# Predicting the Popularity of Online News

Nehemiah Solis



# **Project Overview**

### **Online News**

- Go-to source for news and entertainment
- Revenue from "Cost-Per-Click"
- Shares indicate popularity
- More shares = More revenue

### Mashable Inc.

- Digital media website founded in 2005
- 9.7 million Twitter followers
- 7.5 million Facebook fans



## **Problem Statement**

- Raw data indicates a regression problem
- Supervised Learning techniques
  - Regression task
    - Predict the "number of shares"?
  - Classification task
    - Predict whether an article will become popular or not?
- Optimize features to predict "number of shares" or "popularity"



Classification



Regression

# **Dataset Description**

- Originally compiled by K. Fernandes et al.
  - January 2013 January 2015
  - Pre-Processed
- Number of Instances: 39,643
- Number of Attributes: 61
  - 1 target ('shares')
  - 2 non-predictive features ('URL' and 'Days between article publication and dataset acquisition')
  - 58 predictive features
- Attribute Characteristics: Integer, Real

# **Dataset Description**

| Feature                              | Туре    |  |  |
|--------------------------------------|---------|--|--|
| Words                                |         |  |  |
| Number of words in the title         | number  |  |  |
| Number of words in the article       | number  |  |  |
| Average word length                  | number  |  |  |
| Rate of non-stop words               | ratio   |  |  |
| Rate of unique words                 | ratio   |  |  |
| Rate of unique non-stop words        | ratio   |  |  |
| Links                                |         |  |  |
| Number of links                      | number  |  |  |
| Number of Mashable article links     | number  |  |  |
| Minimum, average, and maximum number | .*      |  |  |
| of shares of Mashable links          | number  |  |  |
| Digital Media                        |         |  |  |
| Number of images                     | number  |  |  |
| Number of videos                     | number  |  |  |
| Time                                 |         |  |  |
| Day of the week                      | nominal |  |  |
| Published on a weekend?              | bool    |  |  |

| Target                            | Type   |
|-----------------------------------|--------|
| Number of article Mashable shares | number |

| Feature                                                                                  | Type   |  |  |
|------------------------------------------------------------------------------------------|--------|--|--|
| Keywords                                                                                 |        |  |  |
| Number of keywords                                                                       | number |  |  |
| Worst keyword (min/avg/max. shares)                                                      | number |  |  |
| Average keyword (min/avg/max. shares)                                                    | number |  |  |
| Best keyword (min/avg.max. shares)                                                       | number |  |  |
| Article category (Mashable data channel) non                                             |        |  |  |
| Natural Language Processing                                                              |        |  |  |
| Closeness to top 5 LDA topics                                                            | ratio  |  |  |
| Title subjectivity                                                                       | ratio  |  |  |
| Article text subjectivity score and its                                                  |        |  |  |
| absolute difference to 0.5                                                               | ratio  |  |  |
| Title sentiment polarity                                                                 | ratio  |  |  |
| Rate of positive and negative words                                                      | ratio  |  |  |
| Pos. word rate among non-neutral words                                                   | ratio  |  |  |
| Neg. word rate among non-neautral words                                                  | ratio  |  |  |
| Polarity of positive words (min/avg/max)                                                 | ratio  |  |  |
| Polarity of negative words (min/avg/max)<br>Article text polarity score and its absolute | ratio  |  |  |
| difference to 0.5                                                                        | ratio  |  |  |

# **Data Cleaning**

- Omit unnecessary features
- Variable Type and Missing values
- Outlier Detection



# **Exploratory Analysis**

### **Continuous Variables**

• Quick observations about relationships from scatter plots





# **Exploratory Analysis**



# **Exploratory Analysis**

### **Categorical Variables**

- Day of the week
- Category of article publication





### **Normalization**

- Many features, many ranges of values
- Normalize non-log transformed features

### **Target Transformation**

- Transform 'shares' into popular and unpopular categories
- Used for classification tasks
- Unbounded target values for regression tasks







### **Principal Component Analysis**

• One component explains 76% of total variance

### **Correlation Analysis**

• Are any features correlated with each other?

### **Recursive Feature Elimination Cross-Validation**

- Logistic Regression
  - Truncated feature set from correlation analysis
- Random Forest Classifier
  - Full feature set

### Recursive Feature Elimination with Cross-Validation (Logistic Regression)



### Recursive Feature Elimination with Cross-Validation (Random Forest)



### **Random Forests - Feature Importances**



# Machine Learning Approaches

### **Logistic Regression**



Area under the ROC curve: 0.579

### **Random Forests**



Area under the ROC curve: 0.718

# Machine Learning Approaches

### **Logistic Regression**

# Positive - 548 1,334 - 1200 - 1000 Negative - 489 1,594 - 600

accuracy=0.5402; misclass=0.4598

### **Random Forests**





### **Logistic Regression**

### **Random Forests**

|              | precision | recall | f1-score |              | precision | recall | f1-score |
|--------------|-----------|--------|----------|--------------|-----------|--------|----------|
| 0            | 0.53      | 0.29   | 0.38     | 0            | 0.67      | 0.59   | 0.63     |
| 1            | 0.54      | 0.77   | 0.64     | 1            | 0.66      | 0.73   | 0.70     |
| accuracy     |           |        | 0.54     | accuracy     |           |        | 0.67     |
| macro avg    | 0.54      | 0.53   | 0.51     | macro avg    | 0.67      | 0.66   | 0.66     |
| weighted avg | 0.54      | 0.54   | 0.51     | weighted avg | 0.67      | 0.67   | 0.66     |

Accuracy of Logistic Regression: 0.5402

Accuracy of Random Forest Classifier: 0.6661

# Machine Learning Approaches

|                                | OLS         | Lasso       |
|--------------------------------|-------------|-------------|
| R-squared                      | 0.013       | 0.013       |
| Mean Absolute Error            | 3040.58     | 3105.64     |
| Mean Squared Error             | 71399393.89 | 66194782.83 |
| Root Mean Squared Error        | 8449.81     | 8136.02     |
| Mean Absolute Percentage Error | 229.22      | 305.4       |

# Machine Learning Approaches

|             | Regression                                                                                                    | Classification                                                      |
|-------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Models Used | <ul> <li>Logistic Regression</li> <li>Ordinary Least         Squares         Lasso Regression     </li> </ul> | <ul><li>Random Forest</li><li>Support Vector<br/>Machines</li></ul> |
| Best Model  | Logistic Regression                                                                                           | Random Forest                                                       |

### Conclusion and Recommendations

- Regression Models that intend to predict "number of shares" performed poorly.
- Classification Models that predict "popular articles" performed well.
  - Random Forest performed the best
    - Precision = 0.67
    - Recall = 0.67
- Features to focus on to improve popularity
  - Increase
  - Decrease
  - Day of the Week
  - Article Category
- Future Work

# **Questions?**

