PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-265229

(43) Date of publication of application: 26.09.2000

(51)Int.Cl.

C22C 19/00

H01M 4/38 H01M 10/30

(21)Application number: 11-070484

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

16.03.1999

(72)Inventor: KONO RYUKO

SAKAI ISAO

YOSHIDA HIDENORI **INABA TAKAMICHI** YAMAMOTO MASAAKI

(54) HYDROGEN STORAGE ALLOY AND SECONDARY BATTERY

(57)Abstract:

PROBLEM TO BE SOLVED: To increase the flatness characteristic of equilibrium pressure at the occlusion and release of hydrogen and also to reduce pressure difference by providing a specific composition consisting of Mg, La, two or more kinds among rare earth elements including Y, Ni, Co, and one or more elements selected from among Mn and other twelve elements.

SOLUTION: The hydrogen storage alloy has a composition represented by general formula Mg (La1-bR1b)1-aNiXCoYM1Z [where R1 means two or more elements selected from rare earth elements including Y and Ce content based on the total content of R1 and La is regulated to <20 wt.%; M1 means one or more elements selected from Mn, Fe, V, Cr, Nb, Al, Ga, Zn, Sn, Cu, Si, P, and B; and 0.15 < a < 0.35, $0.55 \le b \le 0.95$, $0 \le Y \le 1.5$, $0 \le Z \le 0.2$ and 2.9 < X + Y + Z < 3.5 are satisfied]. Because the secondary battery having a cathode containing this alloy can maintain high working voltage over a long period at electric discharge, discharge capacitance and charge-anddischarge cycle life can be improved.

LEGAL STATUS

[Date of request for examination]

11.05.2005

[Date of sending the examiner's decision of

09.01.2007

rejection

[Kind of final disposal of application other than

the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision 2007-004019]

of rejection]

[Date of requesting appeal against examiner's

08.02.2007

decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-265229 (P2000-265229A)

(43)公開日 平成12年9月26日(2000.9.26)

(51) Int.Cl. ⁷		識別記号	F I	テーマコート*(参考)
C 2 2 C	19/00		C 2 2 C 19/00	F 5H003
H01M	4/38		H 0 1 M 4/38	A 5H028
	10/30		10/30	\mathbf{Z}^{\cdot}

審査請求 未請求 請求項の数6 OL (全 15 頁)

(21)出願番号	特願平11-70484	(71) 出願人	000003078
			株式会社東芝
(22)出顧日	平成11年3月16日(1999.3.16)		神奈川県川崎市幸区堀川町72番地
		(72)発明者	河野 龍興
			神奈川県川崎市幸区堀川町72番地 株式会
			社東芝川崎事業所内
		(72)発明者	
		(15/76/314	神奈川県川崎市幸区堀川町72番地 株式会
			社東芝川崎事業所内
		(24) (D.W. I.	
		(74)代理人	
			弁理士 鈴江 武彦 (外6名)
			最終頁に続く

(54) 【発明の名称】 水素吸蔵合金及び二次電池

(57)【要約】

【課題】 水素吸蔵時及び放出時の平衡圧の平坦性が高く、かつ水素吸蔵時及び放出時の圧力差が低減された水素吸蔵合金を提供することを目的とする。

【解決手段】 下記一般式(1)で表される組成を有することを特徴とする。

 $Mg_a (La_{1-b}Rl_b)_{1-a}Ni_xCo_yMl_z \cdots (1)$

【特許請求の範囲】

【請求項1】 下記一般式(1)で表される組成を有することを特徴とする水素吸蔵合金。

1

Mg。(La_{1-b}Rl_b)_{1-a}Ni_xCo₇Ml_z … (1) ただし、R1はYを含む希土類元素から選ばれる少なく とも2種類の元素で、かつ前記R1と前記Laの合量に 対するCe含有量が20重量%未満であり、M1はM n, Fe, V, Cr, Nb, Al, Ga, Zn, Sn, Cu, Si, P及びBから選ばれる少なくとも1種類の 元素、原子比a、b、X、Y及びZはそれぞれ0.15 10 <a<0.35、0.55 \leq b \leq 0.95、0 \leq Y \leq 1.5、0 \leq Z \leq 0.2、2、9<X+Y+Z<3.5 として規定される。

【請求項2】 正極と、下記一般式(1)で表される組成を有する水素吸蔵合金を含む負極と、前記正極と前記 負極の間に介装されたセパレータと、アルカリ電解液と を備えることを特徴とする二次電池。

Mg。(La_{1-b}R1_b)_{1-a}Ni_xCo_vM1_z … (1) ただし、R1はYを含む希土類元素から選ばれる少なくとも2種類の元素で、かつ前記R1と前記Laの合量に 20 対するCe含有量が20重量%未満であり、M1はMn、Fe、V、Cr、Nb、A1、Ga、Zn、Sn、Cu、Si、P及びBから選ばれる少なくとも1種類の元素、原子比a、b、X、Y及びZはそれぞれ0、15 <a<0、35、0、55≤b≤0、95、0≤Y≤1、5、0≤Z≤0、2、2、9<X+Y+Z<3、5 として規定される。

【請求項3】 下記一般式(2)で表される組成を有することを特徴とする水素吸蔵合金。

Mg_R21-a-b T1 b N i z-x-y A 1 x M 2 v … (2) ただし、R 2 は Y を含む希土類元素から選ばれる少なくとも 1 種類の元素で、かつ L a 含有量が 5 5 重量%未満であり、T 1 は C a 、T i 、Z r 、H f 、L i 、N a 、K、R b 、C s 、S r 及び B a から選ばれる少なくとも 1 種類の元素、M 2 は C o 、M n 、F e 、G a 、Z n 、S n 、C u 、S i 、B 、N b 、W、M o 、V、C r 、T a 、P及び S から選ばれる少なくとも 1 種類の元素、原子比 a 、b 、X 、Y及び Z はそれぞれ 0 . 1 \leq a < 0 . 3 、0 \leq b \leq 0 . 3 、0 . 2 < X < 0 . 7 、0 . 1 \leq Y \leq 3 . 0 、3 . 2 5 \leq Z \leq 4 . 5 として規定される組成を有する水素吸蔵合金を含む負極 と、前記正極と前記

負極の間に介装されたセパレータと、アルカリ電解液と

を備えることを特徴とする二次電池。

2

Sn, Cu, Si, B, Nb, W, Mo, V, Cr, Ta, P及びSから選ばれる少なくとも1種類の元素、原子比a、b、<math>X, Y及びZはそれぞれ $0.1 \le a < 0.3, 0 \le b \le 0.3, 0.2 < X < 0.7, 0.1 \le Y \le 3.0, 3.25 \le Z \le 4.5 として規定される。【請求項5】 下記一般式(3)で表される組成を有し、かつ断面において単位面積当たりの<math>Mg$ 濃度が平均値 $00.5 \sim 2$ 倍である領域が70%以上存在することを特徴とする水素吸蔵合金。

 $Mg_*R3_{1-a-b}T2_bNi_{z-x}M3_x$ … (3) ただし、R3はYを含む希土類元素から選ばれる少なくとも1種類の元素で、T2はCa, Ti, Zr及びHfから選ばれる少なくとも1種類の元素、M3はCo, Mn, Fe, A1, Ga, Zn, Sn, Cu, Si, B, Nb, W, Mo, V, Cr, Ta, Li, P及びSから選ばれる少なくとも1種類の元素、原子比a、b、X及びZはそれぞれ0.2 \leq a \leq 0.35、0 \leq b \leq 0.3、0 < X \leq 2.0、3 \leq Z \leq 3.8 として規定される

)【請求項6】 正極と、下記一般式(3)で表される組成を有し、かつ断面において単位面積当たりのMg濃度が平均値の0.5~2倍である領域が70%以上存在する水素吸蔵合金を含む負極と、前記正極と前記負極の間に介装されたセパレータと、アルカリ電解液とを備えることを特徴とする二次電池。

Mg_R3_1___bT2_bNi_z_xM3_x … (3) ただし、R3はYを含む希土類元素から選ばれる少なく とも1種類の元素で、T2はCa, Ti, Zr及びHf から選ばれる少なくとも1種類の元素、M3はCo, M 30 n, Fe, Al, Ga, Zn, Sn, Cu, Si, B, Nb, W, Mo, V, Cr, Ta, Li, P及びSから 選ばれる少なくとも1種類の元素、原子比a、b、X及 びZはそれぞれ0.2≦a≦0.35、0≦b≦0. 3、0<X≦2.0、3≦Z≦3.8として規定され ス

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金及び 二次電池に関する。

0 [0002]

【従来の技術】水素吸蔵合金は、安全に、かつ容易にエネルギー源としての水素を貯蔵できる合金であり、新しいエネルギー変換及び貯蔵材料として非常に注目されている。機能性材料としての水素吸蔵合金の応用分野は、水素の貯蔵・輸送、熱の貯蔵・輸送、熱ー機械エネルギーの変換、水素の分離・精製、水素同位体の分離、水素を活物質とした電池、合成化学における触媒、温度センサなどの広範囲に亘って提案されている。とりわけ、金属酸化物・水素二次電池への応用・実用化は盛んに行われており、高容量化、長寿命化を目指した研究・開発が

