CMPT 379 Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

10/18/10

Parsing - Roadmap

- Parser:
 - decision procedure: builds a parse tree
- Top-down vs. bottom-up
- LL(1) Deterministic Parsing
 - recursive-descent
 - table-driven
- LR(k) Deterministic Parsing
 - LR(0), SLR(1), LR(1), LALR(1)
- Parsing arbitrary CFGs Polynomial time parsing

Top-Down vs. Bottom Up

Grammar: $S \rightarrow A B$ Input String: ccbca

 $A \rightarrow c \mid \epsilon$

 $B \rightarrow cbB \mid ca$

Top-Down/leftmost		Bottom-Up/rightmost		
$S \Rightarrow AB$ $S \rightarrow AB$		ccbca ← Acbca	A→c	
⇒cB	A→c	← AcbB	B→ca	
⇒ccbB	B→cbB	← AB	B→cbB	
⇒ccbca	B→ca	⇐ S	S→AB	

10/18/10

Top-Down: Backtracking

Backtracking

For some grammars, rule ordering is crucial for backtracking parsers, e.g $S \rightarrow aSa, S \rightarrow aa$

5

Transition Diagram

10/18/10 6

Predictive Top-Down Parser

- Knows which production to choose based on single lookahead symbol
- Need LL(1) grammars

First L: reads input Left to right
Second L: produce Leftmost derivation
one symbol of lookahead

- Can't have left-recursion
- Must be left-factored (no left-factors)
- Not all grammars can be made LL(1)

10/18/10

7

Leftmost derivation for id + id * id

$$E \rightarrow E + E$$
 $E \Rightarrow E + E$
 $E \rightarrow E * E$ $\Rightarrow id + E$
 $E \rightarrow (E)$ $\Rightarrow id + E * E$
 $E \rightarrow -E$ $\Rightarrow id + id * E$
 $E \rightarrow id$ $\Rightarrow id + id * id$

$$E \Rightarrow^*_{lm} id + E \setminus^* E$$

Predictive Parsing Table

	Productions			
1	$1 \mid T \to F T'$			
2	2	Τ' → ε		
3	3	T'→* F T'		
4	ļ	F → id		
5	5	$\mathbf{F} \rightarrow (\mathbf{T})$		

	*	()	id	\$
T		T → F T'		T → F T'	
T'	T' → * F T'		Τ' → ε		Τ' → ε
F		$\mathbf{F} \rightarrow (\mathbf{T})$		F → id	

10/18/10

Trace "(id)*id" * () id \$ Trace "(id)*id" T' T' o *FT' T' o *E T' o *E

Stack	Input	Output
\$T	(id)*id\$	
\$T'F	(id)*id\$	T → F T'
\$T')T((id)*id\$	$\mathbf{F} \rightarrow (\mathbf{T})$
\$T')T	id)*id\$	
\$T')T'F	id)*id\$	T → F T'
\$T')T'id	id)*id\$	F → id
\$T')T')*id\$	
\$T'))*id\$	Τ' → ε

		*	()	id	\$
	T		T → FT'		T → FT'	
Trace "(id)*id"	T'	T'→*FT'		Τ' → ε		Τ' → ε
rrace (la) la	F		$\mathbf{F} \rightarrow (\mathbf{T})$		F → id	

Stack	Input	Output
\$T'	*id\$	
\$T'F*	*id\$	T'→* F T'
\$T'F	id\$	
\$T'id	id\$	F → id
\$T'	\$	
\$	\$	Τ' → ε

10/18/10

Table-Driven Parsing

```
stack.push($); stack.push($);
a = input.read();
forever do begin

X = stack.peek();
if X = a and a = $ then return SUCCESS;
elsif X = a and a != $ then
pop X; a = input.read();
elsif X != a and X ∈ N and M[X,a] then
pop X; push right-hand side of M[X,a];
else ERROR!
end
```

Predictive Parsing table

- Given a grammar produce the predictive parsing table
- We need to to know for all rules A $\rightarrow \alpha \mid \beta$ the lookahead symbol
- Based on the lookahead symbol the table can be used to pick which rule to push onto the stack
- This can be done using two sets: FIRST and FOLLOW

10/18/10

FIRST and FOLLOW

$$a \in \text{FIRST}(\alpha) \text{ if } \alpha \Rightarrow^* a\beta$$

if $\alpha \Rightarrow^* \epsilon \text{ then } \epsilon \in \text{FIRST}(\alpha)$
 $a \in \text{FOLLOW}(A) \text{ if } S \Rightarrow^* \alpha A a\beta$
 $a \in \text{FOLLOW}(A) \text{ if } S \Rightarrow^* \alpha A \gamma a\beta$
and $\gamma \Rightarrow^* \epsilon$

Conditions for LL(1)

- Necessary conditions:
 - no ambiguity
 - no left recursion
 - Left factored grammar
- A grammar G is LL(1) if whenever

```
A \rightarrow \alpha \mid \beta
```

- 1. First(α) \cap First(β) = \emptyset
- 2. $\alpha \Rightarrow * \epsilon \text{ implies !}(\beta \Rightarrow * \epsilon)$
- 3. $\alpha \Rightarrow * \varepsilon \text{ implies First}(\beta) \cap \text{Follow}(A) = \emptyset$

10/18/10

15

ComputeFirst(α : string of symbols)

```
// assume \alpha = X_1 X_2 X_3 \dots X_n
if X_1 \subset T then First[\alpha] := \{X_1\}
else begin
i:=1; First[\alpha] := ComputeFirst(X_1) \setminus \{\epsilon\};
while X_i \Rightarrow^* \epsilon do begin
if i < n then
First[\alpha] := First[\alpha] \cup ComputeFirst(X_{i+1}) \setminus \{\epsilon\};
else
First[\alpha] := First[\alpha] \cup \{\epsilon\};
i := i + 1;
end
end
```

ComputeFirst(α : string of symbols)

```
// assume \alpha = X_1 X_2 X_3 ... X_n

if X_1 \in T then First[\alpha] := \{X_1\}

else begin

i:=1; First[\alpha] := ComputeFirst(X_1) \setminus \{\epsilon\};

while X_i \Rightarrow^* \epsilon do begin

if i < n then

First[\alpha] := First[\alpha] \cup ComputeFirst(X_{i+1}) \setminus \{\epsilon\};

else

First[\alpha] := First[\alpha] \cup \{\epsilon\};

i:= i + 1;

end

Recursion in computing FIRST causes problems when faced with recursive grammar rules
```

10/18/10

ComputeFirst; modified

```
foreach X \in T do First[X] := \{X\};

foreach p \in P : X \to \epsilon do First[X] := \{\epsilon\};

repeat foreach X \in N, p : X \to Y_1 Y_2 Y_3 ... Y_n do

begin i:=1;

while Y_i \Rightarrow^* \epsilon and i <= n do begin

First[X] := First[X] \cup First[Y_i] \setminus \{\epsilon\};

i := i+1;

end

if i = n+1 then First[X] := First[X] \cup \{\epsilon\};

until no change in First[X] for any X;
```

ComputeFirst; modified

```
foreach X \in T do First[X] := X;

foreach p \in P : X \to \epsilon do First[X] := \{\epsilon\};

repeat foreach X \in N, p : X \to Y_1 Y_2 Y_3 ... Y_n do

begin i:=1; Non-recursive FIRST computation

while Y_i \Rightarrow * Non-recursive grammars.

First[X] := F Computes a fixed point for FIRST[X]

i := i+1; for all non-terminals X in the grammar.

end But this algorithm is very inefficient.

if i = n+1 then First[X] := First[X] \cup \{\epsilon\};

until no change in First[X] for any X;
```

10/18/10

ComputeFollow

```
Follow(S) := \{\$\};

repeat

foreach p \in P do

    case p = A \rightarrow \alpha B\beta begin

    Follow[B] := Follow[B] \cup ComputeFirst(\beta)\{\epsilon};

    if \epsilon \in First(\beta) then

    Follow[B] := Follow[B] \cup Follow[A];

    end

    case p = A \rightarrow \alpha B

    Follow[B] := Follow[B] \cup Follow[A];

until no change in any Follow[N]
```

Example First/Follow

$$S \rightarrow AB$$

 $A \rightarrow c \mid \epsilon$ Not an LL(1) grammar
 $B \rightarrow cbB \mid ca$
First(A) = {c, \epsilon} Follow(A) = {c}
First(B) = {c} Follow(A) \cap First(cbB) = First(c) = {c}
First(ca) = {c} Follow(B) = {\$}
First(S) = {c} Follow(S) = {\$}

ComputeFirst on Left-recursive Grammars

- ComputeFirst as defined earlier loops on leftrecursive grammars
- Here is an alternative algorithm for ComputeFirst
 - 1. Compute non left-recursive cases of FIRST
 - 2. Create a graph of recursive cases where FIRST of a non-terminal depends on another non-terminal
 - 3. Compute Strongly Connected Components (SCC)
 - Compute FIRST starting from root of SCC to avoid cycles

ComputeFirst on Left-recursive Grammars

- Each Strongly Connected Component can have recursion)
- But the connections between SCC means that (by defn) what we have now is a directed acyclic graph – hence without left recursion
- Unlike top-down LL parsing, bottom-up LR parsing allows left-recursive grammars, so this algorithm is useful for LR parsing

10/18/10

ComputeFirst on Left-recursive Grammars

- S → BD | D
- D \rightarrow d | Sd

- A → CB | a
- C → Bb | ε
- B → Ab | b

 $FIRST_0[A] := \{a, b\}$ $FIRST_0[C] := \{\}$

 $FIRST_0[B] := \{b\}$

 $FIRST_0[S] := \{b,d\}$

 $FIRST_0[D] := \{d\}$

Compute Strongly Connected Components

2 SCCs: e.g. consider B-A-C

 $FIRST[B] := FIRST_0[B] + FIRST[A]$

 $FIRST[A] := FIRST_0[A] + FIRST[C]$

 $FIRST[C] := FIRST_0[C] + FIRST_0[B]$

FIRST[C] := FIRST[C] + $\{\epsilon\}$

24

How to compute: Does $X \Rightarrow * \varepsilon$?

 The question `Does X ⇒* ε?' can be written as the predicate: nullable(X)

```
Nullable = {} (set containing nullable non-terminals)  
Changed = True  
While (changed):  
    changed = False  
    if X is not in Nullable:  
    if  
        1. X \rightarrow \varepsilon is in the grammar, or  
        2. X \rightarrow Y_1 \dots Y_n is in the grammar and Y_i is in Nullable for all i then  
    add X to Nullable; changed = True
```

10/18/10

Converting to LL(1)

```
S \rightarrow AB
                                  Note that grammar
  A \rightarrow c \mid \epsilon
                                  is regular: c? (cb)* ca
 B \rightarrow cbB \mid ca
c (c b c b ... c b) c a
                                      c c (b c b ... c b c) a
                                         (b c b ... c b c) a
  (c b c b ... c b) c a
                                           S \rightarrow cAa
           same as:
                                           A \rightarrow cB \mid B
             c c? (bc)* a
                                           B \rightarrow bcB \mid \epsilon
  10/18/10
                                                                    26
```

Verifying LL(1) using F/F sets

$$S \rightarrow cAa$$

$$A \rightarrow cB \mid B$$

$$B \rightarrow bcB \mid \epsilon$$

$$First(A) = \{b, c, \epsilon\}$$
 $Follow(A) = \{a\}$

$$First(B) = \{b, \epsilon\}$$
 $Follow(B) = \{a\}$

$$First(S) = \{c\} \qquad Follow(S) = \{\$\}$$

10/18/10 27

Building the Parse Table

- Compute First and Follow sets
- For each production A $\rightarrow \alpha$
 - foreach a ∈ First(α) add A \rightarrow α to M[A,a]
 - If ε ∈ First(α) add A → α to M[A,b] for each b in Follow(A)
 - If ε ∈ First(α) add A → α to M[A,\$] if \$ ∈ Follow(α)
 - All undefined entries are errors

Predictive Parsing Table

1	Productions			
1	$T \rightarrow F T'$			
2	T' → ε			
3	T' → * F T'			
4	F → id			
5	$\mathbf{F} \rightarrow (\mathbf{T})$			

$$FIRST(T) = \{id, (\}$$

$$FIRST(T') = \{*, \epsilon\}$$

$$FIRST(F) = \{id, (\}$$

$FOLLOW(T) = \{\$, \}$
$FOLLOW(T') = \{\$,\}$
$FOLLOW(F) = \{*,\$,\}$

	*	()	id	\$
T		T → F T'		T → F T '	
T'	T' → * F T'		Τ' → ε		T ' → ε
F		$\mathbf{F} \rightarrow (\mathbf{T})$		F → id	

10/18/10

Revisit conditions for LL(1)

- A grammar G is LL(1) iff whenever $A \rightarrow \alpha \mid \beta$
 - 1. First(α) \cap First(β) = \emptyset
 - 2. $\alpha \Rightarrow^* \epsilon$ implies !($\beta \Rightarrow^* \epsilon$)
 - 3. $\alpha \Rightarrow * \epsilon \text{ implies First}(\beta) \cap \text{Follow}(A) = \emptyset$
- No more than one entry per table field

10/18/10 30

Error Handling

- Reporting & Recovery
 - Report as soon as possible
 - Suitable error messages
 - Resume after error
 - Avoid cascading errors
- Phrase-level vs. Panic-mode recovery

10/18/10

Panic-Mode Recovery

- Skip tokens until synchronizing set is seen
 - Follow(A)
 - garbage or missing things after
 - Higher-level start symbols
 - First(A)
 - garbage before
 - Epsilon
 - if nullable
 - Pop/Insert terminal
 - "auto-insert"
- Add "synch" actions to table

10/18/10 32

Summary so far

- LL(1) grammars, necessary conditions
 - No left recursion
 - Left-factored
- Not all languages can be generated by LL(1) grammar
- LL(1) Parsing: O(n) time complexity
 - recursive-descent and table-driven predictive parsing
- LL(1) grammars can be parsed by simple predictive recursive-descent parser
 - Alternative: table-driven top-down parser