Algorithmic Human-Robot Interaction

Activity Recognition
System Design Workshop Part II
System Design Pitches

CSCI 7000

Prof. Brad Hayes

University of Colorado Boulder

No Class Next Week

Classes cancelled 3/12 and 3/14 due to the HRI Conference

Papers for Thursday 3/7: Interpreting and Expressing Goals

(E-mail <u>Bradley.Hayes@Colorado.edu</u> to sign up)

Learning Robot Objectives from Physical Human Interaction

Bajcsy et al.

Pro: Lakhan Kamireddy

Con: Chandan Naik

Expressing Robot Incapability

Kwon et al.

Pro: Dhanendra Soni

Con: Shohei Wakayama

Hidden Markov Models

Variables:

$$S = s_1, s_2, \dots, s_N \qquad \qquad \text{(States)}$$

$$V = v_1, v_2, \dots, v_k \qquad \qquad \text{(Observation Vocab.)}$$

$$A = a_{11}, \dots a_{ij}, \dots a_{NN} \qquad \qquad \text{(Transition prob. Matrix)}$$

$$B = P(o_t | s_i) \ \forall \ i \in [1, N], t \in [1, T] \qquad \text{(Obs. Emission Probs)}$$

$$\pi = \pi_1, \pi_2, \dots, \pi_N \qquad \qquad \text{(Initial prob. distribution)}$$

$$O = o_1, o_2, \dots, o_T \qquad \qquad \text{(Observation Sequence)}$$

$$Q = s_1, s_2, \dots, s_T \qquad \qquad \text{(State Sequence)}$$

$$S = s_1, s_2, \dots, s_T \qquad \qquad \text{(State Sequence)}$$

Three Types of Problems

• Likelihood:

Given A, B, O ... Determine P(O|A, B)

Decoding:

Given A, B, O ... Determine the 'best' hidden state sequence

Learning:

Given O and S ... Determine A, B

Likelihood Computation: Forward Algorithm

Example: Given A,B and
$$O=\{3,1,3\}$$
 -- Determine $P(O|A,B)$
$$\alpha_t(j)=P(o_1,o_2,\dots,o_t,q_t=j\mid A,B)$$

$$\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) * \alpha_{ij} * b_j(o_t)$$
Prev P(i -> j) P(o|s)

function FORWARD(observations of len T, state-graph of len N) **returns** forward-prob

```
create a probability matrix forward[N,T]
```

for each state s from 1 to N do

; initialization step

$$forward[s,1] \leftarrow \pi_s * b_s(o_1)$$

for each time step t from 2 to T do

; recursion step

for each state s from 1 to N do

$$forward[s,t] \leftarrow \sum_{s'=1}^{N} forward[s',t-1] * a_{s',s} * b_{s}(o_{t})$$

 $forwardprob \leftarrow \sum_{s=1}^{N} forward[s,T]$; termination step

return forwardprob

State Sequence Computation: Viterbi Algorithm

function VITERBI(*observations* of len *T*,*state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]

for each state s from 1 to N do ; initialization step viterbi[s,1] \leftarrow \pi_s * b_s(o_1) backpointer[s,1] \leftarrow 0

for each time step t from 2 to T do ; recursion step for each state s from 1 to N do viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t) backpointer[s,t] \leftarrow \arg\max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
```