3

進められている。

【0003】ところで、水素吸蔵合金としてはAB,型希土類一ニッケル系金属間化合物が実用に供されている。また、希土類一ニッケル系金属間化合物は、AB,型以外にも多数存在する。Mat.Res.Bull.,11,(1976)1241には、希土類元素をAB,型よりも多量に含む金属間化合物がAB,型よりも常温付近で多量の水素を吸蔵することが開示されている。また、Aサイトを希土類元素とMgの混合物にした例では、J.Less-Common Metals,73,(1980)339にLa_{1-x} Mgx Ni₂ 系合金が報告されている。しかしながら、両者とも水素との安定性が高すぎて水素を放出し難く、また組成によっては水素化に伴って合金成分が安定水素化物と金属とに分離するという問題点がある。

【0004】一方、希土類一Mg-Ni系水素吸蔵合金においてMgを適量含み、かつ希土類成分中のCe含有量が制御された範囲内にあると、規則構造を有し、水素の吸蔵・放出に伴う合金成分の分離がほとんどないことが知られている。

【0005】しかしながら、このような水素吸蔵合金は、水素吸蔵時の平衡圧と水素放出時の平衡圧の差が特に金属原子数に対する水素原子数の比が小さい領域において大きくなり、水素ガスの貯蔵用として用いて水素を完全に回収する際には吸蔵時に印加した圧力よりもかなり低い圧力になっているという問題点がある。

[0006]

【発明が解決しようとする課題】本発明は、水素吸蔵時及び放出時の平衡圧の平坦性が高く、かつ水素吸蔵時及び放出時の圧力差が低減された水素吸蔵合金を提供する 30 ことを目的とする。

【0007】また、本発明は、水素吸蔵・放出速度が向上された水素吸蔵合金を提供しようとするのである。

【0008】さらに、本発明は、放電容量及びサイクル 寿命が向上された二次電池を提供しようとするものであ る。

【0009】また、本発明は、水素吸蔵合金がアルカリ 電解液で腐食酸化されるのが抑制され、高率放電特性が 向上された二次電池を提供しようとするものである。

【0010】本発明は、水素吸蔵合金がアルカリ電解液 40 で腐食酸化されるのが抑制され、放電容量及び充放電サイクル寿命が向上された二次電池を提供しようとするものである。

[0011]

【課題を解決するための手段】本発明によれば、下記一般式(1)で表される組成を有することを特徴とする水素吸蔵合金が提供される。

[0012]

 $Mg_a(La_{1-b}R1_b)_{1-a}Ni_xCo_vM1_z$ … (1) であり、T1はCa, Ti, Zr, Hf, Li, Na, ただし、R1はYを含む希土類元素から選ばれる少なく 50 K, Rb, Cs, Sr Q UBa から選ばれる少なくとも

とも2種類の元素で、かつ前記R1と前記Laの合量に対するCe含有量が20重量%未満であり、M1はMn, Fe, V, Cr, Nb, Al, Ga, Zn, Sn, Cu, Si, P及びBから選ばれる少なくとも1種類の元素、原子比a、b、X、Y及びZはそれぞれ0.15 <a<0.35、0.55 \le b \le 0.95、0 \le Y \le 1.5、0 \le Z \le 0.2、2.9<X+Y+Z<3.5 として規定される。

【0013】本発明によれば、正極と、下記一般式(1)で表される組成を有する水素吸蔵合金を含む負極と、前記正極と前記負極の間に介装されたセパレータと、アルカリ電解液とを備えることを特徴とする二次電池が提供される。

[0014]

Mg。(La1-- R1b) 1-2 NixCovMl2 … (1) ただし、R1はYを含む希土類元素から選ばれる少なくとも2種類の元素で、かつ前記R1と前記Laの合量に対するCe含有量が20重量%未満であり、M1はMn, Fe, V, Cr, Nb, Al, Ga, Zn, Sn, Cu, Si, P及びBから選ばれる少なくとも1種類の元素、原子比a、b、X、Y及びZはそれぞれ0.15

<a<0.35、0.55≤b≤0.95、0≤Y≤1.5、0≤Z≤0.2、2.9<X+Y+Z<3.5
として規定される。

【0015】本発明によれば、下記一般式(2)で表される組成を有することを特徴とする水素吸蔵合金が提供される。

[0016]

 $Mg_aR2_{1-a-b}T1_bNi_{z-x-y}A1_xM2_y$... (2) ただし、R2はYを含む希土類元素から選ばれる少なく とも1種類の元素で、かつしa含有量が55重量%未満 であり、TlはCa, Ti, Zr, Hf, Li, Na, K, Rb, Cs, Sr及びBaから選ばれる少なくとも 1種類の元素、M2はCo, Mn, Fe, Ga, Zn, Sn, Cu, Si, B, Nb, W, Mo, V, Cr, T a、P及びSから選ばれる少なくとも1種類の元素、原 子比a、b、X、Y及びZはそれぞれ0. l≦a<0. 3, $0 \le b \le 0$. 3, 0. 2 < X < 0. 7, 0. $1 \le Y$ ≤3.0、3.25≤Z≤4.5として規定される。 【0017】本発明によれば、正極と、下記一般式 (2)で表される組成を有する水素吸蔵合金を含む負極 と、前記正極と前記負極の間に介装されたセパレータ と、アルカリ電解液とを備えることを特徴とする二次電 池が提供される。

[0018]

 $Mg_aR2_{1-a-b}T1_bNi_{z-x-v}A1_xM2_v$ … (2) ただし、R2はYを含む希土類元素から選ばれる少なくとも1種類の元素で、かつLa含有量が55重量%未満であり、T1はCa、Ti、Zr、Hf、Li、Na、K、Rb、Cs、Sr及びBaから選ばわる少なくとも

1種類の元素、M2はCo, Mn, Fe, Ga, Zn, Sn, Cu, Si, B, Nb, W, Mo, V, Cr, T a、P及びSから選ばれる少なくとも1種類の元素、原 子比a、b、X、Y及びZはそれぞれ0.1≦a<0. 3, $0 \le b \le 0$. 3, 0. 2 < X < 0. 7, 0. $1 \le Y$ ≤3.0、3.25≤Z≤4.5として規定される。 【0019】本発明によれば、下記一般式(3)で表さ れる組成を有し、かつ断面において単位面積当たりのM g濃度が平均値の0. 5~2倍である領域が70%以上 存在することを特徴とする水素吸蔵合金が提供される。 [0020]

 $Mg_aR3_{1-a-b}T2_bNi_{z-x}M3_x$... (3) ただし、R3はYを含む希土類元素から選ばれる少なく とも1種類の元素で、T2はCa, Ti, Zr及びHf から選ばれる少なくとも1種類の元素、M3はCo, M n, Fe, Al, Ga, Zn, Sn, Cu, Si, B, Nb, W, Mo, V, Cr, Ta, Li, P及びSから 選ばれる少なくとも1種類の元素、原子比a、b、X及 $\text{VZ} \text{ id} + \text{Ar} + \text{Ar} = \text{Ar$ 3、0<X≤2.0、3≤Z≤3.8として規定され

【0021】本発明によれば、正極と、下記一般式 (3)で表される組成を有し、かつ断面において単位面 積当たりのMg 濃度が平均値の0.5~2倍である領域 が70%以上存在する水素吸蔵合金を含む負極と、前記 正極と前記負極の間に介装されたセパレータと、アルカ リ電解液とを備えることを特徴とする二次電池が提供さ れる。

[0022]

 $Mg_aR3_{1-a-b}T2_bNi_{z-x}M3_x$... (3) ただし、R3はYを含む希土類元素から選ばれる少なく とも1種類の元素で、T2はCa, Ti, Zr及びHf から選ばれる少なくとも1種類の元素、M3はCo, M n, Fe, Al, Ga, Zn, Sn, Cu, Si, B, Nb, W, Mo, V, Cr, Ta, Li, P及びSから 選ばれる少なくとも1種類の元素、原子比a、b、X及 3、0<X≦2.0、3≦Z≦3.8として規定され る。

[0023]

【発明の実施の形態】以下、本発明に係る第1~第3の 水素吸蔵合金について説明する。

【0024】(第1の水素吸蔵合金)この水素吸蔵合金 は、下記一般式(1)で表される組成を有する。 [0025]

 $Mg_a (La_{1-b}Rl_b)_{1-a}Ni_xCo_yMl_z \cdots (1)$ ただし、R1はYを含む希土類元素から選ばれる少なく とも2種類の元素で、かつ前記R1と前記Laの合量に 対するCe含有量が20重量%未満であり、M1はM n, Fe, V, Cr, Nb, Al, Ga, Zn, Sn,

Cu, Si, P及びBから選ばれる少なくとも1種類の 元素、原子比a、b、X、Y及びZはそれぞれ0.15 $< a < 0.35, 0.55 \le b \le 0.95, 0 \le Y \le$ 1. $5, 0 \le Z \le 0.$ 2, 2. 9 < X + Y + Z < 3. 5 として規定される。

【0026】前記原子比aが前記範囲を外れると、水素 放出特性及びサイクル特性が低下する。原子比aのより 好ましい範囲は、0.2≤a≤0.3である。

【0027】R1は、3種類以上の希土類元素から構成 されることが好ましい。かかるR1としては、例えば、 希土類元素の混合物であるミッシュメタルを挙げること ができる。R1としては、Pr, Nd, Sm及びYから 選ばれる3種類以上の希土類元素からなるものが好まし い。また、R1は、R1とLaの合量に対するCe含有 量が20重量%未満であるか、またはCeを含まないも のである。R1とLaの合量に対するCe含有量を20 重量%以上にすると、CaCu,型結晶構造を有する相 が増加して気相水素の放出時末期における平衡圧低下が 顕著に生じる恐れがある。Ce含有量は、15重量%以 20 下にすることがより好ましい。

【0028】R1の原子比bを前記範囲にすることによ って、水素を放出し難いという問題点を改善することが でき、水素吸蔵量が大きな水素吸蔵合金を得ることがで きる。原子比りを0.55未満にすると、水素が安定に なり過ぎる吸蔵サイトが増加するため、完全な放出を行 うために必要な水素平衡圧が低下する。一方、原子比 b が0.95を越えると、水素吸蔵合金に均質性を向上さ せるための熱処理を施す際、熱処理温度を高くする必要 が生じ、熱処理中におけるMgの蒸散量が増加し、組成 30 の制御が著しく困難になる恐れがある。原子比りのより 好ましい範囲は、0.6≦b≦0.8である。

【0029】水素吸蔵合金中にСοを含有させることに よって、吸蔵時における吸蔵平衡圧の平坦性を向上する ことができる。原子比Yが1.5を越えると、吸蔵量が 著しく減少する。原子比Yのより好ましい範囲は、0. 5 ≤ Y ≤ 1. 0 である。

【0030】水素吸蔵合金中に元素M1を含有させるこ とによって、水素吸蔵・放出速度等の水素吸蔵・放出特 性を向上させることができると共に、平衡水素圧を適切 な範囲にすることができる。これは、元素M1により合 金内に侵入した水素の拡散や水素吸蔵合金の吸蔵・放出 が容易になることなどが起因とするものと推測される。 元素Mlとしては、Mn、Al、Si、Cr及びFeを 用いるのがより好ましい。元素M1の原子比Yが0.2 を越えると、水素吸蔵・放出量が低下する。原子比Yの より好ましい範囲は0.01≦Y≦1.5であり、更に 好ましい範囲は0.05≦Y≦1.0である。

【0031】原子比X、Y及びZの合計を前記範囲に規 定するのは次のような理由によるものである。原子比 50 X, Y及びZの合計値を2.9以下にすると、合金内の (5)

水素が安定化するサイトが顕著に増加するため、合金の 気相水素の放出時末期における平衡圧が著しく低下す る。この合計値を2.9より大きくすることによって、 水素吸蔵・放出特性を優れたものにすることができる。 しかしながら、原子比X、Y及びZの合計値を3.5以 上にすると、熱処理による均質化が困難となり、異相を 生じて水素吸蔵時及び放出時の平衡圧の平坦性を損なう 恐れがある。合計値のより好ましい範囲は、3.0<X +Y+Z<3. 4である。

【0032】また、本発明に係る第1の水素吸蔵合金 は、不純物としてC, N, O, F等の元素を特性を阻害 しない範囲内含むことを許容する。なお、これらの不純 物の含有量は各々1重量%以下であることが好ましい。

【0033】この水素吸蔵合金は、例えば、以下の (1)~(3)に説明する方法によって作製される。

【0034】(1)各元素を秤量し、例えばアルゴンガ スのような不活性雰囲気下で単ロール法、双ロール法等 の溶湯急冷法か、あるいはガスアトマイズ法等の超急冷 法により前記合金を作製する。

【0035】(2)各元素を秤量し、アルゴンガスのよ 20 うな不活性雰囲気下で高周波誘導溶解し、金型等に鋳造 することにより前記合金を作製する。

【0036】(3) RNi,系、R,Ni,系、RNi ,系、RNi,系、Mg,Ni系またはMgNi,系等の母 合金を高周波誘導溶解にて作製し、目的組成になるよう に各母合金を秤量し、これを髙周波誘導溶解して金型等 に鋳造することにより前記合金を作製する。

【0037】本発明に係る第1の水素吸蔵合金は、真空 中もしくは不活性雰囲気下において300℃以上、融点 未満の温度で熱処理が施されていることが好ましい。か 30 かる熱処理により合金中のAB,相やAB,相等の存在量 を低減することができると共に、格子歪みを緩和するこ とができるため、水素吸蔵・放出速度等の水素吸蔵・放 出特性を向上することができる。熱処理温度のより好ま しい範囲は、750℃~1050℃である。更に好まし い範囲は、800~1000℃である。また、最適な熱 処理時間は、熱処理温度により変動するものではある が、目安として0.1~500時間、好ましくは0.5 ~100時間、さらに好ましくは1~20時間が良い。 【0038】(第2の水素吸蔵合金)との水素吸蔵合金 40 は、下記一般式(2)で表される組成を有する。 [0039]

 $Mg_aR2_{1-a-b}T1_bNi_{z-x-y}A1_xM2_y$... (2) ただし、R2はYを含む希土類元素から選ばれる少なく とも1種類の元素で、かつしa含有量が55重量%未満 であり、TlはCa, Ti, Zr, Hf, Li, Na, K, Rb, Cs, Sr及びBaから選ばれる少なくとも 1種類の元素、M2はCo, Mn, Fe, Ga, Zn, Sn, Cu, Si, B, Nb, W, Mo, V, Cr, T

子比a、b、X、Y及びZはそれぞれ0.1≦a<0. $3, 0 \le b \le 0, 3, 0, 2 < X < 0, 7, 0, 1 \le Y$ ≤3.0、3.25≤Z≤4.5として規定される。 【0040】Mgの原子比aが前記範囲を外れると、水 素吸蔵合金の水素放出特性及びサイクル特性が低下し、 また大きな放電容量を有し、サイクル特性に優れた二次 電池を実現することが困難になる。原子比aのより好ま しい範囲は、0.15≦a≦0.28である。

【0041】R2としては、水素吸蔵合金電極の低コス ト化を考慮すると、La, Ce, Pr, Nd及びYから 10 選ばれる少なくとも 1種の元素を使用することが好まし い。中でも、希土類元素の混合物であるミッシュメタル を使用することがより好ましい。

【0042】A1の原子比Xを前述した範囲にした際に R2中のLa含有量が55重量%を越えると、合金の水 素吸蔵・放出速度が低下し、また二次電池のサイクル寿 命が短くなり、特定量のA 1を含むことの効果が得られ なくなる。La含有量は、50重量%以下にすることが より好ましい。一方、La含有量が1.0重量%よりも 少なくなると、吸蔵時の平衡圧が高くなり過ぎるため、 吸蔵させるのが困難となる。よって、La含有量の下限 値は、1.0重量%にすることが好ましい。

【0043】R2は、Ce含有量が20重量%未満(0 重量%を含む)であることが好ましい。A1の原子比X を前述した範囲にした際にCe含有量が20重量%を越 えると、AB、型結晶構造を有する相が多くなる恐れが あるため、合金の水素吸蔵・放出速度と二次電池の高率 放電特性並びにサイクル寿命を改善できなくなる可能性 がある。

【0044】水素吸蔵合金に熱処理を施す場合に前記合 金にT1を含有させることによって、熱処理温度を低く することができるため、前記合金の均質性を高めること ができる。T1としては、Ti, Zr, Li, Sr, B aを用いることが好ましい。また、T1の原子比bが 0.3を越えると、熱処理温度が大幅に低下するため、 合金の主相が分解し、また二次電池の放電容量が低下す る。原子比りのより好ましい範囲は、0.05≦b≦ 0.2である。

【0045】A1の原子比Xが前記範囲を外れると、水 素吸蔵合金の水素吸蔵・放出速度並びにアルカリ電解液 のようなアルカリ水溶液に対する耐食性と、二次電池の 高率放電特性及びサイクル寿命を向上させることが困難 になる。原子比Xのより好ましい範囲は、0.25≦X **≦0.6である。**

【0046】水素吸蔵合金に元素M2を含有させること によって、合金の水素吸蔵・放出速度のような水素吸蔵 ・放出特性を向上することができると共に、二次電池の サイクル特性を飛躍的に改善することができる。このよ うに水素吸蔵・放出特性が改善されるのは、元素M2に a, P及びSから選ばれる少なくとも1種類の元素、原 50 より合金内に侵入した水素の拡散や水素吸蔵合金の吸蔵 (6)

30

10

・放出が容易になることなどが起因とするものと推測さ れる。M2としては、Co, Mn, Fe, Ga, Cu, Si、Crを用いることが好ましい。元素M2の原子比 Yが前記範囲を外れると、合金において高い水素吸蔵・ 放出速度が得られず、また二次電池の放電容量が低下す る。原子比Yのより好ましい範囲は0.05≦Y≦1. 0であり、更に好ましい範囲は0.1≦Y≦0.8であ る。

