing Check And Adjust- ment	5-53
	2. Track Alignment Check And Adjustment	5-54
	3. Track Zero Switch Check And Adjustment	5-55
	4. Jitter Check And Adjustment	5-56
	5. Index Detector Alignment Check And Adjustment	5~57

- 4. Put the 4145A on its side, and remove the bottom cover.
- 5. Set A9W3 (see Figure 5-21 for location) from T/N (test/normal position) to E (EXERCISER).
- 6. Remove the HP-IB cable connector connected to the A9 HP-IB and MSU Control Board from the A9 board.
- 7. Disconnect the test fixture from the 4145A, then turn on the 4145A. The 4145A will go into MSU DIAGNOSTICS mode and display the MSU DIAGNOSTICS page shown in Figure 5-22.

Figure 5-22. CRT Display of MSU DIAGNOSTICS Page.

Figure 5-21. Component Locations for MSU DIAGNOSTICS Mode setting.

5-43. MSU READ TEST

5-44. The MSU Read Test is provided for the flexible-disc drive (FDD) read capability check. After the READ TEST softkey has been pressed while viewing the MSU DIAGNOSTICS page, the 4145A displays the screen shown in Figure 5-23-1, and the read test is performed automatically.

5-45. The disc surface is divided into forty tracks, and each track is divided into nine sectors (one sector equals 256 bytes) or 360 sectors total on a single disc. In the MSU Read Test all forty tracks are checked by track and by sector. The test results are displayed on the CRT as shown in Figure 5-23. For the read test, the software disc supplied with 4145A can be used.

(1) When the READ TEST softkey is pressed, this display is shown. The display shows the track number where the read test is being performed. When an error is detected, the failed track number and the failed sector number are displayed.

(2) When no error is detected, this display is shown, and the read test ends automatically.

Figure 5-23. CRT Display of MSU Read Test.

(3) In this case, two errors were detected on sectors 01 and 02 of track 20. If only a few errors are detected, perform the read test again with another disc. If no errors are detected in the second test, the disc used in the first test is probably defective.

(4) If more than sixty-five errors are detected, the read test ends automatically even if not completed. After the display at left has been shown, perform the read test again with another disc. If the results are still the same, the flexible-disc drive is probably defective.

Figure 5-23. CRT Display of MSU Read Test (Cont'd).

Note

If the results of the MSU Read Test are as shown in Figure 5-23-(4) with every disc, the flexible-disc drive is probably at fault. The flexible-disc drive checks and adjustments must be performed, and the troubleshooting procedures described in Section VIII may also be necessary.

5-46. MSU WRITE TEST

5-47. The MSU Write Test is provided for the flexible-disc drive (FDD) write capability check. After the WRITE TEST softkey has been pressed while viewing the MSU DIAGNOSTICS page, the 4145A goes into test status, and the MSU Write Test is performed automatically.

5-48. In the MSU Write Test the following procedure is performed automatically in the order below:

- 1. Re-format the entire disc surface.
- 2. Write pattern "IAH" on all 360 sectors.
- 3. Read the data "IAH" and verify that the data has been correctly written. If any errors are detected, display the error message shown in Figure 5-24-(3).
- 4. Write pattern "E5H" on all 360 sectors.
- 5. Read and verify the data "E5H". If any errors are detected, display the error message shown in Figure 5-24-(3).

The software discs furnished with the 4145A must not be used for the MSU Write Test, because the 4145A's operation software and other important programs and data are lost after the test has been completed. The blank disc, incuded in FDD Service Kit (HP P/N: 04145-65100), is recommended for use.

(1) When the WRITE TEST softkey is pressed, this display is shown. The write test is performed in the order described in paragraph 5-48.

Figure 5-24. CRT Display of MSU Write Test.

(2) If the write test ends without failures, this display is shown.

(3) In this case, thirteen errors were detected for each of patterns "lAH" and "E5H". Perform the write test again with another disc. If no errors are detected in the second test, the disc used in the first test is probably defective.

Figure 5-24. CRT Display of MSU Write Test (Cont'd).

Note

The MSU Write Test ends automatically if more than sixty-five failures are detected. Perform the write test again using another disc. If the same results are obtained, the flexible-disc drive checks and adjustments must be performed, and the troubleshooting procedures described in Section VIII may also be necessary.

5-49. MSU EXERCISER

5-50. The 4145A goes into the MSU EXERCISER when the EXER- CISER softkey is pressed while viewing the MSU DIAGNOSTICS page, and the MSU EXERCISER page is displayed as shown in Figure 5-25. The flexible-disc drive (FDD) is in the head load status during the MSU EXERCISER if a disc has been inserted into the FDD. The MSU EXERCISER is provided for the checks and adjustments listed in Table 5-5.

5-51. Explanations of the three messages shown on the CRT and the seven softkey prompts (TRACK 00 , STEP IN , STEP OUT , ALT 0-6 , WRITE 1f , WRITE 2f , and INDEX TIMING) are given in Tables 5-6 and 5-7.

Figure 5-25. CRT Display of MSU EXERCISER Page.

Table 5-6. Messages on MSU EXERCISER Page

MESSAGE	DESCRIPTION
TRACK NO. = nn CAL*	Shows the track number in decimal where the Read/Write head is currently located. When "TRACK NO. = UNCAL*" is displayed, the head must be stepped to track 00 using the TRACK 00 softkey because it is either outside track 00 or inside track 39.
WRITE PROTECT = xx	Shows whether a disc is write-protected or -unprotected. If the disc is write-protected, "WRITE PROTECT = ON" will be shown. "WRITE PROTECT = OFF" will be shown otherwise.
INDEX TIMING = nnn.n ms	Shows the index timing (disc speed) in milliseconds when the INDEX TIMING softkey is pressed.

^{*} Either "CAL" or "UNCAL" is always displayed along with the track number on the TRACK NO. message line. CAL means that the Read/Write head location is in calibrated status, while UNCAL means that the head is in uncalibrated status. UNCAL is displayed when the head steps out of track 00 or inside track 39. In the calibrated status the displayed track number is the same as the track number where the head is actually located. In uncalibrated status, there is no guarantee of the truth of the displayed track number. To recover from the uncalibrated status, press the TRACK 00 softkey described in Table 5-7.

Table 5-7. MSU EXERCISER Softkey Prompts

SOFT KEY	DESCRIPTION
TRACK 00	Moves the Read/Write head to track 00. When "UNCAL" is displayed on the TRACK NO. message line, press this key to recover from uncalibrated status. The 4145A then automatically detects the index timing on track 00 to display the detected value on the CRT.
STEP	Steps the Read/Write head towards track 39 (inward on the disc). The head moves one track every time the key is pressed.
STEP OUT	Steps the Read/Write head towards the lower track (outwards on the disc). The head moves one track every time the key is pressed.
ALT 0 -6	Sets the FDD into Alternate Movement. In Alternate Movement, the Read/Write head alternately moves between track 00 and track 06. To escape from Alternate Movement, press the key again.
WRITE lf	Data "lf" is written once on the whole track specified when this key is pressed. On the 4145A, data "lf" means data "00".
WRITE 2f	Data "2f" is written once on the whole track specified when this key is pressed. On the 4145A, data "2f" means data "FF".
INDEX TIMING	Displays the index timing of the FDD with 100µsec resolution when this key is pressed. To stop detecting the speed, press the key again.

5-52. DRIVE BELT TENSION CHECK AND ADJUSTMENT

PURPOSE: This check and adjustment accurately sets the drive belt tension of the flexible-disc drive (FDD) for the optimum read/write capability.

EQUIPMENT:

* included in the FDD Service Kit (HP P/N: 04145-65100)

- 1. Remove the FDD from the 4145A, and disconnect the two connectors, DC power supply cable connector, and flat cable connector from the FDD.
- 2. Carefully put the FDD on its top side, and set the tension gauge as shown in Figure 5-26.
- 3. Verify that the reading on the gauge is within the limit (76 grams to 82 grams) when the dial gauge is pushed to the gauge stopper. If out of the limit, perform steps 4 through 6.
- 4. Slightly loosen the two drive motor retaining screws.
- 5. Adjust the belt tension until the reading on the gauge is within 80 grams to 82 grams while moving the drive motor position.
- 6. Tighten the drive motor retaining screws and apply a small amount of glue.

Figure 5-26. Drive Belt Tension Check and Adjustment Setup.

5-53. INDEX TIMING CHECK AND ADJUSTMENT

PURPOSE: This check and adjustment correctly sets the index timing (drive motor rotational speed) of the flexible-disc drive (FDD) for correct sector selection.

Figure 5-27. Index Timing Checks and Adjustment.

Figure 5-28. R47 Location.

EQUIPMENT:

FDD Service Kit HP P/N 04145-65100

- 1. Turn off the 4145A, and set it to MSU DIAGNOSTICS Mode.
- 2. Insert a blank disc (included in the FDD Service Kit) into the FDD, and turn on the 4145A to diplay the MSU DIAGNOSTICS page.
- 3. Press the EXER- CISER softkey so that the 4145A goes into the MSU EXERCISER.
- 4. Step the Read/Write head to track 16 by pressing the STEP IN softkey.
- 5. Press the INDEX TIMING softkey to monitor the index timing of the FDD. Perform step 6 if the index timing is not within 200±5msec.
- 6. Adjust R47 (see Figure 5-28 for the location) until the index timing is within 200±1msec, monitoring the timing on the CRT. Use an insulated screwdriver.

5-54. TRACK ALIGNMENT CHECK AND ADJUSTMENT

PURPOSE: This check and adjustment verifies and correctly sets track alignment in order to eliminate errors when accessing a specified track.

Figure 5-29. Track Alignment Check and Adjustment.

EQUIPMENT:

Oscilloscope ······	HP	MODEL 1740A
10:1 Divider Probe (2ea)		
1:1 Probe		
FDD Service Kit	ΗP	P/N 04145-65100

- 1. Connect channel A input to TJl pin 9 and channel B input to TJl pin 7 (see Figure 5-31 for the locations) on the flexible-disc drive (FDD) PC board using 10:1 divider probes.
- 2. Obtain the external trigger from 1D pin 3 (see Figure 5-31 for location) using a 1:1 probe.
- 3. Set the 4145A to the MSU DIAGNOSTICS Mode, but do not turn on the 4145A.

4. Set the 1740A's controls as follows:

VOLT/DIV	channel A 0.02 channel B 0.02	(uncalibrated) (uncalibrated)
COUPLING	channel A AC channel B AC	(inverted)
DISPLAY TIME/DIV TRIGGER POS/NEG SWEEP MODE SWEEP VERNIER	10msec EXT NEG. NORM	

- 5. Insert the CE disc (included in the FDD Service Kit) into the FDD, then turn on the 4145A and the 1740A.
- 6. Press the EXER-CISER softkey to set the 4145A to the MSU EXERCISER.
- 7. Step the Read/Write head to track 16, using the STEP IN softkey.
- 8. Adjust the MAIN TIME/DIV knob and SWEEP VERNIER (of the 1740A) till at least four sets of bursts are displayed as shown in Figure 5-30-(1).
- 9. Adjust the amplitude of the first orientation burst to six scale divisions with CAL VERNIER as shown in Figure 5-30-(2).

Figure 5-30. Scope Display of Bursts.

Figure 5-30. Scope Display of Bursts (Cont'd).

10. Read values of X and Y, and check whether they satisfy the following inequality:

$$|X+Y| \le 1.5$$
 (scale divisions) 5.1

If the inequality is satisfied, steps 11 through 13 are not necessary.

Note

Values X and Y are the difference between the third burst and the fourth burst. The polarity of X and Y is positive if the third burst is higher than the fourth one. Otherwise, it is negative. See Figure 5-30-(3) for a pictorial explanation of X and Y.

- 11. Loosen the two retaining screws of the stepper motor (see Figure 5-31 for the location) and rotate it gradually until the orientation bursts reach their maximum amplitude. Then perform step 9.
- 12. Carefully rotate the stepper motor until X and Y satisfy the following inequality, or till both are zero.

$$|X+Y| \le 0.3$$
 (scale divisions) 5.2

See Figure 5-30-(3) for details.

13. Tighten the retaining screws and apply a small amount of glue.

Note

After Track Alignment Adjustment, Track Zero Switch Check and Adjustment must be performed.

Figure 5-31. Check/Adjustment Point Locations.

5-55. TRCK ZERO SWITCH CHECK AND ADJUSTMENT

PURPOSE: This check and adjustment verifies that the track zero switch works properly and correctly sets the switching timing.

Figure 5-32. Track Zero Switch Check and Adjustment Setup.

EQUIPMENT:

Oscilloscope	***************************************	HР	MODEL.	17404
10:1 Divider	Probe (2ea)	ПD	MODEI	100404
FDD Service	Kit	111	MODEL	10040A
L D D DCI VICO	T77 r	НΡ	P/N 04]	45-65100

- 1. Manually set the space between the head carriage and outer stop on the spiral wheel to between 2mm and 3mm, as shown in the figure.
- 2. Connect channel A input to 3F pin 3, and channel B input to 4B pin 5 (see Figure 5-34 for the locations).
- 3. Set the 4145A to MSU DIAGNOSTICS Mode, but do not turn on the 4145A.

4. Set the 1740A's controls as follows:

- 5. Insert a blank disc (included in the FDD Service Kit) into the FDD.
- 6. Turn on the 4145A and the 1740A, then press the EXER-CISER softkey to set the 4145A to MSU EXERCISER.
- 7. Press the ALT 0-6 softkey to set the FDD to EXERCISER Alternate Movement. The Read/Write head then moves between track 00 and track 06 alternately.
- 8. Observe and verify that the track zero switch operates between track 02 and track 03 when the Read/Write head moves towards track 39, and between track 03 and track 01 when the Read/Write head moves towards track 00 (see Figure 5-33). If the track zero switch is working properly, step 8 is not necessary.
- 9. Loosen the retaining screws of the track zero switch (see Figure 5-34 for the location), and adjust the track zero switch manually until it switches between track 02 and track 03 when the Read/Write Head moves towards track 39, and between track 03 and 01 when the Read/Write head moves towards track 00.
- 10. Tighten the track zero switch retaining screws and apply a small amount of glue.
- 11. Verify that the head carriage touches the outer stop when the Read/Write Head is moved two tracks from track 00 using the STEP OUT soft key.

Figure 5-33. Scope Display of Track Zero Switch Switching.

Figure 5-34. Check/Adjustment Point Locations.

5-56. JITTER CHECK AND ADJUSTMENT

PURPOSE: This check and adjustment observes jitter in the read data signal and minimize jitter for proper read data sampling.

Figure 5-35. Jitter Check and Adjustment Setup.

EQUIPMENT:

Oscilloscope	***************************************	HP	MOD	EL 1740A
10 · 1 Divider	Probe (2ea)	HP	MOD	EL 10040A
FDD Service	Kit	HP	P/N	04145-65100

- 1. Connect channel A input to 1D pin 8 and channel B input to TJ1 pin 7 (see Figure 5-37 for locations).
- 2. Set the 4145A to MSU DIAGNOSTICS Mode, but do not turn on the 4145A.
- 3. Set the 1740A's controls as follows:

VOLT/DIV { channel A 0. channel B 0.	2 02
COUPLING	C C
DISPLAY CHOP TIME/DIV 0.5 µsec TRIGGER INT channe POS/NEG. NEG. SWEEP MODE NORM	1 A

- 4. Insert a blank disc (included in the FDD Service Kit) into the FDD.
- 5. Turn on the 4145A and the 1740A, then press the EXER-CISER softkey to set the 4145A to MSU EXERCISER.
- 6. Step the Read/Write head of the FDD to track 39 by pressing the STEP IN softkey.
- 7. Write all "ones" once on all of track 39 by pressing the WRITE 2f softkey.
- 8. Adjust the trigger level of the 1740A so that the signal from TJ1 pin 7 appears as a "cat's-eye" as shown in Figure 5-36.
- 9. If jitter is less than 300nsec, steps 10 through 12 are unnecessary.
- 10. Adjust R69 (see Figure 5-37 for the location) until jitter is less than 300 ns.
- 11. Step the Read/Write head to track 00 by pressing the TRACK 00 softkey, then write all "ones" on all of track 00 by pressing the WRITE 2f softkey.
- 12. Verify that the jitter is less than 300 ns. If it exceeds 500 ns, replace the PC Board with new one.

Figure 5-36. Scope Display of Jitter.

Figure 5-37. Check/Adjustment Point Locations.

5-57. INDEX DETECTOR ALIGNMENT CHECK AND ADJUSTMENT

PURPOSE: This check and adjustment checks and correctly sets the index detector alignment for a correct sector selection.

Figure 5-38. Index Detector Alignment Check and Adjustment Setup.

EQUIPMENT:

Oscilloscope	HP	MODEL 1740A
10:1 Divider Probe (2ea)	HP	MODEL 10040A
1:1 Probe		
1 1 1 1 500		
FDD Service Kit	ΠP	P/N 04145-65100

PROCEDURE:

1. Connect oscilloscope channel A input to TJ1 pin 9 and channel B input to TJ1 pin 7 (see Figure 5-40 for locations) on the flexible-disc Drive (FDD) PC Board using 10:1 Divider Probes. Also, connect EXT TRIGGER input to 1D pin 3 (see Figure 5-41 for location) for the external trigger.

- 2. Set the 4145A to MSU DIAGNOSTICS Mode, but do not turn on the 4145A.
- 3. Set the 1740A's controls as follows:

VOLT/DIV {	channel A 0.05 channel B 0.05	
COUPLING {	channel A AC channel B AC	(Inverted)
DISPLAY TIME/DIV TRIGGER POS/NEG SWEEP MODE	100µsec EXT NEG.	

- 4. Insert the CE disc (included in the FDD Service Kit) into the FDD, and turn on the 4145A and the 1740A.
- 5. Press the EXER-CISER softkey to set the 4145A to MSU EXERCISER.
- 6. Check whether the index alignment gap is within the $450\pm200~\mu s$ limit. Refer to Figure 5-39 for a pictorial explanation of the gap. If the gap is out of the limit, perform steps 7 through 9.
- 7. Loosen the retaining screw of the index detector (photo transistor) holder (see Figure 5-40 for the location).
- 8. Adjust the holder position using the eccentric rod (included in FDD Service Kit) until the time delay from the trigger point to the start point of a data burst is within $450\pm20~\mu s$ (see Figure 5-39).
- 9. Tighten the retaining screw and apply a small amount of glue.

Figure 5-39. Index Detector Alignment Gap.

Figure 5-40. Check/Adjustment Point Locations.

	/
	, ; ;

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list and throughout the manual. Table 6-3 lists all replaceable parts in reference designator order. Table 6-2 contains the names and addresses that correspond to the manufacturer's code numbers.

6-3. ABBREVIATIONS

6-4. Table 6-1 lists abbreviations used in parts list, schematics and throughout the manual. In some cases, two forms of abbreviations are used, one in all capital letters, and one in partial capitals or no capitals. This occurs because the abbreviations in parts list are always all capitals. However, in the schematic and in other parts of the manual, other abbreviation forms with both lower case and upper case letters are used.

6-5. REPLACEABLE PARTS LIST

6-6. Table 6-3 is a list of replaceable parts and is organized as follows:

- a. Electrial assemblies and their components in alphanumerical order by reference designation.
- b. Chassis-mounted parts in alphanumerical order by reference disignation.
- c. Miscellaneous parts.
- d. Illustrated parts breakdowns, if appropriate.

The information for each part includes:

- a. The Hewlett-Packard part number.
- b. The total quantity (Qty) in the instrument.
- c. A description of the part.
- d. A typical manufacturer of the part in a five-digit code.
- e. The manufacturer's number for the part.

Table 6-1. List of Reference Designators and Abbreviations

REFERENCE DESIGNATORS							
Α	= assembly	E	= misc electronic part	P	= plug	υ	= integrated circuit
В	= motor	F	= fuse	Q	= transistor	٧	= vacuum, tube, neo
BT	= battery	F'L	= filter	R	= resistor		bulb, photocell, et
Ĉ.	= capacitor	J	= jack	RT	= thermistor	VR	= voltage regulator
ČP	= coupler	к	= relay	S	= switch	w	= cable
CR	= diode	L	= inductor	T·	= transformer	х	= socket
DL	= delay line	M	= meter	TB	= terminal board	Y	= crystal
DS	= device signaling (lamp)	MP	= mechanical part	TP	= test point		
			ABBREVIATI	ONS			
Α	= amperes	н	= benries	NPN	= negative-positive-	RWV	= reverse working
	= automatic frequency control	HEX	= hexagonal		negative		voltage
		HG	= mercury	NRFR	= not recommended for		_
	•	HR	= hour(s)		field replacement		
B, F.O.	= beat frequency oscillator	Hz	= hertz	NSR	= not separately	S-B	= slow-blow
	= beryllium copper				replaceable	SCR	= screw
BH	= binder head	IF	= intermediate freq.		•	SE	= selenium
BP	= bandpass	IMPG	= impregnated			SECT	= section(s)
BRS	= brass	INCD	= incandescent	OBD	= order by description	SEMICON	= semiconductor
BWO	= backward wave oscillator	INCL	= include(s)	OH	= oval head	SI	= silicon
CCW	= counter-clockwise	INS	= insulation(ed)	ox	= oxide	SIL	= silver
CER	= ceramic	INT	= internal			SL	= slide
CMO	= cabinet mount only	k	= kilo = 1000	_		SPG	= spring
	= coefficient			P	= peak	SPL	= special
COM	= common	LH	= left hand	PC	= printed circuit = pico = 10 ⁻¹²	SST	= stainless steel
	= composition	LIN	= linear taper	P		SR	= split ring
	= complete	LK WASH	= lock washer	PH BRZ		STL	= steel
	= connector	LOG	= logarithmic taper	PHL	= Phillips		
CP	= cadmium plate	LPF	= low pass filter	PIV	= peak inverse voltage	TA	= tantalum
	= cathode-ray tube		1	PNP	= positive-negative-	TD	= time delay
CM	= clockwise	m	= milli = 10 ⁻³	- 4-	positive	TGL	≈ toggle
		M	= meg = 10 ⁶	P/O	= part of	THD	= thread
	= deposited carbon		= metal film	POLY	= polystyrene	TI	= titanium
DR	= drive	MET OX	= metallic oxide	PORC	= porcelain	TOL	= tolerance
FIRCT	= electrolytic	MFR	= manufacturer	POS	= position(s)	TRIM	= trimmer
	= erectrosyde = encapsulated	MINAT	= miniature	POT	= potentiometer	TWT	= traveling wave tube
	= external	MOM	= momentary	PP	= peak-to-peak	- · · · -	•
		MTG	= mounting	PT	= point	μ	= micro = 10 ⁻⁶
F	= farads	MY	= "mylar"	PWV	= peak working voltage		
ſ	= femto = 10 ⁻¹⁵	n	= nano = 10 ⁻⁹			VAR	= variable
FH	= flat head	n N/C	= nano = 10 = normally closed			ADCA	 dc working volts
	= fillister head	NE NE	= normany closed	RECT	= rectifier	w/	= with
FXD	= fixed	NE NI PL	= neon = nickel plate	RF	= radio frequency	w	= watts
G	= giga = 10 ⁹	N'O	= nekei plate = normally open	RH	= round head or	ŴΙV	= working inverse
				КH	right hand		voltage
	= germanium = glass	NPO	 negative positive zero (zero temperature 	RMO	= rack mount only	ww	= wirewound
	= ground(ed)		coefficient)	RMS	= root-mean square	w'o	= without

The total quantity for each part is given only once — at the first appearance of the part number in the list.

Part numbers for the shield cases, screws, cable clamps, and cables (except for wiring on a board) on each board assembly, are not listed in Table 6-3. If required these parts must be ordered separately when ordering a complete board assembly. They are listed in Table 6-4 and 6-5 as Board Mounted Hardware and Cable Assemblies respectively.

6-7. ORDERING INFORMATION

- 6-8. To order a part listed in the replaceable parts table, give the Hewlett-Packard part number, indicate the quantity required, and address the order to the nearest Hewlett-Packard office.
- 6-9. To order a part that is not listed in the replaceable parts table, state the full instrument model and serial number, and description and function of the part, and the number of parts required. Address your order to the nearest Hewlett-Packard office.

6-10. DIRECT MAIL ORDER SYSTEM

- 6-11. Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are:
 - a. Direct ordering and shipment from the HP Parts Center in Mountain View, California.
 - b. No maximum or minimum on any mail order (there is a minimum order amount for parts ordered through a local HP Office when the orders require billing and invoicing).
 - c. Prepaid transportation (there is a small handling charge for each order).
 - d. No invoices to provide these advantages, a check or money order must accompany each order.
- 6-14. Mail order forms and specific ordering information are available through your local HP Office. Addresses and phone numbers are located at the back of this manual.

Table 6-2. Manufacturers Code Lists

MFR NO.	MANUFACTURER NAME	ADDRE	SS	ZIP
S0167	FUJITSU LTD	TOKYO	JР	
80545	NIPPON ELECTRIC CO	TOKYO	JР	ļ
00000	ANY SATISFACTORY SUPPLIER	1	٠,	
01121	ALLEN-BRADLEY CO	MILWAUKEE	WI	53204
01295	TEXAS INSTR INC SEMICOND CMPNT DIV	DALLAS	ŤX	75222
02114	FERROXCUBE CORP	SAUGERTIES	NY	12477
04713	MOTOROLA SEMICONDUCTOR PRODUCTS	PHOENIX	AZ	85008
06393	PANDUIT CORP	TINLEY PARK	IL.	60477
06665	PRECISION MONOLITHICS INC	SANTA CLARA	ĈA	95050
07263	FAIRCHILD SEMICONDUCTOR DIV	MOUNTAIN VIEW	CA	94042
12969	UNITRODE CORP	WATERTOWN	MA	02172
14099	SEMTECH CORP	NEWBURY PARK	CA	91320
14936	GENERAL INSTR CORP SEMICON PROD GP	HICKSVILLE	NY	11802
17856	SILICONIX INC	SANTA CLARA	CA	95054
19701	MEPCO/ELECTRA CORP	MINERAL WELLS	TX	76067
24355	ANALOG DEVICES INC	NORWOOD	MA	02062
24546	CORNING GLASS WORKS (BRADFORD)	BRADFORD	PA	16701
27014	NATIONAL SEMICONDUCTOR CORP	SANTA CLARA	CA	95051
28480	HEWLETT-PACKARD CO CORPORATE HQ	PALO ALTO	CA	94304
31.585	RCA CORP SOLID STATE DIV	SOMERVILLE	NJ	1
34649	INTEL CORP	MOUNTAIN VIEW	CA	95051
52763	STETTNER-TRUSH INC	CAZENOVIA	NY	13035
56289	SPRAGUE ELECTRIC CO	NORTH ADAMS	MA	01247
72:136	ELECTRO MOTIVE CORP	FLORENCE	80	06226
75042	TRW INC PHILADELPHIA DIV	PHILADELPHIA	PA	19108
75915	LITTELFUSE INC	DES PLAINES	IL.	60016
8E175	BURR BROWN CO	TUCSON	AZ	35801
91637	DALE ELECTRONICS INC	COLUMBUS	NE	68601
98291	SEALECTRO CORP	MAMARONECK	NY	10544

Table 6-3. Replaceable Parts

A1C1 A1C2 A1C3 A1C4 A1C5 A1C5 A1C6 A1C7 A1C8 A1C7 A1CB A1C9 A1C10	04145-66501 0180-2205 0160-4832 0160-4835 0160-4835 0160-4835 0160-4835 0160-4835 0160-4835	2 34777 77	1 1 17 181	GRAPHICS DISPLAY CONTROL BOARD ASS'Y CAPACITOR-FXD ,33UF+-10% 35VDC TA CAPACITOR-FXD ,01UF +-10% 100VDC CER CAPACITOR-FXD ,1UF +-10% 50VDC CER	28480 56289	04145-66501 1500334X9035A2
A1C1	0180~2205 0160~4832 0160~4835 0160~4835 0160~4835 0160~4835 0160~4835 0160~4835	3 4 7 7 7	1 17	CAPACITOR-FXD ,33UF+-10% 35VDC TA CAPACITOR-FXD ,01UF +-10% 100VDC CER CAPACITOR-FXD ,1UF +-10% 50VDC CER	56289	
A1C2	0160-4832 0160-4835 0160-4835 0160-4835 0160-4835 0160-4835 0160-4835 0160-4835	7 7 7	17	CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER		150D334X9035A2
A1C7 A1C8 A1C9 A1C10	0160-4835 0160-4835 0160-4835			CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480	0160-4832 0160-4835 0160-4835 0160-4835
		7777		CAPACITOR-FXD ,1UF +-10% 50VDC CER CAPACITOR-FXD ,1UF +-10% 50VDC CER CAPACITOR-FXD ,1UF +-10% 50VDC CER CAPACITOR-FXD ,1UF +-10% 50VDC CER CAPACITOR-FXD ,1UF +-10% 50VDC CER	28480 28480 28480 28480 28480	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835
A1C12 0 A1C13 0 A1C14 0	0160-4835 0140-0176 0160-4835 0160-2150 0140-0196	73753	5	CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 150PF +-5% 300VDC HICA CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 33PF +-5% 300VDC MICA CAPACITOR-FXD 150PF +-5% 300VDC MICA	28480 72136 28480 28480 72136	0160-4835 DM15F15110300WV1CR 0160-4835 0160-2150 DM15F151J0300WV1CR
A1C17 0 A1C18 0 A1C19 0	0160-2307 0160-4835 0160-4835 0160-4835 0160-4835	4 7 7 7 7	1	CAPACITOR-FXD 47PF +-5% 300VDC HICA CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480 28480	0160-2307 0160-4835 0160-4835 0160-4835 0160-4835
A1C22 0 A1C23 0 A1C25 0	0160-4835 0160-4835 0180-0228 0160-4835 0180-0197	7 7 6 7 8	4 8	CAPACITOR-FXD ,1UF +-10% 50VDC CER CAPACITOR-FXD ,1UF +-10% 50VDC CER CAPACITOR-FXD 22UF+-10% 15VDC TA CAPACITOR-FXD ,1UF +-10% 50VDC CER CAPACITOR-FXD 2.2UF+-10% 20VDC TA	28480 28480 56289 28488 56289	0160-4835 0160-4835 150D226X9015B2 0160-4835 150D225X9020A2
A1DS1 1	1990-0486	6	10	LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480	5082-4684
A1J2 1 A1J3 1 A1J4 1	1251-4822 1251-4822 1251-4822 1251-4822 1251-4822	66666	20	CONNECTOR 3-PIN M POST TYPE	28480 28480 28480 28480 28480	1251-4822 1251-4822 1251-4822 1251-4822 1251-4822
	9100-3139 9100-1788	5	9 4	INDUCTOR 75UH 15% .5DX.875LG CHOKE-WIDE BAND ZMAX=680 OHM@ 180 MHZ	28480 02114	9100-3139 VK200 20/48
	1853-0010	2	1	TRANSISTOR PNP SI TD-18 PD=360MW	28480	1853-0010
A1R2 U A1R3 0 A1R4 0	0483-1035 0698-3451 0757-0199 0483-5615 0498-3455	1 0 3 1 4	51 1 1 1	RESISTOR 10K 5%, 25W FC TC=-400/+700 RESISTOR 133K 1%, 125W F TC=0+-100 RESISTOR 21,5K 1%, 125W F TC=0+-100 RESISTOR 560 5%, 25W FC TC=-400/+600 RESISTOR 261K 1%, 125W F TC=0+-100	01121 24546 24546 01121 24546	CB1035 C4-1/B-T0-1333-F C4-1/B-T0-2152-F CB5615 C4-1/B-T0-2613-F
A1R7 0 A1R8 0 A1R9 0	0683-1035 0683-1035 0683-3315 0683-2215 0683-1025	1 1 4 1 3	9 1 4	RESISTOR 10K 5%, 25W FC TC=-400/+700 RESISTOR 10K 5%, 25W FC TC=-400/+700 RESISTOR 330 5%, 25W FC TC=-400/+600 RESISTOR 220 5%, 25W FC TC=-400/+600 RESISTOR 1K 5%, 25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1 035 CB1 035 CB3315 CB2215 CB2225
A1R12 0 A1R13 0 A1R14 0	0757-0410 0683-1035 0683-4735 0683-1025 0683-2235	1 1 4 9 5	1 13 47 5	RESISTOR 301 1% .125W F TC=0+-100 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 47K 5% .25W FC TC=-400/+800 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 22K 5% .25W FC TC=-400/+800	24546 01121 01121 01121 01121	C4-1/8-T0-301R-F CB1035 CB4735 CB1025 CB2235
A1R16 0	0683-1035	1		RESISTOR 10K 5% .25W FC TC=-400/+700	01121	CB1 035
A1U2 1 1 A1U3 1 A1U4 1 A1U5 1 A1U6 1 A1U7 1 A1U8 0 A1U9 1 A1U9 1 A1U9 1 A1U9	1820-0511 1820-1194 1820-1194 1820-1194 04145-85028 1200-0541	0 4 9 6 6 6 4 1 3 8	1 7 1 8 16 4	IC TIMER TTL MONO/ASTBL IC MV TTL LS MONOSTBL RETRIG DUAL IC GATE TTL LS NAND QUAD 2-TNP IC GATE TTL AND QUAD 2-TNP IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC NMOS 32768 (32) EPROM 450-NS 3-S SOCKET-IC 24-CONT DIP DIP-SLDR IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295 01295 01295 01295 01295 01295 01295 34649 28480 01295	NESSSP SN74L8123N SN74L800N SN740BN SN74LS193N SN74LS193N D2732 1200-0541 SN74LS161AN SN74LS161AN
A1U11 1 A1U12 1 A1U13 1 A1U14 1	1820-1208 1820-1416 1820-1470 1820-1470	3 5 i 1 1 1	5 2 4	IC GATE TTL LS OR QUAD 2-INP IC SCHMITT-TRIG TTL LS INV HEX 1-INP IC MUXR/DATA-SEL TTL LS 2-T0-1-LINE QUAD IC MUXR/DATA-SEL TTL LS 2-T0-1-LINE QUAD IC MUXR/DATA-SEL TTL LS 2-T0-1-LINE QUAD	01295 01295 01295 01295 01295	SN74LS32N SN74LS14N SN74LS157N SN74LS157N SN74LS157N
A1U17 1 A1U18 1 A1U19 1	1820-1997 1820-2024	8 7 7 3 3	4 6 12	IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC DRVR TTL LS LINE DRVR OCTL IC DRVR TTL LS LINE DRVR OCTL	01295 01295 01295 01295 01295 01295	SN74L5174N SN74L5374N SN74L5374N SN74L5244N SN74L5244N

Table 6-3. Replaceable Parts (Cont'd).

lable b-3. Heplaceable Parts (Cont'd).									
Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number			
A1U21 A1U22 A1U23 A1U24 A1U25	1820-1197 1820-1433 1820-1112 1820-1411 1820-1194	96806	1	IC GATE TTL LS NAND QUAD 2-INP IC SHF-RGTR TTL LS R-S SERIAL-IN PRL-OUT IC FF TTL LS D-TYPE POS-EDGE-TRIG IC LCH TTL LS D-TYPE 4-BIT IC CNTR TTL LS BIN UP/DOWN SYNCHRO	01295 01295 01295 01295 01295	SN74L500N SN74L5164N SN74L574AN SN74L575N SN74L575N			
A1U26 A1U27 A1U28 A1U29	1820-1194 1820-1194 1820-1196 1818-1877 1200-0541	6 8 7 1	4	IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC-DIGITAL S-RAM SOCKET-IC 24-CONT DIP DIP-SLDR	01295 01295 01295 90167 28480	SN74LS193N SN74LS193N SN74LS174N HBB128-15 1200-0541			
A1U30 A1U31 A1U32	1818-1877 1200-0541 1818-1877 1200-0541 1818-1877 1200-0541	7 1 7 1 7		IC-DIGITAL S-RAM SOCKET-IC 24-CONT DIP DIP-SLDR IC-DIGITAL S-RAM SOCKET-IC 24-CONT DIP DIP-SLDR IC-DIGITAL S-RAM SOCKET-IC 24-CONT DIP DIP-SLDR	80167 28480 80167 28480 80167 28480	MW8128-15 1200-0541 MB6128-15 1200-0541 MB6128-15 1200-0541			
A1U33 A1U34 A1U35 A1U36 A1U37	1820-0475 1820-0174 1820-2024 1820-2024 1820-2024	E E E 0	2 1	IC DCDR TTL 4-TO-16-LINE 4-INP IC INV TTL HEX IC DRVR TTL LS LINE DRVR OCTL IC DRVR TTL LS LINE DRVR OCTL IC DRVR TTL LS LINE DRVR OCTL	01295 01295 01295 01295 01295	SN74154N SN7404N SN74LS244N SN74LS244N SN74LS244N			
A1U38 A1U39 A1U40 A1U41 A1U42	1820-2024 1820-2024 1820-2024 1820-1997 1820-1997	3 3 7 7		IC DRVR TTL LS LINE DRVR OCTL IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN	01295 01295 01295 01295 01295	SN74LS244N SN74LS244N SN74LS24AN SN74LS374N SN74LS374N			
A1U43 A1U44	1820-1997 1820-1997	7		IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN	01295 01295	SN74LS374N SN74LS374N			
A1W1 A1W2 A1W3 A1W4 A1W5	1258-0141 1258-0141 1258-0141 1258-0141 1258-0141	8888	24	JUMPER-REM JUMPER-REM JUMPER-REM JUMPER-REM JUMPER-REM	28480 28480 28480 28480 28480	1258-0141 1258-0141 1258-0141 1258-0141 1258-0141			
AIYI	0410-1337 8195-0005	9	1 1	CRYSTAL- 20 MHZ RESISTOR-ZERO OHMS 22 AWG LEAD DIA	28480	0410-1337			
A2	04145-66502	3	1	MICROPROCESSOR DIGITAL CONTROL BOARD ASS'Y	28480	04145-66502			
A201 A202 A203 A204 A205	0180-0197 0160-2200 0160-2203 0160-4835 0180-1083	8 6 9 7 3	1 1 13	CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD 43PF +-5% 300VDC MICA CAPACITOR-FXD 91PF +-5% 300VDC MICA 0+70 CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .3UF 25VDC AL	56289 28480 28480 28480 28480	150D225X9D20A2 0160-2203 0160-2203 0160-4835 0180-1083			
A2C6 A2C7 A2C8 A2C9	0160-4835 0160-4835 0160-4835 0160-4835	7 7 7 7		CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480	0160-4835 0160-4835 0160-4835 0160-4835			
A2C10 A2C11 A2C12 A2C13 A2C14	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835	フフフファ		CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835			
A2015 A2016 A2017 A2018 A2019	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835	フフフファ		CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835			
A2020 A2021 A2022 A2023 A2024	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835	7777		CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835			
A2025 A2026 A2027 A2028 A2029	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835	7777	·	CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480 28480	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835			
A2030 A2031 A2032 A2033 A2033	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835	7 7 7 7 7 7		CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835			
A2035 A2036 A2037 A2038 A2038	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835	77777		CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480 28480	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835			

Table 6-3. Replaceable Parts (Cont'd).

