A detour into the world of Linux schedulers

Abstract:

I explored 3 different schedulers implemented in Linux and how they perform on different processes. We tested Round Robin, First-In-First-Out and the CFS scheduler with I/O bound processes, CPU-bound processes and a mixture of those processes and charted their performance. I found that CFS faltered when it came to IO-intensive processes whilst outperforming RR and FIFO on CPU-intensive processes. RR and FIFO performed relatively similarly.

Introduction:

In this report, I explored various schedulers available within the Linux OS; round robin (SCHED_RR), FIFO (SCHED_FIFO) and CFS (SCHED_OTHER). A scheduler is crucial to the running of a modern OS. Schedulers are often implemented so they keep all compute resources busy (as in load balancing), allow multiple users to share system resources effectively, or to achieve a target quality of service. Scheduling is fundamental to computation itself, and an intrinsic part of the execution model of a computer system; the concept of scheduling makes it possible to have computer multitasking with a single central processing unit (CPU).¹

The tests were performed on a 64-bit Ubuntu 12.04 VM allocated 5728 MB with 4 cores of a 2.7 GHz Intel Core i5.

Method:

To thoroughly test the schedulers, we needed to establish certain processes. I created a CPU-intensive process that calculates pi and an I/O-bound process that reads an input file and writes data to a number of outputs. I then combined these into a testing C file that requires several parameters to perform its task. We pass in the scheduler policy (S, the number of processes we will fork and the type of processes we'd like to test. Given these parameters, our program runs the required task.

e.g.

```
$ ./test-sched SCHED_FIFO SMALL IO
$ ./test-sched SCHED_OTHER MEDIUM CPU
<SCHEDULER>: SCHED_FIFO, SCHED_RR, SCHED_OTHER (DEFAULT)
<# OF ITERATIONS>: LOW (DEFAULT) (10), MEDIUM(100), HIGH(1000)
<PROCESSTYPE>: CPU, IO, MIXED
```

To test our programs and their combinations systematically, we wrote a bash script that iterates through all of the combinations presented. We had 3 schedulers, 3 amounts of processes and 3 types of process which results in 3^3 combinations, or 27 unique combinations. We ran the tests 5 times each to account for discrepancies and average them out. We run 500,000 iterations of every process. The bash script tests them in order and returns data in a

¹ https://en.wikipedia.org/wiki/Scheduling_(computing)

text file for easy visualization using spreadsheet software. Without further ado, let's move onto the results section!

Results:

The graphs are vertical GANTT charts. We show the run times of the processes in a chart and the amounts of voluntary/involuntary context switches in the following chart.

CPU-intensive:

IO-Bound:

Mixed:

Analysis:

To begin, we'll focus on the CPU-bound processes. We notice that all three of the schedulers performed almost equally well. However, looking at the context switch chart for CPU-bound processes shows a radically different picture. The CFS spends relatively massive amounts doing involuntary context switches. They're understandably involuntary, as the CPU's won't yield to the scheduler whilst there's still a task to be completed. Despite those large wait times, it still performed on almost equal footing as RR and FIFO (fractionally slower). We conclude that RR and FIFO are marginally better at CPU-intensive tasks.

On the other hand, in the I/O bound processes we notice that despite having more than double the amount of context switches, the CFS is about 40% quicker than both RR and FIFO which again are almost equal. The majority of the context switches are voluntary, as expected

when dealing with I/O devices. In this case, CFS outperforms both RR and FIFO scheduling and is our clear winner.

Lastly, our mixed process results are predictable given our previous results. Since CFS is almost on par with RR and FIFO in CPU-Intensive processes and 40% quicker in I/O bound processes, then our mixed process results show that CFS is about 25% quicker than both RR and FIFO despite have 25-30% more context switches.

Conclusion:

In conclusion, we see that CFS outperforms both RR and FIFO schedulers in I/O bound processes and mixed processes which most accurately reflect personal real-world applications. Both RR and FIFO are on par with each other and outperform CFS in CPU-intensive processes, though suffer serious drawbacks with I/O bound processes.

