Algorithms and Data Structures Graphs, Depth-/Breadth-first Search, Graph-Connectivity

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science

Algorithms and Data Structures, January 2019

Structure

Graphs

Introduction Implementation Application example

Graphs - Overview:

 Besides arrays, lists and trees the most common data structure (Trees are a special type of graph)

- Besides arrays, lists and trees the most common data structure (Trees are a special type of graph)
- Representation of graphs in the computer

- Besides arrays, lists and trees the most common data structure (Trees are a special type of graph)
- Representation of graphs in the computer
- Breadth-first search (BFS)

- Besides arrays, lists and trees the most common data structure (Trees are a special type of graph)
- Representation of graphs in the computer
- Breadth-first search (BFS)
- Depth-first search (DFS)

- Besides arrays, lists and trees the most common data structure (Trees are a special type of graph)
- Representation of graphs in the computer
- Breadth-first search (BFS)
- Depth-first search (DFS)
- Connected components of a graph

Introduction

Introduction

Introduction

Terminology:

▶ Each graph G = (V, E) consists of:

Introduction

- ▶ Each graph G = (V, E) consists of:
 - ▶ A set of vertices (nodes) $V = \{v_1, v_2, ...\}$

Introduction

- ▶ Each graph G = (V, E) consists of:
 - A set of vertices (nodes) $V = \{v_1, v_2, \dots\}$
 - ▶ A set of edges (arcs) $E = \{e_1, e_2, \dots\}$

Introduction

- ▶ Each graph G = (V, E) consists of:
 - A set of vertices (nodes) $V = \{v_1, v_2, \dots\}$
 - A set of edges (arcs) $E = \{e_1, e_2, \dots\}$
- ▶ Each edge connects two vertices $(u, v \in V)$

Introduction

- ▶ Each graph G = (V, E) consists of:
 - A set of vertices (nodes) $V = \{v_1, v_2, \dots\}$
 - A set of edges (arcs) $E = \{e_1, e_2, \dots\}$
- ▶ Each edge connects two vertices $(u, v \in V)$
 - ▶ Undirected edge: $e = \{u, v\}$ (set)

Introduction

- ▶ Each graph G = (V, E) consists of:
 - ▶ A set of vertices (nodes) $V = \{v_1, v_2, ...\}$
 - A set of edges (arcs) $E = \{e_1, e_2, \dots\}$
- ▶ Each edge connects two vertices $(u, v \in V)$
 - ▶ Undirected edge: $e = \{u, v\}$ (set)
 - ▶ Directed edge: e = (u, v) (tuple)

Introduction

- ▶ Each graph G = (V, E) consists of:
 - A set of vertices (nodes) $V = \{v_1, v_2, \dots\}$
 - A set of edges (arcs) $E = \{e_1, e_2, \dots\}$
- ▶ Each edge connects two vertices $(u, v \in V)$
 - ▶ Undirected edge: $e = \{u, v\}$ (set)
 - ▶ Directed edge: e = (u, v) (tuple)
- ▶ Self-loops are also possible: e = (u, u) or $e = \{u, u\}$

Introduction

Weighted graph:

Introduction

Weighted graph:

Introduction

Weighted graph:

► Each edge is marked with a real number named weight

Introduction

Weighted graph:

- ► Each edge is marked with a real number named weight
- ► The weight is also named length or cost of the edge depending on the application

Introduction

Example: Road network

Example: Road network

► Intersections: vertices

Example: Road network

► Intersections: vertices

► Roads: edges

Example: Road network

► Intersections: vertices

► Roads: edges

► Travel time:

costs of the edges

Introduction

Example: Road network

► Intersections: vertices

► Roads: edges

Travel time: costs of the edges Betrenhausen

Herdern

Weingarten C

Freibung im

Bridgen

Haddicht

Wenner Emmand

Wenner Coreau

Wenner Emmand

Libernede

Figure: Map of Freiburg © OpenStreetMap

Structure

Graphs

Introduction

Implementation

Application example

Implementation

How to represent this graph computationally?

Implementation

How to represent this graph computationally?

1. Adjacency matrix with space consumption $\Theta(|V|^2)$

Implementation

How to represent this graph computationally?

1. Adjacency matrix with space consumption $\Theta(|V|^2)$

Figure: Weighted graph with

$$|V| = 4, |E| = 6$$

Implementation

How to represent this graph computationally?

