Epreuve Physique : Optique Magnétostatique & Électricité Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-05	Lame de verre		
1	de 1,3 à 1,5	1	
2	schéma plus $n_1 \sin i_1 = n_2 \sin i_2$	1	
3	appliquer loi de la réfraction sur les deux faces de la lame, puis	1	
	prolonger pour avoir une image virtuelle.		
4	appliquer loi de la réfraction sur les deux faces de la lame, puis	1	
	prolonger pour avoir une image réelle.		
5		1	
06-10	Viseur		
6	On règle l'oculaire de façon à avoir net le réticule sans accommo-	1	
	der, c'est à dire telle que l'image du réticule par l'oculaire soit à		
	l'infini. Donc $\overline{R_{oc}O_1} = f_1'$		
7	A' est l'image de A par l'objectif de centre O_2 et de foyer F_2 donc	1	
	$\gamma_{obj} = \left(\frac{\overline{A'B'}}{\overline{AB}}\right) = \frac{\overline{F_2O_2}}{\overline{F_2A}} \text{ donc } \overline{F_2A} = \frac{f_2'}{\gamma_{obj}} = -25 \text{ mm}$		
8	$\gamma_{obj} = \left(\frac{\overline{A'B'}}{\overline{AB}}\right)_{ob} = \frac{\overline{F_2O_2}}{\overline{F_2A}} \text{ donc } \overline{F_2A} = \frac{f'_2}{\gamma_{obj}} = -25 \text{ mm}$ relation de conjugaison pour l'objectif $\frac{1}{\overline{O_2A'}} - \frac{1}{\overline{O_2A}} = \frac{1}{f'_2} \text{ et } \gamma_{obj} = -\frac{1}{\overline{O_2A'}} + \frac{1}{\overline{O_2A'}} = \frac{1}{\overline{O_2A'}} + \frac{1}{\overline{O_2A'}} = \frac{1}{\overline{O_2A'}} + \frac{1}{\overline{O_2A'}} = \frac{1}{\overline{O_2A'}} + \frac{1}{O_$	1	
	$\begin{vmatrix} \overline{O_2 A'} \\ \overline{O_2 A} \end{vmatrix} \operatorname{donc} \overline{O_2 A'} = f_2'(1 - \gamma_{obj}) $ $\operatorname{puis} \overline{O_2 O_1} = \overline{O_2 R_{oc}} + \overline{R_{oc} O_1} = \overline{O_2 A'} + f_1' = f_2'(1 - \gamma_{obj}) + f_1' = 200$		
	puis $O_2O_1 = O_2R_{oc} + R_{oc}O_1 = O_2A' + f_1' = f_2'(1 - \gamma_{obj}) + f_1' = 200$ mm		

9	tracé des rayons	1	
10	On veut regarder un objet à distance finie, donc microscopie	1	
11-19	Analyse du système additionnel		
11		1	
12	un système afocal est système n'ayant pas de point focal, donc les	1	
	rayons qui entrent parallèles ressortent parallèles.		
	On doit avoir les lentilles convergentes séparées d'une distance		
	$J_2 + J_3 - M_i L_s - O_2 L_s$ l'application numérique donne $\overline{M_i O_3} = 50 \text{ mm}$		
	Tapphoadon namerique donne 11140 5 00 mm		
13	R_3 image de R par L_3 , $\overline{F_3'R}$. $\overline{F_3R_3} = -f_3'^2$	1	
	R' image de R_3 par L_2 , $\overline{F_2'R_3}$. $\overline{F_2R'} = -f_2'^2$		
	et L_2 et L_3 système afocal donc $F_2' = F_3$ donc $\overline{F_3R_3} = \overline{F_2'R_3} = \overline{F_2'R_3}$		
	$-\frac{f_3'^2}{F_3'R} = -\frac{f_2'^2}{F_2R'}$		
	$donc \overline{F_3'R} = \overline{F_2R'} \frac{f_3'^2}{f_2'^2}$		
	$\int_{0}^{\infty} f_{2}^{1} f_{2}^{1} f_{2}^{2}$		
14	On place R au foyer objet de L_3 donc son image est à l'infini, donc	1	
	R' se trouve au foyer image de L_2 donc $\overline{O_2R'}=-f_2'=-50$ mm		
15	$\gamma = \frac{\overline{A'B'}}{\overline{AB}}$, on fait un schéma linéaire $\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{F_2O_2}}{\overline{F_3'O_3}} = \frac{f_2'}{f_3'} = \frac{f_2'}{f_3'}$	1	
	AB , $\overline{F_3'O_3}$ F_3'	_	
	$\left -\frac{1}{2} \right $		
10	$\frac{1}{2}$	_	
16	On a $d_0 = \overline{F_3'R} = \overline{F_2R'} \frac{{f_3'}^2}{{f_2'}^2}$. Comme le miroir M_0 est à la position	1	
	de F_2 et soit R_0 l'image de R' par le miroir alors $\overline{R_0F_2} = \overline{F_2R'}$.		
	Pour voir l'image de R_0 nette il faut que $R_0 = A$ donc $d_0 =$		
	$AF_2 \frac{{f_3'}^2}{{f_1'}^2}$		
157	I_2	1	
17	On reprend la question précédente en décalant de e la position du e'	1	
	miroir donc $\overline{R_0F_2} - e = \overline{F_2R'} + e$ donc $d_1 = (\overline{AF_2} - 2e)\frac{f_3'}{f'^2} =$		
	J_2		
	$d_0 - 2e \frac{f_3^{\prime 2}}{f^{\prime 2}}$		
18	La netteté de R est un critère qui nous permet de savoir si l'on a	1	
	déplacé R de ϵ_1 que l'on déplace le miroir de e .		
19	1 1	1	
	On a calculé $\gamma \gamma_{obj} = -\frac{1}{3} \times (-2) = \frac{2}{3}$ Application à la caractérisation d'une lame d'épaisseur e	-	
20-23	Application a la caracterisation d'une lame d'epaisseur e et d'indice n		
	et a maice n	[

20	La position précise de la lame n'a pas d'importance, on a calculé au début de l'énoncé que l'image de A par la lame ne dépend pas de sa position	1	
21	de sa position. La lame de verre déplace R' de $e(1-1/n)$ puis après réflexion dans le miroir elle redéplace dans le même sens R_0 de $e(1-1/n)$. (faire un schéma). Il faut donc déplacer R pour obtenir à nouveau une image nette.	1	
22	On utilise le calcul fait pour ϵ_1 et on obtient $\epsilon_2 = -2e(1-1/n)\frac{{f_3'}^2}{{f_2'}^2}$	1	
23	On en déduit $n = \frac{1}{1 + \frac{\epsilon_2 f_2'^2}{2e f_3'^2}}$	1	
24-35	Approche interférentielle		
24-27	Théorie		
24		1	
25	calcul en lame d'air $\delta_{geo} = 2e \cos i$	1	
26	pour $n=1$ on trouve $\delta=\delta_{geo}+\frac{\lambda}{2}$, le terme π est du à la réflection du milieu d'indice élevé au milieu d'indice faible.	1	
27	$I=2I_0(1+\cos(\Delta\phi))$, plus les conditions d'interférence : champs d'interférence, monochromatiques, issues d'une même source primaire, différence de marche inférieure à la longueur de cohérence.	1	
	Les interférences sont constructives si $\Delta \phi = \frac{\delta}{\lambda} = 2p\pi$		
28-32	Expérience n°1		
28	on a des interférences constructives pour δ =cte donc pour i =cte, or avec schéma cela correspond à une rayon $r = f' \tan i = \text{cte sur}$ l'écran. Donc il s'agit d'anneaux.	1	
29	or avec schéma cela correspond à une rayon $r = f' \tan i = \text{cte sur}$ l'écran. Donc il s'agit d'anneaux. calcul d'abord un DL à l'ordre 1 en α puis différentielle donne	1	
	or avec schéma cela correspond à une rayon $r=f'\tan i=$ cte sur l'écran. Donc il s'agit d'anneaux. calcul d'abord un DL à l'ordre 1 en α puis différentielle donne $d\delta = \frac{ed\alpha}{\sqrt{n^2-1/2}}$ L'interfrange est la distance sur l'écran entre deux maximum d'intensité lumineuse.		
29	or avec schéma cela correspond à une rayon $r=f'\tan i=$ cte sur l'écran. Donc il s'agit d'anneaux. calcul d'abord un DL à l'ordre 1 en α puis différentielle donne $d\delta = \frac{ed\alpha}{\sqrt{n^2-1/2}}$ L'interfrange est la distance sur l'écran entre deux maximum d'intensité lumineuse. Pour une interfrange on a une variation de différence de marche	1	
29	or avec schéma cela correspond à une rayon $r=f'\tan i=$ cte sur l'écran. Donc il s'agit d'anneaux. calcul d'abord un DL à l'ordre 1 en α puis différentielle donne $d\delta = \frac{ed\alpha}{\sqrt{n^2-1/2}}$ L'interfrange est la distance sur l'écran entre deux maximum d'intensité lumineuse.	1	
30 31	or avec schéma cela correspond à une rayon $r=f'\tan i=$ cte sur l'écran. Donc il s'agit d'anneaux. calcul d'abord un DL à l'ordre 1 en α puis différentielle donne $d\delta=\frac{ed\alpha}{\sqrt{n^2-1/2}}$ L'interfrange est la distance sur l'écran entre deux maximum d'intensité lumineuse. Pour une interfrange on a une variation de différence de marche de $\Delta\delta=\lambda=\frac{e\Delta\alpha}{\sqrt{n^2-1/2}}$ or $\Delta x=f'\Delta\alpha$ donc $\lambda=\frac{e\Delta x}{f'\sqrt{n^2-1/2}}$ On peut mesurer un maximum d'interfrange, $13\Delta x=4,5$ cm donc $\Delta x=0,35$ cm. La valeur numérique de Δx permet d'éliminer la seule inconnue autre que e et n dans la relation de la question précédente. Expérience n°2	1 1 1	
30 31 32	or avec schéma cela correspond à une rayon $r=f'\tan i=$ cte sur l'écran. Donc il s'agit d'anneaux. calcul d'abord un DL à l'ordre 1 en α puis différentielle donne $d\delta = \frac{ed\alpha}{\sqrt{n^2-1/2}}$ L'interfrange est la distance sur l'écran entre deux maximum d'intensité lumineuse. Pour une interfrange on a une variation de différence de marche de $\Delta\delta = \lambda = \frac{e\Delta\alpha}{\sqrt{n^2-1/2}}$ or $\Delta x = f'\Delta\alpha$ donc $\lambda = \frac{e\Delta x}{f'\sqrt{n^2-1/2}}$ On peut mesurer un maximum d'interfrange, $13\Delta x = 4,5$ cm donc $\Delta x = 0,35$ cm. La valeur numérique de Δx permet d'éliminer la seule inconnue autre que e et n dans la relation de la question précédente.	1 1 1	

