CS4225/CS5425 Big Data Systems for Data Science

Tutorial 1 Hadoop Introduction

Chengxi Xue, Bingsheng He School of Computing National University of Singapore xuechengxi@u.nus.edu

Hadoop Introduction

Outline

- Background about Hadoop
- Start on different platforms
- How to setup the Docker for a cluster
- How to start a Hadoop service
- How to use HDFS
- Where you can find the configurations of your Hadoop environments

Hadoop

- A collection of open-source software utilities.
- Hadoop provides a software framework for distributed storage and processing of big data using the MapReduce model.
- Hadoop focused on scalability, flexibility, fault tolerance.

Hadoop Modules

- Hadoop Common: The common utilities that support the other Hadoop modules.
- Hadoop Distributed File System (HDFS™): A
 distributed file system that provides highthroughput access to application data.
- Hadoop YARN: A framework for job scheduling and cluster resource management.
- Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.

Hadoop Cluster Architecture

YARN

- Hadoop limitations
 - Can only run MapReduce
 - What if we want to run other distributed framework
- Yarn = Yet-Another-Resource-Negotiator
 - Provides API to develop any generic distribution application
 - Handles scheduling and resource request
 - MapReduce(MR2) is one such application in YARN

YARN: Architecture

About OS

- Ideally, we can build the Hadoop and start the assignments on different platforms.
 - Windows
 - MacOS
 - Linux
- However, we highly recommend you to use Linux and MacOS.

Recommended Steps

Three steps:

- Step1: Set up the IDE, write the code.
- Step2: Test your code using single node mode/without Hadoop.
- Step3: Package your project and submit your task into clusters for final testing.

• Guidelines:

- Step 1 and Step 2, follow "Run_the_example_win_macos_linux.docx"
- Step 3, see the following slides and follow "Run_example_using_hadoop.docx"
 - Slide 11: setup a cluster with docker.
 - Slide 12: package the project
 - Slides 13-19: configure Hadoop/HDFS in the docker cluster.

Setup a Docker for a cluster

- Download the Docker.
 - Login "docker app" with your Docker account
 - Run "docker login".
 - Run "docker pull nusbigdatacs4225/ubuntu-with-Hadoop-spark"
- Create clusters
 - Run "docker run -it -h master --name master ubuntuwith-hadoop-spark", "docker run -it -h slave01 --name slave01 ubuntu-with-hadoop-spark"......
 - Check IP address and configure the cluster

 You can refer to the documents "Installation&Configuration" in assignment1

Testing with the cluster

- Package your whole project into a jar file using maven/sbt.
- Copy the jar file to the docker cluster.
- Run the application (jar file) using hadoop as the final testing.

Start a Hadoop service

- Initialize the HDFS
 - You can find Hadoop and Spark in /usr/local/...

```
root@master:/usr/local# ls
bin etc games hadoop include lib man sbin share spark src
root@master:/usr/local#
```

In Hadoop, you can see

```
root@master:/usr/local/hadoop# ls
LICENSE.txt README.txt etc include libexec share
NOTICE.txt bin hdfs lib sbin tmp
```

- Structure
 - bin: basic scripts
 - etc: Hadoop configuration files
 - sbin: scripts to start/stop services (HDFS, YARN...)
 - •
- Set up the master and slaves:
 - e.g. In /etc/Hadoop, vim slaves, add "slave01 slave02".
- Initialization: bin/hdfs namenode -format

Start a Hadoop service

- Start the Hadoop
 - Run "sbin./start-all.sh"

```
Start all hadoop daemons. Run this on master node.
echo "
bin=`dirname "${BASH_SOURCE-$0}"`
bin= cd "Sbin": pwd
DEFAULT LIBEXEC DIR="Sbin"/../libexec
HADOOP LIBEXEC DIR=${HADOOP LIBEXEC DIR:-$DEFAULT LIBEXEC DIR}
 SHADOOP LIBEXEC DIR/hadoop-config.sh
if [ -f "${HADOOP_HDFS_HOME}"/sbin/start-dfs.sh ]; then
 "${HADOOP_HDFS_HOME}"/sbin/start-dfs.sh --config_$HADOOP_CONF_DIR
if [ -f "${HADOOP_YARN_HOME}"/sbin/start-yarn.sh ]; then
 "${HADOOP_YARN_HOME}"/sbin/start-yarn.sh --config $HADOOP_CONF_DIR
                                                              38,1
                                                                             Bot
```

Start a Hadoop service

You can see following jobs are running in master:

```
root@master:/usr/local/hadoop# jps
3290 DataNode
3147 NameNode
3726 NodeManager
4030 Jps
3455 SecondaryNameNode
3615 ResourceManager
root@master:/usr/local/hadoop#
```

In slave01 and slave02:

```
root@slave01:/# jps
688 Jps
439 DataNode
555 NodeManager
root@slave01:/# |
```

Run The Application

You can run a jar file as an application using hadoop.

E.g. bin/hadoop jar <jar> [mainClass] args...

- Notes: Read the APACHE Hadoop website to see all the support materials you want.
 - https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client-core/MapReduceTutorial.html

Operations in HDFS

- Create a file in HDFS:
 - bin./hadoop fs -mkdir ***
- Upload a local file
 - bin/hadoop fs -put *local file* *target path*
- List the file
 - bin/hadoop fs -ls /

•

- Notes: Read the APACHE Hadoop website to see all the support materials you want.
 - https://hadoop.apache.org/docs/r2.7.3/hadoop-project-dist/hadoopcommon/ClusterSetup.html

Configurations

- Some important configuration files you need to read
 - etc/hadoop/core-site.xml
 - etc/hadoop/hdfs-site.xml
 - etc/hadoop/yarn-site.xml
 - etc/hadoop/mapred-site.xml
- You can rewrite these four files to deploy your own system.
- You can control the Hadoop scripts found in the bin/, by setting site-specific values via the etc/hadoop/hadoop-env.sh and etc/hadoop/yarnenv.sh.

Configurations

Configuration Filenames	Description
hadoop-env.sh	Environment variables used in the scripts to run Hadoop
core-site.xml	Configuration settings for Hadoop Core such as I/O settings that are common to HDFS nad MapReduce
hdfs-site.xml	Configuration settings for HDFS daemons, namenode, datanode
mapred-site.xml	Configuration settings for MapReduce daemons
Yarn-site.xml	Configuration settings for YARN, resource manager, node manager
masters	A lits of machines that each run a secondary namenode
slaves	A list of machines that each run a datanode and task-tracker

Advice

- Read the APACHE Hadoop website
 - https://hadoop.apache.org/docs/r2.7.3/ hadoop-project-dist/hadoopcommon/ClusterSetup.html

O And you will find most of the answers you want!

Questions?

- Now, make your hands dirty ©
- Contact me: xuechengxi@u.nus.edu

