Thermal Properties of Materials

Topics included:

- How do materials respond to the application of heat?
- How do we define and measure...
 - -- heat capacity and specific heat?
 - -- thermal expansion?
 - -- thermal conductivity?
 - -- thermal shock resistance?
- Mechanism of heat absorbtion in solids.
- Difference between the thermal properties of ceramics, metals, and polymers?

What is meant by thermal properties of materials

- Thermal property refers to the response of a material to the application of heat.
- When solid absorbs energy in the form of heat, its temperature rises and its dimensions increase.
- The energy may be transported to cooler regions of the specimen if temperature gradients exist, and ultimately, the specimen may melt.
- Heat capacity, thermal expansion, and thermal conductivity are properties that are often critical in the practical use of solids.

Heat Capacity

The ability of a material to absorb heat, i.e.

• the amount of energy required to produce a unit temperature rise

Two ways to measure heat capacity:

 C_p : Heat capacity at constant pressure.

 C_v : Heat capacity at constant volume.

 C_p usually $> C_v$

• Heat capacity has units of $\frac{J}{\text{mol }\cdot \text{K}} \left(\frac{\text{Btu}}{\text{lb - mol }\cdot \text{F}} \right)$

Specific Heat

- Often denoted by a lowercase c
- this represents the heat capacity per unit mass
- units (J/kg · K, cal/g · K)

Dependence of Heat Capacity on Temperature

- Heat capacity...
 - -- increases with temperature
 - -- for solids it reaches a limiting value of 3R

- From atomic perspective:
 - -- Energy is stored as atomic vibrations.
 - -- As temperature increases, the average energy of atomic vibrations increases.

Atomic Vibrations

- Vibrational Heat Capacity
- Atoms in solid materials are constantly vibrating at very high frequencies and with relatively small amplitudes.
- Atomic vibrations are in the form of elastic waves
- Single quantum of vibrational energy is called a phonon

- Normal lattice positions for atoms
- Positions displaced because of vibrations

Specific Heat: Comparison

1050

Material	c_p (J/kg-K)
<u>Polymers</u>	at room <i>T</i>
Polypropylene	1925
Polyethylene	1850
Polystyrene	1170

 c_p (specific heat): (J/kg-K) C_p (heat capacity): (J/mol-K)

Ceramics
Magnesia (MgO)

Magnesia (MgO) 940 Alumina (Al₂O₃) 775

Glass 840

<u>Metals</u>

Teflon

increasing $c_{\!\scriptscriptstyle D}$

Aluminum 900 Steel 486

Tungsten 138 Gold 128 • Why is c_p significantly larger for polymers?

Thermal Expansion

Materials change size when temperature is changed

✓ Most solid materials expand upon heating and contract when cooled.

- α a material property
- extent to which a material expands upon heating
- units of reciprocal temperature [(°C)⁻¹ or (°F)⁻¹]

Atomic Perspective: Thermal Expansion

Asymmetric curve:

- -- increase temperature,
- -- increase in interatomic separation
- -- contributes to thermal expansion

Symmetric curve:

- -- increase temperature,
- -- no increase in interatomic separation
- -- no thermal expansion

Coefficient of Thermal Expansion: Comparison

0.4

Material $\alpha (10^{-6} (^{\circ}\text{C})^{-1})$ at room T

Polymers
Polymers
Polypropylene
Polyethylene
Polystyrene
Teflon
Polymers
145-180
106-198
106-198

Polymers have larger α values because of weak secondary bonds

MetalsAluminum23.6Steel12Tungsten4.5Gold14.2

Q: Why does α generally decrease with increasing bond energy?

Ceramics

increasing 14

Magnesia (MgO) 13.5 Alumina (Al_2O_3) 7.6 Soda-lime glass 9

Silica (cryst. SiO₂)

Thermal Expansion: Example

Example: A copper wire 15 m long is cooled from 40 to -9°C. How much change in length will it experience?

• For Cu $\alpha_t = 16.5 \times 10^{-6} \, (^{\circ}\text{C})^{-1}$

Thermal Expansion: Example

Example: A copper wire 15 m long is cooled from 40 to -9°C. How much change in length will it experience?

• Answer: For Cu $\alpha_t = 16.5 \times 10^{-6} \, (^{\circ}\text{C})^{-1}$

$$\Delta \ell = \alpha_{\ell} \ell_{0} \Delta T = [16.5 \times 10^{-6} (1/^{\circ} \text{C})](15 \text{ m})[40^{\circ} \text{C} - (-9^{\circ} \text{C})]$$

 $\Delta \ell = 0.012 \,\text{m} = 12 \,\text{mm}$

Thermal Conductivity

The ability of a material to transport heat.

Fourier's Law

 Atomic perspective: Atomic vibrations and free electrons in hotter regions transport energy to cooler regions.

Thermal Conductivity

The ability of a material to transport heat.

Fourier's Law

 Atomic perspective: Atomic vibrations and free electrons in hotter regions transport energy to cooler regions.

Mechanisms of Heat Conduction

In solid materials,

- heat is transported by both lattice vibration waves (phonons) and free electrons.
- Thermal conductivity is associated with each of these mechanisms,
- Total conductivity is the sum of the two contributions,

$$k = k_1 + k_e$$

- Thermal energy associated with phonons or lattice waves is transported in the direction of their motion.
- The $k_{_{\! \! |}}$ contribution results from a net movement of phonons from high- to low-temperature regions of a body across which a temperature gradient exists.

Metals

- the electron mechanism of heat transport is much more efficient than the phonon contribution because electrons are not as easily scattered as phonons and have higher velocities.
- relatively large numbers of free electrons exist that participate in thermal conduction.
- Because free electrons are responsible for both electrical and thermal conduction in pure metals, the two conductivities should be related.
- According to the Wiedemann–Franz law:

$$L = \frac{k}{\sigma T}$$

where σ is the electrical conductivity, T is the absolute temperature, and L is a constant, known as Lorenz number with a theoretical value of $2.44 \times 10^{-8} \text{ V}^2/\text{K}^2$, should be independent of temperature and the same for all metals if the heat energy is transported entirely by free electrons.

Ceramics

- they lack large numbers of free electrons
- the phonons are primarily responsible for thermal conduction:
- k_e is much smaller than k_l
- phonons are not as effective as free electrons in the transport of heat energy as a result of the very efficient phonon scattering by lattice imperfections.
- phonon scattering is much dominant when the atomic structure is highly disordered and irregular.
- Porosity in ceramic materials may have a dramatic influence on thermal conductivity;
- Increasing the pore volume results in a reduction of the thermal conductivity.

Polymers

- Energy transfer is accomplished by the vibration and rotation of the chain molecules.
- The magnitude of the thermal conductivity depends on the degree of crystallinity;
- a polymer with a highly crystalline and ordered structure has a greater conductivity than the equivalent amorphous material

ncreasing *k*

Thermal Conductivity: Comparison

Material • Metals	k (W/m-K)	Energy Transfer Mechanism
Aluminum Steel Tungsten Gold	247 52 178 315	atomic vibrations and motion of free electrons
 Ceramics Magnesia (MgO) Alumina (Al₂O₃) Soda-lime glass Silica (cryst. SiO₂ 	38 39 1.7) 1.4	atomic vibrations
 Polymers Polypropylene Polyethylene Polystyrene Teflon 	0.12 0.46-0.50 0.13 0.25	vibration/rotation of chain molecules

Thermal Stresses

Occur due to:

- -- restrained thermal expansion/contraction
- -- temperature gradients that lead to differential dimensional changes
- May result in fracture or undesirable plastic deformation.

Thermal stress

$$\sigma = E\alpha_l (T_0 - T_f) = E\alpha_l \Delta T$$

Upon heating $(T_f > T_0)$, the stress is compressive $(\sigma < 0)$ because rod expansion has been constrained.

If the rod specimen is cooled ($T_f < T_o$), a tensile stress is imposed ($\sigma > 0$).

Example:

- -- A brass rod is stress-free at room temperature (20°C).
- -- It is heated up, but held rigidly to the clamps.
- -- At what temperature does the *compressive* stress reach 172 Mpa?
- Assume a modulus of elasticity of 100 GPa for brass.
- linear coefficient of thermal expansion for brass: 20.0×10^{-6} (°C)⁻¹

Thermal Shock Resistance

- Occurs due to: nonuniform heating/cooling
- Ex: Assume top thin layer is rapidly cooled from T_1 to T_2

Thermal Shock Resistance

Temperature difference that can be produced by cooling:

$$\frac{(T_1 - T_2)}{k} = \frac{\text{quench rate}}{k}$$

Critical temperature difference for fracture (set $\sigma = \sigma_f$)

$$(T_1 - T_2)_{\text{fracture}} = \frac{\sigma_f}{E\alpha_\ell}$$

• (quench rate)_{for fracture} = Thermal Shock Resistance (TSR) $\propto \frac{\sigma_f K}{E\alpha_e}$

set equal

• Large TSR when $\frac{\sigma_f k}{E\alpha_f}$ is large

Thermal Protection Systems prevalent for different kind of materials

Thermal Protection System

Application:

- Silica tiles (400-1260°C):
 - -- large scale application

-- microstructure:

~90% porosity! Si fibers bonded to one another during heat treatment.

Summary

The thermal properties of materials include:

- Heat capacity:
 - -- energy required to increase a mole of material by a unit T
 - -- energy is stored as atomic vibrations
- Coefficient of thermal expansion:
 - -- the size of a material changes with a change in temperature
 - -- polymers have the largest values
- Thermal conductivity:
 - -- the ability of a material to transport heat
 - -- metals have the largest values
- Thermal shock resistance:
 - -- the ability of a material to be rapidly cooled and not fracture
 - -- is proportional to $\frac{\sigma_f k}{E\alpha_f}$