Álgebra lineal – Semana 1 Vectores en \mathbb{R}^n y espacios vectoriales

Grupo EMAC grupoemac@udea.edu.co

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Universidad de Antioquia

27 de julio de 2021

Vectores en el plano

Definición 1

Un vector en el plano se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen (0,0) y su punto terminal es un punto arbitrario (x_1, x_2) .

Ejemplos de vectores en el plano

(a) Ejemplo 1

Definición 2 (Igualdad de vectores)

Dos vectores $\mathbf{u} = (u_1, u_2)$ y $\mathbf{v} = (v_1, v_2)$ en el plano se dice que son iguales si y sólo si $u_1 = v_1$ y $u_2 = v_2$.

Definición 3 (Suma de vectores en el plano)

Sean $\mathbf{u} = (u_1, u_2)$ y $\mathbf{v} = (v_1, v_2)$ vectores en el plano. La **suma** de \mathbf{u} y \mathbf{v} se define como el vector

$$\mathbf{u} + \mathbf{v} = (u_1, u_2) + (v_1, v_2) = (u_1 + v_1, u_2 + v_2)$$

(a) Ejemplo 2

Definición 4 (Multiplicación por escalar)

Sea $\mathbf{v} = (v_1, v_2)$ un vector en el plano y c un escalar. La multiplicación por escalar de un vector \mathbf{v} por el escalar c se define como el vector

$$c\mathbf{v} = c(v_1, v_2) = (cv_1, cv_2)$$

Sean $\mathbf{u} = (u_1, u_2)$ y $\mathbf{v} = (v_1, v_2)$ vectores en el plano y $c \in \mathbb{R}$ un escalar.

1 La suma de u y v se define como el vector

$$\mathbf{u} + \mathbf{v} = (u_1, u_2) + (v_1, v_2) = (u_1 + v_1, u_2 + v_2)$$

2 La multiplicación por escalar de un vector \mathbf{v} por un escalar c se define como el vector

$$c\mathbf{v} = c(v_1, v_2) = (cv_1, cv_2)$$

Ejemplo 6

Vectores en \mathbb{R}^n 0000000000000

Considere los vectores $\mathbf{u} = (3,4)$ y $\mathbf{v} = (-2,5)$. Calcule:

 $\frac{1}{2}$ **v**.

0 11 - v.

 $\frac{1}{2}$ **v** + **u**.

Vectores en el plano

Propiedad 1

Sean \mathbf{u}, \mathbf{v} y \mathbf{w} vectores en el plano y sean c y d escalares. Entonces:

- $\mathbf{0}$ $\mathbf{u} + \mathbf{v}$ es un vector en el plano.
- **6** cu es un vector en el plano.

2 u + v = v + u.

$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}.$$

$$(u + v) + w = u + (v + w).$$

$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

• El vector cero $\mathbf{0} = (0,0)$ satisface la siguiente propiedad:

$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

$$\mathbf{u} + \mathbf{0} = \mathbf{u}$$

6 El vector $-\mathbf{u} = (-u_1, -u_2)$ satisface la siguiente propiedad:

$$1\mathbf{u} = \mathbf{u}.$$

$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$$

Vectores en \mathbb{R}^n

Observación 1

 \bigcirc El producto de un vector \mathbf{v} por el escalar -1 se denota por

$$-\mathbf{v} = (-1)\mathbf{v}.$$

- \bullet Al vector $-\mathbf{v}$ se le denomina inverso aditivo de \mathbf{v} .
- **Q** La resta de \mathbf{u} y \mathbf{v} se se define como $\mathbf{u} \mathbf{v} = \mathbf{u} + (-\mathbf{v})$.
- 4 Al conjunto de todos los puntos $\mathbf{x} = (x_1, x_2)$ en el plano se le denota por

$$\mathbb{R}^2 = \{ (x_1, x_2) \mid x_1 \ y \ x_2 \in \mathbb{R} \}$$

4 Al conjunto de todos los puntos $\mathbf{x} = (x_1, x_2, x_3)$ en el espacio se le denota por

$$\mathbb{R}^3 = \{ (x_1, x_2, x_3) \mid x_1, x_2 \ y \ x_2 \in \mathbb{R} \}$$

• Al conjunto de todas las *n*-túplas $\mathbf{x} = (x_1, \dots, x_n)$ se le denota por

$$\mathbb{R}^n = \{(x_1, \dots, x_n) \mid x_1, \dots, x_n \in \mathbb{R}\}\$$

Definición 5 (Operaciones con vectores en \mathbb{R}^n)

Sean $\mathbf{u} = (u_1, \dots, u_n)$ y $\mathbf{v} = (v_1, \dots, v_n)$ vectores en \mathbb{R}^n y $c \in \mathbb{R}$ un escalar.

 $oldsymbol{0}$ La **suma** de $oldsymbol{u}$ y $oldsymbol{v}$ se define como el vector

$$\mathbf{u} + \mathbf{v} = (u_1, \dots, u_n) + (v_1, \dots, v_n) = (u_1 + v_1, \dots, u_n + v_n)$$

② La multiplicación por escalar de un vector ${\bf v}$ por un escalar c se define como el vector

$$c\mathbf{v} = c(v_1, \dots, v_n) = (cv_1, \dots, cv_n)$$

Observación 2

 ${\color{red} {f o}}$ El producto de un vector ${\bf v}$ por el escalar -1 se denota por

$$-\mathbf{v} = (-1)\mathbf{v} = (-v_1, \dots, -v_n).$$

- \bullet Al vector $-\mathbf{v}$ se le denomina inverso aditivo de \mathbf{v} .
- \bigcirc La resta de \mathbf{u} y \mathbf{v} se se define como

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v}) = (u_1 - v_1, \dots, u_n - v_n).$$

• El vector cero en \mathbb{R}^n se denota por $\mathbf{0} = (0, \dots, 0)$.

Definición 5 (Operaciones con vectores en \mathbb{R}^n)

Sean $\mathbf{u} = (u_1, \dots, u_n)$ y $\mathbf{v} = (v_1, \dots, v_n)$ vectores en \mathbb{R}^n y $c \in \mathbb{R}$ un escalar.

1 La suma de u v v se define como el vector

$$\mathbf{u} + \mathbf{v} = (u_1, \dots, u_n) + (v_1, \dots, v_n) = (u_1 + v_1, \dots, u_n + v_n)$$

 \odot La multiplicación por escalar de un vector \mathbf{v} por un escalar c se define como el vector

$$c\mathbf{v} = c(v_1, \dots, v_n) = (cv_1, \dots, cv_n)$$

Ejemplo 7

Vectores en \mathbb{R}^n 00000000000000

Considere los vectores $\mathbf{u} = (-1, 0, 1)$ y $\mathbf{v} = (2, -1, 5)$. Calcule:

$$\mathbf{0} \mathbf{u} + \mathbf{v}$$
.

$$\mathbf{0} \mathbf{v} - 2\mathbf{u}$$
.

Vectores en \mathbb{R}^n

Propiedad 2

Sean \mathbf{u}, \mathbf{v} y \mathbf{w} vectores en \mathbb{R}^n y sean c y d escalares. Entonces:

 $\mathbf{0} \mathbf{u} + \mathbf{v}$ es un vector en \mathbb{R}^n .

6 $c\mathbf{u}$ es un vector en \mathbb{R}^n .

2 u + v = v + u.

 $\mathbf{0} c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}.$

3 $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$

 $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

 \bullet El vector cero $\mathbf{0} = (0, \dots, 0)$ satisface la siguiente propiedad:

 $\mathbf{0}$ $c(d\mathbf{u}) = (cd)\mathbf{u}$

 $\mathbf{u} + \mathbf{0} = \mathbf{u}$

 \bullet El vector $-\mathbf{u} = (-u_1, \dots, -u_n)$ satisface la siguiente propiedad:

 $\mathbf{0}$ $1\mathbf{u} = \mathbf{u}$.

 $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

Propiedad 2

Vectores en \mathbb{R}^n 00000000000000

Sean \mathbf{u}, \mathbf{v} y \mathbf{w} vectores en \mathbb{R}^n y sean c y d escalares. Entonces:

 $\mathbf{0} \mathbf{u} + \mathbf{v}$ es un vector en \mathbb{R}^n .

2 u + v = v + u.

3 $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$

u + 0 = u.

6 $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

6 $c\mathbf{u}$ es un vector en \mathbb{R}^n .

 $oldsymbol{o}$ $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.

 $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

 $\mathbf{0}$ $c(d\mathbf{u}) = (cd)\mathbf{u}$

1 u = u.

Ejemplo 8

Considere los vectores $\mathbf{u} = (2, -1, 5, 0), \mathbf{v} = (4, 3, 1, -1)$ y $\mathbf{w} = (-6, 2, 0, 3)$. En cada uno de los siguientes casos halle a \mathbf{x} .

$$\mathbf{v} = 2\mathbf{u} - (\mathbf{v} + 3\mathbf{w}).$$

$$3(\mathbf{x} + \mathbf{w}) = 2\mathbf{u} - \mathbf{v} + \mathbf{x}.$$

Propiedades de vector cero y del inverso aditivo

Propiedad 3

Sean **v** un vector en \mathbb{R}^n y c un escalar. Entonces:

- $\mathbf{0}$ Si $\mathbf{v} + \mathbf{u} = \mathbf{0}$, entonces $\mathbf{u} = -\mathbf{v}$.
- **3** $0\mathbf{u} = \mathbf{0}$.
- **4** c**0** = **0**.
- \mathbf{o} $c\mathbf{u} = \mathbf{0} \implies c = 0$ $\acute{\mathbf{o}}$ $\mathbf{u} = \mathbf{0}$.
- $\mathbf{0} (-\mathbf{v}) = \mathbf{v}.$

Operaciones con vectores en \mathbb{R}^n

Ejemplo 9

Considere los vectores $\mathbf{x} = (-1, -2, -2), \mathbf{u} = (0, 1, 4), \mathbf{v} = (-1, 1, 2)$ y $\mathbf{w} = (-1, 1, 2)$ (3,1,2). Encuentre escalares a,b y c tales que

$$\mathbf{x} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}.$$

Definición 5 (Espacio vectorial)

Sea V un conjunto (no vacío) en el que están definidas dos operaciones (**suma de vectores** y **multiplicación por escalar**). Se dice que V es un **espacio vectorial (real)** si para todo \mathbf{u}, \mathbf{v} y \mathbf{w} en V y todo escalar (número real) c y d en \mathbb{R} , se cumplen las siguientes propiedades:

$$\mathbf{0} \mathbf{u} + \mathbf{v}$$
 está en V .

$$\mathbf{0}$$
 $c\mathbf{u}$ está en V .

$$u+v=v+u.$$

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$$

$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}.$$

4 Existe en
$$V$$
 un vector cero $\mathbf{0}$ tal que

$$c(d\mathbf{u}) = (cd)\mathbf{u}.$$

$$\mathbf{u} + \mathbf{0} = \mathbf{u}$$
.

$$oldsymbol{\circ}$$
 Para cada \mathbf{u} , existe en V un vector denotado por $-\mathbf{u}$ tal que

$$\mathbf{0}$$
 $1\mathbf{u} = \mathbf{u}$.

$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}.$$

Axiomas de un espacio vectorial (real) V

Para todo ${\bf u},{\bf v}$ y ${\bf w}$ en Vy todo escalar cy d en $\mathbb R,$ se cumplen las siguientes propiedades:

- $\mathbf{0} \mathbf{u} + \mathbf{v}$ está en V.
- u + v = v + u.
- $\mathbf{0} (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$
- **3** Existe en V un vector cero **0** tal que $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- Para cada \mathbf{u} , existe un vector $-\mathbf{u}$ tal que $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

- \circ cu está en V.
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}.$
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}.$
- $c(d\mathbf{u}) = (cd)\mathbf{u}.$
- $\mathbf{0}$ $1\mathbf{u} = \mathbf{u}$.

