ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU!

Miejsce na naklejkę

MIN-R1 1P-092

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

CZĘŚĆ I

Czas pracy 90 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron (zadania 1−3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok wybrane przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Życzymy powodzenia!

WYBRANE:

(środowisko)

(kompilator)

(program użytkowy)

Za rozwiązanie wszystkich zadań można otrzymać łącznie

30 punktów

Zadanie 1. Test (6 pkt)

Zaznacz znakiem X w odpowiedniej kolumnie P lub F, która odpowiedź jest prawdziwa, a która fałszywa.

- a) Przeanalizuj poniższy algorytm (:= oznacza instrukcję przypisania)
 - 1. m = 0
 - 2. n = 6
 - 3. jeśli *m*>*n* to wykonaj krok 7.
 - 4. m := m+1
 - 5. pisz *m*
 - 6. przejdź do kroku 3.
 - 7. stop

	P	F
Wykonywanie algorytmu zakończy się po wypisaniu liczb od 1 do 7.		
Po pierwszym sprawdzeniu warunku w kroku 3. nie zostaną wykonane		
kroki: 4., 5., 6. i wykonywanie algorytmu zakończy się.		
Wykonywanie algorytmu zakończy się po wypisaniu liczb od 0 do 6.		
Sprawdzenie warunku $m > n$ wykonane zostanie dokładnie 8 razy.		

b) 434 176 bity to

	P	F
53 kB.		
53 MB.		
mniej niż 50 kB.		
54 272 bajty.		

c) Liczba dziesiętna 83 jest reprezentowana przez

	P	F
$(63)_{16}$		
$(121)_8$		
$(1103)_4$		
$(10100011)_2$		

d) 8-bitowa reprezentacja pewnej liczby dziesiętnej zapisanej w kodzie U2 ma postać **11111110**. Tą liczbą jest

	P	F
-2 .		
-126.		
-1.		
254.		

e) Schemat Hornera znajduje zastosowanie przy

	P	F
obliczaniu pola powierzchni figur płaskich.		
obliczaniu wartości wielomianu przy minimalnej liczbie operacji mnożenia.		
szybkim sortowaniu dużych zbiorów danych.		
znajdowaniu najmniejszego elementu w zbiorze.		

	Nr zadania	1 a)	1 b)	1 c)	1 d)	1 e)
Wypełnia egzaminator!	Maks. liczba pkt	2	1	1	1	1
	Uzyskana liczba pkt					

Zadanie 2. Punkty kratowe (14 pkt)

Punkt kratowy to punkt, którego współrzędne w układzie kartezjańskim są liczbami całkowitymi.

Przykłady punktów kratowych:

$$(-100,101)$$
, $(1,1)$, $(0,0)$, $(-1,-3)$.

Rozważamy koła o środku w początku układu współrzędnych. Dla nieujemnej liczby rzeczywistej R przez K(R) oznaczmy koło o promieniu R (brzeg koła należy do koła). Niech N(R) będzie liczbą punktów kratowych zawartych w kole K(R).

Przykłady:

Jeżeli R = 0, to N(R) = 1.

Jeżeli R = 1, to w kole K(R) mieści się pięć punktów kratowych, czyli N(R) = 5.

Jeżeli R = 1,5, to w kole K(R) mieści się dziewięć punktów kratowych, zatem N(R) = 9.

a) Uzupełnij poniższą tabelę:

Promień koła R	Liczba punktów kratowych $N(R)$
2,01	
4,50	

b) Zaproponuj algorytm zapisany w wybranej przez siebie notacji (lista kroków, schemat blokowy lub język programowania, który wybrałeś/aś na egzamin) obliczający liczbę punktów kratowych zawierających się w kole o promieniu *R*.

Specyfikacja:

Dane: R – promień koła o środku znajdującym się w początku układu współrzędnych (0,0); liczba całkowita nieujemna.

Wynik: liczba całkowita N(R) – liczba punktów kratowych zawierających się w kole o środku (0,0) i promieniu R

Algorytm:

	Nr zadania	2 a)	2 b)
aggaminator	Maksymalna liczba pkt.	4	10
	Uzyskana liczba pkt		

Zadanie 3. Największy wspólny dzielnik – NWD (10 pkt)

Algorytm opisany w Księdze VII *Elementów* Euklidesa pozwala szybko obliczyć największy wspólny dzielnik dwóch liczb naturalnych a i b - nwd(a,b), z których co najmniej jedna jest większa od 0. Oto rekurencyjny sposób obliczania nwd(a,b):

$$nwd(a,b) = \begin{cases} a & \text{dla } b = 0\\ nwd(b, a \mod b) & \text{dla } b \ge 1 \end{cases}$$

gdzie: mod - operator dzielenia modulo; wynikiem jego działania jest**reszta**z dzielenia <math>a przez b, na przykład 19 mod 7 = 5.

Przykład: nwd(16,12) = nwd(12,4) = nwd(4,0) = 4 – funkcja nwd jest wywoływana w tym przypadku 3 razy:

a	ь	$reszta = a \mod b$	wywołanie
16	12	4	(1)
12	4	0	(2)
4 (wynik)	0	-	(3)

a) Podaj liczbę wywołań funkcji dla a = 56 i b = 72 oraz dla a = 72 i b = 56.

b) Podaj w wybranej przez siebie notacji (lista kroków, schemat blokowy lub język programowania, który wybrałeś/aś na egzamin) **nierekurencyjny** algorytm obliczania wartości funkcji nwd(a,b) wraz ze specyfikacją.

Specyi	ікасја:				
Dane: .		 	 		
		 	 	•••••	
Wynik:		 	 		

**7 * *	Nr zadania	3a)	3 b)
	Maksymalna liczba pkt	2	8
	Uzyskana liczba pkt		

BRUDNOPIS