4. Matrizes Quadradas

Até agora introduzimos o conjunto das matrizes e estudamos as diferentes operações entre estes objetos. Nesta seção pretendemos focar no caso particular das matrizes quadradas.

4.1 Matrizes Quadradas

Considere o conjunto das matrizes quadradas de tamanho $n \times n$, isto é, $\mathbb{M}(n \times n)$. Observamos que $\mathbb{M}(n \times n)$ comporta-se um pouco como o conjunto de números racionais \mathbb{Q} no sentido em que soma e produto de elementos do conjunto produzem elementos do conjunto, mais ainda, existe um elemento neutro para a soma, que é a matriz 0, e um elemento neutro para o produto que é a matriz I_n .

Vimos que, para o caso da soma, sempre podemos achar um inverso aditivo, isto é: dada uma matriz A existe uma matriz -A tal que A + (-A) = 0. Será que o mesmo acontece com o produto?. Ou melhor, dada uma matriz $A \in \mathbb{M}(n \times n)$ existe uma matriz B tal que $BA = I_n$?

Não precisamos ir muito longe para ver que isto não é verdade. De fato no caso n=2 considere, por exemplo, a matriz

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right).$$

para qualquer matriz $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ temos que o produto de $B \operatorname{com} A$ dá

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} a & 0 \\ c & 0 \end{array}\right) \neq \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right),$$

para qualquer matriz a, b, c, d escolhido.

No entanto, é interessante observar o seguinte:

Proposição 4.1 Seja $A \in \mathbb{M}(n \times n)$.

- i- Se existe *B* tal que $BA = I_n$ então $AB = I_n$.
- ii- Se existe *B* tal que $AB = I_n$ então $BA = I_n$.
- iii- Se B e C são tais que $AB = I_n = AC$ ou $BA = I_n = CA$ então B = C.

Demonstração:

i- Seja B tal que $BA = I_n$. Sabemos que B é equivalente por linhas a uma matriz escalonada reduzida, isto é, existem matrizes elementares $E_1 \cdots E_k$ tais que $C = E_1 \cdots E_k B$ é uma matriz escalonada reduzida. Mais ainda C deve ser a identidade pois, caso contrario, teriamos que C possui uma linha nula de onde segue que CA tem uma linha nula e, como

$$CA = E_1 \cdots E_k BA = E_1 \cdots E_k I_n = E_1 \cdots E_k$$

teriamos que a matriz $E_1 \cdots E_k$ tem uma linha nula, o que é impossível. De fato, se isso acontecese a classe de equivalência da matriz identidade teria interseção com a classe de equivalencia de uma matriz escalonada reduzida com linhas nulas o que é um absurdo. Portanto $C = I_n$.

$$B(I_n - AB) = BI_n - \overbrace{BA}^{I_n} B = B - B = 0$$

temos que

$$I_n - AB = \overbrace{(E_1 \cdots E_k B)}^{I_n} (I_n - AB)$$

$$= E_1 \cdots E_k (B - BAB)$$

$$= E_1 \cdots E_k (B - B) = 0,$$

de onde $I_n = AB$.

- ii- Se existe B tal que $AB = I_n$ então, pelas propriedades da transposta, temos que $B^tA^t = I_n$. O item anterior garante então que $A^tB^t = I_n$ ou, aplicando novamente as propriedades da transposta, $BA = I_n$.
- iii- Sejam B e C tais que $AB = I_n = AC$ então

$$B = BI_n = BAC = I_nC = C.$$

Análogamente o outro caso.

Tudo isso motiva a seguinte definição.

Definição 4.1 Uma matriz quadrada A de tamanho $(n \times n)$ é dita invertível se existe uma matriz B tal que

$$AB = BA = I_n$$
.

Neste caso, chamamos B de inversa de A e a denotamos por A^{-1} .

Corolário 4.1 Seja A uma matriz invertível. Então a inversa é única.

Demonstração: Seja A^{-1} a inversa de A e assuma que existe B tal que $AB = BA = I_n$. Então:

$$B = B(AA^{-1}) = (BA)A^{-1} = A^{-1}.$$

Tem-se ainda que $E_k \cdots E_1 = A^{-1}$, isto é, são as operações elementares feitas na identidade que dão A^{-1} .

Exemplo 4.1 1. Toda matriz elementar é invertível. De fato se E é a matriz associada a uma operação elementar e E' é a matriz elementar associada à operação elementar inversa temos que

$$E'E=I$$
.

2. Seja

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad e \quad B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix},$$

então AB = I. Portanto A é invertível.

Em particular, como consequência da demostração do item i- da Proposição 4.1 temos que A é uma matriz invertível então ela é equivalente por linhas a matriz identidade. Dito de outra forma, existem matrizes elementares $E_1 \cdots E_k$ tais que

$$E_k \cdots E_1 A = I_n$$
.

E se uma matriz é equivalente por linhas a matriz identidade então, $E_k \cdots E_1 A = I_n$ donde $E_k \cdots E_1 = A^{-1}$ e portanto A é invertível. Temos provado o seguinte resultado.

Corolório 4.2 Uma matriz quadrada é invertível se, e somente se, é equivalente por linhas a matriz identidade. Mais ainda, uma matriz é invertível se ela for produto de matrizes elementares.

■ Exemplo 4.2 Dada a matriz

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right).$$

Vamos fazer operações elementares para levar a matriz para a forma escalonada reduzida

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{\ell_1 - \ell_3 \to \ell_1} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{\ell_2 - \ell_1 \to \ell_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\xrightarrow{\ell_3 - \ell_2 \to \ell_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \xrightarrow{\ell_2 \leftrightarrow \ell_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I.$$

Vamos fazer as mesmas operações elementares na identidade.

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \underbrace{\ell_1 - \ell_3 \to \ell_1}_{0 & 0} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \underbrace{\ell_2 - \ell_1 \to \ell_2}_{0 & 0 & 1} \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\underbrace{\ell_3 - \ell_2 \to \ell_3}_{1 & -1 & 0} \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix} \underbrace{\ell_2 \leftrightarrow \ell_3}_{0 & -1} \begin{pmatrix} 1 & 0 & -1 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{pmatrix}}_{-1 & 0} = A^{-1}.$$

De fato

$$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 & 0 & -1 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{array}\right) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Poderiamos ter feito isto tudo de uma única vez e simultaneamente se colocassemos a identidade ao lado da matriz A e fizessemos as operações elementares nas duas

$$\underbrace{\begin{pmatrix}
1 & 1 & 1 & 1 & | & 1 & 0 & 0 \\
1 & 0 & 1 & | & 0 & 1 & 0 \\
0 & 1 & 1 & | & 0 & 0 & 1
\end{pmatrix}}_{I} \underbrace{\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & -1 \\
1 & 0 & 1 & | & 0 & 1 & 0 \\
0 & 1 & 1 & | & 0 & 0 & 1
\end{pmatrix}}_{I} \underbrace{\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & -1 \\
1 & 0 & 1 & | & 0 & 0 & 1
\end{pmatrix}}_{I} \underbrace{\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & -1 \\
0 & 0 & 1 & | & -1 & 1 & 1 \\
0 & 1 & 1 & | & 0 & 0 & 1
\end{pmatrix}}_{I} \underbrace{\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & -1 \\
0 & 0 & 1 & | & -1 & 1 & 1 \\
0 & 1 & 1 & | & 0 & 0 & 1
\end{pmatrix}}_{I} \underbrace{\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & -1 \\
0 & 1 & 0 & | & 1 & -1 & 0 \\
0 & 0 & 1 & | & 1 & -1 & 0 \\
0 & 0 & 1 & | & 1 & 1 & 1
\end{pmatrix}}_{I}.$$

Isto fornece um método valiosíssimo para achar a inversa de uma matriz que é o método de Gauss-Jordan. A seguir o descrevemos: Seja *A* uma matriz invertível dada por

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$

i- Construa a matriz aumentada $[A|I_n]$ como segue

$$[A|I_n] = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & | & 1 & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & | & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & | & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & | & 0 & 0 & \cdots & 1 \end{pmatrix}.$$

ii- Faça operações elementares até levar $[A|I_n]$ na sua forma escalonada reduzida.

