LECTURE 1 Goals of the Course

- 1. To be familiar with the periodic table and how it is organized according to the relationships among the elements.
- 2. To have a firm grasp of fundamental physical principles regarding energy (thermodynamics) and reaction rates (kinetics) such that you can use this knowledge to make predictions.
- 3. To accumulate a database of descriptive chemistry of the inorganic elements (facts are important!)
- 4. Ultimately to achieve a basic understanding, through the knowledge of facts, of the periodicity of structure, bonding and reactivity patterns.

Metals and Metals and Metalloids

8A	2 He	0 %	18 Ar	36 Kr	S4 Xe	86 Rn		71 Lu	103 Lr		
	7A	о. Е-	0.7	35 Br	53 -	85 At		70 Yb	102 No		
	P 9	∞ O	9 S	¥ %	52 Te	84 Po		69 Tm	101 Md		
	5A	۲Z	15	33 As	S1 Sb	83 Bi		68 Er	100 Fm		
	4A	9	7. IS	8 33	50 Sn	82 Pb		67 Ho	99 Es		
	3A	5 B	13 Al	31 Ga	49 In	18 TI		66 Dy	98 Cf		9
			28	30 Zn	& B	80 Hg		65 Tb	97 Bk		s reserved
			IB	29 Cu	47 Ag	79 Au	9	64 Gd	96 Cm		All rights
				28 N:	46 Pd	78 Pt		63 Eu	95 Am		v-Hill Inc.
			-8B	27 Co	45 Rh	77 Ir	109 Une	62 Sm	94 Pu		/ McGrav
				26 Fe	44 Ru	76 OS	108 Uno	61 Pm	93 Np		a 1991 by
			7B	25 Mn	43 Tc	75 Re	107 Uns	9 PN	92 U		Copyright @ 1991 by McGraw-Hill Inc. All rights reserved
			6B	24 Cr	42 Mo	7. X	106 Unh	59 Pr	91 Pa		S
			5B	23 >	4 S	73 Ta	105 Unp	58 Ce	06 H		
			4B	E F	40 Zr	72 Hf	104 Unq				
			3B	21 Sc	87	S7 La	89 Ac		qs	als	
	2A	4 Be	1.2 M.g	85	* J	56 Ba	% &	Metals	Metallo ds	Nonmetals	
IA	- =	3 11	= Na	6 X	37 Rb	SS Cs	87 Fr				

Detailed Classifiation of the Etements

57

8A	2 He	Ne 10	18 Ar	36 Kr	54 Xe	86 Rn		-	7.1 Lu	103 Lr
l	7A	9 F	17 Cl	35 Br	53	85 At			70 Yb	102 No
	6A	80	16 S	34 Se	52 Te	84 Po			69 Tm	101 Md
	SA	r Z	15 P	33 As	51 Sb	83 Bi			68 Er	100 Fm
	4A) 9	14 Si	32 Ge	50 Sn	82 Pb			67 Ho	99 Es
	3A	5 B	13 AI	31 Ga	49 In	18 E			66 Dy	98 Cf
	1 ×		2B	30 Zn	48 Cd	80 Hg			65 Tb	97 Bk
	2 1	3	B - B	29 Cu	47 Ag	79 Au			2 B	96 Cm
	nides	les 🧲		28 Ni	46 Pd	78 Pt			63 Eu	95 Am
	Lanthanides	Actinides	-8B	27 Co	45 Rh	77 Ir	109 Une		62 Sm	94 Pu
			Ц	26 Fe	44 Ru	76 Os	108 Uno	-11	61 Pm	93 Np
			7.8	25 Mn	43 Tc	75 Re	107 Uns		09 PN	92 U
Representative elements	gases	ion	6B	24 Cr	42 Mo	74 W	106 Unh		59 Pr	9.1 P.a
Represen	Noble gases	Transition metals	5B	23 V	41 Nb	73 Ta	105 Unp		% ర	% Th
			4B	22 Ti	40 Zr	72 Hf	104 Unq			
		10	38	21 Sc	39 Y	57 La	89 Ac			
	2A	4 Be	1.2 Mg	20 %	38 Sr	56 Ba	88 Ra			
IA	l H	3 11	Na Na	19 K	37 Rb	55 Cs	87 Fr			

Copyright @ 1991 by McGraw-Hill Inc. All rights reserved.

Notwal Haundantez in 20 by Mess

8A He	Ne	Ar	Kr	Xe	. R		五	Ľ
7.A	Ĺ,	C	Br	-	At		Yb	No
P9	0 45.5	S	ઝ	Te	Po		Tm	рМ
5A	z	P 0.12	As	Sb	Bi		Er	Fm
4A	C	Si 27.2	Ge	Sn	Pb		Но	Es
3A	В	AI 8.3	Ga	. I	F		Dy	C
		2B	Zn	2	Hg		4T	Bk
$1 \times 10^{-6}\% - 1 \times 10^{-3}\%$		18	Cu	Ag	Au		3	Cm
× 1-%9-	% ₉ _0	Г	ï	Pd	Pt		ng	Am
1 × 10	<1 × 10 ⁻⁶ %	-8B	ల	Rh	4	Une	Sm	Pu
			Fe 6.2	Ru	ő	Uno	Pm	ďN
		7.8	Mn 0.10	Tc	Re	Uns	PN	n
	-0.1%	6B	Cr	Мо	3	Unh	Pr	Pa
> 0.1%	0.001%-0.1%	SB	^	^Q N	Ta	Unp	ಲ	H
		4B	Ti 0.63	Zr	Hf	Unq		
		38	Sc	¥	ت	Ac		
2A	Be	Mg 2.8	Ca 4.7	Sr	Ba	Ra		
H 0.15	'	Na 2.3	X 1.8	Rb	2	표		

Copyright © 1991 by McGraw-Hill Inc. All rights reserved.

8 0 8 8	2 He	Ne 10	¥ 18	36 Kr	54 Xe	86 Rn		71 Lu	103 Lr
17	# E	6 H	0.2	35 Br	53 I	85 At		% Y	102 No
91	68 SA	80	16 S	34 Se	52 Te	84 Po		69 Tm	101 Md
7	SA SA	۲Z	15 P	33 As	S1 Sb	83 Bi		68 Er	100 Fm
14	414 44	0 C	75 Si	32 Ge	50 Sn	82 Pb		67 Ho	99 Es
2	38 3A	S	13 A1	£ 2	49 In	81 TI		66 Dy	ر در
		12	1 80 E	30 Zn	& B	80 Hg		65 Tb	97 BK
		Ξ	: =1 =	29 Cu	47 Ag	79 Au		49 PS	96 Cm
		10	2	28 Z i	46 Pd	78 Pt		63 Eu	95 Am
(#)		G	8A -8B	27 Co	45 Rh	77 Ir	109 Une	62 Sm	94 Pu
		0	· L	26 Fe	Ru 44	76 Os	108 Uno	61 Pm	93 Np
		t	A B	25 Mn	43 Tc	75 Re	107 Uns	9 PN	92 U
		, v	P 50 89	24 Cr	42 Mo	4. ₹	106 Unh	S9	91 Pa
		ų	SA SB	23 V	4 	73 Ta	105 Unp	% ಲ	90 Th
ention			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	12 H	40 Zr	72 Hf	104 Unq	200	
European convention U.S. convention		,	3B 3B	21 Sc	39 ¥	rs al	89 Ac		
- Europe	2 <mark>78</mark>	4 Be	12 Mg	25	38 Sr	56 Ba	88 Ra		
- * *	Н	E m	Z S	91 X	37 Rb	SS Cs	87 Fr		

Copyright @ 1991 by McGraw-Hill Inc. All rights reserved.

Putban	Valence orbital fillings

8A	2 He 15 ³	10 Ne 25 ² 2p ⁶	18 Ar 3s ² 3p ⁶	36 Kr 45 ² 4p ⁶	X Xe Xe Sy ² Sp ⁶	86 Rn 6s ² 6p ⁶		71 Lu 6s ² 4y ¹⁴ Su ¹	103 Le 7x ² Sy ¹⁴ 6a ¹
	7.A	9 F 33 ² 2p ⁵	17 Cl 33 ² 3p ⁵	3.5 Br 48.24p ⁸	53 1 5x ² 5p ⁵	85 At 64 ² 6pr ⁵		70 Yb 68 ² 4f ¹⁴	102 No 7x ² Sy ¹⁴
	P9	8 O 2x ² 2p*	16 S 3s ² 3p ⁴	24 82 45 ² 40 ⁴	52 Te 5s ² 5p ⁴	84 Po 6x ² 6p ⁴		69 Tm 6x ² 4y ¹³	101 Md 7s ² sf ¹³
	5.A	7 N 25 ² 2p ³	15 P 3s ² 3p ³	33 As 4s ² 4p ³	51 Sb	83 Bi 6s ² 6p ³		68 Er 64 ² 4f ¹²	100 Fm 7s ² 5f ¹²
	4,4	6 C 2s ² 2p ²	14 Si 35 ² 3p ²	32 Ge 4s ² 4p ²	50 Sn 5s ² 5p ²	82 Pb 6s ² 6p ²		67 Ho (6 ² 4f ¹¹	93 Es 7,5 ² 5,f ¹¹
	3A	5 Β 2s ² ½ρ ¹	13 AI 3s ² 3p ¹	31 Ga 45 ² 4p ¹	49 In 5s ² 5p ¹	81 Til 63 ² 6p ¹		66 Dy 6x ² 4f ³⁰	98 Cf 75 ² 5f ¹⁰
			28	30 Zn 4s ² 3d ¹⁰	48 Cd 55 ² 44 ¹⁰	80 Hg 66 ² \d ¹⁰		65 Tb 624/9	97 Bk 75 ² 5f ⁹
			118	29 Cu 4s ¹ 3d ³⁰	47 Ag Ss14410	79 Au 6s ¹ Sd 10		62 62 47 541	96 Cm 7x ² 5x ⁷ 6x ¹
			- 7	28 N. 28	46 Pd 42 ¹⁰	78 Pt 66 ¹ 54 ⁹		63 En 6s ² 4y ⁷	95 Am 7x ² 557
			88	200 62247	45 Rh Ss ¹ 4d ⁸	7.7 Ir 6s ² 5sd ⁷	100 Une 742647	62 Sm (s ² 4y ⁶	94 Pu 7,25,76
				26 Fe	44 Ru 5s ¹ 4d ⁷	76 Os 6s ² 5d ⁶	108 Uno 7s ² 6sf ⁶	61 Pm 6s ² 4y ⁵	93 Np 7s ² Sr ⁴ 6d ¹
			7.8	25 Mn 45 ² 3d ⁵	43 Te 5x ² 44 ⁵	75 Re 6s ² 5d ⁵	107 Uns 712 ² 6cd ⁵	66 ² 45 ⁴	92 U 17s ² Sr ³ 6d ³
			89	24 C-7-348	42 Mo 5s ¹ 4d ⁵	74 W 6s ² 5d ⁴	106 Unb 7s ² 6sf	59 Pr 66 ² 4 ₇ ²	91 Pa 2572641
			SB	23 V 45 ² 3d ⁵		73 Ta 64 ² 5d ³	105 Unp 7,26d	58 Ce 6s ² 4y ⁴ 5a ⁴	% Th 52442
			48	22 T1 4s ² 3d ²	40 Zr 5s ² 4d ²	72 Hf 66 ² 54 ²	104 Unq 7 ₅ 26d ²		
			3.8	21 Sc 45. ² 3d ¹	39 Y Ss ² 4d ³	57 La 64 ² 5d ¹	89 Ac 7s ² 6d ³		
	2A	d Be 232	12 Mg 3x ²	852	38 Sr.	56 Ba	88 Ra 752		
IA	18 1	2 I I	3, N =	92 X L	37 Rb 55 ¹	80%	87 Fr 78 ¹		
	_	7.1	m	4	I/O	9	~		

Copyright @ 1991 by McGraw-Hill Inc. All rights reserved.

Oxidation Numbers of Elements

8A	He		S & 2	18 Ar		36	7 7 7 7 7 T	2 × 5 + 4 + 4	88 RM
	-1-	7A	σц 7	7 D 74444	77	35	Br 1 + 13 + 5	8 - 5551	85 At
		6A	∞ o 7 - 1° 7 7	2 × 2 ± 5 4		34	Se + + 6	2 5 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	Po 2
		SA	~ x * 4 # # # # # # # # # # # # # # # # # #	2 a 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		33	A + 2 + 4	22 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	83 45 45
•		4.A	~ ∪ ‡\$7 7	4 is 4		32	9 1 4	S	82 Pb + 4 2
		3A	5 B 5	13 A 13		31	£ 5	\$ T ₽	18 E 5 F
のとかのでは					2B	30	Zn +2	48 Cd 48	80 Hg + 1 + 1
3					118	59	Cu + 7	47 +:	79 Au +3 +1
5	de				Γ	28	Z ²	8 B 4 ± ±	78 + + + + + + + + + + + + + + + + + + +
_	00	2	0		-8B	23	3 TT	45 43 43 42 42 43	7 4 ¥ \$
756		•	'3'			26	£ 2 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	4 % & & 4 t	76 OS +*8
-		1	. 5		7B	25	Mn + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 +	& 5 ± 8 ±	75 Re +4 +6 +4
5			2		68	24	2 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 W 0 W 4 tt	¥ ≯ å å
	7	N.	1		SB	23	> \$4 4 4 4	4 & t t	73 Ta
					48	22	T	40 Zr ±	5 H 1
					3B	21	Sc +3	₹ 4 3	SZ P
		2A	4 Be	12 Mg	112	20	2 2	\$ 38 2 2 38	56 Ba
VI.	= ∓ 7		1 I 3	∃ S ∓		6	¥ ∓	± 8 ±	% చి ∓

Copyright @ 1991 by McGraw-Hill Inc. All rights reserved.

Week 1

Review of Basic Concepts

- Periodic Table
- Thermodynamics & Kinetics
- Electronic Structure

WHAT IS INORGANIC CHEMISTRY?

Inorganic Chemistry is the chemistry of the elements other than that of C combined with H, O, N, S, halogens, and the physical properties that these elements and their compounds exhibit.

Inorganic Chemistry covers a vast area of aqueous as well as non-aqueous chemistry. Types of inorganic compounds range from ionic solids to gases and molecular compounds.

Inorganic Chemistry is the chemistry of life as much as it is the chemistry of metallurgy.

To Name but a few Important Applications: Main group elements (s, p block) are important in semiconductor technology (*e.g.*, Ga, As).

Transition elements (d block) are found in trace quantities as the active center of enzymes that catalyze all the reactions in our body, and, indeed, are the catalysts that allow us to produce vast quantities of fine chemicals and polymers from petroleum (Rh is one of the most common and is in our catalytic converters in our exhaust systems in our cars).

The rare earth elements (f block – lanthanides and actinides), many of which are radioactive, are important in magnetic materials.

Classes of Inorganic Substances

In the broadest sense, the materials that we shall discuss can be grouped into four classifications: elements, ionic compounds, molecular compounds, and polymers or network solids. The following brief list is presented to show the complicated variety of substances that are encountered in a discussion of inorganic chemistry. Greater detail is presented in the appropriate chapters to follow.

- 1. The elements. The elements have an impressive variety of structures and properties. Thus they can be
- (a) Either atomic (Ar, Kr) or molecular (H_2, O_2) gases.
- (b) Molecular solids (P_4, S_8, C_{60}) .
- (c) Extended molecules or network solids (diamond, graphite).
- (d) Solid (W, Co) or liquid (Hg, Ga) metals.
- 2. Ionic Compounds. These compounds are always solids at the standard temperature and pressure. They include
- (a) Simple ionic compounds, such as NaCl, which are soluble in water or other polar solvents.

