Année: 2023/2024 Première année Master PS

Module : Martingales Discrètes

Correction de l'Examen

QUESTIONS DE COURS. Voir le cours.

SOLUTION .

- 1) C'est simplement une application du conditionnement successif de l'espérance conditionnelle, en
 - a) $(X_n)_{n\geq 0}$ est adapté à $(\mathcal{F}_n)_{n\geq 0}$ par la définition de l'espérance conditionnelle.
 - b) les X_n sont intégrables du fait que Y l'est.
 - c) $\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \mathbb{E}[\mathbb{E}[Y|\mathcal{F}_{n+1}|\mathcal{F}_n]] = \mathbb{E}[Y|\mathcal{F}_n] = X_n$. D'où le résultat.
- 2) Par l'inégalité de Jensen; pour tout n,

$$\mathbb{E}[\varphi(X_{n+1})|\mathcal{F}_n] \ge \varphi(\mathbb{E}[X_{n+1}|\mathcal{F}_n]) \ge \varphi(X_n)$$

donc $(X_n)_{n\geq 0}$ est une sous-martingale pour $(\mathcal{F}_n)_{n\geq 0}$.

3) Tout d'abord, comme somme de produit de v.a. \mathcal{F}_n -mesurables, V_n est \mathcal{F}_n -mesurable. Ensuite, V_n est clairement L^1 car les ${\cal H}_k$ sont bornés et les X_k sont L^1 . Enfin,

$$\mathbb{E}(V_{n+1}|\mathcal{F}_n) = V_n + \mathbb{E}(H_{n+1}(X_{n+1} - X_n)|\mathcal{F}_n) = V_n + H_{n+1}\mathbb{E}(X_{n+1} - X_n|\mathcal{F}_n) = V_n.$$

4) Tout processus p.s. constant est une martingale et réciproquement, si $H=(H_n)_{n\geq 0}$ un processus (\mathcal{F}_n) -prévisible et une (\mathcal{F}_n) -martingale, on a pour tout n, p.s.

$$H_n = \mathbb{E}(H_{n+1}|\mathcal{F}_n) = H_{n+1}.$$

5) Posons $Y_n = X_n - \mathbb{E}[X_n]$. Ce processus satisfait les mêmes hypothèses que X_n en étant en plus centré, donc revient à montrer que $Z_n=Y_n^2-\mathbb{E}(Y_n^2)$ est une martingale. Notons que l'on a alors $\mathbb{E}(Y_{n+1}Y_n)=$ $\mathbb{E}(Y_n^2)$ (commencer par conditionner par \mathcal{F}_n). Par ailleurs, par indépendance, on a $\mathbb{E}((Y_{n+1}-Y_n)^2|\mathcal{F}_n)=$ $\mathbb{E}((Y_{n+1}-Y_n)^2)$. Il en résulte, en écrivant

$$W_{n+1} - W_n = Y_{n+1}^2 - Y_n^2 - \mathbb{E}(Y_{n+1}^2) + \mathbb{E}(Y_n^2) = (Y_{n+1} - Y_n)^2 + 2Y_{n+1}Y_n - 2Y_n^2 - \mathbb{E}(Y_{n+1}^2) + \mathbb{E}(Y_n^2),$$
 que l'on a $\mathbb{E}(W_{n+1} - W_n | \mathcal{F}_n) = 0.$