О длине некоторых периодических функций пятизначной логики в классе поляризованных полиномиальных форм

Михаил Гордеев

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет Вычислительной Математики и Кибернетики

22 апреля 2015 г.

Пусть $k \geqslant 2$ – натуральное число, $E_k = \{0, 1, \dots, k-1\}$.

 $f^{(n)}: E_k^n o E_k$ называется функцией k-значной логики.

Поляризованным мономом K^{δ} по вектору поляризации $\delta = (d_1, \dots, d_n) \in E_k^n$, назовем $(x_{i_1} + d_{i_1})^{m_1} \cdots (x_{i_r} + d_{i_r})^{m_r}$.

Поляризованная полиномиальная нормальная форма (ППФ) по вектору поляризации δ – это $\sum\limits_{i=1}^{l} c_i \cdot K_i^{\delta}$; $K_i^{\delta} \neq K_j^{\delta}, i \neq j$. Число l называется длиной ППФ.

 $P^{\delta}(f)$ — это минимальная по длине, поляризованная по δ ППФ, реализующая f.

Супрун [1993г.], Sasao [1990г.] – получили некоторые оценки для функций алгебры логики в классе ППФ.

Известные оценки

Основные определения

Супрун [1993г.], Sasao [1990г.] – получили некоторые оценки для функций алгебры логики в классе ППФ.

Перязев [1995г.] –
$$L_2(n) = \left[\frac{2^{n+1}}{3}\right]$$
.

Супрун [1993г.], Sasao [1990г.] – получили некоторые оценки для функций алгебры логики в классе ППФ.

Перязев [1995г.] –
$$L_2(n) = \left[\frac{2^{n+1}}{3}\right]$$
.

Селезнева [2002 г.] –
$$L_k(n) < \frac{k(k-1)}{k(k-1)+1}k^n$$
.

Супрун [1993г.], Sasao [1990г.] – получили некоторые оценки для функций алгебры логики в классе ППФ.

Перязев [1995г.] –
$$L_2(n) = \left[\frac{2^{n+1}}{3}\right]$$
.

Селезнева [2002 г.] –
$$L_k(n) < \frac{k(k-1)}{k(k-1)+1}k^n$$
.

Маркелов [2012 г.] –
$$L_3(n) \geqslant \left[\frac{3}{4}3^n\right]$$
.

Введение

Определение

Функция k-значной логики $f(x_1, \ldots, x_n)$ называется симметрической, если $f(\pi(x_1), \ldots, \pi(x_n)) = f(x_1, \ldots, x_n)$ для произвольной перестановки π на множестве переменных.

Определение

Симметрическая функция $f(x_1, \ldots, x_n)$ называется периодической с периодом $\tau = (\tau_0 \tau_1 \ldots \tau_{T-1}) \in E_k^T$, если $f(\alpha) = \tau_j$ при $|\alpha| = j \pmod{T}$ для каждого набора $\alpha \in E_k^n$.

Рассмотрим функции f и g — периодические симметрические функции c периодами (1,1,4,4) и (1,4,4,1) соответственно. Введем класс \mathcal{A} функций вида $a \cdot f + a \cdot g$, $a,b \in E_k$, $a \neq 0$ или $b \neq 0$. И его подкласс подкласс \mathcal{F} состоящий из функций: $c \cdot f$, $c \cdot g$, $c \cdot (f+g)$, $c \in \{1,2,3,4\}$.

Определение

Класс функций A называется вырожденным, если при $n \to \infty$ для любой функции $f_n \in A_n$ длина этой функции есть $\overline{o}(5^n)$.

Теорема 1

При $n\geqslant 1$ и s_n любой из функций $s_n^2=f_n+2\,g_n$, $s_n^3=f_n+3\,g_n$ длина полинома периодической функции пятизначной логики s_n при поляризации $\delta=(d_1,\ldots,d_n)$ выражается следующей формулой:

Введение

$$I(P^{\delta}(s_n)) = 5^{n-m} \cdot 4^m,$$

где
$$m = \begin{cases}$$
количество 4 в векторе $\delta, \,\,$ если $s_n = s_n^2; \$ количество 2 в векторе $\delta, \,\,$ если $s_n = s_n^2. \end{cases}$

Основные теоремы и леммы Нижняя оценка

Лемма 1

При векторе поляризации

$$\delta=(d_1,\ldots,d_n), d_i\in\{0,1,3,4\}, i=1,\ldots,n$$
 и φ_n – любой функции из \mathcal{F}^n верно:

$$I(P^{\delta}(\varphi_n)) \geqslant \frac{2}{5} \cdot 5^n.$$

Основные теоремы и леммы

Нижняя оценка

Лемма 1

При векторе поляризации

$$\delta=(d_1,\ldots,d_n), d_i\in\{0,1,3,4\}, i=1,\ldots,n$$
 и φ_n – любой функции из \mathcal{F}^n верно:

$$I(P^{\delta}(\varphi_n)) \geqslant \frac{2}{5} \cdot 5^n.$$

Лемма 2

При векторе поляризации

$$\delta = (d_1, \ldots, d_n), \ d_i = 2, \ i = 1, \ldots, m, \ d_i = 4, \ i = n-m+1, \ldots, n$$
 и φ_n – любой функции из \mathcal{F}^n верно:

$$I(P^{\delta}(\varphi_n)) \geqslant \left(\left(\frac{5}{4}\right)^m - \frac{3}{2}\right) \cdot 4^n + 4^m \cdot 5^{n-m}.$$

Основные теоремы и леммы

Основные теоремы и леммы Нижняя оценка

Теорема 2

При векторе поляризации $\delta = (d_1, \ldots, d_n)$ и φ_n – любой функции из \mathcal{F}^n верно:

$$I(P^{\delta}(\varphi_n)) \geqslant \left(\left(\left(\frac{5}{4} \right)^{m_2} - \frac{3}{2} \right) \cdot 4^{m_2 + m_4} + 4^{m_2} \cdot 5^{m_4} \right) \cdot 5^{n - m_2 - m_4},$$

где m_2 — число 2 в δ , а m_4 — число 4.

Теорема 3

Для любой функции φ_n из \mathcal{F}^n , при n четном верно:

$$I(\varphi_n) \leqslant 4^n \left(2 \cdot \left(\frac{5}{4}\right)^{\frac{n}{2}} - 1\right).$$

Основные теоремы и леммы Верхняя оценка

Теорема 3

Для любой функции φ_n из \mathcal{F}^n , при n четном верно:

$$I(\varphi_n) \leqslant 4^n \left(2 \cdot \left(\frac{5}{4}\right)^{\frac{n}{2}} - 1\right).$$

Следствие

Класс функций A является вырожденным.

① Для всех функций из класса $\mathcal A$ были построены построены все поляризованные полиномы, выражающие функции от n+1 переменных через функции от n переменных также принадлежащих классу $\mathcal A$;

- ① Для всех функций из класса $\mathcal A$ были построены построены все поляризованные полиномы, выражающие функции от n+1 переменных через функции от n переменных также принадлежащих классу $\mathcal A$;
- ② Установле точная длина, в зависимости от поляризации, для функций: s_n^2 и s_n^3 ;

Математические результаты

- ① Для всех функций из класса $\mathcal A$ были построены построены все поляризованные полиномы, выражающие функции от n+1 переменных через функции от n переменных также принадлежащих классу $\mathcal A$;
- ② Установле точная длина, в зависимости от поляризации, для функций: s_n^2 и s_n^3 ;
- lacktriangled Доказано несколько теорем и лемм, из которых получается нижняя оценка для функций из класса \mathcal{F} ;

Результаты Математические результаты

- ① Для всех функций из класса $\mathcal A$ были построены построены все поляризованные полиномы, выражающие функции от n+1 переменных через функции от n переменных также принадлежащих классу $\mathcal A$;
- ② Установле точная длина, в зависимости от поляризации, для функций: s_n^2 и s_n^3 ;
- **3** Доказано несколько теорем и лемм, из которых получается нижняя оценка для функций из класса \mathcal{F} ;
- **4** Установлена верняя оценка для функций из класса \mathcal{F} ;

Математические результаты

- lacktriangle Для всех функций из класса $\mathcal A$ были построены построены все поляризованные полиномы, выражающие функции от n+1 переменных через функции от n переменных также принадлежащих классу \mathcal{A} ;
- Установле точная длина, в зависимости от поляризации, для функций: s_n^2 и s_n^3 ;
- Доказано несколько теорем и лемм, из которых получается нижняя оценка для функций из класса \mathcal{F} ;
- **9** Установлена верняя оценка для функций из класса \mathcal{F} ;
- ullet Доказана вырожденность класса \mathcal{A} .

Для получения результатов были написаны следующие программы:

- Программа на языке C++, реализующая построение поляризованных полиномов по модулю k, где $k \in 2,3,5,7$;
- Для этой программы был написан интерфейс на языке Perl, передставленный на рисунке;

Для получения результатов были написаны следующие программы:

- Программа на языке С++, осуществляющая для заданного числа пременных *п* "быстрый" поиск функций длина которых, в классе пляризованных полиномов, больше заданного порога, среди заданного класса симметрических функций от *п* переменных;
- С помощью системы компьютерной алгебры Sage были произведены: получение полиномиальных форм, поляризованных по разным векторам поляризации и подстановка значений в полиномы для проверки правильности их построения.

Спасибо за внимание