

CB-Dragonfly: 전세계 클라우드가 다보여

(멀티 클라우드 통합 모니터링)

권 경 민 / CB-Dragonfly 프레임워크 리더

"Contact to the Multi-Cloud"

클라우드 바리스타들의 두 번째 이야기

Cloud-Barista Community 2nd Open Conference

이번 세션은…

멀티 클라우드 서비스 공통 플랫폼

목 차

- CB-Dragonfly 프레임워크 기술 개요
- CB-Dragonfly 프레임워크 2019(Americano) 기능 요약
- [[[] CB-Dragonfly 프레임워크 2020(Cappuccino) 개발 현황
- IV CB-Dragonfly 프레임워크 2020(Espresso) 개발 계획
- V Load-Balancer 기반 대규모 모니터링 안정성 검증 시연

CB-Dragonfly: 멀티 클라우드 통합 모니터링 기술 개요

• 멀티 클라우드 인프라 서비스 및 애플리케이션 통합 모니터링 기능을 제공하며 대규모 멀티 클라우드 모니터링을 지원하는 멀티 클라우드 통합 모니터링 프레임워크

멀티 클라우드 통합 모니터링 특장점

대규모 모니터링

모니터링 콜렉터 확장/축소 기능을 통하여 대용량 모니터링 데이터 수집/처리 가능

안정적인 모니터링

에이전트 기반으로 모니터링 데이터가 수집 되며 동일한 메트릭 및 보존정책을 적용하 여 안정적 모니터링 제공

특화 모니터링

멀티 클라우드 인프라 서비스 기반 특화 모니터링 발굴 및 수집/제공

CB-Dragonfly 프레임워크 아키텍처

Service & 3rd-Party **Platform** 웹 도구 통합 모니터링 프레임워크 API chronograf 🌕 CB-Dragonfly 모니터링 콜렉터 매니저 모니터링 정책/알람 매니저 모니터링 에이전트 모니터링 콜렉터 모니터링 콜렉터 오토스케일 모니터링 알람 설정/관리 모니터링 정책 설정/관리 MCIS 모니터링 MC-APP 모니터링 대규모 모니터링 가상머신 모니터링 컨테이너 모니터링 온디멘드 모니터링 Hetero **VM Environment Container Environment** MC-laaS

CB-Dragonfly 모듈 구조

CB-Dragonfly 프레임워크 2019(Americano) 기능 요약

멀티 클라우드 인프라 서비스 통합 모니터링 프레임워크

통합 모니터링 메트릭 제공

멀티 클라우드 환경에서 에이전트 기반의 통합 모니터링 메트릭 제공

통합 모니터링

- 멀티 클라우드 통합 모니터링
 - 에이전트 기반의 멀티 클라우드 통합 모니터링 메트릭 제공

- 각 클라우드 CSP의 VM 모니터링 제공
- 클라우드 CSP 별도의 모니터링 메트릭 보관 정책 적용

- 에이전트 기반의 멀티 클라우드 통합 모니터링 제공
- 통합 모니터링 메트릭 보관 정책 적용

확장성

- 모니터링 콜렉터 확장/축소
 - 수많은 에이전트로부터의 대규모 모니터링 데이터를 Load-Balancer를 통해 부하 분산 처리
 - 확장 정책 기준에 따라 모니터링 콜렉터의 스케일을 조정
 - 가상머신 개수, CSP별 기준, CSP 지역
 - 대규모 멀티 클라우드 서비스 환경에서 모니터링을 안정적으로 제공

최신 데이터

- 클라우드 인프라 서비스 성능 모니터링 및 최신 데이터 모니터링
 - 에이전트에서 기본 2초 단위로 가상 머신 모니터링 데이터 수집
 - 2초 주기의 데이터 기반 statistics criteria(min, max, avg, last) 최신 데이터 모니터링 데이터 조회
 - etcd 저장소에 저장된 최신 데이터 aggregation 및 조회

정책 설정 및 알람

- 멀티 클라우드 인프라 서비스 임계치 관리 및 알람 기능
 - 모니터링 알람 정책 설정 및 알람 임계치 진단
 - 연동된 이벤트 핸들러 기준 email, slack 등으로 알림 지원

Status: 200 OK

개방형 API

- 개방형 API 제공
 - CB-Dragonfly의 주요 기능들을 개방형 API를 통해 제공
 - API 예시:

http://{{api-server}}:9090/mon/mcis/:mcisID/vm/:vmID/metric/:metricName/infperiodType=m&statisticsCriteria=avg&duration=5m

• API 상세 정보:

개방형 API 파라미터	설명 설명			
mcisID	MCIS (Multi Cloud Infra Service) ID			
vmID	가상머신 ID ²³			
metricName	모니터링 메트릭 (cpu, memory, disk, network) 26			
periodType	모니터링 단위 ("m" "h" "d")			
statisticsCriteria	모니터링 통계 기준 ("min" "max" "avg" "last")			
duration	모니터링 조회 범위 (now() - duration), 모니터링 단위 ("m" "h" "d"			

```
"name": "cpu",
          "tags": {
              "hostId": "99345fbe-7b20-4d5b-88bd-174691e62ef7"
          "columns": [
              "time",
              "cpu_utilization",
              "cpu_system",
              "cpu_idle",
              "cpu_iowait",
              "cpu_hintr",
13
              "cpu_sintr"
          "values": [
                  "2019-11-15T07:30:00Z",
                  2.2481936756893695,
                  1.0113040988651163,
                  97.75180632431064,
                  0.14204307939700625.
                  0.05007306020703197
                  "2019-11-15T07:31:00Z",
                 2.2507083865598125,
                  1.0266403046302546,
                  97.74929161344018.
                  0.15768089297013793,
                  0.03547147489211024
```

Body Cookies Headers (3) Test Results

CB-Dragonfly 프레임워크 2020(Cappuccino) 개발 현황

- 모니터링 에이전트 확장
 - 리눅스 계열 운영체제 확장 (Americano 3종, Cappuccino 6종)
 - 리눅스 계열 에이전트 수집 메트릭 추가 (Americano 24개, Cappuccino 52개)
 - 윈도우 계열 에이전트 지원
- 대규모 모니터링 안정성 검증
 - 대규모 모니터링 안정성 시험 방안
 - 대규모 모니터링 안정성 시험 결과
 - Load-balancer 기반 대규모 모니터링 안정성 시험 결과
- 모니터링 신규 기능 PoC 테스트
 - 라즈베리파이 환경 구동 테스트
 - InfluxDB-Relay 오픈소스 설치 및 구동 테스트
 - 온디멘드 모니터링 구동 테스트

모니터링 에이전트 확장

- 리눅스 계열 지원 운영체제 확장 → 총 6종 지원
 - 2019(Americano) 3종 지원: CentOS, FreeBSD, Debian
 - 2020(Cappuccino) 3종 추가: Ubuntu, Fedora, Slackware

리눅스 운영체제 3종 지원

리눅스 운영체제 6종 지원

모니터링 에이전트 확장

• 리눅스 계열 에이전트 추가 메트릭 개발

[2019(Americano) 메트릭 목록]

제공 릴리즈	분류	모니터링 항목	개수
	CPU	cpu_utilization, cpu_system, cpu_idle, cpu_iowait, cpu_hintr, cpu_sintr	6개
Americano	Memory	mem_utilization, mem_total, mem_used, mem_free, mem_shared ···	6개
	Disk	disk_utilization, disk_total, disk_used, ops_read, kb_read/written ···	8개
	Network	bytes_in, bytes_out, pkts_in, pkts_out	4개

[2020(Cappuccino) 버전 추가 메트릭 목록]

제공 릴리즈	분류	모니터링 항목			
СРИ		cpu_usr, cpu_num, uptime, proc_run, proc_num, load_avg_1/5/10m ···	13개		
	Memory	swap_utilization, swap_used, swap_free, swap_in/out, page_in/out ···	8개		
Cappuccino	Disk	read_time, write_time ···	2개		
	Network	errors_in, errors_out, drops_in, drops_out ···	4개		
	CpuFreq	cpu_speed(frequency)	1개		

총 <u>24</u>개 메트릭 제공

메트릭 추가 정의

- √ Cpu
- ✓ Memory
- ✓ Disk
- ✓ Network
- ✓ Cpufreq

총 <u>52</u>개 메트릭 제공

모니터링 에이전트 확장

- 윈도우 계열 에이전트 지원
 - 모니터링 에이전트는 리눅스/윈도우 운영체제와 무관하게 동일한 메트릭 항목 수집
 - CPU, Mem, Disk, Network 동일한 메트릭 항목 수집
 - 모니터링 메트릭 수집 시 MCIS_ID, HOST_ID, OS_TYPE (linux, windows) 정보 태깅
 - 윈도우 환경 모니터링 에이전트 구동 화면

```
Windows PowerShell

PS C:\Users\users\understamin\understynown|oads\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\understynomn\un
```


대규모 모니터링 성능 안정성 검증

- 대규모 모니터링 안정성 시험 방안
 - 1. 대규모 환경 검증을 위해 UDP-Shooter 모듈 별도 개발
 - 2. UDP-Shooter를 통해 고루틴 기반 가상 에이전트 구현 (고루틴 1개 = 가상머신 모니터링 에이전트 1개)
 - 3. 가상 에이전트를 통해 모니터링 데이터 전송
 - 4. CB-Dragonfly 모듈은 가상 에이전트를 통해 전송된 모니터링 메트릭 데이터 처리 및 저장

대규모 모니터링 성능 안정성 검증

• 대규모 모니터링 안정성 시험 결과

성능 지표 / 에이전트 수	50	100	200	300	400	600	800	1000
cpu_utilization	0.6	0.8	1.56	2.75	3.19	3.8	4.3	5.7
cpu_load_avg_1	0.01	0.01	0.02	0.54	1.19	1,52	1.63	1.78
cpu_load_avg_5	0.04	0.05	0.30	0.29	0.55	1.15	1.30	1.40
cpu_load_avg_15	0.08	0.12	0.29	0.19	0.27	0.73	1.09	1.12
mem_utilization	105M /30.6G	121M /30.6G	230M /30.6G	440M /30.6G	483M /30.6G	579M /30.6G	1.37G /30.6G	1.72G /30.6G
read_bytes	ОМ	OM						
wrtie_bytes	20.2M	66.7M	83.3M	120M	202M	292M	379M	475M
aggregate_time	54.69ms	92.70ms	173.44ms	212.90ms	255.02ms	310,53ms	330,01ms	410.20ms

대규모 모니터링 성능 안정성 검증

- Load-balancer 기반 대규모 모니터링 안정성 시험 결과
 - Ubuntu 18.04, 8 Core VCPU 환경에서 UDP-Shooter, CB-Dragonfly 모듈 설치 후 테스트 완료
 - Load-balancer 적용 시 23.7% aggregate 시간 감소
 - 추후 콜렉터를 고루틴이 아닌 컨테이너 또는 VM 단위의 확장성을 고려하여 Load-balancer 기반 CB-dragonfly 개발

성능 지표 / 에이전트 수	1	10	20	30	40	60	80	100
cpu_utilization	0.1	0.1	0.1	0.2	0.4	0.4	0.6	0.7
cpu_load_avg_1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
cpu_load_avg_5	0.01	0.01	0.01	0.02	0.04	0.04	0.05	0.05
cpu_load_avg_15	0.01	0.01	0.02	0.05	0.07	0.09	0.10	0.11
mem_utilization	1.7M	20M	37M	58M	87M	109M	116M	121M
read_bytes	МО	OM	МО	OM	МО	OM	МО	OM
wrtie_bytes	4.2M	8.22M	12.45M	28.2M	36.6M	53.3M	62.9M	95.2M
collector_count	1	1	2	3	4	6	8	10
aggregate_time	1.23ms	6.23ms	11.59ms	23,32ms	32.95ms	49,23ms	61.42ms	70.73ms

모니터링 신규 기능 PoC 테스트

- 라즈베리 파이 OS(Raspbian) 환경 구동 테스트
 - Raspbian OS Kernel version: 4.19 (Release data: 2020-02-12)
 - GitHub repository에 등록된 CB-Dragonfly 모듈 Check-out 및 구동하여 정상 동작 확인
- 라즈베리 파이 OS에서 정상 동작 화면

< CB-Dragonfly 구동 >

< CB-Dragonfly Dockerizing 및 Docker 구동 >

모니터링 신규 기능 PoC 테스트

- InfluxDB-Relay 오픈소스 설치 및 구동 테스트
 - InfluxDB HA(High Availability) 구성을 위해 InfluxDB-Relay 설치 및 구동 PoC 테스트
 - InfluxDB Official 기반의 Open Source(Strike-team git repository) 활용
 - InfluxDB-Relay를 적용한 CB-Dragonfly 아키텍쳐

모니터링 신규 기능 PoC 테스트

- 온디멘드 모니터링 구동 테스트
 - 사용자가 모니터링 데이터를 요청한 시점에 실시간 모니터링 데이터 수집
 - API 호출 시 실시간 모니터링 데이터 수집 및 JSON 형태로 데이터 정보 전달
 - 온디멘드 모니터링 API 호출 화면

CB-Dragonfly 프레임워크 2020(Espresso) 개발 계획

- 컨테이너 모니터링 기능 개발
 - 모니터링 수집 에이전트 Dockerize
 - 컨테이너 기반 에이전트 배포 기능
 - 컨테이너 환경 모니터링 정보 수집 기능
- CLI 기반 모니터링 모듈 관리 도구 제공
 - cbmon 명령어를 통해 CB-Dragonfly 모듈의 CLI 기반 사용자 인터페이스 제공
- MCIS 모니터링 기술 개발
- MC-APP 모니터링 기술 개발
- 모니터링 알람 모듈 개발
- 모니터링 확장 기능 개발 (CSP 별 모니터링 콜렉터 확장 정책 개발)

컨테이너 모니터링

- 컨테이너 환경의 모니터링
- 사이드카 패턴을 활용해 컨테이너 내부의 모니터링 메트릭 수집
- Hetero MC-laaS 환경에서 동일한 모니터링 항목을 수집

모니터링 항목	수집 데이터	컨테이너 OS 이미지
CPU	Speed, Utilization, Num ···	
Memory	Used_Percent, Total, Free ···	Linux(Ubuntu, Centos)
Disk	Used_Percent, Total, Free ···	Windows
Network	Packet Errors[In/Out], Packet Drops[In/Out] ···	

사용자 모니터링 CLI(cb-mon)

- CLI 환경 기반 모니터링 모듈 관리 도구 제공
 - cbmon을 통해 모니터링 모듈 가동/중지, 메트릭 정보 조회 등의 기능 제공

기능 목록	루트 명령어	명령어	설명
시스템 관리	_	 version 	cbmon 버전 정보 출력
시스템 된다	_	• config	cbmon 환경 정보 설정 및 출력
		• start	
콜렉터 관리	collector	• stop	콜렉터 시작/중지 및 콜렉터 정보 출
		• list	력
		• get	
메트릭 조회	metric	• list	모니터링 메트릭 정보 출력
베트릭 포회	metric	• get	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그

사용자 모니터링 CLI(cb-mon)

• CLI 환경 기반 모니터링 모듈 관리 도구 제공

```
CB-Dragonfly CLI Tools for Cloud-Barista
 cbmon [command]
Available Commands:
 help
             Help about any command
 version
Flags:
                 help for cbmon
 -h, --help
     --verbose Enable verbose logging
Additional help topics:
 cbmon collector
 cbmon config
 cbmon metric
Use "cbmon [command] --help" for more information about a command.
```


CB-Dragonfly 2020년도 개발 계획

서브 시스템명	주요 업무	상세 업무	수행 내용
		2019(Americano) 결과물의 검증 및 이슈 정리	- 라즈베리파이 상에서의 동작 여부 확인 및 이슈 해결 방안 정리 - 컨테이너 기반 CB-Dragonfly 이미지 빌딩 및 시험, 이슈 정리 - 공개SW의 활용 현황 검토 및 향후 활용 정책 수립(w/ETRI)
		에이전트 기능 개선 및 추가 기능 개발	- CB-Spider API를 활용한 에이전트 설치 기능 개발(Secure Shell 사용) - 리눅스 계열 에이전트 호환성 시험 및 개발 - 윈도우 계열 에이전트 개발/지원
		대규모 모니터링 성능 안정성 검증	- 대규모 모니터링 안정성 시험 방안 수립 (@Cloud-Twin 또는 실환경) - 대규모 모니터링 안정성 시험(스트레스->CloudTwin->실환경 기반)
	기 구현 기능의 개선 및 확장 개발	최신 데이터 모니터링 기능 개발	- 실시간 모니터링 관련 개념 정의 - 실시간 모니터링 기능 개발
		모니터링 정책 관리 모듈 개발	- 모니터링 수집, 알람, 스케줄러 주기 관리 기능 개발
멀티 클라우드		모니터링 알람 모듈 개발	- VM/Container 모니터링 알람 메트릭 개발 - 모니터링 알람 임계치 등록, 수정, 삭제 기능 개발 - 모니터링 설정 주기 내 알람 횟수에 따른 이벤트 발생 기능 개발 - 알람 생성, 수정, 삭제 API 제공 - 알람 이벤트 핸들러(slack, email 등) 등록, 수정, 삭제 API 제공
통합 모니터링		모니터링 콜렉터 정책 확장 개발 (CSP별)	- 모니터링 매니저의 콜렉터 확장 정책 도출 및 개발
프레임워크	신규 모니터링 방식 멀티 클라우드 인프라	PULL 방식 구조 및 기능 개발	- PULL 방식 모니터링 설계 - PULL-Caller 모듈 개발 - PULL-Listener 모듈 개발 - 모니터링 콜렉터 및 Agent와의 통합 - PUSH / PULL 의 운용 정책 정의 - PUSH / PULL의 선택적 운용 모듈 개발
		온디멘드 모니터링 개발 (w/CB-Tumblebug)	- 온디멘드 모니터링의 구조 및 기능 설계 (Tumblebug 주관) - 업무 배분에 따른 담당 부분의 개발
		MCIS 모니터링 기술 개발	- MCIS 기반 모니터링 메트릭 (그룹 모니터링 메트릭) 발굴 및 정의 - MCIS 모니터링 메트릭 수집 기능 개발
	특화 모니터링	VM/Container 혼용 인프라 모니터링 기술 개발	- 컨테이너 인프라의 모니터링 구조 설계 - 컨테이너 인프라 모니터링 기능 개발
	멀티 클라우드 애플리케이션 서비스 모니터링	애플리케이션 모니터링 메트릭 정의	- 애플리케이션 모니터링 매트릭 도출 - 애플리케이션 모니터링 매트릭의 수집 PoC 검증
	걸디 글다꾸느 애글디게이션 시미스 모니터링	애플리케이션 모니터링 구조 설계 및 기능 개발	- 애플리케이션 모니터링을 위한 구조 및 기능 설계 - 애플리케이션 모니터링 기능 개발 및 검증
	모니터링 개방형 API 도구	사용자 모니터링 CLI(cbmon) 도구 개발	- cbmon 제공 기능 범위 및 기능 설계 - cbmon 기능 개발

CB-Dragonfly 프레임워크 기술 로드맵

- 모니터링 모듈 기본 기능 개발
- ✓ Collector Manager 가상머신 수 기준 모니터링 확장 정책 개발
- 모니터링 개방형 API 제공
- ✓ 모니터링, 실시간 모니터링 조회 API 개발
- ✓ 모니터링 에이전트 설치 API 개발
- ✓ 모니터링 정책 설정 API 개발
- 모니터링 저장소 구축
- ✓ 모니터링 DB 저장소 InfluxDB 구축
- ✓ 실시간 모니터링 데이터 저장소 etcd 구축

- ✓ SLA 기반의 가상머신 메트릭 추가 정의
- ✓ 온디맨드 모니터링 설계 및 개발
- ✓ 컨테이너 모니터링 설계 및 개발
- 가상 머신 OS 지원
- ✓ Window용 Agent 지원
- ✓ 리눅스 계열 Agent 추가 지원
- 알람기능
- ✓ 알람 정책 모듈 개발
- ✓ 이벤트 핸들러 연동
- ✓ 알람 모듈의 개방형 API 제공

- ✓ 주요 모듈 (Agent, Collector, Collector Manager) Health 체크
- ✓ 가상 머신, 물리 노드(프라이빗 클라우드) Ping 체크 기능
- 모니터링 데이터 저장 기능 고도화
- ✓ InfluxDB 외 타 시계열 데이터베이스 연동 지원
- 대규모 모니터링 분산 처리를 위한 모니터링 저장소 구성
- ✓ 모니터링 DB 저장소 InfluxDB 클러스터 구성
- ✓ 실시간 모니터링 데이터 저장소 etcd 클러스터 구성

• 활용, 확산

Load-Balancer 기반 대규모 모니터링 안정성 검증 시연

카푸치노(Cappuccino) 한잔 어떠세요? ^^

카푸치노(Cappuccino): Cloud-Barista의 2nd 소스코드 버전명칭

Load-Balancer 기반 대규모 모니터링 안정성 검증 시연

• Load-Balancer 모듈을 적용한 CB-Dragonfly 데모 시연

기능	구분	추가 및 변경점
Load Balancing	추가	・ Load-Balancer가 Tagging할 VM을 Collector에게 분배
VM Tagging	변경	 Collector에서 Tagging 되어있지 않은 VM들을 선점 (ConCurrency Dead-Lock issue) 기능 제거 Aggregating 시점마다 Collector에 Tagging된 VM 리스트 Untagging Load-Balancer에 연결된 VM의 TTL을 설정하여 Untagging 시점 제어
Auto Scaling	변경	 Scaling 검사 시점 때 현재 Collector 내 Tagging 된 VM의 총 개수를 기준으로 Scaling 여부 결정 Load-Balancer에 연결된 VM 총 개수를 기준으로 Scaling 여부 결정

Load-Balancer 기반 대규모 모니터링 안정성 검증 시연

· Demo 개요

- Load-Balancer 기반 CB-Dragonfly 모듈 2020(Cappuccino) 형상 기준 Demo
- 고루틴 기반 콜렉터
- VM 수 기준 콜렉터 Scale-In/Out 스케줄링

• Demo 시나리오

- UDP-Shooter 실행을 통해 에이전트와 유사한 UDP Packet들을 CB-Dragonfly로 전송
- UDP-Shooter 의 데이터 전송 주기는 2초로 설정, 에이전트 수를 증가시켜가며 Demo 진행
- UDP Stress(에이전트 수) 에 따라 콜렉터 Scale-in/out 확인
- Load-Balancer의 VM ID TTL(Time To Live) 기능 동작 확인

시연

- Load-Balancer 모듈을 적용한 CB-Dragonfly 데모 시연
 - 동영상 재생

https://github.com/cloud-barista https://cloud-barista.github.io

(권 경 민 / contact-to-cloud-barista@googlegroups.com)

"Contact to the Multi-Cloud"

클라우드 바리스타들의 두 번째 이야기

Cloud-Barista Community 2nd Open Conference