In [36]:

```
votingC = VotingClassifier(estimators = [("svc",best_estimators[1]),
2
                                            ("lr",best_estimators[3]),
3
                                            ("gbc",best_estimators[6])])
4
5
  votingC = votingC.fit(X_train, y_train)
6
7
  voting_pred = votingC.predict(X_test)
8
  print(classification_report(y_test, voting_pred))
9
```

	precision	recall	f1-score	support
0	1.00	0.95	0.98	105
1	0.93	1.00	0.96	91
2	0.98	0.96	0.97	92
3	0.98	0.98	0.98	112
accuracy			0.97	400
macro avg	0.97	0.97	0.97	400
weighted avg	0.97	0.97	0.97	400

Confusion Matrix

In [37]:

```
cm = confusion_matrix(y_test, voting_pred)
 2
   df1 = pd.DataFrame(columns=["0","1","2","3"], index= ["0","1","2","3"], data= cm )
 3
 5
   f,ax = plt.subplots(figsize=(6,6))
 6
   sns.heatmap(df1, annot=True,cmap="Greens", fmt= '.0f',ax=ax,linewidths = 5, cbar = Fals
 7
   plt.xlabel("Predicted Label")
8
9
   plt.xticks(size = 12)
   plt.yticks(size = 12, rotation = 0)
   plt.ylabel("True Label")
11
   plt.title("Confusion Matrix", size = 12)
12
13
  plt.show()
```


Best Estimator