APRENDIZAJE AUTOMÁTICO

Grado en Ingeniería Informática

Grupo 1

Práctica 3

UNIVERSIDAD DE GRANADA

ÍNDICE

Normas de desarrollo Fecha de entrega Definición del problema Tareas

Bases de datos

Optical Recognition of Handwritten Digits Data Set Airfoil Self-Noise Data Set

Pasos Machine Learning

Desarrollo de los puntos

- 1. Comprensión del problema
- 2. Clases de funciones
- 3. Training, Test y Validación
- 4. Preprocesamiento
- 5. Métrica
- 6. Técnica de ajuste
- 7. Regularización
- 8 Modelos

NORMAS DE DESARROLLO

- El código de cada ejercicio/apartado de la práctica se debe estructurar en un script Python incluyendo las funciones que se hayan definido. Cada script debe incluirse en un fichero distinto.
- Todos los resultados numéricos o gráficas serán mostrados por pantalla, parando la ejecución después de cada apartado. EL código NO DEBE escribir nada a disco.
- El path que se use en la lectura de cualquier fichero auxiliar de datos debe ser siempre "datos/nombre_fichero". Es decir, se espera que el código lea de un directorio llamado "datos", situado dentro del directorio donde se desarrolla y se ejecuta la práctica.
- Un código es apto para ser corregido si se puede ejecutar de principio a fin sin errores.
- NO ES VÁLIDO usar opciones en las entradas. Para ello fijar al comienzo los parámetros por defecto que considere que son los óptimos.
- El código debe estar obligatoriamente comentado explicando lo que realizan los distintos apartados y/o bloques.
- Poner puntos de parada para mostrar imágenes o datos por consola.
- Todos los ficheros (*.py, *.pdf) se entregan juntos dentro de un único fichero zip, sin ningún directorio que los contenga.
- ► ENTREGAR SOLO EL CODIGO FUENTE, NUNCA LOS DATOS.
- Forma de entrega: Subir el zip a PRADO.

FECHA DE ENTREGA

30 de MAYO

Sólo se aceptarán entregas dentro de plazo y que se encuentren en PRADO.

DEFINICIÓN DEL PROBLEMA

Este ejercicio se centra en el ajuste de un modelo lineal a conjuntos de datos dados, con el objetivo de obtener el mejor predictor/ clasificador posible. En todos los casos, los pasos a desarrollar serán aquellos que nos conduzcan al ajuste y selección del mejor modelo y a la estimación del error E_{out} del modelo final.

TAREAS

Cómo mínimo se habrán de analizar y comentar los siguientes pasos sobre un problema de clasificación y otro de regresión:

- 1. Comprensión del problema a resolver.
- 2. Selección de clases de funciones a usar.
- 3. Definición de los conjuntos de training y test (y validación si se desea usar).
- Preprocesado de datos.
- 5. Elección de métrica a usar y discusión de su idoneidad.
- Discusión de la técnica de ajuste elegida.
- 7. Discusión de la necesidad de regularización y en su caso la función usada para ello.
- Definición de los modelos a usar.
- 9. Estimación de los hiperparámetros del modelo y selección del mejor modelo.
- 10. Estimación del error E_{out} utilizando validación cruzada y comparación con E_{test} .
- 11. Proposición y justificación del mejor modelo.

BASES DE DATOS

Optical Recognition of Handwritten Digits Data Set

Acceso a los datos e información sobre ellos: Aquí. (Ya habéis trabajado con ellos en las dos últimas prácticas.)

43 personas contribuyen a generar esta base de datos (30 training y 13 test) escribiendo dígitos numéricos.

- ► Tipo de atributos: enteros
- Número de instancias: 5620 (3823 training, 1797 test)
- Número de atributos: 64

BASES DE DATOS

Communities and Crime Data Set

Acceso a los datos e información sobre ellos: Aquí

Datos recogidos en comunidades de Estados Unidos con el propósito de predecir el número total de crímenes violentos por cada 100.000 habitantes.

