Section 4.2 - Calculus with Parametric Curves

Tangents and Areas

A parametrized curve x = f(t) and y = g(t) is differentiable at t if f and g are differentiable at t.

Parametric Formula for dy/dx

If all three derivatives exist and $\frac{dx}{dt} \neq 0$,

$$\frac{dy}{dx} = \frac{dy / dt}{dx / dt}$$

The derivatives $\frac{dy}{dt}$, $\frac{dx}{dt}$, and $\frac{dy}{dx}$ are related by the Chain Rule $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$

Parametric Formula for d^2y/dx^2

If the equations x = f(t), y = g(t) define y as a twice-differentiable function of x, then at any point where $\frac{dx}{dt} \neq 0$ and $y' = \frac{dy}{dx}$,

$$\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt}$$

Example

Find the tangent to the curve $x = \sec t$, $y = \tan t$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$, at the point $(\sqrt{2}, 1)$, where $t = \frac{\pi}{4}$

9

The slope of the curve at *t* is:

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\sec^2 t}{\sec t \tan t} = \frac{\sec t}{\tan t}$$

$$t = \frac{\pi}{4}$$
 \Rightarrow $\left| \underline{m} = \frac{dy}{dx} \right|_{t = \frac{\pi}{4}} = \frac{\sec \frac{\pi}{4}}{\tan \frac{\pi}{4}} = \frac{\sqrt{2}}{1} = \frac{\sqrt{2}}{2}$

The tangent line is

$$y = m(x - x_1) + y_1$$

$$y = \sqrt{2}(x - \sqrt{2}) + 1 = \sqrt{2}x - 2 + 1 = \sqrt{2}x - 1$$

$$= \sqrt{2}x - 1$$

Example

Find $\frac{d^2y}{dx^2}$ as a function of t if $x = t - t^2$, $y = t - t^3$

Solution

$$y' = \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1 - 3t^2}{1 - 2t}$$

$$\frac{dy'}{dt} = \frac{d}{dt} \left(\frac{1 - 3t^2}{1 - 2t} \right)$$

$$= \frac{-6t(1 - 2t) - (-2)(1 - 3t^2)}{(1 - 2t)^2}$$

$$= \frac{-6t + 12t^2 + 2 - 6t^2}{(1 - 2t)^2}$$

$$= \frac{6t^2 - 6t + 2}{(1 - 2t)^2}$$

$$= \frac{6t^2 - 6t + 2}{(1 - 2t)^2} \div (1 - 2t)$$

$$= \frac{6t^2 - 6t + 2}{(1 - 2t)^3}$$

Example

Find the area enclosed by the asteroid: $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le 2\pi$

Solution

By symmetry, the enclosed area is 4 times the area beneath the curve in the first quadrant where $0 \le t \le \frac{\pi}{2}$.

$$A = 4 \int_0^1 y dx \qquad dx = d\left(\cos^3 t\right) = 3\cos^2 t \sin t dt$$
$$= 4 \int_0^{\pi/2} \sin^3 t \cdot 3\cos^2 t \sin t dt$$

$$= 12 \int_{0}^{\pi/2} \sin^{4}t \cdot \cos^{2}t \, dt$$

$$= 12 \int_{0}^{\pi/2} \left(\frac{1 - \cos 2t}{2} \right)^{2} \left(\frac{1 + \cos 2t}{2} \right) dt$$

$$= \frac{3}{2} \int_{0}^{\pi/2} \left(1 - 2\cos 2t + \cos^{2} 2t \right) (1 + \cos 2t) \, dt$$

$$= \frac{3}{2} \int_{0}^{\pi/2} \left(1 - 2\cos 2t + \cos^{2} 2t + \cos 2t - 2\cos^{2} 2t + \cos^{3} 2t \right) dt$$

$$= \frac{3}{2} \int_{0}^{\pi/2} \left(1 - \cos 2t - \cos^{2} 2t + \cos^{3} 2t \right) dt$$

$$= \frac{3}{2} \left[t - \frac{1}{2} \sin 2t \right]_{0}^{\pi/2} - \frac{3}{2} \int_{0}^{\pi/2} \cos^{2} 2t \, dt + \frac{3}{2} \int_{0}^{\pi/2} \cos^{3} 2t \, dt \qquad \cos^{2} \alpha = \frac{1 + \cos 2\alpha}{2}$$

$$= \frac{3}{2} \left(\frac{\pi}{2} - 0 \right) - \frac{3}{2} \int_{0}^{\pi/2} \frac{1 + \cos 2t}{2} \, dt + \frac{3}{2} \int_{0}^{\pi/2} \left(1 - \sin^{2} 2t \right) \cos 2t \, dt$$

$$= \frac{3\pi}{4} - \frac{3}{4} \left[t + \frac{1}{2} \sin 2t \right]_{0}^{\pi/2} + \frac{3}{4} \int_{0}^{\pi/2} \left(1 - \sin^{2} 2t \right) d \left(\sin 2t \right)$$

$$= \frac{3\pi}{4} - \frac{3}{4} \left(\frac{\pi}{2} - 0 \right) + \frac{3}{4} \left[\sin 2t - \frac{1}{3} \sin^{3} 2t \right]_{0}^{\pi/2}$$

$$= \frac{3\pi}{4} - \frac{3\pi}{8} + \frac{3}{4} (0 - 0)$$

$$= \frac{3\pi}{8}$$

Length of a Parametrically Defined Curve

Definition

If a curve C is defined parametrically by x = f(t) and y = g(t), $a \le t \le b$, where f' and g' are continuous and not simultaneously zero on [a, b], and C is traversed exactly once as t increases from t = a to t = a, then the length of C is the definite integral

Example

Find the length of the circle of radius r defined parametrically by $x = r \cos t$, $y = r \sin t$, $0 \le t \le 2\pi$ **Solution**

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

$$= \int_0^{2\pi} \sqrt{(-r\sin t)^2 + (r\cos t)^2} dt$$

$$= \int_0^{2\pi} \sqrt{r^2 \sin^2 t + r^2 \cos^2 t} dt$$

$$= \int_0^{2\pi} \sqrt{r^2 \left(\sin^2 t + \cos^2 t\right)} dt$$

$$= \int_0^{2\pi} r dt$$

$$= rt \begin{vmatrix} 2\pi \\ 0 \end{vmatrix}$$

$$= 2\pi r \quad unit \begin{vmatrix} 2\pi \\ 0 \end{vmatrix}$$

Example

Find the length of the asteroid: $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le 2\pi$

Solution

Because of the curve's symmetry with respect to the coordinate axes, its length is 4 times the length of the first quadrant.

$$\left(\frac{dx}{dt}\right)^{2} = \left[3\cos^{2}t(-\sin t)\right]^{2} = 9\cos^{4}t\sin^{2}t$$

$$\left(\frac{dy}{dt}\right)^{2} = \left[3\sin^{2}t(\cos t)\right]^{2} = 9\sin^{4}t\cos^{2}t$$

$$\sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} = \sqrt{9\cos^{4}t\sin^{2}t + 9\sin^{4}t\cos^{2}t}$$

$$= 3|\cos t \sin t|\sqrt{\cos^{2}t + \sin^{2}t} \qquad \cos^{2}t + \sin^{2}t = 1$$

$$= 3\cos t \sin t \qquad \cot t \sin t \ge 0, \quad 0 \le t \le \frac{\pi}{2}$$

$$L = \int_{0}^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

$$= 4 \int_{0}^{\pi/2} 3\cos t \sin t dt \qquad \sin 2t = 2\cos t \sin t$$

$$= \frac{12}{2} \int_{0}^{\pi/2} \sin 2t dt \qquad \sin 2t = 2\cos t \sin t$$

$$= -\frac{6}{2}\cos 2t \Big|_{0}^{\pi/2}$$

$$= -3(-1-1)$$

$$= -3(-2)$$

$$= 6 \ unit$$

Area of Surface of Revolution for Parametrized Curves

If a smooth curve x = f(t) and y = g(t), $a \le t \le b$, is traversed exactly once as t increases from a to b, then the areas of the surfaces generated by revolving the curve about the coordinate axes are as follows.

