Naval Research Laboratory

Stennis Space Center, MS 39529-5004

NRL/MR/7431--96-8002

Physical and Geoacoustic Properties of Sediments Collected for the Key West Campaign, February 1995: A Data Report

KEVIN B. BRIGGS
DAWN L. LAVOIE
KEVIN P. STEPHENS
MICHAEL D. RICHARDSON
YOKO FURUKAWA

Seafloor Sciences Branch Marine Geosciences Division

May 10, 1996

19960904 117

DTIC QUALITY INSPECTED 3

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE

Form Approved OBM No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Highway, Suite 1204, Arlington, VA 22202-4302, ar	nd to the Office of Management and Budge			III, DO 20000.	
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE May 10, 1996	3. REPORT TYPE AND DAT Final	'ES COVERED	<u></u>	
4. TITLE AND SUBTITLE			5. FUNDING NUMBE	RS	
Physical and Geoacoustic Propertie		ne Key West	Job Order No.	574525806	
Campaign, February 1995: A Data Report			Program Element No.	. 0601153N	
6. AUTHOR(S)			Project No.	R3103	
			Task No.		
and Yoko Furukawa	•		Accession No.		
			B. PERFORMING OR	POANIZATION	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			REPORT NUMBER		
Naval Research Laboratory			NRL/MR/7431	-96-8002	
Marine Geosciences Division Stennis Space Center, MS 39529-5		14 the string of the c	00 0002		
Sternis Space Center, WS 55525-5					
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			IO. SPONSORING/M		
Office of Naval Research			AGENCY REPOR	II NUMBER	
Code 01123					
800 N. Quincy Street Arlington, VA 22217-5660					
Annigion, VA 22217-3000					
11. SUPPLEMENTARY NOTES					
		1.		= = =	
12a. DISTRIBUTION/AVAILABILITY STATEM	ENT	1"	26. DISTRIBUTION	CODE	
Approved for public release; distribution unlimited					
13. ABSTRACT (Maximum 200 words)					
Physical and geoacoustic prope					
Boundary Layer research program: to study the effects of environmental					
Research Laboratory scientists are r	processes on sediment propertoresented. The data were collec	ted from carbonate sand	s and sand-silt-c	lay sediments at the	
Research Laboratory scientists are presented. The data were collected from carbonate sands and sand-silt-clay sediments at the Marquesas Keys, Rebecca Shoal, and the Dry Tortugas during cruises in 1994 and 1995. Separate subsections for methodology					
and results from each author are pr	esented along with core and in	strument deployment ma	aps.		
14. SUBJECT TERMS				BER OF PAGES	
acoustics, sediments, mines			16 PRICE	400	
acoustios, obditiones,			16. PRICE	CODE	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICA OF ABSTRACT	TION 20. LIMITA	ATION OF ABSTRACT	
Unclassified	Unclassified	Unclassified	l	SAR	

CONTENTS

1.0 Introduction	1
2.0 Materials and Methods	3
2.1 Diver Cores, Vane Shear, and Bottom Roughness Measurements (Briggs)	3
2.2 Gravity Core and DIAS Measurements (Lavoie and Stephens)	6
2.3 In-Situ Geoacoustic Measurements (Richardson)	10
2.4 Geochemical and Mineralogical Measurements (Furukawa)	13
3.0 Results	15
3.1 Diver Cores, Vane Shear, and Bottom Roughness Measurements (Briggs)	15
3.2 Index Properties and DIAS Measurements (Lavoie and Stephens)	299
3.3 In-Situ Geoacoustic Measurements (Richardson)	363
3.4 Sediment Chemistry and Mineralogy Measurements (Furukawa)	375
4.0 Acknowledgments	393
5.0 References	394

LIST OF FIGURES

- Figure 1.1 Map of the experimental sites near the Dry Tortugas, Rebecca Shoal, and the Marquesas Keys.
- Figure 2.1 Schematic diagram of the duomorph sandwich..
- Figure 3.1.1 Dry Tortugas test site diver core and diver vane shear locations.
- Figure 3.1.2 Marquesas test site diver core and box core locations.
- Figure 3.1.3 Rebecca Shoal vicinity diver core locations.
- Figure 3.1.4 Depth profiles of sediment (a) compressional wave velocity, (b) compressional wave attenuation, (c) porosity, and (d) mean grain size from the Dry Tortugas site.
- Figure 3.1.5 Depth profiles of sediment (a) compressional wave velocity, (b) compressional wave attenuation, (c) porosity, and (d) mean grain size from the Marquesas Keys site.
- Figure 3.1.6 Depth profiles of sediment (a) compressional wave velocity, (b) compressional wave attenuation, (c) porosity, and (d) mean grain size from Rebecca Shoal.
- Figure 3.1.7 Depth profiles of sediment bulk density from sites (a) Dry Tortugas, (b) Marquesas, and (c) Rebecca Shoal.
- Figure 3.1.8 Depth profile of in-situ sediment shear strength.
- Figure 3.1.9 Digitized profiles of relative sediment height from stereo photographs.
- Figure 3.1.10 Sediment grain size distribution histograms.
- Figure 3.2.1 Dry Tortugas test site gravity core locations.
- Figure 3.2.2 Marquesas test site gravity core locations.
- Figure 3.2.3 Depth profiles of wet bulk density, grain density, water content, and porosity.
- Figure 3.2.4 Depth profiles of void ratio, compressional wave velocity, calcium carbonate content, and mean grain size.
- Figure 3.2.5 Dry Tortugas test site DIAS locations.
- Figure 3.2.6 Marquesas test site DIAS locations.

- Figure 3.2.7 In-situ shear wave velocities measured at the Dry Tortugas and Marquesas sites.
- Figure 3.3.1 In-situ geoacoustic measurement locations (ISSAMS) including values of compressional and shear wave velocity (m/s) for two sites near Rebecca Shoals and one location in the Marquesas test site.
- Figure 3.3.2 Shear and compressional wave velocities for sampling locations in the Dry Tortugas site.
- Figure 3.3.3 Gradient of shear wave velocity (m/s) from carbonate sediments at the Planet site, Dry Tortugas, Florida Keys.
- Figure 3.3.4 Gradient compressional wave velocity (m/s) from carbonate sediments at the Planet site, Dry Tortugas, Florida Keys.
- Figure 3.4.1 Dry Tortugas test site geochemistry and mineralogy cores.
- Figure 3.4.2 Marquesas test site geochemistry cores.
- Figure 3.4.3 X-ray powder diffraction profiles of bulk sediment samples from KW-PL-BC-141.
- Figure 3.4.4 X-ray powder diffraction profiles of bulk sediment samples from KW-PL-BC-165.
- Figure 3.4.5 X-ray powder diffraction profiles of bulk sediment samples from KW-PL-BC-178.
- Figure 3.4.6 X-ray powder diffraction profiles of bulk sediment samples from KW-PL-BC-194.
- Figure 3.4.7 X-ray powder diffraction profiles of bulk sediment samples from KW-PL-BC-208.
- Figure 3.4.8 X-ray powder diffraction profiles of sand-sized samples from KW-PE-GC-147.
- Figure 3.4.9 X-ray powder diffraction profiles of silt-sized samples from KW-PE-GC-147.
- Figure 3.4.10 X-ray powder diffraction profiles of clay-sized samples from KW-PE-GC-147.
- Figure 3.4.11 HMC/LMC ratio of sand-, silt-, and clay-sized samples from KW-PE-GC-147.
- Figure 3.4.12 Mg contents of HMC in samples from KW-PE-GC-147

LIST OF TABLES

Table 3.1.1	Key West sediment data.
Table 3.2.1	Key West DIAS data: 1995.
Table 3.3.1	Summary of values of in situ sediment geoacoustic properties of the Key West Campaign.
Table 3.3.2	Summary of the near-surface sediment physical and geoacoustic properties at the Dry Tortugas site, Florida Keys.
Table 3.3.3	Summary of the near-surface sediment physical and geoacoustic properties at the Marquesas experimental site, Florida Keys.
Table 3.3.4	Summary of the near-surface sediment physical and geoacoustic properties near Rebecca Shoal, Florida Keys.
Table 3.3.5	Summary of the near-surface sediment physical and geoacoustic properties at the Dry Tortugas hard sand site (#265), Florida Keys.
Table 3.3.6	Gradients of compressional wave velocity (m/s) measured using Neptune at four locations near the <i>Planet</i> site in the Dry Tortugas, Florida Keys.
Table 3.3.7	Gradients of shear wave velocity (m/s) measured using GISSAMS at three locations near the <i>Planet</i> site in carbonate sediments of the Florida Keys.
Table 3.4.1	Results of aqueous sulfur speciation and pH analysis.
Table 3.4.2	The results of ICP analysis.
Table 3.4.3	Results of total organic carbon analysis.

1.0 Introduction

The Key West Campaign was undertaken as a part of the Coastal Benthic Boundary Layer (CBBL) research program, which is a 5-yr Office of Naval Research program conceived to physically characterize and model benthic boundary layer processes and assess the impact of these processes on seafloor properties that affect shallow-water naval operations (Richardson 1995). The carbonate sediments of the Florida Keys represent an important site in which to study the effects of environmental processes on the sediment properties that impact naval mine countermeasures (MCM) operations. Indeed, carbonate environments are commonly found in coastal regions which are potential world trouble spots where MCM operations can be of critical importance. The Florida Keys is the only area in U.S. waters that provides an environmental analog to a tropical, carbonate, sedimentary environment.

Over 100 scientists participated in the collection of geological, geoacoustic, biogeochemical, and oceanographic data in the waters of the western Florida Keys in February 1995. Collection of sediments and deployment of scientific hardware in these waters was conducted under permits issued by the U.S. Park Service and the National Oceanic and Atmospheric Administration. Data collection was confined to areas near the Marquesas Keys, Rebecca Shoal, and the Dry Tortugas (Fig. 1.1). In addition to the main experiment conducted in February 1995, a survey of potential experiments sites was undertaken in February 1994 by scientists of the Naval Research Laboratory (NRL) and the U.S. Geological Survey (USGS) to concentrate the efforts of the scientists participating in the 1995 experiment on a few localized sites.

This data report presents the results of sediment property and geoacoustic measurements collected during both 1994 and 1995 by five NRL scientists: Kevin Briggs, Dawn Lavoie, Kevin Stephens, Michael Richardson, and Yoko Furukawa. The report is divided into subsections exclusively devoted to the results of each of the authors. Preceding the results is the Materials and Methods section, which is similarly divided into subsections describing the unique methodology pertaining to each author's effort. Each Results subsection is prefaced by a map of the investigated areas that includes locations of the cores or deployments of equipment from which data are presented subsequently in that subsection. Kevin Briggs presents the data collected from diver cores, diver vane shear tests, and diver stereo photography. In addition to diver cores, two gravity cores from the 1994 survey are presented in his results. Dawn Lavoie and Kevin Stephens present their data collected from gravity cores and the Duomorph In Situ Acquisition System (DIAS). Michael Richardson presents in-situ geoacoustic data gathered from the In-Situ Sediment Acoustic Measurement System (ISSAMS), the Gradient-ISSAMS (GISSAMS), and Neptune. Furukawa presents the results of her measurements of geochemical properties and x-ray diffraction from diver and box cores. Other results collected by NRL scientists, such as acoustic sediment classification data, as well as results yet to be completed by the authors are not reported here, but will be presented in subsequent publications.

Figure 1.1 Map of the experimental sites near the Dry Tortugas, Rebecca Shoal and the Marquesas Keys.

2.0 Materials and Methods

2.1 Diver Cores, Vane Shear and Bottom Roughness Measurements (Briggs)

2.1.1 Core Collection and Geoacoustic Measurements

Geoacoustic and physical property measurements were made on 6.1-cm diameter polycarbonate plastic cylindrical cores cut at 45-cm lengths. Each core was beveled at one end to facilitate manual penetration into the sediment. Cores were capped at both ends immediately upon collection (to retain the water overlying the sediment) and kept in an upright position during transport to the laboratory for analysis. Collection, measurement, and handling procedures were designed to minimize sampling disturbance and to maintain an intact sediment-water interface within the core samples. Compressional wave velocity and attenuation were measured in the laboratory at 400 kHz for 19 diver collected cores using a pulse technique (Richardson 1986; Richardson et al. 1986). Measurements were made at 1-cm intervals by transmitting the pulse through the core liner with oil-filled rubber transducer-receivers. Sediment compressional wave velocity was also expressed as the ratio of measured compressional wave velocity in sediment to measured compressional wave velocity in the overlying water in the core (V_p ratio). Sediment compressional wave attenuation measurements were calculated as in Richardson (1986) and expressed in units of dB m⁻¹ kHz⁻¹; this corresponds to the constant *k* reported in tables in the Results (Hamilton 1972). Attenuation plotted in the Results are reported as dB m⁻¹.

2.1.2 Physical Property Measurements

Porosity was measured at 2-cm intervals on the same cores using weight loss from samples in a drying oven at 105°C for 24 h. Samples were cooled in a desiccator and reweighed. Average grain density was determined with a Penta-Pycnometer on selected samples. Porosity was calculated after Lambert and Bennett (1972). Values of porosity reported in tables and plotted in the Results were not corrected for pore water salinity. Salt-free porosity values may be calculated by multiplying reported values by 1.012. Sediment bulk density appearing in tables and plots in the Results was calculated from values of sediment porosity, water density, and average grain density (Briggs 1994). Void ratio (e) was calculated by dividing the porosity value by the difference between 100 and the porosity value.

Sediment grain size was determined at 2-cm intervals from disaggregated samples by dry sieving with a sieve shaker for gravel- and sand-sized particles and on separate, undried samples by use of a Micromeritics Model 5000 Sedigraph for silt- and clay-sized particles when samples were collected from muddy environments. Prior to size fractionation, sediment samples were soaked overnight in 200 ml of dispersant solution (2.5 g of sodium hexametaphosphate per liter of distilled water), then disaggregated by sonicating the sample with an ultrasonic disrupter for 12 min while stirring with a magnetic stirrer. The disaggregated sample was wet-sieved with dispersant through a 62-µm screen to separate the sand-sized fraction from the silt- and clay-sized fraction. The finer fraction was

collected in a 1000-ml graduated cylinder, and enough dispersant was added to fill the graduated cylinder to 1000 ml. The coarser fraction was rinsed off the screen into a beaker with distilled water and then dried.

The dried, coarser fraction was fractionated into quarter-phi intervals with a sieve shaker and each fraction was individually weighed to determine the gravel- and sand-sized particle distribution. Grain size is expressed as phi units (\$\phi\$), or the negative of the base-two logarithm of the particle diameter in millimeters. The silt- and clay-sized fraction was thoroughly agitated by vigorous stirring and aeration. A 20-ml aliquot sample representative of the total distribution of particles in suspension was pipetted from the graduated cylinder and into a preweighed beaker, dried in an oven, and weighed. Fine particle fractionation for sediments with 5% or less estimated silt and clay by weight was accomplished by taking a 20-ml aliquot at the appropriate time and depth within the graduated cylinder prescribed by Folk (1965) for the silt-clay break (8 phi). Subtraction of the 8phi weight from the total weight yielded the silt weight. The silt weight was separated into eight equal half-phi intervals and the clay weight was separated into six equal whole-phi intervals. For samples with significant (>5% by weight) fine particle fractions, the fines were allowed to settle for 5 days before 20-ml aliquot samples were pipetted from the appropriate depths in the cylinder and into preweighed beakers, dried, and weighed to estimate the weight of clay-sized particles in the 10 to 11, 11 to 12, and 12 to 14 phi intervals. At the conclusion of 6 days of settling, all particles 10 phi and coarser were near the bottom of the graduated cylinder. At this time, the supernatant was slowly siphoned into another graduated cylinder, leaving the settled particles and about 200 ml of dispersant and sample. The supernatant volume was recorded. A 20-ml aliquot sample was pipetted from the supernatant after agitation, dried, and weighed to estimate the weight of the remaining particles finer than 10 phi. Finally, the sample remaining in the graduated cylinder was sonicated and stirred for 12 min in a beaker prior to size determination with the Micromeritics Sedigraph. The Sedigraph determines the concentration of silt- and clay-sized particles in liquid suspension at various depths in a sample cell by means of a finely collimated, horizontal x-ray The concentration was presented in the form of a cumulative "percent-finer-than" distribution trace in relation to the Stokesian diameter of the particles.

Grain size distributions were analyzed and plotted as weight percent histograms and cumulative weight percent for all phi sizes through 14 phi. The fraction finer than 12 phi was equally divided between the 12 to 13 phi and 13 to 14 phi intervals to reduce skewing effects of lumping all fines into one bin. The mean grain size and sorting coefficient were calculated according to the graphic formula of Folk and Ward (1957). Sediments were divided into size classes of gravel, sand, silt, and clay using the Wentworth scale. These statistics are reported in tables and histograms in the Results.

2.1.3 Vane Shear Measurements

In-situ shear strength was measured with a diver-operated vane shear device with a vane blade 21.9 mm high by 21.9 mm in diameter. Torque was measured using a hand tool with a graduated torque scale and converted to shear strength using the assumptions and equation of Monney (1974). The

component of the torque attributed to friction between the rod and the sediment was subtracted from the total measured torque before calculating the shear strength. The frictional component was determined by performing identical torque tests with a vaneless rod. Corrected shear strength values for each trial are reported in tabular form in the Results.

2.1.4 Bottom Roughness Analysis

Stereo photographs of the sediment surface were made with a Photosea 2000 35-mm underwater stereo camera and a 100-Joule Photosea 1000 underwater strobe mounted in a molded fiberglass diver module. The diver module was mounted in a rigid 2.54-cm nominal diameter PVC frame to maintain constant focal distance and orientation with respect to the bottom. Two Nikon 28-mm water-corrected lenses were separated by 61 mm in the Photosea stereo camera system, yielding a 57.2 x 65.9-cm overlap area at the 91-cm focal distance from the camera to the bottom. Orientation of the photographs was determined by photographing a diver's compass on the sea bottom as the first photograph of a photographic transect along a tape measure previously laid down on the sea floor by divers. Transects were followed for approximately 15 m. Stereo photographs were collected of a sea floor unmodified by divers (stations 128 and 145), a sea floor gouged by divers (photographs 145-33 and 145-34), and a sea floor smoothed by divers (station 160).

All stereo photographs were recorded on 10-m strips of Kodak Ektachrome 64 film. The stereo photographs were processed as continuous rolls and examined for clarity and exhibition of representative features of the experiment site. Measurement of bottom roughness was accomplished with the photogrammetric analysis of stereo photographs by digitizing relative height measurements at regularly spaced intervals using a Benima (Hasselblad) AB photogrammetric stereocomparator. Photogrammetric software provided by Benima corrected the measurements for distortion caused by refraction in seawater and lens aberrations. Use of the stereocomparator allows high-frequency sampling of bottom roughness with an accuracy of nearly 0.1 mm. The relative orientation calculation in the photogrammetric software performed a *de facto* least-squares de-trending operation on the digitized height data. From each of 18 stereo photographs, three parallel, 53.34-cm-long relative height profiles were digitized in the same azimuthal orientation as the tape measure. The three profiles are labeled A, B, and C in the Results. RMS roughness values for each profile were calculated as the standard deviation of the relative height measurements.

2.2 Gravity Core and DIAS Measurements (Lavoie and Stephens)

2.2.1 Gravity Core Collection and Index Property Measurements

Gravity cores were collected using an NRL hydroplastic gravity corer in February 1995 aboard the *R/V Pelican* in water depths of 25-30 m. The core pipe was 3-in diameter, schedule 40 PVC in 10 ft lengths. The gravity corer was lowered until the core cutter was 10 ft from the sediment-water interface and then allowed to free-fall to the bottom. The recovered core was removed from the gravity corer, the excess pipe cut off, and the top plugged with styrofoam and sealed while still upright to preserve the top. The core ends were later sealed with paraffin wax to prevent loss of water. Also, four gravity cores collected in February 1994 aboard the *Columbus Iselin* are included. The cores collected in February 1994 have the prefix KW, while those collected in February 1995 have the prefix KW-PE-GC.

The cores were logged for compressional wave velocity and wet bulk density using Texas A&M University's Schultheiss core logger (Boyce 1976). The compressional wave velocity transducers were calibrated to distilled water at 20°C and the gamma ray detectors were calibrated to aluminum rods. The cores were then either extruded or split and subsampled at 10-cm intervals for grain size and 2-cm intervals for grain densities, wet bulk densities, and calcium carbonate content.

Wet bulk densities and grain densities were measured using Quantachrome multi-pycnometer and ultrapycnometer-1000 helium gas pycnometers (Quantachrome 1995). The pycnometers were calibrated using stainless steel spheres and checked with Ottawa sand and powdered quartz crystal standards. Samples were dried at 105° C for 24 h prior to grain density measurements. Weights used in determining densities were measured with a Mettler AE160 balance. The densities are accurate to ± 0.005 g/cm³ and are reported to two decimal places.

Porosity (n) and water content (w) were calculated from grain density, wet bulk density, and water density (1.024 g/cm³) measurements. Void ratio (e) was calculated from porosity values.

$$n = (DG-\rho) / (DG-DW) * 100$$

 $w = (DW/DG) * e *100$
 $e = (n/100) / (1 - (n/100)),$

where DG = grain density, DW = water density, and ρ = wet bulk density.

Porosities, water contents, and void ratios are all reported to two decimal places. Calcium carbonate content (% carb.) was measured with a carbonate bomb and is reported to two decimal places (Presley 1975).

Grain size was measured by the pipette method for silt- and clay-size particles and sieve method for gravel- and sand-size grains. The sand fraction was sieved at quarter phi intervals (-2φ to 4φ) and the silt/clay fraction measured at whole phi intervals (4φ to 9φ). The silt/clay boundary used was 8φ . Mean grain size (MGS) was calculated by Folk's Graphic Mean (Folk 1974).

2.2.2 DIAS Data Collection

DIAS is an alternate technology requiring a single duomorph probe for measuring shear modulus in situ. The DIAS system consists of a duomorph probe, bottomside electronics housed in a pressure canister, and topside electronics hardwired to the underwater portions of the system.

The duomorph probe is a bending plate device that is vibrated and the resulting deflections measured. The device consists of a stainless steel plate sandwiched between a pair of piezoceramic crystals with metallic strain gauges glued to the center of each crystal (Fig. 2.1). The piezoceramic crystals are low-power, electromechanical transducers capable of converting electrical energy to mechanical energy and vice versa. When stimulated by an alternating current, the duomorph vibrates in a parabolic fashion. The ratio between the unconstrained bending of the duomorph in air and the constrained bending in sediment is a function of the sediment dynamic modulus.

The data acquisition system consists of top-side electronics, bottom-side electronics, and probe electronics. The top-side electronics, a personal computer running custom-designed software, provides data storage, signal display, system control, and data analysis functions. Communications to the bottom-side electronics are provided by an RS-422 serial interface. 150VDC power is provided by a commercial switching DC power supply. A junction box interfaces the computer and power supply to the 100-m umbilical cable.

Bottom-side electronics include an IBM compatible, single-board computer that receives control information over the RS-422 bus and performs the requested operations, a 12-bit A/D board, a programmable function generator, and a custom built amplifier. Generally, the probe is driven by a 40-V peak-to-peak 250-Hz sine wave. The frequency is chosen to stay below probe resonance and the amplitude is chosen as a tradeoff between overdriving the ceramic, which causes decoupling with the sediment and signal digitization resolution.

The DIAS system was used to measure in situ shear modulus in the Dry Tortugas and Marquesas sediments with the aid of divers pushing them to the required depths. The probes were allowed to equilibrate before measurements were recorded. Shear wave velocity was calculated using measured bulk density.

Figure 2.1 Schematic diagram of the duomorph sandwich. The piezoceramic crystals are arranged with the polarities in the same direction. Strain guages are centered on each crystal. The sandwich is excited with an alternating current which results in the parabolic vibration of the duomorph sandwich. The amplitude of the deflection is measured using the strain gauges.

2.2.2.1 Data Reduction

The methods used to reduce the sampled data are outlined below:

- 1. Phase and amplitude of the input and output voltages are measured by exciting the potted duomorph in air.
- 2. The amplitude of the in situ wave forms are directly proportional to the voltage; the displayed wave form on the computer represents the amount of dynamic strain detected by the strain gauges. The ratio of the voltage in the air to the sediment was used in the following equation to determine the modified moment ratio:

$$\left| \frac{Mc}{Mo} \right| = \frac{(es/ea) - k}{1 - k}$$
,

where

es is the voltage (strain) in sediment under a load, ea is the voltage (strain) in air, and

k is the electromechanical coupling coefficient, a measure of the piezoelectric effect. It is a constant dependent on disk design (for the duomorph with a 0.008-cm steel plate, k = -0.664) (Briar et al. 1976).

$$\frac{1}{k} = 1 - \frac{3\beta hz(hz+t)(2 + Es t/Ez hz)}{h^2 \left[1 + (Es/Ez-1)(t/h)^3\right]},$$

where

 $\beta = 0.5 (1 + \text{hm/hz}) = 0.86364,$

hz = thickness of the piezoceramic crystal,

t = height of the duomorph overall,

Es = Young's modulus of steel plate, and

Ez = Young's modulus of the piezoceramic crystal.

The modified moment ratio, $\left|\frac{MC}{MO}\right|$, is a complex value having both magnitude and phase. A nomograph has been constructed that is essentially two curves sharing a common independent axis M' for each value of the independent variable, $\tan \phi$. This allows us to quickly find values of M' and $\tan \phi$ used in the calculation of the sediment elastic modulus, E'.

$$E' = \frac{M'D}{a^3},$$

where a is the radius of the duomorph and D is the disk flexural rigidity.

Shear modulus, G, and shear wave velocity, Vs, are determined as follows:

$$E'' = E' \tan \phi$$

$$E^* = \sqrt{E' + E''}$$

$$G = \frac{E^*}{2(1+\nu)} \text{ (from Hamilton 1971),}$$

 ν is Poisson's ratio and is estimated to be ~0.48 for Key West samples.

$$V_S = \sqrt{\frac{G}{\rho}}$$
,

where ρ is the measured density.

2.3 In-Situ Geoacoustic Measurements (Richardson)

In-situ measurements of sediment geoacoustic properties (compressional wave velocity and attenuation and shear wave velocity) were made with three systems: ISSAMS, operated from aboard ship for measurement of surficial geoacoustic properties; and two diver-operated systems designed to measure gradients of shear wave velocity (GISSAMS) and compressional wave velocity and attenuation (Neptune). The operation of each is briefly described below, followed by a description of sampling locations occupied in the carbonate sediments of the Florida Keys. Data are presented in tabular form as well as maps of the areal distribution of values of geoacoustic properties and plots of the vertical gradients of shear and compressional wave velocity.

2.3.1 ISSAMS: In-Situ Sediment Acoustic Measurement System

ISSAMS Mechanical Description: ISSAMS is an aluminum and stainless steel structure used to hydraulically deploy geoacoustic and geotechnical measurement probes in coastal marine sediments (Richardson et al. 1994; Griffin et al. 1996). The large size (3 m high, 2 m square footprint) and weight (approximately 1 metric ton) are required to make measurements over the variety of sediments found in coastal marine waters. The outer frame acts as a guide for a hydraulically driven inner frame to which four compressional and four shear wave probes are mounted. The inner frame has a 60-cm stroke allowing the probes to be completely drawn into the protective outer frame at any time during deployment. Once the ISSAMS is placed on the seafloor, probes are pushed into the sediment at depths ranging between 0 to 50 cm. This allows

for gradient measurements to be obtained. The inner frame allows for probe mounting separations of 40 to 110 cm. Around the entire base of the structure is a 30-cm-wide plate that serves a dual purpose. When ISSAMS is deployed on a soft mud, this plate increases the surface area to better distribute weight and keep ISSAMS from sinking into the sediment. On hard packed sands, however, the plate serves as a surface for attachment of additional weight to help insert the eight geoacoustic probes into the sediment.

ISSAMS Electronics: ISSAMS electronics consists of both top-side and bottom-side electronic suites connected by a single, electromechanical coaxial cable. The top-side system provides remote control, system power, storage, and display. An IBM-compatible computer system provides control, display, signal analysis, and storage. Standard NTSC color television and VCR are used to display and store real-time video of the deployment of the system and movement of the probes into the sediment. A commercially available 20-amp, 200 VDC switching power supply is used to provide 150 VDC power to the bottom-side electronics. The only custom components are a low-pass filter to reduce power supply switching noise and an interface box that combines/separates data, video, and 150 VDC power. The interface box accepts filtered 150 VDC power and an RS-422 data stream from the top-side computer, converts the RS-422 to FSK, and then combines the two signals. Output from the interface box is RS-422 data converted from the bottom-side FSK signal and NTSC video on a 64 MHz carrier (channel 3). A custom written software program integrates the system operation.

The ISSAMS bottom-side electronics consists of a hydraulic power pack, bottom-side interface electronics, Seabird CTD, black-and-white camera, color camera, a 24 VDC sea battery, computer system, and power amplifier. Most bottom-side electronics are housed in four pressure canisters. The sea battery, the CTD, and the cameras are separate, commercially available units for which interfaces have been developed. The hydraulic power pack consists of a 24-VDC-powered hydraulic motor located in a pressure canister. Control commands from the topside are received by the bottom-side computer, which controls the hydraulic motor. Position feedback information is provided by a potentiometer built into the hydraulic cylinder. Limit switches are located at the top and bottom stroke of the inner frame to stop the frame from moving past preset positions. An additional feature of the hydraulics system is automatic retraction of the probes from sediment if the 150 VDC top-side power is lost. This is a safety mechanism to protect the probes from being destroyed if an electronics failure occurs when the probes are in the sediment. Power to run the hydraulic motor is provided by the sea battery.

The interface electronics consists of an assortment of electronics. Included in this canister is an FSK modem, hydraulic control relays, DC-DC power converters, video amplifiers, and video modulators. The FSK modem converts the RS-422 data from the bottom-side computer to an FSK signal and converts the FSK signal from the top-side computer to an RS-422 data stream that the bottom-side computer accepts. The DC-DC power converters reduce the 150 VDC to the various DC voltages required by the bottom-side electronics. The hydraulic control relays perform the hydraulic control discussed in the above paragraph. These are not included in the cylinder with the hydraulic motor due to the flammable nature of the hydraulic fluid. Lastly, the video modulators and video amplifiers condition the signals from the cameras for transmission to

the topside. Control circuitry selects the desired camera, since the color camera is pointed downward to provide a view of the sediment, and the black-and-white camera is directed horizontally to provide a view of probe position.

The amplifier electronics are housed in a separate canister. Programmable gain amplifiers (0 - 60 dB) are used to amplify the probe received signals. This is in addition to the 40 dB of gain that each probe's preamplifier provides. Transmit probes are driven by a 350-watt power amplifier. These amplifiers are conduction-cooled to prevent thermal damage.

The bottom-side digital electronics system controls the functionality of ISSAMS. This unit contains a function generator, two 12-bit, 1 Msample/s A/Ds, one low-speed, 12-bit A/D, a parallel I/O card, and an IBM-PC-compatible computer system. The software running on this computer can control the pulse length, frequency, and amplitude of the transmitted shear or compressional wave signals. Signals from 20 Hz to 100 kHz are synthesized by the function generator. The receive sample rate can be adjusted from 1 ksample/s to 1 Msample/s. The high-speed A/Ds are simultaneously triggered with the function generator to provide an accurate signal velocity measurement. RS-232 serial communications are used to collect data from the CTD. The parallel I/O and low-speed A/D are used to provide feedback and control of the ISSAMS subsystems.

ISSAMS Probes: ISSAMS uses a single radial-poled ceramic element in each of the four compressional wave probes. The compressional wave probes have a modular design that allows for easy repair and for use of probe tips made of different materials. The current probes have a resonant frequency of 38 kHz, which is the frequency that most measurements are made. Both transmit and receive compressional wave probes are identical except for a 40-dB gain preamplifier in the receive probes.

The shear wave probes used on ISSAMS are single, bimorph bender elements potted in a stainless steel frame with soft urethane. A thin, higher derometer polyurethane is used as a resilient outer coating to protect the ceramic during insertion. Transmit and receive shear wave probes are identical except for a 40-dB gain preamp located in the receive probes. Frequencies from 70 Hz to 2 kHz are used to make measurements with these probes. The shear probes are mounted to the ISSAMS frame using a neoprene-filled mount to reduce mechanical coupling between transmit and receive shear wave probes.

2.3.2 GISSAMS: Gradient In-Situ Sediment Acoustic Measurement System

Gradients of sediment shear wave velocity were measured using a pulse technique and probes similar to those employed by ISSAMS (Richardson et al. 1991). Transmit and receive probes are constructed of identical 31.75-mm square x 0.48-mm thick bimorph ceramic benders. The ceramics are potted in a stainless steel ring with soft silicone rubber (hardness = 35 shore A) to allow relatively unrestricted bender movement. A thin covering of much harder polyurethane resin (hardness = 80 shore A) holds the ceramics in place and provides a tough coating to protect

the ceramics during insertion into the sediment. Shear wave probes are attached to the ends of 2.4-m hollow steel pipes and, during deployment probe orientation and distance below the sediment-water interface, are controlled by scuba divers using a PVC frame. Shear wave velocity was measured at 10-cm depth intervals and over 30- and 70-cm pathlengths parallel to the sediment-water interface. Shear waves are generated as a 2-6-cycle sine wave pulsed every 0.5 s. Driving frequency (70-1000 Hz) and driving voltage (100-230 V p-p) depends on the varying mechanical load of sediments on the compliant bender ceramic face, sediment shear wave velocity and attenuation, and the pathlength between receive and transmit probes. Received signals are amplified with 40-dB preamplifiers mounted in receiver probe heads, bandpass filtered, and recorded with a digital waveform recording oscilloscope. Shear wave velocity is calculated from the measured time delay and known receiver-transmitter separation.

2.3.3 Neptune

Gradients of compressional wave velocity and attenuation were determined using a diveroperated probe system. Neptune uses compressional wave probes identical those of ISSAMS. The probes are attached to ends of a 3-m long, stainless steel, hollow pole. Probe distance is maintained at 50 cm by a stainless steel frame. Compressional wave velocity and attenuation were measured at 10-cm intervals using a pulse technique subsequent to the divers pounding the probes into the sediment. Driving frequency (38 kHz) and driving voltage (100 V p-p) are similar to those used with ISSAMS....

2.4 Geochemical and Mineralogical Measurements (Furukawa)

2.4.1 Sediment Chemistry Measurements

Pore water chemistry was studied on selected box cores (KW-PL-BC-141, 165, 194, 208) and diver cores (KW-PL-DC-179, 180) taken on board the WFS Planet. Pore water samples were collected using a Jahnke-type pore water squeezer (Jahnke 1988) that prevented samples from exposure to air and subsequent oxidation. All core locations are indicated in the Results.

Pore water samples were analyzed for intermediate inorganic sulfur species and total inorganic reduced sulfur species using iodometric titration (Grasshoff 1983; Fonselius 1983) within 10 min of the completion of sampling. Major and minor cation concentrations were determined using inductively coupled plasma spectroscopy (ICP) by Chuck Holmes at the USGS Denver office. The pore water samples were also analyzed for pH within 10 min of sampling.

Total organic carbon content (TOC) was analyzed for the samples from box core KW-PL-BC-194. After the pore water was taken, the sediment samples were extruded, placed in zipper-sealed plastic bags, and stored in a freezer. The frozen samples were later analyzed for TOC at a commercial laboratory.

2.4.2 Mineralogy Analysis

Bulk mineralogy was studied on the same selected cores mentioned above (KW-PL-BC-141, 165, 194, 208; KW-PL-DC-179, 180). Each sediment sample was air-dried, ground using agate mortar and pestle, and mounted into the cavity of an aluminum sample holder for x-ray powder diffraction.

Gravity core samples from KW-PE-GC-147 were first separated into clay, silt, sand, and gravel-sized fractions using settling and siphoning, and each was prepared for x-ray diffraction. x-ray diffraction data of the size-fractioned samples from the gravity core were used to conduct the Rietveld crystal structure refinement to quantify the relative amount of high-Mg calcite (HMC) and low-Mg calcite (LMC), as well as to determine the Mg contents of HMC. The Rietveld analysis was conducted using a Rietveld program DBWS9411 (Young et al. 1994).

3.0 Results

3.1 Diver Cores, Vane Shear, and Bottom Roughness Measurements (Briggs)

Locations of diver cores (DC), in-situ vane shear measurements (SP), and stereo photographs (DP) are displayed in Figs. 3.1.1 - 3.1.3 for the Dry Tortugas, Marquesas Keys, and Rebecca Shoal sites. Figs. 3.1.4 - 3.1.7 depict the vertical profiles of sediment geoacoustic and physical properties measured at the three sites. Fig. 3.1.8 shows the in-situ sediment shear strength measured at the Dry Tortugas site.

The section denoted as Fig. 3.1.9 contains the digitized roughness profiles from stereo photographs collected at the Applied Physics Laboratory (APL) tower in the Dry Tortugas site. The following section denoted as Fig. 3.1.10 contains the sediment grain size distributions for cores collected from the three sites.

Following the sediment grain size distribution histograms is a section denoted as Table 3.1.1 consisting of sediment geoacoustic and physical property data in tabular form.

Figure 3.1.1 Dry Tortugas Test Site Diver Core and Diver Vane Shear Locations

Figure 3.1.2 Marquesas Test Site Diver Core and Box Core Locations

Figure 3.1.3 Rebecca Shoal Vicinity Diver Core Locations

Figure 3.1.4 Depth profiles of sediment (a) compressional wave velocity, (b) compressional wave attenuation, (c) porosity, and (d) mean grain size from the Dry Tortugas site.

Figure 3.1.5 Depth profiles of sediment (a) compressional wave velocity, (b) compressional wave attenuation, (c) porosity, and (d) mean grain size from the Marquesas Keys site.

Figure 3.1.6 Depth profiles of sediment (a) compressional wave velocity, (b) compressional wave attenuation, (c) porosity, and (d) mean grain size from Rebecca Shoal.

Figure 3.1.7 Depth profiles of sediment bulk density from (a) Dry Tortugas site, (b) Marquesas site, and (c) Rebecca Shoal.

Figure 3.1.8 Depth profile of in-situ sediment shear strength.

Fig. 3.1.9 Digitized profiles of relative sediment height from stereo photographs:

Fig. 3.1.10 Sediment grain size distribution histograms for the following cores:

KW-73-2

KW-88-1

KW-93

KW-123-1

KW-127

KW-PL-113-2

KW-PL-173-1

KW-PL-192-2

KW-PL-198-1

KW-PL-208

KW-PL-215

KW-PL-219

KW-PL-221

KW-PL-223

KW-PL-244-1

KW-PL-244-2

KW-PL-263

KW-PL-249 (grab)

KW-PL-252 (grab)

KW-PL-254 (grab)

KW-PL-258 (grab)

KW-PL-267 (grab)

KW-PL-275 (grab)

KW-PL-285 (grab)

KW-PL-287 (grab)

Table 3.1.1 Key West sediment data.

date: 8 Feb 94	depth: 23.5 m
Station: KW-73-1	long: 82-10.01 W
Cruise: Iselin	lat: 24-45.26 N

calc for: 19.6 deg C 36.0 o/oo 23.5 m 400 kHz

Sorting (phi)						
MGS (phi)						
% Clay						
% Silt						
% Sand						
% Gr						
Ф	1.98	1.77	1.28	1.06	1.15	1.16
Density (g/cm³)	1.59	1.65	1.78	1.86	1.84	1.83
Porosity Density % (g/cm³)	66.48	63.94	56.19	51.47	53.59	53.78
¥	0.585	0.654	1.180			1.180
Alpha (dB/m)	234.1	261.8	4/1.9			471.9
V _e Ratio	1.009	1.010	1.010			1555.3 1.022
V _p (m/s)	1534.6	1543.1 1536.9	1535.8			1555.3
Depth (cm)	- - (N W	4 rv	9 ~	ထတ 🤅	2 7 2

date: 8 Feb 94 depth: 23.5 m Station: KW-73-2 long: 82-10.01 W lat: 24-45.26 N Cruise: Iselin

23.5 m 400 kHz calc for: 19.6 deg C 36.0 o/oo

6.1 cm thickness smp core:

Cruise: Iselin Station: KW-88-1 date: 10 Feb 94 lat: 24-45.01 N long: 82-11.97 W depth: 24 m

calc for: 19.7 deg C 36.0 o/oo 24.0 m 400 kHz

% Silt % Clay MGS Sorting (phi) (phi)	28.52 56.84 8.39 3.29		38.39 7.01	46.11 38.39 7.01 3.43	38.39 7.01	38.39 7.01 46.45 7.70	38.39 7.01 46.45 7.70 41.80 7.20	38.39 7.01 46.45 7.70 41.80 7.20	38.39 7.01 46.45 7.70 41.80 7.20 45.95 6.98	38.39 7.01 46.45 7.70 41.80 7.20 45.95 6.98	38.39 7.01 46.45 7.70 41.80 7.20 45.95 6.98 33.98 5.89	38.39 7.01 46.45 7.70 41.80 7.20 45.95 6.98 33.98 5.89	38.39 7.01 46.45 7.70 41.80 7.20 45.95 6.98 33.98 5.89 31.63 5.80	38.39 7.01 46.45 7.70 41.80 7.20 45.95 6.98 33.98 5.89 31.63 5.80	38.39 7.01 46.45 7.70 41.80 7.20 45.95 6.98 33.98 5.89 31.63 5.80 31.74 5.79	38.39 7.01 46.45 7.70 41.80 7.20 45.95 6.98 33.98 5.89 31.63 5.80 31.74 5.79	38.39 7.01 46.45 7.70 41.80 7.20 45.95 6.98 33.98 5.89 31.63 5.80 31.74 5.79 30.86 5.50	38.39 7.01 46.45 7.70 41.80 7.20 45.95 6.98 33.98 5.89 31.63 5.80 31.74 5.79 30.86 5.50	38.39 7.01 46.45 7.70 41.80 7.20 45.95 6.98 33.98 5.89 31.63 5.80 31.74 5.79 30.86 5.50 27.01 4.60	38.39 7.01 46.45 7.70 41.80 7.20 45.95 6.98 33.98 5.89 31.63 5.80 31.74 5.79 30.86 5.50 27.01 4.60	38.39 7.01 46.45 7.70 41.80 7.20 45.95 6.98 33.98 5.89 31.63 5.80 31.74 5.79 30.86 5.50 27.01 4.60
	14.18 28.52	15.48 46.11																			
								-													
9 0.47		7 0.01		1 0.00			0.81												_	·	·
	2.09	1.67		3	2.07	7.07	2.00	2.00	2.00	2.00	2.00 2.00 1.73 1.25	2.00 2.00 1.73 1.73	2.00 2.00 1.73 1.25 1.12	2.00 2.00 1.73 1.25 1.12	2.00 2.00 1.73 1.25 1.12 1.16	2.00 2.00 1.73 1.25 1.12 1.16	2.00 2.00 1.73 1.12 1.16 1.16	2.00 2.00 1.73 1.12 1.16 1.16	2.00 2.00 1.73 1.15 1.16 1.16 1.08	2.00 2.00 1.73 1.12 1.14 1.16 1.08	2.00 2.00 1.73 1.15 1.16 1.16 1.08 1.32
(g/cm²)	1.57	1.67		((1.60	1.60	1.60	1.60	1.60	1.60	1.60 1.67 1.80	1.60 1.67 1.80	1.60 1.67 1.80 1.85	1.60 1.67 1.80 1.85	1.60 1.67 1.80 1.85 1.83	1.60 1.67 1.80 1.85	1.60 1.67 1.85 1.83 1.83	1.60 1.67 1.85 1.83 1.83	1.60 1.67 1.85 1.85 1.85 1.85	1.60 1.67 1.85 1.85 1.85	1.60 1.67 1.85 1.83 1.85 1.85
° %	67.64	62.58		66 74	} ?	t S	66.63	66.63	66.63 63.42	66.63	66.63 63.42 55.58	66.63 63.42 55.58	66.63 66.63 63.42 55.58 52.78	66.63 63.42 63.42 55.58	66.63 63.42 63.42 55.58 52.78	66.63 63.42 55.58 52.78 53.74	66.63 66.63 63.42 52.78 53.74 52.54	66.63 66.63 63.42 52.78 53.74 52.54	66.63 66.63 63.42 55.58 52.78 52.54 52.54	66.63 63.42 52.78 52.78 52.54 51.97	66.63 66.63 63.42 52.78 52.74 51.97 56.87
	0.527	0.585	0.630	000	0.630	0.527	0.527 0.630	0.527 0.527 0.630 0.774	0.527 0.630 0.774 1.021	0.630 0.527 0.630 0.774 1.021	0.630 0.630 0.774 1.021 1.066	0.630 0.527 0.630 0.774 1.021 1.100 1.180	0.630 0.527 0.630 0.774 1.021 1.100 1.180	0.630 0.527 0.630 0.774 1.021 1.100 1.203	0.630 0.527 0.630 0.774 1.021 1.100 1.203 1.254	0.630 0.527 0.630 0.774 1.021 1.100 1.180 1.203 1.254 1.347	0.630 0.527 0.630 0.774 1.021 1.100 1.180 1.254 1.347 1.450	0.630 0.527 0.630 0.774 1.021 1.100 1.180 1.254 1.347 1.450 1.594	0.630 0.527 0.630 0.774 1.021 1.100 1.203 1.203 1.254 1.347 1.594 1.721	0.630 0.527 0.630 0.774 1.021 1.100 1.203 1.254 1.347 1.594 1.721 1.594	0.630 0.527 0.630 0.774 1.021 1.100 1.180 1.254 1.347 1.594 1.594 1.385
(dB/m)	211.0	242.7 234.1	251.9	251 0	5.	211.0	211.0 251.9	211.0 251.9 309.7	211.0 251.9 309.7 408.4	211.0 251.9 309.7 408.4	211.0 251.9 309.7 408.4 426.6	211.0 251.9 309.7 408.4 426.6 471.9	211.0 251.9 309.7 408.4 426.6 471.9	211.0 251.9 309.7 408.4 426.6 471.9 481.1	211.0 2211.0 2251.9 309.7 408.4 426.6 471.9 471.9 501.5	211.0 251.9 309.7 408.4 426.6 471.9 481.1 501.5 538.8	211.0 251.9 309.7 408.4 426.6 471.9 481.1 501.5 538.8 579.8	211.0 251.9 309.7 408.4 426.6 440.1 471.9 481.1 579.8 637.5 688.3	211.0 251.9 309.7 408.4 426.6 440.1 471.9 481.1 501.5 538.8 579.8 637.5 637.5	211.0 251.9 309.7 408.4 471.9 471.9 501.5 538.8 637.5 637.5 553.8	211.0 221.0 221.0 309.7 408.4 471.9 471.9 501.5 538.8 579.8 637.5 637.5 553.8
	1.004	1.003	1.004	0 998))))	0.997	0.997	0.997 0.994 1.000	0.997 0.994 1.000	0.997 0.994 1.000 1.009	0.997 0.994 1.000 1.009 1.010	0.997 0.994 1.000 1.009 1.010	0.997 0.994 1.000 1.009 1.010 1.015	0.997 0.994 1.000 1.010 1.015 1.019	0.997 0.994 1.000 1.009 1.010 1.019 1.019	0.997 0.994 1.000 1.010 1.010 1.019 1.020 1.020	0.997 0.994 1.000 1.009 1.010 1.015 1.020 1.023	0.997 0.994 1.000 1.010 1.015 1.020 1.023 1.023	0.997 0.994 1.000 1.010 1.015 1.019 1.020 1.023 1.023 1.023	0.997 0.994 1.000 1.009 1.010 1.019 1.020 1.023 1.023 1.023	0.997 0.994 1.000 1.000 1.010 1.010 1.020 1.023 1.023 1.020 1.020
(s/ш)	1527.6	1529.5 1526.5	1528.4	1518.9) .) .	1516.6	1516.6	1516.6 1512.5 1521.9	1516.6 1512.5 1521.9	1516.6 1512.5 1521.9 1524.2	1516.6 1512.5 1521.9 1524.2 1535.7	1516.6 1512.5 1524.2 1535.7 1536.1	1516.6 1512.5 1524.2 1535.7 1536.1 1544.2	1512.5 1512.5 1524.2 1535.7 1536.1 1544.2 1550.9	1516.6 1521.9 1524.2 1535.7 1536.1 1550.9 1552.5	1516.6 1512.5 1524.2 1535.7 1536.1 1550.9 1552.5 1552.5	1516.6 1512.5 1524.2 1535.7 1536.1 1546.6 1552.5 1550.9	1512.5 1524.2 1524.2 1535.7 1536.1 1546.6 1550.9 1552.5 1560.4	1516.6 1512.5 1524.2 1524.2 1535.7 1546.0 1550.9 1557.2 1560.4 1557.2	1516.6 1524.2 1524.2 1535.7 1536.1 1550.9 1552.5 1560.4 1556.8 1556.8	1516.6 1512.5 1524.2 1535.7 1536.1 1544.2 1550.9 1552.5 1560.4 1556.8 1556.8 1551.3
Cm)	← (N 60	4	2	,	တ	9 ~	9 ~ 8		. 6 . 8 . 9 . 0 . 0	6 7 8 8 10 11 11 11 11 11 11 11 11 11 11 11 11	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 8 8 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	0	0	, o r e e c c t t t t t t t t t t t t t t t t	o	0	0 0 0 0 1 1 1 2 1 1 0 0 0 0 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

date: 10 Feb 94 depth: 24 m Station: KW-88-2 long: 82-11.97 W Cruise: Iselin lat: 24-45.01 N

24.0 m 400 kHz calc for: 19.7 deg C 36.0 o/oo

6.1 cm thickness smp core:

Sorting (phi)													
MGS (phi)													
% Clay													
% Silt													
% Sand													
% Gr													
•	2.04		1.85		1.49		1.52		1.35		1.21		1.18
Density (g/cm³)	1.58		1.63		1.72		1.71		1.77		1.82		1.83
Porosity Density % (g/cm³)	90'.29		64.92		59.84		60.26		57.41		54.79		54.18
¥	0.493	0.601	0.562	0.670	0.725	0.737	0.670	0.702	0.972	1.363	1.856	1.610	1.856
Alpha (dB/m)	197.4	240.4	224.6	268.1	290.0	294.9	268.1	280.8	388.7	545.2	742.6	643.9	742.6
V _P Ratio	1.005	1.012	1.008	1.010	1.016	1.013	1.014	1.015	1.017	1.019	1.015	1.027	1.022
V _p (m/s)	1529.5	1539.6	1533.0	1536.5	1546.2	1541.9	1543.4	1544.2	1548.1	1550.5	1544.2	1562.4	1554.4
Depth (cm)		7	က	4	2	9	7	∞	6	9	12	13	4

Cruise: Iselin Station: KW-93 date: 10 Feb 94 lat: 24-44.99 N long: 82-11.99 W depth: 24 m

calc for: 19.0 deg C 36.0 o/oo 24.0 m 400 kHz

Sorting (phi)	3.92 5.32	5.63	3.83 5.39	3.97	3.82	3.68	4.85	4.56	3.90	4.12	4.28	4.50	
MGS (phi)	8.13	4.60	3.56	7.19	7.04	7.47	6.53	6.69	8.32	8.02	7.15	6.98	
% Clay	51.07	30.08	31.3 <i>/</i> 20.89	40.28	38.54	41.72	45.94	42.42	52.26	50.58	45.37	46.05	
% Silt	33.84	34.07	43.74 20.48	41.42	42.52	44.88	30.99	32.25	29.43	24.54	27.79	23.93	
% Sand	22.03	17.75	20.89 29.78	15.53	16.28	12.25	15.03	14.40	15.79	23.54	22.79	23.05	
% Gr	0.83	18.10	3.99 28.85	2.76	2.66	1.15	11.05	10.93	2.53	1.34	4.06	6.97	
ø	1.52	1.21	9. 4 9. 4	1.18	1.18	1.22	1.28	1.30	1.45	1.28	1.28	1.22	1.09
Density (g/cm³)	1.69	1.82	1.87 1.88	1.83	1.83	1.81	1.79	1.78	1.74	1.79	1.79	1.81	1.86
Porosity %	60.39	54.77	51.65 50.99	54.07	54.10	54.86	56.23	56.60	59.25	56.20	56.12	54.88	52.27
¥		1.301	1.205	0.935	1.007	0.853	1.007	1.076	1.103	0.969	1.007	1.007	
Alpha (dB/m)		520.5	482.0 441.2	374.1	402.8	341.2	402.8	430.3	441.2	387.5	402.8	402.8	
V _p Ratio		1.029	1.037	1.022	1.049	1.008	1.003	1.010	1.002	1.002	1.006	1.007	
V _ρ (π/s)		1563.9	1576.0 1568.1	1553.6	1593.6	1531.9	1524.8	1535.3	1523.2	1523.2	1529.4	1529.7	
Depth (cm)	- 5	202	30 45	200	09	2	8	8	9	110	120	130	140

Cruise: Iselin Station: KW-123-1 date: 13 Feb 94 lat: 24-36.68 N long: 82-51.19 W depth: 27 m

calc for: 23.6 deg C 36.0 o/oo 27.0 m 400 kHz

Sorting (phi)	3.32	3.13		3.06		3.14		3.29		3.20		3.18		3.25		3.54		3.43		3.40		3.41		3.51	-	3.56		3.40		3.47	
MGS (phi)	6.63	6.43		6.54		6.42		6.21		6.49		6.53		6.46		90'.		6.59		6.63		6.36		6.62		6.53		6.37		6.77	
% Clay	38.75	31.01		35.86		35.40		30.67		38.06		38.09		37.98		44.91		35.08		36.77		33.66		38.61		33.55		33.70		40.82	
% Silt	37.60	43.79		38.44		40.18		40.53		36.95		38.37		38.06		33.29		41.13		39.41		37.52		39.09		40.05		36.97		35.86	
% Sand	23.65	25.19		25.14		. 23.96		28.41		24.75		22.84		22.98		20.70		23.74		23.70		27.75		21.74		25.71		28.74		22.40	
% Gr	0.01	0.01		0.56		0.46		0.39		0.24		0.70		0.98		1.09		0.05		0.13		1.08		0.56		69.0		0.59		0.92	
ů	2.27	1.65		1.44		1.39		1.26		1.26		1.27		1.27		1.29		1.25		1.23		1.18		1.18		1.15		1.16		1.16	
Density (g/cm³)	1.55	1.68		1.74		1.75		1.80		1.80		1.79		1.79		1.79		1.80		1.81		1.82		1.84		1.86		1.86		1.86	
Porosity Density % (g/cm³)	69.40	62.30		58.96		58.24		55.72		55.72		55.91		55.95		56.36		55.56		55.09		54.20		54.06		53.43		53.65		53.81	
¥	0.429	0.620	0.675	0.786	0.820	0.922	0.820	0.786	0.786	0.786	0.802	0.899	0.857	0.899	0.922	0.899	0.820	0.820	0.878	0.922	0.899	0.820	0.947	0.947	0.878	0.838	0.878	0.878	0.857	0.857	0.857
Alpha (dB/m)	171.4	248.2	270.1	314.3	327.9	368.8	327.9	314.3	314.3	314.3	320.9	359.6	342.9	359.6	368.8	359.6	327.9	327.9	351.0	368.8	359.6	327.9	378.7	378.7	351.0	335.2	351.0	351.0	342.9	342.9	342.9
V _p Ratio	1.001	1.008	1.011	1.014	1.015	1.014	1.018	1.019	1.016	1.018	1.019	1.023	1.023	1.021	1.020	1.019	1.022	1.022	1.022	1.021	1.019	1.018	1.025	1.026	1.022	1.023	1.026	1.027	1.027	1.025	1.024
(m/s)	1533.9	1543.6 1547.1	1549.1	1553.0	1555.0	1553.4	1558.5	1560.5	1556.2	1558.9	1561.3	1567.4	1567.0	1563.7	1562.5	1560.9	1564.9	1564.9	1564.9	1564.1	1560.1	1559.7	1569.4	1571.4	1565.3	1567.4	1571.4	1573.0	1573.0	1569.8	1568.2
Depth (cm)	- 0	N W	4	ß	9	7	œ	တ	5	Ŧ	12	13	14	15	16	17	9	19	20	7	22	23	24	52	5 6	27	28	53	ဓ	31	32

Cruise: Iselin Station: KW-123-2 date: 13 Feb 94 lat: 24-36.68 N long: 82-51.19 W depth: 27 m

lat: 24-36.68 N long: 82-51.19 W depth: 27 m calc for: 23.6 deg C 36.0 o/oo 27.0 m 400 kHz

smp core: 6.1 cm thickness

Sorting (phi)

MGS (phi)

