Matematica Discreta II

Esame del 23-09-2010

Esercizio 1. (3 pt)

Determinare tutte le soluzioni dell'equazione -4514x + 8103y = 925, con $x, y \in \mathbb{Z}$.

Esercizio 2. (5 pt)

Risolvere in \mathbb{Z} il seguente sistema $\begin{cases} x \equiv 178 \pmod{21} \\ -17x \equiv 13 \pmod{22} \\ x \equiv 257 \pmod{23} \end{cases} .$

Esercizio 3. (6 pt)

Consideriamo la ricorrenza $a_n=-3a_{n-1}-2a_{n-2}+2n+\frac{5}{3},$ per $n\geq 2.$ a. Dimostrare che $a_n=\frac{n+2}{3},$ $n\geq 0,$ è una soluzione della ricorrenza.

- **b.** Trovare tutte le soluzioni della ricorrenza.
- c. Trovare la soluzione con $a_0 = -\frac{1}{3}$ e $a_1 = 1$, e calcolare a_0, a_1, a_2 e a_3 usando la ricorrenza e la risposta.

Esercizio 4. (6 pt)

- a. Quanti $x \in \mathbb{Z}$ con $11111 \le x \le 99999$ esistono con le cifre pari distinte e x divisibile per 4.
- **b.** Quanti numeri $x \in \mathbb{Z}$ con $1560 \le x \le 13260$ sono divisibili per 24, 70 o 195.
- **c.** Quante soluzioni ci sono dell'equazione $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 800$, dove $x_1, \ldots, x_6 \in \mathbb{Z}$ e $x_1, \ldots, x_6 \ge 0$, con $100 \le x_1 \le 201$, $x_3 \ge 60$, $x_5 \ge 40$, $200 \le x_6 \le 300 \text{ e } x_1 \ne x_6.$

Esercizio 5. (5 pt)

Quanti bit string di lunghezza 30 ci sono tali che

- a. il bit string corrispondente alle prime venti posizioni contiene esattamente due 0.
- b. il bit string ha almeno venti 0 e almeno sette 1, inoltre si deve avere che il bit string corrispondente alle prime dieci posizioni contiene otto 0 e il bit string corrispondente alle ultime quindici posizioni contiene almeno cinque 1.
- c. il bit string corrispondente alle prime nove posizioni contiene esattamente sei 1 e il bit string corrispondente alle ultime quindici posizioni contiene lo string 0100001 come sotto-string.

Esercizio 6. (2 pt)

Quanti anagrammi si possono fare con la parola VALOROSENILDI tali che nessuna delle lettere I, S e V si trovi nella parola nuova nello stesso posto che occupava nella parola orginale.

Esercizio 7. (3 pt)

- **7.1** Il numero (111000222000333000444444000333000222000111)₉ è
 - (A) divisibile per 10 ma non per 13,
- (C) divisibile per 10 e per 13,
- (B) divisibile per 13 ma non per 10,
- (D) non divisibile né per 10, né per 13.
- **7.2** Il coefficiente davanti ad x^{21} in $(55 \frac{x}{121})^{45}$ è

(A)
$$5^{24} \left(\frac{1}{11}\right)^{42} \left(\begin{array}{c} 45 \\ 21 \end{array}\right)$$
, (B) $5^{24} \left(\frac{1}{11}\right)^{21} \left(\begin{array}{c} 45 \\ 24 \end{array}\right)$, (C) $-5^{21} \left(\frac{1}{11}\right)^{24} \left(\begin{array}{c} 45 \\ 21 \end{array}\right)$, (D) $-5^{24} \left(\frac{1}{11}\right)^{18} \left(\begin{array}{c} 45 \\ 24 \end{array}\right)$.

7.3 Il resto della divisione di 235^{12345} per 57 è:

(A) 1,(C) 3,(D) 4.

Per gli esercizi 1, 2, 3, 4, 5 e 6 le risposte devono essere giustificate. Per l'esercizio 7, dove ogni parte vale 1 punto, basta solo rispondere. Ogni scorrettezza durante la prova comporterà l'immediato annullamento della prova e altre sanzioni in accordo con la presidenza del corso di Laurea.