

Flour Power: Modeling the Growth and Decay of Sourdough Starters

Jonah Keleman Smith

Introduction and Background

Back-slopping Models

Discussion and Conclusions

References

References

Flour Power: Modeling the Growth and Decay of Sourdough Starters

Jonah Keleman Smith

Florida State University

April 27, 2023

Outline

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and Background

Back-slopping Models Discussion and Conclusions

References

- 1 Introduction and Background
 - Motivation and Scope of Study
 - Previous Research
- Back-slopping Models
 - Model Derivation
 - Stability Analysis and Numerical Methods
- 3 Discussion and Conclusions
 - Next Steps
 - Closing Thoughts

Focusing on sourdough within the context of baking and food production

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and Background

Motivation and

Scope of Study Previous Research

Back-slopping

Models

Discussion and

References

Type I sourdough is most mathematically interesting (Neysens and De Vuyst 2007)

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and Background

Motivation and Scope of Study Previous Research

Back-slopping Models

Discussion and Conclusions

References

References

Traditional process

Type II

Industrial process

Type III

Industrial process

Pugliese, Toscano, and Altamura bread

Italian Panettone, Pandoro and Colomba

San Francisco sourdough French bread

Monod's model introduces exponential growth and compartmental stages (Monod 1949)

Flour Power: Modeling the Growth and Decay of Sourdough Starters

Jonah Keleman Smith

Introduction and Background

Motivation and Scope of Study

Previous Research

Back-slopping Models

Discussion and Conclusions

References

LAB "eat" maltose and "excrete" glucose (Neysens and De Vuyst 2007)

Flour Power: Modeling the Growth and Decay of Sourdough Starters

Jonah Keleman Smith

Introduction and

Background

Scope of Study Previous Research

Back-slopping Models

Discussion and

References

Maltose consumption follows exponential decay (Neubauer et al. 1994)

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and

Background

Motivation and Scope of Study

Previous Research

Back-slopping Models

Discussion and Conclusions

References

Back-slopping conserves mass, but not biomass

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and

Background

Back-slopping Models

Model Derivation Stability Analysis and Numerical Methods

Discussion and Conclusions

References

$$p \in (0,1)$$
$$w \in (0,1-p)$$

Exponential growth captures general shape of curve $(B, D, G, X, t \in \mathbb{R}_{>0}; \alpha_B, \alpha_X \in \mathbb{R}_+)$

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and

Background

Back-slopping Models

Model Derivation
Stability Analysis and

Numerical Methods

Discussion and

Conclusions References

$$\frac{dB}{dt} = \alpha_B B$$

$$\frac{dD}{dt} = -\alpha_B D$$

$$\frac{dG}{dt} = \alpha_B B - \alpha_X X$$

$$\frac{dX}{dt} = \alpha_X X$$

Michaelis-Menten kinetics accurately describe nutrient consumption $(K_D, K_G \in \mathbb{R}_+)$

Flour Power: Modeling the Growth and Decay of Sourdough Starters

Jonah Keleman Smith

Introduction and

Background
Back-slopping

Models

Model Derivation

Stability Analysis and Numerical Methods

Discussion and Conclusions

References

$$\frac{dB}{dt} = \alpha_B B \frac{D}{K_D + D}$$

$$\frac{dD}{dt} = -\alpha_B B \frac{D}{K_D + D}$$

$$\frac{dG}{dt} = \alpha_B B \frac{D}{K_D + D} - \alpha_X X \frac{G}{K_G + G}$$

$$\frac{dX}{dt} = \alpha_X X \frac{G}{K_G + G}$$

Steady state analysis at this point reveals the necessity of a decay term

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and Background

Back-slopping Models

Model Derivation
Stability Analysis and
Numerical Methods

Discussion and Conclusions

References

References

$$\frac{dB}{dt} = \alpha_B B \frac{D}{K_D + D}$$

$$0 = \alpha_B B \frac{D}{K_D + D}$$

$$\alpha_B = 0$$
 or $B = 0$ or $D = 0$

There could exist some $(\bar{B}, \bar{D}) = (0, d)$ where $d \neq 0$.

