3.1 Flow patterns

F curves show how many particle have cumulatively left the reactor

3.1 Flow patterns

$$E(t) = \frac{dF(t)}{dt}$$

$$F(t) = \int_0^t E(t)dt$$

$$\int_0^\infty E(t)dt = 1$$

$$F(\infty) = 1$$

3.2 Ideal chemical reactors

Batch Reactor (BR)

Semi Batch Reactor (SBR) or Fed Batch Reactor

Continuous Stirred
Tank Reactor
(CSTR) or
Chemostat

Plug Flow Reactor (PFR)

3.2 Ideal chemical reactors

Batch Reactor (BR)

Semi Batch Reactor (SBR) or Fed Batch Reactor

Tank Reactor
(CSTR) or
Chemostat

Plug Flow Reactor (PFR)

3.3 Real chemical reactors

... might be very large

... or very small

... or involve multiple phases

L/"S"

G/S

3.4 General mole balance

3.5 BR

Application

- for small-scale operation
- for testing new products
- for the manufacture of expensive products
- for processes that are difficult in continuous operation

Advantages

- + high conversions (long periods of time)
- + Versatile
- + Easy to clean

Disadvantages

- high labour costs per batch
- variability of products from batch to batch
- large scale production not feasible
- Long cleaning times (no production)

Batch Reactor (BR)

3.5 BR

General Mole Balance

$$\frac{dN_{j}}{dt} = \dot{n}_{j,in} - \dot{n}_{j,out} + \int_{V} r_{j} \cdot dV$$

$$\Rightarrow \frac{dN_{j}}{dt} = + \int_{V} r_{j} \cdot dV$$

Assumption: Perfectly mixed, because of stirrer.

Design Equation for BR (differential form)

Batch Reactor (BR)

3.5 BR

$$\frac{dN_A}{dt} = r_A \cdot V$$

$$\Leftrightarrow \frac{dN_A}{r_A \cdot V} = dt$$

$$\iff \int_{N_{A,0}}^{N_{A,1}} \frac{dN_A}{r_A \cdot V} = \int_0^{t_1} dt$$

$$\Leftrightarrow \quad \left| t_1 = \int_{N_{A0}}^{N_{A1}} \frac{dN_A}{r_A \cdot V} \right|$$

Design Equation for BR (integral form)

Batch Reactor (BR)

3.6 SBR

$$\frac{dN_j}{dt} = \dot{n}_{j,in} - \dot{n}_{j,out} + \int_V r_j \cdot dV$$

$$\Rightarrow \frac{dN_j}{dt} = \dot{n}_{j,in} + \int_V r_j \cdot dV$$

Assumption: Perfectly mixed, because of stirrer.

Design Equation for SBR (differential form)

Semi Batch Reactor (SBR) or Fed Batch Reactor

3.7 CSTR

Application

- Commonly used in industrial processes
- Used primarily for liquid phase reactions.

Advantages

- Good temperature control is easily maintained
- + Cost effective construction
- Large capacity
- + Interior of reactor is easily accessed

Disadvantages

- Conversion of reactant to product per volume is small compared to other flow reactors

Continuous Stirred
Tank Reactor
(CSTR) or
Chemostat

3.7 CSTR

Conditions in the exit stream (e.g. conc. & temp.) are identical to those in the tank!

Continuous Stirred
Tank Reactor
(CSTR) or
Chemostat

$$\frac{dN_j}{dt} = \dot{n}_{j,in} - \dot{n}_{j,out} + G_j$$

Assumptions:

- Steady state & ____
- perfectly mixed

$$0 = \dot{n}_{j,in} - \dot{n}_{j,out} + r_j V$$

3.7 CSTR

$$0 = \dot{n}_{j,in} - \dot{n}_{j,out} + r_{j}V$$

$$\Leftrightarrow V = \frac{\dot{n}_{j,in} - \dot{n}_{j,out}}{-r_j}$$

Design Equation for CSTR (algebraic form)

Tank Reactor
(CSTR) or
Chemostat

Molar flow rate

$$\dot{n}_j = C_j \dot{V}$$
 $\left[\frac{mol}{s} = \frac{mol}{m^3} \frac{m^3}{s}\right]$
Concentration Volumetric flow

$$\Rightarrow V = \frac{C_{j,in}\dot{V}_{in} - C_{j,out}\dot{V}_{out}}{-r_j}$$

3.7 CSTR

$$V = \frac{\dot{V}(C_{j,in} - C_{j,out})}{-r_j}$$

$$-rac{\dot{V}}{V}=-rac{1}{ au}=rac{r_{j}}{(C_{j,in}-C_{j,out})}$$

$$r_j$$
 $\frac{1}{ au}$

$$C_{j,out} - C_{j,in}$$

Graphical solution

Continuous Stirred
Tank Reactor
(CSTR) or
Chemostat

3.8 PFR

- Another type of reactor commonly used in industry is the tubular reactor.
- Tubular reactors are used most often for gas-phase reactions.

Advantages

- + Simple maintenance
- + High conversion rate per reactor volume.
- + Mechanically simple
- + Unvarying product quality
- + Good for studying rapid reactions
- + Efficient use of reactor volume
- + Large capacity processing

Disadvantages

- Difficult temperature control
- Exothermic reactions may lead to hot spots
- Difficult controlling due to temperature and composition variations

Plug Flow Reactor (PFR)

3.8 PFR

Plug Flow Reactor (PFR)

$$\frac{dN_j}{dt} = \dot{n}_{j,in} - \dot{n}_j + \int\limits_V r_j \cdot dV$$

$$0 = \frac{d}{dV}(\dot{n}_{j,in} - \dot{n}_j) + \frac{d}{dV} \int_{V} r_j \cdot dV$$

Design Equation for PFR (differential form)

$$\frac{d\dot{n}_j}{dV} = r_j$$

3.8 PFR

$$\frac{d\dot{n}_{_{A}}}{dV}=r_{_{A}}$$

$$\frac{d\dot{n}_A}{r_A} = dV$$

$$\int_{0}^{V_{1}} dV = \int_{\dot{h}_{A,0}}^{\dot{h}_{A,1}} \frac{d\dot{h}_{A}}{r_{A}}$$

Design Equation for PFR (integral form)

Plug Flow Reactor (PFR)

3.8 PFR

https://youtu.be/MgKWshe6YaU

Plug Flow Reactor (PFR)

3.9 Space and time dependence

BE 4254, Process Engineering, Prof. Dr.-Ing. Platte

3.10 Design equations

Comprehension questions

- 1. Explain the four terms in a general mole balance!
- 2. What means continuous and discontinuous w.r.t. operation on an ideal reactor?
- 3. What means perfectly mixed? How does the generation term simplify under this condition?
- 4. Which reactor do you suggest for a fast reaction?
- 5. Which reactor do you suggest for a gas phase reaction?
- 6. For some reactors the temperature is hard to control? Discuss if a CSTR or PFR tend to hot spots for exothermic reactions.
- 7. Why is a PFR mechanically simpler?
- 8. Which reactors lead to high cleaning costs and downtime?
- 9. A PFR and a PBR are very similar. What is the main difference?