目录

第4章积分	1
4.1 Cauchy 积分公式	6

第4章 积分

定理 4.1

设 $D\subseteq\mathbb{C}$ 是有界区域, ∂D 由有限条分段光滑曲线并成. 设存在 $\Omega\subseteq\mathbb{C}$ 是开集, 使得 $\bar{D}\subseteq\Omega.u\left(x,y\right),v\left(x,y\right)\in\mathbb{C}^{1}\left(\Omega\right)$. 则

$$\int_{\partial D} (u \, dx + v \, dy) = \int_{D} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \, dx \, dy$$

推论 4.1 (弱版本的 Cauchy 定理)

设 $f=u\left(x,y\right)+iv\left(x,y\right)$ 在区域 $D\subseteq\mathbb{C}$ 上解析. $\gamma:\left[\alpha,\beta\right]\to D$ 是分段光滑的 Jordan 闭合曲线, 所围成的区域为 Ω , 且 $u,v\in C^{1}\left(D\right)$ 则

$$\int_{C} f(z) \, \mathrm{d}z = 0$$

Proof

$$\int_{C} f(z) dz = \int_{C} (u dx - v dy) + i \int_{C} (v dx + u dy)$$

$$= \int_{\Omega} \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx dy + i \int_{\Omega} \left(-\frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} \right) dx dy$$

$$= \int_{\Omega} 0 dx dy + i \int_{\Omega} 0 dx dy^{1}$$

$$= 0$$

定义 4.1

设 $\gamma\subseteq\mathbb{C}$ 是 Jordan 闭合曲线, 它等于若干线段的并, γ 围绕的区域称为 D. 则 $D\cup\gamma=:T$ 被称为是一个多角形.

 \Diamond

将要证明以下定理

定理 4.2

 $D\subseteq\mathbb{C}$ 单连通, $f\in\mathcal{H}$ (D), 设 $\gamma\subseteq D$ 是分段光滑 $^{\mathrm{a}}$ 的 Jordan 闭合曲线, 则 $\int_{\gamma}f\left(z\right) \,\mathrm{d}z=0$

***事实上只需要可求长**

Remark 由于有自交闭折线总可以分成无自交闭折线的并, 故对于有自交的闭折线也有类似的结论成立.

¹由 C-R 方程

引理 4.1

设 $D\subseteq\mathbb{C}$ 单连通, $f\in\mathcal{H}\left(D\right)$, T 是多边形, $\gamma=\partial T$, 则 $\int_{\gamma}f\left(z\right)\,\mathrm{d}z=0$

 \Diamond

Proof 设 $T=\Delta$ 是一个三角形, 配备了逆时针的定向. $\gamma=\partial\Delta$. 取 Δ 的中位线, 将 Δ 分为四个全等的小三角形 $\Delta_1,\Delta_2,\Delta_3,\Delta_4$, 相似比均为 $\frac{1}{2}$, 都配备逆时针的定向. 我们有

$$\int_{\partial \Delta} = \int_{\partial \Delta_1} + \int_{\partial \Delta_2} + \int_{\partial \Delta_3} + \int_{\partial \Delta_4}$$

$$M = \left| \int_{\partial \Delta} f(z) \, \mathrm{d}z \right| \le \left| \int_{\partial \Delta_1} \right| + \left| \int_{\partial \Delta_2} \right| + \left| \int_{\partial \Delta_2} \right| + \left| \int_{\partial \Delta_4} \right|$$

存在 $\Delta^{(1)} \in \{\Delta_1, \Delta_2, \Delta_3, \Delta_4\}$, 使得

$$\left| \int_{\partial \Delta^{(1)}} \right| \ge \frac{M}{4}$$

将 $\Delta^{(1)}$ 做类似的分割,得到存在 $\Delta^{(2)}\subseteq\Delta^{(1)}$ 1:2 相似于 $\Delta^{(1)}$,使得

$$\left| \int_{\partial \Delta^{(2)}} \right| \ge \frac{1}{4} \left| \int_{\partial \Delta^{(1)}} \right| \ge \frac{M}{4^2}$$