Vp Vp Ratio Alpha k Porosity Density e % Gr % Sand % Silt % Clay 1533.4 1.001 211.0 0.527 68.88 1.56 2.21 2.2											
1.001 211.0 0.527 68.88 1.56 1.011 204.0 0.510 1.70 1.016 304.1 0.760 1.75 1.020 315.5 0.789 58.19 1.75 1.023 334.5 0.836 57.08 1.77 1.024 356.4 0.891 56.80 1.78 1.024 356.4 0.891 56.30 1.79 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 55.53 1.80 1.021 341.4 0.854 55.53 1.80 1.022 373.2 0.933 1.79 1.020 373.2 0.931 55.84 1.79 1.022 356.4 0.891 55.84 1.79 1.022 356.4 0.891 55.84 1.79 1.020 327.9 0.820 54.71 1.81 1.021 341.4 0.854 54.06 1.84 1.022 341.4 0.854 54.06 1.84 <t< th=""><th>V_p (m/s)</th><th>V_p Ratio</th><th></th><th>¥</th><th>Porosity %</th><th>Density (g/cm³)</th><th>0</th><th>% Gr</th><th>% Sand</th><th>% Sit</th><th>% Clay</th></t<>	V _p (m/s)	V _p Ratio		¥	Porosity %	Density (g/cm³)	0	% Gr	% Sand	% Sit	% Clay
1.011 204.0 0.510 1.013 309.7 0.774 61.03 1.70 1.016 304.1 0.760 1.75 1.020 315.5 0.789 58.19 1.75 1.023 334.5 0.836 57.08 1.77 1.024 356.4 0.891 56.80 1.77 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 55.53 1.80 1.021 341.4 0.854 55.53 1.80 1.022 356.4 0.891 55.84 1.79 1.022 356.4 0.891 55.84 1.79 1.022 356.4 0.891 55.84 1.79 1.020 327.9 0.820 54.71 1.81 1.019 341.4 0.854 54.06 1.84 1.022 34.5 0.836 54.06 1.84 <t< td=""><td>1533.4</td><td>4</td><td>211.0</td><td>0.527</td><td>68.88</td><td>1.56</td><td>2.21</td><td></td><td></td><td></td><td></td></t<>	1533.4	4	211.0	0.527	68.88	1.56	2.21				
1.013 309.7 0.774 61.03 1.70 1.016 304.1 0.760 1.75 1.020 315.5 0.789 58.19 1.75 1.023 334.5 0.836 57.08 1.77 1.024 356.4 0.891 56.80 1.78 1.022 356.4 0.891 56.80 1.78 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 55.96 1.79 1.022 356.4 0.891 55.96 1.79 1.022 356.4 0.891 55.96 1.79 1.022 356.4 0.891 55.84 1.79 1.020 327.9 0.820 54.71 1.81 1.020 327.9 0.854 54.48 1.82 1.021 334.5 0.836 54.06 1.84 1.022 334.5 0.836 54.06	1548.6	-	204.0	0.510							
1.016 304.1 0.760 1.023 334.5 0.789 58.19 1.75 1.023 334.5 0.836 57.08 1.77 1.024 356.4 0.891 56.80 1.77 1.022 356.4 0.891 56.80 1.78 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 55.96 1.79 1.022 356.4 0.891 55.84 1.79 1.022 356.4 0.891 55.84 1.79 1.020 327.9 0.820 54.71 1.81 1.020 327.9 0.854 54.48 1.82 1.019 341.4 0.854 54.06 1.84 1.022 34.5 0.836 54.06 1.84 1.025 348.7 0.874 1.86 1.025 348.7 0.854 1.86 1.027 <td>1551.4</td> <td>_</td> <td>309.7</td> <td>0.774</td> <td>61.03</td> <td>1.70</td> <td>1.57</td> <td></td> <td></td> <td></td> <td></td>	1551.4	_	309.7	0.774	61.03	1.70	1.57				
1.020 315.5 0.789 58.19 1.75 1.023 334.5 0.836 57.08 1.77 1.024 356.4 0.836 57.08 1.77 1.022 356.4 0.891 56.80 1.78 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 55.53 1.80 1.020 373.2 0.933 1.79 1.021 341.4 0.854 55.56 1.79 1.022 356.4 0.891 55.96 1.79 1.022 356.4 0.891 55.84 1.79 1.021 341.4 0.854 55.96 1.79 1.020 327.9 0.820 54.71 1.81 1.021 341.4 0.854 54.08 1.82 1.022 341.4 0.854 54.06 1.84 1.022 341.4 0.854 1.82 1.022 341.4 0.854 1.84 1.025 348.7 0.836 54.06 1.84 <t< td=""><td>1556.5</td><td>_</td><td>304.1</td><td>0.760</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1556.5	_	304.1	0.760							
1.023 334.5 0.836 57.08 1.77 1.024 356.4 0.891 56.80 1.77 1.022 356.4 0.891 56.80 1.78 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 55.53 1.80 1.020 373.2 0.933 1.79 1.022 356.4 0.891 55.96 1.79 1.022 356.4 0.891 55.84 1.79 1.022 356.4 0.891 55.84 1.79 1.021 341.4 0.854 54.48 1.82 1.020 327.9 0.854 54.07 1.82 1.021 341.4 0.854 54.06 1.84 1.022 341.4 0.854 54.06 1.84 1.022 341.4 0.854 1.84 1.025 348.7 0.836 54.06 1.84 1.024 341.4 0.854 1.86 <t< td=""><td>1562.9</td><td>-</td><td>315.5</td><td>0.789</td><td>58.19</td><td>1.75</td><td>1.39</td><td></td><td></td><td></td><td></td></t<>	1562.9	-	315.5	0.789	58.19	1.75	1.39				
1.023 334.5 0.836 57.08 1.77 1.024 356.4 0.891 56.80 1.78 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 55.53 1.80 1.020 373.2 0.933 1.79 1.022 356.4 0.891 55.84 1.79 1.022 356.4 0.891 55.84 1.79 1.022 356.4 0.891 55.84 1.79 1.021 341.4 0.854 54.48 1.82 1.019 341.4 0.854 54.48 1.82 1.021 341.4 0.854 54.06 1.84 1.022 341.4 0.854 1.82 1.022 341.4 0.854 1.84 1.025 348.7 0.836 54.06 1.84 1.025 348.7 0.854 1.84 1.024 341.4 0.854 1.86 1.025 348.7 <td>1566.5</td> <td>_</td> <td>334.5</td> <td>0.836</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	1566.5	_	334.5	0.836							-
1.024 356.4 0.891 56.80 1.78 1.021 341.4 0.854 56.80 1.78 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 55.53 1.80 1.023 341.4 0.854 55.53 1.80 1.020 373.2 0.933 1.79 1.022 356.4 0.891 55.84 1.79 1.022 356.4 0.891 55.84 1.79 1.022 356.4 0.891 55.84 1.79 1.021 341.4 0.854 54.48 1.82 1.019 341.4 0.854 54.48 1.82 1.021 334.5 0.836 54.07 1.84 1.022 348.7 0.872 54.06 1.84 1.024 341.4 0.854 1.84 1.025 348.7 0.836 54.06 1.84 1.025 348.7 0.854 1.84 1.025 334.5 0.935 54.73 1.84 <t< td=""><td>1566.5</td><td>_</td><td>334.5</td><td>0.836</td><td>57.08</td><td>1.77</td><td>1.33</td><td></td><td></td><td></td><td></td></t<>	1566.5	_	334.5	0.836	57.08	1.77	1.33				
1.022 356.4 0.891 56.80 1.78 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 56.30 1.79 1.023 341.4 0.854 56.53 1.80 1.020 373.2 0.933 1.80 1.022 356.4 0.891 55.84 1.79 1.022 356.4 0.891 55.84 1.79 1.017 356.4 0.891 55.84 1.79 1.020 327.9 0.820 54.71 1.81 1.019 341.4 0.854 54.48 1.82 1.022 341.4 0.854 54.07 1.82 1.021 334.5 0.836 54.07 1.84 1.025 348.7 0.872 54.06 1.84 1.024 341.4 0.854 1.86 1.025 348.7 0.836 1.84 1.025 348.7 0.854 1.86 1.027 382.4 0.935 54.73 1.84	1568.5	_	356.4	0.891							
1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 56.30 1.79 1.021 341.4 0.854 55.53 1.80 1.020 373.2 0.933 1.80 1.022 356.4 0.891 55.96 1.79 1.022 356.4 0.891 55.84 1.79 1.022 356.4 0.891 55.84 1.79 1.020 327.9 0.820 54.71 1.81 1.019 341.4 0.854 54.48 1.82 1.022 341.4 0.854 54.07 1.82 1.021 334.5 0.836 54.06 1.84 1.025 348.7 0.872 54.06 1.84 1.024 341.4 0.854 1.86 1.025 348.7 0.854 1.84 1.025 348.7 0.854 1.86 1.026 373.2 0.933 54.73 1.84	1565.3	_	356.4	0.891	56.80	1.78	1.32				
1.021 341.4 0.854 56.30 1.79 1.023 341.4 0.854 55.53 1.80 1.020 373.2 0.933 1.80 1.020 373.2 0.933 1.79 1.022 356.4 0.891 55.84 1.79 1.022 356.4 0.891 55.84 1.79 1.020 327.9 0.820 54.71 1.81 1.020 327.9 0.854 54.48 1.82 1.019 341.4 0.854 54.48 1.82 1.022 341.4 0.854 54.06 1.84 1.022 334.5 0.836 54.06 1.84 1.024 341.4 0.854 1.86 1.025 348.7 0.854 1.86 1.024 341.4 0.854 1.86 1.025 382.4 0.956 1.84 1.027 382.4 0.933 54.73 1.84	1563.7	_	341.4	0.854							
1.021 341.4 0.854 55.53 1.80 1.020 373.2 0.933 1.80 1.021 356.4 0.891 55.96 1.79 1.022 356.4 0.891 55.84 1.79 1.017 356.4 0.891 55.84 1.79 1.020 327.9 0.820 54.71 1.81 1.019 341.4 0.854 54.48 1.82 1.022 341.4 0.854 54.07 1.82 1.021 334.5 0.836 54.07 1.82 1.022 334.5 0.836 54.06 1.84 1.024 341.4 0.854 1.84 1.025 348.7 0.876 1.84 1.024 341.4 0.854 1.86 1.027 382.4 0.956 1.87 1.026 373.2 0.933 54.73 1.84	1563.3	_	341.4	0.854	56.30	1.79	1.29				
1.023 341.4 0.854 55.53 1.80 1.020 373.2 0.933 1.79 1.022 356.4 0.891 55.96 1.79 1.022 356.4 0.891 55.84 1.79 1.017 356.4 0.891 55.84 1.79 1.020 327.9 0.820 54.71 1.81 1.019 341.4 0.854 54.48 1.82 1.022 341.4 0.854 54.07 1.82 1.021 334.5 0.836 54.07 1.84 1.025 348.7 0.874 1.84 1.024 341.4 0.854 1.84 1.025 348.7 0.854 1.84 1.027 382.4 0.956 1.84 1.027 382.4 0.933 54.73 1.84	1564.1	_	341.4	0.854							
1.020 373.2 0.933 1.017 356.4 0.891 55.96 1.79 1.022 356.4 0.891 55.84 1.79 1.022 356.4 0.891 55.84 1.79 1.017 356.4 0.891 55.84 1.79 1.020 327.9 0.820 54.71 1.81 1.019 341.4 0.854 54.48 1.82 1.022 341.4 0.854 54.07 1.82 1.021 334.5 0.836 54.07 1.84 1.025 348.7 0.874 0.854 1.84 1.024 341.4 0.854 1.86 1.84 1.025 392.2 0.981 53.64 1.86 1.027 382.4 0.956 1.84 1.86 1.026 373.2 0.933 54.73 1.84	1566.5	_	341.4	0.854	55.53	1.80	1.25				
1.017 356.4 0.891 55.96 1.79 1.022 356.4 0.891 55.84 1.79 1.022 356.4 0.891 55.84 1.79 1.017 356.4 0.891 55.84 1.79 1.020 327.9 0.820 54.71 1.81 1.019 341.4 0.854 54.48 1.82 1.021 341.4 0.854 54.07 1.82 1.021 334.5 0.836 54.07 1.82 1.022 334.5 0.836 1.84 1.024 341.4 0.854 1.84 1.025 334.7 0.956 1.84 1.027 382.4 0.956 1.84 1.026 373.2 0.933 54.73 1.84	1562.1		373.2	0.933							
1.022 356.4 0.891 1.022 356.4 0.891 55.84 1.79 1.017 356.4 0.891 55.84 1.79 1.020 327.9 0.820 54.71 1.81 1.019 341.4 0.854 54.48 1.82 1.022 341.4 0.854 54.07 1.82 1.021 334.5 0.836 54.07 1.82 1.025 348.7 0.872 54.06 1.84 1.024 341.4 0.854 1.86 1.025 348.7 0.854 1.84 1.025 348.7 0.854 1.84 1.025 348.7 0.854 1.86 1.027 382.4 0.956 1.84 1.026 373.2 0.933 54.73 1.84	1558.5	-	356.4	0.891	55.96	1.79	1.27				
1.022 356.4 0.891 55.84 1.79 1.017 356.4 0.891 55.84 1.79 1.020 327.9 0.820 54.71 1.81 1.019 341.4 0.854 54.48 1.82 1.022 341.4 0.854 54.07 1.82 1.021 334.5 0.836 54.07 1.82 1.022 334.5 0.872 54.06 1.84 1.025 348.7 0.872 54.06 1.84 1.024 341.4 0.854 1.86 1.025 382.4 0.956 1.84 1.027 382.4 0.956 1.026 373.2 0.933 54.73 1.84	1565.7	-	356.4	0.891							
1.017 356.4 0.891 1.020 327.9 0.820 54.71 1.81 1.019 341.4 0.854 54.48 1.82 1.022 341.4 0.854 54.08 1.82 1.021 334.5 0.836 54.07 1.82 1.022 334.5 0.836 54.06 1.84 1.025 348.7 0.872 54.06 1.84 1.024 341.4 0.854 1.86 1.025 392.2 0.981 53.64 1.86 1.027 382.4 0.956 1.026 373.2 0.933 54.73 1.84	1566.1	_	356.4	0.891	55.84	1.79	1.26				
1.020 327.9 0.820 54.71 1.81 1.019 341.4 0.854 54.48 1.82 1.019 341.4 0.854 54.48 1.82 1.022 341.4 0.854 54.07 1.82 1.022 334.5 0.836 54.07 1.82 1.025 348.7 0.872 54.06 1.84 1.024 341.4 0.854 1.86 1.025 392.2 0.981 53.64 1.86 1.027 382.4 0.956 1.026 373.2 0.933 54.73 1.84	1558.1	_	356.4	0.891							
1.019 341.4 0.854 1.019 341.4 0.854 54.48 1.82 1.022 341.4 0.854 54.48 1.82 1.021 334.5 0.836 54.07 1.82 1.022 334.5 0.836 1.84 1.025 348.7 0.872 54.06 1.84 1.024 341.4 0.854 1.86 1.025 392.2 0.981 53.64 1.86 1.027 382.4 0.956 1.026 373.2 0.933 54.73 1.84	1562.1	_	327.9	0.820	54.71	1.81	1.21				
1.019 341.4 0.854 54.48 1.82 1.022 341.4 0.854 1.82 1.021 334.5 0.836 54.07 1.82 1.022 334.5 0.836 1.84 1.84 1.025 348.7 0.872 54.06 1.84 1.024 341.4 0.854 1.86 1.025 392.2 0.981 53.64 1.86 1.027 382.4 0.956 1.026 373.2 0.933 54.73 1.84	1560.5	_	341.4	0.854							
1.022 341.4 0.854 1.021 334.5 0.836 54.07 1.82 1.022 334.5 0.836 54.06 1.84 1.025 348.7 0.872 54.06 1.84 1.024 341.4 0.854 1.86 1.025 392.2 0.981 53.64 1.86 1.027 382.4 0.956 1.026 373.2 0.933 54.73 1.84	1561.3	-	341.4	0.854	54.48	1.82	1.20				
1.021 334.5 0.836 54.07 1.82 1.022 334.5 0.836 1.84 1.025 348.7 0.872 54.06 1.84 1.024 341.4 0.854 1.86 1.025 392.2 0.981 53.64 1.86 1.027 382.4 0.956 1.84 1.026 373.2 0.933 54.73 1.84	1566.1	_	341.4	0.854							
1.022 334.5 0.836 1.025 348.7 0.872 54.06 1.84 1.024 341.4 0.854 1.86 1.025 392.2 0.981 53.64 1.86 1.027 382.4 0.956 1.026 373.2 0.933 54.73 1.84	1564.5	_	334.5	0.836	54.07	1.82	1.18				
1.025 348.7 0.872 54.06 1.84 1.024 341.4 0.854 1.86 1.025 392.2 0.981 53.64 1.86 1.027 382.4 0.956 1.026 373.2 0.933 54.73 1.84	1566.1	_	334.5	0.836							
1.024 341.4 0.854 1.025 392.2 0.981 53.64 1.86 1.027 382.4 0.956 1.026 373.2 0.933 54.73 1.84	1569.3	_	348.7	0.872	54.06	1.84	1.18				
1.025 392.2 0.981 53.64 1.86 1.027 382.4 0.956 1.026 373.2 0.933 54.73 1.84	1568.9	_	341.4	0.854							
1.027 382.4 0.956 1.026 373.2 0.933 54.73 1.84	1570.1	_	392.2	0.981	53.64	1.86	1.16				
1.026 373.2 0.933 54.73 1.84	1573.7	_	382.4	0.956							
	1570.9		373.2	0.933	54.73	1.84	1.21				

Cruise: Iselin Station: KW-127 date: 13 Feb 94 lat: 24-36.68 N long: 82-51.20 W depth: 27 m

calc for: 24.0 deg C 36.0 o/oo 27.0 m 400 kHz

smp core: 7.6

: 7.6 cm thickness

Sorting (phi)	3.51	3.48	3 92	4.05	4 00	3.90	4.20	4.11	4.67	3 95	4.50	4.46	4.56	5.05
MGS (phi)	6.39	6.42	6.59	00.9	5.85	5.82	5.54	5.58	5.10	5.91	5.18	5.32	5.28	4.59
% Clay	31.98	31.28	33.31	28.12	28.92	26.99	26.16	25.89	22.94	28.38	25.14	27.14	27.98	25.06
% Silt	38.96	42.12	37.57	30.52	28.37	30.22	22.90	24.64	21.19	29.57	19.56	23.99	20.85	16.60
% Sand	28.80	26.15	26.51	38.68	38.06	41.33	46.98	47.71	48.67	40.61	48.58	43.61	45.16	47.14
% Gr	0.25	0.45	2.61	2.68	4.65	1.46	3.95	1.76	7.20	1.44	6.72	5.25	9.00	11.19
Ü		1.13	1.17	1.12	1.12	1.17	1.03	1.13	1.08	1.04	1.01	0.97	0.98	0.93
Density (g/cm³)		1.84	1.83	1.90	1.86	1.90	1.91	1.87	1.89	1.91	1.92	1.94	1.93	1.94
Porosity %		53.09	53.90	52.80	52.73	53.89	50.80	52.95	51.83	50.96	50.36	49.16	49.53	48.05
~		0.953	0.936	1.286	1.484	1.286	1.151	1.388	1.388	1.211	1.746			
Alpha (dB/m)		381.3	374.4	514.3	593.5	514.3	460.6	555.0	555.0	484.3	698.2			
V _p Ratio		1.037	1.030	1.039	1.045	1.041	1.036	1.044	1.044	1.048	1.035			
V _p (m/s)		1588.8	1578.6	1592.5	1601.2	1596.2	1587.9	1599.8	1599.8	1605.9	1585.9			
Depth (cm)	-	6	20	ဓ	9	20	09	2	80	6	9	19	120	130

Cruise: Planet Station: KWPL 94-1 date: 11 Feb 95 lat: 24-36.80 N long: 82-50.89 W depth: 26 m

calc for: 21.0 deg C 36.0 o/oo 26.0 m 400 kHz

smp core: 6.1 cm thickness

Sorting (phi)

MGS (phi)																													
% Clay																													
% Silt																													
% Sand																													
% G																													
Φ	3.08	2 47	-	1.61		1.53		1.58		1.53		1.45		1.44		1.32		1.59		1.34		1.30		1.35		1.36		1.27	
Density (g/cm³)	1.46	4 58	3	1.70		1.73		1.72		1.73		1.75		1.75		1.79		1.71		1.79		1.80		1.78		1.78		1.82	
Porosity Density % (g/cm³)	75.50	68 45		61.65		60.40		61.18		60.41		59.26		59.07		56.88		61.41		57.23		56.51		57.51		57.70		55.97	
¥	0.425	0.493	0.653	0.786	0.786	0.750	0.698	0.729	0.757	0.786	0.764	0.723	0.802	0.864	1.049	0.771	0.802	0.927	0.854	0.845	0.827	0.874	0.845	0.794	0.854	0.854	0.854	0.916	0.894
Alpha (dB/m)	170.0	197.1 223.8	261.0	314.6	314.6	299.9	279.1	291.7	302.7	314.6	305.6	289.1	320.9	345.6	419.6	308.5	320.9	370.8	341.8	338.1	331.0	349.5	338.1	317.7	341.8	341.8	341.8	366.3	357.6
V _p Ratio	0.995	0.999	1.007	1.015	1.016	1.013	1.011	1.012	1.014	1.014	1.014	1.013	1.016	1.014	1.004	1.002	1.004	1.006	1.016	1.017	1.015	1.016	1.016	1.020	1.021	1.020	1.018	1.020	1.022
^۷ ه)	1516.8	1523.7 1528.3	1535.7	1547.4	1549.0	1544.7	1541.9	1543.5	1545.8	1547.0	1546.2	1544.7	1549.8	1547.0	1531.0	1528.3	1530.6	1534.5	1550.2	1551.0	1548.6	1549.0	1549.4	1555.8	1556.6	1555.0	1552.6	1555.4	1559.0
Depth (cm)	← (N 65	4	2	ဖ	7	∞	တ	10		12	13	4	15	16	17	18	19	20	21	22	23	54	22	5 8	27	28	53	30

Cruise: Planet Station:KWPL 94-2 date: 11 Feb 95 lat: 24-36.80 N long: 82-50.89 W depth: 26 m

calc for: 21.0 deg C 36.0 o/oo 26.0 m 400 kHz

smp core: 6.1 cm thickness

Sorting (phi)

MGS (phi)

(m) 151 152 152 152 152 152 152 152 152 152	V _p (m/s) (516.8 1522.5 1528.7	V _p Ratio 0.995 0.998 1.002	Alpha (dB/m) 165.4 217.9 219.5	k 0.414 0.545 0.549	Porosity Density % (g/cm³)	Density (g/cm³)	O	%	% Sand	% Silt	% Clay
1533.3 1539.2 1543.9 1546.6 1549.8 1551.8		1.005 1.009 1.012 1.014 1.016	217.9 274.1 286.1 293.8 296.4 310.5	0.545 0.685 0.715 0.734 0.741 0.776						•	
1553.0 1556.2 1557.4 1552.2 1551.8 1551.8 1554.6	00 # 00 0 00 00	1.018 1.020 1.021 1.018 1.019 1.019	329.6 340.1 340.1 326.2 313.5 329.6 333.0	0.824 0.850 0.850 0.816 0.784 0.824 0.850							
1551.8 1552.2 1552.2 1548.6 1551.8 1555.8		1.017 1.020 1.018 1.015 1.020	329.6 329.6 340.1 326.2 333.0 333.0	0.824 0.850 0.850 0.832 0.832							
1558.2 1557.0 1555.4 1559.0 1564.2		1.022 1.021 1.020 1.026 1.026	340.1 347.6 333.0 351.5 387.3 377.5	0.850 0.869 0.879 0.968							

Crulse: Planet Station: KWPL 99-1 date: 12 Feb 95 lat: 24-36.80 N long: 82-50.89 W depth: 26 m

calc for: 21.0 deg C 36.0 o/oo 28.0 m 400 kHz

smp core: 6.1 cm thickness

Sorting (phi)

MGS (phi)																															
% Clay																															
% Silt																															
% Sand																															
% Gr																															
ø	2.34	1 75) :	1.58) !	1.48		1.44		1.42		1.45	:	1.39		1.30		1.38)) :	1.34		1.28		1.33		1.30		1.35		1.23	
Density (g/cm³)	1.55	1 66	2	1.71		1.74		1.75		1.76		1.75		1.77		1.80		1.77		1.79		1.81		1.79		1.80		1.79		1.83	
Porosity Density % (g/cm³)	70.10	63.64		61.29		59.74		59.05		58.74		59.17		58.13		56.56		58.05		57.29		56.17		57.15		56.53		57.50		55.14	
×	0.549	0.668	0.709	0.769	0.807	0.792	0.762	0.755	0.784	0.792	0.792	0.799	0.807	0.824	0.860	0.841	0.776	0.816	0.869	0.807	0.850	0.841	0.832	0.860	0.921	0.869	0.860	0.832	0.899	0.910	0.899
Alpha (dB/m)	219.5	267.4	283.6	307.6	322.9	316.6	304.7	301.9	313.5	316.6	316.6	319.7	322.9	329.6	343.8	336.5	310.5	326.2	347.6	322.9	340.1	336.5	333.0	343.8	368.3	347.6	343.8	333.0	359.6	363.9	359.6
V _p Ratio	1.002	1.010	1.012	1.015	1.017	1.015	1.014	1.015	1.017	1.017	1.016	1.016	1.017	1.019	1.018	1.015	1.013	1.013	1.016	1.016	1.017	1.017	1.015	1.015	1.014	1.016	1.017	1.018	1.017	1.020	1.020
۷ _p (۳/s)	1527.9	1540.3	1543.9	1547.8	1551.0	1548.2	1545.8	1548.6	1550.6	1550.6	1550.2	1550.2	1551.4	1553.8	1553.0	1548.6	1544.7	1545.4	1549.4	1549.8	1551.8	1551.0	1548.6	1547.8	1546.6	1550.2	1551.0	1552.2	1550.6	1555.0	1556.2
Depth (cm)	۲- ر	v 6	4	5	9	7	œ	0	5	7	12	13	14	15	16	17	18	19	20	77	22	23	24	22	5 8	27	78	53	30	31	32

Station: KWPL 99-2 date: 12 Feb 96 long: 82-50.89 W depth: 26 m Cruise: Planet lat: 24-36.80 N Sorting (phi)

MGS (phi)

lat: 24-36.80 N	Z 08.90	long: 8,	long: 82-60.89 W		depth: 26 m						
calc for	calc for: 21.0 deg C	g C 36.0 o/oo	00/0	26.0 m	400 kHz						
smp core:	ë	6.1 cm t	6.1 cm thickness								
Depth (cm)	v (۳/s)	V _p Ratio	Alpha (dB/m)	¥	Porosity Density % (g/cm³)	Density (g/cm³)	ø	% 5	% Sand	% Silt	% Clay
-	1526.8	1.001	215.5	0.539							
7	1534.9	1.006	239.0	0.598							
ო	1541.5	1.01	267.2	0.668							
4	1544.3	1.013	286.2	0.716							
S	1549.4	1.016	311.2	0.778							
ဖ	1546.6	1.014	281.2	0.703							
7	1545.0	1.013	281.2	0.703							
œ	1547.4	1.015	294.1	0.735							
တ	1549.8	1.016	305.2	0.763							
5	1552.2	1.018	314.2	0.786							
=	1551.4	1.017	314.2	0.786							
12	1551.0	1.017	314.2	0.786							
13	1550.6	1.017	311.2	0.778							
4	1552.6	1.018	317.4	0.793							
ŧ	1555.8	1.020	320.6	0.801							
9	1554.2	1.019	317.4	0.793							
17	1555.8	1.020	330.6	0.827							
8	1554.2	1.019	357.3	0.893							
19	1556.2	1.020	357.3	0.893							
8	1557.4	1.021	341.4	0.854							
7	1555.8	1.020	341.4	0.854							
8	1554.2	1.019	375.1	0.938							
ន	1555.0	1.020	365.9	0.915							
24	1551.4	1.017	334.1	0.835							
ĸ	1549.4	1.016	345.2	0.863							
8	1551.8	1.017	323.8	0.810							
22	1554.6	1.019	345.2	0.863							
8	1552.2	1.018	357.3	0.893							
ଷ	1553.8	1.019	349.1	0.873							
ଚ	1552.6	1.018	345.2	0.863							
સ	1553.4	1.019	345.2	0.863							
32	1556.6	1.021	361.5	0.904							
ဗ္ဗ	1557.4	1.021	337.7	0.844							
×	1560.2	1.023	353.2	0.883							
33	1560.2	1.023	353.2	0.883							
ဗွ	1558.6	1.022	375.1	0.938							
37	1562.2	1.024	406.9	1.017							

date: 13 Feb 95 depth: 26 m Station: KWPL 113-1 long: 82-50.89 W de Cruise: Planet lat: 24-36.81 N

26.0 m 400 kHz calc for: 21.0 deg C 36.0 o/oo

6.1 cm thickness smp core:

Sorting (phi)

MGS (phi)

% Gr % Sand % Silt % Clay																									
e > •																									
Density (g/cm³)																									
Porosity Density % (g/cm³)																									
*	0.388	0.521	0.572	0.653	0.779	0.810	0.771	0.819	0.802	0.786	0.794	0.802	0.794	0.750	0.786	0.750	0.743	0.757	0.794	0.794	0.802	0.819	0.802	0.854	0.854
Alpha (dB/m)	155.1	208.3	228.8	261.0	311.5	324.2	308.5	327.5	320.9	314.6	317.7	320.9	317.7	299.9	314.6	299.9	297.1	302.7	317.7	317.7	320.9	327.5	320.9	341.8	341.8
V _p Ratio	0.995	1.000	1.003	1.008	1.015	1.017	1.017	1.018	1.016	1.017	1.017	1.018	1.015	1.014	1.015	1.014	1.021	1.023	1.018	1.013	1.013	1.010	1.009	1.011	1.015
V _p (m/s)	1517.2	1524.4	1530.2	1537.2	1547.8	1551.4	1550.6	1552.2	1549.8	1551.0	1551.8	1553.0	1548.6	1545.8	1548.2	1547.0	1556.6	1559.8	1552.6	1544.3	1544.3	1539.9	1539.6	1542.3	1548.6
Depth (cm)	-	7	ო	4	ĸ	9	7	œ	တ	9	-	12	13	14	15	16	17	18	19	20	21	22	23	54	22
								2	77	,															

Cruise: Planet Station: KWPL 113-2 date: 13 Feb 95 lat: 24-36.81 N long: 82-50.89 W depth: 26 m

calc for: 21.0 deg C 36.0 o/oo 26.0 m 400 kHz

Sorting (phi)	3.41	3.47	; ;	3.52] ! !	3.64		3.51		3.71		3.76		3.57		3.78) ;	3.55	}	3.51		3.47	: ;	3.53		3.75
MGS (phi)	6.91	6 44	;	6.20	!	6.38		6.70) : !	6.19) : :	6.46		6.57		6.45	:	6.82		68.9) 	6.83		69.9		6.49
% Clay	37.21	32 68		31.63		29.92		33.16)	28.58		32.72		30.56		29.48		35.54		37.70		36.53		36.02		34.21
% silt	43.07	38.84		35.32		36.24		41.75		34.81		37.72		41.42		40.89		41.41		39.95	1	40.27		37.73		35.25
% Sand	19.71	28 45	2	32.99		33.76		24.61		36.54		28.56		27.95		27.73		22.03		21.98		23.06		25.92		30.00
% Gr	00.00	0.03		0.05		0.08		0.48		0.0		1.00		0.07		1.91		1.01		0.36		0.15		0.34		0.54
v	2.83	1.82		1.49		1.42		1.35		1.35		1.39		1.30		1.32		1.31		1.32		1.34		1.33		1.19
Density (g/cm³)	1.48	1.64		1.73		1.76		1.78		1.79		1.77		1.80		1.79		1.80		1.79		1.79		1.79		1.85
Porosity Density % (g/cm³)	73.87	64.54		59.81		58.75		57.37		57.42		58.12		56.45		56.92		56.67		56.88		57.28		57.06		54.32
×	0.489	0.595	0.739	0.796	0.804	0.789	0.812	0.837	0.837	0.829	0.874	0.846	0.837	0.837	0.837	0.846	0.884	0.937	0.894	0.837	0.796	0.796	0.820	0.829	0.837	0.894
Alpha (dB/m)	195.8	238.0	295.8	318.6	321.7	315.5	324.9	335.0	335.0	331.6	349.6	338.5	335.0	335.0	335.0	338.5	353.5	374.8	357.5	335.0	318.6	318.6	328.2	331.6	335.0	357.5
V _p Ratio	0.998	1.005	1.012	1.016	1.016	1.015	1.016	1.019	1.018	1.018	1.020	1.019	1.017	1.016	1.017	1.017	1.018	1.017	1.014	1.015	1.014	1.013	1.015	1.016	1.014	1.018
V _p (m/s)	1522.5	1532.9	1543.9	1549.8	1549.8	1547.4	1549.4	1554.2	1553.0	1553.0	1555.4	1553.8	1551.0	1549.4	1550.6	1551.4	1552.6	1551.8	1547.0	1547.8	1546.2	1544.7	1548.6	1549.0	1547.0	1552.2
Depth (cm)	- 0	l m	4	2	ဖ	7	ထ	တ	9	=	12	13	14	15	16	17	18	19	20	77	22	23	54	22	5 6	27

Cruise: Planet Station: KWPL 173-1 date: 18 Feb 95 lat: 24-36.24 N long: 82-51.18 W depth: 27 m

calc for: 21.0 deg C 36.0 o/oo 27.0 m 400 kHz

Donth	>	V Datio	Alaha	د	Doronity	Doroeite, Donoite,	•	ć	7 10 /0	410	2		
(cm)	(m/s)	•	(dB/m)	4	2 2 2 3 3 4 3	(g/cm³)	b	5 8	76 Sand	1 8	% Clay	(phi)	sorting (phi)
-	1528.0	1.002	188.5	0.471	69.03	1.57	2.23	0.05	31.13	36.86	31.95	6.50	3.74
7	1536.4	1.007	237.1	0.593									
က	1540.3	1.010	264.6	0.662	64.14	1.65	1.79	0.13	30.78	34.45	34.64	6.57	3.87
4	1542.6	1.011	280.7	0.702									
2	1548.1	1.015	306.2	0.766	59.48	1.74	1.47	0.09	35.62	33.12	31.17	6.50	4.06
ဖ	1552.4	1.018	316.8	0.792									
7	1553.2	1.018	306.2	0.766	59.43	1.74	1.46	0.51	33.11	31.84	34.55	6.37	3.80
œ	1553.6	1.019	316.8	0.792									
တ	1554.4	1.019	340.6	0.851	58.57	1.76	1.41	0.11	28.45	38.36	33.08	6.62	3.76
9	1556.0	1.020	320.6	0.877									
£	1560.0	1.023	350.6	0.877	56.29	1.80	1.29	0.39	41.62	24.31	33.68	6.29	4.37
12	1558.8	1.022	350.6	0.877									
13	1562.8	1.025	369.1	0.923	56.43	1.80	1.30	0.32	32.46	28.22	39.00	6.81	4.01
4	1564.8	1.026	381.5	0.954									
15	1562.8	1.025	377.3	0.943	55.99	1.81	1.27	0.13	48.79	16.29	34.79	6.34	4.42
16	1564.0	1.025	357.7	0.894									
17	1567.2	1.028	365.2	0.913	55.34	1.82	1.24	15.19	24.10	30.22	30.49	4.98	5.24
18	1566.8	1.027	390.4	976.0									
19	1559.2	1.022	369.1	0.923	55.56	1.82	1.25	1.99	35.18	29.93	32.90	6.30	4.27
20	1559.6	1.023	385.9	0.965									į
21	1556.8	1.021	381.5	0.954	56.32	1.80	1.29	2.81	31.63	30.95	34.62	6.45	4.08
22	1556.8	1.021	381.5	0.954									
23	1550.1	1.016	432.9	1.082	57.84	1.78	1.37	0.47	43.48	25.87	30.18	6.08	4.14
24	1542.6	1.011	432.9	1.082									
25	1550.5	1.017	404.9	1.012	54.97	1.83	1.22	3.79	36.00	28.46	31.75	6.18	4.21
5 6	1550.5	1.017	432.9	1.082									
27	1546.9	1.014	514.2	1.285	54.17	1.84	1.18	6.92	36.51	25.04	31.52	5.82	4.61
28	1554.8	1.019	404.9	1.012									
29	1558.8	1.022	395.1	0.988	53.71	1.86	1.16	1.70	41.50	24.61	32.20	6.12	4.21
30	1561.6	1.024	404.9	1.012									
3	1566.0	1.027	439.3	1.098	53.20	1.87	1.14	0.76	36.46	29.84	32.94	6.38	3.96

Cruise: Planet Station: KWPL 173-2 date: 18 Feb 95 lat: 24-36.24 N long: 82-51.18 W depth: 27 m

calc for: 21.0 deg C 36.0 o/oo 27.0 m 400 kHz

smp core: 6.1 cm thickness

Sorting (phi)

MGS	(phi)																														
% Clay																															
% Silt																															
% Sand																									•						
% Gr																															
ø																															
Density	(g/cm³)																														
Porosity Density	%																														
¥		0.543	0.580	0.653	0.715	0.763	0.783	0.804	0.790	0.783	0.797	0.819	0.834	0.811	0.895	0.868	0.914	0.914	0.904	0.934	0.934	0.934	0.914	0.945	0.956	1.016	1.089	0.914	0.991	1.058	1.030
Alpha	(dB/m)	217.2	231.9	261.0	285.8	305.2	313.2	321.6	315.9	313.2	318.8	327.6	333.8	324.6	357.8	347.0	365.5	365.5	361.6	373.7	373.7	373.7	365.5	377.9	382.3	406.5	435.7	365.5	396.3	423.3	411.9
V _p Ratio		1.003	1.006	1.010	1.013	1.015	1.017	1.018	1.018	1.018	1.018	1.018	1.018	1.017	1.020	1.020	1.026	1.027	1.026	1.026	1.026	1.027	1.027	1.026	1.024	1.026	1.026	1.028	1.026	1.028	1.030
>°	(s/m)	1529.6	1535.0	1540.8	1544.3	1547.8	1551.7	1553.3	1552.1	1552.9	1553.3	1553.3	1552.5	1551.7	1555.3	1555.3	1565.3	1566.1	1565.3	1564.0	1564.4	1566.9	1566.1	1564.4	1562.4	1565.3	1564.0	1567.7	1564.4	1568.5	1571.3
Depth	(cm)	-	7	က	4	က	ဖ	7	œ	တ	5	-	12	13	4	15	16	17	18	19	8	71	22	23	24	22	5 6	27	78	29	30

