A note on σ -reversibility and σ -symmetry of skew power series rings

L'moufadal Ben Yakoub and Mohamed Louzari

Department of mathematics
Abdelmalek Essaadi University
B.P. 2121 Tetouan, Morocco
benyakoub@hotmail.com, mlouzari@yahoo.com

Abstract

Let R be a ring and σ an endomorphism of R. In this note, we study the transfert of the symmetry (σ -symmetry) and reversibility (σ -reversibility) from R to its skew power series ring $R[[x;\sigma]]$. Moreover, we study on the relationship between the Baerness, quasi-Baerness and p.p.-property of a ring R and these of the skew power series ring $R[[x;\sigma]]$ in case R is right σ -reversible. As a consequence we obtain a generalization of [10].

Mathematics Subject Classification: 16S36; 16W20; 16U80

Keywords: Armendariz rings; Baer rings; p.p.-rings; quasi-Baer rings; skew power series rings; reversible rings; symmetric rings

1 Introduction

Throughout this paper R denotes an associative ring with identity and σ denotes a nonzero non identity endomorphism of a given ring.

Recall that a ring is reduced if it has no nonzero nilpotent elements. Lambek [16], called a ring R symmetric if abc = 0 implies acb = 0 for $a, b, c \in R$. Every reduced ring is symmetric ([19, Lemma 1.1]) but the converse does not hold by [1, Example II.5]. Cohen [8], called a ring R reversible if ab = 0 implies ba = 0 for $a, b \in R$. It is obvious that commutative rings are symmetric and symmetric rings are reversible, but the converse does not hold by [1, Examples I.5 and II.5] and [17, Examples 5 and 7]. From [3], a ring R is called right (left) σ -reversible if whenever $ab = \text{for } a, b \in R$, $b\sigma(a) = 0$ ($\sigma(b)a = 0$). R is called

 σ -reversible if it is both right and left σ -reversible. Also, by [15], a ring R is called right (left) σ -symmetric if whenever abc=0 for $a,b,c\in R$, $ac\sigma(b)=0$ ($\sigma(b)ac=0$). R is called σ -symmetric if it is both right and left σ -symmetric. Clearly right σ -symmetric rings are right σ -reversible.

Rege and Chhawchharia [18], called a ring R an Armendariz if whenever polynomials $f = \sum_{i=0}^{n} a_i x^i$, $g = \sum_{j=0}^{m} b_j x^j \in R[x]$ satisfy fg = 0, then $a_i b_j = 0$ for each $\overline{i,j}$. The Armendariz property of a ring was extended to one of skew polynomial ring in [11]. For an endomorphism σ of a ring R, a skew polynomial ring (also called an Ore extension of endomorphism type) $R[x;\sigma]$ of R is the ring obtained by giving the polynomial ring over R with the new multiplication $xr = \sigma(r)x$ for all $r \in R$. Also, a skew power series ring $R[[x;\sigma]]$ is the ring consisting of all power series of the form $\sum_{i=0}^{\infty} a_i x^i$ $(a_i \in R)$, which are multiplied using the distributive law and the Ore commutation rule $xa = \sigma(a)x$, for all $a \in R$. According to Hong et al. [11], a ring R is called σ-skew Armendariz if whenever polynomials $f = \sum_{i=0}^{n} a_i x^i$ and $g = \sum_{j=0}^{m} b_j x^j$ $\in R[x;\sigma]$ satisfy fg=0 then $a_i\sigma^i(b_i)=0$ for each i,j. Baser et al. [4], introduced the concept of σ -(sps) Armendariz rings. A ring R is called σ -(sps) Armendariz if whenever pq = 0 for $p = \sum_{i=0}^{\infty} a_i x^i$, $q = \sum_{j=0}^{\infty} b_j x^j \in R[[x;\sigma]]$, then $a_i b_j = 0$ for all i and j. According to Krempa [14], an endomorphism σ of a ring R is called rigid if $a\sigma(a) = 0$ implies a = 0 for all $a \in R$. We call a ring $R \sigma$ -rigid if there exists a rigid endomorphism σ of R. Note that any rigid endomorphism of a ring R is a monomorphism and σ -rigid rings are reduced by Hong et al. [10]. Also, by [15, Theorem 2.8(1)], a ring R is σ -rigid if and only if R is semiprime right σ -symmetric and σ is a monomorphisme, so right σ -symmetric (σ -reversible) rings are a generalization of σ -rigid rings.

