\mathbb{R}^n 上的微分形式

杨毅涵

October 5, 2024

Contents

1	Tang	gent Vectors in \mathbb{R}^n as Derivations	3	
	1.1	The Directional Derivative	3	
	1.2	Germs of Functions	4	
	1.3	Derivations at a Point	5	
	1.4	Vector Fields	7	
	1.5	Vector Fields as Derivations	9	
2	The Exterior Algebra of Multicovectors			
	2.1	Dual Space	11	
	2.2	Permutations	12	
	2.3	Multilinear Functions	12	
	2.4	The Permutation Action on Multilinear Functions	14	
	2.5	The Symmetrizing and Alternating Operators	14	
	2.6	The Tensor Product	15	
	2.7	The Wedge Product	15	
	2.8	Anticommutativity of the Wedge Product	16	
	2.9	Associativity of the Wedge Product	18	
	2.10	A Basis for k-Covectors	20	
3	Differential Forms on \mathbb{R}^n			
	3.1	Differential 1-Forms and the Differential of a Function	23	
	3.2	Differential <i>k</i> -Forms	26	
	3.3	Differential Forms as Multilinear Functions on Vector Fields	28	
	3.4	The Exterior Derivative	28	

CONTENTS	2
CONTENTS	\sim 2

3.5	Closed Forms and Exact Forms	31
3.6	Applications to Vector Calculus	32

Chapter 1

Tangent Vectors in \mathbb{R}^n as Derivations

1.1 The Directional Derivative

定义 1.1 我们将 \mathbb{R}^n 中 p 处的切空间 $T_p(\mathbb{R}^n)$ 视为所有从 p 发出的箭头的向量空间.

我们通常用 $\mathbf{e}_1, \dots, \mathbf{e}_n$ 表示 \mathbb{R}^n 或 $T_p(\mathbb{R}^n)$ 的标准基。那么 $v = \sum v^i \mathbf{e}_i$ 对于某些 $v^i \in \mathbb{R}$. $T_p(\mathbb{R}^n)$ 的元素被称为在 \mathbb{R}^n 中的 p 处的切向量(或简称为向量). 有时我们省略括号,将 $T_p\mathbb{R}^n$ 写作 $T_p(\mathbb{R}^n)$.

通过点 $p = (p^1, ..., p^n)$ 并且在 \mathbb{R}^n 中方向为 $v = \langle v^1, ..., v^n \rangle$ 的直线参数化为

$$c(t) = \left(p^1 + tv^1, \dots, p^n + tv^n\right)$$

其 i 个分量为 $c^i(t)$,是 p^i+tv^i 。如果 f 在 \mathbb{R}^n 中 p 的邻域内是 C^∞ 并且 v 是在 p 处的切向量,那么 f 在方向 v 上在 p 处的方向导数定义为

$$D_{\nu}f = \lim_{t \to 0} \frac{f(c(t)) - f(p)}{t} = \frac{d}{dt} \Big|_{t=0} f(c(t))$$

根据链式法则,

$$D_{v}f = \sum_{i=1}^{n} \frac{dc^{i}}{dt}(0) \frac{\partial f}{\partial x^{i}}(p) = \sum_{i=1}^{n} v^{i} \frac{\partial f}{\partial x^{i}}(p)$$

在记号 $D_{\nu}f$ 中,理解为偏导数应该在 p 处求值,因为 ν 是在 p 处的向量. 因此 $D_{\nu}f$ 是一个数,而不是一个函数,我们记

$$D_{v} = \sum v^{i} \frac{\partial}{\partial x^{i}} \bigg|_{p}$$

表示将函数 f 映射到数 $D_{\nu}f$ 的映射. 为了简化记号,如果上下文清楚,我们常常省略下标 p.

将方向导数 D_v 与切向量 v 的关联提供了一种将切向量作为函数上的特定算子的方法. 为了精确地描述这一点,在接下来的两个小节中,我们将更详细地研究作为函数上的算子的方向导数 D_v .

1.2 Germs of Functions

只要两个函数在点 p 的某个邻域上相等,它们在 p 将具有相同的方向导数. 这提示我们在 C^{∞} 函数上定义一个等价关系,这些函数在 p 的某个邻域内.

定义 1.2 考虑所有对 (f,U) 的集合,其中 U 是 p 的一个邻域, $f:U\to\mathbb{R}$ 是一个 C^{∞} 函数. 我们说 (f,U) 等价于 (g,V) ,如果存在一个包含 p 的开集 $W \subset U \cap V$,使得 f=g 在限制到 W 时成立 a . (f,U) 的等价类称为 f 在 p 的 F^b ,记为 $C_p^{\infty}(\mathbb{R}^n)$,或者如果没有混淆的可能,简单地写 C_p^{∞} ,表示所有在 p 上 \mathbb{R}^n 的 C^{∞} 函数的芽的集合.

"这显然是一个等价关系,因为它是自反的、对称的和传递的.

定义 1.3 (Algebra) 一个定义在域 K 上的代数是一个在 K 上的向量空间 A ,带有乘法映射

$$\mu: A \times A \rightarrow A$$

通常写作 $\mu(a,b) = a \cdot b$,使得对于所有 $a,b,c \in A$ 和 $r \in K$,

- (1) (结合律) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- (2) (分配律) $(a+b) \cdot c = a \cdot c + b \cdot c$ 和 $a \cdot (b+c) = a \cdot b + a \cdot c$
- (3) (齐次性) $r(a \cdot b) = (ra) \cdot b = a \cdot (rb)$

^bgerm

笔记 1.1 等价地,一个定义在域 K 上的代数是一个环 A (带有或不带有乘法单位元),它同时也是一个在 K 上的向量空间,并且环的乘法满足齐次性条件. 因此,一个代数具有三种运算:环的加法和乘法以及向量空间的数乘. 通常我们省略乘法符号,写作 ab 而不是 $a \cdot b$.

定义 1.4 如果 A 和 A' 是定义在域 K 上的代数,那么一个代数同态是一个线性映射

$$L:A\to A'$$

它保持代数乘法: L(ab) = L(a)L(b) 对于所有 $a,b \in A$.

例 1.1 函数的加法和乘法在 C_p^{∞} 上诱导出相应的运算,使其成为一个在 \mathbb{R} 上的代数.

1.3 Derivations at a Point

对于在 \mathbb{R}^n 中的点 p 处的每一个切向量 v ,该点处的方向导数给出了实向量空间之间的一个映射

$$D_{v}:C_{p}^{\infty}
ightarrow\mathbb{R}$$

因为偏导数 $\partial/\partial x^i|_p$ 满足莱布尼茨规则, D_v 是 \mathbb{R} -线性的并满足莱布尼茨规则

$$D_{v}(fg) = (D_{v}f)g(p) + f(p)D_{v}g$$

定义 1.5 一般地,任何满足莱布尼茨规则的线性映射 $D: C_p^{\infty} \to \mathbb{R}$ 被称为在 p 的导数或 C_p^{∞} 的点导数,用 $\mathcal{D}_p(\mathbb{R}^n)$ 表示在 p 的所有导数的集合.

注 1.1 这个集合实际上是一个实向量空间,因为两个在p的导数的和以及在p的导数的一个数乘仍然是p的导数.

到目前为止,我们知道在p的方向导数都是p的导数,所以存在一个映射

$$\varphi: T_p(\mathbb{R}^n) \to \mathscr{D}_p(\mathbb{R}^n)$$

$$v \mapsto D_v = \sum_i v^i \frac{\partial}{\partial x^i} \Big|_p$$

由于 D_v 显然在 v 上是线性的,映射 φ 是向量空间的线性映射.

引理 1.1 如果 $D \in C_p^{\infty}$ 的点导数,那么 D(c) = 0 对于任何常数函数 c.

证明: 由于我们不知道 p 的每个导数是否都是方向导数,我们仅使用 p 导数的定义性质来证明这个引理:

由 \mathbb{R} -线性,D(c)=cD(1), 因此,只需证明 D(1)=0, 由莱布尼茨规则

$$D(1) = D(1 \cdot 1) = D(1) \cdot 1 + 1 \cdot D(1) = 2D(1)$$

两边减去D(1)即得.

定理 1.1 线性映射 $\varphi: T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$, $v \mapsto D_v = \sum v^i \frac{\partial}{\partial x^i} \bigg|_p$ 是向量空间的一个同构.

证明: 为了证明单射性,假设 $D_v = 0$ 对于 $v \in T_p(\mathbb{R}^n)$ 成立。将 D_v 应用于坐标函数 x^j 得到

$$0 = D_{v}(x^{j}) = \sum_{i} v^{i} \frac{\partial}{\partial x^{i}} \bigg|_{p} x^{j} = \sum_{i} v^{i} \delta_{i}^{j} = v^{j}$$

因此,v=0 并且 φ 是单射的. 为了证明满射性,设 D 是在 p 处的导数,设 (f,V) 是 C_p^{∞} 中一个 germ 的代表。如果需要,可以将 V 缩小,我们可以假设 V 是一个开球,根据带有余项的泰勒定理,存在 C^{∞} 个在 p 的邻域中的函数 $g_i(x)$ 使得

$$f(x) = f(p) + \sum (x^{i} - p^{i}) g_{i}(x), g_{i}(p) = \frac{\partial f}{\partial x^{i}}(p)$$

将 D 应用于两边,并注意到根据引理, D(f(p))=0 和 $D\left(p^i\right)=0$,我们通过莱布尼茨法则得到

$$Df(x) = \sum (Dx^{i}) g_{i}(p) + \sum (p^{i} - p^{i}) Dg_{i}(x) = \sum (Dx^{i}) \frac{\partial f}{\partial x^{i}}(p)$$

这证明了 $D = D_v$ 对于 $v = \langle Dx^1, \dots, Dx^n \rangle$.

注 1.2 这个定理表明,可以将 p 处的切向量与 p 处的导数等同起来.

在向量空间同构 $T_p(\mathbb{R}^n)\simeq \mathcal{D}_p(\mathbb{R}^n)$ 下, $T_p(\mathbb{R}^n)$ 的标准基 e_1,\ldots,e_n 对应于偏导数的集合 $\partial/\partial x^1\Big|_{p},\ldots,\partial/\partial x^n|_{p}$,从现在起,将切向量 $v=\left\langle v^1,\ldots,v^n\right\rangle =\sum v^ie_i$ 写作

$$v = \sum v^i \frac{\partial}{\partial x^i} \bigg|_{p}$$

 $\mathcal{D}_p(\mathbb{R}^n)$ 处的导数的向量空间,虽然不如箭头几何直观,但证明更适合推广到流形.

1.4 Vector Fields

定义 1.6 在 \mathbb{R}^n 的开子集 U 上的向量场 X 是一个函数,它将 U 中的每个点 p 分配给 $T_p(\mathbb{R}^n)$ 中的一个切向量 X_p . 由于 $T_p(\mathbb{R}^n)$ 有基 $\left\{ \partial/\partial x^i \big|_p \right\}$,向量 X_p 是一个线性组合

$$X_p = \sum a^i(p) \frac{\partial}{\partial x^i} \bigg|_p, \ p \in U, \ a^i(p) \in \mathbb{R}$$

省略 p ,我们可以写成 $X = \sum a^i \partial/\partial x^i$,其中 a^i 现在是定义在 U 上的函数. 如果系数函数 a^i 在 U 上是 C^{∞} 的,那么说向量场 X 在 U 上是 C^{∞} 的.

例 1.2 在 $\mathbb{R}^2 - \{0\}$ 上,令 p = (x, y),那么

$$X = \frac{-y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} = \left\langle \frac{-y}{\sqrt{x^2 + y^2}}, \frac{x}{\sqrt{x^2 + y^2}} \right\rangle$$

是图 1.1 中的向量场。按照惯例,我们在 p 处画一个从 p 发出的箭头作为向量,经过适当缩放后的向量场 $Y=x\partial/\partial x-y\partial/\partial y=\langle x,-y\rangle$ 被草图在图 1.1 中:

可以将U上的向量场与 C^{∞} 函数的列向量联系起来:

$$X = \sum a^{i} \frac{\partial}{\partial x^{i}} \leftrightarrow \begin{bmatrix} a^{1} \\ \vdots \\ a^{n} \end{bmatrix}$$

在开集 U 上的 C^{∞} 函数环通常表示为 $C^{\infty}(U)$ 或 $\mathscr{F}(U)$. 向量场与 U 上函数的点乘是按如下方式定义的:

$$(fX)_p = f(p)X_p, p \in U$$

- (a) The vector field X on $\mathbb{R}^2 \{\mathbf{0}\}$
- (b) The vector field $\langle x, -y \rangle$ on \mathbb{R}^2

Figure 1.1: ℝ² 中的向量场

显然,如果 $X = \sum a^i \partial/\partial x^i$ 是一个 C^{∞} 向量场,而 f 是 C^{∞} 在 U 上的函数,那 么 $fX = \sum (fa^i) \partial/\bar{\partial} x^i$ 是 C^{∞} 在 U 上的向量场. 因此,所有 C^{∞} 向量场在 U 上的集合,记作 $\mathfrak{X}(U)$,不仅是 \mathbb{R} 上的向量空间,而且还是环 $C^{\infty}(U)$ 上的模.

