Assignment 1

Language:

- python

Libraries used:

- Numpy
- Math
- Random

Functions implemented

- threashold(src, dist, breakPoint)
 - Src : the source image path
 - Dst: the distination path to store the thresholded image
 - breakPoint : the threshold value
- resize(imagePath, width, height)
 - Src: the source image path
 - Width: The output image width
 - Height: The output image height
 - Returns : the resized image
- blend(image1, image2, ratio)
 - image1: the first image to be blended
 - image2 : the second image to be implemented
 - Ratio: the blending ratio (0, 1)
 - Returns the blended image
- increase_brightness(image, percent)
 - src : the source mage path
 - Brightness increase value.
 - Returns Image with it's brightness increased by the percent value
- solveAffine(m,o)
 - M: matrix 1
 - O: matrix 2
 - Returns affine matrix from m1 to m2
- applyMatrix(src , matrix)
 - src : the source mage path
 - Matrix : the affine matrix
 - Returns : the image after applying the geometric transformation

Questions

1. Load Image (L1.jpg) and convert it to binary using thresholding

After

2. Blend Images (L1.jpg) with resized image (logo.jpg) with a ratio 4:1

L2

Logo

Blended image

3. Load Image (L2.jpg) and adjust its brightness with a value of 50

Before

After

4. Load Image (L3.jpg), implement affine transformation to get a front view of the plate (hint: you may not use OpenCV existing method)

Before

Using one affine matrix

Using two consecutive affine matrices

5. Load Image (L4.jpg) and apply homography transformation to get a front view of the plate (Hint: you may use OpenCV existing method)

before

After

