1.	Expl	ain why copper is considered a transition metal while scandium is not. (To	otal 3 marks)
2.	(i)	Define the term first ionization energy.	
			(2)
	(ii)	Explain why the first ionization energy of magnesium is higher than that of sodium.	
		(To	(2) otal 4 marks)
3.	Whic	ch statements about period 3 are correct?	
		I. The electronegativity of the elements increases across period 3.	
		II. The atomic radii of the elements decreases across period 3.	
		III. The oxides of the elements change from acidic to basic across period 3.	
	A.	I and II only	
	B.	I and III only	
	C.	II and III only	
	D.	I, II and III	otal 1 mark)

4.	Explain why the melting points of the elements decrease down group 1 and increase down group 7.				
	group	<i>y</i> 7.	(Total 4 marks)		
5.	Cons	ider the bonding and structure of the period 3 elements.			
	(a)	Explain the increase in the melting point from sodium to aluminium.			
			(2)		
	(b)	Explain why sulfur, S_8 , has a higher melting point than phosphorus, P_4 .			
			(2)		
	(c)	Explain why silicon has the highest melting point and argon has the lowest melting	ng point.		
			(2)		
			(Total 6 marks)		

- **6.** The periodic table shows the relationship between electron arrangement and the properties of elements and is a valuable tool for making predictions in chemistry.
 - (i) Identify the property used to arrange the elements in the periodic table.

(1)

(ii) Outline **two** reasons why electronegativity increases across period 3 in the periodic table and **one** reason why noble gases are not assigned electronegativity values.

(3)

(Total 4 marks)

7. The graph of the first ionization energy plotted against atomic number for the first twenty elements shows periodicity.

(i) Define the term *first ionization energy* and state what is meant by the term *periodicity*.

(2)

(ii) State the electron arrangement of argon and explain why the noble gases, helium, neon and argon show the highest first ionization energies for their respective periods.

(3)

Explain why a sulfide ion, S^{2-} , is larger than a chloride ion, Cl^- . Explain why the melting points of the Group 1 metals ($Li \to Cs$) decrease down the oup whereas the melting points of the Group 7 elements ($F \to I$) increase down the oup. (Total 10 n
oup whereas the melting points of the Group 7 elements $(F \rightarrow I)$ increase down the oup.
(Total 10 n
X Y
low ionization energy high electronegativity value
low ionization energy low electronegativity value
high ionization energy high electronegativity value
high ionization energy low electronegativity value
(Total 1
why silicon dioxide is a solid and carbon dioxide is a gas at room temperature.
why silicon dioxide is a solid and carbon dioxide is a gas at room temperature.

10. Describe the bonding within the carbon monoxide molecule.

(Total 2 marks)

- 11. Which species does **not** contain delocalized electrons?
 - A. CH₃CH₂O⁻
 - B. $CH_3CO_2^-$
 - C. O_3
 - D. NO₃

(Total 1 mark)

12. Lewis structures are represented in different ways in different parts of the world. Two ways of drawing the Lewis structure for H₃O⁺ are shown below.

$$\begin{bmatrix} H - \ddot{O} - H \\ H \end{bmatrix}_{+} \begin{bmatrix} H : \ddot{O} : H \\ \ddot{H} \end{bmatrix}_{+}$$

Which statement is correct about H_3O^+ ?

- A. The ion has a tetrahedral shape.
- B. The H–O–H bond angle is 120°.
- C. The H–O–H bond angle is 90°.
- D. The ion has a trigonal pyramidal shape.

(Total 1 mark)

13. Which combination of intermolecular forces, boiling point and enthalpy of vaporization is correct?

	Intermolecular forces	Boiling point	Enthalpy of vaporization
A.	strong	low	low
B.	strong	high	low
C.	weak	low	high
D.	weak	low	low

(Total 1 mark)

- **14.** Which statement about the bonding between carbon atoms is correct?
 - A. In C_{60} fullerene each carbon atom is covalently bonded to three other carbon atoms.
 - B. In C_{60} fullerene each carbon atom is covalently bonded to four other carbon atoms.
 - C. In graphite each carbon atom is covalently bonded to four other carbon atoms.
 - D. In graphite each carbon atom forms a double covalent bond with three other carbon atoms.

(Total 1 mark)

- **15.** Which intermolecular forces exist between molecules of carbon monoxide, CO?
 - A. Hydrogen bonds and van der Waals' forces
 - B. Dipole-dipole attractions and van der Waals' forces
 - C. Van der Waals' forces only
 - D. Dipole-dipole attractions only

(Total 1 mark)

16.	Ethene, C ₂ H ₄ , and hydrazine, N ₂ H ₄ , are hydrides of adjacent elements in the periodic table.					
	(a)	(i)	Draw Lewis (electron dot) structures for C_2H_4 and N_2H_4 showing all valence electrons.	(2)		
		(ii)	State and explain the H–C–H bond angle in ethene and the H–N–H bond angle in hydrazine.	(5)		
	(b)	The j	polarity of a molecule can be explained in terms of electronegativity.			
		(i)	Define the term electronegativity.	(2)		
		(ii)	Compare the relative polarities of the C–H bond in ethene and the N–H bond in hydrazine.	(1)		
		(iii)	Hydrazine is a polar molecule and ethene is non-polar. Explain why ethene is non-polar.	(1)		
	(c)		boiling point of hydrazine is much higher than that of ethene. Explain this difference rms of the intermolecular forces in each compound. (Total 13 mag)	(2) arks)		

17. Which species have delocalized electrons?

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

(Total 1 mark)

18. The graph below shows the boiling points of the hydrides of group 5. Discuss the variation in the boiling points.

(Total 4 marks)

19. (i) Outline the principles of the valence shell electron pair repulsion (VSEPR) theory. (3)

(ii) Use the VSEPR theory to deduce the shape of H_3O^+ and C_2H_4 . For each species, draw the Lewis structure, name the shape, and state the value of the bond angle(s).

(6)

(iii) Predict and explain whether each species is polar.

(2)

(iv) Using Table 7 of the Data Booklet, predict and explain which of the bonds O-H, O-N or N-H would be most polar.

(2)

(Total 13 marks)