

Course Number and Name: MAT 172 Section Name - Unified Calc II

Term Dates: Section Start Date - Section End Date

Meeting Location: Section Meeting Building Section Meeting Room

Meeting Days & Times: Section Meeting Days; Section Start Time - Section End Time

Lecture/Lab Hours: 4.00 Lecture Hours

Credits: 4.00

Prerequisite(s): MAT-171; ENG-097

Corequisite(s): Course Coreqs

Course Description: This course is a continuation of MAT 171 particularly appropriate for students continuing onto Calculus III or studying Engineering. Topics include algebraic and transcendental functions, techniques of integration, area, volume, applications to the physical, biological, and managerial sciences, infinite series, conic sections, and parametric equations.

Course Learning Outcomes

Upon successful completion of this course, students will be able to:

- 1. Determine the derivative and integral of exponential and logarithmic functions with bases other than e, inverse trigonometric functions, and hyperbolic functions.
- 2. Use separation of variables to solve differential equations, with specific application to models of growth and decay.
- 3. Formulate and compute definite integrals to determine the area between curves, volumes of revolution, work and centroids of planar lamina.
- 4. Determine the appropriate method (substitution, integration by parts, trigonometric integration, trigonometric substitution, partial fractions) for integrating a function and perform indefinite and definite integrations using these methods.

- 5. Recognize limits that produce indeterminate forms and apply L'Hopital's Rule to evaluate such limits.
- 6. Determine the convergence or divergence of infinite series using a variety of tests.
- 7. Use Taylor and Maclaurin series to represent transcendental functions, determine the intervals on which they converge, as well as the number of terms required to achieve a specified accuracy of approximation.
- 8. Graph conic sections and provide equations for given conic section graphs in rectangular form.

Course Materials

Calculus of a Single Variable + Webassign Printed Access Card for Larson/Edwards Calculus, Multi-term - Included in Cengage Unlimited

Publication Date: 2018-01-01

Grading

Letter Grade	Percentage
Α	90-100
B+	87-89
В	80-86
C+	77-79
С	70-76
D+	67-69
D	60-66
F	< 60

Class Schedule

Units	Class Weeks	Chapter	Pages	Topics
I	3	5.5	pg 352-	Bases OtherThan e and Applications
			357	
		5.6	pg 362-	Indeterminantforms and L'Hopital's
			368	Rule
		5.7	pg 373-	Inverse TrigFunctions
			378	Differentiation
		5.8	Pg 382-	Inverse TrigFunctions- Integration
			386	
		5.9	pg 390-	HyperbolicFunctions (light on inverse
			396	hyperbolicfunctions)
		6.2	pg 415-	Differential Equations
			419	Growth and Decay
				Review and Test 1
П	3	7.1	pg 444-	Area of a regionbetweentwocurves
			449	
		7.2	pg 454-	Volume:The Disk Method
			460	
		7.3	pg 465-	Volume: The Shell Method
			469	
		7.4	pg 474-	Arc Length and Surface of Revolution
			480	(optional)
		7.5	pg 485-	Work
			490	
		7.6	pg 494-	Moments, Centers of Mass and
			500	Centroids (omit Theorem of Pappus)
				Review and Test 2

Units	Class Weeks	Chapter	Pages	Topics
III	4	8.1	pg 516- 519	Basic Integration Rules
		8.2	pg 523- 528	Integration by Parts
		8.3	pg 532- 536	TrigonometricIntegrals
		8.4	pg 541- 546	Trigonometric Substitution
		8.5	pg 550- 556	Partial Fractions
		8.8	pg 572- 578	ImproperIntegrals
				Review and Test 3
IV	2.5	9.1	pg 588- 595	Sequences
		9.2	pg 599- 604	Series and Convergence
		9.3	pg 609- 612	The Integral Test and <i>p</i> -Series
		9.4	pg 616- 619	Comparison of Series
		9.5	pg 623- 628	AlternatingSeries

Units	Class Weeks	Chapter	Pages	Topics
		9.6	pg 631- 636	The Ratio and Root Tests (root test if time permits)
		9.7	pg 640- 647	Taylor Polynomials and Approximations
		9.8	pg 651- 657	Power Series
		9.9	pg 661- 665	Representation of Functions by Power Series
		9.10	pg 668- 676	Taylor and MacLaurinSeries
				Review and Test 4
V	1.5	10.1	pg 686- 694	Conics and Calculus (time permitting)
		10.2	pg 700- 706	Plane Curves and Parametric Equations
		10.3	pg 710- 714	Parametric Equations and Calculus
				Review for Final Exam

Experiential Learning

Students must complete an experiential learning activity that connects course content to career applications. This activity may be a content specific assignment or practical skill that is applied within a course assignment. This assignment supports the general education learning outcomes of scientific/critical thinking and quantitative reasoning; oral and written communication; and information literacy/technological competency.

Academic Policies

See College Catalog for more information: http://onlinecatalog.ucc.edu/content.php? catoid=10&navoid=2858

Americans with Disabilities Act (ADA)

Union College offers reasonable accommodations and/or services to persons with disabilities. Any student who has a documented disability and wishes to self-identify should contact the Coordinator of Disability Support Services at (908) 709-7164, or email disabilitysvc@ucc.edu. Accommodations are individualized and in accordance with Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act of 1992. In order to receive accommodations, students must be registered with Disability Support Services. Students should register with the office as soon as possible. Accommodations are not official until the Faculty Accommodations Alert Form(s) are issued from the student to his/her instructor(s).

Family Educational Rights and Privacy Act (FERPA)

The FERPA Statement can be found at https://www.ucc.edu/admissions/the-family-education-rights-and-privacy-act/.

Equal Opportunity Statement

Union College does not discriminate and prohibits discrimination, as required by state and/or federal law, in all programs and activities, including employment and access to its career and technical programs.

Union College Mission Statement

Transforming Our Community. . . One Student at a Time

Suggested Teaching Methodologies

- 1. Lecture
- 2. Active learning/problem-solving activities

- 3. Independent practice
- 4. Discussion
- 5. Technology (WebAssign, Mathematica) supports course objectives to be determined at the discretion of the instructor

Mapping Course Learning Outcomes to Learning Activities and Evaluation Methods

Course Learning Outcomes (CLO's)	Learning Activities	Evaluation Methods
Determine the derivative	Mix of the following as appropriate:	Written assignments
and integral of exponential	Lecture	Quizzes & Tests
and logarithmic functions with bases other than e, inverse trigonometric functions, and hyperbolic functions.	 Class Discussion Student Practice Group Work Homework – textbook/software 	Classroom discussion
Use separation of variables to solve differential equations, with specific application to models of growth and decay.	Mix of the following as appropriate: • Lecture • Class Discussion • Student Practice • Group Work • Homework – textbook/software	Written assignments Quizzes & Tests Classroom discussion
Formulate and compute definite integrals to determine the area between curves, volumes of revolution, work and centroids of planar lamina.	Mix of the following as appropriate: Lecture Class Discussion Student Practice Group Work Homework – textbook/software	Written assignments Quizzes & Tests Classroom discussion
Determine the appropriate	Mix of the following as appropriate:	Written assignments

method (substitution, integration by parts, trigonometric integration, trigonometric substitution, partial fractions) for integrating a function and perform indefinite and definite integrations using these methods. Recognize limits that produce indeterminate forms and apply L'Hopital's Rule to evaluate such limits.	 Lecture Class Discussion Student Practice Group Work Homework – textbook/software Mix of the following as appropriate: Lecture Class Discussion Student Practice Group Work Homework – textbook/software 	Quizzes & Tests Classroom discussion Written assignments Quizzes & Tests Classroom discussion
Determine the convergence or divergence of infinite series using a variety of tests.	Mix of the following as appropriate: • Lecture • Class Discussion • Student Practice • Group Work • Homework – textbook/software	Written assignments Quizzes & Tests Classroom discussion
Use Taylor and Maclaurin series to represent transcendental functions, determine the intervals on which they converge, as well as the number of terms required to achieve a specified accuracy of approximation.	Mix of the following as appropriate: Lecture Class Discussion Student Practice Group Work Homework — textbook/software	Written assignments Quizzes & Tests Classroom discussion
Graph conic sections and provide equations for	Mix of the following as appropriate: • Lecture	Written assignments Quizzes & Tests

given conic section graph	Class Discussion	
in rectangular form.	Student Practice	Classroom discussion
	Group Work	
	Homework – textbook/software	

Please note: all programs must integrate in one or more courses, discipline-specific course learning outcomes that reflect the College learning outcomes of scientific/critical thinking and quantitative reasoning, oral/written communication, and information literacy.