BÀI 6. CÁC KỸ THUẬT CƠ BẢN

NỘI DUNG BÀI HỌC

- Binary Tree Paradigm
- Growing by Doubling
- Pointer Jumping
- Partitioning
- Devide and Conquer
- Pipelining
- Accelerating Cascading
- Symmetry Breaking

1. BINARY TREE PARADIGM

BINARY TREE PARADIGM

- Còn được gọi là mô hình cây cân bằng.
- Đặc điểm:
 - Các nút biểu diễn một thao tác (phép toán)
 - Các nút trên cùng mức thực hiện song song.
 - Dữ liệu đầu vào của các nút là kết quả của các phép toán ở mức thấp hơn và được lấy từ bộ nhớ dùng chung.
 - Sau khi thực hiện mỗi nút sẽ ghi kết quả ra bộ nhớ dùng chung.

VÍ DỤ MINH HỌA

- Bài toán tính tổng n số $n = 2^k$.
- Phân tích:
 - Thực hiện tuần tự ???
 - Song song hóa với nhiều BXL:
 - Dữ liệu độc lập
 - Sử dụng tối đa n/2 BXL để thực hiện cộng các cặp song song.

- Ý tưởng: A[i] = A[2*i-1] + A[2*i]
- Lập lịch thực hiện cho các BXL theo thời gian
- Số bước tuần tự ?

SCH	Ý Nghĩa
SCH(1) = (1,1) SCH(2) = (2,1) SCH(3) = (3,1) SCH(4) = (4,1) SCH(5) = (1,2) SCH(6) = (2,2) SCH(7) = (1,3)	Bộ xử lý 1 thực hiện tại thời điểm 1 Bộ xử lý 2 thực hiện tại thời điểm 1 Bộ xử lý 3 thực hiện tại thời điểm 1 Bộ xử lý 4 thực hiện tại thời điểm 1 Bộ xử lý 1 thực hiện tại thời điểm 2 Bộ xử lý 2 thực hiện tại thời điểm 2 Bộ xử lý 1 thực hiện tại thời điểm 3

Thuật toán

```
\begin{tabular}{lll} INPUT & : & A[1...n];\\ OUTPUT & : & SUM = \sum A[i];\\ BEGIN & & & & \\ & p & = & n/2;\\ & WHILE p > 0 DO & & \\ & FOR i = 1 TO p DO IN PARALLEL\\ & A[i] & = A[2i-1] + A[2i];\\ & END PARALLEL;\\ & p & = & p/2;\\ & END WHILE;\\ END. & \\ \end{tabular}
```

- Đánh giá hiệu quả: O(Log₂n) so với O(n) 1 BXL
- Máy thực hiện PRAM EREW

MỘT SỐ VÍ DỤ KHÁC

- Bài toán Boolean AND:
 - Chỉ thay phép toán + bằng phép toán AND.
 - Code ví dụ bài 3
- Bài toán tính tích vô hướng 2 vector:
 - Có 2 bước song song:
 - Nhân từng cặp song song với n BXL
 - Cộng các tích con theo mô hình cây cân bằng

TÍNH TÍCH VÔ HƯỚNG 2 VECTO

- Thuật toán:
 - Độ phức tạp: O(Log₂n) với n BXL
 - Thực hiện trên máy PRAM EREW

```
INPUT
                           A[1..n], B[1..n];
OUTPUT
                           RESULT=
                                             \sum (A[i]*B[i]);
BEGIN
         FOR i = 1 TO n DO IN PARALLEL
                  C[i]
                                    A[i] * B[i];
         END PARALLEL:
         FOR i = 1 \text{ TO } \log(n) \text{ DO}
                  FOR j = 1 TO n/2^{1} DO IN PARALLEL
                           CIII
                                             C[i] + C[i + n/2^{i}];
                  END PARALLEL;
         END FOR;
END;
```

2. GROWING BY DOUBLING

GROWING BY DOUBLING

- Trình bày ngược lại với kỹ thuật trước
- Công thức chung cho cả 2 bước:
 - Xác định số bước lặp tuần tự
 - Xác định số BXL và các chỉ số cụ thể trên từng bước lặp.
 - Xác định công việc từng BXL trong từng bước tuần tự.

VÍ DỤ MINH HỌA

- Bài toán "Broadcast" trong PRAM
- Phát biểu bài toán:
 - Máy PRAM EREW với n BXL
 - P1 đang chứa giá trị x.
 - Viết thuật toán truyền giá trị x đến các BXL còn lại
- Khái niệm truyền thông tin trong PRAM
 - Bước 1: BXL a ghi dữ liệu vào ô nhớ M
 - Bước 2: BXL b đọc dữ liệu từ ô nhớ M

- Thuật toán đơn giản nhất:
 - BXL P1 ghi giá trị x vào 1 ô nhớ M
 - PRAM EREW -> tại 1 thời điểm chỉ 1 BXL được đọc dữ liệu từ 1 ô nhớ.
 - Do đó các BXL đọc lần lượt là O(n)

- Ý tưởng giải thuật song song:
 - B1: P1 ghi giá trị x vào ô nhớ m1
 - B2: Chia làm 2 giai đoạn:
 - P2 đọc dữ liệu từ m1 do đó P2 cũng có x.
 - P2 ghi x vào các ô nhớ m2
 - B3: Chia làm 2 giai đoạn:
 - P3, P4 đọc dữ liệu từ m1, m2
 - P3, P4 ghi dữ liệu vào m3, m4
 - B4: Chia làm 2 giai đoạn:
 - P5,...P8 đọc dữ liệu từ m1,..m4
 - P5... P8 đọc dữ liệu từ m5..m8
- Sau mỗi bước BXL tăng gấp 2 lần

- Thuật toán song song:
 - □ Độ phức tạp: O(Log₂n) với n BXL
 - Máy PRAM EREW

```
INPUT
                         P1 được kích hoạt.
                         P1,P2,.. Pn đều chứa giá trị x.
OUTPUT
BEGIN
        P1:
                L[1]
        FOR k = 0 TO log(n) - 1 DO
                FOR i = 2^k + 1 TO 2^{k+1} DO IN PARALLEL
                         Pi:
                                                  L[i-2^k];
                                 L[i]
                                                  у;
                END PARALLEL;
        END FOR:
END.
```

3. POINTER JUMPING

POINTER JUMPING

- Ý tưởng phương pháp:
 - Xét 3 nút trong 1 danh sách: A->B->C.
 - Gọi R1, R2 là hàm công việc từ A->B và từ B->C.
 - Khi đó từ $A \rightarrow C$ là R3 = R1 + R2

POINTER JUMPING

- Giả sử dữ liệu đầu vào là 1 danh sách các phần tử liên kết theo 1 trật tự nào đó. Cần tính hạng của các phần tử trong mảng.
- Biểu diễn dữ liệu dưới dạng các mảng
 - Giá trị được lưu tại nút
 - Chỉ số của phần tử kế tiếp mà nút trỏ đến

Head

- Xét ví dụ với 8 phần tử:
 - Ta gọi LINK[i] là chỉ số của phần tử kế tiếp A[i].
 - LINK[i] = 0 có nghĩa là A[i] là phần tử cuối cùng trong danh sách liên kết.
 - Biến HEAD chứa chỉ số của phần tử đầu tiên.
 - Ta gọi hạng của một phần tử mảng trong danh sách là khoảng cách từ nó đến cuối.

HEAD = 3							
i	A	LINK					
1	93	4					
2	192	6					
3	21	7					
4	187	2					
5	270	О					
6	201	8					
7	43	1					
8	215	5					

Head

- Thuật toán tuần tự:
 - Độ phức tạp O(n) với 1 BXL

```
INPUT
                        A[1..n], LINK[1..n], HEAD.
                        RANK[1..n].
OUTPUT
BEGIN
                        HEAD;
                        n;
        RANK[p]
                                r;
        REPEAT
                                LINK(p);
                                r – 1;
                RANK[p]
                                         r;
        UNTIL LINK(p) = 0;
END.
```

- Giải thuật song song:
 - Đặt NEXT[i] = LINK[i];
 - Hạng của các nút được xác định bằng khoảng cách mà nó có thể nhảy tới.
 - Tiếp theo NEXT[i] = NEXT[NEXT[i]]
 - Cập nhập giá trị hạng của các phần tử
 - Đồng thời với nó là khoảng cách nhảy tăng lên gấp đôi. Sau Log₂(n) lần thì NEXT[i] sẽ đạt đến đích là phần tử cuối.
 - Khi tất cả NEXT[i] đạt đến phần tử cuối thì chương trình kết thúc

Giải thuật song song:

i	3	7	1	4	2	6	8	5
LINK	7	1	4	2	6	8	5	0
NEXT	7	1	4	2	6	8	5	0
RANK	1	1	1	1	1	1	1	1

(a) Trạng thái khởi tạo

Giải thuật song song:

i	3	7	1	4	2	6	8	5
LINK	7	1	4	2	6	8	5	0
NEXT	1	4	2	6	8	5	0	0
RANK	2	2	2	2	2	2	2	1

(b) Giai đoạn 1

Giải thuật song song:

i	3	7	1	4	2	6	8	5
LINK	7	1	4	2	6	8	5	0
NEXT	2	6	8	5	0	0	0	0
RANK	4	4	4	4	4	3	2	1

(c) Giai đoạn 2

Head

i	3	7	1	4	2	6	8	5
LINK	7	1	4	2	6	8	5	0
NEXT	0	0	0	0	0	0	0	0
RANK	8	7	6	5	4	3	2	1

(d) Giai đoạn 3

- Bước thứ 3 kết thúc: các giá trị NEXT[i] = 0
- Bảng RANK[i] xác định hạng các phần tử trong danh sách liên kết.

GIẢI THUẬT SONG SONG

```
INPUT
                       A[1..n], LINK[1..n], HEAD;
OUTPUT
                       RANK[1..n];
BEGIN
       FOR i = 1 TO n DO IN PARALLEL
               RANK[i]
               NEXT[i] =
                               LINK[i];
       END PARALLEL;
        FOR k = 1 \text{ TO } log(n) DO
               FOR i = 1 TO n DO IN PARALLEL
                       IF NEXT[i] <> 0 THEN
                               RANK[i] = RANK[i] + RANK[NEXT[i]];
                               NEXT[i] = NEXT[NEXT[i]];
                       END IF;
               END PARALLEL;
       END FOR:
END;
```

GIẢI THUẬT SONG SONG

- Đánh giá độ phức tạp:
 - Thuật toán chia thành 2 phần tuần tự
 - Phần thứ 1: O(1) đơn vị thời gian
 - Phần thứ 2: O(log₂n) đơn vị thời gian
- Kiến trúc máy tính PRAM EREW
 - RANK[i] = RANK[i] + RANK[NEXT[i]]
 - B1: X = RANK[i]
 - B2: Y = RANK[NEXT[i]]
 - B3: RANK[i] = X + Y

4. PARTITIONING

PARTITIONING

Bài toán trộn: Cho A[1..n] và B[1..n] là hai mảng đã được sắp xếp. Thực hiện trộn hai mảng này thành một mảng C[1..2n] được sắp xếp.

THUẬT GIẢI TUẦN TỰ

- Tư tưởng của thuật toán tuần tự:
 - 3 chỉ số i, j, k trên 3 mảng A, B, C tương ứng.
 - Các giá trị của mảng C[k] = min{ A_i; B_j}
 - Lướt hết các phần tử của A, B

THUẬT GIẢI TUẦN TỰ

```
INPUT
                            A1 \le A2 \le .... \le An và B1 \le B2 \le ... \le Bn.
OUTPUT
                             C[1..2n] = A[1..n] \cup B[1..n] : C1 \le C2 \le ... \le C2n
BEGIN
         A[n+1] = \infty; B[n+1] = \infty;
         i = 1; j = 1; k = 1;
         WHILE k ≤ 2n DO
                   IF A[i] < B[j] THEN
                             C[k]
                                                A[i];
                                                i + 1;
                   ELSE
                             C[k]
                                                B[j];
                                                j + 1;
                   END IF:
                   k
                                      k + 1;
         END WHILE;
END.
```

- Sử dụng kỹ thuật phân chia:
 - Phân chia mảng A thành $r = n / \log_2(n)$;
 - Mỗi nhóm có $k = log_2(n)$ phần tử., (k, r) thuộc N)
- Như vậy ta có các nhóm như sau:
 - Nhóm NA₁: A₁, A₂,..., A_k;
 - Nhóm NA_2 : A_{k+1} , A_{k+2} ,... A_{2k}

 - Nhóm $\overline{NA_r}$: $\overline{A_{(r-1)k+1}}$, $\overline{A_{(r-2)k+2}}$,...., $\overline{A_n}$

- Tìm r số nguyên j[1], j[2], ... j[r] sao cho:
- Chia mảng B[1..n] ra thành các nhóm
 - Nhóm $\overline{NB_1}$: $\overline{B_1}$, $\overline{B_2}$,, $\overline{B_{i[1]}}$;
 - Nhóm NB₂: $B_{i[1]+1}$, $B_{i[1]+2}$,, $B_{i[2]}$;

 - Nhóm $NB_{r+1}:B_{\mathfrak{f}[r]+1},\ldots B_n$

A = (1, 5, 15, 18, 19, 21, 23, 24, 27, 29, 30, 31, 32, 37, 42, 49),

B = (2, 3, 4, 13, 15, 19, 20, 22, 28, 29, 38, 41, 42, 43, 48, 49).

A	1, 5, 15, 18	19, 21, 23, 24	27, 29, 30, 31	32, 37, 42, 49
Nhóm	Nhóm 1	Nhóm2	Nhóm 3	Nhóm4

Nhóm	Nhóm 1	Nhóm2	Nhóm 3	Nhóm 4
A	1, 5, 15, 18	19, 21, 23, 24	27, 29, 30, 31	32, 37, 42, 49
В	2, 3, 4, 13, 15	19, 20, 22	28, 29	38, 41, 42, 43, 48, 49

- Nhóm 1 cho C[1..9] = (1, 2, 3, 4, 5, 13, 15, 15, 18)
- Nhóm 2 cho C[10..16] = (19, 19, 20, 21, 22, 23, 24)
- Nhóm 3 cho C[17..22] = (27, 28, 29, 30, 31)
- Nhóm 4 cho C[23..32] = (32, 37, 38, 41, 42, 43, 48, 49, 49)

- Hàm BINARY_SEARCH: tìm kiếm nhị phân
- Hàm S_MERGE: trộn 2 mảng tuần tự

ĐÁNH GIÁ ĐỘ PHỰC TẠP

- 2 chương trình con được sử dụng:
 - Tìm kiếm nhị phân :O(log₂n) đơn vị thời gian.
 - Nối hai mảng NA và NB
 - Nếu kích thước mảng NB_i cũng là k thì bước này có thể thực hiện với thời gian là O(logn)
 - Nếu kích thước của mảng NB_i lớn hơn k thì ta có thể lặp lại một cách đệ quy thao tác chia một vài lần với NB trước NB sau. Khi đó bước 3 cũng có thể thực hiện với O(logn) đơn vị thời gian.

5. DIVIDE AND CONQUER

DIVIDE AND CONQUER

- Nguyên tắc chia để trị như sau:
 - B1: Chia bài toán ban đầu thành các bài toán nhỏ hơn.
 - B2: Thực hiện đệ quy với các bài toán nhỏ.
 - B3: Kết hợp kết quả từ các bài toán nhỏ để đưa ra kết quả bài toán gốc.

Divide and Conquer

```
Tổng quát
Divide-and-conquer(Vấn đề P với kích thước n):
         Nếu P đơn giản (n nhỏ), giải quyết trực tiếp P
         Ngược lại:
           Phân chia P thành q \ge 1 tập con độc lập P_1, \dots, P_q với kích
           thước nhỏ hơn \overline{n_1}, \dots, \overline{n_q}
           Thực hiện đệ quy:
                   s_1 < - Divide-and-conquer (P_1, n_1),
                   s_a < - Divide-and-conquer(P_a, n_a)
            Nhóm các kết quả S_1 ... S_1 lại
```

Divide-and-Conquer

Xét bài toán P với kích thước n, chia thành q bài toán nhỏ hơn với kích thước n/k (k > 1), thực hiện song song với p bộ xử lý.

Khi đó
$$t_{divide_{conquer}}(n, p) =$$

- 1) $t_{solvetrivial}(n)$ nếu n bế
- 2) $t_{solveseq}(n)$ nếu p=1
- 3) $t_{divide}(n,p) + t_{conquer}(n,p) + \left\lceil \frac{q}{p} \right\rceil t_{divid-conquere} \setminus \left(\left\lceil \frac{n}{k} \right\rceil, 1 \right)$ nếu 1
- 4) $t_{divide}(n,p) + t_{conquer}(n,p) + t_{divid-conquer}\left(\left[\frac{n}{k}\right], \left[\frac{p}{k}\right]\right)$ nếu $p \ge q$

VÍ DỤ MINH HỌA

- Tính tổng n số A[1..n] với p BXL
- Ý tưởng chia để trị:
 - Nếu n = 1 trả lại giá trị A[1]
 - Nếu p = 1 tính tổng tuần tự.
 - Chia mảng A thành 2 phần A1 và A2, mỗi phần n/2 phần tử thực hiện song song.
 - Thực hiện đệ quy tính tổng S1 của A1 với p/2 BXL
 - Thực hiện đệ quy tính tổng S2 của A2 với p/2 BX1
 - Tính tổng S = S1 + S2

VÍ DỤ MINH HỌA

```
INPUT
                        A[1..n], p BXL;
OUTPUT
                        SUM = \sum A[i];
FUNCTION S = SUM(A,n,m,p) // n,m la chi so dau tien va cuoi cung
BEGIN
        IF p = 1 THEN
                S = SEQUENCE\_SUM(A,n,m);
        END IF.
        DO IN PARALLEL
                S1
                                SUM(A1,n,(n+m)/2,p/2);
                                SUM(A2,(n+m)/2,m,p/2);
                S2
        END DO
        S
                        S1 + S2;
END;
```

- Công thức đệ quy: T(n) = T(n/2) + O(1) (khi p~n)
- Độ phức tạp O(logn)
- Máy PRAM EREW

VÍ DỤ MINH HỌA CONVEX HULL

- Bài toán xác định bao lồi của 1 tập đỉnh trong mặt phẳng:
 - Đầu vào: n đỉnh trong mặt phẳng có tọa độ (x_k, y_k)
 - Đầu ra: tập các đỉnh tạo thành một đa giác lồi nhỏ nhất chứa tất cả cá đỉnh còn lại

SONG SONG CONVEX HULL

Ý tưởng:

- Khởi tạo: xác định u, v là 2 đỉnh có giá trị tọa độ x là nhỏ nhất và lớn nhất
- Đoạn (u,v) sẽ chia tập đỉnh S thành 2 miền trên và dưới ký hiệu là S_upper và S_lower
- Tiến hành xử lý song song 2 miền này

Parallel QuickHull

- Thực hiện với nửa trên,(nửa dưới làm tương tự)
- Chia để trị:
 - Chọn điểm trụ p (pivot) là điểm có khoảng cách xa nhất đối vưới đường (p_1, p_2) (ban đầu là đường (p_1, p_2))
 - Các điểm còn lại chia làm 2 phần nằm bên ngoài các cạnh (p, p_1) và (p_2, p)
 - Thực hiện đệ quy với phần còn lại

Parallel QuickHull

- Dấu hiệu nhận biết:
 - Đỉnh trụ p: max $|(p_1-p)(p_2-p)|$
 - Các đỉnh trụ nằm trong nếu tổng các góc từ đỉnh đó bằng 2π
 - Góc giữa 2 véc tơ: cos(a,b) = (a.b)/(|a||b|)

QuickHull

```
procedure QUICKHULL(S, 1, r)
    begin
3
        if S = \{1, r\} then
            return (l, r) /* lr is an edge of H(S) */
5
        else
6
            h = FURTHEST(S, l, r)
            S^{(1)} = p \in S \ni p is on or left of line Ih
            S^{(2)} = p \in S \ni p is on or left of line hr
8
            return QUICKHULL(S(1), 1, h) ||
9
                (QUICKHULL(S^{(2)}, h, r) - h)
10
        end
11 end
Initial call
    begin
        I_0 = (x_0, y_0) /* point of S with smallest abscissa */
        r_0 = (x_0, y_0 - \varepsilon)
        result = QUICKHULL(S, I_0, r_0) - r_0
/* The point {f r_0} is eliminated from the final list*/
    end
```

Đệ quy với UpperHull

- Các biến sử dụng:
 - Mỗi điểm i ứng với 1 biến Boolean F[i]:
 - Khởi tạo F[i] = 1
 - Bị loại vì nằm trong: F[i] = 0
 - Đánh dấu là đỉnh của bao lồi: F[i] = 2
 - Mỗi đỉnh xác định giá trị 2 đáy P[i] và Q[i]

