# Chapter 4 Local Area network

# LAN technologies

#### Data link layer so far:

 services, framing, error detection/correction, reliable data transfer, multiple access

#### Next: LAN technologies

- O LAN model
- addressing
- Ethernet

hubs, bridges, switches

- **o** 802.11
- **o** 802.15



### LAN model



#### LAN model



For the same LLC, several MAC options may be provided.

#### LLC and MAC

#### MAC Frame Format



# IEEE 802 working group



#### LAN Addresses

#### 32-bit IP address:

- network-layer address
- used to get datagram to destination network (recall IP network definition)

#### LAN (or MAC or physical) address:

- used to get datagram from one interface to another physically-connected interface (same network)
- 48 bit MAC address (for most LANs) burned in the adapter ROM

### LAN addresses

Each adapter on LAN has unique LAN address



## LAN Address (more)

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- Analogy:
  - (a) MAC address: like Social Security Number
  - (b) IP address: like postal address
- MAC flat address => portability
  - can move LAN card from one LAN to another
- □ IP hierarchical address NOT portable
  - depends on network to which one attaches

### Ethernet

- "dominant" LAN technology:
- cheap \$20 for 100Mbs!
- first wildey used LAN technology
- □ Simpler, cheaper than token LANs and ATM
- □ Kept up with speed race: 10, 100, 1000 Mbps



Metcalfe's Etheret sketch

# Ethernet: physical topology

- bus: popular through mid 90s
  - o all nodes in same collision domain (can collide with each other)
- □ star: prevails today
  - o active switch in center
  - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)



bus: coaxial cable

#### Ethernet Frame Structure



#### Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame



#### Preamble:

- □ 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver, sender clock rates

# Ethernet Frame Structure (more)

- Addresses: 6 bytes, frame is received by all adapters on a LAN and dropped if address does not match
- Type: 2 bytes, indicates the higher layer protocol, mostly IP but others may be supported such as Novell IPX and AppleTalk)
- □ CRC: 4 bytes, checked at receiver, if error is detected, the frame is simply dropped



# Ethernet Frame Structure (more)

- □ Data: 46~1500 bytes
- □ Minimum frame length: 64 bytes, why? (contention period  $2\tau$  is 51.2 μs for IEEE 802.3, R=10Mbps)
- □ Maximum frame length: 1518 bytes, why?



#### Ethernet: unreliable, connectionless

- connectionless: no handshaking between sending and receiving NICs
- unreliable: receiving NIC doesn't send acks or nacks to sending NIC
  - odata in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost
- Ethernet's MAC protocol: unslotted CSMA/CD with binary backoff

#### Ethernet: uses CSMA/CD

```
A: sense channel, if idle
    then {
            transmit and monitor the channel;
            If detect another transmission
              then {
                abort and send jam signal;
                update # collisions;
                delay as required by exponential backoff algorithm;
                goto A
             else {done with the frame; set collisions to zero}
    else {wait until ongoing transmission is over and goto A}
```



4:Local area network 4-18

#### Ethernet's CSMA/CD (more)

Jam Signal: make sure all other transmitters are aware of collision; 48 bits;



#### Ethernet's CSMA/CD (more)

#### Exponential Backoff:

- Goal: adapt retransmission attemtps to estimated current load
  - heavy load: random wait will be longer
- $\square$  first collision: choose K from {0,1}; delay is K x 512 bit transmission times
- □ after second collision: choose K from {0,1,2,3}...
- after ten or more collisions, choose K from {0,1,2,3,4,...,1023}

#### 802.3 Ethernet standards: link & physical layers

- many different Ethernet standards
  - o common MAC protocol and frame format
  - different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10 Gbps, 40 Gbps
  - o different physical layer media: fiber, cable



#### Interconnecting LANS

- Q: Why not just one big LAN?
- □ Limited amount of supportable traffic: on single LAN, all stations must share bandwidth
- □ limited length: 802.3 specifies maximum cable length
- □ large "collision domain" (can collide with many stations)
- limited number of stations: 802.5 have token passing delays at each station

### <u>Hubs</u>

- Physical Layer devices: essentially repeaters operating at bit levels: repeat received bits on one interface to all other interfaces
- ☐ Hubs can be arranged in a hierarchy (or multi-tier design), with backbone hub at its top



## Hubs (more)

- Each connected LAN referred to as LAN segment
- ☐ Hubs do not isolate collision domains: node may collide with any node residing at any segment in LAN
- Hub Advantages:
  - o simple, inexpensive device
  - Multi-tier provides graceful degradation: portions of the LAN continue to operate if one hub malfunctions
  - o extends maximum distance between node pairs (100m per Hub)

#### Hub limitations

- single collision domain results in no increase in max throughput
  - o multi-tier throughput same as single segment throughput
- individual LAN restrictions pose limits on number of nodes in same collision domain and on total allowed geographical coverage
- cannot connect different Ethernet types (e.g., 10BaseT and 100baseT)

## Ethernet switch

- □ link-layer device: takes an active role
  - store, forward Ethernet frames
  - o examine incoming frame's MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment
- □ transparent
  - hosts are unaware of presence of switches
- plug-and-play, self-learning
  - o switches do not need to be configured

#### Switch: multiple simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
  - o each link is its own collision domain
- □ switching: A-to-A' and Bto-B' can transmit simultaneously, without collisions



switch with six interfaces (1,2,3,4,5,6)

## Switch forwarding table

Q: how does switch know A' reachable via interface 4, B' reachable via interface 5?A: each switch has a switch table, each entry:

- (MAC address of host, interface to reach host, time stamp)
- looks like a routing table!

Q: how are entries created, maintained in switch table?

something like a routing protocol?



switch with six interfaces (1,2,3,4,5,6)

# Switch: self-learning

- switch learns which hosts can be reached through which interfaces
  - owhen frame received, switch "learns" location of sender: incoming LAN segment
  - orecords sender/location pair in switch table



| MAC addr | interface | TTL |
|----------|-----------|-----|
| A        | 1         | 60  |
|          |           |     |
|          |           |     |

Switch table (initially empty)

Source: A

### Switch: frame filtering/forwarding

when frame received at switch:

```
1. record incoming link, MAC address of sending host
2. index switch table using MAC destination address
3. if entry found for destination
   then {
    if destination on segment from which frame arrived
      then drop frame
      else forward frame on interface indicated by entry
   else flood /* forward on all interfaces except arriving
                interface */
```

Self-learning, forwarding: example

Source: A Dest: A'

☐ frame destination,
A', location unknown: flood C

destination A location known:

selectively send on just one link



| MAC addr | interface | TTL |
|----------|-----------|-----|
| A        | 1         | 60  |
| Α'       | 4         | 60  |
|          |           |     |

switch table (initially empty)

# Interconnecting switches

self-learning switches can be connected



Q: sending from A to G - how does  $S_1$  know to forward frame destined to G via  $S_4$  and  $S_3$ ?

• <u>A:</u> self learning! (works exactly the same as in single-switch case!)

#### Self-learning multi-switch example

Suppose C sends frame to I, I responds to C



• Q: show switch tables and packet forwarding in  $S_1$ ,  $S_2$ ,  $S_3$ ,  $S_4$ 

## Institutional network



Switches vs. routers

#### both are store-and-forward:

•routers: network-layer devices (examine network-layer headers)

switches: link-layer devices (examine link-layer headers)

#### both have forwarding tables:

routers: compute tables using routing algorithms, IP addresses

\*switches: learn forwarding table using flooding, learning, MAC addresses



#### VLANs: motivation



#### consider:

- CS user moves office to EE, but wants connect to CS switch?
- □ single broadcast domain:
  - o all layer-2 broadcast traffic (ARP, DHCP, unknown location of destination MAC address) must cross entire LAN
  - security/privacy, efficiency issues

# <u>VLANs</u>

#### Virtual Local Area Network

switch(es) supporting VLAN capabilities can be configured to define multiple *virtual* LANS over single physical LAN infrastructure.

port-based VLAN: switch ports grouped (by switch management software) so that single physical switch .....



#### ... operates as multiple virtual switches



### Port-based VLAN

- □ traffic isolation: frames to/from ports 1-8 can only reach ports 1-8
  - o can also define VLAN based on MAC addresses of endpoints, rather than switch port
- dynamic membership: ports can be dynamically assigned among VLANs



- forwarding between VLANS: done via routing (just as with separate switches)
  - in practice vendors sell combined switches plus routers

## VLANS spanning multiple switches



- trunk port: carries frames between VLANS defined over multiple physical switches
  - o frames forwarded within VLAN between switches can't be vanilla 802.1 frames (must carry VLAN ID info)
  - 802.1q protocol adds/removed additional header fields for frames forwarded between trunk ports

