ТЕОРІЯ КЕРУВАННЯ

У ваших руках конспект семінарських занять з нормативного курсу "Теорія керування", прочитаного доц., д.ф.-м.н. Пічкуром Володимиром Володимировичем на третьому курсі спеціальності прикладна математика факультету комп'ютерних наук та кібернетики Київського національного університету імені Тараса Шевченка восени 2018-го року.

Конспект у компактній формі відображає матеріал курсу, допомагає сформувати загальне уявлення про предмет вивчення, правильно зорієнтуватися в даній галузі знань. Конспект лекцій з названої дисципліни сприятиме більш успішному вивченню дисципліни, причому більшою мірою для студентів заочної форми, екстернату, дистанційного та індивідуального навчання.

Упорядник безмежно вдячний Живолович Олександрі та Мельник Катерині а також решті групи ОМ-3, чиї безцінні конспекти лягли в основу цього збірника, та Антиповій Алісі за верстку частини задач.

Структура конспекту наступна: задачі розділені за темами (section), кожна тема містить три частини (subsection):

- 1. Алгоритми типові задачі теми із загальними алгоритмами розв'язування.
- 2. Аудиторне заняття задачі, що пропонувалися для роботи на семінарі, абсолютна більшість із розв'язаннями.
- 3. Домашнє завдання задачі, які пропонувалися (не всі) на домашню роботу, майже всі із розв'язаннями.

Комп'ютерний набір та верстка – Скибицький Нікіта Максимович.

Зміст

1	Сис	стеми керування. Постановка задачі оптимального керуван-			
	ня		5		
	1.1	Алгоритми	5		
	1.2	Аудиторне заняття	7		
	1.3	Домашне завдання	13		
2	Еле	ементи багатозначного аналізу. Множина досяжності	17		
	2.1	Алгоритми	17		
	2.2	Аудиторне заняття	19		
	2.3	Домашнє завдання	24		
3	Задача про переведення системи з точки в точку. Критерії ке-				
	ров	ваності лінійної системи керування	30		
	3.1	Алгоритми	30		
	3.2	Аудиторне заняття	32		
	3.3	Домашнє завдання	39		
4	Критерії спостережуваності. Критерій двоїстості				
	4.1	Алгоритми	49		
	4.2	Аудиторне заняття	51		
	4.3	Домашнє завдання	57		
5	Задача фільтрації. Множинний підхід				
	5.1	Алгоритми	61		
	5.2	Аудиторне заняття	62		
	5.3	Домашне завдання	66		
6	Варіаційний метод в задачі оптимального керування				
	6.1	Алгоритми	68		
	6.2	Аудиторне заняття	70		
	6.3	Домашне завдання	76		
7	Принцип максимуму Понтрягіна для задачі з вільним правим				
	_	цем	83		
	7.1	Алгоритми	83		
	7.2	Аудиторне заняття	84		
	7.3		89		

8	Принцип максимуму Понтрягіна: загальний випадок				
	8.1	Алгоритми	96		
	8.2	Аудиторне заняття	99		
	8.3	Домашнє завдання	106		
9	Дискретний варіант методу динамічного програмування				
		Алгоритми	108		
		Аудиторне заняття	109		
	9.3	Домашне завдання	114		
10) Метод динамічного програмування				
		Алгоритми	115		
		Аудиторне заняття	116		
		Домашне завдання	117		

1 Системи керування. Постановка задачі оптимального керування

1.1 Алгоритми

Задача. Задана лінійна система керування

$$\dot{x}(t) = A(t) \cdot x(t) + B(t) \cdot u(t),$$

де $x\in\mathbb{R}^n$ – вектор фазових координат, $A\in\mathbb{R}^{n\times n},\,u\in\mathbb{R}^m$ – відоме керування, $B\in\mathbb{R}^{n\times m},\,$ з початковими умовами

$$x(t_0) = x_0,$$

де $t_0 \in \mathbb{R}^1$, $x_0 \in \mathbb{R}^n$. Необхідно:

- 1. Визначити клас керування: програмне чи з оберненим зв'язком.
- 2. Знайти траєкторію системи що відповідає заданому керуванню.
- 3. Звести задане керування до програмного.
- 4. Перевірити траєкторію на неперервну диференційованість.
- 5. Порівняти задане керування з іншим керуванням відносно заданого критерію якості

$$\mathcal{J} = \int_{t_0}^T f \, \mathrm{d}t + \Phi(T) \to \min,$$

де
$$\mathcal{J}=\mathcal{J}(u)\in\mathbb{R}^1,\,f=f(x,u,t)\in\mathbb{R}^1,\,\Phi(T)=\Phi(x(T))\in\mathbb{R}^1,\,T\in\mathbb{R}^1.$$

- 6. Знайти фундаментальну матрицю системи, нормовану за моментом s, де $s \in \mathbb{R}^1.$
- 7. Побудувати спряжену систему.

Алгоритм 1.1. Розглянемо всі пункти задачі вище.

- 1. Якщо u не залежить від x то керування програмне, інакше з оберненим зв'язком.
- 2. Розв'язується система з підставленим u.
- 3. Замінюється x у визначенні u на знайдену у попередньому пункті траєкторію.

- 4. Задача математичного аналізу.
- 5. Обчислюється значення критерію якості на обох керуваннях і порівнюється.
- 6. (a) Пошук матриці задача диференційних рівнянь, або знаходимо з системи $\dot{\Theta}(t,s) = A(t) \cdot \Theta(t,s)$.
 - (б) Нормування за моментом s полягає у підборі констант як функцій від s так, щоб $\Theta(s,s)=E$.

Задача. Звести задачу Лагранжа/Больца вигляду

$$\mathcal{J} = \int_{t_0}^T f \, \mathrm{d}t + \Phi(T) \to \inf$$

за умов

$$\dot{x}(t) = A(t) \cdot x(t) + B(t) \cdot u(t)$$

до задачі Майєра.

Алгоритм 1.2. 1. Вводиться змінна

$$x_{n+1}(t) \stackrel{\text{def}}{=} \int_{t_0}^t f \, \mathrm{d}t.$$

2. Тоді

$$\mathcal{J} = x_{n+1}(T) + \Phi(T) \to \inf$$
.

3. До системи додається умова

$$\dot{x}_{n+1} = f.$$

1.2 Аудиторне заняття

Задача 1.1. Задана скалярна система керування

$$\frac{dx(t)}{dt} = u(t), \quad x(0) = 1.$$
 (1.1)

Тут x – стан системи, $t \in [0,1]$. Керування задане у вигляді

$$u(x) = ax. (1.2)$$

Тут a — скалярний параметр.

- 1. Знайти траєкторію системи (1.1) при керуванні (1.2).
- 2. Знайти програмне керування u(t) = ax(t), яке відповідає знайденій траєкторії.
- 3. Оцінити, при якому значення параметра $a \in \{2,4,-3\}$ критерій якості

$$\mathcal{J}(u) = x^2(1)$$

буде мати менше значення.

Розв'язок. 1. Підставляючи керування (1.2) у систему (1.1), отримаємо систему

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = ax(t), \quad x(0) = 1.$$

Ïї розв'язок має вигляд

$$x(t) = x(0) \cdot e^{at} = e^{at}.$$

2. Просто підставляємо знайдену у попередньому пункті траєкторію у вигляд (1.2) керування:

$$u(t) = ax(t) = a \cdot e^{at}$$
.

3. Множина $\{2,4,-3\}$ скінченна, тому можна просто перебрати всі її елементи та обчислити значення критерію якості на кожному з них:

$$\begin{split} \mathcal{J}(u)|_{a=2} &= x^2(1) = \left. e^{2at} \right|_{t=1} = e^4, \\ \mathcal{J}(u)|_{a=4} &= x^2(1) = \left. e^{2at} \right|_{t=1} = e^8, \\ \mathcal{J}(u)|_{a=-3} &= x^2(1) = \left. e^{2at} \right|_{t=1} = e^{-6}. \end{split}$$

Найменшим з цих значень є e^{-6} яке досягається при a=-3.

Задача 1.2. Задана система керування

$$\begin{cases} \frac{\mathrm{d}x_1(t)}{\mathrm{d}t} = x_1(t) + x_2(t) + u(t), \\ \frac{\mathrm{d}x_2(t)}{\mathrm{d}t} = -x_1(t) + x_2(t) + u(t), \end{cases} x_1(0) = 2, x_2(0) = 1.$$
 (1.3)

Тут $x=(x_1,x_2)^*$ – вектор фазових координат з $\mathbb{R}^2,\,t\in[0,T]$. Керування задане у вигляді

$$u(x_1, x_2) = 2x_1 + x_2. (1.4)$$

- 1. Знайти траєкторію системи (1.3) при керуванні (1.4).
- 2. Знайти програмне керування $u(t) = 2x_1(t) + x_2(t)$, яке відповідає знайденій траєкторії.
- 3. Якою буде фундаментальна матриця, нормована за моментом s, системи. що одержана при підстановці керування (1.4) у систему (1.3)?
- 4. Побудувати спряжену систему до системи, одержаної при підстановці керування (1.4) у систему (1.3), та її фундаментальну матрицю.

Розв'язок. 1. Підставляючи керування (1.4) у систему (1.3), отримаємо систему

$$\begin{cases} \frac{\mathrm{d}x_1(t)}{\mathrm{d}t} = 3x_1(t) + 2x_2(t), \\ \frac{\mathrm{d}x_2(t)}{\mathrm{d}t} = x_1(t) + 2x_2(t), \end{cases} x_1(0) = 2, x_2(0) = 1.$$

Її розв'язок

$$\begin{cases} x_1(t) = 2e^{4t}, \\ x_2(t) = e^{4t}. \end{cases}$$

2. Просто підставляємо знайдену у попередньому пункті траєкторію у вигляд (1.4) керування:

$$u(t) = 2x_1(t) + x_2 = 2 \cdot (2e^{4t}) + e^{4t} = 5e^{4t}.$$

3. Враховуючи, що загальним розв'язком системи (1.3) з підставленим керуванням (1.4) ϵ

$$\begin{cases} x_1(t) = c_1 e^t + 2c_2 e^{4t}, \\ x_2(t) = -c_1 e^t + c_2 e^{4t}. \end{cases}$$

Це означає, що фундаментальна матриця цієї системи матиме вигляд

$$\Theta(t) = \begin{pmatrix} c_{11}e^t + 2c_{12}e^{4t} & c_{21}e^t + 2c_{22}e^{4t} \\ -c_{11}e^t + c_{12}e^{4t} & -c_{21}e^t + c_{22}e^{4t} \end{pmatrix}$$

Залишається пронормувати її за моментом s, тобто знайти такі $c_{11}(s)$, $c_{12}(s)$, $c_{21}(s)$, $c_{22}(s)$, що $\Theta(s,s)=E$. Коли це зробити, то отримаємо

$$\Theta(t,s) = \frac{1}{3} \begin{pmatrix} e^{t-s} + 2e^{4(t-s)} & -2e^{t-s} + 2e^{4(t-s)} \\ e^{t-s} - e^{4(t-s)} & 2e^{t-s} + e^{4(t-s)} \end{pmatrix}$$

4. Спряжена система буде

$$\begin{cases} \frac{\mathrm{d}z_1(t)}{\mathrm{d}t} = -3z_1(t) - z_2(t), \\ \frac{\mathrm{d}z_2(t)}{\mathrm{d}t} = -2z_1(t) - 2z_2(t), \end{cases}$$

а відповідна фундаментальна матриця

$$\Psi(t,s) = \Theta^*(s,t) = \frac{1}{3} \begin{pmatrix} e^{s-t} + 2e^{4(s-t)} & e^{s-t} - e^{4(s-t)} \\ -2e^{s-t} + 2e^{4(s-t)} & 2e^{s-t} + e^{4(s-t)} \end{pmatrix}$$

Задача 1.3. Розглядається задача Больца

$$\mathcal{J}(u) = \int_0^1 u^2(s) \, \mathrm{d}s + (x(1) - 2)^2 \to \inf$$

за умови, що

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = x^2(t) + u(t), \quad x(0) = x_0.$$

Тут $x(t) \in \mathbb{R}^1, \ u(t) \in \mathbb{R}^1, \ t \in [0,1]$. Точка $x_0 \in \mathbb{R}^1$ задана. Звести цю задачу до задачі Майєра.

Розв'язок. Введемо нову змінну

$$x_2 = \int_0^t u^2(s) \, \mathrm{d}s,$$

тоді

$$\mathcal{J}(u) = x_2(1) + (x_1(1) - 2)^2 \to \inf,$$

за умов, що

$$\begin{cases} \frac{\mathrm{d}x_1(t)}{\mathrm{d}t} = x_1^2(t) + u(t), \\ \frac{\mathrm{d}x_2(t)}{\mathrm{d}t} = u^2(t). \end{cases} x_1(0) = x_0, x_2(0) = 0.$$

Задача 1.4. Задана система керування

$$\begin{cases} \frac{dx_1(t)}{dt} = 2x_1(t) + x_2(t) + u(t), \\ \frac{dx_2(t)}{dt} = 3x_1(t) + 4x_2(t), \end{cases} x_1(0) = 1, x_2(0) = -1.$$

Тут $x=(x_1,x_2)^*$ – вектор фазових координат з $\mathbb{R}^2,\,t\in[0,2]$. Керування задане у вигляді

$$u(t) = \begin{cases} 0, & \text{якщо } t \in [0, 1], \\ 1, & \text{якщо } t \in (1, 2]. \end{cases}$$

- 1. Знайти траєкторію системи, яка відповідає цьому керуванню.
- 2. Чи буде ця траєкторія неперервно диференційовною?
- 3. Чи буде таке керування кращим в порівнянні з керуванням

$$u(t) = 0, t \in [0, 2]$$

за умови, що критерій якості має вигляд

$$\mathcal{J}(u) = x_1^2(2) + x_2^2(2) \to \min.$$

Розв'язок. 1. При $t \in [0, 1]$ маємо

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

Характеристичне рівняння

$$\begin{vmatrix} 2 - \lambda & 1 \\ 3 & 4 - \lambda \end{vmatrix} = \lambda^2 - 6\lambda + 5 = (\lambda - 1)(\lambda - 5) = 0,$$

звідки $\lambda_1 = 1, \ \lambda_2 = 5.$

З курсу диференційних рівнянь відомо, що тоді загальний розв'язок має вигляд

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 v_1 e^t + c_2 v_2 e^{5t},$$

де v_1, v_2 – власні вектори, що відповідають λ_1 та λ_2 відповідно.

Нескладно бачити, що

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{5t}.$$

Підставляючи t = 0 отримуємо $c_1 = 1, c_2 = 0$.

При $t \in (1,2]$ маємо

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 v_1 e^t + c_2 v_2 e^{5t} + \begin{pmatrix} c_3 \\ c_4 \end{pmatrix},$$

де c_3 , c_4 задовольняють систему

$$\begin{cases} 2c_3 + c_4 + 1 &= 0\\ 3c_3 + 4c_4 &= 0 \end{cases},$$

звідки $c_3 = -4/5$, $c_4 = 3/5$ і

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 v_1 e^t + c_2 v_2 e^{5t} + \begin{pmatrix} -4/5 \\ 3/5 \end{pmatrix},$$

Підставляючи t=1 отримуємо $c_1=\left(1+\frac{3}{4e}\right),\,c_2=\frac{1}{20e^5}.$

Остаточно маємо

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{cases} \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t, & t \in [0, 1] \\ \left(1 + \frac{3}{4e}\right) \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t + \frac{1}{20e^5} \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{5t} + \begin{pmatrix} -4/5 \\ 3/5 \end{pmatrix}, & t \in (1, 2] \end{cases}.$$

2.

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} (1-) = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1(1-) \\ x_2(1-) \end{pmatrix}$$

3 неперервності x_1, x_2 маємо:

$$\begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1(1-) \\ x_2(1-) \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1(1) \\ x_2(1) \end{pmatrix}$$

З іншого боку,

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} (1+) = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1(1+) \\ x_2(1+) \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1(1) \\ x_2(1) \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Нескладно бачити, що

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} (1-) \neq \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} (1+),$$

тобто траєкторія не є неперервно диференційовною в точці 1.

3. Просто підставимо t=2 в розв'язки для обох керувань (попутно зауваживши, що для нового керування розв'язок ми вже знаємо, це просто продовження вже знайденого розв'язку для $t \in [0,1]$):

$$\left(e^2 + \frac{3}{4}e + \frac{e^5}{20} - \frac{4}{5}\right)^2 + \left(-e^2 - \frac{3}{4}e + \frac{3e^5}{20} + \frac{3}{5}\right)^2 \vee (e^2)^2 + (-e^2)^2$$

Після марудних обчислень знаходимо, що права частина менше, тобто нове керування є кращим за початкове.

1.3 Домашне завдання

Задача 1.5. Задана система керування

$$\begin{cases}
\frac{dx_1(t)}{dt} = -8x_1(t) - x_2(t) + u(t), \\
\frac{dx_2(t)}{dt} = 6x_1(t) + 3x_2(t),
\end{cases} x_1(0) = -2, x_2(0) = 1.$$
(1.5)

Тут $x=(x_1,x_2)^*$ – вектор фазових координат з $\mathbb{R}^2,\,t\in[0,1]$. Керування задане у вигляді

$$u(x_1, x_2) = 4x_1 - x_2. (1.6)$$

- 1. До якого класу керувань належить керування (1.6): програмних керувань, чи керувань з оберненим зв'язком?
- 2. Знайти траєкторію системи при керуванні (1.6).
- 3. Знайти програмне керування $u(t) = 4x_1(t) x_2(t)$, яке відповідає знайденій траєкторії.
- 4. Якою буде фундаментальна матриця, нормована за моментом s, системи, що одержана при підстановці керування (1.6) в систему (1.5)?
- 5. Побудувати спряжену систему до системи, одержаної при підстановці керування (1.6) в систему (1.5), та її фундаментальну матрицю.

Розв'язок. 1. 3 оберненим зв'язком.

2.

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} -4 & -2 \\ 6 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

Характеристичне рівняння

$$\begin{vmatrix} -4 - \lambda & -2 \\ 6 & 3 - \lambda \end{vmatrix} = \lambda^2 + \lambda = (\lambda + 1)\lambda = 0,$$

звідки $\lambda_1 = -1, \ \lambda_2 = 0.$

З курсу диференційних рівнянь відомо, що тоді загальний розв'язок має вигляд

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 v_1 e^{-t} + c_2 v_2,$$

де v_1, v_2 – власні вектори, що відповідають λ_1 та λ_2 відповідно.

Нескладно бачити, що

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -2 \end{pmatrix} + c_2 \begin{pmatrix} 2 \\ -3 \end{pmatrix} e^{-t}.$$

Підставляючи t = 0 отримуємо $c_1 = 4, c_2 = -3$.

Остаточно маємо:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ -2 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ -3 \end{pmatrix} e^{-t}.$$

3. Просто підставляємо знайдені $x_1(t), x_2(t)$ в $u(x_1, x_2)$:

$$u(t) = 4\left(4\cdot(1) - 3\cdot(2)\cdot e^{-t}\right) - \left(4\cdot(-2) - 3\cdot(-3)\cdot e^{-t}\right) = 24 - 33e^{-t}.$$

4. З вигляду загального розв'язку бачимо, що вищезгадана фундаментальна матриця матиме вигляд

$$\Theta(t,s) = \begin{pmatrix} c_1 + 2c_2e^{s-t} & c_3 + 2c_4e^{s-t} \\ -2c_1 - 3c_2e^{s-t} & -2c_3 - 3c_4e^{s-t} \end{pmatrix},$$

причому

$$\begin{cases} c_1 + 2c_2 = 1\\ -2c_1 - 3c_2 = 0 \end{cases}$$

(і аналогічна система для c_3 , c_4).

Знаходимо $c_1=-3,\,c_2=2,\,c_3=-2,\,c_4=1$ і підставляємо у матрицю:

$$\Theta(t,s) = \begin{pmatrix} -3 + 4e^{s-t} & -2 + 2e^{s-t} \\ 6 - 6e^{s-t} & 4 - 3e^{s-t} \end{pmatrix},$$

5. Спряжена система буде

$$\begin{pmatrix} \dot{y}_1 \\ \dot{y}_2 \end{pmatrix} = \begin{pmatrix} 4 & -6 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix},$$

а відповідна фундаметальна матриця

$$\Psi(t,s) = \Theta^*(s,t) = \begin{pmatrix} -3 + 4e^{t-s} & 6 - 6e^{t-s} \\ -2 + 2e^{t-s} & 4 - 3e^{t-s} \end{pmatrix},$$

Задача 1.6. Розглядається задача Лагранжа

$$\mathcal{J}(u) = \int_0^T u^2(s) \, \mathrm{d}s \to \inf$$

за умови, що

$$\begin{cases} \frac{dx_1(t)}{dt} = -x_1(t) + x_2(t) + u(t), \\ \frac{dx_2(t)}{dt} = x_1(t)x_2(t), \end{cases} x_1(0) = 0, x_2(0) = 1.$$

Тут $x = (x_1, x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , $t \in [0, T]$. Звести цю задачу до задачі Майєра.

Розв'язок. Введемо нову фазову координату $x_3(t) = \int_0^t u^2(s) \, \mathrm{d}s$, тоді до системи додається початкова умова $x_3(0) = 0$, рівняння $\dot{x}_3 = u^2$, а функціонал якості переписується у вигляді $x_3(T) \to \inf$.

Задача 1.7. Задана система керування

$$\begin{cases} \frac{\mathrm{d}x_1(t)}{\mathrm{d}t} = -x_1(t) - 5x_2(t), \\ \frac{\mathrm{d}x_2(t)}{\mathrm{d}t} = x_1(t) + x_2(t) + u(t), \end{cases} x_1(0) = 0, x_2(0) = 1.$$

Тут $x=(x_1,x_2)^*$ – вектор фазових координат з $\mathbb{R}^2,\,t\in[0,2]$. Керування задане у вигляді

$$u(t) = \begin{cases} 0, & \text{якщо } t \in [0, 1], \\ t, & \text{якщо } t \in (1, 2]. \end{cases}$$

- 1. До якого класу керувань належить таке керування: програмних керувань чи з оберненим зв'язком?
- 2. Знайти траєкторію системи, яка відповідає цьому керуванню.
- 3. Чи буде ця траєкторія неперервно диференційованою?
- 4. Чи буде таке керування кращим в порівнянні з керуванням

$$u(t) = \begin{cases} 0, & \text{якщо } t \in [0, 1], \\ t^2, & \text{якщо } t \in (1, 2], \end{cases}$$

за умови, що критерій якості має вигляд

$$\mathcal{J}(u) = \int_0^2 u^2(s) \, ds + x_1^2(2) + x_2^2(2) \to \min.$$

Розв'язок. 1. Керування програмне бо не залежить від x.

2. При $t \in [0, 1]$ маємо

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} -1 & -5 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

Характеристичне рівняння

$$\begin{vmatrix} -1 - \lambda & -5 \\ 1 & 1 - \lambda \end{vmatrix} = \lambda^2 + 4 = (\lambda - 2i)(\lambda + 2i) = 0,$$

звідки $\lambda_1=-2i,\,\lambda_2=2i.$

З курсу диференційних рівнянь відомо, що тоді загальний розв'язок має вигляд

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 v_1(\cos(2t) - i\sin(2t)) + c_2 v_2(\cos(2t) + i\sin(2t)),$$

де $v_1, \, v_2$ – власні вектори, що відповідають λ_1 та λ_2 відповідно.

Нескладно бачити, що

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 \begin{pmatrix} 2\cos(2t) - \sin(2t) \\ \sin(2t) \end{pmatrix} + c_2 \begin{pmatrix} -5\sin(2t) \\ \sin(2t) + 2\cos(2t) \end{pmatrix}.$$

Підставляючи t = 0 отримуємо $c_1 = 0$, $c_2 = 1/2$.

При $t \in (1,2]$ маємо

..

3.

4.

2 Елементи багатозначного аналізу. Множина досяжності

2.1 Алгоритми

Задача. Знайти

- 1. A + B;
- $2. \lambda A;$
- 3. $\alpha(A,B)$;
- 4. MA,

де множини $A\subset\mathbb{R}^m,\,B\subset\mathbb{R}^m,$ скаляр $\lambda\in\mathbb{R}^1,$ матриця $M\in\mathbb{R}^{n\times m}.$

Алгоритм 2.1. Розглянемо всі пункти задачі вище.

1. Знаходимо за визначенням,

$$A+B=\{a+b|a\in A,b\in B\}.$$

2. Знаходимо за визначенням,

$$\lambda A = \{ \lambda a | a \in A \}.$$

3. (a) Знаходимо $\beta(A,B)$ і $\beta(B,A)$ за визначенням,

$$\beta(A, B) = \max_{a \in A} \rho(a, B),$$

де

$$\rho(a, B) = \min_{b \in B} \rho(a, b).$$

(б) Знаходимо lpha(A,B) за визначенням,

$$\alpha(A, B) = \max\{\beta(A, B), \beta(B, A).$$

4. Знаходимо за визначенням,

$$MA = \{Ma | a \in A\}.$$

 $3a\partial a ua$. Знайти опорну функцію множини $A\subset \mathbb{R}^n$.

Алгоритм 2.2. 1. Намагаємося знайти за визначенням,

$$c(A, \psi) = \max_{a \in A} \langle a, \psi \rangle.$$

2. Якщо не вийшло, то намагаємося знайти за геометричною властивістю: $c(A,\psi)$ - (орієнтована) відстань від початку координат до опорної площини множини A, для якої напрямок-вектор ψ є вектором нормалі.

 $3a\partial a a$. Знайти інтеграл Аумана $\mathcal{J} = \int F \, \mathrm{d}x$, де $F = F(x) \subset \mathbb{R}^n$.

Алгоритм 2.3. 1. Знаходимо опорну функцію від інтегралу:

$$c(\mathcal{J}, \psi) = \int c(F, \psi) \, \mathrm{d}x.$$

- 2. Знаходимо $\mathcal J$ як опуклий компакт з відомою опорною функцією $c(\mathcal J,\psi)$. Задача. Знайти множину досяжності системи $\dot x=Ax+Bu$, де $x(t_0)\in\mathcal M_0$, $u\in\mathcal U$.
- Алгоритм 2.4. 1. Знаходимо фундаментальну матрицю $\Theta(t,s)$ системи нормовану за моментом s.
 - 2. Знаходимо інтеграл Аумана

$$\int_{t_0}^t \Theta(t,s)B(s)\mathcal{U}(s)\,\mathrm{d}s.$$

3. Використовуємо теорему про вигляд множини досяжності лінійної системи керування:

$$\mathcal{X}(t, \mathcal{M}_0) = \Theta(t, t_0) \mathcal{M}_0 + \int_{t_0}^t \Theta(t, s) B(s) \mathcal{U}(s) \, \mathrm{d}s.$$

 $3a\partial a$ ча. Знайти опорну функцію множини досяжності системи $\dot{x}=Ax+Bu$, де $x(t_0)\in\mathcal{M}_0,\ u\in\mathcal{U}.$

- Алгоритм 2.5. 1. Знаходимо фундаментальну матрицю $\Theta(t,s)$ системи нормовану за моментом s.
 - 2. Знаходимо опорну функцію $c(\mathcal{M}_0,\Theta^*(t,t_0)\psi)$.
 - 3. Знаходимо опорну функцію $c(\mathcal{U}(s), B^*(s)\Theta^*(t,s)\psi)$.
 - 4. Використовуємо теорему про вигляд опорної функції множини досяжності лінійної системи керування:

$$c(\mathcal{X}(t,\mathcal{M}_0),\psi) = c(\mathcal{M}_0,\Theta^*(t,t_0)\psi) + \int_{t_0}^t c(\mathcal{U}(s),B^*(s)\Theta^*(t,s)\psi) \,\mathrm{d}s.$$

2.2 Аудиторне заняття

3adaчa 2.1. Знайти A+B і λA , а також метрику Хаусдорфа $\alpha(A,B)$, якщо:

- 1. $A = \{-3, 2, -1\}, B = \{-2, 5, 1\}, \lambda = 3;$
- 2. $A = \{4, 2, -4\}, B = [-2, 3], \lambda = -1;$
- 3. $A = [-1, 2], B = [3, 7], \lambda = -2;$

Розв'язок. 1. За визначенням операції $A+B=\{-5,2,-2,0,7,3,-3,4,0\},$ $\lambda A=\{-9,6,-3\}.$

Метрика Хаусдорфа визначатиметься як

$$\alpha(A, B) = \max\{\beta(A, B), \beta(B, A)\},\$$

в свою чергу $\beta(A,B)$ визначається як максимум з мінімумів відхилень множини, тобто, у нашому випадку, $\beta(A,B)=\max\{1,1,1\};\beta(B,A)=\max\{1,3,1\},$ тоді $\alpha(A,B)=3.$

2. За визначенням операції $A+B=[-6,7],\ \lambda A=\{-4,-2,4\}.$

Метрика Хаусдорфа визначатиметься як

$$\alpha(A, B) = \max\{\beta(A, B), \beta(B, A)\},\$$

в свою чергу $\beta(A,B)$ визначається як максимум з мінімумів відхилень множини, тобто, у нашому випадку, $\beta(A,B) = \max\{1,0,2\}; \beta(B,A) = \max[0,3]$, оскільки -1 відхиляється від найближчих елементів на 3 і це є максимумом, тоді $\alpha(A,B)=3$.

3. За визначенням операції $A+B=[2,9],\ \lambda A=[-4,2].$

Метрика Хаусдорфа визначатиметься як

$$\alpha(A, B) = \max\{\beta(A, B), \beta(B, A)\},\$$

в свою чергу $\beta(A,B)$ визначається як максимум з мінімумів відхилень множини, тобто, у нашому випадку, $\beta(A,B) = \max[1,4]; \beta(B,A) = \max[1,5],$ оскільки відповідні краї відхиляються на 4 та 5 відповідно (-1 від 3 та 7 від 2), тоді $\alpha(A,B) = 5$.

 $3a\partial a$ ча 2.2. Знайти MA, якщо

$$M = \begin{pmatrix} -2 & 4 \\ 3 & 5 \end{pmatrix}, A = \left\{ \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ -4 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \end{pmatrix} \right\}.$$

Розв'язок. За означенням $MA = \{Ma \in \mathbb{R}^m, a \in A\}$, тому

$$\begin{pmatrix} -2 & 4 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 10 \\ 7 \end{pmatrix}; \begin{pmatrix} -2 & 4 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} 3 \\ -4 \end{pmatrix} = \begin{pmatrix} -22 \\ -11 \end{pmatrix}; \begin{pmatrix} -2 & 4 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} -8 \\ -10 \end{pmatrix};$$

Отже, отримаємо

$$MA = \left\{ \begin{pmatrix} 10 \\ 7 \end{pmatrix}, \begin{pmatrix} -22 \\ -11 \end{pmatrix}, \begin{pmatrix} -8 \\ -10 \end{pmatrix} \right\}.$$

 $3a\partial a ua$ 2.3. Знайти опорні функції таких множин:

- 1. A = [0, r];
- 2. A = [-r, r];
- 3. $A = \{(x_1, x_2) : |x_1| \le 1, |x_2| \le 2\};$
- 4. $A = \mathcal{K}_r(0) = \{x \in \mathbb{R}^n : ||x|| \le r\};$
- 5. $A = S^n = \{x \in \mathbb{R}^n : ||x|| = 1\}.$

Розв'язок. 1. За означення опорної функції,

$$c(A,\psi) = \max_{a \in A} \langle a, \psi \rangle = \begin{cases} 0, & \psi < 0 \\ r\psi, & 0 \leq \psi \end{cases} = \max\{0, r\psi\}.$$

2. За означення опорної функції,

$$c(A, \psi) = \max_{a \in A} \langle a, \psi \rangle = \begin{cases} -r\psi, & \psi < 0 \\ r\psi, & 0 \le \psi \end{cases} = r|\psi|.$$

3. За означення опорної функції,

$$c(A, \psi) = \max_{a \in A} \langle a, \psi \rangle = \max_{a \in A} (\psi_1 x_1 + \psi_2 x_2) = |\psi_1| + 2|\psi_2|.$$

4. За властивістю опорної функції (вона дорівнює орієнтованій відстані від початку координат до опорної площини множини A яка відповідає напрямку ψ), маємо $c(\mathcal{K}_r(0), \psi) = r \|\psi\|$.

5. За тією ж властивістю опорної функції маємо $c(\mathcal{S}^n, \psi) = \|\psi\|$.

3a daчa 2.4. Знайти інтеграл Аумана $\mathcal{J} = \int_0^1 F(x) \, \mathrm{d}x$ таких багатозначних відображень:

1.
$$F(x) = [0, x], x \in [0, 1];$$

2.
$$F(x) = \mathcal{K}_x(0) = \{ y \in \mathbb{R}^n : ||y|| \le x \}, x \in [0, 1].$$

Розв'язок. Скористаємося рівністю

$$c\left(\int_0^1 F(x), \psi\right) dx = \int_0^1 c(F(x), \psi) dx,$$

яка виконується в умовах теореми Ляпунова про опуклість інтегралу Аумана.

1.

$$c(\mathcal{J}) = \int_0^1 c([0, x], \psi) dx = \begin{cases} \psi/2, & 0 \le \psi \\ 0, & \psi < 0 \end{cases}.$$

А далі наші знання опорних функцій підказують, що $\mathcal{J} = [0, 1/2]$.

2.

$$c(\mathcal{J}) = \int_0^1 c(\mathcal{K}_x(0), \psi) \, \mathrm{d}x = \int_0^1 x \|\psi\| \, \mathrm{d}x = \|\psi\|/2.$$

А далі наші знання опорних функцій підказують, що $\mathcal{J} = \mathcal{K}_{1/2}(0).$

Задача 2.5. Знайти множину досяжності такої системи керування:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = x + u,$$

де $x(0) = x_0 \in \mathcal{M}_0, u(t) \in \mathcal{U}, t \geq 0,$

$$\mathcal{M}_0 = \{x : |x| \le 1\},$$

$$\mathcal{U} = \{u : |u| \le 1\}.$$

Розв'язок. Скористаємося теоремою про вигляд множини досяжності лінійної системи керування:

$$\mathcal{X}(t, \mathcal{M}_0) = \Theta(t, t_0) \mathcal{M}_0 + \int_{t_0}^t \Theta(t, s) B(s) \mathcal{U}(s) \, \mathrm{d}s.$$

Підставимо вже відомі значення:

$$\mathcal{X}(t, [-1, 1]) = \Theta(t, 0) \cdot [-1, 1] + \int_0^t (\Theta(t, s) \cdot 1 \cdot [-1, 1]) \, \mathrm{d}s,$$

тобто залишилося знайти О. Знайдемо її з системи

$$\frac{d\Theta(t,s)}{dt} = A(t) \cdot \Theta(t,s) = \Theta(t,s).$$

Нескладно бачити, що $\Theta(t,s) = e^{t-s}$, тому

$$\mathcal{X}(t, [-1, 1]) = [-e^t, e^t] + \int_0^t [-e^{t-s}, e^{t-s}] \, \mathrm{d}s =$$

$$= [-e^t, e^t] + [1 - e^t, e^t - 1] = [1 - 2e^t, 2e^t - 1].$$

Задача 2.6. Знайти опорну функцію множини досяжності для системи керування:

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = 2x_1 + x_2 + u_1, \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = 3x_1 + 4x_2 + u_2, \end{cases}$$

де $x(0) = (x_{01}, x_{02}) \in \mathcal{M}_0, u(t) = (u_1(t), u_2(t)) \in \mathcal{U}, t \ge 0,$

$$\mathcal{M}_0 = \{(x_{01}, x_{02}) : |x_{01}| \le 1, |x_{02}| \le 1\},\$$

$$\mathcal{U} = \{(u_1, u_2) : |u_1| \le 1, |u_2| \le 1\}.$$

Розв'язок. Скористаємося теоремою про вигляд опорної функції множини досяжності лінійної системи керування:

$$c(\mathcal{X}(t,\mathcal{M}_0),\psi) = c(\mathcal{M}_0,\Theta^*(t,t_0)\psi) + \int_{t_0}^t c(\mathcal{U}(s),B^*(s)\Theta^*(t,s)\psi) \,\mathrm{d}s.$$

Підставимо вже відомі значення:

$$c(\mathcal{X}(t, [-1, 1]^2), \psi) = c([-1, 1]^2, \Theta^*(t, 0)\psi) + \int_0^t c([-1, 1]^2, (1 \quad 1) \Theta^*(t, s)\psi) \, \mathrm{d}s,$$

тобто залишилося знайти Ө. Знайдемо її з системи

$$\frac{\mathrm{d}\Theta(t,s)}{\mathrm{d}t} = A(t) \cdot \Theta(t,s) = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \Theta(t,s).$$

Нескладно бачити, що

$$\Theta(t,s) = \frac{1}{4} \begin{pmatrix} 3e^{t-s} + e^{5(t-s)} & -e^{t-s} + e^{5(t-s)} \\ -3e^{t-s} + 3e^{5(t-s)} & e^{t-s} + 3e^{5(t-s)} \end{pmatrix}$$

Тому

$$\begin{split} c\left(\mathcal{X}(t,[-1,1]^2),\begin{pmatrix}\psi_1\\\psi_2\end{pmatrix}\right) &= c\left([-1,1]^2,\frac{1}{4}\begin{pmatrix}3e^t+e^{5t} & -3e^t+3e^{5t}\\-e^t+e^{5t} & e^t+3e^{5t}\end{pmatrix}\begin{pmatrix}\psi_1\\\psi_2\end{pmatrix}\right) + \\ &+ \int_0^t c\left([-1,1]^2,\begin{pmatrix}1&0\\0&1\end{pmatrix}\frac{1}{4}\begin{pmatrix}3e^{t-s}+e^{5(t-s)} & -3e^{t-s}+3e^{5(t-s)}\\-e^{t-s}+e^{5(t-s)} & e^{t-s}+3e^{5(t-s)}\end{pmatrix}\begin{pmatrix}\psi_1\\\psi_2\end{pmatrix}\right)\mathrm{d}s = \\ &= c\left([-1,1]^2,\frac{1}{4}\begin{pmatrix}(3e^t+e^{5t})\psi_1+(-3e^t+3e^{5t})\psi_2\\(-e^t+e^{5t})\psi_1+(e^t+3e^{5t})\psi_2\end{pmatrix}\right) + \\ &+ \int_0^t c\left([-1,1]^2,\frac{1}{4}\begin{pmatrix}(3e^{t-s}+e^{5(t-s)})\psi_1+(-3e^{t-s}+3e^{5(t-s)})\psi_2\\(-e^{t-s}+e^{5(t-s)})\psi_1+(e^{t-s}+3e^{5(t-s)})\psi_2\end{pmatrix}\right)\mathrm{d}s = \\ &= \frac{1}{4}\left(\left|(3e^t+e^{5t})\psi_1+(-3e^t+3e^{5t})\psi_2\right|+\left|(-e^t+e^{5t})\psi_1+(e^t+3e^{5t})\psi_2\right|\right) + \\ &+ \frac{1}{4}\int_0^t \left|(3e^{t-s}+e^{5(t-s)})\psi_1+(-3e^{t-s}+3e^{5(t-s)})\psi_2\right|\mathrm{d}s + \\ &+ \frac{1}{4}\int_0^t \left|(-e^{t-s}+e^{5(t-s)})\psi_1+(e^{t-s}+3e^{5(t-s)})\psi_2\right|\mathrm{d}s. \end{split}$$

2.3 Домашне завдання

 $3a\partial a$ ча 2.7. Знайти A+B і λA , а також метрику Хаусдорфа $\alpha(A,B)$, якщо

1.
$$A = \{4, -2, 3\}, B = \{7, -1, 1\}, \lambda = 2;$$

2.
$$A = \{5, -5, 2\}, B = [1, 3], \lambda = -1;$$

3.
$$A = [-4, -2], B = [-1, 5], \lambda = 3;$$

Розв'язок. 1. $A = \{4, -2, 3\}, B = \{7, -1, 1\}, \lambda = 2;$

$$A+B = \{4+7,4-1,4+1,-2+7,-2-1,-2+1,3+7,3-1,3+1\} =$$

$$= \{11,3,5,5,-3,-1,10,2,4\} = \{-3,-1,2,3,4,5,10,11\}.$$

$$\lambda A = \{2\cdot 4,2\cdot -2,2\cdot 3\} = \{8,-4,6\}.$$

$$\begin{split} \alpha(A,B) &= \max\{\beta(A,B),\beta(B,A)\} = \\ &= \max\{\max\{3,1,2\},\max\{3,1,2\}\} = \max\{3,3\} = 3. \end{split}$$

2.
$$A = \{5, -5, 2\}, B = [1, 3], \lambda = -1;$$

$$A + B = (5 + [1,3]) \cup (-5 + [1,3]) \cup (2 + [1,3]) =$$

$$= [6,8] \cup [-4,-1] \cup [3,5] = [-4,-1] \cup [3,5] \cup [6,8].$$

$$\lambda A = \{-1 \cdot 5, -1 \cdot -5, -1 \cdot 2\} = \{-5,5,-2\}.$$

$$\begin{split} \alpha(A,B) &= \max\{\beta(A,B),\beta(B,A)\} = \\ &= \max\{\max\{2,6,0\},\max_{b\in[1,3]}\{|b-2|\}\} = \max\{6,1\} = 6. \end{split}$$

3.
$$A = [-4, -2], B = [-1, 5], \lambda = 3;$$

$$A + B = [-4 - 1, -2 + 5] = [-5, 3].$$

$$\lambda A = [3 \cdot -4, 3 \cdot -2] = [-12, -6].$$

$$\alpha(A,B) = \max\{\beta(A,B), \beta(B,A)\} = \max\{\max\{|-4+1|, |-2+1|\}, \max\{|-1+2|, |5+2|\}\} = \max\{3,7\} = 7.$$

 $3a\partial a$ ча 2.8. Знайти MA, якщо

$$M = \begin{pmatrix} 2 & 1 \\ -5 & 3 \end{pmatrix}, A = \left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -4 \end{pmatrix}, \begin{pmatrix} -3 \\ -2 \end{pmatrix} \right\}.$$

Розв'язок.

$$MA = \left\{ M \begin{pmatrix} -1 \\ 1 \end{pmatrix}, M \begin{pmatrix} 2 \\ -4 \end{pmatrix}, M \begin{pmatrix} -3 \\ -2 \end{pmatrix} \right\} =$$

$$= \left\{ \begin{pmatrix} -1 \\ 8 \end{pmatrix}, \begin{pmatrix} 0 \\ -22 \end{pmatrix}, \begin{pmatrix} -8 \\ 9 \end{pmatrix} \right\}.$$

 $3a\partial a ua$ 2.9. Знайти опорні функції таких множин:

- 1. $A = \{-1, 1\};$
- 2. $A = \{(x_1, x_2, x_3) : |x_1| \le 2, |x_2| \le 4, |x_3| \le 1\};$
- 3. $A = \{a\};$
- 4. $A = \mathcal{K}_r(a) = \{x \in \mathbb{R}^n : ||x a|| \le r\}.$

Розв'язок. 1. За визначенням, $c(A,\psi) = \max_{x \in \{-1,1\}} \langle x, \psi \rangle = \max(-\psi, \psi) = |\psi|.$

- 2. За визначенням, $c(A,\psi)=\max_{\substack{x_1:|x_1|\leq 2\\x_2:|x_2|\leq 4\\x_3:|x_3|\leq 1}}x_1\psi_1+x_2\psi_2+x_3\psi_3=2|\psi_1|+4|\psi_2|+|\psi_3|.$
- 3. За визначенням, $c(A, \psi) = \max_{x \in \{a\}} \langle x, \psi \rangle = \langle a, \psi \rangle$.
- 4. За визначенням,

$$\begin{split} c(A,\psi) &= \max_{x \in \mathbb{R}^n: \|x-a\| \le r} \langle x,\psi \rangle = \max_{y \in \mathbb{R}^n: \|y\| \le r} \langle a+y,\psi \rangle = \\ &= \langle a,\psi \rangle + \max_{y \in \mathbb{R}^n: \|y\| \le r} \langle y,\psi \rangle = \langle a,\psi \rangle + c(\mathcal{K}_r(0),\psi) = \langle a,\psi \rangle + r\|\psi\|. \end{split}$$

 $3a\partial a$ ча 2.10. Знайти інтеграл Аумана $\mathcal{J}=\int_0^{\pi/2}F(x)dx$ таких багатозначних відображень:

- 1. $F(x) = [0, \sin x], x \in [0, \pi/2].$
- 2. $F(x) = [-\sin x, \sin x], x \in [0, \pi/2].$
- 3. $F(x) = \mathcal{K}_{\sin x}(0) = \{ y \in \mathbb{R}^n : ||y|| \le \sin x \}, x \in [0, \pi/2].$

Розв'язок. Скористаємося теоремою про зміну порядку інтегрування і взяття опорної функції:

1.
$$c(\mathcal{J},\psi)=\int_0^{\pi/2}c([0,\sin x],\psi)dx=\int_0^{\pi/2}\max(0,\psi)\sin xdx=\max(0,\psi),$$
 звідки $\mathcal{J}=[0,1].$

2.
$$c(\mathcal{J},\psi)=\int_0^{\pi/2}c([-\sin x,\sin x],\psi)dx=\int_0^{\pi/2}|\psi|\sin xdx=|\psi|,$$
 звідки $\mathcal{J}=[-1,1].$

3.
$$c(\mathcal{J},\psi) = \int_0^{\pi/2} c(\mathcal{K}_{\sin x}(0),\psi) dx = \int_0^{\pi/2} \sin x \|\psi\| dx = \|\psi\|$$
, звідки $\mathcal{J} = \mathcal{K}_1(0)$.

Задача 2.11. Знайти множину досяжності такої системи керування:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = x + bu,$$

де $x(0) = x_0 \in \mathcal{M}_0$, $u(t) \in \mathcal{U}$, $t \ge 0$, b – деяке ненульове число,

$$\mathcal{M}_0 = \{x : |x| \le 2\},\$$

$$\mathcal{U} = \{u : |u| \le 3\}.$$

Розв'язок. Множину досяжності знайдемо через її опорну функцію:

$$c(\mathcal{X}(t,\mathcal{M}_0),\psi) = c(\mathcal{M}_0,\Theta^*(t,t_0)\psi) + \int_{t_0}^t c(\mathcal{U}(s),C^*(s)\Theta^*(t,s)\psi) \,\mathrm{d}s.$$

Для цього послідовно знаходимо:

$$\Theta(t,s)=e^{t-s},$$
 знайдено із рівності $\frac{d\Theta(t,s)}{dt}=A(t)\Theta(t,s)=\Theta(t,s)$ у нашому випадку.

 $c(\mathcal{M}_0,\psi)=c([-2,2],\psi)=2|\psi|$, вже достатньо відома нам опорна функція.

 $c(\mathcal{U}(s),\psi)=c([-3,3],\psi)=3|\psi|,$ ще одна вже достатньо відома нам опорна функція.

Послідовно пісдтавляючи знайдені вирази в формулу вище знаходимо:

$$c(X(t, \mathcal{M}_0), \psi) = c(\mathcal{M}_0, \Theta^*(t, t_0), \psi) + \int_{t_0}^t c(\mathcal{U}(s), C^*(s)\Theta^*(t, s)\psi)ds =$$

$$= c([-2, 2], \Theta^*(t, 0), \psi) + \int_0^t c([-3, 3], b\Theta^*(t, s)\psi)ds =$$

$$= 2 |\Theta^*(t, 0)\psi| + \int_0^t 3 |b\Theta^*(t, s)\psi| ds =$$

$$= 2 |e^t\psi| + \int_0^t 3 |be^{t-s}\psi| ds = 2e^t|\psi| + 3|b\psi| \int_0^t e^{t-s}ds =$$

$$= 2e^t|\psi| + 3|b\psi| (e^t - 1) = (2e^t + 3|b| (e^t - 1)) |\psi|,$$

звідки $\mathcal{X}(t,\mathcal{M}_0)=[-2e^t-3|b|\left(e^t-1
ight),2e^t+3|b|\left(e^t-1
ight)].$

 $\it 3adaua$ 2.12. Знайти опорну функцію множини досяжності для системи керування:

$$\begin{cases} \frac{dx_1}{dt} = x_1 - x_2 + 2u_1, \\ \frac{dx_2}{dt} = -4x_1 + x_2 + u_2, \end{cases}$$

де $x(0) = (x_{01}, x_{02}) \in \mathcal{M}_0, \ u(t) = (u_1(t), u_2(t)) \in \mathcal{U}, \ t \ge 0,$

$$\mathcal{M}_0 = \{(x_{01}, x_{02}) : x_{01}^2 + x_{02}^2 \le 4\},$$

$$\mathcal{U} = \{(u_1, u_2) : u_1^2 + u_2^2 \le 1\}.$$

Розв'язок. Одразу помітимо, що $C = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.

 $\Theta(t,s)$ знайдемо розв'язавши однорідну систему:

$$\begin{cases} \frac{dx_1}{dt} = x_1 - x_2, \\ \frac{dx_2}{dt} = -4x_1 + x_2, \end{cases}$$

Підставляючи знайдені числа у систему, знаходимо власні вектори: $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ та $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ відповідно.

Отже загальний розв'язок має вигляд

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} (t) = c_1 \begin{pmatrix} e^{-t} \\ 2e^{-t} \end{pmatrix} + c_2 \begin{pmatrix} e^{3t} \\ -2e^{3t} \end{pmatrix}$$

Розв'язуючи рівняння

$$c_1 \begin{pmatrix} e^{-s} \\ 2e^{-s} \end{pmatrix} + c_2 \begin{pmatrix} e^{3s} \\ -2e^{3s} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

i

$$c_1 \begin{pmatrix} e^{-s} \\ 2e^{-s} \end{pmatrix} + c_2 \begin{pmatrix} e^{3s} \\ -2e^{3s} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

знаходимо фундаментальну матрицю системи, нормовану за моментом s, а саме

$$\Theta(t,s) = \begin{pmatrix} \frac{e^{s-t} + e^{3(t-s)}}{2} & \frac{e^{s-t} - e^{3(t-s)}}{4} \\ e^{s-t} - e^{3(t-s)} & \frac{e^{s-t} + e^{3(t-s)}}{2} \end{pmatrix}$$

Далі знаходимо $c(\mathcal{M}_0, \psi) = c(\mathcal{K}_2(0), \psi) = 2\|\psi\|$, та $c(\mathcal{U}, \psi) = c(\mathcal{K}_1(0), \psi) = \|\psi\|$, вже достатньо відомі нам опорні функції.

Нарешті, можемо зібрати це все докупи:

$$c(\mathcal{X}(t, \mathcal{M}_0), \psi) = c(\mathcal{M}_0, \Theta^*(t, 0)\psi) + \int_0^t c(\mathcal{U}(s), C^*(s)\Theta^*(t, s)\psi)ds =$$

$$= 2\|\Theta^*(t, 0)\psi\| + \int_0^t \|C^*(s)\Theta^*(t, s)\psi\| ds =$$

$$= 2\left\| \left(\frac{e^{-t} + e^{3t}}{2} - e^{-t} -$$

$$\begin{split} &+ \int_0^t \left\| \left(\frac{e^{s-t} + e^{3(t-s)}}{4} - \frac{2(e^{3(t-s)} - e^{s-t})}{2} \right) \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \right\| \, ds = \\ &= 2 \left\| \left(\frac{e^{-t} + e^{3t}}{2} \cdot \psi_1 + (e^{3t} - e^{-t}) \cdot \psi_2}{4} \cdot \psi_1 + \frac{e^{-t} + e^{3t}}{2} \cdot \psi_2 \right) \right\| + \dots \end{split}$$

3 Задача про переведення системи з точки в точку. Критерії керованості лінійної системи керування

3.1 Алгоритми

 $3a\partial a a$. Перевести систему $\dot{x} = Ax + Bu$ з точки x_0 в точку $x_T \in \mathbb{R}^1$ за допомогою керування з класу K (керування, залежні від вектору параметрів c).

- Алгоритм 3.1. 1. Знаходимо траєкторію системи при заданому керуванні (залежну від параметра c).
 - 2. Знаходимо з отриманого алгебраїчного рівняння параметр $c. \,$
- $3a\partial a$ ча. 1. Знайти грамміан керованості системи $\dot{x} = Ax + Bu$ за визначенням.
 - 2. Записати систему диференційних рівнянь для знаходження грамміана керованості.
 - Використовуючи грамміан керованості, знайти інтервал повної керованості системи.
 - 4. Для цього інтервалу записати керування яке певеродить систему з точки x_0 в точку x_T /розв'язати задачу оптимального керування.

Алгоритм 3.2. Розглянемо всі пункти задачі вище.

- 1. (a) Знаходимо $\Theta(T,s)$.
 - (б) Використовуємо формулу

$$\Phi(T, t_0) = \int_{t_0}^T \Theta(T, s) B(s) B^*(s) \Theta^*(T, s) \, \mathrm{d}s.$$

2. Записуємо систему

$$\dot{\Phi}(t,t_0) = A(t) \cdot \Phi(t,t_0) + \Phi(t,t_0) \cdot A^*(t) + B(t) \cdot B^*(t), \Phi(t_0,t_0) = 0.$$

- 3. Це інтервал на якому $\Phi(t,t_0) \neq 0$.
- 4. Використовуємо формулу

$$u(t) = B^*(t) \cdot \Theta(T, t) \cdot \Phi^{-1}(T, t_0)(x_T - \Theta(T, t_0) \cdot x_0).$$

 $3a\partial a a$. Дослідити стаціонарну систему $\dot{x} = Ax + Bu$ на керованість використовуючи другий критерій керованості.

Алгоритм 3.3. 1. Знаходимо
$$D = \left(B \vdots AB \vdots A^n B \vdots \ldots \vdots A^{n-1} B\right)$$
.

2. Якщо rangD=n то стаціонарна системи цілком керована, інакше ні.

3.2 Аудиторне заняття

Задача 3.1. Перевести систему

$$\frac{\mathrm{d}x}{\mathrm{d}t} = u, \quad t \in [0, T],$$

з точки $x(0) = x_0$ в точку $x(T) = y_0$ за допомогою керування з класу:

- 1. постійних функцій u(t) = c, c константа;
- 2. кусково-постійних функцій

$$u(t) = \begin{cases} c_1, & t \in [0, t_1], \\ c_2, & t \in [t_1, T]. \end{cases}$$

Тут c_1 , c_2 – константи, $c_1 \neq c_2$, $0 < t_1 < T$;

- 3. програмних керувань u(t) = ct, c константа;
- 4. керувань з оберненим зв'язком u(x) = cx, c константа.

Розв'язок. Скористаємося формулою $x(T) = x(0) + \int_0^T \frac{\mathrm{d}x}{\mathrm{d}t} \, \mathrm{d}t$:

1.

$$x(T) = x(0) + \int_0^T c dt = x(0) + cT,$$

звідки

$$c = \frac{x(T) - x(0)}{T} = \frac{y_0 - x_0}{T};$$

2.

$$x(T) = x(0) + \int_0^{t_1} c_1 dt + \int_{t_1}^T c_2 dt = x(0) + c_1 t_1 + c_2 (T - t_1).$$

Розв'язок не єдиний,

$$c_2 = \frac{x(T) - x(0) - c_1 t_1}{T - t_1},$$

де c_1 – довільна стала, наприклад $c_1 = 0$, тоді

$$c_2 = \frac{x(T) - x(0)}{T - t_1} = \frac{y_0 - x_0}{T - t_1}.$$

3.

$$x(T) = x(0) + \int_0^T ct \, dt = x(0) + \frac{cT^2}{2},$$

звідки

$$c = \frac{2(x(T) - x(0))}{T^2} = \frac{2(y_0 - x_0)}{T^2}.$$

4. У цьому випадку проінтегрувати не можна, бо u залежить від x, тому просто запишемо за формулою Коші

$$x(T) = x(0) \cdot e^{cT},$$

звідки

$$c = \frac{\ln(x(T)/x(0))}{T} = \frac{\ln(y_0) - \ln(x_0)}{T}.$$

Варто зауважити, не для всіх пар x_0 і y_0 коректно визначається значення c. А саме, необхідно щоб y_0 було того ж знаку, що і x_0 .

Задача 3.2. 1. Використовуючи означення, знайти грамміан керованості для системи керування

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = tx(t) + \cos(t) \cdot u(t), \quad t \ge 0.$$

- 2. Записати диференціальне рівняння для грамміана керованості і за його допомогою знайти грамміан керованості.
- 3. Використовуючи критерій керованості, вказати інтервал повної керованості вказаної системи керування. Для цього інтервала записати керування, яке розв'язує задачу про переведення системи з точки x_0 у стан x_T .

Розв'язок. 1. Скористаємося формулою

$$\Phi(T, t_0) = \int_{t_0}^T \Theta(T, s) B(s) B^*(s) \Theta^*(T, s) \, \mathrm{d}s.$$

 $\Theta(T,s)$ знаходимо з системи

$$\frac{d\Theta(t,s)}{dt} = A(t) \cdot \Theta(t,s) = t \cdot \Theta(t,s),$$

а саме $\Theta(t,s)=\exp\left\{\frac{t^2-s^2}{2}\right\}$. Підставляючи всі знайдені значення, отримаємо

$$\Phi(T, t_0) = \cos^2(T) \cdot e^{T^2} \int_{t_0}^T e^{-s^2} ds = \frac{1}{2} \sqrt{\pi} \cdot \cos^2(T) \cdot e^{T^2} \cdot \operatorname{erf}(T).$$

2. Запишемо систему

$$\frac{d\Phi(t, t_0)}{dt} = A(t) \cdot \Phi(t, t_0) + \Phi(t, t_0) \cdot A^*(t) + B(t) \cdot B^*(t), \quad \Phi(t_0, t_0) = 0.$$

І підставимо відомі значення:

$$\frac{d\Phi(t,0)}{dt} = 2t\Phi(t,0) + \cos^2(t), \quad \Phi(0,0) = 0.$$

Звідси

$$\Phi(t,0) = \frac{1}{8}\sqrt{\pi}e^{t^2-1}(-2e\operatorname{erf}(t) + i(\operatorname{erfi}(1+it) - i\operatorname{erfi}(1-it)),$$

a

$$\Phi(T,0) = \frac{1}{8} \sqrt{\pi} e^{T^2 - 1} (-2e \operatorname{erf}(T) + i(\operatorname{erfi}(1 + iT) - i \operatorname{erfi}(1 - iT)),$$

3. З вигляду грамміану керованості отриманого у першому пункті очевидно, що система цілком керована на півінтервалі $[0,\pi/2)$, зокрема на інтервалі [0,1].

Підставимо тепер граміан у формулу для керування що розв'язує задачу про переведення системи із стану x_0 у стан x_T :

$$u(t) = B^*(t)\Theta^*(T, t)\Phi^{-1}(T, t_0)(x_T - \Theta(T, t_0)x_0) =$$

$$= \cos(t) \cdot \exp\left\{\frac{T^2 - t^2}{2}\right\}\Phi^{-1}(T, 0)\left(x_T - \exp\left\{\frac{T^2}{2}\right\}x_0\right)$$

Задача 3.3. За допомогою грамміана керованості розв'язати таку задачу оптимального керування: мінімізувати критерій якості

$$\mathcal{J}(u) = \int_0^T u^2(s) \, \mathrm{d}s$$

за умов, що

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = \sin(t) \cdot x(t) + u(t), \quad x(0) = x_0, x(T) = x_T.$$

Тут x – стан системи, u(t) – скалярне керування, x_0, X_T – задані точки, $t \in [t_0, T]$.

Розв'язок. Знайдемо шукане керування за формулою

$$u(t) = B^*(t)\Theta^*(T,t)\Phi^{-1}(T,t_0)(x_T - \Theta(T,t_0)x_0).$$

У цій задачі $\Theta(t,s)=e^{\cos(s)-\cos(t)},$ знайдене з системи $\dot{\Theta}=A\Theta,$ $\Phi(T,t_0)=e^{-2\cos(T)}\int_0^T e^{2\cos(s)}\,\mathrm{d}s,$ підставляючи знаходимо

$$u(t) = \frac{e^{\cos(t) + \cos(T)} \cdot (x_T - e^{1 - \cos(T)} x_0)}{\int_0^T e^{2\cos(s)} ds}.$$

Задача 3.4. За допомогою грамміана керованості розв'язати таку задачу оптимального керування: мінімізувати критерій якості

$$\mathcal{J}(u) = \int_0^T u^2(s) dx$$

за умов, що

$$\frac{d^2x(t)}{dt^2} - 5\frac{dx(t)}{dt} + 6x(t) = u(t),$$

$$x(0) = x_0, x'(0) = y_0, x(T) = x'(T) = 0.$$

Тут x – стан системми, u(t) – скалярне керування, $t \in [0, T]$.

Розв'язок. Почнемо з того що зведемо рівняння другого порядку до системи рівнянь заміною $x_1 = x, x_2 = \dot{x}_1$, тоді маємо систему

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix}(t) = \begin{pmatrix} 0 & 1 \\ -6 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}(t) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u(t).$$

Знайдемо власні числа матриці $A-\lambda E$: $\det(A-\lambda E)=\begin{vmatrix} -\lambda & 1 \\ -6 & 5-\lambda \end{vmatrix}=\lambda^2-5\lambda+6=(\lambda-2)(\lambda-3)=0$, звідки $\lambda_1=2,\,\lambda_2=3$. Знайдемо власні вектори, вони будуть $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ і $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ відповідно. Звідси знаходимо загальний розв'язок

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} (t) = c_1 \begin{pmatrix} e^{2t} \\ 2e^{2t} \end{pmatrix} + c_2 \begin{pmatrix} e^{3t} \\ 3e^{3t} \end{pmatrix}.$$

З рівняння

$$c_1 \begin{pmatrix} e^{2s} \\ 2e^{2s} \end{pmatrix} + c_2 \begin{pmatrix} e^{3s} \\ 3e^{3s} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

знаходимо $c_1 = 3e^{-2s}$, $c_2 = -2e^{-3s}$, а з рівняння

$$c_1 \begin{pmatrix} e^{2s} \\ 2e^{2s} \end{pmatrix} + c_2 \begin{pmatrix} e^{3s} \\ 3e^{3s} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

знаходимо $c_1 = -e^{-2s}$, $c_2 = e^{-3s}$, тобто

$$\Theta(t,s) = \begin{pmatrix} 3e^{2(t-s)} - 2e^{3(t-s)} & -e^{2(t-s)} + e^{3(t-s)} \\ 6e^{2(t-s)} - 6e^{3(t-s)} & -2e^{2(t-s)} + 3e^{3(t-s)} \end{pmatrix}.$$

Знайдемо грамміан за формулою

$$\Phi(T,0) = \int_0^T \Theta(T,s)B(s)B^*(s)\Theta^*(T,s)ds.$$

$$\Theta(T,s)B(s) = \begin{pmatrix} -e^{2(T-s)} + e^{3(T-s)} \\ -2e^{2(T-s)} + 3e^{3(T-s)} \end{pmatrix}.$$

$$B^*(s)\Theta^*(T,s) = (\Theta(T,s)B(s))^* = (-e^{2(T-s)} + e^{3(T-s)} - 2e^{2(T-s)} + 3e^{3(T-s)}).$$

$$\begin{split} \Phi(T,0) &= \int_0^T \begin{pmatrix} -e^{2(T-s)} + e^{3(T-s)} \\ -2e^{2(T-s)} + 3e^{3(T-s)} \end{pmatrix} \left(-e^{2(T-s)} + e^{3(T-s)} - 2e^{2(T-s)} + 3e^{3(T-s)} \right) ds = \\ &= \int_0^T \begin{pmatrix} e^{4(T-s)} - 2e^{5(T-s)} + e^{6(T-s)} \\ 2e^{4(T-s)} - 5e^{5(T-s)} + 3e^{6(T-s)} \end{pmatrix} \frac{2e^{4(T-s)} - 5e^{5(T-s)} + 3e^{6(T-s)}}{4e^{4(T-s)} - 12e^{5(T-s)} + 9e^{6(T-s)}} ds = \\ &= \begin{pmatrix} \frac{e^{4T} - 1}{4} - \frac{2(e^{5T} - 1)}{5} + \frac{e^{6T} - 1}{6} & \frac{e^{4T} - 1}{2} - (e^{5T} - 1) + \frac{e^{6T} - 1}{2} \\ \frac{e^{4T} - 1}{2} - (e^{5T} - 1) + \frac{e^{6T} - 1}{2} & (e^{4T} - 1) - \frac{12(e^{5T} - 1)}{5} + \frac{3(e^{6T} - 1)}{2} \end{pmatrix} \end{split}$$

Чесно кажучи вже обчислення визначника грамміану є надто складною обчислювальною задачею, не бачу сенсу її робити вручну.

 $3a\partial a$ ча 3.5. Записати систему диференціальних рівнянь для знаходження першої матриці керованості (грамміана керованості) і сформулювати критерій керованості на інтервалі [0,T] у випадку, якщо система керування має вигляд:

1.

$$\begin{cases} \frac{\mathrm{d}x_1(t)}{\mathrm{d}t} = tx_1(t) + x_2(t) + u_1(t), \\ \frac{\mathrm{d}x_2(t)}{\mathrm{d}t} = -x_1(t) + 2x_2(t) + t^2u_2(t). \end{cases}$$

Тут $x = (x_1, x_2)^*$ – вектор стану, $u = (u_1, u_2)^*$ – вектор керування, $t \in [0, T]$.

2.

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} + \sin(t) \cdot x(t) = u(t).$$

Тут x – стан системи, u(t) – скалярне керування, $t \in [0, T]$.

Розв'язок. 1.
$$A = \begin{pmatrix} t & 1 \\ -1 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & t^2 \end{pmatrix},$$

$$\begin{cases} \dot{\varphi}_{11} = 2t\varphi_{11} + 2\varphi_{12} + 1, \\ \dot{\varphi}_{12} = -\varphi_{11} + (t+2)\varphi_{12} + \varphi_{22}, \\ \dot{\varphi}_{21} = -\varphi_{11} + (t+2)\varphi_{12} + \varphi_{22}, \end{cases}$$

2. Введемо нову змінну
$$x_2 = \dot{x}$$
, тоді $A = \begin{pmatrix} 0 & 1 \\ -\sin(t) & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$,
$$\begin{cases} \dot{\varphi}_{11} = 2\varphi_{12}, \\ \dot{\varphi}_{12} = (1-\sin(t))\varphi_{11}, \\ \dots \end{cases}$$

Задача 3.6. Знайти диференціальне рівняння грамміана керованості для системи керування

$$\begin{cases} \frac{\mathrm{d}x_1(t)}{\mathrm{d}t} = \cos(t) \cdot x_1(t) - \sin(t) \cdot x_2(t) + u_1(t) - 2u_2(t), \\ \frac{\mathrm{d}x_2(t)}{\mathrm{d}t} = \sin(t) \cdot x_1(t) + \cos(t) \cdot x_2(t) - 3u_1(t) + 4u_2(t). \end{cases}$$

Розв'язок.

 $3a\partial a ua$ 3.7. Дослідити системи на керованість. використовуючи другий критерій керованості:

1.

$$\ddot{x} + a\dot{x} + bx = u;$$

2.

$$\begin{cases} \dot{x}_1 = 2x_1 + x_2 + au \\ \dot{x}_2 = x_1 + 4x_2 + u \end{cases}$$

3.

$$\begin{cases} \dot{x}_1 = 2x_1 + x_2 + u_1 \\ \dot{x}_2 = x_1 + 3x_3 + u_2 \\ \dot{x}_3 = x_2 + x_3 + u_2 \end{cases}$$

Розв'язок. 1. Почнемо з того що зведемо рівняння другого порядку до системи рівнянь заміною $x_1 = x, x_2 = \dot{x}_1$, тоді маємо систему

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -ax_2 - bx_1 + u \end{cases}$$

Тоді

$$A = \begin{pmatrix} 0 & 1 \\ -b & -a \end{pmatrix} \qquad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$
$$D = \begin{pmatrix} B & AB \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -a \end{pmatrix}.$$

 Її ранг дорівнює 2 якщо за будь-яких a і b, тобто система завжди цілком керована.

2.

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} a \\ 1 \end{pmatrix}.$$

$$D = \begin{pmatrix} B & AB \end{pmatrix} = \begin{pmatrix} a & 2a+1 \\ 1 & a+4 \end{pmatrix}.$$

3.

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & 3 \\ 0 & 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}.$$

$$D = \begin{pmatrix} B & AB & A^2B \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 1 & 5 & 5 \\ 0 & 1 & 1 & 3 & 2 & 7 \\ 0 & 1 & 0 & 2 & 1 & 5 \end{pmatrix}.$$

Ϊї ранг дорівнює 3, тобто система цілком керована.

3.3 Домашне завдання

Задача 3.8. Перевести систему

$$\frac{dx}{dt} = 2tx + u, t \in [0, T],$$

з точки $x(0) = x_0$ в точку $x(T) = y_0$ за допомогою керування з класу:

- 1. постійних функцій u(t) = c, c константа;
- 2. кусково-постійних функцій

$$u(t) = \begin{cases} c_1 & t \in [0, t_1), \\ c_2 & t \in (t_1, T]. \end{cases}$$

Тут c_1 , c_2 – константи, $c_1 \neq c_2$, $0 < t_1 < T$;

- 3. програмних керувань u(t) = ct, c константа;
- 4. керувань з оберненим зв'язок u(x) = cx, c константа.

Розв'язок. Будемо просто підставляти керування у диференційне рівняння і розв'язувати його:

1. Зводимо до канонічного вигляду лінійного рівняння:

$$\frac{dx}{dt} - 2t \cdot x(t) = c.$$

Домножаємо на множник що інтегрує:

$$\exp\{-t^2\} \cdot \frac{dx}{dt} - 2t \cdot \exp\{-t^2\} \cdot x(t) = c \cdot \exp\{-t^2\}$$

$$\exp\{-t^2\} \cdot \frac{dx}{dt} + x(t) \cdot \frac{d \exp\{-t^2\}}{dt} = c \cdot \exp\{-t^2\}.$$

Згортаємо похідну добутку:

$$\frac{d(\exp\{-t^2\} \cdot x(t))}{dt} = c \cdot \exp\{-t^2\}.$$

Інтегруємо:

$$(\exp\{-t^2\} \cdot x(t))\big|_0^T = \int_0^T c \cdot \exp\{-t^2\} dt$$

$$\exp\{-T^2\} \cdot y_0 - x_0 = c \cdot \frac{\sqrt{\pi}}{2} \cdot \operatorname{erf}(T),$$

і виражаємо звідси *с*:

$$c = 2 \cdot \frac{\exp\{-T^2\} \cdot y_0 - x_0}{\sqrt{\pi} \cdot \operatorname{erf}(T)},$$

де erf позначає функцію помилок, тобто $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \cdot \int_0^x \exp\{-t^2\} dt$.

Зауважимо, що задача має розв'язок завжди.

2. Нескладно зрозуміти, що нас задовольнить довільне керування вигляду

$$c_2 = 2 \cdot \frac{\exp\{-T^2\} \cdot y_0 - \exp\{-t_1^2\} \cdot x_1}{\sqrt{\pi} \cdot (\operatorname{erf}(T) - \operatorname{erf}(t_1))},$$

де

$$x_1 = \frac{2x_0 + c_1\sqrt{\pi} \cdot \text{erf}(T)}{2 \cdot \exp\{-t_1^2\}},$$

тобто ми просто дозволили c_1 бути довільною сталою, обчислили $x(t_1)$, а потім розв'язали задачу переведення системи з точки (t_1,x_1) у точку (T,y_0) як у першому пункті, з мінімальними поправками на межі інтегрування.

Зокрема, якщо
$$c_1=0$$
, то $x_1=\frac{x_0}{\exp\{-t_1^2\}}$, тому $c_2=2\cdot\frac{\exp\{-T^2\}\cdot y_0-x_0}{\sqrt{\pi}\cdot(\operatorname{erf}(T)-\operatorname{erf}(t_1))}$.

Зауважимо, що задача має розв'язок завжди.

3.

$$\frac{dx}{2x(t)+c} = tdt$$

$$\int_0^T \frac{dx}{2x(t)+c} = \int_0^T t dt$$

$$\left(\frac{1}{2}\ln(2x(t)+c)\right)\Big|_{0}^{T} = \frac{T^{2}}{2}$$

$$\ln(2y_0 + c) - \ln(2x_0 + c) = T^2$$

$$\ln\left(\frac{2y_0 + c}{2x_0 + c}\right) = T^2$$

$$\frac{2y_0 + c}{2x_0 + c} = \exp\{T^2\}$$

$$2y_0 + c = (2x_0 + c) \cdot \exp\{T^2\}$$

$$2(y_0 - x_0 \cdot \exp\{T^2\}) = c \cdot (\exp\{T^2\} - 1)$$

звідки

$$c = 2 \cdot \frac{y_0 - x_0 \cdot \exp\{T^2\}}{\exp\{T^2\} - 1}.$$

Зауважимо, що задача має розв'язок завжди.

4.

$$\frac{dx}{dt} = 2t \cdot x(t) + c \cdot x(t)$$

$$\frac{dx}{x(t)} = (2t + c)dt$$

$$\int_0^T \frac{dx}{x(t)} = \int_0^T (2t + c)dt$$

$$(\ln(x(t))|_0^T = T^2 + cT$$

$$\ln(y_0) - \ln(x_0) = T^2 + cT$$

$$\ln(y_0/x_0) = T^2 + cT$$

звідки

$$c = \frac{\ln\left(y_0/x_0\right) - T^2}{T}.$$

Зауважимо, що задача має розв'язок тільки якщо $sgn(x_0) = sgn(y_0)$.

3ada 4a 3.9. 1. Знайти грамміан керованості для системи керування

$$\frac{dx(t)}{dt} = tx(t) + u(t)$$

і дослідити її на керованість, використовуючи перший критерій керованості.

2. За допомогою грамміана керованості розв'язати таку задачу оптимального керування:

$$\mathcal{J}(u) = \int_0^T u^2(s) ds \to \min$$

за умов, що

$$\frac{dx(t)}{dt} = tx(t) + u(t), x(0) = x_0, x(T) = x_T.$$

Тут x — стан системи. u(t) — скалярне керування, x_0 , x_T — задані точки, $t \in [0,T]$.

Розв'язок. 1. Одразу помітимо, що $A(t)=(t),\ B(t)=(1).$ Далі, з рівняння $\frac{d\Theta(t,s)}{dt}=A(t)\cdot\Theta(t,s) \text{ знаходимо } \Theta(t,s)=\exp\{t^2/2-s^2/2\}.$ Залишилося всього нічого, знайти власне грамміан:

$$\begin{split} \Phi(T,0) &= \int_0^T \Theta(T,s) B(s) B^*(s), \Theta^*(T,s) ds = \\ &= \int_0^T (\exp\{T^2 - s^2\}) ds = \left(\frac{\sqrt{\pi}}{2} \cdot \exp\{T^2\} \cdot \operatorname{erf}(T)\right), \end{split}$$

і $\det \Phi(T,0) \neq 0$, тобто система цілком керована на [0,T].

 $u(t) = B^*(t)\Theta^*(T, t)\Phi^{-1}(T, 0)(x_T - \Theta(T, 0)x_0) =$

2. Пригадаємо наступний результат: розв'язком вищезгаданої задачі про оптимальне керування є функція

$$= \exp\{T^2/2 - t^2/2\} \left(\frac{2}{\sqrt{\pi}} \cdot \exp\{-T^2\} \cdot \frac{1}{\operatorname{erf}(T)}\right) (x_T - \exp\{T^2/2\}x_0) =$$

$$= \frac{2}{\sqrt{\pi} \cdot \operatorname{erf}(T)} \cdot \left(x_T \cdot \exp\left\{ -\frac{T^2 + t^2}{2} \right\} - x_0 \cdot \exp\left\{ -\frac{t^2}{2} \right\} \right).$$

Задача 3.10. За допомогою грамміана керованості розв'язати таку задачу оптимального керування: мінімізувати критерій якості

$$\mathcal{J}(u) = \int_0^T u^2(s) \, \mathrm{d}s$$

за умов, що

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} - 5\frac{\mathrm{d}x(t)}{\mathrm{d}t} + 6x(t) = u(t),$$

$$x(0) = x_0, x'(0) = y_0, x(T) = x'(T) = 0.$$

Тут x – стан системи, u(t) – скалярне керування, $t \in [0, T]$.

Розв'язок.

Задача 3.11. Мінімізувати критерій якості

$$\mathcal{J}(u) = \int_0^T (u_1^1(s) + u_2^2(s)) ds$$

за умов

$$\begin{cases} \frac{dx_1(t)}{dt} = 6x_1(t) - 2x_2(t) + u_1(t), \\ \frac{dx_2(t)}{dt} = 5x_1(t) - x_2(t) + u_2(t), \\ x_1(0) = x_{10}, x_2(0) = x_{20}, \\ x_1(T) = x_2(T) = 0. \end{cases}$$

Тут $x=(x_1,x_2)^*$ – вектор фазових координат з $\mathbb{R}^2,\ u=(u_1,u_2)^*$ – вектор керування, $x=(x_{10},x_{20})^*$ – відома точка, $t\in[0,T]$.

Розв'язок. Запишемо систему у людському вигляді:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix}(t) = \begin{pmatrix} 6 & -2 \\ 5 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}(t) + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}(t)$$

Знайдемо власні числа матриці $A-\lambda E$: $\det(A-\lambda E)=\begin{vmatrix} 6-\lambda & -2 \\ 5 & -1-\lambda \end{vmatrix}=\lambda^2-5\lambda+4=(\lambda-1)(\lambda-4)=0$, звідки $\lambda_1=1,\,\lambda_2=4$. Знайдемо власні вектори, вони

будуть $\binom{2}{5}$ і $\binom{1}{1}$ відповідно. Звідси знаходимо загальний розв'язок

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}(t) = c_1 \begin{pmatrix} 2e^t \\ 5e^t \end{pmatrix} + c_2 \begin{pmatrix} e^{4t} \\ e^{4t} \end{pmatrix}.$$

З рівняння

$$c_1 \begin{pmatrix} 2e^s \\ 5e^s \end{pmatrix} + c_2 \begin{pmatrix} e^{4s} \\ e^{4s} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

знаходимо $c_1=-rac{1}{3}e^{-s},\,c_2=rac{5}{3}e^{-4s},\,$ а з рівняння

$$c_1 \begin{pmatrix} 2e^s \\ 5e^s \end{pmatrix} + c_2 \begin{pmatrix} e^{4s} \\ e^{4s} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

знаходимо $c_1 = \frac{1}{3}e^{-s}, c_2 = -\frac{2}{3}e^{-4s},$ тобто

$$\Theta(t,s) = \frac{1}{3} \begin{pmatrix} -2e^{t-s} + 5e^{4(t-s)} & 2e^{t-s} - 2e^{4(t-s)} \\ -5e^{t-s} + 5e^{4(t-s)} & 5e^{t-s} - 2e^{4(t-s)} \end{pmatrix}.$$

Знайдемо грамміан за формулою

$$\begin{split} \Phi(T,0) &= \int_0^T \Theta(T,s)B(s)B^*(s)\Theta^*(T,s)ds. \\ \Theta(T,s)B(s) &= \frac{1}{3} \begin{pmatrix} -2e^{t-s} + 5e^{4(t-s)} & 2e^{t-s} - 2e^{4(t-s)} \\ -5e^{t-s} + 5e^{4(t-s)} & 5e^{t-s} - 2e^{4(t-s)} \end{pmatrix}. \\ B^*(s)\Theta^*(T,s) &= (\Theta(T,s)B(s))^* = \frac{1}{3} \begin{pmatrix} -2e^{t-s} + 5e^{4(t-s)} & 5e^{t-s} - 5e^{4(t-s)} \\ -2e^{t-s} + 2e^{4(t-s)} & 5e^{t-s} - 2e^{4(t-s)} \end{pmatrix}. \end{split}$$

Чесно кажучи вже обчислення грамміану є надто складною обчислювальною задачею, не бачу сенсу її робити вручну.

3a daчa 3.12. Записати систему диференціальних рівнянь для знаходження першої матриці керованості (грамміана керованості) і сформулювати критерій керованості на інтервалі [0,T] у випадку, якщо системи керування має вигляд

$$\begin{cases} \frac{\mathrm{d}x_1(t)}{\mathrm{d}t} = tx_1(t) + t^2x_2(t) + u_1(t) - u_2(t), \\ \frac{\mathrm{d}x_2(t)}{\mathrm{d}t} = -x_1(t) + x_2(t) + 2u_2(t), \end{cases}$$

Тут $x=(x_1,x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , $u=(u_1,u_2)^*$ – вектор керування, $t\in[0,T]$.

Розв'язок.

 $3a\partial a$ ча 3.13. Записати систему диференціальних рівнянь для знаходження першої матриці керованості (грамміана керованості) і сформулювати критерій керованості на інтервалі [0,T] у випадку, якщо система керування має вигляд:

$$\frac{d^2x(t)}{dt^2} + tx(t) = u(t).$$

Тут x – стан системи, u(t) – скалярне керування, $t \in [0, T]$.

