Parameterizing B&B search trees to learn branching policies

Giulia Zarpellon, Jason Jo, Andrea Lodi and Yoshua Bengio SCIP Online Workshop · June 4, 2020

B&B variable selection

Branch and Bound (B&B) is the backbone of Mixed-Integer Linear Programming (MILP)

$$min_x \{c^T x : Ax \ge b, x \ge 0, x_i \in \mathbb{Z} \ \forall \ i \in \mathcal{I}\}$$

an *exact* **tree-search** method iteratively solve LP relaxations and partition the solution space by **branching on variables**

VARIABLE SELECTION: at branching step t, split current node Q_t into subproblems by

- selecting a candidate variable $j \in C_t := \{i \in \mathcal{J} : x_i^{Q_t} \notin \mathbb{Z}\},\$
- creating new nodes according to the disjunction $x_j \leq \left[x_j^{Q_t}\right] \ \ \forall \ x_j \geq \left[x_j^{Q_t}\right]$

Learning to branch

Complex and flexible MILP solver environment,
several components interact and many crucial decisions are heuristic

VARIABLE SELECTION is key for search success

>> Perfect ground for **machine learning** (ML) experiments

"Learning to branch" (l2b) established theme, works mostly focus on imitation of **strong branching** and specialization of policies to **combinatorial classes**

Seek broader generalization, across generic MILPs, no restrictions on structure/size

Branching on heterogeneous MILPs

Hypothesis

The space of B&B search trees can represent the complexity and dynamism of branching, in a way that is shared across heterogeneous MILPs.

Intuitions

- Algorithmic decisions could depend on the state of the search
 MILP phases and algorithmic pattern in B&B process,
 abundant yet (mostly) unexploited data from the search
- Search evolution and variable selection are deeply linked select a variable based on its role in the search components

Branching on heterogeneous MILPs

 State-of-the-art MILP branching rules are mechanisms to score variables based on their effectiveness in the search

```
relpscost combines multiple scores from different components in weighted sum, conflict, inference, cutoff and pseudo-cost
```

• Importance of different functionalities should **change dynamically** during exploration **dynamicfactor** adjusts weights and variables' scores

Idea

Consider variables' roles and the tree exploration itself to perform a more flexible variable selection, adapted to search stages.

Novel l2b framework

To explore the idea of learning branching policies

from *parameterizations of B&B* search trees that are *shared among general MILPs*,

Represent branching in the space of B&B trees via input features

Combine data via ML model for branching predictions

| Input features

$C_t \in \mathbb{R}^{25 \times |\mathcal{C}_t|}$

Represent set of candidate variables C_t

capture multiple roles of a variable throughout the search:

LP bound and solution, statistics on search participation and past branchings

scores in relpscost formula are included

$Tree_t \in \mathbb{R}^{61}$

Encode dynamic state of B&B search

current node (depth, bound), tree composition (nodes explored, open, leaves), global bounds evolution, aggregated scores, statistics on open nodes

TreeGate model $Tree_t \in \mathbb{R}^{61}$ encodes dynamic B&B search **Modulation** of variables' representations

- provides context over branching via learned tree-based signal
- adapts variable selection to tree evolution

Remarks

- $\{C_t, Tree_t\}$ gathered via customized PySCIPOpt, do not depend on parameters (c, A, b, \mathcal{I})
- $|\mathcal{C}_t|$ varies wildly across MILPs and B&B search (vs. fixed structure/size) and so does \mathcal{C}_t dimensionality: treat $|\mathcal{C}_t|$ as "batch dimension" in our networks
- $Tree_t$ is **not static**, but evolves with the search

Experimental setup

Curation of MILP dataset

27 heterogeneous instances from MIPLIB 3, 2010, 2017 and MILPLib To better explore generalization abilities, focus on manageable trees

Data collection (offline) for imitation learning (IL)

