|f(x)-f(y)|<arepsilon אז $|x-y|<\delta$ באם כך מיים $\delta>0$ קיים כלומר לכל שווה, רציפה במידה שווה) תהי f רציפה במידה שווה, כלומר לכל $\delta>0$ קיים $\varepsilon>0$ קיים $\delta>0$ כך שאם אז רציפה שווה) תהי f רציפה במידה שווה, כלומר לכל $\delta>0$ קיים $\delta>0$ קיים $\delta>0$ כך שאם f רציפה במידה שווה, תהי f רציפה במידה שווה, כלומר לכל f(x)-f(y)|<arepsilon

טענה 2.3 פונקציה $\mathbb{R}:I o\mathbb{R}$ רציפה שווה אם ורק אם היא רציפה חסומה במידה שווה.

תציפות של הרציפות. בפרט $\delta>0$ ומעידה על המקיימת את המקיימת המידה על היהי ויהי $\delta>0$ ומעידה שווה הרציפות. בפרט $\delta>0$ ומעידה על רציפות במידה שווה.

נניח ש־ $\delta>1$ ש־ $\delta>1$ ש־לכן נניח ש־ $\delta>1$ אז סיימנו, ולכן נניח ש־ $\delta>0$ ותהי המקיימת את טענת הרציפות. אם אז סיימנו, ולכן נניח ש־ $\delta>0$ ותהי $\varepsilon>0$ ותהי $\delta>0$ ותהי מתקיים,

$$\forall x, y \in I, |x - y| < \delta_1 \implies |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

. חסום ערך וזהו הווה, וזהו במידה במידה על נכונות נכונות איים. δ_1

בהתאם |f(x)-f(y)|<arepsilon גם אבל אז גם אבל או גם $|x-y|<rac{1}{2}$ בהכרח בהכרח בהכרח אם אבל אז גם $\delta_1=\min\{\delta,rac{1}{2}\}$ התאם להגדרה. נוכל אם כל להניח בלי הגבלת הכלליות ש $\delta\leqrac{1}{2}$ ולכן בהכרח,

$$1 - \delta^2 < 1$$