Exercice 1

Soit F le sous espace de \mathbb{R}^5 engendré par u=(1,2,3,-1,2) et v=(2,4,7,2,-1). Trouver une base de l'orthogonal F^{\perp} de F.

Exercice 2

On considère l'espace vectoriel $E = \mathbb{R}^3$ ainsi que le vecteur $u = (-5, 3, 1) \in E$ et le sous-espace F = Vect(u). Soit p le projeté orthogonal sur F. Déterminer la matrice de p dans la base canonique.

Dans cet exercice on se place dans l'espace euclidien $E = \mathbb{R}^n$ muni du produit scalaire canonique qui à deux vecteurs $\mathbf{x} = (x_1, ..., x_n)$ et $\mathbf{y} = (y_1, ..., y_n)$ associe $\langle x, y \rangle = x_1 y_1 + \cdots + x_n y_n$. On note ||x|| la norme d'un vecteur x et on note $(e_1, ..., e_n)$ la base canonique (orthonormée) de \mathbb{R}^n .

1) Dans cette question, u désigne un endomorphisme de E. On cherche à démontrer qu'il existe un unique endomorphisme de E, noté u^* , vérifiant :

$$\forall (x,y) \in E^2, \quad \langle u(x), y \rangle = \langle x, u^*(y) \rangle$$

a) Montrer que si u^* existe, alors :

$$\forall y \in E, \quad u^*(y) = \sum_{i=1}^n \langle u(e_i), y \rangle e_i$$

- b) En déduire que si u^* existe alors u^* est unique.
- c) Vérifier que l'application définie à la question 1)a) est effectivement un endomorphisme de E et conclure.
- 2) On appelle endomorphisme **adjoint** de u l'endomorphisme u^* défini dans la question précédente. Dans cette question, on étudie les endomorphismes **normaux**, c'est à dire les endomorphismes qui vérifient :

$$u \circ u^* = u^* \circ u$$

a) Soit f un endomorphisme symétrique de E. Donner son adjoint et vérifier que f est normal.

Dans la suite u désigne un endomorphisme normal.

- b) Montrer que : $\forall x \in E, ||u(x)|| = ||u^*(x)||$
- c) En déduire que $Ker(u) = Ker(u^*)$.
- d) Montrer que si F est un sous-espace vectoriel de E stable par u, alors F^{\perp} est stable par u^* .
- e) On suppose que u possède une valeur propre λ et on note E_{λ} le sous-espace propre associé. Montrer que E_{λ} est stable par u^* .
- f) Établir que $(u^*)^* = u$ puis en déduire que E_λ^\perp est stable par u.

On munit $E = \mathbb{R}^3$ de son produit scalaire canonique et de sa norme associée. Soit (u_1, u_2) une famille libre de E. On note $H = \text{Vect}(u_1, u_2)$ et on définie $f : E \to E$ par

$$\forall u \in E, f(u) = \langle u, u_1 \rangle u_2 + \langle u, u_2 \rangle u_1$$

- 1) Montrer que $f \in \mathcal{L}(E)$.
- 2) Montrer que $\operatorname{Im} f = H$ et $\operatorname{Ker} f = H^{\perp}$
- 3) On pose $v_1 = ||u_1||u_2 ||u_2||u_1$, $v_2 = ||u_1||u_2 + ||u_2||u_1$ et on prend $v_3 \in H^{\perp}$ quelconque tel que $v_3 \neq 0$. Montrer que v_1, v_2, v_3 est une base orthogonale de E.
- 4) Donner la matrice de f dans cette base.
- 5) En déduire que f est diagonalisable avec une valeur propre strictement positive, une strictement négative, et une nulle.

Exercice 5

Soit $(x_1, x_2, ..., x_n) \in (\mathbb{R}_+^*)^n$ tels que $x_1 + x_2 + \cdots + x_n = 1$. Démontrer que $\sum_{i=1}^n \frac{1}{x_i} \ge n^2$

Exercice 6 -

Soit $A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 2 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$. L'objectif de cet exercice est de trouver une matrice colonne X telle que ||AX - B|| soit minimal.