In this note, we introduce the notion of σ -skew (sps) Armendariz rings which is a generalization of σ -(sps) Armendariz rings, and we study the transfert of the symmetry (σ -symmetry) and reversibility (σ -reversibility) from R to its skew power series ring $R[[x;\sigma]]$. Also we show that R is σ -(sps) Armendariz if and only if R is σ -skew (sps) Armendariz and $a\sigma(b)=0$ implies ab=0 for $a,b\in R$. Moreover, we study on the relationship between the Baerness, quasi-Baerness and p.p.-property of a ring R and these of the skew power series ring $R[[x;\sigma]]$ in case R is right σ -reversible. As a consequence we obtain a generalization of [10].

2 σ -Reversibility and σ -Symmetry of Skew Power Series Rings

We introduce the next definition.

Definition 2.1. Let R be a ring and σ an endomorphism of R. A ring R

is called σ -skew (sps) Armendariz if whenever pq=0 for $p=\sum_{i=0}^{\infty}a_ix^i,\ q=\sum_{j=0}^{\infty}b_jx^j\in R[[x;\sigma]],\ then\ a_i\sigma^i(b_j)=0$ for all i and j.

Every subring S with $\sigma(S) \subseteq S$ of an σ -skew (sps) Armendariz ring is a σ -skew (sps) Armendariz ring. In the next, we give an example of a ring R which is σ -skew (sps) Armendariz but not σ -(sps) Armendariz.

Example 2.2. Let R be the polynomial ring $\mathbb{Z}_2[x]$ over \mathbb{Z}_2 , and let the endomorphism $\sigma \colon R \to R$ be defined by $\sigma(f(x)) = f(0)$ for $f(x) \in \mathbb{Z}_2[x]$. (i) R is not σ -(sps) Armendariz because σ is not a monomorphism. (ii) R is an σ -skew (sps) Armendariz ring (as in [11, Example 5]). Consider $R[[y;\sigma]] = \mathbb{Z}_2[x][[y;\sigma]]$. Let $p = \sum_{i=0}^{\infty} f_i y^i$ and $q = \sum_{j=0}^{\infty} g_j y^j \in R[[y;\sigma]]$. We have $pq = \sum_{\ell \geq 0} \sum_{\ell = i+j} f_i \sigma^i(g_j) y^{\ell} = 0$. If pq = 0 then $\sum_{\ell = i+j} f_i \sigma^i(g_j) y^{\ell} = 0$, for each $\ell \geq 0$. Suppose that there is $f_s \neq 0$ for some $s \geq 0$ and $f_0 = f_1 = \cdots = f_{s-1} = 0$, then $\sum_{i+j=s} f_i \sigma^i(g_j) y^{i+j} = 0 \Rightarrow f_s \sigma^s(g_0) = 0$, since R is a domain then $g_0(0) = 0$. Also $\sum_{i+j=s+1} f_i \sigma^i(g_j) y^{i+j} = 0 \Rightarrow f_s \sigma^s(g_1) + f_{s+1} \sigma^{s+1}(g_0) = 0$, since $g_0(0) = 0$ then $f_s \sigma^s(g_1) = 0$ and so $g_1(0) = 0$ by the same method as above. Continuing this process, we have $g_j(0) = 0$ for all $j \geq 0$. Thus $f_i \sigma^i(g_j) = 0$ for all i, j.

We say that R satisfies the condition (\mathcal{C}_{σ}) , if whenever $a\sigma(b) = 0$ for $a, b \in R$, then ab = 0. By [4, Theorem 3.3(3iii)], if R is σ -(sps) Armendariz then it satisfies (\mathcal{C}_{σ}) (so σ is a monomorphism). If R is an σ -skew (sps) Armendariz ring satisfying the condition (\mathcal{C}_{σ}) then R is σ -(sps) Armendariz.

Theorem 2.3. A ring R is σ -(sps) Armendariz ring if and only if it is σ -skew (sps) Armendariz and satisfies the condition (\mathcal{C}_{σ}) .

Proof. (\Leftarrow). It is clear. (\Rightarrow). If R is σ -(sps) Armendariz then it satisfies the condition (\mathcal{C}_{σ}). It suffices to show that if R is σ -(sps) Armendariz then it is σ -skew (sps) Armendariz. The proof is similar as of [12, Theorem 1.8]. Let $p = \sum_{i=0}^{\infty} a_i x^i$ and $q = \sum_{j=0}^{\infty} b_j x^j \in R[[x;\sigma]]$ with pq = 0. Note that $a_j b_j = 0$ for all i and j. We claim that $a_i \sigma^i(b_j) = 0$ for all i and j. We have $(a_0 + a_1 x + \cdots)(b_0 + b_1 x + \cdots) = 0$, then $a_0(b_0 + b_1 x + \cdots) + (a_1 x + a_2 x^2 \cdots)(b_0 + b_1 x + \cdots) = 0$. Since $a_0 b_j = 0$ for all j, we get

$$0 = (a_1x + a_2x^2 + \cdots)(b_0 + b_1x + \cdots)$$
$$0 = (a_1 + a_2x + \cdots)x(b_0 + b_1x + \cdots)$$
$$0 = (a_1 + a_2x + \cdots)(\sigma(b_0)x + \sigma(b_1)x^2 + \cdots).$$

Put $p_1 = a_1 + a_2 x + \cdots$ and $q_1 = \sigma(b_0) x + \sigma(b_1) x^2 + \cdots$. Since $p_1 q_1 = 0$ then $a_i \sigma(b_j) = 0$ for all $i \ge 1$ and $j \ge 0$. We have, also

$$0 = a_1(\sigma(b_0)x + \sigma(b_1)x^2 + \cdots) + (a_2x + a_3x^2 + \cdots)(\sigma(b_0)x + \sigma(b_1)x^2 + \cdots).$$

Since $a_1 \sigma(b_j) = 0$ for all j, then

$$0 = (a_2x + a_3x^2 + \cdots)(\sigma(b_0)x + \sigma(b_1)x^2 + \cdots)$$

$$0 = (a_2 + a_3 x + \cdots)(\sigma^2(b_0)x^2 + \sigma^2(b_1)x^3 + \cdots).$$

Put $p_2 = a_2 + a_3x + a_4x^2 + \cdots$ and $q_2 = \sigma^2(b_0)x^2 + \sigma^2(b_1)x^3 + \cdots$, and then $p_2q_2 = 0$ implies $a_i\sigma^2(b_j) = 0$ for all $i \geq 2$ and $j \geq 0$. Continuing this process, we can show that $a_i\sigma^i(b_j) = 0$ for all $i \geq 0$ and $j \geq 0$. Thus R is σ -skew (sps) Armendariz.

Lemma 2.4. Let R be an σ -(sps) Armendariz ring. Then for $f = \sum_{i=0}^{\infty} a_i x^i$, $g = \sum_{j=0}^{\infty} b_j x^j$ and $h = \sum_{k=0}^{\infty} c_k x^k \in R[[x;\sigma]]$, if fgh = 0 then $a_i b_j c_k = 0$ for all i, j, k.

Proof. Note that, if fg = 0 then $a_ig = 0$ for all i. Suppose that fgh = 0 then $a_i(gh) = 0$ for all i, and so $(a_ig)h = 0$ for all i. Therefore $a_ib_jc_k = 0$ for all i, j, k.

Proposition 2.5. Let R be an σ -(sps) Armendariz ring. Then

- (1) R is reversible if and only if $R[[x;\sigma]]$ is reversible.
- (2) R is symmetric if and only if $R[[x; \sigma]]$ is symmetric.

Proof. If $R[[x;\sigma]]$ is symmetric (reversible) then R is symmetric (reversible). Conversely, (1). Let $f = \sum_{i=0}^{\infty} a_i x^i$ and $g = \sum_{j=0}^{\infty} b_j x^j \in R[[x;\sigma]]$, if fg = 0 then $a_i b_j = 0$ for all i and j. By [4, Theorem 3.3 (3ii)], we have $\sigma^j(a_i)b_j = 0$ for all i and j. Since R is reversible, we obtain $b_j \sigma^j(a_i) = 0$ for all i and j. Thus $gf = \sum_{\ell=0}^{\infty} \sum_{\ell=i+j} b_j \sigma^j(a_i) x^\ell = 0$. (2). We will use freely [4, Theorem 3.3 (3ii)], reversibility and symmetry of R. Let $f = \sum_{i=0}^{\infty} a_i x^i$, $g = \sum_{j=0}^{\infty} b_j x^j$ and $h = \sum_{k=0}^{\infty} c_k x^k \in R[[x;\sigma]]$, if fgh = 0 then $a_i b_j c_k = 0$ for all i, j and k, by Lemma 2.4. Then for all i, j, k we have $b_j c_k a_i = 0 \Rightarrow \sigma^k(b_j) c_k a_i = 0 \Rightarrow a_i \sigma^k(b_j) c_k = 0 \Rightarrow a_i c_k \sigma^k(b_j) = 0 \Rightarrow c_k \sigma^k(b_j) a_i = 0 \Rightarrow \sigma^i[c_k \sigma^k(b_j)] a_i = 0 \Rightarrow a_i \sigma^i[c_k \sigma^k(b_j)] = 0$. Thus fhg = 0.

