

环境治理能改善空气质量吗?

一以中央环保督察为例

一、背景

中国污染问题严重,控制环境污染是中国政府 面临的紧迫政策问题

蓝天保卫战的胜利证明了环境监管是保护环境的有效途径

构建权威的监管和协调机构是破解环境治理是重要出发点

环境监管体系应运而生

区域环境监管体系无效(不能打破地方保护主义,未减轻环境污染)

中央环保督察 (CEPI)

二、文献

- > 区域环境监管体系
 - ◆ 问题:
 - 地方保护主义, 执法难
 - 地方环境数据造假
 - 国家环境政策无法充分实施
 - 跨地区违法责任难以界定
 - ◆ 实践证明体系制度未能达到打破地方保护主义、代表国家监管地方履行环境责任的初衷
- > 中央环保督察
 - ◆ 争论
 - CEPI是环境治理的创新:能有效治理环境污染,促进环境治理长效机制落地
 - CEPI的有效性提出质疑
 - 地方政府使用"应对"行为来掩盖真相(信息不对称)
 - 运动式,不具有可持续性
- ➤ 本文研究CEPI的有效性与可持续性

三、数据与方法

> 数据

- ◆ 样本对象: 天津 山西 辽宁 安徽 湖南 福建 贵州 (第一轮第三批中央环保督察)
- ◆ 因素选择: 因变量 SO2、PM 2.5、PM 10、0 3、CO、NO2的综合空气质量指数(AQI) 自变量 核心自变量: CEPI政策是否实施

控制变量: 是否下雪 是否降水 日最高气温 日最低气温

季节 风力 是否工作日

- ◆ 研究时期: 五个月(2017年8月7日前50天-后100天)
- ◆ 数据来源: 中国空气质量在线监测分析平台

三、数据与方法

- ▶ 方法 断点回归 (RDD)
 - ◆ 原理:
 - CEPI前后的空气质量突然变化,其他影响因素持续变化→空气质量突变为CEPI引起
 - ◆ 表达式

$$AQI_{cd} = \beta_0 + \beta_1 inspection_{cd} + \beta_2 f(x) + \beta_3 inspection_{cd} f(x) + \alpha X_{cd} + \delta_c + \mu_d + \varepsilon_{cd}$$

- AQI_{cd} 是c省在日期d的空气质量指数
- $inspection_{cd}$ 代表CEPI,c省在督察日期d后为1或之前为0
- x是一个执行变量,表示自CEPI之日起的天数。督察当天为0,督察后大于0,督察前小于0
- f(x)是以x为自变量的多项式函数,决定多项式阶数
- X_{cd} 是一组天气控制变量
- δ_c 是城市c的区域固定效应, μ_d 是时间固定效应,控制年、月、周和法定节假日等
- ε_{cd} 是一个随机扰动项
- ◆ 影响城市空气质量的因素很多,例如地理因素、产业结构、能源结构和汽车保有量,但城市特征 在短期内通常不会发生变化

四、实证结果

▶ 1结果有效性

- ◆ AQI在实施CEPI时间点有一个断点
- ◆ CEPI的系数为负,对AQI有积极影响
- ◆ 改变带宽验证结果稳健

▶ 2结果可持续性

- ◆ 将督察日期设置为8月7日的后五天、15天、30天、40天、60天
- ◆ 系数均为负,但40天与60天系数不显著
- ◆ CEPI影响不可持续

Figure 4. Contaminant concentration: order-4 polynomial fitting curve.

Table 3. Regression results for multiple periods after the inspection.

Variable Name	5 Day	15 Day	30 Day	40 Day	60 Day
Central environmental protection inspections	-8.89 ***	-10.961 ***	-9.186 ***	-10.986	-9.050
cons	102.66 ***	101.811 ***	92.555 ***	100.788 ***	103.522 ***

Note: *** Denotes p < 0.01. The regression also includes weather variables, regional fixed effects, and time-fixed effects, such as year, month, week, and holiday.

四、实证结果

▶ 3结果差异性:

- ◆ 1污染物种类治理差异性
 - 做法: 六种单个污染物浓度的平均日值作为因变量
 - CEPI仅对PM10、PM2.5和CO有治理作用
- ◆ 2省份治理效果差异性
 - 做法:将各省份的六种单个污染物浓度的平均日值作为因变量
 - 结果: CEPI仅对各省份的六种单个污染物浓度影响不一致

Table 4. Regression results of other sub-contaminants.