Đệ quy với UpperHull

- Các bước đệ quy:
 - Tất cả BXL thực hiện song song để xác định trụ
 T[i]
 - Cập nhật lại đỉnh P[i] và Q[i]:
 - Các đỉnh bên trái của cạnh (P[i], T[i]) gán Q[i] = T[i]
 - Các đỉnh bên phải của cạnh (T[i], Q[i]) gán P[i] = T[i]
 - Cập nhật lại giá trị của F[i]
 - Lặp lại cho đến khi $F[i] \neq 1$

6. ACCELERATED CASCADING

CÁC KHÁI NIỆM VỀ ĐỘ PHỨC TAP

- Trong tính toán tuần tự: độ phức tạp = số bước thực hiện thuật toán. Ký hiệu S(n).
- Trong tính toán song song : số thao tác được thực hiện trên tất cả các BXL. Ký hiệu W(n).
- Nếu Wi(n) là số thao tác thực hiện đồng thời tại bước thứ i ta có có công thức

$$W(n) = \sum_{i=1}^{S(n)} W_i(n)$$

Kỹ thuật Accelerated Cascading

- Chi phí cho một giải thuật là số thao tác mà hệ thống phải thực hiện.
- Một số giải thuật được gọi là tối ưu nếu như: $W(n) = \Theta(T_s(n))$. Trong đó:
 - \blacksquare W(n): chi phí của giải thuật song song
 - $T_S(n)$: thời gian của thuật giải tuần tự tốt nhất

Ví dụ minh họa

- Cho dãy L[1 ... n] nhận các giá trị nguyên từ 1..k với $k = \log_2 n$. Hãy xác định số lần xuất hiện các số trong dãy L
- Gọi R[i]là số lần xuất hiện của giá trị i.
- Giải thuật tuần tự tối ưu $T_s(n) = \Theta(n)$ như sau:

$$egin{aligned} R[1:k] &\leftarrow 0 \ & extbf{for} \ i = 1 \ & extbf{to} \ n \ & extbf{do} \ R[L[i]] &\leftarrow R[L[i]] + 1 \ & extbf{enddo} \end{aligned}$$

Song song thứ I

■ Dùng mảng 2 chiều: C[1...n, 1...n] với:

$$C_{ij} = \begin{cases} 1 & if \ L[i] = j \\ 0 & otherwise \end{cases}$$

Số lần xuất hiện i bằng tổng của C[1:n,j]

```
\begin{aligned} & \textbf{forall } i \in 1 : n, j \in 1 : k \textbf{ do} \\ & C[i,j] \leftarrow 0 \\ & \textbf{enddo} \\ & \textbf{forall } i \in 1 : n \textbf{ do} \\ & C[i,L[i]] \leftarrow 1 \\ & \textbf{enddo} \\ & \textbf{forall } j \in 1 : k \textbf{ do} \\ & R[j] \leftarrow \texttt{REDUCE}(C[1:n,j],+) \\ & \textbf{enddo} \end{aligned}
```

7. PIPELINING

PIPELINING

- Được sử dụng rộng rãi để tăng tốc thực hiện nhiều bài toán, trong đó:
 - Mỗi bài toán lớn có thể chia thành nhiều bài toán con.
 - Các bài toán con này có thể phụ thuộc với nhau theo trình tự thực hiện.
 - Tại mỗi thời điểm, các BXL thực hiện các bài toán con của mỗi bài toán lớn song song (đảm bảo trình tự thực hiện không đổi)

CƠ CHẾ PIPELINING

- Xét tập n bài toán: t₁, t₂,, t_n cần thực hiện
- Mỗi t_i có thể chia thành tập m các bài toán con {t_{i,1}, t_{i,2},, t_{i,m}} sao cho t_{i,k} phải kết thúc trước khi bắt đầu t_{i,k+1}.

