Interrogation écrite n°10

NOM:	Prénom :	Note:	
On considère la far est-elle libre? Enge	mille $\mathscr{F}=(u_1,u_2,u_3)$ où $u_1=(1,2,1),\ u_2=(-1)$ endre-t-elle \mathbb{R}^3 ? Est-ce une base de \mathbb{R}^3 ?	$(0,3)$ et $u_3 = (2,2,-2)$. Calculer le rang de	F. La famille F
2. On note E l'ensem un endomorphisme	ble des fonctions de classe \mathscr{C}^∞ sur $\mathbb R$ à valeurs e de E. Déterminer son noyau et son image. D e	dans \mathbb{R} et pour $f \in E$, on pose $D(f) = f'$. N st-il injectif? surjectif?	lontrer que D est

3. Soient $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$. Quelles inclusions ou égalités existe-il toujours entre les sous-espaces vectoriels $\mathrm{Im}(g \circ f)$,

 $\operatorname{Ker}(g \circ f)$, $\operatorname{Im} g$, $\operatorname{Ker} g$, $\operatorname{Im} f$, $\operatorname{Ker} f$? On justifier ces inclusions.

4. Montrer que l'ensemble $\mathscr A$ des suites arithmétiques réelles est un sous-espace vectoriel de $\mathbb R^{\mathbb N}$. Donner une base et la dim de $\mathscr A$. On justifiera sa réponse.	ension
de 24. On justimera sa reponse.	
5. On considère l'endomorphisme f de \mathbb{R}^3 tel que $f((x,y,z)) = (2x-3y+4z,-x+y+5z,8x-11y+2z)$. Déterminer des	s hases
respectives du noyau et de l'image de f .	bases
6. Montrer que la famille (ch, sh, cos, sin) est une famille libre de $\mathbb{R}^{\mathbb{R}}$.	