Занятие №1

- $\overline{\bf 1}$ Вычислить значения синуса и косинуса $30^{\circ},\ 45^{\circ},\ 60^{\circ},\$ а также 0° и 90°
- **2** Вычислить значения тангенса и котангенса с теми же самыми аргументами.
- **3** Доказать следующие факты:
- 1) Основное тригонометрическое тождество (OTT): $\sin^2 x + \cos^2 x = 1$
- 2) $\operatorname{tg} x = \frac{\sin x}{\cos x}$, $\operatorname{ctg} x = \frac{\cos x}{\sin x}$ u $\operatorname{tg} x \cdot \operatorname{ctg} x = 1$

Расширенное понятие синуса и косинуса.

Косинус угла α — абсцисса точки на единичной окружности, соответствующей углу α . **Синус угла** α — ордината точки на единичной окружности, соответствующей углу α .

- **4** Вычислить:
- 1) $\sin 270^{\circ}$; $\sin 180^{\circ}$; $\cos 360^{\circ}$; $\sin (-90^{\circ})$; $\tan 270^{\circ}$; $\cot (-90^{\circ})$; $\sin 720^{\circ}$
- 2) $\sin 120^{\circ}$; $\cos 150^{\circ}$; $\sin 220^{\circ}$; $\sin (-135^{\circ})$; $\cos 225^{\circ}$; $tg(-120^{\circ})$
- 3) $\sin 870^\circ$; $\sin(-690^\circ)$; $\cos 405^\circ$; $\cot(-1020^\circ)$

Доказать следующие формулы:

$$\sin(x + 360^{\circ} \cdot n) = \sin x \qquad \qquad \operatorname{tg}(x + 360^{\circ} \cdot n) = \operatorname{tg} x$$
$$\cos(x + 360^{\circ} \cdot n) = \cos x \qquad \qquad \operatorname{ctg}(x + 360^{\circ} \cdot n) = \operatorname{ctg} x$$

$$\sin(180 - x) = \sin x$$
 $\sin(-x) = -\sin x$ $\sin(180 + x) = -\sin x$ $\cos(180 - x) = -\cos x$ $\cos(180 + x) = -\cos x$

- **5** Вычислить:
- 1) $\sin 1080^{\circ}$; $\cos(-630^{\circ})$; $\cos 900^{\circ}$; $\sin 870^{\circ}$; $\tan 225^{\circ}$; $\sin(-210^{\circ})$; $\cos(-300^{\circ})$; $\cot(-1020^{\circ})$
- 2) $\sin \frac{\pi}{3}$; $\cos \frac{\pi}{4}$; $\cot \frac{\pi}{2}$; $\cot \frac{\pi}{6}$; $\sin \frac{\pi}{2}$; $\cos \frac{\pi}{3}$; $\cot \frac{\pi}{2}$; $\sin \frac{\pi}{6}$; $\cot \frac{\pi}{4}$
- 3) $\sin 3\frac{1}{6}\pi$; $\sin \left(-\frac{5\pi}{4}\right)$; $\cos \frac{13\pi}{4}$; $\sin \frac{29\pi}{3}$; $\sin \left(-\frac{11\pi}{4}\right)$; $\cos \frac{55\pi}{6}$; $\operatorname{tg} \frac{20\pi}{3}$; $\operatorname{tg} \left(-\frac{5\pi}{4}\right)$; $\operatorname{tg} \left(-\frac{32\pi}{3}\right)$
- **6** Вычислить:
- 1) $2\sin 30^{\circ} \sqrt{3}\sin 60^{\circ} \cdot 45$
- 2) $4\cos 45^{\circ} \cdot \cot 60^{\circ} \cdot \tan 60^{\circ} 3\sin 45^{\circ}$
- 3) $(0.75 \cdot \text{tg}^2 30^\circ \sin^2 60^\circ + \text{tg}^2 45^\circ + \cos 60^\circ)^{-1}$
- 4) $\sqrt{(\operatorname{tg} 60^{\circ} 2)^2} \sqrt{(\operatorname{ctg} 30^{\circ} 2)^2}$

- **7** Вычислить:
- 1) $\operatorname{ctg} \frac{\pi}{6} \cdot \operatorname{cos} \frac{\pi}{3} \cdot \operatorname{sin} \frac{\pi}{4}$
- 2) $\left(\sin\frac{\pi}{3}\cdot\cos\left(-\frac{\pi}{4}\right)\cdot\operatorname{tg}\left(-\frac{\pi}{6}\right)\right)^{-1}$
- 3) $\frac{\left(\cos\left(-\frac{3\pi}{2}\right) \sin\frac{3\pi}{2}\right)^2}{2\sin\frac{\pi}{6} \cdot \tan\frac{\pi}{4} + \cos(-\pi) \sin\frac{\pi}{4}}$

8 Доказать тождество:

1)
$$\cos^2 x + \sin^2 x \cdot \sin^2 y + \sin^2 x \cdot \cos^2 y = 1$$

4)
$$(1 + \operatorname{ctg}^2 \alpha)(1 - \sin^2 \alpha) = \operatorname{ctg}^2 \alpha$$

2)
$$(\sin x + \cos x)^2 + (\sin x - \cos x)^2 = 2$$

5)
$$\frac{1 + \operatorname{tg} \alpha + \operatorname{tg}^2 \alpha}{1 + \operatorname{ctg} \alpha + \operatorname{ctg}^2 \alpha} = \operatorname{tg}^2 \alpha$$

3)
$$\frac{\sin^2 x}{\sin x - \cos x} - \frac{\sin x + \cos x}{\operatorname{tg}^2 x - 1} = \sin x + \cos x$$
 6)
$$\frac{\csc x - \sin x}{\operatorname{ctg}^2 x} = \sin x$$

$$6) \frac{\csc x - \sin x}{\cot^2 x} = \sin x$$

9 Вычислить:

$$\operatorname{tg} \alpha$$
, если $\cos \alpha = -0.6$ и $90^{\circ} < \alpha < 180^{\circ}$

10 Вычислить:

$$\sin x$$
, $\operatorname{ctg} x$, если $\sec x = -\frac{5}{4}$ и $\pi < x < \frac{3\pi}{2}$

11 Вычислить:

$$\sin x$$
, $\cos x$, если $\operatorname{ctg} x = -\frac{8}{15}$ и $x \in (90^\circ; 180^\circ)$