Lesson 11

Third Generation Sequencing

Final Assignment

By the end of next week (6.2) let me know your group by e-mail!

Group = 1/2/3 students

Final project submission via Moodle - <u>02.03.25</u> <u>Do you need more time?</u>

By the end of this lesson you will...

Be familiar with the main 3rd generation sequencing technologies:

- PacBio SMRT sequencing
- ONT sequencing
- 10X linked reads

Understand various applications of long and linked reads

- RNA-seq
- De novo assembly
- Structural variant calling

What is 3rd Gen Sequencing

Sequencing technologies other than Illumina sequencing

Focus on producing long-distance information

- Long reads
- Linked reads

Developed or matured in the last decade

Actively being developed

Main technologies:

- Pacific Biosciences SMRT sequencing PacBio
- Oxford Nanopore Technology ONT
- 10X Genomics Chromium 10X

PacBio SMRT Sequencing

Single Molecule Real Time

No amplification step

Based on the ability to analyze very small volumes

Sequencing by synthesis

PacBio Library Prep

PacBio Sequencing

Properties of PacBio Sequencing

Read length

- Non-uniform
- Depends on selected insert size
- Usually 10-100kb

No paired-end option

One run can produce 4-5M reads - ~40Gb

Runs take several hours

Mostly uniform coverage - no GC-content bias

Raw reads error rate - "10%

Dealing With High Error Rates

Working with 10% error rate is impractical

Option 1:

Polymerase Read —

CLR - continuous long read

Polymerase read length ~= sub-read length

Align CLRs to a reference genome and correct errors

Find the consensus of multiple molecules

Accuracy increases with sequencing depth

CLR Error Correction

Dealing With High Error Rates

Option 2:

CCS - circular consensus read

Also called HiFi reads

Polymerase read length > sub-read length

Align CCSs to one another and correct errors

Find the consensus of a single molecule

Accuracy >99%

Shorter reads (<20kb)

Accuracy CLR consensus Vs. CCS

Oxford Nanopore Sequencing (ONT)

Single molecule

Real time

Not SBS

Palm-size

Properties of ONT Sequencing

Read length - theoretically unlimited

In practice depends on DNA fragmentation - can produce reads > 2Mb

Yield - depends on machine model - 50Gb to 10Tb

Comparing Technologies

	Illumina	PacBio CLR	PacBio CCS	ONT
Read length	150-250 bp	50 kb	30 kb	10-30 kb
Overall error rate	0.1 %	10-15 %	<1 %	<5 %
Mismatch	~ 100 %	37 %	4 %	41 %
InDel	~ 0 %	63 %	96 %	59 %
Cost	\$29/Gb	\$85/Gb		\$30/Gb*
Throughput	7 Gb/h	2.5 Gb/h		0.5 Gb/h*

10X Genomics

Not a long read technology

But provides long-range information through **linked reads**

Short reads originating from the same long molecule

Based on standard short read Illumina technology

Linked Reads

Reads with the same barcode likely come from the same gDNA fragment

gDNA fragment size is usually 50-60kb

If "x3 depth is used - we can produce "synthetic long reads"

Usually each molecule is sequenced at "x0.2

We can still get useful long-range information

Non-trivial computational analysis is needed

Applications of 3rd Gen Sequencing

Transcriptomics

Genome assembly

Structural variation detection

RNA-Seq and Long Reads

Read length is usually larger than mRNA size

Full-length transcripts

No transcript assembly is needed

Easier to detect and quantify isoforms

10X for Single Cell RNA-Seq

GemCode™ Technology for Single Cell Partitioning

Utilize an efficient droplet-based system to encapsulate up to 100-80,000+ cells in a single 10-minute run.

Single Cell Digital Gene Expression

Enable digital quantification of transcripts in every cell, for single cell digital gene expression analysis.

Long and Linked Reads in Genome Assembly

Many modern assemblers can work with 3rd generation reads

- Falcon PacBio reads
- Canu, SPAdes PacBio and ONT reads
- Supernova 10X reads

Most assemblers take a "hybrid" approach - long + short reads

Long/linked reads can help link contigs by bridging over difficult regions

Different Assembly Strategies

Haplotype Phasing

Many interesting eukaryote genomes are diploid or polyploid

Still, most assemblies are haploid

Heterozygosity is "squished" into consensus sequences

A haplotype is a group of alleles arising from the same molecule

Splitting an assembly into haplotypes is called **phasing**

Structural Variant Detection

SVs are generally hard to detect with short reads

Many SVs are located in regions that are hard to sequence

SV detection is usually based on mapping reads to a reference

Long reads are useful because:

- They can cross long repeats
- They are not affected by GC-bias
- They can span large insertions

 Tattini, L., D'Aurizio, R., & Magi, A. (2015). Detection of genomic structural variants from next-generation sequencing data. Frontiers in bioengineering and biotechnology, 3, 92.

How Do we Detect Variants

	Sequencing	Mapping	Variant calling
SNP	short reads	BWA	GATK
SV	short reads	BWA	Manta
	long reads	Minimap2	Sniffles

Read Mapping With Minimap2

Minimap2 is a generic sequence mapping software

There are various mapping modes like:

- PacBio CLR to genome
- PacBio CCS to genome
- o cDNA / PacBio Iso-Seq (transcripts) to genome
- ONT reads to genome
- PacBio reads to PacBio reads
- Short reads to genome (alternative to BWA)

Modes accounts for the specific biases of each technology

Input format is fasta/fastq

×	
	24 kb 1,156 kb 1,158 kb 1,160 kb 1,162 kb 1,164 kb 1,166 kb 1,170 kb 1,172 kb 1,174 kb 1,176 kb
	Click and drag to zoom in.
E_coli_W_CCS_vs_K12.sort.bam erage	
E_coli_W_CCS_vs_K12.sort.bam	

HYPE!

In recent years there have been lots of talk about long (an linked) reads

Many publications about data analysis and dedicated tools

Long reads are great! ... for some things

Don't trust everything you read

Always read the "small letters" (usually supplementary materials)

Vast majority of sequencing is still done with short reads

One technology can't solve all problems in biology!