Exercise Sheet 2

Question 1: Basic relational algebra

Given below are two tables T_1 and T_2 .

$T_1:$					
-1.	\mathbf{V}	W	X	\mathbf{Y}	\mathbf{Z}
	1	a	x	15	e
	2	a	x	10	f
	2	b	x	15	g
	2	b	y	15	h

T_2 :				
-2.	$lue{\mathbf{C}}$	D	X	W
	4	p	x	b
	5	t	x	b
	6	p	y	a
	7	r	u	a

a. Calculate the result of the following relational algebra expression step by step:

$$\sigma_{D=p}(\pi_{X,Y}(T_1)\bowtie\pi_{X,D}(T_2))$$

b. Can you think of other ways of writing the above expression that produce the same result but involve less calculation?

Question 2: Understanding relational algebra

Explain each of the following relational algebra expressions in plain English, and translate them into SQL. (These refer to the "fundamentals" database.)

- a. $\pi_{lastname}(\sigma_{firstname='John'}(staff))$
- $\text{b. } \pi_{\texttt{lastname}}(\sigma_{\texttt{numbers}>100}(\texttt{staff}\bowtie\texttt{lecturing}))$
- $\text{c. } \pi_{\texttt{name}}(\sigma_{\texttt{numbers}>100}(\texttt{lecturing} \bowtie \texttt{courses})) \pi_{\texttt{name}}(\sigma_{\texttt{level}=1}(\texttt{courses}))$
- d. $\pi_{\{\text{lastname}, \text{name}\}}(\sigma_{\text{year}=1999}(\text{staff}\bowtie \text{lecturing}\bowtie \text{courses})) \cap \pi_{\{\text{lastname}, \text{name}\}}(\sigma_{\text{level}=2}(\text{staff}\bowtie \text{lecturing}\bowtie \text{courses}))$

Question 3: From SQL to relational algebra

Translate the following SQL queries into relational algebra.

```
a.
     SELECT c.name
     FROM courses AS c, staff AS s, lecturing AS 1
     WHERE l.sid = s.sid AND l.cid = c.cid AND
            (1.year = 1999 OR 1.year = 2000)
           AND s.lastname = 'Jung';
b.
     SELECT c.name
     FROM lecturing AS 1, courses AS c
     WHERE l.cid = c.cid AND l.year = 2001
     EXCEPT
     SELECT c.name
     FROM lecturing AS 1, courses AS c
     WHERE 1.cid = c.cid AND (1.year = 2000 OR 1.year = 1999);
     SELECT c.name
     FROM lecturing 11, lecturing 12, courses c
     WHERE 11.cid=12.cid AND 11.cid=c.cid AND
            11.sid=12.sid AND
            11.year=1999 AND 12.year=2000;
```

Question 4: Suggesting functional dependencies

Consider the following schema which describes M.O.T. inspections of motor vehicles.

- a. Find plausible (and non-trivial) functional dependencies. In doing so, list your assumptions and discuss whether they are reasonable.
- b. Determine the candidate key(s).

Question 5: Outer Joins (Optional))

Given below are two tables T_1 and T_2 .

T_1 :			
-1.	A	В	\mathbf{C}
	1	2	3
	4	5 8	6 9
	7	8	9

T_2 :	В	\mathbf{C}	D
	2	3	10
	2	3 6	11
	2	6	10
	6	7	12

- a. Calculate the (natural) inner join $T_1 \bowtie T_2$ of the two tables.
- b. Which tuples of T_1 and T_2 are dangling tuples in this calculation?
- c. Calculate the (natural) outer join of the two tables. (This is denoted $T_1 \stackrel{\circ}{\bowtie} T_2$.)
- d. Which tuples of the outer join are included if we are only interested in the *left* outer join?