Encrypted Learning

Carlos Aguilar Melchor

carlos.aguilar-melchor@isae-supaero.fr

Équipe RESCOM - DISC - ISAE SUPAERO

Preheating...

- \blacksquare $Go\ to$ https://colab.research.google.com
- Create a Python3 notebook
- Execute !pip3 install Pyfhel

Vox populi

Voting instructions:

Open your smartphone browser and go to

live.voxvote.com

and enter the following code

PIN: 40025

Alternative: Scan this QR-code and you are immediatly logged in

Alternative: Download the VoxVote app from # 6

Outline

- 1 Motivation
- 2 Encryption fundamentals
- 3 Homomorphic Encryption

Encrypted Neural Networks

Cryptonets [Dowlin et al ICML2016]

Recognized MNIST encrypted digit with accurracy 97% in a second

Further works

- Much faster
- CIFAR
- Learning phase

Many publications per year, evolving very fast

Outline

- 1 Motivation
- 2 Encryption fundamentals
- 3 Homomorphic Encryption

Deterministic Encryption

Deterministic Encryption : one ciphertext per plaintext

Example (Raw-RSA):

- $Enc((N, e), m) = m^e \mod N$ where (N, e) = pk is called a public key
- $Dec((N,d),c) = c^d \mod N$ where (N,d) = sk is called the private key
- Correct because N, e, d s.t. for all m we have $(m^e)^d \mod N = m$

Indistinguishability issue

- Alice public key is (N, e) with N = 9203904823049823098420393 <math>e = 65537
- Alice sends a ciphertext *c* = 3448251181187896868804359
- You know she just sent her (encrypted) pay rise which is either 300 euros or 500 euros

Can you decrypt?

Randomized Encryption

Randomized Encryption: many ciphertexts for a plaintext

Exemple: Simplified RSA-PKCS1.5 Enc((N, e), m, r) = $(r||m)^e \mod N$, r having at least 8 random bytes

Indistinguishability issue

- Alice public key is (N, e) with N = 9203904823049823098420393 <math>e = 65537
- Alice sends a ciphertext *c* = 332492881708364402772076
- You know she just sent her (encrypted) pay rise which is either 300 euros or 500 euros

Can you decrypt?

Randomized Encryption

Randomized Encryption: many ciphertexts for a plaintext

Exemple: Simplified RSA-PKCS1.5 Enc((N, e), m, r) = $(r||m)^e \mod N$, r having at least 8 random bytes

Assumption: Indistinguishability for any pair of plaintext [GM 82]

- For any two m_0 , m_1 , when given c a ciphertext of m_b the best one can do is a blind guess of b
- Formal proof ⇒ Ciphertexts give no information about the associated plaintexts
- Fun fact: we cannot even decide if two ciphertexts are associated to the same plaintext

Two ciphertexts of m = 0 and one of m = 1 which is which?

[3198878549841204312694472, 5293165912954825549052827, **382214332204436796592582**2]

Randomized Encryption

Randomized Encryption: many ciphertexts for a plaintext

Exemple: Simplified RSA-PKCS1.5 Enc((N, e), m, r) = $(r||m)^e \mod N$, r having at least 8 random bytes

Assumption: Indistinguishability for any pair of plaintext [GM 82]

- For any two m_0 , m_1 , when given c a ciphertext of m_b the best one can do is a blind guess of b
- Formal proof ⇒ Ciphertexts give no information about the associated plaintexts
- Fun fact: we cannot even decide if two ciphertexts are associated to the same plaintext

Two ciphertexts of m=0 and one of m=1 which is which? [3198878549841204312694472, 5293165912954825549052827, 3822143322044367965925822] Did Lie?

Outline

- 1 Motivation
- 2 Encryption fundamentals
- 3 Homomorphic Encryption

The Fully Homomorphic Encryption Conjecture (1/3)

On Data Banks and Privacy Homomorphisms [RAD 1978]

There are secure cryptosystems with operations MUL and ADD such that:

- MUL(Enc(x_1, r_1), Enc(x_2, r_2)) = Enc(x_1x_2, r_3)
- ADD($Enc(x_1, r_1), Enc(x_2, r_2)$) = $Enc(x_1 + x_2, r_4)$

sums and products being computed modulo a given integer p.

Train yourself! (polynomials)

 α is an encryption of an unknown number a and β an encryption of an unknown number b

- (Example) Compute an encryption of $a + b \mod p$:
- Compute an encryption of $a^2 + b \mod p$:
- Compute an encryption of $a^2 + b^2 + ab \mod p$:

The Fully Homomorphic Encryption Conjecture (2/3)

Implications

```
f polynomial modulo p : Enc(x_1, r_1), \dots, Enc(x_n, r_n) \xrightarrow{f_H} Enc(f(x_1, \dots, x_n), r)
C circuit: Enc(b_1, r_1), \dots, Enc(b_n, r_n) \xrightarrow{C_H} Enc(C(b_1, \dots, b_n), r).
(working mod 2, a + b \leftrightarrow a \oplus b and a * b \leftrightarrow a \& b)
```

Train yourself! (circuits)

