Lenguaje algebraico y predicativo puro

Foto de una máquina de escribir música Keaton, fabricada en San Francisco en 1950 y descrita en un precioso folleto de 1963

Para representar y expresar realidades usamos lenguajes simbólicos

Están las letras y los números, claro, para los idiomas y las cuentas,

y están también el braille, los jeroglíficos, el morse, los lenguajes de programación, para manejar máquinas,

o el lenguaje musical, hasta llegar a las matemáticas, como máxima expresión de lenguaje abstracto de gran potencia

Lenguaje simbólico

Algebraicos

 Expresiones cuyos elementos son relaciones y operadores como la reunión, división, selección, proyección, unión e intersección

Predicativos

 Los que se basan en lógica de primer orden o de predicados

Algebra relacional

- •Una consulta de usuario se interpreta como una expresión algebraica constituida por relaciones de base, vistas y operadores
- Conjunto de operaciones sobre relaciones

Algebra relacional

- Tal expresión se puede visualizar como un árbol
- Las hojas de dicho árbol serán las relaciones involucradas en la consulta, los nodos del árbol serán los operadores y, finalmente, la raíz representará la relación resultado

Operadores conjuntistas

- Unión
 - Intersección

- Producto cartesiano $R \times S = \{[t,s] / t \in R \land s \in S\}$ $R - S = \{t / t \in R \land t : t \in S\}$
 - Diferencia

Representación gráfica

Union

Cod_Superheroe	Nombre	SuperPoder	Debilidad
1	Superman	Volar	Criptonita
2	Batman	Trepar	
3	Spiderman	Saltar	

Cod_Villano	Nombre	SuperPoder	Debilidad
1	Magneto	Poder sobre el hierro	Plástico
2	Galactus	Comer planetas	
3	Felix Oscuro	Destruir	

Union

Cod_Superheroe	Nombre	SuperPoder	Debilidad
1	Superman	Volar	Criptonita
2	Batman	Trepar	
3	Spiderman	Saltar	
1	Magneto	Poder sobre el hierro	Plástico
2	Galactus	Comer planetas	
3	Felix Oscuro	Destruir	

Union

- •The operand relations $R_1(A_1, A_2, ..., A_n)$ and $R_2(B_1, B_2, ..., B_n)$ must have the same number of attributes, and the domains of corresponding attributes must be compatible; that is, $dom(A_i)=dom(B_i)$ for i=1, 2, ..., n
- •The resulting relation for $R_1 \cup R_2$, $R_1 \cap R_2$, or R_1 - R_2 has the same attribute names as the *first* operand relation R1 (by convention).
- Union is commutative operation
 - $R \cup S = S \cup R$

Intersección

Cod_Superheroe	Nombre	SuperPoder	Debilidad
1	Superman	Volar	Criptonita
2	Batman	Trepar	
3	Jean Grey	Telekinesia	

Cod_Villano	Nombre	SuperPoder	Debilidad
1	Magneto	Poder sobre el hierro	Plástico
2	Galactus	Comer planetas	
3	Jean Grey	Telekinesia	

Intersección

Cod_Superheroe	Nombre	SuperPoder	Debilidad
3	Jean Grey	Telekinesia	

Intersección

Intersection is commutative operation

$$R \cap S = S \cap R$$

- Both union and intersection can be treated as n-ary operations applicable to any number of relations as both are associative operations; that is
 - \bullet R \cup (S \cup T) = (R \cup S) \cup T
 - $(R \cap S) \cap T = R \cap (S \cap T)$

Cod_Superheroe	Nombre	SuperPoder	Debilidad
1	Superman	Volar	Criptonita
2	Batman	Trepar	
3	Jean Grey	Telekinesia	

Cod_Villano	Nombre	SuperPoder	Debilidad
1	Magneto	Poder sobre el hierro	Plástico
2	Galactus	Comer planetas	
3	Jean Grey	Telekinesia	

Cod_Superheroe	Nombre	SuperPoder	Debilidad
1	Superman	Volar	Criptonita
2	Batman	Trepar	

•¿La diferencia es conmutativa?

- •¿La diferencia es conmutativa?
- $R S \neq S R$

Producto cartesiano

Cod_Superheroe	Nombre	SuperPoder	Debilidad
1	Superman	Volar	Criptonita
2	Batman	Trepar	
3	Jean Grey	Telekinesia	

Cod_Villano	Nombre	SuperPoder	Debilidad
1	Magneto	Poder sobre el hierro	Plástico
2	Galactus	Comer planetas	
3	Jean Grey	Destruir	

Producto cartesiano

Cod_Superheroe	Nombre	SuperPoder	Debilidad	Cod_Villano	Nombre	SuperPoder	Debilidad
1	Superman	Volar	Criptonita	1	Magneto	Poder sobre el hierro	Plástico
1	Superman	Volar	Criptonita	2	Galactus	Comer planetas	
1	Superman	Volar	Criptonita	3	Jean Grey	Destruir	
2	Batman	Trepar		1	Magneto	Poder sobre el hierro	Plástico
2	Batman	Trepar		2	Galactus	Comer planetas	
2	Batman	Trepar		3	Jean Grey	Destruir	
3	Jean Grey	Telekinesia		1	Magneto	Poder sobre el hierro	
3	Jean Grey	Telekinesia		2	Galactus	Comer planetas	
3	Jean Grey	Telekinesia		3	Jean Grey	Destruir	

Producto cartesiano

- This operation is used to combine tuples from two relations in a combinatorial fashion. In general, the result of R(A₁, A₂, . . ., A_n) x S(B₁, B₂, . . ., B_m) is a relation Q with degree n + m attributes Q(A₁, A₂, . . ., A_n, B₁, B₂, . . ., B_m), in that order. The resulting relation Q has one tuple for each combination of tuples—one from R and one from S.
 - Hence, if R has n_R tuples (denoted as $|R| = n_R$), and S has n_S tuples, then
 - |RxS| will have $n_R * n_S$ tuples.
 - The two operands do NOT have to be "type compatible"

Operadores relacionales

Select
$$x_1, x_2, \dots, x_n$$

From r;

Select distinct tipo, continente From sitio;

• R(A, B, C)

• R[A, C]

- \bullet π
- The project operation removes any duplicate tuples
- $\pi_{\text{<list1>}}(\pi_{\text{<list2>}}(R)) = \pi_{\text{<list1>}}(R)$ as long as <list2> contains the attributes in <list2>

Cod_Villano	Nombre	SuperPoder	Debilidad
1	Magneto	Poder sobre el hierro	Plástico
2	Galactus	Comer planetas	
3	Felix Oscuro	Destruir	

- R := Villano[nombre, debilidad]
- \bullet_{π} nombre, debilidad (Villano)

Nombre	Debilidad
Magneto	Plástico
Galactus	
Felix Oscuro	

Select *
From R
Where E;

Select *
From Turista
Where País = 'Costa Rica'
or País = 'Panama' or País =
'Jamaica'

• R(A, B, C)

- σ DNO = 4 (EMPLOYEE)
- Se puede usar un operador de comparación (=, ≠, <, ≤, >, o ≥) contra un valor
- En las cláusulas de la forma $Ai \theta v$, v es un valor del dominio de Ai.
- En las cláusulas de la forma Ai, θ Aj, Ai y Aj tienen el mismo dominio.
- Las cláusulas que forman una condición de selección se conectan con los siguientes operadores booleanos: "y" () y "o" ()

• SELECT operation σ is commutative;

•
$$\sigma_{\text{condition}1>}(\sigma_{\text{condition}2>}(R)) = \sigma_{\text{condition}2>}(\sigma_{\text{condition}1>}(R))$$