Full Sample	PM _{2.5}	PM ₁₀	со	NO ₂	SO ₂	O ₃
Central environmental protection inspections	-8.46 ***	-20.62 ***	-5.68 ***	2.071 *	0.819	-8.976
Rain or not	-5.82***	-10.95 ***	1.15 **	-3.29***	-2.86 ***	-8.464**
Snow or not	0.82	-6.07	-0.98	-1.75	1.24	-3.42
Daily maximum temperature	-0.58*	0.92 ***	0.68 ***	-0.13	0.14 *	2.671 ***
Daily minimum temperature	-0.27	-1.23***	-0.98***	-0.08	-0.91 ***	-0.88
Holiday virtual	YES	YES	YES	YES	YES	YES
Season virtual	YES	YES	YES	YES	YES	YES
Fixed effect	YES	YES	YES	YES	YES	YES
N	4435	4435	4435	4435	4435	4435
\mathbb{R}^2	0.1	0.07	0.2	0.11	0.17	0.21

Note: * Denotes p < 0.10. ** Denotes p < 0.05. *** Denotes p < 0.01. The regression also includes weather variables regional fixed effects, and time-fixed effects such as year, month, week, and holiday.

四、实证结果

- ▶ 4模型的有效性检验:
 - 1检测个体是否能够准确操纵切割点
 - 方法: 判断强制变量在切割点的分布是否存在跳跃
 - 结果: 使用McCrary测试来测试驱动变量(督察日期)-通过检验
 - 原因: 督察的日期是由中央政府决定的,地方政府不存在操控
 - 2平滑性假设
 - 影响结果的其他控制变量在切点处不应有明显的跳跃
 - 控制变量系数小且不显著 不存在跳跃

Table 4. Regression results of other sub-contaminants.

Full Sample	PM _{2.5}	PM_{10}	CO	NO_2	SO_2	O_3
Central environmental protection inspections	-8.46 ***	-20.62 ***	-5.68 ***	2.071 *	0.819	-8.976
Rain or not	-5.82***	-10.95 ***	1.15 **	-3.29***	-2.86***	-8.464*
Snow or not	0.82	-6.07	-0.98	-1.75	1.24	-3.42
Daily maximum temperature	-0.58*	0.92 ***	0.68 ***	-0.13	0.14 *	2.671 ***
Daily minimum temperature	-0.27	-1.23***	-0.98 ***	-0.08	-0.91***	-0.88
Holiday virtual	YES	YES	YES	YES	YES	YES
Season virtual	YES	YES	YES	YES	YES	YES
Fixed effect	YES	YES	YES	YES	YES	YES
N	4435	4435	4435	4435	4435	4435
\mathbb{R}^2	0.1	0.07	0.2	0.11	0.17	0.21

Note: * Denotes p < 0.10. ** Denotes p < 0.05. *** Denotes p < 0.01. The regression also includes weather variables, regional fixed effects, and time-fixed effects such as year, month, week, and holiday.

五、结论

- ▶ 结论:
 - ◆ CEPI在一定程度上对空气质量指数的改善产生了积极影响,但有效性相当有限,且不可持续
 - ◆ CEPI对PM10、PM2.5和CO有显著影响,但对其他单个污染物没有显著影响
 - ◆ CEPI对不同省份在治理能力方面存在一定差异,对不同污染物治理效果存在差异
 - ◆ CEPI可能比区域监管体系对空气质量的治理更有力
 - ◆ 2018年, CEPI开始第一轮"回头看", 期间整改问题暴露, 提高CEPI治理效果为当务之急
- ▶ 建议:
 - ◆ 结果应用性-将CEPI结果纳入地方政府绩效评估
 - ◆ 治理多元化-地方根据实际情况开展污染治理
 - ◆ 资金支持度-环境治理持久战,治理效果好的地方政府可申请环保资金补贴
 - ◆ 监督全方位-完善监督畅通多主体表达渠道,发挥社会+非政府组织+主流媒体+人大+政协监督