HW5_Shi

Liang Shi

11/3/2020

Problem 3

```
df <- read.csv('Edstats_csv/EdStatsData.csv')</pre>
df_clean <- df[apply(df, 1, function(x) !all(is.na(x[5:70]))),]</pre>
df_clean[is.na(df_clean)] <- 0</pre>
print('Row data:')
## [1] "Row data:"
dim(df)
## [1] 886930
                   70
print('Cleaned data:')
## [1] "Cleaned data:"
dim(df_clean)
## [1] 357405
                   70
c_1 <- df_clean[df_clean$Country.Code=="CPV",][5:70]</pre>
s_1 <- summary(c_1)</pre>
kable(s_1, caption = "summary for China")
```

X1970	X1971	X1972	X1973	X1974	X1975	X1976
Min.: 0	Min.: 0	Min.: 0	Min.: -0.24	Min. : -0.26	Min.: 0	Min. : 0
1st Qu.: 0	1st Qu.: 0	1st Qu.: 0	1st Qu.: 0.00	1st Qu.: 0.00	1st Qu.: 0	1st Qu.: 0
Median: 0	Median: 0	Median: 0	Median: 0.00	Median: 0.00	Median: 0	Median: 0
Mean: 1010	Mean: 1050	Mean: 1086	Mean: 1080.94	Mean: 1161.86	Mean: 1174	Mean: 1167
3rd Qu.: 0	3rd Qu.: 0	3rd Qu.: 0	3rd Qu.: 0.00	3rd Qu.: 0.00	3rd Qu.: 0	3rd Qu.: 0
Max. $:270198$	Max. $:272992$	Max. $:273651$	Max. $:273005.00$	Max. $:272292.00$	Max. :272423	Max. $:273652$

```
c_2 <- df_clean[df_clean$Country.Code=="KEN",][5:70]
s_2<- summary(c_2)
kable(s_2, caption = "summary for Kenya")</pre>
```

X1970	X1971	X1972	X1973	X1974	X197
Min. :0.000e+00	Min. :0.000e+00	Min. :0.000e+00	Min. :0.000e+00	Min. :0.000e+00	Min. :0.000
1st Qu.:0.000e+00	1st Qu.:0.000e+00	1st Qu.:0.000e+00	1st Qu.:0.000e+00	1st Qu.:0.000e+00	1st Qu.:0.00
Median : 0.000e+00	Median $:0.000e+00$	Median $:0.000e+00$	Median $:0.000e+00$	Median $:0.000e+00$	Median $:0.0$
Mean $:4.776e+06$	Mean $:5.658e+06$	Mean $:6.642e+06$	Mean $:7.260e+06$	Mean $:7.910e+06$	Mean $:8.23$
3rd Qu.:0.000e+00	3rd Qu.:0.000e+00	3rd Qu.:0.000e+00	3rd Qu.:0.000e+00	3rd Qu.:0.000e+00	3rd Qu.:0.00
Max. $:6.764e+09$	Max. $:8.263e+09$	Max. $:9.675e+09$	Max. $:1.025e+10$	Max. $:1.066e+10$	Max. $:1.07$

Problem 4

```
df_first_1 <- c_1[1:2]
df_first_1 = df_first_1[which(df_first_1 > 0), ,drop=T]
df_first_1 <- df_first_1[apply(df_first_1, 1, function(x) !all(is.na(x))),]
y = log(df_first_1$X1970)
x = log(df_first_1$X1971)
lm_fit <- lm(y ~ x)
par(mfrow=c(3,2))
hist(x)
hist(y)
qqnorm(x)
qqnorm(y)
plot(residuals(lm_fit))
plot(cooks.distance(lm_fit))</pre>
```


Problem 5

qplot(x, geom="histogram")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

qplot(y, geom="histogram")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(df_first_1, aes(sample=log(X1970)))+stat_qq()

ggplot(lm_fit, aes(x=x, y=lm_fit\$residuals)) + geom_point()

ggplot(lm_fit, aes(x=x, y=cooks.distance(lm_fit))) + geom_point()