Розв'язок. Зробимо заміну $x_1 = x, x_2 = \dot{x}$, тоді маємо систему

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix}(t) = \begin{pmatrix} 0 & 1 \\ -t & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}(t) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} u \end{pmatrix}(t).$$

Звідси можемо записати систему диференціальних рівнянь для знаходження грамміана керованості:

$$\frac{\Phi(t, t_0)}{dt} = A(t)\Phi(t, t_0) + \Phi(t, t_0)A^*(t) + B(t)B^*(t).$$

$$\frac{\Phi(t,0)}{dt} = \begin{pmatrix} 0 & 1 \\ -t & 0 \end{pmatrix} \Phi(t,0) + \Phi(t,0) \begin{pmatrix} 0 & t \\ -1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Окрім цього, не забуваємо про умову $\Phi(0,0) = 0$.

Щодо критерію керованості, то тут все просто (чи радше стандартно), для того щоб система була цілком керованою на [0,T] необхідно і достатньо, щоб грамміан керованості $\Phi(T,0)$ був невиродженим, тобто щоб $\det\Phi(T,0)\neq 0$ або (що те саме у випадку невід'ємно-визначеної матриці) щоб $\det\Phi(T,0)>0$.

 $Задача\ 3.14$. Дослідити на керованість, використовуючи другий критерій керованості:

1.

$$\begin{cases} \frac{dx_1}{dt} = -x_1 + x_2 + au, \\ \frac{dx_2}{dt} = x_1 + \frac{u}{a}; \end{cases}$$

2.

$$\begin{cases} \frac{dx_1}{dt} = x_1 - x_2 + au, \\ \frac{dx_2}{dt} = x_1 + \frac{u}{a}; \end{cases}$$

3.

$$\begin{cases} \frac{dx_1}{dt} = x_1 + x_2 + au, \\ \frac{dx_2}{dt} = -x_1 + x_2 + a^2u; \end{cases}$$

4.

$$\begin{cases} \frac{dx_1}{dt} = 2x_1 + x_2 - au, \\ \frac{dx_2}{dt} = -x_1 + au; \end{cases}$$

5.

$$x^{(n)}(t) + a_1 x^{(n-1)}(t) + \dots + a_{n-1} x'(t) + a_n x(t) = u(t).$$

6.

$$\begin{cases} \frac{dx_1}{dt} = x_1 + 2x_2 - x_3 + u_1 - u_2 \\ \frac{dx_2}{dt} = -x_1 + x_2 + 3x_3 + u_1 \\ \frac{dx_3}{dt} = x_2 + x_3 + 2u_2 \end{cases}$$

Розв'язок. 1.

$$A = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} a \\ 1/a \end{pmatrix}$$
$$D = \begin{pmatrix} B & AB \end{pmatrix} = \begin{pmatrix} a & 1/a - a \\ 1/a & a \end{pmatrix}$$
$$\det D = a^2 + 1 - 1/a^2 \neq 0,$$

тобто система цілком керована якщо тільки $a \neq \pm \sqrt{\frac{\sqrt{5}-1}{2}}.$

2.

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} a \\ 1/a \end{pmatrix}$$
$$D = \begin{pmatrix} B & AB \end{pmatrix} = \begin{pmatrix} a & a - 1/a \\ 1/a & a \end{pmatrix}$$
$$\det D = a^2 - 1 + 1/a^2 \neq 0,$$

тобто система цілком керована для будь-яких a (навіть $\det D \ge 1$ за нерівністю Коші).

3.

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} a \\ a^2 \end{pmatrix}$$
$$D = \begin{pmatrix} B & AB \end{pmatrix} = \begin{pmatrix} a & a+a^2 \\ a^2 & a^2-a \end{pmatrix}$$
$$\det D = a^3 - a^2 - a^4 - a^3 = -a^4 - a^2 \neq 0,$$

тобто система цілком керована якщо тільки $a \neq 0$.

4.

$$A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} -a \\ a \end{pmatrix}$$
$$D = \begin{pmatrix} B & AB \end{pmatrix} = \begin{pmatrix} -a & -a \\ a & a \end{pmatrix}$$
$$\det D = 0,$$

тобто система не ϵ цілком керованою для будь-яких a.

5. Зробимо заміну $x_0=x,\,x_1=x',\,\ldots,\,x_n=x^{(n)},$ тоді отримаємо систему

$$\begin{cases} \dot{x}_0 = x_1 \\ \dot{x}_1 = x_2 \\ \dots \\ \dot{x}_{n-1} = x_n \\ \dot{x}_n = u - a_n x_0 - a_{n-1} x_1 - \dots - a_1 x_{n-1} \end{cases}$$

тобто

$$A = \begin{pmatrix} 0 & 1 & \ddots & 0 & 0 \\ 0 & 0 & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ 0 & 0 & \cdots & 0 & 1 \\ -a_n & -a_{n-1} & \cdots & -a_1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

$$D = \begin{pmatrix} B & AB & A^2B & \cdots & A^nB \end{pmatrix} = \begin{pmatrix} 0 & \cdots & 0 & 0 & 1 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 1 & 0 & \cdots & \vdots \\ 0 & 1 & 0 & -a_1 & \cdots & \vdots \\ 1 & 0 & -a_1 & -a_2 & \cdots \end{pmatrix}$$

$$\det D = -1 \neq 0,$$

тобто система цілком керована для довільних $a_1,\,a_2,\,\ldots,\,a_n.$

$$A = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 1 & 3 \\ 0 & 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}$$
$$D = \begin{pmatrix} B & AB & A^2B \end{pmatrix} = \begin{pmatrix} 1 & -1 & 3 & -3 & 2 & 8 \\ 1 & 0 & 0 & 7 & 0 & 16 \\ 0 & 2 & 1 & 2 & 1 & 9 \end{pmatrix}$$

Ϊї ранг дорівнює 3, тобто система цілком керована.

4 Критерії спостережуваності. Критерій двоїстості

4.1 Алгоритми

 ${\it Задача}.$ Побудувати систему для знаходження грамміана спостережуваності для системи $\dot{x} = Ax, \, y = Hx.$

Алгоритм 4.1. Записуємо систему

$$\dot{\mathcal{N}}(t,t_0) = -A(t) \cdot \mathcal{N}(t,t_0) - \mathcal{N}(t,t_0) \cdot A^*(t) + H^*(t) \cdot H(t).$$

 $3a\partial aua$. Чи буде стаціонарна система $\dot{x} = Ax + Bu$ цілком спостережуваною?

Алгоритм 4.2. 1. Знаходимо

$$\mathcal{R} = \left(H^* \vdots A^* H^* \vdots (A^*)^2 H^* \vdots \dots \vdots (A^*)^{n-1} H^*\right).$$

2. Якщо $rang \mathcal{R} = n$ то система цілком спостережувана інакше ні.

 $3a\partial aua$. Дослідити на спостережуваність систему $\dot{x} = Ax, \ y = Hx$, використовуючи критерій двоїстості і відповідний критерій керованості.

Алгоритм 4.3. 1. Будуємо спряжену систему

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = -A^*(t) \cdot z(t) + H^*(t) \cdot u(t).$$

2. Досліджуємо її на керованість, якщо вона керована, то початкова система спостережувана, інакше ні.

 $3a\partial aua$. Побудувати спостерігач для системи $\dot{x}=Ax, y=Hx$.

Алгоритм 4.4. 1. Записуємо систему (спостерігач)

$$\dot{\hat{x}}(t) = (A(t) - K(t)H(t)) \cdot \hat{x}(t) + K(t) \cdot y(t).$$

2. Або систему (спостерігач)

$$\dot{\hat{x}}(t) = A(t) \cdot \hat{x}(t) + K(t) \cdot (y(t) - H(t) \cdot \hat{x}(t)).$$

Вибір вільний, це різні форми запису одного і того ж.

 $3a\partial a$ ча. Задана динамічна система $\dot{x}=Ax,\,y=Hx$. Знайти розв'язок задачі спостереження з використання грамміана спостержуваності.

Алгоритм 4.5. 1. Знаходимо грамміан спостережуваності $\mathcal{N}(t,t_0)$ з системи

$$\dot{\mathcal{N}}(t,t_0) = -A(t) \cdot \mathcal{N}(t,t_0) - \mathcal{N}(t,t_0) \cdot A^*(t) + H^*(t) \cdot H(t).$$

- 2. Знаходимо $R(t) = \mathcal{N}^{-1}(t, t_0)$.
- 3. Розв'язуємо рівняння

$$\dot{x}(t) = A(t) \cdot x(t) + R(t) \cdot H^*(t) \cdot (y(t) - H(t) \cdot x(t)).$$

4.2 Аудиторне заняття

Задача 4.1. Побудувати систему для знаходження грамміана спостережуваності і записати умову спостережуваності на інтервалі для системи:

$$\begin{cases} \dot{x}_1 = \cos(t) \cdot x_1 + \sin(t) \cdot x_2, \\ \dot{x}_2 = -\sin(t) \cdot x_1 + \cos(t) \cdot x_2, \\ y(t) = kx_1 + x_2, \end{cases}$$

k > 0.

Розв'язок. Диференціальне рівняння для знаходження грамміана спостережуваності має вигляд

$$\frac{d\mathcal{N}(t,t_0)}{dt} = -A(t) \cdot \mathcal{N}(t,t_0) - \mathcal{N}(t,t_0) \cdot A^*(t) + H^*(t) \cdot H(t),$$

а після підстановки відомих значень вона набує вигляду

$$\frac{d\mathcal{N}(t,t_0)}{dt} = -\begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix} \cdot \mathcal{N}(t,t_0) - \\
-\mathcal{N}(t,t_0) \cdot \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix} + \begin{pmatrix} k \\ 1 \end{pmatrix} \cdot \begin{pmatrix} k & 1 \end{pmatrix},$$

або, у розгорнутому вигляді:

$$\begin{cases} \dot{n}_{11}(t) = -2\cos(t) \cdot n_{11}(t) - 2\sin(t) \cdot n_{12}(t) + k^2, \\ \dot{n}_{12}(t) = \sin(t) \cdot n_{11}(t) - 2\cos(t) \cdot n_{12}(t) - \sin(t) \cdot n_{22}(t) + k, \\ \dot{n}_{22}(t) = 2\sin(t) \cdot n_{12}(t) - 2\cos(t) \cdot n_{22}(t) + 1. \end{cases}$$

Умова спостережуваності цієї системи на $[t_0,T]$ має вигляд $n_{11}(t)\cdot n_{22}(t)-n_{12}^2(t)\neq 0,\ t\in [t_0,T].$

Задача 4.2. Чи буде система цілком спостережуваною?

1.

$$\ddot{x} = a^2 x, y(t) = x(t);$$

2.

$$\begin{cases} \dot{x}_1 = x_1 + \alpha x_2, \\ \dot{x}_2 = \alpha x_1 + x_2, \\ y(t) = \beta x_1(t) + x_2(t). \end{cases}$$

3.

$$\begin{cases} \dot{x}_1 = ax_1, \\ \dot{x}_2 = bx_2, \\ y(t) = x_1(t) + x_2(t). \end{cases}$$

Розв'язок. Всі системи є стаціонарними, тому будемо застосовувати другий критерій спостережуваності:

$$rang\mathcal{R} = rang\left(H^* : A^*H^* : (A^*)^2 H^* : \dots : (A^*)^{n-1} H^*\right) = n.$$

1. Введемо нову змінну $x_2 = \dot{x}_1$, тоді $\dot{x}_2 = a^2 x_1$, $y = x_1$, тому

$$A = \begin{pmatrix} 0 & 1 \\ a^2 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \end{pmatrix}.$$

Підставляючи у критерій, знаходимо:

$$\mathcal{R} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \vdots \begin{pmatrix} 0 & a^2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

її ранг 2, тому система цілком спостережувана.

2.

$$A = \begin{pmatrix} 1 & \alpha \\ \alpha & 1 \end{pmatrix}, \quad H = \begin{pmatrix} \beta & 1 \end{pmatrix}.$$

Підставляючи у критерій, знаходимо:

$$\mathcal{R} = \left(\begin{pmatrix} \beta \\ 1 \end{pmatrix} \vdots \begin{pmatrix} 1 & \alpha \\ \alpha & 1 \end{pmatrix} \begin{pmatrix} \beta \\ 1 \end{pmatrix} \right) = \begin{pmatrix} \beta & \alpha + \beta \\ 1 & \alpha\beta + 1 \end{pmatrix},$$

її ранг 2 тоді і тільки тоді, коли її визначник $det \mathcal{R} = \alpha(\beta^2 - 1) \neq 0$, тому система цілком спостережувана тоді і тільки тоді, коли $\alpha \neq 0$, $\beta \neq \pm 1$.

3.

$$A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 1 \end{pmatrix}.$$

Підставляючи у критерій, знаходимо:

$$\mathcal{R} = \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \vdots \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & a \\ 1 & b \end{pmatrix},$$

її ранг 2 тоді і тільки тоді, коли її визначник $det\mathcal{R}=b-a\neq 0$, тому система цілком спостережувана тоді і тільки тоді, коли $a\neq b$.

Задача 4.3. Дослідити на спостережуваність, використовуючи критерій двоїстості і відповідний критерій керованості:

$$\begin{cases} \dot{x}_1 = x_2 - 2x_3, \\ \dot{x}_2 = x_1 - x_3, \\ \dot{x}_3 = -2x_3, \\ y(t) = -x_1 + x_2 - x_3. \end{cases}$$

Розв'язок. За принципом двоїстості Калмана, ця система є цілком спостережуваною на $[t_0, T]$ тоді і тільки тоді, коли система

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = -A^*(t) \cdot z(t) + H^*(t) \cdot u(t)$$

 ϵ цілком керованою на $[t_0, T]$.

Підставляючи відомі значення, отримуємо систему

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 2 & 1 & 2 \end{pmatrix} \cdot z(t) + \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} \cdot u(t),$$

або, у розгорнутому вигляді

$$\begin{cases} \dot{z}_1 = -z_2 - u, \\ \dot{z}_2 = -z_1 + u, \\ \dot{z}_3 = 2z_1 + z_2 + 2z_3 - u. \end{cases}$$

Система стаціонарна, тому використаємо другий критерій керованості:

$$rang\mathcal{D} = rang\left(B:AB:A^2B:...:A^{n-1}B\right) = n.$$

$$A = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 2 & 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}.$$

Підставляючи у критерій, знаходимо:

$$\mathcal{D} = \left(\begin{pmatrix} -1\\1\\-1 \end{pmatrix} : \begin{pmatrix} 0 & -1 & 0\\-1 & 0 & 0\\2 & 1 & 2 \end{pmatrix} \begin{pmatrix} -1\\1\\-1 \end{pmatrix} : \begin{pmatrix} 0 & -1 & 0\\-1 & 0 & 0\\2 & 1 & 2 \end{pmatrix}^2 \begin{pmatrix} -1\\1\\-1 \end{pmatrix} \right) =$$

$$= \left(\begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} \vdots \begin{pmatrix} -1 \\ 1 \\ -3 \end{pmatrix} \vdots \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ -3 \end{pmatrix} \right) = \begin{pmatrix} -1 & -1 & -1 \\ 1 & 1 & 1 \\ -1 & -3 & -7 \end{pmatrix},$$

її ранг 2, тому система не цілком керована, а початкова – не цілком спостережувана.

 $3a\partial aua$ 4.4. Побудувати спостерігач такої системи у загальному вигляді:

1.

$$\begin{cases} \dot{x}_1 = tx_1 + x_2, \\ \dot{x}_2 = x_1 - x_2, \\ y(t) = x_1(t) + bx_2(t). \end{cases}$$

2.

$$\begin{cases} \frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} = -kx, \\ y(t) = x(t) + \beta \frac{\mathrm{d}x(t)}{\mathrm{d}t}. \end{cases}$$

Розв'язок. 1. За теоремою про структуру спостерігача, він має вигляд

$$\frac{\mathrm{d}\hat{x}(t)}{\mathrm{d}t} = (A(t) - K(t)H(t)) \cdot \hat{x}(t) + K(t) \cdot y(t).$$

Підставляючи відомі значення, знаходимо

$$\frac{\mathrm{d}\hat{x}(t)}{\mathrm{d}t} = \left(\begin{pmatrix} t & 1\\ 1 & -1 \end{pmatrix} - \begin{pmatrix} k_1(t)\\ k_2(t) \end{pmatrix} \begin{pmatrix} 1 & b \end{pmatrix} \right) \cdot \hat{x}(t) + \begin{pmatrix} k_1(t)\\ k_2(t) \end{pmatrix} \cdot y(t),$$

або, у розгорнутому вигляді

$$\begin{cases} \dot{\hat{x}}_1 = (t - k_1(t)) \cdot \hat{x}_1 + (1 - bk_1(t)) \cdot \hat{x}_2 + k_1(t) \cdot y(t), \\ \dot{\hat{x}}_2 = (1 - k_2(t)) \cdot \hat{x}_1 - (1 + bk_2(t)) \cdot \hat{x}_2 + k_2(t) \cdot y(t). \end{cases}$$

2. Введемо нову змінну $x_2=\dot{x}_1$, тоді $\dot{x}_1=x_2,\,\dot{x}_2=-kx_1,\,y=x_1+\beta x_2.$

За теоремою про структуру спостерігача, він має вигляд

$$\frac{\mathrm{d}\hat{x}(t)}{\mathrm{d}t} = A(t) \cdot \hat{x}(t) + K(t) \cdot (y(t) - H(t) \cdot \hat{x}(t)).$$

Підставляючи відомі значення, знаходимо

$$\frac{\mathrm{d}\hat{x}(t)}{\mathrm{d}t} = \begin{pmatrix} 0 & 1\\ -k & 0 \end{pmatrix} \hat{x}(t) + \begin{pmatrix} k_1(t)\\ k_2(t) \end{pmatrix} \cdot \left(y(t) - \hat{x}_1 - \beta \hat{x}_2 \right),$$

або, у розгорнутому вигляді

$$\begin{cases} \dot{\hat{x}}_1 = \hat{x}_2 + k_1(t) \cdot (y(t) - \hat{x}_1 - \beta \hat{x}_2), \\ \dot{\hat{x}}_2 = -k\hat{x}_1 + k_2(t) \cdot (y(t) - \hat{x}_1 - \beta \hat{x}_2). \end{cases}$$

Задача 4.5. Задана динамічна система

$$\begin{cases} \frac{\mathrm{d}x(t)}{\mathrm{d}t} = 2x(t), \\ y(t) = \sin(t) \cdot x(t), \end{cases}$$

де $x(t) \in \mathbb{R}^1$ – вектор стану, $y(t) \in \mathbb{R}^1$ – відомі спостереження, $t \in [0,3]$. Знайти розв'язок задачі спостереження з використанням грамміана спростережуваності

Розв'язок. Розв'язок задачі спостереження задовольняє диференціальному рівнянню

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = A(t) \cdot x(t) + R(t) \cdot H^*(t) \cdot (y(t) - H(t) \cdot x(t)),$$

де $R(t) = \mathcal{N}^{-1](t,0)}$.

Знайдемо $\mathcal{N}(t,0)$: з рівняння

$$\frac{d\Theta(t,s)}{dt} = A(t) \cdot \Theta(t,s) = 2\Theta(t,s)$$

знаходимо $\Theta(t,s) = e^{2(t-s)}$, тому

$$\mathcal{N}(t,0) = \int_0^t e^{4(s-t)} \cdot \sin^2(s) \, ds = e^{-4t} \int_0^t e^{4s} \cdot \sin^2(s) \, ds =$$

$$= \frac{-2\sin(2t) - 4\cos(2t) + 5 - e^{-4t}}{40}.$$

Звідси

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = A(t) \cdot x(t) + \frac{40 \cdot H^*(t) \cdot (y(t) - H(t) \cdot x(t))}{-2\sin(2t) - 4\cos(2t) + 5) - e^{-4t}},$$

або, у розгорнутому вигляді,

$$\dot{x} = 2x + \frac{40 \cdot \sin(t) \cdot (y(t) - \sin(t) \cdot x(t))}{-2\sin(2t) - 4\cos(2t) + 5 - e^{-4t}}.$$

Задача 4.6. Задана динамічна система

$$\ddot{x} = x, y(t) = x(t),$$

де $x(t) \in \mathbb{R}^1$ – вектор стану, $y(t) \in \mathbb{R}^1$ – відомі спостереження, $t \in [0,T]$. Знайти розв'язок задачі спостереження з використанням грамміана спростережуваності.

Розв'язок.

4.3 Домашне завдання

Задача 4.7.

Розв'язок.

Задача 4.8. Записати диференціальне рівняння для знаходження грамміана спостережуваності системи

$$\begin{cases} \frac{dx_1(t)}{dt} = x_1(t) + x_2(t), \\ \frac{dx_2(t)}{dt} = -t^2 x_2(t), \\ y(t) = \sin(t) \cdot x_1(t) + \cos(t) \cdot x_2(t). \end{cases}$$

Тут $x = (x_1, x_2)^*$ – вектор фазових координат, y – скалярне спостереження.

Розв'язок. Почнемо з того, що
$$A = \begin{pmatrix} 1 & 1 \\ 0 & -t^2 \end{pmatrix}$$
, $H = (\sin(t) & \cos(t))$, $A^* = \begin{pmatrix} 1 & 0 \\ 1 & -t^2 \end{pmatrix}$, $H^* = \begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix}$.

Тоді диференціальне рівняння для знаходження грамміана спостережуваності набуває вигляду

$$\frac{d\mathcal{N}(t,t_0)}{dt} = -\begin{pmatrix} 1 & 0 \\ 1 & -t^2 \end{pmatrix} \mathcal{N}(t,t_0) - \mathcal{N}(t,t_0) \begin{pmatrix} 1 & 1 \\ 0 & -t^2 \end{pmatrix} + \begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix} \left(\sin(t) & \cos(t) \right).$$

Або, що те саме,

$$\begin{pmatrix} \dot{n}_{11} & \dot{n}_{12} \\ \dot{n}_{12} & \dot{n}_{22} \end{pmatrix} (t, t_0) = -\begin{pmatrix} 1 & 0 \\ 1 & -t^2 \end{pmatrix} \begin{pmatrix} n_{11} & n_{12} \\ n_{12} & n_{22} \end{pmatrix} (t, t_0) -$$

$$-\begin{pmatrix} n_{11} & n_{12} \\ n_{12} & n_{22} \end{pmatrix} (t, t_0) \begin{pmatrix} 1 & 1 \\ 0 & -t^2 \end{pmatrix} + \begin{pmatrix} \sin^2(t) & \sin(t) \cdot \cos(t) \\ \sin(t) \cdot \cos(t) & \cos^2(t) \end{pmatrix}.$$

$$\begin{pmatrix} \dot{n}_{11} & \dot{n}_{12} \\ \dot{n}_{12} & \dot{n}_{22} \end{pmatrix} (t, t_0) = - \begin{pmatrix} n_{11} & n_{12} \\ n_{11} - t^2 n_{12} & n_{12} - t^2 n_{22} \end{pmatrix} (t, t_0) -$$

$$- \begin{pmatrix} n_{11} & n_{11} - t^2 n_{12} \\ n_{12} & n_{12} - t^2 n_{22} \end{pmatrix} (t, t_0) + \begin{pmatrix} \sin^2(t) & \sin(t) \cdot \cos(t) \\ \sin(t) \cdot \cos(t) & \cos^2(t) \end{pmatrix} .$$

$$\begin{cases} \dot{n}_{11}(t, t_0) = -2n_{11}(t, t_0) + \sin^2(t) \\ \dot{n}_{12}(t, t_0) = -n_{11}(t, t_0) + (t^2 - 1)n_{12}(t, t_0) + \sin(t) \cdot \cos(t) \\ \dot{n}_{22}(t, t_0) = -2n_{12}(t, t_0) + 2t^2 n_{22}(t, t_0) + \cos^2(t) \end{cases}$$

Задача 4.9. Чи буде система цілком спостережуваною?

1.

$$\ddot{x} = a^2 x, \quad y(t) = p\dot{x}(t);$$

2.

$$\begin{cases} \dot{x}_1 = 2x_1 + \alpha x_2, \\ \dot{x}_2 = -\alpha x_1 - \alpha x_2, \\ y(t) = x_1 + \beta x_2. \end{cases}$$

3.

$$\begin{cases} \dot{x}_1 = x_2 - 2x_3, \\ \dot{x}_2 = x_1 - x_3, \\ \dot{x}_3 = -2x_3, \\ y(t) = -x_1 + x_2 - x_3. \end{cases}$$

Розв'язок. 1. Почнемо з того, що $A = \begin{pmatrix} 0 & 1 \\ a^2 & 0 \end{pmatrix}$, $H = \begin{pmatrix} 0 & p \end{pmatrix}$. Матриці стаціонарні, тому застосуємо другий критерій спостережуваності:

$$R = \begin{pmatrix} H^{\star} & A^{\star}H^{\star} \end{pmatrix} = \begin{pmatrix} 0 & a^2 \\ p & 0 \end{pmatrix}.$$

Як бачимо, ранг 2, тобто система є цілком спостережуваною, якщо тільки $a \neq 0$ і $p \neq 0$.

2. Почнемо з того, що $A = \begin{pmatrix} 2 & \alpha \\ -\alpha & -\alpha \end{pmatrix}$, $H = \begin{pmatrix} 1 & \beta \end{pmatrix}$. Матриці стаціонарні, тому застосуємо другий критерій спостережуваності:

$$R = \begin{pmatrix} H^{\star} & A^{\star}H^{\star} \end{pmatrix} = \begin{pmatrix} 1 & 2 - \alpha\beta \\ \beta & \alpha - \alpha\beta \end{pmatrix}.$$

 $\det R=\alpha-2\beta-\alpha\beta+\alpha\beta^2\neq 0\ (\text{тобто система }\epsilon\ \text{спостережуваною}),\ \text{якщо}$ тільки $\alpha\neq\frac{2\beta}{1-\beta+\beta^2}.$

3. Почнемо з того, що $A=\begin{pmatrix} 0 & 1 & -2 \\ 1 & 0 & -1 \\ 0 & 0 & -2 \end{pmatrix}$, $H=\begin{pmatrix} -1 & 1 & -1 \end{pmatrix}$. Матриці стаціонарні, тому застосуємо другий критерій спостережуваності:

$$R = (H^* \quad A^*H^* \quad (A^*)^2H^*) = \begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 3 & -7 \end{pmatrix}.$$

Як бачимо, ранг 2 а не 3, тому система не є цілком спостережуваною.

 $3a\partial a a = 4.10$. Для яких параметрів a, b система

$$\begin{cases} \frac{dx_1(t)}{dt} = ax_1(t), \\ \frac{dx_2(t)}{dt} = bx_2(t), \\ y(t) = x_1(t) + x_2(t) \end{cases}$$

 ϵ цілком спостережуваною? Тут $x=(x_1,x_2)^\star$ – вектор фазових координат, y – скалярне спостереження.

Розв'язок. Почнемо з того, що $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, $H = \begin{pmatrix} 1 & 1 \end{pmatrix}$. Матриці стаціонарні, тому застосуємо другий критерій спостережуваності:

$$R = \begin{pmatrix} H^{\star} & A^{\star}H^{\star} \end{pmatrix} = \begin{pmatrix} 1 & a \\ 1 & b \end{pmatrix}.$$

 $\det R = b - a$, тобто система є цілком керованою якщо тільки $a \neq b$.

Задача 4.11. Побудувати спостерігач у загальному вигляді для такої системи:

1.

$$\begin{cases} \dot{x}_1 = x_1 + t^2 x_2, \\ \dot{x}_2 = 2x_1 - 3x_2, \\ y(t) = bx_1(t) + x_2(t). \end{cases}$$

2.

$$\begin{cases} \frac{d^2x}{dt^2} + k_1 \frac{dx}{dt} + k_2 x = 0, \\ y(t) = x(t) + \beta \frac{dx(t)}{dt}. \end{cases}$$

Розв'язок. 1. Почнемо з того, що $A = \begin{pmatrix} 1 & t^2 \\ 2 & -3 \end{pmatrix}$, $H = \begin{pmatrix} b & 1 \end{pmatrix}$. Далі пишемо

$$\begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix}'(t) = \begin{pmatrix} 1 & t^2 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix}(t) + \begin{pmatrix} k_1 \\ k_2 \end{pmatrix}(t) \begin{pmatrix} y(t) - \begin{pmatrix} b & 1 \end{pmatrix} \begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix}(t) \end{pmatrix}.$$

$$\begin{cases} \hat{x}_1'(t) = \hat{x}_1(t) + t^2 \hat{x}_2(t) + k_1(t)(y(t) - b\hat{x}_1(t) - \hat{x}_2(t)) \\ \hat{x}_2'(t) = 2\hat{x}_1(t) - 3\hat{x}_2(t) + k_2(t)(y(t) - b\hat{x}_1(t) - \hat{x}_2(t)) \end{cases}$$

2. Введемо заміну $x_1=x,\ x_2=\dot x,\$ тоді маємо $A=\begin{pmatrix} 0&1\\-k_2&-k_1\end{pmatrix},\ H=\begin{pmatrix} 1&b\end{pmatrix}.$ Далі пишемо

$$\begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix}'(t) = \begin{pmatrix} 0 & 1 \\ -k_2 & -k_1 \end{pmatrix} \begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix}(t) + \begin{pmatrix} K_1 \\ K_2 \end{pmatrix}(t) \begin{pmatrix} y(t) - \begin{pmatrix} 1 & b \end{pmatrix} \begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix}(t) \end{pmatrix}.$$

$$\begin{cases} \hat{x}_1'(t) = \hat{x}_2(t) + K_1(t)(y(t) - \hat{x}_1(t) - b\hat{x}_2(t)) \\ \hat{x}_2'(t) = -k_2\hat{x}_1(t) - k_1\hat{x}_2(t) + K_2(t)(y(t) - \hat{x}_1(t) - b\hat{x}_2(t)) \end{cases}$$

Задача 4.12.

Розв'язок.

Задача 4.13.

Розв'язок.

5 Задача фільтрації. Множинний підхід

5.1 Алгоритми

Задача. Задана динамічна система $\dot{x} = Ax + v, \ y = Gx + w, \ \text{де } v(t) \in \mathbb{R}^1, \ w(t) \in \mathbb{R}^1$ — невідомі шуми, $x_0 \in \mathbb{R}^1$ — невідома початкова умова, $y(t) \in \mathbb{R}^1$ — відомі спостереження.

1. Побудувати інформаційну множину такої системи в момент $\tau \in [0,T]$ за умови, що

$$\int_0^{\tau} (Mv^2(s) + Nw^2(s)) \, \mathrm{d}s + p_0 x^2(0) \le \mu^2.$$

2. Знайти похибку оцінювання.

Алгоритм 5.1. (a) Знайдемо R(t) з рівняння Бернуллі

$$\dot{R}(t) = A(t) \cdot R(t) + R(t) \cdot A^*(t) - R(t) \cdot G^*(t) \cdot N(t) \cdot G(t) \cdot R(t), \quad R(t_0) = p_0^{-1}.$$

(б) Знайдемо K(t) за формулою

$$K(t) = R(t) \cdot G^*(t) \cdot N(t).$$

(в) Знайдемо фільтр (спостерігач) за формулою

$$\dot{\hat{x}}(t) = A(t) \cdot \hat{x}(t) + K(t) \cdot (y(t) - G(t) \cdot \hat{x}(t)).$$

(г) Знайдемо k(s) з системи

$$\dot{k}(s) = \langle N(s)(y(s) - G(s) \cdot \hat{x}(s)), y(s) - G(s) \cdot \hat{x}(s) \rangle, \quad k(t_0) = 0.$$

(д) Знайдемо $\mathcal{X}(au)$ за формулою

$$\mathcal{X}(\tau) = \mathcal{E}(\hat{x}(\tau), (\mu^2 - k(\tau)) \cdot R(\tau)).$$

2. Похибка e(au) оцінювання задовольняє оцінці

$$|e(\tau)| \le \sqrt{\mu^2 - k(\tau)} \cdot \sqrt{\lambda_*(R(\tau))}.$$

5.2 Аудиторне заняття

Задача 5.1. Задана динамічна система

$$\begin{cases} \frac{\mathrm{d}x(t)}{\mathrm{d}t} = tx(t) + v(t), \\ y(t) = px(t) + w(t), \end{cases}$$

де $x(t) \in \mathbb{R}^1$ – вектор стану, $v(t) \in \mathbb{R}^1$, $w(t) \in \mathbb{R}^1$ – невідомі шуми, $x_0 \in \mathbb{R}^1$ – невідома початкова умова, $y(t) \in \mathbb{R}^1$ – відомі спостереження. Побудувати інформаційну множину такої системи в момент $\tau \in [0,T]$ за умови, що

$$\int_0^{\tau} (v^2(s) + w^2(s)) \, \mathrm{d}s + x^2(0) \le 1, \quad \tau \in [0, T].$$

Розв'язок. Загальна постановка задачі фільтрації має вигляд

$$\dot{x}(t) = A(t) \cdot x(t) + v(t), \quad y(t) = G(t) \cdot x(t) + w(t),$$

$$\int_{t_0}^t (\langle M(t) \cdot v(t), v(t) \rangle + \langle N(t) \cdot w(t), w(t) \rangle) + \langle p_0 x(t_0), x(t_0) \rangle \le \mu^2.$$

У нашій задачі
$$A(t)=\left(t\right),\,G(t)=\left(p\right),\,M(t)=\left(1\right),\,N(t)=\left(1\right),\,p_{0}=1,\,\mu=1.$$

Знайдемо фільтр (спостерігач) цієї задачі у вигляді

$$\dot{\hat{x}}(t) = A(t) \cdot \hat{x}(t) + K(t) \cdot (y(t) - G(t) \cdot \hat{x}(t)),$$

де $K(t) = R(t) \cdot G^*(t) \cdot N(t)$, де у свою чергу

$$\dot{R}(t) = A(t) \cdot R(t) + R(t) \cdot A^*(t) - R(t) \cdot G^*(t) \cdot N(t) \cdot G(t) \cdot R(t), \quad R(t_0) = p_0^{-1}.$$

Підставляючи відомі функції знаходимо

$$\dot{R}(t) = 2t \cdot R(t) - p^2 \cdot R^2(t), \quad R(t_0) = 1.$$

Це рівняння Бернуллі, його розв'язок

$$R(t) = \frac{2e^{t^2}}{2e^{t_0^2} + p^2\sqrt{\pi}(\text{erfi}(t) - \text{erfi}(t_0))}.$$

Далі,

$$K(t) = \frac{2pe^{t^2}}{2e^{t_0^2} + p^2\sqrt{\pi}(\text{erfi}(t) - \text{erfi}(t_0))},$$

i

$$\dot{\hat{x}}(t) = t \cdot \hat{x}(t) + \frac{2pe^{t^2} \cdot (y(t) - p \cdot \hat{x}(t))}{2e^{t^2} + p^2\sqrt{\pi}(\text{erfi}(t) - \text{erfi}(t_0))}.$$

Нарешті,

$$\mathcal{X}(\tau) = \mathcal{E}(\hat{x}(\tau), (\mu^2 - k(\tau)) \cdot R(\tau)),$$

де

$$\dot{k}(s) = \langle N(s)(y(s) - G(s) \cdot \hat{x}(s)), y(s) - G(s) \cdot \hat{x}(s) \rangle, \quad k(t_0) = 0,$$

тобто

$$\dot{k}(s) = \langle (y(s) - p\hat{x}(s)), y(s) - p\hat{x}(s) \rangle = |y(s) - p\hat{x}(s)|^2, \quad k(t_0) = 0.$$

Задача 5.2. Задана динамічна система

$$\begin{cases} \frac{\mathrm{d}x(t)}{\mathrm{d}t} = x(t) + v(t), \\ y(t) = 2x(t) + w(t), \end{cases}$$

де $x(t) \in \mathbb{R}^1$ – вектор стану, $v(t) \in \mathbb{R}^1$, $w(t) \in \mathbb{R}^1$ – невідомі шуми, $x_0 \in \mathbb{R}^1$ – невідома початкова умова. Побудувати оцінку стану заданої системи (фільтр) за заданими спостереженнями $y(t) \in \mathbb{R}^1$ за умови, що

$$\int_0^{\tau} (v^2(s) + w^2(s)) \, \mathrm{d}s + x^2(0) \le 2,$$

 $\tau \in [0, T]$. Знайти похибку оцінювання.

Розв'язок. Загальна постановка задачі фільтрації має вигляд

$$\dot{x}(t) = A(t) \cdot x(t) + v(t), \quad y(t) = G(t) \cdot x(t) + w(t),$$

$$\int_{t_0}^t (\langle M(t) \cdot v(t), v(t) \rangle + \langle N(t) \cdot w(t), w(t) \rangle) + \langle p_0 x(t_0), x(t_0) \rangle \le \mu^2.$$

У нашій задачі
$$A(t)=\begin{pmatrix}1\end{pmatrix},\ G(t)=\begin{pmatrix}2\end{pmatrix},\ M(t)=\begin{pmatrix}1\end{pmatrix},\ N(t)=\begin{pmatrix}1\end{pmatrix},\ p_0=1,\ \mu=\sqrt{2}.$$

Знайдемо фільтр (спостерігач) цієї задачі у вигляді

$$\dot{\hat{x}}(t) = A(t) \cdot \hat{x}(t) + K(t) \cdot (y(t) - G(t) \cdot \hat{x}(t)),$$

де $K(t) = R(t) \cdot G^*(t) \cdot N(t)$, де у свою чергу

$$\dot{R}(t) = A(t) \cdot R(t) + R(t) \cdot A^*(t) - R(t) \cdot G^*(t) \cdot N(t) \cdot G(t) \cdot R(t), \quad R(t_0) = p_0^{-1}.$$

Підставляючи відомі функції знаходимо

$$\dot{R}(t) = 2 \cdot R(t) - 4 \cdot R^2(t), \quad R(t_0) = 1.$$

Це рівняння зі змінними що роздяліються, його розв'язок

$$R(t) = \frac{e^{2t}}{2e^{2t} - e^{2t_0}}.$$

Далі,

$$K(t) = \frac{2e^{2t}}{2e^{2t} - e^{2t_0}},$$

i

$$\dot{\hat{x}}(t) = \hat{x}(t) + \frac{2e^{2t} \cdot (y(t) - 2 \cdot \hat{x}(t))}{2e^{2t} - e^{2t_0}}.$$

Похибка $e(\tau)$ оцінювання задовольняє оцінці

$$|e(\tau)| \le \sqrt{\mu^2 - k(\tau)} \cdot \sqrt{\lambda_*(R(\tau))} = \frac{\sqrt{2 - k(\tau)} \cdot e^{2\tau}}{2e^{2\tau} - e^{2t_0}},$$

де

$$\dot{k}(s) = \langle N(s)(y(s) - G(s) \cdot \hat{x}(s)), y(s) - G(s) \cdot \hat{x}(s) \rangle, \quad k(t_0) = 0,$$

тобто

$$\dot{k}(s) = \langle (y(s) - 2\hat{x}(s)), y(s) - 2\hat{x}(s) \rangle = |y(s) - 2\hat{x}(s)|^2, \quad k(t_0) = 0.$$

Задача 5.3. Задана динамічна система

$$\begin{cases} \frac{\mathrm{d}x_1(t)}{\mathrm{d}t} = 2x_1(t) + x_2(t) + v_1(t), \\ \frac{\mathrm{d}x_2(t)}{\mathrm{d}t} = -x_1(t) + x_2(t) + v_2(t), \\ y(t) = x_1(t) + 2x_2(t) + w(t), \end{cases}$$

і відомі спостереження за цією системою $y(t) \in \mathbb{R}^1$. Побудувати оцінку стану (фільтр) і знайти похибку оцінювання. Тут $x = (x_1, x_2)^*$ — вектор фазових координат з \mathbb{R}^2 , $v_1(t) \in \mathbb{R}^1$, $v_2(t) \in \mathbb{R}^1$, $w(t) \in \mathbb{R}^1$ — невідомі шуми,

$$\int_0^{\tau} (v_1^2(s) + v_2^2(s) + w^2(s)) \, \mathrm{d}s + x_1^2(0) + 2x_2^2(0) \le 1,$$

 $\tau \in [0,T]$, момент часу T є заданим.

Розв'язок. Загальна постановка задачі фільтрації має вигляд

$$\dot{x}(t) = A(t) \cdot x(t) + v(t), \quad y(t) = G(t) \cdot x(t) + w(t),$$

$$\int_{t_0}^t (\langle M(t) \cdot v(t), v(t) \rangle + \langle N(t) \cdot w(t), w(t) \rangle) + \langle p_0 x(t_0), x(t_0) \rangle \le \mu^2.$$

У нашій задачі
$$A(t)=\begin{pmatrix}2&1\\-1&1\end{pmatrix},$$
 $G(t)=\begin{pmatrix}1&2\end{pmatrix},$ $M(t)=\begin{pmatrix}1&0\\0&1\end{pmatrix},$ $N(t)=\begin{pmatrix}1\end{pmatrix},$ $p_0=\begin{pmatrix}1&0\\0&2\end{pmatrix},$ $\mu=1.$

Знайдемо фільтр (спостерігач) цієї задачі у вигляді

$$\dot{\hat{x}}(t) = A(t) \cdot \hat{x}(t) + K(t) \cdot (y(t) - G(t) \cdot \hat{x}(t)),$$

де $K(t) = R(t) \cdot G^*(t) \cdot N(t)$, де у свою чергу

$$\dot{R}(t) = A(t) \cdot R(t) + R(t) \cdot A^*(t) - R(t) \cdot G^*(t) \cdot N(t) \cdot G(t) \cdot R(t), \quad R(t_0) = p_0^{-1}.$$

Підставляючи відомі функції знаходимо

$$\dot{R}(t) = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} \cdot R(t) + R(t) \cdot \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} - R(t) \cdot \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \cdot R(t),$$

або, у розгорнутому вигляді

$$R(t) = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} \cdot R(t) + R(t) \cdot \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} - R(t) \cdot \begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix} \cdot R(t),$$
 озгорнутому вигляді
$$\begin{pmatrix} \dot{r}_{11} = 4r_{11} + 2r_{12} + r_{11}^2 + 4r_{11}r_{12} + 4r_{12}^2, \\ \dot{r}_{12} = -r_{11} + 3r_{12} + r_{22} + r_{11}r_{12} + 2r_{12}^2 + 2r_{11}r_{22} + 4r_{12}r_{22}, \\ \dot{r}_{22} = -2r_{12} + 2r_{22} + r_{12}^2 + 4r_{12}r_{22} + r_{22}^2, \\ r_{11}(0) = 1, \\ r_{12}(0) = 0, \\ r_{22}(0) = 1/2. \end{pmatrix}$$

Похибка $e(\tau)$ оцінювання задовольняє оцінці

$$|e(\tau)| \le \sqrt{\mu^2 - k(\tau)} \cdot \sqrt{\lambda_*(R(\tau))},$$

де

$$\dot{k}(s) = \langle N(s)(y(s) - G(s) \cdot \hat{x}(s)), y(s) - G(s) \cdot \hat{x}(s) \rangle, \quad k(t_0) = 0,$$

тобто

$$\dot{k}(s) = \langle (y(s) - \hat{x}_1(s) - 2\hat{x}_2(s)), y(s) - \hat{x}_1(s) - 2\hat{x}_2(s) \rangle = |y(s) - \hat{x}_1(s) - 2\hat{x}_2(s)|^2.$$

5.3 Домашне завдання

Задача 5.4. Задана динамічна система

$$\begin{cases} \dot{x} = x + v + t^2, \\ y = -x + w, \end{cases}$$

де $x(t) \in \mathbb{R}^1$ – вектор стану, $v(t) \in \mathbb{R}^1$, $w(t) \in \mathbb{R}^1$ – невідомі шуми, $y(t) \in \mathbb{R}^1$ – відомі спостереження. Побудувати інформаційну множину такої системи в момент $\tau \in [0,T]$ за умови. що

$$\int_0^{\tau} (v^2(s) + w^2(s)) \, \mathrm{d}s + (x(0) - 1)^2 \le 1, \quad \tau \in [0, T].$$

Розв'язок.

 $3a\partial a ua$ 5.5. Побудувати оцінку стану системи

$$\begin{cases} \dot{x} = tx + v, \\ y = px + w, \end{cases}$$

у формі фільтра, де $y(t) \in \mathbb{R}^1$ – відомі спостереження. Тут $x(t) \in \mathbb{R}^1$ – вектор стану, $v(t) \in \mathbb{R}^1$, $w(t) \in \mathbb{R}^1$ – невідомі шуми, x_0 – невідома початкова умова, при цьому

$$\int_0^{\tau} (v^2(s) + w^2(s)) \, \mathrm{d}s + (x(0) - 1)^2 \le 4,$$

 $au \in [0,T]$. Знайти похибку оцінювання.

Розв'язок. Загальна постановка задачі фільтрації має вигляд

$$\dot{x}(t) = A(t) \cdot x(t) + v(t), \quad y(t) = G(t) \cdot x(t) + w(t),$$

$$\int_{t_0}^t (\langle M(t) \cdot v(t), v(t) \rangle + \langle N(t) \cdot w(t), w(t) \rangle) + \langle p_0 x(t_0), x(t_0) \rangle \le \mu^2.$$

У нашій задачі
$$A(t)=\left(t\right),\,G(t)=\left(p\right),\,M(t)=\left(1\right),\,N(t)=\left(1\right),\,p_0=1,\,\mu=2.$$

Знайдемо фільтр (спостерігач) цієї задачі у вигляді

$$\dot{\hat{x}}(t) = A(t) \cdot \hat{x}(t) + K(t) \cdot (y(t) - G(t) \cdot \hat{x}(t)), \quad \hat{x}(0) = 1,$$

де $K(t) = R(t) \cdot G^*(t) \cdot N(t)$, де у свою чергу

$$\dot{R}(t) = A(t) \cdot R(t) + R(t) \cdot A^*(t) - R(t) \cdot G^*(t) \cdot N(t) \cdot G(t) \cdot R(t), \quad R(t_0) = p_0^{-1}.$$

Підставляючи відомі функції знаходимо

$$\dot{R}(t) = 2t \cdot R(t) - p^2 \cdot R^2(t), \quad R(t_0) = 1.$$

Це рівняння Бернуллі, його розв'язок

$$R(t) = \frac{2e^{t^2}}{2e^{t_0^2} + p^2\sqrt{\pi}(\text{erfi}(t) - \text{erfi}(t_0))}.$$

Далі,

$$K(t) = \frac{2pe^{t^2}}{2e^{t_0^2} + p^2\sqrt{\pi}(\text{erfi}(t) - \text{erfi}(t_0))},$$

i

$$\dot{\hat{x}}(t) = t \cdot \hat{x}(t) + \frac{2pe^{t^2} \cdot (y(t) - p \cdot \hat{x}(t))}{2e^{t_0^2} + p^2\sqrt{\pi}(\text{erfi}(t) - \text{erfi}(t_0))}, \quad \hat{x}(0) = 1.$$

Похибка $e(\tau)$ оцінювання задовольняє оцінці

$$|e(\tau)| \leq \sqrt{\mu^2 - k(\tau)} \cdot \sqrt{\lambda_*(R(\tau))} = \frac{\sqrt{4 - k(\tau)} \cdot e^{2\tau}}{2e^{2\tau} - e^{2t_0}},$$

де

$$\dot{k}(s) = \langle N(s)(y(s) - G(s) \cdot \hat{x}(s)), y(s) - G(s) \cdot \hat{x}(s) \rangle, \quad k(t_0) = 0,$$

тобто

$$\dot{k}(s) = \langle (y(s) - p\hat{x}(s)), y(s) - p\hat{x}(s) \rangle = |y(s) - p\hat{x}(s)|^2, \quad k(t_0) = 0.$$

Задача 5.6.

Розв'язок.

6 Варіаційний метод в задачі оптимального керування

6.1 Алгоритми

3adaчa. Знайти першу варіацію за Лагранжем і похідну Фреше в просторі інтегрованих з квадратом функцій для функціоналу $\mathcal{J} = \int f(u) \, \mathrm{d}s$.

Алгоритм 6.1. 1. Записуємо $\mathcal{J}(u+\alpha h)$.

- 2. Знаходимо $\frac{\mathrm{d}}{\mathrm{d} \alpha} \mathcal{J}(u + \alpha h)$.
- 3. Знаходимо першу варіацію $\delta \mathcal{J}(u,h)$ за Лагранжем за формулою

$$\delta \mathcal{J}(u,h) = \frac{\mathrm{d}}{\mathrm{d}\alpha} \left. \mathcal{J}(u + \alpha h) \right|_{\alpha=0}.$$

4. Якщо

$$\delta \mathcal{J}(u,h) = \int h(s) \cdot g(s) \, \mathrm{d}s,$$

то g(s) - похідна за Фреше.

 $\it 3adaua$. Побудувати рівняння у варіаціях для системи керування $\dot{x} = Ax + Bu$.

Алгоритм 6.2. Рівняння у варіаціях має загальний вигляд

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = \frac{\partial f(x(t), u(t), t)}{\partial x} \cdot z(t) + \frac{\partial f(x(t), u(t), t)}{\partial u} \cdot h(t), \quad z(0) = 0.$$

3a daчa. Знайти першу варіацію за Лагранжем і похідну Фреше в просторі інтегрованих з квадратом функцій для задачи оптимального керування варіаційним методом

$$\mathcal{J} = \int f \, \mathrm{d}s + \Phi(T) \to \inf$$

за умови, що

$$\dot{x} = f_0(x, u),$$

і розв'язати цю задачу.

Алгоритм 6.3. 1. Позначимо $\varphi(\alpha) = \mathcal{J}(u + \alpha h)$.

2. Знайдемо $\varphi'(\alpha)$.

3. Підставляючи $\alpha = 0$, знаходимо

$$\varphi'(0) = \int \dots ds + \underbrace{\Phi_1(T)}_{=-\psi(T)} \cdot z(T).$$

- 4. Запишемо рівняння у варіаціях на функцію $z(t)\,.$
- 5. Введемо додаткові, спряжені змінні ψ такі, що

$$\psi(T) = -\frac{\partial \Phi(x(T))}{\partial x}.$$

6. Тоді

$$\left\langle \frac{\partial \Phi(x(T))}{\partial x}, z(T) \right\rangle = -\langle \psi(T), z(T) \rangle.$$

7. Враховуючи рівняння у варіаціях, маємо

$$\psi(T) \cdot z(T) = \psi(T) \cdot z(T) - \psi(t_0) \cdot z(t_0) =$$

$$= \int_{t_0}^T (\psi(s) \cdot z'(s) + \psi'(s) \cdot z(s)) \, \mathrm{d}s = \dots$$

8. Підставимо це у вигляд $\varphi'(0)$:

$$\varphi'(0) = -\int (\psi' + \dots) \cdot z \, \mathrm{d}s + \int (\dots) \cdot h(s) \, \mathrm{d}s.$$

9. Накладаємо на функцію $\psi(t)$ умову (спряжену систему)

$$\frac{\mathrm{d}\psi(t)}{\mathrm{d}t} = -\frac{\partial f(x(t), u(t), t)}{\partial x} \cdot \psi(t) + \frac{\partial f_0(x(t), u(t), t)}{\partial x} = 0,$$

- 10. Завдяки цьому у $\delta \mathcal{J}(u,h) = arphi'(0)$ перший інтеграл зануляється.
- 11. Знаходимо $\mathcal{J}'(u)$
- 12. З необхідної умову екстремуму функціоналу, $\mathcal{J}'(u_*) = 0$, знаходимо u_* .
- 13. Далі

$$x_*(t) = x_0 + \int_0^t f(x(s), u_*(s), s) \, ds.$$

- 14. Покладаючи t=T знаходимо x(T).
- 15. Остаточно знаходимо u_* , x_* .

6.2 Аудиторне заняття

Задача 6.1. Знайти першу варіацію за Лагранжем і похідну Фреше в просторі інтегрованих з квадратом функцій для функціоналів:

1.
$$\mathcal{J}(u) = \int_0^T u^3(s) \, ds;$$

2.
$$\mathcal{J}(u) = \int_0^T (\sin^2 u_1(s) + u_2^2(s)) \, ds, \ u = (u_1, u_2)^*.$$

Розв'язок. Першою варіацією (за Лагранжем) функціоналу $\mathcal{J}(u)$ в точці u називається

$$\delta \mathcal{J}(u, \psi) = \lim_{\alpha \to 0} \frac{\mathcal{J}(u + \alpha \psi) - \mathcal{J}(u)}{\alpha}$$

(якщо, звичайно, вона існує для довільного напрямку ψ). Також можна записати

$$\delta \mathcal{J}(u, \psi) = \frac{\mathrm{d}}{\mathrm{d}\alpha} \left. \mathcal{J}(u + \alpha \psi) \right|_{\alpha = 0}.$$

1. Перша варіація за Лагранжем:

$$\delta \mathcal{J}(u,\psi) = \frac{\mathrm{d}}{\mathrm{d}\alpha} \left. \mathcal{J}(u+\alpha\psi) \right|_{\alpha=0} = \frac{\mathrm{d}}{\mathrm{d}\alpha} \left. \int_0^T (u+\alpha\psi)^3(s) \, \mathrm{d}s \right|_{\alpha=0} =$$

$$= \left. \int_0^T 3\psi(s) \cdot (u+\alpha\psi)^2(s) \, \mathrm{d}s \right|_{\alpha=0} = \int_0^T 3\psi(s) \cdot u^2(s) \, \mathrm{d}s$$

Як наслідок, похідна за Фреше $\mathcal{J}'(u) = 3u^2(\cdot)$.

2. Перша варіація за Лагранжем:

$$\delta \mathcal{J}(u,\psi) = \frac{\mathrm{d}}{\mathrm{d}\alpha} \left. \mathcal{J}(u + \alpha \psi) \right|_{\alpha = 0} =$$

$$= \frac{\mathrm{d}}{\mathrm{d}\alpha} \int_0^T (\sin^2(u_1 + \alpha \psi_1) + (u_2 + \alpha \psi_2)^2) \, \mathrm{d}s \bigg|_{\alpha = 0} =$$

$$= \int_0^T (2\psi_1 \sin(u_1 + \alpha \psi_1) \cos(u_1 + \alpha \psi_1) + 2\psi_2 \cdot (u_2 + \alpha \psi_2)) \, \mathrm{d}s \bigg|_{\alpha = 0} =$$

$$= \int_0^T (2\psi_1(s) \sin(u(s)) \cos(u(s)) + 2\psi_2(s) \cdot u_2(s)) \, \mathrm{d}s.$$

Задача 6.2. Побудувати рівняння у варіаціях для системи керування

$$\frac{dx(t)}{dt} = (x(t) + u(t))^3, \quad x(0) = x_0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0,T]$. Точки $x_0 \in \mathbb{R}^1$ і момент часу T є заданими.

Розв'язок. Рівняння у варіаціях має загальний вигляд

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = \frac{\partial f(x(t), u_*(t), t)}{\partial x} \cdot z(t) + \frac{\partial f(x(t), u_*(t), t)}{\partial u} \cdot h(t), \quad z(0) = 0.$$

У нашій задачі

$$f(x(t), u(t), t) = (x(t) + u(t))^3,$$

тому маємо

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = 3(x(t) + u(t))^2 \cdot z(t) + 3(x(t) + u(t))^2 \cdot h(t), \quad z(0) = 0.$$

Задача 6.3. Побудувати рівняння у варіаціях для системи керування

$$\begin{cases} \frac{\mathrm{d}x_1(t)}{\mathrm{d}t} = x_1^2(t) + x_2^2(t) + u_1(t), \\ \frac{\mathrm{d}x_1(t)}{\mathrm{d}t} = x_1(t) - x_2(t) + u_2(t), \end{cases}$$

$$x_1(0) = 1, x_2(0) = -3.$$

Тут $x=(x_1,x_2)^*$ — вектор фазових координат з \mathbb{R}^2 , $u=(u_1,u_2)^*$, $t\in[0,T]$, момент часу T є заданим.

Розв'язок. Рівняння у варіаціях має загальний вигляд

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = \frac{\partial f(x(t), u_*(t), t)}{\partial x} \cdot z(t) + \frac{\partial f(x(t), u_*(t), t)}{\partial u} \cdot h(t), \quad z(0) = 0.$$

У нашій задачі

$$f(x(t), u(t), t) = \begin{pmatrix} x_1^2 + x_2^2 + u_1 \\ x_1 - x_2 + u_2 \end{pmatrix},$$

тому маємо

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = \begin{pmatrix} 2x_1 & 2x_2\\ 1 & -1 \end{pmatrix} \cdot z(t) + \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \cdot h(t), \quad z(0) = 0,$$

або, у розгорнутому вигляді,

$$\begin{cases} \dot{z}_1 = 2x_1z_1 + 2x_2z_2 + h_1, \\ \dot{z}_2 = z_1 - z_2 + h_2, \\ z_1(0) = z_2(0) = 0. \end{cases}$$

3a daчa 6.4. Знайти першу варіацію за Лагранжем і похідну Фреше в просторі інтегрованих з квадратом функцій для задачи оптимального керування варіаційним методом

$$\mathcal{J}(u) = \int_0^T u^2(s) \, \mathrm{d}s + x^2(T) \to \inf$$

за умови, що

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = \sin(x(t)) + u(t), \quad x(0) = x_0.$$

Тут $x(t) \in \mathbb{R}^1, \ u(t) \in \mathbb{R}^1, \ t \in [0,T]$. Точки $x_0 \in \mathbb{R}^1$ і момент часу T є заданими.

Розв'язок. Перш за все запишемо

$$\varphi(\alpha) = \mathcal{J}(u + \alpha h) = \int_0^T (u(s) + \alpha h(s))^2 ds + x^2(T, \alpha).$$

Далі,

$$\varphi'(\alpha) = \int_0^T 2h(s) \cdot (u(s) + \alpha h(s)) \, \mathrm{d}s + 2x(T, \alpha) \frac{\partial x(T, \alpha)}{\partial \alpha}.$$

Підставимо $\alpha = 0$:

$$\delta \mathcal{J}(u,h) = \int_0^T 2h(s)u(s) \, \mathrm{d}s + \underbrace{2x(T)}_{=-\psi(T)} \cdot z(T).$$

Тоді рівняння у варіаціях

$$\begin{cases} z' = \cos(x) \cdot z + 1 \cdot h, \\ z(0) = 0. \end{cases}$$

$$\psi(T) \cdot z(T) = \psi(T) \cdot z(T) - \psi(0) \cdot z(0) = \int_0^T (\psi(s) \cdot z(s))' \, \mathrm{d}s =$$

$$= \int_0^T (\psi'(s) \cdot z(s) + \psi(s) \cdot z'(s)) \, \mathrm{d}s =$$

$$= \int_0^T \psi'(s) \cdot z(s) + \psi(s) (\cos(x(s)) \cdot z(s) + h(s)) \, \mathrm{d}s =$$

$$= \int_0^T \psi'(s) \cdot z(s) + \psi(s) \cos(x(s)) \, \mathrm{d}s + \int_0^T h(s) \cdot \psi(s) \, \mathrm{d}s.$$

$$\delta \mathcal{J}(u,h) = \int_0^T 2h(s) \cdot u(s) \, \mathrm{d}s - \int_0^T z(s) \cdot (\psi'(s) + \psi(s) \cos(x(s))) \, \mathrm{d}s + \int_0^T h(s) \cdot (2u(s) - \psi(s)) \, \mathrm{d}s.$$

Тоді спряжена система

$$\begin{cases} 0 = \psi'(s) + \psi(s) \cdot \cos(x(s)), \\ \psi(T) = -2x(T). \end{cases}$$

Остаточно, $\mathcal{J}'(u) = 2u(\cdot) - \psi(\cdot)$.

Задача 6.5. Розв'язати задачу оптимального керування варіаційним методом:

$$\mathcal{J}(u) = \int_0^T u^2(s) \, ds + (x(T) - 1)^2 \to \inf$$

за умови, що

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = u(t), \quad x(0) = x_0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0,T]$. Точки $x_0 \in \mathbb{R}^1$ і момент часу T є заданими.

Розв'язок. $\delta \mathcal{J}(u,h) = \varphi'(0)$.

$$\varphi(\alpha) = \mathcal{J}(u + \alpha h) = \int_0^T (u(s) + \alpha h(s))^2 ds + (x(T, \alpha) - 1)^2.$$

$$\varphi'(\alpha) = \int_0^T 2h(s)(u(s) + \alpha h(s)) ds + 2(x(T,\alpha) - 1)x'_{\alpha}(T,\alpha).$$

$$\varphi'(0) = \int_0^T 2h(s)u(s) ds + \underbrace{2(x(T) - 1)}_{=-\psi(T)} \cdot z(T).$$

$$z' = h, z(0) = 0.$$

$$\psi(T) \cdot z(T) = \psi(T) \cdot z(T) - \psi(0) \cdot z(0) = \int_0^T (\psi(s) \cdot z(s))' \, \mathrm{d}s =$$

$$= \int_0^T (\psi'(s) \cdot z(s) + \psi(s) \cdot z'(s)) \, \mathrm{d}s.$$

$$\varphi'(0) = \int_0^T 2h(s)u(s) \, ds - \int_0^T (\psi'(s)z(1) + \psi(s)h) \, ds.$$

$$x'_{\alpha}(T,\alpha) = \int_{0}^{T} h(s)(2u(s) - \psi(s)) ds - \int_{0}^{T} \psi'(s)z(s) ds.$$

$$\mathcal{J}'(u) = 2u(\cdot) - \psi(\cdot).$$

 $\mathcal{J}'(u) = 0$:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\psi(\cdot)}{2}, \\ \psi' = 0, \\ x(0) = x_0, \\ \varphi(T) = 2(x(T) - 1). \end{cases}$$

$$\begin{cases} \psi = const, \\ \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{const}{2}, x(t) = (const/2)t + u. \end{cases}$$

$$c_1 = -2\left(\frac{c_1}{2}T + x_0 - 1\right) = -c_1T - 2x_0 + 2, c_1 = \frac{-2x_0 + 2}{1 + T}$$

$$u(t) = \frac{\psi(t)}{2} = \frac{-x_0+1}{1+T}$$
.

Задача 6.6. Розв'язати задачу оптимального керування варіаційним методом:

$$\mathcal{J}(u) = \int_0^T u^2(s) \, ds + (x(T) + 2)^2 \to \inf$$

за умови, що

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = x(t) + u(t), \quad x(0) = x_0.$$

Тут $x(t)\in\mathbb{R}^1,\ u(t)\in\mathbb{R}^1,\ t\in[0,T].$ Точки $x_0\in\mathbb{R}^1$ і момент часу T є заданими.

Розв'язок. Застосовуємо вже добре відомий алгоритм:

1.
$$\varphi(\alpha) = \mathcal{J}(u + \alpha h) = \int_0^T (u + \alpha h)^2(s) \, ds + (x(T, \alpha) + 2)^2.$$

2.
$$\varphi'(\alpha) = \int_0^T 2h(s)(u+\alpha h)(s) ds + 2(x(T,\alpha)+2) \frac{\partial x(T,\alpha)}{\partial \alpha}$$
.

3.
$$\varphi'(0) = \int_0^T 2h(s)u(s) ds + \underbrace{2(x(T)+2)}_{=-\psi(T)} z(T).$$

4. (рівняння у варіаціях): z' = z + h, z(0) = 0;

5.

$$\begin{split} \psi(T)z(T) &= \dots = \int_0^T \psi'(s)z(s) \, \mathrm{d}s + \int_0^T \psi(s)(z(s) + h(s)) \, \mathrm{d}s = \\ &= \int_0^T z(s)(\psi'(s) + \psi(s)) \, \mathrm{d}s + \int_0^T h(s)\psi(s) \, \mathrm{d}s. \end{split}$$

6.

$$\delta \mathcal{J}(u,\alpha) = \int_0^T 2h(s)u(s) \, ds - \int_0^T z(s)(\psi'(s) + \psi(s)) \, ds - \int_0^T h(s)\psi(s) \, ds = \dots + \int_0^T (2u(s) - \psi(s))h(s) \, ds.$$

7.
$$\varphi'(0) = \int_0^T (2u(s) - \psi(s))h(s) ds$$
.

8.
$$\mathcal{J}'(u) = 2u(\cdot) - \psi(\cdot);$$

9. ...

Задача 6.7.

6.3 Домашне завдання

Задача 6.8. Знайти першу варіацію за Лагранжем і похідну Фреше в просторі інтегрованмх з квадратом функцій для функціоналів:

1.
$$\mathcal{J}(u) = \int_0^T \cos(u(s)) ds$$
;

2.
$$\mathcal{J}(u) = \int_0^T (s^2 u_1^4(s) + u_2^2(s)) ds, \ u = (u_1, u_2)^*.$$

Розв'язок. 1. Перша варіація за Лагранжем:

$$\delta \mathcal{J}(u,\psi) = \frac{\mathrm{d}}{\mathrm{d}\alpha} \left. \mathcal{J}(u+\alpha\psi) \right|_{\alpha=0} = \frac{\mathrm{d}}{\mathrm{d}\alpha} \left. \int_0^T \cos(u(s) + \alpha\psi(s)) \, \mathrm{d}s \right|_{\alpha=0} =$$

$$= \left. \int_0^T -\psi(s) \sin(u(s) + \alpha\psi(s)) \, \mathrm{d}s \right|_{\alpha=0} = -\int_0^T \psi(s) \sin(u(s)) \, \mathrm{d}s.$$

Як наслідок, похідна за Фреше $\mathcal{J}'(u) = -\sin u(\cdot)$.

2.

$$\delta \mathcal{J}(u,\psi) = \frac{\mathrm{d}}{\mathrm{d}\alpha} \left. \mathcal{J}(u+\alpha\psi) \right|_{\alpha=0} =$$

$$= \frac{\mathrm{d}}{\mathrm{d}\alpha} \int_0^T (s^2(u_1+\alpha\psi_1)^4(s) + (u_2+\alpha\psi_2)^2(s)) \, \mathrm{d}s \bigg|_{\alpha=0} =$$

$$= \int_0^T (4s^2\psi_1(s)(u_1+\alpha\psi_1)^3(s) + 2\psi_2(s)(u_2+\alpha\psi_2)(s)) \, \mathrm{d}s \bigg|_{\alpha=0} =$$

$$= \int_0^T (4s^2\psi_1(s)u_1^3(s) + 2\psi_2(s)u_2(s)) \, \mathrm{d}s.$$

Задача 6.9. Побудувати рівняння у варіаціях для системи керування

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = \cos(x(t) + u(t)), \quad x(0) = x_0.$$

Тут $x(t) \in \mathbb{R}^1, \ u(t) \in \mathbb{R}^1, \ t \in [0,T]$. Точки $x_0 \in \mathbb{R}^1$ і момент часу T є заданими.

Розв'язок. Рівняння у варіаціях має загальний вигляд

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = \frac{\partial f(x(t), u_*(t), t)}{\partial x} \cdot z(t) + \frac{\partial f(x(t), u_*(t), t)}{\partial u} \cdot h(t), \quad z(0) = 0.$$

У нашій задачі

$$f(x(t), u(t), t) = \cos(x(t) + u(t)),$$

тому маємо

$$\frac{dz(t)}{dt} = -\sin(x(t) + u(t)) \cdot z(t) - \sin(x(t) + u(t)) \cdot h(t), \quad z(0) = 0.$$

Задача 6.10. Побудувати рівняння у варіаціях для системи керування

$$\begin{cases} \frac{\mathrm{d}x_1(t)}{\mathrm{d}t} = x_1(t) \cdot x_2(t) + u_1(t), \\ \frac{\mathrm{d}x_2(t)}{\mathrm{d}t} = x_1(t) - x_2(t) \cdot u_2(t), \\ x_1(0) = -1, x_2(0) = 4. \end{cases}$$

Тут $x=(x_1,x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , $u=(u_1,u_2)^*$, $t\in[0,T]$, момент часу T є заданим.

Розв'язок. Рівняння у варіаціях має загальний вигляд

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = \frac{\partial f(x(t), u_*(t), t)}{\partial x} \cdot z(t) + \frac{\partial f(x(t), u_*(t), t)}{\partial u} \cdot h(t), \quad z(0) = 0.$$

У нашій задачі

$$f(x(t), u(t), t) = \begin{pmatrix} x_1 \cdot x_2 + u_1 \\ x_1 - x_2 \cdot u_2 \end{pmatrix},$$

тому маємо

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = \begin{pmatrix} x_2 & x_1 \\ 1 & -u_2 \end{pmatrix} \cdot z(t) + \begin{pmatrix} 1 & 0 \\ 0 & -x_2 \end{pmatrix} \cdot h(t), \quad z(0) = 0,$$

або, у розгорнутому вигляді.

$$\begin{cases} \dot{z}_1 = x_2 z_1 + x_1 z_2 + h_1, \\ \dot{z}_2 = z_1 - u_2 z_2 - x_2 h_2, \\ 0 = z_1(0) = z_2(0). \end{cases}$$

Задача~6.11. Знайти першу варіацію за Лагранжем і похідну Фреше в просторі інтегрованих з квадратом функцій для задачи оптимального керування варіаційним методом

$$\mathcal{J}(u) = \int_0^T (u^2(s) + x^4(s)) \, ds + x^4(T) \to \inf$$

за умови, що

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = x(t) \cdot u(t), \quad x(0) = x_0.$$

Тут $x(t) \in \mathbb{R}^1, \ u(t) \in \mathbb{R}^1, \ t \in [0,T]$. Точки $x_0 \in \mathbb{R}^1$ і момент часу T є заданими.

Розв'язок. Перш за все запишемо

$$\varphi(\alpha) = \mathcal{J}(u + \alpha h) = \int_0^T ((u + \alpha h)^2(s) + x^4(s, \alpha)) \,\mathrm{d}s + x^4(T, \alpha).$$

Далі,

$$\varphi'(\alpha) = \int_0^T (2h(s) \cdot (u(s) + \alpha h(s)) + 4x^3(s, \alpha)x'_{\alpha}(s, \alpha)) \,\mathrm{d}s + 4x^3(T, \alpha)x'_{\alpha}(T, \alpha).$$

Підставимо $\alpha = 0$:

$$\delta \mathcal{J}(u,h) = \int_0^T (2h(s)u(s) + 4x^3(s)z(s)) \,\mathrm{d}s + \underbrace{4x^3(T)}_{=-\psi(T)} \cdot z(T).$$

Тоді рівняння у варіаціях

$$\begin{cases} z' = u \cdot z + x \cdot h, \\ z(0) = 0. \end{cases}$$

$$\psi(T) \cdot z(T) = \psi(T) \cdot z(T) - \psi(0) \cdot z(0) = \int_0^T (\psi(s) \cdot z(s))' \, \mathrm{d}s =$$

$$= \int_0^T (\psi'(s) \cdot z(s) + \psi(s) \cdot z'(s)) \, \mathrm{d}s =$$

$$= \int_0^T \varphi'(s)z(s) + \varphi(s)(u(s)z(s) + x(s)h(s)) =$$

$$= \int_0^T \varphi'(s)z(s)u(s)z(s) \, \mathrm{d}s + \int_0^T \psi(s)x(s)h(s) \, \mathrm{d}s.$$

$$\delta \mathcal{J}(u,h) = \int_0^T 2h(s)u(s) + 4x^3(s)z(s) ds -$$

$$-\int_{0}^{T} \psi'(s)z(s)u(s)z(s) ds - \int_{0}^{T} \psi(s)x(s)h(s) ds =$$

$$= \int_{0}^{T} (\psi'(s)z(s) + \psi(s)x(s)h(s) + u(s)z(s)) ds.$$

$$\int_{0}^{T} z(s)(\psi'(s) + \psi(s)u(s)) ds + \int_{0}^{T} h(s)\psi(s)x(s(ds + \int))$$
...???...

Задача 6.12. Розв'язати задачу оптимального керування варіаційним методом:

$$\mathcal{J}(u) = \int_0^T (u(s) - v(s))^2 ds + (x(T) - 3)^2 \to \inf$$

за умови, що

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = u(t), \quad x(0) = x_0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0,T]$. Точки $x_0 \in \mathbb{R}^1$, момент часу T і функція $v(t) \in \mathbb{R}^1$ є заданими.

Розв'язок. Нагадаємо постановку задачі варіаційного методу:

$$\mathcal{J}(u) = \int_{t_0}^T f_0(x(t), u(t), t) dt + \Phi(x(T)) \to \inf,$$
$$\frac{dx(t)}{dt} = f(x(t), u(t), t), \quad x(t_0) = x_0.$$

Спочатку випишемо всі функції з теоретичної частини які фігурують в задачі:

$$f_0(x(t), u(t), t) = (u(t) - v(t))^2,$$

$$\Phi(x(T)) = (x(T) - 3)^2,$$

$$f(x(t), u(t), t) = u(t).$$

Позначимо

$$\varphi(\alpha) = \mathcal{J}(u + \alpha h) = \int_0^T ((u + \alpha h)(s) - v(s))^2 ds + (x(T, \alpha) - 3)^2.$$

Необхідна умова екстремуму через першу варіацію функціоналу має вигляд $\delta \mathcal{J}(u_*,h) = \varphi'(0) = 0$, тому знайдемо

$$\varphi'(\alpha) = \int_0^T (2h(s) \cdot ((u + \alpha h)(s) - v(s))) \, \mathrm{d}s + 2(x(T, \alpha) - 3) \cdot \underbrace{\frac{\partial x(T, \alpha)}{\partial \alpha}}_{=z(T)}.$$

Підставляючи $\alpha = 0$, знаходимо

$$\varphi'(0) = \int_0^T (2h(s) \cdot (u(s) - v(s))) \, ds + \underbrace{2(x(T) - 3)}_{=-\psi(T)} \cdot z(T).$$

Запишемо рівняння у варіаціях на функцію z(t). Його загальний вигляд

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = \frac{\partial f(x(t), u(t), t)}{\partial x} \cdot z(t) + \frac{\partial f(x(t), u(t), t)}{\partial u} \cdot h(t), \quad z(t_0) = 0.$$

У контексті нашої задачі маємо

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = 0 \cdot z(t) + 1 \cdot h(t), \quad z(0) = 0.$$

Введемо додаткові, спряжені змінні ψ такі, що

$$\psi(T) = -\frac{\partial \Phi(x(T))}{\partial x}.$$

Тоді $\left\langle \frac{\partial \Phi(x(T))}{\partial x}, z(T) \right\rangle = -\langle \psi(T), z(T) \rangle$ (у контексті нашої задачі "скалярний" добуток зайвий бо функції і так скалярні). Враховуючи рівняння у варіаціях, маємо

$$\psi(T) \cdot z(T) = \psi(T) \cdot z(T) - \psi(t_0) \cdot z(t_0) =$$

$$= \int_{t_0}^T (\psi(s) \cdot z'(s) + \psi'(s) \cdot z(s)) \, \mathrm{d}s =$$

$$= \int_0^T (\psi(s) \cdot h(s) + \psi'(s) \cdot z(s)) \, \mathrm{d}s.$$

Підставимо це у вигляд $\varphi'(0)$:

$$\varphi'(0) = \int_{t_0}^T \left(\frac{\partial f_0(x(t), u(t), t)}{\partial x} \cdot z(t) + \frac{\partial f_0(x(t), u(t), t)}{\partial u} \cdot h(t) \right) +$$

$$+ \frac{\partial \Phi(x(T))}{\partial x} \cdot z(T) =$$

$$= \int_{t_0}^T \left(\frac{\partial f_0(x(t), u(t), t)}{\partial x} \cdot z(t) + \frac{\partial f_0(x(t), u(t), t)}{\partial u} \cdot h(t) \right) -$$

$$- \int_0^T \left(\psi(s) \cdot h(s) + \psi'(s) \cdot z(s) \right) ds =$$

$$= \int_0^T \left(2h(s) \cdot (u(s) - v(s)) \right) ds -$$

$$- \int_0^T \left(\psi(s) \cdot h(s) + \psi'(s) \cdot z(s) \right) ds =$$

$$= \int_0^T -\psi'(s) \cdot z(s) ds + \int_0^T \left(2(u(s) - v(s)) - \psi(s) \right) \cdot h(s) ds.$$

Накладаємо на функцію $\psi(t)$ умову (спряжену систему)

$$\frac{\mathrm{d}\psi(t)}{\mathrm{d}t} = -\frac{\partial f(x(t), u(t), t)}{\partial x} \cdot \psi(t) + \frac{\partial f_0(x(t), u(t), t)}{\partial x} = 0,$$
$$\psi(T) = -\frac{\partial \Phi(x(T))}{\partial x} = 2(x(T) - 3),$$

звідки $\psi(t) = 2(x(T) - 3)$.

Завдяки цьому

$$\delta \mathcal{J}(u,h) = \varphi'(0) = \int_0^T (2(u(s) - v(s)) - \psi(s)) \cdot h(s) \,\mathrm{d}s.$$

Як наслідок,

$$\mathcal{J}'(u) = 2(u(\cdot) - v(\cdot)) - \psi(\cdot)).$$

Пригадуючи необхідну умову екстремуму функціоналу, знаходимо

$$u_*(t) = v(t) + \psi(t)/2 = v(t) + x(T) - 3.$$

Далі

$$x_*(t) = x_0 + \int_0^t f(x(s), u_*(s), s) \, \mathrm{d}s =$$

$$= x_0 + \int_0^t (v(s) + x(T) - 3) \, \mathrm{d}s = tx(T) - 3t + \int_0^t v(s) \, \mathrm{d}s.$$

покладаючи t=T знаходимо

$$x(T) = Tx(T) - 3T + \int_0^T v(s) ds,$$

звідки

$$x(T) = \frac{\int_0^T v(s) ds - 3T}{1 - T},$$

і остаточно

$$u_*(t) = v(t) + \frac{\int_0^T v(s) \, ds - 3T}{1 - T} - 3,$$
$$x_*(t) = \frac{t \cdot \left(\int_0^T v(s) \, ds - 3T\right)}{1 - T} - 3t + \int_0^t v(s) \, ds.$$

Задача 6.13.

Розв'язок.

Задача 6.14.

Розв'язок.

Задача 6.15.

7 Принцип максимуму Понтрягіна для задачі з вільним правим кінцем

7.1 Алгоритми

Задача. Записати крайову задачу принципу максимуму для задачі оптимального керування:

$$\mathcal{J} = \int f \, \mathrm{d}s + \Phi(T) \to \inf$$

за умови, що

$$\dot{x} = f_0.$$

Розв'язати задачу оптимального керування.

Алгоритм 7.1. 1. Записуємо функцію Гамільтона-Понтрягіна:

$$\mathcal{H}(x, u, \psi, t) = -f_0(x, u, t) + \langle \psi, f(x, u, t) \rangle.$$

2. Записуємо спряжену систему:

$$\dot{\psi} = -\nabla_x \mathcal{H}, \quad \psi(T) = -\nabla \Phi(x(T)).$$

3. Знаходимо $u(\psi)$ з умови оптимальності:

$$\frac{\partial \mathcal{H}(x, u, \psi, t)}{\partial u} = 0.$$

- 4. Підставляємо знайдене керування у початкову систему, отримали крайову задачу, систему диференціальних рівнянь на x і ψ з граничними умовами.
- 5. Розв'язуємо крайову задачу і знаходимо x.
- 6. Відновлюємо $u=u(\psi)$ за знайденим ψ .

7.2 Аудиторне заняття

Задача 7.1. Записати крайову задачу принципу максимуму для задачі оптимального керування:

$$\mathcal{J}(u) = \int_0^T (u^2(s) + x_1^4(s)) \, \mathrm{d}s + x_2^4(T) \to \inf$$

за умови, що

$$\begin{cases} \dot{x}_1 = \sin(x_1 - x_2) + u, \\ \dot{x}_2 = \cos(-4x_1 + x_2), \\ x_1(0) = 1, x_2(0) = 2. \end{cases}$$

Тут $x = (x_1, x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , u(t) – функція керування, $t \in [0, T]$, момент часу T є заданим.