Adding a decay term "pushes" all solutions to 0 asymptotically $(\gamma_B, \gamma_X \in \mathbb{R}_+)$

Flour Power: Modeling the Growth and Decay of Sourdough Starters

Jonah Keleman Smith

Introduction and Background

Back-slopping Models

Model Derivation
Stability Analysis and
Numerical Methods

Discussion and Conclusions

References

$$\frac{dB}{dt} = \alpha_B B \frac{D}{K_D + D} - \frac{\gamma_B B}{M_D + D}$$

$$\frac{dD}{dt} = -\alpha_B B \frac{D}{K_D + D}$$

$$\frac{dG}{dt} = \alpha_B B \frac{D}{K_D + D} - \alpha_X X \frac{G}{K_G + G}$$

$$\frac{dX}{dt} = \alpha_X X \frac{G}{K_C + G} - \gamma_X X$$

Adding a yield term fixes dimension discrepancies in D and G equations $(Y_D, Y_G \in [1, \infty))$

Flour Power: Modeling the Growth and Decay of Sourdough Starters

Jonah Keleman Smith

Introduction and Background

Back-slopping Models

Model Derivation

Stability Analysis and
Numerical Methods

Discussion and Conclusions

References

$$\frac{dB}{dt} = \alpha_B B \frac{D}{K_D + D} - \gamma_B B$$

$$\frac{dD}{dt} = -\frac{\alpha_B}{Y_D} B \frac{D}{K_D + D}$$

$$\frac{dG}{dt} = \frac{\alpha_B}{\frac{\mathbf{Y_D}}{D}} B \frac{D}{K_D + D} - \frac{\alpha_X}{\frac{\mathbf{Y_G}}{M}} X \frac{G}{K_G + G}$$

$$\frac{dX}{dt} = \alpha_X X \frac{G}{K_C + G} - \gamma_X X$$

An iterative process is best suited to describe back-slopping $(i \in \mathbb{N}; h \in \mathbb{R}_+)$

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and Background

Back-slopping Models

Model Derivation
Stability Analysis and
Numerical Methods

Discussion and

References

$$B_{i+1}(0) = pB_i(h)$$

$$D_{i+1}(0) = pD_i(h)$$

$$G_{i+1}(0) = pG_i(h)$$

$$X_{i+1}(0) = pX_i(h)$$

Adding another term accounts for nutrients and ambient organisms from flour

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and Background

Back-slopping Models

Model Derivation
Stability Analysis and
Numerical Methods

Discussion and Conclusions

References

$$B_{i+1}(0) = pB_i(h) + (1 - p - w)B_0(0)$$

$$D_{i+1}(0) = pD_i(h) + (1 - p - w)D_0(0)$$

$$G_{i+1}(0) = pG_i(h) + (1 - p - w)G_0(0)$$

$$X_{i+1}(0) = pX_i(h) + (1 - p - w)X_0(0)$$

Acceptable variable values and dimensions

Flour Power: Modeling the Growth and Decay of Sourdough Starters

Jonah Keleman Smith

Introduction and Background

Back-slopping Models

Model Derivation
Stability Analysis and
Numerical Methods

Discussion and Conclusions

References

Variable List				
Variable	Range	Units	Biological Significance	
t	$\mathbb{R}_{\geq 0}$	h	time since last feeding	
B	$\mathbb{R}_{\geq 0}$	cfu	LAB density	
D	$\mathbb{R}_{\geq 0}$	$ m g~kg^{-1}$	disaccharide concentration	
G	$\mathbb{R}_{\geq 0}$	$g\;kg^{-1}$	glucose concentration	
X	$\mathbb{R}_{\geq 0}$	cfu	yeast density	
i	N	n/a	cycle counter	

Acceptable parameter values and dimensions

Flour Power: Modeling the Growth and Decay of Sourdough Starters

Jonah Keleman Smith

Introduction and Background

Back-slopping Models

Model Derivation Stability Analysis and

Stability Analysis and Numerical Methods Discussion and

Conclusions References

Parameter List					
Parameter	Range	Units	Biological Significance		
α_B	\mathbb{R}_{+}	h^{-1}	LAB growth		
α_X	\mathbb{R}_+	h^{-1}	yeast growth		
Y_D	$[1,\infty)$	g (cfu kg) $^{-1}$	disaccharide yield		
Y_G	$[1,\infty)$	g (cfu kg) $^{-1}$	glucose yield		
γ_B	\mathbb{R}_+	$\mid h^{-1}$	LAB decay		
γ_X	\mathbb{R}_+	h^{-1}	yeast decay		
K_D	\mathbb{R}_+	${\sf g}\;{\sf kg}^{-1}$	Michaelis-Menten for D		
K_G	\mathbb{R}_{+}	${\sf g}\ {\sf kg}^{-1}$	Michaelis-Menten for G		
$\mid p \mid$	(0,1)	1	inoculation/carryover		
w	(0, 1-p)	1	hydration		
h	\mathbb{R}_{+}	h	cycle length		

The only steady state is the trivial one! $((\bar{B}, \bar{D}, \bar{G}, \bar{X}) = \vec{0})$

Flour Power: Modeling the Growth and Decay of Sourdough Starters

Jonah Keleman Smith

Introduction and Background

Back-slopping Models

Model Derivation
Stability Analysis and
Numerical Methods

Discussion and Conclusions

References

- Baker "keeps starter alive" only through feeding (avoiding trivial steady state)
- Transience is most important property to study in this system
- This matches intuition: there can never be a non-zero bacteria or yeast population with an absence of nutrients

After a few generations, the maximum concentrations and shapes seem to even out

Flour Power: Modeling the Growth and Decay of Sourdough Starters

Jonah Keleman Smith

Introduction and Background

Back-slopping
Models

Model Derivation
Stability Analysis and

Numerical Methods

Discussion and
Conclusions

References

With these same parameter values, we can find the cycle length which maximizes LAB and yeast pop.

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and Background

Back-slopping Models

Model Derivation
Stability Analysis and
Numerical Methods

Discussion and Conclusions

References

Shortcomings of the model: accuracy versus feasibility

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and Background

Back-slopping Models Discussion and

Conclusions
Next Steps

Closing Thoughts

References

- No pH control (Gänzle 2014)
- No temperature control (Gänzle 2014)
- Uncertainty Quantification (Tennøe 2018)
- (More) optimization

Where can we go from here?

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and Background

Back-slopping Models

Discussion and Conclusions

Closing Thoughts

References

- Good model for fermentation and symbiosis in other organisms (wine, cheese, etc.)
- Could apply to other models for species interactions
- Iterative model is also an interesting tool

The possibilities are endless (Gänzle, 2022)

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and Background

Back-slopping Models

Discussion and Conclusions

Closing Thoughts

References

References I

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and Background

Back-slopping Models

Conclusions

- [1] G. Ventimiglia, A. Alfonzo, P. Galluzzo, et al., "Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation," Food Microbiology, vol. 51, pp. 57–68, 2015, ISSN: 0740-0020. DOI: 10.1016/j.fm.2015.04.011.
- [2] P. Neysens and L. De Vuyst, "Kinetics and modelling of sourdough lactic acid bacteria," Trends in Food Science & Technology, vol. 16, no. 1, pp. 95–103, 2005, ISSN: 0924-2244. DOI: 10.1016/j.tifs.2004.02.016.
- [3] A. Corsetti and L. Settanni, "Lactobacilli in sourdough fermentation," Food Research International, vol. 40, no. 5, pp. 539–558, 2007, ISSN: 09639969. DOI: 10.1016/j.foodres.2006.11.001.

References II

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and Background

Back-slopping Models

Models

Discussion and

Conclusions References

- [4] J. Hamelman, *Bread: A Baker's Book of Techniques and Recipes*, 2nd Edition. Wiley, 2012, ISBN: 1-118-13271-8.
- [5] P. Hollywood, *How to Bake*. Bloomsbury Publishing Plc, 2012, ISBN: 9781408835562.
- [6] N. Panikov, *Microbial Growth Kinetics*. London: Chapman & Hall, 1995, ISBN: 0-412-56630-3.
- [7] B. Gompertz, "On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F. R. S.," *Philosophical Transactions of the Royal Society*, vol. 115, pp. 513–583, 1825, ISSN: 2053-9223, DOI: 10.1098/rstl.1825.0026.

References III

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and Background

Back-slopping Models Discussion and Conclusions

References

- [8] J. Monod, "The Growth of Bacterial Cultures," Annual Review of Microbiology, vol. 3, no. 1, pp. 371–394, 1949.

