Cálculo Diferencial P2024. Límites y continuidad.

Dr. José Juan Zacarías

Universidad Politécnica del Estado de Morelos

24 de Mayo de 2024

Límites infinitos y asíntotas

En este apartado estudiamos funciones que *crecen o decrecen sin límite* conforme la variable se acerca cada vez más a un número fijo.

Figura1: Ejemplo de una función que crece sin límite f crece sin límite conforme se acerca a 0.

Tabla I					
x	$f(x) = \frac{3}{x^2}$				
1	3				
0.5	12				
0.25	48				
0.1	300				
0.01	30 000				
0.001	3 000 000				

Figura2: Tabulamos algunos valores

En este caso:

$$\lim_{x\to 0}\frac{3}{x^2}=+\infty$$

Figura3: Ejemplo de una función que decrece sin límite

En este caso:

$$\lim_{x\to 0} -\frac{3}{x^2} = -\infty$$

También podemos tener límites "infinitos" laterales:

En este caso:

$$\lim_{x \to 1^+} \frac{2x}{x-1} = +\infty, \quad \lim_{x \to 1^-} \frac{2x}{x-1} = -\infty$$

Teorema Si r es un entero positivo, entonces

1.

$$\lim_{x\to 0^+} \frac{1}{x^r} = +\infty$$

2.

$$\lim_{x \to 0^{-}} \frac{1}{x^{r}} = \begin{cases} -\infty & \text{si } r \text{ es impar} \\ +\infty & \text{si } r \text{ es par} \end{cases}$$

Figura 4: Gráfica de la función $f(x) = \frac{1}{x^3}$

$$\lim_{x \rightarrow 0^+} \frac{1}{x^3} = +\infty$$

$$\lim_{x \rightarrow 0^-} \frac{1}{x^3} = -\infty$$

Figura 5: Gráfica de la función $f(x) = \frac{1}{x^4}$

$$\lim_{\Omega \to 4} \frac{1}{14} = +\infty$$

Teorema. Si a es cualquier número real y si $\lim_{x\to a} f(x) = 0$ y

$$\lim_{x\to a} g(x) = c$$
, donde c es una constante diferente de 0, entonces

(I) si $c > 0$ y $f(x) \to 0$ a través de valores positivos de $f(x)$,

entonces
$$\lim_{x\to a}\frac{g(x)}{f(x)}=+\infty$$

(II) si
$$c > 0$$
 y $f(x) \to 0$ a través de valores negativos de $f(x)$, entonces

entonces
$$\lim_{x\to a}\frac{g(x)}{f(x)}=-\infty$$

lackbox (III) si c<0 y f(x) o 0 a través de valores positivos de f(x),

entonces
$$\lim_{x \to a} \frac{g(x)}{f(x)} = -\infty$$

ightharpoonup (IV) si c>0 y $f(x)\to 0$ a través de valores negativos de f(x), entonces

$$\lim_{x \to a} \frac{g(x)}{f(x)} = +\infty$$

El teorema también es válido si se sutituye " $x \to a$ " por " $x \to a^+$ " o " $x \to a^-$ ".

Teorema

▶ (I) Si $\lim_{x\to a} f(x) = +\infty$ y $\lim_{x\to a} g(x) = c$, donde c es cualquier constante, entonces $\lim_{x\to a} |g(x)| = c$

Definición (Asíntota vertical) La recta x = a es una asíntota vertical de la gráfica de la función f si al menos uno de los siguientes enunciados es verdadero:

$$\lim_{x \to a^+} f(x) = -\infty$$

$$\lim_{x\to a^-} f(x) = +\infty$$

$$\lim_{x \to a^{-}} f(x) = -\infty$$

Figura6: Tipos de asíntotas verticales

Figura7: Ejemplo de una asíntota

Práctica de Maxima

Sintaxis de la función limit

```
limit (<expr>, <x>, <val>, <dir>)
limit (<expr>, <x>, <val>)
limit (<expr>)
```

<dir> indica el límite por la derecha (plus) y por la izquierda
(minus).

El valor puede ser un número real o $+\infty$ (inf) o $-\infty$ (minf).

Concepto de Continuidad

Definición (Continuidad de una función) Se dice que la función f es **contínua** en el número a si y sólo si se satisfacen las siguientes tres condiciones.

- ightharpoonup f(a) existe;
- ▶ $\lim_{x\to a} f(x)$ existe;
- $| \lim_{x \to a} f(x) = f(a).$

Si una o más de estas tres condiciones no se cumplen en a entonces se dice que la función f es **discontínua** en a.

En los siguientes ejercicios, dibuje la gráfica de la función. Determine porqué la función es discontínua:

1.

$$f(x) = \begin{cases} x - 1 & \text{si } x < 1 \\ 1 & \text{si } x = 1 \\ 1 - x & \text{si } 1 < x \end{cases}$$

2.

$$g(x) = \begin{cases} t^2 - 4 & \text{si } t < 2 \\ 4 & \text{si } t = 2 \\ 4 - t^2 & \text{si } 2 < t \end{cases}$$