## Compiladores 2ª Série de Exercícios

**CES-41** 

Professor: Fábio Carneiro Mokarzel Aluno: Carlos Matheus Barros da Silva

Julho de 2019

## Exercício 1

O Exercicio foi resolvido com sucesso. De acordo com a gramática Seção 5.5.3 do Capítulo V dos Slides Teóricos de CES-41 e as tabelas de ações e de transições do analisador LR, no mesmo exemplo foi desenvolvido um código em Python que constroi a tabela de execução para uma data sentença.

Portando, dado a sentença id \* ((id + id) \* ((id + id) \* id))\$, a sua tabela de execução pode ser vista na tabela representada pela Figura 1.

| Pilha                                                                                   | Entrada                                                      | Ação                | Goto             |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------|------------------|
| \$ 0                                                                                    | id * ( ( id + id ) * ( ( id + id ) * id ) ) \$               | d5                  |                  |
| \$ 0 (5, d5)                                                                            | * ( ( id + id ) * ( ( id + id ) * id ) ) \$                  | r6 (F -> id)        | Goto (0, F) = 3  |
| \$ 0 (3, F)                                                                             | * ( ( id + id ) * ( ( id + id ) * id ) ) \$                  | r4 (T -> F)         | Goto (0, T) = 2  |
| \$ 0 (2, T)                                                                             | * ( ( id + id ) * ( ( id + id ) * id ) ) \$                  | d7                  |                  |
| \$ 0 (2, T)(7, d7)                                                                      | ( ( id + id ) * ( ( id + id ) * id ) ) \$                    | d4                  |                  |
| \$ 0 (2, T)(7, d7)(4, d4)                                                               | ( id + id ) * ( ( id + id ) * id ) ) \$                      | d4                  |                  |
| \$ 0 (2, T)(7, d7)(4, d4)(4, d4)                                                        | id + id ) * ( ( id + id ) * id ) ) \$                        | d5                  |                  |
| \$ 0 (2, T)(7, d7)(4, d4)(4, d4)(5, d5)                                                 | + id ) * ( ( id + id ) * id ) ) \$                           | r6 (F -> id)        | Goto (4, F) = 3  |
| \$ 0 (2, T)(7, d7)(4, d4)(4, d4)(3, F)                                                  | + id ) * ( ( id + id ) * id ) ) \$                           | r4 (T -> F)         | Goto (4, T) = 2  |
| \$ 0 (2, T)(7, d7)(4, d4)(4, d4)(2, T)                                                  | + id ) * ( ( id + id ) * id ) ) \$                           | r2 (E -> T)         | Goto (4, E) = 8  |
| \$ 0 (2, T)(7, d7)(4, d4)(4, d4)(8, E)                                                  | + id ) * ( (id + id ) * id ) ) \$                            | d6                  |                  |
| \$ 0 (2, T)(7, d7)(4, d4)(4, d4)(8, E)(6, d6)                                           | id ) * ( ( id + id ) * id ) ) \$                             | d5                  |                  |
| \$ 0 (2, T)(7, d7)(4, d4)(4, d4)(8, E)(6, d6)(5, d5)                                    | ) * ( ( id + id ) * id ) ) \$                                | r6 (F -> id)        | Goto (6, F) = 3  |
| \$ 0 (2, T)(7, d7)(4, d4)(4, d4)(8, E)(6, d6)(3, F)                                     | ) * ( ( id + id ) * id ) ) \$                                | r4 (T -> F)         | Goto (6, T) = 9  |
| \$ 0 (2, T)(7, d7)(4, d4)(4, d4)(8, E)(6, d6)(9, T)                                     | ) * ( (id + id ) * id ) ) \$                                 | r1 (E -> E+T)       | Goto (4, E) = 8  |
| \$ 0 (2, T)(7, d7)(4, d4)(4, d4)(8, E)                                                  | ) * ( (id + id ) * id ) ) \$                                 | d11                 | Coto (4 E) = 3   |
| \$ 0 (2, T)(7, d7)(4, d4)(4, d4)(8, E)(11, d11)                                         | * ( ( id + id ) * id ) ) \$                                  | r5 (F -> (E))       | Goto (4, F) = 3  |
| \$ 0 (2, T)(7, d7)(4, d4)(3, F)                                                         | * ( ( id + id ) * id ) ) \$<br>  * ( ( id + id ) * id ) ) \$ | r4 (T -> F)<br>  d7 | Goto (4, T) = 2  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)<br>\$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)               | ( ( id + id ) * id ) ) \$                                    | d/<br>  d4          |                  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)<br>\$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4) | ( (id + id ) * id ) ) \$                                     | d4<br>  d4          |                  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(4, d4)                                    | id + id ) * id ) ) \$                                        | d5                  |                  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(4, d4)(5, d5)                             | + id ) * id ) ) \$                                           | r6 (F -> id)        | Goto (4, F) = 3  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(4, d4)(3, F)                              | + id ) * id ) ) \$                                           | r4 (T -> F)         | Goto (4, T) = 2  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(4, d4)(2, T)                              | + id ) * id ) ) \$                                           | r2 (E -> T)         | Goto (4, E) = 8  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(4, d4)(8, E)                              | + id ) * id ) ) \$                                           | d6                  | 0000 (1, 2, 0    |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(4, d4)(8, E)(6, d6)                       | id) * id)) \$                                                | d5                  |                  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(4, d4)(8, E)(6, d6)(5, d5)                | ) * id ) ) \$                                                | r6 (F -> id)        | Goto (6, F) = 3  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(4, d4)(8, E)(6, d6)(3, F)                 | ) * id ) ) \$                                                | r4 (T -> F)         | Goto (6, T) = 9  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(4, d4)(8, E)(6, d6)(9, T)                 | ) * id ) ) \$                                                | r1 (E -> E+T)       | Goto (4, E) = 8  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(4, d4)(8, E)                              | ) * id ) ) \$                                                | d11                 | (-, -, -         |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(4, d4)(8, E)(11, d11)                     | * id ) ) \$                                                  | r5 (F -> (E))       | Goto (4, F) = 3  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(3, F)                                     | * id ) ) \$                                                  | r4 (T -> F)         | Goto (4, T) = 2  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(2, T)                                     | * id ) ) \$                                                  | d7                  | i ' '            |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(2, T)(7, d7)                              | id ) ) \$                                                    | d5                  | ĺ                |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(2, T)(7, d7)(5, d5)                       | ))\$                                                         | r6 (F -> id)        | Goto (7, F) = 10 |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(2, T)(7, d7)(10, F)                       | ))\$                                                         | r3 (T -> T*F)       | Goto (4, T) = 2  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(2, T)                                     | ) ) \$                                                       | r2 (E -> T)         | Goto (4, E) = 8  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(8, E)                                     | ) ) \$                                                       | d11                 |                  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(4, d4)(8, E)(11, d11)                            | ) \$                                                         | r5 (F -> (E))       | Goto (7, F) = 10 |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)(7, d7)(10, F)                                           | ) \$                                                         | r3 (T -> T*F)       | Goto (4, T) = 2  |
| \$ 0 (2, T)(7, d7)(4, d4)(2, T)                                                         | ) \$                                                         | r2 (E -> T)         | Goto (4, E) = 8  |
| \$ 0 (2, T)(7, d7)(4, d4)(8, E)                                                         | ) \$                                                         | d11                 |                  |
| \$ 0 (2, T)(7, d7)(4, d4)(8, E)(11, d11)                                                | \$                                                           | r5 (F -> (E))       | Goto (7, F) = 10 |
| \$ 0 (2, T)(7, d7)(10, F)                                                               | \$                                                           | r3 (T -> T*F)       | Goto (0, T) = 2  |
| \$ 0 (2, T)                                                                             | \$                                                           | r2 (E -> T)         | Goto (0, E) = 1  |
| \$ 0 (1, E)                                                                             | \$                                                           | act                 |                  |

Figura 1: Tabela de execução para entrada id \* ((id + id) \* ((id + id) \* id))\$

## Exercício 2

O Exercicio foi resolvido com sucesso. Para as produções da gramática:

$$\begin{split} E &\rightarrow E + T | T \\ T &\rightarrow T * F | F \\ F &\rightarrow P @ F | P \\ P &\rightarrow (E) | a | a(L) \\ L &\rightarrow L, E | E \end{split}$$

Seus automatos podem ser verificados nas imagens representadas pela Figura 2 e pela Figura 3.

## Exercício 3

```
O Exercicio foi resolvido com sucesso. O código intermediário pode ser visto no Código 1
```

```
1)OPENMOD, (MODULO, MatrizTransposta), (IDLE), (IDLE)
2)OPENMOD, (FUNCAO, LerMatriz), (IDLE), (IDLE)
3)PARAM, (CADEIA, Dimensao da matriz quadrada: ), (IDLE),
4) WRITE, (INT, 1), (IDLE), (IDLE)
5)PARAM, (VAR, n), (IDLE), (IDLE)
6)READ, (INT, 1), (IDLE), (IDLE)
7)LT, (VAR, n), (INT, 0), (VAR, ##1)
8)JF, (VAR, ##1), (IDLE), (R TULO, 10)
9)JUMP, (IDLE), (IDLE), (ROTULO 5)
10) PARAM, (CADEIA, \nElementos da \matriz: \n), (IDLE), (IDLE)
11) \text{WRITE}, \hspace{0.1cm} (\text{INT}\,, \hspace{0.1cm} 1) \;, \hspace{0.1cm} (\text{IDLE}) \;, \hspace{0.1cm} (\text{IDLE})
12)ATRIB, (INT, 0), (IDLE), (VAR, i)
13)MENOS, (VAR, n), (INT, 1), (VAR, ##1)
14)LE, (VAR, i), (VAR, ##1), (VAR, ##2)
15) JF, (VAR, ##2), (IDLE), (ROTULO 31)
16) ATRIB, (INT, 0), (IDLE), (VAR, j)
17) MENOS, (VAR, n), (INT, 1), (VAR, ##3)
18) LE, (VAR, j), (VAR, ##3), (VAR, ##4)
19) JF, (VAR, ##4), (IDLE), (ROTULO 13)

20) IND, (VAR, i), (IDLE), (IDLE)

21) IND, (VAR, j), (IDLE), (IDLE)

22) INDEX, (VAR, A), (INT, 2), (VAR, ##5)

23) PARAM, (VAR, ##5), (IDLE), (IDLE)
24)READ, (INT, 1), (IDLE), (IDLE)
25)MAIS, (VAR, j), (INT, 1), (VAR, ##6)
26)ATRIB, (VAR, ##6), (IDLE), (VAR, j)
27) JUMP, (IDLE), (IDLE), (ROTULO 17)
28) MAIS, (VAR, i), (INT, 1), (VAR, ##7)
29) ATRIB, (VAR, ##7), (IDLE), (VAR, 30) JUMP, (IDLE), (IDLE), (ROTULO 13)
30)JUMP, (IDLE), (IDLE), (IDLE) (IDLE)

31)RETURNOP, (IDLE), (IDLE), (IDLE)

32)OPENMOD, (FUNCAO, Escrever Matriz), (IDLE), (IDLE)

33)LE, (VAR, n), (INT, 0), (VAR, ##8)

34)JF, (VAR, ##8), (IDLE), (ROTULO 38)

35)PARAM, (CADEIA, MATRIZ NULA), (IDLE), (IDLE)
36) WRITE, (INT, 1), (IDLE), (IDLE)
37) JUMP, (IDLE), (IDLE), (ROTULO 59)
38) ATRIB, (INT, 0), (IDLE), (VAR, i)
39) MENOS, (VAR, n), (INT, 1), (VAR, ##9)
40) LE, (VAR, i), (VAR, ##3), (VAR, ##10)
41) JF, (VAR, ##10), (IDLE), (ROTULO 59)
42) ATRIB, (INT, 0), (IDLE), (VAR, j)

43) MENOS, (VAR, n), (INT, 1), (VAR, ##11)

44) LE, (VAR, j), (VAR, ##11), (VAR, ##12)
45) JF, (VAR, ##12), (IDLE), (ROTULO 39)
46) IND, (VAR, i), (IDLE), (IDLE)
47) IND, (VAR, j), (IDLE), (IDLE)

48) INDEX, (VAR, A), (INT, 2), (VAR, ##13)

49) PARAM, (VAR, ##13), (IDLE), (IDLE)
50) \text{WRITE}, \hspace{0.1cm} (\text{INT}\,, \hspace{0.1cm} 1) \hspace{0.1cm}, \hspace{0.1cm} (\text{IDLE}) \hspace{0.1cm}, \hspace{0.1cm} (\text{IDLE})
51) MAIS, (VAR, j), (INT, 1), (VAR, ##14)
52) ATRIB, (VAR, ##14), (IDLE), (VAR, j)
53) JUMP, (IDLE), (IDLE), (ROTULO 39)
54)PARAM, (CADEIA, \n), (IDLE), (IDLE)
55)WRITE, (INT, 1), (IDLE), (IDLE)

56)MAIS, (VAR, i), (INT, 1), (VAR, ##15)

57)ATRIB, (VAR, ##15), (IDLE), (VAR, i)

58)JUMP, (IDLE), (IDLE), (ROTULO 39)
59)RETURNOP, (IDLE), (IDLE), (IDLE)
60)OPENMOD, (FUNCAO, Trocar), (IDLE), (IDLE)
61) IND, (VAR, i), (IDLE), (IDLE)
62) IND, (VAR, j), (IDLE), (IDLE)
63) INDEX, (VAR, A), (INT, 2), (VAR, ##16)
64) ATRIB, (VAR, ##16), (IDLE), (VAR, aux)
65) IND, (VAR, j), (IDLE), (IDLE)
66)IND, (VAR, i), (IDLE), (IDLE)
```

```
\begin{array}{lll} 67) \text{INDEX}, & (\text{VAR}, \; \text{A}) \;, \; (\text{INT}, \; \; 2) \;, \; (\text{VAR}, \; \; \#\#17) \\ 68) \text{IND}, & (\text{VAR}, \; \; i) \;, \; (\text{IDLE}) \;, \; (\text{IDLE}) \end{array}
69) IND, (VAR, j), (IDLE), (IDLE)
70) INDEX, (VAR, A), (INT, 2), (VAR, ##18)
71) ATRIBPONT, (VAR, ##17), (IDLE), (VAR, ##18)
(VAR, j), (IDLE), (IDLE)
73)IND, (VAR, i), (IDLE), (IDLE)
73)IND, (VAR, i), (IDLE), (IDLE)
74)INDEX, (VAR, A), (INT, 2), (VAR, ##19)
75)ATRIBPONT, (VAR, aux), (IDLE), (VAR, ##19)
76)RETURNOP, (IDLE), (IDLE), (IDLE)
77)OPENMOD, (FUNCAO, main), (IDLE), (IDLE)
78)PARAM, (CADEIA, \nMatrix original:\n\n), (IDLE), (IDLE)
79)
WRITE, (INT, 1), (IDLE), (IDLE)
80)LT, (INT, 0), (VAR, n), (VAR, ##20)
81)JF, (VAR, ##8), (IDLE), (ROTULO 102)
82)PARAM, (CADEIA, MATRIZ NULA), (IDLE), (IDLE)
83) WRITE, (INT, 1), (IDLE), (IDLE)
85) ATRIB, (INT, 0), (IDLE), (VAR, i)
86)
MENOS, (VAR, n), (INT, 1), (VAR, \#21)
87) LE, (VAR, i), (VAR, ##21), (VAR, ##22)
88) JF, (VAR, \##22), (IDLE), (ROTULO 102)
89) ATRIB, (INT, 0), (IDLE), (VAR, j)
90)MENOS, (VAR, n), (INT, 1), (VAR, ##30)
91)LE, (VAR, j), (VAR, ##30), (VAR, ##31)
92) JF, (VAR, ##31), (IDLE), (ROTULO 86)
93)PARAM, (VAR, i), (IDLE), (IDLE)
94)PARAM, (VAR, j), (IDLE), (IDLE)
95)CALLOP, (FUNCAO, Escrever Matriz), (INT, 2), (VAR, ##32)
96)MAIS, (VAR, j), (INT, 1), (VAR, ##14)

97)ATRIB, (VAR, ##14), (IDLE), (VAR, j)

98)JUMP, (IDLE), (IDLE), (ROTULO 86)

99)MAIS, (VAR, i), (INT, 1), (VAR, ##15)
100)
ATRIB, (VAR, \#\#15), (IDLE), (VAR, i)
101)
JUMP, (IDLE), (IDLE), (ROTULO 86)
102) PARAM, (CADEIA, \nMatriz transposta:\n\n), (IDLE),
103)WRITE, (INT, 1), (IDLE), (IDLE)
104)CALLOP, (FUNCAO, Escrever Matriz), (INT, 0), (VAR, ##20)
105) RETURNOP, (IDLE), (IDLE), (IDLE)
```

Código 1: Código intermediário livre de quádruplas de operadores NOP e de operadores de atribuição desnecessários



Figura 2: Automato Finito Não Determinístico



Figura 3: Automato Finito Determinístico