EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos Militares

2000

PROVA ESCRITA DE MATEMÁTICA

Primeira Parte

•	Para cada u	ıma del	as,	são indicadas q	uatro a	ılternativas,	das qua	is só u	ıma está corre	ecta.		
•	• Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para cada questão.											
	•						. ~	,				

 Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.

• Não apresente cálculos.

1. Uma função f tem domínio $\mathbb R$ e contradomínio $\mathbb R^+$. Qual das seguintes pode ser a expressão analítica da função f ?

• As nove questões desta primeira parte são de escolha múltipla.

(A)
$$\sin x$$
 (B) e^x

(C)
$$1+x^2$$
 (D) $\ln x$

2. Considere uma função f, de domínio \mathbb{R} , definida por $f(x)=e^{\,x\,+\,a}$, onde a designa um certo número real.

O gráfico de $\,f\,$ intersecta o eixo $\,Oy\,$ no ponto de ordenada $\,2.$ Indique o valor de $\,a.\,$

(A)
$$\ln 2$$
 (B) 2 (C) e^2 (D) $e + \ln 2$

3. De uma certa função g sabe-se que:

$$\lim_{x \to 3^{-}} g(x) = +\infty$$

$$g(3) = 1$$

$$\lim_{x \to 3^+} g(x) = 2$$

Qual das afirmações seguintes é verdadeira?

- **(A)** O contradomínio da função g é o intervalo $[2, +\infty[$
- **(B)** A recta de equação $x=3\,$ é assimptota do gráfico da função g
- (C) 3 não pertence ao domínio da função $\,g\,$
- **(D)** Existe $\lim_{x\to 3} g(x)$
- **4.** Na figura está representado um triângulo rectângulo [ABC], cuja hipotenusa mede $2\ m$.

Qual das expressões seguintes dá a área (em m^2) do triângulo [ABC], em função da amplitude, α , do ângulo ABC ?

(A) $2 \cdot \sin \alpha \cdot \cos \alpha$

(B) $2 \cdot \operatorname{sen} \alpha \cdot \operatorname{tg} \alpha$

(C) $4 \cdot \sin \alpha \cdot \cos \alpha$

- **(D)** $4 \cdot \operatorname{sen} \alpha \cdot \operatorname{tg} \alpha$
- **5.** Considere, num referencial o.n. Oxyz, uma recta r, perpendicular ao plano yOz. Qual das afirmações seguintes é **necessariamente** verdadeira?
 - (A) A recta $\,r\,$ é perpendicular ao plano $\,xOy\,$
 - **(B)** A recta r está contida no plano xOy
 - (C) A recta $\,r\,$ é perpendicular ao eixo $\,Ox\,$
 - **(D)** A recta $\,r\,$ é paralela ao eixo $\,Ox\,$

6. Considere, num referencial o.n. Oxyz, a superfície esférica S, de equação $(x-2)^2 + (y-2)^2 + (z-2)^2 = 2$

Qual das equações seguintes define um plano cuja intersecção com a superfície esférica não é vazia?

- (A) x = -1 (B) x = 0 (C) x = 3

- Considere, num referencial o.n. xOy, a elipse E, de equação $\frac{(x-1)^2}{3} + \frac{y^2}{2} = 1$ **7**. Qual das equações seguintes define uma elipse geometricamente igual à elipse $\,E\,$?
 - (A) $\frac{(x-1)^2}{3} \frac{y^2}{2} = 1$
- **(B)** $\frac{(x-1)^2}{4} + \frac{y^2}{3} = 1$
- (C) $\frac{(x+1)^2}{2} + \frac{(y-1)^2}{3} = 1$ (D) $\frac{x^2}{6} + \frac{(y-1)^2}{4} = 1$
- 8. Quando se altera a ordem dos algarismos do número 35142, obtém-se outro número. Considere todos os números que se podem obter por alteração da ordem dos algarismos de 35142 .

Quantos desses números são múltiplos de 5?

- **(A)** 12
- **(B)** 24
- **(C)** 60
- **(D)** 120

9. Uma formiga desloca-se ao longo de um caminho que, como a figura mostra, vai apresentando bifurcações. A formiga nunca inverte a sua marcha. Ao chegar a uma bifurcação, opta 70% das vezes pelo caminho da esquerda.

