CS310 NLP Group Project Guideline Spring 2025

(this draft will be constantly updated)

Goal Description

To effectively detect large language models (LLMs)-generated texts, especially to distinguish them from real human-written ones, is becoming a more and more important task. The task can be approached with two technical paths: 1) **supervised learning**-based detection; 2) likelihood metrics-based **zero-shot** detection. The former is similar to building a text classification model for tasks such as sentiment analysis etc., which can be done by fine-tuning a transformer encoder-based model (e.g., BERT) on an annotated dataset with binary labels (e.g., "0" for human-written and "1" for LLM-generated). The main advantage of this approach is that a supervised learning model can perform well provided with sufficient amount of data, and will be useful for a focused task-domain (e.g., news, fictions etc.). The limitation is also obvious – it is not a generic method, which means a detection model trained on one type of text data may fail on others, that is, relatively poor out-of-domain (OOD) performance. The latter approach, likelihood-based zero-shot detection, is a more generic solution – the detection algorithm/pipeline developed for one text-domain/languages/LLM can also work well on others, that is, better overall OOD performance.

The goal of this project is two-fold: <u>First</u>, implement a serious of supervised learning-based detection models, and test their performances under the OOD condition. <u>Second</u>, pick one of the zero-shot detection methods, and test it on the same setting. Compare the performances of the two methods, and discuss your findings.

Datasets

- Ghostbuster English data: A collection of LLM-generated texts together with human ground truths developed by Verma et al. [1]
 - https://github.com/vivek3141/ghostbuster-data
- Chinese data: A collection texts generated by Qwen-2 on three domains: News articles
 Wikipedia documents, and Web novels. Also shipped with human ground truths.
 (the data will be uploaded to the course website)

Zero-shot Detection Methods

You can choose from one of the published works as follows:

- Fast-DetectGPT [2]: A method based on the probability curvatures texts. It is an improvement over DetectGPT[3],
 - Repo: https://github.com/baoguangsheng/fast-detect-gpt
- FourierGPT[4]: A method based on the spectral representations of text likelihood.

Repo: https://github.com/CLCS-SUSTech/FourierGPT

• GPT-who [5]: A method based on the psycholinguistic features.

Repo: https://github.com/saranya-venkatraman/gpt-who

It is okay if there are other methods you would like to use, but make sure to justify your choice.

Notes on Supervised Method

A binary classification model for distinguishing human vs. generated texts is sufficient. You do not need to train a model for multi-class detection, e.g., Claude vs. GPT-4 vs. GPT-3.5 etc. You can start with training English-specific models. For optional experiment, you can test how multi-lingual models work on the task.

General Expected Results

Your results should roughly fall into this table, with a 2×2 combination of datasets and methods. The expected results include accuracy, precision, recall, F-1, AUROC etc.

The detection tasks can be at a finer degree, for example, the performance on News, Wikipedia, Webnovel in Chinese separately. This is optional, and should be done only if you have time.

	English	Chinese
Supervised	AA	BB
Zero-shot	CC	DD

References

- [1] V. Verma, E. Fleisig, N. Tomlin, and D. Klein, "Ghostbuster: Detecting text ghostwritten by large language models," *arXiv preprint arXiv:2305.15047*, 2023.
- [2] G. Bao, Y. Zhao, Z. Teng, L. Yang, and Y. Zhang, "Fast-detectgpt: Efficient zero-shot detection of machine-generated text via conditional probability curvature," *arXiv* preprint *arXiv*:2310.05130, 2023.
- [3] E. Mitchell, Y. Lee, A. Khazatsky, C. D. Manning, and C. Finn, "Detectgpt: Zero-shot machine-generated text detection using probability curvature," in *International Conference on Machine Learning*, 2023: PMLR, pp. 24950-24962.
- [4] Y. Xu, Y. Wang, H. An, Z. Liu, and Y. Li, "Detecting Subtle Differences between Human and Model Languages Using Spectrum of Relative Likelihood," Miami, Florida, USA, November 2024: Association for Computational Linguistics, in Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 10108-10121.
- [5] S. Venkatraman, A. Uchendu, and D. Lee, "GPT-who: An Information Density-based Machine-Generated Text Detector," Mexico City, Mexico, June 2024: Association for Computational Linguistics, in Findings of the Association for Computational Linguistics: