#### Embedded Systems Design, Spring 2025 Lecture 3



Sequential Logic: Latches and flip-flops

#### **Review from last time**

•



## **Bistability**

Figure 7-2

A pair of inverters forming a bistable element.





## Flip flops (latches)

- 1918 Eccles Jordan triggered circuit
- Latches can change their state at any time
- Flip-flops can change their state only when a clocking signal is changing

## **Clock types**

Clock types



#### S-R latch

S-R latch:



(b)



| S | R | Q      | QN<br>last QN<br>1 |  |
|---|---|--------|--------------------|--|
| 0 | 0 | last Q |                    |  |
| 0 | 1 | 0      |                    |  |
| 1 | 0 | 1      | 0                  |  |
| 1 | 1 | 0      | 0                  |  |

Figure 7-5
S-R latch: (a) circuit design using NOR gates; (b) function table.

(a)

# Typical operation

• *Metastable region*: when the output is unpredictable

Figure 7-6 Typical operation of an S-R latch: (a) "normal" inputs; (b) S and R asserted simultaneously.



- *Propagation delay*: time need for an input signal change to generate an output signal change
- Recovery time: giving the minimum separation between S and R as to be not simultaneous



Figure 7-8 Timing parameters for an S-R latch.

# S-R latches

• S' and R' are active low, therefore opposite operation

Figure 7-9 S-R latch: (a) circuit design using NAND gates; (b) function table; (c) logic symbol.







# S-R latch with enable

Why? To control when the inputs are active



Figure 7-10 S-R latch with enable: (a) circuit using NAND gates; (b) function table; (c) logic symbol.

# Typical operation



Figure 7-10 S-R latch with enable: (a) circuit using NAND gates; (b) function table; (c) logic symbol.

Figure 7-11 Typical operation of an S-R latch with enable.



#### **D-latches**



Figure 7-12 D latch: (a) circuit design using NAND gates; (b) function table; (c) logic symbol.



Figure 7-13 Functional behavior of a D latch for various inputs.

# Timing parameters

Figure 7-14 Timing parameters for a D latch.



# Edge triggered D Flip Flop

• Clk: dynamic input indicator – edge triggered behavior

Figure 7-15 Positive-edge-triggered D flip-flop: (a) circuit design using D latches; (b) function table; (c) logic symbol.





Figure 7-16 Functional behavior of a positive-edge-triggered D flip-flop.



Figure 7-17 Timing behavior of a positive-edge-triggered D flip-flop.



## Shift registers

- They produce a discrete delay for a specific digital signal. The delay is given by "n" stages.
- Conveyor belt similarity



Serial-in, serial-out shift register with 4-stages

# Shift registers



Figure 8-37
Structure of a serial-in, serial-out shift register.

# Serial – in, parallel - out



Serial-in, parallel-out shift register with 4-stages



Figure 8-38
Structure of a serial-in, parallel-out shift register.

#### Parallel - in, serial - out



Parallel-in, serial-out shift register with 4-stages

#### Parallel - in, serial - out



# Parallel – in, parallel - out



Parallel-in, parallel-out shift register with 4-stages



Figure 8-40 Structure of a parallel-in, parallel-out shift register.

# Example: 74x194, 4 bit shift register

Table 8-24
Function table for the 74x194 4-bit universal shift register.

| Function    | Inputs |    | Next state |     |     |     |
|-------------|--------|----|------------|-----|-----|-----|
|             | S1     | S0 | QA*        | QB* | QC* | QD* |
| Hold        | 0      | 0  | QA         | QB  | QC  | QD  |
| Shift right | 0      | 1  | RIN        | QA  | QB  | QC  |
| Shift left  | 1      | 0  | QB         | QC  | QD  | LIN |
| Load        | 1      | 1  | Α          | В   | С   | D   |

Example:

S1:0

S0:1



# \$1.50 value when enabled RIGHT 1 (18) QC CLR (14) QB LEFT [

Figure 8-41 Logic diagram for the 74x194 4-bit universal shift register, including pin numbers for a standard 16-pin dual in-line package.

Example