Pontificia Universidad Católica de Chile Bastián Mora - bmor@uc.cl Matías Fernández - matias.fernandez@uc.cl

MAT1107 - Introducción al Cálculo

Ayudantía 11 - Jueves 02 de junio del 2022

Problema 1. Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión de números naturales. Demuestre que si $\{a_n\}_{n\in\mathbb{N}}$ es una sucesión estrictamente creciente, entonces $n \leq a_n$ para todo $n \in \mathbb{N}$.

Solución: Demoatraremos por inducción. Para n=1, como a_1 es un número natural, entonces $1 \le a_1$. Ahora suponiendo que esto se cumple para algún $k \in \mathbb{N}$, es decir, $k \le a_k$, entonces como la sucesión es estrictamente creciente y es consiste únicamente de números naturales, $a_k + 1 \le a_{k+1}$, de modo que $k+1 \le a_{k+1}$. Así se tiene lo pedido para todo n número natural.

Problema 2. Sea $n \ge k \ge 1$ enteros. Pruebe que $\binom{n}{k}k = n\binom{n-1}{k-1}$. Luego, demuestre que

$$n(1+x)^{n-1} = \sum_{i=1}^{n} \binom{n}{i} i x^{i-1}$$

Solución: Como ya vimos en la ayudantía anterior, se tiene que

$$\binom{n}{k}k = \frac{n!}{k!(n-k)!}k$$

$$= \frac{kn \cdot (n-1)!}{k \cdot (k-1)!(n-k)!}$$

$$= n\frac{(n-1)!}{(k-1)!((n-1)-(k-1))!}$$

$$= n\binom{n-1}{k-1}$$

Ahora usaremos el teorema del binomio:

$$n(1+x)^{n-1} = n \cdot \sum_{k=0}^{n-1} \binom{n-1}{k} 1^{n-1-k} x^k$$

$$= n \cdot \sum_{k=0}^{n-1} \binom{n-1}{k} x^k, \text{ haciendo i=k+1}$$

$$= n \cdot \sum_{i=1}^{n} \binom{n-1}{i-1} x^{i-1}$$

$$= \sum_{i=1}^{n} n \binom{n-1}{i-1} x^{i-1}$$

$$= \sum_{i=1}^{n} \binom{n}{i} i x^{i-1}$$

Problema 3. Calcule el valor de

$$\sum_{k=0}^{n} \binom{n}{k} \frac{1}{2^k}$$

Solución: Usamos el teorema del binomio:

$$\sum_{k=0}^{n} \binom{n}{k} \frac{1}{2^k} = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{2}\right)^k 1^{n-k} = \left(1 + \frac{1}{2}\right)^n = \left(\frac{3}{2}\right)^n.$$

Problema 4. Encuentre el coeficiente que acompaña el término x^{13} en la expansión de

$$\left(x^2 + \frac{1}{x}\right)^{17}$$

Puede dejar su respuesta expresada en términos de coeficientes binomiales.

Solución: Usamos el teorema del binomio:

$$(x^{2} + \frac{1}{x})^{17} = \sum_{k=0}^{17} {17 \choose k} (x^{-1})^{k} (x^{2})^{17-k}$$

$$= \sum_{k=0}^{17} {17 \choose k} x^{34-3k}$$

Vemos que tenemos que elegir el coeficiente correspondiente a k=7. Luego, el coeficiente buscado es $\begin{pmatrix} 17 \\ 7 \end{pmatrix}$

Problema 5. ¿Para qué valores de $n \in \mathbb{N}$ la expansión de $(\frac{1}{x} + x^3)^n$ tiene un término cuadrático?

Solución: Expandimos la expresión usando el teorema del binomio:

$$(x^{-1} + x^3)^n = \sum_{k=0}^n \binom{n}{k} (x^{-1})^{n-k} (x^3)^k$$
$$= \sum_{k=0}^n x^{k-n} x^{3k}$$
$$= \sum_{k=0}^n x^{4k-n}$$

Acá nos gustaría que para algún $k \in \{0, 1, ..., n\}$ se tenga que 2 = 4k - n, o sea, n = 4k - 2. Así, necesitamos que n sea de la forma n = 4k - 2, con $k \ge 1$ un número natural (es importante que $k \ne 0$), de modo que $0 \le k \le n = 4k - 2$.

Problema 6. Sea $a \in (0,1)$. Demuestre que la sucesión $x_n = a^n$ converge a 0 cuando n tiende a infinito.

Solución: Antes que nada notemos que $a^n \ge 0$ para todo n (se puede verificar usando inducción). Por otro lado, como 0 < a < 1, entonces $1 < \frac{1}{a}$, o sea, $\frac{1}{a} = 1 + \delta$, para algún $\delta > 0$. Para poder usar la propiedad Arquimediana, antes usaremos la desigualdad de Bernoulli en lo anterior:

$$\frac{1}{a^n} = \left(\frac{1}{a}\right)^n = (1+\delta)^n$$

$$\geq 1 + \delta n$$

$$> \delta n$$

$$\Rightarrow x_n = a^n < \frac{1}{\delta n}$$

Ahora tomemos $\varepsilon > 0$ arbitrario. Para que $\lim_{n \to \infty} x_n = 0$, debemos demostrar que existe n_0 tal que para todo $n \ge n_0$ se tiene que $|x_n - 0| = a^n < \varepsilon$.

En efecto, tomando $\varepsilon \delta > 0$, por la propiedad Arquimediana obtenemos que existe un $n_0 \in \mathbb{N}$ tal que $\varepsilon \delta > \frac{1}{n_0}$. Así, para todo $n \geq n_0$:

$$|x_n - 0| = a^n < \frac{1}{\delta n} \le \frac{1}{\delta n_0} < \varepsilon$$

Problema 7. Usando la definición de límite, demuestre que

$$\lim_{n \to \infty} \frac{n^2}{2n^2 + n + 1} = \frac{1}{2}.$$

Solución: Sea $\varepsilon > 0$. Primero,

$$\left| \frac{n^2}{2n^2 + n + 1} - \frac{1}{2} \right| = \frac{n+1}{2(2n^2 + n + 1)}$$
$$= \frac{1}{n} \cdot \frac{1 + \frac{1}{n}}{2(2 + \frac{1}{n} + \frac{1}{n^2})}.$$

Notamos que, para $n \geq 1$,

$$\frac{1+\frac{1}{n}}{2+\frac{1}{n}+\frac{1}{n^2}} \le \frac{2}{2+\frac{1}{n}+\frac{1}{n^2}} \le 1$$

Luego,

$$\left| \frac{n^2}{2n^2 + n + 1} - \frac{1}{2} \right| \le \frac{1}{n}$$

Sea $n_0 \ge 1$ tal que $\frac{1}{n_0} < \varepsilon$. Luego, si $n \ge n_0$,

$$\left| \frac{n^2}{2n^2 + n + 1} - \frac{1}{2} \right| \le \frac{1}{n} \le \frac{1}{n_0} < \varepsilon$$