Comparing Models

Model Complexity, Bias-Variance, Generalization Error, Overfitting, Hyperparameters vs. Parameters

Reducing error... at what cost? | Regression

Reducing error... at what cost? | Classification

Model Evaluation: Error vs. Complexity

- Intuition
 - Some models are "un-necessarily complex"
 - Some models tend to "over fit" the given data
 - Does a model "overfit"?
 - Visual inspection not always feasible
 - High dimensional data (too many variables, features)
- Approach: Constrain the complexity of the model
 - Define statistic on the data (statistical approach)
 - Adjusted R2: Explained Variance normalized with DoF
 - AIC / BIC / Cp : penalizes number of parameters in model
- Approach: Measure model performance on "new" data
 - Split available data
 - Learn model using "Training data; Evaluate on "Test data"
 - Train vs. Test Data: Train vs. Test Error
 - Try it out on test data (computational approach)

- BIG Idea: Generalization Error
 - How does model perform on data it did not learn from?
 - Model Complexity / Flexibility vs. Model Performance
 - Lower Training error does not always imply Lower Test Error!
- Equivalence
 - Model Overfits
 - 2. Model reduces training error with an over-complex model
 - 3. Model reduces training error but test error increases

Model Evaluation: Bias vs. Variance tradeoff

Model Bias

- Error due to the assumptions (limitations) of the model
- E.g. linearity, continuous functions.
- High bias → Look for a different class of functions
 - more "flexible"
 - More complex

Model Variance

- How much does the model change with a change in sample?
- Sensitivity to change in sample (training data)
- High variance →

Bias vs. Variance Tradeoff

- Function Approximation framework
 - Learn a function from the data (which minimizes some error)

$$y = f(x) + \varepsilon$$
 $\hat{y} = \hat{f}(x) + 0$
 $\varepsilon \sim N(0, \sigma)$ $P(y \mid x)$

- Error
 - Depends on the sample
 - Depends on the choice of the model family

$$\mathrm{E}\!\left[\left(y-\hat{f}\left(x
ight)
ight)^{2}
ight]$$

$$\mathrm{E}\!\left[\left(y-\hat{f}\left(x
ight)
ight)^{2}
ight]=\mathrm{Bias}\!\left[\hat{f}\left(x
ight)
ight]^{2}+\mathrm{Var}\!\left[\hat{f}\left(x
ight)
ight]+\sigma^{2}$$

- Bias-vs-Variance Tradeoff
 - Increase complexity to reduce bias
 - A Make it more sensitive to the data
 - Make it more sensitive to the training data (sample)
 - → Increase Variance

$$\operatorname{Bias}igl[\hat{f}\left(x
ight)igr]=\operatorname{E}igl[\hat{f}\left(x
ight)-f(x)igr]$$

$$\mathrm{Var}igl[\hat{f}\left(x
ight)igr] = \mathrm{E}[\hat{f}\left(x
ight)^2] - \mathrm{E}[\hat{f}\left(x
ight)]^2$$

What is a good model: Summary

- Model Complexity & Overfitting
 - Trying to reduce training error with a more complex model
 - More degrees of freedom (More variables, features)
 - Error can be reduced with more complex models: When is it overfiitting?
 - Lower Training error does not always imply Lower Test Error!

Model Complexity

- Bias Variance Tradeoff
 - Bias: Error introduced due to simplifying the real world with a "simple" model.
 - Variance: How much does the model vary if we train it on a different training set?
 - Tradeoff: Increasing Complexity → Lower Bias but may lead to overfitting (higher variance)
- Approaches for model evaluation
 - Validation Set, LOOCV, K-fold
 - Given Data = Training + Test
 - Given Data = Training + Calibration + Test (Later)

Complexity-aware Model Evaluation

Validation Set

- Key Idea: Assume you have less data available than you actually have
- Split your data into training & test (validation)
- Learn the model on training set. Evaluate (Test) it on validation

LOOCV

- Validation Set = 1 instance
- Learn the model on training set. Evaluate (Test) it on validation
- Repeat (Go to step-1)

K-Fold CV

- Validation Set = 1 sub-set
- Learn the model on training set. Evaluate (Test) it on validation
- Repeat (Go to step-1)
- Gold Standard :
 - More stable than validation set;
 - Less computationally intensive than LOOCV

Praphul Chandra

Statistical Decision Theory

Praphul Chandra

Statistical Decision Theory

- Framework
 - Function Approximation
 - Joint Probability Distribution
 - Loss Function
- Loss Variants
 - L2 (Squared Error Loss)
 - L1 Loss
- Expected Prediction Error
 - Choosing the "best" function
 - Depends on choice of loss function
 - L2: The best prediction of Y at an point X=x is the conditional <u>mean</u>.
 - L1: The best prediction of Y at an point X=x is the conditional <u>median</u>

Function Approximation: Y = f(X)

Joint Distribution: $\mathbb{P}(X, Y)$ Loss Function: L(Y, f(X))

$$L(Y, f(X)) = (Y - f(X))^{2}$$

$$EPE(f) = \mathbb{E}[(Y - f(X))^{2}] = \int [y - f(x)]^{2} \mathbb{P}(dx, dy)$$

$$= \mathbb{E}_{X} \mathbb{E}_{Y|X} [(Y - f(X))^{2}|X]$$

$$f(x) = \arg\min_{c} \mathbb{E}_{Y|X}[(Y - c^{2}|X = x]$$
$$= \mathbb{E}[Y|X = x]$$

The best prediction of Y at an point X=x is....

Loss Function:
$$\sum_{i=1}^{n} L(y_i, c) = \sum_{i=1}^{n} (y_i - c)^2$$
Minimize Loss:
$$\frac{d}{dc} \sum_{i=1}^{n} (y_i - c)^2 = 0$$

$$-1 \times 2 \times \sum_{i=1}^{n} (y_i - c) = 0 \Rightarrow \sum_{i=1}^{n} (y_i - c) = 0$$

$$\sum_{i=1}^{n} y_i = nc \Rightarrow c = \frac{1}{n} \sum_{i=1}^{n} y_i$$

c is the mean of y_i

Loss Function :
$$\sum_{i=1}^{n} L(y_i, c) = \sum_{i=1}^{n} |y_i - c|$$

Minimize Loss : $\frac{d}{dc} \sum_{i=1}^{n} |y_i - c| = 0$
 $-sign \sum_{i=1}^{n} |y_i - c| = 0$

Derivate vanishes when there is the same number of positive and negative terms among the y_i - c which (roughly speaking) arises when cis the median of the y i.

K-Nearest Neighbor

- Statistical Decision Theory
 - The best prediction of Y at an point X=x is the conditional mean. (L2 loss)
 - knn: At each point x, approximate y by averaging all y_i with input x_i near x
- Two approximations
 - Expectation is approximated by averaging over sample data.
 - Conditioning at a point x is relaxed to conditioning on some region "close" to x
- Note
 - Model Free (No assumption on form of f)
 - Computational Complexity (Time, Space)
 - Locally constant
- Behavior
 - Large k : Smoother boundaries
 - Large N: Large storage req. (space complexity)
 - Large p : lower accuracy (curse of dimensionality)

Linear Regression

- Statistical Decision Theory
 - The best prediction of Y at an point X=x is the conditional mean. (L2 loss)
 - LR: Find a linear function which minimizes the total loss (sum of least squares) across x
- Two approximations
 - Global function
 - Linearity
- Note
 - Model Based (f() is Globally Linear)
 - Computational Complexity (Time, Space)
- Behavior
 - Large N : Larger training time (computational complexity)
 - Large p: potentially lower accuracy (linearity in higher dimensions)
 - Larger k?? (Feature Expansion Later)

knn: Summary

- The best prediction of Y at an point X=x is the conditional mean. (L2 loss)
- At each point x, approximate y by averaging all y_i with input x_i near x
- Lazy | Model Free (No assumption on form of f)
- Computational Complexity (Time, Space)
- Distance based algorithm
 - Scaling attributes is important
 - Attributes with larger range can dominate e.g., Age versus Salary
 - May not be suitable for high dimensional data
- Categorical variables and Ordinal variables need to be appropriately measured in distance
 - Think distance w.r.t the target

Statistical Decision Theory: Summary Y = f(X)

f

(X)

L(Y, f(X))

Constant

Linear

- Non-Linear
 - Polynomial
- Piecewise
 - Splines & Kinks

Additive

Global

Local

Kernel

- Basis Transformation
 - Expansion
 - Reduction
 - Learn (Dictionary)

Manifold

- Distance Measure
 - L2, L1, etc.
 - Hinge Loss
- Overfitting
 - Regularization
 - Penalize roughness