A study on economic growth related carbon dioxide damage and forest area damage across the world, for the period of 2012 to 2013.

1. Research Question and motivation:

In an era where environmental sustainability and economic stability are increasingly intertwined, understanding the impact of natural resource management on national income is crucial. This analysis focuses on the relationship between *Forest Area Percentage* and *Carbon Dioxide Damage*, as well as their effects on *Adjusted Net National Income Per Capita* across various countries during the years 2012 and 2013. For the study, the "World Bank Database" was utilized.

The motivation for researching this topic stems from the growing discourse surrounding environmental issues in the news and social media. As climate change and deforestation continue to dominate global conversations, it is imperative to understand the economic implications of these environmental challenges. By analyzing the interplay between forest conservation and economic indicators, contribution to valuable insights that can inform policy decisions and promote sustainable practices shall be achieved.

The findings from this research could hold societal benefits, as they can guide the development of effective policies that promote sustainable practices while fostering economic growth. Furthermore, by raising public awareness of the critical link between environmental health and economic prosperity, we can encourage collective action towards conservation efforts.

Summing up the above, the following research question can be fomulated:

"What is the impact of Forest Area Percentage and Carbon Dioxide Damage on the Adjusted Net National Income Per Capita across different countries from 2012 to 2013?"

2. Methods:

2.1 Samples:

In the used dataset there are 198 observations for each of the studied variables (*Forest Area Percentage*, CO_2 Damage, and Adjusted Net National Income per Capita) for the years 2012 and 2013. These observations represent the number of countries, involved in the world bank data. 247 countries are available in total, but with missing data for at least one of the variables. To ensure further processing, these values have been cleaned out.

2.2 Measures:

The Forest Area Percentage indicates the proportion of land covered by forests in a country for 2012 and 2013. This measure is crucial for assessing natural resource management and environmental health, as forests contribute to carbon sequestration and biodiversity. Values range from 0% to nearly 98.4%, reflecting significant global variation.

The Carbon Dioxide Damage measures the economic costs linked to carbon dioxide emissions in a country for 2012 and 2013. This metric accounts for the financial impacts of environmental degradation and health issues caused by CO₂ emissions. Understanding CO₂ damage is essential for evaluating the economic consequences of

environmental policies. Countries with higher CO₂ damage may encounter significant economic challenges, potentially influencing their adjusted net national income.

The Adjusted Net National Income per Capita reflects a country's economic well-being by accounting for the depreciation of natural resources and the impacts of environmental degradation. This measure offers a more sustainable view of economic performance, highlighting the interplay between environmental factors, such as forest area and CO₂ damage. A higher adjusted net national income per capita indicates stronger economic health and effective sustainability practices. Values range from approximately 140 to 78,000, illustrating significant disparities among countries. The measures were not binned any further for the analysis.

2.3 Descriptive Statistics:

The following table provides an overview of all variables and their descriptive statistics.

Table 1: Descriptive statistics of the chosen variables

	FOREST_AREA _PCT_2012	FOREST_AREA _PCT_2013	CO2_DAMAGE_ 2012	CO2_DAMAGE_ 2013	ADJ_NAT_ GPA_2012	ADJ_NAT_ GPA_2013
Count	198	198	198	198	198	198
Mean	31.716	31.703	0.483	0.491	10389.064	10750.837
STD	22.633	22.639	0.371	0.379	14401.763	14837.418
Min	0.000	0.000	0.048	0.051	140.283	154.823
25 %	12.411	12.438	0.239	0.247	1246.590	1351.589
50 %	30.923	31.111	0.347	0.359	4189.441	4424.458
75 %	45.988	46.132	0.633	0.646	11192.652	11851.326
Max	98.355	98.331	2.509	2.485	78441.338	80588.455

Forest Area Percentage (2012 and 2013): The mean Forest Area Percentage is around 31.7%, with a standard deviation of approximately 22.6%. This indicates a wide variation in Forest Area across the considered countries.

 CO_2 Damage (2012 and 2013): The mean CO_2 Damage is around 0.48 to 0.49, with a standard deviation of approximately 0.37. This suggests that there are countries with significantly higher CO_2 Damage.

Adjusted Net National Income per Capita (2012 and 2013): The mean adjusted net national income per capita is around 10,389 to 10,751, with a large standard deviation, indicating significant income disparity among countries.

To gain a visual overview over the data, histograms were created for each variable (see figure 1).

Figure 1: Visualization of statistics for each of the parameters in histograms.

2.4 Analyses:

In the following, the approach in context of the research topic is described. To understand the strength and direction of the relationships between the variables, a correlation matrix is created. In the next step, a multiple regression is performed, to check for statistical significance among the variables. In the last step, a linear regression to forecast the 2013 data based on the 2012 data is being performed, to model the relationship between the independent variables (*Forest Area Percentage* and CO_2 *Damage*) and the dependent variable (*Adjusted Net National Income Per Capita*).

3. Evaluation:

3.1 Correlation Matrix:

To evaluate the strength and direction of the relationships between the variables, a correlation matrix was created (see figure 2).

Figure 2: Correlation matrix of the parameters

The variables CO2_DAMAGE_2012 and FOREST_AREA_PCT_2012 have a correlation of -0.183780, suggesting a weak negative correlation. This means that as CO2 Damage increases, the forest area percentage tends to decrease slightly. The correlation factor between Adjusted Net National Income per Capita 2012 and CO2 Damage 2012 is -0.25 as well as -0.26 for the respective values of the year 2013, indicating a moderate negative correlation. This indicates, that with increasing Adjusted Net National Income per Capita, the CO2 damage slightly decreases. Nevertheless, there seems to be no correlation between the Adjusted Net National Income per Capita and the forest area for both years.

Concluding the above findings, the matrix suggests that forest area percentages are stable over the two years measured. Further, CO₂ damage appears to have a weak negative relationship with forest area percentages, indicating that higher CO₂ damage may be associated with lower forest area percentages. The adjusted national GPA shows a strong consistency between the two years.

3.2 Multiple Linear Regression:

A multiple linear regression was performed to check for statistical significance among the variables. The results were separated for both years of observation, 2012 (see figure 3) and 2013 (see figure 4). The CO₂ damage was chosen as the dependent variable and the dependence of the *Forest Area Percentage* as well as the *Adjusted Net National Income per Capita* was analyzed.

Dep. Variable:	CO2_DAMAGE_2012 R-squared:				0.099		
Model:	OLS		Adj.	R-squared:	0.090		
Method:	Least Squ	uares	F-sta	atistic:		10.74	
Date:	Wed, 23 Apr 2025		Prob	(F-statistic	3.76e-05		
Time:	10:05:42		Log-I	Likelihood:	-73.671		
No. Observations:		198	AIC:			153.3	
Df Residuals:		195	BIC:			163.2	
Df Model:		2					
Covariance Type:	nonro	obust					
	coef	std	err	t	P> t	[0.025	0.975
const	0.6486	0.	047	13.760	0.000	0.556	0.742
FOREST_AREA_PCT_2012	-0.0030	0.	001	-2.739	0.007	-0.005	-0.001
ADJ_NAT_GPA_2012	-6.587e-06	1.75	-06	-3.764	0.000	-1e-05	-3.14e-06
Omnibus:	117	 7.385	Durb:	in-Watson:		2.246	
Prob(Omnibus):	(0.000	Jarque-Bera (JB):		744.147		
Skew:		2.258	Prob(JB):			2.57e-162	
Kurtosis:	13	1.355	Cond	. No.		3.32e+04	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.32e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Figure 3: Results of the multiple linear regression for 2012.

Multiple Regression Results for 2013 OLS Regression Results								
Dep. Variable:	CO2_DAMAGE	_2013	R-squared:			0.103		
Model:			•			0.094		
Method:	Least Squares		F-sta	atistic:		11.20		
Date:	Wed, 23 Apr	2025	Prob	(F-statistic):	2.49e-05		
Time:	10:	05:46	Log-l	ikelihood:		-77.402		
No. Observations:		198	AIC:			160.8		
Df Residuals:		195	BIC:			170.7		
Df Model:		2						
Covariance Type:	nonr	obust						
	coef	std	err	t	P> t	[0.025	0.975]	
const	0.6634	0.	.048	13.806	0.000	0.569	0.758	
FOREST_AREA_PCT_2013	-0.0032	0.	.001	-2.816	0.005	-0.005	-0.001	
ADJ_NAT_GPA_2013	-6.629e-06	1.73	2-06	-3.830	0.000	-1e-05	-3.22e-06	
Omnibus: Prob(Omnibus):		===== 1.931 0.000	Durbin-Watson: Jarque-Bera (JB):		======	2.216 637.099		
Skew:			Prob(JB):		4.53e-139			
Kurtosis:		0.637	Cond	• /		3.43e+04		
=======================================		======	=====					

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.43e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Figure 4: Results of the multiple linear regression for 2013.

The regression model for 2012 has an R-squared value of 0.099, indicating that approximately 9.9% of the variability in CO_2 Damage can be explained by the independent variables included in the model. The F-statistic is 10.74 with a p-value of 3.76e-05, suggesting that the overall model is statistically significant.

The coefficient for the *Forest Area Percentage* is -0.0030, indicating that as the percentage of forest area increases, CO_2 Damage decreases, and this relationship is statistically significant (p = 0.007). The coefficient for Adjusted Net National Income per Capita 2012 is -6.587e-06, suggesting a negative relationship with CO_2 Damage, which is also statistically significant (p = 0.000)

The regression model for 2013 has an R-squared value of 0.103, indicating that approximately 10.3% of the variability in CO_2 Damage can be explained by the independent variables included in the model. The F-statistic is 11.20 with a p-value of 2.49e-05, suggesting that the overall model is statistically significant. The coefficient for Forest Area Percentage 2013 is -0.0032, indicating that as the Percentage Of Forest Area increases, CO_2 Damage decreases. This relationship is statistically significant (p = 0.005). The coefficient for Adjusted Net National Income per Capita 2013 is -6.629e-06, suggesting a negative relationship with CO_2 Damage, which is also statistically significant (p = 0.000).

3.3 Prediction of 2013 values, based on 2012 values using linear regression:

In the last step, a linear regression to forecast the 2013 data based on the 2012 data is being performed, to model the relationship between the independent variables (Forest Area Percentage and CO_2 Damage) and the dependent variable (Adjusted Net National Income Per Capita). For this, two models were set up, one for the prediction of CO_2 Damage in 2013 (see figure 5) and one for the prediction of Adjusted Net National Income Per Capita (see figure 6).

CO2 Damage Model Summary:									
OLS Regression Results									
Dep. Variable:	CO2 DAN	 MAGE 2013	R-squared:		 9	.993			
Model:	_	OLS	Adj. R-squa	red:	0.993				
Method:	Least	t Squares	F-statistic	:	1.431e+04				
Date:	Wed, 23	Apr 2025	Prob (F-sta	tistic):	2.84e-212				
Time:		10:55:25	Log-Likelih	ood:	406.43				
No. Observations:		198	AIC:		-806.9				
Df Residuals:		195	BIC:		-7	-797.0			
Df Model:		2							
Covariance Type:	r	nonrobust							
==============			========						
	coef	std err	t	P> t	[0.025	0.975]			
const	0.0003	0.004	0.067	0.947	-0.008	0.009			
CO2_DAMAGE_2012	1.0168	0.006	163.496	0.000	1.005	1.029			
ADJ_NAT_GPA_2012	-9.328e-08	1.6e-07	-0.583	0.561	-4.09e-07	2.23e-07			
Omnibus:	59.249 Durbin-Watson: 1.715								
Prob(Omnibus):		0.000	Jarque-Bera (JB):		620.709				
Skew:		0.754	Prob(JB):		1.64e-135				
Kurtosis:		11.542	Cond. No.		5.77	7e+04			
==============									

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.77e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Figure 5: Results of the linear regression model for prediction of 2013 CO₂ Damage.

Adjusted Net GPA Mo		•	ion Results				
Dep. Variable:	ADJ_NAT	GPA 2013	R-squared:		0.996		
Model:		OLS	Adj. R-squar	ed:	0.996		
Method:	Least	Squares	F-statistic:		2.753e+04		
Date:	Wed, 23	Apr 2025	Prob (F-stat	istic):	7.94e-240		
Time:		10:55:25	Log-Likeliho	ood:	-1623.2		
No. Observations:		198	AIC:		3252.		
Df Residuals:		195	BIC:		3262.		
Df Model:		2					
Covariance Type:	r	nonrobust					
=======================================			=========		========	=======	
	coef	std err	t	P> t	[0.025	0.975]	
const	70.2855		0.565	0.572	-174.902	315.473	
CO2_DAMAGE_2012	-7.0348	176.009	-0.040	0.968	-354.161	340.091	
ADJ_NAT_GPA_2012	1.0284	0.005	226.930	0.000	1.019	1.037	
Omnibus:	=======	148.844	Durbin-Watso	-====== on:	1	==== .926	
Prob(Omnibus):	0.000		Jarque-Bera (JB):		11315.440		
Skew:		-2.015	Prob(JB):		0.00		
Kurtosis:	39.815 Cond. No. 5.77e+04					e+04	
	=======		========		=======	====	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.77e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Figure 6: Results of the linear regression model for prediction of 2013 adjusted net national income per capita.

For better visualization of the results, plots for each model and the respective predicted variable were created (see figure 7)

Figure 7: Results of the linear regression model for the purpose of prediction of CO₂ damage and adjusted net national income per capita for the year 2013.

The regression analysis for CO_2 Damage and Adjusted Net National Income per Capita yielded strong results. The model predicting CO_2 Damage in 2013 explained approximately 99.3% of the variance (R-squared = 0.993), with CO_2 Damage in 2012 being a statistically significant predictor (p < 0.001), indicating that a one-unit increase in CO_2 Damage in 2012 results in an increase of about 1.017 units in CO_2 Damage in 2013.

However, Adjusted Net National Income per Capita in 2012 did not significantly impact CO_2 Damage in 2013 (p = 0.561). In the model for Adjusted Net National Income per

Capita in 2013, approximately 99.6% of the variance was explained (R-squared = 0.996), with Adjusted Net National Income per Capita in 2012 being a significant predictor (p < 0.001), suggesting that a one-unit increase in Adjusted Net National Income per Capita in 2012 leads to an increase of about 1.028 units in Adjusted Net National Income per Capita in 2013.

Conversely, CO_2 Damage in 2012 did not show a statistically significant effect on Adjusted Net National Income per Capita in 2013 (p = 0.968).

Overall, the findings highlight the strong predictive power of the models, particularly for CO_2 Damage in 2013 and Adjusted Net National Income per Capita in 2013 based on their respective 2012 values.

4. Discussion of results

The negative correlation between CO_2 Damage and Forest Area Percentage suggests that countries with higher forest coverage may experience lower economic costs associated with carbon emissions. Policymakers should prioritize forest conservation as a strategy to mitigate climate change impacts and enhance economic stability."

The moderate negative correlation between *Adjusted Net National Income per Capita* and *CO*₂ *Damage* indicates that as countries improve their economic performance, they may also reduce environmental degradation.

5. Conclusion:

This analysis highlights the relationship between Forest Area Percentage, Carbon Dioxide Damage, and Adjusted Net National Income per Capita across various countries from 2012 to 2013. The findings indicate that higher forest coverage is associated with lower CO_2 Damage, suggesting that effective natural resource management can contribute to economic stability. Furthermore, the negative correlation between Adjusted Net National Income per Capita and CO_2 Damage underscores the potential for economic growth to align with environmental sustainability.

Moving forward, it is essential for policymakers to consider these relationships when designing strategies for sustainable development. Future research should aim to use the whole available dataset to include additional years and variables, allowing for a more comprehensive understanding of these dynamics and their implications for global environmental and economic policies.