Index

© gymbol controlled gybit in gyentym cinquit	Amosta 245
 symbol, controlled qubit in quantum circuit notation, 53 	Ansatz, 245 Arithmetic via quantum gates
	Decrement circuit, 236
⊗ Kronecker product operator, 16	Full adder, 89–91
★ operator for Kronecker	Code, 90
product, 11, 16	Constants, 179
@ operator for matrix multiplication, 11	qc data structure, 134
5-qubit error correction code, 291	Quantum arithmetic, 172–177
7-qubit Steane code, 291	Increment circuit, 236
9-qubit Shor error correction code, 285, 289	Multiplication, 177
9-qubit Shor error correction code, 283, 289	Powers, 208
Addition	Subtraction, 177
Constants, 179	Testing quantum arithmetic, 178
Increment operator, 236	Arute, Frank, 150
Quantum arithmetic, 172–177	at (@) operator for matrix multiplication, 11
Quantum gates, 172–177 Quantum gates, 172–174	(·) · F · · · · · · · · · · · · · · · ·
qc data structure, 134	Basis states of qubits, 13
Testing quantum arithmetic, 178	Constructing a qubit, 15
Adjoint gates	Density matrices
adjoint() function for gates, 26	Diagonal elements, 24
qc data structure, 130	Density matrix diagonal elements, 23
Conjugate synonym, 6	Measurement, 73
Adjoint operators	Orthonormal set of basis vectors, 13, 15
adjoint() function for operators, 85	Superposition as orthonormal basis, 44
ALAP Scheduling, 307	Projection operators extracting amplitude, 42
e.	State as superposition, 17
Algorithm references, 277 Amdahl's law, 286	Superposition via Hadamard gates, 44
	Hadamard basis, 44
Amplitude amplification, 227–230	Bell measurement, 98, 99
Amplitude damping, 283 Amplitude estimation, 230–234	Bell states, 63
Quantum counting, 230–234	Code, 63
Ancilla qubits (ancillae)	Measurement example, 77
About, 66	Quipper programming language, 301
	Tracing out qubits, 71
Ancilla registers, 124	Bell, John S., 60, 63
Code to create and initialize, 125	Benchmarking
Compiler optimization and, 304	Benchmark gaming, 150
Entanglement, 66, 86	Cross entropy benchmarking, 150
Error correction trick, 286	Gate fast application, 139
Multi-controlled gates, 66	Gate faster application in C++, 143
Quantum computation, 66	Quantum random circuits, 150
Quipper programming language, 300	Quantum versus classical computers,
Silq programming language, 302	150–152
AND logic gates, 92	Sparse representation, 147

D	DI 1 E 1' 55
Bernstein–Vazirani algorithm Oracle form	Bloch, Felix, 55 Boolean formulas with quantum gates, 92
Compiler optimization, 308	Born rule, 72
Bernstein-Vazirani algorithm, 105–108	About projective measurement, 72
Oracle form, 117	BPP (complexity), 149, 159
Phase kick rotation gates, 162	BQP (complexity), 149, 159
Beyond Classical, 149	Bra(c)kets, 3
About algorithm types, 160	Brakets, 3
Computational complexity theory, 122, 149,	Branching, see Controlled gates
159	Bras
Google Sycamore processor, 150	Dirac notation, 3
Benchmarking, 150	Inner products, 3
Benchmarking quantum versus classical	Bra-Ket notation, 3
computers, 150–152	Tensor products, 5
Quantum random circuits, 150	
Simulation design, 152	C++
Simulation evaluation, 158	Accelerated gate application, 139-145
Simulation implementation, 154	Execution speed, 139, 145
Simulation metric, 157	Extending Python with, 140
Simulation run estimation, 155–158	Q language C++ class library, 300
Binary fractions, 163	Transpiler code generation flag, 315
Binary interpretation, 18	Sparse representation, 145
Birthday paradox, 191	Benchmarking, 147
Bit conversion, 24	"Can Quantum-Mechanical Description of Physical
Bit index notation for states, 136	Reality Be Considered Complete?"
Bit iteration, 25	(Einstein, Podolsky, and Rosen), 60
Bit order	Cartesian coordinates for Bloch sphere, 58
Binary interpretation, 18	Channels in information theory, 281
Qubit order, 18	Bit-flip channel, 281
States, 17	Bit-flip phase-flip channel, 281
Two tensored states, 18	Depolarization channel, 282
Bit-flip errors	Phase-flip channel, 281
Bit-flip channel, 281	Circuits About function calls and returns 208
Bit-flip phase-flip channel, 281 Combined phase/bit-flip error, 279	About function calls and returns, 298 Scaffold programming language, 298
Dissipation-induced error, 279	Silq programming language, 302
Error correction, 286–288	Compiler optimization and, 304
Shor's 9-qubit code, 289	Decrement circuit, 236
Bits to binary fractions, 163	Entangler circuits, 61
Bits-decimal conversion functions, 24	Grover's algorithm implemented, 224–227
bits2frac() for binary fractions, 163	Increment circuit, 236
bits2val() for binary to decimal, 24	Intermediate representation capabilities, 314
bitstring() function, 22	Libraries of compiler optimization patterns,
Bloch sphere, 55–60	309
About, 35, 55, 242	Logic circuits, 91
Expectation values, 59, 74, 244	Fan-out in QCL, 296
Minus sign as global phase, 59	Gan-out circuits, 92
Qubit described by, 55–56	Phase kick circuit, 161
Computing coordinates for given state, 58	Quantum circuit data structure, 126
Quirk online simulator, 171	Constructor, 127
Relative phase, 35	Gates, 129–133
Rotation operators, 35	Gates applied, 128
Single-qubit states only, 59	Measurements, 131
Solovay-Kitaev algorithm, 267	Multi-Controlled gates, 132
Two degrees of freedom for superdense coding,	Quantum registers, 127
102	Qubits added, 128
Universal gates, 266	Swap and controlled swap gates, 131

