## Chapter 9-10

### Confidence Intervals and Hypothesis Testing

Confidence Intervals and Hypothesis Testing for the Variance

**Statistics** 

Mehmet Güray Güler, PhD

Last updated 20.07.2020

## CI and HT for the Variance

## Sampling Distribution for $s^2$

Let  $X_1, X_2, ..., X_n$  be a random sample from a normal distribution with unknown variance  $\sigma^2$ .

- We already know that a point estimator of  $\sigma^2$  is  $S^2$ 
  - we use  $S^2$  to infer information about  $\sigma^2$
  - Just like we use  $\bar{X}$  to infer information about  $\mu$
- Well, for CI and HT we can use the following
  - The statistic  $\chi^2 = \frac{(n-1)S^2}{\sigma^2}$  has the  $\chi^2$  dist.with  $\nu = n-1$  df.

## Sampling Distribution for $s^2$

$$P(\chi_{1-\alpha/2}^2 < \chi^2 < \chi_{\alpha/2}^2) = 1 - \alpha$$





 ${\bf Table~A.5~Critical~Values~of~the~Chi\text{-}Squared~Distribution}$ 

|                |            |            |            |            | $\alpha$ |        |        |        |        |        |
|----------------|------------|------------|------------|------------|----------|--------|--------|--------|--------|--------|
| $oldsymbol{v}$ | 0.995      | 0.99       | 0.98       | 0.975      | 0.95     | 0.90   | 0.80   | 0.75   | 0.70   | 0.50   |
| 1              | $0.0^4393$ | $0.0^3157$ | $0.0^3628$ | $0.0^3982$ | 0.00393  | 0.0158 | 0.0642 | 0.102  | 0.148  | 0.455  |
| <b>2</b>       | 0.0100     | 0.0201     | 0.0404     | 0.0506     | 0.103    | 0.211  | 0.446  | 0.575  | 0.713  | 1.386  |
| 3              | 0.0717     | 0.115      | 0.185      | 0.216      | 0.352    | 0.584  | 1.005  | 1.213  | 1.424  | 2.366  |
| 4              | 0.207      | 0.297      | 0.429      | 0.484      | 0.711    | 1.064  | 1.649  | 1.923  | 2.195  | 3.357  |
| 5              | 0.412      | 0.554      | 0.752      | 0.831      | 1.145    | 1.610  | 2.343  | 2.675  | 3.000  | 4.351  |
| 6              | 0.676      | 0.872      | 1.134      | 1.237      | 1.635    | 2.204  | 3.070  | 3.455  | 3.828  | 5.348  |
| 7              | 0.989      | 1.239      | 1.564      | 1.690      | 2.167    | 2.833  | 3.822  | 4.255  | 4.671  | 6.346  |
| 8              | 1.344      | 1.647      | 2.032      | 2.180      | 2.733    | 3.490  | 4.594  | 5.071  | 5.527  | 7.344  |
| 9              | 1.735      | 2.088      | 2.532      | 2.700      | 3.325    | 4.168  | 5.380  | 5.899  | 6.393  | 8.343  |
| 10             | 2.156      | 2.558      | 3.059      | 3.247      | 3.940    | 4.865  | 6.179  | 6.737  | 7.267  | 9.342  |
| 11             | 2.603      | 3.053      | 3.609      | 3.816      | 4.575    | 5.578  | 6.989  | 7.584  | 8.148  | 10.341 |
| 12             | 3.074      | 3.571      | 4.178      | 4.404      | 5.226    | 6.304  | 7.807  | 8.438  | 9.034  | 11.340 |
| 13             | 3.565      | 4.107      | 4.765      | 5.009      | 5.892    | 7.041  | 8.634  | 9.299  | 9.926  | 12.340 |
| 14             | 4.075      | 4.660      | 5.368      | 5.629      | 6.571    | 7.790  | 9.467  | 10.165 | 10.821 | 13.339 |
| <b>15</b>      | 4.601      | 5.229      | 5.985      | 6.262      | 7.261    | 8.547  | 10.307 | 11.037 | 11.721 | 14.339 |

## HT for $\sigma^2$

- **Step1:** The hypothesis are:
  - $H_0$ :  $\sigma = \sigma_0$
  - $H_1$ :  $\sigma \neq \sigma_0$
- Step2: The test statistic  $\chi^2=rac{(n-1)s^2}{\sigma_0^2}$  with v=n-1 d.o.f :
- Step 3: R-  $[\chi^2_{1-\alpha\backslash 2}, \chi^2_{\alpha\backslash 2}]$ ,
- Step 4: Calculate  $\chi^2_{obs}$  using the formula in step2
- Step5: if  $\chi^2_{obs}$  is in the critical region, we reject the null hypothesis.

## HT for $\sigma^2$

- **Example**: Recall the example where we discussed about the heights of the students.
- We have the following heights:

| 171 | 175 | 156 | 151 | 179 |
|-----|-----|-----|-----|-----|
| 175 | 170 | 164 | 167 | 162 |

- The average height turns out to be  $\overline{X} = 167$
- The sample standard deviation is s = 8.87

## HT for $\sigma^2$

#### **Example:**

• Test the hypothesis for the heights of students here for  $\alpha = 0.05$ :

$$H_0: \sigma = 6$$

$$H_1$$
:  $\sigma \neq 6$ 

#### **Solution:**

- using Table A.5 with v = 9 dof, we find
  - $\chi 2_{0.025} =$ **19.023** and  $\chi 2_{0.975} = 2.700$
- Observed value is  $\chi^2 = \frac{\left((n-1)s^2\right)}{\sigma_0^2} = 9 \times \frac{8.87^2}{6^2} = 19.67$  >19.023: hence reject  $H_0$ .

Substitute  $\chi^2$  and after some algebra, we can construct a CI for  $\sigma^2$ :

$$P\left(\chi_{1-\alpha/2}^2 < \frac{(n-1)S^2}{\sigma^2} < \chi_{\alpha/2}^2\right) = 1 - \alpha$$

$$P\left(\frac{(n-1)S^2}{\chi_{\alpha/2}^2} < \sigma^2 < \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2}\right) = 1 - \alpha$$

If  $s^2$  is the variance of a random sample of size n from a normal population, a  $100(1-\alpha)\%$  confidence interval for  $\sigma^2$  is

$$\frac{(n-1)s^2}{\chi_{\alpha/2}^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2},$$

where  $\chi^2_{\alpha/2}$  and  $\chi^2_{1-\alpha/2}$  are  $\chi^2$ -values with v = n - 1 degrees of freedom, leaving areas of  $\alpha/2$  and  $1 - \alpha/2$ , respectively, to the right.

- We found CI for  $\sigma^2$ .
- How about  $\sigma$ ?
  - Take square root!

$$\sqrt{\frac{(n-1)s^2}{c_{a/2}^2}} < S < \sqrt{\frac{(n-1)s^2}{c_{1-a/2}^2}}.$$

**Example:** Find a 95% CI for the  $\sigma^2$  of heights of the students.

**Solution:** We know that s = 8.87, n=10.

- To obtain a 95% CI, we choose  $\alpha = 0.05$
- using Table A.5 with v = 9 dof, we find

• 
$$\chi 2_{0.025} = 19.023$$

• 
$$\chi 2_{0.975} = 2.700$$

• 
$$\frac{(9)(8.87^2)}{19.023}$$
 <  $\sigma^2$  <  $\frac{(9)(8.87^2)}{2.700}$  = 37.22 <  $\sigma^2$  < 262.26 => 6.1 <  $\sigma$  < 16.19

$$P\left(\frac{(n-1)S^2}{\chi_{\alpha/2}^2} < \sigma^2 < \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2}\right) = 1 - \alpha$$

