• Widlar Current Source:

- $> Q_1 Q_2$ matched pair
- $ightharpoonup I_{REF} = (V_{CC} V_{BE1})/R_1$
- ightharpoonup If $I_0 = I_{REF}$, then $V_{BE1} = V_{BE2}$
 - No drop across R_2 !

$$\Rightarrow I_0 \neq I_{REF}$$

➤ Actually, the difference
between V_{BE1} and V_{BE2}
drops across R₂

\succ KVL around Q_1 - Q_2 BE loop:

$$V_{BE1} = V_{BE2} + I_0 R_2$$

$$\Rightarrow I_0 = \frac{V_{BE1} - V_{BE2}}{R_2} = \frac{V_T}{R_2} \ln \left(\frac{I_{REF}}{I_0} \right)$$
(since $I_{SI} = I_{S2}$)

- \succ Transcendental equation in I_0
- > If I_0 is known, finding R_2 is absolutely easy!
- \triangleright On the other hand, if R_2 is given, to find I_0 , need to iterate, but the solution will converge rapidly (Why?)

- The Infunction compresses a large difference between I_{REF} and I_0 into a small range
 - For $I_{REF} \sim mA$, $I_0 \sim \mu A$, with $R_1 \sim few k\Omega s$ and $R_2 \sim few 10s$ of $k\Omega$
 - \Rightarrow Significant flexibility!
- $V_{0,\text{min}} = V_{\text{CE2}}(SS) + I_0 R_2$ $\sim 0.3\text{-}0.4 \ V \ for \ practical \ values \ of \ I_0 \ and \ R_2$
- $ightharpoonup R_0$ can be obtained by sheer inspection of the circuit by noting that the base of Q_2 is approximately at ac ground
- \triangleright Also, $r_{\pi 2} >> R_2$ (*Why*?)

> Thus,

$$R_0 \approx r_{02}(1 + g_{m2}R_2)$$

- Note: To approximate this as $g_{m2}r_{02}R_2$, first make sure that $g_{m2}R_2 >> 1$ (may not be!)
- > Actual expression:

$$R_0 \approx r_{02}(1 + g_{m2}R_{eff})$$
 with $R_{eff} = R_2||r_{\pi 2}||$

- > During further simplification, always check the validity of your assumption/approximation
 - Otherwise it may lead to large errors!
- > Counterpart of this circuit in MOS technology does not exist (Why?)

DC Voltage References

- Along with current sources/sinks, also need stable and precise DC voltage references
- Provides DC bias voltages at specific points of the circuit
- Should be independent of power supply and temperature
- Can range from —ve to +ve power supplies
- On-Chip: Generated within the chip itself

- In ICs, diodes are not fabricated as such
 - ➤ BJTs/MOSFETs are used as diodes by shorting their B/G and C/D terminals
- Various Voltage References:
 - > Single Diode Reference
 - > Multiple Diode Reference
 - $\succ V_{BE}$ (or V_D) Multiplier
 - > Saturated Transistor
 - > NMOS Voltage Reference