- 1) Vérifier que ImA est un plan et donner une équation cartésienne de ce plan.
- 2) Construire une base orthonormée de ce plan.
- 3) Calculer Y projection orthogonale de B sur ce plan, et conclure.

Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$ de rang p et $B \in \mathcal{M}_{n,1}(\mathbb{R})$. On cherche à minimiser ||AX - B|| où $X \in \mathcal{M}_{p,1}$.

- 1) Si n = p, résoudre le problème.
- 2) On revient au cas général. Montrer que $AX = 0 \Rightarrow X = 0$, et en déduire que $C = A^T A$ est inversible.
- 3) Soit $H = \{AX \mid X \in \mathcal{M}_{p,1}(\mathbb{R})\}$. Vérifier que H est un sous espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{R})$ et interpréter le problème posé en termes de distance et de projection orthogonale.
- 4) Soit $Y = AX_0$ le projeté orthogonal de B sur H. Montrer que

$$\forall X \in \mathcal{M}_{p,1}, \quad X^T A^T B - X^T A^T A X_0 = 0$$

- 5) En déduire que $Y = AC^{-1}A^TB$
- 6) Application avec $A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 2 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ pour retrouver le résultat de l'exercice précédent.

(D'après oral INSEE 2019) On considère l'espace \mathbb{R}^n muni de son produit scalaire canonique et de la norme associée $||\cdot||$. Soit $\mathcal{B}=(e_1,e_2,...,e_n)$ la base canonique de \mathbb{R}^n et soit $A=(a_{i,j})_{1\leqslant i,j\leqslant n}$ une matrice symétrique réelle et f l'endomorphisme de \mathbb{R}^n associé.

On admet que A est diagonalisable et on note $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$ ses valeurs propres. On admet aussi qu'il existe une base orthonormale $(\varepsilon_1, \ldots, \varepsilon_n)$ de \mathbb{R}^n , constitués de vecteurs propres de f tels que pour tout $i \in [1, n]$, $f(\varepsilon_i) = \lambda_i \varepsilon_i$. Le but de cet exercice est d'établir le résultat suivant :

$$\forall k \in [1, n], \quad \sum_{j=1}^{k} a_{j,j} \leqslant \sum_{j=1}^{k} \lambda_j$$

- 1) Étudier le cas k = n.
- 2) Soit maintenant $k \in [1, n]$. Établir que pour tout $j \in [1, n]$, on a

$$a_{j,j} \leqslant \sum_{i=1}^{k} \langle e_j, \varepsilon_i \rangle^2 \lambda_i + \lambda_k \sum_{i=k+1}^{n} \langle e_j, \varepsilon_i \rangle^2$$

(Indication: montrer que $a_{j,j} = \langle f(e_j), e_j \rangle$)

3) En déduire, pour tout $j \in [1, n]$, l'inégalité suivante :

$$a_{j,j} \leq \sum_{i=1}^{k} (\lambda_i - \lambda_k) \langle e_j, \varepsilon_i \rangle^2 + \lambda_k$$

(Indication : considérer la matrice $A' = A - \lambda_k I_n$)

4) Conclure

Exercice 9

Soit p un projecteur orthogonal de $E = \mathbb{R}^n$ et soit A la matrice représentative de p dans la base canonique $(e_1, e_2, ..., e_n)$. Le but de cet exercice est de montrer que $\sum \operatorname{tr}(^tAA) = \operatorname{rg}(A)$

- 1) Pour $i \in [1, n]$, exprimer $p(e_i)$ dans la base canonique.
- 2) Soit $p = \operatorname{rg}(A)$ et soit $f_1, ..., f_p$ une base orthonormée de ImA. Pour $i \in [1, n]$, exprimer $p(e_i)$ dans la base $f_1, ..., f_p$
- 3) En déduire deux façons différentes d'exprimer $||p(e_i)||^2$.
- 4) Conclure

- Exercice 10 -

- a) On considère la matrice $A = \begin{pmatrix} 10 & 7 \\ 7 & 5 \end{pmatrix}$. Résoudre $AX = \begin{pmatrix} 32 \\ 23 \end{pmatrix}$ d'inconnue $X \in \mathcal{M}_{2,1}(\mathbb{R})$ b) Un calcul donne $A \begin{pmatrix} 0.2 \\ 4.3 \end{pmatrix} = \begin{pmatrix} 32.1 \\ 22.9 \end{pmatrix}$. En quoi cela peut-il paraître surprenant?
- 2) Soit maintenant $A \in \mathcal{M}_n(\mathbb{R})$ une matrice diagonale dont les coefficients diagonaux $\lambda_1, \lambda_2, ..., \lambda_n$ sont tous non nuls. Soient deux matrice colonnes $B \in \mathcal{M}_{n,1}(\mathbb{R})$ et $R \in \mathcal{M}_{n,1}(\mathbb{R})$. On note X et X les solutions de AX = B et AX = B + R.

Pour une matrice colonne $Y = \begin{pmatrix} y_2 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$ quelconque, on note $||Y|| = \sqrt{y_1^2 + \dots + y_n^2}$.

- a) Montrer que $\max_{1 \le k \le n} \frac{1}{|\lambda_k|} = \frac{1}{\min_{1 \le k \le n} |\lambda_k|}$.
- b) Montrer que $\frac{\|\tilde{X} X\| \|B\|}{\|R\| \|X\|} \leq \frac{\max\limits_{1 \leq k \leq n} |\lambda_k|}{\min\limits_{1 < k < n} |\lambda_k|}$
- c) La matrice A étant fixée, construire explicitement B et R pour qu'il y ait égalité dans l'inégalité précédente.

Exercice 11

Soit $n \ge 1$ un entier et A est une matrice carrée à coefficients réels d'ordre n symétrique : ${}^tA = A$. On note E l'espace vectoriel des matrices colonnes à n lignes à coefficients réels et on fixe un vecteur non nul $\omega = \begin{pmatrix} 1 \\ \vdots \end{pmatrix}$ de E. Pour tout xde E, on pose :

$$q_A(x) = {}^t x A x$$
 et $c(x) = {}^t x \omega - 1$

et on suppose que pour tout vecteur x non nul de E, $q_A(x) > 0$. Enfin, on désigne par C l'ensemble $C = \{x \in E; c(x) = 0\}$. Toute matrice carrée d'ordre 1 sera confondue avec le réel la constituant. Le but de cet exercice est d'étudier l'existence du minimum de q_A sur l'ensemble C.

- 1) Vérifier que si $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, on a $q_A(x) = \sum_{i=1}^n \sum_{j=1}^n a_{i,j} x_i x_j$ et $c(x) = \sum_{i=1}^n \omega_i x_i 1$.
- 2) En résolvant l'équation Ax = 0 pour x inconnue de E, montrer que la matrice A est inversible.
- 3) Montrer que $A^{-1} = {}^{t}(A^{-1})$.
- 4) Montrer que pour tout vecteur x non nul de E, on a ${}^{t}xA^{-1}x > 0$.
- 5) Montrer que pour tout vecteur x de E, il existe un réel λ unique et un vecteur h de E unique tels que $x = \lambda A^{-1}\omega + h$
- 6) Montrer alors que si x vérifie c(x) = 0, on a $q_A(x) = \frac{1}{t_{(i)}A^{-1}_{(i)}} + {}^thAh$.
- 7) En déduire que q_A admet un minimum sur C atteint uniquement en x_0 vérifiant $Ax_0 = \lambda_0 \omega$ avec $\lambda_0 = \frac{1}{t_{i,i}A^{-1_{i,i}}}$.

