Z _A (Ω)	Ζ _Β (Ω)	Ζc(Ω)	IA(A)	Ів(А)	Ic(A)	Vab(V)	V _{BC} (V)	Vca(V)	IR(A)	Is(A)
15	15	15	16.79	16.98	16.38	430.00	432.50	427.30	14.86	14.84
10∠30	10∠30	10∠30	7.68	7.57	7.537	432.3	423.9	430.4	7.62	7.89
20∠45	20∠45	20∠45	2.80	2.78	2.78	436.3	432.2	437.7	3.395	3.819

12∠ - 60	12∠ - 60	12∠6 - 0	40.7	42.64	39.09	458.3	441.7	419.9	35.3	35.49
10	14	18	21.24	18.86	15.55	440.3	430.1	429.2	18.64	14.19
20∠45	10∠30	10∠30	3.52	6.58	6.89	434.6	423.9	432.5	4.05	7.89

VRT-VST

Ir-Is

Vab-Vbc-Vca

IA-IB-Ic

(B) Study of vector groups of transformer

ii)
$$Dd6 = (VL)_{HV} = 2.005$$

$$(V_L)_{LV} = \frac{(V_L)_{HV}}{(V_L)_{LV}} = 1.157$$

1)
$$Y Z II = \frac{(V_L)_{HV}}{(V_L)_{LV}} = 2.0044$$

$$V1)$$
 $Z_6 = \frac{(VL)_{HV}}{(VL)_{LV}} = 1-157$

plot a line voltage of the HV side, and the corresponding line voltage on the LV sidefor any 3 configurations

1. For Yy0:

2. For Dd6:

3. For Dy11:

- 3. For Dy11, with a one phase of load disconnected from the transformer (3 kW load):
- a. Line current on primary side (same as phase current due to Delta connection on primary):

b. Line current on secondary side:

Discussion questions -1.) If one of the transformer is disconnected then it becomes open-della connection Power output of Ti = Pi = VIPh cos (30-6) Power output of T2 = P2 = VIPH cos(30+0) Total power = P=PitP2 = VIPh (cos(80-9) + cos(80+0)) P = By Iph cosp for normal D-A connection Cana = 3 / Iph cos 4 $P = \frac{P_{D-D}}{\sqrt{S}} = 0.577 P_{D-D}$

57.7°1. et normal delta - delta power can be provided without overloadio -) The current in the primary will not get affected as any non-zero current of the neutral now nos a pouter to flow through supply newbol.

i) It is temporately less costly than 4-D or scoots connection to

provide better sol for ground corrent isolation purposes because it has less internal winding impedance going to the ground than when using star type transformers

iii) Y-D, D-Y connection carry 2rd harmonice through phase voltage which distant the acted village from sinusoid zigzag elimines 3rd harmonic.

iv) there is no phase shift between primary and secondary aresults

multimeter, 3 windings will have lower reclatance than other 3 raking small resultance winding as secondary side and high resistance winding as secondary side and high resistance windings as primary side we can make 29 roups with 3 winding each.

After supplying to primary and secondary having halanced load we take any one winding from primary group mame it AI-AZ we measure vitage across this winding terminals and then across all 3 secondary windings terminals, the one with same (o' phase difference with AI-AZ with be at -az, similarly Bi-Bz and bi bz and and a-cz. Ei-Cz can be identified.