Answer Key for AP Calculus AB Practice Exam, Section I

Question 76: D
Question 77: B
Question 78: A
Question 79: B
Question 80: C
Question 81: C
Question 82: A
Question 83: A
Question 84: C
Question 85: D
Question 86: A
Question 87: C
Question 88: C
Question 89: B
Question 90: C

Question 20: C Question 21: D Question 22: D Question 23: B Question 24: A Question 25: A Question 26: B Question 27: C Question 28: B Question 29: A Question 30: B

Multiple-Choice Section for Calculus AB 2019 Course Framework Alignment and Rationales

Skill		Learning Objective	Topic
1.E		FUN-6.C	Finding Antiderivatives and Indefinite Integrals - Basic Rules and Notation
(A)	Incorrect. This	is the derivative of $\frac{x^2}{4}$, not	the antiderivative.
(B)	Correct. By the power rule for antiderivatives, the antiderivative of x^n is $\frac{x^{n+1}}{n+1}$ for $n \neq -1$. Therefore, $\int \frac{x^2}{4} dx = \frac{1}{4} \int x^2 dx = \frac{1}{4} \cdot \frac{x^3}{3} + C = \frac{x^3}{12} + C.$		
(C)	Incorrect. This response would result if the power rule for antiderivatives was not applied correctly. The antiderivative of x^2 was taken to be x^3 rather than $\frac{x^3}{3}$.		
(D)	Incorrect. This response would result if the power rule for antiderivatives was not applied correctly. The antiderivative of x^2 was taken to be $3x^3$ rather than $\frac{x^3}{3}$.		

Skill		Learning Objective	Topic	
SKIII		Learning Objective	Торіс	
1.D		CHA-2.C	Defining the Derivative of a Function and Using Derivative Notation	
(A)	Incorrect. This is	response would result if the	derivative of $\cos x$ was	
	taken to be sin 2	x rather than $-\sin x$. The s	slope at the point $\left(\frac{\pi}{2}, 0\right)$	
	was therefore taken to be 1. In addition, an equation of a line through the point (x_0, y_0) was written as $y = m(x + x_0) + y_0$ instead of $y = m(x - x_0) + y_0$, leading to the response			
	$y = +1\left(x + \frac{\pi}{2}\right)$	$+0=x+\frac{\pi}{2}.$		
(B)	Incorrect. This i	response would result if the	derivative of cos x was	
	taken to be sin 2	x rather than $-\sin x$. The s	slope at the point $\left(\frac{\pi}{2}, 0\right)$	
	was therefore ta	ken to be 1, giving an equa	tion of the tangent line as	
	$y = +1\left(x - \frac{\pi}{2}\right)$	$+0=x-\frac{\pi}{2}.$		
(C)	Correct. The slo	Correct. The slope of the tangent line is the value of the derivative at		
	$x=\frac{\pi}{2}$.			
	$\frac{dy}{dx} = -\sin x \Rightarrow \frac{dy}{dx}\Big _{x=\frac{\pi}{2}} = -\sin\left(\frac{\pi}{2}\right) = -1$			
	At $x = \frac{\pi}{2}$, $y = \cos\left(\frac{\pi}{2}\right) = 0$.			
	An equation of the tangent line at the point $\left(\frac{\pi}{2}, 0\right)$ is therefore			
	$y = -1\left(x - \frac{\pi}{2}\right)$	$+0=-x+\frac{\pi}{2}.$		
(D)	Incorrect. This response might come from writing an equation of a line through the point (x_0, y_0) as $y = m(x + x_0) + y_0$ instead of			
1	$y = m(x - x_0) + y_0$, leading to $y = -1(x + \frac{\pi}{2}) + 0 = -x - \frac{\pi}{2}$.			
	Alternately, an e	Alternately, an error might have been made in simplifying an		
	equation of the tangent line. The slope of the tangent line at $x = \frac{\pi}{2}$			
	was correctly found.			
	$\frac{dy}{dx} = -\sin x \Rightarrow \frac{dy}{dx}\Big _{x = \frac{\pi}{2}} = -\sin\left(\frac{\pi}{2}\right) = -1$			
	An equation of the tangent line at the point $\left(\frac{\pi}{2}, 0\right)$ was written, as			
	follows.		,	
	$y = -1\left(x - \frac{\pi}{2}\right)$	$+0=-x-\frac{\pi}{2}$		

Skill		Learning Objective	Topic
1.E		FUN-3.C	The Chain Rule
(A)	Incorrect. This response might come from incorrectly applying the chain rule		
	twice as $\frac{d}{dx}(f)$	f(g(x)) = f'(g'(x)), as follows	vs.
	$\frac{d}{dx} \Big(2 \Big(\sin \sqrt{x} \Big) \Big)$	$\binom{2}{2} = 2 \cdot \left(2 \cdot \frac{d}{dx} \left(\sin \sqrt{x}\right)\right) = 2 \cdot 2$	$2 \cdot \cos\left(\frac{d}{dx}(\sqrt{x})\right) = 4\cos\left(\frac{1}{2\sqrt{x}}\right)$
(B)		s response might come from co	rrectly applying the chain rule
		out not the second, as follows.	
	$\frac{d}{dx}\left(2\left(\sin\sqrt{x}\right)^2\right) = 2\cdot 2\left(\sin\sqrt{x}\right)\cdot \frac{d}{dx}\left(\sin\sqrt{x}\right) = 2\cdot 2\left(\sin\sqrt{x}\right)\cdot \cos\sqrt{x}$		
(C)	Incorrect. This response might come from using the chain rule only once,		
	with the inner	most "inside" function, \sqrt{x} , as	follows.
	$\frac{d}{dx} \Big(2 \Big(\sin \sqrt{x} \Big) \Big)$	$\binom{2}{x} = 2 \cdot 2(\sin\sqrt{x}) \cdot \frac{d}{dx}(\sqrt{x}) = 2$	$2 \cdot 2(\sin\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}$
(D)	Correct. The	chain rule must be used twice fo	or this composition of three
	functions.		
	$\frac{d}{dx}\left(2\left(\sin\sqrt{x}\right)^2\right) = 2\cdot 2\left(\sin\sqrt{x}\right)\cdot \left(\frac{d}{dx}\left(\sin\sqrt{x}\right)\right)$		
	$= 2 \cdot 2(\sin\sqrt{x}) \cdot \left(\cos\sqrt{x} \cdot \frac{d}{dx}(\sqrt{x})\right)$		
	$= 2 \cdot 2 \left(\sin \sqrt{x} \right)$	$\left(\cdot \right) \cdot \cos \sqrt{x} \cdot \frac{1}{2\sqrt{x}}$	
	$=\frac{2\sin\sqrt{x}\cos\sqrt{x}}{\sqrt{x}}$	\sqrt{x}	

Skill		Learning Objective	Topic	
1.E		FUN-6.D	Integrating Using Substitution	
(A)	Incorrect. This r	esponse would result if the	factor 3 was mishandled during the	
	substitution usir	$u = x^3 + 3x - 5$, and th	e expression $3x^2 + 3$ from the derivative	
	was substituted back for u rather than the expression $x^3 + 3x - 5$, as follows.			
	$u = x^3 + 3x - 5$	$\Rightarrow \frac{du}{dx} = 3x^2 + 3 = 3(x^2)$	$+1) \Rightarrow dx = \frac{3 \ du}{\left(x^2 + 1\right)}$	
	$\int \frac{x^2 + 1}{\left(x^3 + 3x - 5\right)}$	$\frac{1}{3} dx = \int \frac{1}{u^3} \cdot 3 \ du = 3 \cdot \left(-\frac{1}{u^3} \cdot \frac{1}{u^3} \cdot \frac{1}{u^3$	$-\frac{1}{2u^2}\bigg) + C = -\frac{3}{2} \cdot \frac{1}{\left(3x^2 + 3\right)^2} + C$	
(B)	Incorrect. Startin	ng with the substitution u	$=x^3+3x-5,$	
	$u = x^3 + 3x - 5$	$\Rightarrow \frac{du}{dx} = 3x^2 + 3 = 3(x^2)$	$(+1) \Rightarrow dx = \frac{du}{3(x^2+1)}.$	
	Substituting for	$x^3 + 3x - 5$ and for dx gi	ves	
	$\int \frac{x^2 + 1}{\left(x^3 + 3x - 5\right)}$	$\frac{x^2 + 1}{\left(x^3 + 3x - 5\right)^3} dx = \int \frac{1}{u^3} \cdot \frac{1}{3} du = \frac{1}{3} \cdot \left(-\frac{1}{2u^2}\right) + C.$		
	The expression	$13x^2 + 3$ from the derivative might have been substituted back for u ,		
	however, rather	ver, rather than the expression $x^3 + 3x - 5$.		
(C)	Incorrect. This response would result if the factor 3 was mishandled during the			
	substitution using $u = x^3 + 3x - 5$, as follows.			
	$u = x^3 + 3x - 5 \Rightarrow \frac{du}{dx} = 3x^2 + 3 = 3(x^2 + 1) \Rightarrow dx = \frac{3du}{(x^2 + 1)}$			
	$\int \frac{x^2 + 1}{\left(x^3 + 3x - 5\right)^3} dx = \int \frac{1}{u^3} \cdot 3 du = 3 \cdot \left(-\frac{1}{2u^2}\right) + C = -\frac{3}{2} \cdot \frac{1}{\left(x^3 + 3x - 5\right)^2} + C$			
(D)		g with the substitution $u =$		
	$u = x^{3} + 3x - 5 \Rightarrow \frac{du}{dx} = 3x^{2} + 3 = 3(x^{2} + 1) \Rightarrow dx = \frac{du}{3(x^{2} + 1)}.$			
	Substituting for	$x^3 + 3x - 5$ and for dx gi	ves	
	$\int \frac{x^2 + 1}{\left(x^3 + 3x - 5\right)}$	$\frac{1}{3} dx = \int \frac{1}{u^3} \cdot \frac{1}{3} du = \frac{1}{3} \cdot \left(\frac{1}{3} \right)$	$\left(-\frac{1}{2u^2}\right) + C = -\frac{1}{6} \cdot \frac{1}{\left(x^3 + 3x - 5\right)^2} + C.$	

Skill		Learning Objective	Topic
2.B		FUN-4.A	Determining Concavity of Functions over Their Domains
(A)	Incorrect. These are the intervals for which $f''(x) < 0$, that is, those on which the graph of f is concave down, not concave up. $f'(x) = 12x^2 - 4x^3$ $f''(x) = 24x - 12x^2 = 12x(2-x)$ The graph of f'' is a parabola opening downward and with zeros at $x = 0$ and $x = 2$. Therefore, $f''(x) < 0$ on the intervals $(-\infty, 0)$ and $(2, \infty)$.		
(B)	f''(x) > 0. Thi $f'(x) > 0, how$	graph of f will be concavely response comes from devever, rather than where $\frac{1}{2} - 4x^3 = 4x^2(3-x) > 0$	etermining where $f''(x) > 0$.
(C)	Correct. The gr f''(x) > 0. $f'(x) = 12x^2 - $ f''(x) = 24x - The graph of f	$12x^{2} = 12x(2 - x)$ " is a parabola opening d 2. Therefore, $f''(x) > 0$	ownward and with zeros at on the interval between the
(D)	Incorrect. This and $f'(x) > 0$ $f(x) = 4x^3 - x$ $f'(x) = 12x^2 - x$		0 < x < 4. when $x < 3$.