 DOI: 10.1146/annurev.mi.03.100149.002103.
- [9] T. Ross, "Belehradek-type models," Journal of Industrial Microbiology, vol. 12, pp. 180–189, 1993. DOI: https://doi.org/10.1007/BF01584188.
- [10] T. J. Wijtzes, T. Rob, M. Zwietering, and P. McClure, "Modelling bacterial growth of Listeria monocytogenes as a function of water activity, pH and temperature," *International Journal of Food Microbiology*, vol. 18, no. 2, pp. 139–149, 1993.

References IV

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and Background

Back-slopping Models Discussion and

Conclusions
References

References

[11] T. J. Wijtzes, J. de Wit, K. van 't Riet, J. H. J. Huis in 't Veld, and M. H. Zwietering, "Modelling Bacterial Growth of Lactobacillus curvatus as a Function of Acidity and Temperature," *Applied and Environmental Microbiology*, vol. 61, no. 7, pp. 2533–2539, 1995. DOI: 10.1128/aem.61.7.2533–2539.1995.

[12] A. Digaitiene, Å. S. Hansen, G. Juodeikiene, D. Eidukonyte, and J. Josephsen, "Lactic acid bacteria isolated from rye sourdoughs produce bacteriocin-like inhibitory substances active against bacillus subtilis and fungi," *Journal of Applied Microbiology*, vol. 112, no. 4, pp. 732–742, 2012. DOI: 10.1111/j.1365–2672.2012.05249.x.

References V

Flour Power: Modeling the Growth and Decay of Sourdough Starters

Jonah Keleman Smith

Introduction and Background

Back-slopping Models

Discussion and Conclusions

References

- [13] H. Neubauer, E. Glaasker, W. P. Hammes, B. Poolman, and W. N. Konings, "Mechanism of maltose uptake and glucose excretion in lactobacillus sanfrancisco," Journal of Bacteriology, vol. 176, 10 1994. DOI: 10.1128/jb.176.10.3007-3012.1994.
- [14] M. G. Gänzle, "Enzymatic and bacterial conversions during sourdough fermentation," en, Food Microbiology, vol. 37, pp. 2–10, 2014, ISSN: 07400020. DOI: 10.1016/j.fm.2013.04.007.

References VI

Flour Power: Modeling the Growth and Decay of Sourdough Starters

Jonah Keleman Smith

Introduction and Background

Back-slopping Models Discussion and

Conclusions

References

- [15] N. Struyf, J. Laurent, B. Lefevere, J. Verspreet, K. J. Verstrepen, and C. M. Courtin, "Establishing the relative importance of damaged starch and fructan as sources of fermentable sugars in wheat flour and whole meal bread dough fermentations," *Food Chemistry*, vol. 218, pp. 89–98, 2017, ISSN: 0308-8146. DOI: 10.1016/j.foodchem.2016.09.004.
- [16] J. Pico, M. M. Martinez, M. T. Martin, and M. Gomez, "Quantification of sugars in wheat flours with an HPAEC-PAD method," *Food Chemistry*, vol. 173, pp. 674–681, 2015. DOI: 10.1016/j.foodchem.2014.10.103.

References VII

Flour Power: Modeling the Growth and Decay of Sourdough Starters

> Jonah Keleman Smith

Introduction and Background

Back-slopping Models

Discussion and Conclusions

References

- [17] L. Edelstein-Keshet, "Models for Molecular Events," in *Mathematical Models in Biology*, 1988, pp. 271 –310, ISBN: 978-0-89871-554-5.
- [18] M. G. Gänzle, M. Ehmann, and W. P. Hammes, "Modeling of Growth of Lactobacillus sanfranciscensis and Candida milleri in Response to Process Parameters of Sourdough Fermentation," *Applied and Environmental Microbiology*, vol. 64, no. 7, pp. 2616–2623, 1998. DOI: 10.1128/AEM.64.7.2616–2623.1998.
- [19] S. Tennøe, G. Halnes, and G. T. Einevoll, "Uncertainpy: A python toolbox for uncertainty quantification and sensitivity analysis in computational neuroscience," *Frontiers in Neuroinformatics*, vol. 12, 2018. DOI: 10.3389/fninf.2018.00049.