Analisi Matematica per Informatici – Esercitazione 11 a.a. 2006-2007

Dott. Simone Zuccher

14 Febbraio 2007

Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all'autore (zuccher@sci.univr.it).

1 Integrali indefiniti immediati (o quasi)

Richiami utili per il calcolo degli integrali

- Proprietà:
 - 1. $\int f(x) dx = F(x) + c$, $c \in \mathbb{R}$, ovvero le primitive di una funzione f(x) differiscono tutte per una costante.

2.
$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$

3.
$$\int kf(x) \ dx = k \int g(x) \ dx$$

• Integrali immediati, o quasi, vedi tabella 1, pagina 2

1.1 Esercizio

Calcolare i seguenti integrali.

$$\int \cot x \, dx \qquad [\log|\sin x| + c] \qquad \int \tan x \, dx \qquad [-\log|\cos x| + c]$$

$$\int \sin(ax) \, dx \qquad \left[-\frac{1}{a}\cos(ax) + c \right] \qquad \int \cos(ax) \, dx \qquad \left[\frac{1}{a}\sin(ax) + c \right]$$

$$\int \sqrt{x} \, dx \qquad \left[\frac{2}{3}\sqrt{x^3} + c \right] \qquad \int \frac{1}{\sqrt{x+a}} \, dx \qquad \left[2\sqrt{x+a} + c \right]$$

$$\int \frac{x}{\sqrt{a+x^2}} \, dx \qquad \left[\sqrt{a+x^2} + c \right] \qquad \int \frac{x}{\sqrt{a-x^2}} \, dx \qquad \left[-\sqrt{a-x^2} + c \right]$$

$$\int x^{\alpha} dx \qquad = \frac{x^{\alpha+1}}{\alpha+1} + c, \ \alpha \neq -1 \qquad \int f'(x) \cdot [f(x)]^{\alpha} dx \qquad = \frac{[f(x)]^{\alpha+1}}{\alpha+1} + c, \ \alpha \neq -1$$

$$\int \frac{1}{x} dx \qquad = \log|x| + c \qquad \int \frac{f'(x)}{f(x)} dx \qquad = \log|f(x)| + c$$

$$\int a^{x} dx \qquad = \frac{a^{x}}{\log a} + c, \ a > 0 \land a \neq 1 \qquad \int f'(x) \cdot a^{f(x)} dx \qquad = \frac{a^{f(x)}}{\log a} + c, \ a > 0 \land a \neq 1$$

$$\int e^{x} dx \qquad = e^{x} + c \qquad \int f'(x) \cdot e^{f(x)} dx \qquad = e^{f(x)} + c$$

$$\int \sin x dx \qquad = -\cos x + c \qquad \int f'(x) \cdot \sin[f(x)] dx \qquad = -\cos[f(x)] + c$$

$$\int \cos x dx \qquad = \sin x + c \qquad \int f'(x) \cdot \cos[f(x)] dx \qquad = \sin[f(x)] + c$$

$$\int \frac{1}{(\cos x)^{2}} dx \qquad = \tan x + c \qquad \int \frac{f'(x)}{[\sin f(x)]^{2}} dx \qquad = \tan[f(x)] + c$$

$$\int \frac{1}{\sqrt{1 - x^{2}}} dx \qquad = \arcsin x + c \qquad \int \frac{f'(x)}{\sqrt{1 - [f(x)]^{2}}} dx \qquad = \arcsin[f(x)] + c$$

$$\int \frac{1}{1 + x^{2}} dx \qquad = \arctan x + c \qquad \int \frac{f'(x)}{1 + [f(x)]^{2}} dx \qquad = \arctan[f(x)] + c$$

Tabella 1: Tabella degli integrali notevoli

1.1.1 Risoluzione

Si applichino le conoscenze relative agli integrali immediati ed altri integrali notevoli (vedi tabella 1, pagina 2).

1.2 Esercizio

Dimostrare, sotto l'ipotesi a > 0, le seguenti uguaglianze.

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + c$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + c$$

1.2.1 Risoluzione

Si applichino le conoscenze relative agli integrali immediati ed altri integrali notevoli (vedi tabella 1, pagina 2).

1.3 Esercizio

Calcolare i seguenti integrali.

$$\int \frac{1}{(5x+3)^6} dx \qquad \left[-\frac{1}{25(5x+3)^5} + c \right] \qquad \int \sqrt{x+2} dx \qquad \left[\frac{2}{3}\sqrt{(x+2)^3} + c \right]$$

$$\int \frac{x}{\sqrt{2-3x^2}} dx \qquad \left[-\frac{1}{3}\sqrt{2-3x^2} + c \right] \qquad \int \frac{1}{x\sqrt{x^2-1}} dx \qquad \left[-\arcsin\frac{1}{x} + c \right]$$

$$\int \sin^5 x \cos x dx \qquad \left[\frac{1}{6}\sin^6 x + c \right] \qquad \int \frac{(\arcsin x)^2}{\sqrt{1-x^2}} dx \qquad \left[\frac{1}{3}(\arcsin x)^3 + c \right]$$

$$\int \frac{1}{(1+x^2)\arctan x} dx \qquad \left[\log|\arctan x| + c \right] \qquad \int \frac{1}{(\arcsin x\sqrt{1-x^2}} dx \qquad \left[\log|\arcsin x| + c \right]$$

$$\int \frac{1}{x\log x} dx \qquad \left[\log|\log x| + c \right] \qquad \int \frac{(\log x)^n}{x} dx, \quad n \neq -1 \qquad \left[\frac{(\log x)^{n+1}}{n+1} + c \right]$$

$$\int \frac{\sin(2x)}{1+(\sin x)^2} dx \qquad \left[\log(1+(\sin x)^2) + c \right] \qquad \int 3xe^{x^2} dx \qquad \left[\frac{3}{2}e^{x^2} + c \right]$$

1.3.1 Risoluzione

Si applichino le conoscenze relative agli integrali immediati ed altri integrali notevoli (vedi tabella 1, pagina 2).

2 Integrali che richiedono alcune manipolazioni della funzione integranda

Negli esercizi che seguono sarà necessario manipolare la funzione integranda in modo da ricondursi ad integrali immediati (o quasi) visti precedentemente.

2.1 Esercizio

Tenendo conto delle uguaglianze goniometriche note, calcolare i seguenti integrali.

1.
$$\int \sin^2 x \ dx$$
 2.
$$\int \cos^2 x \ dx$$

2.1.1 Risoluzione

Dalla formula di duplicazione del coseno $\cos(2x)=\cos^2 x-\sin^2 x=2\cos^2 x-1=1-2\sin^2 x$ si ha

1.
$$\sin^2 x = \frac{1 - \cos(2x)}{2} = \frac{1}{2} - \frac{\cos(2x)}{2}$$
, quindi $\int \sin^2 x \, dx = \int \frac{1}{2} \, dx - \int \frac{\cos(2x)}{2} \, dx = \frac{1}{2}x - \frac{\sin(2x)}{4} + c$.

2. Osservando che
$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$
, si ottiene $\int \cos^2 x \, dx = \int \frac{1}{2} \, dx + \int \frac{\cos(2x)}{2} \, dx = \frac{1}{2}x + \frac{\sin(2x)}{4} + c$.

2.2 Esercizio

Tenendo conto delle uguaglianze goniometriche note, calcolare i seguenti integrali.

1.
$$\int \frac{1}{\sin x} dx$$
 2.
$$\int \frac{1}{\cos x} dx$$

2.2.1 Risoluzione

Dalla formula di duplicazione del seno $\sin(2x) = 2\sin x \cos x$ si ottiene $\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}$, da cui

1.
$$\int \frac{1}{\sin x} dx = \int \frac{1}{2 \sin \frac{x}{2} \cos \frac{x}{2}} dx = \int \frac{1}{2 \tan \frac{x}{2} \cos^2 \frac{x}{2}} dx = \int \frac{(\tan \frac{x}{2})'}{\tan \frac{x}{2}} dx = \log \left| \tan \frac{x}{2} \right| + c.$$

Si dimostri, per esercizio ed utilizzando gli stessi passaggi, che in generale vale la seguente

$$\int \frac{1}{\sin(x+a)} dx = \log \left| \tan \left(\frac{x+a}{2} \right) \right| + c \tag{1}$$

2. Utilizzando la (1), dopo aver osservato che $\cos x = \sin(x + \pi/2)$, si ottiene $\int \frac{1}{\cos x} dx = \int \frac{1}{\sin(x + \frac{\pi}{2})} dx = \log \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + c$

2.3 Esercizio

Tenendo conto delle uguaglianze goniometriche note, calcolare i seguenti integrali.

1.
$$\int \frac{1}{\sin x \cos x} dx$$
 2.
$$\int \frac{1}{\sin^2 x \cos^2 x} dx$$

4

2.3.1 Risoluzione

1.
$$\int \frac{1}{\sin x \cos x} dx = \int \frac{1}{\tan x \cos^2 x} dx = \log|\tan x| + c$$

2.
$$\int \frac{1}{\sin^2 x \cos^2 x} dx = \int \frac{1}{(\sin x \cos x)^2} dx = \int \frac{1}{[(\sin(2x))/2]^2} dx = 2 \int \frac{(2x)'}{[\sin(2x)]^2} dx = -2 \cot(2x) + c$$

2.4 Esercizio

Dimostrare le seguenti uguaglianze.

1.
$$\int \frac{hx+k}{mx+n} dx = \frac{h}{m}x + \frac{km-hn}{m^2} \log|mx+n| + c$$

2.
$$\int \frac{hx+k}{mx^2+n} dx = \frac{h}{2m} \log|mx^2+n| + \frac{k}{\sqrt{mn}} \arctan\left(\sqrt{\frac{m}{n}}x\right) + c, \quad m \cdot n > 0$$

2.4.1 Risoluzione

1.
$$\int \frac{hx+k}{mx+n} dx = \frac{1}{m} \int \frac{hmx+mk}{mx+n} dx = \frac{1}{m} \int \frac{hmx+mk+hn-hn}{mx+n} dx = \frac{1}{m} \int \frac{h(mx+n)+km-hn}{mx+n} dx = \frac{h}{m} \int 1 dx + \frac{km-hn}{m^2} \int \frac{m}{mx+n} dx = \frac{h}{m} x + \frac{km-hn}{m^2} \log|mx+n| + c$$

2.
$$\int \frac{hx+k}{mx^2+n} dx = h \int \frac{x}{mx^2+n} dx + k \int \frac{1}{mx^2+n} dx = \frac{h}{2m} \int \frac{2mx}{mx^2+n} dx + \frac{k}{n} \frac{1}{\sqrt{m/n}} \int \frac{\sqrt{m/n}}{(\sqrt{m/n}x)^2+1} dx = \frac{h}{2m} \log|mx^2+n| + \frac{k}{\sqrt{mn}} \arctan\left(\sqrt{\frac{m}{n}}x\right) + c$$

2.5 Esercizio

Calcolare
$$\int \frac{3x+2}{4x+5} dx.$$

2.5.1 Risoluzione

Eseguendo gli stessi passaggi del primo esempio dell'esercizio precedente, si ottiene $\int \frac{3x+2}{4x+5} \, dx = \frac{1}{4} \int \frac{12x+8}{4x+5} \, dx = \frac{1}{4} \int \frac{12x+8+15-15}{4x+5} \, dx = \frac{1}{4} \int \frac{12x+15-7}{4x+5} \, dx = \frac{3}{4} \int 1 \, dx - \frac{7}{4} \int \frac{1}{4x+5} \, dx = \frac{3}{4} x - \frac{7}{16} \log|4x+5| + c.$

Alternativamente, bastava sostituire h = 3, k = 2, m = 4, n = 5 nella formula risolutiva vista nell'esempio 1 dell'esercizio 2.4.

2.6 Esercizio

Calcolare
$$\int \frac{1}{3x^2 + 2} dx$$
.

2.6.1 Risoluzione

Eseguendo gli stessi passaggi del secondo esempio dell'esercizio 2.4, si ottiene $\int \frac{1}{3x^2+2} dx =$

$$\frac{1}{2} \int \frac{1}{\frac{3}{2}x^2 + 1} dx = \frac{1}{2} \int \frac{1}{\left(\sqrt{\frac{3}{2}}x\right)^2 + 1} dx = \frac{1}{2} \sqrt{\frac{2}{3}} \int \frac{\sqrt{\frac{3}{2}}}{\left(\sqrt{\frac{3}{2}}x\right)^2 + 1} dx = \frac{1}{\sqrt{6}} \arctan\left(\frac{3}{2}x\right) + \frac{1}{\sqrt{6}} \arctan$$

Alternativamente, bastava sostituire h=0, k=1, m=3, n=2 nella formula risolutiva vista nell'esempio 2 dell'esercizio 2.4.

