RMXplorer

LAB 1.3: Ratiometric Linear Hall Effect Magnetic Sensor

ชื่อ

นาย ศุภสกร วรอุไร 66340500056 นาย จิตรภณ ทฐิธรรมเจริญ 66340500072 นาย ธัญนพ ศรีวานิช 66340500073

บทที่ 1

บทน้ำ

1.1 วัตถุประสงค์

- 1.1.1 เพื่ออธิบายหลักการทำงานของ Ratiometric Linear Hall Effect Magnetic Sensor โดยให้ความ เข้าใจเกี่ยวกับวิธีที่เซ็นเซอร์ตรวจจับและแปลงสนามแม่เหล็กเป็นสัญญาณไฟฟ้าที่แปรผันตาม Magnetic Flux Density
- 1.1.2 เพื่ออธิบายลักษณะของสัญญาณของ Ratiometric Linear Hall Effect Magnetic Sensor เมื่อมีการ เปลี่ยนแปลงของ Magnetic Flux Density พร้อมกับแสดงให้เห็นความสัมพันธ์ระหว่างสนามแม่เหล็กและค่าของสัญญาณ
- 1.1.3 เพื่ออธิบายความสัมพันธ์ระหว่าง Magnetic Flux Direction และ Magnetic Flux Density โดยแสดงให้ ค่า Magnetic Flux Density ที่เปลี่ยนแปลงไปจากการตรวจจับของเซ็นเซอร์
- 1.1.4 เพื่ออธิบายความสัมพันธ์ระหว่าง Magnetic Field Shielding และ Magnetic Flux Density โดยแสดงให้ เห็นผลกระทบของการป้องกันสนามแม่เหล็กต่อการตรวจจับของเซ็นเซอร์แม่เหล็ก
- 1.1.5 เพื่อสาธิตการเขียนโปรแกรมโดยใช้ MATLAB และ Simulink ในการเชื่อมต่อกับบอร์ด NUCLEO-G474RE เพื่อนำสัญญาณจาก Ratiometric Linear Hall Effect Magnetic Sensor เป็น Input และแสดงผลแบบ Real-Time ผ่าน Data Inspector ในรูปแบบกราฟ รวมถึงการแสดง Raw Signal และ Magnetic Flux Density ในหน่วย SI

1.2 สมมติฐาน

- 1.2.1 เมื่อ Magnetic Flux Density เพิ่มขึ้น แรงดันไฟฟ้าที่ส่งออกจาก Ratiometric Linear Hall Effect Magnetic Sensor จะเพิ่มขึ้นในลักษณะเป็นสัดส่วนกับการเปลี่ยนแปลงของ Magnetic Flux Density ซึ่งแสดงให้เห็นถึง ความสัมพันธ์เชิงเส้นระหว่างสนามแม่เหล็ก และค่าของสัญญาณ
- 1.2.2 การใช้ Magnetic Field Shielding จะทำให้ความเข้มของสนามแม่เหล็กที่สามารถตรวจจับได้โดยเซ็นเซอร์ ลดลง ส่งผลให้แรงดันไฟฟ้าสัญญาณจากเซ็นเซอร์ลดลงตามไปด้วย ซึ่งสะท้อนถึงการลดทอนของ Magnetic Flux Density ที่ส่งผลโดยตรงต่อการวัดสัญญาณของเซ็นเซอร์
- 1.2.3 Magnetic Flux Direction ที่กระทำกับเซ็นเซอร์จะมีผลต่อทิศทางและขนาดของแรงดันไฟฟ้าสัญญาณที่ ตรวจจับได้ โดยแรงดันไฟฟ้าสัญญาณจะเปลี่ยนแปลงไปตามการเปลี่ยนทิศทางของสนามแม่เหล็กที่ตั้งฉากกับทิศทางการ ใหลของกระแสไฟฟ้าในเซ็นเซอร์
- 1.2.4 การประมวลผลข้อมูลจาก Ratiometric Linear Hall Effect Magnetic Sensor แบบเรียลไทม์โดยใช้ ซอฟต์แวร์ MATLAB และ Simulink สามารถทำได้สำเร็จ โดยการเชื่อมต่อกับบอร์ด Nucleo STM32G474RE และการ แสดงค่าของสัญญาณในรูปแบบกราฟผ่าน Data Inspector จะสะท้อนถึงการเปลี่ยนแปลงของ ความเข้มของ สนามแม่เหล็ก (Magnetic Flux Density) อย่างถูกต้องตามเวลาจริง

1.3 ตัวแปร

1.3.1 ตัวแปรต้น

- ระยะห่างระหว่างแม่เหล็กถาวรที่ไม่กลับขั้วและไม่ติดตั้ง Shield กับเซนเซอร์
- ระยะห่างระหว่างแม่เหล็กถาวรที่ไม่กลับขั้วและติดตั้ง Shield กับเซนเซอร์
- ระยะห่างระหว่างแม่เหล็กถาวรที่กลับขั้วและไม่ติดตั้ง Shield กับเซนเซอร์
- ระยะห่างระหว่างแม่เหล็กถาวรที่กลับขั้วและติดตั้ง Shield กับเซนเซอร์

