Regression Models Course Project

Supposing I work for *Motor Trend*, a magazine about the automobile industry. Looking at a data set of a collection of cars, they are interested in exploring the relationship between a set of variables and miles per gallon (MPG) (outcome). They are particularly interested in the following two questions:

- "Is an automatic or manual transmission better for MPG"
- "Quantify the MPG difference between automatic and manual transmissions"

1. Loading Data

We load the dataset

```
data(mtcars)
head(mtcars)
```

##	mpg	cyl	disp	hp	drat	wt	qsec	٧s	\mathtt{am}	gear	carb
## Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
## Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
## Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
## Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
## Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
## Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

Motor Trend Car Road Tests

Description

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973-74 models).

Format

A data frame with 32 observations on 11 (numeric) variables.

```
Miles/(US) gallon
       mpg
       \operatorname{cyl}
               Number of cylinders
 3
       disp
               Displacement (cu.in.)
       hp
               Gross horsepower
 5
       \operatorname{drat}
               Rear axle ratio
 6
               Weight (1000 lbs)
       wt
[, 7]
               1/4 mile time
       qsec
[, 8]
               Engine (0 = V\text{-shaped}, 1 = \text{straight})
       _{
m VS}
[, 9]
       am
               Transmission (0 = automatic, 1 = manual)
[,10]
       gear
               Number of forward gears
               Number of carburetors
[,11]
       carb
```

```
## Loading required package: carData
## Loading required package: ggplot2
## Registered S3 method overwritten by 'GGally':
## method from
```

+.gg ggplot2

For convenience we can convert the variable "am" to a factor and add a more clear classification "Automatic" & "Manual". and we can perform a friefly analysis of both variables

```
mtcars$am = as.factor(mtcars$am)
levels(mtcars$am) = c("Automatic", "Manual")
summary(mtcars$mpg); summary(mtcars$am)
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                               Max.
##
     10.40
             15.43
                     19.20
                              20.09
                                      22.80
                                              33.90
## Automatic
                Manual
          19
```

2.EDA

scatterplotMatrix(~mpg+disp+drat+wt+hp|am, data=mtcars, col = c("skyblue4", "indianred4"), main="Type or

Type of Transmission

boxplot(mpg~am,data = mtcars,xlab = "Transmission Automatic, Manual", ylab = "MPG", main="MPG by Transmi

MPG by Transmission Type

Transmission Automatic, Manual

#3. t-test
hist(mtcars\$mpg, breaks=10, xlab="MPG", main="MPG histogram", col = "skyblue3")

MPG histogram

plot(density(mtcars\$mpg), main="kernel density", xlab="MPG", col="lightpink4")

kernel density


```
library(GGally)
library(ggplot2)

gp = ggpairs(mtcars, lower = list(continuous = "smooth"))
gp

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


Interpretation: In this plot, we see many multi-collinearity, and it suggests that we should NOT use all the variables as predictor otherwise it will be overfitting.

4. Quantify the MPG difference between automatic and manual transmissions

Consider all the other variables as possible predictor and MPG as outcome. Use R step function to find out the best fit model

First, Glimpse at all relationship between each variable

Finding best model

```
best_model<-step(lm(mpg ~ .,data = mtcars), trace=0)
summary(best_model)</pre>
```

```
##
## Call:
  lm(formula = mpg ~ wt + qsec + am, data = mtcars)
##
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                         Max
   -3.4811 -1.5555 -0.7257
                             1.4110
                                     4.6610
##
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 9.6178
                             6.9596
                                       1.382 0.177915
```

```
## wt
                -3.9165
                            0.7112
                                    -5.507 6.95e-06 ***
                 1.2259
                            0.2887
                                     4.247 0.000216 ***
## qsec
                                     2.081 0.046716 *
## amManual
                 2.9358
                            1.4109
##
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
## F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11
\#par(mfrow=c(2,2))
plot(best_model)
```


We can conclude that the best model are with wt/qsec/am as predictor and the R-square is 84.97%, which is good fitting to mpg outcome. The mpg of manual cars is 2.9358 mpg better than that of automatic cars.