Praktyka z diagnostycznych metod nieradiacyjnych **DICOM**

Beata Brzozowska

11 marca 2013

Plan zajęć

- Wprowadzenie
 - O historii
 - Struktura organizacyjna
- Standard DICOM
 - Informacje ogólne
 - Budowa pliku
 - Oprogramowanie
- Archiwizacja danych

DICOM - Digital Imaging and **CO**mmunications in Medicine

- co to? międzynarodowy standard obrazowania medycznego;
 dzięki definicji formatu zdjęć pozwala na wymianę danych konkretnej jakości w zastosowaniach klinicznych
- dla kogo? szpitale, kliniki, ośrodki specjalistyczne, producenci sprzętu diagnostycznego (korzyści dla lekarzy i pacjentów)
- w jaki sposób? ponad 750 osób pracuje w ponad 200 grupach roboczych nad usprawnieniem DICOM (4-5 razy w roku); informacja o najnowszej wersji jest publikowana raz na rok lub dwa lata
- gdzie? http://DICOM.nema.org

Początki obrazowania cyfrowego

- 1983 początek prac American College of Radiology (ACR) i National Electrical Manufactures Association (NEMA) nad standardem wymiany danych graficznych pomiędzy urządzeniami medycznymi
- 1985 pierwsza wersja standardu: ACR/NEMA 300 V1.0
- 1988 druga wersja standardu ACR/NEMA V2.0
- 1992 trzecia wersja standardu DICOM 3.0. Jest to ostatnia oficjalna wersja, lecz standard ten jest nadal uaktualniany.

Dziedziny, których DICOM dotyczy

Radiologia	Stomatologia
Kardiologia	Chirurgia
Onkologia	Neurologia
Patologia	Obrazowanie piersi
Weterynaria	Radioterapia
Pulmonologia	Okulistyka

Grupy badawcze

Administracja: NEMA's Medical Imaging nad Technology Alliance

WG-01: Cardiac and Vascular Information	WG-15: Digital Mammography and CAD
WG-02: Projection Radiography and Angiography	WG-16: Magnetic Resonance
WG-03: Nuclear Medicine	WG-17: 3D
WG-04: Compression	WG-18: Clinical Trials and Education
WG-05: Exchange Media	WG-19: Dermatologic Standards
WG-06: Base Standard	WG-20: Integration of Imaging and Information Systems
WG-07: Radiotherapy	WG-21: Computed Tomography
WG-08: Structured Reporting	WG-22: Dentistry
WG-09: Ophthalmology	WG-23: Application Hosting
WG-10: Strategic Advisory	WG-24: Surgery
WG-11: Display Function Standard	WG-25: Veterinary Medicine
WG-12: Ultrasound	WG-26: Pathology
WG-13: Visible Light	WG-27: Web Technology for DICOM
WG-14: Security	WG-28: Physics

Każda grupa definiuje krótko i długofalowe cele, stan prac, wyzwania i możliwości.

źródło: http://medical.nema.org/dicom/geninfo/Strategy.pdf

Członkowie

Producenci

- Carl Zeiss Meditec
- FUJIFILM Med. Syst.
- GE Healthcare
- Microsoft
- Panasonic Healthcare
- Philips Healthcare
- Siemens Healthcare
- Sony
- Toshiba Am. Med. Sys.
- Varian Medical Systems

Użytkownicy

- American Association of Physicists in Medicine (AAPM)
- American College of Radiology
- Deutsche Röntgengesellschaft
- European Federation of Organisations in Medical Physics (EFOMP)
- Society for Imaging Informatics in Medicine (SIIM)

Dokumentacja

Standard DICOM jest:

- zorganizowany w postaci wieloczęściowego dokumentu,
- 2 uaktualniany corocznie w postaci Suplementów.

Model rzeczywistych danych

- rzeczywiste dane
- model informatyczny

źródło:

http://medical.nema.org/standard.html, Part 3

Jakie informacje?

- **4 dane pacjenta**: dane personalne, data urodzenia itp.
- badania: elementy składowe badań, procedury, wyniki badań w postaci raportu
 - dane o pacjencie
 - dane o wizycie
 - inne uwagi na temat badania
- serie danych: obrazy, dane nieprzetworzone, bitowa płaszczyzna notatek (ang. overlay), tablica kolorów (ang. lookup table) czy krzywe opisane ciągiem punktów (ang. curve)

Dane zawarte w każdym pliku DICOM podzielone są na dwie części:

- część zawierającą informacje o pliku (Dicom-Meta-Information-Header)
- dane jednego obiektu Service-Object Pair Instance (Dicom-Data-Set)

Information Objects Definition - IOD

Model informacji określa format danych dla różnych typów informacji, takich jak: obrazy, przebiegi czasowe, obiekty graficzne, raporty, wydruki itp. Dane są grupowane w tematycznych zbiorach (ang. Entities) oraz podzbiorach (ang. Modules). Każdy moduł tworzony jest przez zbiór atrybutów.

- podstawowa jednostka danych: Data Element
- 2 strumień informacji: Data Set

Data Element

Data Element stanowi podstawową jednostkę danych, opisywany jest przy pomocy:

- identyfikatora elementu danych (Tag) złożonego z dwóch liczb określających: grupę (Group) oraz element grupy (Element), zapisywanych w postaci liczb heksadecymalnych,
- typu danych (Value Representation), określonego w postaci pary liter w kodzie ASCII i umożliwiającego poprawną interpretację danych,
- rozmiaru elementu (Value Length) wyrażonego w bajtach,
- informacji takich jak: nazwisko pacjenta, rozdzielczość obrazu

Strumień informacyjny (Data Set) jest uporządkowanym strumieniem elementów danych.

adres	:			-	zaw	art	ość	pli	ku	he	kade	ecy	na l	nie				;	zawartość w ASCII
00000000h	. 0	0	0.0	00	00	0.0	00	0.0	00	00	0.0	0.0	0.0	0.0	00	0.0	0.0	,	
0000010h		-			0.0	0.0	00	0.0											
0000020h	: 0	0	00	00	0.0	00	00	0.0											
0000030h	: 0	0	00	00	00	00	00	00	00										
0000040h	: 0	0	00	00	00	00	00	00	00										
0000050h	: 0	0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	;	
0000060h	: 0	0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	;	
																			: : 128B preambu
																			DICMUL
																			OB
																			UI1.2.840.10
																			008.1.3.10UI
00000c0h	: 3	0	00	31	2E	33	2E	31	32	2E	32	2E	31	31	30	37	2E	;	0.1.3.12.2.1107.
																			długość danych, dane

Przykładowy Data Element w pliku DICOM

4 Bajty	2 Bajty	2 Bajty	12 Bajtów
0010 0010	PN	0C	Jan Kowalski
Tag	VR	VL	Value Field

(0008,0023) Image Date (data wykonania obrazu)

(0010,0000) Group Length (rozmiar danej grupy atrybutów)

(0010,0010) Patient's Name (nazwisko pacjenta)

(0010,0040) Patient's Sex (płeć pacjenta)

(0010,1010) Patient's Age (wiek pacjenta)

(0018,1181) Collimator Type (typ kolimatora)

(0018,0030) Radionuclide (radionuklid)

(7FE0,0010) Pixel Data (dane wartości pikseli obrazu)

Kody Value Representation

VR	rozwinięcie symbolu	opis
AS	Age String	wiek
DA	Data	data w formacie rrrrmmdd w kodzie ASCII
PN	Person Name	ciąg znaków zawierający dane personalne pacjenta
ТМ	Time	ciąg znaków ASCII reprezentujący godzinę w formacie: ggmmss.ffffff, gdzie fffff to milionowe części sekundy
UI	Unique Identifier (UID)	Rodzaj badania, rodzaj badanego narządu (dotyczy otrzymywanego fomatu pliku)

Zadanie 1

Skopiuj na Pulpit katalog DICOM i na podstawie dokumentów w nim zawartych znajdź wyjaśnienie następujących oznaczeń:

- (0008,0020): 20120510
- (0008,0030): 101714
- (0008,0060): MG
- (0008,0070): SIEMENS
- (0008,0080): Ovarian Screening, St Barts
- (0010,0010): xxx
- (0010,0040): 0

Rozwiązanie

Skopiuj na Pulpit katalog DICOM i na podstawie dokumentów w nim zawartych znajdź wyjaśnienie następujących oznaczeń:

- (0008,0020): 20120510 Study Date
- (0008,0030): 101714 Study Time
- (0008,0060): MG Modality
- (0008,0070): SIEMENS Manufacturer
- (0008,0080): Ovarian Screening, St Barts Institution Name
- (0010,0010): xxx Patient's Name
- (0010,0040): 0 Patient's Sex

Zadanie 2

56-letnia Janina Kowalska zgłosiła się do Centrum Onkologii z podejrzeniem nowotworu mózgu. 15 lutego 2013 roku zostało wykonane badanie za pomocą pozytonowej tomografii emisyjnej wykonane na tomografie firmy GE. W czasie badania pacjentka leżała na prawym boku. Za pomocą odpowiednich atrybutów zapisz te informacje w formie pliku DICOM.

Rozwiązanie

56-letnia Janina Kowalska zgłosiła się do Centrum Onkologii z podejrzeniem nowotworu mózgu. 15 lutego 2013 roku zostało wykonanie badanie za pomocą pozytonowej tomografii emisyjnej wykonane na tomografie firmy GE. W czasie badania pacjentka leżała na prawym boku. Za pomocą odpowiednich atrybutów zapisz te informacje w formie pliku DICOM.

