Analysis Continued

Mark

Analysis I Primer

Hello, here is some text without a you read this text, you will get no informeaning. This text should show what a mation. Really? Is there no information? printed text will look like at this place. If Is there...

Power Series

def

A **power series** is of the form

$$\sum_{n=0}^{\infty} a_n x^n$$

*can be centered at x_0 we can write it as $\sum_{n=0}^{\infty} a_n (x - x_0)^n$.

uniform

converges at a **single point** say z, then the power series **converges** gence **uniformly** on for all $r < |x_0|$.

to diff

func

The power series converges to a **differentiable** f inside the radius of convergence.

Taylor's Theorem

 $f:[a,b]\to\mathbb{R}$, infinitely differentiable, derivatives cont., and $f^{(k)}$ is finite, then

there exists x_1 for any $c \in [a, b]$ and all $x \neq c$.

$$f(x) = \underbrace{\sum_{k=0}^{n-1} \frac{f^{(k)}(c)}{k!} (x-c)^k}_{\text{Taylor Poly}} + \underbrace{\frac{f^{(n)}(x_1)}{n!} (x-c)^n}_{\text{Taylor Remainder}}$$

*note: x_1 depends on n, x, c

see notes for general form with f(x) and g(x).

take better notes on Power series and Taylor using book

Multivariable Derivatives

Let $f: \mathbb{R}^n \to \mathbb{R}^m$

Two bad attempts: partial derivative, directional derivative.

partial derivative denoted
$$D_k f(c) = \frac{\partial f(c)}{\partial x_k}$$
)

both are bad because they don't imply continuity as we'd like. Instead we define the **Total Derivative**, which works as we wish.

directional derivative

The derivative of f in the direction of u is

$$f'(\vec{c}, \vec{u}) = \lim_{h \to 0} \frac{f(\vec{c} + h\vec{u}) - f(\vec{c})}{h}$$

*often other books require \vec{u} to be a unit vector, but not here linear algebra review in notebook

total derivative

correct def

The function f is **differentiable** at a if there exists a linear transformation T_a such that

$$f(a + v) = f(a) + T_a(v) + ||v||E_c(v)$$

where $E_c(v) \to 0$ as $v \to 0$.

* $||v||E_c(v)$ can be written using "little o" notation as o(||v||).

little o notation:
$$f = o(g)$$
 as $x \to c$ if $\lim_{x \to c} \frac{f(x)}{g(x)} = 0$.

cont

If f is differentiable at a, then f is continous at a.

directional

deriv If f is differentiable at a, then f'(a; u) exists and f'(a; u) = Au for any u

Derivatives in Matrices