Кластеризация

Цели кластеризации

- Выделение закономерностей
- Построение иерархии множества объектов
- Упрощение дальнейшей обработки данных
- Сокращение объема данных
- Выделение нетипичных объектов
- Получение новых признаков

Кластеризация – обучение без учителя

• Нет точной постановки задачи

• Число кластеров?

• Критерий качества?

K-Means

Количество кластеров – задается.

 μ_i – центр кластера \mathcal{C}_i

Задача – минимизация:

$$\sum_{\mathbf{x}_j} \min_{\mu_i} \left| \left| \mathbf{x}_j - \mu_i \right| \right|_2^2$$

Алгоритм K-Means

- 1. Инициализируем центры кластеров (случайно или более хитрым образом).
- 2. Припишем каждую точку к ближайшему центру.
- 3. Переместим центры кластеров в «центр масс» кластеров:

$$\mu_i = \frac{1}{|C_i|} \sum_{\mathbf{x}_j \in C_i} \mathbf{x}_j$$

4. Повторяем шаги 2-3 до схождения.

K-Means

Выбор количества кластеров

Выбор начального положения центров

Выбор начального положения центров

Выбор начального положения центров

Несферические кластеры

Разноразмерные кластеры

Mean Shift

Задается не количество кластеров, а максимальный размер кластера.

Ищем плотные области, сдвигая центры.

$$\mu_i(t+1) = m(\mu_i(t))$$

$$m(\mu_i) = \frac{\sum_{x_j \in N(\mu_i)} K(x_j - \mu_i) x_j}{\sum_{x_j \in N(\mu_i)} K(x_j - \mu_i)},$$

где $N(\mu_i)$ – окрестность точки μ_i , K – RBF (Radial Basis Function):

$$K(\mathbf{x}_j - \mathbf{\mu}_i) = e^{-c||\mathbf{x}_j - \mathbf{\mu}_i||_2^2}$$

Последний шаг – фильтруем центры, убираем дубликаты.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

Количество кластеров – не задается.

Ищем объекты плотности (core samples) — такие объекты, в ϵ окрестности которых есть хотя бы m других объектов.

Объединяем объекты плотности на расстоянии ϵ и их окружение в кластеры.

Иерархическая кластеризация

Agglomerative Clustering

Иерархическая кластеризация снизу-вверх.

Начинаем с того, что каждая точка – отдельный кластер.

Три стратегии порядка слияния (linkage), минимизирующие соответствующие величины:

- ward дисперсия соединяемых кластеров
- average среднее расстояние между объектами кластеров
- maximum (complete) максимальное расстояние между объектами кластеров

Сливаем пока не останется один кластер.

Можно добавить требование близости соединяемых кластеров (connectivity).

Without connectivity constraints (time 0.11s)

With connectivity constraints (time 0.16s)

Affinity Propagation

Affinity Propagation

Данные – близости объектов x_i и x_k - s(i,k).

Распространяем до схождения 2 величины ответственность r(i,k) и доступность a(i,k) (в начале - 0).

$$r(i,k) \leftarrow s(i,k) - \max_{m \neq k} \left(a(i,m) + s(i,m) \right)$$

$$a(i,k) \leftarrow \left\{ egin{aligned} &\sum_{j
eq i} \max ig(0,r(j,k)ig), & ext{если } k = i \ &\min igg(0,r(k,k) + \sum_{j
eq i,k} \max ig(0,r(j,k)ig)igg), ext{если } k
eq i \end{aligned}
ight.$$

Выбираем самые «ответственные» и «доступные точки» точки:

$$\mu_i = \operatorname{argmax}_{k} (a(i, k) + r(i, k))$$

s(i,i) - параметр, регулирующий количество кластеров

AgglomerativeClustering

Метрики кластеризации

Внутренние (internal):

• Davies-Bouldin index:

$$DB = \frac{1}{n} \sum_{i=1}^{n} \max_{j \neq i} \left(\frac{\overline{\rho(\mu_i, \mathbf{x}^i)} + \overline{\rho(\mu_j, \mathbf{x}^j)}}{\rho(\mu_i, \mu_j)} \right)$$

• Dunn index:

$$D = \frac{\min_{i \neq j} \rho(\mu_i, \mu_j)}{\max_{x_i, x_j \in \mu} (x_i, x_j)}$$

Внешние (external):

• Purity:

Доля точек максимального класса в кластерах

• *метрики классификации

Active learning

Semi-supervised learning

Зачастую получить данные (вектора признаков) довольно дешево, а разметить их довольно дорого, например из-за участия оценивающих людей.

Получить много данных можно, например:

- Веб-документы
- Речь
- Изображения и видео

Тогда можно разметить не все вектора. Но информация о неразмеченных векторах все равно может пригодится.

Semi-supervised learning (обучение с частичным привлечением учителя)

Active learning

Active learning – semi-supervised learning при котором мы сами выбираем вектора для оценки.

Sampling bias

Pаспространение оценки Label propagation

1) Построить граф близости

3) Распространить оценку

2) Оценить случайные точки

4) Оценить новую точку и вернуться в (3)

Переоценка кластеризации

1) Неразмеченные данные

2) Найти кластеризацию

3) Разметить случайные точки в кластерах

4) Уточнить кластеризацию

