

AMSTer: SAR & InSAR Automated Mass processing Software for Multidimensional Time series

Nicolas d'Oreye^{1,2}, Dominique Derauw^{3,4}, Sergey Samsonov⁵, Delphine Smittarello¹, Maxime Jaspard¹, Gilles Celli¹

ndo@ecgs.lu amster@ecgs.lu

1 European Centre for Geodynamics and Seismology (ECGS), 19 rue Josy Welter, L-7256 Walferdange, Luxembourg
2 National Museum of Natural History (NMNH), 19 rue Josy Welter, L-7256 Walferdange, Luxembourg
3 Centre Spatial de Liège (CSL), Avenue du Pré Aily, B-4031 Angleur, Belgium
4 SAREOS, 1 Rue des Violettes, 4557 Fraiture, Belgium
5 Canada Centre for Mapping and Earth Observation, Natural Resources Canada (NRCAN), 560 Rochester Street, Ottawa, ON K1A 0E4, Canada

Summer School in InSAR, time series processing and deformation modelling

Time Series plotting

Nicolas d'Oreye

MasTer Toolbox

N. d'Oreye & D. Smittarello

Plan: Time Series of single component: *PlotTS.sh*

Time Series in UD-EW component *PlotTS_AllComp.sh*

Insets

Error bars

Other options

Time Series of single component: *PlotTS.sh*

- ➤ Must be run in directory where MSBAS data of the component are, that is e.g. .../3602/MSBAS/YourRegion and Some Info/zz LOS Asc....
- Templates required:

```
plotTS_template.gnu or plotTS_template_fit.gnu
```

- > Syntax: Needs the following parameters:
 - Coord. (lines and cols) of pixel(s)
 - Optional:
 - -f and -r (to display linear fit and rate)
 - -t (to add tag with direction of displacment)
 - -g, -d or -D (to clean gnu and txt files)
 - -EVENTS=/PathToEventsDir (see options here after)
 - start=*YYYYMMDD* -stop=*YYYYMMD*
- Note:

See hard coded lines in need to be launched from QGIS

Time Series of single component: *PlotTS.sh*

Time Series in UD-EW component *PlotTS_AllComp.sh*

- ➤ Must be run in directory where MSBAS data are in sub directories, that is e.g. .../3602/MSBAS/YourRegion_and_Some_Info/
- Templates required:

plotTS_template_multi.gnu or plotTS template multi fit.gnu

- Syntax: Needs the following parameters:
 - Remak used in dir naming of the components
 e.g. zz EW REMARKDIR
 - Coord. (lines and cols) of pixel(s)
 - Optional:
 - -f and -r (to display linear fit and rate)
 - -t (to add tag with direction of displacment)
 - -g, -d or -D (to clean gnu and txt files)
 - -EVENTS=/PathToEventsDir (see options here after)
 - start=YYYYMMDD -stop=YYYYMMD
 - Coh=Option to display error bars (see here after)

Time Series of single component: *PlotTS.sh*Time Series in UD-EW component *PlotTS_AllComp.sh*

Insets

3 types of insets are displayed automatically, that is

- > Inset to display the pixel localisation on velocity map
- > Insets to display the direction of displacement
- Inset to display the location on Google Earth (Single component only)

providing that the correct info are present where needed:

- TS_Displ_comp.png
 These figs are located in /SCRIPTS_MT/TSCombiFiles
 They will be copied automatically in
 .../3602/MSBAS/YourRegion and Some Info/
- TS_parameters.txt located in /SCRIPTS_MT/TSCombiFiles which contains the following parameters (to be adjsued to your needs – see after)
- Satview.jpg in .../3602/MSBAS/YourRegion_and_Some_Info/CombiFiles which contains the Google Earth map (see after how to prepare it).
 Note that its tif version might be needed for the web page (Satview.tif)

Time Series and maps plotting

Time Series of single component: *PlotTS.sh*Time Series in UD-EW component *PlotTS_AllComp.sh*