1. Adjacency matrix with space consumption $\Theta(|V|^2)$

Figure: Weighted graph with |V| = 4, |E| = 6

		ena-vertice			
		0	1	2	3
ice :	0		2		3
:-vertice	1			9	
1	2				-1
stari	3		7	-2	

Figure: Adjacency matrix

Graphs Implementation

How to represent this graph computationally?

Implementation

How to represent this graph computationally?

2. Adjacency list / fields with space consumption $\Theta(|V| + |E|)$

Implementation

How to represent this graph computationally?

2. Adjacency list / fields with space consumption $\Theta(|V| + |E|)$ Each list item stores the target vertex and the cost of the edge

Implementation

How to represent this graph computationally?

2. Adjacency list / fields with space consumption $\Theta(|V| + |E|)$ Each list item stores the target vertex and the cost of the edge

Figure: Weighted graph with

$$|V| = 4$$
, $|E| = 6$

Implementation

How to represent this graph computationally?

2. Adjacency list / fields with space consumption $\Theta(|V| + |E|)$ Each list item stores the target vertex and the cost of the edge

Figure: Weighted graph with |V| = 4, |E| = 6

Figure: Adjacency list

Implementation

Graph: Arrangement

Implementation

Graph: Arrangement

► Graph is fully defined through the adjacency matrix / list

Implementation

Graph: Arrangement

- ► Graph is fully defined through the adjacency matrix / list
- ▶ The arrangement is not relevant for visualisation of the graph

Implementation

Graph: Arrangement

- Graph is fully defined through the adjacency matrix / list
- ▶ The arrangement is not relevant for visualisation of the graph

Figure: Weighted graph with

$$|V| = 4$$
, $|E| = 6$

Implementation

Graph: Arrangement

- Graph is fully defined through the adjacency matrix / list
- ▶ The arrangement is not relevant for visualisation of the graph

Figure: Weighted graph with |V| = 4, |E| = 6

Figure: Same graph ordered by number - outer planar graph

Implementation - Python

```
class Graph:
    def __init__(self):
        self.vertices = []
        self.edges = []
    def addVertice(self, vert):
        self.vertices.append(vert)
    def addEdge(self, fromVert, toVert, cost):
        self.edges.append( \
            (fromVert, toVert, cost))
```

Degrees (Valency)

Degree of a vertex: Directed graph: G = (V, E)

Degrees (Valency)

Degree of a vertex: Directed graph: G = (V, E)

Figure: Vertex with in- / outdegree of 3 / 2

Degrees (Valency)

Degree of a vertex: Directed graph: G = (V, E)

Figure: Vertex with in- / outdegree of 3 / 2

► Indegree of a vertex u is the number of edge head ends adjacent to the vertex

$$\deg^+(\textbf{\textit{u}}) = |\{(\textbf{\textit{v}},\textbf{\textit{u}}): \ (\textbf{\textit{v}},\textbf{\textit{u}}) \in \textbf{\textit{E}}\}|$$

Degrees (Valency)

Degree of a vertex: Directed graph: G = (V, E)

Figure: Vertex with in- / outdegree of 3 / 2

► Indegree of a vertex *u* is the number of edge head ends adjacent to the vertex

$$\deg^+(u) = |\{(v, u) : (v, u) \in E\}|$$

► Outdegree of a vertex *u* is the number of edge tail ends adjacent to the vertex

$$\deg^-(\mathbf{u}) = |\{(\mathbf{u}, \mathbf{v}) : (\mathbf{u}, \mathbf{v}) \in \mathbf{E}\}|$$

Degrees (Valency)

Degree of a vertex: Undirected graph: G = (V, E)

Degrees (Valency)

Degree of a vertex: Undirected graph: G = (V, E)

Figure: Vertex with degree of 4

Degrees (Valency)

Degree of a vertex: Undirected graph: G = (V, E)

Figure: Vertex with degree of 4

Degree of a vertex u is the number of vertices adjacent to the vertex

$$\deg(u) = |\{\{v, u\} : \{v, u\} \in E\}|$$

${\sf Graphs}$

Paths

Paths

Figure: Undirected path of length 3 P = (0, 3, 2, 4)

Figure: Directed path of length 3 P = (0, 3, 1, 4)

Paths

Paths in a graph: G = (V, E)

Figure: Undirected path of length 3 P = (0, 3, 2, 4)

Figure: Directed path of length 3 P = (0, 3, 1, 4)

