Dummit & Foote Ch. 2.2: Centralizers and Normalizers, Stabilizers and Kernels

Scott Donaldson

Jun. 2023

1. (6/5/23)

Prove that $C_G(A) = \{g \in G \mid g^{-1}ag = a \text{ for all } a \in A\}.$

Proof. By definition, $C_G(A) = \{g \in G \mid gag^{-1} = a \text{ for all } a \in A\}$ (that is, it is the set of elements of G that commute with all elements of A).

Let $g \in C_G(A)$, $a \in A$. Then $gag^{-1} = a$, which implies that ga = ag, and so left-multiplying by g^{-1} we obtain $a = g^{-1}ag$. Therefore, equivalently, $C_G(A)$ is the set of elements $g \in G$ such that $g^{-1}ag = a$ for all $a \in A$.

2. (6/5/23)

Prove that $C_G(Z(G)) = G$ and deduce that $N_G(Z(G)) = G$.

Proof. Recall that $Z(G) = \{g \in G \mid gx = xg \text{ for all } x \in G\}$. Let $z \in Z(G)$, so z commutes with every element of G.

Also recall that $C_G(A) = \{g \in G \mid gag^{-1} = a \text{ for all } a \in A\}$. When A = Z(G), then every element of g commutes with every element of A. Therefore for all $g \in G$, $g \in C_G(Z(G))$. Thus $C_G(Z(G)) = G$.

Note that, since $C_G(A) \leq N_G(A)$ for all subsets A, we must have $G = C_G(Z(G)) \leq N_G(Z(G))$. Since there is no greater set of elements, we also have $N_G(Z(G)) = G$.

3. (6/8/23)

Prove that if A and B are subsets of G with $A \subseteq B$ then $C_G(B)$ is a subgroup of $C_G(A)$.

Proof. Let $a \in A$ and $g \in C_G(B)$. Then g commutes with every element of b, that is, $gb = bg \Rightarrow gbg^{-1} = b$ for all $b \in B$. Since $A \subseteq B$, we also have $gag^{-1} = a$ for all $a \in A$. Therefore $g \in C_G(A)$, which implies that $C_G(B) \subseteq C_G(A)$.

From the introduction to this chapter, centralizers are subgroups, so both $C_G(B) \leq G$ and $C_G(A) \leq G$. Since $C_G(B)$ is contained within $C_G(A)$ and

both are subgroups of G, $C_G(B)$ must be closed within $C_G(A)$ and closed under inverses within $C_G(A)$, so it is also a subgroup of $C_G(A)$.

4. (6/8/23)

For each of S_3 , D_8 , and Q_8 compute the centralizers of each element and find the center of each group.

 S_3

- $C_{S_3}((1)) = S_3$
- $C_{S_3}((1,2)) = \{(1), (1,2)\}$
- $C_{S_3}((1,3)) = \{(1), (1,3)\}$
- $C_{S_3}((2,3)) = \{(1), (2,3)\}$
- $C_{S_3}((1,2,3)) = C_{S_3}((1,3,2)) = \{(1), (1,2,3), (1,3,2)\}$

The center $Z(S_3)$ consists only of the identity permutation.

 D_8

- $C_{D_8}(1) = D_8$
- $C_{D_8}(r) = C_{D_8}(r^2) = C_{D_8}(r^3) = \{1, r, r^2, r^3\}$
- $\bullet \ C_{D_8}(s) = C_{D_8}(sr^2) = \{1, r^2, s, sr^2\}$
- $\bullet \ C_{D_8}(sr) = C_{D_8}(sr^3) = \{1, r^2, sr, sr^3\}$

The center $Z(D_8)$ is $\{1, r^2\}$.

 Q_8

- $C_{D_8}(1) = C_{D_8}(-1) = Q_8$
- $C_{D_8}(i) = C_{D_8}(-i) = \{1, -1, i, -i\}$
- $C_{D_8}(j) = C_{D_8}(-j) = \{1, -1, j, -j\}$
- $C_{D_8}(k) = C_{D_8}(-k) = \{1, -1, k, -k\}$

The center $Z(Q_8)$ is $\{1, -1\}$.

