NORTH SOUTH UNIVERSITY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

EEE41L/ETE141L

Lab2: KCL, Current Divider Rule with Parallel and Ladder Circuit.

Objectives

- Learn how to connect a parallel circuit on a breadboard.
- Validate the current divider rules.
- · Verify Kirchhoff's current law.
- · Verify KCL and KVL in ladder circuit.

List of Components:

- Trainer board
- Resistors (1K, 3.3 K Ω , 4.7 K Ω , 5.6K, 10K)
- Digital Multimeter (DMM)
- Connecting Wire

Circuit Diagram:

Procedure:

- 1. Identify all the given resistors using color coding and fill in the required columns in Table 1.
- 2. Measure the resistances of the resistors using the DMM and fill in the required column in Table 1.
- 3. Calculate the percentage error of the resistance values.
- 4. Percentage Error = |(Practical value Theoretical value)| / Theoretical value
- 5. Build the circuit 1
- 6. Using the DMM, measure the currents I_s , I_1 , I_2 , and I_3 . Record the readings in Table 2.
- 7. Fill in Table 3.

NORTH SOUTH UNIVERSITY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

EEE41L/ETE141L

Data Collection

Lab 2

Group No.

- 8. Now, disconnect the voltage source from the circuit and measure the total load resistance, Req of the circuit using DMM. Note down values in Table 4.
- 9. Construct Circuit 2.
- 10. Using a DMM, measure the potential differences across all the resistors in circuit 2. Record all the readings in Table 5
- 11. Using a DMM, measure the current through all the resistors and record in Table 5.

tructor's Signature						
ble 1:						
Resistance using colour coding						
Band 1	Band 2	Band 3	Band 4	Resistance ±tol	Resistance using DMM	% Error

Table 2:

Experimental readings			Theoretical values				
$\mathbf{I_S}$	I_{R1}	I_{R2}	I_{R3}	$\mathbf{I_{S}}$	I_{R1}	I_{R2}	I_{R3}
% Error							
]	\mathbf{I}_{S} \mathbf{I}_{R1}		I_{R2}		I_{R3}		

Table 3:

Ic	Is Total Current equal to sum individual current?
18	is Total Current equal to sum murvidual current:

NORTH SOUTH UNIVERSITY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

EEE41L/ETE141L

Sum of individual Current (I _{R1} + I _{R2} + I _{R3})	
(

Table 4:

Experimental Req	Theoretical Req	% Error

Table 5:

Component	Voltage	Current
E		
R1		
R2		
R3		
R4		
R5		
R6		

Report

- 1. State the current division rule.
- 2. State the Kirchhoff's current law (KCL).
- 3. With the experimental data, verify Kirchhoff's voltage law in Circuit 1 within each independent closed loop of the circuit.
- 4. With the experimental data, verify Kirchhoff's current law at nodes a and b of circuit 2.
- 5. Showing all steps, calculate the theoretical values in Table 2. Compare theoretical values to your experimental values and explain whether your circuit follows KCL or not.
- 6. Showing all the steps, theoretically calculate Req of circuit 1. Compare with the experimental value.
- 7. Calculate all the theoretical values for Table 5. Show all steps.

Useful Formula:

Current Divider Rule : $I_X = I_S R_T / R_X$

% Error = (Theoretical value – Experimental Value) / Theoretical Value