

planetmath.org

Math for the people, by the people.

proof of bounded linear functionals on $L^p(\mu)$

 ${\bf Canonical\ name} \quad {\bf ProofOfBoundedLinearFunctionalsOnLpmu}$

Date of creation 2013-03-22 18:38:19 Last modified on 2013-03-22 18:38:19

Owner gel (22282) Last modified by gel (22282)

Numerical id 4

Author gel (22282) Entry type Proof Classification msc 46E30 Classification msc 28A25 If (X, \mathfrak{M}, μ) is a σ -finite measure-space and p, q are http://planetmath.org/ConjugateIndexH conjugates with $p < \infty$, then we show that L^q is isometrically isomorphic to the dual space of L^p .

For any $g \in L^q$, define the linear map

$$\Phi_g \colon L^p \to \mathbb{C}, \ f \mapsto \Phi_g(f) = \int fg \, d\mu.$$

This is a bounded linear map with operator norm $\|\Phi_g\| = \|g\|_q$ (see http://planetmath.org/LpNor norm is dual to L^q), so the map $g \mapsto \Phi_g$ gives an isometric embedding from L^q to the dual space of L^p . It only remains to show that it is onto.

So, suppose that $\Phi \colon L^p \to \mathbb{C}$ is a bounded linear map. It needs to be shown that there is a $g \in L^q$ with $\Phi = \Phi_g$. As http://planetmath.org/AnySigmaFiniteMeasureIs σ -finite measure is equivalent to a probability measure, there is a bounded h > 0 such that $\int h \, d\mu = 1$. Let $\tilde{\Phi} \colon L^\infty \to \mathbb{C}$ be the bounded linear map given by $\tilde{\Phi}(f) = \Phi(hf)$. Then, there is a $g_0 \in L^1$ such that

$$\Phi(hf) = \tilde{\Phi}(f) = \int f g_0 \, d\mu$$

for every $f \in L^{\infty}$ (see http://planetmath.org/BoundedLinearFunctionalsOnLinftymubounded linear functionals on L^{∞}). Set $g = h^{-1}g_0$ and, for any $f \in L^p$, let f_n be the sequence

$$f_n = f 1_{\{|h^{-1}f| < n\}}.$$

As $h^{-1}f_n \in L^{\infty}$,

$$||f_n g||_1 = ||h^{-1} f_n g_0||_1 = \Phi(\operatorname{sign}(fg_0) f_n) \le ||\Phi|| ||f_n||_p.$$

Letting n tend to infinity, dominated convergence says that $f_n \to f$ in the L^p -norm, so Fatou's lemma gives

$$||fg||_1 \le \liminf_{n \to \infty} ||f_n g||_1 \le ||\Phi|| ||f||_p.$$

In particular, $||g||_q \leq ||\Phi||$ (see http://planetmath.org/LpNormIsDualToLq L^p -norm is dual to L^q), so $g \in L^q$. As $|f_n g| \leq |fg|$ are in L^1 , dominated convergence finally gives

$$\int fg \, d\mu = \lim_{n \to \infty} \int f_n g \, d\mu = \lim_{n \to \infty} \Phi(f_n) = \Phi(f)$$

so $\Phi_g = \Phi$ as required.