Data Wrangling - Data Processing

3.1 Scrapping

Done in Python

3.2 Missing Data

Import packages

```
In []:
    library ( "readr" )
    library ( "tidyverse" )
    library ( "naniar" )
    library ( "sjmisc" )
    library ( "tidyr" )
    library ( "EnvStats" )
    library ( "ggplot2" )
    library ( "cowplot" )
    library ( "gridExtra" )
    library ( "plyr" )
    library ( "plotly" )
    library ( "viridis" )
    library ( "hrbrthemes" )
    library ( "xtable" )
```

Import and clean theses_v2 dataset

```
In [2]:
         theses_df = read_csv ( "../data/theses_v2.csv" )
         head ( theses_df )
        Parsed with column specification:
        collars (
          Author = col character (),
          `Author identifier` = col_double () ,
          Title = col_character () ,
          `Director of these` = col_character () ,
          ` Thesis director (name first name)` = col_character () ,
          `Manager ID` = col_character () ,
          ` Defense institution` = col_character () ,
          `Establishment identifier` = col character () ,
          Discipline = col_character () ,
          Status = col_character () ,
          `Date of first registration in doctorate` = col_character () ,
          ` Defense date` = col_character () ,
          Year = col_double () ,
          `Language of thesis` = col_character () ,
          `Identifier of these` = col_character () ,
          `Accessible online` = col_character () ,
          `Publication in theses.fr` = col_character () ,
          `Update in theses.fr` = col character ()
        Warning message:
        "29831 parsing failures.
         row col expected actual file
        3086 Author identifier no trailing characters X '../data/theses v2.csv'
```

```
3121 Author identifier no trailing characters X '../data/theses_v2.csv'
3131 Author identifier no trailing characters X '../data/theses_v2.csv'
3154 Author identifier no trailing characters X '../data/theses_v2.csv'
3163 Author identifier no trailing characters X '../data/theses_v2.csv'
...
See problems (...) for more details.
```

Author	Author ID	Title	Supervisor	Thesis director (name first name)	Manager ID	Defense institution	Insti
Saeed al marri	N/A	Documentary credit and the enforceability of exceptions	Philippe Delebecque	Delebecque Philippe	29561248	Paris 1	273
Andrea Ramazzotti	174423705	Application of the PGD to the resolution of transient couples problems with a view to the lightening of composite structures.	Jean- Claude Grandidier, Marianne Beringhier	Grandidier Jean- Claude, Beringhier Marianne	715,441,511	Chasseneuil- du-Poitou, National Higher School of Mechanics and Aerotechnics	280
OLIVIER BODENREIDER	N/A	Design of a computer tool for the study of kinetics observed in clinical toxicology	Francois Kohler	Kohler Francois	57030758	Nancy 1	
Emmanuel Porte	N/A	Socio-history of public policies in social matters concerning students.	Gilles Pollet	Pollet Gilles	n/A	Lyon 2	0264
Arthur devriendt	N/A	INFORMATION AND COMMUNICATION TECHNOLOGIES AND NEW RURALITIES.	Gabriel Dupuy	Dupuy Gabriel	n/A	Paris 1	273

```
Thesis
                                                                      director
                                                                                                Defense Insti
                                                                                  Manager
                Author Author ID
                                                 Title
                                                       Supervisor
                                                                    (name first
                                                                                        ID
                                                                                              institution
                                                                        name)
                                     Forced integration
                                       of sub-Saharan
                                          Africa in the
                                            process of
                                                          Edmond
                                                                         Jouve
          Elmantsr Briak
                              N/A
                                          globalization
                                                                                  26941848
                                                                                                  Paris 5
                                                                                                           264
                                                            Jouve
                                                                      Edmond
                                        "structuring of
                                          economies",
                                      "destructuring of
                                              states".
In [3]:
           # change spaces in column names to dots
           names ( theses_df )
                                  <- make.names ( names ( theses_df ), unique =</pre>
           names ( theses df )
             1. 'Author'
             2. 'Author ID'
             3. 'Title'
             4. 'Supervisor'
             5. 'Director.of.thesis..name.firstname.'
             6. 'Manager ID'
             7. 'Establishment.of.support'
             8. 'Institution.identifier'
             9. 'Disciplined'
            10. 'Status'
            11. 'Date.of.first.registered.in. a.doctorate'
            12. 'Date.of.support'
            13. 'Year'
            14. 'Language.of.thesis'
            15. 'Identifier.of.thesis'
            16. 'Accessible.en.ligne'
            17. 'Publication.dans.theses.fr'
            18. 'Update.in.theses.fr'
In [4]:
           theses_df [ theses_df == "na" ] <-
In [5]:
          # verify datatypes
           str ( theses_df )
          spec_tbl_df [447.644 x 18] (S3: spec_tbl_df / tbl_df / tbl / data.frame)
           $ Author: chr [1: 447644] "Saeed Al marri" "Andrea Ramazzotti" "OLIVIER BODENREIDE
```

\$ Author ID: num [1: 447644] NA 1.74e + 08 NA NA NA ...

R" "Emmanuel Porte" ...

```
$ Title: chr [1: 447644] "Documentary credit and the enforceability of exceptions"
 "Application of the PGD to the resolution of transient coupled problems with a view
to the lightening of composite structures." "Design of a computer tool for the study
of kinetics observed in clinical toxicology" "Socio-history of public policies in so
cial matters concerning students." ...
 $ Director of.these: chr [1: 447644] "Philippe Delebecque" "Jean-Claude Grandidier,
Marianne Beringhier" "Francois Kohler" "Gilles Pollet" ...
 $ Director.of.thesis..name.firstname. : chr [1: 447644] "Delebecque Philippe" "Gran
didier Jean-Claude, Beringhier Marianne" "Kohler Francois" "Pollet Gilles" ...
 $ Manager ID: chr [1: 447644] "29561248" "715,441,511" "57030758" NA ...
 $ Etablissement.de.soutenance: chr [1: 447644] "Paris 1" "Chasseneuil-du-Poitou, Na
tional Superior School of Mechanics and Aerotechnics" "Nancy 1" "Lyon 2" ...
 $ Establishment.identifier: chr [1: 447644] "27361802" "28024400" NA "02640334X"
 $ Discipline: chr [1: 447644] "Driot prive" "Mechanics of solids, materials, struct
ures and surfaces" "Medicine" "Political science" ...
 $ Status: chr [1: 447644] "in progress" "in progress" "sustained" "in progress" ...
 $ Date.of.first.doctoral.rescription: chr [1: 447644] "30-09-11" "01-10-12" NA "01-
06-11" ...
 $ Date.of.support: chr [1: 447644] NA NA "01-01-93" NA ...
 $ Year: num [1: 447644] NA NA 1993 NA NA ...
 $ Langue.de.the.these: chr [1: 447644] NA NA "fr" NA ...
 $ Identifier.of.these: chr [1: 447644] "s69480" "s98826" "1993NAN19006" "s88867"
 $ Accessible.online: chr [1: 447644] "no" "no" "no" "no" ...
 $ Publication.dans.theses.fr: chr [1: 447644] "26-01-12" "22-11-13" "24-05-13" "12-
07-13" ...
 $ Mise.a.jour.dans.theses.fr: chr [1: 447644] "26-01-12" "22-11-13" "17-11-12" "12-
01-16" ...
 - attr (*, "problems") = tibble [29.831 x 5] (S3: tbl_df / tbl / data.frame)
  .. $ row: int [1: 29831] 3086 3121 3131 3154 3163 3182 3225 3251 3261 3278 ...
  .. $ col: chr [1: 29831] "Author identifier" "Author identifier" "Author identifie
r" "Author identifier" ...
  .. $ expected: chr [1: 29831] "no trailing characters" "no trailing characters" "n
o trailing characters" "no trailing characters" ...
  .. $ actual: chr [1: 29831] "X" "X" "X" "X" ...
  .. $ file: chr [1: 29831] "'../data/theses_v2.csv'" "'../data/theses_v2.csv'"
 "'.../data/theses_v2.csv'" "'. ../data/theses_v2.csv '"...
 - attr (*, "spec") =
  .. collars (
  .. Author = col_character () ,
  .. `Author identifier` = col_double () ,
  .. Title = col_character () ,
  .. `Director of these` = col_character () ,
  .. `Director of these (last name first name)` = col_character () ,
  .. `Director identifier` = col_character () ,
    ` Defense institution` = col_character () ,
  .. `Institution identifier` = col character () ,
  .. Discipline = col_character () ,
  .. Status = col_character () ,
  .. `Date of first registration in doctorate` = col_character () ,
  .. ` Defense date` = col_character () ,
  .. Year = col_double () ,
  .. `Language of these` = col_character () ,
  .. `Identifier of these` = col_character () ,
  .. `Available online` = col_character () ,
  .. `Publication in theses.fr` = col_character () ,
  .. `Update in theses.fr` = col_character ()
  ..)
# change to date format
```

In [6]:

theses df\$Date.de.premiere.inscription.en.doctorat <- as.Date(theses df\$Date.de.prem theses_df\$Date.de.soutenance <- as.Date(theses_df\$Date.de.soutenance, "%d-%m-%y")</pre>

Visualize missing data

```
In [7]: # check num of missing values
    n_miss(theses_df)
```

787238

```
# get table of missing values in each column
missing_values <- theses_df %>%
    gather(key = "key", value = "val") %>%
    mutate(is.missing =is.na(val)) %>%
    group_by(key, is.missing) %>%
    summarise(num.missing = n(), perc.missing = round((n() / 447644) * 100 , 2 ))
    filter ( is.missing == T ) %>%
    select ( - is.missing ) %>%
    arrange ( desc ( num.missing ))
# colnames (missing_values) <- c ("Column Name "," Number of Missing Values ")
xtable ( missing_values )</pre>
```

Warning message:

"attributes are not identical across measure variables; they will be dropped "` summarize () `has grouped output by 'key'. You can override using the` .groups` argument.

key	num.missing	perc.missing

Doctoral.Registration Date	383668	85.71
Author ID	159820	35.70
Language.of.thesis	63765	14.24
Support date	56746	12.68
Year	56746	12.68
Manager ID	49172	10.98
Institution.identifier	17085	3.82
Update.in.theses.fr	177	0.04
Supervisor	17	0.00
Director.of.thesisname.firstname.	17	0.00
Title	13	0.00
Disciplined	5	0.00
Support.Establishment	4	0.00
Author	3	0.00

```
In [9]:  # visualize percentage of missing data
  vis_miss ( theses_df , warn_large_data = FALSE )
```


In almost all cases if the theses defense date is known the beginning date is not. Meaning that when the defense date of a theses is added the beginning date is removed.

```
In [14]:
          # create n.pages for 80% of dataset with mean = 200 & sd = 50 and rest 20% as na val
          x <- seq ( 1 , as.integer ( 0.8 * nrow ( theses_df )))</pre>
            <- rnorm ( x , mean = 200 , sd = 50 )</pre>
          n_missing = nrow ( theses_df ) - as.integer ( 0.8 * nrow ( theses_df ))
          na_col <- rep ( NA, n_missing )</pre>
          set.seed ( 200 )
          n.pages = sample ( c ( as.integer ( y ), na_col ))
          theses df $ n.pages <- n.pages
          head (theses_df $ n.pages , 10 )
            1. <NA>
            2. < NA>
            3. 169
            4. 168
            5.277
            6.248
            7.166
```

