EECS 489 Computer Networks

Winter 2017

Mosharaf Chowdhury

Material with thanks to Aditya Akella, Sugih Jamin, Philip Levis, Sylvia Ratnasamy, Peter Steenkiste, and many other colleagues.

Agenda

- Introductions
- What is (this course on) networking about?
- Class policies, logistics, and roadmap

GSI: Nitish Paradkar

- Graduate student in EECS
- Interested in all things networking
- Office hours: See course webpage

Mosharaf Chowdhury

- Ph.D. in Computer Science from Berkeley in 2015
- On the Michigan faculty since 2016
- Research focus on application-infrastructure symbiosis in large-scale networked systems
- Office hours: Wednesday 2PM 4PM in 4820 BBB, starting from January 11
 - Also, by appointment (pre-scheduled via email)

My Teaching Style

- First-time teaching an undergraduate course!
 - I will be learning on the job
 - I will listen to (constructive) feedback
 - » "Speak faster/s-l-o-w-e-r/LOUDER"
 - » "Pace is too fast/too s-l-o-w"
 - » "I'm falling asleep..."

489 in EECS curriculum

EECS 281

- ◆ High-level logic ⇒ Programs
- Coding skills learned in 281 are critical for 489 assignments

• EECS 482

- How do machines work?
- Execute programs, interact with users, etc.
- Many concepts of 482 will be useful

What is missing?

- How do we access most services?
 - Examples include search engines, social networks, video streaming, etc.
- How do two machines communicate?
 - When they are directly connected
 - When they are not directly connected
- Using a network

What is a network?

 A system of "links" that interconnect "nodes" in order to move "information" between nodes

Yes, this is very vague

There are many different types of networks

- Internet
- Telephone network
- Transportation networks
- Wireless networks
- Optical networks
- Datacenter networks

We will focus primarily on the Internet

The Internet is transforming everything

- The way we do business
 - E-commerce, advertising, cloud-computing
- The way we have relationships
 - Facebook friends, E-mail, IM, virtual worlds
- The way we learn
 - Wikipedia, MOOCs, search engines
- The way we govern and view law
 - E-voting, censorship, copyright, cyber-attacks

The Internet consists of many end-systems

- car navigator
- heart pacemaker

smartphone

end-system

iPad

Linux server

MAC laptop

Connected by switches

And links

Managed by many parties

Transfers data

Shared among many services

A federated system

- The Internet ties together different networks by the IP protocol
 - One interface to bind them all together

Why a common interface?

- The Internet ties together different networks
 - → >18,000 ISP networks

 Interoperability between users and networks as well as between different networks

MASSIVE Scale

- 3.5 Billion users (34% of world population)
- 1 Trillion websites
- 200 Billion emails sent per day
- 2 Billion smartphones
- 1.8 Billion Facebook users
- 4 Billion YouTube videos watched per day
- Routers that switch 10 Terabits/second
- Links that carry 100 Gigabits/second

Diversity in all dimensions

Technology

Optical, wireless, satellite, copper

Endpoint devices

 From wearable devices and cell phones to datacenters and supercomputers

Applications

 Video streaming, social networking, file transfer, Skype, live TV, gaming, remote medicine, IM

Users

Malicious, naïve, savvy, embarrassed, paranoid

The Internet is also

- Constantly evolving
- Decentralized
 - Many parties with (often conflicting) interests
- Failure-prone
 - Physical errors, logic errors, human errors, etc.
- Constrained by technology
 - Speed of the light is the limit (so far!)

Have we found the right solution?

We don't really know

- What we do know
 - The early Internet pioneers came up with a solution that was successful beyond all imagining
 - Several enduring architectural principles and practices emerged from their work
- Still, it is just one design with many questions

The Internet is a lesson

- In how to reason through the design of a <u>very</u> complex system
 - What are our goals and constraints?
 - What's the right prioritization of goals?
 - How do we decompose a problem?
 - Who does what? How?
 - What are the interfaces between components?
 - What are the tradeoffs between design options?

What is EECS 489 about?

- To learn about (at a high level)
 - How the Internet works
 - Why it works the way it does
 - How to reason about complicated design problems

- What it's not about
 - How to write web services
 - How to design web pages

• ...

5-MINUTE BREAK!

Class workload

- Four assignments
 - First one is an individual assignment
 - The rest are in groups of 2
- Exams:
 - Midterm: February 22
 - ◆ Final: April 20 1:30PM 3:30PM

Grading

	Allocation
Assignment 1	5%
Assignment 2	15%
Assignment 3	15%
Assignment 4	15%
Midterm	24%
Final	26%

Topics we will cover

- Basics
 - Packets, circuits, multiplexing, delay, loss, protocols
- How do endpoints/applications use the network
 - DNS, CDN, HTTP, TCP
- What make networks tick
 - IP, routing protocols, BGP
- Lower-level technologies
 - Ethernet, wireless
- Emerging/hot topics
 - Datacenters, management, security, SDN

The ALL-NEW assignments

- Assignment 1: measure end-to-end throughput and delay of networks (i.e., simple speed test)
- Assignment 2: video streaming from CDNs (i.e., simple Netflix)
- Assignment 3: reliable transport (i.e., how to transfer data over an unreliable network)
- Assignment 4: router design (i.e., how do internal elements of the network work)

All on (emulated) realistic networks using *mininet*

Textbook

- Kurose and Ross, Computer Networking: A Top-Down Approach, 7th Edition, Pearson, 2017. ISBN 978-0133594140.
 - 6th Edition is ok, but translate reading assignments

- You will not be tested on material we didn't cover in lecture or section
 - Use as a reference and a source of examples

Enrollment and wait list

- Class size capped at 84
 - Room capacity
- Wait-listed students will be admitted as and when registered students drop the class
 - If you're planning to drop, please do so soon!

Communication protocol

- Course website: http://mosharaf.com/eecs489/
 - Assignments, lecture slides
- Piazza for all communication
 - Sign up if you haven't already
 - https://piazza.com/umich/winter2017/eecs489/

- Assignment submission via Github
 - Start forming two-person groups
 - Details will be sent out soon

Policies on late submission, re-grade request, cheating, ...

- Detailed description in the course webpage
- Summary:
 - Assignments must be submitted within deadline to be graded
 - Three late days for the ENTIRE semester
 »Use them judiciously
 - You can submit requests to re-grade exams or assignments, but the entire exam will be re-graded and may cost you
 - DO NOT cheat

Participation

- Ask and answer questions!!
 - It helps you understand and others too
 - It helps you stay awake
 - It helps me stay awake
- Sit toward the front
- Limit electronic access for ~80 minutes
 - You will have a 5 minute break in the middle to get online

Summary

- Learning about the Internet and networking in general is
 - important and relevant
 - lots of fun challenging real-world problems

- Next lecture
 - Read 1.1 and 1.3 of K&R

No discussion sections this week