Flow Networks: Algorithms

Flow Networks

- A network is a directed graph G=(V,E)
 - ▶ Capacity function c: $E \rightarrow R^+$
 - \blacktriangleright Cost function w: E \rightarrow R (optional)
- A flow from s to t is a function $f_{s,t}:E \to R^+$
 - ▶ Capacity constraint: $0 \le f_{s,t}(e) \le c(e)$
 - Flow conservation: $\forall v \in V \setminus \{s,t\}$, $\Sigma_{(u,v)\in E}f_{s,t}(u,v) = \Sigma_{(v,w)\in E}f_{s,t}(v,w)$.

Example: Network

Example: Flow

Example: Flow

Remove edges incoming to s and outgoing from t

Removing Multiple Edges

We may assume there is only one edge between any two vertices.

Multiple Sources & Sinks

Multiple Sources & Sinks

Focus on single source and single sink instances.

Outlines

- Maximum flow
 - Ford-Fulkerson
 - ▶ Edmonds-Karp
 - Minimum cut & Applications
- Minimum cost flow
 - Successive shortest path
 - Minimum mean cycle canceling

Cancellation

Residual Network

- For each edge $(u,v) \in E$ s.t. f(u,v) > 0, build edges (u,v), $(v,u) \in E_f$ s.t.
 - $c_f(u,v)=c(u,v)-f(u,v)$
 - $c_f(v,u)=c(v,u)+f(u,v) c(v,u)=o if (v,u)\notin E$
- ▶ Residual network G_f is (V,E_f) with capacity c_f.
- ▶ Flow f' in residual network:
 - $ightharpoonup o \leq f'(u,v) \leq c_f(u,v)$
 - For $v \in V$, $\Sigma_{u \in V} f'(u, v) = \Sigma_{w \in V} f'(v, w)$
- Augment: $(f \uparrow f')(u,v)=f(u,v)+f'(u,v)-f'(v,u)$

Ford-Fulkerson

- Repeat the following
 - Finding augmenting path p on residual network of f
 - Ignore e if $c_f(e)=0$
 - No augmenting path implies the flow is maximum
 - Augment flow f through the path p
 - $f'(u,v)=o if (u,v)\notin p$
 - $f'(u,v) = \min_{e \in p} c_f(e) \text{ if } (u,v) \in p$

After 2000 augmentations

Other method

- ▶ Edmond-Karp
 - Finding augmenting path by BFS.
 - ▶ Performance: O(VE²)
- Push-relabel
 - Presentation: 5 points
 - ▶ Performance: O(V³)

Edmond-Karp

Edmond-Karp

Edmond-Karp

After only 2 augmentations

Minimum Cut

- ▶ s-t cut (S,T):
 - A partition of V, i.e., $S \cup T = V \& S \cap T = \emptyset$.
 - \triangleright s \in S and t \in T.
- Cost of a s-t cut: $c(S,T)=\Sigma_{u\in S,v\in T}c(u,v)$
- Min-cut Max-flow theorem
 - $\rightarrow \max_{f} |f| = \min_{S \cup T = V, S \cap T = \emptyset} c(S,T).$
 - ▶ If S is the set of vertices reachable from s in G_f where f is the max flow, then (S,V-S) is the min cut.

Minimum Cut: Example

Minimum Cut: example

Minimum Cut: example

Tools and Products

- In order to make a living, a factory has to buy some tools to manufacture some products.
 - ▶ Products: p₁,...,p_m
 - ightharpoonup Tools: $q_1,...,q_n$
 - ▶ To make product p_i, the tools in Q_i are needed.
- ▶ How can the factory maximize the total profit?
 - r(p): the profit of p
 - c(q): the cost q
 - ▶ Total profit: $\max_{Q\subseteq\{q_1,...,q_n\}} \Sigma_{Q_i\subseteq Q} r(p_i) \Sigma_{q\in Q} c(q)$

36

Tools and Products

- Brute force?
 - Try all $Q\subseteq \{q_1,...,q_n\}$. $O(mn2^n)$
- ▶ Build a flow network and find the min cut by Edmond-Karp.
 - \rightarrow O((n+m)⁵)
- Any other faster idea?

Tools and Products

- ▶ Build a graph G=(V,E)
 - $V=\{s,t\}\cup V_P\cup V_Q$
 - $V_P = \{p_1,...,p_m\}, V_Q = \{q_1,...,q_n\}.$
 - $\rightarrow E = E_Q \cup E_B \cup E_P$
 - $E_Q = \{(s,v_Q): v_Q \in V_Q\} \quad w(s,v_Q) = c(v_Q)$
 - \rightarrow E_B={ $(v_Q,v_P):v_P \text{ needs } v_Q$ } $w(e_B)=\infty$
 - $E_P = \{(v_P, t): v_P \in V_P\} \quad w(v_P, t) = r(v_P)$

Solution by Min Cut

 $\sum_{p \in VP} r(p) - c(S,T)$

Tools and Products

- If we want to produce all products in P, then we need $Q=\{q: \exists p \in P, (q,p) \in E\}$.
- ▶ Let $T=\{t\}\cup P\cup Q \text{ and } S=V\setminus T.$
 - For $(u,v) \in S \times T$, $c(u,v) < \infty$.
 - $\rightarrow c(S,T) < \infty$
- ▶ The rest part: Show every (S,T) corresponds to a strategy if $c(S,T)<\infty$.

Tools and Products

- Let $T=\{t\}\cup P\cup Q$ where P is a subset of V_P and Q is a subset of V_Q .
 - \blacktriangleright S=V\T={s} \cup (V_P\P) \cup (V_Q\Q)
- ▶ $c(S,T)<\infty$ implies $E\cap((V_Q\setminus Q)\times P)=\emptyset$
 - If we buy all tools in Q, then all product in P can be made.
- $\sum_{p \in VP} r(p) c(S,T)$ $= \sum_{p \in VP} r(p) \sum_{p \notin P} r(p) \sum_{q \in Q} c(q)$ $= \sum_{p \in P} r(p) \sum_{q \in Q} c(q)$

Minimum Cost Flow

- ▶ e∈E has capacity c(e) and cost w(e)
- Objective:
 - Find a flow f s.t. $|f|=f^*$
 - $\Sigma_{e \in E} f(e) w(e)$ is minimized
- How?
 - Successive shortest path
 - Negative cycle canceling

Flow f

$$|\mathbf{f}| = 6$$

$$Cost=1 \times 1 + 5 \times 2 + 5 \times 3 + 5 \times 4 + 0 \times 5 + 0 \times 6 + 1 \times 7 = 53$$

Cancellation

Residual Network

- For each edge $e=(u,v)\in E$ s.t. f(u,v)>0, build edges (u,v), $(v,u)\in E_f$ s.t.
 - $c_f(u,v)=c(u,v)-f(u,v)$ weight w(u,v)
 - $c_f(v,u) = f(u,v)$ weight -w(u,v)
- Multiple edges: Add dummy vertices and edges.
- ▶ Residual network G_f is (V,E_f) with capacity c_f.

Successive Shortest Path

- Like Ford-Fulkerson, we continue finding augmenting path, until $|f|=f^*$.
- Always find the augmenting path with minimum weight.
 - $c_f(u,v) \neq 0 \text{ iff } (u,v) \in E_f$
 - By Bellman-Ford! Not by Dijkstra's!
- Thm: SSP doesn't generate negative cycle.
 - ▶ 2pts

Neg Cycle Cancellation

- Run Edmond-Karp until $|f|=f^*$.
- Keep finding negative cycles.
 - Augment the negative cycle.
- Using Karp's algorithm
 - Always cancel minimum mean cycle
 - Can be done in polynomial time!
- ▶ Bonus: Karp's algorithm (3 pts)
 - Find the minimum mean cycle in a directed graph.

