Correction Exercice 1 - TD1

Trame Ethernet à décoder

00 12 17 41 c2 c7 00 1a 73 24 44 89 08 00 45 00 00 3c 00 30 00 00 80 01 8f d6 c0 a8 01 69 c0 a8 01 01 08 00 4d 56 00 01 00 05 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69

Format de la trame Ethernet II

Préambule	Adresse de destination	Adresse source	Type de trame	Données	FCS
8 octets	6 octets	6 octets	2 octets	De 46 à 1 500 octets	4 octets

Format du paquet IP

Question 1: Encercler l'entête

00 12 17 41 c2 c7 00 1a 73 24 44 89 08 00 45 00 00 3c 00 30 00 00 80 01 8f d6 c0 a8 01 69 c0 a8 01 01 08 00 4d 56 00 01 00 05 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69

Question 2: Donner les adresses MAC Source et Destination

- L'adresse MAC source est codée sur 6 octets.

L'adresse MAC destination est codée sur 6 octets.

Question 2: Donner les adresses MAC Source et Destination

00 12 17 41 c2 c7 00 1a 73 24 44 89 08 00 45 00 00 3c 00 30 00 00 80 01 8f d6 c0 a8 01 69 c0 a8 01 01 08 00 4d 56 00 01 00 05 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69

Adresse MAC Source

Adresse MAC Destination

Question 3: Préciser le type de cette trame

Type (sur 2 octets): indique le type des données encapsulées dans la trame Ethernet.

Exemples de valeurs du champ type:

EtherType	Protocole
0x0800	IPv4
0x0806	ARP
0x809B	AppleTalk
0x8035	RARP
0x86DD	IPv6

Question 3: Préciser le type de cette trame

00 12 17 41 c2 c7 00 1a 73 24 44 89 08 00 45 00 00 3c 00 30 00 00 80 01 8f d6 c0 a8 01 69 c0 a8 01 01 08 00 4d 56 00 01 00 05 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69

Type: 0800 Protocole IP

Question 4-a: La version du protocole

Version (sur 4 bits) : indique le numéro de version du protocole IP utilisé

Question 4-a: La version du protocole

00 12 17 41 c2 c7 00 1a 73 24 44 89 08 00 45 00 00 3c 00 30 00 00 80 01 8f d6 c0 a8 01 69 c0 a8 01 01 08 00 4d 56 00 01 00 05 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69

La version du protocole = 4

Question 4-b: La longueur de l'entête

Header Length (sur 4 bits) : spécifie la longueur de l'en-tête du Datagramme en nombre de mots de 32 bits.

Question 4-b: La longueur de l'entête

00 12 17 41 c2 c7 00 1a 73 24 44 89 08 00 45 00 00 3c 00 30 00 00 80 01 8f d6 c0 a8 01 69 c0 a8 01 01 08 00 4d 56 00 01 00 05 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69

L'entête du paquet IP est composée de 5 mots

Question 4-C: La valeur du champ TOS

Type of Service (sur 1 octet) : Donne une indication sur la qualité de « service » souhaitée pour l'acheminement des données.

Bits 0-2	Priorité	010→Immédiate 001-	Normale 000→Basse	
Bit 3	D	0 = Retard standard	1 = Retard faible	
Bit 4	T	0 = Débit standard	1 = Haut débit	
Bit 5	R	0 = Taux d'erreur standard	1 = Taux d'erreur faible	
Bit 6	С	0 = Coût standard	1 = Coût faible	
Bit 7	Х	Réservé		

Question 4-C: La valeur du champ ToS

Question 4-d: La longueur totale du datagramme IP

Longueur totale (sur 2 octets) : Longueur du datagramme entier y compris en-tête et données mesurée en octets.

Question 4-d: La longueur totale du datagramme IP

00 12 17 41 c2 c7 00 1a 73 24 44 89 08 00 45 00 00 3c 00 30 00 00 80 01 8f d6 c0 a8 01 69 c0 a8 01 01 08 00 4d 56 00 01 00 05 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69

Longueur totale du datagramme IP= (003C)₁₆ =(60)₁₀ Octets

Question 4-e: L'identifiant affecté au datagramme

Identifiant (sur 2 octets): Valeur assignée par l'émetteur pour identifier les fragments d'un même datagramme.

Question 4-e: L'identifiant affecté au datagramme

00 12 17 41 c2 c7 00 1a 73 24 44 89 08 00 45 00 00 3c 00 30 00 00 80 01 8f d6 c0 a8 01 69 c0 a8 01 01 08 00 4d 56 00 01 00 05 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69

Identifiant du datagramme= (0030)₁₆= (48)₁₀

Question 4-f: DF, MF, Fragment Offset

Les champs flags


```
Bit 0 Réservé, doit être laissé à 0
Bit 1 (DF - Don't fragment) 0= Fragmenté 1= Non fragmenté
Bit 2 (MF – More Fragment) 0= Dernier fragment 1= Fragment
```

Offset: Cette valeur indique la position relative, en multiples de 8 octets, de ce fragment de trame dans la trame initiale (ce champ est défini sur 13 bits)

Question 4-f: DF, MF, Fragment Offset

Question 4-g: TTL (Time To Live)

TTL: Il indique la durée de vie de la trame. Celleci doit être détruite lorsque ce champ devient nul. Toute traversée d'un nœud se traduit, en pratique, par une simple décrémentation de ce champ.

Question 4-g: TTL (Time To Live)

00 12 17 41 c2 c7 00 1a 73 24 44 89 08 00 45 00 00 3c 00 30 00 00 80 01 8f d6 c0 a8 01 69 c0 a8 01 01 08 00 4d 56 00 01 00 05 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69

TTL= (80)₁₆=(128)₁₀

Question 4-h: Protocole

Protocole (Sur 1 octet) : indique le protocole utilisé au niveau supérieur:

Valeur	Protocole
1	ICMP
6	TCP
17	UDP
Etc	etc

Question 4-h: Protocole

00 12 17 41 c2 c7 00 1a 73 24 44 89 08 00 45 00 00 3c 00 30 00 00 80 01 8f d6 c0 a8 01 69 c0 a8 01 01 08 00 4d 56 00 01 00 05 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69

Question 4-i: Adresse IP Source

00 12 17 41 c2 c7 00 1a 73 24 44 89 08 00 45 00 00 3c 00 30 00 00 80 01 8f d6 c0 a8 01 69 c0 a8 01 01 08 00 4d 56 00 01 00 05 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69

Header Checksum

Adresse IP Source: C0 A8 01 69 = 192.168.1.105

Question 4-j: Adresse IP destination

Adresse IP destination: C0 A8 01 01= 192.168.1.1

Adresse IP Source: C0 A8 01 69 = 192.168.1.105