```
bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T] ; termination step bestpathpointer \leftarrow \underset{s=1}{\text{argmax}} viterbi[s, T] ; termination step
```

bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

Learning an HMM's Parameters

Learning: Given O and S ... Determine A, B

Challenge: Must simultaneously determine transition probabilities AND emission probabilities!

Special case of Expectation-Maximization, iteratively improving an initial estimate.

But first, let's solve for a Markov Chain (fully observable) given **O**, **S**, **Q**

Backward Algorithm

Backward Probability: $\beta_t(i) = P(o_{t+1}, o_{t+2}, \dots o_t | q_t = i, A, B)$

If we're in state i at time t, what's P(Obs) from then to end?

Initialization: $\beta_T(i) = 1$, $i \in [1, N]$

Recursion: $\beta_t(i) = \sum_{j=1}^N a_{ij} * b_j(o_{t+1}) * \beta_{t+1}(j)$, $i \in [1, N], t \in [1, T)$

Termination: $P(O|A,B) = \sum_{j=1}^{N} \pi_{j} * b_{j}(o_{1}) * \beta_{1}(j)$

$$\hat{a}_{ij} = \frac{Expected \ \#transitions \ from \ i \ to \ j}{Expected \ \#transitions \ from \ i}$$

To compute numerator:

- 1. Assume we have probability estimate for $i \rightarrow j$ at time t
- 2. Now assume we had that for all t: sum over all $t \in [0,T)$ to get the total count for $i \to j$

Define
$$\xi_t$$
 as probability of transition from i to j at time t : $\xi_t(i,j) = P(q_t = i, q_{t+1} = j \mid O, A, B)$

...But we don't know the relation between Q and Q!

Define ξ_t as probability of transition from i to j at time t: $\xi_t(i,j) = P(q_t = i, q_{t+1} = j \mid O, A, B)$

...But we don't know the relation between Q and Q!

So we define sort-of-
$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j, O \mid A, B)$$

sort-of-
$$\xi_t(i,j) = \alpha_t(i) * a_{ij} * b_i(o_{t+1}) * \beta_{t+1}(j)$$

sort-of-
$$\xi_t(i,j) = \alpha_t(i) * \alpha_{ij} * b_i(o_{t+1}) * \beta_{t+1}(j)$$

How do we go from
$$P(q_t = i, q_{t+1} = j, 0 \mid A, B)$$
 to
$$P(q_t = i, q_{t+1} = j \mid 0, A, B)$$
 Recall:
$$P(X \mid Y, Z) = \frac{P(X, Y \mid Z)}{P(Y \mid Z)}$$

Thus, because
$$P(O|A,B) = \sum_{j=1}^{N} \alpha_t(j) * \beta_t(j)$$

$$\xi_t(i,j) = \frac{\alpha_t(i) * a_{ij} * b_j(o_{t+1}) * \beta_{t+1}(j)}{\sum_{j=1}^N \alpha_t(j) * \beta_t(j)}$$

Forward

Backward

 $\alpha_t(j) = P(o_1, o_2, ..., o_t, q_t = j \mid A, B)$ $\beta_t(i) = P(o_{t+1}, o_{t+2}, ... o_t | q_t = i, A, B)$

To compute numerator:

- 1. Assume we have probability estimate for $i \rightarrow j$ at time t
- 2. Now assume we had that for all t: sum over all $t \in [0,T)$ to get the total count for $i \to j$

$$\hat{a}_{ij} = \frac{Expected \ \#transitions \ from \ i \ to \ j}{Expected \ \#transitions \ from \ i} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i,k)}$$

$$\xi_t(i,j) = \frac{\alpha_t(i) * \alpha_{ij} * b_j(o_{t+1}) * \beta_{t+1}(j)}{\sum_{j=1}^N \alpha_t(j) * \beta_t(j)}$$

$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j \mid 0, A, B)$$

Forward

Backward

 $\alpha_t(j) = P(o_1, o_2, ..., o_t, q_t = j \mid A, B)$

 $\beta_t(i) = P(o_{t+1}, o_{t+2}, \dots o_t | q_t = i, A, B)$

$$\hat{a}_{ij} = \frac{Expected \#transitions \ from \ i \ to \ j}{Expected \#transitions \ from \ i} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i,k)}$$

$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j \mid O, A, B)$$

Now we need to compute observation emission probability:

$$\widehat{b}_{j}(v_{k}) = \frac{Expected \# of \ v_{k} \ seen \ in \ state \ j}{Expected \# times \ in \ state \ j}$$

Forward

Backward

 $\alpha_t(j) = P(o_1, o_2, ..., o_t, q_t = j \mid A, B)$

|A,B| $\beta_t(i) = P(o_{t+1}, o_{t+2}, \dots o_t | q_t = i, A, B)$

Now we need to compute observation emission probability:

$$\widehat{b}_{j}(v_{k}) = \frac{Expected \# of v_{k} \text{ seen in state } j}{Expected \# times \text{ in state } j}$$

But first, we need to know prob. of being in state j at time t

$$\gamma_t(j) = P(q_t = j \mid O, A, B) = \frac{P(q_t = j, O \mid A, B)}{P(O \mid A, B)}$$

$$\gamma_t(j) = \frac{\alpha_t(j) * \beta_t(j)}{P(O|A,B)}$$

Forward

Backward

 $\alpha_t(j) = P(o_1, o_2, ..., o_t, q_t = j \mid A, B)$

B) $\beta_t(i) = P(o_{t+1}, o_{t+2}, \dots o_t | q_t = i, A, B)$

Now we need to compute observation emission probability:

$$\widehat{b}_{j}(v_{k}) = \frac{Expected \ \# \ of \ v_{k} \ seen \ in \ state \ j}{Expected \ \# times \ in \ state \ j} = \frac{\sum_{t=1}^{T} \gamma_{t}(j) * I(o_{t} = v_{k})}{\sum_{t=1}^{T} \gamma_{t}(j)}$$

$$\gamma_t(j)$$
 = prob. of being in state j at time t

$$\gamma_t(j) = \frac{\alpha_t(j) * \beta_t(j)}{P(O|A,B)}$$

Forward

Backward

 $\beta_t(i) = P(o_{t+1}, o_{t+2}, \dots o_t | q_t = i, A, B)$

Expectation-Maximization on A, B

E-Step: Compute state occupancy count γ , expected state transition count ξ using existing A,B probabilities

M-Step: Compute A,B using existing γ and ξ probabilities

 $lpha_t(j) = ext{prob.}$ to be in state j at t $eta_t(j) = ext{prob.}$ of O from state j at t $\xi_t(i,j) = ext{prob.}$ of transition from i to j at time t $\gamma_t(j) = ext{prob.}$ of being in state j at time t

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden state set Q) **returns** HMM = (A,B)

initialize *A* and *B*

iterate until convergence

E-step

$$\gamma_t(j) = \frac{\alpha_t(j)\beta_t(j)}{\alpha_T(q_F)} \,\,\forall \, t \,\,\text{and}\,\, j$$

$$\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{\alpha_T(q_F)} \,\,\forall \, t, \,\, i, \,\, \text{and}\,\, j$$

M-step

$$\hat{a}_{ij} = rac{\sum\limits_{t=1}^{T-1} \xi_t(i,j)}{\sum\limits_{t=1}^{T-1} \sum\limits_{k=1}^{N} \xi_t(i,k)} \ \hat{b}_j(v_k) = rac{\sum\limits_{t=1}^{T} \gamma_t(j)}{\sum\limits_{t=1}^{T} \gamma_t(j)}$$

return A, B

Looking Ahead

3/7	Thursday:	Paper presentations, Lit Review workshop
3/12	Tuesday:	No class, work on projects, start Intro/Related Work writeup
3/14	Thursday:	No class, work on projects, start Intro/Related Work writeup
3/19	Tuesday:	Guest Lecture - Dr. Dan Grollman
3/21	Thursday:	Inverse Reinforcement Learning and ROS
3/26	Tuesday:	Spring Break
3/28	Thursday:	Spring Break
4/2	Tuesday:	ROS, Computer Vision and Robot Control
4/4	Thursday:	HRI 2019 Papers, Evaluation Workshop
4/9	Tuesday:	Explainable AI and In-progress Project Presentations
4/11	Thursday:	Explainable AI and XAI Papers
4/16	Tuesday:	Reinforcement Learning
4/18	Thursday:	Reinforcement Learning and RL Papers
4/23	Tuesday:	Guest Lecture – Dr. Alessandro Roncone

Activity Classification and Segmentation

Fast target prediction of human reaching motion for cooperative humanrobot manipulation tasks using time series classification

Fast target prediction of human reaching motion for cooperative humanrobot manipulation tasks using time series classification

Fast target prediction of human reaching motion for cooperative humanrobot manipulation tasks using time series classification

Fast target prediction of human reaching motion for cooperative humanrobot manipulation tasks using time series classification

Common Activity Classifier Pipeline

Training

Feature Extraction

Keyframe Clustering (Usually KNN)

Point to Keyframe Classifier (Usually SVM)

HMM trained on keyframe sequences

Testing

Feature Extraction

Keyframe Classification

HMM Likelihood Evaluation (Forward Algorithm) Choose model with greatest posterior probability

- P. Koniusz, A. Cherian, and F. Porikli, "Tensor representations via kernel linearization for action recognition from 3d skeletons."
- Gori, J. Aggarwal, L. Matthies, and M. Ryoo, "Multitype activity recognition in robot-centric scenarios,"
- E. Cippitelli, S. Gasparrini, E. Gambi, and S. Spinsante, "A human activity recognition system using skeleton data from rgbd sensors."
- L. Xia, C. Chen, and J. Aggarwal, "View invariant human action recognition using histograms of 3d joints."

Rapid Activity Prediction Through Object-oriented Regression (RAPTOR)

A highly parallel ensemble classifier that is resilient to temporal variations

Feature Extraction Temporal Segmentation Feature-wise Segmentation

Local Model Training

Kinect Skeletal Joints

VICON Markers

Learned Feature Extractor

