和と共通部分が連結性ならばそれぞれ連結

1

命題 1.1. X を位相空間とし, $A,B\subset X$ を閉部分集合で, $X=A\cup B$ を満たすものとする. $X,A\cap B$ を連結とする. このとき, A,B はともに連結である.

証明. A,B どちらかが連結でないと仮定する. A の相対位相における開かつ閉集合 $S_1,S_2\subset A$ で, $S_1\cap S_2=\varnothing$ かつ, $S_i\neq\varnothing$, A (i=1,2) かつ $A=S_1\sqcup S_2$ をみたすものがとれる. 開集合 $\tilde{S}_1,\tilde{S}_2\subset X$ で, $\tilde{S}_1\cap A=S_1,\tilde{S}_2\cap A=S_2$ を満たすものがとれる. $\tilde{S}_1\cap (A\cap B)\neq\varnothing$, $\tilde{S}_2\cap (A\cap B)\neq\varnothing$ とすると, $\tilde{S}_1\cap (A\cap B)\cap \tilde{S}_2\cap (A\cap B)=\varnothing$ であるので, $A\cap B$ が連結であることに矛盾してしまうので, $\tilde{S}_1\cap (A\cap B)\neq\varnothing$, $\tilde{S}_2\cap (A\cap B)\neq\varnothing$ ではない. $A\cap B\subset \tilde{S}_1$, $A\cap B\subset \tilde{S}_2$ のいずれかが成り立つ. $A\cap B\subset \tilde{S}_1$ とすると,

$$X = (\tilde{S}_2 \cap B^c) \sqcup (\tilde{S}_1 \cup A^c)$$

が成り立つことを考えると、X が連結であることに矛盾する.