Syntax - Introduction

Pawan Goyal

CSE, IIT Kharagpur

Week 5: Lecture 1

 Refers to the way words are arranged together, and the relationship between then.

- Refers to the way words are arranged together, and the relationship between then.
- Language Models: Importance of modeling word order

- Refers to the way words are arranged together, and the relationship between then.
- Language Models: Importance of modeling word order
- POS categories: An equivalence class for words

- Refers to the way words are arranged together, and the relationship between then.
- Language Models: Importance of modeling word order
- POS categories: An equivalence class for words
- More complex notions: constituency, grammatical relations, subcategorization etc.

- Refers to the way words are arranged together, and the relationship between then.
- Language Models: Importance of modeling word order
- POS categories: An equivalence class for words
- More complex notions: constituency, grammatical relations, subcategorization etc.

Syntax Tree: Example

Defining the notions: Constituency

Constituent

A group of words acts as a single unit - phrases, clauses etc.

Defining the notions: Constituency

Constituent

A group of words acts as a single unit - phrases, clauses etc.

Part of Speech - "Substitution Test"

The {sad, intelligent, green, fat, ...} one is in the corner.

Defining the notions: Constituency

Constituent

A group of words acts as a single unit - phrases, clauses etc.

Part of Speech - "Substitution Test"

The {sad, intelligent, green, fat, ...} one is in the corner.

Constituency: Noun Phrase

- Kermit the frog
- they
- December twenty-sixth
- the reason he is running for president

Usually named based on the word that heads the constituent:

the man from Amherst is a Noun Phrase (NP) because the head man is a noun extremely clever is an Adjective Phrase (AP) because the head clever is an adjective down the river is a Prepositional Phrase (PP) because the head down is a preposition is a Verb Phrase (VP) because the head killed is a verb

Usually named based on the word that heads the constituent:

the man from Amherst is a Noun Phrase (NP) because the head man is a noun

extremely clever is an Adjective Phrase (AP) because the head clever is an adjective down the river is a Prepositional Phrase (PP) because the head down is a preposition

killed the rabbit

is a Verb Phrase (VP) because the head killed is a verb

Words can also act as phrases

Joe grew potatoes

Usually named based on the word that heads the constituent:

the man from Amherst is a Noun Phrase (NP) because the head man is a noun

extremely clever is an Adjective Phrase (AP) because the head clever is an adjective down the river is a Prepositional Phrase (PP) because the head down is a preposition

killed the rabbit is a Verb Phrase (VP) because the head killed is a verb

Words can also act as phrases

Joe grew potatoes

Joe and potatoes are both nouns and noun phrases

Usually named based on the word that heads the constituent:

the man from Amherst is a Noun Phrase (NP) because the head man is a noun

extremely clever is an Adjective Phrase (AP) because the head clever is an adjective down the river is a Prepositional Phrase (PP) because the head down is a preposition

killed the rabbit is a Verb Phrase (VP) because the head killed is a verb

Words can also act as phrases

Joe grew potatoes

Joe and potatoes are both nouns and noun phrases

Compare with: The man from Amherst grew beautiful russet potatoes.

Usually named based on the word that heads the constituent:

the man from Amherst is a Noun Phrase (NP) because the head man is a noun

extremely clever is an Adjective Phrase (AP) because the head clever is an adjective down the river is a Prepositional Phrase (PP) because the head down is a preposition

killed the rabbit is a Verb Phrase (VP) because the head killed is a verb

Words can also act as phrases

Joe grew potatoes

Joe and potatoes are both nouns and noun phrases

Compare with: The man from Amherst grew beautiful russet potatoes.

Joe appears in a place that a larger noun phrase could have been.

They appear in similar environments

They appear in similar environments

Kermit the frog comes on stage

 $They\ come\ to\ Massachusetts\ every\ summer$

December twenty-sixth comes after Christmas

The reason he is running for president comes out only now.

But not each individual word in the consituent

 $*\underline{The}\ comes\ our...\ *\underline{is}\ comes\ out...\ *for\ comes\ out...$

They appear in similar environments

Kermit the frog comes on stage

They come to Massachusetts every summer

December twenty-sixth comes after Christmas

The reason he is running for president comes out only now.

But not each individual word in the consituent

 $*\underline{The}$ comes our... $*\underline{is}$ comes out... *for comes out...

Can be placed in a number of different locations

They appear in similar environments

Kermit the frog comes on stage

 $They\ come\ to\ Massachusetts\ every\ summer$

December twenty-sixth comes after Christmas

The reason he is running for president comes out only now.

But not each individual word in the consituent

*<u>The</u> comes our... *<u>is</u> comes out... *for comes out...

Can be placed in a number of different locations

Consituent = Prepositional phrase: On December twenty-sixth

On December twenty-sixth I'd like to fly to Florida.

 $\overline{I'd\ like\ to\ fly\ on\ December}$ twenty-sixth to Florida.

I'd like to fly to Florida on December twenty-sixth.

But not split apart

- * On December I'd like to fly twenty-sixth to Florida.
- *On I'd like to fly December twenty-sixth to Florida.

Modeling Constituency: what tool do we need?

Context-free grammar

The most common way of modeling constituency

Context-free grammar

The most common way of modeling constituency

Consists of production Rules

These rules express the ways in which the symbols of the language can be grouped and ordered together

Context-free grammar

The most common way of modeling constituency

Consists of production Rules

These rules express the ways in which the symbols of the language can be grouped and ordered together

Example

Noun phrase can be composed of either a ProperNoun or a determiner (Det) followed by a Nominal; a Nominal can be more than one nouns

Context-free grammar

The most common way of modeling constituency

Consists of production Rules

These rules express the ways in which the symbols of the language can be grouped and ordered together

Example

Noun phrase can be composed of either a ProperNoun or a determiner (Det) followed by a Nominal; a Nominal can be more than one nouns

NP → Det Nominal

 $NP \rightarrow ProperNoun$

Nominal → Noun | Noun Nominal

$$CFG: G = (T, N, S, R)$$

- T: set of terminals
- N: set of non-terminals
 - For NLP, we distinguish out a set $P \subset N$ of pre-terminals, which always rewrite as terminals
- S: start symbol
- *R*: Rules/productions of the form $X \to \gamma$, $X \in N$ and $\gamma \in (T \cup N)*$

CFG: G = (T, N, S, R)

- T: set of terminals
- N: set of non-terminals
 - For NLP, we distinguish out a set $P \subset N$ of pre-terminals, which always rewrite as terminals
- S: start symbol
- *R*: Rules/productions of the form $X \to \gamma$, $X \in N$ and $\gamma \in (T \cup N)*$

Terminals and pre-terminals

Terminals mainly correspond to words in the language while pre-terminals mainly correspond to POS categories

CFG: G = (T, N, S, R)

- T: set of terminals
- N: set of non-terminals
 - For NLP, we distinguish out a set $P \subset N$ of pre-terminals, which always rewrite as terminals
- S: start symbol
- *R*: Rules/productions of the form $X \to \gamma$, $X \in N$ and $\gamma \in (T \cup N)*$

Terminals and pre-terminals

Terminals mainly correspond to words in the language while pre-terminals mainly correspond to POS categories

Example

 $NP \rightarrow Det Nominal$

NP → ProperNoun

 $Nominal \rightarrow Noun \mid Noun Nominal$

Example

 $NP \rightarrow Det Nominal$

NP → ProperNoun

Nominal → Noun | Noun Nominal

Now, these can be combined with other rules, that express facts about a lexicon.

Example

NP → Det Nominal

 $NP \rightarrow ProperNoun$

Nominal → Noun | Noun Nominal

Now, these can be combined with other rules, that express facts about a lexicon.

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Example

NP → Det Nominal

NP → ProperNoun

Nominal → Noun | Noun Nominal

Now, these can be combined with other rules, that express facts about a lexicon.

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Can you identify the terminal, non-terminals and preterminals?

CFG as a generator

NP → Det Nominal

 $NP \rightarrow ProperNoun$

 $Nominal \rightarrow Noun \mid Noun Nominal$

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

CFG as a generator

NP → Det Nominal

NP → ProperNoun

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Generating 'a flight':

 $NP \rightarrow \text{Det Nominal}$

NP → ProperNoun

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Generating 'a flight':

NP

 $NP \rightarrow Det Nominal$

NP → ProperNoun

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Generating 'a flight':

NP→ Det Nominal

 $NP \rightarrow \text{Det Nominal}$

NP → ProperNoun

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Generating 'a flight':

NP→ Det Nominal

 \rightarrow Det Noun

 $NP \rightarrow \text{Det Nominal}$

NP → ProperNoun

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Generating 'a flight':

NP→ Det Nominal

 \rightarrow Det Noun \rightarrow a Noun

NP → Det Nominal

 $NP \rightarrow ProperNoun$

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Generating 'a flight':

NP→ Det Nominal

 \rightarrow Det Noun \rightarrow a Noun \rightarrow a flight

 $NP \rightarrow \text{Det Nominal}$

 $NP \rightarrow ProperNoun$

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Generating 'a flight':

NP→ Det Nominal

 \rightarrow Det Noun \rightarrow a Noun \rightarrow a flight

Thus a CFG can be used to randomly generate a series of strings

 $NP \rightarrow \text{Det Nominal}$

NP → ProperNoun

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Generating 'a flight':

NP→ Det Nominal

 \rightarrow Det Noun \rightarrow a Noun \rightarrow a flight

- Thus a CFG can be used to randomly generate a series of strings
- This sequence of rule expansions is called a derivation of the string of words, usually represented as a tree

CFGs and Grammaticality

A CFG defines a formal language = set of all sentences (string of words) that can be derived by the grammar

CFGs and Grammaticality

A CFG defines a formal language = set of all sentences (string of words) that can be derived by the grammar

- Sentences in this set are said to be grammatical
- Sentences outside this set are said to be ungrammatical

CFGs and Recursion

Recursive Definition

- PP → Prep NP
- NP → Noun PP

CFGs and Recursion

Recursive Definition

- PP → Prep NP
- NP → Noun PP

Example Sentence

[$_S$ The mailman ate his [$_{NP}$ lunch [$_{PP}$ with his friend [$_{PP}$ from the cleaning staff [$_{PP}$ of the building [$_{PP}$ at the intersection [$_{PP}$ on the north end [$_{PP}$ of town]]]]]]].

 The notion of context has nothing to do with the ordinary meaning of word context in language

- The notion of context has nothing to do with the ordinary meaning of word context in language
- All it really means is that the non-terminal on the left-hand side of a rule is out there all by itself (free of context)

- The notion of context has nothing to do with the ordinary meaning of word context in language
- All it really means is that the non-terminal on the left-hand side of a rule is out there all by itself (free of context)

$A \rightarrow BC$

- I can rewrite A as B followed by C regardless of the context in which A is found
- Or when I see a B followed by a C, I can infer an A regardless of the surrounding context

Syntax -Parsing I

Pawan Goyal

CSE, IIT Kharagpur

Week 5: Lecture 2

Grammar Rewrite Rules

 $\mathsf{S} \to \mathsf{NP} \; \mathsf{VP}$

 $\mathsf{S} \to \mathsf{Aux}\;\mathsf{NP}\;\mathsf{VP}$

 $S \rightarrow VP$

 $\mathsf{NP} \to \mathsf{Det} \; \mathsf{NOM}$

 $\mathsf{NOM} \to \mathsf{Noun}$

 $\mathsf{NOM} \to \mathsf{Noun} \ \mathsf{NOM}$

 $\mathsf{VP} \to \mathsf{Verb}$

 $\mathsf{VP} \to \mathsf{Verb} \; \mathsf{NP}$

 $Det \rightarrow that \mid this \mid a \mid the$

 $\mathsf{Noun} \to \mathit{book} \mid \mathit{flight} \mid \mathit{meal} \mid \mathit{man}$

 $\mathsf{Verb} \to \mathit{book} \mid \mathit{include} \mid \mathit{read}$

 $Aux \rightarrow does$

Grammar Rewrite Rules

 $S \rightarrow NP VP$

 $\mathsf{S} \to \mathsf{Aux}\;\mathsf{NP}\;\mathsf{VP}$

 $S \rightarrow VP$

 $NP \rightarrow Det NOM$

 $\mathsf{NOM} \to \mathsf{Noun}$

 $NOM \rightarrow Noun NOM$

 $\mathsf{VP} \to \mathsf{Verb}$

 $\mathsf{VP} \to \mathsf{Verb} \; \mathsf{NP}$

 $Det \rightarrow that \mid this \mid a \mid the$

 $\mathsf{Noun} \to \mathit{book} \mid \mathit{flight} \mid \mathit{meal} \mid \mathit{man}$