Insets

TS_parameters.txt:

```
# Data related to HP server path
defo-domuyo
                            # WebPage
#Fiji_Amp_Defo_Coh script and ImageCreator.sh
# Value used to build the legend of the deformation maps
1.3
              # IJAmpMin
                                          (Minimum value for brightness to build amplitude image using ImageJ)
2.7
                                          (Maximum value for brightness to build amplitude image using ImageJ)
              # IJAmpMax
40
              # MarkUp
                                          (Legend vertical bar position Up)
90
              # MarkDown
                                          (Legend vertical bar position Down)
             # LegValPosH
125
                                          (Vertical Position of the value in the legend)
125
              # LegUnitPosH
                                          (Vertical Position of the unity in the legend)
35
              # LegTxtPosH
                                          (Vertical Position of the text info in the legend)
              # LegAdjZero
                                          (Fine adjustment of the horizontal positionnement of Zero)
60
              # LegAdjMin
                                          (Fine adjustment of the horizontal positionnement of Min Val)
10
                                          (Fine adjustment of the horizontal positionnement of Max Val)
              # LegAdjMax
70
                                          (Fine adjustment of the horizontal positionnement of Max Val for LOS maps)
              # LegAdjLOS
                                          (Fine adjustment of the horizontal positionnement of Unity related to the left)
200
              # LegAdjUnit
```

[...]

This first part of TS_parameters.txt usually doesn't need to be changed

Time Series of single component: *PlotTS.sh*Time Series in UD-EW component *PlotTS_AllComp.sh*

Insets

TS_parameters.txt: review the parameters in red:

```
# CreateColorFrame script + Fiji_Amp_Defo_Coh script
100
              # Margin
800
              # LegendWidth
0.6
              # ColorBackgrdLegnd (0 = \text{white} \rightarrow 1 = \text{grey})
35
              # LegendTxtSize (Size of the text in the legend)
140
              # LegendHeight (Height of the legend in pixels margin include)
40
              # FrameTop (distance between top of color frame and top of the legend)
              # FrameBott (distance between bottom of color frame and top of the legend)
60
# ImageCreator.sh and TimeSeriesInfo.sh
1000
              # Crop_X (Top left X coordinate of the cropped zone)
                                                                           • Depends on the size
1000
              # Crop_Y (Top left Y coordinate of the cropped zone)
3361
              # Crop_L (Horizontal size of the cropped zone)
                                                                           of your full image
2800
              # Crop_H (Vertical size of the cropped zone)
# TimeSeriesInfo.sh
100
              # CrossTresh (Distance between 2 points (Vert or Horiz) which determine the size of the cross)
15
              # CrossBig Size of the cross in defo map as thumbnail if spacement between 2 pts are > treshold)
15
              # CrossSmall Size of the cross in defo map as thumbnail if spacement between 2 pts are < treshold)
2.5
              # RateResoSatView (Rate of pixels number compare with envi files)
                                                                                       Needs explanation!
```


Time Series of single component: *PlotTS.sh*Time Series in UD-EW component *PlotTS_AllComp.sh*

Insets

How set the RateResoSatView param for TS_parameters.txt ? How create the Satview.tiff (and terrain.tif – for web page) (See also manual Web tool Vx.x.docx)

- 1. Open a Google Earth background in QGIS as layer 1
- 2. Import a product map (defo, coh....) with the size of the msbas products as layer 2
- 3. Right-click on layer1 and select 'Export >save as' with following option:
 - Output mode = Raw data
 - Format = Geotiff
 - Disable 'Create VRT' (untick the box to the right of "Format" box)
 - Change the CRS manually as the one of layer2 (You can find it in hdr file of layer2)
 - In extend, click on "Layer" and select layer2 (envi file).
 - in the "Horizontal" and "Vertical" boxes, enter the layer resolution factor to get image size of layer 1 (in lines/col) e.g. 5 time larger than of layer 2. Try e.g. entering a factor 10 or 50 and see the lines and col sizes in boxes "Columns" and "Rows".

