Title

D. Zack Garza

November 26, 2019

Contents

1	Wednesday November 20	1
	1.1 Wevl's Character Formula (24.2-3)	1

1 Wednesday November 20

Last time:

$$\mathbb{Z}\Lambda \iff \{\mathfrak{h}^* \to \mathbb{Z}_{\geq 0} \mid \sim \}$$

$$e(\mu) \mapsto e_{\mu}$$

$$e(\lambda)e(\mu) = e(\lambda + \mu) \mapsto f \star g(\lambda) = \sum_{a+b=\lambda} f(a)g(b)$$

and $\operatorname{ch} L(\lambda) = \sum_{\mu \in \Lambda} \dim L(\lambda)_{\mu} e(\mu)$.

We have the Kostant function $p(\lambda) = \#\{(k_{\alpha})_{\alpha} \mid -\lambda = \sum_{\alpha \in \Phi^{+}} k_{\alpha}\alpha\}$ and the Weyl function $q = e_{\rho} \star \prod_{\alpha \in \Phi^{+}} (1 - e_{-\alpha}) = \prod_{\alpha \in \Phi^{+}} (e_{\alpha/2} - e_{-\alpha/2})$.

Lemma: $p \star e_{\lambda} = \operatorname{ch} M(\lambda)$, so $q \star \operatorname{ch} M(\lambda) = e_{\lambda+\rho}$ and $q \star p = e_{\rho}$.

1.1 Weyl's Character Formula (24.2-3)

Definition: The dot action of W is given by $w \cdot \lambda = w(\lambda + \rho) - \rho$, i.e. a reflection for hyperplanes passing through $-\rho$.

E.g. for type A2, where W(0) = 0, we have:

Type A2

And for the dot action, we have

Image

where $W \cdot 0 = 0$ and $s(\alpha_1) = -\alpha_1$.

Theorem (Harish-Chandra): If $L(\mu)$ is a composition factor of $M(\lambda)$, then $\mu \in W \cdot \lambda$ for $\mu \leq \lambda$.

Proof: Postponed.

ch are characters, $L(\lambda)$ is a Verma module.

Remark: if we sum over $\mu \leq \lambda$, we obtain

$$\begin{split} \operatorname{ch} & M(\lambda) = \sum_{\mu \in W \cdot \lambda} a_{\lambda \mu} \operatorname{ch} L(\mu) \\ & \operatorname{ch} L(\lambda) = \sum_{\mu \in W \cdot \lambda} b_{\lambda \mu} \operatorname{ch} M(\mu) \\ & = \sum_{W \cdot \lambda \in \Lambda} c_{\lambda W} \operatorname{ch} M(w \cdot \lambda). \end{split}$$

Theorem (Weyl's Character Formula): If $\lambda \in \Lambda^+$, then

$$\operatorname{ch} L(\lambda) = \frac{\sum_{w \in W} (-1)^{\ell(w)} e(w \cdot \lambda)}{\sum_{w \in W} (-1)^{\ell(w)} e(w \cdot 0)}$$

Proof:

We have $\mathrm{ch}L(\lambda) = \sum_{w} c_{\lambda w} \mathrm{ch} M(w \cdot \lambda)$, and so by the lemma,

$$q * \operatorname{ch} L(\lambda) = \sum c_{\lambda w} q * \operatorname{ch} M(W(\lambda + \rho) - \rho) = \sum_{w} c_{\lambda w} e_{W(\lambda + p)}$$

Thus for all $\alpha \in \Phi^+$, we have

$$s_{\alpha}(q \star \operatorname{ch} L(\lambda)) = \sum_{w} c_{\lambda, s_{\alpha} w} e_{w(\lambda + \rho)}$$