# Summary of Recent Progress Applying MMF to Gaussian Process Regression

Jon Eskreis-Winkler

University of Chicago eskreiswinkler@uchicago.edu

November 20, 2015

## Overview

- What is a Gaussian Process?
  - Computational Bottleneck
- 2 Potential for MMF to Help
- 3 Application: Irish Wind Data
- 4 Conclusion

## Gaussian Process motivation and definition

- Given data  $(\mathbf{X}_n, \mathbf{Y}_n) = (X_1, Y_1), \dots, (X_n, Y_n)$ , how do you infer what type of process f generated the data and responses? How do you enable predictions for future data?
- The Bayesian approach uses the posterior probability distribution for the process  $f: \mathcal{X}^n \to \mathcal{Y}^n$  is

$$P(f|\mathbf{X}_n, \mathbf{Y}_n) = \frac{P(\mathbf{Y}_n|f, \mathbf{X}_n)P(f)}{P(\mathbf{Y}_n|\mathbf{X}_n)}$$

- What is the function space to which f belongs? Need to restrict the space if we want to be able to measure the numerator terms.
- Simplifying assumption: *f* is a Gaussian Process.
- A mapping f is called a **Gaussian Process** if for any  $m \in \mathbb{N}$ , for any m-length input set  $(X_1, \ldots, X_m)$ , the distribution of  $(f(X_1), \ldots, f(X_m))$  is multivariate normal with  $(f(X_1), f(X_2), \ldots, f(X_n)) \sim \mathcal{N}(\mu(x), K(x))$  with Mercer kernel K.

## Gaussian Process Intuition

 Gaussian Process generalizes the notion of a finite dimensional Gaussian distribution to an infinite dimensional analog

$$X \sim \mathcal{N}(\mu, \Sigma) \Longleftrightarrow f(\mathbf{X}_n) \sim \mathcal{N}(\mu(\mathbf{X}_n), \Sigma(\mathbf{X}_n))$$

The mean and covariance functions are defined by the data, assume  $\mu(x)=0$  for simplicity.

• For prediction, the covariance function  $\Sigma_p(\mathbf{X}_n)$  is often of the form  $\Sigma(\mathbf{X}_n) = K + \sigma^2 I$ .

• The prior for f is the density for an n-dimensional multivariate normal:

$$P(f(\mathbf{X}_n)) = (2\pi)^{-\frac{n}{2}} \det(\Sigma(\mathbf{X}_n))^{-\frac{1}{2}} \exp\left(-\frac{1}{2}f(\mathbf{X}_n)^T \Sigma(\mathbf{X}_n)^{-1} f(\mathbf{X}_n)\right)$$

• The likelihood of the data is the conditional distribution  $\mathbf{Y}_n | \mathbf{X}_n \sim N(0, K(x) + \sigma^2 I)$  and log-likelihood is

$$\log P(\mathbf{Y}_n|\mathbf{X}_n) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\log\det|K + \sigma^2 I| - \frac{1}{2}\mathbf{Y}_n^T(K + \sigma^2 I)^{-1}\mathbf{Y}_n$$

ullet To make predictions, we define the distribution for  $Y_{n+1}|\mathbf{X}_n,\mathbf{Y}_n,X_{n+1}$ 

$$|Y_{n+1}|\mathbf{X}_n,\mathbf{Y}_n,X_{n+1}\sim N(\tilde{\mu}(x),\tilde{\Sigma}(x))$$

where 
$$\tilde{\mu} = k(X_{n+1}, \mathbf{X}_n)(K(x) + \sigma^2 I)^{-1}\mathbf{Y}_n$$
 and  $\tilde{\Sigma} = k(X_{n+1}, X_{n+1}) - k(X_{n+1}, \mathbf{X}_n)(K(x) + \sigma^2 I)^{-1}k(\mathbf{X}_n, X_{n+1}).$ 

# Computational Bottleneck

## Common computational complexities

- Using Gauss-Jordan elimination, matrix inversion has complexity  $O(n^3)$ .
- Finding determinant of a matrix by LU decomposition has complexity  $O(n^3)$ .
- For large *n*, this makes evaluation of the log-likelihood of the posterior and predictions using the posterior intractable recall the inverse and determinant in the log-likelihood function and the inverse involved in prediction.
- What can be done?