重复以上操作,可以归纳地得到一个闭三角形套 $\Delta^{(0)}:=\Delta\supseteq\Delta^{(1)}\supseteq\Delta^{(2)}\supseteq\cdots$ 前一个与后一个的相似比均为 $\frac{1}{2}$. 并且

$$\left| \int_{\partial \Delta^{(n)}} f(z) \, \mathrm{d}z \right| \ge \frac{M}{4^n}$$

令 $U_n=L\left(\partial\Delta^{(n)}\right)=\frac{L(\partial U)}{2^n}=\frac{U}{2^n}$ 为周长,其中 $U=L\left(\partial\Delta\right)$. 由紧集套定理,存在 2 $z_0\in\bigcap_{n=0}^\infty\Delta^{(n)}$. 由于 f 在 z_0 处可到,对于任意的 $\varepsilon>0$,存在 $\delta>0$,使得对于任意的 $z\in D$ 满足 $|z-z_0|<\delta$,都有

$$\left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| < \varepsilon$$

这等价于

$$|f(z) - f(z_0) - f'(z_0)(z - z_0)| < \varepsilon |z - z_0|$$
 (*)

由于任意三角形内部两点的距离都小于三角形的周长。存在充分大的 n, 使得 $\Delta^{(n)}\subseteq U\left(z_0,\delta\right)$, 故 (*) 式在 $\Delta^{(n)}$ 上成立。则对于任意的 $z\in\Delta^{(n)}$, $|z-z_0|\leq L\left(\partial\Delta^{(n)}\right)=\frac{U}{2^n}$ 故

$$|f(z) - f(z_0) - f'(z_0)(z - z_0)| < \frac{\varepsilon U}{2^n}$$

由于 $\partial \Delta^n$ 是闭合曲线, 且 1 和 z 在闭合曲线上的积分为零, 于是

$$\int_{\partial \Delta^{(n)}} f(z) dz = \int_{\partial \Delta^{(n)}} (f(z) - f(z_0) + f'(z_0) z_0 - f'(z_0) z) dz$$

故

$$\left| \int_{\partial \Delta^{(n)}} f(z) \, dz \right| \le \frac{\varepsilon U}{2^n} L\left(\partial \Delta^{(n)}\right) = \frac{\varepsilon U^2}{4^n}$$

²事实上也唯一

故

$$\frac{M}{4n} \le \frac{\varepsilon U^2}{4n} \implies M \le \varepsilon U^2$$

由于 ε 是任取的, 故 M=0.

接下来, 若 T 是多边形, 则 T 总可以写成若干三角形的无交并, 故命题对于 T 是多边形的情形也成立.

定义 4.2

设 $D\subseteq\mathbb{C}$ 是区域, $f:D\to\mathbb{C}$, $\Phi:D\to\mathbb{C}$ 是函数. 若 $\Phi\in\mathcal{H}(D)$, 且 $f=\Phi'$, 则称 Φ 是 f(在 D)上的一个原函数或不定积分.

Remark 可以证明, 原函数在相差一个常数下唯一.

引理 4.2

设 $D \subseteq \mathbb{C}$ 是凸区域, $f \in \mathcal{H}(D)$, 则 f 在 D 上有原函数.

 \Diamond

Proof 固定 $\alpha \in D$, 任取 $z \in D$, 线段 $[\alpha, z] \in D$. 定义

$$F(z) = \int_{[\alpha, z]} f(\zeta) \, d\zeta$$

断言 F 为 f 的原函数.

取 $z_0 \in D$, $z \in D$. 刚

$$F(z) - F(z_0) = \int_{[\alpha, z]} f(\zeta) d\zeta - \int_{[\alpha, z_0]} f(\zeta) d\zeta$$

由三角形上的 Cauchy 积分定理, 我们有

$$F(z) - F(z_0) = \int_{[z_0, z]} f(\zeta) d\zeta$$

ヌ

$$(z - z_0) f(z_0) = \int_{[z_0, z]} f(z_0) d\zeta$$

从而

$$F(z) - F(z_0) - (z - z_0) f(z_0) = \int_{[z_0, z]} (f(\zeta) - f(z_0)) d\zeta$$

两边取绝对值并利用一个上界估计, 得到

$$|F(z) - F(z_0) - (z - z_0) f(z_0)| \le \left(\sup_{\zeta \in [z_0, z]} |f(\zeta) - f(z_0)|\right) |z - z_0|$$

从而

$$\left| \frac{F(z) - F(z_0)}{z - z_0} - f(z_0) \right| \le \sup_{\zeta \in [z_0, z]} |f(\zeta) - f(z_0)| \to 0, \quad (z \to z_0)$$

数
$$F'(z_0) = f(z_0)$$
.

引理 4.3

设 $D\subseteq\mathbb{C}$ 是区域, $f\in C(D)$ 在 D 上有原函数 F(z).k $a,b\in D$, γ 为连接 a,b 的分段光滑 道路, 则

$$\int_{\gamma} f(z) dz = F(b) - F(a)$$

Proof 设 $\gamma: [\alpha, \beta] \to D, \gamma(\alpha) = a, \gamma(\beta) = b$, 则

$$\int_{\gamma} f(z) dz = \int_{\alpha}^{\beta} f(\gamma(t)) \gamma'(t) dt = \int_{\alpha}^{\beta} F'(\gamma(t)) \gamma'(t) dt = F(b) - F(a)$$

复习 Lebesgue 数的性质.

阅读 45-50

预习 51-55

作业第三章 4.5.9.10

定义 4.3

设 $X \subseteq \mathbb{C} \simeq \mathbb{R}^2$, 定义 X 的直径为 diam $X = \sup\{|z_1 - z_2| : z_1, z_2 \in X\}$.

引理 4.4

设 $X\subseteq\mathbb{C}$ 是紧子集, $\mathscr{A}=\{Aj:j\in J\}\;(A_j\subseteq\mathbb{C})$ 是开集 为 X 的一个开覆盖. 则存在 $\delta=\delta(x,\mathscr{A})>0$,使得 X 中任意直径小于 δ 的开集,都落在 \mathscr{A} 的某个元素中. 此时成 δ 为 \mathscr{A} 的一个元素.

定理 4.3

设 D 是单连通区域, $f \in \mathcal{H}(D)$.

1. $\gamma \subseteq D$ 是可求长 (或分段光滑) 的 Jordan 闭合曲线, 则

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0$$

2. 若 γ 是连接 z_0 和z 的 Jordan 曲线, 积分

$$\int_{\gamma} f(\zeta) \, d\zeta$$

只依赖于端点, 而与道路的选取无关, 从而积分可记为 $\int_{z_0}^z f(\zeta) \ \mathrm{d}\zeta$.

 \odot

Proof 任取 $\zeta \in \gamma$, 存在 $\delta_{\zeta} > 0$, 使得

$$K_{\zeta} = \{z : |z - \zeta| < \delta_{\zeta}\} \subseteq D$$

由于 K_{ζ} 是凸的, 故 f 在 K_{ζ} 上有原函数 F_{ζ} . 由于 γ 是紧的, 取开覆盖 $\mathscr{A}=\{K_{\zeta}:\zeta\in\gamma\}$ 的一个

Lebesgue 数 δ . 由 γ 可求长, 存在 $z_0,\cdots,z_n=z_0\in\gamma$, 使得 $\forall 0\leq k\leq n-1$, $L\left(z_k\widehat{z_{k+1}}\right)<\delta$. 由 Lebesgue 数引理, 存在 $\mathscr A$ 中的开圆盘 $K_{\zeta_k}=\{|z-\zeta_k|<\delta_k\}\subseteq D$, 使得

$$\widehat{z_k z_{k+1}} \subseteq K_{\zeta_k}$$

因为 f 在 K_{ζ_k} 上有原函数, 故积分

$$\int_{z_k \widehat{z_{k+1}}} f(\zeta) d\zeta = \int_{[z_k, z_{k+1}]} f(\zeta) d\zeta$$

故

$$\int_{\gamma} f(\zeta) \, d\zeta = \sum_{k=0}^{n-1} f_{z_k \widehat{z_{k+1}}} f(\zeta) \, d\zeta = \int_{[z_0, z_1] + [z_1, z_2] + \dots + [z_{n-1}], z_n} f(\zeta) \, d\zeta = 0$$

定理 4.4

 $D\subseteq\mathbb{C}$ 是单连通, $f\in\mathcal{H}\left(D\right)$, 则 f 在 D 上有原函数.

