Introduction to Industrial Organization

Cost Theory

Jian-Da Zhu

National Taiwan University

Cost function:

$$C(q) = F + VC(q),$$

where

- F: fixed costs
- VC(q): variable costs
- Note (Sunk cost):
 - Sunk cost: It should not affect the future decision
 - Not a sunk cost:
 Recoverable, so it should
 affect the decision

Cost function:

$$C(q) = F + VC(q),$$

where

- F: fixed costs
- VC(q): variable costs
- Note (Sunk cost):
 - Sunk cost: It should not affect the future decision.
 - Not a sunk cost:
 Recoverable, so it should
 affect the decision

Average Cost (AC)

$$AC(q) = \frac{C(q)}{q} = \frac{F + VC(q)}{q} = \frac{F}{q} + AVC(q),$$

where AVC(q): average variable cost; $\frac{F}{q}$: average fixed cost

Marginal Cost (MC)

$$MC(q) = \frac{\partial C(q)}{\partial q} = C'(q) = 0 + VC'(q)$$

- Example:
 - $C(q) = 100 + 10q + 10q^2$
 - $AC(q) = \frac{100}{q} + 10 + 10q$
 - MC(q) = 10 + 20q

Average Cost (AC)

$$AC(q) = \frac{C(q)}{q} = \frac{F + VC(q)}{q} = \frac{F}{q} + AVC(q),$$

where AVC(q): average variable cost; $\frac{F}{q}$: average fixed cost

Marginal Cost (MC)

$$MC(q) = \frac{\partial C(q)}{\partial q} = C'(q) = 0 + VC'(q)$$

- Example:
 - $C(q) = 100 + 10q + 10q^2$
 - $AC(q) = \frac{100}{q} + 10 + 10q$
 - -MC(q) = 10 + 20q

Average Cost (AC)

$$AC(q) = \frac{C(q)}{q} = \frac{F + VC(q)}{q} = \frac{F}{q} + AVC(q),$$

where AVC(q): average variable cost; $\frac{F}{q}$: average fixed cost

Marginal Cost (MC)

$$MC(q) = \frac{\partial C(q)}{\partial q} = C'(q) = 0 + VC'(q)$$

- Example:
 - $C(q) = 100 + 10q + 10q^2$
 - $AC(q) = \frac{100}{q} + 10 + 10q$
 - MC(q) = 10 + 20q

Fact:

- MC intersects AC at the minimum of AC.
- MC intersects AVC at the minimum of AVC.
- If MC < AC, then AC falls.
- If MC > AC, then AC rises.
- If MC < AVC, then AVC falls
- If MC > AVC, then AVC rises

Fact:

- MC intersects AC at the minimum of AC.
- MC intersects AVC at the minimum of AVC.
- If MC < AC, then AC falls.
- If MC > AC, then AC rises.
- If MC < AVC, then AVC falls.
- If MC > AVC, then AVC rises.

Short-Run versus Long-Run

- Short-run: Some factors of production can not be varied. For instance, the production technology is given.
- Long-run: All factors of production can be varied. For instance, the production technology could be adjusted in the long run.

Short-Run versus Long-Run

- Short-run: Some factors of production can not be varied. For instance, the production technology is given.
- Long-run: All factors of production can be varied. For instance, the production technology could be adjusted in the long run.

• Note: The long-run AC curve is the envelope of short-run AC curve.

Economies of Scale

- ullet Increasing return to scale: AC'(q) < 0
- Constant return to scale: AC'(q) = 0
- Decreasing return to scale: AC'(q) > 0

Economies of Scale

- Increasing return to scale: AC'(q) < 0
- Constant return to scale: AC'(q) = 0
- Decreasing return to scale: AC'(q) > 0

