Macroeconomic Attention and Announcement Risk Premia

Adlai Fisher, Charles Martineau, Jinfei Sheng

解读:王梦涵

2024年10月23日

Motivation

- Finance literature has long sought to connect asset prices to the macroeconomy
 - Savor and Wilson (2013, 2014)—>Ai and Bansal (2018)
- Macroeconomic announcement premiums and endogenous attention share same drivers:
 - (a) economic uncertainty;
 - (b) risk aversion,or equivalently, the price of risk
- Macroeconomic attention is a natural instrument for macroeconomic announcement premiums.

Question

- What is the relationship of MAI, macroeconomic announcements and fundamentals?
 - Macroeconomic announcements drive short-run fluctuations in MAL
 - Changes in fundamentals drive Longer-horizon variations in MAI, but asymmetrically.
- What is the relationship between MAI and announcement returns?
 - High pre-MAI attention predicts high announcement premiums for employment situation and FOMC.

Hypothesis

- H1: Macroeconomic announcements and changes in fundamentals are drivers of MAI variations, but asymmetrically for changes in fundamentals.
 - Ai and Bansal (2018): Uncertainty builds between announcements until the state is revealed again at the next announcement.
 - Theories of endogenous attention and a countercyclical price of risk.
- H2: For employment and FOMC, pre-MAI predicts the announcement premium and decline in VIX.
 - High Pre-MAI suggests uncertainty for the announcement

Contribution

- Literature on empirical literature on macroeconomic announcements
 - Extension1: Propose a new tool for specific macroeconomic fundamentals
 - Extension2: Pre- MAI predicts announcement premiums and changes in VIX.
- Contribute to theories of endogenous attention and announcement premiums
 - Support some of the key elements of these theories(uncertainty...)
- New directions: Ai, Bansal, and Han (2021); future info risk for post- MA

- Macroeconomic news: Unemployment; Monetary; GDP, Inflation; Housing market; Credit rating; Oil; U.S. dollar; (1980-2020)
- Macroeconomic attention indexes (MAI):

$$MAI - p_{f,t} = \frac{N_{p,f,t}}{\hat{N}_{p,t}}$$

- f: fundamental
- p: the publication (NYT or WSJ)
- $\hat{N}_{p,t}$: average article count for p during the month including observation t
- $MAI_{f,t} = \frac{1}{2} \sum_{p=NYT/WSJ} MAI p_{f,t}$
- Why MAI can represent attention?
 - Assumption: Stable info production

Data: Properties of MAI

- MAI: persistence; gradual trends& sharp change; cycles
- Related to fundamentals

Q1:Design-Macroeconomic announcement

Regression:

$$\mathit{MAI}_{\mathit{f},\mathit{t}} = \alpha + \sum_{\sigma = -4}^{\sigma = 4} \beta_{\sigma} \mathit{Ann}_{\mathit{j},\mathit{t}+\sigma} + \epsilon_{\mathit{t}}$$

- MAI_{f,t}: composite attention index corresponding to fundamental f
- Ann_{j,t+} equal 1 if there is an announcement on day-t +δ for topic j and 0 otherwise

Q1:Result1-Macroeconomic announcement

- MAI spikes around macroeconomic announcements, especially the day after.
- MAI can capture specific fundamental attention

Q1:Design—Macroeconomic fundamentals

Regression:

$$\textit{MAI}_{\textit{f},\textit{t}} = \alpha + \beta_1 \textit{F}_{\textit{t}}^{\textit{M}-\textit{Q}} + \beta_2 \textit{F}_{\textit{t}}^{\textit{Q}-\textit{Y}} + \beta_3 \textit{F}^{\textit{Y}-4\textit{Y}} + \beta_4 |\textit{F}_{\textit{t}}^{\textit{M}-\textit{Q}}| + \beta_4 |\textit{F}_{\textit{t}}^{\textit{Q}-\textit{Y}}| + \beta_5 |\textit{F}^{\textit{Y}-4\textit{Y}}| + \epsilon_t$$

- MAI_{f t}: Average MAI for corresponding month or quarter
- F_{*}: Fundamental available at a month frequency
- F_{t}^{Q} , F_{t}^{Y} , F_{t}^{4Y} : moving average F_{t}^{M} over 3-,12-,48-month windows

$$F_t^M \equiv (F_t^M - F_t^Q) + (F_t^Q - F_t^Y) + (F_t^Y - F_t^{4Y}) + F_t^{4Y}$$

$$\equiv F_t^{M-Q} + F_t^{Q-Y} + F_t^{Y-4Y} + F_t^{4Y}$$

• $\beta_1, \beta_2, \beta_3$ capture asymmetry in the response to + versus - changes in

fundamental

Q1:Result1–Macroeconomic fundamentals

MAI:	Credit	GDP	Housing	Inflation	Oil	Unemp	U.S. dollar	Mone	tary
Fund.:	Cred spread (1)	GDP growth (2)	House ret	Infl rate (4)	Oil price (5)	Unemp rate (6)	USD index (7)	Fed Fund (8	Bal sheet
F^{M-Q}	0.027* (0.016)		-0.298* (0.172)	-0.142 (0.099)	0.004 (0.027)	0.152 (0.103)	-0.009 (0.010)	-0.041 (0.104)	0.002 (0.017)
F^{Q-Y}	0.005 (0.005)	0.025 (0.019)	-0.254*** (0.082)	0.006 (0.127)	0.026** (0.010)	0.074 (0.093)	-0.020** (0.009)	0.003 (0.043)	-0.014 (0.010)
F^{Y-4Y}	-0.004 (0.011)	0.002	-0.281** (0.129)	2.011*** (0.514)	0.024*** (0.009)	0.135*** (0.042)	-0.002 (0.005)	0.017 (0.035)	0.007**
$ F^{M-Q} $	-0.007 (0.022)		1.180*** (0.221)	-0.066 (0.209)	0.034 (0.046)	0.028 (0.133)	0.025	0.144 (0.126)	0.070** (0.015)
$ F^{Q-Y} $	0.006	0.034 (0.030)	0.442*** (0.107)	0.308*	0.032*** (0.012)	0.215** (0.097)	0.048*** (0.011)	0.166** (0.073)	0.014 (0.010)
$ F^{Y-4Y} $	0.026* (0.014)	0.054 (0.121)	0.968*** (0.208)	2.706*** (0.566)	0.026** (0.012)	0.211*** (0.071)	0.033*** (0.007)	0.028 (0.045)	0.004 (0.004)
Obs. Adj-R ²	487 .12	161 .01	472 .61	487 .18	487 .20	487 .51	475 .44	48	

• Changes in macroeconomic fundamentals, in either direction, can increase attention, but asymmetrically.

Q2: Design

• Preannouncement change in attention(ΔMAI_t^{Pre}):

$$\Delta \textit{MAI}_{ au}^{\textit{Pre}} \equiv \textit{MAI}_{ au}^{\textit{pre}} - \textit{MAI}_{ au}^{\textit{b}}$$

- $\mathit{MAI}_t^{\mathit{Pre}}$: Average MAI in a 3-day window prior to the announcement τ
- $\mathit{MAI}_{\tau}^{\mathit{b}}$: Average MAI from day +4 post previous to day -4 pre τ
- Regression

$$\textit{R}_{\tau}/\Delta \textit{VIX}_{\tau} = \alpha + \frac{\beta_{1}}{\Delta}\textit{MAI}^{\mathsf{pre}}_{\tau} + \beta_{2}\Delta \textit{EPU}^{\mathsf{pre}}_{\tau} + \beta_{3}\textit{Surp}_{\tau} + \beta_{4}\textit{Surp}_{\tau} \times 1^{\textit{NBER}}_{\tau} + \epsilon_{\tau}$$

- R_{τ} :Announcement-date S&P 500 excess return
- $Surp_{\tau}$: Announcement surprise
- $\mathbf{1}_{\tau}^{NBER}$: NBER recession indicator

Q2:Result-Employment

Y: R_τ

Introduction

	1980-2020									1980-2019 (excl. COVID)	
Dep. var.:	$R_{ au}$					Δ	R_{τ}	ΔVIX_t			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
Intercept	0.05	0.03	0.03	0.03	-0.33**	*-0.31***	-0.31***	· -0.32***	0.04	-0.29***	
	(0.05)	(0.05)	(0.06)	(0.06)	(0.08)	(0.08)	(0.08)	(0.08)	(0.06)	(0.08)	
$\Delta \mathrm{MAI}^{pre}$		0.12**	0.14***	0.14***		-0.21***	-0.21***	· -0.22***	0.15**	* -0.25***	
		(0.05)	(0.05)	(0.05)		(0.08)	(0.08)	(0.08)	(0.05)	(0.08)	
$\Delta \mathrm{EPU}^{pre}$			-0.01	-0.03			-0.04	0.02	-0.00	0.03	
			(0.06)	(0.06)			(0.07)	(0.07)	(0.06)	(0.07)	
Surp				0.08***				-0.12**	0.08	-0.02	
				(0.02)				(0.05)	(0.06)	(0.10)	
$Surp \times \mathbb{1}^{NBER}$				-1.15				2.73**	-0.50*	1.04**	
•				(0.72)				(1.32)	(0.26)	(0.48)	

• Pre- MAI predicts employment announcement premiums and changes in VIX.

Y: R_τ

Introduction

	1994-2020			1994-2006			2007-2020		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
A. Depende	nt variable	2: R _τ							
Intercept	0.28***	0.19***	0.16**	0.20**	0.19**	0.09	0.36***	0.18*	0.19*
	(0.08)	(0.07)	(0.07)	(0.09)	(0.09)	(0.10)	(0.12)	(0.11)	(0.11)
ΔMAI^{pre}		0.26***	0.25**		0.02	0.02		0.45***	0.46***
		(0.10)	(0.10)		(0.09)	(0.09)		(0.15)	(0.17)
ΔEPU^{pre}			0.05			0.19***			-0.09
			(0.09)			(0.07)			(0.17)
Surp			-0.16			-0.15*			-0.13
•			(0.11)			(0.09)			(0.22)
B. Depende	nt variable	2: ΔVIX _τ							
Intercept	-0.55***	-0.37***	-0.34***	-0.49***	-0.49***	-0.37***	-0.60***	-0.27**	-0.28**
	(0.11)	(0.08)	(0.09)	(0.09)	(0.09)	(0.09)	(0.19)	(0.14)	(0.14)
Δ MAI pre		-0.48**	-0.45**		0.00	0.01		-0.85***	-0.88***
		(0.20)	(0.18)		(0.09)	(0.09)		(0.32)	(0.33)
$\Delta \mathrm{EPU}^{pre}$			-0.09			-0.24***			0.14
			(0.11)			(0.07)			(0.16)
Surp			0.16			0.09			0.14
•			(0.13)			(0.07)			(0.26)

Conclusion

Pre- MAI predicts FOMC announcement premiums and changes in VIX.

Conclusion

- MAI increase around related announcements and changes in related fundamentals.
 - Bad news raises MAI more than good news.
- For unemployment and FOMC, MAI predicts announcement premiums and VIX changes.
 - Higher MAI, higher announcement premiums
 - Higher MAI, lower VIX

New ideas

- · Adjusting MAI using click-through rate
 - Other attention index: Bloomberg, Google Search index...
- Discuss about post attention pattern
 - Future info risk

Additional Discuss:Design

• Change in attention($MAI_{\tau}^{post,N-pre}$):

$$extit{MAI}_{ au}^{ extit{post}, N- extit{pre}} \equiv extit{MAI}_{ au}^{ extit{post}, N} - extit{MAI}_{ au}^{ extit{pre}}$$

- $MAI_{\tau}^{post,N}$:Average MAI from 1 to N days after the announcement
- $N \in 3, 10, 20$
- Regression

$$\textit{MAI}^{\textit{post},\textit{N-pre}} = \alpha + \beta_1 \mathbf{1}_{\textit{R}_{\tau} < 0} + \beta_2 |\textit{R}_{\tau}| + \epsilon$$

1_{R-<0} for bad news

Additional Discuss:Result

Y: MAI^{post,N-pre}

	N	=3	Ν	V = 10	N = 20		
	(1)	(2)	(3)	(4)	(5)	(6)	
A. Employme	ent announcemen	its					
$\mathbb{I}_{R_{\tau} < 0}$	0.17***		0.10^{**}		0.10**		
	(0.06)		(0.05)		(0.05)		
R_{τ}		-0.08***		-0.07***		-0.06***	
		(0.03)		(0.02)		(0.02)	
$ R_{ au} $		0.02		0.01		0.02	
		(0.04)		(0.03)		(0.03)	
Intercept	0.11**	0.17***	-0.04	-0.00	-0.05	-0.02	
	(0.04)	(0.05)	(0.03)	(0.04)	(0.03)	(0.03)	
B. FOMC an	nouncements						
$\mathbb{1}_{R_{\tau} < 0}$	0.19^*		0.18*		0.18**		
11, 10	(0.11)		(0.09)		(0.09)		
R_{τ}		-0.11**		-0.08*		-0.07*	
		(0.05)		(0.04)		(0.04)	
$ R_{\tau} $		0.24***		0.08		-0.02	
		(0.07)		(0.05)		(0.05)	
Intercept	0.68***	0.59***	-0.07	-0.03	-0.18***	-0.07	
- F	(0.08)	(0.07)	(0.07)	(0.06)	(0.06)	(0.06)	

• Bad news ($R_{\tau} < 0$) raises post-MAI.

