

5. Estimación del modelo

Inferencia sobre el valor de los parámetros

¿Hasta que punto estamos seguros de que los **valores** b_i **estimados** para los parámetros poblacionales β_i del modelo no difieren de cero por azar del muestreo?

El valor $\beta_1=0$ supondría que la X_1 no explicaría nada de la variabilidad de Y y se podría quitar dicha variable del modelo

$$m_{Y/(X=x_t)} = \beta_0 + \theta \cdot x_t = \beta_0$$

5. Estimación del modelo

Inferencia sobre el valor de los parámetros: Test Global

Rechazar Ho

$$H_0: \beta_1 = \beta_2 = ... = \beta_1 = 0$$

 $H_1: \exists \text{ al menos una } \beta_i \neq 0$

 \square Si sale aceptar H_0 :

Ninguna variable o termino explicativo incluida en el modelo tiene un efecto poblacional real en la variable respuesta

 \square Si se cumple H_0 :

$$F_{\text{ratio}}\!=\!\frac{SC_{\text{EXP}}\!/I}{SC_{\text{RES}}\!/(N\!-\!1\!-\!I)}\!=\!\frac{CM_{\text{exp}}}{CM_{\text{res}}}\!\sim\!F_{I,\,N\!-\!I\!-\!I}$$

La H_0 se rechazará, si la F_{ratio} supera el valor en tablas $F_{I, N-1-1}(\alpha)$

5. Estimación del modelo

Inferencia sobre el valor de los parámetros: Test individual

$$H_0: \beta_i = 0$$

$$H_i: \beta_i \neq 0$$

El test para β_0 no se tendrá en cuenta y la constante se mantendrá siempre en el modelo

- \square Si sale aceptar H_0 : El termino i del modelo NO tiene un efecto poblacional real en la variable respuesta y puede ser quitado del modelo
- \square Si se cumple H_0 :

$$t_{\text{calculada}} = \frac{\dot{b}_{i}}{S_{i}} \sim t_{gl_{\text{residuales}}} = t_{N-1-I}$$

La H_0 se rechazará si la $t_{calculada} \notin [-t_{N-l-1}(\alpha/2) + t_{N-l-1}(\alpha/2)]$

6. Generalización del modelo

Inclusión de más variables explicativas de naturaleza cuantitativa:

$$E(Y/X_1 = x_{1j},..., X_I = x_{Ij}) = \beta_0 + \beta_1 x_{1j} + ... + \beta_I x_{Ij}$$

Inclusión de variables explicativas cualitativas

Si tiene K variantes: Introduciendo K - 1 variables **DUMMY** (valores 0 ó 1)

Ejemplo: sea un modelo donde la variable respuesta Y (Rendimiento de un proceso) y como variable explicativa el "catalizador" (usando 3 catalizadores A,B,C) como única variable explicativa.

Como tiene 3 variantes tendré que crear dos variables Dummy (C_A y C_B) donde:

	Variables		
Catalizador	CA	Св	
A	1	0	
В	0	1	
С	0	0	

$$E(Y/Cat) = \beta_0 + \beta_1 C_A + \beta_2 C_B$$

6. Generalización del modelo

Inclusión de interacciones:

Se incluirán términos producto entre las variables que interactúan:

$$E(Y/X_1 = x_{1j}, X_2 = x_{2j}) = \beta_0 + \beta_1 x_{1j} + \beta_2 x_{2j} + \beta_3 x_{1j} x_{2j}$$

Inclusión de relaciones no lineales:

Se incluirán términos de segundo grado en las variables que actúan cuadráticamente.

$$E(Y/X_1 = x_{1j}) = \beta_0 + \beta_1 x_{1j} + \beta_2 x_{1j}^2$$

7. Supuestos de los modelos de regresión lineal

HOMOCEDASTICIDAD:

 (Y_j / x) varianza constante y desconocida

NORMALIDAD:

Y y las (Y $_{\! j}$ /x) siguen una distribución normal \Rightarrow residuos e "normales"

INDEPENDENCIA ENTRE LAS VARIABLES EXPLICATIVAS \mathbf{X}_{i}

7. Análisis de Residuos

Datos anómalos

Se identifican por residuos $\mathbf{e_i}$ mayores en valor absoluto que: $\mathbf{2S_{res}}$ (95%) ó $\mathbf{2.58S_{res}}$ (98%) $\mathbf{3S_{res}}$ (99.73%)

8. Análisis de Residuos

No normalidad de los datos

Puede estudiarse representando los residuos \boldsymbol{e}_i en papel probabilístico normal

No linealidad de la relación entre E(Y) y X

Puede estudiarse representando los e_i en función de X_i

Ejercicio. Hallar un intervalo centrado donde se encontrará el consumo del 95% de los días en donde la Tª es de 10°C

Ejercicio

Ejercicio. Hallar un intervalo centrado donde se encontrará el consumo del 95% de los días en donde la Tª es de 10ºC usando un modelo donde se ha introducido la Tº con efecto cuadrático

¿El efecto cuadrático de la Tª será significativo? (justifica la respuesta) ¿Cuál será el R² del nuevo modelo?

Regresión Múltiple - CONSUMO Variable dependiente: CONSUMO (consumo diario de gas) Variables independientes: TEMPER (temperatura diaria) TEMPER^2

		Error	Estadistico	
Parámetro	Estimación	Estándar	T	Valor-P
CONSTANTE	472,351	8,56841	55,127	0,0000
TEMPER	-25,9865	1,83411	-14,1685	0,0000
TEL (DED ^2	0.400066	0.0026955	4.22600	0.0001

Análisis de Varianza

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Modelo	561122,	2	280561,	579,07	0,0000
Residuo	26163,3	54	484,505		
Total (Corr.)	587285.	56			

UNIVERSITAT POLITÉCNICA DE VALÈNCIA
Tema 7. Regresión Lineal
Dep. Estadística e IO Aplicadas y Calidad, Universidad Politécnica de Valencia
Fuentes: Material docente : S. Vidal y F. Villa
Fuentes: