

	EG	Schema	Ecken	Kanten	Flächen	Name
1	3	3,3,3	4	6	4	Tetraeder
2	3	4,4,4	8	12	6	Hexaeder
3	3	5,5,5	20	30	12	Dodekaeder
4	4	3,3,3,3	6	12	8	Oktaeder
5	5	3,3,3,3,3	12	30	20	Ikosaeder

Tabelle 1: Die fünf Platonischen Polyeder

	EG	Schema	Ecken	Kanten	Flächen	Name
1	3	3,8,8	24	36	14	abgestumpftes Hexaeder
2	3	3,6,6	12	18	8	abgesumpftes Tetraeder
3	3	3,10,10	60	90	32	abgestumpftes Dodekader
4	3	5,6,6	60	90	32	abgestumpftes Ikosaeder
5	3	4,6,6	24	36	14	abgestumpftes Oktaeder
6	3	4,6,8	48	72	26	großes Rhombenkuboktaeder
7	3	4,6,10	120	180	62	großes Rhombenikosidodekaeder
8	4	3,4,3,4	12	24	14	Kuboktaeder
9	4	3,5,3,5	30	60	32	Ikosidodekaeder
10	4	3,4,4,4	24	48	26	kleines Rhombenkuboktaeder
11	4	3,4,5,4	60	120	62	kleines Rhombenikosidodekaeder
12	5	3,3,3,3,4	24	60	38	Cubus simus
13	5	3,3,3,3,5	60	150	92	Dodekaedron simum

Tabelle 2: Die dreizehn Archimedischen Polyeder

n	D(P) OV	D(P) MV	$\frac{1}{\sqrt{n}}$	$\frac{2\sqrt{2}}{\sqrt{n}}$	Packungsdichte
2	2,0	*	0,707	2,0	0,5
3	$\sqrt{3}$	*	0,577	1,633	0,646
4	$\sqrt{2}$	1,411	0,5	$\sqrt{2}$	0,686
5	1,172	1,1747	0,447	1,265	0,6826
6	1,0	0,998	0,408	1,154	0,666
7	1,0	1,0	0,377	1,069	0,777
8	0,86	0,846	0,35	1,0	0,7233
9	0,764	0,738	0,33	0,942	0,6876
10	0,7047	0,7	0,31	0,89	0,6788
11	0,67	0,673	0,3	0,85	0,6926
12	0,64	0,62	0,288	0,816	0,7052
13	0,61	0,5929	0,277	0,784	0,71
14	0,58	0,587	0,267	0,756	0,7075
15	0,548	0,5415	0,258	0,73	0,6938

Tabelle 3: Messungen des minimalen Abstandes und Berechnung der Packungsdichte im Kreis

n	D(P) OV	D(P) MV	$\frac{1}{\sqrt{n}}$	$\frac{2\sqrt{2}}{\sqrt{n}}$	Packungsdichte
16	0,524	0,525	0,25	0,707	0,6896
17	0,52	0,523	0,24	0,686	0,7238
18	0,509	0,51	0,235	0,66	0,74
19	0,48	0,5076	0,23	0,64	0,7117
20	$0,\!45$	0,4743	0,223	0,632	0,6747
26	0,39	0,387	0,196	0,554	0,6923
32	0,34	0,347	0,176	0,5	0,6994
40	0,307	0,3125	0,158	0,447	0,73
50	0,265	0,271	0,141	0,4	0,712
60	0,245	0,246	0,129	0,365	0,7197
70	0,22	0,225	0,119	0,338	0,7158
80	0,204	0,2059	0,112	0,316	0,7
90	0,194	0,1955	0,105	0,298	0,7136
100	0,18	0,183	0,1	0,28	0,7027

Tabelle 4: Messungen des minimalen Abstandes und Berechnung der Packungsdichte im Kreis

n	D(P) OV	D(P) MV	$\frac{1}{\sqrt[3]{n}}$	$\frac{2\sqrt[3]{3}}{\sqrt[3]{n}}$	$\frac{2\sqrt{3}}{\sqrt{n}}$	Dichte
2	2,0	**	0,79	2,28	2,45	0,999
3	$\sqrt{3}$	**	0,69	2,0	2,0	0,75
4	1,629	1,63	0,63	1,817	1,732	0,841
5	$\sqrt{2}$	1,4127	0,58	1,68	1,55	0,7322
6	$\sqrt{2}$	1,408	0,55	1,587	$\sqrt{2}$	0,8786
7	1,244	1,244	0,52	1,507	1,309	0,7594
8	1,1469	1,182	0,5	1,44	1,224	0,7415
9	1,137	1,14	0,48	1,38	1,154	0,8025
10	1,07	1,0721	0,46	1,33	1,095	0,779
11	1,038	1,035	0,44	1,29	1,044	0,7987
12	1,0	1,034	0,43	1,25	1,0	0,864
13	0,93	0,935	0,425	1,22	0,96	0,754
14	0,911	0,9	0,415	1,196	0,925	0,7683
15	0,857	0,858	0,405	1,169	0,894	0,7252

