

اقرأ وارتق

جامعة دمشق كلية العلوم قسم الرياضيات السنة الدراسية الثانية

تاريخ المحاضرة: 27/10/2015

مُدرس المقرر: د. يحيى قطيش

مكتبـــة بريمـــا فيـــرا - مقابـل كليـة الفنــون الجميلــة $Mob: 0993586758 - Tel: 011\ 2124436$

قبل البدء في المحاضرة سوف أقدم لكم حل المثال (4) من المحاضرة السابقة صـ5:

$$\prod_{n=2}^{+\infty} \left(1 + \frac{(-1)^n}{n} \right)$$

ببساطة يمكن التحقق من أن الجداء المفروض متقارب شرطياً وقمنا بحل تمارين كثيرة عن ذلك ، ولإيجاد قيمتهُ نشكل الجداء الجزئي النوني لهُ P_n ونعلم أن

من الأخيرة يتبين لنا أن $P_n > 1$ متتالية الجداءات الجزئية المنتهية للجداء الغير منتهي المفروض متقاربة من العدد المحدود وغير المعدوم P=1 وهذا بدوره يعني أن الجداء الغير منتهي المفروض متقارب والأكثر من قيمة ذلك الجداء هي P=1.

بداية المحاضرة

التقارب المنتظم لمتتالية من التوابع الحقيقية

f(x) عند المتتالية التابعية $f_n(x)\}_{n\geq 1}$ المعرفة على $I\subseteq \mathbb{R}$ إنها متقاربة بانتظام من التابع f(x) على I إذا وفقط إذا وجد من أجل كُل عدد حقيقي موجب E>0 عدد طبيعي I بحيث يتحقق على I إذا وفقط إذا وجد من أجل كُل عدد حقيقي موجب I المحققة لي I ومن أجل جميع قيم I من أجل جميع قيم I المحققة لي I ومن أجل جميع قيم I من المجال I بحيث I أي العدد الطبيعي I يتعلق بالعدد I المأخوذ فقط. فقط. فقي المتتالية التابعية المتقاربة نقطياً والمتتالية التابعية المتقاربة بانتظام على I من تابع مثل I تكون متقاربة نقطياً على I من I إلا أن العكس ليس بالضرورة صحيحاً أي ليس كل متتالية تابعية متقاربة نقطياً تكون متقاربة بانتظام.

مكتبـــة بريمــا فيـــرا - مقابـل كليـة الفنــون الجميلــة Mob: 0993586758 - Tel: 011 2124436

مُلاحظة: كُل متتالية تابعية متقاربة نقطياً يكون تقاربها إما منتظماً أو غير منتظم. ففي حالة التقارب المنتظم N_0 يتعلق العدد الطبيعي N_0 بي فقط ولا يتعلق بالنقاط x من I ، أي عند تثبيت σ فإن العدد الطبيعي σ من أجل أي عند تثبيت σ ومن أجل كُل قيم σ من أجل أما في حالة التقارب الغير منتظم فلا يتحقق السابق لأن العدد الطبيعي σ سوف يتعلق ب σ وبالنقطة σ من σ من σ

أمثله

 $x \in I = [1, +\infty[$ و $f_n(x) = \frac{1}{nx}$ بحيث $f_n(x) = \{f_n(x)\}_{n \geq 1}$ و $f_n(x) = 1$ لتكن لدينا متتالية التوابع المفروضة متقاربة نقطياً على المجال $f_n(x) = 1$ من التابع:

$$f(x) = \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{1}{nx} = \frac{1}{x} \lim_{n \to +\infty} \frac{1}{n} = \frac{1}{x}(0) = 0$$

f(x)=0 من التابع الصفري f(x)=0 أي أنها متقاربة نقطياً على المجال f(x)=0

 $I = [1, +\infty]$ على على f(x) = 0 التابع الصفر ي f(x) = 0 على التابع المفروضة متقاربة بانتظام من التابع الصفر