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A2C40 A2C41 A2C42 A2C42 A2C43 A2C44	0180-1083 0160-4835 0160-4835 0140-0196 0160-4835	3 7 7 3 7		CAPACITOR-FXD 33UF 25VDC AL CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 150PF +-5% 300VDC HICA CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 72136 28480	0180-1083 0160-4835 0160-4835 DM15F151J0300WV1CR 0160-4835
A2C45 A2C46 A2C47 A2C48 A2C49	0160-4835 0180-1083 0160-4835 0160-4835 0160-2204	7 3 7 7 0	12	CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 33UF 25VDC AL CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 100PF +-5% 300VDC MICA	28480 28480 28480 28480 28480	0160-4835 0180-1083 0160-4835 0160-4835 0160-2204
A2C50 A2C51 A2C52 A2C53 A2C54	0160-4835 0160-4835 0160-4835 0180-0197 0160-4835	7 7 7 8 7		CAPACITOR-FXD .1UF +-10% 50VDC GER CAPACITOR-FXD .1UF +-10% 50VDC GER CAPACITOR-FXD .1UF +-10% 50VDC GER CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD ,1UF +-10% 50VDC GER	28480 28480 28480 56289 28480	0160-4835 0160-4835 0160-4835 1500225X9020A2 0160-4835
A2C55 A2C56 A2C57 A2C58 A2C59 A2C60 A2C61 A2C61	0180-1083 0160-4835 0160-4835 0160-4835 0160-4835 0180-0197 0180-0197	3 7 7 7 7 8 7		CAPACITOR-FXD 33UF 25VDC AL CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480 56289 56289 56289 28480	0180-1083 0160-4835 0160-4835 0160-4835 0160-4835 150D225X9020A2 150D225X9020A2 0160-4835
A2CR1	1901-0040	1	26	DIODE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040
A2D81 A2D82 A2D83	1990-0486 1990-0486 1990-0486	6 6		LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480	5082-4684 5082-4684 5082-4684
A2J1 A2J2 A2J3 A2J4 A2J5	1200-0654 1200-0607 1200-0607 1200-0541 1200-0541	7 0 0 1	4 4	SOCKET-IC 40-CONT DIP DIP-SLDR SOCKET-IC 16-CONT DIP DIP-SLDR SOCKET-IC 16-CONT DIP DIP-SLDR SOCKET-IC 24-CONT DIP DIP-SLDR SOCKET-IC 24-CONT DIP DIP-SLDR	28480 29480 28480 28480 28480	1200-0654 1200-0607 1200-0607 1200-0541 1200-0541
A2J6 A2J7 A2J8 A2J9	1200-0541 1200-0541 1251-4484 1251-4822	1 1 6 6	5	SOCKET-IC 24-CONT DIP DIP-SLDR SOCKET-IC 24-CONT DIP DIP-SLDR CONNECTOR 4-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE	28480 28480 28480 28480	1200-0541 1200-0541 1251-4484 1251-4822
A2L1 A2L2 A2L3 A2L4	9100-1788 9100-3139 9100-1788 9100-1629	6 5 6 4	1	CHOKE-WIDE BAND ZHAX=680 OHME 180 MHZ INDUCTOR 75UH 15% .5DX.875LG CHOKE-WIDE BAND ZMAX=680 OHME 180 MHZ INDUCTOR RF-CH-MLD 47UH 5% .166DX.385LG	02114 28480 02114 28480	VK200 20/48 9100-3139 VK200 20/48 9100-1629
A2R1 A2R2 A2R3 A2R4 A2R5	1810-0269 0683-1045 0683-2205 0683-2205 0683-2205	3 3 9 9	8 9 5	NETWORK-RES 9-SIP10.0K OHM X B RESISTOR 100K 5% 25W FC TC=-400/+800 RESISTOR 22 5% 25W FC TC=-400/+500 RESISTOR 22 5% 25W FC TC=-400/+500 RESISTOR 22 5% 25W FC TC=-400/+500	28480 01121 01121 01121 01121	1810-0269 CB1045 CB2205 CB2205 CB2205
A2R6 A2R7 A2R8 A2R9 A2R10	0683-2205 0683-4715 0683-4715 0683-4715 0698-3438	9 0 0 0 3	4	RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 470 5% .25W FC TC=-400/+600 RESISTOR 470 5% .25W FC TC=-400/+600 RESISTOR 470 5% .25W FC TC=-400/+600 RESISTOR 147 1% .125W F TC=0+-100	01121 01121 01121 01121 01121 24546	CB2205 CB4715 CB4715 CB4715 CB4715 C4-1/B-T0-147R-F
A2R11 A2R12 A2R13 A2R14 A2R15	1810-0269 0683-1035 0683-1035 0683-1035 0757-0417	3 1 1 1 8	1	NETWORK-RES 9-SIP10.0K OHM X 8 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 562 1% .125W F TC=0+-100	28480 01121 01121 01121 24546	1810-0269 CB1035 CB1035 CB1035 CB1035 C4-1/8-T0-562R-F
A2R16 A2R17	1810~0305 1810~0305	8 8	1	NETWORK-RES 9-SIP4.7K OHM X 8 NETWORK-RES 9-SIP4.7K OHM X 8	28480 28480	1810-0305 1810-0305
A25W1	3101-1973	7	3	SWITCH-SL 7-1A DIP-SLIDE-ASSY ,1A 50VDC	28480	3101-1973
A2U1 A2U2 A2U3 A2U4 A2U5	1820-1208 1820-1197 1820-2358 1820-2075 1818-1396	3 1 6 4 5	6 1 2 16	IC GATE TTL LS OR QUAD 2-INP IC INV TTL LS HEX 1-INP IC-60000 IC MISC TTL LS IC-DIGITAL MB0116E	01295 01295 28400 01295 S0545	9N74L932N 9N74L9U4N 1820-2358 9N74L9245N UP416C-2(9ELECTED)
A2U6 A2U7 A2U8 A2U9 A2U1 0	1818-1396 1818-1396 1818-1396 1818-1396 1818-1396	ខាមាមមា		IC-DIGITAL HB0116E IC-DIGITAL HB0116E IC-DIGITAL HB0116E IC-DIGITAL MB0116E IC-DIGITAL HB0116E	S0545 S0545 S0545 S0545 S0545	UP416C-2(SELECTED) UP416C-2(SELECTED) UP416C-2(SELECTED) UP416C-2(SELECTED) UP416C-2(SELECTED) UP416C-2(SELECTED)
A2U11 A2U12 A2U13 A2U14 A2U15	1818-1396 1818-1396 04145-85023 04145-85034 1820-2746	55446	8	IC-DIGITAL MB8116E IC-DIGITAL MB8116E IC NMOS 32768 (32K) EPROM 450-NS 3-S IC NMOS 32768 (32K) EPROM 450-NS 3-S IC-DIGITAL MB8867	50545 60545 34649 34649 28480	UP416C-2(SELECTED) UP416C-2(SELECTED) D2732 D2732 1820-2746

Table 6-3. Replaceable Parts (Cont'd).

Reference Designation	HP Part Number	C D	Ωty	Description	Mfr Code	Mfr Part Number
A2U16 A2U17 A2U18 A2U19 A2U20	1820-2741 1820-2742 1818-1396 1818-1396 1818-1396	12555	1 1	IC-DIGITAL HC3480 IC MISC TTL S IC-DIGITAL HB8116E IC-DIGITAL MB8116E IC-DIGITAL HB8116E	28480 04713 50545 80545 50545	1820-2741 MC3242AP UP 416C-2(SELECTED) UP 416C-2(SELECTED) UP 416C-2(SELECTED)
A2U21 A2U22 A2U23 A2U24 A2U25	1818-1396 1818-1396 1818-1396 1818-1396 1818-1396	ខាលាខាចា		IC-DIGITAL MB8116E IC-DIGITAL MB8116E IC-DIGITAL MB8116E IC-DIGITAL MB8116E IC-DIGITAL MB8116E	\$0545 \$0545 \$0545 \$0545 \$0545	UP416C-2(SELECTED) UP416C-2(SELECTED) UP416C-2(SELECTED) UP416C-2(SELECTED) UP416C-2(SELECTED) UP416C-2(SELECTED)
A2U26 A2U27 A2U28 A2U29 A2U30	04145-85021 04145-85022 1820-1425 1820-0054 1820-1491	4 4 6 5 6	2 1 4	IC NMOB 3276B (32K) EPROM 450-NS 3-S IC NMOS 3276B (32K) EPROM 450-NS 3-S IC SCHMITT-TRIG TIL LS NAND QUAD 2-INP IC GATE TTL NAND QUAD 2-INP IC BFR TTL LS NON-INV HEX 1-INP	34649 34649 01295 01295 01295	D2732 D2732 SN74LS132N SN74LS132N SN74LS367AN
A2U31 A2U32 A2U33 A2U34 A2U35	1820-1794 1820-1794 1820-1199 1820-1202 1820-1216	22173	11 3 5	IC BFR TTL LS NON-INV OCTL IC BFR TTL LS NON-INV OCTL IC INV TTL LS HEX 1-INP IC GATE TTL LS NAND TPL 3-INP IC DCDR TTL LS 3-TO-8-LINE 3-INP	27014 27014 01295 01295 01295	DMG1LS75N DMB1LS75N SN7 4LS04N SN7 4LS14N SN7 4LS138N
A2U36 A2U37 A2U38 A2U39 A2U40	1820-1281 1820-1197 1820-1197 1820-1112 1820-1112	2 9 8 8	3	IC DCDR TTL LS 2-TO-4-LINE DUAL 2-INP IC GATE TTL LS NAND QUAD 2-INP IC GATE TTL LS NAND QUAD 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295 01295 01295 01295 01295	SN74LS139N SN74LS00N SN74LS00N SN74LS74AN SN74LS74AN
A2U41 A2U42 A2U43 A2U44 A2U45 A2U45 A2U47 A2U48 A2U49 A2U50 A2U51	1820-1201 1820-1794 1820-2075 1820-1196 1820-1281 1820-1281 1820-1202 1820-1202 1820-1991 1820-11971 1820-11971	62482771196	3 2 3	IC GATE TTL LS AND QUAD 2-INP IC BFR TTL LS NON-INV OCTL IC MISC TTL LS IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC DCDR TTL LS 2-TO-4-LINE DUAL 2-INP IC CNTR TTL LS BIN DUAL 4-BIT IC GATE TTL LS NAND TPL 3-INP IC CNTR TTL LS DECD DUAL 4-BIT IC CNTR TTL LS DECD DUAL 4-BIT IC CNTR TTL LS DECD DUAL 4-BIT IC GATE TTL LS NAND QUAD 2-INP IC BFR TTL LS NAND QUAD 2-INP	01295 27014 01295 01295 01295 07263 01295 01295 01295 01295 01295	SN74LS0BN DMB1LS95N SN74LS245N SN74LS1374N SN74LS139N 74LS393PC SN74LS10N SN74LS390N SN74LS390N SN74LS390N SN74LS36NN SN74LS36NN
A2U52 A2U53 A2U54 A2U55 A2U56	1820-2024 1820-1491 1820-1208 1820-1196 1820-1491	3 6 3 8 6		IC DRUR TTL LS LINE DRUR OCTL IC BFR TTL LS NON-INV HEX 1-INP IC GATE TTL LS OR QUAD 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC BFR TTL LS NON-INV HEX 1-INP	01295 01295 01295 01295 01295 01295	SN74LS244N SN74LS367AN SN74LS32N SN74LS174N SN74LS367AN
A2U57 A2U58	1820-1470 1820-2743	1 3	1	IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD IC-DIGITAL MC68858	01295 28480	SN74LS157N 1820-2743
A2W1 A2W2 A2W3 A2W4 A2W5	1251-4787 1258-0141 1258-0141 1258-0141 8159-0005	2 8 8 8 2	2	SHUNT-DIP 8-POSITION JUMPER-REM JUMPER-REM JUMPER-REM RESISTOR-ZERO DHMS 22 AWG LEAD DIA	28480 28480 28480 28480 28480 28480	1251-4787 1258-0141 1258-0141 1258-0141 8159-0005
ARW6	B159~0005	0		RESISTOR-ZERO OHMS 22 AWG LEAD DIA	28480	8159-0005
A2Y1	0410-1377	7	1	CRYSTAL 8 MHZ	20480	0410-1377
A3	04145-66503	4	1	SMU CONTROL AND A-D CONVERTER BOARD ASS'Y	28480	04145-66503
A301 A302 A303 A304 A305	0160-0301 0160-4832 0160-4835 0160-4835 0160-0127	4 4 7 7 2	1	CAPACITOR-FXD .012UF +-10% 200VDC POLYE CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-20% 25VDC CER	28480 28480 28480 28480 28480	0160-0301 0160-4832 0160-4835 0160-4835 0160-4835
A3C6 A3C7 A3C8 A3C9 A3C10	0140-0127 0160-0127 0160-4832 0160-0127 0160-2204	2 4 2 0		CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 100PF +-5% 300VDC MICA	28480 28480 28480 28480 28480	0160-0127 0160-0127 0160-4832 0160-0127 0160-2204
A3C11 A3C12 A3C13 A3C14 A3C15	0160-4822 0160-4835 0160-4835 0160-4835 0160-4835	27777	3	CAPACITOR-FXD 1000PF +-5% 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480	0160-4822 0160-4835 0160-4835 0160-4835 0160-4835
A3C16 A3C17	0160-4035 0160-4035	7 7		CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480	0160-4835 0160-4835
A3C1B A3C19 A3C20 A3C21 A3C22 A3C23 A3C23 A3C24 A3C25	0160~4835 0180~1746 0180~1746	73377552	7	CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 27PF +-5% 300VDC MICA CAPACITOR-FXD 27PF +-5% 300VDC MICA CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 1UF +-20% 25VDC CER	28480 28480 28480 28480 28480 56289 56289 28480	0160-4835 0160-2306 0160-2306 0160-4835 0160-4835 150D156X9020B2 150D156X9020B2

Table 6-3. Replaceable Parts (Cont'd).

	Table 0-3. neplaceable raits (vonc 0).								
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number			
A3C26 A3C27 A3C28 A3C29 A3C30	0160-4835 0160-4835 0160-4835 0160-5432 0160-4791	7 7 7 2 4	1 1	CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 0.01UF CAPACITOR-FXD 10PF +-5% 100VDC CER 0+-30	26480 26460 26460 26460 26460	0160-4035 0160-4035 0160-4035 0160-5432 0160-4791			
A3C31 A3C32 A3C33 A3C34 A3C35	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835	7 7 7 7 7		CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835			
A3C36 A3C37 A3C3B A3C39 A3C40	0160-4835 0160-4835 0180-1746 0180-1746 0180-0228	7 7 5 5 6		CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 22UF+-10% 15VDC TA	28480 28480 56289 56289 56289	0160-4835 0160-4835 1500156X902082 1500156X902082 1500226X901582			
A3C41 A3C42 A3C43 A3C44 A3C45	0160-5493 0160-5493 0160-5493 0160-5493 0160-5493			CAPACITOR-FXD .luf CAPACITOR-FXD .luf CAPACITOR-FXD .luf CAPACITOR-FXD .luf CAPACITOR-FXD .luf					
A3C46 A3C47 A3C4B A3C49 A3C50	0160-5493 0160-5493 0160-5493 0160-5493 0160-5493			CAPACITOR-FXD .luf CAPACITOR-FXD .luf CAPACITOR-FXD .luf CAPACITOR-FXD .luf CAPACITOR-FXD .luf					
A3C51 A3C52 A3C53 A3C54 A3C55	0160-5493 1810-0585 1810-0585 0160-4822 0180-0197	6628	3	CAPACITOR-FXD .luf CAPACITOR-FXD 470PF X 8 CAPACITOR-FXD 470PF X 8 CAPACITOR-FXD 1000PF +-5% 1000DC CER CAPACITOR-FXD 2.2UF+-10% 200DC TA	28480 28480 28480 56289	1810-0585 1810-0585 0160-4822 150D225X9020A2			
A3C56 A3C57	0180-0228 0180-1083	6		CAPACITOR-FXD 22UF+10% 15VDC TA CAPACITOR-FXD 33UF 25VDC AL	5 <i>6</i> 289 28480	150D226X9015B2 0180-1083			
A3CP1 A3CP2 A3CP3	1970-0494 1990-0444 1990-0444	6 6	1 6	OPTO-ISOLATOR LED-PDIO/XSIR IF=20MA-MAX OPTO-ISOLATOR LED-PDIO/XSIR IF=25MA-MAX OPTO-ISOLATOR LED-PDIO/XSIR IF=25MA-MAX	28480 28480 28480	5082-4370 6N136 6N136			
AGCR1 AGCR2 AGCR3 AGCR4 AGCR5	1902-0064 1902-0064 1901-0518 1901-0518 1901-0040	1 1 8 8	. 2 4	DIODE-ZNR 7.5V 5% DO-35 PD=.4W TC=+.05% DIODE-ZNR 7.5V 5% DO-35 PD=.4W TC=+.05% DIODE-SH SIG SCHOTTKY DIODE-SH SIG SCHOTTKY DIODE-SWITCHING 30V 50MA 2NG DO-35	28480 28480 28480 28480 28480	1902-0064 1902-0064 1901-0518 1901-0518 1901-0040			
A3CR6	1901-0040	1		DIODE-SWITCHING 30V SOMA 2NS DO-35	28480	1901-0040			
A3DS1 A3DS2 A3DS3 A3DS4	1990-0486 1990-0486 1990-0486 1990-0486	6 6 6 6		LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480	5082-4684 5082-4684 5082-4684 5082-4684			
A3J1 A3J2 A3J3 A3J4 A3J5	1200-0541 1251-4822 1200-0541 1200-0541 1200-0541	1 6 1 1 1		SOCKET-IC 24-CONT DIP DIP-SLDR CONNECTOR 3-PIN H POST TYPE SOCKET-IC 24-CONT DIP DIP-SLDR SOCKET-IC 24-CONT DIP DIP-SLDR SOCKET-IC 24-CONT DIP DIP-SLDR	20480 28480 28480 28480 28480	1200-0541 1251-4822 1206-0541 1200-0541 1200-0541			
A316 A317 A318 A319 A3110	1200-0541 1251-4822 1251-4822 1251-4822 1200-0654	1 6 6 6 7		SOCKET-IC 24-CONT DIP DIP-SLDR CONNECTOR 3-PIN H POST TYPE CONNECTOR 3-PIN H POST TYPE CONNECTOR 3-PIN H POST TYPE SOCKET-IC 40-CONT DIP DIP-SLDR	28480 28480 28480 28480 28480	1200-0541 1251-4822 1251-4822 1251-4822 1200-0654			
A3111 A3112 A3113 A3114 A3115	1200-0607 1200-0607 1251-4822 1251-4822 1251-4484	0 0 6 6		SOCKET-IC 16-CONT DIP DIP-SLDR SDCKET-IC 16-CONT DIP DIP-SLDR CONNECTOR 3-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE CONNECTOR 4-PIN M POST TYPE	28480 28480 28480 28480 28480 28480	1200-0607 1280-0607 1251-4822 1251-4822 1251-4484			
A3J16	1200-0541	1		SOCKET-IC 24-CONT DIP DIP-GLDR	28480	1200-0541			
A3L1 A3L2 A3L3 A3L4 A3L5	9140-0114 9140-0114 9140-0114 9140-0114 9140-0114	4 4 4 4 4	. 12	INDUCTOR RF-CH-MLD 10UH 10% .166DX.385LG	28480 28480 28480 28480 28480	9140-0114 9140-0114 9146-0114 9140-0114 9140-0114			
A3L6	9100-3139	5		INDUCTOR 75UH 15% .5DX.875LG	28480	9100-3139			
A3Q1 A3Q2 A3Q3 A3Q4 A3Q5	1853-0281 1854-8477 1853-0459 1853-0459 1853-0459	9 7 3 3 3	4 4 19	TRANSISTOR PNP 2N2907A S1 TO-18 PD=400MW TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW TRANSISTOR PNP SI PD=625MW FT=200MHZ TRANSISTOR PNP SI PD=625MW FT=200MHZ TRANSISTOR PNP SI PD=625MW FT=200MHZ	04713 04713 28480 28480 28480	2N2907A 2N2222A 1853-0459 1853-0459 1853-0459			

Table 6-3. Replaceable Parts (Cont'd).

F	Table b-3. Replaceable Parts (Cont'd).										
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number					
A3R1 A3R2 A3R3 A3R4 A3R5	2100-3354 0698-3156 0698-3159 0683-1035 0683-5645	9 2 5 1 7	2 1 1	RESISTOR-TRMR 50K 10% C SIDE-ADJ 1-TRN RESISTOR 14.7K 1% .125W F TC=0+-100 RESISTOR 26.1K 1% .125W F TC=0+-100 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 560K 5% .25W FC TC=-800/+900	28480 24546 24546 01121 01121	2100-3354 C4-1/8-T0-1472-F C4-1/8-T0-2612-F CB1035 CB5645					
A3R6 A3R7 A3R8 A3R9 A3R10	0699-0752 0757-0278 0683-1015 0683-2725 0683-1035	0 9 7 8	2 3 7 6	RESISTOR 1.78K .1% .125W F TC=0+-25 RESISTOR 1.79K 1% .125W F TC=0+-100 RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	20480 24546 01121 01121 01121	0699-0752 C4-1/8-T0-1781-F CB1015 CB2725 CB1035					
A3R11 A3R12 A3R13 A3R14 A3R15	0698-0083 0683-1005 0683-5645 0683-1035 0683-6815	8 5 7 1 5	1 7 8	RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 560K 5% .25W FC TC=-800/+900 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 680 5% .25W FC TC=-400/+600	24546 01121 01121 01121 01121	C4-1/8-T0-1961-F CB1005 CB5645 CB1035 CB6815					
A3R16 A3R17 A3R18 A3R19 A3R20	0683-6815 0683-6815 0683-6815 0757-0317 0699-0597	5 5 7 1	1 2	RESISTOR 680 5%, 25W FC TC=-400/+600 RESISTOR 680 5%, 25W FC TC=-400/+600 RESISTOR 680 5%, 25W FC TC=-400/+600 RESISTOR 1.33K 1%, 125W F TC=0+-100 RESISTOR 2.26K, 1%, 125W F TC=0+-25	01121 01121 01121 24546 28480	CB6815 CB6815 CB6815 C4-1/8-T0-1331-F 0699-0597					
A3R21 A3R22 A3R23 A3R24 A3R25	0683-1025 0683-1035 0683-1035 0683-1035 0699-0918	9 1 1 1 0	S	RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR-22.65K OHM 0.1%	01121 01121 01121 01121 28480	CR1025 CR1035 CR1035 CR1035 0699-0918					
A3R26 A3R27 A3R28 A3R29 A3R30	0699-0919 0683-1035 0683-1035 0683-1035 2100-3210	1 1 1 1 6	1	RESISTOR-4,096K OHM 0.12 RESISTOR 10K 52.25W FC TC=-400/+700 RESISTOR 10K 52.25W FC TC=-400/+700 RESISTOR 10K 52.25W FC TC=-400/+700 RESISTOR-TRMR 10K 10% C TOP-ADJ 1-TRN	28480 01121 01121 01121 28480	0697-0919 CB1035 CB1035 CB1035 2100-3210					
A3R31 A3R32 A3R33 A3R34 A3R35	0683-1035 0683-1035 0683-1005 0683-1035 0683-3315	1 5 1 4		RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 330 5% .25W FC TC=-400/+600	01121 01121 01121 01121 01121	CB1035 CB1035 CB1005 CB1035 CB13315					
A3R36 A3R37 A3R38 A3R39 A3R40	0683-3315 0683-3315 0683-3335 0683-2205 0683-1035	4 4 8 9	23	RESISTOR 330 5% .25W FC TC=-400/+600 RESISTOR 330 5% .25W FC TC=-400/+600 RESISTOR 33K 5% .25W FC TC=-400/+800 RESISTOR 25 5% .25W FC TC=-400/+500 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CH3315 CH3315 CH3335 CH2205 CB1035					
A3R41 A3R42 A3R43 A3R44 A3R45	0683-1045 0683-1015 0683-3925 0683-1815 0683-3945	3 7 2 5 6	3 2 4	RESISTOR 100K 5% .25W FC TC=-400/+800 RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 3.9K 5% .25W FC TC=-400/+700 RESISTOR 180 5% .25W FC TC=-400/+600 RESISTOR 390K 5% .25W FC TC=-800/+900	01121 01121 01121 01121 01121	CB1 045 CB1 015 CB3925 CB1 B15 CB3945					
A3R46 A3R47 A3R48 A3R49 A3R50	0683-5625 1810-0269 0683-1025 0683-1025 0683-1025	3 3 9 9	5	RESISTOR 5.6K 5%, 25W FC TC=-400/+700 NETWORK-RES 9-SIP10,0K 0HM X 8 RESISTOR 1K 5%, 25W FC TC=-400/+600 RESISTOR 1K 5%, 25W FC TC=-400/+600 RESISTOR 1K 5%, 25W FC TC=-400/+600	01121 28480 01121 01121 01121	CB5625 1810-0269 CB1025 CB1025 CD1025					
A3R51 A3R52 A3R53 A3R54 A3R55	0683-1025 0683-1025 0683-1025 0683-1025 0683-1025	9 9 9 9		RESISTOR 1K 5% .25W FC TC=-400/+600	01121 01121 01121 01121 01121	CB1025 CB1025 CB1025 CB1025 CB1025					
A3R56 A3R57 A3R58 A3R59 A3R60	0683-1025 0683-1025 0683-1025 0683-1025 0683-1025	9 9 9 9		RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600	01121 01121 01121 01121 01121	CB1025 CB1025 CB1025 CB1025 CB1025 CB1025					
A3R61 A3R62 A3R63 A3R64 A3R65	0683-3315 0683-1035 0683-1035 0683-1525 0683-3945	4 1 1 4 6	3	RESISTOR 330 5% .25W FC TC=-400/+600 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 1.5K 5% .25W FC TC=-400/+700 RESISTOR 390K 5% .25W FC TC=-800/+900	01121 01121 01121 01121 01121	CB3315 CB1035 CB1035 CB1525 CB3945					
A3R66 A3R67 A3R68	0683-5625 0683-1815 0683-1035	3 5 1		RESISTOR 5.6K 5% .25W FC TC=-400/+700 RESISTOR 180 5% .25W FC TC=-400/+600 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121 01121	CB5625 CB1015 CB1035					
A3S1	3101-1973	7		SWITCH-SL 7-1A DIP-SLIDE-ASSY ,1A 50VDC	28480	3101-1973					
1TEA	9100-4212	7	1	TRANSFORMER-PULSE 132F1	28480	9100-4212					
A3U1 A3U2 A3U3 A3U4 A3U5	1826-0013 1813-0251 1820-2738 1820-1794 1820-1112	8 9 6 2 8	5 3	IC DP AMP LOW-NOISE TO-99 PKG IC-DAC71-CSB-I IC-DEG AM2503PC IC BFR TTL LS NON-INV OCTL IC FF TTL LS D-TYPE POS-EDGE-TRIG	06665 28480 27014 27014 01295	SSS741CJ 1813-0251 DM2503CN DM61LS95N SN74LS74AN					

Table 6-3. Replaceable Parts (Cont'd).

	lable b-3. Heplaceable Parts (Cont'd).									
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number				
A3U6 A3U7 A3UB	1920-1858 1920-1216	9 3	5	IC FF TTL LS D-TYPE OCTL IC DCDR TTL LS 3-TO-8-LINE 3-INP	01295 01295	SN74LS377N SN74LS138N				
A3U9 A3U10	04145-85015 04145-85026	4 4		IC NMOS 32768 (32K) EPROM 450-NS 3-S IC NMOS 32768 (32K) EPROM 450-NS 3-S	34649 34649	D2732 D2732				
A3U11 A3U12 A3U13 A3U14	04145-85037 1826-0013 1826-0497 1826-0550	4 8 2 8	5 1	IC NMOS 32768 (32K) EPROM 450-NS 3-S IC OP AMP LOW-NOISE TO-99 PKG IC COMPARATOR PRON TO-99 PKG IC CONV 8-B-D/A 16-DIP-P PKG	34649 06665 27014 07263	D2732 SS8741CJ LF311H UA0801EPC				
A3U16 A3U17 A3U18 A3U19 A3U20	1820-2738 1820-1794 1820-1791 1820-1430 1820-1202	6 2 1 3 7		IC-DEG AM2503PC IC BFR TTL LS NON-INV OCTL IC CNTR TTL LS DECD DUAL 4-BIT IC CNTR TTL LS BIN SYNCHKO POS-EDGE-TRIG IC GATE TTL LS NAND TPL 3-INP	27014 27014 01295 01295 01295	DM2503CN DM81L595N SN74L5390N SN74L5161AN SN74L5161N				
A3U21 A3U22 A3U23 A3U24 A3U25	1820-2024 1820-2099 1820-1416 1818-0438 1818-0438	3 2 5 4 4	1	IC DRVR TTL LS LINE DRVR OUTL IC MICPROC NHOS 8-BIT IC SCHMITT-TRIG TTL LS INV HEX 1-INP IC NHOS 4076 (4K) STAT RAM 450-NS 3-S IC NHOS 4076 (4K) STAT RAM 450-NS 3-S	01295 04713 01295 01295 01295	SN74LS244N MC6802P SN74LS14N THS2114-45NL TMS2114-45NL				
A3U26 A3U27 A3U28 A3U29 A3U30	1826-0503 1826-0319 1820-1430 1820-1460 1820-1428	1 7 3 9	1 1 1	TC SMPL/HOLD TO-99 PKG IC OP AMP LOW-BIAS-H-IMPD TO-99 PKG IC CNIR TIL IS BIN SYNCHRO POS-EDGE-TRIG IC MISC TTL QUAD IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD	27014 04713 01295 01295 01295	LF378H LF356G SN74L8161AN SN74265N SN74L8158N				
A3U31 A3U32 A3U33 A3U34 A3U35	1820-1858 1820-1216 1820-2075 1820-1425 1820-2024	9 3 4 6 3		IC FF TTL LS D-TYPE OCTL IC DCDR TTL IS 3-TO-B-LINE 3-INP IC MISC TTL LS IC SCHHITT-TRIG TTL LS NAND QUAD 2-INP IC DRVR TTL LS LINE DRVR OCTL	01295 01295 01295 01295 01295	SN74L5377N SN74L5138N SN74L5245N SN74L5132N SN74L5132N				
A3U36 A3U37 A3U38 A3U39 A3U40	1820-1794 1826-0602 1820-1112 1820-1430 1820-1794	2 1 8 3 2	1	IC BFR TIL LS NON-INV OCTL IC MULTIPLXR 16-CHAN-ANLG 28-DIP-C PKG IC FF TIL LS D-IYPE POS-FDGE-TRIG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC BFR TIL LS NON-INV OCTL	27014 24355 01295 01295 27014	DM81L895N AD7504KD SN74L874AN SN74L8161AN DM81L895N				
A3U41 A3U42 A3U43 A3U44	1820-1216 1820-1216 1820-1645 1820-2470	3 2 3	1 1	IC DCDR TTL LS 3-TO-8-LINE 3-INP IC DCDR TTL LS 3-TO-8-LINE 3-INP IC BFR TTL LS BUS QUAD IC-DIGITAL MC6050P	01295 01295 01295 28480	SN74LS138N SN74LS138N SN74LS126AN 1820-2470				
A3W1 A3W2 A3W3 A3W4 A3W5	1258-0141 1258-0141 1258-0141 1258-0141 1258-0141 1251-4787	8 8 8 8		JUMPER-REM JUMPER-REM JUMPER-REH JUMPER-REM SHUNT-DIP 0-POSITION	28480 28480 28480 28480 28480	1258-0141 1258-0141 1258-0141 1258-0141 1251-4787				
A3W6 A3W7 A3WB A3W9	1258-0141 1258-0141 1258-0141 1258-0141	8 8		JUMPER-REM JUMPER-REM JUMPER-REM JUMPER-REM	28480 28480 28480 28480	1258-0141 1258-0141 1258-0141 1258-0141				
A3Y1	0410-1378 8159-0005	В	1	CRYSTAL-3.84 HHZ RESISTOR-ZERO OHMS 22 AWG LEAD DIA	28480	0410-1378				
A4		5	1	D-A CONVERTER BOARD ASS'Y	28480	04145-66504				
A4C1 A4C2 A4C3 A4C4 A4C5		4 4 4 4	10	CAPACITOR-V TRMR-CER 9-35PF 200V PC-HTG	52763 52763 52763 52763 52763	304324 9/35PF N650 304324 9/35PF N650 304324 9/35PF N650 304324 9/35PF N650 304324 9/35PF N650				
A4C6 A4C7 A4C8 A4C9 A4C10	0121-0105 0121-0105	4 4 4 4		CAPACITOR-V TRMR-CER 9-35PF 200V PC-MTG	52763 52763 52763 52763 52763	304324 9/35PF N650 304324 9/35PF N650 304324 9/35PF N650 304324 9/35PF N650 304324 9/35PF N650				
A4C11 A4C12 A4C13 A4C14 A4C15	0160-4835 0160-4835 0160-4835	7777		CAPACITOR-FXD ,1UF +-10% 50VDC CER	28480 28480 28480 28480 28480 28480	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835				
A4016 A4017 A4018 A4019 A4020	0160-4835 0160-4835 0160-4835	77777		CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835				
A4021 A4022 A4023 A4024 A4025	0160-4835 0160-2204 0160-2204	7 7 0 0		CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 100PF +-5% 300VDC MICA	28480 28480 28480 28480 28480	0160-4835 0160-4835 0160-2204 0160-2204 0160-2204				

Table 6-3. Replaceable Parts (Cont'd).

