```
In [1]: import pandas as pd
         df=pd.read csv('car evaluation.csv')
In [2]: df
                                 2
Out[2]:
               vhigh vhigh.1
                                      2.1 small
                                                 low
                                                      unacc
            0 vhigh
                       vhigh
                                 2
                                          small
                                                 med
                                                      unacc
               vhigh
                       vhigh
                                          small
                                                 high
                                                      unacc
               vhigh
                       vhigh
                                 2
            2
                                       2
                                           med
                                                 low
                                                      unacc
               vhigh
                       vhigh
                                       2
            3
                                           med
                                                 med
                                                      unacc
               vhigh
                                 2
                                       2
            4
                       vhigh
                                           med
                                                 high
                                                      unacc
         1722
                low
                        low 5more more
                                           med med
                                                       good
         1723
                low
                        low
                             5more more
                                                 high
                                                      vgood
                                           med
         1724
                low
                             5more more
                        low
                                            big
                                                 low
                                                      unacc
         1725
                low
                             5more more
                        low
                                            big
                                                 med
                                                       good
         1726
                low
                        low 5more more
                                            big
                                                 high
                                                      vgood
        1727 rows × 7 columns
In [4]: df.isnull().sum()
Out[4]: vhigh
         vhigh.1
                     0
         2
                     0
         2.1
                     0
         small
                     0
```

```
low 0
unacc 0
dtype: int64

In [5]: df.duplicated().sum()

Out[5]: np.int64(0)

In [6]: df.info()
```

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 1727 entries, 0 to 1726 Data columns (total 7 columns): Column Non-Null Count Dtype -----0 vhigh 1727 non-null object 1 vhigh.1 1727 non-null object 2 1727 non-null object 3 2.1 1727 non-null object 4 small 1727 non-null object 5 low 1727 non-null object 1727 non-null unacc object dtypes: object(7)

memory usage: 94.6+ KB

In [7]: cols=['buying','maintainence','doors','persons','lug_boot','safety','clas df.columns=cols

In [8]: df

Out[8]:

	buying	maintainence	doors	persons	lug_boot	safety	class
0	vhigh	vhigh	2	2	small	med	unacc
1	vhigh	vhigh	2	2	small	high	unacc
2	vhigh	vhigh	2	2	med	low	unacc
3	vhigh	vhigh	2	2	med	med	unacc
4	vhigh	vhigh	2	2	med	high	unacc
•••		•••		•••	•••		
1722	low	low	5more	more	med	med	good
1723	low	low	5more	more	med	high	vgood
1724	low	low	5more	more	big	low	unacc
1725	low	low	5more	more	big	med	good
1726	low	low	5more	more	big	high	vgood

1727 rows × 7 columns

```
In [12]: for i in df.columns:
             print(df[i].value_counts(),'\n')
```

```
buying
        high
                 432
        med
                 432
                 432
        low
        vhigh
                 431
        Name: count, dtype: int64
        maintainence
        high
                 432
        med
                 432
        low
                 432
        vhigh
                 431
        Name: count, dtype: int64
        doors
        3
                 432
        4
                 432
        5more
                 432
        2
                 431
        Name: count, dtype: int64
        persons
        4
                576
        more
                576
                575
        Name: count, dtype: int64
        lug boot
        med
                 576
                 576
        big
                 575
        small
        Name: count, dtype: int64
        safety
        med
                576
        high
                576
        low
                575
        Name: count, dtype: int64
        class
        unacc
                 1209
                  384
        acc
                   69
        good
                   65
        vgood
        Name: count, dtype: int64
In [16]: from sklearn.preprocessing import LabelEncoder
         le=LabelEncoder()
         for i in df.columns:
             df[i]=le.fit_transform(df[i])
In [17]: df
```

Out[17]:		buying	maintainence	doors	persons	lug_boot	safety	class
	0	3	3	0	0	2	2	2
	1	3	3	0	0	2	0	2
	2	3	3	0	0	1	1	2
	3	3	3	0	0	1	2	2
	4	3	3	0	0	1	0	2
	•••		•••		•••	•••		•••
	1722	1	1	3	2	1	2	1
	1723	1	1	3	2	1	0	3
	1724	1	1	3	2	0	1	2
	1725	1	1	3	2	0	2	1
	1726	1	1	3	2	0	0	3

1727 rows × 7 columns

```
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(10,5))
sns.heatmap(corr,annot=True)
```

Out[35]: <Axes: >


```
In [19]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import train_test_split
    model=RandomForestClassifier()
```

```
In [21]: x=df.drop(['class'],axis=1)
y=df['class']
```

In [25]: from sklearn.metrics import classification_report

y_pred=model.predict(x_test)
print(classification_report(y_test,y_pred))

support	f1-score	recall	precision	
87	0.94	0.95	0.93	0
16	0.94	0.94	0.94	1
230	0.98	0.98	0.99	2
13	0.96	0.92	1.00	3
346	0.97			accuracy
346	0.96	0.95	0.96	macro avg
346	0.97	0.97	0.97	weighted avg