1. Revolution about the *x*-axis $(y \ge 0)$:

$$S = 2\pi \int_{a}^{b} y \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

2. Revolution about the y-axis $(x \ge 0)$:

$$S = 2\pi \int_{a}^{b} x \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

Example

The standard parametrization of the circle of radius 1 centered at the point (0, 1) in the xy-plane is

$$x = \cos t$$
, $y = 1 + \sin t$, $0 \le t \le 2\pi$

Use the parametrization to find the area of the surface swept out by revolving the circle about the x-axis.

Solution

$$x = \cos t \implies \left(\frac{dx}{dt}\right)^2 = (-\sin t)^2$$

$$y = 1 + \sin t \implies \left(\frac{dy}{dt}\right)^2 = (\cos t)^2$$

$$\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{\sin^2 t + \cos^2 t} = 1$$

$$S = \int_a^b 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

$$= \int_0^{2\pi} 2\pi (1 + \sin t) dt$$

$$= 2\pi [t - \cos t]_0^{2\pi}$$

$$= 2\pi (2\pi - 1 - (0 - 1))$$

$$= 4\pi^2 \quad unit^2$$

Exercises Section 4.2 – Calculus with Parametric Curves

Find all the points at which the curve has the given slope.

1.
$$x = 4\cos t$$
, $y = 4\sin t$; $slope = \frac{1}{2}$

$$x = 4\cos t$$
, $y = 4\sin t$; $slope = \frac{1}{2}$ 3. $x = t + \frac{1}{t}$, $y = t - \frac{1}{t}$; $slope = 1$

2.
$$x = 2\cos t$$
, $y = 8\sin t$; $slope = -1$

4.
$$x = 2 + \sqrt{t}$$
, $y = 2 - 4t$; $slope = -8$

Find an equation of the line tangent to the curve at the point corresponding to the given value of t.

5.
$$x = \sin t$$
, $y = \cos t$, $t = \frac{\pi}{4}$

9.
$$x = 6t$$
, $y = t^2 + 4$, $t = 1$

6.
$$x = t^2 - 1$$
, $y = t^3 + t$, $t = 2$

10.
$$x = t - 2$$
, $y = \frac{1}{t} + 3$, $t = 1$

7.
$$x = e^t$$
, $y = \ln(t+1)$, $t = 0$

11.
$$x = t^2 - t + 2$$
, $y = t^3 - 3t$, $t = -1$

8.
$$x = \cos t + t \sin t$$
, $y = \sin t - t \cos t$, $t = \frac{\pi}{4}$ 12. $x = -t^2 + 3t$, $y = 2t^{3/2}$, $t = \frac{1}{4}$

12.
$$x = -t^2 + 3t$$
, $y = 2t^{3/2}$, $t = \frac{1}{4}$

Find the tangent to the curve at the point defined by the given value of t. Also find the value of $\frac{d^2y}{dt^2}$ at this point

13.
$$x = \sin 2\pi t$$
, $y = \cos 2\pi t$, $t = -\frac{1}{6}$

21.
$$x = t + 1$$
, $y = t^2 + 3t$, $t = -1$

14.
$$x = \cos t$$
, $y = \sqrt{3}\cos t$, $t = \frac{2\pi}{3}$

22.
$$x = t^2 + 5t + 4$$
, $y = 4t$, $t = 0$

15.
$$x = t$$
, $y = \sqrt{t}$, $t = \frac{1}{4}$

23.
$$x = 4\cos\theta$$
, $y = 4\sin\theta$, $\theta = \frac{\pi}{4}$

16.
$$x = \sec^2 t - 1$$
, $y = \tan t$, $t = -\frac{\pi}{4}$

24.
$$x = \cos \theta$$
, $y = 3\sin \theta$, $\theta = 0$

17.
$$x = \frac{1}{t+1}$$
, $y = \frac{t}{t-1}$, $t=2$

25.
$$x = 2 + \sec \theta$$
, $y = 1 + 2\tan \theta$, $\theta = \frac{\pi}{6}$

17.
$$x = \frac{1}{t+1}$$
, $y = \frac{t}{t-1}$, $t = 2$

26.
$$x = \sqrt{t}$$
, $y = \sqrt{t-1}$, $t = 2$

18.
$$x = t + e^t$$
, $y = 1 - e^t$, $t = 0$

27.
$$x = \cos^3 \theta$$
, $y = \sin^3 \theta$, $\theta = \frac{\pi}{4}$

19.
$$x = 4t$$
, $y = 3t - 2$, $t = 3$

28.
$$x = \theta - \sin \theta$$
, $y = 1 - \cos \theta$, $\theta = \pi$

20.
$$x = \sqrt{t}$$
, $y = 3t - 1$, $t = 1$

Find the equations of the tangent lines at the point where the curve crosses itself

29.
$$x = 2\sin 2t$$
, $y = 3\sin t$

31.
$$x = t^2 - t$$
, $y = t^3 - 3t - 1$

30.
$$x = 2 - \pi \cos t$$
, $y = 2t - \pi \sin t$

32.
$$x = t^3 - 6t$$
, $y = t^2$

Find the slope of the curve x = f(t), y = g(t) at the given value of t. Define x and y as differentiable functions.

33.
$$x^3 + 2t^2 = 9$$
, $2y^3 - 3t^2 = 4$, $t = 2$

34.
$$x + 2x^{3/2} = t^2 + t$$
, $y\sqrt{t+1} + 2t\sqrt{y} = 4$, $t = 0$

35.
$$t = \ln(x - t), \quad y = te^t, \quad t = 0$$

36. Consider Lissajous curve, estimate the coordinates of the points on the curve at which there is

$$x = \sin 2t$$
, $y = 2\sin t$; $0 \le t \le 2\pi$

- a) A horizontal tangent line
- b) A vertical tangent line.

37. Consider Lissajous curve, estimate the coordinates of the points on the curve at which there is

$$x = \sin 4t$$
, $y = \sin 3t$; $0 \le t \le 2\pi$

- a) A horizontal tangent line
- b) A vertical tangent line.

Find the area of the region

38. $x = 2\sin^2\theta$, $y = 2\sin^2\theta\tan\theta$, $0 \le \theta < \frac{\pi}{2}$

39. $x = 2\cot\theta$, $y = 2\sin^2\theta$, $0 \le \theta < \pi$

- **40.** Find the area under one arch of the cycloid $x = a(t \sin t)$, $y = a(1 \cos t)$
- **41.** Find the area enclosed by the y-axis and the curve $x = t t^2$, $y = 1 + e^{-t}$
- **42.** Find the area enclosed by the ellipse $x = a \cos t$, $y = b \sin t$, $0 \le t \le 2\pi$

