CIS 3223 Homework 2

Name: Parth Patel

Dr Anthony Hughes

Temple ID $\overline{\text{(last 4 digits)}:5761}$

1 (3 pts) Show that $\sum_{i=1}^{n} \frac{1}{i} = \Theta(\log n)$

$$\sum_{i=1}^{n} \frac{1}{i} = \Theta\left(\int_{1}^{n} \frac{1}{x} dx\right)$$
$$= \Theta\left(\ln x \Big|_{n=1}^{n=x}\right)$$
$$= \Theta(\ln n) \stackrel{*}{=} \Theta(\log n)$$

* - logs only differ by a constant $orall (b_0,b_1)>1,\ \log_{b_0}n\in\Theta(log_{b_1}(n))$

- 2 (3 pts) Determine the following:
- (a) 4231 (mod 17)

15

(b) $-75 \pmod{17}$

10

IMPORTANT: $A^B \mod C = ((A \mod C)^B) \mod C$

$$15^7 \bmod 13 = 2^7 \bmod 13$$

(c)
$$15^7 \pmod{13}$$

$$= \left[\left(2^4 \mod 13 \right) \cdot \left(2^3 \mod 13 \right) \right] \mod 13$$
$$= \left[\left(16 \mod 13 \right) \cdot \left(8 \mod 13 \right) \right] \mod 13$$
$$= \left(3 \cdot 8 \right) \mod 13$$

3 (6 pts) Apply the non-recursive **division algorithm** to find the quotient and remainder when 83 is divided by 7. **Show all steps** (diagram carefully).

$$x = 83$$
 $y = 7$ $83 = 1010011_2$

digit	q	r	$r \ge y$
0	0	0	FALSE
1	0	1	FALSE
0	0	2	FALSE
1	0	5	FALSE
0	0	10	TRUE
	1	3	FALSE
0	2	6	FALSE
1	4	13	TRUE
	5	6	FALSE
1	10	13	TRUE
	11	6	FALSE

4 (6 pts) Use the **extended Euclidean algorithm** (using matrices) to find integers s and t such that $81s + 11t = \gcd(81, 11)$ (show all steps).

$$81 \boxed{3} +11 \boxed{-22} = \boxed{1}$$

If a and b are two n-bit numbers, what is a good bound for the number of iterations of the loop in the algorithm? $O(\log n)$ $O(n \log n)$ $O(n^2)$

5 (2 pts). Exercise 1.2

Let n be a number.

The length of n is in binary $\lceil \log_2(n+1) \rceil$

Then,

$$\lceil \log_2(n+1) \rceil \stackrel{*}{=} \left\lceil \frac{\log_{10}(n+1)}{\log_{10}(2)} \right\rceil \leq \left\lceil \frac{1}{\log_{10}(2)} \right\rceil \lceil \log_{10}(n+1) \rceil \stackrel{**}{=} 4 \lceil \log_{10}(n+1) \rceil$$

Since $\lceil \log_{10}(n+1) \rceil$ represents the length of n in decimal we can conclude that the length of a binary number is at most 4 times as long as its decimal format.

* - log Change of base

** - See that
$$\frac{1}{\log_{10}(2)} = \log_2(10) pprox 3.3219\ldots$$

Large n

For n the ratio of the $\log_{10} n$ and $\log_2 n$ is represented by:

$$\lim_{n\to\infty}\frac{\log_2\,n}{\log_{10}n}=\lim_{n\to\infty}\frac{\log_2n}{\frac{\log_2n}{\log_210}}=\log_210\approx 3.3219\ldots$$