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & | & b_{11} & b_{12} & \cdots & b_{1n} \\ 0 & 1 & \cdots & 0 & | & b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots & | & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & | & b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}.$$

iii- A matriz

$$B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}.$$

É a inversa de A.

Vamos brevemente justificar porque o método funciona. Assuma que A é invertível e sejam $E_1 \cdots E_k A = I_n$ e, claramente, $A^{-1} = E_1 \cdots E_k$. Se multiplicarmos

$$E_1 \cdots E_k[A|I_n] = [E_1 \cdots E_k A|E_1 \cdots E_k I_n]$$
$$= [I_n|E_1 \cdots E_k]$$
$$= [I_n|A^{-1}].$$

Como $[I_n|E_1\cdots E_k]$ é matriz escalonada reduzida associada a $[A|I_n]$ temos que A^{-1} está unívocamente determinada. Algumas propriedades da inversa são as seguintes:

Proposição 4.2

i- Se A é invertível então A^{-1} também o é. Mais ainda $(A^{-1})^{-1} = A$.

ii- Se A é invertível então $(A^t)^{-1} = (A^{-1})^t$.

iii- Se A e B são invertíveis então AB também o é. Mais ainda $(AB)^{-1} = B^{-1}A^{-1}$.

Demonstração: i- Se A é invertível então

$$AA^{-1} = A^{-1}A = I$$

portanto A é a inversa de A^{-1} .

ii- Se A é invertível então

$$AA^{-1} = A^{-1}A = I \Rightarrow (A^{-1})^t A^t = A^t (A^{-1})^t = I^t = I$$

e portanto $(A^t)^{-1} = (A^{-1})^t$.

4.1 Matrizes Quadradas 33

iii- De fato

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I.$$

Então AB é invertível e $(AB)^{-1} = B^{-1}A^{-1}$.

Find eligibles are actions.

5. Determinante de uma matriz quadrada

Neste capítulo vemos a definição de determinante de uma matriz quadrada. O determinante pode ser visto como uma função do espaçõ das matrizes nos reais que satisfaz uma serie de propriedades que a tornam única.

5.1 Determinantes

Definição 5.1 Uma função $D: \mathbb{M}(n \times n) \to \mathbb{R}$ é dita *n*-linear se, satisfaz

$$D\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} + cb_{k1} & \cdots & a_{kn} + cb_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = D\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} + cD\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ b_{k1} & \cdots & b_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix},$$

para todo $1 \le k \le n$.

■ Exemplo 5.1 Sejam ℓ_1, \dots, ℓ_n inteiros positivos e menores ou iguais do que n e $b \in \mathbb{R}$. A função D: $\mathbb{M}(n \times n) \to \mathbb{R}$ definida por

$$D(A) = b([A]_{1\ell_1} \cdots [A]_{n\ell_n}).$$

é *n*-linear. De fato, para todo $1 \le k \le n$, temos

$$D\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} + cb_{k1} & \cdots & a_{kn} + cb_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = b(a_{1\ell_1} \cdots (a_{k\ell_k} + cb_{k\ell_k}) \cdots a_{n\ell_n})$$

$$= b(a_{1\ell_1} \cdots a_{k\ell_k} \cdots a_{n\ell_n}) + cb(a_{1\ell_1} \cdots cb_{k\ell_k} \cdots a_{n\ell_n})$$

$$= D\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} + cD\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ b_{k1} & \cdots & b_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}.$$

Lema 5.1 Dadas D_1, \ldots, D_k funções n-lineares e $b_1, \ldots, b_k \in \mathbb{R}$. A função

$$D = b_1 D_1 + \dots + b_k D_k,$$

é *n*−linear.

Demonstração: De fato,

emonstração: De fato,
$$D\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} + cb_{k1} & \cdots & a_{kn} + cb_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = b_1 D_1 \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} + \cdots + b_k D_k \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

$$= b_1 D_1 \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} + \cdots + cb_1 D_1 \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ b_{k1} & \cdots & b_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} + cb_k D_k \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ b_{k1} & \cdots & b_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

$$= D\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & & \vdots \\ b_{k1} & \cdots & b_{kn} \\ \vdots & &$$

5.1 Determinantes 37

Definição 5.2 Uma função n linear é alternada se D(A) = 0 sempre que duas lineas de A sejam iguais.

Corolário 5.1 Seja D alternada e assuma que A' é obtida de A de intercambiar duas lineas então D(A') = -D(A).

Demonstração: Se D é alternada, então para quaisquer l e k temos

$$0 = D \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} + a_{l1} & \cdots & a_{kn} + a_{ln} \\ \vdots & & \vdots \\ a_{k1} + a_{l1} & \cdots & a_{kn} + a_{ln} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = D \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & & \vdots \\ a_{k1} + a_{l1} & \cdots & a_{kn} + a_{ln} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} + D \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{l1} & \cdots & a_{ln} \\ \vdots & & \vdots \\ a_{k1} + a_{l1} & \cdots & a_{kn} + a_{ln} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

$$= D \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & & \vdots \\ a_{l1} & \cdots & a_{ln} \end{pmatrix} + D \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & & \vdots \\ a_{l1} & \cdots & a_{ln} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} + D \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{l1} & \cdots & a_{ln} \\ \vdots & & \vdots \\ a_{l1} & \cdots & a_{ln} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

$$= 0 + D \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & & \vdots \\ a_{l1} & \cdots & a_{ln} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} + D \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{l1} & \cdots & a_{ln} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} + 0.$$

Portanto

$$D\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & & \vdots \\ a_{l1} & \cdots & a_{ln} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = -D\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{l1} & \cdots & a_{ln} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

Definição 5.3 Uma função $D: \mathbb{M}(n \times n) \to \mathbb{R}$ é chamada de função determinante se ela é uma função n-linear, alternada tal que D(I) = 1 para I matriz identidade.

Exemplo 5.2 Seja D uma função n-linear alternada e A uma matriz em $\mathbb{M}(2 \times 2)$ então

$$D\begin{pmatrix} a & b \\ c & d \end{pmatrix} = D\begin{pmatrix} a+0 & 0+b \\ 0+c & d+0 \end{pmatrix}$$

$$= D\begin{pmatrix} a & 0 \\ 0+c & d+0 \end{pmatrix} + D\begin{pmatrix} 0 & b \\ 0+c & d+0 \end{pmatrix}$$

$$= D\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} + D\begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix} + D\begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} + D\begin{pmatrix} 0 & b \\ c & d \end{pmatrix}$$

$$= adD\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + acD\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + bdD\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + cdD\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$= adD\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 0 + 0 + cdD\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$= (ad + (-cd))D\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Portanto existe uma única função determinante D para matrizes em $\mathbb{M}(2 \times 2)$ e é dada por

$$D\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = ad - bc.$$

Isto provém do fato de que a função determinante satisfaz

$$D\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) = 1.$$

Definição 5.4 Se n > 1 e A é uma matriz em $\mathbb{M}(n \times n)$ denotamos por A(i|j) a matriz em $\mathbb{M}((n-1) \times (n-1))$ que é obtida de A apagando-se a linha i e a coluna j. Isto é, se

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1j-1} & a_{1j} & a_{1j+1} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i-11} & \cdots & a_{i-1j-1} & a_{i-1j} & a_{i-1j+1} & \cdots & a_{i-1n} \\ a_{i1} & \cdots & a_{ij-1} & a_{ij} & a_{ij+1} & \cdots & a_{in} \\ a_{i+11} & \cdots & a_{i+1j-1} & a_{i+1j} & a_{i+1j+1} & \cdots & a_{i+1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nj-1} & a_{nj} & a_{nj+1} & \cdots & a_{nn} \end{pmatrix}$$

então

$$A(i|j) = \begin{pmatrix} a_{11} & \cdots & a_{1j-1} & a_{1j+1} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i-11} & \cdots & a_{i-1j-1} & a_{i-1j+1} & \cdots & a_{i-1n} \\ a_{i+11} & \cdots & a_{i+1j-1} & a_{i+1j+1} & \cdots & a_{i+1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nj-1} & a_{nj+1} & \cdots & a_{nn} \end{pmatrix}.$$

Se D é uma função n-1-linear denotamos

$$D_{ij}A = D(A(i|j)).$$

5.1 Determinantes 39

Teorema 5.1 Seja n > 1 e D uma n-1-função linear alternada em $\mathbb{M}((n-1) \times (n-1))$. Para todo j a função $E_j : \mathbb{M}(n \times n) \to \mathbb{R}$ definida por

$$E_j(A) = \sum_{i=1}^{n} (-1)^{i+j} A_{ij}(D_{ij}A),$$

é uma n-função linear alternada. Mais ainda se D é uma função determinante E_i também o é.

