

Efficiently Learning the Graph for Semi-supervised Learning

MACHINE LEARNING DEPARTMENT

Dravyansh Sharma¹; Maxwell Jones¹

¹Carnegie Mellon University

Introduction

We consider graph-based approaches for semi-supervised learning on large datasets. Known techniques to improve efficiency typically involve an approximation of the graph regularization objective, however:

- The graph is assumed to be known or constructed with heuristic hyperparameter values
- They do not provide a principled approximation guarantee for learning over the full unlabeled dataset.

We propose algorithms that overcome both limitations.

- We learn the graph $G(\sigma)$ via algorithms that can exhaustively search a continuous parameter space
- We give an online learning framework to learn the graph efficiently online
- We speedup our algorithm by using the Conjugate Gradient method as an approximate matrix inversion method
- We give guarantees of our algorithm given approximate feedback
- We observe significant (~10-100x) speedup over prior work

Figure 1. A visual of the semi-supervised learning setup. We learn graph $G(\sigma)$ by finding optimal σ

Online Learning Setup

Dispersion. Consider a parameter space \mathcal{C} , a sequence of random loss functions $l_1,\ldots,l_T\colon\mathcal{C}\to[0,1]$, and a constant β . We consider this random sequence β -dispersed for Lipschitz constant L if, for all $\epsilon\geq T^{-\beta}$, each pair of points at distance ϵ in \mathcal{C} is not L-Lipschitz for at most $\tilde{O}(\epsilon T)$ functions in expectation.

An online optimization problem with loss functions l_1 , l_2 , ... is said to have (ϵ, γ) -approximate semi-bandit feedback with system size M if there is a partition $\tilde{A}_t^{(1)}$, ... $\tilde{A}_t^{(m)}$ of the parameter space $\mathcal{P} \subset \mathbb{R}^d$, such that if the learner plays point $\rho_t \in \tilde{A}_t^{(i)}$, she observes approximate feedback set $\tilde{A}_t^{(i)}$ and approximate loss $\tilde{l}_t(\rho)$, which is within γ of the loss for all $\rho_t \in \tilde{A}_t^{(i)}$ except for some subset of $\tilde{A}_t^{(i)}$ with volume at most ϵ .

Algorithm 1: Approximate Continuous exp3-set (λ)

- 1: **Input:** step size $\lambda \in [0, 1]$.
- 2: Initialize $w_1(\rho) = 1$ for all $\rho \in \mathcal{P}$.
- 3: **for** t = 1, ..., T **do**
- 4: Sample ρ_t according to $p_t(\rho) = \frac{w_t(\rho)}{\int_{\mathcal{P}} w_t(\rho) d\rho}$.
- 5: Play ρ_t and suffer loss $l_t(\rho_t)$.
- 6: Observe (γ, ϵ) -approximate feedback $\tilde{l}_t(\rho)$ over set \tilde{A}_t with $\rho_t \in \tilde{A}_t$
- Update $w_{t+1}(\rho) = w_t(\rho) \exp(-\lambda \hat{l}_t(\rho))$, where $\hat{l}_t(\rho) = \frac{\mathbf{I}\{\rho \in \tilde{A}_t\}}{\int_{\tilde{A}_t} p_t(\rho) d\rho} \tilde{l}_t(\rho)$.

Online Learning Guarantees

Regret bound for Algorithm 1. Suppose $l_1, ..., l_T : \mathcal{C} \to [0,1]$ is a sequence of loss functions that is β -dispersed, and the domain $\mathcal{C} \subset \mathbb{R}^d$ is contained in a ball of radius R. Algorithm 1 achieves expected regret

$$\tilde{O}\left(\sqrt{dMT\log RT} + T^{1-\min\{\beta,\beta'\}}\right)$$

with access to (ϵ, γ) -approximate semi-bandit feedback with system size M, provided $\gamma \leq \text{volume}(\mathfrak{B}(T^{-\beta}))T^{-\beta}$, where $\mathfrak{B}(r)$ is a d-ball of radius r.

Figure 2. A depiction of a (ϵ, γ) -approximate semi-bandit feedback with system size 3.

Graph Learning Setup

Gaussian nearest neighbors. Consider a data space \mathcal{X} and distance function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_{\geq 0}$. Further, let N'_k denote a subset of $\mathcal{X} \times \mathcal{X}$, where $(u, v) \in N'_k$ indicates u is a k-nearest neighbor to v AND v is a k nearest neighbor to u under metric $d(\cdot,\cdot)$. Finally, construct graph $G(k,\sigma)$ with edge weights:

$$w(u,v) = e^{-\frac{d(u,v)^2}{\sigma^2}} \mathbb{I}[(u,v) \in N'_k]$$

for all instances $u, v \in \mathcal{X}$. We let $\mathcal{H}_{k,\sigma}$ denote a set of functions that take in some $k \in [K], \sigma \in \mathbb{R}$ and output loss w.r.t. label predictions on graph $G(k, \sigma)$.

