Drag Force; Interacting systems and Newton's 3rd Law (part 1)

Wing-Ho Ko wko1@Swarthmore.edu

Logistics on midterm 1

Date and time: Oct 8 (Tue), 7:30 – 9:30 PM

• Venue: Changhou Lecture Hall (a.k.a. SC 101)

 Those who have conflict and/or accommodation will receive email from me on alternative date, time and venue

Scope of midterm 1

- Knight §1 §7, plus supplementary notes on drag force
- Lecture 1 − 13 (maybe also loose ends from 14)
- Homework 1-4
- Preflights to weeks 2 − 4

Format of midterm 1

- There will be 4 short questions (4 points each) and 3 long questions (8 points each)
- Partial credits will be awarded
- Difficulty of questions on par with homework. However, long questions will be broken down into parts
- Question order will neither be related to difficulty nor "chronological"

Regulations on midterm 1

- Formula sheets and scratch papers will be provided
- You can also bring in one letter-sized handwritten prep sheet
- You can bring a calculator. However, no "smart" device or internet access during the exam are allowed.
- Important: do not talk about the midterm afterwards until I say OK.

September 27, 2019 5

Mock midterm exam 1

A mock midterm exam will be posted by Monday (if not earlier). It:

- Follows the format and length of the actual midterm
- Includes the actual instruction page
- Should be roughly as difficult as the actual midterm

Formula sheets for midterm 1 will be posted alongside the mock midterm. **Solutions** to the mock midterm will be posted by Wednesday (Oct 2)

Outline

- 1. Drag force
- 2. Newton's third law
- 3. Analyzing interacting systems

September 27, 2019 7

1. Drag force

Catalogue of (macroscopic) forces

- Prescribed forces:
 - (Your push/pull, etc.)
- Forces determined by constraints:
 - Tension force \vec{T}
 - Normal force \vec{n}
 - Static friction \vec{f}_S

- Forces determined by formulas:
 - Gravitational force \vec{F}_G
 - Spring force \vec{F}_{sp}
 - Kinetic friction \vec{f}_k
 - Drag force \overrightarrow{D}

Turbulent drag opposes motion relative to (non-sticky) fluid

- Applies to "non-sticky" situations
- Microscopic origin: collisions with fluid particles
- Direction: opposite to motion relative to the surrounding fluid

• Magnitude:

$$F_{\rm drag} = \frac{1}{2} \rho C A v^2$$

	Meaning	Unit
ρ	density of fluid	kg/m ³
С	geometrical constant	1
A	reference area	m ²
v	speed of object	m/s

Viscous drag opposes motion relative to (sticky) fluid

- Applies to "sticky" fluid
- Microscopic origin: shear against fluid particles
- Direction: opposite to motion relative to the surrounding fluid

Magnitude:

$$F_{\text{visc}} = \mu c \ell v$$

	Meaning	Unit
μ	viscosity of fluid	N·s/m²
С	geometrical constant	1
ℓ	length (e.g. radius)	m
v	speed of object	m/s

Sticky versus non-sticky—Reynolds number Re

- The viscosity μ (as in $F_{\rm visc}=\mu c\ell v$) measures the stickiness of a fluid, but it is a **dimensionful** number
- We need a dimensionless measure of stickiness, and that's provided by the Reynolds number:

$$Re \equiv \frac{\rho\ell v}{\mu}$$

 Conclusion: situation is sticky if you are small or slow (!)

	Meaning	Unit
ρ	density of fluid	kg/m³
ℓ	typical length	m
v	typical speed	m/s
μ	viscosity of fluid	N·s/m²
Re	Reynolds number	1

Number sense: viscosity and Reynolds number

Fluid	$ ho$ (kg/m 3)	μ (N·s/m²)
Air	1.204	1.81×10^{-5}
Pure water	998	1.002×10^{-3}
Engine oil	888	0.837
Glycerine	1264	1.519

^{*} **Sources:** Kundu *et. al., Fluid Mechanics* (6th ed.) Çengel and Cimbala, *Fluid Mechanics* (4th ed.)

