BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION

Course Handout

Date: 02/08/2016

Course Number : CHEM F111 Course Title : General Chemistry

Instructor-in-charge : MADHUSHREE SARKAR

Instructors : Ram K. Roy, Dalip Kumar, Anil Kumar, Ajay K. Sah, Bharti Khungar, I. R

Laskar, Paritosh Shukla, Indresh Kumar, Surojit Pande, Rajeev Sakhuja,

Shamik Chakraborty, Bibhas Ranjan Sarkar.

Objectives:

The course is composed of two parts. The first part provides a comprehensive survey of various topics in electronic structure of atoms and molecules, spectroscopy, chemical thermodynamics, kinetics and second part focuses on the applications of these topics in understanding the structure and properties of organic compounds and transition metal complexes.

Text Books:

T1: P.W. Atkins and Julio de Paula, Elements of Physical Chemistry: 6th Edition, Oxford University Press, Oxford, reprinted in 2015.

T2: T. W. Graham Solomons and Craig B. Fryhle, Organic Chemistry, 10th Edition, John Wiley & Sons, Inc. New York, 2011

Reference Books:

R1: Physical Chemistry, David Ball

R2: J. D. Lee, Concise Inorganic Chemistry, 5th Edition, Blackwell Science, Oxford, 1999.

R3: Inorganic Chemistry: Principles of Structure and Reactivity, 4th Edition, Huheey, Keiter

R4: R. T. Morrison and R. Boyd, 'Organic Chemistry', 6th Edition, PHI, New Delhi, 1992.

Course Plan:

LN	Topic	Learning Objectives	Text ^a
1-3	Quantum Theory: Origins	Origins of quantum mechanics, photoelectric effect, black body radiation, wave function, Schrodinger equation, uncertainty	T1: 12.1-12.6
4-5	Quantum Theory: Applications	Simple applications of quantum mechanics	T1: 12.7-12.9
6-8	Quantum Chemistry: Hydrogenic atom	Energy levels and wavefunctions, orbitals, Spectral transitions,	T1: 13.1-13.7
9-10	Quantum Chemistry: Many-electron atoms	Pauli principle, Orbital approximation, aufbau principle, term symbols, spin-orbit coupling.	T1: 13.8-13.12,
			13.17-13.19
11-13	Spectroscopy: Rotational and Vibrational Spectroscopy; Raman Spectroscopy	Rotational & vibrational energy levels, spectral analysis and applications	T1: 19.1-19.5, 19.6- 19.13
14-16	Spectroscopy: Nuclear Magnetic Resonance	Principles, chemical Shift, fine structure, ¹ H	T1: 21.1-21.6
		NMR of simple compounds	T2: 9.1-9.11C (for examples)
17-19	Thermodynamics: The	Thermodynamic systems, state functions,	T1: Chapters 2-3

	First, second and third laws; Spontaneity and equilibrium	entropy, direction of spontaneous change, second law, absolute entropies and the third law, standard reaction entropy, spontaneity of chemical reactions, Gibbs energy thermodynamics of transition, conditions of stability, reaction Gibbs energy, reactions at equilibrium	(SS), 4.1-4.7 4.10-4.13; 5.1-5.8, 7.1-7.4
20-21	Chemical Kinetics	Reaction schemes: approach to equilibrium, consecutive reactions, reaction mechanisms, formulation of rate laws, rate-determining step, steady-state approximation	T1: 10.1-10.9 (SS); 11.3-11.9
22-25	Coordination Chemistry: Coordination compounds, Bonding	Double salts and coordination compounds. Werner's work; identification of structure by isomer counting; effective atomic no. concept.; Chelates and isomerism; valence bond theory; MO theory: LCAO, bonding and antibonding orbitals; shapes of d orbitals, crystal field theory, octahedral complexes, spectrochemical series, absorption spectroscopy, Lambert Beer's law, electronic spectra of octahedral complexes, CFSE, effects of crystal field splitting	R1: p194-200 (SS); p202-214; p222- 224, p232-235 T1: 14.1-14.5, 14.8- 14.10
26-28	Tetragonal distortion of Octahedral Complexes; Square planar arrangements; Tetrahedral complexes	Jahn-Teller distortion: Effect of geometrical distortions on stability, stability in other geometries	R1: p214-222
29-30	Conformations	Rotation around sigma bonds, conformational analysis of butane, cyclohexane, and di substituted cyclohexanes	T2: 4.8-4.9, 4.10 (SS), 4.11-4.12
31-33	Stereochemistry	Isomerism, chirality, origin of optical activity, stereochemistry of cyclic & acyclic compounds, resolution.	T2: 5.1-5.13, 5.15-5.18, 7.2, 4.13, 5.14
34-36	Aromaticity & Pericyclic reactions	Huckel rule, aromatic compounds, electrocyclic and cycloaddition reactions	T2: 14.7-14.8B; 15.1-15.11
37-40	Reaction Mechanisms	Nucleophilic $(S_N1, S_N2, S_NAr \ etc.)$ and electrophilic substitution reactions; electrophilic addition reactions; Elimination reactions (E1, E2 and Hoffmann and Cope elimination)	T2: 6.2-6.13; 6.15-6.19, 7.5-7.8, 20.12 T2: 8.1 (SS), 8.2-8.10, 8.12-8.15, 10.9

^aPlease refer the lecture slides for determining the depth of the content covered under each topic.

Evaluation scheme:

Evaluation scheme.							
Component	Duration	Weightage (%)	Date and Time	Remarks			
Mid Semester test	90 min	30	<test_1></test_1>	Close book			
Continuous Evaluation [‡]	15 min	30	Continuous	(i) Assignment (Open book) (ii) Quiz (Close book)			
Compre Exam. ⁸	3 hours	40	<test_c></test_c>	(i) 20% Close Book MCQ; (ii) 20% Open Book Descriptive			

Tutorial hour will be used for a quick review of the highlights of the material covered in the lectures, clarification of doubts and problem solving.

(i) Assignments (Open Book): A set of problems will be assigned periodically (on Nalanda Webpage). Based on the concepts of the assigned problems, different questions will be given for solving in the class. Students can refer to **text-books**, **reference books**, **class/tutorial notes and course material (if any provided)** for solving the problem(s). Overall **three** such assignments (each of 15 Marks) will be conducted throughout the semester.(ii) Quiz (Close Book): Short questions/numerical will be asked based on the lectures covered recently; Overall **four** such quizzes (each of 15 Marks) will be conducted throughout the semester. **Best six** of the overall continuous evaluation components will be considered for evaluation.

Only scientific **non-programmable calculators** are allowed during the tutorials, tests and comprehensive examination.

^SComprehensive examination will have a close book quiz portion and an open-book section. Only text-books, reference books, class/tutorial notes and course material (if any provided) will be allowed in the open book examination.

Chamber consultation hours: To be announced

Notices: Notices, if any, will be displayed on the Nalanda & Department of Chemistry Notice Board only.

Make up: Make up would be considered only for **genuine reasons.** Make-up for continuous evaluation (assignments/quizzes) will be considered (for genuine cases) only if more than one assignments/quizzes is missed by a student.

Instructor in-Charge CHEM F111 Formatted: Font color: Black

[‡]There will be two types of continuous evaluation components: