Measure and Integration II (MAA5617), Spring 2021 Homework 4, due Thursday, Feb 25

Below L^1 , L^1_{loc} refer to the measure spaces with $\lambda = \lambda^n$ as the underlying measure.

- **1.** For $f \in L^1_{loc}$, prove that the average $A_r f(x)$ is jointly continuous as a function of $(x,r) \in \mathbb{R}^n \times (0,\infty)$. Hint: this is a lemma in Folland.
- **2.** Given an $f \in L^1$ and $\epsilon > 0$, construct a continuous function g, for which

$$\int |f - g| \, d\lambda < \epsilon.$$

Show that the same result holds if in addition $g \in C^{\infty}(\mathbb{R}^n)$, that is, g and all of its partial derivatives are continuous.

- Because f can be approximated with simple functions, it suffices to assume f is an indicator of a rectangle (why?).
- For two functions f_1, f_2 on \mathbb{R}^n , define their convolution as

$$f_1 * f_2(x) := \int f_1(x - y) f_2(y) dy.$$

- Construct a continuous function $\phi \in C^{\infty}(\mathbb{R}^n)$ supported on $B(\bar{0}, 1)$. Hint: e^{-1/t^2} (extended to t = 0 by continuity) is infinitely differentiable at t = 0.
- Using the dominated convergence theorem, show that

$$f * r^{-n}\phi(x/r)$$

converges to f in L^1 for $r \downarrow 0$, and is infinitely differentiable, as desired.

- **3.** If μ_1, μ_2 are positive Borel measures on \mathbb{R}^n , $\mu_1 \perp \mu_2$, and $\mu_1 + \mu_2$ is regular, then so is each μ_i , i = 1, 2.
- **4.** Suppose $E \in \mathcal{B}_{\mathbb{R}^n}$. Using the Lebesgue differentiation theorem, show that

$$D_E(x) = \lim_{r \downarrow 0} \frac{\lambda(E \cap B(x,r))}{\lambda(B(x,r))}$$

is equal to 1 for λ -a.e. $x \in E$, and to 0 for λ -a.e. $x \notin E$.

- **5.** As in the previous problem, give an example of $E \in \mathcal{B}_{\mathbb{R}}$ and $x \in E$, for which $D_E(x) < 1$. Hint: use a nested sequence of fat Cantor sets with positive measures.
- **6.** Construct an $E \in \mathcal{B}_{\mathbb{R}}$, such that $0 < \lambda(E \cap I) < \lambda(I)$ for any interval $I \subset [0,1]$. (Use fat Cantor sets again).

Comments

5. A somewhat nicer approach than taking care of the ratios for Cantor sets is to consider some (arguably even simpler) fractals. Pick an $\alpha \in (0,1)$; it will be our target density. That is, we will improve the statement of the problem by constructing a set with density α at a certain point. For a set $E \subset [0,1]$ with $0 \in E$, we will denote

$$\rho(x,E):=\frac{\lambda(E\cap[0,x])}{x}.$$

You should check that

$$D_E(0) = \lim_{x \downarrow 0} \rho(x, E),$$

if this limit exists. Our objective is to construct an E with the density α at 0. To begin with, note that

$$\rho_1(x) := \rho(x, [0, \alpha]) = \begin{cases} 1, & 0 \le x \le \alpha, \\ \alpha/x, & \alpha \ge x \end{cases}$$

and looks like this:

so $\rho(x, E)$ can deviate from α (0.8 in this graph) a lot. Let's say we rescale $[0, \alpha]$ and put two of its copies in [0, 1/2] and [1/2, 1]. Then $\rho(x, [0, \alpha/2] \cup [1/2, 1/2 + \alpha/2])$ becomes

which deviates from 0.8 less than ρ_1 on [1/2, 1]:

$$\rho_2(x) := \begin{cases} \rho_1(2x), & 0 \le x \le 1/2, \\ \frac{\alpha}{2} + \frac{\rho_1(2(x-1/2))}{2}, & 1/2 \le x \le 1 \end{cases}$$

(the last equation generalizes to subsequent iterations and all ρ_j , $j \geq 2$).

Repeating this process by putting rescaled copies of the set $[0, \alpha]$ in each of [0, 1/4], [1/4, 1/2], [1/2, 3/4], [3/4, 4], etc, we will get increasingly good approximations of α on [1/2, 1] (show that

$$\max_{[1/2,1]} |\rho_j(x) - \alpha|$$

is halved with every iteration).

To complete the proof, let E_k be the set obtained as a union of 2^k copies of $[0, \alpha]$, placed in the intervals $[i/2^j, (i+1)/2^j]$. Then place a rescaled copy of E_k in $[1/2^{k+1}, 1/2^k]$; denote it by F_k . Verify that

$$\bigcup_{k\geq 1} F_k$$

has density α at 0, as desired. Now, you should think about how to make this construction more elegant.

- **6.** Let $C_{\alpha} \subset [0,1]$ be a fixed fat Cantor set of positive measure. Recall that it is nowhere dense, that is, for every interval $I \subset [0,1]$ there exists an interval $J \subset I$, disjoint from C_{α} . Color the left half of C_{α} in blue, the right one in red. Then repeat:
 - The colored sets constructed up to now are nowhere dense is [0,1].
 - The union of the colored sets constructed up to now is a closed set, so its complement is open, and has a countable number of connected components.
 - By the above, it is possible to place a rescaled copy of C_{α} in each connected component of the open uncolored set, and color this copy like so: the left half in blue, the right one in red.

This gives a countable union of rescaled copies of C_{α} . Each interval contains both red- and blue-colored subsets (why?), which proves the desired statement, if E is taken to be the red-colored part of [0,1].