```
 \begin{pmatrix} 1. & 0.04 & -0.67 & -0.4 & -0.54 & -0.74 & -0.22 & -0.75 & -0.56 \\ 0.04 & 1. & 0.45 & 0.41 & -0.03 & -0.4 & -0.44 & -0.28 & 0.16 \\ -0.67 & 0.45 & 1. & 0.39 & 0.49 & 0.2 & -0.16 & 0.15 & 0.35 \\ -0.4 & 0.41 & 0.39 & 1. & 0.06 & 0.2 & 0.11 & 0.13 & 0.38 \\ -0.54 & -0.03 & 0.49 & 0.06 & 1. & 0.36 & 0.02 & 0.16 & 0.39 \\ -0.74 & -0.4 & 0.2 & 0.2 & 0.36 & 1. & 0.37 & 0.57 & 0.19 \\ -0.22 & -0.44 & -0.16 & 0.11 & 0.02 & 0.37 & 1. & 0.11 & -0.25 \\ -0.75 & -0.98 & 0.15 & 0.13 & 0.16 & 0.57 & 0.11 & 1 & 0.57 \\ \end{pmatrix}
```

[Timestep x Feature] Matrix

Feature Extraction

Temporal Segmentation

Feature-wise Segmentation

Local Model Training

Feature Extraction Temporal Segmentation

Feature-wise Segmentation

Local Model Training

Feature Extraction Temporal Segmentation

Feature-wise Segmentation

Local Model Training

Temporal Segmentation Feature-wise Segmentation

Local Model Training

Feature Extraction Temporal Segmentation

Feature-wise Segmentation

Local Model Training

Feature Extraction Temporal Segmentation

Feature-wise Segmentation

Local Model Training

Displacement

Object Map:

Dictionary that maps IDs to sets of column indices E.g., {"Hands": [0,1,2,5,6,7]}