من أجل أي عدد حقيقي موجب 0>0 إنبحث في وجود العدد الطبيعي $0\neq N_0=N_0$ بحيث يتحقق

$$|f_n(x) - f(x)| < \varepsilon$$

 $x\in I=[1,+\infty]$ و ذلك لجميع قيم n المحققة لـ $N_0(\varepsilon)$ وذلك لجميع قيم

$$|f_n(x) - f(x)| = \left|\frac{1}{nx} - 0\right| = \left|\frac{1}{nx}\right| = \frac{1}{nx} \leq \frac{1}{nx} \leq \frac{1}{nx} \leq \frac{1}{n} \leq \frac{1}{n} \leq \frac{1}{n} < \varepsilon$$

$$\lim_{\substack{i \ge 1, i \le 1, i < 1 \\ i \ge x \in [1, +\infty[}} \frac{1}{n} \leq \frac{1}{n} \leq \frac{1}{n} < \varepsilon$$

 $N_0 > \frac{1}{\varepsilon}$ من أجل أي عدد حقيقي موجب $0 < \varepsilon$ يُمكن اختيار العدد الطبيعي N_0 بحيث عدد حقيقي موجب $\varepsilon > 0$ يُمكن اختيار العدد الطبيعي (أي يتعلق ب $\varepsilon > 0$ ومع هذا الاختيار سوف يتحقق:

$$|f_n(x) - f(x)| < \varepsilon$$

 $x \in I = [1, +\infty]$ وذلك لكُل $n \geq N_0(\varepsilon)$ وذلك لكُل

وهذا بدوره يعني أن المتتالية المفروضة متقاربة بانتظام على $I = [1, +\infty[$ "استثاداً للتعريف" $f_n(x)$ متالية من التوابع الحقيقية بحيث مثال (2): بفرض أن p < q < 1 وأن $f_n(x)$ متتالية من التوابع الحقيقية بحيث

$$f_n(x) = x^n$$

. $\forall x \in I = [p,q]$ وذلك

إن متتالية التوابع المفروضة متقاربة نقطياً على المجال I = [p,q] من التابع:

مكتبـــة بريمــا فيـــرا - مقابـل كليـة الفنــون الجميلــة $Mob: 0993586758 - Tel: 011\ 2124436$

$$f(x) = \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} x^n \underset{0$$

f(x)=0 من التابع الصفري I=[p,q] على المجال المجال أي أنها متقاربة نقطياً على المجال

I = [p,q] على f(x) = 0 التابع الصفري على التابع المفروضة متقاربة بانتظام من التابع الصفري

من أجل أي عدد حقيقي موجب $\epsilon>0$ لنبحث في وجود العدد الطبيعي عدد حقيقي موجب موجب

$$|f_n(x) - f(x)| < \varepsilon$$

 $x\in I=[p,q]$ وذلك لجميع قيم n المحققة لـ $N_0(arepsilon)$ ، ولجميع قيم

$$|f_n(x) - f(x)| = |x^n - 0| = |x^n| = x^n < \varepsilon$$

$$0
$$0
$$0
$$0$$$$$$$$

$$x^n < \varepsilon$$
 \Rightarrow $\ln(x^n) < \ln(\varepsilon)$ \Rightarrow $n\ln(x) < \ln(\varepsilon)$ خواص اللوغاريتم الطرفين

nنقسم طرفي المتراجحة على n(x) وهو مقدار سالب من أجل كُل x لأن x

0<p<q<1

لكن:

$$ln(x) \le ln(q)$$
; $\forall x \in I = [p,q]$ and 0

ومنه:

$$\frac{1}{\ln(x)} \ge \frac{1}{\ln(q)}$$
; $\forall x \in I = [p,q]$ and 0

بالعودة نحصل على:

$$n > \frac{\ln(\varepsilon)}{\ln(q)}$$

من أجل أي عدد حقيقي موجب 0>0 يُمكن اختيار العدد الطبيعي $N_0>\frac{\ln(\varepsilon)}{\ln(q)}$ بحيث $N_0>0$ (أي يتعلق ب $N_0>0$ أي يتعلق ب $N_0>0$ ومع هذا الاختيار سوف يتحقق:

$$|f_n(x) - f(x)| < \varepsilon$$

 $x \in I = [p, q]$ وذلك لكُل $n \geq N_0(\varepsilon)$ وذلك لكُل

وهذا بدوره يعني أن المتتالية المفروضة متقاربة بانتظام على I = [p,q] . "استناداً للتعريف"

مكتبـــة بريمــا فيـــرا - مقابـل كليـة الفنــون الجميلــة $Mob: 0993586758 - Tel: 011\ 2124436$

p < q < 1 ولكن انتبه أن كُل هذا الإثبات ضمن الفرضية القائلة بأن $x \in I = [0,1]$ و $f_n(x) = x^n$ و بحيث $f_n(x) \}_{n \geq 1}$ و التوابع $f_n(x) = x^n$ وجدنا في المحاضرة السابقة "راجع المثال الأول صـ7" أن متتالية التوابع المفروضة متقاربة نقطياً على المجال I = [0,1] من التابع:

$$f(x) = \begin{cases} 0 & if & 0 \le x < 1 \\ 1 & if & x = 1 \end{cases}$$

I = [0,1] إلا أن هذا التقارب ليس منتظماً على المجال

في الحقيقية إن متتالية التوابع المفروضة ليست متقاربة بانتظام على المجال]0,1 فلاحظ أنه من أجل أي عدد حقیقي موجب $\epsilon>0$ (أي يتعلق ب $\epsilon>0$ ومع هذا $N_0>rac{\ln(arepsilon)}{\ln(arepsilon)}$ ومع هذا الاختيار سوف يتحقق:

 $x\in L=]0,1[$ وذلك لكُل $n\geq N_0(arepsilon,x)$ وذلك لكُل

لكن عندما تتغير x في المجال $\log 1$ مقتربة من الواحد فإن $\log 1$ تسعى إلى الصفر ومن ثم $\log 1$ تسعى لـ اللانهاية وفي هذه الحالة لا يُمكن إيجاد عدد طبيعي غير معدوم N_0 بحيث يتحقق

 $|f_n(x)-f(x)|<arepsilon$ لكُل $n\geq N_0$ ، ولكُل $x\in]0,1$ مما يعني أن متتالية التوابع المفروضة ليست متقاربة بانتظام على المجال I = [0,1] من التابع f(x) ومن ثم تكون غير متقاربة بانتظام على المجال f(x)

نتيجة: إذا كانت متتالية التوابع $\{f_n(x)\}_{n\geq 1}$ متقاربة بانتظام على أي المجال I فهي متقاربة بانتظام على أي مجال جزئي من I لكن العكس ليس بالضرورة صحيح. لاحظ في المثال (3) السابق أن المتتالية التابعية المفروضة ليست متقاربة بانتظام على المجال [0,1] على الرغم من أنها متقاربة بانتظام على المجال الجزئى منهُ بحيث p < q < 1 وهذا ما قمنا بتبيانهُ في المثال (2). [p,q]

بعض من الخواص الأساسية لمتتاليات التوابع الحقيقية المتقاربة بانتظام

مبرهنة $I\subseteq \mathbb{R}$ لتكن $\{f_n(x)\}_{n\geq 1}$ متتالية توابع معرفة على مجال ما مثل $I\subseteq \mathbb{R}$ وبفرض أنها متقاربة بانتظام من التابع f(x) على I عندئذٍ:

I إذا كانت حدود المتتالية توابع مستمرة على I ، فإن تابع النهاية f(x) يكون أيضاً مستمراً على I

Iاذا كانت حدود المتتالية توابع محدودة على I ، فإن تابع النهاية $f(\chi)$ يكون أيضاً محدوداً على I

مكتبـــة بريمــا فيــرا - مقابل كليـة الفنـون الجميلـة Mob: 0993586758 - Tel: 011 2124436

الإثبات: لتكن $x_0 \in I$ كيفية ، وليكن $\varepsilon > 0$ عدد حقيقي موجب وكيفي.

