

UNIVERSIDADE FEDERAL DE RORAIMA CENTRO DE CIÊNCIA E TECNOLOGIA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO DCC511 – Lógica de Predicados (2022.2) Prof. Msc. Thais Oliveira Almeida

AULA 9:

PROPRIEDADES SEMÂNTICAS DA LÓGICA DE PREDICADOS

Funções e Predicados Computáveis

- Predicados comuns: pai(jose, maria);
- Predicados computáveis "maior_que" e "menor_que";
- Funções computáveis: maior_que(mais(2; 3); 1).

Fórmulas ou Predicados

- Predicados unários:
 - brasileiro(João);
- Predicados binários:
 - maior(3,4);
 - matou(João,Maria);
- Predicados ternários:
 - deu(Maria,livro,João).

Semântica da Lógica Proposicional

- Seja α uma atribuição de valores-verdade. A função de avaliação para $I(\alpha)$ induzida por α é a função:
- $v : I(\alpha) = \{F; V\}$ definida da seguinte forma:
 - v(p) = a(p), se p é um símbolo proposicional
 - $v(\neg p) = V$, se v(p) = F
 - = F, se v(p) = V
 - v(p ^ q) = V, se v(p) = v(q) = V
 - = F, em caso contrário
 - $v(p \vee q) = F$, se v(p) = v(q) = F
 - = V, em caso contrário
 - $v(p \rightarrow q) = F$, se v(p) = V e v(q) = F
 - = V. em caso contrário
 - $v(p \leftrightarrow q) = V$, se v(p) = v(q)
 - = F, em caso contrário

Propriedades Semânticas

- Tautologia
- As relações entre tais propriedades são análogas:
 - (H → G) é uma tautologia ⇔ H implica G;
 - Se I[H]=T, então I[G]=T.
 - (H ↔ G) é uma tautologia ⇔ H equivale a G;
 - I[H]=I[G].
 - Satisfatibilidade;
 - Implicação;
 - Equivalência...

Satisfatibilidade de Fórmula

- ❖ Válida (tautológica): é verdadeira em toda interpretação;
- ❖Satisfatível (contingente): quando existe pelo menos uma interpretação I tal que I[H]=T;
 - Um conjunto de fórmulas é B={H₁, H₂, ..., H_n} é satisfatível se e somente se existe uma interpretação I tal que I[H₁]=I[H₂]=...= I[H_n]=T;
- ❖Insatisfatível (contraditória): quando para toda interpretação I, I[H]=F.

- ❖ Verificar se o conjunto de fórmulas H_1 , H_2 , H_3 e H_4 definidas a seguir são satisfatíveis ou não:
 - $H_1 = p(x,y)$, I_1 é uma interpretação sobre os naturais N, tal que: $I_1[p]=$ "<", $I_1[x]=$ 5 e $I_1[y]=$ 9;
 - $H_2 = (\forall x)p(x,y)$, I_2 é uma interpretação sobre os naturais N, tal que: $I_2[p]="\geq"$ e $I_2[y]=0$;
 - $H_3 = (\forall x)(\exists y)p(x,y)$, I_3 é uma interpretação sobre os naturais N, tal que: $I_3[p]=$ "<";
 - ∘ $H_4 = (\forall x)(\exists y)p(x,y) \rightarrow p(x,y)$, I_4 é uma interpretação sobre os naturais N, tal que: $I_4[p]=$ "<", $I_4[x]=$ 5 e $I_4[y]=$ 9.

- ❖ Verificar se o conjunto de fórmulas H₁, H₂, H₃ e H₄ definidas a seguir são satisfatíveis ou não:
 - $H_1 = p(x,y)$, I_1 é uma interpretação sobre os naturais N, tal que: $I_1[p]=$ "<", $I_1[x]=$ 5 e $I_1[y]=$ 9;
 - \circ H₁ = p(x,y) = <(5,9) = 5<9 = T
 - $H_2 = (\forall x)p(x,y)$, I_2 é uma interpretação sobre os naturais N, tal que: $I_2[p]="\geq"$ e $I_2[y]=0$;
 - \circ H₂ = $(\forall x)p(x,y) = (\forall x) > (x,0) = x > 0 = T$

- ❖ Verificar se o conjunto de fórmulas H₁, H₂, H₃ e H₄ definidas a seguir são satisfatíveis ou não:
 - $H_3 = (\forall x)(\exists y)p(x,y)$, I_3 é uma interpretação sobre os naturais N, tal que: $I_3[p]=$ "<";
 - \circ H₃ = $(\forall x)(\exists y)p(x,y) = (\forall x)(\exists y)<(x,y) = T$
 - $\Leftrightarrow \forall d \in \mathbb{N}; \langle x \leftarrow d \rangle I[(\exists y)p(x,y)] = T$
 - $\Leftrightarrow \forall d \in \mathbb{N}, \exists c \in \mathbb{N}; \langle y \leftarrow c \rangle \langle x \leftarrow d \rangle I[p(x,y)] = T$
 - $\Leftrightarrow \forall d \in \mathbb{N}, \exists c \in \mathbb{N}; (d < c) \text{ \'e verdadeiro}$

- ❖ Verificar se o conjunto de fórmulas H₁, H₂, H₃ e H₄ definidas a seguir são satisfatíveis ou não:
 - ∘ $H_4 = (\forall x)(\exists y)p(x,y) \rightarrow p(x,y)$, I_4 é uma interpretação sobre os naturais N, tal que: $I_4[p]=$ "<", $I_4[x]=5$ e $I_4[y]=9$.

❖I[H4] = F
$$\Leftrightarrow$$
 I[(\forall x)(\exists y)p(x,y) \rightarrow p(x,y)] = F
 \Leftrightarrow I[(\forall x)(\exists y)p(x,y) = T e I[p(x,y)] = F
 \Leftrightarrow ∀ d ∈ N; \leftarrowd> I[(\exists y)p(x,y)]=T e I[p(x,y)]=F
 \Leftrightarrow ∀ d ∈ N, \exists c ∈ N; \leftarrowc>\leftarrowd> I[p(x,y)]=T e I[p(x,y)] = F
 \Leftrightarrow ∀ d ∈ N, \exists c ∈ N; (d

A última afirmação é falsa, pois é falso dizer que (5<9) = F.

Logo I [H4] = T, e H4 é satisfatível.

- As fórmulas H_1 , H_2 , H_3 e H_4 são **satisfatíveis**, pois as interpretações I_1 , I_2 , I_3 e I_4 são tais que: $I_1[H_1]=I_2[H_2]=I_3[H_3]=I_4[H_4]=T$.
 - $H_1 = p(x,y) = <(5,9) = 5<9 = T$
 - $H_2 = (\forall x)p(x,y) = (\forall x) \ge (x,0) = x \ge 0 = T$
 - $H_3 = (\forall x)(\exists y)p(x,y) = (\forall x)(\exists y) < (x,y) = T$
 - $H_{\Delta} = (\forall x)(\exists y)p(x,y) \rightarrow p(x,y) = T$

Satisfatibilidade de Fórmula

- Demonstrar se a fórmula abaixo é satisfatível ou não:
- $H = \neg (\forall x) p(x,y) \leftrightarrow (\exists x) (\neg p(x,z))$
- ❖ Seja I uma interpretação sobre o conjunto dos números naturais N:
 - $I[p(x,y)] = T \Leftrightarrow x_1 e y_1 são números pares;$
 - I[y] = 4;
 - I[z] = 6;
 - $I[H] = T \Leftrightarrow I[\neg((\forall x)p(x,y))] = I[(\exists x)(\neg p(x,z))].$