$$f(x) = \frac{1-\cos(x)}{x} \ over (-2^{-25}, 2^{-25})$$

Computed Values for f(x) in Matlab

x	-2^{-10}	-2^{-20}	-2^{-26}	$-2^{-26.5}$	$2^{-26.5}$	2^{-26}	2^{-20}	2^{-10}
$\frac{1-cosx}{x}$	-4.8828e - 04	-2^{-21}	-2^{-27}	0	0	2^{-27}	2^{-21}	-4.8828 <i>e</i> - 04

Finding the order of convergence by Taylor Series expanding around xo = 0,

$$f(x) = \frac{1 - (1 - \frac{x^2}{2} + ...)}{x} = \frac{x}{2} + ...$$
 and $\frac{1 - \cos x}{x} = O(x)$.

Comparing this to my numerical data f(x) is indeed converging to zero faster than x.

The smallest absolute value of x for which matlab can compute $\frac{1-cosx}{x}$ is 2^{-26} . Matlab represents 1 using an exponent of 0 and a mantissa of 52 zero bits. The closest representable number uses an exponent of -1 and 52 1 bits. The difference being 2^{-53} (any smaller difference will be rounded to zero). The smallest value of x is found using:

$$acos(1-2^{-53}) = +2^{-26}or - 2^{-26}$$

<u>Note</u>: for x, $2^-26 < x < 2^-26.5$, cos(x) is computed by rounding to 2^-26 . So the calculation for f(x) is completed, but inaccurate.

The three sources of round-off error are: Cancellation-error of $1-\cos(x)$, the computation of $\cos(x)$, and the division by x. Mantissas have limited amount of bits to represent a number, and digits can be lost(rounded of chopped) when two values represented with different exponents are operated on.