【0047】原子比乙が前記範囲を外れると、水素吸蔵 合金の水素放出特性及びサイクル特性が低下し、また大 10 きな放電容量を有し、サイクル特性に優れた二次電池を 実現することが困難になる。原子比Zのより好ましい範 囲は、3.3≤Z≤4.0である。

【0048】また、本発明に係る第2の水素吸蔵合金 は、不純物としてC、N、O、F等の元素を特性を阻害 しない範囲内含むことを許容する。なお、これらの不純 物の含有量は各々1重量%以下であることが好ましい。 【0049】この水素吸蔵合金は、前述した第1の水素 吸蔵合金で説明したのと同様な方法により作製される。

【0050】本発明に係る第2の水素吸蔵合金は、真空 20 中もしくは不活性雰囲気下において300℃以上、12 00℃未満の温度で熱処理が施されていることが好まし い。かかる熱処理により合金中のAB、相やAB、相等の 存在量を低減することができるため、水素吸蔵合金の水 素吸蔵・放出速度等の水素吸蔵・放出特性をより一層向 上することができると共に、二次電池の高率放電特性及 びサイクル寿命を更に改善することができる。また、熱 処理温度が1200℃を越えると、合金の主相が分解し て高い水素吸蔵・放出速度を得られなくなる恐れがあ る。熱処理温度のより好ましい範囲は、400℃~10 00℃である。また、最適な熱処理時間は、熱処理温度 により変動するものではあるが、目安として5~100 0時間、好ましくは10~800時間、さらに好ましく は50~600時間が良い。

【0051】(第3の水素吸蔵合金)との第3の水素吸 蔵合金は、下記一般式(3)で表される組成を有し、か つ断面における単位面積当たりのMg濃度が単位面積当 たりの平均Mg濃度の0.5~2倍に相当する領域が7 0%以上である。

[0052]

 $Mg_aR3_{1-a-b}T2_bNi_{z-x}M3_x$... (3) ただし、R3はYを含む希土類元素から選ばれる少なく とも1種類の元素で、T2はCa,Ti,Zr及びHf から選ばれる少なくとも1種類の元素、M3はCo, M n, Fe, Al, Ga, Zn, Sn, Cu, Si, B, Nb, W, Mo, V, Cr, Ta, Li, P及びSから 選ばれる少なくとも1種類の元素、原子比a、b、X及 びZはそれぞれ0. $2 \le a \le 0$. 35、 $0 \le b \le 0$. 3、0<X≤2.0、3≤Z≤3.8として規定され る。

【0053】Mgの原子比aが前記範囲を外れると、水 素吸蔵合金の水素放出特性及びサイクル特性が低下し、 また大きな放電容量を有し、サイクル特性に優れた二次 電池を実現することが困難になる。原子比aのより好ま しい範囲は、0.25≦a≦0.32である。

【0054】R3としては、水素吸蔵合金電極の低コス ト化を考慮すると、La、Ce、Pr、Nd及びYから 選ばれる少なくとも1種の元素を使用することが好まし い。中でも、希土類元素の混合物であるミッシュメタル を使用することがより好ましい。かかるミッシュメタル としては、例えば、CeがリッチなMm、Laがリッチ なしm等を挙げることができる。

【0055】R3は、Ce含有量が20重量%未満(0 重量%を含む)であることが好ましい。Се含有量が2 0 重量%を越えると、AB₅型結晶構造を有する相が生 じやすくなるため、断面におけるMg濃度が規制された 領域量が70%よりも少なくなる可能性がある。

【0056】元素T2を含有させることによって、水素 吸蔵合金の水素吸蔵量を著しく減少させることなく水素 放出速度等の特性を向上させることができ、かつ水素吸 蔵・放出に伴う合金の微粉化を抑制することができる。 T2の原子比bが0.3を越えると、前述したような効 果、つまり、水素放出特性の改善および微粉化の抑制が みられなくなり、二次電池の放電容量が低下する。原子 比bが小さい方が二次電池のサイクル寿命が長くなる傾 向が見られる。長寿命を確保する観点から、Tの原子比 bの上限値は、0.2にすることが好ましい。

【0057】水素吸蔵合金に元素M3を含有させること によって、合金の水素吸蔵・放出速度のような水素吸蔵 ・放出特性を向上することができると共に、二次電池の サイクル特性を飛躍的に改善することができる。このよ うに水素吸蔵・放出特性が改善されるのは、元素M3に より合金内に侵入した水素の拡散や水素吸蔵合金の吸蔵 ・放出が容易になることなどが起因とするものと推測さ れる。元素M3としては、Co, Mn, Fe, A1, G a, Cu, Si, Cr, Liを用いることがより好まし い。元素M3の原子比Xが2.0を越えると、二次電池 の放電容量が低下する。原子比Xのより好ましい範囲は 0.01≦X≦1.5であり、更に好ましい範囲は0. $0.5 \le X \le 1.0$ rbs.

【0058】原子比乙が前記範囲を外れると、水素吸蔵 合金の水素放出特性及びサイクル特性が低下し、また大 きな放電容量を有し、サイクル特性に優れた二次電池を 実現することが困難になる。原子比乙のより好ましい範 囲は、3.2≦Z≦3.7である。

【0059】水素吸蔵合金が塊状(例えば、インゴット やフレーク)である場合、水素吸蔵合金の断面における 単位面積当たりのMg濃度は、電子線マイクロアナライ ザー(EPMA)により倍率50~1万倍で二次電子像 50 または反射電子像を撮影し、Mgのマッピングを行うこ

とにより求めることができる。得られた単位面積毎のM g濃度から単位面積当たりの平均Mg濃度を算出し、単 位面積毎に実際の濃度と平均値とを比較し、単位面積当 たりのMg濃度が平均値の0.5~2.0倍である領域 量を測定する。また、水素吸蔵合金が粉末状である場合、少なくとも5つの粉末について断面における単位面 積当たりのMg濃度を前述した方法でそれぞれ測定し、 各断面におけるMg濃度の分布を合算して単位面積当た りの平均Mg濃度を算出する。各断面毎に単位面積当た りのMg濃度と平均値とを比較し、単位面積当た りのMg濃度と平均値とを比較し、単位面積当た りのMg濃度と平均値とを比較し、単位面積当た りのMg濃度が平均値の0.5~2.0倍である領域量を測定 する。断面毎の領域量から算出された平均値を水素吸蔵 合金粉末の求める領域量とする。

【0060】水素吸蔵合金の断面において、単位面積当たりのMg濃度が単位面積当たりの平均Mg濃度の0.5~2倍に相当する領域が70%より少なくなると、Mgの偏析が大きくなるため、水素吸蔵・放出速度が低下し、また二次電池のサイクル寿命が低下する。Mgの偏析が大きいと二次電池のサイクル寿命が低下するのは、水素吸蔵合金中にアルカリ電解液に対して腐食酸化が進20みやすい領域が存在するためであると推測される。また、前記領域は85%以上あることが好ましく、最も好ましい合金は断面における単位面積当たりのMg濃度が単位面積当たりの平均Mg濃度の0.7~1.5倍に相当する領域が85%以上あるものである。

【0061】また、本発明に係る第3の水素吸蔵合金 は、不純物としてC、N、O、F等の元素を特性を阻害 しない範囲内含むことを許容する。なお、これらの不純 物の含有量は各々1重量%以下であることが好ましい。 【0062】この水素吸蔵合金は、前述した第1の水素 30 吸蔵合金で説明したのと同様な方法により作製される。 【0063】本発明に係る第3の水素吸蔵合金は、真空 中もしくは不活性雰囲気下において750℃以上、融点 未満の温度で熱処理が施されていることが好ましい。か かる熱処理により合金中のAB,相やAB,相等の存在量 を低減することができ、Mg濃度を均等にすることがで きると共に、格子歪みを緩和することができるため、水 素吸蔵・放出速度等の水素吸蔵・放出特性と、二次電池 の放電容量並びにサイクル寿命をより一層向上すること ができる。熱処理温度のより好ましい範囲は、800℃ 40 ~1100℃である。また、最適な熱処理時間は、熱処 理温度により変動するものではあるが、目安として0. 1~500時間、好ましくは0.5~100時間、さら に好ましくは1~20時間が良い。

【0064】本発明に係る第3の水素吸蔵合金の目的とする結晶構造を有する相は、包晶反応により生成すると考えられる。このため、前記熱処理を行う際、包晶反応が生じる温度領域では真空中もしくは不活性雰囲気下において20℃/min以下の速度で徐冷を行うことが好ましい。このような徐冷を行うことによってMg濃度の50

分布をより均一なものにすることができる。具体的には、950℃で30分間保持した後、1℃/minの速度で800℃まで徐冷し、800℃で30分間保持し、その後炉冷または空冷する方法などを採用することができる。