Time Series of single component: *PlotTS.sh*Time Series in UD-EW component *PlotTS_AllComp.sh*

Insets

How set the RateResoSatView param for TS_parameters.txt ? How create the Satview.tiff (and terrain.tif – for web page) (See also manual Web_tool_Vx.x.docx)

- 4. Save your file in .../3602/MSBAS/YourRegion_and_Some_Info/CombiFiles as satview.tif (for the web page, you may want to do the same with Google terrain and save it as terrain.tif)
- 5. Convert it as jpg using convert: convert satview.tif satview.jpg
- 6. Edit the TS parameters.txt to set:
 - The "RateResolutionFactor" (The RateResolutionFactor to write in TS_parameters.txt, is the size (either the number of lines or columns) of the layer 1 jpg image divided by the size of the MSBAS products)
 - The size/crop of the msbas products

```
# ImageCreator.sh and TimeSeriesInfo.sh

1000  # Crop_X (Top left X coordinate of the cropped zone)

1000  # Crop_Y (Top left Y coordinate of the cropped zone)

3361  # Crop_L (Horizontal size of the cropped zone)

2800  # Crop_H (Vertical size of the cropped zone)

[...]

2.5  # RateResoSatView (Rate of pixels number compare with envi files)
```


Time Series of single component: *PlotTS.sh*Time Series in UD-EW component *PlotTS_AllComp.sh*Insets

Error bars

2 types of error bars plots are possible:

During operation of msbas: cfr list of points, e.g. Points TS Domuyo.txt

> name x y radiusX raduisY LagunaMaule_Summit 2357 1443 0 0 LagunaMaule_W 1653 1443 3 3 LagunaMaule_S 2357 2146 3 3 LagunaFea_1 2494 1698 0 0 LagunaFea_2 2515 1685 3 3

Figures are stored in pdf format

in .../3602/MSBAS/YourRegion_and_Some_Info/zz_UD_EW_TS_...

Error bars = stdv among values of pixels in a box of $\pm radius X$ and $\pm radius Y$ around the pixel.

Time Series of single component: *PlotTS.sh*Time Series in UD-EW component *PlotTS_AllComp.sh*Insets

Error bars

2 types of error bars plots are possible:

After msbas processing, with PlotTS_AllComp.sh
 with option (See manual § 6.4b)
 -coh=avgavg, avgmin, avgminmax or avgavgminmax

The script computes the mean coherence (avg), min and max coherence (/100!).

Note that because these boxes and bars are coherence related info and not "error bars", the larger is the best!.

Color-coded symbols are added along the y=0 axis corresponding to the number of pairs used to compute the coherence statistics.

Figures are stored in eps format on <u>single pixel plots in</u> .../3602/MSBAS/YourRegion_and_Some_Info/zz_UD_EW_TS_...

Example of plot with option -coh=avgminmax. Bottom of the box is displacement, top of the box is the average coherence (/100). Lower and upper bars are min and max coherence (/100) respectively.

Time Series of single component: *PlotTS.sh*Time Series in UD-EW component *PlotTS_AllComp.sh*Insets

Error bars

Other options

By providing the path to a directory (-EVENTS=/PathTo/EVENTS_TABLES) that contains some formatted files, one can plots additional features:

- EQ_YourPlace.txt: (vertical blue dashed line) e.g.
 - EQplace yyyymmdd
- EQ_Swarms_YourPlace.txt: (vertical blue rectangle) e.g.
 EQplace yyyymmdd yyyymmdd
- Eruptions_YourPlace.txt: (vertical red rectangle) e.g.
 - ErVolc yyyymmdd yyyymmdd
- Sat_Cover_YourPlace.txt: (horiz. blue and/or red rectangles) e.g.
 Sat Mode yyyymmdd yyyymmdd
- o Asymetric_Acquisition_YourPlace.txt: (horiz. grey rectangles) e.g.
 Desc-Only yyyymmdd yyyymmdd
- Other_events_YourPlace.txt: (vertical blue dashed line) e.g.

 Name yyyymmdd

May need to change gnu scripts to adjust position of tags etc...

Events tables must contain names and dates in columns separated by a single tab. No empty lines in the files or at the bottom.

Plan: Time Series of single component: *PlotTS.sh*

Time Series in UD-EW component *PlotTS_AllComp.sh*

Insets

Error bars

Other options

