Contents

	•
	11

1

CONTENTS

Chapter 1

Philosopherers

```
(1.5)
                              \mathbf{y}(<,S) := \forall_{x,y \in S} (x < y \lor x = y \lor y < x)
                               \forall (<, S) := \forall_{x,y,z \in S} ((x < y \land y < z)) \implies x < z)
          (<,S) := OrderTrichotomy(<,S) \land OrderTransitivity(<,S)
(1.7)
                          O(E, S, <) := Order(<, S) \land E \subset S \land \exists_{\beta \in S} \forall_{x \in E} (x \le \beta)
                          (E, S, <) := Order(<, S) \land E \subset S \land \exists_{\beta \in S} \forall_{x \in E} (\beta \le x)
                      (\beta, E, S, <) := Order(<, S) \land E \subset S \land \beta \in S \land \forall_{x \in E} (x \leq \beta)
                      (\beta, E, S, <) := Order(<, S) \land E \subset S \land \beta \in S \land \forall_{x \in E} (\beta \le x)
         \forall (\alpha, E, S, <) := UpperBound(\alpha, E, S, <) \land \forall_{\gamma} (\gamma < \alpha \implies \neg UpperBound(\gamma, E, S, <))
GLP(\alpha, E, S, <) := LowerBound(\alpha, E, S, <) \land \forall_{\beta} (\alpha < \beta \implies \neg LowerBound(\beta, E, S, <))
(1.10)
               \mathsf{operty}(S,<) := \forall_E \Big( \big(\emptyset \neq E \subset S \land Bounded Above(E,S,<) \big) \implies \exists_{\alpha \in S} \big( LUB(\alpha,E,S,<) \big) \Big)
\overline{GLBProperty}(S,<) := \forall_E \Big( \big( \emptyset \neq E \subset S \land Bounded Below(E,S,<) \big) \implies \exists_{\alpha \in S} \big( \overline{GLB}(\alpha,E,S,<) \big) \Big)
                                                                LUBProperty(S, <) \implies GLBProperty(S, <)
(1) LUBProperty(S, <) \implies ...
   (1.1) \quad (\emptyset \neq B \subset S \land Bounded Below(B, S, <)) \implies \dots
       (1.1.1) Order(\langle S \rangle \land \exists_{\delta' \in S} (LowerBound(\delta', B, S, \langle S \rangle))
       (1.1.2) |B| = 1 \Longrightarrow \dots
          (1.1.2.1) \quad \exists_{u'}(u' \in B) \quad \blacksquare \ u := choice(\{u'|u' \in B\}) \quad \blacksquare \ B = \{u\}
          (1.1.2.2) \quad \mathbf{GLB}(u, B, S, <) \quad \blacksquare \quad \exists_{\epsilon_0 \in S} \left( \mathbf{GLB}(\epsilon_0, B, S, <) \right)
       (1.1.3) \quad |B| = 1 \implies \exists_{\epsilon_0 \in S} \left( \mathbf{GLB}(\epsilon_0, B, S, <) \right)
       (1.1.4) |B| \neq 1 \implies \dots
                                                                                                                                                                                                              from: LUBProperty, 1
          (1.1.4.1) \quad \forall_{E} \Big( \big( \emptyset \neq E \subset S \land Bounded Above(E, S, <) \big) \implies \exists_{\alpha \in S} \big( LUB(\alpha, E, S, <) \big) \Big)
          (1.1.4.2) L := \{ s \in S | LowerBound(s, B, S, <) \}
          (1.1.4.3) \quad |B| > 1 \land OrderTrichotomy(<, S) \quad \blacksquare \quad \exists_{b_1' \in B} \exists_{b_0' \in B} (b_0' < b_1')
          (1.1.4.4) \quad b_1 := choice\Big(\{b_1' \in B | \exists_{b_0' \in B}(b_0' < b_1')\}\Big) \quad \blacksquare \quad \neg LowerBound(b_1, B, S, <)
          (1.1.4.5) b_1 \notin L \blacksquare L \subset S
          (1.1.4.6) \quad \delta := choice(\{\delta' \in S | LowerBound(\delta', B, S, <)\}) \quad \blacksquare \quad \delta \in L \quad \blacksquare \quad \emptyset \neq L
                                                                                                                                                                                                               from: 1.1.4.5, 1.1.4.6
          (1.1.4.7) \quad \emptyset \neq L \subset S
```

```
from: LowerBound, 1.1.4.2
wts: 1.1.4.10
           (1.1.4.8) \quad \forall_{v \in L} \left( \mathbf{LowerBound}(y, B, S, <) \right) \quad \blacksquare \quad \forall_{v \in L} \forall_{x \in B} (y \le x)
           (1.1.4.9) \quad \forall_{x \in B} \left( x \in S \land \forall_{y \in L} (y \le x) \right) \quad \blacksquare \quad \forall_{x \in B} \left( U pperBound(x, L, S, <) \right)
           (1.1.4.10) \quad \exists_{x \in S} (UpperBound(x, L, S, <)) \quad \blacksquare \quad BoundedAbove(L, S, <)
                                                                                                                                                                                                                                     from: 1.1.4.7, 1.1.4.10
           (1.1.4.11) \emptyset \neq L \subset S \land Bounded Above(L, S, <)
           (1.1.4.12) \quad \exists_{\alpha' \in S} \left( LUB(\alpha', L, S, <) \right) \quad \blacksquare \quad \alpha := choice \left( \left\{ \alpha' \in S \mid \left( LUB(\alpha', L, S, <) \right) \right\} \right)
           (1.1.4.13) \quad \forall_{x} (x \in B \implies UpperBound(x, L, S, <))
           (1.1.4.14) \quad \forall_x (\neg UpperBound(x, L, S, <) \implies x \notin B)
           (1.1.4.15) \gamma < \alpha \implies \dots
            (1.1.4.15.1) \quad \neg UpperBound(\gamma, L, S, <) \quad \blacksquare \quad \gamma \notin B
           (1.1.4.16) \quad \gamma < \alpha \implies \gamma \notin B \quad \blacksquare \quad \gamma \in B \implies \gamma \ge \alpha
                                                                                                                                                                                                                                        from: LowerBound
           (1.1.4.17) \quad \forall_{\gamma \in B} (\alpha \leq \gamma) \quad \blacksquare \quad LowerBound(\alpha, B, S, <)
           (1.1.4.18) \alpha < \beta \implies \dots
              (1.1.4.18.1) \quad \forall_{y \in L} (y \le \alpha < \beta) \quad \blacksquare \quad \forall_{y \in L} (y \ne \beta)
              (1.1.4.18.2) \beta \notin L \square \neg LowerBound(\beta, B, S, <)
           (1.1.4.19) \quad \alpha < \beta \implies \neg LowerBound(\beta, B, S, <) \quad \blacksquare \quad \forall_{\beta \in S} \left( \alpha < \beta \implies \neg LowerBound(\beta, B, S, <) \right)
           (1.1.4.20) \quad Lower Bound(\alpha, B, S, <) \land \forall_{\beta \in S} (\alpha < \beta \implies \neg Lower Bound(\beta, B, S, <))
           (1.1.4.21) \quad GLB(\alpha, B, S, <) \quad \blacksquare \quad \exists_{\epsilon_1 \in S} \left( GLB(\epsilon_1, B, S, <) \right)
       (1.1.5) |B| \neq 1 \implies \exists_{\epsilon_1 \in S} (GLB(\epsilon_1, B, S, <))
       (1.1.6) \quad \left( |B| = 1 \implies \exists_{\epsilon_0 \in S} \left( \underline{GLB}(\epsilon_0, B, S, <) \right) \right) \land \left( |B| \neq 1 \implies \exists_{\epsilon_1 \in S} \left( \underline{GLB}(\epsilon_1, B, S, <) \right) \right)
       (1.1.7) \quad (|B| = 1 \lor |B| \ne 1) \implies \exists_{\epsilon \in S} (GLB(\epsilon, B, S, <)) \quad \blacksquare \quad \exists_{\epsilon \in S} (GLB(\epsilon, B, S, <))
   (1.2) \quad (\emptyset \neq B \subset S \land Bounded Below(B, S, <)) \implies \exists_{\epsilon \in S} (GLB(\epsilon, B, S, <))
   (1.3) \quad \forall_{B} \left( \left( \emptyset \neq B \subset S \land Bounded Below(B, S, <) \right) \implies \exists_{\epsilon \in S} \left( GLB(\epsilon, B, S, <) \right) \right)
   (1.4) GLBProperty(S, <)
(2) LUBProperty(S, <) \implies GLBProperty(S, <)
```

