

End of Year Project Report

Field of study: AI & Data Science Engineering

Entitled

Forecasting Bitcoin Prices with XGBoost, Prophet, K-Means, and LSTM

Internship place
EPI Digital
School

AuthorMajd Aguir

SupervisorDr. Boutheina
BEN ISMAIL

Acknowledgements

I would like to express my deepest appreciation to all those who, from near or far, supported this project throughout its development.

First and foremost, I would like to sincerely thank Mrs. Boutheina Ben Ismail for her invaluable guidance, encouragement, and insightful contributions. Her expertise and support played a crucial role in successfully realizing this work.

I also extend my heartfelt thanks to my family and friends, whose unwavering support and encouragement have been a constant source of strength throughout my academic journey. Their belief in my abilities has continuously inspired me to persevere and strive for excellence.

Finally, I would like to express my most sincere gratitude to the members of the jury for having honored me by agreeing to evaluate this project. I hope that this work meets their expectations in terms of clarity, rigor, and motivation.

$List\ of\ Abbreviations$

XGBoost eXtreme Gradient Boosting

MAE Mean Absolute Error

RMSE Root Mean Squared Error

R² R-squared (Coefficient of Determination)

LSTM Long Short-Term Memory

CRISP-DM Cross-Industry Standard Process for Data Mining

RNN Recurrent Neural Network

API Application Programming Interface

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

Abstract

This project explores the use of machine learning models to predict Bitcoin prices, addressing the challenges posed by its high volatility and complex behavior. The models applied include XGBoost, Prophet, K-Means clustering, and Long-Short-Term Memory (LSTM).

Historical Bitcoin price data was collected and preprocessed to generate features such as lag values, rolling averages, and temporal indicators. The data set was divided into training and test sets, and each model was optimized and evaluated using mean absolute error (MAE), root mean square error (RMSE), and R².

The results show that XGBoost captured complex patterns effectively, Prophet modeled seasonality well, K-Means identified price trends, and LSTM excelled at learning sequential dependencies. Combining these models may lead to more accurate and robust predictions.

This research highlights the potential of machine learning in financial forecasting, offering valuable tools for investors and analysts in the cryptocurrency market.

keywords: Machine learning, Bitcoin, financial forecasting, XGBoost, Prophet, K-Means, LSTM.

Résumé

Ce projet explore l'utilisation de modèles d'apprentissage automatique pour prédire les prix du Bitcoin, en réponse à sa forte volatilité et à la complexité de son comportement. Les modèles utilisés incluent XGBoost, Prophet, le clustering K-Means et les réseaux de neurones LSTM.

Les données historiques du Bitcoin ont été collectées et prétraitées pour générer des caractéristiques telles que les valeurs de décalage, les moyennes mobiles et les variables temporelles. Le jeu de données a été divisé en ensembles d'entraînement et de test, et chaque modèle a été optimisé et évalué à l'aide de l'erreur absolue moyenne (MAE), de la racine de l'erreur quadratique moyenne (RMSE) et du coefficient de détermination (R²).

Les résultats montrent que XGBoost capture efficacement les schémas complexes, Prophet modélise bien la saisonnalité, K-Means identifie les tendances historiques, et LSTM apprend les dépendances temporelles. La combinaison de ces modèles pourrait améliorer la précision des prévisions.

Cette recherche met en évidence le potentiel de l'apprentissage automatique pour la prévision financière, en offrant des outils utiles aux investisseurs et analystes du marché des cryptomonnaies.

mots-clés: Apprentissage automatique, Bitcoin, prévision financière, XGBoost, Prophet, K-Means, LSTM.

Contents

\mathbf{G}	General introduction 1					
1	Pro	ject Overview And Context	3			
	1.1	Introduction	3			
	1.2	The host startup	3			
	1.3	General context	4			
	1.4	Problematic	4			
	1.5	Gantt chart	5			
	1.6	Conclusion	6			
2	Sta	State of the Art				
	2.1	Introduction	7			
	2.2	Basic Concepts	7			
	2.3	Existing Work Review	8			
		2.3.1 Machine Learning and Deep Learning Techniques	8			
		2.3.2 Comparative Evaluation	10			
		2.3.3 Analysis and Research Gaps	11			
		Limit of Related Works	11			
		Proposed Solution	12			
	2.6	Conclusion	12			
3	Me	Methodology				
	3.1	Introduction	14			
	3.2	Project Workflow	14			
	3.3	CRISP-DM Methodology	16			
		3.3.1 CRISP-DM methodology phases	16			
	3.4	Data Architecture and Workflow	19			

		3.4.1	Data Sources	19
		3.4.2	Data Characteristics	20
			3.4.2.1 Data Collection Process	20
		3.4.3	Data Preprocessing Methods	21
		3.4.4	Introduction to Data Preprocessing	21
		3.4.5	Data Cleaning	21
		3.4.6	Data Transformation	21
		3.4.7	Feature Selection	22
			3.4.7.1 Data Split	22
		3.4.8	Model-Specific Preprocessing	22
	3.5	Model	ling: Algorithms and Techniques Used	22
		3.5.1	XGBoost Model	23
		3.5.2	Prophet Model	23
		3.5.3	K-Means Clustering	23
		3.5.4	LSTM (Long Short-Term Memory) Model	23
	3.6	Concl	usion	23
4	Imp	olemen	tation and Evaluation	25
	4.1	Introd	luction	25
	4.2	Perfor	rmance Metrics	25
		4.2.1	Loss Value	26
	4.3	Model	Performance Visualizations	28
	4.4	Perfor	mance Evaluation	31
	4.5	Deplo	yment of Proposed Solution	33
	4.6	Concl	usion	33
\mathbf{G}	enera	al Con	clusion	36
				~-
\mathbf{B}_{i}	ibliog	graphy		37

List of Figures

1.1	Gantt chart for project timeline	5
3.1	Diagram of the CRISP-DM process [1]	16
3.2	Data Architecture and Workflow	19
4.1	Loss Value	28
	XGBoost Predictions vs Actual Bitcoin Prices	
4.3	Prophet Forecast vs Actual Bitcoin Prices	29
4.4	K-Means Clustering and 7-Day Prediction for Bitcoin Prices	30
4.5	LSTM Predictions for 7 Days of Bitcoin Prices	30
4.6	Performance Comparison of Machine Learning Models for Bitcoin Price Pre-	
	diction	32

List of Tables

2.1	Summary of Machine Learning Techniques in Bitcoin Price Prediction	10
2.2	Strengths and Weaknesses of Reviewed Models	10
4.1	Model Performance Metrics	31

General Introduction

The rise of digital transformation has fundamentally reshaped the way industries operate, with data-driven decision-making now playing a central role across sectors such as finance, healthcare, and technology. Among the most transformative developments in recent years is the emergence of cryptocurrencies, with Bitcoin standing out as the most prominent and widely adopted. Originally conceived as a decentralized alternative to traditional currencies, Bitcoin has evolved into a significant financial asset, attracting the attention of individual investors, institutional players, and regulatory bodies alike.

Despite its growing importance, Bitcoin remains highly volatile, with price fluctuations driven by a complex interplay of global economic factors, regulatory news, investor sentiment, and technological innovations. This volatility presents a major challenge for financial analysts and investors who seek to forecast future market trends with accuracy and reliability. Traditional statistical models often fall short in capturing the non-linear and dynamic nature of cryptocurrency markets, leading to a growing interest in more advanced forecasting techniques.

In this context, machine learning and deep learning methods offer a powerful alternative. By leveraging large volumes of historical data and identifying subtle patterns within it, these techniques provide new opportunities for predictive analytics in the financial domain. This project investigates the application of four prominent models—XGBoost, Prophet, K-Means clustering, and Long Short-Term Memory (LSTM) networks—to forecast Bitcoin prices. Each of these models brings unique strengths, from modeling temporal trends and seasonality to capturing sequential dependencies and identifying historical price regimes.

The goal of this project is to develop a robust and accurate forecasting system that enhances our understanding of Bitcoin price behavior and supports informed decision-making in the cryptocurrency market. To achieve this, historical price data is collected and preprocessed to create relevant features, and each model is trained and evaluated using standard performance metrics such as Mean Absolute Error (MAE), Root Mean Squared Error

(RMSE), and R^2 score.

This report is structured as follows: Chapter One introduces the project and outlines its background, motivations, and objectives. Chapter Two provides a comprehensive review of related work and the theoretical foundations of the selected models. Chapter Three presents the methodology used, including data collection, preprocessing, and model implementation. Chapter Four discusses the results and evaluates the performance of the models. Finally, the report concludes with a general summary and reflections on the findings, including suggestions for future research and improvements.