## RS 06 (HA) zum 30.11.2012

## Paul Bienkowski, Hans Ole Hatzel

## 4. Dezember 2012

1. a) Die Funktion liegt bereits als KNF vor:

$$\begin{array}{lcl} f(x) & = & (x_3 \vee \overline{x_2}) \wedge (x_2 \vee \overline{x_1}) & (\text{KNF}) \\ & = & x_2 x_3 \vee \overline{x_1} \ \overline{x_2} & (\text{DNF}) \\ & = & 1 \oplus x_1 \oplus x_2 \oplus x_1 x_2 \oplus x_2 x_3 & (\text{Reed-Muller-Form}) \end{array}$$

b) Die Funktion liegt bereits nahezu als Reed-Muller-Form vor:

$$\begin{array}{lll} g(x) & = & x_3 \oplus x_1 & (\text{Reed-Muller-Form}) \\ & = & \overline{x_3}x_1 \vee x_3\overline{x_1} & (\text{DNF}) \\ & = & (x_3 \vee \overline{x_1}) \wedge (x_1 \vee \overline{x_3}) & (\text{KNF}) \end{array}$$

2. a) • Da AND(a, a) immer a ergibt, muss NAND die Negation von a sein:

$$\begin{aligned} \mathbf{NOT}(\mathbf{a}) &= \mathrm{NAND}(\mathbf{a}, \, \mathbf{a}) \\ \underline{\mathbf{a}} &\parallel \mathrm{NAND}(\mathbf{a}, \, \mathbf{a}) &\parallel \mathrm{NOT}(\mathbf{a}) \\ \underline{\mathbf{0}} &\parallel \mathbf{1} &\parallel \mathbf{1} \\ \mathbf{1} &\parallel \mathbf{0} &\parallel \mathbf{0} \end{aligned}$$

 $\bullet\,$  Um AND zu erreichen, kann ebenso das Inverse der Ausgabe von NAND verwendet werden:

$$\mathbf{AND}(a, b) = NOT(NAND(a, b)) = NAND(NAND(a, b), NAND(a, b))$$

| a | b | AND(a, b) | NAND(a, b) | NOT(NAND(a, b)) |
|---|---|-----------|------------|-----------------|
| 0 | 0 | 0         | 1          | 0               |
| 0 | 1 | 0         | 1          | 0               |
| 1 | 0 | 0         | 1          | 0               |
| 1 | 1 | 1         | 0          | 1               |

• Nach de Morgan gilt:

b) Es sei  $a \overline{\wedge} b$  die Schreibweise für NAND(a, b).

$$f(x_3, x_2, x_1) = (\overline{x_3}(\overline{x_2} \vee x_1)) \vee (x_1(\overline{x_2} \vee x_1))$$

$$= (\overline{x_2} \vee x_1) \wedge (\overline{x_3} \vee x_1)$$

$$= x_1 \wedge (\overline{x_2} \vee \overline{x_3})$$

$$= x_1 \wedge (x_2 \overline{\wedge} x_3)$$

$$= (x_1 \overline{\wedge} (x_2 \overline{\wedge} x_3)) \overline{\wedge} (x_1 \overline{\wedge} (x_2 \overline{\wedge} x_3))$$

**3.** a) Funktionstabelle für A und B:

| x | $x_4$ | $x_3$ | $x_2$ | $ x_1 $ | A | B |
|---|-------|-------|-------|---------|---|---|
| 0 | 0     | 0     | 0     | 0       | 1 | 1 |
| 1 | 0     | 0     | 0     | 1       | 0 | 1 |
| 2 | 0     | 0     | 1     | 0       | 1 | 1 |
| 3 | 0     | 0     | 1     | 1       | 1 | 1 |
| 4 | 0     | 1     | 0     | 0       | 0 | 1 |
| 5 | 0     | 1     | 0     | 1       | 1 | 0 |
| 6 | 0     | 1     | 1     | 0       | 1 | 0 |
| 7 | 0     | 1     | 1     | 1       | 1 | 1 |
| 8 | 1     | 0     | 0     | 0       | 1 | 1 |
| 9 | 1     | 0     | 0     | 1       | 1 | 1 |

Karnaugh-Veitch-Diagramme:



$$A(x) = x_3 \lor x_1 \lor x_2 x_0 \lor \overline{x_2} \ \overline{x_0}$$



$$B(x) = \overline{x_2} \vee \overline{x_1} \ \overline{x_0} \vee x_1 x_0$$