Chapitre 29: Espaces euclidiens

Dans tout le chapitre, E désignera un \mathbb{R} -espace vectoriel.

1 Produit scalaire

1.1 Définitions, exemples

Définition

- On appelle produit scalaire sur E toute application $\phi: E \times E \to \mathbb{R}$ vérifiant les propriétés suivantes :
 - ϕ est bilinéaire :

$$\forall x \in E, \ \phi(x, \cdot)$$
 est linéaire i.e : $\forall \lambda, \mu, \forall y, y', \ \phi(x, \lambda y + \mu y') = \lambda \phi(x, y) + \mu \phi(x, y')$. $\forall y \in E, \ \phi(\cdot, y)$ est linéaire i.e : $\forall \lambda, \mu, \forall x, x', \ \phi(\lambda x + \mu x', y) = \lambda \phi(x, y) + \mu \phi(x', y)$.

- ϕ est symétrique : $\forall (x, y) \in E^2$, $\phi(x, y) = \phi(y, x)$;
- ϕ est définie-positive : $\forall x \in E, \phi(x, x) \ge 0$ et : $\forall x \in E, \phi(x, x) = 0 \implies x = 0$
- Si ϕ est un produit scalaire sur E et si $(x, y) \in E^2$, le réel $\phi(x, y)$ est appelé produit scalaire de x et y et est noté (x, y), (x|y) ou $x\dot{y}$.

Méthode

Pour montrer qu'une application définit un produit scalaire, on montre :

- en premier la symétrie (généralement immédiat)
- puis la bilinéarité (en ne montrant que la linéarité par rapport à l'une des variables).
- On s'attachera à montrer avec rigueur le caractère défini (souvent le point non trivial).

Proposition

Soit $n \in \mathbb{N}^*$ Soit $E = \mathbb{R}^n$. Pour tout $x = (x_1, ..., x_n)$ et $y = (y_1, ..., y_n) \in E$, on pose:

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i.$$

<, > définit un produit scalaire sur \mathbb{R}^n appelé produit scalaire canonique.

Démonstration.

• Soit $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in E$, on a:

$$\langle y, x \rangle = \sum_{i=1}^{n} y_i x_i = \sum_{i=1}^{n} x_i y_i = \langle x, y \rangle$$

Ainsi, <, > est symétrique.

• Soient $x = (x_1, ..., x_n), y = (y_1, ..., y_n), z = (z_1, ...z_n) \in E$ et $(\lambda, \mu) \in \mathbb{R}^2$. On a :

$$<\lambda x + \mu y, z> = \sum_{i=1}^{n} (\lambda x_i + \mu y_i) z_i = \sum_{i=1}^{n} (\lambda x_i z_i + \mu y_i z_i) = \lambda \sum_{i=1}^{n} x_i z_i + \mu \sum_{i=1}^{n} y_i z_i = \lambda < x, z> + \mu < y, z>.$$

Donc < , > est linéaire à gauche, donc bilinéaire.

• Soit $x = (x_1, ..., x_n) \in E$, on a:

$$\langle x, x \rangle = \sum_{i=1}^{n} x_i^2 \ge 0.$$

Supposons < x, x>= 0. Alors $\sum_{i=1}^{n} x_i^2 = 0$. Comme c'est une somme de réels positifs, ils sont tous nuls et pour tout $i \in$

[1, n], $x_i = 0$. Ainsi x = 0 et <, > est défini-positif.

En conclusion, < , > définit un produit scalaire sur E

Proposition

Soit $E = \mathcal{C}^0([a, b])$ (avec $a < b \in \mathbb{R}$). Pour tout f et $g \in E$, on pose :

$$\langle f, g \rangle = \int_a^b f(t)g(t)dt.$$

<, > définit un produit scalaire sur E souvent appelé produit scalaire usuel sur $\mathscr{C}^0([a,b])$.

Démonstration. • Soit $(f,g) \in E^2$, on a : $\langle g,f \rangle = \int_a^b g(t)f(t)dt = \int_a^b f(t)g(t)dt = \langle f,g \rangle$ donc $\langle g,f \rangle = \int_a^b g(t)f(t)dt = \langle f,g \rangle$ donc $\langle g,f \rangle = \int_a^b g(t)f(t)dt = \langle f,g \rangle$

• Soient $(f, g, h) \in E^3$ et $(\lambda, \mu) \in \mathbb{R}^2$. On a

$$\begin{split} <\lambda f + \mu g, h> &= \int_a^b (\lambda f(t) + \mu g(t)) h(t) dt = \int_a^b (\lambda f(t) h(t) + \mu g(t) h(t)) dt \\ &= \lambda \int_a^b f(t) g(t) dt + \mu \int_a^b f(t) h(t) dt = \lambda < f, g > + \mu < f, h > 0 \end{split}$$

(par linéarité de l'intégrale) et < , > est linéaire à gauche, donc bilinéaire.

• Soit $f \in E$, on a $< f, f >= \int_a^b f(t)^2 dt \ge 0$ (car f^2 est positive et par positivité de l'intégrale).

Supposons < f, f>= 0. Alors $\int_a^b f(t)^2 dt = 0$. Comme f^2 est positive et continue, $f^2 = 0$. Pour $t \in [a, b]$, on a donc: $\forall t \in [a, b], \ f(t)^2 = 0 \ \text{donc}: \ \forall t \in [a, b], \ f(t) = 0$. Ainsi $f = 0 \ \text{et} < 0$, f(t) = 0. Ainsi f(t) = 0 est défini-positif.

En conclusion, <, > définit un produit scalaire sur E.

 $\mathcal{M}_{n,p}(\mathbb{R})^2 \to \mathbb{R}$ **Exemple :** Montrer que l'application $(A,B) \mapsto \langle A,B \rangle = \sum_{i=1}^n \sum_{j=1}^n a_{i,j} b_{i,j} \text{ définit un produit scalaire sur } \mathcal{M}_{n,p}(\mathbb{R}).$

• Soient $A = (a_{i,j})$ et $B = (b_{i,j}) \in \mathcal{M}_{n,p}(\mathbb{R})$. On a :

$$< B, A > = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{i,j} a_{i,j} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} b_{i,j} = < A, B > .$$

Ainsi, <, > est symétrique.

• Soient $A = (a_{i,j}), B = (b_{i,j})$ et $B' = (b'_{i,j}) \in \mathcal{M}_{n,p}(\mathbb{R})$, on a :

$$< A, \lambda B + \mu B' > = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} (\lambda b_{i,j} + \mu b'_{i,j})$$

$$= \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} b_{i,j} + \mu \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} b'_{i,j})$$

$$= \lambda < A, B > +\mu < A, B' >$$

Donc <, > est linéaire par rapport à la deuxième variable et donc bilinéaire.

• Soit $A = (a_{i,j})$. On a : $\langle A, A \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}^2 \ge 0$.

Supposons que < A, A>= 0. Alors, $\sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2 = 0$. Comme il s'agit d'une somme de termes positifs, chaque terme est nul. Ainsi : $\forall (i,j) \in [\![1,n]\!] \times [\![1,p]\!]$, $a_{i,j} = 0$. Donc A=0.

Ainsi, <, > est définie-positive.

<, > définit donc un produit scalaire sur $\mathcal{M}_{n,p}(\mathbb{R})$.

Définition

- Un \mathbb{R} -espace vectoriel E muni d'un produit scalaire $<\cdot,\cdot>$ est appelé espace préhilbertien réel, et noté $(E,<\cdot,\cdot>)$.
- On appelle espace euclidien, tout espace préhilbertien réel de dimension finie.

1.2 Norme euclidienne associée à un produit scalaire

Définition

Soit (E, < , >) un espace préhilbertien réel.

- Pour tout $x \in E$, on appelle norme de x et on note ||x|| le réel positif défini par $||x|| = \sqrt{\langle x, x \rangle}$.
- On appelle norme euclidienne sur *E* associée au produit scalaire < , > l'application :

$$E \rightarrow \mathbb{R}_+$$

$$x \mapsto ||x|| = \sqrt{\langle x, x \rangle}$$

On dira qu'un vecteur $x \in E$ est **unitaire** si et seulement si ||x|| = 1.

Exemple:

- Sur \mathbb{R}^n muni du produit scalaire canonique : pour tout $x = (x_1, ..., x_n) \in \mathbb{R}^n$, on a $||x|| = \sqrt{\sum_{k=1}^n x_k^2}$
- Sur $\mathscr{C}([a,b],\mathbb{R})$ muni du produit scalaire défini précédemment pour tout $f \in \mathscr{C}([a,b,\mathbb{R}))$, on a $||f|| = \sqrt{\int_a^b f(t)^2 dt}$.

Proposition Identités remarquables

Soit (E, <, >) un espace préhilbertien réel. Pour $(x, y) \in E^2$, on a :

•
$$||x + y||^2 = ||x||^2 + 2 < x, y > + ||y||^2$$
.

•
$$||x - y||^2 = ||x||^2 - 2 < x, y > + ||y||^2$$
.

• Identité du parallélogramme : $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$

Démonstration. • On développe par bilinéarité

$$||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x + y \rangle + \langle y, x + y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^2 + 2 \langle x, y \rangle + ||y||^2$$

avec la symétrie.

- Le second point se montre de même.
- Par bilinéarité, on a

$$< x + y, x - y > = < x, x - y > + < y, x - y > = < x, x > - < x, y > + < y, x > - < y, y > = ||x||^2 - ||y||^2$$

avec la symétrie.

• En additionnant les deux premières égalités, on obtient le résultat.

Remarque : L'égalité du parallélogramme traduit le fait que, dans un parallélogramme, la somme des carrés des longueurs des deux diagonales est égale à la somme des carrés des longueurs des quatre côtés.

Corollaire Identités de polarisation

Soit $(x, y) \in E^2$, on a:

•
$$\langle x, y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2).$$

•
$$\langle x, y \rangle = \frac{1}{2} (\|x\|^2 + \|y\|^2 - \|x - y\|^2).$$

•
$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2).$$

Remarque: Ces identités permettent d'exprimer le produit scalaire uniquement en termes de norme.

Méthode

Quand on aura une propriété vraie sur les normes, et qu'on voudra montrer la propriété équivalente sur les produits scalaires, il faudra utiliser une des identités de polarisation.

Proposition Propriétés de la norme

Soit (E, <, >) un espace préhilbertien réel.

La norme || || associée au produit scalaire < , > vérifie :

- Séparation : Pour tout $x \in E$, ||x|| = 0 si et seulement si x = 0.
- Homogénéité : $\forall x \in E, \forall \lambda \in \mathbb{R}, ||\lambda x|| = |\lambda|||x||$.

Démonstration. • Comme le produit scalaire est linéaire à droite, on a : < 0, 0 >= 0.

La réciproque correspond au caractère défini-positif du produit scalaire.

• Soient $\lambda \in \mathbb{R}$ et $x \in E$, on a $\|\lambda x\| = \sqrt{\langle \lambda x, \lambda x \rangle} = \sqrt{\lambda^2 \langle x, x \rangle} = |\lambda| \|x\|$ (par bilinéarité).

Dans toute la suite (E, <, >) désigne un espace préhilbertien réel et on notera $\| \|$ la norme associé à ce produit scalaire.

Proposition Inégalité de Cauchy-Schwarz

Soit E un espace préhilbertien réel.

- $\forall (x, y) \in E^2$, $|\langle x, y \rangle| \le ||x|| ||y||$.
- Cette inégalité est une égalité si, et seulement si, (x, y) est liée.

Remarque : (x, y) est liée si et seulement si y = 0 ou : $\exists \lambda \in \mathbb{R}, \ x = \lambda y$.

Démonstration. • Soit $x, y ∈ E^2$

- Si y = 0, $\langle x, y \rangle^2 = 0$ et $\langle y, y \rangle = 0$ d'où l'égalité. On suppose désormais $y \neq 0$.
- Considérons la fonction $f : \mathbb{R} \to \mathbb{R}$ définie par :

$$\forall t \in \mathbb{R}, \ f(t) = ||x - ty||^2 = t^2 ||y||^2 - 2t < x, y > + ||x||^2.$$

Comme $||y||^2 \neq 0$, la fonction f est une fonction polynomiale du second degré en t, à valeurs positives. Son discriminant est donc négatif :

$$\Delta = 4\left((< x, y >^2 - ||x||^2 ||y||^2\right) \le 0.$$

Ainsi, $\langle x, y \rangle^2 \le ||x||^2 ||y||^2$. Par croissance de la racine carrée, on en déduit l'inégalité de Cauchy-Schwartz.

- Cas d'égalité:
 - Si (x, y) est liée (comme $y \neq 0$), il existe $\lambda \in \mathbb{R}$ tel que $x = \lambda y$. Alors : $\langle x, y \rangle^2 = \langle \lambda y, y \rangle^2 = \lambda^2 \langle y, y \rangle^2$. Or, $\langle x, x \rangle = \langle \lambda y, \lambda y \rangle = \lambda^2 \langle y, y \rangle$. Ainsi, $\langle x, y \rangle = \langle y, y \rangle \langle x, x \rangle$.
 - Réciproquement, supposons $< x, y >^2 = < x, x > < y, y >$ (on suppose toujours $y \ne 0$). Alors, le discriminant Δ est nul. Il existe donc $t_0 \in \mathbb{R}$ tel que $f(t_0) = < x + \lambda_0 y, x + \lambda_0 y > = 0$. Par définition du produit scalaire, on en déduit $x + t_0 y = 0$ donc $x = -t_0 y$ et (x, y) est liée.

Exemple:

• dans $E = \mathbb{R}^n$ muni du produit scalaire canonique, l'inégalité de Cauchy-Schwarz s'écrit :

$$\forall (x_1,...,x_n), (y_1,...,y_n) \left| \sum_{i=1}^n x_i y_i \right| \leq \sqrt{\sum_{i=1}^n x_i^2} \sqrt{\sum_{i=1}^n y_i^2}.$$

• dans $E = \mathcal{C}^0([a,b],R)$ muni du produit scalaire usuel, l'inégalité triangulaire s'écrit :

$$\forall f,g \in \mathcal{C}^0([a,b]), \ \left| \int_a^b f(t)g(t)dt \right| \leq \sqrt{\int_a^b f(t)^2 dt} \sqrt{\int_a^b g(t)^2 dt}.$$

Proposition Inégalités triangulaires

Soit (E, <, >) un espace préhilbertien réel.

- Pour tout $(x, y) \in E^2$, $||x + y|| \le ||x|| + ||y||$. Cette inégalité est une égalité si et seulement si y = 0 ou $\Big($ il existe $\lambda \ge 0$ tel que $x = \lambda y \Big)$.
 - $\forall (x, y) \in E^2, \ |\|x\| \|y\|| \le \|x y\|$

Démonstration.

• Soient $(a, y \in \mathbb{R}, \text{ on a})$

$$||x + y||^{2} = ||x||^{2} + 2 < x, y > + ||y||^{2}$$

$$\leq ||x||^{2} + 2| < x, y > | + ||y||^{2}$$

$$\leq ||x||^{2} + 2||x|| ||y|| + ||y||^{2}$$

$$= (||x|| + ||y||)^{2}$$

par l'inégalité de Cauchy-Schwarz. Par croissance de $\sqrt{\ }$, on a donc $||x+y|| \le ||x|| + ||y||$.

• supposons que y = 0 alors on a égalité. Supposons qu'il existe $\lambda \ge 0$ tel que $x = \lambda y$. Alors $||x + y|| = ||(1 + \lambda)y|| = |1 + \lambda|||y||$ par homogénéité de la norme. Enfin, $||x + y|| = (1 + \lambda)||y||$ car $1 + \lambda \ge 0$.

De même, $\|x\| + \|y\| = \|\lambda y\| + \|y\| = (\|\lambda\| + 1)\|y\|$ par homogénéité de la norme. Puis, $\|x\| + \|y\| = (1 + \lambda)\|y\|$ car $\lambda \ge 0$. Ainsi, $\|x + y\| = \|x\| + \|y\|$.

- Réciproquement supposons que ||x+y|| = ||x|| + ||y||. Alors, les inégalités du premier point sont des égalités. Ainsi : $\langle x,y \rangle = |\langle x,y \rangle| = ||x|| ||y||$. On a donc égalité dans l'inégalité de Cauchy-Schwarz. Donc y=0 ou il existe $\lambda \in \mathbb{R}$ tel que $x=\lambda y$. Supposons qu'il existe $\lambda \in \mathbb{R}$ tel que $x=\lambda y$. Alors $\langle x,y \rangle = \langle \lambda y,y \rangle = \lambda ||y||^2$. Or, $\langle x,y \rangle = |\langle x,y \rangle| \ge 0$. Donc $\lambda ||y||^2 \ge 0$. Or, $||y||^2 > 0$. Donc $\lambda \ge 0$.
- D'après l'inégalité triangulaire, on a : $\|y\| = \|x + y x\| \le \|x\| + \|y x\|$. Donc $\|y\| \|x\| \le \|y x\|$. D'où $\|y\| \|x\| \le \|x y\|$. De même, $\|x\| = \|y + x y\| \le \|y\| + \|x y\|$. Donc $\|x\| \|y\| \le \|x y\|$. Ainsi, $\|\|x\| \|y\|\| \le \|x y\|$.

Remarque : L'inégalité triangulaire se comprend géométriquement, si l'on interprète la norme d'un vecteur comme sa longueur.

2 Orthogonalité

Dans toute la suite (E, <, >) désigne un espace préhilbertien réel et on notera $\| \|$ la norme associé à ce produit scalaire.

2.1 Vecteurs orthogonaux, famille orthogonale

Définition

Soit (E, <, >) un espace préhilbertien réel.

On dit que deux vecteurs x et $y \in E$ sont orthogonaux si et seulement si < x, y >= 0.

