Frühjahr 23 Themennummer 1 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Für ein stetig differenzierbares Vektorfeld $f: \mathbb{R}^n \to \mathbb{R}^n$ betrachten wir die Differentialgleichung

$$x' = f(x)$$
.

Eine Erhaltungsgröße für f ist eine stetig differenzierbare Funktion $E: \mathbb{R}^n \to \mathbb{R}$, die entlang jeder Lösungskurve dieser Differentialgleichung konstant ist.

- a) Zeigen Sie: Ist $E: \mathbb{R}^n \to \mathbb{R}$ eine Erhaltungsgröße für f, so auch für das Vektorfeld $x \mapsto s(x) f(x)$ für jede stetig differenzierbare Funktion $s: \mathbb{R}^n \to \mathbb{R}$.
- b) Es sei nun A eine reelle $n \times n$ -Matrix. Zeigen Sie: Ist E eine Erhaltungsgröße für das Vektorfeld f(x) = Ax und B eine invertierbare reelle $n \times n$ -Matrix, so ist $x \mapsto E(B^{-1}x)$ eine Erhaltungsgröße für das Vektorfeld $g(x) = BAB^{-1}x$.
- c) Es sei nun A eine reelle 2×2 -Matrix mit den beiden reellen Eigenwerten $\lambda_1 = -1$ und $\lambda_2 = +2$. Zeigen Sie, dass das Vektorfeld f(x) = Ax eine nicht-konstante Erhaltungsgröße hat.

Lösungsvorschlag:

Ist u eine Lösung von x'=f(x) und E eine Erhaltungsgröße, so folgt für h(t)=E(u(t)) auch $0=h'(t)=\langle \nabla E(u(t)),u'(t)\rangle=\langle \nabla E(u(t)),f(u(t))\rangle$ für alle t im Lösungsintervall, weil h konstant ist. Weil f stetig differenzierbar, also auch lokal Lipschitzstetig ist, gibt es zu jedem Anfangswert eine eindeutige maximale Lösung, deswegen muss die Gleichung $\nabla E(y)f(y)=0$ für alle $y\in\mathbb{R}^n$ gelten. Erfüllt nämlich ein $y\in\mathbb{R}^n$ diese Gleichung nicht finden wir eine Lösung der Differentialgleichung zur Anfangsbedingung u(0)=y, was dann wegen $h'(0)\neq 0$ eine Widerspruch liefert. Ist umgekehrt E stetig differenzierbar und erfüllt die Gleichung $\langle \nabla E(y),f(y)\rangle=0$ für alle $y\in\mathbb{R}^n$, so ist E eine Erhaltungsgröße, weil für jede Lösung u die Gleichung v0 v1 v2 v3 v3 v4 v4 v5 v5 v6 v6 v6 v7 v7 v8 v9 v9 die Gleichung v9 v9 v9 v9 eine Widerspruch liefert.

- a) Ist E eine Erhaltungsgröße für f, so folgt nach der Vorbemerkung $\langle \nabla E(x), f(x) \rangle = 0$ für alle $x \in \mathbb{R}^n$, also auch $\langle \nabla E(x), s(x)f(x) \rangle = s(x) \cdot 0 = 0$ für alle $x \in \mathbb{R}^n$ und nach der Vorbemerkung ist E Erhaltungsgröße für das skalierte Vektorfeld.
- b) Nach Voraussetzung und Vorbemerkung gilt $\langle \nabla E(x), f(x) \rangle = \langle \nabla E(x), Ax \rangle = 0$ für alle $x \in \mathbb{R}^n$. Wir berechnen für $\tilde{E}(x) = E(B^{-1}x)$ den Gradienten mit der Kettenregel. Man beachte $\nabla h = (Dh)^{\mathrm{T}}$. Es ist $\nabla \tilde{E}(x) = (B^{-1})^{\mathrm{T}} \nabla E(B^{-1}x)$, also $\langle \nabla \tilde{E}(x), g(x) \rangle = \langle (B^{-1})^{\mathrm{T}} \nabla E(B^{-1}x), BAB^{-1}x \rangle = \langle \nabla E(B^{-1}x), B^{-1}BAB^{-1}x \rangle = \langle \nabla E(B^{-1}x), AB^{-1}x \rangle = 0$ für alle $x \in \mathbb{R}^n$. Nach der Vorbemerkung ist \tilde{E} eine Erhaltungsgröße von g, da es sich wieder um eine stetig differenzierbares Vektorfeld handelt.
- c) A hat zwei verschieden reelle Eigenwerte, ist also diagonalisierbar über \mathbb{R} , d. h. es gibt eine invertierbare reelle 2×2 -Matrix B mit A = B diag[-1,2] B^{-1} . Hierbei bezeichnet diag[-1,2] die Diagonalmatrix $\begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$. Wir betrachten jetzt die stetig

differenzierbare, nicht-konstante Funktion $E: \mathbb{R}^2 \to \mathbb{R}, \ E(x,y) = x^2y$. Es gilt für alle $(x,y)^{\mathrm{T}} \in \mathbb{R}^2$ die Gleichung $\langle \nabla E(x,y), \ \mathrm{diag}[-1,2] \ (x,y)^{\mathrm{T}} \rangle = \langle (2xy,x^2)^{\mathrm{T}}, (-x,2y)^{\mathrm{T}} \rangle = -2x^2y + 2x^2y = 0$, also ist E eine Erhaltungsgröße für das Vektorfeld $f(x) = \mathrm{diag}[-1,2] \ x$. Nach Teil b) ist $\tilde{E}(x) = E(B^{-1}x)$ eine Erhaltungsgröße von $g(x) = B \ \mathrm{diag}[-1,2] \ B^{-1}x = Ax$. Das Vektorfeld \tilde{E} ist auch nicht-konstant, weil der Gradient des Vektorfelds nicht konstant 0 sein kann. Sonst wäre $\nabla E(B^{-1}x)$ für alle $x \in \mathbb{R}^n$ im Kern von B^{-1} gelegen, der nur aus 0 besteht, d. h. $\nabla E(B^{-1}x) = 0$ für alle $x \in \mathbb{R}^n$ und damit, weil das Bild von B^{-1} der ganze \mathbb{R}^n ist, auch $\nabla E \equiv 0$, d. h. E wäre konstant, was aber nicht der Fall ist.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$