定义 1.7 如果 R 是一个带有单位元的交换环,那么一个 (左) R -模是一个带有标量乘法映射的阿贝尔群 A:

$$\mu: R \times A \rightarrow A$$

通常表示为 $\mu(r,a) = ra$, 对于所有 $r,s \in R$ 和 $a,b \in A$,

- (i) (结合律) (rs)a = r(sa),
- (ii) (单位元) 如果 1 是 R 中的乘法单位元,那么 1a = a,
- (iii) (分配律) (r+s)a = ra + sa, r(a+b) = ra + rb.

注 1.3 如果 R 是一个域, 那么一个 R -模恰好是 R 上的向量空间. 在这个意义上, 模通过允许环中的标量而不是域中的标量, 推广了向量空间的概念.

定义 1.8 设 A 和 A' 是 R -模. 一个从 A 到 A' 的 R -模同态是一个映射 $f: A \to A'$,它保持加法和标量乘法:对于所有 $a,b \in A$ 和 $r \in R$,

(i)
$$f(a+b) = f(a) + f(b)$$
,

(ii)
$$f(ra) = rf(a)$$
.

1.5 Vector Fields as Derivations

如果 X 是一个在 \mathbb{R}^n 的开子集 U 上的 C^∞ 向量场,并且 f 是 U 上的 C^∞ 函数,我们通过以下方式在 U 上定义一个新的函数 Xf:

$$(Xf)(p) = X_p f, \quad \forall p \in U$$

写作 $X = \sum a^i \partial / \partial x^i$, 我们得到

$$(Xf)(p) = \sum a^{i}(p) \frac{\partial f}{\partial x^{i}}(p)$$

或者

$$Xf = \sum a^{i} \frac{\partial f}{\partial x^{i}}$$

这表明 Xf 是 U 上的一个 C^{∞} 函数. 因此,一个 C^{∞} 向量场 X 产生一个 \mathbb{R} -线性 映射

$$C^{\infty}(U) \to C^{\infty}(U), \quad f \mapsto Xf$$

命题 1.1 (向量场的莱布尼茨法则) 如果 X 是一个 C^{∞} 向量场,而 f 和 g 是 U 开子集 \mathbb{R}^n 上的 C^{∞} 函数,那么 X(fg) 满足乘积法则(莱布尼茨法则):

$$X(fg) = (Xf)g + fXg$$

证明: 在每一个点 $p \in U$ 上,向量 X_p 满足莱布尼茨法则:

$$X_{p}(fg) = (X_{p}f)g(p) + f(p)X_{p}g$$

随着 p 在 U 上变化,这变成了函数之间的等式:

$$X(fg) = (Xf)g + fXg$$

如果 A 是一个定义在域 K 上的代数, A 的导数是一个 K -线性映射 $D:A\to A$, 使得

$$D(ab) = (Da)b + aDb, \quad \forall a, b \in A$$

所有 A 的导数的集合在加法和数乘下是封闭的,并构成一个向量空间,记作 Der(A). 如上所述,一个在开集 C^{∞} 上的 U 向量场可以诱导出代数 $C^{\infty}(U)$ 的导数. 因此,我们有一个映射

$$\varphi: \mathfrak{X}(U) \to \operatorname{Der}(C^{\infty}(U)), \quad X \mapsto (f \mapsto Xf)$$

正如在点 p 处的切向量可以与 C_p^{∞} 的点导数相识别一样,开集 U 上的向量场也可以与代数 $C^{\infty}(U)$ 的导数相识别;即,映射 φ 是向量空间之间的同构.

注 1.4 注意,p处的导数不是代数 C_p^{∞} 的导数。p处的导数是从 C_p^{∞} 到 \mathbb{R} 的映射,而代数 C_p^{∞} 的导数是从 C_p^{∞} 到 C_p^{∞} 的映射.

Chapter 2

The Exterior Algebra of Multicovectors

2.1 Dual Space

定义 **2.1** (对偶空间) 如果 V 和 W 是实向量空间,我们记所有从 V 到 W 的线性映射构成的线性空间为 Hom(V,W),定义 V 的对偶空间 V^{\vee} 为 V 上所有实值线性函数构成的线性空间:

$$V^{\vee} = \operatorname{Hom}(V, \mathbb{R})$$

 V^{\vee} 中的元素被称为 **covectors** or **1-covectors** on V.

在本节后面的部分中,我们认为 V 是有限维线性空间, $\mathbf{e}_1, \cdots, \mathbf{e}_n$ 是 V 的一组基,让 $\alpha^i \colon V \to \mathbb{R}$ 是线性函数,满足

$$lpha^i(e_j) = \delta_{ij} = egin{cases} 1 & i = j \ 0 & i
eq j \end{cases}$$

命题 2.1 $\alpha^1, \dots, \alpha^n$ 构成了 V^{\vee} 的一组基.

推论 2.1 有限维线性空间 V 的对偶空间 V^{\vee} 和 V 有相同的维数.

2.2 Permutations

令 S_k 为集合 $\{1, \dots, k\}$ 的置换群.

定义 2.2 (奇置换与偶置换)

- 一个置换被称为偶置换,如果它可以被写成偶数个对换的乘积.
- 一个置换被称为奇置换,如果它可以被写成奇数个对换的乘积.

置换 σ 的符号函数 $sgn(\sigma)$, 定义为

$$\operatorname{sgn}(\sigma) = \begin{cases} 1 & \sigma \text{ is even} \\ -1 & \sigma \text{ is odd} \end{cases}$$

同时还满足

$$\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau), \quad \forall \sigma, \tau \in S_k$$

例 2.1 我们有如下分解

$$(a_1 \ a_2 \ \cdots \ a_r) = (a_1 \ a_r)(a_1 \ a_{r-1}) \cdots (a_1 \ a_3)(a_1 \ a_2)$$

表示 r-循环如果是偶置换当且仅当 r 是奇数,是奇置换当且仅当 r 是偶数.

