Price Modeling to Outdrive the Competition

Team Members

Huaiyuan Fan

Hourui Guo

Caleb Dimenstein

Chen Sun

Agenda

01 Problem Overview **02** EDA

03 Feature Engineering

04

Modeling

05

Evaluation

06
Deployment & Timeline

Used Car Price Prediction Model

Problem:

California is one of the most competitive used car market in the US. Our project aims to provide advice to a dealership planning to enter the California used car market with an effective pricing strategy without investing a lot of human resources and brute force calculations.

Research Topic:

How can we build an effective price prediction system for the California used car market based on the available listing used car information?

Approach:

Design a machine learning model that can predict the used car price in the California market according to various features.

Exploratory Data Analysis

Step 1: Check the data types

Step2: Deal with missing data

Step 3: Deal with Inconsistent Text & Typos

Step 4: Remove duplicate and Outliers

Step 5: Visualize data before modeling

Data Quality Access

- Some features have high null value rate
- Boolean values need to be converted
- Data needs to be standardized

Noisiness			missing values	Type % of	Name		
quality and entry	ends on data qualit	Limited, deper	0.0	object	vin	vin	
quality and entry	ends on data qualit	Limited, deper	0.0	object	sp_name	sp_name	
Outliers possible	Outlie		0.0	int64	savings_amount	s_amount	saving
Outliers possible	Outlie		0.0	float64	price	price	
quality and entry	ends on data qualit	Limited, deper	0.0	object	model_name	del_name	mo
quality and entry	ends on data qualit	Limited, deper	99.036836	object	cabin	cabin	
quality and entry	ends on data qualit	Limited, deper	99.91691	object	bed	bed	
Outliers possible	Outlie		100.0	float64	bine_fuel_economy	economy com	combine_fuel
Outliers possible	Outlie		100.0	float64	is_certified	_certified	i
Outliers possible	Outlie		100.0	float64	_damage_category	_category vehicle	vehicle_damage
ents height h	e has_accidents	ne fuel_type	fuel_tank_volum	tront_legroom	franchise_make	franchise_dealer	trame_damaged
NaN 57.5	e NaN	gal Gasoline	21.1 g	37.7 in	FIAT	True	NaN
NaN 57.5	e NaN	al Gasoline	21.1 g	37.7 in	FIAT	True	NaN
NaN 57.5	e NaN	al Gasoline	21.1 g	37.7 in	FIAT	True	NaN
NaN 57.5	e NaN	al Gasoline	21.1 g	37.7 in	FIAT	True	NaN

Category Variables Access

For category variables:

- The outliers are concentrated in Luxury bands
- Interior/exterior colors can affect price

O3 Feature Engineering

Pearson Correlation and Cramer's V used to reduce features

- Drop high correlation numerical features using Pearson Correlation
 - Threshold of 0.6
 - Five features dropped
 - Engine Displacement
 - Fuel Tank Volume
 - Height
 - Length
 - Touque
- Drop high correlation categorical features using Cramer's V
 - Threshold of 0.5
 - Four features dropped
 - Fuel type
 - Fleet
 - Wheel system
 - Third Row Seating

Feature Selection based on feature importance score

- **Decision Tree Regressor for Feature Importance Score**
- Threshold of **0.003**
- 17 features were selected

See Appendix for details

Problem Overview

Transform data so Linear Regression model would produce accurate results

Right Skew

Log Transformation

Features: Horsepower, Front legroom, Wheelbase to width ratio, general fuel economy, savings amount, days on market, price

Left Skew Exponential Transformation Feature: Seller Rating

04 Modeling

- Four regression model were selected based on the dataset
 - 🌣 Linear Regression 🔀
 - Random Forest
 - o Gradient Boosting
 - Voting Average

 Random Search were used in Random Forest and Gradient Boosting to find optimal hyperparameter

Linear Regression

Random Forest

Gradient Boosting

Voting Average

Description Find an linear Equation between Feature and Target

Description Create multiple **Decision Tree using** subset of data and

feature

Benefits

Can handle non

linear data

Description Another tree model that make predictions based on previous error

Description Average prediction of previous model by taking average

Benefits

Robust Model

Able to achieve

high accuracy

Benefits **Easier to interpret**

> No Normalization Needed

Benefits Can handle non linear data Higher accuracy than Random Forest

Performance Adjusted R2: 0.951 RMSE: 0.088

Performance Adjusted R2:0.894 RMSE:0.129

Performance Adjusted R2:0.939 RMSE:0.097

Performance Adjusted R2:0.949 RMSE:0.088

Problem Overview

EDA

Modelina

Deployment and Timeline

05 Evaluation

While our model over prices cars by 6%, most of this variation happens at the extremes

- Any model will over price at some level the goal is to minimize this
- With the average car price of, \$33,500, we on average overpriced cars by 6%

- Comparison with Github Top Star models Posted
 - Car-Price-Prediction ¹
 - Predicting-the-Price-of-Used-Cars²
 - Car-Price-Prediction³

Model	Adjusted R Square	RMSE
Github Model 1	0.883	3.796
Github Model 2	0.801	2.945
Github Model 3	0.92	1.410
Our Model (Voting Average)	0.951	0.884 (Exponential)

O6 Deployment and Timeline

Process of Pricing A Car

Car Details are entered into the system

Model Produces Results

10.18

Final Price

Horsepower: 5.3 Back Legroom: 3.87 Days on Market: 2.78 Front Legroom: 3.71 Mileage: 13,456 Savings Amount: 0 Seller Rating: 87.5

General Fuel Economy: 2.87 Wheelbase to Width Ratio: -0.9

Is Cab: False Is New: False

Sunroof Moonroof: True Navigation System: True Body Type: SUV/Crossover

Engine Cylinders: V6

Make: Jaguar Car Age: 5

Exponentiate

\$26,534

Timeline for Deployment

Accurately predict used car prices with accuracy and more precise than the competition

Our model accounts for 95% of price variation

Other prediction models account for 88% to 93% of price variation

As more cars are brought into the dealership, our model will become more accurate

Future development

Separate model for exotic cars

Motorcycles and other vehicles

Thank you

Appendix

Feature Importance

Feature Name	Importance Score - Contribution to Entropy
Horse Power	0.66
Navigation System False	0.06
Mileage	0.03
Back Legroom	0.02
Car Age 4	0.24
Wheel Base to Width	0.02
General Fuel Economy	0.02
Savings Amount	0.02
Sunroof	0.01

Data Transformation

Residual & Residual vs Actual

Model Hyperparameters

Random Forest Hyperparameters

- Max Depth: range from 5 to 15
- Min Samples Split: 20, 30, 40, 50, 60
- N Estimators: 100, 200, 300, 400, 500
- Max Left Nodes: range from 2 to 100

Gradient Boosting Hyperparameters

- N Estimators: 50, 100, 200
- Learning Rate: 0.01, 0.1, 0.2
- Max Depth: range from 1 to 100
- Min Samples Split: 20, 30, 40, 50, 60
- Min Samples Leaf: range from 1 to 100
- Max Features: None, sqrt, log2

Correlation Matrix After

High correlated categorical variables

```
[('body_type', 'wheel_system'), ('engine_cylinders', 'fuel_type'), ('fleet', 'isCab'), ('is_new', 'make_nam
e'), ('make_name', 'wheel_system'), ('make_name', 'Sunroof/Moonroof'), ('make_name', 'Navigation System'),
('make_name', 'Adaptive Cruise Control'), ('maximum_seating', 'Third Row Seating'), ('Android Auto', 'CarPla
y')]
```

Linear Regression

Linear Regression	Metric
Mean Absolute Error	0.0990
Mean Squared Error	0.0168
Root Mean Squared Error	0.1294
R-squared	0.8952
Adjusted R-squared	0.8944

Random Forest Regressor

Random Forest Regressor	Metric
Mean Absolute Error	0.0686
Mean Squared Error	0.0095
Root Mean Squared Error	0.0976
R-squared	0.9404
Adjusted R-squared	0.9399

Gradient Boosting Regressor

Gradient Boosting Regressor	Metric
Mean Absolute Error	0.0639
Mean Squared Error	0.0081
Root Mean Squared Error	0.0902
R-squared	0.9491
Adjusted R-squared	0.9488

Voting Average

Voting Average	Metric
Mean Absolute Error	0.0639
Mean Squared Error	0.0078
Root Mean Squared Error	0.0884
R-squared	0.9511
Adjusted R-squared	0.9508