Розв'язок. Для початку випишемо всі функції з теоретичної частини:

$$f_0(x, u, t) = u^2(t) + x_1^4(t),$$

$$f(x(t), u(t), t) = \begin{pmatrix} \sin(x_1(t) - x_2(t)) + u(t) \\ \cos(-4x_1(t) + x_2(t)) \end{pmatrix},$$

$$\Phi(x(T)) = x_2^4(T). \quad (7.1)$$

Функція Гамільтона-Понтрягіна має вигляд

$$\mathcal{H}(x, u, \psi, t) = -f_0(x, u, t) + \langle \psi, f(x, u, t) \rangle =$$

$$= -u^2 - x_1^4 + \langle \psi, f(x, u, t) \rangle =$$

$$= -u^2 - x_1^4 + \left\langle \psi, \begin{pmatrix} \sin(x_1 - x_2) + u \\ \cos(-4x_1 + x_2) \end{pmatrix} \right\rangle =$$

$$= -u^2 - x_1^4 + \left\langle \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}, \begin{pmatrix} \sin(x_1 - x_2) + u \\ \cos(-4x_1 + x_2) \end{pmatrix} \right\rangle =$$

$$= -u^2 - x_1^4 + \psi_1 \cdot \sin(x_1 - x_2) + \psi_1 \cdot u + \psi_2 \cdot \cos(-4x_1 + x_2).$$
(7.2)

Спряжена система записується так:

$$\dot{\psi} = -\nabla_x \mathcal{H} = \begin{pmatrix} 4x_1^3 - \psi_1 \cdot \cos(x_1 - x_2) - 4\psi_2 \cdot \sin(-4x_1 + x_2) \\ \psi_1 \cdot \cos(x_1 - x_2) + \psi_2 \cdot \sin(-4x_1 + x_2) \end{pmatrix}, \tag{7.3}$$

$$\psi(T) = -\nabla\Phi(x(T)) = \begin{pmatrix} 0\\ -4x_2^3(T) \end{pmatrix}. \tag{7.4}$$

Згідно принципу максимуму, функція Гамільтона-Понтрягіна на оптимальному керуванні досягає свого максимуму, тобто, за відсутності обмежень на керування

$$\frac{\partial \mathcal{H}(x, u, \psi, t)}{\partial u} = -2u + \psi_1 = 0, \tag{7.5}$$

звідки $u=\psi_1/2$. Підставляємо знайдене керування у початкову систему:

$$\begin{cases} \dot{x}_1 = \sin(x_1 - x_2) + \psi_1/2, \\ \dot{x}_2 = \cos(-4x_1 + x_2), \end{cases}$$

Задача 7.2. Записати крайову задачу принципу максимуму для задачі оптимального керування:

$$\mathcal{J}(u) = \gamma^2 \int_0^T x^2(s) \, \mathrm{d}s \to \inf$$

за умови, що

$$\dot{x} = u, \quad x(0) = x_0$$

Typ $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$,

$$|u(t)| \leq \rho$$
,

 $t \in [0,T]$. Точка $x_0 \in \mathbb{R}^1$ і момент часу T є заданими.

Розв'язок. Для початку випишемо всі функції з теоретичної частини:

$$f_0(x, u, t) = \gamma^2 x^2(t), \quad f(x(t), u(t), t) = u(t), \quad \Phi(x(T)) = 0, \quad \mathcal{U} = \mathcal{U}(t) = [-\rho, \rho].$$
(7.6)

Функція Гамільтона-Понтрягіна має вигляд

$$\mathcal{H}(x, u, \psi, t) = -f_0(x, u, t) + \langle \psi, f(x, u, t) \rangle = -\gamma^2 x^2 + \psi u. \tag{7.7}$$

Спряжена система записується так:

$$\dot{\psi} = -\nabla_x \mathcal{H} = -2\gamma^2 x,\tag{7.8}$$

$$\psi(T) = -\nabla\Phi(x(T)) = 0, (7.9)$$

Згідно принципу максимуму, функція Гамільтона-Понтрягіна на оптимальному керуванні досягає свого максимуму, тобто

$$u = \rho \cdot \operatorname{sgn} \psi. \tag{7.10}$$

Підставляємо знайдене керування у початкову систему:

$$\dot{x} = \rho \cdot \operatorname{sgn} \psi. \tag{7.11}$$

Задача 7.3. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\mathcal{J}(u) = \frac{1}{2} \int_0^T u^2(s) \, \mathrm{d}s + \frac{x^2(T)}{2} \to \inf$$

за умови, що

$$\dot{x} = u, x(0) = x_0$$

Тут $x(t) \in \mathbb{R}^1, \ u(t) \in \mathbb{R}^1, \ t \in [0,T]$. Точка $x_0 \in \mathbb{R}^1$ і момент часу T є заданими.

Розв'язок. Функція Гамільтона-Понтрягіна має вигляд

$$\mathcal{H}(x, u, \psi, t) = -f_0(x, u, t) + \langle \psi, f(x, u, t) \rangle = -\frac{u^2}{2} + \psi u.$$
 (7.12)

Спряжена система записується так:

$$\dot{\psi} = -\nabla_x \mathcal{H} = 0, \tag{7.13}$$

$$\psi(T) = -\nabla\Phi(x(T)) = -x(T),\tag{7.14}$$

Згідно принципу максимуму, функція Гамільтона-Понтрягіна на оптимальному керуванні досягає свого максимуму, тобто, за відсутності обмежень на керування

$$\frac{\partial \mathcal{H}(x, u, \psi, t)}{\partial u} = -u + \psi = 0, \tag{7.15}$$

звідки $u=\psi$. Підставляємо знайдене керування у початкову систему:

$$\dot{x} = \psi. \tag{7.16}$$

3 рівнянь на ψ знаходимо $\psi(t) = -x(T)$.

Підставляючи це у рівняння на x знаходимо $x(t) = x_0 - x(T) \cdot t$.

Звідси, при
$$t=T$$
 маємо $x(T)=x_0-T\cdot x(T)$, тобто $x(T)=\frac{x_0}{1+T}$.

Остаточно,
$$(u_*(t), x_*(t)) = \left(-\frac{x_0}{1+T}, -\frac{x_0 \cdot t}{1+T}\right)$$
.

Задача 7.4. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\mathcal{J}(u) = \frac{1}{2} \int_0^T (u_1^2(s) + u_2^2(s) \, \mathrm{d}s + \frac{x_1^2(T)}{2} \to \inf$$

$$\begin{cases} \dot{x}_1 = x_2 + u_1, \\ \dot{x}_2 = x_1 + u_2, \end{cases}$$
$$x_1(0) = 1, x_2(0) = 1.$$

Тут $x = (x_1, x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , $u = (u_1, u_2)^* \in \mathbb{R}^2$ – вектор керування, $t \in [0, T]$, момент часу T є заданим.

Розв'язок. Функція Гамільтона-Понтрягіна має вигляд

$$\mathcal{H}(x, u, \psi, t) = -f_0(x, u, t) + \langle \psi, f(x, u, t) \rangle = -\frac{u_1^2 + u_2^2}{2} + \psi_1(x_2 + u_1) + \psi_2(x_1 + u_2).$$
(7.17)

Спряжена система записується так:

$$\dot{\psi} = -\nabla_x \mathcal{H} = \begin{pmatrix} \psi_2 \\ \psi_1 \end{pmatrix}, \tag{7.18}$$

$$\psi(T) = -\nabla\Phi(x(T)) = \begin{pmatrix} x_1(T) \\ 0 \end{pmatrix}. \tag{7.19}$$

Згідно принципу максимуму, функція Гамільтона-Понтрягіна на оптимальному керуванні досягає свого максимуму, тобто, за відсутності обмежень на керування

$$\frac{\partial \mathcal{H}(x, u, \psi, t)}{\partial u} = \begin{pmatrix} -u_1 + \psi_1 \\ -u_2 + \psi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \tag{7.20}$$

звідки $u_1=\psi_1,\,u_2=\psi_2.$ Підставляємо знайдене керування у початкову систему:

$$\begin{cases} \dot{x}_1 = x_2 + \psi_1, \\ \dot{x}_2 = x_1 + \psi_2, \\ \dot{\psi}_1 = -\psi_2, \\ \dot{\psi}_2 = -\psi_1. \end{cases}$$

Розв'язуємо систему на ψ_1 і ψ_2 :

$$\begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t}. \tag{7.21}$$

Підставляємо це у систему на x_1, x_2 :

$$\begin{cases} \dot{x}_1 = x_2 + c_1 e^t + c_2 e^{-t}, \\ \dot{x}_2 = x_1 - c_1 e^t + c_2 e^{-t}. \end{cases}$$

Знаходимо загальний розв'язок однорідної системи:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_3 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_4 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t}.$$
 (7.22)

Шукаємо тепер частинний розв'язок неоднорідної системи методом невизначених коефіцієнтів у вигляді:

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} e^t(A_{11}t + B_{11}) + e^{-t}(A_{12}t + B_{12}) \\ e^t(A_{21}t + B_{21}) + e^{-t}(A_{22}t + B_{22}) \end{pmatrix}$$
(7.23)

Підставляючи це у системи, знаходимо

$$\begin{cases} A_{11} = A_{21}, \\ B_{11} + A_{11} = B_{21} - c_1, \\ -A_{12} = A_{22}, \\ -B_{12} + A_{12} = B_{22} + c_2, \\ A_{21} = A_{11}, \\ B_{21} + A_{21} = B_{11} + c_1, \\ -A_{22} = A_{12}, \\ -B_{22} + A_{22} = B_{12} + c_2. \end{cases}$$

Беремо розв'язок $A_{11}=A_{12}=A_{21}=A_{22}=0,\,B_{11}=B_{12}=0,\,B_{21}=c_1,\,B_{22}=c_2,\,$ тоді

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_3 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_4 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t} + \begin{pmatrix} -c_2 e^{-t} \\ c_1 e^t \end{pmatrix}. \tag{7.24}$$

Пригадаємо, що $x_1(0) = x_2(0) = 1$, це дає систему

$$\begin{cases} c_3 + c_4 - c_2 = 1, \\ c_3 - c_4 + c_1 = 1, \end{cases}$$

з якої
$$c_3=1-\frac{c_1}{2}+\frac{c_2}{2},\,c_4=\frac{c_1}{2}+\frac{c_2}{2}.$$

I далі це якось (як ??) розв'язується.

Задача 7.5.

Розв'язок.

Задача 7.6.

7.3 Домашне завдання

Задача 7.7. Записати крайову задачу принципу максимуму для задачі оптимального керування:

$$\mathcal{J}(u) = \int_0^T (4u_1^2(s) + u_2^2(s) + \cos^2(x_1(s))) \,ds + \sin^2(x_2(T)) \to \inf$$

за умови, що

$$\begin{cases} \dot{x}_1 = x_1 + x_2 + 3x_1x_2 + 2u_1, \\ \dot{x}_2 = -x_1 + 6x_2 - 3x_1x_2 + u_2, \\ x_1(0) = 4, x_2(0) = -2. \end{cases}$$

Тут $x=(x_1,x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , $u_1(t),u_2(t)$ – функції керування, $t\in[0,T]$, момент часу T є заданим.

Розв'язок. Для початку випишемо всі функції з теоретичної частини:

$$f_0(x, u, t) = 4u_1^2(s) + u_2^2(s) + \cos^2(x_1(s)),$$

$$f(x(t), u(t), t) = \begin{pmatrix} x_1 + x_2 + 3x_1x_2 + 2u_1 \\ -x_1 + 6x_2 - 3x_1x_2 + u_2 \end{pmatrix},$$

$$\Phi(x(T)) = \sin^2(x_2(T)).$$
(7.25)

Функція Гамільтона-Понтрягіна має вигляд

$$\mathcal{H}(x, u, \psi, t) = -f_0(x, u, t) + \langle \psi, f(x, u, t) \rangle =$$

$$= -4u_1^2(t) - u_2^2(t) - \cos^2(x_1(t)) + \langle \psi, f(x, u, t) \rangle =$$

$$= -4u_1^2(t) - u_2^2(t) - \cos^2(x_1(t)) +$$

$$+ \left\langle \psi, \begin{pmatrix} x_1 + x_2 + 3x_1x_2 + 2u_1 \\ -x_1 + 6x_2 - 3x_1x_2 + u_2 \end{pmatrix} \right\rangle =$$

$$= -4u_1^2(t) - u_2^2(t) - \cos^2(x_1(t)) +$$

$$+ \left\langle \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}, \begin{pmatrix} x_1 + x_2 + 3x_1x_2 + 2u_1 \\ -x_1 + 6x_2 - 3x_1x_2 + u_2 \end{pmatrix} \right\rangle =$$

$$= -4u_1^2(t) - u_2^2(t) - \cos^2(x_1(t)) +$$

$$+ \psi_1(x_1 + x_2 + 3x_1x_2 + 2u_1) + \psi_2(-x_1 + 6x_2 - 3x_1x_2 + u_2).$$
(7.26)

Спряжена система записується так:

$$\dot{\psi} = -\nabla_x \mathcal{H} = \begin{pmatrix} \sin(2x_1) + \psi_1 + 3\psi_1 x_2 - \psi_2 - 3\psi_2 x_2 \\ \psi_1 + 3\psi_1 x_1 + 6\psi_2 - 3\psi_2 x_1 \end{pmatrix}, \tag{7.27}$$

$$\psi(T) = -\nabla\Phi(x(T)) = \begin{pmatrix} 0\\ \sin(2x_2) \end{pmatrix}. \tag{7.28}$$

Згідно принципу максимуму, функція Гамільтона-Понтрягіна на оптимальному керуванні досягає свого максимуму, тобто, за відсутності обмежень на керування

$$\frac{\partial \mathcal{H}(x, u, \psi, t)}{\partial u} = \begin{pmatrix} -8u_1 + 2\psi_1 \\ -2u_2 + \psi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \tag{7.29}$$

звідки $u_1=\psi_1/4,\ u_2=\psi_2/2.$ Підставляємо знайдене керування у початкову систему:

$$\begin{cases} \dot{x}_1 = x_1 + x_2 + 3x_1x_2 + \psi_1/2, \\ \dot{x}_2 = -x_1 + 6x_2 - 3x_1x_2 + \psi_2/2. \end{cases}$$

Задача 7.8. Записати крайову задачу принципу максимуму для задачі оптимального керування:

$$\mathcal{J}(u) = \gamma^2 \int_0^T (x(s) - z(s))^2 ds \to \inf$$

за умови, що

$$\dot{x} = u, x(0) = x_0.$$

Tyt $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$,

$$|u(t)| \le \rho$$
,

 $t\in[0,T]$. Точка $x_0\in\mathbb{R}^1$, неперервна функція $z(t)\in\mathbb{R}^1$ і момент часу T є заданими.

Розв'язок. Для початку випишемо всі функції з теоретичної частини:

$$f_0(x, u, t) = \gamma^2 (x - z)^2, \quad f(x(t), u(t), t) = u(t), \quad \Phi(x(T)) = 0, \quad \mathcal{U} = \mathcal{U}(t) = [-\rho, \rho].$$
(7.30)

Функція Гамільтона-Понтрягіна має вигляд

$$\mathcal{H}(x, u, \psi, t) = -f_0(x, u, t) + \langle \psi, f(x, u, t) \rangle = -\gamma^2 (x - z)^2 + \psi u. \tag{7.31}$$

Спряжена система записується так:

$$\dot{\psi} = -\nabla_x \mathcal{H} = -2\gamma^2 x + 2\gamma^2 z,\tag{7.32}$$

$$\psi(T) = -\nabla\Phi(x(T)) = 0, (7.33)$$

Згідно принципу максимуму, функція Гамільтона-Понтрягіна на оптимальному керуванні досягає свого максимуму, тобто

$$u = \rho \cdot \operatorname{sgn} \psi. \tag{7.34}$$

Підставляємо знайдене керування у початкову систему:

$$\dot{x} = \rho \cdot \operatorname{sgn} \psi. \tag{7.35}$$

Задача 7.9. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\mathcal{J}(u) = \frac{1}{2} \int_0^T u^2(s) \, ds + \frac{(x(T) - x_1)^2}{2} \to \inf$$

за умови, що

$$\dot{x} = ax + u, x(0) = x_0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0,T]$. Точки $x_0 \in \mathbb{R}^1$, $x_1 \in \mathbb{R}^1$ і момент часу $T \in$ заданими.

Розв'язок. Для початку випишемо всі функції з теоретичної частини:

$$f_0(x, u, t) = \frac{u^2}{2}, \quad f(x(t), u(t), t) = ax(t) + u(t), \quad \Phi(x(T)) = \frac{(x(T) - x_1)^2}{2}.$$
 (7.36)

Функція Гамільтона-Понтрягіна має вигляд:

$$\mathcal{H}(x, u, \psi, t) = -f_0(x, u, t) + \langle \psi, f(x, u, t) \rangle = -\frac{u^2}{2} + a\psi x + \psi u.$$
 (7.37)

Спряжена система записується так:

$$\dot{\psi} = -\nabla_x \mathcal{H} = -a\psi, \tag{7.38}$$

$$\psi(T) = -\nabla \Phi(x(T)) = x(T) - x_1. \tag{7.39}$$

Згідно принципу максимуму, функція Гамільтона-Понтрягіна на оптимальному керуванні досягає свого максимуму, тобто, за відсутності обмежень на керування,

$$\frac{\partial \mathcal{H}(x, u, \psi, t)}{\partial u} = -u + \psi = 0, \tag{7.40}$$

звідки $u = \psi$. Підставляємо знайдене керування у початкову систему:

$$\begin{cases} \dot{x} = ax + \psi, \\ x(0) = x_0, \\ \dot{\psi} = -a\psi, \\ \psi(T) = x(T) - x_1. \end{cases}$$

3 рівнянь на ψ знаходимо, що $\psi(t) = C_1 \cdot e^{-at}$, де C_1 визначається з рівності $\psi(T) = x(T) - x_1$, тобто $C_1 = (x(T) - x_1) \cdot e^{aT}$.

Підставляючи це у рівняння на x знаходимо, що

$$x(t) = C_2 e^{at} - \frac{C_1 e^{-at}}{2a} = C_2 e^{at} - \frac{(x(T) - x_1) \cdot e^{a(T-t)}}{2a},$$
(7.41)

де C_2 визначається з рівності $x(0) = x_0$, тобто $C_2 = x_0 + \frac{(x(T) - x_1) \cdot e^{aT}}{2a}$.

Залишається знайти x(T) з рівності

$$x(T) = x_0 e^{aT} + \frac{(x(T) - x_1) \cdot (e^{2aT} - 1)}{2a}.$$
 (7.42)

Зробивши це, отримаємо

$$x(T) = \frac{x_1(e^{2aT} - 1) - 2ax_0e^{aT}}{e^{2aT} - 2a - 1}.$$
(7.43)

Остаточно,

$$x(t) = x_0 e^{at} + \frac{\left(\frac{x_1(e^{2aT} - 1) - 2ax_0 e^{aT}}{e^{2aT} - 2a - 1} - x_1\right) \cdot \left(e^{a(T+t)} - e^{a(T-t)}\right)}{2a}, \quad (7.44)$$

$$u(t) = \left(\frac{x_1(e^{2aT} - 1) - 2ax_0e^{aT}}{e^{2aT} - 2a - 1} - x_1\right) \cdot e^{a(T-t)}.$$
 (7.45)

Задача 7.10. Записати крайову задачу принципу максимуму для задачі оптимального керування:

$$\mathcal{J}(u) = \frac{1}{2} \int_0^T (u^2(s) + x^2(s)) \, ds + \frac{(\dot{x}(T) - x_1)^2}{2} \to \inf$$

за умови, що

$$\ddot{x} = u, x(0) = x_0, \dot{x}(0) = y_0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0,T]$. Точки $x_0 \in \mathbb{R}^1$, $y_0 \in \mathbb{R}^1$ і момент часу T є заданими.

Розв'язок. Позначимо $\mathbf{x} = (\mathbf{x}_1 \ \mathbf{x}_2)^* = (x \ \dot{x})^*$.

Для початку випишемо всі функції з теоретичної частини:

$$f_0(\mathbf{x}, u, t) = \frac{u^2 + \mathbf{x}_1^2}{2}, \quad f(\mathbf{x}(t), u(t), t) = \begin{pmatrix} \mathbf{x}_1(t) \\ u(t) \end{pmatrix}, \quad \Phi(\mathbf{x}(T)) = \frac{(\mathbf{x}_2(T) - x_1)^2}{2}.$$
 (7.46)

Функція Гамільтона-Понтрягіна має вигляд:

$$\mathcal{H}(\mathbf{x}, u, \psi, t) = -f_0(\mathbf{x}, u, t) + \langle \psi, f(\mathbf{x}, u, t) \rangle = -\frac{u^2 + \mathbf{x}_1^2}{2} + \psi_1 \mathbf{x}_1 + \psi_2 u.$$
 (7.47)

Спряжена система записується так:

$$\dot{\psi} = -\nabla_{\mathbf{x}} \mathcal{H} = \begin{pmatrix} \mathbf{x}_1 - \psi_1 \\ 0 \end{pmatrix}. \tag{7.48}$$

$$\psi(T) = -\nabla \Phi(\mathbf{x}(T)) = \begin{pmatrix} 0 \\ \mathbf{x}_2(T) - x_1 \end{pmatrix}. \tag{7.49}$$

Згідно принципу максимуму, функція Гамільтона-Понтрягіна на оптимальному керуванні досягає свого максимуму, тобто, за відсутності обмежень на керування,

$$\frac{\partial \mathcal{H}(\mathbf{x}, u, \psi, t)}{\partial u} = -u + \psi_2 \tag{7.50}$$

звідки $u = \psi_2$. Підставляємо знайдене керування у початкову систему:

$$\begin{cases} \dot{\mathbf{x}}_1 = \mathbf{x}_2. \\ \dot{\mathbf{x}}_2 = \psi_2. \end{cases}$$

Задача 7.11. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\mathcal{J}(u) = \frac{1}{2} \int_0^T u^2(s) \, ds + x_2^2(T) \to \inf$$

$$\begin{cases} \dot{x}_1 = x_1 - x_2 + u, \\ \dot{x}_2 = -4x_1 + x_2, \end{cases}$$

$$x_1(0) = 2, x_2(0) = 4.$$

Тут $x=(x_1,x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , u(t) – функція керування, $t\in[0,T]$, момент часу T є заданим.

Розв'язок. Для початку випишемо всі функції з теоретичної частини:

$$f_0(x, u, t) = \frac{u^2}{2}, \quad f(x(t), u(t), t) = \begin{pmatrix} x_1(t) - x_2(t) + u(t) \\ -4x_1(t) + x_2(t) \end{pmatrix}, \quad \Phi(x(T)) = x_2(T))^2.$$
(7.51)

Функція Гамільтона-Понтрягіна має вигляд:

$$\mathcal{H}(x, u, \psi, t) = -f_0(x, u, t) + \langle \psi, f(x, u, t) \rangle = -\frac{u^2}{2} + \psi_1 x_1 - \psi_1 x_2 + \psi_1 u - 4\psi_2 x_1 + \psi_2 x_2.$$
(7.52)

Спряжена система записується так:

$$\dot{\psi} = -\nabla_x \mathcal{H} = \begin{pmatrix} -\psi_1 + 4\psi_2 \\ \psi_1 - \psi_2 \end{pmatrix}, \tag{7.53}$$

$$\psi(T) = -\nabla \Phi(x(T)) = 2x_2(T). \tag{7.54}$$

Згідно принципу максимуму, функція Гамільтона-Понтрягіна на оптимальному керуванні досягає свого максимуму, тобто, за відсутності обмежень на керування,

$$\frac{\partial \mathcal{H}(x, u, \psi, t)}{\partial u} = -u + \psi_1 = 0, \tag{7.55}$$

звідки $u = \psi_1$. Підставляємо знайдене керування у початкову систему:

$$\begin{cases} \dot{x}_1 = x_1 - x_2 + \psi_1, \\ \dot{x}_2 = -4x_1 + x_2. \end{cases}$$

3 рівнянь на ψ знаходимо

$$\psi = C_1 \begin{pmatrix} 2 \\ -1 \end{pmatrix} e^{-3t} + C_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^t, \tag{7.56}$$

де C_1 і C_2 визначаються з крайових умов.

Підставляючи це у рівняння на х знаходимо, що

$$\begin{cases} \dot{x}_1 = x_1 - x_2 + 2C_1 e^{-3t} + 2C_2 e^t, \\ \dot{x}_2 = -4x_1 + x_2. \end{cases}$$

Загальний розв'язок однорідного рівняння має вигляд

$$x = C_3 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{-t} + C_4 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{3t}. \tag{7.57}$$

Частинний розв'язок неоднорідного знайдемо методом невизначених коефіцієнтів. Покладемо

$$x = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} e^{-3t} + \begin{pmatrix} B_{11} \\ B_{21} \end{pmatrix} e^t + \begin{pmatrix} B_{12} \\ B_{22} \end{pmatrix} x e^t, \tag{7.58}$$

тоді, при підстановці у систему, отримаємо:

$$\begin{cases}
-3A_1e^{-3t} + B_1e^t = A_1e^{-3t} + B_1e^t - A_2e^{-3t} - B_2e^t + 2C_1e^{-3t} + 2C_2e^t, \\
-3A_2e^{-3t} + B_2e^t = -4A_1e^{-3t} - 4B_1e^t + A_2e^{-3t} + B_2e^t.
\end{cases}$$

Ця система рівносильна системі

$$\begin{cases}
-3A_1 = A_1 - A_2 + 2C_1, \\
B_1 = B_1 - B_2 + 2C_2, \\
-3A_2 = -4A_1 + A_2, \\
B_2 = -4B_1 + B_2.
\end{cases}$$

Задача 7.12.

8 Принцип максимуму Понтрягіна: загальний випадок

8.1 Алгоритми

 $3a\partial a ua$. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\mathcal{J} = \int f_0 \, \mathrm{d}s + \Phi_0 \to \inf$$

за умов, що

$$\dot{x} = f$$

а також

$$\int f_i \, \mathrm{d}s + \Phi_i = 0, \quad i = \overline{1..k}.$$

Алгоритм 8.1. 1. Запишемо функцію Гамільтона-Понтрягіна:

$$\mathcal{H} = -F + \langle \psi, f \rangle.$$

2. Запишемо термінант:

$$F = \sum_{i} \lambda_i f_i, \quad \ell = \sum_{i} \lambda_i \Phi_i.$$

- 3. Випишемо тепер всі (необхідні) умови принципу максимуму:
 - (а) оптимальність:

$$\frac{\partial \mathcal{H}}{\partial u} = 0;$$

(б) стаціонарність (спряжена система):

$$\dot{\psi} = -\nabla_x \mathcal{H};$$

(в) трансверсальність:

$$\psi(t_0) = \frac{\partial \ell}{\partial x_0}, \quad \psi(T) = -\frac{\partial \ell}{\partial x_T};$$

- (г) стаціонарність за кінцями: відсутня, бо час фіксований;
- (д) доповнююча нежорсткість: відсутня, бо немає інтегральних обмежень виду нерівність на задачу;

- (е) невід'ємність: $\lambda_i \geq 0$.
- 4. Методом від супротивного показуємо, що $\lambda_i \neq 0$.
- 5. З умов принципу максимуму визначаємо $u = u(\psi)$.
- 6. Записуємо крайову задачу систему диференціальних рівнянь на x і ψ з граничними умовами.
- 7. Знаходимо її розв'язок x_{st} .
- 8. Відновлюємо $u_* = u_*(\psi)$.

