Introduction to linear regression

Dhananjay Kumar

Batter up

The movie Moneyball focuses on the "quest for the secret of success in baseball". It follows a low-budget team, the Oakland Athletics, who believed that underused statistics, such as a player's ability to get on base, betterpredict the ability to score runs than typical statistics like home runs, RBIs (runs batted in), and batting average. Obtaining players who excelled in these underused statistics turned out to be much more affordable for the team.

In this lab we'll be looking at data from all 30 Major League Baseball teams and examining the linear relationship between runs scored in a season and a number of other player statistics. Our aim will be to summarize these relationships both graphically and numerically in order to find which variable, if any, helps us best predict a team's runs scored in a season.

The data

Let's load up the data for the 2011 season.

```
load("more/mlb11.RData")
```

In addition to runs scored, there are seven traditionally used variables in the data set: at-bats, hits, home runs, batting average, strikeouts, stolen bases, and wins. There are also three newer variables: on-base percentage, slugging percentage, and on-base plus slugging. For the first portion of the analysis we'll consider the seven traditional variables. At the end of the lab, you'll work with the newer variables on your own.

1. What type of plot would you use to display the relationship between runs and one of the other numerical variables? Plot this relationship using the variable at_bats as the predictor. Does the relationship look linear? If you knew a team's at_bats, would you be comfortable using a linear model to predict the number of runs?

Answer: I have used scatterplot to display the relationship between runs and at_bats.

```
reg1 <- lm(mlb11$runs~mlb11$at_bats)
plot(mlb11$at_bats,mlb11$runs)
abline(reg1)</pre>
```


The relationship is linear. Yes, the correlation coefficient is large enough that we can use the model to predict runs scored by a player from his at bats number.

If the relationship looks linear, we can quantify the strength of the relationship with the correlation coefficient.

```
cor(mlb11$runs, mlb11$at_bats)
```

[1] 0.610627

Sum of squared residuals

Think back to the way that we described the distribution of a single variable. Recall that we discussed characteristics such as center, spread, and shape. It's also useful to be able to describe the relationship of two numerical variables, such as runs and at_bats above.

2. Looking at your plot from the previous exercise, describe the relationship between these two variables. Make sure to discuss the form, direction, and strength of the relationship as well as any unusual observations.

Answer: There is a a linear relation between at_bats and 'runs' variable. It is a direct linear relationship that has a good correlation (\sim 0.6). There are some outliers but they are not significant.

Just as we used the mean and standard deviation to summarize a single variable, we can summarize the relationship between these two variables by finding the line that best follows their association. Use the following interactive function to select the line that you think does the best job of going through the cloud of points.


```
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## -2789.2429 0.6305
##
## Sum of Squares: 123721.9
```

After running this command, you'll be prompted to click two points on the plot to define a line. Once you've done that, the line you specified will be shown in black and the residuals in blue. Note that there are 30 residuals, one for each of the 30 observations. Recall that the residuals are the difference between the observed values and the values predicted by the line:

$$e_i = y_i - \hat{y}_i$$

The most common way to do linear regression is to select the line that minimizes the sum of squared residuals. To visualize the squared residuals, you can rerun the plot command and add the argument **showSquares** = TRUE.


```
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## -2789.2429 0.6305
##
## Sum of Squares: 123721.9
```

Note that the output from the plot_ss function provides you with the slope and intercept of your line as well as the sum of squares.

3. Using plot_ss, choose a line that does a good job of minimizing the sum of squares. Run the function several times. What was the smallest sum of squares that you got? How does it compare to your neighbors?

```
plot_ss(x=mlb11$at_bats, y=mlb11$runs, showSquares = TRUE)
```



```
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## -2789.2429 0.6305
##
## Sum of Squares: 123721.9
```

Answer : The smallest sum of squares that I got was from Run 3 - 147537.5. It this still larger than the sum of squares computed in exercise 2.

The linear model

It is rather cumbersome to try to get the correct least squares line, i.e. the line that minimizes the sum of squared residuals, through trial and error. Instead we can use the 1m function in R to fit the linear model (a.k.a. regression line).

```
m1 <- lm(runs ~ at_bats, data = mlb11)</pre>
```

The first argument in the function lm is a formula that takes the form y ~ x. Here it can be read that we want to make a linear model of runs as a function of at_bats. The second argument specifies that R should look in the mlb11 data frame to find the runs and at_bats variables.

Answer: The output of lm is an object that contains all of the information we need about the linear model that was just fit. We can access this information using the summary function.

summary(m1)

```
##
## Call:
## lm(formula = runs ~ at bats, data = mlb11)
##
## Residuals:
##
       Min
                1Q
                    Median
                                3Q
                                        Max
                   -16.59
  -125.58
           -47.05
                              54.40
                                    176.87
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2789.2429
                             853.6957
                                       -3.267 0.002871 **
## at_bats
                   0.6305
                              0.1545
                                        4.080 0.000339 ***
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 66.47 on 28 degrees of freedom
## Multiple R-squared: 0.3729, Adjusted R-squared: 0.3505
## F-statistic: 16.65 on 1 and 28 DF, p-value: 0.0003388
```

The output of 1m is an object that contains all of the information we need about the linear model that was just fit. We can access this information using the summary function.

```
summary(m1)
```

Let's consider this output piece by piece. First, the formula used to describe the model is shown at the top. After the formula you find the five-number summary of the residuals. The "Coefficients" table shown next is key; its first column displays the linear model's y-intercept and the coefficient of at_bats. With this table, we can write down the least squares regression line for the linear model:

$$\hat{y} = -2789.2429 + 0.6305 * atbats$$

One last piece of information we will discuss from the summary output is the Multiple R-squared, or more simply, R^2 . The R^2 value represents the proportion of variability in the response variable that is explained by the explanatory variable. For this model, 37.3% of the variability in runs is explained by at-bats.

4. Fit a new model that uses homeruns to predict runs. Using the estimates from the R output, write the equation of the regression line. What does the slope tell us in the context of the relationship between success of a team and its home runs?

```
plot_ss(x = mlb11$homeruns, y = mlb11$runs)
```

```
058 - 052 - 052 - 053 - 054 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 - 055 -
```

```
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
  (Intercept)
##
       415.239
                       1.835
##
##
## Sum of Squares: 73671.99
cor(mlb11$runs, mlb11$homeruns)
## [1] 0.7915577
m2 \leftarrow lm(runs \sim homeruns, data = mlb11)
summary(m2)
##
## Call:
## lm(formula = runs ~ homeruns, data = mlb11)
##
## Residuals:
##
       Min
                1Q Median
                                 ЗQ
                                        Max
```

```
## -91.615 -33.410
                    3.231 24.292 104.631
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 415.2389
                          41.6779
                                    9.963 1.04e-10 ***
                                    6.854 1.90e-07 ***
## homeruns
                           0.2677
                1.8345
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 51.29 on 28 degrees of freedom
## Multiple R-squared: 0.6266, Adjusted R-squared: 0.6132
## F-statistic: 46.98 on 1 and 28 DF, p-value: 1.9e-07
```

 $y^{=415.2389+1.8345???homeruns} y = 415.2389+1.8345???homeruns$

Homeruns have a strong positive correlation with runs scored. For every homerun scored, the team's run count increases by 1.8345 (slope of the regression line). In other words, every homerun helps bring in an additional 0.8345 run.

Prediction and prediction errors

Let's create a scatterplot with the least squares line laid on top.

```
plot(mlb11$runs ~ mlb11$at_bats)
abline(m1)
```


The function abline plots a line based on its slope and intercept. Here, we used a shortcut by providing the model $\mathtt{m1}$, which contains both parameter estimates. This line can be used to predict y at any value of x. When predictions are made for values of x that are beyond the range of the observed data, it is referred to as extrapolation and is not usually recommended. However, predictions made within the range of the data are more reliable. They're also used to compute the residuals.

