COMP4141 Tutorial 6 Reductions, Asymptotics, P, NP

Exercise 1 (Sisper 5.23) Show that a language A is decidable iff $A \leq_m 0^*1^*$.

Exercise 2 Using the definitions of *O* and *o*, determine which of the following assertions are true, carefully justifying your answer.

- $10^{100} \cdot n = O(\frac{1}{10^{100}} \cdot n)$
- $\frac{1}{10^{100}} \cdot n = o(10^{100} \cdot n)$
- $257n^3 + 3n^2 + 28 = O(n^3)$
- $257n^3 + 3n^2 + 28 = o(10^{100} \cdot n^3)$
- $n \log n = o(n^2)$
- $n^{100} = o(2^n)$

Exercise 3 Prove using the definitions that f = o(g) implies f = O(g).

Exercise 4 Suppose f and g are strictly positive functions, with g = O(f). Is it possible that f = o(g)? (Prove or disprove.)

Exercise 5 Show that **NP** is closed under Kleene star, i.e., if the language $L \in \mathbf{NP}$, then $L^* \in \mathbf{NP}$.

Exercise 6 Show that if P = NP, then every language $A \in P$ except $A = \emptyset$ and $A = \Sigma^*$, is NP-complete.

Exercise 7 An undirected graph G with vertices V and edges E is 3-colourable if there exists a mapping $c:V\to\{r,b,g\}$ such that for all edges $\{u,v\}$ in E, we have $c(u)\neq c(v)$. Define the language

$$3COL = \{\langle V, E \rangle \mid G = (V, E) \text{ is 3-colourable} \}$$
.

Suppose we knew that 3COL is **NP**-complete. Using this fact, give a new proof by reduction that SAT is **NP**-complete.