Lecture 10: Orthogonality (Section 3.1)

Thang Huynh, UC San Diego 1/31/2018

$$\blacktriangleright \text{ Example 1. } A = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix}$$

► Example 1.
$$A = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix}$$
 stretches every vector in \mathbb{R}^2 by the same factor c .

1

- ► Example 1. $A = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix}$ stretches every vector in \mathbb{R}^2 by the same factor c.
- $\blacktriangleright \text{ Example 2. } A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

- ► Example 1. $A = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix}$ stretches every vector in \mathbb{R}^2 by the same factor c.
- **Example 2.** $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$\mathsf{maps} \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} y \\ x \end{bmatrix}$$

1

- **Example 1.** $A = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix}$
- stretches every vector in \mathbb{R}^2 by the same factor c.
- $\blacktriangleright \text{ Example 2. } A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$\mathsf{maps} \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} y \\ x \end{bmatrix}$$

reflects every vector in \mathbb{R}^2 through the line y = x.

1

$$\blacktriangleright \text{ Example 3. } A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Example 3.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x \\ 0 \end{bmatrix}$, i.e.

► Example 3.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x \\ 0 \end{bmatrix}$, i.e. projects every vector in \mathbb{R}^2 onto the x -axis.

$$\blacktriangleright \text{ Example 3. } A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

gives the map
$$\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x \\ 0 \end{bmatrix}$$
, i.e.

projects every vector in \mathbb{R}^2 onto the *x*-axis.

Example 4.
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

► Example 3.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x \\ 0 \end{bmatrix}$, i.e. projects every vector in \mathbb{R}^2 onto the *x*-axis.

► Example 4.
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} -y \\ x \end{bmatrix}$, i.e.

► Example 3.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x \\ 0 \end{bmatrix}$, i.e. projects every vector in \mathbb{R}^2 onto the *x*-axis.

▶ Example 4.
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} -y \\ x \end{bmatrix}$, i.e. rotates every vector in \mathbb{R}^2 counter-clockwise by 90° .

rotates every vector in \mathbb{R}^2 counter-clockwise by 90° .

▶ Definition. The inner product or dot product of v and w in \mathbb{R}^n is defined by

$$\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^T \mathbf{w} = v_1 w_1 + \dots + v_n w_n.$$

▶ Definition. The **inner product** or **dot product** of v and w in \mathbb{R}^n is defined by

$$\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^T \mathbf{w} = v_1 w_1 + \dots + v_n w_n.$$

▶ Example. Find the inner product of the following two vectors

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}.$$

▶ Definition. The **norm** or **length** of a vector v in \mathbb{R}^n is

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + \dots + v_n^2}.$$

▶ Definition. The **norm** or **length** of a vector v in \mathbb{R}^n is

$$\|\boldsymbol{v}\| = \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}} = \sqrt{v_1^2 + \dots + v_n^2}.$$

▶ Definition. The **distance** between points v and w in \mathbb{R}^n is

$$\mathsf{dist}(\boldsymbol{v},\boldsymbol{w}) = \|\boldsymbol{v} - \boldsymbol{w}\|.$$

▶ Definition. The **norm** or **length** of a vector v in \mathbb{R}^n is

$$\|\boldsymbol{v}\| = \sqrt{\boldsymbol{v}\cdot\boldsymbol{v}} = \sqrt{v_1^2 + \dots + v_n^2}.$$

▶ Definition. The **distance** between points v and w in \mathbb{R}^n is

$$\mathsf{dist}(\boldsymbol{v},\boldsymbol{w}) = \|\boldsymbol{v} - \boldsymbol{w}\|.$$

▶ Example. In \mathbb{R}^2 ,

dist
$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$
, $\begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$ = $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

▶ Definition. v and w in \mathbb{R}^n are **orthogonal** if $v \cdot w = 0$.

- ▶ Definition. v and w in \mathbb{R}^n are **orthogonal** if $v \cdot w = 0$.
- ▶ Pythagoras. v and w are orthogonal

$$\iff \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 = \|\mathbf{v} - \mathbf{w}\|^2$$

$$\iff \mathbf{v} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} = (\mathbf{v} - \mathbf{w}) \cdot (\mathbf{v} - \mathbf{w})^2$$

$$\iff \mathbf{v} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} = \mathbf{v} \cdot \mathbf{v} - 2\mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{w}$$

$$\iff \mathbf{v} \cdot \mathbf{w} = 0.$$

- ▶ Definition. v and w in \mathbb{R}^n are **orthogonal** if $v \cdot w = 0$.
- ightharpoonup Pythagoras. v and w are orthogonal

$$\iff \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 = \|\mathbf{v} - \mathbf{w}\|^2$$

$$\iff \mathbf{v} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} = (\mathbf{v} - \mathbf{w}) \cdot (\mathbf{v} - \mathbf{w})^2$$

$$\iff \mathbf{v} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} = \mathbf{v} \cdot \mathbf{v} - 2\mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{w}$$

$$\iff \mathbf{v} \cdot \mathbf{w} = 0.$$

► Example. Are the following vectors orthogonal?

$$\bullet \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

$$\bullet \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

- ▶ Definition. v and w in \mathbb{R}^n are **orthogonal** if $v \cdot w = 0$.
- ightharpoonup Pythagoras. v and w are orthogonal

$$\iff \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 = \|\mathbf{v} - \mathbf{w}\|^2$$

$$\iff \mathbf{v} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} = (\mathbf{v} - \mathbf{w}) \cdot (\mathbf{v} - \mathbf{w})^2$$

$$\iff \mathbf{v} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} = \mathbf{v} \cdot \mathbf{v} - 2\mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{w}$$

$$\iff \mathbf{v} \cdot \mathbf{w} = 0.$$

► Example. Are the following vectors orthogonal?

$$\bullet \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

$$\bullet \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Theorem. Suppose that $v_1, ..., v_n$ are nonzero and pairwise orthogonal. Then $v_1, ..., v_n$ are linearly independent.

▶ Proof.

Example. The vectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ are pairwise orthogonal and have length 1.

► Example. The vectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ are pairwise orthogonal and have length 1.

Example. Consider
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix}$$
. Find $N(A)$ and $C(A^T)$.

- ► Example. The vectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ are pairwise orthogonal and have length 1.
- ► Example. Consider $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix}$. Find N(A) and $C(A^T)$.
- ► Solution. $N(A) = \operatorname{span}\left\{\begin{bmatrix} -2\\1 \end{bmatrix}\right\}$ and $C(A^T) = \operatorname{span}\left\{\begin{bmatrix} 1\\2 \end{bmatrix}\right\}$.

- ► Example. The vectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ are pairwise orthogonal and have length 1.
- ► Example. Consider $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix}$. Find N(A) and $C(A^T)$.
- ► Solution. $N(A) = \operatorname{span}\left\{\begin{bmatrix} -2\\1 \end{bmatrix}\right\}$ and $C(A^T) = \operatorname{span}\left\{\begin{bmatrix} 1\\2 \end{bmatrix}\right\}$. Note

that the two basis vectors are orthogonal $\begin{bmatrix} -2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 0$.

Example. Consider
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 0 \\ 3 & 6 & 0 \end{bmatrix}$$
. Find $N(A)$ and $C(A^T)$.

- **Example.** Consider $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 0 \\ 3 & 6 & 0 \end{bmatrix}$. Find N(A) and $C(A^T)$.
- Solution. $N(A) = \operatorname{span} \left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix} \right\}$ and $C(A^T) = \operatorname{span} \left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$.