## 802.1Q VLAN frame format



# Industrial Ethernet

| 项目      | 工业以太网设备                              | 商用以太网设备                            |
|---------|--------------------------------------|------------------------------------|
| 元器件     | 工业级                                  | 商用级                                |
| 接插件     | 耐腐蚀、防尘、防水、加固型RJ45/DB-9等              | 一般RJ45                             |
| 工作电压    | DC 24V                               | AC 220V                            |
| 电源冗余    | 双电源                                  | 一般没有                               |
| 安装方式    | DIN导轨或其他固定安装                         | 桌面或机架                              |
| 工作温度    | -40C <sup>0</sup> ∼85 C <sup>0</sup> | 5C <sup>0</sup> ∼40 C <sup>0</sup> |
| 电磁兼容性标准 | EN 50081-1、EN 50081-2(工业级EMC)        | 办公室用EMC                            |
| MTBF值   | 至少10年                                | 3~5年                               |

# Industrial Ethernet



# Industrial Ethernet



# Industrial real time Ethernet



### Wireless Networks

#### **Background:**

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-I)!
- # wireless Internet-connected devices equals # wireline Internet-connected devices
  - laptops, Internet-enabled phones promise anytime untethered Internet access
- two important (but different) challenges
  - wireless: communication over wireless link
  - mobility: handling the mobile user who changes point of attachment to network

# Wireless communication technology



Transmission range

# IEEE Wireless Technology

WiFi5 → 802.11a Local wireless networks → 802.11i/e/f/n/s... **WLAN** 802.11 802.11b → 802.11q WiFi ZigBee 802.15.4 Personal wireless networks **→** 802.15.3 **WPAN** 802.15 **UWB** 802.15.1 Bluetooth WMAN 802.16 (Broadband Wireless Access) WiMAX









#### Characteristics of selected wireless links







ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

# Wireless network taxonomy

|                               | single hop                                                                                          | multiple hops                                                                                                                        |
|-------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| infrastructure<br>(e.g., APs) | host connects to<br>base station (WiFi,<br>WiMAX, cellular)<br>which connects to<br>larger Internet | host may have to relay through several wireless nodes to connect to larger Internet: mesh net                                        |
| no<br>infrastructure          | no base station, no<br>connection to larger<br>Internet (Bluetooth,<br>ad hoc nets)                 | no base station, no<br>connection to larger<br>Internet. May have to<br>relay to reach other<br>a given wireless node<br>MANET,VANET |

### Wireless Link Characteristics (1)

important differences from wired link ....

- o decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- o interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

### Wireless Link Characteristics (2)

- □ SNR: signal-to-noise ratio
  - larger SNR easier to extract signal from noise (a "good thing")
- SNR versus BER tradeoffs
  - given physical layer: increase power -> increase SNR->decrease BER
  - given SNR: choose physical layer that meets BER requirement, giving highest thruput
    - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)



#### Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):



#### Hidden terminal problem

- ♣ B,A hear each other
- B, C hear each other
- ❖ A, C can not hear each other means A, C unaware of their interference at B



#### Signal attenuation:

- B,A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

### IEEE 802.11 Wireless LAN

#### 802.11b

- 2.4-5 GHz unlicensed spectrum
- □ up to 11 Mbps
- direct sequence spread spectrum (DSSS) in physical layer
  - o all hosts use same chipping code

#### 802.11a

- 5-6 GHz range
- up to 54 Mbps

#### 802.11g

- 2.4-5 GHz range
- up to 54 Mbps

#### 802. I In: multiple antennae

- 2.4-5 GHz range
- up to 200 Mbps

- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

### 802.11 LAN architecture



BSS<sub>2</sub>

- wireless host communicates with base station
  - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
  - wireless hosts
  - access point (AP): base station
  - ad hoc mode: hosts only

### 802. I I: Channels, association

- □ 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
  - AP admin chooses frequency for AP
  - o interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
  - o scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
  - selects AP to associate with
  - may perform authentication [Chapter 8]
  - o will typically run DHCP to get IP address in AP's subnet

## 802. I I: passive/active scanning





#### passive scanning:

- (I) beacon frames sent from APs
- (2) association Request frame sent: HI to selected AP
- (3) association Response frame sent from selected AP to HI

#### active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

## IEEE 802.11: multiple access

- □ avoid collisions: 2+ nodes transmitting at same time
- □ 802.11: CSMA sense before transmitting
  - o don't collide with ongoing transmission by other node
- 802.11: no collision detection!
  - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
  - o can't sense all collisions in any case: hidden terminal, fading
  - goal: avoid collisions: CSMA/C(ollision)A(voidance)





#### IEEE 802.11 MAC Protocol: CSMA/CA

#### 802.11 sender

1 if sense channel idle for **DIFS** then transmit entire frame (no CD)

#### 2 if sense channel busy then

start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat 2

#### 802.11 receiver

- if frame received OK

return ACK after SIFS (ACK needed due to hidden terminal problem)



# 802.11 - MAC

- Priorities
  - defined through different inter frame spaces
  - SIFS (Short Inter Frame Spacing):
    - 10μs (802.11b/g), 16 μs (802.11a)
    - High priority, for ACK, CTS, polling response
  - PIFS (PCF IFS):
    - PIFS = SIFS + Slot time, which is 20 μs 802.11b, 9 μs 802.11a/g
    - medium priority, for time-bounded service using PCF
  - DIFS (DCF IFS):
    - DIFS = PIFS + Slot time
    - lowest priority, for asynchronous data service



## CSMA/CA access method



- station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment)
- if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type)
- if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time)
  - Slot time = 20  $\mu$ s for 802.11b, 9  $\mu$ s in 802.11a/g
  - CW\_min = 16 for 802.11a, 32 for 802.11b
  - CW\_max = 1024

# A simplified example



# Avoiding collisions (more)

- idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames
- sender first transmits small request-to-send (RTS) packets to BS using CSMA
  - RTSs may still collide with each other (but they' re short)
- □ BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
  - sender transmits data frame
  - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

#### Collision Avoidance: RTS-CTS exchange



## 802.11 frame: addressing

transmitting this frame



# 802.11 frame: addressing



### 802.11 frame: more



### Special Frames: ACK, RTS, CTS



### 802. I I: mobility within same subnet

- ☐ H1 remains in same IP subnet: IP address can remain same
- □ switch: which AP is associated with H1?
  - oself-learning (Ch. 5): switch will see frame from H1 and "remember" which switch port can be used to reach H1



## 802. I I: advanced capabilities

#### Rate adaptation

base station, mobile
 dynamically change
 transmission rate
 (physical layer modulation
 technique) as mobile
 moves, SNR varies





- 1. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BER

## 802. I I: advanced capabilities

#### power management

- node-to-AP: "I am going to sleep until next beacon frame"
  - AP knows not to transmit frames to this node
  - node wakes up before next beacon frame
- beacon frame: contains list of mobiles with APto-mobile frames waiting to be sent
  - node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame



$$C = [min(M, N)]B \log_2(\rho/2)$$



Main technology:

- □ Spatial Multiplexing
- □ Space Time Coding
- □Beam Forming

### Spatial Multiplexing



### Space Time Coding



### Beam Forming





波束赋形示意图

# 5G technology

5G Main technology

- Massive MIMO
- ·NOMA



$$C_{sum} <=> \sum_{Cells\ Channels} B_i \log_2 \left(1 + \frac{P_i}{I_i + N_i}\right)$$

### 802.15: personal area network

- □ less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- □ ad hoc: no infrastructure
- □ master/slaves:
  - slaves request permission to send (to master)
  - master grants requests
- 802.15: evolved from Bluetooth specification
  - o 2.4-2.5 GHz radio band
  - o up to 721 kbps



- Master device
- S Slave device
- P Parked device (inactive)

## ZigBee overview

- ZigBee was created to address the market need for a cost-effective, standards based wireless networking solution that supports low data-rates, low-power consumption, security, and reliability.
- ZigBee is the only standards-based technology that addresses the unique needs of most remote monitoring and control and sensory network applications.
- The initial markets for the ZigBee Alliance include Home Automation, Building Automation and Industrial Automation.

### How to achieve low power consumption?

- □ The duty cycle of battery is designed to be very low, resulting in very low average power consumption.
- Once associated with a network, a ZigBee node can wake up and communicate with other devices and return to sleep.
- □ Short range operation.
- □ Simple but flexible protocol.





### Interference and Coexistence in the 2.4GHz Band

#### 802.15.4 and 802.11b Spectrum Relationship



# Chapter 4:Local area network Summary

- principles behind data link layer services:
  - framing
  - error detection, correction
  - o reliable data transfer
  - sharing a broadcast channel: multiple access
- various link layer technologies
  - LAN model
  - Ethernet
  - hubs, bridges, switches
  - IEEE 802.11
  - IEEE 802.15