Solution for Problem Set 7.5

201300035 方盛俊

Problem 1

 $\hat{c}_i = 2$.

我们要证明
$$\sum_{i=1}^k c_i \leqslant \sum_{i=1}^k \hat{c}_i$$
 对于所有的 k 均成立.

使用 Account Method 证明.

Basis: 一开始, 余额值为 0.

I.H.: 我们认为, 在第 i-th 次操作之前, 余额值 A 大于等于当前栈长度 L, 即 $A \ge L$.

I.S.:

如果是 pop() 操作, 实际开销 $c_i=1$, 则新余额值 $A'=A+\hat{c}_i-c_i=A+1$, 新栈长度为 L'=L-1, 则 $A'\geqslant L'$ 仍然成立.

如果是 insert() 操作, 我们不妨令 l 为弹出的小于 x 的数据长度, 则实际开销 $c_i=l+1$,则余额值 $A'=A+\hat{c}_i-c_i=A-l+1$,而新栈长度 L'=L-l+1,可以看出 $A'\geqslant L'$ 仍然成立.

综上, $A \geqslant L \geqslant 0$

因此均摊开销为 O(1).

Problem 2

 $\diamondsuit \hat{c}_i = 21.$

我们要证明
$$\sum_{i=1}^k c_i \leqslant \sum_{i=1}^k \hat{c}_i$$
 对于所有的 k 均成立.

使用 Account Method 证明.

Basis: 一开始, 余额值为 0.

I.H.: 我们认为, 在第 i-th 次操作之前, 余额值 A 大于等于当前队列长度 L 的 20 倍, 即 $A\geqslant 20L$.

I.S.:

如果是 Pull() 操作, 实际开销 $c_i=1$, 则新余额值 $A'=A+\hat{c}_i-c_i=A+20$, 新队列长度为 L'=L-1, 则 $A'\geqslant 20L'$ 仍然成立.

如果是 Push() 操作, 实际开销 $c_i=1$, 则新余额值 $A'=A+\hat{c}_i-c_i=A+20$, 新队列长度为 L'=L+1, 则 $A'\geqslant 20L'$ 仍然成立.

如果是 Size() 操作, 实际开销 $c_i=1$, 则新余额值 $A'=A+\hat{c}_i-c_i=A+20$, 新队 列长度为 L'=L, 则 $A'\geqslant 20L'$ 仍然成立.

如果是 Decimate() 操作,因为要进行 L 次循环,且每一次最多会执行一次 Push() 和一次 Pull(),实际开销 $c_i \leq 2L \leq 0.1A+21$,我们取 $c_i=0.1A+21$,则余额值 $A'=A+\hat{c}_i-c_i=A+21-0.1A-21=0.9A$,而新栈长度 L'=L-0.1L=0.9L,可以看出 $A'\geqslant L'$ 仍然成立.

综上, $A \geqslant 2L \geqslant 0$

因此均摊开销为 O(1).