ъ.				
	91	n	Δ	٠

1. Prove or give a counterexample: Let $T_1: V \to V$ be a linear transformation with eigenvalue λ_1 and $T_2: V \to V$ be a linear transformation with eigenvalue λ_2 . Then $\lambda_1 + \lambda_2$ is always an eigenvalue for $T_1 + T_2$.

2. Prove or give a counterexample: Let $T: V \to V$ be a linear transformations with eigenvalue λ . Then λ^k is always an eigenvalue of T^k for any positive integer k.