Find the area of the closed curve

43. Ellipse
$$\begin{cases} x = b \cos t \\ y = a \sin t \end{cases} \quad 0 \le t \le 2\pi$$

44. Astroid
$$\begin{cases} x = a\cos^3 t \\ y = a\sin^3 t \end{cases} \quad 0 \le t \le 2\pi$$

45. Cardioid
$$\begin{cases} x = 2a\cos t - a\cos 2t \\ y = 2a\sin t - a\sin 2t \end{cases} \quad 0 \le t \le 2\pi$$

46. Deltoid
$$\begin{cases} x = 2a\cos t + a\cos 2t \\ y = 2a\sin t - a\sin 2t \end{cases} \quad 0 \le t \le 2\pi$$

47. Hourglass
$$\begin{cases} x = a \sin 2t \\ y = b \sin t \end{cases}$$
 $0 \le t \le 2\pi$

48. Teardrop
$$\begin{cases} x = 2a\cos t - a\sin 2t \\ y = b\sin t \end{cases}$$
 $0 \le t \le 2\pi$

Find the lengths of the curves

49.
$$x = \cos t$$
, $y = t + \sin t$, $0 \le t \le \pi$

50.
$$x = t^3$$
, $y = \frac{3}{2}t^2$, $0 \le t \le \sqrt{3}$

51.
$$x = 8\cos t + 8t\sin t$$
, $y = 8\sin t - 8t\cos t$, $0 \le t \le \frac{\pi}{2}$

52.
$$x = \ln(\sec t + \tan t) - \sin t$$
, $y = \cos t$, $0 \le t \le \frac{\pi}{3}$

53. Hypocycloid perimeter curve:
$$x = a \cos \theta$$
, $y = a \sin \theta$

- **54.** Circle circumference: $x = a\cos^3\theta$, $y = a\sin^3\theta$
- **55.** Cycloid arch: $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$
- **56.** Involute of a circle: $x = \cos \theta + \theta \sin \theta$, $y = \sin \theta \theta \cos \theta$

Find the areas of the surfaces generated by revolving the curves

57.
$$x = \frac{1}{3}t^3$$
, $y = t + 1$, $1 \le t \le 2$, y-axis

58.
$$x = \frac{2}{3}t^{3/2}$$
, $y = 2\sqrt{t}$, $0 \le t \le \sqrt{3}$; $x - axis$

59.
$$x = t + \sqrt{2}$$
, $y = \frac{t^2}{2} + \sqrt{2}t$, $-\sqrt{2} \le t \le \sqrt{2}$; $y - axis$

- **60.** x = 2t, y = 3t; $0 \le t \le 3$ *x-axis*
- **61.** x = 2t, y = 3t; $0 \le t \le 3$ y-axis
- **62.** x = t, y = 4 2t; $0 \le t \le 2$ *x-axis*
- **63.** x = t, y = 4 2t; $0 \le t \le 2$ y axis

64.
$$x = 5\cos\theta$$
, $y = 5\sin\theta$, $0 \le \theta \le \frac{\pi}{2}$, $y - axis$

65.
$$x = a\cos^3\theta$$
, $y = a\sin^3\theta$, $0 \le \theta \le \pi$, x-axis

66.
$$x = a\cos\theta$$
, $y = b\sin\theta$, $0 \le \theta \le 2\pi$

67.
$$x = 2t$$
, $y = 3t$, $0 \le t \le 3$

68.
$$x = t$$
, $y = 4 - 2t$, $0 \le t \le 2$

69. Use the parametric equations
$$x = t^2 \sqrt{3}$$
 and $y = 3t - \frac{1}{3}t^3$ to

a) Graph the curve on the interval $-3 \le t \le 3$.

b) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$

- c) Find the equation of the tangent line at the point $\left(\sqrt{3}, \frac{8}{3}\right)$
- d) Find the length of the curve
- e) Find the surface area generated by revolving the curve about the x-axis

70. Use the parametric equations
$$x = a(\theta - \sin \theta)$$
 and $y = a(1 - \cos \theta)$ $a > 0$

a) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$

- b) Find the equation of the tangent line at the point where $\theta = \frac{\pi}{6}$
- c) Find all points (if any) of horizontal tangency.
- d) Determine where the curve is concave upward or concave downward.
- e) Find the length of one arc of the curve
- 71. The involute of a circle is described by the endpoint P of a string that is held taut as it is unwound from a spool that does not turn.

Show that a parametric representation of the involute is

$$x = r(\cos\theta + \theta\sin\theta)$$
 and $y = r(\sin\theta - \theta\cos\theta)$

72. The figure shows a piece of string tied to a circle with a radius of one unit. The string is just long enough to reach the opposite side if the circle.

Find the area that is covered when the string is unwounded counterclockwise.