 $\mathsf{Verb} \to \mathit{book} \mid \mathit{include} \mid \mathit{read}$

 $Aux \rightarrow does$

 $S \rightarrow NP VP$

- \rightarrow Det NOM VP
- \rightarrow *The* NOM VP
- \rightarrow *The* Noun VP
- \rightarrow The man VP
- \rightarrow The man Verb NP
- \rightarrow The man read NP
- \rightarrow The man read Det NOM
- \rightarrow The man read this NOM
- → The man read this Noun
- → The man read this book

Parse Tree

- $\mathsf{S} \to \mathsf{NP} \; \mathsf{VP}$
- \rightarrow Det NOM VP
- \rightarrow The NOM VP
- \rightarrow *The* Noun VP
- \rightarrow The man VP
- \rightarrow The man Verb NP
- \rightarrow The man read NP
- → The man read Det NOM
- ightarrow The man read this NOM
- \rightarrow The man read this Noun
- → The man read this book

Parse Tree

 $\mathsf{S} \to \mathsf{NP} \; \mathsf{VP}$

 $\to \, \mathsf{Det} \, \, \mathsf{NOM} \, \, \mathsf{VP}$

 \rightarrow The NOM VP

 \rightarrow The Noun VP

 \rightarrow The man VP

→ The man Verb NP

 \rightarrow The man read NP

 \rightarrow The man read Det NOM

 \rightarrow The man read this NOM

ightarrow The man read this Noun

→ The man read this book

 The process of taking a string and a grammar and returning all possible parse trees for that string

- The process of taking a string and a grammar and returning all possible parse trees for that string
- That is, find all trees, whose root is the start symbol S, which cover exactly the words in the input

- The process of taking a string and a grammar and returning all possible parse trees for that string
- That is, find all trees, whose root is the start symbol S, which cover exactly the words in the input

What are the constraints? "book that flight"

- There must be three leaves, book, that and flight
- The tree must have one root, the start symbol S

- The process of taking a string and a grammar and returning all possible parse trees for that string
- That is, find all trees, whose root is the start symbol S, which cover exactly the words in the input

What are the constraints? "book that flight"

- There must be three leaves, book, that and flight
- The tree must have one root, the start symbol S
- Give rise to two search strategies: top-down (goal-oriented) and bottom-up (data-directed)

Parsing

Grammar

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

Lexicon

Det \rightarrow the | a | that | this

Noun \rightarrow book | flight | meal | money

 $Verb \rightarrow book \mid include \mid prefer$

 $Pronoun \rightarrow I \mid he \mid she \mid me$

Proper-Noun → Houston | NWA

 $Aux \rightarrow does$

Prep \rightarrow from | to | on | near | through

Parsing

 Searches for a parse tree by trying to build upon the root node S down to the leaves

- Searches for a parse tree by trying to build upon the root node S down to the leaves
- \bullet Start by assuming that the input can be derived by the designated start symbol S

- Searches for a parse tree by trying to build upon the root node S down to the leaves
- Start by assuming that the input can be derived by the designated start symbol S
- Find all trees that can start with S, by looking at the grammar rules with S on the left-hand side

- Searches for a parse tree by trying to build upon the root node S down to the leaves
- Start by assuming that the input can be derived by the designated start symbol S
- Find all trees that can start with S, by looking at the grammar rules with S on the left-hand side
- Trees are grown downward until they eventually reach the POS categories at the bottom

- Searches for a parse tree by trying to build upon the root node S down to the leaves
- Start by assuming that the input can be derived by the designated start symbol S
- Find all trees that can start with S, by looking at the grammar rules with S
 on the left-hand side
- Trees are grown downward until they eventually reach the POS categories at the bottom
- Trees whose leaves fail to match the words in the input can be rejected

10/60

11/60

- The parser starts with the words of the input, and tries to build trees from the words up, by applying rules from the grammar one at a time
- Parser looks for the places in the parse-in-progress where the right-hand-side of some rule might fit.

 Top down never explores options that will not lead to a full parse, but can explore many options that never connect to the actual sentence.

- Top down never explores options that will not lead to a full parse, but can explore many options that never connect to the actual sentence.
- Bottom up never explores options that do not connect to the actual sentence but can explore options that can never lead to a full parse.

- Top down never explores options that will not lead to a full parse, but can explore many options that never connect to the actual sentence.
- Bottom up never explores options that do not connect to the actual sentence but can explore options that can never lead to a full parse.
- Relative amounts of wasted search depend on how much the grammar branches in each direction.

 To avoid extensive repeated work, must cache intermediate results, i.e. completed phrases.

- To avoid extensive repeated work, must cache intermediate results, i.e. completed phrases.
- Caching (memoizing) critical to obtaining a polynomial time parsing (recognition) algorithm for CFGs.

- To avoid extensive repeated work, must cache intermediate results, i.e. completed phrases.
- Caching (memoizing) critical to obtaining a polynomial time parsing (recognition) algorithm for CFGs.
- Dynamic programming algorithms based on both top-down and bottom-up search can achieve $O(n^3)$ recognition time where n is the length of the input string.

Dynamic Programming Parsing Methods

 CKY (Cocke-Kasami-Younger) algorithm: bottom-up, requires normalizing the grammar

Dynamic Programming Parsing Methods

- CKY (Cocke-Kasami-Younger) algorithm: bottom-up, requires normalizing the grammar
- Earley Parser top-down, does not require normalizing grammar, more complex

Dynamic Programming Parsing Methods

- CKY (Cocke-Kasami-Younger) algorithm: bottom-up, requires normalizing the grammar
- Earley Parser top-down, does not require normalizing grammar, more complex
- More generally, chart parsers retain completed phrases in a chart and can combine top-down and bottom-up searches.