【0065】以下、本発明に係る二次電池の一例である 金属酸化物・水素二次電池(例えば、円筒形金属酸化物 ・水素二次電池)を図1を参照して説明する。

【0066】図1に示すように有底円筒状の容器1内に は、正極2とセパレータ3と負極4とを積層してスパイ ラル状に捲回することにより作製された電極群5が収納 されている。前記負極4は、前記電極群5の最外周に配 置されて前記容器1と電気的に接触している。アルカリ 電解液は、前記容器1内に収容されている。中央に孔6 を有する円形の第1の封口板7は、前記容器1の上部開 □部に配置されている。リング状の絶縁性ガスケット8 は、前記封口板7の周縁と前記容器1の上部開口部内面 の間に配置され、前記上部開口部を内側に縮径するカシ メ加工により前記容器 1 に前記封口板 7 を前記ガスケッ ト8を介して気密に固定している。正極リード9は、一 端が前記正極2に接続、他端が前記封口板7の下面に接 続されている。帽子形状をなす正極端子10は、前記封 口板7上に前記孔6を覆うように取り付けられている。 ゴム製の安全弁11は、前記封口板7と前記正極端子1 0で囲まれた空間内に前記孔6を塞ぐように配置されて いる。中央に穴を有する絶縁材料からなる円形の押え板 12は、前記正極端子10上に前記正極端子10の突起 部がその押え板 12の前記穴から突出されるように配置 されている。外装チューブ13は、前記押え板12の周 縁、前記容器1の側面及び前記容器1の底部周縁を被覆 している。

【0067】次に、前記正極2、負極4、セパレータ3 およびアルカリ電解液について説明する。

【0068】1)正極2

この正極2は、電解液中で安定して充放電が可能であれば良く、例えば、活物質として水酸化ニッケル粉末を含むものを用いることができる。

【0069】前記正極2は、例えば、活物質である水酸化ニッケル粉末に導電材料を添加し、結着剤および水と共に混練してペーストを調製し、前記ペーストを導電性基板に充填し、乾燥した後、成形することにより作製される。

【0070】前記水酸化ニッケル粉末は、亜鉛及びコバルトの群から選択した少なくとも1つの金属の酸化物もしくは水酸化物と水酸化ニッケルとの混合物を保持していることが好ましい。このような水酸化ニッケル粉末を含む正極と、本発明に係る水素吸蔵合金を含む負極とを備えたニッケル水素二次電池は、充放電容量及び低温での放電特性を著しく向上することができる。

【0071】前記導電材料としては、例えばコバルト酸

(8)

化物、コバルト水酸化物、金属コバルト、金属ニッケル、炭素等を挙げることができる。

【 O O 7 2 】前記結着剤としては、例えばカルボキシメ チルセルロース、メチルセルロース、ポリアクリル酸ナ トリウム、ポリテトラフルオロエチレン、ポリビニルア ルコール(PVA)を挙げることができる。

【0073】前記導電性基板としては、例えばニッケル、ステンレスまたはニッケルメッキが施された金属から形成された網状、スポンジ状、繊維状、もしくはフェルト状の金属多孔体を挙げることができる。

【0074】2)負極4

この負極4は、前述した第1〜第3の水素吸蔵合金から 選ばれる少なくとも1種類の合金の粉末を含む。

【0075】水素吸蔵合金の粉砕は、不活性雰囲気中でハンマーミル、ピンピルなどの粉砕機を用いる方法を採用することができる。また、水素吸蔵合金粉末の平均粒径は、10~50μmにすることが好ましい。

【0076】前記負極は、例えば、以下の(1)、

(2) に説明する方法によって作製される。

【0077】(1)前述した水素吸蔵合金の粉末に導電 20 材を添加し、結着剤および水と共に混練してペーストを 調製し、前記ペーストを導電性基板に充填し、乾燥した 後、成形することにより前記負極を作製する。

【0078】(2)前述した水素吸蔵合金の粉末に導電材を添加し、結着剤と共に混練して合剤を調製し、前記合剤を導電性基板に保持させ、乾燥した後、成形することにより前記負極を作製する。

【0079】前記結着剤としては、前記正極2で用いたのと同様なものを挙げることができる。なお、前述した(2)の方法で負極を作製する場合、ポリテトラフルオ 30ロエチレン(PTFE)を含むものが好ましい。

【0080】前記導電材としては、例えば、カーボンブラック等を挙げることができる。

【0081】前記導電性基板としては、例えば、パンチドメタル、エキスパンデッドメタル、ニッケルネットなどの二次元基板や、フェルト状金属多孔体や、スポンジ状金属基板などの三次元基板を挙げることができる。

【0082】3) セパレータ3

このセパレータ3は、例えばポリプロビレン不織布、ナイロン不織布、ポリプロビレン繊維とナイロン繊維を混 40 繊した不織布のような高分子不織布からなる。特に、表面が親水化処理されたポリプロビレン不織布はセパレータとして好適である。

【0083】4)アルカリ電解液

このアルカリ電解液としては、例えば、水酸化ナトリウム(NaOH)の水溶液、水酸化リチウム(LiOH)の水溶液、水酸化カリウム(KOH)の水溶液、NaOHとLiOHの混合液、KOHとLiOHの混合液、KOHとLiOHとNaOHの混合液等を用いることができる。

【0084】以上説明した本発明に係る第1の水素吸蔵合金は、前述した(1)式で表される組成を有するため、水素吸蔵時及び放出時の平衡圧の平坦性を高めることができると共に、水素吸蔵時及び放出時の圧力差を低減することができる。かかる水素吸蔵合金を含む負極を備えた二次電池は、放電時に長期間に亘り高い作動電圧を維持することができるため、放電容量及び充放電サイクル寿命を向上することができる。

【0085】本発明に係る第2の水素吸蔵合金は、前述 10 した(2)式で表される組成を有するため、アルカリ水 溶液による腐食酸化を抑制することができると共に、水 素吸蔵・放出速度を向上することができる。かかる水素 吸蔵合金を含む負極を備えた二次電池は、高率(大電 流)で放電した際の放電容量を向上することができる。か つ充放電サイクル寿命を向上することができる。

【0086】本発明に係る第3の水素吸蔵合金は、前述した(3)式で表される組成を有し、かつ断面における単位面積当たりのMg濃度が単位面積当たりの平均Mg濃度の0.5~2倍に相当する領域が70%以上であるため、水素吸蔵・放出速度等の水素吸蔵・放出特性を改善することができる。また、前記合金を含む負極を備えた二次電池は、放電容量及び充放電サイクル寿命を向上することができる。本発明の作用は明らかでないものの、以下に説明するメカニズムによるものと推測される。

【0087】すなわち、前述した(3)式で表される組成を有する水素吸蔵合金は、目的とする結晶構造を有する相の他に少なくともCaCu,型の結晶相か、あるいはMgCu,型結晶相が存在している。このようにCaCu,型結晶相やMgCu,型結晶相が含まれるのは、目的とする結晶構造を有する相が包晶反応により生成するためであると考えられる。CaCu,型結晶相にはMgがほとんど存在せず、またMgCu,型結晶相は目的とする結晶相に比べてMgリッチになっている。よって、前記水素吸蔵合金は、Mg偏析を生じている。

【0088】本発明者らは鋭意研究を重ねた結果、Mg偏析度合いが二次電池のサイクル寿命に影響を及ぼすことを見出した。すなわち、断面において単位面積当たりのMg濃度がこれの平均値の0.5~2倍に相当する領域が70%未満であると、Mg偏析が大きいため、二次電池の充放電サイクル寿命が低下する。Mg偏析が大きい水素吸蔵合金は、アルカリ電解液による腐食酸化が進行しやすい領域が存在すると推測される。密閉形二次電池とした場合、充放電サイクルの進行に伴って腐食酸化と絶縁化が進むと同時に、電解液の不足(消費)、二次電池の内部抵抗の増大などが生じるため、長寿命を得られなくなる。

【0089】本願発明のように断面において単位面積当 たりのMg濃度がこれの平均値の0.5~2倍に相当す 50 る領域を70%以上にすることによって、Mg偏析を小 さくすることができるため、アルカリ電解液により腐食 酸化を受ける領域を少なくすることができ、サイクル寿 命及び放電容量を向上することができる。

15

【0090】また、本発明に係る第1~第3の水素吸蔵 合金によれば、これまで他の合金を用いてきた各種応用 分野 (水素の貯蔵・輸送、熱の貯蔵・輸送、熱-機械エ ネルギーの変換、水素の分離・精製、水素同位体の分 離、水素を活物質とする電池、合成化学における触媒、 温度センサー等)がより拡充され、さらには水素吸蔵合 金利用の新しい分野の開拓にもつながり得ると考えられ 10 る。このように本発明の水素吸蔵合金は従来合金と比較 して著しく特性が向上したものであり、工業的価値も高 いものと思われる。

【0091】なお、前述した図1では正極と負極の間に セバレータを介在して渦巻状に捲回し、有底円筒状の容 器内に収納したが、本発明の二次電池はこのような構造 に限定されない。例えば、正極と負極との間にセパレー タを介在し、これを複数枚積層した積層物を有底矩形筒 状の容器内に収納して角形二次電池にも同様に適用でき る。

[0092]

【実施例】以下、本発明の実施例を図面を参照して詳細 に説明する。

【0093】(実施例1~13および比較例1~5)下*

*記表1に示される組成となるように各元素を秤量し、ア ルゴン雰囲気下で高周波溶解にて合金インゴットを得 た。つづいて、各合金インゴットにアルゴン雰囲気下で 960℃で12時間の熱処理を施した。なお、表1中の Mmは12重量%のLa、60重量%のCe、10重量 %のPr及び18重量%のNdからなる。

【0094】得られた水素吸蔵合金を粉砕し、篩い分け を行うことにより粒径が20μm以上、150μm以下 の水素吸蔵合金粉末を得た。

【0095】得られた実施例1~13及び比較例1~5 の水素吸蔵合金粉末について、ジーベルツ法により70 ℃、10気圧未満の水素圧下で圧力一組成等温線を測定 し、(H/M) = 0. 8での水素放出時の水素圧を P_1 及び(H/M) = 0.2での水素放出時の水素圧をPとし、P1/P1を算出し、その結果を下記表1に併記す る。また、(H/M) = 0.8での水素吸蔵時の水素圧 をP_{A0.8}、(H/M) = 0.2での水素吸蔵時の水素圧 をP_{A0.2}、(H/M) = 0.8での水素放出時の水素圧 をP。。。及び(H/M)=0.2での水素放出時の水素 20 圧をPoo. 2とし、ヒステリシスとして比 { (Pao. 2/P "", ,) / (P, , , s / P, , , s) } を算出し、その結果を下 記表1に併記する。

[0096]

【表1】

	粗 成	Ce 量 (重量%)	P ₁ /P ₂	ヒステリ シス
実施例1	(La _{0.33} Ce _{0.07} Pr _{0.08} Nd _{0.52}) _{0.78} Mg _{0.22} Ni _{2.8} Co _{0.3} Al _{0.03} Mn _{0.1}	7	4.8	1. 25
実施例2	(La _{0.40} Ce _{0.05} Pr _{0.18} Nd _{0.37}) _{0.75} Mg _{0.25} Ni _{3.0} Mn _{0.1} B _{0.05}	5	5. 2	1. 32
実施例3	(Lao.25Pro.35Ndo.40)0.73Mgo.27Ni2.7Feo.3	0	4. 6	1. 18
実施例4	(Lao. 20Ceo. 05Pro. 18Ndo. 57)0.77Hgo. 23N13.2Cro. 1A10.03	5	5. 7	0. 98
実施例 5	(La _{0.25} Ce _{0.05} Pr _{0.18} Nd _{0.42} Sm _{0.25}) _{0.25} Mg _{0.75} Ni _{2.9} V _{0.01} Ga _{0.02}	5	4. 5	0. 91
実施例6	(Lao. 10Ceo. 02Pro. 38Ndo. 37Yo. 13)0. 27Mgo. 73Ni 2. 9A1o. 02Cuo. 05	2	4. 4	0. 85
実施例7	(La _{0.22} Ce _{0.08} Pr _{0.7}) _{0.70} Mg _{0.30} Mi _{3.1} Sn _{0.03}	8	4.5	0. 95
実施例8	(La _{0.10} Ce _{0.05} Pr _{0.15} Nd _{0.70}) _{0.69} Mg _{0.31} Ni _{3.0} Si _{0.18}	5	4. 9	1, 15
実施例9	(La _{0.35} Ce _{0.04} Pr _{0.11} Nd _{0.40} Sm _{0.10}) _{0.65} Mg _{0.35} Ni _{3.0} P _{0.05}	4	4. 5	1. 72
実施例 10	(Lao.18Ceo.02Pro.21Ndo.49Smo.10)0.75Mgo.25Ni2.7Coo.2Cuo.1	2	4. 7	0. 83
実施例 11	(Lao.15Ceo.04Pro.31Ndo.50)0.77Mgo.23Ni2.9Vo.04Nbo.03	4	4. 9	0, 98
実施例 12	(Lao.06Pro.44Ndo.38Smo.12)0.75Mgo.25Ni2.9Zno.02Sno.06	0	4. 6	1. 12
奥施例 13	(Lao.10Ceo.08Pro.32Ndo.40Smo.10)0.69Mgo.31Ni3.1Sio.01Nbo.03	8	5. 1	1. 16
比较例 1	(La _{0.62} Ce _{0.08} Pr _{0.20} Nd _{0.10}) _{0.88} Mg _{0.12} Ni _{3.1} Al _{0.15}	8	4. 8	2. 79
比較例2	(La _{0.32} Ce _{0.48} Pr _{0.20}) _{0.72} Mg _{0.28} Ni _{3.0} Mn _{0.5}	48	10, 6	2, 84
比較例3	(La _{0.28} Ce _{0.08} Pr _{0.34} Nd _{0.10} Sa _{0.20}) _{0.65} Mg _{0.35} Ni _{3.6} V _{0.05} Nb _{0.03}	8	10. 1	2. 25
比較例4	(Lao.90Nmo.10)0.78Mg0.22Ni3.1Zno.25	60	5. 9	2. 45
比較例5	(La _{0.25} Nm _{0.75}) _{0.74} Ng _{0.26} Ni _{3.1} Co _{0.35}	60	5. 4	3. 15

【0097】表1から明らかなように、前述した(1) 式で表される組成を有する実施例1~13の水素吸蔵合 金は、比較例1~5の水素吸蔵合金に比べてP1/P1が 小さく、水素吸蔵・放出時の平衡圧の平坦性に優れると 共に、比 { (P_{A0.1}/P_{00.1}) / (P_{A0.8}/P_{00.8}) } 50 ルゴン雰囲気下で高周波溶解にて合金インゴットを得

が小さく、水素吸蔵・放出時の平衡圧の差を低減できる ことがわかる。

【0098】 (実施例14~18及び比較例6~7) 下 記表2に示される組成となるように各元素を秤量し、ア

た。つづいて、各合金インゴットにアルゴン雰囲気下で 950℃で12時間の熱処理を施した。なお、表2中の Lm(1)は97重量%のLa、0.03重量%のC e、0.07重量%のPr及び2重量%のNdからな り、Lm(2)は47重量%のLa、2重量%のCe、 13重量%のPr及び38重量%のNdからなる。 【0099】得られた水素吸蔵合金粒径が100μm以 下となるように粉砕し、水素吸蔵合金粒径が100μm以 下となるように粉砕し、水素吸蔵合金粉末を得た。 【0100】次いで、実施例14~18及び比較例6~ 7の水素吸蔵合金について、図2に示す温度スキャンニ 10 ング式水素吸蔵放出特性評価装置を用いて水素吸蔵速度 を測定した。

【0101】図2は、水素吸蔵合金の評価に用いられる 温度スキャンニング式水素吸蔵放出特性評価装置を示す 概略図である。水素ボンベ31は、配管32を通して試 料容器33に連結されている。前記配管32は、途中で 分岐され、その分岐配管34の端部は真空ポンプ35に 連結されている。圧力計36は、前記分岐配管34から さらに分岐された配管部分34aに取付けられている。 前記水素ボンベ31と前記試料容器33の間の配管32 部分には、前記ボンベ31側から第1、第2のバルブ3 7,、37,が介装されている。蓄圧容器38は、前記 第1、第2のバルブ37、、37、間の前記配管32部 分に連結されている。前記真空ポンプ35は、第3バル ブ37』を介して前記分岐配管34aに接続されてい る。ヒータ39は、前記試料容器33に付設されてい る。熱電対40は、前記試料容器33内に挿入されてい る。コンピュータ41により制御される温度コントロー ラ42は、前記熱電対40および前記ヒータ39に接続 され、前記熱電対40からの検出温度に基づいて前記ヒ ータ39の温度調節を行うようになっている。前記コン ピュータ41で制御されるレコーダ43は、前記圧力計 36および前記温度コントローラ42に接続されてい る。

【0102】実施例14~18及び比較例6~7の水素 吸蔵合金粉末を前述した図2の試料容器33(雰囲気温 度15℃)内に収納した。第1バルブ37、を閉じ、第2、第3のバルブ37、37、を開き、真空ポンプ35を作動して前記配管32および分岐配管34及び蓄圧 容器38内の空気を排気した。前記第2、第3のバルブ4037、37、を閉じた後、第1バルブ37、を開いて

水素ボンベ31から水素を供給して前記配管32 および 分岐配管34及び蓄圧容器38内を水素置換した。つづいて、第1バルブ37、を閉じ、この時点で圧力計36 が示す系内の圧力から導入した水素量を算出した。ひきつづき、第2バルブ37、を開き、水素を前記試料容器33内に供給し、温度を熱電対40でモニターした。その後、前記試料容器33内の温度が一定となるようにコンピュータ41および温度コントローラ42で制御した。この時の前記容器33内の圧力変化を圧力計36により検出してそれをレコーダ43で記録した。

