Lenguajes para programar robots (P2: T7)

Yeray Méndez Romero yeray.mendez@udc.es

Daniel Rivera López d.rivera1@udc.es

ÍNDICE

- Introducción.
- Programación de robots:
 - Nivel gestual.
 - Nivel textual.
- Relación de los lenguajes de programación de robots y los habituales.
- Lenguajes en empresas.
- Lenguajes en educación.
- Conclusión
- Bibliografía.

INTRODUCCIÓN

• ¿ Qué es un robot ?

PROGRAMACIÓN DE ROBOTS

- Existen dos niveles de programación:
 - Gestual

Textual

```
1 'Globales ------
2 Var Variable0:Booleano
3 Var Variable1:Cadena
4 'Fin Globales -----
5 Proc Procedimiento '<- Procedimiento sin retorno.
6 Var Variable2:Entero 'Locales
7 Var Variable3:Real
8
9 Si Variable0 = Falso Entonces 'Condición "If"
10 Contar Variable2 = 0 a 9 'Bucle "For"
11 Variable1 = Variable1 + "1"
12 Seguir ' "End For"
13 FinSi ' "End If"
14
15 Variable3 = 5.13
16 FinProc
```

- Gestual:
 - Robot solo recuerda posiciones.
 - No es necesaria la experiencia.

- Textual:
 - Necesaria experiencia en programación.
 - Tres tipos:
 - Nivel robot

- Nivel objeto
- Nivel tarea

- Nivel robot:
 - Ejemplos:
 - RAPID(Robotics Application Programming Interactive Dialogue).

- Nivel objeto:
 - Ejemplos:
 - RAPT y AUTOPASS utilizados en el ensamblaje de piezas.
 - Ejemplo de código AUTOPASS:

PLACE C₁
SUCH THAT C₁ BOT CONTACTS C₂TOP
AND B₁ A₁ IS ALIGNED WITH C₂A₁
AND B₁ A₂ IS ALIGNED WITH C₂A₂

- Nivel tarea:
 - Ejemplos:
 - STRIPS: lenguaje
 formal utilizado por
 el planificador con el
 mismo nombre por el
 primer robot que
 podía razonar sobre
 sus acciones, Shakey.

```
Initial state: At(A), Level(low), BoxAt(C), BananasAt(B)
Goal state:
              Have(bananas)
Actions:
              // move from X to Y
              Move(X, Y)
              Preconditions: At(X), Level(low)
              Postconditions: not At(X), At(Y)
              // climb up on the box
              ClimbUp(Location)
              Preconditions: At(Location), BoxAt(Location), Level(low)
              Postconditions: Level(high), not Level(low)
              // climb down from the box
              ClimbDown(Location)
              Preconditions: At(Location), BoxAt(Location), Level(high)
              Postconditions: Level(low), not Level(high)
              // move monkey and box from X to Y
              MoveBox(X, Y)
              Preconditions: At(X), BoxAt(X), Level(low)
              Postconditions: BoxAt(Y), not BoxAt(X), At(Y), not At(X)
              // take the bananas
              TakeBananas(Location)
              Preconditions: At(Location), BananasAt(Location), Level(high)
              Postconditions: Have(bananas)
```

RELACIÓN DE LOS LENGUAJES DE PROGRAMACIÓN DE ROBOTS Y LOS HABITUALES

- Dos tipos fundamentales:
 - Extensiones de los lenguajes habituales

 Lenguajes diseñados específicamente para programar robots.

RAPID

KAREL

V+

- Ámbito empresarial: Muchos lenguajes.
- Nos basamos en la lista anual RBR50(Robotics Business Review) en la de este año encontramos a :
 - ABB con el lenguaje RAPID.
 - Fanuc con el lenguaje KAREL.
 - Adept con V+.

RAPID:

- Lenguaje de programación textual de alto nivel.

 Utilizado actualmente en la controladora IRC5 de ABB.

