Hledání kořenů rovnic jedné reálné proměnné – metoda sečen –

Michal Čihák

19. října 2011

Opakování – rovnice přímky

Úloha: Určete rovnici přímky procházející body A[a,f(a)] a B[b,f(b)], kde f je funkce spojitá na intervalu $\langle a,b\rangle$. (Přímka je sečnou grafu funkce v zadaných bodech).

Opakování – rovnice přímky

Úloha: Určete rovnici přímky procházející body A[a,f(a)] a B[b,f(b)], kde f je funkce spojitá na intervalu $\langle a,b\rangle$. (Přímka je sečnou grafu funkce v zadaných bodech).

Řešení:

$$y = f(b) + \frac{f(b) - f(a)}{b - a}(x - b)$$

- obvykle konverguje rychleji k řešení než metoda půlení intervalů (méně iterací)
- mohou ale nastat případy, kdy tato metoda k řešení nekonverguje (nedosáhneme předepsané přesnosti aproximace kořenu rovnice) – lze ji ale modifikovat tak, aby vždy konvergovala (viz metoda regula falsi)
- na začátku musíme zvolit dvě startovní hodnoty p_0 a p_1 , které by měly být co nejblíže hledanému kořenu (kořen ale nemusí ležet mezi těmito hodnotami)

- obvykle konverguje rychleji k řešení než metoda půlení intervalů (méně iterací)
- mohou ale nastat případy, kdy tato metoda k řešení nekonverguje (nedosáhneme předepsané přesnosti aproximace kořenu rovnice) – lze ji ale modifikovat tak, aby vždy konvergovala (viz metoda regula falsi)
- na začátku musíme zvolit dvě startovní hodnoty p_0 a p_1 , které by měly být co nejblíže hledanému kořenu (kořen ale nemusí ležet mezi těmito hodnotami)

- obvykle konverguje rychleji k řešení než metoda půlení intervalů (méně iterací)
- mohou ale nastat případy, kdy tato metoda k řešení nekonverguje (nedosáhneme předepsané přesnosti aproximace kořenu rovnice) – lze ji ale modifikovat tak, aby vždy konvergovala (viz metoda regula falsi)
- na začátku musíme zvolit dvě startovní hodnoty p_0 a p_1 , které by měly být co nejblíže hledanému kořenu (kořen ale nemusí ležet mezi těmito hodnotami)

Algoritmus metody sečen

Na začátku jsou dány hodnoty p_0,p_1 . Rovnice sečny grafu funkce f v bodech $[p_0,f(p_0)]$ a $[p_1,f(p_1)]$ je

$$y = f(p_1) + \frac{f(p_1) - f(p_0)}{p_1 - p_0}(x - p_1).$$

Algoritmus metody sečen

Hodnota p_2 (další iterace) se určí jako průsečík sečny s osou x soustavy souřadnic. Do předchozí rovnice tedy dosadíme y=0

$$0 = f(p_1) + \frac{f(p_1) - f(p_0)}{p_1 - p_0}(x - p_1)$$

a rovnici vyřešíme (vyjádříme neznámou x)

Algoritmus metody sečen

$$x = p_1 - \frac{f(p_1)(p_1 - p_0)}{f(p_1) - f(p_0)}.$$

Získanou hodnotu označíme p_2 .

Algoritmus metody sečen – shrnutí

Pro n>1 se aproximace p_{n+1} hodnoty kořenu rovnice f(x)=0 vypočítá z aproximací p_n a p_{n-1} pomocí vztahu

$$p_{n+1} = p_n - \frac{f(p_n)(p_n - p_{n-1})}{f(p_n) - f(p_{n-1})}.$$

Pro ukončení algoritmu metody sečen používáme dvě kritéria:

- 1. hodnota $|p_n p_{n-1}|$ klesne pod předem danou toleranci TOL
- 2. počet iterací algoritmu překročí předem danou mez N_0 (neexistuje způsob jak ji odhadnout proto volíme hodně vysokou hodnotu jako pojistku pro případ, že by metoda nekonvergovala)

Pro ukončení algoritmu metody sečen používáme dvě kritéria:

- 1. hodnota $|p_n p_{n-1}|$ klesne pod předem danou toleranci TOL
- 2. počet iterací algoritmu překročí předem danou mez N_0 (neexistuje způsob jak ji odhadnout proto volíme hodně vysokou hodnotu jako pojistku pro případ, že by metoda nekonvergovala)

Příklad

Zadání: Najděte kořen rovnice $x^3+4x^2-10=0$ v intervalu $\langle 1,2\rangle$ s tolerancí $0{,}0005$.

Příklad

 Zadání: Najděte kořen rovnice $x^3+4x^2-10=0$ v intervalu $\langle 1,2\rangle$ s tolerancí $0{,}0005.$

 $\begin{subarray}{ll} \begin{subarray}{ll} \begin{$

\overline{n}	p_n	$f(p_n)$
2	1.2631578947	-1.6022743840
$\frac{3}{4}$	$1.3388278388 \\ 1.3666163947$	$-0.4303647480 \\ 0.0229094308$
5 6	$\begin{array}{c} 1.3652119026 \\ 1.3652300011 \end{array}$	-0.0002990679 -0.0000002032

Příklad

Zadání: Najděte kořen rovnice $x^3+4x^2-10=0$ v intervalu $\langle 1,2\rangle$ s tolerancí $0{,}0005$.

 \check{R} ešení: Položíme $p_0=1, p_1=2$ a postupně vypočítáme:

n	p_n	$f(p_n)$
2 3 4 5 6	1.2631578947 1.3388278388 1.3666163947 1.3652119026 1.3652300011	$\begin{array}{c} -1.6022743840 \\ -0.4303647480 \\ 0.0229094308 \\ -0.0002990679 \\ -0.0000002032 \end{array}$

Všimněte si, že $|p_6 - p_5| = 0{,}0000180985$, což je hodnota menší než daná hodnota TOL.

Výhody metody sečen

- rychlá konvergence (většinou malý počet iterací pro dosažení dané přesnosti)
- jednoduchý princip a snadná implementace (naprogramování algoritmu v konkrétním programovacím jazyce)

Výhody metody sečen

- rychlá konvergence (většinou malý počet iterací pro dosažení dané přesnosti)
- jednoduchý princip a snadná implementace (naprogramování algoritmu v konkrétním programovacím jazyce)

Nevýhody metody sečen

- metoda nemusí konvergovat (v konečném počtu kroků metoda nedosáhne dané přesnosti)
- není k dispozici jednoduché kritérium pro stanovení odhadu počtu iterací potřebného pro dosažení dané přesnosti
- výsledkem metody není určení intervalu, ve kterém se kořen skutečně nachází

Nevýhody metody sečen

- metoda nemusí konvergovat (v konečném počtu kroků metoda nedosáhne dané přesnosti)
- není k dispozici jednoduché kritérium pro stanovení odhadu počtu iterací potřebného pro dosažení dané přesnosti
- výsledkem metody není určení intervalu, ve kterém se kořen skutečně nachází

Nevýhody metody sečen

- metoda nemusí konvergovat (v konečném počtu kroků metoda nedosáhne dané přesnosti)
- není k dispozici jednoduché kritérium pro stanovení odhadu počtu iterací potřebného pro dosažení dané přesnosti
- výsledkem metody není určení intervalu, ve kterém se kořen skutečně nachází

Rizika implementace metody na počítači

 při výpočtech musíme vzít v úvahu riziko ztráty přesnosti v důsledku zaokrouhlovacích chyb – například místo vztahu

$$p_{n+1} = p_n - \frac{f(p_n)(p_n - p_{n-1})}{f(p_n) - f(p_{n-1})}$$

nelze použít matematicky ekvivalentní vztah

$$p_{n+1} = \frac{f(p_n)p_{n-1} - f(p_{n-1})p_n}{f(p_n) - f(p_{n-1})}$$

nesmíme zapomenout stanovit horní hranici počtu iterací algoritmu
 mohlo by se stát, že algoritmus nikdy neskončí

Rizika implementace metody na počítači

 při výpočtech musíme vzít v úvahu riziko ztráty přesnosti v důsledku zaokrouhlovacích chyb – například místo vztahu

$$p_{n+1} = p_n - \frac{f(p_n)(p_n - p_{n-1})}{f(p_n) - f(p_{n-1})}$$

nelze použít matematicky ekvivalentní vztah

$$p_{n+1} = \frac{f(p_n)p_{n-1} - f(p_{n-1})p_n}{f(p_n) - f(p_{n-1})}$$

nesmíme zapomenout stanovit horní hranici počtu iterací algoritmu
 mohlo by se stát, že algoritmus nikdy neskončí

4D > 4B > 4B > 4B > 900