Determinants

Exercice 1 Soient

$$1. \ A = \begin{pmatrix} 1 & 5 \\ 2 & 3 \end{pmatrix}$$

$$2. \ B(a) = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}$$

3.
$$C(a) = \begin{pmatrix} \cos a & -\sin a \\ \sin a & \cos a \end{pmatrix}$$

4.
$$D(a) = \begin{pmatrix} 2-a & 3\\ 1 & 4-a \end{pmatrix}$$

Calculer les déterminants de chaque matrice

Donner leur inverse lorsqu'elles sont inversibles

Exercice 2 Calculer

$$\begin{vmatrix} 1 & 2 & 3 \\ -1 & 1 & -1 \\ 0 & 1 & 2 \end{vmatrix}$$

Exercice 3 Quel est le déterminant d'une matrice $A \in A_3(\mathbb{K})$?

Exercice 4 Donner si elle existe, l'inverse de la matrice : $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & -1 & 1 \end{pmatrix}$

Exercice 5 Soit $V = \begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix}$.

Donner une expression factorisée de $\det V$.

Exercice 6 Soient

$$\Omega = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j \end{pmatrix}$$

$$A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}$$

Simplifier $\det(\Omega A)$

 ${\color{red} \blacksquare}{}$ en déduire une expression factorisée de $\det A$

Exercice 7 Calculer

$$\begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix}$$

Exercice 8 Calculer

$$\begin{vmatrix} 1 & 1 & 1 \\ b+c & a+c & a+b \\ bc & ac & ab \end{vmatrix}$$

Exercice 9 Calculer $\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$

où a, b et c sont les racines du polynôme $X^3 - X + 1$.

Exercice 10 Calculer

$$\begin{vmatrix} 1 & 1 & 1 \\ \cos(x) & \cos(y) & \cos(z) \\ \cos(2x) & \cos(2y) & \cos(2z) \end{vmatrix}$$

Exercice 11 Soit $A \in A_4(\mathbb{K})$.

Écrire $\det A$ comme le carré d'une expression simple (Pfaffien).

Exercice 12 Calculer

$$\begin{vmatrix} 0 & x & y & z \\ x & 0 & z & y \\ y & z & 0 & x \\ z & y & x & 0 \end{vmatrix}$$

Exercice 13 Soit $A_n \in M_n(\mathbb{R})$ définie par

$$\forall i \in [1, n] \quad (A_n)_{i,i} = 5$$

$$\forall i \in [2, n] \quad (A_n)_{i-1, i} = (A_n)_{i, i-1} = 2$$

$$\forall i, j \in [1, n] \quad |i - j| > 1 \Rightarrow (A_n)_{i,j} = 0$$

Calculer $\det A_n$

Exercice 14 Soit $A_n \in M_n(\mathbb{R})$ définie par $\forall i, j \in [1, n]$ $(A_n)_{i,j} = |i - j|$. Calculer $\det(A_n)$

Exercice 15 Calculer le déterminant de Vandermonde :

$$V(a_1, \dots, a_n) = \begin{vmatrix} 1 & 1 & \dots & 1 \\ a_1 & a_2 & \dots & a_n \\ a_1^2 & a_2^2 & \dots & a_n^2 \\ \vdots & \vdots & & \vdots \\ a_1^{n-1} & a_2^{n-1} & & a_n^{n-1} \end{vmatrix}$$

Exercice 16 Soient

 $(a_{i,j})_{\substack{1 \leq i \leq 3 \\ 1 \leq j \leq 3}}$ une famille de fonctions dérivables de $\mathbb R$ dans $\mathbb R$

$$f(x) = \begin{vmatrix} a_{1,1}(x) & a_{1,2}(x) & a_{1,3}(x) \\ a_{2,1}(x) & a_{2,2}(x) & a_{2,3}(x) \\ a_{3,1}(x) & a_{3,2}(x) & a_{3,3}(x) \end{vmatrix}$$