命题 2.2 一个置换是偶置换当且仅当它的逆序数是偶数.

2.3 Multilinear Functions

定义 2.3 一个 k-linear 函数 $f: V^k \to \mathbb{R}$,是指在它的每个分量上有

$$f(\cdots, av + bw, \cdots) = af(\cdots, v, \cdots) + bf(\cdots, w, \cdots), \quad \forall a, b \in \mathbb{R}, v, w \in V$$

注 2.1 相比于 2-linear 或者 3-linear, 我们更愿意说 bilinear 或者 trilinear.

一个 V 上的 k-linear 函数也被称为 V 上的 k-tensor,我们将记 V 上所有的 k-tensor 构成的线性空间为 $L_k(V)$. 如果 $f \in L_k(V)$,我们称 $k \not\in f$ 的 degree.

定义 2.4 (Dot product on \mathbb{R}^n) $\mathbf{e}_1, \dots, \mathbf{e}_n$ 为标准正交基,定义点乘为

$$f(v, w) = v \cdot w = \sum_{i} v_i w_i$$
, where $v = \sum_{i} v_i \mathbf{e}_i$, $v = \sum_{i} w_i \mathbf{e}_i$

点乘是一个双线性函数.

例 2.2 行列式 $f(v_1, \dots, v_n) = \det[v_1 \dots v_n]$ 是一个 n-线性函数.

定义 2.5 $f \in L_k(V)$ 是对称的,如果

$$f\left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right) = f(v_1, \cdots, v_k), \quad \forall \sigma \in S_k$$

 $f \in L_k(V)$ is alternating,如果

$$f\left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right) = \operatorname{sgn}(\sigma) f(v_1, \cdots, v_k), \quad \forall \sigma \in S_k$$

例 2.3

- 点乘 $f(v,w) = v \cdot w$ 是对称的.
- 行列式 $f(v_1, \dots, v_n) = \det[v_1 \dots v_n]$ is alternating.
- \mathbb{R}^3 上的叉乘 $v \times w$ is alternating.
- 对于 V 上任何两个线性函数 $f,g:V\to\mathbb{R}$, 我们定义 $f\wedge g:V\times V\to\mathbb{R}$ 为

$$(f \wedge g)(u, v) = f(u)g(v) - f(v)g(u)$$

且我们有 $f \land g$ is alternating. 这种我们称之为 wedge product, 将在后面定义.

我们尤其对 V 上所有的 alternating k-linear functions 构成的空间 $A_k(V)$ 感兴趣,它们也被称为 alternating k-tensors, k-covectors, or multicovectors of degree k on V. 对于 k=0,我们定义 0-covector 是常数,所以 $A_0(V)$ 是线性空间 \mathbb{R} .

2.4 The Permutation Action on Multilinear Functions

定义 2.6 $f \in L_k(V)$, $\sigma \in S_k$, 我们定义

$$(\sigma f)(v_1,\dots,v_k) = f\left(v_{\sigma(1)},\dots,v_{\sigma(k)}\right)$$

引理 2.1 对于 $\sigma, \tau \in S_k$, $f \in L_k(V)$, 则

$$\tau(\sigma f) = (\tau \sigma) f$$

证明: 对于 $v_1, \dots, v_k \in V$,有

$$\tau(\sigma f)(v_1, \dots, v_k) = (\sigma f) \left(v_{\tau(1)}, \dots, v_{\tau(k)}\right)$$

$$= (\sigma f) \left(w_1, \dots, w_k\right) \text{ letting } w_i = v_{\tau(i)}$$

$$= f \left(w_{\sigma(1)}, \dots, w_{\sigma(k)}\right)$$

$$= f \left(v_{\tau(\sigma(1))}, \dots, v_{\tau(\sigma(k))}\right)$$

$$= f \left(v_{(\tau\sigma)(1)}, \dots, v_{(\tau\sigma)(k)}\right)$$

$$= (\tau\sigma) f(v_1, \dots, v_k)$$

我们可以由此定义置换群对于 $L_k(V)$ 的作用.

2.5 The Symmetrizing and Alternating Operators

给定一个 k-linear 函数 f,我们可以把他变成对称函数 Sf,如下

$$Sf = \sum_{\sigma \in S_k} \sigma f$$

同样的,我们可以使得 f 变成 alternating 函数 Af,如下

$$Af = \sum_{\sigma \in S_k} (\operatorname{sgn}\sigma)\sigma f$$

引理 2.2 如果 f 是一个 k-linear 函数,则 Af = (k!)f.

证明: 由于 $\sigma f = (\operatorname{sgn}\sigma)f$,我们有

$$Af = \sum_{\sigma \in S_k} (\operatorname{sgn}\sigma)\sigma f = \sum_{\sigma \in S_k} (\operatorname{sgn}\sigma)(\operatorname{sgn}\sigma) f = (k!)f$$

2.6 The Tensor Product

定义 2.7 $f \in L_k(v)$, $g \in L_\ell(V)$, 则它们的张量积是一个 $(k+\ell)$ -linear function $f \otimes g$ defined by

$$(f \otimes g)(v_1, \cdots, v_{k+\ell}) = f(v_1, \cdots, v_k)g(v_{k+1}, \cdots, v_{k+\ell})$$

例 2.4 内积 \langle , \rangle 可以看做是张量积 $\sum g_{ij} \alpha_i \otimes \alpha_j$.

命题 2.3 张量积是满足结合律的,即

$$(f \otimes g) \otimes h = f \otimes (g \otimes h)$$

2.7 The Wedge Product

定义 2.8 Wedge Product or exterior product 定义为对 $f \in A_k(V)$, $g \in A_\ell(V)$, 有

$$f \wedge g = \frac{1}{k!\ell!} A(f \otimes g)$$

详细地,有

$$(f \wedge g)(v_1, \dots, v_{k+\ell}) = \frac{1}{k!\ell!} \sum_{\sigma \in S_{l+k}} (\operatorname{sgn}\sigma) f\left(v_{\sigma(1)}, \dots, v_{\sigma(k)}\right) g\left(v_{\sigma(k+1)}, \dots, v_{\sigma(k+\ell)}\right)$$

 ≥ 2.3 由定义我们知道 $f \wedge g$ 是 alternating 的.

笔记 2.1 当 k=0 的时候, 我们有 $f \in A_0(V)$ 就是一个常数 c, 所以有

$$c \wedge g = \frac{1}{l!}cAg = cg$$

所以我们有 $c \land g = cg$ 对于任意的 $c \in \mathbb{R}$, $g \in A_l(V)$.

例 2.5 容易验证有

$$(f \land g)(v_1, v_2, v_3) = f(v_1, v_2)g(v_3) - f(v_1, v_3)g(v_2) + f(v_2, v_3)g(v_1)$$

笔记 2.2 我们有必要在这里声明一下定义中的系数 $\frac{1}{k!\ell!}$ 的作用,事实上,对于任意的 $\tau \in S_k$, $\sigma \in S_{k+\ell}$,有

$$(\operatorname{sgn} \sigma \tau) f \left(v_{\sigma \tau(1)}, \cdots, v_{\sigma \tau(k)} \right) = (\operatorname{sgn} \sigma \tau) (\operatorname{sgn} \tau) f \left(v_{\sigma(1)}, \cdots, v_{\sigma(k)} \right)$$

$$= (\operatorname{sgn} \sigma) f \left(v_{\sigma(1)}, \cdots, v_{\sigma(k)} \right)$$

对于g同理,所以我们会发现在 $A(f\otimes g)$ 中每一个值会有 $k!\ell!$ 项是一样的,所以除掉这个系数实际上就是保证每项只出现一次.

下面是一个方法去避免冗余的项,让我们更方便把 $f \wedge g$ 写出来:

定义 2.9 我们称 $\sigma \in S_{k+\ell}$ 是一个 (k,ℓ) —shuffle,如果

$$\sigma(1) < \cdots < \sigma(k)$$
 \exists $\sigma(k+1) < \cdots < \sigma(k+\ell)$

所以我们可以写出:

$$(f \land g) (v_1, \cdots, v_{k+\ell}) = \sum_{\sigma \in (k,\ell) \text{-shuffles}} (\operatorname{sgn} \sigma) f \left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right) g \left(v_{\sigma(k+1)}, \cdots, v_{\sigma(k+\ell)}\right)$$

例 2.6 $f,g \in A_1(V) = V^{\vee}$, 则对 $\forall v_1, v_2 \in V$, 有

$$(f \land g)(v_1, v_2) = f(v_1)g(v_2) - f(v_2)g(v_1)$$

2.8 Anticommutativity of the Wedge Product

命题 2.4 The wedge product is anticommutative: if $f \in A_k(V)$ and $g \in A_\ell(V)$, then

$$f \wedge g = (-1)^{k\ell} g \wedge f$$

证明: $\diamond \tau \in S_{k+\ell}$ 是置换

$$\tau = \begin{pmatrix} 1 & \cdots & l & \ell+1 & \cdots & \ell+k \\ k+1 & \cdots & k+\ell & 1 & \cdots & k \end{pmatrix}$$

这告诉我们

$$\sigma(1) = \sigma\tau(\ell+1), \cdots, \sigma(k) = \sigma\tau(\ell+k)$$

$$\sigma(k+1) = \sigma\tau(1), \cdots, \sigma(k+\ell) = \sigma\tau(\ell)$$

所以我们知道

$$A(f \otimes g)(v_{1}, \dots, v_{k+\ell})$$

$$= \sum_{\sigma \in S_{k+\ell}} (\operatorname{sgn} \sigma) f(v_{\sigma(1)}, \dots, v_{\sigma(k)}) g(v_{\sigma(k+1)}, \dots, v_{\sigma(k+\ell)})$$

$$= \sum_{\sigma \in S_{k+\ell}} (\operatorname{sgn} \sigma) f(v_{\sigma\tau(\ell+1)}, \dots, v_{\sigma\tau(\ell+k)}) g(v_{\sigma\tau(1)}, \dots, v_{\sigma\tau(\ell)})$$

$$= (\operatorname{sgn} \tau) \sum_{\sigma \in S_{k+\ell}} (\operatorname{sgn} \sigma\tau) g(v_{\sigma\tau(1)}, \dots, v_{\sigma\tau(\ell)}) f(v_{\sigma\tau(\ell+1)}, \dots, v_{\sigma\tau(\ell+k)})$$

$$= (\operatorname{sgn} \tau) A(g \otimes f)(v_{1}, \dots, v_{k+\ell})$$

所以我们知道

$$A(f \otimes g) = (\operatorname{sgn} \tau) A(g \otimes f)$$

两边同时除掉 $k!\ell!$ 得到

$$f \wedge g = (\operatorname{sgn} \tau) g \wedge f = (-1)^{k\ell} g \wedge f$$

推论 2.2 如果 f 是一个 multicovector of odd degree on V,则 $f \wedge f = 0$.

证明: 注意到

$$f \wedge f = (-1)^{k^2} f \wedge f = -f \wedge f$$

2.9 Associativity of the Wedge Product

引理 2.3 $f \in L_k(V)$, $g \in L_\ell(V)$, 则有

- $A(A(f) \otimes g) = k!A(f \otimes g)$
- $A(f \otimes A(g)) = \ell! A(f \otimes g)$

证明: (1) 由定义我们有

$$A(A(f) \otimes g) = \sum_{\sigma \in S_{k+l}} (\operatorname{sgn} \sigma) \sigma \left(\sum_{\tau \in S_k} (\operatorname{sgn} \tau) (\tau f) \otimes g \right)$$

我们可以观察到 $\tau \in S_k$ 也是一个属于 S_{k+l} 的置换,不过是固定了 $k+1, \dots, k+\ell$,在这种观点下, τ 满足

$$(\tau f) \otimes g = \tau (f \otimes g)$$

所以我们有

$$A(A(f) \otimes g) = \sum_{\sigma \in S_{k+l}} \sum_{\tau \in S_k} (\operatorname{sgn} \sigma) (\operatorname{sgn} \tau) (\sigma \tau) (f \otimes g)$$

$$= \sum_{\tau \in S_k} \sum_{\sigma \in S_{k+l}} (\operatorname{sgn} \sigma) (\operatorname{sgn} \tau) (\sigma \tau) (f \otimes g)$$

$$= \sum_{\tau \in S_k} \sum_{\sigma \in S_{k+l}} (\operatorname{sgn} \sigma \tau) (\sigma \tau) (f \otimes g)$$

$$= \sum_{\tau \in S_k} \sum_{\phi \in S_{k+l}} (\operatorname{sgn} \phi) (\phi) (f \otimes g)$$

$$= k! A (f \otimes g)$$

(2) 的证明是类似的.

命题 2.5 (Associativity of the wedge product) $f \in A_k(V)$, $g \in A_\ell(V)$, $h \in A_m(V)$, 从而

$$(f \land g) \land h = f \land (g \land h)$$

证明:

$$(f \wedge g) \wedge h = \frac{1}{(k+\ell)!m!} A((f \wedge g) \otimes h)$$

$$= \frac{1}{(k+\ell)!m!} \frac{1}{k!\ell!} A(A(f \otimes g) \otimes h)$$

$$= \frac{(k+\ell)!}{(k+\ell)!m!k!\ell!} A((f \otimes g) \otimes h)$$

$$= \frac{1}{k!\ell!m!} A((f \otimes g) \otimes h)$$

同理我们可以有

$$f \wedge (g \wedge h) = \frac{1}{k!(\ell+m)!} A\left(f \otimes \frac{1}{\ell!m!} A(g \otimes h)\right)$$
$$= \frac{1}{k!\ell!m!} A(f \otimes (g \otimes h))$$

由于张量积是结合的,所以我们知道 wedge product 是结合的.

推论 2.3 从上面的过程我们知道

$$f \wedge g \wedge h = \frac{1}{k!\ell!m!} A (f \otimes g \otimes h)$$

推论 2.4 容易进一步推广,若 $f_i \in A_{d_i}(V)$,则:

$$f_1 \wedge \cdots \wedge f_r = \frac{1}{(d_1)! \cdots (d_r)!} A(f_1 \otimes \cdots \otimes f_r)$$

命题 **2.6** (Wedge product of 1-covectors) 如果 $\alpha_1, \dots, \alpha_k$ 是 V 上的线性函数,则

$$(\alpha_1 \wedge \cdots \alpha_k) (v_1, \cdots, v_k) = \det [\alpha_i(v_i)]$$

证明: 我们知道

$$(\alpha_{1} \wedge \cdots \alpha_{k}) (v_{1}, \cdots, v_{k}) = A (\alpha_{1} \otimes \cdots \otimes \alpha_{k}) (v_{1}, \cdots, v_{k})$$

$$= \sum_{\sigma \in S_{k}} (\operatorname{sgn} \sigma) \prod_{i=1}^{k} \alpha_{i} (v_{\sigma(1)})$$

$$= \det [\alpha_{i}(v_{j})]$$

定义 2.10 An algebra A over a field K is said to be **graded** if it can be written as a direct sum $A = \bigoplus_{k=0}^{\infty} A^k$ of vector space over K such that the multiplication map sends

 $A^k \times A^\ell$ to $A^{k+\ell}$. The notation $A = \bigoplus_{k=0}^{\infty} A^k$ means that each nonzero element of A is uniquely a **finite** sum

$$a = a_{i_1} + \dots + a_{i_m}$$

where $a_{i_j} \neq 0 \in A^{i_j}$. A graded algebra $A = \bigoplus_{k=0}^{\infty} A^k$ is said to be **anticommutative** or **graded commutative** if for all $a \in A^k$ and $b \in A^{\ell}$,

$$ab = (-1)^{k\ell} ba$$

A **homomorphism of graded algebras** is an algebra homomorphism that preserves the degree.

注 2.4 令 Multicovectors 的 wedge product 为乘法,则 $A_*(V)$ 为一个 anticommutative graded algebra,被称为 the **exterior algebra** 或者 the **Grassmann algebra** of multicovectors on the vector space V.

2.10 A Basis for k-Covectors

定义 2.11 令 $\mathbf{e}_1, \dots, \mathbf{e}_n$ 是实线性空间 V 的一组基, $\alpha^1, \dots, \alpha^n$ 是其对偶基,引入多重指标记号

$$I=(i_1,\cdots,i_k)$$

并记

$$\mathbf{e}_I = (\mathbf{e}_{i_1}, \cdots, \mathbf{e}_{i_k})$$
 \mathbb{H} $\alpha^I = \alpha^{i_1} \wedge \cdots \wedge \alpha^{i_k}$

注 2.5

- 一个k-线性函数f被其在所有k元组 $(\mathbf{e}_{i_1},\cdots,\mathbf{e}_{i_k})$ 上的值完全决定.
- 如果 f 是 alternating,则被所有 $(\mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_k})$, $1 \leq i_1 < \dots < i_k \leq n$ 上的值完全 决定,即我们只需要去考虑 I 是严格上升序列时的 \mathbf{e}_I .

引理 2.4 令 $\mathbf{e}_1, \dots, \mathbf{e}_n$ 是实线性空间 V 的一组基, $\alpha^1, \dots, \alpha^n$ 是其对偶基,如果 $I = (1 \le i_1 < \dots < i_k \le n)$ 与 $J = (1 \le j_1 < \dots < j_k \le n)$ 是两个长度为 k 的严格上升多重指标,则

$$\alpha^{I}(\mathbf{e}_{J}) = \delta^{I}_{J} = \begin{cases} 1 & I = J \\ 0 & I \neq J \end{cases}$$

证明: 由命题 2.6 可知

$$\alpha^{I}(\mathbf{e}_{J}) = \det[\alpha^{i}(\mathbf{e}_{j})]_{i \in I, j \in J}$$

如果 I = J,则 $\left[\alpha^{i}(\mathbf{e}_{i})\right]$ 是单位矩阵,所以行列式为 1.

如果 $I \neq J$,我们记 l 为最小的使得 $i_l \neq j_l$ 的数,如果 $i_l < j_l$,则第 l 行全为 0;如果 $i_l > j_l$,则第 l 列全为 0.

命题 2.7 所有的 alternating k-linear 函数 α^I 构成了 $A_k(V)$ 的一组基.

证明: 首先我们证明它们是线性无关的,设

$$\sum_{I ext{ ascending multi-indices of length } c_I lpha^I = 0, \quad c_I \in \mathbb{R}$$

作用与 e_J 上,则有

$$0 = \sum_{I\uparrow} c_I \alpha^I(\mathbf{e}_J) = \sum_{I\uparrow} c_I \delta^I_J = c_J$$

由J的任意性,线性无关得证.对于 $f \in A_k(V)$,我们容易验证有

$$f = \sum_{I\uparrow} f\left(\mathbf{e}_{I}\right) \alpha^{I}$$

推论 2.5 $V \in n$ 维线性空间,则

$$\dim A_k(V) = \binom{n}{k}$$

推论 2.6 如果 $k > \dim V$,则 $\dim A_k(V) = 0$.

Chapter 3

Differential Forms on \mathbb{R}^n

3.1 Differential 1-Forms and the Differential of a Function

定义 3.1 在 \mathbb{R}^n 上 p 的余切空间,记作 $T_p^*(\mathbb{R}^n)$ 或 $T_p^*\mathbb{R}^n$,定义为切空间 $T_p(\mathbb{R}^n)$ 的对偶空间 $(T_p\mathbb{R}^n)^\vee$. 因此,余切空间 $T_p^*(\mathbb{R}^n)$ 的一个元素是切空间 $T_p(\mathbb{R}^n)$ 上的一个余向量 a 或线性泛函 b .

定义 3.2 一个开子集 U 上的余向量场 a 或微分 1-形式是一个函数 ω ,它将 U 中的每个点 p 映射到一个余向量 $\omega_p \in T_p^*(\mathbb{R}^n)$:

$$\omega: U \rightarrow \bigcup_{p \in U} T_p^*(\mathbb{R}^n)$$

$$p \mapsto \omega_p \in T_p^*(\mathbb{R}^n)$$

^acovector field

从任何 C^{∞} 函数 $f: U \to \mathbb{R}$,我们可以构造一个 1-形式 df ,称为 f 的微分,如下定义.

^acovector

^blinear functional

定义 3.3 对于 $p \in U$ 和 $X_p \in T_p(U)$, 定义

$$(\mathrm{d}f)_p(X_p) = X_p f$$

注 3.2 函数在点 p 处沿切向量的方向的方向导数建立了一个双线性配对

$$T_p(\mathbb{R}^n) \times C_p^{\infty}(\mathbb{R}^n) \to \mathbb{R}, \quad (X_p, f) \mapsto \langle X_p, f \rangle = X_p f$$

可以将切向量看作是这个配对第二个参数上的函数:

$$\langle X_p,\cdot\rangle$$

在p处的微分 $(df)_p$ 是这个配对第一个参数上的函数:

$$(\mathrm{d}f)_p = \langle \cdot, f \rangle$$

微分 df 在 p 处的值也可以写作 $df|_{p}$.

设 x^1,\ldots,x^n 是 \mathbb{R}^n 上的标准坐标, 集合 $\left\{\partial/\partial x^1|_p,\ldots,\partial/\partial x^n|_p\right\}$ 是切空间 $T_p(\mathbb{R}^n)$ 的一个基.

命题 3.1 如果 x^1, \dots, x^n 是 \mathbb{R}^n 上的标准坐标,那么在 $p \in \mathbb{R}^n$

$$\left\{ \left(\mathrm{d}x^{1}\right) _{p},\ldots,\left(\mathrm{d}x^{n}\right) _{p}\right\}$$

是余切空间 $T_p^*(\mathbb{R}^n)$ 的基,与切空间 $T_p(\mathbb{R}^n)$ 的基

$$\left\{ \partial/\partial x^1 \Big|_p, \cdots, \partial/\partial x^n \Big|_p \right\}$$

对偶.

证明: 由定义

$$\left(\mathrm{d}x^{i}\right)_{p}\left(\left.\frac{\partial}{\partial x^{j}}\right|_{p}\right) = \left.\frac{\partial}{\partial x^{j}}\right|_{p}x^{i} = \delta_{j}^{i}$$

如果 ω 是一个 1-形式,则由命题我们知道对于每一点 $p \in U$,我们可以写成线性组合

$$\omega_p = \sum a_i(p) \left(dx^i \right)_p, \quad a_i(p) \in \mathbb{R}$$

当 p 跑遍 U 的时候,系数 a_i 就变成 U 上的函数了,我们会写成

$$\omega = \sum a_i \mathrm{d} x^i$$

余向量场 ω 在 U 上是 C^{∞} 的,如果所有系数函数 a_i 在 U 上都是 C^{∞} 的.

如果 x,y,z 是 \mathbb{R}^3 上的标准表座,则 dx,dy,dz 是 \mathbb{R}^3 上的 1-形式,我们给出了在初等微积分中一个符号的意义.

命题 3.2 (The differential in terms of coordinates) 如果 $f: U \to \mathbb{R}$ 是 $U \subseteq \mathbb{R}^n$ 上的 C^{∞} 函数,则

$$\mathrm{d}f = \sum_{i=1}^{n} \frac{\partial f}{\partial x^i} \mathrm{d}x^i$$

证明: 由命题 3.1,我们知道对于 U 中的每一点 p,

$$(\mathrm{d}f)_p = \sum a_i(p) \left(\mathrm{d}x^i\right)_p$$

因此,有

$$\mathrm{d}f = \sum a_i \mathrm{d}x^i$$

为了寻找 a_i ,我们将上式两边同时作用于 $\partial/\partial x^j$:

$$\mathrm{d}f\left(\frac{\partial}{\partial x^j}\right) = \sum a_i \mathrm{d}x^i \left(\frac{\partial}{\partial x^j}\right) = \sum a_i \delta^i_j = a_j$$

另一方面, 我们有

$$\mathrm{d}f\left(\frac{\partial}{\partial x^j}\right) = \frac{\partial f}{\partial x^j}$$

综上我们有 $a_j = \frac{\partial f}{\partial x^j}$,即

$$(\mathrm{d}f)_p = \sum a_i(p) \left(\mathrm{d}x^i\right)_p$$

 ≥ 3.3 上面的命题告诉我们,如果 $f \in \mathbb{C}^{\infty}$ 的,则 $\mathrm{d}f$ 也是 \mathbb{C}^{∞} 的.

3.2 Differential *k*-Forms

定义 3.4 一个在 \mathbb{R}^n 的开子集 U 上的次数为 k 或 k-形式的微分形式 ω 是一个函数,它将 U 中的每个点 p 分配给切空间 $T_p(\mathbb{R}^n)$ 上的一个交替 ak -线性函数,即 $\omega_p \in A_k(T_p\mathbb{R}^n)$.

^aalternating

笔记 3.1 由于 $A_1(T_p\mathbb{R}^n) = T_p^*(\mathbb{R}^n)$, k -形式的定义推广了 1-形式的定义: 根据命题 2.7 可知, $A_k(T_p\mathbb{R}^n)$ 的基是

$$dx_p^I = dx_p^{i_1} \wedge \cdots \wedge dx_p^{i_k}, \ 1 \le i_1 < \cdots < i_k \le n$$

因此, 在 U, ω_p 中的每一点p是一个线性组合

$$\omega_p = \sum a_I(p) \, dx_p^I, \ 1 \le i_1 < \dots < i_k \le n$$

以及U上的k-形式 ω 是一个线性组合

$$\omega = \sum a_I dx^I$$

 $\stackrel{\cdot}{\mathbb{H}}$ 3.4 We say that a k -form ω is C^{∞} on U if all the coefficients a_I are C^{∞} functions on U .

