Chapter-4 Authentication Protocol and Key Establishment

- 4.1 Nadir Mahmud (18701023)
- 4.1 Ruhul Amin (18701063)
- 4.2 Saifuddin Ahmed (18701048)
- 4.2 Shakawat Hossain Hridoy (18701056)
- 4.3 Abdul Kayum (18701033)
- 4.3 Misbah Uddin (18701020)
- 4.4 MD Habibul Basar Faruq (18701006)
- 4.5 Arup Dutta Bappy (18701010)

4.1 Entity Authentication and Key Establishment

- ☐ Discusses authentication protocols involving cryptographic algorithm.
- □ Definitions
 - > Entity Authentication
 - Cryptographic protocol
 - > Authentication protocol
- ☐ Types of authentication
 - > Unilateral authentication
 - > Mutual authentication
- ☐ Key establishment
 - > Key transport
 - > Key agreement

Continue

- ☐ Authentication only, Unauthenticated key establishment.
- ☐ Integrating authentication with session key establishment.
- ☐ Key management.
- □ Reusing data or session keys.
- ☐ Initial keying material.
- □Crypto strength keys, weak secrets
- ☐ How do we protect long-term secrets stored in software?
 - ➤ Point to point model with n^2 key pairs
 - ➤ Centralized symmetric-key servers KDC and KTC

4.2 Authentication protocols: concepts and mistakes

Here we consider basic concepts about authentication protocols

Demonstrating knowledge of secret as proxy for identity:

- ☐ Basic idea: (for two remote party A & B)
 - Associate a secret with **B**
 - Carry a communication believed to be with **B**
 - □ If this approach involves full secret itself, then a reliable channel is required.
 - ☐ Hence its preferred to send convincing evidence of knowledge known as "proof of knowledge"
 - ☐ Yet there are some flaws in this method. For example:
 - **≻** Simple Replay Attack
 - **▶** Dictionary Attack on Weak Secret
 - **▶** Reflection Attack

Continue

□Some common attacks:

Attack	Short description
replay	reusing a previously captured message in a later protocol run
reflection	replaying a captured message to the originating party
relay	forwarding a message in real time from a distinct protocol run
interleaving	weaving together messages from distinct concurrent protocols
middle-person	exploiting use of a proxy between two end-parties
dictionary	using a heuristically prioritized list in a guessing attack
forward search	feeding guesses into a one-way function, seeking output matches
pre-capture	extracting client OTPs by social engineering, for later use

- ☐ Even some attackers use mixed method to get their work done.
- ☐ In defense **TVP** (time variant parameters) has been introduced.

Time Variant Parameters (TVP)

- ☐ There are three basic types of TVP
 - **Random numbers** (Guarantees freshness and convincing evidence of correct communication)
 - ✓ long length which is hard to reuse & fresh random number assures current protocol, not old.
 - > Sequence number (Provides message uniqueness, not unpredictability. Exp: cheque number)
 - > Timestamp (Certain time boundary, requires synchronized clock between both)
 - □ RSA encryption used for key transport

(RSA decryption used for entity authentication of B). Consider:

- (1) $A \rightarrow B : H(rA), A, EB(rA,A)$... EB(rA,A) is a public-key encrypted challenge
- $(2) A \leftarrow B : rA$... H(rA) showed knowledge of rA, not rA itself

4.3 Establishing shared keys by public agreement

- ☐ Diffie-Hellman key agreement (DH) 1976
 - Two parties with no prior contact/any pre-shared keying material
 - Establish a shared secret by exchanging numbers over a channel readable by everyone else.
 - Params: prime p, generator g, two private values a, b
 - ElGamal encryption used for key transport
- ☐ Passive Attack and MIDDLE-PERSON ATTACK (MITM)

A -> B	B -> A
a, g ^a	b, g ^b
A sends g ^a	B sends g ^b
B computes: $K_B = K = (g^a)^b$	A computes: $K_A = K = (g^b)^a$

STS PROTOCOL

- ☐ Station-to-Station protocol
- ☐ Turns unauthenticated DH into authenticated DH
- ☐ Uses digital signatures.
- ☐ The basic form of the protocol is three steps:
 - 1) Alice \rightarrow Bob : g^x
 - 2) Alice \leftarrow Bob : g^y , $E_K(S_B(g^y, g^x))$
 - 3) Alice \rightarrow Bob : $E_K(S_A(g^x, g^y))$
- ☐ Securities Properties of STS:
 - > cryptographic key agreement scheme
 - provides mutual key and
 - > entity authentication

Key authentication properties and goals

Protocol Goals and Properties:

- ◆ FORWARD SECRECY
 - secrets (a, b) are fresh
 - after the session, these secrets are securely deleted.
- KNOWN-KEY SECURITY
- ENTITY AUTHENTICATION, LIVENESS, KEY-USE CONFIRMATION.
- IMPLICIT AUTHENTICATION, EXPLICIT AUTHENTICATION.

Password Authenticated Key Exchange: EKE and SPEKE

PAKE

- Cryptographic key exchange protocol.
- Symmetric key generation.
- User-chosen passwords are converted.
- Shared key public key cryptography.

• DH-EKE

- Unauthenticated.
- Vulnerable to man-in-the-middle attacks.
- Individual password guess is possible.

Password Authenticated Key Exchange: EKE and SPEKE (continue)

- EKE-Encrypted Key Exchange
 - Authenticate using a password.
 - Mutual authentication.
 - Effectively amplify a shared password into a shared key.
- SPEKE-Simple Password EKE
 - An elegant alternative to EKE.
 - Secure session key generation.
 - Communication over unreliable channel.
 - Shared secret key or password.

Thank You

