Math 449: Numerical Methods Lecture 04

Sep 8th, 2017

Today's topic: Relaxation Method

Last time:

$$g: [a,b] \longrightarrow [a,b]$$

$$g: [a,b] \longrightarrow [a,b]$$
 $3 = g(5)$ is stable if $|g'(5)| < 1$

Relaxation:

relaxation parameter

instead of
$$x_{k+1} = g(x_k)$$
 take $x_{k+1} = (1-\lambda)x_k + \frac{\lambda}{\lambda}g(x_k) = g_{\lambda}(x_k)$ $\lambda \in (0,1) \rightarrow \text{"slow down"}$

$$+ \frac{\lambda}{\lambda} g(x_k) = g_{\lambda}(x_k) \qquad \lambda \in (0,1) \to \text{"slow down"}$$

$$A \text{void over-shooting} \qquad \lambda > 1 \to \text{"accelerate"}$$

If
$$g'(\xi) \neq 1$$
, then $\lambda = \frac{1}{1 - g'(\xi)} \implies g'_{\lambda}(\xi) = 0$

so & is a stable fixed pt of ga

want to solve f(x) = 0

"Naive Choice" g(x) = x - f(x)

Fixed pt 3 of g are roots of f.

$$g_{\lambda}(x) = (1-\lambda)x + \lambda(x-f(x)) = x - \lambda f(x)$$

This is the relaxation method for root finding.

$$g'(x) = 1 - f'(x)$$

$$g'(\xi) = 1 - f'(\xi)$$

$$g'(\xi) = 1 \Leftrightarrow f'(\xi) = 0$$

If
$$f'(\xi) \neq 0$$
, optimal choice is $\lambda = \frac{1}{1 - g'(\xi)} = \frac{1}{f'(\xi)}$

$$\Rightarrow g_{\lambda}(x) = x - \frac{f(x)}{f'(\xi)}$$

Problem: We don't know & yet.

Generalized Relaxation Method: $x_{h+1} = x_h - \lambda(x_h) f(x_h)$

Obvious Choice
$$\lambda(x) = \frac{1}{f'(x)}$$

Obvious Choice
$$\lambda(x) = \frac{1}{f'(x)}$$
 if f continuously differentiable, $\lim_{x \to \xi} \lambda(x) = \frac{1}{f'(\xi)}$ have to know

Newton's Method:
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 Assume $f'(x_k) \neq 0 \quad \forall k$

Example:
$$f(x) = x^2 - y$$

$$f'(x) = 2x$$

Newton's Method
$$x_{k+1} = x_k - \frac{(x^2 - y)}{2x_k}$$

$$= x_k - \frac{x_k}{2x_k} + \frac{y}{2x_k}$$

$$= \frac{1}{2}(x_k + y) \qquad \text{Heron's Method}$$

Interpretation of Newton's Method.

Taylor's Theorem (linearization about Zk)

$$f(x_k + \Delta x_k) \approx f(x_k) + f'(x_k) \Delta x_k = 0$$

Near by

Want to "move" by Δx_k to get closer to a root of f .

Solve for
$$\triangle x_k$$
 so that $f(x_k) + f'(x_k) \triangle x_k = 0$

$$\Rightarrow \quad \Delta x_h = -\frac{f(x_h)}{f'(x_h)}$$

$$x_{k+1} = root$$
 of linearization to f at x_k

= "tangential line" to f at $(x_k, f(x_k))$

Rate of Convergence

Def.
$$x_k \to \xi$$
 converges at least linearly if \exists a sequence $\mathcal{E}_k \to 0$ 5.t.

and
$$\frac{\mathcal{E}_{h+1}}{\mathcal{E}_k} \rightarrow \mu \in (0,1)$$
 $\mu: error shrinking factor$

 $x_k \rightarrow \xi$ with order at least 9 (9>1)

if
$$\frac{\mathcal{E}_{k+1}}{\mathcal{E}_{k}^{l}} \rightarrow \mu > 0$$
 (not necessarily <1)

drop "at least" when $\mathcal{E}_k = | \mathbf{x}_k - \mathbf{x}_k |$ is actual error

Linear convergence

For large enough
$$k$$
, $\frac{\mathcal{E}_{k+1}}{\mathcal{E}_k} \approx \mu$

$$\mathcal{E}_{k+1} \approx \mu \mathcal{E}_k$$
 μ is "shrinking" factor for error.

order q convergence:

For large
$$k$$
, $\mathcal{E}_{k+1} \approx \mu \mathcal{E}_{k}^{2} = (\mu \mathcal{E}_{k}^{2-1}) \mathcal{E}_{k}$
shrinking factor

Don't need $\mu < 1$, for this case, because $\mathcal{E}_h \to 0 \implies (\mu \mathcal{E}_h^{q-1}) \to 0$

So $ME_k^{q-1} < 1$ for large enough k.

Example.
$$x_k = a^{-k} \longrightarrow 0$$
 $\lim_{k \to \infty} a^{-k} = 0 = \overline{3}$ Another Example $x_k = y^{-k}$

Let
$$\mathcal{E}_{\mathbf{k}} = |x_{\mathbf{k}} - \mathbf{z}| = 2^{-\mathbf{k}}$$

$$\frac{\mathcal{E}_{\mathbf{k}+1}}{\mathcal{E}_{\mathbf{k}}} = \frac{2^{-\mathbf{k}-1}}{2^{-\mathbf{k}}} = \frac{1}{2} \Rightarrow \frac{1}{2} = \mu$$

So $x_k \longrightarrow 0$ linearly

$$x^{k} = 4^{-k}$$

$$\mathcal{E}_{k} = |x_{k} - \xi| = 4^{-k}$$

$$\frac{\mathcal{E}_{k+1}}{\mathcal{E}_{k}} = \frac{4^{-k-1}}{4^{-k}} = 4 = \mu$$

Also linear convergence, just co/ smeller je.

Example
$$x_R = z^{-2k} \longrightarrow 0 = z$$
 $\frac{1}{2}, \frac{1}{4}, \frac{1}{16}, \frac{1}{128}, ...$

$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{16}$, $\frac{1}{128}$, ...

Shrinking accelerates at each step.

$$\frac{\mathcal{E}_{k+1}}{\mathcal{E}_{k}} = \frac{2^{-2^{k+1}}}{2^{-2^{k}}} = 2^{-2^{k}-2^{k+1}} = 2^{2k(1-2)} = 2^{2k} \Rightarrow 0 \notin (0,1).$$
Super convergence...

$$\frac{\mathcal{E}_{k+1}}{\mathcal{E}_{k}^{2}} = \frac{2^{-2^{k+1}}}{(2^{-2^{k}})^{2}} = \frac{2^{-2^{k+1}}}{2^{-2^{k+1}}} = 1 \rightarrow \mu \qquad \text{orden 2} \quad \text{quadrotic convergence.}$$