IE2111 ISE Principles and Practice II Solutions to Assignment #2

(a)

MARR = 10%. Total Initial Cost = \$65 million Bank load = \$30 million Loan interest rate = 8% Initial Cash Payment = \$20 million.

Annual repayment amount = 30,000,000 [A/P, 8%, 5]= 30,000,000 (0.250456455)

= \$7,513,693.64

(b) Cash flow diagram:

(c)

= \$ 2,492,710.07 > 0

Hence the project is financially feasible.

IE2111 (2025) assign-2-soln-1

(d) The IRR is i such that

$$PW(i) = -20,000,000 - \$7,513,693.64 [P/A, i\%, 5] + 6,000,000 [P/A, i\%, 10]$$

+ 5,000,000 [P/A, i%, 10] [P/F, i %, 10] + 4,000,000 [P/A, i %, 5] [P/F, i%, 20]
+ 100,000 [P/F, i %, 25]

Using an equation solver: i = 0.1091

Hence IRR = 10.91%

(e) To find the MIRR at financing rate 8% and reinvestment rate 10%:

$$|PW(\text{-}ve \text{ CF at } 8\%)| = 20,000,000 + (7,513,693.64 - 6,000,000) [P/A, 8\%, 5]$$

= 20,000,000 + 1,513,693.64 (3.992710037)
= \$ 26,043,739.78

$$FW(+ve \text{ CF at } 10\%) = 6,000,000 \quad [F/A, 10\%, 5] \quad [F/P, 10\%, 15]$$

$$+ 5,000,000 \quad [F/A, 10\%, 10] \quad [F/P, 10\%, 5]$$

$$+ 4,000,000 \quad [F/A, 10\%, 5]$$

$$+ 100,000$$

$$= 6,000,000 \quad (6.1051)(4.1772482)$$

$$+ 5,000,000 \quad (15.9374246)(1.61051)$$

$$+ 4,000,000 \quad (6.1051)$$

$$+ 100,000$$

$$= \$ 305,872,415$$

$$MIRR = 25 \sqrt{\frac{305,872,415}{26,043,739.78}} - 1 = 0.10355$$
$$= 10.355\%$$

IE2111 (2025) assign-2-soln-2

(f) To find the discounted payback period, we compute

for
$$k = 1$$
 to 25:

$$PW_k(10\%) = F_0 + \sum_{j=1}^k \frac{F_j}{(1+0.1)^j}$$

k	F_k	$PW_k(10\%)$	Sign
0	-20,000,000.00	-20,000,000.00	< 0
1	-1,513,693.64	-21,376,085.12	< 0
2	-1,513,693.64	-22,627,071.60	< 0
3	-1,513,693.64	-23,764,332.03	< 0
4	-1,513,693.64	-24,798,205.16	< 0
5	-1,513,693.64	-25,738,089.81	< 0
6	6,000,000.00	-22,351,246.23	< 0
7	6,000,000.00	-19,272,297.52	< 0
8	6,000,000.00	-16,473,253.24	< 0
9	6,000,000.00	-13,928,667.53	< 0
10	6,000,000.00	-11,615,407.79	< 0
11	5,000,000.00	-9,862,938.30	< 0
12	5,000,000.00	-8,269,784.21	< 0
13	5,000,000.00	-6,821,462.31	< 0
14	5,000,000.00	-5,504,806.04	< 0
15	5,000,000.00	-4,307,845.79	< 0
16	5,000,000.00	-3,219,700.11	< 0
17	5,000,000.00	-2,230,476.77	< 0
18	5,000,000.00	-1,331,182.82	< 0
19	5,000,000.00	-513,642.86	< 0
20	5,000,000.00	229,575.28	> 0
21	4,000,000.00	770,097.56	> 0
22	4,000,000.00	1,261,481.45	> 0
23	4,000,000.00	1,708,194.09	> 0
24	4,000,000.00	2,114,296.48	> 0
25	4,100,000.00	2,492,710.07	> 0

$$PW_{19}(10\%) = -\$513,642.86 < 0$$

 $PW_{20}(10\%) = \$229,575.28 > 0$

Discounted Payback period = 20 years.