

COMSATS UNIVERSITY ISLAMABAD DEPARTMENT OF COMPUTER SCIENCE

Terminal Examination, FALL 2019

Class/Section: Marks: - Dated: -	10			Subject: - Operating Systems (CSC322) Time: - Three hours				
Name: Hos	ces Kinsol	Saccol	_	Registration No.	SF18-130	3-063		
,		Question N	io.2 (M	larks 12) ====	0	(CLO 2)		
Pay 1: Compare the	following schedu S Vs. Priority b	lling algorith ased schedul	ıms in term ling (explai	s of possibility of s the reason if star	starvation: vation is possib	le) (2)		
Part 2: Suppose, in a	an OS multilevel	-feedback q	ueue sched	iling is implement	ted. There are t	hree queues to hol intum is 6, assigne		
respectively. V	s). While in Q2 a When a process a	ınd Q3, prio rrives, it is k	rity based (ept in Q1. I	preemptive) and S I a process in O1.	JF (preemptive does not compl) scheduling is use etes in one quantur		
Q2 are execut	Q2 if its priority	is less 10 of processes a	herwise it is re executed	sent to Q3. When Considering this	the Q1 gets em	npty, processes from stem, draw a Gan (10		
	_	Process PO P1	, 1	2 4	<u>:</u>	CALAP CALARANG HAND		
	i	P2 P3 P4 P5	2	6 15 0 4 14 5 5 18 0	3 2 b	હેક∵જા ^{દુ*}		
	C C	P6 P7	2		90 30 50			
Note: smaller priority no	4	er priority Question N	No.3 (M	arks 12) ====		(CLO 3)		
Part 1: Compare the fol	llowing synchron	nization tool	s: Mutex-L	ocks vs. Semapho	re	(2		
Part 2: write the conditi	ions that must-be	fulfilled to	be a valid	solution to Critical	Section Proble	em (2		
Part 3: Suppose the foll	lowing resource-	allocation st	ate					
/	Process	Allocation	Request	Total Resources	Arayase			
1	PI	1,0,1,1,0	0,1,0,0,1	2,1,1,2,1				
	P2	1,1,0,0,0	0,0,1,0,1					
	P3	0,0,0,1,0	0,0,0,0,1					
	P4	0,0,0,0,0	1,0,1,0,1					

Find whether the system is in deadlock state or not? If yes, then which processes are in deadlock? Also suggest a recovery scheme to get out of the deadlock situation. (6+2)

Question No.4 (Marks 20)	= (CLO 4)
Part 1: Compare the following External Fragmentation Vs. Internal Fragmentation Contiguous Vs. Non- Contiguous Memory Allocation	(4)
Part 2: Consider a simple paging system with frame size of 16 bytes. Following is the page	table of a process:
Page Number Frame Number 0 4 1 8 2 3 3 2 4 9	
For each of the following logical addresses, determine the physical address or indicate occurs: a. 3, 12 b. 0, 7 c. 4, 13 d. 1, 18 e. 2, 12 f. 4,8	e if a memory error (6)
Part 3: Given page reference string: 1,0,3,7,1,3,5,4,2,1,5,3,7,6,3,2,1,2,3,6 Assume that the frame quota is 4, compare the number of page faults for LRU (with and Second-chance page replacement algorithms	(10)
Part 1: Suppose that a disk drive has 5,000 cylinders, numbered 0 to 4,999. The drive is curr	rently serving a request
at cylinder 2,150, and the previous request was at cylinder 1,805. The queue of pen order, is: 2069, 1980, 2296, 1864p, 1544, 2339, 356, 1523, 4965, 3681	ding requests, in the
Starting from the current head position, what is the total distance (in cylinders) that	the disk arm moves to
satisfy all the pending requests for each of the following disk-scheduling algorithms?	
a. SSTF b. SCAN	(8)
Part 2: Compare the following	
Sequential File Access Vs. Direct File Access Tree Structured Directories Vs. Acyclic-Graph Directories	(4)
Part 1: Define the OS Protection. What are the basic principles of OS protection?	= (CLO 6)
Part 1: Define the OS Protection. What are the basic principles of OS protection?	ation methods (7) © ~~