- A cascaded SELECT operation may be applied in any order
 - $\sigma_{\text{condition1}}$ ($\sigma_{\text{condition2}}$ ($\sigma_{\text{condition3}}$ (R)) = $\sigma_{\text{condition2}}$ ($\sigma_{\text{condition3}}$ ($\sigma_{\text{condition1}}$ (R)))
- A cascaded SELECT operation may be replaced by a single selection with a conjunction of all the conditions
 - $\sigma_{\text{condition1}}(\sigma_{\text{condition2}})(\sigma_{\text{condition3}}(R))$ $= \sigma_{\text{condition1}} + \sigma_{\text{AND}} + \sigma_{\text{condition2}} + \sigma_{\text{AND}} + \sigma_{\text{condition3}}(R))$

Cod_Superheroe	Nombre	SuperPoder	Debilidad
1	Superman	Volar	Criptonita
2	Batman	Trepar	
3	Spiderman	Saltar	

- R:= Superheroes(superpoder = Trepar)
- σ (superpoder = Trepar) (SuperHeroes)

Cod_Superheroe	Nombre	SuperPoder	Debilidad
2	Batman	Trepar	

- R:= Superheroes(superpoder = Volar y debilidad = Criptonita)
- σ (superpoder = Volar AND debilidad = Criptonita)(SuperHeroes)

Cod_Superheroe	Nombre	SuperPoder	Debilidad
1	Superman	Volar	Criptonita

Cod_Superheroe	Nombre	SuperPoder	Debilidad
1	Superman	Volar	Criptonita
2	Batman	Trepar	
3	Spiderman	Saltar	

- R := Superheroes(debilidad is null)
- σ (debilidad is null) (SuperHeroes)

Cod_Superheroe	Nombre	SuperPoder	Debilidad
2	Batman	Trepar	
3	Spiderman	Saltar	

Select r.*, s.* From r, s Where r.a_i = s.b_j;

Select turista.*, viaje.*
From turista, viaje
Where turista.numero_turista
= viaje.numero_turista;

• R

• S

• R: <B=B> S

Α	В	В	С
Ö	8		\$
			8888
Y	8		\$

Cod_Superheroe	Nombre	SuperPoder	Debilidad
1	Superman	Volar	Criptonita
2	La mole	Fuerza	
3	Spiderman	Saltar	

Cod_Villano	Nombre	SuperPoder	Debilidad
1	Magneto	Poder sobre el hierro	Plástico
2	Galactus	Comer planetas	
3	Dientes de sable	Fuerza	

• *Superheroe*[*superpoder* = Fuerza] *Villano*

Cod_ Superheroe	Nombre	SuperPoder	Debilidad	Cod_Villano	Nombre	SuperPoder	Debilidad
2	La mole	Fuerza		3	Dientes de sable	Fuerza	

- La combinación es una operación que, a partir de dos relaciones, obtiene una nueva relación formada por todas las tuplas que resultan de concadenar tuplas de la primera relación con tuplas de la segunda y que cumplen una condición de combinación especificada
- Resultado ← Superheroesuperpoder=Superpoder Villano

• Qué pasa cuando el valor de una condición compara con nulo en el valor del atributo en un join? El resultado se evalúa verdadero o falso?

$$R \div S = \{ t[a_1, ..., a_n] : t \stackrel{\epsilon}{\sim} R \stackrel{\wedge \forall}{\sim} \stackrel{\epsilon}{\sim} S ((t[a_1, ..., a_n] \stackrel{\cup}{\sim} S) \stackrel{\epsilon}{\sim} R) \}$$

Opuesto al producto cartesiano

• R

• R/S

• S

Nombre	SuperPoder
Superman	Volar
La mole	Fuerza
Spiderman	Fuerza
Duende verde	Saltar
Duende verde	Fuerza
Mujer maravilla	Fuerza

SuperPoder
Fuerza
Saltar

• Cuáles personajes tienen los poderes de Fuerza y de Saltar?

• Cuáles personajes tienen los poderes de Fuerza y de Saltar?

Secuencias de operaciones

- R := (Superheroe Villano) [nombre, superpoder]
- *S* := (Superheroe Villano)
- R := S[nombre, superpoder]

Gracias - ¿Preguntas?

