

American Society for Gravitational and Space Research
2014 Annual Meeting, Oct. 11-14, 2015
Alexandria, Virginia

Evaluation of Two Ionic Liquid-Based Epoxies from the MISSE-8 (Materials International Space Station Experiment-8) Sample Carrier

Ellen Rabenberg – NASA-MSFC

Arthur L. Brown – NASA-MSFC

William Kaukler – University of Alabama-Huntsville

Richard N. Grugel – NASA-MSFC

Materials International Space Station Experiment-8*

- Deployed May 20, 2011 on STS-134
- Located on Express Logistics Carrier-2 (ELC-2)
- Retrieved July 9, 2013
- Returned to Earth May 2014 on SpaceX Dragon CRS-3

MSFC flew two passive sample trays on nadir side.
Total of 96 samples.

American Society for Gravitational and Space Research
2014 Annual Meeting, Oct. 11-14, 2015
Alexandria, Virginia

MISSE-8

Atomic Oxygen Fluence

$3.6 \pm 0.1 \times 10^{19}$ atoms/cm²

Determined by mass loss and thickness loss of Kapton HN

Very low fluence due to nadir location and ISS shielding

Grazing Atomic Oxygen Erosion

Ultraviolet Radiation Exposure

Exact dose unknown at this time

UV darkening observed on beta cloth, IL epoxy samples, others

This suggests a minimum of 500 equivalent sun hours (ESH).

Ionic fluid samples – Flight

Control

American Society for Gravitational and Space Research
2014 Annual Meeting, Oct. 11-14, 2015
Alexandria, Virginia

Pre-flight

Post-flight

Environmental Conditions

- 2 years and 2 months Nadir Exposure
- A O Fluence $3.6 \pm 0.1 \times 10^{19}$ atoms/cm²
- 12,500 cycles between ~-40°C and +40°C
- High Vacuum Environment, Radiation

ILEP 15

ILEP 17

	Pre-flight weight (g)	Post-flight weight (g)	Delta
ILEP 15	2.35486	2.3547	-0.00016
ILEP 17	2.32939	2.32902	-0.00037

Initial Observations

- Negligible Weight Change
- Continued Strong Adherence

American Society for Gravitational and Space Research
2014 Annual Meeting, Oct. 11-14, 2015
Alexandria, Virginia

Continued Evaluation

Label	C	O	F	Al	S	Cl
Spectrum 46	64.43	14.12	13.73	0.55	6.59	0.59
Spectrum 47	65.38	14.76	13.17	0.48	5.51	0.70

Color change likely a result of ultraviolet (UV) radiation

Nano-scale Dimpling

Referencing the MISSE Database for similar surface structures

Note: Air Curing Epoxy results in an oxidation layer, scales may be similar

ESCA (Electron Spectroscopy for Chemical Analysis)

ILEP-13 Ground

ILEP-17 ISS

IL Epoxy Ground Test Samples

- Smooth – Exposed during cure
- Cut – Interior bulk material

Epoxy Monomer + Curing Agent =

1,3-bis(glycidylimidazolium)

Bis-Aminophenoxybenzene (APB)

Epoxy

ILEP-2

American Society for Gravitational and Space Research
2014 Annual Meeting, Oct. 11-14, 2015
Alexandria, Virginia

American Society for Gravitational and Space Research
2014 Annual Meeting, Oct. 11-14, 2015
Alexandria, Virginia

American Society for Gravitational and Space Research
2014 Annual Meeting, Oct. 11-14, 2015
Alexandria, Virginia

American Society for Gravitational and Space Research
2014 Annual Meeting, Oct. 11-14, 2015
Alexandria, Virginia

American Society for Gravitational and Space Research
2014 Annual Meeting, Oct. 11-14, 2015
Alexandria, Virginia

Summary of IL Epoxy Exposure on MISSE-8

- No weight change
 - ◆ Extremely low vapor pressure
- Continued strong adherence to aluminum base
 - ◆ No cracking, de-bonding, or other observable deformations
- Nano-scale dimpling on surface
 - ◆ Not resolved
- ESCA results
 - ◆ Some bond breaking of the N molecules on the surface
 - ◆ No obvious O changes
 - ◆ C variance probably due to contamination
 - Analysis ongoing

Appears to well tolerate the harsh environment of space

Other Ionic Liquid Epoxy Properties

- Strong ionic bonding
- Very small coefficient of thermal expansion
- Hydrophobic

**Applicable to Fabricating Carbon-fiber Composite Tanks
for Cryogenic Liquid Containment**

CSR: Impact test results

Plot of impact test results with increasing percentages of CSR for room and liquid nitrogen temperatures.

Comparable Improvement in Tensile Test Results

Batch 18
0% CSR RT

Batch 18
0% CSR
LN2

Batch 22
8.8% CSR RT

Batch 22
8.8% CSR LN2

Cryogenic Testing in LOX and LH₂

LOX: Potential Fuel Candidate, Much more Reactive than LN₂

LH₂: Potential Fuel Candidate, Much Colder (~20K) than LOX (~90K) or LN₂ (~77K)

As-Fabricated Cylinder Section

After two dunks in LOX

After LOX plus two 1 hour Soaks in LH₂

14 Samples Tested: High power microscopy and some fluorescent dye penetrant showed no degradation, cracking, or delamination

Epoxy is cured at 150°C (423K), 423K-20K (LH₂) = ΔT = 403K!

American Society for Gravitational and Space Research
2014 Annual Meeting, Oct. 11-14, 2015
Alexandria, Virginia

Fabricate Composite Overwrap Pressure Vessels (COPV)

Wrapping

Curing

Epon 828 Resin with
Huntsman T-403 Curing
Agent

IL Resin (no CSR)
with APB Curing
Agent

Conclusions

- Ionic liquid-based epoxy well tolerates the space environment
- Other properties suggest application to fabricate carbon-fiber composite tanks for cryogenic liquid containment
- Testing/evaluation will continue

Acknowledgments

This work is supported by a MSFC Center Innovation Fund

Appreciation is expressed to Ms. Miria Finckenor for her contributions to the MISSE program and this presentation

American Society for Gravitational and Space Research
2014 Annual Meeting, Oct. 11-14, 2015
Alexandria, Virginia