Ejemplo 1

 \mathbb{R}^n con las operaciones de suma y multiplicación por escalar estándar es un espacio vectorial.

El espacio vectorial de todas las matrices 2×3

Axiomas de un espacio vectorial (real) V

Para todo \mathbf{u}, \mathbf{v} y \mathbf{w} en V y todo escalar c y d en $\mathbb{R},$ se cumplen las siguientes propiedades:

- $\mathbf{0} \mathbf{u} + \mathbf{v}$ está en V.
- u + v = v + u.
- $\mathbf{0} (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$
- **2** Existe en V un vector cero **0** tal que $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- Para cada \mathbf{u} , existe un vector $-\mathbf{u}$ tal que $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

- $\mathbf{0}$ $c\mathbf{u}$ está en V.
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}.$
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}.$
- $c(d\mathbf{u}) = (cd)\mathbf{u}.$
- $\mathbf{0}$ $1\mathbf{u} = \mathbf{u}$.

Ejemplo 2

El conjunto M_{23} de todas las matrices 2×3 , con las operaciones de suma de matrices y multiplicación por escalares es un espacio vectorial.

Considere el conjunto P_2 de todos los poliomios de la forma

$$p(x) = a_2 x^2 + a_1 x + a_0,$$

donde a_0, a_1, a_2 son números reales. La suma de dos polinomios

$$p(x) = a_2 x^2 + a_1 x + a_0$$
 y $q(x) = b_2 x^2 + b_1 x + b_0$

se define como

$$(p+q)(x) = (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$$

y la multiplicación por escalar del polinomio $p(x) = a_2x^2 + a_1x^1 + a_0$ por el escalar c se define como

$$(cp)(x) = ca_2x^2 + ca_1x + ca_0.$$

Demuestre que P_2 es un espacio vectorial.

Observación 1

 P_n se define como el conjunto de todos los polinomios de grado menor o igual que n, junto con el polinomio cero.

Ejemplo 4

Considere el conjunto $\mathcal F$ de todas las funciones de valor real definidas en la recta numérica. La suma de dos funciones f y g en $\mathcal F$ se define como

$$(f+g)(x) = f(x) + g(x)$$

y la multiplicación por escalar de una función f en $\mathcal F$ por el escalar c se define como

$$(cf)(x) = cf(x).$$

Demuestre que \mathcal{F} es un espacio vectorial.

Axiomas de un espacio vectorial (real) V

Para todo \mathbf{u},\mathbf{v} y \mathbf{w} en Vy todo escalar cy d en $\mathbb{R},$ se cumplen las siguientes propiedades:

- $\mathbf{0} \mathbf{u} + \mathbf{v}$ está en V.
- u + v = v + u.
- $\mathbf{0} (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$
- **2** Existe en V un vector cero **0** tal que $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- Para cada \mathbf{u} , existe un vector $-\mathbf{u}$ tal que $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

- \circ cu está en V.
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}.$
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}.$
- $c(d\mathbf{u}) = (cd)\mathbf{u}.$
- $\mathbf{0}$ $1\mathbf{u} = \mathbf{u}$.

Ejemplo 5

El conjunto $\mathbb Z$ de todos los números enteros con las operaciones usuales de suma y multiplicación por escalar (producto de enteros) **no** es un espacio vectorial.

Un conjunto que no es espacio vectorial

Axiomas de un espacio vectorial (real) V

Para todo ${\bf u},{\bf v}$ y ${\bf w}$ en Vy todo escalar cy d en $\mathbb R,$ se cumplen las siguientes propiedades:

- $\mathbf{0} \mathbf{u} + \mathbf{v}$ está en V.
- u + v = v + u.
- $\mathbf{0} (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$
- **2** Existe en V un vector cero **0** tal que $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- Para cada \mathbf{u} , existe un vector $-\mathbf{u}$ tal que $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

- $\mathbf{0}$ $c\mathbf{u}$ está en V.
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}.$
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}.$
- $oldsymbol{0}$ $c(d\mathbf{u}) = (cd)\mathbf{u}$.
- $\mathbf{0}$ $1\mathbf{u} = \mathbf{u}$.

Ejemplo 6

Sea $V=\mathbb{R}^2$ con la definición usual de suma, pero la multiplicación por escalar es la siguiente:

$$c(x_1, x_2) = (cx_1, 0).$$

Demuestre que V no es espacio vectorial.

Propiedades de la multiplicación escalar

Propiedad 3

Sea ${\bf v}$ un vector de un espacio vectorial V y c un escalar. Entonces:

- **a** 0**v** = **0**.
- $c\mathbf{0} c\mathbf{0} = \mathbf{0}$.
- \circ Si $c\mathbf{v} = \mathbf{0}$, entonces c = 0 \circ $\mathbf{v} = \mathbf{0}$.
- $\mathbf{0} \ (-1)\mathbf{v} = -\mathbf{v}.$

Subespacio vectorial

Definición 1 (Subespacio vectorial)

Un subconjunto no vacío W de un espacio vectorial V se dice que es un subespacio (vectorial) de V, si W es un espacio vectorial bajo las operaciones de suma y multiplicación por escalar definidas en V.

Subespacios vectoriales •0000000000

Observación 1

Si W es un subespacio de V, entonces W debe ser cerrado bajo las operaciones inherentes a V.

Definición 1 (Subespacio vectorial)

Un subconjunto no vacío W de un espacio vectorial V se dice que es un subespacio (vectorial) de V, si W es un espacio vectorial bajo las operaciones de suma y multiplicación por escalar definidas en V.

Ejemplo 1

Demuestre que el conjunto

$$W = \{(x_1, 0, x_3) \mid x_1 \text{ y } x_3 \text{ son números reales }\}$$

es un *subespacio* de \mathbb{R}^3 con las operaciones usuales.

Definición 1 (Subespacio vectorial)

Un subconjunto no vacío W de un espacio vectorial V se dice que es un subespacio (vectorial) de V, si W es un espacio vectorial bajo las operaciones de suma y multiplicación por escalar definidas en V.

Propiedad 1

Un subconjunto no vacío W de un espacio vectorial V es subespacio de V si y solo si se cumplen las siguientes condiciones:

- \bullet Si \mathbf{u} y \mathbf{v} están en W, entonces $\mathbf{u} + \mathbf{v}$ está en W.
- \bullet Si \mathbf{u} está en W y c es un escalar, entonces $c\mathbf{u}$ está en W.

Observación 2

- \bullet Si W es un subespacio vectorial de V, entonces tanto W como V deben tener el mismo vector cero \bullet .
- **0** El subespacio vectorial más simple de un espacio vectorial V es $W = \{0\}$.
- Otro subespacio vectorial obvio de un espacio vectorial V es W=V.

Un subespacio de \mathbb{R}^2

Propiedad 1

Un subconjunto no vacío W de un espacio vectorial V es subespacio de V si y solo si se cumplen las siguientes condiciones:

Subespacios vectoriales 0000000000

- \odot Si \mathbf{u} y \mathbf{v} están en W, entonces $\mathbf{u} + \mathbf{v}$ está en W.
- \bullet Si **u** está en W y c es un escalar, entonces c**u** está en W.

Ejemplo 2

Demuestre que el conjunto

$$W = \{(x, y) \mid x + 2y = 0\}$$

es un *subespacio* de \mathbb{R}^2 .

Un conjunto que no es subespacio de \mathbb{R}^2

Propiedad 1

Un subconjunto no vacío W de un espacio vectorial V es subespacio de V si y solo si se cumplen las siguientes condiciones:

00000000000

- \odot Si \mathbf{u} y \mathbf{v} están en W, entonces $\mathbf{u} + \mathbf{v}$ está en W.
- \bullet Si **u** está en W y c es un escalar, entonces c**u** está en W.

