Everything you didn't know you needed for decision trees Now on sale at WUCAI 2024

Decision Trees

- Omnipresent in (tabular) classification tasks
- Enable logic-like reasoning
- Easy and usually fast to learn, almost hyperparameter-free

From bravo to eccellente...

Greedy Trees
Hands-down dominant.

- greedy partitioning
- suboptimal solutions
- fast
- CART, C5, etc.

*Optimal Trees*Never heard of them.

- theoretically optimal
- *slow* :(
- Optimal trees, branch-and-bound trees

From bravo to eccellente...

Greedy Trees
Hands-down dominant.

- greedy partitioning
- suboptimal solutions
- fast
- CART, C5, etc.

Limitation: greedy

Optimal Trees

- theoretically optimal
- *slow* :(
- Optimal trees, branch-and-bound trees

Limitation: even though optimal, the theory has limitations

... passing through bravissimo

Greedy Trees

Limitation: greedy

Opti-like Trees

• still suboptimal...

but optimized

guess what?Sometimes they're genetic!

Optimal Trees

Limitation: even though optimal, the theory has limitations

Genesim: genetic extraction of a single, interpretable model

... passing through bravissimo

Greedy Trees

Limitation: greedy

Marrying the two families

- more accurate than greedy
- faster than optimal

Optimal Trees

Limitation: even though optimal, the theory has limitations

Paradigm shift: candidate search in a continuous space

Ingredient 1: Variational Autoencoders.

- Encoder: data in...
- Decoder: data out.
- Sampling: where the data (latently) lives.

Paradigm shift: tree space percolation

Ingredient 2: Tree space percolation.

- Searching a latent space is exceedingly difficult (read: intractable)!
- Should condition on a tree, but we don't have it:(
- F**k it, we optimizing

The represent-and-sample pipeline

I love it, I wish I could have worked on it directly.

```
base_models = induce_models(...)
space = induce_space(base_models)
seed_model = induce_model()
model = optimize(seed_model, data)
```

People also do it for logic programs and other discrete models!

Trees T induced from the dataset.

Trees T induced from the dataset.

Tree-VAE learns a space Z from T.

Trees T induced from the dataset.

Tree-VAE learns a space Z from T.

Sample from Z, genetic optimization.

Juicy details: Tree-VAE

- A classic Convolutional VAE;
- Trees are encoded the good old fashioned CS way:
 - maximum capacity matrix
 - one row holding features,
 - and one row holding parameters.

Node 1	Node 2	•••	Node 2^d-1			
age	salary		-			
30	10K		0.9			

Experiments

- 18 UCI datasets
- continuous attributes only
- Datasets randomly split as 80% 10% 10%
- GenTree (GT) VS greedy
 trees (CART *DT*, Random Forest *RF*),
 optimal trees (Optimal Decision
 Trees *ODT*), opti-like trees
 (GeneSim *GS*)
- 10 randomized repetitions per run

Dataset	n	m	y %	6 majority %	minority \overline{d}
aus	690	38	2	55.51	44.49 4
bnk	45211	48	2	88.30	11.70 4
bnote	1372	4	2	55.54	44.46 6
brst	699	9	2	65.52	34.48 6
cars	1728	6	4	70.02	3.76 8
dbn	13611	16	7	26.05	3.84 7
ecoli	327	6	5	43.73	6.12 4
glass	214	9	6	35.51	4.21 4
heart	270	20	2	55.56	44.44 4
iris	150	4	3	33.33	33.33 4
iso	7797	617	26	3.85	3.8210
led7	2563	7	8	13.30	10.53 7
lymph	142	47	2	57.04	42.96 4
pima	768	8	2	65.10	34.90 4
sonar	208	60	2	53.37	46.63 7
vlc	846	18	4	25.77	23.5210
wine	6497	11	7	43.65	0.08 9
yeast	1484	8	10	31.20	0.34 6

Table 1: Datasets size (n), dimensionality (m), class number $(|\mathcal{Y}|)$, and majority and minority class percentages.

Performance

	Accuracy ↑				Complexity ↓					
	DT	GT	GS	ODT	RF	DT	GT	GS	ODT	RF
aus	.829	.855	.855	.855	.858	29.0	3.0	23.8	3.0	26.7
bank	.825	.891	-	.894	.881	31.0	11.4	-	11.0	30.4
bnk	.916	.915	-	.978	.996	43.0	11.0	-	19.0	40.8
brst	.864	.914	.950	.929	.957	41.0	3.4	18.5	7.0	42.1
car	.866	.875	-	.913	.954	79.0	19.6	-	49.0	147.0
dnb	.817	.665	-	.902	.897	183.0	73.6	-	75.0	169.7
ecoli	.850	.760	.853	.940	.916	25.0	3.0	19.1	15.0	26.4
glass	.716	.777	.670	.682	.855	23.0	5.8	29.7	7.0	23.8
heart	.764	.784	.798	.780	.920	29.0	6.2	17.4	3.0	26.8
iris	.913	.967	.946	.933	.933	13.0	5.0	5.9	7.0	12.0
iso	.730	.779	-	.822	.933	526.2	815.2	-	163.0	597.4
led7	.733	.753	.793	.795	.804	217.0	51.2	92.0	57.0	195.8
lymph	.797	.800	.787	.800	.920	25.0	5.0	14.8	5.0	21.5
pima	.644	.726	.727	.766	.797	31.0	3.6	45.2	3.0	28.5
sonar	.711	.695	-	.762	.900	39.0	23.0	-	31.0	40.0
VCL	.649	.678	.683	.776	.764	217.8	41.8	83.2	49.0	194.7
wine	.482	.481	.913	.503	.595	660.2	39.6	8.0	11.0	528.6
yeast	.509	.519	-	.530	.572	95.0	28.4	-	35.0	86.3
avg	.753	.779	.813	.808	.858	128.1	62.7	32.5	30.5	124.3
rank	2.10	1.78	-	1.43	0.99	2.10	1.10	-	1.06	1.86

Complexity

	Accuracy ↑				Complexity ↓					
	DT	GT	GS	ODT	RF	DT	GT	GS	ODT	RF
aus	.829	.855	.855	.855	.858	29.0	3.0	23.8	3.0	26.7
bank	.825	.891	-	.894	.881	31.0	11.4	-	11.0	30.4
bnk	.916	.915	-	.978	.996	43.0	11.0	-	19.0	40.8
brst	.864	.914	.950	.929	.957	41.0	3.4	18.5	7.0	42.1
car	.866	.875	-	.913	.954	79.0	19.6	-	49.0	147.0
dnb	.817	.665	-	.902	.897	183.0	73.6	-	75.0	169.7
ecoli	.850	.760	.853	.940	.916	25.0	3.0	19.1	15.0	26.4
glass	.716	.777	.670	.682	.855	23.0	5.8	29.7	7.0	23.8
heart	.764	.784	.798	.780	.920	29.0	6.2	17.4	3.0	26.8
iris	.913	.967	.946	.933	.933	13.0	5.0	5.9	7.0	12.0
iso	.730	.779	-	.822	.933	526.2	815.2		163.0	597.4
led7	.733	.753	.793	.795	.804	217.0	51.2	92.0	57.0	195.8
lymph	.797	.800	.787	.800	.920	25.0	5.0	14.8	5.0	21.5
pima	.644	.726	.727	.766	.797	31.0	3.6	45.2	3.0	28.5
sonar	.711	.695	-	.762	.900	39.0	23.0	-	31.0	40.0
VCL	.649	.678	.683	.776	.764	217.8	41.8	83.2	49.0	194.7
wine	.482	.481	.913	.503	.595	660.2	39.6	8.0	11.0	528.6
yeast	.509	.519	-	.530	.572	95.0	28.4	-	35.0	86.3
avg	.753	.779	.813	.808	.858	128.1	62.7	32.5	30.5	124.3
rank	2.10	1.78	-	1.43	0.99	2.10	1.10	-	1.06	1.86

Juicy analysis: the latent space

Figure 6: GENTREE latent tree spaces shown with two principal components for 1000 decision trees and their pruned counterpart. Depths (after ":") are colored in different ways.

- Tree-VAE (kinda) learns depth clusters!
- Depth directions exists, other may be interesting to investigate:
 - features
 - structure

- Finally another way of inducing decision trees...
- and it works!
- Continuous representations shows some promise in disentangling tree properties
- Pls no question I have this as a poster at WUCAI in a couple of days:)