Notes From class:

 $a,b \in Z$

The Division Algorithm (Actually a theorem):

Suppose a \in Z and b \in Z^+. Then there exists unique integers q and r such that a=bq+r and 0<=r< b

(Follows from the 'Well Ordering principle')

<u>unique</u>: x is unique if there is only one such value. x and y are <u>distinct</u> if x/=y.

Definition: Suppose $a \in \mathbb{Z}$. We say that a is even when there exists $n \in \mathbb{Z}$ such that a = 2n. We say that a is odd when there exists $k \in \mathbb{Z}$ such that a = 2k+1

Claim: Suppose $a \in \mathbb{Z}$. Then a is even or a is odd, and a can't be both even and odd.

Could a be both even and odd? Suppose so. This means that there exists integers k and n such that a=2n=2k+1. Then n=k+(1/2), and so n-k=(1/2). But since n and k are integers and Z is closed under subtraction, $n-k\in \mathbb{Z}$. This would make (1/2) an integer, which it isn't.

Recall:

Definition: Suppose a and b are integers. Then b divideds a, denoted b|a, when there exists an integer k such that a = bk.

Observation: $b|a \iff$ the (unique) remainder when we divide a by b is 0. Suppose b|a. this means a=bk for some $k\in Z$. In other words, a=bk+0 where $b,0\in Z$ and 0<=0<b. Thus the remainder when we divide a by b, the remainder is 0.

<==: Suppose that when we divide b by a using the division algorithm, the remainder is 0. In other words, there exists $q \in \mathbb{Z}$ such that a = bq + 0 = bq. Thus, by definition of divisor, b|a. Therefore, b|a if and only if the remainder on dividing a by b is 0. \blacksquare

Proposition: If $n \in \mathbb{Z}$, then the remainder we get when we divide n^2 by 4 is either 0 or 1.

Case 1: Suppose a is an even integer. Then a=2n, and $a^2 = 4n^2$. If we then divide $4n^2$ by 4 we get n^2 . Let $q = n^2$, since z is closed under multiplication and $n \in \mathbb{Z}$, $q \in \mathbb{Z}$. Thus giving us 4q+0, which leaves us with a remainder of 0.

Case 2: Suppose b is an odd integer. Then b=2k+1, and $b^2=4k^2+4k+1$. We then can foil $4k^2+4k$ into $4(k^2+k)+1$. Let $\mathbf{q}=k^2+k$, since Z is closed under addition and multiplication, and $\mathbf{k} \in \mathbb{Z}$, $\mathbf{q} \in \mathbb{Z}$. Thus we get $4\mathbf{q}+1$, leaving a remainder of 1. \blacksquare

Other Proposition: If $n \in \mathbb{Z}$, then the remainder when you divide n^2 by 3 is 0 or 1.

Case 1: Suppose c is an integer that is a multiple of 3, then c=3d. With this we can square c, giving $c^2=9d^2$. We can then reformat to $3(3d^2)$. Let $m=3d^2$, since Z is closed under multiplication, $3d^2\in Z$, $m\in Z$. This gives us 3m+0, thus leaving a remainder of 0. \blacksquare

Case 2: Suppose g is an even integer that isn't a multiple of 3, then g=2f. We then square g, getting $4n^2$. Let $p=f^2$, since Z is closed under multiplication and $g\in Z$, $f\in Z$. Thus when 3 goes into $4f^2$ we get a remainder of 1. \blacksquare

Case 3: Suppose \blacksquare is an odd integer that isn't a multiple of 3, then $\blacksquare = 2s+1$. We then square it getting $\blacksquare^2 = 4s^2+4s+1$. Never ended up finishing this proof. Think I got the first part right but for case 2 it seemed to work out but wouldn't work for the odds definition. Below I give the correct proofs that the professor gives.

Professors proof for 1: Suppose $n \in \mathbb{Z}$. Then we know n is even or n is odd. Case 1: n is even, then n=2k for some k \in Z. Then $n^2=4k^2=4k^2+0$. Let q = k^2 and r=0, then $q\in$ Z, since Z is closed under multiplication and r \in Z, and $n^2=4q+r$ and 0<=r<4. So the remainder when you divide n^2 by 4 is 0.

Case 2: n is odd, then n=2k+1 for some k \in Z. Then $n^2=4k^2+4k+1=4(k^2+k)+1$. Let \mathbf{q} = k^2+k , then \mathbf{q} \in Z and $n^2=4q+1$, where 0<=1<4. Thus the remainder when you divide n^2 by 4 is 1. \blacksquare

Professors proof for 2:

Suppose n is an integer.

By the division algorithm, there exists Integer k such that n=3k+r where r= 0, 1 or 2.

Case 1(r=0): n is divisible by 3. n=3k where k \in Z. $n^2=(3k)^2=9k^2=3(3k^2)+0$. So if we let $q=3k^2$ and r=0, then $q\in$ Z(Z is closed under...) and r \in Z and $n^2=3q+r$ and 0<=r<3. So the remainder when you divide n^2 by 3 is 0. \blacksquare

Case 2(r=1): Then n=3k+1. So=, $n^2=(3k+1)^2=9k^2+6k+1=3(3k^2+2k)+1$. Let ${\bf q}$ = $3k^2+2k$, since Z is closed under multiplication and n,k are integers, ${\bf q}$ is an integer, and $r\in Z$ and $n^2=3q+r$ and $0<=r<3.Sotheremainder for <math>n^2$ is 1.

Case 3:(r=2) then n=3k+2. $n^2=(3k+2)^2=9k^2+12k+4=3(3k^2+4k)+4=3(3k^2+4k+1)+1.$ Let $q=3k^2+4k+1$,(Z is closed under...) and $r\in Z$ and $n^2=3q+r$ and 0<=r<3. So the remainder for n^2 is 1. \blacksquare