Quantum random circuits, 150	Physical gate decomposition, 310
Simulation design, 152	Unentangled qubits, 306
Simulation evaluation, 158	Complex numbers
Simulation implementation, 154	2D plane, 2
Simulation metric, 157	Polar coordinates, 55–56
Simulation run estimation, 155-158	About, 1
Qubits	Conjugates, 1
Ordering of qubits, 18	Exponentiation, 2
qc data structure, 128	Modulus, 2
Quantum circuit notation, 52	Norm, 1
Shor's 9-qubit error correction, 289	Python, 2
Cirq commercial system (Google), 303	Qubits as column vectors of, 2
Simulators, 321	States as column vectors of, 2
Transpilation	Tensor comparisons to values, 12
Code generation flag, 315	tensor_type() abstraction, 10
Dumper function, 319	Complexity classes
Classical arithmetic, see Arithmetic via quantum	BPP, 149, 159
gates	BQP, 149, 159
Classical computers versus quantum, 150–152	NP, 149
Summit simulating quantum random circuits,	NP-complete, 149
158	NP-hard, 149
Clifford gates, 124	P, 149
Closed quantum systems, 280	Complexity of simulation, 151, 155
CNOT, see Controlled-Not gate	Composite kets inner products, 5
CNOT0, see Controlled-Not-by-0 gates	Computation reversed, 66
Coin toss operator, 235	Computational complexity theory, 122,
Column vectors	149, 159
Inner products, 3	Conditional execution, see Controlled gates
Kets	Congruency between numbers, 189
Dirac notation, 2	Conjugate Rotations, 274
Hermitian conjugate of, 2	Conjugates
Qubits and states as, 2	Adjoint synonymous with conjugate, 6
Combined phase/bit-flip error, 279	Complex numbers, 1
Commercial systems, 303	Denotation not explicit, 3
Compiler design challenges, 293, 309	Hermitian conjugate matrix, 6
About transpilation, 311	Operator adjoint() function, 26
Intermediate representation, 311	Conjugation
Staged compilation, 311	conjugate() with complex numbers, 2
Compiler optimization, 303	Involutivity, 3
About, 303	Constants in quantum addition, 179
Classical for classical constructs, 304	Control register, 124
Constant propagation, 304	Controlled gates
Gate approximation, 310	About, 46
Gate elimination, 305	About QCL programming language, 297
Gate fusion, 306	Controlled rotation gates additive, 161
Gate parallelization, 307	Controlled-Controlled gates, 48, 85
Gate scheduling, 306	Toffoli gates, 49, 85
High-performance pattern libraries, 309	Controlled-Controlled-Not gates, 49
Inlining, 304	Sets of universal gates, 49
Logical to physical mapping, 304, 309	Controlled-Not gates, 46–49
Resource for information, 310	Controlled-Not-by-0 gates, 49
Loop unrolling, 304	Controlled-U1 gate for quantum arithmetic,
Peephole optimization, 307	172
Libraries of compiler optimization patterns,	Controlled-Z gates, 81
309	Multi-Controlled-Z gates, 82
Relaxed peephole optimization, 308	Function of, 46–49

	D
Controlled gates (Cont.)	Data registers, 124
Multi-Controlled gates, 86	Code to create and initialize, 125
Ancilla qubits, 86	Data structure, see Quantum circuit (qc) data
Multi-Controlled-Z gates, 82	structure
qc data structure, 132	Debugging
Multi-controlled gates	Operator matrices for, 81
Ancilla qubits, 66	qc data structure abstraction, 126
Nonadjacent controller and controlled qubits,	Reduced density operator, 68
47	Tensors compared to values, 12
Notation for gates involved, 46	Decoherence times of technologies, 278
qc data structure	Decoherence-induced phase shift error, 279
Fast application of gates, 137	Decrement circuit, 236
Faster application with C++, 141	Density matrices
Multi-Controlled gates, 132	About, 9, 68
Quantum circuit notation	Bloch sphere coordinate computation, 58
Controlled-X gates, 53	Cartesian coordinates, 58
Controlled-Not-by-0 gates built, 53	Outer product of state with itself, 23, 68
Scalability, 48	Partial trace derivation, 68
Swap gates, 50, 88	Code, 69
Compiler optimization, 308	Tracing out other qubits, 69
Controlled-Controlled Swap gates, 51	Probabilities of measuring a basis state, 24
qc data structure, 131	Quantum computing theory as, 24, 68
Quantum circuit notation, 53	Trace of, 24, 70
Controlled modular multiplication, 207	Depolarization, 282
Controlled-Controlled gates, 85	Depolarization channel, 282
Toffoli gates, 49, 85	Depolarization definition, 282
Logic circuits from, 92	Deutsch algorithm, 108–117
Controlled-Controlled-Not gates (CCX-gate), 49	Deutsch–Jozsa algorithm, 118–121
Controlled-Not gates (CNOT; CX)	Diagonal matrices
Compiler optimization, 308	Tensor products, 5
Constructor function, 49	Diffusion Operator, 220
Controlled-Z with Hadamard gates, 82	Dirac notation
Entangler circuits, 62	Bras, 3
Function, 46–49	Kets, 2
GHZ states, 64	Qubits
Inverted Controlled-Not gate, 80	0-state and 1-state, 13
Logic circuits from, 92	Two tensored states, 18
Quantum registers for result storage, 67	Discrete phase gates, 39, 164
Swap gate action, 51	Dissipation-induced error, 279
Controlled-Not-by-0 gates (CNOT0), 49	Dot products, see Inner products
Ouantum circuit notation, 53	Dual vectors for a ket, 3
Controlled-U gates under compiler optimization,	Dumper function for all relevant info, 21
308	Transpilation, 315
Controlled-Z gates, 81	ECOD E : 1 IE I'I 1 I'I
Controlled-Not gates via, 82	EGCD, see Extended Euclidean algorithm
Multi-Controlled-Z gates, 82	Eigenstates
Copenhagen interpretation of quantum mechanics,	About, 7
61	Compiler optimization of gates, 306
Counters	Eigenvalues, 7
	About, 7
Decrement operator, 236 Increment operator, 236	Compiler optimization of gates, 306
cQASM, 295	Hamiltonians, 240, 248
-	Hermitian and Pauli matrices, 35
Cross entropy benchmarking (XEB), 150	Phase estimation, 180
Cut on graph, 255	Trace of a matrix, 8
CX, see Controlled-Not gate	variational quantum eigensolver, 248

Eigenvectors	Repetition code, 284
About, 7	Majority voting, 285
Hamiltonians in Schrödinger equation, 240	No-cloning theorem, 285
Phase estimation, 180	Quantum repetition code, 285
Einstein, Albert	Resources for information, 291
Hidden state, 60	Shor's 9-qubit error correction code, 285, 289
Spooky action at a distance, 60	Error correction code memory (ECC), 284
Electron decoherence time	Error injection to model quantum noise, 282
Electron spin, 278	Checking bit-flip error correction, 287
Gallium arsenide, 278	Gates as quantum noise source, 283
Gold, 278	Error syndrome, 286
Entanglement, 60–65	Euler's formula
About, 60	Complex exponentiation, 2
Analysis by Scaffold, 299	Phase gate derivation, 38, 165
Ancilla qubits, 66, 86	Euler's identity, 37
Bell states, 63	Expectation values, 74
Code, 63	Bloch sphere, 59
Tracing out qubits, 71	Variational quantum eigensolver, 244
Code	Exponentiation
Bell states, 63	Complex numbers, 2
Entangler circuit, 62	Operators, 36
GHZ states, 64	Extended Euclidean algorithm, 202
Compiler optimization and, 306	Extended Euchdean algorithm, 202
Copenhagen interpretation, 61	Factorization, 190
Entangler circuits, 61	Fan-out circuits, 92
Code, 62	
GHZ states, 64	QCL programming language, 296
Code, 64	Fast Gate Application, 134
Error correction trick, 286	Feynman, R., xi
Maximal entanglement, 64	Fidelity, 269
Mixed states, 68	Flexible phase gates
Depolarization, 282	Discrete phase gates, 39
Product states, 61	U1(lambda) gates, 40
Quantum teleportation, 97–102	Fourier transform, see Quantum Fourier transform
Superdense coding, 102–105	(QFT)
Swapping, 102	Fractions
Teleportation, 97–102	Binary fractions, 163
Tracing out qubits, 71	π fractions transpilation output, 316
Entangler circuits, 61	Fredkin gates, 51
Environmental challenges of quantum computing,	Full adder, 89–91
278–284	Code, 90
Closed versus open quantum systems, 280	qc data structure, 134
Equal superposition of adjacent qubits, 45	Quantum arithmetic, 172–177
Erasure of information resulting in heat dissipation,	Fused gates, 306
66	
Error correction	Gallium arsenide (GaAs) electron decoherence
About, 278, 284	time, 278
Bit-flip errors, 286–288	Gate equivalences
Shor's 9-qubit code, 289	About, 79
Channels, 281	Compiler optimization, 306, 309
Compiler optimization and, 304	Controlled gate equivalencies listed, 87
Error correction code memory, 284	Code to validate, 88
Error syndrome, 286	Controlled-phase symmetry, 82
Phase-flip errors, 288	Controlled-Z gates, 81
Shor's 9-qubit code, 289	Controlled-Not gates via, 82
Quantum computing challenges, 285	Inverted Controlled-Not, 80
Quantum noise, 278–284	Multi-Controlled gates, 86

Gate equivalences (Cont.)	Phase inversion operator, 219
Negate Y-gate, 83	Phase shift or kick gates, 40
Pauli matrices, 83	Phases via various gates, 40
Rotation axis changed, 84	Square root of as T-gate, 41
Squaring root of gate equals gate, 80	Projection operators, 42
Gates	qc data structure, 129
About operators as gates, 25	Gates applied, 128
About ordering of gate applications, 54	libq implementation, 324–326
About Scaffold built-ins, 298	Quantum circuit notation, 53
Classical-To-Quantum-Circuit tool, 298	About ordering of gate applications, 54
Adjoint gates, 130	Applying operator, 52
Application, 27–29	Quantum noise source, 283
apply() function, 32, 128, 142	Qubit on Bloch sphere, 56–58
Density matrices, 68	Rk gates, 39
Fast application, 134–139	RotationZ-gates versus phase gates, 38
Fast application generalized, 137–139	Sets of universal gates, 49
Faster application with C++, 139–145	Single-qubit gates, 33–45
Fastest Benchmarked, 147	Solovay–Kitaev theorem, 266
Fastest with sparse representation, 145–147	T-gates
Multiple operators in sequence, 31	Phases via, 40, 165
Multiple qubits, 29–31	Rotation axis changed, 84
Noise reduction via compiler optimization,	Square root of phase gates, 41
304	Universal gates, 266
Norm preserving, 6, 25	U1(lambda) gates, 40
Notation for qubit index applied to, 31	V-gates
Padding operators, 31, 48	Square root of X-gates, 85
Projection operators extracting subspace, 73	V-gates as square roots of X-gates, 41
Quantum computation, 66	X-gates, 26, 34
to state ψ at qubit index, 32	Y-gates, 34
Compiler optimization	Negate Y-gate, 83
Gate approximation, 310	Square root of, 41
Gate elimination, 305	Yroot gates, 41
Gate fusion, 306	GCD, see Greatest common divisor
Gate parallelization, 307	GHZ states, 64
Gate scheduling, 306	Error correction trick, 286
Logical to physical mapping, 304, 309	Global phase, 59
Logical to physical mapping resource for	Bloch sphere, 59
information, 310	Phase invariance, 59
Noise reduction, 304	Relative phase versus, 60
Physical gate decomposition, 310	Rotation axis changed, 84
Unentangled qubits, 306	"Going Beyond Bell's Theorem" (Greenberger,
Controlled gates, see Controlled gates	Horne, and Zeilinger), 64
Equivalences, see Gate equivalences	Gold (Au) electron decoherence time, 278
Flexible phase gates	Google
Discrete phase gates, 39	Cirq commercial system, 303
Phase shift or kick gate, 40	Simulators, 321
Hadamard gates, 44–45	Transpilation, 315, 319
Identity gates, 26, 33	Coding style, 12
Applied to multiple qubits, 30	Underscore in function names, 12
Multi-qubit gates	Quantum random circuits, 150, 158
Controlled gates, 46–51	Simulation design, 152
Hadamard gates, 44–45	Simulation evaluation, 158
Single-qubit constructors for, 33	Simulation implementation, 154
Outer product representation of operator, 43	Simulation metric, 157
Phase gates, 38	Simulation run estimation, 155-158
Discrete phase gates, 39	Sycamore processor supremacy, 150-152

Gradient descent, 247	Hash table in libq, 327, 332
Greatest common divisor (GCD), 190	Haskell programming language, 300
Greenberger, Daniel M., 64	Quipper as embedded DSL, 300
Ground state energy	Oracle automatic construction, 301
About variational quantum eigensolver, 240	Silq as embedded DSL, 302
Variational principle, 242–245	Heisenberg uncertainty principle, 241
Grover's algorithm	Helper functions
About, 210	Bit conversion, 24
Examples	Bit iteration, 25
Simple numerical, 214	Hermitian conjugate vector, 2
Two-qubit, 214	Hermitian matrices
Grover operator, 211, 217	About, 6
Constructing, 233	Checking if tensor is Hermitian, 12
Implementing, 226	Eigenvalues as real, 7
Quantum counting, 231	Hermitian adjoint matrices, 6
High-level overview, 211	Expressions, 6
Implementation, 224–227	Hermitian conjugate matrices
Inversion about the mean, 213	Adjoint synonymous with conjugate, 6
Implementation, 219–223	Projection operators as, 43
Operator, 223	Real vector space basis, 35
Iteration count, 216–218	Trace of, 8
	Hermitian projector, 43
Multiple solutions, 228–230	Hidden state, 60, 63
Multiple solutions, 227–230	Hierarchical QASM, 299
Phase inversion, 212	High-Performance Computing (HPC) techniques,
Implementation, 218	124
Multiple solutions, 227–230	Horne, Michael A., 64
Operator, 219, 232	, , , , , , , , , , , , , , , , , , , ,
Quantum amplitude amplification, 227–230	IBM
Quantum counting, 230–234	Qiskit commercial system, 303
	ALAP scheduling of gates, 307
Hadamard basis, 44	Algorithm reference, 277
Measuring in, 104	QASM support, 311
Hadamard gates, 44–45	Simulators, 321
Entangler circuits, 61	Sycamore supremacy challenged, 150
Function call syntax via Pauli matrices, 83	Summit supercomputer, 158
Hadamard basis, 44	Idempotent projection operators, 43
Measuring in, 104	Identity gates, 26, 33
Hadamard coin, 235	Applied to multiple qubits, 30
Its own inverse, 45	Controller and controlled qubits not adjacent,
Quantum circuit notation	47
Gate applied, 52	Hermitian matrix real vector space, 35
Qubit on Bloch sphere, 56–58	Phases via, 40
Random number generator, 78	Increment circuit, 236
Rotation axis changed, 84	Increment modulo 9 circuit, 237
Universal gates, 266	Indirect measures of similarity between states,
Hamiltonian	93–97
Definition, 241	
Eigenvalues	Swap test code, 96 Information
About VQE algorithm, 160, 240, 242	Erasure resulting in heat dissipation, 66
Schrödinger equation derivation, 240	
Variational principle, 242–245	Quantum circuit double lines, 54
Variational principle, 242–243 Variational principle measurements, 248	Quantum teleportation, 97–102
	Superdense coding, 102–105
Ising spin glass model, 254	Teleportation, 97–102
Hamiltonian constructed, 258–260	Inner products About, 3
Operator, 241	A DOUL 3
Hermitian, 241	Tensors, 5

Instruction Set Architecture (ISA) of quantum	Implementation
computers, 25	About, 322
Intel Quantum Simulator, 320	Controlled gates, 325
Intermediate representation (IR)	Gate application, 328
About circuit capabilities, 314	Hash table, 327, 332
Scaffold, 298	Register file, 322
Classic and quantum mix, 305	Superposition-preserving gates, 324
Scalability, 293	Superpositioning gates, 326
Transpilation, 311	libquantum basis, 145
About transpilation, 311	Transpilation
IR base class, 312	Code generation flag, 315
IR nodes, 311	Dumper function, 317
Quantum circuit extensions, 313	libquantum, 145
Uncomputation, 315	Library for sparse representation, 145
Inversion about the mean, 213	Libquantum library for sparse representation
Implementation, 219–223	Simulation, 320
Operator, 223	Libraries of compiler optimization patterns, 309
Involutivity, 3	Logic circuits, 91
Hadamard gates, 45	Fan-out circuits, 92
Pauli matrices, 35	QCL programming language, 296
Rotations, 36	"Logical Reversibility of Computation" (Bennett)
Ion trap decoherence time, 278	66
IR, see Intermediate representation (IR)	
ISA (Instruction Set Architecture) of quantum	Majority voting for repetition code, 285
computers, 25	Mathematical notation of gate application, 55
Ising	Matrices
Hamiltonian, 254	⋆ operator for Kronecker product, 11
Spin Glass, 254	2-dimensional index via projection operators, 43
Junk qubits	Density matrices, 23
Quantum computation, 66	Diagonalization function, 274
	Eigenvalues, 7, 180
KD-Tree, 270	Hermitian, see Hermitian matrices
Kets	Matrix multiplication ordering of gate
About, 72	application, 55
Composite kets inner products, 5	Pauli matrices, 34
Dirac notation, 2	Hermitian matrix real vector space, 35
Dual vectors for, 3	Involutivity, 35
Hermitian conjugate of, 2	Permutation matrices, 12
Inner products, 3	Scalability, 122
Bra-Ket notation, 3	Tensoring together, 11
Composite kets, 5	Trace of matrix, 8
Outer products, 4	Transposition, 2
Trace of, 8	Unitary, 6
Tensor products, 5	Maximal entanglement, 64
Knuth, D. E., xi	Maximally mixed state, 64
Krauss operators, 281	Maximum cut algorithm
Kronecker power function (kpow), 11	About, 254
Kronecker product, 5, 10	Cut definition, 255
⊗ operator symbol, 16	Ising formulations of NP algorithms, 254
★ operator for, 11, 16	Maximum cut definition, 255
	Quantum approximate optimization algorithm
Landauer's principle, 66	253
Landauer, D., 66	Variational quantum eigensolver, 260
Least significant bit, see Bit order	Weighted maximum cut, 255
Libq, 145	Computing maximum cut, 257

Graphs constructed, 255	No-cloning theorem, 65
Hamiltonian constructed, 258–260	Fan-out circuits and, 92
Measurement gates, 54	Repetition code for error control, 285
Measurements	Uncomputation not violating, 67
By peek-a-boo, 131	Node class for transpilation, 311
By peek-a-boo, Grover's algorithm, 226	Noise, see Quantum noise
Entanglement, 60	Noisy Intermediate Scale Quantum Computers
Error detection challenges, 285	(NISQ), 240, 293
Expectation values, 59, 74, 244	Norm
Implementation, 75	Complex numbers, 1
Indirect measures of similarity between states,	Product of two states, 16
93–97	Unitary matrices as norm preserving, 6, 25
Measuring in Hadamard basis, 104	Vectors
Pauli bases, 242	Normalization, 20
•	Not-gates, see also X-gates
Projective, 72	Logic circuits from, 92
Examples, 76	Nuclear spin decoherence time, 278
Implementation, 75	numpy
qc data structure, 131	★ operator for Kronecker product, 11
Statistical sampling function, 131	About, 9
Quantum circuit notation, 54	adjoint() function for operators, 26
Quantum Fourier transform and, 169	allclose() for Tensor comparisons, 12
Quantum mechanics postulates, 72	Complex number support, 10
States collapsing on measurement, 13, 60	Eigenvalues of matrices, 180
Born rule, 72	ndarray, 10
Measurement definition, 72	Base for Tensor, 9
Renormalization, 74	ndarray base for Tensor, 9
Mermin, David, 61	Instantiating, 10
Microsoft Q# commercial system, 303	Path to, 140
Quantum Developer Kit, 303	print configuration, 27
Simulators, 321	print configuration, 27
Microwave cavity decoherence time, 278	"On the Einstein Podolsky Rosen paradox" (Bell),
Minimum cut problems, 255	60, 63
Mixed states, 68	Open quantum systems, 280
Depolarization, 282	Open-source simulators, 320
Tracing out qubits, 71	OpenPulse, 295
MLPerf benchmarks, 150	OpenQASM, 295
Modular arithmetic, 189	Transpilation
Controlled modular multiplication, 207	About QASM, 311
Modular addition, 205–207	Code generation flag, 315
Modular inverse, 202	Dumper function, 316
Modulus of complex numbers, 2	Operator class
Most significant bit, see Bit order	adjoint() function, 26
Multi-Controlled gates, 86	Dumper function for matrix structure, 26
Ancilla qubits, 86	Gate applied to state ψ at qubit index, 32
qc data structure, 132	Gate function returning Operator object, 32
Multi-qubit gates	Tensor class parent, 26
About controlled gates, 46	Operator-sum representation, 281
About single-qubit constructors, 33	Operators
Hadamard gates, 44–45	About, 9, 25
Multiplication, 177	Application, 27–29
Testing quantum arithmetic, 178	apply() function, 32, 128, 142
quantum araniiotic, 170	Density matrices, 68
NAND logic gates, 92	Fast application, 134–139
nbits property of Tensor class, 16	Fast application, 134–139 Fast application generalized, 137–139
qc data structure, 128	Faster application with C++, 139–145
qe data structure, 120	rasici application with C++, 139–143