Cruise: Planet Station: KWPL 192-1 date: 20 Feb 95 lat: 24-36.56 N long: 82-51.53 W depth: 25 m

calc for: 21.0 deg C 36.0 o/oo 25.0 m 400 kHz

Sorting (phi)		
MGS (phi)		
% Clay		
% Silt	• .	
% Sand		
% 65		
ø		
Density (g/cm³)		
Porosity Density % (g/cm³)		
×	0.433 0.638 0.638 0.687 0.829 0.821 0.733 0.821 0.821 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.862	0.821 0.837 0.899 0.899 0.862 0.889 0.889
Alpha (dB/m)	231.3 255.1 274.9 274.9 331.6 3328.5 328.5 328.5 328.5 328.5 328.5 328.5 344.9 344.9 344.9 334.8	328.5 328.5 328.5 359.5 344.9 355.7 365.7
V _P Ratio	0.997 1.003 1.003 1.003 1.023 1.023 1.023 1.024 1.024 1.026	1.026 1.026 1.026 1.022 1.022 1.023 1.023
رم (m/s)	1520.1 1529.6 1537.6 1549.7 1560.0 1560.0 1554.9 1558.4 1558.6 1558.7 1564.4 1568.4 1568.4 1568.4 1568.4	1565.6 1564.8 1561.2 1564.8 1558.0 1560.8 1560.8
Depth (cm)	- 0 c 4 c o r o o o o o o o o o o o o o o o o o	3384387838

Cruise: Planet Station: KWPL 192-2 date: 20 Feb 95 lat: 24-36.56 N long: 82-51.53 W depth: 25 m

calc for: 21.0 deg C 36.0 o/oo 25.0 m 400 kHz

Depth	>°	V _p Ratio	Alpha	¥	Porosity Density	Density	ø	% Gr	% Sand	% Silt	% Clay	MGS	Sorting
(cm)	(s/ш)		(dB/m)		%	(g/cm³)						(phi)	(phi)
-	1533.4	1.005	231.9	0.580	70.05	1.55	2.34	0.00	28.47	38.74	32.78	6.73	3.81
Ν 0	1539.2		250.1	0.625	6	į	į	6					
0 4	1542.3		266.8	0.653	63.06	79.	1.71	0.69	37.24	31.84	30.22	6.16	3.99
r LO	1541.5		270.8	0.007	61 23	171	1 58		20.95	30 07	24 04	R 71	264
စ	1546.6		290.4	0.726	2	:	2	9	200		5	-	5
7	1548.2		283.6	0.709	59.57	1.74	1.47	0.07	31.86	34.92	33.15	6.58	3.89
ထ	1549.7		290.4	0.726									
တ	1550.5		310.5	0.776	58.91	1.76	1.43	0.22	27.51	34.72	37.55	6.90	3.97
9	1547.8		297.6	0.744									
7	1549.3		295.2	0.738	59.41	1.75	1.46	0.00	31.15	35.27	33.58	6.53	3.71
12	1549.7		305.2	0.763									
13	1552.9		337.0	0.842	58.47	1.76	1.4	0.46	32.51	32.38	34.65	6.60	3.81
14	1556.8		354.1	0.885									
15	1558.8		340.2	0.851	57.07	1.79	1.33	1.23	34.88	32.69	31.20	6.50	3.90
16	1563.6		357.8	0.895									
17	1564.0		347.0	0.868	55.08	1.82	1.23	0.14	27.88	36.94	35.04	6.75	3.85
18	1562.0		333.8	0.834									
19	1563.2		340.2	0.851	54.86	1.83	1.22	0.00	27.66	36.45	35.90	6.70	3.86
20	1561.2		337.0	0.842									
7	1562.8		340.2	0.851	54.16	1.84	1.18	0.00	29.61	37.50	32.89	6.52	3.78
22	1567.6		327.6	0.819									
23	1568.0		330.6	0.827	54.26	1.84	1.19	0.68	31.00	34.82	33.50	6.59	3.90
54	1564.4		340.2	0.851									
22	1562.0	-	347.0	0.868	54.50	1.83	1.20						
5 6	1562.8	•	361.6	0.904									
27	1563.2		343.6	0.859	54.16	1.84	1.18						
28	1557.6	•	327.6	0.819									
59	1558.8	•	340.2	0.851	53.14	1.87	1.13						
30	1560.8	1.023	354.1	0.885									
31	1560.0	1.023	340.2	0.851	53.85	1.85	1.17						
32	1562.8	1.025	373.7	0.934									

Cruise: Planet Station: KWPL 198-1 date: 21 Feb 95 lat: 24-36.70 N long: 82-50.71 W depth: 27 m

calc for: 21.0 deg C 36.0 o/oo 27.0 m 400 kHz ref core: 20.0 deg C 82.17 delta-t 469.0 H 0.001 V/D smp core: 36.0 o/oo 6.1 cm thickness

V _P V _P Ratio (m/s)	V _p Rai	.≘	Alpha (dB/m)	~	Porosity Density % (g/cm³)	Density (g/cm³)	ø	% Gr	% Sand	% silt	% Clay	MGS (phi)	Sorting (phi)
1532.7 1.005 233.5 0.584 1537.3 1.008 250.1 0.625	1.005 233.5 1.008 250.1		0.584		70.98	1.53	2.45	0.00	31.00	34.25	34.75	6.75	4.18
261.0 0.653 283.6 0.709	1.010 261.0 0.653 1.013 283.6 0.709	0.653		w	65.15	1.64	1.87	0.05	32.16	37.87	29.91	6.45	3.72
1.015 285.8 0.715	1.015 285.8 0.715	0.715		w	61.57	1.70	1.60	0.00	32.65	39.60	27.76	6.48	3.73
1.016 297.6 0.744 1.017 318.8 0.797	1.016 297.6 0.744 1.017 318.8 0.797	0.797		Ψ	60.55	1.72	1.53	0.14	24.22	42.97	32.66	6.74	3.57
1.017 321.6 0.804	1.017 321.6 0.804	0.804		u	9	7	4	,	74.46	5	37.00	100	Č
1.018 310.5 0.776	1.018 310.5 0.776	0.776		ñ	28.82	<u>.</u>	<u> </u>	2	61.72	42.00	30.73	0.0	3.00
1.019 327.6 0.819	1.019 327.6 0.819	0.819		ß	57.88	1.78	1.37	0.15	28.38	38.88	32.59	6.54	3.56
1.018 315.9 0.790	1.018 315.9 0.790	0.790											
1.019 318.8 0.797	1.019 318.8 0.797	0.797		Ñ	58.66	1.76	1.42	0.14	23.10	42.66	34.09	6.79	3.54
1.019 340.2 0.851	1.019 340.2 0.851	0.851		ũ	56.84	1.79	1.32	0.03	27.73	36.95	35.29	6.67	3.67
1.019 340.2 0.851	1.019 340.2 0.851	0.851											
1.020 357.8 0.895	1.020 357.8 0.895	0.895		ŭ	56.72	1.80	1.31	0.36	35.35	34.18	30.11	6.50	3.86
1.017 350.5 0.876	1.017 350.5 0.876	0.876		ũ	56.58	1.80	1.30	0.65	34.63	32.96	31.76	6.28	3.94
1.016 347.0 0.868	1.016 347.0 0.868	0.868											
1.020 361.6 0.904 1.021 361.6 0.904	1.020 361.6 0.904 1.021 361.6 0.904	0.904 0.904		ŭ	56.46	1.80	1.30	0.16	35.37	32.44	32.03	6.43	3.93
1.021 369.5 0.924	1.021 369.5 0.924	0.924		2	55.32	1.82	1.24	2.81	32.98	32.12	32.08	6.41	4.10
1.021 382.3	1.021 382.3		0.956										
1.020 377.9 0.945	1.020 377.9 0.945	0.945		ιά	55.49	1.82	1.25	0.45	29.36	40.28	29.91	6.55	3.82
1.021 373.7 0.934	1.021 373.7 0.934	0.934											
1.021 386.8 0.967	1.021 386.8 0.967	0.967		55	55.96	1.81	1.27	0.84	33.47	34.22	31.47	6.36	3.80
1.026 417.5 1.044	1.026 417.5 1.044	1.044											
1.027 382.3 0.956	1.027 382.3 0.956	0.956		LO.	54.37	1.85	1.19	2.33	36.23	33.52	27.91	6.10	3.92
1.026 401.3 1.003	1.026 401.3 1.003	1.003		ι	9	,	,	i	;			i	i
1562.8 1.025 391.5 0.979 54	1.025 391.5 0.979	0.979		Š	54.40	1.85	1.19	0.70	27.07	33.37	38.86	6.78	3.72
5:11	6:1:1		:										

Cruise: Planet Station: KWPL 198-2 date: 21 Feb 95 lat: 24-36.70 N long: 82-50.71 W depth: 27 m

calc for: 21.0 deg C 36.0 o/oo 27.0 m 400 kHz

Sorting (phi)																													
MGS (phi)																													
% Clay																													
% Silt																													
% Sand																													
% G																													
0																													
Density (g/cm³)																													
Porosity Density % (g/cm³)																													
¥	0.536	0.653	0.715	0.819	0.859	0.834	0.859	0.876	0.895	0.842	0.868	0.827	0.842	0.895	0.819	0.876	0.876	0.811	0.914	0.967	1.003	0.914	0.885	0.967	0.924	0.979	0.991	1.003	0.991
Alpha (dB/m)	214.5	261.0	285.8	327.6	343.6	333.8	343.6	350.5	357.8	337.0	347.0	330.6	337.0	357.8	327.6	350.5	350.5	324.6	365.5	386.8	401.3	365.5	354.1	386.8	369.5	391.5	396.3	401.3	396.3
V _p Ratio	0.999	1.010	1.012	1.018	1.021	1.020	1.018	1.021	1.022	1.019	1.017	1.018	1.020	1.019	1.016	1.021	1.019	1.016	1.018	1.022	1.025	1.023	1.025	1.026	1.029	1.026	1.024	1.027	1.028
V _p (۳/s)	1523.5 1535.4	1540.0	1543.9	1552.5	1557.3	1554.9	1552.9	1556.5	1558.1	1554.1	1550.9	1552.9	1555.3	1553.7	1549.4	1556.5	1553.7	1549.4	1552.9	1559.3	1563.2	1560.9	1563.6	1564.8	1568.9	1564.0	1562.4	1566.1	1567.7
Depth (cm)	+ 0	က	4	သ	ဖ	7	œ	တ	9	7	12	13	14	15	16	17	18	19	20	7	23	23	24	52	5 8	27	5 8	53	90

Cruise: Planet Station: KWPL 208-1 date: 22 Feb 95 lat: 24-44.98 N long: 82-12.09 W depth: 22 m

calc for: 20.0 deg C 36.0 o/oo 22.0 m 400 kHz

Sorting (phi)	3.80	3.86	3.67	0	o.oo	3.73		3.84		4.03		4.35		4.17		4.51
MGS (phi)	6.61	6.38	6.72	70	0.0	6.77		6.63		6.53		6.05		6.55		5.84
% Clay	35.78	29.21	37.70	00 00	30.00	33.49		36.05		35.47		31.32		34.13		34.62
% Silt	38.26	39.15	37.84	6	42.20	43.98		37.70		38.55		35.83		38.99		31.92
% Sand	25.96	31.44	24.18	9	20.74	22.14		25.17		24.61		28.48		22.21		27.40
% Gr	0.00	0.21	0.28	9	81.0	0.39		1.08		1.37		4.37		4.67		90.9
•	1.75	1.57	1.43	,	90.	1.44		1.40		1.33		1.39		1.21		1.25
Density (g/cm³)	1.66	1.70	1.74	` !	78.	1.74		1.75		1.77		1.75		1.81		1.79
Porosity Density % (g/cm³)	63.68	61.05	58.83		51.35	58.99		58.29		57.07		58.20		54.80		55.61
¥	0.696	0.614	0.652 0.738	0.765	0.7/9	0.745	0.745	0.772	0.834	0.834	0.794	0.909	1.005	0.909	0.861	0.779
Alpha (dB/m)	278.2	245.5	260.9 295.3	306.0	311.7 300.6	297.9	297.9	308.9	333.7	333.7	317.7	363.8	402.0	363.8	344.2	311.7
V _p Ratio	1.017	1.014	1.016 1.021	1.020	1.020	1.018	1.016	1.014	1.020	1.022	1.021	1.019	1.021	1.019	1.020	1.017
V _p (m/s)	1548.6	1543.8	1546.6 1553.7	1552.5	1552.1	1550.1	1546.6	1543.4	1552.1	1556.5	1554.9	1551.3	1553.7	1551.7	1553.3	1549.0
Depth (cm)	← (N 60	4 v	91	~ ∝	၁ တ	9	7	12	13	14	15	16	17	18	19

Cruise: Planet Station: KWPL 208-2 date: 22 Feb 95 lat: 24-44.98 N long: 82-12.09 W depth: 22 m

calc for: 20.0 deg C 36.0 o/oo 22.0 m 400 kHz

Depth (cm)	V _p (m/s)	V _p Ratio	Alpha (dB/m)	ᅩ	Porosity Density % (g/cm³)	Density (g/cm³)	Φ.	% Gr	% Sand	% Silt	% Clay	MGS (phi)	Sorting (phi)
_	1542.0	1.013	253.2	0.633									
7	1557.8	1.023	341.1	0.853									
က	1555.4	1.022	324.7	0.812									
4	1550.2	1.018	284.6	0.711									
5	1553.0	1.020	296.7	0.742									
9	1554.2	1.021	301.9	0.755									
7	1550.6	1.019	289.3	0.723									
&	1551.0	1.019	284.6	0.711									
o	1553.8	1.021	312.9	0.782									
9	1553.0	1.020	331.1	0.828									
=	1555.4	1.022	341.1	0.853									
12	1557.4	1.023	355.7	0.889									
13	1557.4	1.023	351.9	0.880									
4	1558.6	1.024	376.4	0.941									
15	1553.8	1.021	429.8	1.074									
16	1548.6	1.017	411.6	1.029									
17	1545.9	1.015	484.3	1.211									
18	1547.5	1.016	494.1	1.235									

Cruise: Planet Station: KWPL 215-1 date: 22 Feb 95 lat: 24-36.70 N long: 82-50.71 W depth: 27 m

calc for: 21.0 deg C 36.0 o/oo 27.0 m 400 kHz

Sorting (phi)	3.79		3.97		4.04	!	3.80	<u>;</u>	4.10) :	3 86		3.89		3.76) :	3.82		3.80		3.77
MGS (phi)	6.03		5.96		4.92	!	5.94		5.65		6.14	:	6.52		7.81		6.25		6.78		6.16
% Clay	28.90		27.00		20.07		26.60		27.87		32.97		37.22		51.96		33.63		43.86		28.34
% Silt	32.14		28.12		17.89		27.88		25.90		30.59		30.63		20.14		30.53		19.28		31.03
% Sand	38.84		44.89		61.06		45.52		45.88		36.44		31.82		27.58		35.69		35.81		40.29
% Gr	0.12		0.00		0.98		0.00		0.34		0.00		0.33		0.32		0.15		1.05		0.34
o	1.82		1.52		1.38		1.55		1.34		1.26		1.32		1.23		1.15		1.17		1.29
Density (g/cm³)	1.66		1.74		1.78		1.73		1.80		1.82		1.80		1.83		1.86		1.85		1.81
Porosity Density % (g/cm³)	64.49		60.35		57.94		98.09		57.25		55.71		56.83		55.24		53.43		53.93		56.24
~	0.761	0.812	0.880	0.952	0.976	0.964	1.015	1.043	1.002	0.941	0.941	0.941	0.919	0.909	0.919	0.989	0.989	0.919	0.899	0.941	0.941
Alpha (dB/m)	304.6	324.7	351.9	380.9	390.4	385.6	406.0	417.4	400.6	376.4	376.4	376.4	367.8	363.7	367.8	395.4	395.4	367.8	359.6	376.4	376.4
V _P Ratio	1.013	1.016	1.021	1.022	1.021	1.021	1.019	1.018	1.020	1.022	1.020	1.019	1.019	1.021	1.021	1.023	1.024	1.022	1.021	1.022	1.020
V _p (m/s)	1544.4	1550.3	1557.0	1559.4	1556.6	1556.6	1554.6	1551.8	1555.0	1559.4	1555.4	1554.2	1554.6	1557.4	1556.6	1560.6	1561.4	1559.0	1557.8	1559.0	1555.0
Depth (cm)	-	7	က	4	2	ဖ	7	∞	တ	9	=	12	13	4	15	16	17	8	19	20	21

Cruise: Planet Station:KWPL 219 date: 23 Feb 95 lat: 24-32.48 N long: 82-29.32 W depth: 14 m

calc for: 21.0 deg C 36.0 o/oo 14.0 m 400 kHz

Sorting (phi)	0.68	7.7	-	0.68		0.70		0.53		0.43		0.44		0.47		0.52		0.61		0.57	
MGS (phi)	1.05	7	<u>+</u>	0.91		1.07		1.18		1.24		1.20		1.25		1.25		1.28		1.1	
% Clay	0.85	70	5	0.84		0.93		0.92		0.79		0.97		0.95		1.05		1.19		1.08	
% silt	0.46	69.0	0.02	0.28		0.55		0.45		0.21		0.37		0.68		0.42		0.77		0.42	
% Sand	7.76	07 90	90.49	96.22		96.03		98.23		98.86		98.62		98.29		97.88		96.59		97.04	
% Gr	0.98	6	70.1	2.65		2.50		0.41		0.14		0.04		0.08		0.65		1.45		1.46	
Φ	0.70	9	60.0	0.68		0.71		99.0		99.0		0.69		0.71		9.76		0.82		0.73	
Density (g/cm³)	2.07	7	70.7	2.08		2.06		2.09		2.09		2.08		2.06		2.03		2.00		2.04	
Porosity Density % (g/cm³)	41.25	50 07	40.05	40.32		41.38		39.86		39.65		40.69		41.56		43.17		45.13		42.23	
¥	0.792	0.553	0.701	0.507	0.572	0.584	0.500	0.355	0.386	0.258	0.295	0.325	0.295	0.295	0.359	0.451	0.658	0.743	0.531	0.513	0.610
Alpha (dB/m)	316.8	221.1	280.3	202.6	228.9	233.7	200.0	141.8	154.5	103.3	117.9	130.2	117.9	117.9	143.6	180.5	263.0	297.4	212.3	205.3	244.0
V _p Ratio	1.126	1.122	1.122	1.136	1.136	1.125	1.137	1.141	1.151	1.154	1.148	1.140	1.137	1.136	1.132	1.128	1.112	1.117	1.128	1.132	1.136
V _ρ (m/s)	1716.6	1710.8	1731.2	1731.7	1731.7	1715.1	1733.7	1740.1	1755.7	1759.2	1750.1	1739.1	1733.2	1732.7	1726.8	1720.4	1695.5	1702.6	1720.0	1726.3	1731.7
Depth (cm)	-	0	თ ∠	, ro	9	7	©	တ	9	7	12	13	4	15	9	17	8	19	20	21	22

Cruise: Planet Station: KWPL 221 date: 23 Feb 95 lat: 24-32.35 N long: 82-29.36 W depth: 17 m

calc for: 21.0 deg C 36.0 o/oo 17.0 m 400 kHz

MGS Sorting (phi) (phi)	1.31 0.85	1.21 0.87	1.14 1.04	1.10 0.94	1.22 0.90	1.47 0.80	1.43 0.78
% Clay	2.10	1.41	1.12	1.41	1.45	1.62	1.58
% Silt	1.51	99.0	0.85	0.65	0.75	0.57	0.76
% Sand	93.65	94.09	91.23	93.74	94.09	95.28	95.58
% Gr	2.73	3.83	6.81	4.19	3.70	2.53	2.08
ø	0.82	92.0	0.73	0.79	0.74	0.82	0.78
Density (g/cm³)	2.01	2.03	2.05	2.02	2.04	2.00	2.02
Porosity Density % (g/cm³)	45.05	43.30	42.07	44.00	42.59	45.10	43.83
~	0.889	0.678	0.836	0.853 1.002 4.527	0.871	0.662	0.602
Alpha (dB/m)	355.7	271.2	334.3	341.1 400.6 644.8	348.2	265.0	240.7 240.7 240.7
V _p Ratio	1.079	1.108	1.18	1.087	1.123	1.120	1.123
V _p (m/s)	1645.4 1683.6	1689.2	1705.3	1682.2 1657.5 1728 E	1712.0	1707.2	1712.0 1712.5
Depth (cm)	- 0	4 m =	4 rv (o م و	o o	5 L 6	<u> </u>

Cruise: Planet Station: KWPL 223 date: 23 Feb 95 lat: 24-36.70 N long: 82-50.71 W depth: 27 m

calc for: 21.0 deg C 36.0 o/oo 27.0 m 400 kHz

Sorting (phi)	3.83	3.62		3.87		3.83		3.82		3.66		3.72		3.93		3.87		3.87		3.82		3.85		3.93		3.89		3.80		3.82
MGS (phi)	7.53	7.04		6.74		6.75		7.07		69.9		69.9		6.37		6.81		6.95		6.97		6.73		6.93		6.73		6.81		6.87
% Clay	44.10	38.41		31.18		34.73		38.41		34.95		29.42		24.49		38.24		37.77		38.90		31.12		38.05		36.61		32.06		38.61
% Silt	34.96	39.55		38.01		37.31		37.52		37.92		42.96		42.18		34.98		36.24		34.28		41.91		35.80		34.76		41.22		34.33
% Sand	20.94	22.04		30.80		27.96		23.98		27.13		27.51		32.18		26.56		25.99		26.74		26.77		24.46		28.51		26.56		27.06
% Gr	0.00	0.00		0.00		0.00		0.08		0.00		0.11		1.16		0.21		0.00		0.08		0.21		1.70		0.11		0.16		0.00
O	2.63	2.01		1.73		1.48		1.48		1.40		1.43		1.46		1.32		1.43		1.23		1.25		1.31		1.25		1.20		1.13
Density (g/cm³)	1.51	1.61		1.67		1.74		1.74		1.77		1.76		1.75		1.79		1.76		1.82		1.82		1.80		1.82		1.84		1.87
Porosity Density % (g/cm³)	72.46	92.99		63.32		59.66		59.62		58.27		58.76		59.29		56.93		58.90		55.18		55.51		56.63		55.56		54.62		53.04
¥	0.503	0.629	0.688	0.773	0.809	0.817	0.794	0.841	0.858	0.817	0.809	0.849	0.924	0.885	0.858	0.904	0.914	0.858	0.924	0.849	0.809	0.849	0.904	0.866	0.866	0.885	0.924	0.993	1.006	1.020
Alpha (dB/m)	201.2	251.4	275.2	309.2	323.6	326.6	317.6	336.2	343.0	326.6	323.6	339.6	369.7	353.8	343.0	361.5	365.5	343.0	369.7	339.6	323.6	339.6	361.5	346.5	346.5	353.8	369.7	397.3	402.5	407.9
V _p Ratio	0.999	1.005	1.008	1.013	1.017	1.017	1.016	1.017	1.018	1.016	1.014	1.016	1.018	1.018	1.022	1.021	1.019	1.015	1.016	1.020	1.023	1.022	1.020	1.020	1.019	1.018	1.019	1.025	1.029	1.030
ر» (m/s)	1523.0 1526.8	1532.6	1538.0	1545.0	1550.9	1551.7	1549.3	1551.3	1553.3	1549.3	1546.2	1548.9	1552.1	1553.3	1558.1	1556.5	1554.1	1548.2	1549.7	1555.7	1559.7	1558.5	1556.1	1554.9	1554.1	1552.5	1554.5	1563.7	1569.3	1570.5
Depth (cm)	- 0	ო	4	S	ဖ	7	œ	တ	9	=	12	1 3	4	15	16	17	18	19	20	21	22	23	24	22	5 8	27	78	29	ဓ	31

Cruise: Planet Station: KWPL 228 date: 23 Feb 95 lat: 24-36.70 N long: 82-50.71 W depth: 27 m

calc for: 21.0 deg C 36.0 o/oo 27.0 m 400 kHz

MGS Sorting (phi) (phi)																				
% Clay N																				
% Silt																				
% Sand																				
% Gr																				
Ð	2.57	1.83	1.45		1.40	1.45		1.45		1.30		1.36		1.46		1.24		1.31		1.27
Density (g/cm³)	1.52	1.65	1.74		1.76	1.75		1.75		1.80		1.78		1.75		1.82		1.80		1.81
Porosity Density % (g/cm³)	72.00	64.64	59.25		58.27	59.14		59.17		56.46		57.58		59.31		55.43		56.65		55.91
¥	0.528	0.678	0.761	0.836	0.844	0.812	0.844	0.880	0.862	0.820	0.871	0.976	0.930	0.899	0.952	0.930	0.919	0.844	0.844	0.919
Alpha (dB/m)	211.3	271.2	304.6 331.1	334.3	337.7	324.7	337.7	351.9	344.6	327.9	348.2	390.4	372.0	359.6	380.9	372.0	367.8	337.7	337.7	367.8
V _p Ratio	1.002	1.009	1.013 1.016	1.018	1.018	1.017	1.016	1.018	1.017	1.016	1.017	1.018	1.016	1.015	1.019	1.018	1.018	1.019	1.018	1.018
V _p (m/s)	1528.7	1538.4	1545.0 1550.1	1553.3	1552.1	1551.3	1550.1	1552.1	1550.5	1550.1	1551.7	1553.3	1548.9	1547.8	1553.7	1552.9	1553.3	1554.5	1552.9	1552.5
Depth (cm)	← 0	1 W	4 w	9	~ α	ာ တ	5	1	12	13	4	15	16	17	48	19	20	77	22	23

Cruise: Planet Station: KWPL 244-1 date: 24 Feb 95 lat: 24-36.70 N long: 82-50.71 W depth: 27 m

calc for: 21.0 deg C 36.0 o/oo 27.0 m 400 kHz

Depth	>°	V _p Ratio	Alpha	¥	Porosity	Porosity Density	ø	% Gr	% Sand	% Silt	% Clay	MGS	Sorting
(cm)	(m/s)		(dB/m)		%	(g/cm³)						(phi)	(phi)
₹~	1528.1	1.002	207.8	0.519	69.75	1.55	2.31	0.00	14.99	40.96	44.05	7.54	3.54
7	1531.9	1.004	229.5	0.574									
က	1535.4	1.007	246.1	0.615	65.92	1.62	1.93	0.00	33.43	40.89	25.68	6.21	3.47
4	1542.4	1.011	291.2	0.728									
ည	1553.4	1.019	329.8	0.824	61.86	1.70	1.62	0.00	28.62	41.20	30.19	6.54	3.80
ဖ	1552.2	1.018	314.8	0.787									
7	1551.0	1.017	314.8	0.787	59.89	1.74	1.49	0.00	22.33	37.01	40.66	2.00	3.53
ထ	1551.0	1.017	317.6	0.794									
o	1553.0	1.018	323.6	0.809	59.06	1.75	1.44	0.12	25.77	39.46	34.64	6.73	3.63
9	1551.8	1.018	323.6	0.809									
7	1551.8	1.018	323.6	0.809	58.52	1.76	1.41	0.18	23.23	44.48	32.10	6.77	3.60
12	1550.7	1.017	361.5	0.904									
13	1547.9	1.015	382.8	0.957	58.22	1.77	1.39	0.34	27.21	39.29	33.16	6.68	3.65
14	1552.2	1.018	346.5	0.866									
15	1547.5	1.015	326.6	0.817	59.43	1.75	1.46	0.12	21.30	39.58	38.99	7.07	3.56
16	1545.1	1.013	317.6	0.794									
17	1542.8	1.012	303.8	0.759	58.71	1.76	1.42	0.00	23.98	42.35	33.68	6.86	3.58
18	1550.3	1.016	329.8	0.824									
19	1560.2	1.023	339.6	0.849	54.69	1.83	1.21	0.01	20.09	40.03	39.87	7.11	3.51
20	1560.2	1.023	339.6	0.849									
21	1559.4	1.022	353.8	0.885	54.44	1.84	1.19	0.00	21.86	38.61	39.52	7.05	3.56
77	1555.0	1.020	346.5	0.866									
23	1550.3	1.016	369.7	0.924	55.56	1.82	1.25	0.00	25.20	41.09	33.70	6.74	3.61
74	1553.8	1.019	373.9	0.935									
52	1559.0	1.022	369.7	0.924	54.80	1.83	1.21	0.42	26.24	35.04	38.30	6.82	3.77
5 8	1559.0	1.022	369.7	0.924									
27	1560.6	1.023	361.5	0.904	55.27	1.83	1.24	0.38	32.16	35.43	32.03	6.48	3.72
78	1565.4	1.026	357.6	0.894									
59	1567.8	1.028	402.5	1.006	53.98	1.85	1.17						
30	1565.4	1.026	392.3	0.981									
31	1563.4	1.025	373.9	0.935	54.33	1.85	1.19						
32	1563.8	1.025	397.3	0.993									

Cruise: Planet Station: KWPL 244-2 date: 24 Feb 95 lat: 24-36.70 N long: 82-50.71 W depth: 27 m

calc for: 21.0 deg C 36.0 o/oo 27.0 m 400 kHz

Cruise: Planet Station:KWPL 263 date: 25 Feb 95 lat: 24-35.97 N long: 82-49.00 W depth: 24 m

calc for: 21.0 deg C 36.0 o/oo 24.0 m 400 kHz

Depth (cm)	V _p (m/s)	V _p Ratio	Alpha (dB/m)	×	Porosity Do % (g	Density (g/cm³)	ø	% Gr	% Sand	% Silt	% Clay	MGS (phi)	Sorting (phi)
_	1651.0	1.083	287.9	0.720	45.81	1.99	0.85	0.90	91.11	5.26	2.73	1.00	1.33
7	1659.1		314.8	0.787									•
က	1668.2		306.2	0.765	44.89	2.00	0.81	06.0	94.03	1.72	3.35	1.05	0.98
4	1674.6		261.1	0.653						!	<u> </u>))	•
2	1679.3		265.2	0.663	44.65	2.01	0.81	99.0	93.90	3.39	2.05	1.10	1.06
9	1680.2		271.7	0.679) •) !
7	1679.3		263.2	0.658	45.55	2.00	0.84	0.80	91.18	3.90	4.13	1.35	1.51
œ	1677.4		283.1	0.708					•	! !) :		
6	1675.6		303.4	0.759	44.67	2.01	0.81	1.07	91,55	3.29	4.09	1.15	1.49
9	1674.6		344.4	0.861							!) :)
7	1669.1		413.5	1.034	46.47	1.99	0.87	2.10	89.89	3.48	4.54	1.08	1.62
12	1669.1		512.2	1.281							• •] } :

KWPL118-1 14 Feb 95 24-36.81 N 82-50.90 W 25 m

DIVER VANE SHEAR Vane Width = 0.86 in. Height = 0.86 in.

Depth (cm)	Shear Strength (lb/in²)	Shear Strength (g/cm²)	Shear Strength (kPa)
1	0.04	2.47	0.24
2	0.07	4.95	0.49
3	0.12	8.25	0.81

KWPL118-2 14 Feb 95 24-36.81 N 82-50.90 W 25 m

DIVER VANE SHEAR Vane Width= 0.86 in. Height = 0.86 in.

Depth (cm)	Shear Strength (lb/in²)	Shear Strength (g/cm²)	Shear Strength (kPa)
1	0.02	1.65	0.16
2	0.13	9.07	0.89

KWPL118-3 14 Feb 95 24-36.81 N 82-50.90 W 25 m

DIVER VANE SHEAR Vane Width = 0.86 in. Height = 0.86 in.