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A4C26 A4C27 A4C28 A4C29 A4C30	0160-2204 0160-2204 0160-2204 0160-2204 0160-2204	0 0 0 0		CAPACITOR-FXD 100PF +-5% 300VDC MICA CAPACITOR-FXD 100PF +-5% 300VDC MICA CAPACITOR-FXD 100PF +-5% 300VDC MICA CAPACITOR-FXD 100PF +-5% 300VDC MICA CAPACITOR-FXD 100PF +-5% 300VDC MICA	28480 28480 28480 28480 28480	0160-2204 0160-2204 0160-2204 0160-2204 0160-2204
A4C31 A4C32 A4C33 A4C34 A4C35	0160-2204 0160-2204 0160-4832 0160-4835 0160-4835	0 0 4 7 7		CAPACITOR-FXD 100PF +-5% 300VDC MICA CAPACITOR-FXD 100PF +-5% 300VDC MICA CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480	0160-2204 0160-2204 0160-4832 0160-4835 0160-4835
A4C36 A4C37 A4C38 A4C39 A4C40	0160-5433 0160-5433 0160-5433 0160-5433 0160-5433	3 3 3 3 3 3	10	CAPACITOR-FXD 0.1UF CAPACITOR-FXD 0.1UF CAPACITOR-FXD 0.1UF CAPACITOR-FXD 0.1UF CAPACITOR-FXD 0.1UF	28480 28480 28480 28480 28480	0160-5433 0160-5433 0160-5433 0160-5433 0160-5433
A4C41 A4C42 A4C43 A4C44 A4C45	0160-5433 0160-5433 0160-5433 0160-5433 0160-5433	333333		CAPACITOR-FXD 0.1UF CAPACITOR-FXD 0.1UF CAPACITOR-FXD 0.1UF CAPACITOR-FXD 0.1UF CAPACITOR-FXD 0.1UF	28480 28480 28480 28480 28480	0160-5433 0160-5433 0160-5433 0160-5433 0160-5433
A4C46 A4C47 A4C48 A4C49 A4C50	0160-4830 0160-4830 0160-4830 0160-4830 0160-4830	8 8 8	10	CAPACITOR-FXD 2200PF +-5% 100VDC CER CAPACITOR-FXD 2200PF +-5% 100VDC CER CAPACITOR-FXD 2200PF +-5% 100VDC CER CAPACITOR-FXD 2200PF +-5% 100VDC CER CAPACITOR-FXD 2200PF +-5% 100VDC CER	28480 28480 28480 28480 28480	0160-4810 0160-4810 0160-4810 0160-4810 0160-4810
A4051 A4052 A4053 A4054 A4055	0160-4830 0160-4830 0160-4830 0160-4830 0160-4830	8 8 8		CAPACITOR-FXD 2200PF +-5% 100VDC CER CAPACITOR-FXD 2200PF +-5% 100VDC CER CAPACITOR-FXD 2200PF +-5% 100VDC CER CAPACITOR-FXD 2200PF +-5% 100VDC CER CAPACITOR-FXD 2200PF +-5% 100VDC CER	28480 28480 28480 28480 28480	0160-4810 0160-4810 0160-4810 0160-4810 0160-4810
A4C56 A4C57 A4C58 A4C59 A4C60	0160-0127 0160-4832 0160-0127 0160-4832 0160-4835	24247		CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	20480 28480 20480 28480 28480	0160-0127 0160-4832 0160-0127 0160-4832 0160-4835
A4C61 A4C62 A4C63 A4C64 A4C65	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835	7777		CAPACITOR-FXD .1UF +-10% 50VDC CER	20480 28480 20480 20480 20480	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835
A4C66 A4C67 A4C68 A4C69 A4C70	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835	77777		CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835
A4071 A4072 A4073 A4074 A4075	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835	7 7 7 7 7	***************************************	CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480	0160-4835 0160-4835 0160-4835 0160-4835 0160-4835
A4C76 A4C77 A4C78 A4C79 A4C80	0180-1083 0160-4835 0160-4835 0180-1083 0180-1746	3 7 7 3 5		CAPACITOR-FXD 33IF 25VDC AL CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF 4-10% 50VDC CER CAPACITOR-FXD 33UF 25VDC AL CAPACITOR-FXD 15UF4-10% 20VDC TA	28480 28488 28480 28480 56289	0180-1083 0160-4835 0160-4835 0180-1083 1500156X9020¥2
A4C81 A4C82 A4C83 A4C84 A4C85	0180-1746 0160-4822 0160-4835 0160-4835 0160-4835	52777	·	CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 1000FF +-5% 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	56289 28480 28480 28480 28480	150D156X7020B2 0160-4822 0160-4835 0160-4835 0160-4835
A4C86 A4C87 A4C88 A4C89 A4C89	0160-4832 0160-4832 0160-4832 0160-4832 0160-4835	4 4 4 7		CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480	0160-4832 0160-4832 0160-4832 0160-4832 0160-4835
A4091 A4092 A4093	0180-0229 8160-0127 0160-4835	7 2 7	1	CAPACITOR-FXD 33UF+-10% 10VDC TA CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	56289 28480 28480	150D336X9010B2 0160-0127 0160-4835
A4CR1 A4CR2	1901-0040 1901-0040	1 1		DIDDE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	29480 28480	1901-0040 1901-0040
A4DS1 A4DS2	1990-0486 1990-0486	6		LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480	5082-4684 5082-4684
A4J1 A4J2	1200-0541 1251-4822	1 6		SOCKET-IC 24-CONT DIP DIP-SLDR CONNECTOR 3-PIN M POST TYPE	28480 28480	1200-0541 1251-4822

Table 6-3. Replaceable Parts (Cont'd).

Table 0-3. Replaceable Facts (cont. d).									
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number			
A4L1 A4L2 A4L3 A4L4	9140-0114 9140-0114 9100-1788 9100-3139	4 4 6 5		INDUCTOR RF-CH-MLD 100H 10% .166DX.385LG INDUCTOR RF-CH-MLD 100H 10% .166DX.385LG CHOKE-WIDE BAND ZHAX-680 DHMP 180 MHZ INDUCTOR 75UH 15% .5DX.875LG	28480 28480 02114 28480	9140-0114 9140-0114 VK200 20/48 9100-3139			
A4Q1 A4Q2	1853-0281 1854-0477	9		TRANSISTOR PNP 2N2907A SI TO-18 PD=400MW TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW	04713 04713	2N2907A 2N2222A			
A4R1 A4R2 A4R3 A4R4 A4R5	0683-1035 0683-1035 0683-1035 0683-1035 0683-1035	1 1 1 1		RESISTOR 10K 5% ,25W FC TC=-400/+700 RESISTOR 10K 5% ,25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1035 CB1035 CB1035 CB1035 CB1035			
A4R6 A4R7 A4R8 A4R9 A4R10	0403-1035 0403-1035 0403-1035 0403-1035 0403-1035	1 1 1 1		RESISTOR 10K 5% ,25W FC TC=-400/+700 RESISTOR 10K 5% ,25W FC TC=-400/+700	01121 01121 01121 01121 01121	CR1035 CB1035 CR1035 CB1035 CB1035			
A4R11 A4R12 A4R13 A4R14 A4R15	2100-3354 0683-1035 0683-1035 0683-1035 0683-2225	9 1 1 1 3		RESISTOR-TRMR 50K 10% C SIDE-ADJ 1-TRN RESISTOR 10K 5%, 25W FC TC=-400/+700 RESISTOR 10K 5%, 25W FC TC=-400/+700 RESISTOR 10K 5%, 25W FC TC=-400/+700 RESISTOR 2.2K 5%, 25W FC TC=-400/+700	28490 01121 01121 01121 01121	2100-3354 CB1035 CB1035 CB1035 CB2225			
A4R16 A4R17 A4R18 A4R19 A4R20	0683-2225 0683-5645 0683-3305 0683-3305 0683-3335	37228	5	RESISTOR 2.2K 5%, 25W FC TC=-400/+700 RESISTOR 560K 5%, 25W FC TC=-800/+700 RESISTOR 33 5%, 25W FC TC=-400/+500 RESISTOR 33 5%, 25W FC TC=-400/+500 RESISTOR 33 5%, 25W FC TC=-400/+800	01121 01121 01121 01121 01121	CB2225 CB5645 CB3305 CB3305 CB3335			
A4R21 A4R22 A4R23 A4R24 A4R25	0683-3335 0683-3335 0683-3335 0683-3335 0683-3335	8 8 8 8		RESISTOR 33K 5% .25W FC TC=-400/+800 RESISTOR 33K 5% .25W FC TC=-400/+800	01121 01121 01121 01121 01121	083335 083335 083335 083335 083335			
A4R26 A4R27 A4R28 A4R29 A4R30	0683-3335 0683-3335 0683-3335 0683-3335 0699-0918	888	:	RESISTOR 33K 5%, 25W FC TC=-400/+800 RESISTOR 33K 5%, 25W FC TC=-400/+800 RESISTOR 33K 5%, 25W FC TC=-400/+800 RESISTOR 33K 5%, 25W FC TC=-400/+800 RESISTOR-22.65K QHM 0.1%	01121 01121 01121 01121 28480	CR3335 CB3335 CB3335 CB3335 0699-0918			
A4R31 A4R32 A4R33 A4R34 A4R35	1810-0269 1810-0269 0683-1025 0683-1025 0683-1025	3 3 9 9		NETWORK-RES 9-SIP10.0K DHM X 8 NETWORK-RES 9-SIP10.0K DHM X 0 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600	28480 28480 01121 01121 01121	1810-0269 1810-0269 CB1025 CB1025 CB1025			
A4R36 A4R37 A4R38 A4R39 A4R48	0603-1025 0603-1025 0603-1025 0603-1025 0603-1025	9 9 9 9		RESISTOR 1K 5% ,25W FC TC=-400/+600	01121 01121 01121 01121 01121	CR1025 CB1025 CB1025 CB1025 CB1025 CB1025			
A4R41 A4R42 A4R43 A4R44 A4R45	0683-1025 0683-1025 0683-1515 0683-1515 0683-1515	9 9 9 9		RESISTOR 1K 52 .25W FC TC=-400/+600 RESISTOR 1K 52 .25W FC TC=-400/+600 RESISTOR 150 5% .25W FC TC=-400/+700 RESISTOR 150 5% .25W FC TC=-400/+700 RESISTOR 150 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1025 CB1025 CB1035 CB1035 CB1035			
A4R46 A4R47 A4R48 A4R49 A4R50	0683-1515 0683-1515 0683-1515 0683-1515 0683-1515	9 9 9 9 9		RESISTOR 150 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1035 CB1035 CB1035 CB1035 CB1035 CB1035			
A4R51 A4R52 A4R53 A4R54 A4R55	0683-1515 0683-1515 0699-0597 0699-0752 0757-0278	9 9 1 0 9		RESISTOR 150 5% .25W FC TC=-400/+700 RESISTOR 150 5% .25W FC TC=-400/+700 RESISTOR 2.26K .1% .125W F TC=0+-25 RESISTOR 1.70K .1% .125W F TC=0+-25 RESISTOR 1.70K 1% .125W F TC=0+-100	01121 01121 28480 28480 24546	CB1035 CB1035 0699-0597 0699-0752 C4-1/B-T0-1781-F			
A4R56 A4R57 A4R58 A4R59 A4R60	0683-1035 0683-1035 0683-1035 0683-1035 0683-1005	1 1 1 5		RESISTOR 10K 5%, 25W FC TC=-400/+700 RESISTOR 10K 5%, 25W FC TC=-400/+500	01121 01121 01121 01121 01121	CB1035 CB1035 CB1035 CB1035 CB1005			
A4U1 A4U2 A4U3 A4U4 A4U5	1820-1374 1820-1374 1820-1374 1820-1374 1820-1374	4 4 4 4	5	IC SWITCH ANLG QUAD 16-DIP-P PKG	24355 24355 24355 24355 24355	AD7510DIJN AD7510DIJN AD7510DIJN AD7510DIJN AD7510DIJN			
A4U6 A4U7 A4U8 A4U9 A4U10	1826-0668 1820-1199 1820-1199 1820-0495 1820-1429	9 1 1 8 0	1	IC OP AMP LOW-BIAS-H-IMPD TO-99 PKG IC INV TIL LS HEX 1-INP IC INV TIL LS HEX 1-INP IC DCDR TIL 4-TO-16-LINE 4-INP IC CNTR TIL LS DECD SYNCHRO	04713 01295 01295 01295 01295	LF356AG SN74LS04N SN74LS04N SN74154N SN74LS160AN			

Table 6-3. Replaceable Parts (Cont'd).

Reference	HP Part	С	04	Pagarintian	Mfr	DAG D (DI
Designation	Number	D	Qty	Description	Code	Mfr Part Number
A4U11 A4U12 A4U13 A4U14 A4U15	1828-1194 1826-0843 1826-0843 1826-0843 1826-0843	មួយស្ល	7	IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC OP AMP LOW-BIAS-H-IMPD TQ-99 PKG IC OP AMP LOW-BIAS-H-IMPD TO-99 PKG	01295 07263 07263 07263 07263	SN74LS193N UAF772HC UAF772HC UAF772HC UAF772HC UAF772HC
A4U16 A4U17 A4U18 A4U19 A4U20	1826-0843 1826-0013 1813-0251 1820-0628 1820-0628	28999	4	IC OP AMP LOW-BIAS-H-IMPD TO-99 PKG IC OP AMP LOW-NOISE TO-99 PKG IC-DAC 71-CSB-I IC TTL 64-BIT STAT RAM 60-NS 0-C IC TTL 64-BIT STAT RAM 60-NS 0-C	07263 06665 28480 01295 01295	UAF772HC 686741CJ 1813-0251 8N748PN SN7489N
A4U21 A4U22	1820-1112 1820-1112	8		IC FF TTL IS D-TYPE POS-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295 01295	SN74LS74AN SN74LS74AN
A4U24 A4U25	1826-0550 1820-0628	B 9		IC CONV 8-B-D/A 16-DIP-P PKG IC TTL 64-BIT STAT RAM 60-NS 0-C	07263 01295	UA 08 01 EPC SN7 489 N
A4U26 A4U27 A4U28 A4U29 A4U30	1820-0628 1820-1989 1820-1112 1820-1112 1826-0416	9 7 8 8 5	3	IC TIL 64-BIT STAT RAM 60-NS 0-C IC CNTR ITL LS BIN DUAL 4-BIT IC FF TTL LS D-TYPE POS-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG IC SWITCH ANLG QUAD 16-DIP-C PKG	01295 07263 01295 01295 27014	SN7489N 74L9393PC SN74L974AN SN74L574AN LF 13331D
A4U31 A4U32 A4U33 A4U34 A4U35	1826-0416 1826-0416 1820-1962 1820-1858 1820-1873	55698	1	TC SWITCH ANLG QUAD 16-DIP-C PKG IC SWITCH ANLG QUAD 16-DIP-C PKG IC DCDR CMOB BCD-TO-DEC IC FF TIL LS D-TYPE OCTL IC BFR TIL LS INV OCTL 2-INP	27014 27014 3L585 01295 27014	LF13331D LF13331D CD40288E SN74L8377N DM81LS98N
A4U36 A4U37 A4U38 A4U39 A4U40	1820-1794 1820-1794 1820-1794 1820-1858 1820-1794	ខេត្ត		IC BFR TTL LS NON-INV OCTL IC BFR TTL LS NON-INV OCTL IC BFR TTL LS NON-INV OCTL IC FF ITL LS D-TYPE OCTL IC BFR TTL LS NON-INV OCTL	27014 27014 27014 27014 01295 27014	DM81L995N DM81L995N DM81L995N SN74L895N DM81L995N
A4U41	1820-1201	6		IC GATE TTL LS AND QUAD 2-INP	01295	9N74L509N
A4W1	1258-0141 0340-0072 0340-0060 8150-3991	8 2 4 3	32 20 36	JUMPER-REM TERMINAL-STUD SPCL-FDTHRU PRESS-HTG TERMINAL-STUD SPCL-FDTHRU PRESS-HTG WIRE-ELECTRICAL	28480 28480 98291	1258-0141 0340-0092 011-6809 000 209
A5 A501 A502 A503 A504 A505	04145-66505 0160-4835 0160-4795 0160-4835 0140-0196 0160-2261	6 7 8 7 3 9	1 2 2	SMU BOARD ASS'Y (SHIELD COVERS ARE NOT INCLUDED) CAPACITOR-FXD .11F +-10% 500DC CER CAPACITOR-FXD 4.7PF +5PF 1000DC CER CAPACITOR-FXD .10F +-10% 500DC CER CAPACITOR-FXD 150PF +-5% 3000DC MICA CAPACITOR-FXD 150PF +-5% 5000DC CER 0+-30	28480 28480 28480 28480 72136 28480	04145-66505 0160-4835 0160-4795 0160-4835 DM15F151J0300WV1CR 0160-2261
A등C7 A등C8 A등C9 A등C1 0	0160-0127 0160-4834 0160-4835 0160-0127 0160-4834	26726	2	CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD .047UF +-10% 100VDC DER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD .047UF +-10% 100VDC CER	28460 28480 28480 28480 28480	0160-0127 0160-4834 0160-4835 0160-0127 0160-4834
A5C11 A5C12 A5C13 A5C14 A5C15	0160-2254 0160-4835 0160-2179 0160-4832 0160-0127	7242	3	CAPACITOR-FXD 7.5PF +25PF 500VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 30PF +-5% 300VDC MICA CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER	28480 28480 28480 28480 28480	0160-2254 0160-4835 0160-2199 0160-4832 0160-0127
A5016 A5017 A5018 A5019 A5020	0160-4835 0160-4835 0160-0363 0160-2177 0160-4832	7 9 8 2 4	1	CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 620PF +-5% 300VDC MICA CAPACITOR-FXD 30PF +-5% 300VDC MICA CAPACITOR-FXD .01UF +-10% 100VDC CER	28480 28480 28480 28480 28480	0160-4835 0160-4835 0160-0363 0160-2179 0160-4832
A5C21 A5C22 A5C23 A5C24 A5C25	0160-2199 0160-4835 0160-4832 0160-0161 0160-0161	2 7 4 4 4	6	CAPACITOR-FXD 30PF +-5% 300VDC MICA CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD .01UF +-10% 200VDC POLYE CAPACITOR-FXD .01UF +-10% 200VDC POLYE	28480 28480 28480 28480 28480	0160-2179 0160-4835 0160-4832 0160-0161 0160-0161
A5C26 A5C27 A5C28 A5C29 A5C30	0170-0040 0170-0040 0160-4835 0160-4795 0160-4835	9 9 7 B 7	5	CAPACITOR-FXD .047UF +-10% 200VDC POLYE CAPACITOR-FXD .047UF +-10% 200VDC PDLYE CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 4.7PF +-5PF 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	56289 56289 28480 28480 28480	292P47392 292P47392 0160-4835 0160-4795 0160-4835
A5031 A5032 A5033 A5034 A5035	0140-0176 0160-2261 0160-4885 0160-4832 0160-4832	3 9 1 4 4	s	CAPACITOR-FXD 150PF 4-5% 300VDC MICA CAPACITOR-FXD 15PF +-5% 500VDC CER 0+-30 CAPACITOR-FXD 47PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER	721.36 28480 28480 28480 28480 28480	DM15F151J0300WV1CR 0160-2261 0160-4805 0160-4832 0160-4832

Table 6-3. Replaceable Parts (Cont'd).

	Table 0-3. neplaceable ratis (cont d).								
Reference Designation	HP Part Number	пo	Qty	Description	Mfr Code	Mfr Part Number			
A5C36 A5C37 A5C38 A5C39 A5C40	0160-4835 0160-0160 0160-4574 0180-1066 0180-1066	73122	1 4 5	CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 8200PF +-10% 200VDC POLYE CAPACITOR-FXD 1000PF +-10% 100VDC CER CAPACITOR, FXD 47 MF AL CAPACITOR, FXD 47 MF AL	28480 28480 28480 28480 28480 28480	0160-4835 0160-0160 0160-4574 0180-1066 0180-1066			
ASC41 ASC42 ASC43 ASC44 ASC45	0180-1066 0160-4574 0160-4574 0180-1085 0160-1688	2 1 1 5 2	1 1	CAPACITOR, FXD 47 MF AL CAPACITOR-FXD 1000PF +-10% 100VDC CER CAPACITOR-FXD 1000PF +-10% 100VDC CER CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 2PF 5% 125VDC	28480 28480 28480 28480 28480	0180-1066 0160-4574 0160-4574 0180-1085 0160-1688			
A5C46 A5C47 A5C48 A5C49 A5C50	0160-0155 0160-0155 0180-0157 0180-1066 0180-1066	9 9 9 9 9 9	8	CAPACITOR-FXD 3300PF +-10% 200VDC POLYE CAPACITOR-FXD 3300PF +-10% 200VDC POLYE CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR, FXD 47 MF AL CAPACITOR, FXD 47 MF AL	28480 28480 56289 28480 28480	0160-0155 0160-0155 150D225X902062 0180-1066 0180-1066			
A5051 A5052 A5053 A5054 A5055	0160-4830 0160-4830 0160-4830 0160-4802 0160-4792	22285	3 1 1	CAPACITOR-FXD 2200PF +-10% 100VDC CER CAPACITOR-FXD 2200PF +-10% 100VDC CER CAPACITOR-FXD 2200PF +-10% 100VDC CER CAPACITOR-FXD 82PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 8.2PF +5PF 100VDC CER	28480 28480 28480 28480 28480	0160-4830 0160-4830 0160-4830 0160-4802 0160-4792			
A5C56 A5C57 A5C58 A5C59 A5C60	0160-4805 0160-5064 0160-4835 0160-0127 0160-4833	1 6 7 2 5	i 4	CAPACITOR-FXD 47PF +-5% 100VDC CER D++30 CAPACITOR-FXD CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD .02%UF +-10% 100VDC CER	28480 28480 28480 28480 28480	0160-4805 0160-5064 0160-4835 0160-4833			
A5C61 A5C62 A5C63 A5C64	0160-4833 0160-4833 0160-4833 0160-4835	5 5 5 7		CAPACITOR-FXD .022UF +-10% 100VDC CER CAPACITOR-FXD .022UF +-10% 100VDC CER CAPACITOR-FXD .022UF +-10% 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480	0160-4833 0160-4833 0160-4833 9160-4835			
ASCP 1 ASCP 2 ASCP 3 ASCR 1 ASCR 2 ASCR 3 ASCR 4 ASCR 5 ASCR 6	1990-0444 1990-0444 1990-0444 1991-0040 1991-0376 1991-0376 1991-0376 1991-0376	6 6 6 1 1 6 6 6 8	16 2	OPTO-ISOLATOR LED-PDIO/XSTR IF=25MA-MAX OPTO-ISOLATOR NAX OPTO-I	28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	6N136 6N136 6N136 1901-0040 1901-00376 1901-0376 1901-0376 1901-0376			
ASCR7	1901-0033	2	27	DIODE-GEN PRP 186V 206MA DO-7	28480	1701-0033			
ASCR8 ASCR7 ASCR10	1901-0376 1901-0376 1902-3105	6 6 7	3	DIODE-GEN PRP 35V 50MA DQ-35 DIODE-GEN PRP 35V 50MA DQ-35 DIODE-ZNR 5.62V 2% DQ-35 PD=.4W	28480 28480 28480	1901-0376 1901-0376 1902-3105			
A5CR11 A5CR12 A5CR13 A5CR14 A5CR15	1901-0040 1901-0040 1902-3114 1902-3105 1901-0040	1 1 8 7 1	8	DIODE-SWITCHING 38V 50MA 2NS DO-35 DIODE-SWITCHING 38V 50MA 2NS DO-35 DIODE-ZNR 6.19V 2% DO-35 PD≃,4W DIODE-ZNR 5.62V 2% DO-35 PD≃,4W DIODE-SWITCHING 38V 50MA 2NS DO-35	28480 28480 28480 28480 28480	1901-0040 1901-0040 1902-3114 1902-3105 1901-0040			
ASCR16 ASCR17 ASCR18 ASCR19 ASCR20	1901-0040 1902-3114 1901-0376 1901-0376 1901-0376	1 8 6 6 9	4	DIODE-SWITCHING 30V 50MA 2NS DO-3S DIODE-ZNR 6.19V 2Z DO-35 PD=.4W DIODE-GEN PRP 35V 50MA DO-35 DIODE-GEN PRP 35V 50MA DO-35 DIODE-STABISTOR 30V 150MA DO-7	28488 28480 28480 28480 28480	1901-0040 1902-3114 1901-0376 1901-0376 1901-0460			
ASCR21 ASCR22 ASCR23 ASCR24 ASCR25	1901-0025 1901-0025 1901-0460 1901-0040 1901-0040	2 9 1 1	16	DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7 DIODE-STABISTOR 30V 150MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480	1901-0025 1901-0025 1901-0460 1901-0040 1901-0040			
A5CR26 A5CR27 A5CR28 A5CR29 A5CR30	1901-0460 1901-0033 1901-0040 1901-0040 1901-0460	9 2 1 1 9		DIODE-STABISTOR 30V 150MA DU-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-STABISTOR 30V 150MA DO-7	28480 28480 28480 28480 28480	1901-0460 1901-0033 1901-0040 1901-0040 1901-0460			
A5CR31 A5CR32 A5CR33 A5CR34 A5CR35	1701-0040 1701-0040 1701-0040 1701-0376 1701-0376	1 1 1 6		DIODE-SWITCHING 38V 58MA 2NS DO-35 DIODE-SWITCHING 38V 58MA 2NS DO-35 DIODE-SWITCHING 38V 58MA 2NS DO-35 DIODE-GEN PRP 35V 58MA DO-35 DIODE-GEN PRP 35V 58MA DO-35	28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0376 1901-0376			
A5CR36 A5CR37 A5CR38 A5CR39 A5CR40	1901-0376 1902-3122 1901-0033 1901-0376 1901-0376	99589		DIODE-GEN PRP 35V 50MA D(1-35 DIODE-ZNR 6.65V 2% DO-35 PD=,4W DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 35V 50MA DO-35 DIODE-GEN PRP 35V 50MA DO-35	28488 28480 28480 28480 28486	1901-0374 1902-3122 1901-0333 1901-0376 1901-0376			
A5CR41 A5CR42 A5CR43 A5CR44 A5CR45	1901-0376 1901-0376 1901-0025 1901-0025 1901-0040	6 6 2 2 1		DIODE-GEN PRP 35V 50MA DO-35 DIODE-GEN PRP 35V 50MA DO-35 DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35	29480 29480 29480 29480 29480	1901-0376 1901-0376 1901-0025 1901-0025 1901-0040			

Table 6-3. Replaceable Parts (Cont'd).

Table 0-3. Replaceable Parts (Contra).								
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number		
ASCR 46 ASCR 47 ASCR 48 ASCR 49 ASCR 50	1901-0040 1901-0040 1901-0040 1902-3059 1902-3059	1 1 0 0	2	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 3.83V 5Z DO-35 PD=.4W DIODE-ZNR 3.83V 5Z DO-35 PD=.4W	28480 28480 28480 28480 28480	1701-0040 1701-0040 1701-0040 1902-3059 1702-3059		
ASCRS1 ASCRS2 ASCRS3 ASCRS4 ASCRS5	1901-0518 1901-0518 1902-3205 1902-3205 1901-0376	8 8 8 6 6	2	DIODE-SM SIG SCHOTTKY DIODE-SM SIG SCHOTTKY DIODE-ZNR 15V 5% DO-35 PD=.4W TC=+.057% DIODE-ZNR 15V 5% DO-35 PD=.4W TC=+.057% DIODE-GEN PRP 35V 50MA DO-35	20480 20480 20480 20480 20480	1901-0518 1901-0518 1902-3205 1902-3205 1901-0376		
A5CR56 A5CR57 A5CR58 A5CR59 A5CR60	1901-0376 1902-3182 1902-3182 1901-0040 1901-0025	6 0 1 2	3	DIODE-GEN PRP 35V 50MA DD-35 DIODE-ZNR 12.1V 5X DD-35 PD=,4W DIODE-ZNR 12.1V 5X DD-35 PD=.4W DIODE-BWITCHING 30V 50MA 2NS DD-35 DIODE-GEN PRP 100V 200MA DD-7	28480 28480 28480 28480 28480	1901-0376 1902-3182 1902-3182 1901-0040 1901-0025		
ASCR61 ASCR62 ASCR63 ASCR64 ASCR65	1901-0040 1901-0040 1902-3182 1901-0040 1902-0184	1 1 0 1 6	1	DIODE-SWITCHING 30V 50MA 2NS DU-35 DIODE-SWITCHING 30V 50MA 2NS DD-35 DIODE-ZNR 12.1V 5Z DO-35 PD=.4W DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 16.2V 5Z DO-35 PD=.4W	28480 28480 28480 28480 28480	1901-0040 1901-0040 1902-3182 1901-0040 1902-0184		
ASCR66	1902-3105	7		DIDDE-ZNR 5.62V 2Z DO-35 PD=.4W	28480	1902-3105		
A511 A512 A513 A514	1251-7406 1250-1368 1251-4822 1251-4822	B 7 6 6	8 1	CONNECTOR-10-PIN MALE CONNECTOR-RF SME M PC 50-DHM CONNECTOR 3-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE	28480 28480 28480 28480 28480	1251-7406 1250-1368 1251-4822 1251-4822		
A5K1 A5K2 A5K3 A5K4 A5K5	0490-1137 0490-1137 0490-1137 0490-1137 0490-1325	ភភភភភភ	6 3	RELAY-REED 1A RELAY-REED 1A RELAY-REED 1A RELAY-REED 1A RELAY-REED 1A	28480 28480 28480 28480 28480	0490-1137 0490-1137 0490-1137 0490-1137 0490-1325		
A5K6 A5K7 A5K8	0490-1325 0490-1325 0490-1326	3 4	1	RELAY-REED RELAY-REED RELAY-REED	28480 28480 28480	0490-1325 0490-1325 0490-1326		
ASL1 ASL2 ASL3 ASL4 ASL5	9140-0114 9140-0114 9140-0114 9140-0114 9140-0114	4 4 4 4		INDUCTOR RF-CH-MLD 10UH 10% .166DX,385LG INDUCTOR RF-CH-MLD 10UH 10% .166DX.385LG	28480 28480 28480 28480 28480	9140-0114 9140-0114 9140-0114 9140-0114 9140-0114		
A5Q1 A5Q2 A5Q3 A5Q4 A5Q5	1853-0459 1854-0810 1855-0414 1853-0459 1854-0810	32432	11 8	TRANSISTOR PNP SI PD=625MW FT=200MHZ TRANSISTOR NPN SI PD=625MW FT=200MHZ IRANSISTOR J-FET 2N4393 N-CHAN D-MODE TRANSISTOR J-FET 2N4393 N-CHAN D-MODE TRANSISTOR PNP SI PD=625MW FT=200MHZ IRANSISTOR NPN SI PD=625MW FT=200MHZ	28480 28480 04713 28480 28480	1 853-0 459 1 854-0 81 0 2 84393 1 853-0 459 1 854-0 81 0		
A5Q6 A5Q7 A5Q8 A5Q9 A5Q10	1854-0810 1854-0810 1854-0474 1853-0459 1853-0336	22435	3 1	TRANSISTOR NPN SI PD=625MW FT=200MHZ TRANSISTOR NPN SI PD=625MW FT=200MHZ TRANSISTOR NPN SI PD=310MW FT=100MMZ TRANSISTOR PNP SI PD=625MW FT=200MHZ TRANSISTOR PNP SI PD=625MW FT=50MHZ TRANSISTOR PNP SI PD=625MW FT=50MHZ	28480 28480 04713 28480 04713	1854-0810 1854-0810 2N5551 1853-0459 MP SA92		
A5q11 A5q12 A5q13 A5q14 A5q15	1854-0637 1853-0314 1855-0386 1853-0459 1854-0575	1 9 9 3 6	1 1 4	TRANSISTOR NPN 2N2217A SI TD-5 PD=800MW TRANSISTOR PNP 2N2905A SI TO-39 PD=600MW TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR PNP SI PD=625MW FT=200MHZ TRANSISTOR NPN SI PD=625MW FT=50MHZ	01275 04713 04713 20480 04713	2N2219A 2N2905A 2N392 1853-0459 MPS-A42		
A5Q16 A5Q17 A5Q18 A5Q19 A5Q20	1854-0575 1854-0810 1853-0459 1855-0414 1855-0414	6 2 3 4 4		TRANSISTOR NPN SI PD=625MW FT=50MHZ TRANSISTOR NPN SI PD=625MW FT=200MHZ TRANSISTOR PNP SI PD=625MW FT=200MHZ TRANSISTOR J-FET 2N4393 N-CHAN D-MODE TRANSISTOR J-FET 2N4393 N-CHAN D-MODF	04713 28480 28480 04713 04713	MPS-A42 1854-0810 1853-0459 2N4393 2N4393		
A5Q21 A5Q22 A5Q23 A5Q24 A5Q25	1853-0459 1853-0459 1855-0414 1855-0414 1855-0414	3 4 4 4		TRANSISTOR PNP SI PD=625HW FT=200HHZ TRANSISTOR PNP SI PD=625HW FT=200HHZ TRANSISTOR J-FET 2N4393 N-CHAN D-MODE TRANSISTOR J-FET 2N4393 N-CHAN D-MODE TRANSISTOR J-FET 2N4393 N-CHAN D-MODE	28480 28480 04713 04713	1853-0459 1853-0459 204393 204393 214393		
A5Q26 A5Q27 A5Q28 A5Q29 A5Q30	1855-0280 1855-0414 1855-0280 1855-0414 1855-0386	24249	2	TRANSISTOR J-FET N-CHAN D-MODE TO-92 SI IRANSISTOR J-FET 2N4393 N-CHAN D-MODE TRANSISTOR J-FET N-CHAN D-MODE TO-92 SI IRANSISTOR J-FET 2N4393 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE	17856 04713 17856 04713 04713	E107 2N4393 E107 2N4393 2N4393		
A5Q31 A5Q32 A5Q33	1855-0386 1855-0386 1853-0459	9 9 3		TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR J-FET 2N4392 N-CHAN D-MODE TRANSISTOR PNP SI PD=625MW FT=200MHZ	04713 04713 20480	2N4392 2N4392 1853-0459		
A5R 1 A5R2 A5R3 A5R4 A5R5	0683-3355 0683-3325 0683-1015 0683-3725 0683-4745	2 6 7 2 6	3	RESISTOR 3.3M 5% .25W FC TC=-900/+1100 RESISTOR 3.3K 5% .25W FC TC=-400/+700 RESISTOR 100 5% .25W FC TC=-400/+700 RESISTOR 3.9K 5% .25W FC TC=-400/+700 RESISTOR 470K 5% .25W FC TC=-800/+900	01121 01121 01121 01121 01121	CB3395 CB3325 CB1015 CB3925 CB4745		
		\Box				· · · · · · · · · · · · · · · · · · ·		

Table 6-3. Replaceable Parts (Cont'd).