5. If a team manager saw the least squares regression line and not the actual data, how many runs would he or she predict for a team with 5,578 at-bats? Is this an overestimate or an underestimate, and by how much? In other words, what is the residual for this prediction?

```
y^=???2789.2429+0.6305???atbats
```

```
y1 = -2789.2429 + 0.6305 * 5578
y1

## [1] 727.6861

y2 = subset(mlb11, at_bats==5579, select = runs)
y2

## runs
## 16 713

res = y2$runs - y1
res

## [1] -14.6861
```

The manager will be over estimating the number of runs

Model diagnostics

To assess whether the linear model is reliable, we need to check for (1) linearity, (2) nearly normal residuals, and (3) constant variability.

Linearity: You already checked if the relationship between runs and at-bats is linear using a scatterplot. We should also verify this condition with a plot of the residuals vs. at-bats. Recall that any code following a # is intended to be a comment that helps understand the code but is ignored by R.

```
plot(m1$residuals ~ mlb11$at_bats)
abline(h = 0, lty = 3)  # adds a horizontal dashed line at y = 0
```


6. Is there any apparent pattern in the residuals plot? What does this indicate about the linearity of the relationship between runs and at-bats?

 $Nearly\ normal\ residuals$: To check this condition, we can look at a histogram

hist(m1\$residuals)

Histogram of m1\$residuals

or a normal probability plot of the residuals.

```
qqnorm(m1$residuals)
qqline(m1$residuals) # adds diagonal line to the normal prob plot
```

Normal Q-Q Plot

library(StMoSim)

```
## Warning: package 'StMoSim' was built under R version 3.3.2

## Loading required package: RcppParallel
## Warning: package 'RcppParallel' was built under R version 3.3.2

## Loading required package: Rcpp

## ## Attaching package: 'Rcpp'

## The following object is masked from 'package:RcppParallel':
## ## LdFlags

qqnormSim(m1$residuals)
```

Normal Q-Q Plot - SIM

7. Based on the histogram and the normal probability plot, does the nearly normal residuals condition appear to be met?

Answer: Yes it does. The points in the qqline are all within the cloud and no obvious outliers can be found. *Constant variability*:

8. Based on the plot in (1), does the constant variability condition appear to be met?

Answer : Yes it does. The points don't 'fan out' of the normal line as would be the case if there were significant variability among the residual observations.

On Your Own

• Choose another traditional variable from mlb11 that you think might be a good predictor of runs. Produce a scatterplot of the two variables and fit a linear model. At a glance, does there seem to be a linear relationship?

```
258 - 059 - 059 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 - 050 -
```

```
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept)
                    -0.3141
     1054.7342
##
## Sum of Squares: 163870.1
cor(mlb11$runs, mlb11$strikeouts)
## [1] -0.4115312
m3 \leftarrow lm(runs \sim strikeouts, data = mlb11)
summary(m3)
##
## Call:
## lm(formula = runs ~ strikeouts, data = mlb11)
##
## Residuals:
##
       Min
                1Q Median
                                 ЗQ
                                         Max
```

```
## -132.27 -46.95 -11.92
                            55.14 169.76
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1054.7342
                          151.7890
                                     6.949 1.49e-07 ***
## strikeouts
                                   -2.389
                                             0.0239 *
                -0.3141
                            0.1315
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 76.5 on 28 degrees of freedom
## Multiple R-squared: 0.1694, Adjusted R-squared: 0.1397
## F-statistic: 5.709 on 1 and 28 DF, p-value: 0.02386
```

• How does this relationship compare to the relationship between runs and at_bats? Use the R² values from the two model summaries to compare. Does your variable seem to predict runs better than at_bats? How can you tell?

Answer: R-squared for strikeouts: 0.1694 R-squared for at bats: 0.3729

The at bats is a better predictor of runs than the strikeout variable. R22 measures the strength of the model in how well it explains the variability of the response variables around the mean.

• Now that you can summarize the linear relationship between two variables, investigate the relationships between runs and each of the other five traditional variables. Which variable best predicts runs? Support your conclusion using the graphical and numerical methods we've discussed (for the sake of conciseness, only include output for the best variable, not all five).

```
m1 <- lm(runs ~ at_bats, data = mlb11)
m2 <- lm(runs ~ homeruns, data = mlb11)
m3 <- lm(runs ~ strikeouts, data = mlb11)
m4 <- lm(runs ~ hits, data = mlb11)
m5 <- lm(runs ~ bat_avg, data = mlb11)
m6 <- lm(runs ~ stolen_bases, data = mlb11)
m7 <- lm(runs ~ wins, data = mlb11)
summary(m1)</pre>
```

```
##
## lm(formula = runs ~ at_bats, data = mlb11)
##
## Residuals:
               1Q Median
                               3Q
                                      Max
      Min
## -125.58 -47.05 -16.59
                            54.40 176.87
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2789.2429
                           853.6957
                                     -3.267 0.002871 **
                             0.1545
                                      4.080 0.000339 ***
## at_bats
                  0.6305
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 66.47 on 28 degrees of freedom
## Multiple R-squared: 0.3729, Adjusted R-squared: 0.3505
## F-statistic: 16.65 on 1 and 28 DF, p-value: 0.0003388
```

```
summary(m2)
```

```
##
## lm(formula = runs ~ homeruns, data = mlb11)
## Residuals:
      Min
               1Q Median
                               3Q
                                     Max
## -91.615 -33.410 3.231 24.292 104.631
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                          41.6779 9.963 1.04e-10 ***
## (Intercept) 415.2389
## homeruns
                1.8345
                           0.2677
                                   6.854 1.90e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 51.29 on 28 degrees of freedom
## Multiple R-squared: 0.6266, Adjusted R-squared: 0.6132
## F-statistic: 46.98 on 1 and 28 DF, p-value: 1.9e-07
summary(m3)
##
## Call:
## lm(formula = runs ~ strikeouts, data = mlb11)
## Residuals:
      Min
               1Q Median
                               3Q
                                     Max
## -132.27 -46.95 -11.92
                          55.14 169.76
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1054.7342 151.7890 6.949 1.49e-07 ***
                            0.1315 -2.389
## strikeouts
               -0.3141
                                           0.0239 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 76.5 on 28 degrees of freedom
## Multiple R-squared: 0.1694, Adjusted R-squared: 0.1397
## F-statistic: 5.709 on 1 and 28 DF, p-value: 0.02386
summary(m4)
##
## Call:
## lm(formula = runs ~ hits, data = mlb11)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -103.718 -27.179 -5.233
                              19.322 140.693
##
```

```
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -375.5600
                          151.1806 -2.484 0.0192 *
                            0.1071 7.085 1.04e-07 ***
                 0.7589
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 50.23 on 28 degrees of freedom
## Multiple R-squared: 0.6419, Adjusted R-squared: 0.6292
## F-statistic: 50.2 on 1 and 28 DF, p-value: 1.043e-07
summary(m5)
##
## Call:
## lm(formula = runs ~ bat_avg, data = mlb11)
##
## Residuals:
      \mathtt{Min}
##
               1Q Median
                               3Q
## -94.676 -26.303 -5.496 28.482 131.113
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                            183.1 -3.511 0.00153 **
## (Intercept)
                -642.8
                            717.3 7.308 5.88e-08 ***
## bat_avg
                5242.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 49.23 on 28 degrees of freedom
## Multiple R-squared: 0.6561, Adjusted R-squared: 0.6438
## F-statistic: 53.41 on 1 and 28 DF, p-value: 5.877e-08
summary(m6)
##
## Call:
## lm(formula = runs ~ stolen_bases, data = mlb11)
## Residuals:
               1Q Median
                               ЗQ
                                      Max
## -139.94 -62.87
                   10.01
                            38.54 182.49
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                          58.9751 11.485 4.17e-12 ***
## (Intercept) 677.3074
                            0.5211 0.286
                                             0.777
## stolen_bases 0.1491
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 83.82 on 28 degrees of freedom
## Multiple R-squared: 0.002914, Adjusted R-squared: -0.0327
## F-statistic: 0.08183 on 1 and 28 DF, p-value: 0.7769
```

summary(m7)

```
##
## Call:
## lm(formula = runs ~ wins, data = mlb11)
##
## Residuals:
##
       Min
                 10
                      Median
                                    3Q
                                            Max
## -145.450 -47.506
                      -7.482
                                47.346
                                      142.186
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 342.121
                           89.223
                                     3.834 0.000654 ***
## wins
                 4.341
                            1.092
                                    3.977 0.000447 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 67.1 on 28 degrees of freedom
## Multiple R-squared: 0.361, Adjusted R-squared: 0.3381
## F-statistic: 15.82 on 1 and 28 DF, p-value: 0.0004469
```

Answer: Batting average has the highest R22. Batting average is the most correlated to runs scored

• Now examine the three newer variables. These are the statistics used by the author of *Moneyball* to predict a teams success. In general, are they more or less effective at predicting runs that the old variables? Explain using appropriate graphical and numerical evidence. Of all ten variables we've analyzed, which seems to be the best predictor of runs? Using the limited (or not so limited) information you know about these baseball statistics, does your result make sense?

```
m8 <- lm(runs ~ new_onbase, data = mlb11)
m9 <- lm(runs ~ new_slug, data = mlb11)
m10 <- lm(runs ~ new_obs, data = mlb11)
summary(m8)</pre>
```

```
##
## lm(formula = runs ~ new_onbase, data = mlb11)
##
## Residuals:
               1Q Median
                               3Q
                                      Max
      Min
## -58.270 -18.335
                    3.249 19.520 69.002
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1118.4
                            144.5
                                  -7.741 1.97e-08 ***
                            450.5 12.552 5.12e-13 ***
## new_onbase
                5654.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 32.61 on 28 degrees of freedom
## Multiple R-squared: 0.8491, Adjusted R-squared: 0.8437
## F-statistic: 157.6 on 1 and 28 DF, p-value: 5.116e-13
```

summary(m9)

```
##
## Call:
## lm(formula = runs ~ new_slug, data = mlb11)
##
## Residuals:
##
     Min
             1Q Median
                            3Q
                                  Max
  -45.41 -18.66 -0.91
                               52.29
                       16.29
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -375.80
                            68.71
                                     -5.47 7.70e-06 ***
## new_slug
                2681.33
                            171.83
                                     15.61 2.42e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 26.96 on 28 degrees of freedom
## Multiple R-squared: 0.8969, Adjusted R-squared: 0.8932
## F-statistic: 243.5 on 1 and 28 DF, p-value: 2.42e-15
```

summary(m10)

```
##
## Call:
## lm(formula = runs ~ new_obs, data = mlb11)
##
## Residuals:
##
      Min
               1Q
                   Median
                               3Q
                                      Max
## -43.456 -13.690
                    1.165 13.935
                                   41.156
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               -686.61
                            68.93 -9.962 1.05e-10 ***
## new_obs
               1919.36
                            95.70 20.057 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.41 on 28 degrees of freedom
## Multiple R-squared: 0.9349, Adjusted R-squared: 0.9326
## F-statistic: 402.3 on 1 and 28 DF, p-value: < 2.2e-16
```

Answer: The all 3 new variables are far better models than the best variable (batting average) for the old variables. The on base + slugging percentage is the best predictor of runs given that this variable has the highest R22 value (greater than 90%!). There is a strong corelation between on base + slugging percentage and runs scored.

• Check the model diagnostics for the regression model with the variable you decided was the best predictor for runs.

plot(mlb11\$new_obs,mlb11\$runs)
abline(m10)

cor(mlb11\$runs, mlb11\$new_obs)

[1] 0.9669163

qqnormSim(m10\$residuals)

Normal Q-Q Plot - SIM

This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was adapted for OpenIntro by Andrew Bray and Mine Çetinkaya-Rundel from a lab written by the faculty and TAs of UCLA Statistics.