> Qual é a probabilidade de a formiga ser apanhada pela aranha?

- **(A)** 0, 14
- **(B)** 0, 21
- (C) 0,42
- **(D)** 0, 49

Segunda Parte

Nas questões desta segunda parte apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

Um recipiente contém uma certa quantidade de açúcar.
Para dissolver o açúcar, enche-se o recipiente com água.
Admita que a massa, em gramas, de açúcar ainda não dissolvido, t minutos após o início do processo de dissolução, é dada por

$$M(t) = 50 e^{-0.02 t}$$
, $t \ge 0$

- **1.1.** Determine a massa de açúcar dissolvido ao longo da primeira **hora**. Apresente o resultado em gramas, arredondado às unidades.
- **1.2.** Utilizando métodos exclusivamente analíticos, estude a função M quanto à monotonia e quanto à existência de assimptotas ao seu gráfico. Interprete as conclusões a que chegou, no contexto do problema.
- **2.** Considere a função f, de domínio $[0, +\infty[$, definida por

$$f(x) = \left\{ \begin{array}{ll} 1,2 \,+\, \mathrm{tg}\ x &\quad \mathrm{se}\ 0 \leq x \leq 1 \\ \\ 2\,x - \ln x &\quad \mathrm{se}\ x > 1 \end{array} \right.$$

($\ln \operatorname{designa} \operatorname{logaritmo} \operatorname{de} \operatorname{base} e$).

- **2.1.** Utilizando métodos exclusivamente analíticos, estude a função f quanto à continuidade.
- **2.2.** Recorrendo ao estudo analítico da segunda derivada, estude a função f quanto ao sentido da concavidade do seu gráfico, no intervalo $]\,1,\,+\infty[$
- **2.3.** Recorrendo ao Teorema de Bolzano, mostre que a equação $f(x)=2+f\left(\frac{\pi}{4}\right)$ tem, no intervalo $]\,2,3[$, pelo menos uma solução.

- 3. Um saco contém seis bolas, três verdes e três azuis.
 - **3.1.** Extraem-se, aleatoriamente, e de uma só vez, duas bolas do saco. Qual é a probabilidade de as duas bolas serem da mesma cor? Apresente o resultado na forma de fracção irredutível.
 - 3.2. Considere agora que todas as bolas estão novamente no saco. Extraem-se, ao acaso, uma a uma, e sem reposição, as seis bolas do saco. À medida que as bolas vão sendo retiradas do saco, vão sendo dispostas em cima de uma mesa, em fila, da esquerda para a direita. Qual é a probabilidade de as três bolas azuis ficarem juntas? Apresente o resultado na forma de percentagem.
- **4.** Num referencial o.n. Oxyz, considere um paralelepípedo rectângulo [OPQRSTUV].

Os pontos $\,P,\,\,R\,$ e $\,V\,$ pertencem aos semieixos positivos $\,Ox,\,\,Oy\,$ e $\,Oz,\,$ respectivamente.

O quadrilátero [ABCD] é a secção obtida no paralelepípedo pelo plano de equação 2x+3y+z=22, que é perpendicular à recta $\,OT.$

O ponto $\,R\,$ tem ordenada $\,6.$

- **4.1.** Justifique que o ponto T tem coordenadas (4,6,2)
- **4.2.** Determine uma equação do plano que é paralelo ao plano $\,ABC\,$ e que contém o ponto $\,Q.\,$
- **4.3.** Determine as coordenadas do ponto D.

COTAÇÕES

· ·····o···a ·	Parte	81
Ca	da resposta certada resposta errada	- 3
Ca	da questão não respondida ou anulada	0
No	ta: Um total negativo nesta parte da prova vale 0 (zero) pontos.	
Segunda F	Parte	119
1.		26
	1.1.	
2.		35
	2.1	
3		22
0.	3.1.	
4.		36
	4.1	
3. 4.	2.1. 7 2.2. 14 2.3. 14 3.1. 11 3.2. 11 4.1. 12 4.2. 12	22