Skill		Learning Objective	Topic	
1.E		FUN-3.D	Implicit Differentiation	
(A)	Incorrect. This response would result if there was an error in the			
	power rule when	power rule when differentiating $3y^{\frac{1}{3}}$ and when solving for $\frac{dy}{dx}$, as		
	follows.			
	$1 + y^{\frac{1}{3}} \frac{dy}{dx} = \frac{dy}{dx}$	-		
	At the point (2,	8), $1 + 2\frac{dy}{dx} = \frac{dy}{dx} \Rightarrow 1 =$	$3\frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{1}{3}.$	
(B)				
	ax	$8), \ 1 - \frac{1}{4} = \frac{dy}{dx} \Rightarrow \frac{dy}{dx} =$	$\frac{3}{4}$.	
(C)	Incorrect. This response would result if the chain rule was not used during the differentiation of the left side, as follows.			
	$1 + y^{-\frac{2}{3}} = \frac{dy}{dx}$			
	At the point $(2, 8)$, $1 + \frac{1}{4} = \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{5}{4}$.			
(D)	Correct . The chain rule is the basis for implicit differentiation.			
	$1 + y^{-\frac{2}{3}} \frac{dy}{dx} = \frac{dy}{dx}$	$\frac{y}{x}$		
	The point (2, 8)) is on the curve since $x =$	2 and $y = 8$ satisfy the	
	equation. At thi	s point, $1 + \frac{1}{4} \frac{dy}{dx} = \frac{dy}{dx} \Rightarrow$	$\frac{3}{4}\frac{dy}{dx} = 1 \Rightarrow \frac{dy}{dx} = \frac{4}{3}.$	

Skill		Learning Objective	Topic
1.E		FUN-3.A	Derivatives of $\cos x$, $\sin x$, e^x , and $\ln x$
(A)	Incorrect. This response is an antiderivative of $x^5 - 5^x$, not the derivative.		e of $x^5 - 5^x$, not the
(B)	Incorrect. This	response would result if the	derivative of a^x was
	taken to be just a^x rather than $(\ln a)a^x$.		
(C)	Incorrect. This response would result if the power rule was applied to		power rule was applied to
	the exponential	function 5^x , resulting in the	ne response $x \cdot 5^{x-1}$
	rather than using the exponential rule $\frac{d}{dx}a^x = (\ln a)a^x$.		
(D)	Correct. The derivative of x^5 is $5x^4$ by the power rule, and the		
	derivative of the	e exponential function 5^x is	$s(\ln 5)5^x$. Therefore,
	$\frac{d}{dx}(x^5 - 5^x) = 5x^4 - (\ln 5)5^x.$		

Skill		Learning Objective	Topic
2.B		LIM-2.D	Connecting Limits at Infinity and Horizontal Asymptotes
(A)	Incorrect. This response might come from treating the problem like the limit of a rational function as x goes to infinity when the numerator and denominator are polynomials of the same degree. If only the coefficients of the x^2 term and the e^x term are considered, it might be thought that the limit would be $\frac{-6}{3} = -2$.		
(B)	Correct . The numerator of $\frac{10-6x^2}{5+3e^x}$ is a translated power function and the denominator is a translated exponential function. Since the exponential function e^x grows faster than the power function x^2 , the relative magnitude of the denominator compared to the numerator will result in this expression converging to 0 as x goes to infinity.		
(C)	Incorrect. This response might come from treating the problem like the limit of a rational function as x goes to 0. If only the constant terms are considered, it might be thought that the limit would be $\frac{10}{5} = 2.$		
(D)	numerator goes to infinity, but t of the exponent	ght be thought that the limit to $-\infty$ and the denominath his does not take into account all function in the denomination the numerator as x gets.	for goes to $+\infty$ as x goes and the relative magnitude attor compared to the

Skill		Learning Objective	Topic	
1.E		CHA-5.A Finding the Area Between Curves Expressed as Functions of <i>x</i>		
(A)	antidifferentiation than antidifferentiation included in the expectation $\int_0^2 (4x - x^2 - 2x^2) dx$	Incorrect. This response might come from several errors in the antidifferentiation and evaluation. If the term $2x$ is differentiated rather than antidifferentiated, and if in the resulting evaluation the 2 is not included in the evaluation at the endpoints, the result would be as follows. $\int_0^2 (4x - x^2 - 2x) dx = \int_0^2 (2x - x^2) dx = 2 - \frac{1}{3}x^3 \Big _0^2 = 2 - \left(\frac{8}{3} - 0\right) = -\frac{2}{3}$ Then either the negative is ignored or the absolute value is taken, since area		
(B)	Correct. The grand $x = 2$. The interval $0 \le x \le$ parabola and the of 4 at $x = 0$, where the region bound	raphs of $y = 2x$ and $y = 4x - x^2$ intersect when $x = 0$ a graph of $y = 4x - x^2$ lies above the graph $y = 2x$ on the ≤ 2 . (One way to see this is to sketch a graph of the line, observing that the graph of $y = 4x - x^2$ has a slope while the graph of $y = 2x$ has a slope of 2.) The area of aded by the two graphs is therefore $(2x) dx = \int_0^2 (2x - x^2) dx = \left(x^2 - \frac{x^3}{3}\right)\Big _0^2 = 4 - \frac{8}{3} = \frac{4}{3}.$		
(C)	Incorrect. This response might come from two different errors. This first is not finding where the two graphs intersect but looking only at the zeros of $y = 4x - x^2$ at $x = 0$ and $x = 4$, using those as the limits of integration to get $\int_0^4 \left(4x - x^2 - 2x\right) dx = \int_0^4 \left(2x - x^2\right) dx = \left(x^2 - \frac{x^3}{3}\right)\Big _0^4 = 16 - \frac{64}{3} = -\frac{16}{3},$ and then ignoring the negative (or taking the absolute value, since area must be positive). The response might also come from integrating only $y = 4x - x^2$ over the interval $0 \le x \le 2$, as follows. $\int_0^2 \left(4x - x^2\right) dx = \left(2x^2 - \frac{x^3}{3}\right)\Big _0^2 = 8 - \frac{8}{3} = \frac{16}{3}$			
(D)	than taking the o	lifference between them, as	adding the two functions rather follows. $ \left(3x^2 - \frac{x^3}{3}\right)\Big _0^2 = 12 - \frac{8}{3} = \frac{28}{3} $	

Skill		Learning Objective	Topic
1.E	FUN-3.B The Quotient Rule		
(A)	Correct. The derivative of g is found using the quotient rule.		
		$(f(\lambda))$	n of f is used to determine that $f(2) = 3$ and
	$f'(2) = \frac{7-3}{3-2} = \frac{7-3}{3-2}$	= 4. Then $g'(2) = \frac{4f(2) - 4f(2)}{(f(2) - 4f(2))}$	$\frac{-f'(2)(5)}{(2))^2} = \frac{(4)(3) - (4)(5)}{9} = -\frac{8}{9}.$
(B)	Incorrect. This response would result if the numerator of the derivative of the quotient was taken to be the product of the derivatives minus the product of the functions, as follows.		
	$g'(x) = \frac{2xf'(x)}{}$	$\frac{(f(x))(x^2+1)}{(f(x))^2} \Rightarrow g'(2)$	$=\frac{4f'(2)-f(2)(5)}{(f(2))^2}=\frac{(4)(4)-(3)(5)}{9}=\frac{1}{9}$
(C)	Incorrect. This response would result if the derivative of a quotient was taken to be the quotient of the derivatives, as follows.		
	$g'(x) = \frac{2x}{f'(x)} \Rightarrow g'(2) = \frac{4}{f'(2)} = \frac{4}{4} = 1$		
(D)	Incorrect. This response would result if the terms in the numerator were added rather than subtracted in the quotient rule, as follows.		
	$g'(x) = \frac{2xf(x)}{}$	$\frac{(x+f'(x)(x^2+1))}{(f(x))^2} \Rightarrow g'(2)$	$=\frac{4f(2)+f'(2)(5)}{(f(2))^2}=\frac{(4)(3)+(4)(5)}{9}=\frac{32}{9}$

Skill		Learning Objective	Topic
1.E	FUN-6.A Applying Properties of Definite Integrals		,
(A)	Correct. The function $f(x) = \frac{x^2 - x}{x}$ has a removable discontinuity at $x = 0$,		
	since $f(0)$ is u	ndefined but $\lim_{x\to 0} \frac{x^2 - x}{x} =$	$\lim_{x\to 0} (x-1) = -1.$ The definition of the
	definite integral can be extended to functions with removable discontinuities. If $g(x) = x - 1$, then $g(x) = f(x)$ for all x except $x = 0$, and therefore		ns with removable discontinuities. If
	$\int_{-1}^{1} f(x) dx = \int_{-1}^{1} g(x) dx = \int_{-1}^{1} (x - 1) dx = \left(\frac{1}{2}x^{2} - x\right)\Big _{-1}^{1} = \left(\frac{1}{2} - 1\right) - \left(\frac{1}{2} + 1\right) = -2.$		
(B)	Incorrect. This response might arise from an assumption that the value of the definite integral is 0 because the integration is over the symmetric interval [-1, 1].		
(C)	Incorrect. The antiderivative of a quotient might have been taken to be the quotient of antiderivatives, as follows.		
	$\int_{-1}^1 \frac{x^2 - x}{x} dx =$	$= \frac{\frac{1}{3}x^3 - \frac{1}{2}x^2}{\frac{1}{2}x^2} \bigg _{-1}^{1} = \frac{\frac{1}{3} - \frac{1}{2}}{\frac{1}{2}}$	$\frac{\frac{1}{2}}{\frac{1}{2}} - \frac{-\frac{1}{3} - \frac{1}{2}}{\frac{1}{2}} = \frac{\frac{2}{3}}{\frac{1}{2}} = \frac{4}{3}$
(D)			not recognizing that the definition of the ns with removable discontinuities.