 \Diamond

Proof 固定 $\alpha \in D$, 任取 $z \in D$, 令 $F(z) = \int_{\alpha}^{z} f(\zeta) d\zeta$. 任取 $z_0 \in D$, 取 $\delta > 0$, 使得 $\{|\zeta - z_0| < \delta\} \subseteq D$. $\forall z \in \{|\zeta - z_0| \le \delta\}$,

$$F(z_0) = \int_{\gamma} f(\zeta) \, d\zeta$$
$$F(z) = \int_{\gamma + [z_0, z]} f(\zeta) \, d\zeta$$
$$(z - z_0) f(z_0) = \int_{[z_0, z]} f(z_0) \, d\zeta$$

前两个减后一个, 得到

$$F(z) - F(z_0) - (z - z_0) f(z_0) = \int_{[z_0, z]} (f(\zeta) - f(z_0)) d\zeta$$

从而

$$\left| \frac{F(z) - F(z_0)}{z - z_0} - f(z_0) \right| \le \frac{1}{|z - z_0|} \int_{[z - z_0]} |f(\zeta) - f(z_0)| \, d\zeta \le \sup_{\zeta \in [z_0, z]} |f(\zeta) - f(z_0)| \to 0 \, (z \to z_0)$$

故 F 在 z_0 处可导, 且 $F'(z_0) = f(z_0)$.

Example 4.1 $I = \int_0^{2\pi} \sin^{2n} \theta \, \mathrm{d}\theta$

Solution $\diamondsuit z = e^{i\theta}$, $\mathbf{M} \sin \theta = \frac{z^2 - 1}{2iz}$, $d\theta = \frac{dz}{iz}$

$$I = \int_{|z|=1} \left(\frac{z^2 - 1}{2iz}\right)^{2n} \frac{\mathrm{d}z}{iz}$$
$$= \frac{(-1)^n}{2^{2n}i} \int_{|z|=1} (z^2 - 1)^{2n} \frac{\mathrm{d}z}{z^{2n+1}}$$

其中

$$(z^{2}-1)^{2n} = \sum_{j=0}^{2n} {2n \choose j} (-1)^{2n-j} z^{2j}$$

$$\int_{|z|=1} z^m \, \mathrm{d}z = \begin{cases} 0, & m \ge 0 \\ \frac{1}{m+1} z^{m+1} |_1^1 = 0, & m \le -2 \\ 2\pi i, & m = -1 \end{cases}$$

故

$$I = \frac{(-1)^n}{2^n i} \int_{|z|=1} {2n \choose n} (-1)^{2n-n} \frac{1}{z} dz$$
$$= \frac{(-1)^n}{2^n i} 2\pi i {2n \choose n} (-1)^n$$
$$= \frac{\pi}{2^{2n-1}} {2n \choose n} = \frac{\pi}{2^{2n-1}} \frac{(2n)!}{n! n!}$$

定理 4.5

设 $D\subseteq\mathbb{C}$ 是一个区域, ∂D 由分段光滑的 Jordan 闭合曲线 γ_0,\cdots,γ_n 构成. $orall 1\le i,j\le n,i\ne j,\gamma_j$ 在 γ_i 的外区域. 并且 $orall 1\le i\le n$, γ_i 在 γ_0 的内区域. 令正向为当动点沿着 γ 正向运动时, D 在动点的左侧. 令 $\overline{D}=D\cup\partial D$, $f\in\mathcal{H}(\overline{D})$ 则

$$\int_{\partial D} f(z) \, \mathrm{d}z = 0$$

 \bigcirc

4.1 Cauchy 积分公式

设 C 是分段连续的 Jordan 闭合曲线. 环绕 z_0 . 令

$$C_{\rho} = \{|z - z_0| = \rho\}$$

取充分小的 ρ , 使得 $C_{\rho} \subseteq C$ 的内区域. 则

$$\int_{C_{\varrho}} \frac{1}{z - z_0} = 2\pi i$$

注意到

$$0 = \int_{\partial D} \frac{1}{z - z_0} \, dz = \int_C \frac{dz}{z - z_0} - \int_{C_n} \frac{dz}{z - z_0}$$