5. (6/8/23)

In each of parts (a) through (c) show that for the specified group G and subgroup A of G, $C_G(A) = A$ and $N_G(A) = G$.

(a) $G = S_3$ and $A = \{(1), (1, 2, 3), (1, 3, 2)\}.$

Proof. From Exercise 4, we have $C_G((1,2,3)) = C_G((1,3,2)) = A$. No other non-identity permutation is in any of the centralizers of any element of A, therefore $C_G(A) = A$.

Next, consider $\sigma^{-1}(1,2,3)\sigma$ for some other permutation in S_3 , for example (1,2)(1,2,3)(1,2). This is equal to (1,3,2), which is an element of A, so (1,2) is in the normalizer of A. Since $C_G(A) \leq N_G(A)$ for all $A, A \subseteq N_G(A)$, and it follows that $N_G(A)$ consists of at least A and the element (1,2). Then, because $N_G(A)$ is a subgroup, it is closed under permutation composition, and therefore must contain all elements of S_3 .

(b) $G = D_8$ and $A = \{1, s, r^2, sr^2\}.$

Proof. We know that $C_G(A)$ is a subgroup of G, and from Exercise 4, we have $A \leq C_G(A)$ (since A is commutative). Then $|C_G(A)| \geq 4$. By Lagrange's Theorem, the order of $C_G(A)$ divides the order of G, 8. Then we must have either $C_G(A) = A$ or $C_G(A) = G$. However, r is not in the centralizer of A, because $rsr^{-1} = rsr^3 = sr^{-1}r^3 = sr^2 \neq s$. Therefore $C_G(A) = A$.

When we consider the normalizer of A, note that $rsr^{-1} = sr^2 \in A$. Thus $N_G(A)$ is a subgroup of G that contains both A and the element r. By closing the subgroup, we obtain $N_G(A) = G$.

(c) $G = D_{10}$ and $A = \{1, r, r^2, r^3, r^4\}.$

Proof. Since A consists only of powers of r, A is commutative, and so (as above) $A \leq C_G(A)$. The centralizer of A does not contain the element s, because $s^{-1}rs = srs = ssr^4 = r^4 \neq r$. Then we must have $|A| = 5 \leq |C_G(A)| \leq 9 = |G - \{s\}|$. Again by Lagrange's Theorem, the order of $C_G(A)$ must divide 10, and since it at least 5 and at most 9, it must be 5. Therefore $C_G(A) = A$.

When we consider the normalizer of A, note that $s^{-1}r^4s = r \in A$. Thus $N_G(A)$ is a subgroup of G that contains both A and the element s. By closing the subgroup, we obtain $N_G(A) = G$.

6. (6/9/23)

Let H be a subgroup of the group G.

(a) Show that $H \leq N_G(H)$. Give an example to show that this is not necessarily true if H is not a subgroup.

Proof. Let $h_1, h_2 \in H$ (to show that $h_1 \in N_G(H)$). Because H is a subgroup of G, it is closed and closed under inverses, so $h_1h_2h_1^{-1} \in H$. So the conjugate of every element with every other element of H is in H, which implies that $H < N_G(H)$.

However, this does not follow if H is merely a subset of G. For example, let $G = D_6$ and $H = \{s, r\}$. Then $rsr^{-1} = sr^2r^2 = sr \notin H$, which implies that $r \notin H$. Therefore H is not contained within its normalizer. \square

(b) Show that $H \leq C_G(H)$ if and only if H is abelian.

Proof. First, let H be abelian and let $h_1, h_2 \in H$. Because H is abelian, we have $h_1h_2 = h_2h_1 \Rightarrow h_2 = h_1h_2h_1^{-1}$, so the conjugate of h_2 by h_1 is h_2 . Thus the arbitrary element h_1 is in the centralizer of H, and so $H \leq C_G(H)$.

