GRAPH COLORING: COMPARING CLUSTER GRAPHS TO FACTOR GRAPHS

SIMON STREICHER AND JOHAN DU PREEZ STELLENBOSCH UNIVERSITY

Practical example is a **four coloring map problem**:

You only need four colors to color-in a map with no neighboring countries having the same color.

Noted by Francis Guthrie in 1852 Theorem proven by Appel and Haken in 1976

Practical example is a **four coloring map problem**:

You only need four colors to color-in a map with no neighboring countries having the same color.

Noted by Francis Guthrie in 1852 Theorem proven by Appel and Haken in 1976

Practical example is a **four coloring map problem**:

You only need four colors to color-in a map with no neighboring countries having the same color.

Noted by Francis Guthrie in 1852 Theorem proven by Appel and Haken in 1976

Undirected graph

Maximal cliques

Maximal cliques

Sudoku is also a graph coloring problem

Sudoku is also a graph coloring problem

4x4 Sudoku example:

A	B	C	D
E	F	G	Н
I	J	K	L
M	N	0	P

Maximal cliques:

rows

A	B	C	D	
E	F	G	H	
I	J	K	L	
M	N	0	P	

A	В	C	D
E	F	G	Н
I	J	K	L
M	N	0	P

Maximal cliques:

A	B	C	D
E	F	G	Н
I	J	K	L
M	N	0	P

blocks

A	В	C	D
E	F	G	Н

I	J
M	N

Maximal cliques:

A	B	C	D
E	F	G	Н
I	J	K	L
M	N	0	P

blocks

Ι	J	K	L
M	N	0	P

columns

A	В	C	D
E	F	G	Н
I	J	K	L
M	N	0	P

Maximal cliques:

A	B	C	D
E	F	G	Н
I	J	K	L
M	N	0	P

Maximal cliques:

A	В	C	D
E	F	G	H
Ι	J	K	L
M	N	0	P

A	В	C	D
E	F	G	Н
I	J	K	L
M	N	0	P

But how do we take all constraints into account

- clusters information into local sections, and
- let the sections communicate about their combined outcome

In a general sense, a PGM of a system

- clusters information into local sections, and
- let the sections communicate about their combined outcome

In a probabilistic sense, these "local sections" are

- prior distributions,
- marginal distributions, and/or
- conditional distributions;

together, a compact representation of a larger space

- clusters information into local sections, and
- let the sections communicate about their combined outcome

- clusters information into local sections, and
- let the sections communicate about their combined outcome

- · clusters information into local sections, and
- let the sections communicate about their combined outcome

- clusters information into local sections, and
- let the sections communicate about their combined outcome

$$P(A,B,C,D,E,F,G) = f_1(A,C,D,F) \cdot f_2(A,D,E) \cdot f_3(A,B,E) \cdot f_4(B,E,G) \cdot f_5(D,E,G)$$

- clusters information into local sections, and
- let the sections communicate about their combined outcome

- clusters information into local sections, and
- let the sections communicate about their combined outcome

1	2	3	4	1		1	2	3
1	2	4	3	1		1	2	4
1	3	2	4	1	P(A,B,C,D) non normalized	1	3	2
:					non normalized		:	
4	3	2	1	1		4	3	2
elsewhere				0		else	wh	ere

- clusters information into local sections, and
- let the sections communicate about their combined outcome

$$P(A,B,C,D,E,F,G) = f_1(A,C,D,F) \cdot f_2(A,D,E) \cdot f_3(A,B,E) \cdot f_4(B,E,G) \cdot f_5(D,E,G)$$

- clusters information into local sections, and
- let the sections communicate about their combined outcome

In a general sense, a PGM of a system

- clusters information into local sections, and
- let the sections communicate about their combined outcome

In a general sense, a PGM of a system

- clusters information into local sections, and
- let the sections communicate about their combined outcome

In a general sense, a PGM of a system

- clusters information into local sections, and
- let the sections communicate about their combined outcome

Cluster graph

Factor/Bethé graph

In a general sense, a PGM of a system

- clusters information into local sections, and
- let the sections communicate about their combined outcome

In a general sense, a PGM of a system

- clusters information into local sections, and
- let the sections communicate about their combined outcome

In a general sense, a PGM of a system

- clusters information into local sections, and
- let the sections communicate about their combined outcome

In a general sense, a PGM of a system

- clusters information into local sections, and
- let the sections communicate about their combined outcome

In a general sense, a PGM of a system

- clusters information into local sections, and
- let the sections communicate about their combined outcome

We found that

- Graph structure influence convergence speed and accuracy
- Factor graphs are predominant in PGM literature
- Cluster graphs outperform factor graphs

We found that

- Graph structure influence convergence speed and accuracy
- Factor graphs are predominant in PGM literature
- Cluster graphs outperform factor graphs

Why is cluster graphs the underdog?

- Multiple solutions for the same clusters
- Absence of a generic construction procedure

We found that

- Graph structure influence convergence speed and accuracy
- Factor graphs are predominant in PGM literature
- Cluster graphs outperform factor graphs

Why is cluster graphs the underdog?