- Example. Consider $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 0 \\ 3 & 6 & 0 \end{bmatrix}$. Find N(A) and $C(A^T)$.

the vector in N(A) is orthogonal to the vectors in $C(A^T)$

$$\begin{bmatrix} -2\\1\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\2\\0 \end{bmatrix} = 0, \quad \begin{bmatrix} -2\\1\\0 \end{bmatrix} \cdot \begin{bmatrix} 0\\0\\1 \end{bmatrix} = 0.$$

- Example. Consider $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 0 \\ 3 & 6 & 0 \end{bmatrix}$. Find N(A) and $C(A^T)$.

the vector in N(A) is orthogonal to the vectors in $\mathcal{C}(A^T)$

$$\begin{bmatrix} -2\\1\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\2\\0 \end{bmatrix} = 0, \quad \begin{bmatrix} -2\\1\\0 \end{bmatrix} \cdot \begin{bmatrix} 0\\0\\1 \end{bmatrix} = 0.$$

Vectors in N(A) are orthogonal to vectors in $C(A^T)$.

- ▶ Definition. Let *W* be a subspace of \mathbb{R}^n , and ν in \mathbb{R}^n .
 - v is **orthogonal** to W, if $v \cdot w = 0$ for all w in W.

- ▶ Definition. Let *W* be a subspace of \mathbb{R}^n , and ν in \mathbb{R}^n .
 - v is **orthogonal** to W, if $v \cdot w = 0$ for all w in W.
 - Another subspace V is orthogonal to W, if every vector in V is orthogonal to W.

- ▶ Definition. Let *W* be a subspace of \mathbb{R}^n , and \mathbf{v} in \mathbb{R}^n .
 - v is **orthogonal** to W, if $v \cdot w = 0$ for all w in W.
 - Another subspace V is orthogonal to W, if every vector in V is orthogonal to W.
 - The **orthogonal complement** of W is the space W^{\perp} of all vectors in \mathbb{R}^n that are orthogonal to W.

- ▶ Definition. Let *W* be a subspace of \mathbb{R}^n , and ν in \mathbb{R}^n .
 - v is **orthogonal** to W, if $v \cdot w = 0$ for all w in W.
 - Another subspace V is orthogonal to W, if every vector in V is orthogonal to W.
 - The **orthogonal complement** of W is the space W^{\perp} of all vectors in \mathbb{R}^n that are orthogonal to W. (Is W^{\perp} a vector space?)

- ▶ Definition. Let *W* be a subspace of \mathbb{R}^n , and ν in \mathbb{R}^n .
 - v is **orthogonal** to W, if $v \cdot w = 0$ for all w in W.
 - Another subspace V is orthogonal to W, if every vector in V is orthogonal to W.
 - The **orthogonal complement** of W is the space W^{\perp} of all vectors in \mathbb{R}^n that are orthogonal to W. (Is W^{\perp} a vector space?)
- ► Example. In previous example, $N(A) = \text{span} \left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix} \right\}$ and

$$C(A^T) = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$
 are orthogonal subspaces.

Theorem. (Fundamental Theorem of Linear Algebra, Part II)

- N(A) is orthogonal to $C(A^T)$. (The two spaces are orthogonal complements)
- $N(A^T)$ is orthogonal to C(A). (The two spaces are orthogonal complements)

▶ Proof.

Theorem. (Fundamental Theorem of Linear Algebra, Part II)

- N(A) is orthogonal to $C(A^T)$. (The two spaces are orthogonal complements)
- $N(A^T)$ is orthogonal to C(A). (The two spaces are orthogonal complements)

▶ Proof.

Theorem. (Fundamental Theorem of Linear Algebra, Part I) Let A be an $m \times n$ matrix of rank r.

- $\dim C(A) = \dim C(A^T) = r$.
- $\dim N(A) = n r$
- $\dim N(A^T) = m r$.

Example. Find all vectors orthogonal to $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

- **Example.** Find all vectors orthogonal to $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.
- ► Example. Let $V = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a + b = 2c \right\}$. Find a basis for the orthogonal complement of V.

A new perspective on Ax = b

Ax = b is solvable

 \iff **b** is in C(A)

 \iff **b** is orthogonal to $N(A^T)$

A new perspective on Ax = b

$$A\mathbf{x} = \mathbf{b}$$
 is solvable
 $\iff \mathbf{b}$ is in $C(A)$
 $\iff \mathbf{b}$ is orthogonal to $N(A^T)$

Example. Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$$
. For which \boldsymbol{b} does $A\boldsymbol{x} = \boldsymbol{b}$ have a solution?

solution?