Lecture 13 Image Blending

Dr. Xiran Cai

Email: caixr@shanghaitech.edu.cn

Office: 3-438 SIST

Tel: 20684431

ShanghaiTech University

Long history of fake images

Long history of fake images

Long history of fake images

Hard edge composition vs Pyramid Blending

Hard compositing

☐ Hard compositing:

$$I(x,y) = M(x,y)S(x,y) + (1 - M(x,y))T(x,y)$$
$$= \begin{cases} S(x,y) & M(x,y) = 1 \\ T(x,y) & M(x,y) = 0 \end{cases}$$

☐ Generally bad: seam/matte line is visible

Weighted transition region

Weighted transition region

Good window size

- ☐ Better idea: Multi-resolution blending with a Laplacian pyramid.
- ➤ Idea: wide transition regions for low-frequency component, narrow transition regions for high-frequency component (edges).
- Gaussian pyramid:

G = 5x5 Gaussian filter

 I_0 = original image (full resolution)

Convolution

Get a series of smaller and blurry images.

What does blurring take away?

What does blurring take away?

What does blurring take away?

☐ Difference of Gaussian at each scale:

High-pass image at scale i \longrightarrow $L_i = I_i - (G * I_i) \downarrow 2$ \longleftarrow Blurred version of level i Gaussian pyramid image at scale i

 $\{L_i\}$ = the set of L_i form. A Laplacian pyramid L_1 , L_2 , L_3 ..., L_n

☐ We can recover the original as:

$$I = \sum_{i=0}^{N} (L_i) \uparrow$$

 $\{L_i\}$ = the set of L_i form. A Laplacian pyramid L_1 , L_2 , L_3 ..., L_n

Season blending

Season blending

Target image

Source image

Target image with editing region

Result of pyramid blending

Poisson image editing

- A better idea: to reduce the color mismatch between source and target, create composite in gradient domain.
- lacksquare We want the gradient of the composite inside Ω to look as close as possible to the source image gradient. The composite must match target image on the boundary $\partial \Omega$.

$$\min_{I(x,y)\in\Omega} \|\nabla I(x,y) - \nabla S(x,y)\|^2 dxdy$$

$$s.t.I(x,y) = T(x,y) \text{ on } \partial\Omega$$

Poisson image editing

Solution for this Pb:

$$abla^2 I(x,y) =
abla^2 S(x,y) \ in \ \Omega$$
 $I(x,y) = T(x,y) \ \text{on} \ \partial \Omega$

- Poisson equation
- Discretizing and solving the problem:

B A

 \triangleright 1) For a pixel A inside Ω ,

$$\nabla^{2}I(x,y) = \nabla^{2}S(x,y)$$

$$\uparrow \qquad \uparrow$$

$$I(x+1,y)+I(x,y+1)+S(x+1,y)+S(x,y+1)+$$

$$I(x-1,y)+I(x,y-1)-S(x-1,y)+S(x,y-1)-$$

$$4*I(x,y) \qquad 4*S(x,y)$$

Poisson image editing

 \square For a pixel B not inside Ω (whose neighbor is Ω).

$$\nabla^{2}I(x,y) = \nabla^{2}S(x,y)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$I(x+1,y)+I(x,y+1)+ (..) \qquad \qquad S(x+1,y)+S(x,y+1)+$$

$$T(x-1,y)+T(x,y-1)- (xx) \qquad \qquad S(x-1,y)+S(x,y-1)-$$

$$4*I(x,y) \qquad \qquad 4*S(x,y)$$

Big linear system: so in all there will be N unknowns and N

equations that can be divided into 3 different groups

row

5 non-zeros values in a row	$\begin{bmatrix} -4 \\ 1 \end{bmatrix}$	1 -4	0 1	 _ 0 _	0	1 0	0 1		$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$		$egin{array}{ccc} ar{ abla}^2 S_1 \ ar{ abla}^2 S_2 \end{array}$	Group 1: $A \in \Omega$
3 non-zeros values in a row		1 -	-4	1	: 0 :		0	0	0	:	II	$ abla^2 S_n - \sum_{i=1}^{n} T_n abla^i$	Group 2: $B \in \partial \Omega \cap \Omega$
1 non-zeros value in a	L 0	- 0 -		- T	0	70	-0 -	0	0	I_N		T_N	Group 3: $\mathrm{C} \in \partial \Omega$

Source image

Target image

Poisson image editing result

Take home message

- ☐ Pyramid image blending is able to merge two images with similar background, but it is not robust for color mismatch.
- □ Poisson image edit is more powerful on image blending Pbs with variations on background color.