Depth (cm)	Shear Strength (lb/in²)	Shear Strength (g/cm²)	Shear Strength (kPa)
1	0.07	4.95	0.49
2	0.08	5.77	0.57

KWPL118-4 14 Feb 95 24-36.81 N 82-50.90 W 25 m

DIVER VANE SHEAR Vane Width = 0.86 in. Height = 0.86 in.

Depth (cm)	Shear Strength (lb/in²)	Shear Strength (g/cm²)	Shear Strength (kPa)
1	0.07	4.95	0.49

KWPL118-5 14 Feb 95 24-36.81 N 82-50.90 W 25 m

DIVER VANE SHEAR Vane Width = 0.86 in. Height = 0.86 in.

Depth (cm)	Shear Strength (lb/in²)	Shear Strength (g/cm²)	Shear Strength (kPa)
1	0.05	3.3	0.32
2	0.09	6.6	0.65

KWPL118-6 14 Feb 95 24-36.81 N 82-50.90 W 25 m

Depth (cm)	Shear Strength (lb/in²)	Shear Strength (g/cm²)	Shear Strength (kPa)	
1	0.05	3.30	0.32	
2	0.09	6.60	0.65	
3	0.12	8.25	0.81	

KWPL123-1 14 Feb 95 24-36.81 N 82-50.90 W 25 m

KWPL123-4 14 Feb 95 24-36.81 N 82-50.90 W 25 m

DIVER VANE SHEAR Vane Width = 0.86 in. Height = 0.86 in.

DIVER VANE SHEAR Vane Width = 0.86 in. Height = 0.86 in.

Depth (cm)	Shear Strength (lb/in²)	Shear Strength (g/cm²)	Shear Strength (kPa)	Depth (cm)	Shear Strength (lb/in²)	Shear Strength (g/cm²)	Shear Strength (kPa)
3	0.14	9.90	0.97	3	0.19	13.19	1.29
4	0.28	19.79	1.94	4	0.47	32.98	3.23
5	0.32	22.46	2.20	5	0.46	32.36	3.17
6	0.41	28.87	2.83	7	0.55	38.55	3.78
KWD! 422	•			8	0.55	38.32	3.76

KWPL123-2 14 Feb 95 24-36.81 N 82-50.90 W 25 m

DIVER VANE SHEAR Vane Width = 0.86 in. Height = 0.86 in.

Depth (cm)	Shear Strength (lb/in²)	Shear Strength (g/cm²)	Shear Strength (kPa)
3	0.14	9.90	0.97
4	0.28	19.79	1.94
5	0.37	25.76	2.53
6	0.41	28.87	2.83
7	0.36	25.36	2.49
8	0.45	31.73	3.11
9	0.54	38.08	3.73

KWPL123-3 14 Feb 95 24-36.81 N 82-50.90 W 25 m

Depth (cm)	Strength (lb/in²)	Strength (g/cm²)	Strength (kPa)
3	0.38	26.39	2.59
4	0.42	29.69	2.91
6	0.55	38.76	3.80
7	0.55	38.55	3.78
10	0.54	37.83	3.71

KWPL135-1
15 Feb 95 24-36.81 N 82-50.91 W 25 m
DIVER VANE SHEAR
Vane Width = 0.86 in. Height = 0.86 in.

Depth (cm)	Shear Strength (lb/in²)	Shear Strength (g/cm²)	Shear Strength (kPa)
7	0.64	45.15	4.43
8	0.83	58.11	5.70
9	0.54	38.08	3.73

KWPL135-2 15 Feb 95 24-36.81 N 82-50.91 W 25 m

DIVER VANE SHEAR Vane Width = 0.86 in. Height = 0.86 in.

Depth (cm)	Shear Strength (lb/in²)	Shear Strength (g/cm²)	Shear Strength (kPa)	
7	0.88	61.64	6.04	
8	0.73	51.52	5.05	
9	1.01	71.07	6.97	
KWPL135- 15 Feb 95	3 24-36.8°	1 N 82-50	91 W 25	m

DIVER VANE SHEAR Vane Width = 0.86 in. Height = 0.86 in.

Shear Strength (lb/in²)	Shear Strength (g/cm²)	Shear Strength (kPa)
0.64	45.15	4.43
0.83	58.11	5.70
0.78	54.58	5.35
0.87	60.92	5.97
1.00	70.55	6.92
1.05	7 3.57	7.21
1.09	76.57	7.51
	Strength (lb/in²) 0.64 0.83 0.78 0.87 1.00 1.05	Strength (lb/in²) Strength (g/cm²) 0.64 45.15 0.83 58.11 0.78 54.58 0.87 60.92 1.00 70.55 1.05 73.57

KWPL135-4 15 Feb 95 24-36.81 N 82-50.91 W 25 m

DIVER VANE SHEAR Vane Width = 0.86 in. Height = 0.86 in.

	Shear	Shear	Shear
Depth	Strength	Strength	Strength
(cm)	(lb/in²)	(g/cm²)	(kPa)
7	0.74	51.74	5.07
8	0.87	61.41	6.02
9	0.82	57.87	5.68

KWPL135-5 15 Feb 95 24-36.81 N 82-50.91 W 25 m

Depth (cm)	Shear Strength (lb/in²)	Shear Strength (g/cm²)	Shear Strength (kPa)
7	0.45	31.95	3.13
8	0.50	35.03	3.43
9	0.73	51.28	5.03
10	0.91	64.22	6.30
11	0.86	60.65	5.95
14	0.90	63.08	6.19

KWPL150-1 17 Feb 95 24-36.78 N 82-50.95 W 25 m

KWPL150-3 17 Feb 95 24-36.78 N 82-50.95 W 25 m

DIVER VANE SHEAR Vane Width = 0.86 in. Height = 0.86 in.

DIVER VANE SHEAR Vane Width = 0.86 in. Height = 0.86 in.

Depth (cm)	Shear Strength (lb/in²)	Shear Strength (g/cm²)	Shear Strength (kPa)	Depth (cm)	Shear Strength -(lb/in²)	Shear Strength (g/cm²)	Shear Strength (kPa)
10	0.73	51.02	5.00	10	1.48	103.80	10.18
11	0.82	57.35	5.62	11	1.28	90.34	8.86
12	1.56	109.85	10.77	12	1.66	116.45	11.42
13	0.90	63.38	6.22	13	2.22	155.74	15.27
14	1.27	89.47	8.77	14	2.40	168.63	16.54
15	2.39	168.31	16.51	15	2.02	141.93	13.92
16	2.76	194.38	19.06	16	3.14	220.77	21.65
20	3.40	239.17	23.45	20	2.75	192.99	18.93
25	4.22	296.60	29.09	25	2.91	204.25	20.03
30	3.25	228.50	22.41	30	4.00	281.27	27.58
35	2.84	199.79	19.59	35	3.40	239.38	23.47
40	4.31	302.86	29.70	65	4.10	288.25	28.27
50	3.86	271.04	26 58				

KWPL150-2

17 Feb 95 24-36.78 N 82-50.95 W 25 m

Depth (cm)	Shear Strength (lb/in²)	Shear Strength (g/cm²)	Shear Strength (kPa)
10	1.66	116.99	11.47
11	1.66	116.72	11.45
12	2.03	142.83	14.01
13	1.28	89.77	8.80
14	2.40	168.63	16.54
15	1.46	102.35	10.04
16	2.95	207.57	20.36
20	2.75	192.99	18.93
25	2.15	151.47	14.85
30	3.81	268.08	26.29
35	3.59	252.57	24.77

3.2 Index Properties and DIAS Measurements (Lavoie and Stephens)

Station locations are given in Figs. 3.2.1, 3.2.2, 3.2.5, and 3.2.6. Depth profiles are shown in Figs. 3.2.3 and 3.2.4. The DIAS results are tabulated in Table 3.2.1. The DIAS results have been combined into one in situ profile of measured shear modulus in the Tortugas and another profile in the Marquesas. Both profiles are plotted on Fig. 3.2.7 along with the ISSAMS and GISSAMS data for comparison. The curve marked "predicted" was calculated using Bryan and Stoll's model (1988) for predicting shear wave velocity from void ratio. All the in situ data agree well with the predicted shear wave velocity above ~80 cm. A distinct shelly layer at that depth may be responsible for scatter in the data between probes (due to coupling problems with the DIAS system). The data begin to converge just below the shelly layer.

Figure 3.2.1 Dry Tortugas Test Site Gravity Core Locations

Figure 3.2.2. Marquesas Test Site Gravity Core Locations

Figure 3.2.3 Depth profiles of wet bulk density, grain density, water content, and porosity

Figure 3.2.4 Depth profiles of void ratio, compressional wave velocity, calcium carbonate content, and mean grain size

Figure 3.2.5 DryTortugas Test Site DIAS Locations

Figure 3.2.6 Marquesas Test Site DIAS Locations

Figure 3.2.7 In-situ shear wave velocities measured at the Dry Tortugas and Marquesas sites.

BLANK PAGE

DEFENSE TECHNICAL INFORMATION CENTER

Table 3.2.1 Key	West Dias Da	ıta: FY95	
SITE ID	Depth of insertion	G (N/m2)	Vs (m/s)
DRY TORTUGAS			
SITE 139	25cm	6.52E+06	63
	40cm	1.01E+07	78
SITE 148	60cm	9.18E+06	75
	85cm	5.30E+06	57
SITE 160	30cm	1.18E+07	85
	50cm	7.82E+06	69
SITE 169			
	70cm 90cm	7.53E+06 6.66E+06	68 64
MARQUESAS			
SITE 185	30cm	8.48E+06	72
		8.48E+06	72
		_	
	50 cm	1.16E+07	84
		1.15E+07	83
	70 cm	5.14E+06	56
SITE 196	75 cm	4.65E+06	53
		4.98E+06	55
		3.03E+06	43
		3.00E+06	43

Porosity	(%)		58.43	53.26	52.47	50.69	56.13	50.56	47.52
Void	Ratio		1.41	1.14	1.1	1.03	1.28	1.02	0.91
Water	Content	(%)	52.6	42.28	41.26	38.26	47.47	37.35	32.81
Grain	Density	(a/cc)	2.67	2.7	2.68	2.69	2.7	2.74	2.76
Wet Bulk	Density	(a/cc)	1.73	1.83	1.84	1.88	1.79	1.91	1.88
Sample	Interval	(cm)	0	9	ဓင္က	20	2	6	110

KW-72

Porosity	(%)		49.44	53.66	47.01	45.87	52.61	51.78
Void	Ratio		0.98	1.16	0.89	0.85	1.11	1.07
Water	Content	(%)	37.38	32.71	32.25	31.02	41.24	39.24
Grain	Density	(a/cc)	2.62		2.75	2.73	2.69	2.73
Wet Bulk	Density	(a/cc)	1.82	1.95	1.93	1.99	1.91	1.89
	Interval							

Porosity	(%)		63.79	51.06	49.7	48.72	49.13	50.95
Void	Ratio		1.76	1.04	0.99	0.94	0.97	1.04
Water	Content	(%)	62.36	37.51	36.2	33.96	34.25	36.96
Grain	Density	(a/cc)	2.83	2.78	2.73	2.8	2.82	2.81
Wet Bulk	Density	(a/cc)	1.76	1.89	1.99	1.99	1.99	1.93
		(cm)						

KW-85

Porosity	(%)		62.81	51.47	53.24	5627	51.29	51.93	54.58	57.37
Void	Ratio		1.69	1.06	1.14	1.29	1.05	1.08	1.2	1.35
Water	Content	(%)	61.36	37.7	41.21	44.39	38.11	38.92	42.63	47.19
Grain	Density	(a/cc)	2.75	2.81	2.76		2.76	2.78	2.82	2.85
Wet Bulk	Density	(a/cc)	1.69	1.9	1.85	1.86	1.92	1.9	1.88	1.84
Sample	Interval	(cm)	0	9	17	27	႙	20	20	06

Vp (m/s)	1595.65 1595.85	1595.85 1600.50 1597.59	1603.81	1599.33 1602.44	1600.89 1599.53	1598.17	1603.03 1607.72	1605.96	1612.04 1607.13	1613.23 1616.39	1617.78 1611.45	1606.74 1617.78 1614.61
%Carb	92.1	91.7 90.4 91.8	91.1	91.6 98.7	90.1	06	90.1	90.9	90.5 90.1	90.5 90.2	96.7 91.6	92.8 92 91.9
MGS (phi)	6.08		5.80		5.68		5.24			4.97		
% Clay	22.61		19.90		20.76		18.57			19.85		17.07
% Silt	55.93		53.63		45.61		38.72			32.03		31.37
% Sand	21.56		26.39		32.65		40.55			44.35		47.84
% Grav.	0.00		0.08		0.98		2.16	<u>;</u>		3.77		3.71
Porosity % Grav. % Sand (%)	61.26	58.20 60.08 56.60	56.86	55.81 55.83	53.79	55.43	54.56	52.65	53.44 51.24	51.06 51.07	51.51 52.25	54.06 52.89 50.18
Void Ratio	1.58	1.39 1.30	1.32	1.26	1.16	1.24	1.20	1.1	1.15	1.04	1.06	1.18
Water Content	58.18	51.07 55.05 47.76	47.92	45.41 46.44 46.16	42.81	45.29	43.10	40.65	41.41	37.94 37.97	39.04 39.03	43.22 40.83 36.81
Grain Density	2.72	2.73 2.73 2.73	2.75	2.72 2.72 2.74	2.72	2.75	2.79	2.74	2.72	2.75	2.72 2.80	2.72 2.75 2.74
Wet Bulk Density	1.68	1.75 1.70 1.76	1.76	1.78 1.78 1.79	1.82	1.80	1.82	1.85	1.86	1.87	1.86	1.81 1.89 1.89
=	0-5 2-4	4-6 6-8 8-10	10-12	14-16 16-18 18-20	20-22	24-26 26-28	28-30	32-34 34-36	36-38 38-40	40-42	44-46 46-48	48-50 50-52 52-54

Wet Bulk	_	Water	Void	Porosity % Grav.	% Grav.	% Sand	% Silt	% Clay	MGS	%Carb	ν
	Density (a/cc)	Content (%)	Ratio	(%)					(phi)		(m/s)
	2.78	39.65	1.10	52.46						91.4	1619.57
	2.78	37.98	1.06	51.41						91.5	1605.37
	2.77	38.90	1.08	51.83	4.46	49.83	27.77	17.94		92.7	1611.85
	2.76	38.14	1.05	51.30						90.1	1618.18
	2.75	34.65	0.95	48.82						88.1	1616.59
	2.75	36.48	1.00	50.09						89.9	1612.04
	2.74	35.98	0.99	49.68						88.1	1623.16
	2.77	34.81	0.97	49.12	4.13	50.15	29.60	16.12		91.9	1626.36
	2.74	37.44	1.03	50.63			•			91.6	1621.56
	2.74	37.25	1.02	50.53						6	1621.56
	2.76	36.48	1.01	50.18						89.3	1627.97
	2.74	34.25	0.94	48.39						89.7	1628.16
	2.76	35.69	0.98	49.59	5.39	47.94	26.86	19.81		90.9	1628.16
	2.74	33.31	0.91	47.72		•				92.3	1629.77
	2.77	32.64	0.90	47.44						91.7	1628.36
	2.76	30.30	0.83	45.50						91.8	1521.20
	2.73	26.37	0.72	41.82	16.56	38.63	25.68	19.13		91.6	1524.57
	2.77	31.18	0.86	46.30	9.71	46.58	25.17	18.54	4.21	93.7	1525.37
	2.73	30.81	0.84	45.66						92.1	1516.25
	2.73	29.85	0.81	44.87						94.1	1495.37
	2.77	29.28	0.81	44.78						90.4	1484.13
	2.77	33.08	0.92	47.81						94.5	1649.82
	2.79	33.05	0.92	47.96	6.43	48.96	23.74	20.87	4.59	91.7	1628.83
	2.72	34.48	0.94	48.45						63	1568.91
	2.76	33.88	0.93	48.29						91.9	1646.06
	2.76	35.65	0.98	49.62						93	1646.30
	2.75	33.28	0.92	47.80						93.5	1498.46
	2.78	32.58	0.91	47.55	10.81	42.34	24.59	22.25	4.43	94.1	1483.59
	2.74	34.20	0.94	48.41						91.2	1606.36
	2.75	32.91	0.91	47.52						92.1	1633.75

Sample	Wet Bulk	Grain	Water	Void	Porosity % Grav.	% Grav.	% Sand	% Silt	% Clay	MGS	%Carb	γ	
Interval	Density	_	Content	Ratio	%)					(phi)		(m/s)	
(cm)	(a/cc)	(a/cc)	(%)										
116-118	~	2.75	33.33	0.92	47.86						88.9	1642.32	
118-120	1.96	2.75	31.84	0.88	46.70						92.2	1642.52	
120-122	_	2.75	34.85	96.0	48.98	7.45	47.07	22.85	22.63	4.28	92.1	1640.88	
122-124		2.76	33.26	0.92	47.82						97.6	1639.44	
124-126		2.78	34.38	96.0	48.87						91.3	1629.68	
126-128		2.78	33.25	0.92	48.00						90.5	1628.26	
128-130	1.98	2.78	31.02	0.86	46.26						90.6	1641.28	
130-132		2.75	31.44	0.86	46.33	7.89	40.57	25.86	25.68	4.96	88.1	1657.86	
132-133		2.73	29.84	0.81	44.90			•			88.7	1658.06	
133-136		2.75	30.25	0.83	45.45						87.8	1663.10	
136-138		2.79	30.79	0.86	46.23						88.6	1658.06	
138-140		2.77	33.59	0.93	48.20						88	1646.02	
140-142		2.75	32.72	06.0	47.35	6.33	42.14	23.57	27.96	5.22	89.1	1658.57	
142-144		2.75	33.58	0.92	48.00						90.5	1660.66	
144-146		2.75	33.23	0.91	47.76						6.06	1654.36	
146-148		2.77	32.41	0.90	47.28						89.4	1657.91	
148-150		2.75	33.12	0.91	47.67		• .				90.2	1648.12	
150-152		2.75	32.93	06.0	47.50	4.80	44.54	22.38	28.28	5.79	91.9	1643.57	
152-154		2.76	30.82	0.85	45.97						88	1642.12	
154-156		2.83	32.44	0.92	47.86						89.3	1640.68	
156-158		2.77	31.98	0.89	46.99						86.1	1634.35	
158-160		2.75	34.03	0.94	48.35						89.6	1653.25	
160-162		2.76	32.94	0.91	47.64	3.06	38.47	24.73	33.74	7.04	90.4	1653.45	
162-164		2.78	31.72	0.88	46.89						85.9	1652.19	
164-166		2.76	30.66	0.85	45.87						86.4	1650.74	
166-168		2.75	34.03	0.94	48.35						89.3	1649.48	
168-170		2.75	39.98	1.10	52.41						90.2	1643.49	
170-172		2.72	34.00	0.92	48.02	7.82	38.10	26.13	30.94	6.51	91.1	1635.31	
172-174		2.71	41.00	1.11	52.62						86.4	1622.60	
174-176		2.73	38.66	1.06	51.37						87.3	1634.09	

Sample	e Wet Bulk Gra	Grain	Water	Void	Porosity % Grav.	% Grav.	% Sand	% Silt	% Clay	MGS	%Carb	γ
Interval	Density	Density	_	Ratio	(%)					(phi)		(m/s)
(cm)	(a/cc)	(a/cc)										
176-178	1.91	2.75		0.95	48.85						87.4	1618.01
178-180	1.86	2.71		1.02	50.43						87.5	1607.33
180-182	1.90	2.74		0.94	48.45	1.16	26.04	35.10	37.70	7.59	84.2	1617.40
MEAN	1.89	2.75	36.96	1.02	50.11	5.34	40.74	31.07	23.02	5.49	90.5	1614.6

Wet Bulk Density (g/cc)	_	_	Water Content (%)	Void Ratio	Porosity % Grav. (%)	% Grav.	% Sand	% Silt	% Clay	MGS (phi)	Vp (m/s)
1.56 2.70 67.13 1.70 2.72 53.31				1.81	64.44 59.17	0.46	29.92	48.87	20.74	5.70	1629.47 1633.81
2.71				1.53	60.52						1641.74
2.71				1.43	58.81						1640.35
				1.28	56.06	3.17	40.17	39.41	17.25	4.81	1648.35
2.71				1.26	55.69			•			1637.17
2.72				1.17	53.93						1643.54
				1.35	57.50						1648.35
2.72				1.13	53.16						1648.54
				1.15	53.49	2.28	41.03	39.50	17.19	4.89	1648.54
2.72 41.03	41.03	41.03	•	1.12	52.77						1648.54
2.72 40.44	40.44	40.44	`	1.10	52.42						1657.66
2.72 39.71	39.71	39.71		1.08	51.93						1652.79
2.72 38.12	38.12	38.12	•	1.04	50.93		. ,				1663.99
2.72 40.61	40.61	40.61	•	1.10	52.46	4.52	47.61	32.80	15.07	4.44	1665.63
2.72 38.15	38.15	38.15		1.04	50.91						1660.52
2.72 39.20	39.20	39.20	•	1.07	51.58						1663.6
2.73 38.59	38.59	38.59	•	1.05	51.26						1665.04
2.73				1.06	51.34						1668.33
2.74				1.12	52.93	3.89	48.04	32.17	15.90	4.40	1666.48
2.74 39.87	39.87	39.87	·	1.09	52.20						1666.29
2.73			•	1.07	51.65						1666.09
				1.09	52.11						1660.97
				1.08	51.90						1663.85
2.73				1.06	51.57	7.85	44.56	30.79	16.80	4.43	1652.05
2.73				1.08							1655.1
				1.03	50.76						1661.42

Sample Interval	Wet Bulk Density	Grain Density	Water Content	Void Ratio	Porosity (%)	Porosity % Grav. (%)	% Sand	% Silt	% Clay	MGS (phi)	νρ (π/s)
(cm)	(a/cc)	(a/cc)	(%)		•						
56-58	1.89	2.73	35.44	0.97	49.17						1661.42
58-60	1.91	2.72	36.62	1.00	49.94						1659.59
60-62	1.88	2.72	37.60	1.02	50.58	4.70	48.93	29.36	17.01	4.45	1652.89
62-64	1.95	2.72	37.19	1.01	50.28						1655.74
64-66	1.90	2.74	38.04	1.04	51.04						1653.92
89-99	1.91	2.72	36.51	0.99	49.87						1653.92
68-70	1.91	2.73	34.65	0.95	48.63						1655.54
70-72	1.91	2.73	37.06	1.01	50.31	13.61	43.25	26.84	16.29	3.87	1653.72
72-74	1.91	2.73	35.98	0.98	49.55			•			1660.24
74-76	1.90	2.73	38.04	1.04	50.98						1656.97
76-78	1.93	2.74	36.87	1.01	50.23						1663.32
78-80	1.95	2.72	34.89	0.95	48.73						1655.15
80-82	1.95	2.74	31.65	0.87	46.40	15.93	43.15	23.80	17.12	3.48	1656.78
82-84	1.97	2.74	32.88	0.90	47.39						1659.84
84-86	1.95	2.73	30.10	0.82	45.07						1651.71
86-88	1.99	2.73	28.73	0.78	43.95						1656.38
88-90	1.95	2.74	32.47	0.89	47.08						1662.72
90-92	1.94	2.74	31.21	0.86	46.12	13.68	43.22	24.12	18.98	3.81	1667.46
92-94	1.94	2.74	31.90	0.87	46.66					•	1650.92
94-96	1.96	2.73	35.86	0.98	49.46						1774.22
86-96	1.96	2.74	33.67	0.92	47.94						1665.22
98-100	1.95	2.74	33.03	0.90	47.49						1661.93
100-102	2.02	2.76	30.59	0.84	45.79	38.01	27.89	17.47	16.63	1.96	1676.83
102-104	1.98	2.74	31.89	0.87	46.64					,	1671.83
104-106	2.02	2.75	29.01	0.80	44.36						1665.22
106-110	2.06	2.74	24.96	0.68	40.65						1666.87
MEAN	1.89	2.73	38.82	1.06	51.02	9.83	41.62	31.38	17.18	4.20	1658.71

Vp (m/s)	1657.54	1659.2	1654.24	1663.79	1651.61	1654.3	1652.06	1652.91	1652.31	1650.27	1656.07	1656.73			1624.01		1665.59	1668.95	1655.61	1662.25	1659.13	1665.99	1675.21	1660.72		1671.56	1684.43	1675.25	1673.77
% Carb		91.2					91.4					90.4					90.7					86.5					83.8		
MGS (phi)		5.17					5.04					5.20					4.76					4.85					4.55		
% Clay		17.91					18.08					16.41					18.23					20.23					19.33		
% Silt		36.19					35.24	•				37.5					30.44					29.88					29.62		
% Sand		43.94					44.29					46.09				٠.	47.3					41.8					40.95		
Porosity % Gravel % Sand (%)		1.96					2.38					0					4.04					8.08					10.1		
Porosity (%)	50.53	49.85	52.04	48.57	51.89	49.41	51.04	50.22	49.30	48.84	48.36	47.84	48.83	46.20	50.39	49.51	48.05	46.36	47.13	46.75	47.46	48.29	45.22	47.17	47.84	48.75	46.81	48.01	46.97
Void Ratio	1.02	0.99	1.09	0.94	1.08	0.98	1.04	1.01	0.97	0.95	0.94	0.92	0.95	0.86	1.02	0.98	0.92	0.86	0.89	0.88	0.30	0.93	0.83	0.89	0.92	0.95	0.88	0.92	0.89
Water Content (%)	38.30	37.31	40.52	35.30	40.19	36.72	38.78	37.72	36.44	35.73	35.01	34.45	35.83	32.40	37.93	36.69	34.71	32.46	33.49	32.96	33.82	34.92	30.71	33.36	33.54	34.82	32.94	33.98	32.72
Grain Density (q/cc)	2.73	2.73	2.74	2.74	2.75	2.72	2.75	2.74	2.73	2.74	2.74	2.73	2.73	2.71	2.74	2.74	2.73	2.73	2.73	2.73	2.73	2.74	2.75	2.74	2.80	2.80	2.74	2.78	2.77
Wet Bulk Density (q/cc)	1.81	1.82	1.79	1.85	1.80	1.83	1.81	1.82	1.83	1.84	1.85	1.85	1.84	1.88	1.82	1.83	1.85	1.88	1.87	1.87	1.87	1.85	1.91	1.87	1.89	1.88	1.88	1.88	1.89
Sample Interval (cm)	56-58 58-60	60-62	62-64	64-66	66-68	68-70	70-72	72-74	74-76	76-78	78-80		82 -84		86-88	88-90	90-92	92-94	94-96	96-98	98-100	100-102	102-104	104-106	106-108	108-110	110-112	112-114	114-116

% Carb	(m/s)		1670 4	- :> :> -	· · · · · · · · · · · · · · · · · · ·	88.5	88.5	88.5	88.5	88.5	88.5
	(phi)					3.11	3.11	3.11	3.11	3.11	3.11
% Clay						18.92	18.92	18.92	18.92	18.92	18.92
% Silt						23.13	23.13	23.13	23.13	23.13	23.13
% Sand						38.38	38.38	38.38	38.38	38.38	38.38
% Gravel % Sand % Silt						19.57	19.57	19.57	19.57	19.57	19.57
Porosity	(%)		45.62	45.18		45.21	45.21 47.94	45.21 47.94 46.59	45.21 47.94 46.59 46.07	45.21 47.94 46.59 46.07 42.65	45.21 47.94 46.59 46.07 42.65 48.76
Void	Ratio		0.84	0.82		0.83	0.83	0.83 0.92 0.87	0.83 0.92 0.87 0.85	0.83 0.92 0.87 0.85 0.74	0.83 0.92 0.87 0.85 0.74
											30.63 33.63 32.13 31.62 27.55 35.46
Grain	Density	(a/cc)	2.77	2.78		2.78	2.76 2.80	2.76 2.80 2.78	2.76 2.80 2.78 2.77	2.76 2.80 2.78 2.77 2.76	2.76 2.80 2.78 2.77 2.76
Wet Bulk	Density	(a/cc)	1.92	1.93		1.92	1.92 1.89	1.92 1.89 1.91	1.92 1.89 1.91 1.91	1.92 1.89 1.91 1.97	1.92 1.89 1.91 1.97 1.85
Sample	Interval	(cm)	116-118	118-120		120-122	120-122 122-124	120-122 122-124 124-126	120-122 122-124 124-126 126-128	120-122 122-124 124-126 126-128 128-130	120-122 122-124 124-126 126-128 128-130

Vp (m/s)	1625.55	1631.94	1630.54	1645.08	1637.36	1637.13	1621.95	1622.53	1623.12	1635.89	1626.10	1649.69	1644.01	1628.52	1615.46	1622.57	1631.35	1626.36	1613.71	1604.15	1607.06	1613.32	1608.62	1611.55	1619.42	1616.46	1621.79
% Carb	81.0	84.5	86.4	86.2	84.4	87.2			88.3			82.7		87.0	87.6						82.9			87.9	87.6	88.1	84.8
MGS (phi)	5.74				3.39					4.59					4.85					5.16							
% Clay	20.15				16.04					19.79					15.88					15.8					28.83		
% Silt	57.27				46.36					50.71					53.47					57.55					48.68		
% Sand	18.2				12.3					15.71					20.66					18.29					17.35		
% Grav.	4.39				25.3					13.78					6.6					8.36					5.13		
Porosity % Grav. % Sand (%)	52.37	50.74	49.27	49.45	48.26	46.05	41.83	45.34	47.67	48.59	42.99	47.23	45.41	47.66	49.56	48.09	48.12	44.95	46.34	47.58	51.35	50.52	50.87	50.48	48.24	49.18	49.50
Void Ratio	1.10	1.03	0.97	0.98	0.93	0.85	0.72	0.83	0.91	0.95	0.75	0.30	0.83	0.91	0.98	0.93	0.93	0.82	0.86	0.91	1.06	1.02	1.04	1.02	0.93	0.97	0.98
Water Content (%)	42.33	39.12	36.73	37.36	34.74	31.93	27.02	31.33	34.44	35.73	28.60	33.11	31.60	34.59	37.10	34.91	35.09	31.01	32.72	34.20	39.38	38.04	38.61	38.71	35.11	36.77	37.12
	2.66	2.70	2.71	2.68	2.75	2.74	2.72	2.71	2.71	2.71	2.70	2.77	2.70	2.70	2.71	2.72	2.71	2.70	2.70	2.72	2.75	2.75	2.75	2.70	2.72	2.70	2.70
Wet Bulk Density (g/cc)	1.75	1.79	1.82	1.80	1.86	1.89	1.96	1.89	1.85	1.83	1.92	1.89	1.88	1.84	1.82	1.85	1.84	1.89	1.87	1.85	1.80	1.82	1.81	1.80	1.84	1.82	1.82
	0-2	4-6	8-8	8-10	10-12	12-14	14-16	16-18	18-20	ω 20-22	22-24 23	24-26	26-28	28-30	30-32	32-34	34-36	36-38	38-40	40-42	42-44	44-46	46-48	48-50	50-52	52-54	54-56

