Определение 1. Говорят, что многочлен P(z) имеет корень α кратности k, если P(z) делится на $(z-\alpha)^k$, но не делится на $(z-\alpha)^{k+1}$.

ТЕОРЕМА 1. Произвольный многочлен степени n > 0 с комплексными коэффициентами имеет ровно n комплексных корней (считаемых со своими кратностями).

Определение 2. Комплексная функция $f: \mathbb{C} \to \mathbb{C}$ комплексной переменной *непрерывна* в точке $z_0 \in \mathbb{C}$, если для всякого $\varepsilon > 0$ найдётся такое $\delta > 0$, что при всех z, где $|z - z_0| < \delta$, верно $|f(z) - f(z_0)| < \varepsilon$.

Задача 1 $^{\varnothing}$. Пусть $f \colon \mathbb{C} \to \mathbb{R}$ — вещественная функция на комплексной плоскости. Дайте определение того, что **a)** f ограничена на \mathbb{C} ; **б)** $\lim_{|z| \to +\infty} f(z) = +\infty$.

Решение. а) Функция f ограничена на \mathbb{C} , если существует такая константа $C \in \mathbb{R}$, что |f(z)| < C при любом $z \in \mathbb{C}$.

б) Будем писать $\lim_{|z|\to +\infty} f(z) = +\infty$, если для любого вещественного C>0 найдётся такой вещественный радиус R>0, что для любого z с |z|>R выполнено неравенство |f(z)|>C.

Задача 2. Пусть F(z) = f(z) + ig(z), где f и g — функции из $\mathbb C$ в $\mathbb R$. Докажите, что функция F непрерывна в точке z_0 тогда и только тогда, когда функции f и g непрерывны в точке z_0 .

Решение. Пусть F(z) непрерывна в точке $z_0 \in \mathbb{C}$. Тогда для всякого $\varepsilon > 0$ найдётся такое $\delta > 0$, что при всех z, где $|z-z_0| < \delta$, верно $|F(z)-F(z_0)| < \varepsilon$. Но $|F(z)-F(z_0)| = \sqrt{|f(z)-f(z_0)|^2 + |g(z)-g(z_0)|^2}$, а значит $|f(z)-f(z_0)| \leqslant |F(z)-F(z_0)| \leqslant \varepsilon$. Следовательно, f(z) непрерывна в z_0 . Аналогично g(z) непрерывна в точке z_0 .

Пусть теперь f и g непрерывны в точке $z_0 \in \mathbb{C}$. Докажем, что F(z) непрерывна в точке z_0 . Пусть $\varepsilon > 0$. Тогда по определению существует такое δ_1 , что при всех z, где $|z-z_0| < \delta_1$, верно $|f(z)-f(z_0)| < \varepsilon/2$. И существует такое δ_2 , что при всех z, где $|z-z_0| < \delta_2$, верно $|g(z)-g(z_0)| < \varepsilon/2$. Возьмём $\delta = \min(\delta_1, \delta_2)$. Тогда при всех z, где $|z-z_0| < \delta$, выполнено

$$|F(z) - F(z_0)| \le |f(z) - f(z_0)| + |g(z) - g(z_0)| \le 2 \cdot \varepsilon/2 = \varepsilon.$$

Замечание. Далее P(z) — произвольный многочлен степени n>0 от комплексной переменной z с комплексными коэффициентами. P(z) задаёт функцию из \mathbb{C} в \mathbb{C} , а |P(z)| — функцию из \mathbb{C} в \mathbb{R} .

Задача 3[©]. (Поведение многочлена на бесконечности) Докажите, что $|P(z)| \to +\infty$ при $|z| \to +\infty$.

Решение. Пусть $P(z) = c_n z^n + c_{n-1} z^{n-1} + \ldots + c_1 z + c_0$. Обозначим «хвост» $c_{n-1} z^{n-1} + \ldots + c_1 z + c_0$ через Q(z). Тогда $P(z) = c_n z^n + Q(z)$.