- (0010,0010): Kowalska Janina
- (0010,0040): F
- (0010,1010): 56
- (0008,0080): Centrum Onkologii
- (0008,0020): 20130215
- (0008,0060): PT
- (0008,0070): GE
- (0018,5100): HFDR

Pozycja pacjenta

Recumbent - Head First - Supine

Recumbent - Head First - Decubitus Right

Recumbent - Feet First - Supine

Recumbent - Feet First - Decubitus Right

Recumbent - Head First - Prone

Recumbent - Head First - Decubitus Left

Recumbent - Feet First - Prone

Recumbent - Feet First - Decubitus Left

вв

Oprogramowanie komercyjne

- Rsr2 (PL) uniwersalna przeglądarka obrazów w formacie DICOM
- TRIANA (PL) od getwell HEALTHY SOLUTIONS, program umożliwia pracę z badaniami RTG
- CDR DICOM (PL) od Schick, oprogramowanie do obróbki zdjęć radiograficznych
- Spectrum Dicom Viewer (PL) przeglądarka współpracująca ze wszystkimi urządzeniami generującymi obrazy DICOM, a także z serwerami PACS

Oprogramowanie darmowe

- DCMTK DICOM Toolkit napisany w języku C++
- JiveX DICOM Viewer od visus
- Osirix przeglądarka dla Mac OS X (również na iPhone)
- Imebra biblioteka DICOM i wsparcie dla grafiki bez obsługi sieci; język C++
- MiPAV od CIT, stworzony w Javie, multiplatformowy program do analiz wyników tomografii
- TeleDICOM (PL)- jest sieciową aplikacją do konsultacji diagnostycznych przez Internet opracowany na Katedrze Informatyki AGH w Krakowie

ImageJ:

- jest napisany w środowisku Java
- pozwala wyświetlać, edytować, analizować, drukować 16- i 32-bitowe obrazy
- czyta formaty tj.: TIFF, GIF, JPEG, BMP, DICOM
- wykonuje obliczenia: powierzchni, wartości pikseli, odległości, kątów
- tworzy histogramy, profile, kalibracje przestrzenne
- umożliwia dodanie samodzielnie napisanych pluginów

Zadanie 3

Za pomocą programu ImageJ otwórz plik z katalogu DICOM: MonochromeSample.dcm. Odczytaj i zinterpretuj informacje zawarte w Dicom-Meta-Information-Header.

Rozwiązanie

Za pomocą programu ImageJ otwórz plik z katalogu DICOM: MonochromeSample.dcm. Odczytaj i zinterpretuj informacje zawarte w Dicom-Meta-Information-Header.

```
Info for MonochromeSample.dcm
                                 0008 0016 SOP Class HID: 1.2 840 10008 5 1.4 1.1 6.1
VD5-8B / Gen TI 0.0 13:27:08
                                  0008.0018 SQP Instance UID: 1.2.826.999999.1.9900.1.20050531132655297.1.1
           [2D] G56 / 95dB
                                  0008.0020 Study Date: 20050531
               FA2 / P90
                                  0008,0030 Study Time: 132707
                                  0008.0050 Accession Number
                                  0008.0060 Modality: US
                                  0008,0070 Manufacturer: MEDISON
                                  0008,0080 Institution Name: Ovarian Screening, St Barts.
                                  0008,0090 Referring Physician's Name:
                                  0008,1010 Station Name
                                  0008.1070 Operator's Name
                                  0008,1090 Manufacturer's Model Name: SA9900
                                  0010.0020 Patient ID: 99000002
                                  0010.0030 Patient's Birth Date:
                                  0010 0040 Patient's Sex: O
                                  0018,1000 Device Serial Number
                                  0018.6011 Sequence of Ultrasound Regions:
                                  0018,6012 Region Spatial Format: 1
                                  0018.6014 Region Data Type: 1
                                  0018.6016 Region Flags:
                                  0018,6018 Region Location Min X0
                                  0018.601A Region Location Min YO
                                  0018.601C Region Location Max X1
                                  0018 601F Region Location Max V1
```

Archiwizacja danych

- ułatwienie tworzenia i rozbudowy systemów archiwizacji obrazów PACS
- wymiana informacji medycznych z innymi systemami informatycznymi stosowanymi w medycynie (ang. Hospital Information System – HIS)
- uzupełnienie standardu Health Level Seven HL7 o zasady komunikacji i wymianę obrazów w medycynie, nie występujących w normie HL7

Podsumowanie

- DICOM jest standardem używanym w obrazowaniu medycznym.
- Terminologia jest ujednolicona, co pozwala na komunikację między ośrodkami na świecie.
- Analiza danych zawartych w pliku DICOM nie polega jedynie na analizie zdjęcia ze strukturami anatomicznymi, ale również na interpretacji informacji w postaci DICOM-Meta-Information-Header.
- Archiwizacja i system komunikacji między ośrodkami jest niezbędny.