CO CHÉ PIPELINING

CƠ CHẾ PIPELINING

VÍ DỤ NHÂN MATRIX VECTOR

multiply matrix $A \in \mathbb{R}^{n,m}$ by vector $x \in \mathbb{R}^m \to \text{vector } y \in \mathbb{R}^n$

$$y_i = \sum_{j=0}^{m-1} a_{ij} x_j$$
 $i = 0, ..., n-1$

PARALLEL INSERTION SORT

PARALLEL INSERTION SORT

```
Procedure zero-time-sorting
    let local := +\infty
    let temp := +\infty
                 /* input phase */
    repeat
           temp := receive from left port
           if (temp = \#) then
                  send temp to right port
                  exit repeat
           else
                  send \max(local, temp) to right port
                  local := min(local, temp)
           end if
    end repeat
    send local to left port
                 /* output phase */
    repeat
           local := receive from the right port
           send local to left port
           if local = \# then exit repeat
    end repeat
```

8. SYMMETRIC BREAKING

ĐẶC ĐIỂM

- Tính đối xứng của bài toán:
 - Bài toán có thể chia ra thành 1 tập các bài toán con.
 - Các bài toán con có vai trò như nhau

ĐẶC ĐIỂM

- Vấn đề: Cách lựa chọn công việc để bắt đầu
- Cách giải quyết:
 - Trong tuần tự: Chọn ngẫu nhiên 1 bài toán con
 - Trong song song:
 - Nhiều BXL cùng bắt đầu do đó cách chọn ngẫu nhiên
 - Các công việc con có thể phụ thuộc nhau do đó sự ràng buộc trong công việc của các BXL

ĐẶC ĐIỂM

- Giải quyết vấn đề ngắt tính đối xứng c
- Input hoặc (subtasks) tập các đỉnh có vai trò như nhau (symmetry)
- Symmetry Breaking sẽ phân chia các đỉnh thành các lớp riêng biệt -> ngắt tính đối xứng.

ĐẶC ĐIỂM

■ Bài toán k-coloring: tô màu cho các đỉnh của G bởi hàm $c: V(G) \rightarrow \{0...k-1\}$ sao cho nếu $< v_i, v_j > \in E(G)$ thì $c(v_i) \neq c(v_j)$

3-coloring trên đồ thị hình tròn có hướng

- G=(V,E) là đồ thị có hướng hình tròn. Đối với mọi đỉnh:
 - Outdegree = 1
 - Indegree = 1
 - Đường đi (u,v) duy nhất

- Thuật toán tuần tự bài toán 3 màu (0,1,2)
- Nếu n là số đỉnh của đồ thị thì thuật toán tuần tự thực hiện với O(n) bước lặp

- Vấn đề khi thực hiện song song:
 - Vấn đề chọn điểm xuất phát.
 - Giả sử đồ thị có n đỉnh và các đỉnh của đồ thị ban đầu được xác định bởi các giá trị từ 1..n. Ở đây trình tự liên két giữa các đỉnh là không nhất thiết phải theo trình tự tuyến tính. Ví dụ
 - 1->3->4->2->5->6->8->7->1 ngẫu nhiên
 - 1->2->3->4->5->6->7->8->1 tuyến tính

- Đỉnh tuyến tính:
 - Mỗi BXL được gán với 1 đỉnh
 - Đọc giá trị của đỉnh:
 - $Ch\tilde{a}n = 0$
 - $L\mathring{e} = 1$
 - Đỉnh n $l\dot{e} = 2$
- n BXL => độ phức tạp thuật toán là O(1)

```
Input
                : G = (V,E), |V| = n, E = \{(V_i V_{i+1})\} i = 1..n,
                                               (V_{n+1} = V_1).
                : c[i] = \{0,1,2\} \mid c[i] \neq c[i+1] \mid i = 1..n, c[n+1] = c[1].
Output
Begin
        for i = 1 to n do in parallel
                if (i le và i ≠ n) then
                        c[i]
                if (i chẵn) then
                        c[i]
                                         1;
                if (n le) then
                        c[n] =
                                         2;
        end parallel.
End.
```

