Formulario di Fisica

per le prove scritte degli studenti con DSA

1 Vettori

Funzioni goniometriche
$$\cos \theta = \frac{c_{adj}}{i}$$
 $\sin \theta = \frac{c_{opp}}{i}$ $\tan \theta = \frac{c_{opp}}{c_{adj}}$

$$\sin \theta = \frac{c_{opp}}{i}$$

$$\tan\theta = \frac{c_{opp}}{c_{adj}}$$

Scomposizione di un vettore
$$a_x = a \cos \theta$$
 $a_y = a \sin \theta$ $\vec{a} = a_x \hat{i} + a_y \hat{j}$

$$a_{v} = a \sin \theta$$

$$\vec{a} = a_{x}\hat{i} + a_{y}\hat{j}$$

Modulo di un vettore
$$a = \sqrt{(a_x)^2 + (a_y)^2}$$

1.1 Operazioni coi vettori

Somma tra vettori
$$\ \vec{a} + \vec{b} = (a_{\scriptscriptstyle X} + b_{\scriptscriptstyle X})\hat{i} + (a_{\scriptscriptstyle Y} + b_{\scriptscriptstyle Y})\hat{j}$$

Differenza tra vettori
$$\ \vec{a}-\vec{b}=(a_x-b_x)\hat{i}+(a_y-b_y)\hat{j}$$

Prodotto di uno scalare per un vettore
$$k\vec{a}=(ka_x)\hat{i}+(ka_y)\hat{j}$$

Prodotto scalare
$$\vec{a} \cdot \vec{b} = ab \cos \theta$$

Prodotto vettoriale
$$|\vec{a} \times \vec{b}| = ab \sin \theta$$

Misura 2

2.1 Unità di misura e costanti

Multipli e sottomultipli della unità di misura

Prefisso	Simbolo	Fattore di conversione			
nano-	n-	$^{1/1000000000} = 10^{-9}$			
micro-	μ -	$^{1}/_{1000000} = 10^{-6}$			
milli-	m-	$^{1}/_{1000} = 10^{-3}$			
centi-	C-	$^{1}/_{100} = 10^{-2}$			
deci-	d-	$^{1}/_{10} = 10^{-1}$			
deca-	da-	10^{1}			
etto-	h-	10^{2}			
kilo-	k-	10 ³			

Costanti fisiche fondamentali

Nome	Simbolo e valore			
velocità della luce nel vuoto	$c=299792458$ m/s $\simeq 3$, $0 imes 10^8$ m/s			
costante dielettrica del vuoto	$arepsilon_0=8$, $85 imes10^{-12}{\it C}^2/{\it N}\cdot{\it m}^2$			
costante di Coulomb	$k_0 = 8$, $99 imes 10^9 \ extstyle N \cdot m^2/C^2$			
permeabilità magnetica del vuoto	$\mu_0=4\pi imes10^{-7}$ N/A 2			
costante di gravitazione universale	$G=6$, $672 imes 10^{-11} extstyle N \cdot extstyle m^2/ extstyle kg^2$			
carica elementare	$e = 1,602 \times 10^{-19} C$			
numero di Avogadro	$N_A = 6$, $022 \times 10^{23} mol^{-1}$			
costante di Boltzmann	$k_B = 1$, 38 $ imes$ 10 ⁻²³ J/κ			
costante dei gas	$R=8,314 J/mol \cdot K$			

Gradi e radianti
$$\frac{\theta_{\it rad}}{\theta_{\it gradi}} = \frac{2\pi}{360}$$

$ heta_{gradi}$	0	30	45	60	90	180	270	360
θ_{rad}	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π	$3\pi/2$	2π

2

3 Meccanica

3.1 Definizioni fondamentali

Densità di un corpo $d = \frac{m}{V}$ $\left[\frac{kg}{m^3}\right]$

Velocità media $\overline{v} = \frac{\Delta s}{\Delta t}$ $\left[\frac{m}{s}\right]$

Conversione tra m/s e km/h $\frac{km}{h} \xrightarrow{:3,6} \frac{m}{s}$ $\frac{m}{s} \xrightarrow{\cdot3,6} \frac{km}{h}$

Accelerazione media $\bar{a} = \frac{\Delta v}{\Delta t}$ $\left[\frac{m}{s^2}\right]$

3.2 Cinematica

3.2.1 Moto rettilineo uniforme

Legge oraria $s(t) = vt + s_0$

3.2.2 Moto uniformemente accelerato

Legge oraria $s(t) = \frac{1}{2}at^2 + v_0t + s_0$ $v(t) = at + v_0$

3.3 Dinamica

Secondo principio della dinamica (legge fondamentale della dinamica) $\vec{F} = m\vec{a}$ [N]

Condizione di equilibrio per corpi puntiformi $\sum \vec{F} = 0$

Forza peso $\vec{P}=m\vec{g}$

Attrito statico $F_{A max} = \mu_s F_{\perp}$

Forza di richiamo di una molla (legge di Hooke) $ec{F} = -k\Deltaec{x}$

3.4 Lavoro ed energia meccanica

Lavoro $L = \vec{F} \cdot \vec{s} = Fs \cos \theta$ [J]

Potenza media $\overline{P} = \frac{L}{\Delta t}$ [W]

Energia cinetica di traslazione $K = \frac{1}{2}mv^2$ [J]

Energia potenziale gravitazionale $U_g = mgh$ [J]

Conservazione dell'energia meccanica totale $\ U_0 + K_0 = U_1 + K_1$

3.5 Quantità di moto e momento angolare

Quantità di moto $\vec{p} = m\vec{v}$ $\left[kg \cdot \frac{m}{s}\right]$

Momento di una forza (momento torcente) $\vec{M} = \vec{r} \times \vec{F}$ $[N \cdot m]$

Condizioni di equilibrio per corpi rigidi $\sum \vec{F} = 0$ e $\sum \vec{M} = 0$

3.6 Gravitazione

Legge di gravitazione universale $F = G \frac{m_1 m_2}{r^2}$

Accelerazione di gravità sulla superficie della Terra g=9, $807 \, \frac{m}{s^2}$

3.7 Meccanica dei fluidi

Pressione $p = \frac{F}{S}$ [Pa]

Pressione atmosferica $1 \, atm = 1,01 \times 10^5 \, Pa$

Legge di Stevino $p = dgh + p_{atm}$

Principio di Archimede $S = g \cdot d_{fluido} \cdot V_{corpo}$ [N]

4 Termologia e termodinamica

4.1 Temperatura e dilazione termica

Celsius e kelvin
$$T_K = T_{^{\circ}C} + 273, 15$$
 $T_{^{\circ}C} = T_K - 273, 15$ $\Delta T_K = \Delta T_{^{\circ}C}$

$$T_{\circ C} = T_K - 273, 15$$

$$\Delta T_K = \Delta T_{\circ C}$$

Dilatazione lineare dei solidi $\Delta \ell = \ell_0 \lambda \Delta T$

Dilatazione volumica dei solidi e dei liquidi $\Delta V = V_0 \alpha \Delta T$

4.2 Gas perfetti

Massa e moli
$$m_{[g]} = nM$$

Moli e numero di particelle
$$n = \frac{N}{N_A}$$

Formula dei gas perfetti
$$\;rac{p_0V_0}{T_0}=rac{p_1V_1}{T_1}\;$$

Equazione di stato dei gas perfetti pV = nRT

4.3 Calore

Joule e calorie
$$1 cal = 4,186 J$$

$$1 \, Cal = 1 \, kcal = 4186 \, J$$

Legge fondamentale della calorimetria $Q = cm\Delta T$

Calore specifico dell'acqua
$$\, c_{H_2O} =$$
 4, $186 imes 10^3 \, rac{J}{kg \cdot K}$

