Welcome to Numerix Webinar Series

Advanced OIS Curve Building Approaches: Improving Accuracy at the Short End of the Curve

Mark Hadley, FSA, CFA VP Financial Engineering

September 10, 2013

About Our Presenters

Contact Our Presenters:

Mark Hadley, FSA, CFA VP Financial Engineering Numerix

mhadley@numerix.com

Jim Jockle, Opening Remarks
Chief Marketing Officer
Numerix
jjockle@numerix.com

Follow Us:

Twitter:

<u>@nxanalytics @jjockle</u>

LinkedIn:

http://linkd.in/Numerix
http://linkd.in/MarkHadley

http://linkd.in/JimJockle

How to Participate

Ask Questions

Submit A Question At <u>ANY TIME</u> During the Presentation
 Click the Q&A Button on the Green WebEx Toolbar located at the top of your screen to reveal the Q&A Window where you can type your question and submit it to our panelists.

Note: Other attendees will not be able to see your questions and you will not be identified during the Q&A.

Join The Conversation

 Add your comments and thoughts on Twitter with these hash tags and follow us

Contact Us If You're Having Difficulties

Trouble Hearing? Bad Connection? Message us using the **Chat Panel** also located in the **Green WebEx Tool Bar** at the top of your screen

We will provide the slides following the webinar to all attendees.

Motivation: Recent History of Overnight Rates

- Over the last several years, to expedite the global economic recovery, central banks have aimed for near-zero overnight rates
- The last time the developed world saw tightening monetary policy was back in 2005-2006. This was **before** the market had adopted OIS discounting and the dual-curve framework

Motivation: The Near-Term Future of Overnight Rates

- When the Fed begins tapering, the short end of the OIS curve will steepen to reflect the market's expectations of a tightening money supply
- Markets have endured tightening monetary policies before, but this time the OIS curve will be the central object of interest for discounting in derivatives valuations
- So when the FedFunds target finally inches above <25bps for the first time in years, what can we expect?

Overview

- Describe two enhancements to the current widely-used OIS bootstrapping methodology:
 - anchoring the curve interpolation at FOMC meeting dates, which is when the FedFunds rate actually changes
 - including seasonality factors when FedFunds is known to peak
- Discuss implementation details of an interpolation method that accommodates these empirical quirks
- Assess the impact of this new interpolation method on:
 - Fed Funds predictions
 - Valuation and Greeks of short-tenor overnight rate derivatives

Meeting Dates
Turn Effects

EMPIRICAL QUIRKS IN OVERNIGHT RATES

Overnight Rates

- Overnight rates like FedFunds and longer-tenor rates like LIBOR have fundamentally different dynamics
- The overnight rate follows a noticeably jumpy and step-wise motion

Target Rate and Meeting Dates

- The timing of these jumps coincides with FOMC meeting dates
- The level of these jumps coincides with the FOMC targets and are increments of 25bps

Calendar Effects

- Overnight rates also have many predictable calendar effects:
 - Taxes: year-end and quarter-end turns
 - Payroll: mid and month-end
 - Weekends and holidays
 - Reserve maintenance periods(every other Wednesday in US)

- A quick Google search will provide you with a rich literature on such effects:
 - Griffiths and Winters. Day-of-the-Week Effects in FedFunds Rates. 1995.
 - Hamilton. The Daily Market for Fed Funds. Journal of Political Economy. 1996.
 - Prati et al. Overnight Interbank Market: Evidence from the G7. 2001.

