```
In [2]:
           import numpy as np
           import pandas as pd
           import matplotlib.pyplot as plt
           import os
 In [5]: os.getcwd()
 Out[5]: 'C:\\Users\\BrighterDays CodeLab'
In [11]:
           path = 'C:\\Users\\BrighterDays CodeLab'
In [12]: os.chdir(path)
In [13]: data = pd.read csv("housing.data")
In [14]:
           data
Out[14]:
                  0.00632 18.00 2.310 0 0.5380 6.5750 65.20 4.0900 1 296.0 15.30 396.90 4.98 24.00
               0
                                                      0.02731 0.00 7.070 0 0.4690 6.4210 78...
               1
                                                       0.02729 0.00 7.070 0 0.4690 7.1850 61...
               2
                                                       0.03237 0.00 2.180 0 0.4580 6.9980 45...
               3
                                                      0.06905 0.00 2.180 0 0.4580 7.1470 54...
               4
                                                       0.02985 0.00 2.180 0 0.4580 6.4300 58...
            500
                                                      0.06263 0.00 11.930 0 0.5730 6.5930 69...
            501
                                                      0.04527 0.00 11.930 0 0.5730 6.1200 76...
            502
                                                      0.06076 0.00 11.930 0 0.5730 6.9760 91...
            503
                                                      0.10959 0.00 11.930 0 0.5730 6.7940 89...
            504
                                                      0.04741 0.00 11.930 0 0.5730 6.0300 80...
```

505 rows × 1 columns

In [15]: data = pd.read_csv("housing.data",delim_whitespace = True)
data

Out[15]:

	0.00632	18.00	2.310	0	0.5380	6.5750	65.20	4.0900	1	296.0	15.30	396.90	4.98	24.00
0	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
1	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
2	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
3	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2
4	0.02985	0.0	2.18	0	0.458	6.430	58.7	6.0622	3	222.0	18.7	394.12	5.21	28.7
500	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273.0	21.0	391.99	9.67	22.4
501	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273.0	21.0	396.90	9.08	20.6
502	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273.0	21.0	396.90	5.64	23.9
503	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273.0	21.0	393.45	6.48	22.0
504	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273.0	21.0	396.90	7.88	11.9

505 rows × 14 columns

In [18]: data = pd.read_csv("housing.data",delim_whitespace = True,header = None)
data

Out[18]:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273.0	21.0	391.99	9.67	22.4
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273.0	21.0	396.90	9.08	20.6
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273.0	21.0	396.90	5.64	23.9
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273.0	21.0	393.45	6.48	22.0
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273.0	21.0	396.90	7.88	11.9

506 rows × 14 columns

```
In [ ]: CRIM
                    per capita crime rate by town
                            proportion of residential land zoned for lots over
              2. ZN
                            25,000 sq.ft.
              3. INDUS
                            proportion of non-retail business acres per town
              4. CHAS
                            Charles River dummy variable (= 1 if tract bounds
                            river; 0 otherwise)
              5. NOX
                            nitric oxides concentration (parts per 10 million)
              6. RM
                            average number of rooms per dwelling
                            proportion of owner-occupied units built prior to 1940
              7. AGE
                            weighted distances to five Boston employment centres
              8. DIS
              9. RAD
                            index of accessibility to radial highways
                            full-value property-tax rate per $10,000
              10. TAX
              11. PTRATIO
                            pupil-teacher ratio by town
                            1000(Bk - 0.63)^2 where Bk is the proportion of blacks
              12. B
                            by town
                            % lower status of the population
              13. LSTAT
                            Median value of owner-occupied homes in $1000's
              14. MEDV
          8. Missing Attribute Values: None.
          newHeader=['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX
In [20]:
In [22]:
          data.columns = newHeader
In [23]:
          data
Out[23]:
                 CRIM
                        ZN INDUS CHAS
                                           NOX
                                                     AGE
                                                              DIS RAD
                                                                         TAX PTRATIO
                                                  RM
                                                                                           B LST
             0 0.00632
                       18.0
                              2.31
                                       0 0.538 6.575
                                                       65.2 4.0900
                                                                     1
                                                                        296.0
                                                                                  15.3 396.90
                                                                                                4.
             1 0.02731
                        0.0
                              7.07
                                          0.469
                                               6.421
                                                       78.9 4.9671
                                                                        242.0
                                                                                  17.8 396.90
                                                                                  17.8 392.83
             2 0.02729
                        0.0
                              7.07
                                          0.469
                                               7.185
                                                       61.1 4.9671
                                                                        242.0
                                                                                                4.
             3 0.03237
                        0.0
                              2.18
                                          0.458
                                                6.998
                                                       45.8 6.0622
                                                                        222.0
                                                                                  18.7 394.63
                                                                                                2.
               0.06905
                        0.0
                              2.18
                                          0.458
                                                7.147
                                                       54.2 6.0622
                                                                        222.0
                                                                                  18.7
                                                                                       396.90
                                                                                                5.
                                                                     1 273.0
           501 0.06263
                        0.0
                              11.93
                                          0.573 6.593
                                                       69.1 2.4786
                                                                                  21.0 391.99
                                                                                                9.
           502 0.04527
                        0.0
                              11.93
                                          0.573 6.120
                                                       76.7 2.2875
                                                                     1 273.0
                                                                                  21.0 396.90
                                                                                                9.
                                                                                  21.0 396.90
           503 0.06076
                        0.0
                              11.93
                                          0.573 6.976
                                                       91.0 2.1675
                                                                     1 273.0
                                                                                                5.
           504 0.10959
                        0.0
                              11.93
                                          0.573 6.794
                                                       89.3 2.3889
                                                                        273.0
                                                                                  21.0 393.45
                                                                                                6.
```

0 0.573 6.030 80.8 2.5050

1 273.0

506 rows × 14 columns

In [24]: from sklearn.datasets import load_boston

0.0

11.93

505 0.04741

7.

21.0 396.90

```
In [25]: boston = load boston()
In [26]: dir(boston)
Out[26]: ['DESCR', 'data', 'feature_names', 'filename', 'target']
In [28]:
         boston
                 'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7'),
          'DESCR': ".. _boston_dataset:\n\nBoston house prices dataset\n-----
         -----\n\n**Data Set Characteristics:** \n\n :Number of Instances:
                     :Number of Attributes: 13 numeric/categorical predictive. Median
         506 \n\n
         Value (attribute 14) is usually the target.\n\n
                                                           :Attribute Information (in
         order):\n
                          - CRIM
                                     per capita crime rate by town\n
         proportion of residential land zoned for lots over 25,000 sq.ft.\n
                                                                                   - I
                 proportion of non-retail business acres per town\n
         Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)\n
                    nitric oxides concentration (parts per 10 million)\n
         - NOX
                                                                                - RM
         average number of rooms per dwelling\n
                                                       AGE
                                                                  proportion of owner-
         occupied units built prior to 1940\n
                                                     - DIS
                                                                weighted distances to
         five Boston employment centres\n
                                                            index of accessibility to
                                                 - RAD
         radial highways\n
                                  - TAX
                                             full-value property-tax rate per $10,000
                   - PTRATIO pupil-teacher ratio by town\n
         \n
                                                                             1000(Bk
         - 0.63)^2 where Bk is the proportion of blacks by town\n
         lower status of the population\n
                                                 MEDV
                                                            Median value of owner-occu
         pied homes in $1000's\n\n
                                     :Missing Attribute Values: None\n\n
         Harrison, D. and Rubinfeld, D.L.\n\nThis is a copy of UCI ML housing datase
         t.\nhttps://archive.ics.uci.edu/ml/machine-learning-databases/housing/\n\nT
In [29]: dir(boston)
Out[29]: ['DESCR', 'data', 'feature names', 'filename', 'target']
In [30]: boston.data
Out[30]: array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,
                 4.9800e+00],
                [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
                 9.1400e+001,
                [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
                 4.0300e+00],
                [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
                 5.6400e+00],
                [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
                 6.4800e+00],
                [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
                 7.8800e+00]])
In [31]: boston.feature_names
Out[31]: array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',
                'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7')
```

```
Untitled19 - Jupyter Notebook
         boston.filename
In [32]:
Out[32]: 'C:\\Users\\BrighterDays CodeLab\\Anaconda3\\lib\\site-packages\\sklearn\\datas
         ets\\data\\boston_house_prices.csv'
In [34]: dff1 = pd.DataFrame(data = boston.data, columns = boston.feature names)
In [35]: dff1
```

Out[35]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LST
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391.99	9.
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396.90	9.
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396.90	5.
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393.45	6.
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396.90	7.

506 rows × 13 columns

```
In [36]:
         boston.target
```

```
33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22.
20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18. , 14.3, 19.2, 19.6,
23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50.
32., 29.8, 34.9, 37., 30.5, 36.4, 31.1, 29.1, 50., 33.3, 30.3,
34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50., 22.6, 24.4, 22.5, 24.4,
20., 21.7, 19.3, 22.4, 28.1, 23.7, 25., 23.3, 28.7, 21.5, 23.,
26.7, 21.7, 27.5, 30.1, 44.8, 50., 37.6, 31.6, 46.7, 31.5, 24.3,
31.7, 41.7, 48.3, 29., 24., 25.1, 31.5, 23.7, 23.3, 22., 20.1,
22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
42.8, 21.9, 20.9, 44., 50., 36., 30.1, 33.8, 43.1, 48.8, 31.,
36.5, 22.8, 30.7, 50., 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. ,
20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
20.3, 22.5, 29., 24.8, 22., 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
```

```
In [37]: dff1['Price'] = boston.target
```

In [38]: dff1

Out[38]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LST
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391.99	9.
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396.90	9.
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396.90	5.
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393.45	6.
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396.90	7.

506 rows × 14 columns

```
In [49]: plt.figure (figsize = (14,8))
  plt.hist(dff1["Price"], bins = 100, ec = 'red')
  plt.grid()
  plt.show()
```



```
In [50]: plt.figure (figsize = (14,8))
    plt.hist(dff1["RM"], bins = 100, ec = 'red')
    plt.grid()
    plt.show()
```



```
In [51]: import seaborn as sns
```

In [56]: #plt.figure (figsize = (14,8))
#sns.pairplot(dff1["Price"],)
sns.pairplot(data = dff1)
plt.grid()
plt.show()

In []:	
In []:	
In []:	