MA 515 Homework 5

Zheming Gao

November 1, 2017

Problem 1

Proof. Let $V = \text{span}\{v_1, \ldots, v_n\}$, where v_1, \ldots, v_n are linearly independent elements in V. Then there exists n linearly independent elements $x_1, \ldots, x_n \in X$ such that $T(x_i) = v_i, i = 1, \ldots, n$. The existence promised by the fact that T is a linear operator. Let $Y_0 = \text{span}\{x_1, \ldots, x_n\}$. Hence, $\dim(Y_0) = \dim(V) = n$.

Also, $\ker(T) \cap Y_0 = \{0\}$. Indeed, if $\exists y \neq 0, y \in Y_0$ such that T(y) = 0. Let $y = \sum_{i=1}^n \beta_i x_i$. Then there exists $\beta_i \neq 0$. By linearity of T, $T(y) = \sum_{i=1}^n \beta_i T(x_i) = \sum_{i=1}^n \beta_i v_i \neq 0$ and it yields a contradiction.

Next, we will show $\ker(T)+Y_0=X$. Suppose not, for any $x\in X$, there exists $z\notin \ker(T)+Y_0, w\in \ker(T), r\in Y_0$ such that x=z+w+r. Let $r=\sum_{i=1}^n t_ix_i$, and $T(x)=\sum_{i=1}^n \alpha v_i$. Hence,

$$\sum_{i=1}^{n} \alpha_i v_i = T(x) = T(z) + T(w) + T(r) = T(z) + \sum_{i=1}^{n} t_i v_i.$$

, which implies that $T(z) = \sum_{i=1}^{n} (\alpha_i - t_i) v_i$.

However, $z \notin \ker(T) + Y_0$ and so $T(z) \notin \operatorname{span}\{v_1, \ldots, v_n\} \subset (\ker(T) + Y_0)$. Hence, it is a contradiction.

In conclusion, $\ker(T) + Y_0 = X$ and $\ker(T) \cap Y_0 = \{0\}$, and it implies that $X = \ker(T) \oplus Y_0$.

Problem 2

Proof. If T is continuous, then the preimage(i.e., ker(T)) of $\{0\}$ is closed since $\{0\}$ is closed. Also, ker(T) is a subspace due to the linearity of T.

If $\ker(T)$ is a closed subspace in X, we need to show that T is continuous, or equivalently, bounded. Since Y is a finite-dimensional space, from the result of problem 1, we know there exists a finite-dimensional subspace $Y_0 \subset X$ such that $X = \ker(T) \oplus Y_0$. Hence, for any $x \in X$, there exists $y \in \ker(T)$, $z \in Y_0$ such that x = y + z.

Also, from $X = \ker(T) \oplus Y_0$, $\dim(Y_0)$ is finite and $\ker(T)$ is closed, we know that both projection maps Π_{\ker} and Π_{Y_0} are bounded. $y = \Pi_{\ker}(x)$, $z = \Pi_{Y_0}(x)$.

Consider the norm of T. For any $x \in X$, by linearity, $T(x) = T(y) + T(z) = T(z) = T \circ \Pi_{Y_0}(x)$.

$$||T||_{\infty} = \sup_{x \in X \setminus \{0\}} \frac{||T(x)||_{Y}}{||x||_{X}} = \sup_{x \in X \setminus \{0\}} \frac{||T \circ \Pi_{Y_{0}}(x)||_{Y}}{||\Pi_{Y_{0}}(x)||_{X}} \frac{||\Pi_{Y_{0}}(x)||_{X}}{||x||_{X}}$$

Since Π_{Y_0} is bounded, $\frac{\|\Pi_{Y_0}(x)\|_X}{\|x\|_X} < +\infty$ for any $x \in X \setminus \{0\}$. Consider linear operator $T|_{Y_0}: Y_0 \to Y$ and it is bounded since $\dim(Y_0) < +\infty$.

$$\sup_{x \in X \setminus \{0\}} \frac{\|T \circ \Pi_{Y_0}(x)\|_Y}{\|\Pi_{Y_0}(x)\|_X} \leqslant \sup_{y \in Y_0 \setminus \{0\}} \frac{\|T|_{Y_0}(y)\|_Y}{\|y\|_X} < +\infty.$$

Hence, $||T||_{\infty} < +\infty$ and so T is continuous.

Problem 3

Proof. Denote the graph of f as $G(f) := \{(x, f(x)) | x \in X\} \subset X \times Y$. Let $\{z_n\}_{n \in \mathbb{N}} = \{(x_n, f(x_n))\}_{n \in \mathbb{N}} \subset G(f)$ that converges to z = (x, y). It is enough to show that y = f(x). Indeed, $x = \lim_{n \to +\infty} x_n$ and so $\lim_{n \to +\infty} f(x_n) = f(x)$ due to the continuity of f. Also, $y = \lim_{n \to +\infty} f(x_n)$. Hence, y = f(x).

Question: Here we only need X, Y to be metric spaces. We didn't really need completeness. Is it correct?

Problem 4

(a) *Proof.* Prove by contradiction.

Suppose that f is not continuous on \mathbb{R} . Hence, there exists one sequence $\{x_n\}_{n\in\mathbb{N}}\subset\mathbb{R}$ that converges to x, such that a subsequence $\{x_{n_k}\}_{k\geqslant 1}\subset\{x_n\}_{n\geqslant 1}$, from which $\{f(x_{n_k})\}$ doesn't converge to f(x).

Since f is bounded, we know that $\{f(x_{n_k})\}$ must have a convergent subsequence, denote as $\{f(x_{n_{k_l}})\}_{l\geqslant 1} \to y$. Also, we know $\{x_{n_{k_l}}\} \to x$ and with closeness of G(f), we know y = f(x). This is equivalent to say that $\{f(x_{n_{k_l}})\}_{l\geqslant 1} \to f(x)$. It leads to a contradiction to the assumption that $\{f(x_{n_k})\}$ doesn't converge to f(x).

In conclusion, f is a continuous function.

(b) Let f be the following function,

$$f(x) = \begin{cases} \frac{1}{x} & x \neq 0 \\ 0 & x = 0. \end{cases}$$

Problem 5

- Proof. \Rightarrow If T_1 is compact and T_2 is continuous, then, for any bounded sequence $\{x_n\}_{n\in\mathbb{N}}\subset X$, there exists a subsequence $\{x_{n_k}\}\subset \{x_n\}$ such that $\{y_{n_k}\}:=\{T_1(x_{n_k})\}$ converges in Y. Denote $\lim_{k\to+\infty}y_{n_k}=y$. Since T_2 is continuous, $T_2(y_{n_k})\to T_2(y)\in Z$. i.e., for any bounded sequence $\{x_n\}_{n\in\mathbb{N}}\subset X$, there exists a subsequence $\{x_{n_k}\}\subset \{x_n\}$ such that $\{T_2\circ T_1(x_{n_k})\}$ converges in Z. In conclusion, $T_2\circ T_1$ is compact.
 - \Leftarrow Conversely, suppose T_2 is compact and T_1 is continuous. Then, for any bounded set $U \in X$, $T_1(U) = V$ is also a bounded set in Y since T_1 is bounded. By compactness, $\overline{T_2(V)}$ is compact. Hence, for any bounded set $U \in X$, $T_2 \circ T_1(U)$ is compact in Z. Hence, $T_2 \circ T_1$ is compact.

Problem 6

(i) *Proof.* T is linear, bounded and bijective so that T^{-1} exists and bounded. Note that $||x|| = ||T^{-1} \circ T(x)||$. Hence, there exists M > 0, such that

$$\frac{\|x\|}{\|T(x)\|} = \frac{\|T^{-1} \circ T(x)\|}{\|T(x)\|} \leqslant \sup_{y \in X \setminus \{0\}} \frac{\|T^{-1}(y)\|}{\|y\|} \leqslant M.$$

Let $\beta = 1/M$, then $||T(x)|| \ge \beta ||x||, \forall x \in X$.

(ii) *Proof.* From (i) we know that T^{-1} exists as a linear bounded operator. $||T^{-1}|| \leq M = 1/\beta$.

