一、多选题

 文件系统管理数据的主要缺点有(AC) A. 数据冗余与不一致 B. 数据更新具有原子性 C. 数据孤立 D. 高并发数据访问 	
2. DBA 的主要职责包括(ABCD) A. 安全和完整性控制 B. 数据库性能监控、分析与优化 C. 数据库恢复 D. 数据库结构调整 E. 事务处理与并发控制	
3. 下列哪些属于过程性查询语言?(C)A. 元组关系演算 B. 域关系演算 C. 关系代数 D. SQL	
 4. 六个基本关系代数操作包括(B), 其他操作都可以由这些操作推导得到。 A. ∩, -, π, σ, ×, ρ B. ∪, -, π, σ, ×, ρ C. ∪, -, π, σ, ⋈, ρ D. ∩, ÷, π, σ, ⋈, ρ 	o
5. 下列哪些可以确定一个关系中的所有属性? (ACD) A. 超码 B. 外码 C. 候选码 D. 主码 E. 搜索码	
6. 下列哪些操作可以在视图上进行? (ABC) A. 查询 B. 定义新的视图 C. 更新视图 D. 定义新的关系	
 7. 给定关系 R<u, f="">, U={A, B, C, D}, F={A→B, B→D, C→D, D→A}, 以及 R □ 分解ρ={AB, BD, CD}, 则该分解是(B)</u,> A. 无损连接,依赖保持 B. 无损连接,不依赖保持 C. 有损连接,依赖保持 D. 有损连接,不依赖保持 	的
8. 下列哪些协议可以避免出现死锁?(BC) A. The Two-phase Locking Protocol B. The Timestamp-based Protocol C. The Graph-based Protocol D. Strict Two-phase Locking	
9. 查询处理主要包括哪些步骤?(ACD) A. Parser and translator B. Serialization C. Optimization D. Evaluation	
10. 事务是一组访问或更新数据的操作,事务具有下列属性(ABCF) A. Consistency B. Isolation C. Atomicity D. Recoverability E. Serializability F. Durability	

二、数据库查询、设计与优化

- 1. 给定如下关系 R、W、D, 计算关系代数表达式的结果。
 - a. $R_1 = \prod_{Y,T} (R)$
 - b. $R_2 = \sigma_{P > 5 \cap T = e}(R)$
 - c. $R_3=R\bowtie W$
 - d. $R_5 = \prod_{T,Y} (R) D$
 - e. $R_4=\prod_{[2],[1],[6]}(\sigma_{[3]=[5]}(R\times D))$,其中[x]表示关系中第 x 个属性。例如,R 的第一个属性为 P.

关系 R

P	Q	T	Y
2	b	c	d
9	a	e	f
2	b	e	f
9	a	d	e
7	g	e	f
7	g	c	d

关系 W

T	Y	В
c	d	m
c	d	n
d	f	n

关系 D

T	Y
c	d
e	f

参考答案:

a.

 $\mathbf{Y}\mathbf{T}$

d c

f e

e d

b.

PQTY

9 a e f

7 g e f

c.

PQTYB

2 b c d m

2 b c d n

7 g c d m

7 g c d n

d.

 $\mathbf{T}\mathbf{Y}$

d e

e.

QPY

b 2 d

g 7 d

a 9 f

b 2 f

g 7 f

2. 数据库设计

在供应链管理中,有三个实体集: Product(商品), Store(商店),和 Supplier(供应商),各自包含如下属性:

商品实体集: ProductID, ProductName, Specifications, and Unit Price

商店实体集: Store Number, Store Name, and City;

供应商实体集: Supplier Number, Supplier Name, and City.

供应商和商品之间存在 Supply 关系,每个供应商可以提供多种商品,每种商品可以来自不同供应商,供应商一般按月提供商品;商店和商品之间存在 Sales 关系,每个商店可以出售多种商品,每个商品可以在多个商店销售,每个商店会针对每种商品制定月度采购计划。

- a. 画出 ER 图, 创建对应关系模式, 并指出每个关系的主码和外码;
- b. 用 SOL 语句定义 Product 表,并给出合理的完整性约束;
- c. 使用 SQL 查询: 找出商店名称及其针对商品 tissue 的月度销售采购计划, 要求该商品的供应商在 Shanghai;
- d. 画出小题 c 的查询对应的查询树.

参考答案:

(1)

ER 图及属性、联系图为:

这个 ER 图转换的关系模式如下: 商品(<u>商品号</u>,商品名,规格,单价) 供应商(<u>供应商编号</u>,供应商名,地址) 商店(<u>商店号</u>,商店名,地址) 供应(<u>商品号</u>,<u>供应商编号</u>,月供应量) 销售(<u>商品号</u>,<u>商店号</u>,月计划数)

b、c、d 所写 SQL 语句合理即可

- **3.** 规范化: 给定关系模式 R<U, F>, U={A, B, C, D, E}, F={AC→BD, B→C, C→D, B→E};
 - a. 使用 Armstrong axioms (公理)和相关的规则证明函数依赖 AC→E;
 - b. 计算属性闭包 (AB)+、(BC)+;
 - c. 计算 F 的正则覆盖 Fc;
 - d. 找出 R 所有的候选码,并指出 R 满足第几范式;
 - e. 对 R 进行分解, 使其满足 3NF, 同时是无损分解, 并依赖保持;
 - f. 证明上述分解为无损连接且保持依赖.

参考答案:

- a. 由 $AC \rightarrow BD$ 得 $AC \rightarrow B$ (分解规则); 再由 $B \rightarrow E$, 则有 $AC \rightarrow E$ (传递规则)
- b. (AB) + = ABCDE, (BC) + = BCDE
- c. 对 R<U, F>中的函数依赖集 F 进行极小化处理,得最小依赖集 Fc={AC \rightarrow B, B \rightarrow C, C \rightarrow D, B \rightarrow E},仍记为 F;(可以有多种答案)
- d. 判定 R 属于第几范式:

R的候选码有: AC、AB: 主属性为A、B、C:

由 C→D 可见, 非主属性 D 对码 AC 为部分函数依赖, 故 R∉2NF, R∈1NF。

e. 将关系模式 R 分解为 3NF:

全部属性均在 F 中出现了;不存在 $X \rightarrow A \in F$,且 XA=U。

则对F按相同左部原则分组,有

 $U1=\{A,B,C\}, F1=\{AC\rightarrow B, B\rightarrow C\}$

 $U2=\{B,C,E\}, F2=\{B\rightarrow C, B\rightarrow E\}$

 $U3=\{C,D\}, F3=\{C\to D\}$

ρ={R1<U1,F1>, R2<U2,F2>, R3<U3,F3>}为保持函数依赖的分解。

f. 由于码 AC、AB 都包含在 U1 中,因此,由检测算法可以找到相应表中的一行可以成为 a1,a2,a3,a4,a5 (用算法过程的表变化描述),则 ρ 同时也具有无损连接性。

三、数据库管理系统

1. 针对下列 B^+ 树索引,分别给出插入 21 和 8 之后的情况,并给出插入操作的 具体步骤.

参考答案: 分步骤画出.

2. 数据库并发操作可能产生丢失修改、不可重复读、读脏数据等数据不一致问题。请举例阐述这些问题的含义。基于锁的协议可以有效解决上述问题,但是可能出现饥饿(Starvation)现象。请解释什么是饥饿现象。

参考答案:

阐述清楚丢失修改、不可重复读、读脏数据和饥饿现象的含义即可,要求结合例 子阐述。

3. 事务管理

- a. 针对下列 5 个并发事务,是否满足两段锁协议?构建一个等待图,检查该调度是否会产生死锁.
- b. 在事务管理中,如何预防和检测死锁,以及死锁发生后如何恢复?

T_1	T_2	T ₃	T ₄	T 5
lock-S(X)				
read(X)				
	lock-S(X)			
	read(X)			
unlock(X)				
				lock-S(C)
				read(C)
		lock-X(Y) write(Y)		
		lock-X(X)		
		IOCK-A(A)	lock-X(D)	
lock-S(Y)			iock $\Lambda(D)$	
lock S(1)			lock-S(Y)	
	lock-X(D)			
	. ,	lock-x(C)		
		` ,		unlock(C)
unlock(Y)				
			unlock(D)	

参考答案:

a. No

wait-for graph:

The schedule will lead to a deadlock because there is a circle among T2, T3, and T4.

b. 预防死锁方法: graph-based protocol, timestamps-based protocol 检测死锁: wait-for graph, kill 导致死锁 transaction 或回滚部分操作

4. 恢复系统

下图中包含 4 个并发事务 T_1 , T_2 , T_3 , T_4 , 其中数据 A, B, C 的初始值为: A=800, B=500, C=300.

- a. 如果日志采用"Immediate database modification",且在事务 T₂开始时创 建了一个检查点(checkpoint),给出上述调度的日志记录以及 A, B, C 的 最终结果.
- b. 在事务 T₂ 提交前发生了故障,应当采取什么样的恢复操作,并解释原因?

T_1	T_2	T 3	T 4
read(A)			
		read(B)	
A := A + 100			
write(A)			
	read(C)		
		B := B + 100	
			read(A)
		write(B)	
	G G 100		write(A)
1/15	C := C + 100		
read(A)	: (6)		
1/D)	write(C)		
read(B)			
B:=B+A			
write(B)		mand(C)	
		read(C) C:=100	
		write(C)	

参考答案:

- a. The log records for the above transaction schedule:
- <T₁ start>
- <T₃ start>
- $<T_1, A,800,900>$
- <checkpoint{T1,T3}>
- <T₂ start>
- <T₃, B,500, 600>
- <T₄ start>
- <T₄ commit>
- <T₂, C, 300,400>
- <T₂ commit>
- <T₁, B,600,1500>
- <T₁ commit>
- <T₃, C,400, 100>
- <T₃ commit>

A=900, B=1500, C=100

因为建立了检查点,发生故障的时候,T4 已经 commit, T1、T3、T2 已经 start 而尚未 commit, 因此:

T4 需要 redo, T1、T3、T2 需要 undo

四、附加题

- 1. 对数据进行排序时,如果据规模较大,则无法将所有数据加载到内存进行排序,需要在内存和磁盘之间进行多次数据交互。归并排序是实现这类排序的一种有效方法。假设每个数据块只能容纳一个元组,内存可以保留3个数据块。给出针对下列元组中第一个属性的归并排序的过程。
 - $t_1=(j,17);$ $t_2=(u,21);$ $t_3=(e,1);$ $t_4=(w,13);$ $t_5=(p,3);$ $t_6=(m,8);$ $t_7=(v,4);$ $t_8=(z,11);$ $t_9=(n,6);$ $t_{10}=(i,9);$ $t_{11}=(h,2);$ $t_{12}=(b,12).$
- 2. AI4DB 和 DB4AI 是目前数据库领域的前沿热点,相关研究极大地提升了传统数据库的性能。请选择一个与 AI4DB 或 DB4AI 相关的研究方向,从研究问题、主要挑战、相关技术和个人看法等方面进行阐述。
- **3.** 图(Graph)数据是一种重要的数据类型,广泛应用于社交网络、金融风控、智能交通等领域。因此,实现对图数据的有效管理具有重要意义。请从存储模式、查询处理和主流系统等角度阐述图数据管理相关技术与平台。

1. 参考答案:

Using tuple numbers t1 through t12. We refer to the j-th run used by the i-th pass as ri j. The initial sorted runs have three blocks each. They are:

```
r11 = \{t3, t1, t2\}
r12 = \{t6, t5, t4\}
r13 = \{t9, t7, t8\}
r14 = \{t12, t11, t10\}
```

Each pass merges two runs. Therefore, the runs after the end of the first pass are:

```
r21 = \{t3, t1, t6, t5, t2, t4\}

r22 = \{t12, t11, t10, t9, t7, t8\}
```

At the end of the second pass, the tuples are completely sorted into one run:

```
r31 = \{t12, t3, t11, t10, t1, t6, t9, t5, t2, t7, t4, t8\}
```

2和3阐述合理即可,要求涵盖指定的几方面的内容。