

<u>25.03.2020</u> № <u>125/3-3</u>

МАТЕМАТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

Алгоритм расчета норм расхода ЖРС на производство агломерата и ч
--

СОГЛАСОВАНО:	
Начальник УВСИТЦУ	
	К.С.Теличко
«»2	2020 г.

ЛИСТ СОГЛАСОВАНИЯ

к Математическому обеспечению алгоритма расчета норм расхода ЖРС на производство

агломерата и чугуна № 125/3-3 от 25.03.2020 г.

СОГЛАСОВАНО:
УВСИТЦУ:
Ведущий математик И.И.Кошелева
Начальник бюро ДПиУЭ А.В.Суковицин
Служба технического директора:
Ведущий инженер В.А. Кем

РАЗРАБОТАЛИ:
Математик Г.Р.Долгий
Ведущий математик Н.А.Иванов

ОГЛАВЛЕНИЕ

	ВВЕДЕНИЕВХОДНЫЕ ПАРАМЕТРЫ, ВВОДИМЫЕ В ПОДСИСТЕМУ «PACYET HOPN PACXOДА ЖРС»	
	2.1 Данные, вводимые для получения прав на ввод данных	
	2.2.1 Справочник материалов, используемых в шихте	
	2.3 Форма ввода объема производства по печам	13
	2.5.1 Состав шихты	16
3	РАСЧЕТ АГЛОМЕРАЦИОННОЙ ШИХТЫ	.22
	3.1 Qn_suh_kgt_KP - расчет норм расхода КП на АГП	
	3.3 Q_vlag_t_sum - расчет расхода влажной шихты	28 сы
	влажной шихты	
	3.5 Q_SUP_t _{i,j} - расчет расхода влажного материала с учетом потерь	
	3.6 Q_suh_t _{i,j} - расчет расхода сухого материала	
	3.8 Q_suh_proc _{i,j} - расчет расхода сухого материала относительно общей массы	. 29
	сухой шихты	29
	3.9 Vpr_proc _{i,j} - расчет объема агломерата, полученного из этого материала,	. 23
	относительно расхода сухого материала	29
	3.10 Vpr_t _{i,j} - расчет объема агломерата полученного из каждого материала	
	3.11 H/S_t _{i,j} - расчет массовых расходов отдельных компонентов X/C шихтовых материалов	
	3.12 H/S_t_sum - расчет суммарного массового расхода отдельных компонентов >	K/C
	сухой шихты	30 ты
	3.14 Q_vlag_kgt _{i,j} - расчет удельного расхода влажных материалов	
	3.15 Q_suh_kgt _{i,j} - расчет удельного расхода сухих материалов	
	3.16 Q_vlag_kgt_sum - расчет удельного расхода влажной шихты	
	3.17 Q_suh_kgt_sum - расчет удельного расхода сухой шихты	
	3.18 Q_vlag_proc_sum - расчет суммарного расхода влажных материалов	
	относительно общей массы влажной шихты	. 31
	3.19 Q_suh_proc_sum - расчет суммарного расхода сухих материалов относитель	ΉΟ
	общей массы сухой шихты	. 32
	3.20 Q_SUP_t_sum - расчет суммарного расхода влажных материалов с учетом	22
	потерь	. 32
	шихты, относительно расхода сухой шихты	33
	3.22 H/S_suh - расчет X/C расходуемой сухой шихты	
	3.23 H/S_agl - расчет X/С полученного агломерата	
	3.24 Q_vlag_t_itog – расчет итогового количества шихты со всеми поправками	

	3.25 Fe_agl_itog – расчет итогового количества произведенного железа 3.26 Расчет известняка на заданной основности	
	3.27 CaO_SiO2_suh - расчет основности сухой шихты	34
	3.28 CaO_SiO2_agl - расчет основности агломерата	
	3.29 Q_vlag_tt_izv – расчет расхода выбранного типа известняка	
4	РАСЧЕТ ДОМЕННОЙ ШИХТЫ	36
	4.1 Нормы расхода ЖРС на производство чугуна	36
	4.1.1 Входные данные	37
	4.1.2 Метод расчета одной печи при введенном удельном расходе	
	4.1.3 Метод расчета одной печи при введенном расходе	
	4.1.4 Расчет остальных значений и цеховых параметров	
	4.2 Расход железа и процент железа в шихте на тонну чугуна	39
	4.2.1 Входные данные	
	4.2.2 Методика пересчета	
	4.2.3 Расчет общецеховых значений	
	4.3 Потери железа	
	4.3.1 Входные данные	
	4.3.2 Расчет для каждой печи	
	4.3.3 Расчет по цеху	
	4.4 Влияние факторов производства	
	4.4.1 Подстановка контрольных значений	45
	4.4.2 Расчет факторов производства	45
	4.5 Отклонения	46
	4.5.1 Отклонения железа в шихте:	46
	4.5.2 Отклонения металлодобавок:	
	4.5.3 Отклонения известняка:	46
	4.5.4 Отклонения мелочи:	
	4.5.5 Отклонения золы:	
	4.5.6 Отклонения понижения серы:	
	4.5.7 Отклонения кокса M25:	
	4.5.9 Отклонения кокса кито	
	4.5.10 Отклонения кремния:	
	4.5.11 Отклонения марганца:	
	4.5.12 Отклонения повышения серы:	
	4.5.13 Отклонения кислорода:	48
	4.5.14 Отклонения дутья:	
	4.5.15 Отклонения газов под колошником:	
	4.5.16 Отклонения времени простоев:	
	4.5.17 Отклонения времени тихого хода:	
	4.5.18 Отклонения природного газа:	
	4.6 Удельный расход кокса	
	·	
	4.6.1 Удельное содержание фосфора	
	4.6.3 Общая сумма отклонений	
	4.6.4 Приведенный расход кокса	
	4.6.5 Удельный расход кокса	
	·	

4.7 Удельный выход шлака	51
4.7.1 Общее удельное содержание оксида кальция	51
4.7.1.1. Удельное содержание оксида кальция в каждом компоненте шихты	
4.7.1.2.Удельное содержание оксида кальция в коксе	
4.7.1.3. Общее удельное содержание оксида кальция	
4.7.1.4. Содержание СаО в шлаке	
4.7.2 Общее удельное содержание оксида кремния	52
4.7.2.1. Удельное содержание оксида кремния в каждом компоненте шихты	
4.7.2.2.Удельное содержание оксида кремния в коксев коксе	
4.7.2.3. Общее удельное содержание оксида кремния	52
4.7.2.4. Содержание SiO в шлаке	52
4.7.3 Общее удельное содержание оксида алюминия	52
4.7.3.1. Удельное содержание оксида алюминия в каждом компоненте шихты.	52
4.7.3.2.Удельное содержание оксида алюминия в коксе	52
4.7.3.3. Общее удельное содержание оксида алюминия	52
4.7.3.4. Содержание Al₂O₃ в шлаке	53
4.7.4 Общее удельное содержание оксида магния	53
4.7.4.1. Удельное содержание оксида магния в каждом компоненте шихты	
4.7.4.2.Удельное содержание оксида магния в коксе	
4.7.4.3. Общее удельное содержание оксида магния	
4.7.4.4. Содержание MgO в шлаке	
4.7.5 Переход оксида кремния в кремний	53
4.7.6 Удельный выход шлака	
4.7.6.1. Общее удельное содержание фосфора	53
4.7.6.2. Удельный выход шлака	53
4.8 Основность шлака	54
4.8.1 CaO/SiO2	5.4
4.8.2 (CaO+MgO)/SiO2	
· · · · · · · · · · · · · · · · · · ·	
4.9 Расчетная производительность чугуна	54
4.9.1 Сумма отклонений производительности с учетом кокса	
4.9.2 Производство чугуна	54
4.10 Расчет цеховых общих показателей	55
4.10.1 Цеховая основность шлака	55
4.10.2 Цеховое содержание фосфора в чугуне	
4.10.3 Цеховое удельный выход шлака	
4.10.4 Общецеховое потребление кислорода:	55
4.10.5 Общий процент содержания кислорода	55
4.10.6 Расход кислорода на тонну чугуна	
4.10.7 Расход природного газа	
4.10.8 Расход природного газа на тонну чугуна	
4.10.9 Общее содержание мелочи в шихте	
4.10.10 Общее содержание кокса M25	
4.10.11 Оощее содержание кокса WTO	
4.10.13 Общее содержание марганца	
4.10.14 Средняя температура дутья	
4.10.15 Среднее давление колошникового газа	
4.10.16 Среднее время простоя	57
4.10.17 Среднее время работы на тихом ходу	57

4.10.18 Цеховой расход кокса	57
4.10.19 Цеховой расход антрацита	57
4.10.20 Цеховая расчетная производительность чугуна	
4.10.21 Среднее качество кокса кокса	57
5 ИТОГОВЫЕ ОТЧЕТЫ	59
5.1 Расчет за месяц	59
5.1.1 Расчет норм расхода ЖРС на производство АФ2	66
5.1.1.1.V_pr_month - план производства АФ на месяц	
5.1.1.2.Q itog rud - итого рудной части агломерата	
5.1.1.3. Q_itog_fer - итого железофлюсовой части агломерата	
5.1.1.5. Q_itog_res - итого сырья на производство агломерата	
 5.1.1.7. Q_smes_plan - плановый расход аглосмеси	
 5.1.1.8. Q_flus_plan - плановый расход железофлюсовой смеси	
 5.1.1.9. Q_smes _{i,i} расход материалов для производства аглосмеси	
 5.1.1.10. Q flus _{i.i} - расход материалов для производства железофлюсовой смеси	
5.1.1.11. Q_smes_itog_rud - итого рудной части аглосмеси	
5.1.1.12. Q_flus_itog - итого железофлюсовой смеси	
5.1.1.13. Q_smes_itog_fer - итого железофлюсовых материалов для аглосмеси	
5.1.1.14. Q_smes_itog_res - итого сырья на аглосмесь	
5.1.1.15. Q_smes_itog_izv - итого извести на аглосмесь	
5.1.1.16. Q_smes_itog_agl - итого аглосмеси	68
5.1.1.17. Lost - потери	68
5.1.1.18. Potreb _{i,j} — потребности в материалах для производства АФ	68
5.1.2 Расчет норм расхода ЖРС на производство ДЦ	69
5.1.2.1.SUM_AGL_DC - итого агломерата на производство чугуна	
5.1.2.2.SUM_OKAT_DC - итого окатышей на производство чугуна	
5.1.2.3.SUM_FE_DC - итого металлодобавки на производство чугуна	
5.1.2.4.SUM_FE_SH - итого металлошихты на производство чугуна	
5.1.2.5.SUM_OTHER_DC - итого прочее на производство чугуна	
5.1.2.6.SUM_FLUS_DC - итого флюсы на производство чугуна	
5.1.2.8.UD_KOK25_TS - расход скипового кокса (фр. 25 мм) на производство чугуна	
5.1.2.9. UD_SK_TS_prv - возврат скрапа от производства чугуна	
5.1.2.10. UD SK TS LIT - возврат скрапа с литейных дворов от производства чугуна	
5.1.2.11. KOK10_TS - возврат кокса (фр. 10 мм) от производства чугуна	
5.1.2.12. KOK25_TS - возврат кокса (фр. 25 мм) от производства чугуна	
5.1.2.15. Potreb_DCj – потребности в материалах для производства ДЦ	
5.2 Таблица сравнения вариантов	72
5.3 Отчет за месяц	
5.4 Отчет за квартал	
·	
5.4.1 Расчет квартальных данных по АФ2	
5.4.1.1. Q_smes_plan_qwart — плановый удельный расход смеси за квартал	
5.4.1.2. Vpr_qwart – план производства за квартал	
5.4.1.3. A_qwart i — остальные расчетные величины за квартал	
5.4.1.4. Potreb_qwart i – потребности в материалах для АФ2 за квартал	76

77
77
<i>77</i>
77
81
81
81
81
81
81
82
82
82
82
82

Аннотация

пезо	рудно	го сы	рья, и	споль	о при				расхода менного

Список сокращений:

- АГП аглопроизводство;
- АФ2 аглофабрика №2;
- КП колошниковая пыль;
- •ЖРС железорудное сырье;
- •ДЦ доменный цех;
- Химический состав X/С.

1 введение

Подсистема "Автоматизация планирования и расчета норм расхода ЖРС на производство агломерата и чугуна" создается по приказу №550 «О внесении изменений в «План мероприятий по внедрению информационных технологий в 2019г.» от 04.06.2018, пункт 9.1. Краткое название – подсистема «расчет норм расхода ЖРС».

Подсистема предназначена для оперативного планирования удельных норм расхода железорудного сырья (далее ЖРС) и материалов на производство агломерата и чугуна, хранения и отображения через Веб-интерфейс выполненных расчетов в виде типовых отчетов.

Ввод данных и запуск расчетов вручную производят специалисты технического управления ПАО «ЧМК». Другие категории специалистов должны получать доступ к расчету в соответствии с правилами доступа к информационным ресурсам на ПАО «ЧМК».

2 ВХОДНЫЕ ПАРАМЕТРЫ, ВВОДИМЫЕ В ПОДСИСТЕМУ «РАСЧЕТ НОРМ РАСХОДА ЖРС»

2.1 Данные, вводимые для получения прав на ввод данных

Для ввода параметров по подаче необходимо быть зарегистрированным пользователем с правом ввода данных или с правами администратора. Право на ввод данных пользователь получает после ввода фамилии и инициалов, а также пароля. Вышеуказанные данные вводятся при входе в подсистему. Пользователь вводит:

- последовательность состоящую максимум из 30 символьных значений в качестве фамилии и инициалов пользователя;
 - -от 4 до 10 символьных значений в качестве пароля пользователя.

При совпадении введенных данных с записью в справочнике пользователей, пользователь получает право на ввод данных по подаче. Пример ввода данных пользователем смотри на рис.1

Рисунок 1 - Ввод данных пользователя для доступа к вводу данных подачи

2.2 Данные по шихте, вводимые вручную или выбранные из списка

2.2.1 Справочник материалов, используемых в шихте

В главном меню выбрать раздел «Справочник материалов». В данном справочнике необходимо добавить новые материалы, если таковые имеются.

2.2.2 Справочник печей

В данной таблице и следующих существует единое правило оформления:

- Все поля для ввода информации имеют светло-желтый фон.
- Все расчётные поля имеют серый фон.
- Все итоговые поля имеют оранжевый фон.

В главном меню выбрать раздел «Справочник печей».

В данном разделе производится:

- выбор рабочих печей, которые будут участвовать в дальнейшем расчете;
- ввод данных по плановому объему производства по печам;
- ввод данных по потерям;
- ввод данных по установку базы.

Рисунок 2.1 - Таблица «Главное меню - Справочник материалов»

Рисунок 3.2 - Таблица «Главное меню - Справочник материалов»

2.3 Форма ввода объема производства по печам

Форма заполняется однократно на год.

• i – количество (номер) печей для расчета,

- m месяц.
- $V_{-}dP_{i,m}$ объем производства по печам за выбранный интервал.

Пользователем задается номер печи и выбирается учитывать её или нет в расчете.

Производств	0											
№ печи	ЯНВ	ФЕВ	MAP	АПР	МАЙ	июн	июл	АВГ	CEH	ОКТ	ноя	ДЕК
Y 1						$V_{-}dP_{i,m}$						
2						$V_{-}dP_{i,m}$						
3						$V_{-}dP_{i,m}$						
4						$V_{-}dP_{i,m}$						
5						$V_{-}dP_{i,m}$						
						$V_{-}dP_{i,m}$						

Рисунок 4 - Плановые объемы производства по печам за год

2.4 Форма ввода процентов потерь по железу

Форма заполняется однократно на год. Количество печей согласно п.2.3.

- i номер печи,
- $\mathit{KP_UD_UL_i}$ удельная уловленная колошниковая пыль,
- $SK_{-}UD_{i}$ удельные потери на скрап,
- POT_{CH_i} потери со шлаком (в виде чугуна),
- FeO_CH_i –химические потери в шлаке FeO.

Потери					
	Печь 1	Печь 2	* * *	Печь 4	Печь 5
Вынос колошниковой пыли			KP_UD_Ul;		
(Fe в КП 40%)			M_0D_0		
Вынос скрапа			SK_Ud_i		
(Fe в скрапе 85%)			DIL_Out		
Потери со шлаком (в виде чугуна)			POT_Ch i		
Химически связанное в шлаке в FeO			FeO_Ch i		

Рисунок 5 - Проценты потерь по железу

2.5 Форма установки базы по печам за год

Форма заполняется однократно на год. i — номер печи, для каждой печи заполняется аналогичный массив данных. Соответствие переменных полям формы указано на рисунке 5.

Наименование фактора	Изменение (+увеличение,-уменьшение)										
	Влияние фан	ктора, % на	Показатель фактора	Отклонение от	Показатель фактора	Отклонение от	Показатель фактора	Отклонение от	Показатель фактора	Отклонение от	
	расход кокса	производительность	ДП 1	показателя	ДП 2	показателя	ДП 4	показателя	ДП 5	показателя	
	1 1 1 1 1 1 1 1			Повышение со,	держания Fe на 1%						
в пределах до 50%	Q_FE_UP50	N_FE_UP50	DP_FE_UP50i								
в пределах 50-55%	Q_FE_UP55	N_FE_UP55	DP_FE_UP55i								
в пределах 55-60%	Q_FE_UP60	N_FE_UP60	DP_FE_UP60i								
Повышение расхода металлодобавок на каждые 10кг/т чугуна	Q_ME_UP10	N_ME_UP10	DP_ME_UP10i								
Уменьшение расхода сырого известняка каждые 10кг/т чугуна	Q_IZ_DN10	N_IZ_DN10	DP_IZ_DN10i								
Уменьшение содержания фракции 5-0 мм ж.р. шихте на каждый 1%	Q_FR_DN5	N_FR_DN5	DP_FR_DN5i								
Уменьшение содержания золы в коксе на каждый 1%	Q_Z_DN1	N_Z_DN1	DP_Z_DN1i	dDP_Z_DN1i							
Уменьшение содержания серы в коксе каждую 0.1%	Q_S_DN01	N_S_DN01	DP_S_DN01i	dDP_S_DN01i							
Повышение прочности кокса по показателю M25 на каждый 1%	Q_K_UPM25	N_K_UPM25	DP_K_UPM25i	dDP_K_UPM25i							
Уменьшение истираемости кокса по показателю М10 на каждый 1%	Q_K_DNM10	N_K_DNM10	DP_K_DNM10i	dDP_K_DNM10i							
Уменьшение содержания в коксе фракции +80мм на каждый 1%	Q_FR_DN80	N_FR_DN80	DP_FR_DN80i	dDP_FR_DN80i							
Уменьшение содержания Si в чугуне на каждую 0.1%	Q_SI_DN01	N_SI_DN01	DP_SI_DN01i								
Уменьшение содержания Mn в чугуне на каждую 0.1%	Q_MN_DN01	N_MN_DN01	DP_MN_DN01i								
Уменьшение содержания Р в чугуне на каждую 0.1%	Q_P_DN01	N_P_DN01	DP_P_DN01i								
Повышение содержания S в чугуне на каждую 0.01%	Q_S_UP001	N_S_UP001	DP_S_UP001i								
800-900	Q_T_UP900	N_T_UP900		ие температуры дутья і UP900i	на каждые 10 градусов	в диапазоне:					
900-1000	-										
300-1000	Q_T_UP1000	N_T_UP1000	DP_T_U	JP1000i	W. C.	- 0/					
1000-1100	0 025 UD1100	N O2F UD110	DD 025		ислорода в дутье до 25	0 %					
	Q_025_UP1100	_		_UP1100i							
1100-1200	Q_025_UP1200	N_025_UP120	DP_025_	_UP1200i							
1000-1100	0.025 UD1100	N OOF UD440	DD 025		кислорода в дутье 25-3	5 %					
	Q_035_UP1100		DP_035_	_UP1100i							
1100-1200	Q_035_UP1200	N_035_UP120	DP_035_	_UP1200i							

Обогащение дутья на каждый 1% при концентрации										
до 25%	Q_DU_UP25	N_DU_UP25	DP_DU_UP25i	The state of the s						
25-30%	Q_DU_UP30	N_DU_UP30	DP_DU_UP30i							
Повышение давления газов под колошником на каждую 0.1 ати	Q_PR_UP01	N_PR_UP01	DP_PR_UP01i							
Уменьшение времени простоев на 1%	Q_ID_DN1	N_ID_DN1	DP_ID_DN1i							
Уменьшение времени тихого хода на 1%	Q_TH_DN1	N_TH_DN1	DP_TH_DN1i							
			Расход природного газа, м.куб./т коэффициент замены							
до 100	Q_PG_100	N_PG_100	DP_PG_100i							
100-150	Q_PG_150	N_PG_150	DP_PG_150i							
			Фактические по	казатели за период						
расход кокса,кг/т			Q_KOK_DPi							
производительность,т/сут			N_DPi							
Расход шунгита			Q_SH_DPi							
Расход Антрацита			Q_AN_DPi							

Рисунок 6 - Установка базы по печам за год

2.5.1 Состав шихты

В главном меню выбрать раздел «Начать расчет». После нажатия открывается форма, в которой производится выбор года месяца и варианта в двух строках. В первой строке заполняются данные для того расчета, который мы хотим создать или открыть для изменения, если он был создан ранее. Во второй строке выбираются данные расчета, созданного ранее, который мы хотим взять за основу для нового. Нельзя создавать варианты не по порядку. Нельзя обновить уже созданный вариант на основе старого. Внешний вид на рисунке 7.

После нажатия кнопки «показать» (переходим к старому расчету) или «Создать на основе выбранного варианта» (создается новый расчет на основе старого) переходим к окну выбора материалов, используемых в данной шихте, а также заполняем их химический состав, в случае если не выбран опорный расчет данные копируются из последнего созданного расчета.

Для удобства разделим представление формы на два рисунка, для агломерационной и доменной шихты соответственно.

При первом вводе данных состав шихты по каждому типу ЖРС заполняется согласно наличию элементов в справочнике «Материалы-Химия». При необходимости добавить новый элемент для выбора и ввода в состав шихты его надо предварительно добавить в справочник «Материалы».

Чтобы выбрать новый (предварительно внесенный в справочнике) тип материала, необходимо выбрать его из выпадающего списка. При этом, снизу добавляется возможность выбора и добавления нового типа ЖРС.

При выборе месяца и года загружается таблица со значениями из заданного месяца, года. При переходе на эту форму для пересчета, выбранного из таблицы сравнений варианта загрузятся данные этого варианта.

Если нажать чекбокс слева от названия выбранного материала и клавишу «сохранить», он удалится из данного состава шихты, для повторного выбора необходимо снова открыть выпадающий список и кликнуть на нужном материале, X/С подгрузится из таблицы «Материалы-химия», в которую он попадает при первом заполнении материала.

Если химический состав данного материала был когда-то заполнен, но в дальнейшем материал не использовался, то при выборе данного материала в состав шихты загрузятся данные из таблицы «Материалы-химия».

При загрузке определенного месяца, загрузятся данные о материалах и их X/C, заполненные для этого месяца.

Значения столбцов сохраняются как массивы значений по каждому типу.

і – номер типа материала (в состав агломерационной шихты входит 9 разных типов элементов, в составе доменной шихты нет градации на типы).

i — номер конкретного материала.

$$Mp_{i,j}, W_{i,j}, Fe_{i,j}, Mn_{i,j}, P_{i,j}, S_{i,j}, FeO_{i,j}, SiO2_{i,j}, Al2O3_{i,j}, CaO_{i,j}, MgO_{i,j}, MnO_{i,j}, MnO2_{i,j}, TiO2_{i,j}, MnO2_{i,j}, MnO3_{i,j}, MnO3_{i,j}$$

 $K2O_{i,j}$, $Na2O_{i,j}$, $P2O5_{i,j}$, $\Pi\Pi\Pi_{i,j}$, $ZnO_{i,j}$, $Pb_{i,j}$, $Cl_{i,j}$, $Gr_{i,j}$, $Ni_{i,j}$, $V_{i,j}$ – массивы, содержащие данные о химическом составе (далее X/C) каждого конкретного компонента агломерационной шихты.

Поле $Fe2O3_{i,j}$ - является расчётным, и заполнится автоматически после ввода всех остальных нужных параметров.

$$Fe203_{i,i} = (Fe_{i,i} - FeO_{i,i} * 0.777) * 1.428$$

 $Fe_j, CaO_j, SiO_{2j}, Al_2O_{3j}, MgO_j, P_j, \Pi\Pi\Pi_j, -5$ мм $_j$ - массивы, содержащие данные о X/C каждого конкретного компонента доменной шихты.

