DEFINITIONS

Lesson 1: Fluid Mechanics

Fluids

- undergo continuous deformation
- always keep flowing
- a substance that does not possess a definite shape and easily yields to external pressure
- any liquid or gas or any material that is unable to withstand a shearing or tangential force, when at rest (when the said forces are applied to the fluid, it goes through a continuous change in shape)
- are substances with zero shear modulus, they cannot resist the shear force applied to them

Classification of Fluids

Steady Fluid

whose density remains constant at each and every point while flowing

Unsteady Fluid

whose density differs between any two points while flowing

Compressible Fluid

has a Mach Number between 0.3 and 1

Incompressible Fluid

has a Mach Number less than 0.3

Viscous

fluids with more thickness or viscosity are known as viscous fluids, they are generally very gloppy fluids (i.e., shampoo and motor oil)

Non-viscous

- fluids with comparatively less thickness or viscosity are known as non-viscous fluids
- fluids with no resistance or negligible resistance to internal friction
- flow without any loss of kinetic energy (i.e., superfluid and liquid helium)

Rotational

if the angle between the two intersecting lines of the boundary of the fluid element changes while moving in the flow, it is a rotational flow

Irrotational

➢ if the fluid rotates as a whole with no change in angles between the boundary lines, the flow of the fluid is classified as irrotational flow

Properties of Fluids

- 1. Specific Weight / Unit Weight (γ)
 - the specific weight of a fluid is defined as the weight per unit volume.

2. Mass Density (ρ)

- density is defined as the mass per unit volume of a fluid
- the density of a substance varies as per the volume of a substance

3. Specific Volume (v)

- defined as the ratio of the volume of the material to its mass
- the reciprocal of the density of the material
- inversely proportional to density

4. Specific Gravity (s. g.)

- the ratio of the specific weight of the given fluid to the specific weight of the standard fluid
- also known as relative density

Lesson 2: Pressure

Pressure

- fluid pressure is the pressure at a point within a fluid that arises because of the fluid's weight
- the amplification of the fluid pressure can take place through hydraulic mechanisms and changes in the fluid's velocity
- fluid pressure refers to a measurement of the force per unit area that acts on an object in the fluid or on a closed container's surface.
- the cause of this pressure is due to acceleration, gravity, or by forces that are outside the closed container
- the application of the pressure is in all directions because the fluid has no definite shape

Lesson 3: Pascal's Law

Pascal's Principle

- also known as Pascal's law
- states that when a change in pressure is applied to an enclosed fluid, it is transmitted undiminished to all portions of the fluid and to the walls of its container
- in an enclosed fluid, since atoms of the fluid are free to move about, they transmit pressure to all parts of the fluid and to the walls of the container
- any change in pressure is transmitted undiminished
- the static pressure acts at right angles to any surface in contact with the fluid
- Pascal also found that the pressure at a point for a static fluid would be the same across all planes passing through that point in that fluid
- Pascal's law is also known as the principle of transmission of fluidpressure

- in 1653, Pascal law was stated by French mathematician Blaise Pascal
- used in the making of hydraulic pumps used by automobile industries
- widely applied in pressing oils such as olive oil and hazelnut oil, calibration of pressure gauges, and also in devices like jackhammers, paint sprayers, and on brakes of trucks