Neural Networks and Deep Learning

Table of contents

- · Neural Networks and Deep Learning
 - Table of contents
 - Introduction to deep learning
 - What is a (Neural Network) NN?
 - Supervised learning with neural networks
 - Why is deep learning taking off?
 - Neural Networks Basics
 - Binary classification
 - Logistic Regression
 - Logistic Regression cost function
 - Gradient Descent
 - Derivatives
 - Computation Graph
 - Derivatives with a computation graph
 - Logistic Regression Gradient Descent
 - Gradient Descent on m Examples
 - Shallow neural networks
 - Neural Networks Overview
 - Neural Networks Representation
 - Computing a Neural Network's Output
 - Vectorizing across multiple examples
 - Activation functions
 - Why do you need non-linear activation functions?
 - Gradient descent for Neural Networks
 - Deep Neural Networks
 - Deep L-layer neural network
 - Forward Propagation in a Deep Network
 - Getting your matrix dimension right
 - Why deep representations ?
 - Building blocks of deep neural networks
 - Forward and Backward Propagation
 - Parameters vs Hyper-parameters
- Reference:

Introduction to deep learning

What is a (Neural Network) NN?

- Neural networks are comprised of a node layers, containing:
 - An input layer includes input features.
 - One or more hidden layers includes hidden units
 - An output layer
- Consider "Housing Price Prediction" example:

Housing Price Prediction 5.28 **Substitute** **Substitute**

- 4 input features: size, number of bedrooms, zip code & wealth.
- 3 hidden units: family size, walk ability & school quality.
- 1 output: predict the house's price
- Deep Neural Networks consists of more hidden layers:

Deep neural network. National Indiana. Deep neural network. Deep neural network. Deep neural network. National Indiana. Deep neural network. Deep neural

Supervised learning with neural networks

- Supervised learning:
 - use labeled datasets to train algorithms that to predict outcomes accurately or classify data.

- Labeled datasets includes data & label identifying certain properties.
- Supervised learning examples & applications:

Input(x)	Output (y)	Application
Home features	Price	Real Estate
Ad, user info	Click on ad? (0/1)	Online Advertising
Image	Object (1,,1000)	Photo tagging
Audio	Text transcript	Speech recognition
English	Chinese	Machine translation
Image, Radar info	Position of other cars	Autonomous driving

- Different types of neural networks for supervised leaning:
 - Convolutional Neural Networks (useful in Computer Vision)
 - Recurrent Neural Networks (useful in Speech recognition or NLP)
 - Standard Neural Networks (Useful for Structured data)
- Compare structured data & unstructured data:

Neural Netw	ork examples			
	7 Ā ===	0	0	Θ
, <i>X</i> 20-30-	· []-[]-[]-[]-[]-[]-[]-[]-[]-[]-[]-[]-[]-[0	0	0
x	V	0	0	Θ
Standard NN	Convolutional NN	Recu	irrent	NN

	Structured data	Unstructured data
Categorized	quantitative data	qualitative data
Examples	Databases, tables	Images, video, audio & text

Why is deep learning taking off?

- Deep learning is taking off for 3 reasons:
 - Data: scale drives deep learning progress.

- For small data, Neural Networks & traditional learning algorithms provide the same performance.
- With huge amounts of data,
 - The traditional algorithms stops improving it's performance.
 - Large Neural Networks are getting better.

• Computation:

- GPUs.
- Powerfuls CPUs.
- Distributed computing

• Algorithms:

- The algorithmic innovations makes neural networks run much faster.
- An example: ReLU function better than Sigmoid function because it helps with the vanishing gradient problem.
- => The fast computation speeds up the processing of training networks.

Neural Networks Basics

Binary classification

- Consider an example:
 - An image (RGB) represented by a features vector X.
 - Goal (predict): the image contains cats (1) or not (0)
- Notation:
 - (x, y): a single training example.
 - $lacksquare x \in R^{n_x}$
 - $y \in 0,1$
 - m: number of training examples.
 - $\qquad \qquad \bullet \quad (x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)})$
 - $m_{training}$: number of training examples.
 - m_{test}: number of testing examples.
 - ullet is design matrix (model matrix) which is simply columns of out input vectors $x^{(i)}$.

 - $\quad \blacksquare \quad X = [x^{(1)}x^{(2)}...x^{(m)}]$
 - $lacksquare X \in R^{n_x*m}$
 - Y is output vector:
 - $Y = [y^{(1)}y^{(2)}...y^{(m)}]$

Logistic Regression

- Problems:
 - Give x an input vector, want predict \hat{y} the probability of the input examples class: $\hat{y} = P(y=1|x)$
- Propose:
 - The parameter of our model:
 - $lacksquare w \in R^{n_x}, b \in R$
 - The output:
 - $\hat{y} = \sigma(w^T x + b)$
 - $\sigma(z) = \frac{1}{1+e^{-z}}$: the sigmoid function
- · Sigmoid function:

- If z is very large negative -> e^{-z} will grow very large -> $\sigma(z)$ is very close to 0.
- If z is very large positive -> e^{-z} will grow very small -> $\sigma(z)$ is very close to 1.

Logistic Regression cost function

- Remark, our prediction for an example $x^{(i)}$ is $\hat{y} = \sigma(w^Tx + b)$, where $\sigma(z) = \frac{1}{1 + e^{-z}}$
 - **Goal**: give $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})$, want $\hat{y}^{(i)} \approx y^{(i)}$
- Loss function:
 - A measure of how good the prediction model \hat{y} when the true label is y.
 - Loss (error) function: $l(\hat{y}, y) = -(ylog\hat{y} + (1-y)log(1-\hat{y})$
 - If y=1: $l(\hat{y}, y) = -log\hat{y}$. Thus, the loss approaches 0 as \hat{y} approaches 1.
 - If y=0: $l(\hat{y},y) = -log(1-\hat{y})$. Thus, the loss approaches 0 as \hat{y} approaches 0.
- Loss function & cost function:
 - The loss function as computing the error for a single training example. $l(\hat{y}, y) = -(ylog\hat{y} + (1-y)log(1-\hat{y})$
 - The cost function as the average of the loss functions of the entire training set.

$$J(w,b) = rac{1}{m} \sum_{i=1}^m l(\hat{y}^{(i)}, y^{(i)}) = -rac{1}{m} \sum_{i=1}^m (y^{(i)}log(\hat{y}^{(i)}) + (1-y^{(i)})log(1-\hat{y}^{(i)}))$$

Gradient Descent

- Recap
 - logistic regression:

$$\hat{y} = \sigma(w^Tx + b)$$
, where $\sigma(z) = rac{1}{1 + e^{-z}}$

Cost function:

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} l(\hat{y}^{(i)}, y^{(i)})$$

- $\bullet \ \ \, \textbf{Goal} \text{: find w, b that minimize J(w, b)} \\$
- Plot the cost function

- Analysis the plot:
 - Horizontal axes: w & b
 - Vertical axes: J(w, b)
 - The height of the surface above the horizontal axes is cost function value.
- Conclusion, we need to find the values of parameters w, b at the lowest point of this surface which the average loss is at it's minimum.
- Gradient Descent Algorithm
 - Step 1: Initialize w, b to some random values

• Step 2:

$$w := w - \alpha \frac{dJ(w,b)}{dw}$$

$$b := b - \alpha \frac{dJ(w,b)}{db}$$

- *d*: the derivative of a function of only 1 variable.
- δ : the partial derivative of a function with ≥ 2 variables.

Derivatives

- · Intuition about derivatives
 - An example: f(a)=3a. Then f(a)=6 when a=2. If a=2.001, what happends to f(a)?

- inspect the triangle formed by performing the nudge, the slope of the function between a & (a + 0.01) is 3.
- The derivative of f(a) with reference to a is 3 ~ $\frac{df(a)}{da}=3$

Computation Graph

- A computation graph organizes a series of computations into left-to-right and right-to-left passes.
 - Consider an example: J(a, b, c) = 3(a + bc). This computation includes 3 discrete steps:
 - Step 1: u=bc
 - Step 2: v=a+u
 - Step 3: J = 3v

- A forward pass through the graph is represented by left-to-right
- A backwards pass through the graph is represented by right-to-left which is a natural way to represent the computation of our derivatives.

Derivatives with a computation graph

• Using computation graph to compute the partial derivatives of J.

