Performance Engineering of Software Systems

LECTURE 3
Bit Hacks

Srini Devadas
September 15, 2022

BINARY REPRESENTATIONS

Let $x = \langle x_{w-1}x_{w-2}...x_0 \rangle$ be a w-bit computer word. The unsigned integer value stored in x is

$$x = \sum_{k=0}^{w-1} x_k 2^k$$
.

Let $x = \langle x_{w-1}x_{w-2}...x_0 \rangle$ be a w-bit computer word. The unsigned integer value stored in x is

$$x = \sum_{k=0}^{W-1} x_k 2^k$$
.

For example, the 8-bit word 0b10101100 represents the unsigned value 172 = 4 + 8 + 32 + 128.

Let $x = \langle x_{w-1}x_{w-2}...x_0 \rangle$ be a w-bit computer word. The unsigned integer value stored in x is

The prefix Ob $x = \sum_{k=0}^{w-1} x_k 2^k$. designates a Boolean constant.

For example, the 8-bit word 0b10101100 represents the unsigned value 172 = 4 + 8 + 32 + 128.

Let $x = \langle x_{w-1}x_{w-2}...x_0 \rangle$ be a w-bit computer word. The unsigned integer value stored in x is

$$x = \sum_{k=0}^{W-1} x_k 2^k$$
.

For example, the 8-bit word 0b10101100 represents the unsigned value 172 = 4 + 8 + 32 + 128.

The signed integer (two's complement) value stored in x is

$$x = \left(\sum_{k=0}^{w-2} x_k 2^k\right) - x_{w-1} 2^{w-1}$$
.

For example, the same 8-bit word 0b1011100 represents the signed value -84 = 4 + 8 + 32 - 128.

Let $x = \langle x_{w-1}x_{w-2}...x_0 \rangle$ be a w-bit computer word. The unsigned integer value stored in x is

$$x = \sum_{k=0}^{w-1} x_k 2^k$$
.

For example, the 8-bit word 0b1011100 represents the unsigned value 172 = 4 + 8 + 32 + 128.

The signed integer (two's complement) value stored in x is

$$x = \left(\sum_{k=0}^{w-2} x_k 2^k\right) - x_{w-1} 2^{w-1}.$$

For example, the same 8-bit word 0b10101100 represents the signed value -84 = 4 + 8 + 32 - 128.

Two's Complement

We have 0b00...0 = 0.

What is the value of x = 0b11...1?

$$x = \left(\sum_{k=0}^{w-2} x_k 2^k\right) - x_{w-1} 2^{w-1}$$

$$= \left(\sum_{k=0}^{w-2} 2^k\right) - 2^{w-1}$$

$$= (2^{w-1} - 1) - 2^{w-1}$$

$$= -1.$$

Complementary Relationship

Important identity

Since we have $\sim x + x = -1$, it follows that $\sim x + 1 = -x$.

Complementary Relationship

Important identity

```
Since we have \sim x + x = -1, it follows that \sim x + 1 = -x.
```

```
x = 0b0001100000011100

~x = 0b1110011111100011

-x = 0b1110011111100100
```

Complementary Relationship

Important identity

Since we have $\sim x + x = -1$, it follows that $\sim x + 1 = -x$.

```
x = 0b0001100000011 \frac{100}{100} 
-x = 0b \frac{1110011111100}{100}
```

DIGI-COMP II

For fun with two's complement, check out the **DIGI-COMP II** in the Stata Center, an oversized recrea-tion of a 1960's educational toy invented by Jack Godfrey. The DIGI-COMP algorithm for negating a number is really cool, and the machine can add, multiply, and divide numbers, as well.

Decimal	Binary	Hex	Decimal	Binary	Hex
0	0000	0	8	1000	8
1	0001	1	9	1001	9
2	0010	2	10	1010	А
3	0011	3	11	1011	В
4	0100	4	12	1100	С
5	0101	5	13	1101	D
6	0110	6	14	1110	E
7	0111	7	15	1111	F

Decimal	Binary	Hex	Decimal	Binary	Hex
0	0000	0	8	1000	8
1	0001	1	9	1001	9
2	0010	2	10	1010	А
3	0011	3	11	1011	В
4	0100	4	12	1100	С
5	0101	5	13	1101	D
6	0110	6	14	1110	Е
7	0111	7	15	1111	F

To translate from hex to binary, translate each hex digit to its binary equivalent, and concatenate the bits.