1.3.2 ตัวแปรตาม

- แรงดันไฟฟ้าที่ได้จาก DRV5055A2 ซึ่งแปรผันตามระยะห่างของแม่เหล็กถาวรทั้ง 4 รูปแบบ
- Raw Signal สัญญาณดิบที่ถูกส่งออกจากเซ็นเซอร์และยังไม่ได้ผ่านการประมวลผล ของ DRV5055A2
- ค่า Magnetic Flux Density ที่คำนวณจากแรงดันไฟฟ้าที่ได้ โดยแสดงในหน่วย SI

1.3.3 ตัวแปรควบคุม

- อุณหภูมิ: อุณหภูมิที่อาจมีผลต่อการทำงานของเซ็นเซอร์และวงจรต่าง ๆ
- แม่เหล็กใช้เป็นแม่เหล็กถาวรเพื่อความคงที่ของ Magnetic Flux
- ระยะการเคลื่อนแม่เหล็กเข้าใกล้เซ็นเซอร์อย่างสม่ำเสมอและคงที่ในทุกการเคลื่อนแม่เหล็ก
- ชนิดของเซ็นเซอร์: ใช้เซ็นเซอร์ชนิดเดียวกันในการทดลองเพื่อให้ได้ผลลัพธ์ที่สม่ำเสมอ
- วัสดุ Magnetic Shield ควรใช้ Shield ตัวเดียวตลอดการทดลอง

1.3.4 ตัวแปรแทรกซ้อน

- การรบกวนจากสนามแม่เหล็กภายนอก: สนามแม่เหล็กที่เกิดจากอุปกรณ์หรือสิ่งแวดล้อมภายนอกอาจมี ผลต่อการวัดสัญญาณ
- ความผิดพลาดในการวัด: ความไม่แม่นยำในการเก็บข้อมูลหรือการวัดสัญญาณ

1.4 นิยามศัพท์เฉพาะ

- 1.4.1 Ratiometric Linear Hall Effect Magnetic Sensor เซ็นเซอร์แม่เหล็กที่ทำงานโดยใช้หลักการของ Hall Effect โดยสัญญาณ Output แปรผันตามแรงดันไฟฟ้าที่ป้อนเข้า และมีลักษณะเป็นเส้นตรงตาม Magnetic Flux Density ที่ตรวจจับได้
- 1.4.2 Hall Effect ปรากฏการณ์ที่เกิดขึ้นเมื่อกระแสไฟฟ้าไหลผ่านตัวนำที่อยู่ภายใต้สนามแม่เหล็กตั้งฉาก ทำให้ เกิดแรงดันไฟฟ้าในทิศทางที่สาม แรงดันนี้จะเป็นสัญญาณของเซ็นเซอร์
- 1.4.3 Magnetic Flux Density ปริมาณสนามแม่เหล็กที่วัดได้ในพื้นที่ใดพื้นที่หนึ่ง มีหน่วยเป็น Tesla หรือ Gauss โดยค่า Magnetic Flux Density แสดงถึงความเข้มของสนามแม่เหล็ก ยิ่งค่ามาก สนามแม่เหล็กก็ยิ่งเข้มข้น

- 1.4.4 Magnetic Field Shielding การป้องกันหรือการลดทอนสนามแม่เหล็กโดยใช้วัสดุที่มีคุณสมบัติพิเศษเพื่อ ป้องกันไม่ให้สนามแม่เหล็กแพร่กระจายไปยังพื้นที่ที่ไม่ต้องการ การใช้ Magnetic Field Shielding นี้ช่วยลดผลกระทบ ของสนามแม่เหล็กต่อเซ็นเซอร์หรืออุปกรณ์อื่น ๆ
- 1.4.5 Magnetic Flux Direction ทิศทางที่เส้นแรงแม่เหล็กเคลื่อนที่จากขั้วเหนือไปยังขั้วใต้ของแม่เหล็ก ทิศทางนี้ มีผลต่อการทำงานของเซ็นเซอร์แม่เหล็ก เช่น Hall Effect Sensor ซึ่งจะตรวจจับสนามแม่เหล็กที่อยู่ในทิศทางตั้งฉากกับ กระแสไฟฟ้าในเซ็นเซอร์
- 1.4.6 Sensitivity Linearity การตอบสนองเชิงเส้นของเซ็นเซอร์แม่เหล็กที่สัญญาณแปรผันโดยตรงตามความเข้ม ของสนามแม่เหล็ก ความไม่เชิงเส้นของเซ็นเซอร์จะทำให้ค่าที่อ่านได้ไม่แม่นยำ
- 1.4.7 NUCLEO-G474RE บอร์ดไมโครคอนโทรลเลอร์ตระกูล STM32 ที่ใช้ในการประมวลผลสัญญาณจาก เซ็นเซอร์ต่าง ๆ รวมถึงการควบคุมการทำงานของระบบผ่านการเขียนโปรแกรม
- 1.4.8 MATLAB และ Simulink ซอฟต์แวร์สำหรับการคำนวณเชิงตัวเลขและการจำลองระบบ MATLAB ใช้ในการ เขียนโปรแกรมและประมวลผลข้อมูล ในขณะที่ Simulink ใช้สำหรับการจำลองแบบกราฟิกในการวิเคราะห์และควบคุม ระบบแบบเรียลไทม์
- 1.4.9 Raw Signal สัญญาณดิบที่ได้รับจากเซ็นเซอร์ก่อนที่จะถูกประมวลผลหรือแปลงให้อยู่ในรูปแบบที่สามารถใช้ งานได้ ข้อมูลดิบนี้มักจะถูกนำไปวิเคราะห์เพื่อใช้ในขั้นตอนถัดไป
- 1.4.10 Data Inspector เครื่องมือใน Simulink ที่ใช้สำหรับแสดงผลและวิเคราะห์ข้อมูลที่ถูกบันทึกจากการ จำลองระบบ โดยแสดงข้อมูลในรูปแบบกราฟหรือตารางเพื่อช่วยให้ผู้ใช้ตรวจสอบการทำงานของระบบใแบบเรียลไทม์
- 1.4.11 SI Derived Units (SI) หน่วยอนุพันธ์ในระบบหน่วยสากล เช่น Tesla สำหรับ Magnetic Flux Density ที่ ได้จากหน่วยพื้นฐานในระบบ SI

1.5 นิยามเชิงปฏิบัติการ

1.5.1 Ratiometric Linear Hall Effect Magnetic Sensor: ในการทดลองนี้ หมายถึงเซ็นเซอร์ที่ใช้วัด Magnetic Flux Density โดยสัญญาณที่เซ็นเซอร์ส่งออกจะเปลี่ยนไปตามแรงดันไฟฟ้าที่ป้อนเข้า และตาม Magnetic Flux Density ที่เซ็นเซอร์ตรวจจับได้ เซ็นเซอร์นี้จะต่อกับบอร์ด NUCLEO-G474RE เพื่ออ่านค่าและแสดงผล

- 1.5.2 Magnetic Flux Density: คือค่าความเข้มของสนามแม่เหล็กที่วัดได้ หน่วยเป็น Tesla ในการทดลองนี้ค่า ความเข้มของสนามแม่เหล็กจะถูกนำมาแสดงผลแบบเรียลไทม์บนกราฟที่สร้างจาก MATLAB และ Simulink
- 1.5.3 Magnetic Field Shielding: การป้องกันหรือจำกัดสนามแม่เหล็กจากภายนอกไม่ให้เข้าถึงเซ็นเซอร์ ในการ ทดลองนี้ใช้วัสดุป้องกันสนามแม่เหล็ก เพื่อดูว่ามีผลอย่างไรต่อค่าที่เซ็นเซอร์ตรวจจับและสัญญาณที่ได้
- 1.5.4 MATLAB และ Simulink: ซอฟต์แวร์ที่ใช้ในการเขียนโปรแกรมและจำลองการทำงานของเซ็นเซอร์ ในการ ทดลองนี้ จะใช้ MATLAB และ Simulink เพื่อแสดงผลกราฟและวิเคราะห์ข้อมูลจากเซ็นเซอร์แบบเรียลไทม์

บทที่ 2

เอกสารและงานวิจัยที่เกี่ยวข้อง

2.1 DRV5055 Ratiometric Linear Hall Effect Sensor

DRV5055 Ratiometric Linear Hall Effect Sensor เป็นเซนเซอร์ที่อาศัยการเปลี่ยนแปลงค่าความเข้มข้นของ สนามแม่เหล็ก โดยมีแรงดันไฟฟ้าเป็นค่าที่เปลี่ยนแปลงไป หมายความว่าแรงดันไฟฟ้าส่งออกจะแปรผันไปตามความเข้มข้น ของสนามแม่เหล็ก โดย DRV5055 Ratiometric Linear Hall Effect Sensor มีลักษณะทิศทางการตอบสนองต่อ สนามแม่เหล็กในทิศทางตั้งฉากและพุ่งออกจากพื้นที่หน้าตัวของตัวเซนเซอร์

โดย DRV5055 Ratiometric Linear Hall Effect Sensor มีทั้งหมด 8 ชนิดได้แก่ DRV5055A1 – A4 และ DRV5055Z1 – Z4 โดย DRV5055 ทุกชนิดสามารถทำงานโดยใช้แหล่งจ่ายไฟที่มีแรงันไฟฟ้าตั้งแต่ 3.3 V ถึง 5 V อีกทั้งทุก ชนิดยังมีค่าคงที่แรงดันไฟฟ้าในรูปแบบเดียวกันคือ

$$V_{
m q}=rac{V_{
m cc}}{2}$$
โดย

DRV5055 Ratiometric Linear Hall Effect Sensor แต่ละชนิดยังมีความสามารถในการตอบสนองต่อความ เข้มข้นของสนามแม่เหล็กไม่เหมือน โดยขึ้นอยู่กับชนิดของเซนเซอร์และแรงดันไฟฟ้าจากแหล่งจ่ายไฟ ซึ่งมีความสัมพันธ์ ตามกราฟดังนี้

แรงดันไฟฟ้าจากแหล่งจ่ายไฟเท่ากับ 3.3 V

กราฟที่

แรงดันไฟฟ้าจากแหล่งจ่ายไฟเท่ากับ 5 V

กราฟที่

DRV5055Z1

DRV5055Z2

DRV5055Z3 DRV5055Z4

3.6

จากความสัมพันธ์เหล่านี้จึงสามารถหาแรงดันไฟฟ้าส่งออกของแต่ละชนิดและความเข้มข้นของสนามแม่เหล็กดัง สมการนี้

$$V_{\rm out} = V_{\rm q} + {\rm B} \times ({\rm Sensitivity}_{25^{\circ}{\rm C}}(1 + {\rm S}_{\rm TC} \times ({\rm T}_{\rm A} - 25^{\circ}{\rm C})))$$

