Are American rivers Tokunaga self-similar? New results on fluvial network topology and its climatic dependence

Supplementary Online Material

- S. Zanardo¹, I. Zaliapin², E. foufoula-Georgiou^{1,3}
- 1 National Center for Earth-Surface Dynamics (NCED), University of Minnesota, Minneapolis (MN), USA.
- 2 Department of Mathematics, University of Nevada Reno, Reno (NV), USA.
- 3 Department of Civil Engineering, University of Minnesota, Minneapolis (MN), USA.

1 Introduction

This document reports supplementary analyses and data to complement the study reported in the main text. Tables 1 to 18 illustrate the effect of the area threshold by reporting the results of the topological analysis for different area thresholds spanning over an order of magnitude. Table 19 reports the Pearson correlation coefficients for the climatic, topographic and topological variables analyzed. Table 20 summarizes the characteristics of the sites considered.

Area threshold = $0.05 \ km^2$

Table 1: Number of self-similar (SS) and Tokunaga self-similar (TSS) networks.

	# total	# SS	# TSS	% SS	% TSS
Order 6	549	525	451	96	86
Order 7	137	132	118	96	90
$Order\ 8$	39	37	30	95	81
Order 9	5	5	4	100	80
All orders	730	699	603	96	86

Table 2: Mean and standard deviation (between parentheses) of the Tokunaga parameters \hat{a} and \hat{c} .

	\hat{a}	\hat{c}
$Order\ 6$	1.1(0.12)	2.7(0.44)
Order 7	1.1(0.06)	2.7(0.30)
$Order\ 8$	1.1(0.06)	2.7(0.21)
Order 9	1.1(0.01)	2.6(0.12)

Table 3: Number and percentage of networks with geometrically distributed side-branches (NGDS).

5 (NODD).			
	# total	# NGDS	% NGDS
Order 6	549	547	99
Order 7	137	123	90
$Order\ 8$	39	10	26
Order 9	5	0	0
$All\ orders$	730	680	93

Area threshold = $0.09 \ km^2$

Table 4: Number of self-similar (SS) and Tokunaga self-similar (TSS) networks.

	# total	# SS	# TSS	% SS	% TSS
Order 6	327	317	259	97	82
Order 7	83	79	71	95	90
$Order\ 8$	23	22	19	96	86
Order 9	3	3	2	100	67
All orders	436	421	351	97	83

Table 5: Mean and standard deviation (between parentheses) of the Tokunaga parameters \hat{a} and \hat{c} .

	â	\hat{c}
$Order\ 6$	1.1(0.11)	2.7(0.42)
Order 7	1.1(0.06)	2.7(0.25)
$Order\ 8$	1.1(0.06)	2.6(0.21)
Order 9	1.1(0.01)	2.7(0.09)

Table 6: Number and percentage of networks with geometrically distributed side-branches (NGDS).

b (Habb).			
	# total	# NGDS	% NGDS
Order 6	327	323	99
Order 7	83	76	92
$Order\ 8$	23	13	57
Order 9	3	0	0
$All\ orders$	436	412	94

Area threshold = $0.2 \ km^2$

Table 7: Number of self-similar (SS) and Tokunaga self-similar (TSS) networks.

	# total	# SS	# TSS	% SS	% TSS
Order 6	195	189	160	97	85
Order 7	47	46	43	98	93
$Order\ 8$	10	10	9	100	90
Order 9	1	1	0	100	0
All orders	253	246	212	97	86

Table 8: Mean and standard deviation (between parentheses) of the Tokunaga parameters \hat{a} and \hat{c} .

	â	\hat{c}
$Order\ 6$	1.1(0.12)	2.7(0.38)
Order 7	1.1(0.08)	2.7(0.26)
$Order\ 8$	1.1(0.04)	2.6(0.13)
Order 9		

Table 9: Number and percentage of networks with geometrically distributed side-branches (NGDS).

b (Habb).			
	# total	# NGDS	% NGDS
Order 6	195	195	100
Order 7	47	41	87
$Order\ 8$	10	4	40
Order 9	1	0	0
$All\ orders$	253	240	95

Area threshold = $0.3 \ km^2$

Table 10: Number of self-similar (SS) and Tokunaga self-similar (TSS) networks. $_$

	# total	# SS	# TSS	% SS	% TSS
Order 6	150	148	130	99	88
Order 7	38	36	30	95	83
$Order\ 8$	6	6	5	100	83
Order 9	1	1	0	100	0
All orders	195	191	165	98	86

Table 11: Mean and standard deviation (between parentheses) of the Tokunaga parameters \hat{a} and \hat{c} .

	\hat{a}	ĉ
Order 6	1.1(0.12)	2.7(0.35)
Order 7	1.1(0.05)	2.6(0.19)
$Order\ 8$	1.1(0.04)	2.6(0.07)
Order 9		

Table 12: Number and percentage of networks with geometrically distributed side-branches (NGDS).

Stationes (1(abs).						
	# total	# NGDS	% NGDS			
Order 6	150	149	99			
Order 7	38	33	87			
$Order\ 8$	6	4	67			
Order 9	1	0	0			
$All\ orders$	195	186	95			

Area threshold = $0.4 \ km^2$

Table 13: Number of self-similar (SS) and Tokunaga self-similar (TSS) networks. $_$

	# total	# SS	# TSS	% SS	% TSS
Order 6	123	121	106	98	87
Order 7	30	29	28	97	97
$Order\ 8$	5	5	4	100	80
Order 9	1	1	0	100	0
$All\ orders$	159	156	138	98	88

Table 14: Mean and standard deviation (between parentheses) of the Tokunaga parameters \hat{a} and \hat{c} .

	\hat{a}	\hat{c}
Order 6	1.1(0.12)	2.7(0.36)
Order 7	1.1(0.06)	2.6(0.22)
$Order\ 8$	1.1(0.05)	2.7(0.05)
Order 9		

Table 15: Number and percentage of networks with geometrically distributed side-branches (NGDS).

Brancines (1	<u>abb</u>).		
	# total	# NGDS	% NGDS
Order 6	123	122	99
Order 7	30	28	93
$Order\ 8$	5	4	80
Order 9	1	0	0
$All\ orders$	159	154	97

Area threshold = $0.5 \ km^2$

Table 16: Number of self-similar (SS) and Tokunaga self-similar (TSS) networks.

	# total	# SS	# TSS	% SS	% TSS
Order 6	108	105	89	97	85
Order 7	25	25	25	100	100
$Order\ 8$	4	4	3	100	75
Order 9	1	1	0	100	0
$All\ orders$	138	135	117	98	87

Table 17: Mean and standard deviation (between parentheses) of the Tokunaga parameters \hat{a} and \hat{c} .

	â	\hat{c}
$Order\ 6$	1.1(0.11)	2.7(0.37)
Order 7	1.1(0.06)	2.6(0.22)
$Order\ 8$	1.1(0.05)	2.7(0.06)
Order 9		

Table 18: Number and percentage of networks with geometrically distributed side-branches (NGDS).

	# total	# NGDS	% NGDS
Order 6	108	108	100
Order 7	25	23	92
$Order\ 8$	4	3	75
Order 9	0	0	0
All orders	138	134	97

Table 19: Pearson correlation coefficients for the climatic, topographic and topological variables considered in the analysis.

	Mean	Rain Event	Rain Event	Mean	Std. Dev.	Max	Mean	Std. Dev.	Max	С	С	С
	Ann. Rain	Frequency	Duration	Elevation	Elevation	Elevation	Slope	Slope	Slope	$(R_0=0.8)$	$(R_0=0.9)$	$(R_0=0.98)$
Mean Ann.	1	-0.29	0.45	-0.29	0.18	0.07	0.33	0.32	0.20	0.51	0.53	0.58
Rain		(0.041)	(0.001)	(0.039)	(0.203)	(0.612)	(0.019)	(0.024)	(0.174)	(0.001)	(0.004)	(0.037)
Rain Event		1	-0.80	-0.41	-0.61	-0.64	-0.61	-0.64	-0.52	-0.41	-0.51	-0.51
Frequency			(0.000)	(0.003)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.012)	(0.005)	(0.072)
Rain Event			1	0.06	0.27	0.33	0.39	0.44	0.38	0.40	0.57	0.59
Duration				(0.657)	(0.055)	(0.017)	(0.005)	(0.001)	(0.007)	(0.013)	(0.002)	(0.033)
Mean				1	0.69	0.84	0.55	0.63	0.66	0.00	-0.15	-0.24
Elevation					(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.997)	(0.432)	(0.437)
Std. Dev.					1	0.89	0.82	0.84	0.81	0.28	0.24	0.13
Elevation						(0.000)	(0.000)	(0.000)	(0.000)	(0.095)	(0.219)	(0.674)
Max						1	0.74	0.82	0.82	0.22	0.15	0.12
Elevation							(0.000)	(0.000)	(0.000)	(0.194)	(0.454)	(0.693)
Mean							1	0.93	0.83	0.29	0.24	0.03
Slope								(0.000)	(0.000)	(0.072)	(0.926)	(0.925)
Std. Dev.								1	0.93	0.30	0.24	0.11
Slope									(0.000)	(0.065)	(0.218)	(0.731)
Max									1	0.29	0.26	0.12
Slope										(0.073)	(0.189)	(0.695)

Table 20: Physical characteristics of the analyzed catchments. Site indices refer to those reported in Fig. 7 (main text).

