DYDAKTYCZNE LABORATORIUM FIZYKI UNIWERSYTET RADOMSKI

im. Kazimierza Pułaskiego w Radomiu

Wydział: WTEiI

Kierunek: Informatyka

Rok Akademicki: 2024/2025

Semestr: II Grupa: 3 Zespół: 2

Data: 11.03.2025

Prowadzący ćwiczenie: dr. inż. Ireneusz Jędra

Nr ćwiczenia: 2 Temat ćwiczenia:

Termopara

Wykonujący ćwiczenie:

- Jakub Oleszczuk
- Mikołaj Majewski
- Mateusz Ofiara

Oceny:

1. 2. 3.

Wstęp

Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z zasadą działania termopary oraz pomiar napięcia elektrycznego w funkcji temperatury. Teoria: Termopara jest czujnikiem temperatury, który działa na zasadzie zjawiska Seebecka. Składa się z dwóch różnych metali połączonych w jednym punkcie. Gdy jeden z końców termopary jest podgrzewany, powstaje różnica potencjałów elektrycznych, która jest proporcjonalna do różnicy temperatur między końcami. Zjawisko Seebecka można opisać równaniem:

$$U = \alpha \cdot (T_1 - T_2) \tag{1}$$

gdzie:

- U napięcie elektryczne w woltach,
- α współczynnik Seebecka dla danej pary metali,
- T₁ temperatura gorącego końca w kelwinach,
- T_2 temperatura zimnego końca w kelwinach.

Wyniki pomiarów

Nachylenie wykresu (a) =
$$(0.0013 \pm 0.1655) \text{ V/°C}$$
 (2)

Przecięcie wykresu
$$(b) = (0.5700 \pm 0.1655) \text{ V}$$
 (3)

Średnia wartość napięcia
$$(U_0) = (1.68 \pm 0.16) \text{ mV}$$
 (4)

Temperatura topnienia =
$$(40.9 \pm 7.9)$$
 °C (5)

Tabela 1: Pomiar napięcia elektrycznego w czasie

(s) 21 mV 0.00 25 0.08 $\frac{20}{33}$ 37 0.400.5541 45 49 53 0.88 1.04 57 61 1.37 1.5365 69 73 77 81 85 89 1.85 2.03 2.20 2.35 2.502.68 2.84

Tabela 2: Tabela pomiarowa dla stopu Wooda

Część	1	Część 2		
T (°C)	mA	T (°C)	mA	
20	0.25	620	1.59	
40	0.32	640	1.60	
60	0.38	660	1.61	
80	0.42	680	1.62	
100	0.47	700	1.62	
120	0.53	720	1.62	
140	0.57	740	1.62	
160	0.63	760	1.62	
180	0.67	780	1.63	
200	0.72	800	1.65	
220	0.77	820	1.66	
240	0.83	840	1.67	
260	0.87	860	1.67	
280	0.93	880	1.67	
300	0.97	900	1.68	

Tabela 3: Tabela pomiarowa dla stopu Wooda (kontynuacja)

Część	3	Część 4		Część 5	
T (°C)	mA	T (°C)	mA	T (°C)	mA
920	1.70	1020	1.72	1120	1.79
940	1.70	1040	1.74	1140	1.81
960	1.70	1060	1.75	1160	1.83
980	1.70	1080	1.75	1180	1.93
1000	1.72	1100	1.78	1200	2.03
				1220	2.10

Wykres

Rysunek 1: Wykres zależności napięcia od temperatury

Rysunek 2: Wykres zależności napięcia od temperatury dla stopu Wooda

Obliczenia

Obliczenia: W celu obliczenia współczynnika Seebecka dla termopary, należy dopasować prostą do danych pomiarowych. W tym celu można użyć metody najmniejszych kwadratów. Współczynniki regresji liniowej A i B można obliczyć z następujących wzorów:

$$A = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$$
$$B = \bar{Y} - A \cdot \bar{X}$$

gdzie:

- X_i temperatura,
- Y_i napięcie elektryczne,
- \bar{X} średnia temperatura,
- \bar{Y} średnie napięcie elektryczne.

$$U_0 = \frac{U_A + U_B}{2}$$

$$u(U_0) = \frac{U_B - U_A}{2}$$

$$u(T) = \sqrt{[U_0 \cdot u(a)]^2 + [a \cdot u(U_0)]^2 + [u(b)]^2}$$

gdzie:

- U_0 średnie napięcie elektryczne,
- U_A napięcie elektryczne dla temperatury A,
- U_B napięcie elektryczne dla temperatury B,
- u(a) niepewność a,
- u(b) niepewność przecięcia wykresu.
- $u(U_0)$ niepewność średniego napięcia elektrycznego

Wzory dla niepewności średniego napiecia elektrycznego i średniego napięcia elektrycznego zostały przyjęte z protokołu ćwiczenia.

Analiza błędów

Powstałe błędy mogą wynikać z kilku czynników, takich jak:

- niedokładność pomiaru temperatury,
- błędy w odczycie napięcia elektrycznego,
- wpływ otoczenia na pomiary,
- niejednorodność materiałów użytych do budowy termopary.

Wszystkie te czynniki mogą wpływać na dokładność pomiarów i obliczeń, dlatego ważne jest, aby przeprowadzać pomiary w kontrolowanych warunkach oraz stosować odpowiednie metody analizy błędów.

Wnioski

Wnioski: Na podstawie przeprowadzonych pomiarów i obliczeń można stwierdzić, że termopara działa zgodnie z zasadą zjawiska Seebecka. Współczynnik Seebecka dla użytej pary metali wynosi $(0.0013\pm0.1655)~{\rm V/°C}$. Temperatura topnienia stopu Wooda wynosi $(40.9\pm7.9)~{\rm °C}$. Wyniki te są zgodne z literaturą, co potwierdza poprawność przeprowadzonych pomiarów.

Podsumowanie

Podsumowanie: W ćwiczeniu zapoznaliśmy się z zasadą działania termopary oraz pomiarem napięcia elektrycznego w funkcji temperatury. Zrealizowaliśmy pomiary dla różnych temperatur, a następnie obliczyliśmy współczynnik Seebecka oraz temperaturę topnienia stopu Wooda.