/	
<u> </u>	
Cort	nested quantifiers.
	w=3·
	Ux 37 x+y=5; (1)
	preof: y= 1-x.
	3y Vx x+y=J. (f)
	ρίγ
	=> you cannot Find a specific y that meet the statement
	$3\times3y$ $\times+y=5$ (T) * when the quantitier is different, $3y3\times \times+y=5$ (T) be careful with the order.
	By 3x x+y=5 (7) be careful with the order.
	bx by x+y=5 (F)
	Yy Yn x+5=5 CF)
£ 2.2.	
	es like quantifiers commute:
individing	Vx y Pun, y) >77 Vy Vx Pun,y)
quaneitie	rs. 3x3yP(x,y) 37 3y3xP(x,y).
	En: Unto MANDA (T)
	UNGN YXCR X+n3x (T).
	"Nobody is perfect!"
	7 (3x Pux)
	Yx 7P(x)
	Not everyone is perfect.
	3 × アルメ).
	コフラグマアの) コナ マリス アルり、
	Ex: negate AGB.
	7 ym xGA> xGB.
	177 3× ~ (x6A > x6B).
	177 ZX 7(XBAVXEB)

HT IN LXEAN X & B).

w. 1, 4, 9, 16 -.). En: Negate: Every natural number is a perfect square U=N 7 (Un Sen). 37 7 (Un IKEN n= R2) iff In 7 (IkGN hak2) 27 In UKGN nsk2 (T) e.g. k=3. Bounded quantifiers. (nothing to do with free & bound vars) 4x6A Yy < both bound" :] x : s "bounded" UXEA PCX) : Yx (XGAAPCX). 3x6A PUX) = 3x UX6A A PUXI) Ex: x6 {2,3,4}. x2>4 $277 \forall \pi \qquad \pi \in \{2,3,4\} \land \pi^2 \nearrow \lor \cup (1)$ 7 × 6 { 2, 3, 4 } x2 = 9 : 77]x 76{2,3,4} 1 x2=9 (T). * the quantifiers used here are bounded quantifiers. Nove: when we use a universal discourse, all quantitiers are bounded, Bounded quantifier and regardons: 7 3 XGA PCX). 177 7(3x (xGAAPLX)) (77 Ym 7 (XEANPCM)) 177 Ux xUAUTPIX). 177 4x x6A->7PLA) 277 Ux6A 7P(x). TXEA PLX) iff 376A 7PCx). Note: when A= \$ -> XEA is False, Pixx is False. HXGA P(x). 7 (3x6A 7Pcx)) => T

776A PCX) => F.
176A PCX) => F.
Distributive laws:
Un (P(x) 1 Q(x)) 177 (Vx P(x)) 1 (Vx Q(x))
V x (P(x) V Q(x)) < X> (Wx P(x)) V (dx Q(x)).
eg. xer P(x): x>0 P(x) F
QUA): x so Qua) F
3 x (Pix) ∧ Qix) < X>(3 x Pix) / (3 x Qix)).
these or could be not the same or.
7x (P(x) VQ(x)) :77 (7x P(x)) V(7x Q(x)).