• To computing derivatives, a small change to v results in a change to J of 3 times that small change. So:

$$\frac{dJ}{dJ} = 3$$

• Noting a small change to a results in a change to J of 3 times that small change. So:

$$\frac{dJ}{ds} = 3$$

• Changing a, we change v, the magnitude of this change is $\frac{dv}{da}$. Through this change in v, we change J, the magnitude of this change is $\frac{dJ}{dv}$. Using the *chain rule*:

$$\frac{dJ}{da} = \frac{dJ}{dv}\frac{dv}{da} = 3*1 = 3$$

$$\frac{dJ}{du} = \frac{dJ}{dv} \frac{dv}{du} = 3 * 1 = 3$$

$$\frac{dJ}{db} = \frac{dJ}{dv} \frac{dv}{du} \frac{du}{db} = 3 * 1 * 2 = 6$$

$$\frac{dJ}{dc} = \frac{dJ}{dv} \frac{dv}{du} \frac{du}{dc} = 3 * 1 * 3 = 9$$

Logistic Regression Gradient Descent

• Logistic regression recap:

$$z=w^Tx+b$$

Y predict:

$$\hat{y}=a=\sigma(z)=rac{1}{1+e^{-z}}$$

Loss function:

$$l(a,y) = -(ylog(a) + (1-y)log(1-a))$$

• Assume, we have 2 features: x_1, x_2 . Our computation graph:

- **Goal**: modify w_1, w_2, b to minimum l(a, y).
- Logistic regression derivatives:
 - Backwards to compute the derivatives:

$$\begin{split} da &= \frac{dl(a,y)}{da} = \frac{-y}{a} + \frac{1-y}{1-a}, (1) \\ dz &= \frac{dl}{dz} = \frac{dl}{da} \frac{da}{dz}, (2) \\ \frac{dl}{da} &= \frac{-y}{a} + \frac{1-y}{1-a} = \frac{-y+ay+a-ay}{a*(1-a)}, (2.1) \\ \frac{da}{dz} &= \left(\frac{1}{1+e^{-z}}\right)' = \frac{-1*(e^{-z})'}{(1+e^{-z})'} = \frac{(-1)*(-1)*e^{-z}}{(1+e^{-z})^2} = \frac{1}{1+e^{-z}} \frac{e^{-z}}{1+e^{-z}} = a*(1-a), (2.2) \\ (2) &\Leftrightarrow a*(1-a)\frac{a-y}{a*(1-a)} = a-y \\ dw_1 &= \frac{\partial l}{\partial w_1} = \frac{\partial l}{\partial z} \frac{\partial z}{\partial w_1} = x_1*dz \\ dw_2 &= x_2*dz \\ db &= dz \end{split}$$

• Update the parameters:

$$egin{aligned} w_1 &:= w_1 - lpha rac{dl(a,y)}{dw_1} \ & w_2 &:= w_2 - lpha rac{dl(a,y)}{dw_2} \ & b &:= b - lpha rac{dl(a,y)}{b} \end{aligned}$$

Gradient Descent on m Examples

• Remind the logistic regression cost function:

$$egin{aligned} J(w,b) &= rac{1}{m} \sum_{i=1}^m l(\hat{y}^{(i)},y^{(i)}) = -rac{1}{m} \sum_{i=1}^m (y^{(i)}log(\hat{y}^{(i)}) + (1-y^{(i)})log(1-\hat{y}^{(i)})) \ \hat{y}^{(i)} &= \sigma(z^{(i)}) = \sigma(w^Tx^{(i)}+b) \end{aligned}$$

• For m examples, the derivatives with $(x^{(i)}, y^{(i)})$:

$$\begin{array}{l} \frac{\partial J(w,b)}{\partial dw_1} = \frac{1}{m} \sum_{i=1}^m \frac{\partial l(\hat{y}^{(i)},y^{(i)})}{\partial w_1} = \frac{1}{m} \sum_{i=1}^m dw_1^{(i)} \\ \frac{\partial J(w,b)}{\partial dw_2} = \frac{1}{m} \sum_{i=1}^m \frac{\partial l(\hat{y}^{(i)},y^{(i)})}{\partial w_2} = \frac{1}{m} \sum_{i=1}^m dw_2^{(i)} \\ \frac{\partial J(w,b)}{\partial db} = \frac{1}{m} \sum_{i=1}^m \frac{\partial l(\hat{y}^{(i)},y^{(i)})}{\partial b} \end{array}$$

