THB7128-3

两相步进驱动器

使用说明书

[使用前请仔细阅读本手册,以免损坏驱动器]

目录

一、产品简介	3
概述	
特点	3
二、接口和接线介绍	3
信号输入端	3
电机绕组连接	
电源电压连接	4
状态指示	4
接线方式	
接线要求	5
三、电流、细分拨码开关设定	5
细分设定	5
工作(动态)电流设定	
四、机械和环境指标	6
使用环境及参数	
机械安装图	
五、电机适配	7
电机适配	7
电机接线	
供电电压和输出电流的选择	
五、常见问题	9
应用中常见问题和处理方法	9
六、保修条款	10

一、产品简介

◆概述

THB7128-3 驱动器是一款专业的两相混合式步进电机驱动器,可适配国内外各种品牌,电流在3.0A及以下,外径39,42,57mm的四线,六线,八线两相混合式步进电机。适合各种小中型自动化设备和仪器,例如:雕刻机、打标机、切割机、激光照排、绘图仪、数控机床、拿放装置等。在用户期望低成本,中低速,高细分运行的设备中效果特性。

◆特点

- ※ 信号输入: 单端, 脉冲/方向
- ※ 细分可选: 1/2/4/8/16/32/64/128细分
- ※ 输出电流: 0.5A-3.0A
- ※ 输入电压: 12-32VDC
- ※ 静止时电流自动减半
- ※ 可驱动4,6,8线两相、四相步进电机
- ※ 光耦隔离信号输入, 抗干扰能力强
- ※ 具有过热、过流、欠压锁定、输入电压防反接保护等功能
- ※ 大体积散热片,有效散热,安装方便
- ※ 外部信号3.3-24V通用, 无需串联电阻

二、接口和接线介绍

◆信号输入端

PUL+	脉冲输入信号。默认脉冲上升沿有效。为了可靠响应脉冲信号,脉冲		
PUL-	宽度应大于1. 2us。		
DIR+	方向输入信号,高/低电平信号,为保证电机可靠换向,方向信号应		
DIR-	先于脉冲信号至少5us建立。电机的初始运行方向与电机绕组接线有		
DIK-	关,互换任一相绕组(如A+、A-交换)可以改变电机初始运行方向。		
ENA+	使能输入信号(脱机信号),用于使能或禁止驱动器输出。使能时,		
ENA-	驱动器将切断电机各相的电流使电机处于自由状态,不响应步进脉冲		
ENA	。当不需用此功能时,使能信号端悬空即可。		

◆电机绕组连接

A+, A-	电机A相绕组。
B+, B-	电机B相绕组。

◆电源电压连接

VCC	直流电源正。范围12-32VDC。	
GND	直流电源负。	

◆状态指示

	电源指示灯,当驱动器接通电源时,该LED常亮; 当驱动器切断电流		
绿色LED	时,该LED熄灭。若上电灯不亮,请检查电源接线或使用电压是否在		
	使用范围之内。		

◆接线方式

输入信号接口有两种接法,用户可根据需要采用共阳极接法或共阴极接法。

共阴极接法 (高电平有效)

注意:控制系统公共端为+3.3V~+24V通用,无需串联电阻。驱动电源为9-32VDC。

ENA 端可不接。ENA 有效时电机转子处于自由状态(脱机状态)这时可以手动转动电机转轴,做适合您的调节。手动调节完成后,再将ENA 设为无效状态,以继续自动控制。

◆接线要求

- (1)为了防止驱动器受干扰,建议控制信号采用屏蔽电缆线,并且屏蔽层与地线 短接,同一机器内只允许在同一点接地,如果不是真实接地线,可能干扰严重,此 时屏 蔽层不接。
- (2) 脉冲和方向信号线与电机线和电源线不允许并排包扎在一起,最好分开至少 10cm 以上,否则电机噪声容易干扰脉冲方向信号引起电机定位不准,系统不稳定 等故障。
- (3)如果一个电源供多台驱动器,应在电源处采取并联连接,不允许先到一台再到另一台链状式连接。
- (4) 严禁带电拔插驱动器电源端子,带电的电机停止时仍有大电流流过线圈,拔 插电源端子将导致巨大的瞬间感生电动势将烧坏驱动器。
- (5) 严禁将导线头加锡后接入接线端子,否则可能因接触电阻变大而过热损坏端子。
- (6) 接线线头不能裸露在端子外,以防意外短路而损坏驱动器。

三、电流、细分拨码开关设定

驱动器采用六位拨码开关设定细分、运行电流。详细描述如下:

SW1、S	SW2、SW3	驱动电流设定。
SW4、S	SW5、SW6	细分精度设定。

◆细分设定

细分	SW6	SW5	SW4
1	OFF	OFF	OFF
2	ON	OFF	OFF
4	OFF	ON	OFF
8	ON	ON	OFF
16	OFF	OFF	ON
32	ON	OFF	ON
64	OFF	ON	ON
128	ON	ON	ON

◆工作(动态)电流设定

电流(A)	SW3	SW2	SW1
0.5	ON	ON	ON
1.0	ON	OFF	ON
1.5	ON	ON	OFF
2.0	ON	0FF	0FF
2.5	0FF	ON	ON
3.0	OFF	ON	0FF

注意: 电流不能拨到不在列表中的档位。

四、机械和环境指标

◆使用环境及参数

冷却方式		自然冷却或强制风冷	
使用环境 湿度 震动	场合	不能放在其他发热的设备旁,要避免粉尘、油污、腐蚀性	
		气体、湿度太大及强震场所,禁止有可燃气体和导电灰尘	
	湿度	4090%RH	
	震动	10-55Hz/0.15mm	
重量		0. 15KG	

◆机械安装图

五、电机选配

THB7128-3 驱动器可以用来驱动 4、6、8 线的两相、四相混合式步进电机,步距角为1.8度和0.9度的均可适用。选择电机时主要由电机的扭矩和额定电流决定。扭矩大小主要由电机尺寸决定。尺寸大的电机扭矩较大;而电流大小主要与电感有关,小电感电机高速性能好,但电流较大。

◆电机选配

(1) 确定负载转矩, 传动比工作转速范围

T电机=C(Jε+T负载)

J: 负载的转动惯量 ε: 负载的最大角加速度 C: 安全系数,推荐值1.2-1.4 T负载: 最大负载转矩,包括有效负载、摩擦力、传动效率等阻力转矩

(2) 电机输出转矩由哪些因素决定

对于给定的步进电机和线圈接法,输出扭矩有以下特点:

- ●电机实际电流越大,输出转矩越大,但电机铜损(P=I2R)越多,电机发热偏多;
- ●驱动器供电电压越高, 电机高速扭矩越大;
- ●由步进电机的矩频特性图可知,高速比中低速扭矩小。

矩频特性图

◆电机接线

两相4线,6线,8线电机接线,如下图

◆供电电压和输出电流的选择

(1) 供电电压的设定

一般来说,供电电压越高,电机高速时力矩越大。越能避免高速时扭矩不够 造成的卡机失步。但另一方面,电压太高会导致过压保护,电机发热较多,甚至 可能损坏驱动器。在高电压下工作时,电机低速运动的振动会大一些。

(2) 输出电流的设定值

对于同一电机,电流设定值越大时,电机输出力矩越大,但电流大时电机和驱动器的发热也比较严重。具体发热量的大小不仅与电流设定值有关,也与运动类型及停留时间有关。以下的设定方式采用步进电机额定电流值作为参考,但实际应用中的最佳值应在此基础上调整。原则上如温度很低(〈40℃)则可视需要

适当加大电流设定值以增加电机输出功率(力矩和高速响应)。

- ●四线电机:输出电流设成等于或略大于电机额定电流值;
- ●六线电机高力矩模式:输出电流设成电机单极性接法额定电流的 50%;
- ●六线电机高速模式:输出电流设成电机单极性接法额定电流的 100%;
- ●八线电机串联接法:输出电流可设成电机单极性接法额定电流的 70%;
- ●八线电机并联接法:输出电流可设成电机单极性接法额定电流的 140%。

△注意: 电流设定后请运转电机 15-30 分钟,如电机温升太高(>70°),则应降低电流设定值。所以,一般情况是把电流设成电机长期工作时出现温热但不过热时的数值。

六、常见问题

◆应用中常见问题和处理方法

现象	现象 可能问题 解决措施		
	电源灯不亮	正常范围供电	
	电流设定太小	根据电机额定电流,选择合适电流档	
	驱动器已保护	排除故障后,重新上电	
	使能信号为低 此信号拉高或不接		
电机不转		1. 检查控制信号的幅值和宽度是否满足	
		要求 2. 电机高速启动,控制器信号需	
	控制信号问题	做加减速处理 3. 输出信号不同选择不	
		同的接线方式(NPN选择共阳,PNP选择	
		共阴)	
	电机线接错	任意交换电机同一相的两根线(例如 A+	
电机转向错误		、A-交换接线位置)	
	电机线有断路	检查并接对	
	信号受干扰	1. 排除干扰 2. 做屏蔽线处理	
	屏蔽地未接或未接好 可靠接地		
位置不准	细分错误	设对细分	
	电流偏小	适当加大电流	
	控制信号问题	检查控制信号是否满足时序要求	
	加速时间太短	适当增大加速时间	
电机加速堵转	电机扭矩太小	选大扭矩电机	
	电压偏低或电流太小	适当提高电压或设置更大的电流	

七、产品保修条款

◆一年保修

我司对产品的原材料和工艺缺陷提供从发货日起一年的质保。在保修期内我司为有缺陷的产品提供免费维修服务。

◆不属保修之列

- ●不恰当的接线,如电源正负极接反和带电拔插
- ●未经许可擅自更改内部器件
- ●超出电气和环境要求使用
- ●环境散热太差
- ●同时带两台电机运行