故

$$\int_C \frac{1}{z - z_0} \, \mathrm{d}z = 2\pi i$$

更一般地, 考虑 $D\subseteq\mathbb{C}$ 是单连通区域, $f\in\mathcal{H}(D)$,C 是绕 z_0 的 Jordan 闭合曲线. 类似地可知

$$\int_{C} \frac{f(\zeta)}{\zeta - z_0} d\zeta = \int_{C_{\rho}} \frac{f(\zeta)}{\zeta - z_0} d\zeta$$

令 $\zeta = z_0 + \rho e^{i\theta}$, 则积分华为

$$\int_{0}^{2\pi} \frac{f\left(z_{0}+\rho e^{i\theta}\right)}{\rho\cdot e^{i\theta}}=i\int_{0}^{2\pi} f\left(z_{0}+\rho\cdot e^{i\theta}\right)\,\mathrm{d}\theta\quad 直觉上大约是 2\pi i f\left(z_{0}\right),\left(\rho \mathbf{很小}\right)$$

定理 4.6 (Cauchy 积分公式)

1. 设 $\Omega\subseteq\mathbb{C}$ 是单连通区域, $\gamma\subseteq\Omega$ 是一个分段光滑的 Jordan 闭合曲线, 环绕 z_0 . $f\in\mathcal{H}(\Omega)$, 则

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

2. $D\subseteq\mathbb{C}$ 是有界区域, $\partial D=\gamma$ 为 $\gamma_0,\gamma_1,\cdots,\gamma_n$ 的并. 且 $\forall 1\leq i,j\leq n,i\neq j,\gamma_i$ 在 γ_j 外区域, $\forall 1\leq i\leq n,\gamma_i$ 在 γ_0 内区域. $\bar{D}=D\cup\partial D$, $f\in\mathcal{H}\left(\bar{D}\right)$, 则 $\forall z\in D$,

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

 \Diamond

Proof $\forall z \in D$, 存在 $\rho > 0$, 使得 $U_p = \{|\zeta - z| < \rho\} \subseteq D$, $\overline{D}_{\rho} = \overline{D} \setminus U_p$, $\partial U_p = Cp$, 则 $\frac{f(\zeta)}{\zeta - z} \in \mathcal{H}\left(\overline{D}_{\rho}\right)$

从而

$$\int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{C_{\rho}} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$= \int_{C_{\rho}} \frac{f(z)}{\zeta - z} d\zeta + \int_{C_{\rho}} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta = 2\pi i f(z) + \int_{C_{\rho}} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta$$

由 f 连续, $\forall \varepsilon>0$, 存在 $\delta>0$, 使得 $0<\rho<\delta$ 时, $|f\left(\zeta\right)-f\left(z\right)|<\varepsilon$,

$$\left| \int_{C} \frac{f(\zeta) - f(z)}{\zeta - z} \, d\zeta \right| \leq \frac{1}{\rho} \sup_{\zeta \in C_{\rho}} \sup_{\zeta \in C_{\rho}} |f(\zeta) - f(z)| L(c_{\rho})$$
$$\leq \frac{1}{\rho} \varepsilon 2\pi \rho = 2\pi \varepsilon$$

令 $\varepsilon \to 0$ 即可.