بما أن المتتالية التابعية f(x) متقاربة بانتظام من التابع f(x) على I فإنه يوجد من أجل العدد $\{f_n(x)\}_{n\geq 1}$ الأساسي الموجب $\frac{\varepsilon}{3}$ عدد طبيعي $I_n(x)$ بحيث يكون $I_n(x)$ بحيث يكون $I_n(x)$ بحيث يكون $I_n(x)$ وذلك لكُل المعطى في $I_n(x)$ من المبرهنة $I_n(x)$ بما فيها $I_n(x)$ بما فيها بما في فيها بما فيها بم

بما أن $f_n(x)$ مستمر على I فيوجد من أجل العدد الحقيقي الموجب $\frac{\varepsilon}{3}>0$ ، عدد حقيقي موجب $\delta>0$ من فرضية الطلب الأول $|x-x_0|<\delta$. الطلب الأول بحيث أنهُ إذا تحقق $\delta>0$ المكل الأول عنون أنهُ إذا تحقق $|x-x_0|<\delta$

 $|f(x) - f(x_0)| = |f(x) - f_n(x) + f_n(x) - f_n(x_0) + f_n(x_0) - f(x_0)|$ $\leq |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)|$ $\leq |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)|$ $\leq |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)|$ $\leq |f(x) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)| + |f_n(x_0) - f(x_0)|$ $\leq |f(x) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)| + |f_n(x_0) - f(x_0)|$ $\leq |f(x) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)|$ $\leq |f(x) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)|$ $\leq |f(x) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)|$ $\leq |f(x) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)|$ $\leq |f(x) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)|$ $\leq |f(x) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)|$ $\leq |f(x) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)|$ $\leq |f(x) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)|$ $\leq |f(x) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)|$ $\leq |f(x) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)| + |f_n$

 $\leq \frac{arepsilon}{3} + rac{arepsilon}{3} + rac{arepsilon}{3} = arepsilon \implies |f(x) - f(x_0)| < arepsilon$ ومن الفرض الأساسي

لأساسي لبرهان ب الأول الطلب الأول

وبالتالي من أجل أي عدد حقيقي موجب arepsilon>0 ، يوجد عدد حقيقي مؤجب $\delta>0$ بحيث أنهُ إذا كان $|x-x_0|<\delta$ بحيث أنهُ إذا كان $|x-x_0|<\delta$

من الأخيرة يتبين لنا أن التابع f مستمر عند النقطة χ_0 من χ_0 كيفية من χ_0 فهذا يعني أن التابع χ_0 مستمر على χ_0

k>0 محدوداً على I وذلك لكُل $n\geq 1$ ، فيوجد عدد حقيقي موجب مثل $f_n(x)$ بحيث

 $|f_n(x)| < k$; $\forall x \in I$, $\forall n \ge 1$

 $|f(x)| = |f(x) - f_n(x) + f_n(x)| \le |f(x) - f_n(x)| + |f_n(x)|$

 \lesssim $\varepsilon + k \Rightarrow |f(x)| < \varepsilon + k = M$; $\forall x \in I$ استقد من الفرض

استفد من الفرض الأساسي ومن فرضية الطلب الثاني

f(x) وجد عدد حقیقي موجب arepsilon + k = M > 0 بحیث arepsilon + arepsilon

الطلب الثاني أن الذارم f(x)

مكتبـــة بريمـــا فيـــرا - مقابـل كليـة الفنــون الجميلــة $Mob: 0993586758 - Tel: 011\ 2124436$

٦ الصوفحة

انتهت المحاضرة الخامسة

الطلب الثاني

برهان

الطالب الثاني