▶ A path of G is a sequence of edges $u_1, u_2, ..., u_i \in V$ with

Paths

Figure: Undirected path of length 3 P = (0, 3, 2, 4)

Figure: Directed path of length 3 P = (0, 3, 1, 4)

- ▶ A path of G is a sequence of edges $u_1, u_2, ..., u_i \in V$ with
 - ▶ Undirected graph: $\{u_1, u_2\}, \{u_2, u_3\}, \dots, \{u_{i-1}, u_i\} \in E$
 - ▶ Directed graph: $(u_1, u_2), (u_2, u_3), \dots, (u_{i-1}, u_i) \in E$

Paths

Figure: Directed path of length 3 P = (0, 3, 1, 4)

Figure: Weighted path with cost 6 P = (2,3,1)

Paths

Figure: Directed path of length 3 P = (0, 3, 1, 4)

Figure: Weighted path with cost 6 P = (2,3,1)

Paths

Figure: Directed path of length 3 P = (0, 3, 1, 4)

Figure: Weighted path with cost 6 P = (2,3,1)

Paths

Paths in a graph: G = (V, E)

Figure: Directed path of length 3 P = (0, 3, 1, 4)

Figure: Weighted path with cost 6 P = (2,3,1)

► The length of a path is: (also costs of a path)

Paths

Figure: Directed path of length 3 P = (0, 3, 1, 4)

Figure: Weighted path with cost 6 P = (2,3,1)

- ► The length of a path is: (also costs of a path)
 - ► Without weights: number of edges taken

Paths

Figure: Directed path of length 3 P = (0, 3, 1, 4)

Figure: Weighted path with cost 6 P = (2,3,1)

- ► The length of a path is: (also costs of a path)
 - ► Without weights: number of edges taken
 - ► With weights: sum of weigths of edges taken

Graphs Paths

Shortest path in a graph: G = (V, E)

Paths

Shortest path in a graph: G = (V, E)

Figure: Shortest path from 0 to 2 with cost / distance d(0,2) = ?

Shortest path in a graph: G = (V, E)

Figure: Shortest path from 0 to 2 with cost / distance d(0,2) = ?

The shortest path between two vertices u, v is the path P = (u, ..., v) with the shortest length d(u, v) or lowest costs

Paths

Shortest path in a graph: G = (V, E)

Figure: Shortest path from 0 to 2 with cost / distance d(0,2) = 6P = (0,1,4,3,2)

The shortest path between two vertices u, v is the path P = (u, ..., v) with the shortest length d(u, v) or lowest costs

Paths

Diameter of a graph: G = (V, E)

Paths

Diameter of a graph:
$$G = (V, E)$$
 $d = \max_{u,v \in V} d(u,v)$

Figure: Diameter of graph is d = ?

Paths

Diameter of a graph:
$$G = (V, E)$$
 $d = \max_{u,v \in V} d(u,v)$

Figure: Diameter of graph is d = ?

► The diameter of a graph is the length / the costs of the longest shortest path

Paths

Diameter of a graph:
$$G = (V, E)$$
 $d = \max_{u,v \in V} d(u, v)$

Figure: Diameter of graph is d = 10, P = (3, 2, 5)

► The diameter of a graph is the length / the costs of the longest shortest path

Connected Components

Connected components: G = (V, E)

Connected Components

Connected components: G = (V, E)

Figure: Three connected components

Undirected graph:

Connected Components

Connected components: G = (V, E)

Figure: Three connected components

- ▶ Undirected graph:
 - ▶ All connected components are a partition of *V*

$$V = V_1 \cup \cdots \cup V_k$$

Connected Components

Connected components: G = (V, E)

Figure: Three connected components

- Undirected graph:
 - ► All connected components are a partition of *V*

$$V = V_1 \cup \cdots \cup V_k$$

Two vertices *u*, *v* are in the same connected component if a path between *u* and *v* exists

Connected Components

Connected components: G = (V, E)

Connected Components

Connected components: G = (V, E)

Directed graph:

Connected Components

Connected components: G = (V, E)

- Directed graph:
 - ► Named strongly connected components

Connected Components

Connected components: G = (V, E)

- Directed graph:
 - Named strongly connected components
 - Direction of edge has to be regarded

Connected Components

Connected components: G = (V, E)

- Directed graph:
 - Named strongly connected components
 - Direction of edge has to be regarded
 - Not part of this lecture

Connected Components - Graph Exploration

Connected Components - Graph Exploration

Graph Exploration: (Informal definition)

▶ Let G = (V, E) be a graph and $s \in V$ a start vertex

Connected Components - Graph Exploration

- ▶ Let G = (V, E) be a graph and $s \in V$ a start vertex
- ▶ We visit each reachable vertex connected to *s*

Connected Components - Graph Exploration

- ▶ Let G = (V, E) be a graph and $s \in V$ a start vertex
- ▶ We visit each reachable vertex connected to s
- ▶ Breadth-first search: in order of the smallest distance to s

Connected Components - Graph Exploration

- ▶ Let G = (V, E) be a graph and $s \in V$ a start vertex
- ▶ We visit each reachable vertex connected to s
- ▶ Breadth-first search: in order of the smallest distance to s
- ▶ Depth-first search: in order of the largest distance to *s*

Connected Components - Graph Exploration

- ▶ Let G = (V, E) be a graph and $s \in V$ a start vertex
- ▶ We visit each reachable vertex connected to s
- ▶ Breadth-first search: in order of the smallest distance to s
- Depth-first search: in order of the largest distance to s
- Not a problem on its own but is often used as subroutine of other algorithms

Connected Components - Graph Exploration

- ▶ Let G = (V, E) be a graph and $s \in V$ a start vertex
- ▶ We visit each reachable vertex connected to s
- Breadth-first search: in order of the smallest distance to s
- Depth-first search: in order of the largest distance to s
- Not a problem on its own but is often used as subroutine of other algorithms
 - Searching of connected components

Connected Components - Graph Exploration

- ▶ Let G = (V, E) be a graph and $s \in V$ a start vertex
- ▶ We visit each reachable vertex connected to s
- ▶ Breadth-first search: in order of the smallest distance to s
- Depth-first search: in order of the largest distance to s
- Not a problem on its own but is often used as subroutine of other algorithms
 - Searching of connected components
 - Flood fill in drawing programms

Connected Components - Breadth-First Search

Breadth-First Search:

1. We start with all vertices unmarked and mark visited vertices

Connected Components - Breadth-First Search

- 1. We start with all vertices unmarked and mark visited vertices
- 2. Mark the start vertex s (level 0)

Connected Components - Breadth-First Search

- 1. We start with all vertices unmarked and mark visited vertices
- 2. Mark the start vertex s (level 0)
- 3. Mark all unmarked connected vertices (level 1)

Connected Components - Breadth-First Search

- 1. We start with all vertices unmarked and mark visited vertices
- 2. Mark the start vertex s (level 0)
- 3. Mark all unmarked connected vertices (level 1)
- 4. Mark all unmarked vertices connected to a level 1-vertex (level 2)

Connected Components - Breadth-First Search

- 1. We start with all vertices unmarked and mark visited vertices
- 2. Mark the start vertex s (level 0)
- 3. Mark all unmarked connected vertices (level 1)
- Mark all unmarked vertices connected to a level 1-vertex (level
 2)
- 5. Iteratively mark reachable vertices for all levels

Connected Components - Breadth-First Search

- 1. We start with all vertices unmarked and mark visited vertices
- 2. Mark the start vertex s (level 0)
- 3. Mark all unmarked connected vertices (level 1)
- 4. Mark all unmarked vertices connected to a level 1-vertex (level 2)
- 5. Iteratively mark reachable vertices for all levels
- 6. All connected nodes are now marked and in the same connected component as the start vertex s

Connected Components - Breadth-First Search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Connected Components - Depth-First Search

Connected Components - Depth-First Search

Depth-First Search:

1. We start with all vertices unmarked and mark visited vertices

Connected Components - Depth-First Search

- 1. We start with all vertices unmarked and mark visited vertices
- 2. Mark the start vertex s

Connected Components - Depth-First Search

- 1. We start with all vertices unmarked and mark visited vertices
- 2. Mark the start vertex s
- Pick an unmarked connected vertex and start a recursive depth-first search with the vertex as start vertex (continue on step 2)

Connected Components - Depth-First Search

- 1. We start with all vertices unmarked and mark visited vertices
- 2. Mark the start vertex s
- Pick an unmarked connected vertex and start a recursive depth-first search with the vertex as start vertex (continue on step 2)
- If no unmarked connected vertex exists go one vertex back and continue recursive search (reduce the recursion level by one)

Connected Components - Depth-First Search

Depth-first search:

Connected Components - Depth-First Search

Depth-first search:

► Search starts with long paths (searching with depth)

Connected Components - Depth-First Search

Depth-first search:

- ► Search starts with long paths (searching with depth)
- Like breadth-first search marks all connected vertices

Connected Components - Depth-First Search

Depth-first search:

- Search starts with long paths (searching with depth)
- Like breadth-first search marks all connected vertices
- ► If the graph is acyclic we get a topological sorting

Connected Components - Depth-First Search

Depth-first search:

- Search starts with long paths (searching with depth)
- Like breadth-first search marks all connected vertices
- If the graph is acyclic we get a topological sorting
 - Each newly visited vertex gets marked by an increasing number

Connected Components - Depth-First Search

Depth-first search:

- Search starts with long paths (searching with depth)
- Like breadth-first search marks all connected vertices
- If the graph is acyclic we get a topological sorting
 - Each newly visited vertex gets marked by an increasing number
 - ▶ The numbers increase with path length from the start vertex

Connected Components - Depth-First Search

Connected Components - Depth-First Search

- ► The marked vertices create a different spanning tree containing all reachable nodes
- start-node
- path 1
- path 2
- path 3

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

- ► The marked vertices create a different spanning tree containing all reachable nodes
- start-node
- path 1
- path 2
- path 3

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

- ► The marked vertices create a different spanning tree containing all reachable nodes
- start-node
- path 1
- path 2
- path 3

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Why is this called Breadth- and Depth-First Search?

Connected Components - Breadth-/Depth-First Search

Runtime complexity:

Constant costs for each visited vertex and edge

Connected Components - Breadth-/Depth-First Search

- Constant costs for each visited vertex and edge
- We get a runtime complexity of $\Theta(|V'| + |E'|)$

Connected Components - Breadth-/Depth-First Search

- Constant costs for each visited vertex and edge
- We get a runtime complexity of $\Theta(|V'| + |E'|)$
- \blacktriangleright Let V' and E' be the reachable vertices and edges

Connected Components - Breadth-/Depth-First Search

- Constant costs for each visited vertex and edge
- We get a runtime complexity of $\Theta(|V'| + |E'|)$
- \blacktriangleright Let V' and E' be the reachable vertices and edges
- All vertices of V' are in the same connected component as our start vertex s

Connected Components - Breadth-/Depth-First Search

- Constant costs for each visited vertex and edge
- We get a runtime complexity of $\Theta(|V'| + |E'|)$
- Let V' and E' be the reachable vertices and edges
- All vertices of V' are in the same connected component as our start vertex s
- This can only be improved by a constant factor

Structure

Graphs

Introduction Implementation

Application example

Image processing

Image processing

► Connected component labeling

Image processing

- Connected component labeling
- Counting of objects in an image

Image processing

- Connected component labeling
- Counting of objects in an image

Image processing

What is object, what is background?

Image processing

Convert to black and white using threshold:

value = 255 if value > 100 else 0

Image processing

Image processing

Interpret image as graph:

► Each white pixel is a node

Image processing

- ► Each white pixel is a node
- ► Edges between adjacent pixels (normally 4 or 8 neighbors)

Image processing

- ► Each white pixel is a node
- Edges between adjacent pixels (normally 4 or 8 neighbors)
- Edges are not saved externally, algorithm works directly on array

Image processing

- ► Each white pixel is a node
- Edges between adjacent pixels (normally 4 or 8 neighbors)
- Edges are not saved externally, algorithm works directly on array
- Breadth- / depth-first search find all connected components (particles)

Image processing

Find connected components:

Image processing

Find connected components:

Image processing

Find connected components:

Search pixel-by-pixel for non-zero intensity

Image processing

Find connected components:

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1

Image processing

Find connected components:

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- ► Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- ► Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- ► Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- ► Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- ► Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- ► Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 2
- **.**.

Image processing

Result of connected component labeling:

Figure: Result: particle indices instead of intensities

Further Literature

General

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms. MIT Press, Cambridge, Mass, 2001.
- [MS08] Kurt Mehlhorn and Peter Sanders.
 Algorithms and data structures, 2008.
 https://people.mpi-inf.mpg.de/~mehlhorn/
 ftp/Mehlhorn-Sanders-Toolbox.pdf.

Further Literature

Graph Search

Graph Connectivity

```
[Wik] Connectivity (graph theory)
    https://en.wikipedia.org/wiki/Connectivity_
        (graph_theory)
```