For each $y \in Y$, we define a map $Q_y : X \to X$ such that $Q_y(x) := T^{-1}(y - \Psi(x))$, where Ψ is a bounded linear operator with norm $\|\Psi\|_{\infty} < \beta$. It is enough to show that Q_y is a contraction mapping.

Indeed, for any $x_1, x_2 \in X$, we have

$$||Q_{y}(x_{1}) - Q_{y}(x_{2})|| = ||T^{-1}(y - \Psi(x_{1})) - T^{-1}(y - \Psi(x_{2}))|| \le ||T^{-1}||_{\infty} ||y - \Psi(x_{1}) - (y - \Psi(x_{2}))||$$

$$= ||T^{-1}|| ||\Psi(x_{1}) - \Psi(x_{2})||$$

$$\le ||T^{-1}||_{\infty} ||\Psi||_{\infty} ||x_{1} - x_{2}||$$

$$= c||x_{1} - x_{2}||.$$

where $c = ||T^{-1}||_{\infty} ||\Psi||_{\infty} \in (0,1)$. This yields that Q_y is a contraction mapping for each $y \in Y$.

Hence, equation $x = Q_y(x)$ has a unique solution for each $y \in Y$.

Problem 7

(i) Proof. For given $y \in Y$, define $f_y : X \to G(B) \cap (X \times \{y\}) \subset (X \times Y)$, $f_y(x) = B(x, y)$. Hence, f_y is linear since B is bilinear. Also, we know that $X \times Y$ is a Banach space since both X and Y are Banach. By closed graph theorem, it is enough to show that $G(f_y)$ is closed.

Take a convergent sequence $\{a_n\} := \{(x_n, f_y(x_n))\} \subset G(f_y)$ and $a_n \to a = (a_1, a_2)$. i.e., $\lim_{n \to +\infty} x_n = a_1, \lim_{n \to +\infty} f_y(x_n) = a_2$. We want to show that $f_y(a_1) = a_2$. Indeed, since B is continuous at the origin, f_y is continuous at 0. Also, with the linearity of f_y , f_y is continuous on X.

then the sequence $\{(x_n, y)\} \to (a_1, y)$. Hence, $B(x_n, y) = f_y(x_n)$ converges to $B(a_1, y)$, which is $f_y(a_1)$. Hence, $a_2 = f_y(a_1)$, and so $G(f_y)$ is closed.

In conclusion, f_y is bounded for each $y \in Y$. Similarly, $g_x : y \mapsto B(x, y)$ is also bounded for each $x \in X$.

(ii)

Problem 8

(i) *Proof.* We need to show that T is bounded. Consider norm $||T||_{\infty}$.

$$||T||_{\infty} = \sup_{\|f\|_{\infty} = 1} ||T[f]||_{\infty} = \max\{ \sup_{\|f\|_{\infty} = 1, \atop t \in (0,1]} |T[f](t)|, \sup_{\|f\|_{\infty} = 1} |f(0)|\}.$$

It is clear that $|\sup_{\|f\|_{\infty}=1} f(0)| < +\infty$. For the other one,

$$\begin{split} \sup_{\|f\|_{\infty}=1, \atop t \in (0,1]} |T[f](t)| &= \sup_{\|f\|_{\infty}=1, \atop t \in (0,1]} \left| \frac{1}{t} \int_{0}^{t} f(s) ds \right| \\ &\leqslant \sup_{\|f\|_{\infty}=1, \atop t \in (0,1]} \frac{\|f\|_{\infty}}{t} \int_{0}^{t} ds = 1 < +\infty. \end{split}$$

Hence, $||T||_{\infty} < +\infty$.

(ii) Proof. T is a one-to-one map. Take arbitrarily $f_1, f_2 \in X, f_1 \neq f_2$, and suppose that $T[f_1] = T[f_2]$, i.e., $\forall t \in [0, 1], T[f_1](t) = T[f_2](t)$. Then,

$$T[f_1](t) - T[f_2](t) = \{f_1(0) - f_2(0)...$$