EDA & Decision Tree Classification with Obesity Classification **Dataset**

Table of contents

- **O1** Data Preparation & Understanding
- **Q2** Exploratory Data Analysis (EDA)
- **03** Machine Learning Modelling
- **04** Conclusion

01

Preparing & Understanding the

Data

Obesity Classification Dataset

Contains information about obesity classification of individuals.

Columns:

- ID
- Age
- Gender
- Height (cm)
- Weight (kg)
- BMI: The body mass index of the individual, calculated as weight divided by height squared.

- Label: The obesity classification of the individual:
 - Normal Weight
 - Overweight
 - Obese
 - Underweight

Obesity Classification.csv (3.96 kB)

Detail Compact Column							
⇔ ID =	# Age =	∆ Gender =	# Height =	# Weight =	# BMI =	∆ Label =	
1	25	Male	175	80	25.3	Normal Weight	
2	30	Female	160	60	22.5	Normal Weight	
3	35	Male	180	90	27.3	Overweight	
4	40	Female	150	50	20	Underweight	
5	45	Male	190	100	31.2	0bese	
6	50	Female	140	40	16.7	Underweight	
7	55	Male	200	110	34.2	0bese	
8	60	Female	130	30	13.3	Underweight	
9	65	Male	210	120	37.2	0bese	
10	70	Female	120	20	10	Underweight	

Source: https://www.kaggle.com/datasets/sujithmandala/obesity-classification-dataset

Problem Statement

Obesity Classification using Machine Learning

Objective:

 Build a machine learning model that can accurately classify individuals into different obesity categories based on their gender, age, BMI, weight, and height.

Libraries

import matplotlib.pyplot as plt
import seaborn as sns

Used for data visualization

Interpreting Data

Melihat 5 data teratas

d.head()									
	ID	Age	Gender	Height	Weight	BMI	Label		
0	1	25	Male	175	80	25.3	Normal Weight		
1	2	30	Female	160	60	22.5	Normal Weight		
2	3	35	Male	180	90	27.3	Overweight		
3	4	40	Female	150	50	20.0	Underweight		
4	5	45	Male	190	100	31.2	Obese		

```
d.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 108 entries, 0 to 107
Data columns (total 7 columns):
    Column Non-Null Count Dtype
    ID 108 non-null
                           int64
    Age
           108 non-null
                           int64
    Gender 108 non-null
                           object
    Height 108 non-null
                           int64
    Weight 108 non-null
                           int64
            108 non-null
                           float64
    Label 108 non-null
                           object
dtypes: float64(1), int64(4), object(2)
memory usage: 6.0+ KB
```

 Daftar column & tipe data masing-masing column

Interpreting Data

 Dataset memiliki 108 row dan 7 column

 Memperlihatkan statistical data

Encoding Columns

```
d.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 108 entries, 0 to 107
Data columns (total 7 columns):
     Column Non-Null Count Dtvpe
            108 non-null
                            int64
            108 non-null
                            int64
    Age
    Gender 108 non-null
                            object
    Height 108 non-null
                            int64
    Weight 108 non-null
                            int64
    BMI
            108 non-null
                            float64
    Label 108 non-null
                            obiect
dtypes: float64(1), int64(4), object(2)
memory usage: 6.0+ KB
```

 Convert them into numerical representations that can be more easily understood and processed by machine learning algorithms.

```
obj cols = d.select dtypes(include=['object']).columns.tolist()
print(obj cols)
['Gender', 'Label']
le = LabelEncoder()
for obj in obj cols:
    le.fit(d[obj])
    d[obj] = le.transform(d[obj])
data should be represented as numerical values:
d.head()
                     Height Weight BMI
   ID Age Gender
                                         Label
                                80 25.3
                               60 22.5
                                90 27.3
                                50 20.0
   5 45
                               100 31.2
```

Analyzing distributions

```
plt.figure(figsize=(8,5))

# 0 = Normal Weight
# 1 = Obese
# 2 = Overweight
# 3 = Underweight

plt.title('Overall Weight Condition Distribution')
class_count = d['Label'].value_counts()
vals = class_count.values
labels = class_count.index.tolist()
string_labels = [decoded_labels[label] for label in labels]

plt.pie(vals, labels=string_labels, autopct='%1.1f%%')

plt.show()
```


d['Label'].value_counts().plot(kind='bar')

Analyzing distributions

```
plt.title('Gender Distribution')
vals = d['Gender'].value_counts().values
labels = ['Male', 'Female']
plt.pie(vals, labels=labels, autopct='%1.1f%%')
```


d[cols_to_plot].corr()							
	Age	Gender	Height	Weight	ВМІ	Label	
Age	1.000000	-0.091964	-0.076896	0.465106	0.474185	-0.134396	
Gender	-0.091964	1.000000	0.876225	0.418415	0.342342	-0.281647	
Height	-0.076896	0.876225	1.000000	0.428890	0.354340	-0.237683	
Weight	0.465106	0.418415	0.428890	1.000000	0.972829	-0.565555	
ВМІ	0.474185	0.342342	0.354340	0.972829	1.000000	-0.589237	
Label	-0.134396	-0.281647	-0.237683	-0.565555	-0.589237	1.000000	

cols_to_plot = ['Age', 'Gender', 'Height', 'Weight', 'BMI', 'Label']

plt.figure(figsize=(5,6))
hm = sns.heatmap(d[cols_to_plot].corr(), annot=True)

Observation:

High correlation

- BMI <-> Weight
- Height <-> Gender

Fair correlation

- Weight <-> Age, Gender, Height
- BMI <-> Age
- Age <-> Weight, BMI
- Gender <-> Weight
- Height <-> Weight

Little correlation

- BMI <-> Gender, Height
- Gender <-> BMI
- Height <-> BMI

Female: 0 (blue)Male: 1 (orange)

Visualizing Data

Comparing feature values based on Gender

Observation:

- The heavier you weigh the greater the BMI
- Males are taller on average
- Weight & BMI have a high correlation
- Age & Weight / Age & BMI have somewhat a correlation
- Data that has no correlation:
 - Height & Weight
 - Height & BMI
 - Age & Height
 - o Gender & BMI

Machine Learning Modeling

Libraries

```
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree

from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
```

Used for machine learning modelling

Preprocessing Data

```
d.drop('ID', axis=1, inplace=True)

X = d.drop(["Label"],axis=1)
y = d["Label"]
```

Removing unused columns

	Age	Gender	Height	Weight	BMI
0	25	1	175	80	25.3
1	30	0	160	60	22.5
2	35	1	180	90	27.3
3	40	0	150	50	20.0
4	45	1	190	100	31.2
103	11	1	175	10	3.9
104	16	0	160	10	3.9
105	21	1	180	15	5.6
106	26	0	150	15	5.6
107	31	1	190	20	8.3

Splitting Data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Decision Tree Classification

```
# training data
dtc = DecisionTreeClassifier()

# train
dtc.fit(X_train, y_train)

# predict labels for the test data
y_pred = dtc.predict(X_test)
```

Why Decision Tree?

```
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```

Accuracy: 1.0

Evaluating accuracy of Decision Tree Classification as the chosen model

Why Decision Tree?

Using classification report

<pre>print(classification_report(y_test, y_pred))</pre>							
	precision	recall	f1-score	support			
0 1 2 3	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	6 4 4 8			
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	22 22 22			

Visualizing Decision Tree

```
plt.rcParams['figure.dpi'] = 85
plt.subplots(figsize=(10, 10))
tree.plot_tree(dtc, fontsize=10)
plt.show()
```


Visualizing Decision Tree

X_train.columns

Index(['Age', 'Gender', 'Height', 'Weight', 'BMI'], dtype='object')

- x[3] = Weight
- x[4] = BMI
- Gini impurity
- Samples (before data is split)

*Remember:

Visualizing Data

Analyzing correlation between attributes

High correlation • BMI <-> Weight • Height <-> Gender Fair correlation • Weight <-> Age, Gender, Height • BMI <-> Age • Age <-> Weight, BMI • Gender <-> Weight • Height <-> Weight Little correlation • BMI <-> Gender, Height Gender <-> BMI Height <-> BMI

Visualizing Decision Tree

X_train.columns

Index(['Age', 'Gender', 'Height', 'Weight', 'BMI'], dtype='object')

- x[3] = Weight
- x[4] = BMI

Evaluating Trained Model

```
X train.columns
Index(['Age', 'Gender', 'Height', 'Weight', 'BMI'], dtype='object')
   new_data = [[30, 1, 180, 20, 27.3], [60, 1, 170, 55, 20]]
    preds = dtc.predict(new data)
    preds
                                               Output:
    # 0 = Normal Weight
                                                  array([3, 0])
    #1 = Obese
    # 2 = Overweight
   # 3 = Underweight
```


Main Summary Points

- Weight and BMI are the most influential attributes used to classify obesity data.
- Using machine learning models is very beneficial to help classify obesity data.
- Decision Tree Classification is a highly effective machine learning model to use for the chosen dataset.

Thank You!

Tugas Besar Pengantar Kecerdasan Buatan / Introduction to Al Final Project

- 1972034 Leona Rose
- 1972042 Neng Linda Rahayu

