NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC2540 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in VHF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 8.2dB$ $@V_{CC} = 13.5V$, $P_0 = 40W$, f = 175MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR when operated at $V_{CC} = 15.2V$, $P_0 = 40W$, f = 175MHz, $T_C = 25^{\circ}C$.

APPLICATION

30 to 35 watts output power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
Vсво	Collector to base voltage		35	V
V _{EBO}	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
1 _C	Collector current		10	A
Pc	Collector dissipation	Ta = 25°C	4.5	w
		T _C = 25°C	80	w
Tj	Junction temperature		175	°C
Tstg	Storage temperature		-55 to 175	°c
Rth-a	Thermal resistance	Junction to ambient	33.3	°c/w
Rth-c	THE HISTORICE	Junction to case	2	°C/W

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter Test condition	Test conditions		Limits		
		- rest conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	$I_E = 10 \text{ mA}, I_C = 0$	4			V
V(BR)CBO	Collector to base breakdown voltage	I _C =10mA, I _E =0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =0.1A, R _{BE} =∞	17			V
СВО	Collector cutoff current	V _{CB} =15V, I _E =0			2.5	mΑ
1 _{EBO}	Emitter cutoff current	V _{EB} =3V.1 _C =0			2	mΑ
hfE	DC forward current gain *	V _{CE} = 10 V, I _C = 0.2 A	10	60	180	
Po	Output power	V _{CC} =13.5V, P _{In} =6W, f=175MHz	40	45		w
η_{C}	Collector efficiency		60	70		%

Note. *Pulse test, $P_W=150\mu s$, duty=5%.

Above parameters, ratings, limits and conditions are subject to change

TEST CIRCUIT

- L1: Length = 10mm, width = 6mm, thickness = 0.3mm copper plate
- L2: Length = 10mm, width = 3mm, thickness = 0.3mm copper plate
- F.B.: Ferrite bead
- RFC: 0.4mm¢ enameled copper wire 17 turn
- C_B: 10µF, 1000pF, 150pF in parallel

- NOTES: Coils are made from 1.5mm ϕ silver plated copper wire except L1 & L2
 - D: Inner diameter of coil
 - T: Turn number of coil
 - P: Pitch of coil
 - Dimension in milli-meter

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

COLLECTOR CURRENT VS. **COLLECTOR TO EMITTER VOLTAGE**

COLLECTOR TO EMITTER VOLTAGE V_{CE} (V)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS.

BASE TO EMITTER RESISTANCE

BASE TO EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. **COLLECTOR CURRENT**

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE V_{CB} (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)