COMP 550 Algorithms and Analysis Spring 2020 Pop Quiz 2

This quiz continues on the back.

Consider a recursion tree that looks like this:

- 1. Suppose this tree is generated by the recurrence relation $T(n) = aT(n/b) + n^k$.
 - a) Give a non-negative integer or rational number for a. ____
 - b) Give a non-negative integer or rational number for b. ____
 - c) Give a non-negative integer or rational number for k. ____
- 2. Roughly how many levels would there be in this tree, as a function of n? Pick the best answer.
 - a) n^2
 - b) 2n
 - c) n
 - $d) log_{(3/2)}(n)$
- 3. How many leaves would there be in this tree, as a function of n? Pick the best answer.
 - a) $n^{3/2}$
 - b) *n*
 - c) $n^{\log_{3/2} 2}$
 - d) $log_{3/2}n$
- 4. Solve the recurrence to obtain an asymptotic expression for T(n) as a function of
- n. Pick the best answer.
 - a) T(n) is about $(3/2)^n$ for large n.
 - b) T(n) is about $n^{\log_{3/2} 2}$ for large n.
 - c) T(n) is about n^2 for large n
 - d) T(n) is about $log_{3/2}n$ for large n.

Now consider a recursion tree that looks like this:

- 5. Suppose this tree is generated by the recurrence relation $T(n) = aT(n/b) + n^k$.
 - a) Give a non-negative integer or rational number for a. ____
 - b) Give a non-negative integer or rational number for b. ____
 - c) Give a non-negative integer or rational number for k. ____
- 6. Roughly (to within +/-1) how many levels would there be in this tree, as a function of n? Pick the best answer.
 - a) n^2
 - b) 2n
 - c) n
 - d) $log_2(n)$
- 7. How many leaves would there be in this tree, as a function of n? Pick the best answer.
 - a) n^2
 - b) n
 - c) n^{log_23}
 - $d) log_2 n$
- 8. Solve the recurrence to obtain an asymptotic expression for T(n) as a function of
- n. Pick the best answer.
 - a) T(n) is about 2^n for large n.
 - b) T(n) is about $4n^2$ for large n.
 - c) T(n) is about n^2 for large n
 - d) T(n) is about log_2n for large n.