

QF605 Fixed Income (AY2021/2022)

Prepared By:

Dani Surya Pangestu Gabriel Woon Gabriel Tan Kenneth Chong Peter Chettiar Wong Yong Wen

Table of Contents

Part I – Bootstrapping	3
OIS Discount Factor	3
LIBOR Discount Factor	4
Forward Swap Rate (FSR)	5
Part II – Model Calibration	6
Displaced Diffusion Model	6
SABR Model	6
Pricing Swaptions	6
Model Calibration Plots	7
Part III – CMS Static Replication	8
Constant Maturity Swap Valuation	8
Effects on Convexity Correction	9
Part IV – Decompounded Options Static Replication	10
Decompounded Option Valuation	10
CMS Caplet Valuation	10
Appendix:	11
Calibrated SABR Parameters with Cubic Spline Interpolation for CMS Rate	11

Part I – Bootstrapping

OIS Discount Factor

Equations Used (Example for Year 2):

$$\begin{split} D_o(0,T_i) &= \frac{1}{1+\frac{f_i}{360}}^{360*T_i} \\ PV_{fix}^{2y \text{ ois}} &= PV_{flt}^{2y \text{ ois}} \\ \left[D_o(0,1y) + D_o(0,2y) \right] \times 0.325\% = D_o(0,1y) \times \left[\left(1 + \frac{f_0}{360} \right)^{180} \left(1 + \frac{f_1}{360} \right)^{180} - 1 \right] \\ &+ D_o(0,2y) \times \left[\left(1 + \frac{f_2}{360} \right)^{360} - 1 \right] \end{split}$$

Using the above equations, linear interpolation for timeframes without corresponding overnight interest swaps (OIS) and Brent's method as our root finder to solve for f_i, we derived the OIS discount factor table as shown below:

Tenor	OIS DF										
0.5	0.99875	5.5	0.97973	10.5	0.95311	15.5	0.92483	20.5	0.89737	25.5	0.87073
1	0.99701	6	0.97728	11	0.95024	16	0.92204	21	0.89467	26	0.86811
1.5	0.99527	6.5	0.97484	11.5	0.94738	16.5	0.91927	21.5	0.89198	26.5	0.86550
2	0.99353	7	0.97241	12	0.94453	17	0.91650	22	0.88929	27	0.86289
2.5	0.99177	7.5	0.96965	12.5	0.94169	17.5	0.91375	22.5	0.88662	27.5	0.86030
3	0.99002	8	0.96690	13	0.93886	18	0.91099	23	0.88395	28	0.85770
3.5	0.98807	8.5	0.96416	13.5	0.93604	18.5	0.90826	23.5	0.88129	28.5	0.85513
4	0.98612	9	0.96142	14	0.93322	19	0.90552	24	0.87864	29	0.85255
4.5	0.98415	9.5	0.95870	14.5	0.93042	19.5	0.90280	24.5	0.87600	29.5	0.84999
5	0.98218	10	0.95598	15	0.92761	20	0.90008	25	0.87336	30	0.84742

LIBOR Discount Factor

Equations Used (Example for Year 2):

$$\begin{split} L(T_i, T_{i+1}) &= \frac{D_L(0, T_{i-1}) - D_L(0, T_i)}{Daycount*D_L(0, T_i)} \\ &PV_{fix}^{2yLibor} = PV_{flt}^{2yLibor} \\ 0.5*IRS* \sum_{i=0.5}^{2} D_o(0, T_i) &= 0.5* \sum_{i=0.5}^{2} D_o(0, T_i) * L(T_{i-0.5}, T_i) \end{split}$$

Using the above equations, linear interpolation for timeframes without corresponding Interest Rate Swaps (IRS) and Brent's method as our root finder to solve for $L(T_i, T_{i+1})$, we derived the Libor discount factor table as shown below:

Tenor	Libor DF										
0.5	0.98765	5.5	0.83280	10.5	0.67855	15.5	0.53679	20.5	0.39899	25.5	0.30671
1	0.97258	6	0.81660	11	0.66438	16	0.52251	21	0.38976	26	0.29748
1.5	0.95738	6.5	0.80041	11.5	0.65022	16.5	0.50822	21.5	0.38053	26.5	0.28825
2	0.94218	7	0.78422	12	0.63606	17	0.49393	22	0.37130	27	0.27902
2.5	0.92633	7.5	0.76897	12.5	0.62189	17.5	0.47965	22.5	0.36208	27.5	0.26980
3	0.91048	8	0.75371	13	0.60773	18	0.46536	23	0.35285	28	0.26057
3.5	0.89473	8.5	0.73846	13.5	0.59357	18.5	0.45107	23.5	0.34362	28.5	0.25134
4	0.87898	9	0.72321	14	0.57941	19	0.43679	24	0.33439	29	0.24211
4.5	0.86398	9.5	0.70796	14.5	0.56524	19.5	0.42250	24.5	0.32516	29.5	0.23288
5	0.84899	10	0.69271	15	0.55108	20	0.40822	25	0.31594	30	0.22366

Forward Swap Rate (FSR)

Using the calculated OIS discount factors and the Libor forwards (calculated from the Libor discount factors), we can calculate the FSR as shown below:

Tenor	FSR
1 x 1	0.032007
1 x 2	0.033259
1 x 3	0.034011
1 x 5	0.035255
1 x 1	0.038428
5 x 1	0.039274
5 x 2	0.040075
5 x 3	0.040072
5 x 5	0.041093
5 x 10	0.043634
10 x 1	0.042190
10 x 2	0.043116
10 x 3	0.044097
10 x 5	0.046249
10 x 10	0.053458

Part II - Model Calibration

Displaced Diffusion Model

Sigma							
Expiry\Tenor	1Y	2Y	3Y	5Y	10Y		
1Y	0.307542	0.345404	0.341398	0.289518	0.259990		
5Y	0.302838	0.312472	0.308905	0.272008	0.247628		
10Y	0.296200	0.297524	0.294184	0.267308	0.243554		
		Beta					
Expiry\Tenor	1Y	2Y	3Y	5Y	10Y		
1Y	0.012154	0.015845	0.031462	0.111442	0.295188		
5Y	0.052560	0.107758	0.144572	0.249040	0.367633		
10Y	0.121313	0.180841	0.146493	0.286947	0.386948		

SABR Model

Alpha							
Expiry\Tenor	1Y	2Y	3Y	5Y	10Y		
1Y	0.139070	0.184646	0.196851	0.178052	0.171237		
5Y	0.166509	0.199497	0.210346	0.191011	0.177441		
10Y	0.177551	0.195043	0.207212	0.201519	0.180061		
		Rho					
Expiry\Tenor	1Y	2Y	3Y	5Y	10Y		
1Y	-0.63322	-0.52512	-0.48284	-0.41443	-0.26565		
5Y	-0.58516	-0.54687	-0.54976	-0.51106	-0.44079		
10Y	-0.54586	-0.54376	-0.55087	-0.56245	-0.50698		
		Nu					
Expiry\Tenor	1Y	2Y	3Y	5Y	10Y		
1Y	2.049482	1.677437	1.438138	1.064877	0.776535		
5Y	1.339619	1.061909	0.936718	0.671724	0.493849		
10Y	1.007291	0.924810	0.869132	0.719875	0.579936		

Pricing Swaptions

	2 x 10 Payer Swa _l	otion	8 x 10 Receiver Swaption			
K	Displaced Diffusion	SABR	K	Displaced Diffusion	SABR	
1%	0.287825	0.290670	1%	0.010445	0.019217	
2%	0.194357	0.199352	2%	0.024849	0.038276	
3%	0.112743	0.116159	3%	0.049254	0.060689	
4%	0.054014	0.052858	4%	0.085163	0.089214	
5%	0.021025	0.021666	5%	0.132747	0.128133	
6%	0.006680	0.010836	6%	0.191083	0.182277	
7%	0.001762	0.006650	7%	0.258592	0.252024	
8%	0.000394	0.004645	8%	0.333466	0.332294	

Based on the result above, we can observe that as strike goes larger, the price of payer becomes lower, but the price of receiver becomes higher, and both models' results are very close to each other. However, since SABR does a better job in fitting market implied volatility, the result from SABR model is more accurate than Displaced Diffusion Model (please refer to next page for visualized comparison).

Model Calibration Plots

Part III – CMS Static Replication

Constant Maturity Swap Valuation

A constant maturity swap (CMS) pays a swap rate rather than a LIBOR rate on its floating leg. CMS products gives us an easy way to gain exposure to fixed-length longer-term interest rates by taking a view on a fixed point on the yield curve. The standard practice in the market is to use the static-replication method to obtain a model-independent convexity correction. By static-replication approach, and choosing the forward swap rate F = Sn,N (0) as our expansion point.

$$V_{0} = D(0, T)g(F) + h'(F) \left[V^{\text{pay}}(F) - V^{\text{rec}}(F) \right]$$

$$+ \int_{0}^{F} h''(K)V^{\text{rec}}(K)dK + \int_{F'}^{\infty} h''(K)V^{\text{pay}}(K)dK$$

$$= D(0, T)g(F) + \int_{0}^{F} h''(K)V^{\text{rec}}(K)dK + \int_{F}^{\infty} h''(K)V^{\text{pay}}(K)dK$$

IRR-settled option pricer (V-Pay or V-Rec) is given by:

$$V(K) = D(0,T) \cdot IRR(S_{n,N}(0)) \cdot Black 76(S_{n,N}(0), K, \sigma_{SABR}, T)$$

whereby Sigma for Black76 model is derived from the SABR model

From the calibrated SABR parameters in Part II, we can derive the sigma used in the Black76 lognormal model. This enables us to obtain the IRR settled option for both receiver and payer swaption. From there we can get the CMS rate followed by the PV of CMS leg. Obtaining the CMS rate requires the SABR cubic spline interpolated Alpha, Rho & Nu parameters (in Appendix) since these parameters are not linear across time.

CMS Rate is written as:

$$E^{T}\left[S_{n,N}(T)\right] = g(F) + \frac{1}{D_{0}(0,T)} \left[\int_{0}^{F} h''(K)V^{\text{rec}}(K)dK + \int_{F}^{\infty} h''(K)V^{\text{pay}}(K)dK \right]$$

PV of a CMS leg is the sum of the discounted values of the CMS rates, multiplied by the day count fraction:

$$CMS \log PV = \sum_{i=0.5}^{N} D_0(0, T_i) * CMS(S_{n,N}(T_i)) * Date Count$$

Hence:

- PV of a leg receiving CMS10y semi-annually over the next 5 years is 0.20209.
- PV of a leg receiving CMS2y quarterly over the next 10 years is 0.38106.

Effects on Convexity Correction

Comparison of CMS Rates & Forward Swap Rates							
Tenor	CMS Rate	FSR Rate	Difference				
1 x 1	0.032120	0.032007	0.000113				
1 x 2	0.033382	0.033259	0.000122				
1 x 3	0.034120	0.034011	0.000109				
1 x 5	0.035326	0.035255	0.000070				
1 x 10	0.038496	0.038428	0.000068				
5 x 1	0.040129	0.039274	0.000855				
5 x 2	0.040756	0.040075	0.000681				
5 x 3	0.040664	0.040072	0.000591				
5 x 5	0.041532	0.041093	0.000439				
5 x 10	0.044050	0.043634	0.000416				
10 x 1	0.043635	0.042190	0.001446				
10 x 2	0.044323	0.043116	0.001206				
10 x 3	0.045225	0.044097	0.001128				
10 x 5	0.047210	0.046249	0.000961				
10 x 10	0.054528	0.053458	0.001069				

CMS convexity correction is the difference between the expected CMS rate and the implied forward swap rate (under the swap measure).

Correction is needed for CMS because the rates are being paid at a wrong time. Hence, the CMS rate should not be equal to the FSR, this difference should be positive because of the convexity of the function.

From our result, we see that this is true with CMS rates always being higher than FSR rates. The difference between CMS rate and FSR rate is a function of expiry, the longer the maturity the greater the effects of convexity correction.

Part IV – Decompounded Options Static Replication

Decompounded Option Valuation

Payoff: $CMS 10Y^{\frac{1}{4}} - 0.04^{\frac{1}{2}}$ (Decompounded Option)

The Static Replication equation can be represented using the IRR payer and receiver swaption. The formula is stated below:

$$CMS \, Payoff = D(0,T)F + \int_0^F h''(K) \, V^{rec}(K) \, dK + \int_F^\infty h''(K) \, V^{pay}(K) \, dK$$

Below is the equation necessary to complete the derivation:

$$g(F) = F^{\frac{1}{4}} - 0.2 \qquad g'(F) = \frac{1}{4}F^{\frac{-3}{4}} \qquad g''(F) = \frac{-3}{16}F^{\frac{-7}{4}}$$

$$h(K) = \frac{g(K)}{IRR(K)}$$

$$h'(K) = \frac{IRR(K)g'(K) - g(K)IRR'(K)}{IRR(K)^2}$$

$$h''(K) = \frac{IRR(K)g''(K) - IRR''(K)g(K) - 2IRR'(K)g'(K)}{IRR(K)^2} + \frac{2IRR'(K)^2g(K)}{IRR(K)^3}$$

By substituting the 5 x 1 FSR, 5Y OIS DF and SABR parameters, the PV is 0.1773379.

CMS Caplet Valuation

Payoff: $(CMS\ 10Y^{\frac{1}{4}}-0.04^{\frac{1}{2}})^+$ (CMS Caplet)

To have a positive payoff there is a condition that needs to be satisfied:

$$F > 0.2^4$$

The formula for CMS caplet with strike of 0.0016 will be:

CMS Caplet =
$$D(0,T) \int_{L}^{\infty} g(K)f(K)dK$$

= $\int_{L}^{\infty} h(K) \frac{\partial^{2}V^{pay}(K)}{\partial K^{2}} dK = h'(L) V^{pay}(L) + \int_{L}^{\infty} h''(K) V^{pay}(K) dK$

By substituting the FSR and SABR parameters, the PV is 2.6351730.

Appendix:

Calibrated SABR Parameters with Cubic Spline Interpolation for CMS Rate

<u>Alpha</u>

	1	2	3	5	10
1	0.139067	0.184646	0.196851	0.178052	0.171030
5	0.166504	0.199505	0.210363	0.191005	0.177441
10	0.177515	0.195098	0.207194	0.201576	0.180295

<u>Rho</u>

1 2 3 5 10 1 -0.633239 -0.525118 -0.482846 -0.414426 -0.264156 5 -0.585021 -0.546913 -0.549830 -0.510985 -0.440790 10 -0.545691 -0.543919 -0.550819 -0.562582 -0.508008

	1	2	3	5	10
1	2.049533	1.677436	1.438140	1.064877	0.778640
5	1.339381	1.061940	0.936731	0.671750	0.493849
10	1.007122	0.924928	0.869109	0.719742	0.579536

