Polynomial regression

The example belows uses a temperature-energy dataset in order to illustrate how to perform a non linear regression.

Workflow:

- 1. Preparation
 - Extract the dataset from the _power_demand_vstemperature.csv
 - Explore the dataset and check for missing values
 - Plot the distribution
 - Divide the dataset into train and test
 - Create an evaluation function
- 2. First experiment
 - Create a linear model
 - Train the model on X_train and y_train
 - Evaluate the model on X_test and y_test
 - Visualize the prediction of the model
- 3. Second experiment
 - Create a polynomial regression model with degree 2
 - Train the model on X_train and y_train
 - Evaluate the model on X_test and y_test
 - Visualize the prediction of the model
- 4. Third experiment
 - repeat the steps done in the second experiment but with degree 3
- 5. Third experiment
 - repeat the steps done in the second experiment but with degree 4
- 6. Compare the evaluation of each model

```
In [ ]: # Code source: Filippo Orazi
# License: BSD 3 clause
```

```
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
import pandas as pd
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
random_state = 42 # this will be used to guarantee the repeatability of the experiment
```

Dataset preparation

Load the dataset from a .csv file

This cell allows full compatibility between execution in Google Colab and in local

```
In []:
    try:
        import google.colab.files
        IN_COLAB = True
    except:
        IN_COLAB = False
        # from google.colab import files
    if IN_COLAB:
        uploaded = files.upload()
```

The file must be available in the same directory, or uploaded in the Colab environment in the execution of the previous cell

Set the date column as index

```
In [ ]:
```

Out[]:		demand	temp
	date		
	2015-01-01	1.736065	1.7
	2015-01-02	1.831672	2.2
	2015-01-03	1.714934	14.4
	2015-01-04	1.628577	15.6
	2015-01-05	2 0/1539/	0.0

Explore the dataset and check for missing values

ın []:			
Out[]:		demand	temp
	count	1096.000000	1096.000000
	mean	1.831796	16.927737
	std	0.329434	10.791581
	min	1.316033	-15.000000
	25%	1.581654	8.900000
	50%	1.731479	18.900000
	75%	2.024869	26.100000
	max	2.804025	33.900000

In []:

The dataframe has 0 invalid rows

Create X and y

In []:

```
X has shape(1096, 1)
Y has shape(1096,)
```

Plot the distribution

Divide the dataset in train and test splits

In []:

Training set and test set have 767 and 329 elements respectively

Create an evaluation function to compute, print and return the metrics: rmse r2 f-statistic and p-value

In []: # Computation of F-statistic and p-value for the regression
http://facweb.cs.depaul.edu/sjost/csc423/documents/f-test-reg.htm

First experiment

Create a linear model

Train the model on X_train and y_train

Evaluate the model on X_test and y_test

In []:

Mean squared error: 0.10016 r2 score: 0.1803 f-statistic: 53.273 p-value: 2.2197e-12

Visualize the prediction of the model

Second experiment - Polynomial regression

We can clearly see that the linear regression model cannot really approximate the data distribution.

We can now try with a non linear regression model:

1. Use the sklearn fucntion *PolynomialFeature* to create a new array of features. Set *degree=2* and _include*bias=False*

- 2. Train a Linear regression model with the new features
- 3. Evaluate the model
- 4. Visualize the predicted values of the model

Polynomial degree = 2

Third experiment

Polynomial degree = 3

Fourth experiment

Polynomial degree = 4

```
In []:
    Polynomial degree = 4
Out[]:
In []:
```

Mean squared error: 0.021334 r2 score: 0.8254 f-statistic: 390.05 p-value: 1.1102e-16

In []:

Compare the performance of the four models

In []:					
Out[]:		linear	polynomial d = 2	polynomial d = 3	polynomial d = 4
	rmse	1.001591e-01	3.345625e-02	2.174942e-02	2.133387e-02
	r2	-5.366169e+00	5.756325e-01	7.843318e-01	7.923317e-01
	f-statistic	5.327309e+01	3.848865e+02	5.023183e+02	3.900454e+02
	p-value	2.219669e-12	1.110223e-16	1.110223e-16	1.110223e-16

In []: