目 錄

中文摘要
英文摘要
目錄
表目錄
圖目錄
符號說明
第一章 前言
1.1 文獻回顧1
1.2 研究目的 4
1.3 研究方法及步驟5
第二章 統御方程式與邊界條件
2.1 基本假設與統御方程式7
2.2 邊界條件10
第三章 數值方法
3.1 求解方法12
3.2 紐賽數的計算13

3.3	求解程序14
第四章	結果與討論
4.1	網格大小與時間距15
4.2	與文獻[22]之比較15
4.3	採達西模式計算結果之討論-各種參數對
	溫度場之影響16
4.4	非達西效應對流場之影響17
4.5	達西模式、Brinkman 模式、Forchheimer
	加 Brinkman 模式到達穩態之紐賽數比較17
第五章	結論與改進方向
5.1	結論21
5.2	改進方向 22
參考	文獻 23
附錄	A51

表目錄

表 4-1	參數對照表	25
表 4-2	有限厚度壁面模型到達穩態時之紐賽數與	
	[22]之比較	26
表 4-3	Bi 效應、 h 效應對達西模式、Brinkman	
	模式、Forchheimer 加 Brinkman 模式之紐賽數變化表	27
表 4-4	k_s 效應、 $oldsymbol{e}$ 效應對達西模式、 $oldsymbol{Brinkman}$	
	模式、Forchheimer 加 Brinkman 模式之紐賽數變化表	28
表 4-5	不同 Da 對紐賽數的影響	30

圖目錄

圕	2-1	有限壁厚模式孔質渠管示意圖	31
圕	3-1	有限壁厚模式流程圖	32
圕	4-1	有限厚度壁面模型到達穩態時之紐賽數	
		與文獻[22]比較圖	33
圕	4-2	有限厚度壁面模型到達穩態時之紐賽數	
		與文獻[22]比較圖(Bi=1, h = 10)	34
圕	4-3	Bi 對溫度之效應分佈圖,達西模式,Ks=0.1,	
	((a) $h_{=10, (b)} h_{=1000}$	35
圕	4-4	Bi 對溫度之效應分佈圖,達西模式,ks=10,	
	((a) $h_{=10, (b)} h_{=1000}$	36
圕	4-5	h對溫度之效應分佈圖,達西模式, $ks=0.1$,	
	((a) Bi=1,(b) Bi=10	37
圕	4-6	加 對溫度之效應分佈圖,達西模式,ks=10,	
	((a) Bi=1,(b) Bi=10	38
圕	4-7	Ks 對溫度之效應分佈圖,達西模式,Bi=1.,	
	((a) $h_{=10, (b)} h_{=1000}$	39

圖	4-8	Ks 對	温度之	效應分佈	圖,達西	模式,B	i=10.,		
	(a) I	2 =10, (b) h =	=1000					40
圕	4-9	達西	模式、	Brinkmar	模式或	t Forch	heimer		
	加 Br	inkmar)模式,	,在 Da=10 ⁻⁶	³ , e =0.4	,之速度	E分佈圖		41
圕	4-10	達西	模式、	Brinkmar	模式或	t Forch	heimer		
	加 Br	inkmar	n 模式,	,在 Da=10 ⁻³	³ , e =0.4	,之速度	₹分佈圖		42
圖	4-11	達西	模式、	Brinkmar	模式、	Forchh	neimer+	Brinkmar	1
	模式	, Da=10	*劉達	穩態時之經	丑賽數比	:較圖(a)ks=0.1	(b)ks=10)
									43
圖	4-12	2 達西	模式、	Brinkmar	模式、	Forchh	neimer+	Brinkma	an
	模式	, Da=10	*劉達	穩態時之經	丑賽數比	:較圖,k	s=100		44
圖	4-13	3 達西	模式、	Brinkmar	模式、	Forchh	neimer+	Brinkma	an
	模式	Da=10	³到達和	濦態時之 組]賽數比	較圖(a)	ks=10(b)ks=100	
									45
圖	4-14	4 達西	模式、	Brinkmar	模式、	Forchh	neimer+	Brinkma	an
木	美式,	Da=10	-8 ,ks=	:0.1 到達和		Z 紐賽數	比較圖(a	a) Bi=1(b)Bi=5
									46
圖	4-15	5 達西	模式、	Brinkmar	模式、	Forchh	neimer+	Brinkma	an
木	, 大莫	Da=10 ⁻⁸	³,ks=C).1 到達穩	態時之紀	紐賽數比	比較圖 B	i=10	47

圖 A-1	速度之控制體積圖	48
圖 A-2	流體溫度之控制體積圖	48
圖 A-3	固體溫度之控制體積圖	49
圖 A-4	可變網格示意圖	49
圖 A-5	流體溫度邊界示意圖	50
圖 A-6	固體溫度邊界示意圖	50

符號說明

一般符號

Bi
$$= \frac{k_w^* H/H_w}{\boldsymbol{e} \cdot k_f^* + (1-\boldsymbol{e})k_s^*} = \frac{k_w}{\boldsymbol{e} + (1-\boldsymbol{e})k_s} \cdot \frac{H}{H_w}$$

Da 達西數 =
$$\frac{K}{H^2}$$

Fs Forchheimer
$$b = \frac{\mathbf{r}_{f}^{*} \frac{H^{2}}{\mathbf{m}_{f}^{*}} \left(-\frac{dp}{dx}\right) \sqrt{K}}{\mathbf{m}_{f}^{*}} F$$

Pr 流體 prandt I 數=
$$\frac{\mathbf{n}_f}{\mathbf{a}_f}$$

Re 電諾數=
$$\frac{\mathbf{r}_{f}^{*} \frac{H^{2}}{\mathbf{m}_{f}^{*}} \left(-\frac{dp}{dx}\right) H}{\mathbf{m}_{f}^{*}}$$

T 溫度,K

U x 方向有因次速度, m/S

U_m x 方向無因次平均速度

u x 方向無因次速度

X 橫方向座標,m

 \mathbf{x} 無因次橫方向座標 = $\frac{X}{H}$

Y 縱方向座標,m

y 無因次縱方向座標 $=\frac{Y}{H}$

希臘符號

a 熱擴散係數, m²/s

Δ 差

d 微小變化量

e 孔隙度

 $\hat{m{e}}$ (1 - $m{e}$)

 $= \frac{h_{loc}a^*H^2}{\mathbf{e}k_f^* + (1-\mathbf{e})kk_s^*} = \frac{\mathbf{X} \cdot k_s}{\mathbf{e} + (1-\mathbf{e})k_s}$

m 流體動黏滯係數,N-s/m²

q 無因次溫度

r 密度,kg/m³

t 無因次時間

 $=\frac{h_{loc} \cdot a^* H^2}{k_s}$

上標

微分一次

" 微分兩次

二分之一

* 有因次之性質

下標

e 入口

eff 有效性質

f 流體

in 起始狀況

loc 局部區域

s 固相

其他符號

() 體積平均性質