ARTICLES

https://doi.org/10.1038/s42256-020-00237-3

machine intelligence

Neural circuit policies enabling auditable autonomy

Mathias Lechner ^{1,4} [∞], Ramin Hasani ^{2,3,4} [∞], Alexander Amini³, Thomas A. Henzinger ¹, Daniela Rus and Radu Grosu ²

2021. 06. 22.

Hyunsoo, Yu

INDEX

- 1. Introduction
- 2. Methods
- 3. Results
 - 1. Learning a compact neural representation
 - 2. Avoiding crashes under increasing input perturbations
 - 3. Robustness of the output decisions in the presence of input
 - 4. Driving with smooth neural activity
 - 5. Enhance interpretability

INTRODUCTION

- This study designed a brain-inspired intelligent agent that learns to control an autonomous vehicle directly from its camera inputs.
- C.elegans have mastered such an ability to perform locomotion, motor control, and navigation with near-optimal nervous system structure (302 neural cells).
- This approach can lead to more expressive artificial intelligence agents with models that are simultaneously accurate and explainable.
- Safety-critical domain like controlling vehicles demands interpretable dynamics.
- Neural Circuit Policies(NCP) can be the key for these problem.

Lane tracking

C.Elegans - fully analyzed its neural system

- NCP (Neural Circuit Policies) is inspired by C.elegans nematode
- Nematode's nervous system are constructed by a distinct 4-layer hierarchical network topology.
 - Sensory neurons receive environmental observation
 - Inter-neurons & Command neurons generate an output decision
 - Motor neurons actuate muscles

- NCP (Neural Circuit Policies) is inspired by C.elegans nematode
- Nematode's nervous system are constructed by a distinct 4-layer hierarchical network topology.
 - Sensory neurons receive environmental observation
 - Inter-neurons & Command neurons generate an output decision
 - Motor neurons actuate muscles

BIO COMPUTING & MACHINE LEARNING LAB (BCML) 6

a Neuron model

Presynaptic neuron (i) Postsynaptic neuron (i)

7

BIO COMPUTING & MACHINE LEARNING LAB (BCML)