Computational Vision

Lecture 3.2: Noise Filtering

Hamid Dehghani

Office: UG38

Aims

- Intensity Images
- Noise Reduction
- Edge Detection!

Intensity Images

- An intensity image is a data matrix, whose values represent intensities within some range.
- represented as a single matrix, with each element of the matrix corresponding to one image pixel
- In matlab: To display an intensity image, use the imagesc ("image scale") function

Intensity gradients

• The image is a function mapping coordinates to intensity f(x,y)

```
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
```


Intensity gradients

- The image is a function mapping coordinates to intensity f(x,y)
- The gradient of the intensity is a vector $\hat{\mathcal{G}}$

• We can think of the gradient as having an^2x and a y component

$$M(G) = \sqrt{G_x^2 + G_y^2}$$
magnitude

$$\alpha(x, y) = \tan^{-1} \left(\frac{G_y}{G_x} \right)$$
direction

Approximating the gradient

So we use a 2x2 mask instead

 For each mask of weights you multiply the corresponding pixel by the weight and sum over all pixels

Other edge detectors

Roberts

$$G_x = \begin{array}{|c|c|c|} \hline 1 & 0 \\ \hline 0 & -1 \\ \hline \end{array}$$

$$G_{y} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Sobel

$$G_x$$
 $\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$

$$G_y$$
 $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Approximating the gradient

What do these filters do

- Steps:
 - Take image
 - Convolve mask with image for each direction
 - Calculate derivatives Gx and Gy
 - Calculate magnitude = $M(G) = \sqrt{G_x^2 + G_y^2}$

Original

Noise

- It turns out we will need to remove noise
- There are many noise filters
- We can implement most of them using the

idea of convolution again

e.g. Mean filter

	d
100	S
製き際	
al h	
X X	
	9

$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	<u>1</u> 9	<u>1</u> 9

Noise filtering

 We can use convolution to remove noise as we mentioned, e.g. mean filter

$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

- This is a linear filter
- The most widely used is Gaussian filtering

0	.01	.02	.01	0
.01	.06	.11	.06	.01
.02	.11	.16	.11	.02
.01	.06	.11	.06	.01
0	.01	.02	.01	0

Effect of mean filtering

Original

3x3 filter

5x5 filter

 $Abs(G_x)$

Threshold=30

Horizontal Sobel operator

 $Abs(G_x)$

Threshold=30

Effect of Gaussian filtering

Original

5x5 filter

Horizontal Sobel Operator Abs (G_x) Threshold = 30

Sequenced filters

We can replace a 2D Gaussian filter with 2, 1D Gaussian filters in sequence

0.003	.0133	.0219	.0133	0.003
.0133	.0596	.0983	.0596	.0133
.0219	.0983	.1621	.0983	.0219
.0133	.0596	.0983	.0596	.0133
0.003	.0133	.0219	.0133	0.003

.0545 .2442 .4026 .2442 .0545

Laplacian Operator

Highly Directed Work

- Second order operators
- Laplacian
- Laplacian of Gaussian
- Gaussian (Canny) edge detection
- Thresholding