Using Machine
Learning to
Observe and
Understand
Microwave
Induced Steps in
the IV of a SQUID

19 January 2022

Nick Verhoeks, Bram Wagemakers, Lennart Bult

Content

- Theory
- Setup
- Measurements
- Machine learning
- Shapiro Steps
- Conclusion

Theory

- Expanding wavefunctions
- Overlap
- Related
- Electrical current
- AC Josephson effect

Theory

$$V(t) = V_0 + V_a \cos(\omega_u t)$$

$$\sin(X\sin q) = \sum_{n=1}^\infty J_N(X)\sin(nq)$$

$$J(t) = J_0 \sum_{n=1}^{\infty} (-1)'' J_n \left(\frac{4\pi e V_a}{h \omega_e} \right) \sin \left[\delta'(0) + \left(n \omega_a - \left(\frac{4\pi e V_0}{h} \right) \right) \right]$$

$$V_0=nh\omega_\omega\,4\mathrm{raket{pi}}$$

Experimentation Method: Setup

Components:

- Mr. Squid probe (superconducting quantum interference device)
- Mr. Squid box (probe control box)
- Red Pitaya (RF applications control board)
- Windfreak SynthNV PRO (RF signal generator)
- Dewar with cryogenic liquid (LN2)
- Windows desktop PC (with custom Python measurement software)

Experimentation Method: Setup - Photos Part 1

Experimentation Method: Setup - Photos Part 2

Experimentation Method: Measurements

Order of operations:

- Cooling down probe to 77K
- Mr. SQUID Box settings
 - Adjust Current Bias, Amplitude, (and flux bias)
- Visualization of IV curves
- Automatic data collection of IV curve data points
 - Sweep: 1000 5000MHz and -50 0dBm

IV curve with applied RF signal

Machine Learning Method

ML Method: what do we want the model to do?

ML Method: what do we want the model <u>NOT</u> to do?

ML Method: MLPClassifier

- MLP = Multilayer Perceptron
- sklearn.neural_network.MLPClassifier
- Mapping an input to an output through hidden layer(s)
- Requires <u>unambiguous</u> training examples
- Not the most elegant solution, but it works!
- DNN = deep neural network

ML Method: Raw IV curve

- Use ~8000 voltage data points as input
- Output
 - "0" -> no steps detected
 - "1" -> steps detected

ML Method: Polynomial Fit

- Complement the Raw IV curve MLP
 - "Regular" superconducting hard to detect and filter
- Use 8 polynomial coefficients as input
- Output
 - "0" -> no steps detected
 - "1" -> steps detected

ML Method: MLP/DNN Architecture

Raw IV MLP

Polynomial MLP

ML Method: Training Performance

Model Name	Performance Training Set [%]	Performance Verification Set [%]
raw_IV_model_v1	59.6	20
raw_IV_model_v2	83.7	40
raw_IV_model_v3	87.9	80
raw_IV_model_v4	96.6	100
poly_model_v1	89.9	100
poly_model_v2	92.4	100
poly_model_v3	86.1	100
poly_model_v4	91.1	100

ML Method: Results - Frequencies and Powers

ML Method: Results - Random Samples - f = 1 to 3 GHz

ML Method: Results - Random Samples - f = 1 to 3 GHz

ML Method: Results - Random Samples - f = 3 to 5 GHz

ML Method: Results - Random Samples - f = 3 to 5 GHz

ML Method - The Histogram - Power Plot

ML Method - Zigzag Pattern and Step Shift

ML Method - Zigzag Pattern and Step Shift

ML Method: Recommendations - 1

- Improve further on the training set
- Focus data filtering on regions of interest,
 i.e. regions where interesting curves were previously (or manually) found
- Implement filtering on the project PC, find the source of the bug which hindered this

ML Method: Recommendation - 2

- Replace the MLP by a Convolutional Neural Network (or any kind of image recognition)
- Input the IV curve matploblib plot
- We also select curves based on the plots
- Detection of features in the curves
 - Features such as steps, straight line segments, curved segments

Results: Steps

How to find out if Shapiro steps were found?

Criteria:

- 1. Step size matches theoretical value at given frequency
- 2. Step spacing depend linearly on frequency
- 3. Step spacing is independent of power

Methods:

- IV curve visual inspection
 - IV filtering: 1500 > "DNN3" (raw IV DNN) > 14
- Histogram analysis
 - # counts ~ 1/slope

Results: Steps - Visual Inspection

IV curves of the right side section

Results: Steps - Histogram Analysis

Results: Steps - Histogram Analysis

IV curve and histogram with Frequency: 4900 MHz and power: -25 dBm

Results: Steps - Recommendations

Determination of bin step size:

- SciPy / Scikit-Learn
 - O KDE
 - Gaussian Mixture
- Higher resolution

Frequency: 3400MHz, Power: -23dBm

Conclusion

- Machine learning
- Different RF power and varying frequencies
- Theoretical value

Thank you for listening Feel free to take a look at our GitHub page

References

- [1] https://scikit-learn.org/stable/
- [2] http://alexlenail.me/NN-SVG/index.html
- [3] https://distill.pub/2020/circuits/zoom-in/#natural-science