The next Lemma gives a relationship between σ -reversibility (σ -symmetry) and reversibility (symmetry).

Lemma 2.6 ([5, Lemma 3.1]). Let R be a ring and σ an endomorphism of R. If R satisfies the condition (\mathcal{C}_{σ}) . Then

- (1) R is reversible if and only if R is σ -reversible;
- (2) R is symmetric if and only if R is σ -symmetric.

Theorem 2.7. Let R be an σ -(sps) Armendariz ring. The following statements are equivalent:

- (1) R is reversible (symmetric);
- (2) R is σ -reversible (σ -symmetric);
- (3) R is right σ -reversible (right σ -symmetric);
- (4) $R[[x; \sigma]]$ is reversible (symmetric).

Proof. We prove the reversible case (the same for the symmetric case).

- $(1) \Leftrightarrow (4)$. By Proposition 2.5.
- $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$. Immediately from Lemma 2.6.
- (3) \Rightarrow (1). Let $a, b \in R$, if ab = 0 then $b\sigma(a) = 0$ (right σ -reversibility), so ba = 0 (condition (\mathcal{C}_{σ})).

3 Related Topics

In this section we turn our attention to the relationship between the Baerness, quasi-Baerness and p.p.-property of a ring R and these of the skew power series ring $R[[x;\sigma]]$ in case R is right σ -reversible. For a nonempty subset X of R, we write $r_R(X) = \{c \in R | dc = 0 \text{ for any } d \in X\}$ which is called the right annihilator of X in R.

Lemma 3.1. If R is a right σ -reversible ring with $\sigma(1) = 1$. Then

- (1) $\sigma(e) = e$ for all idempotent $e \in R$;
- (2) R is abelian.

Proof. (1) Let e an idempotent of R. We have e(1-e)=(1-e)e=0 then $(1-e)\sigma(e)=e\sigma((1-e))=0$, so $\sigma(e)-e\sigma(e)=e-e\sigma(e)=0$, therefore $\sigma(e)=e$. (2) Let $r\in R$ and e an idempotent of R. We have e(1-e)=0 then e(1-e)r=0, since R is right σ -reversible then $(1-e)r\sigma(e)=0=(1-e)re=0$, so re=ere. Since (1-e)e=0, we have also er=ere. Then R is abelian. \square

Lemma 3.2. Let R be a right σ -reversible ring with $\sigma(1) = 1$, then the set of all idempotents in $R[[x;\sigma]]$ coincides with the set of all idempotents of R. In this case $R[[x;\sigma]]$ is abelian.

Proof. We adapt the proof of [3, Theorem 2.13(iii)] for $R[[x; \sigma]]$. Let $f^2 = f \in R[[x; \sigma]]$, where $f = f_0 + f_1x + f_2x^2 + \cdots$. Then

$$\sum_{\ell=0}^{\infty} \sum_{\ell=i+j} f_i \sigma^i(f_j) x^{\ell} = \sum_{\ell=0}^{\infty} f_{\ell} x^{\ell}.$$

For $\ell = 0$, we have $f_0^2 = f_0$. For $\ell = 1$, we have $f_0 f_1 + f_1 \sigma(f_0) = f_1$, but f_0 is central and $\sigma(f_0) = f_0$, so $f_0 f_1 + f_1 f_0 = f_1$, a multiplication by $(1 - f_0)$ on the left hand gives $f_1 = f_0 f_1$, and so $f_1 = 0$. For $\ell = 2$, we have $f_0 f_2 + f_1 \sigma(f_1) + f_2 \sigma^2(f_0) = f_2$, so $f_0 f_2 + f_2 f_0 = f_2$ (because $f_1 = 0$ and $\sigma^2(f_0) = f_0$), a multiplication by $(1 - f_0)$ on the left hand gives $f_0 f_2 = f_2 = 0$. Continuing this procedure yields $f_i = 0$ for all $i \geq 1$. Consequently, $f = f_0 = f_0^2 \in R$. Since R is abelian then $R[[x; \sigma]]$ is abelian.

Kaplansky [13], introduced the concept of $Baer\ rings$ as rings in which the right (left) annihilator of every nonempty subset is generated by an idempotent. According to Clark [7], a ring R is called quasi-Baer if the right annihilator of each right ideal of R is generated (as a right ideal) by an idempotent. It is well-known that these two concepts are left-right symmetric. A ring R is called a $right\ (left)\ p.p.-ring$ if the right (left) annihilator of an element of R is generated by an idempotent. R is called a p.p.-ring if it is both a right and left p.p.-ring.

Theorem 3.3. Let R be a right σ -reversible ring with $\sigma(1) = 1$. Then

- (1) R is a Baer ring if and only if $R[[x;\sigma]]$ is a Baer ring;
- (2) R is a quasi-Baer ring if and only if $R[[x;\sigma]]$ is a quasi-Baer ring.

Proof. (\Rightarrow). Suppose that R is Baer. Let A be a nonempty subset of $R[[x;\sigma]]$ and A^* be the set of all coefficients of elements of A. Then A^* is a nonempty subset of R and so $r_R(A^*) = eR$ for some idempotent element $e \in R$. Since $e \in r_{R[[x;\sigma]]}(A)$ by Lemma 3.1. We have $eR[[x;\sigma]] \subseteq r_{R[[x;\sigma]]}(A)$. Now, let $0 \neq q = b_0 + b_1 x + b_2 x^2 + \cdots \in r_{R[[x;\sigma]]}(A)$. Then Aq = 0 and hence pq = 0 for any $p \in A$. Let $p = a_0 + a_1 x + a_2 x^2 + \cdots$, then

$$pq = \sum_{\ell \ge 0} \sum_{\ell = i+j} a_i \sigma^i(b_j) x^\ell = 0.$$

- $\ell = 0$ implies $a_0 b_0 = 0$ then $b_0 \in r_R(A^*) = eR$.
- $\ell = 1$ implies $a_0b_1 + a_1\sigma(b_0) = 0$, since $b_0 = eb_0$ and $\sigma(e) = e$ then $a_0b_1 + a_1e\sigma(b_0) = 0$, but $a_1e = 0$ so $a_0b_1 = 0$ and hence $b_1 \in r_R(A^*)$.
- $\ell = 2$ implies $a_0b_2 + a_1\sigma(b_1) + a_2\sigma^2(b_0) = 0$, then $a_0b_2 + a_1e\sigma(b_1) + a_2e\sigma^2(b_0) = 0$, but $a_1e\sigma(b_1) = a_2e\sigma^2(b_0) = 0$, hence $a_0b_2 = 0$. Then $b_2 \in r_R(A^*)$.

Continuing this procedure yields $b_0, b_1, b_2, b_3, \dots \in r_R(A^*)$. So, we can write $q = eb_0 + eb_1x + eb_2x^2 + \dots \in eR[[x;\sigma]]$. Therefore $eR[[x;\sigma]] = r_{R[[x;\sigma]]}(A)$. Consequently, $R[[x;\sigma]]$ is a Baer ring.

Conversely, Suppose that $R[[x;\sigma]]$ is Baer. Let B be a nonempty subset of R. Then $r_{R[[x;\sigma]]}(B) = eR[[x;\sigma]]$ for some idempotent $e \in R$ by Lemma 3.2. Thus $r_R(B) = r_{R[[x;\sigma]]}(B) \cap R = eR[[x;\sigma]] \cap R = eR$. Therefore R is Baer.

The proof for the case of the quasi-Baer property follows in a similar fashion; In fact, for any right ideal A of $R[[x;\sigma]]$, take A^* as the right ideal generated by all coefficients of elements of A.

From [10, Example 20], $R = M_2(\mathbb{Z})$ is a Baer ring and R[[x]] is not Baer. Clearly R is not reversible. So that, the "right σ -reversibility" condition in Theorem 3.3(1) is not superfluous.

According to Annin [2], a ring R is σ -compatible if for each $a, b \in R$, $a\sigma(b) = 0$ if and only if ab = 0. Hashemi and Moussavi [9, Corollary 2.14] have proved Theorem 3.3(2), when R is σ -compatible. Consider R and σ as in Example 2.2. Since R is a domain then it is right σ -reversible (with $\sigma(1) = 1$). Also R is not σ -compatible (so R does not satisfy the condition (\mathcal{C}_{σ})), because σ is not a monomorphism. Therefore Theorem 3.3(2) is not a consequence of [9, Corollary 2.14]. On other hand, if R is reversible then σ -compatibility implies right σ -reversibility. But, if R is not reversible, we can easily see that this implication does not hold.

Theorem 3.4. Let R be a right σ -reversible ring with $\sigma(1) = 1$. If $R[[x; \sigma]]$ is a p.p.-ring then R is a p.p.-ring.

Proof. Suppose that $R[[x;\sigma]]$ is a right p.p.-ring. Let $a \in R$, then there exists an idempotent $e \in R$ such that $r_{R[[x;\sigma]]}(a) = eR[[x;\sigma]]$ by Lemma 3.2. Hence $r_R(a) = eR$, and therefore R is a right p.p.-ring.

Also, in Example 2.2, R is not σ -(sps) Armendariz. So Theorem 3.3 and Theorem 3.4 are not consequences of [4, Theorem 3.2].

Since σ -rigid rings are right σ -reversible [15, Theorem 2.8 (1)], we have the following Corollaries.

Corollary 3.5 ([10, Theorem 21]). Let R be an σ -rigid ring. Then R is a Baer ring if and only if $R[[x;\sigma]]$ is a Baer ring.

Corollary 3.6 ([10, Corollary 22]). Let R be an σ -rigid ring. Then R is a quasi-Baer ring if and only if $R[[x;\sigma]]$ is a quasi-Baer ring.

ACKNOWLEDGEMENTS. The second author wishes to thank Professor Amin Kaidi of University of Almería for his generous hospitality. This work was supported by the project PCI Moroccan-Spanish A/011421/07.

References

- [1] D.D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, *Comm. Algebra*, **27(6)** (1999), 2847-2852.
- [2] S. Annin, Associated primes over skew polynomials rings, *Comm. Algebra*, bf 30 (2002), 2511-2528.
- [3] M. Baser, C.Y. Hong and T.K. Kwak, On extended reversible rings, *Algebra Colloq.*, **16(1)** (2009), 37-48.
- [4] M. Baser, A. Harmanci and T.K. Kwak, Generalized semicommutative rings and their extensions, Bull. Korean Math. Soc., 45(2) (2008), 285-297.

- [5] L. Ben Yakoub and M. Louzari, Ore extensions of extended symmetric and reversible rings, *Inter. J. of Algebra*, (to appear).
- [6] G.F. Birkenmeier, J.Y. Kim, J.K. Park, Principally quasi-Baer rings, *Comm. Algebra*, **29(2)** (2001), 639-660.
- [7] W.E. Clark, Twisted matrix units semigroup algebras, *Duke Math.Soc.*, **35** (1967), 417-424.
- [8] P.M. Cohen, Reversible rings, Bull. London Math. Soc., **31(6)** (1999), 641-648.
- [9] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, *Acta. Math. Hungar.*, **107** (3) (2005), 207-224.
- [10] C.Y. Hong, N.K. Kim and T.K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure and Appl. Algebra, 151(3) (2000), 215-226.
- [11] C.Y. Hong, N.K. Kim and T.K. Kwak, On Skew Armendariz Rings, Comm. Algebra, 31(1) (2003), 103-122.
- [12] C.Y. Hong, T.K. Kwak and S.T. Rezvi, Extensions of generalized Armendariz rings, Algebra Colloq., 13(2) (2006), 253-266.
- [13] I. Kaplansky, Rings of operators, Math. Lecture Notes series, Benjamin, New York, 1965.
- [14] J. Krempa, Some examples of reduced rings, Algebra Colloq., 3(4) (1996), 289-300.
- [15] T.K. Kwak, Extensions of extended symmetric rings, Bull. Korean Math.Soc., 44 (2007), 777-788.
- [16] J. Lambek, On the reprentation of modules by sheaves of factor modules, *Canad. Math. Bull.*, **14** (1971), 359-368.
- [17] G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra, 174(3) (2002), 311-318.
- [18] M.B. Rege and S. Chhawchharia, Armendariz rings, *Proc. Japan. Acad. Ser. A Math. Sci.*, **73** (1997), 14-17.
- [19] J.Y. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, *Trans. Amer. Math. Soc.*, **184** (1973), 43-60.