34	On repère deux longueur d'onde pour lesquelles on a annulation de l'intensité les plus éloignées possibles $\lambda_1 = 629, 5$ nm et $\lambda_{15} = 633, 3$ nm et $p = 15$.	1	
35	On a un système de deux inconnus et de deux équations. Il n'est pas linéaire mais on éliminer e en divisant les deux équations et on peut isoler n en passant au carré.	1	
36-62	Une autre voie vers la fusion thermonucléaire : les Z machines		
36-42	Première partie - Inductance dans une configuration co- axiale		
36	Plan de symétrie contenant l'axe des cylindres et le point M donne la direction de \vec{B} selon \vec{e}_{ϕ} . Invariance par translation selon Oz donne $B(\rho, \phi)$ et Invariance par rotation autour de l'axe Oz et d'angle ϕ donne $B(\rho)$. Donc $\vec{B} = B(\rho)\vec{e}_{\phi}$	1	
37	Utilisation du théorème d'Ampère. On choisit comme contour fermé la ligne de champs passant par M. La circulation du champ sur une ligne de champ est non nulle. Et pour $\rho < a$ on n'a pas de courant traversant le contour (cylindres creux) donc le courant enlacé est nul. Donc le champ est nul. Pour $\rho > b$ le courant des deux cylindres se compensent car orienté en sens opposé. Donc le champ est aussi nul.	1	
38	Pour $a < \rho < b$, on peut appliquer le théorème d'ampère qui donne $2\pi\rho B(\rho) = \mu_0 I$ donc $\vec{B} = \frac{\mu_0 I}{2\pi\rho} \vec{e}_{\phi}$	1	
39	La surface rectangulaire PQRS est comprise entre les coordonnées $a < \rho < b$ et $z_0 < z < z_0 + l$ donc $\iint \vec{B} \cdot d\vec{S} = \iint \vec{B} \cdot \vec{e}_{\phi} dS = \int_{z_0}^{l} \int_a^b B(\rho) d\rho dz = l \int_a^b B(\rho) d\rho = \frac{\mu_0 I l}{2\pi} \int_a^b \frac{d\rho}{\rho} = \frac{\mu_0 I l}{2\pi} \ln\left(\frac{b}{a}\right)$	1	
40	$\iint \vec{B} \cdot d\vec{S} = LI \text{ d'où } L = \frac{\mu_0 l}{2\pi} \ln \left(\frac{b}{a}\right)$	1	
41	Application numérique $L = 2, 2.10^{-7} H$	1	
42	Application numérique $L = 4,9.10^{-8} H$	1	
43-46	Contexte des hautes puissances pulsées		
43	On a un seul cylindre creux d'épaisseur e , donc à nouveau plan de symétrie, puis invariance, puis théorème d'Ampère avec choix du contour : une ligne de champs, puis trois cas à distinguer pour le courant enlacé. A l'intérieur du cylindre pas de courant enlacé donc le courant est nul. A l'intérieur de l'épaisseur du cylindre on a $2\pi rB(r) = \mu_0 I \frac{\pi(r^2 - R^2)}{\pi((R + e)^2 - R^2)} \approx \mu_0 I \frac{(r - R + R)^2 - R^2}{2Re} \approx \mu_0 I \frac{r - R}{2\pi Re}$ A l'extérieur du cylindre on a $2\pi rB(r) = \mu_0 I \frac{r - R}{2\pi re} \approx \mu_0 I \frac{r - R}{2\pi Re}$ A l'extérieur du cylindre on a $2\pi rB(r) = \mu_0 I$ donc $B(r) = \frac{\mu_0 I}{2\pi r}$	1	

on a trois forces : Laplace, pression sur la face en r et pression sur la face en $r + dr$, dr id $\bar{dF} + p(r)rd\phi dz\bar{e}_r - p(r+dr)rd\phi dz\bar{e}_r = \bar{0}$. $d\bar{F} - \frac{dp}{dr}rdrd\phi dz\bar{e}_r = \bar{0}$ donc $d\bar{F} - \frac{dr}{dr}dV\bar{e}_r = \bar{0}$ donc $\bar{f} \wedge \bar{b} - \frac{dp}{dr}\bar{e}_r = 1$ $\bar{0}$ donc $\frac{1B(r)}{\pi((R+e)^2 - R^2)}\bar{e}_z \wedge \bar{e}_\phi - \frac{dp}{dr}\bar{e}_r = \bar{0}$ donc $dp - \frac{1B(r)}{2\pi Re}$ Or à l'extérieur la pression est nulle et on cherche la pression à l'intérieur en $r = R$ donc on intègre entre R et $R + e$, $0 - p(R) = \frac{1}{2\pi Re}$ $\int_{R^+e}^{R^+e} \frac{dp}{dr} dr = -\int_{R^+e}^{R^+e} \frac{1B(r)}{2\pi Re} dr = -\frac{\mu_0 I^2}{4\pi^2 R^2 e^2} \int_{R^+e}^{R^+e} (r - R) dr = \frac{\mu_0 I^2}{8\pi^2 R^2}$ $\frac{8\pi^2 R^2}{8\pi^2 R^2} = \frac{N_A \mu_0 I^2}{8\pi^2 R^2 N R_{gaz}}$ 46 On utilise $pV = nR_{gaz}T$ soit $p = \frac{n}{V}R_{gaz}T = \frac{N}{N_A}R_{gaz}T$ donc 1 $T = \frac{N_A p}{NR_{gaz}} = \frac{N_A \mu_0 I^2}{8\pi^2 R^2 N R_{gaz}}$ 47-52 Principe de conservation du flux magnétique et amplification en courant 47 Loi des mailles $u_L + u_r = L\frac{di}{dt} + ri = 0$ 48 on pose $\tau = L/r$ donc $i(t) = i(0) \exp(-t/\tau) = I_0 \exp(-t/\tau)$ 1 1 49 tracé avec détermination de τ sur le tracé. 1 1 51 si le circuit est indéformable alors L =cte et i =cte donc $\phi = 1$ $Li = \text{cte}.$ 52 loi de Faraday $e = -\frac{d\phi}{dt} = 0$ car $\phi = \text{cte}$ 1 1 53-55 Cas d'un circuit déformable 52 Le circuit est déformable donc cette fois ci $L(t)$ l'inductance dépend de t. Mais la loi des mailles donne toujours $u_L + u_r = 0$ or si r est négligeable alors u_r aussi donc $u_L = 0$ donc $e = -u_L = 0$ 52 On a toujours la loi de Faraday même pour un circuit déformable donc $e = -\frac{d\phi}{dt} = 0$ donc ϕ =cte 52 On a $\phi = L(t)i(t) = \text{cte}$ donc $\phi = \text{cte}$ 55 On a $\phi = L(t)i(t)$ aui augmente. 56-62 Optimisation du dispositif de compression 56-58 Inductance totale et flux piégé 56 Les deux cylindres sont parcourus par le même courant $l = 1$ forment un circuit fermé. L'inductance totale et donc bines en série dans un circuit fermé. L'inductance totale et donc	44	On schématise un élément de volume cylindrique $dV = rdrd\phi dz$,	1	
la face en $r + dr$, d'où $d\bar{F} + p(r)r d\phi dz\bar{e}_r - p(r + dr)r d\phi dz\bar{e}_r = \bar{0}$. $d\bar{F} - \frac{dp}{dr} r dr d\phi dz\bar{e}_r = \bar{0} \text{ donc } d\bar{F} - \frac{dp}{dr} V\bar{e}_r = \bar{0} \text{ donc } \bar{j} \wedge \bar{B} - \frac{dp}{dr}\bar{e}_r = 1$ $\bar{0} \text{ donc } \frac{IB(r)}{\pi((R+e)^2 - R^2)}\bar{e}_z \wedge \bar{e}_\phi - \frac{dp}{dr}\bar{e}_r = \bar{0} \text{ donc } \frac{dp}{dr} = -\frac{IB(r)}{2\pi Re}$ Or à l'extérieur la pression est nulle et on cherche la pression à l'intérieur en $r = R$ donc on intègre entre R et $R + e, 0 - p(R) = \int_R^{R+e} \frac{dp}{dr} dr = -\int_R^{R+e} \frac{IB(r)}{2\pi Re} dr = -\frac{\mu_0 I^2}{4\pi^2 R^2 e^2} \int_R^{R+e} (r - R) dr = \frac{\mu_0 I^2}{8\pi^2 R^2}$ 46 On utilise $P = nR_{gaz}T$ soit $P = \frac{n}{V}R_{gaz}T = \frac{N}{N_A}R_{gaz}T$ donc $P = \frac{N_A p}{N_R q_{gaz}} = \frac{N_A \mu_0 I^2}{8\pi^2 R^2 N_R q_{gaz}}$ 47-52 Principe de conservation du flux magnétique et amplification en courant 47 Loi des mailles $u_L + u_r = L\frac{di}{dt} + ri = 0$ 48 on pose $\tau = L/r$ donc $i(t) = i(0) \exp(-t/\tau) = I_0 \exp(-t/\tau)$ 1 1 1 2 4 3 i le circuit est indéformable alors $L = \cot$ et $i = \cot$ donc $\phi = 1$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		· · · · · · · · · · · · · · · · · · ·		
$ \vec{0} \ \text{donc} \ \frac{IB(r)}{\pi((R+e)^2-R^2)} \vec{e}_z \wedge \vec{e}_\phi - \frac{dp}{dr} \vec{e}_r = \vec{0} \ \text{donc} \ \frac{dp}{dr} - \frac{\vec{1}B(r)}{2\pi Re} $ Or à l'extérieur la pression est mulle et on cherche la pression à l'intérieur en $r=R$ donc on intègre entre R et $R+e$, $0-p(R)=\int_R^{R+e} \frac{dp}{dr} dr = -\int_R^{R+e} \frac{IB(r)}{2\pi Re} dr = -\frac{\mu_0 I^2}{4\pi^2 R^2 e^2} \int_R^{R+e} (r-R) dr = -\frac{\mu_0 I^2}{8\pi^2 R^2} $ On utilise $pV = nR_{gaz}T$ soit $p = \frac{n}{V}R_{gaz}T = \frac{N}{N_A}R_{gaz}T$ donc 1 $T = \frac{N_A p}{N_R g_{az}} = \frac{N_A \mu_0 I^2}{8\pi^2 R^2 N R_{gaz}} $ Principe de conservation du flux magnétique et amplification en courant $ 47 \text{Loi des mailles } u_L + u_r = L\frac{di}{dt} + ri = 0 $ 1 48 on pose $\tau = L/r$ donc $i(t) = i(0) \exp(-t/\tau) = I_0 \exp(-t/\tau)$ 1 1 49 tracé avec détermination de τ sur le tracé. 1 1 1 40 tracé avec détermination de τ sur le tracé. 1 1 51 si le circuit est indéformable alors $L = \text{cte}$ et $i = \text{cte}$ donc $\phi = 1$ $Li = \text{cte}$. 1 52 loi de Faraday $e = \frac{d\phi}{dt} = 0$ car $\phi = \text{cte}$ 1 53-55 Cas d'un circuit déformable corte et fois ci $L(t)$ l'inductance dépend de t. Mais la loi des mailles donne toujours $u_L + u_r = 0$ or si r est négligeable alors u_r aussi donc $u_L = 0$ donc $e = -u_L = 0$ 52 On a toujours la loi de Faraday même pour un circuit déformable donc $e = -\frac{d\phi}{dt} = 0$ donc ϕ = cte 56-62 Optimisation du dispositif de compression 56-58 Inductance totale et flux piégé 56 Les deux cylindres sont parcourus par le même courant I et forment un circuit fermé, on choisit donc un modèle de deux bobines en série dans un circuit fermé. L'inductance totale est donc bines en série dans un circuit fermé. L'inductance totale est donc				
Or à l'extérieur la pression est nulle et on cherche la pression à l'intérieur en $r=R$ donc on intègre entre R et $R+e$, $0-p(R)=\int_{R}^{R+e}\frac{dp}{dr}dr=-\int_{R}^{R+e}\frac{IB(r)}{2\pi Re}dr=-\frac{\mu_0I^2}{4\pi^2R^2e^2}\int_{R}^{R+e}(r-R)dr=-\frac{\mu_0I^2}{8\pi^2R^2}$ 46 On utilise $pV=nR_{gaz}T$ soit $p=\frac{n}{V}R_{gaz}T=\frac{N}{N_A}R_{gaz}T$ donc 1 $T=\frac{N_Ap}{NR_{gaz}}=\frac{N_A\mu_0I^2}{8\pi^2R^2NR_{gaz}}$ 47-52 Principe de conservation du flux magnétique et amplification en courant 47 Loi des mailles $u_L+u_r=L\frac{di}{dt}+ri=0$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45	, ,	1	
l'intérieur en $r=R$ donc on intègre entre R et $R+e, 0-p(R)=\int_{R}^{R+e}\frac{dp}{dr}dr=-\int_{R}^{R+e}\frac{IB(r)}{2\pi Re}dr=-\frac{\mu_0I^2}{4\pi^2R^2e^2}\int_{R}^{R+e}(r-R)dr=-\frac{\mu_0I^2}{8\pi^2R^2}$ 46 On utilise $pV=nR_{gaz}T$ soit $p=\frac{n}{V}R_{gaz}T=\frac{N}{N_A}R_{gaz}T$ donc $T=\frac{N_Ap}{NR_{gaz}}=\frac{N_A\mu_0I^2}{8\pi^2R^2NR_{gaz}}$ 47-52 Principe de conservation du flux magnétique et amplification en courant 47 Loi des mailles $u_L+u_r=L\frac{di}{dt}+ri=0$ 1 48 on pose $\tau=L/r$ donc $i(t)=i(0)\exp(-t/\tau)=I_0\exp(-t/\tau)$ 1 49 tracé avec détermination de τ sur le tracé. 1 50 $r\to 0$ donc $\tau\to +\infty$ donc $i(t)\to I_0$ 1 51 si le circuit est indéformable alors L =cte et i =cte donc $\phi=1$ Li =cte. 52 loi de Faraday $e=-\frac{d\phi}{dt}=0$ car ϕ =cte 1 53-55 Cas d'un circuit déformable 52 Le circuit est déformable donc cette fois ci $L(t)$ l'inductance dépend de t . Mais la loi des mailles donne toujours $u_L+u_\tau=0$ or si r est négligeable alors u_r aussi donc $u_L=0$ donc $e=-u_L=0$ 52 On a toujours la loi de Faraday même pour un circuit déformable donc $e=-\frac{d\phi}{dt}=0$ donc ϕ =cte 53 On a $\phi=L(t)i(t)$ =cte donc $i(t)\propto\frac{1}{L(t)}$ Donc on doit avoir $b\to a$ 1 pour avoir $i(t)$ qui augmente. 56-62 Optimisation du dispositif de compression 56-58 Inductance totale et flux piégé 56 Les deux cylindres sont parcourus par le même courant I et forment un circuit fermé, on choisit donc un modèle de deux bobines en série dans un circuit fermé. L'inductance totale est donc				
$ \int_{R}^{R+e} \frac{dp}{dr} dr = -\int_{R}^{R+e} \frac{IB(r)}{2\pi Re} dr = -\frac{\mu_0 I^2}{4\pi^2 R^2 e^2} \int_{R}^{R+e} (r-R) dr = -\frac{\mu_0 I^2}{8\pi^2 R^2} $ 46 On utilise $pV = nR_{gaz}T$ soit $p = \frac{n}{V}R_{gaz}T = \frac{N}{N_A}R_{gaz}T$ donc $T = \frac{N_A p}{N_R g_{az}} = \frac{N_A \mu_0 I^2}{8\pi^2 R^2 N R_{gaz}} $ 47-52 Principe de conservation du flux magnétique et amplification en courant				
$-\frac{\mu_0 \tilde{I}^2}{8\pi^2 R^2}$ 46 On utilise $pV = nR_{gaz}T$ soit $p = \frac{n}{V}R_{gaz}T = \frac{N}{N_A}R_{gaz}T$ donc 1 $T = \frac{N_A p}{NR_{gaz}} = \frac{N_A \mu_0 I^2}{8\pi^2 R^2 N R_{gaz}}$ 47-52 Principe de conservation du flux magnétique et amplification en courant $\frac{47}{47} = \frac{1}{47} $				
$8\pi^2R^2 \\ \text{On utilise } pV = nR_{gaz}T \text{ soit } p = \frac{n}{V}R_{gaz}T = \frac{N}{N_A}R_{gaz}T \text{ donc} \\ T = \frac{N_Ap}{NR_{gaz}} = \frac{N_A\mu_0I^2}{8\pi^2R^2NR_{gaz}} \\ \text{Principe de conservation du flux magnétique et amplification en courant} \\ \text{47} \text{Loi des mailles } u_L + u_r = L\frac{di}{dt} + ri = 0 \\ \text{48} \text{on pose } \tau = L/r \text{ donc } i(t) = i(0) \exp(-t/\tau) = I_0 \exp(-t/\tau) \\ \text{49} \text{tracé avec détermination de } \tau \text{ sur le tracé.} \\ \text{50} r \to 0 \text{ donc } \tau \to +\infty \text{ donc } i(t) \to I_0 \\ \text{51} \text{si le circuit est indéformable alors } L = \text{cte et } i = \text{cte donc } \phi = 1 \\ Li = \text{cte.} \\ \text{52} \text{loi de Faraday } e = -\frac{d\phi}{dt} = 0 \text{ car } \phi = \text{cte} \\ \text{52} \text{loi de Faraday } e^2 = -\frac{d\phi}{dt} = 0 \text{ car } \phi = \text{cte} \\ \text{52} \text{Le circuit est déformable} \\ \text{52} \text{Le circuit est déformable donc cette fois ci } L(t) \text{ l'inductance dépend de t. Mais la loi des mailles donne toujours } u_L + u_r = 0 \text{ or si } r \text{ est négligeable alors } u_r \text{ aussi donc } u_L = 0 \text{ donc } e = -u_L = 0 \\ \text{52} \text{On a toujours la loi de Faraday même pour un circuit déformable donc } e = -\frac{d\phi}{dt} = 0 \text{ donc } \phi = \text{cte} \\ \text{52} \text{On a foujours la loi de Faraday même pour un circuit déformable donc } e = -u_L = 0 \\ \text{53-55} \text{Cas d'un circuit deformable donc } e = -u_L = 0 \\ \text{54} \text{Cas d'un circuit deformable donc } e = -u_L = 0 \\ \text{55} \text{On a foujours la loi de Faraday même pour un circuit déformable donc } e = -\frac{d\phi}{dt} = 0 \text{ donc } \phi = \text{cte} \\ \text{56-62} \text{On a deutout du dispositif de compression} \\ \text{56-58} \text{Inductance totale et flux piégé} \\ \text{56} \text{Les deux cylindres sont parcourus par le même courant I et forment un circuit fermé, on choisit donc un modèle de deux bobines en série dans un circuit fermé. L'inductance totale est donc} \\ \text{56} \text{Cas deux cylindres sont parcourus par le même courant I et forment un circuit fermé, on choisit donc un modèle de deux bobines en série dans un circuit fermé. L'inductance totale est donc} \\ \text{56} \text{56} \text{56} \text{56} \text{50} \text{50} \text{50} \text{50} \text$		$\mu_0 I^2$		
$T = \frac{N_A p}{NR_{gaz}} = \frac{N_A \mu_0 I^2}{8\pi^2 R^2 NR_{gaz}}$ $47-52 \begin{array}{c} \textbf{Principe de conservation du flux magnétique et amplification en courant} \\ 47 \begin{array}{c} \textbf{Loi des mailles } u_L + u_r = L\frac{di}{dt} + ri = 0 \\ 48 \text{on pose } \tau = L/r \text{ donc } i(t) = i(0) \exp(-t/\tau) = I_0 \exp(-t/\tau) \\ 49 \text{tracé avec détermination de } \tau \text{ sur le tracé.} \\ 50 r \to 0 \text{ donc } \tau \to +\infty \text{ donc } i(t) \to I_0 \\ 51 \text{si le circuit est indéformable alors } L = \text{cte et } i = \text{cte donc } \phi = 1 \\ Li = \text{cte.} \\ 52 \text{loi de Faraday } e = -\frac{d\phi}{dt} = 0 \text{ car } \phi = \text{cte} \\ 52 \text{loi de Faraday } e = \frac{d\phi}{dt} = 0 \text{ car } \phi = \text{cte} \\ 52 \text{Le circuit est déformable} \\ 52 \text{Le circuit est déformable} \\ 53-55 \textbf{Cas d'un circuit déformable} \\ 52 \text{Le circuit est déformable donc cette fois ci } L(t) \text{ l'inductance dépend de t. Mais la loi des mailles donne toujours } u_L + u_r = 0 \text{ or si } r \text{ est négligeable alors } u_r \text{ aussi donc } u_L = 0 \text{ donc } e = -u_L = 0 \\ 52 \text{On a toujours la loi de Faraday même pour un circuit déformable donc } e = -\frac{d\phi}{dt} = 0 \text{ donc } \phi = \text{cte} \\ 52 \text{On a } \phi = L(t)i(t) = \text{cte donc } i(t) \propto \frac{1}{L(t)} \text{ Donc on doit avoir } b \to a \\ \text{pour avoir } i(t) \text{ qui augmente.} \\ 56-62 \textbf{Optimisation du dispositif de compression} \\ 56-58 \textbf{Inductance totale et flux piégé} \\ 56 \text{Les deux cylindres sont parcourus par le même courant I et } forment un circuit fermé, on choisit donc un modèle de deux bobines en série dans un circuit fermé. L'inductance totale est donc } \\ \hline \begin{center} T. $		$-\frac{1}{8\pi^2R^2}$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	On utilise $pV = nR_{gaz}T$ soit $p = \frac{n}{V}R_{gaz}T = \frac{N}{N_A}R_{gaz}T$ donc	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$T = \frac{N_A p}{N R_{ann}} = \frac{N_A \mu_0 I^2}{8\pi^2 R^2 N R_{ann}}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47-52			