■ for i = 1 to m:

- The pseudo-code for gradient descent on m examples of n features:
 - ullet Step 1: Initialize $J=0; dw_1=dw_2=...=dw_n=0; db=0$
 - Step 2: Loop over training examples:
 - $egin{split} z^{(i)} &= w^T x^{(i)} + b \ & a^{(i)} &= \sigma(z^{(i)}) \ & J + &= -[y^{(i)}log(a^{(i)}) + (1-y^{(i)})log(1-a^{(i)})] \ & dz^{(i)} &= a^{(i)} y^{(i)} \end{split}$
 - for j = 1 to n: $dw_j + = x_j^{(i)} dz^{(i)}$ $dwb + = dz^{(i)}$
 - Take the average of cost function & gradients:

$$J/=m;dw_{j}/=m;db/=m$$

• Step 3: Use derivatives to update parameters:

$$w_i := w_i - lpha dw_i$$

$$b := b - \alpha db$$

Shallow neural networks

Neural Networks Overview

• The networks looks like:

Network	Computation graph
x_1 $x_2 \longrightarrow y$	$x = x^Tx + b x = v(x) \mathcal{L}(x,y)$
x ₃	6/

• A neural networks looks like:

Neural Network	Computation graph
$\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}$	$ \frac{1}{2^{2N} = W^{(1)} + M^{(1)}} \underbrace{ \frac{1}{W^{(1)} = o(p^{(1)})}}_{\text{Ansteen Ng}} \underbrace{ \frac{1}{W^{(1)} + W^{(2)}} \underbrace{ \frac{1}{W^{(2)} = o(p^{(2)})}}_{\text{Ansteen Ng}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}}}_{\text{Ansteen Ng}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}}}_{\text{Ansteen Ng}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}}}_{\text{Ansteen Ng}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}}}_{\text{Ansteen Ng}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}}}_{\text{Ansteen Ng}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}}}_{\text{Ansteen Ng}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}}}_{\text{Ansteen Ng}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}}}_{\text{Ansteen Ng}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}} \underbrace{ \frac{1}{W^{(2)} + W^{(2)}}}_{\text{Ansteen Ng}} \underbrace{ \frac{1}{W^{(2)} + $

Neural Networks Representation

• Consider a single neural networks:

- Notation:
 - x_1, x_2, x_3 : the **input features** constitutes **input layer**
 - The **output layer**: is responsible for generating the predict value \hat{y}
 - The **hidden layers**: any layer in between input layer & output layer.
 - The true values of these hidden units is not observed in the training set.
 - The output values of a layer I denoted as a column vector $a^{[I]}$, where "a" stands for activation.
 - The parameters of layer I denoted $W^{[l]} \& b^{[l]}$
 - $lacksquare a_i^{[l]}$:
 - I the layer $l^t h$
 - i the node i^{th}
- **Note**: the number of layers in neural networks not consists the input layer.

Computing a Neural Network's Output

• Consider the first nodes in the hidden layer:

$$z_1^{[l]} = w^{[1]T}x + b^{[1]}$$

• So, all the nodes in the hidden layer:

- \circ Vectorization the computation of $z^{[l]}$
 - Matrix **X**: (3, 1)
 - Matrix **W**: (3, 4) & W^T: (4, 3)
 - Matrix b: (4, 1)
 - Matrix a^[l]: (4, 1)
- All the computations:

$$z^{[1]} = W^{[1]}a^{[0]} + b^{[1]}$$

$$ullet W^{[1]} - (4,3); a^{[0]} - (3,1); b^{[1]} - (4,1); z^{[1]} - (4,1)$$

$$a^{[1]}=\sigma(z^{[1]})$$

 $a_1^{[1]} = \sigma(z_1^{[l]})$

$$\circ \ a^{[1]}-(4,1)$$

$$z^{[2]} = W^{[2]} a^{[1]} + b^{[2]}$$

$$\circ \ \ W^{[2]}-(1,4); a^{[1]}-(4,1); b^{[2]}-(1,1); z^{[2]}-(1,1) \\$$

$$a^{[2]}=\sigma(z^{[2]})$$

· Other example:

$$\circ z_1^{[1]} = w^{[1]}x_1 + w^{[2]}x_2 + w^{[3]}x_3 + w^{[4]}x_4 + b_1; a_1^{[1]} = \sigma(z_1^{[1]})$$

$$ullet z_2^{[1]} = w^{[1]} x_1 + w^{[2]} x_2 + w^{[3]} x_3 + w^{[4]} x_4 + b_2; a_2^{[1]} = \sigma(z_2^{[1]})$$

$$\circ \ \ z_3^{[1]} = w^{[1]}x_1 + w^{[2]}x_2 + w^{[3]}x_3 + w^{[4]}x_4 + b_3; a_3^{[1]} = \sigma(z_3^{[1]})$$

$$ullet a^{[0]} - (4,1); W^{[1]} - (3,4); b^{[1]} - (3,1); z^{[1]} - (3,1)$$

Vectorizing across multiple examples

• Notation:

- the activation values of layer I for input example i is: $a^{[l](i)}$
- Propose, we have m training examples & 2 layers, so we can used a vectorized approach to compute all m predictions.

$$z^{[1](i)} = w^{[1]}x + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = w^{[2]}a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

Activation functions

- Activation function are used to determine the firing of neurons in a neural network. Given a linear combination of inputs & weights from previous layer, the activation function controls how we'll pass that information on to the next layer.
- Properties:
 - The **non-linear** allows neural network to learn non-linear relationships in the data.
 - Differentiability allows neural network to back-propagate the model's error when training to optimize the weights.
- hh

Sigmoid	Tanh	Rectified Linear Unit (ReLU)
$\sigma(z)=rac{1}{1+e^{-z}}$	$tanh(z)=rac{e^{z}-e^{-z}}{e^{z}+e^{-z}}$	ReLU(z) = max(0,z)
$0 \leq \sigma(z) \leq 1$	$-1 \leq tanh(z) \leq 1$	$0 \leq tanh(z) \leq infinity$
Easy to compute	The mean of tanh func is closer to zero	Not expensive operations (simply thresholding)
Vanishing gradient at edges	Vanishing gradient at edges	Can be fragile during training (dying ReLU)
	$\sigma(z)=rac{1}{1+e^{-z}}$ $0\leq\sigma(z)\leq1$ Easy to compute	$\sigma(z) = \frac{1}{1+e^{-z}} \qquad tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$ $0 \le \sigma(z) \le 1 \qquad -1 \le tanh(z) \le 1$ Easy to compute

• Vanishing gradient at edges: If the input is too small or high, the slope will be near zero

Why do you need non-linear activation functions?

• The purposed of the activation function is to introduce *non-linear into the network* which allows you to model a response variable that varies non-linearly with its explanatory variables.

Gradient descent for Neural Networks

- Consider a simple 2-layer neural network. Recall:
 - ullet Parameters: $W^{[1]}, b^{[1]}, W^{[2]}, b^{[2]}$
 - Number of features: $n_x = n^{[0]}$
 - \circ Number of hidden units: $n^{[1]}$
 - Number of output units: $n^{[2]}$

- Dimensions:
 - $\circ \ W^{[1]} \colon (n^{[1]}, n_x)$
 - $b^{[1]}$: $(n_x, 1)$
 - $\circ \ W^{[2]} \colon (n^{[2]}, n^{[1]})$
 - $b^{[2]} (n^{[2]}, 1)$
- Cost function:

$$J(W^{[1]},b^{[1]},W^{[2]},b^{[2]})=rac{1}{m}\sum_{i=1}^{m}l(\hat{y},y)$$

- Gradient Descent:
 - Repeat:
 - compute predictions $\hat{y}^{(i)}$ for i = 1, ..., m
 - $ullet dW^{[1]} = rac{\sigma J}{\sigma W^{[1]}}, db^{[1]} = rac{\sigma J}{\sigma b^{[1]}}$
 - $\qquad \qquad \mathbf{W}^{[1]} = W^{[1]} \alpha dW^{[1]}$
 - $ullet b^{[1]} = b^{[1]} lpha db^{[1]}$
- Formulas for computing derivatives:
 - consider computation graph:

- Forward propagation:
 - $ullet z^{[1]} = W^{[1]} x + b^{[1]}$
 - $lacksquare a^{[1]} = g^{[1]}(z^{[1]})$
 - $ullet z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$
 - $lack a^{[2]} = g^{[1]}(z^{[2]})$
- Backward propagation:
 - $dz^{[2]} = a^{[2]} y$
 - $ullet dW^{[2]} = rac{1}{m} dz^{[2]} a^{[1]T}$
 - $b^{[2]}=rac{1}{m}np.sum(dz^{[2]},axis=1,keepdims=True)$; keepdims return a rank 1 array (n,)
 - ullet $dz^{[1]}=W^{[2]T}dz^{[2]}.g(z)(z^{[1]});$ "." is the element-wise product
 - $ullet dW^{[1]} = rac{1}{m} = dz^{[1]} x^T$
 - $ullet b^{[1]}=rac{1}{m}np.sum(dz^{[1]},axis=1,keepdims=True)$

Deep Neural Networks

Deep L-layer neural network

- A deep neural network is simply a network with more than 1 hidden layer.
- Notation:
 - \circ L: the number of layers in the networks
 - $n^{[l]}$: the number of units/neurons in layer I
 - $a^{[l]}$: the activations in layer I
 - $\circ \ W^{[l]}, b^{[l]}$: the weights and bias in layer I
 - ullet $x=a^{[0]}$ and $\hat{y}=a^{[L]}$

Forward Propagation in a Deep Network

• For each layer I we perform the computations:

$$z^{[l]} = W^{[l]}a^{[l-1]} + b^{[l]}$$

Getting your matrix dimension right

- The best way to debug your matrices dimensions is "by hand".
- For a *l*-layer neural network & *m* the number of inputs, our dimensions:
 - $\circ \ W^{[l]}:(n^{[l]},n^{[l-1]})$
 - $ullet b^{[l]}:(n^{[l]},1)$
 - $\circ \ z^{[l]}, a^{[l]}, dz^{[l]}, da^{[l]}: (n^{[l]}, m)$

Why deep representations?

- Deep neural network makes relations with data from simpler to complex. In each layer it tries to make a relation with the previous layer. Example:
 - Face recognition application:
 - image -> edges -> face parts -> faces -> desired face
 - Audio recognition application:
 - audio -> low level sound features -> phonemes -> words -> sentences
- Circuit theory and deep learning:
 - · Circuit theory provides a possible explanation as to why deep networks work so well some tasks.

Building blocks of deep neural networks

• Consider an example:

Forward and Backward Propagation

• Pseudo code for forward propagation for layer I:

$$\circ \ z^{[l]} = W^{[l]}a^{[l-1]} + b^{[l]}$$

$$\circ \ a^{[l]} = g^{[l]}(z^{[l]})$$

• Pseudo code for backward propagation for layer I:

$$\begin{array}{c} \text{ odd}_{[l-1]} = (W^{[l]T}*dz^{[l]})*g^{\hat{[l]}}(z^{[l-1]}) \\ \circ dw^{[l]} = \frac{(dz^{[l]}*a^{[l-1]T})}{m} \\ \circ db^{[l]} = \frac{(dz^{[l]}*a^{[l-1]T})}{m} \\ \circ da^{[l-1]} = W^{[l]T}*dz^{[l]} \end{array}$$

• Every computation in forward propagation is a corresponding computation in backwards propagation.

Parameters vs Hyper-parameters

- The parameters of model are the adaptive values (W, b) which are learned during training process.
- The hyperparameters are set before training & can be viewed as the "settings" of the learning algorithms.
 - · number of iterations
 - learning rate
 - number of hidden layers L
 - number of hidden units $n^{[1]}, n^{[2]}, ...$
 - activation function

Reference:

- [1] https://www.jeremyjordan.me/intro-to-neural-networks/
- [2] https://www.ibm.com/cloud/learn/supervised-learning
- [3] https://johngiorgi.github.io/deeplearning.ai-coursera-notes/neural_networks_and_deep_learning/

```
<script type="text/x-mathjax-config">
   MathJax.Hub.Config({ tex2jax: {inlineMath: [['$', '$']]}, messageStyle: "none" });
```