Skill		Learning Objective	Topic
3.D		FUN-1.B	Using the Mean Value
	1		Theorem
(A)	Incorrect. This is	interval might be chosen be	ecause of an error in
	computing the a	overage rate of change over	the interval as
	$\frac{f(0)-f(4)}{4} =$	$\frac{8-0}{4} = 2 \text{ rather than } f($	$\frac{0) - f(4)}{0 - 4} = \frac{8 - 0}{-4} = -2.$
(B)	Incorrect. This is	interval might be chosen be	ecause of an error in
	computing the a	average rate of change over	the interval as
	$\frac{8-4}{f(8)-f(4)} =$	$\frac{4}{2-0} = 2 \text{ rather than } f($	$\frac{8) - f(4)}{8 - 4} = \frac{2 - 0}{4} = \frac{1}{2}.$
(C)	Correct . The function f is continuous on the closed interval [8, 12]		
	and differentiable on the open interval (8, 12). By the Mean Value		
	Theorem, there is a number c in the interval $(8, 12)$ such that		
	$f'(c) = \frac{f(12) - f(8)}{12 - 8} = \frac{10 - 2}{4} = 2.$		
(D)	Incorrect. This response would result if the Intermediate Value		
	Theorem was us	sed instead of the Mean Val	lue Theorem to select the
	open interval (1	2, 16) where $f(c) = 2$ for	some number c in the
	interval.		

Skill		Learning Objective	Topic
1.E		LIM-4.A	Using L'Hospital's Rule for Finding Limits of Indeterminate Forms
(A)	Correct. Since	$\lim_{x \to 0} \sin x = 0 \text{ and } \lim_{x \to 0} \left(e^x - \frac{1}{x} \right)$	(-1) = 0, the
	indeterminate li follows.	mit can be evaluated using	L'Hospital's Rule, as
	$\lim_{x \to 0} \frac{\sin x}{e^x - 1} = \lim_{x \to 0} \frac{\cos x}{e^x} = \frac{\cos 0}{e^0} = \frac{1}{1} = 1$		
(B)	Incorrect. While	e using L'Hospital's Rule, ar	n error might have been
	made in the diff derivative of ex	fferentiation of e^x , treating it as if taking the x , as follows.	
	$\lim_{x \to 0} \frac{\sin x}{e^x - 1} = \lim_{x \to 0} \frac{\sin x}{e^x - 1}$	$\lim_{x \to 0} \frac{\cos x}{e} = \frac{\cos 0}{e} = \frac{1}{e}$	
(C)	Incorrect. This response would result if the limit of the numerator		
	was observed to be 0 , but the denominator was not taken into consideration.		
(D)		response would result if the	
		be 0 while the numerator	
	consideration, i	eading to the assumption th	iat the mint does not exist.

Skill		Learning Objective	Topic
2.C		FUN-7.F	Exponential Models with Differential Equations
(A)	velocity, not the	xpression 12 <i>t</i> might have by acceleration. Therefore, the with $C = 5$ since $s(0) = 3$	e position was taken to be
(B)	Incorrect. This response might come from attempting to use the formula $s = \frac{1}{2}at^2 + v_0t + s_0$ for the position of an object falling with constant acceleration a , as follows. $s = \frac{1}{2}at^2 + v_0t + s_0 = \frac{1}{2}(12t)t^2 + 2t + 5 = 6t^3 + 2t + 5$		
(C)	Incorrect. The initial velocity might not have been considered during the antidifferentiation of the acceleration, as follows. $a(t) = 12t \Rightarrow v(t) = 6t^2$ $v(t) = 6t^2 \Rightarrow s(t) = 2t^3 + C$; $s(0) = 5 \Rightarrow 5 = 0 + 0 + C \Rightarrow C = 5$		
(D)	$s(0) = 5 \Rightarrow 5 = 0 + 0 + C \Rightarrow C = 5$ Correct. Since the acceleration is given, the position can be found using antidifferentiation and the values of the velocity and position at time $t = 0$. $a(t) = 12t \Rightarrow v(t) = 6t^2 + C_1$; $v(0) = 2 \Rightarrow 2 = 0 + C_1 \Rightarrow C_1 = 2$ $v(t) = 6t^2 + 2 \Rightarrow s(t) = 2t^3 + 2t + C_2$; $s(0) = 5 \Rightarrow 5 = 0 + 0 + C_2 \Rightarrow C_2 = 5$ The position of the particle is $s(t) = 2t^3 + 2t + 5$ for $t \ge 0$.		he velocity and position $\Rightarrow 2 = 0 + C_1 \Rightarrow C_1 = 2$

Skill		Learning Objective	Topic
			Connecting Differentiability and
3.C		FUN-2.A	, ,
3.C		FUN-2,A	Continuity - Determining When Derivatives Do and Do Not Exist
(4)	Correct. This st	totoment is true	Derivatives Do and Do Not Exist
(A)			22
		$ \underset{>5^{-}}{\text{m}} \left(-x^2 + 3 \right) = -25 + 3 = -25 + 25 + 25 + 25 + 25 + 25 + 25 + 25 $	
	$\lim_{x \to 5^+} f(x) = \lim_{x \to 5^+}$	$ \underset{\Rightarrow 5^{+}}{\text{m}} \left(-10x + 28 \right) = -50 + 28 $	B = -22
	Therefore, $\lim_{x\to 5}$	$f(x)$ exists and $\lim_{x \to 5} f(x) =$	= -22 = f(5), so f is continuous at
	x = 5.		
	$\lim_{h \to 0^-} \frac{f(5+h)}{h}$	$\frac{-f(5)}{h \to 0^{-}} = \lim_{h \to 0^{-}} \frac{-(5+h)^{2} + h}{h}$	$\frac{+3 - (-22)}{h} = \lim_{h \to 0^{-}} \frac{-10h - h^{2}}{h} = -10$
	$\lim_{h \to 0^+} \frac{f(5+h)}{h}$	$\frac{-f(5)}{-f(5)} = \lim_{h \to 0^+} \frac{-10(5+h)}{-f(5)}$	$\frac{+28 - (-22)}{h} = \lim_{h \to 0^+} \frac{-10h}{h} = -10$
	Therefore, f is	also differentiable at $x = 3$	5 and $f'(5) = -10$. An alternative way
	to see that the pi	iecewise-defined function	f is differentiable at $x = 5$ is to
	observe that $f'($	$f(x) = \begin{cases} -2x & \text{for } x < 5 \\ -10 & \text{for } x > 5. \end{cases} \text{ Sin}$	ace f is continuous at $x = 5$ and the
	derivatives $-2x$ and -10 are equal at $x = 5$, f is differentiable at $x = 5$.		
(B)	Incorrect. This s	statement is false. The func	tion f is both continuous and
	differentiable at	$x = 5$ because $\lim_{x \to 5^{-}} f(x)$	$= \lim_{x \to 5^{+}} f(x) = f(5) = -22 \text{ and}$
	$\lim_{h \to 0^-} \frac{f(5+h)}{h}$	$\frac{-f(5)}{h} = \lim_{h \to 0^+} \frac{f(5+h) - h}{h}$	$\frac{f(5)}{}=-10.$
(C)	Incorrect. This statement is false, since if f is differentiable at $x = 5$, it must		f is differentiable at $x = 5$, it must also
	be continuous at $x = 5$.		
(D)	Incorrect. This statement is false. The function f is both continuous and		·
	differentiable at	$x = 5$ because $\lim_{x \to 5^{-}} f(x)$	$= \lim_{x \to 5^{+}} f(x) = f(5) = -22 \text{ and}$
		$\frac{-f(5)}{h} = \lim_{h \to 0^+} \frac{f(5+h) - f(5)}{h}$	

Skill		Learning Objective	Topic	
OKIII		Learning Objective	Topic	
1.5		FIN 7 D	Finding General	
1.E		FUN-7.D	Solutions Using Separation of Variables	
(A)	Incorrect This	response would result if a c	1 -	
(11)		lifferentiation of the <i>dy</i> ter		
	$\frac{dy}{dy} = 2 - y \Rightarrow$	$\frac{dy}{dx} = dx$		
	$\frac{dy}{dx} = 2 - y \Rightarrow \frac{dy}{2 - y} = dx$			
	$\int \frac{1}{2-y} dy = \int$	$dx \Rightarrow \ln 2 - y = x + C$		
	$ \ln 1 = 1 + C \equiv$	$\rightarrow C = -1$		
	$\ln 2 - y = x -$	$1 \Rightarrow 2 - y = e^{x - 1}$		
	Since $2 - y > 0$	at the initial value $y = 1$,	the solution would be	
	$2 - y = e^{x-1}$, o	$y = 2 - e^{x-1}$.		
(B)		fferential equation can be s	0 1	
	variables and the for the arbitrary	e initial condition to deterr	nine the appropriate value	
	· ·			
	$\frac{dy}{dx} = 2 - y \Rightarrow$	$\frac{dy}{2-y} = dx$		
	$\int \frac{1}{2-y} dy = \int$	$dx \Rightarrow -\ln 2 - y = x + C$		
	$-\ln 1 = 1 + C \Rightarrow C = -1$			
	$-\ln 2 - y = x - 1 \Rightarrow \ln 2 - y = -x + 1 \Rightarrow 2 - y = e^{1-x}$			
	Since $2 - y > 0$ at the initial value $y = 1$, the solution to the			
	differential equation is $2 - y = e^{1-x}$, or $y = 2 - e^{1-x}$.			
(C)	Incorrect. This response would result if an arbitrary constant was not			
	_	the antidifferentiation.		
	$\frac{dy}{dx} = 2 - y \Rightarrow$	$\frac{dy}{2-y} = dx$		
	$\int \frac{1}{2-y} dy = \int$	$dx \Rightarrow -\ln 2 - y = x \Rightarrow $	$2 - y = e^{-x}$	
	T .	at the initial value $y = 1$,		
	$2 - y = e^{-x}, \text{ or}$	$y = 2 - e^{-x}.$		
(D)	Incorrect. This response would result if an arbitrary constant was not			
	included during the antidifferentiation and the incorrect sign was			
	_	solute value when solving f	or y.	
	$\frac{dy}{dx} = 2 - y \Rightarrow$	$\frac{dy}{2-y} = dx$		
	$\int \frac{1}{2-y} dy = \int$	$dx \Rightarrow -\ln 2 - y = x \Rightarrow $	$2 - y = e^{-x}$	
	$2 - y = -e^{-x} =$	$\Rightarrow y = 2 + e^{-x}$		