# MMF Background

ullet The MMF of a symmetric matrix K is a multi-level factorization that approximates A

$$A \approx Q_1^T \cdots Q_L^T H Q_L \cdots Q_1$$

- H is a matrix which is approximately diagonal it is diagonal except for a "small" block of nonzero entries.
- $Q_1, Q_2, \ldots, Q_L$  are increasingly local rotations matrices, with a shrinking "active set" of rotations.

# Application of MMF to GPR Bottleneck

Suppose that a MMF has been constructed for the matrix  $(K + \sigma^2 I)$ 

- Determinant computation is only as complicated as computing the determinant of H. The computational cost is  $O(nh^2)$  where h is the dimension of H's non-diagonal block. Also,  $\forall i \in [1, L], \det(Q_i) = 1$ .
- Matrix inversion is similarly simplified to  $O(nh^2)$  because  $\forall i \in [1,L], \ Q_iQ_i^T = I$  and  $H^{-1}$  is reduced to inverting the non-diagonal block of H and setting the remaining diagonal elements  $d_{ii}$  of H to be  $\frac{1}{d_{ii}}$ .
- Similar to MMF, these procedures will thus scale roughly linearly with n, assuming h is sufficiently small.

#### Irish Wind Data

- Daily average wind speeds for January 1961- December 1978 at 12 synoptic meteorological stations in the Republic of Ireland.
- Excellent database for studying spacio-temporal aspects of a dataset.
- Good testbed for potential of MMF. There are (12 sites)(17 years)(365 days) = 74,460 total observations.

Haslett, J. and Raftery, A. E. (1989). Space-time Modelling with Long-memory Dependence: Assessing Ireland's Wind Power Resource (with Discussion). Applied Statistics 38, 1-50.

## Irish Wind Data



## Irish Wind Data



## Can we infer one station's measurements from the others'?

- Training data are 17 years of measurements from all non-Mulligar stations
- Test data is the Mullingar station's measurements.
- To permit comparison with Matlab, needed to shrink data averaged over months.
- 6 predictor variables: MonthID, Year, Month, Longitude, Lattitude, isCoastal (binary). Response is average monthly wind speed.
- Use RBF kernel for Kernel matrix with varying length-scales:

$$K_{ij} = k(x_i, x_j) + \sigma_n^2 \delta_{i,j} = \sigma_f^2 \exp(-\sum_{k=1}^6 \frac{(x_{i,k} - x_{j,k})^2}{l_i^2}) + \sigma_n^2 \delta_{i,j}$$

# Optimization

- Need to find  $\theta = (\sigma_f^2, \sigma_n^2, I)$  to maximize the log-likelihood of  $p(\mathbf{Y}_n | \mathbf{X}_n)$ .
- Gradient descent is used to maximize log-likelihood, but used direct inverse because MMF determinant option was not yet available.
- Performed a parameter search for  $\theta_{\mathrm{opt}}$  by starting gradient descent on log-likelihood 20 times uniformly over a predefined "reasonable" parameter space. Procedure produced  $\{\hat{\theta}^{(i)}\}_{i=1}^{20}$ .
- The predictions for all  $\theta \in \{\hat{\theta}^{(i)}\}_{i=1}^{20}$  seemed very close so I simply averaged over their predictions.

## **GPR Performance of MMF**



## Next Step

- Improve parameter estimates by adding random restarts and by sampling more finely over the parameter space using a cluster.
- Incorporate MMF into the parameter search not just prediction.
- Develop connection between compression and prediction accuracy.