	·	· · · · · ·		F		
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A5R6 A5R7 A5R8 A5R9 A5R10	0699-0912 0699-0912 0683-3915 0683-1025 0603-1065	4 0 9 7	4 3 8	RESISTOR-100K DHM 0.01% RESISTOR-100K OHM 0.01% RESISTOR 390 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 10M 5% .25W CC TC=-900/+1100	28480 28480 01121 01121 01121	0679-0912 0699-0912 CB3915 CB1025 CB1065
ASR11 ASR12 ASR13 ASR14 ASR15	0683-3315 0683-1025 0683-2725 0683-6825 0683-7515	4 9 8 7 4	19 2	RESISTOR 330 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 6.8K 5% .25W FC TC=-400/+700 RESISTOR 750 5% .25W FC TC=-400/+600	01121 01121 01121 01121 01121	CB3315 CB1025 CB2725 CB4825 CB7515
A5R16 A5R17 A5R18 A5R19 A5R20	0683-2725 0683-6825 0683-7515 0683-1005 0683-3315	8 7 4 5 4		RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 6.8K 5% .25W FC TC=-400/+700 RESISTOR 750 5% .25W FC TC=-400/+600 RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 330 5% .25W FC TC=-400/+600	01121 01121 01121 01121 01121	CB2725 CB4625 CB7515 CB1005 CB3315
A5R21 A5R22 A5R23 A5R24 A5R25	0699-0909 0699-0910 0699-0910 0699-0911 0683-1015	92237	2 4 2	RESISTOR-100K OHM 0.01% RESISTOR-50K OHM 0.01% RESISTOR-50K OHM 0.01% RESISTOR-16.6666K OHM RESISTOR 100 5% .25W FC TC=-400/+500	20480 28480 28480 28480 01121	0699-0909 0699-0910 0699-0910 0699-0911 CB1015
A5R26 A5R27 A5R28 A5R29 A5R30	0683-3325 0683-4715 0757-0465 0683-2255 0683-4745	6 0 6 9 6	2 1	RESISTOR 3.3K 5% .25W FC TC=-400/+700 RESISTOR 470 5% .25W FC TC=-400/+600 RESISTOR 100K 1% .125W F TC=9+-100 RESISTOR 2.2M 5% .25W FC TC=-900/+1100 RESISTOR 470K 5% .25W FC TC=-800/+900	01121 01121 24546 01121 01121	CB3325 CB4715 CA-1/B-T0-1003-F CB2255 CB4745
A5R31 A5R32 A5R33 A5R34 A5R35	0683-1225 0683-3315 0683-4705 0683-4705 0683-0335	1 4 8 8	5 4 8	RESISTOR 1.2K 5%, 25W FC TC=-400/+700 RESISTOR 330 5%, 25W FC TC=-400/+600 RESISTOR 47 5%, 25W FC TC=-400/+500 RESISTOR 47 5%, 25W FC TC=-400/+500 RESISTOR 3.3 5%, 25W FC TC=-400/+500	01121 01121 01121 01121 01121	CB1225 CB3315 CB4705 CB4705 CB33G5
A5R36 A5R37 A5R38 A5R39 A5R40	0683-5605 0683-0335 0683-5605 0698-4444 0683-5645	9 2 9 3 7	3	RESISTOR 56 5% .25W FC TC=-400/+500 RESISTOR 3.3 5% .25W FC TC=-400/+500 RESISTOR 56 5% .25W FC TC=-400/+500 RESISTOR 4.87K 1% .125W F TC=0+-100 RESISTOR 560K 5% .25W FC TC=-800/+900	01121 01121 01121 24546 01121	CB5605 CB33G5 CB5605 C4-1/8-T0-4871-F CB5645
AUR41 AUR42 AUR43 AUR44 AUR45	0483-4705 0683-4705 0683-1065 0683-1055 0683-6815	8 8 7 5 5	3	RESISTOR 47 5% ,25W FC TC=-400/+500 RESISTOR 47 5% ,25W FC TC=-400/+500 RESISTOR 10M 5% ,25W CC TC=-900/+1100 RESISTOR 1M 5% ,25W FC TC=-800/+900 RESISTOR 680 5% ,25W FC TC=-400/+600	01121 01121 01121 01121 01121	CB4705 CB4705 CB1 065 CB1 055 CB4055
ASR 46 ASR 47 ASR 48 ASR 49 ASR 50	0683-3915 0683-1025 0683-1025 0683-3355 0683-3325	0 9 9 2 6		RESISTOR 370 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 3.3M 5% .25W FC TC=-900/+1100 RESISTOR 3.3K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB3915 CB1025 CB1025 CB3355 CB3325
ASR51 ASR52 ASR53 ASR54 ASR55	0683-1015 0683-3925 0683-1245 0699-0912 0699-0912	7 2 5 4 4	1	RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 3.9K 5% .25W FC TC=-400/+700 RESISTOR 120K 5% .25W FC TC=-800/+700 RESISTOR-100K DHM 0.01% RESISTOR-100K DHM 0.01%	01121 01121 01121 20121 20400 20400	CB1015 CB3925 CB1245 0699-0912 0699-0912
A5R56 A5R57 A5R58 A5R59 A5R60	0683-3915 0683-1025 0683-1065 0683-3315 1810-0604	0 9 7 4 5	1	RESISTOR 390 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 10M 5% .25W CC TC=-900/+1100 RESISTOR 330 5% .25W FC TC=-400/+600 RESISTIVE NETWORK	01121 01121 01121 01121 28480	CB3915 CB1025 CB1665 CB3315 5080-3062
A5R61 A5R62 A5R63 A5R64 A5R65	0757-0465 0757-0288 0699-0909 0699-0910 0699-0910	61922	1	RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 9.09K 1% .125W F TC=0+-100 RESISTOR-100K 0HM 0.01% RESISTOR-50K 0HM 0.01% RESISTOR-50K 0HM 0.01%	24546 19701 28480 28480 28480	C4-1/8-T0-1003-F MF4C1/8-T0-9091-F 0699-0909 0699-0910 0699-0910
A5R66 A5R67 A5R68 A5R69 A5R70	0699-0911 0683-1835 0698-3157 0683-5635 0683-3945	3 9 3 5 6	1 1 7	RESISTOR-16.6666K OHM RESISTOR 18K 5% ,25W FC TC=-400/+800 RESISTOR 19.6K 1% ,125W F TC=0+-100 RESISTOR 56K 5% ,25W FC TC=-400/+800 RESISTOR 390K 5% ,25W FC TC=-800/+900	28480 01121 24546 01121 01121	0699-0911 CB1835 C4-1/8-T0-1962-F CB5635 CB3945
A5R71 A5R72 A5R73 A5R74 A5R75	0683-4735 0683-5635 0683-3945 0683-4735 0699-0913	4 5 6 4 5	3	RESISTOR 47K 5% ,25W FC TC=-400/+800 RESISTOR 56K 5% ,25W FC TC=-400/+800 RESISTOR 390K 5% ,25W FC TC=-800/+900 RESISTOR 47K 5% ,25W FC TC=-400/+800 RESISTOR-10K OHM 0,01%	01121 01121 01121 01121 01121 28480	CB4735 CB5635 CB3945 CB4735 0699-0913
A5R76 A5R77 A5R78 A5R79 A5R80	0679-0913 0698-4444 0757-1094 0698-4497 0683-4745	5 7 6 6	1	RESISTOR-10K OHM 0.01% RESISTOR 4.87K 1% .125W F TC=0+-100 RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 48.7K 1% .125W F TC=0+-100 RESISTOR 470K 5% .25W FC TC=-800/+900	28480 24546 24546 24546 24546 01121	0699-0913 C4-1/8-70-4871-F C4-1/8-70-1471-F C4-1/8-70-4872-F C#4745

Table 6-3. Replaceable Parts (Cont'd).

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A5R81 A5R82 A5R83 A5R84 A5R85	0683-1025 0683-4725 0683-4725 0683-1035 0683-1035	9 2 1 1	6	RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1 025 CB4725 CB4725 CB1 035 CB1 035
A5R86 A5R87 A5R88 A5R89 A5R89	0683-1035 0683-6845 0683-1015 0683-2235 0683-3335	1 7 5 8	2	RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 680K 5% .25W FC TC=-800/+700 RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 22K 5% .25W FC TC=-400/+800 RESISTOR 33K 5% .25W FC TC=-400/+800	01121 01121 01121 01121 01121	CB1035 CB6B45 CB1015 CB2235 CB3335
A5R91 A5R92 A5R93 A5R94 A5R95	0683-3335 0683-3335 0683-3335 0683-1035 0683-6845	8 8 1 1		RESISTOR 33K 5% .25W FC TC=-400/+800 RESISTOR 33K 5% .25W FC TC=-400/+800 RESISTOR 33K 5% .25W FC TC=-400/+800 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 680K 5% .25W FC TC=-800/+700	01121 01121 01121 01121 01121	CB3335 CB3335 CB3335 CB1035 CB6845
A5R96 A5R97 A5R98 A5R99 A5R100	0683-2245 9683-1065 9683-1065 9683-2245 9683-3335	7 7 7 7 8	3	RESISTOR 220K 5% 25W FC TC=-800/+900 RESISTOR 10M 5% 25W CC TC=-900/+1100 RESISTOR 10M 5% 25W CC TC=-900/+1100 RESISTOR 220K 5% 25W FC TC=-800/+900 RESISTOR 33K 5% 25W FC TC=-400/+800	01121 01121 01121 01121 01121	CB2245 CB1065 CB1065 CB2245 CB3335
A5R101 A5R102 A5R103 A5R104 A5R105	0683-1045 0683-3335 0683-1045 0683-1035 0683-1035	3831		RESISTOR 100K 5%, 25W FC TC=-400/+800 RESISTOR 33K 5%, 25W FC TC=-400/+800 RESISTOR 100K 5%, 25W FC TC=-400/+800 RESISTOR 10K 5%, 25W FC TC=-400/+700 RESISTOR 10K 5%, 25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1045 CB3335 CB1045 CB1035 CB1035
A5R106 A5R107 A5R108 A5R109 A5R110	0683-6815 0683-6815 0683-6815 0683-2245 0683-1045	55573		RESISTOR 680 5%, 25W FC TC=-400/+600 RESISTOR 680 5%, 25W FC TC=-400/+600 RESISTOR 680 5%, 25W FC TC=-400/+600 RESISTOR 220K 5%, 25W FC TC=-800/+900 RESISTOR 100K 5%, 25W FC TC=-400/+800	01121 01121 01121 01121 01121	CR6815 CB6B15 CB6815 CB2245 CB1045
A5R111 A5R112 A5R113 A5R114 A5R115	0683-1045 0683-3335 0683-1045 0757-0401 0683-3325	38306	i	RESISTOR 100K 5% .25W FC TC=-400/+800 RESISTOR 33K 5% .25W FC TC=-400/+800 RESISTOR 100K 5% .25W FC TC=-400/+800 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 3.3K 5% .25W FC TC=-400/+700	01121 01121 01121 24546 01121	CB1045 CB3335 CB1045 C4·1/8-T0-101-F CB3325
A5R116 A5R117 A5R118 A5R119 A5R120	0683-1025 0683-1025 0683-1055 0699-0913 0699-0915	99557	1	RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR-10K OHM 0.01% RESISTOR-11K OHM	01121 01121 01121 20121 20400	CB1 025 CB1 025 CB1 035 0699-0913 0699-0915
A5R121 A5R122 A5R123 A5R124 A5R125	0699-0907 0757-0280 0683-1045 0683-1045 0698-6369	7 3 3 3 5	1 1	RESISTOR-1 G RESISTOR 1K 1Z .125W F TC=0+-100 RESISTOR 100K 5Z .25W FC TC=-400/+800 RESISTOR 100K 5Z .25W FC TC=-400/+800 RESISTOR 1M .1Z .25W F TC=0+-25	29490 24546 01121 01121 28480	0699-0907 C4-1/8-T0-1001-F CB1045 CB1045 0698-6369
A5R126 A5R127 A5R128 A5R129 A5R130	0683-2235 0683-2235 0683-2235 0683-4735 0683-4735	555544		RESISTOR 22K 5% .25W FC TC=-400/+800 RESISTOR 22K 5% .25W FC TC=-400/+800 RESISTOR 22K 5% .25W FC TC=-400/+800 RESISTOR 47K 5% .25W FC TC=-400/+800 RESISTOR 47K 5% .25W FC TC=-400/+800	01121 01121 01121 01121 01121	CB2235 CB2235 CB2235 CB4735 CR4735
A5R 131 A5R 132 A5R 133 A5R 134 A5R 135	0683-4735 0683-4735 0679-0916 0679-0908 0679-0914	4 4 8 8 6	1 1 1	RESISTOR 47K 5% .25W FC TC=-400/+800 RESISTOR 47K 5% .25W FC TC=-400/+800 RESISTOR-1.00045K DHM RESISTOR-10.0013 RESISTOR-10.975K DHM	01121 01121 28480 28480 28480 28480	CB4735 CB4735 0679-0916 0679-0908 0697-0914
A5R136 A5R137 A5R138 A5R139 A5R140	0699-0906 0683-1055 0683-1065 0683-1065 0683-1065	65777	1	RESISTOR-10.1 MEGOHM RESISTOR 1M 5% .25W FC TC=-000/+900 RESISTOR 10M 5% .25W CC TC=-900/+1100 RESISTOR 10M 5% .25W CC TC=-900/+1100 RESISTOR 10M 5% .25W CC TC=-900/+1100	28480 01121 01121 01121 01121	0679-0906 CB1055 CB1065 CB1065 CR1065
A5R141 A5R142 A5R143 A5R144 A5R145	0683-1525 0683-1545 0683-1545 0683-1545 0683-1545	4 8 8 8 B	4	RESISTOR 1.5K 5% ,25W FC TC=-400/+700 RESISTOR 150K 5% ,25W FC TC=-800/+900	01121 01121 01121 01121 01121	CB1525 CB1545 CB1545 CB1545 CB1545
A5R146 A5R147 A5R148 A5R149 A5R150	0683-8225 0683-1525 0683-1535 0683-1535 0683-1535	54666	1	RESISTOR 8.2K 5% .25W FC TC=-400/+700 RESISTOR 1.5K 5% .25W FC TC=-400/+700 RESISTOR 15K 5% .25W FC TC=-400/+800 RESISTOR 15K 5% .25W FC TC=-400/+800 RESISTOR 15K 5% .25W FC TC=-400/+800	01121 01121 01121 01121 01121	CH8225 CB1525 CB1535 CB1535 CB1535
A5R151 A5R152 A5R153 A5R154 A5R155	0683-1535 0683-4725 0683-4725 0683-4725 0683-4725	ខេត្តមាន		RESISTOR 15K 5%, 25W FC TC=-400/+800 RESISTOR 4.7K 5%, 25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1535 CB4725 CB4725 CB4725 CB4725 CB4725

Table 6-3. Replaceable Parts (Cont'd).

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
ASR 156 ASR 157 ASR 158 ASR 159 ASR 160	0683-4735 0683-4735 0683-4735 0683-4735 0683-2725	4 4 4 4 8		RESISTOR 47K 5% ,25W FC TC=-400/+800 RESISTOR 47K 5% ,25W FC TC=-400/+800 RESISTOR 47K 5% ,25W FC TC=-400/+800 RESISTOR 47K 5% ,25W FC TC=-400/+000 RESISTOR 2.7K 5% ,25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB4735 CB4735 CB4735 CB4735 CB2725
A5R161	0683-3335	8		RESISTOR 33K 5% ,25W FC TC=~400/+800	01121	CB3335
A5U1 A5U2 A5U3	1826-0908 1826-0908 1826-0908	0	3	IC-LIN 351EH IC-LIN 351BH IC-LIN 351BH	27014 27014 27014	LF3518H LF3518H LF3518H
A5U4	1826-0686	9	1	IC-LIN 3528AM	8E175	3528AM
A5U5 A5U6 A5U7 A5U8 A5U9	1026-0843 1026-0843 1058-0049 1026-0065 1020-1050	22709	2	IC-LIN LF353BH IC-LIN LF353BH TRANSISTOR ARRAY 16-PIN PLSTC DIP IC COMPARATOR PRON 8-DIP-P PKG IC FF TTL LS D-TYPE OCTL	07263 07263 28480 80545 01295	UAF772HC UAF772HC 1858-0049 UPC311C SN74L8377N
A5U10 A5U11 A5U12 A5U13 A5U14 A5U15 A5U16 A5U16 A5U17 A5U18 A5U19	1820-1641 1820-1112 1826-0686 1826-0686 1826-1009 1858-0049 1820-1662 1820-1662 1858-0077	8 1 1 9 7 3 1 0	2 1 1	IC DRVR TTL LS BUS DRVR HEX 1-INP IC FF TTL LS D-TYPE POS-EDGF-TRIG IC-LIN LF351AH IC-LIN LF351AH IC-LIN 15353AH IC-LIN 3528AM TRANSISTOR ARRAY 16-PIN PLSTC DIP IC SHF-RGTR CMOS SERIAL—IN PRL-OUT 8-BIT IC SHF-RGTR CMOS SERIAL—IN PRL-OUT 8-BIT TRANSISTOR ARRAY 14-PIN PLSTC TO-116 IRANSISTOR ARRAY 14-PIN PLSTC TO-116	01295 01295 27014 27014 8E175 28480 31,585 3L585 04713	9N74L5365AN 9N74L574AN LF351AH 15351AH 3528AM 1858-0049 CD4094BE CD 4094BE MPQ2222P MPQ2907P
A5W1 A5W2	1258-0141 1258-0141	8		JUMPER-REM JUMPER-REM	28480 28480	1258-0141 1258-0141
	0340-0060 0340-0092 0159-0005 04145-00613 04145-00614	42.090	7 1 1	TERMINAL-STUD SPCL-FDTHRU PRESS-MIG TERMINAL-STUD SPCL-FDTHRU PRESS-MIG RESISTOR-ZERO OHMS 22 AWG LEAD DIA SHIELD-COVER (PATTERN SIDE) SHIELD-COVER (COMPONENT SIDE)	98291 28480 28480 28480 28480 28480	011~6807 000 207 0340-0072 8157-0005 04145-00613 04145-00614
A9	04145-66509	0	1	HP-IB AND MSU CONTROL BOARD ASS'Y	28488	04145-66509
A9C1 A9C2 A9C3 A9C4 A9C5	0160-4835 0160-4835 0180-1083 0180-1083 0180-1083	77333		CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 33UF 25VDC AL CAPACITOR-FXD 33UF 25VDC AL CAPACITOR-FXD 33UF 25VDC AL	28480 28480 28480 28480 28480	0160-4835 0160-4835 0180-1083 0180-1083 0180-1083
A9C6 A9C7 A9C8 A9C9	0160-4835 0160-4835 0160-4835 0160-2201	7 7 7 7	1	CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 51PF +-5% 300VDC MICA	28480 28480 28480 28480	0160-4835 0160-4835 0160-4835 0160-2201
A9C10 A9C11 A9C12	0180-0197 0160-4835 0160-4835	8 7 7		CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD ,1UF +-10% 50VDC CER CAPACITOR-FXD ,1UF +-10% 50VDC CER	55289 28480 28480	150D225X9020A2 0160-4B35 0160-4B35
A9J1 A9J2 A9J4 A9J5 A9J6	0360-1901 1251-4822 1200-0654 1251-4822 1200-0654	66767		CABLE TRANSITION CONNECTOR 3-PIN H POST TYPE SOCKET-IC 40-CONT DIP DIP-SLDR CONNECTOR 3-PIN H POST TYPE SOCKET-IC 40-CONT DIP DIP-SLDR	28480 28480 28480 28480 28480	0360-1901 1251-4622 1200-0654 1251-4622 1200-0654
A9J8 A9J9 A9J10	1251-4822 1251-4822 1251-4822	6 6		CONNECTOR 3-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE	28480 28480 28480	1251 -4822 1251-4822 1251-4822
A9L1	9100-3139	5		INDUCTOR 75UH 15% .5DX.B75LG	28480	9100-3139
A9R 1 A9R2 A9R3 A9R4 A9R5	1810 ~ 0269 0683-1515 0683-1515 0683-1515 0683-1515	ខេត្តខេត្ត	7	NETWORK-RES 9-SIP10.0K OHM X B RESISTOR 150 5% .25W FC TC=-400/+600	28480 01121 01121 01121 01121	1810-0269 CB1515 CB1515 CB1515 CB1515
A9R6 A9R7 A9R8 A9R8	0683-1515 0757-0442 0698-3449 1810-0269	2 9 6 3	2 1	RESISTOR 150 5% .25W FC TC=-400/+600 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 28,7K 1% .125W F TC=0+-100 NETWORK-RES 9~SIP10.0K OHM X 8	01121 24546 24546 28480	CB1515 C4-1/8-T0-1002-F C4-1/8-T0-2872-F 1810-0269
A9U1 A9U2 A9U3 A9U4 A9U5	1820-1197 1820-0621 1820-2631 1820-1199 1820-1198	9 2 8 1 0	2 1 1	IC GATE TTL LS NAND QUAD 2-INP IC BFR TTL NAND QUAD 2-INP IC-DIGITAL ME0866 IC INV TTL LS HEX 1-INP IC GATE TTL LS NAND QUAD 2-INP	01295 01295 28480 01295 01295	SN74LS00N SN7438N 1820-2631 SN74LS04N SN74LS03N
A9U6 A9U7 A9U8 A9U9 A9U10	1820-2549	3 7 3 3 2	1 4	IC GATE TTL LS OR QUAD 2-INP IC-0291A P HPIB IC MISC TTL S QUAD IC MISC TTL S QUAD IC BFR TTL NAND QUAD 2-INP	01295 28480 07263 07263 01295	SN74LS32N 1820-2549 MC344BAL MC344BAL SN7438N

Table 6-3. Replaceable Parts (Cont'd).

Reference HP Part C Ott. Description Mfr Mfr Part Number								
Reference Designation	Number	C D	Qty	Description	Code	Mfr Part Number		
A9U11 A9U12 A9U13 A9U14 A9U15	1920-1281 1920-2058 1920-2058 1920-1053 1920-1437	2 3 6 0	1 2	IC DCDR TTL 1.S 2-TO-4-LINE DUAL 2-INP IC MISC TTL S QUAD IC MISC TTL S QUAD IC SCHMITT-TRIG TTL INV HEX IC MV TTL LS MONOSTBL DUAL	01295 07263 07263 01295 01295	SN74LS139N MC344BAL MC344BAL SN7414N SN74LS221N		
A9U14 A9U17 A9U18 A9U19	1820-1194 1820-1443 1820-1112 1820-2024	6 8 3	s	IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC CNTR TTL LS BIN ASYNCHRO IC FF TTL LS D-TYPE POS-FDGE-TRIG IC DRVR TTL IS LINE DRVR OCTL	01295 01295 01295 01295	SN74LS193N SN74LS293N SN74LS74AN SN74LS244N		
A9W1 A9W2 A9W3 A9W4 A9W5	1258-0141 1258-0141 1258-0141 1258-0141 1258-0141	8 8 8 8		JUMPER-REM JUMPER-REM JUMPER-REM JUMPER-REM JUMPER-REM	28480 28480 28480 28480 28480	1258-0141 1258-0141 1258-0141 1258-0141 1258-0141		
ል ያ₩6 ል ኇ₩7	8159-0005 04145-61620	6	1	RESISTOR-ZERO OHMS 22 AWG LEAD DIA CABLE ASSEMBLY	28480 28480	8159-0005 04145-61620		
A10	04145-66510	3	1	KEYBOARD AND DISPLAY CONTROL BOARD ASS'Y	26480	04145-66510		
A10C1 A10C2 A10C3 A10C4 A10C5	01.60-4835 0160-4835 0180-0228 0160-4835 0160-4835	77677		CAPACITOR-FXD .1UF +-10Z 50VDC CER CAPACITOR-FXD .1UF +-10Z 50VDC CER CAPACITOR-FXD .2UF+-10Z 15VDC TA CAPACITOR-FXD .1UF +-10Z 50VDC CER CAPACITOR-FXD .1UF +-10Z 50VDC CER	28480 28480 56289 28480 28480	0160-4835 0160-4835 150D226X701582 0160-4835 0160-4835		
A1006 A1007 A1008 A1009	0160-4835 0160-4835 0160-4835 0160-4835	7777		CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480	0160-4835 0160-4835 0160-4835 0160-4835		
A10DS1 A10DS2 A10DS3 A10DS4 A10DS5	1990-0487 1990-0487 1990-0487 1990-0487 1990-0487	77770	5 8	LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480	5082-4584 5082-4584 5082-4584 5082-4584 1790-0670		
A10DS6 A10DS7 A10DS8 A10DS9 A10DS10	1990-0670 1990-0670 1990-0670 1990-0670 1990-0670	0 0 0 0		LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	29480 28480 28488 28488 28488	1990-0670 1990-0670 1990-0670 1990-0670 1990-0670		
A10DS11 A10DS12 A10DS13 A10DS14 A10DS15	1990-0487 1990-0670 1990-0665 1990-0670 1990-0517	7 0 3 0 4	1	LED-LAMP LUM-INT=1MCD TF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=3MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480	5882-4584 1990-0678 1990-0665 1990-0670 5882-4655		
A10R1 A10R2 A10R3 A10R4	1810-0279 1810-0283 1810-0283 1810-0279	5 1 1 5	8.8	NETWORK-RES 10-SIP4.7K OHM X 9 NETWORK-RES 16-DIP270.0 OHM X 8 NETWORK-RES 16-DIP270.0 OHM X 8 NETWORK-RES 10-SIP4.7K OHM X 9	01121 28480 28488 51121	210A472 1810-0283 1810-0283 210A472		
A1051-566	5060-9436	7	66	PUSHBUTTON SWITCH P.C. MOUNT	28480	5060-9436		
A10U1 A10U2 A10U3 A10U4 A10U5	1820-1207 1820-1179 1820-1112 1820-2076 1820-1461	2 1 8 9 0	1 1 2	IC GAIE TTL LS NAND 8-INP IC INV TTL LS HEX 1-INP IC FF TIL LS D-TYPE POS-EDGE-TRIG IC CNTR TTL LS BIN DUAL 4-BIT IC FF TTL D-TYPE POS-EDGE-TRIG CLEAR	01295 01295 01295 01295 01295	SN74L630N SN74L504N SN74LS74AN SN74L5393N SN74273		
A10U6 A18U7 A10UB A10U9 A10U10	1820-1461 1820-1208 1820-1197 1820-1473 1820-1443	0 3 9 4 9	1	IC FF TIL D-TYPE POS-EDGE-TRIG CLEAR IC GAIE TIL LS OR QUAD 2-INP IC GATE TIL LS NAND QUAD 2-INP IC ENDOR TIL 8-INP IC CNIR TIL LS BIN ASYNCHRU	01295 01295 01295 01295 01295	SN74273 SN74L532N SN74L500N SN74148N SN74148N SN74LS293N		
A10U11	1820-1427	8	1	IC DCDR TTL LS 2-TO-4-LINE DUAL 2-TNP	01295	SN74LS156N		
	04145-61618	2	1	CABLE ASSEMBLY	28480	04145-61618		
	5041-0059 5041-0063 5041-0277 5041-0286 5041-0343	8 6 7 7	4 1 21 8 13	KEY CAP-PALM-BRN-PRL KEY CAP-PALM-BRN-PRL KEY CAP-PRL KEY CAP-HALF, L-PRL KEY CAP-HALF	28480 28480 28480 28480 28480	5041-0059 5041-0063 5041-0277 5041-0286 5041-0343		
	5041-0376 5041-0451 5041-0475 5041-0508 5041-0808	6 B 6 6 9	4 1 1 1	KEY CAP-HALF KEY CAP-HALF KEY CAP-HALF KEY CAP-HALF KEY CAP-HALF,SMOKE-SMST	2848 () 2848 () 2848 () 2848 () 2848 ()	5041-0376 5041-0451 5041-0475 5041-0508 5041-0608		
	5041-0811 5041-0812 5041-0813 5041-0814 5041-0815	4 5 6 7 B	1 1 1 1	KEY CAP-HALF,SMOKE-SMST KEY CAP-HALF,SMOKE-SMST KEY CAP-HALF,SMOKE-SMST KEY CAP-HALF,SMOKE-SMST KEY CAP-HALF,SMOKE-SMST KEY CAP-HALF,SMOKE-SMST	28480 28480 28480 28480 28480	5041-8811 5041-0812 5041-0813 5041-0814 5041-0815		

Table 6-3. Replaceable Parts (Cont'd).

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
	 	-		WEN AND THE GROWE STATE		5044 301/
	5041-0816 5041-0817 5041-0818	9 0 1	2 1 1	KEY CAP-HALF, SMOKE-SMST KEY CAP-HALF, SMOKE-SMST KEY CAP-HALF, SMOKE-SMST	28480 28480 28480	5041-0816 5041-0817 5041-0818
	5041-0819 5041-1881	2	i	KEY CAP-HALF	28480 28480	5041-0019 5041-1001
	2950-0001 5060-9444	7	1	NUT-HEX-DBL-CHAM RDTARY PULSE GENERATOR	28480	5060-9444
	04191-40002 04262-25003		i 1	INSULATOR INSULATOR	28480 28480	04191-40002 04262-25003
	5040-3322 2190-0016	6	1	INSULATOR WSHR-LK INTL T	28480	5040 -3322
A11	04145-66511	4	1	SWITCHING POWER SUPPLY BOARD ASS'Y (COMPONENT SIDE SHIELD COVER IS NOT INCLUDED)	28480	04145-66511
A11C1 A11C2	0160-4835 0180-1050	7	1	CAPACITOR-FXD ,1UF +10% 50VDC CER CAPACITOR-FXD 100UF 25VDC	20480 28480	0160-4835 0180-1050
A1103 A1104	0180-3184 0160-0127	9	3	CAPACITOR-FXD 2200UF 35VDC AL CAPACITOR-FXD 1UF +-20% 25VDC CER	28480 28480	0180-3184 0168-0127
A11C5	0160-0127	5		CAPACITOR-FXD 1UF 4-20% 25VDC DER	20480	0160-0127
A1106 A1107	0160-0127 0160-0127	5		CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER	28480 28480	0160-0127 0160-0127
A1108 A1109	0180-3168 0180-3168	9	2	CAPACITOR-FXD 18UF 250VDC AL CAPACITOR-FXD 18UF 258VDC AL	28480 28480	0188-3168 0180-3168
A11C10	0160-3969	6	2	CAPACITOR-FXD .015UF +-20PF 250VAC(RMS)	29490	0160-3969
A11C11 A11C12	0160-3969 0180-3179	6 6	2	CAPACITOR-FXD .015UF +-20PF 250VAC(RHS) CAPACITOR-FXD 220UF 200VDC	28480 28488	0160-3969 0180-3179
A11C13 A11C14	0180-3179 0160-4824	2	1	CAPACITOR-FXD 220UF 200VDC CAPACITOR-FXD 680PF +-5% 180VDC CER	28480 28480	0180-3179 0160-4824
A11C15	0160-4832	4		CAPACITOR-FXD .01UF +-10% 108VDC CER	28480	0160-4832
A11016 A11017	0180-1704 0160-4835	5 7	1	CAPACITOR-FXD 47UF+-10% 6VDC TA CAPACITOR-FXD .1UF +-10% 50VDC CER	56289 28480	150D476X9006P2 0160-4835
A11C18 A11C19	0160-3456 0160-4835	6 7	1	CAPACITOR-FXD 1000PF +-10% 1KVDC CER CAPACITOR-FXD 1UF 4-10% 50VDC CER	28480 28480	0160-3456 0160-4835
A11C21	0160-4593 0160-4574	1	1	CAPACITOR-FXD 1.5UF +-20% 400VDC CAPACITOR-FXD 1000PF +-10% 100VDC CER	28480 28480	0160-4593 0160-4574
A11CP1	1990-0444	6		OPTO-ISOLATOR LED-PDIO/XSTR IF=25MA-MAX	28480	6N136
A11CP2 A11CP3	1770-0663 1770-0663	1 1	2	OPTO-ISOLATOR LED-PXSTR IF=40MA-MAX OPTO-ISOLATOR LED-PXSTR IF=40MA-MAX	28480 28480	1990-0663 1990-0663
A11CR1 A11CR2	1901-0025 1906-0051	2 4	3	DIODE-GEN PRP 1880 288MA DO-7 DIODE-FW BRDG 1880 1A	28480 28480	1901-0025 1906-0051
A11CR3 A11CR4	1906-0080 1906-0051	9	1	DIODE-FW BRDG GODV 10A DIODE-FW BRDG 100V 1A	28480 28480	1906-0080 1906-0081
A11CR5	1901-0025	2		DIODE-GEN PRP 100V 200MA DO-7	29480	1901-0025
A11CR6 A11CR7	1901-1065 1901-1065	5	5	DIODE-PWR RECT 1N4936 400V 1A 200NS DIODE-PWR RECT 1N4936 400V 1A 200NS	14936 14936	1N4936 1N4936
A11F1	2110-0663 2110-0269	0	1 6	FUSE-THERMAL FUSEHOLDER-CLIP TYPE.25D-FUSE	28480	2110-0269
A11F2 A11F3	2110-0304 2110-0381	4 7	1	FUSE 1.5A 250V TD 1.25X.25 UL FUSE 3A 250V TD 1.25X.25	28488 28480	2110-0304 2110-0381
A11J1	1251-4246	8	2	CONNECTOR 3-PIN H POST TYPE	20480	1251-4246
A11J2 A11J3	1251-4246 1251-7406	8		CONNECTOR 3-PIN M POST TYPE CONNECTOR-10 PIN MALE	28480 20480	1251-4246 1251-7406
A11J4 A11J5	1251-7406 1251-7463	B 7	4	CONNECTOR-10 PIN MALE CONNECTOR-12 PIN MALE	28480 28480	1251-7406 1251-7463
A11J6	1251-3837	1	1	CONNECTOR 4-PIN M UTILITY	29480	1251-3837
A11K1	0490-1312	8	1	RELAY	28480	0490-1312
A11L1 A11L2 A11L3	7140-0401 7140-0401 7140-0674	2 2 1	2	COIL-FXD 64 UH COIL-FXD 64 UH COIL FXD 3,3MH X 2	28480 28480 28480	9140-0401 9140-0401 9140-0674
A11Q1	1854-0477	7		TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW	04713	2N2222A
A1102 A1103		7		TRANSISTOR PNP 2N2907A SI TO-18 PD=400MW TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW	04713 04713	2N2907A 2N2222A
A11Q4 A11Q5	1853-0281 1854-0232	9	. 1	TRANSISTOR PNP 2N2707A SI TO-18 PD=400MW TRANSISTOR NPN SI TO-39 PD=1W FT=15MHZ	04713 28480	2N2907A 1854-0232
A1106 A1107	1854-0624 1854-0624	6	2	TRANSISTOR NPN 2N6308 SI TO-3 PD=125W TRANSISTOR NPN 2N6308 SI TO-3 PD=125W	#4713 04713	2N6308
A11R1	0698-3452	1	1	RESISTOR 147K 1% .125W F TC=0+-100	24546	C4-1/8-T0-1473-F
A11R2 A11R3	2100-3210	3 6		RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR-TRMR 10K 10% C TOP-ADJ 1-TRN	01121 28480	CB2225 2100-3210
A11R4 A11R5	0683-2725 0683-2725	8		RESISTOR 2.7K 5% ,25W FC TC=-400/+700 RESISTOR 2.7K 5% ,25W FC TC=-400/+700	01121 01121	CB2725 CB2725
A11R7	0757-0442	9		REGISTOR 10K 1% .125W F TC=0+-100	24546	C4-1/8-T0-1002-F
A11R8 A11R9 A11R10	0757-0317 0698-4539 0698-4539	77	5	RESISTOR 1.33K 1% .125W F TC=0+-100 RESISTOR 402K 1% .125W F TC=0+-100 RESISTOR 402K 1% .125W F TC=0+-100	28480	0699 -4539 0698-4539
A11R11	0761-0083	3	2	RESISTOR 402K 12 ,125W F 1C=0+-100	28480 28480	0598-4539 0761-0083

Table 6-3. Replaceable Parts (Cont'd).

	Table U.S. neplaceable raits (cont d).								
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number			
A11R12 A11R13	0741-0083 0811-3621	3 4	2	RESISTOR 6BK 5% 1W MO TC=0+-200 RESISTOR 8 5% 2W PW TC=0+-400	28480	0761-0183			
A11R15 A11R16	0683-1235 0683-1805	3	1 1	RESISTOR 12K 5% ,25W FC TC=-400/+800 RESISTOR 18 5% ,25W FC TC=-400/+500	01121 01121	CB1235 CB1805			
A11R17 A11R18 A11R19 A11R20 A11R21	2100-3211 0812-0021 0764-0015 0683-0335 0683-1005	78725	1 1 1	RESISTOR-TRMR 1K 10% C TOP-ADJ 1-TRN RESISTOR .47 5% 3W PW TC=04-90 RESISTOR 540 5% 2W MO TC=0+-200 RESISTOR 3.3 5% .25W FC TC=-400/+500 RESISTOR 10 5% .25W FC TC=-400/+500	28480 91637 28480 01121 01121	2100-3211 CW2B1-3-T2-47/100-J 0764-0015 CB33G5 CB1005			
A11R22 A11R23 A11R24 A11R25 A11R26 A11R27 A11R28	0.683-1005 0.683-1005 0.698-4444 0.683-1015 0.683-1025 0.683-1205 0.683-1045	253797	1	RESISTOR 3.3 5% .25W FC TC=-400/+500 RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 4.97K 1% .125W F TC=0+-100 RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 1K 5% .25W FC TC=-400/+500 RESISTOR 12 5% .25W FC TC=-400/+500 RESISTOR 100K 5% RESISTOR 100K 5%	01121 01121 24546 01121 01121 01121	C833G5 CR1005 C4-1/B-T0-4871-F CB1015 CB1025 CB1205			
A11RV1 A11RV2	0837-0106 0837-0106	5	5	VARISTOR VARISTOR	28480 28480	0837-0106 0837-0186			
A11T1 A11T2 A11T3	9140-0710 9140-0711 9140-0711	9 0 0	1 2	TRANSFORMER-POWER TRANSFORMER-DRIVE TRANSFORMER-DRIVE	28480 28480 28480	PPNR72943 PPNR72944 PPNR72944			
A11U1 A11U2 A11U3 A11U4	1826-0138 1826-0910 1826-0099 1813-0255	8 4 0 3	1 1 1	IC COMPARATOR GP QUAD 14-DIP-P PKG IC-LINEAR IC V RGLTR TO-220 IC SW-M CKT 22 PKG	01275 28480 07263 28480	LM339N 1826-0910 7812NC 1813-0255			
	0340-0039 0340-0092 0340-0220 1205-0310 1205-0373 2110-0269	7 8 7 2	4 5 2 1	TERMINAL BUSHING - TEFLON: MOUNTS IN TERMINAL-STUD SPCL-FDTHRU PRESS-MTG BEADS HEAT SINK HEAT SINK FUSEHOLDER-CLIP TYPE.250-FUSE	29480 29480 29480 28480 28480	0340-0037 0340-0092 0340-0220 1205-0310 1205-0373			
	1400-0249 2360-0115 2360-0119 2360-0121 2420-0006	0 4 9 2 0	11 11 1 4 2	CABLE TIE .062-,625-DIA .071-WD NYL SCREW-MACH 6-32 .312-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .43B-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .5-IN-LG PAN-HD-POZI NUT-HEX-W/LKWR 6-32-THD ,107-IN-THK	06383 00000 00000 00000 00000	PLTIM- B ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION			
	3050-0010 04145-00611 04192-01208 04145-00612	2 7 8	1 1 1	WASHER-FL MILC NO. 6 .147-IN-ID SHIELD-COVER(PATTERN SIDE) HEAT SINK SHIELD-COVER(COMPONENT SIDE)	28480 28480 28480 28480	3050-0010 04145-00611 04192-01208 04145-00612			
A 12	04145-66512	5	1	DC POWER SUPPLY BOARD ASS'Y	20480	04145~66512			
A12C1 A12C2 A12C3 A12C4 A12C5	0180-2980 0180-2980 0180-3184 0180-3184 0180-2980	1 1 9 9	9	CAPACITOR-FXD 1000UF+-20% 35VDC AL CAPACITOR-FXD 1000UF+-20% 35VDC AL CAPACITOR-FXD 2200 UF 35VDC CAPACITOR-FXD 2200 UF 35VDC CAPACITOR-FXD 1000UF+-20% 35VDC AL	28480 28480 28480 28480 28480	0180-2980 0180-2980 0180-3184 0180-3184 0180-2980			
A12C6 A12C7 A12CB A12C9 A12C18	0180-2980 0180-2980 0180-2980 0180-2980 0180-1746 0160-4835	1 1 1 5 7		CAPACITOR-FX) 1000UF+-20% 35VDC AL CAPACITOR-FXD 1000UF+-20% 35VDC AL CAPACITOR-FXD 1000UF+-20% 35VDC AL CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD ,1UF +-10% 50VDC DER	28480 28480 28480 56289 28480	0180-2980 0180-2980 0180-2980 150D156X902082 0160-4835			
A12011 A12012 A12013 A12014 A12015	0160-4835 0160-4835 0180-0116 0180-0291 0180-0291	7 7 1 3 3	1 13	CAPACITOR-FXD .1UF +-10Z 50VDC CER CAPACITOR-FXD .1UF +-10Z 50VDC CER CAPACITOR-FXD 6.8UF+-10Z 35VDC TA CAPACITOR-FXD 1UF+-10Z 35VDC TA CAPACITOR-FXD 1UF+-10Z 35VDC TA	28488 28480 56289 56289 56289	0160-4835 0160-4835 15006853903582 150010539035A2 150010539035A2			
A12CR1 A12CR2 A12CR3 A12CR4 A12CR5	1902-0041 1902-1232 1906-0053 1901-0765 1901-0765	4 7 6 7 7	1 1 1 2	DIODE-ZNR 5.11V 5% DO-35 PD=,4W DIODE-ZNR 1N3997RA 5.6V 5% DO-4 PD=10W DIODE-FW BRDG 100V 5A DIODE-PWR RECT 1N5812 50V 20A 35NS DO-4 DIODE-PWR RECT 1N5812 50V 20A 35NS DO-4	28480 04713 28480 12769 12969	1902-0041 1N3997RA 1904-0053 1N5812 1N5812			
A120R6 A120R7	1901-0674 1901-0674	7 7	z	DIODE-PWR RECT 100V 3A 150NS DIODE-PWR RECT 100V 3A 150NS	14099 14099	38F1 39F1			
A12J1 A12J2 A12J3 A12J4 A12J5	1251-7463 1251-4617 1251-7406 1200-0485 1251-3283	7 7 8 2 1	1 1 1	CONNECTOR-12 PIN MALE CONNECTOR 4-PIN M UTILITY CONNECTOR-10 PIN MALE SOCKET-IC 14-CONT DIP DIP-SLDR CONNECTOR 24-PIN F MICRORIBBON	28480 28480 28480 28480 28480	1251-7463 1251-4617 1251-7406 1200-0485 1251-3283			
A12J6 A12J7	1251-7463 1251-7406	7 8		CONNECTOR-12 PIN MALE CONNECTOR-10 PIN MALE	28480 28480	1251-7463 1251-7406			
A12L1 A12L2 A12L3 A12L4 A12L5	9100-3139 9100-3139 9100-3139 9100-3139 9100-3139 9140-0672	55559	1	INDUCTOR 75UH 15% -5DX.875LG INDUCTOR 75UH 15% -5DX.875LG INDUCTOR 75UH 15% -5DX.875LG INDUCTOR 75UH 15% -5DX.875LG COIL- 2.2MH	28480 28480 28480 28480 28480	9100-3139 9100-3139 9100-3139 9100-3139 9140-0672			

Table 6-3. Replaceable Parts (Cont'd).

				Table 6-3. Replaceable Parts (Cont	u).	
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A12L6 A12L7 A12L8	9140-0702 9140-0675 9140-0673	4 10 0	1 1 1	COIL- 2MH X 2 COIL- 150UH COIL- 1MH	28480 28480 28480	PPNR72930 9140-0675 9140-0673
A12R1 A12R2 A12R3 A12R4 A12R5	0678-3404 0757-0816 0757-0816 0698-0090 0678-0090	3 1 1 7 7	1 2 2	RESISTOR 383 12 .5W F TC=0+-100 RESISTOR 681 12 .5W F TC=0+-100 RESISTOR 681 12 .5W F TC=0+-100 RESISTOR 464 12 .5W F TC=0+-100 RESISTOR 464 12 .5W F TC=0+-100	29480 28480 28400 28480 28480	0690-3404 0757-0816 0757-0816 0698-0090 0698-0090
A12R6 A12R7 A12R8	0683-5635 0683-4735 0683-4735	5 4 4		RESISTOR 56K 5% .25W FC IC=-400/+800 RESISTOR 47K 5% .25W FC IC=-400/+800 RESISTOR 47K 5% .25W FC IC=-400/+800	01121 01121 01121	CR5635 CB4735 CR4735
A1281	3101-1973	7		SWITCH-SL 7-1A DIP-SLIDE-ASSY ,1A 50VDC	28480	3101-1973
A12U1 A12U2 A12U3 A12U4	1828-1994 1820-1201 1820-1437 1826-0904	4 6 0 6	1	IC DRUR TIL IS LINE DRUR UCIL IC GATE TTL LS AND QUAD 2-INP IC MV TIL IS MONOSTDL DUAL IC-LINEAR	01295 01295 01295 28480	SN74LS243N SN74LS08N SN74LS221N 1826~9904
A12W1	04145-61621	7	1	CABLE ASSEMBLY	28480	04145-61621
	0360-1901 0361-0079 8150-0038 04145-61607 04192-01207	6 9 1 9 6	2 2 1 1	CABLE TRANSITION RIVET-SEMITUBULAR WIRE- 22 Y WIRING ASBEMBLY MEAT SINK	28480 28480 28480 28480 28480	0360-1701 0361-0070 8150-0038 04145-61607 04192-01207
	2740-0003 1251-3283 0380-0644 2140-0577	5	1 2 2	NUT-NEX-W/LKWR 10-32-THD .125-IN-THK CONNECTOR-24 PIN STUD-HOUNTING WASHER	00000	ORDER BY DESCRIPTION
A13	04145-66513	6	1	SMU POWER SOURCE BOARD ASS'Y	28480	04145 -66513
A1301 A1302 A1303 A1304 A1305	0180-0291 0180-0291 0180-0291 0180-0291 0180-3185 0180-3185	3 3 0 0	4	CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 100UF 35 VDC AL CAPACITOR-FXD 100UF 35 VDC AL	56287 56289 56289 28480 28480	150D105X9035A2 150D105X9035A2 150D105X9035A2 0180-3185 0180-3185
A13C101 A13C102 A13C103 A13C104 A13C105	0180-0291 0188-0291 0180-0291 0180-3185 0180-3185	3 3 3 0		CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 100UF 35 VDC AL CAPACITOR-FXD 100UF 35 VDC AL	56289 56289 56289 28480 28480	150D105X9035A2 150D105X9035A2 150D105X9035A2 0180-3185 0180-3185
A13CR1 A13CR2 A13CR3 A13CR4 A13CR5	1901-0033 1901-0033 1901-0033 1901-0033 1906-0076	មាខាខាខា	4	DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-FW BRDG 400V 1A	28480 28480 28480 28480 28480	1901-0033 1901-0033 1901-0033 1901-0033 1906-0076
A13CR101 A13CR102 A13CR103 A13CR104 A13CR105	1901-0033 1901-0033 1901-0033 1901-0033 1906-0076	2223		DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-FW BRDG 400V 1A	28480 28480 28480 28480 28480	1901-0033 1901-0033 1901-0033 1901-0033 1906-0076
A13J1 A13J2	1251-7406 1251-7406	8		CONNECTOR-10 PIN HALE CONNECTOR-10 PIN HALE	28480 28480	1251-7406 1251-7406
A13L1 A13L101	9140~0704 9140~0704	6	2	COIL-5 MH X 2. COIL-5 MH X 2	28480 28480	PPNR72932 PPNR72932
A13Q1 A13Q2 A13Q3 A13Q4 A13Q5	1854-0918 1853-0514 1854-0810 1853-0459 1854-0810	1 2 3 2	5 5	TRANSISTOR NPN TO-220AB PD=1.5W TRANSISTOR PNP TO-220AB PD=1.5W TRANSISTOR NPN SI PD=625MW FT=200MHZ TRANSISTOR NPN SI PD=625MW FT=200MHZ TRANSISTOR NPN SI PD=625MW FT=200MHZ	20488 28480 20480 28480 28480	1854-0918 1853-0514 1854-0810 1853-0459 1854-0810
A13Q6 A13Q7 A13Q8 A13Q10 A13Q10 A13Q10 A13Q101 A13Q102 A13Q102 A13Q102 A13Q103 A13Q103	1853-0459 1854-0523 1853-0232 1854-0810 1853-0459 1854-0523 1853-0232 1854-0918 1853-18514 1853-18514 1853-0859	34023 40123	6 6	TRANSISTOR PNP SI PD=625MW FT=200MHZ TRANSISTOR NPN SI TO-39 PD=1W FT=150MHZ TRANSISTOR PNP SI TO-39 PD=1W FT=200MHZ TRANSISTOR PNN SI PD=625MW FT=200MHZ TRANSISTOR PNP SI PD=625MW FT=200MHZ TRANSISTOR NPN SI PD=625MW FT=200MHZ TRANSISTOR NPN SI TO-39 PD=1W FT=150MHZ TRANSISTOR NPN SI TO-39 PD=1W FT=200MHZ TRANSISTOR NPN TO-220AB PD=1.5W TRANSISTOR PNP 10-220AB PD=1.5W TRANSISTOR PNP SI PD=625MW FT=200MHZ TRANSISTOR PNP SI PD=625MW FT=200MHZ TRANSISTOR PNP SI PD=625MW FT=200MHZ	28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	1853-0459 1854-0523 1853-0232 1853-0810 1853-0459 1854-0523 1853-0232 1854-0918 1853-0514 1853-0514 1853-0459
A13Q105 A13Q106 A13Q107 A13Q10B A13Q10B	1854-0810 1853-0459 1854-0523 1853-0232 1854-0818	2 3 4 0 2		TRANSISTOR NPN SI PD=625MW FT=200MHZ TRANSISTOR PNP SI PD=625MW FT=200MHZ TRANSISTOR NPN SI TO-39 PD=1W FT=150MHZ TRANSISTOR NPN SI TO-39 PD=1W FT=201MHZ TRANSISTOR NPN SI PD=625MW FT=200MHZ	28480 28480 28480 28480 28480	1854-0810 1853-0459 1854-0523 1853-6232 1853-6232

Table 6-3. Replaceable Parts (Cont'd).

Table 6-3. Replaceable Parts (Contro).								
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number		
A13Q110 A13Q111 A13Q112	1853-0459 1854-0523 1853-0232	3 4 0		TRANSISTOR PNP SI PD=625MW FT=200MHZ TRANSISTOR NPN SI TO-39 PD=1W FT=150MHZ TRANSISTOR PNP SI TO-39 PD=1W FT=200MHZ	28480 28480 28480	1853-0459 1854-0523 1853-0232		
A13R1 A13R2 A13R3 A13R4 A13R5	0683-0475 0757-0424 0757-0273 0757-0273 0757-0424	2 7 4 4 7	4	RESISTOR 4.7 5% .25W FC TC=-400/+500 RESISTOR 1.1K 1% .125W F TC=0+-100 RESISTOR 3.01K 1% .125W F TC=0+-100 RESISTOR 3.01K 1% .125W F TC=0+-100 RESISTOR 1.1K 1% .125W F TC=0+-100	01121 24546 24546 24546 24546	CR33G5 CA-1/8-T0-1101-F CA-1/8-T0-3011-F CA-1/8-T0-3011-F CA-1/8-T0-1101-F		
A13R6 A13R7 A13R8 A13R9 A13R10	0683-0475 0683-4735 0683-0825 0683-0825 0683-4735	មាមមាល	4	RESISTOR 4.7 5% .25W FC TC=-400/+500 RESISTOR 47K 5% .25W FC TC=-400/+800 RESISTOR 8.2 5% .25W FC TC=-400/+500 RESISTOR 8.2 5% .25W FC TC=-400/+800 RESISTOR 47K 5% .25W FC TC=-400/+800	01121 01121 01121 01121 01121	CH3365 CH3635 CH8265 CH8265 CB5635		
A13R11 A13R12 A13R13 A13R14 A13R15	0683-2735 0683-2205 0683-2205 0683-2735 0683-6825	8 0 0 8 7	4	RESISTOR 27K 5% .25W FC TC=-400/+800 RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 27K 5% .25W FC TC=-400/+800 RESISTOR 6.8K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CR3335 CR1505 CR1505 CR1505 CB3335 CB6825		
A13R16 A13R17 A13R1D1 A13R1O2 A13R1O3	0698-4425 0757-0403 0683-0475 0757-0424 0757-0273	0 2 2 7 4	3	RESISTOR 1.54K 1% .125W F TC=0+-100 RESISTOR 121 1% .125W F TC=0+-100 RESISTOR 4.7 5% .25W FC TC=-400/+500 RESISTOR 1.1K 1% .125W F TC=0+-100 RESISTOR 3.01K 1% .125W F TC=0+-100	24546 24546 01121 24546 24546	C4-1/8-T0-1541-F C4-1/8-T0-121R-F CB3385 C4-1/8-T0-1181-F C4-1/8-T0-3011 F		
A13R104 A13R105 A13R106 A13R107 A13R108	0757-0273 0757-0424 0683-0475 0683-4735 0683-0825	47255		RESISTOR 3.01K 1% .125W F TC=0+-100 RESISTOR 1.1K 1% .125W F TC=0+-100 RESISTOR 4.7 5% .25W FC TC=-400/+500 RESISTOR 47K 5% .25W FC TC=-400/+800 RESISTOR 8.2 5% .25W FC TC=-400/+500	24546 24546 01121 01121 01121	C4-1/8-T0-3011-F C4-1/8-T0-1101-F CB33G5 CB5635 CB8635		
A13R109 A13R110 A13R111 A13R112 A13R113	0683-4735 0683-4735 0683-2735 0683-2205 0683-2205	55000		RESISTOR 8.2 52 .25W FC 1C=-400/+500 RESISTOR 47K 5% .25W FC TC=-400/+800 RESISTOR 27K 5% .25W FC TC=-400/+800 RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 22 5% .25W FC TC=-400/+500	01121 01121 01121 01121 01121	CBB2G5 CB5635 CB3335 CB1505 CB1505		
A13R114 A13R115 A13R116 A13R117	0683-2735 0683-6825 0698-4425 0757-0403	8 7 0 2		RESISTOR 27K 5% .25W FC TC=-400/+800 RESISTOR 6.8K 5% .25W FC TC=-400/+700 RESISTOR 1.54K 1% .125W F TC=0+-100 RESISTOR 121 1% .125W F TC=0+-100	01121 01121 24546 24546	CB3335 CB6625 C4-1/8-T0-1541-F C4-1/8-T0-121R F		
A13T1 A13T101	9140-0708 9140-0708	777	2	TRANSFORMER-FLOATING TRANSFORMER-FLOATING	28480 28480	PPNR 72941 PPNR 72941		
A13U1 A13U2 A13U101 A13U102	1826-0353 1826-0527 1826-0353 1826-0527	0 7 0 7	2	IC 7815 V RGLTR TO-220 IC 337 V RGLTR TO-220 IC 7015 V RGLTR TO-220 IC 337 V RGLTR TO-220	04713 27014 04713 27014	HC7815CP LM337T HC7815CP LM337T		
	04145-00624 04145-01210		4 4	PLATE ANGLE				
	2360-0115	4		SCREW-MACH 6-32 .312-IN-LG PAN-HD-POXI	00000	ORDER BY DESCRIPTION		
A 15	04145-66515	8	1	FLOATING POWER SUPPLY BOARD ASS'Y	28490	0414564515		
A1501 A1502 A1503 A1504 A1505	0180-3186 0180-3186 0180-3187 0180-3186 0180-3186	1 1 2 1 1	2	CAPACITOR-FXD 100UF 100VDC AL CAPACITOR-FXD 100UF 100VDC AL CAPACITOR-FXD 220UF 100VDC AL CAPACITOR-FXD 100UF 100VDC AL CAPACITOR-FXD 100UF 100VDC AL	28480 28480 28480 28480 28480	0180-3186 0180-3186 0180-3187 0180-3186 0180-3186		
A15C6 A15C7 A15C8 A15C9 A15C1D	0180-3187 0180-2980 0180-2980 0180-2980 0180-2980 0160-4832	2 1 1 1 4		CAPACITOR-FXD 220UF 100VDC AL CAPACITOR-FXD 1000UF 35VDCV CAPACITOR-FXD 1000UF 35VDCV CAPACITOR-FXD 1000UF 35VDCV CAPACITOR-FXD 100UUF 35VDCV CAPACITOR-FXD .01UF +-10% 100VDC CER	28480 28480 28480 28480 28480	0180-3187 0188-2780 0180-2780 0180-2780 0160-4832		
A15011 A15012 A15013 A15014 A15015	0180-0291 0180-0291 0180-0291 0180-3169 0180-3169	0 0 2 2 2	6	CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 4.70UF 250VDC AL CAPACITOR-FXD 4.70UF 250VDC AL	56289 56289 56289 28480 28480	150D105X9035A2 150D105X9035A2 150D105X9035A2 D1B0-3169 0180-3169		
A15016 A15017 A15018 A15019 A15020	0180-3169 0180-3169 0180-3169 0180-3169 0160-0127	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		CAPACITOR-FXD 4.70UF 250VDC AL CAPACITOR-FXD 4.70UF 250VDC AL CAPACITOR-FXD 4.70UF 250VDC AL CAPACITOR-FXD 4.70UF 250VDC AL CAPACITOR-FXD 1UF +-20X 25VDC CER	28480 26480 26480 28480 28480 28480	0180-3169 0180-3169 0180-3169 0180-3169 0180-3169 0160-0127		
A15021 A15022	0180-0291 0180-0291	3		CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA	56289 56289	150D105X9035A2 150D105X9035A2		
A15CR1 A15CR2 A15CR3 A15CR4 A15CR5	1901-0945 1901-0945 1901-0945 1901-0945 1901-0945 1906-0076	5555	4	DIODE-PWR RECT 1KV 1A DO-41 DIODE-PWR RECT 1KV 1A DO-41 DIODE-PWR RECT 1KV 1A DO-41 DIODE-PWR RECT 1KV 1A DO-41 DIODE-FW BRDG 400V 1A	28480 28480 28480 28480 28480	1901-0945 1901-0945 1901-0945 1901-0945 1906-0076		

Table 6-3. Replaceable Parts (Cont'd).

Designation	Number	D	Qty	Description	Mfr Code	Mfr Part Number
A15CR6 A15CR7 A15CR7 A15CR8 A15CR10	1906-0076 1901-1086 1901-1086 1906-0051 1901-1086 1901-0025	37472	2	DIDDE-FW BRDG 400V 1A DIDDE-FW RECT 50V 5A 200NS DIDDE-FW RRDG 100V 1A DIDDE-FW RRDG 100V 5A 200NS DIDDE-GEN PRP 100V 200MA DD-7	28480 84713 28480 84713 28480	1906-0076 KBB20 1906-0051 KBB20 1901-0025
A15CR11 A15CR12	1902-3199 1902-3199	9 9	s	DIODE-ZNR 14V 2% DO-35 PD=.4W TC=+.056% DIODE-ZNR 14V 2% DO-35 PD=.4W TC=+.056%	28480 28480	1902-3199 1902-3199
A15CR14	1901-0025	2		DIODE-GEN PRP 100V 200MA DO-7	28480	1901-0025
A15L1 A15L2 A15L3 A15L4 A15L5	9140-0705 9140-0706 9140-0707 9100-0541 9100-0541	7 B 9 7 7	1 1 1 6	COIL-50MH X 2 COIL-20MH X 2 COIL-10MH X 2 INDUCTOR RF-CH-MLD 250UH 10% ,25DX,5LG INDUCTOR RF-CH-MLD 250UH 10% ,25DX,5LG	28480 28480 28480 28480 28480	PPNR72933 PPNR72934 PPNR72935 9100-01541 9100-0541
A15L6 A15L7 A15L8 A15L9 A15L10	9100-0541 9100-0541 9100-0541 9100-0541 9140-0703	7 7 7 5	1	INDUCTOR RF-CH-MLD 250UH 10% .25DX.5LG COTL- 4MH X 2	29480 29480 29480 29480 29480	9100-0541 9100-0541 9100-0541 9100-0541 PPNR72931
A15L11	9140-0671	8	1	CQIL-470MH	28480	9140-0671
A15R1 A15R2 A15R3 A15R4 A15R5	0811-1670 0698-3423 0698-3423 0757-0839 0757-0839	3 6 6 8 8	1 2 2	RESISTOR 2.2 5% 2W PW TC=0+-400 RESISTOR 46.4K 1% .5W F TC=0+-100 RESISTOR 46.4K 1% .5W F TC=0+-100 RESISTOR 10K 1% .5W F TC=0+-100 RESISTOR 10K 1% .5W F TC=0+-100	75042 28480 28480 28480 28480 28480	BWH2-2R2-J 0698-3423 0698-3423 0757-0839 0757-0839
A15R6 A15R7 A15R8 A15R9 A15R10	0757-0834 0757-0834 0698-3439 0698-3439 0683-1005	3 4 4 5	5	RESISTOR 5.62K 1%, 5W F TC=0+-100 RESISTOR 5.62K 1%, 5W F TC=0+-100 RESISTOR 178 1% 125W F TC=0+-100 RESISTOR 178 1% .125W F TC=0+-100 RESISTOR 10 5% .25W FC TC=-400/+500	28480 28480 24546 24546 01121	0757-0834 0757-0834 C4-178-T0-178R-F C4-178-T0-178R-F CB1805
A15R11 A15R12 A15R13	0698-3446 0757-0440 0757-0403	3 7 2	1	RESISTOR 383 1% .125W F TC=0+-100 RESISTOR 7.5K 1% .125W F TC=0+-100 RESISTOR 121 1% .125W F TC=0+-100	24546 24546 24546	C4-1/8-T0-383R-F C4-1/8-T0-7501-F C4-1/8-T0-121R-F
A15T1	9140-0709	8	1	TRANSFORMER-POWER	28480	PPNR72942
A15U1 A15U2 A15U3	1826-0539 1826-0558 1826-0724	7 9 B	1 . 1	IC LM317H TO-220 IC-REG 337HLTR TO-220 IC-LM350K	27014 27014 28480	LM317T LM337T 1826-0724
A15W1	04145-61605 1205-0310 2360-0115 1250-0475	7	1 1 2	CABLE ASSEMBLY HEAT SINK SGL TO-3-36 SCREW-MACH 6-32 .312-IN-LG PAN-HD-PDZI HEAT SINK	28480 00000	04145-61605 ORDER BY DESCRIPTION
A 16	04145-66516	9	1	VS/VM BOARD ASS'Y	2,8480	04145-66516
A16C1 A16C3 A16C4 A16C5 A16C6	0160-4789 0160-4811 0160-4835 0160-4835 0160-4835	D 9 7 7 7 7	5 5	CAPACITOR-FXD 15PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 270PF CAPACITOR-FXD .1NF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480	0160-4709 0160-4811 0160-4835 0160-4835 0160-4835
A1607 A1608 A1609 A16010 A16011	0160-4835 0160-4835 0160-4801 0180-1083 0160-4835	7 7 7 3 7	2	CAPACITOR-FXD ,1UF +-10% 50VDC CER CAPACITOR-FXD ,1UF +-10% 50VDC CER CAPACITOR-FXD 100PF +-5% 100VDC CER CAPACITOR-FXD 3UF 25VDC AL CAPACITOR-FXD ,1UF +-10% 50VDC CER	28480 28480 28480 28480 28480	0160-4835 0160-4835 0160-4801 0180-1063 0160-4835
A16C12 A16C13 A16C14 A16C15 A16C101	0180-1083 0160-4835 0180-1083 0160-4835 0160-4789	3 7 3 7 0		CAPACITOR-FXD 33UF 25VDC AL CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 33UF 25VDC AL CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 15FF +-5% 100VDC CER 0+-30	28480 28480 28480 28480 28480	0180-1083 0160-4835 0180-1083 0160-4835 0160-4789
A16C103 A16C104 A16C105 A16C106 A16C109	0160-4835 0160-4835	9 7 7 7 7 7		CAPACITOR-FXD 270PF CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 100PF +-5% 100VDC CER	28480 28480 28480 28480 28480	0160-4811 0160-4935 0160-4935 0160-4835 0160-4801
A16CR1 A16CR2 A16CR3 A16CR4 A16CR5	1901-0033 1901-0033	22222		DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7	28480 28480 28480 28480 28480	1701-0025 1701-0033 1701-0033 1701-0033 1701-0033
A16CR6 A16CR7 A16CR8 A16CR9 A16CR10	1901-0033 1901-0033 1901-0033	នសសសស		DIODE-GEN PRP 188V 200HA DG-7 DIODE-GEN PRP 188V 200HA DG-7 DIODE-GEN PRP 188V 200HA DG-7 DIODE-GEN PRP 188V 200HA DG-7 DIODE-GEN PRP 188V 200HA DG-7	28480 28480 28480 28480 28480 28480	1901-0033 1901-0033 1901-0033 1901-0033 1901-0025

Table 6-3. Replaceable Parts (Cont'd).

Table 0-5. Replaceable Falls (cont u).								
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number		
A16CR11 A16CR101 A16CR102 A16CR103 A16CR104	1901-0025 1901-0025 1901-0033 1901-0033 1901-0033	ខេត្ត		DIODE-GEN PRP 100V 200MA DD-7 DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7	28480 28480 28480 28480 28480	1901-0025 1901-0025 1901-0033 1901-0033 1901-0033		
A16CR105 A16CR106 A16CR107 A16CR108 A16CR109	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033	ខេត្ត		DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7	28480 28480 28480 28480 28480	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033		
A16CR110 A16CR111	1901-0025 1901-0025	5		DIODE-GEN PRP 100V 200MA DD-7 DIODE-GEN PRP 100V 200MA DG-7	20480 28480	1901-0025 1901-0025		
A16K1 A16K101	0490-1137 0490-1137	5		RELAY-REED 1A RELAY-REED 1A	20480 20480	0490-1137 0490-1137		
A16L1 A16L2 A16L3 A16L4 A16L5	9140-0137 9140-0137 9140-0137 9140-0137 9140-0137	1 1 1 1 1 1	Ci	INDUCTOR RF-CH-MLD 1MH 5% .2DX.45LG Q=60	28480 29480 29480 29480 28480	9140-0137 9140-0137 9140-0137 9140-0137 9140-0137		
A16Q1 A16Q2 A16Q3 A16Q4 A16Q5	1853-0457 1853-0264 1854-0474 1854-0523 1853-0232	3 8 4 4 0	S	TRANSISTOR PNP SI PD=625MW FT=200MHZ IRANSISTOR PNP SI PD=310MW FT=100MHZ TRANSISTOR NPN SI PD=310MW FT=1100MHZ TRANSISTOR NPN SI TO-39 PD=1W FT=150MHZ TRANSISTOR PNP SI TO-39 PD=1W FT=200MHZ	28488 04713 04713 28480 28480	1853-0459 2N5401 2N5551 1854-0523 1853-0232		
A16Q101 A16Q102 A16Q103 A16Q104 A160105	1853-0459 1853-0264 1854-0474 1854-0523 1853-0232	3 8 4 0 4		TRANSISTOR PNP SI PD=625MW FT=200MHZ TRANSISTOR PNP SI PD=310MW FT=100MHZ TRANSISTOR NPN SI PD=310MW FT=100MH TRANSISTOR NPN SI TO-39 PD=1W FT=150MHZ TRANSISTOR PNP SI TO-39 PD=1W FT=200MHZ	28480 04713 04713 28480 28480	1653-0459 2N5401 2N5551 1854-0523 1853-0232		
A16R1 A16R2 A16R3 A16R5 A16R6	0699-0738 0698-0954 0699-0917 0698-3495 0698-3152	28728	ଷଷଷଷଷ	RESISTOR 990K .1% .25W F TC=0+-25 RESISTOR 500K .1% .125W F TC=0+-10 RESISTOR-FXD 4.5 MEGOHM RESISTOR 866 1% .125W F TC=0+-100 RESISTOR 3.48K 1% .125W F TC=0+-100	28480 28480 28480 24546 24546	0699-0738 0698-8954 0699-0917 C4-1/8-T0-866R-F C4-1/8-T0-3481-F		
A16R7 A16R8 A16R9 A16R10 A16R11	0698-5450 0698-6358 0683-1025 0683-1035 0683-1035	3 2 9 1	20 20	RESISTOR 50K .1% .125W F TC=0+-50 RESISTOR 100K .1% .125W F TC=0+-25 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	19701 28480 01121 01121 01121	MF4C1/8-T2-5002-B 0698-6358 CB1025 CB1035 CR1035		
A16R12 A16R13 A16R14 A16R15 A16R16	0683-1225 0683-1225 0683-6825 0683-6825 0683-1515	1 7 7 2		RESISTOR 1.2K 5% .25W FC TC=-400/+700 RESISTOR 1.2K 5% .25W FC TC=-400/+700 RESISTOR 6.8K 5% .25W FC TC=-400/+700 RESISTOR 6.BK 5% .25W FC TC=-400/+700 RESISTOR 150 5% .25W FC TC=-400/+600	01121 01121 01121 01121 01121	CB1 225 CB1 225 CB6925 CB6825 CB1 515		
A16R17 A16R18 A16R19 A16R20 A16R21	0757-0821 0757-0821 0683-1025 0690-8833 2100-3273	B 8 9 2	4 2 2	RESISTOR 1.21K 1% .5W F TC=0+-100 RESISTOR 1.21K 1% .5W F TC=0+-100 RESISTOR 1K 5% .25W F TC=0400/+600 RESISTOR 1NK .1% .125W F TC=04110 RESISTOR 1NK .1% .125W F TC=04110	28480 28480 91121 28480 28480	0757-0821 0757-0821 CB1025 0698-8833 2100-3273		
A16R101 A16R102 A16R103 A16R105 A16R106	0699-0738 0698-8954 0699-0917 0698-3495 0698-3152	8 9 2 8		RESISTOR 990K .1% .25W F TC=0+-25 RESISTOR 500K .1% .125W F TC=0+-10 RESISTOR-FXD 4.5 MEGOHM RESISTOR 866 1% .125W F TC=0+-100 RESISTOR 3.48K 1% .125W F TC=0+-100	28480 28480 28480 24546 24546	0699-0738 0698-8954 0699-0917 C4-1/8—10-866R-F C4-1/8-TD-3481-F		
A16R107 A16R108 A16R109 A16R110 A16R111	0698-5450 0698-6358 0683-1025 0683-1035 0683-1035	3 2 9 1 1		RESISTOR 50K .1% .125W F 1C=0+-50 RESISTOR 100K .1% .125W F TC=0+-25 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	19701 28480 01121 01121 01121	MF4C1/8-T2-5002-B 0678-6358 CB1025 CB1035 CB1035		
A16R112 A16R113 A16R114 A16R115 A16R116	0683-1225 0683-1225 0683-6825 0683-6825 0683-1515	1 1 7 7		RESISTOR 1.2K 5% .25W FC TC=-400/+700 RESISTOR 1.2K 5% .25W FC TC=-400/+700 RESISTOR 6.8K 5% .25W FC TC=-400/+700 RESISTOR 6.8K 5% .25W FC TC=-400/+700 RESISTOR 150 5% .25W FC TC=-400/+600	01121 01121 01121 01121 01121	CB1225 CB1225 CB6825 CB6825 CB1515		
A16R117 A16R118 A16R120 A16R121	0757-0821 0757-0821 0698-8833 2100-3273	B B 2 1		RESISTOR 1.21K 12 .5W F TC=0+-100 RESISTOR 1.21K 12 .5W F TC=0+-100 RESISTOR 10K .1% .125W F TC=0+-10 RESISTOR-TRMR 2K 10% C SIDE-ADJ 1-TRN	28480 28480 28480 28480	0757-0821 0757-0821 0698-8833 2100-3273		
A16U1 A16U2 A16U3 A16U4	1826-0909 1826-0909 1826-0909 1826-0909	1 1 1 1	4	IC-LINEAR LM11CH IC-LINEAR LM11CH IC-LINEAR LM11CH IC-LINEAR LM11CH	27014 27014 27014 27014	L 11 1 1 C H L H 1 1 C H L H 1 1 C H L H 1 1 C H		

Table 6-3. Replaceable Parts (Cont'd).

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A17	04145-66517	0	i	MOTHER BOARD ASS'Y (FRONT)	28480	04145-66517
A17J1	1251-7463	7		CONNECTOR-12 PIN MALE	29480	1251-7463
A17W1 A17W2 A17W3	8120-3470 8120-3470 8120-3470	8 8	3	CABLE, HULTI-CONDUCTOR CABLE, MULTI-CONDUCTOR CABLE, MULTI-CONDUCTOR	28480 28480 28480	8120-3470 8120-3470 8120-3470
A17XA1L A17XA1R A17XA2L A17XA2R A17XA3L A17XA3R	1251-5564 1251-5564 1251-5564 1251-5564 1251-5564 1251-5564	សសសសសស		CONNECTOR-PC 2 X 22 CONTACTS	28480 28480 28480 28480 28480 28480	1251-5564 1251-5564 1251-5564 1251-5564 1251-5564 1251-5564
A17XA4L A17XA4R A17XA5L A17XA5R A17XA6L A17XA6L A17XA6R	1251~5564 1251~5564 1251~5564 1251~5564 1251~5564 1251~5564	មាធាធាធាធា		CONNECTOR-PC 2 X 22 CONTACTS	28480 28480 28480 28480 28480 28480	1251-5564 1251-5564 1251-5564 1251-5564 1251-5564 1251-5564
A17XA7L A17XA7R A17XA8L A17XA8R	1251-5564 1251-5564 1251-5564 1251-5564	លលលល		CONNECTOR-PC 2 X 22 CONTACTS	28480 28480 28480 28480	1281-5564 1281-5564 1281-5564 1281-5564
A18	04145-66518	1	1	MOTHER BOARD ASS'Y (REAR)	28480	04145-66518
A18C1	1810-0585	6		CAPACITOR-FXD 470PF X 8	28480	1810-0585
A18J1 A18J2	1251-7406 1251-0292	8	1	CONNECTOR-10 PIN MALE CONNECTOR 24-PIN F MICRO RIBBON	28480 28480	1251-7406 1251-0292
A18W1 A18W2	8120-3526 8120-3527	5	i 1	CABLE, MULTI-CONDUCTOR CABLE, MULTI-CONDUCTOR	28480 28480	8120-3526 8120-3527
A18XA13 A18XA14 A18XA15 A18XA16	1251-5564 1251-5564 1251-5564 1251-5564	5555		CONNECTOR-PC EDGE 22-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 22-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 22-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 22-CONT/ROW 2-ROWS	28480 28480 28480 28480	1251-5564 1251-5564 1251-5564 1251-5564
A19	04145-66519	2	i	SMU FILTER BOARD ASS'Y	28480	04145-66519
A19C1 A19C2 A19C3 A19C4 A19C5	0160-3455 0160-3455 0160-0161 0160-4807 0160-0161	5 4 3 4	2	CAPACITOR-FXD 470PF +-10% 1KVDC CER CAPACITOR-FXD 470PF +-10% 1KVDC CER CAPACITOR-FXD .01UF +-10% 208VDC PDLYE CAPACITOR-FXD 33PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .01UF +-10% 200VDC PDLYE	28480 28480 28480 28480 28480	0160-3455 0160-3455 0160-0161 0160-0161 0160-0161
A1906 A1907 A1908 A1909 A19010	0160-4807 0160-4807 0160-0161 0160-4807 0160-0161	33434		CAPACITUR-FXD 33PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 33PF +-5% 100VDC CER 0+-30 CAPACITUR-FXD .01UF +-10% 200VDC PULYE CAPACITUR-FXD 33PF +-5% 100VDC CER 0+-30 CAPACITUR-FXD .01UF +-10% 200VDC POLYE	28488 28480 28480 28480 28480	0160-4807 0160-4807 0160-0161 0160-4807 0160-0161
		4 0 9	3	TERMINAL-STUD SPCL-FDTHRU PRESS-MTG CABLE TIE .062625-DIA .091-WD NYL SHIELD-PLATE	98291 06383 28480	011-6809 000 209 PI.T1K-8 04145-00621
A19W1 A19W2	04145-61631 04145-61632		2 2	CABLE ASS'Y CABLE ASS'Y		
A19W5 A19W6 A19W7 A19W8	04145-61601 04145-61602 04145-61603 04145-61604]	CABLE ASS'Y CABLE ASS'Y CABLE ASS'Y CABLE ASS'Y		

Table 6-3. Replaceable Parts (Cont'd).

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
1* 2* 3* 4* 5*	04145-04001 04145-00204 3160-0391 2110-0569 2110-0564]]]]	FAN COVER REAR PANEL FAN NUT-FUSEHOLDER FUSE HOLDER		
6* 7* 8 8 8	04145-00101 04145-00102 1250-0118 2190-0016 2950-0001		1 4 4 4	CHASSIS CHASSIS CONNECTOR-RF BNC WASHER NUT		
9 10 11 12 13	5040-4503 04145-00205 04145-00610 1251-0292 1250-0687		5 1 1 1	FASTNER INSULATOR REAR PANEL PLATE CONNECTOR 24-PIN FEMALE CONNECTOR-RF TRIAXIAL		
14 15 16 17 18	3101-0010 0515-0064 5020-8808 04145-00617 2420-0001		1 1 1 1 2	SWITCH (SLIDE) SCREW REAR FRAME PLATE NUT		
19 20 21 22 23	04145-00602 04145-00605 04145-00105 04145-00604 04145-00607		1 1 1	PLATE SHIELD PLATE CHASSIS SHIELD PLATE SIDE PLATE		
24 25 26 27 28	04145-00603 5060-9836 04145-00616 2360-0333 5020-8838		3 1 1 20 4	SHIELD PLATE TOP COVER PLATE SCREW STRUT		
29 30 31 32 33	04145-00103 5060-9948 5020-8807 04145-00108 04145-00609		1 2 1 1	CHASSIS SIDE COVER FRONT FRAME CHASSIS SHIELD PLATE		
34 35 36 37 37	04145-00620 04145-24009 2200-0165 04145-00201 04145-00202		1 4 4 1	PLATE WASHER SCREW FRONT PANEL (HP) FRONT PANEL (YHP)		
38 39 40 41 42	04145-01205 1345A 0950-0863 04145-01206 0515-0064		1 1 1 1 4	ANGLE DIGITAL DISPLAY FLEXIBLE-DISC DRIVE ANGLE SCREW		
43 44 45 45 46	0515-0076 04145-00618 7120-1254 7120-0478 04145-24002		4 2 1 1 2	SCREW PLATE TRADE MARK (HP) TRADE MARK (YHP) NUT		
47 48 49 50 51	2100-3972 2100-3971 04145-00106 5041-0564 04145-25003]	RESISTOR-VARIABLE 1K RESISTOR-VARIABLE 20K CHASSIS KEY CAP ROD		
52 53 54 55 56	04145-00622 04145-01209 5060-9848 5040-7201 1460-1345		2 1 1 2 2	PLATE ANGLE BOTTOM COVER FOOT WIREFORM		
57 58 59 60 61	2360-0333 2510-0192 04145-00606 04145-40001 04145-40001		4 16 1 3 1	SCREW SCREW CENTER PLATE PLATE PLATE		
62 63 63 63 63	04145-00104 1510-0038 3050-0014 2190-0084 2950-0006		1 2 5 2 2	SHASSIS BINDING POST WASHER WASHER NUT		
64 65 66 67 68	5040-7219 2680-0172 04145-00608 5060-9805 5040-7220		2 4 1 2 2	STRAP-HANDLE-CAP (FRONT) SCREW SIDE PLATE STRAP-HANDLE STRAP-HANDLE STRAP-HANDLE-CAP (REAR)		

Table 6-3. Replaceable Parts (Cont'd).

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
69*	04145-61626		1	C2 (P/N 0180-3178) ASSEMBLY		
70* 71*	2360-0115 04145-61627	1	1 1	SCREW C3 (P/N 0180-3178) ASSEMBLY		
71* 72 73*	04192-40002	1 1	i	COUPLER]	
73*	04145-00601		1	SHIELD COVER		
74*	0515-0150	1	2	SCREW		
75*	3101-2216		1	SWITCH		
76*	04145-01202		1	ANGLE	l i	
77*	04145-01201	11	1	ANGLE		
78*	2950-0001		3	NUT		
79*	1251-4470		1	CONNECTOR-AC POWER MALE		
80*	3101-2298		2	SLIDE SWITCH		
81*	1250-0118		3	CONNECTOR-RF BNC	1 1	
82*	2110-0015		7	FUSE 2.5AT 250V	f l	
	2110-0305		1	FUSE 2.5AT 250V		
83*	2110-0565		ì	FUSE HOLDER CAP		

^{*} The parts reference-numbered with * are components of the Power Supply Assembly (HP P/N: 04145-69003). The Power Supply Assembly also includes a filter (HP P/N: 9135-0084) and a transformer (HP P/N: 9100-4225), not shown in Figure 6-1.

Figure 6-2. Part Numbers for the Front Panel Key Caps.

		N. J.
	; ;	

SECTION VII MANUAL CHANGES

7-1. INTRODUCTION

7-2. This section contains information for adapting this manual to instruments to which the contents do not directly apply. The following paragraphs explain how to adapt this manual to apply to older instruments with a lower serial prefix.

7-3. MANUAL CHANGES

7-4. To adapt this manual to your particular instrument, refer to Table 7-1 and make all of the manual changes listed opposite your instrument serial number. Perform these changes in the summary by assembly.

7-5. If your instrument serial number is not listed on the title page of this manual or in Table 7-1, it may be documented in a yellow MANUAL CHANGES supplement. For additional information about serial number coverage, refer to INSTRUMENT COVERED BY MANUAL in Section I.

Table 7-1. Manual Changes by Serial Number

	Serial Prefix or Number	Make Manual Changes
	2149J00115 and below	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
	2149J00126 and below	2, 3, 4, 5, 6, 7, 8, 9, 10, 11
	2149J00136 and below	3, 4, 5, 6, 7, 8, 9, 10, 11,
	2149J00146 and below	4, 5, 6, 7, 8, 9, 10, 11
	2149J00186 and below	5, 6, 7, 8, 9, 10, 11
	2149J00216 and below	6, 7, 8, 9, 10, 11
	2149J00241 and below	7, 8, 9, 10, 11
- 1	2149J00241 and be- low to 2149J00137	8, 9, 10, 11
- 1	2149J00256 and be- low to 2149J00137	9, 10, 11
	2149J00256 and be- low to 2149J00242	10, 11
	2149J00286 and below	11

Table 6-3, Replaceable Parts: See Table 7-2.

CHANGE 2

Page 8-44, Figure 8-16, A3 Board Troubleshooting Flow Diagram, Sheet 2 of 9: Change the four signature analyzer settings in Flow Diagram (A3-2) as follows:

A3W5 Setting: T A3W5 Setting: T Signature Analyzer Signature Analyzer Setting: Setting: START: START: A3TP15 A3TP15 STOP: STOP: CLOCK: \ A3TP16 CLOCK: \ A3U23-pin13 WINDOW: 0003 (+5V) WINDOW: 0003 (+5V) Turn on the 4145A. Turn on the 4145A. START: \ A3U9-pin18 START: \ A3U9-pin18 STOP: / A3U9-pin20 STOP: / A3U9-pin20 CLOCK:

A3TP16 CLOCK: \ A3U23-pin13 WINDOW: P254 (+5V) WINDOW: P254 (+5V) START: \ A3U10-pin18 START: \ A3U10-pin18 STOP: / A3U10-pin20 STOP: _/ A3U10-pin20 CLOCK:

A3TP16 CLOCK:

A3U23-pin13 WINDOW: P254 (+5V) WINDOW: P254 (+5V) START: \ A3Ull-pin18 START: \ A3Ull-pin18 SROP: / A3U11-pin20 STOP: / A3Ull-pin20 CLOCK: \ A3TP16 CLOCK: \ A3U23-pin13

WINDOW: P254 (+5V)

WINDOW: P254 (+5V)

Page 8-47, Figure 8-16, A3 Board Troubleshooting Flow Diagram, Sheet 5 of 9: Change the signature analyzer setting in Flow Diagram (A3-6) as follows:

Signature Analyzer Signature Analyzer setting: Setting: START: START: A3TP13 A3TP13 STOP: STOP: A3U23-pin13 CLOCK: CLOCK: A3TP16 WINDOW: 7255 (+5V) WINDOW: 7255 (+5V) Turn on the 4145A. Turn on the 4145A.

Pages 8-48 and -50, Figure 8-16, A3 Board Troubleshooting Flow Diagram, Sheets 6 and 8 of 9:

Change the signature analyzer setting in Flow Diagrams (A3-8) and (A3-11) as follows:

Signature Analyzer Signature Analyzer Setting: Setting: START: START: A3TP13 A3TP13 STOP: STOP: A3U23-pin13 CLOCK: CLOCK: A3TP15 WINDOW: PPFA (+5V) WINDOW: PPFA (+5V) Turn on the 4145A. Turn on the 4145A.

Pages 8-51, Figure 8-16, A3 Board Troubleshooting Flow Diagram, Sheet 9 of 9: Change both signature analyzer setting in Flow Diagram (A3-12) as follows:

Signature Analyzer Signature Analyzer Settings: Settings: START: START: A3TP16 A3TP13 STOP: STOP: A3U23-pin13 A3TP16 CLOCK: CLOCK: _ F8PA (+5V) WINDOW: F8PA (+5V) WINDOW:

Pages 8-53 and -54, Figure 8-17, A4 Board Troubleshooting Flow Diagram, Sheets 1 and 2 of 5:

Change the signature analyzer setting in Flow Diagrams (A4-1) and (A4-2) as follows:

Signature Analyzer Signature Analyzer Setting: Setting: START: START: A3TP13 A3TP13 CLOCK: -A3TP15 CLOCK: A3U23-pin13 WINDOW: U675 (+5V) WINDOW: U675 (+5V)

Table 6-3, Replaceable Parts: See Table 7-2.

Page 8-36, Figure 8-15, A2 Board Troubleshooting Flow Diagram, Sheet 6 of 12: Change Table 4 and Table 5 in Flow Diagram (A2-7) as follows:

Table 4

I dbie i		
	Insert TEST ROM (A1U8) into the A2U14 socket	Insert A2U14 into the A2U14 socket
ROM P/N	04145-85018	04145-85014
Test Point	Signature	Signature
A2U4-pin 11	8A39	FAPP
pin 12	FFPA	87C4
pin 13	268A	OPU3
pin 14	PAAU	535A
pin 15	1H5A	0921
pin 16	3A70	8A28
pin 17	68UC	48A2
pin 18	2617	P121

Table 5

	Insert TEST ROM (A1U8) into the A2U14 socket	Insert A2U14 into the A2U14 socket
ROM P/N	04145-85018	04145-85014
Test Point	Signature	Signature
A2U4-pin 2	2617	P121
pin 3	68UC	48A2
pin 4	3A70	8A28
pin 5	1H5A	0921
pin 6	PAAU	535A
pin 7	268A	0 PU3
pin 8	FFPA	87C4
pin 9	8A39	F4PP

*1

*2

Page 8-37, Figure 8-15, A2 Board Troubleshooting Flow Diagram, Sheet 7 of 12: Change the first, second, third, fourth and fifth signature sets in Flow Diagram (A2-8) as follows:

	*1
Is the follow signature set	
Test Point	Signature
A2U4-pin 11	POP5
pin 12	9FH5
pin 13	4HCU
pin 14	95F5
pin 15	59FA
Pin 16	9691
pin 17	A4C2
pin 18	UFF3

*1: TEST ROM (Alu8: P/N 04145-85028) must be inserted into the A2U14

Is the following signature set correct? Test Point Signature A2U4-pin 11 5P77 pin 12 C807 pin 13 UUP0 pin 14 HC95 pin 15 U4A4 pin 16 6H12 pin 17 FFA7 pin 18 0186

*1: TEST ROM (A1U8: P/N 04145-85018) must be inserted into the A2U14 socket.

Is	the	fol	llowi	ing
sig	gnati	ıre	set	correct?

socket.

signature set correct?					
Signature					
07HC					
27CP					
270U					
6729					
97CH					
CP3A					
6FU5					
A6U0					

*2: Part number of A2U14 must be 04145-85034.

Is the follo signature se	
Test Point	Signature
A2U4-pin 11	63CH
pin 12	9360
pin 13	UPP8
pin 14	0057
pin 15	0737
pin 16	693A
pin 17	1F49
pin 18	449F

*2: Part number of A2U14 must be 04145-85014.

	*3
Is the following signature se	_
Test Point	Signature
A2U4-pin 11	9656
pin 12	68C6
pin 13	H031
pin 14	PPFA
pin 15	93C3
pin 16	458U
pin 17	F54F
pin 18	7U43

	*3
Is the follo signature se	0
Test Point	Signature
A2U4-pin 11	27UA
pin 12	3A8F
pin 13	F598
pin 14	1720
pin 15	90AP
pin 16	F4P6
pin 17	90F8
pin 18	8CPP

*3: Part number of A2U13 must be 04145-85023.

Is the follo	wing
signature se	t correct?
	T

signature set correct?			
Test Point	Signature		
A2U4-pin 11	P460		
pin 12	H812		
pin 13	6FAP		
pin 14	93H9		
pin 15	Н947		
pin 16	448H		
pin 17	36C2		
pin 18	1P57 		

*3: Part number of A2U13 must be o4145-85013.

Is the following signature set corrct?		
Test Point	Signatur	
A2U4-pin 11	H0A5	
	4755	

Test Point	Signature
A2U4-pin 11	HOA5
pin 12	435F
pin 13	UF63
pin 14	A6F4
pin 15	P787
pin 16	1447
pin 17	47F0
pin 18	9UPC

*4: Part number of A2U27 must be 04145-85022.

*4: Part number of A2U27 must be 04145-85012.

	*5
Test Point	Signature
A2U4-pin 11	06UA
pin 12	7H98
pin 13	P713
pin 14	6HU7
pin 15	PH6F
pin 16	18C3
pin 17	2351
pin 18	P4CA

Test Point Signature A2U4-pin 11 A28F pin 12 9819 pin 13 2537 pin 14 48C4 pin 15 6UHP pin 16 PF20 pin 17 **3UH3** H247 pin 18

*5: Part number of A2U26 must be 04145-85021.

*5: Part number of A2U26 must be 04145-85011.

Page 8-44, Figure 8-16, A3 Board Troubleshooting Flow Diagram, Sheet 2 of 9:

Change the signature sets for A3Ul0 and A3Ul1 given at the end of Flow Diagram

(A3-2) as follows:

Test Point	Signature
A3U10-pin 9	9H34
pin 10	32A1
pin 11	4305
pin 13	9FUC
pin 14	C140
pin 15	C3P7
pin 16	5323
pin 17	6AA0

ıt	Signature	
9	3279	
10	4A26	
11	AF36	
13	5F5U	
14	FCH4	
15	8A8P	
16	6C42	
17	3221	
	9 10 11 13 14 15 16	

Test Point	Signature
A3U11-pin 9	F25P
pin 10	241A
pin 11	8AU9
pin 13	8HOF
pin 14	0620
pin 15	HA49
pin 16	917H
pin 17	4C92
L	

Test Point		Signature
A3Ull-pin	9	A401
pin	10	H76P
pin	11	AC9F
pin	13	47AP
pin	14	U7CC
pin	15	C56F
pin	16	37H2
pin	17	172A

Change Table 2 as follows:

Part numbers of A3U9, U10 and U11			
A3U9	A3U10	A3U11	
04145-85015	04145-85016	04145-85017	

Page 2-2, Figure 2-1, Voltage and Fuse Selection: Change the figure as shown below:

Fuse: $2.5A\ 250V \sim (HP\ P/N:\ 2110-0015)$

Fuse: $1.25A\ 250V \sim (HP\ P/N:\ 2110-0305)$

Page 3-8, Figure 3-3, Rear Panel Features:
Partially change the figure as shown below:

CHANGE 5

Table 6-3, Replaceable Parts: See Table 7-2.

Table 6-2, Replaceable Parts: See Table 7-2.

Page 8-122, Figure 8-58, All Board Component Locations: Partially change the figure as shown below:

Page 8-123, Figure 8-59, All Board Schematic Diagram: Partially change the figure as shown below:

CHANGE 7

Table 6-3, Replaceable Parts: See Table 7-2.

Page 8-36, Figure 8-15, A2 Board Troubleshooting Flow Diagram, Sheet 6 of 12: Change Table 4 and Table 5 as follows:

Table 4

	Insert TEST ROM (A1U8) into the A2U14 socket	Insert A2U14 into the A2U14 socket
ROM P/N	04145-85018	04145-85024
Test Point	Signature	Signature
A2U4-pin 11	8A39	F84P
pin 12	FFPA	C958
pin 13	268A	UA6A
pin 14	PAAU	PC7F
pin 15	1H5A	UA6F
pin 16	3A70	5079
pin 17	68UC	8FH4
pin 18	2617	C7UP

Table 5

	Insert TEST ROM (A1U8) into the A2U14 socket	Insert A2U14 into the A2U14 socket
ROM P/N	04145-85018	04145-85024
Test Point	Signature	Signature
A2U4-pin 2	2617	C7UP
pin 3	68UC	8FH4
pin 4	3A70	5079
pin 5	1H5A	UA6F
pin 6	PAAU	PC7F
pin 7	268A	UA6A
pin 8	FFPA	C958
pin 9	8A39	F84P

*1

Page 8-37, Figure 8-15, A2 Board Troubleshooting Flow Diagram, Sheet 7 of 12: Change the first, second, fourth and fifth signature sets in Flow Diagram (A2-8) as follows:

	*1	
Is the following signature set collect?		
Test Point	Signature	
A2U4-pin 11	POP5	
pin 12	9FH5	
pin 13	4HCU	
pin 14	95F5	
pin 15	59FA	
pin 16	9691	
pin 17	A4C2	
pin 18	UFF3	

Is the following signature set collect?			
Test Point	Test Point Signature		
A2U4-pin 11	5P77		
pin 12	C807		
pin 13	UUP0		
pin 14	HC95		
pin 15	U4A4		
pin 16	6H12		
pin 17	FFA7		
pin 18	0186		

*1: TEST ROM (Alu8: P/N 04145-85028) must be inserted into the A2U14 socket.

*1: TEST ROM (Alu8: P/N 04145-85018) must be inserted into the A2U14 socket.

*2		
Is the following signature set correct?		
Signature		
07HC		
27CP		
270U		
6729		
97CH		
CP3A		
6FU5		
A6U0		

Is the following signature set correct?		
Test Point	Signature	
A2U4-pin 11	A5A0	
pin 12	865U	
pin 13	0844	
pin 14	PHF1	
pin 15	370F	
pin 16	6835	
pin 17	FFP4	
pin 18	9P5H	

*2: Part number of A2U14 must be 04145-85024.

*4

Is the following signature set correct? Test Point Signature A2U4-pin 11 P460 pin 12 H812 pin 13 6FAP pin 14 93H9 pin 15 H947 pin 16 448H pin 17 36C2

Is the following signature set correct?		
Test Point	Signature	
A2U4-pin 11	H0A5	
pin 12	435F	
pin 13	UF63	
pin 14	A6F4	
pin 15	P787	
pin 16	1447	
pin 17	47F0	
pin 18	9UPC	

*4: Part number of A2U27 must be 04145-85022.

1P57

pin 18

*4: Part number of A2U27 must be 04145-85012.

	*5	
Is the following signature set correct?		
Test Point Signature		
A2U4-pin 11	06UA	
pin 12	7H98	
pin 13	P713	
pin 14	6НU7	
pin 15	PH6F	
pin 16	18C3	
pin 17	2351	

Is the following signature set correct?		
Test Point	Signature	
A2U4-pin 11	A28F	
pin 12	9819	
pin 13	2537	
pin 14	48C4	
pin 15	6UHP	
pin 16	PF20	
pin 17	3UH3	
pin 18	H247	

*5: Part number of A2U26 must be 04145-85021.

P4CA

pin 18

*5: Part number of A2U26 must be 04145-85011.

Page 8-44, Figure 8-16, A3 Board Troubleshooting Flow Diagram, Sheet 2 of 9: Change the signature set for A3U11 given at the end of Flow Diagram (A3-2) as follows:

Test Point	Signature
A3Ull-pin 9	F25P
pin 10	241A
pin 11	8AU9
pin 13	8H0F
pin 14	0620
pin 15	HA49
pin 16	917H
pin 17	4C92

Test Point	Signature
A3U11-pin 9	A401
pin 10	H76P
pin 11	AC9F
pin 13	47AP
pin 14	บ7CC
pin 15	C56F
pin 16	37H2
pin 17	172A

Change Table 2 as follows:

Part numbers of A3U9, U10 and U11		
A3U9	A3U10	A3U11
04145-85015	04145-85026	04145-85027

CHANGE 8

Pages 8-28, and 29 Figure 8-14, Al Board Troubleshooting Flow Diagram, Sheets 4 of 5 and 5 of 5:

Change Flow Diagrams (A1-5) and (A1-6) as given in page 7-20 and 7-21.

CHANGE 9

Table 6-3, Replaceable Parts: See Table 7-2.

Page 8-36, Figure 8-15, A2 Board Troubleshooting Flow Diagram, Sheet 6 of 12: Change Table 4 and Table 5 as follows:

Table 4

	Insert TEST ROM (A1U8) into the A2U14 socket	Insert A2U14 into the A2U14 socket
ROM P/N	04145-85028	04145-85024
Test Point	Signature	Signature
A2U4-pin 11	1CU6	F84P
pin 12	78C7	C958
pin 13	28U7	VA6A
pin 14	7C4F	PC7F
pin 15	טטטט	UA6F
pin 16	6A4U	5079
pin 17	33U9	8FH4
pin 18	65CH	C7UP

Table 5

	Insert TEST ROM (AlU8) into the A2U14 socket	Insert A2U14 into the A2U14 socket
ROM P/N	04145-85028	04145-85024
Test Point	Signature	Signature
A2U4-pin 11	65CH	C7UP
pin 12	33U9	8FH4
pin 13	6A4U	5079
pin 14	บบบบ	UA6F
pin 15	7C4F	PC7F
pin 16	28U7	UA6A
pin 17	78C7	C958
pin 18	1CU6	F84P

Page 8-37, Figure 8-15, A2 Board Troubleshooting Flow Diagram, Sheet 7 of 12: Change the second, fourth and fifth signature sets in Flow Diagram (A2-8) as follows:

*2				
Is the following signature set correct?				
Signature				
07HC				
27CP				
270U				
6729				
97CH				
CP3A				
6FU5				
A6U0				

Is the following signature set correct?			
Test Point	Signature		
A2U4-pin 11	A5A0		
pin 12	865บ		
pin 13	0844		
pin 14	PHF1		
pin 15	370F		
pin 16	6835		
pin 17	FFP4		
pin 18	9P5H		

*2: Part number of A2U14 must be 04145-85024.

	*4
Is the follow signature set	U
Test Point	Signature
A2U4-pin 11	P460
pin 12	H812
pin 13	6FAP
pin 14	93H9
pin 15	H947
pin 16	448H
pin 17	36C2
pin 18	1P57

is the following				
signature set correct?				
Test Point	Signature			
A2U4-pin 11 H0A5				
pin 12 435F				
Pin 13	UF63			
pin 14	A6F4			
pin 15	P787			
pin 16	1447			
pin 17	47F0			
pin 18	9UPC			
ı İ	i i			

*4: Part number of A2U27 must be 04145-85012.

^{*2:} Part number of A2U14 must be 04145-85034.

^{*4:} Part number of A2U27 must be 04145-85022.

	*5
Is the follow signature set	•
Test Point	Signature
A2U4-pin 11	06UA
pin 12	7H98
pin 13	P713
pin 14	6HU7
pin 15	PH6F
pin 16	18C3
pin 17	2351
pin 18	P4CA

	*5			
Is the following signature set correct?				
Test Point Signature				
A2U4-pin 11	A28F			
pin 12	9819			
pin 13	2537			
pin 14	48C4			
pin 15	6UHP			
pin 16	PF20			
pin 17	3UH3			
pin 18	H247			

*5: Part number of A2U26 must be 04145-85021.

*5: Part number of A2U26 must be 04145-85011.

Page 8-44, Figure 8-16, A3 Board Troubleshooting Flow Diagram, Sheet 2 of 9: Change the signature set for A3Ull given at the end of Flow Diagram (A3-2) as follows:

Test Point	Signature
A3U11-pin 9	F25P
pin 10	241A
pin 11	8AU9
pin 13	8HOF
pin 14	0620
pin 15	HA49
pin 16	917H
pin 17	4C92

Test Point	Signature
A3U11-pin 9	A401
pin 10	H76P
pin 11	AC9F
pin 13	47AP
pin 14	U7CC
pin 15	C56F
pin 16	37H2
pin 17	172A

Change Table 2 as follows:

Part numbers of A3U9, U10 and U11			
A3U9	A3U10	A3U11	
04145-85015	04145-85026	04145-85027	

CHANGE 11

Table 6-3, Replaceable Parts: See Table 7-2.

Change	Page	Note	Reference Designation	HP Part Number	Description
1	6-22	С	A13R1	0683-0335	RESISTOR 3.3 5% .25W
		С	R6	0683-0335	RESISTOR 3.3 5% .25W
	NO.	С	R7	0683-5635	RESISTOR 56K 5% .25W
		С	R10	0683-5635	RESISTOR 56K 5% .25W
		С	R11	0683-3335	RESISTOR 33K 5% .25W
		С	R12	0683-1505	RESISTOR 15 5% .25W
		С	R13	0683-1505	RESISTOR 15 5% .25W
		С	R14	0683-3335	RESISTOR 33K 5% .25W
		С	R101	0683-0335	RESISTOR 3.3 5% .25W
		С	R106	0683-0335	RESISTOR 3.3 5% .25W
		С	R107	0683-5635	RESISTOR 56K 5% .25W
		С	R110	0683-5635	RESISTOR 56K 5% .25W
		С	R111	0683-3335	RESISTOR 33K 5% .25W
		С	R112	0683-1505	RESISTOR 15 5% .25W
		С	R113	0683-1505	RESISTOR 15 5% .25W
		С	R114	0683-3335	RESISTOR 33K 5% .25W
		С	U1	1826-0106	IC 7815V RGLTR TO-220
		С	U101	1826-0106	IC 7815V RGLTR TO-220
	6-23	Α	A15M/P	1205-0295	HEAT SINK
3	6-5	С	A2U13	04145-85013	IC-PROM
		С	A2U14	04145-85014	IC-PROM
	6-9	C	A3U10	04145-85016	IC-PROM
		С	A3U11	04145-85017	IC-PROM
5	6-15	С	A5R60	5080-3062	RESISTIVE NETWORK
6	6-19	С	AllFl	2110-0305	FUSE 1.25AT 250V
	6-20	С	A11R13	0811-1788	RESISTOR 15 5% 2W
		A	A11R14	0811-1788	RESISTOR 15 5% 2W
		D	A11R28		
		D	A11R29		
7	6-3	С	Alu8	04145-85018	IC-PROM

Model 4145A SECTION VII

Change	Page	Note	Reference Designation	HP Part Number	Description
9	6-5	С	A2U14	04145-85024	IC-PROM
	6-6	С	A2U26	04145-85011	IC-PROM
	:	С	A2U27	04145-85012	IC-PROM
	6-9	С	A3U11	04145-85027	IC-PROM
11	6-10	С	A4C46 thru C55	0160-4810	CAPACITOR-FXD 330pF 5% 100VDC
	6-11	С	A4R43 thru R52	0683-1035	RESISTOR 1K 5% .25W
	6-25	С	A19M/P	0340-0060	TERMINAL-STUD

SECTION VIII SERVICE

8-1. INTRODUCTION

8-2. This section provides information and instructions for troubleshooting and repairing the Model 4145A Semiconductor Parameter Analyzer, exclusive of the digital display. (For service information on the 1345A Digital Display, refer to the 1345A Operating and Service Manual, located at the back of this binder.) A block-diagram discussion, trouble-shooting guide, and complete circuit schematics are included. Component locators are given on the page facing each board assembly schematic. An illustration of the instrument's interior is shown in Figure 8-2.

8-3. SAFETY CONSIDERATIONS

8-4. This section contains warnings and cautions that must be observed to ensure the safety of service personnel and to prevent damage to the instrument.

