ULSAM: Ultra-Lightweight Subspace Attention Module for Compact Convolutional Neural Networks

Rajat Saini^{1*}, Nandan Kumar Jha^{1*}, Bedanta Das¹, Sparsh Mittal², C. K. Mohan¹

¹{cs17mtech11002, cs17mtech11010, cs17mtech11009, ckm}@iith.ac.in,
²sparshfec@iitr.ac.in (*equal contribution)

¹Indian Institute of Technology Hyderabad ²Indian Institute of Technology Roorkee

IEEE Winter Conference on Applications of Computer Vision 2020

March 3, 2020

Convolution: The winter of despair

Convolution is a **linear** operator and captures **local dependencies** in feature space.

- Inefficiencies of convolution operation
 - Limited receptive field size \implies Deeper networks to capture long range dependencies.
 - Captures linear abstraction \implies Wider networks to capture non-linear abstractions in the input data.

Convolution: The winter of despair

Convolution is a **linear** operator and captures **local dependencies** in feature space.

- Inefficiencies of convolution operation
 - Limited receptive field size \implies Deeper networks to capture long range dependencies.
 - Captures linear abstraction \implies Wider networks to capture non-linear abstractions in the input data.

Challenges: Deeper and wider networks lead to **higher** computational complexity, memory footprint, and energy consumption; **inefficient** back-propagation; **increased** serialization and **lack** of parallelizability.

Solution?

Solution?

Self-attention: A spring of hope

Self-attention mechanism in computer vision models offers infinite receptive field size and captures global dependencies in feature space.

Key advantage: Employing attention mechanism in deeper layers of CNNs **enlarge** the effective receptive field size and enable compute and parameter **efficient** feature representation.

SOTA self-attention in computer vision models

Table: Compute and parameter overheads of different attention modules

Attention module	MLP	1 × 1 conv	#Params			#FLOPs (×10 ⁶)
Non-local [Wang, CVPR'18]	×	√	2 <i>m</i> ²	2m²hw	524	102.76
A ² - Net [Chen, NeurlPS'18]	×	✓	2mt	2mthw	66	12.85
SE-Net [Hu, CVPR'18]	✓	×	<u>2m²</u>	2 <i>m</i> ²	33	0.03
BAM [Park, BMVC'18]	✓	✓	$\frac{4m^2}{r} + \frac{18m^2}{r^2}$	$\frac{2m^2}{r} + (\frac{4m^2}{r} + \frac{18m^2}{r^2})hw$	84	16.49
CBAM [Woo, ECCV'18]	✓	×	$\frac{2m^2}{r} + 98$	$\frac{2m^2}{r} + 98hw$	33	0.05

SOTA attention mechanism uses:

- 1 × 1 convolution: To generate attention maps.
- MLP: To model the cross-channel dependencies.

Key observation: SOTA attention mechanism suitable for large and over-parameterized CNNs and **undesirable** for compact CNNs.

Proposed Mechanism: Subspace attention mechanism

Salient features of ULSAM

- Exploits the **linear relationship** between feature map subspace.
 - No need of parameter-heavy MLP.
- Enables **multi-scale** feature representation.
 - Desirable when objects of different sizes in frame.
- Enables **multi-frequency** feature representation.
 - Desirable when discriminative regions contain high frequency features.

Attention module	subspace attention	MLP	1 × 1 conv	#Params (×10 ³)	#FLOPs (×10 ⁶)	#Params (norm.)	#FLOPs (norm.)
Non-local [Wang, CVPR'18]	×	×	√	524	102.76	512×	512×
A ² - Net[Chen, NeurIPS'18]	×	×	✓	66	12.85	64×	64×
SE-Net [Hu, CVPR'18]	×	√	×	33	0.03	33×	0.16×
BAM [Park, BMVC'18]	×	√	✓	84	16.49	82×	82.16×
CBAM [Woo, ECCV'18]	×	✓	×	33	0.05	33×	0.26×
ULSAM (ours)	✓	×	×	1	0.2	1×	1×

ULSAM reduces both the computational complexity and the number of parameters and hence suitable for deployment in compact CNNs.

Experimental Results: MobileNetV1/V2 on ImageNet-1K

Madal	#Davanaa	#EL OD-	g :	= 1	g :	- 2	g :	= 4	g :	= 8	g =	16
Model	#Params	#FLOPs	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
1.0 MV1 (vanilla)	4.2M	569M			Top-1	= 70.65,	Top-5 =	89.76				
1.0 MV1 + ULSAM	4.2M	569.2M	70.69	89.85	70.84	89.87	70.77	89.91	70.59	89.83	70.89	89.74
1.0 MV1 + ULSAM	4.2M	569.2M	70.62	89.86	70.88	89.88	70.61	89.79	70.92	89.98	70.73	89.78
1.0 MV1 + ULSAM	4.2M	569.1M	70.63	89.60	70.85	89.97	70.86	89.85	70.74	89.81	70.82	90.05
MV2 (vanilla)	3.4M	300M			Top-1	= 71.25,	Top-5 =	90.19				
MV2 + ULSAM	3.4M	300.01M	71.31	90.28	71.39	90.34	71.64	90.27	71.35	90.36	71.42	90.43

Key observations:

- A significant gain in the accuracy of MV1/MV2 when g > 1.
- Accuracy of MV1/MV2 is higher (compared to baseline model) when $g \ge 4$.
- @ g = 4, top-1 accuracy of MV1(MV2) increased by 0.27% (0.39%)

Key Takeaway: Separate attention maps for the different parts (subspace) of feature maps helps in better feature representation

MobileNetV1/V2 on fine-grained image classification datasets

Models	#Params	#FLOPs	Food	l-101	Bir	ds	Dogs	
iviodeis	#Faraili5	#FLOFS	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
MV1 (vanilla)	4.2M	569M	81.31	95.24	62.88	86.05	62.20	89.66
MV1 + ULSAM (g = 1)	3.9M	517M	81.28	95.50	62.46	86.01	62.73	88.80
MV1 + ULSAM (g = 4)	3.9M	517M	81.30	95.37	63.52	85.80	63.06	89.58
MV1 + ULSAM (g = 8)	3.9M	517M	81.19	95.41	64.44	86.60	63.30	89.68
MV1 + ULSAM (g = 16)	3.9M	517M	81.62	95.33	63.47	84.90	62.75	89.35

Model	#Params #FLOPs		g=1		<i>g</i> = 4		<i>g</i> = 8		<i>g</i> = 16	
iviodei	Woder #1 aranis		Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
MV2 (vanilla)	3.4M	300M			Top-1	= 81.51,	Top-5 =	95.24		
MV2 + ULSAM	3.28M	277.34M	81.67	95.82	81.71	95.47	81.76	95.51	81.94	95.63
MV2 + ULSAM	3.08M	284.54M	82.05	95.56	82.02	95.48	81.74	95.40	81.54	95.14
MV2 + ULSAM	2.97M	261.88M	81.57	95.44	81.69	95.36	82.13	95.42	81.84	95.40
MV2 + ULSAM	2.54M	224.16M	82.38	95.76	82.31	95.80	82.59	95.82	82.91	95.77

Key observation: The accuracy of both MV1 and MV2 is higher than the baseline model with significantly lower computation and number of parameters.

IEEE WACV 2020 ULSAM March 3, 2020 8 / 11

Ablation study: MV1 and MV2 on ImageNet-1K

Models	#Params	#FLOPs	Top-1	Top-5
1.0 MV1 (vanilla)	4.2M	569M	70.65	89.76
1.0 MV1 + ULSAM (g = 1)	3.9M	517M	69.92	89.25
1.0 MV1 + ULSAM (g = 2)	3.9M	517M	70.14	89.67
1.0 MV1 + ULSAM (g = 4)	3.9M	517M	70.43	89.92
1.0 MV1 + ULSAM (g = 8)	3.9M	517M	70.29	89.96
1.0 MV1 + ULSAM (g = 16)	3.9M	517M	70.04	89.98
0.75 MV1 (vanilla)	2.6M	325M	67.48	88.00
0.75 MV1 + ULSAM (g = 1)	2.4M	296M	67.98	88.06
0.75 MV1 + ULSAM (g = 4)	2.4M	296M	67.81	88.43
0.50 MV1 (vanilla)	1.3M	149M	63.22	84.63
0.50 MV1 + ULSAM (g = 1)	1.2M	136M	63.42	84.70
0.50 MV1 + ULSAM (g = 4)	1.2M	136M	63.25	84.81

Models	#Params	#FLOPs	Top-1	Top-5
MV2 (Vanilla)	3.4M	300M	71.25	90.19
MV2 + ULSAM (g = 4)	2.96M	261.88M	71.52	90.25
MV2 + ULSAM(g = 4)	2.77M	269.07M	70.74	89.15
MV2 + ULSAM (g = 4)	2.54M	223.77M	69.72	87.79

Key observations:

- MV2 achieves a 25% (13%) reduction in number of parameters (computation) with 0.27% improvement in top-1 accuracy.
- 0.75-MV1 (0.50-MV1) achieves a **9.1% (8.9%)** reduction in computational complexity with **0.5% (0.1%)** improvement in top-1 accuracy.

Conclusion

- One single attention map in entire feature space does not capture the subspace relationship between the different feature subspace.
- Subspace attention module is a more efficient way to learn the cross-channel interaction in feature maps space of networks.
- Optimum number of attention maps are required to maximize the predictive performance of networks.
- Learning separate attention maps for different feature subspace enables multi-scale and multi-frequency feature representation.
- Multi-frequency feature representation is more desirable for fine-grained image classification tasks.

10/11

Thanks for your attention...!!!

IEEE WACV 2020 ULSAM March 3, 2020 11 / 11