Operators (Cont.)	Two kets, 8
Fastest benchmarked, 147	Overloading ★ operator, 11
Fastest with sparse representation, 145-147	
Multiple operators in sequence, 31	Parallelism, see Quantum parallelism
Multiple qubits, 29–31	Partial-trace procedure
Noise reduction via compiler optimization,	Bloch spheres in many-qubit system, 59
304	Code, 69
Norm preserving, 6, 25	Experimenting with, 70
Notation for qubit index applied to, 31	Derivation for reduced density operator, 68
Padding operators, 31, 48	Maximal entanglement, 64
Projection operators extracting subspace, 73	Tracing out other qubits, 69
Quantum computation, 66 To state ψ at qubit index, 32	Entangled states, 71
Cloning qubits impossible, 65	Environment traced out, 281
Outer product representation, 43	Experimenting with, 70
qc data structure, 129	Mixed states, 71
Gates applied, 128	Pure states, 71
Quantum Fourier transform operator, 169	Quirk qubits on Bloch sphere, 171
Inverse, 170	Path to numpy, 140
Tensor class parent, 26	Pauli commutators, 83
Unitary, 25	Pauli matrices
Invertable, 26	About, 34
Optical cavity decoherence time, 278	Eigenvalues, 180
Optimization	Function call syntax via Hadamard gates, 83
Gate application iteration lesson, 331	Pauli commutators, 83
Gate application special cases, 143–145	Hermitian matrix real vector space, 35
Hamiltonians constructed for, 254	Involutivity, 35
Hash table reconstruction, 332	Measurement in Pauli bases, 242
OR logic gates, 92	Pauli X-gates, see also X-gates
Oracles Remotain Variani algorithm 106 117	Pauli Y-gates, 34
Bernstein–Vazirani algorithm, 106, 117 Deutsch algorithm, 108–117	Pauli Z-gates
Deutsch-Jozsa algorithm, 118–121	Phase-flip gates, 34, 37
General oracle operator, 117	Quantum noise modeling, 282
Phase inversion implementation, 218	Rotation operators via exponentiation, 35
Quipper automatic construction of, 301	Peephole optimization, 307
RevKit for constructing reversible, 321	Libraries of compiler optimization patterns, 309
Silq construction of, 302	Relaxed peephole optimization, 308
Oracles-Bernstein-Vazirani algorithm	Performance
Compiler optimization, 308	Compiler optimization and, 304
Order finding, 192	Quantum versus classical computers, 150-152
About, 192	Period of function, 192
Order finding quantum algorithm, 196–200	Order finding quantum algorithm, 208
Continued fractions, 208	Period finding quantum algorithm, 196-200
Experimentation, 209	Experimentation, 209
Main program, 200 Modular addition, 205–207	Main program, 200
Support routines, 202–205	Modular addition, 205–207
Orthogonal vectors, 4	Support routines, 202–205
Outer product representation, 43	Permutation matrices
Outer products	About, 12
About, 4	Checking if tensor is permutation, 12
Density matrices as, 23, 68	Controlled-Not gate, 46, 47
Outer product representation of operator, 43	Phase damping, 283
Projection operators, 42	Phase estimation, see Quantum phase estimation
Trace of	(QPE)
State vectors, 70	Phase gates, 38, 164

Discrete phase gates, 39, 164	Silq as embedded DSL, 302
Phase inversion operator, 219	PSI probabilistic, 302
Phase shift or kick gates, 40, 164	Q language C++ class library, 300
Phases via various gates, 40	Q#, 303
RotationZ-gates versus, 38	Silq comparison, 302
Square root of as T-gate, 41	QASM tool, 295
U1(lambda) gates, 40, 164	Addition via QFT circuit, 173
Controlled-U1 gate for quantum arithmetic,	QCL, 296–298
172	Quipper comparison, 301
Phase invariance, 59	Quipper, 300
Phase inversion, 212	Oracle automatic construction, 301
Implementation, 218	Proto-Quipper follow-ups, 301
Multiple solutions, 227–230	QCL comparison, 301
Operator, 219	Silq comparison, 302
Quantum counting, 232	Resources for information, 303
Phase kick circuit, 161	Scaffold, 298
Phase of qubits, 21	Classical and quantum constructs, 305
Phase shift error, decoherence-induced, 279	Entanglement analysis, 299
Phase-flip errors, 279	Hierarchical QASM, 299
Bit-flip phase-flip channel, 281	Transpiler, 298
Error correction, 288	Silq, 302
Shor's 9-qubit code, 289	Code snippet showcasing, 303
Phase-flip channel, 281	Oracle construction, 302
Phase-flip gates, 37	Projection operators, 42
Phase/bit-flip errors, 279	2-dimensional index into matrix, 43
π (pi) fractions transpilation output, 316	Controller and controlled qubits not adjacent,
Planck constant, 241	47
Podolsky, B., 60	Hermitian, 43
Polar coordinates for qubit, 55–56	Not unitary or reversible, 43
Moving about sphere, 56	Outer product representation, 43
Postulates of quantum mechanics, 72	Projective measurements and, 73
Power arithmetic, 208	Projective measurements, 72
Power function via Kronecker products, 11	About projective, 73
Preskill, John, 149	ProjectQ commercial system, 303
Probabilistic Turing machines, 149	Simulator, 321
Probability amplitudes, 13	ψ as qubit state space, 13
Binary addressing, 19	, -
· ·	operator applied to ψ at qubit index, 32
Ket definition, 72	PSI probabilistic programming language, 302
Maximally mixed state, 64 Measurement, 72, 73	Pure states, 68
	Compiler optimization, 306
Qubits as states, 15, 16	Trace of density matrix, 24
Equal superposition with same amplitude,	Tracing out qubits, 71
45	Python
Projection operators extracting amplitude,	About numpy, 9
42	About ordering of gate applications, 54
State class code, 19	C++
State collapsing on measurement, 13, 72	Accelerated gate application, 139–145
State vectors and unitary operators, 25	Execution speed, 139, 145
Swap gates, 50	Extending Python with, 140
Product states, 61	Sparse representation, 145
Programming languages	Sparse representation benchmarked, 147
About hierarchy of abstractions, 295	Complex numbers, 2
FORTRAN, 292	conjugate() function, 2
Haskell, 300	Operator application, 27–29
Quipper as embedded DSL, 300	Tensor class
Quipper oracle automatic construction, 301	About, 9

Q language C++ class library, 300	Quantum circuit (qc) data structure
Transpiler code generation flag, 315	About abstraction, 126, 134
Q# commercial system (Microsoft), 303	Constructor, 127
Q# programming language, 303	Full adder example, 134
Silq comparison, 302	Gates, 129
Quantum Developer Kit, 303	Adjoint, 130
QASM tool, 295	Applying, 128, 142
Addition via QFT circuit, 173	Fast application, 134–139
cQASM, 295	Fast application generalized, 137–139
Hierarchical QASM, 299	Faster application with C++, 139–145
OpenQASM, 295	Multi-Controlled gates, 132
Transpilation	Swap and controlled swap gates, 131
About QASM, 311	Measurements, 131
Code generation flag, 315	Statistical sampling function, 131
Dumper function, 316	nbits property, 128
qc (quantum circuit) data structure	Quantum registers, 127
About abstraction, 126, 134	Qubits added, 128
Constructor, 127	Sparse representation, 145–147
Full adder example, 134	Benchmarking, 147
Gates, 129	Transpilation extension of, 313
Adjoint, 130	Code generation flags, 315
Applying, 128, 142	Eager mode, 313, 314
Fast application, 134–139	Quantum circuit notation
Fast application generalized, 137–139	About ordering of gate applications, 54
Faster application with C++, 139–145	Controlled gates
Multi-Controlled gates, 132	Controlled-X gates, 53
Swap and controlled swap gates, 131	Controlled-Z gates, 53
Measurements, 131	Controlled-Not-by-0 gates, 53
Statistical sampling function, 131	More than one qubit controlling, 54
nbits property, 128	Entangler circuits, 61
Quantum registers, 127	Fan-out circuits, 92
Qubits added, 128	Full adder, 89
Sparse representation, 145–147	Information flow double lines, 54
Benchmarking, 147	Logic circuits, 92
Transpilation extension of, 313	Measurement, 54
Code generation flags, 315	Oracle for Bernstein-Vazirani algorithm, 106
Eager mode, 313, 314	Qubit order, 51
QCL programming language, 296–298	Single-qubit operator applied, 52, 53
Quipper comparison, 301	State as tensor product combined state, 52
QFT, see Quantum Fourier transform	State change depiction, 52
qHipster simulator, 320	State initialization, 52
Qiskit commercial system (IBM), 303 ALAP scheduling of gates, 307	Swap test, 93
ALAF scheduling of gates, 307 Algorithm reference, 277	X-gates, 53
QASM support, 311	Quantum computers
Simulators, 321	Arithmetic via full adder, 89–91
QPE, see Quantum phase estimation	Quantum arithmetic, 172–177
QRAM model of quantum computing, 293, 294	Classical computers controlling, 293, 294
Gate approximation, 310	Classical computers simulated by, 149
qsim simulator (Google), 321	Commercial systems, 303
qsim simulator (Google), 321 qsimh simulator (Google), 321	Compiler design challenges, 293
Quadratic programming problem, 254	Density matrices for theory of, 24, 68
Quantum advantage, 149	Environmental challenges, 278–284
Quantum advantage, 149 Quantum algorithm zoo, 277	Error correction challenges, 285
Quantum anglitude amplification (QAA), 227–230	Flow control via controlled gates, 46
Quantum approximate optimization algorithm	QCL programming language, 297
(QAOA), 253	Silq programming language, 302
(QAOA), 233	ong programming language, 302

Logic circuits, 91	Multiplication, 177
Noisy Intermediate Scale Quantum Computers	Subtraction, 177
era, 240, 293	Testing, 178
Operators as ISA of, 25	Quantum information, see Information
QRAM model, 293, 294	Quantum IO Monad, 300
Gate approximation, 310	Quantum mechanics
Quantum computation, 66	Copenhagen interpretation, 61
λ -calculus to express, 300	Hidden state, 60, 63
Quantum registers, 67, 124–126	Postulates, 72
Simulation, 124	Quantum noise, 278–284
Uncomputation, 66	Amplitude damping, 283
QCL programming language, 296	Channels, 281
Silq programming language, 302	Bit flip and phase flip, 281
Transpilation intermediate representation,	Depolarization, 282
315	Compiler optimization and noise reduction, 304
Trick for saving result, 67	Error correction, 284–291
Quantum counting, 230–234	Error injection to model, 282
Quantum Developer Kit (QDK), 303	Checking bit-flip error correction, 287
Simulators, 321	Gates as quantum noise source, 283
Quantum dot decoherence time, 278	Gates imprecise, 283
Quantum error conditions, 279	Phase damping, 283
Quantum error correction	Quantum operations, 280
About, 278, 284	Operation element, 281
Bit-flip errors, 286–288	Operator-sum representation, 281
Shor's 9-qubit code, 289	Simulation, 320, 321
Channels, 281	Quantum operations
Compiler optimization and, 304	Operation element, 281
Error correction code memory, 284	Operator-sum representation, 281
	Quantum parallelism, 108, 112
Error syndrome, 286	Quantum phase estimation (QPE)
Phase-flip errors, 288	Detailed derivation, 182–186
Shor's 9-qubit code, 289	Eigenvalues and eigenvectors, 180
Quantum computing challenges, 285	Hamiltonian eigenvalues, 240
Quantum noise, 278–284	Implementation, 186–189
Repetition code, 284	Phase estimation, 181
Majority voting, 285	Definition, 181
No-cloning theorem, 285	Quantum counting, 231
Quantum repetition code, 285	Quantum programming languages
Resources for information, 291	About hierarchy of abstractions, 295
Shor's 9-qubit error correction code, 285, 289	Haskell, 300
Quantum fidelity, 269	Quipper as embedded DSL, 300
Quantum Fourier transform (QFT)	Quipper oracle automatic construction, 301
About, 169	Silq as embedded DSL, 302
Algorithm detail	PSI probabilistic, 302
About, 163	Q language C++ class library, 300
Binary fractions, 163	Q#, 303
Quantum Fourier transform, 165–167	Silq comparison, 302
Two-qubit QFT, 167–169	QASM tool, 295
Two-qubit QFT online simulation, 170	Addition via QFT circuit, 173
Measurement, 169	QCL, 296–298
Online simulation, 170	Quipper comparison, 301
Phase kick circuits, 161	Quipper, 300
QCL programming language, 298	Oracle automatic construction, 301
QFT operator, 169	Proto-Quipper follow-ups, 301
Inverse, 170	QCL comparison, 301
Quantum arithmetic	Silq comparison, 302
Addition 172–177	Resources for information, 303

Quantum programming languages (Cont.)	Complexity of scaling up, 122
Scaffold, 298	Constructing in code, 14
Classical and quantum constructs, 305	Data structure, 14
Entanglement analysis, 299	Entanglement, 60–65
Hierarchical QASM, 299	Junk qubits, 66
Transpiler, 298	Operator application, 27–29
Silq, 302	Applied at index specified, 31
Code snippet showcasing, 303	Controller and controlled qubits, 46–51, 53
Oracle construction, 302	Multiple operators in sequence, 31
Quantum random circuits (QRC), 150	Multiple qubits, 29–31
Simulation design, 152	Nonadjacent controller and controlled
Simulation evaluation, 158	qubits, 47
Simulation implementation, 154	Norm preserving, 6, 25
Simulation metric, 157	Notation for qubit index applied to, 31
Simulation run estimation, 155–158	Projection operators extracting subspace,
Quantum random walk, 234–240	73
1D walk, 235	Quantum computation, 66
2D walk, 237	Qubit ordering, 137
About, 234, 238	Order of qubits, 18
Coin toss, 235	Operator application, 137
Walking the walk, 237	Quantum circuit notation, 51
Quantum registers, 124–126	Phase, 21
	Polar coordinates describing
Code to create and initialize, 125 gc data structure, 127	Moving about sphere, 56
*	Tensors constructing, 9, 14
Compiler optimization and, 304	Code, 15
For result storage, 67	nbits property, 16
QCL programming language, 296	n qubits, 16
Reg class, 124	QuEST (Quantum Exact Simulation Toolkit),
Quantum supremacy, 149	321
"Quantum supremacy using a programmable	Quipper programming language, 300
superconducting processor" (Arute et	Oracle automatic construction, 301
al.), 150	Proto-Quipper follow-ups, 301
Quantum teleportation, 97–102	QCL comparison, 301
Error correction trick, 286	Silq comparison, 302
Quantum Turing machines, 149	Quirk online simulations, 170
Qubits	QX Simulator, 320
About the state of a qubit, 13	
Basis states, 13, 15	Random circuits, see Quantum random circuits
Basis states orthonormal, 15	(QRC)
Collapsing on measurement, 13, 60, 72	Random number generator, 78
Communicating state of two with one,	Coin toss, 235
102–105	Random combination of 0 or 1 states, 23
Equal superposition of adjacent qubits, 45	Random walk, 234–240
Measurement, 75	1D walk, 235
Measurement examples, 76	2D walk, 237
Probability amplitudes, 13, 15, 16	About, 234, 238
State class constructors, 22	Coin toss, 235
Superposition via Hadamard gates, 44	Walking the walk, 237
Tensor product combined state, 52	Reduced density operator, 68
Ancilla qubits, 66	Debugging tool for inspecting states, 68
Binary addressing, 19	Partial trace derivation, 68
Bloch sphere describing, 55–56	Code, 69
Computing coordinates for given state, 58	Quirk qubits on Bloch sphere, 171
Cloning or copying impossible, 65	Reg class, 124
Column vectors of complex numbers, 2, 15	Registers, 67, 124–126
Compiler optimization via recycling, 309	Code to create and initialize, 125

libq implementation, 322	Quipper programming language, 300
qc data structure, 127	Scalar products, see Inner products
Compiler optimization and, 304	Scheduling of gates, 306
QCL programming language, 296	Schrödinger-Feynman Simulation, 124
Reg class, 124	Schrödinger equation
Relative phase, 35	qsim simulator, 321
Global phase versus, 60	Resource for more information, 241
Relaxed peephole optimization, 308	Time-independent for state evolving, 72
Renormalization	Drivation, 240
States collapsing on measurement	Variational principle, 242–245
Renormalization, 74	Schrödinger–Feynman path histories, 145,
Repetition code, 284	151, 159
Majority voting, 285	qsimh simulator, 321
No-cloning theorem, 285	scipy
Quantum repetition code, 285	Installing, 42
Resources for information	sqrtm() function, 42
Algorithms, 277	Sets of universal gates, 49
Computational complexity theory, 149	Shor's 9-qubit error correction code, 285, 289
Logical to physical mapping, 310	Shor's integer factorization algorithm
Quantum error correction, 291	About, 189
Quantum programming languages, 303	About phase estimation, 163
Quirk online simulator, 170	Classical
Schrödinger equation, 241	Experimentation, 193
Simulators available, 320	Factorization, 190
RevKit for reversible oracles, 321	Greatest common divisor, 190
Rk gates, 39	Modular arithmetic, 189
Phases via various gates, 40	Period finding, 192
Roots of gates, 41	Period finding quantum algorithm, 196–200
Square roots of gates	Continued fractions, 208
About, 41	Controlled modular multiplication, 207
Rosen, N., 60	Experimentation, 209
Rotation Axis, 37	Main program, 200
Rotation operators, 35	Modular addition, 205–207
Axis of rotation, 37	Support routines, 202–205
Controlled rotation gates additive, 161	Sparse representation Benchmarked, 147
Discrete phase gates, 39	Silq programming language, 302
Quantum counting, 231	Code snippet showcasing, 303
Qubit on Bloch sphere, 56	Oracle construction, 302
Rotation axis changed, 84	Simon's algorithm, 121
Square roots of, 41	Simon's generalized algorithm, 121
Row vectors	Simulation
Bras in Dirac notation, 3	About scalability, 122
Inner products, 3	Available simulators, 320
RSA encryption algorithm, 189	Complexity, 122, 151, 155
S gates and also Phase gates 165	Online simulators, 170
S-gates, see also Phase gates, 165	Open-source simulators, 320
Scaffold programming language, 298 Classical and quantum constructs, 305	Parallelization of gates, 307
Entanglement analysis, 299	Quantum Fourier transform online simulation
Hierarchical QASM, 299	170
transpiler, 298	Quantum random circuits
Scalability	Google team, 151, 158
About, 122	Metric, 157
Complexity of scaling up, 122, 293	Simulation design, 152
Controlled gates, 48	Simulation design, 132 Simulation evaluation, 158
Gate fast application, 134–139	Simulation evaluation, 138 Simulation implementation, 154
Hierarchical QASM, 299	Simulation run estimation, 154 Simulation run estimation, 155–158
11101a101110a1 Q110111, 277	Jinulation full estimation, 133–136

Simulation (Cont.)	scipy sqrtm() function, 42
Quantum registers, 124–126	Squaring root of gate equals gate, 80
Quantum simulating classical computers,	State class
149	Constructing qubits in code, 14
Single-qubit gates, 33–45	Qubit data structure, 14
About constructing multi-qubit operators, 33	Constructors, 22
About operators, 9	All 0-states or 1-states, 22
Applying operator, 52	density() function, 23
Hadamard gates, 44–45	Member functions, 19–21
Identity gates, 26, 33	Dumper function for all relevant info, 21
Applied to multiple qubits, 30	Probability and amplitudes, 19
Phase gates, 38	Tensor class parent, 15
Discrete phase gates, 39	nbits property, 16
Phase shift or kick gates, 40	States
Phases via various gates, 40	About, 9
	About bit order, 17, 18
Projection operators, 42	Binary interpretation, 18
Reversed by conjugate transpose, 26	Bit index notation, 136
Rk gates, 40	Basis states of qubits, see Basis states
Rotation operators, 35	Cloning, 65
RotationZ-gates versus phase gates, 38	Collapsing on measurement, 13, 60
Square roots of gates, 41	Born rule, 72
T-gates, 40	Measurement definition, 72
Phases via, 40	Renormalization, 74
U1(lambda) gates, 40	Density matrices, 68
X-gates, 26, 34	Entanglement, 60–65
Applied to multiple qubits, 30	Kets representing state of system, 72
State initialization to 0- or 1-state, 22	State evolving via operators, 72
Y-gates, 34	Maximally mixed state, see also Probability
Z-gates, 34	amplitudes
Sleator-Weinfurter construction, 85	Operator application, 27–29
Solovay–Kitaev (SK) theorem, 266	Multiple qubits, 29–31
Solovay–Kitaev (SK) algorithm	Projection operators extracting amplitude, 42
About, 266	Quantum circuit notation
Algorithm, 270–272	Single-qubit operators applied, 52
Balanced group commutator, 272-274	State change depiction, 52
Matrix diagonalization function, 274	State initialization, 52
Bloch sphere angle and axis, 267	Quantum operations, 280
Evaluation, 274	Similarity via swap test, 93–97
Pre-computing gates, 269	Code, 96
Random gate sequences, 276	Single-qubit 0 and 1 state constants, 23
Similarity metrics	Tensors constructing, 9
Quantum fidelity, 269	Tensors constructing qubits, 14
Trace distance, 268	Code, 15
Theorem, 266	Qubit data structure, 14
Universal gates, 266	n qubits, 16
SU(2) group, 267	Tensor product combined state, 52
Sparse representation, 145–147	Vectors
About, 122	Binary interpretation, 18
Benchmarking, 147	Column vectors of complex numbers, 2, 14
libquantum library, 145	Complexity of scaling up, 122
Simulation, 320	Kets representing state of system, 72
SPEC benchmarks, 150	Normalization, 13, 20
Spooky action at a distance, 60, 63	Normalized vectors and, 4
Quantum teleportation, 97–102	Operator application, 27–29, 72
sqrtm() function of scipy, 42	Unitary operators as norm preserving, 25
Square roots of gates	Steane code, 291

C4 A d 201	Т
Steane, Andrew, 291	Tensors, 9
SU(2) group, 267	About array behavior, 9
Subset-sum algorithm	Checking if Hermitian or unitary, 12
About, 262	Comparing to values, 12
Experiments, 264	Inner products, 5
Implementation, 263	Instantiating, 10
Subtraction, 177	tensor_type() abstraction, 10
Decrement operator, 236	Kronecker product, 10
Testing quantum arithmetic, 178	Testing
Summit supercomputer simulating quantum	Benchmarking, see Benchmarking
random circuits, 158	Gate fast application, 139
Superdense coding, 102–105	Controlled gate equivalencies validated, 88
Superposition	Debugging, 12
About, 44	Quantum arithmetic, 178
About measurement, 72	Tracing out state of one qubit, 70
Hadamard gates on qubits, 44	Toffoli gates, 49, 85
Equal superposition of adjacent qubits,	Logic circuits from, 92
45	Multi-Controlled X-gates, 86
Linear combination of basis states, 13	Trace distance, 268
Maximally mixed state, 64	Trace of matrix, 8
State after operator applied, 52	Hermitian matrices, 8
Swap gates, 50, 88	Partial-trace procedure, 59
Compiler optimization, 308	Tensor product, 8
Controlled-controlled Swap gates, 51	Trace of outer product two kets, 8
qc data structure, 131	
Swap test, 93–97	Transpilation
Code, 96	About, 292, 311
Sycamore processor, 150	Code generation flags, 315
	Dumper function, 315
T-gates	Cirq, 319
Phases via, 40, 165	libq, 317
Rotation axis changed, 84	QASM, 316
Square root of phase gates, 41	Intermediate representation, 311
Universal gates, 266	Circuit capabilities of, 314
Teleportation, 97–102	IR base class, 312
Error correction trick, 286	IR nodes, 311
Tensor class	Quantum circuit extensions, 313
About array behavior, 9	Uncomputation, 315
Comparing to values, 12	π fractions output, 316
Instantiating, 10	Scaffold transpiler, 298
tensor_type() abstraction, 10	Transposition
Kronecker product member function, 11	Involutivity, 3
Operators derived from, 26	Matrix, 2
Qubit states	Two-qubit quantum Fourier transform, 167–169
~	Online simulator, 170
Code, 15	
State class derived from, 15	U1(lambda) gates, 40, 164
nbits property, 16	Controlled-U1 gate for quantum arithmetic, 172
Tensor products, 5	Uncomputation, 66, 315
Binary interpretation, 19	QCL programming language, 296
Distributive, 5	Silq programming language, 302
Kronecker product as, 10	Transpilation intermediate representation, 315
Multiplication with scalar, 5	Trick for saving result, 67
Operators applied to multiple qubits, 29–31	Underscore in function names, 12
Multiple operators in sequence, 31	
Product states, 61	Unitary matrices
State of two or more qubits, 16	About, 6
Trace of matrix, 8	Checking if tensor is unitary, 12

Unitary matrices (Cont.)	Tensor products, 5
Norm preserving, 6, 25	Unitary matrices as norm preserving, 6, 25
Tensoring together, 11	VQE, see Variational quantum eigensolver
Unitary operators, see also Gates; Operators	algorithm
Invertable, 26	
Universal gates, 49	Weighted maximum cut, 255
Definition, 266	Wilczek, F., xi
QRAM model of quantum computing,	Wire optimization, 309
294	
Solovay-Kitaev theorem, 266	X-gates, 26, 34
SU(2) group, 267	Applied to multiple qubits, 30, 135
Universal gates in quantum computing, 49	Controlled-Controlled X-gates (CCX-gates),
	49, 85
V-gates	Logic circuits from, 92
Square root of X-gates, 41, 85	Multi-Controlled X-gates, 86
val2bits() for decimal to binary, 24	Not-gate, 34
Variational quantum eigensolver (VQE)	Quantum circuit notation
About, 160, 240	Controlled-X gates, 53
Algorithm, 245–248	Controlled-Not-by-0 gates built, 53
Expectation values, 244	X-gates, 53
Hamiltonian type, 242	Qubit on Bloch sphere, 56
Measurement in Pauli bases, 242	Square root of as V-gate, 41, 85
Measuring eigenvalues, 248	State initialization to 0- or 1-state, 22
Multiple qubits, 250–252	
Quantum phase estimation, 240	Y-gates, 34
Schrödinger equation, 240	Negate Y-gate, 83
Variational principle, 242–245	Square root of, 41
Vectors	
Binary interpretation, 18	Z-gates, 34
Complex numbers, 2	Controlled-Z gates, 81
Norm, 4	Controlled-Not gates via, 82
Orthogonal, 4	Multi-Controlled-Z gates, 82
States	Phase-flip gates, 34, 37
Basis states of qubits, 13	Phases via, 40
Complexity of scaling up, 122	Quantum circuit notation, 53
Initializing with normalized vector, 23	Controlled Z-gates, 53
Kets representing state of system, 72	Qubit on Bloch sphere, 56–58
Operator application, 27–29, 72	Z90-gates, see also Phase gates
Unitary operators as norm preserving, 25	Zeilinger, Anton, 64