8.212

```
9. 162
10. 207
```

```
In [15]: sum ( is.na ( theses_df $ n.pages ))
```

89529

```
In [16]: # visualiz
```

```
# visualize percentage of missing data
vis_miss ( theses_df , warn_large_data = FALSE )
```



```
# imputate missingvaluesusing mean of n.pages
theses_df $ n.pages [ is.na ( theses_df $ n.pages )] <- mean ( theses_df $ n.pages
sum ( is.na ( theses_df $ n .pages ))</pre>
```

0

```
In [18]:  # visualize percentage of missing data after imputation
  vis_miss ( theses_df , warn_large_data = FALSE )
```


3.3. Common Issues

Issues in the defense data

```
In [19]:
           # select defense date
           defense_date <- theses_df $ Date.de.soutenance</pre>
           str ( defense_date )
           sum ( is.na ( defense_date ))
           Date [1: 447644], format: NA NA "1993-01-01" NA NA "2008-11-24" "2005-07-01" "2009-
          12-08" ...
          56746
In [20]:
           # remove na values and sort dates
           defense_date <- defense_date [ ! is.na ( defense_date )]</pre>
           defense_date <- sort ( defense_date )</pre>
In [21]:
           # seperate year, month and day from date
           defense_date_df <- data.frame ( defense_date )
defense_date_df <- defense_date_df %>% dplyr :: mutate ( year = lubridate :: y
           head ( defense_date_df )
```

```
        defense_date
        year
        month
        day

        1971-01-01
        1971
        1
        1

        1972-01-01
        1972
        1
        1

        1973-01-01
        1973
        1
        1

        1976-01-01
        1976
        1
        1

        1979-01-01
        1979
        1
        1

        1980-01-01
        1980
        1
        1
```

```
In [22]:
```

```
# select 1st of jan defense dates
jan_01_df <- defense_date_df %>% filter ( month == 1 & day == 1 )
head ( jan_01_df , 10 )
```

defense_date year month day 1971-01-01 1971 1 1972-01-01 1972 1 1973-01-01 1973 1 1976-01-01 1976 1 1979-01-01 1979 1980-01-01 1980 1 1982-01-01 1982 1984-01-01 1984 1984-01-01 1984 1 1984-01-01 1984 1

```
In [23]:
```

```
# get theses count for each year with jan 1st defence date
jan_01_df <- jan_01_df %>% select(year) %>% group_by(year) %>% count()
colnames(jan_01_df) <- c("Year", "Tot.Jan")
head(jan_01_df, 15)</pre>
```

Year	Tot.Jan
1971	1
1972	1
1973	1
1976	1
1979	1
1980	1
1982	1

```
Year Tot.Jan
1984
           6
1985
        3007
1986
        5162
1987
        8439
1988
       11045
1989
       11102
1990
       11011
1991
       10831
```

In [24]:

```
# get total theses defended for each year
total_theses_df <- defense_date_df %>% select ( year ) %>% group_by ( year )
colnames ( total_theses_df ) <- c ( "Year" , "Tot.Year" )
head ( total_theses_df , 10 )</pre>
```

```
Year Tot.Year
1971
             1
1972
             1
1973
            1
1976
             1
1979
             1
1980
             1
1982
1984
             6
1985
         3007
1986
         5162
```

```
In [25]:
```

```
# get ratio column
jan_01_df <- inner_join ( jan_01_df , total_theses_df , by = 'Year' )
jan_01_df $ Portion.Theses <- jan_01_df $ Tot.Jan / jan_01_df $ Tot.Year
head ( jan_01_df )</pre>
```

Year	Tot.Jan	Tot.Year	Portion.Theses
1971	1	1	1
1972	1	1	1
1973	1	1	1
1976	1	1	1
1979	1	1	1

```
YearTot.JanTot.YearPortion.Theses1980111
```

```
In [26]: sum ( jan_01_df $ Tot.Jan ) / sum ( jan_01_df $ Tot.Year ) * 100
```

74.1229597273658

```
# plot year vs ratio
ggplot ( jan_01_df , aes ( x = Year , y = Portion.Theses )) +
    geom_line ( color = "# 69b3a2" , size = 2 , alpha = 0.9 ) +
    labs ( x = "Year" , y = "Proportion of Thesis Defenced on the First of Janu
```



```
In [28]: # check for drop in ratio
subset ( jan_01_df , Year < 2000 )</pre>
```

Year	Tot.Jan	Tot.Year	Portion.Theses
1971	1	1	1,000,000
1972	1	1	1,000,000

Year	Tot.Jan	Tot.Year	Portion.Theses
1973	1	1	1,000,000
1976	1	1	1,000,000
1979	1	1	1,000,000
1980	1	1	1,000,000
1982	1	1	1,000,000
1984	6	6	1,000,000
1985	3007	3007	1,000,000
1986	5162	5162	1,000,000
1987	8439	8439	1,000,000
1988	11045	11045	1,000,000
1989	11102	11102	1,000,000
1990	11011	11011	1,000,000
1991	10831	10831	1,000,000
1992	12065	12065	1,000,000
1993	12309	12309	1,000,000
1994	12991	12991	1,000,000
1995	10569	10569	1,000,000
1996	11354	11354	1,000,000
1997	11665	11669	0.9996572
1998	11015	11023	0.9992742
1999	10950	10982	0.9970861

```
In [29]: subset ( jan_01_df , Year > 2005 & Year < 2015 )
```

	Year	Tot.Jan	Tot.Year	Portion.Theses
30	2006	10885	10975	0.9917995
31	2007	11349	11697	0.9702488
32	2008	10686	11854	0.9014679
33	2009	9554	12033	0.7939832
34	2010	8190	12516	0.6543624
35	2011	5605	13110	0.4275362
36	2012	4398	13985	0.3144798

	Year	Tot.Jan	Tot.Year	Portion.Theses
37	2013	3237	13868	0.2334151
38	2014	1666	13202	0.1261930

All thesis were defended on the 1st of Jan from 1971-1996 and slowly started to decrease. We can see a significant drop from 0.90 in 2008 to 0.79 in 2009.

Check for author name homonyms + Cecile Martin

```
In [30]: # select author and author id
Author_temp <- theses_df %>% select (Author, Identifier.auteur) %>% group_
Author_temp <- na.omit (Author_temp)
colnames (Author_temp)) <- c ( "Author", "ID", "Freq" )
head (Author_temp)</pre>
```

```
        Author
        ID
        Freq

        2
        Andrea Ramazzotti
        174423705
        2

        80
        Gilles Deshayes
        182410528
        1

        135
        Tuan Anh An Vo
        190210486
        1

        616
        Darine Chamsine
        168134241
        1

        630
        Liza Gladys Boukandou Kombila
        189552883
        1

        819
        Eve Duca
        161896944
        1
```

```
# get count for distinct author name and id pair
Author_temp <- Author_temp %>% arrange ( desc ( Freq ))
head ( Author_temp )
```

```
AuthorIDFreqCatherine leport694139167Philippe Blanc859246606Thierry martin601510136Philippe Andre616484935Philippe Girard610242285Philippe Chevalier667619995
```

```
In [32]: # check for homonyms
all_author_temp <- Author_temp %>% select ( Author ) %>% group_by ( Author )
head ( all_author_temp )
homonym_temp <- all_author_temp %>% filter ( freq > 1 )
head ( homonym_temp )
```

Author freq

Author	freq
#NAME?	1
() Massinga Kombila	1
. Aditya Arie Nugraha	1
. Edang Nnang	1
. Giang Tran Thi Hoang	1
. Govind	1

Author	freq
Abdallah Benaissa	2
Abdallah Dib	2
Abdallah Hiba	2
Abdelkader Mokhtari	2
Abdellatif El Hassani	2
Abdellatif Taghzouti	2

```
In [33]: # compute portion of homonyms
nrow ( homonym_temp ) / nrow ( all_author_temp ) * 100
```

2.13960102648875

If we consider all unique supervisor names in the dataset only 2% are homonymns

```
In [34]: # analyze Cecile Martin case
subset ( Author_temp , Author_temp $ Author == "Cecile Martin" )
```

	Author	ID	Freq
39	Cecile Martin	81323557	4
36564	Cecile Martin	203208145	1
161937	Cecile Martin	179423568	1
273584	Cecile Martin	182118703	1

Issues in the supervisor's ID

```
In []: unique ( theses_df $ Identifier.director )

In [36]: # get Length of supervisor id for each thesis
    director_id <- theses_df $ Identifier.director
    id_temp_01 <- data.frame ( director_id )
    id_temp_01 <- na.omit ( id_temp_01 )</pre>
```

```
id_temp_01 $ director_id <- as.character ( id_temp_01 $ director_id )
id_temp_01 $ length <- nchar ( id_temp_01 $ director_id )
head ( id_temp_01 )</pre>
```

```
director_id length
1
     29561248
2 715,441,511
                   11
     57030758
3
                    8
     26941848
                    8
6
8
    34508287
                    8
    32574088
                    8
9
```

```
In [37]:
```

```
# get fequency of each Length
id_len_temp_01 <- id_temp_01 %>% select ( length ) %>% group_by ( length ) %>
xtable ( id_len_temp_01 )
```

```
    length
    freq

    1
    4587

    2
    137

    8
    255680

    9
    78960

    11
    59108
```

```
In [38]:
```

```
# get percentage of each length
total_id <- sum ( id_len_temp_01 $ freq )
id_len_temp_01 $ portion <- ( id_len_temp_01 $ freq / total_id ) * 100
xtable ( id_len_temp_01 )</pre>
```

```
        length
        freq
        portion

        1
        4587
        1.15114738

        2
        137
        0.03438134

        8
        255680
        64.16511072

        9
        78960
        19.81569596

        11
        59108
        14.83366460
```

```
In [39]:
```

```
# ids with comma
director_temp_01 <- filter ( theses_df , grepl ( "," , theses_df $ Identifier.di
nrow ( director_temp_01 )
head ( director_temp_01 )</pre>
```

59108

Author	Author ID	Title	Supervisor	Director.of.thesisname.firstname.	Manager ID	S
Andrea Ramazzotti	174423705	Application of the PGD to the resolution of transient couples problems with a view to the lightening of composite structures.	Jean-Claude Grandidier, Marianne Beringhier	Grandidier Jean-Claude, Beringhier Marianne	715,441,511	
loana Raluca Andreescu	N/A	Robinson in the Ile de la Pape. Representations of the social system in post- war Ilian European literature	Annick Louis, Jean- Louis Fabiani	Louis Annick, Fabiani Jean-Louis	348,740,620	
Tarik Khoutaif	N/A	Study and modeling of synchronous bluetooth links for an architecture of real-time communicating systems.	Thierry Val, Fabrice Peyrard	Val Thierry, Peyrard Fabrice	113,464,657	
Guilhem Armand	N/A	Fictions with a scientific vocation from Cyrano de Bergerac to Diderot: towards a hybrid poetry	Jean-Michel Racault, Aurelia Gaillard	Racault Jean-Michel, Gaillard Aurelia	283,003,190	
Aman ghelich Atabaei	N/A	Interbank market and contagions in times of financial crisis.	Daniel Goyeau, Catherine Lubochinsky	Goyeau Daniel, Lubochinsky Catherine	562,440,960	