2.2 แม่เหล็กถาวร

แม่เหล็กถาวรโดยพื้นฐานแล้วมันเป็นวัสดุแม่เหล็กที่จะคงความเป็นแม่เหล็กตลอดเวลา อีกทั้งยังมีการปล่อยสนาม แรงแม่เหล็กออกมาอย่างสม่ำเสมอจากขั้วเหนือไปยังขั้วใต้

BYJU'S
The Learning App

รูปที่

เมื่อมีสนามแม่เหล็กย่อมมีความเข้มข้นของสนามแม่เหล็ก เพียงแต่แม่เหล็กถาวรนั้นมีสนามแม่เหล็กที่คงที่ หากจะ มีสิ่งใดที่จะมาเปลี่ยนแปลงความเข้มข้นของสนามแม่เหล็กได้นั้นคือพื้นที่หน้าตัดของแม่เหล็กถาวร

จากสมการสนามแม่เหล็กถาวร

$$\emptyset = BA \cos \theta$$

โดยที่

เมื่อแก้สมการหลังจากแทนค่าคงที่จะเห็ได้ว่าความเข้มข้นของสนามแม่เหล็กนั้นแปรผกผันกับพื้นที่หน้าตัด

$$B \propto \frac{1}{A}$$

บทที่ 3

วิธีดำเนินการทดลอง

3.1 วิธีดำเนินการทดลอง

3.1.1 วัสดุอุปกรณ์

- 3.1.1.1 DRV5055A2 Ratiometric Linear Hall Effect Magnetic Sensor จำนวน 1 อัน
- 3.1.1.2 NUCLEO G474RE พร้อมสายอัปโหลด จำนวน 1 ชุด
- 3.1.1.3 MagneticXplorer จำนวน 1 ชุด ฐานสามารถบรรจุบอร์ดควบคุม, Breadboard, DRV5055,
- 3.1.1.4 3D-Print ใช้สำหรับการปรับระยะแม่เหล็กถาวรกับ Sensor
- 3.1.1.5 สายจัมเปอร์ นักศึกษาหยิบได้ในกล่องสายไฟรีไซเคิล ห้อง 501 ภายในคาบเรียน
- 3.1.1.6 ประแจหกเหลี่ยม

3.2 ขั้นตอนการดำเนินงาน

3.2.1 ทำการเตียมอุปกรณ์

- 3.2.1.1บอร์ด Nucleo STM32G474RE เปลี่ยนโหมดรับแหล่งพลังงานเป็น E5V
- 3.2.1.2 ติดตั้งบอร์ด Nucleo STM32G474RE เข้ากับ PotenXplorer
- 3.2.1.3เชื่อมต่อ DRV5055A2 โดย V+ ต่อเข้ากับ 3.3 V, OUT ต่อเข้ากับ Pin PAO และ GND ต่อเข้ากับ GND

3.2.2 การเตรียมระบบใน Simulink

ทำการสร้างระบบสำหรับการอ่านค่าแรงดันไฟฟ้า, เก็บค่าแรงดันไฟฟ้าและคำนวณความเข้มข้นของ สนามแม่เหล็ก

รูปที่

รูปที่

ส่วนนี้คือส่วนสำหรับการแสดงสัญญาญดิบและค่าแรงดันไฟฟ้า โดยแรงดันไฟฟ้ามาจากการเทียบบัญญัติไตรยางค์ $V_{
m out}={
m Raw~signal~} imes {rac{V_{
m in}}{4095}}$ และจะทำงานเมื่อกดเริ่มการทำงานของระบบ

รูปที่

ส่วนนี้คือส่วนสำหรับเก็บค่าข้อมูลสัญญาญดิบและค่าแรงดันไฟฟ้า โดยการเก็บข้อมูลจะเกิดขึ้นเมื่อกดเริ่มการ ทำงานของระบบ จากนั้นเมื่อมีการกดปุ่มสีฟ้าบนบอร์ด Nucleo STM32G474RE ระบบจะส่งค่าการกดปุ่มไปยัง State flow ซึ่งเป็นส่วนที่ใช้นับจำนวณข้อมูลที่ต้องการเก็บ, บอกตำแหน่งถัดไปในการเก็บข้อมูลและเปิดการส่งออกข้อมูลไปยัง Workspace ใน Matlab อีกทั้งไฟสถานะทั้งสองดวง ไฟ ready จะทำงานก็ต่อเมื่อไม่มีการเก็บข้อมูลหรือพร้อมต่อการเก็บข้อมูล และไฟ working จะทำงานเมื่อมีการเก็บข้อมูล

รูปที่

ส่วนที่คือส่วนการคำนวณค่าความเข้มข้นของสนามแม่เหล็ก โดยใช้แรงดันที่อ่านได้, ค่า Sensitivity ของ DRV5055A2 และ อุณหภูมิห้อง จากสมการ

$$B = \frac{V_{out} - V_{Q}}{Sensitivity \times (1 + S_{TC} \times (T_{A} - 25))}$$

3.2.3 การเตรียมระบบใน Matlab

ทำการสร้างระบบสำหรับการเฉลี่ยค่าข้อมูล, สร้างชุดข้อมูล, คำนวณข้อมูลและ แสดงผลข้อมูล

```
function Average = AverageCalculator(data,first,last)
    Average = sum(data(2,first:last))/500;
end
```

