Quentin Fortier

November 1, 2021

Complexité de la comple

Définition : Algorithme

Un algorithme est composé de :

- Une (des) entrée(s)
- Une (des) sortie(s)
- Des instructions pour passer de l'entrée à la sortie

Complexité (en temps)

La complexité d'un algorithme est le nombre d'opérations élémentaires (+, -, *, ...) qu'il effectue, en fonction de la taille de l'entrée.

```
let rec mem e l = match l with
    (* teste si e appartient à l *)
    | [] -> false
    | x::q -> x = e || mem e q
```

Les opérations élémentaires effectuées par mem sont match, $\mathbf{x}=\mathbf{e},$ | |. La complexité de mem e 1 pour une liste de taille n est donc au plus 3n.

Remarque : Si on trouve e dès le début de la liste, on va effectuer moins de n opérations. Par défaut, on s'intéresse à la **complexité dans** le pire cas.

On considère un algorithme et n la taille de son entrée (par exemple, taille de la liste en argument).

Complexité dans le pire cas

La complexité dans le pire cas est le nombre maximum d'opérations pour une entrée de taille $\it n.$

Quand on ne donne pas de précision, c'est de cette complexité dont on parle.

Complexité dans le meilleur cas

La complexité dans le meilleur cas est le nombre minimum d'opérations pour une entrée de taille $\,n\,$

complexité en moyenne

La complexité en moyenne est le nombre moyen d'opérations sur toutes les entrées de taille $\,n\,$

En pratique, on veut juste avoir un ordre de grandeur du nombre d'opérations en fonction de n.

Notation O (grand O)

Soit f et g deux fonctions. On dit que f(n) = O(g(n)) si :

$$\exists A \ge 0, \ \exists N, \ \forall n \ge N, \ f(n) \le Ag(n)$$

« f(n) est inférieur à g(n), à une constante près et pour n assez grand »

Notation O (grand O)

Soit f et g deux fonctions. On dit que $f(n) = \mathcal{O}(g(n))$ si :

$$\exists A \ge 0, \ \exists N, \ \forall n \ge N, \ f(n) \le Ag(n)$$

Exemples:

- 3n = O(n)
- $n \ln(n) + 2n = \mathsf{O}(n \ln n)$
- $5\ln(n) + 2\sqrt{n} = O(\sqrt{n})$

On conserve dans le O(...) le terme qui augmente le plus vite quand $n\longrightarrow\infty$, sans la constante.

Exemples de calculs sur les O(...):

- $O(n) + O(n^2) = O(n^2)$
- $\bullet \ \mathsf{O}(n) \times \mathsf{O}(n^2) = \mathsf{O}(n^3)$

Complexités classiques, de la meilleure (plus petite) à la plus mauvaise :

- O(1) : complexité constante \rightarrow a.(i), Array.length, e::1
- $O(\ln(n))$: complexité logarithmique → dichotomie, exponentiation rapide
- O(n) : complexité linéaire → dernier élément d'une liste, Array.make
- $O(n \log(n))$: complexité presque linéaire
 - → complexité optimale d'un tri (ex : tri fusion)
- O(aⁿ) : complexité exponentielle
 - → force brute (tester toutes les possibilités)

Remarque: Un algorithme en O(n) est aussi en $O(n^2)$, $O(2^n)$... On donnera la meilleure borne possible.

Intérêts de la complexité :

- Comparer plusieurs algorithmes pour choisir celui dont la complexité est la plus faible (⇒ plus rapide)
- Estimer le temps d'exécution d'un algorithme Si on doit utiliser un algorithme en complexité $\mathrm{O}(n^2)$ sur une liste de taille $n=10^6$ avec un processeur à 1Ghz, on peut estimer le temps d'exécution à :

$$\frac{(10^6)^2}{10^9} = \frac{10^{12}}{10^9} = 1000s$$

Exemples

```
let s = ref 0 in
for i=1 to n do
   s := !s + i
done
```

Complexité : O(n)

```
for i=0 to n - 1 do
   for j=0 to i do
      print_int j
   done
done
```

Complexité : $\sum_{i=0}^{n} i = O(n^2)$

Exemples

Quand on **imbrique** des boucles for (l'un dans l'autre), on **multiplie** les complexités

Quand on **enchaîne** des instructions (l'un après l'autre), on **additionne** les complexités.

Exemples

Pour trouver la complexité d'une fonction récursive/boucle while, lorsque ce n'est pas évident, on cherche souvent une équation de récurrence sur le nombre d'appels récursifs / d'itérations.

Exponentiation rapide

Problème

Calculer a^n .

$$\mbox{M\'ethode 1: utiliser } a^n = \underbrace{a \times a ... \times a}_{n} \quad \rightarrow n-1 \mbox{ multiplications}$$

Méthode 2 :

$$\begin{cases} a^n = (a^{\frac{n}{2}})^2 & \text{si } n \text{ est pair} \\ a^n = a \times (a^{\frac{n-1}{2}})^2 & \text{sinon} \end{cases}$$

Exponentiation rapide

```
let rec exp_rapide a n =
   if n = 0 then 1
   else let b = exp_rapide a (n/2) in
   if n mod 2 = 0 then b*b
   else a*b*b
```

Soit C(n) le nombre d'appels récursifs de \exp _rapide a n.

$$C(n) = 1 + C(n/2)$$
(*)
= 1 + 1 + C(n/4)
= $\underbrace{1 + \dots + 1}_{p} + C(n/2^{p})$

En appliquant $p = \log_2(n)$ (\pm 1) fois (*), on obtient :

$$C(n) = \log_2(n) + C(1) = \boxed{O(\log_2(n))}$$

Exponentiation rapide

```
let rec exp_rapide a n =
   if n = 0 then 1
   else let b = exp_rapide a (n/2) in
   if n mod 2 = 0 then b*b
   else a*b*b
```

exp_rapide a n effectue $O(\log(n))$ appels récursifs et chaque appel récursif effectue un nombre constant d'opérations (en dehors de l'appel récursif).

Donc exp_rapide a n est en complexité $O(\log(n))$.

Recherche par dichotomie

La recherche par dichotomie permet de savoir si un élément appartient à un tableau **trié** plus rapidement que la recherche séquentielle.

```
let dicho t e =
    (* détermine si e appartient au tableau trié t *)
    let rec aux i j =
    (* détermine si e appartient à t.(i), ..., t.(j) *)
        if i > j then false (* aucun élément *)
        else let m = (i + j)/2 in (* milieu *)
             if t.(m) = e then true
             else if t.(m) < e then aux (m + 1) j
             else aux i (m - 1) (* regarde à qauche *)
    in aux 0 (Array.length t - 1)
```

Attention : la dichotomie est inutile pour une liste car l'accès au milieu demande une complexité linéaire.

Recherche par dichotomie

```
let dicho t e =
  let rec aux i j =
  if i > j then false
    else let m = (i + j)/2 in
       if t.(m) = e then true
       else if t.(m) < e then aux (m + 1) j
       else aux i (m - 1)
  in aux 0 (Array.length t - 1)</pre>
```

À chaque appel récursif, on divise au moins par 2 la taille de l'intervalle où on recherche e.

Donc au bout de p appels récursifs, la taille de cet intervalle est $\leq \frac{n}{2^p}$

Quand $p \geq \log_2(n)$, il y a donc au plus $\frac{n}{n} = 1$ élément à chercher donc la fonction s'arrête. Donc :

dicho est en complexité $|\mathsf{O}(\log(n)))|$ sur un tableau trié de taille n

Tri fusion

Un algorithme de tri permet de trier par ordre croissant une liste ou un tableau.

- Tri par insertion : $O(n^2)$
- Tri par selection : $O(n^2)$
- Tri rapide : $O(n^2)$
- Tri fusion : $O(n \log(n))$ (optimale)
- Tri par tas : $O(n \log(n))$ (optimale)

Tri fusion : principe de l'algorithme

Tri fusion: exemple

Tri fusion: division

Diviser une liste en deux :

Complexité : O(n) où n est la taille de la liste

Tri fusion: fusion

Fusionner deux listes triées :

Complexité : O(n) où n est la taille de la plus petite liste

Tri fusion

 $\underline{\mathsf{Complexit\acute{e}}} : \mathsf{Soit}\ C(n) \ \mathsf{la}\ \mathsf{complexit\acute{e}}\ \mathsf{de}\ \mathsf{tri}\ \mathsf{1}\ \mathsf{pour}\ \mathsf{1}\ \mathsf{de}\ \mathsf{taille}\ n.$

$$C(n) = \underbrace{O(n)}_{split} + \underbrace{O(n)}_{fusion} + 2C(n/2) \le Kn + 2C(n/2)$$

$$\le Kn + 2K\frac{n}{2} + 4C(n/4) = 2Kn + 4C(n/4)$$

$$\le \dots \le pKn + 2^pC(n/2^p) = \underbrace{O(n\log_2(n))}_{p=\log_2(n)} \boxed{O(n\log_2(n))}$$

où Kn est un majorant de la complexité de split plus fusion.

Tri fusion : complexité $O(n \ln(n))$ avec l'arbre des appels récursifs

On peut représenter les appels récursifs du tri fusion sous forme d'un arbre et compter le nombre d'opération niveau par niveau :

Chaque rond (sommet) correspond à un appel récursif, avec la taille du sous-tableau à l'intérieur.

Tri fusion : exemple

On peut représenter les appels récursifs du tri fusion sous forme d'un arbre et compter le nombre d'opération niveau par niveau :

Chaque rond (sommet) correspond à un appel récursif, avec la taille du sous-tableau à l'intérieur.

Application des tris

Exercice

Avec quelle complexité pouvez-vous déterminer si une liste de taille n contient un doublon (2x le même élément) ?

 $\underline{\mathsf{M\acute{e}thode}\ 1}$: pour chaque élément, regarder s'il appartient à la queue.

Complexité : un appel à List.mem e q est en O(n) (car la taille de q est inférieure à celle de 1).

Donc la complexité totale est $n \times O(n) = O(n^2)$.

Application des tris

Exercice

Avec quelle complexité pouvez-vous déterminer si une liste de taille n contient un doublon (2x le même élément) ?

 $\underline{\mathsf{M\acute{e}thode}\ 2}$: trier la liste puis regarder si 2 éléments consécutifs sont égaux.

Complexité : l'appel à tri est $O(n \log(n))$. L'appel à aux est en O(n). Donc la complexité totale est $O(n \log(n)) + O(n) = O(n \log(n))$.

Complexité en espace

Complexité en espace (ou : en mémoire)

La complexité en espace d'un algorithme est l'espace mémoire qu'il a besoin d'utiliser, en fonction de la taille de l'entrée.

Rédaction

Conseils de redaction :

- Réfléchissez avant d'écrire du code. Si vous n'êtes pas sûr, utilisez un brouillon. Si vous vous trompez, rayez proprement.
- Utiliser si possible une couleur différente pour le code.
- Justifier toutes les complexités. Mais si la complexité est évidente (une boucle for par exemple), une ligne de justification suffit.