Building off our results, CFS would be most efficient for modern-day personal computing whilst RR/FIFO would work best in scientific computing that utilize heavy CPU usage with little I/O sequences. RR would falter heavily in interactive applications, which CFS can handle. CFS would increase wait times substantially given a really CPU intensive scientific computation that spans weeks/years.

We notice that CFS doesn't scale very well in the CPU-intensive tasks, with the wait times increasing near exponentially while RR/FIFO understandably remain linear in their growth.

References:

Andy Sayler Class Lectures

Operating Systems Concepts – Silverschatz

Appendix A:

Аррени	Scheduler	Processes	Wall	User	System	CPU	Involuntary	Voluntary
	RR	Small	0.21	0.65	0	309%	3	18
			0.14	0.46	0	321%	4	18
			0.15	0.48	0	320%	4	18
			0.14	0.46	0	331%	3	18
			0.15	0.49	0	324%	5	18
		Medium	1.22	4.5	0.01	368%	6	107
CPU			1.26	4.63	0.02	368%	9	108
			1.54	5.56	0.04	363%	12	108
			1.25	4.57	0.02	367%	9	108
			1.26	4.68	0.02	371%	8	109
		Large	12.29	44.54	0.38	365%	127	1041
			12.04	42.64	1.19	364%	62	1009
			12.13	43.79	0.32	363%	58	1011
			12.09	43.74	0.35	364%	88	1025

			12.08	42.93	1.13	364%	134	1008
			0.18	0.5	0.01	277%	135	24
			0.18	0.39	0.01	218%	520	23
		Small	0.14	0.36	0.01	251%	164	24
			0.12	0.38	0.01	322%	64	23
			0.13	0.43	0.01	342%	74	24
			1.53	5.06	0.12	337%	1493	193
			1.3	4.53	0.08	354%	1566	197
	CFS	Medium	1.77	5.32	0.23	313%	3303	201
			1.58	5.29	0.18	347%	2305	199
			1.58	5.19	0.24	342%	2834	187
			13.46	49.11	0.84	371%	14032	1330
			13.38	49.49	0.64	374%	13337	1382
		Large	12.56	46.9	0.56	377%	12334	1450
			12.77	47.59	0.77	378%	11712	1389
			13.49	50.43	0.72	379%	12598	1314
	FIFO		0.12	0.39	0	330%	4	18
		Small	0.12	0.39	0	316%	6	18
			0.14	0.46	0	316%	5	18
			0.12	0.4	0	323%	6	16
			0.22	0.72	0.02	331%	10	17
		Medium	1.34	4.88	0.04	366%	6	108
			1.18	4.29	0.02	365%	8	108
			1.2	4.4	0.04	368%	9	108
			1.22	4.49	0.03	369%	8	108
			1.23	4.41	0.02	358%	10	107
		Large	12.47	45.26	0.41	366%	48	1008
			12.28	44.4	0.3	364%	53	1008
			12.1	43.8	0.36	364%	48	1009
			12.12	43.85	0.34	364%	52	1008
			12.13	42.62	1.67	364%	50	1008
Ю	Scheduler	Processes	Wall	User	System	CPU	Involuntary	Voluntary
	RR	Small Medium	0.41	0.01	0.61	150%	6	4015
			0.51	0	1.07	208%	6	3401
			0.44	0	0.8	183%	5	3772
			0.34	0	0.72	209%	4	3811
			0.36	0	0.65	179%	5	3622
			3.35	0.06	8.76	262%	15	55247
			3.8	0.01	10.38	273%	19	60543

