Normalización Clase Práctica 2 SPI y SPDF

Rosana Matuk

Departamento de Computación - Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

> Base de Datos 2do. Cuatrimestre 2014

Esquema General

- Introducción
- 2 Sin pérdida de información

000

Preservación de Dependencias Funcionales

Esquema General

- 1 Introducción
- 2 Sin pérdida de información

000

3 Preservación de Dependencias Funcionales

Dos Características de una Buena Descomposición

- Sin Pérdida de Información
- Preservación de Dependencias Funcionales

Esquema General

- 1 Introducción
- 2 Sin pérdida de información
- 3 Preservación de Dependencias Funcionales

Esquema General

- 2 Sin pérdida de información
 - Introducción

 - Algoritmo del Tableau

Definición

Si R es un esquema de relación descompuesto en los esquemas $R_1, R_2, ..., R_k$ y D es un conjunto de dependencias, decimos que la descomposición es sin pérdida de información (SPI) con respecto a D, si para toda relación r para R que satisfaga D:

$$r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \ldots \bowtie \pi_{R_k}(r)$$

Estrategias para comprobar SPI

Descomposiciones de dos esquemas

Descomposición binaria

Descomposiciones en más de dos esquemas

Algoritmo del Tableau

Descomposición binaria

Esquema General

- 2 Sin pérdida de información
 - Introducción
 - Descomposición binaria
 - Algoritmo del Tableau

Descomposición binaria

Teorema de la Descomposición Binaria

La descomposición ρ de R, ρ = (R_1 , R_2) es SPI respecto a un conjunto de dependencias funcionales F sí y sólo sí:

$$F^+$$
 contiene la DF: $R_1 \cap R_2 \rightarrow (R_1 - R_2)$

$$F^+$$
 contiene la DF: $R_1 \cap R_2 \rightarrow (R_2 - R_1)$

Descomposición binaria

Ejemplo

Sea
$$R = ABC$$
 y $F = \{A \rightarrow B\}$.

Pregunta: La descomposición de R en AB y AC es SPI?

000

Descomposición binaria

Ejemplo

Sea R = ABC y $F = \{A \rightarrow B\}$.

Pregunta: La descomposición de R en AB y AC es SPI?

Resp: Sí. $AB \cap AC = A$, AB - AC = B, y $A \rightarrow B$ está en F^+ .

000

Descomposición binaria

Ejemplo

Sea R = ABC y $F = \{A \rightarrow B\}$.

Pregunta: La descomposición de R en AB y AC es SPI? Resp: Sí. $AB \cap AC = A$, AB - AC = B, y $A \rightarrow B$ está en F^+ .

Tarea para el hogar:

La descomposición de R en AB y BC es SPI?

•00000000000000000 Algoritmo del Tableau

Esquema General

- 2 Sin pérdida de información
 - Introducción
 - Descomposición binaria
 - Algoritmo del Tableau

Definición de Tableau

Sin pérdida de información 000000000000000000

Dado $R = (A_1, \ldots, A_n)$, un tableau T para una descomposición $\rho = (R_1, ..., R_k)$ de R se define de la siguiente forma:

- $oldsymbol{1}$ T tiene n columnas, una para cada atributo de R
- **2** T tiene k filas, una para cada esquema de ρ
- 3 Dadas la fila i y la columna j (esquema R_i y atributo A_i), el contenido del tableau será:

$$a_j$$
 si $A_j \in R_i$
o
 b_{ij} si $A_i \notin R_i$

Los a_i se denominan símbolos distinguidos, y los b_{ii} no distinguidos.

Algoritmo del Tableau

INPUT: Un esquema de relación R, un conjunto de dependencias funcionales F, y una descomposición ρ . OUTPUT: Una decisión de si ρ es SPI.

Construir el Tableau T mientras haya cambios sobre T para cada df $X \rightarrow Y \in F$

00000000000000000

buscar filas que coincidan en todos los símbolos de X Si se encontrasen dos filas, igualar los simbolos para los atributos de Y. Cuando se igualan 2 símbolos, si alguno de ellos es a_i , asignarle al otro a_i . Si ellos son b_{ii} y b_{li} , asignarle a ambos b_{ii} o b_{li} . Si hay una fila con todos símbolos distinguidos, retornar Sí

end (mientras)

Retornar No.

