Continuous Time Fourier Transform (CTFT)

decompose a signal into individual
$$F(f)=\int_{-\infty}^{\infty}f(t)e^{-j2\pi ft}dt$$
 causes resulting frequency damain time domain signal can also be reconstructed by doing inverse $f(t)=\int_{-\infty}^{\infty}F(f)e^{j2\pi ft}df$ take the complex conjugate

- f(t) is continuous time. (Also known as continuous parameter.)
- F(f) is a continuous function of frequency $-\infty < f < \infty$.

Useful Continuous Time Signal Definitions usually take these functions of integrate them against something

- Rect function: $rect(t) = \begin{cases} 1 & \text{for } |t| \leq 1/2 \\ 0 & \text{otherwise} \end{cases}$
- Step function: $\mathbf{u}(t) = \begin{cases} 1 & \text{for } t \geq 0 \\ 0 & \text{for } t < 0 \end{cases}$ the behavior of linear systems
- Sign function: $\operatorname{sgn}(t) = \left\{ \begin{array}{ll} 1 & \text{for } t > 0 \\ 0 & \text{for } t = 0 \\ -1 & \text{for } t < 0 \end{array} \right.$
- Sinc function: $sinc(t) = \frac{\sin(\pi t)}{\pi t}$ values, except at zero

• Lambda function: $\Lambda(t) = \begin{cases} 1 - |t| & \text{for } |t| \leq 1 \\ 0 & \text{for } |t| > 1 \end{cases}$ of a rect with itself

Continuous Time Delta Function

- The "function" $\delta(t)$ is actually not a function.
- $\delta(t)$ is defined by the property that for all continuous functions g(t)

$$g(0) = \int_{-\infty}^{\infty} \delta(t)g(t)dt$$

$$g(+) = \int_{-\infty}^{\infty} g(+)\delta(+-+)d+$$

• Intuitively, we may think of $\delta(t)$ as a very short pulse with unit area.

$$g(0) = \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} \underbrace{\begin{bmatrix} 1 \\ -\text{rect}(t/\epsilon) \end{bmatrix}}_{\epsilon} g(t) dt$$

Intuitively (but not rigorously) ^{δl}

$$= \int_{-\infty}^{\infty} \delta(t) \neq \int_{\epsilon \to 0}^{\infty} \frac{1}{\epsilon} \operatorname{rect}(t/\epsilon) = 0$$

for the rest of class, can pretend it is a function although it really isn't

Useful CTFT Relations

frequency domain

$$F''\left(\frac{N_o}{2}\operatorname{red}\left(\frac{w}{2w}\right)\right) = F''\left(F(w)\right)$$

$$\frac{W}{W} \cdot \frac{N_o}{2}\operatorname{red}\left(\frac{w}{2w}\right) = N_oW \cdot \frac{1}{2w}\operatorname{red}\left(\frac{w}{2w}\right) \xrightarrow{F''} N_oW \sin\left(2wt\right)$$

CTFT Properties

	Property	Time Domain Function	CTFT
	Linearity	af(t) + bg(t)	aF(f) + bG(f)
asvitude VS	Conjugation	$f^{*}(t)$	$F^*(-f)$ For real f(+) -> F(f)= F*(-f)
phase	Scaling	f(at)	$\frac{1}{ a }F(f/a)$ frequency
	Shifting	$f(t-t_0)$ shifting a signal in time applies a linear phase modulate	$\exp\left\{-j2\pi f t_0\right\} F(f)$
	Modulation	$\exp\{j2\pi f_0 t\} f(t) - \frac{1}{\text{the have}} - \frac{1}{\text{wireless transmissions}}$	$F(f-f_0)$ multiplying something by a linear place in the time domain shifts the veralt in frequency
	Convolution	f(t) * g(t)	F(f)G(f) fillening: $f(t)$ and $f(t)$ and $f(t)$ and $f(t)$ is $f(t)$ in $f(t)$ and $f(t)$ in $f(t)$ i
	Multiplication	f(t)g(t)	F(f) * G(f)
	Duality	F(t)	f(-f)

• Inner product property

$$\int_{-\infty}^{\infty} f(t)g^*(t)dt = \int_{-\infty}^{\infty} F(f)G^*(f)df$$
 inner products in time correspond to inner products in frequency energy measured in frequency