Situation	Re
Bacterium swimming	1×10^{-4}
Pollen grain falling	1×10^{-2}
Fruit fly flying	100
Small bird flying	1×10^{5}
Large whale swimming	1 × 10 ⁸

^{*} Source: Vogel, Comparative Biomechanics (2nd ed.)

Terminal velocity

- Consider constant pull in the presence of v-dependent drag
- v_x increases until $F_{\rm pull} = F_{\rm drag}$
- The final v_{χ} attained is called the **terminal velocity** $v_{\rm term}$

Terminal velocity and naïve notion of force

- Note that in the presence of drag, $F_{\rm pull}$ leads to **constant** v
- Also, $F_{\rm pull}$ \nearrow leads to $v_{\rm term}$ \nearrow
- Both agree with our naïve notion of force!

Your turn: paper cones drop time

Consider two paper cones X and Y made out of the same piece of paper, except that cone Y has twice the radius of cone X. If both cones are dropped from rest, which one will land first? (**Hint:** we are in the turbulent regime)

- A. Cone X will land first
- B. Both will land at roughly the same time
- C. Cone Y will land first

16

Your turn: paper cones drop time

Consider two paper cones X and Y made out of the same piece of paper, except that cone Y has twice the radius of cone X. If both cones are dropped from rest, which one will land first? (**Hint:** we are in the turbulent regime)

From Newton's 2nd Law:

$$mg - \frac{1}{2}\rho CAv^2 = ma$$

Note that in this case $m \propto A$. Thus, all terms above $\propto A$

 \Rightarrow A drops out of the kinematics!

2. Newton's third law

September 27, 2019 18

Force acts on an object by an agent

Forces come in pairs

Newton's third law

- Every force is a member of an action/reaction pair
- The two members of the pair act on different objects
- The two members are equal in magnitude but opposite in direction

Your turn: car and truck collision. SAD.

A moving truck collides with a moving car head-on :-/. Compare:

1. $F_{\text{on truck}}$ and $F_{\text{on car}}$ over the course of the collision

A.
$$F_{\text{on truck}} > F_{\text{on car}}$$

A.
$$F_{\text{on truck}} > F_{\text{on car}}$$
 B. $F_{\text{on truck}} = F_{\text{on car}}$ C. $F_{\text{on truck}} < F_{\text{on car}}$

C.
$$F_{\text{on truck}} < F_{\text{on car}}$$

2. $a_{\rm truck}$ and $a_{\rm car}$ over the course of the collision

A.
$$a_{\text{truck}} > a_{\text{car}}$$
 B. $a_{\text{truck}} = a_{\text{car}}$

$$a_{\rm truck} = a_{\rm car}$$

$$C. \quad a_{\rm truck} < a_{\rm car}$$

Your turn: car and truck collision. SAD.

By Newton's 3rd Law:

$$F_{\text{on truck}} = F_{\text{on car}}$$

Together with Newton's 2nd Law:

$$m_{\text{truck}} a_{\text{truck}} = m_{\text{car}} a_{\text{car}}$$

$$\Rightarrow a_{\rm car} > a_{\rm truck}$$

Remark: propulsion

- When we walk, it is the static friction by the ground on us that pushes us forward!
- This is possible because our body is flexible (there are a lot of internal forces involved in the process!)
- Similarly, a car is propelled forward by the static friction between the ground and its driving wheels

3. Analyzing interacting systems

September 27, 2019 25

Framework for analyzing interactive systems

- 1. Identify objects involved in the situation
- 2. Identify interactions between the objects
- 3. Identify the system of interest
- 4. Construct free-body diagram for each object of the system

Week 4 preflight Q2

Demo: fan cart

Question: why is the fan cart not moving?

Your turn: equal by 2nd Law or 3rd Law?

You are pushing on a heavy block and the block remains still. Why

are the following true?

- (i) $f_{S(\text{block on grd})} = f_{S(\text{grd on block})}$
- (ii) $F_{\text{me on block}} = f_{S(\text{grd on block})}$
- A. (i) true by N2; (ii) true by N3
- B. (i) true by N3; (ii) true by N2
- C. Both (i) and (ii) true by N2
- D. At least one of (i) and (ii) NOT true