Verificación SPI - Ejercicio 1

Sea R = ABCDE, F =
$$\{A \rightarrow B, D \rightarrow C\}$$
.
Decidir si la descomposición $\rho = \{ABC, CDE, ADE\}$ es SPI.

Verificación SPI - Ejercicio 1 - Tableau Inicial

R = ABCDE, F =
$$\{A \rightarrow B, D \rightarrow C\}$$
, $\rho = \{ABC, CDE, ADE\}$

	Α	В	С	D	Е
ABC	a ₁	a_2	a ₃	<i>b</i> ₁₄	<i>b</i> ₁₅
CDE	<i>b</i> ₂₁	b ₂₂	a ₃	a_4	a 5
ADE	a ₁	<i>b</i> ₃₂	<i>b</i> ₃₃	a_4	a ₅

Verificación SPI - Ejercicio 1 - Tableau Intermedio

00000 • 00000000000000

R = ABCDE, F =
$$\{A \rightarrow B, D \rightarrow C\}$$
, $\rho = \{ABC, CDE, ADE\}$

$$A \rightarrow B$$

	Α	B	С	D	E
ABC	a ₁	a_2	a ₃	b ₁₄	<i>b</i> ₁₅
CDE	<i>b</i> ₂₁	b ₂₂	a ₃	a_4	a 5
ADE	a ₁	<i>b</i> ₃₂	b_{33}	a_4	a 5

Verificación SPI - Ejercicio 1 - Tableau Intermedio

R = ABCDE, F =
$$\{A \rightarrow B, D \rightarrow C\}$$
, $\rho = \{ABC, CDE, ADE\}$

$$A \rightarrow B$$

	Α	B	С	D	Ε
ABC	a ₁	a_2	a ₃	b ₁₄	<i>b</i> ₁₅
CDE	<i>b</i> ₂₁	b ₂₂	a ₃	a_4	a 5
ADE	a ₁	a ₂	b_{33}	a_4	a 5

Verificación SPI - Ejercicio 1 - Tableau Intermedio

R = ABCDE, F =
$$\{A \rightarrow B, D \rightarrow C\}$$
, $\rho = \{ABC, CDE, ADE\}$

$$D \rightarrow C$$

	Α	В	С	D	E
ABC	a ₁	a_2	a ₃	b ₁₄	<i>b</i> ₁₅
CDE	<i>b</i> ₂₁	b ₂₂	a_3	a_4	a 5
ADE	a ₁	a_2	b_{33}	a_4	a 5

Verificación SPI - Ejercicio 1 - Tableau Final

R = ABCDE, F =
$$\{A \rightarrow B, D \rightarrow C\}$$
, $\rho = \{ABC, CDE, ADE\}$

$$D \rightarrow C$$

	A	B	C	D	E
ABC	a ₁	a ₂	a 3	b ₁₄	<i>b</i> ₁₅
CDE	<i>b</i> ₂₁	b ₂₂	a 3	a_4	a 5
ADE	a ₁	a ₂	<i>a</i> ₃	a_4	a ₅

Verificación SPI - Ejercicio 1 - Tableau Final

0000000000000000000

R = ABCDE, F = {
$$A \rightarrow B, D \rightarrow C$$
}, $\rho = {ABC, CDE, ADE}$

	Α	В	С	D	Е
ABC	a ₁	a_2	a ₃	b ₁₄	b ₁₅
CDE	b ₂₁	b ₂₂	a 3	a ₄	a 5
ADE	a ₁	a_2	<i>a</i> ₃	a_4	a 5

Como hay una fila con todos símbolos distinguidos, ρ es SPI.

Verificación SPI - Ejercicio 2

000000000000000000

Sea R = ABCDEFGHI, $\mathsf{F} = \{ \mathsf{A} \to \mathsf{B}, \mathsf{CD} \to \mathsf{F}, \mathsf{H} \to \mathsf{AD}, \mathsf{I} \to \mathsf{C}, \mathsf{D} \to \mathsf{H} \}.$ Decidir si la descomposición $\rho = \{ABD, DEF, FGC, CHI\}$ es SPI.

Verificación SPI - Ejercicio 2 - Tableau Inicial

R = ABCDEFGHI, F =
$$\{A \rightarrow B, CD \rightarrow F, H \rightarrow AD, I \rightarrow C, D \rightarrow H\}$$
, $\rho = \{ABD, DEF, FGC, CHI\}$

	Α	В	С	D	E	F	G	Н	ı
ABD	a ₁	a ₂	<i>b</i> ₁₃	<i>a</i> ₄	<i>b</i> ₁₅	<i>b</i> ₁₆	<i>b</i> ₁₇	<i>b</i> ₁₈	<i>b</i> ₁₉
DEF	b ₂₁	b ₂₂	<i>b</i> ₂₃	a_4	a ₅	a ₆	<i>b</i> ₂₇	<i>b</i> ₂₈	<i>b</i> ₂₉
FGC	<i>b</i> ₃₁	<i>b</i> ₃₂	a ₃	<i>b</i> ₃₄	<i>b</i> ₃₅	a ₆	a ₇	<i>b</i> ₃₈	<i>b</i> ₃₉
CHI	b ₄₁	b ₄₂	a ₃	b ₄₄	<i>b</i> ₄₅	<i>b</i> ₄₆	<i>b</i> ₄₇	a ₈	a 9

Verificación SPI - Ejercicio 2 - Tableau Intermedio

R = ABCDEFGHI, F =
$$\{A \rightarrow B, CD \rightarrow F, H \rightarrow AD, I \rightarrow C, D \rightarrow H\}$$
, $\rho = \{ABD, DEF, FGC, CHI\}$

$$D \rightarrow H$$

		Α	В	С	D	E	F	G	Н	ı
ĺ	ABD	a ₁	a_2	<i>b</i> ₁₃	a ₄	<i>b</i> ₁₅	<i>b</i> ₁₆	b ₁₇	b ₁₈	<i>b</i> ₁₉
	DEF	<i>b</i> ₂₁	b ₂₂	<i>b</i> ₂₃	a ₄	a 5	a ₆	b ₂₇	<i>b</i> ₂₈	<i>b</i> ₂₉
	FGC	<i>b</i> ₃₁	<i>b</i> ₃₂	a ₃	<i>b</i> ₃₄	<i>b</i> ₃₅	a ₆	a ₇	<i>b</i> ₃₈	<i>b</i> ₃₉
	CHI	b ₄₁	b ₄₂	a 3	b ₄₄	<i>b</i> ₄₅	<i>b</i> ₄₆	b ₄₇	a ₈	a 9

Algoritmo del Tableau

R = ABCDEFGHI, F =
$$\{A \rightarrow B, CD \rightarrow F, H \rightarrow AD, I \rightarrow C, D \rightarrow H\}$$
, $\rho = \{ABD, DEF, FGC, CHI\}$

$$D \rightarrow H$$

	Α	В	С	D	E	F	G	Н	ı
ABD	a ₁	a_2	<i>b</i> ₁₃	a_4	<i>b</i> ₁₅	<i>b</i> ₁₆	b ₁₇	<i>b</i> ₁₈	<i>b</i> ₁₉
DEF	<i>b</i> ₂₁	b ₂₂	<i>b</i> ₂₃	a ₄	a 5	a ₆	b ₂₇	<i>b</i> ₁₈	<i>b</i> ₂₉
FGC	<i>b</i> ₃₁	<i>b</i> ₃₂	a 3	<i>b</i> ₃₄	<i>b</i> ₃₅	a ₆	a ₇	<i>b</i> ₃₈	<i>b</i> ₃₉
CHI	b ₄₁	b ₄₂	a ₃	b ₄₄	<i>b</i> ₄₅	<i>b</i> ₄₆	b ₄₇	a ₈	a 9

