

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA TEMA I. MATEMÁTICA II (0826201)

INTEGRACIÓN DE FUNCIONES IRRACIONALES

- 1. DEFINICION DE LA TÉCNICA DE INTEGRACIÓN DE FUNCIONES IRRACIONALES.
- 2. CASO N°1 INTEGRALES CON CANTIDADES SUBRADICALES IGUALES
- 3. CASO N°2 INTEGRALES CON RADICAL ES UNA FUNCION POLINOMICA DE GRADO 2 Y ESTA MULTIPLICADA POR OTRO POLINOMIO DE GRADO 1.
- 4. EJERCICIOS RESUELTOS

OBJETIVO: CALCULAR INTEGRALES INDEFINIDAS DE FUNCIONES IRRACIONALES

TÉCNICA DE INTEGRACIÓN DE FUNCIONES IRRACIONALES

Las funciones irracionales, son aquellas que se escriben como cocientes y son la suma y/o resta de variables algebraicas con potencias fraccionarias. Para resolver este tipo de integrales se debe aplicar el método por sustitución, el cual consiste en eliminar la potencia fraccionaria y expresar la nueva integral como una integral de función racional, cuya solución ya fue estudiada.

ESTUDIAREMOS DOS CASOS:

Caso 1: Considérese las integrales del tipo

$$\int R \left[x, \left(\frac{ax+b}{cx+d} \right)^{\frac{p_1}{q_1}}, \dots, \left(\frac{ax+b}{cx+d} \right)^{\frac{p_k}{q_k}} \right] dx,$$

Donde R es una función racional y p_1,q_1,\ldots,p_k,q_k , son números enteros, la cantidad subradical es la misma en todas las raíces. Para resolverla y reducirla a la integral de una función racional, se efectúa el cambio de variable

$$\frac{ax+b}{cx+d}=t^m,$$

Donde m es el mínimo común múltiplo de los números q_1, \ldots, q_k .

Caso 2: Considérese las integrales del tipo

$$\int \frac{\mathrm{dx}}{(mx+n)\sqrt{ax^2+bx+c}}.$$

Para resolverla se realiza la sustitución $\frac{1}{mx+n} = t$, cambio que al sustituirse en la integral dada se reduce a uno de los casos expuestos anteriormente.

En este último tema **utiliza el método por sustitución**, el cual se viene trabajando desde el tema 2. Sabemos que para realizar una sustitución se deben realizar 4 pasos:

- Plantear el cambio de variable (Para estas integrales según el caso ya está definido)
- 2. Hallar el diferencial.
- 3. Sustituir en la integral y obtener la primitiva o antiderivada de la nueva integral en función de la nueva variable.
- 4. Devolver a la variable original la función primitiva.

EJERCICIOS RESUELTOS

EJERCICIO 8.1

HALLAR

$$\int \frac{\sqrt[3]{x+1}}{\sqrt{x+1} + \sqrt[3]{x+1}} dx$$

Solución

La función integrando es una función irracional del caso 1. La cantidad subradical es la misma. El mínimo común múltiplo de las potencias es, El m.c.m (2,3) = 6 Entonces, planteamos el cambio de variable

$$t^6 = x + 1 \qquad \rightarrow t = \sqrt[6]{x + 1}$$

Hallamos el diferencial,

$$6t^5dt = dx$$

Sustituimos en la integral

$$\int \frac{\sqrt[3]{x+1}}{\sqrt{x+1} + \sqrt[3]{x+1}} dx = \int \frac{\sqrt[3]{t^6}}{\sqrt{t^6} + \sqrt[3]{t^6}} 6t^5 dt$$

$$\int \frac{\sqrt[3]{t^6}}{\sqrt{t^6} + \sqrt[3]{t^6}} 6t^5 dt = 6 \int \frac{t^2}{t^3 + t^2} t^5 dt$$

Factor común en el denominador y simplificamos

$$6\int \frac{t^2}{t^3 + t^2} t^5 dt = 6\int \frac{t^5}{t+1} dt$$

Es una función racional de tipo impropia, aplicamos la propiedad de estas funciones.

$$6\int \frac{t^5}{t+1}dt = 6\int \left(t^4 - t^3 + t^2 - t + 1 - \frac{1}{t+1}\right)dt$$

Resolvemos las integrales inmediatas, se deja al estudiante como práctica la aplicación del método por sustitución simple en la integral que lo amerita.