Ratio of two variances:  $\sigma_1^2/\sigma_2^2$ 

## Sampling Distribution for $S_1^2/S_2^2$

- $S_1^2/S_2^2$  is a point estimator for  $\sigma_1^2/\sigma_2^2$ .
- New information:
  - The ratio of two independent chi-squared RVs has an F-dist.
  - $\chi_1^2 = \frac{(n_1 1)S_1^2}{\sigma_1^2}$  and  $\chi_2^2 = \frac{(n_2 1)S_2^2}{\sigma_2^2}$  are chi-squared RVs with  $v_1 = n_1 1$  and  $v_2 = n_2 1$  dof, if samples are normal
- Hence:

$$F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} = \frac{\sigma_2^2 S_1^2}{\sigma_1^2 S_2^2}$$

has an F-distribution with v1 = n1-1 and v2 = n2-1 d.o.f.

## Sampling Distribution for $S_1^2/S_2^2$



A useful property of F distribution is: 
$$f_{1\text{-}a/2}(\textit{P}_1,\textit{P}_2) = \frac{1}{f_{a/2}(\textit{P}_2,\textit{P}_1)}$$



Table A.6 Critical Values of the F-Distribution

|          |        |        |        | j      | $f_{0.05}(v_1, v_2)$ | 2)     |        |        |        |
|----------|--------|--------|--------|--------|----------------------|--------|--------|--------|--------|
|          |        |        |        |        | $v_1$                |        |        |        |        |
| $v_2$    | 1      | 2      | 3      | 4      | 5                    | 6      | 7      | 8      | 9      |
| 1        | 161.45 | 199.50 | 215.71 | 224.58 | 230.16               | 233.99 | 236.77 | 238.88 | 240.54 |
| <b>2</b> | 18.51  | 19.00  | 19.16  | 19.25  | 19.30                | 19.33  | 19.35  | 19.37  | 19.38  |
| 3        | 10.13  | 9.55   | 9.28   | 9.12   | 9.01                 | 8.94   | 8.89   | 8.85   | 8.81   |
| 4        | 7.71   | 6.94   | 6.59   | 6.39   | 6.26                 | 6.16   | 6.09   | 6.04   | 6.00   |
| 5        | 6.61   | 5.79   | 5.41   | 5.19   | 5.05                 | 4.95   | 4.88   | 4.82   | 4.77   |
| 6        | 5.99   | 5.14   | 4.76   | 4.53   | 4.39                 | 4.28   | 4.21   | 4.15   | 4.10   |
| 7        | 5.59   | 4.74   | 4.35   | 4.12   | 3.97                 | 3.87   | 3.79   | 3.73   | 3.68   |
| 8        | 5.32   | 4.46   | 4.07   | 3.84   | 3.69                 | 3.58   | 3.50   | 3.44   | 3.39   |
| 9        | 5.12   | 4.26   | 3.86   | 3.63   | 3.48                 | 3.37   | 3.29   | 3.23   | 3.18   |
| 10       | 4.96   | 4.10   | 3.71   | 3.48   | 3.33                 | 3.22   | 3.14   | 3.07   | 3.02   |
| 11       | 4.84   | 3.98   | 3.59   | 3.36   | 3.20                 | 3.09   | 3.01   | 2.95   | 2.90   |
| 12       | 4.75   | 3.89   | 3.49   | 3.26   | 3.11                 | 3.00   | 2.91   | 2.85   | 2.80   |
| 13       | 4.67   | 3.81   | 3.41   | 3.18   | 3.03                 | 2.92   | 2.83   | 2.77   | 2.71   |
| 14       | 4.60   | 3.74   | 3.34   | 3.11   | 2.96                 | 2.85   | 2.76   | 2.70   | 2.65   |
| 15       | 4.54   | 3.68   | 3.29   | 3.06   | 2.90                 | 2.79   | 2.71   | 2.64   | 2.59   |

