

- نام درس: آزمدار منطقی
- نام استاد: خانم کامیاب
- نام آزمایش: شمارنده دودویی
 - نام اعضاء گروه:
 - پارسا مهرزادي
 - ○شاهرخ بتولهداد
 - 0میثم آزاد

شرح آزمایش:

طراحی یک شمارنده دودویی ۰ تا ۵ با استفاده از فلیپ فلاپ ها

نحوه انجام آزمایش:

با استفاده از جدول درستی و جدول کارنو می توان ورودی های فلیپ فلاپ ها را طراحی و سپس خروجی آنها را به LED های موجود در مدار منتقل کرد.

حالت فعلى	حالت بعدي	فليپ فلاپ ها
$Q_2Q_1Q_0$	$Q_2Q_1Q_0$	$D_2D_1D_0$
000	001	001
001	010	010
010	011	011
011	100	100
100	101	101
101	000	000

جدول درستي

با توجه به جدول درستی، سه خروجی و باالطبع سه جدول کارنو خواهیم داشت که ورودی های فلیپ فلاپ ها را مشخص می کند.

$Q_2 \backslash Q_1 Q_0$	00	01	11	10
0	1			1
1	1		Χ	X
·		D ₀ =0	Q_0	

$Q_2 \setminus Q_1 Q_0$	00	01	11	10		
0		1		1		
1			X	X		
	$D_1 = Q_2' Q_1' Q_0 + Q_1 Q_0'$					
$Q_2 \setminus Q_1 Q_0$	00	01	11	10		
$Q_2 \backslash Q_1 Q_0$ 0	00	01	11	10		
Γ	1	01		10 X		

با در اختیار داشتن ورودی های فلیپ فلاپ ها از جدول کارنو، پیاده سازی مدار شمارنده امکان پذیر و با طراحی چندین گیت و متصل کردن سیم ها بهم، مدل دنیای واقعی شمارنده قابل طراحی است.

مدار موجود در آزمایشگاه مدار منطقی، توسط سیم هایی که با گیتها در ارتباط هستند، و همچنین توسط فلیپ فلاپ های D (قطعه ۴۰۱۳) شمارنده ۰ تا ۵ را طراحی، و خروجی ها را به LED ها منتقل می کند.

البته علارقم درستی مدار، که توسط نرم افزار Proteus پیاده سازی و جواب داد، مدار مدل واقعی در آزمایشگاه خروجی مناسب را نشان نداد.

نتيجه آزمايش:

مدارهای موجود در دنیای واقعی و نرم افزار های طراحی مدار، ارتباط تنگاتنگی با هم دارند و در صورت درستی قطعات مدل آزمایشگاهی مدار، به سادگی می توان شبیه سازی انجام شده را به مرحله اجرا در واقعیت رساند.