Cell: 98204 08217 BharatSir@hotmail.com

INSTRUCTION SET OF 8085

Some Common Notations:

1) Addr \rightarrow 16 bit address.

2) Data \rightarrow 8 bit data.

3) Data 16 \rightarrow 16 bit data.

4) R, r1, r2 \rightarrow one of the registers.

5) Rp \rightarrow register pair. BC pair is called B, DE \rightarrow D and HL \rightarrow L

6) Port \rightarrow 8 bit IO addres

Data Transfer Group

1) MOV r1, r2

The contents of register r2 is moved into register r1.

Eg: MOV A,B ; A ← B

Addr. Mode	Flags Affected	Cycles	T-States
Register	None	1	4

2) MOV r1, M

The contents of the memory location pointed by HL (memory pointer) is moved into register r1.

Eg: MOV B,M; B \leftarrow [[HL]] i.e. B \leftarrow M

Addr. Mode	Flags Affected	Cycles	T-States
Indirect	None	2	7

3) MOV M, r2

The contents of register r2 is moved into the memory location pointed by HL (memory pointer).

Eg: MOV M,B ; [[HL]] ← B i.e. M ← B

Addr. Mode	Flags Affected	Cycles	T-States
Register	None	2	7

4) MVI r1, 8-bit data

The 8-bit data is immidiately moved into the register specified in the instruction.

Eg: MVI C, 23 ; C ← 23H

Addr. Mode	Flags Affected	Cycles	T-States
Immidiate	None	2	7

5) LXI rp, 16-bit data

The 16-bit data is immidiately moved into the register pair specified in the instruction.

Eg: MVI B, 2300H ; BC ← 2300H i.e. B← 23, C← 00

Addr. Mode	Flags Affected	Cycles	T-States
Immidiate	None	3	10

6) MVI M, 8-bit data

The 8-bit data is immidiately moved into the memory location pointed by HL (memory pointer).

Eg: MVI M, 23 ; [[HL]] ← 23H

Addr. Mode	Flags Affected	Cycles	T-States
Immediate	None	3	10

BHARAT ACHARYA EDUCATION

Cell: 98204 08217 BharatSir@hotmail.com

7) LDA 16-bit address

The accumulator is loaded withb the contents of the memory location having the given address.

Eg: LDA 2000H ; A ← [2000]

	Addr. Mode	Flags Affected	Cycles	T-States
ľ	Direct	None	4	13

8) STA 16-bit address

The accumulator is stored into the memory location having the given address.

Eg: STA 2000H ; [2000] ← A

Addr. Mode	Flags Affected	Cycles	T-States
Direct	None	4	13

9) LHLD 16-bit address Load HL pair directly

The HL pair is loaded with the contents of the loactions prointed by the given address and address + 1. \odot In case of doubts, contact Bharat Sir: - 98204 08217.

Eg: LHLD 2000; HL ← [2000] & [2001] i.e. L ← [2000], H ← [2001]

Addr. Mode	Flags Affected	Cycles	T-States
Direct	None	5	16

Lower byte lower address

10) SHLD 16-bit address

The HL pair is stored into the loactions prointed by the given address and address + 1.

Eg: SHLD 2000 ; [2000] & [2001] ← HL i.e. [2000] ← L, [2001] ← H

Addr. Mode	Flags Affected	Cycles	T-States
Direct	None	5	16

Lower byte lower address

Page No: 14

11) LDAX rp

The accumulator is loaded with the contents of memory location pointed by value of the given register.

Eg: LDAX B

; A \leftarrow [[BC]] i.e. if [BC] = 2000, A gets the value from location

; 2000 i.e. A ← [2000]

Addr. Mode	Flags Affected	Cycles	T-States
Indirect	None	2	7

12) STAX rp

The accumulator is stored into the location pointed by value of the given register.

Eg: STAX B ; [[BC]] \leftarrow A i.e. if [BC] = 2000, location 2000 will get the ; value of A i.e. [2000] \leftarrow A.

Addr. Mode	Flags Affected	Cycles	T-States
Indirect	None	2	7

13) PCHL

The Program Counter gets the contents of the HL register pair.

This statement causes a branch in the sequence of the program.

Eg: PCHL ; PC ← HL

Addr. Mode	Flags Affected	Cycles	T-States
Register	None	1	6

14) SPHL

The Stack Pointer gets the contents of the HL register pair.

This statement reloates the stack in the 64 KB memory.

BHARAT ACHARYA EDUCATION

Cell: 98204 08217 BharatSir@hotmail.com

Page No: 15

Eg: SPHL ; SP ← HL

Addr. Mode	Flags Affected	Cycles	T-States
Register	None	1	6

15) XCHG

This instruction exchanges the contents of HL pair and DE pair.

Eg: XCHG ; HL ←→ DE

#Please refer Bharat Sir's Lecture Notes for this ...

Addr. Mode	Flags Affected	Cycles	T-States
Register	None	1	4

16) XTHL

This instruction exchanges the DE pair with the contents of location pointed by the SP and SP+1.

Eg: XTHL ; $HL \leftarrow \rightarrow$ [[SP]] and [[SP]+1]

; i.e. if [SP]=2000 then L $\leftarrow \rightarrow$ [2000] and H $\leftarrow \rightarrow$ [2001]

#Please refer Bharat Sir's Lecture Notes for this ...

Addr. Mode	Flags Affected	Cycles	T-States
Register	None	5	16

Arithmetic Group

Addition

1) ADD R

This instruction adds the contents of register R with the accumulator, stores result in the accumulator.

Eg: ADD B ; $A \leftarrow A + B$

Addr. Mode	Flags Affected	Cycles	T-States
Register	All	1	4

2) ADD M

This instruction adds the contents of the memory location pointed by HL, with the accumulator, and stores the result in the accumulator.

Eg: ADD M ; A ← A + [[HL]]

Addr. Mode	Flags Affected	Cycles	T-States
Indirect	All	2	7

3) ADI 8-bit data

This instruction adds the immidiate data with the accumulator, and stores the result in the accumulator.

Eg: ADI 25 ; $A \leftarrow A + 25$

Addr. Mode	Flags Affected	Cycles	T-States
Immediate	All	2	7

4) ADC R

This instruction adds the contents of the register R with the accumulator, and also adds the carry flag, and stores the result in the accumulator. It is used while adding large numbers.

Eg: ADD B ; $A \leftarrow A + B + Cy$

Addr. Mode	Flags Affected	Cycles	T-States
Register	All	1	4

5) ADC M