阅读 50-55, 尤其 51-例 1,53-例 2

预习 56-58

作业 P59 11,12,13,14,15

Example 4.2 计算

$$I = \frac{1}{2\pi i} \int_{|z|=2} \frac{\mathrm{d}z}{(z^4 - 1)(z - 3)^2}$$

Solution 使得函数在内区域不全纯的点为使得 $z^4=1$ 的点.

$$\frac{1}{z^4 - 1} = \frac{1}{(z^2 - 1)(z^2 + 1)} = \frac{1}{2} \left(\frac{1}{z^2 - 1} - \frac{1}{z^2 + 1} \right)$$
$$= \frac{1}{4} \left(\frac{1}{z - 1} - \frac{1}{z + 1} \right) - \frac{1}{4i} \left(\frac{1}{z - i} - \frac{1}{z + i} \right)$$

令 $k=\pm 1,\pm i$, 则

$$\int_{|z|=2} \frac{1}{z-k} \frac{1}{(z-3)^2} dz = 2\pi i \frac{1}{(k-3)^2}$$

故

$$\begin{split} I &= \frac{1}{4} \frac{1}{(1-3)^2} - \frac{1}{4} \frac{1}{(-1-3)^2} - \frac{1}{4i} \frac{1}{(i-3)^2} + \frac{1}{4i} \frac{1}{(-i-3)^2} \\ &= \frac{1}{16} - \frac{1}{64} - \frac{1}{4i} \frac{1}{8-6i} + \frac{1}{4i} \frac{1}{8+6i} \\ &= \frac{3}{64} - \frac{1}{4i} \left(\frac{12i}{100}\right) = \frac{3}{64} - \frac{3}{100} = \frac{3}{4} \left(\frac{1}{16} - \frac{1}{25}\right) = \frac{3}{4} \frac{9}{400} = \frac{27}{1600} \end{split}$$

Example 4.3 计算

$$I = \int_{|z|=2} \frac{\sin z}{z^2 + 1} \, \mathrm{d}z$$

Solution

$$\left(\int_{|z|=2} - \int_{|z-i|=\frac{1}{2}} - \int_{|z+i|=\frac{1}{2}} \right) \frac{\sin z}{z^2 + 1} dz = 0$$

其中

$$\int_{|z-i|=\frac{1}{2}} \frac{\sin z}{z^2+1} \, \mathrm{d}z = \int_{|z-i|=\frac{1}{2}} \frac{\sin z}{z+i} \frac{1}{z-i} \, \mathrm{d}z = 2\pi i \frac{\sin i}{2i} = \pi \sin i$$

类似地

$$\int_{|z+i|=\frac{1}{2}} \frac{\sin z}{z^2+1} z = \int_{|z+i|=\frac{1}{2}} \frac{\sin z}{z-i} \frac{1}{z+i} z = 2\pi i \frac{\sin{(-i)}}{-2i} = \pi \sin{i}$$

于是

$$I = 2\pi \sin i$$

 \Diamond

定理 4.7

设 $D\subseteq\mathbb{C}$ 是区域, $\partial D=\gamma$ 由分段光滑的 Jordan 闭合曲线 γ_0,\cdots,γ_n 构成, 且对于任意的 $1< i,j\leq n, i\neq j, \gamma_i$ 在 γ_j 的外区域, 且对于任意的 $1\leq i\leq n, \gamma_i$ 在 γ_0 的内区域. 设 $f\in\mathcal{H}\left(\overline{D}\right)$, 则 f 在 D 上任意阶可导, 且对于任意的 $n\in\mathbb{N}$, 以及任意的 $z\in D$, 都有

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

Proof $\forall z \in D$, 固定 $\rho > 0$, 使得 $\overline{U}\left(z.\rho\right) = \{|\zeta - z| \leq \rho\} \subseteq D$.

通过对 n 归纳来证, 考虑 n=1 时的命题, 任取 $h\in\mathbb{C}$, $0\leq |h|<\frac{\rho}{2}$, 则 $z+h\in D$. 考虑

$$L_{h} := \frac{f(z+h) - f(z)}{h} - \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{2}} d\zeta$$

希望说明 $L_h \to 0 \ (h \to 0)$. 由 Cauchy 积分公式,

$$L_{h} = \frac{1}{h} \left[\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - (z+h)} d\zeta - \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{h}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{2}} d\zeta \right]$$

$$\frac{1}{\zeta - (z+h)} - \frac{1}{\zeta - z} + \frac{h}{(\zeta - z)^{2}} = \frac{(\zeta - z)^{2} - (\zeta - z)(\zeta - z - h) - h(\zeta - (z+h))}{(\zeta - z + h)(\zeta - z)^{2}}$$

$$= \frac{h^{2}}{(\zeta - (z+h))(\zeta - z)^{2}}$$

$$L_h = \frac{h}{2\pi i} \int_{\gamma} f(\zeta) \frac{1}{(\zeta - (z+h))(\zeta - z)^2} d\zeta$$

由于 $f\in C\left(\gamma
ight)$, 故 $M:=\sup_{\zeta\in\gamma}\left|f\left(\zeta
ight)
ight|<\infty$. 又 $\zeta
ot\in U\left(z,
ho
ight)\implies\left|\zeta-z\right|>\rho$. 故

$$|\zeta - z - h| \ge |\zeta - z| - |h| > \frac{\rho}{2}$$

$$|L_h| \le \frac{|h|}{2\pi} \frac{M}{(\rho/2)} \frac{L(\gamma)}{\rho^2} \to 0, \quad (h \to 0)$$

故 n=1 时命题成立.

设 $n=k\geq 1$ 时成立, 考虑 n=k+1 的情况.

对于任意的 $h \in \mathbb{C} < 0 < |h| < \frac{\rho}{2}$

$$L_{h} := \frac{f^{(k)}(z+h) - f(h)}{h} - \frac{(k+1)!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-z)^{k+2}} d\zeta$$

$$= \frac{1}{h} \frac{k!}{2\pi i} \left[\int_{\gamma} \frac{f(\zeta)}{(\zeta - (z+h))^{k+1}} d\zeta_{0} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{k+1}} \right] - \frac{(k+1)!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{k+2}} d\zeta$$

计算

$$(\zeta - z)^{k+1} - (\zeta - (z+h))^{k+1} = (\zeta - z)^{k+1} - ((\zeta - z) - h)^{k+1}$$

$$= (\zeta - z)^{k+1} - \left[(\zeta - z)^{k+1} - \binom{k+1}{1} (\zeta - z)^k \cdot h + h^2 \cdot \alpha(h) \right]$$

$$= (k+1) (\zeta - z)^k \cdot h + h^2 \cdot \alpha(h)$$

其中 $\alpha(h) = O(1)(h \to 0)$ 于是

$$L_{h} = \frac{(k+1)!}{2\pi i} \int_{\gamma} \left[\frac{1}{(\zeta - (z+h))^{k+1} (\zeta - z)} - \frac{1}{(\zeta - z)^{k+2}} \right] f(\zeta) \, d\zeta + h \cdot O(1)$$

$$= \frac{(k+1)!}{2\pi i} \int_{\gamma} \frac{(\zeta - z)^{k+1} - (\zeta - z + h)^{k+1}}{\left(\zeta - (z+h)^{k+1} (\zeta - z)^{k+2}\right)} f(\zeta) \, d\zeta + h \cdot O(1)$$

$$\to 0, (h \to 0)$$

Example 4.4 计算

$$I = \int_C \frac{\cos z}{(z-i)^3} \,\mathrm{d}z$$

其中 C 绕 i 的任意 Jordan 闭合曲线.

Solution

$$-\cos z_0 = (\cos''(z_0)) = \frac{2!}{2\pi i} \int_C \frac{\cos \zeta}{(\zeta - z_0)^3} d\zeta$$

故

$$I = \frac{2\pi i}{2} (-\cos i) = -\pi i \cos i = -\pi \frac{e^{-1} + e}{2} i$$

推论 4.2

设 $D \subseteq \mathbb{C}$ 是区域, $f \in \mathcal{H}(D)$, 则 f 在 D 上有任意阶导数.

 \Diamond

Proof 对于任意的 $z \in D$, 存在 ρ , 使得 $\{|\zeta - z| \le \rho\} \subseteq D$. 对

$$D_1 = \{ |\zeta - z| < \rho \}$$

应用高阶的 Cauchy 积分定理即可.

