Architektury systemów komputerowych

Lista zadań nr 0

Na zajęcia 20, 22 i 26 lutego 2024

W zadaniach odnoszących się do języka C wolno używać **wyłącznie** instrukcji przypisania, operatorów bitowych, dodawania i odejmowania, przesunięć bitowych i stałych! Pętle, rozgałęzienia, operatory mnożenia, dzielenia i reszty z dzielenia są **niedozwolone!** Zakładamy, że liczby są typu «uint32_t» – tj. nie posiadają znaku i mają szerokość 32 bitów. Należy wytłumaczyć czemu rozwiązanie działa!

UWAGA! W trakcie prezentacji należy być gotowym do zdefiniowania pojęć oznaczonych wytłuszczoną czcionką.

Zadanie 1. Przekształć każdą z podanych liczb z systemu ósemkowego na system binarny, szesnastkowy i dziesiętny: 42₈, 255₈, 3047₈ i 140336₈.

Komentarz: System ósemkowy był powszechnie stosowany w erze minikomputerów, np. PDP-11¹.

Zadanie 2. Wykonaj poniższe operacje bez konwersji liczb do systemu dziesiętnego lub binarnego:

- $22_{16} + 8_{16}$
- $-73_{16} + 2C_{16}$
- $7F_{16} + 7F_{16}$
- $C2_{16} + A4_{16}$

Podpowiedź: Użyj tabelki dodawania dla liczb w systemie szesnastkowym.

Zadanie 3. Napisz **instrukcje** w języku C, które dla zmiennych x i k wykonają poniższe obliczenia:

- wyzeruj k-ty bit zmiennej x,
- zapal² k-ty bit zmiennej x,
- zaneguj k-ty bit zmiennej x.

Zadanie 4. Napisz **wyrażenia** w języku C, które dla zmiennych x i y wykonają poniższe obliczenia:

- $x*2^y$
- $|x/2^y|$,
- $x \mod 2^y$,
- \blacksquare $\lceil x/2^y \rceil$.

Uwaga! W ostatnim wyrażeniu nie wolno dopuścić do **przepełnienia** (ang. overflow) co może wystąpić, jeśli x jest bardzo duże.

Zadanie 5. Napisz wyrażenie w języku C, które wyznaczy liczbę przeciwną do liczby przechowywanej w zmiennej x typu «int32_t». W wyrażeniu <u>nie wolno</u> użyć unarnego lub binarnego operatora minus!

Zadanie 6. Napisz ciąg instrukcji w języku C, który zmieni miejscami **najmniej znaczące** 8 bitów zmiennych x i y. Możesz wprowadzić jedną zmienną tymczasową.

Zadanie 7. Napisz wyrażenie w języku C, które oblicza się do 0 jeśli liczba x jest potęgą dwójki. **Uwaga!** Pamiętaj, że 0 nie jest potęgą dwójki.

Zadanie 8. Napisz ciąg instrukcji w języku C, który skonwertuje zmienną x z formatu **little-endian** do formatu **big-endian**. Należy użyć jak najmniejszej liczby operacji bitowych.

Zadanie 9. Jaką rolę pełnią kody sterujące standardu ASCII o numerach 0, 4, 7, 10 i 12?

Wskazówka: Opisy kodów sterujących można znaleźć w artykule ASCII control code chart³.

¹https://en.wikipedia.org/wiki/PDP-11

 $^{^2}$ Stosowane zamiennie z "ustaw". Te słowa zawsze oznaczają ustalenie wartości bitu na 1.

³https://en.wikipedia.org/wiki/ASCII#Control_code_chart

Zadanie 10. Jakie ograniczenia standardu ASCII przyczyniły się do powstania **UTF-8**? Wyjaśnij zasadę kodowania znaków do postaci binarnej UTF-8 i zapisz poniższy ciąg znaków w systemie szesnastkowym:

Proszę zapłacić 5€!