Datapoints given by $x_t = \{C_t, Tree_t\}$ and expert labels $y_t = relpscost$ decisions

Data augmentation schemes:

different seeds and initial randomization (train only)

Data heterogeneity is challenging but important to assess the framework

Experimental setup

Solver setting

SCIP 6 in "sandbox" setting to fairly compare branching rules, disable heuristics and provide optimal cutoff, 1h TLim

- Training and validation (hyperparameter search)
- IL Test + SCIP evaluations

Never seen MILP instances and larger branching sets

Metrics: imitation accuracy and **(fair)** nnodes

Comparisons: GCNN and SCIP random, pscost, relpscost

Learned policies

- TreeGate better than NoTree in all aggregated metrics
 less clear-cut results instance-wise, but bigger reductions from TreeGate
- No time-limit (vs. GCNN), both policies are better than pscost, overall comparable to relpscost when accounting for SB side-effects

IL accuracy

Policy	Test acc@1 (@5)	Val acc@1 (@5)
NoTree	64.02 (88.51)	77.69 (95.88)
TreeGate	83.70 (95.83)	84.33 (96.60)
GCNN	$15.28 \ (44.16)$	19.28 (38.44)

➤ B&B nodes x5 SCIP runs

Set	NoTree	TreeGate	% diff	GCNN	random	pscost	relpscost (fair)
All	1241.79	1056.79	-14.90	*3660.32	*6580.79	*1471.61	286.15 (719.20)
TRAIN	834.40	759.94	-8.92	*1391.41	*2516.04	884.37	182.27 (558.34)
Test	3068.96	2239.47	-27.03	*33713.63	*61828.29	*4674.34	712.77 (1276.76)

Wrap-up

To explore the idea of learning branching policies from *parameterizations of B&B search trees* that are *shared among general MILPs*,

Represent branching in the space of B&B trees via input features

$$\mathbf{x}_t = \{C_t, Tree_t\}$$

Combine data via ML model for branching predictions

DNN architectures, using modulation by tree-signal

We parameterize B&B search trees to learn branching policies that generalize across heterogenous MILPs

Incorporating tree-related context

- allows to approach heterogeneous MILPs w/o need of training analogs (vs. GCNN),
- useful for future (reinforcement) learning approaches
- >> could also be leveraged in MILP algorithmic design!

Thank you! Questions?

https://arxiv.org/abs/2002.05120 | giulia.zarpellon@polymtl.ca

Minimal references

[Lodi and Z., 2017] A. Lodi and G. Zarpellon. On learning and branching: a survey. TOP, 2017

[Khalil at al., 2016] E.B. Khalil, P.L. Bodic, L. Song, G. Nemhauser, and B. Dilkina. Learning to branch in mixed integer programming. In Thirtieth AAAI Conference on Artificial Intelligence, 2016

[Balcan et al., 2018] M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik. Learning to branch. In 35th International Conference on Machine Learning, 2018

[Gasse et al., 2019] M. Gasse, D. Chételat, N. Ferroni, L. Charlin and A. Lodi. Exact combinatorial optimization with graph convolutional neural networks. In 33rd Conference on Neural Information Processing Systems, 2019

[Berthold, Hendel and Koch., 2017] T. Berthold, G. Hendel, and T. Koch, From feasibility to improvement to proof: three phases of solving mixed-integer programs. Optimization Methods and Software, 2017.

[Fischetti, Lodi and Z., 2019] M. Fischetti, A. Lodi and G. Zarpellon. Learning MILP resolution outcomes before reaching time-limit. In International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research, 2019

[Hendel at al., 2020] G. Hendel, D. Anderson, P. Le Bodic, and M.E. Pfetsch. Estimating the size of branch-and-bound trees. Optimization Online, 2020

[Gamrath and Schubert, 2018] G. Gamrath and C. Schubert. Measuring the impact of branching rules for Mixed-Integer Programming. In Operations Research Proceedings, 2017