47 Loi des mailles $u_L + u_r = L\frac{di}{dt} + ri = 0$ 48 on pose $\tau = L/r$ donc $i(t) = i(0) \exp(-t/\tau) = I_0 \exp(-t/\tau)$ 49 tracé avec détermination de τ sur le tracé. 50 $r \to 0$ donc $\tau \to +\infty$ donc $i(t) \to I_0$ 51 si le circuit est indéformable alors L =cte et i =cte donc $\phi = 1$ Li =cte. 52 loi de Faraday $e = -\frac{d\phi}{dt} = 0$ car ϕ =cte 53-55 Cas d'un circuit déformable 52 Le circuit est déformable donc cette fois ci $L(t)$ l'inductance dépend de t. Mais la loi des mailles donne toujours $u_L + u_r = 0$ or si r est négligeable alors u_r aussi donc $u_L = 0$ donc $e = -u_L = 0$ 52 On a toujours la loi de Faraday même pour un circuit déformable donc $e = -\frac{d\phi}{dt} = 0$ donc $\phi = -\frac{d\phi}{dt} = 0$	41-02			
48 on pose $\tau = L/r$ donc $i(t) = i(0) \exp(-t/\tau) = I_0 \exp(-t/\tau)$ 1 49 tracé avec détermination de τ sur le tracé. 1 50 $r \to 0$ donc $\tau \to +\infty$ donc $i(t) \to I_0$ 1 51 si le circuit est indéformable alors L =cte et i =cte donc $\phi = 1$ Li =cte. 52 loi de Faraday $e = -\frac{d\phi}{dt} = 0$ car ϕ =cte 1 53-55 Cas d'un circuit déformable 52 Le circuit est déformable donc cette fois ci $L(t)$ l'inductance dépend de t. Mais la loi des mailles donne toujours $u_L + u_T = 0$ or si r est négligeable alors u_r aussi donc $u_L = 0$ donc $e = -u_L = 0$ 52 On a toujours la loi de Faraday même pour un circuit déformable 1 donc $e = -\frac{d\phi}{dt} = 0$ donc ϕ =cte 52 On a $\phi = L(t)i(t)$ =cte donc $i(t) \propto \frac{1}{L(t)}$ Donc on doit avoir $b \to a$ 1 pour avoir $i(t)$ qui augmente. 56-62 Optimisation du dispositif de compression 56-58 Inductance totale et flux piégé Les deux cylindres sont parcourus par le même courant I et forment un circuit fermé, on choisit donc un modèle de deux bobines en série dans un circuit fermé. L'inductance totale est donc				
48 on pose $\tau = L/r$ donc $i(t) = i(0) \exp(-t/\tau) = I_0 \exp(-t/\tau)$ 1 49 tracé avec détermination de τ sur le tracé. 1 50 $r \to 0$ donc $\tau \to +\infty$ donc $i(t) \to I_0$ 1 51 si le circuit est indéformable alors L =cte et i =cte donc $\phi = 1$ Li =cte. 52 loi de Faraday $e = -\frac{d\phi}{dt} = 0$ car ϕ =cte 1 53-55 Cas d'un circuit déformable 52 Le circuit est déformable donc cette fois ci $L(t)$ l'inductance dépend de t. Mais la loi des mailles donne toujours $u_L + u_T = 0$ or si r est négligeable alors u_r aussi donc $u_L = 0$ donc $e = -u_L = 0$ 52 On a toujours la loi de Faraday même pour un circuit déformable 1 donc $e = -\frac{d\phi}{dt} = 0$ donc ϕ =cte 52 On a $\phi = L(t)i(t)$ =cte donc $i(t) \propto \frac{1}{L(t)}$ Donc on doit avoir $b \to a$ 1 pour avoir $i(t)$ qui augmente. 56-62 Optimisation du dispositif de compression 56-58 Inductance totale et flux piégé Les deux cylindres sont parcourus par le même courant I et forment un circuit fermé, on choisit donc un modèle de deux bobines en série dans un circuit fermé. L'inductance totale est donc	47	Loi des mailles $u_L + u_r = L \frac{dr}{dt} + ri = 0$	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48	on pose $\tau = L/r$ donc $i(t) = i(0) \exp(-t/\tau) = I_0 \exp(-t/\tau)$	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49	tracé avec détermination de τ sur le tracé.	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	() -	1	
	51	· · · · · · · · · · · · · · · · · · ·	1	
53-55 Cas d'un circuit déformable 52 Le circuit est déformable donc cette fois ci $L(t)$ l'inductance dépend de t. Mais la loi des mailles donne toujours $u_L + u_r = 0$ or si r est négligeable alors u_r aussi donc $u_L = 0$ donc $e = -u_L = 0$ 52 On a toujours la loi de Faraday même pour un circuit déformable $u_t = 0$ donc on doit avoir $u_t = 0$ donc $u_t = 0$ donc $u_t = 0$ donc on doit avoir $u_t = 0$ donc on a $u_t = 0$ donc on doit avoir $u_t = 0$ donc donc doit avoir $u_t = 0$ donc donc donc doit avoir $u_t = 0$ donc donc donc donc donc donc donc donc		7		