CKY Algorithm

- Grammar must be converted to Chomsky normal form (CNF) in which all productions must have
 - Either, exactly two non-terminals on the RHS
 - Or, 1 terminal symbol on the RHS

CKY Algorithm

- Grammar must be converted to Chomsky normal form (CNF) in which all productions must have
 - Either, exactly two non-terminals on the RHS
 - Or, 1 terminal symbol on the RHS
- Parse bottom-up storing phrases formed from all substrings in a triangular table (chart)

Converting to CNF

Original Grammar

 $S \to NP \, VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

 $NP \rightarrow Pronoun$

NP → Proper-Noun

 $NP \rightarrow Det\ Nominal$

Nominal → Noun

Nominal → Nominal Noun

 $Nominal \rightarrow Nominal PP$

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

 $PP \to Prep\ NP$

Pronoun \rightarrow I | he | she | me

 $Noun \rightarrow book \mid flight \mid meal \mid money$

 $Verb \rightarrow book \mid include \mid prefer$

 $Proper-Noun \rightarrow Houston \mid NWA$

Converting to CNF

Original Grammar

 $S \to NP \, VP$

 $S \rightarrow Aux NP VP$

 $S \to VP$

 $NP \rightarrow Pronoun$

NP → Proper-Noun

 $NP \rightarrow Det Nominal$

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

PP → Prep NP

 $Pronoun \rightarrow I \mid he \mid she \mid me$

Noun \rightarrow book | flight | meal | money

 $Verb \rightarrow book \mid include \mid prefer$

Proper-Noun → **Houston** | **NWA**

Chomsky Normal Form

 $S \rightarrow NP VP$

 $S \rightarrow X1 VP$

 $X1 \rightarrow Aux NP$

 $S \rightarrow book \mid include \mid prefer$

 $S \to Verb \ NP$

 $S \rightarrow VP PP$

 $NP \rightarrow I \mid he \mid she \mid me$

NP → Houston | NWA

NP → Det Nominal

 $Nominal \rightarrow book \mid flight \mid meal \mid money$

Nominal → Nominal Noun

 $Nominal \rightarrow Nominal PP$

 $VP \rightarrow book \mid include \mid prefer$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

 $Pronoun \rightarrow I \mid he \mid she \mid me$

Noun \rightarrow book | flight | meal | money

Verb → book | include | prefer Proper-Noun → Houston | NWA

Syntax -CKY, PCFGs

Pawan Goyal

CSE, IIT Kharagpur

Week 5: Lecture 3

CKY Algorithm

- Let n be the number of words in the input. Think about n+1 lines separating them, numbered 0 to n.
- x_{ij} will denote the words between line i and j
- We build a table so that x_{ij} contains all the possible non-terminal spanning for words between line i and j.
- We build the Table bottom-up.

CKY Algorithm

- Let n be the number of words in the input. Think about n+1 lines separating them, numbered 0 to n.
- x_{ij} will denote the words between line i and j
- We build a table so that x_{ij} contains all the possible non-terminal spanning for words between line i and j.
- We build the Table bottom-up.

Home Exercise

Use CKY algorithm to find the parse tree for "Book the flight through Houston" using the CNF form shown in the previous slide.

CKY for CFG

a 1	pilot 2	likes 3	flying 4	planes 5

 $S \rightarrow NP \ VP \ VP \rightarrow VBG \ NNS \ VP \rightarrow VBZ \ NP \ VP \rightarrow VBZ \ NP \ NP \rightarrow DT \ NN \ NP \rightarrow JJ \ NNS \ DT \rightarrow a \ NN \rightarrow pilot \ VBZ \rightarrow likes \ VBG \rightarrow flying \ JJ \rightarrow flying \ NNS \rightarrow planes$

CKY for CFG

а	pilot	likes	flying	planes
1	2	3	4	5
DT	NP	-	-	SS
	NN	-	<i>-</i>	-
		VBZ	-	VP
				VP
			JJ VBG	NP VP
				NNS

 $\begin{array}{lll} S & \rightarrow & NP & VP \\ VP & \rightarrow & VBG & NNS \\ VP & \rightarrow & VBZ & VP \\ VP & \rightarrow & VBZ & NP \\ NP & \rightarrow & DT & NN \\ NP & \rightarrow & JJ & NNS \\ DT & \rightarrow & a \\ NN & \rightarrow & pilot \\ VBZ & \rightarrow & likes \\ VBG & \rightarrow & flying \\ JJ & \rightarrow & flying \\ NNS & \rightarrow & planes \end{array}$

What about Ambiguities?

Probabilistic Context-free grammars (PCFGs)

PCFG: G = (T, N, S, R, P)

- T: set of terminals
- N: set of non-terminals
 - For NLP, we distinguish out a set $P \subset N$ of pre-terminals, which always rewrite as terminals
- S : start symbol
- R: Rules/productions of the form $X \to \gamma$, $X \in N$ and $\gamma \in (T \cup N)*$

Probabilistic Context-free grammars (PCFGs)

PCFG: G = (T, N, S, R, P)

- *T*: set of terminals
- N: set of non-terminals
 - For NLP, we distinguish out a set $P \subset N$ of pre-terminals, which always rewrite as terminals
- S: start symbol
- R: Rules/productions of the form $X \to \gamma$, $X \in N$ and $\gamma \in (T \cup N)*$
- P(R) gives the probability of each rule.

$$\forall X \in N, \sum_{X \to \gamma \in R} P(X \to \gamma) = 1$$

A Simple PCFG (in CNF)

S	\rightarrow	NP VP	1.0	NP →	NP PP	0.4
VP	\rightarrow	V NP	0.7	NP →	astronomers	0.1
VP	\rightarrow	VP PP	0.3	NP →	ears	0.18
PP	\rightarrow	P NP	1.0	NP →	saw	0.04
Р	\rightarrow	with	1.0	NP →	stars	0.18
V	\rightarrow	saw	1.0	NP →	telescope	0.1

Example Trees

Example Trees

Probability of trees and strings

- P(t): The probability of tree is the product of the probabilities of the rules used to generate it
- $P(w_{1n})$: The probability of the string is the sum of the probabilities of the trees which have that string as their yield

Tree and String probabilities

Tree and String probabilities

"Book the dinner flight"

"Book the dinner flight"

"Book the dinner flight"

Probabilities

- Parse tree 1: $.05 \times .20 \times .30 \times .20 \times .60 \times .20 \times .75 \times .10 \times .30 = 1.62 \times 10^{-6}$
- Parse tree 2: $.05 \times .05 \times .30 \times .20 \times .60 \times .75 \times .10 \times .15 \times .75 \times .30 = 2.28 \times 10^{-7}$

 As the number of possible trees for a given input grows, a PCFG gives some idea of the plausibility of a particular parse

- As the number of possible trees for a given input grows, a PCFG gives some idea of the plausibility of a particular parse
- But the probability estimates are based purely on structural factors, and do not factor in lexical co-occurrence. Thus, PCFG does not give a very good idea of the plausibility of the sentence.

- As the number of possible trees for a given input grows, a PCFG gives some idea of the plausibility of a particular parse
- But the probability estimates are based purely on structural factors, and do not factor in lexical co-occurrence. Thus, PCFG does not give a very good idea of the plausibility of the sentence.
- Real text tends to have grammatical mistakes. PCFG avoids this problem by ruling out nothing, but by giving implausible sentences a low probability

- As the number of possible trees for a given input grows, a PCFG gives some idea of the plausibility of a particular parse
- But the probability estimates are based purely on structural factors, and do not factor in lexical co-occurrence. Thus, PCFG does not give a very good idea of the plausibility of the sentence.
- Real text tends to have grammatical mistakes. PCFG avoids this problem by ruling out nothing, but by giving implausible sentences a low probability
- In practice, a PCFG is a worse language model for English than an n-gram model

- As the number of possible trees for a given input grows, a PCFG gives some idea of the plausibility of a particular parse
- But the probability estimates are based purely on structural factors, and do not factor in lexical co-occurrence. Thus, PCFG does not give a very good idea of the plausibility of the sentence.
- Real text tends to have grammatical mistakes. PCFG avoids this problem by ruling out nothing, but by giving implausible sentences a low probability
- In practice, a PCFG is a worse language model for English than an n-gram model
- All else being equal, the probability of a smaller tree is greater than a larger tree

Let W_{1m} be a sentence, G a grammar, t a parse tree

Let W_{1m} be a sentence, G a grammar, t a parse tree

• What is the most likely parse of sentence?

$$argmax_t P(t|w_{1m}, G)$$

Let W_{1m} be a sentence, G a grammar, t a parse tree

• What is the most likely parse of sentence?

$$argmax_t P(t|w_{1m}, G)$$

• What is the probability of a sentence?

$$P(w_{1m}|G)$$

Let W_{1m} be a sentence, G a grammar, t a parse tree

• What is the most likely parse of sentence?

$$argmax_t P(t|w_{1m},G)$$

• What is the probability of a sentence?

$$P(w_{1m}|G)$$

• How to learn the rule probabilities in the grammar *G*?

PCFGs - Inside-outside probabilities

Pawan Goyal

CSE, IIT Kharagpur

Week 5: Lecture 4

How to find the most likely parse?: CKY for PCFG

How to find the most likely parse?: CKY for PCFG

a 1	pilot 2	likes 3	flying 4	planes 5

$S \rightarrow NP VP$	[1.0]
$VP \rightarrow VBG NNS$	[0.1]
$VP \rightarrow VBZ VP$	[0.1]
$VP \rightarrow VBZ NP$	[0.3]
$NP \rightarrow DT NN$	[0.3]
$NP o JJ \ NNS$	[0.4]
$DT \rightarrow a$	[0.3]
$NN \rightarrow pilot$	[0.1]
$VBZ \rightarrow likes$	[0.4]
$VBG \rightarrow flying$	[0.5]
JJ → flying	[0.1]
NNS → planes	[.34]

CKY for PCFG

а 1	pilot 2	likes 3	flying 4	planes 5
DT [0.3]	NP [.009]	-	-	S [1.4688x10 ⁻⁵] S [6.12x10 ⁻⁶]
	NN [0.1]	-	-	-
		VBZ [0.4]	-	VP [.001632] VP [.00068]
			JJ [0.1] VBG [0.5]	NP [.0136] VP [.017]
				NNS [.34]

$S \rightarrow NP VP$	[1.0]
$VP \rightarrow VBG NNS$	[0.1]
$VP \rightarrow VBZ VP$	[0.1]
$VP \rightarrow VBZ NP$	[0.3]
$NP \rightarrow DT NN$	[0.3]
$NP \rightarrow JJ NNS$	[0.4]
$DT \rightarrow a$	[0.3]
$NN \rightarrow pilot$	[0.1]
$VBZ \rightarrow likes$	[0.4]
$VBG \rightarrow flying$	[0.5]
$JJ \rightarrow \mathit{flying}$	[0.1]
$NNS \rightarrow planes$	[.34]

 $\begin{array}{l} 0.009 \times 0.00068 \times \\ 1.0 = 6.12 \times 10^{-6} \end{array}$

Probability of a String

4/14

Probability of a String

$$P(w_{1m}|G)$$

- In general, simply summing the probabilities of all possible parse trees is not an efficient way to calculate the string probability
- We use inside algorithm, a dynamic programming algorithm based on inside probabilities.

Inside and Outside Probabilities

5/14

Inside and Outside Probabilities

Outside: $\alpha_{j}(p,q) = P(w_{1(p-1)}, N^{j}_{pq}, w_{(q+1)m}|G)$ Inside: $\beta_{j}(p,q) = P(w_{pq}|N^{j}_{pq},G)$

Inside-outside probabilities

6/14

Inside-outside probabilities

 $\alpha_{NP}(4,5)$ for "the building"

= $P(\text{The gunman sprayed}, NP_{4,5}, \text{ with bullets } | G)$

 $\beta_{NP}(4,5)$ for "the building" = $P(\text{the building} \mid NP_{4,5}, G)$

7/14

Inside Probabilities: Base Step

$$\beta_j(p,q) = P(w_{pq}|N^j_{pq},G)$$

Inside Probabilities: Base Step

$$\beta_j(p,q) = P(w_{pq}|N^j_{pq},G)$$

Base case

$$\beta_j(k,k) = P(w_{kk}|N^j_{kk},G)$$
$$= P(N^j \to w_k|G)$$

Base case for pre-terminals only

E.g., suppose $N^j=N\!N$ is being considered and $N\!N\to building$ is one of the rules with probability 0.5

$$\beta_{NN}(5,5) = P(building|NN_{5,5},G) = P(NN_{5,5} \rightarrow building|G)$$

Inside Probabilities: Induction Step

Assuming Chomsky Normal Form, the first rule must be of the form $N^j \rightarrow N^r N^s$

$$\beta_j(p,q) = \sum_{r,s} \sum_{d=p}^{q-1} P(N^j \to N^r N^s) \beta_r(p,d) \beta_s(d+1,q)$$

Inside Probabilities: Induction Step

Assuming Chomsky Normal Form, the first rule must be of the form $N^j \rightarrow N^r N^s$

$$\beta_j(p,q) = \sum_{r,s} \sum_{d=p}^{q-1} P(N^j \to N^r N^s) \beta_r(p,d) \beta_s(d+1,q)$$

- Consider different splits of the words indicated by d
 E.g., the huge building
- Consider different non-terminals to be used in the rule:
 E.g., NP → DT NN, NP → DT NNS

Calculation of inside probabilities

Calculation of inside probabilities

	1	2	3	4	5
1 /	$B_{NP} = 0.1$		$\beta_{\rm S} = 0.0126$		$\beta_{\rm S} = 0.0015876$
2		$\beta_{\rm NP} = 0.04$	$\beta_{\text{VP}} = 0.126$		$\beta_{VP} = 0.015876$
		$\beta_{\rm V} = 1.0$			
3			$\beta_{\rm NP} = 0.18$		$\beta_{\rm NP} = 0.01296$
4				$\beta_{\rm P} = 1.0$	$\beta_{PP} = 0.18$
5					$\beta_{NP} = 0.18$
	astronomers	saw	stars	with	ears

Compute top-down (after inside probabilities)

Compute top-down (after inside probabilities)

Base Case

Compute top-down (after inside probabilities)

Base Case

$$\alpha_1(1,m)=1$$

$$\alpha_1(1,m) = 1$$

$$\alpha_j(1,m) = 0, j \neq 1$$

Compute top-down (after inside probabilities)

Base Case

$$\alpha_1(1,m)=1$$

$$\alpha_1(1,m) = 1$$

$$\alpha_j(1,m) = 0, j \neq 1$$

Induction

Compute top-down (after inside probabilities)

Base Case

$$\alpha_1(1,m) = 1$$

$$\alpha_j(1,m) = 0, j \neq 1$$

Induction

Week 5: Lecture 4

Outside Probabilities: Induction

$$egin{array}{lll} lpha_j(p,q) & = & \displaystyle\sum_{f,g} \displaystyle\sum_{e=q+1}^m lpha_f(p,e) P(N^f
ightarrow N^j N^g) eta_g(q+1,e) \ & + \displaystyle\sum_{f,g} \displaystyle\sum_{e=1}^{p-1} lpha_f(e,q) P(N^f
ightarrow N^g N^j) eta_g(e,p-1) \end{array}$$

Product of inside-outside probabilities

$$\alpha_j(p,q)\beta_j(p,q) = P(w_{1(p-1)},N^j{}_{pq},w_{(q+1)m}|G)P(w_{pq}|N^j{}_{pq},G) = P(w_{1m},N^j{}_{pq}|G)$$

Product of inside-outside probabilities

$$\alpha_{j}(p,q)\beta_{j}(p,q) = P(w_{1(p-1)},N^{j}_{pq},w_{(q+1)m}|G)P(w_{pq}|N^{j}_{pq},G) = P(w_{1m},N^{j}_{pq}|G)$$

The probability of the sentence and that there is some consistent spanning from word p to q is given by:

$$P(w_{1m},N_{pq}|G) = \sum \alpha_j(p,q)\beta_j(p,q) = P(N_1 \to w_{1m},N_{pq} \to w_{pq}|G)$$

Product of inside-outside probabilities

$$\alpha_j(p,q)\beta_j(p,q) = P(w_{1(p-1)}, N^j_{pq}, w_{(q+1)m}|G)P(w_{pq}|N^j_{pq}, G) = P(w_{1m}, N^j_{pq}|G)$$

The probability of the sentence and that there is some consistent spanning from word p to q is given by:

$$P(w_{1m}, N_{pq}|G) = \sum \alpha_j(p, q)\beta_j(p, q) = P(N_1 \to w_{1m}, N_{pq} \to w_{pq}|G)$$

Inside-outside probabilities

Pawan Goyal

CSE, IIT Kharagpur

Week 5: Lecture 5

How to get the rule probabilities

Parsed Training Data

You can count!

$$\hat{P}(N^j \to \delta) = \frac{C(N^j \to \delta)}{\sum_{\gamma} C(N^j \to \gamma)}$$

How to get the rule probabilities

Parsed Training Data

You can count!

$$\hat{P}(N^j \to \delta) = \frac{C(N^j \to \delta)}{\sum_{\gamma} C(N^j \to \gamma)}$$

But what if the training data is not available?

i.e. gold standard parse is not known.

How to get the rule probabilities

Parsed Training Data

You can count!

$$\hat{P}(N^j \to \delta) = \frac{C(N^j \to \delta)}{\sum_{\gamma} C(N^j \to \gamma)}$$

But what if the training data is not available?

i.e. gold standard parse is not known.

- Underlying CFG is known and we are given a set of sentences
- For each sentence, we can find out all the possible parses
- Maximize the likelihood of the sentences in the data under the PCFG constraints

3/11

Rules of the form $A \rightarrow BC$

 $\mathtt{S} \to \mathtt{N} \ \mathtt{V}$

 $V \rightarrow V N$

 $\mathtt{N} \to \mathtt{N} \; \mathtt{P}$

 $\mathtt{P} o \mathtt{PP} \, \mathtt{N}$.

Rules of the form $A \rightarrow w$

 $\mathbb{N} \to \mathrm{She}$

 ${\tt V} \to {\rm eats}$

 ${\tt N} \to {\rm pizza}$

 $PP \to \mathrm{without}$

 $\mathbb{N} \to \text{anchovies}.$

Is any other parse possible for She eats pizza without anchovies syntactically?

Is any other parse possible for *She eats pizza without anchovies* syntactically? Consider *She eats pizza without hesitation*

Is any other parse possible for *She eats pizza without anchovies* syntactically? Consider *She eats pizza without hesitation*

New Context-free rules:

 $V \to V N P$ $N \to {
m hesitation}$.

Estimating the model parameters

We need to find probabilities such as

- $\phi(S \to N \ V)$ $\phi(N \to pizza)$

Estimating the model parameters

We need to find probabilities such as

- $\phi(S \to N V)$
- $\phi(N \to pizza)$

Requirements

For each non-terminal A, the derivation probabilities sum up to 1

$$\sum_{\alpha} \phi(A \to \alpha) = 1$$

Estimating the model parameters

We need to find probabilities such as

- $\phi(S \to N V)$
- $\phi(N \to pizza)$

Requirements

For each non-terminal A, the derivation probabilities sum up to 1

$$\sum_{\alpha} \phi(A \to \alpha) = 1$$

For the example grammar:

$$\begin{split} \phi(\mathbf{N} \to \mathbf{N} \; \mathbf{P}) + \phi(\mathbf{N} \to \mathrm{pizza}) + \phi(\mathbf{N} \to \mathrm{anchovies}) \;\; + \\ + \phi(\mathbf{N} \to \mathrm{hesitation}) + \phi(\mathbf{N} \to \mathrm{She}) \;\; = \;\; 1 \\ \phi(\mathbf{V} \to \mathbf{V} \; \mathbf{N}) + \phi(\mathbf{V} \to \mathbf{V} \; \mathbf{N} \; \mathbf{P}) + \phi(\mathbf{V} \to \mathrm{eats}) \;\; = \;\; 1 \end{split}$$

$$\begin{array}{rcl} \phi(\mathbf{S} \rightarrow \mathbf{N} \ \mathbf{V}) & = & 1 \\ \phi(\mathbf{P} \rightarrow \mathbf{PP} \ \mathbf{N}) & = & 1 \\ \phi(\mathbf{PP} \rightarrow \mathbf{without}) & = & 1 \end{array}$$

 W_1 = "She eats pizza without anchovies"

 $W_2 =$ "She eats pizza without hesitation".

