1 Section 2.2 Exercises

Exercises with solutions from Section 2.2 of [UA].

Exercise 2.2.1. What happens if we reverse the order of the quantifiers in Definition 2.2.3?

Definition: A sequence (x_n) verconges to x if there exists an $\epsilon > 0$ such that for all $N \in \mathbb{N}$ it is true that $n \geq N$ implies $|x_n - x| < \epsilon$.

Give an example of a vercongent sequence. Is there an example of a vercongent sequence that is divergent? Can a sequence verconge to two different values? What exactly is being described in this strange definition?

Solution. First observe that the statement

for all
$$N \in \mathbb{N}$$
, $n \ge N \implies |x_n - x| < \epsilon$

is equivalent to

for all
$$n \in \mathbb{N}$$
, $|x_n - x| < \epsilon$.

So a sequence verconges to x if there exists an $\epsilon > 0$ such that $|x_n - x| < \epsilon$, or equivalently such that $x_n \in (x - \epsilon, x + \epsilon)$, for all $n \in \mathbb{N}$. Such a sequence is then bounded; conversely, if a sequence is bounded then it must verconge to some x.

For an example of a vercongent sequence, take $(x_n) = (1, 1, 1, 1, ...)$. This sequence verconges to 1 since $|x_n - 1| = 0 < \epsilon$ for all $n \in \mathbb{N}$, for any choice of ϵ we make; $\epsilon = 1$ will do. It is clear that this sequence also converges to 1.

A vercongent sequence can also be divergent. For an example, consider $(x_n) = (1, 0, 1, 0, ...)$. This sequence verconges to $\frac{1}{2}$ since $|x_n - \frac{1}{2}| = \frac{1}{2} < 1$ for all $n \in \mathbb{N}$. This sequence also diverges. To see this, suppose there was some x such that $\lim x_n = x$. Then there must exist some $N \in \mathbb{N}$ such that $n \geq N$ implies that $|x_n - x| < \frac{1}{2}$. Observe that

$$1 = |x_N - x_{N+1}| \le |x_N - x| + |x_{N+1} - x| < \frac{1}{2} + \frac{1}{2} = 1,$$

i.e. 1 < 1, which is a contradiction.

A sequence can verconge to two different values; take $(x_n) = (1, 1, 1, 1, ...)$ again. Then (x_n) verconges to 1 and also to 0, since $|x_n - 0| = 1 < 2$ for all $n \in \mathbb{N}$.

Exercise 2.2.2. Verify, using the definition of convergence of a sequence, that the following sequences converge to the proposed limit.

- (a) $\lim_{5n+4} \frac{2n+1}{5n+4} = \frac{2}{5}$.
- (b) $\lim \frac{2n^2}{n^3+3} = 0$.

(c)
$$\lim \frac{\sin(n^2)}{\sqrt[3]{n}} = 0$$
.

Solution. (a) Let $\epsilon > 0$ be given. Choose $N \in \mathbb{N}$ such that $N > \frac{3}{25\epsilon}$ and observe that for $n \geq N$ we have

$$\left| \frac{2n+1}{5n+4} - \frac{2}{5} \right| = \frac{3}{25n+20} < \frac{3}{25n} < \epsilon.$$

It follows that $\lim \frac{2n+1}{5n+4} = \frac{2}{5}$.

(b) Let $\epsilon > 0$ be given. Choose $N \in \mathbb{N}$ such that $N > \frac{2}{\epsilon}$ and observe that for $n \geq N$ we have

$$\left| \frac{2n^2}{n^3 + 3} - 0 \right| = \frac{2n^2}{n^3 + 3} < \frac{2n^2}{n^3} = \frac{2}{n} < \epsilon.$$

It follows that $\lim \frac{2n^2}{n^3+3} = 0$.

(c) Let $\epsilon>0$ be given. Choose $N\in {\bf N}$ such that $N>\frac{1}{\epsilon^3}$ and observe that for $n\geq N$ we have

$$\left| \frac{\sin(n^2)}{\sqrt[3]{n}} - 0 \right| = \frac{\left| \sin(n^2) \right|}{\sqrt[3]{n}} \le \frac{1}{\sqrt[3]{n}} < \epsilon.$$

It follows that $\lim \frac{\sin(n^2)}{\sqrt[3]{n}} = 0$.

Exercise 2.2.3. Describe what we would have to demonstrate in order to disprove each of the following statements.

- (a) At every college in the United States, there is a student who is at least seven feet tall.
- (b) For all colleges in the United States, there exists a professor who gives every student a grade of either A or B.
- (c) There exists a college in the United States where every student is at least six feet tall.

Solution. (a) We would have to find a college in the United States where every student is less than seven feet tall.

- (b) We would have to find a college in the United States where each professor gives at least one student a grade of C or worse.
- (c) We would have to show that every college in the United States has a student who is less than six feet tall.

Exercise 2.2.4. Give an example of each or state that the request is impossible. For any that are impossible, give a compelling argument for why that is the case.

- (a) A sequence with an infinite number of ones that does not converge to one.
- (b) A sequence with an infinite number of ones that converges to a limit not equal to one.
- (c) A divergent sequence such that for every $n \in \mathbb{N}$ it is possible to find n consecutive ones somewhere in the sequence.
- Solution. (a) Consider $(x_n) = (1, 0, 1, 0, ...)$. This sequence has an infinite number of ones but, as shown in Exercise 2.2.1, diverges.
- (b) This is impossible. Suppose (x_n) is such a sequence with $\lim x_n = x \neq 1$. Then there must exist some $N \in \mathbb{N}$ such that for all $n \geq N$ we have $|x_n x| < |1 x|$. Since this sequence contains infinitely many ones, it must be the case that there is some $m \geq N$ such that $x_m = 1$. This implies that $|x_m x| = |1 x| < |1 x|$, which is a contradiction.
- (c) Consider the sequence

$$(x_n) = (1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, \ldots).$$

Clearly, for each $n \in \mathbb{N}$ we can find n consecutive ones somewhere in the sequence. Furthermore, the sequence is divergent. To see this, suppose there was some x such that $\lim x_n = x$. Then there must exist some $N \in \mathbb{N}$ such that $n \geq N$ implies that $|x_n - x| < \frac{1}{2}$. Since the sequence contains infinitely many ones and zeros, we can find indices $k, l \geq N$ such that $x_k = 1$ and $x_l = 0$. Then

$$1 = |x_k - x_l| \le |x_k - x| + |x_l - x| < \frac{1}{2} + \frac{1}{2} = 1,$$

i.e. 1 < 1, which is a contradiction.

Exercise 2.2.5. Let [[x]] be the greatest integer less than or equal to x. For example, $[[\pi]] = 3$ and [[3]] = 3. For each sequence, find $\lim a_n$ and verify it with the definition of convergence.

- (a) $a_n = [[5/n]],$
- (b) $a_n = [[(12 + 4n)/3n]].$

Reflecting on these examples, comment on the statement following Definition 2.2.3 that "the smaller the ϵ -neighborhood, the larger N may have to be."

- Solution. (a) We claim that $\lim a_n = 0$. Let $\epsilon > 0$ be given and observe that if $n \geq 6$, then $0 < 5/n < 1 \implies [[5/n]] = 0$. So if we take $N \geq 6$, then $n \geq N$ implies that $|[5/n]| 0| = 0 < \epsilon$.
 - (b) We claim that $\lim a_n = 1$. Let $\epsilon > 0$ be given and observe that if $n \geq 7$, then

$$\frac{1}{n} < \frac{1}{6} \iff \frac{4}{n} < \frac{2}{3} \iff \frac{4}{n} + \frac{1}{3} < 1.$$

Hence for $n \ge 7$ we have $0 < 4/n + 1/3 < 1 \implies [[4/n + 1/3]] = 0$. So if we take $N \ge 7$, then $n \ge N$ implies that

$$\left[\left[\frac{12+4n}{3n} - 1 \right] \right] = \left[\left[\frac{4}{n} + \frac{1}{3} \right] \right] = 0 < \epsilon.$$

These examples demonstrate that taking smaller ϵ -neighborhoods may not require us to take larger values of N; the same value of N in each example works for every ϵ -neighborhood that we choose.

Exercise 2.2.6. Prove Theorem 2.2.7. To get started, assume $(a_n) \to a$ and $(a_n) \to b$. Now argue a = b.

Solution. Let $\epsilon > 0$ be given. Then there are positive integers N_1 and N_2 such that

$$n \ge N_1 \implies |a_n - a| < \frac{\epsilon}{2} \text{ and } n \ge N_2 \implies |a_n - b| < \frac{\epsilon}{2}.$$

Let $N = \max\{N_1, N_2\}$ and observe that for $n \geq N$ we have

$$|a - b| = |a - a_n + a_n - b| \le |a_n - a| + |a_n - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

So we have shown that $|a-b| < \epsilon$ for any $\epsilon > 0$. It follows that a = b.

Exercise 2.2.7. Here are two useful definitions:

- (i) A sequence (a_n) is eventually in a set $A \subseteq \mathbf{R}$ if there exists an $N \in \mathbf{N}$ such that $a_n \in A$ for all $n \geq N$.
- (ii) A sequence (a_n) is frequently in a set $A \subseteq \mathbf{R}$ if, for every $N \in \mathbf{N}$, there exists an $n \geq N$ such that $a_n \in A$.
 - (a) Is the sequence $(-1)^n$ eventually or frequently in the set $\{1\}$?
 - (b) Which definition is stronger? Does frequently imply eventually or does eventually imply frequently?

- (c) Give an alternate rephrasing of Definition 2.2.3B using either frequently or eventually. Which is the term we want?
- (d) Suppose an infinite number of terms of a sequence (x_n) are equal to 2. Is (x_n) necessarily eventually in the interval (1.9, 2.1)? Is it frequently in (1.9, 2.1)?
- Solution. (a) The sequence $(-1)^n$ is frequently but not eventually in the set $\{1\}$. To see this, let $N \in \mathbb{N}$ be given. If N is even, then $(-1)^N \in \{1\}$ and $(-1)^{N+1} \notin \{1\}$, and if N is odd then $(-1)^N \notin \{1\}$ and $(-1)^{N+1} \in \{1\}$. In any case, we can always find indices $m, n \geq N$ such that $(-1)^m \notin \{1\}$ (this says that the sequence is not eventually in $\{1\}$) and such that $(-1)^n \in \{1\}$ (this says that the sequence is frequently in $\{1\}$).
- (b) Eventually is the stronger definition. Frequently does not imply eventually, as part (a) shows, but eventually does imply frequently. To see this, suppose that (a_n) is eventually in a set A, i.e. there is an $N \in \mathbf{N}$ such that $a_n \in A$ for all $n \geq N$. Let $M \in \mathbf{N}$ be given. Set $n = \max\{M, N\}$ and observe that $n \geq M$ and $n \geq N \implies a_n \in A$. Hence (a_n) is frequently in A.
- (c) The term we want is eventually. Here is a rephrasing of Definition 2.2.3B. A sequence (a_n) converges to a if, given any $\epsilon > 0$, the sequence (a_n) is eventually in the ϵ -neighborhood $V_{\epsilon}(a)$ of a.
- (d) Such a sequence is not necessarily eventually in (1.9, 2.1); consider the sequence $(x_n) = (2, 0, 2, 0, 2, \ldots)$ for example. For any $N \in \mathbb{N}$, we can always find an index $n \geq N$ (either n = N or n = N + 1) such that $x_n = 0 \notin (1.9, 2.1)$. However, such a sequence must be frequently in (1.9, 2.1). To see this, let $N \in \mathbb{N}$ be given. Then there must exist an index $n \geq N$ such that $x_n = 2 \in (1.9, 2.1)$ (otherwise there would be only finitely many twos in the sequence).

Exercise 2.2.8. For some additional practice with nested quantifiers, consider the following invented defintion:

Let's call a sequence (x_n) zero-heavy if there exists $M \in \mathbb{N}$ such that for all $N \in \mathbb{N}$ there exists n satisfying $N \leq n \leq N + M$ where $x_n = 0$.

- (a) Is the sequence $(0, 1, 0, 1, 0, 1, \ldots)$ zero-heavy?
- (b) If a sequence is zero-heavy does it necessarily contain an infinite number of zeros? If not, provide a counterexample.
- (c) If a sequence contains an infinite number of zeros, is it necessarily zero-heavy? If not, provide a counterexample.

- (d) Form the logical negation of the above definition. That is, complete the sentence: A sequence is *not* zero-heavy if
- Solution. (a) This sequence is zero-heavy; M=1 works. Indeed, let $N \in \mathbb{N}$ be given. If N is odd then let n=N and if N is even then let n=N+1. In either case, we have $N \leq n \leq N+1$ and $x_n=0$.
 - (b) A zero-heavy sequence must contain an infinite number of zeros. To see this, suppose (x_n) is a sequence with a finite number of zeros, i.e. there is an $N \in \mathbb{N}$ such that $x_n \neq 0$ for all $n \geq N$. Then no matter which M we choose, we will never be able to find $n \in \mathbb{N}$ with $N \leq n \leq N + M$ and $x_n = 0$. Hence the sequence (x_n) is not zero-heavy.
 - (c) A sequence with an infinite number of zeros is not necessarily zero-heavy. For a counterexample, consider the sequence

$$(x_n) = (1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, \ldots).$$

This sequence contains infinitely many zeros, but is not zero-heavy. To see this, let $M \in \mathbf{N}$ be given. Then it is always possible to find M consecutive ones in the sequence (x_n) ; suppose this string of ones starts at $x_N = 1$. Then for each $n \in \mathbf{N}$ satisfying $N \le n \le N + M$, we have $x_n = 1 \ne 0$.

- (d) A sequence is not zero-heavy if for every $M \in \mathbf{N}$ there exists an $N \in \mathbf{N}$ such that $x_n \neq 0$ for each $n \in \mathbf{N}$ satisfying $N \leq n \leq N + M$.
- [UA] Abbott, S. (2015) Understanding Analysis. 2nd edn.