Machine Learning

# Lesson 1 HandsOn

Presented by Richmond Anku

#### Importing packages

```
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn import metrics
import numpy as np
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
```

#### Importing 'Diamonds' dataset

diamonds = pd.read\_csv ('C:/Users/Richmond/Desktop/WOZ-U/Machine Learning/HandsOn/ML repo/Diamonds.csv')
print (diamonds)

| Unnamed: 0 | carat                                                         | cut                                                                                              | color                                                                                                                                       | clarity                                                                                                                                                       | depth                                                                                                                                                                                             | table                                                                                                                                                                                                                                          | price                                                                                                                                                                                                                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                               |                                                                                                  |                                                                                                                                             | _                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |                                                               |                                                                                                  |                                                                                                                                             |                                                                                                                                                               |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1          | 0.21                                                          | Premium                                                                                          | E                                                                                                                                           | 511                                                                                                                                                           | 59.8                                                                                                                                                                                              | 01.0                                                                                                                                                                                                                                           | 320                                                                                                                                                                                                                                                                                                                     | 3.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2          | 0.23                                                          | Good                                                                                             | E                                                                                                                                           | VS1                                                                                                                                                           | 56.9                                                                                                                                                                                              | 65.0                                                                                                                                                                                                                                           | 327                                                                                                                                                                                                                                                                                                                     | 4.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3          | 0.29                                                          | Premium                                                                                          | I                                                                                                                                           | VS2                                                                                                                                                           | 62.4                                                                                                                                                                                              | 58.0                                                                                                                                                                                                                                           | 334                                                                                                                                                                                                                                                                                                                     | 4.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4          | 0.31                                                          | Good                                                                                             | J                                                                                                                                           | SI2                                                                                                                                                           | 63.3                                                                                                                                                                                              | 58.0                                                                                                                                                                                                                                           | 335                                                                                                                                                                                                                                                                                                                     | 4.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |                                                               |                                                                                                  |                                                                                                                                             |                                                                                                                                                               |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 53935      | 0.72                                                          | Ideal                                                                                            | D                                                                                                                                           | SI1                                                                                                                                                           | 60.8                                                                                                                                                                                              | 57.0                                                                                                                                                                                                                                           | 2757                                                                                                                                                                                                                                                                                                                    | 5.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 53936      | 0.72                                                          | Good                                                                                             | D                                                                                                                                           | SI1                                                                                                                                                           | 63.1                                                                                                                                                                                              | 55.0                                                                                                                                                                                                                                           | 2757                                                                                                                                                                                                                                                                                                                    | 5.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 53937      | 0.70                                                          | Very Good                                                                                        | D                                                                                                                                           | SI1                                                                                                                                                           | 62.8                                                                                                                                                                                              | 60.0                                                                                                                                                                                                                                           | 2757                                                                                                                                                                                                                                                                                                                    | 5.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 53938      | 0.86                                                          | Premium                                                                                          | Н                                                                                                                                           | SI2                                                                                                                                                           | 61.0                                                                                                                                                                                              | 58.0                                                                                                                                                                                                                                           | 2757                                                                                                                                                                                                                                                                                                                    | 6.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 53939      | 0.75                                                          | Ideal                                                                                            | D                                                                                                                                           | SI2                                                                                                                                                           | 62.2                                                                                                                                                                                              | 55.0                                                                                                                                                                                                                                           | 2757                                                                                                                                                                                                                                                                                                                    | 5.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 0<br>1<br>2<br>3<br>4<br><br>53935<br>53936<br>53937<br>53938 | 1 0.21<br>2 0.23<br>3 0.29<br>4 0.31<br><br>53935 0.72<br>53936 0.72<br>53937 0.70<br>53938 0.86 | 0 0.23 Ideal 1 0.21 Premium 2 0.23 Good 3 0.29 Premium 4 0.31 Good 53935 0.72 Ideal 53936 0.72 Good 53937 0.70 Very Good 53938 0.86 Premium | 0 0.23 Ideal E 1 0.21 Premium E 2 0.23 Good E 3 0.29 Premium I 4 0.31 Good J 53935 0.72 Ideal D 53936 0.72 Good D 53937 0.70 Very Good D 53938 0.86 Premium H | 0 0.23 Ideal E SI2 1 0.21 Premium E SI1 2 0.23 Good E VS1 3 0.29 Premium I VS2 4 0.31 Good J SI2 53935 0.72 Ideal D SI1 53936 0.72 Good D SI1 53937 0.70 Very Good D SI1 53938 0.86 Premium H SI2 | 0 0.23 Ideal E SI2 61.5 1 0.21 Premium E SI1 59.8 2 0.23 Good E VS1 56.9 3 0.29 Premium I VS2 62.4 4 0.31 Good J SI2 63.3 53935 0.72 Ideal D SI1 60.8 53936 0.72 Good D SI1 63.1 53937 0.70 Very Good D SI1 62.8 53938 0.86 Premium H SI2 61.0 | 0 0.23 Ideal E SI2 61.5 55.0<br>1 0.21 Premium E SI1 59.8 61.0<br>2 0.23 Good E VS1 56.9 65.0<br>3 0.29 Premium I VS2 62.4 58.0<br>4 0.31 Good J SI2 63.3 58.0<br><br>53935 0.72 Ideal D SI1 60.8 57.0<br>53936 0.72 Good D SI1 63.1 55.0<br>53937 0.70 Very Good D SI1 62.8 60.0<br>53938 0.86 Premium H SI2 61.0 58.0 | 0       0.23       Ideal       E       SI2       61.5       55.0       326         1       0.21       Premium       E       SI1       59.8       61.0       326         2       0.23       Good       E       VS1       56.9       65.0       327         3       0.29       Premium       I       VS2       62.4       58.0       334         4       0.31       Good       J       SI2       63.3       58.0       335                     53935       0.72       Ideal       D       SI1       60.8       57.0       2757         53936       0.72       Good       D       SI1       63.1       55.0       2757         53937       0.70       Very Good       D       SI1       62.8       60.0       2757         53938       0.86       Premium       H       SI2       61.0       58.0       2757 | 0       0.23       Ideal       E       SI2       61.5       55.0       326       3.95         1       0.21       Premium       E       SI1       59.8       61.0       326       3.89         2       0.23       Good       E       VS1       56.9       65.0       327       4.05         3       0.29       Premium       I       VS2       62.4       58.0       334       4.20         4       0.31       Good       J       SI2       63.3       58.0       335       4.34                     53935       0.72       Ideal       D       SI1       60.8       57.0       2757       5.75         53936       0.72       Good       D       SI1       63.1       55.0       2757       5.69         53937       0.70       Very Good       D       SI1       62.8       60.0       2757       5.66         53938       0.86       Premium       H       SI2       61.0       58.0       2757       6.15 |