2.7 Esercizio

Dimostrare, nel caso $\Delta = b^2 - 4ac < 0$, la seguente uguaglianza

$$\int \frac{hx+k}{ax^2+bx+c} \, dx = \frac{h}{2a} \log|ax^2+bx+c| + \frac{2ak-bh}{a\sqrt{4ac-b^2}} \arctan\left(\frac{2ax+b}{\sqrt{4ac-b^2}}\right) + c$$

2.7.1 Risoluzione

$$\frac{hx+k}{ax^2+bx+c} = h\frac{x+k/h}{ax^2+bx+c} = \frac{h}{2a} \cdot \frac{2ax+2ak/h}{ax^2+bx+c} = \frac{h}{2a} \cdot \frac{2ax+2ak/h+b-b}{ax^2+bx+c} = \frac{h}{2a} \cdot \frac{2ax+2ak/h+b-b}{ax^2+bx+c} = \frac{h}{2a} \cdot \frac{2ax+2ak/h+b-b}{ax^2+bx+c} = \frac{h}{2a} \cdot \frac{2ax+b}{ax^2+bx+c} = \frac{h}{2a} \cdot \frac{2ax+b}{ax^2+bx+c} = \frac{h}{2a} \cdot \frac{2ak/h-b}{ax^2+bx+c} = \frac{h}{2a} \cdot \frac{h}{2a} \cdot \frac{h}{2a} \cdot \frac{h}{2a} \cdot \frac{h}{2a} \cdot \frac{h}{2a} \cdot \frac{h}{2a} = \frac{h}{2ak-bh} \cdot \frac{h}{2a} \cdot \frac{h}{2a}$$

data. Si noti che il risultato del secondo integrale dell'esercizio 2.4 si ottiene immediatamente dalla formula precedente ponendo a=m,b=0,c=n.

2.8 Esercizio

Calcolare
$$\int \frac{3x+2}{x^2+x+1} dx.$$

2.8.1 Risoluzione

Eseguendo gli stessi passaggi dell'esercizio precedente, si ottiene $\int \frac{3x+2}{x^2+x+1} \, dx = \frac{3}{2} \int \frac{2x+4/3}{x^2+x+1} \, dx = \frac{3}{2} \int \frac{2x+1+4/3-1}{x^2+x+1} \, dx = \frac{3}{2} \int \frac{2x+1+1/3}{x^2+x+1} \, dx = \frac{3}{2} \int \frac{2x+1}{x^2+x+1} \, dx + \frac{1}{2} \int \frac{1}{x^2+x+1} \, dx = \frac{3}{2} \log|x^2+x+1| + \frac{1}{2} \int \frac{1}{(x+1/2)^2+3/4} \, dx = \frac{3}{2} \log(x^2+x+1) + \frac{1}{\sqrt{3}} \int \frac{2/\sqrt{3}}{\left(\frac{2x+1}{\sqrt{3}}\right)^2+1} \, dx = \frac{3}{2} \log(x^2+x+1) + \frac{1}{\sqrt{3}} \arctan\left(\frac{2x+1}{\sqrt{3}}\right) + c = .$

Alternativamente, bastava sostituire h=3, k=2, a=1, b=1, c=1 nella formula risolutiva vista nell'esercizio 2.7.

3 Integrali per parti

Richiami utili al calcolo di integrali per parti.

• L'integrazione per parti utilizza l'uguaglianza

$$\int [f'(x) \cdot g(x)] dx = f(x) \cdot g(x) - \int [f(x) \cdot g'(x)] dx$$

• Schema riassuntivo per la scelta di f'(x) e g(x) nel caso si abbia l'integrale del loro prodotto: vedi tabella 2. Si noti che $1 = x^0$ rientra nel caso x^n .

f'(x)		g(x)
$\sin x$	se moltiplicato per	x^n
$\cos x$	se moltiplicato per	x^n
e^x	se moltiplicato per	x^n
x^n	se moltiplicato per	$\log x$
x^n	se moltiplicato per	$\arcsin x$
x^n	se moltiplicato per	$\arccos x$
x^n	se moltiplicato per	$\arctan x$
x^n	se moltiplicato per	$\operatorname{arccot} x$

Tabella 2: Scelta di f'(x) e g(x) nell'integrazione per parti $\int [f'(x) \cdot g(x)] dx$

3.1 Esercizio

Calcolare $\int x \cos x \, dx$.

3.1.1 Risoluzione

Scegliendo, secondo la tabella 2, pagina 7, $f'(x) = \cos x$ e g(x) = x, si ha $f(x) = \int \cos x \, dx = \sin x$ e g'(x) = 1, quindi $\int x \cos x \, dx = x \cdot \sin x - \int \sin x \, dx = x \cdot \sin x + \cos x + c$.

3.2 Esercizio

Calcolare $\int x \log x \, dx$.

3.2.1 Risoluzione

Scegliendo, secondo la tabella 2, pagina 7, f'(x) = x e $g(x) = \log x$, si ha $f(x) = x^2/2$ e g'(x) = 1/x, quindi $\int x \log x \, dx = \frac{x^2}{2} \cdot \log x - \frac{1}{2} \int x \, dx = \frac{x^2}{2} \left(\log x - \frac{1}{2} \right) + c$.

3.3 Esercizio

Calcolare $\int \log x \ dx$.

3.3.1 Risoluzione

Scegliendo, secondo la tabella 2, pagina 7, f'(x) = 1 e $g(x) = \log x$, si ha f(x) = x e g'(x) = 1/x, quindi $\int \log x \, dx = x \cdot \log x - \int 1 \, dx = x (\log x - 1) + c$.

3.4 Esercizio

Calcolare $\int \arctan x \ dx$.

3.4.1 Risoluzione

Scegliendo, secondo la tabella 2, pagina 7, f'(x) = 1 e $g(x) = \arctan x$, si ha f(x) = x e $g'(x) = 1/(1+x^2)$, quindi $\int \arctan x \ dx = x \cdot \arctan x - \int \frac{x}{1+x^2} \ dx = x \cdot \arctan x - \frac{1}{2} \log(x^2+1) + c$.

8

3.5 Esercizio

Calcolare $\int x^2 e^x dx$.

3.5.1 Risoluzione

Scegliendo, secondo la tabella 2, pagina 7, $f'(x) = e^x$ e $g(x) = x^2$, si ha $f(x) = e^x$ e g'(x) = 2x, quindi $\int x^2 e^x dx = x^2 \cdot e^x - \int 2x \cdot e^x dx = x^2 \cdot e^x - 2\left(x \cdot e^x - \int e^x dx\right) + c = e^x(x^2 - 2x + 2) + c$.

3.6 Esercizio

Calcolare $\int (\log x)^2 dx$.

3.6.1 Risoluzione

Scegliendo, secondo la tabella 2, pagina 7, f'(x) = 1 e $g(x) = (\log x)^2$, si ha f(x) = x e $g'(x) = \frac{2}{x} \log x$, quindi $\int (\log x)^2 dx = x \cdot (\log x)^2 - 2 \int \log x dx = x \left[(\log x)^2 - 2 \log x + 2 \right] + c$.

3.7 Esercizio

Calcolare, per parti, $\int (\sin x)^2 dx$.

3.7.1 Risoluzione

Scegliendo $f'(x) = \sin x$ e $g(x) = \sin x$, si ha $f(x) = -\cos x$ e $g'(x) = \cos x$, quindi $\int (\sin x)^2 dx = -\sin x \cdot \cos x + \int (\cos x)^2 dx = -\sin x \cdot \cos x + \int [1 - (\sin x)^2] dx = -\sin x \cdot \cos x + \int 1 dx - \int \sin x)^2 dx$, ovvero $\int (\sin x)^2 dx = -\sin x \cdot \cos x + x - \int \sin x)^2 dx$, da cui $\int (\sin x)^2 dx = \frac{1}{2}(x - \sin x \cos x) + c = \frac{1}{2}x - \frac{1}{4}\sin(2x) + c$ (si confronti questo risultato con l'esercizio 2.1).

3.8 Esercizio

Calcolare, per parti, $\int \frac{x}{(\sin x)^2} dx$.

3.8.1 Risoluzione

Scegliendo $f'(x) = \frac{1}{(\sin x)^2}$ e g(x) = x, si ha $f(x) = -\cot x$ e g'(x) = 1, quindi $\int \frac{x}{(\sin x)^2} dx = -x \cdot \cot x + \log|\sin x| + c.$