On Sampling

1 Continuous Sampling

Consider sampling in a 1D real line L. Let $S_c = \{q_x | \forall x \in L\}$, where q_x is a sphere centered at x. Let $C(S_c)$ be the space covered by S_c .

Theorem 1.1 Continuously sample spheres from left to right in the real line L, let the set of sphere be S_n , such that no sphere in S_n is centered within any sphere of S_n . Then $C(S_n) = C(S_c)$.

Proof:

 $\forall x \in L, \exists q_x \in S_c$, meaning every point in L is covered by one sphere centered at x in S_c , $C(S_c) = L$. If sphere q_p is not centered inside any spheres in S_n , then $q_p \in S_n$ and $p \in C(S_n)$. Assume point p is inside some existing spheres centered to the left of p, then $p \in C(S_n)$, but we don't sample spheres at p.

To sum up, if point p is sampled, then $p \in C(S_c)$ and $p \in C(S_n)$, if point p is not sampled, still $p \in C(S_c)$ and $p \in C(S_n)$. Therefore, $C(S_n) = C(S_c)$.

This holds true also for 2D and 3D cases. If a point p is sampled, then $p \in C(S_n)$, if p is not sampled, that is because it is already inside some existing spheres, so $p \in C(S_n)$.

Continuously sample points that are not inside any sphere is equivalent to continuously sample on the boundary of existing spheres.

Theorem 1.2 Continuously sample spheres from left to right in the real line L, such that no sphere has radius less than r_{min} and no sphere in S_m is centered within any sphere of S_n . $C(S_m) = C(S_c)$.

Proof:

For point p that is within r_{min} distance away from obstacles, there exist a point x that has clearance larger than r_{min} , such that |p-x| > 0, then p is covered by q_x .

For 2D and 3D this is different:

A possible way to reduce the uncovered area is to more densely sample areas close to obstacles. For example, allow spheres to center inside existing spheres in this area.

Theorem 1.3 Let S_{in} be a subset of S_m by continuously sampling spheres from left to right in the real line L with inaccurate metric. Assume the metric returns 1/n of the accurate metric, then any point p within $(n-1) \cdot r_{min}$ distance away from obstacles, $p \notin C(S_{(in)})$.

Proof:

Assume p is $(n-1) \cdot r_{min}$ distance away from obstacles, if there exists point x that is $n \cdot r_{min}$ distance away from obstacles, then sphere q_x has radius r_{min} , $p \in q_x$.

If p is $(n-1) \cdot r_{min} - \epsilon$ distance away from obstacles, where $\epsilon >= 0$, we need a point x that is within $n \cdot r_{min} - \frac{n \cdot \epsilon}{n-1}$ distance from obstacle. The sphere sampled at x has radius less than r_{min} thus will not cover point p.

This is also true for 2D and 3D cases. Introduce a line from the closest point in obstacle in normal direction, then the proof is the same. However, uncovered area as shown in Theorem 1.2 stays still.

Theorem 1.4 Let S_d be a subset of S_{in} by discrete sampling in the real line. Assume every two neighbor samples are d distance away from each other. If $d <= \frac{r_{min}}{k}, k >= 1$, in the worst case, any point p that has clearance less than $\frac{r_{min}\cdot(n-1)}{k\cdot n} + (n-1)\cdot r_{min}, p \notin C(S_d)$.

As is shown in last theorem, the smallest clearance a point x should have in order to be sampled is $n \cdot r_{min}$. $\exists \epsilon > 0$, point x_t with clearance $n \cdot r_{min} + d - \epsilon$. The point the sphere q_{x_t} can cover has clearance more than

 $(n-1)\cdot r_{min}+\frac{d\cdot (n-1)}{n}-\frac{(n-1)\cdot \epsilon}{n}$. The worst case is $\epsilon=0$, so the clearance is $(n-1)\cdot r_{min}+\frac{d\cdot (n-1)}{n}=(n-1)\cdot r_{min}+\frac{r_{min}\cdot (n-1)}{k\cdot n}$

In 2D the possible position for x_t is a square, it will be a cube in 3D, the result is very similar except for that the uncovered area introduced by Theorem 1.2 is still can't be removed.