دادههای ما قبلا در بستر SPSS ذخیره شدهاند و ما با استفاده از کد زیر انها را فراخوانی میکنیم:

```
> library(foreign)
> mydata2<-read.spss("C:/Users/12345/Desktop/DATA.sav",to.data.frame=TRUE,row.names="
Country")</pre>
```

اكنون متغير Group را از دادهها حذف ميكنيم، چون ربطى به سوال ما ندارد

```
> mydata2<-mydata2[ , -1]</pre>
```

: Correlation Matrix

```
> round((R<-cor(mydata2)),2)</pre>
     AGR
          MIN
                 NAN
                       PS
                            CON
                                             SPS
                                                    TC
                                  SER
                                        FIN
AGR 1.00 0.44 -0.23 -0.26 -0.35 -0.62 -0.22 -0.82 -0.48
MIN 0.44 1.00 -0.59 -0.16 -0.24 -0.36 -0.10 -0.36 -0.01
NAN -0.23 -0.59 1.00 0.07 -0.03 -0.18 -0.41 -0.01 0.30
PS -0.26 -0.16 0.07 1.00 0.05 0.10 0.20 0.21 0.03
CON -0.35 -0.24 -0.03 0.05 1.00 0.49 -0.03 0.08 -0.06
SER -0.62 -0.36 -0.18 0.10 0.49
                                1.00 0.33 0.39 -0.09
FIN -0.22 -0.10 -0.41 0.20 -0.03
                                 0.33
                                      1.00 0.21 -0.40
SPS -0.82 -0.36 -0.01 0.21 0.08
                                 0.39
                                      0.21
                                            1.00 0.47
TC -0.48 -0.01 0.30 0.03 -0.06 -0.09 -0.40 0.47 1.00
```

دسته بندی و تعیین تعداد عاملها با نگاه کردن به ماتریس فوق کار دشواری است لذا از مقادیر ویژه کمک میگیریم

```
> eigen(R)$values
[1] 2.9991 1.9424 1.3015 1.1166 0.81905 0.34690 0.2992 0.17197 0.00303
```

فقط چهار مقدار ویژه ما بزرگتر از ۱ است لذا در اینجا ما نیاز به ۴ عامل داریم ·

در بالا بردارهای ویژه چهار مقدار ویژه اول را میبینم .

اکنون با کد زیر تحلیل عاملی دادههای بالا را اجرا میکنیم:

```
> mydata2.fit <- factanal(mydata2, 4, rotation="varimax")</pre>
> mydata2.fit
Call:
factanal(x = mydata2, factors = 4, rotation = "varimax")
Uniquenesses:
              NAN
                     PS
                          CON
                                SER
                                      FIN
                                            SPS
0.005 0.352 0.005 0.896 0.707 0.005 0.005 0.218 0.320
Loadings:
    Factor1 Factor2 Factor3 Factor4
AGR -0.788 -0.492 -0.285 -0.225
            -0.294 -0.726 -0.172
MIN
                   0.934 -0.272
NAN 0.141 -0.170
PS
    0.211
                             0.219
                     0.106
CON 0.120
             0.523
SER 0.100
             0.958
                             0.257
FIN
                    -0.131
                             0.985
SPS 0.819
             0.269
                             0.195
TC
    0.724
                            -0.378
               Factor1 Factor2 Factor3 Factor4
SS loadings
                 1.910
                         1.632
                                 1.521
                                         1.424
Proportion Var
                 0.212
                         0.181
                                 0.169
                                         0.158
Cumulative Var
                 0.212
                         0.394
                                 0.563
                                         0.721
Test of the hypothesis that 4 factors are sufficient.
The chi square statistic is 61.27 on 6 degrees of freedom.
```

The p-value is 2.48e-11

گزینه factor=4 نشان داده است که تعداد فاکتورهای عاملی 4 تاست.

گزینه Uniquenesses مقدار باقی مانده مدل رود قطرماتریس ضرایب همبستگی می باشد.

چهار عامل مورد بررسی یعنی فاکتور ۱ فاکتور ۲ ، فاکتور ۳ و فاکتور ۴ مجموعا ۷۲ درصد تغییرات کل داده ها را توجیه می کند.

عامل موثر در فاکتورها:

فاكتور ۱: AGR , SPS , TS _ نام پیشنهادی : AST

فاكتور ٢: AGR , SER , CON, MIN _ نام پیشنهادی

فاكتور ٣: MIN , NAN _ نام پیشنهادی : MN

فاكتور ۴: FIN, TC _ نام پیشنهادی : FC

تحلیل عاملی به کمک SPSS:

: Correlation Matrix

Correlation Matrix

		AGR	MIN	NAN	PS	CON	SER	FIN	SPS	TC
Correlation	AGR	1.000	.436	233	256	353	619	217	815	479
	MIN	.436	1.000	593	164	245	361	099	358	011
	NAN	233	593	1.000	.066	026	183	407	010	.303
	PS	256	164	.066	1.000	.050	.098	.201	.212	.033
	CON	353	245	026	.050	1.000	.494	027	.082	062
	SER	619	361	183	.098	.494	1.000	.329	.388	086
	FIN	217	099	407	.201	027	.329	1.000	.207	399
	SPS	815	358	010	.212	.082	.388	.207	1.000	.475
	TC	479	011	.303	.033	062	086	399	.475	1.000

Total Variance Explained

	Initial Eigenvalues			Extraction	Sums of Squa	red Loadings	Rotation Sums of Squared Loadings		
		% of	Cumulative		% of	Cumulative		% of	Cumulative
Component	Total	Variance	%	Total	Variance	%	Total	Variance	%
1	2.999	33.324	33.324	2.999	33.324	33.324	2.174	24.157	24.157
2	1.942	21.583	54.907	1.942	21.583	54.907	1.894	21.039	45.196
3	1.302	14.462	69.369	1.302	14.462	69.369	1.701	18.902	64.098
4	1.117	12.407	81.776	1.117	12.407	81.776	1.591	17.677	81.776
5	.819	9.101	90.876						
6	.347	3.854	94.731						
7	.299	3.325	98.055						
8	.172	1.911	99.966						
9	.003	.034	100.000						

Extraction Method: Principal Component Analysis.

طبق ستون Cumulative چهار عامل اول ۸۱.۷٪ از واریانس کل را نمایش میدهند.

میبینم که مقادیر ویژه تا عامل چهارم دارای مقادیر بزرگتر از ۱ هستند و بعد از عامل چهارم شیب نمودار و مقادیر ویژه بسیار کاهش میابند که یعنی چهار عامل برای ما کافی است.

با دقت بیشتر میتوان دید بیشتر تغییر شیب در تعداد عامل ۶ است .یعنی ۵ عامل برای ما کافی است که طبق جدول قبل ۵ عامل ۹۰٪ واریانس را نمایش میدهد.

در جدول زیر سهم هر متغیر را در عامل ها میبینیم:

Rotated Component Matrix^a

	Component								
	1	2	3	4					
SPS	.854								
TC	.834			385					
AGR	792	458							
CON		.843							
SER		.821							
NAN			.922						
MIN		365	798						
FIN				.828					
PS				.626					

Extraction Method: Principal Component

Analysis.

Rotation Method: Varimax with Kaiser

Normalization.

a. Rotation converged in 9 iterations.