Exemple: Dans \mathbb{R}^n muni du produit scalaire canonique, les vecteurs de la base canonique sont orthogonaux deux à deux.

Proposition

- Soit $x \in E$, $\forall z \in E$, $\langle x, z \rangle = 0 \iff x = 0$.
- Soit $x, y \in E$. On a l'équivalence : $\forall z \in E, \langle x, z \rangle = \langle y, z \rangle \iff x = y$.

Démonstration. • On sait déjà que : $\forall x \in E, <0, x>=0$ car < ., x> est linéaire.

De plus, soit $x \in E$ tel que pour tout $y \in E$, $\langle x, y \rangle = 0$. Alors, en particulier pour y = x, on obtient : $\langle x, x \rangle = 0$ d'où x = 0.

• Soit $x, y \in E$, on a:

$$\forall z \in E, \langle x, z \rangle = \langle y, z \rangle$$

$$\iff \forall z \in E, \langle x - y, z \rangle = 0$$

$$\iff x - y = 0$$

$$\iff x = y$$

Définition

Soit E un espace préhilbertien réel. On dit qu'une famille (e_1, \dots, e_n) de vecteurs de E est :

- orthogonale si pour tout $(i, j) \in [1, n]^2$ tel que $i \neq j$, (e_i, e_j) .
- orthonormale (ou orthonormée) si et seulement si cette famille est orthogonale et que : $\forall i \in [1, n], \|e_i\| = 1$ (vecteurs unitaires), i.e si et seulement si : $\forall i, j \in [1, n], \langle e_i, e_j \rangle = \delta_{i,j}$.

Proposition

Soit (E, <, >) un espace préhilbertien réel.

Toute famille orthogonale de vecteurs non nuls de *E* est libre. En particulier, toute famille orthonormale est libre.

Démonstration. Soit $(e_1,...,e_n)$ une famille orthogonale. Soit $(\lambda_1,...,\lambda_n) \in \mathbb{K}^n$ tel que $\sum_{i=1}^n \lambda_i e_i = 0$. Soit $k \in [1,n]$, on effectue le produit scalaire avec e_k :

$$0 = <0, e_k> = <\sum_{i=1}^n e_i, e_k> = \sum_{i=1}^n \lambda_i < e_i, e_k> = \lambda_k \|e_k\|^2$$

par bilinéarité du produit scalaire et car $< e_i, e_k >= 0$. Comme $e_k \neq 0$, $||e_k||^2 \neq 0$ et $\lambda_k = 0$. Ainsi la famille (e_1, \dots, e_n) est libre.

Théorème Théorème de Pythagore

Soit (E, <, >) un préhilbertien réel.

Soit (e_1, \ldots, e_n) une famille orthogonale de E. Alors

$$\|e_1 + \dots + e_n\|^2 = \|e_1\|^2 + \dots + \|e_n\|^2$$
.

Démonstration. Les propriétés du produit scalaire et l'orthogonalité des vecteurs e_1, \dots, e_n donnent :

$$\left\| \sum_{i=1}^{n} e_i \right\|^2 = \langle \sum_{i=1}^{n} e_i \sum_{j=1}^{n} e_j \rangle = \sum_{i=1}^{n} \langle e_i, \sum_{j=1}^{n} e_j \rangle = \sum_{i=1}^{k} \sum_{j=1}^{n} \langle e_i, e_j \rangle = \sum_{i=1}^{n} \|e_i\|^2.$$

Remarque : La réciproque est vraie lorsque n=2 mais fausse en général pour $n\geq 3$.

En effet, pour n = 2, soit $x, y \in E$ et supposons que $||x + y||^2 = ||x||^2 + ||y||^2$. D'après les identités de polarisation, on a : $||x||^2 + ||y||^2 + 2 < x$, $y > = ||x||^2 + ||y||^2$ d'où < x, y > = 0. Donc (x, y) est orthogonale.

2.2 Orthogonal d'un sous-espace vectoriel

Définition

Soit (E, <, >) un espace préhilbertien réel. Soit F un sous-espace vectoriel de E.

On appelle orthogonal de F, l'ensemble des vecteurs de E orthogonaux à tous les éléments de F. Il est noté F^{\perp} .

$$F^{\perp} = \{x \in E, \ \forall y \in F, < x, y >= 0\}$$

Soit $x \in E$, on a:

$$x \in F^{\perp} \iff \forall y \in F, \langle x, y \rangle = 0 \iff \forall y \in F, x \perp y$$

Exemple : $\{0\}^{\perp} = \{x \in E, < x, 0 >= 0\} = E \text{ et } E^{\perp} = \{x \in E, \forall z \in E, < x, z >= 0\} = \{0\}.$ **Exemple :** Soit $(a, bc,) \in \mathbb{R}^2 \setminus \{(0, 0, 0)\}$, on munit \mathbb{R}^3 du produit scalaire canonique. On pose D = Vect((a, b, c)) alors $D^{\perp} = \{(0, 0, 0)\}$ $\{(x, y, z) \in \mathbb{R}^3 \mid ax + by + cz = 0\}.$

Proposition

Soit (E,<,>) un espace préhilbertien réel. Soit F un sous-espace vectoriel de E. F^{\perp} est un sous-espace vectoriel de E.

Démonstration. 0 est orthogonal à tous les vecteurs de E donc de F. Ainsi, $0 \in F^{\perp}$ et F^{\perp} est non vide. Soit $(x, x') \in F^{\perp 2}$. Soit $\lambda, \mu \in \mathbb{R}$. Soit $y \in F$. On a $< \lambda x + \mu x', y >= \lambda < x, y > + \mu < x', y >= 0$ donc $\lambda x + \mu x' \in F^{\perp}$. Ainsi, F^{\perp} est un sous-espace vectoriel de E.

Proposition

Soit $e_1,...,e_p \in E$ et $F = \text{Vect}(e_1,...,e_p)$. Soient $x \in E$. $x \in F^{\perp}$ si et seulement si : $\forall i \in [1,n], < x,e_i > .$

• Supposons que $x \in F^{\perp}$. Alors, pour tout $i \in [1, n]$, $e_i \in F$, donc $< x, e_i >$. Démonstration.

