Samir Khadka Assignment 1 Calculus 1

Question 1:

Solution 1a:

		_Q1
t (hours)	BAC	
0	0	BAC vs. t (hours)
0.2	0.25	0.5
0.5	0.41	
0.75	0.4	0.075
1	0.33	0.375
1.25	0.29	
1.5	0.24	O 0.25 - B
1.75	0.22	
2	0.18	0.125
2.25	0.15	
2.5	0.12	
3	0.07	0 0.5 1 1.5 2 2.5 3.5
3.5	0.03	t (hours)
4	0.01	

Solution 1b:

1. Initial Increase (0 to 0.5 hours):

The BAC rises sharply from 0 mg/mL to 0.41 mg/mL within the first 0.5 hours.
 This rapid increase indicates that alcohol is quickly absorbed into the bloodstream shortly after consumption.

2. Peak BAC (0.5 hours):

 The BAC reaches its maximum value of 0.41 mg/mL at 0.5 hours. This peak represents the highest concentration of alcohol in the blood, suggesting that the absorption rate is at its highest.

3. Gradual Decline (0.5 to 2.0 hours):

- After reaching the peak, the BAC begins to decrease. By 1 hour, it has dropped to 0.33 mg/mL, and by 1.5 hours, it is down to 0.24 mg/mL.
- This decline continues steadily, reaching 0.18 mg/mL at 2.0 hours. This phase indicates the body's metabolism and elimination of alcohol from the bloodstream.

4. Continued Decrease (2.0 to 4.0 hours):

- The BAC continues to decrease gradually over this period, dropping to 0.12 mg/mL at 2.5 hours and further down to 0.07 mg/mL by 3.0 hours.
- By 3.5 hours, the BAC is at 0.03 mg/mL, and by 4.0 hours, it is nearly zero at 0.01 mg/mL.
- This sustained reduction highlights the ongoing process of alcohol elimination, as the liver metabolizes the alcohol and removes it from the body.

Question 2:

Solution:

Given equation:

$$x^2 + (y - 2)^4 = 4$$

To find the expression for function f(x).

Rearranging the equation, we have:

$$(y-2)^4 = 4-x^2$$

or, $y-2 = \pm \sqrt{4-x^2}$
or, $y = 2 \pm \sqrt{4-x^2}$

Either,

$$y = 2 + \sqrt{4 - x^2}$$

Or,
 $y = 2 - \sqrt{4 - x^2}$

Question 3:

a. Solution:

b. Solution:

We need to calculate the tax assessed on an income of \$14,000, To find the taxable amount.

We can subtract the non-taxable portion (\$10,000) from the total income(\$14,000).

We get:

=\$4,000

Hence, the taxable amount of 4,000 is multiplied by the tax rate of 10% (0.10) to obtain the tax assessed: 4,000 * 0.10 = 400.

Now, for an income of \$26,000, =\$(26,000 - 10,000) =\$16,000

The tax assessed for the initial \$10,000 taxable amount is equal to \$1,000 based on the 10% rate.

\$10,000 * 0.10 = \$1,000.

The calculation for tax assessment on \$6,000 at 15% requires multiplying \$6,000 by 0.15 which results in \$900 tax.

The total tax assessment results from adding together the two different tax amounts: \$1,000 + \$900 = \$1,900

c. Solution:

Question 4:

a. Solution:

b. Solution:

Question 5:

a. Solution:

b. Solution:

c. Solution:

Given equation:

$$y = 1.8807x + 82.65$$
————(1)

Here, the height is represented by y and the femur length is represented by x.

We have,

Femur length (x) is 53 cm

Replacing the value of femur length in equation 1, we get, By plugging in x = 53, we get

y = 182.4371 cm

Therefore, the person's height is approximately 182.44 cm.

Question 6:

a. Solution:

b. Solution:

Below is the graph that is passing through the origin. By Kepler's Third law of planetary motion, T2 a d3. Hence, the law is proven.

c. Solution:

			Q6 c									
	T	T^2	d^3				d^:	3 vs T^2	2			
87	0.241	0.0581	0.058		30000							
23	0.615	0.3782	0.3779		30000				,			
1	1	1	1		22500							
523	1.881	3.5382	3.5326		22000				/			
203	11.861	140.6833	140.8515		≨ 15000					_		
541	29.457	867.7148	868.5237		÷ 10000				/			
0.19	84.008	7057.3441	7066.8346		7500	7500	7500					
.086	164.784	27153.7667	27232.8663		7000							
					0							
						0.058	1	140.8515	7066.8346			
								T^2				

Question 7:

a. Solution:

We can get the graph of y = f(|x|) when the absolute value of the x-values in the function f(x) are taken.

The portion of the graph of f(x) that lies in the positive x-axis to the negative x-axis is shown.

When x is positive, the coordinate point becomes (x, y).

On the other hand, when x is negative, the coordinate becomes(-x,y). The absolute function is related equatorially by;

$$y = f(|x|) = f(x)$$
 if x is positive.

So, the graph of an absolute function is a reflection of the graph of f(x) at the y-axis when the value of x < 0 or negative.

		Q7 a	
x	y=sin(x)		
-5	-0.9589	y=sin(x) vs. x	
-4	-0.7568	y om(x) vo. x	
-3	0.1411	0.75	
-2	0.9093	0.75	
-1	0.8415		
0	0	<u>\$</u> 0.23	y=sin(
1	0.8415	(x) 0.25 (y) 0 0 (y) -0.25	
2	0.9093	-0.5	
3	0.1411	-0.75	
4	-0.7568	-1	
5	-0.9589	-5 -4 -3 -2 -1 0 1 2 3 4 5	
		х	

b. Solution:

		Q7 b
X	y=√(x)	
-5	2.2360679774997	/// 18
-4	2	y=√(x) vs. x
-3	.7320508075688	3
-2	1.4142135623731	0.05
-1	1	⊋ 2.25
0	0	— y=√(x)
1	1	, o 75
2	1.4142135623731	0.75
3	.7320508075688	0
4	2	-5 -4 -3 -2 -1 0 1 2 3 4 5
5	23606797749979	Х

Question 8:

Solution:

a.
$$(g \circ f)$$
 (6)

$$=g(f(6))$$

$$= g(6)$$

It is undefined because g is not defined at 6.

$$= g (g(-2))$$

$$= g(1)$$

c.
$$(f \circ f)$$
 (4)

$$= f(f(4))$$

$$= f(2)$$