 W_1 = "She eats pizza without anchovies"

 W_2 = "She eats pizza without hesitation".

$$\begin{array}{lll} P_{\phi}(W_1,T_1) & = & \phi(\mathtt{S} \to \mathtt{N} \ \mathtt{V}) \ \phi(\mathtt{V} \to \mathtt{V} \ \mathtt{N}) \ \phi(\mathtt{N} \to \mathtt{N} \ \mathtt{P}) \ \times \\ & \times & \phi(\mathtt{P} \to \mathtt{PP} \ \mathtt{N}) \ \phi(\mathtt{N} \to \mathtt{She}) \ \phi(\mathtt{V} \to \mathtt{eats}) \ \times \\ & \times & \phi(\mathtt{N} \to \mathtt{pizza}) \ \phi(\mathtt{PP} \to \mathtt{without}) \ \phi(\mathtt{N} \to \mathtt{anchovies}) \end{array}$$

$$\begin{array}{ll} P_{\phi}(W_2,T_1) & = & \phi(\mathtt{S} \to \mathtt{N} \, \mathtt{V}) \, \phi(\mathtt{V} \to \mathtt{V} \, \mathtt{N} \, \mathtt{P}) \, \phi(\mathtt{P} \to \mathtt{P} \, \mathtt{PP}) \, \times \\ & \times & \phi(\mathtt{N} \to \mathrm{She}) \, \phi(\mathtt{V} \to \mathrm{eats}) \, \phi(\mathtt{N} \to \mathrm{pizza}) \, \times \\ & \times & \phi(\mathtt{PP} \to \mathrm{without}) \, \phi(\mathtt{N} \to \mathrm{hesitation}) \end{array}$$

$$\begin{array}{ll} P_{\phi}(W_1,T_2) & = & \phi(\mathtt{S} \to \mathtt{N} \ \mathtt{V}) \ \phi(\mathtt{V} \to \mathtt{V} \ \mathtt{N} \ \mathtt{P}) \ \phi(\mathtt{P} \to \mathtt{P} \ \mathtt{PP}) \ \times \\ & \times & \phi(\mathtt{N} \to \mathtt{She}) \ \phi(\mathtt{V} \to \mathtt{eats}) \ \phi(\mathtt{N} \to \mathtt{pizza}) \times \\ & \times & \phi(\mathtt{PP} \to \mathtt{without}) \ \phi(\mathtt{N} \to \mathtt{anchovies}) \end{array}$$

$$\begin{array}{lll} P_{\phi}(W_2,T_1) & = & \phi(\mathtt{S} \to \mathtt{N} \ \mathtt{V}) \ \phi(\mathtt{V} \to \mathtt{V} \ \mathtt{N}) \ \phi(\mathtt{N} \to \mathtt{N} \ \mathtt{P}) \ \times \\ & \times & \phi(\mathtt{P} \to \mathtt{PP} \ \mathtt{N}) \ \phi(\mathtt{N} \to \mathtt{She}) \ \phi(\mathtt{V} \to \mathtt{eats}) \ \times \\ & \times & \phi(\mathtt{N} \to \mathtt{pizza}) \ \phi(\mathtt{PP} \to \mathtt{without}) \ \phi(\mathtt{N} \to \mathtt{hesitation}) \end{array}$$

$$\begin{array}{ll} P_{\phi}(W_1,T_2) & = & \phi(\mathtt{S} \to \mathtt{N} \, \mathtt{V}) \, \phi(\mathtt{V} \to \mathtt{V} \, \mathtt{N} \, \mathtt{P}) \, \phi(\mathtt{P} \to \mathtt{P} \, \mathtt{PP}) \, \times \\ & \times & \phi(\mathtt{N} \to \mathrm{She}) \, \phi(\mathtt{V} \to \mathrm{eats}) \, \phi(\mathtt{N} \to \mathrm{pizza}) \, \times \\ & \times & \phi(\mathtt{PP} \to \mathrm{without}) \, \phi(\mathtt{N} \to \mathrm{anchovies}) \end{array}$$

$$\begin{array}{lll} P_{\phi}(W_2,T_1) & = & \phi(\mathtt{S} \to \mathtt{N} \ \mathtt{V}) \ \phi(\mathtt{V} \to \mathtt{V} \ \mathtt{N}) \ \phi(\mathtt{N} \to \mathtt{N} \ \mathtt{P}) \ \times \\ & \times & \phi(\mathtt{P} \to \mathtt{PP} \ \mathtt{N}) \ \phi(\mathtt{N} \to \mathtt{She}) \ \phi(\mathtt{V} \to \mathtt{eats}) \ \times \\ & \times & \phi(\mathtt{N} \to \mathtt{pizza}) \ \phi(\mathtt{PP} \to \mathtt{without}) \ \phi(\mathtt{N} \to \mathtt{hesitation}) \end{array}$$