Le circuit est déformable donc cette fois ci $L(t)$ l'inductance dépend de t. Mais la loi des mailles donne toujours $u_L + u_r = 0$ or si r est négligeable alors u_r aussi donc $u_L = 0$ donc $e = -u_L = 0$ On a toujours la loi de Faraday même pour un circuit déformable donc $e = -\frac{d\phi}{dt} = 0$ donc $\phi = \text{cte}$ On a $\phi = L(t)i(t) = \text{cte donc } i(t) \propto \frac{1}{L(t)}$ Donc on doit avoir $b \to a$ 1 pour avoir $i(t)$ qui augmente. 56-62 Optimisation du dispositif de compression 56-58 Inductance totale et flux piégé Les deux cylindres sont parcourus par le même courant I et forment un circuit fermé, on choisit donc un modèle de deux bobines en série dans un circuit fermé. L'inductance totale est donc			1	
pend de t. Mais la loi des mailles donne toujours $u_L + u_r = 0$ or si r est négligeable alors u_r aussi donc $u_L = 0$ donc $e = -u_L = 0$ On a toujours la loi de Faraday même pour un circuit déformable donc $e = -\frac{d\phi}{dt} = 0$ donc $\phi = \text{cte}$ On a $\phi = L(t)i(t) = \text{cte}$ donc $i(t) \propto \frac{1}{L(t)}$ Donc on doit avoir $b \to a$ 1 pour avoir $i(t)$ qui augmente. 56-62 Optimisation du dispositif de compression 56-58 Inductance totale et flux piégé Les deux cylindres sont parcourus par le même courant I et forment un circuit fermé, on choisit donc un modèle de deux bobines en série dans un circuit fermé. L'inductance totale est donc	53-55	Cas d'un circuit déformable		
si r est négligeable alors u_r aussi donc $u_L = 0$ donc $e = -u_L = 0$ On a toujours la loi de Faraday même pour un circuit déformable donc $e = -\frac{d\phi}{dt} = 0$ donc $\phi = \text{cte}$ 52 On a $\phi = L(t)i(t) = \text{cte}$ donc $i(t) \propto \frac{1}{L(t)}$ Donc on doit avoir $b \to a$ 1 pour avoir $i(t)$ qui augmente. 56-62 Optimisation du dispositif de compression 56-58 Inductance totale et flux piégé 56 Les deux cylindres sont parcourus par le même courant I et forment un circuit fermé, on choisit donc un modèle de deux bobines en série dans un circuit fermé. L'inductance totale est donc	52	l ' '	1	
On a toujours la loi de Faraday même pour un circuit déformable				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52		1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		donc $e = -\frac{\omega \phi}{dt} = 0$ donc $\phi = \text{cte}$		
pour avoir $i(t)$ qui augmente. 56-62 Optimisation du dispositif de compression 56-58 Inductance totale et flux piégé 56 Les deux cylindres sont parcourus par le même courant I et forment un circuit fermé, on choisit donc un modèle de deux bobines en série dans un circuit fermé. L'inductance totale est donc	52	1	1	
56-58 Inductance totale et flux piégé 56 Les deux cylindres sont parcourus par le même courant I et 1 forment un circuit fermé, on choisit donc un modèle de deux bobines en série dans un circuit fermé. L'inductance totale est donc				
Les deux cylindres sont parcourus par le même courant I et forment un circuit fermé, on choisit donc un modèle de deux bobines en série dans un circuit fermé. L'inductance totale est donc	56-62	Optimisation du dispositif de compression		
forment un circuit fermé, on choisit donc un modèle de deux bobines en série dans un circuit fermé. L'inductance totale est donc	56-58	Inductance totale et flux piégé		
forment un circuit fermé, on choisit donc un modèle de deux bobines en série dans un circuit fermé. L'inductance totale est donc	56	Les deux cylindres sont parcourus par le même courant I et	1	
bines en série dans un circuit fermé. L'inductance totale est donc				
$L_{eq} = L + L_f$		·		
		$L_{eq} = L + L_f$		

57	$L_{eq0} = \frac{\mu_0 h}{2\pi} \ln \left(\frac{r}{r_b}\right) + \frac{\mu_0 H}{2\pi} \ln \left(\frac{R_0}{r_b}\right)$	1
58	$\phi_0 = L_{eq0}I_0 = \frac{\mu_0 I_0 h}{2\pi} \ln\left(\frac{r}{r_b}\right) + \frac{\mu_0 I_0 H}{2\pi} \ln\left(\frac{R_0}{r_b}\right)$	1
59-62	Optimisation de la compression	
59	$L_{eqf} = \frac{\mu_0 h}{2\pi} \ln \left(\frac{r}{r_b}\right)$ $\phi = L_{eqf} I_{max} = L_{eq0} I_0 \text{ donc } I_{max} = \frac{L_{eq0}}{L_{eqf}} I_0 =$	1
	$\phi = L_{eqf}I_{max} = L_{eq0}I_0 \text{ donc } I_{max} = \frac{L_{eq0}}{L_{eqf}}I_0 = 0$	
	$\left(1 + \frac{H \ln(R_0/r_b)}{h \ln(r/r_b)}\right) I_0$	
60	On doit choisir $H \gg h$	1
61	On doit choisir $r_b \lesssim r \ll R_0$	1
62	Application numérique $I = 1, 4.10^8$ A	1