- **Step1:** The hypothesis are:
  - $H_0$ :  $\sigma_1^2 = \sigma_2^2$  (or  $\sigma_1 = \sigma_2$ )
  - $H_1: \sigma_1^2 \neq \sigma_2^2 \ ( \sigma_1 \neq \sigma_2 )$
- Step2: The test statistic  $F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{\sigma_2^2 S_1^2}{\sigma_1^2 S_2^2}$  with  $v_1 = n_1 1$  and  $v_2 = n_2 1$  d.o.f
- Step 3: R-  $[f_{1-\alpha\backslash 2}(v_1,v_2),f_{\alpha\backslash 2}(v_1,v_2)]$ ,
- Step 4: Calculate  $f_{obs}$  using the formula in step2
- Step5: if  $f_{obs}$  is in the critical region, we reject the null hypothesis.

#### **Example:**

- Assume we take 8 students from ÖzÜ and 10 Students from Yildiz and measure their heights.
- It turns out that  $s_1 = 4$  cm and  $s_2 = 5$  cm.
- Using a significance level of  $\alpha=0.10$ , can we say that their variances are equal?

#### **Solution:**

$$H_0$$
:  $\sigma_1 = \sigma_2$ 

$$H_1$$
:  $\sigma_1 \neq \sigma_2$ 

• 
$$f_{\alpha \setminus 2=0.05}(v_1 = 7, v_2 = 9)=3.29$$

• 
$$f_{1-\alpha/2=0.95}(v_1=7, v_2=9) = \frac{1}{f_{\alpha=0.05}(9,7)} = \frac{1}{3.68} = 0.27$$

Observed f is

• 
$$f = \frac{S_1^2 \sigma_2^2}{S_2^2 \sigma_1^2} = \frac{S_1^2}{S_2^2} = \frac{4^2}{5^2} = 0.64$$

• Since 0.27 < 0.64 < 3.29 we do not reject  $H_0$ 



If  $S_1^2$  and  $S_2^2$  are the variances of independent random samples of sizes  $n_1$  and  $n_2$  from normal populations, then a  $1-\alpha$  confidence interval for  $\sigma_1^2$  /  $\sigma_2^2$  is

$$\frac{S_1^2}{S_2^2} \frac{1}{f_{\alpha/2}(v_1, v_2)} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{S_1^2}{S_2^2} f_{\alpha/2}(v_2, v_1)$$

Where  $f_{\alpha/2}$  is obtained from the F-distribution.

Note: We used the theorem that states  $f_{1-a/2}(\eta_1, \eta_2) = \frac{1}{f_{a/2}(\eta_2, \eta_1)}$ 

- Example: A confidence interval for the difference in the mean salt content measured in milligrams per liter, at two stations on İstanbul Boğazı.
- Station 1: 15 samples, 3.84 avg weight, st dev of 3.07
- Station 2: 12 samples, 1.49, avg weight std dev of 0.8
- We thinkthat the normal population variances are UNequal.
- Justify this assumption by constructing 98% confidence intervals for  $\sigma_1^2/\sigma_2^2$  and for  $\sigma_1/\sigma_2$

#### Solution:

- we have  $n_1 = 15$ ,  $n_2 = 12$ ,  $s_1 = 3.07$ , and  $s_2 = 0.80$
- For a 98% confidence interval,  $\alpha = 0.02$ .
- Interpolating in Table A.6, we find  $f_{0.01}(14, 11) \approx 4.30$  and  $f_{0.01}(11, 14) \approx 3.87$ .
- Therefore, the 98% confidence interval for  $\sigma_1^2/\sigma_2^2$  is

$$\left(\frac{3.07^2}{0.80^2}\right)\left(\frac{1}{4.30}\right) < \frac{\sigma_1^2}{\sigma_2^2} < \left(\frac{3.07^2}{0.80^2}\right)(3.87) \qquad 3.425 < \frac{\sigma_1^2}{\sigma_2^2} < 56.991$$

Taking the square root of both sides we have:

$$1.851 < \frac{\sigma_1}{\sigma_2} < 7.549.$$

• Since the interval does not include 1, we were correct in assuming that the variances (or the st. dev.s) are not equal.