RAPID:

```
PROC main()
    CONST dionum listo:=1;
    abrir_pinza;
    WHILE TRUE DO
      MoveJ A, v100, fine, pinza;
      WaitDI econtrol, listo;
      coger_pieza;
      MoveL B1, v80, z5, pinza;
      MoveJ D, v100, z100, pinza;
      MoveJ C1, v100, z5, pinza;
      MoveL C, v80, fine, pinza;
      abrir_pinza;
      MoveL C1, v80, z5, pinza;
    ENDWHILE
  ENDPROC
ENDMODULE
```

- Ámbito empresarial: Muchos lenguajes.
- Problema:

 Cada empresa solo tiene en cuenta sus necesidades en cuanto a software.

El código no es portable.

• RESULTADO:

- Usuario final se queda bloqueado en un determinado fabricante.
- Pérdida de tiempo y económica.

- ROS-Industrial
 - Miembros :

LENGUAJES EN EDUCACIÓN

- Ejemplos:
 - Scratch.
 - Arduino.
- Suelen emplearse lenguajes habituales como:
 - Matlab.
 - Python.
 - C/C++.
 - JavaScript.

LENGUAJES EN EDUCACIÓN

Scratch:

- Lenguaje de programación visual y educativo.
- Desarrollado por Lifelong Kindergarten Group en el MIT .
- Paradigma imperativo.
- Dirigido por eventos.
- Primera versión en 2003.

LENGUAJES EN EDUCACIÓN

Arduino:

- Plataforma
 electrónica open source basada en
 hardware y software
 sencilla de usar.
- Es simplemente el lenguaje C/C++ con librerías añadidas.
- Permite programación orientada a robots aunque normalmente se utilizan interfaces visuales, este es el caso de Scratch4Arduino y Mblock.

```
provaMotori.ino | Arduino 1.6.0
   Modifica Sketch Strumenti Aiuto
  provaMotori.ino §
    #include<ArduinoRobot.h>
    #include<Wire.h>
    #include<SPI.h>
   void setup() {
      Robot.begin();
   void loop() {
11
      // put your main code here, to run repeatedly:
12
       Robot.motorsWrite(255, 255);
13
       delay(2000);
14
       Robot.motorsStop();
1.5
       delay(1000);
16
       Robot.motorsWrite(-255, -255);
17
       delay(4000);
18
       Robot.motorsStop();
19
       delay(1000);
20
          Robot.motorsWrite(-255, 255);
21
       delay(2000);
       Robot.motorsStop();
23
       delay(1000);
24
       Robot.motorsWrite(255, -255);
25
       delay(4000);
26
       Robot.motorsStop();
27
       delay(1000);
28 }
```

CONCLUSION

Similitudes:

 No existe un cambio en la variedad de tareas a realizar en cada uno de los lenguajes mencionados.

• Diferencias:

 Eficiencia del código y simplicidad(en los lenguajes de empresa).

BIBLIOGRAFÍA

- https://es.wikipedia.org/wiki/Robot
- https://analisisyprogramacionoop.blogspot.com.es/2014/10/programacion-de-robots.html
- http://platea.pntic.mec.es/vgonzale/cyr 0708/archivos/ 15/Tema 5.6.htm
- https://blog.robotiq.com/what-is-the-best-programming-language-for-robotics
- https://en.wikipedia.org/wiki/Educational robotics
- http://petercorke.com/wordpress/toolboxes/robotics-toolbox
- https://www.makeblock.es/soporte/mblock/
- http://codigo21.educacion.navarra.es/autoaprendizaje/primeros-pasos-con-scratch-y-lego-wedo/
- http://www.onerobotics.com/posts/2013/introduction-to-karel-programming/
- http://www.monografias.com/trabajos3/progrob/progrob.shtml
- http://rosindustrial.org/
- https://www.roboticsbusinessreview.com/companies/?companyType=rbr 50
- https://en.wikipedia.org/wiki/RAPID
- http://hopl.info/showlanguage.prx?exp=7482
- https://wikivisually.com/lang-de/wiki/ARLA (Programmiersprache)
- http://www.robot-forum.com/robotforum/fanuc-robot-forum/karel-load-option-in-r30ib/
- https://en.wikipedia.org/wiki/Adept Technology
- https://es.wikipedia.org/wiki/Scratch (lenguaje de programaci%C3%B3n)
- https://wiki.scratch.mit.edu/wiki/Scratch#Notable Information
- https://en.wikipedia.org/wiki/Educational robotics
- https://www.arduino.cc/en/Guide/Introduction