Pseudo-dimension of $\mathcal{H}_{k,\sigma}$. We show that the pseudo-dimension of $\mathcal{H}_{k,\sigma}$ is $O(K + \log n)$, where n denotes the number of nodes in the graph, and the labeling algorithm is the mincut approach of Blum and Chawla [2001].

Algorithm 2: Approximate Feedback Set (ϵ, η)

- 1: **Input:** Graph G with unlabeled nodes U, labels f_L , query parameter σ_0 , error tolerance ϵ , learning rate η , algorithm \mathcal{A} to estimate soft labels and derivatives at any σ
- 2: **Output:** Estimates for piecewise constant interval containing σ_0 , and function value at σ . 3: **for all** $u \in U$ **do**
- 4: while $|\sigma_{n+1} \sigma_n| \ge \epsilon$ do
- 5: Compute $f_{u,\epsilon}(\sigma), \frac{\partial f_u}{\partial \sigma}_{\epsilon}$ as $\mathcal{A}(G, f_L, u, \sigma_n, \epsilon)$, where f is the soft label function
- Set $g_u(\sigma_n) = (f_{u,\epsilon}(\sigma_n) \frac{1}{2})^2$
- 7: Compute Gradient Descent and Newton's method steps $\xi_{\text{GD}}, \xi_{\text{Newton}}$ for $g_u(\sigma_n)$
- 8: Step σ_{n+1} towards σ^* , where $g_u(\sigma^*) = 0$ by setting $\sigma_{n+1} = \sigma_n \min\{\xi_{\text{GD}}, \xi_{\text{Newton}}\}$.
- $\sigma_l = \min\{\sigma_l, \sigma_{n+1}\}, \sigma_h = \max\{\sigma_h, \sigma_{n+1}\}, n \leftarrow n + 1.$
- 10: **return** $[\sigma_l, \sigma_h], f_{\epsilon}(\sigma_0).$

Graph Learning Guarantees

Complexity bound for Algorithm 2. Given an algorithm for computing ϵ -approximate soft labels and gradients for the efficient semi-supervised learning algorithm of Delalleau et al. [2005], Algorithm 2 computes (ϵ, ϵ) -approximate semi-bandit feedback for loss $l(\sigma)$ in time

$$O\left(\left|E_{G_{\widetilde{U}}}\right| n\sqrt{\kappa(\mathcal{L}_{A})} \log\left(\frac{\lambda\left(\left|L\right| + \left|\widetilde{U}\right|\right)\Delta\right)}{\epsilon\sigma_{min}\lambda_{min}(\mathcal{L}_{A})}\right) \log\log\frac{1}{\epsilon}\right)$$

Here $E_{G_{\widetilde{U}}}$ represents edges w.r.t. graph of a small subset of unlabeled nodes \widetilde{U} , \mathcal{L}_A represents grounded graph Laplacian of graph A used to determine labels for \widetilde{U} , and Δ represents the size of the interval for parameter σ . Notice that this bound is linear w.r.t. n, assuming a well conditioned graph.

Figure 3. An instance where finding local minima of $g_u(\sigma) = \left(f_u(\sigma) - \frac{1}{2}\right)^2$ is challenging. Our method (taking the min of Gradient Descent/Newton's method steps) finds the minima.

Figure 4. Loss intervals calculated with approximate. Black intervals are estimated constant loss.

Results/Discussion

- We show a formal separation in the learning-theoretic complexity of sparse and dense graph families.
- We show how to approximately learn the best graphs from the sparse families efficiently using the conjugate gradient method.
- We provide an online learning framework that can be used to learn the graph efficiently online with sub-linear regret, under mild smoothness assumptions
- We implement our approach and demonstrate significant (\sim 10-100x) speedups over prior work.

References

- 1. Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled data using graph mincuts. In International Conference on Machine Learning (ICML), 2001.
- 2. Olivier Delalleau, Yoshua Bengio, and Nicolas Le Roux. Efficient non-parametric function in semi-supervised learning. In International Workshop on Artificial Intelligence and Statistics (AISTATS), pages 96–103. PMLR, 2005.
- 3. Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using Gaussian fields and harmonic functions. In International Conference on Machine Learning (ICML), pages 912–919, 2003.

4. Maria-Florina Balcan and Dravyansh Sharma. Data driven semi-supervised learning. Advances in Neural Information Processing Systems (NeurIPS), 34, 2021.