รูปที่

ส่วนนี้คือฟังชั่นสำหรับการเฉลี่ยข้อมูลสำหรับชุดข้อมูลที่มีจำนวน 500 ค่าถ้วน โดยจะรับค่าชุดข้อมูล, ตำแหน่ง ข้อมูลแรกและตำแหน่งข้อมูลสุดท้าย

```
function Result = MakeAverageArray(data,filename)
    ArraySize = size(data,1)/500;
    data = data.';
    Result = zeros(2,ArraySize);
    for i = 0:ArraySize-1
        Result(1,i+1) = AverageCalculator(data,(i*500)+1,(i*500)+500);
        Result(2,i+1) = data(1,(i*500)+1);
    end
    save(filename,"Result");
end
```

รูปที่

ส่วนนี้คือฟังชั่นสำหรับการสร้างชุดข้อมูลและฟังชั่นนี้มีการเรียกใช้ AverageCalculator โดยจะรับค่าชุดข้อมูลและ ชื่อชุดข้อมูลที่ต้องการสร้าง

```
function B = FluxDensityCal(Vout,Vq,sensitivity,Stc,Ta)
  Divisor = Vout - Vq;
  Denominator = sensitivity * (1 + (Stc * (Ta - 25)));
  B = Divisor/Denominator;
end
```

ส่วนนี้คือฟังชั่นที่ใช้ในการคำนวณค่าความเข้มข้นของสนามแม่เหล็กของแต่ละจุด

```
function res = MakeBArray(data, Vq, sensitivity, Stc, Ta)
   Btmp = [];
   dis = [];
   for i = 1:size(data, 2)
        Vout = data(1, i) * 1000;
        Btmp(end+1) = FluxDensityCal(Vout, Vq, sensitivity, Stc, Ta);
        dis(end+1) = data(2, i);
   end
   MDS = [Btmp; dis];
   res = MDS;
end
```

รูปที่

ส่วนนี้คือฟังชั่นสำหรับการสร้างชุดข้อมูลและฟังชั่นนี้มีการเรียกใช้ FluxDensityCal

```
function GraphPlot(varargin)
    x_label_name = varargin{nargin-2};
    y_label_name = varargin{nargin-1};

Property = varargin{nargin};

Parameter_Name = varargin{nargin-3};
    Reverse = varargin{nargin-5};
    Error = varargin{nargin-4};

Data = varargin{1};

Size = size(Data,2);

title_name = Parameter_Name{1};

for i = 2:Size
    title_name = title_name + " VS ";
    title_name = title_name + Parameter_Name{i};
end
```

ส่วนนี้เป็นส่วนการคัดแยกข้อมูลนำเข้าของฟังชั่น GraphPlot ที่ใช้ในการแสดงค่าชุดข้อมูลตั้งแต่ 1 ชุดขึ้นไปโดย จะรับค่าชุดข้อมูล, การกลับด้านของกราฟ, การสร้างกราฟข้อผิดพลาด, ชื่อกราฟ, ชื่อแกนนอน, ชื่อแกนตั้ง และคุณสมบัติ การสร้างกราฟ

```
figure;
hold on;
for i = 1:Size
   TMP = Data{i};
   x_axis = TMP(2,:);
   if Reverse(i)
       y_axis = fliplr(TMP(1,:));
       y_axis = TMP(1,:);
   Graph = plot(x_axis,y_axis,Property{1,i},Color=Property{2,i},LineWidth=str2double(Property{3,i}));
   err = Error(i);
   if err > 0
       errorbar(x_axis,y_axis,err,Property{2,i},'CapSize',0);
   Graph.DataTipTemplate.DataTipRows(1).Label = x_label_name + " : ";
   Graph.DataTipTemplate.DataTipRows(2).Label = y_label_name + " : ";
   Graph.DataTipTemplate.DataTipRows(4).Label = Parameter_Name{i};
hold off;
```

รูปที่

```
legend(Parameter_Name, 'Location', 'northwest')

title(title_name);
  xlabel(x_label_name);
  ylabel(y_label_name);

xlim([0 100]);
  ylim([0 100]);

xticks(0:10:100);
  yticks(0:10:100);

grid minor;
```

ส่วนนี้เป็นส่วนการแสดงข้อมูลขุดข้อมูลทั้งหมดของฟังชั่น GraphPlot โดยจะมีการใช้ช้อมูลนำเข้าทั้งหมด
3.2.4 การทดลองเพื่อทดสอบสมมุติฐาน