Ejemplo 3

Demuestre que el conjunto

$$W = \{(x, y) \mid x + 2y = 1\}$$

no es un *subespacio* de \mathbb{R}^2 .

Un subespacio de \mathbb{R}^3

Propiedad 1

Un subconjunto no vacío W de un espacio vectorial V es subespacio de V si y solo si se cumplen las siguientes condiciones:

Subespacios vectoriales 0000000000

- \odot Si \mathbf{u} y \mathbf{v} están en W, entonces $\mathbf{u} + \mathbf{v}$ está en W.
- \bullet Si **u** está en W y c es un escalar, entonces c**u** está en W.

Ejemplo 4

Demuestre que el conjunto

$$W = \{(x, y, z) \mid ax + by + cz = 0, \text{ con } a, b, c \text{ números reales } \}$$

es un *subespacio* de \mathbb{R}^3 .

Un subespacio de M_{22}

Propiedad 1

Un subconjunto no vacío W de un espacio vectorial V es subespacio de V si y solo si se cumplen las siguientes condiciones:

Subespacios vectoriales 00000000000

- \odot Si \mathbf{u} y \mathbf{v} están en W, entonces $\mathbf{u} + \mathbf{v}$ está en W.
- \bullet Si **u** está en W y c es un escalar, entonces c**u** está en W.

Ejemplo 5

Sea W el conjunto de todas las matrices simétricas de 2×2 . Demuestre que W es un subespacio de M_{22} .

Propiedad 1

Un subconjunto no vacío W de un espacio vectorial V es subespacio de V si y solo si se cumplen las siguientes condiciones:

- $oldsymbol{\circ}$ Si $oldsymbol{\mathbf{u}}$ y $oldsymbol{\mathbf{v}}$ están en W, entonces $oldsymbol{\mathbf{u}} + oldsymbol{\mathbf{v}}$ está en W.
- $oldsymbol{0}$ Si $oldsymbol{u}$ está en W y c es un escalar, entonces $coldsymbol{u}$ está en W.

Ejemplo 6

Sea W el conjunto de todas las matrices singulares de 2×2 . Demuestre que W no es un subespacio de M_{22} .

Subespacios de funciones

Ejemplo 7

Sea $\mathcal C$ el conjunto de todas las funciones continuas de valor real definidas en $\mathbb R$ y sea $\mathcal D$ el conjunto de todas las funciones derivables de valor real definidas en $\mathbb R$. Demuestre que $\mathcal C$ y $\mathcal D$ son subespacios vectoriales de $\mathcal F$, el espacio vectorial de todas las funciones con valor real definidas en $\mathbb R$.

Intersección de subespacios

Propiedad 2

Si V y W son subespacios de un espacio vectorial U, entonces la intersección de V y W, denotada por $V \cap W$, también es un subespacio de U.

Subespacios vectoriales 0000000000

(a) La intersección de subespacios es subespacio

Observación 3

La unión de subespacios **no** es (en general) un subespacio.

Intersección de subespacios

Propiedad 2

Si V y W son subespacios de un espacio vectorial U, entonces la intersección de V y W, denotada por $V \cap W$, también es un subespacio de U.

Subespacios vectoriales 0000000000

Ejemplo 8

En \mathbb{R}^3 considere los conjuntos

$$V = \{(x, y, z) \mid x + 2y + 3z = 0\}$$

У

$$W = \{(x, y, z) \mid 2x - y - z = 0\}.$$

Demuestre que $V \cap W$ es un subespacio de \mathbb{R}^3 . Describa a dicho subespacio.

Bibliografía

- Clara Mejía Álgebra lineal elemental y aplicaciones Ude@, 2006.
- Stanley Grossman Álgebra lineal McGraw-Hill Interamericana, Edición 8, 2019.
- David Poole Álgebra lineal: una introducción moderna Cengage Learning Editores, 2011.
- Bernard Kolman Álgebra lineal Pearson Educación, 2006.
- Ron Larson Fundamentos de Álgebra lineal Cengage Learning Editores, 2010.

