Università degli Studi di Napoli Federico II

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE

RICERCA OPERATIVA, A.A. 2021/22 – PROF.SSA PAOLA FESTA PROVA SCRITTA, 11 GENNAIO 2022

Esercizio 1

Dato il seguente problema di PL

min
$$x_2$$

s.a $x_1 \leq 4$
 $x_1 + x_2 \geq 2$
 $x_1 \geq 1$
 $x_1, x_2 \geq 0$

- disegnarne la regione ammissibile P;
- 2. per ogni vertice di P indicare quali vincoli esso attiva;
- 3. se esiste, indicare una soluzione ottima.
- 4. verificare tramite Metodo del Simplesso Tabellare la risposta al punto 3.

Cosa sarebbe accaduto se la funzione obiettivo fosse stata min $-x_2$?

& Esercizio 2

Si consideri il grafo orientato G=(V,A) riportato in Figura.

- (a) Si calcoli un albero dei cammini minimi radicato nel nodo 1.
- (b) Si analizzi e giustifichi la complessità computazionale dell'algoritmo di Dijkstra con lista non ordinata.

Esercizio 3

Descrivere il Metodo del Big-M, commentandone anche le condizioni di stop.

Esercizio 4

Si descrivano i possibili metodi per individuare una soluzione ottima al Problema dello Zaino 0/1, analizzandone (giustificandole) le complessità computazionali.

Esercizio 5

Si consideri il grafo orientato e pesato G=(V,A) riportato nella Figura dell'Esercizio 2 trascurando l'orientamento ed il peso degli archi (si eliminino anche eventuali archi multipli):

- (a) Si calcoli un vertex cover per G utilizzando l'algoritmo random.
- (b) Si analizzi e giustifichi la complessità computazionale dell'algoritmo utilizzato al punto (a).

Esercizio 6

(a) Si individui una soluzione ottima al Problema dello Zaino 0/1 caratterizzato da uno zaino di capacità pari a 9 kg ed avendo a disposizione 4 oggetti diversi con peso e profitto riportati nella seguente tabella:

Oggetto	Peso	Profitto	116
1	3	5	1,66
2	5	2	引与亚
3	3	3	
4	2	4	17

(b) Si analizzi la complessità computazionale dell'algoritmo utilizzato al punto (a).

Università degli Studi di Napoli Federico II

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE

RICERCA OPERATIVA, A.A. 2021/22 - PROF.SSA PAOLA FESTA PROVA SCRITTA, 15 FEBBRAIO 2022

Esercizio 1

Dato il seguente problema di PL continuo

- 1. disegnarne la regione ammissibile P;
- per ogni vertice di P indicare quali vincoli esso attiva;
- 3. se esiste, indicare una soluzione ottima.
- verificare tramite Metodo del Simplesso Tabellare la risposta al punto 3.

Esercizio 2

Si descriva la procedura da applicare per individuare una soluzione di base ammissibile per un problema di programmazione lineare continuo espresso in forma standard.

Esercizio 3

Descrivere il Metodo del Branch & Bound, commentandone anche le condizioni di stop.

Esercizio 4

Si risolva il Problema dello Zaino 0/1 caratterizzato da uno zaino di capacità pari a 15 Kg. e da 4 oggetti i cui pesi e profitti sono mostrati nella Tabella riportata di seguito:

Oggetto	Peso (Kg.)	Profitto (Euro)
1	6	24 9
2	3	18 6
3		40 8
4	2	2 4

In relazione ad un algoritmo di tipo Branch & Bound per il Problema dello Zaino 0/1 si commentino le caratteristiche dell'algoritmo adoperato per risolvere il rilassamento continuo del sottoproblema associato ad un generico nodo dell'albero di branching.