Пусть дана константа C>0. Найдём явно такой радиус R>0, что для любого z с |z|>R выполнено неравенство |P(z)|>C.

Будем рассматривать только z с |z|>1. Возьмём $M=\max(|c_0|,|c_1|,\ldots,|c_{n-1}|)$. Тогда выполнено $|Q(z)|\leqslant M+M|z|+\ldots M|z|^{n-1}\leqslant nM|z|^{n-1}$. Дальше

 $|P(z)|\geqslant |c_nz^n|-|Q(z)|\geqslant |c_nz^n|-nM|z|^{n-1}=|z|^{n-1}(|c_n||z|-nM)\geqslant (|c_n||z|-nM).$ Если взять $R=nMC/|c_n|$, то при |z|>R будет выполнено неравенство |P(z)|>C.

Задача 4. а) (*Непрерывность многочлена*) Докажите, что функция P(z) непрерывна на \mathbb{C} . **6)** (*Непрерывность модуля многочлена*) Докажите, что функция |P(z)| непрерывна на \mathbb{C} .

Решение. a) Через сумму и произведение. Докажем, что константа и f(z)=z непрерывны, а также

что сумма и произведение непрерывных функций непрерывны. Из этого будет сразу следовать непрерывность многочлена.

Константа и f(z)=z. Итак, пусть f(z) — константа или f(z)=z. Если нам дали точку $z_0\in\mathbb{C}$ и $\varepsilon>0$, то возьмём $\delta=\varepsilon$. Если вдруг $|z-z_0|<\delta=\varepsilon$, то очевидно, что $|(f(z)-f(z_0))|<\varepsilon$.

Сумма. Пусть функции f и g непрерывны в точке z_0 . Докажем, что и сумма f+g непрерывна в точке z_0 . Пусть $\varepsilon>0$. Тогда по определению существует такое δ_1 , что при всех z, где $|z-z_0|<\delta_1$, верно $|f(z)-f(z_0)|<\varepsilon/2$. И существует такое δ_2 , что при всех z, где $|z-z_0|<\delta_2$, верно $|g(z)-g(z_0)|<\varepsilon/2$. Возьмём $\delta=\min(\delta_1,\delta_2)$. Тогда при всех z, где $|z-z_0|<\delta$, выполнено

$$|(f+g)(z)-(f+g)(z_0)| \le |f(z)-f(z_0)|+|g(z)-g(z_0)| \le 2 \cdot \varepsilon/2 = \varepsilon.$$

Произведение. Пусть функции f и g непрерывны в точке z_0 . Докажем, что и произведение $f \cdot g$ непрерывна в точке z_0 . Возьмём $0 < \varepsilon < 1$ и странную константу $M = 2(|f(z_0)| + 1) \cdot (|g(z_0)| + 1)$.

Тогда по определению существует такое δ_1 , что при всех z, где $|z-z_0|<\delta_1$, верно $|f(z)-f(z_0)|<\varepsilon/M<1$. И существует такое δ_2 , что при всех z, где $|z-z_0|<\delta_2$, верно $|g(z)-g(z_0)|<\varepsilon/M<1$. Возьмём $\delta=\min(\delta_1,\delta_2)$. Теперь пусть $|z-z_0|<\delta$. Считаем и преобразуем:

$$|(fg)(z) - (fg)(z_0)| = |f(z)g(z) - f(z_0)g(z_0)| =$$
 вычтем и прибавим $f(z)g(z_0)$
$$= |f(z)g(z) - f(z)g(z_0)| + f(z)g(z_0) - f(z_0)g(z_0)| =$$
 вынесем за скобку $f(z)$ и $g(z_0)$
$$= |f(z)g(z) - f(z)g(z_0)| + f(z)g(z_0) - f(z_0)g(z_0)| =$$