Passaggi di stato
$$Q = L_f m$$

$$Q = L_v m$$

4.4 Primo principio della termodinamica

Primo principio della termodinamica (PPT) $\Delta U = Q - L$

Trasformazione isobara $\Delta U = Q - p\Delta V$

Trasformazione isocora $\Delta U = Q$

Trasformazione isoterma Q = L

Trasformazione adiabatica $\Delta U = -L$

Trasformazione ciclica Q = L

4.5 Secondo principio della termodinamica

Rendimento di una macchina termica $\eta = \frac{L}{Q_2} = 1 - \frac{|Q_1|}{Q_2}$

Enunciato del rendimento $0 \le \eta < 1$

5 Onde

5.1 Onde elastiche

Frequenza
$$f = \frac{1}{T}$$
 $[s^{-1}] = [Hz]$

Pulsazione dell'onda
$$\ \omega = \frac{2\pi}{T} = 2\pi f \qquad \qquad \left[\frac{rad}{s}\right]$$

Velocità di propagazione dell'onda
$$v=rac{\Delta s}{\Delta t}=rac{\lambda}{T}=\lambda f$$
 $\left[rac{m}{s}
ight]$

5.2 Suono

Velocità del suono nell'aria $\,v=340\,{}^m/\!s\,$

6 Fenomeni elettrici e magnetici

6.1 Elettrostatica

Legge di Coulomb $F = k_0 \frac{q_1 q_2}{r^2}$

Costante elettrica del vuoto $k_0=8$, $99 imes 10^9 \, rac{\textit{N} \cdot \textit{m}^2}{\textit{C}^2}$

Costante dielettrica del vuoto $\varepsilon_0=8,85\times 10^{-12}\,\frac{C^2}{N\cdot m^2}$ $k_0=\frac{1}{4\pi\varepsilon_0}$

Campo elettrico $\vec{E} = \frac{\vec{F}}{q_P}$ $\left[\frac{N}{C}\right]$ $E = k_0 \frac{Q_S}{r^2}$

Flusso del campo elettrico $\Phi_S(E) = \vec{E} \cdot \vec{S} = ES \cos \theta$ $\left[\frac{N \cdot m^2}{C}\right]$

Teorema di Gauss per il campo elettrico $\Phi_{\mathcal{S}}(E) = \frac{Q_{tot}}{\varepsilon_0}$

Differenza di potenziale (tensione) tra i punti $\bf A$ e $\bf B$ $\Delta V_{AB} = \frac{\Delta U_{AB}}{q_P} = \frac{L_{B \to A}}{q_P} = -\vec{E} \cdot \vec{s}$

Capacità di un condensatore $C = \frac{Q}{\Delta V}$ [F]

Capacità di un condensatore piano $C = \varepsilon_0 \frac{S}{d}$

Capacità totale per condensatori in parallelo $C_{tot} = C_1 + C_2 + \ldots + C_n$

Capacità totale per condensatori in serie $\frac{1}{C_{tot}} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_n}$

Campo elettrico all'interno di un condensatore $\,E=rac{\sigma}{arepsilon_0}\,$

6.2 Corrente elettrica

Intensità di corrente $i=\frac{\Delta q}{\Delta t}$ [A] $i_{ist}=\lim_{\Delta t \to 0} \frac{\Delta q}{\Delta t}=\frac{dq}{dt}=q'(t)$

Prima legge di Ohm $i = \frac{\Delta V}{R}$

Resistenza totale per resistori in parallelo $\frac{1}{R_{tot}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}$

Resistenza totale per resistori in serie $R_{tot} = R_1 + R_2 + \ldots + R_n$

Potenza dissipata da una resistenza $P = \frac{L}{\Delta t} = i\Delta V = i^2 R = \frac{V^2}{R}$ [W]

7

Effetto Joule $L = P\Delta t = i^2 R\Delta t$ [J]

Kilowattora $1 \, kWh = 3,6 \times 10^6 \, J$

Seconda legge di Ohm $R = \rho \frac{L}{S}$

Dipendenza della resistività dalla temperatura $\ \Delta
ho = lpha
ho_0 \Delta T$

6.3 Elettromagnetismo

Legge di Ampère
$$F = k \cdot \frac{i_1 i_2}{d} \cdot L = \frac{\mu_0}{2\pi} \cdot \frac{i_1 i_2}{d} \cdot L$$

Permeabilità magnetica del vuoto $~\mu_0 = 4\pi imes 10^{-7} \, rac{\it N}{\it A^2}$

Forza subita da un filo in un campo magnetico $F=Bi\ell$ $F=B_\perp i\ell=Bi\ell\sin\theta$

Legge di Biot-Savart
$$B = \mu_0 \frac{i}{2\pi r}$$
 [T]

Forza di Lorentz
$$F = qvB$$
 $\vec{F} = q\vec{v} \times \vec{B}$

Flusso del campo magnetico
$$\Phi_S(B) = \vec{B} \cdot \vec{S} = BS \cos \theta$$
 [Wb]

Teorema di Gauss per il campo magnetico $\Phi_S(B) = 0$

6.4 Induzione elettromagnetica

Legge di Faraday-Neumann
$$f_{emind} = -rac{\Delta \Phi(B)}{\Delta t}$$

Fem indotta istantanea
$$f_{em\,ind\,ist} = \lim_{\Delta t \to 0} - \frac{\Delta \Phi(B)}{\Delta t} = - \frac{d\Phi(B)}{dt} = - \Phi'(t)$$

6.5 Equazioni di Maxwell e onde elettromagnetiche

Equazioni nel caso statico
$$\Phi_S(E)=rac{Q}{arepsilon_0}; \quad \Phi_S(B)=0; \quad \Gamma_{\mathscr{L}}(E)=0; \quad \Gamma_{\mathscr{L}}(B)=\mu_0 i.$$

Equazioni generali
$$\Phi_S(E) = \frac{Q}{\varepsilon_0}; \quad \Phi_S(B) = 0; \quad \Gamma_{\mathscr{L}}(E) = -\frac{\Delta\Phi_S(B)}{\Delta t}; \quad \Gamma_{\mathscr{L}}(B) = \mu_0 \left(i + i_s\right).$$

Velocità di un'onda elettromagnetica nel vuoto
$$~c=rac{1}{\sqrt{arepsilon_0\cdot\mu_0}}\simeq$$
 3, $0 imes10^8~m/s$

7 Fisica moderna

7.1 Relatività di spazio e tempo

Coefficiente di dilatazione (fattore di Lorentz) $\gamma=rac{1}{\sqrt{1-eta^2}}$ con $eta=rac{v}{c}$

Dilatazione dei tempi $\Delta t' = \gamma \Delta t$

Contrazione delle lunghezze parallele al moto $\Delta x' = v \Delta t' = \frac{\Delta x}{\gamma}$

Composizione relativistica delle velocità $u' = \frac{u-v}{1-\frac{uv}{c^2}}$

Equivalenza massa-energia $\Delta m = \frac{\Delta E}{c^2}$

Energia di quiete $E = m_0 c^2$

Massa relativistica $m = \gamma m_0$

Energia totale di una particella relativistica (relazione di Einstein) $E=\gamma m_0c^2=mc^2$

7.2 Fisica quantistica

Costante di Planck $h = 6,62607 \times 10^{-34} J \cdot s$

Energia di un fotone E = hf

Energia trasportata dal campo elettromagnetico E = nhf

Costante di Planck ridotta $\,\hbar = {h \over 2\pi} \simeq 10^{-34}\, J \cdot s \,$

Principio di indeterminazione di Heisenberg $\Delta x \Delta p \simeq \hbar$ $\Delta t \Delta E \simeq \hbar$