### **ESO 208A**

# **Computational Method in Engineering**

Lecture 05

# **Summary**

Computational methods cannot be studied in isolation of the problem

"The purpose of computing is insight, not numbers", Hamming

Significant digits/figures are the numbers that one can use with confidence

Example:  $d = 100\pm1 \text{ m}$ ,  $t = 3.0\pm0.1 \text{ s}$ , v = d/t = ?

- True error = True value Measured/Computed value
  - approximate error

error bound

True error is never known

# Summary

- Types of error
  - Model error
  - Data error
  - Truncation error
  - Round-off error

Computers are finite

# Floating point number representation



Real number in Maths and Computer are not the same Round-off errors can be avoided subtraction of nearly equal nos.

## Forward error analysis



#### Condition number of the problem

$$C_p = \frac{\text{Relative error in } f(x)}{\text{Relative error in } x} = \frac{\Delta f(x)/f(x)}{\Delta x/x} = \left| \frac{xf'(x)}{f(x)} \right|$$

 $C_p \le 1$  - well-conditioned problem

 $C_p > 1$  - ill-conditioned problem

Characteristic of the problem

## **Backward error analysis**



### Condition number of the algorithm

$$\left| \frac{x - x_A}{x} \right| \le C_A u$$
 u is machine precision

### Characteristic of the numerical stability of the algorithm

small  $C_A$  - stable algorithm

large  $C_A$  - instable algorithm

# **Total error in Output**

$$\left| \frac{f(x) - f_A(x + \Delta x)}{f(x)} \right| \le C_p \left( \frac{\Delta x}{x} + C_A u \right)$$

### **Announcements**

- First computer assignment
- Tutorial on Matlab
- Access to Brihaspati: Course TA: pramods@