Submit your complete solution via MyCourses by Monday Nov 23, 23.59.

Exercise 1

The golf ball is hit at A with a speed $v_A=40$ m/s and directed at an angle of 30° with the horizontal as shown. Determine the distance d where the ball strikes the slope at B.

Exercise 2

If the car passes point A with a speed of 20 m/s and begins to increase its speed at a constant rate of $a_t = 0.5$ m/s², determine the magnitude of the car's acceleration when s = 101.68 m and x = 0.

Answer: $a = 1.68 \text{ m/s}^2$

Exercise 3

Determine the required mass of block A so that when it is released from rest it moves the 5-kg block B 0.75 m up along the smooth inclined plane in t=2 s. Neglect the mass of the pulleys and cords.

Exercise 4

A 5-Mg airplane is flying at a constant speed of 350 km/h along a horizontal circular path of radius r = 3000 m. Determine the uplift force \boldsymbol{L} acting on the airplane and the banking angle θ . Neglect the size of the airplane.

Answer: $L = 51.5 \text{ kN}, \theta = 17.8^{\circ}$

Exercise 5

The 10-kg sphere C is released from rest when $\theta=0^\circ$ and the tension in the springs is 100 N. Determine the speed of the sphere at the instant $\theta=90^\circ$. Neglect the mass of rod AB and the size of the sphere.