• Réciproquement, supposons que : $\forall i \in [1, n], \ x \perp e_i$. Soit $y \in F$, il existe $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$ tel que $y = \sum_{i=1}^n \lambda_i e_i$ (car (e_1, \dots, e_n) est une famille génératrice de F). Alors, par bilinéarité $\langle x, y \rangle = \sum_{i=1}^n \lambda_i \langle x, e_i \rangle = 0$ et $\langle x, y \rangle$ puis $x \in F^{\perp}$.

Pour vérifier que x est dans F^{\perp} , il suffit de vérifier que x est orthogonal à tous les vecteurs d'une famille génératrice (ou d'une base de F).

Proposition

Soient (E, <, >) un espace préhilbertien réel et F, G deux sous-espace vectoriel de E.

- Si $F \subset G$, alors $G^{\perp} \subset F^{\perp}$. En général, il n'y a pas égalité.
- $F \subset (F^{\perp})^{\perp}$.

Démonstration. • Soit $x \in G^{\perp}$. Soit $y \in F$, on a $y \in G$ car $F \subset G$ donc < x, y >= 0. Ainsi $x \in F^{\perp}$ et donc $G^{\perp} \subset F^{\perp}$.

• Soit $x \in F$, soit $y \in F^{\perp}$,

$$\langle x, y \rangle = 0$$

et on en déduit que $x \in (F^{\perp})^{\perp}$, ce qui établit l'inclusion.

2.3 Orthonormalisation de Gram-Schmidt

Théorème Procédé d'orthonormalisation de Gram-Schmidt

Soit (E, <>) un espace euclidien.

Soit (e_1, \ldots, e_n) une famille libre de vecteurs de E.

Il existe un unique famille $(f_1, ..., f_n)$ telle que :

- $(f_1,...,f_n)$ est orthonormée
- $\forall i \in [1, n], \text{Vect}(e_1, ..., e_i) = \text{Vect}(f_1, ..., f_i)$
- $\forall i \in [1, n], \langle e_i, f_i \rangle > 0.$

П

Démonstration. Existence:

Par récurrence, on définit pour tout $i \in [1, n]$,

$$g_i = e_i - \sum_{k=1}^{i-1} \langle e_i, f_k \rangle f_k$$
 et $f_i = \frac{g_i}{\|g_i\|}$.

Montrons par récurrence la propriété suivante :

$$\mathcal{P}(j)$$
: « $f_1,...,f_n$ sont bien définis
 $(f_1,...,f_j)$ est orthonormale
 $\text{Vect}(e_1,...,e_j) = \text{Vect}(f_1,...f_j)$

- Pour j = 1: on pose $g_1 = e_1$.
 - Comme $(e_1,...,e_n)$ est libre, $e_1 \neq 0$ donc $||g_1|| \neq 0$ donc f_1 est bien défini.
 - De plus, $f_1 = \frac{e_1}{\|e_1\|}$. Ainsi, $\|f_1\| = 1$ donc (f_1) est orthonormale.
 - Enfin, $\operatorname{Vect}(f_1) = \operatorname{Vect}\left(\frac{e_1}{\|e_1\|}\right) = \operatorname{Vect}(e_1)$.

Donc $\mathcal{P}(1)$ est vraie.

- Soit $j \in [1, n-1]$, supposons $\mathcal{P}(j)$ vraie.
 - Par hypothèse de récurrence, on sait déjà que $f_1,...,f_j$ sont bien définis. Supposons $g_{j+1}=0$. Alors $e_{j+1}=\sum_{k=1}^j < e_{j+1}, f_k > f_k$. Donc $e_{j+1} \in \mathrm{Vect}(f_1,...,f_j) = \mathrm{Vect}(e_1,...,e_j)$ par hypothèse de récurrence. Absurde car $(e_1,...,e_{j+1})$ est libre (sous famille d'une famille libre). Ainsi, $g_{j+1} \neq 0$ donc f_{j+1} est bien défini.
 - Par hypothèse de récurrence, on sait déjà que $(f_1,..,f_j)$ est orthonormale. De plus, soit $k \in [1,j]$, on a :

De plus, $||f_{j+1}|| = 1$ donc $(f_1, ..., f_{j+1})$ est orthonormale.

• On a:

$$\begin{aligned} \operatorname{Vect}(f_1,...,f_{j+1}) &= \operatorname{Vect}(f_1,...,f_j,\frac{g_{j+1}}{\|g_{j+1}\|}) \\ &= \operatorname{Vect}(f_1,...,f_j,g_{j+1}) \\ &= \operatorname{Vect}(f_1,...,f_j,e_{j+1} - \sum_{k=1}^j < e_{j+1},f_k > f_k) \\ &= \operatorname{Vect}(f_1,...,f_j,e_{j+1}) \\ &= \operatorname{Vect}(f_1,...,f_j) + \operatorname{Vect}(e_{j+1}) \\ &= \operatorname{Vect}(e_1,...,e_j) + \operatorname{Vect}(e_{j+1}) \quad \text{par hypothèse de récurrence} \\ &= \operatorname{Vect}(e_1,...,e_{j+1}) \end{aligned}$$

Donc $\mathcal{P}(j+1)$ est vraie.

• On a donc prouvé que pour tout $j \in [1, n]$, $\mathcal{P}(j)$ est vraie.

De plus, soit $i \in [1, n]$, on a:

$$< e_i, f_i > = < e_i - g_i + g_i, f_i >$$

$$= < \sum_{l=1}^{i-1} < e_i, f_l > f_l, f_i > + < g_i, f_i >$$

$$= \sum_{l=1}^{i-1} < e_i, f_l > < f_l, f_i > + < f_i || f_i ||, f_i >$$

$$= \sum_{l=1}^{i-1} < e_i, f_l > \delta_{i,l} + || f_i || < f_i, f_i >$$

$$= || f_i ||^2 > 0$$

Ce qui termine la preuve de l'existence.