 α is an encryption of an unknown bit a and β an encryption of an unknown bit b

- Assume computations are done mod 2 and that you can call Enc (you know pk)
- Compute an encryption of $a \oplus b$:
- Compute an encryption of *a* & *b*:
- Compute an encryption of !a:
- Compute an encryption of $a \mid b$:
- Compute an encryption of a == 1:
- Compute an encryption of $c \mid (a \& b) \mid (!c \& d)$:

The Fully Homomorphic Encryption Conjecture (2/3)

Numbers and circuit logic

- How to compute (var \geq somenumber) (return 1 if so or 0 if not) for α an encryption of age?
- For any test, there is a polynomial of degree MAXVALUE that is exactly as we want (by interpolation)
- The problem is much simpler if we have ciphertexts $(\alpha_0, \ldots, \alpha_{n-1})$ of the bits (a_0, \ldots, a_{n-1}) of var

Train yourself! (comparisons)

Suppose $(\alpha_0, \dots, \alpha_6)$ are ciphertexts of the bits (a_0, \dots, a_6) of a variable $age = \sum_{i \in [0..6]} a_i 2^i$ (age is in [0..127])

- (EXAMPLE) Give a logical circuit for (age \neq 0):
- Give a logical circuit for (age >= 64):
- Give a logical circuit for (age == 32):
- Give a logical circuit for (age >= 18):

Interlude: Lattices

Lattice-based Encryption

Strong security proofs
Fully Homomorphic constructions

Interlude: Lattices

Usual Sizes

Vectors of 100 to 1000 coordinates

With scalars modulo an integer, typically of 32 bits.

Interlude: Lattices

High level description

Ciphertext: Vector close to a random point in the lattice

Plaintext: Correction needed to get back to the lattice (vector with smaller coordinates)

Somewhat Fully Homomorphic Encryption

What

There are secure cryptosystems with operations MUL and ADD such that:

- $\blacksquare MUL(Enc(x_1,r_1),Enc(x_2,r_2)) = Enc(x_1x_2,r_3)$
- ADD($Enc(x_1, r_1), Enc(x_2, r_2)$) = $Enc(x_1 + x_2, r_4)$

with $r_3 = r_1 + r_2$ and $r_4 \sim r_1 * r_2$. Think of polynomial multiplication and addition modulo an integer and modulo $X^n + 1$.

The growing noise issue

- Initial noise r_1 , r_2 bounded by a small integer δ
- If it grows above a limit ∆ decryption may be incorrect
- → We have a computational budget
 - ► Logarithmic in the multiplicative depth
 - ▶ Relinearization/key-switching (out of scope) trick can increase it to linear

Easy/hard examples

- Hard: $f(x) = x^d \mod N$, circuits with 64-bit arithmetic mixed with bit operations
- Easy: $f(x) = 480 + 120x 480x^3$, (age>45) & ((weight>100) & (sex=male) | (weight>70) & (sex=female))

Cryptonets: Paper ID Card

Reference

- Title: CryptoNets: Applying Neural Networks to Encrypted Datawith High Throughput and Accuracy
- Authors:
 - Nathan Downlin, Princeton
 - ► Ran Gilad-Bachrach, Microsoft
 - ► Kim Laine. Microsoft
 - ► Kristin Lauter, Microsoft
 - Michael Naehrig, Microsoft
 - ▶ John Wernsing, Microsoft
- Publication: ICML 2016

Contents

- Neural network using ADD/MUL operations
- Takes as input MNIST digits encrypted pixel by pixel
- Returns an encrypted set of ten outputs values
- The owner of data decrypts them, the max value is the guessed digit

Cryptonets: Paper ID Card

Reference

- Title: CryptoNets: Applying Neural Networks to Encrypted Datawith High Throughput and Accuracy
- Authors:
 - Nathan Downlin, Princeton
 - ► Ran Gilad-Bachrach, Microsoft
 - ▶ Kim Laine, Microsoft
 - Kristin Lauter, Microsoft
 - ► Michael Naehrig, Microsoft
 - ▶ John Wernsing, Microsoft
- Publication: ICML 2016

Advantages

- Completely private
 - ▶ The cloud knows nothing about the input or the guess
 - ► The user knows nothing about the NN
- 99% precision
- 59k predictions per hour

Limitations

- Restricted to the inference stage
 - ▶ Model trained over unencrypted data
 - ► Simplified neurons (polynomials and no floating point)
 - No sigmoids
 - → Less precision and less complex tasks
- Important latency for applying the network: 250s
- Owner sends 400MB of encrypted data
- Malicious model not really taken into account

Hands-on: Pyfhel

Tutorials

Follow the Pyfhel tutorials: https://pyfhel.readthedocs.io → Tutorials

- Follow the HelloWorld tutorial (you should understand almost everything)
- Follow the MultDepth and Relinearization (focus on learning how to relinearize)

Arithmetic tasks

Create an encryption instance as in the tutorials and

- Encrypt/Decrypt and print an integer
- Encrypt/Add/Decrypt two integers
- Encrypt a few integers, compute a linear combination (e.g. neuron) and Decrypt
- Encrypt an float x and compute $3x^2 2x^3$ (e.g. sigmoid neuron between 0 and 1) and Decrypt

Circuit tasks

Set p = 2 and define a half adder, a full adder and an 8 bit adder

(See https://en.wikipedia.org/wiki/Adder_(electronics) if you do not know about adders)

Use relinearization after each multiplication

Get the real stuff

Go check and try https://github.com/microsoft/CryptoNets