การทดลองที่ 10 การเชื่อมต่อกับขา GPIO

ไลบรารี wiringPi

4. เรียกคำสั่ง gpio readall เพื่อตรวจสอบและบันทึกผลลัพธ์ที่แสดงบนหน้าต่าง Terminal ลงในตาราง หน้าถัดไป

\$ gpio readall

5. จงเติมหมายเลขในคอลัมน์wPi (wiringPi) ให้ตรงกับขาเชื่อมต่อ 40 ขาบนบอร์ด Pi ตามที่แสดงบนหน้า จอลงในตารางต่อไปนี้เพื่อใช้ประกอบการต่อวงจรที่ถูกต้อง

<u>ตอบ</u>

					Pi 4B+						
BCM	wPi	Name	Mode	V	Physical		٧	Mode	Name	wPi	BCM
		3.3v			1	2			5v	i	i
2	8	SDA.1	IN	1	3	4			5v	l I	
3	9	SCL.1	IN	1	5	6			θν	l l	
4	7	GPIO. 7	IN	1	7	8	θ	IN	TxD	15	14
		θv			9	10	1	IN	RxD	16	15
17	θ	GPIO. 0	IN	θ	11	12	θ	IN	GPIO. 1	1	18
27	2	GPIO. 2	IN	θ	13	14			θν	i i	
22	3	GPIO. 3	IN	θ	15	16	Θ	IN	GPIO. 4	4	23
ĺ		3.3v			17	18	θ	IN	GPIO. 5	5	24
10	12	MOSI	IN	Θ	19	20		į i	θν	i i	
9	13	MISO	IN	θ	21	22	Θ	IN	GPIO. 6	6	25
11	14	SCLK	IN	θ	23	24	1	IN	CEO	10	8
		θv			25	26	1	IN	CE1	11	7
θ	30	SDA.0	IN	1	27	28	1	IN	SCL.0	31	1
5	21	GPI0.21	IN	1	29	30			θν	l I	
6	22	GPI0.22	IN	1	31	32	Θ	IN	GPI0.26	26	12
13	23	GPI0.23	IN	θ	33	34		l I	θν	l I	
19	24	GPI0.24	IN	θ	35	36	Θ	IN	GPI0.27	27	16
26	25	GPI0.25	IN	Θ	37	38	θ	IN	GPI0.28	28	20
ļ		θv			39	40	θ	IN	GPI0.29	29	21
BCM	wPi	Name	Mode	V	Phys	ical	V	Mode	Name	wPi	BCM

โปรแกรมไฟ LED กระพริบภาษา C

10. จับเวลาช่วงเวลาที่หลอดสว่างและดับตั้งแต่เริ่มรันโปรแกรมจนเสร็จสิ้น เพื่อหาค่าเฉลี่ยของการสว่างดับ 1 รอบ

ตอบ 1.0019 วินาที (จับเวลาตามใน IDE)

1.0137 วินาที (จับเวลาโดยไม่ใช้ IDE)

โปรแกรมไฟ LED กระพริบภาษาแอสเซมบลี

7. จับเวลาช่วงเวลาที่หลอดสว่างและดับตั้งแต่เริ่มรันโปรแกรมจนเสร็จสิ้น เพื่อหาค่าเฉลี่ยของการสว่างดับ 1 รอบ

ตอบ 0.9629 วินาที (จับเวลาโดยไม่ใช้ IDE)

กิจกรรมท้ายการทดลอง

3. ประโยค PUSH {ip,lr} ทำหน้าที่อะไร เหตุใดจึงต้องเรียกใช้ก่อนประโยคอื่น ๆ

ตอบ ทำการ push ค่าภายใน IP register และค่าใน Link Register ลงใน stack ในส่วนของ stack segment เพื่อที่จะสามารถนำมา pop ออกจาก stack เมื่อจบการทำงานของฟังก์ชันเพื่อคืนค่าให้กับ register นั้น ๆ ได้ สาเหตุที่ต้อง push IP register ทั้งที่ใช้ค่าของ Link Register ก็เพียงพอแล้วคือเพื่อเป็น การทำให้ข้อมูลถูก align ในรูปแบบ 8 bytes ได้อย่างเหมาะสมและป้องกัน segmentation fault

9. ต่อหลอด LED เพิ่มอีก 2 ดวงรวมเป็น 3 ดวงแล้วพัฒนาโปรแกรมภาษา C เดิมให้นับเลข 0-7 และแสดงผล ทางหลอด LED เป็นเลขฐานสองวนไปเรื่อย ๆ

<u>ตอบ</u>

```
#include <stdio.h>
#include <stdlib.h>
#include <wiringPi.h>
int main(void) {
   int pin[3] = \{0, 2, 3\};
   int bi[8][3] = {
                   \{0,0,0\},\{0,0,1\},\{0,1,0\},
                   \{0,1,1\},\{1,0,0\},\{1,0,1\},
                   {1,1,0},{1,1,1}
                };
   printf("LED blinking by wiringPi\n");
   if (wiringPiSetup() == -1) {
      printf("Setting up problem ... Abort!");
      exit(1);
   }
   int i = 0;
   for (i = 0; i < 3; ++i)
      pinMode(pin[i], OUTPUT);
   while(1) {
      for (i = 0; i < 8; ++i) {
          printf("%d\n", i);
         int k;
         for (k = 0; k < 3; ++k)
             digitalWrite(pin[k], bi[i][k]);
          delay(1000);
      }
   }
}
```