Lemma 26.4

- Let f be a flow in a flow network G with source s and sink t, and let (S,T) be any cut of G. Then the net flow across (S,T) is $f(S,T)=\Sigma_{(u,v)\in S\times T}f(u,v)-\Sigma_{(u,v)\in T\times S}f(u,v)=|f|$.
- Proof:
- ▶ Key tool: Flow conservation
 - $\forall v \in V \setminus \{s,t\}, \Sigma_{(u,v) \in E} f(u,v) = \Sigma_{(v,w) \in E} f(v,w).$
 - $\forall v \in V \setminus \{s,t\}, \ \Sigma_{u \in V} f(u,v) \Sigma_{u \in V} f(v,u) = 0.$

Proof

```
\rightarrow |f| = \sum_{u \in V} f(s, u)
= \sum_{u \in V} f(s, u) + \sum_{v \in S \setminus \{s\}} (\sum_{u \in V} f(v, u) - \sum_{u \in V} f(u, v))
=\Sigma_{v\in S}(\Sigma_{u\in V}f(v,u)-\Sigma_{u\in V}f(u,v)) \Sigma_{u\in V}f(u,s)=0
=\Sigma_{v\in S}\Sigma_{u\in V}f(v,u)-\Sigma_{v\in S}\Sigma_{u\in V}f(u,v)
= \sum_{v \in S} \sum_{u \in S} f(v, u) + \sum_{v \in S} \sum_{u \in T} f(v, u)
   -\Sigma_{v \in S} \Sigma_{u \in S} f(u,v) - \Sigma_{v \in S} \Sigma_{u \in T} f(u,v)
= \sum_{v \in S} \sum_{u \in T} f(v, u) - \sum_{v \in S} \sum_{u \in T} f(u, v)
=\Sigma_{(u,v)\in S\times T}f(u,v)-\Sigma_{(u,v)\in T\times S}f(u,v)
   f(u,v)=o if (u,v)\notin E
=f(S,T)
```


Min-Cut Max-Flow Thm

- If f is a flow in a flow network G=(V,E) with source s and sink t, then the following conditions are equivalent:
 - 1. f is a maximum flow in G.
 - 2. The residual network G_f contains no augmenting paths.
 - 3. |f|=c(S,T) for some s-t cut (S,T) of G.

(1) implies (2)

- (1) implies (2) iff not (2) implies not (1).
- If there is an augmenting path $\langle v_0,...,v_k \rangle$ in G_f , then $c(v_{i-1},v_i)>0$ for $0< i \le k$.
- We can augment f by f' where
 - ▶ f'(e)=o if e is not on the path
 - $f'(e) = \min_{0 < i \le k} c(v_{i-1}, v_i)$
- It is not a maximum flow.

(2) implies (3)

- Let S be the set of vertices reachable without using (u,v) s.t. $c_f(u,v)=0$ from s in G_f . Let $T=V\setminus S$.
- ▶ For every $(u,v) \in (S \times T) \cap E$, f(u,v) = c(u,v).
 - ▶ If not, then $c_f(u,v)>0$ and $v\in S$. Contradiction
- ▶ For every $(u,v) \in (T \times S) \cap E$, f(u,v) = o.
 - ▶ If not, then $c_f(v,u)>0$ and $u\in S$. Contradiction
- |f| = f(S,T) Lemma 26.4 $= \sum_{(u,v) \in S \times T} f(u,v) \sum_{(u,v) \in T \times S} f(u,v) \text{ } f(e) = 0 \text{ if } e \notin E$ $= \sum_{(u,v) \in S \times T} c(u,v) 0$ = c(S,T)

(3) implies (1)

