6. Let $n \in \mathbb{N}$ and $x, y \in \mathbb{R}$.

(a) Proposition: Let $0 \le x < y$. Then $x^n < y^n$.

Proof.

$$(0 \le x < y) \Longrightarrow (0 \le x * x < y * y) \Longrightarrow \left(\prod_{i=1}^n x < \prod_{i=1}^n y\right) \Longrightarrow (x^n < y^n).$$

(b) Proposition: Let x < y and n is odd. Then $x^n < y^n$.

Proof.

First we show that $(x < y \Longrightarrow x|x| < y|y|)$. Observe that

$$\begin{split} &(0 < x < y) \Longrightarrow 0 < (|x|)|x| < (|y|)|y| \\ &(x < 0 < y) \Longrightarrow (-|x|)|x| < 0 < (|y|)|y| \\ &(x < y < 0) \Longrightarrow \Big(-|x| < -|y| \wedge |x| > |y|\Big) \Longrightarrow (-|x|)|x| < (-|y|)|y| < 0. \end{split}$$

Now we show $x^n < y^n$. Note that since n is odd, n = 2m + 1 for some $m \in \mathbb{Z}$.

$$((x < y) \land (x|x| < y|y|)) \Longrightarrow x(|x|)^{2m} < y(|y|)^{2m}$$
$$x(x)^{2m} < y(y)^{2m}$$
$$x^{2m+1} < y^{2m+1}$$
$$\therefore x^n < y^n.$$

(c) Proposition: If $x^n = y^n$ and n is odd, then x = y.

Proof. (Contrapositive).

Suppose $x \neq y$. Since $x * x \neq y * y$, it follows that $x^n \neq y^n$ for any n. Thus $(x^n \neq y^n \lor n \text{ is not odd})$ is a true statement, meaning $\neg (x = y \land n \text{ is odd})$.

(d) **Proposition:** If $x^n = y^n$ and n is even, then x = y or x = -y.

Proof. (Contrapositive).

Suppose $\neg(x = y \lor x = -y)$, and let n be an even number 2m. Then $x \neq y \land x \neq -y$, so $\left(x * x \neq (\pm y) * (\pm y) = y * y\right) \Longrightarrow \left(x^n \neq y^n\right)$. Thus the statement $(x^n \neq y^n \lor n \text{ is not even})$ is true, meaning $\neg(x^n = y^n \land n \text{ is even})$.