Вспоминаем линейную алгебру. Скорости сходимости.

Семинар

Оптимизация для всех! ЦУ

♥ C Ø

ullet Наивный matmul $\mathcal{O}(n^3)$, наивный matvec $\mathcal{O}(n^2)$

- ullet Наивный matmul $\mathcal{O}(n^3)$, наивный matvec $\mathcal{O}(n^2)$
- Все матрицы имеют SVD

$$A = U \Sigma V^T$$

- Наивный matmul $\mathcal{O}(n^3)$, наивный matvec $\mathcal{O}(n^2)$
- Все матрицы имеют SVD

$$A = U \Sigma V^T$$

• tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA) для любых матриц ABCD, если умножение определено.

- Наивный matmul $\mathcal{O}(n^3)$, наивный matvec $\mathcal{O}(n^2)$
- Все матрицы имеют SVD

$$A = U \Sigma V^T$$

- tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA) для любых матриц ABCD, если умножение определено.
- $\langle A, B \rangle = \operatorname{tr}(A^T B)$

Скорости сходимости

Рис. 1: Иллюстрация различных скоростей сходимости

• Линейная (геометрическая, экспоненциальная) сходимость:

$$r_k \le Cq^k, \quad 0 < q < 1, C > 0$$

େ ପ ବ

Скорости сходимости

Рис. 1: Иллюстрация различных скоростей сходимости

• Линейная (геометрическая, экспоненциальная) сходимость:

$$r_k \le Cq^k, \quad 0 < q < 1, C > 0$$

• Любая сходящаяся последовательность, которая медленнее (быстрее) любой линейно сходящейся последовательности, имеет сублинейную (сверхлинейную) сходимость

େ♥େଉ

Скорости сходимости

Рис. 1: Иллюстрация различных скоростей сходимости

• Линейная (геометрическая, экспоненциальная) сходимость:

$$r_k \le Cq^k, \quad 0 < q < 1, C > 0$$

- Любая сходящаяся последовательность, которая медленнее (быстрее) любой линейно сходящейся последовательности, имеет сублинейную (сверхлинейную) сходимость
- Инфимум всех $0 \le q < 1$ таких, что $r_k \le Cq^k$ называется константой линейной сходимости, и q^k называется скоростью сходимости.

Пусть $\{r_k\}_{k=m}^{\infty}$ - последовательность неотрицательных чисел, сходящаяся к нулю, и пусть

$$q = \lim_{k \to \infty} \sup_{k} \ r_k^{1/k}$$

ullet Если $0 \leq q < 1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой q.

$$q = \lim_{k \to \infty} \sup_{k} \ r_k^{1/k}$$

- Если $0 \le q < 1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой q.
- В частности, если q=0, то $\{r_k\}_{k=m}^{\infty}$ имеет сверхлинейную сходимость.

$$q = \lim_{k \to \infty} \sup_{k} \ r_k^{1/k}$$

- ullet Если $0 \leq q < 1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой q.
- ullet В частности, если q=0, то $\{r_k\}_{k=m}^\infty$ имеет сверхлинейную сходимость.
- Если q = 1, то $\{r_k\}_{k=m}^{\infty}$ имеет сублинейную сходимость.

$$q = \lim_{k \to \infty} \sup_{k} \ r_k^{1/k}$$

- Если $0 \le q < 1$, то $\{r_k\}_{k=m}^{\infty}$ имеет линейную сходимость с константой q.
- ullet В частности, если q=0, то $\{r_k\}_{k=m}^\infty$ имеет сверхлинейную сходимость.
- Если q = 1, то $\{r_k\}_{k=m}^{\infty}$ имеет сублинейную сходимость.
- Случай q > 1 невозможен.

Пусть $\{r_k\}_{k=m}^{\infty}$ - последовательность строго положительных чисел, сходящаяся к нулю, и пусть

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

ullet Если существует q и $0 \leq q < 1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой q.

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- Если существует q и $0 \le q < 1$, то $\{r_k\}_{k=m}^{\infty}$ имеет линейную сходимость с константой q.
- В частности, если q=0, то $\{r_k\}_{k=m}^{\infty}$ имеет сверхлинейную сходимость.

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- ullet Если существует q и $0 \leq q < 1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой q.
- ullet В частности, если q=0, то $\{r_k\}_{k=m}^\infty$ имеет сверхлинейную сходимость.
- ullet Если q не существует, но $q=\lim_{k o\infty}\sup_krac{r_{k+1}}{r_k}<1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой, не превышающей q.

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- ullet Если существует q и $0 \leq q < 1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой q.
- В частности, если q=0, то $\{r_k\}_{k=m}^\infty$ имеет сверхлинейную сходимость.
- ullet Если q не существует, но $q=\lim_{k o\infty}\sup_krac{r_{k+1}}{r_k}<1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой, не превышающей q.
- ullet Если $\lim_{k o\infty}\inf_krac{r_{k+1}}{r_k}=1$, то $\{r_k\}_{k=m}^\infty$ имеет сублинейную сходимость.

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- ullet Если существует q и $0 \leq q < 1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой q.
- В частности, если q=0, то $\{r_k\}_{k=m}^\infty$ имеет сверхлинейную сходимость.
- ullet Если q не существует, но $q=\lim_{k o\infty}\sup_krac{r_{k+1}}{r_{L}}<1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой, не превышающей q.
- Если $\lim_{k\to\infty}\inf_k\frac{\overline{r}_{k+1}}{r_k}=1$, то $\{r_k\}_{k=m}^\infty$ имеет сублинейную сходимость. Случай $\lim_{k\to\infty}\inf_k\frac{\overline{r}_{k+1}}{r_k}>1$ невозможен.

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- ullet Если существует q и $0 \leq q < 1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой q.
- В частности, если q=0, то $\{r_k\}_{k=m}^\infty$ имеет сверхлинейную сходимость.
- ullet Если q не существует, но $q=\lim_{k o\infty}\sup_krac{r_{k+1}}{r_k}<1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой, не превышающей q.
- Если $\lim_{k\to\infty}\inf_k\frac{\bar{r}_{k+1}}{r_k}=1$, то $\{r_k\}_{k=m}^\infty$ имеет сублинейную сходимость. Случай $\lim_{k\to\infty}\inf_k\frac{\bar{r}_{k+1}}{r_k}>1$ невозможен.
- ullet В остальных случаях (т.е., когда $\lim_{k o\infty}\inf_krac{r_{k+1}}{r_k}<1\leq\lim_{k o\infty}\sup_krac{r_{k+1}}{r_k}$) мы не можем сделать никаких конкретных утверждений о скорости сходимости $\{r_k\}_{k=m}^{\infty}$.

Предположим, у вас есть следующее выражение

$$b = A_1 A_2 A_3 x,$$

где $A_1,A_2,A_3\in\mathbb{R}^{3 imes 3}$ - случайные квадратные плотные матрицы, и $x\in\mathbb{R}^n$ - вектор. Вам нужно вычислить b.

Какой способ лучше всего использовать?

1. $A_1 A_2 A_3 x$ (слева направо)

Проверьте простой 🗣 код после вашего интуитивного ответа.

େ ଚେ 💎

Предположим, у вас есть следующее выражение

$$b = A_1 A_2 A_3 x,$$

где $A_1,A_2,A_3\in\mathbb{R}^{3 imes 3}$ - случайные квадратные плотные матрицы, и $x\in\mathbb{R}^n$ - вектор. Вам нужно вычислить b.

Какой способ лучше всего использовать?

- 1. $A_1 A_2 A_3 x$ (слева направо)
- 2. $(A_1(A_2(A_3x)))$ (справа налево)

Проверьте простой 🗣 код после вашего интуитивного ответа.

େ ଚେ 💎

Предположим, у вас есть следующее выражение

$$b = A_1 A_2 A_3 x,$$

где $A_1,A_2,A_3\in\mathbb{R}^{3 imes 3}$ - случайные квадратные плотные матрицы, и $x\in\mathbb{R}^n$ - вектор. Вам нужно вычислить b.

Какой способ лучше всего использовать?

- 1. $A_1 A_2 A_3 x$ (слева направо)
- 2. $(A_1(A_2(A_3x)))$ (справа налево)
- 3. Не имеет значения

Проверьте простой 🗣 код после вашего интуитивного ответа.

Предположим, у вас есть следующее выражение

$$b = A_1 A_2 A_3 x,$$

где $A_1,A_2,A_3\in\mathbb{R}^{3 imes 3}$ - случайные квадратные плотные матрицы, и $x\in\mathbb{R}^n$ - вектор. Вам нужно вычислить b.

Какой способ лучше всего использовать?

- 1. $A_1 A_2 A_3 x$ (слева направо)
- 2. $(A_1(A_2(A_3x)))$ (справа налево)
- 3. Не имеет значения
- 4. Результаты первых двух вариантов не будут одинаковыми.

Проверьте простой 🕏 код после вашего интуитивного ответа.

⊕ 0 ∅

Задача 2. Связь между Фробениусовой нормой и сингулярными значениями.

Пусть $A \in \mathbb{R}^{m \times n}$, и пусть $q := \min\{m,n\}$. Докажите, что

$$||A||_F^2 = \sum_{i=1}^q \sigma_i^2(A),$$

где $\sigma_1(A) \ge ... \ge \sigma_q(A) \ge 0$ - сингулярные значения матрицы A. Подсказка: используйте связь между Фробениусовой нормой и скалярным произведением и SVD.

Задача 3. Знайте свое скалярное произведение.

Упростите следующее выражение:

$$\sum_{i=1}^{n} \langle S^{-1} a_i, a_i \rangle,$$

где
$$S = \sum\limits_{i=1}^n a_i a_i^T, a_i \in \mathbb{R}^n, \det(S) \neq 0$$

•
$$r_k = \frac{1}{3^k}$$

- $r_k = \frac{1}{3^k}$ $r_k = \frac{4}{3^k}$

- $r_k = \frac{1}{3^k}$
- $r_k = \frac{4}{3^k}$ • $r_k = \frac{1}{k^{10}}$

- $r_k = \frac{1}{3^k}$
- $r_k = \frac{4}{3k}$
- $r_k = \frac{1}{k^{10}}$ $r_k = 0.707^k$

- $r_k = \frac{1}{3^k}$ • $r_k = \frac{4}{3k}$
- $r_k = \frac{1}{k^{10}}$
- $r_k = 0.707^k$
- $r_k = 0.707^{2^k}$

Задача 5. Один тест проще, чем другой.

$$r_k = \frac{1}{k^k}$$

Задача 6. Сверхлинейно, но не квадратично.

Покажите, что следующая последовательность не имеет квадратичной сходимости.

$$r_k = \frac{1}{3^{k^2}}$$

LoRA: Low-Rank Adaptation of Large Language Models (arXiv:2106.09685)

Поскольку современные LLM слишком большие, чтобы вместиться в память среднего пользователя, мы используем некоторые трюки, чтобы сделать их потребление памяти меньше. Одним из наиболее популярных трюков является LoRA (Low-Rank Adaptation of Large Language Models).

Предположим, у нас есть матрица $W \in \mathbb{R}^{d imes k}$ и мы хотим выполнить следующее обновление:

$$W = W_0 + \Delta W.$$

Основная идея LoRA состоит в том, чтобы разложить обновление ΔW на две низкоранговые матрицы:

$$\begin{split} W = W_0 + \Delta W = W_0 + BA, \quad B \in \mathbb{R}^{d \times r}, A \in \mathbb{R}^{r \times k}, \\ rank(A) = rank(B) = r \ll \min\{d, k\}. \end{split}$$

Проверьте **Р** ноутбук для примера реализации LoRA.

Рис. 2: Иллюстрация LoRA