- (b) Ionic oxides that are insoluble in water (e.g., ZrO₂) and mixed oxides such as spinet (MgAl₂O₄), the various silicates [e.g., CaMg(Sio₃)₂], and so on.
- (c) Other binary halides, carbides, sulfides, and similar materials. A few examples are AgCl, SiC, GaAs, and BN, some of which should be better considered to be network solids.
- (d) Compounds containing polyatomic (so-called complex) ions, such as $[SiF_6]^{2-}$, $[Co(NH_3)_6]^{3+}$, $[Fe(CN)_6]^{4-}$, and $[Ni(H_2O)_6]^{2+}$.
- 3. Molecular compounds. These compounds may be solids, liquids, or gases, and include, for example,
- (a) Simple, binary compounds, such as PF₃, SO₂, OsO₄, and UF₆.
- (b) Complex metal-containing compounds, such as PtCl₂(PMe₃)₂ and RuH(CO₂Me)(PPh₃)₃.
- (c) Organometallic compounds that characteristically have metal-to-carbon bonds. Some examples are $Ni(CO)_4$, $Zr (CH_2C_6H_5)_4$, and $U(C_8H_8)_2$.
- 4. Network solids or polymers. Examples of these substances (discussed in Chapter 32), include the numerous and varied inorganic polymers and superconductors. One example of the latter has the formula YBa₂Cu₃O₇.

Classes of Inorganic Structures

Organic is mostly based on the tetrahedral geometry.

Why?

Carbon requires 4 electrons to complete its valence and a tetrahedron is the best way to arrange four groups around a central atom (w/o lone pairs) with s and p orbitals.

Inorganic chemistry is much more complicated.

tetrahedron cube octahedron dodecahedron Icosahedron

For example,
The five "Platonic solids"
form the basis for many inorganic structures

Less regular polyhedra:

Trigonal bipyramid
Trigonal prism
Square prism

And

Other planar structures:

Chains
Square planes
Triangles

Are also known for inorganic structures.

Classes of Inorganic Reactions Cotton book cites 12 different ones:

- 1. Acid base. According to the definition of Bronsted-Lowry, the neutralization of a proton donor by a proton acceptor. According to the definition of Lewis, the formation of an adduct between an electron-pair donor and an electron-pair acceptor. A lesser known definition is that of Lux-Flood, namely the reaction of an oxide ion acceptor with an oxide.
- 2. Addition. A reaction in which a group, molecule, or ion combines with another. Common examples are additions across a multiple bond and addition to an atom that is able to undergo coordination sphere expansion (an increase in occupancy). This reaction is the converse of elimination.
- 3. Elimination. A reaction in which a group, molecule, or ion is separated from another. Examples are dehydrohalogenations, and eliminations from metal centers that are able to undergo coordination number reduction (a decrease in occupancy). This is the converse of an addition reaction.

- 4. Redox (a reaction in which an atom, ion or molecule gains (reduction) or loses (oxidation) an electron or electrons.
- 5. Insertion. The interposition of a new molecule, group, or ion between atoms in a structure such that the added molecule, group, or ion separates the two parts of the structure that were formerly bound together.
- 6. Substitution (Displacement). The exchange of one atom, molecule or ion for another in a compound.
- 7. Rearrangement (Isomerization). A conversion of one isomer into another (cis-trans for example).
- 8. Metathesis (Exchange). An exchange of comparable groups, such that two compounds form two new ones:

$$AX + BY \hat{a} AY + BX$$

9. Solvolysis. A reaction with solvent; when the solvent is water it is called hydrolysis.

- 10. Chelation. A reaction in which a group (typically called a ligand) is able to bond to a central metal ion simultaneously through more than one donor atom.
- 11. Cyclization. A reaction that leads to the formation of a ring.
- 12. Nuclear reaction. A reaction that changes the atomic number or mass number of an atom.