APRESENTAÇÃO 3 SCC0233

Alexandre Norcia Medeiros - 10295583
Caio Abreu de Oliveira Ribeiro - 10262839
Vinícius Torres Dutra Maia da Costa - 10262781
Gabriel Alfonso Nascimento Salgueiro - 10284368
Daniel Penna Chaves Bertazzo - 10349561

.tfrec

Conseguir carregar o dataset de modo compatível com a biblioteca Tensorflow.

Registros de dados sequenciais.

Binary file.

```
uint64 length
uint32 masked_crc32_of_length
byte data[length]
uint32 masked_crc32_of_data
```

```
# Auxiliary functions to manage the tfrecords
IMAGE SIZE = [256, 256]
# Adjusting the image dimensions and scale
def decode image (image):
    image = tf.image.decode jpeg(image, channels=3)
    image = (tf.cast(image, tf.float32) / 127.5) - 1
    image = tf.reshape(image, [*IMAGE SIZE, 3])
   return image
# Parsing each element of the dataset
def read tfrecord(example):
    tfrecord format = {
        # "image name": tf.io.FixedLenFeature([], tf.string),
        "image": tf.io.FixedLenFeature([], tf.string),
        # "target": tf.io.FixedLenFeature([], tf.string)
    example = tf.io.parse single example(example, tfrecord format)
    image = decode image(example['image'])
    return image
# Reads the tfrecords and parses them using the read tfrecord function
def load dataset (filenames, labeled=True, ordered=False):
    dataset = tf.data.TFRecordDataset(filenames)
    dataset = dataset.map(read tfrecord) #, num parallel calls=AUTOTUNE)
    return dataset
```

```
monet_ds = load_dataset(MONET_FILENAMES, labeled=True).batch(1)
photo_ds = load_dataset(PHOTO_FILENAMES, labeled=True).batch(1)
```

```
example_monet = next(iter(monet_ds))
example_photo = next(iter(photo_ds))
```

Arquitetura do Gerador

Encoder-decoder y y y

Encoder-Decorder / UNET

Arquitetura do gerador

UNET

Discriminator Loss Function

Is a real zebra?

Discriminator Loss Function

DISCRIMINATOR LOSS

 $Loss_t = [loss(m_real, 1) + loss(m_fake, 0)]/2$

GENERATOR LOSS

Loss = loss(m_fake, 1)

cavalo real

Discriminador de cavalo

Resultado Durante Treinamento

0.32	4 .08 0.00
0.88	4 .08 0.00
	m_real

0.123 ... 0.02

Representação

Resultado Ideal

1	1	1	 1	1	1
1	1	1			
1	1	1			
•••					
1	1	1	 1	1	1

cavalo fake

Discriminador de cavalo

Resultado Durante Treinamento

0.324 .08 0.00 0.88			
··· m_fake			
0.1	23	0.02	

000	000
000	
000	
000	000

Generator Loss Functions

 $Identity\ loss = |G(Y) - Y| + |F(X) - X|$

- Generator loss
- Cycle loss function
- Identity loss function