- Multiple solutions for the same clusters
- Absence of a generic construction procedure

We propose the LTRIP procedure as a solution

Factor/Bethé graph:

variables A B C D E F G

clusters (A,B,G) (A,B,C,D) (B,E,F) (B,C,D,E,F) (B,C,G,E,F)

Factor/Bethé graph:

(B,E,F)

variables A B C D E F

(B,C,D,E,F)clusters A,B,C,D

connection layer (C)

Factor/Bethé graph:

Factor/Bethé graph:

Factor/Bethé graph:

Factor/Bethé graph:

variables A B C D E F G

clusters (B,C,D,E,F)A,B,C,D(B,E,F)

 $\overline{(C)}$ (D)connection layer

variables

A B C D E F G

clusters

(A,B,G) (A,B,C,D)

 $\left(B,E,F\right)$

(B,C,D,E,F)

(B,C,G)

connection laye

B

(C)

(E)

B,E,F

variables

B C D E F C

clusters

(B,C,D,E,F)

multivar. sepsets

B,C,G A,B,G

LTRIP procedure:

variables

clusters

multivar. sepsets

B C D E F G

LTRIP procedure:

variables

A (

 \mathbf{C}

) Е

F (

clusters

multivar. sepsets

LTRIP procedure:

variables

A B

 $\mathbf{E} \quad \mathbf{F}$

clusters

multivar. sepsets

LTRIP procedure:

variables

B C D

G

clusters

multivar. sepsets

LTRIP procedure:

variables

ABCD 🛚

F G

clusters

multivar. sepsets

LTRIP procedure:

variables

A B C D E F

clusters

multivar. sepsets

LTRIP procedure:

variables

A B C D E F G

clusters

multivar. sepsets

LTRIP procedure:

variables

clusters

multivar. sepsets

Sudoku cluster graph:

A	В	C	D
E	F	G	Н
I	J	K	L
M	N	0	P

Sudoku cluster graph:

A	B	C	D
E	F	G	H
I	J	K	L
M	N	0	P

A	В	C	D
E	F	G	Н
-	-		

I	J	K	L
M	N	0	P

$$M \mid N \mid O \mid P$$

\overline{A}	В	C	D
E	F	G	Н

M N O P	I	J	K	L
	M	N	0	P

A	B	C	
E	F	G	
I	J	K	
M	N	0	

Sudoku cluster graph:

A	В	C	D
E	F	G	Н
I	J	K	L
M	N	0	P

CLUSTER GRAPHS

Sudoku factor/Bethé graph:

A comparison of cluster graphs vs. factor graphs on PGMs build from Sudoku puzzles

Datasets used:

- Project Euler @ projecteuler.net/problem=96
- Sterten's 95 hardest Sudokus @ magictour.free.fr/top95

Tested with different cluster sizes by splitting-up clusters

9x9 Sudoku puzzle

A	В	C	D	E	F	G	H	I
J	K	L	M	N	0	P	Q	R
:								

9x9 Sudoku puzzle

A	В	C	D	E	F	G	Н	I
J	K	L	M	N	0	P	Q	R

Split each 9 variable clique

 into cliques of 3 variables

$C \mid B \mid A$	$D \mid E \mid B$	$D \mid E \mid F$
$D \mid E \mid A$	$C \mid B \mid D$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
$F \mid G \mid A$	$F \mid E \mid C$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
$H \mid I \mid A$	$H \mid C \mid G$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
$H \mid I \mid B$	$D \mid I \mid C$	$\boxed{F \mid G \mid H}$
$oxed{F} oxed{B} oxed{G}$	$D \mid G \mid H$	$\begin{array}{ c c c c }\hline H & I & G \\ \hline \end{array}$

Split each 9 variable clique

A B C D E F G H I

into cliques of 5 variables

 E
 D
 B
 A
 C

 F
 I
 G
 A
 H

 F
 B
 I
 G
 H

 E
 D
 F
 B
 C

D I G H C

Split each 9 variable clique

 into cliques of 7 variables

Split each 9 variable clique

 into cliques of 9 variables

Split each 9 variable clique

into cliques of 9 variables

$A \mid B \mid C \mid D \mid E \mid F \mid G \mid H \mid I$

Build these clusters into both a factor graph and a cluster graph

Split each 9 variable clique

$A \mid B \mid C$	D	E	F	G	Н	I
-------------------	---	---	---	---	---	---

into cliques of 9 variables

$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$D \mid E$	$F \mid G$	H
--	------------	------------	---

Build these clusters into both a factor graph and a cluster graph

Run message passing on both graphs (note, for a solved Suduko all clusters is reduced to a single entry)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
1 3 2 6 4 5 7 9 8									1
elsewhere								0	

 $P(A,\!B,\!C,\!D,\!E,\!F,\!G,\!H,\!I)$

Project Euler: solution count

Size 3

Project Euler: solution count

Size 3

Project Euler: solution count

Size 3

Project Euler: solution count

Size 5

Project Euler: solution count

Size 5

Project Euler: solution count

cluster graph slower

cluster graph

Project Euler: solution count

cluster graph slower

cluster graph slower

cluster graph faster

cluster graph faster

Project Euler: solution count

Cluster graphs more successful than factor graphs Naive solver to test graph structures - can improve!

CONCLUSION

- Main contribution is LTRIP for constructing cluster graphs
- These cluster graphs show great promise over factor graphs
- We hope LTRIP will enhance the popularity of cluster graphs

CONCLUSION

- Main contribution is LTRIP for constructing cluster graphs
- These cluster graphs show great promise over factor graphs
- We hope LTRIP will enhance the popularity of cluster graphs

FUTURE WORK

- Investigate more advance techniques for graph coloring PGMs
- Mutual information approach for LTRIP's max spanning trees
- Investigate cluster graphs on wider set of problems