Machine Learning and Data Mining

Introduction

Prof. Alexander Ihler

Artificial Intelligence (AI)

- Building "intelligent systems"
- Lots of parts to intelligent behavior

RoboCup

Darpa GC (Stanley)

Chess (Deep Blue v. Kasparov)

Machine learning (ML)

- One (important) part of AI
- Making predictions (or decisions)
- Getting better with experience (data)
- Problems whose solutions are "hard to describe"

- Supervised learning
 - "Labeled" training data
 - Every example has a desired target value (a "best answer")
 - Reward prediction being close to target
 - Classification: a discrete-valued prediction (often: action / decision)
 - Regression: a continuous-valued prediction

- Supervised learning
- Unsupervised learning
 - No known target values
 - No targets = nothing to predict?
 - Reward "patterns" or "explaining features"
 - Often, data mining

- Supervised learning
- Unsupervised learning
- Semi-supervised learning
 - Similar to supervised
 - some data have unknown target values
- Ex: medical data
 - Lots of patient data, few known outcomes
- Ex: image tagging
 - Lots of images on Flikr, but only some of them tagged

- Supervised learning
- Unsupervised learning
- Semi-supervised learning
- Reinforcement learning
- "Indirect" feedback on quality
 - No answers, just "better" or "worse"
 - Feedback may be delayed

Logistics

- Course webpage for assignments & other info (?)
- EEE for homework submission & return
- Piazza for questions & discussions
- No required textbook
 - Recommended: Murphy, "Machine Learning...", 2012.
 - Also
 - Duda, Hart & Stork, "Pattern classification"
 - Hastie, Tibshirani & Friedman, "Elements of Statistical Learning"
- But
 - I'll try to cover everything needed in lectures and notes
 - All textbooks mainly for reference purposes

Logistics

- Grading (may be subject to change)
 - 25% homework (6+? >5: drop 1)
 - 15% project (Kaggle)
 - 25% midterm, 35% final
 - Due 11:59pm listed day, EEE or my office
 - Late homework:
 - 10% off per day or part
 - No credit after solutions posted: turn in what you have

Collaboration

- Study groups, discussion, assistance encouraged
 - · Whiteboards, etc.
- Do your homework yourself
 - Don't exchange solutions or HW code

Data exploration

- Machine learning is a data science
 - Look at the data; get a "feel" for what might work
- What types of data do we have?
 - Binary values? (spam; gender; ...)
 - Categories? (home state; labels; ...)
 - Integer values? (1..5 stars; age brackets; ...)
 - (nearly) real values? (pixel intensity; prices; …)
- Are there missing data?
- "Shape" of the data? Outliers?

Scientific software

- Python
 - Numpy, MatPlotLib, SciPy...
- Matlab
 - Octave (free)
- R
 - Used mainly in statistics
- C++
 - For performance, not prototyping
- And other, more specialized languages for modeling...

Representing data

- Example: Fisher's "Iris" data http://en.wikipedia.org/wiki/Iris_flower_data_set
- Three different types of iris
 - "Class", y
- Four "features", X₁,...,X₄
 - Length & width of sepals & petals
- 150 examples (data points)

Representing the data (Matlab)

Have m observations (data points)

$$\left\{x^{(1)}\dots,x^{(m)}\right\}$$

Each observation is a vector consisting of n features

$$x^{(j)} = [x_1^{(j)} x_2^{(j)} \dots x_n^{(j)}]$$

Often, represent this as a "data matrix"

$$\underline{X} = \begin{bmatrix} x_1^{(1)} & \dots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(m)} & \dots & x_n^{(m)} \end{bmatrix}$$

```
import numpy as np # import numpy
iris = np.genfromtxt("data/iris.txt",delimiter=None)

X = iris[:,0:4] # load data and split into features, targets

Y = iris[:,4]

print X.shape # 150 data points; 4 features each

(150, 4)
```

Basic statistics

- Look at basic information about features
 - Average value? (mean, median, etc.)
 - "Spread"? (standard deviation, etc.)
 - Maximum / Minimum values?

Histograms

- Count the data falling in each of K bins
 - "Summarize" data as a length-K vector of counts (& plot)
 - Value of K determines "summarization"; depends on # of data
 - K too big: every data point falls in its own bin; just "memorizes"
 - K too small: all data in one or two bins; oversimplifies

Scatterplots

Illustrate the relationship between two features

Scatterplots

For more than two features we can use a pair plot:

Supervised learning and targets

- Supervised learning: predict target values
- For discrete targets, often visualize with color

How does machine learning work?

- "Meta-programming"
 - Predict apply rules to examples
 - Score get feedback on performance
 - Learn change predictor to do better

Supervised learning

Notation

- Features x
- Targets
- Predictions $\hat{y} = f(x; \theta)$
- Parameters θ

Regression; Scatter plots

- Suggests a relationship between x and y
- Prediction: new x, what is y?

Nearest neighbor regression

• Find training datum $x^{(i)}$ closest to $x^{(new)}$ Predict $y^{(i)}$

Nearest neighbor regression

"Predictor":

Given new features:
Find nearest example
Return its value

- Defines a function f(x) implicitly
- "Form" is piecewise constant

Linear regression

"Predictor":

Evaluate line:

$$r = \theta_0 + \theta_1 x_1$$

return r

- Define form of function f(x) explicitly
- Find a good f(x) within that family

Measuring error

Regression vs. Classification

Regression

Features x Real-valued target y

Predict continuous function $\hat{y}(x)$

Classification

(usually 0/1 or +1/-1)

Predict discrete function $\hat{y}(x)$

Classification

Classification

Measuring error

$$ERR = \frac{1}{m} \sum_{i} \left[y^{(i)} \neq \hat{y}(x^{(i)}) \right]$$

A simple, optimal classifier

- Classifier $f(x; \theta)$
 - maps observations x to predicted target values
- Simple example
 - Discrete feature x: $f(x; \theta)$ is a contingency table
 - Ex: spam filtering: observe just X_1 = in contact list?
- Suppose we knew the true conditional probabilities:
- Best prediction is the most likely target!

Feature	spam	keep	
X=0	0.6	0.4	
X=1	0.1	0.9	

"Bayes error rate"

Optimal least-squares regression

- Suppose that we know true p(X,Y)
- Prediction f(x): arbitrary function
 - Focus on some specific x: f(x) = v
- Expected squared error loss is

$$\mathbb{E}_{Y|X=x}[(Y-v)^{2}] = \int p(Y|X=x)(Y-v)^{2} dY$$

Minimum: take derivitave & set to zero

$$\frac{\partial}{\partial v} \int p(Y|X=x)(Y-v)^2 dY = \int p(Y|X=x)2(Y-v) = 0$$

$$\Rightarrow \qquad 2 \int p(Y|X=x)Y = 2\Big(\int p(Y|X=x)\Big)v$$

$$\Rightarrow \qquad v = \int p(Y|X=x)Y = \mathbb{E}_{Y|X=x}[Y]$$

Optimal estimate of Y: conditinal expectation given X

Bayes classifier, estimated

- Now, let's see what happens with "real" data
 - Use empirically estimated probability model for p(x,y)
- Iris data set, first feature only (real-valued)
 - We can estimate the probabilities (e.g., with a histogram)

2 Bins:

Predict "green" if X < 3.25, else "blue"

Model is "too simple"

20 Bins:

Predict by majority color in each bin

500 Bins:

Each bin has ~ 1 data point! What about bins with 0 data? Model is "too complex"

Inductive bias

- "Extend" observed data to unobserved examples
 - "Interpolate" / "extrapolate"
- What kinds of functions to expect? Prefer these ("bias")
 - Usually, let data pull us away from assumptions only with evidence!

How Overfitting affects Prediction

Competitions

- Training data
 - Used to build your model(s)
- Validation data
 - Used to assess, select among, or combine models
 - Personal validation; leaderboard; ...
- Test data
 - Used to estimate "real world" performance

#	Δ1w	Team Name *in the money	Score ②	Entries	Last Submission U1
1		BrickMover # *	1.21251	40	Sat, 31 Aug 2013 23:
2	new	vsu *	1.21552	13	Sat, 31 Aug 2013 20:
3	↑2	Merlion	1.22724	29	Sat, 31 Aug 2013 23:
4	↓2	Sergey	1.22856	15	Sat, 31 Aug 2013 23:
5	new	liuyongqi	1.22980	13	Sat, 31 Aug 2013 13:

Summary

- What is machine learning?
 - Types of machine learning
 - How machine learning works
- Supervised learning
 - Training data: features x, targets y
- Regression
 - (x,y) scatterplots; predictor outputs f(x); optimal MSE predictor
- Classification
 - (x,x) scatterplots
 - Decision boundaries, colors & symbols; Bayes optimal classifier
- Complexity
 - Training vs test error
 - Under- & over-fitting