Total No. of Questions : 4]	3	SEAT No.:
PA-10350		[Total No. of Pages : 2

[6009]-440

T.E. (Computer Engineering) (Insem.) STATISTICS AND MACHINE LEARNING (2019 Pattern) (Semester - II) (310503)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4.
- 2) Neat diagram must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) What is Mean by Regression? Explain the Bi-variant regression and Multi-Variant regression with example. Explain application of Bi-variant regression and Multi-variant regression.
 [7]
 - b) What is Mean by Central Tendency? Explain the Concept of [8]
 - i) Mean
 - ii) Median
 - iii) Mode

Consider the following dataset shows a simple frequency distribution of score of student:

Score	Number of student
60	3
650	2
70	5
75	7
80	3

Calculate the values for above dataset -

- i) Mean
- ii) Median
- iii) Mode
- iv) Mid-range

OR

- Q2)a) Explain the Inferential Statistics? What are the types? Explain them with examples. Differentiate between Descriptive a Statistics & Inferential Statistics. [7]
 - b) Explain the concept of test in brief

[8]

- Chi-Square Test i)
- ii) T-Test
- ANCOVA Test

Explain each type with proper example and applications

- Explain the Bayes theorem with suitable example. Why Naives Bayes Q3) classifiers are useful in Bayes theorem. Explain the different types of Naïve Bayes classifier. [7]
 - b) What is the importance of Prior probability? Evidence, likelihood, Posterior probability in Baye's theorem?

- a) What do you mean by Probabilistic Models with hidden variable? Q4What is the use of Probabilistic Models? Explain the different types of Probabilistic Models with examples. [7]
 - b) Calculate the lower quartile, upper quartile, quartile derivations, coefficient of quartile derivations for the given data set

suc Moucis with Champies.		[/]	
e the lower quartile, upper quartile, quartile derivations, nt of quartile derivations for the given data set [8]			
CLASS	FREQUENCY		
30-40	99	Station .	
40-50	65		
50-60	79	0 8.	
60-70	75	20° 5°.	
70-80	87		