## Step 1

- Import all required packages
- Import 'diamond' dataset

#### Recoding Cut to CutR

```
def Cut (series):
    if series == "Ideal":
        return 5

if series == "Premium":
        return 4

if series == "Very Good":
        return 3

if series == "Good":
        return 2

if series == "Fair":
        return 1
```

#### Recoding Color to ColorR

```
def Color (series):
    if series == "D":
        return 7

if series == "E":
        return 6

if series == "F":
        return 5

if series == "G":
        return 4

if series == "H":
        return 3

if series == "I":
        return 2
```

# Step 2

- Recode variable columns from string to float
- Recode Cut to CutR
- Recode color to colorR
- Recode clarity to clarityR

### Step 3

- Create X and Y variables
- Subset predictor x variables as an array

### Step 4

• Perform train-test split

### Step 5

- Create linear regression model and
- Fit to training data

#### Creating X and Y variables (subsetting into arrays)

```
x = diamonds[['carat', 'cutR', 'colorR', 'clarityR']]
y = diamonds['price']
```

#### Train-test split: 60/40

```
x_{train}, x_{test}, y_{train}, y_{test} = train_{test_split}(x,y), test_{size} = .4, train_{test_split}(x,y)
```

#### Linear Regression Model

```
lm = LinearRegression()
lm.fit(x_train, y_train)
```

LinearRegression()

## - Step 6

Perform prediction using the model

```
predictions = lm.predict(x_test)
predictions
```





Plot a scatterplot of model predictions

#### **Conclusions**

- The accuracy of predictions of the model is about 90%
- The rmse value is far greater than zero (1240). Indicating that this model may not be a good fit.

### **Cross validation**

- Upon cross validation, the accuracy values vary quite widely across each iteration. The second and third iterations give about 64% and 81% accuracy respectively.
- However, the 4th and 5th iterations are in the negative. This is indicative of the fact that the model does fit certain scenarios.

#### Model Accuracy Score

```
print("Score:", lm.score(x_test, y_test))
#The model predictions are accurate about 90% of the time.
Score: 0.9031757454166052
```

#### **Root Mean Squared Error**

```
np.sqrt(metrics.mean_squared_error(y_test, predictions))
1240.2262724895409
```

#### **Cross Validation**

```
print(cross_val_score(lm, x,y, cv=5))
[ 0.09862808  0.63612892  0.81033106 -16.96778127 -0.9517348 ]
```

```
accuracy = cross_val_score(lm, x,y, cv=5)
print(accuracy)
print("Accuracy of Model with Cross Validation is:", accuracy.mean() * 100)

[ 0.09862808   0.63612892   0.81033106 -16.96778127 -0.9517348 ]
Accuracy of Model with Cross Validation is: -327.48856026922664
```

# Thank you!