VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Dokumentace Projektu Digitální Hodiny s Budíkem

Obsah

1	Úvod		2
	1.1	Motivace	2
	1.2	Cíle Projektu	2
	1.3	Klíčové Funkce	2
2	Přehled Použitých HW/SW Prostředků		
	2.1	Mikrokontrolér Kinetis K60	3
	2.2	Platforma FITkit 3	3
	2.3	Softwarové Prostředky	3
	2.4	Konfigurační a Stavové Registry	3
3	Moje Řešení		
	3.1	Nastavení a Zobrazení Aktuálního Času	4
	3.2	Implementace Alarmu	4
	3.3	Výběr Melodií a Světelných Efektů	4
	3.4	UART Komunikace	4
	3.5	Konečný Automat pro Řízení Stavů	4
	3.6	Dodatky k Implementaci	4
4	Shrnutí Výsledků a Metod Ověření		5
	4.1	Testování a Ověřování	5
	4.2	Identifikované Chyby a Opravy	5
	4.3	Aspekty Efektivity a Udržitelnosti	5
	4.4	Celkové Hodnocení Projektu	5

1 Úvod

V tomto projektu se zaměřuji na vytvoření vestavné aplikace "digitální hodiny s budíkem"s využitím mikrokontroléru Kinetis K60. Cílem projektu je navrhnout a implementovat digitální hodiny, které nejen zobrazují aktuální čas, ale také nabízejí funkcionalitu budíku s různými uživatelskými nastaveními.

1.1 Motivace

Motivací pro vývoj tohoto projektu byla potřeba praktického a užitečného zařízení, které spojuje funkce digitálních hodin a budíku s možností personalizace. V současné době, kdy je významná část společnosti závislá na digitálních zařízeních pro sledování času a nastavování alarmů, představují digitální hodiny s budíkem zajímavou kombinaci tradičního a moderního přístupu k měření času a plánování.

1.2 Cíle Projektu

Hlavním cílem projektu je vytvořit vestavnou aplikaci, která:

- Zobrazuje aktuální čas.
- Umožňuje uživateli nastavit čas pro hodiny a budík.
- Nabízí možnost zapnutí/vypnutí funkce buzení.
- Poskytuje zvukovou a světelnou signalizaci při buzení s možností výběru z alespoň tří vestavěných melodií a světelných efektů.
- Umožňuje nastavit opakování pokusu o buzení s nastavitelným počtem pokusů a časovým odstupem mezi pokusy.

1.3 Klíčové Funkce

Návrh zahrnuje několik klíčových funkcí, které zvyšují uživatelský komfort a interaktivitu:

- Interaktivní Uživatelské Rozhraní: Zařízení využívá terminálové okno s obarvením pomocí ANSI ESCape sekvencí, což umožňuje snadné nastavování a kontrolu stavu hodin a alarmu.
- Personalizace: Uživatel si může vybrat z různých melodií a světelných efektů pro signalizaci buzení, což přidává osobní dotek k funkčnosti budíku.
- Flexibilita v Nastavení Alarmu: Možnost nastavit čas buzení, opakování alarmu a interval mezi pokusy poskytuje uživateli kontrolu nad tím, jak a kdy bude probuzen.

2 Přehled Použitých HW/SW Prostředků

V tomto projektu jsem využil řadu hardwarových a softwarových prostředků, které umožnily realizaci digitálních hodin s budíkem.

2.1 Mikrokontrolér Kinetis K60

Mikrokontrolér Kinetis K60 od Freescale byl základem mého projektu. I když jsem nevyužil některé z jeho specifických vlastností, důležité bylo nastavení a konfigurace potřebných registrů pro Real Time Clock (RTC), Universal Asynchronous Receiver/Transmitter (UART) a MCU. Klíčovými funkcemi mikrokontroléru pro tento projekt byly:

- RTC Modul: Pro sledování a zobrazení aktuálního času a nastavení alarmu.
- UART Komunikace: Umožňuje komunikaci s uživatelem prostřednictvím terminálového okna.

2.2 Platforma FITkit 3

FITkit 3 nabízí mnoho funkcí pro vývoj vestavěných aplikací. V mém projektu jsem využil následující komponenty:

- Buzzer (Speaker): Pro generování zvukových signálů alarmu.
- LED Diody: Pro vizuální signalizaci a světelné efekty alarmu.
- USB Type B Port: Pro napájení a UART komunikaci.

2.3 Softwarové Prostředky

Pro vývoj mého softwaru jsem použil následující nástroje a knihovny:

- Kinetis Design Studio 3: Integrované vývojové prostředí pro programování mikrokontroléru.
- PUTTY: Terminálový emulátor pro interakci s uživatelem.
- Standardní C Knihovny: Včetně "string.h", "time.h", "stdio.h"a "stdbool.h".

2.4 Konfigurační a Stavové Registry

Pro správnou funkčnost aplikace bylo nutné nastavit a konfigurovat několik registrů a bitů. Například:

 Inicializace hodinových signálů pro různé porty a nastavení LED pinů jako výstupů.

- Konfigurace pinů pro tlačítka a reproduktor.
- Nastavení portů pro UART komunikaci.

3 Moje Řešení

3.1 Nastavení a Zobrazení Aktuálního Času

Nastavení a zobrazení aktuálního času je implementováno pomocí Real-Time Clock (RTC) modulu mikrokontroléru. Uživatel může nastavit čas prostřednictvím UART rozhraní, kde funkce setClock() zajišťuje správné nastavení RTC modulu.

3.2 Implementace Alarmu

Alarm je nastaven pomocí stejného RTC modulu. Uživatelé mohou nastavit čas alarmu, který je pak uložen do globální proměnné globalAlarmTime a spravován přes RTC. Funkce setAlarm() slouží k nastavení alarmu, a toggleAlarm() k jeho aktivaci nebo deaktivaci.

3.3 Výběr Melodií a Světelných Efektů

Uživatelé mohou vybírat z různých melodií a světelných efektů pro alarm. Funkce chooseMelody() a chooseLightEffect() umožňují výběr z nabídky, což zvyšuje personalizaci uživatelského zážitku.

3.4 UART Komunikace

Interakce s uživatelem probíhá přes UART, což umožňuje jednoduché nastavování a kontrolu hodin a alarmu. Inicializace UART je provedena ve funkci UARTInit(), a komunikace se zajišťuje pomocí UARTSendStr() a UARTReceiveStr().

3.5 Konečný Automat pro Řízení Stavů

Pro efektivní zpracování vstupů a řízení programu byl vytvořen konečný automat, který umožňuje přepínání mezi různými stavy aplikace. Tyto stavy zahrnují čekání na vstup od uživatele, zpracování přijatých vstupů a aktualizaci stavu hodin nebo alarmu. Tento přístup zvyšuje modularitu a efektivitu kódu.

3.6 Dodatky k Implementaci

Implementace zahrnuje další funkce jako handleAlarmRepeats() pro řízení opakovaných pokusů o buzení a RTC_IRQHandler() pro zpracování přerušení od RTC. Dále jsou implementovány funkce pro ovládání LED diod (updateLights()) a generování zvuku přes reproduktor (MakeSound()).

4 Shrnutí Výsledků a Metod Ověření

4.1 Testování a Ověřování

Testování projektu probíhalo manuálně s využitím různých use-case scénářů v terminálu. Zkoušel jsem různé situace, včetně nastavení času, zapnutí a vypnutí alarmu, výběru melodií a světelných efektů, a testování opakování alarmu. Ověření správné funkčnosti RTC modulu probíhalo srovnáním zobrazeného času hodin s aktuálním časem v reálném světě. Funkčnost UART komunikace byla ověřena na základě vstupů a výstupů terminálu. Pro identifikaci a opravu chyb byl intenzivně využíván debugger v Kinetis Design Studio 3 IDE.

4.2 Identifikované Chyby a Opravy

Během testování byla odhalena řada chyb, zejména spojených s exception handlerem a odstraňováním nekonečných smyček, které ztěžovaly práci s aplikací. Klíčovou úpravou byl vývoj dvou konečných automatů, které umožňují efektivnější a plynulejší běh aplikace.

4.3 Aspekty Efektivity a Udržitelnosti

Aplikace je navržena s důrazem na spolehlivost a udržitelnost. Struktura aplikace s mnoha téměř nezávislými funkcemi a její dekompozice napomáhají udržitelnosti a jednodušší budoucí údržbě.

4.4 Celkové Hodnocení Projektu

Jsem spokojen s výsledkem projektu. Využil jsem znalosti získané během studia a lépe porozuměl základním konceptům vývoje aplikací pro mikrokontroléry. Projekt mi umožnil implementovat všechny požadované funkce popsané v zadání a dosáhnout stanovených cílů.