			3.47	0.05	9.36	271%	20	59868
			3.79	0.02	10.3	272%	29	55824
			3.66	0.02	9.29	254%	19	56583
			38.65	0.34	101.24	262%	502	623868
			35.68	0.26	97.56	274%	469	697109
		Large	39.31	0.32	106.16	270%	429	620903
			37.56	0.28	102.97	274%	415	708244
			37.04	0.3	102.08	276%	416	679669
			0.32	0	0.31	99%	561	2360
			0.28	0	0.3	105%	529	3092
		Small	0.2	0	0.18	90%	291	2991
			0.37	0.01	0.38	107%	397	2791
			0.19	0	0.1	55%	258	2566
			2.52	0.02	3.64	145%	7636	37344
			2.88	0.02	4.5	157%	8363	36996
	CFS	Medium	2.58	0	3.97	154%	7599	40435
		Large	2.47	0	3.65	147%	7712	38795
			2.84	0.02	4.64	164%	8252	39979
			28.05	0.1	58.98	210%	63009	1297221
			27.59	0.12	64.68	234%	73939	1557439
			27.99	0.12	67.13	240%	63745	1628215
			27.2	0.18	57.28	211%	79247	1191711
			28.75	0.2	66.61	232%	76711	1323476
			0.37	0	0.66	177%	5	3639
			0.37	0	0.62	165%	6	3640
		Small	0.59	0	1.26	213%	3	3498
		Medium	0.48	0	1	209%	5	3723
			0.34	0	0.64	190%	7	4207
			3.52	0	9.42	267%	18	55853
			3.72	0.05	9.41	253%	11	56884
	FIFO		3.38	0.05	8.9	265%	11	56899
			3.54	0.06	10.1	287%	13	55935
			3.17	0.05	8.34	264%	11	64608
			40.84	0.27	109.29	268%	94	648636
			41.58	0.31	109.6	264%	130	651701
			38.08	0.32	99.02	260%	109	603797
			38.64	0.23	102.92	266%	102	609987
			36.96	0.28	97.68	265%	116	605897
Mixed	Scheduler	Processes	Wall	User	System	CPU	Involuntary	Voluntary

I		0.42	0.50	l 0.2	1000/	ا م	4027
		0.43	0.56	0.3	198%	3	4837
		0.37	0.56	0.22	208%	8	4477
	Small	0.51	0.54	0.5	205%	4	3578
		0.39	0.56	0.31	219%	5	3927
		0.37	0.49	0.26	203%	6	4172
		4.5	5.58	7.61	292%	65	60114
		5.03	5.38	10.08	307%	64	56209
RR	Medium	4.6	5.37	8.98	311%	49	55996
		4.91	5.75	9.67	313%	58	57532
		4.85	5.91	9.51	318%	73	57920
		51.33	54.66	99.82	300%	651	803791
		52.24	53.74	102.53	299%	684	946067
	Large	49.71	52.32	100.6	307%	687	911065
		51.69	53.78	99.79	297%	630	697404
		51.15	55.65	100.46	305%	684	866909
	Small	0.48	0.51	0.33	176%	852	2972
		0.49	0.5	0.46	192%	684	2930
		0.4	0.46	0.31	194%	556	3113
		0.4	0.46	0.46	228%	1036	3108
		0.54	0.56	0.69	232%	715	2923
	_	4.16	5.04	5.47	252%	9792	39081
		4.31	5.11	5.36	242%	11540	33295
CFS	Medium	3.71	5.35	4.15	256%	9051	37001
		4.12	5.18	5.31	254%	11599	37835
		4.27	4.94	5.76	250%	10717	37622
		40.49	47.38	69.45	288%	100158	1409292
	Large	38.43	46.15	62.58	282%	99389	1198817
		39.24	46.38	64.13	281%	81040	1235369
		40.77	48.28	67.09	282%	83025	1348386
		40.86	47.36	57.02	255%	73862	1095514
		0.48	0.54	0.64	247%	6	3926
	Small	0.46	0.56	0.6	247%	6	3853
FIFO		0.53	0.52	0.88	265%	4	4032
		0.38	0.47	0.5	255%	5	3866
		0.36	0.52	0.28	217%	5	4656
		4.83	5.78	8.82	302%	11	55200
	Medium	4.84	5.54	9.04	301%	16	56786
		4.36	5.34	7.59	296%	11	55481
		5.1	5.68	10.15	310%	15	60247

			4.61	5.66	8.34	303%	10	54628
			59.74	58.1	118.67	295%	139	1042543
		Large	56.47	59.81	107.4	296%	149	984459
	La		50.66	54.39	98.38	301%	156	837963
			51.13	53.29	100.15	300%	145	881949
			50.4	54.02	94.31	294%	161	873904

Appendix B:

- test-sched.c :- runs the various processes required for testing
- testscript :- runs a systematic analysis of all 27 cases