物理化学期末考题(A) 2004-01-09

题号	1	2	3	4	5	6	7	总分
分数								

题号	1	2	3	4	5	6	7	总分
分数								
		分) 也或是原	电池,极	化的结果	早都是使[阳极电势	·(),	阴极电
	池在恒温 = 或无法	1、恒压豆 :判断);	「逆放电,	$\Delta H = Q_r$	的大小关	·系为: Δ	H () <i>Q_r</i> (填
3. 平刻	人转 动。	和振动酢);(ピ分函数	的表达式	(分别为:);	();
		下准原理打 的波函数		见粒子的(,	不能同时	
		リ为平面、 <i>p</i> △,它们						〔压分别
		气体在固 填入>, <			附过程的	ΔΗ ()	0, ΔG	() 0,
	.的亚稳忽 , 的有效方	态有四种, 法是(:(·态产生的)		,		,); 消除
		才水的表面 为(⁻¹ ,此条(件下空气	中直径为	J 0.4mn
9. 碰撞 (運 で的に	临界能E _c		nius活化 J条件下,			度无关;),在
10. 光	化反应可	丁分为初	级过程和	口次级过	程,对于	一初级过	程,量	子效率(

=()。已知在光的作用下, O_2 可转变为 O_3 。当 1mol O_3 生成时,吸收了

 3.011×10^{23} 个光子,此光化反应的量子效率 φ =();

11. 催化刑的至平付征足:		
(1)参与反应,但反应结束时,催化剂的()和()都不变;
(2)催化剂只能缩短()的时间,而不能	改变()	伏态;
(3)催化剂()反应的始末状态,所以(
(4)催化剂对反应的加速作用具有()性;	ŕ	
12. 气-固反应多相催化的 7 个步骤为(简写): (
). 1. 2. 6	5、7 步慢为
()控制的反应; 3、4、5 步慢为()控	,	ハーク以内
13. 憎液溶胶在热力学上是不稳定的,它能够相对积	急定存在的目	二个重要原因
是((C) \C 1 T 1 −);
	3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	,
14. 在 25 cm³的 0.02 mol·dm⁻³之Ba(NO₃)₂溶液中性		2 mol·dm ³ Z
Na ₂ SO ₄ 溶液 30cm ³ ,制备出BaSO ₄ 溶胶,其胶团结构	勾为:	
);
15. 与时间无关的薛定谔方程为 $\hat{H}\phi = E\phi$, \hat{H} 称为	1 (); 该方
程称为 \hat{H} 的(); E 为 \hat{H} 的(); ϕ 为 \hat{H} 的
();		
二、(10分)		
1. 若将双原子分子看作一维谐振子,则气体I ₂ ;	4. 子的集計	. 此
0.426×10^{-20} J。试计算 25 °C时 1_2 分子在相邻两振动能		
0.426×10 J。 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	级上分中级	(214)
2. 写出离域子平动、转动和振动熵与配分函数的分	关系, 并指と	出定域子相应
熵的公式是否与之相同。		
三、(8分)		
已知 25 °C时 0.05mol·dm ⁻³ CH ₃ COOH溶液的电	导率为 3.68	$\times 10^{-2} \text{ S} \cdot \text{m}^{-1}$

11 健业刻的其末层征具.

 H^+ 和 CH_3COO^- 的离子摩尔电导率 $\Lambda_m^\infty(H^+)$ 和 $\Lambda_m^\infty(CH_3COO^-)$ 分别为 349.82×10⁻⁴

和 $40.9 \times 10^{-4} \, \text{S·m}^2 \cdot \text{mol}^{-1}$ 。试计算 $\text{CH}_3 \text{COOH}$ 解离度 α 及解离常数 K^{Θ} 。

四、(15分)

今有电池: $Pt \mid H_2(g,100kPa) \mid H_2SO_4(b) \mid Ag_2SO_4(s) \mid Ag(s)$ 已知在 298.15K下,上述电池的标准电动势 $E^{\Theta} = 0.653V$, $E^{\Theta}_{Ag+/Ag} = 0.7996V$ 。 (1)写出上述电池的电极反应与电池反应,计算反应的 ΔG_{uv}^{Θ} 和 K^{Θ} ;

- (2)在 298.15K下实验测得 H_2SO_4 在浓度为b时,上述电池的电动势E = 0.623 V,已知 H_2SO_4 浓度为b时之离子平均活度系数 $\gamma_{\pm} = 0.7$,问此条件下溶液中 H_2SO_4 的质量摩尔浓度b为多少?
- (3)计算 $Ag_2SO_4(s)$ 的溶度积 K_{sp} 。

五、(15分)

某一反应: $A \rightarrow B + C$

- 1) 在 25 °C, 当A反应掉初始浓度 c_{A0} 的 3/4 时,所需时间为其反应掉 c_{A0} 的 1/2 所需时间的 3 倍。现已知A消耗 c_{A0} 的 1/3 时需要 2 分钟,若继续再反应掉 c_{A0} 的 1/3 时,还需多少时间?
- 2) 该反应如在 50 °C进行,A反应掉初始浓度 c_{A0} 的 2/3 所需时间是 25 °C 时的 1/3,求该反应的活化能 E_a 为多少?

六、(12分)

已知单分子反应 $A \rightarrow P$ 的机理如下:

$$A + A \overset{k_1}{\underset{k_{-1}}{\longleftarrow}} A^* + A$$

$$A^* \overset{k_2}{\longrightarrow} P$$

试用稳态近似法导出以产物表示的速率方程,并证明该反应在高压时为一级,低压时为二级。

七、综合能力测试题(20分)

1. 物理化学主要包括热力学、量子力学、统计热力学和动力学四大部分, 请完成下表:

	量子力学	统计热力学	热力学	动力学(宏观)
研究的对象				
主要研究内容				
最主要的二个 物理量				

2. 在化工生产中经常有副反应发生,即动力学中的平行反应。例反应:

$$A \xrightarrow{k_1} B + C \qquad (E_{a1})$$

$$A \xrightarrow{k_2} D + E \qquad (E_{a2})$$

只有B和C是目标产品。现设两个反应级数相同,指前因子近似相等且与温度无关, $E_{a1}>E_{a2}$

- (1)画出这两个反应的 lgk~1/T 的示意图;
- (2)比较两个反应速率的大小;
- (3)为了减小产品分离的成本,应尽量提高产品中 B 和 C 的浓度。你认为可采取什么措施?
- 3. 请将以下的理论、公式或方程与它们研究的相关内容联系起来(用相同的编号表示)

(1) DLVO 理论	()微小液滴蒸气压
(2) Arrhenius 方程	()溶液表面的吸附
(3) Gibbs 吸附等温式	()反应速率常数与温度的关系
(4) Debye-Hückel 极限公式	()强电解质的活度系数计算
(5) Kelvin 公式	()胶体的稳定与聚沉