Tabelle 5: Messungen des minimalen Abstandes und Berechnung der sphärischen Packungsdichte auf der Kugeloberfläche

n	D(P) OV	D(P) MV	$\frac{1}{\sqrt[3]{n}}$	$\frac{2\sqrt[3]{3}}{\sqrt[3]{n}}$	$\frac{2\sqrt{3}}{\sqrt{n}}$	Dichte
16	0,858	0,856	0,396	1,144	0,866	0,7735
17	0,82	0,826	0,38	1,12	0,84	0,7587
18	0,793	0,809	0,38	1,1	0,8164	0,7691
19	0,789	0,778	0,37	1,08	0,794	0,77
20	0,764	0,747	0,36	1,06	0,774	0,7583
26	0,673	0,6762	0,337	0,973	0,679	0,7581
32	0,614	0,586	0,31	0,9	0,6123	0,7726
40	0,537	0,536	0,29	0,84	0,547	0,7344
50	0,478	0,438	0,27	0,783	0,489	0,7245
60	0,433	0,412	0,25	0,73	0,447	0,115
80	0,372	0,3696	0,23	0,66	0,387	0,698
100	0,325	0,3223	0,215	0,621	0,34	0,6645

Tabelle 6: Messungen des minimalen Abstandes und Berechnung der sphärischen Packungsdichte auf der Kugeloberfläche

	G:			
n	Start-Polyeder	stabiles Polyeder	minim. Abstand	durch. Eckengrad
2	Pol-Gegenpol	Pol-Gegenpol	2	1
2	beliebig	Pol-Gegenpol	≈ 2	2
3	regel. Dreieck	regel. Dreieck	$\sqrt{3}$	2
3	beliebig	regel. Dreieck	$\approx \sqrt{3}$	2
4	regel. Quadrat	regel. Quadrat	$\sqrt{2}$	2
4	regul. Tetraeder	regul. Tetraeder	1,6329	3
4	beliebig	regul. Tetraeder	$\approx 1,6329$	3
5	Pyramide	Pyramide	$\sqrt{2}$	3,2
5	beliebig	\approx Pyramide	$\approx \sqrt{2}$	3,2 ; 3,6
6	Oktaeder	Oktaeder	$\sqrt{2}$	4
6	Prisma	Prisma	1,3093	3
6	beliebig	≈ Oktaeder (Prisma)	$\approx < \sqrt{2}$	(3) 4
8	Würfel	Würfel	1,1547	3
8	Antiprisma	Antiprisma	1,2155	4
8	beliebig	≈ Antiprisma	$\approx < 1,2155$	4 - 4,5
11	Krone	Krone	1,051	4,54
11	beliebig	≈ Krone	$\approx < 1,051$	4,54 - 4,72
12	Ikosaeder	Ikosaeder	1,051	5
12	Kuboktaeder	Kuboktaeder	1,0	4
12	abgest. Tetraeder	\approx Ikosaeder	$0.8528 \rightarrow 1.0325$	$3 \rightarrow 5$
12	beliebig	\approx Ikosaeder	$\approx < 1,051$	5
14	Pyramidenwürfel	Pyramidenwürfel	0,9194	5,1428
14	beliebig	Pyramidenwürfel?	≈< 0,9194	5 ; 5,1428 ;
20	Dodekaeder	Dodekaeder	0,7136	3
20	beliebig	kein Dodekaeder	> 0,7136	> 3 (5, 1-5, 3)
24	RhombenKE (RKE)	RKE	0,7148	4
24	abgesch. Würfel (CS)	CS	0,7442	5
24	abgest. Würfel	RKE, CS?	$0,5621 \to 0,688$	$3 \to 5{,}083$
24	abgest. Oktaeder	RKE, CS?	$0,6324 \rightarrow 0,693$	$3 \rightarrow 5,25$
24	beliebig	RKE, CS?	$(\approx) < 0,7148$	5 - 6
30	Ikosidodekaeder (ID)	ID	0,618	4
30	beliebig	kein ID	< 0,618 <	>4 (5,0-5,3)
60	abgest. Ikosaeder	abgest. Ikosaeder	0,412	3
60	beliebig	kein abgest. Ikosaeder	> 0,412	> 3 (5-6)

Tabelle 7: stabile Polyeder

Abbildung 1: Die fünf Platonischen Körper

Abbildung 2: Die 13 Archimedischen Körper