Tutorial 9, Design and Analysis of Algorithms, 2019

- 1. Prove that the following languages are in NP:
 - (a) Two coloring: $2COL = \{G \mid \text{graph } G \text{ has a coloring with } 2 \text{ colors}\}$, where a coloring of G with c colors is an assignment of a number in [1..c] to each vertex such that no adjacent vertices get the same number.
 - (b) Three coloring: $3COL = \{G \mid \text{graph } G \text{ has a coloring with } 3 \text{ colors} \}.$
 - (c) Connectivity: CONNECTED = $\{G \mid G \text{ is a connected graph}\}$.
 - (d) Which of the above problems is in P. Prove your result.
- 2. Suppose $L_1, L_2 \in NP$. Then is $L_1 \cup L_2$ in NP? What about $L_1 \cap L_2$? Prove your result.
- 3. Prove that allowing the certificate to be of size at most p(|x|) (rather than equal to p(|x|)) in the certificate definition of NP, makes no difference. That is, show that for every polynomial-time Turing machine M and polynomial $p: N \to N$, the language

$${x : \exists u \mid |u| \le p(|x|) \text{ and } M(x, u) = 1}$$

is in NP.

- 4. We have defined a relation \leq_p (polynomial time reduction) among languages. We noted that it is reflexive (that is, $L \leq_p L$ for all languages L) and transitive (that is, if $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$ then $L_1 \leq_p L_3$). Show that it is not symmetric, namely, $L_1 \leq_p L_2$ need not imply $L_2 \leq_p L_1$.
- 5. For languages $L_1, L_2 \subseteq \{0, 1\}^*$, let

$$L_1 \oplus L_2 = L_1\{0\} \cup L_2\{1\}$$

- (a) Prove that $L_1 \leq_p L_1 \oplus L_2$ and $L_2 \leq_p L_1 \oplus L_2$.
- (b) Prove that for any languages L, L_1 , and L_2 over $\{0, 1\}$, with $L \neq \{0, 1\}^*$, if $L_1 \leq_p L$ and $L_2 \leq_p L$, then $L_1 \oplus L_2 \leq_p L$.

Notation: $A\{x\} = \{wx \mid w \in A\}, B \leq_p C$ means that B reduces to C in polynomial time.

6. Prove that the following language is NP-complete:

BOUNDED HALTING = $\{(M, 1^t) \mid \exists x, |x| \leq t, \text{ such that DTM } M \text{ accepts } x \text{ within } t \text{ steps} \}$

Notation: 1^t is 1 written t times, where t is an integer. |x| is the length the string x.

7. We define the complexity class **coNP** as

$$\mathbf{coNP} = \{ L \mid \overline{L} \in \mathbf{NP} \}$$

We can define coNP-completeness in analogy to NP-completeness: a language is **coNP-complete** if it is in **coNP** and every **coNP** language is polynomial-time reducible to it. Prove that the following language is **coNP-complete**:

TAUTOLOGY = $\{\phi \mid \phi \text{ is a tautology - a Boolean formula that is satisfied by every assignment}\}$