Solutions to Hatcher

Labix

April 17, 2024

Abstract

Solutions to the book Algebraic Topology authored by Allen Hatcher

Contents

L	The	Fundamental Group	3
	1.1	Basic Constructions	3

1 The Fundamental Group

1.1 Basic Constructions

Exercise 1.1.1

Show that the composition of paths satisfy the following cancellation property: If $f_0 \cdot g_0 \simeq f_1 \cdot g_1$ and $g_0 \simeq g_1$ then $f_0 \simeq f_1$.

Proof. From the relation $g_0 \simeq g_1$ we have that $g_1 \cdot \overline{g}_0 \simeq e$. It follows that

$$f_0 \cdot g_0 \simeq f_1 \cdot g_1$$

$$f_0 \cdot g_0 \cdot \overline{g}_0 \simeq f_1 \cdot g_1 \cdot \overline{g}_0$$

$$= f_0 \simeq f_1$$

and so we conclude.

Exercise 1.1.2

Show that the change of basepoint homomorphism β_h depends only on the homotopy class of h.

Proof. Recall that the isomorphism is defined by $\beta_h : \pi_1(X, x_1) \to \pi_1(X, x_0)$ sending $[\alpha] \in \pi_1(X, x_1)$ to $[h \cdot \alpha \cdot \overline{h}]$. We have that $h \stackrel{\partial}{\simeq} h'$ implies $h \cdot \alpha \cdot \overline{h} \simeq h' \cdot \alpha \cdot \overline{h'}$ so that $\beta_h([\alpha]) = \beta_{h'}([\alpha])$.

Exercise 1.1.3

For a path connected space X, show that $\pi_1(X)$ is abelian if and only if all base point change homomorphisms β_h depend only on the endpoints of the path h.

Proof. Suppose that $\pi_1(X)$ is abelian. We want to show that $\beta_h = \beta_{h'}$ if h(1) = h'(1). We have that

$$\beta_h([\alpha]) = [h \cdot \alpha \overline{h}]$$

$$\beta_{h'}([\alpha]) = [h' \cdot \alpha \cdot \overline{h'}]$$

Since $\pi_1(X)$ is abelian, we have that

$$\begin{split} \beta_h([\alpha]) \cdot \overline{\beta_{h'}([\alpha])} &= [h \cdot \alpha \cdot \overline{h} \cdot h' \cdot \alpha \cdot \overline{h'}] \\ &= [h \cdot (\overline{h} \cdot h') \cdot \alpha \cdot \overline{\alpha} \cdot \overline{h'}] \\ &= [h' \cdot \overline{h'}] \\ &= [e_{x_0}] \end{split} \tag{$\overline{h} \cdot h'$ is a loop on x_1}$$

This implies that $[h \cdot \alpha \cdot \overline{\alpha}] = [h' \cdot \alpha \cdot \overline{h'}]$ which is what is required.

Now suppose that $\pi_1(X)$ is not abelian. Then there exists $[a], [b] \in \pi_1(X)$ such that $[a] \cdot [b] \neq [b] \cdot [a]$. In other words, $[\overline{b}] \cdot [a] \cdot [b] \neq [a]$. But clearly for the constant loop e, we have that $[\overline{e}] \cdot [a] \cdot [e] = [a]$ which implies that

$$[\overline{b}] \cdot [a] \cdot [b] \neq [\overline{e}] \cdot [a] \cdot [e]$$

 $\beta_b([a]) \neq \beta_e([a])$

even though b and e have the same end points.

Exercise 1.1.4

Show that if a subspace $X \subset \mathbb{R}^n$ is locally star-shaped, then every path in X is homotopic in X to a piecewise linear path. Show this applies in particular when X is open or when X is a union of finitely many closed convex sets.

Proof. Let γ be a path in X. Consider the open cover of $\gamma([0,1])$ by the star-shaped neighbourhood of each $x \in \gamma([0,1])$. Since [0,1] is compact, $\gamma([0,1])$ is compact so the open cover has a finite subcover U_1,\ldots,U_m which are neighbourhoods of $\gamma(t_1)=x_1,\ldots,\gamma(t_m)=x_m$ for $t_1<\cdots< t_m$. For any $U_i\cap U_{i+1}$ (nonempty since open cover), choose $\gamma(s_i)=y_i$ and $t_1< s_1< t_2< s_2< \cdots< s_{m-1}< t_m$. Since each U_i is star-shaped at x_i , there are straight paths from x_i to y_{i-1} and y_i , say $a_{i-1}:I\to X$ and $b_i:I\to X$. Since U_i is star-shaped at x_i , any point between the paths a_{i_1} and $\gamma_{[s_{i-1},t_i]}$ (likewise $\gamma_{[t_i,s_i]}$ and b_i) is reachable via a straight line, so that $\gamma_{[s_{i-1},t_i]}$ is homotopic to the straight path b_i and so we are done.

If X is a union of finitely many closed convex sets, then notice that each convex set is star-shaped. Each $x \in X$ must be contained in one of the convex sets and so X is locally star-shaped.

Exercise 1.1.5

Show that for a space X, the following three conditions are equivalent:

- (a) Every map $S^{1}1 \to X$ is homotopic to a constant map, with image a point.
- (b) Every map $S^1 \to X$ extends to a map $D^2 \to X$.
- (c) $\pi_1(X, x_0) = 0$ for all $x_0 \in X$.

Deduce that a space X is simply-connected if and only if all maps $S^1 \to X$ are homotopic (Without regards to basepoint).

Proof.

• $(a) \implies (b)$: Suppose that $f \simeq e_{x_0}$. This means that there exists a homotopy $H: S^1 \times I \to X$ from f to e_{x_0} . Now by the universal property of quotient spaces, we have a factorization

where p is the quotient map. This is possible because $H(S^1 \times I) = \{x_0\}$. Since $\frac{S^1 \times I}{S^1 \times \{1\}} \cong D^2$, we obtain an extension.

- $(a) \implies (c)$: $S^1 \cong \frac{I}{0 \sim 1}$ so that every map $f: S^1 \to X$ is just a loop in X. Since all loops in X is homotopic to the constant map, we must have $\pi_1(X, x) = 0$.
- $(b) \Longrightarrow (a)$: Suppose that $f: S^1 \to X$ is a map. By assumption, f can be extended to a map $\tilde{f}: D^2 \to X$. Since D^2 is contractible, we have $\mathrm{id}_{D^2} \simeq e$, which implies that

$$\tilde{f} \simeq f \circ e_{x_0} = e_{f(x_0)}$$

In particular, f is also homotopic to a constant map by the same homotopy.

• $(c) \implies (a)$: Suppose that $\pi_1(X, x_0) = 0$. Then any loop $f: I \to X$ is such that $f \simeq e_{x_0}$. In particular, a loop with domain I is just a map from S^1 because $S^1 \cong \frac{I}{0 \approx 1}$.

For the remainder of the question, suppose that X is simply connected. This means that $\pi_1(X, x_0) = 0$. This means that any loop $S^1 \to X$ is homotopic to a constant map. Since simply connectedness implies path connectedness, any constant paths are homotopic. This means that any $S^1 \to X$ are homotopic.

Now suppose that any $S^1 \to X$ are homotopic. Then in particular, they are all homotopic to the constant path. Thus $\pi_1(X, x_0) = 0$ for any $x_0 \in X$.

Exercise 1.1.6

There is a natural map $\Psi : \pi_1(X, x_0) \to [S^1, X]$ obtained by ignoring basepoints. Show that Ψ is onto if X is path-connected, and that $\Psi([f]) = \Psi([g])$ if and only if [f] and [g] are conjugate in $\pi_1(X, x_0)$.

Proof. Suppose that X is path connected, and let $[f] \in [S^1, X]$. Let x_1 be the end point of the loop f. Since X is path connected, there exists $\gamma : I \to X$ such that $\gamma(0) = x_0$ and $\gamma(1) = x_1$. This means that $\gamma \cdot f \cdot \overline{\gamma}$ is a loop starting at x_0 . But $[\gamma \cdot f \cdot \overline{\gamma}] = [f]$ via the homotopy

Thus $\Psi([\gamma \cdot f \cdot \overline{\gamma}) = [f].$

Now suppose that $\Psi([f]) = \Psi([g])$. Then this implies that $f \simeq g$ are free homotopic where f and g have basepoint x_0 . Let $H: I \times I \to X$ be the homotopy. Let $h: I \to X$ be defined as h(t) = H(0,t). Then we have

$$h(0) = H(0,0) = f(0) = x_0$$

 $h(1) = H(0,1) = g(0) = x_0$

so that h is a loop. By lemma 1.19, we have that $(H_0)_* = \beta_h \circ (H_1)_*$ if and only if $f_* = \beta_h \circ g_*$. Plugging in the generator ω_1 of $\pi_1(S^1, 1) \cong \mathbb{Z}$, we have that

$$f_*(\omega_1) = (\beta_h \circ g_*)(\omega_1)$$
$$f \circ \omega_1 = \beta_h(g \circ \omega_1)$$

But $f \simeq f \circ \omega_1$ and $\overline{h} \cdot g \cdot h \simeq \beta_h(g \circ \omega_1)$ and so we have that $[f] = [\overline{h}] \cdot [g] \cdot [h]$.

Suppose that $[f] = [\overline{\gamma} \cdot g \cdot \gamma]$ for some $\gamma : I \to X$ a loop so that f, g, γ are loops based at x_0 . Applying Ψ , we have that $\Psi([f]) = \Psi([\overline{\gamma} \cdot g \cdot \gamma])$. Consider $\Psi([g]) \in [S^1, X]$. It is clear that $g \in \Psi([g])$. Moreover, we must have $g \simeq \overline{\gamma} \cdot g \cdot \gamma$ by the same homotopy given above (replace f with g). Thus we have that f is free homotopic to g.

Exercise 1.1.7

Define $f: S^1 \times I \to S^1 \times I$ by $f(\theta, s) = (\theta + 2\pi s, s)$ so f restricts to the identity on the two boundary circles $S^1 \times I$. Show that f is homotopic to the identity by a homotopy f_t that is stationary on one of the boundary circles, but not by any homotopy f_t that is stationary on both boundary circles.

Proof. Define $H:(S^1\times I)\times I\to S^1\times I$ by

$$(\theta, s, t) \mapsto (\theta + 2\pi s(1 - t), s)$$

Clearly H is continuous. Moreover,

$$H(\theta, s, 0) = f(\theta, s)$$

$$H(\theta, s, 1) = id(\theta, s)$$

$$H(\theta, 0, t) = (\theta, 0)$$

Thus we have that

$$f \stackrel{S^1 \times \{0\}}{\simeq} id$$

Now suppose that H is a homotopy from id to f that fixes $S^1 \times \{0\}$ and $S^1 \times \{1\}$. Let $\gamma: I \to S^1 \times I$ be a path defined as $\gamma(s) = \theta_0 + s$ for some fixed θ_0 . Then the conditions on H implies that

$$H(\gamma(s), 0) = \gamma(s)$$

$$H(\gamma(s), 1) = (f \circ \gamma)(s)$$

so that we have a homotopy $\gamma \simeq f \circ \gamma$.

Consider the projection $p: S^1 \times I \to S^1$. Then we have that

$$\gamma \simeq f \circ \gamma
p \circ \gamma \simeq p \circ f \circ \gamma
e \simeq \omega_1$$

But ω_1 is a generator of $\pi_1(S^1)$ hence this is a contradiction.

Exercise 1.1.8

Does the Borsak-Ulam theorem hold for the torus? In other words, for every map $f: S^1 \times S^1 \to \mathbb{R}^2$, must there exist $(x,y) \in S^1 \times S^1$ such that f(x,y) = f(-x,-y)?

Proof. The Borsak-Ulam theorem fails on the torus. Consider the map $f: S^1 \times S^1 \subset \mathbb{R}^3 \to \mathbb{R}^2$ that forgers the z coordinate of the torus. It is clear that for two points to have the same image under f, it must have the same y value in $S^1 \times S^1$ (Think of the first circle in $S^1 \times S^1$ having the y-axis passing through and the second circle having the z-axis passing through). Assume that the theorem holds. Then f(x,y) = f(-x,-y) together with y=-y implies that y=0 in \mathbb{R}^3 coordinates. But not point in the torus has \mathbb{R}^3 coordinate y=0, which is a contradiction.

Exercise 1.1.9

Let A_1, A_2, A_3 be compact sets in \mathbb{R}^3 . Use the Borsa-Ulam theorem to show that there is one plane $P \subset \mathbb{R}^3$ that simultaneously divides each A_i into two pieces of equal measure.

Proof. Consider $S^2 \subset \mathbb{R}^3$. Let v be a vector in S^2 and consider its span which I also denote by v. For any scalar p, there is a normal plane of v that passes through pv. In particular, there is a continuous collection of planes that slices through A_i for i=1,2,3. Define a measure of volume in \mathbb{R}^3 . Such a measure must be continuous so that the intermediate value theorem implies that there exists one such p_i for which the normal plane at p_iv slices A_i in half by volume.

This is because as p increases in \mathbb{R} ,

Vol $(A \cap \text{lower of half of } \mathbb{R}^3 \text{ bounded by the normal plane})$

increases and eventually attains full volume (full volume is finite since A_i is compact) so that we can apply IVT.

Doing this for every vector v in \mathbb{R}^3 , we obtain a function $f: S^2 \to \mathbb{R}^2$ defined by $f(v) = (p_1 - p_3, p_2 - p_3)$. By Borsak-Ulam theorem, there exists $v \in S^2$ such that f(v) = f(-v) (Showing continuity of f is hard!). In other words, we have that $(p_1 - p_3, p_2 - p_3) = (p_3 - p_1, p_3 - p_2)$. This implies that $p_1 = p_2 = p_3$. But this means that the hyperplane at $p_1v = p_2v = p_3v$ cuts through all A_1, A_2, A_3 and thus we conclude.