```
0.04 -0.67 -0.4 -0.54 -0.74 -0.22 -0.75 -0.56
0.04 1. 0.45 0.41 -0.03 -0.4 -0.44 -0.28 0.16
-0.67 \ 0.45 \ 1. 0.39 \ 0.49 \ 0.2 \ -0.16 \ 0.15 \ 0.35
-0.4 \quad 0.41 \quad 0.39 \quad 1. \quad 0.06 \quad 0.2 \quad 0.11 \quad 0.13 \quad 0.38
-0.54 -0.03 0.49 0.06 1. 0.36 0.02 0.16 0.39
-0.74 -0.4 0.2 0.2 0.36 1. 0.37 0.57 0.19
-0.22 -0.44 -0.16 0.11 0.02 0.37 1. 0.11 -0.25
```

Segmentation

Feature-wise Segmentation

Local Model Training

Within each temporal segment:

Isolate columns of each demonstration trajectory according to (pre-defined) object map

```
-0.4 -0.44 -0.28
                            0.2 -0.16 \ 0.15
-0.4 0.41 0.39
                           0.2 	 0.11 	 0.13
                                 0.37 0.57
```

Create local model for each object

Temporal Segmentation

Feature-wise Segmentation

Local Model Training

Within each temporal-object segment:

- Ignore temporal information for each data point
- Treat as general pattern recognition problem
- Model the resulting distribution using a GMM

Result: An activity classifier ensemble across objects and time!

Feature Extraction

Temporal Segmentation

Feature-wise Segmentation

Local Model Training

Need to find the most discriminative Object GMMs per time segment

Temporal Segmentation

Feature-wise Segmentation

Local Model Training

Need to find the most discriminative Object GMMs per time segment

Random Forest Classifier

Feature Extraction

Temporal Segmentation Feature-wise Segmentation

Local Model Training

Activity Model Training Pipeline

Need to find the most discriminative Object GMMs per time segment

Off-Target Class Demonstrations

Random Forest Classifier

Feature Extraction

Temporal Segmentation

Feature-wise Segmentation

Local Model Training

Ensemble Weight Learning

Activity Model Training Pipeline

- Choose top-N most discriminative features from the Random Forest classifier
- Weight each GMM proportional to its discriminative power

Feature Extraction

Temporal Segmentation

Feature-wise Segmentation

Local Model Training

Ensemble Weight Learning

Activity Model Training Pipeline

- Choose top-N most discriminative object-based classifiers
- Weight each object proportionally to its discriminative power

Result: Trained Highly Parallel Ensemble Learner with Temporal/Object-specific sensitivity

Feature Extraction

Temporal Segmentation

Feature-wise Segmentation

Local Model Training

Ensemble Weight Learning

Results: Three Datasets

- UTKinect publicly available benchmark
- Dynamic Actor Industrial Manufacturing Task
- Static Actor Industrial Manufacturing Task

(Kinect Joints)

(Joint positions)

(Joint positions)

Vocandor, Spektometer, Front vocandor, Spektometer, Front vocandor, Spektometer, Front vocandor, Spektometer, Front vocandor, Spektometer, Spektomet

Automotive Final Assembly

Sealant Application

UTKinect

Recognition Results: UTKinect-Action3D

Real-time UTKinect Activity Recognition Accuracy				
Classifier	Accuracy			
Slama et al. (2015) [21]	88.5%			
Chrungoo et al. (2014) [18]	89.45%			
Xia et al. (2012) [11]	90.9%			
Wang et al. (2015) [24]	90.9%			
Devanne et al. (2013) [20]	91.5%			
RAPTOR (proposed method)	92.1%			

Results: Online Prediction

RAPTOR Online Activity Prediction Accuracy				
Dataset	25%	50%	75%	100%
UTKinect	79.4%	83.1%	84.7%	92.1%
Static-Reach	69.7%	77.2%	93.8%	97.5%
Dynamic-AutoFA	91.7%	88.1%	90.5%	92.0%

Classification vs. Segmentation

Classification vs. Segmentation

What are the right intervals?
Which intervals should get labels?
Which labels should be where?

A Naïve Changepoint Detection Approach

Scenario

Duration: 2700 frames – 1.5 minutes of data

Classifiers: 11 – Avg run-time of 0.2s each

IDEA: Run every activity classifier over every possible segment

- Given n frames:
 - For every interval q in the range [0, n]:
 - Evaluate each classifier on q
 - Sort results by likelihood
 - Assign class labels to uncovered intervals from highest likelihood classifications until no unlabeled frames remain

2700² * 0.2 = 1458000sec ~16.88 days

Classifiers must be ideal (sensitive to trajectory length, non-overlapping, comparable tolerance to noise, etc.)

Return timeline (list of intervals)

- At each time step *t*:
 - Create new particles for all eligible classes
 - start_time = t minimum_class_duration
 - prev_interval = particle with highest MAP estimate in best[start_time]
 - Evaluate existing particles' likelihoods over the interval [p.start_time, t] and store as (likelihood, p) tuples in particle_maps
 - Terminate stale particles

particle_maps[] - Sorted (MAP, particle) tuples for each timestep

- At each time step *t*:
 - Create new particles for all eligible classes
 - start_time = t minimum_class_duration
 - prev_interval = particle with highest MAP estimate in best[start_time]
 - Evaluate existing particles' likelihoods over the interval [p.start_time, t] and store as (likelihood, p) tuples in particle_maps
 - Terminate stale particles

particle_maps[] - Sorted (MAP, particle) tuples for each timestep

- At each time step t:
 - Create new particles for all eligible classes
 - start time = t minimum class duration
 - prev_interval = particle with highest MAP estimate in best[start_time]
 - Evaluate existing particles' likelihoods over the interval [p.start_time, t] and store as (likelihood, p) tuples in particle_maps
 - Terminate stale particles

particle_maps[] - Sorted (MAP, particle) tuples for each timestep

- At each time step t:
 - Create new particles for all eligible classes
 - start_time = t minimum_class_duration
 - prev_interval = particle with highest MAP estimate in best[start_time]
 - Evaluate existing particles' likelihoods over the interval [p.start_time, t] and store as (likelihood, p) tuples in particle_maps
 - Terminate stale particles

particle_maps[] - Sorted (MAP, particle) tuples for each timestep

- Set f = final frame index
- While f > 0 and $particle_maps[f] != None:$
 - Take best (MAP, particle) at particle_maps index f
 - Annotate segment [shape_start, f] with shape_class
 - Set f = particle.start_time

particle_maps[] - Sorted (MAP, particle) tuples for each timestep

- Set f = final frame index
- While f > 0 and $particle_maps[f] != None:$
 - Take best (MAP, particle) at particle_maps index f
 - Annotate segment [shape_start, f] with shape_class
 - Set f = particle.start_time

particle_maps[] - Sorted (MAP, particle) tuples for each timestep

- Set f = final frame index
- While f > 0 and $particle_maps[f] != None:$
 - Take best (MAP, particle) at particle_maps index f
 - Annotate segment [shape_start, f] with shape_class
 - Set f = particle.start_time

particle_maps[] - Sorted (MAP, particle) tuples for each timestep

- Set f = final frame index
- While f > 0 and $particle_maps[f]$!= None:
 - Take best (MAP, particle) at particle_maps index f
 - Annotate segment [shape_start, f] with shape_class
 - Set f = particle.start_time

particle_maps[] - Sorted (MAP, particle) tuples for each timestep

- Set f = final frame index
- While f > 0 and $particle_maps[f]$!= None:
 - Take best (MAP, particle) at particle_maps index f
 - Annotate segment [shape_start, f] with shape_class
 - Set f = particle.start_time

System Design Workshop (Part II)

Finish defining the major components of your project If already done, begin designing your evaluation!

Deliverable: Block diagram with details for each component

(Powerpoint slide deck is generally the easiest format)

Submit on Moodle by Friday

- 1. Set up Git repo
- 2. Draw your system diagram
- 3. Describe your nodes' purposes
- 4. What are your inputs/outputs?
 - Group into ROS topics/message types
- 5. Outline your nodes' functionality
 - Increasingly descriptive pseudocode
- 6. Start turning pseudocode into real code