Соответствие переменных полям формы приводится на рисунках 6,8,9.

Рисунок 7- Создание расчета

месяц год																						Д	,АЛЕ	E >>	
+ + +																									
			C	$^{\circ}$	ΤΔ	RΔ	ΓЛ		ΕΡΔ	ЦИС	нн	ΩЙ	ш	1XT	J										
Наименование материала	Механиче			.00	, , , ,	<u> </u>	. ,	OIVII																	_
Паименование материала	Ские	W, %																							
	потери, %		Fe	Mn	Р	S	FeO	Fe2O3	SiO2	Al203	CaO	MgO	MnO	MnO2	TiO2	K20	Na2O	P2O5	п.п.п.	ZnO	Pb	Cl	Gr	Ni '	٧
1. Концентраты железорудные:																									
☑ Корш.ГОК	Mp _{i,j}	$W_{i,j}$	Fe _{i,j}	Mn _{i,j}	$P_{i,j}$	$S_{i,j}$	FeO _{i,j}	Fe2O3 _{i,j}	SiO2 _{i,j}	A12O3 _{i,j}	CaO _{i,j}	$MgO_{i,j}$	$MnO_{i,j}$	MnO2 _{i,j}	TiO2 _{i,j}	K2O _{i,j}	Na2O _{i,j}	P2O5 _{i,j}	ПППі,ј	ZnO _{i,j}	Pb _{i,j}	Cl _{i,j}	Gr _{i,j}	Ni _{i,j} V	$V_{i,j}$
Г Мих.ГОК																									
ВГОК_непрофилактированный_для профил.																									
☑ ВГОК_непрофилактированный																									
✓ ccrno																									
✓ Ковдорский ГОК																									
✓ отсев окатышей ССГПО																									
ОЛКОН																									
Лебединский концентрат																									
✓ Качканарский ГОК																									
НОВЫЙ ▼																									
2. Аглоруды и концентраты СМС:																									
✓ Mux.ΓOK		Т	Т																						
▼ Концентрат обожженого сидерита																									
Аглоруда Сосновского рудника ООО "БРУ"																									_
Аглоруда Сосновского рудника бедная																									
✓ Мих.ГОК обогащенная																									_
✓ Аглоруда Яковлевская																									_
НОВЫЙ ▼									I																_
З. Марганцевые добавки																									
		Т								1				1			1								
НОВЫЙ ▼																									
✓ 4. Отходы производства:																									
 ✓ Пыль колошниковая ДЦ (тек.пр-во) 		Т	Т	Ι	Ι		Π				Ι		Ι			Ι			T .	Ι					
✓ Пыль колошниковая ДЦ (отвал)																									
✓ шлам ккц																									
✓ Шлам ДЦ и ЭСПЦ 2																							-	\rightarrow	
✓ Окалина 0427А																									
✓ Окалина 042/А✓ Окалина 0827А																									
 ✓ Окалина 0827A ✓ Окалина 0827A СМЕСЬ 																									
₩ ШМА																									
□ НОВЫЙ ▼																									

✓ 5. Известняк																		
✓ Отсев известняка ОАО "БМК" 0-5 мм																		
Известняк дробленый "Мечел-материалы" 0-5 мм																		
✓ Известняк дробленый АГП ОАО "БМК" 0-5 мм																		
✓ Известняк дробленый АГП ООО "М-М" 0-20 мм																		
✓ Известняк дробленый АГП ОАО "БМК" 0-40 мм																		
НОВЫЙ ▼																		
Известь порошковая "Мечел-материалы"																		
Известь вращающихся печей 0-15 мм																		
Известь дробленая 0-5 мм																		
✓ Известь порошковая "Мечел-материалы"_ЖФС																		
✓ Известь ВГОК																		
Доломитная пыль																		
НОВЫЙ ▼																		
7. Шлаки.																		
Шлак конверторный ДСК																		
новый 🔻																		
▽ Кокс (фр.25-40)																		
▼ Кокс (фр.10-25)																		
▼ Кокс (фр.0-10) суммарно до заданного																		
▼ Коксовый шлам Мечел-кокс																		
▼ Коксовая мелочь Мечел-кокс 0-10 мм																		
✓ Антрацит АМСШ фр. 0-25 мм																		
▼ Коксовая мелочь стор. пост. 0-6 мм																		
НОВЫЙ 🔻																		
НОВЫЙ ▼																		

Рисунок 8 - Состав агломерационной шихты

Состав шихты								
□ Наименование материалов	Fe	CaO	SiO ₂	Al ₂ O ₃	MgO	Р	ппп	-5 MM
Агломерат ВГОКа								
Агломерат аглофабрики № 2	Fe_agl	CaO_agl	SiO ₂ _agl	Al ₂ O ₃ _agl	MgO_agl	P_agl	ППП_agl	-5мм_agl
☑ Шунгит								
☑ Окатыши Михайловские								
✓ Окатыши Качканарского гока)j	j	j)j		Ij	иj
	Fej	Ca0j	Si0zj	Al203j	Mg0j	Pj	ппп	-5ммј
Окатыши Костамукшские								
✓ Сварочный шлак								
✓ Известняк								
Доменный щебень								
☑ Конвертерный шлак ЮУНК								
□ НОВЫЙ МАТЕРИАЛ 🔻								
Содержание в коксе, %		VN_CA	VN_SI	VN_AL	VN_MG	VN_P	VN_PPP	

Рисунок 9 - Состав доменной шихты

В таблице состава доменной шихты присутствуют значения X/С АФ2 (помечены серым цветом), которые берутся из расчета агломерационной шихты следующий после этой формы. На пользовательской форме ввода эта строка отсутствует, но в базе данных значения этих полей лежат в одной общей таблице с остальным составом доменной шихты.

При нажатии на кнопку «Далее» откроется форма расчета агломерационной шихты.

3 РАСЧЕТ АГЛОМЕРАЦИОННОЙ ШИХТЫ

В данном разделе производится месячный расчет:

- нормы расхода колошниковой пыли (далее КП) для аглопроизводства (далее АГП);
- расхода влажных и сухих материалов по-отдельности и на весь агломерат в целом;
- расхода материалов с учетом потерь по-отдельности и на весь агломерат в целом;
- объема полученного агломерата из каждого материала по-отдельности и в сумме;
- химического состава расходуемой сухой шихты;
- химического состава прогнозируемого агломерата.

Также возможен перерасчет расхода выбранного известняка относительно заданной плановой основности для текущей шихты.

В расчете будут участвовать те материалы, которые были выбраны на этапе заполнения химического состава агломерационной шихты.

Количество материалов задается только в одном виде (одновременно в двух и более недопустимо):

- норма расхода влажного материала;
- норма расхода сухого материала;
- вес влажной поставки материала.

Для того чтобы произвести расчет необходимо последовательно сверху вниз заполнить все необходимые ячейки. Произвести перерасчет расхода известняка без расчета шихты или расчет шихты без расчета нормы расхода КП на АГП невозможно.

Перечень входных данных:

- V_AG плановый объем производства чугуна по цеху, тыс.тонн;
- *KP* доля КП в производстве доменного цеха (далее ДЦ);
- *Vpr_plan* плановый объем производства агломерата по цеху, тонн;
- S_udal коэффициент удаления аглоруды по компоненту Sобщ, %;
- K2O_udal коэффициент удаления аглоруды по компоненту К₂O, %;
- ZnO_udal коэффициент удаления аглоруды по компоненту ZnO, %;
- *Pb_udal* коэффициент удаления аглоруды по компоненту Pb, %;
- *Cl udal* коэффициент удаления аглоруды по компоненту Cl, %;
- Na2O_udal коэффициент удаления аглоруды по компоненту Na2O, %;
- ВАСК содержание возврата материалов, %;
- W_agl общая влажность шихты, %;
- $Qn_v lag_k gt_{i,i}$ норма расхода влажного материала, кг/т;
- $Qn_suh_kgt_{i,i}$ норма расхода сухого материала, кг/т;
- $Q_vlag_tt_{i,j}$ вес влажной поставки материала, тыс.тонн;
- FeO_agl содержание оксида железа в агломерате, %;
- *CaO_SiO2_plan* заданная плановая основность шихты.

Перечень выходных данных:

- $Qn_suh_kgt_KP$ норма расхода КП на АГП (округление до тысячных);
- $Q_v lag_t_{i,i}$ расход влажного материала, тонн (округление до десятых);
- $Q_v lag_k g t_{i,j}$ удельный расход влажного материала, кг/т (округление до сотых);
- $Q_vlag_proc_{i,j}$ расход влажного материала относительно общей массы влажной шихты, % (округление до сотых);
- $Q_SUP_t_{i,j}$ расход влажного материала с учетом потерь, тонн (округление до целых);

- $Q_suh_t_{i,j}$ расход сухого материала, тонн (округление до целых);
- $Q_suh_kgt_{i,j}$ удельный расход сухого материала, кг/т (округление до сотых);
- $Q_suh_proc_{i,j}$ расход сухого материала относительно общей массы сухой шихты, % (округление до сотых);
- $Vpr_proc_{i,j}$ объем полученного из этого материала агломерата относительно расхода сухого материала, % (округление до сотых);
- $Vpr_{-}t_{i,j}$ объем агломерата, полученный из конкретного материала, тонн (округление до сотых);
- Fe_t_{i,j}, Mn_t_{i,j}, P_t_{i,j}, S_t_{i,j}, FeO_t_{i,j}, SiO2_t_{i,j}, Al2O3_t_{i,j}, CaO_t_{i,j}, MgO_t_{i,j}, MnO_t_{i,j}, MnO2_t_{i,j}, TiO2_t_{i,j}, K2O_t_{i,j}, Na2O_t_{i,j}, P2O5_t_{i,j}, $\Pi\Pi\Pi_t$ t_{i,j}, ZnO_t_{i,j}, Pb_t_{i,j}, Cl_t_{i,j}, Gr_t_{i,j}, Ni_t_{i,j}, V_t_{i,j} (общее обозначение H/S_t_{i,j}) массовый расход отдельных компонентов X/С шихтовых материалов, тонн (на экранной форме эти расчетные данные не отображаются);
- Fe_t_sum, Mn_t_sum, P_t_sum, S_t_sum, FeO_t_sum, Fe2O3_t_sum, SiO2_t_sum, Al2O3_t_sum, CaO_t_sum, MgO_t_sum, TiO2_t_sum, K2O_t_sum, Na2O_t_sum, P2O5_t_sum, ZnO_t_sum, Pb_t_sum, Cl_t_sum, Gr_t_sum, Ni_t_sum, V_t_sum (общее обозначение H/S_t_sum) массовый расход отдельных компонентов X/C сухой шихты, тонн (на экранной форме эти расчетные данные не отображаются);
- $Q_vlag_t_sum$ расход влажной шихты, тонн;
- *Q_vlag_kgt_sum* удельный расход влажной шихты, кг/т;
- $Q_vlag_proc_sum$ расход влажной шихты относительно общей массы влажной шихты, %;
- $Q_SUP_t_sum$ расход влажной шихты с учетом потерь, тонн;
- Q_suh_t_sum расход сухой шихты, тонн;
- Q_suh_kgt_sum- удельный расход сухой шихты, кг/т;
- $Q_suh_proc_sum$ расход сухой шихты относительно общей массы сухой шихты, %;
- *Vpr_proc_sum* объем полученного из шихты агломерата относительно расхода сухого материала, %;
- *Vpr_t_sum* объем полученного из шихты агломерата, тонн;
- Fe_suh, Mn_suh, P_suh, S_suh, Fe0_suh, Fe203_suh, Si02_suh, Al203_suh, Ti02_suh, Ca0_suh, K20_suh, Na20_suh, P205_suh, Zn0_suh, Pb_suh, Cl_suh, Gr_suh, Ni_suh, V_suh, Mg0_suh (общее обозначение H/S_suh) химический состав расходуемой сухой шихты;
- *CaO_SiO2_suh* основность сухой шихты;
- *CaO SiO2 agl* основность прогнозируемого агломерата;
- Fe_agl, Mn_agl, P_agl, S_agl, Fe2O3_agl, SiO2_agl, Al2O3_agl, CaO_agl, MgO_agl,
 TiO2_agl, K2O_agl, Na2O_agl, P2O5_agl, ZnO_agl, Pb_agl, Cl_agl, Gr_agl, Ni_agl,
 V_agl (общее обозначение H/S_agl) химический состав прогнозируемого
 агломерата;
- $Q_vlag_t_itog$ итоговое количество шихты с поправкой на влажность и возврат материалов, тонн;
- Fe_agl_itog итоговое количество железа в составе шихты, тонн;
- $Q_v lag_t t_i zv$ пересчитанный для определенной основности расход выбранного известняка, тыс.тонн(округление до сотых).

Для удобства разделим представление формы на несколько рисунков. Соответствие переменных полям формы приводится на рисунках 8-13.

Рисунок 10 - Расчет агломерационной шихты (общий вид формы)

Расход текущей колошниковой пыли на АГП	
Плановый объем производства чугуна по цеху	V_AG
Доля колошниковой пыли в производстве ДЦ	KP
Плановый объем производства агломерата по цеху	Vpr_plan
Норма расхода колошниковой пыли на АГП	Qn_suh_kgt_KP

Рисунок 11 - Форма под-расчета КП на АГП

Коэффициенть	ы удаления аглор	уды по компонент	ам, %				
Ѕобщ	K2O	Na2O	ZnO	Pb	Cl		
S_udal	K2O_udal	Na2O_udal	ZnO_udal	Pb_udal	Cl_udal		
	возврата, % от	Содержание Fe0	О в агломерате, %	Влажность шихты			
BA	ACK	Fe(D_agl	W_agl			

Рисунок 12 - Форма ввода коэффициентов удаления аглоруды

РАСЧЕТ ШИХТЫ												
Наименование материала	Количес Норма расхода, влажный вес	тво материалов в и Норма расхода сухой вес	вес поставки, влажный	Pac	ход влажных мате	риалов	С учетом потерь	F	асход сух. матери	алов	Объем полу агломер	
	кг/т	кг/т	тыс.т	Т	кг/т	%	Т	Т	кг/т	%	%	Т
				1. Ko	онцентраты железору	/дные						
Корш.ГОК	Qn_vlag_kgt _{i,j}	Qn_suh_kgt _{i,j}	Q_vlag_tt _{i,j}	Q_vlag_t _{i,j}	Q_vlag_kgt _{i,j}	Q_vlag_proc _{i,j}	Q_SUP_t _{i,j}	Q_suh_t _{i,j}	Q_suh_kgt _{i,j}	Q_suh_proc _{i,j}	Vpr_proc _{i,j}	Vpr_t _{i,j}
Другие выбранные концентраты	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-
				2. Агл	оруды и концентрат	ы СМС						
Выбранные аглоруды и концентраты СМС	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-
		3. Марганцевые добавки										
Выбранные марганцевые добавки	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-
				4	. Отходы производст	ва						
Пыль колошниковая ДЦ (тек.пр-во)	-//-	Qn_suh_kgt_KP	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-
Другие выбранные отходы	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-
					5.Известняк							
Выбранные известняки	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-
					6.Известь							
Выбранная известь	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-
					7.Шлаки							
Выбранные шлаки	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-
					8. Топливо							
Выбранное топливо	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-
					9.Отсевы							
Выбранные отсевы	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-	-//-
Ih	гого			Q_vlag_t_sum	Q_vlag_kgt_sum	Q_vlag_proc_sum	Q_SUP_t_sum	Q_suh_t_sum	Q_suh_kgt_sum	Q_suh_proc_sum	Vpr_proc_sum	Vpr_t_sum
			40 4									

Рисунок 13 - Форма расчета агломерационной шихты

Химический состав расходуемой сухой шихты																				
основность (CaO/SiO2)	Fe	Mn	Р	S	FeO	Fe2O3	SiO2	AI2O3	CaO	MgO	TiO2	K20	Na2O	P2O5	ZnO	Pb	CI	Gr	Ni	V
CaO_SiO2_suh	Fe_suh	Mn_suh	P_suh	S_suh	FeO_suh	Fe2O3_suh	SiO2_suh	Al2O3_suh	CaO_suh	MgO_suh	TiO2_suh	K2O_suh	Na2O_suh	P2O5_suh	ZnO_suh	Pb_suh	Cl_suh	Gr_suh	Ni_suh	V_suh
Химический состав прогнозируемого агломерата																				
основность (CaO/SiO2)	Fe	Mn	Р	S	FeO	Fe2O3	SiO2	AI2O3	CaO	MgO	TiO2	K20	Na2O	P205	ZnO	Pb	CI	Gr	Ni	V
CaO_SiO2_agl	Fe_agl	Mn_agl	P_agl	S_agl	FeO_agl	Fe2O3_agl	SiO2_agl	Al2O3_agl	CaO_agl	MgO_agl	TiO2_agl	K2O_agl	Na2O_agl	P2O5_agl	ZnO_agl	Pb_agl	Cl_agl	Gr_agl	Ni_agl	V_agl
Итого производство, тонн																				
агломерата	шихты	железа																		
Vpr_t_sum	Q_vlag_t_itog	Fe_agl_itog																		

Рисунок 14 - Форма вывода итоговых значений

Расчет расхода заданного типа известняка по заданн	ной плановой основности		
Плановая основность (CaO/SiO2)	Тип известняка		Расход известняка, тыс.т.
CaO_SiO2_plan	Известняк дробленый "Мечел-материалы" 0-5 м	v -	Q_vlag_tt_izv

Рисунок 15 - Форма пересчета расхода выбранного известняка

3.1 Qn_suh_kgt_KP - расчет норм расхода КП на АГП

Исходные данные для расчета:

- V_AG плановый объем производства чугуна по цеху, тыс.тонн (пункт 3);
- КР доля КП в производстве доменного цеха (далее ДЦ) (пункт 3);
- *Vpr_plan* плановый объем производства агломерата по цеху, тонн (пункт 3);
- $\mathrm{Mp}_{\mathrm{i},\mathrm{j}}$, $\mathrm{W}_{\mathrm{i},\mathrm{j}}$ механические потери и влажность (i, j соответствуют материалу «пыль колошниковая ДЦ текущее производство»), % (пункт 2.5.1).

$$Qn_suh_kgt_KP = \frac{KP * V_{AG} * (100 - W_{i,j}) * 1000}{Vpr_plan * (100 + Mp_{i,j})}$$

$3.2~Q_v lag_t_{i,j}$ - расчет расхода влажного материала

Данный расчет может производиться тремя разными путями в зависимости от выбора способа указания количества материала в шихте. Исходный параметр «количество материалов в шихте» одновременно может быть задан, только одним из следующих способов:

- $Qn_vlag_kgt_{i,i}$ норма расхода влажного материала, кг/т (пункт 3);
- $Qn_suh_kgt_{i,j}$ норма расхода сухого материала, кг/т (пункт 3);
- $Q_v lag_t t_{i,j}$ вес влажной поставки материала, тыс.тонн (пункт 3);

Другие исходные данные для расчета:

- Vpr_plan плановый объем производства агломерата по цеху, тонн (пункт 3);
- Мр_{і,і}, W_{і,і} механические потери и влажность материалов, % (пункт 2.5.1).

Т.к. количество материалов в шихте задается одновременно одним из трех способов, выбирается только один из следующих алгоритмов!

оирается только один из следующих алгоритмов!
$$Q_vlag_t_{i,j} = \begin{cases} \frac{Qn_vlag_kgt_{i,j} * Vpr_plan}{1000}, \text{ если задана норма расхода влажного материала} \\ Q_vlag_tt_{i,j} * 1000, \text{ если задан вес влажной поставки в тысячах тонн} \\ \frac{Qn_suh_kgt_{i,j} * Vpr_plan * 10}{\left(100 - W_{i,j}\right) * \left(100 - Mp_{i,j}\right)}, \text{ если задана норма расхода сухого материала} \end{cases}$$

3.3 Q_vlag_t_sum - расчет расхода влажной шихты

Исходные данные для расчета:

• $Q_v lag_t_{i,i}$ – расход влажного материала, тонн (пункт 3.2).

$$Q_vlag_t_sum = \sum Q_vlag_t_{i,j}$$

Примечание: в данном расчете производится сумма по всем материалам.

3.4 Q_vlag_proc_{i,j} - расчет расхода влажного материала относительно общей массы влажной шихты

Исходные данные для расчета:

• $Q_{vlag_{t_{i,j}}}$ – расход влажного материала, тонн (пункт 3.2);

• $Q_vlag_t_sum$ – расход влажной шихты, тонн (пункт 3.3).

$$Q_vlag_proc_{i,j} = Q_vlag_t_{i,j} * 100/Q_vlag_t_sum$$

3.5 Q_SUP_t_{i,j} - расчет расхода влажного материала с учетом потерь

Исходные данные для расчета:

- $Q_{vlag_{i,i}}$ расход влажного материала, тонн (пункт 3.2);
- Мр_{і,і}– механические потери материалов, % (пункт 2.5.1).

$$Q_SUP_{t_{i,j}} = Q_vlag_{t_{i,j}} * (100 - Mp_{i,j})/100$$

3.6 Q_suh_t_{i,j} - расчет расхода сухого материала

Исходные данные для расчета:

- $Q_SUP_t_{i,j}$ расход влажного материала с учетом потерь, тонн (пункт 3.5);
- W_{i,j} влажность материалов, % (пункт 2.5.1).

$$Q_suh_t_{i,j} = Q_sup_t_{i,j} * (100 - W_{i,j})/100$$

3.7 Q_suh_t_sum - расчет расхода сухой шихты

Исходные данные для расчета:

• $Q_suh_t_{i,j}$ – расход сухого материала, тонн (пункт 3.6).

$$Q_suh_t_sum = \sum Q_suh_t_{i,j}$$

Примечание: в данном расчете производится сумма по всем материалам.

3.8 Q_suh_proc_{i,j} - расчет расхода сухого материала относительно общей массы сухой шихты

Исходные данные для расчета:

- $Q_{suh_{i,j}}$ расход влажного материала, тонн (пункт 3.6);
- $Q_suh_t_sum$ расход влажной шихты, тонн (пункт 3.7).

$$Q_suh_proc_{i,j} = Q_suh_t_{i,j} * 100/Q_suh_t_sum$$

3.9 Vpr_proc_{i,j} - расчет объема агломерата, полученного из этого материала, относительно расхода сухого материала

- *S_udal* коэффициент удаления аглоруды по компоненту Ѕобщ, % (пункт 3);
- $S_{i,j}$, $\Pi\Pi\Pi_{i,j}$ содержание данных элементов X/C в каждом материале, % (пункт 2.5.1).

$$Vpr_proc_{i,j} = 100 - (0.01 * S_udal * S_{i,j} + \Pi\Pi\Pi_{i,j})$$

3.10 $Vpr_{t_{i,j}}$ - расчет объема агломерата полученного из каждого материала

Исходные данные для расчета:

- $Vpr_proc_{i,j}$ объем полученного из этого материала агломерата относительно расхода сухого материала, % (пункт 3.9);
- $Q_suh_t_{i,i}$ расход сухого материала, тонн (пункт 3.6).

$$Vpr_{t_{i,j}} = Vpr_{proc_{i,j}} * Q_{suh_{t_{i,j}}}/100$$

3.11 H/S_t_{i,j} - расчет массовых расходов отдельных компонентов X/C шихтовых материалов

Исходные данные для расчета:

- $Fe_{i,j}$, $Mn_{i,j}$, $P_{i,j}$, $S_{i,j}$, $FeO_{i,j}$, $SiO2_{i,j}$, $Al2O3_{i,j}$, $CaO_{i,j}$, $MgO_{i,j}$, $MnO_{i,j}$, $MnO2_{i,j}$, $TiO2_{i,j}$, $K2O_{i,j}$, $Na2O_{i,j}$, $P2O5_{i,j}$, $\Pi\Pi\Pi_{i,j}$, $ZnO_{i,j}$, $Pb_{i,j}$, $Cl_{i,j}$, $Gr_{i,j}$, $Ni_{i,j}$, $V_{i,j}$, $Fe2O3_{i,j}$ компоненты X/C шихтовых материалов, % (пункт 2.5.1);
- $Q_suh_t_{i,j}$ расход сухого материала, тонн (пункт 3.6).

Для всех компонентов расчет массового расхода выполняется аналогично, и отличается лишь названием входной переменной компоненты X/C.

