Unsupervised Learning of Probably Symmetric Deformable 3D objects

February 17th, 2021 Hyeonsu Do

Motivation

- Explain the variability of the natural images
- Improve image understanding in general

Constraints of Input

- No ground truth data
 - Keypoints
 - Segmentation
 - Depth maps
 - Prior knowledge
- Unconstrained collection of single view images
 - Should not require multiple views of same instance

Why not Perfect Symmetry

- Why not Perfect Symmetry
 - Variation of poses
 - Albedo
 - Illumination

- Solutions
 - Explicit modeling of illumination
 - Augmenting the model to reason about the lack of symmetry in input images

Main Method

Network for Viewpoint and Lighting

Encoder	Output size
Conv(3, 32, 4, 2, 1) + ReLU	32
Conv(32, 64, 4, 2, 1) + ReLU	16
Conv(64, 128, 4, 2, 1) + ReLU	8
Conv(128, 256, 4, 2, 1) + ReLU	4
Conv(256, 256, 4, 1, 0) + ReLU	1
$Conv(256, c_{out}, 1, 1, 0) + Tanh \rightarrow output$	1

Output

- Viewpoint : 6 Channel
- Lighting : 4 Channel

Network for Depth and Albedo

Encoder	Output size
Conv(3, 64, 4, 2, 1) + GN(16) + LReLU(0.2)	32
Conv(64, 128, 4, 2, 1) + GN(32) + LReLU(0.2)	16
Conv(128, 256, 4, 2, 1) + GN(64) + LReLU(0.2)	8
Conv(256, 512, 4, 2, 1) + LReLU(0.2)	4
Conv(512, 256, 4, 1, 0) + ReLU	1

Decoder	Output size
Deconv(256, 512, 4, 1, 0) + ReLU	4
Conv(512, 512, 3, 1, 1) + ReLU	4
Deconv(512, 256, 4, 2, 1) + GN(64) + ReLU	8
Conv(256, 256, 3, 1, 1) + GN(64) + ReLU	8
Deconv(256, 128, 4, 2, 1) + GN(32) + ReLU	16
Conv(128, 128, 3, 1, 1) + GN(32) + ReLU	16
Deconv(128, 64, 4, 2, 1) + GN(16) + ReLU	32
Conv(64, 64, 3, 1, 1) + GN(16) + ReLU	32
Upsample(2)	64
Conv(64, 64, 3, 1, 1) + GN(16) + ReLU	64
Conv(64, 64, 5, 1, 2) + GN(16) + ReLU	64
$Conv(64, c_{out}, 5, 1, 2) + Tanh \rightarrow output$	64

Output

• Depth: 1 Channel

• Albedo: 3 Channel

Network for Confidence Map

Encoder	Output size
Conv(3, 64, 4, 2, 1) + GN(16) + LReLU(0.2)	32
Conv(64, 128, 4, 2, 1) + GN(32) + LReLU(0.2)	16
Conv(128, 256, 4, 2, 1) + GN(64) + LReLU(0.2)	8
Conv(256, 512, 4, 2, 1) + LReLU(0.2)	4
Conv(512, 128, 4, 1, 0) + ReLU	1

Decoder	Output size
Deconv(128, 512, 4, 1, 0) + ReLU	4
Deconv(512, 256, 4, 2, 1) + GN(64) + ReLU	8
Deconv(256, 128, 4, 2, 1) + GN(32) + ReLU	16
\downarrow Conv(128, 2, 3, 1, 1) + SoftPlus $\rightarrow output$	16
Deconv(128, 64, 4, 2, 1) + GN(16) + ReLU	32
Deconv(64, 64, 4, 2, 1) + GN(16) + ReLU	64
$Conv(64, 2, 5, 1, 2) + SoftPlus \rightarrow output$	64

Output

- Two pairs of confidence maps
- Different spatial resolution
- Photometric and perceptual loss

Photo-geometric autoencoding

- Asymmetric illumination
- Separation of Albedo and Lighting

$$\hat{\mathbf{I}} = \Pi \left(\Lambda(a, d, l), d, w \right).$$

Probably symmetric Objects

- Symmetry implied by the albedo and depth
- Learning objective by combination of the two reconstruction errors, with weighing factor $\boldsymbol{\lambda}$

$$\mathcal{E}(\Phi; \mathbf{I}) = \mathcal{L}(\hat{\mathbf{I}}, \mathbf{I}, \sigma) + \lambda_{\mathrm{f}} \mathcal{L}(\hat{\mathbf{I}}', \mathbf{I}, \sigma') \qquad \qquad \mathcal{L}(\hat{\mathbf{I}}, \mathbf{I}, \sigma) = -\frac{1}{|\Omega|} \sum_{uv \in \Omega} \ln \frac{1}{\sqrt{2}\sigma_{uv}} \exp{-\frac{\sqrt{2}\ell_{1,uv}}{\sigma_{uv}}}$$

Image Formation Model

$$p \propto KP, \quad K = egin{bmatrix} f & 0 & c_u \ 0 & f & c_v \ 0 & 0 & 1 \end{bmatrix}, \quad egin{bmatrix} c_u = rac{W-1}{2}, \ c_v = rac{H-1}{2}, \ f = rac{W-1}{2 anrac{ heta_{FOV}}{2}}. \end{bmatrix}$$

$$p' \propto K(d_{uv} \cdot RK^{-1}p + T)$$

$$\hat{\mathbf{I}} = \Pi \left(\Lambda(a, d, l), d, w \right).$$

$$\mathbf{J} = \Lambda(a, d, l)$$

$$\mathbf{J}_{uv} = (k_s + k_d \max\{0, \langle l, n_{uv} \rangle\}) \cdot a_{uv}$$

$$l = (l_x, l_y, 1)^T / (l_x^2 + l_y^2 + 1)^{0.5}$$

Results – Ablated Models

Input

(1) Ours full 0.793 ± 0.140 $16.51 \pm 1.$ (2) w/o albedo flip 2.916 ± 0.300 $39.04 \pm 1.$ (3) w/o depth flip 1.139 ± 0.244 $27.06 \pm 2.$ (4) w/o light 2.406 ± 0.676 $41.64 \pm 8.$) ↓
(3) w/o depth flip 1.139 ± 0.244 $27.06 \pm 2.$ (4) w/o light 2.406 ± 0.676 $41.64 \pm 8.$	56
(5) w/o perc. loss 0.931 ± 0.269 $17.90 \pm 2.$ (6) w/ self-sup. perc. loss 0.815 ± 0.145 $15.88 \pm 1.$ (7) w/o confidence 0.829 ± 0.213 $16.39 \pm 2.$	33 48 31

Results – Compared with SOTA

	Ground truth		66	
	AIGN [61] (supervised,	from [40])	50.81	
	DepthNetGAN [40] (sup	pervised, from [40])	58.68	
	MOFA [57] (model-base	ed , from [40])	15.97	
	DepthNet [40] (from [40]])	26.32	
	AIGN [61] (supervised, from [40]) DepthNetGAN [40] (supervised, from [40]) MOFA [57] (model-based, from [40]) DepthNet [40] (from [40]) DepthNet [40] (from GitHub) Ours Ours (w/ CelebA pre-training) Baseline SIDE ($\times 10^{-2}$) \downarrow Supervised 0.410 \pm 0.103 Const. null depth Average g.t. depth 1.990 \pm 0.556 Ours (unsupervised) 0.793 \pm 0.140	35.77		
	Ours		48.98	
	Ours (w/ CelebA pre-tra	ining)	54.65	
No	Baseline	SIDE $(\times 10^{-2}) \downarrow$	MAD (deg.) ↓	•
(1)	Supervised	0.410 ±0.103	10.78 ±1.01	
(2)	Const. null depth	2.723 ± 0.371	43.34 ± 2.25	•
(3)		$1.990 \; {\pm} 0.556$	23.26 ± 2.85	
(4)	Ours (unsupervised)	0.793 ± 0.140	$16.51 \pm \scriptstyle{1.56}$	

Depth Corr. ↑

Asymmetric Perturbation

	SIDE $(\times 10^{-2}) \downarrow$	MAD (deg.) ↓
No perturb, no conf. No perturb, conf.	$\begin{array}{c} 0.829 \pm 0.213 \\ 0.793 \pm 0.140 \end{array}$	$16.39 \pm 2.12 \\ 16.51 \pm 1.56$
Perturb, no conf. Perturb, conf.	$\begin{array}{c} 2.141 \pm 0.842 \\ 0.878 \pm 0.169 \end{array}$	26.61 ± 5.39 17.14 ± 1.90

perturbed dataset

 $conf \sigma conf \sigma'$

input

recon w/ conf

recon w/o conf

Results – Fail Cases

- Extreme Lighting
 - Simple Lambertian Shading Model
- Noisy Texture
 - Dark, noisy textures
- Extreme Pose
 - Poor supervisory signal from reconstruction loss of side images

Results – Re-lighting Effects

Results – Model vehicles

Results – Abstract Drawing(Cats)

Results – Abstract Drawing(human)

Discussion

- This work is very limited by its architecture, requiring symmetry. What ways could the work be modified to be expanded to non-symmetric objects?
- What are some of the applications of this method?
- Is it a large advantage to have non-labeled data to train over supervised training methods?
- Extending to multiple canonical views using a single set of image for complex objects?