# Efficient Estimation of Word Representations in Vector Space

Tomas Mikolov Kai Chen Greg Corrado Jeffrey Dean

#### Contents

- Terminology
- Research Goal
- Key Related Work
- Proposed Method
- Results
- Conclusion

# Terminology

- N-gram
- Skip-gram
- NNLM
- RNNLM
- LSA
- LDA
- Hierarchical Softmax
- Adagrad
- Bag-of-Words

#### Research Goal

#### **Abstract**

We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing techniques based on different types of neural networks. We observe large improvements in accuracy at much lower computational cost, i.e. it takes less than a day to learn high quality word vectors from a 1.6 billion words data set. Furthermore, we show that these vectors provide state-of-the-art performance on our test set for measuring syntactic and semantic word similarities.

- Vector Representations of Words
  - Two Novel Model Architectures
  - Improving Accuracy While Lowering Cost

# Key Related Work

- Representation of Texts
  - Local Representations
    - N-grams
    - Bag-of-Words
    - One-hot vector
  - Continuous Representations
    - LSA
    - LDA
    - Distributed Representations
- NNLM
  - Feedforward Neural Net Language Model
- RNNLM
  - Recurrent Neural Net language Model

# Local Representations

N-gram

N = 1 : This is a sentence unigrams: N = 2 : This is a sentence bigrams: bigrams:

https://stackoverflow.com/questions/18193253/what-exactly-is-an-n-gram

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!



have

great

#### One-hot vector



(Marco Bonzanini, 2017)

#### LSA & LDA

- LSA
  - Latent Semantic Analysis
- LDA
  - Latent Dirichlet Allocation
- Topic Modeling
  - Discover abstract topic that occurs in a collection of documents

#### LSA & LDA

SVD (truncated SVD)





- LSA focuses on reducing matrix dimension
  - Small scale only (around 100 patents)
- LDA focuses on solving the topic modeling problem

•A: Cute kitty

•B: Eat rice or cake

•C: Kitty and hamster

•D: Eat bread

•E: Rice, bread and cake

•F: Cute hamster eats bread and cake

|   | cute | kitty | eat | rice | cake | hamster | bread |
|---|------|-------|-----|------|------|---------|-------|
| Α | 1    | 1     | 0   | 0    | 0    | 0       | 0     |
| В | 0    | 0     | 1   | 1    | 1    | 0       | 0     |
| С | 0    | 1     | 0   | 0    | 0    | 1       | 0     |
| D | 0    | 0     | 1   | 0    | 0    | 0       | 1     |
| Ε | 0    | 0     | 0   | 1    | 1    | 0       | 1     |
| F | 1    | 0     | 1   | 0    | 1    | 1       | 1     |

 $X = U \Sigma V^T$ 

| 0.12 | 0.57  | -0.32 | 0.00  | -0.71 | -0.24 |
|------|-------|-------|-------|-------|-------|
| 0.44 | -0.36 | -0.41 | 0.71  | 0.00  | -0.08 |
| 0.12 | 0.57  | -0.32 | 0.00  | 0.71  | -0.24 |
| 0.33 | -0.07 | 0.56  | 0.00  | 0.00  | -0.75 |
| 0.44 | -0.36 | -0.41 | -0.71 | 0.00  | -0.08 |
| 0.69 | 0.30  | 0.37  | 0.00  | 0.00  | 0.55  |

|      | 2.98 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|------|------|------|------|------|------|------|------|
| $\ $ | 0.00 | 1.88 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 1    | 0.00 | 0.00 | 1.36 | 0.00 | 0.00 | 0.00 | 0.00 |
|      | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
| 1    | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
| ا ا  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.87 | 0.00 |

| 0.27  | 0.08  | 0.49  | 0.30  | 0.53  | 0.27 | 0.49  |
|-------|-------|-------|-------|-------|------|-------|
| 0.46  | 0.61  | -0.07 | -0.38 | -0.22 | 0.46 | -0.07 |
| 0.04  | -0.47 | 0.38  | -0.61 | -0.34 | 0.04 | 0.38  |
| 0.00  | 0.00  | 0.71  | 0.00  | 0.00  | 0.00 | -0.71 |
| -0.71 | 0.00  | 0.00  | 0.00  | 0.00  | 0.71 | 0.00  |
| 0.35  | -0.56 | -0.33 | -0.18 | 0.44  | 0.35 | -0.33 |
| 0.30  | -0.30 | 0.00  | 0.60  | -0.60 | 0.30 | 0.00  |

$$X_k = U_k \Sigma_k V_k^T$$

| 0.59 | 0.68  | 0.10 | -0.30 | -0.05 | 0.59 | 0.10 |
|------|-------|------|-------|-------|------|------|
| 0.04 | -0.31 | 0.69 | 0.65  | 0.84  | 0.04 | 0.69 |
| 0.59 | 0.68  | 0.10 | -0.30 | -0.05 | 0.59 | 0.10 |
| 0.20 | 0.00  | 0.49 | 0.34  | 0.55  | 0.20 | 0.49 |
| 0.04 | -0.31 | 0.69 | 0.65  | 0.84  | 0.04 | 0.69 |
| 0.81 | 0.51  | 0.97 | 0.40  | 0.96  | 0.81 | 0.97 |



## LSA & LDA



Many different types of models were proposed for estimating continuous representations of words, including the well-known Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA). In this paper, we focus on <u>distributed representations of words</u> learned by neural networks, as it was previously shown that they perform <u>significantly</u> better than LSA for preserving linear regularities among words [20, 31]; LDA moreover becomes computationally very expensive on large data sets.

- Linear regularities
  - Linear additive properties from vectorized form of words
  - vector("King") vector("Man") + vector("Woman") → vector("Queen")
- Updating new words takes too much effort

pg.2

# NNLM (Feedforward NNLM)

- Layers
  - Input, Projection, Hidden, Output



#### **NNLM**

$$Q = N \times D + N \times D \times H + H \times V,$$

- Q = computational cost (complexity)
- N = number of previous words used for learning
- D = dimensionality of projection layer
- H = size of hidden layer
- V = size of the vocabulary and output layer

$$P = N \times D \rightarrow around 500 \sim 2000$$

N 
$$\rightarrow$$
 around 10

## RNNLM (Recurrent NNLM)

- Layers
  - Input, Hidden, Output





```
egin{aligned} e_t &= lookup(x_t) \ h_t &= tanh(W_x e_t + W_h h_{t-1} + b) \ \hat{y_t} &= softmax(W_y h_t + b) \end{aligned}
```

#### RNNLM

$$Q = H \times H + H \times V$$

- Q = computational cost (complexity)
- N = number of previous words used for learning
- D = dimensionality of projection layer
- H = size of hidden layer
- V = size of the vocabulary and output layer

# Proposed Method

- CBOW
- Continuous Skip-gram

$$Q = N \times D + D \times log_2(V).$$
  

$$Q = C \times (D + D \times log_2(V)),$$

- NNLM
- RNNLM

$$Q = N \times D + N \times D \times H + H \times X,$$

$$Q = H \times H + H \times X,$$

$$log_2(V)$$

$$log_2(V)$$

# CBOW (Continuous Bag-of-Words)

$$Q = N \times D + D \times log_2(V).$$

#### 3.1 Continuous Bag-of-Words Model

The first proposed architecture is similar to the feedforward NNLM, where the non-linear hidden layer is removed and the projection layer is shared for all words (not just the projection matrix); thus, all words get projected into the same position (their vectors are averaged). We call this architecture a bag-of-words model as the order of words in the history does not influence the projection. Furthermore, we also use words from the future; we have obtained the best performance on the task introduced in the next section by building a log-linear classifier with four future and four history words at the input, where the training criterion is to correctly classify the current (middle) word. Training complexity is then

$$Q = N \times D + D \times log_2(V). \tag{4}$$

We denote this model further as CBOW, as unlike standard bag-of-words model, it uses continuous distributed representation of the context. The model architecture is shown at Figure [1] Note that the weight matrix between the input and the projection layer is shared for all word positions in the same way as in the NNLM.



# CBOW (Continuous Bag-of-Words)



• Yet again I drink coffee this morning to study A.I.



#### **CBOW**

Computation Cost

NNLM 
$$Q = N \times D + N \times D \times H + X \times X,$$
 
$$D \cdot D \cdot M \times D \times H \times X$$

$$Q = N \times D + D \times log_2(V)$$
.

# Continuous Skip-Gram

CBOW the other way around.

• Yet again I drink coffee this morning to study A.I.

Drink, caffeine, black, Starbucks, water, ice, americano, barista, drip, night, sleep ...



**PROJECTION** 

OUTPUT

**INPUT** 

Skip-gram

# Continuous Skip-gram

Computational Cost

Softmax has to be done for each surrounding words to reach output layer

 $Q = C \times (D + D \times log_2(V)),$ 

• C = size of 'surrounding words'



**PROJECTION** 

OUTPUT

**INPUT** 

Skip-gram

## Results

## • Linear Regularities

| Type of relationship  | Word        | Pair 1     | Word Pair 2 |               |  |
|-----------------------|-------------|------------|-------------|---------------|--|
| Common capital city   | Athens      | Greece     | Oslo        | Norway        |  |
| All capital cities    | Astana      | Kazakhstan | Harare      | Zimbabwe      |  |
| Currency              | Angola      | kwanza     | Iran        | rial          |  |
| City-in-state         | Chicago     | Illinois   | Stockton    | California    |  |
| Man-Woman             | brother     | sister     | grandson    | granddaughter |  |
| Adjective to adverb   | apparent    | apparently | rapid       | rapidly       |  |
| Opposite              | possibly    | impossibly | ethical     | unethical     |  |
| Comparative           | great       | greater    | tough       | tougher       |  |
| Superlative           | easy        | easiest    | lucky       | luckiest      |  |
| Present Participle    | think       | thinking   | read        | reading       |  |
| Nationality adjective | Switzerland | Swiss      | Cambodia    | Cambodian     |  |
| Past tense            | walking     | walked     | swimming    | swam          |  |
| Plural nouns          | mouse       | mice       | dollar      | dollars       |  |
| Plural verbs          | work        | works      | speak       | speaks        |  |

## Results

| Dimensionality / Training words | 24M  | 49M  | 98M  | 196M | 391M | 783M |
|---------------------------------|------|------|------|------|------|------|
| 50                              | 13.4 | 15.7 | 18.6 | 19.1 | 22.5 | 23.2 |
| 100                             | 19.4 | 23.1 | 27.8 | 28.7 | 33.4 | 32.2 |
| 300                             | 23.2 | 29.2 | 35.3 | 38.6 | 43.7 | 45.9 |
| 600                             | 24.0 | 30.1 | 36.5 | 40.8 | 46.6 | 50.4 |

 $Q = N \times D + D \times log_2(V).$ 

Table 2: Accuracy on subset of the Semantic-Syntactic Word Relationship test set, using word vectors from the CBOW architecture with limited vocabulary. Only questions containing words from the most frequent 30k words are used.

| Model        | Semantic-Syntactic Wo | MSR Word Relatedness   |               |
|--------------|-----------------------|------------------------|---------------|
| Architecture | Semantic Accuracy [%] | Syntactic Accuracy [%] | Test Set [20] |
| RNNLM        | 9                     | 36                     | 35            |
| NNLM         | 23                    | 53                     | 47            |
| CBOW         | 24                    | 64                     | 61            |
| Skip-gram    | 55                    | 59                     | 56            |

## Results

#### 1 CPU

| Model                 | Vector         | Training | Ac       | curacy [%] |       |
|-----------------------|----------------|----------|----------|------------|-------|
|                       | Dimensionality | words    |          |            |       |
|                       |                |          | Semantic | Syntactic  | Total |
| Collobert-Weston NNLM | 50             | 660M     | 9.3      | 12.3       | 11.0  |
| Turian NNLM           | 50             | 37M      | 1.4      | 2.6        | 2.1   |
| Turian NNLM           | 200            | 37M      | 1.4      | 2.2        | 1.8   |
| Mnih NNLM             | 50             | 37M      | 1.8      | 9.1        | 5.8   |
| Mnih NNLM             | 100            | 37M      | 3.3      | 13.2       | 8.8   |
| Mikolov RNNLM         | 80             | 320M     | 4.9      | 18.4       | 12.7  |
| Mikolov RNNLM         | 640            | 320M     | 8.6      | 36.5       | 24.6  |
| Huang NNLM            | 50             | 990M     | 13.3     | 11.6       | 12.3  |
| Our NNLM              | 20             | 6B       | 12.9     | 26.4       | 20.3  |
| Our NNLM              | 50             | 6B       | 27.9     | 55.8       | 43.2  |
| Our NNLM              | 100            | 6B       | 34.2     | 64.5       | 50.8  |
| CBOW                  | 300            | 783M     | 15.5     | 53.1       | 36.1  |
| Skip-gram             | 300            | 783M     | 50.0     | 55.9       | 53.3  |

#### Epoch, 1 vs 3

| Model             | Vector         | Training | Accuracy [%] |           |       | Training time |
|-------------------|----------------|----------|--------------|-----------|-------|---------------|
|                   | Dimensionality | words    |              |           |       | [days]        |
|                   |                |          | Semantic     | Syntactic | Total |               |
| 3 epoch CBOW      | 300            | 783M     | 15.5         | 53.1      | 36.1  | 1             |
| 3 epoch Skip-gram | 300            | 783M     | 50.0         | 55.9      | 53.3  | 3             |
| 1 epoch CBOW      | 300            | 783M     | 13.8         | 49.9      | 33.6  | 0.3           |
| 1 epoch CBOW      | 300            | 1.6B     | 16.1         | 52.6      | 36.1  | 0.6           |
| 1 epoch CBOW      | 600            | 783M     | 15.4         | 53.3      | 36.2  | 0.7           |
| 1 epoch Skip-gram | 300            | 783M     | 45.6         | 52.2      | 49.2  | 1             |
| 1 epoch Skip-gram | 300            | 1.6B     | 52.2         | 55.1      | 53.8  | 2             |
| 1 epoch Skip-gram | 600            | 783M     | 56.7         | 54.5      | 55.5  | 2.5           |

#### DistBelief

| Model     | Vector         | Training | Accuracy [%] |           |       | Training time      |
|-----------|----------------|----------|--------------|-----------|-------|--------------------|
|           | Dimensionality | words    |              |           |       | [days x CPU cores] |
|           |                |          | Semantic     | Syntactic | Total |                    |
| NNLM      | 100            | 6B       | 34.2         | 64.5      | 50.8  | 14 x 180           |
| CBOW      | 1000           | 6B       | 57.3         | 68.9      | 63.7  | 2 x 140            |
| Skip-gram | 1000           | 6B       | 66.1         | 65.1      | 65.6  | 2.5 x 125          |

## Conclusion

• Simpler is better?

CBOW vs Continuous Skip-gram?