Συναρτήσεις, Πράξεις

Κωνσταντίνος. Λόλας

Ισότητα Συναρτήσεων

Ορισμός

Δύο συναρτήσεις f και g θα είναι ίσες αν:

- έχουν ίδιο πεδίο ορισμού Α
- f(x) = g(x) για κάθε $x \in A$

Πράξεις Συναρτήσεων

Πρόσθεση

- Πεδίο ορισμού το $A \cap B$
- Κανόνα f(x) + g(x)

Πράξεις Συναρτήσεων

Πράξεις

Έστω f, $x \in A$ και g, $x \in B$ δύο συναρτήσεις.

- \bullet (f-g)(x) = f(x) g(x), $x \in A \cap B$
- $(f \cdot g)(x) = f(x) \cdot g(x)$, $x \in A \cap B$
- (f/g)(x) = f(x)/g(x), $x \in A \cap B$ kal $g(x) \neq 0$

Και κάτι καινούριο

Σύνθεση της g με την f

- ullet Κανόνα f(g(x))
- ullet Πεδίο ορισμού το $\mathrm{B}\cap f(\mathrm{A})$

Σύνθεση

- \bullet Κανόνα f(g(x))
- ullet Πεδίο ορισμού το ${
 m B}\cap f({
 m A})$

Σύνθεση

- \bullet Κανόνα f(g(x))
- ullet Πεδίο ορισμού το $\mathrm{B}\cap f(\mathrm{A})$
 - $x \in B$

Σύνθεση

- \bullet Κανόνα f(g(x))
- ullet Πεδίο ορισμού το ${f B}\cap f({f A})$
 - $x \in B$
 - $g(x) \in A$

Σύνθεση

- \bullet Κανόνα f(g(x))
- ullet Πεδίο ορισμού το $\mathrm{B}\cap f(\mathrm{A})$
 - $x \in B$
 - $g(x) \in A$
 - τύπος είναι απλά αντικατάσταση

Να εξετάσετε αν οι συναρτήσεις:

$$f(x) = x - \ln(e^x - 1)$$
 και $g(x) = \ln \frac{e^x}{e^x - 1}$

είναι ίσες

Δίνονται οι συναρτήσεις $f(x)=x^{\frac{2}{3}}$ και $g(x)=\sqrt[3]{x^2}$

Να εξετάσετε αν οι συναρτήσεις είναι ίσες

Δίνονται οι συναρτήσεις $f(x)=x^{\frac{2}{3}}$ και $g(x)=\sqrt[3]{x^2}$

- 💵 Να εξετάσετε αν οι συναρτήσεις είναι ίσες
- ② Αν $f \neq g$ να βρείτε το ευρύτερο υποσύνολο του $\mathbb R$ στο οποίο να ισχύει f = g

Δίνονται οι συναρτήσεις $f(x)=x^{\frac{2}{3}}$ και $g(x)=\sqrt[3]{x^2}$

- 💵 Να εξετάσετε αν οι συναρτήσεις είναι ίσες
- ② Αν $f \neq g$ να βρείτε το ευρύτερο υποσύνολο του $\mathbb R$ στο οποίο να ισχύει f = g
- lacktriangle Να γράψετε τη συνάρτηση g σε μορφή δύναμης

Δίνονται οι συναρτήσεις $f(x) = \sqrt{e^x - 1}$ και $g(x) = \frac{x-1}{x-2}$ Να βρείτε τις συναρτήσεις:

Δίνονται οι συναρτήσεις $f(x)=\sqrt{e^x-1}$ και $g(x)=\frac{x-1}{x-2}$ Να βρείτε τις συναρτήσεις:

- $\frac{1}{g}$

Δίνονται οι συναρτήσεις $f(x)=\sqrt{e^x-1}$ και $g(x)=\frac{x-1}{x-2}$ Να βρείτε τις συναρτήσεις:

- \bullet f+g
- $\frac{1}{q}$
- 3 <u>f</u>

Να βρείτε τη συνάρτηση f για την οποία ισχύει

$$f^2(x) = 4e^x \left(f(x) - e^x \right)$$

Δίνονται οι συναρτήσεις $f(x) = \sqrt{x-1}$ και $g(x) = \frac{1}{x}$. Να βρείτε τις συναρτήσεις

Δίνονται οι συναρτήσεις $f(x) = \sqrt{x-1}$ και $g(x) = \frac{1}{x}$. Να βρείτε τις συναρτήσεις

- \bullet $f \circ g$
- $\mathbf{2} g \circ f$

Δίνονται οι συναρτήσεις $f(x) = \sqrt{x-1}$ και $g(x) = \frac{1}{x}$. Να βρείτε τις συναρτήσεις

- \bullet $f \circ g$
- $\mathbf{2} g \circ f$
- \bullet $f \circ f$

Δίνονται οι συναρτήσεις $f(x) = \frac{x+1}{x-1}$ και $g(x) = \frac{1}{x}$. Να βρείτε τις συναρτήσεις

Δίνονται οι συναρτήσεις $f(x)=\frac{x+1}{x-1}$ και $g(x)=\frac{1}{x}$. Να βρείτε τις συναρτήσεις

Έστω $f:\mathbb{R} o \mathbb{R}$ μία συνάρτηση, για την οποία ισχύει

$$f(\ln x) = 3x + 2\ln x - 1$$
, για κάθε x 0

Nα βρείτε τη συνάρτηση f

Έστω δύο συναρτήσεις για τις οποίες ισχύει

$$(g \circ f)(x) = e^x - x + 1$$
, $x \in \mathbb{R}$

 $oldsymbol{0}$ Να βρείτε τη συνάρτηση g, αν $f(x)=e^x-1$

Έστω δύο συναρτήσεις για τις οποίες ισχύει

$$(g \circ f)(x) = e^x - x + 1$$
, $x \in \mathbb{R}$

- **1** Να βρείτε τη συνάρτηση g, αν $f(x) = e^x 1$
- ② Να βρείτε τη συνάρτηση f, αν g(x) = 3x 2

Να εκφράσετε την συνάρτηση f ώς σύνθεση δύο ή περισσοτέρων συναρτήσεων, αν ισχύει:

- $f(x) = \eta \mu 3x$
- $f(x) = e^{-x}$
- $f(x) = \ln(1 + e^x)$

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, για την οποία ισχύει:

$$f^3(x)+f(x)-x+2=0$$
, για κάθε $x\in\mathbb{R}$

Έστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση, για την οποία ισχύει:

$$f^3(x)+f(x)-x+2=0$$
, για κάθε $x\in\mathbb{R}$

- 2 Να βρείτε τις ρίζες και το πρόσημο της f

Έστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση, για την οποία ισχύει:

$$f^3(x)+f(x)-x+2=0$$
, για κάθε $x\in\mathbb{R}$

- 2 Να βρείτε τις ρίζες και το πρόσημο της f
- 3 Να λύσετε την ανίσωση f(x) < x 2

Έστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση, για την οποία ισχύει:

$$f^3(x)+f(x)-x+2=0$$
, για κάθε $x\in\mathbb{R}$

- lacktriangle Να βρείτε το f(0)
- 2 Να βρείτε τις ρίζες και το πρόσημο της f
- **3** Να λύσετε την ανίσωση f(x) < x 2

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, για την οποία ισχύει:

$$f(x^2+2)+f(3x)=0, \gamma\iota\alpha\kappa\theta\varepsilon x\in\mathbb{R}$$

Να δείξετε ότι η εηξίσωση f(x)=0 έχει δύο τουλάχιστον ρίζες.

Έστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση, για την οποία ισχύει:

$$f(f(x)) = 2x - 1$$
, για κάθε $x \in \mathbb{R}$

 $lackbox{0}$ Να δείξετε ότι f(2x-1)=2f(x)-1, $x\in\mathbb{R}$

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, για την οποία ισχύει:

$$f(f(x)) = 2x - 1$$
, για κάθε $x \in \mathbb{R}$

- $lackbox{0}$ Να δείξετε ότι f(2x-1)=2f(x)-1, $x\in\mathbb{R}$

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση