11. Spektroszkópia

Modern fizika laboratórium

Mérést végezte:

Bódiss Áron

Szabó János

Márton Tamás

Mérés időpontja:

2018.04.23. 10:15-14:00

Hétfő délelőtti csoport

Mérés célja

A mérés során a vas-ammónium-szulfát és a szalicilsav reakciójának egyensúlyi állandóját, a képződő elegy extinkciós állandóját, illetve az egyensúlyi állandó hőmérsékletfüggését kellett meghatározni.

Mérés leírása

A spektroszkópia lényege az, hogy a mintára valamilyen elektromágneses hullámot bocsátunk, és mérjük a mintán áthaladt sugárzás paramétereit. Jelen mérés során a hullámok a látható, illetve a közeli UV-tartományba esnek, így a molekulák elektronállapotai között jön létre átmenet. Az abszorpciós sávok meghatározása a Lambert-Beer-törvény alapján történhet:

$$I = I_0 * 10^{-\epsilon/c}$$

ahol I_0 a beeső fény intenzitása, c az vizsgált oldat koncentrációja,

 ε pedig az extinkciós együttható.

Jelen mérés során vas-ammónium-szulfát és szalicil oldatok keverékét használtuk, melyek együtt komplexet képeznek:

$$Fe^{3+} + (sal^-) \Leftrightarrow Fe^{3+} (sal^-)$$

Mivel az asszociációs és a disszociációs ráta egyenlő, kapcsolat van a reakciókomponensek koncentrációja között. A Lambert-Beer-törvény felhasználásával a reakcióállandót a

$$K = \frac{Ca_*}{(x - Ca_*)(y - Ca_*)}$$

kifejezés adja meg, ahol x és y rendre a vas, illetve a szalicil koncentrációja, valamint $C = \frac{1}{l\epsilon}$, itt / az optikai úthossz.

A reakció hőmérsékletfüggő: endoterm esetben a hőmérséklet növelése elősegíti, exoterm esetben pedig gátolja a komplexképződést. Ha ismerjük a reakcióállandó hőmérsékletfüggését, a reakcióhő a van't Hoff összefüggés segítségével kiszámítható:

$$\left(\frac{d(\ln K)}{dT}\right)_p = \left(\frac{Q}{kT^2}\right)$$

ahol k a Boltzmann-állandó.

Mérési eszközök

- Vas-ammónium-szulfát és szalicil sósavas oldata
- Shimadzu UV-VIS-2101 PC spektrofotométer
- Kémcsövek és küvetták

Mért adatok, kiértékelés

Kalibráció

Először fel kellett venni a zérus abszorpcióhoz tartozó alapvonalat - referenciául az oldószerként használt HCl szolgált - majd a teljes mérhető spektrumot végigpásztáztuk, hogy látsszon a csúcsok helye. Kettőt is találtunk; számunkra a látható tartományban lévő volt a releváns, így a további méréseket ennek környezetében végeztük.

Az oldat abszorpcios spektruma

A maximumokat parabolaillesztéssel kerestük meg; a_{*} hibájának maximális értéke nem haladja meg az 5%-ot.

A maximumokat ábrázoltuk a keverési arány függvényében, majd a pontokra függvényt illesztettünk a következő kód felhasználásával:

```
gnuplot> B(x,k,d)=-k*d/2 - k*d*x - k/2 + k*x - 1
gnuplot> C(x,k,d)=k*d/4 - k*d*x**2
gnuplot> f(x,k,d,a)=a/(2*k)*(-B(x,k,d)-sqrt(B(x,k,d)**2 - 4*k*C(x,k,d)))
gnuplot> fit f(x,k,d,a) 'data.dat' via k,d,a.
```

Az illesztett paraméterek értékei:

k= 21.2633+/- 6.827

d= 2.1109+/- 0.06797

a= 4.37102+/- 0.1058,

és az illesztett ábra

3. ábra. Háromparaméteres illesztés

Jól látszik, hogy az ábra aszimmetrikus - ennek oka, hogy a két oldat töménysége nem volt azonos. A kapott paraméterekből is látszik ez, ugyanis a "d" körülbelül 2 ami azt jelenti, hogy a vas oldat töménysége körülbelül kétszerese a szalicilsavénak.

A paraméterek és a következő képletek segítségével a reakció állandó:

$$k = \kappa$$

és

$$K = \frac{\kappa}{c_0} = \frac{k}{c_0} = 8,50532 \pm 2,7308 \frac{1}{mM} (c_0 = 2,5mM).$$

K hibáját a $\Delta K = K_{k-1}$ összefüggés alapján számolhatjuk, mivel c_0 hibája nem ismert.

Az oldat extinkcios állandója

A mérési leírás alapján az extinkciós együttható (ε) a következőképpen adható meg:

$$\epsilon = \frac{\alpha}{c_0 l}$$

ahol / = 1 cm az optikai úthossz. Ennek alapján:

$$\epsilon = 1,748 \pm 0,042 \frac{\mathrm{dm}^3}{\mathrm{mM} \cdot \mathrm{cm}}$$

Reakcio állandó hőmérséklet függése

Ennél a résznél a 4:6 arányú oldatot használtuk és 30 $^{\circ}$ C-tól 60 $^{\circ}$ C-ig mértünk 5 $^{\circ}$ C-os lépésekben:

4. ábra. Abszorpció hőmérsékletfüggése

Ezeknek szintén meghatároztuk a maximális abszorpcióját parabolaillesztéssel. Ezekből és a már előzőekben kiszámolt értékekből K meghatározható a következőképpen:

$$z = \frac{c_0 a^*}{a},$$

ahol a-t a háromparaméteres illesztésből kaptuk,

$$K = \frac{z}{\left(\frac{dc_0}{2} - z\right)\left(\frac{c_0}{2} - z\right)}.$$

A d onnan jön be, hogy az oldat nem ekvimoláris, ezért súlyoztuk vele. A mért adatok:

T [K]	303	308	313	318	323	328	333
a*	2,328	2,319	2,317	2,294	2,281	2,261	2,244
Z	1,331	1,326	1,325	1,312	1,305	1,293	1,283
K [1/mM]	-12,4991	-13,2381	-13,4162	-15,9394	-17,9064	-22,261	-28,3105

A van't Hoff összefüggés értelmében az egyensúlyi állandó és a reakcióhő között az alábbi arányosság áll fent:

$$K \sim e^{-\frac{Q}{k_B T}}$$
.

Ezért a kapott pontokra $f(T)=Ae^{-\frac{b}{T}}$ alakban illesztettünk. A görbe és annak paraméterei:

5. ábra. K a hőmérséklet függvényében

A=-483948±17630, b=3273,35±469,1

Ebből Q könnyen kiszámítható:

$$Q = bk_B = (4,52\pm0,65) \cdot 10^{-20} \frac{J}{db}$$
.

Ebből a moláris reakcióhő:

$$Q^* = QN_A = (27116,07 \pm 3885,973) \frac{J}{\text{mol}}.$$

Mivel Q pozitív tudjuk, hogy a reakció endoterm volt, azaz hőelvonással járt.