

WHAT IS CLAIMED IS:

1. A myocardial graft in an animal, comprising:
a stable graft of skeletal myoblasts or
cardiomyocytes incorporated in myocardial tissue of said
animal.
2. The myocardial graft of claim 1 wherein said
stable graft comprises cardiomyocytes.
3. The myocardial graft of claim 1 wherein said
stable graft comprises skeletal myoblasts.
4. The myocardial graft of claim 1 which is
non-tumorigenic.
5. The myocardial graft of claim 1 wherein said
stable graft delivers recombinant molecules to the
myocardial tissue.
6. The myocardial graft of claim 5 which is
non-tumorigenic.
7. A method for forming a stable myocardial graft
in an animal, comprising:
introducing skeletal myoblasts or cardiomyocytes in
myocardial tissue of the animal so as to form a stable
myocardial graft.
8. The method of claim 7 wherein said introducing
comprises injecting the skeletal myoblasts or
cardiomyocytes into myocardial tissue of the animal.
9. The method of claim 7 in which skeletal
myoblasts are introduced into the myocardial tissue.

10. The method of claim 7 in which cardiomyocytes are introduced into the myocardial tissue.

11. The method of claim 7 wherein the myocardial graft is non-tumorigenic.

12. The method of claim 11 wherein the myocardial graft delivers recombinant molecules to the myocardial tissue.

13. A method for delivering recombinant molecules to myocardial tissue of an animal, comprising:

establishing a stable graft of skeletal myoblasts or cardiomyocytes incorporated in myocardial tissue of the animal, wherein the myoblasts or cardiomyocytes deliver recombinant molecules to the myocardial tissue.

14. The method of claim 13 wherein the stable graft comprises skeletal myoblasts.

15. The method of claim 13 wherein the stable graft comprises cardiomyocytes.

16. The method of claim 13 wherein the graft is non-tumorigenic.

17. A cellular composition comprising a substantially homogeneous population of non-immortalized cardiomyocytes.

18. A method of obtaining a substantially homogeneous population of cells, comprising:

transfected embryonic stem cells to introduce a marker gene enabling selection of one cell lineage from other cell lineages resulting from the differentiation of the stem cells;

causing the stem cells to differentiate; and
selecting said one cell lineage based on said marker
gene.

19. The method of claim 18, comprising:

transfected the stem cells to introduce (i) a first
marker gene enabling selection of transfected stem cells
from non-transfected stem cells and (ii) a second marker
gene enabling selection of said one cell lineage from said
other cell lineages;

selecting transfected stem cells based on the first
marker gene;

causing the selected stem cells to differentiate; and

selecting said one cell lineage based on said marker
gene.

20. The method of claim 19 wherein said one cell
lineage is cardiomyocytes.

21. A non-human animal having a stable graft of
skeletal myoblasts or cardiomyocytes incorporated in
myocardial tissue of the animal.

22. The animal of claim 21 which is a mammal.

23. The animal of claim 22 wherein the graft is
non-tumorigenic.

24. The animal of claim 23 wherein the graft includes
cardiomyocytes.

25. The animal of claim 23 wherein the graft includes
skeletal myoblasts.