Задача. Розв'язати задачу оптимальної швидкодії за допомогою принципу максимуму Понтрягіна:

$$\mathcal{J} = \int f_0 \, \mathrm{d}s + \Phi_0 \to \inf$$

за умов, що

$$\dot{x} = f$$
,

а також

$$\int f_i \, \mathrm{d}s + \Phi_i = 0, \quad i = \overline{1..k}.$$

Алгоритм 8.2. 1. Запишемо функцію Гамільтона-Понтрягіна:

$$\mathcal{H} = -F + \langle \psi, f \rangle.$$

2. Запишемо термінант:

$$F = \sum_{i} \lambda_i f_i, \quad \ell = \sum_{i} \lambda_i \Phi_i.$$

- 3. Випишемо тепер всі (необхідні) умови принципу максимуму:
 - (а) оптимальність:

$$\frac{\partial \mathcal{H}}{\partial u} = 0;$$

(б) стаціонарність (спряжена система):

$$\dot{\psi} = -\nabla_x \mathcal{H}$$
:

(в) трансверсальність:

$$\psi(t_0) = \frac{\partial \ell}{\partial x_0}, \quad \psi(T) = -\frac{\partial \ell}{\partial x_T};$$

(г) стаціонарність за кінцями:

$$\mathcal{H}(T) = \frac{\partial \ell}{\partial T};$$

- (д) доповнююча нежорсткість: відсутня, бо немає інтегральних обмежень виду нерівність на задачу;
- (е) невід'ємність: $\lambda_i \geq 0$.
- 4. Методом від супротивного показуємо, що $\lambda_i \neq 0$.
- 5. З умов принципу максимуму визначаємо $u = u(\psi)$.
- 6. Записуємо крайову задачу систему диференціальних рівнянь на x і ψ з граничними умовами.
- 7. З умов принципу максимуму і крайової задачі визначаємо T.
- 8. Знаходимо розв'язок крайової задачі x_{*} .
- 9. Відновлюємо $u_* = u_*(\psi)$.

8.2 Аудиторне заняття

Задача 8.1. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\mathcal{J}(u) = \int_0^1 (u^2(s) + x^2(s)) \, \mathrm{d}s \to \inf$$

за умови, що

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = u(t), \quad x(0) = 0, x(1) = \frac{1}{2}.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0, 1]$.

Розв'язок. Нагадаємо загальну постановку задачі принципу максимуму Понтрягіна:

$$\mathcal{J}_0 \to \min, \dot{x} = f, \mathcal{J}_i \le 0 \ (i = \overline{1..k}), \mathcal{J}_i = 0 \ (i = \overline{k+1..k+r}), \mathcal{J}_i = \int f_i + \Phi_i.$$

У нашій задачі

$$f_0 = u^2 + x^2, f = u,$$

і треба щось зробити з x(0) = 0 і $x(1) = \frac{1}{2}$. Насправді це інтегральні обмеження вигляду

$$\mathcal{J}_1 = 0, f_1 = 0, \Phi_1 = x_0, \quad \mathcal{J}_2 = 0, f_2 = 0, \Phi_2 = x_T - \frac{1}{2}.$$

Запишемо функцію Гамільтона-Понтрягіна і термінант:

$$F = \lambda_0(u^2 + x^2), \quad \ell = \lambda_1 x_0 + \lambda_2 \left(x_T - \frac{1}{2}\right),$$

$$\mathcal{H} = -F + \langle \psi, f \rangle = -\lambda_0 (u^2 + x^2) + \psi u.$$

Випишемо тепер всі (необхідні) умови принципу максимуму:

- 1. оптимальність: $\frac{\partial \mathcal{H}}{\partial u} = -2\lambda_0 u + \psi = 0;$
- 2. стаціонарність (спряжена система): $\dot{\psi} = -\nabla_x \mathcal{H} = 2\lambda_0 x;$
- 3. трансверсальність: $\psi(t_0)=\psi(0)=\frac{\partial \ell}{\partial x_0}=\lambda_1, \ \psi(T)=\psi(1)=-\frac{\partial \ell}{\partial x_T}=-\lambda_2;$
- 4. стаціонарність за кінцями: відсутня, бо час фіксований, $[t_0, T] = [0, 1];$
- 5. доповнююча нежорсткість: відсутня, бо немає інтегральних обмежень виду нерівність на задачу, k=0;

6. невід'ємність: $\lambda_0 \ge 0$.

Нескладно пересвідчитися, що якщо $\lambda_0=0$, то $\psi\equiv 0$, вироджений випадок, тобто виконується умова нерівності нулеві множників Лагранжа. Покладемо тоді без обмеження загальності $\lambda_0=\frac{1}{2}$, тоді $u=\psi$.

Запишемо тепер крайову задачу принципу максимуму:

$$\begin{cases} \dot{\psi} = x, \\ \dot{x} = \psi, \\ x(0) = 0, x(1) = \frac{1}{2}. \end{cases}$$

Її загальний розв'язок

$$\begin{cases} x(t) = c_1 e^{-t} + c_2 e^t, \\ \psi(t) = -c_1 e^{-t} + c_2 e^t. \end{cases}$$

З крайових умов

$$\begin{cases} x(0) = c_1 + c_2 = 0, \\ x(1) = c_1/e + c_2 e = \frac{1}{2}, \end{cases}$$

знаходимо

$$c_1 = -\frac{1}{2(e - e^{-1})}, \quad c_2 = \frac{1}{2(e - e^{-1})}.$$

Остаточно,

$$\begin{cases} x(t) = \frac{e^t - e^{-t}}{2(e - e^{-1})}, \\ u(t) = \frac{e^t + e^{-t}}{2(e - e^{-1})}. \end{cases}$$

3a da ua 8.2. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\mathcal{J}(u) = \frac{1}{2} \int_0^1 (u^2(s) - 12sx(s)) \, \mathrm{d}s \to \inf$$

за умови, що

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = u(t), \quad x(0) = 0, x(1) = 0.$$

Typ $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0, 1]$.

Розв'язок. Зауважимо, що на множник $\frac{1}{2}$ можна заплющити очі, адже від нього arg inf $\mathcal J$ явно не зміниться.

Функція Гамільтона-Понтрягіна і термінант записують так:

$$\mathcal{H} = -\lambda_0(u^2 - 12tx), \quad \ell = \lambda_1 x_0 + \lambda_2 x_T.$$

Випишемо тепер всі (необхідні) умови принципу максимуму:

- 1. оптимальність: $\frac{\partial \mathcal{H}}{\partial u} = -2\lambda_0 u + \psi = 0;$
- 2. стаціонарність (спряжена система): $\dot{\psi} = -\nabla_x \mathcal{H} = -12\lambda_0 t$;
- 3. трансверсальність: $\psi(t_0) = \psi(0) = \frac{\partial \ell}{\partial x_0} = \lambda_1, \ \psi(T) = \psi(1) = -\frac{\partial \ell}{\partial x_T} = -\lambda_2;$
- 4. стаціонарність за кінцями: відсутня, бо час фіксований, $[t_0, T] = [0, 1];$
- 5. доповнююча нежорсткість: відсутня, бо немає інтегральних обмежень виду нерівність на задачу, k=0;
- 6. невід'ємність: $\lambda_0 \ge 0$.

Перевіряємо умову нерівності нулеві множників Лагранжа. Від супротивного, якщо $\lambda_0=0$, то $\psi\equiv 0$, а тоді і $\lambda_1=\lambda_2=0$, вироджений випадок. Покладемо тоді без обмеження загальності $\lambda_0=1$, тоді $u=\psi/2$.

Запишемо тепер крайову задачу принципу максимуму:

$$\begin{cases} \dot{\psi} = -12t, \\ \dot{x} = \psi/2, \\ x(0) = x(1) = 0. \end{cases}$$

3 рівняння на $\dot{\psi}$, $\psi = -6t^2 + C_1$. Підставляючи в рівняння на \dot{x} і розв'язуючи його, знаходимо $x = -t^3 + C_1t/2 + C_2$.

З крайових умов

$$\begin{cases} x(0) = C_2 = 0, \\ x(1) = -1 + C_1/2 + C_2 = 0, \end{cases}$$

знаходимо

$$C_1 = 2, \quad C_2 = 0.$$

Отже керування

$$u_*(t) = \frac{\psi(t)}{2} = -3t^2 + 1,$$

і відповідна йому траєкторія

$$x_*(t) = -t^3 + t$$

€ оптимальними.

Задача 8.3. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\mathcal{J}(u) = \frac{1}{2} \int_0^1 u^2(s) \, \mathrm{d}s \to \inf$$

за умови, що

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} = u(t), \quad x(0) = -1, \dot{x}(0) = 2, x(1) = 0, \dot{x}(1) = 1.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0, 1]$.

Розв'язок. Позначимо $x_1=x,\ x_2=\dot x,\ \text{тоді}\ f_0=u^2/2,\ \Phi_0=0,\ f_1=0,\ \Phi_1=x_{10}+1,\ f_2=0,\ \Phi_2=x_{20}-2,\ f_3=0,\ \Phi_3=x_{1T},\ f_4=0,\ \Phi_4=x_{2T}-1,\ f=\begin{pmatrix}x_2\\u\end{pmatrix}.$

Запишемо тепер функцію Гамільтона-Понтрягіна і термінант:

$$F = \lambda_0 u^2 / 2, \quad \ell = \lambda_1 (x_{10} + 1) + \lambda_2 (x_{20} - 2) + \lambda_3 x_{1T} + \lambda_4 (x_{2T} - 1),$$

$$\mathcal{H} = -F + \langle \psi, f \rangle = -\lambda_0 u^2 / 2 + \psi_1 x_2 + \psi_2 u.$$

Випишемо тепер всі (необхідні) умови принципу максимуму:

- 1. оптимальність: $\frac{\partial \mathcal{H}}{\partial u} = -\lambda_0 u + \psi_2 = 0;$
- 2. стаціонарність (спряжена система): $\dot{\psi} = -\nabla_x \mathcal{H} = -\begin{pmatrix} 0 \\ \psi_1 \end{pmatrix}$;
- 3. трансверсальність:

$$\psi(t_0) = \psi(0) = \nabla_{x_0} \ell = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}, \quad \psi(T) = \psi(1) = -\nabla_{x_T} \ell = \begin{pmatrix} -\lambda_3 \\ -\lambda_4 \end{pmatrix};$$

- 4. стаціонарність за кінцями: відсутня, бо час фіксований, $[t_0, T] = [0, 1];$
- 5. доповнююча нежорсткість: відсутня, бо немає інтегральних обмежень виду нерівність на задачу, k=0;

6. невід'ємність: $\lambda_0 \ge 0$.

Без обмеження загальності покладемо $\lambda_0 = 1$, тоді $u = \psi_2$.

Запишемо тепер крайову задачу принципу максимуму:

$$\begin{cases} \dot{\psi}_1 = 0, \\ \dot{\psi}_2 = -\psi_1, \\ \dot{x}_1 = x_2, \\ \dot{x}_2 = \psi_2, \\ x_{10} = -1, x_{20} = 2, \\ x_{1T} = 0, x_{2T} = 1. \end{cases}$$

3 першого рівняння $\psi_1=C_1$, тоді з другого $\psi_2=-C_1t+C_2$, далі з четвертого $x_2=-C_1t^2/2+C_2t+C_3$, і нарешті з третього $x_1=-C_1t^3/6+C_2t^2/2+C_3t+C_4$.

З крайових умов

$$\begin{cases} x_1(0) = C_4 = -1, \\ x_2(0) = C_3 = 2, \\ x_1(1) = -C_1/6 + C_2/2 + C_3 + C_4 = 0, \\ x_2(1) = -C_1/2 + C_2 + C_3 = 1. \end{cases}$$

знаходимо

$$C_1 = -6$$
, $C_2 = -4$, $C_3 = 2$, $C_4 = -1$.

Отже

$$u_*(t) = \psi_2(t) = 6t - 4,$$

$$x_*(t) = x_1(t) = t^3 - 2t^2 + 2t - 1.$$

Задача 8.4. Розв'язати задачу оптимальної швидкодії за допомогою принципу максимуму Понтрягіна:

$$\mathcal{J}(u) = T = \int_0^T \mathrm{d}s \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = u(t), \quad x(0) = 0, x(T) = 1,$$

$$\int_0^T u^2(s) \, ds = 1.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0, 1]$.

Розв'язок. У нашій задачі $f_0=1,\,\Phi_0=T,\,f_1=0,\,\Phi_1=x_0,\,f_2=0,\,\Phi_2=x_T-1,\,f_3=u^2,\,\Phi_3=-1,\,f=u.$

Запишемо тепер функцію Гамільтона-Понтрягіна і термінант:

$$F = \lambda_0 + \lambda_3 u^2, \quad \ell = \lambda_0 T + \lambda_1 x_0 + \lambda_2 (x_T - 1) - \lambda_3,$$

$$\mathcal{H} = -F + \langle \psi, f \rangle = -\lambda_0 - \lambda_3 u^2 + \psi u.$$

Випишемо тепер всі (необхідні) умови принципу максимуму:

- 1. оптимальність: $\frac{\partial \mathcal{H}}{\partial u} = -2\lambda_3 u + \psi = 0;$
- 2. стаціонарність (спряжена система): $\dot{\psi} = -\nabla_x \mathcal{H} = -0;$
- 3. трансверсальність:

$$\psi(t_0) = \psi(0) = \nabla_{x_0} \ell = \lambda_1, \quad \psi(T) = -\nabla_{x_T} \ell = -\lambda_2;$$

- 4. стаціонарність за кінцями: $\mathcal{H}(T) = \frac{\partial \ell}{\partial T} = \lambda_0$;
- 5. доповнююча нежорсткість: відсутня, бо немає інтегральних обмежень виду нерівність на задачу, k=0;
- 6. невід'ємність: $\lambda_0 \ge 0$.

$$u = \frac{\psi}{2\lambda_3}$$
.

Запишемо тепер крайову задачу принципу максимуму:

$$\begin{cases} \dot{\psi} = 0, \\ \dot{x} = \frac{\psi}{2\lambda_3}, \\ x(0) = 0, x(T) = 1 \end{cases}$$

З першого рівняння $\psi=C_1$, підставляючи в друге і розв'язуючи його знаходимо $x=\frac{C_1t+C_2}{2\lambda_3}$.

З крайових умов

$$\begin{cases} x(0) = C_2/2\lambda_3 = 0, \\ x(T) = \frac{C_1T + C_2}{2\lambda_3} = 1, \end{cases}$$

знаходимо

$$C_1 = \frac{2\lambda_3}{T}, \quad C_2 = 0.$$

Отже

$$u(t) = \frac{\psi(t)}{2\lambda_3} = \frac{1}{T}.$$

Підставляючи це в умову $\int_0^T u^2(s) \, \mathrm{d} s = 1$, знаходимо 1/T = 1, звідки T = 1.

8.3 Домашне завдання

3a da ua~8.5. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\mathcal{J}(u) = \frac{1}{2} \int_{-1}^{1} (u^2(s) + x^2(s)) ds \to \inf$$

за умови, що

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = u(t), \quad x(-1) = x(1) = 1.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [-1, 1]$.

Розв'язок.

Задача 8.6. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\mathcal{J}(u) = \frac{1}{2} \int_0^1 (u^2(s) + x^2(s)) \, \mathrm{d}s \to \inf$$

за умови, що

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} = u(t), \quad x(0) = 1, \dot{x}(0) = -2, x(1) = 0, \dot{x}(1) = 0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0, 1]$.

Розв'язок.

Задача 8.7. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\mathcal{J}(u) = \frac{1}{2} \int_0^1 (x(s) + u^2(s)) \, \mathrm{d}s \to \inf$$

за умови, що

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = x(t) + u(t), \quad x(1) = 0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0, 1]$.

Задача 8.8. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\mathcal{J}(u) = \int_{-\pi}^{\pi} x(s) \sin(s) \, \mathrm{d}s \to \inf$$

за умови, що

$$\dot{x} = u, \quad x(-\pi) = x(\pi) = 0, u(t) \in [-1, 1],$$

де
$$x(t) \in \mathbb{R}^1, t \in [-\pi, \pi].$$

9 Дискретний варіант методу динамічного програмування

9.1 Алгоритми

 $3a\partial a ua$. Розглядається задача оптимального керування

$$\mathcal{J}(u,x) = \sum_{k=0}^{N-1} g_k(x(k), u(k)) + \Phi(x(N)) \to \min$$

при умовах

$$x(k+1) = f_k(x(k), u(k)), \quad k = 0, 1, \dots, N-1,$$

 $x(k) \in \mathcal{X}_k, \quad k = 0, 1, \dots, N,$
 $u(k) \in \mathcal{U}_k, \quad k = 0, 1, \dots, N-1.$

Знайти оптимальне керування, оптимальну траєкторію, функцію Белмана і оптимальне значення критерію якості.

Алгоритм 9.1. 1. $\mathcal{B}_{N}(z) = \Phi(z)$.

2. Для $s=\overline{N-1..0}$ записуємо і розв'язуємо дискретне рівняння Белмана:

$$\mathcal{B}_s(z) = \min_{u \in \mathcal{U}_s} (g_s(z, u) + \mathcal{B}_{s+1}(f_s(z, u)))$$

для всіх $z\in\mathcal{X}_s$, запам'ятовуючи $\{u_*(s)\}$.

3. Знаходимо $x_{st}(0)$ як

$$x_*(0) = \operatorname*{arg\,min}_{z \in \mathcal{X}_0} \mathcal{B}_0(z).$$

- 4. Знаходимо \mathcal{J}_* як $\mathcal{J}_* = \mathcal{B}_0(x_*(0))$.
- 5. Для $s = \overline{0..N-1}$ відновлюємо $x_*(s+1)$ за відомим керуванням:

$$x_*(s+1) = f_s(x_*(s), u_*(s)).$$

9.2 Аудиторне заняття

Задача 9.1. Знайти оптимальне керування, оптимальну траєкторію, функцію Белмана і оптимальне значення критерія якості задачі оптимального керування

$$\mathcal{J}(\{u(k)\}, \{x(k)\}) = \sum_{k=0}^{2} u^{2}(k) + x^{2}(3) \to \inf$$

за умов

$$x(k+1) = 2x(k) + u(k), \quad x(0) = 1, k = 0, 1, 2.$$

Typ $x, u \in \mathbb{R}^1$.

Розв'язок. Випишемо функції що фігурують в задачі:

$$g_k(x(k), u(k)) = u^2(k), \quad \Phi(x(N)) = x^2(3), \quad f_k(x(k), u(k)) = 2x(k) + u(k).$$

$$\mathcal{B}_3(z) = \Phi(z) = z^2.$$

Послідовно знаходимо u_* :

1. Запишемо визначення $u_*(2)$:

$$\begin{aligned} u_*(2) &= \underset{u(2)}{\arg\min} (g_2(z,u(2)) + \mathcal{B}_3(f_2(z,u(2)))) = \\ &= \underset{u(2)}{\arg\min} (u^2(2) + f_2^2(z,u(2))) = \\ &= \underset{u(2)}{\arg\min} (u^2(2) + (2z + u(2))^2). \end{aligned}$$

Знайдемо $u_*(2)$ з умови

$$0 = \frac{\partial}{\partial u(2)} \left(u_*^2(2) + (2z + u_*(2))^2 \right) = 2u_*(2) + 2(2z + u_*(2)) = 4u_*(2) + 4z,$$

звідки $u_*(2) = -z$.

Знайдемо

$$\mathcal{B}_2(z) = (g_2(z, u_*(2)) + \mathcal{B}_3(f_2(z, u_*(2)))) =$$

$$= u_*^2(2) + (2z + u_*(2))^2 = z^2 + (2z - z)^2 = 2z^2.$$

2. Запишемо визначення $u_*(1)$:

$$u_*(1) = \underset{u(1)}{\arg\min}(g_1(z, u(1)) + \mathcal{B}_2(f_1(z, u(1)))) =$$

$$= \underset{u(1)}{\arg\min}(u^2(1) + 2f_1^2(z, u(1))) =$$

$$= \underset{u(1)}{\arg\min}(u^2(1) + 2(2z + u(1))^2).$$

Знайдемо $u_*(1)$ з умови

$$0=\frac{\partial}{\partial u(1)}\left(u_*^2(1)+2(2z+u_*(1))^2\right)=2u_*(1)+4(2z+u_*(1))=6u_*(1)+8z,$$
 звідки $u_*(1)=-\frac{4}{3}z.$

Знайдемо

$$\mathcal{B}_1(z) = (g_1(z, u_*(1)) + \mathcal{B}_2(f_1(z, u_*(1)))) =$$

$$= u_*^2(1) + 2(2z + u_*(1))^2 = \frac{16}{9}z^2 + 2\left(2z - \frac{4}{3}z\right)^2 = \frac{8}{3}z^2.$$

3. Запишемо визначення $u_*(0)$:

$$u_*(0) = \underset{u(0)}{\arg\min}(g_0(z, u(0)) + \mathcal{B}_1(f_0(z, u(0)))) =$$

$$= \underset{u(0)}{\arg\min}(u^2(0) + \frac{8}{3}f_0^2(z, u(0))) =$$

$$= \underset{u(0)}{\arg\min}(u^2(0) + \frac{8}{3}(2z + u(0))^2).$$

Знайдемо $u_*(0)$ з умови

$$\begin{split} 0 &= \frac{\partial}{\partial u(0)} \left(u_*^2(0) + \frac{8}{3} (2z + u_*(0))^2 \right) = \\ &= 2u_*(0) + \frac{16}{3} (2z + u_*(0)) = \frac{22}{3} u_*(0) + \frac{32}{3} z, \end{split}$$

звідки $u_*(0) = -\frac{16}{11}z$.

Знайдемо

$$\begin{split} \mathcal{B}_0(z) &= \left(g_0(z,u_*(0)) + \mathcal{B}_1(f_0(z,u_*(0)))\right) = \\ &= u_*^2(0) + \frac{8}{3}(2z + u_*(0))^2 = \frac{256}{121}z^2 + \frac{8}{3}\left(2z - \frac{16}{11}z\right)^2 = \frac{32}{11}z^2. \end{split}$$

Оскільки $\mathcal{X}_0 = \{x_0\}$, то $x_*(0) = x_0$, $\mathcal{J}_* = \frac{32x_0^2}{11}$

Відновимо тепер траєкторію:

1.
$$x_*(1) = f_0(x_*(0), u_*(0)) = 2x_0 + u_*(0) = 2x_0 - \frac{16}{11}x_0 = \frac{6x_0}{11}.$$

2.
$$x_*(2) = f_1(x_*(1), u_*(1)) = 2\frac{6x_0}{11} + u_*(1) = \frac{12x_0}{11} - \frac{4}{3}\frac{6x_0}{11} = \frac{4x_0}{11}.$$

3.
$$x_*(3) = f_2(x_*(2), u_*(2)) = 2\frac{4x_0}{11} + u_*(2) = \frac{8x_0}{11} - \frac{4x_0}{11} = \frac{4x_0}{11}.$$

Задача 9.2. Знайти оптимальне керування і функцію Белмана задачі оптимального керування

$$\mathcal{J}(\{u(k)\}, \{x(k)\}) = \sum_{k=0}^{N-1} u^2(k) + x^2(N) \to \inf$$

за умов

$$x(k+1) = x(k) + u(k), x(0) = x_0, k = 0, 1, \dots, N-1.$$

Тут $x, u \in \mathbb{R}^1$. Точка $x_0 \in \mathbb{R}^1$ – відома.

Розв'язок. Будемо шукати функцію Белмана у вигляді

$$\mathcal{B}_s(z) = b(s) \cdot z^2.$$

Зауважимо, що $\mathcal{B}_N(z)=z^2$, тому b(N)=1.

Далі записуємо дискретне рівняння Белмана

$$b(s) \cdot z^2 = \min_{u} (u^2 + b(s+1) \cdot (z+u)^2).$$

Знайдемо u_* з умови

$$0 = \frac{\partial}{\partial u} \left(u^2 + b(s+1) \cdot (z+u)^2 \right) = 2u + 2b(s+1)(z+u),$$

звідки

$$u_*(s) = -\frac{b(s+1) \cdot x(s)}{1 + b(s+1)}.$$

Підставляючи це у дискретне рівняння Белмана отримаємо дискретне рівняння для знаходження b(s):

$$b(s) = \frac{b(s+1)}{b(s+1)+1}.$$

Звідси нескладно отримати $b(N-k)=\frac{1}{k+1},$ зокрема $b(0)=\frac{1}{N+1}.$

Далі нескладно отримати

$$u_*(s) = -\frac{x_0}{N+1},$$

 \mathbf{a}

$$x_*(s) = \frac{N-s}{N+1} \cdot x_0.$$

Воно й не дивно, бо задача має вигляд

$$u_0^2 + u_1^2 + \ldots + u_{n-1}^2 + (x_0 - u_0 - u_1 - \ldots - u_{n-1})^2 \to \min$$

Тобто мінімізуємо суму квадратів чисел зі сталою (x_0) сумою.

За теоремою Штурма, мінімум суми квадратів досягається коли всі ці квадрати рівні (і дорівнюють $\frac{1}{(N+1)^2}$), це відповідає знайденому нами керуванню.

Задача 9.3. Знайти оптимальне керування і функцію Белмана задачі оптимального керування

$$\mathcal{J}(\{u(k)\}, \{x(k)\}) = \sum_{k=0}^{N-1} (u(k) - v(k))^2 + x^2(N) \to \inf$$

за умов

$$x(k+1) = x(k) + u(k), x(0) = x_0, k = 0, 1, \dots, N-1.$$

Тут $x,u\in\mathbb{R}^1$. Точка $x_0\in\mathbb{R}^1$ – відома, v(k) – відомі, $k=0,1,\ldots,N-1$.

Розв'язок. Будемо шукати функцію Белмана у вигляді

$$\mathcal{B}_s(z) = p(s) \cdot z^2 + q(s) \cdot z + r(s).$$

Зауважимо, що $\mathcal{B}_N(z)=z^2$, тому $p(N)=1,\,q(N)=r(N)=0.$

Далі записуємо дискретне рівняння Белмана

$$p(s) \cdot z^{2} + q(s) \cdot z + r(s) = \min_{u} ((u - v)^{2} + p(s + 1) \cdot (z + u)^{2} + q(s + 1) \cdot (z + u) + r(s + 1)).$$

Знайдемо u_* з умови

$$0 = \frac{\partial}{\partial u} \left((u - v)^2 + p(s+1) \cdot (z+u)^2 + q(s+1) \cdot (z+u) + r(s+1) \right) =$$

= $2(u - v) + 2p(s+1) \cdot (z+u) + q(s+1),$

звідки

$$u_*(s) = \frac{2v(s) - 2p(s+1)x(s) - q(s+1)}{2 + 2p(s+1)}.$$

Підставляючи це у дискретне рівняння Белмана отримаємо дискретне рівняння для знаходження p(s), q(s), r(s):

$$p(s) \cdot z^{2} + q(s) \cdot z + r(s) = \left(\frac{2v(s) - 2p(s+1)z - q(s+1)}{2 + 2p(s+1)} - v(s)\right) + p(s+1) \cdot (z + 2v(s) - 2p(s+1)z - q(s+1))^{2} + q(s+1) \cdot (z + 2v(s) - 2p(s+1)z - q(s+1)) + r(s+1)$$

Збираючи коефіцієнти при відповідних степенях z знаходимо систему для знаходження p(s), q(s), r(s).

Задача 9.4.

Розв'язок.

Задача 9.5.

9.3 Домашне завдання

Задача 9.6.

Розв'язок.

Задача 9.7.

Розв'язок.

Задача 9.8.

Розв'язок.

Задача 9.9.

Розв'язок.

Задача 9.10.

10 Метод динамічного програмування

10.1 Алгоритми

10.2 Аудиторне заняття

Задача 10.1.

Розв'язок.

Задача 10.2.

Розв'язок.

Задача 10.3.

Розв'язок.

Задача 10.4.

10.3 Домашнє завдання

Задача 10.5.

Розв'язок.

Задача 10.6.

Розв'язок.

Задача 10.7.

Розв'язок.

Задача 10.8.

Розв'язок.

Задача 10.9.

Розв'язок.

Задача 10.10.