【0103】次いで、前記試料容器33内に一定量の水素の導入を開始してから1時間後までの各水素吸蔵合金中に吸蔵された水素量(H/M)を前記容器33内の圧力変化の検出から算出した。その結果を15℃における水素吸蔵速度(H/M・h⁻¹)として下記表2に示す。【0104】さらに、実施例14~18及び比較例6~7の水素吸蔵合金粉末を含む電極を負極として備えた試験セルを組み立て、高率放電特性を測定した。

【0105】まず、各合金粉末と電解銅粉末を重量比で1:2の割合で混合し、この混合体1gを10ton/cm²の圧力で5分間加圧することにより直径が10mmペレットを作製した。このペレットをニッケルの金網で挟み込み、周辺をスポット溶接して圧接し、ニッケルのリード線をスポット溶接することにより電極(負極)を作製した。

【0106】得られた負極を、それぞれ対極である焼結式ニッケル電極とともに8規定の水酸化カリウム水溶液にそれぞれ浸漬し、30℃において充放電試験を行った。充放電条件は、水素吸蔵合金1g当たり100mAの電流で5時間充電した後、10分間休止し、水素吸蔵合金1g当たり100mAの電流で酸化水銀電極に対して-0.7Vになるまで放電を行うものにした。放電容量が一定の値になるまでこの充放電サイクルを繰り返し、この時の放電容量をCaxとした。次いで、放電状態で45℃にて1週間放置した。その後、Caxの120%充電を行った後、3Cで放電した際の放電容量Cacを測定し、Caxに対するCacの比(Cac/Cax)を算出し、その結果を下記表2に併記する。

[0107]

」【表2】

	組成	水楽吸蔵速度 (H/M・h ⁻¹)	高率放電特性 (C _{3C} /C _{max})
実施例 14	□BO.20Lm(2)0.80#i2.9A10.3HnQ.1Co0.6	1. 0	0, 92
実施例 15	MgO.15Lm(2)0.75ZrO.05Ni2.7AlO.4MnO.15Coo.5CrO.05Cuo.1	1. 1	0. 95
実施例 16	Mg0.10Lm(2)0.89L10.01Mi2.9A10.5Mn0.1Co0.5M0.03Sn0.02Mo0.01P0.01Si0.05	0. 9	0. 90
実施例 17	Mgo.20Lm(2)0.77Sro.03Hi2.4AI0.4Mno.25Coo.5Mbo.01Bo.01Tao.03	1. 0	0. 91
実施例 18	MgO_22Lm(2)0.72Ti0.06Hi2.3Ai0.35Mn0.3Co0.6P0.01Sn0.02Zn0.01Ga0.01	1. 1	0. 93
比較例 6	Mgo.20Lm(1)0.80Ni3.0Alo.1Mno.1Coo.6	0. 5	0. 75
比較例7	MgO.15Lm(1)0.75Zro.05Ni2.8Alo.1Mno.15CoO.6Cro.05CuO.05	0. 6	0. 78

【0108】表2から明らかなように、前述した(2)式で表される組成を有する実施例14~18の水素吸蔵合金は、A1量が少ない組成の比較例6~7の水素吸蔵合金に比べて水素吸蔵・放出速度が速いことがわかる。【0109】また、前述した(2)式で表される組成を有する水素吸蔵合金を含む負極を備えた実施例14~18の二次電池は、A1量が少ない組成の水素吸蔵合金を含む負極を備えた比較例6~7の二次電池に比べて、高温環境下で放置した後に高率で放電した際の容量維持率が高いことがわかる。

【0110】(実施例19~38及び比較例8~10)下記表3に示される組成となるように各元素を秤量し、アルゴン雰囲気下で高周波誘導炉で溶解し、水冷銅鋳型に注湯・固化して合金インゴットを得た。つづいて、アルゴン雰囲気下で各合金インゴットに下記表4に示す条件で熱処理を施した。なお、表3中のLm(1)は98重量%のLa、0.02重量%のCe、0.08重量%のPr及び1重量%のNdからなり、Lm(2)は48重量%のLa、4重量%のCe、13重量%のPr及び35重量%のNdからなり、Mmは38重量%のLa、47.3重量%のCe、5.5重量%のPr、9重量%のNd及び0.2重量%のSmからなる。

【0111】得られた実施例19~38及び比較例8~ 10の水素吸蔵合金インゴットについて、断面における 単位面積当たりのMg濃度が平均値の0.5~2.0倍 である領域量を測定し、その結果を表4に併記する。と の測定方法を実施例29の水素吸蔵合金を例にして説明 する。実施例29の水素吸蔵合金インゴットの断面を電 子線マイクロアナライザー(EPMA)により倍率20 0倍で反射電子像を撮影した。得られた反射電子像を図 40 3に示す。得られた反射電子像についてMgのマッピン グを行い、単位面積毎のMgカウント数(Mg濃度)を 測定し、Mgカウント数毎に断面に占める面積率を求め た。その結果を図4に示す。なお、図4の横軸は単位面 積当たりのMgカウント数で、縦軸は断面における面積 率である。この図4に示されるMgカウント数の分布図 から単位面積当たりの平均Mgカウント数を算出した。 この場合、単位面積当たりの平均Mgカウント数は31 5であった。次いで、単位面積毎に実際のカウント数と

数が平均値の0.5~2.0倍である領域量を求めた。 【0112】実施例29の水素吸蔵合金は、前記領域の 量が99%であり、前述した図3の反射電子像から明ら かなようにMgが偏析している箇所がほとんど存在しな いことがわかる。

【0113】次いで、実施例19~38及び比較例8~10の水素吸蔵合金インゴットを平均粒径が35μmとなるようにアルゴン雰囲気にて粉砕し、水素吸蔵合金粉末を得た。

20 【0114】次いで、実施例19~38及び比較例8~ 10の水素吸蔵合金粉末について、前述した図2に示す 温度スキャンニング式水素吸蔵放出特性評価装置を用い て10℃における水素吸蔵速度(H/M・h⁻¹)を測定 し、その結果を下記表5に示す。

【0115】さらに、実施例19~38及び比較例8~ 10の水素吸蔵合金粉末を含む電極を負極として備えた 試験セルを組み立て、放電容量及びサイクル寿命を測定 した。

【0116】まず、各合金粉末と電解銅粉末を重量比で1:3の割合で混合し、この混合体1gを10ton/cm²の圧力で5分間加圧することにより直径が10mmペレットを作製した。このペレットをニッケルの金網で挟み込み、周辺をスポット溶接して圧接し、ニッケルのリード線をスポット溶接することにより電極(負極)を作製した。

【0117】得られた負極を、それぞれ対極である焼結式ニッケル電極とともに8規定の水酸化カリウム水溶液にそれぞれ浸漬し、45℃において充放電試験を行った。充放電条件は、水素吸蔵合金1g当たり200mAの電流で2.5時間充電した後、10分間休止し、水素吸蔵合金1g当たり200mAの電流で酸化水銀電極に対して-0.7Vになるまで放電を行うものにした。このような充放電サイクルを繰り返し、最大放電容量及びサイクル寿命を測定し、その結果を下記表5に併記する。但し、サイクル寿命は、放電容量が最大放電容量の70%まで低下した際のサイクル数とする。

【0118】また、実施例19~38及び比較例8~1 0の水素吸蔵合金粉末を用いて以下に説明する密閉形ニッケル水素二次電池を組み立てた。

この平均値とを比較し、単位面積当たりのMgカウント 50 【0119】各水素吸蔵合金粉末100重量部に対して

22 * サイズの密閉形円筒状ニッケル水素二次電池を組み立て

ポリテトラフルオロエチレン (PTFE) 1重量部、ボ リアクリル酸ナトリウム0.2重量部、カルボキシメチ ルセルロース0.2重量部及び水50重量部添加し、攪 拌してペースト状にし、穿孔ニッケルメッキ鉄薄板に塗 布、乾燥し、塗工板を作製した。この塗工板をロールプ レスで調厚した後、裁断し、水素吸蔵合金量が8gの負 極を作製した。

【0120】また、公知技術により容量が1500mA hのペースト式ニッケル正極を作製した。

してアクリル酸がグラフト重合されたポリオレフィン製 不織布を介して、渦巻状に捲回して電極群を作製した。 前記電極群と7mol/LのKOH、0.5mol/L のNaOH及び0.5mol/LのLiOHからなるア ルカリ電解液2.4mlを有底円筒状容器内に収納し、 封口することにより公称容量が1500mAhで、AA*

【0122】得られた実施例19~38及び比較例8~ 10の二次電池について、封口後24時間室温で放置し た後、150mAの電流で15時間充電、150mAの 電流で電池電圧が0.8 Vになるまで放電する充放電サ イクルを5回行った。ひきつづき、45℃の環境下で1 500mAの電流で充電し、充電時の最大電圧から10 mV低下したときに充電を終了する-ΔV法にて充電を 【0121】前記負極と前記正極との間にセパレータと 10 行った後、1500mAの電流で電池電圧が1.0Vに なるまで放電する充放電サイクルを繰り返し、放電容量 が初期容量の70%に低下するまでの充放電サイクル数 を測定し、その結果を下記表5に併記する。

> [0123] 【表3】

	組成	Cc 量(重量%)
実施例 19	Lao.71Mgo.29Ni2.9Coo.3Aio.07	0
実施例 20	Lao.5Pro.22Mg0.28N13.02Coo.25Cro.02A10.03	0
実施例 21	Lao.48Ndo.22Ngo.3Ni2.9Coo.2Cuo.05Mno.07	0
実施例 22	Lm(1)0.68Wg0.32Ni2.83Cu0.1Cr0.05Alo.03Nb0.01	0. 02
実施例 23	Lm(2)0.78W90.22Ni3.09Co0.5Fe0.05S0.01	4
実施例 24	Lao.52Ceo.05Smo.15Mgo.28Mi2.8Mno.05Coo.45Cro.02Zno.01	5
実施例 25	Lm(1)0.7Y0.03Mg0.27N13.01Co0.25A10.08Mn0.03Sn0.02	0. 02
実施例 26	Lm(1)0.3Lm(2)0.36Mg0.34M12.54Co0.53Mn0.1Mc0.01A10.05P0.01	0. 02
実施例 27	Lm(2)0.74Mg0.26Ni3,05Co0.33Mn0.1W0.01B0.01	4
実施例 28	Lm(1)0.4Lm(2)0.18Mm0.16Mg0.26Mi3.0Co0.4Mm0.08Ga0.02Si0.02	0. 02
実施例 29	Lm(2)0.72Mg0.28M12.67Co0.5Mn0.1A10.04	4
実施例 30	Lm(1)0.3Lm(2)0.35Mg0.3Ca0.05Mi2.71Co0.35Al0.04Ta0.02Li0.01	0.02
実施例 31	Lm(2)0.74Mg0.25Zr0.01Ni3.11Co0.3Cu0.05Cr0.05Alp.02	4
実施例 32	Lm(2)0.71Mg0.28Hf0.01Ni3.1Cr0.1Nn0.05Alo.02P0.01	4
実施例 33	Lm(2)0.71Mg0.28Zr0.01Ni2.71Ca0.4Mn0.05Ål0.05	4
実施例 34	Lm(2)0.74Mg0.24Ti0.02Ni3.18Co0.33Si0.05Nb0.02Al0.02	4
実施例 35	Lm(2)0.71Mg0.28Zr0.01Ni2.8Cog.28Mn0.05Alo.05Cr0.02V0.02P0.01	4
実施例 36	Lm(1)0.6Mmo.14Mgo.24Zro.02Ni3,37Cu0,1Cro.1Bo.01	0. 02
実施例 37	Lm(1)0.6Nmo.14Ngo.25Tio.01Ni2.93Coo.5Cuo.05Zno.05	0. 02
実施例 38	Lm(2)0.7Mg0.31Zr0.01Niz.87Co0.18Ga0.02Ta0.01Si0.05	4
比較例8	La(2)0.75Mg0.25Ni3.25Co0.3	4
比較例9	MmO.7MgO.29ZrO.01Ni3.11CoO.4	47. 3
比較例 10	MnO.74 MgO.26 Ni3.01 Coo.4 A IO.05	47. 3

[0124]

【表4】

	熱処理条件	合金中の Mg 濃度が平均値の 0.5~2倍の範囲である領域の割合
実施例 19		93%
実施例 20		9 1 %
実施例 21	930°C × 5hrs.	90%
実施例 22	1	8 9 %
実施例 23	950°C × 5hrs.	9 2%
実施例 24	980°C × 5hrs.	90%
実施例 25	900°C×1hr. +3°C/min. で徐冷+800°C×30min.	97%
実施例 26	930°C×Ihr. +1°C/min. で徐冷+820°C×Ihr.	9 5 %
実施例 27	960°C×10min. +0, 5°C/min. で保治+850°C×1hr.	9 8 96
実施例 28	950°C×30min. +5°C/min. で徐冷+850°C×1hr.	9 8 %
実施例 29	950°C×2hrs. +0.07°C/min, で徐冷+800°C×30min.	9 9 %
実施例 30	940°C×1hr. +0. 8°C/min. で徐冷+820°C×1hr.	9 5 %
実施例 31	930°C×1hr. +0. 3°C/min. で徐冷+800°C×1hr.	95%
実施例 32	930℃×2hr. +0. 2℃/min. で徐冷+820℃×1hr.	9 4 %
実施例 33	930°C×1hr. +2°C/min. で徐冷+800°C×1hr.	9 2 %
実施例 34	950°C×1hr, +3°C/min. で保冷+820°C×1hr.	9 1 %
実施例 35	950°C×2hr. +0. 4°C/min. で徐冷+850°C×10min.	98%
実施例 36	930°C×1hr. +1°C/min. で統治+820°C×1hr.	9 4 %
実施例 37	980°C×1hr. +0.5°C/min. で徐冷+850°C×30min.	9 6 %
実施例 38	970°C×1hr. +0. 8°C/min. で徐冷+900°C×1hr.	92%
比较例8	700°C × 10hrs.	6 5 %
比較例9	820℃×1hr.+1℃/min.で食冷+620℃×1hr.	6 0%
比較例 10	800°C×1hr. +3°C/min. で保冷+600°C×1hr.	6 3 %

[0125]

* *【表5】

	1201				
	水素吸蔵速度 (H/M・h ^{-l})	放電容量 (mAh/g)	サイクル寿命	密閉型二次電池の サイクル寿命	
実施例 19	0. 95	330	280	180	
実施例 20	0. 90	350	300	220	
実施例 21	1.05	355	320	230	
実施例 22	1. 10	340	290	240	
実施例 23	1. 07	330	330	225	
実施例 24	0.96	300	335	250	
実施例 25	0. 97	310	295	230	
実施例 26	1.08	335	310	225	
実施例 27	1. 11	320	300	220	
実施例 28	1.06	335	305	235	
実施例 29	0.99	350	320	250	
実施例 30	1. 00	340	285	235	
実施例 31	1.08	335	310	230	
実施例 32	0. 92	330	320	235	
実施例 33	0. 97	325	310	230	
実施例 34	0.96	320	320	225	
実施例 35	1.01	335	310	235	
実施例 36	1. 04	310	300	215	
実施例 37	0.98	320	305	200	
実施例 38	1. 15	300	295	205	
比較例8	0. 4	280	100	80	
比較例9	0. 3	100	200	20	
比較例 10	0. 5	120	250	30	

【0126】表3~表5から明らかなように、下記一般 式(3)で表される組成を有し、かつ断面において単位 面積当たりのMg濃度が平均値の0.5~2倍である領 域が70%以上存在する実施例19~38の水素吸蔵合

素吸蔵合金に比べて、水素吸蔵・放出速度が高いことが わかる。

【0127】また、下記一般式(3)で表される組成を 有し、かつ断面において単位面積当たりのMg濃度が平 金は、前記領域が70%に満たない比較例 $8\sim100$ 水 50 均値 $0.5\sim2$ 倍である領域が70%以上存在する水

素吸蔵合金を含む負極を備える実施例19~38の二次 電池は、前記領域が70%に満たない水素吸蔵合金を含む負極を備える比較例8~10の二次電池に比べて、放 電容量が高く、かつ充放電サイクル寿命が長いことがわ かる。

[0128]

【発明の効果】以上詳述したように本発明によれば、水素吸蔵時及び放出時の平衡圧の平坦性が高く、かつ水素吸蔵時及び放出時の圧力差が低減された水素吸蔵合金を提供することができる。また、本発明によれば、水素吸 10歳・放出速度が向上された水素吸蔵合金を提供することができる。さらに、本発明によれば、高容量で、かつ長寿命な二次電池を提供することができる。また、本発明によれば、水素吸蔵合金がアルカリ電解液で腐食酸化されるのが抑制され、高率放電特性が向上された二次電池を提供することができる。また、本発明によれば、水素吸蔵合金がアルカリ電解液で腐食酸化されるのが抑制され、放電容量及び充放電サイクル寿命が向上された二次電池することができる。

*【図面の簡単な説明】

【図1】本発明に係わる二次電池の一例を示す部分切欠 斜視図。

【図2】実施例で用いられる温度スキャニング式水素吸蔵放出特性評価装置を示す概略図。

【図3】実施例29の水素吸蔵合金における電子線マイクロアナライザー(EPMA)により倍率200倍で撮影された反射電子像に示される金属組織の写真。

【図4】実施例29の水素吸蔵合金におけるMgカウント数の分布を示す特性図。

【符号の説明】

1…容器、

2…正極、

3…セパレータ、

4…負極、

5…電極群、

7…封口板、

8…絶縁ガスケット。

【図1】

【図2】

【図3】

【図4】

100 μm

フロントページの続き

(72)発明者 吉田 秀紀

神奈川県川崎市幸区堀川町72番地 株式会

社東芝川崎事業所内

(72)発明者 稲葉 隆道

神奈川県川崎市幸区堀川町72番地 株式会

社東芝川崎事業所内

(72)発明者 山本 雅秋

神奈川県川崎市幸区堀川町72番地 株式会

社東芝川崎事業所内

Fターム(参考) 5H003 AA02 AA03 AA04 BB02 BD00

BD04

5H028 AA02 AA05 AA06 EE01 FF02. HH00 HH01