 $\underline{\text{Unicit\'e}:} \, \text{Soient} \, (f_1,..,f_n) \, \, \text{et} \, (h_1,...,h_n) \, \, \text{deux familles v\'erifiant les 3 conditions}.$

Soient $k \in [1, n]$, on a: Vect $(f_1, ..., f_k) = \text{Vect}(e_1, ..., e_k) = \text{Vect}(h_1, ..., h_k)$.

Or, $h_k \in \text{Vect}(h_1, ..., h_k)$ donc $h_k \in \text{Vect}(f_1, ..., f_k)$.

Ainsi, il existe $\lambda_1, ..., \lambda_k \in \mathbb{R}$ tels que $h_k = \sum_{i=1}^k \lambda_i f_i$.

De plus, $(h_1,...,h_k)$ est orthogonale donc $h_k \in \text{Vect}(h_1,...,h_{k-1})^{\perp} = \text{Vect}(e_1,...,e_{k-1})^{\perp} = \text{Vect}(f_1,...,f_{k-1})^{\perp}$. Soit $p \in [\![1,k-1]\!]$, on a :

$$0 = \langle h_k, f_p \rangle$$

$$= \langle \sum_{i=1}^k \lambda_i f_i, f_p \rangle$$

$$= \sum_{i=1}^k \lambda_i \langle f_i, f_p \rangle$$

$$= \sum_{i=1}^k \lambda_i \delta_{i,p}$$

$$= \lambda_p$$

Ainsi, $h_k = \lambda_k f_k$.

Enfin, $||h_k|| = 1$ donc $||\lambda_k f_k|| = 1$. D'où $|\lambda_k|||f_k|| = 1$. Or, $||f_k|| = 1$. Donc $|\lambda_k| = 1$. Ainsi, $\lambda_k = \pm 1$.

Enfin, $\langle h_k, e_k \rangle > 0$. Donc $\langle \lambda_k f_k, e_k \rangle > 0$. D'où $\lambda_k \langle f_k, e_k \rangle > 0$. Or, $\langle f_k, e_k \rangle > 0$. Donc $\lambda_k \rangle > 0$. Ainsi, $\lambda_k = 1$ donc $g_k = f_k$. Ainsi : $\forall k \in [1, n]$, $g_k = f_k$ ce qui prouve l'unicité d'une telle famille.

Remarque: Il est important de savoir adapter cette preuve à des espaces particuliers.

Méthode

Voici l'algorithme à suivre pour orthonormalisé la famille libre (e_1, \ldots, e_n) :

- Calculer $||e_1||$ et poser $f_1 = \frac{e_1}{||e_1||}$;
- une fois les vecteurs $f_1, ..., f_k$ construits,
 - poser $g_{k+1} = e_{k+1} \sum_{i=1}^{k} \langle e_{k+1}, f_i \rangle f_i;$
 - calculer $||g_{k+1}||$;
 - poser $f_{k+1} = \frac{g_{k+1}}{||g_{k+1}||}$

3 Bases orthonormées

Définition

Soit E un espace euclidien. On appelle base orthonormée (ou base orthonormale) de E toute base de E qui est une famille orthonormée.

• La base canonique de \mathbb{R}^n est une base orthonormale pour le produit scalaire usuel.

• La famille $(1, \sqrt{3}(2X-1), 6\sqrt{5}(X^2+X-\frac{1}{6}))$ est une base orthonormée de $\mathbb{R}_2[X]$ muni du produit scalaire $\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt$.

Méthode

Pour montrer qu'une famille à $n = \dim(E)$ éléments est une base orthonormée de E, il suffit de montrer qu'elle est orthonormée. Elle sera alors libre, et l'hypothèse de dimension permettra de conclure.

Proposition

Tout espace euclidien non réduit à {0} possède une base orthonormée

Démonstration. Soit E un espace euclidien non réduit à $\{0\}$. Puisque E est de dimension finie et non réduit à $\{0\}$, il existe $(e_1, ..., e_n)$ une base de E. On l'orthonormalise avec le procédé de Gram-Schmidt pour obtenir une famille $(f_1, ..., f_n)$ orthonormée. Elle est orthonormée donc libre, et elle a $n = \dim(E)$ éléments. C'est donc une base de E, qui est orthonormée. □

Proposition

Soit $(E, <\cdot, \cdot>)$ un espace vectoriel euclidien non réduit à $\{0\}$. Toute famille orthonormale de E peut être complétée en une base orthonormée de E.

Démonstration. Soit $(e_1, ..., e_k)$ une famille orthonormée de E. C'est en particulier une famille libre de E, qu'on peut compléter en une base $(e_1, ..., e_k, x_{k+1}, ..., x_n)$ de E. On applique alors à cette famille le procédé d'orthonormalisation de Gram-Schmidt pour obtenir alors une base orthonormée $(e_1, ..., e_n)$ de E (on notera que les k premiers vecteurs restent inchangés quand on applique l'algorithme). □

Proposition Calculs dans une base orthonormée

Soit (E, <, >) un espace euclidien. Soit $\mathcal{B} = (e_1, ..., e_n)$ une base orthonormée de E.

•
$$\forall x \in E, \ x = \sum_{k=1}^{n} (x|e_k)e_k.$$

• Soit $x = \sum_{k=1}^{n} x_k e_k$ et $y = \sum_{k=1}^{n} y_k e_k \in E$. On a alors :

$$\langle x, y \rangle = \sum_{k=1}^{n} x_k y_k = \sum_{k=1}^{n} \langle x, e_k \rangle \langle y, e_k \rangle$$
 et $||x||^2 = \sum_{k=1}^{n} x_k^2 = \sum_{k=1}^{n} \langle x, e_k \rangle^2$

En posant
$$X = \max_{\mathscr{B}}(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et $Y = \max_{\mathscr{B}}(y) = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, on a:

$$(x|y) = {}^{t}XY$$
 et $||x||^{2} = {}^{t}XX$

en identifiant les matrices de taille 1×1 à leur unique coefficient.

