AULA 17A: ESPAÇOS DE MEDIDA ABSTRATOS

Construímos uma família de subconjuntos do espaço euclidiano chamados de conjuntos Lebesque mensuráveis e definimos a medida de tais conjuntos; introduzimos uma classes geral de funções no espaço euclidiano chamadas de funções Lebesgue mensuráveis e definimos um conceito de integração para tais funções.

O objetivo deste capítulo é desenvolver uma teoria semelhante em um cenário abstrato.

σ -ÁLGEBRAS E ESPAÇOS MENSURÁVEIS

Definição 1. Dado um conjunto X, uma σ -álgebra sobre X é uma coleção \mathcal{B} de subconjuntos de X tal que

- $(1) \varnothing \in \mathcal{B}$
- (2) se $E \in \mathcal{B}$ então $E^{\complement} \in \mathcal{B}$, (3) se $\{E_n : n \ge 1\} \subset \mathcal{B}$ então $\bigcup_{n \ge 1} E_n \in \mathcal{B}$.

Um par (X, \mathcal{B}) , onde X é um conjunto (o espaço ambiente) e \mathcal{B} é uma σ -álgebra sobre X é chamado de espaço mensurável.

Os elementos de \mathcal{B} são ditos conjuntos \mathcal{B} -mensuráveis ou simplesmente, mensuráveis.

Observação 1. Note que o espaço ambiente $X=\varnothing^{\complement}\in\mathcal{B}$. Além disso, \mathcal{B} é fechada também com respeito a interseções enumeráveis: se $\{E_n : n \geq 1\} \subset \mathcal{B}$ então

$$\bigcap_{n\geq 1} E_n = \left(\bigcup_{n\geq 1} E_n^{\complement}\right)^{\complement} \in \mathcal{B}.$$

A seguir apresentamos alguns exemplos gerais de σ -álgebras.

Exemplo 1 (de σ -álgebras). Seja X um espaço ambiente.

- (1) A σ -álgebra trivial: $\mathcal{B} = \{\emptyset, X\}$.
- (2) A σ -álgebra discreta: $\mathcal{B} = 2^X = \{E : E \subset X\}.$
- (3) A σ-álgebra atômica. Dada uma partição

$$X = \bigsqcup_{\alpha \in \mathcal{I}} A_{\alpha}$$

de X em "átomos", seja

$$\mathcal{B} := \left\{ igcup_{lpha \in \mathcal{J}} A_lpha \colon \mathcal{J} \subset \mathcal{I}
ight\} \,.$$

Então \mathcal{B} é uma σ -álgebra (atômica). A prova deste fato é um exercício. Note que a σ -álgebra trivial é atômica, que corresponde à partição

$$X = \emptyset \sqcup X$$
.

enquanto a σ -álgebra discreta também é atômica, onde todos os singletons são átomos:

$$X = \bigsqcup_{x \in X} \{x\} .$$

(4) A σ -álgebra diádica de determinada geração. Dado $n \geq 0$, considere a partição de reta real \mathbb{R} em intervalos diádicos de geração n,

$$\mathbb{R} = \bigsqcup_{j \in \mathbb{Z}} \left[\frac{j}{2^n}, \, \frac{j+1}{2^n} \right)$$

e a σ -álgebra atômica $\mathfrak{D}_n(\mathbb{R})$ correspondente.

A mesma construção pode ser feita em \mathbb{R}^d , $d \geq 1$, usando caixas diádicas em vez de intervalos diádicos.

Geração de σ -álgebras. Dadas duas σ -álgebras \mathcal{B} e \mathcal{B}' , se $\mathcal{B} \subset \mathcal{B}'$ dizemos que \mathcal{B}' é mais grosseira do que \mathcal{B}' .

Por exemplo, para todo $n \in \mathbb{N}$,

$$\mathfrak{D}_n(\mathbb{R}) \subset \mathfrak{D}_{n+1}(\mathbb{R}).$$

É fácil verificar que a interseção de qualquer família $\{\mathcal{B}_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ de σ -álgebras sobre X também é uma σ -álgebra sobre X, o que nos permite introduzir o seguinte conceito.

Definição 2. Dada uma coleção \mathcal{F} de subconjuntos de um espaço ambiente X, seja

$$\sigma(\mathcal{F}) := \bigcap \{ \mathcal{B} \colon \mathcal{B} \supset \mathcal{F}, \, \mathcal{B} \text{ \'e uma } \sigma - \text{\'algebra} \}$$
.

Então $\sigma(\mathcal{F})$ é uma σ -álgebra sobre X chamada a σ -álgebra gerada por \mathcal{F} . Ela é a menor (ou a mais grosseira) σ -álgebra que contém a coleção \mathcal{F} .

Note que $2^X\supset \mathcal{F}$ e como 2^X é uma σ -álgebra, a interseção de σ -álgebras acima é bem definida.

Definição 3 (a σ -álgebra de Borel). Denotamos por $\mathcal{B}(\mathbb{R}^d)$ a σ -álgebra gerada pela topologia do espaço euclidiano, ou seja,

$$\mathcal{B}(\mathbb{R}^d) := \sigma \left\{ U \subset \mathbb{R}^d \colon U \text{ aberto} \right\} .$$

Mais geralmente, dado um espaço topológico qualquer (X, \mathcal{T}) ,

$$\mathcal{B}(X) := \sigma(\mathcal{T}) = \sigma \{ U \subset X : U \text{ aberto} \}$$

é chamada a σ -álgebra de Borel do espaço (X, \mathcal{T}) .

Os conjuntos $E \in \mathcal{B}(X)$ são chamados de conjuntos borelianos.

Exemplo 2 (de conjuntos borelianos). Todos os conjuntos abertos, fechados, do tipo F_{σ} (i.e., uniões enumeráveis de conjuntos fechados), do tipo G_{δ} (i.e., interseções enumeráveis de conjuntos abertos) são conjuntos borelianos.

O mecanismo padrão para conjuntos. Considere uma coleção \mathcal{F} de subconjuntos de X é a σ -álgebra $\sigma(\mathcal{F})$ gerada por \mathcal{F} . Dada uma propriedade P sobre subconjuntos de X, para provar a afirmação

$$P(E)$$
 vale para todo $E \in \sigma(\mathcal{F})$

basta provar que:

- (1) P(E) vale para todo $E \in \mathcal{F}$;
- (2) A coleção

$$\mathcal{A} := \{ E \subset X \colon P(E) \text{ vale} \}$$

é uma σ -álgebra, ou seja,

- $P(\emptyset)$ vale,
- se P(E) vale, então $P(E^{\complement})$ vale,
- se $P(E_n)$ vale para todo $n \ge 1$ então $P(\bigcup_{n>1} E_n)$ vale.

Proposição 1. Sejam X e Y dois espaços topológicos e seja $f: X \to Y$ uma função contínua. Então para todo conjunto boreliano $E \in \mathcal{B}(Y)$, sua pré-imagem $f^{-1}(E) \in \mathcal{B}(X)$, i.e., ele é um $conjunto\ boreliano\ em\ X$.

Demonstração. Para provar a afirmação

$$f^{-1}(E) \in \mathcal{B}(X)$$
 para todo $E \in \mathcal{B}(Y)$

usamos o mecanismo padrão para conjuntos, lembrando que $\mathcal{B}(Y)$ é a σ -álgebra gerada pelos conjuntos abertos em Y.

- (1) Para todo conjunto aberto E in Y, como f é contínua, $f^{-1}(E)$ é aberto, então boreliano, ou seja, ele pertence a $\mathcal{B}(X)$.
- (2) Seja

$$\mathcal{A} := \left\{ E \in \mathcal{B}(Y) \colon f^{-1}(E) \in \mathcal{B}(X) \right\} .$$

Tem-se

- $f^{-1}(\varnothing) = \varnothing \in \mathcal{B}(X).$
- Se $E \in \mathcal{A}$ então $f^{-1}(E) \in \mathcal{B}(X)$. Como $\mathcal{B}(x)$ é uma σ -álgebra, $f^{-1}(E)^{\complement} \in \mathcal{B}(X)$ também. Mas $f^{-1}(E^{\complement}) = f^{-1}(E)^{\complement} \in \mathcal{B}(X)$, mostrando que $E^{\complement} \in \mathcal{A}$. • Se $\{E_n : n \geq 1\} \subset \mathcal{A}$ então $f^{-1}(E_n) \in \mathcal{B}(X)$ para todo $n \geq 1$. Como $\mathcal{B}(X)$ é uma
- σ -álgebra, segue que

$$f^{-1}(\bigcup_{n\geq 1} E_n) = \bigcup_{n\geq 1} f^{-1}(E_n) \in \mathcal{B}(X),$$

mostrando que $\bigcup_{n>1} E_n \in \mathcal{A}$.

Observação 2. A σ -álgebra $\mathcal{B}(\mathbb{R}^d)$ de conjuntos borelianos do espaço euclidiano é estritamente mais grosseira que a de todos os conjuntos mensuráveis à Lebesgue, ou seja

$$\mathcal{B}(\mathbb{R}^d) \subsetneq \mathcal{L}(R^d)$$
.

De fato, todo conjunto aberto é Lebesgue mensurável, então a σ -álgebra $\mathcal{L}(\mathbb{R}^d)$ contém a σ -álgebra $\mathcal{B}(\mathbb{R}^d)$ geradas pelos conjuntos abertos.

O exercício seguinte fornece um exemplo de conjunto não boreliano mas ainda mensurável à Lebesgue. A construção descrita abaixo, baseada no conjunto de Cantor e na função "escada do diabo" de Cantor, será usada para obter vários outros contraexemplos.

Exercício 1. Sejam $\mathcal{C} \subset [0,1]$ o conjunto de Cantor e $c:[0,1] \to [0,1]$ a função de Cantor, Considere a função

$$f: [0,1] \to [0,2], \quad f(x) = x + c(x).$$

Então,

- (i) f é uma função contínua, sobrejetiva e (estritamente) crescente, portanto é bi-contínua.
- (ii) A imagem do conjunto de Cantor pela função f é mensurável e

$$m(f(\mathcal{C})) = 1.$$

Por isso (usando um exercício anterior) existe um conjunto $n\tilde{a}o$ mensurável $\mathcal{N} \subset f(\mathcal{C})$. (iii) Seja

$$E := f^{-1}(\mathcal{N}) \subset \mathcal{C}.$$

Então E é mensurável à Lebesgue mas não é um conjunto boreliano.

Proposição 2. Cada uma das seguintes famílias de conjuntos gera a σ -álgebra de Borel $\mathcal{B}(\mathbb{R}^d)$:

- (i) A família de conjuntos abertos.
- (ii) A família de conjuntos fechados.
- (iii) A família de conjuntos compactos.
- (iv) A família de bolas abertas (ou fechadas).
- (v) A família de caixas (ou de caixas diádicas).

Demonstração. Exercício.

Medidas abstratas

Definição 4. Seja (X, \mathcal{B}) um espaço mensurável. Uma função

$$\mu \colon \mathcal{B} \to [0, \infty]$$

é chamada de medida (σ -aditiva) em (X, \mathcal{B}) se

- (i) $\mu(\emptyset) = 0$ e
- (ii) para toda coleção mensurável de conjuntos mensuráveis disjuntos $\{E_n \colon n \geq 1\} \subset \mathcal{B}$, temos

$$\mu\left(\bigcup_{n\geq 1} E_n\right) = \sum_{n=1}^{\infty} \mu(E_n).$$

A tripla (X, \mathcal{B}, μ) , consistindo em um conjunto X, uma σ -álgebra \mathcal{B} sobre X e uma medida μ em (X, \mathcal{B}) é chamada de *espaço de medida*.

Em seguida apresentamos alguns exemplos de espaços de medida.

Exemplo 3. O espaço da medida de Lebesgue (\mathbb{R}^d , $\mathcal{L}(\mathbb{R}^d)$, m). A medida m é também referida como a medida de volume.

Um outro exemplo comum é o espaço $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), m)$ da medida de Borel, ou seja, o espaço de Borel munido com a restrição da medida de volume.

Exemplo 4. A medida trivial em (X, \mathcal{B}) : $\mu(E) = 0$ para todo $E \in \mathcal{B}$.

Exemplo 5 (a medida de Dirac). Seja (X, \mathcal{B}) um espaço mensurável qualquer e seja $x \in X$ um ponto. A medida de Dirac com centro em x é dada por

$$\delta_x \colon \mathcal{B} \to [0, \infty), \quad \delta_x(E) = \begin{cases} 1, & \text{se } x \in E \\ 0, & \text{se } x \notin E \end{cases} = \mathbf{1}_E(x).$$

Note que a função δ_x é, de fato, uma medida:

- (i) $\delta_x(\varnothing) = \mathbf{1}_{\varnothing}(x) = 0$.
- (ii) Se $\{E_n : n \geq 1\} \subset \mathcal{B}$ são disjuntos, então

$$\delta_x \left(\bigsqcup_{n \ge 1} E_n \right) = \mathbf{1}_{\bigsqcup_{n \ge 1} E_n} (x)$$
$$= \sum_{n=1}^{\infty} \mathbf{1}_{E_n} (x) = \sum_{n=1}^{\infty} \delta_x (E_n).$$

Exemplo 6 (soma de medidas de Dirac ou de pontos de massa). Seja (X, \mathcal{B}) um espaço mensurável. Dados pontos $x_1, \ldots, x_k \in X$ e números $c_1, \ldots, c_k \in [0, \infty]$, seja

$$\mu := \sum_{i=1}^k c_i \, \delta_{x_i} \, .$$

Então μ é uma medida em (X, \mathcal{B}) (exercício) chamada de soma de medidas de Dirac com massa concentrada em x_1, \ldots, x_k e pesos c_1, \ldots, c_k .

