ĆW (Model asocjacji)

Zdefinjujemy wektory pionowe $\vec{z}_0 = \left[\begin{array}{c} z_{0,1} \\ \vdots \\ z_{0,25} \end{array}\right] \in \mathbb{R}^{25}$ i $\vec{z}_1 = \left[\begin{array}{c} z_{1,1} \\ \vdots \\ z_{1,25} \end{array}\right] \in \mathbb{R}^{25}$ następująco.

 $\blacksquare = 1.0, \square = -1.0 \text{ (Uwaga: NIE 0.0!)}$

Zdefiniujemy macierz $W=[w_{ij}]\in M_{25\times 25}(\mathbb{R})$ (w_{ij} znajduje się w i-tym wierszu i j-tej kolumnie) wzorem wzorem $W=\frac{1}{25.0}\vec{z}_0\vec{z}_0^T+\frac{1}{25.0}\vec{z}_1\vec{z}_1^T$, gdzie $\vec{z}_{\alpha}^T=[z_{\alpha,1},\cdots,z_{\alpha,25}]$ ($\alpha=0,1$) jest wektorem poziomym. Czyli

$$W = [w_{ij}] = \frac{1}{25.0} \begin{bmatrix} z_{0,1} \\ \vdots \\ z_{0,25} \end{bmatrix} [z_{0,1}, \dots, z_{0,25}] + \frac{1}{25.0} \begin{bmatrix} z_{1,1} \\ \vdots \\ z_{1,25} \end{bmatrix} [z_{1,1}, \dots, z_{1,25}],$$

$$w_{ij} = \frac{1}{25.0} z_{0,i} z_{0,j} + \frac{1}{25.0} z_{1,i} z_{1,j} \quad (1 \le i, j \le 25).$$

Zdefiniujemy funkcję $\vec{f}: \mathbb{R}^{25} \to \mathbb{R}^{25}$, $\vec{u} \mapsto \vec{f}(\vec{u})$ wzorem $\vec{f}(\vec{u}) = \begin{bmatrix} \frac{\operatorname{sgn}(y_1)}{\vdots} \\ \frac{\operatorname{sgn}(y_{25})}{\operatorname{sgn}(y_{25})} \end{bmatrix}$, gdzie $\begin{bmatrix} y_1 \\ \vdots \\ y_{25} \end{bmatrix} = W\vec{u}$, $\operatorname{sgn}(y_i) = \begin{cases} -1.0 & \operatorname{gdy} \ y_i < 0 \\ 1.0 & \operatorname{gdy} \ y_i \ge 0 \end{cases}$ $(1 \le i \le 25)$.

Zadanie.

(1) Stworzyć interfejs "wektor" $\in \mathbb{R}^{25} \leadsto$

(obraz w ekranie, każdy piksel = \blacksquare lub

 \square).

(2) Niech

Wyświetlić obrazy wektorów $\vec{f}(\vec{u}_0)$ i $\vec{f}(\vec{u}_1)$.

(3) Niech

Wyświetlić obrazy wektorów $\vec{f}(\vec{u}_0')$ i $\vec{f}(\vec{u}_1')$.

Wskazówki dla opisu zmień w programie (Propozycja)

- (2) $w_{ij} \leadsto w[i][j] \ (1 \le i, j \le 25)$
- (3) $\vec{u_0} \leadsto u0[i], \vec{u_1} \leadsto u1[i], \vec{u'_0} \leadsto u0_prime[i], \vec{u'_1} \leadsto u1_prime[i]$