

Design Guide Version 0.70

Mar. 12, 2013

T123 OSD Design Guide

1 T123	3 OSD 架构	4
1.1	SPIOSD	4
1.2	OSD v2	10
2 T123	3 OSD 限制点	15
2.1	OSD v2 的色彩表限制	15
3 其	他制作 PNG8 免费工具	17
3.1	COLOR QUANTIZER	18

Rev	/is	sion	ı N	ote
				o to

Revisions	Content	Date
v0.70	First release	Mar. 12, 2013

1 T123 OSD 架构

T123的 OSD 有两种架构, SPIOSD, OSD v2。

其中 SPIOSD 又分为 Background (底图), Sprite(动画层)。

OSD 的层级关系如图 1.1,在基本层(影像层, Video)依照顺序迭加(Alpha-blending)OSD,首先是SPIOSD-Background(底图),SPIOSD-Sprite(动画层),最后是OSDv2。

图 1.1 T123 OSD 的层级架构

1.1 SPIOSD

SPIOSD 又分为 Background (底图), Sprite(动画层)。SPIOSD 优点是显示速度快,缺点是一层只能显示一张图, 动画是以贴图的方式实现。

Background(底图)具有名为 TWBC 的压缩功能,详细介绍请参考"TWBCPICTURE.PDF"。TWBC 是一个像 JPEG 图片为 block base 有损压缩格式,可以将 RGBA8888 32bit 的图片压缩至近八分之一。

因此 Background(底图)分为 TWBC 及 IMAGE 两种格式, TWBC 格式支持的图片格式为 PNG32, IMAGE 格式支持的图片格式为 PNG8。以下就针对这两种图片格式做介绍:

1.1.1 PNG32 图片格式

目前常见的影像编辑软件,Adobe 的 Photoshop 和 Fireworks 等,皆可很完整的支持 PNG32 的图片格式。

Photoshop 储存 PNG32 图片格式(PNG-24)的方式如图 1.2,只需在储存时选择"PNG(*.PNG)"格式即可。另外也可在转存的接口进行,如图 1.3,选择"PNG-24"即可。

图 1.2 Photoshop 的 PNG32 储存接口 1

图 1.3 Photoshop 的 PNG32 储存接口 2

由于 Fireworks 的 PNG 单元格式会在档案里嵌入该软件的图层等信息,因此需要透过"汇出"(Export)的方式,以得到仅有影像的单纯 PNG 格式。

Export 的方式有两种,一种是透过**"汇出精灵(EXPORT WIZARD)"**。透过 Export Wizard,如图 1.4,可以在选择格式(Format)中选择**"PNG32"**,接着按下 Export 按钮,弹出 Export 窗口,请一定要选择**"仅有影像(IMAGE ONLY)"**,再输入档名按下储存即可。

另一种方式是先在"优化选项(OPTIMIZE)"中选择 PNG32 格式,如图 1.5,可同时在右边窗口查看转换格式后的效果,接着到档案(File)菜单选择"汇出(EXPORT)",接着跳出 Export 窗口,同样选择"仅有影像(IMAGE ONLY)",再输入档名按下储存即可。

图 1.4 Fireworks 的 Export Wizard

图 1.5 Fireworks 的 OPTIMIZE 选项

1.1.2 PNG8 图片格式

目前完整支持 PNG8 格式的影像编辑软件并不多,目前仅 Adobe 的 Fireworks 有最完整的支持。

以往的 ICON 或是素材,大多是 PNG32 的图片格式,有些是 BMP(没有半透明),因此必须透过 Fireworks 转换成 PNG8 的图片格式。

在 Fireworks 中转换格式,如同上一小节中提到的,可透过 Export Wizard 以及 OPTIMIZE。如图 1.6,格式(Format)选择"PNG8",色彩表(Palette)选择"最适化(ADAPTIVE)",颜色数目选择 256(PNG8 格式支持最多的颜色数为 256),接下来的选择则需根据实际需求而定,在此简单的介绍 PNG8 延伸出的三种透明模式,如下

- i. No Transparency(不透明模式):类似 bitmap,不透明的底图适合此种模式。
- ii. **Index Transparency(索引色透明模式):** 类似 GIF,固定一种颜色是全透明,因为仅有透明和不透明,因此边缘会有明显锯齿。
- iii. Alpha Transparency (Alpha 透明模式): 与 PNG32 一样的透明模式,每个颜色都带有 Alpha(半透明),RGBA8888,与 PNG32 差别在于一张图最多 256 个颜色(8bit 索引格式)。如果要半透明显示下一层的影像层,务必选择此种模式,下一节介绍的 Sprite(动画层)也务必使用此种模式。

由于颜色数目最多仅有 256 色,因此 Fireworks 会自动进行降色,若原始图太过鲜艳或是渐层太多,会在降色后出现色斑,因此这时候可选择 Dither(抖动处理)选项来改善此情形,若是不能满意 Fireworks 的 dither 效果,可参考小节中所介绍的其他转 PNG8 的免费小 Tool。

最后再按下 Export 按钮,同样需选择 Image Only 选项,即可得到正确的 PNG8 图片。

图 1.7 Fireworks 的 PNG8 格式选项

1.1.3 SPIOSD-Sprite

SPIOSD-Sprite(动画层)仅支持 PNG8 图片格式,水平长度最长只能到 255(pixel)。制作 PNG8 格式的图片如同上一小节(1.1.1)中所介绍。

Sprite(动画层)一般用来显示小动画(贴图方式,Background 也可以),制作小动画的贴图,需要注意这些贴图必须做成一大张,其目的是共享同一个色彩表(palette)。

如图 1.8,将蝴蝶的贴图动画做成一大张图并转存成 PNG8 格式的图片。

图 1.8 蝴蝶的贴图动画图片

1.2 OSD v2

OSD v2 是一种 font base 的 OSD, 这种类型的 OSD 有别于贴图形式的 OSD, 其优点为数据小 (1/2/4bp, 可重复显示不占空间), 缺点是需要较高的设计技巧, 另外就是容量的限制, 根据不同的芯片, 可加载的 RAM 空间也不同, T123 这颗芯片能够加载的 OSD 数据为 16K word, 也就是说一个画面同时 间只能显示最多 32K bytes 的图资。

OSD v2 跟 PNG8 的格式是相同的,同样是索引颜色,颜色表同样是 RGBA8888,差别在于 OSD v2 支持 1/2/4bp。1/2/4bp 意思为一个像素(pixel)透过几个 bit 来索引颜色。

1bp 的图片,每个像素只有两个颜色(索引 0 or 1)。

2bp 的图片,每个像素只有四个颜色(索引 0~3)。

4bp 的图片,每个像素只有十六个颜色(索引 0~15)。

一个 OSD 画面如果仅有两个或是四个甚至是十六个颜色的话,太过于单调且难以设计 UI,因此才会有 Font base 这种格式,意即将画面切割成一个个固定的大小(Font),再赋予每个 Font 两个颜色或是四个甚至十六个(1bp/2bp/4bp)。

因此 OSD v2 的数据大小取决于总共几个 Font, 这些 Font 是几 bp, 每个 Font 的大小。以下以最常使用的 Font size 16x24 来作为计算的范例。

设计 Font base 的 OSD 方式最好以 ICON 为单位,再根据 Font 的大小来切割 ICON。有关 OSD v2 更深入的介绍及其限制请参考 2.1.1。

如果前面小节所提到的,目前支持 PNG8 的影像编辑软件仅有 Fireworks,因此以下教学及介绍皆使用此软件。

1.2.1 OSDv2 的 PNG8 设定

首先假设需要一组数字的 OSD UI,由于考虑数字的变化以及数据大小,且不需要太过鲜艳华丽,因此选择使用 OSD v2 的 2bp 来做为此 UI 的 OSD。选用的屏为 800x480 的分辨率,因此刚好在 16x24 的 Font size 可以切满整个屏的大小(50x20 的 Font 排列),因此以 16x24 的 Font 大小来进行设计,如图 1.9。

图 1.9 4 个 font 组成一个数字的 2bp ICON

在转存成 PNG8 格式前,需根据需求做一些设定,此范例目标为 2bp,也就是仅有 4 个颜色,因此如图 1.10 需选择为 4。由于此字体本身颜色数不多,因此并未使用 Dither 等处理,另外需选择 Alpha Transparency 模式,因为这些字体的背景是要透明且需要半透明的效果,接着即可 Export 此张图片存为 PNG8 格式并作为 OSDv2 的图资。

图 1.10 PNG8 2bp 格式的设定界面

1.2.2 ICON(图片)切割

在前面介绍 OSDv2 时,并未详细提到限制点(参考 2.1)。其中一项限制点为 2bp 最多仅能有 16 组颜 色,也因为此限制点,所以在转成 PNG8 和切割成 ICON 时需要特别注意。

原则上在知其此限制点下进行 UI 设计并无太大问题,主要是将这些 UI 切割成 ICON 时会因为 Fireworks 这软件而造成其他问题。简单的说,就是在 Fireworks 上设计好的一大张图片,切割成 PNG8 的 ICON 时,每张的色彩表的颜色排序甚至颜色有可能会不一样,因此必须藉由 TWArt 工具来进行 ICON 的切割。

在设计时有可能会分成几大张来设计,如图 1.9, 1.11, 1.12。这些 UI 其实颜色相近甚至是一样的,但若是直接使用 Fireworks 直接切割成一个个的 ICON 时,有可能每个 ICON 的色彩表甚至颜色都会不一样,这是由于 Fireworks 这个软件会对每张切割的 ICON 进行色彩表优化,因此造成超过 2bp 仅能 16 组颜色的限制。