	Author	Author ID	Title	Supervisor	Director.of.thesisname.firstname.	Manager S
	Samuel Brosset	N/A	The contexts of interaction and integration of Icelandic information networks, between rhythm, constraint and identity, its limits and its exemplarity.	Catherine Bernie- Boissard, Dominique Crozat	Bernie-Boissard Catherine, Crozat Dominique	327,131,260
	4					•
In [40]:		with 2 sup ilter (dir		, grepl (("," , Director.thesis , f	ixed = TRUE
	59108					
In [41]:			esis with more rector_temp_01			xed = TRUE
	62.1182504	151165				
	62.12% of t	he time if th	e theses has mo	ore than supe	ervisor the supervisor id has a cor	nma.
In [98]:				heses_df ,	grepl ("X" , Identifier.d	irector , fi
	35163					
In [43]:			esis with more rector_temp_02		pervisor ("," , Director.these , fi	xed = TRUE
	7.85989028	312				
	7.86 X.	5% of the tin	ne if the theses l	has more tha	an 1 supervisor the supervisor id h	nas a
In [44]:			esis with 1 su _l temp_02) -		ter (director_temp_02 , gre	pl ("," , D
	7.85383982	524327				
	7.85	5% of the tin	ne if the theses I	has 1 superv	isor the supervisor id has a X.	
	Nun	nber of PHD	defended over	the years		

```
In [45]: head ( total_theses_df , 10 )
```

```
Year Tot.Year
           1971
                         1
           1972
                         1
           1973
                         1
           1976
                         1
           1979
                         1
            1980
                         1
            1982
                         1
            1984
                         6
                     3007
            1985
           1986
                     5162
In [46]:
            # plot trend of num of theses defended
            ggplot (total\_theses\_df, aes (x = Year, y = Tot.Year)) +
                 geom_line ( color = "# 69b3a2" , size = 2 , alpha = 0.9 ) +
labs ( x = "Year " , y = " Number of Thesis Defenced Each Year " )
```



```
In [47]:
# verify rise year
subset ( total_theses_df , Year > 1980 & Year <= 1990 )</pre>
```

Year	Tot.Year
1982	1
1984	6
1985	3007
1986	5162
1987	8439
1988	11045
1989	11102
1990	11011
	1982 1984 1985 1986 1987 1988

```
In [48]:  # verify drop is in 2019-2020
subset ( total_theses_df , Year > 2015 & Year <= 2020 )</pre>
```

	Year	Tot.Year
40	2016	12965
41	2017	13123
42	2018	12805
43	2019	10712
44	2020	1070

We see that there is a sudden drop in the number of PHDs defended from 10712 in 2019 to 1070 in 2020. This might be for the following reasons:

- The Covid-19 lockdown

-

3.4. Outliers

Supervisor

```
In [49]:
```

```
# Unnest rows with multiple supervisors
df_unnest <- theses_df %>% unnest ( Director = strsplit ( tolower ( Director.t
head ( df_unnest )
```

Warning message:

"unnest () has a new interface. See? unnest for details.
Try `df%>% unnest (c (Director))`, with `mutate ()` if needed "

Author	Author ID	Title	Supervisor	Director.of.thesisname.firstname.	Manag
Saeed al marri	N / A	Documentary credit and the enforceability of exceptions	Philippe Delebecque	Delebecque Philippe	295612
Andrea Ramazzotti	174423705	Application of the PGD to the resolution of transient couples problems with a view to the lightening of composite structures.	Jean- Claude Grandidier, Marianne Beringhier	Grandidier Jean-Claude, Beringhier Marianne	715,441,5

Author	Author ID	Title	Supervisor	Director.of.thesisname.firstname.	Manag
Andrea Ramazzotti	174423705	Application of the PGD to the resolution of transient couples problems with a view to the lightening of composite structures.	Jean- Claude Grandidier, Marianne Beringhier	Grandidier Jean-Claude, Beringhier Marianne	715,441,5
OLIVIER BODENREIDER	N/A	Design of a computer tool for the study of kinetics observed in clinical toxicology	Francois Kohler	Kohler Francois	570307
Emmanuel Porte	N/A	Socio-history of public policies in social matters concerning students.	Gilles Pollet	Pollet Gilles	N /
Arthur devriendt	N/A	INFORMATION AND COMMUNICATION TECHNOLOGIES AND NEW RURALITIES.	Gabriel Dupuy	Dupuy Gabriel	N /
4					•

In [50]:

get freq of unique director name & id pair
df_directeur <- df_unnest %>% select (Director , Identifier.director) %>% gr
head (df_director , 20)

	Director	Manager ID	freq	
	philippe delebecque	29561248	178	
je	ean-claude grandidier	715,441,511	5	
	marianne beringhier	715,441,511	3	
	francois kohler	57030758	12	
	gilles pollet	N/A	7	
	gabriel dupuy	N/A	2	
	edmond jouve	26941848	46	
	stone count	N/A	3	

Director	Manager ID	freq
laurent sermet	34508287	5
anne-emmanuelle berger	32574088	4
jean-pierre keyboard	35557060	13
patrice vermeren	28251873	32
jerome julien	N/A	4
deen gibirila	33883238	20
danielle cabanis	N/A	6
jean-michel ganteau	58596852	11
emile-henri riard	137391919	9
serge regourd	27093115	46
bernard boene	27093115	1
elisabeth claverie	76120333	5

```
In [51]:
# drop na values in director name and sort

df_directeur [ df_directeur == "" ] <- NA

df_directeur [ df_directeur == "" ] <- NA

df_directeur <- df_directeur %>% drop_na () %>% arrange ( desc ( freq ) )

xtable ( head ( df_director , 20 ))
```

Director	Manager ID	freq
jean-michel scherrmann	59375140	208
francois-paul blanc	26730774	205
pierre brunel	26756625	193
philippe delebecque	29561248	178
guy pujolle	27084868	177
michel bertucat	98531891	173
bernard teyssie	27158578	146
bruno foucart	26870177	132
henry de lumley	26997894	132
jean-claude chaumeil	58552499	131
michel maffesoli	27001067	128
roger g. boulu	59209143	127
daniel-henri pageaux	02705554X	124
georges molinie	02703352X	116

Director	Manager ID	freq
jean bessiere	26725916	114
francis balle	26702606	109
gregoire loiseau	35137576	101
michel meslin	27024938	96
eliane chiron	26787083	96
pierre-philippe rey	55477046	96

Quantiles to find Outliers

```
# get Lower bound
lower_bound <- quantile(df_directeur$freq, 0.01)
lower_bound</pre>
```

1%: 1

```
In [54]:
# get upper bound
upper_bound <- quantile(df_directeur$freq, 0.997)
upper_bound</pre>
```

99.7%: 35

more than 35 is outlier

Author

```
In [56]: head(Auteur_temp)
```

Auteur	ID	Freq
Catherine Leport	69413916	7
Philippe Blanc	85924660	6
Thierry Martin	60151013	6
Philippe Andre	61648493	5
Philippe Girard	61024228	5
Philippe Chevalier	66761999	5

```
In [57]: # get Lower bound
lower_bound <- quantile(Auteur_temp$Freq, 0.01)
lower_bound</pre>
```

1%: 1

```
In [58]: # get upper bound
upper_bound <- quantile ( Author_temp $ Freq , 0.997 )
upper_bound</pre>
```

99.7%: 2

more than 2 is outlier

3.5. Perliminary Results

1) Language

```
In [60]:
            # get theses Language
           languages df <- theses df $ Langue.de.la.these</pre>
           head ( languages df )
              1. N / A
              2. N / A
              3. 'Fr'
              4. N / A
              5. N / A
              6. N / A
In [61]:
           # sort and set to lower case
           languages_df <- na.omit ( languages_df )
languages_df <- sort ( languages_df )</pre>
           languages_df <- data.frame ( languages_df )</pre>
            colnames ( languages df ) <- c ( "language" )</pre>
            languages_df $ language <- tolower ( languages_df $ language )</pre>
            head ( languages_df )
           language
                aafr
                aafr
                aafr
                 ab
                 ab
                abfr
In [62]:
            # get number of Languages
            languages_df $ n.language <- str_length ( languages_df $ language ) / 2</pre>
            head ( languages df )
           language n.language
                aafr
                              2
                aafr
                              2
                               2
                aafr
```

1

ab

```
language n.language

ab 1

abfr 2
```

language n.language lang.type aafr 2 Bilingual 2 aafr Bilingual 2 Bilingual aafr 1 Other ab Other 1 ab abfr 2 Bilingual

	language	n.language	lang.type
383874	zhfr	2	Bilingual
383875	zhfr	2	Bilingual
383876	zhfr	2	Bilingual
383877	zhfr	2	Bilingual
383878	zhfrit	3	Other
383879	zhfrug	3	Other

```
# get count
lang_type_df <- languages_df %>% select (lang.type ) %>% group_by (lang.type
lang_type_df
```

```
Bilingual 16488
English 30942
French 334406
Other 2043
```

```
In [65]:
```

```
# set levels
lang_type_df $ lang.type <- factor ( lang_type_df $ lang.type , levels = lang_t
lang_type_df</pre>
```

```
Bilingual 16488
English 30942
French 334406
Other 2043
```

```
In [66]:
```

```
# plot total number for each lang
ggplot ( lang_type_df , aes ( x = lang.type , y = freq )) +
geom_bar ( stat = "identity" ) +
theme ( plot.title = element_text ( family = "serif" , color = "black" ),
    axis.text.x = element_text ( family = "serif" , color = "black" ),
    axis.text.y = element_text ( family = "serif" , color = "black" )) +
labs ( x = "Language" , y = "Number of Theses written in the Language" )
```



```
In [67]: # select Language and defense date
```

```
df_lang_date <- theses_df %>% select ( Date.de.soutenance , Langue.de.these ) %
colnames ( df_lang_date ) <- c ( "defense.date" , " language " )
head ( df_lang_date )</pre>
```

```
1993-01-01
                                 Fr
             2015-01-01
                                 Fr
             2015-01-01
                                 Fr
             2013-12-07
                                 Fr
             2013-11-25
                                 Fr
             2013-11-22
                                 Fr
In [68]:
            # get num of languages and set to lower case
            df_lang_date $ n.language <- str_length ( df_lang_date $ language ) / 2</pre>
            df_lang_date $ language <- tolower ( df_lang_date $ language )</pre>
            # get year of defense
            df_lang_date <- df_lang_date %>% dplyr :: mutate ( year = lubridate :: year (
df_lang_date <- df_lang_date [ order ( df_lang_date $ year ),]</pre>
            head ( df_lang_date )
```

defense.date language n.language year

defense.date language

```
1971-01-01
                  Fr
                              1 1971
1972-01-01
                  Fr
                              1 1972
1973-01-01
                 Fr
                              1 1973
1976-01-01
                 Fr
                              1 1976
1979-01-01
                 Fr
                              1 1979
1980-01-01
                 Fr
                              1 1980
```

defense.date language n.language year lang.type

1971-01-01 Fr 1 1971 French

lang.type	year	n.language	language	defense.date
French	1972	1	Fr	1972-01-01
French	1973	1	Fr	1973-01-01
French	1976	1	Fr	1976-01-01
French	1979	1	Fr	1979-01-01
French	1980	1	Fr	1980-01-01
lang.type	year	n.language	language	defense.date
lang.type French	year 2020	n.language	language Fr	defense.date 2020-01-10
French	2020	1	Fr	2020-01-10
French	2020	1 2	Fr fren	2020-01-10
French Bilingual English	2020 2020 2020	1 2	Fr fren in	2020-01-10 2020-06-26 2020-02-06

Filter out data before 1985 because of sudden rise and 2020 because we don't have data for the whole year

```
In [70]: # select between 1988 and 2020
    df_lang_date <- df_lang_date %>% filter ( year > 1988 & year < 2020 )

In [71]: # get count of theses done in each Language type each year
    df_lang_type_ts <- df_lang_date %>% select ( year , lang.type ) %>% group_by
    colnames ( df_lang_type_ts ) <- c ( "Year" , "Lang_Type" , "Sum.Lang_Type" )
    head ( df_lang_type_ts )
    tail ( df_lang_type_ts )</pre>
```

Year	Lang_Type	Sum.Lang_Type
1989	Bilingual	234
1989	English	4
1989	French	10860
1989	Other	3
1990	Bilingual	206
1990	English	12

	Year	Lang_Type	Sum.Lang_Type
118	2018	French	7807
119	2018	Other	122

	Year	Lang_Type	Sum.Lang_Type
120	2019	Bilingual	550
121	2019	English	2818
122	2019	French	5615
123	2019	Other	95

```
In [72]:
```

```
# get count of theses done each year
df_year <- df_lang_date %>% select ( year ) %>% group_by ( year ) %>% count
colnames ( df_year ) <- c ( "Year" , "Sum.Year" )
head ( df_year )</pre>
```

Year Sum.Year 1989 11101 1990 11011 1991 10831 1992 12064 1993 12308 1994 12991

```
In [73]:
```

```
# Get the percentage of theses done in Each Language kind Each year
full_lang_type <- full_join ( df_lang_type_ts , df_year , by = 'Year' )
full_lang_type $ Sum.Percentage <- round (( full_lang_type $ Sum.Lang_Type / ful
head ( full_lang_type )</pre>
```

Year	Lang_Type	Sum.Lang_Type	Sum.Year	Sum.Percentage
1989	Bilingual	234	11101	2.11
1989	English	4	11101	0.04
1989	French	10860	11101	97.83
1989	Other	3	11101	0.03
1990	Bilingual	206	11011	1.87
1990	English	12	11011	0.11

ggplot2 graph

```
In [74]:
```

```
# ggplot2 for percentage
ggplot ( full_lang_type , aes ( x = Year , y = Sum.Percentage , fill = Lang_Type
geom_area ( alpha = 0.6 , size = .5 , color = "white" ) +
theme ( plot.title = element_text ( family = "serif" , color = "black" ),
    axis.text.x = element_text ( family = "serif" , color = "black" ),
    axis.text.y = element_text ( family = "serif" , color = "black" )) +
labs ( y = "Percentage of Theses written in each Language in a Year " )
```


plotly graph

```
In [75]:
# plotly for percentage
fig <- plot_ly (
    type = 'scatter' ,
    x = full_lang_type $ Year ,
    y = full_lang_type $ Sum.Percentage ,
    color = full_lang_type $ Lang_Type ,
    mode = "lines" ,
    fill = "tozeroy"
)
fig <- fig %>% layout ( xaxis = list ( title = 'Year' , layout.font = "Tim yaxis = list ( title = 'Percentage of Theses done in each Language in a
fig
```

2) Period of Year

```
In [78]: # to select defense between 1996 to 2020
defense_date_df <- defense_date_df %>% filter ( year > 1996 & year < 2020

In [79]: # select january and remove jan 1
no_jan_01_df <- defense_date_df %>% filter ( month == 1 & day ! = 1 )
head ( no_jan_01_df , 10 )
```

```
defense_date year month day
                                1999-01-09 1999
                                                                                                  9
                               1999-01-13 1999
                                                                                                13
                               1999-01-14 1999
                                                                                                14
                               1999-01-19 1999
                                                                                                 19
                               1999-01-19 1999
                                                                                                 19
                                                                                      1
                               1999-01-21 1999
                                                                                                 21
                               2000-01-12 2000
                                                                                      1
                                                                                                12
                               2000-01-17 2000
                                                                                                17
                               2000-01-21 2000
                                                                                      1
                                                                                                21
                               2000-01-24 2000
                                                                                                 24
In [81]:
                            # select months except jan
                            no_jan_df <- defense_date_df %>% filter ( month ! = 1 )
                            head ( no_jan_df )
                           defense_date year month day
                               1997-03-29 1997
                                                                                                 29
                                                                                      3
                               1997-09-19 1997
                                                                                                 19
                               1997-12-01 1997
                                                                                    12
                                                                                                  1
                               1997-12-06 1997
                               1998-12-03 1998
                                                                                    12
                                                                                                   3
                               1998-12-09 1998
                                                                                   12
                                                                                                   9
In [82]:
                            # merge
                            no jan 01 df <- rbind.fill ( no jan 01 df , no jan df )
In [83]:
                            # get month count for each year
                            \label{lem:dates_df_ym <- no_jan_01_df %>% select ( year , month )  %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , month ) %>% group_by ( year , mont
                            colnames ( dates_df_ym ) <- c ( "Year" , "Month" , "Sum.Month" )</pre>
In [84]:
                            # get total count for each year
                            dates_df_y <- no_jan_01_df %>% select ( year ) %>% group_by ( year ) %>% cou
                            colnames ( dates_df_y ) <- c ( "Year" , "Sum.Year" )</pre>
In [85]:
                            # merge and get percentage
                            full_date <- full_join ( dates_df_ym , dates_df_y , by = 'Year' )</pre>
                            full_date $ Sum.Percentage <- round (( full_date $ Sum.Month / full_date $ Sum.Y</pre>
                            head ( full_date )
```

Year	Month	Sum.Month	Sum.Year	Sum.Percentage
1997	3	1	4	25.00
1997	9	1	4	25.00
1997	12	2	4	50.00
1998	12	8	8	100.00
1999	1	6	32	18.75
1999	4	1	32	3.12

```
In [86]: # get mean and sd
date_summary <- ddply ( full_date , ~ Month , summarize , mean = mean ( Sum.P

# change month from num to text and create Levels
date_summary <- date_summary %>% mutate ( Month = month.name [ Month ])
date_summary $ Month <- factor ( date_summary $ Month , levels = date_summary $</pre>
```

In [87]: date

```
date_summary
```

```
sd_02
   Month
                mean
                             sd
            5.4790000
                        3.777090 1.8885450
  January
 February
            3.9976471
                        2.529418 1.2647091
                        5.133847 2.5669236
   March
            6.3773684
            3.7266667
                        1.966930 0.9834648
     April
            4.8000000
                        2.173694 1.0868469
     May
            8.8915000
                       2.541956 1.2709779
     June
     July
            6.7942857
                        3.121983 1.5609913
   August
            0.9413333
                        1.271382 0.6356910
September
            9.5025000
                        4.198066 2.0990329
  October 11.4119048
                        5.574342 2.7871709
November 16.5880952
                        3.856125 1.9280623
December 31.7504348 16.166461 8.0832307
```


3) Gender

Done in Python

4) Bonus

```
In [89]: # select establishment name id and defense date
    establishment_df <- theses_df [ c ( 'Etablissement.de.soutenance' , 'Identifier.e
    establishment_df <- na.omit ( establishment_df )

# get year of defense
    establishment_df <- establishment_df %>% dplyr :: mutate ( Year = lubridate :: head ( establishment_df )
```

Support.Establishment	Institution.identifier	Support date	Year
Paris 5	26404788	2008-11-24	2008
Saint Etienne	28209966	2005-07-01	2005
The meeting	26404451	2009-12-08	2009
Paris 8	26403552	2013-01-10	2013

Support.Establishment	Institution.identifier	Support date	Year
Nantes	26403447	2011-06-24	2011
Paris 8	26403552	2010-11-26	2010

In [90]:

```
# get yearly theses count for each uni
establishment_cpt_df <- establishment_df %>% select ( Year , Etablissement.de.s
head ( establishment_cpt_df )
```

Year	Support.Establishment	Institution.identifier	freq
1973	University of Nancy I	26403390	1
1979	Paris 10	26403587	1
1980	Nice	26403498	1
1982	Paris 4	26403633	1
1984	Limoges	26403315	1
1984	Mulhouse	26403250	3

In [91]:

```
# get yearly total
date_cpt_df <- establishment_df %>% select ( Year ) %>% group_by ( Year ) %>
head ( date_cpt_df )
```

Year	freq
1973	1
1979	1
1980	1
1982	1
1984	6
1985	2987

In [92]:

```
# merge and get percentage
```

full_establishment_df <- full_join (establishment_cpt_df , date_cpt_df , by =
full_establishment_df \$ Percentage <- full_establishment_df \$ freq.x / full_esta
head (full_establishment_df)</pre>

Year	Support.Establishment	Institution.identifier	freq.x	freq.y	Percentage	
1973	University of Nancy I	26403390	1	1	100,000,000	
1979	Paris 10	26403587	1	1	100,000,000	
1980	Nice	26403498	1	1	100,000,000	
1982	Paris 4	26403633	1	1	100,000,000	
1984	Limoges	26403315	1	6	16.66667	

Year	Support. Establishment	Institution.identifier	freq.x	freq.y	Percentage
1984	Mulhouse	26403250	3	6	50.00000

```
In [93]:
```

```
# get total theses count for each uni
establishment_cpt_df_2 <- establishment_df %>% select ( Etablissement.de.soutena
head ( establishment_cpt_df_2 )
```

Support. Establishment	Institution.identifier	freq
[Amiens], University of Picardy - Jules Verne, Doctoral school in human and social sciences	26403714	1
[Amiens], University Picardie - Jules Verne, Doctoral School of Letters and Human Sciences, Department of Economics and Management	26403714	1
[Grenoble INPG]	26388804	1
AgroParisTech	139408088	65
Aix en Provence	26403781	1
Aix-Marseille	67331149	1

```
In [94]:
```

```
# sort
establishment_cpt_df_2 <- establishment_cpt_df_2 %>% arrange ( desc ( freq ))
head ( establishment_cpt_df_2 )
```

1	frec	Institution.identifier	Support.Establishment
ļ	20914	27787087	Paris 6
;	15326	26404664	Paris 11
	11075	27542084	Paris 7
)	10749	27361802	Paris 1
ļ	9554	26404672	Toulouse 3
,	8277	26403633	Paris 4

```
In [95]:
```

```
# get to 10 with highest theses count
highest_establishment <- establishment_cpt_df_2 [ 1 : 10 , "Etablissement.de.sout
highest_establishment
highest_id <- which ( full_establishment_df $ Etablissement.de.soutenance == hi
highest_establishment_df <- full_establishment_df [ highest_id , ]
head ( highest_establishment_df )</pre>
```

- 1. 'Paris 6'
- 2. 'Paris 11'
- 3. 'Paris 7'
- 4. 'Paris 1'
- 5. 'Toulouse 3'
- 6. 'Paris 4'

- 7. 'Lyon 1'
- 8. 'Paris 5'
- 9. 'Nantes'
- 10. 'Rennes 1'

In [97]:

```
# plot
ggplot ( highest_establishment_df , aes ( x = Year , y = Percentage , fill = Etab
geom_area ( alpha = 0.6 , size = .5 , color = "white" ) +
theme ( plot.title = element_text ( family = "serif" , color = "black" ),
    axis.text.x = element_text ( family = "serif" , color = "black" ),
    axis.text.y = element_text ( family = "serif" , color = "black" )) +
labs ( y = "Percentage of Theses done in each Establishment in a Year " )
```


In []: