Kirby-Kalkül

Übungsblatt 11

Das Kirby-Diagramm in Abbildung 1 zeigt die Akbulut-Kirby-Sphäre W. Bevor Gompf zeigte, dass die Akbulut-Kirby-Sphäre diffeomorph zu S^4 ist, galt sie lange als potentielles Gegenbeispiel zur glatten 4-dimensionalen Poincaré-Vermutung. Das Ziel dieses Blattes ist es dies zu verstehen.

Abbildung 1: Die Akbulut-Kirby-Sphäre W.

Aufgabe 1.

- (a) Zeigen Sie, indem Sie das Kirby-Diagramm von W als ein Chirurgiediagramm von ∂W auffassen, dass $\partial W_2 = S^3$ gilt. Also repräsentiert $W = W_2 \cup h_4$ eine glatte, geschlossene 4-Mannigfaltigkeit.
- (b) Zeigen Sie, dass W homöomorph zu S^4 ist. Zeigen Sie dazu, dass W einfach zusammenhängend ist und benutzen Sie Freedmanns Theorem.

Aufgabe 2.

Als nächstes betrachten wir für $n, k \in \mathbb{Z}$ die Henkelkörper $H_{n,k}$ gegeben durch das Kirby-Diagramm in Abbildung 2. Zeigen Sie analog zur ersten Aufgabe, dass $H_{n,k} \cup h_4$ eine glatte, geschlossene 4-Mannigfaltigkeit repräsentiert, die homöomorph zu S^4 ist.

Aufgabe 3.

- (a) Zeigen Sie, dass $H_{n,k}$ diffeomorph zu $H_{-n-1,k}$ ist. Ohne Einschränkung können wir also $n \geq 0$ annehmen.
- (b) Zeigen Sie, dass $H_{0,k}$ diffeomorph zu D^4 ist. *Hinweis:* Führen Sie eine 2-Henkelbewegung der beide Stränge des 0-gerahmten 2-Henkels parallel über den (-1)-gerahmten 2-Henkel durch, siehe Aufgabe 4 (a) auf Blatt 7.

Abbildung 2: Die Henkelkörper $H_{n,k}$.

Aufgabe 4.

- (a) Zeigen Sie die äquivalenz der Kirby-Diagramme in Abbildung 3.
- (b) Zeigen Sie, dass das hinzufügen eines (+1)-gerahmten Meridians zum oberen 1-Henkel in Abbildung 2 dem Einfügen eines aufhebenden 2-/3-Henkelpaares entspricht. *Hinweis:* Benutzen Sie dazu Lemma 5.8 aus der Vorlesung.
- (c) Benutzen Sie (b) und mehrmals (a) um zu zeigen, dass $H_{n,k}$ diffeomorph zu $H_{n-1,k}$ ist.
- (d) Folgern Sie, dass $H_{n,k} \cup h_4$ diffeomorph zu S^4 ist.

Abbildung 3: Zwei äquivalente Kirby-Diagramme.

Knobelaufgabe. Zeigen Sie durch 2-Henkelbewegungen, dass W diffeomorph zu $H_{4,1} \cup h_4$ ist und folgern Sie, dass die Akbulut-Kirby-Sphäre diffeomorph zu S^4 ist.

Hinweis: Siehe R. Gompf, Killing the Akbulut-Kirby 4-sphere, with relevance to the Andrews-Curtis and Schoenflies problems, *Topology* **30** (1991), 97–115.

Abgabe: Montag, 2.7.18 vor der Vorlesung.