COUNTABILITY Oct 12 - Oct 16 Computer Science Mentors 70 Fall 2020

Roast us here: https://tinyurl.com/csm70-feedback20 **Prepared by:** Aishani Sil, Austin Lei, Agnibho Roy, Debayan Bandyopadhyay, Abinav Routhu

1.	Show that for any positive integer n , an injective (one-to-one) function $f:\{1,2,\ldots,n\}\to\{1,2,\ldots,n\}$ must be a bijection.
2.	Find a bijection between N and the set of all integers congruent to 1 mod n , for a fixed n .
3.	Are these sets countably infinite/uncountably infinite/finite? If finite, what is the order of the set? Reminder: A bit string is a sequence of digits where each digit corresponds to either a 1 (on) or a 0 (off). (a) Finite bit strings of length n.
	(b) All finite bit strings of length 1 to n.
	(c) All finite bit strings
	(d) All infinite bit strings
	(e) All finite or infinite bit strings.
	(f) Suppose that we try to show that infinite bit strings are countable by induction. We show that for any positive integer <i>n</i> , a bit string of length <i>n</i> is countable. Why does this not work for infinite strings?
4.	Is the power set $\mathcal{P}(S)$, where S is countably infinite, finite, countably infinite, or uncountably infinite? Provide a proof for your answer. Reminder: the power set of a set is the set of all possible subsets of that set. Ex: $S = \{A, B\}$, $\mathcal{P}(S) = \{\{\}, \{A\}, \{B\}, \{A, B\}\}$