- Nếu trình tự các đỉnh không tuyến tính thì cách tiếp cận thứ nhất:
 - 1 đỉnh = (HEAD)
 - B1 Tìm hạng các phần tử
 - B2 Như thuật toán trước
- Đánh giá độ phức tạp:
 - B1: Thực hiện với O(logn) bước tuần tự
 - B2: Thực hiện với O(1) bước

```
Input
          : G = (V,E), |V| = n, LINK[i] = j if (V_i V_i) \in E i,j \in 1..n.
Output : c[i] = \{0,1,2\} \mid c[i] \neq c[j] \text{ if } (V_i V_j) \in E.
Begin
          HEAD
                                1.
          for i = 1 to n do in parallel
                     NEXT[i] =
                                          LINK[i];
                     VT[i]
          end for.
          For k = 1 to log_2 n do
                     For i = 1 to n do in parallel
                                If NEXT[i] ≠ HEAD then
                                                     = VT[i] + VT[NEXT[i]];
                                          VT[i]
                                          NEXT[i] = NEXT[NEXT[i]];
                                End if:
                     End parallel;
          End for.
          For i = 1 to n do in parallel
                     If (VT[i] le và i ≠ HEAD) then
                                C[i]
                                                     0;
                     If (VT[i] chan) then
                                C[i]
                                                     1;
                     If (VT[HEAD] le ) then
                                C[HEAD] = 2;
          End parallel
End.
```


- Nhận xét:
 - HEAD => Tính đối xứng phá vỡ
- Cách tiếp cận khác: Thuật toán Basic Coloring
- Biểu diễn đồ thị có hướng G=(V,E) bằng mảng:
 - S[i] = j n'eu (i,j) thuộc E với 1 <= i,j <= n
 - P[i] = j nếu (j,i) thuộc E với 1<= i,j <= n -> P[S[i]] =1

THUẬT TOÁN BASIC COLORING

- C[i] = i với i thuộc 1..n.(Màu thứ i)
- Biểu diễn giá trị i dưới cơ số 2 -> dãy t bits $\{0, 1\}$: $i=b_{t-1}....b_k....b_1b_0$.
- Thuật toán Basic Coloring giảm từ n màu xuống 2*t màu

BASIC COLORING N=15

- Ý tưởng thuật toán:
 - Thực hiện song song với n BXL
 - Tại BXL thứ i, xét 2 đỉnh kề nhau (i,S[i])
 - Xác định vị trí k nhỏ nhất trên dãy bit biểu diễn 2
 màu tương ứng sao cho giá trị bit tại đó khác nhau.
 - Cập nhật giá trị màu mới cho đỉnh thứ i theo công thức: c'[i] = 2k + c[i]_k (trong đó c[i]_k là bit giá trị thứ k trong dãy bit biểu diễn của c[i])

BASIC COLORING N=15

- k là chỉ số LSB Least Significant bit, c(i) <> c(i+1),
- $c'(i)=2k+\overline{c(i)}_k$

٧	С	k	c'
1 3 7 14 2 15 4 5 6 8 10 11 12 9 13	0001 0011 0111 1110 0010 1111 0100 0101 0110 1001 1011 1100 1001	120200001100022	241501013201045

BASIC COLORING N=15

```
\begin{split} &\text{Input} &: G = (V,E), \, |V| = n, \, S[i] = j \text{ if } (i,j) \in E, \, c[i] = i. \\ &\text{Output} &: c'[i] \mid c'[i] \neq c'[j] \text{ if } (i,j) \in E. \\ &\text{Begin} \\ &\text{for } i = 1 \text{ to } n \text{ do in parallel} \\ &\text{B1. xác } \vec{d}inh \text{ k-th least significant } (c[i] \& c[S[i]]); \\ &\text{B2. } c'[i] &= 2k + c[i]_k \, . \\ &\text{end parallel.} \\ &\text{End.} \end{split}
```

■ Thuật toán với O(1) đơn vị thời gian

BASIC COLORING

- Thuật toán Basic Coloring không giảm đến 3 màu
- Với t1 là số bit biểu diễn tối đa của n thì sau 1 bước số màu còn lại là: n' = 2*t₁
- Nếu biểu diễn n' với t_2 bit thì lặp lại thuật toán ta giảm số màu còn: $2*t_2$
- Cho đến khi $t_k=3$ thì không giảm thêm được nữa -> Basic coloring giảm tối đa đến 6 màu

BASIC COLORING

- Cách chuyển từ 6 màu thành 3 màu:
 - Mỗi BXL đọc giá trị màu của đỉnh tương ứng
 - Nếu giá trị màu thuộc {0,1,2} thì giữ nguyên
 - Nếu giá trị màu thuộc {3,4,5} gán giá trị màu mới là giá trị nhỏ nhất {0,1,2}
- Như vậy thuật toán thực hiện với thời gian O(log*n) và O(n.log*n) phép toán

Hết bài!!!