Démonstration. • Soit $x \in E$. Comme $(e_1, ..., e_n)$ est une base de E, il existe $(x_1, ..., x_n) \in \mathbb{R}^n$ tel que $x = \sum_{i=1}^n x_k e_k$. Soit $i \in [1, n]$.

$$< x, e_i > = < \sum_{k=1}^n x_k e_k, e_i > = \sum_{k=1}^n x_k < e_k, e_i > = \sum_{k=1}^n x_k \delta_{k,i} = x_i.$$

On obtient donc $x = \sum_{k=1}^{n} \langle x, e_k \rangle e_k$.

• Par bilinéarité du produit scalaire, on a

$$< x,y> = < \sum_{i=1}^n x_i e_i, \sum_{j=1}^n y_j e_j > = \sum_{i=1}^n \sum_{j=1}^n x_i y_j < e_i, e_j > = \sum_{i=1}^n \sum_{j=1}^n x_i y_j \delta_{i,j} = \sum_{i=1}^n x_i y_i$$

La deuxième formule est une conséquence de celle précédente en prenant x = y.

⚠ Ces formules ne sont valables que lorsque la base 🕉 considérée est orthonormale.

Corollaire

Soit E un espace euclidien, $B=(e_1,\ldots,e_n)$ une base orthonormée de E et $A=(a_{i,j})_{1\leq i,j\leq n}$ la matrice de $u\in\mathcal{L}(E)$ en base B. Alors pour $(i,j)\in [1,n]^2$, $a_{i,j}=< u(e_j),e_i>$.

Démonstration. On a :
$$\forall j \in [1, n]$$
, $u(e_j) = \sum_{i=1}^n \langle u(e_j), e_i \rangle e_i$.

4 Projection orthogonale sur un sous-espace de dimension finie.

4.1 Supplémentaire orthogonal

Proposition

Soit (E, <, >) un préhilbertien réel.

Si F est un sous-espace vectoriel de E de dimension finie, alors F et F^{\perp} sont supplémentaires. Le sous-espace vectoriel F^{\perp} est appelé le supplémentaire orthogonal de F.

Démonstration. F étant de dimension finie, il existe $(e_1, ..., e_p)$ base orthonormale de F. Soit $x \in E$.

• Analyse. Supposons qu'il existe $y, z \in F \times F^{\perp}$ tels que x = y + z. Or, $y \in F$ donc il existe $\lambda_1, ..., \lambda_p \in \mathbb{R}$ tels que $y = \sum_{i=1}^p \lambda_i e_i$.

On a alors : $x = \sum_{i=1}^{p} \lambda_i e_i + z$ avec $z \in F^{\perp}$. Soit k = [1, p],

$$\langle x, e_k \rangle = \langle \sum_{i=1}^p \lambda_i e_i + z, e_k \rangle$$

$$= \sum_{i=1}^p \lambda_i \langle e_i, e_k \rangle + \langle z, e_k \rangle$$

$$= \sum_{i=1}^p \lambda_i \delta_{i,k} + 0$$

$$= \lambda_k$$

D'où : $z = x - \sum_{i=1}^{p} \langle x, e_i \rangle e_i$. Ainsi,

$$x = \sum_{i=1}^{p} \langle x, e_i \rangle e_i + \left(x - \sum_{i=1}^{p} \langle x, e_i \rangle e_i\right).$$

Ainsi, si la décomposition existe alors, elle est unique.

• Synthèse. Soit $x \in E$. Posons $y = \sum_{i=1}^{p} \langle x, e_i \rangle e_i$, $z = x - \sum_{i=1}^{p} \langle x, e_i \rangle e_i$. On a $y \in F$.

• Soit $k \in [1, p]$, $\langle z, e_k \rangle = \langle x, e_k \rangle - \sum_{i=1}^p \langle x, e_i \rangle \langle e_i, e_k \rangle$ par bilinéarité du produit scalaire. Ainsi, $\langle z, e_k \rangle = \langle x, e_k \rangle - \sum_{i=1}^p \langle x, e_i \rangle \delta_{k,i} = \langle x, e_k \rangle - \langle x, e_k \rangle = 0$. Donc $z \in \text{Vect}(e_1, ..., e_k)^{\perp} = F^{\perp}$.

• $y \in F$.

• x = y + z

Remarque:

Si *E* est de dimension finie, un sous-espace vectoriel *F* de *E* n'admet pas en général un unique supplémentaire. En revanche, il admet un unique supplémentaire orthogonal pour un produit scalaire donné.

Proposition

Soit (E, <, >) un espace euclidien . Soit F un sous-espace vectoriel de E.

- $\dim(F^{\perp}) + \dim(F) = \dim(E)$.
- $(F^{\perp})^{\perp} = F$.

Démonstration. • Ce point est directement conséquence de la proposition précédente.

• On a déjà l'inclusion $F \subset (F^{\perp})^{\perp}$. De plus, $\dim((F^{\perp})^{\perp}) = \dim(E) - \dim(F) = \dim(E) - \dim(E) - \dim(E) - \dim(F) = \dim(F)$. Ainsi, on a bien $F = (F^{\perp})^{\perp}$.

Remarque : Le deuxième point n'est pas vrai en dimension infinie : on a $F \subset (F^{\perp})^{\perp}$, mais ce n'est pas une égalité en général. cf exercice précédent.

4.2 Projeté orthogonal, distance

Définition

Soit E un espace préhilbertien réel et F un sous-espace vectoriel de dimension finie de E. On appelle projection orthogonale sur F, la projection sur F parallèlement à F^{\perp} , notée p_F . Soit $x \in E$. $p_F(x)$ est appelé projeté orthogonal de x sur F.

Proposition

Soit E un espace préhilbertien réel et F un sous-espace vectoriel de dimension finie de E. Soit $(e_1,...,e_p)$ une base orthonormée de F.

$$\forall x \in E, \ p_F(x) = \sum_{i=1}^p (x|e_i)e_i$$

Démonstration. Soit $x \in E$, il existe un unique $(y, z) \in F \times F^{\perp}$ tel que x = y + z. On a alors $p_F(x) = p_F(y) + p_F(z) = y$. Or, $y \in F$ donc il existe $\lambda_1, ..., \lambda_p \in \mathbb{R}$ tels que $y = \sum_{i=1}^p \lambda_i e_i$.

On a alors:

$$< x, e_k> = < y + z, e_k> = < \sum_{i=1}^p \lambda_i e_i, e_k> + < z, e_k> = \sum_{i=1}^p \lambda_i < e_i, e_k> + 0 = \sum_{i=1}^p \lambda_i \delta_{i,k} = \lambda_k.$$

Ainsi, $p_F(x) = y = \sum_{i=1}^{p} \langle x, e_i \rangle e_i$.

Proposition

Soit E un préhilbertien. Soit F un sous espace vectoriel de dimension finie de E. Soit $(e_1, ..., e_p)$ une famille génératrice de F.

Soit $x \in E$.

$$\forall y \in F, \ y = p_F(x) \quad \Longleftrightarrow \quad \forall i \in [1, p] < x - y, e_i >= 0.$$

Démonstration. Soit $x \in E$ et $y \in F$.

- Si $y = p_F(x)$, $x y \in F^{\perp}$. Ainsi: $\forall i \in [1, p], \langle x y, e_i \rangle = 0$.
- Réciproquement, supposons que : $\forall i \in [1, p], \langle x y, e_i \rangle = 0$. Alors $x y \in \text{Vect}(e_1, ..., e_p)^{\perp} = F^{\perp}$. Ainsi, x = y + x y avec $y \in F$ et $x y \in F^{\perp}$. Donc $p_F(x) = y$.

Méthode

Pour déterminer l'expression du projeté orthogonal d'un vecteur x de E sur un sous espace vectoriel F de E.

- Soit on déterminer une base orthonormée de F et on utilise la formule
- Si $(e_1,...,e_p)$ est une famille génératrice de F. Pour déterminer $y=p_F(x)$, il suffit de se donner $y=\sum_{i=1}^p \lambda_i e_i$ et de résoudre le système linéaire obtenu en écrivant pour tout $k \in [\![1,p]\!], 0 < x-y, e_k> = < x-\sum_{i=1}^p \lambda_i e_i, e_k>$ d'inconnue $\lambda_1,...,\lambda_p \in R$. Cela évite de déterminer une base orthonormée de F

Remarque: Retour sur le procédé d'orthonormalisation de Gram-Schmidt.

Soit $(e_1,...,e_n)$ une famille libre de vecteurs de E, on a prouvé qu'il existe une unique famille orthonormée $(f_1,...,e_n)$ telle que pour tout $k \in [1,n]$, Vect $(e_1,...,e_k)$ = Vect $(f_1,...,f_k)$ et pour tout $k \in [1,n]$, $< e_k, f_k > \ge 0$. Notons $F_k = Vect(f_1,...,f_k)$ pour $1 \le ..., f_n$). On peut réécrire le procédé , ... d'orthonormalisation de Gram-Schmidt de la manière suivante :

- poser $f_1 = \frac{e_1}{||e_1||}$;
- une fois les vecteurs $f_1, ..., f_k$ construits,
 - poser $v_{k+1} = e_{k+1} p_{F_k}(e_{k+1})$;
 - poser $f_{k+1} = \frac{v_{k+1}}{||v_{k+1}||}$.

Théorème Inégalité de Bessel

Soit E un espace préhilbertien réel et F un sous-espace vectoriel de dimension finie de E. Soit $x \in E$ et notons $p_F(x)$ son projeté orthogonal sur F. Alors :

$$\|p_F(x)\| \leq \|x\|$$

Démonstration. On a :

$$x = (x - p_F(x)) + p_F(x)$$

avec $p_F(x) \in F$ et $x - p_F(x) \in F^{\perp}$. Par le théorème de Pythagore, on en déduit :

$$||x||^2 = ||x - p_F(x)||^2 + ||p_F(x)||^2 \ge ||p_F(x)||^2.$$

D'où l'inégalité de Bessel.

Remarque: Si E est un espace euclidien et $p \in \mathcal{L}(E)$ un projecteur, on peut montrer que p est une projection orthogonale si et seulement si pour tout $x \in E$, $||p(x)|| \le ||x||$.

Définition

Soit F un sous-espace vectoriel de E et $a \in E$. On appelle distance de a à F la quantité :

$$d(a,F) = \inf_{x \in F} \|a - x\|$$

Remarque : L'existence de cette quantité d(a, F) vient du fait que $\{\|a - x\|, x \in F\}$ est une partie non vide de \mathbb{R} (car F est non vide car espace vectoriel) et minorée par 0 donc l'inf existe.

Proposition

Soient E un espace préhilbertien réel et F un sous-espace de E de dimension finie.

Il existe un unique élément $y_0 \in F$ tel que : $||x - y_0|| = \inf_{x \in F} ||x - y||$. Il s'agit donc d'un minimum.

Cet unique vecteur $y_0 \in F$ est $p_F(x)$ le projeté de x sur F.

Démonstration. Soit $y \in F$. On a $x - y = x - p_F(x) + p_F(x) - y$. Comme $p_F(x)$ est la projection orthogonal de x sur F, on a $x - p_F(x) \in F^\perp$ et $p_F(x) - y \in F$. Ainsi $< x - p_F(x), p_F(x) - y >= 0$. Ainsi, par le théorème de Pythagore, $||x - y||^2 = ||x - p_F(x)||^2 + ||p_F(x) - y||^2$. Ainsi $||x - y||^2 \ge ||x - p_F(x)||^2$ puis par croissance $\sqrt{\ }, ||x - y|| \ge ||x - p_F(x)||$. On a égalité si et seulement si $||x - y||^2 = ||x - p_F(x)||^2$, si et seulement si $||p_F(x) - y||^2 = 0$, si et seulement si $y = p_F(x)$. □

Remarque : Cette proposition permet de minimiser des quantités, si on peut les interpréter comme la distance entre deux vecteurs pour une certaine norme.