

3АНЯТИЕ 1.8

МЕТРИКИ КАЧЕСТВА МОДЕЛИ ИПЕРЕОБУЧЕНИЕ

Артур Сапрыкин

ЦЕЛИ ЗАНЯТИЯ

В КОНЦЕ ЗАНЯТИЯ ВЫ:

-будете знать как проводить кросс-валидацию модели;

-сможете оценить качество разных версий модели по AUC;

–подберете параметры модели для борьбы с переобучением.

О ЧЁМ ПОГОВОРИМ И ЧТО СДЕЛАЕМ

- 1. Обучающая и тестовая выборка, кросс-валидация: немного теории;
- 2. Метрики качества: accuracy, precision, recall: определения и практическое задание;
- 3. Смещение и разброс (bias-variance tradeoff): немного теории;
- 4. Признаки переобучения и регуляризация: основы и практическое задание.

ОБУЧАЮЩАЯ, ТЕСТОВАЯ ВЫБОРКА И ПЕРЕОБУЧЕНИЕ

Обучающая выборка

Содержит значения признаков и целевой переменной.

На обучающей выборке строим модель.

ТЕСТОВАЯ ВЫБОРКА

Содержит значения признаков, по которым необходимо предсказать значение целевой переменной.

Оцениваем качество различных вариантов модели.

ПРОБЛЕМЫ

Модель может хорошо работать на обучающей выборке, однако сильно терять в качестве натестовой (один из вариантов - переобучение).

Преобразования данных на обучающей выборке должны быть повторены и иметь смысл для тестовой.

РАЗБИВАЕМ ОБУЧАЮЩУЮ ВЫБОРКУ

Разбиваем обучающую выборку на 2 части. На одной будем тренировать модель, на другой — проверять (т. е. использовать в качестве тестовой, только с известной целевой переменной)

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 0)

ОБУЧАЮЩАЯ ВЫБОРКА

TRAINING

TEST

НЕМНОГО ПРАКТИКИ

LOGRES_AFFAIR.IPYNB

ОЦЕНКА КАЧЕСТВА МОДЕЛИ

PRECISION RECALL ТОЧНОСТЬ ИПОЛНОТА

ПОРОГ ДЛЯ ТЕСТОВОЙ ВЫБОРКИ

```
model = LogisticRegression()
model.fit(X train, y train)
predictions = model.predict proba(X test)
zip(predictions[:, 1], y test)
[(0.64583193796528038, 0),
 (0.075906148028446599, 0),
 (0.2704606033743272, 0),
 (0.26938542699540474, 0),
 (0.26433391263337475, 1),
 (0.1443590034736055, 0),
 (0.17840859560894495, 0),
 (0.21871761029690232, 0),
 (0.75293068528621931, 1),
 (0.2694630112685994, 0),
 (0.11209927315788928, 0),
 (0.18717054508217956, 0),
 (0.081787486664569364, 0),
```

Выберем порог, выше которого будем считать полученное значение принадлежащим 1. А ниже — нулю

Это определит долю угаданных моделью значений

МАТРИЦА ОШИБОК ДЛЯ ПОРОГА

	Actual positive	Actual negative
Predicted positive	True positive	False positive
Predicted negative	False negative	True negative

False positive — ошибка Ірода (ложная тревога)

False negative — ошибка II рода (пропуск цели)

ТОЧНОСТЬ

	Actual positive	Actual negative
Predicted positive	True positive	False positive
Predicted negative	False negative	True negative

Ассигасу — доля правильно предсказанных от всех вариантов

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

НЕМНОГО ПОСЧИТАЕМ

LOGRES_AFFAIR.IPYNB

ПОЧЕМУ ТОЧНОСТИ НЕДОСТАТОЧНО

100 обычных писем

True negative FP 90 10

10 спам-писем

alse negative True 5 positive

На почту пришло 100обычных писем. И 10 писем спама.

Наша модель из 100 обычных 10 классифицировала как спам. Из 10 спам-писем — 5 как спам

ПОЧЕМУ ТОЧНОСТИ НЕДОСТАТОЧНО

	Actual positive	Actual negative
Predicted positive	5	5
Predicted negative	10	90

Ассигасу — доля правильно предсказанных от всех вариантов

$$Accuracy = \frac{5+90}{5+90+10+5} = 86\%$$

ПОЧЕМУ ТОЧНОСТИНЕДОСТАТОЧНО

100 обычных писем

True negative 100

Возьмем модель, которая считает все письма обычными

10 спам-писем

False negative 10

ПОЧЕМУ ТОЧНОСТИ НЕДОСТАТОЧНО

	Actual positive	Actual negative
Predicted positive	0	10
Predicted negative	0	100

Возьмем модель, которая считает все письма обычными

$$Accuracy = \frac{0 + 100}{0 + 100 + 0 + 10} = 91\%$$

PRECISION

	Actual positive	Actual negative	
Predicted positive	True positive	False positive	
Predicted negative	False negative	True negative	_

Precision — доля правильно предсказанных среди причисленных моделью к категории 1

$$Precision = \frac{TP}{TP + FP}$$

Способность алгоритма отличать данный класс от других классов

RECALL

	Actual positive	Actual negative
Predicted positive	True positive	False positive
Predicted negative	False negative	True negative
negative		

Recall — доля правильно предсказанных среди категории 1

$$Recall = \frac{TP}{TP + FN}$$

Синоним – True Positive Rate (sensivity)

Способность алгоритма обнаруживать данный класс вообще

PRECISION И RECALL ДЛЯ СПАМА

100 обычных писем

True negative 100

Actual Actual positive negative

Predicted positive 0 0

Predicted 10 100

10 спам-писем

False negative 10

СНОВА ТОТ ЖЕ ФАЙЛ

LOGRES_AFFAIR.IPYNB

KРИВАЯ PRECISION-RECALL

KPИBAЯ PRECISION-RECALL

Модель тем лучше, чем выше площадь под кривой

AREA UNDERCURVE

TRUE POSITIVE RATE

	Actual positive	Actual negative
Predicted positive	True positive	False positive
Predicted negative	False negative	True negative

True Positive Rate — доля правильно предсказанных среди категории 1

$$TPR = \frac{TP}{TP + FN}$$

FALSE POSITIVE RATE

Actual positive	Actual negative
True positive	False positive
False negative	True negative
	positive True positive

False Positive Rate — доля
неправильно предсказанных среди
относящихся к категории 0

$$FPR = \frac{FP}{FP + TN}$$

ИДЕАЛЬНЫЙ СЛУЧАЙ

Модель предсказывает абсолютно верно

TPR = 1

FPR = 0

---- случайные предсказания

СРАВНЕНИЕ ДВУХМОДЕЛЕЙ

ПРАКТИЧЕСКОЕ ЗАДАНИЕ 1

КЛАССИФИКАЦИЯ СПОРТСМЕНОВ ATHLETES_CLASSIFIER.IPYNB

Дана статистика спортсменов ОИ 2016. Необходимо построить модель, предсказывающая пол спортсмена по имеющимся признакам (кроме столбца sex).

Построить графики Precision-Recall и FPR-TPR, посчитать AUC

Время на задание 20 минут

БОРЬБА С ПЕРЕОБУЧЕНИЕМ

ПРИМЕР ПЕРЕОБУЧЕНИЯ

Имеются данные из 6 точек

ПРИМЕР ПЕРЕОБУЧЕНИЯ

Имеются данные из 6

точек

ПРИМЕР ПЕРЕОБУЧЕНИЯ

Имеются данные из 6

точек

$$----$$
 y = kx + b; есть

--- ошибка = 0. Круто?

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5$$

КРОСС-ВАЛИДАЦИЯ

k-fold cross validation

Final Accuracy = Average(Round 1, Round 2, ...)

Лучше, чем случайная выборка

CROSS_VAL_SCORE.IPYNB

ПРАКТИЧЕСКОЕ ЗАДАНИЕ 2

РАСПОЗНАВАНИЕ ЦИФР

Дана статистика картинок цифр, каждая из которых описывается набором из 64 признаков.

Используя модель DecisionTreeClassifier, необходимо подобрать значение параметра модели max_depth (от 1 до 20), при котором точность модели (accuracy) максимальна

Время на задание 20 минут

СМЕЩЕНИЕ ИРАЗБРОС

ОШИБКА ПРОГНОЗА

HTTPS://HABRAHABR.RU/COMPANY/ODS/BLOG/323890/#RAZLOZHENIE-OSHIBKI-NA-SMESCHENIE-I-RAZBROS-BIAS-VARIANCE-DECOMPOSITION

Можем разложить на слагаемые:

- Bias средняя ошибкапрогноза
- Variance изменение ошибки при обучении на разных наборах данных
- Неустранимая ошибка

ОШИБКА ПРОГНОЗА

Сложная модель (учитывает много признаков) — увеличивает разброс ошибки

Слишком простая модель (мало признаков) — вызывает смещение в пользу одного признака

ОПТИМАЛЬНЫЙ ВАРИАНТ

Можно ли повлиять на стабильность модели, т. е. уменьшить Variance?

L1 И L2 РЕГУЛЯРИЗАЦИЯ

ПРОШЛЫЙ ПРИМЕРПЕРЕОБУЧЕНИЯ

Переберем модели, увеличивая степень функции

$$y = a_0 + a_1 x$$

$$y = a_0 + a_1 x + a_2 x^2$$

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

. . .

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_5 x^5$$

КАК БУДУТ ВАРЬИРОВАТЬСЯ а?

При увеличении степени полинома вариация коэффициентов быстро растет

НАДО УМЕНЬШИТЬ РАЗБРОС КОЭФФИЦИЕНТОВ

Имеем модель целевой переменной у и коэффициентами а

Целевая функция =
$$\sum_{i} (y_{\phi a \kappa \tau} - Xa)^2$$

ШТРАФ ЗАСЛОЖНОСТЬ

Основные варианты регуляризации

$$L_1 = \sum_{i} (y_{\phi \text{akt}} - Xa)^2 + \lambda \sum_{i} |a_i|$$

$$L_2 = \sum_{i} (y_{\phi a \kappa T} - Xa)^2 + \lambda \sum_{i} a_i^2$$

ПРАКТИЧЕСКОЕ ЗАДАНИЕ З

ПРЕДСКАЗАНИЕ УРОВНЯДОХОДА

Дана статистика пользователей adult.csv.

Получите значения AUC для различных моделей и их параметров

ЧТО МЫ СЕГОДНЯ УЗНАЛИ

- 1. Изучили метрики оценки качества моделей.
- 2. На практике потренировались впроведении кросс-валидации моделей.
- 3. Изучили признакии способы борьбы с переобучением на примере L1 и L2 регуляризации.

ПОЛЕЗНЫЕ МАТЕРИАЛЫ

- 1. Наглядные примеры переобучения модели и теоретические выкладки регуляризации https://habrahabr.ru/company/ods/blog/322076/
- 2. О разнице между L1 и L2 регуляризацией http://www.chioka.in/differences-between-l1-and-l2-as-loss-function-and-regularization/
- 3. Более сложный пример регуляризации https://habrahabr.ru/company/ods/blog/323890/#3-naglyadnyy-primer-regulyarizacii-logisticheskoy-regressii

Спасибо за внимание!

Артур Сапрыкин