Пример расчета для массовой доли железа в материалах шихты $Fe_t_{i,j}$:

$$Fe_{-t_{i,j}} = Fe_{i,j} * Q_{-suh_{-t_{i,j}}}/100$$

Выходные параметры данного расчета: $Fe_t_{i,j}$, $Mn_t_{i,j}$, $P_t_{i,j}$, $S_t_{i,j}$, $FeO_t_{i,j}$, $SiO2_t_{i,j}$, $Al2O3_t_{i,j}$, $CaO_t_{i,j}$, $MgO_t_{i,j}$, $MnO_t_{i,j}$, $MnO2_t_{i,j}$, $TiO2_t_{i,j}$, $K2O_t_{i,j}$, $Na2O_t_{i,j}$, $P2O5_t_{i,j}$, $\Pi\Pi\Pi_t_{i,j}$, $ZnO_t_{i,j}$, $Pb_t_{i,j}$, $Cl_t_{i,j}$, $Sr_t_{i,j}$, $Ni_t_{i,j}$, $V_t_{i,j}$, $Fe2O3_t_{i,j}$.

3.12 H/S_t_sum - расчет суммарного массового расхода отдельных компонентов X/C сухой шихты

Исходные данные для расчета:

• Fe_t_{i,j}, Mn_t_{i,j}, P_t_{i,j}, S_t_{i,j}, FeO_t_{i,j}, SiO2_t_{i,j}, Al2O3_t_{i,j}, CaO_t_{i,j}, MgO_t_{i,j}, MnO_t_{i,j}, MnO2_t_{i,j}, TiO2_t_{i,j}, K2O_t_{i,j}, Na2O_t_{i,j}, P2O5_t_{i,j}, ППП_t_{i,j}, ZnO_t_{i,j}, Pb_t_{i,j}, Cl_t_{i,j}, Gr_t_{i,j}, Ni_t_{i,j}, V_t_{i,j}, Fe2O3_t_{i,j} – массовые расходы отдельных компонентов X/C шихтовых материалов, тонн (пункт 3.11).

Для всех компонентов расчет массового расхода на всю шихту выполняется аналогично, и отличается лишь названием входной переменной компоненты X/C.

Пример расчета для массовой доли железа в шихте Fe_t_sum :

$$Fe_t_sum = \sum Fe_t_{i,j}$$

Выходные параметры данного расчета:

 $Fe_t_sum, Mn_t_sum, P_t_sum, S_t_sum, FeO_t_sum, Fe2O3_t_sum, SiO2_t_sum, Al2O3_t_sum, CaO_t_sum, MgO_t_sum, TiO2_t_sum, K2O_t_sum, Na2O_t_sum, P2O5_t_sum, ZnO_t_sum, Pb_t_sum, Cl_t_sum, Gr_t_sum, Ni_t_sum, V_t_sum, Fe2O3_t_sum.$

3.13 Vpr_t_sum - расчет суммарного объема агломерата полученного из всей шихты

- $Vpr_{-}t_{i,j}$ объем агломерата полученного из каждого материала, тонн (пункт 3.10);
- FeO_agl содержание оксида железа в агломерате, % (пункт 3);
- FeO_t_sum массовый расход отдельных компонентов X/C сухой шихты, тонн (пункт 3.12).

$$Vpr_t_sum = \sum Vpr_t_{i,j} + \frac{16}{144} * (FeO_t_sum - \frac{FeO_agl * \sum Vpr_t_{i,j}}{100})$$

3.14 Q_vlag_kgt_{i,j} - расчет удельного расхода влажных материалов

Исходные данные для расчета:

- $Q_v lag_t_{i,j}$ расход влажного материала, тонн (пункт 3.2);
- *Vpr_t_sum* суммарный объем агломерата полученный из всей шихты, тонн (пункт 3.13).

$$Q_vlag_kgt_{i,j} = Q_vlag_t_{i,j} * 1000/Vpr_t_sum$$

3.15 Q_suh_kgt_{i,j} - расчет удельного расхода сухих материалов

Исходные данные для расчета:

- $Q_suh_t_{i,i}$ расход сухого материала, тонн (пункт 3.6);
- *Vpr_t_sum* суммарный объем агломерата полученный из всей шихты, тонн (пункт 3.133.12).

$$Q_suh_kgt_{i,j} = Q_suh_t_{i,j} * 1000/Vpr_t_sum$$

3.16 Q_vlag_kgt_sum - расчет удельного расхода влажной шихты

Исходные данные для расчета:

• $Q_v lag_k g t_{i,j}$ - удельный расход влажного материала, кг/т (пункт 3.14).

$$Q_vlag_kgt_sum = \sum Q_vlag_kgt_{i,j}$$

3.17 Q_suh_kgt_sum - расчет удельного расхода сухой шихты

Исходные данные для расчета:

• $Q_suh_k gt_{i,j}$ удельный расход сухого материала, кг/т (пункт 3.15).

$$Q_{suh_kgt_{sum}} = \sum_{i=1}^{n} Q_{suh_kgt_{i,j}}$$

3.18 Q_vlag_proc_sum - расчет суммарного расхода влажных материалов относительно общей массы влажной шихты

Исходные данные для расчета:

• $Q_vlag_proc_{i,j}$ — расход влажного материала относительно общей массы влажной шихты (пункт 3.4).

$$Q_vlag_proc_sum = \sum Q_vlag_proc_{i,j}$$

3.19 Q_suh_proc_sum - расчет суммарного расхода сухих материалов относительно общей массы сухой шихты

Исходные данные для расчета:

• $Q_suh_proc_{i,j}$ — расход сухого материала относительно общей массы сухой шихты (пункт 3.8).

$$Q_suh_proc_sum = \sum Q_suh_proc_{i,j}$$

3.20 Q_SUP_t_sum - расчет суммарного расхода влажных материалов с учетом потерь

Исходные данные для расчета:

• $Q_SUP_t_{i,i}$ расход влажного материала с учетом потерь, тонн (пункт 3.5);

$$Q_SUP_t_sum = \sum Q_SUP_t_{i,j}$$

3.21 Vpr_proc_sum - расчет суммарного объема агломерата, полученного из всей шихты, относительно расхода сухой шихты

Исходные данные для расчета:

- *Q_suh_t_sum* расход сухой шихты, тонн (пункт 3.73.5);
- $\bullet Vpr_t_sum$ суммарный объем агломерата полученный из всей шихты, тонн (пункт 3.133.12).

$$Vpr_proc_sum = Vpr_t_sum * 100/Q_suh_t_sum$$

3.22 H/S_suh - расчет X/C расходуемой сухой шихты

Исходные данные для расчета:

- Fe_t_sum, Mn_t_sum, P_t_sum, S_t_sum, FeO_t_sum, Fe2O3_t_sum, SiO2_t_sum, Al2O3_t_sum, CaO_t_sum, MgO_t_sum, TiO2_t_sum, K2O_t_sum, Na2O_t_sum, P2O5_t_sum, ZnO_t_sum, Pb_t_sum, Cl_t_sum, Gr_t_sum, Ni_t_sum, V_t_sum.— суммарные массовые расходы отдельных компонентов X/C шихтовых сухой шихты, тонн (пункт 3.12);
- Q_suh_t_sum расход сухой шихты (пункт 3.7).

Для всех компонентов X/C расчет итогового процентного расхода на сухую шихту выполняется аналогично, и отличается лишь названием входной переменной компоненты X/C.

Пример расчета для массовой доли железа в шихте Fe_suh :

$$Fe_suh = Fe_t_sum * 100/Q_suh_t_sum$$

Выходные параметры данного расчета:

 $Fe_suh, Mn_suh, P_suh, S_suh, FeO_suh, FeO_suh, SiOO_suh, AlOOO_suh, TiOOO_suh, CaO_suh, MgO_suh, KOO_suh, NaOO_suh, POOOS_suh, CaOOSUh, POOOSUh, Cl_suh, Cl$

3.23 H/S_agl - расчет X/С полученного агломерата

- Fe_t_sum, Mn_t_sum, P_t_sum, S_t_sum, SiO2_t_sum, Al2O3_t_sum, CaO_t_sum, MgO_t_sum, TiO2_t_sum, K2O_t_sum, Na2O_t_sum, P2O5_t_sum, ZnO_t_sum, Pb_t_sum, Cl_t_sum, Gr_t_sum, Ni_t_sum, V_t_sum.— суммарные массовые расходы отдельных компонентов X/С шихтовых сухой шихты, тонн (пункт 3.12);
- S_udal коэффициент удаления аглоруды по компоненту Ѕобщ, %(пункт 3);
- *K*2*O_udal* коэффициент удаления аглоруды по компоненту К₂О, %(пункт 3);
- ZnO_udal коэффициент удаления аглоруды по компоненту ZnO, %(пункт 3);
- Pb_udal коэффициент удаления аглоруды по компоненту Pb, %(пункт 3);
- Cl_udal коэффициент удаления аглоруды по компоненту CI, %(пункт 3);
- Na2O_udal коэффициент удаления аглоруды по компоненту Na2O, %(пункт 3);
- FeO_agl содержание оксида железа в агломерате, %(пункт 3);
- *Vpr_t_sum* − объем полученного из всей шихты агломерата (пункт 3.13).

Для большинства компонентов X/C агломерата расчет итогового процентного значения выполняется аналогично, и отличается лишь названием входной переменной компоненты X/C. Пример расчета для массовой доли железа в шихте Fe_agl :

$$Fe_agl = Fe_t_sum * 100/Vpr_t_sum$$

Для отдельных компонентов расчетная формула отличается:

$$S_agl = (1 - S_udal/100) * S_t_sum * 100/Vpr_t_sum$$
 $K20_agl = (1 - K20_udal/100) * K20_t_sum * 100/Vpr_t_sum$
 $Zn0_agl = (1 - Zn0_udal/100) * Zn0_t_sum * 100/Vpr_t_sum$
 $Pb_agl = (1 - Pb_udal/100) * Pb_t_sum * 100/Vpr_t_sum$
 $Cl_agl = (1 - Cl_udal/100) * Cl_t_sum * 100/Vpr_t_sum$
 $Na20_agl = (1 - Na20_udal/100) * Na20_t_sum * 100/Vpr_t_sum$
 $Fe203_agl = (Fe_agl - 0,7777 * Fe0_agl) * 1,4285714$

Выходные параметры данного расчета:

Fe_agl, Mn_agl, P_agl, S_agl, Fe2O3_agl, SiO2_agl, Al2O3_agl, CaO_agl, MgO_agl, TiO2_agl, K2O_agl, Na2O_agl, P2O5_agl, ZnO_agl, Pb_agl, Cl_agl, Gr_agl, Ni_agl, V_agl.

3.24 Q_vlag_t_itog – расчет итогового количества шихты со всеми поправками

Исходные данные для расчета:

- *Q_vlag_t_sum* расход влажной шихты, тонн (пункт 3.3);
- ВАСК содержание возврата материалов, % (пункт 3);
- $W \ agl -$ общая влажность шихты, % (пункт 3).

$$Q_{vlag_t_itog} = \frac{(100 + W_{agl}) * Q_{vlag_t_sum}}{100 - BACK}$$

3.25 Fe_agl_itog – расчет итогового количества произведенного железа

- Fe_agl содержание Fe в полученном агломерате, % (пункт 3.23);
- Vpr_t_sum объем полученного из всей шихты агломерата (пункт 3.13).

$$Fe_agl_itog = \frac{Fe_agl * Vpr_t_sum}{100}$$

3.26 Расчет известняка на заданной основности

Исходные данные для расчета:

- $CaO_{i,1}$, $Mp_{i,1}$, $W_{i,1}$, $SiO2_{i,1}$, $S_{i,1}$, $\Pi\Pi\Pi_{i,1}$ содержание CaO, SiO2, механических потерь, влажность, серы и ППП любого материала типа «известняк», % (пункт 2.5.1);
- CaO_SiO2_plan заданная плановая основность шихты (пункт 3);
- *S_udal* коэффициент удаления аглоруды по компоненту Sобщ, % (пункт 3);
- *CaO_t_sum*, *SiO2_t_sum* массовый расход данных компонентов X/C сухой шихты, тонн (пункт 3.12).

$$Q_vlag_t_izv \ = \frac{\left(1 + 0.01 * \mathrm{Mp_{i,1}}\right) * \left(1 + 0.01 * \mathrm{W_{i,1}}\right) * \left(SiO2_t_sum * CaO_SiO2_plan - CaO_t_sum\right)}{0.01 * CaO_{i,1}} \\ Q_SUP_t_izv \ = \left(100 - \mathrm{Mp_{i,1}}\right) * Q_vlag_t_izv/100 \\ Q_suh_t_izv \ = \left(100 - \mathrm{W_{i,1}}\right) * Q_SUP_t_izv/100 \\ CaO_t_izv \ = Q_suh_t_izv * CaO_{i,1}/100 \\ SiO2_t_izv \ = Q_suh_t_izv * SiO2_{i,1}/100 \\ \end{bmatrix}$$

Далее нужно пересчитать заново следующие величины:

$$CaO_t_sum = CaO_t_sum + CaO_t_izv \\ SiO2_t_sum = SiO2_t_sum + SiO2_t_izv \\ Q_vlag_t_izv = \frac{\left(1 + 0.01 * \mathrm{Mp_{i,1}}\right) * \left(1 + 0.01 * \mathrm{W_{i,1}}\right) * \left(SiO2_t_sum * CaO_SiO2_plan - (CaO_t_sum - CaO_t_izv)\right)}{0.01 * CaO_{i,1}} \\ Q_SUP_t_izv = \left(100 - \mathrm{Mp_{i,1}}\right) * Q_vlag_t_izv/100 \\ Q_suh_t_izv = \left(100 - \mathrm{W_{i,1}}\right) * Q_SUP_t_izv/100 \\ Vpr_proc_izv = 100 - \left(0.01 * S_{i,1} * S_{udal} + \Pi\Pi\Pi_{i,1}\right) \\ Vpr_t_izv = Vpr_proc_izv * Q_suh_t_izv/100 \\ \end{cases}$$

Полученные величины $Q_vlag_t_izv, Q_SUP_t_izv, Q_suh_t_izv, Vpr_t_izv$ необходимо прибавить к рассчитанным ранее суммарным значениям $(Q_vlag_t_sum, Q_vlag_t_itog), Q_SUP_t_sum, Q_suh_t_sum, Vpr_t_sum$ таким образом их пересчитав и вывести на экран уже пересчитанные итоговые значения.

3.27 CaO_SiO2_suh - расчет основности сухой шихты

Исходные данные для расчета:

- $SiO2_t_izv$ содержание SiO2 в известняке на заданной основности, т (пункт 3.26);
- CaO_t_sum , $SiO2_t_sum$ массовый расход данных компонентов X/C сухой шихты, тонн (пункт 3.12 пересчитан в п. 3.26).

$$CaO_SiO2_suh = \frac{CaO_t_sum}{SiO2_t_sum - SiO2_t_izv}$$

3.28 CaO_SiO2_agl - расчет основности агломерата

- $SiO2_t_izv$ содержание SiO2 в известняке на заданной основности, т (пункт 3.26);
- *CaO_t_sum*, *SiO2_t_sum* массовый расход данных компонентов X/C сухой шихты, тонн (пункт 3.12 пересчитан в п. 3.26).

$$CaO_SiO2_agl = \frac{CaO_t_sum}{SiO2_t_sum - SiO2_t_izv}$$

3.29 Q_vlag_tt_izv – расчет расхода выбранного типа известняка

Исходные данные для расчета:

- $CaO_{i,1}$, $Mp_{i,1}$, $W_{i,1}$, $SiO2_{i,1}$ содержание CaO, SiO2, механические потери и влажность (i соответствуют типу материала «известняк»), % (пункт 2.5.1);
- *CaO_SiO2_plan* заданная плановая основность шихты (пункт 3);
- $CaO_{k,j}$, $SiO2_{k,j}$ содержание CaO, SiO2 (k соответствует всем типам кроме «известняк»), % (пункт 2.5.1);
- $Q_suh_t_{k,j}$ - расход сухого материала (k соответствует всем типам кроме «известняк»), тонн (пункт 3.6);
- $Q_v lag_t t_{i,j}$ вес влажной поставки материала (і соответствуют типу материала «известняк», ј все кроме выбранного известняка), тыс.тонн (пункт 3);
- *CaO_t_sum*, *SiO2_t_sum* массовый расход данных компонентов X/C сухой шихты, тонн (пункт 3.12).

Перед началом расчета необходимо выбрать «тип известняка» расход которого необходимо найти.

Данный расчет имеет очень массивную формулу, потому имеет смысл разбить ее на части.

$$A = CaO_SiO2_plan * \sum \frac{SiO2_{k,j} * Q_suh_t_{k,j}}{100} - \sum \frac{CaO_{k,j} * Q_suh_t_{k,j}}{100}$$

$$B = CaO_SiO2_plan * \frac{SiO2_{i,1}}{100} - \frac{CaO_{i,1}}{100}$$

$$C = \frac{0.002 * CaO_{i,1}}{(0.01 * W_{i,1} + 1) * (0.01 * Mp_{i,1} + 1)}$$

$$D = \frac{(100 - W_{i,1}) * (100 - Mp_{i,1})}{10}$$

 $E = \sum Q_{-}vlag_{-}tt_{i,j}$ сумма по всем материалам типа известняк, кроме выбранного!

$$Q_{vlag_{tt_izv}} = \frac{C - A}{R * D} - E$$

4 РАСЧЕТ ДОМЕННОЙ ШИХТЫ

Методика расчета представлена для одной печи для одного месяца. Для остальных месяцев и печей в пределах конкретного месяца расчет аналогичен предложенному.

4.1 Нормы расхода ЖРС на производство чугуна

Для каждого месяца пользователю предлагается заполнить таблицу на рисунке ниже. Пользователь может вводить значения в поля, помеченные желтым цветом. Все ячейки кроме вводимой обсчитываются системой автоматически. Столбец «Расход, кг/тн» снабжен переключателями. Наличие переключателя в конкретном столбце определяется исходя из процента наличия железа в конкретном компоненте шихты заданном в пункте 2.5.1 в столбце Fe. Таким образом, если процент содержания Fe в компоненте нулевой, то переключатель недоступен для данного элемента, в этом столбце.

		Доменная пе	ечь 1 Доменная печь 2				Доменна	я печь N		ПО ЦЕХУ		
	% в шихте	Расход, кг/тн	Расход, тыс. т	% в	Расход,	Расход, тыс. т	% в	Расход,	Расход, тыс. т	% в шихте	Расход, кг/тн	Расход, тыс. т
				шихте	кг/тн		шихте	кг/тн				
Агломерат ВГОКа		0			0			0				
Агломерат аглофабрики № 2		•			0			0				
Доменный присад		0			0			0				
Шунгит												
Окатыши Михайловские	- '-	O J			0			0		S_j	-27	
Кварцит	I.P	_d	P,					* * *		I	TS	
Окатыши Качканарского гока	0	0 0	d.		0			0		H		T.S
Окатыши Костамукшские	R	o b	0		0			0		Si	JD	
Сварочный шлак	Ь	਼ 🗸	9		0			0		R .	7-	9
Конверторный шлак		0			0			0		P.	0	
Известняк												
Доменный щебень												
Конвертерный шлак ЮУНК		0			0			0				
итого	PR_dP_i	$Q_UD_dP_i$	$Q_{-}dP_{i}$							PR_SH_TS_AG	Q_UD_TS_AG	Q_TS_AG

Рисунок 16 - Внешний вид начальной формы расчета

4.1.1 Входные данные

i – номера печей,

i — типы ЖРС,

m — текущий месяц,

 $V_{-}dP_{i,m}$ – объем производства по печи i за текущий месяц.

Рассчитываемый метод зависит от того, в какой столбец были введены данные (в столбец удельного расхода [кг/тн] либо в столбец расхода [тыс. т]).

4.1.2 Метод расчета одной печи при введенном удельном расходе

 $Q_UD_dP_i$ - введенный удельный расход.

Совокупный объем производства по печам:

$$V_AG = \sum V_dP_{i,m}$$
, тыс. т

Совокупный удельный расход по печи:

$$Q_UD_dP_i = \sum Q_UD_dP_j$$
, $\kappa \Gamma/T$

Расход по каждой печи:

$$Q_{-}dP_{j}=rac{Q_{-}UD_{-}dP_{j}*V_{-}dP_{i,m}}{1000}$$
, тыс. т

Совокупный расход по печи:

$$Q_dP_i = \sum Q_dP_j$$
, тыс. т

4.1.3 Метод расчета одной печи при введенном расходе

 $Q_{-}dP_{i}$ – введенный расход.

Совокупный расход по печи:

$$Q_dP_i = \sum Q_dP_j$$
, тыс. т

Удельный расход

$$Q_{-}UD_{-}dP_{j} = \frac{Q_{-}dP_{j} * 1000}{V dP_{i m}}, \quad \text{K}\Gamma/\text{T}$$

Совокупный удельный расход по печи:

$$Q_UD_dP_i = \sum_i Q_UD_dP_j$$
, $\kappa \Gamma/T$

4.1.4 Расчет остальных значений и цеховых параметров

Процент в шихте по каждой печи:

$$PR_dP_j = \frac{Q_UD_dP_j * 100}{O\ UD\ dP_i}, \qquad \%$$

Совокупный процент в шихте по каждой печи:

$$PR_dP_i = \sum PR_dP_j$$
, %

Общий расход по всем печам:

$$Q_TS_j = \sum Q_dP_j$$
 , тыс. т

Совокупный общий расход по всем печам:

$$Q_TS_AG = \sum Q_TS_j$$
, тыс. т

Удельный общий расход по всем печам:

$$Q_UD_TS_j = \frac{Q_TS_j * 1000}{V AG}, \quad \text{kg/t}$$

Совокупный удельный общий расход по всем печам:

$$Q_UD_TS_AG = \sum Q_UD_TS_j$$
, $\kappa \Gamma/T$

Общий процент в шихте по всем печам:

$$PR_SH_TS_j = \frac{Q_UD_TS_j * 100}{Q_UD_TS_AG}, \qquad \%$$

Совокупный общий процент в шихте по всем печам:

$$PR_SH_TS_AG = \sum PR_SH_TS_j$$
, %

Соответствие формул полям формы отражено на Рисунок 16 - Внешний вид начальной формы расчета.

4.2 Расход железа и процент железа в шихте на тонну чугуна

На данном этапе происходит пересчет значения удельного расхода компонента шихты в зависимости от установленного расхода железа $Q_UD_FE_i$. Выбор типа ЖРС относительно которого будет произведен пересчет осуществляется установкой переключателя напротив его названия. Розовым цветом отмечены контрольные значения по цеху, попадающие в итоговую таблицу за выбранный период.

Алгоритм:

- 1. Пользователь вводит необходимый удельный расход железа $Q_UD_FE_i$ в соответствующую графу.
- 2. Пользователь нажимает на переключатель выбора критерия пересчета. Пересчет происходит автоматически.

	Доменная печь 1			Доменна	я печь 2	Доменная печь N			по цеху			
	% в шихте	Расход, кг/тн	Расход, тыс. т	% в	Расход,	Расход, тыс. т	% в	Расход,	Расход, тыс. т	% в шихте	Расход, кг/тн	Расход, тыс. т
				шихте	кг/тн		шихте	кг/тн				
Агломерат ВГОКа		0			0			0				
Агломерат аглофабрики № 2		•			0			0				
Доменный присад		0			0			0				
Шунгит												
Окатыши Михайловские		dP_j			0			0		S_j	, , ,	
Кварцит	dP_j		dP_j					* * *		I	TS_j	S
Окатыши Качканарского гока	l I	0 0	q_{I}		0			0		H		
Окатыши Костамукшские	R	o n			0			0		S	an	
Сварочный шлак	Ь	° °			0			0		R.		
Конверторный шлак		0			0			0		P	0	
Известняк										·		
Доменный щебень												
Конвертерный шлак ЮУНК		0			0			0				
итого	$PR_{-}dP_{i}$	$Q_{-}UD_{-}dP_{i}$	$Q_{-}dP_{i}$							PR_SH_TS_AG	Q_UD_TS_AG	Q_TS_AG
ОБЩИЕ ПОКАЗАТЕЛИ												
		00.0111									00.0111 ==	
Основность шлака		OS_SHL_i									OS_SHL_TS	
Процент железа в шихте		$Q_FE_SH_i$									$Q_FE_SH_TS$	
Расход железа , кг/т чугуна		$Q_UD_FE_i$									$Q_UD_FE_TS$	

Рисунок 17 - Внешний вид начальной формы с учетом таблицы «Общие показатели».

4.2.1 Входные данные

 Fe_i — содержание железа в конкретном типе ЖРС (см. пункт 2.5.1)

Столбец «Расход, кг/тн» также снабжен переключателями. Наличие переключателя в конкретном столбце определяется исходя из процента наличия железа в конкретном компоненте шихты заданном в пункте 2.5.1 в столбце Fe. Таким образом, если процент содержания Fe в компоненте нулевой, то переключатель недоступен для данного элемента, в этом столбце.

i – номера печей,

j — типы ЖРС,

 $Q_{-}UD_{-}dP_{i}$ – посчитан в пп.4.1.2, 4.1.3.

 $Q_UD_FE_i$ – удельный заданный расход железа по печи.

4.2.2 Методика пересчета

Внос Fe по каждому типу ЖРС:

$$Q_FE_j = \frac{Q_UD_dP_j * Fe_j * k}{100}, \quad \text{кг}$$

где для всех типов руды k = 1 кроме:

$$Q_{-}FE_{\text{д.присад}} \rightarrow k = 0.936$$
 $Q_{-}FE_{\text{шунгит}} \rightarrow k = 0.99$
 $Q_{-}FE_{\text{кварцит}} \rightarrow k = 0.98$
 $Q_{-}FE_{\text{ЮУНК}} \rightarrow k = 0.97$

После того, как пользователь ввел значение удельного расхода $Q_UD_FE_i$ и установил переключатель напротив необходимого параметра, считается сумма вносов всех элементов кроме вноса выбранного параметра (типа руды).

$$SUMM_UD_FE = \sum Q_FE_j$$
 , кг/т чугуна

Пересчет значения удельного расхода для выбранного параметра:

$$Q_UD_dP_j = \frac{100 * (Q_UD_FE_i - SUMM_UD_FE)}{(Fe_j * k)}, \quad \text{kr/r}$$

Содержание Fe в шихте:

$$Q_FE_SH_i = \frac{Q_UD_FE_i * 100}{Q_UD_dP_i}, \qquad \%$$

4.2.3 Расчет общецеховых значений

Содержание Fe в шихте по цеху:

$$Q_FE_SH_TS = \frac{\sum (Q_FE_SH_i * Q_dP_i)}{Q_TS_AG}, \qquad \%$$

Удельный расход Fe по цеху:

$$Q_UD_FE_TS = \frac{Q_FE_SH_TS * Q_TS_AG * 10}{V_AG}$$
, кг/т чугуна

4.3 Потери железа

4.3.1 Входные данные

i — номер печи,

 $Q_UD_FE_i$ – удельный расход по железу по каждой печи, (задан в п.4.2.1)

 $Q_UD_FE_TS$ — удельный расход по железу по цеху (посчитан в п.4.2.3).

 $\mathit{KP_UD_UL}_i$ – удельная уловленная колошниковая пыль (задана в п.2.4),

 $SK_{-}UD_{i}$ – удельные потери на скрап (заданы в п.2.4),

 POT_CH_i – потери со шлаком (заданы в п.2.4),

 $FeO_{-}CH_{i}$ –химические потери в шлаке FeO (заданы в п.2.4).

4.3.2 Расчет для каждой печи

Колошниковая пыль (уловленная):

$$KP_UL_i = \frac{KP_UD_UL_i * 40}{Q_UD_FE_i}, \qquad \%$$

Скрап:

$$SK_i = \frac{SK_UD_i * 85}{Q_UD_FE_i}, \qquad \%$$

Колошниковая пыль не уловленная:

$$KP_{-}NUL_{i} = KP_{-}UL_{i} * 0.42,$$
 %

Сумма потерь без не установленных:

$$SUM_{POT_i} = KP_{UL_i} + SK_i + POT_{CH_i} + KP_{NUL_i} + FeO_{CH_i}$$

Неустановленные потери:

$$UND_LOSS_i = 100 - \frac{94000}{O\ UD\ FE_i} - SUM_POT_i, \qquad \%$$

Общие потери:

$$FE_LOSS_i = SUM_POT_i + UND_LOSS_i,$$
 %

4.3.3 Расчет по цеху

Колошниковая пыль (уловленная):

$$KP_UL_TS = \frac{\sum KP_UL_i}{i},$$
 %

Скрап:

$$SK_{-}TS = \frac{\sum SK_{i}}{i}, \qquad \%$$

Цеховые потери по скрапу:

$$UD_SK_TS = \frac{SK_TS * Q_UD_FE_TS}{100}$$
, кг/т чугуна

Потери со шлаком:

$$POT_CH_TS = \frac{\sum POT_CH_i}{i},$$
 %

Колошниковая пыль не уловленная:

$$KP_NUL_TS = \frac{\sum KP_NUL_i}{i},$$
 %

Химические потери в шлаке:

$$FeO_CH_TS = \frac{\sum FeO_CH_i}{i},$$
 %

Удельные химические потери в шлаке:

$$UD_FeO_CH_TS = \frac{FeO_CH_TS * Q_UD_FE_TS}{100}$$
, кг/т чугуна

Неустановленные потери:

$$UND_LOSS_TS = \frac{\sum UND_LOSS_i}{i}, \quad \%$$

Удельные неустановленные потери:

$$UD_UND_LOSS_TS = \frac{UND_LOSS_TS * Q_UD_FE_TS}{100}$$
, кг/т чугуна

Общие потери:

$$FE_LOSS_TS = \sum \texttt{KP_UL_TS} + \texttt{SK_TS} + \texttt{POT_CH_TS} + \texttt{KP_NUL_TS} + \texttt{FeO_CH_TS} + \texttt{UND_LOSS_TS}, \qquad \%$$

Форма сводной таблицы примет вид:

		Доменная печь 1			Доменная печь 2			Доменна	я печь N	ПО ЦЕХУ			
	% в шихте	Расход, кг/тн	Расход, тыс. т	% в	Расход,	Расход, тыс. т	% в	Расход,	Расход, тыс. т	% в шихте	Расход, кг/тн	Расход, тыс. т	
				шихте	кг/тн		шихте	кг/тн					
Агломерат ВГОКа		0			0			0					
Агломерат аглофабрики № 2		•			0			0					
Доменный присад		0			0			0					
Шунгит													
Окатыши Михайловские		aP_j			0			0		S	7.7		
Кварцит	dP_j		P _{_i}					* * *		L	TS_j		
Окатыши Качканарского гока		o o	di		0			0		H		T.S.	
Окатыши Костамукшские	R	o D			0			0		SH	'an		
Сварочный шлак	Ь	° °	0		0			0		~		0	
Конверторный шлак		0			0			0		P l	0		
Известняк													
Доменный щебень													
Конвертерный шлак ЮУНК		0			0			0					
итого	PR_dP_i	$Q_UD_dP_i$	Q_dP_i							PR_SH_TS_AG	Q_UD_TS_AG	Q_TS_AG	
ОБЩИЕ ПОКАЗАТЕЛИ													
Основность шлака		OS_SHL_i									OS_SHL_TS		
Процент железа в шихте		$Q_FE_SH_i$									$Q_FE_SH_TS$		
Расход железа , кг/т чугуна		$Q_UD_FE_i$									$Q_UD_FE_TS$		
ПОТЕРИ, %													
итого		FE_LOSS_i									FE_LOSS_TS		

Рисунок 18 - Внешний вид начальной формы с учетом таблицы «Потери».

4.4 Влияние факторов производства

Таблица «Влияние факторов на показатели» имеет вид, представленный на рисунке ниже. Поля, выделенные желтым цветом, заполняются пользователем. При заполнении происходит пересчет параметров таблицы.

ВЛИЯНИЕ ФАКТОРА НА ПОКАЗАТЕЛИ						
Дутье, м3/мин		Q_DU_i				
Кислород, тыс.м3/час		$Q_{-}O_{i}$			Q_O_TS	
Кислород,%		A_O_i			A_O_TS	
Кислород, м3/т		$O_{-}UD_{i}$			O_UD_TS	
Природный газ, тыс.м3/час		Q_PG_i			Q_PG_TS	
Природный газ, м3/т чугуна	MAX_PG_i	$Q_UD_PG_i$			Q_UD_PG_TS	,
Содержание мелочи -5мм в шихте, %	$DP_FR_DN5_i$	MEL_SH_i			MEL_SH_TS	
Качество кокса, М 25,%	$DP_K_UPM25_i$	KOK_M25 _i			KOK_M25_TS	3
Качество кокса, М 10,%	$DP_K_DNM10_i$	KOK_M10_i			KOK_M10_TS	3
Качество чугуна, [Si],%	$DP_SI_DN01_i$	CH_SI_i			CH_SI_TS	
Качество чугуна, [Mni],%	$DP_MN_DN01_i$	CH_MN_i			CH_MN_TS	
Температура горячего дутья, град.С	$MAX_{-}T_{-}UP_{i}$	T_DU_i			T_DU_TS	
Давление колошникового газа, ати	$DP_PR_UP01_i$	$P_{-}KL_{i}$			P_KL_TS	
Время простоя, %	$DP_ID_DN1_i$	$T_{I}D_{i}$			T_ID_TS	
Время работы на "тихом" ходу,%	$DP_TH_DN1_i$	$T_{-}LO_{i}$			T_LO_TS	
Удельный расход кокса, кг/т чугуна	T_UD_KC	OK_i			UD_KOK_TS	
Удельный расход антрацита, кг/т чугуна	T_UD_A	N_i			UD_AN_TS	
Расчетная производительность чугуна, т/су	Q_CH	i			Q_CH_TS	

Рисунок 19 - Внешний вид таблицы «Влияние фактора на показатели».

Форма заполняется однотипно по каждому месяцу. Количество печей берется из п. 2.3. По каждой печи в левой колонке представлены расчетные значения для контроля вводимых данных.

4.4.1 Подстановка контрольных значений

Расчет осуществляется по значениям формы установки базы по печам заполненной в п.2.5

i – номер печи, MAX_PG_i – большее из DP_PG100_i и DP_PG150_i

 $DP_FR_DN5_i$ — задано в п.2.5,

 $DP_{-}K_{-}UPM25_{i}$ — задано в п.2.5,

 $DP_{-}K_{-}DNM10_{i}$ — задано в п.2.5,

 $DP_SI_DN01_i$ — задано в п.2.5,

 $DP_{-}MN_{-}DN01_{i}$ — задано в п.2.5,

 $MAX_T_UP_i$ — большее из $DP_T_UP900_i$, $DP_T_UP1000_i$, $DP_O25_UP1100_i$, $DP_O25_UP1200_i$, $DP_O35_UP1100_i$, $DP_O35_UP1200_i$,

 $DP_{-}PR_{-}UP01_{i}$ – задано в п.2.5,

 $DP_{-}ID_{-}DN1_{i}$ – задано в п.2.5,

 $DP_{-}TH_{-}DN1_{i}$ — задано в п.2.5,

4.4.2 Расчет факторов производства

i – номера печей,

i — тип ЖРС,

 $V_{-}dP_{i,m}$ – объем производства по печи i за текущий месяц (п.2.3),

 $Q_{-}dP_{i}$ - расход каждого типа ЖРС по каждой печи (п.4.1.2),

 $Q_UD_PG_i$ – уд. Расход природного газа на производство чугуна (м3/т) (пункт 4.4)

 $Q_{-}dP_{i}$ - расход ЖРС по каждой печи (п.4.1.4),

 $-5mm_{j}$ – массив значений, введенный в п.2.5.1,

d – количество календарных дней в текущем месяце.

Расход кислорода:

$$Q_{-}O_{i} = \frac{V_{-}dP_{i,m} * O_{-}UD_{i}}{24 * d}$$
, тыс $\frac{M^{3}}{42C}$

Содержание кислорода:

$$A_{-}O_{i} = 21 + \frac{1.25 * Q_{-}O_{i} * 1000}{Q_{-}DU_{i}},$$
 %

Расход природного газа:

$$Q_PG_i = \frac{100 * Q_UD_PG_i * V_dP_{i,m}}{24 * d * (100 - T ID_i - T LO_i)},$$
 THIC $\frac{M^3}{\text{YaC}}$

Содержание мелочи -5мм в шихте:

$$MEL_SH_i = \frac{\sum_i (-5mm_j * Q_dP_j)}{Q_dP_i}, \quad \%$$

4.5 Отклонения

В п.2.5 введены значения установки базы.

Приставка dQ_- - отклонения расхода,

Приставка dN_{-} - отклонения производительности.

4.5.1 Отклонения железа в шихте:

Если рассчитанное значение процента железа в шихте $Q_FE_SH_i$ (п.4.2.2) лежит в пределах до 50%, то

$$dQ_FE_UP = \frac{(Q_FE_SH - DP_FE_UP50) * Q_FE_UP50 * Q_KOK_DP}{100}$$

$$dN_FE_UP = \frac{(Q_FE_SH - DP_FE_UP50) * N_FE_UP50 * N_DP}{100}$$

Если лежит в пределах 50-55%, то

$$dQ_FE_UP = \frac{(Q_FE_SH - DP_FE_UP55) * Q_FE_UP55 * Q_KOK_DP}{100}$$

$$dN_FE_UP = \frac{(Q_FE_SH - DP_FE_UP55) * N_FE_UP55 * N_DP}{100}$$

Иначе

$$dQ_FE_UP = \frac{(Q_FE_SH - DP_FE_UP60) * Q_FE_UP60 * Q_KOK_DP}{100}$$

$$dN_FE_UP = \frac{(Q_FE_SH - DP_FE_UP60) * N_FE_UP60 * N_DP}{100}$$

4.5.2 Отклонения металлодобавок:

 $Q_UD_dP_{\text{сварочного шлака}}$ — известен из п.4.2.

$$dQ_ME_UP = \frac{(Q_UD_dP_{\text{сварочного шлака}} - DP_ME_UP10) * Q_ME_UP10 * Q_KOK_DP}{100}$$

$$dN_ME_UP = \frac{(Q_UD_dP_{\text{сварочного шлака}} - DP_ME_UP10) * N_ME_UP10 * N_DP}{100}$$

4.5.3 Отклонения известняка:

 $Q_{-}UD_{-}dP_{_{\rm ИЗВЕСТНЯКА}}$ — ИЗВЕСТЕН ИЗ П.4.2.

$$dQ_ME_UP = (-1)*\frac{(Q_UD_dP_{\text{известняка}} - DP_IZ_DN10)*Q_IZ_DN10*Q_KOK_DP}{1000}$$

$$dN_ME_UP = (-1)*\frac{(Q_UD_dP_{\text{известняка}} - DP_IZ_DN10)*N_IZ_DN10*N_DP}{1000}$$

4.5.4 Отклонения мелочи:

MEL SH — известен из п.4.4.

$$dQ_FR_DN5 = (-1) * \frac{(MEL_SH - DP_FR_DN5) * Q_FR_DN5 * Q_KOK_DP}{100}$$

$$dN_FR_DN5 = (-1) * \frac{(MEL_SH - DP_FR_DN5) * N_FR_DN5 * N_DP}{100}$$

4.5.5 Отклонения золы:

 $dDP_{-}Z_{-}DN1$ — известен из п.2.5.

$$dQ_{Z}DN1 = (-1) * \frac{(dDP_{Z}DN1 - DP_{Z}DN1) * Q_{Z}DN1 * Q_{K}OK_{D}P}{100}$$
$$dN_{Z}DN1 = (-1) * \frac{(dDP_{Z}DN1 - DP_{Z}DN1) * N_{Z}DN1 * N_{D}P}{100}$$

4.5.6 Отклонения понижения серы:

 dDP_S_DN01 — известен из п.2.5.

$$dQ_S_DN01 = (-1) * \frac{(dDP_S_DN01 - DP_S_DN01) * Q_S_DN01 * Q_KOK_DP}{10}$$

$$dN_S_DN01 = (-1) * \frac{(dDP_S_DN01 - DP_S_DN01) * N_S_DN01 * N_DP}{10}$$

4.5.7 Отклонения кокса М25:

 $dDP_{-}K_{-}UPM25$ — известен из п.2.5.

$$dQ_K_UPM25 = \frac{(dDP_K_UPM25 - DP_K_UPM25) * Q_K_UPM25 * Q_KOK_DP}{100}$$

$$dN_K_UPM25 = \frac{(dDP_K_UPM25 - DP_K_UPM25) * N_K_UPM25 * N_DP}{100}$$

4.5.8 Отклонения кокса М10:

 $dDP_{-}K_{-}DNM10$ — известен из п.2.5.

$$dQ_K_DNM10 = (-1) * \frac{(dDP_K_DNM10 - DP_K_DNM10) * Q_K_DNM10 * Q_KOK_DP}{100}$$

$$dN_K_DNM10 = (-1) * \frac{(dDP_K_DNM10 - DP_K_DNM10) * N_K_DNM10 * N_DP}{100}$$

4.5.9 Отклонения фракций:

 dDP_FR_DN80 — известен из п.2.5.

$$dQ_FR_DN80 = (-1) * \frac{(dDP_FR_DN80 - DP_FR_DN80) * Q_FR_DN80 * Q_KOK_DP}{100}$$

$$dN_FR_DN80 = (-1) * \frac{(dDP_FR_DN80 - DP_FR_DN80) * N_FR_DN80 * N_DP}{100}$$

4.5.10 Отклонения кремния:

 CH_SI — вводится в п.4.4.

$$dQ_SI_DN01 = (-1) * \frac{(CH_SI - DP_SI_DN01) * Q_SI_DN01 * Q_KOK_DP}{10}$$

$$dN_SI_DN01 = (-1) * \frac{(CH_SI - DP_SI_DN01) * N_SI_DN01 * N_DP}{10}$$

4.5.11 Отклонения марганца:

 $CH_{-}MN$ — вводится в п.4.4

$$dQ_MN_DN01 = (-1) * \frac{(CH_MN - DP_MN_DN01) * Q_MN_DN01 * Q_KOK_DP}{10}$$
$$dN_MN_DN01 = (-1) * \frac{(CH_MN - DP_MN_DN01) * N_MN_DN01 * N_DP}{10}$$

4.5.12 Отклонения повышения серы:

 N_S_UP001 — вводится в п.2.5.

$$dQ_S_UP001 = (DP_S_UP001 - DP_S_UP001) * Q_S_UP001 * Q_KOK_DP$$

 $dN_S_UP001 = (DP_S_UP001 - DP_S_UP001) * N_S_UP001 * N_DP$

4.5.13 Отклонения кислорода:

 $A_{-}0$ — известен из п.4.4,

 $T_{-}DU$ — вводится в п.4.4,

В зависимости от температуры дутья и концентрации кислорода производится расчет.

Для примера приведен расчет при $A_O = 27{,}312\%$ и $T_DU = 1110~\%$

$$dQ_{-}O = \frac{(T_{-}DU - DP_{-}O35_UP1200) * Q_{-}O35_UP1200 * Q_{-}KOK_{-}DP}{1000}$$
$$dN_{-}O = \frac{(T_{-}DU - DP_{-}O35_UP1200) * N_{-}O35_UP1200 * N_{-}DP}{1000}$$

4.5.14 Отклонения дутья:

 $A_{-}O_{-}$ - известен из п.4.4.

k — для ДП 1 = 0,5,

k — для ДП 2, ДП 3 = 0.

k - для ДП 4, ДП 5 = 1,

Если A_0 < 25%, то

$$dQ_DU_UP = \frac{(A_O - k - DP_DU_UP25) * Q_DU_UP25 * Q_KOK_DP}{100}$$

$$dN_DU_UP = \frac{(A_O - k - DP_DU_UP25) * N_DU_UP25 * N_DP}{100}$$

Иначе

$$dQ_DU_UP = \frac{(A_O - k - DP_DU_UP30) * Q_DU_UP35 * Q_KOK_DP}{100}$$
$$dN_DU_UP = \frac{(A_O - k - DP_DU_UP30) * N_DU_UP35 * N_DP}{100}$$

4.5.15 Отклонения газов под колошником:

 $P_{-}KL$ — известен из п.4.4

$$dQ_PR_UP01 = \frac{(P_KL - DP_PR_UP01) * Q_PR_UP01 * Q_KOK_DP}{10}$$

$$dN_PR_UP01 = \frac{(P_KL - DP_PR_UP01) * N_PR_UP01 * N_DP}{10}$$

4.5.16 Отклонения времени простоев:

T ID - известен из п.4.4

$$dQ_ID_DN1 = (-1) * \frac{(T_ID - DP_ID_DN1) * Q_ID_DN1 * Q_KOK_DP}{100}$$

$$dN_ID_DN1 = (-1) * \frac{(T_ID - DP_ID_DN1) * N_ID_DN1 * N_DP}{100}$$

4.5.17 Отклонения времени тихого хода:

 $T_{-}LO$ — известен из п.4.4

$$dQ_TH_DN1 = (-1) * \frac{(T_LO - DP_TH_DN1) * Q_TH_DN1 * Q_KOK_DP}{100}$$

$$dN_TH_DN1 = (-1) * \frac{(T_LO - DP_TH_DN1) * N_TH_DN1 * N_DP}{100}$$

4.5.18 Отклонения природного газа:

 $Q_{-}UD_{-}PG_{i}$ — известен из п.4.4.

Если его значение до 100 куб. м/т, то:

$$dQ_PG = (-1) * (Q_UD_PG_i - DP_PG_100) * Q_PG_100$$

Иначе:

$$dQ_PG = (-1) * (Q_UD_PG_i - DP_PG_150) * Q_PG_150$$

Отклонения производительности по природному газу не рассчитываются.

4.5.19 Сумма отклонений расхода без отклонений по коксу

$$dQ_i = \sum$$
 отклонений пп. 4.5.1 $-$ 4.5.18 $dN_i = \sum$ отклонений пп. 4.5.1 $-$ 4.5.18

4.6 Удельный расход кокса

i – номер печи,

4.6.1 Удельное содержание фосфора

Из п.2.5.1 известны значения массива P_i ,

Из пп.4.1.2, 4.1.3 известны значения массива $Q_{-}UD_{-}dP_{i}$.

Удельное содержание фосфора в каждом компоненте шихты без учета кокса:

$$Q_UD_P_j = rac{Q_UD_dP_j * P_j}{100}$$
, $rac{ ext{K}\Gamma}{ ext{T}}$ чугуна

Общее удельное содержание фосфора без учета кокса:

$$Q_UD_P_i = \sum Q_UD_P_j$$
 , $\dfrac{ ext{K}\Gamma}{ ext{T}}$ чугуна

4.6.2 Содержание фосфора в чугуне

 $Q_{-}UD_{-}P_{i}$ – посчитан в п.4.6.1,

 $VN_{-}P$ — задан в п. 2.5.1,

 $Q_{-}KOK_{-}DP_{i}$ — задан в п.2.5,

 dQ_i – посчитан в п.4.5.19,

 $Q_UD_dP_{\text{шунгита}}$ — задан в п.4.1,

 $Q_SH_dP_i$ — задан в п.2.5,

 $T_{-}UD_{-}AN_{i}$ — задан в п.4.4,

 $Q_AN_dP_i$ — задан в п.2.5,

 $DP_{-}P_{-}DN01_{i}$ — задан в п.2.5,

 $Q_P_DN01_i$ — задан в п.2.5,

 $Q_{-}UD_{-}FE_{i}$ — посчитан в п.4.2.

$$A = 9400 * Q_{_}UD_{_}P_{i}$$

$$A1 = 1.316 * VN_{_}P$$

$$B = Q_{_}KOK_{_}DP_{i} * 10 + 10 * dQ_{i}$$

$$C = 4.5 * (Q_{_}UD_{_}dP_{_{\tiny IIIYHITUTA}} - Q_{_}SH_{_}dP_{i}) + 7 * (T_{_}UD_{_}AN_{i} - Q_{_}AN_{_}dP_{i})$$

$$C1 = DP_{_}P_{_}DN01_{i} * Q_{_}P_{_}DN01_{i} * Q_{_}KOK_{_}DP$$

$$D = 1.316 * VN_{_}P * Q_{_}P_{_}DN01_{i} * Q_{_}KOK_{_}DP_{i} + 100 * Q_{_}UD_{_}FE_{i}$$

$$Q_{_}P_{_}CH_{i} = \frac{A + A1 * (B - C) + C1}{D}, \qquad \frac{\text{Kr}}{\text{T}} \text{чугуна}$$

4.6.3 Общая сумма отклонений

 dQ_i — посчитан в п.4.5.19

$$Q_P_DN01_i$$
 — задан в п.2.5,

$$Q_{KOK_{DP_{i}}}$$
 — задан в п.2.5,

$$Q_{-}P_{-}CH_{i}$$
 — посчитан в п.4.6.2

$$DP_{-}P_{-}DN01_{i}$$
 – задан в п.2.5,

$$dQ_T_i = rac{10*dQ_i - Q_P_DN01_i * Q_KOK_DP_i * (Q_P_CH_i - DP_P_DN01_i)}{10}$$
, $rac{\mathsf{K}\Gamma}{\mathsf{T}}$ чугуна

4.6.4 Приведенный расход кокса

$$dQ_KOK_dP_i = Q_KOK_DP_i + dQ_T_i$$
, $\frac{\mathsf{K}\Gamma}{\mathsf{T}}$ чугуна

4.6.5 Удельный расход кокса

$$dQ_{KOK_{-}}dP_{i}$$
 – посчитан в п.4.6.4,

$$Q_{-}UD_{-}dP_{\text{шунгита}}$$
 — задан в п.4.1,

$$Q_SH_dP_i$$
 — задан в п.2.5,

$$T_{-}UD_{-}AN_{i}$$
 — задан в п.4.4,

$$Q_AN_dP_i$$
 — задан в п.2.5,

$$A = dQ_KOK_dP_i - 0.45 * (Q_UD_dP_{\text{шунгита}} - Q_SH_dP_i)$$
 $B = 0.7 * (T_UD_AN_i - Q_AN_dP_i)$ $T_UD_KOK_i = A - B, \qquad \frac{\mathsf{K}\Gamma}{\mathsf{T}}$ чугуна

4.7 Удельный выход шлака

4.7.1 Общее удельное содержание оксида кальция

 CaO_i — содержание оксида кальция в X/C доменной шихты (п. 2.5.1),

 $Q_{-}UD_{-}dP_{i}$ – удельный расход материалов шихты по каждой печи (п.4.1).

4.7.1.1. Удельное содержание оксида кальция в каждом компоненте шихты

$$Q_UD_CaO_j = rac{Q_UD_dP_j * CaO_j}{100}, rac{ ext{кг}}{ ext{т}}$$
чугуна

4.7.1.2. Удельное содержание оксида кальция в коксе

VN_CA - значение вноса кальция (п. 2.5.1),

 $T_{-}UD_{-}KOK_{i}$ — значение удельного расхода кокса (п.4.6.5).

$$Q_KOK_CaO = VN_CA * T_UD_KOK_i * 0.0014,$$
 $\frac{\mathsf{K}\Gamma}{\mathsf{T}}$ чугуна

4.7.1.3. Общее удельное содержание оксида кальция

$$Q_UD_CaO_i = Q_KOK_CaO + \sum Q_UD_CaO_j$$
, $\frac{\mathrm{K}\Gamma}{\mathrm{T}}$ чугуна

4.7.1.4. Содержание СаО в шлаке

 $Q_UD_SHL_i$ - удельный выход шлака (п. 4.7.6).

$$CaO_to_SHL = Q_UD_CaO_i * 100/Q_UD_SHL_i$$

4.7.2 Общее удельное содержание оксида кремния

 $SiO_{2,i}$ – содержание оксида кремния в X/C доменной шихты (п. 2.5.1),

 $Q_UD_dP_i$ – удельный расход материалов шихты по каждой печи (п.4.1).

4.7.2.1. Удельное содержание оксида кремния в каждом компоненте шихты

$$Q_UD_SiO_{2\ j} = rac{Q_UD_dP_j * SiO_{2\ j}}{100}$$
, $rac{\mathrm{K}\Gamma}{\mathrm{T}}$ чугуна

4.7.2.2. Удельное содержание оксида кремния в коксе

VN_SI - значение вноса кремния (п. 2.5.1)

 $T_{-}UD_{-}KOK_{i}$ — значение удельного расхода кокса (п.4.6.5).

$$Q_KOK_SiO_2 = VN_SI * T_UD_KOK_i * 0.0014,$$
 $\frac{\mathsf{K}\Gamma}{\mathsf{T}}$ чугуна

4.7.2.3. Общее удельное содержание оксида кремния

$$Q_UD_SiO_{2\,i} = Q_KOK_SiO_2 + \sum Q_UD_SiO_{2\,j}$$
, $\frac{\mathrm{K}\Gamma}{\mathrm{T}}$ чугуна

4.7.2.4. Содержание SiO в шлаке

 $SiO_{-}TO_{-}Si$ – величина перехода SiO в Si (п. 4.7.5),

 $Q_UD_SHL_i$ - удельный выход шлака (п. 4.7.6).

$$SiO_to_SHL = (Q_UD_SiO_{2i} - SiO_TO_Si) * 100/Q_UD_SHL_i$$

4.7.3 Общее удельное содержание оксида алюминия

 Al_2O_3 – содержание оксида алюминия в X/C доменной шихты (п. 2.5.1),

 $Q_UD_dP_i$ – удельный расход материалов шихты по каждой печи (п.4.1).

4.7.3.1. Удельное содержание оксида алюминия в каждом компоненте шихты

$$Q_{-}UD_{-}Al_{2}O_{3j} = \frac{Q_{-}UD_{-}dP_{j}*Al_{2}O_{3j}}{100}, \qquad \frac{\mathrm{K}\Gamma}{\mathrm{T}}$$
чугуна

4.7.3.2. Удельное содержание оксида алюминия в коксе

 VN_{AL} - значение вноса алюминия (п. 2.5.1),

 $T_{-}UD_{-}KOK_{i}$ — значение удельного расхода кокса (п.4.6.5).

$$Q_KOK_Al_2O_3 = VN_AL * T_UD_KOK_i * 0.0014,$$
 $\frac{\mathsf{K}\Gamma}{\mathsf{T}}$ чугуна

4.7.3.3. Общее удельное содержание оксида алюминия

$$Q_UD_Al_2O_{3\,i} = Q_KOK_Al_2O_3 + \sum Q_UD_Al_2O_{3\,j}$$
, $\frac{\mathrm{K}\Gamma}{\mathrm{T}}$ чугуна

4.7.3.4. Содержание Al₂O₃ в шлаке

 $Q_UD_SHL_i$ - удельный выход шлака (п. 4.7.6).

$$Al_2O_3_{to}SHL = Q_UD_Al_2O_{3i} * 100/Q_UD_SHL_{i}$$

4.7.4 Общее удельное содержание оксида магния

MgO — содержание оксида магния в X/C доменной шихты (п. 2.5.1),

 $Q_{-}UD_{-}dP_{i}$ — удельный расход материалов шихты по каждой печи (п.4.1).

4.7.4.1. Удельное содержание оксида магния в каждом компоненте шихты

$$Q_UD_MgO_j = \frac{Q_UD_dP_j * MgO}{100}$$
, $\frac{\mathrm{K}\Gamma}{\mathrm{T}}$ чугуна

4.7.4.2. Удельное содержание оксида магния в коксе

 $VN_{-}MG$ - значение вноса магния (п. 2.5.1),

 $T_{-}UD_{-}KOK_{i}$ — значение удельного расхода кокса (п.4.6.5).

$$Q_KOK_MgO = VN_MG * T_UD_KOK_i * 0.0014, \qquad \frac{\mathrm{K}\Gamma}{\mathrm{T}}$$
чугуна

4.7.4.3. Общее удельное содержание оксида магния

$$Q_UD_MgO_i = Q_KOK_MgO + \sum Q_UD_MgO_j$$
 , $\frac{\mathrm{K}\Gamma}{\mathrm{T}}$ чугуна

4.7.4.4. Содержание MgO в шлаке

 $Q_UD_SHL_i$ - удельный выход шлака (п. 4.7.6).

$$MgO_to_SHL = Q_UD_MgO_i * 100/Q_UD_SHL_i$$

4.7.5 Переход оксида кремния в кремний

CH SI — качество чугуна (п 4.4),

 $Q_UD_FE_i$ – удельный заданный расход железа по печи (п.4.2).

$$SiO_TO_Si = \frac{Q_UD_FE_i * CH_SI * 15}{658}$$

4.7.6 Удельный выход шлака

4.7.6.1. Общее удельное содержание фосфора

 $Q_{-}UD_{-}P_{i}$ – общее удельное содержание фосфора без учета кокса (п.4.6.1),

 VN_{P} - значение вноса фосфора (п. 2.5.1),

 $T_{-}UD_{-}KOK_{i}$ — значение удельного расхода кокса (п.4.6.5).

$$Q_KOK_P = VN_P * T_UD_KOK_i * 0.0014,$$
 $\frac{\mathsf{K}\Gamma}{\mathsf{T}}$ чугуна $Q_AG_P_i = Q_UD_P_i + Q_KOK_P,$ $\frac{\mathsf{K}\Gamma}{\mathsf{T}}$ чугуна

4.7.6.2. Удельный выход шлака

 $Q_{-}UD_{-}CaO_{i}$ – посчитан в п.4.7.1.3,

 $Q_{-}UD_{-}SiO_{2,i}$ – посчитан в п.4.7.2.3,

 $Q_{-}UD_{-}Al_{2}O_{3i}$ – посчитан в п.4.7.3.3, $Q_{-}UD_{-}MgO_{i}$ – посчитан в п.4.7.4.3,

 $SiO_{-}TO_{-}Si$ — посчитан в п.4.7.5,

 $Q_AG_P_i$ – посчитан в п.4.7.6.1.

$$Q_UD_SHL_i = Q_UD_CaO_i + Q_UD_SiO_{2\ i} + Q_UD_Al_2O_{3\ i} + Q_UD_MgO_i + Q_AG_P_i - SiO_TO_Si, \\ \frac{\mathsf{K}\Gamma}{\mathsf{T}} \mathsf{чугуна}$$

4.8 Основность шлака

4.8.1 CaO/SiO2

 $Q_{-}UD_{-}CaO_{i}$ — посчитан в п.4.7.1.3,

 $Q_UD_SiO_{2i}$ – посчитан в п.4.7.2.3.

$$OS_SHL_i = \frac{Q_UD_CaO_i}{Q_UD_SiO_2 i - SiO_TO_Si}$$

4.8.2 (CaO+MgO)/SiO2

 $Q_{-}UD_{-}CaO_{i}$ — посчитан в п.4.7.1.3,

 $Q_UD_SiO_{2i}$ – посчитан в п.4.7.2.3,

 $Q_UD_MgO_i$ – посчитан в п.4.7.4.

$$OS_MgO_SHL_i = \frac{Q_UD_CaO_i + Q_UD_MgO_i}{Q_UD_SiO_{2,i} - SiO_TO_Si}$$

4.9 Расчетная производительность чугуна

4.9.1 Сумма отклонений производительности с учетом кокса

 dN_i — рассчитаны в п.4.5.19,

 $Q_{-}P_{-}CH_{i}$ — посчитан в п.4.6.2,

DP_P_DN01, N_P_DN01, N_DP – заданы в п.2.5

$$dN_{-}P_{-}DN01 = (-1) * \frac{(Q_{-}P_{-}CH - DP_{-}P_{-}DN01) * N_{-}P_{-}DN01 * N_{-}DP_{-}}{10}$$

$$dN_{-}AG_{i} = dN_{i} + dN_{-}P_{-}DN01, \quad \text{T/cyt}$$

4.9.2 Производство чугуна

 $dN_{-}AG_{i}$ – посчитана в п.4.9.1,

 $N_{-}DP_{i}$ — задается в п.2.5

$$Q_{-}CH_{i} = dN_{-}AG_{i} + N_{-}DP_{i},$$
 т/сут

4.10 Расчет цеховых общих показателей

4.10.1 Цеховая основность шлака

i – количество рассчитываемых печей,

 OS_SHL_i – посчитана в п.4.8 для каждой печи

$$OS_SHL_TS = \frac{\sum OS_SHL_i}{i}$$

4.10.2 Цеховое содержание фосфора в чугуне

n — количество печей,

 $Q_{-}P_{-}CH_{i}$ – посчитан в п.4.6.2,

$$Q_P_CH_TS = \frac{\sum Q_P_CH_i}{n}$$
, $\frac{\kappa\Gamma}{\Gamma}$ чугуна

4.10.3 Цеховое удельный выход шлака

n — количество печей,

 $Q_{-}UD_{-}SHL_{i}$ — посчитан в п.4.7.6.2.

$$Q_UD_SHL_TS = \frac{\sum Q_UD_SHL_i}{n}, \qquad \frac{\mathrm{K}\Gamma}{\mathrm{T}}$$
чугуна

4.10.4 Общецеховое потребление кислорода:

 $Q_{-}O_{i}$ – рассчитан в п.4.4.2 для каждой печи

$$Q_{-}O_{-}TS = \sum Q_{-}O_{i}$$
, тыс $\frac{M^{3}}{\text{час}}$

4.10.5 Общий процент содержания кислорода

 $Q_{-}DU_{i}$ – введен в п.4.4 для каждой печи

$$A_{-}O_{-}TS = 21 + 1.25 * \frac{Q_{-}O_{-}TS}{\sum Q_{-}DU_{i}} * 1000,$$
 %

4.10.6 Расход кислорода на тонну чугуна

 $O_{-}UD_{i}$ — введен в п.4.4 для каждой печи,

 $V_{-}dP_{i}$ — введен в п.2.3 для каждой печи

$$O_UD_TS = \frac{\sum (O_UD_i * V_dP_i)}{\sum V dP_i}, \frac{M^3}{T}$$

4.10.7 Расход природного газа

 $Q_{-}PG_{i}$ — посчитан в п.4.4.2,

$$Q_PG_TS = \sum Q_PG_i$$
, тыс $\frac{M^3}{4ac}$

4.10.8 Расход природного газа на тонну чугуна

 $Q_{-}UD_{-}PG_{i}$ – введен в п.4.4,

 $V_{-}dP_{i}$ – введен в п. 2.3 для каждой печи

$$Q_{_}UD_{_}PG_{_}TS = \frac{\sum (Q_{_}UD_{_}PG_i * V_{_}dP_i)}{\sum V_{_}dP_i}, \qquad \frac{\mathsf{M}^3}{\mathsf{T}}$$

4.10.9 Общее содержание мелочи в шихте

 MEL_SH_i — посчитано в п.4.4.2 для каждой печи, Q_TS_AG , Q_dP_i — посчитаны в пп.4.1.3, 4.1.4.

$$MEL_SH_TS = \frac{\sum (MEL_SH_i * Q_dP_i)}{O \ TS \ AG}, \quad \%$$

4.10.10 Общее содержание кокса М25

 $KOK_{-}M25_{i}$ – задан в п. 4.4.2,

 $T_{-}UD_{-}KOK_{i}$ — посчитан для каждой печи в п.4.6.5,

 $V_{-}dP_{i}$ – введен в п. 2.3 для каждой печи

$$KOK_M25_TS = \frac{\sum (KOK_M25_i * T_UD_KOK_i * V_dP_i)}{\sum (T_UD_KOK_i * V_dP_i)}, \qquad \%$$

4.10.11 Общее содержание кокса М10

 KOK_M10_i – задан в п. 4.4.2,

 $T_{-}UD_{-}KOK_{i}$ — посчитан для каждой печи в п.4.6.5,

 $V_{-}dP_{i}$ – введен в п. 2.3 для каждой печи

$$KOK_M10_TS = \frac{\sum (KOK_M10_i * T_UD_KOK_i * V_dP_i)}{\sum (T_UD_KOK_i * V_dP_i)}, \qquad \%$$

4.10.12 Общее содержание кремния

 $CH SI_i$ — введен в п. 4.4.2,

 $V_{-}dP_{i}$ – введен в п. 2.3 для каждой печи

$$CH_SI_TS = \frac{\sum (CH_SI_i * V_dP_i)}{\sum V_dP_i}, \qquad \%$$

4.10.13 Общее содержание марганца

 $CH_{-}MN_{i}$ — введен в п. 4.4.2,

 $V_{-}dP_{i}$ – введен в п. 2.3 для каждой печи

$$CH_MN_TS = \frac{\sum (CH_MN_i * V_dP_i)}{\sum V_dP_i}, \qquad \%$$

4.10.14 Средняя температура дутья

 $T_{-}DU_{i}$ — введен в п. 4.4.2,

 $Q_{-}DU_{i}$ — введен в п. 4.4.2.

$$T_DU_TS = \frac{\sum (T_DU_i * Q_DU_i)}{\sum Q_DU_i}, \qquad \mathscr{C}$$

4.10.15 Среднее давление колошникового газа

 $P_{-}KL_{i}$ — введен в п. 4.4.2,

 $Q_{-}DU_{i}$ – введен в п. 4.4.2.

$$P_{-}KL_{-}TS = \frac{\sum (P_{-}KL_{i} * Q_{-}DU_{i})}{\sum Q_{-}DU_{i}}, \quad \text{atm}$$

4.10.16 Среднее время простоя

 $T_{-}ID_{i}$ — введен в п. 4.4.2,

 $Q_{-}O_{i}$ – рассчитан в п. 4.4.2 для каждой печи

$$T_ID_TS = \frac{\sum (T_ID_i * Q_O_i)}{\sum Q_O_i}, \quad \%$$

4.10.17 Среднее время работы на тихом ходу

 $O_{-}UD_{i}$ – введен в п. 4.4.2 для каждой печи,

 $T_{-}LO_{i}$ — введен в п. 4.4.2 для каждой печи,

$$T_{L}O_{T}S = \frac{\sum (O_{-}UD_{i} * T_{-}LO_{i})}{\sum O_{-}UD_{i}}, \qquad \%$$

4.10.18 Цеховой расход кокса

 $T_{-}UD_{-}KOK_{i}$ — посчитан для каждой печи в п.4.6.5,

 $V_{-}dP_{i}$ – введен в п. 2.3 для каждой печи

$$UD_KOK_TS = \frac{\sum (T_UD_KOK_i * V_dP_i)}{\sum V_dP_i}$$
, кг/т чугуна

4.10.19 Цеховой расход антрацита

 $T_{-}UD_{-}AN_{i}$ — задан в п. 4.4.2,

 $V_{-}dP_{i}$ – введен в п. 2.3 для каждой печи

$$UD_AN_TS = rac{\sum (T_UD_AN_i * V_dP_i)}{\sum V_dP_i}$$
, кг/т чугуна

4.10.20 Цеховая расчетная производительность чугуна

 $Q_{-}CH_{i}$ – посчитана в п.4.9.2

$$Q_CH_TS = \sum Q_CH_i$$
, $ext{т/cyt}$

4.10.21 Среднее качество кокса кокса

n – количество печей,

 $dDP_{-}K_{-}UPM25_{i}$ — заданы в п.2.5 по каждой печи

 $dDP_K_DNM10_i$ – заданы в п.2.5 по каждой печи

 $dDP_{-}Z_{-}DN1_{i}$ – заданы в п.2.5 по каждой печи

Среднее содержание кокса М25:

$$dDP_K_UPM25_TS = \frac{\sum dDP_K_UPM25_i}{n}$$

Среднее содержание кокса М10:

$$dDP_K_DNM10_TS = \frac{\sum dDP_K_DNM10_i}{n}$$

Среднее содержание золы

$$dDP_Z_DN1_TS = \frac{\sum dDP_Z_DN1_i}{n}$$

5 итоговые отчеты

5.1 Расчет за месяц

Итогом расчета является месячный отчет, полученный после произведения расчетов шихты АФ и ДЦ. Переход к расчету происходит при нажатии клавиши «расчет Итог» на странице расчета шихты ДЦ.

После того как будут введены необходимые данные и итоговый отчет будет завершен его необходимо будет сохранить. Процесс сохранения происходит следующим образом – первоначально для каждого месячного отчета будет доступна клавиша «добавить к сравнению», которая в свою очередь будет сохранять данный вариант месячного отчета, для дальнейшего сравнения в таблице «Сравнение». В эту таблицу можно будет добавить до пяти различных вариантов итоговых отчетов за один месяц. Для добавления, как и в первый раз необходимо будет нажать на клавишу «Добавить к сравнению».

В случае, если в различных вариантах расчета использовался различный компонентный состав шихты, в таблице «Сравнение» должны отображаться все используемые материалы в совокупности (если в конкретном расчете нет определенного материала, то в этих строчках выставлять нули).

Для того чтобы изменить уже существующий вариант итогового месячного отчета необходимо нажать клавишу «Сохранить расчет», в этом случае данный вариант обновится согласно последним внесенным данным.

Внешний вид итогового расчета и соответственно отчета за месяц представлен на рис.19-22, логически его можно разделить на две части: расчётные нормы расхода ЖРС на производство агломерата и чугуна за конкретный месяц.

Heoбходимо, чтобы была возможность вывода данных на печать и в Excel.

В месячном отчете представлены следующие итоговые значения:

- содержание железа, влажность и ППП в % материалов шихты АФ и ДЦ;
- удельный расход аглосмеси, железофлюсовой смеси, агломерата и чугуна;
- потребность в материалах для производства.

Перечень входных данных:

- *Vpr_t_sum* объем полученного из шихты агломерата, тонн (п.3.13);
- $Fe_{i,i}, W_{i,i}, \Pi\Pi\Pi_{i,i}$ компоненты X/С шихтовых материалов, % (пункт 2.5.1);
- $Q_v lag_k g t_{ij}$ удельный расход влажного материала, кг/т (пункт 3.14);
- $Q_{suh}kgt_{i,i}$ удельный расход сухого материала, кг/т (пункт 3.15);
- Fe_agl значение Fe прогнозируемого агломерата, % (пункт 3.23);
- CaO_SiO2_agl основность прогнозируемого агломерата (пункт 3.28);

- V_AG совокупный объем производства по печам (п.4.1.2);
- $Q_UD_TS_i$ удельный общий расход каждого типа ЖРС по всем печам (п.4.1.3);
- *Q FE SH TS* содержание Fe в шихте по цеху (п.4.2.3);
- Q_UD_FE_TS удельный расход Fe по цеху (п.4.2.3);
- *UD_SK_TS* потери по скрапу (п.4.3.3);
- FE_LOSS_TS потери по цеху (п.4.3.3);
- *O UD TS* общецеховой удельный кислород (п.4.10.6);
- *Q_UD_PG_TS* общецеховой удельный природный газ (п.4.10.8);
- *CH_SI_TS* общее содержание кремния (п.4.10.12);
- *T_DU_TS* средняя температура дутья (п.4.10.14);
- P_KL_TS среднее давление колошникового газа (п.4.10.15);
- *KOK_M25_TS* общее содержание кокса M25 (п.4.10.10);
- *КОК М10 TS* общее содержание кокса М10 (п.4.10.11);
- *UD_KOK_TS* цеховой расход кокса (п.4.10.18);
- UD_AN_TS цеховой расход антрацита (п.4.10.19);
- *KP* доля КП в производстве доменного цеха (п.3);
- *FE LOSS TS* общие потери по цеху (п.4.3.3);
- UD FeO CH TS удельные химически связанные потери (п. 4.3.3);
- $UD_UND_LOSS_TS$ удельные неустановленные потери (п. 4.3.3);
- *DP_Z_DN1_TS* среднее содержание золы (п. 4.10.21);
- *O UD SHL TS* выход шлака (п.4.7.6.2);
- $Q_P_CH_TS$ содержание фосфора в чугуне (п.4.10.2).

Перечень данных вводимых руками:

- UD_KOK10_TS расход скипового кокса фракции 10-25 мм, кг/т;
- UD_KOK10_OUT- выход кокса фракции 0 -10 мм, кг/т;
- *UD_KOK*25_*OUT* выход кокса фракции 10 25 мм, кг/т;
- Q_UD_FE_FLC расход ферросплавов на чугун для ФЛЦ, кг/т;
- $Q_UD_FE_KZAHL$ расход ферросплавов на чугун для КЗАХЛ, кг/т.

Перечень расчетных данных:

- *V_pr_month* план производства АФ на месяц, кг/т;
- Q_itog_rud итого рудной части агломерата, кг/т;
- Q_itog_fer- итого железофлюсовой части агломерата, кг/т;
- Q_itog_res итого сырья на агломерат, кг/т;

- Q_itog_izv итого извести на агломерат, кг/т;
- Q_itog_agl итого аглосмеси на агломерат, кг/т;
- *Q_smes_plan* плановый расход аглосмеси, кг/т;
- *Q_flus_plan* плановый расход железофлюсовой смеси, кг/т;
- $Q_smes_{i,i}$ расход материалов для производства аглосмеси, кг/т;
- *Q_smes_itog_rud* итого рудной части аглосмеси, кг/т;
- $Q_flus_{i,j}$ расход материалов для производства железофлюсовой смеси, кг/т;
- Q_flus_itog итого железофлюсовой смеси, кг/т;
- $Q_smes_itog_fer$ итого железофлюсовых материалов для производства аглосмеси, кг/т;
- Q_smes_itog_res итого сырья на аглосмесь, кг/т;
- $Q_smes_itog_izv$ итого извести на аглосмесь, кг/т;
- Q_smes_itog_agl итого аглосмеси, кг/т;
- Lost потери;
- $Potreb_{i,j}$ потребность в конкретных материалах на производство АФ2, тыс.т;
- SUM_AGL_DC итого агломерата на производство чугуна, кг/т;
- *SUM_OKAT_DC* итого окатышей на производство чугуна, кг/т;
- SUM_FE_DC итого металлодобавки на производство чугуна, кг/т;
- SUM_FE_SH итого металлошихты на производство чугуна, кг/т;
- SUM OTHER DC итого прочее на производство чугуна, кг/т;
- SUM_FLUS_DC итого флюсы на производство чугуна, кг/т;
- SUM ALL DC итого материалов на производство чугуна, кг/т;
- UD KOK25 TS расход скипового кокса (фр. 25 мм) на производство чугуна, кг/т;
- $UD_SK_TS_prv$ возврат скрапа от производства чугуна, кг/т;
- UD SK TS LIT возврат скрапа с литейных дворов от производства чугуна, кг/т;
- *KOK*10 *TS* возврат кокса (фр. 10 мм) от производства чугуна, кг/т;
- *KOK*25 *TS* возврат кокса (фр. 25 мм) от производства чугуна, кг/т;
- TECH LOSS FE технологические потери железа (безвозврат. отходы), кг/т;
- *TECH_LOSS_SH* технологические потери шихты при производстве чугуна, кг/т;
- $Potreb_DC_i$ потребность в конкретных материалах на производство ДЦ, тыс.т.

Рис. 19 – Итоговый месячный отчет (первая часть)

Агл	лосмесь				(Q_smes_itog_agl	Q_itog_agI	
Me	пользуемый известняк						Q_vlag_kgt i,j	
VIC	пользуемый известняк						Q_viag_kgt i,j	
		Feiji	:∃ ⊗	i, nnn				Potreb i,
Ис	пользуемое топливо	_		_			Q_suh_kgt i,j	
Ан	трацит АМСШ фр. 0-25мм, влажный						Q_vlag_kgt i,j	
	руемые						Fe_agI	
	жание железа в агломерате						CaO_SiO2_agI	
потери	юсть по CaO/SiO2						Lost	
потери	1						2030	
	наименование материала	Содержание		ппп, %		янв.19		
		Содержание	Влажность W,%	ппп, %				
2 Вь				ппп,%			кг/т чугуна V_AG	ДЦ
	Наименование материала			ппп, %			кг/т чугуна	ДЦ
ру	Наименование материала	Fe,%	W,%				кг/т чугуна V_AG	
руд	Наименование материала ыплавка чугуна, план производства: гда доменная Михайловского ГОКа			nnn, %			кг/т чугуна	
py, an an an	Наименование материала мплавка чугуна, план производства: /да доменная Михайловского ГОКа ломерат ВГОКа ломерат ЧМК а/ф № 2 ломерат Высокогрского ГОКа	Fe,%	W,%				кг/т чугуна V_AG G_UD_TS j	
ру, агл агл агл Ит	Наименование материала мплавка чугуна, план производства: /да доменная Михайловского ГОКа ломерат ВГОКа ломерат ЧМК а/ф № 2 ломерат Высокогрского ГОКа	Fe,%	W,%				кг/т чугуна V_AG	
ру, агл агл Ит ок	Наименование материала мплавка чугуна, план производства: кда доменная Михайловского ГОКа ломерат ВГОКа ломерат ЧМК а/ф № 2 ломерат Высокогрского ГОКа гого агломерат катыши Михайловского ГОКа	Fe,%	W,%	nnn j			Kr/T ЧУГУНА V_AG G_UD_TS j SUM_AGL_DC	Potreb_DC
ру, агл агл агл Ит ок	Наименование материала мплавка чугуна, план производства: /да доменная Михайловского ГОКа ломерат ВГОКа ломерат ЧМК а/ф № 2 ломерат Высокогрского ГОКа гого агломерат катыши Михайловского ГОКа катыши Качканарского ГОКа	Fe,%	W,%				кг/т чугуна V_AG G_UD_TS j	Potreb_DC
ру, агл агл Ит ок ок	Наименование материала мплавка чугуна, план производства: гда доменная Михайловского ГОКа гломерат ВГОКа гломерат ЧМК а/ф № 2 гломерат Высокогрского ГОКа гого агломерат катыши Михайловского ГОКа катыши Качканарского ГОКа	Fe,%	W,%	nnn j			V_AG G_UD_TS j SUM_AGL_DC G_UD_TS j	Potreb_DC
ру, агл агл Ит ок ок ок	Наименование материала мплавка чугуна, план производства: гда доменная Михайловского ГОКа гломерат ВГОКа гломерат ЧМК а/ф № 2 гломерат Высокогрского ГОКа гого агломерат катыши Михайловского ГОКа катыши Качканарского ГОКа катыши Костомукшского ГОКа	Fe,%	W,%	nnn j			Kr/T ЧУГУНА V_AG G_UD_TS j SUM_AGL_DC	Potreb_DC
ру, агл агл Ит ок ок ок Ит	Наименование материала мплавка чугуна, план производства: гда доменная Михайловского ГОКа гломерат ВГОКа гломерат ЧМК а/ф № 2 гломерат Высокогрского ГОКа гого агломерат катыши Михайловского ГОКа катыши Качканарского ГОКа катыши Костомукшского ГОКа гого окатыши микеты промывочные БП-60 (10018)	Fe,%	W,%	nnn j			V_AG G_UD_TS j SUM_AGL_DC G_UD_TS j	Potreb_D(
ру, апл апл ок ок ок ок обр	Наименование материала мплавка чугуна, план производства: да доменная Михайловского ГОКа ломерат ВГОКа ломерат ЧМК а/ф № 2 ломерат Высокогрского ГОКа кого агломерат катыши Михайловского ГОКа катыши Качканарского ГОКа катыши Костомукшского ГОКа катыши Костомукшского ГОКа катыши Промывочные БП-60 (10018) кикеты промывочные Мечел-Материалы (10064)	Fe,%	W,%	nnn j			V_AG G_UD_TS j SUM_AGL_DC G_UD_TS j	Potreb_DC
руд агл агл ок ок ок ок бр бр	Наименование материала мплавка чугуна, план производства: да доменная Михайловского ГОКа ломерат ВГОКа ломерат ЧМК а/ф № 2 ломерат Высокогрского ГОКа гого агломерат катыши Михайловского ГОКа катыши Качканарского ГОКа катыши Костомукшского ГОКа гого окатыши инкеты промывочные БП-60 (10018) микетыпромывочные Мечел-Материалы (10064) оменный присад	Fe,%	W,%	nnnj			V_AG V_AG G_UD_TS j SUM_AGL_DC G_UD_TS j SUM_OKAT_DC	ДЦ Potreb_DC Potreb_DC
руд агл агл ок ок ок ок ор бр	Наименование материала мплавка чугуна, план производства: да доменная Михайловского ГОКа ломерат ВГОКа ломерат ЧМК а/ф № 2 ломерат Высокогрского ГОКа кого агломерат катыши Михайловского ГОКа катыши Качканарского ГОКа катыши Костомукшского ГОКа катыши Костомукшского ГОКа катыши Промывочные БП-60 (10018) кикеты промывочные Мечел-Материалы (10064)	Fe,%	W,%	nnnj			V_AG V_AG G_UD_TS j SUM_AGL_DC G_UD_TS j SUM_OKAT_DC	Potreb_DC

Рис. 20 – Итоговый месячный отчет (вторая часть)

Итого металлошихты				SUM_FE_SH
доменный щебень	En i	Wj	ппп ј	C LID TS: Betrob DC:
шунгиттовый щебень	Fej	VV J	1111111	G_UD_TS j Potreb_DC j
Итого прочие				SUM_OTHER_DC
конверторный шлак фр. 10-60 мм "Мечел-Материалы"				
известняк фр. 20 - 40 мм	F-:			C UD TO:
онверторный шлак фр. 10-100 мм "ЮУНК"	Fej	Wj	ппп ј	G_UD_TS j Potreb_DC j
кварцит				
1того флюсы				SUM_FLUS_DC
CEFO				SUM_ALL_DC
Содержание железа в шихте				Q_FE_SH_TS
Содержание кремния в чугуне				CH_SI_TS
Расход кислорода, м3/т				O_UD_TS Potreb_DC j
Расход природного газа, м3/т				Q_UD_PG_TS Polico_DC)
Гемпература горячего дутья				T_DU_TS
Давление газа на колошнике				P_KL_TS
Качество кокса, в том числе: М25				KOK_M25_TS
M10				KOK_M10_TS
Зола				DP_Z_DN1_TS
Расход скипового кокса, кг/т, в том числе:				UD_KOK_TS Potreb_DC j
фр. + 25 мм				UD_KOK25_TS
фр. 10 - 25 мм (со склада)				UD_KOK10_TS
Расход антрацита, кг/т				UD_AN_TS
Расход железа, кг/т				Q_UD_FE_TS Potreb_DC j
Возвратные отходы производства, в том числе:				
Колошниковая пыль, кг/т				KP KP
Скрап, кг/т, в том числе:				UD_SK_TS_prv
скрап с литейных дворов и ковшей, кг/т				UD_SK_TS_LIT Potreb_DC j
Шлак огненно-жидкий, кг/т				Q_UD_SHL_TS
Кокс фракции 0 -10 мм, кг/т				KOK10_TS
Кокс фракции 10 - 25 мм, кг/т				KOK25_TS
Выход кокса фракции 0 -10 мм, кг/т скипового кокса + 25 мм				UD_KOK10_OUT
Выход кокса фракции 10 - 25 мм, кг/т скипового кокса + 25 мм				UD_KOK25_OUT

Рис. 21 – Итоговый месячный отчет (третья часть)

Пла	нируемые Потери желе	3a			FE_LOSS_TS
16	Содержание фосфора в чугуне				Q_P_CH_TS
17	Расход ферросплавов на чугун для ФЛЦ, кг/т				Q_UD_FE_FLC
18	Расход ферросплавов на чугун для КЗАХЛ, кг/т				Q_UD_FE_KZAHL
19	Технологические потери железа (безвозврат отходы), кг/т				TECH_LOSS_FE
20	Технологические потери шихты при производстве чугуна, кг/т				TECH_LOSS_SH

Рис. 22 – Итоговый месячный отчет (четвертая часть)

5.1.1 Расчет норм расхода ЖРС на производство АФ2

5.1.1.1. V_pr_month - план производства АФ на месяц

Исходные данные для расчета:

• *Vpr_plan* – плановый объем производства агломерата по цеху, тонн (пункт 3).

$$V_pr_month = \frac{Vpr_plan}{1000}$$

5.1.1.2. Q_itog_rud - итого рудной части агломерата

Исходные данные для расчета:

• $Q_v lag_k g t_{i,j}$ удельный расход влажного материала, кг/т (пункт 3.14).

$$Q_itog_rud = \sum Q_vlag_kgt_{i,j}$$

Сумма производится по материалам типа: концентраты и аглоруды.

5.1.1.3. Q_itog_fer - итого железофлюсовой части агломерата

Исходные данные для расчета:

• $Q_v lag_k gt_{i,i}$ - удельный расход влажного материала, кг/т (пункт 3.14).

$$Q_itog_fer = \sum Q_vlag_kgt_{i,j}$$

Сумма производится по материалам типа: маргонцевые добавки, отходы, шлаки, отсевы.

5.1.1.4. Q_itog_izv - итого извести на производство агломерата

Исходные данные для расчета:

• $Q_v lag_k g t_{i,j}$ - удельный расход влажного материала, кг/т (пункт 3.14).

$$Q_{itog_{izv}} = \sum_{i} Q_{vlag_{i,j}}$$

Сумма производится по материалам типа: известь.

5.1.1.5. Q_itog_res - итого сырья на производство агломерата

Исходные данные для расчета:

- Q_itog_rud итого рудной части агломерата, кг/т (пункт 5.1.1.2);
- Q_itog_fer итого железофлюсовой части агломерата, кг/т (пункт 5.1.1.3).

$$Q_{itog_res} = Q_{itog_rud} + Q_{itog_fer}$$

5.1.1.6. Q_itog_agl - итого аглосмеси на производство агломерата

Исходные данные для расчета:

- Q_itog_res итого сырья на агломерат, кг/т (пункт 5.1.1.5);
- Q_itog_izv итого извести на агломерат, кг/т (пункт 5.1.1.4).

$$Q_{itog_agl} = Q_{itog_res} + Q_{itog_izv}$$

5.1.1.7. Q smes plan - плановый расход аглосмеси

Исходные данные для расчета:

- $Q_{itog_{agl}}$ итого аглосмеси на агломерат, кг/т (пункт 5.1.1.6);
- *V_pr_month* план производства АФ на месяц (пункт 5.1.1).

$$Q_smes_plan = Q_itog_agl * V_pr_month/1000$$

5.1.1.8. Q_flus_plan - плановый расход железофлюсовой смеси Исходные данные для расчета:

- Q_itog_fer итого железофлюсовой части агломерата, кг/т (пункт 5.1.1.3);
- *V_pr_month* план производства АФ на месяц (пункт 5.1.1).

$$Q_flus_plan = Q_itog_fer * V_pr_month/1000$$

5.1.1.9. Q_smes *i,j-* **расход материалов для производства аглосмеси** Исходные данные для расчета:

- *Q_smes_plan* плановый расход аглосмеси, кг/т (пункт 5.1.1.7);
- $Q_v lag_k g t_{i,j}$ удельный расход влажного материала, кг/т (пункт 3.14);
- *V_pr_month* план производства АФ на месяц (пункт 5.1.1).

$$Q_smes_{i,j} = Q_vlag_kgt_{i,j} * V_pr_month/Q_smes_plan$$

5.1.1.10. Q_flus *i,j***- расход материалов для производства железофлюсовой смеси** Исходные данные для расчета:

- *Q_flus_plan* плановый расход железофлюсовой, кг/т (пункт 5.1.1.8);
- $Q_v lag_k g t_{i,j}$ удельный расход влажного материала, кг/т (пункт 3.14);
- *V_pr_month* план производства АФ на месяц (пункт 5.1.1).

$$Q_flus_{i,j} = Q_vlag_kgt_{i,j} * V_pr_month/Q_flus_plan$$

5.1.1.11. Q_smes_itog_rud - итого рудной части аглосмеси

Исходные данные для расчета:

• $Q_smes_{i,j}$ – расход материалов для производства аглосмеси, кг/т (пункт 5.1.1.9).

$$Q_smes_itog_rud = \sum Q_smes_{i,j}$$

Сумма производится по материалам типа: концентраты и аглоруды.

5.1.1.12. Q_flus_itog - итого железофлюсовой смеси

Исходные данные для расчета:

• $Q_flus_{i,j}$ — расход материалов для производства железофлюсовой смеси, кг/т (пункт 5.1.1.10).

$$Q_flus_itog = \sum Q_flus_{i,j}$$

5.1.1.13. **Q_smes_itog_fer - итого железофлюсовых материалов для аглосмеси** Исходные данные для расчета:

- $Q_f lus_p lan$ плановый расход железофлюсовой, кг/т (пункт 5.1.1.8);
- Q_smes_plan плановый расход аглосмеси, кг/т (пункт 5.1.1.7).

$$Q_smes_itog_fer = Q_flus_plan * 1000/Q_smes_plan$$

5.1.1.14. Q_smes_itog_res - umoго сырья на аглосмесь

Исходные данные для расчета:

- $Q_smes_itog_rud$ итого рудной части аглосмеси, кг/т (пункт 5.1.1.11);
- $Q_smes_itog_fer$ итого железофлюсовых материалов для производства аглосмеси, кг/т (пункт 5.1.1.13).

$$Q_smes_itog_res = Q_smes_itog_rud + Q_smes_itog_fer$$

5.1.1.15. Q_smes_itog_izv - umoго извести на аглосмесь

Исходные данные для расчета:

• $Q_smes_{i,j}$ – расход материалов для производства аглосмеси, кг/т (пункт 5.1.1.9).

$$Q_smes_itog_izv \ = \ \sum Q_smes_{i,j}$$

Сумма производится по материалам типа: известь.

5.1.1.16. Q_smes_itog_agl - umoгo аглосмеси

Исходные данные для расчета:

- Q_smes_itog_res итого сырья на аглосмесь, кг/т (пункт 5.1.1.14);
- $Q_smes_itog_izv$ итого извести на аглосмесь, кг/т (пункт 5.1.1.15).

$$Q_smes_itog_agl = Q_smes_itog_res + Q_smes_itog_izv$$

5.1.1.17. Lost - потери

Исходные данные для расчета:

- $Q_v lag_k g t_{i,j}$ удельный расход влажного материала, кг/т (пункт 3.14);
- $Q_suh_kgt_{i,j}$ удельный расход сухого материала, кг/т (пункт 3.153.14);
- $Q \ itog \ agl$ итого аглосмеси на агломерат, кг/т (пункт 5.1.1.6).

$$A = \sum Q_vlag_kgt_{i,j}$$
 , сумма по типу известняк $B = \sum Q_suh_kgt_{i,j}$, сумма по типу топливо

 $C = Q_{-}vlag_{-}kgt_{i,j}$ (для материала Антрацит АМСШ фр. 0 — 25мм, влажный) $D = Q_{-}suh_{-}kgt_{i,j}$ (для материала Антрацит АМСШ фр. 0 — 25мм, сухой)

$$Lost = \frac{Q_itog_agl + A + B + C - D - 1000}{Q\ itog\ agl + A + B + C - D} * 100$$

5.1.1.18. Potreb_{i,j} – потребности в материалах для производства АФ

Исходные данные для расчета:

• $Q_v lag_k g t_{i,j}$ – удельный расход влажного материала, кг/т (пункт 3.14);

- $Q_suh_kgt_{i,j}$ удельный расход сухого материала, кг/т (пункт 3.153.14);
- V_pr_month план производства АФ на месяц (пункт 5.1.1).

Для материалов типа топливо формула расчета потребности:

$$Potreb_{i,j} = Q_suh_kgt_{i,j} * V_pr_month/1000$$

Для всех остальных типов материалов формула расчета потребности:

$$Potreb_{i,j} = Q_vlag_kgt_{i,j} * V_pr_month/1000$$

5.1.2 Расчет норм расхода ЖРС на производство ДЦ

- **5.1.2.1. SUM_AGL_DC - umoro агломерата на производство чугуна** Исходные данные для расчета:
 - $Q_UD_TS_i$ удельный общий расход каждого типа ЖРС по всем печам (п.4.1.3).

Расчет производится для следующих материалов: руда доменная Михайловского ГОКа, агломераты (ВГОКа, ЧМК АФ2, Высокогрского ГОКа).

$$SUM_AGL_DC = \sum_{i} Q_{i}UD_{i}TS_{j}$$

- **5.1.2.2. SUM_OKAT_DC итого окатышей на производство чугуна** Исходные данные для расчета:
 - $Q_UD_TS_i$ удельный общий расход каждого типа ЖРС по всем печам (п.4.1.3).

Расчет производится для следующих материалов: окатыши Михайловского ГОКа, Качканарского ГОКа, Костомукшского ГОКа.

$$SUM_OKAT_DC = \sum Q_UD_TS_j$$

- **5.1.2.3. SUM_FE_DC итого металлодобавки на производство чугуна** Исходные данные для расчета:
 - $Q_UD_TS_j$ удельный общий расход каждого типа ЖРС по всем печам (п.4.1.3).

Расчет производится для следующих материалов: брикеты промывочные БП-60 (10018), брикеты промывочные Мечел-Материалы (10064), доменный присад, сварочный шлак.

$$SUM_FE_DC = \sum Q_UD_TS_j$$

- **5.1.2.4. SUM_FE_SH -** *итого металлошихты на производство чугуна* Исходные данные для расчета:
 - SUM_AGL_DC итого агломерата на производство чугуна, кг/т (п.5.1.2.1);
 - SUM OKAT DC итого окатышей на производство чугуна, кг/т (п.5.1.2.2);
 - SUM_FE_DC итого металлодобавки на производство чугуна, кг/т (п.5.1.2.3).

$$SUM_FE_SH = SUM_AGL_DC + SUM_OKAT_DC + SUM_FE_DC$$

- 5.1.2.5. SUM_OTHER_DC итого прочее на производство чугуна Исходные данные для расчета:
 - $Q_UD_TS_i$ удельный общий расход каждого типа ЖРС по всем печам (п.4.1.3).

Расчет производится для следующих материалов: доменный щебень, шунгиттовый щебень.

$$SUM_OTHER_DC = \sum Q_UD_TS_j$$

5.1.2.6. SUM_FLUS_DC - итого флюсы на производство чугуна

Исходные данные для расчета:

• $Q_UD_TS_i$ - удельный общий расход каждого типа ЖРС по всем печам (п.4.1.3).

Расчет производится для следующих материалов: конверторный шлак фр. 10-60 мм "Мечел-Материалы", известняк фр. 20 - 40 мм, конверторный шлак фр. 10-100 мм "ЮУНК", кварцит.

$$SUM_FLUS_DC = \sum Q_UD_TS_j$$

5.1.2.7. SUM_ALL_DC- итого металлошихты на производство чугуна

Исходные данные для расчета:

- SUM_FE_SH итого металлошихты на производство чугуна, кг/т (п.5.1.2.4);
- SUM_OTHER_DC итого прочее на производство чугуна, кг/т (п.5.1.2.5);
- SUM_FLUS_DC итого флюсов на производство чугуна, кг/т (п.5.1.2.6).

$$SUM_ALL_DC = SUM_FLUS_DC + SUM_OTHER_DC + SUM_FE_SH$$

5.1.2.8. UD_KOK25_TS - расход скипового кокса (фр. 25 мм) на производство чугуна

Исходные данные для расчета:

- *UD_KOK_TS* цеховой расход кокса (п.4.10.18);
- *UD_KOK*10_*TS* расход скипового кокса фракции 10-25 мм, кг/т (п.5.1).

$$UD \ KOK25 \ TS = UD \ KOK \ TS - UD \ KOK10 \ TS$$

5.1.2.9. UD_SK_TS_prv - возврат скрапа от производства чугуна

Исходные данные для расчета:

• *UD SK TS* – потери по скрапу (п.4.3.3).

$$UD SK TS prv = UD SK TS/0.85$$

5.1.2.10. UD_SK_TS_LIT - возврат скрапа с литейных дворов от производства чугуна

Исходные данные для расчета:

• $UD_SK_TS_prv$ — возврат скрапа от производства чугуна, кг/т (п.5.1.2.9).

$$UD_SK_TS_LIT = UD_SK_TS_prv - 1$$

5.1.2.11. KOK10_TS - возврат кокса (фр. 10 мм) от производства чугуна

- *UD_KOK*10_*OUT* выход кокса фракции 0 -10 мм, кг/т (п. 5.1);
- UD_KOK25_TS расход скипового кокса (фр. 25 мм) на производство чугуна, кг/т (п.5.1.2.8).

$$KOK10_TS = UD_KOK10_OUT * UD_KOK25_TS/1000$$

5.1.2.12. KOK25_TS - возврат кокса (фр. 25 мм) от производства чугуна

- *UD KOK*25 *OUT* выход кокса фракции 10-25 мм, кг/т (п. 5.1);
- UD_KOK25_TS расход скипового кокса (фр. 25 мм) на производство чугуна, кг/т (п.5.1.2.8).

$$KOK25_TS = UD_KOK25_OUT * UD_KOK25_TS/1000$$

5.1.2.13. TECH_LOSS_FE - технологические потери железа (безвозврат. отходы)

- *UD_FeO_CH_TS* удельные химически связанные потери (п. 4.3.3);
- *UD_UND_LOSS_TS* удельные неустановленные потери (п. 4.3.3).

$$TECH\ LOSS\ FE\ = UD\ FeO\ CH\ TS + UD\ UND\ LOSS\ TS$$

5.1.2.14. TECH_LOSS_SH - технологические потери шихты при производстве чугуна

- *TECH_LOSS_FE* техн. потери железа (безвозврат. отходы), кг/т (п.5.1.2.13);
- *Q_FE_SH_TS* содержание Fe в шихте по цеху (п.4.2.3).

$$TECH_LOSS_SH = TECH_LOSS_FE * 100/Q_FE_SH_TS$$

5.1.2.15. Potreb_DCj – потребности в материалах для производства ДЦ

Исходные данные для расчета:

- *V_AG* совокупный объем производства по печам (п.4.1.2);
- $Q_UD_TS_i$ удельный общий расход каждого типа ЖРС по всем печам (п.4.1.3);
- *O UD TS* общецеховой удельный кислород (п.4.10.6);
- *Q_UD_PG_TS* общецеховой удельный природный газ (п.4.10.8);
- *UD KOK TS* цеховой расход кокса (п.4.10.18);
- UD_KOK25_TS расход скипового кокса (фр. 25 мм) на производство чугуна, кг/т (п.5.1.2.8);
- Q_UD_FE_TS удельный расход Fe по цеху (п.4.2.3);
- *KP* доля КП в производстве доменного цеха (п.3);
- *UD_SK_TS_LIT* возврат скрапа с литейных дворов от производства чугуна, кг/т (п.5.1.2.10);
- *Q UD SHL TS* выход шлака (п.4.7.6.2);
- *KOK*10_*TS* возврат кокса (фр. 10 мм) от производства чугуна, кг/т (п.5.1.2.11);
- *KOK*25_*TS* возврат кокса (фр. 25 мм) от производства чугуна, кг/т (п.5.1.2.12).

Для всех материалов формула расчета потребности общая, за исключением первого множителя, который зависит от номера строки и названия материала на ней рассчитываемого.

Для примера расчет потребности в руде доменной Михайловского ГОКа:

$$Potreb_DC_1 = Q_UD_TS_1 * V_AG/1000$$

5.2 Таблица сравнения вариантов

Переход в эту таблицу происходит при нажатии на клавишу «Просмотр» в главном меню и выборе таблицы «Сравнение». В этой таблице отображаются варианты, добавленные из итоговой расчетной таблицы «отчет за месяц».

Для изменения старого варианта необходимо выбрать его нажатием на соответствующий переключатель, а затем нажать клавишу «Изменить». В итоговом расчете в этом случае будет доступна только клавиша «Сохранить расчет», которая сохранит изменения в данном варианте.

Для добавления нового варианта необходимо нажать на клавишу «Новый вариант», после этого мы перейдем в начало расчета с константами, соответствующими этому месяцу. В итоговом расчете в этом случае будет доступна только клавиша «Добавить к сравнению», которая сохранит данный вариант в таблицу сравнения.

Для того чтобы выбрать нужный вариант основным (который затем будет отображаться в месячных, квартальных и годовых отчетах) необходимо выбрать его нажатием на соответствующий переключатель, а затем нажать клавишу «Сделать основным».

Внешний вид с формулами представлен на рисунках 23-25.

Все входные и выходные данные соответствуют данным из итогового расчета (п.5.1).

Рис. 23 – Таблица сравнения вариантов (первая часть)

Используемый известняк	Q_vlag_kgt i,j	⋾		3	3	3				
Используемое топливо	O sub katii	O sub katii	O gub katii	O sub katii	O sub katii	Potreb i,j	Potreb i,j	Potreb i,j	Potreb i,j	Potreb i,j
антрацит АМСШ фр. 0-25мм, влажный	Q_suh_kgt i,j Q_vlag_kgt i,j									
ланируемые										
одержание железа в агломерате	Fe_agl_plan	Fe_agl_plan	Fe_agl_plan	Fe_agl_plan	Fe_agl_plan					
сновность по CaO/SiO2	CaO_SiO2_ag		CaO_SiO2_agl							
отери	Lost	Lost	Lost	Lost	Lost					
Наименование материала 2 Выплавка чугуна, план производства:	B-1 V_AG	B-2 V_AG	B-3 V_AG	B-4 V_AG	B-5 V AG			ДЦ	I	
руда доменная Михайловского ГОКа	V_AG	v_AG	V_AG	V_AG	V_AG					
агломерат ВГОКа	G_UD_TS j	Potreb_DC j	Potreb_DC j	Potreb_DC j	Potreb_DC j	Potreb_DC				
агломерат ЧМК а/ф № 2 агломерат Высокогрского ГОКа										
Итого агломерат	SUM_AGL_DC	SUM_AGL_DC	SUM_AGL_DC	SUM_AGL_DC	SUM_AGL_DC					
окатыши Михайловского ГОКа окатыши Качканарского ГОКа окатыши Костомукшского ГОКа	G_UD_TS j	G_UD_TS j	G_UD_TSj	G_UD_TS j	G_UD_TS j	Potreb_DC j	Potreb_DC j	Potreb_DC j	Potreb_DC j	Potreb_DC
Итого окатыши	SUM_OKAT_DC	SUM_OKAT_DC	SUM_OKAT_DC	SUM_OKAT_DC	SUM_OKAT_DC					
брикеты промывочные БП-60 (10018) брикетыпромывочные Мечел-Материалы (10064) доменный присад сварочный шлак	G_UD_TS j	Potreb_DC j	Potreb_DC j	Potreb_DC j	Potreb_DC j	Potreb_DC				
Итого металлодобавки	SUM_FE_DC	SUM_FE_DC	SUM_FE_DC	SUM_FE_DC	SUM_FE_DC					
			JOH _ I L_DC	30M_1 L_DC	50M_1 L_DC					
Итого металлошихты	SUM FE SH		SUM FE SH	SUM FE SH	SUM FE SH					
Итого металлошихты доменный щебень	SUM_FE_SH	SUM_FE_SH	SUM_FE_SH	SUM_FE_SH	SUM_FE_SH	Daniel Bar	Barrata Barra	David Dav	Barrata Barr	B
			SUM_FE_SH G_UD_TS j	SUM_FE_SH G_UD_TS j	SUM_FE_SH G_UD_TS j	Potreb_DC j	Potreb_DC j	Potreb_DC j	Potreb_DC j	Potreb_DC

Рис. 24 – Таблица сравнения вариантов (вторая часть)

конверторный шлак фр. 10-60 мм "Мечел-Материалы"				İ							
известняк фр. 20 - 40 мм											
конверторный шлак фр. 10-100 мм "ЮУНК"	G_UD_TS j		Potreb_DC j	Potreb_DC j	Potreb_DC j	Potreb_DC j					
кварцит											
Итого флюсы	SUM_FLUS_DC	SUM_FLUS_DC	SUM_FLUS_DC	SUM_FLUS_DC	SUM_FLUS_DC	L			l		
ВСЕГО	SUM_ALL_DC	SUM_ALL_DC	SUM_ALL_DC	SUM_ALL_DC	SUM_ALL_DC						
Содержание железа в шихте	Q_FE_SH_TS	Q_FE_SH_TS	Q_FE_SH_TS	Q_FE_SH_TS	Q_FE_SH_TS						
Содержание кремния в чугуне	CH_SI_TS	CH_SI_TS	CH_SI_TS	CH_SI_TS	CH_SI_TS						
Расход кислорода, м3/т	O_UD_TS	O_UD_TS	O_UD_TS	O_UD_TS	O_UD_TS		Potreb_DC j	Potreb_DC j	Potreb_DC j	Potreb_DC j	
Расход природного газа, м3/т	Q_UD_PG_TS	Q_UD_PG_TS	Q_UD_PG_TS	Q_UD_PG_TS	Q_UD_PG_TS		Potreb_DC j	Potreb_DC j	Potreb_DC j	Potreb_DC j	
Температура горячего дутья	T_DU_TS	T_DU_TS	T_DU_TS	T_DU_TS	T_DU_TS						
Давление газа на колошнике	P_KL_TS	P_KL_TS	P_KL_TS	P_KL_TS	P_KL_TS						
Качество кокса, в том числе: М25	KOK_M25_TS	KOK_M25_TS	KOK_M25_TS	KOK_M25_TS	KOK_M25_TS						
M10	KOK_M10_TS	KOK_M10_TS	KOK_M10_TS	KOK_M10_TS	KOK_M10_TS						
3ола	DP_Z_DN1i	DP_Z_DN1i	DP_Z_DN1i	DP_Z_DN1i	DP_Z_DN1i						
Расход скипового кокса, кг/т, в том числе:	UD_KOK_TS	UD_KOK_TS	UD_KOK_TS	UD_KOK_TS	UD_KOK_TS		Potreb_DC j	Potreb_DC j	Potreb_DC j	Potreb_DC j	
фр. + 25 мм	UD_KOK25_TS	UD_KOK25_TS	UD_KOK25_TS	UD_KOK25_TS	UD_KOK25_TS		Potreb_DC j	Potreb_DC j	Potreb_DC j	Potreb_DC j	
фр. 10 - 25 мм (со склада)	UD_KOK10_TS	UD_KOK10_TS	UD_KOK10_TS	UD_KOK10_TS	UD_KOK10_TS						
1 Расход антрацита, кг/т	UD_AN_TS	UD_AN_TS	UD_AN_TS	UD_AN_TS	UD_AN_TS						
2 Расход железа, кг/т	Q_UD_FE_TS	Q_UD_FE_TS	Q_UD_FE_TS	Q_UD_FE_TS	Q_UD_FE_TS		Potreb_DC j	Potreb_DC j	Potreb_DC j	Potreb_DC j	
3 Возвратные отходы производства, в том числе:											
Колошниковая пыль, кг/т	KP	KP	KP	KP	KP						
Скрап, кг/т, в том числе:	UD_SK_TS_prv	UD_SK_TS_prv	UD_SK_TS_prv	UD_SK_TS_prv	UD_SK_TS_prv						
скрап с литейных дворов и ковшей, кг/т	UD_SK_TS_LIT	UD_SK_TS_LIT	UD_SK_TS_LIT	UD_SK_TS_LIT	UD_SK_TS_LIT		Potreb_DC j	Potreb_DC j	Potreb_DC j	Potreb_DC j	
Шлак огненно-жидкий, кг/т	Q_UD_SHL_TS	Q_UD_SHL_TS	Q_UD_SHL_TS	Q_UD_SHL_TS	Q_UD_SHL_TS		rotteb_bcj	roueb_bcj	rotteb_bcj	rotteb_bcj	
Кокс фракции 0 -10 мм, кг/т	KOK10_TS	KOK10_TS	KOK10_TS	KOK10_TS	KOK10_TS						
Кокс фракции 10 - 25 мм, кг/т	KOK25_TS	KOK25_TS	KOK25_TS	KOK25_TS	KOK25_TS						
4 Выход кокса фракции 0 -10 мм, кг/т скипового кокса + 25 мм	UD_KOK10_OUT	UD_KOK10_OUT	UD_KOK10_OUT	UD_KOK10_OUT	UD_KOK10_OUT						
5 Выход кокса фракции 10 - 25 мм, кг/т скипового кокса + 25	UD_KOK25_OUT	UD_KOK25_OUT	UD_KOK25_OUT	UD_KOK25_OUT	UD_KOK25_OUT						
панируемые Потери железа	FE_LOSS_TS	FE_LOSS_TS	FE_LOSS_TS	FE_LOSS_TS	FE_LOSS_TS						
6 Содержание фосфора в чугуне	Q_P_CH_TS	Q_P_CH_TS	Q_P_CH_TS	Q_P_CH_TS	Q_P_CH_TS						
7 Расход ферросплавов на чугун для ФЛЦ, кг/т	Q_UD_FE_FLC	Q_UD_FE_FLC	Q_UD_FE_FLC	Q_UD_FE_FLC	Q_UD_FE_FLC						
В Расход ферросплавов на чугун для КЗАХЛ, кг/т	Q_UD_FE_KZAHL	Q_UD_FE_KZAHL	Q_UD_FE_KZAHL	Q_UD_FE_KZAHL	Q_UD_FE_KZAHL						
9 Технологические потери железа (безвозврат отходы), кг/т	TECH_LOSS_FE	TECH_LOSS_FE	TECH_LOSS_FE	TECH_LOSS_FE	TECH_LOSS_FE						
0 Технологические потери шихты при производстве чугуна, кг/т	TECH LOSS SH	TECH_LOSS_SH	TECH_LOSS_SH	TECH_LOSS_SH	TECH_LOSS_SH						

Рис. 25 – Таблица сравнения вариантов (третья часть)

5.3 Отчет за месяц

Переход в эту таблицу происходит при нажатии на клавишу «Просмотр» в главном меню и выборе таблицы «Отчет». Для того чтобы отображался отчет за конкретный месяц, необходимо нажать клавишу «сброс» и выбрать в поле месяц нужный вариант. После этого будет загружен месяц, выбранный основным вариантом в таблице сравнений.

5.4 Отчет за квартал

Переход в эту таблицу происходит при нажатии на клавишу «Просмотр» в главном меню и выборе таблицы «Отчет». Для того чтобы отображался отчет за конкретный квартал, необходимо нажать клавишу «сброс» и выбрать в поле квартал нужный вариант.

После этого будет загружен отчет за квартал с данными по месяцам, выбранным основными вариантами в таблице сравнений, соответствующих выбранному кварталу.

Входные данные по месяцам соответствуют данным из итогового расчета (п.5.1) по этим месяцам.

В данном отчете квартальные данные рассчитываются из месячных используя несколько общих формул.

Внешний вид квартальных отчетов (за исключением второго квартала) представлен на рисунках 26-28.

5.4.1 Расчет квартальных данных по АФ2

5.4.1.1. Q_smes_plan_qwart – плановый удельный расход смеси за квартал Исходные данные для расчета:

• $Q_smes_plan j$ – плановый расход аглосмеси за ј месяц, кг/т (п.5.1.1.7).

$$Q_smes_plan_qwart = \sum Q_smes_plan j$$

5.4.1.2. Vpr_qwart – план производства за квартал

Исходные данные для расчета:

• $V_pr_month j$ – план производства за ј месяц, кг/т (п.5.1.1.1).

$$Vpr_qwart = \sum V_pr_month j$$

5.4.1.3. A_qwart i – остальные расчетные величины за квартал

Исходные данные для расчета:

- *A_month i, j –* i-ая расчетная величина за j-ый месяц, кг/т (п.5.1.1);
- *V_pr_qwart* план производства за квартал, кг/т (п.5.4.1.2);
- V pr month j план производства за ј месяц, кг/т (п.5.1.1.1).

Для і-ой квартальной расчетной величины используется следующая формула:

$$A_qwart\ i\ =\ \frac{A_month\ i, 1*V_pr_month\ 1 + A_month\ i, 2*V_pr_month\ 2 + A_month\ i, 3*V_pr_month\ 3}{V_pr_qwart}$$

5.4.1.4. Potreb_qwart i – потребности в материалах для АФ2 за квартал

Исходные данные для расчета:

• *Potreb i, j*– потребность в i-ом материале за j-ый месяц, тыс.т(п.5.1.1.18).

Для і-ой квартальной потребности используется следующая формула:

$$Potreb_qwart i = \sum Potreb_{i,j}$$

5.4.2 Расчет квартальных данных по ДЦ

5.4.2.1. V_AG_qwart – план производства чугуна за квартал Исходные данные для расчета:

• $V_AG\ j$ – план производства чугуна за ј месяц, кг/т (п.5.1).

$$V_AG_qwart = \sum V_AG j$$

5.4.2.2. A_qwart i – остальные расчетные величины за квартал Исходные данные для расчета:

- *A_month i, j -* i-ая расчетная величина за j-ый месяц, кг/т (п.5.1.2);
- *V_AG_qwart* план производства чугуна за квартал, кг/т (п.5.4.2.1);
- $V_AG\ j$ план производства чугуна за ј месяц, кг/т (п.5.1).

Для і-ой квартальной расчетной величины используется следующая формула:

$$A_qwart\ i\ =\ \frac{A_month\ i, 1*V_AG\ 1+A_month\ i, 2*V_AG\ 2+A_month\ i, 3*V_AG\ 3}{V_AG_qwart}$$

- *5.4.2.3. Potreb_DC_qwart i потребности в материалах для ДЦ за квартал* Исходные данные для расчета:
- *Potreb_DC i, j* потребность в i-ом материале за j-ый месяц, тыс.т(п.5.1.2.15). Для i-ой квартальной потребности используется следующая формула:

$$Potreb_DC_qwart\ i = \sum_{i,j} Potreb_DC_{i,j}$$

												Потребность, тыс.		
Наименование материала	Содержание Fe,%	Влажность W,%	nnn, %	кг/т железофлюсовой	янв.19 кг/т аглосмеси	кг/т агломерата	кг/т железофлюсовой	мар.19 кг/т аглосмеси	кг/т агломерата	1 xts. 2019 r.	янв.19	фев.19	мар.19	1 кв.
одготовка смеси, план (тыс. тонн)				Q_flus_plan1	O_smes_plan1		Q_flus_plan3	Q_smes_plan3		Q_smes_plan_qwart			ДГФ 2	
Аглофабрика № 2, план производства						V_pr_month1			V_pr_month3	V_pr_qwart				
используемые концентраты и аглоруды	Fe i,j	ľìΜ	Ünnn		O_smes1 i,j	o_vag_kgti i,j		o_smes3i,j	O_vbg_kgt3 i,j	Q_vlag_kgt_qwarti,j	Potre bit i,j	Potre b2 i, j	Potre b3 l,j	Sum_Potreb i
Ітого рудной части					Q_smes_itog_rud1	Q_itog_rud1		Q_smes_itog_rud3	Q_itog_rud3	Q_itog_rud_qwart		I		
(спользуемые маргонцевые добавки, отходы, шлаки, отсевы	Fetj	wij	i) uuu	O_flust i.j		o_veg_kgri ij	O_flus3i,j		o_vbg_kgt3 i,j	Q_vlag_kgt_qwarti,j	Potre ld i,j	Potre b2 i, j	Potre b3 i, j	Sum_Potreb i
итого железофлюсовой смеси				Q_flus_itog1	Q_smes_itog_fer1	Q_itog_fer1	Q_flus_itog3	Q_smes_itog_fer3	Q_itog_fer3	Q_itog_fer_qwart				
того сырья					Q_smes_itog_res1			Q_smes_itog_res3		Q_itog_res_qwart				
бспользуемая известь	Fe i,j	͹i vn	innnij		o_smest i,j	o_vbg_kgti ij		o_smes3i,j	o_vag_kgt3 i,j	Q_vlag_kgt_qwarti,j	Potreta i,j	Potre b2 i, j	Potreb3i,j	Sum_Potreb i
1того извести					Q_smes_itog_izv1	Q_itog_izv1		Q_smes_itog_izv3	Q_itog_izv3	Q_itog_izv_qwart				
глосмесь					Q_smes_itog_agl1	Q_itog_agl1		Q_smes_itog_agl3	Q_itog_agl3	Q_itog_agl_qwart				
спользуемый известняк			3			Q_vlag_kgt1 i,j			Q_vlag_kgt3 i,j	Q_vlag_kgt_qwarti,j	3	2.0	3 t.j	trebi
спользуемое топливо	Feij	w i,j	i, nnn			Q_suh_kgt1 i,j			Q_suh_kgt3 i,j	Q_suh_kgt_qwarti,j	Potrebi	Potre b2	Potre b3	Sum_Potreb i
Антрацит АМСШ фр. 0-25мм, влажный						Q_vlag_kgt1 i,j			Q_vlag_kgt3 i,j	Q_vlag_kgt_qwart i,j				

Рис. 26 – Таблица квартальный отчет (первая часть)

Планируемые						
содержание железа в агломерате			Fe_	agl_plan1	Fe_agl_plan3	Fe_agl_plan_qwart
основность по CaO/SiO2			CaO_	iO2_agl1	CaO_SiO2_agl3	CaO_SiO2_agl_qwart
потери				Lost1	Lost3	Lost_qwart

Расчётные нормы расхода ЖРС на производство чугуна в І квартале 2019 года

Наименование материала	Содержание		nnn, %	янв.19		мар.19		I кв. 2019 г.		
	Fe,%	W,%			кг/т чугуна		кг/т чугуна			
Выплавка чугуна, план производства:					V_AG1		V_AG3	V_AG_qwart		
руда доменная Михайловского ГОКа										
агломерат ВГОКа	Fej	wj	nnnj		C UD TELL		C UD TES	C UD TS munchi	Potreb_DC1j	Potreb_DC2 j
агломерат ЧМК а/ф № 2	rej	VV J	1111111		G_UD_TS1j		G_UD_TS3 j	G_UD_TS_qwart j	Polieb_bcij	Polieu_bczj
агломерат Высокогрского ГОКа										
Итого агломерат					SUM_AGL_DC1		SUM_AGL_DC3	SUM_AGL_DC_qwart		
окатыши Михайловского ГОКа										
окатыши Качканарского ГОКа	Fej	Wj	nnnj		G_UD_TS1j		G_UD_TS3 j	G_UD_TS_qwart j	Potreb_DC1 j	Potreb_DC2 j
окатыши Костомукшского ГОКа										
Итого окатыши					SUM_OKAT_DC1		SUM_OKAT_DC3	SUM_OKAT_qwart		
брикеты промывочные БП-60 (10018)										
брикетыпромывочные Мечел-Материалы (10064)	Fej	wj	nnni		G_UD_TS1j		G_UD_TS3 j	G_UD_TS_qwart j	Potreb_DC1j	Potreb_DC2 j
доменный присад	1-1	",	,		G_00_131)		4_00_1331	a_ob_is_qwait)	rones_bc1j	Polico_bc2j
сварочный шлак										
Итого металлодобавки					SUM_FE_DC1		SUM_FE_DC3	SUM_FE_DC_qwart		
Итого металлошихты					SUM_FE_SH1		SUM_FE_SH3	SUM_FE_SH_qwart		
доменный щебень	Fej	wj	nnnj		G_UD_TS1j		G_UD_TS3 j	G_UD_TS_qwart j	Potreb_DC1j	Potreb_DC2 j
шунгиттовый щебень	1-1	***	,		G_00_131)		4_00_1331	a_ob_is_qwait)	rones_bc1j	Potreo_bozy
Итого прочие					SUM_OTHER_DC1		SUM_OTHER_DC3	SUM_OTHER_DC_qwart		
конверторный шлак фр. 10-60 мм "Мечел-Материалы"										
известняк фр. 20 - 40 мм	Fej	wj	nnnj		G_UD_TS1j		G_UD_TS3 j	G_UD_TS_qwart j	Potreb_DC1j	Potreb_DC2 j
конверторный шлак фр. 10-100 мм "ЮУНК"	rej	VV J			G_00_131)		0_00_133)	d_ob_i3_qwaitj	roueu_bcrj	Polieu_bczj
кварцит										
Итого флюсы					SUM_FLUS_DC1		SUM_FLUS_DC3	SUM_FLUS_DC_qwart		
BCEFO					SUM_ALL_DC1		SUM_ALL_DC3	SUM_ALL_DC_qwart		

Рис. 27 – Таблица квартальный отчет (вторая часть)

Potreb_DC3 j

Potreb_DC3 j

Potreb_DC3 j

Potreb_DC3 j

Sum_Potreb_DC i

Sum_Potreb_DC i

Sum_Potreb_DC i

Sum_Potreb_DC i

Sum_Potreb_DC i

3 Содержание железа в шихте	Q_FE_SH_TS1	Q_FE_SH_TS3	Q_FE_SH_TS_qwart				
4 Содержание кремния в чугуне	CH_SI_TS1	CH_SI_TS3	CH_SI_TS_qwart				
5 Расход кислорода, м3/т	O_UD_TS1	O_UD_TS3	O_UD_TS_qwart	Potreb_DC1j	Potreb_DC2 j	Potreb_DC3 j	Sum_Potreb_DC
6 Расход природного газа, м3/т	Q_UD_PG_TS1	Q_UD_PG_TS3	Q_UD_PG_TS_qwart	roneb_bc1j	rolled_bc2j	Polled_bc3]	Sum_Foneb_bc
7 Температура горячего дутья	T_DU_TS1	T_DU_TS3	T_DU_TS_qwart				
8 Давление газа на колошнике	P_KL_TS1	P_KL_TS3	P_KL_TS_qwart				
9 Качество кокса, в том числе: М25	KOK_M25_TS1	KOK_M25_TS3	KOK_M25_TS_qwart				
M10	KOK_M10_TS1	KOK_M10_TS3	KOK_M10_TS_qwart				
Зола	DP_Z_DN1i_1	DP_Z_DN1i_3	DP_Z_DN1iqwart				
10 Расход скипового кокса, кг/т, в том числе:	UD_KOK_TS1	UD_KOK_TS3	UD_KOK_TS_qwart	notes bear !	nough non!	non-t-non-t	Sur Saturb Box
фр. + 25 мм	UD_KOK25_TS1	UD_KOK25_TS3	UD_KOK25_TS_qwart	Potreb_DC1 j	Potreb_DC2 j	Potreb_DC3 j	Sum_Potreb_DC
фр. 10 - 25 мм (со склада)	UD_KOK10_TS1	UD_KOK10_TS3	UD_KOK10_TS_qwart				
11 Расход антрацита, кг/т	UD_AN_TS1	UD_AN_TS3	UD_AN_TS_qwart				
12 Расход железа, кг/т	Q_UD_FE_TS1	Q_UD_FE_TS3	Q_UD_FE_TS_qwart	Potreb_DC1 j	Potreb_DC2 j	Potreb_DC3 j	Sum_Potreb_D0
13 Возвратные отходы производства, в том числе:							
Колошниковая пыль, кг/т	KP1	KP3	KP_qwart				
Скрап, кг/т, в том числе:	UD_SK_TS_prv1	UD_SK_TS_prv3	UD_SK_TS_qwart				
скрап с литейных дворов и ковшей, кг/т	UD_SK_TS_LIT1	UD_SK_TS_LIT3	UD_SK_TS_LIT_qwart				
Шлак огненно-жидкий, кг/т	Q_UD_SHL_TS1	Q_UD_SHL_TS3	Q_UD_SHL_qwart	Potreb_DC1 j	Potreb_DC2 j	Potreb_DC3 j	Sum_Potreb_D0
Кокс фракции 0 -10 мм, кг/т	KOK10_TS1	KOK10_TS3	KOK10_TS_qwart				
Кокс фракции 10 - 25 мм, кг/т	KOK25_TS1	KOK25_TS3	KOK25_TS_qwart				
14 Выход кокса фракции 0 -10 мм, кг/т скипового кокса + 25 мм	UD_KOK10_OUT1	UD_KOK10_OUT3	UD_KOK10_OUT_qwart				
15 Выход кокса фракции 10 - 25 мм, кг/т скипового кокса + 25 мм	UD_KOK25_OUT1	UD_KOK25_OUT3	UD_KOK25_OUT_qwart				
планируемые Потери железа	FE_LOSS_TS1	FE_LOSS_TS3	FE_LOSS_TS_qwart				
16 Содержание фосфора в чугуне	Q_P_CH_TS1	Q_P_CH_TS3	Q_P_CH_TS_qwart				
17 Расход ферросплавов на чугун для ФЛЦ, кг/т	Q_UD_FE_FLC1	Q_UD_FE_FLC3	Q_UD_FE_FLC_qwart				
18 Расход ферросплавов на чугун для КЗАХЛ, кг/т	Q_UD_FE_KZAHL1	Q_UD_FE_KZAHL3	Q_UD_FE_KZAHL_qwart				
19 Технологические потери железа (безвозврат отходы), кг/т	TECH_LOSS_FE1	TECH_LOSS_FE3	TECH_LOSS_FE_qwart				
20 Технологические потери шихты при производстве чугуна, кг/т	TECH_LOSS_SH1	TECH_LOSS_SH3	TECH_LOSS_SH_qwart				

Рис. 28 – Таблица квартальный отчет (третья часть)

5.5 Отчет за год

Переход в эту таблицу происходит при нажатии на клавишу «Просмотр» в главном меню и выборе таблицы «Отчет». Для того чтобы отображался отчет за конкретный год, необходимо нажать клавишу «сброс» и выбрать в поле год нужный вариант.

После этого будет загружен отчет за год с данными по месяцам, выбранным основными вариантами в таблице сравнений. Данные по кварталам рассчитаются согласно формулам описанным в пункте 5.4.

Входные данные по месяцам соответствуют данным из итогового расчета (п.5.1) по этим месяцам.

В данном отчете годовые данные рассчитываются из квартальных используя несколько общих формул.

Внешний вид годовых отчетов (четвертый квартал и обще-годовой) представлен на рисунках 29-31.

5.5.1 Расчет годовых данных по АФ2

Vpr_god – план производства на год

Исходные данные для расчета:

• $V_pr_qwart j$ – план производства за ј квартал, кг/т (п.5.4.1.2).

$$V_pr_god = \sum_{i} V_pr_qwart j$$

Q_itog_top m – umoго сухого топлива за т-ый месяц

Исходные данные для расчета:

• $Q_suh_kgt\ m_{i,i}$ — удельный расход сухого материала за m(1-12) месяц, кг/т (пункт 3.15).

$$Q_{itog_top\ m} = \sum_{i=1}^{n} Q_{suh_kgt\ m}_{i,j}$$

5.5.1.3. Q_itog_top_qwart k – umoго сухого топлива за k-ый квартал

Исходные данные для расчета:

• $Q_suh_kgt_qwart\ k_{i,i}$ — удельный расход сухого материала за k(1-4) квартал, кг/т (пункт 5.4.1.3).

$$Q_itog_top_qwart \ k \ \ = \sum Q_suh_kgt_qwart \ k \ _{i,j}$$

A_god i – остальные расчетные величины за год

Исходные данные для расчета:

- A_qwart i, j i-ая расчетная величина за j-ый квартал, кг/т (п.5.4.1);
- *V pr god* план производства за год, кг/т (п.5.5.1.1);
- V pr qwart j план производства за ј квартал, кг/т (п.5.4.1.2).

Для і-ой квартальной расчетной величины используется следующая формула:

$$A_god\ i = rac{A_qwart\ i, 1*V_pr_qwart\ 1 + A_qwart\ i, 2*V_pr_qwart\ 2 + A_qwart\ i, 3*V_pr_qwart\ 3 + A_qwart\ i, 4*V_pr_qwart\ 4}{V_pr_god}$$

5.5.1.5. Potreb_god i – потребности в материалах для АФ2 за год

Исходные данные для расчета:

• $Potreb_qwart\ i, j$ — потребность в i-ом материале за j-ый квартал, тыс.т(п.5.4.1.4).

Для і-ой годовой потребности используется следующая формула:

$$Potreb_god\ i = \sum Potreb_qwart_{i,j}$$

5.5.2 Расчет годовых данных по ДЦ

5.5.2.1. V_AG_god – план производства чугуна за год

Исходные данные для расчета:

• $V_AG_qwart\ j$ – план производства чугуна за ј квартал, кг/т (п.5.4.2.1).

$$V_AG_god = \sum V_AG_qwart j$$

5.5.2.2. A_god i – остальные расчетные величины за год

Исходные данные для расчета:

- $A_qwart\ i, j$ i-ая расчетная величина за j-ый квартал, кг/т (п.5.4.2);
- V_AG_god план производства чугуна на год, кг/т (п.5.5.2.1);
- $V_AG_qwart\ j$ план производства чугуна за ј квартал, кг/т (п.5.4.2.1).

Для і-ой годовой расчетной величины используется следующая формула: $A_god\ i = \frac{A_qwart\ i, 1*V_AG_qwart\ 1 + A_qwart\ i, 2*V_AG_qwart\ 2 + A_qwart\ i, 3*V_AG_qwart\ 3 + A_qwart\ i, 4*V_AG_qwart\ 4}{V_pr_god}$

5.5.2.3. Potreb_DC_god i – потребности в материалах для ДЦ за год

Исходные данные для расчета:

• $Potreb_DC_qwart\ i, j$ — потребность в i-ом материале за j-ый квартал, тыс.т (п.5.4.2.3).

Для і-ой годовой потребности используется следующая формула:

$$Potreb_DC_god\ i = \sum Potreb_DC_qwart\ i,j$$

месяц квартал год сброс р	асчётные	нормы ра	асхода ЖГ	РС на произв	одство агло	мерата и	чугуна в	2019 го	оду, кг/т	
								Потребность	o, TbIC.T	
Наименование материала	окт.19	ноя.19	дек.19	IV KB	2019 г.	окт.19	ноя.19	дек.19	4 кв.	2019 год
	ЦЕХ	ЦЕХ	ЦЕХ							
1 Аглофабрика № 2, план производства	V_pr_month10	V_pr_month11	V_pr_month12	V_pr_qwart4	V_pr_god			АГФ 2		
Используемые концентраты и аглоруды	O_viæ_kgt10 i,j	O_viae_ket11i,j	0_viæ_ket121,j	Q_vlag_kgt_qwart4 i,j	Q_vlag_kgt_god i,j	Potreb i 10	Potreb i 11	Potreb i 12	Potreb_qwart i 4	Potreb_god i
Итого рудной части	Q_itog_rud10	Q_itog_rud11	Q_itog_rud12	Q_itog_rud_qwart4	Q_itog_rud_god					
Используемые маргонцевые добавки, отходы, шлаки, отсевы	O_viag_ket10 i,j	O_viag_kgt11 i,j	O_viag_kgt12 i,j	Q_vlag_kgt_qwart4 i,j	Q_vlag_kgt_god i,j	Potreb i 10	Potreb i 11	Potreb i 12	Potreb_qwart i 4	Potreb_god i
Итого железофлюсовой смеси	Q_itog_fer10	Q_itog_fer11	Q_itog_fer12	Q_itog_fer_qwart4	Q_itog_fer_god					
Итого сырья	Q_itog_res10	Q_itog_res11	Q_itog_res12	Q_itog_res_qwart4	Q_itog_res_god					
Используемая известь	O_viæ_ket10 i,j	0_vlag_kgt11;j	0_viæ_læt12 i,j	Q_vlag_kgt_qwart4 i,j	Q_vlag_kgt_god i,j	Potreb i 10	Potreb i 11	Potreb i 12	Potreb_qwart i 4	Potreb_g od i
Итого извести	Q_itog_izv10	Q_itog_izv11	Q_itog_izv12	Q_itog_izv_qwart4	Q_itog_izv_god					
Аглосмесь	Q_itog_agl10	Q_itog_agl11	Q_itog_agl12	Q_itog_agl_qwart4	Q_itog_agl_god					

Рис. 29 – Таблица годовой отчет (первая часть)

Используемый известняк	Q_V13g_lget10 i,j	0_viæ_let11 i,j	Q_vlæ_læt12 i,j	Q_vlag_kgt_qwart4 i,j	Q_vlag_kgt_god i,j	Potreb I 10	Potreb i 11	Potreb i 12	qwart i 4	Potreb_god i
Используемое топливо	Q_suh_kgt10 i,j		Q_suh_kgt12 i,j	Q_suh_kgt_qwart4 i,j	Q_suh_kgt_god i,j	Potre	Potre	Potre	Potreb_qwant i	Potrek
Итого топлива сухого	Q_itog_top10	Q_itog_top11	Q_itog_top12	Q_itog_top_qwart4	Q_itog_top_god					
Антрацит АМСШ фр. 0-25мм, влажный	Q_vlag_kgt10 i,j	Q_vlag_kgt11 i,j	Q_vlag_kgt12 i,j	Q_vlag_kgt_qwart4 i,j	Q_vlag_kgt_god i,j					
	FI -I40	F! -!44	5I -I42	F	F11					
удержание железа в агломерате сновность по CaO/SiO2 отери	Fe_agl_plan10 CaO_SiO2_agl10 Lost10	CaO_SiO2_agl11	CaO_SiO2_agl12	CaO_SiO2_qwart4	CaO_SiO2_god				1	
сновность по CaO/SiO2 отери	CaO_SiO2_agI10 Lost10	CaO_SiO2_agl11 Lost11	CaO_SiO2_agI12 Lost12	CaO_SiO2_qwart4 Lost_qwart4	CaO_SiO2_god Lost_god			Ли	1	
отери Выплавка чугуна, план производства: руда доменная Михайловского ГОКа агломерат ВГОКа агломерат ЧМК а/ф № 2	CaO_SiO2_agl10	CaO_SiO2_agl11	CaO_SiO2_agl12	CaO_SiO2_qwart4	CaO_SiO2_god	Potreb_DC i 10	Potreb_DC i 11	ДЦ Potreb_DC i 12	Potreb_DC_qwart i 4	Potreb_DC
еновность по CaO/SiO2 ртери Выплавка чугуна, план производства: руда доменная Михайловского ГОКа агломерат ВГОКа	CaO_SiO2_agi10 Lost10 V_AG10	CaO_SiO2_agl11 Lost11 V_AG11 G_UD_T11 j	CaO_SiO2_agI12 Lost12 V_AG12 G_UD_TS12 j	CaO_SiO2_qwart4 Lost_qwart4 V_AG_qwart4	CaO_SiO2_god Lost_god V_AG_god	Potreb_DC i 10	Potreb_DC i 11		Potreb_DC_qwart i 4	Potreb_DC
Выплавка чугуна, план производства: руда доменная Михайловского ГОКа агломерат ВГОКа агломерат ЧМК а/ф № 2 агломерат Высокогрского ГОКа Итого агломерат окатыши Михайловского ГОКа окатыши Качканарского ГОКа	V_AG10 G_UD_TS10 j	CaO_SiO2_agl11 Lost11 V_AG11 G_UD_T11 j	CaO_SiO2_agI12 Lost12 V_AG12 G_UD_TS12 j	CaO_SiO2_qwart4 Lost_qwart4 V_AG_qwart4 G_UD_TS_qwart4 j	CaO_SiO2_god Lost_god V_AG_god G_UD_TS_god j			Potreb_DC i 12	Potreb_DC_qwart i 4 Potreb_DC_qwart i 4	
Выплавка чугуна, план производства: руда доменная Михайловского ГОКа агломерат ВГОКа агломерат ЧМК а/ф № 2 агломерат Высокогрского ГОКа Итого агломерат окатыши Михайловского ГОКа	V_AG10 G_UD_TS10 j SUM_AGL_DC10 G_UD_TS10 j	CaO_SiO2_agi11 Lost11 V_AG11 G_UD_T11 j SUM_AGL_DC11	V_AG12 G_UD_TS12 j SUM_AGL_DC12 G_UD_TS12 j	CaO_SiO2_qwart4 Lost_qwart4 V_AG_qwart4 G_UD_TS_qwart4 j SUM_AGL_DC_qwart4	CaO_SiO2_god Lost_god V_AG_god G_UD_TS_god j SUM_AGL_DC_god			Potreb_DC i 12		
Выплавка чугуна, план производства: руда доменная Михайловского ГОКа агломерат ВГОКа агломерат ЧМК а/ф № 2 агломерат Высокогрского ГОКа Итого агломерат окатыши Михайловского ГОКа окатыши Качканарского ГОКа Итого окатыши Костомукшского ГОКа Окатыши брикеты промывочные БП-60 (10018) брикеты промывочные Мечел-Материалы (10064) доменный присад	V_AG10 G_UD_TS10 j SUM_AGL_DC10 G_UD_TS10 j	CaO_SiO2_agi11 Lost11 V_AG11 G_UD_T11 j SUM_AGL_DC11 G_UD_TS11 j	V_AG12 G_UD_TS12 j SUM_AGL_DC12 G_UD_TS12 j	CaO_SiO2_qwart4 Lost_qwart4 V_AG_qwart4 G_UD_TS_qwart4 j SUM_AGL_DC_qwart4 G_UD_TS_qwart4 j	CaO_SiO2_god Lost_god V_AG_god G_UD_TS_god j SUM_AGL_DC_god G_UD_TS_god j	Potreb_DC i 10	Potreb_DC i 11	Potreb_DC i 12 Potreb_DC i 12		Potreb_DC
Выплавка чугуна, план производства: руда доменная Михайловского ГОКа агломерат ВГОКа агломерат ЧМК а/ф № 2 агломерат Высокогрского ГОКа Итого агломерат окатыши Михайловского ГОКа окатыши Качканарского ГОКа итого окатыши брикеты промывочные БП-60 (10018) брикетыпромывочные Мечел-Материалы (10064)	CaO_SiO2_agi10 Lost10 V_AG10 G_UD_TS10 j SUM_AGL_DC10 G_UD_TS10 j SUM_OKAT_DC10	CaO_SiO2_agi11 Lost11 V_AG11 G_UD_T11 j SUM_AGL_DC11 G_UD_TS11 j SUM_OKAT_DC11	V_AG12 V_AG12 G_UD_TS12 j SUM_AGL_DC12 G_UD_TS12 j SUM_OKAT_DC12	CaO_SiO2_qwart4 Lost_qwart4 V_AG_qwart4 G_UD_TS_qwart4 j SUM_AGL_DC_qwart4 G_UD_TS_qwart4 j SUM_OKAT_qwart4	CaO_SiO2_god Lost_god V_AG_god G_UD_TS_god j SUM_AGL_DC_god G_UD_TS_god j SUM_OKAT_god	Potreb_DC i 10	Potreb_DC i 11	Potreb_DC i 12 Potreb_DC i 12	Potreb_DC_qwart i 4	Potreb_DC_

Рис. 30 – Таблица годовой отчет (вторая часть)

	×										
	доменный щебень шунгиттовый щебень	G_UD_TS10j	G_UD_TS11j	G_UD_TS12j	G_UD_TS_qwart4 j	G_UD_TS_god j	Potreb_DC i 10	Potreb_DC i 11	Potreb_DC i 12	Potreb_DC_qwart i 4	Potreb_DC_god
	Итого прочие	SUM_OTHER_DC10	SUM_OTHER_DC11	SUM_OTHER_DC12	SUM_OTHER_DC_qwart4	SUM_OTHER_DC_god					
	конверторный шлак фр. 10-60 мм "Мечел-Материалы" известняк фр. 20 - 40 мм конверторный шлак фр. 10-100 мм "ЮУНК" кварцит	G_UD_TS10j	G_UD_T11j	G_UD_TS12 j	G_UD_TS_qwart4 j	G_UD_TS_god j	Potreb_DC i 10	Potreb_DC i 11	Potreb_DC i 12	Potreb_DC_qwart i 4	Potreb_DC_god
ı	Итого флюсы	SUM_FLUS_DC10	SUM_FLUS_DC11	SUM_FLUS_DC12	SUM_FLUS_DC_qwart4	SUM_FLUS_DC_god					
	BCEFO	SUM_ALL_DC10	SUM_ALL_DC11	SUM_ALL_DC12	SUM_ALL_DC_qwart4	SUM_ALL_DC_god					
3	Содержание железа в шихте	Q_FE_SH_TS10	Q_FE_SH_TS11	Q_FE_SH_TS12	Q_FE_SH_TS_qwart4	Q_FE_SH_TS_god					
\neg	Содержание кремния в чугуне	CH_SI_TS10	CH_SI_TS11	CH_SI_TS12	CH_SI_TS_qwart4	CH_SI_TS_god					
\neg	Расход кислорода, м3/т	O_UD_TS10	O_UD_TS11	O_UD_TS12	O_UD_TS_qwart4	O_UD_TS_god	notes notes	notes notes	notes notes	Batala Ba assault	
\neg	Расход природного газа, м3/т	Q_UD_PG_TS10	Q_UD_PG_TS11	Q_UD_PG_TS12	Q_UD_PG_TS_qwart4	Q_UD_PG_TS_god	Potreb_DC i 10	Potreb_DCi11	Potreb_DC i 12	Potreb_DC_qwart i 4	Potreb_DC_god
\neg	Температура горячего дутья	T_DU_TS10	T_DU_TS11	T_DU_TS12	T_DU_TS_qwart4	T_DU_TS_god					
	Давление газа на колошнике	P_KL_TS10	P_KL_TS11	P_KL_TS12	P_KL_TS_qwart4	P_KL_TS_god					
9	Качество кокса, в том числе: М25	KOK_M25_TS10	KOK_M25_TS11	KOK_M25_TS12	KOK_M25_TS_qwart4	KOK_M25_TS_god					
	M10	KOK_M10_TS10	KOK_M10_TS11	KOK_M10_TS12	KOK_M10_TS_qwart4	KOK_M10_TS_god					
	Зола	DP_Z_DN1i_10	DP_Z_DN1i_11	DP_Z_DN1i_12	DP_Z_DN1iqwart4	DP_Z_DN1igod					
0	Расход скипового кокса, кг/т, в том числе:	UD_KOK_TS10	UD_KOK_TS11	UD_KOK_TS12	UD_KOK_TS_qwart4	UD_KOK_TS_god					
	фр. + 25 мм	UD_KOK25_TS10	UD_KOK25_TS11	UD_KOK25_TS12	UD_KOK25_TS_qwart4	UD_KOK25_TS_god	Potreb_DC i 10	Potreb_DCi11	Potreb_DC 12	Potreb_DC_qwart i 4	Potreb_DC_god
	фр. 10 - 25 мм (со склада)		UD_KOK10_TS11	UD_KOK10_TS12	UD_KOK10_TS_qwart4	UD_KOK10_TS_god					
1	Расход антрацита, кг/т	UD_AN_TS10	UD_AN_TS11	UD_AN_TS12	UD_AN_TS_qwart4	UD_AN_TS_god					
\neg	Расход железа, кг/т	Q_UD_FE_TS10	Q_UD_FE_TS11	Q_UD_FE_TS12	Q_UD_FE_TS_qwart4	Q_UD_FE_TS_god	Potreb DCi10	Potreb DCi11	Potreb_DCi12	Potreb_DC_qwarti4	Potreb_DC_god
\neg	Возвратные отходы производства, в том числе:						_				
	Колошниковая пыль, кг/т	KP10	KP11	KP12	KP_qwart4	KP_god					
	Скрап, кг/т, в том числе:	UD_SK_TS_prv10	UD_SK_TS_prv11	UD_SK_TS_prv12	UD_SK_TS_prv_qwart4	UD_SK_TS_prv_god					
	скрап с литейных дворов и ковшей, кг/т		UD_SK_TS_LIT11	UD_SK_TS_LIT12	UD_SK_TS_LIT_qwart4	UD_SK_TS_LIT_god					
	Шлак огненно-жидкий, кг/т	Q_UD_SHL_TS10	Q_UD_SHL_TS11	Q_UD_SHL_TS12	Q_UD_SHL_qwart4	Q_UD_SHL_god	Potreb_DC 10	Potreb_DC 11	Potreb_DC 12	Potreb_DC_qwart i 4	Potreb_DC_god
	Кокс фракции 0 -10 мм, кг/т	KOK10_TS10	KOK10_TS11	KOK10_TS12	KOK10_TS_qwart4	KOK10_TS_god					
	Кокс фракции 10 - 25 мм, кг/т	KOK25_TS10	KOK25_TS11	KOK25_TS12	KOK25_TS_qwart4	KOK25_TS_god					
\neg	Выход кокса фракции 0 -10 мм, кг/т скипового кокса + 25 мм	UD_KOK10_OUT10	_	UD_KOK10_OUT12	UD_KOK10_OUT_qwart4	UD_KOK10_OUT_god					
\neg	Выход кокса фракции 10 - 25 мм, кг/т скипового кокса + 25 мм	UD_KOK25_OUT10			UD_KOK25_OUT_qwart4	UD_KOK25_OUT_god					
	, , , , , , , , , , , , , , , , , , , ,										
лан	ируемые Потери железа	FE_LOSS_TS10	FE_LOSS_TS11	FE_LOSS_TS12	FE_LOSS_TS_qwart4	FE_LOSS_TS_god					
$\overline{}$	Содержание фосфора в чугуне	Q_P_CH_TS10	Q_P_CH_TS11	Q_P_CH_TS12	Q_P_CH_TS_qwart4	Q_P_CH_TS_god					
7	Расход ферросплавов на чугун для ФЛЦ, кг/т	Q_UD_FE_FLC10	Q_UD_FE_FLC11	Q_UD_FE_FLC12	Q_UD_FE_FLC_qwart4	Q_UD_FE_FLC_god					
8	Расход ферросплавов на чугун для КЗАХЛ, кг/т	Q_UD_FE_KZAHL10	Q_UD_FE_KZAHL11	Q_UD_FE_KZAHL12	Q_UD_FE_KZAHL_qwart4	Q_UD_FE_KZAHL_god					
\rightarrow	Технологические потери железа (безвозврат отходы), кг/т	TECH_LOSS_FE10	TECH_LOSS_FE11	TECH_LOSS_FE12	TECH_LOSS_FE_qwart4	TECH_LOSS_FE_god					
\rightarrow	Технологические потери шихты при производстве чугуна, кг/т	TECH_LOSS_SH10	TECH_LOSS_SH11	TECH_LOSS_SH12	TECH_LOSS_SH_qwart4						
\rightarrow	Доля агломерата в ЖРЧ шихты, %	DOL_AGL_GRCH10	DOL_AGL_GRCH11	DOL_AGL_GRCH12	DOL_AGL_GRCH_qwart4	DOL_AGL_GRCH_god					
1											
\rightarrow	Доля окатышей в ЖРЧ шихты, %		DOL_OKAT_GRCH11	DOL_OKAT_GRCH12	DOL_OKAT_GRCH_qwart4	DOL_OKAT_GRCH_god					

Рис. 31 – Таблица годовой отчет (третья часть)