AMENDMENTS TO THE CLAIMS

- 1. (Original) A liquid crystal display device of an in-plane switching mode which comprises a pair of polarizers which are a polarizer at an output side and a polarizer at an incident side and disposed at relative positions such that absorption axes of the polarizers are approximately perpendicular to each other and at least optically anisotropic member (A), optically anisotropic member (B) and a liquid crystal cell which are disposed between the pair of polarizers, wherein n_{ZA}>n_{VA} and n_{ZB}>n_{VB} when, with respect to optically anisotropic member (A) and optically anisotropic member (B), refractive indices in a direction of an in-plane slow axis are represented by n_{XA} and n_{XB} , respectively, refractive indices in a direction in-plane and perpendicular to the direction of an in-plane slow axis are represented by nyA and nyB, respectively, and refractive indices in a direction of a thickness are represented by n_{ZA} and n_{ZB}, respectively, each measured using light having a wavelength of 550 nm; the in-plane slow axis of optically anisotropic member (A) and the in-plane slow axis of optically anisotropic member (B) are disposed at relative positions approximately parallel or approximately perpendicular to each other; and the in-plane slow axis of optically anisotropic member (A) and the absorption axis of a polarizer disposed closer to optically anisotropic member (A) are disposed at relative positions approximately parallel or approximately perpendicular to each other.
- 2. (Original) The liquid crystal display device according to Claim 1, wherein an absolute value of a difference between n_{xA} and n_{zA} is 0.003 or smaller, and an absolute value of a difference between n_{xB} and n_{zB} is 0.003 or smaller.

3. (Original) The liquid crystal display device according to Claim 1, wherein an absolute value of a difference between n_{XA} and n_{ZA} is 0.003 or smaller, and $n_{XB} > n_{ZB}$.

- 4. (Currently Amended) The liquid crystal display device according to any one of Claims 1 and 2 Claim 1, wherein the absorption axis of the polarizer at the output side and the in-plane slow axis of a liquid crystal of the liquid crystal cell under application of no voltage are disposed at relative positions parallel to each other, optically anisotropic member (A) and optically anisotropic member (B) are disposed between the liquid crystal cell and the polarizer at the incident side, and the in-plane slow axes of optically anisotropic member (A) and optically anisotropic member (B) are disposed at relative positions approximately perpendicular to each other.
- 5. (Original) The liquid crystal display device according to Claim 4, wherein the in-plane slow axis of optically anisotropic member (B) and the in-plane slow axis of the liquid crystal cell under application of no voltage are disposed at relative positions approximately perpendicular to each other, and optically anisotropic member (A) is disposed at a side of the liquid crystal cell.
- 6. (Currently Amended) The liquid crystal display device according to any one of Claims 1 and 2 Claim 1, wherein the absorption axis of the polarizer at the output side and the in-plane slow axis of a liquid crystal of the liquid crystal cell under application of no voltage are disposed at relative positions parallel to each other, optically anisotropic member (A) and optically

anisotropic member (B) are disposed between the liquid crystal cell and the polarizer at the output side, and the in-plane slow axes of optically anisotropic member (A) and optically anisotropic member (B) are disposed at relative positions approximately perpendicular to each other.

- 7. (Original) The liquid crystal display device according to Claim 6, wherein the in-plane slow axis of optically anisotropic member (B) and the in-plane slow axis of the liquid crystal cell under application of no voltage are disposed at relative positions approximately perpendicular to each other, and optically anisotropic member (B) is disposed at a side of the liquid crystal cell.
- 8. (Currently Amended) The liquid crystal display device according to any one of Claims 1 and 2 Claim 1, wherein the absorption axis of the polarizer at the output side and the in-plane slow axis of a liquid crystal of the liquid crystal cell under application of no voltage are disposed at relative positions parallel to each other, and optically anisotropic member (A) and optically anisotropic member (B) are disposed separately between the liquid crystal cell and the polarizer at the incident side and between the liquid crystal cell and the polarizer at the output side.
- 9. (Original) The liquid crystal display device according to Claim 8, wherein the in-plane slow axis of optically anisotropic member (B) and the in-plane slow axis of the liquid crystal cell under application of no voltage are disposed at relative positions approximately perpendicular to each other, and optically anisotropic member (A) is disposed between the liquid crystal cell and the polarizer at the output side.

10. (Currently Amended) The liquid crystal display device according to any one of Claims 1 and 3 Claim 1, wherein the absorption axis of the polarizer at the output side and the inplane slow axis of a liquid crystal of the liquid crystal cell under application of no voltage are disposed at relative positions parallel to each other, optically anisotropic member (A) and optically anisotropic member (B) are disposed either between the liquid crystal cell and the polarizer at the incident side or between the liquid crystal cell and the polarizer at the output side, and the in-plane slow axes of optically anisotropic member (A) and the in-plane slow axis of a liquid crystal of the liquid crystal cell under application of no voltage are disposed at relative positions approximately perpendicular to each other.

- 11. (Original) The liquid crystal display device according to Claim 10, wherein optically anisotropic member (A) is disposed at a side of the liquid crystal cell.
- 12. (Currently Amended) The liquid crystal display device according to any one of Claims 1 and 3 Claim 3, wherein the absorption axis of the polarizer at the output side and the inplane slow axis of a liquid crystal of the liquid crystal cell under application of no voltage are disposed at relative positions parallel to each other, optically anisotropic member (A) and optically anisotropic member (B) are disposed separately either between the liquid crystal cell and the polarizer at the incident side and or between the liquid crystal cell and the polarizer at the output side, and the in-plane slow axis of optically anisotropic member (A) and the in-plane slow axis of a liquid crystal of the liquid crystal cell under application of no voltage are disposed at

relative positions approximately perpendicular to each other.

13. (Currently Amended) The liquid crystal display device according to any one of

Claims 1 to 12 Claim 1, wherein optically anisotropic member (A) and optically anisotropic

member (B) comprise a layer selected from following layers (i) to (iii):

(i) A layer comprising a material having a negative value of intrinsic birefringence,

(ii) A layer comprising discotic liquid crystal molecules or lyotropic liquid crystal

molecules,

(iii) A layer comprising a photo-isomerizable substance.

14. (New) The liquid crystal display device according to Claim 1, wherein the absorption

axis of the polarizer at the output side and the in-plane slow axis of a liquid crystal of the liquid

crystal cell under application of no voltage are disposed at relative positions parallel to each

other, optically anisotropic member (A) and optically anisotropic member (B) are disposed

separately between the liquid crystal cell and the polarizer at the incident side and between the

liquid crystal cell and the polarizer at the output side, and the in-plane slow axis of optically

anisotropic member (A) and the in-plane slow axis of a liquid crystal of the liquid crystal cell

under application of no voltage are disposed at relative positions approximately perpendicular to

each other.

15. (New) The liquid crystal display device according to Claim 3, wherein the absorption

axis of the polarizer at the output side and the in-plane slow axis of a liquid crystal of the liquid

crystal cell under application of no voltage are disposed at relative positions parallel to each other, optically anisotropic member (A) and optically anisotropic member (B) are disposed separately between the liquid crystal cell and the polarizer at the incident side and between the liquid crystal cell and the polarizer at the output side, and the in-plane slow axis of optically anisotropic member (A) and the in-plane slow axis of a liquid crystal of the liquid crystal cell under application of no voltage are disposed at relative positions approximately perpendicular to each other.