R = ABCDEFGHI, F =
$$\{A \rightarrow B, CD \rightarrow F, H \rightarrow AD, I \rightarrow C, D \rightarrow H\}$$
, $\rho = \{ABD, DEF, FGC, CHI\}$

$$H \rightarrow AD$$

	Α	В	С	D	E	F	G	Н	ı
ABD	a ₁	a_2	<i>b</i> ₁₃	a_4	<i>b</i> ₁₅	<i>b</i> ₁₆	<i>b</i> ₁₇	<i>b</i> ₁₈	<i>b</i> ₁₉
DEF	<i>b</i> ₂₁	b ₂₂	<i>b</i> ₂₃	a_4	a 5	a ₆	b ₂₇	<i>b</i> ₁₈	<i>b</i> ₂₉
FGC	<i>b</i> ₃₁	<i>b</i> ₃₂	a ₃	<i>b</i> ₃₄	<i>b</i> ₃₅	a ₆	a ₇	<i>b</i> ₃₈	<i>b</i> ₃₉
CHI	b ₄₁	b ₄₂	a ₃	b ₄₄	<i>b</i> ₄₅	<i>b</i> ₄₆	b ₄₇	<i>a</i> ₈	a 9

R = ABCDEFGHI, F =
$$\{A \rightarrow B, CD \rightarrow F, H \rightarrow AD, I \rightarrow C, D \rightarrow H\}$$
, $\rho = \{ABD, DEF, FGC, CHI\}$

$$H \rightarrow AD$$

	Α	В	С	D	E	F	G	Н	ı
ABD	a ₁	a_2	<i>b</i> ₁₃	a_4	<i>b</i> ₁₅	<i>b</i> ₁₆	b ₁₇	<i>b</i> ₁₈	<i>b</i> ₁₉
DEF	a ₁	b ₂₂	<i>b</i> ₂₃	a ₄	a 5	a ₆	b ₂₇	<i>b</i> ₁₈	<i>b</i> ₂₉
FGC	<i>b</i> ₃₁	<i>b</i> ₃₂	a ₃	<i>b</i> ₃₄	<i>b</i> ₃₅	a ₆	a ₇	<i>b</i> ₃₈	<i>b</i> ₃₉
CHI	b ₄₁	b ₄₂	a ₃	b ₄₄	<i>b</i> ₄₅	<i>b</i> ₄₆	b ₄₇	<i>a</i> ₈	a 9

0000000000000000000

Sin pérdida de información

Algoritmo del Tableau

R = ABCDEFGHI, F =
$$\{A \rightarrow B, CD \rightarrow F, H \rightarrow AD, I \rightarrow C, D \rightarrow H\}$$
, $\rho = \{ABD, DEF, FGC, CHI\}$

$$A \rightarrow B$$

	Α	В	С	D	E	F	G	Н	ı
ABD	a ₁	a_2	<i>b</i> ₁₃	a_4	<i>b</i> ₁₅	<i>b</i> ₁₆	<i>b</i> ₁₇	<i>b</i> ₁₈	<i>b</i> ₁₉
DEF	a ₁	b ₂₂	<i>b</i> ₂₃	a_4	a 5	a ₆	b ₂₇	<i>b</i> ₁₈	<i>b</i> ₂₉
FGC	<i>b</i> ₃₁	<i>b</i> ₃₂	a ₃	<i>b</i> ₃₄	<i>b</i> ₃₅	a ₆	a ₇	<i>b</i> ₃₈	<i>b</i> ₃₉
CHI	b ₄₁	b ₄₂	a ₃	b ₄₄	<i>b</i> ₄₅	<i>b</i> ₄₆	b ₄₇	<i>a</i> ₈	a 9

R = ABCDEFGHI, F =
$$\{A \rightarrow B, CD \rightarrow F, H \rightarrow AD, I \rightarrow C, D \rightarrow H\}$$
, $\rho = \{ABD, DEF, FGC, CHI\}$

$$A \rightarrow B$$

	Α	В	С	D	E	F	G	Н	ı
ABD	a ₁	a_2	<i>b</i> ₁₃	a_4	<i>b</i> ₁₅	<i>b</i> ₁₆	<i>b</i> ₁₇	<i>b</i> ₁₈	<i>b</i> ₁₉
DEF	a ₁	a ₂	<i>b</i> ₂₃	a_4	a 5	a ₆	b ₂₇	<i>b</i> ₁₈	<i>b</i> ₂₉
FGC	<i>b</i> ₃₁	<i>b</i> ₃₂	a ₃	<i>b</i> ₃₄	<i>b</i> ₃₅	a ₆	a ₇	<i>b</i> ₃₈	<i>b</i> ₃₉
CHI	b ₄₁	b ₄₂	a 3	b ₄₄	<i>b</i> ₄₅	<i>b</i> ₄₆	b ₄₇	a ₈	a 9

Verificación SPI - Ejercicio 2 - Tableau Final

R = ABCDEFGHI, F =
$$\{A \rightarrow B, CD \rightarrow F, H \rightarrow AD, I \rightarrow C, D \rightarrow H\}$$
, $\rho = \{ABD, DEF, FGC, CHI\}$

	Α	В	С	D	E	F	G	Н	ı
ABD	a ₁	a_2	<i>b</i> ₁₃	a ₄	<i>b</i> ₁₅	<i>b</i> ₁₆	<i>b</i> ₁₇	<i>b</i> ₁₈	<i>b</i> ₁₉
DEF	a ₁	a ₂	<i>b</i> ₂₃	a_4	a ₅	a ₆	b ₂₇	<i>b</i> ₁₈	<i>b</i> ₂₉
FGC	<i>b</i> ₃₁	<i>b</i> ₃₂	a ₃	b ₃₄	<i>b</i> ₃₅	a ₆	a ₇	<i>b</i> ₃₈	<i>b</i> ₃₉
CHI	<i>b</i> ₄₁	b ₄₂	a ₃	b ₄₄	<i>b</i> ₄₅	<i>b</i> ₄₆	b ₄₇	a ₈	a 9

Como no hay ninguna fila con todos símbolos distinguidos, y aunque sigamos iterando nuevamente por todas las dependencias, ninguna alterará el tableau, ρ NO es SPI.

Esquema General

- 1 Introducción
- 2 Sin pérdida de información
- 3 Preservación de Dependencias Funcionales

Esquema General

- 3 Preservación de Dependencias Funcionales
 - Introducción
 - Ejercitación

Preservación de Dependencias Funcionales

Dados un esquema de relación R, una descomposición $\rho = (R_1, \dots, R_k)$, y un conjunto F de dependencias funcionales.

 $\pi_z(F)$: proyección de F sobre un conjunto de atributos **Z**

Conjunto de dependencias $X \to Y$ en F^+ tal que $XY \subseteq Z$

Testeo (orden exponencial)

La descomposición ρ preserva F si $F^+ = (\bigcup_{i=1}^k \pi_{R_i}(F))^+$

Testeo Polinomial de Preservación de Dependencias Funcionales

```
Dados un esquema de relación R, una descomposición \rho =
(R_1, \ldots, R_k), y un conjunto F de dependencias funcionales.
Para toda dependencia funcional X \to Y \in F:
      Verificar que se preserva X \rightarrow Y:
           Z = X
           while Z cambia
                for i = 1 to k do
                     /* clausura con respecto a F */
                     Z = Z \cup ((Z \cap R_i)^+ \cap R_i)
           Si Y \nsubseteq Z retornar No
Retornar Sí
```

Esquema General

- 3 Preservación de Dependencias Funcionales
 - Introducción
 - Ejercitación

Preservación de Dependencias Funcionales: Ejercicio

Sean
$$R = ABCDE$$
 y $F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, E \rightarrow C\}$.

Decidir si la descomposición $\rho = \{AD, DE, ECB\}$ es sin pérdida de dependencias funcionales (SPDF).

Preservación de Dependencias Funcionales: Resolución Ejercicio

$$R = ABCDE$$

 $F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, E \rightarrow C\}$
 $\rho = \{AD, DE, ECB\}$

Estrategia de Resolución:

Preservación de Dependencias Funcionales: Resolución Ejercicio

$$R = ABCDE$$

 $F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, E \rightarrow C\}$
 $\rho = \{AD, DE, ECB\}$

Estrategia de Resolución:

Las dependencias $A \to D, D \to E, E \to C$ se preservan trivialmente (por qué?), y no es necesario aplicarles el algoritmo.

Le aplicaremos el algoritmo a la dependencia $AB \rightarrow C$ para ver si se preserva.

Preservación de Dependencias Funcionales: Resolución Ejercicio

```
R = ABCDE
F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, E \rightarrow C\}
\rho = \{AD, DE, ECB\}
Queremos verificar que se preserva AB \rightarrow C
Verificar que se preserva X \rightarrow Y:
Z = X
while Z cambia
\text{for } i = 1 \text{ to } k \text{ do}
Z = Z \cup ((Z \cap R_i)^+ \cap R_i)
Si Y \nsubseteq Z retornar No
```

$$Z = AB$$

Preservación de Dependencias Funcionales: Resolución Ejercicio

```
\begin{split} R &= ABCDE \\ F &= \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, E \rightarrow C\} \\ \rho &= \{AD, DE, ECB\} \\ \textbf{Queremos verificar que se preserva } AB \rightarrow C \\ \text{Verificar que se preserva } X \rightarrow Y \text{:} \\ Z &= X \\ \text{while Z cambia} \\ \text{for i = 1 to k do} \\ Z &= Z \cup ((Z \cap R_i)^+ \cap R_i) \\ \text{Si } Y \nsubseteq Z \text{ retornar No} \end{split}
```

$$Z = Z \cup ((Z \cap R_1)^+ \cap R_1) = \{A, B\} \cup ((\{A, B\} \cap \{A, D\})^+ \cap \{A, D\})$$

$$= \{A, B\} \cup ((A)^+ \cap \{A, D\})$$

$$= \{A, B\} \cup (\{A, D, E, C\} \cap \{A, D\})$$

$$= \{A, B, D\}$$

C no está incluido en Z; seguimos...

R = ARCDF

Preservación de Dependencias Funcionales: Resolución Ejercicio

$$F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, E \rightarrow C\}$$

$$\rho = \{AD, DE, ECB\}$$
Queremos verificar que se preserva $AB \rightarrow C$

Verificar que se preserva $X \rightarrow Y$:
$$Z = X$$

$$\text{while Z cambia}$$

$$\text{for } i = 1 \text{ to k do}$$

$$Z = Z \cup ((Z \cap R_i)^+ \cap R_i)$$

$$\text{Si } Y \nsubseteq Z \text{ retornar No}$$

$$Z = Z \cup ((Z \cap R_2)^+ \cap R_2) = \{A, B, D\} \cup ((A, B, D) \cap \{D, E\})^+ \cap \{D, E\})$$

$$= \{A, B, D\} \cup (\{D, E, C\} \cap \{D, E\})$$

$$= \{A, B, D\} \cup (\{D, E, C\} \cap \{D, E\})$$

C no está incluido en Z; seguimos...

 $= \{A, B, D, E\}$

Preservación de Dependencias Funcionales: Resolución Ejercicio

```
R = ARCDF
F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, E \rightarrow C\}
\rho = \{AD, DE, ECB\}
Queremos verificar que se preserva AB \rightarrow C
Verificar que se preserva X \rightarrow Y:
       7 – X
        while Z cambia
               for i = 1 to k do
                       Z = Z \cup ((Z \cap R_i)^+ \cap R_i)
        Si Y \not\subset Z retornar No
Z = Z \cup ((Z \cap R_3)^+ \cap R_3) =
\{A, B, D, E\} \cup ((\{A, B, D, E\} \cap \{E, C, B\})^+ \cap \{E, C, B\})
                                    = \{A, B, D, E\} \cup ((EB)^+ \cap \{E, C, B\})
                                    = \{A, B, D, E\} \cup (\{E, B, C\} \cap \{E, C, B\})
                                    = \{A, B, D, E, C\}
```

Ahora sí C está incluido en Z: la dependencia $AB \rightarrow C$ se preserva

Bibliografía

Referencia

Jeffrey D. Ullman "Principles of Database and Knowledge-base systems", Volumen I, Computer Science Press, 1988 (capítulo 7).