PRODUTOS INTERNOS EM ESPAÇOS LINEARES DE DIMENSÃO FINITA

Matrizes de Gram

e

matrizes definidas positivas

Matrizes de Gram, hermitianas, definidas positivas

Num espaço euclidiano V chama-se **matriz de Gram** de vectores

$$\mathbf{v}_1, \dots, \mathbf{v}_k \in V$$
 a $G = \left[\langle \mathbf{v}_j, \mathbf{v}_i \rangle \right]_{i,j=1}^{k,k}$.

Diz-se que uma matriz quadrada A é **simétrica** se $A = A^t$; diz-se que é **hermitiana** se é complexa e $A = A^*$ ($A^* = \overline{A}^t$, chama-se **adjunta** de A).

Matrizes de Gram são **simétricas** em esp. lineares reais e **hermitianas** em esp. lineares complexos.

Uma matriz $n \times n$ A com componentes em $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$, respect., simétrica ou hermitiana, diz-se:

- (1) **definida positiva** se $\mathbf{x}^*A\mathbf{x} > 0$ para $\mathbf{x} \in \mathbb{K}^n \setminus \{0\}$;
- (2) semidefinida positiva se $\mathbf{x}^*A\mathbf{x} \ge 0$ para $\mathbf{x} \in \mathbb{K}^n$;
- (3) **definida negativa** se -A é definida positiva;
- (4) **semidefinida negativa** se -A é semidefinida positiva;
- (5) **indefinida** se $\mathbf{x}^*A\mathbf{x}$ assume valores >0 e <0.

Matrizes de Gram são **definidas positivas** se e só se os vectores são lin. independentes.

Dem.
$$\mathbf{x}^*G\mathbf{x} = \sum_{i,j=1}^k \overline{x_i} x_j \langle \mathbf{v}_j, \mathbf{v}_i \rangle = \langle \sum_{j=1}^k x_j \mathbf{v}_j, \sum_{i=1}^k x_i \mathbf{v}_i \rangle = \|\sum_{j=1}^k x_j \mathbf{v}_j\|^2 = 0$$
 para algum $\mathbf{x} \neq 0$ se e só se $\mathbf{v}_1, \dots, \mathbf{v}_k$ lin. dependentes. *Q.E.D.*

Matrizes de Gram, hermitianas, definidas positivas

Os produtos internos em espaços lineares de dimensão finita V são $\langle \mathbf{x},\mathbf{y}\rangle = Y^*GX$, com X,Y matrizes coluna com as componentes de, respect., $\mathbf{x},\mathbf{y}\in V$ numa base de V, e G simétrica ($\mathbb{K}=\mathbb{R}$) ou hermitiana ($\mathbb{K}=\mathbb{C}$), e definida positiva; G é matriz de Gram da base.

Dem. Seja $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ uma base de V.

Se $\langle \mathbf{x}, \mathbf{y} \rangle = Y^*GX$ é produto interno, $\langle \mathbf{v}_j, \mathbf{v}_i \rangle = \mathbf{e_i}^t G \mathbf{e_j} = g_{ij}$; logo, G é a matriz de Gram da base.

Portanto, G é simétrica ou hermitiana, e definida positiva.

Se G é hermitiana e definida positiva, então $(\mathbf{x}, \mathbf{y}) \mapsto Y^*GX$ satisfaz:

- (1) linearidade em \mathbf{x} com \mathbf{y} fixo.
- (2) simetria hermitiana $(X^*GY = (X^*GY)^t = Y^tG^t\overline{X} = \overline{Y^*G^*X} = \overline{Y^*GX})^t$ a 1^a porque é 1×1, a 4^a porque $G^* = G$.
- (3) positividade, pois G é definida positiva. Logo, é produto interno. Como início, G é a matriz de Gram da base neste produto interno. Q.E.D.

Matrizes definidas positivas

Matriz G $n \times n$ real ou complexa, respect. simétrica ou hermitiana. G é definida positiva se e só se é regular e com eliminação de Gauss (sem troca de linhas) obtêm-se n pivots >0 (G é não singular)

 $Dem. \Rightarrow Se\ G$ é hermitiana e definida positiva, com matrizes coluna X_k com todas as componentes =0 excepto as 1^a s k, é $X_k^*GX_k>0$ para $X_k\neq 0$. Logo $\mathcal{N}(G_k)=\{0\}$ e G_k é não singular. Logo, G é regular.

Eliminação de Gauss dá factorização triangular G = LDU com n pivots. $G^* = (LDU)^* = U^*D^*L^*$. Unicidade dá $L = U^*, D = D^*, U = L^*$.

 $Com Y = UX \text{ \'e } Y^* = X^*U^*.$

Logo, Y*DY = X*U*DUX = X*LDUX = X*GX > 0 se $X \neq 0 \Leftrightarrow Y \neq 0$ pois U é não singular. Logo, $d_{ij} = \mathbf{e_j}^t D\mathbf{e_j} > 0$.

 \Leftarrow Se G é simétrica ou hermitiana, regular e com eliminação de Gauss obtêm-se n pivots >0, então como antes $X^*GX=Y^*DY$. Como $d_{jj}>0$, é $Y^*DY=\sum_{j=1}^n|y_j|^2d_{jj}>0$ se $Y\neq 0\Leftrightarrow X\neq 0$. Portanto, G é definida positiva. Q.E.D.

Matrizes definidas negativas, semidefinidas e indefinidas

Matriz G $n \times n$ real ou complexa, respect. simétrica ou hermitiana. G é definida negativa se e só se é regular e com eliminação de Gauss (sem troca de linhas) obtêm-se n pivots < 0 (G é não singular) Dem. Precedente aplicado a -A. Q.E.D.

Pode-se provar que:

Se G $n \times n$ real ou complexa, respect., simétrica ou hermitiana, então:

- 1. G é semidefinida positiva (respect. negativa) se e só se os k < n pivots obtidos por eliminação de Gauss são > 0 (respect. < 0).
- 2. G é indefinida se tem pivots > 0 e pivots < 0.