

RDF Presentation and Correct Content Conveyance for Legacy Services and the Web of Things

Maxime Lefrançois
http://maxime-lefrancois.info/

Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, IOGS, CNRS, UMR 5516, LHC, Institut Henri Fayol

How to reach semantic interoperability at the data level between heterogeneous things and services?

How to reach semantic interoperability at the data level between heterogeneous things and services?

Goal: RDF data *model* as lingua franca for Semantic Interoperability

Idea: just send RDF!

9999999999999999999999999999999999999 999999999999999999999999999999999

application/rdf+xml text/turtle application/ld+json

... ERI HDTQ

RDF data *formats* will never be the only ones on the web Developers prefer JSON, ...

Idea: just send RDF! JSON-LD!

Solution:

to rely on *one* RDF syntax like JSON-LD

Requires:

- Global adoption of JSON-LD (utopian
- Maintaining during the development or the evolution phase

Approx. modeling of the communication between heterogeneous agents on the Web.

wants to send some content e.g., state of a resource

Approx. modeling of the communication between heterogeneous agents on the Web.

wants to send some content e.g., state of a resource

Approx. modeling of the communication between heterogeneous agents on the Web.

Correct Content Conveyance iif:

- 1. all of the essential characteristics of the content is encoded in the message
- 2. the encoding and the decoding phase are symmetric
- 3. the message is not altered in the transmission medium

Assumption: content is always a RDF graph

Correct Content Conveyance iif:

The RDF graph the sender encodes is equivalent to the RDF graph the receiver obtained after decoding the message

Approach

Knowledge engineering methodology

- 1. Formalize the domain
- 2. Develop scenarios.
- Extract competency questions to define the scope of the ontology.
- 4. Develop an ontology to model the knowledge.
- 5. Qualitatively validate the ontology by showing how it answers the competency questions.

Conform to and leverage

- 1. Web's architectural principles
- 2. The linked data principles

Step 1: Analyze the domain

Define RDF Presentations

RDF Presentation

$$\forall \langle g, s \rangle, \langle g', s' \rangle \in p, \text{ type}(s) = \text{type}(s') = t$$

 $\forall \langle g, s \rangle, \langle g', s' \rangle \in p, \ s = s' \Rightarrow g = g'$

Define lifting, lowering, valid.

Lifting rule maps all the *tos* in p to their corresponding graph (unique)

Lowering rule maps all the graphs in p to a *chosen* corresponding typed stream

Validation rule checks if there is a pair with that graph

Representation validation rule checks if there is a pair with that *tos*

+ categorisation of tools + analysis of RDF formats

Different scenarios

Req/Res: client sends some content to the server

Req/Res: server responds to the client

Pub/Sub: client broadcasts some content to its subscribers

Both agents can also...

send

be constrained in some ways (battery, storage, comput,...) implement some of the principles we devise (be *semantically flexible*) rely on a third party to operate lifting/lowering/...

ceiver

Scenario 1: server/publisher sends its message to a client/subscriber

receiver discovers how to lift (from the sender, or elsewhere) sender can be constrained... / receiver can be constrained...

step2

Scenario 2: A client asks a server for the representation of a resource

server discovers a presentation suitable for the client client can be constrained... / server can be constrained...

step²Scenario 3: A client sends some encoded content to a server

client discovers a presentation suitable for the server client can be constrained... / server can be constrained...

Competency questions

CQ1-CQ4

CQ5-CQ8

CQ9-CQ11

How to represent/use

How to discover

Combine with SSN and TD

CQ1: What are the RDF lifting and lowering procedures one can use for a specific RDF presentation?

[…]

CQ5: How can a server inform its client on the RDF presentation it can use to lift the message?

CQ6: How can a server directly inform its client of the RDF lifting procedure it can use to lift the message?

[…]

CQ10: How can one describe the RDF presentation that is used in the output of a sensor?

CQ11: How can one describe the RDF presentation that is used in the input and output of the interaction pattern a thing implements?

The RDFP Ontology https://w3id.org/rdfp/

The RDFP Ontology https://w3id.org/rdfp/

rdfp:describedBy <graph> .

The RDFP Ontology https://w3id.org/rdfp/

Semantic Sensor Network Ontology

W3C Recommendation 19 October 2017 (Link errors corrected 08 December 2017)

https://www.w3.org/TR/2017/REC-vocab-ssn-20171019/

Latest published version:

https://www.w3.org/TR/vocab-ssn/

Latest editor's draft:

https://w3c.github.io/sdw/ssn/

Implementation report:

https://w3c.github.io/sdw/ssn-usage/

Previous version:

https://www.w3.org/TR/2017/PR-vocab-ssn-20170907

Armin Haller, Australian National University

Editors:

Krzysztof Janowicz, University of California, Santa Ba Simon Cox, CSIRO Danh Le Phuoc, Technical University of Berlin Kerry Taylor, Australian National University Maxime Lefrançois, École Nationale Supérieure des N

Contributors (ordered alphabetically):

Rob Atkinson, Metalinkage Raúl García-Castro, Universidad Politécnica de Madri Joshua Lieberman, Tumbling Walls Claus Stadler, Universität Leipzig

steps **CQ9-CQ11** Combine with SSN and TD

```
<DHT22#Procedure> a sosa:Procedure ;
  ssn:hasOutput <DHT22#output> .
<DHT22#output> a ssn:Output , rdfp:GraphDescription ;
  rdfs:comment """The output is a RDF Graph that describes both
                  the temperature and the humidity. It can be
                  validated by a SHACL shapes graph."""@en;
  rdfp:validationRule <shacl shapes graph> ;
  rdfp:presentedBy [
    a rdfp:GraphDescription;
    rdfp:mediaType "application/json" ;
    rdfp:validationRule <schema.json> ;
    rdfp:liftingRule <lifting-json.rqg>
```


The RDFP Ontology

https://w3id.org/rdfp/

Web of Things (WoT) Thing **Description**

W3C Working Draft 5 April 2018

This version:

https://www.w3.org/TR/2018/WD-wot-thing-description-20180405/

Latest published version:

https://www.w3.org/TR/wot-thing-description/

Latest editor's draft:

step5 **CQ9-CQ11** Combine with SSN and TD

```
"interaction": [
  "@type": ["Property", "iot:CurrentLevel"],
  "name": "exposure",
  "writable": true,
  "observable": true,
  "form": ["..."],
  "schema": {
       "@type": ["rdfp:GraphDescription"].
       "validationRule": "ex/shacl.rdf",
       "presentedBv": [
            "@tvpe": [ "rdfp:GraphPresentation
            "mediaType": "application/json",
            "liftingRule": "ex/lifting.rqg",
            "validationRule": "ex/schema.jsor
```

Direct discovery

Indirectly using CoRE Link Format

Directly during a single interaction

Direct discovery

Indirectly using RDF

Indirectly using CoRE Link Format

Directly during a single interaction

OPTION A

```
<http://ex.org/lower>;rel="lowering";anchor="/actuator",
<http://ex.org/lift>;rel="lifting";anchor="/sensor"
```

OPTION B

```
</actuator>;rt="light-switch";
  if="POST";lowering="http://ex.org/lower",
</sensor>;rt="presence-sensor";
  if="GET";lifting="http://ex.org/lift"
```

Direct discovery

Indirectly using RDF

Indirectly using CoRE Link Format

Directly during a single interaction

HTTP headers fields – CoAP options

Examples

Content-Lifting-Rule: http://example.org/api/temp/sparql-generate-rule>

Accept-Lowering-Rule: http://example.org/api/temperature/sttl-transformation

Conclusion

- RDF as an abstract data model for messages passed on the Web
- Different scenarios where Web agents can adapt one to another (be *flexible*)
- Scenarios for non-constrained but also constrained agents (using third agent)
- Conceptual framework, formalized
- RDF Presentation (RDFP) ontology to describe presentations
- Direct and indirect discovery of (some information about) presentations

Future work

- Experimental settings to demonstrate the flexibility
- Settings with different frameworks and standards
- Evaluation of the ease of use, adoption
- Cost of the flexibility?

RDF Presentation and Correct Content Conveyance for Legacy Services and the Web of Things

Maxime Lefrançois
http://maxime-lefrancois.info/

Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, IOGS, CNRS, UMR 5516, LHC, Institut Henri Fayol