- ▶ Goal: For every s-t cut (S,T) & flow f, $c(S,T) \ge |f|$.
 - If c(S,T)=|f|, then f is a maximum flow and (S,T) is a minimum cut.
- |f| = f(S,T) Lemma 26.4 $= \sum_{(u,v) \in (S \times T) \cap E} f(u,v) \sum_{(u,v) \in (T \times S) \cap E} f(u,v)$ $\leq \sum_{(u,v) \in (S \times T) \cap E} c(u,v) o$ = c(S,T)

Edmonds-Karp: Time Complexity

- Time complexity: O(|V||E|²)
 - ► Augmentation takes O(|V|+|E|)
 - ▶ Total augmentation: O(|V||E|)
- Proof idea:
 - For every edge (u,v), we only set f(u,v) to c(u,v) or o O(|V|) times.
 - Each augmentation changes f(u,v) at most once. $|E| \times O(|V|) = O(|V||E|)$

Lemma 26.7

If the Edmonds-Karp algorithm is run on a flow network G=(V,E) with source s and sink t, then for all vertices $v\in V\setminus \{s,t\}$, the shortest-path distance $\delta_f(s,v)$ in the residual network G_f monotonically increases with each flow augmentation.

Proof

- ▶ BWOC. Assume the lemma is true before we augment f into f'. Let v be the vertex of minimum $\delta_{f'}(s,v)$ s.t. $\delta_{f'}(s,v) < \delta_{f}(s,v)$.
- \triangleright v \neq s: \exists u \in V s.t. $\delta_{f'}(s,u) + 1 = \delta_{f'}(s,v)$. $\delta_{f'}(s,u) < \delta_{f'}(s,v)$
- Note: $\delta_f(s,u) \leq \delta_f(s,u)$
- ► If $(u,v) \in E_f$ $\delta_f(s,v) \leq \delta_f(s,u) + 1$ triangle inequality $\leq \delta_f(s,u) + 1$ $= \delta_f(s,v)$ $< \delta_f(s,v)$ contradiction

Proof

- We have (u,v)∉E_f
- Note: $(u,v) \in E_{\mathbf{f}'}$
- (v,u) is on the augmenting path when we augment f into f'.
- ► $\delta_f(s,v) = \delta_f(s,u) 1$ triangle inequality $\leq \delta_f(s,u) - 1$ $= \delta_f(s,v) - 2$ contradiction

Theorem 26.8

▶ If the Edmonds-Karp algorithm is run on a flow network G=(V,E) with source s and sink t, then the total number of flow augmentations performed by the algorithm is O(|V||E|).

Proof

- ▶ If we set f(u,v) to c(u,v), then $(u,v) \notin E_f$.
- ▶ If we set f(u,v) to o, then $(v,u) \notin E_f$.
- ▶ Suppose we augment f to f'.
- To create (u,v) in the residual network, we have to augment (v,u).
 - $(u,v)\notin E_f$ and $(u,v)\in E_f$: $\delta_f(s,v)+1=\delta_f(s,u)$
- To remove (u,v) in the residual network, we have to augment (u,v): set f(u,v)=c(u,v) or f(v,u)=o
 - ▶ $(u,v) \in E_f$ and $(u,v) \notin E_{f'}$: $\delta_f(s,v) = \delta_f(s,u) + 1$

Proof

- ▶ Suppose we augment the flow $f \rightarrow f' \rightarrow ... \rightarrow f'' \rightarrow f'''$.
- Consider (u,v): removed by augmenting f to f' and created by augmenting f" into f".
 - ▶ $\delta_{f''}(s,u) = \delta_{f''}(s,v) + 1 \ge \delta_{f}(s,v) + 1 = \delta_{f}(s,u) + 2$
- ▶ This process increase the shortest distance by 2, but $\delta_{f^*}(s,u)>|V|-1$ implies $\delta_{f^*}(s,u)=\infty$ for flow f^* .
 - \blacktriangleright This process can happen at most O(|V|) times.
- But when we augment a flow, we always remove and create some edges in the residual network.
 - We can augment only O(|V||E|) times.