Entonces, se obtiene:

$$6 \int \left(t^4 - t^3 + t^2 - t + 1 - \frac{1}{t+1} \right) dt = 6 \left(\frac{t^5}{5} - \frac{t^4}{4} + \frac{t^3}{3} - \frac{t^2}{2} + t - \ln|t+1| \right) + C$$

Devolvemos el cambio,

$$\int \frac{\sqrt[3]{x+1}}{\sqrt{x+1} + \sqrt[3]{x+1}} dx = 6 \left(\frac{\left(\sqrt[6]{x+1}\right)^5}{5} - \frac{\left(\sqrt[6]{x+1}\right)^4}{4} + \frac{\left(\sqrt[6]{x+1}\right)^3}{3} - \frac{\left(\sqrt[6]{x+1}\right)^2}{2} + t - Ln \left| \left(\sqrt[6]{x+1}\right) + 1 \right| \right) + C \left(\frac{\sqrt[3]{x+1}}{\sqrt{x+1}} + \frac{\sqrt[3]{x+1}}{\sqrt{x+1}} \right) + C \left(\frac{\sqrt[3]{x+1}}{\sqrt{x+1}} + \frac{\sqrt$$

EJERCICIO 7.2

HALLAR

$$\int \frac{1}{x \sqrt{5x^2 - 2x + 1}} dx$$

Solución

La función integrando es una función irracional del caso 2. Planteamos el cambio de variable:

$$t = \frac{1}{x} \longrightarrow x = \frac{1}{t}$$

Hallamos el diferencial,

$$dx = \frac{-1}{t^2} dt$$

Sustituimos en la integral

$$\int \frac{1}{x \sqrt{5x^2 - 2x + 1}} dx = \int \frac{t}{\left[\sqrt{5\left(\frac{1}{t}\right)^2 - 2\left(\frac{1}{t}\right) + 1}\right]} \frac{-1}{t^2} dt$$

Resolvemos las operaciones presentes en el denominador, recuerden que por ser fracciones se debe hallar el m.c.m. Luego aplicar la doble C y por último efectuar la simplificación de términos si es posible.

$$\int \frac{1}{x\sqrt{5x^2 - 2x + 1}} dx = -\int \frac{1}{\left[\sqrt{5 - 2t + t^2}\right]} dt \tag{1}$$

Nota (1): la integral obtenida tiene una raíz cuadrada y su cantidad subradical es un trinomio cuadrado, en este caso se debe **aplicar** el método por sustitución trigonométrica vista en el tema anterior.

$$\int \frac{1}{x \sqrt{5x^2 - 2x + 1}} dx = -\int \frac{1}{\left[\sqrt{(t - 1)^2 + 4}\right]} dt$$

Luego, plantemos el cambio

$$t-1=2ta(\theta)$$

Hallamos el diferencial

$$dt = 2sec^2(\theta)d\theta$$

Al sustituir y resolver las potencias se obtiene:

$$\int \frac{1}{x \sqrt{5x^2 - 2x + 1}} dx = -\int \sec(\theta) d\theta$$

Integramos

$$\int \frac{1}{x\sqrt{5x^2 - 2x + 1}} dx = -Ln|sec(\theta) + tg(\theta)| + C$$

Devolvemos los cambios

Recuerden que para devolver el cambio trigonométrico se utiliza el triángulo por lo tanto hay que dibujar, en este caso se le deja al estudiante como práctica.

$$\int \frac{1}{x\sqrt{5x^2 - 2x + 1}} dx = -Ln \left| \frac{\sqrt{(t-1)^2 + 4}}{2} + \frac{(t-1)}{2} \right| + C$$

Devolvemos el cambio simple,

$$\int \frac{1}{x \sqrt{5x^2 - 2x + 1}} dx = -Ln \left| \frac{\sqrt{\left(\frac{1}{x} - 1\right)^2 + 4}}{2} + \frac{\left(\frac{1}{x} - 1\right)}{2} \right| + C$$

EJERCICIO 8.3

HALLAR

$$\int \frac{\sqrt{x+1}+2}{(x+1)^2+\sqrt{x+1}} dx$$

Solución:

La solución la pueden observar en el libro 801 ejercicios resueltos de integrales indefinidas en la pagina 259 ejercicio 9.11 este libro se encuentra disponible en el aula virtual.

EJERCICIO 8.4

HALLAR

$$\int \frac{1}{\sqrt{x} + \sqrt[4]{x} + 2\sqrt[8]{x}} dx$$

Solución:

La solución la pueden observar en el libro 801 ejercicios resueltos de integrales indefinidas en la pagina 266 ejercicio 9.24 este libro se encuentra disponible en el aula virtual.

ACTIVIDAD

Realizar del Libro 801 ejercicios resueltos los ejercicios propuestos / capitulo 9/ Del 12 al 25.pag 261.

Realizar del Libro 801 ejercicios resueltos los ejercicios propuestos / capitulo 9/ Del 1 al 128.pag 268.