9h n3 < 3h for all n7, 4 Sol: The proof is by induction on n. For n=4, note that n3 < 3" becomes 42 < 34, that is 64 < 81, which is true So the result is true for n=4. Let K > 4 be a natural number. Suppose that the result is true for n=k. That is, suppose that $[k^3 < 3^k]$ (We want to prove that the result is true for n = k+1) (We want to justify that $[k+1]^3 < 3^{k+1}$) $(k+1)^{3} = k^{3} + 3k^{2} + 3k + 1 \quad \forall 3^{k} + 3k^{2} + 3k + 1 \quad \forall 3^{k} + 3^{k} + 1$ $\frac{1}{3} = 3.3^{k} + \frac{2}{3} \times \frac{2}$ k^{2} $k^{2} - 3k - 1 = (k - \frac{3}{2})^{2} - \frac{13}{4}$ $k^{3} > k^{2}$ $k^{3} > 3k + 1$ $(k - \frac{3}{2})^{2} = k - 3k + \frac{9}{4} = k^{3} = k^{3$ $k^{2}-3k-7=0$ $k=-\sqrt{13}+\frac{3}{2}$ k>Note that k3 > 3 k2 herous k7 3 > k3 > k2 hear k> 7 $> k^{2} + 3k^{2} + 3k + 1 = (k+1)^{3}$

k 73k+ because k2-3k-1 >0 (by calculus)

```
Hence we have justified that (k+1)^3 < 3^{k+7}, as desired Consequently, the question follows by induction
6/ P= Z([x] = { a6 + a1 x + a2 x2 + ... + an xn / a; EZL for all i}
                                          7+3x-x1° = 1+3x €→
       \rho(x) \sim q(x) iff \rho(x) - q(x) = c \in \mathbb{Z}
                                                                                                                                              7+x+7x^2 \sim 8 + x + 7x^2
(a) 1+x+7x^2 + 8+x+6x^3
Is ~ reflexive, symmetric, transitive?
   reflexive let p(x) \in P Is p(x) \sim p(x)? Check p(x) - p(x) = 0 \in \mathbb{Z}
So p(x) \sim p(x)

(tence x \in \mathbb{Z} is reflexive
    Symmetric Let plx, q (x) EP such that p(x)~q(x) Is q(x)~p(x)?
   From p(x)~q(x), p(x)-q(x) ∈ Z. As p(x)-q(x) ∈ Z, -(p(x)-q(x)) ∈ Z
   too j so q(x)-p(x) ∈ ZL. Hence q(x)~p(x). Thus ~ is symmetric.
  transitive: Let p(x)~g(x) and g(x)~r(x) = p(x), g(x), r(x) E P. Then
   \frac{p(x)-q(x) \in \mathbb{Z}}{\text{on Meger,}} \frac{q(x)-r(x) \in \mathbb{Z}}{p(x)-q(x)} + \frac{q(x)-r(x) \in \mathbb{Z}}{p(x)-r(x)} \in \mathbb{Z}, \text{ As the sum of two integers it against the sum
    Hence p(x) ~ r(x). Thus ~ is transitive
(b) N is an equivalence relation by 7. Let p(x) ∈ P. Its equivalence
```

So [P(x)] = { P(x)-c| c \ Z/} - > Z/ p(x)-c → c is a bijecth. So | [P(x)] | = 17/ = | INI infinte countable (7+X) (7+X)~ p(x) \(\phi \) \(\ph [x], [x²], [x²], [x⁴], ... [x], are all distinct.

So in Ph there are at least | IN | many elements. So | Ph/>/// For when [x+x] is also not equal to any of the above classes In P/w there are at most IPI elements
21(x) = the set of polynomials 21(x)-403= UPL

P_d = the set of polynomials in P of degree d.

P_d -> 2(x2/x ... x 2/2)

This mop is brijective

a + a_1x + a_2x^2 + ... + a_dx^d | D (ao_1 a_1, a_2, ..., ad)

P_d = countable. P= 21[x] = (0] UPd product of firstly many as stable sets is countable

In the union we have the sets [0], Po, P, P, P2, P3,, Pn,
As $ P/_{N} \leq P _{J}$ $ P/_{N} \leq IN $
Consequently, IP/N = IIN
Second Mat IAI = (IR) (His enough to assume A is infinte)
Any infinite set contains an infinite countable subset
Choose an element $a_1 \in A$. $A - \{a_1\} \pm b$, choose an element $a_2 \in A - \{a_1\}$ $A - \{a_1, a_2\} \pm b$ $A $
$A-Sa_{T},a_{Z}\} \neq \emptyset$ 11 $a_{3} \in A-Sa_{1},a_{2}\}$
So $\{a_{7}, a_{2}, a_{3}, \dots, a_{n}\}$ is an infinite countable subset
Take a countable infinite subset C= \(a_{1}, a_{2}, a_{3}, a_{4}, \dots a_{n}, \dots \\ \)
Consider the function $f: A \rightarrow A$ defined by $f(x) = \begin{cases} x & \text{if } x \notin C \\ a_{k-1} & \text{if } x = a_k \text{ and } k \neq 1 \end{cases}$ $f(x) = \begin{cases} a_{k-1} & \text{if } x = a_k \text{ and } k \neq 1 \\ a_1 & \text{if } x = a_1 \end{cases}$ Alote that f is onto but not one to an
$f(x) = \begin{cases} a_{k-1} & \text{if } x = a_k \text{ and } k \neq 1 \end{cases}$
Lay if x=at Note that f is onto but not one to one flat)= a1 = flat)

$A = \{a_1, a_2, a_3, a_4, a_5, \dots, a_n, \dots, 3 \cup (A-c) \}$ $A = \{a_1, a_2, a_3, a_4, a_5, \dots, a_n, \dots, 3 \cup (A-c) \}$ $A = \{a_1, a_2, a_3, a_4, a_5, \dots, a_n, \dots, 3 \cup (A-c) \}$
5(a) A + P, B + P. Show Mat A < A × B
(Recall that ILI < IVI iff there is an injective map 1) >V)
As B + b, B hus on element. Choose an element b. EB. Consider
the map f: A -> A+B given by f(a) = (a, bo) Note that f is one to one.
The A = a countable, $ B = R $. Show that $ A \cup B = R $ As the inclusion $B \rightarrow A \cup B$ is one to one, $ B \leq A \cup B $.
So IRI = TAUBI.
Choose an infinite countable subset $C = \{ c_1, c_2, c_3, \dots, c_n, \dots \}$ of
B. (because any infinite set contains a countable infinite subset)
Care I: A is infinte (exercise)
A = {a1, a2, a3, a4,, an1,}