Unsupervised Learning: Principle Component Analysis

Unsupervised Learning

• Dimension Reduction (化繁為簡)

• Generation (無中生有)

Dimension Reduction

Dimension Reduction

- In MNIST, a digit is 28 x 28 dims.
 - Most 28 x 28 dim vectors are not digits

Clustering

Cluster 3 0

 $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

Open question: how many clusters do we need?

Cluster 1

 $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

Cluster 2

- K-means
 - Clustering $X = \{x^1, \dots, x^n, \dots, x^N\}$ into K clusters
 - Initialize cluster center c^i , i=1,2, ... K (K random x^n from X)
 - Repeat
 - For all x^n in X: $b_i^n \begin{cases} 1 & x^n \text{ is most "close" to } c^i \\ 0 & \text{Otherwise} \end{cases}$
 - Updating all c^i : $c^i = \sum_{x^n} b_i^n x^n / \sum_{x^n} b_i^n$

Clustering

Hierarchical Agglomerative Clustering (HAC)

Distributed Representation

 Clustering: an object must belong to one cluster

小傑是強化系

Distributed representation

強化系0.70放出系0.25變化系0.05操作系0.00具現化系0.00特質系0.00

特質系

小傑是

Distributed Representation

Feature selection

Principle component analysis (PCA)
 [Bishop, Chapter 12]

$$z = Wx$$

PCA

$$z = Wx$$

Reduce to 1-D:

$$z_1 = w^1 \cdot x$$

Project all the data points x onto w^1 , and obtain a set of z_1

We want the variance of z_1 as large as possible

$$Var(z_1) = \frac{1}{N} \sum_{z_1} (z_1 - \overline{z_1})^2 \|w^1\|_2 = 1$$

PCA

$$z = Wx$$

Reduce to 1-D:

$$z_1 = w^1 \cdot x$$

$$z_2 = w^2 \cdot x$$

$$W = \begin{bmatrix} (w^1)^T \\ (w^2)^T \\ \vdots \end{bmatrix}$$

Orthogonal matrix

Project all the data points x onto w^1 , and obtain a set of z_1

We want the variance of z_1 as large as possible

$$Var(z_1) = \frac{1}{N} \sum_{z_1} (z_1 - \bar{z_1})^2 ||w^1||_2 = 1$$

We want the variance of z_2 as large as possible

$$Var(z_2) = \frac{1}{N} \sum_{z_2} (z_2 - \bar{z_2})^2 \|w^2\|_2 = 1$$

$$w^1 \cdot w^2 = 0$$

Warning of Math

$$z_1 = w^1 \cdot x$$

$$\bar{z_1} = \frac{1}{N} \sum z_1 = \frac{1}{N} \sum w^1 \cdot x = w^1 \cdot \frac{1}{N} \sum x = w^1 \cdot \bar{x}$$

$$Var(z_1) = \frac{1}{N} \sum_{z_1} (z_1 - \overline{z_1})^2$$

$$=\frac{1}{N}\sum_{}(w^{1}\cdot x-w^{1}\cdot \bar{x})^{2}$$

$$=\frac{1}{N}\sum_{n}\left(w^{1}\cdot(x-\bar{x})\right)^{2}$$

$$= \frac{1}{N} \sum_{x} (w^1)^T (x - \bar{x}) (x - \bar{x})^T w^1$$

$$= (w^1)^T \frac{1}{N} \sum_{i} (x - \bar{x})(x - \bar{x})^T w^1$$

$$= (w^1)^T Cov(x) w^1 \quad S = Cov(x)$$

$$S = Cov(x)$$

$$(a \cdot b)^2 = (a^T b)^2 = a^T b a^T b$$
$$= a^T b (a^T b)^T = a^T b b^T a$$

Find w^1 maximizing

$$(w^1)^T S w^1$$

$$||w^1||_2 = (w^1)^T w^1 = 1$$

Find
$$w^1$$
 maximizing $(w^1)^T S w^1$ $(w^1)^T w^1 = 1$

$$S = Cov(x)$$
 Symmetric Positive-semidefinite (non-negative eigenvalues)

Using Lagrange multiplier [Bishop, Appendix E]

$$g(w^1) = (w^1)^T S w^1 - \alpha ((w^1)^T w^1 - 1)$$

 w^1 is the eigenvector of the covariance matrix S Corresponding to the largest eigenvalue λ_1

Find
$$w^2$$
 maximizing $(w^2)^T S w^2$ $(w^2)^T w^2 = 1$ $(w^2)^T w^1 = 0$

$$g(w^2) = (w^2)^T S w^2 - \alpha ((w^2)^T w^2 - 1) - \beta ((w^2)^T w^1 - 0)$$

$$\partial g(w^2) / \partial w_1^2 = 0$$

$$\partial g(w^2) / \partial w_2^2 = 0$$

$$\vdots$$

$$= ((w^1)^T S w^2)^T = (w^2)^T S^T w^1$$

$$= (w^2)^T S w^1 = \lambda_1 (w^2)^T w^1 = 0$$

$$\beta = 0$$
: $Sw^2 - \alpha w^2 = 0$ $Sw^2 = \alpha w^2$

 w^2 is the eigenvector of the covariance matrix S $$\operatorname{Corresponding}$ to the $2^{\rm nd}$ largest eigenvalue λ_2

PCA - decorrelation

$$z = Wx$$
$$Cov(z) = D$$

Diagonal matrix

$$Cov(z) = \frac{1}{N} \sum (z - \bar{z})(z - \bar{z})^T = WSW^T \qquad S = Cov(x)$$

$$= WS[w^1 \quad \cdots \quad w^K] = W[Sw^1 \quad \cdots \quad Sw^K]$$

$$= W[\lambda_1 w^1 \quad \cdots \quad \lambda_K w^K] = [\lambda_1 Ww^1 \quad \cdots \quad \lambda_K Ww^K]$$

$$= [\lambda_1 e_1 \quad \cdots \quad \lambda_K e_K] = D \qquad \text{Diagonal matrix}$$

End of Warning

PCA – Another Point of View

Basic Component:

PCA — Another Point of View

$$x - \bar{x} \approx c_1 u^1 + c_2 u^2 + \dots + c_K u^K = \hat{x}$$

Reconstruction error:

$$\|(x - \bar{x}) - \hat{x}\|_2$$

Find $\{u^1, \dots, u^K\}$ minimizing the error

$$L = \min_{\{u^1, ..., u^K\}} \sum_{k=1}^{\infty} \left\| (x - \bar{x}) - \left(\sum_{k=1}^K c_k u^k \right) \right\|_{2}$$

z = WxPCA:

$$\begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_K \end{bmatrix} = \begin{bmatrix} (w_1)^{\mathrm{T}} \\ (w_2)^{\mathrm{T}} \\ \vdots \\ (w_K)^{\mathrm{T}} \end{bmatrix} x$$

 $\begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_K \end{bmatrix} = \begin{bmatrix} (w_1)^T \\ (w_2)^T \\ \vdots \\ (w_N)^T \end{bmatrix} x \begin{cases} \{w^1, w^2, \dots w^K\} \text{ (from PCA) is the component } \{u^1, u^2, \dots u^K\} \\ \text{minimizing L} \end{cases}$

Proof in [Bishop, Chapter 12.1.2]

$$x - \bar{x} \approx c_1 u^1 + c_2 u^2 + \dots + c_K u^K = \hat{x}$$

Reconstruction error:

$$\|(x-\bar{x})-\hat{x}\|_2$$

Find $\{u^1, \dots, u^K\}$ minimizing the error

K columns of U: a set of orthonormal eigen vectors corresponding to the K largest eigenvalues of XX^T

This is the solution of PCA

SVD:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/LA_2016/Lecture/SVD.pdf

Autoencoder

If $\{w^1, w^2, ... w^K\}$ is the component $\{u^1, u^2, ... u^K\}$

$$\hat{x} = \sum_{k=1}^{K} c_k w^k \longrightarrow x - \bar{x}$$

$$c_k = (x - \bar{x}) \cdot w^k$$

$$K = 2$$
:

Autoencoder

If $\{w^1, w^2, ... w^K\}$ is the component $\{u^1, u^2, ... u^K\}$

$$\hat{x} = \sum_{k=1}^{K} c_k w^k \longrightarrow x - \bar{x}$$

$$c_k = (x - \bar{x}) \cdot w^k$$

$$K = 2$$
:

Autoencoder

If $\{w^1, w^2, ... w^K\}$ is the component $\{u^1, u^2, ... u^K\}$

$$\hat{x} = \sum_{k=1}^{K} c_k w^k \longrightarrow x - \bar{x}$$

$$c_k = (x - \bar{x}) \cdot w^k$$

$$K = 2$$
:

Autoencoder

If $\{w^1, w^2, ... w^K\}$ is the component $\{u^1, u^2, ... u^K\}$

$$\hat{x} = \sum_{k=1}^{K} c_k w^k \longrightarrow x - \bar{x}$$

$$c_k = (x - \bar{x}) \cdot w^k$$

- Inspired from: https://www.kaggle.com/strakul5/d/abcsds/pokemon/principal-component-analysis-of-pokemon-data
- 800 Pokemons, 6 features for each (HP, Atk, Def, Sp Atk, Sp Def, Speed)
- How many principle components? $\frac{\lambda_i}{\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 + \lambda_6}$

	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
ratio	0.45	0.18	0.13	0.12	0.07	0.04

Using 4 components is good enough

	HP	Atk	Def	Sp Atk	Sp Def	Speed	
PC1	0.4	0.4	0.4	0.5	0.4	0.3	
PC2	0.1	0.0	0.6	-0.3	0.2	-0.7	
PC3	-0.5	-0.6	0.1	0.3	0.6	特殊防禦(犧牲	
生命力強	0.7	-0.4	-0.4	0.1	0.2	攻擊和生	命)

- http://140.112.21.35:2880/~tlkagk/pokemon/pca.html
- The code is modified from
 - http://jkunst.com/r/pokemon-visualize-em-all/

PCA - MNIST

$$= a_1 \underline{w}^1 + a_2 \underline{w}^2 + \cdots$$

images

30 components:

Eigen-digits

PCA - Face

30 components:

http://www.cs.unc.edu/~lazebnik/research/spr ing08/assignment3.html

Eigen-face

Weakness of PCA

Unsupervised

• Linear

http://www.astroml.org/book_figures/c hapter7/fig_S_manifold_PCA.html

Weakness of PCA

Acknowledgement

- 感謝 彭冲 同學發現引用資料的錯誤
- 感謝 Hsiang-Chih Cheng 同學發現投影片上的錯誤

Appendix

- http://4.bp.blogspot.com/_sHcZHRnxlLE/S9EpFXYjfvI/AAAAAAAABZ0/_oEQiaR3 WVM/s640/dimensionality+reduction.jpg
- https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction _Review_2009.pdf

