

ÁLGEBRA LINEAL 124 Prof. Mario Marotti

	Nombre Nota	
3ª. prueba parcial 15 de Noviembre de 2017 En todos los ejercicios, justifique cada paso con la mayor claridad posible		
1.	(a) Determine una base y la dimensión del subespacio W de \mathbb{R}^3 dado po $W_1 = \{(x,y,z)/x - y + 2z = 0\}$	r: (0.5 puntos)
	(b) Dado el espacio vectorial W_2 generado por el siguiente conjunto de $\{(-1,1,1),(1,2,1)\}$	vectores,
	encuentre una base para el subespacio vectorial $W_1 + W_2$.	(1.0 puntos)
	(c) ¿Es la suma antes mencionada una suma directa? Explique.	(0.5 puntos)
2.	(a) Probar que los conjuntos $B_1 = \{(1, (x-1), (x-1)^2\} \qquad \text{y} \qquad B_2 = \{1, x-5, (x-3) \text{ son bases del conjunto } \mathbf{P^2(x)} \text{ de todos los polinomios en la variable } x \text{ de menor o igual a 2.}$	
	(b) Hallar la matriz de pasaje de un sistema de coordenadas en la base B_2 .	B_1 a otro en (1.0 puntos)
	(c) Trabajando con matrices, exprese al polinomio $p(x) = 2 - x + x^2$ es y compruébelo trabajando con los polinomios directamente.	n la base B ₂ (1.0 puntos)
3.	(a) Dado el conjunto de vectores $\{(1,1,2), (2,1,-3), (3,2,-1)\}$, indique dimensión del subespacio vectorial W generado por ellos.	ue la (1.0 puntos)
	(b) Encuentre una base ortonormal de W que contenga un vector coline $(1, 1, 2)$.	eal con (1.0 puntos)

Ejernão 1.

Despejo x= 4-22

Per tate:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y - 2z \\ y \\ z \end{pmatrix} = y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$$

Base = { (1,1,0) (-2,0,1) } Dimension = 2.

$$\begin{pmatrix} 1 - 2 - 1 & 1 \\ 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \end{pmatrix} \xrightarrow{F_2 = F_2 - F_1} \begin{pmatrix} 1 - 2 & -1 & 1 \\ 0 & 2 & 2 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \xrightarrow{F_3 = 2F_3 - F_2} \xrightarrow{F_3}$$

Una base possible es B= {(1,2,0)(-2,0,1)(1,2,1)}

(c) No. No es suns directo. El conjunto de 4 vectores suberior debenio ser linealmento indapendiente pare que eso ocumiero.

SINLY CELLS S. LONG

Elevano 2:

(a) Expressedas como vectores, las bases son:

$$B_1 = \{ (1,0,0) (-1,1,0) (1,-2,1) \}$$
 Les matrices
 $B_2 = \{ (1,0,0) (-5,1,0) (9,-6,1) \}$ range 3,
y ambos conjuntos son linealmente in dependientes.

C'alculamos:
$$\begin{pmatrix} 1 & -5 & 9 \\ 0 & 1 & -6 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 & 21 \\ 0 & 1 & 6 \\ 0 & 0 & 1 \end{pmatrix}$$

(b) $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 5 & 21 \\ 0 & 1 & 6 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 18 \\ 5 \\ 1 \end{pmatrix}$ Resp: $\begin{pmatrix} 18, 5, 1 \end{pmatrix}$.

Comprobando:

$$p(x) = 1(x-3)^2 + 5(x-5) + 18$$

$$p(x) = x^2 - 6x + 9 + 5x - 25 + 18$$

$$p(x) = x^2 - x + 2$$

$$p(x) = x^2 - x + 2$$

(e)
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 2 & -3 & -1 \end{pmatrix} \xrightarrow{F_2' = F_2 - F_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -1 \\ 0 & -7 & -7 \end{pmatrix} \xrightarrow{F_3' = F_3 - 7F_2}$$

$$\overline{u_2} = (2,1,3) - \frac{(1,1,2)(2,11,-3)}{(1,1,2)(1,1,2)}(1,1,2)$$

$$\bar{u}_2 = (2,1,3) + \frac{1}{2}(1,1,2)$$

$$\overline{M_2} = \left(\frac{5}{2}, \frac{3}{2}, -2\right)$$

Falta nomalizar: || 11 | = V12+12+ 22 = V6

$$|| \overline{42} || = \sqrt{\left(\frac{5}{2}\right)^2 + \left(\frac{3}{2}\right)^2 + (-2)^2} = \sqrt{\frac{50}{4}} = \frac{5\sqrt{2}}{2}$$

$$\overline{e_1} = \frac{\overline{u_1}}{\|\overline{u_1}\|} = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)$$

$$\overline{e_2} = \frac{\overline{u_2}}{||\overline{u_2}||} = \left(\frac{1}{\sqrt{2}}, \frac{3}{5\sqrt{2}}, \frac{-4}{5\sqrt{2}}\right)$$