定理 4.8 (Cauchy 不等式)

设
$$\rho_0\in(0,+\infty)$$
, $D=\{|z-z_0|<
ho_0\}$, $\partial D=\gamma=\{|z-z_0|=
ho_0\}$. $f\in\mathcal{H}\left(\overline{D}\right)$, $|f(z)|\leq 2$

 $M, \forall z \in \overline{D}$. 则对于任意的 $n \in \mathbb{Z}_{\geq 1}, z_0 \in \overline{D}$, 都有

$$\left| f^{(n)}\left(z_0\right) \right| \le \frac{n!M}{\rho_0^n}$$

 \Diamond

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{C_0} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \le \frac{n!}{2\pi} 2\pi \rho \frac{M}{\rho^{n+1}} = \frac{n!M}{\rho^n}$$

定义 4.4

称在 ℂ 上解析的函数为一个整函数.

定理 4.9 (Liouwill)

有界整函数必为常函数.

Proof 令 $|f(z)| \leq M, \forall z \in \mathbb{C}$ 是整函数.

对于任意的 $z_0\in\mathbb{C}$ 以及 $\rho_0>0$, 由于 $f\in\mathcal{H}\left(U\left(z_0,\rho_0\right)\right)$ 我们有

$$\left| f'(z_0) \right| \le \frac{M}{\rho_0}$$

令 $\rho_0 \to \infty$, 得到 $f'(z_0) = 0$.

定理 4.10

设 f 是整函数, 若存在开圆盘 $U(z_0,\rho_0)$, 使得 $U(z_0,\rho_0)$ 和 f 的像不交, 则 f 是常值的.

定理 4.11 (Pricard 小定理)

设 f 是整函数, 若存在 $a \neq b \in \mathbb{C}$, 使得 $a \notin f(\mathbb{C}), b \notin f(\mathbb{C})$, 则 f 是常函数.

 \Diamond

阅读 55-58, 尤其是 Morera 定理

预习 61-71

作业第三章 16.17.18.19(不交, 强烈建议).

定理 4.12 (代数学基本定理)

考虑 ℂ上的多项式

$$P(z) = \alpha_n z^n + \dots + \alpha_1 z + \alpha_0$$

,其中 $n\geq 1$,lpha
eq 0 . 存在 $z_0\in\mathbb{C}$, 使得 $p\left(z_0
ight)=0$.

Proof 任取 z, 使得 $|z| \neq 0$, 由三角不等式

$$|P(z)| \ge |\alpha_n| |z|^n - |\alpha_{n-1}| |z|^{n-1} - \dots - |\alpha_0|$$

$$= |z|^n \left(|\alpha_n| - \frac{|\alpha_{n-1}|}{|z|} - \frac{|\alpha_{n-2}|}{|z|^2} - \dots - \frac{|\alpha_0|}{|z|^n} \right)$$

存在 M>0, 使得 $\forall |z|>M$, 都有

$$\left(|\alpha_n| - \frac{|\alpha_{n-1}|}{|z|} - \frac{|\alpha_{n-2}|}{|z|^2} - \dots - \frac{|\alpha_0|}{|z|^n}\right) > \frac{|\alpha_n|}{2}$$

故

$$|P(z)| \ge \frac{|\alpha_n|}{2} |z|^n \to \infty, \quad (|z| \to \infty)$$

若 $P\left(z
ight)$ 无零点,则 $rac{1}{P(z)}\in\mathcal{H}\left(\mathbb{C}
ight)$ 是有界的整函数,故 $rac{1}{P(z)}$ 是常函数,从而 $P\left(z
ight)$ 亦然,矛盾. \Box

定理 4.13 (Morera)

设 $D\subseteq\mathbb{C}$ 是区域, $f\in C(D)$. 若对任意的 γ 是 D 上三角形的边界, 都有

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0$$

 $\mathbb{N} f \in \mathcal{H}(D)$.

C

Proof 任取 $z_0 \in D$, 取凸开集 $\Omega \subseteq D$, 使得 $z_0 \in \Omega$. 任取 $z \in \Omega$, 令 $F(z) = \int_{[z_0,z]} f(\zeta) \, \mathrm{d}\zeta$, 用证明凸区域的 Cauchy 定理的方法, 可以证明 F 在 Ω 上解析, 并且 F'(z) = f(z), $\forall z \in \Omega$. 因为 F 有任意阶导数, 我们得到 f 亦然. 从而在 Ω 上解析.