# The statistical fundamentals of (non-)replicability

Prof Jeff Miller

Department of Psychology

University of Otago



## Replication

**The ideal**: "Replicability of findings is at the heart of any empirical science" Asendorpf et al. (2013, European Journal of Personality)

#### The reality:



| IS THERE A CRISIS?        |     |  |
|---------------------------|-----|--|
| Yes, a significant crisis | 52% |  |
| Yes, a slight crisis      | 38% |  |
| Don't know                | 7%  |  |
| No, there is no crisis    | 3%  |  |

(Baker, 2016, *Nature*)

Slides at https://tinyurl.com/y8oau559

## Replication & random variability

- Replications will only be successful with some probability,  $p_{rep}$  < 100%.
- Statistical models can be used to study  $p_{rep}$ :
  - what  $p_{rep}$  values should we expect?
  - what factors affect  $p_{rep}$ ?
  - how can we increase  $p_{rep}$ ?
- "replication": an equivalent study with a statistically significant effect in the same direction as the original study.

# Hypothesis testing

|                     | Decision reached from data           |                                     |  |
|---------------------|--------------------------------------|-------------------------------------|--|
| True state of world | "do not reject Ho"                   | "reject Ho"                         |  |
| Ho is true          | true negative (TN)                   | false positive (FP) or type I error |  |
| Ho is false         | false negative (FN) or type II error | true positive (TP)                  |  |

|                     | Conditional probability of decision |                     |
|---------------------|-------------------------------------|---------------------|
| True state of world | "do not reject Ho"                  | "reject Ho"         |
| Ho is true          | $1-\alpha=.95$                      | $\alpha = .05$      |
| Ho is false         | β                                   | $1 - \beta = power$ |

## A model of replication probability



# Individual $p_{rep}$

An individual researcher from the previous slide might say:

"I'm not interested in aggregate results for a whole field, but only in  $p_{rep}$  for my particular effect. Based on these calculations, if I repeat my study 100 times, should I expect about 36% significant results?"

#### Answer: No!

- If your effect is real, you will get about 60% significant results (individual  $p_{rep}$  = .60).
- If not, you will get about 5% significant results (individual  $p_{rep}$  = .05).

Aggregate  $p_{rep}$  = weighted average of individual  $p_{rep}$ 's 45 60

$$36 = \frac{45}{105} \times .05 + \frac{60}{105} \times .60$$

# Aggregate $p_{rep}$ : exact replications



Slides at https://tinyurl.com/y8oau559

# Aggregate $p_{rep}$ : power of study 2 = 1



Slides at https://tinyurl.com/y8oau559

## A model of replication effect size (ES)



# Effect sizes of replications ("decline effects")



### Conclusions

- Replication failures are inevitable
  - ... even with exact replications & best practices
- What should we do?
  - Adjust expectations about replicability
  - Be skeptical about one-off results
  - Improve base rates by improving theories
  - Fine-tune  $\alpha$  and sample size
    - ...to maximize research *payoff* based on a cost/benefit analysis of TP, FP, TN, FN
    - ...may <u>not</u> maximize replicability