Link Function Alternatives For Logistic Regression

M.Sinan İyisoy
Necmettin Erbakan University
Meram Faculty of Medicine

Generalized Linear Models

- Nelder and Wedderburn introduced Generalized Linear Models in 1972.
- In this framework, such a model is specified by
- i) independent observations y_i distributed according to an exponential family distribution
- ii) a set of explanatory variables x, for each observation, forming systematic component
- iii) The link function $g(\mu) = Y$ relating mean of an observation to systematic component.

Logistic Regression

As a special case of Generalized Linear Model, logistic regression model has components

1) Random component

Response variable y and its probability distribution where y is a dichotomous variable with Bernoulli distribution.

2) Linear Predictor (Systematic component)

A linear combination of explanatory variables of different types that is linear in the parameters

$$\eta_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

Logistic Regression

3) Link Function

A smooth and invertible function g(.) that transforms π_i to the linear predictor.

$$g(\pi_i) = \eta_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}$$
 So $\pi_i = g^{-1} \ (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip})$ g^{-1} should map the real line onto (0,1) because probabilities π_i obtained must be between 0 and 1.

Cumulative Distribution Functions

- Cumulative distribution functions of most continous distributions (generally denoted by F) has the following appealing properties
- Mapping real line onto (0,1)
- Non-decreasing (S-shaped)
- Invertibility (Quantile functions).

Quantile Functions

- Inverse of a CDF is called Quantile function. A Quantile function is a candidate for link function in a logistic regression model.
- For logistic distribution, its CDF is

 $F(x; \mu, s) = \frac{1}{1+e^{-\frac{x-\mu}{s}}}$ for parameters μ, s and its quantile function is a generalisation of logit

$$Q(p; \mu, s) = \mu + s \log(\frac{p}{1-p})$$

Taking $\mu = 0$ and s = 1, we get the standard logit function. Notice that standard logit Q takes a value p in (0,1) and returns a real number.

Logistic Distribution

Logistic Cumulative Distribution Functions

Logistic Quantile Functions

Logistic Density Functions

Canonical Link (Berkson 1944)

The canonical link function used in logistic regression model is the standard logit function

$$g(\pi_i) = \log\left(\frac{\pi_i}{1-\pi_i}\right) .$$

Since g is invertible, we have

$$g^{-1}(\eta_i) = logistic(\eta_i) = \frac{1}{1 + e^{-\eta_i}}$$

How to find other g's?

 One of the important aspects when choosing a link function is its symmetry about 0.5,

ie.
$$g(x) = -g(1-x)$$
.

- As seen from previous graphs, if probability distribution is symmetric about 0 then its cumulative distribution and quantile functions are symmetric about 0.5.
- Symmetric link functions can be obtained from symmetric density functions like standard normal, logistic, Student-t and Cauchy.

Asymmetric Links

- Similarly, asymmetric links can be obtained from cdfs of asymmetric distributions.
- There are other ways to obtain asymmetric link functions:
- i) modifying linear predictor η_i , making it nonlinear
- ii) considering F in a more general parametric class of probability distributions.
- A well-known example to an asymmetric link function is complementary log-log due to Fisher (1922).

Latent Variable Model

Each link function corresponds to a latent variable model

$$y_i^* = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_{ip}$$

or in short

 $Y_i^* = X_i \beta + \epsilon_i$ (assuming there is an underlying continous latent variable Y^*)

where ϵ_i is iid and $Y_i = I(Y_i^* > 0)$. Namely

$$\begin{cases} Y_i = 1 & if \ Y_i^* > 0 \\ Y_i = 0 & if \ Y_i^* \le 0 \end{cases}$$

Maximum likelihood estimation of the latent variable model implies a link function chosen as the quantile function F of ϵ_i 's.

Latent Variable Model

Since

$$p_i = P[y_i = 1 | X_i] = \Pr(X_i \beta + \epsilon_i > 0)$$

$$= \Pr(\epsilon_i > -X_i \beta) = 1 - \Pr(\epsilon_i < -X_i \beta)$$

$$= 1 - F(-X_i' \beta)$$
we obtain $p_i = 1 - F(-X_i' \beta)$. So
$$F^{-1}(p_i) = F^{-1}(1 - F(-X_i' \beta)) =$$

$$-F^{-1}(F(-X_i' \beta)) = X_i' \beta$$
. Hence $g = F^{-1}$ constitutes a link function.

Some Other Link Functions

- Probit
- Clog-log
- Log-log
- Cauchit
- Robit
- Scobit
- Pregibit

Probit (Bliss 1934)

 The quantile function of standard normal distribution is called probit and denoted by

$$\Phi^{-1}$$
 where $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$.

• Hence $\Phi^{-1}(\pi_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip}$

Here ϵ_i 's are supposed to have a standard normal density function so the link is chosen as Φ^{-1} .

CLog-Log (Fisher 1922)

• Complementary Log-Log function is defined to be $g(\pi_i) = \log(-\log(1 - \pi_i))$ which is the inverse cdf (quantile) of Gumbel distribution.

•
$$g^{-1}(\eta_i) = 1 - e^{(-e^{\eta_i})}$$

• In this case ϵ_i 's are supposed to have a Gumbel density function.

Log-Log

- Log-Log function is defined to be
- $g(\pi_i) = -\log(-\log(\pi_i))$ which is the inverse cdf (quantile) of Log-Weibull distribution.
- $g^{-1}(\eta_i) = e^{(-e^{\eta_i})}$
- Log-log and Clog-log models are mirror images of each other with the same kurtosis and opposite skewness.

Complementary Log (Piegorsch 1992)

- Complementary Log function is defined to be $g(\pi_i) = -\log(1 \pi_i)$ which is the quantile of standard exponential distribution.
- $g^{-1}(\eta) = 1 e^{-\eta}$ defined for $\eta > 0$.
- Used for truncated data.

Cauchit

Cauchit is defined to be

$$g(\pi_i) = \tan(\pi \left(\pi_i - \frac{1}{2}\right))$$

which is the quantile of Cauchy distribution.

•
$$g^{-1}(\eta) = \frac{1}{\pi} \arctan(\eta) + \frac{1}{2}$$

• Since Cauchy distribution is a member of Student t family distributions where degree of freedom v=1, Cauchit is a member of Gosset Link family.

Robit (Liu 2004)

- The quantile function of Student t distribution with v degrees of freedom is called robit and denoted generically by F_v^{-1} where F_v is the cumulative distribution function of Student t distribution with df = v.
- Robit link with 7 df approximates logistic link and Robit link with $df \to \infty$ is probit.
- Robit regression is allegedly robust.

Scobit (Skewed Logit, Nagler 1994)

Scobit is defined to be

$$g(\pi_i) = log((1 - \pi_i)^{-\frac{1}{\lambda}} - 1)$$

which is the quantile of Burr type II distribution for some parameter λ where

$$g^{-1}(\eta) = 1 - \frac{1}{(1+e^{\eta})^{\alpha}}$$
.

Power Logit

Power Logit is defined to be

$$g(\pi_i) = -\log(\pi_i^{-\frac{1}{\lambda}} - 1)$$

which is the quantile of exponential Burr type XII distribution for some parameter λ where

$$g^{-1}(\eta) = \frac{1}{(1+e^{-\eta})^{\alpha}}$$
.

Burr Distributions (Burr 1942)

(9)
$$F(x) = x, \quad (0, 1),$$
(10)
$$F(x) = (e^{-x} + 1)^{-r},$$
(11)
$$F(x) = (x^{-k} + 1)^{-r}, \quad (0, \infty),$$
(12)
$$F(x) = \left[\left(\frac{c - x}{x}\right)^{1/e} + 1\right]^{-r}, \quad (0, c),$$
(13)
$$F(x) = (ke^{-\tan x} + 1)^{-r}, \quad \left(-\frac{\pi}{2}, \frac{\pi}{2}\right),$$
(14)
$$F(x) = (ke^{-e \sinh x} + 1)^{-r},$$
(15)
$$F(x) = 2^{-r}(1 + \tanh x)^{r},$$
(16)
$$F(x) = \left(\frac{2}{\pi} \arctan e^{x}\right)^{r},$$
(17)
$$F(x) = 1 - \frac{2}{k[(1 + e^{x})^{r} - 1] + 2},$$
(18)
$$F(x) = (1 - e^{-x^{2}})^{r}, \quad (0, \infty),$$
(19)
$$F(x) = \left(x - \frac{1}{2\pi} \sin 2\pi x\right)^{r}, \quad (0, 1),$$
(20)
$$F(x) = 1 - (1 + x^{e})^{-k}, \quad (0, \infty),$$

Gosset Link Family (Koenker&Yoon 2009)

- Gosset link family includes link functions being quantiles of Student t distributions of different df.
- Probit and cauchit links are naturally nested within Student t Family.
- There is an extensive literature on the use of Student models for continous response data where it has robustness advantages.

Gosset Link Family

- When v > 6 it is difficult to distinguish Gosset models from probit.
- For v = 7 or v = 8, the logit model is well approximated by Gosset model.
- When v < 0.2 evaluation of likelihood becomes problematic.

Pregibit (Vijverberg 2012)

The quantile function

$$g(\pi_i; \alpha, \delta) = \frac{\pi_i^{\alpha - \delta} - 1}{\alpha - \delta} - \frac{(1 - \pi_i)^{\alpha - \delta} - 1}{\alpha + \delta}$$

of Generalized Tukey Lambda distribution $GTL(\alpha, \delta)$ with parameters α, δ is called pregibit.

This link function generates diverse family of GTL density functions.

The pregibit model is simply a binary choice model with errors following GTL distributions.

Some GTL Distributions

Some Pregibit CDFs

Graphs of Some Links

Some link functions

Thank you