$$Field(F, +, *) := \exists_{0,1 \in F} \forall_{x,y,z \in F} \begin{cases} x + y \in F & \land & x * y \in F & \land \\ x + y = y + x & \land & x * y = y * x & \land \\ (x + y) + z = x + (y + z) & \land & (x * y) * z = x * (y * z) & \land \\ 1 \neq 0 & \land & x * (y + z) = (x * y) + (x * z) & \land \\ 0 + x = x & \land & 1 * x = x & \land \\ \exists_{-x \in F} (x + (-x) = 0) \land (x \neq 0 \implies \exists_{1/x \in F} (x * (1/x) = 1)) \end{cases}$$

(1.14)

Additive Cancellation $(x + y = x + z) \implies y = z$

(1)
$$y = 0 + y = (x + (-x)) + y = ((-x) + x) + y = (-x) + (x + y) = ...$$

 $(2) \quad (-x) + (x+z) = ((-x) + x) + z = (x + (-x)) + z = 0 + z = z$

from: Field

AdditiveIdentityUniqueness $(x + y = x) \implies y = 0$

(1)
$$x + y = x = 0 + x = x + 0$$

$$(2) \quad y = 0$$
 from: AdditiveCancellation

AdditiveInverseUniqueness $(x + y = 0) \implies y = -x$

(1) x + y = 0 = x + (-x)

 $(2) \quad y = -x$ from: AdditiveCancellation

DoubleNegative x = -(-x)

(1) $0 = x + (-x) = (-x) + x \quad \blacksquare \quad 0 = (-x) + x$

(2) x = -(-x) from: AdditiveInverseUniqueness

MultiplicativeIdentityUniqueness $(x \neq 0 \land x * y = x) \implies y = 1$

MultiplicativeInverseUniqueness $(x \neq 0 \land x * y = 1) \implies y = 1/x$ —

Double Reciprocal $(x \neq 0) \implies x = 1/(1/x)$ —

 $\begin{array}{|c|c|}\hline (1.16) \\ \hline \textbf{Domination} & 0 * x = 0 \\ \hline \end{array}$

(1) 0 * x = (0+0) * x = 0 * x + 0 * x 0 * x = 0 * x + 0 * x

 $(2) \quad \emptyset * x = \emptyset$ from: AdditiveIdentityUniqueness

NonDomination $(x \neq 0 \land y \neq 0) \implies x * y \neq 0$

 $\begin{array}{ccc}
\hline
(1) & (x \neq 0 \land y \neq 0) \implies \dots
\end{array}$

 $(1.1) \quad (x * y = 0) \implies \dots$

 $(1.1.1) \quad \mathbb{1} = \mathbb{1} * \mathbb{1} = (x * (1/x)) * (y * (1/y)) = (x * y) * ((1/x) * (1/y)) = \mathbb{0} * ((1/x) * (1/y)) = \mathbb{0}$

 $(1.1.2) \quad \mathbb{1} = \mathbb{0} \land \mathbb{1} \neq \mathbb{0} \quad \blacksquare \perp$

 $(1.2) \quad (x * y = 0) \implies \bot \quad \blacksquare \quad x * y \neq 0$

(2) $(x \neq 0 \land y \neq 0) \implies x * y \neq 0$

NegationCommutativity (-x) * y = -(x * y) = x * (-y)

(1) x * y + (-x) * y = (x + -x) * y = 0 * y = 0 x * y + (-x) * y = 0 wts: 2

(2) (-x) * y = -(x * y)

(3) x * y + x * (-y) = x * (y + -y) = x * 0 = 0 x * y + x * (-y) = 0 wts: 4

 $(4) \quad x * (-y) = -(x * y)$ from: AdditiveInverseUniqueness

(5) (-x) * y = -(x * y) = x * (-y)

NegativeMultiplication (-x) * (-y) = x * y

(1) (-x)*(-y) = -(x*(-y)) = -(-(x*y)) = x*y from: NegationCommutativity, DoubleNegative

(1.17)

 $Ordered\ Field(F,+,*,<) := \left(\begin{array}{ccc} Field(F,+,*) & \wedge & Order(<,F) & \wedge \\ \forall_{x,y,z\in F}(y< z \implies x+y< x+z) & \wedge \\ \forall_{x,y\in F}\big((x>0 \land y>0) \implies x*y>0\big) \end{array} \right)$