Skill		Learning Objective	Topic
2 D		EVIDA 5 A	Interpreting the Behavior of
2.B		FUN-5.A	Accumulation Functions Involving Area
(A)	point of inflection	is the x -coordinate of a critical point of g , not of a confidence on of the graph of g . The equation $(x-14) = (x+2)(x-7) = 0$ might have been solved	
		In the equation $g''(x) = 2x$	-
(B)	where g'' change $g'(x) = x^2 - 5$. $g''(x) = 2x - 5$. Then $g''(x) = 0$. $g''(x) > 0$ for and therefore, the	x - 14 at $x = \frac{5}{2}$. Since $g''(x) < x > \frac{5}{2}$, the graph of g character graph of g has a point of	0 for $x < \frac{5}{2}$ and nges concavity at $x = \frac{5}{2}$ inflection at $x = \frac{5}{2}$.
(C)	Incorrect. This is a value of x where $g(x) = 0$, not a value where $g''(x) = 0$.		
(D)	point of inflection $g'(x) = x^2 - 5x$	is the x -coordinate of a crit on of the graph of g . The ea (x-14)=(x+2)(x-7)=0 on the equation $g''(x)=2x$	quation O might have been solved

Skill		Learning Objective	Topic	
1.E		FUN-3.B	The Product Rule	
(A)	Incorrect. This r	esponse would result if the	chain rule was correctly used	
	for the derivativ	e of $sec(2x)$ but the produ	ct rule was incorrectly applied	
	as $\frac{d}{dx}(f(x)g(x))$	f'(x)g'(x).		
	$3x^2 \cdot (2\sec(2x))$	tan(2x)		
(B)	Incorrect. This r	esponse would result if the	product rule was correctly	
	used but the der	ivative of $sec(2x)$ was take	en to be $2\tan^2(2x)$.	
	$x^3 \cdot \frac{d}{dx}(\sec(2x))$	$x^{3} \cdot \frac{d}{dx}(\sec(2x)) + 3x^{2} \cdot \sec(2x) = x^{3} \cdot (\tan^{2}(2x) \cdot 2) + 3x^{2} \sec(2x)$		
(C)	Incorrect. This response would result if the product rule was correctly			
	used but the chain rule was not used for the derivative of $sec(2x)$.		e derivative of $sec(2x)$.	
	$x^{3} \cdot \frac{d}{dx}(\sec(2x)) + 3x^{2} \cdot \sec(2x) = x^{3} \cdot (\sec(2x)\tan(2x)) + 3x^{2}\sec(2x)$			
(D)	Correct. A combination of the product rule and the chain rule is used to		e and the chain rule is used to	
	compute the derivative.			
	$\frac{d}{dx} \left(x^3 \sec(2x) \right)$	$= x^3 \cdot \frac{d}{dx}(\sec(2x)) + 3x^2$	$\cdot \sec(2x)$	
	$= x^3 \cdot (\sec(2x))$	$\tan(2x) \cdot 2) + 3x^2 \sec(2x)$		
	$=2x^3\sec(2x)$ ta	$n(2x) + 3x^2 \sec(2x)$		

Skill		Learning Objective	Topic
2.B		CHA-3.B	Straight-Line Motion: Connecting Position, Velocity, and Acceleration
(A)	Correct. The velocity of the particle is $v(t) = 3t^2 - 8t + 4$. At time $t = 1$, $v(1) = -1$. Since the velocity is negative, the particle is moving		
	down the y-axis. The rate of change of the velocity is $v'(t) = 6t - 8$ At time $t = 1$, $v'(1) = -2$. Since this is negative, the particle is moving with decreasing velocity at time $t = 1$.		
(B)	Incorrect. It was correctly determined that the particle is moving down the y -axis, but since $v'(t) = 6t - 8$ and $v'(1) = -2$, the particle's velocity is decreasing, not increasing.		
(C)	Incorrect. It was correctly determined that the particle is moving with decreasing velocity, but since $v(t) = 3t^2 - 8t + 4$ and $v(1) = -1$, the particle is moving down the y -axis, not up the axis.		
(D)	Incorrect. Since $v(t) = 3t^2 - 8t + 4$ and $v(1) = -1$, the particle is moving down the y-axis, not up the axis. Since $v'(t) = 6t - 8$ and $v'(1) = -2$, the particle's velocity is decreasing, not increasing.		

Skill		Learning Objective	Topic	
1.C		FUN-6.A	Applying Properties of Definite Integrals	
(A)	properties of the	Incorrect. The value of this integral can be determined using the properties of the definite integral, as follows. $\int_{1}^{1} g(x) dx = -\int_{1}^{4} g(x) dx = -(-2) = 2$		
(B)	properties of the	alue of this integral can be a definite integral, as follow $3 \cdot \int_{1}^{4} f(x) dx = 3 \cdot 8 = 24$	· ·	
(C)	$\int_{1}^{4} 3f(x)g(x) dx$ values of $\int_{1}^{4} f(x) dx$ the value of $\int_{1}^{4} 3f(x)g(x) dx$ $g(x) = -\frac{2}{3}, \text{ the}$ $\int_{1}^{4} 3f(x)g(x) dx$ $f(x) = \frac{16}{9}(x - \frac{1}{9})(x - \frac{1}{9}$	It true in general that $f(x) = \int_{1}^{4} 3f(x) dx \cdot \int_{1}^{4} g(x) dx$ and $\int_{1}^{4} g(x) dx$ cannot $f(x) g(x) dx$. For example, $f(x) g(x) dx = 8$, $\int_{1}^{4} g(x) dx = 16$. However, $f(x) = -16$ and $f(x) = -16$ are $f(x) = -16$. However, $f(x) = -16$ are $f(x) = -16$ and $f(x) = -16$ are $f(x) = -16$ are $f(x) = -16$ and $f(x) = -16$ are $f(x) = -16$ are $f(x) = -16$ and $f(x) = -16$ are	ot be used to determine $f(x) = \frac{8}{3}$ and $f(x) = -2$, and wever, if $f(x) = 4$, then $\int_{1}^{4} f(x) dx = 8$	
(D)	properties of the $\int_{1}^{4} (3f(x) + g(x))^{2} dx$	alue of this integral can be a definite integral, as follows: $f(x) = \int_{1}^{4} 3f(x) dx + \int_{1}^{4} g(x) dx = 3 \cdot 8 + (-2)f(x) dx $	s. $g(x) dx$	

Skill		Learning Objective	Topic
1.D		CHA-2.B	Defining the Derivative of a Function and Using Derivative Notation
(A)	Incorrect. This response might come from observing that the numerator is zero when $h = 0$ without consideration of the denominator.		
(B)	Incorrect. This response might come from observing that both the numerator and the denominator are zero when $h = 0$ and interpreting $\frac{0}{0}$ as equal to 1.		
(C)	Incorrect. This response would result if the limit of the difference quotient was correctly recognized as the derivative of the function $f(x) = \sin(2x)$, but the chain rule was not used in finding the derivative.		
(D)	Correct. The limit of this difference quotient is of the form $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}, \text{ where } f(x)=\sin(2x). \text{ This is one way to express the derivative of } f. \text{ By the chain rule, } f'(x)=\cos(2x)\cdot 2.$		

Skill		Learning Objective	Topic		
2.D		FUN-7.C	Sketching Slope Fields		
(A)	Incorrect. This response might be chosen because the slopes for the				
	differential equa	tion $\frac{dy}{dx} = x + y $ are non-	negative, which matches		
	the behavior sho	own in the slope field. How	ever, the segments in the		
	_	y = 0 all have slope 0 and	nd that would not be true		
	for this different	•			
(B)		esponse might be chosen be ight match the behavior of			
	$f(x) = x^3$. How	vever, the slopes of the segr	ments in the slope field		
	depend only on	the variable y and that wo	uld not be true for the		
	differential equa	tion $\frac{dy}{dx} = x^3$.			
(C)	Incorrect. This r	esponse might be chosen b	ecause the slopes for the		
	differential equation $\frac{dy}{dx} = y^3$ depend only on the variable y and				
	have the value 0	have the value 0 when $y = 0$, which matches the behavior shown in			
	the slope field. However, the segments in the slope field all have nonnegative slopes and that would not be true for this differential				
		quation when $y < 0$.			
(D)	Correct. The seg	gments in the slope field sug	ggest that (1) the slopes		
	- '	the variable y , (2) the slop	•		
	1	e zero when $y = 0$. The dif	-		
	$\frac{dy}{dx} = y^2$ satisfies all three conditions. The differential equation				
	$\frac{dy}{dx} = x + y $ does not satisfy conditions (1) and (3). The differential				
	equation $\frac{dy}{dx} = 1$	x^3 does not satisfy any of the	ne conditions. The		
		tion $\frac{dy}{dx} = y^3$ does not sati	isfy condition (2) when		
	y < 0.				

Skill		Learning Objective	Topic
1.E		CHA-5.B	Volumes with Cross Sections - Squares and
1.12	.	CHA-3.B	Rectangles
(A)	Incorrect. This the solid.	response is the area of the re	egion, not the volume of
	$\int_0^1 e^x \ dx = e^x \Big _0^1$	=e-1	
(B)		ea of a square of side length lid is a square with side fro	
	of $y = e^x$. The	length of the side of the squ	hare is therefore $s = e^x$,
	so the area of th	e square is $(e^x)^2 = e^{2x}$. The	ne volume of the solid is
		definite integral of the cros	
	$\int_0^1 e^{2x} dx = \frac{1}{2} e^{2x} \Big _0^1 = \frac{1}{2} e^2 - \frac{1}{2}$		
(C)	Incorrect. This response would result if the volume was set up		
	correctly as the definite integral of the cross-sectional area e^{2x} , but		
		de in the antidifferentiation	n by not considering the
	chain rule, as follows. $\int_0^1 e^{2x} dx = e^{2x} \Big _0^1 = e^2 - 1$		
(D)	Incorrect. This response would result if the volume was set up		
	correctly as the definite integral of the cross-sectional area e^{2x} , but		
		de with respect to the chair	
		on of the exponential funct	· ·
		ther than antidifferentiated	ı), as ioliows.
	$\int_0^1 e^{2x} \ dx = 2e^2$	$\int_{0}^{x} \left \frac{1}{0} \right = 2e^{2} - 2$	

Skill		Learning Objective	Topic
3.D		FUN-6.B	The Fundamental Theorem of Calculus and Definite Integrals
(A)		Fundamental Theorem of O	
	$\int_0^{12} f'(x) dx = 0$	f(12) - f(0) = (-4) - 4 =	= -8, where the values of
	f at $x = 0$ and	d x = 12 are obtained from	the graph.
(B)	Incorrect. This response would result if the function f was		function f was
	integrated over	the interval $[0, 12]$ rather than f' , as follows.	
	$\int_0^{12} f(x) dx = \frac{1}{2}$	$\frac{1}{2}(4)(4) - \frac{1}{2}(4)(3) - \frac{1}{2}(4)$	(4) = -6
(C)	Incorrect. This response would result if the Fundamental Theorem		Fundamental Theorem of
	Calculus was incorrectly applied, as		.
	$\int_0^{12} f'(x) dx = f'(12) - f'(0) = (-1) - (-1) = 0$		
(D)	Incorrect. This	response is the total area bounded by the graph of f	
	and the x -axis	over the interval [0, 12].	
	$\int_0^{12} f(x) dx =$	$\frac{1}{2}(4)(4) + \frac{1}{2}(4)(3) + \frac{1}{2}(4)$	(4) = 8 + 6 + 8 = 22

Skill		Learning Objective	Topic
3.G		FUN-7.B	Verifying Solutions for Differential Equations
(A)	Correct. One way to verify that a function is a solution to a differential equation is to check that the function and its derivatives satisfy the differential equation. The differential equation in this option involves y and y' . The correct derivative must be computed and the algebra correctly done to verify that the differential equation is satisfied. $y' = 12e^{6x}$ $y' - 6y - 30 = 12e^{6x} - 6(2e^{6x} - 5) - 30 = 12e^{6x} - 12e^{6x} + 30 - 30 = 0$		
(B)	Incorrect. The correct derivative was found, but this differential equation will appear to be satisfied if the 12 in the second term is not distributed correctly across the two terms in the parentheses, as follows. $y' = 12e^{6x}$ $2y' - 12y + 5 = 24e^{6x} - 12(2e^{6x} - 5) + 5 = 24e^{6x} - 24e^{6x} + 5 - 5 = 0$		
(C)	Incorrect. This differential equation has $y = 2e^{6x}$ as a solution, not $y = 2e^{6x} - 5$. Bot functions have $y' = 12e^{6x}$ and $y'' = 72e^{6x}$, but $72e^{6x} - 5(12e^{6x}) - 6(2e^{6x}) = 0$, whereas $72e^{6x} - 5(12e^{6x}) - 6(2e^{6x} - 5) = 30$.		7, but $72e^{6x} - 5(12e^{6x}) - 6(2e^{6x}) = 0$,
(D)	Incorrect. This differential equation will appear to be satisfied if the chain rule is not used in taking the derivative of the exponential, as follows. $y' = 2e^{6x} \ y'' = 2e^{6x}$ $y'' - 2y' + y + 5 = 2e^{6x} - 2(2e^{6x}) + (2e^{6x} - 5) + 5 = 2e^{6x} - 4e^{6x} + 2e^{6x} - 5 + 5 = 0$		

Skill		Learning Objective	Topic	
3.D		FUN-4.A	Using the Candidates Test to Find Absolute (Global) Extrema	
(A)		Incorrect. This response would result if the critical point was not found, and the endpoint with the smallest function value was selected.		
(B)	selected. Correct. The absolute minimum will occur at a critical point or one of the endpoints. $y' = 4x^{\frac{1}{3}} - 2 = 0 \Rightarrow x^{\frac{1}{3}} = \frac{1}{2} \Rightarrow x = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$ The candidates are $x = 0$, $x = \frac{1}{8}$, and $x = 1$. When $x = 0$, $y = 0$. When $x = \frac{1}{8}$, $y = 3\left(\frac{1}{8}\right)^{\frac{4}{3}} - 2\left(\frac{1}{8}\right) = \frac{3}{16} - \frac{1}{4} = -\frac{1}{16}$. When $x = 1$, $y = 1$. The absolute minimum is therefore at $x = \frac{1}{8}$. Alternatively, since $x = \frac{1}{8}$ is the only critical point and the Second Derivative Test shows that it is the location of a local minimum, it must also be the location of the absolute minimum on the interval $[0, 1]$. Incorrect. This response would result if an error in the power rule		$\begin{vmatrix} 3 \\ = \frac{1}{8} \end{vmatrix}$ = 1. $\frac{1}{4} = -\frac{1}{16}.$ $\frac{1}{8}$ ical point and the Second on of a local minimum, it minimum on the interval on the error in the power rule at $4x - 2$ with a zero at	
	minimum from the location of the point in the interval (Note that $y(\frac{1}{2})$) value is smaller	$\int = 3\left(\frac{1}{16}\right)^{\frac{1}{3}} - 1 \text{ and it is n}$ or greater than $y(0) = 0$,	st and therefore had to be ce it was the only critical not obvious whether this	
(D)	Incorrect. This occurs on the ir	is the value of x at which terval $[0, 1]$.	the maximum value of <i>y</i>	

Skill		Learning Objective	Topic
3.F		CHA-3.A	Interpreting the Meaning of the Derivative in Context
(A)	W(t). Therefor	ate at which the depth of the ce, this sentence is an interpart an interpretation about $W'($	retation of the statement
(B)	Incorrect. The rate at which the depth of the water is increasing $W(t)$. Therefore, this sentence is an interpretation of the staten $W(t) > 3$ for all t in the interval $0 \le t \le 2$.		retation of the statement
(C)	Correct . In the expression $W'(2)$, the 2 represents the value of the independent variable and is therefore the number of hours since the tank began filling with water. $W'(2)$, being the value of a derivative is the rate of change of W , that is, the rate of change of the rate at which the depth of the water is rising; in this case, 2 hours after the tank begins filling with water. The units for the derivative would be the units of W per unit of time; thus, feet per hour per hour. The statement says that at time 2 hours after the tank begins filling with water, the rate at which the depth of the water is rising, $W(t)$, is		umber of hours since the g the value of a derivative, of change of the rate at is case, 2 hours after the the derivative would be per hour per hour. The se tank begins filling with
(D)	Incorrect. This sentence is an interpretation of the statement $W'(t) > 3$ for all t in the interval $0 \le t \le 2$. $W'(2)$, being the value of a derivative, is the instantaneous rate of change of W at the particular instant $t = 2$.		

Question	. 28				
Skill		Learning Objective	Topic		
1.E		CHA-3.E	Solving Related Rates Problems		
(A)	Incorrect. This response would result if the relationship $\tan \theta = \frac{h}{30}$				
	was correctly used, where h is the height of the balloon above the point P at time t , but then the derivative of $\tan \theta$ was taken to be				
	$\sec \theta \tan \theta$ rather than $\sec^2 \theta$.				
	$\sec\theta\tan\theta\frac{d\theta}{dt} =$	$\sec \theta \tan \theta \frac{d\theta}{dt} = \frac{1}{30} \frac{dh}{dt}$			
		then $h = 40$, the distance fr	rom the person to the		
		$\frac{1}{100} + 40^{2} = \sqrt{2500} = 50.$ $\frac{1}{30} \cdot 2 = \frac{1}{15} \Rightarrow \frac{d\theta}{dt} = \frac{1}{15}$	$\frac{3}{5} \cdot \frac{3}{4} = \frac{3}{100}$		
(B)	Correct. If $h(t)$	is the height of the balloon	n above the point P at		
	time t , then tar	$h \theta = \frac{h}{30}$. Using implicit di	fferentiation with respect		
	to t shows that	$\sec^2 \theta \frac{d\theta}{dt} = \frac{1}{30} \frac{dh}{dt}$. At the	e instant when $h = 40$, the		
		ne person to the balloon is	50 5		
	$\sqrt{30^2 + 40^2} = \sqrt{2500} = 50$. At this instant, $\sec \theta = \frac{50}{30} = \frac{5}{3}$ and				
	therefore $\left(\frac{5}{3}\right)^2 \frac{d\theta}{dt} = \frac{1}{30} \cdot 2 = \frac{1}{15} \Rightarrow \frac{d\theta}{dt} = \frac{1}{15} \cdot \frac{9}{25} = \frac{3}{125}.$				
(C)	Incorrect. This	response would result if the	relationship $\tan \theta = \frac{h}{30}$		
	was correctly used, where h is the height of the balloon above the point P at time t , but then the derivative of $\tan \theta$ was taken to be				
	$\sin \theta$ rather than $\sec^2 \theta$.				
	$\sin \theta \frac{d\theta}{dt} = \frac{1}{30} \frac{dh}{dt}$				
		then $h = 40$, the distance from	rom the person to the		
		$+40^2 = \sqrt{2500} = 50.$	1		
	$\left(\frac{40}{50}\right)\frac{d\theta}{dt} = \frac{1}{30}$	$2 = \frac{1}{15} \Rightarrow \frac{d\theta}{dt} = \frac{1}{15} \cdot \frac{5}{4} =$	$\frac{1}{12}$		
(D)	Incorrect. This	response would result if the	relationship $\tan \theta = \frac{h}{30}$		
		ed, where h is the height of t , but then the derivative t			
	$\cos^2\theta$ rather th				
	$\cos^2\theta \frac{d\theta}{dt} = \frac{1}{30}$	$\frac{dh}{dt}$			
		then $h = 40$, the distance fr	rom the person to the		
		$+40^2 = \sqrt{2500} = 50.$	5		
	$\left(\frac{30}{50}\right) \frac{d\theta}{dt} = \frac{1}{30}$	$- \cdot 2 = \frac{1}{15} \Rightarrow \frac{d\theta}{dt} = \frac{1}{15} \cdot \frac{25}{9}$	$r = \frac{3}{27}$		

Skill		Learning Objective	Topic
2.B		LIM-2.D	Connecting Infinite Limits and Vertical Asymptotes
(A)	Correct. Since $\frac{x-2}{x^4-16} = \frac{x-2}{\left(x^2-4\right)\left(x^2+4\right)} = \frac{x-2}{(x-2)(x+2)\left(x^2+4\right)} = \frac{1}{(x+2)\left(x^2+4\right)}$ for $x \ne 2$, the graph has only one vertical asymptote, which is at $x=-2$. The graph has a removable discontinuity at $x=2$.		
(B)	Incorrect. The denominator is $x^4 - 16 = (x^2 - 4)(x^2 + 4) = (x - 2)(x + 2)(x^2 + 4)$ which has two zeros, which might lead to the conclusion that there are two vertical asymptotes.		
(C)	Incorrect. The expression might have been correctly simplified to $\frac{x-2}{x^4-16} = \frac{x-2}{\left(x^2-4\right)\left(x^2+4\right)} = \frac{x-2}{(x-2)(x+2)\left(x^2+4\right)} = \frac{1}{(x+2)\left(x^2+4\right)}$ for $x \ne 2$, but then the conclusion was made that there are three vertical asymptotes because the denominator is a cubic polynomial.		$\frac{x-2}{(x+2)(x^2+4)} = \frac{1}{(x+2)(x^2+4)}$ de that there are three vertical
(D)	Incorrect. Since the denominator is a quartic polynomial, the assumption might have been made that there are four zeros and therefore four vertical asymptotes.		

Skill		Learning Objective	Topic
			Riemann Sums,
3.D		LIM-5.C	Summation Notation, and Definite Integral
			Notation
(A)	Incorrect. The s	um can be interpreted as a	right Riemann sum in the
	form $\sum_{k=1}^{n} f(1+k)$	$(x\Delta x)\Delta x$, where $f(x) = x^2$	and $\Delta x = \frac{2}{n}$. The value
		nds to an interval of length	2, but b is not equal to
	2 because the in	nterval starts at $x = 1$.	
(B)	Correct . The su	m can be interpreted as a ri	ght Riemann sum in the
	form $\sum_{k=1}^{n} f(1 + k\Delta x) \Delta x$, where $f(x) = x^2$ and $\Delta x = \frac{2}{n}$. The value		
	of Δx corresponds to an interval of length 2. The sum starts with		
		int $1 + \Delta x$ and ends with the right endpoint	
	$1 + n\Delta x = 1 + 2 = 3$, so the Riemann sum is over the interval [1, 3]		
	The limit of the Riemann sum is the definite integral $\int_{1}^{3} f(x) dx$.		
	There could not be another value of b for which $\int_1^b x^2 dx$ has the		which $\int_{1}^{b} x^{2} dx$ has the
	same value as $\int_{1}^{3} x^{2} dx$ since $I(b) = \int_{1}^{b} x^{2} dx$ is a strictly increasing		
	function of <i>b</i> . T	Therefore, $b = 3$ is the only	choice.
(C)	Incorrect. Suppose the value of the limit is A . The equation		A. The equation
	$A = \int_{1}^{b} x^{2} dx = \frac{b^{3}}{3} - \frac{1}{3}$ has only one solution, $b = (3A + 1)^{\frac{1}{3}}$.		
	Therefore, b co	uld not be any real number	•
(D)		response might come from	•
	does not exist si	nce it involves an infinite si	ummation.

Skill		Learning Objective	Topic
			Determining Intervals
2.E		FUN-4.A	on Which a Function Is
2.E		FUN-4.A	Increasing or
			Decreasing
(A)	Incorrect. The g	graph of f is concave up w	here f' is increasing.
	This response m	night come from switching	the roles of the function
	and its derivativ	re and thinking that f is in	creasing where the graph
	of f' is concave up. The graph of f' is concave up on the interv		ncave up on the intervals
	(0, 1) and (2, 4).		
(B)	Incorrect. This response might come from treating the given		treating the given graph
	as the graph of	f rather than the graph of f' . These are the two	
	intervals where f' is increasing.		
(C)	Incorrect. These	e are the intervals where bot	th f and f' are
	increasing.		
(D)	Correct. The function f is increasing on closed intervals where f'		closed intervals where f'
	is positive on th	e corresponding open inter	vals. The graph indicates
	that $f'(x) > 0$ on the intervals $(0, 2)$ and $(4, 5)$, so		(4, 5), so f is
	increasing on th	te intervals $[0, 2]$ and $[4, 5]$].

Skill		Learning Objective	Topic
1.E		CHA-3.B	Straight-Line Motion: Connecting Position, Velocity, and Acceleration
(A)	Incorrect. This response is the acceleration of the object at time $t = 3$.		
(B)	Correct . The velocity is the derivative of the height. Using the calculator, $v(3) = h'(3) = 7.778$.		
(C)	Incorrect. This response is the height of the object at time $t = 3$.		
(D)	Incorrect. This response is the value of $\int_{1}^{3} h(t) dt$.		

Skill		Learning Objective	Topic
1.E		CHA-3.F	Approximating Values of a Function Using Local Linearity and Linearization
(A)	Correct. An equation of the line tangent to the graph of g at $x = a$ is $y = g(a) + g'(a)(x - a)$. In this question, $a = -1$. The value of y when $x = -1.2$ would be an approximation to $g(-1.2)$. $g(-1.2) \approx g(-1) + g'(-1)(-1.2 - (-1)) = 4 + 2(-0.2) = 3.6$		
(B)	Incorrect. This response would result if the derivative was not used as the slope of the tangent line, as follows. $g(-1.2) \approx g(-1) + \Delta x = 4 + (-0.2) = 3.8$		
(C)	Incorrect. This response would result if the derivative was not used as the slope of the tangent line, and Δx was taken to be 0.2 rather than -0.2 , as follows. $g(-1.2) \approx g(-1) + \Delta x = 4 + 0.2 = 4.2$		
(D)	Incorrect. During the evaluation of the change in y along the tangent line, the change in x was incorrectly taken to be 0.2 rather than -0.2 , as follows. $g(-1.2) \approx g(-1) + \Delta y = g(-1) + g'(-1)\Delta x = 4 + 2(0.2) = 4.4$		

Skill		Learning Objective	Topic
3.F		CHA-4.B	Finding the Average Value of a Function on an Interval
(A)		efinite integral was not divi	ided by the length of the
(B)	Correct. The average value of a function f over an interval $[a, b]$ is $\frac{1}{b-a} \int_a^b f(x) dx$. Tara's average heart rate from $t=30$ to $t=60$ is the average value of the function h over the interval $[30, 60]$ and would therefore be given by the expression $\frac{1}{60-30} \int_{30}^{60} h(t) dt$.		
(C)	Incorrect. This response is the average rate of change of Tara's heart rate from $t = 30$ to $t = 60$, not the average of her heart rate over that interval. By the Fundamental Theorem of Calculus, this expression is equal to $\frac{h(60) - h(30)}{60 - 30}$.		
(D)	Incorrect. This response is the average of the rate of change of Tara's heart rate at the two times $t = 30$ and $t = 60$, not the average of her heart rate over the interval from $t = 30$ to $t = 60$.		

Skill		Learning Objective	Topic
1.E			The Fundamental Theorem of Calculus
1,E		FUN-6.B	and Definite Integrals
(A)	Incorrect. This	response comes from taking	
	g(5) = g(2) + g(3)	g'(5) = -7 + g'(5) = 4.402	
(B)	Incorrect. This	response is the value of $g'($	5), not the value of $g(5)$.
(C)	Correct. By the Fundamental Theorem of Calculus,		Calculus,
	g(5)-g(2)=	$\int_{2}^{5} g'(x) dx.$ Therefore,	
	$g(5) = g(2) + \int_{2}^{5} \sqrt{x^{3} + x} \ dx = -7 + \int_{2}^{5} \sqrt{x^{3} + x} \ dx = 13.899,$		$x^3 + x dx = 13.899,$
	where the evaluation of the definite integral is done with the calculator.		
(D)	Incorrect. This response would result if the initial condition was not		initial condition was not
	included in the computation, resulting in		
	$g(5) = \int_2^5 \sqrt{x^3} -$	+ x dx = 20.899.	

Skill		Learning Objective	Topic
2.B		LIM-2.A	Exploring Types of Discontinuities
(A)		unction corresponding to the $x = 3$, not a removable on $\underset{\Rightarrow 3^{+}}{\text{m}} f(x)$.	0 1 , 1
(B)		unction corresponding to the $x = 3$, not a removable on $\underset{\Rightarrow 3^+}{\text{m}} f(x)$.	0 1 , 1
(C)	exists, but $f(c)$	does not exist or is not equal to could be the graph of f so $f(3)$.	al to the value of the
(D)		unction corresponding to the $x = 3$ due to a vertical asymptotic $x = 3$ due to a vertical $x = 3$ due to a vertical $x = 3$ due to a vertical $x = 3$ due to $x = 3$	0 1

Skill		Learning Objective	Topic			
1.E		FUN-6.A	Applying Properties of Definite Integrals			
(A)	Correct. Using	the property of definite in	tegrals over adjacent intervals,			
	$\int_0^{20} f(x) dx = 1$	$\int_0^{17} f(x) dx + \int_{17}^{20} f(x) dx$	= 8 + (-3) = 5.			
	Another applica	ation of the same property	gives			
	$\int_0^{20} f(x) dx = \int_0^{20} f(x) dx$	$\int_{0}^{13} f(x) dx + \int_{13}^{20} f(x) dx$	$\Rightarrow \int_0^{13} f(x) dx = \int_0^{20} f(x) dx - \int_{13}^{20} f(x) dx.$			
	Therefore, $\int_0^{13} f$	$f(x) dx = \int_0^{20} f(x) dx - \int_0^{20} f(x) dx$	$\int_{13}^{20} f(x) dx = 5 - 7 = -2.$			
(B)	Incorrect. Using	g the property of definite i	ntegrals over adjacent intervals,			
	$\int_0^{20} f(x) dx = \int_0^{20} f(x) dx$	$\int_{0}^{13} f(x) dx + \int_{13}^{20} f(x) dx$	$\Rightarrow \int_0^{13} f(x) dx = \int_0^{20} f(x) dx - \int_{13}^{20} f(x) dx.$			
	However, if \int_0^{20}	However, if $\int_0^{20} f(x) dx$ was incorrectly determined to be				
	$\int_0^{17} f(x) dx - \int$	$\int_{17}^{20} f(x) dx = 8 - (-3) = 1$	11 rather than			
	$\int_0^{17} f(x) dx + \int$	$\int_{17}^{20} f(x) dx = 8 + (-3) = 3$	5, the result would be as follows.			
	$\int_0^{13} f(x) dx = \int$	$\int_{0}^{20} f(x) dx - \int_{13}^{20} f(x) dx$	= 11 - 7 = 4			
(C)		-	ne property of definite integrals over adjacent			
			values of the three definite integrals might			
	have been added					
	$\int_0^\infty f(x) dx + \int$	$\int_{17}^{20} f(x) dx + \int_{13}^{20} f(x) dx$	= 8 + (-3) + 7 = 12			
(D)	Incorrect. The p	property of definite integra	als over adjacent intervals was not used			
	:		definite integrals were added, as follows.			
	$\left \int_0^{17} f(x) dx \right +$	$\left \int_{17}^{20} f(x) dx \right + \left \int_{13}^{20} f(x) dx \right $	dx = 8 + 3 + 7 = 18			

Skill		Learning Objective	Topic			
3.D		LIM-2.C	Removing Discontinuities			
(A)	limits are equal. $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} x$ The solution to	Correct . The limit at $x = 3$ exists if the left-hand and right-hand limits are equal. $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) \Rightarrow k^{3} + 3 = \frac{16}{k^{2} - 3}$ The solution to this equation for $k > 0$ is $k = 2.081$. With this value of k , $\lim_{x \to 3} f(x)$ exists and is equal to $f(3)$. Therefore, f is				
(B)	Incorrect. This response comes from trying to make the left-hand and right-hand limits of the derivative equal at $x = 3$, as follows. $f'(x) = \begin{cases} 1 & \text{for } x < 3 \\ \frac{16}{\left(k^2 - x\right)^2} & \text{for } x > 3 \end{cases}$ $\lim_{x \to 3^-} f'(x) = \lim_{x \to 3^+} f'(x) \Rightarrow 1 = \frac{16}{\left(k^2 - 3\right)^2}$					
(C)	Incorrect. In try equal at $x = 3$, k rather than the condition $27 + x = \frac{16}{9 - x}$	The solution to this equation for $k > 0$ is $k = 2.646$. Incorrect. In trying to set the left-hand and right-hand limits of f equal at $x = 3$, the 3 might have been substituted for the parameter k rather than the variable x , as follows. $27 + x = \frac{16}{9 - x}$ The positive solution to this equation is $x = 8.550$.				
(D)	Incorrect. This is equation that has from trying to in derivative equal derivative of the $f'(x) = \begin{cases} 1 & -1 \\ k^2 & -1 \end{cases}$ $\lim_{x \to 3^{-}} f'(x) = 1$	response might come from s no positive solution. For nake the left-hand and rig	m errors that lead to an or example, it might come ght-hand limits of the g a chain rule error in the ws.			

Skill		Learning Objective	Topic
3.D		FUN-1.A	Working with the Intermediate Value Theorem
(A)	guaranteed to ha	e Intermediate Value Theorems at least one zero, but it expects one in the following $f(x) = \frac{2}{3}x^3 + 2x^2$ le, but it has three zeros.	could have more. For
(B)	that does not gu For example, the	argest value of f in the table arantee that f has a relative function $f(x) = \frac{2}{3}x^3 + 2$ le, but it does not have a resolution $f(x) = \frac{2}{3}x^3 + 2$.	we maximum at $x = 2$. $2x^2 - \frac{14}{3}x + 1$ satisfies the
(C)	Correct. Since f is continuous on the closed interval $[-5, 2]$ and $f(-5) < 4 < f(2)$, then by the Intermediate Value Theorem there must be a value c in the open interval $(-5, 2)$ such that $f(c) = 4$.		
(D)	Value Theorem the open interval assumption that Consider the function $f(x) = \begin{cases} -9 \\ 10x + \\ 4x + 1 \\ 5 \end{cases}$ The graph of f	e it is true that $\frac{f(2) - f(-1)}{2 - (-5)}$ cannot be used to claim that $f'(c) = f(-1)$ is differentiable on the action $f(-1) = f(-1)$ defined as follow for $f(-1) = f(-1)$ goes through each of the par pieces of the graph has slipe.	at there exists a value c in = 2 because there is no open interval $(-5, 2)$. s.

Skill		Learning Objective	Topic
			Using the First
3.D		FUN-4.A	Derivative Test to Find
			Relative (Local) Extrema
(A)	Incorrect. This is	is a value of x where $f'(x)$	= g(x) = 0. But since
	the graph of $y =$	= g(x) goes from negative	to positive at this point,
	this would be a	local minimum for the grap	oh of $y = f(x)$, not a
	local maximum		
(B)	Incorrect. This is	is a value of x where $g'(x) = 0$, not where	
	f'(x) = g(x) =	= 0. It is the x -coordinate of a local maximum for	
	the graph of $y =$	= g(x), not for the graph of $y = f(x)$.	
(C)	Incorrect. This is a value of x where $g'(x) = 0$, not where		= 0, not where
	f'(x) = g(x) =	= 0. It is the x -coordinate of	of a local minimum for the
	graph of $y = g(x)$.		
(D)	Correct. A local maximum for the graph of $y = f(x)$ or		f y = f(x) occurs at a
	value of x when	f' = g changes from po	sitive to negative. The
	graph of $y = g($	(x) crosses the x -axis from	n positive to negative at
	x = 3.140.		

Skill		Learning Objective	Topic
2.B		FUN-4.A	Connecting a Function, Its First Derivative, and Its Second Derivative
(A)	to $x = 2$, then of from $x = 3$ to $x = 3$ from $x = 0$ to $x = 3$ from $x = 3$ to $x = 3$ behavior, so it contains a local minimum of $x = 3$	raph of f indicates that f decreasing from $x = 2$ to $x = 5$. Therefore, the graph $x = 2$, negative from $x = 2$, respective from $x = 2$ and is different to the following formula of $x = 2$ and is different to the following from the following formula of $x = 3$ and is different from the following from the fo	x = 3, and then increasing of f' should be positive to $x = 3$, and positive y one that has this ome other features of the f is not differentiable at need at $x = 2$. Since f entiable there, $f'(3)$
(B)	from $x = 0$ to from $x = 2$ to changes from do is the opposite of this graph. In add	graph shows the correct sign $x = 2$. However, the sign of $x = 3$ and positive from $x = 3$ and positive from $x = 3$ are creasing to increasing over of what is happening between didtion, the graph of $x = 3$ does $x = 3$ do	If f' should be negative f' = 3 to $f' = 3$ to $f' = 4$ the interval $f' = 4$ the
(C)	from $x = 2$ to from $x = 0$ to $x = 0$ to $x = 2$	graph shows the correct sign $x = 5$. However, the sign o $x = 2$, not negative, since . In addition, the graph of $\lim_{x \to 2^{-}} f'(x) = \lim_{x \to 2^{+}} f'(x)$,	f f' should be positive f is increasing from f does not support the
(D)	from $x = 0$ to from $x = 3$ to in addition, the	graph shows the correct sign $x = 3$. However, the sign o $x = 5$, since f is increasing graph of f does not suppose as suggested in this graph	of f' should be positive g over the interval $(3, 5)$.

Skill		Learning Objective	Topic		
1.E		CHA-4.C	Connecting Position, Velocity, and Acceleration Functions Using Integrals		
(A)	Incorrect. It was correctly determined that the particle changes direction from moving left to moving right at $t=b=1.84527$. This value might have been stored in the calculator, and the stored value used for the limit of integration in order to ensure accuracy. However, this response is the displacement during the time interval $0 < t < b$, not the total distance traveled. $\int_0^b v(t) dt = \int_0^{1.84527} t \sin\left(t^3\right) dt = 0.212$				
(B)	to negative was been stored in the of integration in particle changes from left to right the time interva	ero of $v(t)$ where the velocities found to be $t = a = 1.4645$ the calculator, and the stored order to ensure accuracy. It direction from moving right. The total distance traveled $1.0 < t < a$ is $1.46459 t\sin(t^3) dt = 0.612$.	59. This value might have d value used for the limit This is the time when the ht to moving left, not d by the particle during		
(C)	that the velocity positive. The time moving left to make the velocity $t = b = 1.8452^{\circ}$ stored value for The total distant	aph of the velocity over the changes from positive to not need to which the particle chancoving right, therefore, is that the changes from negative to 7. Store this value in the call the limit of integration in the call the traveled by the particle depends on the control of the particle of $ v(t) dt = \int_0^{1.84527} t\sin(t^3) t\sin(t^3)$	egative, then back to nges direction from he second zero of $v(t)$, to positive. This zero is at liculator, and use the order to ensure accuracy.		
(D)	during the entir	response is the total distance time interval $0 < t < 2$. $ \left t \sin(t^3) \right dt = 1.208 $	e traveled by the particle		

Skill		Learning Objective	Topic
1.E		CHA-3.A	Interpreting the Meaning of the Derivative in Context
(A)	average rate of cless than -0.5 . was correctly for change was take derivative. In either	response might be chosen in thange resulted in a value that would also be chosen if the thing to be -0.39206 , but then to be the second derivative ther case, the resulting equanterval $[0, 1.565]$.	hat was greater than 0 or the average rate of change the instantaneous rate of the of f , not the first
(B)	change was correctly was drawn to the horizontal limits antaneous rate of f , but the average thought to be the $f(0) + f(1.565)$ over the interval	response would be chosen if the ectly found to be -0.39206 to determine the number of the experiment $y = -0.39206$. It would not expect the experiment of the experiment $\frac{1}{1.565} \int_{0}^{1.565} f(x) dx = -0.3160$ and the experiment $\frac{1}{1.565} \int_{0}^{1.565} f(x) dx = -0.3160$ and the experiment $\frac{1}{1.565} \int_{0}^{1.565} f(x) dx = -0.3160$ and the experiment $\frac{1}{1.565} \int_{0}^{1.565} f(x) dx = -0.3160$ and the experiment $\frac{1}{1.565} \int_{0}^{1.565} f(x) dx = -0.3160$ and the experiment $\frac{1}{1.565} \int_{0}^{1.565} f(x) dx = -0.3160$ and the experiment $\frac{1}{1.565} \int_{0}^{1.565} f(x) dx = -0.3160$ and the experiment $\frac{1}{1.565} \int_{0}^{1.565} f(x) dx = -0.3160$ and the experiment $\frac{1}{1.565} \int_{0}^{1.565} f(x) dx = -0.3160$ and $\frac{1}{1.565} \int_{0}^{1.565} f(x) dx = -0.3160$	6, but the graph of f , not f intersection points with d also be chosen if the identified as the derivative he interval $[0, 1.565]$ was age value of the function 0.32195. In all these cases,
(C)	[0, 1.565] is $\frac{f(0)}{f(0)}$ of change of $f(0)$ graph of $f(0)$, pro	erage rate of change of f of $\frac{(1.565) - f(0)}{1.565 - 0} = -0.39206$ is the derivative, $f'(x) = x$ oduced using the calculator $\frac{1}{2}$ 06 three times in the open	5. The instantaneous rate $x^3 - 2x^2 + x - \frac{1}{2}$. The c, intersects the horizontal
(D)	Incorrect. This a polynomial of	response might be chosen b degree 4.	because the function f is

Skill		Learning Objective	Topic
3.E		FUN-4.A	Sketching Graphs of Functions and Their Derivatives
(A)	concave up beca (3, 12) and (5, increasing and of for $x > 5$. In pa value of y on the	raph of g is increasing because $g''(x) > 0$. The secant 18) is $y = 3(x - 3) + 12$. It concave up, the graph will 1 articular, the value of $g(6)$ he secant line at $x = 6$, that $(x + 2) + 12 = 21$. Therefore, $g(6)$	t line through the points Because the graph of g is ie above the secant line is strictly greater than the t is,
(B)	concave up beca (3, 12) and $(5, 12)$ increasing and of for $x > 5$. In particular value of y on the	raph of g is increasing because $g''(x) > 0$. The secant 18) is $y = 3(x - 3) + 12$. It concave up, the graph will 1 articular, the value of $g(6)$ he secant line at $x = 6$, that $(x + 2) + 12 = 21$. Therefore, 22	t line through the points Because the graph of g is ie above the secant line is strictly greater than the t is,
(C)	concave up beca (3, 12) and (5, increasing and c for $x > 5$. In pa value of y on the	raph of g is increasing because $g''(x) > 0$. The secant 18) is $y = 3(x - 3) + 12$. It concave up, the graph will 1 articular, the value of $g(6)$ are secant line at $x = 6$, that $(x + 1) + 12 = 21$. Therefore, $g(6)$	t line through the points Because the graph of g is ie above the secant line is strictly greater than the t is,
(D)	concave up beca (3, 12) and (5, increasing and c for $x > 5$. In pa value of y on the	raph of g is increasing because $g''(x) > 0$. The secant 18) is $y = 3(x - 3) + 12$. It concave up, the graph will 1 articular, the value of $g(6)$ he secant line at $x = 6$, that $(x + 2) + 12 = 21$. Therefore, $g(6)$	t line through the points Because the graph of g is ie above the secant line is strictly greater than the t is,

Skill		Learning Objective	Topic
1.E		FUN-3.E	Differentiating Inverse Functions
(A)	Incorrect. This	response would result if it w	vas correctly determined
	that $g(2) = f^{-1}$	1(2) = 3, but a sign error w	ras made in taking
	$g'(2) = -\frac{1}{f'(3)}$	rather than $g'(2) = \frac{1}{f'(3)}$, perhaps by combining
	the calculations perpendicular li	of the slope of an inverse fune.	inction and the slope of a
(B)	Incorrect. This	response would result if the	derivative of g at $x = 2$
	was taken to be	the reciprocal of the derivat	tive of f at $x = 2$,
	resulting in $g'(x)$	$2) = \frac{1}{f'(2)} = \frac{1}{4}$ instead of	
	$g'(2) = \frac{1}{f'(g(2))}$	$\frac{1}{f'(3)} = \frac{1}{f'(3)} = \frac{1}{5}$. In addition	on, the line was computed
	using the point $(2, 1)$ on the graph of f rather than the point		
	(2,3) on the graph of g .		
(C)	_	f(g(x)) = x, the chain rule	
	determine that	f'(g(x))g'(x) = 1. Substitu	sting $x = 2$ gives
	1 = f'(g(2))g'	$(2) = f'(3)g'(2) \Rightarrow g'(2)$	$=\frac{1}{f'(3)}=\frac{1}{5}$. Since
	$g(2) = f^{-1}(2)$	= 3, an equation of the line	e tangent to the graph of
		herefore $y = \frac{1}{5}(x-2) + 3$.	
(D)		response is an equation of the	•
		the point where $x = 2$ rather	
	the graph of g ,	the inverse function of f ,	at $x = 2$.

2019 AP Calculus AB Question Descriptors and Performance Data

Multiple-Choice Questions

Question	Skill	Learning Objective	Topic	Key	% Correct
1	1.E	FUN-6.C	Finding Antiderivatives and Indefinite Integrals - Basic Rules and Notation	В	88
2	1.D	CHA-2.C	Defining the Derivative of a Function and Using Derivative Notation	С	65
3	1.E	FUN-3.C	The Chain Rule	D	66
4	1.E	FUN-6.D	Integrating Using Substitution	D	54
5	2.B	FUN-4.A	Determining Concavity of Functions over Their Domains	С	70
6	1.E	FUN-3.D	Implicit Differentiation	D	41
7	1.E	FUN-3.A	Derivatives of $\cos x$, $\sin x$, e^x , and $\ln x$	D	62
8	2.B	LIM-2.D	Connecting Limits at Infinity and Horizontal Asymptotes	В	50
9	1.E	CHA-5.A	Finding the Area Between Curves Expressed as Functions of x	В	64
10	1.E	FUN-3.B	The Quotient Rule	А	64
11	1.E	FUN-6.A	Applying Properties of Definite Integrals	А	53
12	3.D	FUN-1.B	Using the Mean Value Theorem	С	63
13	1.E	LIM-4.A	Using L'Hospital's Rule for Finding Limits of Indeterminate Forms	А	60
14	2.C	FUN-7.F	Exponential Models with Differential Equations	D	75
15	3.C	FUN-2.A	Connecting Differentiability and Continuity - Determining When Derivatives Do and Do Not Exist	А	54
16	1.E	FUN-7.D	Finding General Solutions Using Separation of Variables	В	30
17	2.B	FUN-5.A	Interpreting the Behavior of Accumulation Functions Involving Area	В	65
18	1.E	FUN-3.B	The Product Rule	D	62
19	2.B	CHA-3.B	Straight-Line Motion: Connecting Position, Velocity, and Acceleration	А	34
20	1.C	FUN-6.A	Applying Properties of Definite Integrals	С	57
21	1.D	CHA-2.B	Defining the Derivative of a Function and Using Derivative Notation	D	61
22	2.D	FUN-7.C	Sketching Slope Fields	D	49
23	1.E	CHA-5.B	Volumes with Cross Sections - Squares and Rectangles	В	36
24	3.D	FUN-6.B	The Fundamental Theorem of Calculus and Definite Integrals	А	40
25	3.G	FUN-7.B	Verifying Solutions for Differential Equations	А	34
26	3.D	FUN-4.A	Using the Candidates Test to Find Absolute (Global) Extrema	В	53
27	3.F	CHA-3.A	Interpreting the Meaning of the Derivative in Context	С	66
28	1.E	CHA-3.E	Solving Related Rates Problems	В	36
29	2.B	LIM-2.D	Connecting Infinite Limits and Vertical Asymptotes	А	34
30	3.D	LIM-5.C	Riemann Sums, Summation Notation, and Definite Integral Notation	В	27

2019 AP Calculus AB Question Descriptors and Performance Data

Question	Skill	Learning Objective	Торіс	Key	% Correct
76	2.E	FUN-4.A	Determining Intervals on Which a Function Is Increasing or Decreasing	D	82
77	1.E	CHA-3.B	Straight-Line Motion: Connecting Position, Velocity, and Acceleration	В	86
78	1.E	CHA-3.F	Approximating Values of a Function Using Local Linearity and Linearization	А	66
79	3.F	CHA-4.B	Finding the Average Value of a Function on an Interval	В	61
80	1.E	FUN-6.B	The Fundamental Theorem of Calculus and Definite Integrals	С	62
81	2.B	LIM-2.A	Exploring Types of Discontinuities	С	81
82	1.E	FUN-6.A	Applying Properties of Definite Integrals	А	71
83	3.D	LIM-2.C	Removing Discontinuities	А	53
84	3.D	FUN-1.A	Working with the Intermediate Value Theorem	С	48
85	3.D	FUN-4.A	Using the First Derivative Test to Find Relative (Local) Extrema	D	51
86	2.B	FUN-4.A	Connecting a Function, Its First Derivative, and Its Second Derivative	А	76
87	1.E	CHA-4.C	Connecting Position, Velocity, and Acceleration Functions Using Integrals	С	32
88	1.E	CHA-3.A	Interpreting the Meaning of the Derivative in Context	С	33
89	3.E	FUN-4.A	Sketching Graphs of Functions and Their Derivatives	В	33
90	1.E	FUN-3.E	Differentiating Inverse Functions	С	37

Free-Response Questions

Question	Skill	Learning Objective	Topic	Mean Score
1	1.E 3.D 3.F 4.D 4.A 4.B 4.C 4.E	CHA-2.D CHA-4.E LIM-5.A	2.3 8.3 6.2 8.3	6.03
2	1.D 1.E 2.B 4.E	CHA-5.A CHA-5.C CHA-5.B	8.4 8.12 8.7	3.46
3	1.D 1.E 3.C 3.D 4.A	CHA-2.A CHA-2.C CHA-4.B FUN-1.C	2.1 2.2 8.1 5.2	1.71
4	1.D 1.E 2.B 2.E 4.A	FUN-6.A FUN-4.A	6.6 5.5 5.6	2.98
5	1.D 1.E 3.D 3.E 4.A	CHA-4.C CHA-3.B FUN-1.B FUN-1.A	8.2 4.2 5.1 1.16	2.71
6	1.C 1.E 3.G 4.C	FUN-3.D FUN-4.E CHA-3.E	3.2 5.12 4.5	2.98