- 3.2.4.1 ทดสอบความสัมพันธ์ระหว่าง Magnetic Flux Density และแรงดันไฟฟ้าส่งออก ปรับความ เข้มของสนามแม่เหล็กโดยเปลี่ยนระยะห่างระหว่างแหล่งกำเนิดสนามแม่เหล็กกับเซ็นเซอร์ วัดแรงดันไฟฟ้าที่ เกิดขึ้นจากการเปลี่ยนแปลงของ Magnetic Flux Density โดยใช้ MATLAB/Simulink บันทึกข้อมูลและแสดง ความสัมพันธ์ระหว่าง Magnetic Flux Density กับแรงดันไฟฟ้าในรูปแบบกราฟการทดลอง
- 3.2.4.2 ทดสอบผลของ Magnetic Field Shielding ติดตั้ง Magnetic Field Shielding ระหว่าง แหล่งกำเนิดสนามแม่เหล็กและเซ็นเซอร์ วัดการเปลี่ยนแปลงของแรงดันไฟฟ้าสัญญาณเมื่อใช้วัสดุป้องกัน สนามแม่เหล็ก เปรียบเทียบผลลัพธ์กับการวัดที่ไม่ได้ใช้ Magnetic Field Shielding เพื่อยืนยันผลการลดทอนของ สนามแม่เหล็ก
- 3.2.4.3 ทดสอบผลของทิศทางสนามแม่เหล็ก หมุนแหล่งกำเนิดสนามแม่เหล็กเพื่อเปลี่ยนทิศทางของ สนามแม่เหล็กที่กระทำกับเซ็นเซอร์ วัดการเปลี่ยนแปลงของแรงดันไฟฟ้าสัญญาณตามทิศทางของสนามแม่เหล็ก บันทึกข้อมูลการเปลี่ยนแปลงของทิศทาง และแสดงกราฟการเปลี่ยนแปลงของแรงดันไฟฟ้าตามทิศทางของ สนามแม่เหล็ก
- 3.2.5 การวิเคราะห์ และแสดงผล รวบรวมข้อมูลที่ได้จากการทดลองทั้งสามชุด วิเคราะห์ความสัมพันธ์ระหว่าง Magnetic Flux Density, Magnetic Field Shielding และทิศทางของสนามแม่เหล็กกับแรงดันไฟฟ้าสัญญาณที่ ตรวจจับได้ สร้างกราฟแสดงผลลัพธ์ และสรุปผลการทดลองตามสมมุติฐานที่ตั้งไว้
- 3.2.6 การสรุปผล และจัดทำรายงาน สรุปผลการทดลองโดยเทียบกับสมมุติฐานที่ตั้งไว้ เขียนรายงานการทดลอง รวมถึงข้อมูลที่ได้จากการประมวลผลใน MATLAB และ Simulink ส่งรายงานสรุปผลการทดลอง

3.3 ขั้นตอนการทดลอง

เพื่อที่สามารถทำการทดลองให้ได้สอดข้อมูลที่สอดคล้องกับข้อมูล ผู้จัดทำได้ทำการเรียงลำดับการทดลองไว้ดังนี้

3.3.1 ชุดการทดลองเก็บข้อมูลแบบไม่กลับขั้วแม่เหล็ก

3.3.1.1 ตั้งระยะห่างระหว่าง DRV5055 กับ แม่เหล็กไว้ที่ 0 มิลลิเมตร

รูปที่

- 3.3.1.2 ทำการตั้งค่าระบบเก็บข้อมูลให้เก็บข้อมูลทั้งหมด 500 ค่าในหนึ่งจุด
- 3.3.1.3 ทำการเริ่มต้นระบบเก็บข้อมูล
- 3.3.1.4 ทำการกดปุ่มสีฟ้าบนบอร์ด NUCLEO-G474RE เพื่อให้ระบบเริ่มเก็บข้อมูล

รูปที่

- 3.3.1.5 เมื่อระบบเก็บข้อมูลแสดงไฟสถานะ ready ให้ทำการใช้ประแจปรับระยะห่างให้ห่างครั้ง ละ 1 มิลลิเมตร ดำเนินการตามข้อที่ 5) ทำทั้งหมด 35 ครั้ง
- 3.3.1.6 เมื่อดำเนินการครบทั้ง 36 ทำการปิดระบบของระบบเก็บข้อมูลเพื่อในระบบหยุดส่ง ข้อมูลไปยัง Workspace ใน Matlab
- 3.3.1.7 ทำการเรียกใช้ MakeAverageArray และ MakeBArray เพื่อทำการเฉลี่ยค่าข้อมูล แรงดันไฟฟ้าที่ได้ และทำการคำนวณความเข้มข้นสนามแม่เหล็กแล้วเฉลี่ยค่าข้อมูล โดย ทั้งสองค่าจะถูกทำเป็นชุดข้อมูลแยกกัน
- 3.3.1.8 ทำการติตตั้ง Shield ให้กับแม่เหล็ก จากนั้นดำเนินการตั้งแต่ข้อ 1) ถึงข้อ 7)
- 3.3.2 ชุดการทดลองเก็บข้อมูลแบบกลับขั้วแม่เหล็ก
 - 3.3.2.1 ตั้งระยะห่างระหว่าง DRV5055 กับ แม่เหล็กไว้ที่ 0 มิลลิเมตร

รูปที่

- 3.3.2.2 ทำการตั้งค่าระบบเก็บข้อมูลให้เก็บข้อมูลทั้งหมด 500 ค่าในหนึ่งจุด
- 3.3.2.3 ทำการเริ่มต้นระบบเก็บข้อมูล
- 3.3.2.4 ทำการกดปุ่มสีฟ้าบนบอร์ด NUCLEO-G474RE เพื่อให้ระบบเริ่มเก็บข้อมูล

