- **Опр. 1.** Топологическое пространство называется вполне несвязным, если оно не имеет связных подмножеств, за исключением состоящих из одной точки.
- Опр. 2. Целым p-адическим числом называется бесконечная последовательность $(a_i)_{i\in\mathbb{N}_0}$, в которой все a_i p-ичные цифры (т.е. a_i целое число, такое что $0\leq a_i\leq p-1$). Последовательность $(a_i)_{i\in\mathbb{N}_0}$, о которой идет речь в этом определении, будем записывать в следующем виде: ... $a_2a_1a_0$.
- Опр. 3. Суммой (соотв. разностью, произведением) целых р-адических чисел $\dots a_2a_1a_0$ и $\dots b_2b_1b_0$ называется целое р-адическое число, получаемое из них по правилам сложения (соотв. вычитания, умножения) «в столбик» в р-ичной системе счисления, если записать два числа одно под другим (b_0 под a_0 , b_1 под a_1 и m.д.).
 - 1. Докажите, что сложение, вычитание и умножение целых p-адических чисел обладает теми же свойствами (коммутативность, ассоциативность, дистрибутивность, ...), что и у обычных целых чисел.
- **Опр. 4.** Если $a \in \mathbb{Z}_p$ отлично от нуля, то его p-адической нормой называется число $|a|_p = p^{-n}$, где n наибольшее натуральное n, для которого a делится на p^n . Если a = 0, полагают $|a|_p = 0$.
 - **Опр. 5.** p-адическим расстоянием между $a,b \in \mathbb{Z}_p$ называется число $|a-b|_p$.
 - 2. Докажите, что для любых $a,b\in\mathbb{Z}_p$ выполнено (ультраметрическое) неравенство: $|a+b|_p\leq \max(|a|_p,|b|_p).$
 - 3. Докажите, что пространство \mathbb{Z}_p компактно.
 - 4. Докажите, что последовательность $(x_n)_{n\in\mathbb{N}}$ в \mathbb{Z}_p сходится тогда и только тогда, когда $\lim_{n\to+\infty}(x_{n+1}-x_n)=0.$
 - 5. Докажите, что замыкание подмножества $\mathbb{Z} \subset \mathbb{Z}_p$ совпадает со всем \mathbb{Z}_p .
- Опр. 6. Разобъём отрезок $[0;1] \subset \mathbb{R}$ на три равные части и удалим среднюю из них как открытый интервал (1/3;2/3); останется объединение двух отрезков $[0;1/3] \cup [2/3;1]$. Каждый из оставшихся отрезков длины 1/3 также разобъем на три равные части и удалим из каждого из них средний открытый интервал; с каждым из оставшихся отрезков длины $1/3^2$ проделаем ту же операцию, и так до бесконечности. Обозначим через $\mathcal{K} \subset [0;1]$ множество, оставшееся от отрезка после удаления всех этих открытых интервалов; это множество называется канторовым множеством.
 - 6. Докажите, что множество \mathcal{K} состоит из тех и только тех чисел, которые можно записать в виде бесконечной троичной дроби вида $\overline{0, a_1 a_2 a_3 \dots}$, в которой все a_i равны 0 или 2. (В частности, \mathcal{K} имеет мощность континуум.)
 - 7. Множество \mathcal{K} компактно, вполне несвязно, нигде не плотно и совершенно (т.е. замкнутое множество, не имеющее изолированных точек).
 - 8. Пусть S конечное множество (|S|>1), на котором задана дискретная топология, а X произведение счётного числа экземпляров этого пространства, т.е. множество всевозможных бесконечных последовательностей (a_1,a_2,\ldots) , где все $a_i\in S$, на котором задана тихоновская топология. Докажите, что множества вида $U_{a_1,\ldots,a_n}\stackrel{\mathrm{def}}{=}\{(x_1,x_2,\ldots)\colon x_i=a_i$ при $1\leq i\leq n\}$ (для всевозможных n и всевозможных $a_1,\ldots,a_n\in S$) образуют базу топологии на X.
- Опр. 7. Бесконечным деревом называется бесконечный граф, устроенный следующим образом. Одна из вершин, называемая корнем, в графе выделена, а все остальные разбиты в несвязное объединение конечных множеств X_1, X_2, \ldots ; вершины, входящие в множество X_k , мы будем называть вершинами k-ого уровня. Корень соединён ребром с каждой из вершин первого уровня, и каждая вершина k-ого уровня соеди-

нена ребром с какими-то вершинами (k+1)-го уровня. При этом при $k \geq 2$ каждая вершина k-го уровня соединена ровно с одной вершиной (k-1)-го уровня (своим родителем). Обозначим через У множество, состоящее из всевозможных путей в дереве. Пусть $f_i\colon X_i\to X_{i-1}$ определённое при каждом i>1 отображение, ставящее в соответствие вершине её родителя. Тогда, очевидно,

$$Y = \left\{ (x_1, x_2, \ldots) \in \prod_{i=1}^{\infty} X_i \colon f_i(x_i) = x_{i-1} \text{ dir } ecex \ i > 1 \right\}$$

Топологию на X определим как индуцированную $c\prod_{i=1}^{\infty}X_i,$ где топология на каждом X_i дискретна.

- 9. Докажите, что базу топологии на Y образуют множества путей, в которых начальный участок зафиксирован, а далее можно идти как угодно.
- 10. Докажите, что если в бесконечном дереве из каждой вершины (включая корень) выходит не менее двух ребер, ведущих в вершины следующего уровня, то пространство путей в этом дереве гомеоморфно канторову множеству.
- 11. Пусть для каждого $i \in \mathbb{N}$ задано конечное множество A_i ($|A_i| > 1$) с дискретной топологией. Докажите, что пространство $Y = \prod A_i$ гомеоморфно канторову множеству. (В частности, канторову множеству гомеоморфно всякое кольцо целых p-адических чисел \mathbb{Z}_p .)
- 12. Пусть X компактное метрическое пространство. Докажите, что существует непрерывное сюръективное отображение $f: \mathcal{K} \to X$.
- 13. Докажите, что мощность компактного метрического пространства не превосходит мощности континуума.

Упражнения

- 1. Покажите, что в кольце целых p-адических чисел \mathbb{Z}_p имеет место «арифметика пределов»: $\lim_{n\to\infty} (a_n+b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$, $\lim_{n\to\infty} (a_nb_n) = \lim_{n\to\infty} a_n \lim_{n\to\infty} b_n$. 2. Пусть $u\in\mathbb{Z}_p$ не делится на p. Существует ли такое $v\in\mathbb{Z}_p$, что uv=1?
- 3. Докажите, что $\frac{1}{4}$ принадлежит канторову множеству.
- 4. Докажите, что множество $\{a+b\colon a+b\in \mathcal{K}\}$ всевозможных сумм элементов канторова множества совпадает с отрезком [0; 2].
- 5. Докажите, что каждое непустое совершенное множество в \mathbb{R}^n имеет мощность континуума.
- 6. Точка x называется точкой конденсации множества $X \subset \mathbb{R}^n$, если каждая её ε окрестность содержит несчётное подмножество точек множества X. Докажите, что множество точек конденсации каждого несчётного множества совершенно.
- 7. Множество X на прямой называется множеством меры нуль, если для любого $\varepsilon>0$ его можно покрыть конечной или счётной системой интервалов, сумма длин которых не превосходит ε . Приведите пример непрерывное монотонной функции $[0;1] \to [0;1]$, которая не является константой, но при этом имеет производную, равную нулю почти во всех точках (т.е. во всех точках за исключением множества меры нуль).
- 8. Пусть X выпуклое компактное подмножество в \mathbb{R}^n . Покажите, что существует непрерывное и сюръективное отображение $f:[0;1]\to X$ («кривая Пеано»).