Meeting-dated interpolation Interpolation with turn effects

IMPLEMENTATION DETAILS

Traditional OIS Interpolation

- Traditional interpolation schemes are anchored by the tenors (maturities) of the OIS (FedFund Futures) instruments used in the bootstrapping procedure
- Traditional schemes also tend to favor "smooth" forward curves, eg cubic/shape-preserving splines

Meeting-Dated Interpolation: A Short-Cut

Discount Factor
1
0.998198313
0.994811604
0.991705576
0.98702702
0.980144487
0.976497457
0.97279712
0.968382389
0.963204084
0.959136202
0.954349707
0.950504628
0.946342614
0.942937203
0.938241611

- Bootstrap the curve in the traditional way from Overnight Index Swaps and/or Fed Fund Futures
- Evaluate its discount factors at the meeting dates. Scheduled meeting dates are known 2-3 years in advance for most central banks
- Pass these dates and factors into a custom curve object with log-linear interpolation on the discount factors

Comparing the Interpolation Methods (1)

- The interpolation method provides a more realistic projection of overnight rates (below)
- The differences are more material for steeper forward curves, but dissipate beyond a year where the curve flattens

Interpolation with Calendar Effects

- Here, the user provides a set of meeting dates AND a table of seasonality factors
- The target rate, T, is assumed constant between meeting dates. The overnight rate, R, is the sum of the target and a known (user-defined) seasonality component, S. f() is the day-count fraction.

$$R_{t} = T_{M_{i-1}} + S_{t}$$

$$\frac{P(M_{i-1})}{P(M_{i})} = \prod_{t=M_{i-1}}^{M_{i}} (1 + f(t) * R_{t})$$

- The Ts are bootstrapped: they are solved for numerically and iteratively.
 It's a one-dimensional solver, so performance is fast
- Evaluate the daily discount factors and pass them into a custom curve object, which can be used downstream

Comparing the Interpolation Methods (2)

- Here we see spikes where the user inputs seasonality factors for the overnight rate
- Overnight rates neighboring the spike are lowered ever so slightly to compensate

Improved Fed Funds forecasts
Valuations of short-dated IR derivatives

Better Forecasts for Fed Funds Rate

Overnight Rate Derivatives (Linear)

- The charts below show valuation differences as a % of notional for OISs with tenors varying out to 2Y. One valuation uses log-linear interpolation and the other uses meeting-dated interpolation.
- The differences in interpolation are apparent where the curve is steep as in Jan2005 (left); not so much where the curve is flat as in Jan2012 (right)

PV(Meeting-Dated-Inerpolation) – PV(LogLinear Interpolation) vs Maturity

0.60bps may seem small, but FedFund Futures tick at 0.25bps

Overnight Rate Derivatives (Non-linear)

- Yield curves bootstrapped with the meeting-dated interpolation method can be passed down to stochastic rate models for valuation of non-linear overnight rate derivatives
- And Monte Carlo paths have the same "step-wise" dynamic at the announced meeting dates

Impact on Dual Curve

 A discounting curve based on meeting-dated interpolation doesn't result in a materially different 3M LIBOR projection

Meeting-dated interpolation only has material impact on discounting near-term cash flows.

Conclusion

- Overnight rates have unique dynamics due to central bank policy and calendar effects
- These dynamics will have a more pronounced impact as rates rise
- Meeting-dated interpolation is easily implemented; interpolation with turn effects is do-able with a fast solver
- Impacts are material for valuation/hedging of overnight rate derivatives

Submit Your Questions Now....

Click the **Q&A Button** on the **Green WebEx Toolbar** located at the top of your screen to reveal the **Q&A Window** where you can type your question and submit it to our panelists.

We will provide the slides following the webinar to all attendees.

Continue The Conversation

Contact Our Presenters:

Mark Hadley, FSA, CFA VP Financial Engineering Numerix

mhadley@numerix.com

Jim Jockle, Opening Remarks
Chief Marketing Officer
Numerix
jjockle@numerix.com

Follow Us:

Twitter:

@nxanalytics@jjockle

LinkedIn:

http://linkd.in/Numerix
http://linkd.in/MarkHadley

http://linkd.in/JimJockle

Thank You!

About Numerix

Numerix provides cross-asset analytics software and services for structuring, pre-trade pricing and analysis, trade capture, valuation, and risk management of derivatives and structured products.

Visit us online at: www.numerix.com

mhadley@numerix.com