รูปที่

- 3.3.2.5 เมื่อระบบเก็บข้อมูลแสดงไฟสถานะ ready ให้ทำการใช้ประแจปรับระยะห่างให้ห่างครั้ง ละ 1 มิลลิเมตร ดำเนินการตามข้อที่ 5) ทำทั้งหมด 35 ครั้ง
- 3.3.2.6 เมื่อดำเนินการครบทั้ง 36 ทำการปิดระบบของระบบเก็บข้อมูลเพื่อในระบบหยุดส่ง ข้อมูลไปยัง Workspace ใน Matlab
- 3.3.2.7 ทำการเรียกใช้ MakeAverageArray และ MakeBArray เพื่อทำการเฉลี่ยค่าข้อมูล แรงดันไฟฟ้าที่ได้ และทำการคำนวณความเข้มข้นสนามแม่เหล็กแล้วเฉลี่ยค่าข้อมูล โดย ทั้งสองค่าจะถูกทำเป็นชุดข้อมูลแยกกัน
- 3.3.2.8 ทำการติตตั้ง Shield ให้กับแม่เหล็ก จากนั้นดำเนินการตั้งแต่ข้อ 1) ถึงข้อ 7)

บทที่ 4

ผลการทดลอง

- 4.1 ผลทดสอบความสัมพันธ์ระหว่าง Magnetic Flux Density และแรงดันไฟฟ้าส่งออก และ วิเคราะห์ข้อมูล
 - 4.1.1 ผลการทดลองเก็บข้อมูลแบบไม่กลับขั้วแม่เหล็ก ได้ผลการทดลองดังนี้
 แรงดันไฟฟ้า

ความเข้มข้นของสนามแม่เหล็ก

จากผลการทดลองพบว่าลักษณะของกราฟความสัมพันธ์ระหว่างแรงดันไฟฟ้ากับระยะห่าง และ กราฟ ความสัมพันธ์ระหว่างความเข้มข้นของสนามแม่เหล็กกับระยะห่างมีลักษณะกราฟเดียวกันคือ กราฟ Exponential Growth โดยทั้งสองกราฟจะมีช่วงค่าที่เป็นเส้นตรงเหมือนกัน แต่สิ่งที่แตกต่างกันคือความกว้างของช่วงเหล่านั้น โดยที่ผลการทดลองที่ไม่ได้ทำการติดตั้ง Shield มีความกว้างมากกว่า แบบที่ติดตั้ง Shield 3 มิลลิเมตร

จากความสัมพันธ์ของความเข้มขั้นของสนามแม่เหล็กและพื้นที่หน้าตัด

$$B \propto \frac{1}{A}$$

จากความสัมพันธ์นี้ทำให้เห็นว่าผลการทดลองที่ไม่ได้ทำการติดตั้ง Shield จะมีความเข้มข้นของ สนามแม่เหล็กมากกว่าผลการทดลองที่ทำการติดตั้ง Shield

เมื่อสังเกตเพิ่มเติมจะพบว่าช่วงที่มีความเข้มข้นของสนามแม่เหล็กใกล้เคียงศูนย์จะมีแรงดันส่งออกอยู่ที่ ประมาณ 1.64 – 1.66 V ซึ่งสอดคล้องของ DRV5055A2 ที่จะส่งออกแรงดันไฟฟ้าเมื่อไม่มีความเข้มข้นของ สนามแม่เหล็กเท่ากับครึ่งหนึ่งของแหล่งจ่ายไฟ

$$V_{\rm q} = \frac{V_{\rm cc}}{2}$$

4.1.2 ผลการทดลองเก็บข้อมูลแบบไม่กลับขั้วแม่เหล็ก ได้ผลการทดลองดังนี้

- แรงดันไฟฟ้า

- ความเข้มข้นของสนามแม่เหล็ก

จากผลการทดลองพบว่าลักษณะของกราฟความสัมพันธ์ระหว่างแรงดันไฟฟ้ากับระยะห่าง และ กราฟ ความสัมพันธ์ระหว่างความเข้มข้นของสนามแม่เหล็กกับระยะห่างมีลักษณะกราฟเดียวกันคือ กราฟ Exponential Growth โดยทั้งสองกราฟจะมีช่วงค่าที่เป็นเส้นตรงเหมือนกัน แต่สิ่งที่แตกต่างกันคือความกว้างของช่วงเหล่านั้น โดยที่ผลการทดลองที่ไม่ได้ทำการติดตั้ง Shield มีความกว้างมากกว่า แบบที่ติดตั้ง Shield 3 มิลลิเมตร

จากความสัมพันธ์ของความเข้มขั้นของสนามแม่เหล็กและพื้นที่หน้าตัด

$$B \propto \frac{1}{A}$$

จากความสัมพันธ์นี้ทำให้เห็นว่าผลการทดลองที่ไม่ได้ทำการติดตั้ง Shield จะมีความเข้มข้นของ สนามแม่เหล็กมากกว่าผลการทดลองที่ทำการติดตั้ง Shield

เมื่อสังเกตเพิ่มเติมจะพบว่าช่วงที่มีความเข้มข้นของสนามแม่เหล็กใกล้เคียงศูนย์จะมีแรงดันส่งออกอยู่ที่ ประมาณ 1.64 – 1.66 V ซึ่งสอดคล้องของ DRV5055A2 ที่จะส่งออกแรงดันไฟฟ้าเมื่อไม่มีความเข้มข้นของ สนามแม่เหล็กเท่ากับครึ่งหนึ่งของแหล่งจ่ายไฟ

$$V_q = \frac{V_{cc}}{2}$$

- 4.1.3 ผลการทดลองเก็บข้อมูลระหว่างแบบกลับขั้วแม่เหล็กกับไม่กลับขั้วแม่เหล็ก ความสัมพันธ์ระหว่าง แรงดันไฟฟ้าและค่าความเข้มข้นของสนามแม่เหล็ก
 - แบบไม่ติดตั้ง Shield