Likelihood of the corpus

Probability of a sentence
$$W:P_{\phi}(W)=\sum_{T}P_{\phi}(W,T)$$

$$\begin{array}{ll} P_{\phi}(W_1,T_2) & = & \phi(\mathtt{S} \to \mathtt{N} \, \mathtt{V}) \, \phi(\mathtt{V} \to \mathtt{V} \, \mathtt{N} \, \mathtt{P}) \, \phi(\mathtt{P} \to \mathtt{P} \, \mathtt{PP}) \, \times \\ & \times & \phi(\mathtt{N} \to \mathrm{She}) \, \phi(\mathtt{V} \to \mathrm{eats}) \, \phi(\mathtt{N} \to \mathrm{pizza}) \, \times \\ & \times & \phi(\mathtt{PP} \to \mathrm{without}) \, \phi(\mathtt{N} \to \mathrm{anchovies}) \end{array}$$

$$\begin{array}{ll} P_{\phi}(W_2,T_1) & = & \phi(\mathtt{S} \to \mathtt{N} \ \mathtt{V}) \ \phi(\mathtt{V} \to \mathtt{V} \ \mathtt{N}) \ \phi(\mathtt{N} \to \mathtt{N} \ \mathtt{P}) \ \times \\ & \times & \phi(\mathtt{P} \to \mathtt{PP} \ \mathtt{N}) \ \phi(\mathtt{N} \to \mathtt{She}) \ \phi(\mathtt{V} \to \mathtt{eats}) \ \times \\ & \times & \phi(\mathtt{N} \to \mathtt{pizza}) \ \phi(\mathtt{PP} \to \mathtt{without}) \ \phi(\mathtt{N} \to \mathtt{hesitation}) \end{array}$$

Likelihood of the corpus

Probability of a sentence $W: P_{\phi}(W) = \sum_{T} P_{\phi}(W,T)$

If the training data comprises of sentences W_1, W_2, \dots, W_N , then the likelihood is

$$L(\phi) = P_{\phi}(W_1)P_{\phi}(W_2)\cdots P_{\phi}(W_N)$$

Likelihood maximization

Approach

Starting at some initial parameters ϕ , re-estimate to obtain new parameters ϕ' for which $L(\phi') \ge L(\phi)$. Repeat until convergence

Parameter Estimation

Given some rule probabilities ϕ and training corpus $W_1, W_2 \dots W_n$, the new parameters are obtained as:

$$\phi'(\mathtt{A} \to \mathtt{B} \ \mathtt{C}) = \frac{count(\mathtt{A} \to \mathtt{B} \ \mathtt{C})}{\sum_{\alpha} count(\mathtt{A} \to \alpha)}$$

$$\phi'(\mathbf{A} \to \mathbf{w}) = \frac{count(\mathbf{A} \to \mathbf{w})}{\sum_{\alpha} count(\mathbf{A} \to \alpha)}$$

What is count(.)?

Parameter Estimation

Given some rule probabilities ϕ and training corpus $W_1, W_2 \dots W_n$, the new parameters are obtained as:

$$\phi'(\mathtt{A} \to \mathtt{B} \ \mathtt{C}) = \frac{count(\mathtt{A} \to \mathtt{B} \ \mathtt{C})}{\sum_{\alpha} count(\mathtt{A} \to \alpha)}$$

$$\phi'(\mathbf{A} \to \mathbf{w}) = \frac{count(\mathbf{A} \to \mathbf{w})}{\sum_{\alpha} count(\mathbf{A} \to \alpha)}$$

What is *count(.)*?

$$\mathit{count}(\mathtt{A} \to \mathtt{B} \ \mathtt{C}) = \sum_{i=1}^{N} c_{\phi}(\mathtt{A} \to \mathtt{B} \ \mathtt{C}, W_{i})$$

$$count(\mathbf{A} \to \mathbf{w}) = \sum_{i=1}^{N} c_{\phi}(\mathbf{A} \to \mathbf{w}, W_{i})$$

Parameter Estimation

Given some rule probabilities ϕ and training corpus $W_1, W_2 \dots W_n$, the new parameters are obtained as:

$$\phi'(\mathtt{A} \to \mathtt{B} \ \mathtt{C}) = \frac{count(\mathtt{A} \to \mathtt{B} \ \mathtt{C})}{\sum_{\alpha} count(\mathtt{A} \to \alpha)}$$

$$\phi'(\mathbf{A} \to \mathbf{w}) = \frac{count(\mathbf{A} \to \mathbf{w})}{\sum_{\alpha} count(\mathbf{A} \to \alpha)}$$

What is *count(.)*?

$$\mathit{count}(\mathtt{A} \to \mathtt{B} \ \mathtt{C}) = \sum_{i=1}^{N} c_{\phi}(\mathtt{A} \to \mathtt{B} \ \mathtt{C}, W_{i})$$

$$count(\mathbf{A} \rightarrow \mathbf{w}) = \sum_{i=1}^{N} c_{\phi}(\mathbf{A} \rightarrow \mathbf{w}, W_{i})$$

 $c_{\phi}(A \to \alpha, W_i)$ is the expected number of times $(A \to \alpha)$ is used in generating the sentence W_i , when the rule probabilities are given by ϕ

Computing Expected counts

Inside probabilities

The nonterminal A derives the string of words $w_i, \dots w_j$ in the sentence :

$$\beta_{ij}(A) = P_{\phi}(A \Rightarrow^* w_i \dots w_j)$$

Computing Expected counts

Inside probabilities

The nonterminal A derives the string of words $w_i, \dots w_j$ in the sentence :

$$\beta_{ij}(A) = P_{\phi}(A \Rightarrow^* w_i \dots w_j)$$

Outside probabilities

Beginning with the start symbol S we can derive the string

$$w_1 \dots w_{i-1} A w_{j+1} \dots w_n : \alpha_{ij}(A) = P_{\phi}(S \Rightarrow^* w_1 \dots w_{i-1} A w_{j+1} \dots w_n)$$

Computing Expected counts

Inside probabilities

The nonterminal A derives the string of words $w_i, \dots w_j$ in the sentence :

$$\beta_{ij}(A) = P_{\phi}(A \Rightarrow^* w_i \dots w_j)$$

Outside probabilities

Beginning with the start symbol S we can derive the string

$$w_1 \dots w_{i-1} A w_{j+1} \dots w_n : \alpha_{ij}(A) = P_{\phi}(S \Rightarrow^* w_1 \dots w_{i-1} A w_{j+1} \dots w_n)$$

Expected count

$$c_{\phi}(A \to BC, W) = \frac{\phi(A \to BC)}{P_{\phi}(W)} \sum_{1 \le i \le j \le k \le n} \alpha_{ik}(A)\beta_{ij}(B)\beta_{j+1,k}(C)$$
$$c_{\phi}(A \to W, W) = \frac{\phi(A \to W)}{P_{\phi}(W)} \sum_{1 \le i \le n} \alpha_{ii}(A)$$

And how to compute inside-outside probabilities

Inductively, as discussed earlier

$$\beta_{ii}(A) = \phi(A \to w_i)$$

$$\alpha_{1n}(S)=1$$