(1.18)NegationOnOrder $x > 0 \iff -x < 0$


```
OrderedField(\mathbb{Q}, +, *, <)
                    (K, F, +, *) := Field(F, +, *) \wedge K \subset F \wedge Field(K, +, *)
                                     (K, F, +, *, <) := Ordered Field(F, +, *, <) \land K \subset F \land Ordered Field(K, +, *, <)
         (\alpha) := \emptyset \neq \alpha \subset \mathbb{Q}
           \begin{split} & \mathbf{I}(\alpha) := \forall_{p \in \alpha} \forall_{q \in \mathbb{Q}} (q 
         R := \mathbb{R} := \{ \alpha \in \mathbb{Q} | CutI(\alpha) \land CutII(\alpha) \land CutIII(\alpha) \}
                                 (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q
(1) \ (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \not\in \alpha) \implies \dots
   (1.1) \quad \forall_{p' \in \alpha} \forall_{q' \in \mathbb{Q}} (q' < p' \implies q' \in \alpha)
    (1.2) \quad q 
   (1.3) \quad (q \notin \alpha) \implies \dots
       (1.3.1) \quad \overline{q \ge p}
       (1.3.2) \quad (q = p) \implies (p \in \alpha \land p \notin \alpha) \implies \bot \quad \blacksquare \quad q \neq p
     (1.3.3) \quad q \ge p \land q \ne p \quad \blacksquare \quad p < q
                                                                                                                                                                                                                                                                        from: 1
    (1.4) \quad q \notin \alpha \implies p < q \quad \blacksquare \quad p < q
(2) \quad (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q
                                   (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
(1) (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies \dots
   (1.1) \quad \forall_{s' \in \alpha} \forall_{r' \in \mathbb{Q}} (r' < s' \implies r' \in \alpha)
   (1.2) \quad s \in \alpha \implies \left(r \in \mathbb{Q} \implies (r < s \implies r \in \alpha)\right) \quad \blacksquare \quad s \in \alpha \implies r \in \alpha
   (1.3) \quad r \notin \alpha \implies s \notin \alpha \quad \blacksquare \quad s \notin \alpha
(2) \quad (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
 <(\alpha,\beta) := \alpha,\beta \in \mathbb{R} \land \alpha \subset \beta
                                            OrderTrichotomy(\mathbb{R}, <)
(1) (\alpha, \beta \in \mathbb{R}) \implies \dots
   (1.1) \quad \neg(\alpha < \beta \lor \alpha = \beta) \implies \dots
                                                                                                                                                                                                                                                                   from: <, 1.1
       (1.1.1) \quad \alpha \not\subset \beta \land \alpha \neq \beta
        (1.1.2) \quad \exists_{p'}(p' \in \alpha \land p' \notin \beta) \quad \blacksquare \quad p := choice(\{p' | p' \in \alpha \land p' \notin \beta\})
       (1.1.3) \quad q \in \beta \implies \dots
           (1.1.3.1) p, q \in \mathbb{Q}
            (1.1.3.2) q < p
           (1.1.3.3) q \in \alpha
       (1.1.4) \quad q \in \beta \implies q \in \alpha
       (1.1.5) \quad \forall_{q \in \beta} (q \in \alpha) \quad \blacksquare \quad \beta \subseteq \alpha
       (1.1.6) \quad \beta \subset \alpha \quad \blacksquare \quad \beta < \alpha
    (1.2) \quad \neg(\alpha < \beta \lor \alpha = \beta) \implies \beta < \alpha
    (1.3) \quad \neg(\alpha < \beta \lor \alpha = \beta) \lor (\alpha < \beta \lor \alpha = \beta) \quad \blacksquare \quad (\beta < \alpha) \lor (\alpha < \beta \lor \alpha = \beta)
   (1.4) \quad \alpha = \beta \implies \neg(\alpha < \beta \lor \beta < \alpha)
   (1.5) \quad \alpha < \beta \implies \neg(\alpha = \beta \lor \beta < \alpha)
   (1.6) \quad \beta < \alpha \implies \neg(\alpha = \beta \lor \alpha < \beta)
   (1.7) \quad \overline{\alpha < \beta \lor \alpha = \beta \lor \alpha < \beta}
(2) \quad (\alpha, \beta \in \mathbb{R}) \implies (\alpha < \beta \veebar \alpha = \beta \veebar \alpha < \beta)
```

(1.19)

(3) $\forall_{\alpha,\beta\in\mathbb{R}} (\alpha < \beta \lor \alpha = \beta \lor \alpha < \beta)$

(4) $OrderTrichotomy(\mathbb{R}, <)$ $(1) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots$ (1.1) $(\alpha < \beta \land \beta < \gamma) \implies \dots$ $(1.1.1) \quad \alpha \subset \beta \land \beta \subset \gamma$ $(1.1.2) \quad \forall_{a \in \alpha} (a \in \beta) \land \forall_{b \in \beta} (b \in \gamma)$ $(1.1.3) \quad \forall_{\alpha \in \alpha} (\alpha \in \gamma) \quad \blacksquare \quad \alpha \subset \gamma \quad \blacksquare \quad \alpha < \gamma$ $(1.2) \quad (\alpha < \beta \land \beta < \gamma) \implies \alpha < \gamma$ $(2) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies ((\alpha < \beta \land \beta < \gamma) \implies \alpha < \gamma)$ $(3) \quad \forall_{\alpha,\beta,\gamma \in \mathbb{R}} \left((\alpha < \beta \land \beta < \gamma) \implies \alpha < \gamma \right)$ (4) $OrderTransitivity(\mathbb{R}, <)$ $Order(<,\mathbb{R})$ $LUBProperty(\mathbb{R}, <)$ (1) $(\emptyset \neq A \subset \mathbb{R} \land Bounded Above(A, \mathbb{R}, <)) \implies \dots$ $(1.1) \quad \gamma := \{ p \in \mathbb{Q} | \exists_{\alpha \in A} (p \in \alpha) \}$ $(1.2) \quad A \neq \emptyset \quad \blacksquare \quad \exists_{\alpha} (\alpha \in A) \quad \blacksquare \quad \alpha_0 := choice(\{\alpha \mid \alpha \in A\})$ $(1.3) \quad \alpha_0 \neq \emptyset \quad \blacksquare \ \exists_a (a \in \alpha_0) \quad \blacksquare \ a_0 := choice(\{a | a \in \alpha_0\}) \quad \blacksquare \ a_0 \in \gamma \quad \blacksquare \ \gamma \neq \emptyset$ (1.4) Bounded Above $(A, \mathbb{R}, <)$ $\blacksquare \exists_{\beta} (UpperBound(\beta, A, \mathbb{R}, <))$ $(1.5) \quad \beta_0 := choice(\{\beta | UpperBound(\beta, A, \mathbb{R}, <)\})$ $(1.6) \quad \underline{UpperBound}(\beta_0, \overline{A}, \mathbb{R}, <) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} (\overline{\alpha} \subseteq \beta_0)$ $(1.7) \quad \forall_{\alpha \in A} \forall_{a \in \alpha} (a \in \beta_0) \quad \blacksquare \quad \forall_{a \in \gamma} (a \in \beta_0) \quad \blacksquare \quad \gamma \subseteq \beta_0$ $(1.8) \quad \beta_0 \subset \mathbb{Q} \quad \blacksquare \quad \gamma \subseteq \beta_0 \subset \mathbb{Q} \quad \blacksquare \quad \gamma \subseteq \mathbb{Q}$ $(1.9) \quad \emptyset \neq \gamma \subset \mathbb{Q} \quad \blacksquare \quad Cut I(\gamma)$ $(1.10) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies \dots$ $(1.10.1) \quad p \in \gamma \quad \blacksquare \ \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \ \alpha_1 := choice(\{\alpha \in A | p \in \alpha\})$ $(1.10.2) \quad p \in \alpha_1 \land q \in \mathbb{Q} \land q$ $(1.11) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies q \in \gamma \quad \blacksquare \quad \forall_{p \in \gamma} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \gamma) \quad \blacksquare \quad CutII(\gamma)$ (1.12) $p \in \gamma \implies ...$ $(1.12.1) \quad \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \quad \alpha_2 := choice(\{\alpha \in A | p \in \alpha\})$ $(1.12.2) \quad \exists_{r \in \alpha_2} (p < r) \quad \blacksquare \quad r_0 := choice(\{r \in \alpha_2 | p < r\})$ (1.12.3) $r_0 \in \alpha_2 \ \blacksquare \ r_0 \in \gamma$ $(1.12.4) \quad p < r_0 \quad \blacksquare \quad p < r_0 \land r_0 \in \gamma \quad \blacksquare \quad \exists_{r \in \gamma} (p < r)$ $(1.13) \quad p \in \gamma \implies \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad \forall_{p \in \gamma} \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad CutIII(\gamma)$ $(1.14) \quad CutI(\gamma) \wedge CutII(\gamma) \wedge CutIII(\gamma) \quad \boxed{\gamma \in \mathbb{R}}$ $(1.15) \quad \forall_{\alpha \in A} (\alpha \subseteq \gamma) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \le \gamma) \quad \blacksquare \quad UpperBound(\gamma, A, \mathbb{R}, <)$ (1.16) $\delta < \gamma \implies ...$ $(1.16.1) \quad \delta \subset \gamma \quad \blacksquare \ \exists_s (s \in \gamma \land s \notin \delta) \quad \blacksquare \ s_0 := c \, hoice(\{s \in \mathbb{Q} | s \in \gamma \land s \notin \delta\})$ $(1.16.2) \quad s_0 \in \gamma \quad \blacksquare \ \exists_{\alpha \in A} (s_0 \in \alpha) \quad \blacksquare \ \alpha_3 := choice(\{\alpha \in A | s_0 \in \alpha\})$ $(1.16.3) \quad s_0 \in \alpha_3 \land s_0 \notin \delta \quad \blacksquare \quad \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)$ (1.16.4) $\delta \ge \alpha_3 \implies \dots$ $(1.16.4.1) \quad \alpha_3 \subseteq \delta \quad \blacksquare \quad \forall_{s \in \mathbb{Q}} (s \in \alpha_3 \implies s \in \delta) \quad \blacksquare \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)$ $(1.16.4.2) \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \land \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \quad \blacksquare \ \bot$ $(1.16.5) \quad \delta \ge \alpha_3 \implies \bot \quad \blacksquare \quad \delta < \alpha_3 \quad \blacksquare \quad \exists_{\alpha \in A} (\delta < \alpha) \quad \blacksquare \quad \exists_{\alpha \in A} (\neg (\alpha \le \delta))$ $(1.16.6) \quad \neg \forall_{\alpha \in A} (\alpha \leq \delta) \quad \blacksquare \quad \neg UpperBound(\delta, A, \mathbb{R}, <)$

 $(1.17) \quad \delta < \gamma \implies \neg UpperBound(\delta, A, \mathbb{R}, <)) \quad \blacksquare \quad \forall_{\delta} \left(\delta < \gamma \implies \neg UpperBound(\delta, A, \mathbb{R}, <) \right)$

 $(1.18) \quad \textit{UpperBound}(\gamma, A, \mathbb{R}, <) \land \forall_{\delta} \left(\delta < \gamma \implies \neg \textit{UpperBound}(\delta, A, \mathbb{R}, <)\right) \ \ \blacksquare \ \ \textit{LUB}(\delta, A, \mathbb{R}, <)$

- $\overline{(2) \ \left(\emptyset \neq A \subset \mathbb{R} \land Bounded Above(A, \mathbb{R}, <)\right)} \implies \exists_{\gamma \in S} \left(\underline{LUB}(\gamma, A, \mathbb{R}, <)\right)$
- (3) UNIVERSALCLOSURE
- $\overline{(4) \ LUBProperty(\mathbb{R}, <)}$

(1) 123123

TODO: - MORE EXPLICIT MODUS PONENS ON OrderTrichotomyR ??? - name all properties - hyperlink all definitions ???

Chapter 2

First Chapter

(1) First

(1.1) Second

(1.2) Third

(2) Fourth

This will be an empty chapter and I will put some text here

$$\sum_{i=0}^{\infty} a_i x^i \tag{2.1}$$

The equation 2.1 shows a sum that is divergent. This formula will later be used in the page ??.

For further references see Something Linky or go to the next url: http://www.sharelatex.com or open the next file File.txt It's also possible to link directly any word or any sentence in your document. supwithitSup With It Theorem If you read this text, you will get no information. Really? Is there no information?

For instance this sentence. supwithit