Decimal	Binary	Hex	Decimal	Binary	Hex
0	0000	0	8	1000	8
1	0001	1	9	1001	9
2	0010	2	10	1010	А
3	0011	3	11	1011	В
4	0100	4	12	1100	С
5	0101	5	13	1101	D
6	0110	6	14	1110	E
7	0111	7	15	1111	F

To translate from hex to binary, translate each hex digit to its binary equivalent, and concatenate the bits.

	Decimal	Bi	nary	Hex	Decimal	Binary	Hex
	0	00	000	0	8	1000	8
	1	00	001	1	9	1001	9
	2	00	10	2	10	1010	А
	3	00	11	3	11	1011	В
	4	0:	100	4	12	1100	С
The	The prefix 0x		.01	5	13	1101	D
designates a		.10	6	14	1110	E	
hex			11	7	15	1111	F

To translate om hex to binary, translate each hex digit to its binary equivalent, and concatenate the bits.

Decimal	Binary	Hex	Decimal	Binary	Hex
0	0000	0	8	1000	8
1	0001	1	9	1001	9
2	0010	2	10	1010	А
3	0011	3	11	1011	В
4	0100	4	12	1100	С
5	0101	5	13	1101	D
6	0110	6	14	1110	E
7	0111	7	15	1111	F

To translate from hex to binary, translate each hex digit to its binary equivalent, and concatenate the bits.

ELEMENTARY BIT HACKS

C Bitwise Operators

Operator	Description
&	AND
	OR
^	XOR (exclusive OR)
~	NOT (one's complement)
<<	shift left
>>	shift right

Examples (8-bit word)

```
A = 0b10110011

B = 0b01101001
```

```
A\&B = ObOO100001  \sim A = ObO1001100

A|B = Ob111111011  A >> 3 = ObO0010110

A^B = Ob11011010  A << 2 = Ob11001100
```

Problem

Set kth bit in a word x to 1.

Idea

Shift and OR.

Problem

Set kth bit in a word x to 1.

Idea

Shift and OR.

truth table for OR

X	У	x y
0	0	0
0	1	1
1	0	1
1	1	1

$$k = 7$$

X	1011110101101
1 << k	00000001000000
x (1 << k)	1011110111101

Problem

Set kth bit in a word x to 1.

Idea

Shift and OR.

truth table for OR

X	У	x y
0	0	0
0	1	1
1	0	<u>1</u>
1	1	1

$$k = 7$$

X	10111101 <mark>01101101</mark>
1 << k	00000001000000
x (1 << k)	10111101 <mark>11101101</mark>

Problem

Set kth bit in a word x to 1.

Idea

Shift and OR.

truth table for OR

X	У	x y
0	0	0
O	1	<u>1</u>
1	0	1
1	1	1

$$k = 7$$

X	10111101 <mark>0</mark> 1101101
1 << k	00000001000000
x (1 << k)	10111101 <mark>1</mark> 1101101

Problem

Clear the kth bit in a word x.

Idea

Shift, complement, and AND.

Problem

Clear the kth bit in a word x.

Idea

Shift, complement, and AND.

truth table for AND

X	У	x & y
0	0	0
0	1	0
1	0	0
1	1	1

$$k = 7$$

X	1011110111101
1 << k	00000001000000
~(1 << k)	11111110111111
x & ~(1 << k)	1011110101101

Problem

Clear the kth bit in a word x.

Idea

Shift, complement, and AND.

truth table for AND

X	у	x & y
0	0	0
O	1	O
1	0	0
1	1	1

$$k = 7$$

X	10111101 <mark>1101101</mark>
1 << k	00000001000000
~(1 << k)	11111111111111
x & ~(1 << k)	10111101 <mark>01101101</mark>

Problem

Clear the kth bit in a word x.

Idea

Shift, complement, and AND.

truth table for AND

Х	У	x & y
0	0	0
0	1	0
<mark>1</mark>	0	O
1	1	1

$$k = 7$$

X	10111101 <mark>1</mark> 1101101
1 << k	00000001000000
~(1 << k)	11111110111111
x & ~(1 << k)	10111101 <mark>0</mark> 1101101

Problem

Flip the kth bit in a word x.

Idea

Shift and XOR.

Problem

Flip the kth bit in a word x.

