Задачи со звёздочками по курсу "Математический анализ-1". Часть 1.

 Φ КН, Пилотный поток, 1-й курс, 2024/2025 уч. г.

Для 10 итоговых баллов набрать нужно 95 баллов за задачи. Дедлайн: 11. 11. 2024, 23:59

- **1.** (8 баллов). Пусть $0 \le x_{m+n} \le x_m + x_n, \ m, \ n \in \mathbb{N}$. Докажите, что существует $\lim_{n \to \infty} \frac{x_n}{n}$.
- **2.** (5 баллов). Найдите предел: **a**) $\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{C_n^k}$; **б**) (5 баллов). $\lim_{n\to\infty}\left\{(2+\sqrt{2})^n\right\}$ (фигурные скобки обозначают дробную часть).
- **3. а)** (8 баллов). Рассмотрим последовательность, заданную рекуррентно: $x_1 = \sqrt{2}, x_{n+1} = \sqrt{2+x_n}$. Докажите, что

$$\lim_{n \to \infty} \left(\frac{x_1}{2} \cdot \frac{x_2}{2} \cdot \ldots \cdot \frac{x_n}{2} \right) = \frac{2}{\pi}.$$

б) (10 баллов). Пусть p > 1, а $\{c_n\}$ – последовательность, состоящая из положительных чисел. Пусть

$$x_n = \sqrt[p]{c_1 + \sqrt[p]{c_2 + \dots + \sqrt[p]{c_n}}}, \ n \in \mathbb{N}.$$

Докажите, что последовательность $\{x_n\}$ сходится тогда и только тогда, когда последовательность $b_n = \frac{\ln c_n}{p^n}$ ограничена сверху.

4. а) (10 баллов). Пусть p > 0, а последовательность $\{c_n\}$ удовлетворяет условию

$$x_{n+2} \le px_{n+1} + (1-p)x_n, \ n \in \mathbb{N}.$$

Докажите, что последовательность $\{x_n\}$ либо сходится, либо является бесконечно большой. Приведите пример последовательности, для которой это неверно при $p \leq 0$.

- **б)** (10 баллов). Пусть $x_n \ge 0$ при всех натуральных n и $x_{n+2} \le \frac{x_{n+1} + \overline{x}_n}{(n+2)^2}$ $(n \in \mathbb{N})$. Докажите, что $x_n = O(1/n!)$.
- **5. а)** (8 баллов). Докажите, что если $b_n > 0$ и $\frac{b_n}{b_{n+1}} = 1 + \beta_n$, причём $\sum_{n=1}^{\infty} \beta_n$ абсолютно сходится, то существует положительный предел $\lim_{n \to \infty} b_n$.
 - **б)** (7 баллов). Докажите, что существует такая положительная константа c, что

$$\lim_{n \to \infty} \frac{n!}{c\sqrt{n} \left(\frac{n}{e}\right)^n} = 1.$$

- **6.** (10 баллов). Пусть последовательность $\{x_n\}$ такова, что при любом C > 1 существует $\lim_{n \to \infty} x_{[C^n]}$. Докажите, что последовательность $\{x_n\}$ сходится $([C^n]$ целая часть числа C^n).
- $^{n\to\infty}$ $^{1\circ 1}$ $^{1\circ$

$$\sum_{n=1}^{\infty} \sqrt[n]{x_1 x_2 ... x_n} < e \sum_{n=1}^{\infty} x_n.$$

- **8.** (10 баллов). Докажите, что следующие условия для числового множества A равносильны:
- (i) Из всякого покрытия множества A открытыми множествами можно выделить конечное подпокрытие.
- (ii) Множество A ограничено и замкнуто.

- (iii) Всякая последовательность элементов из A содержит подпоследовательность, сходящуюся к элементу из A.
- **9. а)** (2 баллов). Докажите, что любое непустое открытое множество можно представить в виде счётного объединения замкнутых множеств.
- **б)** (8 баллов). Докажите, что всякое открытое множество либо пусто, либо совпадает со всей вещественной осью, либо его можно представить в виде объединения не более чем счетного набора попарно непересекающихся интервалов и лучей.
- **10) а)** (10 баллов). Пусть $[a,b] = \bigcup_{n=1}^{\infty} F_n$ и все F_n замкнуты. Докажите, что существует отрезок $[\alpha,\beta] \subset [a,b]$ и такое натуральное N, что $[\alpha,\beta] \subset F_N$.
- **б)** (*5 баллов*). Докажите, что если числовая прямая представлена в виде объединения не более чем счётного набора замкнутых множеств, то хотя бы одно из этих множеств содержит интервал.