Site	USGS		Outlet	Outlet	Horton-Strahler	Mean Annual	Mean rain	Mean rain
index	site code	State	latitude	longitude	order	Rain [mm]	frequency [d ⁻¹]	duration [d]
1	1610000	WV-MD	39.5389	-78.4567	8	947	0.07	11.1
2	9292500	UT	40.5119	-110.3408	7	725	0.12	3.7
3	14321000	OR	43.5861	-123.5542	9	1283	0.08	8.2
4	5517500	IN	41.2214	-86.9644	8	957	0.13	5.5
5	14233400	WA	46.4703	-122.0975	7	1993	0.07	9.7
6	1548500	PA	41.5217	-77.4478	7	949	0.12	6.2
7	14101500	OR	45.2417	-121.0939	7	800	0.09	7.1
8	3179000	WV	37.5439	-81.0106	7	969	0.12	6.2
9	14232500	WA	46.4417	-121.8628	6	2044	0.09	8.1
10	1500500	NY	42.3214	-75.3169	7	1029	0.08	9.9
11	12149000	WA	47.6661	-121.9242	7	2380	0.08	9.1
12	14080500	OR	44.1139	-120.7944	8	359	0.10	5.7
13	3198500	WV	38.1797	-81.7117	6	1135	0.12	6.0
14	5508000	CA	39.525	-120.9369	7	1718	0.10	4.6
15	5412500	WA	48.3653	-120.115	8	916	0.10	6.5
16	7163000	IN	38.2375	-86.2283	7	1121	0.14	4.4
17	11355500	MO	37.7592	-92.4517	8	988	0.14	4.3
18	5410490	IL	42.1958	-88.9986	8	892	0.13	5.0
19	7144200	IN	40.7819	-86.2639	7	944	0.13	5.2
20	1558000	NE	42.4597	-103.1708	7	381	0.12	4.9
21	6454500	CA	38.3797	-119.4492	7	832	0.11	4.5
22	3075500	LA	30.6403	-92.8139	9	1480	0.12	5.7
23	12459000	MS	32.3264	-88.9097	8	1397	0.13	4.8
24	3050500	MI	42.7506	-84.5553	7	794	0.13	5.2
25	12413500	NM	33.0611	-108.5367	8	537	0.10	5.5
26	1663500	TX	31.0817	-98.0164	7	741	0.12	4.3
27	3020500	KS	37.0036	-96.315	7	878	0.14	3.7
28	1667500	SC	34.4444	-82.1764	7	1246	0.12	5.4
29	4212000	WI	43.5742	-90.6431	7	830	0.15	3.8
30	3024000	MT	45.1119	-110.7936	8	710	0.07	10.5
31	1348000	ID	46.1506	-115.5864	7	1291	0.10	6.7
32	3175500	ID	47.5722	-116.2528	8	1179	0.09	7.4
33	6334500	MO	39.0164	-90.9833	8	938	0.13	4.8
34	4185000	OR	42.4472	-121.2375	8	552	0.12	3.9
35	1514000	WA	46.7761	-123.0344	7	1579	0.07	9.8
36	1674500	TX	28.2917	-97.2789	7	837	0.12	4.8
37	4201500	AL	34.6242	-86.3064	8	1486	0.14	4.5
38	2030500	PA	40.0822	-76.7203	7	1015	0.15	4.6
39	3155500	AR	35.5769	-94.0153	6	1251	0.14	4.2
40	7252000	OH	40.5147	-82.1956	7	926	0.14	5.1
41	2143040	GA	31.2211	-81.8675	8	1222	0.11	6.4
42	6817000	WA	47.1514	-121.9486	6	1882	0.08	9.2
43	7261000	CA	36.4067	-118.9533	7	725	0.10	3.3
44	11210500	CA	33.1069	-116.8653	6	526	0.10	3.0
45	7072000	IA	43.0625	-92.6731	8	837	0.13	4.9
46	7346050	ME	44.7072	-69.9392	9	1179	0.16	3.9
47	7375500	FL	30.5539	-84.3842	7	1314	0.11	5.8
48	2118000	NE	40.3328	-98.0667	7	658	0.12	5.0
49	3438000	WY	43.2425	-109.0097	8	487	0.10	6.6
50	2016000	NM	35.4028	-104.4431	6	374	0.12	4.0