T.D. X - Variables aléatoires à densité

I - Études de densités

Exercice 1. Soit f la fonction définie pour tout t réel par

- **1. a)** Représenter graphiquement la fonction f.
 - **b)** Montrer que f est une densité de probabilité.

Soit X une variable aléatoire de densité f.

- **2. a)** Déterminer la fonction de répartition F de X.
 - **b)** Représenter graphiquement la fonction F.
- 3. Déterminer les probabilités suivantes :
 - **a)** P([X < 7]).

- **e**) $\mathbf{P}_{[X>6]}([X<7])$.
- $\begin{array}{lll} \textbf{b)} & \mathbf{P} \left([5 < X < 6] \right). & & \mathbf{f)} & \mathbf{P}_{[X < 7]} \left([X > 6] \right). \\ \textbf{c)} & \mathbf{P} \left([3 < X < 9] \right). & & \mathbf{g)} & \mathbf{P}_{[X > 7]} \left([X > 6] \right). \\ \textbf{d)} & \mathbf{P} \left([X \geqslant 8] \right). & & \mathbf{h)} & \mathbf{P}_{[X < 6]} \left([X > 7] \right). \end{array}$
- **4. a)** Montrer que X admet une espérance et la calculer.
 - **b)** Montrer que X admet une variance et la calculer.

Exercice 2. Soit f la fonction définie pour tout t réel par $f(t) = \begin{cases} \frac{1}{3} & \text{si } t \in [10, 13] \\ 0 & \text{sinon} \end{cases}.$

- **1. a)** Représenter graphiquement la fonction f.
 - **b)** Montrer que f est une densité de probabilité.

Soit X une variable aléatoire de densité f.

- **2. a)** Déterminer la fonction de répartition F de X.
 - **b)** Représenter graphiquement la fonction F.
- 3. Déterminer les probabilités suivantes :

a)
$$P([X < 10])$$
.

- **b)** P([10 < X < 12]).
- c) P([9 < X < 11]).
- **d)** $P([X \ge 11]).$

- e) $P_{[X>11]}([X<12])$.
- f) $\mathbf{P}_{[X<12]}([X>11])$. g) $\mathbf{P}_{[X>12]}([X>11])$.
- **h**) $\mathbf{P}_{[X<11]}([X>12])$.
- **4. a)** Montrer que X admet une espérance et la calculer.
- **b)** Montrer que X admet une variance et la calculer.

Exercice 3. Soit a un réel et f la fonction définie pour tout t réel par

- **1. a)** Déterminer la valeur de a pour laquelle f est une densité de probabilité.
 - **b)** Représenter graphiquement f.

Soit X une variable aléatoire de densité f.

- **2. a)** Déterminer la fonction de répartition F de X.
 - **b)** Représenter graphiquement la fonction F.
- 3. Déterminer les probabilités suivantes :
 - a) $P([X \le 3])$.

b) P([1 < X < 2]).

- **4.** Soit $Y \hookrightarrow \mathscr{E}(1)$.
 - a) Rappeler la formule (avec une intégrale) et la valeur de $\mathbf{E}[Y]$
- **b)** On pose Z = Y + 2. Déterminer la fonction de répartition puis une densité de Z.
 - c) En déduire que X admet une espérance et la calculer.

Exercice 4. Soit a un réel et f la fonction définie pour tout t réel par

T.D. X - Variables aléatoires à densité ECT 2

28

1. a) Déterminer la valeur de a pour laquelle f est une densité de probabilité.

b) Représenter graphiquement f.

Soit X une variable aléatoire de densité f.

- **2. a)** Déterminer la fonction de répartition F de X.
 - **b)** Représenter graphiquement la fonction F.
- 3. Déterminer les probabilités suivantes :
 - a) $P([X \le 3])$.

b) P([1 < X < 2]).

- **4.** Soit $Y \hookrightarrow \mathscr{E}(1)$.
 - a) Rappeler la formule (avec une intégrale) et la valeur de $\mathbf{E}[Y]$.
- **b)** On pose Z = Y + 3. Déterminer une fonction de répartition puis une densité de Z.
 - c) En déduire que X admet une espérance et la calculer.

II - Travail sur la fonction de répartition

Exercice 5. Soit $U \hookrightarrow \mathcal{U}([0,1])$. Déterminer la fonction de répartition, la densité, puis identifier éventuellement la loi des variables aléatoires suivantes:

1. X = 3U.

2. Y = U + 1.

3. $Z = \frac{1}{2}X + 1$.

Exercice 6. Soit $U \hookrightarrow \mathcal{U}([0,1])$. Déterminer la fonction de répartition, la densité, puis identifier éventuellement la loi des variables aléatoires suivantes:

1. X = 4U.

2. Y = U + 2.

3. $Z = \frac{1}{2}X + 1$.

III - Lois usuelles

Exercice 7. Soit $X \hookrightarrow \mathcal{N}(0,1)$ et $Y \hookrightarrow \mathcal{N}(5,4)$. En utilisant la table de la loi normale, calculer

- **1.** $P([X \le 2]).$

2. P([X > 2.51]).

Exercice 8. Soit $X \hookrightarrow \mathcal{N}(0,1)$ et $Y \hookrightarrow \mathcal{N}(2,9)$. En utilisant la table de la loi normale, calculer

1. $P([X \le 2])$. **2.** P([X > 2,51]).

Exercice 9. Un archer lance deux flèches en direction d'une cible de rayon d'un mètre. On suppose qu'il atteint systèmatiquement et que ses lancers sont indépendants. Pour tout $i \in \{1, 2\}$, on note R_i la variable aléatoire égale à la distance (en mètres) de la flèche numéro i au rayon de la cible et on suppose que $R_i \hookrightarrow \mathcal{U}([0,1])$. On note également R= $\min \{R_1, R_2\}.$

- **1.** Soit $x \in \mathbb{R}$. Justifier que $\mathbf{P}([R > x]) = \mathbf{P}([R_1 > x] \cap [R_2 > x])$.
- **2.** En déduire, pour tout x réel, la fonction de répartition F de R.
- 3. Calculer la probabilité que la flèche la mieux lancée par l'archer soit située à moins de 50cm de la cible.

Exercice 10. Un appareil électronique utilise deux piles dont les durées de vie respectives sont T_1 et T_2 . On suppose que T_1 et T_2 sont indépendantes et suivent une loi exponentielle de paramètre 1. L'appareil cesse de fonctionner au bout d'un temps $T = \max\{T_1, T_2\}$.

- **1.** Soit $x \in \mathbb{R}$. Justifier que $\mathbf{P}([T < x]) = \mathbf{P}([T_1 < x] \cap [T_2 < x])$.
- **2.** En déduire, pour tout x réel, la fonction de répartition F de T.
- 3. Calculer la probabilité que l'appareil cesse de fonctionner, à cause de ses piles, au bout de 6 mois.