0123456789

图 1.11 尚未切割的 2BP 数字 ICON

图 1.12 尚未切割的 2BP 字符串 ICON

TWART 就是为了避免上述情形而生的工具,此工具的还包含其他功能,详情请参阅"TWART USER GUIDE V1.26.PDF"。在切割成 ICON 图片前,必须将设成为同一组颜色的 ICON 都储存成一大张并进行颜色数限制,如图 1.13 为前面所介绍的 2bp ICON 图片,集成一大张进行 2bp(4 个颜色)的 PNG8 设定后存为 PNG8 格式图片。

图 1.13 同一组色彩表的 PNG8 图片

加载 TWArt 后进行初步的切割,详情切割方法请参阅" TWART USER GUIDE V1.26.PDF"。如图 1.14 先切割为三大张,以方便管理,当然也可一次将所有 ICON 切割出来,以下范例是以方便管理的方式进行,左边的切割图列出切割后的图片,按下储存即可。

图 1.14 切割成三大张图片以方便管理

再将刚刚切割的三张图片,分别加载 TWArt 后进行最后的切割,以得到色彩表皆相同的 ICON 图片,如图 1.15。

图 1.15 切割成 ICON 图片

4bp 的图片皆是同样的切割方法,分别加载 TWArt 后进行最后的切割,以得到色彩表皆相同的 ICON 图片,如图 1.16。

图 1.16 4BP 切割成 ICON 图片

2 T123 OSD 限制点

T123 的 OSD 有两种架构, SPIOSD, OSD v2。其中 SPIOSD 又分为 Background (底图), Sprite(动画层)。

两种架构的限制点也不一样,在 SPIOSD 的部分,除了 PNG8 格式图片外(TWBC 除外),就只剩 Sprite 的水平(宽)最长为 255 pixel 的限制。由于 OSD v2 的限制点较多,鉴于常影响其设计的方式及理念,因此特别截录下一小节进行介绍。

2.1 OSD v2 的色彩表限制

OSD v2 是一种 font base 的 OSD,除了 **16K word** 空间的限制外,色彩表的限制也是设计 OSD UI 时必须注意的部分。

OSD v2 的色彩表总共有 256 个颜色, 其中最前面 0~15 个颜色固定给 1BP 使用(OSDTool 工具), 因此剩下 240 个颜色给 2BP,4BP 使用。

OSD v2 的 2BP 最多仅能使用 16 组颜色,因此 2BP 最多使用 64 个颜色(4x16, OSDTool 工具),因此 在 2BP 颜色用满的情况下,剩下 176 个颜色给 4BP 使用,有就是 4BP 仅能使用 11 组颜色。

一般情形下 2BP 并不会用满,因此剩下多少个颜色 4BP 都可使用,4BP 一次皆以使用连续的 16 个颜色为一组。

下面图 2.1 为 OSD v2 的色彩表架构,详细内容可参考 T123 datasheet。

16

3 其他制作 PNG8 免费工具

在介绍 PNG8 格式图片的章节里,有提到目前的专业图像处理软件中,仅有 Fireworks 能够完全支持 PNG8 的图片格式,不过有些免费的小工具也能完全支持 PNG8 图片的格式(因为 PNG8 渐渐成为主流),且在降色等优化处里有着比 Fireworks 更好的效果。

因此以下章节将介绍一套名为 Color Quantizer 的免费工具,此工具仅有 Windows 版本。Mac 及 Linux 系统的也有类似的免费工具,另外相关的免费函式库以及源码,可参考以下网站,有更进一步的介绍。

工具名称: Color quantizer

工具语言: 英文

工具性质: 免费软件

系统支持: Windows

官方网站: Color quantizer

软件下载: cq0650.zip

工具名称: ImageAlpha

工具语言: 英文

工具性质: 免费软件

系统支持: Mac

官方网站: ImageAlpha — lossy compression for 24-bit PNG images (like JPEG with alpha channel!)

软件下载: ImageAlpha1.2.5.1.tar.bz2

工具名称: pngquant

工具语言: 英文

工具性质: 免费软件

系统支持: Windows/Mac/Unix

官方网站: pngquant — lossy PNG compressor

软件下载: pngquant

工具名称: TinyPNG

工具语言: 英文

工具性质: 免费软件

系统支持: Windows/Mac/Unix

官方网站: TinyPNG - Compress PNG images while preserving transparency

软件下载: on-line (无法设定颜色数)

3.1 Color Quantizer

Color quantizer 这套工具对于 PNG8 的处理,比 Fireworks 有更好的效果。

目前仅有 OSDTool v1.10 以上的版本才能支持此工具产生的档案。

操作的方式相当容易上手,加载源文件后,可将鼠标移动到预览图上,右边会有放大的预览图,对其按下右键则会有放大缩小以及替换背景等选项。如图 3.1,右边的数值则是颜色数目(可直接输入数值)以及错误容忍度。设定颜色数目后即可在左边预览图上看到效果,接着可直接按下另存新文件的按钮进行存盘。

图 3.1 Color quantizer 工具接口

在图 3.1 中的右边有个调色盘的按钮,按下会弹跳出 Quantizer settings 的设定接口,如图 3.2,可视情况做一些调整来达到较好的 PNG8 效果。

图 3.2 quantizer settings 设定接口