第四部分

图论

前言

- 图论是近年来发展迅速而又应用广泛的一门新兴学科。
- 图论在解决网络理论,信息论,控制论,人工智能以及计算机科学等各个领域的问题时,显示出越来越大的效果。
 - Internet: 结点之间信息传递的最短路径问题。
 - AI: 状态空间图。
 - 数据结构: 图的存储、搜索等问题。
 - 集合论: 关系图, 哈斯图等。
 - 交通图, 地图, 信息论的编码理论等。

第十四章 图的基本概念

14. 1图

图

无序积:设A,B为任意两个集合,称 $\{\{a,b\} \mid a \in A \land b \in B\}$

为**A**与**B**的**无序积**,记作**A**&**B**。将**无序对**{**a**,**b**}记作(**a**,**b**),允许**a**=**b**。

 $\forall a \in A, \forall b \in B, (a,b)=(b,a)$

A&B = B&A

无向图(集合定义)

- 定义:一个无向图是一个有序的二元组<V,E>,记作G,其中
- V≠Ø, 称为G的顶点集, V中元素称为顶点或结点;
- 2. E称为G的边集,它是无序积V&V的一个多重 子集,E中元素称为无向边,简称为边。

多重集合:元素可以重复出现的集合。

无向图(集合定义)

例: 给定无向图G=<V,E>,其中 $V=\{v_1,v_2,v_3\}$, $E=\{(v_1,v_2),(v_1,v_2),(v_2,v_3)\}$,其图形如下。

- 一个无向图可以用图形来表示:
 - 顶点: 小圆圈或实心点
 - 边: 顶点间的连线(无向)

- 1. 顶点:表示事物、对象
- 2. 边: 关系

如,关系图,只关心点之间的关系,而不考虑点的位置、边的形状、图的形状等。

- 定义:一个有向图是一个有序的二元组<V,E>,记作D,其中
- 1. V≠Ø, 称为**顶点集**, V中元素称为**顶点或结** 点;
- 2. **E**为**边集**,是笛卡儿积V×V的多重子集,其元 素称为**有向边**,也简称**边**。

- 一个有向图可以用图形来表示:
 - 顶点: 小圆圈或实心点
 - 边: 有向弧

例: 给定有向图D=<V,E>, 其中V={a,b,c,d}, E={<a,b>,<b,a>,<b,d>,<c,c>,<d,a>,<d,d>}, 其图形 如下。

常用概念与表示

1有时用G泛指图,包括无向图和有向图。

V(G): 顶点集; |V(G)|: 顶点数;

E(G): 边集; |E(G)|: 边数。

2 若|V(G)|=n,则称G为n阶图。

3 若V,E都是有穷集合,则称G是有限图。

常用概念与表示

4 若E(G)=∅,则称G为零图。

此时,又若G为m阶图,则称G为m阶零图,

记作N_m。

|E(G)|=4

其中称N₁为平凡图。

平凡图N₁

常用概念与表示

- 5 顶点集V(G)为空集的图为空图,记作∅。
- 6 顶点或边用字母标定的图,称为标定图,如 $e_k = \langle v_i, v_i \rangle$,否则称为非标定图。
- 7 将有向图各有向边均改成无向边后得到的无向图,称为原有向图的基图。

8 设 e_k =(v_i,v_i)∈E为无向图G=< v_i ,E>中的一条边,称 v_i,v_j 为 e_k 的端点, e_k 与 v_i (或 e_k 与 v_i)是彼此关联的。 无边关联的顶点称为孤立点。

若v_i=v_i,则称此边为**环**。

 v_i, v_i 为 e_k 的端点 $\wedge v_i \neq v_i$ \mathbf{e}_{k} 与 $\mathbf{v}_{i}(\mathbf{g}\mathbf{v}_{j})$ 的**关联次数:** $\{2\ v_{i},v_{j}\}$ 为 e_{k} 的端点 $\wedge v_{i}=v_{j}$ v_i, v_i 不是 e_k 的端点

有向图中端点、环、 孤立点的定义相同。

相邻

- 9 设无向图G=<V,E>, v_i,v_i∈V, e_k,e_l∈E,
- ①若 $\exists e_t \in E$,使得 $e_t = (v_i, v_i)$,则称 v_i, v_i 是彼此相邻的。
- ②若e_k与e_l至少有一个公共端点,则称e_k,e_l是彼此相邻的。

相邻

- 10 设有向图D=<V,E>,v_i,v_i∈V,e_k,e_l∈E,
- ①若∃e_t∈E,使得e_t=<v_i,v_j>,则称v_i是e_t的<mark>始点</mark>,v_j是e_t的<mark>终点</mark>,v_i邻接到v_i,v_i邻接于v_i。
- ②若e_k的终点是e_l的起点,则称e_k与e_l相邻。

邻域

设无向图G=<V,E>, ∀v∈V,

- 1. v的**邻域:**N_G(v)={u|u∈V∧(u,v)∈E∧u≠v}
- 2. v的闭邻域: $\bar{N}_G(v) = N_G(v) \cup \{v\}$
- 3. v的**关联集:** I_G(v)={e|e∈E ∧ e与v相关联}

邻域

设有向图D=<V,E>, ∀v∈V, 称

v的后记元集: $\Gamma_D^+(v)=\{u|u\in V \land \langle v,u\rangle\in E \land u\neq v\}$

v的先驱元集: $\Gamma_D^-(v)=\{u|u\in V \land \langle u,v\rangle\in E \land u\neq v\}$

v的邻域: $N_D(v) = \Gamma_D^+(v) \cup \Gamma_D^-(v)$

v的闭邻域: $\bar{N}_D(v) = N_D(v) \cup \{v\}$

作业(习题14)

