# Geometría básica

2019

# Duración 2 horas. Sólo se permite material de dibujo (reglas, compás)

Justificar concisa y razonadamente todas las respuestas.

**Ejercicio 1**. (4 puntos, los tres primeros apartados 2 puntos y apartado d) 2 puntos)

Sea  $\angle V = \angle \{\bar{r}, \bar{s}\}$  el ángulo con vértice el punto V y cuyos lados son dos semirectas distintas del plano:  $\bar{r}$  y  $\bar{s}$ , supongamos además que  $\angle V$  mide menos que la mitad de un ángulo recto. Sea r la recta que contiene a la semirrecta  $\bar{r}$  y  $\sigma_r$  la reflexión sobre la recta r. Para cada punto Q de  $\bar{r}$  sea  $\pi(Q)$  el punto de s de modo que  $r_{Q,\pi(Q)}$  es perpendicular a s. Sea P un punto del interior del ángulo  $\angle V$ .

- a) Probar que para todo Q de  $\bar{r}$  se tiene que:  $\sigma_r(P)\pi(Q) \leq \sigma_r(P)Q + Q\pi(Q)$ .
- b) Sea N el punto de intersección de r con la recta perpendicular a s que pasa por  $\sigma_r(P)$ . Probar que  $\sigma_r(P)N + N\pi(N) = \sigma_r(P)\pi(N)$ .
- c) Probar que  $\sigma_r(P)\pi(N) \leq \sigma_r(P)\pi(Q)$ , para cualquier Q perteneciente a  $\bar{r}$ .
  - d) Probar que para todo Q de  $\bar{r}$  se tiene la siguiente desigualdad:

$$NP + N\pi(N) \le QP + Q\pi(Q)$$

### Ejercicio 2. (3 puntos)

Sea [A, B] un segmento cuyos extremos son A y B, y  $\eta_{C,k}$  una homotecia de centro C y razón k. Demostrar que la imagen por  $\eta_{C,k}$  del segmento [A, B] es el segmento  $[\eta_{C,k}(A), \eta_{C,k}(B)]$ , es decir  $\eta_{C,k}([A, B]) = [\eta_{C,k}(A), \eta_{C,k}(B)]$ .

#### Ejercicio 3. (3 puntos)

En el espacio euclidiano se consideran dos rectas perpendiculares r y s y que se cortan en un punto P. Sea  $\pi$  el plano que contiene a r y s, y sea t la recta perpendicular a  $\pi$  que pasa por P. Sean  $\rho_r$ ,  $\rho_s$  y  $\rho_t$  las medias vueltas con eje r, s y t respectivamente. Clasificar la isometría  $\rho_r \circ \rho_s \circ \rho_t$ .



# Soluciones

### Ejercicio 1.

- a) La desigualdad triangular nos dice  $d(A, B) \leq d(A, C) + d(C, B)$ . Tomando  $A = \sigma_r(P)$ ,  $B = \pi(Q)$  y C = Q, tenemos la desigualdad:  $\sigma_r(P)\pi(Q) \leq \sigma_r(P)Q + Q\pi(Q)$ .
- b) La recta t perpendicular a s y pasa por  $\sigma_r(P)$ , pasa también por  $N = t \cap r$ . Por otra parte la recta t' que pasa por N y  $\pi(N)$  es perpendicular a s y pasa por N, luego t' = t, con lo que tenemos que  $\sigma_r(P)$ , N y  $\pi(N)$  están alineados.

Hay una errata en el enunciado, debería decir que  $\angle V$  mide menos que la mitad de un ángulo recto y no que  $\angle V$  mide menos que un ángulo recto, esta propiedad asegura que  $N \in [\sigma_r(P), \pi(N)]$  y por tanto  $\sigma_r(P)N + N\pi(N) = \sigma_r(P)\pi(N)$ . Por ser  $\angle V < \pi/4$  se tiene que  $\angle \{\bar{s}, \sigma_r(\bar{s})\}$  mide menos que un recto, y como cualquier punto del interior de  $\angle \{\bar{r}, \bar{s}\}$  se transforma en un punto del interior de  $\angle \{\bar{r}, \sigma_r(\bar{s})\}$  c  $\angle \{\bar{s}, \sigma_r(\bar{s})\}$ , entonces la perpendicular a s desde  $\sigma_r(P)$  corta primero a  $\bar{r}$  y después a  $\bar{s}$ . Esta última parte del ejercicio no se ha tenido en cuenta en la corrección a causa de la errata y se ha dado por válida la respuesta simplemente con la observación de que  $\sigma_r(P)$ , N y  $\pi(N)$  están alineados.

c) Si  $\pi(Q) = \pi(N)$  la designaldad es evidentemente una igualdad. Si  $\pi(Q) \neq \pi(N)$  tenemos que  $\sigma_r(P)$ ,  $\pi(N)$ ,  $\pi(Q)$  son los vértices de un triángulo rectángulo. Como  $\sigma_r(P)\pi(Q)$  es la medida de la hipotenusa tenemos que  $\sigma_r(P)\pi(N) < \sigma_r(P)\pi(Q)$ .

d) Por ser  $\sigma_r$  una isometría y  $N \in r$ , tenemos:  $NP = \sigma_r(N)\sigma_r(P) = N\sigma_r(P)$ .

Entonces  $NP + N\pi(N) = N\sigma_r(P) + N\pi(N) = \sigma_r(P)\pi(N)$ , la última igualdad es por apartado b).

Ahora aplicamos el apartado c):  $NP + N\pi(N) = \sigma_r(P)\pi(N) \le \sigma_r(P)\pi(Q)$  y por el apartado a):  $NP + N\pi(N) \le \sigma_r(P)\pi(Q) \le \sigma_r(P)Q + Q\pi(Q)$ .

## Ejercicio 2.

Es el Corolario 7.5 del texto base (página 124 de la nueva edición)

#### Ejercicio 3.

Sea  $\pi_{rt}$  el plano que contiene a r y t y  $\pi_{st}$  el plano que contiene a r y t.

Entonces:  $\rho_r = \pi \circ \pi_{rt} = \pi_{rt} \circ \pi$ ,  $\rho_s = \pi \circ \pi_{st} = \pi_{st} \circ \pi$  y  $\rho_t = \pi_{rt} \circ \pi_{st} = \pi_{st} \circ \pi_{rt}$ .

Tenemos que:  $\rho_r \circ \rho_s \circ \rho_t = (\pi_{rt} \circ \pi) \circ (\pi \circ \pi_{st}) \circ (\pi_{st} \circ \pi_{rt}) = \pi_{rt} \circ (\pi \circ \pi) \circ (\pi_{st} \circ \pi_{st}) \circ \pi_{rt} = \pi_{rt} \circ \operatorname{id} \circ \operatorname{id} \circ \pi_{rt} = \pi_{rt} \circ \pi_{rt} = \operatorname{id}.$ 

Por tanto  $\rho_r \circ \rho_s \circ \rho_t$  es la identidad del espacio.