1. Let A be an invertible matrix with eigenvalue λ and corresponding eigenvector \vec{v} . Prove that A^{-1} must have the eigenvalue $1/\lambda$ together with the same corresponding eigenvector \vec{v} .

 $\sqrt{}$

Therefore AT have eigenvalue 1/2 with vector ?

2. Let $H_n = 1 + 1/2 + 1/3 + \cdots + 1/n$. Show that $H_n \le 1 + \ln n$. Hence show that $H_{1\,000\,000\,000} < 22$.

. Ln for
$$\int_{1}^{n} \frac{1}{x} dx$$
 is $\frac{N-1}{N-1} \left(\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{N} \right)$.

3. Prove that similarity is an equivalence relation on the set of $n \times n$ matrices.

- · A = I A I A is similar to itself. reflexive
- · Suppose $A = PBP^{-1}$, P is non-singular. Then $P^{-1}AP = B$.

Let P-1=Q, so B= QAQ-1. B and A are similar. Symmetric

• Suppose A and B are similar, B and C are similar. Then there are non-singular matrices P_1 , P_2 that : $A = P_1BP_1^{-1}$, $B = P_2CP_2^{-1}$.

So $A = P_1(P_2CP_2^{-1})P_1^{-1} = (P_1P_2)C(P_2^{-1}P_1^{-1}) = (P_1P_2)C(P_1P_2)^{-1}$.

A and (are similar. transitive

Therefore, similarity is an equivalence relation.

4. Factorize the matrix
$$A = \begin{pmatrix} 4 & -3 \\ 2 & -1 \end{pmatrix}$$
 in the form PDP^{-1} where D is a diagonal matrix. Hence find A^8 .

$$\lambda^2 - 3\lambda + 2 = 0$$
, $\lambda = 1$, $\vec{V} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$; $\lambda = 2$, $\vec{V} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

$$\angle A = \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix}.$$

$$A^{8} = \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2^{8} \end{pmatrix} \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 766 & -765 \\ 510 & -509 \end{pmatrix}.$$

5. Use matrix methods to solve the recurrence relation
$$u_n = 5u_{n-1} - 6u_{n-2}$$
 given $u_1 = 1$ and $u_2 = 2$.

$$R = \begin{pmatrix} 5 & -6 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} u_2 \\ u_1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

$$\begin{pmatrix} N_3 \\ N_2 \end{pmatrix} = \begin{pmatrix} P & N_2 \\ N_1 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

$$\binom{n_4}{n_3} = p^2 \binom{n_2}{n_1} = \binom{8}{4}$$
.

$$\left(\begin{array}{c} N^{1} \\ N^{2} \end{array}\right) = \left(\begin{array}{c} 2 \\ 1 \\ 0 \end{array}\right) \left(\begin{array}{c} 3 \\ 1 \end{array}\right)$$

$$(\lambda - 3)(\lambda - 2) = 0$$
 $\lambda = 3$
 $\lambda = 3$

$$\lambda_1 = 2 \quad \forall_2 = \binom{2}{1}$$

$$\begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2^n \\ 2^{n-1} \end{pmatrix}$$