Next, let $H \leq C_G(H)$. Then for all $h_1, h_2 \in H$, $h_2 = h_1 h_2 h_1^{-1} \Rightarrow h_2 h_1 = h_1 h_2$, and so H is an abelian subgroup of G.

7. (6/13/23)

Let $n \in \mathbb{Z}$ with $n \geq 3$. Prove the following:

(a) $Z(D_{2n}) = \{1\}$ if *n* is odd

Proof. Recall that $Z(D_{2n}) = \{x \in D_{2n} \mid xy = yx \text{ for all } y \in D_{2n}\}$. Let $x \in Z(D_{2n}), y \in D_{2n}$. We will consider separately the cases where $x = r^k$ and $x = sr^k$.

Suppose $x = r^k$ for some 0 < k < n (clearly if $x = r^0 = 1$, then it is in the center of D_{2n}). If y = s, then $xy = r^k s = sr^{-k}$ and $yx = sr^k$. These are only equal when $k = -k \pmod{n}$; since n is odd there are no values of k that satisfy this equality, and so $x = r^k$ does not commute with every element of D_{2n} and is not in $Z(D_{2n})$.

Next, suppose $x = sr^k$. Then if y = r, we have $xy = sr^kr = sr^{k+1}$ and $yx = rsr^k = sr^{-1}r^k = sr^{k-1}$. No values of k satisfy this equality and so no x of the form sr^k is in $Z(D_{2n})$. Thus the center of D_{2n} consists of only the identity when n is odd.

(b) $Z(D_{2n}) = \{1, r^k\}$ if n = 2k

Proof. The case where $x = sr^k$ is identical to the above proof; if y = r then they do not commute and so no x of the form sr^k is in $Z(D_{2n})$.

Consider $x = r^k$ for some 0 < k < n. If $y = r^p, 0 \le p < n$, then they commute because both elements are powers of r. So let $y = sr^p$. Then $xy = r^k sr^p = sr^{-k}r^p = sr^{p-k}$ and $yx = sr^p r^k = sr^{p+k}$. These are equal to each other when p - k = p + k, that is, when $-k = k \pmod{n}$, which implies that 2k = n. Since n is even, there is a value of k for which this occurs, n/2.

Thus the center of D_{2n} when n = 2k is $\{1, r^k\}$.

8. (6/13/23)

Let $G = S_n$, fix an $i \in \{1, 2, ..., n\}$ and let $G_i = \{\sigma \in G \mid \sigma(i) = i\}$ (the stabilizer of i in G). Use group actions to prove that G_i is a subgroup of G. Find $|G_i|$.

Proof. There is a group action of G on $\{1,...,n\}$ defined by $\sigma \cdot k = \sigma(k)$. The identity permutation applied to any k is always k, and closure is easily demonstrated by composition of permutations.

Now let $\sigma_1, \sigma_2 \in G_i$ (to show that $\sigma_1 \circ \sigma_2 \in G_i$). Then $\sigma_1(i) = i$ and $\sigma_2(i) = i$. It follows that $\sigma_1(\sigma_2(i)) = \sigma_1(i) = i$, and since this is equal to $(\sigma_1 \circ \sigma_2)(i)$, $\sigma_1 \circ \sigma_2$ is in G_i , so it is closed.

Next, note that $\sigma(i) = i$ for some $\sigma \in G_i$ implies that $i = \sigma^{-1}(i)$, so σ^{-1} is also in G_i and it is therefore closed under inverses. Thus G_i is a subgroup of G.

To find the order of G_i , recall from Ch. 1.3 that the order of S_n is n!. Further, G_i consists of those permutations of S_n whose cycle decompositions do not include i. We will show that G_i has the same cardinality as S_{n-1} and that its order is therefore (n-1)!.

Let $\varphi: G_i \to S_{n-1}$ be defined on elements of $\{1, ..., n\}$ by $\varphi(\sigma(m)) = \sigma(m)$ if m < i and $= \sigma(m) - 1$ if m > i. For example, if i = 10, φ maps the permutation with cycle decomposition (1, 5, 9, 13, 17) to (1, 5, 9, 12, 16).

 φ is one-to-one: If $\varphi(\sigma_1(m)) = \varphi(\sigma_2(m))$, then they are by definition equal if $\sigma_1(m)$ and $\sigma_2(m)$ are either both less than or both greater than i. Without loss of generality, suppose that $\sigma_1(m) < i$ and $\sigma_2(m) > i$. Then $\varphi(\sigma_1(m)) < i$ and $\varphi(\sigma_2(i)) \ge i$, so they cannot be equal.

 φ is onto: Let $\sigma \in S_{n-1}$. There is a unique permutation G_i that maps to σ whose cycle decomposition contains the same values in the same positions as σ when those values are less than i, and the successor of those values in the same positions as σ when those values are greater than i. Formally, the inverse $\varphi^{-1}: S_{n-1} \to G_i$ is well-defined by $\varphi(\sigma(m)) = \sigma(m)$ if m < i and $= \sigma(m) + 1$ if m > i.

This proves that φ is a bijection (note that the additional requirement that it is an isomorphism is unnecessary because we are only concerned with the size of these groups). Therefore $|G_i| = |S_{n-1}| = (n-1)!$.

9. (6/13/23)

For any subgroup H of G and any nonempty subset A of G define $N_H(A)$ to be the set $\{h \in H \mid hAh^{-1} = A\}$. Show that $N_H(A) = N_G(A) \cap H$ and deduce that $N_H(A)$ is a subgroup of H (note that A need not be a subset of H).

Proof. To show that $N_H(A) = N_G(A) \cap H$, we will show that membership in one implies membership in the other, and vice-versa.

First, let $h \in N_H(A)$ (to show that $h \in N_G(A) \cap H$). Then $hAh^{-1} = A$. Also, by definition, $N_G(A) = \{g \in G \mid gAg^{-1} = A\}$, so $h \in N_G(A)$. Further, since $N_H(A)$ consists of only those $h \in N_G(A)$ that are also in H, it follows that $h \in N_G(A) \cap H$.

Next, let $h \in N_G(A) \cap H$, that is, $h \in N_G(A)$ and $h \in H$. Since $h \in N_G(A)$, $hAh^{-1} = A$. It follows immediately that $h \in N_H(A)$. Therefore $N_H(A) = N_G(A) \cap H$.

Now from Ch. 2.1, exercise 10., the intersection of two subgroups (of G) is again a subgroup (of G). Since $N_H(A)$ is also restricted to H and containment of subgroups is transitive, we deduce that $N_H(A)$ is a subgroup of H.

10. (6/13/23)

Let H be a subgroup of order 2 in G. Show that $N_G(H) = C_G(H)$. Deduce that if $N_G(H) = G$ then $H \leq Z(G)$.

Proof. Let $H = \{1, h\} \leq G$. In order to prove that $N_G(H) = C_G(H)$, we will show that membership in one implies membership in the other, and vice-versa.

For some $g \in G$, let $g \in N_G(H)$. Then $gHg^{-1} = H$. Since $g \cdot 1 \cdot g^{-1} = 1$, we must have $ghg^{-1} = h$, which implies that gh = hg. Then g commutes with both 1 and h, that is, with every element of H, and so $g \in C_G(H)$. Since we know that $C_G(H) \leq N_G(H)$, this proves that $N_G(H) = C_G(H)$.

Next suppose that $N_G(H) = G$. Then for every $g \in G$, gh = hg. So an arbitrary element g commutes with every element of H. Put differently, every element of H commutes with every element of G. It follows that H is contained in the center of G, that is, $H \leq Z(G)$.