Idea

Shift and XOR.

truth table for XOR

Х	У	x ^ y
0	0	0
0	1	1
1	0	1
1	1	0

Example (0 → 1)

$$k = 7$$

X	1011110101101
1 << k	00000001000000
x ^ (1 << k)	1011110111101

Problem

Flip the kth bit in a word x.

Idea

Shift and XOR.

truth table for XOR

Х	У	x ^ y
O	0	0
0	1	1
<mark>1</mark>	0	<u>1</u>
1	1	0

Example (0 → 1)

$$k = 7$$

X	10111101 <mark>01101101</mark>
1 << k	00000001000000
x ^ (1 << k)	10111101 <mark>1101101</mark>

Problem

Flip the kth bit in a word x.

Idea

Shift and XOR.

truth table for XOR

X	У	x ^ y
0	0	0
O	1	<u>1</u>
1	0	1
<mark>1</mark>	1	0

Example (0 → 1)

$$k = 7$$

X	10111101 <mark>0</mark> 1101101
1 << k	00000001000000
x ^ (1 << k)	10111101 <mark>1</mark> 1101101

Problem

Flip the kth bit in a word x.

Idea

Shift and XOR.

truth table for XOR

X	У	x ^ y
0	0	0
O	1	<u>1</u>
1	0	1
<mark>1</mark>	1	O

Example (1 → 0)

$$k = 7$$

X	10111101 <mark>1</mark> 1101101
1 << k	00000001000000
x ^ (1 << k)	10111101 <mark>0</mark> 1101101

Extract a Bit Field

Problem

Extract a bit field from a word x.

Idea

Mask and shift.

(x & mask) >> shift;

Extract a Bit Field

Problem

Extract a bit field from a word x.

Idea

Mask and shift.

Example

shift = 7

x	10111 <mark>1010</mark> 1101101
mask	0000011110000000
x & mask	00000 <mark>1010</mark> 0000000
(x & mask) >> shift	000000000000000000000000000000000000000

Set a Bit Field

Problem

Set a bit field in a word x to a value y.

Idea

Invert mask to clear, and OR the shifted value.

```
(x & ~mask) | (y << shift);
```

Set a Bit Field

Problem

Set a bit field in a word x to a value y.

Idea

Invert mask to clear, and OR the shifted value.

```
(x & ~mask) | (y << shift);
```

Example

shift = 7

X	10111 <mark>1010</mark> 1101101
у	0000000000000000011
mask	0000011110000000
x & ~mask	10111 <mark>0000</mark> 1101101
y << shift	00000 <mark>0011</mark> 0000000
(x & ~mask) (y << shift)	10111 <mark>0011</mark> 1101101

Set a Bit Field *Dangerously*

Problem

Set a bit field in a word x to a value y.

Idea

Invert mask to clear, and OR the shifted value.

```
(x & ~mask) | (y << shift);
```

Dangerous example

shift = 7

X	10001 <mark>1010</mark> 1101101
у	000000000 <mark>1</mark> 0 <mark>0011</mark>
mask	0000011110000000
x & ~mask	10001 <mark>0000</mark> 1101101
y << shift	000 <mark>1</mark> 0 <mark>0011</mark> 0000000
(x & ~mask) (y << shift)	100 <mark>1</mark> 1 <mark>0011</mark> 1101101

Set a Bit Field Safely

Problem

Set a bit field in a word x to a value y safely.

Idea

Invert mask to clear, and OR the masked shifted value.

```
(x & ~mask) | ((y << shift) & mask);
```

Dangerous example (no longer)

shift = 7

X	10001 <mark>1010</mark> 1101101
У	0000000000 <mark>1</mark> 0 <mark>0011</mark>
mask	0000011110000000
x & ~mask	10001 <mark>0000</mark> 1101101
((y << shift) & mask)	00000 <mark>0011</mark> 0000000
(x & ~mask) ((y << shift) & mask)	10001 <mark>0011</mark> 1101101

SWAPPING

Ordinary Swap

Problem

Swap two integers x and y.

Ordinary Swap

Problem

Swap two integers x and y.

X	10111101	10111101	00101110	10111101
у	00101110	00101110	00101110	00101110
t		10111101	10111101	10111101

Problem

Swap x and y without using a temporary.

Problem

Swap x and y without using a temporary.

X	10111101		
У	00101110		

Problem

Swap x and y without using a temporary.

X	10111101	10010011	
У	00101110	00101110	

Problem

Swap x and y without using a temporary.

X	10111101	10010011	10010011	
У	00101110	00101110	10111101	

Problem

Swap x and y without using a temporary.

X	10111101	10010011	10010011	00101110
У	00101110	00101110	10111101	10111101

Problem

Swap x and y without using a temporary.

Example

X	10111101	10010011	10010011	00101110
У	00101110	00101110	10111101	10111101

Why it works

XOR is its own inverse:

$$(x \wedge y) \wedge y \Rightarrow x$$

X	у	x ^ y	(x ^ y) ^ y
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1

No-Temp Swap (Why it works)

Problem

Swap x and y without using a temporary.

```
x = xold ^ yold;
y = x ^ yold = (xold ^ yold) ^ yold = xold;
x = x ^ y = (xold ^ yold) ^ xold = yold;
```


AVOIDING UNPREDICTABLE CODE BRANCHES

Minimum of Two Integers

Problem

Find the minimum \mathbf{r} of two integers \mathbf{x} and \mathbf{y} .

```
if (x < y)
    r = x;
else
    r = y;</pre>
or    r = (x < y) ? x : y;
```

Performance

A mispredicted branch empties the processor pipeline.

Caveat

The compiler is usually smart enough to optimize away the unpredictable branch, but maybe not.

TECH-

"Meltdown" and "Spectre:" Every modern processor has unfixable security flaws

Immediate concern is for Intel chips, but everyone is at risk.

PETER BRIGHT - 1/3/2018, 7:30 PM

Windows, Linux, and macOS have all received security patches that significantly alter how the operating systems handle virtual memory in order to protect against a hitherto undisclosed flaw. This is more than a little notable; it has been clear that Microsoft and the Linux kernel developers have been informed of some non-public security issue and have been rushing to fix it. But nobody knew quite what the problem was, leading to lots of speculation and experimentation based on pre-releases of the patches.

Now we know what the flaw is. And it's not great news, because there are in fact two related families of flaws with similar impact, and only one of them has any easy fix.

The flaws have been named Meltdown and Spectre. Meltdown was independently discovered by three groups—researchers from the Technical University of Graz in Austria, German security firm Cerberus Security, and Google's Project Zero. Spectre was discovered independently by Project Zero and independent researcher Paul Kocher.

At their heart, both attacks take advantage of the fact that processors execute instructions speculatively. All modern processors perform speculative execution to a greater or lesser extent; they'll assume that, for example, a given condition will be true and execute instructions accordingly. If it later turns out that the condition was false, the speculatively executed instructions are discarded as if they had no effect.

However, while the discarded effects of this speculative execution don't alter the outcome of a program, they do make changes to the lowest level architectural features of the processors. For example, speculative execution can load data into cache even if it turns out that the data should never have been loaded in the first place. The presence of the data in the cache can then be detected, because accessing it will be a little bit quicker than if it weren't cached. Other data

No-Branch Minimum

Problem

Find the minimum of two integers x and y without using a branch.

Why it works

- The C language represents the Booleans TRUE and FALSE with the integers 1 and 0, respectively.
- If x < y, then -(x < y) = -1, which is all 1's in two's complement representation. Therefore, we have $y \wedge ((x \wedge y) & 1) = y \wedge (x \wedge y) = x$.
- If $x \ge y$, then $y \land ((x \land y) \& 0) = y \land 0 = y$.

Merging Two Sorted Arrays

```
static void merge(int64_t * __restrict C,
                 int64 t * restrict A,
                 int64 t * restrict B,
                 size_t na,
                 size t nb) {
 while (na > 0 && nb > 0) {
   if (*A <= *B) {
    *C++ = *A++; na--;
   } else {
     *C++ = *B++; nb--;
 while (na > 0) {
  *C++ = *A++;
   na--;
 while (nb > 0) {
   *C++ = *B++;
   nb--;
```

The __restrict keywords say that A, B, and C don't *alias*, meaning that they do not overlap in memory.

Merging Two Sorted Arrays

```
static void merge(int64_t * __restrict C,
                 int64 t * restrict A,
                 int64_t * __restrict B,
                 size_t na,
                 size_t nb) {
 while (na > 0 && nb > 0) {
   if (*A <= *B) {
    *C++ = *A++; na--;
   } else {
     *C++ = *B++; nb--;
 while (na > 0) {
  *C++ = *A++;
   na--;
 while (nb > 0) {
   *C++ = *B++;
   nb--;
```


Branching

```
static void merge(long * __restrict C,
                 long * __restrict A,
                 long * __restrict B,
                 size_t na,
                 size_t nb) {
 while (na > 0 && nb > 0) {
  if (*A <= *B) {
   *C++ = *A++; na--;
   } else {
     *C++ = *B++; nb--;
 while (na > 0) {
   *C++ = *A++;
   na--;
 while (nb > 0) {
   *C++ = *B++;
   nb--;
```

Branch	Predictable?	
1	Yes	
2	Yes	
3	No	
4	Yes	

Branchless

```
static void merge(int64_t * __restrict C,
                 int64 t * restrict A,
                 int64 t * _ restrict B,
                 size t na,
                 size_t nb) {
 while (na > 0 && nb > 0) {
   long cmp = (*A <= *B);
   long min = *B ^ ((*B ^ *A) & (-cmp));
   *C++ = min;
   A += cmp; na -= cmp;
   B += !cmp; nb -= !cmp;
 while (na > 0) {
   *C++ = *A++;
   na--;
 while (nb > 0) {
   *C++ = *B++;
   nb--;
```

This optimization works well on some machines, but on modern machines using clang -03, the branchless version is usually slower than the branching version. Modern compilers can perform this optimization better than you can!

Why Learn Bit Hacks?

Why learn bit hacks if they don't perform?

- Because the compiler does them, and it will help to understand how the compiler is optimizing when you look at the assembly code.
- Because sometimes the compiler doesn't optimize, and you have to optimize your code by hand.
- Because many bit hacks for words extend naturally to bit, byte, and word hacks for vectors.
- Because these tricks arise in other domains, and so it pays to be educated about them.
- Because they're fun!

Modular Addition

Problem

Compute $r = (x + y) \mod n$, assuming that $0 \le x < n$ and $0 \le y < n$.

$$r = (x + y) \% n;$$

Division is expensive.

$$z = x + y;$$

 $r = (z < n) ? z : z - n;$

Unpredictable branch is expensive.

$$z = x + y;$$

 $r = z - (n & -(z >= n));$

Same trick as minimum.

Powers of 2

Is an Integer a Power of 2?

Problem

Is $x = 2^k$ for some integer k?

$$x == x & -x$$

Example

X	00001000	00101000
-x	11111000	11011000
x & -x	00001000	00001000
x == x & -x	0000001	0000000

Bug!

What if x = 0?

$$(x != 0) & (x == x & -x)$$

Problem

Compute 2^[lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

```
001000001010000
```

Problem

Compute 2^[lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

```
001000001010000
001000001111
```

Problem

Compute 2^[lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Problem

Compute 2^[lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Problem

Compute 2^[lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Problem

Compute 2^[lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Problem

Compute 2^[lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Problem

Compute 2^[lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Problem

Compute 2 [lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Problem

Compute 2^[lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Example

Why decrement?

To handle the boundary case when n is a power of 2.

Problem

Compute 2 [lg n].

Bit [lg n] – 1 must be set.

```
uint64 t n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Example

Set bit [lg n].

Populate all the bits to the right with 1.

Least-Significant 1

Problem

Compute the mask of the least-significant 1 in word x.

$$r = x & (-x);$$

Example

X	001000001010000
-x	1101111110110000
x & (-x)	000000000010000

Why it works

The binary representation of -x is (-x)+1.

Question

How do you find the index of the bit, i.e., lg r?

Count Trailing Zeros

Problem

Compute $\lg x$, where x is a power of 2.

```
const uint64_t deBruijn = 0x022fdd63cc95386d;
const int convert[64] = {
  0, 1, 2, 53, 3, 7, 54, 27,
  4, 38, 41, 8, 34, 55, 48, 28,
 62, 5, 39, 46, 44, 42, 22, 9,
  24, 35, 59, 56, 49, 18, 29, 11,
  63, 52, 6, 26, 37, 40, 33, 47,
  61, 45, 43, 21, 23, 58, 17, 10,
  51, 25, 36, 32, 60, 20, 57, 16,
  50, 31, 19, 15, 30, 14, 13, 12
r = convert[(x * deBruijn) >> 58];
```

Count Trailing 0's of a Power of 2

Why it works

A deBruijn sequence s of length 2^k is a cyclic 0-1 sequence such that each of the 2^k 0-1 strings of length k occurs exactly once as a substring of s.

Example: k=3

00011101

- 0 00011101
- 1 00111010
- 2 01110100
- 3 11101000
- 4 11010001
- 5 10100011
- 6 01000111
- 7 10001110

Count Trailing 0's of a Power of 2

Why it works

A deBruijn sequence s of length 2^k is a cyclic 0-1 sequence such that each of the 2^k 0-1 strings of length k occurs exactly once as a substring of s.

Example: k=3

```
00011101
 00011101
1 00111010
2 01110100
 11101000
 11010001
5 10100011
6 01000111
  10001110
```

```
const int convert[8]
= {0,1,6,2,7,5,4,3};
```

Count Trailing 0's of a Power of 2

Why it works

A deBruijn sequence s of length 2^k is a cyclic 0-1 sequence such that each of the 2^k 0-1 strings of length k occurs exactly once as a substring of s.

```
0b00011101*2^{4} \Rightarrow 0b11010000

0b11010000 >> 5 \Rightarrow 6

convert[6] \Rightarrow 4
```

Hardware instruction

```
int __builtin_ctz(int x)
```

Example: k=3

```
00011101
 00011101
1 00111010
2 01110100
 11101000
 11010000
5 10100000
6 01000000
  10000000
```

const int convert[8]

 $= \{0,1,6,2,7,5,4,3\};$

POPCOUNT

Problem

Count the number of 1 bits in a word x.

Repeatedly eliminate the least-significant **1**.

Example

X	0010110111010000						
x - 1	0010110111001111						
x & (x - 1);	0010110111000000						

Issue

Fast if the popcount is small, but in the worst case, the running time is proportional to the number of bits in the word.

Table lookup

```
static const int count[256] =
{ 0, 1, 1, 2, 1, 2, 2, 3, 1, ..., 8 };

for (int r = 0; x != 0; x >>= 8)
   r += count[x & 0xFF];
```

Performance depends on the word size. The cost of memory operations is a major bottleneck. Typical memory latencies:

```
register: 1 cycle,
L1-cache: 4 cycles,
L2-cache: 10 cycles,
L3-cache: 40 cycles,
DRAM: 200 cycles.
```

Parallel divide-and-conquer

```
// Create masks
M5 = \sim ((-1) << 32); // 0^{32}1^{32}
M4 = M5 ^ (M5 << 16); // (0^{16}1^{16})^2
M3 = M4 ^ (M4 << 8); // (0818)^4
M2 = M3 ^ (M3 << 4); // (0<sup>4</sup>1<sup>4</sup>)<sup>8</sup>
M1 = M2 ^ (M2 << 2); // (0<sup>2</sup>1<sup>2</sup>)<sup>16</sup>
MO = M1 ^ (M1 << 1); // (O1)^{32}
// Compute popcount
x = ((x >> 1) & MO) + (x & MO);
x = ((x >> 2) & M1) + (x & M1);
x = ((x >> 4) + x) & M2;
x = ((x >> 8) + x) & M3;
x = ((x >> 16) + x) & M4;
x = ((x >> 32) + x) & M5;
```

Notation: $X^k = XX \cdots X$ k times

1100001001011011111110100011111000

	11000	0 1 0	0 1 0 1	1 0 1 1	11110	0 1 0 0	01111	000	X
	1 0	0 0	1 1	0 1	1 1	1 0	1 1	0 0	x&MO
+	1 0	0 1	0 0	1 1	1 1	0 0	0 1	1 0	(x>>1)&MO
	0 0	0 1	0 1	1 0	1 0	0 0	1 0	0 0	x&M1
+	1 0	0 0	0 1	0 1	1 0	0 1	0 1	0 1	(x>>2)&M1
	0	0 0 1		0011	(0001	C	0 0 1	x&M2
+	0	0 1 0		0010	(0100	C	0 1 1	(x>>4)&M2
	00000	0 1 1	0000	0011	00000	0101	00000	100	•

	1 1 0	0 0	0 1	0	0 1	0 1	1	0	1	1	1	1	1	1 (1	0	0	0 1	1	1	1 0	0	0	X
	1	0	0	0	1	1		0		1		1		1	1		0	1		1	C)	0	x&MO
+	1	0	0	1	0	0		1		1		1		1	0		0	C)	1	1		0	(x>>1)&MO
	0	0	С	1		0 1			1	0			1 (0		0	0		1	0		0	0	x&M1
+	1	0	0	0		0 1			0	1		•	1 (C		0	1		0	1		0	1	(x>>2)&M1
		0	0 0	1			0	0	1	1				(0 0	0	1				0 0	0	1	x&M2
+		0	0 1	0			0	0	1	0				() 1	0	0				0 0	1	1	(x>>4)&M2
	0 0 0	0 0	0 1	1	0 0	0 0	0	1	0	1	0	0 (0 (0 (0 1	0	1	0 0	0	0	0 1	0	0	x&M3
																								(x>>8)&M3

	11000	0 1 0	0 1 0 1	1 0 1 1	1111	0 1 0 0 0	1111	0 0 0	X
	1 0	0 0	1 1	0 1	1 1	1 0	1 1	0 0	x&MO
+	1 0	0 1	0 0	1 1	1 1	0 0	0 1	1 0	(x>>1)&MO
	0 0	0 1	0 1	1 0	1 0	0 0	1 0	0 0	x&M1
+	1 0	0 0	0 1	0 1	1 0	0 1	0 1	0 1	(x>>2)&M1
	(0001		0 0 1 1		0001	0	0 0 1	x&M2
+	(0 1 0		0 0 1 0		0100	0	0 1 1	(x>>4)&M2
			0 0 0 0	0 1 0 1		C	0000	1 0 0	- x&M3
+			0 0 0 0	0011		0	0000	1 0 1	(x>>8)&M3
	00000	0000	0000	1000	0000	00000	0001	0 0 1	_

	11000	010	0 1 0 1	1011	1 1 1 1	0 1 0 0	01111	000	X
_	1 0	0 0		0 1	1 1	1 0	1 1	0 0	x&MO
+	1 0	0 1	0 0	1 1	1 1	0 0	0 1	1 0	(x>>1)&MO
	0 0	0 1	0 1	1 0	1 0	0 0	1 0	0 0	x&M1
+	1 0	0 0	0 1	0 1	1 0	0 1	0 1	0 1	(x>>2)&M1
	0	0 0 1		0 0 1 1		0001	0	0 0 1	x&M2
+	0	010		0 0 1 0		0 1 0 0	0	0 1 1	(x>>4)&M2
			0 0 0 0	0101			00000	100	x&M3
+			0 0 0 0	0 0 1 1			00000	1 0 1	(x>>8)&M3
	00000	0 0 0	0 0 0 0	1000	0000	0000	00001	0 0 1	x&M4
									(x>>16)&M4

Parallel divide-and-conquer

```
// Create masks
M5 = \sim ((-1) \ll 32); // 0^{32}1^{32}
M4 = M5 ^ (M5 << 16); // (0^{16}1^{16})^2
M3 = M4 ^ (M4 << 8); // (0818)^4
M2 = M3 ^ (M3 << 4); // (0<sup>4</sup>1<sup>4</sup>)<sup>8</sup>
M1 = M2 ^ (M2 << 2); // (0<sup>2</sup>1<sup>2</sup>)<sup>16</sup>
M0 = M1 ^ (M1 << 1); // (01)^{32}
// Compute popcount
x = ((x >> 1) & M0) + (x & M0);
x = ((x >> 2) & M1) + (x & M1);
x = ((x >> 4) + x) & M2;
x = ((x >> 8) + x) & M3;
x = ((x >> 16) + x) & M4;
x = ((x >> 32) + x) & M5;
```

Performance

 $\Theta(\lg w)$ time, where w = w ord length.

Avoid overflow

No worry about overflow.

Popcount Instructions

Most modern machines provide popcount instructions, which operate much faster than anything you can code yourself. You can access them via compiler intrinsics, e.g., in **clang**:

```
int __builtin_popcount (unsigned int x);
```

Warning: With some compilers, you may need to enable certain switches to access built-in functions, and your code may be less portable.

Exercise

Compute the log base 2 of a power of 2 quickly using a popcount instruction.

FINAL REMARKS

Further Reading

- Sean Eron Anderson, "Bit twiddling hacks," http://graphics.stanford.edu/~seander/bithacks.html, 2009.
- Donald E. Knuth, *The Art of Computer Programming*, Volume 4A, *Combinatorial Algorithms, Part 1*, Addison-Wesley, 2011, Section 7.1.3.
- http://chessprogramming.wikispaces.com/
- Henry S. Warren, Hacker's Delight, Addison-Wesley, 2003.

And remember to...

SUPPORT COMPUTER SCIENCE: EVERY LITTLE BIT COUNTS!