A ideia é que além do volume (ou área, ou comprimento), a massa de um objeto também pode ser considerada como uma medida. Uma soma de medidas de Dirac corresponde ao caso de uma coleção discreta de centros de massa.

Exemplo 7. Mais geralmente, dada uma sequência $\{\mu_n\}_{n\geq 1}$ de medidas em (X,\mathcal{B}) e uma sequência $\{c_n\}_{n\geq 1}$ de números não negativos,

$$\mu := \sum_{n=1}^{\infty} c_n \, \mu_n$$

é uma medida em (X, \mathcal{B}) (exercício).

Exemplo 8 (medida de contagem). Seja (X, \mathcal{B}) um espaço mensurável. A medida de contagem é a função $\#: \mathcal{B} \to [0, \infty], \#(E) =$ a cardinalidade de E se E for finito e $\#(E) = \infty$ se E for um conjunto infinito.

Em seguida listamos algumas propriedades básicas de uma medida. Começamos com uma notação útil.

Notação. Dada uma sequência $\{E_n\}_{n\geq 1}$ de conjuntos, usamos as seguintes notações:

- $E_n \nearrow E$ significa o seguinte: $\forall n \ge 1, E_n \subset E_{n+1} \in \bigcup_{n>1} E_n = E$.
- $E_n \searrow E$ significa o seguinte: $\forall n \geq 1, E_n \supset E_{n+1} \in \bigcap_{n \geq 1} E_n = E$.

Proposição 3. Seja (X, \mathcal{B}, μ) um espaço de medida. As seguintes afirmações são válidas.

- (i) (monotonicidade) Sejam $E, F \in \mathcal{B}$. Se $E \subset F$ então $\mu(E) \leq \mu(F)$.
- (ii) (σ -subaditividade) Se $\{E_n : n \geq 1\} \subset \mathcal{B}$ então

$$\mu\left(\bigcup_{n\geq 1} E_n\right) \leq \sum_{n=1}^{\infty} \mu(E_n).$$

- (iii) (convergência monótona para conjuntos) Sejam $\{E_n : n \geq 1\} \subset \mathcal{B} \ e \ E \in \mathcal{B}$.
 - Se $E_n \nearrow E$ então $\mu(E_n) \to \mu(E)$ quando $n \to \infty$.
 - Se $E_n \searrow E$ e $\mu(E_1) < \infty$ então $\mu(E_n) \to \mu(E)$ quando $n \to \infty$.

Demonstração. O argumento é idêntico ao da medida de Lebesgue em \mathbb{R}^d e é deixado com exercício.

Da mesma forma que no caso da medida de Lebesgue, introduzimos os seguintes conceitos.

Definição 5. Seja (X, \mathcal{B}, μ) um espaço de medida. Um conjunto mensurável $E \in \mathcal{B}$ é chamado μ -negligenciável, ou de medida nula se $\mu(E) = 0$.

Uma propriedade P(x) é válida para quase todo ponto $x \in X$ com respeito à medida μ , ou, de uma forma mais concisa, dizemos que P(x) vale para μ -q.t.p. $x \in X$ se o conjunto

$$\{x \in X \colon P(x) \text{ não \'e v\'alida}\}$$

é \mathcal{B} -mensurável e de medida nula.

Observação 3. Em geral, um subconjunto de um conjunto negligenciável $n\tilde{a}o$ e necessariamente mensurável. Por exemplo, considerando o espaço da medida de Borel $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$, o conjunto $E \subset \mathcal{C}$ do Exercício 1 não é boreliano, embora o conjunto de Cantor \mathcal{C} seja boreliano e $m(\mathcal{C}) = 0$.

Esta observação motiva a seguinte definição.

Definição 6. Um espaço de medida (X, \mathcal{B}, μ) é dito *completo* se todo conjunto de um conjunto μ -negligenciável é mensurável, ou seja,

se
$$E \in \mathcal{B}$$
, $\mu(E) = 0$ e $F \subset E$ então $F \in \mathcal{B}$.

Por exemplo, $(\mathbb{R}^d, \mathcal{L}(\mathbb{R}^d), m)$ é completo, mas $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), m)$ não é completo.