Demonstração: Seja A uma matriz de tamanho $n \times n$. Então, $D_{ij}(A)$ é independente da i-ésima fila de A e como D é (n-1)linear temos que D_{ij} é (n-1) linear com respeito a qualquer linha de A diferente de i. Então $A_{ij}D_{ij}A$ é n linear por um resultado acima. Como a soma e produto por escalar de funções n-linear temos que E_i definida como acima é n-linear.

Assuma que A tem duas linhas iguais. Observamos que é suficiente supor que as linhas são adjacentes. Então assuma que a linha k é igual à linha k+1. Se $i \neq k$, k+1, a matriz A(i|j) tem duas linhas iguais e $D_{ij}(A)=0$. Portanto

$$E_j(A) = (-1)^{k+j} A_{kj} D_{kj}(A) + (-1)^{k+1+j} A_{(k+1)j} D_{(k+1)j}(A).$$

Mas como $A_{kj} = A_{(k+1)j}$ e A(k|j) = A(k+1|j) temos que $E_j(A) = 0$.

Se D é uma função determinante e I é a identidade de tamanho $n \times n$, então I(j|j) é a identidade de tamanho $(n-1) \times (n-1)$ e como

$$I_{ij} = \left\{ \begin{array}{ll} 1 & \text{se} & i = j \\ 0 & \text{se} & i \neq j \end{array} \right.,$$

segue que $E_j(I) = D(I(j|j)) = 1$.

Corolário 5.2 Existe uma função determinante em $\mathbb{M}(n \times n)$.

Demonstração: Sabemos que existe a função determinante em matrizes de 1×1 definida por

$$det(a) = a$$

e para matrizes de tamanho 2×2 , definida pelo exemplo 5.2, em que

$$\det \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = ad - bc.$$

Utilizando o teorema anterior definimos a função determinante para matrizes de tamanho $n \times n$ por meio do seguinte esquema

i- Se n = 1 então A = (a) donde det(A) = a.

ii- Se n > 1 então

$$\det(A) = (-1)^{i+j} a_{i1} \det(A(i|1)) + \dots + (-1)^{i+n} a_{in} \det(A(i|n)),$$

ou equivalentemente

$$\det(A) = (-1)^{j+1} a_{1j} \det(A(1|j)) + \dots + (-1)^{j+n} a_{nj} \det(A(n|j)).$$

Para qualquer $1 \le i, j \le n$ escolhidos (vamos ver na próxima seção que de fato é independente da escolha de i ou j). A primeira fórmula corresponde ao cálculo do determinante com respeito à coluna j e a segunda corresponde ao cálculo de determinante com respeito a linha i.

Observamos que a fórmula assim obtida dá uma função determinante, isto em virtude do teorema 5.1 De fato, vejamos que para n=2 temos a função D obtida no exemplo 5.2. Para isto, seja $A \in \mathbb{M}(2 \times 2)$ dada por

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right),$$

escolhemos calcular o determinante com respeito a linha 1. Então

$$\det(A) = (-1)^{1+1} a_{11} \det((a_{22})) + (-1)^{1+2} a_{12} \det((a_{21}))$$

= $a_{11} a_{22} - a_{12} a_{21}$.

Mostramos agora como funciona a recursão fazendo as contas para n=3 seja $A \in \mathbb{M}(3 \times 3)$ dada por

$$A = \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right).$$

Escolhemos calcular novamente o determinante com respeito a linha 1 e vamos utilizar a formula achada para o cálculo de determinantes de matrizes de tamanho 2×2 . Assim

$$\det(A) = (-1)^{1+1} a_{11} \det \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} + (-1)^{1+2} a_{12} \det \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} + (-1)^{1+3} a_{13} \det \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$$
$$= a_{11} \begin{pmatrix} a_{22} a_{33} - a_{23} a_{32} \end{pmatrix} + a_{12} \begin{pmatrix} a_{21} a_{33} - a_{23} a_{31} \end{pmatrix} + a_{13} \begin{pmatrix} a_{21} a_{32} - a_{32} a_{22} \end{pmatrix}.$$

Portanto a função det assim definida é uma função determinante.

Obs. Para simplificar a notação é definido o cofator da entrada a_{ij} da matriz A de tamanho $n \times n$ como o número \bar{a}_{ij} obtido por

$$\bar{a}_{ij} = (-1)^{i+j} \det(A(i|j)).$$

Com esta notação, a formula para o cálculo do determinante fica

$$\det(A) = a_{i1}\tilde{a}_{i1} + \dots + a_{in}\tilde{a}_{in},$$

ou equivalentemente

$$\det(A) = a_{1i}\tilde{a}_{1i} + \dots + a_{ni}\tilde{a}_{ni}.$$

■ Exemplo 5.3 Vamos mostrar como calcular o determinante de uma matriz utilizando a fórmula acima. Calculamos o determinante da matriz abaixo a partir da terceira linha.

$$\det\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \\ -1 & 1 & -1 & 1 \end{pmatrix} = (-1)^{(1+1)}(1)\det\begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

$$+(-1)^{(1+2)}(0)\det\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -1 & -1 & 1 \end{pmatrix}$$

$$+(-1)^{(1+3)}(1)\det\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$

$$+(-1)^{(1+4)}(3)\det\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ -1 & 1 & -1 \end{pmatrix}$$

Portanto, precisamos calcular os seguintes

$$\det\begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix} = 0 + (-1)^{(1+2)}(1) \det\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + (-1)^{(1+3)}(1) \det\begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}$$
$$= 0 + (-1 \times 0) + (1 \times -3) = -3.$$

$$\det \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} = (-1)^{1+1} (1) \det \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + 0 + (-1)^{1+3} (1) \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$$
$$= 0 + 0 + 1 = 1.$$

$$\det\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ -1 & 1 & -1 \end{pmatrix} = (-1)^{1+1}(1)\det\begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} + 0 + (-1)^{1+3}\det\begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$$
$$= (1 \times -3) + 0 + (1 \times 1) = -2.$$

Substituindo temos,

$$\det \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \\ -1 & 1 & -1 & 1 \end{pmatrix} = (1 \times -3) + 0 + (1 \times 1) + (-3 \times -2) = 4.$$

5.2 Determinante via permutações

Nesta seção vamos mostrar que a função determinante definida na seção anterior é única e independente da escolha da coluna ou linha escolhida. Também vamos mostrar um método mais simples para o cálculo do mesmo.

Seja $e_i \in \mathbb{M}(1 \times n)$ a matriz linha definida por

$$e_j = (0, \dots, 0, \overbrace{1}^j, 0, \dots, 0)$$

onde o número 1 está na posição j. Com esta notação temos que todam matriz linha $\alpha = (a_1, \dots, a_n)$ em $\mathbb{M}(1 \times n)$ pode ser escrita da forma

$$(a_1,\ldots,a_n)=a_1(1,0,\ldots,0)+\cdots+a_n(0,\ldots,0,1)$$

ou, equivalentemente

$$\alpha = \sum_{i=1}^{n} a_i e_i.$$

Portanto, para toda função n-linear D em $\mathbb{M}(n \times n)$ temos

$$D(A) = D\left(\sum_{i_{1}=1}^{n} [A]_{1i_{1}} e_{i_{1}}, \alpha_{2}, \dots, \alpha_{n}\right)$$

$$= \sum_{i_{1}=1}^{n} [A]_{1i_{1}} * D\left(e_{i_{1}}, \sum_{i_{2}=1}^{n} [A]_{2i_{2}} e_{i_{2}}, \dots, \alpha_{n}\right)$$

$$= \sum_{i_{1}, i_{2}=1}^{n} [A]_{1i_{i}} * [A]_{2i_{2}} D\left(e_{i_{1}}, e_{i_{2}}, \dots, \alpha_{n}\right)$$

$$\vdots$$

$$= \sum_{i_{1}, \dots, i_{n}=1}^{n} ([A]_{1i_{i}} * \dots * [A]_{ni_{n}}) D\left(\begin{array}{c} e_{i_{1}} \\ \vdots \\ e_{i_{n}} \end{array}\right).$$

Se pedimos que D seja alternada temos que os termos dos produtos que involvem

$$D\left(egin{array}{c} e_{i_1} \ dots \ e_{i_n} \end{array}
ight),$$

onde $e_{i_i} = e_{i_k}$ para algum k e j, são identicamente nulos.

Definição 5.5 Uma n-upla de inteiros positivos $(i_1, ..., i_n)$ tais que $1 \le i_j \le n$ para todo j = 1 ... n e $i_j \ne i_k$ para todos j e k é chamada uma permutaão de grau n do conjunto (1, ..., n).

Assim, uma permtação é definida como uma função bijetora $\sigma: \{1, ..., n\} \to \{1, ..., n\}$. Uma tal função define uma n-upla $(\sigma_1, ..., \sigma_n)$ e é por tanto uma regra para reorganizar os elementos 1, 2, ..., n de alguma forma definida. Em particular se

$$\sigma(1,\ldots,n)=(\sigma_1,\ldots,\sigma_n)$$

então

$$\sigma(i) = \sigma_i \quad \forall i \in \{1, \dots, n\}.$$

Um fato básico em permutações é o seguinte:

Toda permutação σ pode ser obtida de uma suceção de intercambio de pares.

Esta suceção pode ser de diferentes formas mas o número de intercambio de pares utilizados é sempre sempre par ou impar e isto depende somente da permutação.

Definição 5.6 Uma permutação $\sigma: \{1, ..., n\} \rightarrow \{1, ..., n\}$ é dita

- par se o número de intercambios utilizado for par.
- impar se o número de intercámbios utilizados for impar.

O sinal da permutação sigma será

$$\operatorname{sinal}(\sigma) = \begin{cases} 1 & \text{se } \sigma \text{ par} \\ -1 & \text{se } \sigma \text{ impar} \end{cases}.$$

■ Exemplo 5.4 • A permutação $\sigma = (1,3,4,2,5)$ é par pois pode ser vista como composta dos seguintes intercâmbios de pares

$$\sigma_1: (1,2,3,4,5) \to (1,3,2,4,5), \qquad \sigma_2: (1,2,3,4,5) \to (1,2,4,3,5).$$

Então

$$\sigma = \sigma_2 \circ \sigma_1(1,2,3,4,5) = \sigma_2(1,3,2,4,5) = (1,3,4,2,5).$$

• A permutação $\sigma = (3,2,1)$ é impar pois pode ser vista como composta dos seguintes intercâmbios de pares

$$\sigma_1: (1,2,3) \to (2,1,3)$$
 $\sigma_2: (1,2,3) \to (1,3,2),$

da seguinte forma,

$$\sigma = \sigma_1 \circ \sigma_2 \circ \sigma_1(1,2,3) = \sigma_1 \circ \sigma_2(2,1,3) = \sigma_1(2,3,1) = (3,2,1).$$

Podemos então escrever

$$D(A) = \sum_{i_1, \dots, i_n = 1}^{n} ([A]_{1i_i} * \dots * [A]_{ni_n}) D \begin{pmatrix} e_{i_1} \\ \vdots \\ e_{i_n} \end{pmatrix}$$

$$= \sum_{\text{diferentes permutações } \sigma} ([A]_{1\sigma(1)} * \dots * [A]_{n\sigma(n)}) D \begin{pmatrix} e_{\sigma(1)} \\ \vdots \\ e_{\sigma(n)} \end{pmatrix}$$

pois os termos com $e_{i_j} = e_{i_k}$ cancelam e só restam aqueles que são um reordenamento de $\{1, \dots, n\}$ isto é, as permutações.

Por otro lado, pelo fato de D ser alternada, temos que

$$D\begin{pmatrix} e_{\sigma(1)} \\ \vdots \\ e_{\sigma(n)} \end{pmatrix} = \operatorname{sinal}(\sigma)D\begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix}$$

Portanto podemos escrever

$$D(A) = \sum_{\text{diferentes permutações } \sigma} (\operatorname{sinal}(\sigma)([A]_{1\sigma(1)} * \ldots * [A]_{n\sigma(n)}) D\left(e_1, \ldots, e_n\right).$$

ou

$$D(A) = \left(\sum_{\text{diferentes permutações } \sigma} (\text{sinal}(\sigma) * [A]_{1\sigma(1)} * \dots * [A]_{n\sigma(n)})\right) D(I).$$

Se denotamos por det(A) a

$$\det(A) = \sum_{\text{diferentes permutações } \sigma} (\operatorname{sinal}(\sigma) * [A]_{1\sigma(1)} * \dots * [A]_{n\sigma(n)}).$$

temos mostrado o seguinte resultado.

Teorema 5.2 Existe uma unica função determinante em $\mathbb{M}(n \times n)$ definida por $\det(A)$. Mais ainda, toda função n-linear alternada D em $\mathbb{M}(n \times n)$ satisfaz

$$D(A) = \det(A)D(I)$$
.

Exemplo 5.5 Vamos ver como obter a fórmula do determinante para uma matriz de tamanho 2×2 com este formalismo.

Primeiramente observamos que para n = 2 temos duas permutações

$$\sigma(1,2) = (1,2)$$
 com sinal $(\sigma) = 1$

$$\lambda(1,2) = (2,1)$$
 com sinal $(\lambda) = -1$

Então, se

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$$

temos que

$$\det(A) = \sin a(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} + \sin a(\lambda) a_{1\lambda(1)} a_{2\lambda(2)} = a_{11} a_{22} - a_{12} a_{21}.$$

Corolário 5.3 Se D é uma função determinante as E_j são todas iguais. Dito de outra forma, o cálculo do determinante não depende da escolha da línea ou coluna.

Teorema 5.3 Sejam A e B matrizes em $\mathbb{M}(n \times n)$ então

$$det(AB) = det(A)det(B)$$
.

Demonstração: Fixamos B e definimos D(A) = det(AB). É simples ver que D é n- linear e alternada. Portanto, por um resultado acima temos que

$$D(A) = det(A)D(I),$$

mas

$$D(I) = det(IB) = det(B).$$

Proposição 5.1

$$det(A^t) = det(A)$$
.

$$det(A) = \sum_{i=1}^{n} (-1)^{i+j} [A]_{ij} det(A(i|j)).$$

Demonstração: A primeira identidade segue de

$$\begin{split} \det(A^t) &= \sum_{\sigma} (\operatorname{sinal}(\sigma))[A]_{\sigma_1,1} \dots [A]_{\sigma_n,n} \\ &= \sum_{\sigma} (\operatorname{sinal}(\sigma^{-1}))[A]_{1,\sigma_1^{-1}} \dots [A]_{n,\sigma_n^{-1}}. \end{split}$$

A segunda provem do fato de que todas as funções alternadas E_j são funções determinante.

A fórmula vista para o determinante permite o cálculo do determinante de qualquer matriz de tamanho $n \times n$, porém tem um grande defeito que é o volume de contas a fazer. Já no caso 4×4 temos que calcular o determinante de 4 matrizes de tamanho 3×3 o que resulta em muito trabalho. A ideia então é obter, a partir da definição de determinante, um método mais simples para o cálculo.

- **Exemplo 5.6** 1. Uma matriz A de tamanho $n \times n$ que possui uma linha ou uma coluna nula tem determinante igual a 0. De fato, se calculamos o determinante a partir desta linha ou coluna obtemos que cada término é 0.
 - 2. Seja A uma matriz triangular superior, isto é uma matriz da forma

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix}.$$

Então

$$\det(A) = a_{11}a_{22}\cdots a_{nn}.$$

Provamos isso por indução. Claramente vale para matrizes de tamanho 2×2 . Assuma como válido para matrizes de tamanho $n \times n$, vamos mostrar o caso $(n+1) \times (n+1)$. Para isto calculamos o determinante com respeito a primeira coluna e obtemos

$$\det(A) = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n+1} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n+1} \\ 0 & 0 & a_{33} & \cdots & a_{3n+1} \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n+1n+1} \end{pmatrix} = (-1)^{1+1} a_{11} \det \begin{pmatrix} a_{22} & a_{23} & \cdots & a_{2n+1} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n+1n+1} \end{pmatrix} + 0.$$

Agora, utilizando a hipótese indutiva temos

$$\det(A) = a_{11}a_{22}\cdots a_{n+1n+1}.$$

Como queriamos mostrar.

Teorema 5.4 Seja *E* uma matriz elementar.

i- Se B é uma matriz obtida a partir de multiplicar uma linha da I_n por um escalar $\lambda \neq 0$ então

$$det(B) = \lambda$$
.

ii- Se B é uma matriz obtida a partir de trocar duas linhas de I_n , então

$$det(B) = -1$$
.

iii- Se B é uma matriz obtida a partir de adicionar a uma linha de I_n um multiplo escalar de outra linha de I_n então

$$det(B) = 1$$
.

Demonstração: Consequência direta do teorema anterior e do fato $det(I_n) = 1$.

Portanto se B é obtida de A e de fazer uma operação elementar E então temos que

$$det(B) = det(E) det(A)$$
.

Inductivamente podemos provar que se $B = E_1 \cdots E_k A$, para $E_1 \cdots E_k$ matrizes elementares então

$$det(B) = det(E_1) \cdots det(E_k) det(A).$$

Teorema 5.5 Seja A uma matriz de tamanho $n \times n$.

i- Se B é uma matriz obtida a partir de multiplicar uma linha de A por um escalar $\lambda \neq 0$ então

$$det(B) = \lambda det(A)$$
.

ii- Se B é uma matriz obtida a partir da troca de duas linhas de A então

$$\det(B) = -\det(A)$$
.

iii- Se *B* é uma matriz obtida a partir de adicionar uma linha de *A* um múltiplo escalar de outra linha de *A*, então

$$det(B) = det(A)$$
.

Demonstração: Segue do teorema anterior e de utilizar a propriedade det(AB) = det(A) det(B).

Juntando todo o visto até agora temos que para calcular determinates, podemos utilizar as seguintes propriedades:

- 1. det(I) = 1.
- 2. $det(A^t) = det(A)$.
- 3. Se A é uma a matriz triangular superior de tamanho $n \times n$ então

$$\det(A) = \det\begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix} = a_{11}a_{22}\cdots a_{nn}.$$

- 4. Se A tem linha nula então det(A) = 0.
- 5. Se B é uma matriz obtida a partir de multiplicar uma linha de A por um escalar $\lambda \neq 0$ então

$$\det(B) = \lambda \det(A).$$

6. Se B é uma matriz obtida a partir da troca de duas linhas de A então

$$det(B) = -det(A)$$
.

7. Se *B* é uma matriz obtida a partir de adicionar uma linha de *A* um múltiplo escalar de outra linha de *A*, então

$$det(B) = det(A)$$
.

■ Exemplo 5.7 Vamos ver como estas propriedades funcionam com um exemplo. Calculando det(A) para

$$A = \left(\begin{array}{rrrr} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{array}\right)$$

Começamos fazendo operações elementares sobre A até leva-lá numa matriz triangular superior.

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix} \underbrace{\ell_2 - \ell_1 \to \ell_2}_{A_2} A_2 = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix} \underbrace{\ell_3 - 2\ell_2 \to \ell_3}_{A_3 \to A_4} A_4 = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{pmatrix} \underbrace{\ell_4 - \frac{1}{2}\ell_3 \to \ell_4}_{A_4 \to A_4} A_4 = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 1/2 \end{pmatrix}$$

Como $\det(A_4) = 1 \times 1 \times 2 \times \frac{1}{2} = 1$ e $\det(A) = \det(A_2) = \det(A_3) = \det(A_4)$ temos $\det(A) = 1$.

Corolário 5.4 Seja A uma matriz e B sua forma escalonada reduzida. Sejam $E_1 \cdots E_k$ as matrizes elementares tais que

$$B = E_1 \cdots E_k A$$
.

Então $B \neq I$ se det(A) = 0. Caso contrário

$$\det(A) = \frac{1}{\det(E_1)\cdots\det(E_k)}.$$

Demonstração: Se B não é a identidade então necessariamente tem uma linha nula. Portanto det(B) = 0. Utilizando que

$$det(B) = det(E_1) \cdots det(E_k) det(A).$$

Temos que se $B \neq I$ então det(A) = 0 e se B = I,

$$\det(A) = \frac{1}{\det(E_1)\cdots\det(E_k)}.$$

Corolário 5.5 Uma matriz quadrada A é invetível se, e somente se, $det(A) \neq 0$.

Demonstração: Segue do resultado anterior e do fato que uma matriz é invertível se, e somente se é equivalente por linhas a identidade.

Finalizamos esta seção observando o seguinte diagrama de equivalências

$$A ext{ \'e invert\'evel} \iff A \sim I$$

$$\det(A) \neq 0$$

5.3 Adjunta de uma matriz quadrada

Seja A uma matriz de tamanho $n \times n$ dada por

$$A = \left(\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{array}\right).$$

Lembramos que o cofator da entrada a_{ij} é o número

$$\tilde{a}_{ij} = (-1)^{i+j} \det(A(i|j)) = (-1)^{i+j} \det \begin{pmatrix} a_{11} & \cdots & a_{1j-1} & a_{1j+1} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i-11} & \cdots & a_{i-1j-1} & a_{i-1j+1} & \cdots & a_{i-1n} \\ a_{i+11} & \cdots & a_{i+1j-1} & a_{i+1j+1} & \cdots & a_{i+1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nj-1} & a_{nj+1} & \cdots & a_{nn} \end{pmatrix}.$$

Definição 5.7 A matriz adjunta de A, que denotamos por adj(A), é a matriz

$$adj(A) = \begin{pmatrix} \tilde{a}_{11} & \cdots & \tilde{a}_{1n} \\ \vdots & \ddots & \vdots \\ \tilde{a}_{n1} & \cdots & \tilde{a}_{nn} \end{pmatrix}^{t},$$

isto é, a transposta da matriz formada pelos cofatores.

■ Exemplo 5.8 1. Seja

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow adj(A) = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}^{t} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Observamos que

$$A \ adj(A) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
$$= \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix}$$
$$= (ad - bc) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \det(A) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

2. Seja

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

$$\tilde{a}_{11} = (-1)^{1+1} \det \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \qquad \tilde{a}_{12} = (-1)^{1+2} \det \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \tilde{a}_{13} = (-1)^{1+3} \det \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\tilde{a}_{21} = (-1)^{2+1} \det \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\tilde{a}_{22} = (-1)^{2+2} \det \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
 $\tilde{a}_{23} = (-1)^{2+3} \det \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

$$\tilde{a}_{31} = (-1)^{3+1} \det \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \qquad \tilde{a}_{32} = (-1)^{3+2} \det \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad \tilde{a}_{33} = (-1)^{3+3} \det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Calculando temos,

$$\tilde{a}_{11} = -1$$
 $\tilde{a}_{12} = 1$ $\tilde{a}_{13} = -1$
 $\tilde{a}_{21} = 1$ $\tilde{a}_{22} = -1$ $\tilde{a}_{23} = -1$
 $\tilde{a}_{31} = -1$ $\tilde{a}_{32} = -1$ $\tilde{a}_{33} = 1$

Então,

$$adj(A) = \begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & -1 \\ -1 & -1 & 1 \end{pmatrix}^{t} = \begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & -1 \\ -1 & -1 & 1 \end{pmatrix}.$$

Observamos que,

$$adj(A) \cdot A = \left(\begin{array}{ccc} -1 & 1 & -1 \\ 1 & -1 & -1 \\ -1 & -1 & 1 \end{array} \right) \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{array} \right) = \left(\begin{array}{ccc} -2 & 0 & -0 \\ 0 & -2 & -0 \\ 0 & 0 & 2 \end{array} \right) = -2 \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

E que

$$\det(A) = 1 \times (-1)^2 \det\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right) + 0 + 1 \times (-1)^{1+3} \det\left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right) = -1 - 1 = -2.$$

A Propriedade fundamental da matriz adjunta é que fornece uma fórmula para a inversa de A. Isto é o enunciado do seguinte teorema.

Teorema 5.6 Seja A uma matriz de $n \times n$. Então

$$A(ad j(A)) = \det(A)I_n$$
.

Mais ainda, se A é invertível, então

$$A^{-1} = \frac{1}{\det(A)} adj(A).$$

Demonstração: A entrada ij do produto A(adj(A)) é dada por

$$a_{i1}\tilde{a}_{j1} + \cdots + a_{in}\tilde{a}_{jn}$$

Decorre da definição que se i = j então

$$a_{i1}\tilde{a}_{j1}+\cdots+a_{in}\tilde{a}_{jn}=\det A$$

Se $i \neq j$ então

$$a_{i1}\tilde{a}_{j1} + \dots + a_{in}\tilde{a}_{jn} = 0$$

pois é o determinante da matriz obtida de A substituindo a linha j pela linha i. Isto é, o determinante da matriz:

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{in} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{in} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{in} \end{pmatrix} \leftarrow i$$

respeito da linha i.

Find eligibles are actions.

6. Sistema de equações linerares

Neste capítulo consideramos o problema de achar n escalares $x_1, \dots, x_n \in \mathbb{R}$ que satisfazem as seguintes equações:

$$\begin{pmatrix}
a_{11}x_1 + a_{12}x_1 + \cdots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m
\end{pmatrix}$$

onde os a_{ij} 's e b_j 's são números em \mathbb{R} . Chamamos a este conjunto de equações de sistema linear de m equações com n incognitas.

Em particular, um sistema linear é dito homogêneo se

$$b_1=b_2=\cdots=b_m=0,$$

isto é

$$\begin{cases} a_{11}x_1 + a_{12}x_1 + \cdots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = 0 \end{cases}$$

Definição 6.1 Uma n-upla (c_1, \dots, c_n) é dita uma solução do sistema se, ao substituir $x_i = c_i$ em cada uma das equações acima, são satisfeitas as identidades. O conjunto solução é o conjunto de todas as n-uplas que são solução do sistema.

Nem sempre é possível garantir a existência de solução. De fato vamos ver depois que alguns sistemas lineares não tem solução. Outros, no entanto, admitem infinitas soluções. Em particular:

Corolário 6.1 Todo sistema homogêneo admite pelos menos uma solução.

Demonstração: De fato, a solução $x_1 = 0, \dots, x_n = 0$ resolve o sitema linear homogêneo.

Procuramos então um método prático para achar ou garantir a existência de soluções para sistemas lineares. Para isto, começamos observando que podemos reescrever o sistema (1) em notação matricial como

$$AX = B$$
.

onde

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}.$$

Nesta notação podemos dizer que uma n-upla (c_1, \dots, c_2) é solução do sistema linear (1) se

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix},$$

isto é, ao fazer o produto da matriz A com a matriz

$$C = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix},$$

obtemos B.

A dificuldade em resolver o sistema linear radica na complexidade da matriz A. Em principio, quanto menos entradas não nulas possua a matriz A mais difícil será resolver o sistema linear. Assim, para resolver o sistema, procuramos um método que me elimine o maior número possível de entradas não nulas. Este é o coração da técnica de eliminação de parámetros que ilustramos com o seguinte exemplo.

■ Exemplo 6.1 Considere o sistema

$$\begin{cases} x_1 + 2x_2 + x_3 = 0 \\ x_1 + 2x_2 + x_3 = 0 \end{cases}$$

ou, em notação matricial

$$\left(\begin{array}{cc} 1 & 2 & 1 \\ 1 & 1 & 1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right).$$

Se fazemos a primeira equação menos a segunda temos que $x_2 = 0$. Substituindo agora na segunda equação, tiramos $x_1 + x_3 = 0$. Portanto, resolver este sistema torna-se equivalente a resolver o sistema

$$\begin{cases} x_1 + x_3 = 0 \\ x_2 = 0 \end{cases},$$

ou, em notação matricial

$$\left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right).$$

Observe que a diferença fundamental aqui é que, no segundo caso, estamos com uma matriz escalonada reduzida!.

■ Exemplo 6.2 Vamos obter os coeficientes estequiométricos para o balanceamento da equação

$$xC_6H_6 + yO_2 \rightarrow zCO_2 + wH_2O$$
.

Comparando a quantidade de átomos, temos o seguinte sistema

$$\begin{cases} 6x & = & z \\ 6x & = & w \\ 2y & = & 2z+w \end{cases} \Rightarrow \begin{cases} 6x & -z & = & 0 \\ 6x & -w = & 0 \\ & 2y & -2z & -w = & 0 \end{cases}.$$

Escrito na linguagem de matrizes fica,

$$\left(\begin{array}{ccc} 6 & 0 & -1 & 0 \\ 6 & 0 & 0 & -1 \\ 0 & 2 & -2 & -1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}\right).$$

O conjunto solução é $S = \{(x/3, 5x/2, 2x, x), x \in \mathbb{R}\}$ donde a solução para x = 6 é dada por (2, 15, 12, 6). Portanto a equação balanceada é

$$2C_6H_6 + 15O_2 \rightarrow 12CO_2 + 2H_2O$$
.

Podemos fazer o mesmo com $xH_2 + yO_2 \rightarrow zH_2O$ para obter que o balanceamento é dado por $2H_2 + O_2 \rightarrow 2H_2O$.

Seja então AX = B um sistema linear e considere $E_1 \cdots E_k A = D$ as operações elementares que me levam A na sua forma escalonada reduzida D, isto é

$$E_1 \cdots E_k A = D$$
.

Multiplicando aos dois lados da igualdade

$$AX = B$$
,

por $E_1 \cdots E_k$ obtemos um novo sistema, isto é

$$E_1 \cdots E_k AX = E_1 \cdots E_k B \rightarrow DX = \tilde{B}$$
, para $\tilde{B} = E_1 \cdots E_k B$,

que é muito mais simples de resolver que o sistema original pois D tem uma quantidade maior de entradas nulas do que A. Mais ainda, temos o seguinte resultado.

Teorema 6.1 O sistema AX = B e o sistema $DX = \tilde{B}$ tem o mesmo conjunto solução.

Demonstração: Lembramos que

$$E_1 \cdots E_k A = D$$
 e $E_1 \cdots E_k B = \tilde{B}$,

para E_1, \ldots, E_k matrizes elementares.

Seja S uma solução do sistema AX = B então AS = B. Então

$$DS = (E_1 \cdots E_k A)A$$

$$= E_1 \cdots E_k (AS)$$

$$= E_1 \cdots E_k (AS)$$

$$= E_1 \cdots E_k B = \tilde{B}$$

Por outro lado, assuma que \tilde{S} é solução de $DX = \tilde{B}$ Sejam E'_1, \dots, E'_k as matrizes elemetares inversas de $E_1 \dots E_k$

$$A\tilde{S} = (E'_k \cdots E'_1 E_1 \cdots E_k A) \tilde{S}$$

$$= E'_k \cdots E'_1 (E_1 \cdots E_k A) \tilde{S}$$

$$= E'_k \cdots E'_1 D\tilde{S}$$

$$= E'_k \cdots E'_1 \tilde{B}$$

$$= E'_k \cdots E'_1 (E_1 \cdots E_k B)$$

$$= (E'_k \cdots E'_1 E_1 \cdots E_k) B.$$

Assim temos construído um método para determinar soluções de sistemas lineares, **o método de Gauss-Jordan**, e que passamos a descrever:

Considere o sistema de equações lineares

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}.$$

i- Construa a matriz

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & | & b_1 \\ a_{21} & a_{22} & \dots & a_{2n}n & | & b_2 \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}.$$

ii- Faça operações elementares na matriz até levar a parte correspondente a A na sua forma escalonada reduzida

$$\tilde{M} = [D|\tilde{B}].$$

- iii- Resolva, se possível, $DX = \tilde{B}$
- iv- O conjunto solução de $DX = \tilde{B}$ é igual ao conjunto solução de AX = B.

Explicamos brevemente por que o método funciona. Se $E_1 \cdots E_k$ são operações elementares que levam A na sua forma escalonada reduzida, tiramos que

$$E_1 \cdots E_k[A|B] = [E_1 \cdots E_k A|B] = [D|\tilde{B}],$$

está na forma escalonada reduzida (e que é unívocamente determinada).

Os conjuntos solução de AX = B e de $DX = \tilde{B}$ coincidem como consequência do teorema anterior.

■ Exemplo 6.3 Consideramos o sistema linear

$$\begin{cases} x + (a-1)z = 2 \\ -2x + (a^2-1)y + (1-a)z = -4 \\ 2x + (3a-3)z = 4 \end{cases}$$

com 3 equações e 3 variáveis onde $a \in \mathbb{R}$ é um parámetro que podemos ajustar. Vamos estudar para que valores de a o sistema possui solução e como são essas soluções.

Construimos a matriz aumentada do sistema e fazemos operações elementares para levá-la na forma escalonada reduzida.

$$\begin{pmatrix} 1 & 0 & a-1 & | & 2 \\ -2 & a^2-1 & 1-a & | & -4 \\ 2 & 0 & 3a-3 & | & 4 \end{pmatrix} \xrightarrow{\ell_3-2\ell_1\to\ell_3} \begin{pmatrix} 1 & 0 & a-1 & | & 2 \\ 0 & a^2-1 & a-1 & | & 0 \\ 0 & 0 & a-1 & | & 0 \end{pmatrix}$$

$$\underbrace{\begin{array}{c} \ell_1 - \ell_3 \to \ell_1 \\ \ell_2 - \ell_3 \to \ell_2 \end{array}}_{} \left(\begin{array}{ccccc} 1 & 0 & 0 & | & 2 \\ 0 & a^2 - 1 & 0 & | & 0 \\ 0 & 0 & a - 1 & | & 0 \end{array}\right).$$

Portanto se $a \neq \pm 1$ então o sistema tem solução única igual a

$$S = \{(2,0,0)\}.$$

Se a = 1 então o sistema inicial é equivalente ao sistema

$$\begin{cases} x = 2 \\ 0y = 0 \\ -2z = 0 \end{cases}$$

que tem infinitas soluções $S = \{(2, y, z), z, y \in \mathbb{R}^2\}.$

Se a = -1 então o sistema inicial é equivalente ao sistema

$$\begin{cases} x = 2 \\ 0y = 0 \\ -2z = 0 \end{cases}$$

que tem infinitas soluções $S = \{(2, y, z), z, y \in \mathbb{R}^2\}$. Não há valores de a para os quais o sistema não tem solução.

Proposição 6.1 Considere um sistema de equações lineares da forma AX = B. Se $S_1 \neq S_2$ são duas soluções do sistema, então o sistema admite infinitas soluções.

Demonstração: Seja $S_{\rho} = \rho S_1 + (1 - \rho)S_2$ com $\rho \in \mathbb{R}$ um número qualquer diferente de 0 ou 1. Observamos que $S_{\rho} \neq S_1$ e $S_{\rho} \neq S_2$. Vamos mostrar que S_{ρ} é solução do sistema. De fato

$$AS_{\rho} = \rho AS_1 + (1 - \rho)AS_2 = \rho B + (1 - \rho)B = B.$$

6.1 Estudo de sistemas lineares

Se temos um sistema linear da forma AX = B e aplicamos o método de Gauss-Jordan para resolvé-lo, podemos chegar nos seguintes casos.

Caso 1. O sistema tem solução. Depois de aplicar as operações elementares sobre a matriz [A|B] temos que a matriz resultante $[D|\tilde{B}]$ não admite linhas da forma $(0\cdots 0|k)$ com $k \neq 0$.

Neste caso o sistema pode ter uma única solução ou infinitas soluções dependendo da matriz escalonada reduzida *D*.

A-) Se a matriz escalonada reduzida não tem colunas sem pivôs então ela é da forma

$$\begin{pmatrix}
1 & \cdots & 0 & | & \tilde{b_1} \\
\vdots & \ddots & \vdots & | & \vdots \\
0 & \cdots & 1 & | & \tilde{b_n} \\
0 & \cdots & 0 & | & 0 \\
\vdots & \cdots & \vdots & | & 0 \\
0 & \cdots & 0 & | & 0
\end{pmatrix}.$$

O sistema, neste caso tem solução única, e igual a

$$S = \left(\begin{array}{c} \tilde{b_1} \\ \vdots \\ \tilde{b_n} \end{array}\right).$$

B-) Se a matriz *D* tem colunas sem pivôs então há mais variáveis do que equações e portanto existem variáveis que podem assumir valores arbitrários. Por exemplo fica uma matriz da forma

$$\begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & | & \tilde{b_1} \\ 0 & 1 & 0 & 0 & \cdots & 0 & | & \tilde{b_2} \\ 0 & 0 & 0 & 1 & \cdots & 0 & | & \tilde{b_3} \\ \vdots & \vdots & \vdots & & \ddots & \vdots & | & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & | & \tilde{b_k} \\ 0 & 0 & 0 & \cdots & 0 & 0 & | & 0 \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 & | & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & | & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 & | & 0 \end{pmatrix}.$$

para k < n. Neste caso temos infinitas soluções.

Caso 2. O sistema não tem solução. Depois de aplicar as operações elementares sobre a matriz [A|B] temos que a matriz resultante $[D|\tilde{B}]$ admite linhas da forma $(0, \dots, 0|k)$ com $k \neq 0$. Neste caso fica uma equação da forma

$$0 = k \neq 0$$
,

o que constitui uma contradição.

■ Exemplo 6.4 1.) Considere o sistema

$$\begin{cases} x + y + z = 1 \\ x - z = 2 \\ 3x + y - z = 1 \end{cases}$$

Este sistema não tem solução. De fato,

$$\begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 1 & 0 & -1 & | & 2 \\ 3 & 1 & -1 & | & 1 \end{pmatrix} \xrightarrow{\ell_3 - \ell_1 \to \ell_3} \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 1 & 0 & -1 & | & 2 \\ 2 & 0 & -2 & | & 0 \end{pmatrix}$$

$$\underbrace{\ell_3 - 2\ell_2 \to \ell_3}_{=0} \left(\begin{array}{ccc|c} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & 1 & 2 \\ 0 & 0 & 0 & 1 & -2 \end{array} \right).$$

Assim, o sistema equivalente obtido é

$$\begin{cases} x + y + z = 1 \\ x - z = 2 \\ 0 = -2 \end{cases},$$

que não tem solução.

2.) Vamos procurar a solução do seguinte sistema

$$\begin{cases} x + y + z = 1 \\ x - y + z = 1 \\ x + y - z = 0 \end{cases}.$$

Construimos

$$ilde{M} = \left(egin{array}{ccccc} 1 & 1 & 1 & | & 1 \\ 1 & -1 & 1 & | & 1 \\ 1 & 1 & -1 & | & 0 \end{array}
ight) \underbrace{\ell_2 - \ell_1
ightarrow \ell_1}_{egin{array}{ccccc} 0 & -2 & 0 & | & 0 \\ 1 & 1 & -1 & | & 0 \end{array}
ight)$$

$$\underbrace{\ell_3 - \ell_1 \to \ell_3}_{} \left(\begin{array}{ccc|ccc|c} 1 & 1 & 1 & | & 1 \\ 0 & -2 & 0 & | & 0 \\ 0 & 0 & -2 & | & -1 \end{array} \right) - \underbrace{\frac{1}{2}\ell_2 \to \ell_2}_{} \left(\begin{array}{cccc|c} 1 & 1 & 1 & | & 1 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & -2 & | & -1 \end{array} \right)$$

$$\underbrace{\ell_1 - \ell_3 \to \ell_1}_{\begin{subarray}{c|cccc} 0 & 1 & 0 & 0 & | & \frac{1}{2} \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & \frac{1}{2} \end{subarray}}_{\begin{subarray}{c|cccc} 0 & 0 & 1 & | & \frac{1}{2} \end{subarray}}.$$

O sistema equivalente fica

$$\begin{cases} x = \frac{1}{2} \\ y = 0 \\ z = -\frac{1}{2} \end{cases}.$$

O conjunto solução é

$$S = \{(1/2, 0, -1/2)\}$$

3.) Se temos um sistema em que a matriz aumentada fica

$$\begin{pmatrix} 1 & 0 & 1 & 0 & \vdots & 1 \\ 0 & 1 & 2 & 0 & \vdots & 2 \\ 0 & 0 & 0 & 1 & \vdots & 3 \\ 0 & 0 & 0 & 0 & \vdots & 0 \end{pmatrix} \Rightarrow \begin{cases} x + z & = 1 \\ y + 2z & = 2 \\ w & = 3 \end{cases}$$

Temos infinitas soluções. Mais ainda o conjunto solução é

$$S = \{(1-z, 2-2z, z, 3), z \in \mathbb{R}\}.$$

4.) Se temos um sistema em que matriz aumentada fica

$$\begin{pmatrix} 1 & 2 & 0 & 4 & 0 & | & 1 \\ 0 & 0 & 1 & 3 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{cases} x + 2y + 4w = 1 \\ z + 3w = 0 \\ v = 1 \end{cases}$$

Temos infinitas soluções. Mais ainda o conjunto solução é

$$S = \{(1-2y-4w, y, -3w, w, 1), y, w \in \mathbb{R}\}.$$

Em particular quando tratarmos de um sistema linear homogenêo, o caso 2 nunca acontece. Pois o sistema sempre tem solução, de fato a solução trivial (todas as entradas nulas) sempre é solução como vimos anteriormente. Mais ainda, caso exista uma solução não trivial teremos então infinitas soluções.

6.2 Sistemas com número de incógnitas igual ao número de equações

Considere agora um sistema de equações lineares AX = B com um número de incognitas n igual ao número de equações m, isto é, a matriz associada ao sistema é quadrada. Caso a matriz seja equivalente por linhas a identidade teremos que existe A^{-1} e portanto a solução do sistema é única e da forma

$$S = A^{-1}B$$
.

Caso a matriz não seja equivalente por linhas a identidade então teremos que o sistema tem infinitas ou nenhuma solução, dependendo do *B*. Portanto assuma que depois de fazer operações elementares sobre as linhas da matriz aumentada ficamos com uma matriz escalonada reduzida

- Se $b_{k+1} = \cdots = b_n = 0$ temos um sistema com infinitas soluções e que possui n-k variáveis livres.
- Se $b_{k+1} \neq 0$ então o sistema não tem solução.

Proposição 6.2 Seja AX = B um sistema de equações lineares com número de incógnitas igual ao número de equações. O sistema tem solução única se, e somente se, $det(A) \neq 0$.

Demonstração: Se $det(A) \neq 0$ então a matriz do sistema possui inversa, donde a solução é unica.

Se o sistema possui solução única então não existem variáveis livres, de onde segue que cada coluna da matriz escalonada reduzida associada a A tem pivô. Portanto é a identidade. Então A é equivalente por linhas a identidade e consequêntemente invertível e com $det(A) \neq 0$.

Temos assim as seguintes equivalências para matrizes quadradas.

$$A$$
 é invertível $A \sim I_n$

$$\emptyset$$

$$\det(A) \neq 0 \iff AX = B \text{ tem solução única}$$

Um método interessante para resolver este tipo de sistemas de equações lineares é fornecido pela regra de Cramer.

Teorema 6.2 (Regra de Cramer). Considere o sistema

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix},$$

em que

$$A = \left(\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{array}\right)$$

é invertível. Então a solução do sistema é

$$S = (S_1, \cdots, S_n),$$

onde

$$S_{j} = \frac{1}{\det(A)} \det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1j-1} & b_{1} & a_{1j+1} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j-1} & b_{1} & a_{2j+1} & \dots & a_{nn} \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nj-1} & b_{n} & a_{nj+1} & \dots & a_{nn} \end{pmatrix},$$

para todo $i = 1 \cdots n$. para todo $i = 1 \cdots n$.

Demonstração: Sabemos que a solução do sistema AX = B é dada por $S = A^{-1}B$. Como

$$A^{-1} = \frac{1}{\det(A)} adj(A),$$

$$S = \frac{1}{\det(A)} adj(A)B.$$

Portanto a entrada j—ésima é dada por

$$S_{j} = \frac{1}{\det(A)} (b_{1}\tilde{a}_{j1} + \dots + b_{n}\tilde{a}_{jn})$$

$$= \frac{1}{\det(A)} \det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1j-1} & b_{1} & a_{1j+1} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j-1} & b_{1} & a_{2j+1} & \dots & a_{nn} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nj-1} & b_{n} & a_{nj+1} & \dots & a_{nn} \end{pmatrix}.$$

■ Exemplo 6.5

Considere o sistema

$$\begin{cases} x + y + z = 0 \\ x - z = 2 \\ x - y = 2 \end{cases}$$

então

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \quad e \quad B = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}.$$

$$\det(A) = (-1)\det\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} + 0 + (-1)(-1)\det\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
$$= -1 + (-2) = -3 \neq 0.$$

Então é invertível e portanto o sistema tem solução única. Se a solução é

$$S = \left(\begin{array}{c} S_1 \\ S_2 \\ S_3 \end{array}\right),$$

temos, da regra de Cramer, que

$$S_{1} = \frac{1}{-3} \det \begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & -1 \\ 2 & -1 & 0 \end{pmatrix}$$

$$= \frac{1}{-3} \left(0 + (-1) \cdot 1 \det \begin{pmatrix} 2 & -1 \\ 2 & 0 \end{pmatrix} \right) + 1 \det \begin{pmatrix} 2 & 0 \\ 2 & -1 \end{pmatrix} \right)$$

$$= \frac{-1}{3} (-2 + (-2)) = \frac{4}{3}.$$

$$S_2 = \frac{-1}{3} \det \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \\ 1 & 2 & 0 \end{pmatrix}$$
$$= \frac{-1}{3} \left(1 \det \begin{pmatrix} 2 & -1 \\ 2 & 0 \end{pmatrix} + 0 + 1 \det \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \right)$$
$$= \frac{-1}{3} (2+0) = \frac{-2}{3}.$$

$$S_3 = \frac{-1}{3} \det \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 2 \\ 1 & -1 & 2 \end{pmatrix}$$

$$= -\frac{1}{3} \left(1 \det \begin{pmatrix} 0 & 2 \\ -1 & 2 \end{pmatrix} + (-1) \det \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} + 0 \right)$$

$$= -\frac{2}{3}.$$

Então

$$S = \begin{pmatrix} \frac{4}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \end{pmatrix}$$