► Tipo de atributos: reales

Número de instancias: 1994

Número de atributos: 128

PASOS MACHINE LEARNING

https://towards datascience.com/machine-learning-a-gentle-introduction-17e96d8143fc

1. Comprensión del problema

- ¿Qué base de datos tenemos?
- ¿Qué representan las columnas? ¿Son numéricas o categóricas?
- ¿Qué hay en la variable de clase?
- ¿Se trata de un problema de aprendizaje supervisado o no supervisado?
- ¿Es un problema de regresión o de clasificación?

1 punto

2. Clases de funciones

Combinaciones lineales, cuadráticas, etc... de las observaciones. Justificar su uso o por qué no se consideran necesarias.

3. Training, Test y Validación

TRAINING \rightarrow Subconjunto de los datos que se estudia, se visualiza y a la que se le aplican los modelos.

 ${f VALIDACIÓN}
ightarrow {f Subconjunto}$ de los datos que indica cuál es el mejor modelo.

 $\textbf{TEST} \rightarrow \textbf{Subconjunto}$ de los datos que proporciona el error cometido.

Posibles particiones:

- Si se decide usar el conjunto Validación: 50% training, 25% Validación y 25% test.
- Si no se decide usar el conjunto de Validación: 70% training y 30% test u 80% training y 20% test.

4. Preprocesamiento

¿Por qué se preprocesan los datos?

Para eliminar impurezas y reducir la probabilidad de aprender de manera errónea de los datos. Causas:

- Datos incompletos (Valores perdidos)
- Datos con ruido
- Datos inconsistentes

4. Preprocesamiento

Tareas:

(esta lista es una sugerencia, por favor, elegid las que consideréis interesantes y/o necesarias)

- Colección, integración y transformación
 - Obtención de los datos, de una o más fuentes
 - Decodificación
 - Integración de datos de distintas bases de datos
 - Generación nuevo conocimiento
- Limpieza
 - Modificación de datos con conflicto
 - Eliminación de outliers
 - Tratamiento de valores perdidos y problemas de ruido
- Reducción
 - Selección de características
 - Selección de instancias
 - Discretización

5. Métrica

Elegir la métrica a usar y discutir su elección. Teniendo en cuenta si se trata de un problema de regresión o de clasificación, así como el tipo de problema a tratar.

- Regresión Aquí y Aquí
- Clasificación Aquí

6. Técnica de ajuste

Según modelo a usar, qué técnica de ajuste utilizas (SGD, Pseudoinversa...) y razone por qué lo has elegido.

7. Regularización

La regularización se trata del método que penaliza la complejidad del modelo, al usar función de coste. Produciendo modelos más simples que generalizan mejor.

- ► L1 (Regularización Lasso) → Interesante cuando se observa que algunas de las características no influyen demasiado en el modelo. Al dar coeficientes a cada atributo para generar la combinación de ellas, ciertos coeficientes tenderán a 0. Funciona mejor cuando los atributos no están correlados entre sí.
- ► L2 (Regularización Ridge) → Útil cuando parezca que varios de los atributos están correlados entre ellos. Hace que los coeficientes sean pequeños. Funciona mejor cuando la mayoría de los atributos son relevantes.

8. Modelos

Posibles modelos a usar:

- Regresión lineal
- ► Regresión logística
- ► Perceptrón + Pocket

9. Hiperparámetros y selección de modelo

- 1. Ajustar los hiperparámetros del modelo.
- 2. Ajustar los datos de validación (o test).
- 3. Seleccionar el que se considera el mejor de los modelos y argumentar por qué se elige.

1 punto

10. Estimación del error

Especificar el error que se produce al ajustar el modelo.

11. Justificación

Responder y argumentar:

- ▶ ¿Representa el modelo de manera adecuada los datos?
- ¿Consideras que la calidad del modelo es buena?
- ► ¿Es tu modelo el que proporciona el mejor error?
- ¿Por qué te has decidido por este modelo?
- **.**..

3 puntos