Équations différentielles – Partie 4 : y' = ay + b et y' = ay + f

Exercice 1.

Pour chacune des équations différentielles (E) suivantes,

- déterminer l'équation homogène associée,
- trouver les solutions $y_h(x)$ de cette équation homogène,
- vérifier que la fonction $y_p(x)$ est bien solution de l'équation différentielle (E),
- en déduire toutes les solutions de (E).
- 1. $y' = -y + x^2 + 1$, $y_p(x) = x^2 2x + 3$
- 2. $y' = y + 2\cos(x)$, $y_p(x) = \sin(x) \cos(x)$
- 3. $y' = 3y + xe^{2x}$, $y_p(x) = -(x+1)e^{2x}$

Indications 1.

Pour une équation différentielle (E): y' = ay + f, l'équation homogène est y' = ay. Si l'on note les solutions de l'équation homogène y_h , et une solution particulière de (E) y_p , alors toutes les solutions de (E) sont les fonctions $y_h + y_p$.

Correction 1.

- 1. $(E_h): y' = -y, y_h(x) = Ce^{-x}, (E): y' = -y + x^2 + 1$, dont $y_p(x) = x^2 2x + 3$ est une solution particulière puisque $y_p'(x) = 2x 2 = -(x^2 2x + 3) + x^2 + 1 = -y_p(x) + x^2 + 1$. Les solutions générales de (E) sont les $y(x) = y_h(x) + y_p(x) = Ce^{-x} + x^2 2x + 3$ où C est une constante réelle.
- 2. $(E_h): y' = y, y_h(x) = Ce^x$, $(E): y' = y + 2\cos(x)$, dont $y_p(x) = \sin(x) \cos(x)$ est une solution particulière. Les solutions générales de (E) sont les $y(x) = y_h(x) + y_p(x) = Ce^x + \sin(x) \cos(x)$ où C est une constante réelle.
- 3. (E_h) : y' = 3y, $y_h(x) = Ce^{3x}$, (E): $y' = 3y + xe^{2x}$, dont $y_p(x) = -(x+1)e^{2x}$ est une solution particulière. Les solutions générales de (E) sont les $y(x) = y_h(x) + y_p(x) = Ce^{3x} (x+1)e^{2x}$ où C est une constante réelle.

Exercice 2.

Pour chacune des équations différentielles (*E*) suivantes,

- déterminer l'équation homogène associée,
- trouver les solutions $y_h(x)$ de cette équation homogène,
- trouver une solution particulière $y_p(x)$ en vous aidant des indications,
- en déduire toutes les solutions de (*E*).
- 1. y' + 2y = 5, chercher une solution particulière sous la forme d'une fonction constante.
- 2. $2y' 3y = e^{-x}$, chercher une solution particulière sous la forme ke^{-x} où k est une constante à déterminer.
- 3. $y' = y + x^2$, chercher une solution particulière sous la forme $ax^2 + bx + c$.

Indications 2.

Pour une équation différentielle (E) : y' = ay + f, l'équation homogène est y' = ay. Si l'on note les solutions de l'équation homogène y_h , et une solution particulière de (E) y_p , alors toutes les solutions de (*E*) sont les fonctions $y_h + y_p$.

Correction 2.

- 1. Équation homogène : y' + 2y = 0 soit y' = -2y.
 - Solutions de l'équation homogène : $y_h(x) = Ce^{-2x}$.
 - Solution particulière constante : $y_p(x) = \frac{5}{2}$.
 - Solutions générales : $y(x) = y_h(x) + y_p(x) = Ce^{-2x} + \frac{5}{2}$ où C est une constante réelle.
- 2. Équation homogène : 2y' 3y = 0 soit $y' = \frac{3}{2}y$.
 - Solutions de l'équation homogène : $y_h(x) = Ce^{\frac{3}{2}x}$.
 - Solution particulière : $y_p(x) = -\frac{1}{5}e^{-x}$.
 - Solutions générales : $y(x) = y_h(x) + y_p(x) = Ce^{\frac{3}{2}x} \frac{1}{5}e^{-x}$ où C est une constante réelle.
- 3. Équation homogène : y' = y.
 - Solutions de l'équation homogène; $y_h(x) = Ce^x$.

 - Solution particulière : $y_p(x) = -x^2 2x 2$. Solutions générales : $y(x) = y_h(x) + y_p(x) = Ce^x x^2 2x 2$ où C est une constante réelle.

Exercice 3.

Le dessin représente quelques solutions de l'équation différentielle $(E): y'=2y+x^2e^x$.

- 1. Tracer la tangente à la courbe solution qui passe par le point (0,0). Retrouver son équation par le calcul grâce à l'équation différentielle.
- 2. Tracer la tangente à la courbe solution qui passe par le point (0,1). Retrouver son équation par le calcul grâce à l'équation différentielle.
- 3. Tracer la tangente à la courbe solution qui passe par le point (1,-1). Retrouver son équation par le calcul grâce à l'équation différentielle.
- 4. Déterminer les solutions $y_h(x)$ de l'équation homogène.
- 5. Déterminer une solution particulière $y_p(x)$ sous la forme $(ax^2 + bx + c)e^x$.
- 6. En déduire toutes les solutions de (E).

Correction 3.

- 1. Par lecture graphique il semble que la tangente en (0,0) soit horizontale. Vérifions-le par le calcul. La solution f dont le graphe passe par (0,0) vérifie f(0)=0. Comme f vérifie l'équation différentielle $y'=2y+x^2e^x$, alors $f'(0)=2f(0)+0^2\cdot e^0=0$, donc la tangente est bien horizontale. Son équation est y=0.
- 2. La solution g dont le graphe passe par (0,1) vérifie g(0)=1. Comme g vérifie l'équation différentielle alors $g'(0)=2g(0)+0^2\cdot e^0=2$, donc la pente de la tangente est 2 et son équation est y=2x+1.

- 3. La solution h dont le graphe passe par (1,-1) vérifie h(1)=-1. Comme h vérifie l'équation différentielle alors $h'(1)=2h(1)+1^2\cdot e^1=e-2$, donc la pente de la tangente est e-2 et comme cette droite passe par (1,-1) son équation est y=(e-2)(x-1)-1, c'est-à-dire y=(e-2)x+1-e.
- 4. L'équation homogène est (E_h) : y' = 2y, dont les solutions sont $y_h(x) = Ce^{2x}$, pour toute constante réelle C.
- 5. Cherchons une solution particulière sous la forme $y_p(x) = (ax^2 + bx + c)e^x$. Alors $y_p'(x) = (ax^2 + bx + b)e^x$.

$$y_p(x)$$
 solution de (E)
 $\iff y_p'(x) = 2y_p(x) + x^2e^x$ pour tout $x \in \mathbb{R}$
 $\iff (ax^2 + (2a + b)x + b + c)e^x = 2(ax^2 + bx + c)e^x + x^2e^x$
 $\iff e^x((a+1)x^2 + (b-2a)x + (c-b)) = 0$
 $\iff (a+1)x^2 + (b-2a)x + (c-b) = 0$ car $e^x \neq 0$
 $\iff a+1=0$ et $b-2a=0$ et $c-b=0$
 $\iff a=-1, b=-2, c=-2$

Ainsi $y_p(x) = (-x^2 - 2x - 2)e^x = -(x^2 + 2x + 2)e^x$ est une solution particulière.

6. Les solutions générales de (E) sont $y(x) = y_h(x) + y_p(x) = Ce^{2x} - (x^2 + 2x + 2)e^x$ où C est une constante réelle.