WARNING

MAINTENANCE DESCRIBED HERE-IN IS PERFORMED WITH POWER SUPPLIED AND PROTECTIVE COVERS REMOVED. SUCH MAINTENANCE SHOULD PERFORMED ONLY BY SERVICE TRAINED PERSONNEL AWARE OF THE HAZARDS INVOLVED. WHERE MAINTENANCE CAN BE WITHOUT PERFORMED POWER APPLIED, THE POWER SHOULD BE REMOVED. AFTER ANY REPAIR IS COMPLETED, ENSURE THAT ALL SAFETY FEATURES ARE INTACT AND FUNCTIONING PROPERLY AND THAT ALL NECESSARY PARTS CONNECTED TO THEIR MEANS OF PROTECTIVE GROUND-ING.

8-5. RECOMMENDED TEST EQUIPMENT

8-6. Test equipment required for trouble-shooting and repairing the 4145A is listed in Table 4-1. If the recommended model is not available, equipment which meets or exceeds the listed specifications may be used.

8-7. TROUBLESHOOTING

8-8. Before troubleshooting the 4145A, make sure that the failure is not caused by a faulty disc or a dirty read head. If the disc is damaged or worn because of prolonged use or improper handling or storage, or if the read head in the flexible-disc drive is dirty, the instrument may not be able to correctly or completely read the operating system software. Checking both of these possibilities, before troubleshooting, will effectively eliminate time wasted in tracking down a nonexistent hardware failure. If the failure is not caused by the disc or read head, refer to the troubleshooting guide given in paragraph 8-15. It provides step-by-step procedures, in flow diagram form, designed to isolate most failures to a component or circuit

8-9. REPAIR

8-10. Instructions for removing major assemblies are given in paragraphs 8-17 through 8-35. Take special care when removing or working near the digital display. For instructions on removal of the CRT itself, refer to the 1345A Operating and Service Manual, located at the back of this binder.

8-11. BLOCK-DIAGRAM DISCUSSION

8-12. The overall block diagram of the 4145A is shown in Figure 8-2. An explanation of the various ground references used throughout the instrument will be given first, followed by descriptions of the four major sections—measurement section, measurement control section, digital control section, and power supply section. (Refer to Figure 8-1.)

When the shorting-bar on the rear panel is connected, the digital and analog grounds (and ∇) in the floating section (enclosed in dashed lines) are tied directly to chassis ground. Complete isolation between the floating and grounded sections is obtained by disconnecting the shorting bar. Regardless of whether the shorting-bar is connected or not, output from the SMUs and voltages sources is always referenced to analog ground (\bigcirc). To ensure proper ground isolation between the floating circuits and grounded circuits, optocouplers are used for data and transmission between the A2**A**3 microprocessors. SMU power source commons () , , , ,) are independent of each other, and each is floating above analog ground. The level at which each SMU common is floating is primarily determined by the specified output from the corresponding SMU, and it can range from 0V to greater than ±100V. The ground reference ($\sqrt[4]{}$) for the switching circuits on the All board is floating at approximately 120 -160Vdc below chassis ground. Functionally, the 4145A has four major circuit sections: (1) Measurement Section, (2) Measurement Control Section, (3) Digital Control Section, and (4) Power Supply Section. Each is briefly discussed below.

(1) Measurement Section:

The measurement section consists of four SMUs (A5 through A8), two voltage sources and two voltage monitors (A16), and four SMU filters (A19). Each SMU has two modes of operation: (1) V mode-voltage source/current monitor, and mode-current source/voltage monitor. In V mode, the SMU outputs up to ±100V; in I mode, up to ±100mA. The basic circuit of one SMU consists of a power amplifier, a voltage monitor, a current monitor, range resistor, and various control circuits. The power amplifier amplifies a precise reference voltage which is proportional to the specified SMU output voltage or current. The load seen by the power amplifier consists of the range resistor and

DUT connected in series. The voltage monitor is connected across the DUT, and the current monitor is connected across the range resistor. In V mode operation. the voltage across the DUT is fed back to the input of the power amplifier, where it is summed with the reference voltage to control the output from the power amplifier and to keep the voltage across the DUT constant when the DUT resistance changes. Because the range resistor and DUT are connected in series, the current flowing through the DUT must also flow through the range resistor. The range resistor value is known. The current monitor measures the voltage drop across the range resistor, and the microprocessor calculates the DUT current from the known range resistor value and measured range resistor voltage using a standard Ohm's law equation. The result is sent to the A2 board for display and is also used for current compliance control. I mode operation is almost identical to V mode operation. The current through the DUT is measured by the current monitor and is fed back to the input of the power amplifier, where it is summed with the reference voltage (different from that used in V mode) to control the output from the power amplifier and to keep the current through the DUT constant when the DUT resistance changes. The voltage across the DUT is measured by the voltage monitor. The result is sent to the A2 board for display and is also used for voltage compliance control. Two reference voltages are used: one for V mode operation and one for I mode operation. Both are supplied from the D-A converter on the A4 board and are normalized at 0V to $\pm 10V$. Also, voltage and current measurement results are normalized at OV to ±10V and then applied to the A-D converter on the A3 board before being sent to the A2 board.

The A16 board contains two voltage sources and two voltage monitors. Each voltage source is a constant gain (x2) amplifier which amplifies a reference voltage. Each has a complementary—symmetry output stage which keeps the voltage applied to the DUT constant when the DUT resistance changes. Each voltage monitor is simply an amplifier whose gain is x5 for input voltages less than ±2V, and x0.5 for input voltages higher than ±2V. Maximum allowable input is ±20V.

The A19 board contains four low-pass filters (one for each SMU) which reject normal mode noise picked up by the measurement cables.

(2) Measurement Control Section:

This section consists of the A3 and A4 boards, and it controls the SMUs, voltage sources, and voltage monitors. Basically, the A3 board contains a microprocesser, a successive-approximation A-D converter, and a ten-channel multiplexor. The A3 directly controls microprocessor measurement circuits as directed by the host microprocessor on the A2 board. Data transmission between the A2 microprocessor and the microprocessor is via optocouplers to insure proper ground isolation. The V monitor and I monitor outputs from each SMU and the outputs from the two voltage monitors on the Al6 board are applied to the A3 A-D converter through multiplexor. The ten-channel multiplexor sequentially selects one A-D channel for conversion. Only channels used in the measurement are selected for A-D conversion. example, if SMUl is not selected on the CHANNEL DEFINITION page (see Figure 3-21), the multiplexor will not select the SMU1 V monitor and I monitor inputs.

The A4 board contains a D-A converter, a ten-channel demultiplexor, and ten sample/hold amplifier. It provides the reference voltages used by the SMUs and voltage sources. The reference voltages, which range from 0V to ±10V with.5mV resolution, are generated by the D-A converter in response to digital data sent from the A3 microprocessor. The output from the D-A converter is applied to the demultiplexor, which distributes the reference voltage to the appropriate sample/hold amplifier.

(3) Digital Control Section:

This section consists of the Al, A2, A9, and Alo boards, the flexible-disc drive, and the 1345A Digital Display. The A2 provides overall instrument control. It contains an 8-bit microprocessor, 16K bytes of read-only memory, 32K bytes of memory, and random-access synchronous communication interface adapter for serial data transfer to and from the A2 board. Data transfer to and from the Al and A9 boards is via an 8-bit-parallel data bus.

The Al board contains the interface for data transfer between the A2 and A10 boards. It also contains an 8-bit to 16-bit I/O converter, a data buffer, a display data latch, a display RAM, and various control circuits for the 1345A Digital Display.

Figure 8-1. Four Major Sections of the 4145A.

The A9 board is divided into two sections: (1) HP-IB control and (2) flexible-disc drive control. Each section has its own control IC which handles data transfer operations.

The Al0 board is located behind the front panel, and contains the rotary pulse generator for marker control, and various keys and LEDs. Key depressions and rotations of the rotary pulse generator are encoded by the circuits on the Al0 board, and then output to the A2 microprocessor via the data bus interface on the Al board.

The flexible-disc drive accepts a 5-inch disc which functions as the 4145A's mass storage unit. Read/Write operations are controlled by the A2 microprocessor via the flexible-disc drive control IC on the A9 board, which converts the 8-bit parallel data into serial data.

(4) Power Supply Section:

This section consists of the All through Als boards, and provides the required DC power for the floating and grounded sections. The All Switching Power Supply converts line voltage into high frequency (23kHz) pulses. This allows the use of a smaller power transformer, without sacrificing power capability. In addition to the switching circuits, the All board contains a power on detection circuit which resets the A2 and A3 microprocessors, and a power loss detection circuit. The A12 Power-Supply rectifies the pulses from the All board, and provides the filtering and regulation for the 5V, 12V, and 15V the instrument's grounded used by circuits. The Al5 board is the power supply for the floating circuits. It provides +5V, -15V, and +15V for the measurement control section and the measurement section, and ±130Vdc, ±60Vdc, ±40dc, and low level ac for the Al3 and Al4 SMU power sources.

The Al3 and Al4 boards are identical, and each provides the voltages necessary to drive two SMUs. Al3 drives A5 and A6; and Al4 drives A7 and A8.

Figure 8-2. Overall Block Diagram.

Table 8-1. Hardware-related Error Codes

Error Code	Meaning		
	ROM errors (Did not pass the check-sum test.)		
Error PO1	P01: A2U26 P03: A2U13		
P04	P02: A2U27 P04: A2U14		
	RAM errors (Did not pass the read/write test.)		
Error PO5	P05: A2U5 P13: A2U18		
دے	P06: A2U6 P14: A2U19		
	P07: A2U7 P15: A2U20		
P20	P08: A2U8 P16: A2U21		
	P09: A2U9 P17: A2U22		
	P10: A2U10 P18: A2U23		
	P11: A2U11 P19: A2U24		
	P12: A2U12 P20: A2U25		
IRQ C	ircuit errors (*: Appears only when the test ROM is used.)		
Error P21	The timer status flip-flop (A2U40A) is not set or reset.		
P22*	IRQ signal from A2U40A is disabled.		
P23*	The ACIA (A2U58) loop back test failed.		
P24*	IRQ signal from A2U58 is disabled.		
P25*	IRQ signal disabled.		
······································	MSU (Mass Strage Unit: FDD and Disc) errors		
Error MO8	Spare directory was read.		
M09	Neither main nor spare directory can be read.		
M10	Directory can not be rewritten.		
M11	Data in the RAM and data written onto the disc are not identical.		
M12	Time out error.		
M13	Track 00 signal was not detected.		
M14	The specified track signal can not be detected.		
M15	Track address can not be detected.		
M16	CRC (Cyclic Redundancy Check) error.		
M17	Incorrect handshake timing.		
M18	Write operation was shut down.		
M02 FDD Ready signal was not detected.			
SMU control circuit error			
Error A01	SMU control circuit (A3 and A4) is not functioning properly.		

SECTION VIII Model 4

8-15. TROUBLESHOOTING GUIDE

8-16. Board level isolation of most instrument failures can be quickly accomplished by using the troubleshooting flow diagram of Figure 8-3. Turn the 4145A off and follow the instructions given in the flow diagram. When the faulty board has been isolated, proceed to the component level troubleshooting flow diagram for that board. Table 8-1 lists error codes related to certain hardware failures and can be used for quick failure isolation. Table 8-2 lists SMU status.

Note

One of the error codes listed in 8-1 and 8-2 may be displayed if the instrument is turned on after experiencing an extreme change of ambient temperature. In this case, allow the instrument to fully warm up (ignor the displayed error code), and then turn it off and on one time.

Table 8-2. SMU Status

Display	Meaning			
CHAN (!!!DOWN!!!)	SMU control circuit (A3 and A4) is not functioning properly.			
CHAN (xx, xx, xx, xx)	Channel No. O: No error 1: V offset error 2: I offset error 3: I leak 4: V range error 5: I range error 6: Iin offset error 7: Loop Change Detector error			

8-6

Figure 8-3. Assembly Level Trouble Isolation Flow Diagram.

4.2

8-17. ASSEMBLY REMOVAL

WARNING

DISCONNECT THE INSTRUMENT FROM THE AC SOURCE BEFORE PROCEEDING WITH ASSEMBLY REMOVAL.

CAUTION

BOTH INCH AND METRIC HARD-WARE ARE USED IN THIS INSTRUMENT.

8-18. ASSEMBLY LOCATIONS

8-19. Assembly locations are shown in Figure 8-2.

The All and Al2 boards are mounted on rear assembly A; the Al9 board is mounted on rear assembly B. Refer to Figures 8-7 and 8-9, respectively.

Figure 8-4. Assembly Locations.

Model 4145A SECTION VIII

8-20. A1 THROUGH A8 BOARD REMOVAL

8-21. To remove the Al through A8 boards, perform as follows:

- (1) Remove the top cover.
- (2) Remove the large shield plate.
- (3) To remove the A2, A3 or A4 boards, grasp the color-coded tabs mounted on the ends of each board and pull up. To remove the A1 board, first disconnect the blue flat-cable and then use the color-coded tabs to pull the board from its slot. To remove the A5, A6, A7 or A8 board, first raise the board halfway out of its slot and disconnect the cables from J1 and J2, then pull the board from its slot.

Note

The A5, A6, A7 and A8 boards are identical, and, as such, have the same color-coded tabs.

8-22. Al3 THROUGH Al6 BOARD REMOVAL

8-23. To remove the Al3 through Al6 boards, perform as follows:

- (1) Remove the top cover.
- (2) Remove the small plate covering the boards.
- (3) To remove the A16 board, grasp the color-coded tabs mounted on the ends of the board and pull up. To remove the A15 board, first disconnect the cable from A11J2 and then use the color-coded tabs to pull the A15 board from its slot. To remove the A13 or A14 board, first disconnect the cables from J1 and J2, and then use the color-coded tabs to pull the board from its slot.

8-24. FRONT PANEL REMOVEL

8-25. To remove the 1345A or the A10 board, the front panel must first be removed. To remove the front panel, perform as follows:

- (1) Remove the screws from each corner of the front panel.
- (2) Remove the Marker Control Dial. Use a .062mm Hex Driver.
- (3) Remove the front panel as shown in Figure 8-5.

Figure 8-5. Front Panel Removel.

- 8-26. DISPLAY (1345A) REMOVAL
- 8-27. To remove the 1345A, perform as follows:
 - (1) Remove the top cover.
 - (2) Remove the large shield plate.
 - (3) Remove the front panel (refer to paragraph 8-25).
 - (4) Remove screws (1), (2) and (3). Refer to Figure 8-6 (a).

CAUTION

SCREW 3 IS METRIC. WHEN RE-INSTALLING THE 1345A, BE SURE TO INSERT THIS SCREW INTO THE CORRECT HOLE.

(5) Carefully remove the plastic trim strip from the top of the front frame (use a screwdriver).

- (6) Remove the adhesive-backed trim strip from the left side of the front frame.
- (7) Remove screws 4, 5, 6 and 7. Refer to Figure 8-6 (a).
- (8) Disconnect the blue flat-cable from the Al board, and disconnect the focus/intensity control cable and the X, Y, and Z analog output cables from the 1345A.
- (9) Carefully slide the 1345A about halfway out of the 4145A as shown in Figure 8-6 (b).
- (10) Disconnect the power cable connected to the rear of the 1345A and then slide the 1345A completely out of the 4145A.

Note

The power cable for the 1345A is long enough to permit operation of the 1345A outside the 4145A.

Figure 8-6. 1345A Removal.

8-28. REAR ASSEMBLY A REMOVAL

8-29. To remove Rear Assembly A, perform as follows:

- (1) Remove the top and bottom covers.
- (2) Remove the left side-cover.
- (3) Remove screws 1 through 12. Refer to Figure 8-7 (a).
- (4) Disconnect all cables.
- (5) Carefully pull out the assembly as shown in Figure 8-7 (b).

8-30. All AND Al2 BOARD REMOVAL

- 8-31. To remove the All and Al2 boards, perform as follows:
 - (1) Remove rear assembly A as described in paragraph 8-28.
 - (2) The All or All board can be removed by disconnecting all cables and removing the screws that secure the board to the assembly. Refer to Figure 8-8 (a).
 - (3) If screws 1 through 5 shown in Figure 8-8 (a) are removed, the line filter can be accessed, as shown in Figure 8-8 (b).

WARNING

POTENTIAL SHOCK HAZARD. DAN-GEROUS VOLTAGES MAY BE PRESENT ON THE All BOARD EVEN AFTER THE 4145A HAS BEEN TURNED OFF.

Figure 8-7. Rear Assembly A Removal.

Figure 8-8. All and Al2 Board Removal.

8-32. REAR ASSEMBLY B REMOVAL

8-33. To remove Rear Assembly B, perform as follows:

- (1) Remove Rear Assembly A as described in paragraph 8-28.
- (2) Disconnect the Shorting Bar (1) in Figure 8-7 (b)).
- (3) Remove screws 2 through 10. Refer to Figure 8-7 (b).
- (4) Remove the outer panel.
- (5) Remove screws (1) through (5). Refer to Figure 8-9.
- (6) To access the Al9 board, shown in Figure 8-10, remove the shield plate.

Figure 8-9. Rear Assembly B Removal.

Model 4145A SECTION VIII

Figure 8-10. Al9 Board Assembly.

8-34. FDD AND A9 BOARD REMOVAL

8-35. To remove the FDD (Flexible Disc Drive) and the A9 board, perform as follows:

- (1) Remove the bottom cover.
- (2) Remove screws (1) through (4) shown in Figure 8-11.

CAUTION

THE FOUR SCREWS ARE METRIC THREADED. BE SURE TO USE THE SAME SCREWS WHEN RE-INSTALLING THE FDD.

- (3) Carefully pull out the FDD through the front panel.
- (4) Remove the flat cables connected to the A9 board.
- (5) Remove the screws securing the A9 board to the chassis.

Figure 8-11. FDD and A9 Board Removal.

FLOW DIAGRAM NOTES -

Digital Section Troubleshooting Notes

There are fifty-two digital section troubleshooting flow diagrams—six primary and forty-six secondary. A complete listing of all digital section troubleshooting flow diagrams, along with a brief description of each, is given in Table 8-4. These flow diagrams provide the instructions, signature analyzer control settings, and signature analyzer probe and connection points necessary for component level troubleshooting. Signature analysis is used extensively. If you are not familiar with signature analysis, refer to Figure 8-13. It gives a brief description of the technique.

Before troubleshooting the 4145A, there are a few points concerning switch and jumper settings, test ROM usage, etc., that you should be aware of.

1) A2S1 on the A2 board and A3S1 on the A3 board are 7-bit DIP switches that set the 4145A to the appropriate test mode during troubleshooting. During normal operation all bits of A2S1 are set to 1, and all bits of A3S1 are set to 0, as shown below.

A2S1 Normal Setting

A3S1 Normal Setting

NOTE

After troubleshooting has been performed and repairs completed, A2S1 and A3S1 must be set as shown above to allow normal instrument operation.

2) There are twenty-four jumpers, in all, on the Al through A4 and A9 boards. The settings of these jumpers are changed to set the 4145A to the appropriate test mode as occasion calls while troubleshooting the 4145A. The correct jumper settings are given in the Flow Diagrams. The normal setting for each jumper is pictorially given in Table 8-3, along with a brief description.

NOTE

After troubleshooting has been performed and repairs completed, each jumper must be set to its normal setting to allow normal instrument operation.

3) The 4145A is equipped with a special Test ROM which contains the programs necessary to exercise the digital circuits on the Al, A2 and A9 boards. During normal instrument operation, the Test ROM is installed in a dummy socket (AlU8) on the Al board. For certain troubleshooting procedures, however, it must be installed in the A2U14 socket on the A2 board, as shown in the figure on page 8-15. Instructions on when to use the Test ROM are given in the flow diagrams.

NOTE

After troubleshooting has been performed and repairs completed, the Test ROM must be removed from the A2U14 socket and reinstalled in the dummy socket on the A1 board, and the standard A2U14 ROM must be installed on the A2 board.

- 4) The flat-cable connected between the FDD (flexible-disc drive) PC board and the A9 board must be disconnected and then connected to the mother board (A17 board) as instructed in troubleshooting flow diagram when troubleshooting the A9 board. The procedure for connecting the cable to the A17 board is described below:
 - 1) Turn off the 4145A and remove the bottom cover.
 - 2) Remove the flexible-disc drive and disconnect the flat-cable from FDD PC board.
 - 3) Connect the cable to the A17 board as shown below:

Figure 8-12. Flow Diagram Notes (Sheet 2 of 5).

FLOW DIAGRAM NOTES -

Troubleshooting Flow Diagram Notes

Indicates the lead-in, or initial, troubleshooting flow diagram for a faulty board isolated by the Assembly Level Isolation Flow Diagram. If the Assembly Level Isolation Flow Diagram instructs you to troubleshoot the A2 Board, for example, go to the flow diagram labelled A2-1. Do not go directly to а higher-numbered diagram--A2-2 A2-3, orfor example. Higher-numbered flow diagrams, if any, originate only from the lead-in flow diagram.

- (1) Compare the actual (observed) clock signal with the one given in the figure ((3)).
- (2) Connect channel A of the 1740A (recommended oscilloscope) to A3U23-pin 12. Set the 1740A's controls as follows:

COUPLING DC
DISPLAY Channel A
TRIGGER INT
VOLT/DIV 2
TIME/DIV 0.5 is

- (1) Set the listed jumpers to the indicated settings. In the example given, A3W1 should be set to H, and A3W4 to T. Leave all other jumpers as they are, change the settings of those listed only. After troubleshooting has been performed and repairs completed, be sure to set all jumpers to their normal settings (refer to Table 8-3).
- (2) Set the bit-switches of the indicated switch as shown. In the example given, A3S1 should be set to 1010101. After troubleshooting, set A2S1 and A3S1 to their initial settings (refer to the figure on page 8-14).

Figure 8-12. Flow Diagram Notes (Sheet 3 of 5).

Figure 8-12. Flow Diagram Notes (Sheet 4 of 5).

SECTION VIII Model 4145A

Figure 8-12. Flow Diagram Notes (Sheet 5 of 5).

Table 8-3. Jumper Settings (Sheet 1 of 2)

Table 8-3. Jumper Settings (Sheet 1 of 2)				
Reference Designation	Normal Setting	Test Setting	Note	
A1W1 A1W2 A1W3 A1W4 A1W5	T N	T N		
A2W1	T N	T N		
A2W2 A2W3			There are two states for A2W2 and A2W3, respectively. 1) Jumper removed for test setting. 2) Jumper installed for normal setting.	
A2W4	T N	T		
A3W1	L H	L. H		
A3W2 A3W3 A3W4	T N	T N		
A3W5	T N	T N		

Table 8-3. Jumper Settings (Sheet 2 of 2)

Reference Designation	Normal Setting	Test Setting	Note
A3W6 A3W7	T N	T N	
A3W8•9		TI T2	There are two test settings for A3W8.9: Tl and T2.
A4W1 A9W1 A9W2	T N	T N	
A9W3	E T/N	E T/N	T/N: Test/Normal E: Exerciser E-position is used to set the 4145A to the MSU DIAGNOSTICS Mode.
A9W4 A9W5	T N	T N	
	Note: T: N: L: H: T/N: E:	Test Normal LOW HIGH Test/Normal EXERCISER	

Signature Analysis

Signature Analysis is a unique technique for component-level troubleshooting. The signature analyzer detects and displays the unique digital signature of the data at a given node in the circuit under test. By comparing the actual signature to the correct one, the service technician can quickly back-trace to the faulty node, and, ultimately, to the faulty component. To represent the signature, a nonstandard character set (123456789 ACFHPU) was chosen for readability and compatibility with 7-segment displays.

Stated simply, the signature analyzer displays a compressed four-digit "fingerprint" of the data stream present at a node. This "fingerprint" is unique for a good node. Any fault associated with a device on that node will force a change in the data stream and, consequently, result in an incorrect signature. If, for example, the signature at the input of a device is correct but the signature at the output is not, the device is regarded as faulty and should be replaced.

This technique is especially useful in troubleshooting microprocessor based instruments like the 4145A, where data streams are long and complex and where there are no conventional means to efficiently troubleshoot to the component level.

The signature analyzer's active logic probe and active pod detect and develop the signature for display on the signature analyzer. The logic probe is applied to the desired node in the circuit under test and transfers the data to the signature analyzer. The four leads on the active pod are connected to appropriate points on the 4145A, and provide the necessary START, STOP, and CLOCK signals and GND reference. The START signal opens the measurement "window" and instructs the signature analyzer to prepare to receive data from the logic probe; the STOP signal closes the "window." The CLOCK signal provides the appropriate measurement timing pulses. Probe points; connection locations for START, STOP, and CLOCK; and control settings for the signature analyzer are given in the troubleshooting flow diagrams.

MEASUREMENT GATING EXAMPLE, POSITIVE EDGE START, STOP, AND CLOCK

Figure 8-13. Signature Analysis.

Table 8-4. List of Digital Section Troubleshooting Flow Diagrams (Sheet 1 of 3)

	Digital Section Troubleshooting Flow Diagrams (Sheet 1 of 3)	
Flow Diagram	Description (Purpose)	
Flow Diagram (A1 - 1)	Contains the 1345A SELF Test and checks the clock signals and data bus lines (IOD0 through IOD7)	
Flow Diagram (A1 - 2)	Contains Al Board Self Test (Memory Pointer Test, Read/Write Test, Handshake Test and Jump Test), and indicates whether the Memory R/W Control, Handshake Control, Jump Control, Memory R/W Pointer, MPX, Static RAM or Output Latch is defective.	
Flow Diagram (A1 - 3) Flow Diagram (A1 - 4)	Checks the Read/Write operation of the Memory R/W Control circuit, Memory R/W Pointer circuit, MPX circuit and Static RAMs.	
Flow Diagram (A1 - 5)	Checks the Handshake Control circuit, Scan Pointer circuit, MPX circuit and Output Latch circuit for correct handshake between the 1345A and the Al board.	
Flow Diagram (A1 - 6)	Checks the Jump Control circuit and Scan Pointer circuit.	
Flow Diagram (A2 - 1) Flow Diagram (A2 - 2)	Checks the dc voltage supplied from the Al2 board, clock signals, and DBE signal.	
Flow Diagram (A2 - 3)	Isolates instrument failures to ROM-related circuits, RAM-related circuits, Timer circuit or the ACIA (Asynchronous Communication Interface Adapter).	
Flow Diagram (A2 - 4)	Checks the Clock Generator (A2U15) and the Address Decode & Wait circuit.	
Flow Diagram A2 - 5 Flow Diagram A2 - 6 Flow Diagram A2 - 7 Flow Diagram A2 - 8	Checks the ROMs (A2U13, U14, U26 and U27), MPU, address bus and data bus.	
Flow Diagram (A2 - 9) Flow Diagram (A2 - 10) Flow Diagram (A2 - 11)	Checks the RAMs (A2U5 through A2U12 and A2U18 through A2U25), Dynamic Memory Refresh and Control circuit (A2U16 and U17).	
Flow Diagram (A2 - 12)	Checks the Clock Divider circuit (including A2U46, U48 and U49) and Timer (A2U40).	

Table 8-4. List of Digital Section Troubleshooting Flow Diagrams (Sheet 2 of 3)

	gital Section Troubleshooting Flow Diagrams (Sheet 2 of 3)	
Flow Diagram	Description (Purpose)	
Flow Diagram A2 - 13	Checks the ACIA (A2U58) and A2U57.	
Flow Diagram A3 - 1 Flow Diagram A3 - 2	Checks the dc voltage supplied from the Al5 board, checks the clock and reset signals used by the MPU, and contains the A3/A4 board Self Test, which indicates a defective A3/A4 circuit by the A3DS1 through A3DS4 (LEDs) display pattern.	
Flow Diagram (A3 - 3)	Checks the ROMs (A3U9, Ulo and Ull) by performing the ROM Check Sum Test.	
Flow Diagram (A3 - 4)	Checks the RAMs (A3U24 and A3U25) by performing the RAM Pattern Test.	
Flow Diagram A3 - 5 Flow Diagram A3 - 6 Flow Diagram A3 - 7	Checks the Interval Timer circuit (A3U5, U18 and U19) and the interrupt signal flow to the MPU.	
Flow Diagram A3 - 8 Flow Diagram A3 - 9 Flow Diagram A3 - 10 Flow Diagram A3 - 11	Checks the A-D Converter circuit.	
Flow Diagram (A3 - 12) Flow Diagram (A3 - 13)	Checks ACIA (Asynchronous Communication Interface Adapter, A3U44) and the optocouplers, which handle data transfer between the host processor (A2 board) and the A3 board.	
Flow Diagram (A4 - 1) Flow Diagram (A4 - 4)	Checks the Multiplex Timing Controller circuit.	
Flow Diagram (A4 - 2)	Checks the MPU Bus Interface (A4U35, U36 and U37) and Data Memory (A4U19, U20, U25 and U26).	
Flow Diagram (A4 - 3)	Checks the D-A converter circuit, including A4U18 and the I/V Converter circuit.	

Table 8-4. List of Digital Section Troubleshooting Flow Diagrams (Sheet 3 of 3)

Flow Diagram	Description (Purpose)
Flow Diagram (A4 - 5) Flow Diagram (A4 - 6)	Checks the Analog Demultiplexer S/H Switching circuit and S/H Amplifier circuit.
Flow Diagram (A9 - 1)	Checks the dc voltage supplied from the A12 board and isolates failures in the MSU (Mass Storage Unit).
Flow Diagram (A9 - 2)	Checks all clock signals and gives instructions for further troubleshooting.
Flow Diagram (A9 - 3) Flow Diagram (A9 - 4)	Checks the HP-IB Bus Tranceiver circuit (A9U8, U9, U12 and U13) and the HP-IB Interface Adapter (A9U7).
Flow Diagram (A9 - 5)	Checks the HP-IB Address SW Buffer (A9U19) to verify that the HP-IB address switch is correctly read.
Flow Diagram (A9 - 6) Flow Diagram (A9 - 7) Flow Diagram (A9 - 8) Flow Diagram (A9 - 9) Flow Diagram (A9 - 10)	Checks the MSU Interface circuit (A9U3, A9U14 through A9U17) and verifies the MSU Interface Write and Step functions.
Flow Diagram (A9 - 11)	Checks A9U14, U16, U17, etc., to verify the MSU Interface Read function.
Flow Diagram (A10 - 1)	Isolates a front panel failure to the LED decode circuit, RPG (Rotary Pulse Generator) control circuit, or Key control/decode circuits. Also checks the LED decode circuit and RPG control circuit.
Flow Diagram (A10 - 2) Flow Diagram (A10 - 3)	Checks the Key control/decode circuits.

Troubleshooting Flow Diagram

Figure 8-15. A2 Board Troubleshooting Flow Diagram (Sheet 1 of 12).

A2 Troubleshooting Flow Diagram

(A2 MPU and ROMS are

functioning properly.)

*5: Part number of A2U26

must be 04145-85021.

Test Point Signature

06UA

7H98

P713

6HU7

PH6F

18C3 2351

P4CA

A2U4-pin 11

pin 12

pin 13

pin 14

pin 15

pin 16

pin 17

pin 18

Replace A2U26.

Setting:

Turn off the 4145A.

*4: Part number of A2U27

must be 04145-85022

START: \

A2U26-pin 1

STOP: / A2U26-pin 20

CLOCK: \ A2TP9

Turn on the 4145A.

WINDOW: P254 (+5V)

Test Point Signature

P460

H812

6FAP

93H9

H947

448H

36C2

1P57

A2U4-pin 11

pin 12

pin 13

pin 14

pin 15

pin 16

pin 17

pin 18

Replace A2U27.

START: \ A2U27-pin 1

CLOCK: \ A2TP9

WINDOW: P254 (+5V)

Turn on the 4145A.

STOP: _ A2U27-pin 20

Figure 8-15. A2 Board Troubleshooting Flow Diagram (Sheet 7 of 12).

Figure 8-15. A2 Board Troubleshooting Flow Diagram (Sheet 9 of 12).

8-42

Troubleshooting Flow Diagram

Figure 8-16. A3 Board Troubleshooting Flow Diagram (Sheet 1 of 9).

Figure 8-16. A3 Board Troubleshooting Flow Diagram (Sheet 2 of 9).

Flow Diagram (A3 - 2)

Flow Diagram (A3 - 3)

Flow Diagram (A3 - 4)

Flow Diagram (A3 - 5)

A3 Troubleshooting Flow Diagram

Replace A3U31.

Model 4145A

Figure 8-16. A3 Board Troubleshooting Flow Diagram (Sheet 5 of 9).

Flow Diagram (A3 - 9)

If the trouble still

persists, replace A3U32.

Is the voltage at

A3U2-pin 24 6.3V±0.3V

Replace A3U2.

A3S1 setting:

CLOCK: _ A3TP15

Turn on the 4145A.

No. Reading on the 3455A 4096mV±15mV 2048mV±15mV 1024mV±15mV 512mV±15mV 256mV±15mV 128mV±15mV 64mV±15mV $32mV \pm 15mV$ 16mV+15mV 8mV±15mV 4mV+15mV 2mV+15mV 1mV±15mV 0.5mV±15mV 0mV+15mV OmV±15mV 0mV±15mV

Table 4

A3 Troubleshooting Flow Diagram

3455A controls:

RANGE:

TRIGGER:

HI input: A3TP21
LOW input: A3TP3
FUNCTION: ===V

AUTO

EXTERNAL

(A3TP13)

Jumper and switch settings:

A3S1 setting:

A3W2:) A3W3:

A3W4: , A3W5: A3W6: A3W7: A3W8:

Figure 8-16. A3 Board Troubleshooting Flow Diagram (Sheet 7 of 9).

Do the readings on the

3455A, displayed every

two seconds, satisfy

the values shown Table

Replace A3U2.

persists, replace

Page 8-52: blank

Troubleshooting Flow Diagram

Flow Diagram (A4 - 3)

Figure 8-17. A4 Board Troubleshooting Flow Diagram (Sheet 4 of 5).

Figure 8-17. A4 Board Troubleshooting Flow Diagram (Sheet 3 of 5).

Model 4145A

Page 8-58: blank

Flow Diagram A9 - 9

Replace A2U55.

Replace A9U17

Replace A9U16.

Replace A9U4.

Replace A9W4.

Replace A9U14.

Model 4145A

A10UlO pins - - - 8 4 5 - - - - 8 4 5 AlOJ1 Pins 26 25 24 23 22 21 20 19 26 25 24 23 22 21 20 19 26 25 24 23 22 21 20 19 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 SOFT KEY 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 00000011 SOFT KEY 3 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 SOFT KEY 5 0 0 0 0 0 1 0 1 SOFT KEY 6 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 All Keys off 1 0 0 0 0 - - -0 0 0 0 1 0 0 0 SHORT 0 0 0 0 1 0 0 1 MED 0 0 0 0 1 0 0 1 PREV 0 0 0 0 1 0 1 0 LONG 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 BACK 0 0 0 0 1 1 0 1 00001101 DELETE 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 SAVE 0 0 0 1 0 0 0 0 SINGLE APPEND 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 00110100 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 INSERT 0 0 0 0 0 1 1 0 REPEAT STOP 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 AUTO CAL 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0

0: LOW level

1: HIGH level

Figure 8-19. Al0 Board Troubleshooting Flow Diagram (Sheet 1 of 3).

Replace A10U9.

	D		
P/0	Part of.		Encloses front panel designations.
\bigcirc	Knob control.	[]	Shielded area.
	Screwdriver adjustment.		
	Circuit assembly boarderline.		
*	Asterisk denotes a factory selected value. Value shown is typical, part may be omitted.		
_*	Bead inductance.		
0	Circuit board pattern inductance.		
	Heavy line indicates main signal path.		
	Heavy dashed line indicates main feedback path.		
} ^{cw}	Wiper moves towards CW with clockwise rotation of control (as viewed from shaft or knob).		
	Numbered test point. Measurement aid provided.		
-(947)-	Denotes wire color code. Code used is the same as the resistor color code (e.g., 9.4.7 denotes white/yellow/violet).		
Ŧ	Indicates direct conducting connection to earth.		
	Indicates conducting connection to chassis or frame.		
$\stackrel{\wedge}{ o}$	Indicates circuit common conne	ection.	

Figure 8-20. Schematic Diagram Notes.

8-36. Al GRAPHIC DISPLAY CONTROL BOARD

8-37. The Al board handles all data transfer operations between the 1345A Digital Display and the microprocessor on the A2 board. Data transfer is via a 16-bit data bus, which provides asynchronous handshake. The Al board contains a 4K x 16-bit Display RAM, which functions as Option 704 of the 1345A. It is also used for the PLOT and PRINT functions. Refer to paragraphs 3-117 and 3-119, respectively. Figure 8-21 shows the overall block diagram of the Al board.

[Display RAM]

The 1345A is controlled by 16-bit commands sent from the microprocessor and stored in the Display RAM, U29 - U32. The Display RAM stores all commands required to draw lines and alphanumeric characters on the CRT, and sequentially sends the stored commands to the 1345A. Display refresh is handled by the Scan Pointer and Jump Control. The Scan Pointer, U5 - U7, is incremented by the Timing Controller and addresses the RAM via the SCA 0 - 11 lines. When a "MEMORY JUMP" instruction (bit 15 = 1) is output from the RAM, Jump Control, U16 and U28, sets the Scan Pointer to the restart address.

[Write Operation]

To draw a new figure on the CRT, the R/W Memory Pointer, U25 - U27, addresses the RAM and data is sent from the microprocessor to the RAM via the 8-line/16-line converter, U41 and U42.

[Read Operation]

When the PLOT key is pressed, display data stored in the RAM is output to the HP-IB via the 16-line/8-line converter, U43 and U44.

[Self Test]

Self-test checks the operation of the Al Board. Ul9 and U20 return the output data to the microprocessor to confirm the write operation. Also, the Monitor Buffer, U38 and U39, returns the R/W address and handshake control line to the microprocessor.

Figure 8-21. Block Diagram of Al Board.

Figure 8-22. Al Graphic Display Control Board Assembly Component Locations.

8-38. A2 MICROPROCESSOR DIGITAL CONTROL BOARD

8-39. The A2 board contains the host microprocessor and provides overall instrument control. Figure 8-24 shows the block diagram of the A2 board.

Basic software routines are stored in the 16k byte ROM (U13, U14, U26 and U27) and consist, mainly, of monitor programs and subprograms for the flexible-disc drive, graphics display unit, and HP-IB.

Operating system software, recorded on the flexible disc, is loaded into the 32k byte dynamic RAM (U5 through U12, and U18 through U25) when the 4145A is turned on.

Data transfer to and from the microprocessor on the A3 board is performed serially via the asynchronous communication interface adapter (ACIA), U58. Ground isolation between the A2 board and the A3 board is maintained by optocouplers on the A3 board. Data transfer to and from the A1 and A9 boards, however, is via the 8-bit bidirectional data bus (IOD 0 - 7).

Timing for all instrument operations is controlled by the clock generator U15 and the clock divider circuit—U46, U48 and U49.

Figure 8-24. Block Diagram of the A2 Board.

[Signal Identification]

IOD 0 - 7 (I/O Data Bus):
Bidirectional data bus lines

BBA 0 - 2 (Address Lines):

Lower 3 bits of the external I/O address bus

Control Lines: B\(2 \) TTL:

Timing signals between the MPU and external I/O

 BBR/\overline{W} :

Read/Write signal for external I/O

Chip Select:

HP-IB: HP-IB select signal

FDCCS: FDD controller select signal

 $\overline{\text{GDUCS}}$: Al board I/O select signal for the 1345A

Strobe Signal:

LATCHA, LATCHB:

Select signal for the display latches on the AlO board.

 $\overline{\text{RDKBD}}$: Al board I/O select signal for the keyboard

RDRPG: Al board I/O select signal for the RPG

Latched Control Signals:

FDSEL: Enables the FDD.

PRGRST (Program Reset):

Reset signal from the program being executed.

Serial Communication Lines:

SCD (Serial Command Data):
Signal to the A3 board

SRD (Serial Response Data):
Signal from the A3 board

SCK (Serial Clock):

Clock for serial data transfer

Clock Signals:

B4MHz: Clock for the FDD circuit KEYCLK: Scan clock for the keyboard

Direct Input Signals: OPEN/CLOSE:

Sense signal for the test fixture lid

Interrupt Request Lines:

PERIRQ (Peripheral Interrupt Request):
Interrupt signal from HP-IB and
FDD.

PWRFAIL (Power Fail):

Signal which indicates transient power loss.

Reset Signal:

RESET: Reset signal when the instrument is turned on.

Test Control Signal:

INH: External clock select signal

EXTIN: External clock signal

HALT: Halt signal for the MPU

EXTBA: Address bus enable signal when the MPU is halted.

[Software]

Software for the 4145A is divided into three parts: OS (Operating System), Utility Programs, and Tasks (Application Program).

OS consists of the following programs:

Task Control Program Timer Control Program I/O Control Program Interrupt Control Program Program Control Program Arithmetic Control Program Initialize Control Program

Utility Programs consist of subroutines used by the Application Programs.

A task is the minimum unit of a program, and is controlled by the OS. The 4145A can perform various jobs by performing various Tasks. Following are key Tasks which control lower level Tasks:

Keyboard Task RPG Task HP-IB Task Page Control Task ASP Interpreter

Table 8-5 (Fold-out page) lists the program locations. All programs are initially stored in the ROM or on the disc. Programs on the disc are divided into 12 files, files 0 through 11. Files 0 through 3 are loaded into the RAM when the instrument is turned on. The other programs are loaded into the RAM when necessary.

Table 8-5. Program Locations

ROM No. File No.	Primary Program Contents		
ROM U26	Utility Program, Keyboard Task, SMU control		
ROM U27	HP-IB, I/O control		
ROM U13	FDD, HP-IB		
ROM U14	OS, Keyboard, Self-Test		
File 0*	Page control, Utility Program		
File 1*	SOURCE SETUP page, MEAS & DISP MODE SETUP page		
File 2*	GRAPHICS PLOT page, Measurement control		
File 3*	Mathematics control, Interpreter/Translater		
File 4	Graphics Analysis control		
File 5	LIST DISPLAY page, MATRIX DISPLAY page, SCHMOO PLOT page		
File 6	PLOT, OUTPUT SEQ SETUP page		
File 7	Data display, ASP Editor		
File 8	OPERATION GUIDE page		
File 9	CATALOG page, DIAGNOSTICS page		
File 10	User graphics		
File 11	MENU page, DEFINITION page		

^{*} All Files are stored on the disc. File 0 through File 3 are stored in the RAM when the 4145A is turned on.

Figure 8-25. A2 Microprocessor Digital Control Board Assembly Component Locations.

Figure 8-25. A2 Microprocessor Digital Control Board Assembly Component Locations.

145A

8-40. A3 A-D CONVERTER BOARD

8-41. The A3 board controls the SMUs, voltage sources, and voltage monitors as directed by the microprocessor on the A2 board. It contains a 16-bit successive approximation ADC and a microprocessor based digital control section.

Figure 8-27 (a) shows the block diagram of the ADC. The voltage and current monitor signals from the SMUs and voltage monitors, which are normalized to ±10 volts full scale, are applied directly to the inputs of the multiplexer, U37. The control register, U31, instructs the multiplexer to sequentially select each valid input for A-to-D conversion.

Note

Only inputs from SMUs and voltage monitors that are used in the measurement (have been assigned on the CHANNEL DEFINITION page) are valid. Outputs from unused SMUs and voltage monitors are not selected for A-to-D conversion. Also, the order in which the inputs are selected is determined by the order specified on the OUTPUT SEQUENCE SETUP page (see Figure 3-29).

The selected input is applied to the sample-hold circuit, U26 and U29B, and is held until A-to-D conversion is completed. The A-to-D conversion process is briefly described below

- (1) The first clock pulse resets the DAC (U2 and U14) and the SAR (U3 and U16), so that the MSB of the DAC is 1 and all others are 0. Thus, the output from the DAC is half of full scale.
- (2) The outputs from the DAC and the sample-hold circuit are compared by the comparator, Ul3. If the output from the sample-hold circuit is greater than the DAC output, the MSB of the SAR will remain at 1 and the next lower bit will be set to 1 on the next clock pulse. If otherwise, the MSB will be set to 0 and the next lower bit will be set to 1.
- (3) Step (2) is repeated until the LSB of the DAC has been set.
- (4) The SAR then sets the comparisoncomplete bit HIGH, informing the microprocessor that A-to-D conversion is finished.

Figure 8-27. Block Diagram of the A3 Board.

(5) The microprocessor read the value in the SAR, which is the digital value of the analog voltage.

The 16-bit DAC consists of two separate DACs. One is a 16-bit DAC (U2) wired for 14-bit operation. It provides only the lower-order 14-bits in order to improve A-to-D conversion monotonicity. The other is an 8-bit DAC (U14) wired for 2-bit operation. It provides the two higher-order bits and extends the measurement range of the 14-bit DAC.

To maintain optimum accuracy at all times, the DAC is automatically calibrated every minute. The ramp generator, Ul, is used for this. It establishes accurate reference levels for each DAC range. Also, comparison with ground is performed to establish and accurate ground reference.

Figure 8-27 (b) shows the block diagram of the digital control section of the A3 Board. The digital section mainly contains of an 8-bit MPU (Microprocessor Unit), four 12k Byte ROMs, two lk Byte RAMs, Address Decoder, ACIA (Ascynchronous Communication Interface Adapter), optocouplers, and Interval Timer.

Figure 8-27. Block Diagram of the A3 Board.

SECTION VIII Model 4145A

Figure 8-28. A3 SMU Control and A-D Converter Board Assembly Component Locations.

Figure 8-28. A3 SMU Control and A-D Converter Board Assembly Component Locations.

SECTION VIII Model 4145A

8-42. A4 D-A CONVERTER BOARD

8-42. Figure 8-30 shows a simplified block diagram of the A4 board. It consists of four 64-bit static RAMs, a 16-bit D-A converter, an I-V converter, a 10-channel demultiplexer, and ten sample-hold circuits. The entire board functions to provide the requisite reference voltages for the four SMUs and the two voltage sources. All reference voltages provided by this board are determined by the digital data sent from the A3 board and are normalized to values ranging from 0 to ±10V. Resolution is 0.5mV.

Output data (voltage and current values) set on the SOURCE SETUP page (refer to Figure 3-22) are sent from the A3 board and stored in the four RAMs-U19, U20, U25 and U26. The 16-bit D-A converter-U18 and U24-and the I-V converter-U6, Q1 and Q2-convert the digital data output from the RAMs into an analog voltage, which is then applied to the input of the appropriate sample-hold circuit by the 10-channel demultiplexer.

Other circuits on this board are the Multiplex Timing Controller, which handles RAM Read/Write addressing and demultiplexer timing; the Bus Interface for data memory; SMU Loop Change Detector, which monitors the operation mode (V or I) of each SMU; and the Test Switch circuit, which is used during self-test to check the D-A converter.

[D-A Converter]

The D-A converter on this board consists of a 14-bit D-A converter, U18, and an 8-bit offset D-A converter, U24, wired for 2-bit operation. It is similar to the D-A converter on the A3 board. Output from the D-A converter is a current that is proportional to the binary value provided by the RAMS.

[I/V Converter]

Because the DAC is a current driven type, an I/V converter is used to convert the output current into voltage. Figure 8-31 shows the output waveform at TPl when the 4145A is in an idle condition (measurement is not being made).

Figure 8-30. Block Diagram of A4 Board.

Figure 8-31. I-V Converter Output.

[Demultiplexer]

The demultiplexer contains analog switches, Ul through U5, and distributes the ten reference voltages provided by the DAC and I/V converter to appropriate sample-hold circuit. Figure 8-32 shows circuitry for each demultiplexer channel. Two FET switches are driven by a control signal provided by the Timing Controller. To isolate the sample-hold circuit in sample mode from the I/V converter, an isolation capacitor is connected between the two switches. Also, to cancel the drive signal transmitted through gate-drain capacitor of the FET switch, an opposite signal is applied through the injection capacitor.

Figure 8-32. Analog Switch.

[Loop Back Test]

The test switch selector, U33, and the test switches—U30, U31 and U32—are used during the loop back test portion of the self-test. The loop back test confirms correct operation of the A4 D-A converter and the A3 A-D converter.

When self-test is executed, the microprocessor on the A3 board stores a predetermined binary value in the A4 RAMs. The DAC converts this value into an analog voltage which is distributed to each output channel by the demultiplexer. The test switch selector controls the test switches so that each channel is, in turn, selected for output to the ADC on the A3 board. After A-D conversion, the microprocessor compares the original binary value with that output from the ADC, thus confirming correct DAC and ADC operation.

Figure 8-33. A4 D-A Converter Board Assembly Component Locations.

Flow Diagram (A5 - 1)

Figure B

Figure 8-35. A5 Board Troubleshooting Flow Diagram (Sheet 2 of 9).

Flow Diagram (A5 - 2)

Flow Diagram (A5 - 3)

Figure 8-35. A5 Board Troubleshooting Flow Diagram (Sheet 4 of 9).

Flow Diagram (A5 - 4)

Check U15C and U15E.

- * Troubleshooting procedure for leakage current.
- (1) Set the SMU to V mode (I measurement).
- (2) Connect nothing to the SMU's output (open).
- (3) Peform a REPEAT measurement.

Current leakage at K5, K6, K7, K8 or U14 pin 3. Use the

procedure given below.

- (4) Monitor the voltage at TP2.
- (5) Breath upon the suspected component. Use a 3mm\(\phi\) tube.
- (6) If the voltage at TP2 increases, replace the component.

Flow Diagram (A5 - 5)

SECTION VIII

Flow Diagram (A5 - 6)

A 5 Troubleshooting Flow Diagram

SMU Self-Test Waveforms

The waveforms shown in this figure will appear at the indicated SMU test points when Self-Test is executed. Each time a flow diagram instructs you to check the waveform at a certain test point, connect the oscilloscope to the indicated test point, start the self-test by pressing the Self-Test softkey on the DIAGNOSTICS page (refer to Figure 3-32), and compare the displayed waveform with the corresponding waveform given here.

Self-Test is divided into two parts. The first part checks the SMU controller and the second part checks the SMUs one at a time, starting with SMU1. Thus, if you are troubleshooting SMU4, the last SMU tested, the waveforms shown in this figure will not appear until about seven or eight seconds after Self-Test is executed. The Self-Test for one SMU lasts about two seconds and is divided into six steps, each related to one or two of the seven possible SMU status error codes (refer to "SMU Status" in Table 8-2). Also, because the SMU Self-Test is slow and non-repetitive, a dual channel storage oscilloscope is required for making these measurements.

Control settings for the oscilloscope are as follows:

 STORAGE
 ON

 AUTO/NORMAL
 NORMAL

 SINGLE
 ON

 TIME/DIV
 .2 sec/div

 VOLTS/DIV
 .5V/div (for 10:1 probe)

 TRIGGER
 EXT, POSITIVE (TP17)*

 TRIGGER LEVEL
 POSITIVE

Figure 8-36. SMU Self-Test Waveforms.

^{*} Trigger signal is taken from TP17 of the SMU being checked.

8-44. A5 SMU BOARD

8-45. Theory of operation of the SMUs is described in the following paragraphs. An overall block diagram is shown in Figure 8-37.

Figure 8-37. SMU Board Block Diagram.

Each SMU has two modes of operation: V mode (voltage source/current monitor) and I mode (current source/voltage monitor). The equivalent circuits for each mode are shown in Figures 8-38 and 8-39, respectively. V mode operation will be described first.

Output voltage, Vout, is determined by Vref, R_1 , and R_2 , and can be calculated by first noting that, because negative feed-back is employed, the inverting input of the Error Amplifier is at virtual ground. Hence, the voltage at the inverting terminal is calculated as

$$\frac{\text{Vref}}{R_1} + \frac{\text{Vout}}{R_2} = 0$$
 (8-1)

Solving for Vout, we have

Vout =
$$-\frac{R_2}{R_1}$$
·Vref (8-2)

Also, the current output from the SMU can be obtained by measuring the voltage drop across the range resistor Rr. If the gain of the Differencial Amplifier is 1, output current Iout is simply calculated from the differencial amplifier's output voltage $I_{\rm M}$ and the value of Rr as

Iout =
$$\frac{I_{M}}{Rr}$$
 (8-3)

Figure 8-39 shows SMU operation in I mode (Current output/Voltage monitor). Output current is determined by R₁, R₂, Rr and Vref as

Iout =
$$-\frac{R_2}{R_1} \cdot \frac{\text{Vref}}{Rr}$$
 (8-4)

Also, the output voltage obtained from the V Buffer output is

Vout =
$$V_{M}$$
 (8-5)

In the actual circuit, these two modes of operation are implemented by one circuit.

Figure 8-38. SMU V Mode Operation.

Figure 8-39. SMU I Mode Operation.

[Error Amplifiers]

As shown in Figure 8-37, there are three error amplifiers: V, I^{\oplus} , and I^{\ominus} . Input reference voltages are applied to the error amplifiers through the filter amplifiers. The input reference voltage for the I^{\ominus} error amplifier is inverted. Two input reference voltages, Vin and Iin, are applied at all times. One specifies the SMU output value and the other specifies the compliance value. Vin is from -10 volts to +10 volts depending on the programmed output. Also, Iin is from 0 to -10 volts.

Assume that a resistive load is connected to the SMU in V Mode (voltage output/current measurement). If a voltage sweep and current measurement is made, and if the resistance of the load is not so high, measurement results displayed on the CRT will be as shown in Figure 8-40. Output current is limited by positive and negative compliance. Normally, output voltage is controlled by the V error amplifier. However, when the output current reaches positive or negative compliance, the corresponding I^{\oplus} error or I^{\ominus} error amplifier controls the output current.

Also, in I Mode (current output/voltage monitor), I^{\bigoplus} error amplifier controls positive current (flow out) and I^{\bigoplus} error amplifier controls negative current (flow in). The V error amplifier specifies the voltage compliance value. These conditions are called (1) V control mode, (2) I^{\bigoplus} control mode, and (3) I^{\bigoplus} control mode.

Figure 8-40. Current Compliance in V Mode.

One of the three error amplifiers—Ul, U2 and U3 in the actual schematic—controls the SMU output. Figure 8-41 shows the V error amplifier and a simplified drawing of its output circuitry. The voltage at point (A) in the figure changes according to the input reference voltage.

Figure 8-41. V Error Amplifier.

Model 4145A SECTION VIII

Assume that the voltage at point (A) is initially zero. The voltages at points (B) and (C), then, are of the same magnitude but with opposite polarities.

The voltage at point B is slightly higher than +V_B. This forward biases the emitter-base junction of Q4, allowing current to flow out from Q4. Similarly, the voltage at point C forward biases Q5, allowing current to flow into Q5. If the voltage at point A increases, the voltage at point B will increase and the voltage at point C will decrease, causing more current to flow out of Q4 and less current to flow into Q5.

Finally, the current flows into the Power Amplifier from point D. If the voltage at point A decreases, however, the current flows in the opposite direction.

The I^{\bigoplus} and I^{\bigodot} error amplifiers also have circuitry much like this. The I^{\bigoplus} error amplifier, however, doesn't have CR13 and Q4, and the I^{\bigodot} amplifier doesn't have CR17 and Q5. This means that the I^{\bigoplus} error amplifier can only sink current and the I^{\bigodot} error amplifier can only source current.

The outputs from the three error amplifiers are all tied directly to the noninverting input of the power amplifier.

As described earlier, the SMU is in one of three conditions—(1) V control mode, (2) I^{\oplus} control mode, or (3) I^{\ominus} control mode—depending on which error amplifier is controlling the output.

(1) V control mode:

Figure 8-42 (a) shows the V control mode. Output voltage from V error amplifier is approximately zero, and idle current flows from I_1 to I_2 .

On the other hand, the I^{\bigoplus} Error amplifier and the I^{\bigoplus} Error Amplifier output no current because their input voltages are not zero.

(2) I [⊕] control mode:

Figure 8-42 (b) shows I^{\bigoplus} control mode. Output voltage from I^{\bigoplus} error amplifier is approximately zero, and idle current flows from I_1 to I_3 .

(3) I[⊖] control mode:

Figure 8-42 (c) shows I^{Θ} control mode. Output voltage from I^{Θ} error amplifier is approximately zero, and idle current flows from I_4 to I_2 .

Figure 8-42. Three Control Modes.

When the error amplifier is not controlling power amplifier output, the voltage at its noninverting input is not zero.

The error amplifier will be saturated and output will increase up to the positive or negative voltage supply. In this condition, it is difficult to recover to the normal condition quickly. To prevent this, a feed-back loop with diodes is used. Figure 8-43 shows an example of diode do feed-back.

Output voltage is held constant at the voltage drop caused by two diodes (approximately +1.2V or -1.2V).

Figure 8-43. Example of Diode Feedback.

[Control Loop Detector]

The control loop detector, U7, detects which error amplifier is controlling the output. It also informs the SMU controller of compliance, causing an error message to be displayed. The input is connected to, TP7, output of the V error amplifier.

If the V error amplifier controls the output, TP7 is approximately zero, and both U7A and U7B are off, forcing I^{\oplus} CONT and I^{\ominus} CONT HIGH. If the I^{\oplus} error amplifier controls the output, the V error amplifier is saturated and its output is held at approximately +1.2 volts. Positive voltage turns on U7B and I^{\oplus} CONT goes LOW. Conversely, if the I^{\ominus} error amplifier controls the output, U7A turns on, and I^{\ominus} CONT goes LOW. The base of U7E is connected to I^{\oplus} CONT and I^{\ominus} CONT lines through CR51 and CR52.

If either $\overline{I^{\bigoplus}}$ CONT or $\overline{I^{\bigoplus}}$ CONT goes LOW, the collector of U7E (connected to SLP) goes HIGH. The microprocessor monitors SMU status by monitoring these signals, and displays error messages if necessary.

[Power Amplifier]

The power amplifier is of the non-inverting type. The gain of this amplifier is determined by R28 and R39, and is approximately 21.5.

The input stage is a difference amplifier consisting of Q6 and Q7. Q15 is a constant current source. Base voltage for Q15 is obtained from the voltage drop across CR30.

Q8 converts the low voltage input signal into a high voltage signal. This is to transmit the output signal of Q7 (operated in low voltage) to Q9 (operated in high voltage) via the voltage drop across R31. CR24, CR25, CR28 and CR29 protect Q6 and Q7. CR20, R40 and CR30 provides bias voltage for Q10 and Q16. Q9 controls Q10 and Q16.

The output stage is a complementary-symmetry amplifier consisting of Q11 and Q12. The collectors of Q11 and Q12 are connected to the SMU Power Source Board and held constant at +4V and -4V, respectively, above and below TP10 (FLT.COMMON), as shown in Figure 8-44.

Figure 8-44. Power Amplifier Output Stage.

Since the SMU Power Source (A13 and A14) dissipates most of the power that is output from any one of the SMUs, Q11 and Q12 need not be high power devices.

CR21 and CR22 improve the transient response of Q11 and Q12.

[Reset Circuit]

Q14 drives Q13 to reset the power amplifier to prevent the SMU from outputting a spike when the 4145A is turned on or off. If the FRESET line goes to LOW, Q14 turns on and Q13 also turns on.

[Range Resistors]

Current measurement is made by measuring the voltage drop across the range resistor. As the resolution and dynamic range of A-D converter is specified, if various range resistors are used, various current ranges, from lnA range to 100mA range, are provided. Also, the voltage drop across the range resistor is measured by the I monitor amplifier, which has a gain of X1 or X10.

Therefore, with a combination of five range resistors and two multipliers, ten current measurement ranges are possible. Only nine ranges, however, are used in the actual circuit. A simplified drawing of the range resistor circuit is shown in Figure 8-45, and the nine ranges are listed in Table 8-6.

As shown in Figure 8-46, ranging is performed by four FET switches driven by ramp waves. If these switches were turned on and off by a step function, a spike would appear at the SMU output because the voltage drop across the range resistor would change rapidly. To prevent this, the FET switches are turned on gradually. The ramp waves are generated by the ramp generator, U18 and U19. U19 functions as a constant current source and U18 is normally on.

Figure 8-45. Range Resistors.

If U18 is turned off, U19 gradually charges the capacitor connected at the collector of U18.

Since the channel resistance of an FET switch is neither zero when on nor infinite when off, relays are used in conjunction with the FET switches for the $100k\Omega$ and $10M\Omega$ range resistors. Also, to minimize leakage current when the relay breaks, the relay is connected to guard. For the 10Ω and $1k\Omega$ range resistors, additional FETs (Monitor Point Selector) are used to select the appropriate monitor point.

Table 8-6.	Relationship betw	een Current Ranges	and Range Resistors
I GDIC O O.	TICIALIONISHID DCLW	Con Current Hanges	and mange measures

Range #	Full Scale	Resistance of Range Resistor	Gain of I Monitor Amplifier	S1	S2	S.3	S4
1	100mA	10Ω	X10	on	on	on	on
2	10mA	11.0	X1				
3	1mA	1kΩ	X10	on	on	on	off
4	100μΑ	100kΩ	X1	O.D.	on	off	off
5	10μΑ	100%%	X10	on			
6	1μA	10ΜΩ	X1	on	off	off	off
7	100nA	101111	X10	OII	OLI	OII	011
8	10nA	100	X1	- 0.0	- CC	- CC	
9	1nA	$1 \mathrm{G}\Omega$	X10	OII	OII	off	OII

Figure 8-46. Range Resistor Circuit.

[Oscillation Detector]

If the SMU oscillates because of a reactive load, the Oscillation Detector detects it and sends the detection signal to the SMU controller. The detector monitors the output of the power amplifier, which is part of the SMU's feed-back loop, through the high-pass filter (C37 and R89). Oscillations, if they occur, are rectified and applied to the input of U8, whose output goes HIGH, informing the SMU controller that the SMU and device under test is oscillating.

CR49 and CR50 limit the input oscillation signal to 9Vp-p.

[V Monitor Amplifier]

The V Monitor Amplifier, U5A, is an inverting amplifier with three multipliers—X.5, X.25 and X.1--for the 20V, 40V and 100V ranges, respectively. The multipliers are determined by the ratio of input resistor R63 and feed-back resistors R64 through R66. Ranging is performed by K2 and K4 (Refer to Table 8-7.). The amplifier outputs an inverted 0 - \pm 10V, depending on the voltage at the V Buffer Amplifier's output, which is at the same voltage as the output voltage of the SMU.

Table 8-7. V Monitor Amplifier Ranging

Range	Multiplier	K2	K4
20V	X .5	OFF	OFF
40V	X .25	ON	OFF
100V	X .1	ON	ON

[I Monitor Amplifier]

The I Monitor Amplifier consists of a difference amplifier and two voltage followers. The two voltage followers output the voltage difference across the range resistor and have a combined gain of Xl or Xl0. (Xl0 effectively multiplies the value of the selected range resistor by ten.) When Q23 is on and Q24 is off, the voltage difference between the outputs of Ul2 and Ul3 is the same as the input. When Q23 is off and Q24 is on, however, the output is ten times the input. U4, with properly selected resistors R60, outputs the voltage difference to the A-D converter and to the input circuit (I $^{\oplus}$ and I $^{\ominus}$ Error Amps) for feed-back.

Also, to minimize the noise effects and leakage on R60, guarding is used.

[Auto Calibration]

Each SMU is automatically calibrated every five minutes by the SMU controller. The SMU controller connects a $1\,\mathrm{M}\Omega$ dummy load (R125 to the SMU by activating K5. It then provides a known reference to the input of the error amplifiers and measures the SMU output on all ranges. Differences between the expected and measured values are stored in memory and used to compensate subsequent measurements.

Figure 8-47. A5 SMU Board Assembly Component Locations.

Figure 8-48. A5 SMU Board Assembly Schematic Diagram (Sheet J of 2).

Figure 8-47. A5 SMU Board Assembly Component Locations.

Model 4145/

8-46. A9 HP-IB AND MSU CONTROL BOARD

8-47. The A9 Board consists of two sections: the HP-IB control section and the MSU (Mass Storage Unit: FDD and Disc) control section.

[HP-IB Control Section]

All HP-IB interface functions are handled by the U7 HP-IB Interface Adapter. The Interface Adapter controls the "handshake" between the microprocessor and external HP-IB equipment connected to the 4145A.

[MSU Control Section]

U3 controls the FDD (Flexible Disc Drive) through the open-collector drivers. It also performs parallel-to-serial and serial-to-parallel data conversion for the FDD's serial read/write operation. Main control lines are described below:

FDCCS (FDC Chip Select):
Chip select signal for U3.

FDSEL (FDD Select):

Drive select and motor-on signal.

BCTRL ∮, BCTRL 1: Test use only.

DRIVE SELECT 1:
Drive select signal.

MOTOR ON:

Turn-on signal for the drive motor. Drive motor is on when this line is set to "LOW."

STEP:

Drive signal for the step motor.

DIRECTION IN:

Determines step direction for the step motor. Motor steps in toward the center of the disc when this line is set to "LOW."

HEAD LOAD:

Engages the R/W Head.

WRITE GATE:

Enables the write gate on the FDD when data is sent to FDD.

WRITE DATA:

Frequency-modulated data is serially sent to the FDD.

READY:

FDD ready signal. When a disc is inserted and the drive is turning, this line is set to "LOW."

INDEX:

Index hole detection signal.

TRACK $\phi\phi$:

Indicates that the R/W Head is on the outermost track (track 0).

WRITE PROTECT
Detects write-protected discs.

READ DATA

Data signal sent from FDD.

Figure 8-49. A9 HP-IB and MSU Control Board Assembly Component Locations.

SECTION VIII

Model 4145

8-114

8-48. Alo KEYBOARD & DISPLAY CONTROL BOARD

8-49. The AlO board is divided into three sections: key control section, LED control section, and RPG control section.

[Key Control Section]

Figure 8-51 shows a simplified block diagram of the key control section. U3B and U10 count down the 10kHz keyboard clock signal. U10 outputs three signals: ROW1 (2.5kHz), ROW2 (1.25kHz) and ROW4 (625Hz). U11 decodes the ROW1, ROW2 and ROW4 signals into the key scan signals (KRW0 - KRW7), which are applied to each row of the key matrix. If one of the keys in the key matrix is pressed, U9 encodes the column data into a 3-bit signal. The MPU reads the row (U7) and column (U8) data to determine which key is being pressed.

The arrow keys and the FAST key are not included in the key matrix because more than one of these keys can be pressed at the same time. When one of these keys is pressed, Ul disables the key matrix and data for arrow keys and FAST key are read by the microprocessor.

[RPG Control Section]

The RPG (Rotary Pulse Generator), when rotated, outputs pulses indicating the direction and number of rotations. U3 outputs direction data and U4 outputs the number of rotations.

Figure 8-51. Block Diagram of Key Control Section.

Figure 8-52. All Keyboard and Display Control Board Assembly Component Locations.

Model 4145A

Assembly A. Refer to Figure 8-6.

SECTION VIII

8-50. All SWITCHING POWER SUPPLY BOARD

8-51. The switching power regulator on the All board constructs a light weight, powerful de power supply, upgrading the mobility of the instrument. When the instrument is turned on, ac line voltage is applied to CR3 before being stepped down to the required voltages by Tl. In 220/240V operation, the CR3 circuitry acts as a bridged rectifier (Figure 8-55 (a)). In 100/120V operation, the line voltage selector switches transform the configuration of the CR3 circuitry into a voltage doubler which provides a de voltage almost equal to that obtained in 220/240V operation (Figure 8-55 (b)).

Figure 8-55. Rectifier Circuit.

RV1 and RV2 (varisters) protect the instrument from excessive voltage that may blow the power fuse. To suppress turn-on surge current, K1 allows R13 and R14 to restrict the line current for a brief period after the instrument is turned on.

The high dc voltage from the rectifier circuit is periodically chopped by Q6 and Q7, which are alternately turned on and off at approx. 20kHz by the switching controller, U4. (Figure 8-56)

Figure 8-56. Switching Circuit.

U4 also controls the duty cycle of the pulses at the T1 primary by monitoring the DC output from CR4. If the monitored DC is too high, U4 decreases the duty cycle of the Q6 and Q7 switching pulses; if the monitored DC is too low, U4 increases the duty cycle. Thus, the DC component of T1 output pulses is kept constant for all values of AC line voltage.

If excessive current flows through R18, U4 will detect it via CPl optocoupler and stop generating the Q6 and Q7 switching pulses, thus shutting off the power supply.

DC power for U4 is provided by CR2, U3 and C3. C3 is large—2200µF—because U4 must be turned off only after all other circuits are off when the 4145A is turned off.

U1A and U1B monitor the dc voltage output from CR3. See Figure 8-57. When the power is removed, U1A sends a RESET signal to the MPU to reset the entire instrument. If the power loss is of a short duration, however, the instrument will recover and will display "Recovered from power down!" These brief power failures are detected by U1B.

Figure 8-57. Power Loss Detection Circuit.

SECTION VIII Model 4145A

Figure 8-58. All Switching Power Supply Board Assembly Component Locations.

A11 BOARD

Figure 8-59. All Switching Power Supply Board Assembly Schematic Diagram.

8-124

Figure 8-60. Al2 Board Troubleshooting Flow Diagram (Sheet 1 of 2).

SEE INSIDE

Figure 8-61. Al2 DC Power Supply Board Assembly Component Locations.

8-52. Al3 SMU POWER SOURCE BOARDS

8-53. Each A13 board provides dc power for two of the four SMUs. The output stage of the power amplifier on the SMU board is connected to the A13 board (Refer to Figure 8-44). As for the positive voltage circuitry, Q1 is biased by R2 and R3. Initially Q1, Q7 and Q11 are on, and Q3, Q5 and Q9 are off. So +130V is applied to the collector of Q1. Q5 and Q9 change the voltage applied to Q1 according to output current to obtain an optimum power consumption. Figure 8-64 shows partial schematics. Change sequence is as follows:

- When I is low, Qll is biased by Rll and held on, and dc power is provided from +130V.
- (2) If I increases, the voltage drop across R12 also increases, turning on Q9 and turning off Q11.
- (3) DC power is then provided from the +60V supply.

Figure 8-64. Voltage Change Sequence.

Figure 8-65. Al3 SMU Power Source Board Assembly Component Locations.

Figure 8-66. Al3 SMU Power Source Board Assembly Schematic Diagram.

8-132

Figure 8-67. Al5 Board Troubleshooting Flow Diagram (Sheet 1 of 2).

Figure 8-68. Al5 Floating Power Supply Board Assembly Component Locations.

Flow Diagram (A16 - 1)

Flow Diagram (A16 - 2)

8-54. Al6 Vs/Vm BOARD

8-55. The A16 board contains two voltage sources and two voltage monitors. Figure 8-71 shows a simplified block diagram of one of the voltage sources. Each voltage source is simply an inverting X2 DC amplifier that amplifies the reference voltages supplied from the A4 board. Figure 8-72 shows a block diagram of one of the voltage monitors. Each voltage monitor, like the voltage sources, is an inverting DC amplifier. Gain, however, is determined by the input voltage and is controlled by the A3 microprocessor. On the 2 volt range, gain is X5; on the 20 volt range, gain is X.5.

Figure 8-71. Vs Block Diagram.

Figure 8-72. Vm Block Diagram.

Figure 8-73. A16 Vs/Vm Board Assembly Component Locations.