- แบบไม่ติดตั้ง Shield

จากผลการทดลองความสัมพันธ์ระหว่างแรงดันไฟฟ้าและค่าความเข้มข้นของสนามแม่เหล็ก พบว่ามี ลักษณะของกราฟเป็นลักษณะกราฟเส้นตรง

บทที่ 5

สรุปผล อภิปรายผล และข้อเสนอแนะ

5.1 สรุปผล

- 5.1.1 เมื่อสนามแม่เหล็กแรงขึ้น เซ็นเซอร์จะส่งแรงดันไฟฟ้าออกมาสูงขึ้นด้วย ความสัมพันธ์นี้เป็นแบบเส้นตรง หมายถึง เมื่อสนามแม่เหล็กเพิ่มขึ้น แรงดันไฟฟ้าก็เพิ่มขึ้นตามไป
- 5.1.2 การใช้วัสดุป้องกันสนามแม่เหล็กช่วยลดความเข้มของสนามแม่เหล็กที่เซ็นเซอร์ตรวจจับได้ ทำให้ แรงดันไฟฟ้าที่ออกมาจากเซ็นเซอร์ลดลง
- 5.1.3 ทิศทางของสนามแม่เหล็กก็มีผลต่อแรงดันไฟฟ้าจากเซ็นเซอร์ หากเปลี่ยนทิศทางของสนามแม่เหล็ก แรงดันไฟฟ้าก็จะเปลี่ยนแปลงตาม
- 5.1.4 เราสามารถใช้ซอฟต์แวร์ MATLAB และ Simulink เพื่อแสดงค่าของสนามแม่เหล็กและแรงดันไฟฟ้าแบบ เรียลไทม์ได้อย่างแม่นยำ
- 5.1.5 ผลการทดลองทั้งหมดสอดคล้องกับสิ่งที่เราคาดไว้และแสดงให้เห็นว่าเซ็นเซอร์นี้ทำงานได้ดีในการตรวจจับ และแสดงผลค่าของสนามแม่เหล็ก

5.2 อภิปรายผล

ผลการทดลองแสดงให้เห็นว่าเซ็นเซอร์ Hall Effect ทำงานได้ดี แต่ก็มีบางเรื่องที่น่าสนใจและควรพิจารณาเพิ่มเติม:

5.2.1 ความสัมพันธ์ระหว่างสนามแม่เหล็ก และแรงดันไฟฟ้า การทดลองยืนยันว่าเมื่อสนามแม่เหล็กแรงขึ้น แรงดันไฟฟ้าจากเซ็นเซอร์ก็เพิ่มขึ้นตาม แต่ว่าเซ็นเซอร์อาจไม่แม่นยำหากสนามแม่เหล็กแรงมากหรืออ่อนมากเกินไป ผลของ วัสดุป้องกันสนามแม่เหล็ก การใช้วัสดุป้องกันสนามแม่เหล็กช่วยลดความเข้มของสนามที่เซ็นเซอร์ตรวจจับได้ แต่การเลือก วัสดุป้องกันที่แตกต่างกันอาจให้ผลที่ไม่เหมือนกัน ถ้าอยากรู้ผลชัดเจนกว่านี้ ควรลองใช้วัสดุหลายชนิด ผลของทิศทาง

สนามแม่เหล็ก ทิศทางของสนามแม่เหล็กมีผลต่อแรงดันไฟฟ้า การหมุนสนามแม่เหล็กทำให้แรงดันไฟฟ้าเปลี่ยนไปตามการ ทดลอง หากใช้ระบบหมุนสนามแม่เหล็กที่แม่นยำขึ้น อาจทำให้ผลการวัดดียิ่งขึ้น

5.3 ข้อเสนอแนะ

อาจพิจารณาทดลองที่มีการควบคุมสนามแม่เหล็กให้แม่นยำมากขึ้น และขยายช่วงการวัดเพื่อทดสอบการ ตอบสนองของเซ็นเซอร์ในสภาวะที่แตกต่างกัน ควรทดลองใช้วัสดุสำหรับป้องกันสนามแม่เหล็กชนิดต่างๆ เพื่อประเมินการ ลดทอนสนามแม่เหล็กที่มีประสิทธิภาพสูงสุด ทดสอบเซ็นเซอร์ในสภาวะที่มีการรบกวนของสนามแม่เหล็กเพื่อดูความเสถียร ในการวัด

เอกสารอ้างอิง

- 1. Hall Effect Sensors Research Article: "A review of Hall effect sensors and their applications" Source: Journal of Sensor and Actuator Networks Link: https://www.mdpi.com/2224-2708/2/1/85
- 2. Hall-Effect Sensors: "Theory and Application" Source: Edward Ramsden Link: https://books.google.co.th/books?hl=th&lr=&id=R8VAjMitH1QC&oi=fnd&pg=PP1&dq=Ratiometric+Linear+Hall+Effect+Magnetic+Sensor&ots=XzKRGlBw4y&sig=QTmT5yGE2Qyc3M2smm4lPzm9Cgl&redir_esc=y#v=onepage&q=Ratiometric%20Linear%20Hall%20Effect%20Magnetic%20Sensor&f=false