$$= |f(z)(g(z) - g(z_0))| - g(z_0)(f(z) - f(z_0))| \le$$
 модуль разности не больше суммы модулей
$$\le |f(z)(g(z) - g(z_0))| + |g(z_0)(f(z) - f(z_0))| \le$$

$$\le |f(z)|\varepsilon/M + |g(z_0)|\varepsilon/M \le$$

$$\le |f(z)|\varepsilon/M + |g(z_0)|\varepsilon/M \le$$

$$\le (|f(z_0)| + 1)\varepsilon/M + |g(z_0)|\varepsilon/M \le \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Напрямую. Пусть $P(z)=c_nz^n+c_{n-1}z^{n-1}+\ldots+c_1z+c_0$. Возьмём произвольную точку $z_0\in\mathbb{C}$ и $0<\varepsilon<1$. $P(z)-P(z_0)=c_n(z^n-z_0^n)+c_{n-1}(z^{n-1}-z_0^{n-1})+\ldots+c_1(z-z_0)+c_0(1-1)$. Заметим, что $z^k-z_0^k=(z-z_0)(z^{k-1}+z^{k-2}z_0^1+\ldots+z^1z_0^{k-2}+z_0^{k-1})$. Свободные члены сокращаются, во

 $P(z) - P(z_0) = (z - z_0) \cdot Q(z)$, где Q(z) — какой-то многочлен степени n-1.

всех оставшихся можно вынести за скобку $(z-z_0)$. В результате получим:

Обозначим через C — максимальный из модулей коэффициентов многочлена Q(z). Тогда при $|z-z_0|<1$ выполнено $Q(z)\leqslant nC(|z_0|+1)^n$. Обозначим эту странную константу через M. Значит, при $|z-z_0|<\varepsilon/M$ выполнено

$$|P(z) - P(z_0)| = |z - z_0| \cdot |Q(z)| \le \varepsilon/M \cdot M = \varepsilon.$$

б)

Задача 5. (Поведение многочлена в круге) Докажите, что |P(z)| ограничен в любом круге (конечного радиуса) и достигает в нём своих максимума и минимума. (Вместо круга разрешается решить эту задачу для квадрата со сторонами, параллельными осям координат — этого достаточно для дальнейшего.)

Решение. ■

Задача 6. (*Разложение Тейлора*) Докажите, что для любого $z_0 \in \mathbb{C}$ существуют такое $k \in \mathbb{N}$ и такие $c_k, c_{k+1}, \ldots, c_n \in \mathbb{C}$, что $c_k \neq 0$ и для любого $z \in \mathbb{C}$ справедливо равенство

$$P(z) = P(z_0) + c_k(z - z_0)^k + c_{k+1}(z - z_0)^{k+1} + \dots + c_n(z - z_0)^n$$
(*)

Представление P(z) в таком виде называется разложением Тейлора многочлена P(z) в точке z_0 .

Решение. Возьмём $w = z - z_0$. Тогда $z = w + z_0$. Подставим $z = w + z_0$ в многочлен, раскроем все скобки и приведём подобные. Получится многочлен степени n уже от w. Осталось подставить $w = z - z_0$.

Задача 7. Напишите разложение Тейлора для многочленов

a) $P(z)=z^3-3z-2$ в точке $z_0=-1$; 6) $P(z)=iz^3+2z^2-iz+179$ в точке $z_0=i$;

Решение. a)
$$-3(z+1)^2 + (z+1)^3$$
; б) $179 - (z-i)^2 + i(x-i)^3$.

Задача 8 следующей задачи) Пусть (*) — разложение Тейлора многочлена P(z) в точке $z_0 \in \mathbb{C}$, и пусть $\mathbb{D}(z_0, r)$ — круг с центром в z_0 радиуса r. Докажите, что существует такое r > 0, что для любого $z \in \mathbb{D}(z_0, r)$, $z \neq z_0$ выполнено $|P(z)| < |P(z_0) + c_k(z - z_0)^k| + |c_k(z - z_0)^k|$.

Решение.

Решение. По предыдущей задаче существует такое $r_1 > 0$, что для любого $z \in \mathbb{D}(z_0, r_1), z \neq z_0$ выполнено $|P(z)| < |P(z_0) + c_k(z - z_0)^k| + |c_k(z - z_0)^k|$.

Так как |P(z)| > 0, то найдётся такой $r_2 > 0$, что при $|z - z_0| < r_2$ выполнено $|c_k(z - z_0)^k| < |P(z_0)|$. Возьмём $\varphi = (-\operatorname{Arg}(P(z_0)) - \operatorname{Arg}(c_k))/k$. Тогда если $\operatorname{Arg}(z - z_0) = \varphi$, то

$$Arg(c_k(z-z_0)^k) = Arg(c_k) + k \cdot Arg(z-z_0) = -Arg(P(z_0)).$$

А значит аргументы у $P(z_0)$ и $c_k(z-z_0)^k$ противоположны. Так как $|c_k(z-z_0)^k|<|P(z_0)|$, то модуль их суммы просто равен разности модулей:

$$|P(z_0)+c_k(z-z_0)^k|+|c_k(z-z_0)^k|=|P(z_0)|-|c_k(z-z_0)^k|+|c_k(z-z_0)^k|=|P(z_0)|.$$
 Теперь возьмём $r=\min(r_1,r_2)/2$ и $z_1=z_0+re^{i\varphi}$. Тогда $\operatorname{Arg}(z_1-z_0)=\varphi$ и $z_1\in\mathbb{D}(z_0,r_1)$, следовательно $|P(z_1)|<|P(z_0)+c_k(z_1-z_0)^k|+|c_k(z-z_0)^k|=|P(z_0)|.$

Задача 10 . (Поведение многочлена на плоскости)

- а) Докажите, что |P(z)| достигает на плоскости своего минимума: существует такое $\mu \geqslant 0$, что $|P(z)| \geqslant \mu$ при любом $z \in \mathbb{C}$, причём найдётся такое $z_0 \in \mathbb{C}$, что $|P(z_0)| = \mu$.
- **б)** Пусть μ такое, как в п. а). Докажите, что $\mu = 0$.

Решение. а) Пусть |P(0)| = A. По задаче 3 и 16) найдётся такой вещественный радиус R, что при z > |R| выполнено неравенство |P(z)| > A. При этом в круге радиуса R по задаче 5 в этом круге найдётся минимум $\mu \leqslant A$. Значит μ — минимум значения |P(z)| как в круге радиуса R, так и вне него, то есть на всей плоскости. б) По задаче 9, если $|P(z_0)| = \mu \neq 0$, то найдётся точка z_1 , в которой значение $|P(z_1)|$ строго меньше μ , что противоречит определению μ . Поэтому $\mu = 0$.

Задача 11. а) Докажите, что всякий многочлен ненулевой степени с комплексными коэффициентами имеет хотя бы один комплексный корень. б) Выведите из пункта а) основную теорему алгебры.

Решение. а) В задаче 10 доказано, что для любого многочлена P(z) найдётся такое z_0 , что $|P(z_0)| = 0$, а значит, и $P(z_0) = 0$. б) Доказываем утверждение по индукции. База: $\deg P(z) = 1$, то P(z) = az + b, и есть корень $z_0 = -\frac{b}{a}$. Пусть для всех многочленов степени n-1 это верно. Рассмотрим многочлен P(z) степени n.

По предыдущему пункту у него найдётся хотя бы один корень z_0 . В силу разложения Тейлора (или задачи 8 листка 25) $P(z)=(z-z_0)Q(z)$. Если $\deg Q(z)\geqslant 1$, то по предположению индукции у Q(z) ровно n-1 корень с учётом кратностей, а значит, у P(z) ровно n корней с учётом кратностей.

Задача 12. Разложите в произведение многочленов не более чем второй степени с вещественными

коэффициентами многочлены **a)** $x^4 + 3x^2 + 2$; **b)** $x^4 + 4$; **b)** $x^6 + 8$; **г)** $x^n - 1$; **д)** $x^{2n} - \sqrt{3}x^n + 1$.

Решение. a) $(x^2+1)(x^2+2)$;

- **6**) $(x^2 2x + 2)(x^2 + 2x + 2);$ **B**) $x^6 + 8 = (x^2 \sqrt{6} + 2)(x^2 + \sqrt{6} + 2)(x^2 + 2);$
- г) $(x-1)\prod_{k=1}^{\frac{n-1}{2}}(x^2-2(\cos\frac{2\pi k}{n})x+1)$ при нечётных n, $(x+1)(x-1)\prod_{k=1}^{\frac{n-2}{2}}(x^2-2(\cos\frac{2\pi k}{n})x+1)$ при чётных n.

д)
$$x^{2n} - \sqrt{3}x^n + 1 = (x^n - \frac{\sqrt{3}}{2} + \frac{i}{2})(x^n - \frac{\sqrt{3}}{2} - \frac{i}{2}) = \prod_{k=1}^n (x^2 - 2(\cos\frac{2\pi k + \frac{\pi}{6}}{n})x + 1 \blacksquare$$

Задача 13. Докажите, что произвольный многочлен с вещественными коэффициентами раскладывается в произведение многочленов не более чем второй степени с вещественными коэффициентами.

Решение. ■

Задача 14 . Многочлен $P(x) \in \mathbb{R}[x]$ таков, что $P(x) \ge 0$ при всех $x \in \mathbb{R}$. Докажите, что его можно представить в виде суммы **a)** квадратов многочленов из $\mathbb{R}[x]$; **б)** двух таких квадратов.

Решение. а) Заметим, что если два многочлена представлены в виде суммы квадратов, то и их произведение также можно представить в виде суммы квадратов: достаточно раскрыть скобки в произведении.

Пусть α — вещественный корень многочлена P(x) кратности r, то есть $P(x) = (x - \alpha)^r Q(x)$, где $Q(\alpha) \neq 0$. Предположим, что r нечётно. Тогда в окрестности α , не содержащей других корней, при переходе через α значение P(x) меняет знак, что противоречит условию. Значит, r=2k — чётно, и $P(x) = ((x - \alpha)^k)^2.$

Если же $\alpha \in \mathbb{C}$, $\alpha \notin \mathbb{R}$ — комплексный и не вещественный корень P(x), то P(x) содержит множитель $(x-\alpha)(x-\overline{\alpha})=x^2-(\alpha+\overline{\alpha})x+\alpha\overline{\alpha}=((x-\frac{\alpha+\overline{\alpha}}{2})^2+(\mathrm{Im}\alpha)^2)$ — сумма двух квадратов.

6) По аналогии с предыдущим пунктом, достаточно проверить, что произведение многочленов, представимых как сумма двух квадратов само является суммой двух квадратов. Пусть $P(x) = p_1(x)^2 + p_2(x)^2$, $Q(x) = q_1^2(x) + q_2^2(x)$. Рассмотрим комплексные многочлены $f(x) = p_1(x) + ip_2(x)$, $g(x) = q_1(x) + iq_2(x)$. Тогда P(x) = |f(x)|, Q(x) = |g(x)|, а P(x)Q(x) = |f(x)g(x)|, то есть также является суммой квадратов.

Задача 15. Докажите, что максимум функции |P(z)| в фиксированном круге достигается в некоторой точке граничной окружности этого круга.

Решение.

1 a	1 6	2	3	4 a	4 6	5	6	7 a	7 6	8	9	10 a	10 б	11 a	11 б	12 a	12 б	12 B	12 Г	12 Д	13	14 a	14 б	15