1. Montrer que f est dérivable sur \mathbb{R} et que f' a pour expression

$$\begin{vmatrix} a'_{1,1}(x) & a_{1,2}(x) & a_{1,3}(x) \\ a'_{2,1}(x) & a_{2,2}(x) & a_{2,3}(x) \\ a'_{3,1}(x) & a_{3,2}(x) & a_{3,3}(x) \end{vmatrix} + \begin{vmatrix} a_{1,1}(x) & a'_{1,2}(x) & a_{1,3}(x) \\ a_{2,1}(x) & a'_{2,2}(x) & a_{2,3}(x) \\ a_{3,1}(x) & a'_{3,2}(x) & a_{3,3}(x) \end{vmatrix} + \begin{vmatrix} a_{1,1}(x) & a_{1,2}(x) & a'_{1,3}(x) \\ a_{2,1}(x) & a_{2,2}(x) & a'_{2,3}(x) \\ a_{3,1}(x) & a_{3,2}(x) & a'_{3,3}(x) \end{vmatrix}$$

2. Calculer
$$f_n(x) = \begin{vmatrix} x & 1+x & \dots & 1+x \\ 2+x & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1+x \\ 2+x & \dots & 2+x & x \end{vmatrix}$$

Exercice 17 Soit $A \in M_n(\mathbb{R})$ définie par $\forall i, j \in [1, n]$ $A_{i,j} = i^2 + j^2$

 \square Calculer le déterminant de A.

Exercice 18 Vérifier que b = ((1,2),(2,3)) est une base de \mathbb{R}^2 .

 $rac{1}{2}b$ et bc définissent-elles la même orientation?

Soit
$$F = ((1, -1), (-1, 2))$$
 et $F' = ((2, -1), (-4, 2))$.

 \square Calculer les déterminants de F et F' relativement aux bases b et bc

Exercice 19 Soit $a \in \mathbb{R}$

Soit
$$b = ((1, 2, a), (2, a, 4), (-1, 1, -3))$$

 \square Donner une CNS sur a pour que b soit une base de \mathbb{R}^3 .

Exercice 20 Soit
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 0 & 3 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$
.

 ${\color{red} \,}^{\color{red} \,}$ Soit g l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice A.

- 1. Calculer en fonction de $\lambda \in \mathbb{R}$ le déterminant de $g \lambda$ id.
- 2. Lorsque ce déterminant est nul, préciser une base de $\ker(g \lambda id)$.
- 3. Montrer que la réunion de ces bases est une base b de \mathbb{R}^3 .
- 4. Écrire la matrice A' de g dans la base b.
- 5. Quel lien y a-t-il entre A et A'?
- 6. En déduire l'expression de A^n .

Exercice 21 Soit $f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ définie par $f(P) = P(0)(1 + X^2) + 2P'$.

 \square Calculer det f

Exercice 22 Soit
$$f$$
 l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ -4 & -4 & -4 \end{pmatrix}$.

- 1. Déterminer les réels λ tels que $f \lambda$ id ne soit pas inversible.
- 2. Trouver $u \in \ker(f + \mathrm{id}) \setminus \{0\}$.
- 3. Trouver $w \in \ker(f^2) \setminus \ker(f)$ et v = f(w).
- 4. Montrer que (u, v, w) est une base de \mathbb{R}^3 .
- 5. Écrire la matrice de f dans cette base.

Exercice 23 Soit $f_n: P \mapsto X^2P' - 2XP + P(1)$

- Déterminer n pour que f_n soit un endomorphisme de $\mathbb{R}_n[X]$
- Calculer alors son déterminant.

Exercice 24 Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (x + y, y + z, x - y - z)

 \square Calculer det f.

Exercice 25 Résoudre le système linéaire, avec et sans les formules de Cramer, et comparer l'efficacité des méthodes

$$\begin{cases} 2x + 3y = 5 \\ 3x - 6y = 7 \end{cases}$$

Exercice 26 Résoudre le système linéaire, avec et sans les formules de Cramer, et comparer l'efficacité des méthodes

$$\begin{cases} x + y + z = 2 \\ 2x + 3y + 4z = 5 \\ 3x + 5y + 9z = 10 \end{cases}$$

Exercice 27 Soit a un paramètre réel.

Résoudre le système linéaire, avec et sans les formules de Cramer, et comparer l'efficacité des méthodes

$$\begin{cases} x + y + z = 1 \\ x - y + 3z = 1 \\ 3x - y + 7z = a \end{cases}$$

Exercice 28 Soit a un paramètre complexe.

Résoudre le système suivant en utilisant les formules de Cramer quand c'est possible.

$$\begin{cases} x + ay & = 1 \\ y + az & = a \\ ax & +z & = a^2 \end{cases}$$