Sample		Grain		Void	Porosity	% Grav.	% Sand	% Silt	% Clay	MGS	% Carb	۸
Interval	Density	Density	Content	Ratio	(%)				•	(phi)		(m/s)
(cm)	(a/cc)	(a/cc)	(%)		•					;		
56-58	1.80	2.76	40.29	1.08	52.01						87.2	1611.74
58-60	1.77	2.69	41.24	1.08	51.98						87.3	1612.91
60-62	1.76	2.69	42.36	1.11	52.66	0.82	11.34	57.53	30.3	6.78	87.4	1611.73
62-64	1.77	5.69	40.74	1.07	51.73						83.4	1613.88
34-66	1.77	2.70	40.95	1.08	51.91						84.8	1604.73
99-99	1.76	2.69	41.36	1.09	52.04						87.0	1611.92
68-70	1.78	2.72	40.75	1.08	51.95						85.0	1611.33
70-72	1.76	2.70	42.10	1.1	52.62	0.88	10.75	55.37	33	7.06	84.9	1611.91
72-74	1.78	2.71	40.66	1.07	51.79						86.1	1615.62
74-76	1.81	2.72	38.05	1.01	50.25						87.8	1621.70
76-78	1.76	2.80	44.93	1.23	55.10						87.4	1617.56
78-80	1.78	2.71	41.16	1.09	52.18						87.5	1611.51
30-82	1.79	2.70	39.49	1.04	50.99	1.82	10.95	57.16	30.07	6.62	87.1	1609.95
32-84	1.85	2.73	35.13	0.94	48.37						87.5	1535.58
34-86	1.85	2.71	34.02	0.90	47.34						86.7	1618.04
36-88	1.89	2.74	32.09	0.86	46.17						85.5	1571.44
38-90	1.87	2.69	32.49	0.85	46.08						86.7	1659.17
90-92	1.77	2.70	40.97	1.08	51.92	2.7	17.99	50.83	25.48	5.99	84.1	1555.98
92-94	1.78	2.69	39.86	1.05	51.18						86.6	1496.28
94-96	1.82	2.70	36.73	0.97	49.24						83.4	1588.93
86-96	1.81	2.70	37.71	66.0	49.82						84.1	1589.12
8-100	1.79	2.72	40.15	1.06	51.57						83.3	1579.91
00-102	1.78	2.69	40.04	1.05	51.31	1.64	13.57	49.17	35.62	7.36	84.2	1564 98
02-104	1.76	2.73	42.74	1.14	53.26						!	1569 68
04-106	1.77	2.73	42.13	1.12	52.92							1569 68
36-108	1.78	2.73	41.08	1.10	52.27							1569.68
38-110	1.79	2.74	40.90	1.09	52.24							1572.89
10-112	1.79	2.71	40.05	1.06	51.47	2.77	14.84	43.67	38.72	7.52	86.0	1578.97
12-114	1.80	2.73	39.68	1.06	51.41							1571.38
14-116	1.75	2.74	44.19	1.18	54.19							1560.89

Vp (m/s)	1589.90	1590.10	1581.07	1583.38	1591.66	1602.76	1591.85	1605.90	1588.96	1582.82	1579.38	1586.45	1586.06	1592.04	1593.59	1598.26	1586.06	1596.89	1635.19	1612.83	1594.17	1616.21	1611.44	1608.66	1522.21	1523.12	1601.77
% Carb		80.2					85.2					86.0					85.2					82.1					85.53
MGS (phi)		7.69					7.35					6.87					6.15					5.55					6.17
% Clay		38.74					37.06		,			37.3					33.6					29.4					28.58
% Silt		43.81					38.06					39.73					34.62					31.54					47.97
% Sand		15.28					22.98					19.93					23.83					32.27					17.43
% Grav.		2.16					1.9					က					7.9					6.8					6.02
Porosity % Grav. (%)	51.23	49.43	48.86	52.27	49.87	47.51	47.25	47.82	48.71	50.95	50.20	50.92	50.19	47.76	47.54	49.27	49.53	45.71	46.97	48.07	48.48	46.86	47.99	47.84	48.87	42.98	49.40
Void Ratio	1.05	0.98	96.0	1.09	0.99	0.91	0.90	0.92	0.95	1.04	1.01	1.04	1.01	0.91	0.91	0.97	0.98	0.84	0.89	0.93	0.94	0.88	0.92	0.92	96.0	0.75	0.98
Water Content	39.26	36.60	35.62	40.83	37.09	33.69	33.53	34.16	35.21	38.60	37.43	38.46	37.35	34.04	33.46	35.99	36.63	31.25	32.84	34.35	34.92	32.90	34.22	33.94	35.16	27.80	36.86
Grain Density	2.74	2.73	2.75	2.75	2.75	2.75	2.74	2.75	2.76	2.76	2.76	2.76	2.76	2.75	2.77	2.76	2.74	2.76	2.76	2.76	2.76	2.74	2.76	2.77	2.78	2.78	2.73
Wet Bulk Density	1.80	1.83	1.85	1.79	1.83	1.87	1.87	1.87	1.86	1.82	1.83	1.82	1.83	1.87	1.88	1.85	1.83	1.91	1.89	1.87	1.86	1.88	1.87	1.88	1.87	1.97	1.83
Sample Interval	116-118	120-122	122-124	124-126	126-128	128-130	130-132	132-133	133-136	136-138	138-140	140-142	25 142-144	144-146	146-148	148-150	150-152	152-154	154-156	156-158	158-160	160-162	162-164	164-166	166-168	168-170	MEAN

Vp (m/s)	1622.63 1619.46	1621.05	1619.46 1616.31	1616.11	1608.08	1610.62	1610.04	1612.59	1610.44	1613.38	1614.76	1617.91	1619.49	1616.33	1619.49	1621.28	1622.87	1619.69	1621.28	1622.87	1626.25	1624.65	1623.85	1629.03	1631.23	1630.21
% Carb	87.8			88.3					88.4					89.1					88.8					89.3		
MGS (phi)	6.35			6.83					6.39					6.37					6.51					6.59		
% Clay	18.74			25.03					24.37					23.48					24.00					23.97		
% Silt	69.97			63.19	•				59.15					58.40					57.08					56.87		
% Sand	10.88			11.26					16.18				٠.	17.73					18.10					18.90		
% Grav.	0.39			0.53					0.30					0.40					0.82					0.25		
Porosity % Grav. % Sand (%)	52.15 52.12	53.01	52.71 52.33	52.09	53.82	52.69	52.56	52.33	53.96	51.86	52.36	50.64	50.34	51.13	50.85	50.50	48.40	50.93	50.77	49.29	50.12	50.58	50.59	49.50	49.62	49.45
Void Ratio	1.09	1.13	1.1	1.09	1.17	1.1	1.1	1.10	1.17	1.08	1.10	1.03	1.01	1.05	1.03	1.02	0.94	1.04	1.03	0.97	1.00	1.02	1.02	0.98	0.98	0.98
Water Content (%)	40.81 40.76	42.25	41.76	40.62	43.72	41.78	41.51	41.20	43.85	40.30	41.05	38.57	37.97	39.02	38.65	38.08	35.21	38.63	38.44	36.16	37.41	38.16	38.09	36.57	36.67	36.43
Grain Density (g/cc)	2.73	2.73	2. <i>7</i> 3 2.74	2.74	2.73	2.73	2.73	2.73	2.74	2.74	2.74	2.72	2.73	2.74	2.74	2.74	2.73	2.75	2.75	2.75	2.75	2.75	2.75	2.74	2.75	2.75
Wet Bulk Density (q/cc)	1.79	1.77	1.78	1.79	1.75	1.77	1.78	1.78	1.76	1.79	1.79	1.81	1.82	1.81	1.81	1.82	1.85	1.81	1.82	1.84	1.83	1.82	1.82	1.84	1.84	1.84
Sample Interval (cm)	0-2 2-4	4-6	6-8 8-10	10-12	12-14	14-16	16-18	18-20		22-24.		26-28	28-30	30-32	32-34	34-36	36-38	38-40	40-42	42-44	44-46	46-48	48-50	50-52	52-54	54-56

Vp (m/s)	1627.21	1624.42	1628.59	1624.59	1624.59	1621.62	1624.79	1621.81	1621.62	1621.03	1620.64	1623.81	1625.20	1528.02	1536.84	1560.72	1540.78	1542.23	1526.23	1657.17	1647.34	1644.08	1632.60	1630.42	1642.30	1646.58	1631.06	1625.29	1629.29
% Carb		90.5					89.5					91.5					86.3					88.3					88.3		
MGS (phi)		6.64					99.9										7.68					8.01					7.48		
% Clay		24.58					26.00			•							34.47					39.77					31.17		
% Silt		59.04					55.26										44.42					40.81					39.46		
% Sand		14.68					17.93										20.65					18.24					28.53		
% Grav.		1.70					0.81										0.46					1.18					0.85		
Porosity % Grav. % Sand (%)	50.07	49.59	49.57	50.33	51.83	50.62	50.01	50.54	50.93	49.92	49.35	50.04	50.19	50.88	49.82	44.48	69.20	64.72	58.93	56.08	58.32	49.03	50.64	50.74	48.86	48.43	49.41	51.16	51.10
Void Ratio	1.00	0.98	0.98	1.01	1.08	1.02	1.00	1.02	1.04	1.00	0.97	1.00	1.01	1.04	0.99	0.80		1.83	1.43	1.28	1.40	96.0	1.03	1.03	96.0	0.94	0.98	1.05	1.04
Water Content (%)	37.35	36.54	36.50	37.65	39.97	38.08	37.17	38.01	38.56	37.10	36.17	37.22	37.42	38.42	36.90	29.63	83.08	96'.29	53.10	47.20	51.69	35.42	37.94	38.16	35.49	34.92	36.11	38.83	38.74
Grain Density (q/cc)	2.75	2.76	2.76	2.76	2.76	2.76	2.76	2.75	2.76	2.75	2.76	2.76	2.76	2.76	2.76	2.77	2.77	2.76	2.77	2.77	2.77	2.78	2.77	2.76	2.76	2.75	2.77	2.76	2.76
Wet Bulk Density	1.83 83 83	1.84	1.84	1.83	1.80	1.82	1.83	1.82	1.82	1.83	1.85	1.83	1.83	1.82	1.84	1.94	1.50	1.58	1.68	1.73	1.70	1.86	1.83	1.82	1.85	1.86	1.85	1.82	1.82
Sample Interval	56-58 58-60	60-62	62-64	64-66	89-99	68-70	70-72	72-74	74-76	76-78	78-80		82-84 32		86-88	88-90	90-95	92-94	94-96	96-98	98-100	100-102	102-104	104-106	106-108	108-110	110-112	112-114	114-116

•

Sample		Grain	Water	Void	Porosity % Grav. % Sand	% Grav.	% Sand	% Silt	% Clay	MGS	% Carb	ν
	Density		Content	Ratio	(%)					(phi)		(m/s)
	(a/cc)	(g/cc)	(%)	X.								
	1.83	2.76	37.48	1.01	50.25							1622.53
_	1.83	2.77	37.76	1.02	50.56							1626.91
120-122	1.89	2.78	33.47	0.91	47.61	0.15	21.13	41.16	37.55	8.16	87.8	1659.04
-	1.91	2.78	31.61	0.86	46.15							1659.04
'	1.95	2.76	28.23	92.0	43.25							1660.50
~	1.90	2.78	32.30	0.88	46.72							1655.13
0	1.93	2.77	30.09	0.81	44.87							1658.24
\sim	1.94	2.75	28.82	0.77	43.63	1.88	27.66	36.71	33.75	7.77	87.7	1671.21
4	1.94	2.76	29.13	0.79	44.00			•				1683.98
ဖ	1.91	2.78	31.52	0.85	46.07							1675.06
136-138	1.95	2.76	28.25	0.76	43.25							1671.68
0	1.89	2.78	33.19	0.90	47.41				,			1654.78
7	1.91	2.78	31.62	0.86	46.19	2.33	32.12	37.40	28.15	6.43	91.1	1649.24
4	1.89	2.76	32.75	0.88	46.93							1659.15
9	1.91											1657.09
8	1.88	2.77	33.55	0.91	47.55							1655.23
0	1.90	2.75	31.73	0.85	46.04							1652.13
N	1.91	2.78	31.80	0.86	46.33	14.86	28.89	32.96	23.29	4.77	88.0	1650.48
4	1.89	2.77	32.82	0.89	47.06							1657.09
9	1.89	2.78	32.99	0.89	47.22							1677.04
φ	1.91	2.81	33.02	0.91	47.56							1670.27
0	1.93	2.81	30.91	0.85	45.85							1682.15
2	1.91	2.75	30.91	0.83	45.36	16.36	35.93	26.73	20.99	4.19	91.7	1680.44
4	1.92	2.80	31.68	0.87	46.46							1471.36
စ	1.89	2.78	33.15	0.90	47.38							1661.88
ω	1.92	2.78	30.95	0.84	45.67							1665.23
0	1.91	2.77	31.49	0.85	45.97							1675.34
2	1.92	2.77	30.64	0.83	45.32	4.59	33.18	39.27	22.96	6.00	6.06	1680.65
4	1.93	2.77	29.81	0.81	44.66							1679.14
ဖ	1.92	2.77	30.46	0.82	45.15							1671.48

Vp (m/s)	1660.56	1658.44	1671.75	1666.45	1543.08	1544.95	1545.86	1634.03	1626.21	1539.19	1646.52	1646.72	1643.75	1648.63	1645.18	1653.14	1633.88	1630.68	1638.70	1641.93	1648.43	1645.18	1651.70	1650.26	1647.00	1642.13	1642.13	1639.29	1638.27	1620 67
% Carb			92.7					90.6					6.06					92.5					91.4					91.0		
MGS (phi)			6.34					6.17					6.20					6.50												
% Clay			25.19					24.60					24.33					24.43												
% Silt			43.85					42.49					45.67					52.34												
% Sand			25.72					29.25					25.76				•	22.29												
% Grav.			5.23					3.65					4.23					0.94												
Porosity % Grav. % Sand (%)	46.25	45.67	45.82	45.53	47.86	43.88	48.99	45.91	46.89	51.90	48.09	45.64	49.94	50.53	49.66	47.43	49.82	50.99	49.84	50.58	47.67	47.76	47.78	47.10	46.61	48.93	49.55	49.44	50.53	49.46
Void Ratio	0.86	0.84	0.85	0.84	0.92	0.78	96.0	0.85	0.88	1.08	0.93	0.84	1.00	1.02	0.99	0.30	0.99	1.04	0.99	1.02	0.91	0.91	0.92	0.89	0.87	96.0	0.98	0.98	1.02	0.98
Water Content	(%) 32.03	31.26	31.27	30.96	34.22	29.05	35.36	31.49	32.88	40.08	34.45	31.17	37.02	37.29	36.39	33.52	36.92	38.61	36.70	37.37	33.70	34.02	34.07	32.96	32.34	35.75	36.11	36.42	37.76	36.22
Grain Density	(g/cc) 2.75	2.75	2.77	2.76	2.75	2.76	2.78	2.76	2.75	2.76	2.75	2.76	2.76	2.81	2.78	2.76	2.75	2.76	2.77	2.80	2.77	2.75	2.75	2.77	2.77	2.74	2.79	2.75	2.77	2.77
Wet Bulk Density	(g/cc) 1.90	1.91	1.91	1.92	1.87	1.94	1.86	1.91	1.88	1.80	1.86	1.91	1.84	1.85	1.85	1.88	1.83	1.82	1.84	1.85	1.88	1.87	1.87	1.89	1.90	1.85	1.86	1.84	1.83	1.85
o =	(cm) 176-178	178-180	180-182	182-184	184-186	186-188	188-190	190-192	192-194	194-196	196-198	198-200		202-204		206-208	208-210	210-212	212-214	214-216	216-218	218-220	220-222	222-224	224-226	226-228	228-230	230-232	232-234	234-236

ď	(m/s)		1639.66	1630.23
MGS % Carb				89.68
MGS	(phi)			6.57
% Clay				26.71
% Silt				47.73
				22.62
% Grav.				2.95
Porosity	(%)		49.80	49.39
Void	Ratio		0.99	0.98
Water	Content	(%)	37.08	36.70
Grain	Density	(a/cc)	2.74	2.76
Wet Bulk	al Density Density Co	(a/cc)	1.83	1.85
Sample	Interval	(cm)	236-238	MEAN

(phi) (m/s) 5.97 84.8
25.26
22.67 51.48
(%) 57.08 0.59 58.48 56.81 54.46 56.37 54.43 1.79
1.33 1.41 1.20 1.29 1.19
(%) (%) 50.24 52.76 49.27 44.95 47.98 44.76
(g/cc) (g/cc) 2.73 2.73 2.73 2.72 2.72 2.73
(g/cc) (g/cc) 1.69 1.68 1.71 1.74 1.75
(cm) 0-2 2-4 4-6 6-8 8-10 10-12

Vp (m/s)	1657.29	1652.61	1652 61	1638 14	1647 76	1653.84	1655 27	1653 44	1656 11	1658 58	1654 72	1655 56	1656 21	1								1622.30	1622.50	1617.69	1616 09	1620.89	1617.89	1613.11	1616.49	1618.29
% Carb			91.0					916) -				90.5	}				92.1	i				92.0) i				600)	
MGS (phi)			6.4) :				4.97					5.38					5 36)				5.19	:				3 98)	
% Clay			20.87					21.14	· · :				21.26	!				22.17	: i				21.41					18.7	1 1 1	
% Silt			41.96					41.04					38.52					35.98) !				36.52					27.92	I	
% Sand			32.8					33.09					36.75					34.74					36.78					38.21		
% Grav.			4.37					4.73					3.46					7.1					5.3					15.17		
Porosity % Grav. (%)	52.26	52.39	53.19	54.71	53.61	52.84	52.08	50.31	49.94	50.35	48.98	50.48	48.88	50.54	43.76	41.05	42.29	47.15	45.41	45.62	45.78	45.39	46.36	43.85	46.70	46.05	46.31	45.46	44.56	45.49
Void Ratio	1.09	1.10	1.14	1.21	1.16	1.12	1.09	1.01	1.00	1.01	96.0	1.02	96.0	1.02	0.78	0.70	0.73	0.89	0.83	0.84	0.84	0.83	0.86	0.78	0.88	0.85	0.86	0.83	08.0	0.83
Water Content	40.46	40.77	41.72	44.17	42.26	41.40	40.16	37.44	37.08	37.66	35.73	37.72	35.41	37.86	28.79	25.76	27.42	32.44	30.80	31.11	31.28	30.76	31.92	29.16	32.32	31.36	31.70	30.78	29.89	30.95
Grain Density	2.77	2.76	2.79	2.80	2.80	2.77	2.77	2.77	2.76	2.76	2.75	2.77	2.77	2.76	2.77	2.77	2.74	2.82	2.77	2.76	2.76	2.77	2.77	2.74	2.78	2.79	2.79	2.77	2.75	2.76
Wet Bulk Density	1.80	1.80	1.79	1.77	1.79	1.79	1.80	1.83	1.83	1.83	1.85	1.83	1.86	1.83	1.95	1.99	1.96	1.91	1.92	1.91	1.91	1.92	1.90	1.93	1.90	1.92	1.91	1.92	1.93	1.91
Sample Interval	56-58	28-60	60-62	62-64	64-66	89-99	68-70	70-72	72-74	74-76	76-78	78-80		85-84 32	84-86	86-88	88-90	90-92	92-94	94-96	96-98	98-100	100-102	102-104	104-106	106-108	108-110	110-112	112-114	114-116

Sample	Wet Bulk	Grain	Water			Porosity % Grav.	% Sand	% Silt	% Clav	MGS	% Carb	S
Interval	Density	Density	/ Content	Ratio						(iphi)		(s/m)
(cm)	(a/cc)	(a/cc)	(%)									(2000)
176-178	1.95	2.76	28.37		43.35							1642 19
178-180	1.87	2.77	34.58		48.32							101
180-182	1.86	2.77	34.95	0.95	48.60	7.14	44 61	24 77	23.4R	5 23	0	1638 OB
182-184	1.87	2.76	34.60		48.29	•	•	: !	5	9	?	20.00
184-186	1.91	2.77	31.66		46.12							1683 78
186-188		2.77										1877.04
188-190												5.
190-192	190-192 1.94	2.77	29.37	0.79	44.28	1.41	41.22	22.62	34.75	5.88	90.1	1678.78
MEAN	1.86	2.77	35.82	0.97	48.68	6.54	35.22	36.27	21.96	5 02	89 92	1634 G7

ν	(m/s)		1628.37	1625.18	1623.99	1620.82	1627.17	1621.01	1617.86	1622.79	1624.77	1631.15	1632.94																	1623.90	1640.32	1626.72
% Carb					85.4					89.3					89.0					86.8					89.9					90.0		
MGS	(phi)				6.2					5.96					6.45					6.58					6.01					6.09		
% Clay					22.29					24.71					24.27					24.32					23.04					24.62		
% Silt					45.71					46.7	•				43.92					47.62					40.81					40.49		
% Sand					31.28					28.03					29.81	•				27.3					35.43					33.62		
% Grav.					0.72					0.56					1.99					0.76					0.71					1.27		
Porosity	(%)		49.39	50.94	49.83	49.97	48.99	49.90	50.81	50.31	49.85	49.05	48.70	48.34	45.26	44.45	48.49	50.57	47.10	46.30	46.97	45.95	48.42	45.61	45.12	47.18	47.85	47.14	47.83	46.74	44.30	46.45
Void	Ratio		0.98	1.04	0.99	1.00	96.0	1.00	1.03	1.01	0.99	96.0	0.95	0.94	0.83	08.0	0.94	1.02	0.89	0.86	0.89	0.85	0.94	0.84	0.82	0.89	0.92	0.89	0.92	0.88	0.80	0.87
Water	Content	(%)	36.39	38.72	36.98	37.27	35.88	37.16	38.47	37.70	36.92	35.74	35.25	34.81	30.74	29.79	35.04	38.03	33.11	32.07	32.90	31.58	34.84	31.13	30.56	32.85	34.00	32.89	34.06	32.44	29.64	32.10
Grain	Density	(a/cc)	2.75	2.75	2.75	2.74	2.74	2.75	2.75	2.75	2.76	2.76	2.76	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.76	2.76	2.76	2.76	2.75	2.78	2.76	2.78	2.76	2.77	2.75	2.77
Wet Bulk	Density	(a/cc)	1.84	1.81	1.83	1.83	1.84	1.83	1.82	1.82	1.84	1.85	1.86	1.86	1.91	1.93	1.86	1.82	1.88	1.90	1.89	1.90	1.86	1.91	1.92	1.90	1.87	1.89	1.87	1.90	1.93	1.90
Sample		(cm)	56-58	28-60	60-62	62-64	64-66	89-99	68-70	70-72	72-74	74-76	76-78	78-80	80-82	82-84	84-86	86-88	88-90	90-92	92-94	94-96	86-96	98-100	100-102	102-104	104-106	106-108	108-110	110-112	112-114	114-116

Sample Interval	S -	Grain Density	Water Content	Void Ratio	Porosity (%)	% Grav.	% Sand	% Silt	% Clay	MGS (phi)	% Carb	Vp (m/s)
16-118	1.89	2.75	32.11	0.86	46.31							1625.11
118-120		2.78	33.53	0.91	47.65							1620.49
120-122		2.74	33.13	0.89	46.99	2.26	35.8	39.27	22.68	5.98	89.6	1615.71
122-124	_	2.74	31.92	0.85	46.09							1617.10
124-126		2.80	34.43	0.94	48.53							1615.51
126-128		2.77	33.20	06.0	47.34							1623.50
128-130		2.75	31.11	0.83	45.50							1617.10
130-132		2.76	39.60	1.07	51.63	2.64	27.42	46.65	23.29	6.27	90.4	1596.46
132-134		2.76	42.24	1.14	53.23			•				1596.65
134-136		2.76	33.19	0.89	47.19							1613.92
136-138		2.79	34.59	0.94	48.55							1613.92
138-140		2.79	32.57	0.89	47.01							1622.10
140-142		2.76	32.38	0.87	46.61	5.55	37.58	34	22.88	5.81	90.1	1626.92
42-144	1.91						,					1618.90
44-146		2.76	31.90	0.86	46.23							1629.95
46-148		2.74	31.75	0.85	45.96							1623.50
148-150		2.76	31.38	0.85	45.86		• .					1613.92
150-152		2.76	30.69	0.83	45.27	2.5	35.49	37.64	24.36	6.4		1623.50
152-154		2.78	31.62	0.86	46.16							
154-156		2.78	30.73	0.84	45.52							1626.92
156-158		2.75	32.44	0.87	46.52							1617.30
158-160		2.78	33.15	0.90	47.32							1620.49
160-162		2.79	32.35	0.88	46.85	6.64	38.57	32	22.79	5.75		1628.73
162-164		2.76	30.66	0.83	45.22							1625.51
164-166	_	2.76	27.80	0.75	42.82							1619.90
166-168		2.76	27.09	0.73	42.19							1637.89
168-170	1.94	2.77	29.29	0.79	44.19							1636.65
170-172	1.94	2.78	29.37	0.80	44.36	5.26	43.88	30.32	20.53	5.28		1638.69
172-174	~	2.75	27.74	0.74	42.68							1645.46
174-176	1.95	2.76	28.45	0.77	43.43							

MGS % Carb Vp (phi) (m/s)	1650.35		1642.49																					
·	3.28 4.41				21.63 5.18																			
	24.7 18.28				55.92 21.63		,		÷			•				e e								
	47.4 24		4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9																					
	9.62			6.31																				_
(%)	38.42 44.31 43.72	45.94 45.61																						
Ratio																								0.85 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
Content F (%)																								
Density C (g/cc)																								22.22.22.22.22.23.33.42.43.43.43.43.43.43.43.43.43.43.43.43.43.
4 _	2.04 1.93 1.96	1.93	1.93 1.95	7 04	1.91	1.91 1.93 1.93	1.93 1.94 1.94	1.6.1 1.6.1	1.9.1 1.9.1 1.90 1.90 1.90	1.9.1 1.9.1 1.9.0 1.0.0	1.9.1 1.9.1 1.9.2 1.9.3 1.9.3 1.9.3	1.9.1 1.9.1 1.9.2 1.9.3 1.9.3 1.9.3 1.9.3	1.9.1 1.9.1 1.9.2 1.9.3 1.9.3 1.9.3 1.9.3	1.92 1.93 1.93 1.93 1.93 1.93 1.93	1.9.1 1.9.1 1.9.2 1.9.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3	1.92 1.92 1.93 1.93 1.93 1.94 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95	1.9.1 1.9.1 1.9.2 1.9.3 1.0.3	1.9.1 1.9.1 1.9.2 1.9.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3	1.92 1.92 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93	1.9.1 1.9.1 1.9.2 1.0.2	1.92 1.92 1.93 1.93 1.94 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95	1.92 1.92 1.92 1.93 1.92 1.92 1.92 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93	1.92 1.92 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93	1.92 1.92 1.93 1.93 1.94 1.95 1.95 1.95 1.95 1.95 1.95
sample v Interval (cm)	176-178 178-180 180-182	182-184 184-186	186-188 188-190	190-192	192-194	192-194 194-196 196-198	192-194 194-196 196-198 198-200	192-194 194-196 196-198 198-200 200-202	192-194 194-196 196-198 198-200 200-202 202-204	192-194 194-196 196-198 198-200 200-202 202-204	192-194 194-196 196-198 198-200 200-202 202-204 206-206	192-194 194-196 196-198 198-200 200-202 202-204 206-208 206-208	192-194 194-196 196-198 198-200 200-202 202-204 206-208 206-208 210-210	192-194 194-196 196-198 198-200 200-202 202-204 206-208 206-208 210-212	192-194 194-196 196-198 198-200 200-202 204-206 206-208 208-210 210-212 214-214	192-194 194-196 196-198 198-200 200-202 204-206 206-208 208-210 210-212 214-216	192-194 194-196 196-198 198-200 200-202 204-206 206-208 208-210 210-212 214-216 216-218	192-194 194-196 196-198 198-200 200-202 206-208 208-210 210-212 212-214 216-218 216-218	192-194 194-196 196-198 198-200 200-202 204-206 206-208 210-212 214-216 216-218 216-218 216-220	192-194 194-196 196-198 198-200 200-202 204-206 208-210 210-212 216-218 216-218 216-220 220-222	192-194 194-196 196-198 198-200 200-202 204-206 208-210 210-212 214-216 216-218 218-220 220-222 222-224 226-228	192-194 194-196 196-198 198-200 200-202 204-206 206-208 208-210 214-216 216-218 218-220 220-222 222-224 226-228	192-194 194-196 196-198 198-200 200-202 202-204 206-208 208-210 210-212 216-218 216-218 216-220 220-222 220-222 226-228	192-194 194-196 196-198 198-200 200-202 202-204 208-210 210-212 214-216 218-220 220-222 222-224 228-230 230-232

Λ	(m/s)		1635.08	1626.91
% Carb				89.23
MGS	(phi)			6.15
% Clay				23.72
% Silt				41.85
% Sand				32.01
% Grav.				2.42
Porosity	(%)		42.81	47.66
Void	Ratio		0.75	0.92
Water	Content	<u>%</u>	27.82	34.19
Grain	Density	(a/cc)	2.76	2.76
le Wet Bulk Grain Wa	Density	(a/cc)	1.96	1.88
Sample	Interval	(cm)	236-238	MEAN

Vp (m/s)							1586.9	1600.9	1605.7	1604.1	1605.7	1604.1	1608.4	1606.6	1613.2	1606.8	1611.8	1624.7	1628.5	1629.3	1628.3	1615.8	1619.4	1621.4	1621.6	1621.6	1617.2
MGS (phi)	7.07				6.25					5.51					5.17					4.77							
% Clay	21.21				21					20.54					18.57					16.17					21.76		
% Silt	55.14				47.47					41.07					37.92					34.29					34.71		
% Sand	23.6				31					37.05					41.82					46.2					40.91		
Porosity % Gravel % Sand (%)	0.05				0.53					1.35					1.68					3.34					2.62		
Porosity (%)	66.76 55.00	52.62	52.51	54.40	48.45	50.12	49.45	48.57	48.16	49.17	47.35	47.97	46.88	47.63	46.41	47.49	46.61	46.13	44.78	45.14	45.51	48.36	46.67	46.70	46.42	47.07	46.95
Void Ratio	1.22	1.11	1.11	1.19	0.94	1.00	0.98	0.94	0.93	0.97	0.90	0.92	0.88	0.91	0.87	0.90	0.87	0.86	0.81	0.82	0.84	0.94	0.88	0.88	0.87	0.89	0.88
Water Content	75.20	41.49	41.27	44.48	35.04	37.53	36.54	35.30	34.81	36.15	33.54	34.37	32.94	33.90	32.23	33.61	32.56	31.96	30.18	30.63	31.02	34.79	32.52	32.49	32.15	32.98	32.81
Grain Density	2.75	2.74	2.74	2.75	2.75	2.74	2.74	2.74	2.73	2.74	2.75	2.75	2.74	2.75	2.75	2.75	2.75	2.74	2.75	2.75	2.76	2.76	2.76	2.76	2.76	2.76	2.76
Wet Bulk Density	1.54	1.78	1.78	1.75	1.86	1.82	1.84	1.85	1.85	1.84	1.87	1.86	1.88	1.87	1.89	1.88	1.89	1.89	1.92	1.91	1.91	1.86	1.89	1.89	1.90	1.89	1.89
Sample Interval	0-2	4-6	6 -8	8-10	10-12	12-14	14-16	16-18	18-20	20-22	22-24	24-26	26-28	28-30	30-32	32-34	34-36	36-38	38-40	40-42	42-44	44-46	46-48	48-50	50-52	52-54	54-56

MGS Vp (phi) (m/s)	1606.0	1620.4 5.22 1623.6		1604.5	1617.2	1620.2	5.65 1618.2	1622.8	1625.6	1620.6	1626.5	4.74 1645.4	1632.2	1627.3	1626.1	1630.3	4.51 1640.7					4.56 1643.2		1639.5	1643.0	1629.4	4.78 1626.1		1 (()
% Clay M		20.05					21.63 5.					18.19 4					19.05 4					20.09					20.36 4		
% Silt		36.6					39.09					29.44					25.31					21.43					25.79		
% Sand		41.73	1				38.46					49.33					46.01					49.01					47.57		
Porosity % Gravel % Sand (%)		1.62					0.82					3.04					9.63					9.47					6.26		
Porosity (%)	47.34	46.66	47.73	48.32	45.57	46.25	47.35	45.66	46.58	46.52	45.25	40.84	43.73	44.64	43.61	45.42	43.22	46.20	44.79	44.71	47.71	44.31	45.53	45.11	42.99	45.32	45.84	46.42	18 EO
Void Ratio	0.90	0.87	0.91	0.93	0.84	0.86	0.00	0.84	0.87	0.87	0.83	69.0	0.78	0.81	0.77	0.83	0.76	98.0	0.81	0.81	0.91	0.80	0.84	0.82	0.75	0.83	0.85	0.87	78.0
Water Content (%)	33.29	32.43	33.82	34.62	31.02	31.84	33.28	31.06	32.04	32.12	30.62	25.59	28.70	29.77	28.59	30.45	28.02	31.97	30.16	30.07	33.77	29.43	30.77	29.96	27.87	30.57	31.28	32.07	32 2A
Grain Density (q/cc)	2.77	2.76	2.76	2.77	2.76	2.77	2.77	2.77	2.79	2.77	2.76	2.76	2.77	2.77	2.77	2.80	2.78	2.75	2.75	2.75	2.77	2.77	2.78	2.81	2.77	2.78	2.77	2.77	2.76
Wet Bulk Density (a/cc)	1.88	1.89	1.88	1.87	1.91	1.90	1.88	1.92	1.91	1.90	1.92	2.00	1.95	1.94	1.95	1.94	1.97	1.90	1.92	1.92	1.88	1.94	1.92	1.95	1.96	1.92	1.91	1.90	200
	56-58	20-02 60-62	62-64	64-66	89-99	68-70	70-72	72-74	74-76	76-78	78-80	80-82	82-84	84-86	86-88	88-90	90-92	92-94	94-96	96-98	98-100	100-102	102-104	104-106	106-108	108-110	110-112	112-114	111-116

Water Void
Ratio
0.89
91
79
18.
18
181
.82
77
.77 43.42
0.78 43.79
.80 44.40
.75 42.88
.72 41.93
.71 41.51
.79 44.
0.86 46.42

Vp (m/s)	1610.27 1619.61 1618.05	1624.52 1635.62	1640.23	1640.04	1635.23	1633.83	1635.43	1627.29	1623.55	1626.51	1627.31	1628.70	1627.92	1631.90	1627.75	1636.73	1641.36	1639.36	1634.15	1632.74	1629.55	1642.38	1637.55	
MGS (phi)	6.02	+- +-	5.89	•	•		5.74	`	·-			5.42			• -	,-	5.09	•	•	•	•	5.31	•	
% Clay	21.07		20.82				20.59					18.19					16.76					18.96		
% Silt	65.69		63.18		•		56.49					51.69					47.90					47.20		
% Sand	16.10		15.67				22.54					29.17					33.31					29.88		
	0.14		0.33				0.37					0.95					2.02					3.96		
Porosity % Grav. (%)	64.48 63.00 61.37	56.56 54.42	54.14 52.78	51.81	51.95	52.10	53.80	54.58	51.89	53.31	51.48	50.98	50.78	49.53	50.66	47.79	46.92	48.84	50.71	49.31	48.80	45.60	46.72	48.59
Void Ratio	1.82 1.70 1.59	1.30	1.18	1.08	1.08	1.09	1.16	1.20	1.08	1.14	1.06	1.04	1.03	0.98	1.03	0.92	0.88	0.95	1.03	0.97	0.95	0.84	0.88	0.95
Water Content (%)	70.03 65.00 60.34	49.61 45.31	44.89	41.01	40.97	40.95	43.88	45.23	40.52	42.96	39.95	39.19	38.97	36.88	38.62	34.39	33.15	35.84	38.63	36.67	35.85	31.47	32.91	35.52
>	2.66 2.68 2.70	2.69	2.69	2.68	2.70	2.72	2.72	2.72	2.73	2.72	2.72	2.72	2.71	2.72	2.72	2.73	2.73	2.73	2.73	2.72	2.72	2.73	2.73	2.72
Wet Bulk Density (a/cc)	1.55 1.58 1.61	1.69	1.73	1.7	1.77	1.78	1.75	1.74	1.79	1.76	1.79	1.80	1.80	1.83	1.80	1.86	1.87	1.84	1.81	1.82	1.84	1.89	1.87	1.84
4	0-2 4-6	6-8 8-10	10-12	14-16	16-18	18-20	20-22	22-24	24-26	26-28	28-30	30-32	32-34	34-36	36-38	38-40	40-45	42-44	44-46	46-48	48-50	50-52	52-54	54-56

	(s/m)		1647.05	1643.81	1645.62	1644.00	1634.34	1635.94	1638.96	1642.19		1648.04	1647.01	1650.66	1651.05	1656.16	1663.95						1596.59	1586.79	1587.75	1585.80	1585.80	1593.23	1585.78	1597.56	1597.36	
MGS	(phi)	· :			5.28					4.56					5.41					4.95					4.76							
% Clay	•				19.36					15.35					19.85					18.01			,		17.95							
% Silt					44.82					38.94					41.96					39.22					37.15							
% Sand				-	32.88					41.20					33.64					39.39					39.07							
% Grav.					2.94					4.52					4.52					3.39					5.83							
Porosity	· (%)		49.15	48.70	48.32	49.50	51.36	50.23	47.61	48.89	46.36	48.05	46.96	48.53	47.43	44.23	49.23	42.07	45.53	41.73	42.92	44.37	43.28	42.59	44.07	41.86	44.66	43.82	43.79	43.03	41.96	
Void	Ratio		0.97	0.95	0.93	0.98	1.06	1.01	0.91	0.96	0.86	0.92	0.89	0.94	0.90	0.79	0.97	0.73	0.84	0.72	0.75	0.80	0.76	0.74	0.79	0.72	0.81	0.78	0.78	0.76	0.72	1
Water	Content	(%)	36.27	35.63	35.15	36.98	39.60	37.84	34.22	35.91	32.38	34.69	33.25	35.28	33.75	29.79	36.23	26.97	31.34	26.83	28.18	29.89	28.49	27.82	29.54	26.79	30.12	28.71	28.78	28.23	26.88	01
Grain	Density	(a/cc)	2.73	2.73	2.72	2.71	2.73	2.73	2.72	2.73	2.73	2.73	2.73	2.74	2.74	2.73	2.74	2.76	2.73	2.73	2.73	2.73	2.74	2.73	2.73	2.75	2.74	2.78	2.77	2.74	2.76	7
																														1.95		
Sample	Interval	(cm)	56-58	58-60	60-62	62-64	64-66	66-68	68-70	70-72	72-74	74-76	76-78	78-80	80-82	82-84	84-86	86-88	88-90	90-92	92-94	94-96	96-98	98-100	100-102	102-104	104-106	106-108	108-110	110-112	112-114	077

Vp (m/s)	1598.35	1604.92	1590.66	1592.23	1592.43	1597.16	1597.16	1596.76	1604.72	1595.17	1595.17	1631.97	1609.13	1613.97	1609.33	1615.79	1601.53	1609.53	1608.53		1595.39	1597.17	1597.17	1599.94	1599.94	1603.32	1603.32	1608.32	1611.74	1596.98
MGS (phi)			4.19					3.05					4.20					2.98					4.46					5.72		
% Clay			14.74					12.66					17.99					15.73					19.75					24.89		
% Silt			36.63					19.38					23.96					24.46					25.98					27.98		
% Sand			43.98					54.44					49.91					42.85					42.90					43.13		
% Grav.			4.66					13.51					8.14					16.96					11.37					3.99		
Porosity % Grav. (%)	43.98	43.43	42.98	40.33	43.79	42.27	40.14	40.98	41.92	40.61	42.14	41.63	39.64	42.43	42.10	40.50	42.88	41.46	42.01	42.60	43.14	42.11	42.33	40.94	41.95	42.33	41.88	41.78	41.66	41.12
Void Ratio	0.79	0.77	0.75	0.68	0.78	0.73	0.67	0.69	0.72	0.68	0.73	0.71	99.0	0.74	0.73	0.68	0.75	0.71	0.72	0.74	0.76	0.73	0.73	0.69	0.72	0.73	0.72	0.72	0.71	0.70
Water Content	29.12	27.99	28.17	24.96	28.30	27.05	24.70	25.76	26.46	25.19	26.58	26.25	24.46	26.90	26.88	25.02	27.72	26.47	26.92	27.53	28.06	26.88	27.33	25.77	26.70	27.30	26.34	26.72	26.53	25.60
Grain Density	2.76	2.81	2.74	2.77	2.82	2.77	2.78	2.76	2.79	2.78	2.81	2.78	2.75	2.81	2.77	2.79	2.77	2.74	2.76	2.76	2.77	2.77	2.75	2.75	2.77	2.75	2.80	2.75	2.76	2.79
Wet Bulk Density	1.97	1.94	1.98	1.95	2.01	1.98	1.98	2.02	1.99	1.99	2.01	2.00	1.99	2.01	1.99	1.98	2.02	1.97	1.97	1.97	1.96	1.96	1.98	1.96	1.99	1.98	1.96	2.00	1.97	1.98
Sample Interval	116-118	118-120	120-122	122-124	124-126	126-128	128-130	130-132	132-134	134-136	136-138	138-140	140-142	7 142-144		146-148	148-150	150-152	152-154	154-156	156-158	158-160	160-162	162-164	164-166	166-168	168-170	170-172	172-174	174-176

Vp (m/s)	1601.54	1621.03	1620.01	1625.30		1628.48	1492.68	1622.08	1621.10		1636.17		1665.15	1659.98	1658.33	1661.64	1658.33	1658.33	1643.63	1638.79	1638.99	1621.47	1621.86	1629.98	1638.36	1610.33	1589.84	1593.06	1594.39	1602.03
MGS (phi)			6.67					6.74					6.43					7.41					9.20					7.00		
% Clay			26.92					37.07					29.97					35.65					41.39					4.68		
% Silt			30.29					28.03					36.68					31.15					38.64					34.20		
% Sand			39.16					32.19					30.68					26.32					18.27					23.08		
Porosity % Grav. (%)			3.64					2.71					2.67					6.88					1.70					2.04		
Porosity (%)	40.19	43.72	43.48	45.16	47.68	48.67	47.40	44.92	45.08	44.21	46.65	46.34	45.03	46.21	48.44	46.69	47.49	50.14	48.59	49.51	47.64	50.56	54.13	54.02	54.18	53.33	53.26	66.62	54.54	
Void Ratio	0.67	0.78	0.77	0.82	0.91	0.95	06.0	0.82	0.82	0.79	0.87	0.86	0.82	0.86	0.94	0.88	06.0	1.01	0.95	0.98	0.91	1.02	1.18	1.17	1.18	1.14	1.14	2.00	1.20	
Water Content	24.86	28.17	28.54	30.47	33.71	35.04	33.42	30.26	30.08	29.29	31.93	31.91	30.28	31.76	34.46	32.78	33.41	37.45	35.15	35.90	33.79	38.46	44.09	43.86	43.30	42.60	42.41	74.32	44.52	
-	2.77	2.82	2.76	2.77	2.77	2.77	2.76	2.76	2.79	2.77	2.81	2.77	2.77	2.77	2.79	2.74	2.77	2.75	2.75	2.80	2.76	2.72	2.74	2.74	2.80	2.75	2.75	2.75	2.76	
Wet Bulk Density	2.01	2.01	1.98	1.95	2.05	2.09	1.92	1.88	1.86	1.88	1.92	1.94	1.94	1.92	1.90	1.93	1.91	1.88	1.88	1.88	1.83	1.86	1.86	1.87	1.81	1.75	1.76	1.78	1.77	1.77
Sample Interval	176-178	178-180	180-182	182-184	184-186	186-188	188-190	190-192	192-194	194-196	196-198	198-200	200-202	202-204	204-206	206-208	208-210	210-212	212-214	214-216	216-218	218-220	220-222	222-224	224-226	226-228	228-230	230-232	232-234	234-236

Vp (m/s)	1620.26
MGS (phi)	5.50
% Clay	21.23
% Silt	38.64
% Sand	33.90
% Grav.	4.66
Porosity (%)	47.07
Void Ratio	0.91
Water Content (%)	34.02
Grain Density (g/cc)	2.75
Sample Wet Bulk Grain Water Interval Density Density Content (cm) (g/cc) (g/cc) (%)	1.89
Sample Interval (cm)	MEAN

Vp (m/s)		1608.80	1609.41	1576.73 1576.73 1566.55 1570.16	1566.12 1562.49 1565.73 1568.78 1562.88 1567.26
% Carb 90.6	91.8	93.1	92.2	92.1	92.7
MGS (phi) 6.34	6.29	6.43	5.99	6.05	6.62
% Clay 21.21	21.92	23.12	20.84	21.44	24.79
% Silt 66.48	63.23	60.17	56.62	54.04	55.69
% Sand 72.31	14.69	16.02	20.68	23.68	18.43
% Grav. 0	0.17	69.0	1.86	0.85	1.09
Porosity (%) (%) 55.39 55.88 53.42 53.83 54.19	52.90 53.23 51.82 48.86	49.28 48.86 49.70	53.89 53.67 52.31 49.23	49.57 43.80 45.77 46.33 45.87	49.01 46.22 46.94 44.45 44.26
Void Ratio 1.24 1.27 1.15 1.17	1.12	0.97 0.96 0.99	1.17 1.16 1.10 0.97	0.98 0.78 0.84 0.86	0.96 0.86 0.88 0.80 0.81
					35.12 32.00 32.73 30.39 30.46 30.12
Grain Density (g/cc) 2.70 2.70 2.73 2.73 2.69	2.73 2.71 2.71 2.70	2.69 2.72 2.71	2.76 2.74 2.75 2.72	2.79 2.70 2.69 2.75 2.75	2.80 2.75 2.74 2.70 2.70 2.70
Wet Bulk Density (g/cc) 1.71 1.76 1.76 1.75	1.77	1.81 1.83 1.83	1.77 1.76 1.79 1.83	1.86 1.87 1.91	1.87 1.89 1.89 1.91 1.91
Sample Interval (cm) 0-2 2-4 4-6 6-8 8-10	10-12 12-14 14-16 16-18	18-20 20-22 22-24	24-26 26-28 28-30 30-32	32-34 34-36 36-38 38-40 40-42	42-44 44-46 46-48 48-50 50-52 54-56

Vp (m/s)		1562.88	1562.88	1566.12	1564.05	1563.51	1561.26	1562.04	1564.13	1562.27	1571.04	1574.53	1573.42	1574.98	1576.90	1579.03	1586.24	1556.63	1577.12	1515.57											
% Carb				92.5					93.5					93.5					91.1					92.7					92.2		
MGS (phi)				5.92					6.54					6.96					5.9					6.07					6.71		
% Clay				37.8					23.56					24.85					21.63					23.48					26.35		
% Silt				39.43					52.81					51.82					45.08					46.81					47.48		
% Sand				21.7					22.63					22.16					28.16					28.37					24.14		
% Grav.				1.07					₩-					1.17					5.13					1.34					2.03		
Porosity (%)	•	47.57	45.85	47.48	46.74	44.76	44.84	46.16	45.33	45.18	43.39	45.09	45.29	45.70	44.02	45.65	44.89	45.16	39.73	47.03	47.46	46.83	46.73	45.89	45.99	47.00	46.09	47.49	45.42	48.82	48.80
Void Ratio		0.91	0.85	0.90			0.81		0.83	0.82	0.77	0.82		0.84	0.79	0.84	0.81	0.82	99.0	0.89	0.90	0.88	0.88	0.85	0.85	0.89	0.86	0.90	0.83	0.95	0.95
Water Content	(%)	33.12	31.72	33.20	32.48	30.57	30.70	32.35	31.03	31.17	28.99	30.81	31.15	31.53	29.66	30.98	30.84	30.64	24.71	32.90	34.07	32.78	32.97	31.85	31.80	32.76	32.02	33.55	31.25	35.08	35.24
Grain Density	(a/cc)	2.81	2.73	2.79	2.77	2.71	2.71	2.71	2.74	2.71	2.71	2.73	2.72	2.73	2.72	2.78	2.70	2.75	2.73	2.76	2.72	2.75	2.72	2.73	2.74	2.77	2.74	2.76	2.73	2.79	2.77
Wet Bulk Density	(a/cc)																			1.89											
Sample	(cm)	56-58	58-60	60-62	62-64	64-66	66-68	68-70	70-72	72-74	74-76	76-78	78-80	80-82	₹ 82-84	84-86	86-88	88-90	90-92	92-94	94-96	86-96	98-100	100-102	102-104	104-106	106-108	108-110	110-112	112-114	114-116

Wet Bulk	Grain	Water	Void	Porosity	% Grav.	% Sand	% Silt	% Clay	MGS	% Carb	Λp
		Content	Ratio	(%)				1	(phi)		(m/s)
	(a/cc)	(%)							:		
	2.75	31.69	0.85	46.00							
	2.79	33.03	0.90	47.32							
	2.73	32.82	0.87	46.63	5.59	31.55	40.82	22.04	5.92	96.3	
	2.74	32.67	0.87	46.61							1611.00
	2.79	33.12	0.90	47.41							1614.17
	2.75	31.27	0.84	45.67							1628.80
	2.75	32.50	0.87	46.63							1623.56
	2.73	28.46	0.76	43.14	3.49	31.06	33.9	31.56	5.9	93.4	1631.24
	2.76	30.56	0.82	45.12			•				1624.78
	2.78	30.28	0.82	45.11							1615.17
	2.78	32.82	0.89	47.11							1618.36
	2.79	31.44	0.86	46.16							1623.37
	2.79	31.82	0.87	46.46	7.02	33.36	38.16	21.46	5.62	89.8	1621.36
	2.77	31.32	0.85	45.85						!	1622.97
	2.77	31.30	0.85	45.86							1629.22
	2.79	32.58	0.89	47.06							1620 17
	2.79	32.05	0.87	46.65							1616.38
	2.79	34.82	0.95	48.67	8.78	36.68	35.13	19.41	4.81	93.2	1611.21
	2.77	32.71	0.88	46.91							1609.63
	2.79	32.12	0.87	46.66							1635.36
	2.76	28.56	0.77	43.50							1633.53
	2.78	28.53	0.77	43.65							1644.21
	2.78	29.17	0.79	44.17	12.96	30.95	32.73	23.37	5.6	93.3	1640.91
	2.80	30.91	0.84	45.77						i i	1631.10
	2.78	30.87	0.84	45.60							1480.57
	2.80	31.60	0.86	46.33							1647.52
	2.81	30.93	0.85	45.87							1631.10
	2.74	30.92	0.83	45.30	10.36	28.58	38.11	22.96	5.64	95.1	1634.76
	2.78	28.40	0.77	43.57							1640.27
											1620.57

Vp (m/s)	1635.93 1643.09	1649.45	1651.06		1614.87				1661.92	1651.68	1654.95	1654.95	1638.53	1637.94	1630.96	1630.37	1635.16	1643.00	1648.90	1655.44	1627.80	1622.86	1622.47	1612.47	1608.97	1613.26	1619.33	1605.30	1597.60
% Carb		90.1					90.5					6.06					88.7					86.6					88.7		
MGS (phi)		6.31					6.27					7.52					7.83					7.61					7.89		
% Clay		27.69					28.02					33.17					37.07					36.34					39.13		
% Silt		34.17					31.93	•				37.21					39.77					36.6					40.74		
% Sand		35.56					38.19					27.69	,			•	22.37					24.86					19.69		
% Grav.		2.59					1.85					1.93					0.8					2.2					0.44		
Porosity (%)	44.44	41.60	43.52	46.82		39.63	46.58		45.28	48.86	49.33	48.69	49.07	48.54	50.41	49.65	48.26	47.59	47.29	44.66	47.83	49.35	49.85	53.47	49.32	49.77	47.45	51.65	53.63
Void Ratio	0.80	0.71	0.77	0.88		99.0	0.87		0.83	96.0	0.97	0.95	96.0	0.94	1.02	0.99	0.93	0.91	0.00	0.81	0.92	0.97	0.99	1.15	0.97	0.99	0.90	1.07	1.16
Water Content	29.74	26.62	28.23	32.25		24.03	32.03		30.72	34.80	36.17	34.98	35.06	34.27	36.91	36.16	34.49	33.51	32.46	30.05	33.99	36.08	36.73	41.65	36.21	36.87	33.92	39.43	42.41
Grain Density (a/cc)	2.75	2.74	2.80	2.80		2.80	2.79		2.76	2.81	2.76	2.78	2.81	2.82	2.82	2.79	2.77	2.78	2.83	2.75	2.76	2.77	2.77	2.83	2.75	2.75	2.73	2.77	2.79
Wet Bulk Density (a/cc)	1.93	1.97	1.97	1.91	2.01	2.04	1.91	1.85	1.92	1.88	1.84	1.87	1.88	1.89	1.86	1.86	1.87	1.88	1.92	1.92	1.87	1.85	1.84	1.81	1.84	1.83	1.86	1.81	1.79
Sample Interval	176-178	180-182	182-184	184-186	186-188	188-190	190-192	192-194	194-196	196-198	198-200		202-204		206-208	208-210	210-212	212-214	214-216	216-218	218-220	220-222	222-224	224-226	226-228	228-230	230-232	232-234	234-236

Wet Bulk	c Grain V	Water	Void	Porosity	% Grav.	% Sand	% Silt	% Clay	MGS	% Carb	Λ
Dens	ij	Content	Ratio	%					(phi)		(m/s)
) (d/c	\odot	%)									
2.7	'n	38.79	1.05	51.13							1608.39
2.7	↔	38.43	1.03	50.66							1600.67
2.7	.	63.30	1.69	62.88	0.12	16.53	42.74	40.61	8.13	85.9	1604.33
2.75		33.89	0.91	47.45	2.98	25.20	44.87	26.95	6.43	91.62	1604.94

≥ □ `	Wet Bulk Density	Grain Density	Water Content	Void Ratio	Porosity (%)	% Grav.	% Sand	% Silt	% Clay	MGS (phi)	% Carb	Vp (m/s)
(g/cc)	_	(g/cc) 2.73	(%) 48.29	1.29	56.32	0.18	27.37	52.8	19.65	5.73	92.8	
1.75		2.76	45.52	1.23	55.10							
1.71		2.80	50.19	1.37	57.81							
1.71		2.75	48.88	1.31	56.80							
1.74		2.75	45.83	1.23	55.20							
1.73		2.73	46.23	1.23	55.23	0.5	21.1	54.84	23.55	6.29	94.0	
1.75		2.76	45.46	1.22	55.05			•				
1.74	-	2.72	45.28	1.20	54.62							
1.7	10	2.75	44.44	1.19	54.39							
1.7	m	2.75	42.19	1.13	53.09							
1.7	m	2.74	41.74	1.12	52.80	0.81	32.31	46.71	20.16	5.68	92.4	
1.7	ဏ	2.76	42.15	1.14	53.17							
1.8	0	2.76	40.19	1.08	51.97							
1.8		2.76	39.62	1.07	51.67							1662.79
48	*	2.82	40.76	1.12	52.87		٠.					1677.82
<u>.</u>	ക	2.78	37.66	1.02	50.54	1.59	42	38.4	18.01	5.2	92.9	1678.75
2.8	ıo.	2.78	36.37	0.99	49.68							1681.52
4.8	2	2.75	37.82	1.01	50.37							1675.59
1.8	2	2.80	39.26	1.07	51.77							1679.15
1.8	7	2.75	38.30	1.03	50.70							1677.67
1.8	ဗ	2.76	37.27	1.00	50.12	1.18	38.78	40.79	19.25	5.44	92.5	1671.37
1.7	စ	2.74	40.08	1.07	51.73							1664.93
1.7	ത	2.75	40.36	1.08	51.99							1659.98
1.8		2.75	39.19	1.05	51.25							1655.26
6	_	2.75	38.84	1.04	51.06							1666.98
7.8	_	2.76	38.82	1.05	51.11	1.39	43.59	36.02	19	5.21	93.2	1658.73
1.8	7	2.72	36.94	0.98	49.55							1662.02
<u>6</u>	2	2.75	37.83	1.01	50.37							1658.73

γ	(m/s)		1665.13	1661.62	1663.27	1659.98	1663.47	1656.89	1658.53	1665.13	1669.91	1663.08	1661.23	1664.53	1665.99	1669.31	1662.68	1662.48	1671.84							1651.76	1643.53	1641.89	1645.17	1646.61	1654.87	1649.90
% Carb					92.5					91.2					88.6					92.4			89.6					91.5				
MGS	(phi)				5.34					5.15					5.04					4.79			4.59					4.74				
% Clay					19.97					18.37					18.59					18.78			18.4					16.87				
% Silt					33.39					35.93					31.75					29.62			27.01					31.89				
% Sand					43.81					41.92					45.39					46.73			48.65					46.29				
% Grav.					2.83					3.78					4.27					4.86			5.94					4.95				
Porosity	(%)		49.64	50.88	49.52	49.22	49.43	51.28	49.09	49.67	51.25	50.03	49.26	50.83	50.87	49.17	50.29	50.97	49.30	49.83	45.78			49.11	49.16	50.27	48.67	46.01	48.59	49.15	49.89	47.52
Void	Ratio		0.99	1.04	0.98	0.97	0.98	1.05	96.0	0.99	1.05	1.00	0.97	1.03	1.04	0.97	1.01	1.04	0.97	0.99	0.84			96.0	0.97	1.01	0.95	0.85	0.95	0.97	1.00	0.91
	Content	(%)	36.90	38.76	36.75	36.61	37.05	39.45	36.38	37.03	38.42	37.31	36.64	38.28	38.36	35.98	37.62	38.36	35.78	36.77	31.32			34.67	34.75	36.32	34.06	31.46	33.96	34.73	35.78	32.54
Grain	Density	(a/cc)	2.74	2.74	2.73	2.71	2.70	2.73	2.71	2.73	2.80	2.75	2.71	2.77	2.76	2.75	2.75	2.78	2.78	2.77	2.76	2.78	2.76	2.76	2.79	2.83	2.77	2.77	2.80	2.79	2.83	2.77
Wet Bulk	Density	(a/cc)	1.83	1.81	1.83	1.82	1.82	1.80	1.83	1.83	1.83	1.83	1.82	1.82	1.82	1.85	1.83	1.83	1.86	1.84	1.91	2.00	1.90	1.88	1.90	1.91	1.91	1.90	1.88	1.93	1.93	1.92
Sample	Interval	(cm)	56-58	28-60	60-62	62-64	64-66	89-99	68-70	70-72	72-74	74-76	76-78	78-80	80-82	82-84	84-86	86-88	88-90	90-92	92-95	95-100	100-102	102-104	104-106	106-108	108-110	110-112	112-114	114-116	116-118	118-120

Sample Interval	5 -	Grain Density (Water Content	Void Ratio	Porosity (%)	% Grav.	% Sand	% Silt	% Clay	MGS (phi)	% Carb	Vp (m/s)
120-122		2.81	31.20	0.86	46.15	36.68	32.58	17.19	13.55	2.22		
122-124		2.79	32.98		47.86							
124-126		2.79	33.39	0.93	48.17							
126-128		2.77	38.17	1.06	51.51							
128-130		2.76										
130-132		2.79	41.65	1.13	53.12	11.73	43.33	28.91	16.02	3.71	91.7	1630.54
132-134		2.82	37.91	1.08	51.08							
134-136		2.78	36.26	1.06	49.63							
136-138		2.77	32.86	0.98	47.04			•				
138-140		2.78	31.61	0.93	46.16							
140-142		2.80	31.52	0.86	46.27	5.6	33.77	33.63	26.99	7.04	91.7	1669.26
142-144		2.77	28.63	0.85	43.68							1656.63
144-146		2.82	32.50	0.93	47.23							
35 146-148		2.76	32.77	0.98	46.92							1649.55
⁵ 148-150	1.82	2.78	31.89	0.94	46.42					5.08		1664.95
MEAN		2.76	37.87	1.03	50.46	5.75	39.17	35.93	19.14	5.08	91.93	1661.84

Sample	Wet Bulk	Grain	Water	Void	Porosity	% Grav. %Sand	%Sand	% Silt	% Clay	MGS	Λp
Interval	Density	Density	Content	Ratio	(%)					(phi)	(m/s)
(EE)	(g/cc)	(g/cc)	(%) 27.78	5	70 07	5	27	77 77	21.18	7.07.	1583 15
2-4	1.78	2.72	40.55	108	51.84	5	5			3	1580.07
4-6	1.82	2.73	37.70	1.00	50.12						1580.65
8-9	1.82	2.71	37.16	0.98	49.61						1576.63
8-10	1.87	2.73	33.66	06.0	47.30						1584.91
10-12	1.85	2.71	34.62	0.92	47.79	1.79	26.62	49.28	22.31	6.16	1583.56
12-14	1.85	2.73	35.25	0.94	48.44						1583.76
14-16	1.85	2.79	36.90	1.01	50.13						1577.61
16-18	1.87	2.72	32.61	0.86	46.38						1580.68
18-20	1.84	2.71	35.49	0.94	48.42						1574.74
20-22	1.87	2.71	32.88	0.87	46.54	0.59	30.32	45.17	23.92	6.17	1580.87
22-24	1.87	2.72	33.16	0.88	46.83	•					1585.50
24-26	1.90	2.73	31.19	0.83	45.43						1584.15
26-28	1.90	2.72	30.60	0.81	44.83						1588.80
28-30	1.90	2.84	34.40	0.95	48.82	٠.					1591.91
30-32	1.88	2.73	32.38	0.86	46.36	2.42	40.75	36.69	20.14	5.57	1589.00
32-34	1.90	2.83	33.84	0.94	48.36						1584.35
34-36	1.90	2.74	31.16	0.83	45.48						1598.57
36-38	1.90	2.75	31.39	0.84	45.74						1603.10
38-40	1.95	2.74	27.90	0.75	42.70						1601.71
40-42	1.92	2.77	30.85	0.83	45.48	3.31	43.24	34.24	19.22	5.52	1597.57
42-44	1.89	2.79	34.01	0.93	48.14		-				1586.82
44-46	1.91	2.74	30.81	0.83	45.24						1590.32
46-48	1.95	2.75	28.39	0.76	43.30						1601.91
48-50	1.90	2.76	31.55	0.85	45.92						1592.67
50-52	1.91	2.76	31.43	0.85	45.89	2.40	46.07	31.19	20.34	5.45	1594.24
52-54	1.90	2.76	32.05	0.86	46.31						1592.67
54-56	1.90	2.79	32.45	0.88	46.93						1594.44

Sample Interval	Wet Bulk Density	Grain Density	Water Content	Void Ratio	Porosity % Grav. %Sand % Silt % Clay (%)	% Grav.	%Sand	% Silt	% Clay	MGS (phi)	Vp (m/s)
(cm)	(a/cc)	(a/cc)	(%)								
56-58	1.91	2.74	30.75	0.82	45.10						1592.87
28-60	1.90	2.81	33.62	0.92	48.03						1586.64
60-62	1.89	2.75	32.37	0.87	46.52	2.27	43.73	32.35	21.64	5.48	1591.51
62-64	1.91	2.82	32.83	0.91	47.51						1596.20
64-66	1.90	2.77	32.23	0.87	46.58						1594.83
89-99	1.91	2.74	30.82	0.83	45.21						1594.83
68-70	1.95	2.75	28.03	0.75	42.98						1597.97
70-72	1.90	2.78	32.27	0.88	46.73	4.79	43.72	29.98	21.51	5.30	1596.40
72-74	1.92	2.74	29.76	0.80	44.37						1597.97
74-76	1.92	2.78	31.25	0.85	45.90						1594.24
76-78	1.94	2.77	29.73	0.81	44.60						1602.11
78-80	1.93	2.76	27.67	0.75	42.71						1598.76
80-82	1.96	2.75	27.34	0.73	42.32	2.67	44.57	33.27	19.49	5.11	1604.49
82-84	1.96	2.78	27.67	0.75	42.92	٠					1605.88
84-86	1.97	2.74	30.29	0.81	44.74						1610.67
86-88	1.91	2.81	23.53	0.64	39.19						
88-90	2.05	2.75	22.30	09.0	37.43	•					
90-92	2.04	2.77	31.05	0.84	45.65	6.31	47.66	28.78	17.25	4.55	
92-95	1.96	2.76	27.85	0.75	42.87						
95-98	1.92	2.79	26.41	0.72	41.84						
98-100	1.99	2.80	28.63	0.78	43.89						
100-102	1.99	2.75	27.12	0.73	42.10	6.93	47.14	28.19	17.75	4.50	1611.00
102-104	1.96	2.77	26.42	0.71	41.65						1614.41
104-106	1.96	2.82	28.50	0.78	43.96						1609.59
106-108	1.98	2.81	27.60	0.76	43.12						1608.80
108-110	1.97	2.82	27.15	0.75	42.75						1609.40
110-112	1.98	2.80	26.38	0.72	41.87	3.21	45.27	30.24	21.28	5.42	1608.60
112-114	1.99	2.75	25.73	0.69	40.88						1617.86
114-116	2.00	2.80	27.70	0.76	43.13						1613.62
116-118	1.98	2.78	26.79	0.73	42.14						1602.60

Sample	Wet Bulk	Grain	Water	Void	Porosity % Grav. %Sand	% Grav.		% Silt	% Clay	MGS	δ
Interval	Density	Density	Content	Ratio	(%)					(phi)	(m/s)
(cm)	(a)(c)	(a/cc)	(%)								
118-120	1.99	2.86	28.24	0.79	44.06						1607.40
120-122	1.99	2.77	25.86	0.70	41.12	5.03	46.09	28.55	20.33	5.08	
122-124	1.99	2.78	25.53	69.0	40.97						1607.40
124-126	2.01	2.79	25.79	0.70	41.31						1608.62
126-128	2.01	2.77	25.73	0.70	41.06						1606.20
128-130	2.00	2.79	25.20	69.0	40.74						1591.06
130-132	2.02	2.82	25.84	0.71	41.61	4.20	43.99	33.72	18.10	5.06	1596.21
132-134	2.02	2.78	23.33	0.63	38.79						1608.21
134-136	2.04	2.77	24.10	0.65	39.50			•			1613.46
136-138	2.03	2.76	23.56	0.64	38.87						1614.27
138-140	2.03	2.78	24.24	99.0	39.66						1614.88
140-142	2.02	2.79	24.78	0.68	40.32	4.14	34.16	30.68	31.03	6.49	1620.17
142-144	2.02	2.78	24.52	99.0	39.93						1614.47
144-146	2.02	2.82	26.72	0.73	42.35	•					1614.05
146-148	2.00	2.82	26.18	0.72	41.87						1602.80
148-150	2.01	2.81	27.38	0.75	42.91						1600.22
150-152	1.99	2.75	26.09	0.70	41.21	3.67	38.24	30.45	27.64	6.32	1601.02
152-154	1.98	2.77	27.59	0.75	42.73	•					1599.83
154-156	1.97	2.75	26.57	0.71	41.66						1597.45
156-158	1.98	2.77	27.09	0.73	42.32						1596.87
158-160	1.98	2.78	23.85	0.65	39.29						1607.40
160-162	2.03	2.76	24.51	99.0	39.77	3.76	41.42	26.29	28.53	6.48	1614.63
162-164	2.01	2.77	27.00	0.73	42.21						1623.94
164-166	1.98	2.76	27.03	0.73	42.18						1606.20
166-168	1.97	2.80	30.92	0.85	45.83						1610.79
168-170	1.93	2.76	31.40	0.85	45.87						1586.75
170-172	1.91	2.79	30.80	0.84	45.61	2.33	29.37	33.80	34.50	7.44	1586.18
172-174	1.93	2.76	29.61	0.80	44.39						1601.45
174-176	1.93	2.76	27.88	0.75	42.89						1600.66
176-178	1.96	2.80	29.60	0.81	44.71						1609.18

	Sample	Wet Bulk	Grain	Water	Void	Porosity	Porosity % Grav. %Sand % Silt % Clav	%Sand	% Silt	% Clay	MGS	۵۸
	Interval		Density	Content	Ratio	(%)				•	(phi)	(s/m)
	(cm)	(a/cc)	(a/cc)	(%)		•						•
	178-180	1.95	2.78	31.71	0.86	46.28						1605.21
	180-182	1.91	2.82	33.23	0.91	47.77	1.57	24.59	35.93	37.91	7.73	
	182-184	1.90	2.75	28.62	0.77	43.44						1591.87
	184-186	1.94	2.78	29.36	0.80	44.32						1506.30
	186-188	1.94	2.74	27.09	0.73	42.03						1648.43
	188-190	1.96	2.73									
	190-192	1.80	2.78	39.78	1.07	51.63		19.46	41.93	37.76	7.95	1580.63
	192-194	1.77	2.75	43.99	1.20	54.47						1574.80
	194-196	1.80	2.79	38.81	1.03	50.80						1616.73
	196-198	1.87	2.72	33.44	0.89	47.22						1650.20
	198-200	1.88	2.74	32.96	0.88	46.94						1653.46
	200-202	1.82	2.75	38.14	1.03	50.73	0.92	12.26	45.73	41.09	8.18	1634.09
	202-204	1.79	2.76	40.95	1.10	52.39						1618.49
25	204-206	1.83	2.75	37.83	1.03	50.64						1633.28
0	206-208	1.85	2.78	35.02	0.94	48.37						1644.90
	208-210	1.27	2.74									1755.44
	210-212	1.07	2.74				4.83	11.33	44.97	38.87	8.01	
	212-214	1.75	2.76									
	214-216	1.74	2.81									
	216-218											
	218-220											
	220-222						6.1	6.29	41.41	46.2	8.52	
	MEAN	1.91	2.77	30.19	0.82	44.70	3.20	35.96	35.42	25.54	60.9	1602.12

Sample Interval	Wet Bulk Density	Grain Density	n Water ity Content	Void Ratio	Porosity (%)	% Grav.	%Sand	% Silt	% Clay	MGS (phi)	Vp (m/s)
(cm)	(a/cc)	(a/cc)	(%)								
0-5	1.69	2.73	51.12	1.37	57.84	0.4	28.98	52.58	18.04	5.6	
2-4	1.74	2.75	45.94	1.23	55.18						
4-6	1.73	2.74	47.03	1.26	55.78						
8-9	1.74	2.75	46.12	1.24	55.34						
8-10	1.74	2.75	45.80	1.23	55.19						
10-12	1.73	2.75	47.09	1.26	55.78	0.4	25.55	53.25	20.8	6.07	
12-14	1.74	2.74	45.55	1.22	54.99						
14-16	1.69	2.75	51.48	1.39	58.08						
16-18	1.74	2.76	45.55	1.22	55.03						
18-20	1.77	2.75	42.89	1.15	53.52						
20-22	1.80	2.75	40.24	1.08	51.97	1.29	33.49	44.16	21.06	5.81	
22-24	1.77	2.75	43.04	1.16	53.63						
24-26	1.76	2.75	44.16	1.19	54.30						
26-28	1.74	2.76	45.41	1.22	54.94						
28-30	1.78	2.75	41.77	1.12	52.84		· -				
30-32	1.78	2.75	41.91	1.12	52.87	1.57	41.42	39.69	17.31	5.09	
32-34	1.75	2.74	44.82	1.20	54.64						
34-36	1.82	2.75	38.24	1.02	50.60						1625.66
36-38	1.80	2.74	39.59	1.06	51.50						1676.21
38-40	1.78	2.75	41.26	1.1	52.50						1678.48
40-42	1.84	2.74	36.22	0.97	49.28	1.93	40.54	38.67	18.86	5.41	1670.40
42-44	1.77	2.75	43.05	1.16	53.63						1684.18
44-46	1.80	2.75	40.09	1.08	51.84						1669.21
46-48	1.83	2.75	37.71	1.01	50.36						1657.92
48-50	1.81	2.75	39.12	1.05	51.31						1674.38
50-52	1.80	2.76	39.90	1.07	51.79	0.68	37.15	42.05	20.11	5.87	1671.06
52-54	1.81	2.76	38.87	1.05	51.11						1661.38
54-56	1.82	2.75	38.65	1.04	51.00						1669.61

MGS Vp (phi) (m/s)	1673.12	•	4.87 1664.86	1655.06	1667.95	1669.61		4.67 1667.56	1664.46	1667.76	1671.06	1668.15	4.75 1666.70	1672.25	1673.05	1686.82	-	5.25 1660.13				4.24	1649.40	1651.25	1649.60		4.38 1651.45	
% Clay			17.02					16.81					17.8					20.18				18.82					20	
% Silt			36.66					33.63					30.96					33.43				28.85					27.56	
%Sand			39.29					45.78					44.69				٠.	42.57				43.69					41.03	
% Grav.			7.03					3.77					6.54					3.82				8.63					11.42	
Porosity (%)	51.29	52.94	52.50	50.58	51.46	50.26	51.23	50.74	49.80	50.94	51.37	52.07	49.63	49.97	50.28	50.29					48.61	47.89	46.93	45.36	46.90	44.44	44.97	44.98
Void Ratio	1.05	1.13	1.1	1.02	1.06	1.01	1.05	1.03	0.99	1.04	1.06	1.09	0.99	1.00	1.01	1.01					0.95	0.92	0.88	0.83	0.88	0.80	0.82	0.82
Water Content	39.06	41.73	40.99	37.82	39.37	37.51	38.95	38.09	36.76	38.38	39.12	40.30	36.44	36.95	37.31	37.50					34.97	33.97	32.09	30.28	32.35	29.40	30.10	29.81
Grain Density (a/cc)	2.76	2.76	2.76	2.76	2.77	2.76	2.76	2.76	2.77	2.76	2.77	2.77	2.76	2.77	2.77	2.78	2.76	2.77	2.77	2.77	2.77	2.77	2.82	2.81	2.80	2.79	2.78	2.81
Wet Bulk Density (a/cc)	1.81	1.78	1.79	1.83	1.81	1.83	1.81	1.83	1.84	1.82	1.81	1.80	1.85	1.84	1.84	1.83	1.91	1.99	1.68	1.74	1.86	1.88	1.92	1.94	1.91	1.95	1.93	1.95
Sample Interval	56-58	58-60	60-62	62-64	64-66	89-99	68-70	70-72	72-74	74-76	76-78	78-80	80-82	82-84	84-86	86-88	88-90	90-92	92-95	95-98	98-100	100-102	102-104	104-106	106-108	108-110	110-112	112-114

Sample	Wet Bulk		Water	Void	Porosity	% Grav.	%Sand	% Silt	% Clay	MGS	δ
Interval	Density		Content	Ratio	%)					(phi)	(s/m)
(cm)	(a/cc)		(%)								,
118-120	1.96				45.87						1652.45
120-122	1.97				42.33	15.94	34.1	25.32	24.64	4.62	•
122-124	2.03				39.14						1681.14
124-126	1.93				44.52						1643.02
126-128	1.95				44.82						1630.30
128-130	1.96			0.82	44.91						1635.12
130-132	1.89				47.17	11.62	29.92	30.22	28.25	5.76	1656.55
132-134	1.92				44.68						1640.17
134-136	1.94				46.07						1638.75
136-138	1.94				46.24						1655.30
138-140	1.95				43.95						1659.01
140-142	1.94				45.13	7.65	47	30.11	15.25	4.43	1648.08
142-144	1.94	2.82	30.89	0.85	45.98						1640.53
MEAN	184	2.77	37.60	1 02	50.07	55	38.35	36 48	19 86	5 12	1658 59

3.3 In-Situ Geoacoustic Measurements (Richardson)

ISSAMS was deployed at 12 sites near the Dry Tortugas, two sites at Rebecca Shoals, and one site north of the Marquesas. Station locations can be found in Figs. 3.3.1 and 3.3.2 with a summary of the mean and range of values of shear and compressional wave velocity as well as compressional wave attenuation presented in Table 3.3.1. Comparison of values of laboratory and in-situ geoacoustic properties to sediment physical properties are found in Tables 3.3.2 through 3.3.5. Gradients of shear and compressional wave velocity in the upper 2 m of sediment were all measured near the *Planet* site (see Fig. 3.3.2). Values are presented in tabular (Tables 3.3.6 and 3.3.7) and graphical (Figs. 3.3.3 and 3.3.4) form.

3.3.1 In-situ geoacoustic measurement locations (ISSAMS) including values of compressional and shear wave velocity (m/s) for two sites near Rebecca Shoals and one location in the Marquesas test site. Eleven sampling locations in the Tortugas test site are depicted in the next panel.

Figure 3.3.2 Shear and compressional wave velocities for sampling locations in the Dry Tortugas. The map of surface sediment thickness and locations of reef material was prepared from 100 kHz side-scan sonar and 3.5-kHz subbottom profile data by Hannelore Fiedler of FWG (Kiel, Germany).

Figure 3.3.3 Gradient of shear wave velocity (m/s) from carbonate sediments at the Planet site, Dry Tortugas, Florida Keys.

Figure 3.3.4 Gradient of compressional wave velocity (m/s) from carbonate sediments at the Planet site, Dry Tortugas, Florida Keys.

Table 3.3.1 Summary of values of in-situ sediment geoacoustic properties of the Key West Campaign

Station	V	(m/s)	Alpha	(dB/m)	Vs	(m/s)
	Mean	Range	Mean	Range	Mean	Range
236	1537	(1524-1555)	12.9	(10-18)	40.2	(28-56)
241	1545	(1526-1563)	12.7	(9-18)	52.5	(38-66)
242	1544	(1532-1559)	12.3	(9-17)	52.1	(46-60)
251	1541	(1530-1555)	14.7	(6-23)	57.7	(49-63)
253	1558	(1544-1571)	13.9	(7-18)	73.5	(62-88)
255	1581	(1566-1592)	23.2	(19-27)	92.8	(83-110)
257	1551	(1537-1562)	14.3	(9-18)	72.8	(61-97)
265	1672	(1642-1697)	28.8	(21-43)	98.8	(75-116)
266	1576	(1546-1637)	19.9	(8-35)	78.2	(51-118)
274	1573	(1552-1602)	15.4	(7-24)	75.1	(52-91)
280	1536	(1518-1548)	10.8	(3-16)	54.3	(39-67)
284	1567	(1551-1589)	14.6	(8-23)	85.1	(74-91)
286	1600	(1589-1616)	23.2	(19-28)	82.2	(77-91)
288	1697	(1668-1725)	18.1	(12-25)	143.8	(129-154)
290	1708	(1684-1728)	25.5	(14-33)	129.6	(123-140)

Table 3.3.2 Summary of near-surface sediment physical and geoacoustic properties at the Dry Tortugas site, Florida Keys

m me and a company such a real of the second and th	e fort		
PARAMETER	MEAN	RANGE	STANDARD
LABORATORY MEASUREMENTS			DEVIATION
Porosity (%)	56.7	53.0-61.4	2.1
Grain Size (¢)	9.9	4.9-7.8	0.38
V _p (m/s)	1555	1546-1569	0.0
Att (dB/m @ 400 kHz)	354	298-405	29.5
IN-SITU MEASUREMENTS			
V _p (m/s)	1541	1518-1563	9.62
Att (dB/m @ 38 kHz)	12.2	3.4-23.5	3.14
V _s (m/s)	50.8	38.3-66.6	9.04

Table 3.3.3 Summary of near-surface sediment physical and geoacoustic properties at the Marquesas experimental site, Florida Keys

PARAMETER 1 ABODATODY MEASUBEMENTS	MEAN	RANGE	STANDARD DEVIATION
Porosity (%)*	57.8	51.4-70.1	4.76
Grain Size (¢)***	6.2	4.6-8.4	96.0
V _p (m/s)**	1551	1542-1559	4.32
Att (dB/m @ 400 kHz)**	329	241-494	57.9
IN-SITU MEASUREMENTS			
V _p (m/s)	1576	1547-1637	24.3
Att (dB/m @ 38 kHz)	19.9	8.4-34.4	6.0
V _s (m/s)	78.2	50.7-117.8	26.4

** based on two cores only
*** based on three cores

* based one core only

Table 3.3.4 Summary of near-surface sediment physical and geoacoustic properties near Rebecca Shoal, Florida Keys.

PARAMETER	MEAN	RANGE	STANDARD
LABORATORY MEASUREMENTS*			DEVIATION
Porosity (%)	42.3	39.6-45.1	1.79
Grain Size (¢)	1.2	0.9-1.47	0.13
V _ρ (m/s)	1715	1645-1759	24.82
Att (dB/m @ 400 kHz)	252	103-614	102.78
IN-SITU MEASUREMENTS			
V _p (m/s)	1703	1669-1728	17.05
Att (dB/m @ 38 kHz)	22.0	11.7-33.1	6.31
V _s (m s-1)	136.6	122-154	11.96

^{*} based on two cores only

Table 3.3.5 Summary of near surface sediment physical and geoacoustic properties at Dry Tortugas hard sand site (#265), Florida Keys

PARAMETER I ABOBATOBY MEASUBEMENTS:	MEAN	RANGE	STANDARD DEVIATION
Porosity (%)	45.3	45.6-46.5	0.73
Grain Size (ф)	1.1	1.0-1.4	0.12
V _p (m/s)	1671	1651-1680	8.86
Att (dB/m @ 400 kHz)	319	261-512	74.57
IN-SITU MEASUREMENTS			
V _p (m/s)	1672	1643-1698	17.09
Att (dB/m @ 38 kHz)	28.8	20.6-43.2	7.19
V _s (m/s)	98.8	74.8-116.4	17.46

* based on one core only

Table 3.3.6. Gradients of compressional wave velocity (m/s) measured using Neptune at four locations near the "PLANET" site in the Dry Tortugas, Florida Keys. Probe distances were 50 cm and the transmit frequency was 38 kHz.

Station #	KW91	KW119	KW139	KW202
Depth (cm)				
10	1511.9		1521.6	1530.9
20	1528.9		1531.8	1534.3
25		1532.0		
30	1528.4		1536.6	1542.6
40	1544.9		1540.5	
50	1542.5	1558.0	1539.1	
60	1542.5		1548.3	
70	1546.3		1551.2	
75		1627.0		
80	1544.4	1628.0	1555.6	
90	1549.7		1559.4	
100	1550.2		1558.5	
110	1566.2		1560.9	
120	1572.5		1564.8	
130	1575.0		1574.9	
140			1580.3	
150			1588.0	

Table 3.3.7. Gradients of shear wave velocity (m/s) measured using GISSAMS at 3 locations near the "PLANET site" in carbonate sediments of the Florida Keys. Transmit and received probes were located 40 cm (N) and 100 cm (F) apart.

Station #	97N	9 7 F	108N	108F	148N
Depth (cm)					
25	52.7				
50	79.3	84.5			73.1
75	84.6	85.1	82.6	68.4	
100	88.5	64.8	74.7		
125		89.5			

3.4 Sediment Chemistry and Mineralogy Measurements (Furukawa)

Locations of diver cores and box cores are shown in Figs. 3.4.1 and 3.4.2.

Sulfur speciation and pH

The results of aqueous sulfur speciation and pH analysis are shown in Table 3.4.1. Note that the detection limit is different for each sample due to the varied amounts of pore water samples recovered.

ICP analysis

The results of ICP analysis are shown in Table 3.4.2.

Total Organic Carbon (TOC)

The results of TOC analysis are shown in Table 3.4.3.

X-ray diffraction

The X-ray diffraction profiles of cores KW-PL-BC-141, 165, 194, 208 and KW-PL-DC-178 are shown in Figs. 3.4.3-3.4.7. The peaks indicate the presence of aragonite, HMC, LMC, and occasional minor quartz. The x-ray diffraction profiles of the gravity core, separated into clay, silt-, and sand-sized grains, are shown in Figs. 3.4.8-3.4.10. They show the increase in the intensity of HMC peaks at depths.

Rietveld method of crystal structure refinement

The quantitative analysis using Rietveld method resulted in the HMC/LMC ratio shown in Fig. 3.4.11. The Mg contents of HMC calculated using the cell constants derived by the Rietveld method are shown in Fig. 3.4.12.

Figure 3.4.1 Dry Tortugas Test Site Geochemistry and Mineralogy Cores

Figure 3.4.2 Marquesas Test Site GeochemistryCores

on the right in terms of centimeters below seafloor. AR, aragonite; LMC, low-Mg calcite; HMC, high-Mg calcite; QZ, quartz. Figure 3.4.3 X-ray powder diffraction profiles of bulk sediment samples from KW-PL-BC-141. Sample depths are indicated

Figure 3.4.4 X-ray powder diffraction profiles of bulk sediment samples from KW-PL-BC-165. Sample depths are indicated on the right in terms of centimeters below seafloor. AR, aragonite; LMC, low-Mg calcite; HMC, high-Mg calcite; QZ, quartz.

Figure 3.4.5 X-ray powder diffraction profiles of bulk sediment samples from KW-PL-BC-178. Sample depths are indicated on the right in terms of centimeters below seafloor. AR, aragonite; LMC, low-Mg calcite; HMC, high-Mg calcite; QZ, quartz.

Figure 3.4.6 X-ray powder diffraction profiles of bulk sediment samples from KW-PL-BC-194. Sample depths are indicated on the right in terms of centimeters below seafloor. AR, aragonite; LMC, low-Mg calcite; HMC, high-Mg calcite; QZ, quartz.

Figure 3.4.7 X-ray powder diffraction profiles of bulk sediment samples from KW-PL-BC-208. Sample depths are indicated on the right in terms of centimeters below seafloor. AR, aragonite; LMC, low-Mg calcite; HMC, high-Mg calcite; QZ, quartz.

KW-PE-GC-147 SAND

Figure 3.4.8 X-ray powder diffraction profiles of sand-sized samples from KW-PE-GC-147.

KW-PE-GC-147 SILT

Figure 3.4.9 X-ray powder diffraction profiles of silt-sized samples from KW-PE-GC-147.

KW-PE-GC-147 CLAY

Figure 3.4.10 X-ray powder diffraction profiles of clay-sized samples from KW-PE-GC-147.

Figure 3.4.11 HMC/LMC ratio of sand-, silt-, and clay-sized samples from KW-PE-GC-147.

Figure 3.4.12 Mg contents of HMC in samples from KW-PE-GC-147. 388

Table 3.4.1. Results of aqueous sulfur speciation and pH analysis

Core ID	Depth (cm)		Intermediate** (mM)	pН
KW-PL-BC-141	1	<0.1	-	
	2			7.63
	6	_		7.69
	7	0.1		
	10			7.66
	13	<0.2		
	14			7.74
	18	0.4		7.79
	22	0.8		7.76
	26	0.2		
	30	0.9		
KW-PL-BC-165	3	<0.02		7.63
	7	<0.02		7.88
	11	<0.02		7.77
	15	<0.02		
	19	0.04		7.84
	28	0.02		
KW-PL-DC-180	1			7.53
	3		0.01	
	5			7.67
	7		0.04	
	9			7.68
	11		0.05	
	13			7.75
	15	0.11	0.06	
	17			7.71
	19		0.07	
	22			7.80
	24		0.04	
KW-PL-BC-194	3	< 0.02	0.01	7.76
	7	0.04	0.03	7.57
	11	0.04	0.03	7.74
	15		0.03	7.80
	18		0.05	7.93
	19		0.03	
	22	0.10		7.82
	23	0.10		
	26		0.05	7.77
	28		<0.03	
KW-PL-BC-208	1			7.74
	5			7.72
	13			8.05
	17			7.96
	22			7.99

^{*}Σreduced sulfur= $\Sigma[S^2]+[S_2O_3^2]+[SO_3^2]$ **Intermediate sulfur= $[S_2O_3^2]+[SO_3^2]$

Table 3.4.2. The results of ICP analysis

KW-PL-BC	-141							
Depth (cm)	B (ppb)	Ca (ppm)	K (ppm)	Li (ppb)	Mg (ppm)	Na (ppm)	Si (ppm)	Sr (ppb)
2	3700	460	410	<200	1300	9800	5	8400
6	4600	520	470	200	1400	11000	4.9	9500
10	3900	47 0	420	210	1300	10000	4.1	8400
14	4000	47 0	420	<200	1300	10000	4.9	8500
18	3900	47 0	420	<200	1300	10000	4.7	8200
22	4100	490	450	210	1400	11000	5.3	8500
KW-PL-BC	-165							· · · · · · · · · · · · · · · · · · ·
Depth (cm)	B (ppb)	Ca (ppm)	K (ppm)	Li (ppb)	Mg (ppm)	Na (ppm)	Si (ppm)	Sr (ppb)
3	4000	500	450	230	1400	11000	5.7	8900
7	4500	540	490	270	1500	12000	5.1	9300
11	4200	510	47 0	<200	1400	11000	4.3	8900
15	3500	470	430	240	1300	10000	4.5	7800
19	4100	510	460	220	1500	11000	4.2	8700
24	4000	500	450	<200	1400	11000	3.3	8300
KW-PL-DC	-179							
Depth (cm)	B (ppb)	Ca (ppm)	K (ppm)	Li (ppb)	Mg (ppm)	Na (ppm)	Si (ppm)	Sr (ppb)
1	3600	520	440	220	1400	11000	4.3	8800
5	4000	510	450	220	1400	11000	5.8	8700
9	3600	47 0	410	200	1300	10000	5.1	8000
13	3500	470	410	<200	1300	10000	3.5	7900
17	3700	47 0	430	200	1400	10000	3.8	7900
22	3900	500	450	<200	1400	11000	3.7	8500
KW-PL-BC-								
Depth (cm)	B (ppb) 3900	Ca (ppm) 520	K (ppm) 450	Li (ppb) 200	Mg (ppm) 1400	Na (ppm) 11000	Si (ppm) 4.8	Sr (ppb) 8900
7	3800	510	440	260	1400	11000	8.3	8600
11	3900	500	440	200	1400	11000	4.8	8600
15	3500	460	410	200	1300	9800	3.6	7800
18	4400	540	480	<200	1500	11000	3.2	9300
22	3700	480	420	<200	1400	10000	3	8200
26	3300	450	400	210	1300	9600	2.9	7600
KW-PL-BC-	208							
Depth (cm)	B (ppb)	Ca (ppm)	K (ppm)	Li (ppb)	Mg (ppm)	Na (ppm)	Si (ppm)	Sr (ppb)
1	3700	480	430	<200	1400	10000	4.6	8400
5	3200	440	390	<200	1200	9300	9	7400
13	3200	440	410	<200	1300	9600	5.1	7400
17	3400	47 0	410	200	1300	10000	4.9	7700
22	3900	520	47 0	220	1500	11000	4.6	8600

Table 3.4.3. Results of total organic carbon analysis

KW-PL-BC-194		
	Depth (cm)	TOC (weight%)
	1	0.41
	3	0.28
	7	0.26
	11	0.31
	15	0.26
	19	0.30
	25	0.20

4.0 Acknowledgments

The authors wish to thank the captains and crews of the WFS Planet and R/V Pelican, without whose help we could not have collected the data contained herein. Many thanks to the scientific crews who aided in the core collections and probe deployments. Thanks are also due to Ricky Ray, Tracy Brantley, Leona Cole, Billy Chambless, and Mary Steelman for their competent work in the laboratory and at the computer. This work is supported by the Office of Naval Research under the CBBL research program.

5.0 References

Boyce, R. E. "Appendix I. Definitions and Laboratory Techniques of Compressional Sound Velocity Parameters and Wet-water Content, Wet Bulk Density, and Porosity Parameters by Gravimetric and Gamma Ray Attenuation Techniques," in *Initial Reports DSDP*, Schlanger, S. O., E. D. Jackson, et al.(eds.), Vol.33: Washington (U.S. Government Printing Office), pp. 931-958, 1976.

Briar, H., K. Bills, and R. A. Schapery, "Design and Test of the Operational In-Situ Gauge for Solid Propellant Surveillance," TR-76-36, Air Force Rocket Propulsion Laboratory, Edwards AFB, CA 1976.

Briggs, K. B., "High-Frequency Acoustic Scattering from Sediment Interface Roughness and Volume Inhomogeneities," NRL/FR/7431-94-9617, Naval Research Laboratory, Stennis Space Center, MS, 1994.

Bryan, G. M. and R. D. Stoll, "The Dynamic Shear Modulus of Marine Sediments," *Journal of the Acoustic Society of America* 83(6), 2159-2164 (1988).

Folk, R. L., "Petrology of Sedimentary Rocks," Hemphill Publishing Co., Austin, TX, pp. 3-37, 1974.

Folk, R. L., "Petrology of Sedimentary Rocks," Hemphill Publishing Co., Austin, TX, 159 p, 1965.

Folk, R. L. and W. C. Ward, "Brazos River Bar, A Study in the Significance of Grain Size Parameters," *J. Sediment. Petrol.* **27**, 3-26 (1957).

Fonselius, S. H., "Determination of Hydrogen Sulphide," in *Methods of Seawater Analysis*, 2nd Rev., Chap. 6. K. Grasshoff et al. (eds.), Weinheim, Verlag Chemie, 1983.

Grasshoff, K., "Determination of Thiosulphate," in *Methods of Seawater Analysis*, 2nd Rev., Chap. 5. K. Grasshoff et al. (eds.), Weinheim, Verlag Chemie, 1983.

Griffin, S. R., F. B. Grosz, and M. D. Richardson, "ISSAMS: A Remote In Situ Sediment Acoustic Measurement System," *Sea Technology*, April 1996.

Hamilton, E. L., "Compressional Wave Attenuation in Marine Sediments," *Geophysics* 37, 620-646 (1972).

Hamilton, E.L., "Elastic Properties of Marine Sediments," *Journal of Geophysical Research* **76**(2), 579-603 (1971).

Jahnke R. A., "A Simple, Reliable, and Inexpensive Pore-Water Sampler," *Limnol. Oceanogr.* 33, 483-487 (1988).

Lambert, D. N. and R. H. Bennett, "Tables for Determining Porosity of Deep-Sea Sediments from Water Content and Average Grain Density Measurements," NOAA Tech. Memo. ERL/AOML-17, National Oceanic and Atmospheric Administration, Miami, FL, 57p., 1972.

Monney, N. T., "An Analysis of the Vane Shear Test at Varying Rates of Shear," in *Deep-Sea Sediments, Physical and Mechanical Properties*, A. L. Inderbitzen (ed.), Plenum Press, New York, NY, pp. 151-167, 1974.

Presley, B. J., "A Simple Method for Determining Calcium Carbonate in Sediment Samples," *Journal of Sedimentary Petrology*, **45**,(3), 745-746 (1975).

Quantachrome Corporation, Ultrapycnometer - 1000. Operation Manual, 1995.

Richardson, M. D., "Spatial Variability of Surficial Shallow Water Geoacoustic Properties," in *Ocean Seismo-Acoustics*, Akal, T. and J. M. Berkson (eds.), Plenum Press, New York, NY, pp. 527-536, 1986.

Richardson, M. D., "Coastal Benthic Boundary Layer Special Research Program: A Review of the Second Year," NRL/MR/7431--95-7595, Naval Research Laboratory, Stennis Space Center, MS, 1995.

Richardson, M. D., K. B. Briggs, R. I. Ray, and W. H. Jahn, "Environmental Support for High-Frequency Acoustic Experiments Conducted at the Quinault Range, April-May 1983," NORDA Report No. 132, Naval Research Laboratory, Stennis Space Center, MS, 1986.

Richardson, M. D., E. Muzi, B. Miaschi, and F. Turgutcan, "Shear Wave Gradients in Near-Surface Marine Sediment," in *Shear Waves in Marine Sediments*, Hovem, J. M., M. D. Richardson, R. D. Stoll (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 295-304, 1991.

Richardson, M. D., S. R. Griffin, and F. B. Gross., "ISSAMS: An In-Situ Sediment Acoustic Measurement System," In *Proceedings of an International Conference on Underwater Acoustics*, University of New South Wales, Sydney, Australian Acoustical Society, pp. 104-106, 1994.

Young, R. A., A. Sakthivel, T. S. Moss, and C. O. Pavia-Santos, "User's Guide to Program DBWS9411 for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns with a 'PC' and Various Other Computers," School of Physics, Georgia Institute of Technology, Atlanta, GA, 1994.