定义 3.5 $\Diamond \Omega^k(U)$ 表示 $U \perp C^{\infty}$ 的所有 k-形式构成的线性空间.

例 3.1 在 U 上的一个 0-形式为 U 中的每个点 p 分配一个 $A_0(T_p\mathbb{R}^n) = \mathbb{R}$ 的元素. 因此,在 U 上的一个 0-形式仅仅是一个在 U 上的函数,且 $\Omega^0(U) = C^\infty(U)$.

 ≥ 3.5 在 \mathbb{R}^n 的开子集上不存在非零的 > n 次微分形式,这是因为如果

$$\deg dx^I > n$$

那么在 dx^I 的表达式中至少有两个 I-形式 $dx^{i\alpha}$ 必须相同, 这迫使 $dx^I=0$.

定义 3.6 k-形式 ω 与 l-形式 τ 的外积是按如下方式逐点定义的:

$$(\boldsymbol{\omega} \wedge \boldsymbol{\tau})_p = \boldsymbol{\omega}_p \wedge \boldsymbol{\tau}_p, \quad p \in U$$

在坐标上,若
$$\omega = \sum_I a_I \mathrm{d} x^I$$
, $\tau = \sum_J b_J \mathrm{d} x^J$, 有
$$\omega \wedge \tau = \sum_{I,J} (a_I b_J) \mathrm{d} x^I \wedge \mathrm{d} x^J$$

注 3.6 在这个和中,如果 I 和 J 在等式右边不互斥,那么 $dx^I \wedge dx^J = 0$,因此,实际上是对互斥的多重指标求和:

$$\omega \wedge \tau = \sum_{I,J \text{ disjoint}} (a_I b_J) dx^I \wedge dx^J$$

这表明两个 C^{∞} 形式的外积是 C^{∞} ,因此,外积是一个双线性映射

$$\wedge: \Omega^{k}\left(U\right) \times \Omega^{\ell}\left(U\right) \to \Omega^{k+\ell}\left(U\right)$$

如果其中一个因子的次数为 0,比如说 k=0,那么外积

$$\wedge: \Omega^0(U) \times \Omega^\ell(U) \to \Omega^\ell(U)$$

是一个 $C^{\infty}\ell$ -形式与一个 C^{∞} 函数的点乘:

$$(f \wedge \boldsymbol{\omega})_p = f(p) \wedge \boldsymbol{\omega}_p = f(p) \, \boldsymbol{\omega}_p$$

与 0-协向量取外积是标量乘法: 如果 $f \in C^{\infty}(U)$ 且 $\omega \in \Omega^{\ell}(U)$, 那么

$$f \wedge \boldsymbol{\omega} = f \boldsymbol{\omega}$$

例 3.2 Let x, y, z be the coordinates on \mathbb{R}^3 . The $C^{\infty}1$ -forms on \mathbb{R}^3 are

$$f dx + g dy + h dz$$

where f,g,h range over all C^{∞} functions on \mathbb{R}^3 . The C^{∞} 2-forms are

$$f dy \wedge dz + g dx \wedge dz + h dx \wedge dy$$

and the C^{∞} 3-forms are

$$f dx \wedge dy \wedge dz$$

3.3 Differential Forms as Multilinear Functions on Vector Fields

如果 ω 是一个 C^{∞} 1-形式, X 是在 \mathbb{R}^n 中开集 U 上的一个 C^{∞} 向量场,我们在 U 上 定义一个函数 $\omega(X)$:

$$\omega(X)_p = \omega_p(X_p), p \in U$$

用坐标展开,

$$\omega = \sum a_i dx^i, X = \sum b^j \frac{\partial}{\partial x^j}$$
 for some $a_i, b^j \in C^{\infty}(U)$

因此

$$\omega(X) = \left(\sum a_i dx^i\right) \left(\sum b^j \frac{\partial}{\partial x^j}\right) = \sum a_i b^i$$

这表明 $\omega(X)$ 在 U 上是 C^{∞} 的. 因此, U 上的一个 C^{∞} 1-形式产生了一个从 $\mathfrak{X}(U)$ 到 $C^{\infty}(U)$ 的映射.

这个函数实际上在环 $C^{\infty}(U)$ 上是线性的,即,如果 $f \in C^{\infty}(U)$,那么 $\omega(fX) = f\omega(X)$. 为了证明这一点,足以在任意点 $p \in U$ 处计算 $\omega(fX)$:

$$(\omega(fX))_p = \omega_p(f(p)X_p)$$
 (definition of $\omega(fX)$)
= $f(p)\omega_p(X_p)$ (ω_p is \mathbb{R} -linear)
= $(f\omega(X))_p$ (definition of $f\omega(X)$)

设 $\mathscr{F}(U)=C^\infty(U)$. 在这种记法中, U 上的 1-形式 ω 产生一个 $\mathscr{F}(U)$ -线性映射 $\mathfrak{X}(U)\to\mathscr{F}(U)$, $X\mapsto\omega(X)$. 类似地, U 上的 k -形式 ω 产生一个 k -线性映射关于 $\mathscr{F}(U)$,

$$\underbrace{\mathfrak{X}(U) \times \cdots \times \mathfrak{X}(U)}_{k \text{ times}} \to \mathscr{F}(U)$$

$$(X_1, \dots, X_k) \mapsto \omega(X_1, \dots, X_k)$$

3.4 The Exterior Derivative

为了定义在 \mathbb{R}^n 的开子集 U 上的 $C^{\infty}k$ -形式的外导数,我们首先在 0-形式上定义它:一个 C^{∞} 函数 $f \in C^{\infty}(U)$ 的外导数被定义为它的微分 $df \in \Omega^1(U)$,命题 3.2 给出

$$\mathrm{d}f = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \mathrm{d}x^{i}$$

定义 3.7 对于 $k \ge 1$,如果 $\omega = \sum_{I} a_{I} dx^{I} \in \Omega^{k}(U)$,那么

$$d\omega = \sum_{I} da_{I} \wedge dx^{I} = \sum_{I} \left(\sum_{j} \frac{\partial a_{I}}{\partial x^{j}} dx^{j} \right) \wedge dx^{I} \in \Omega^{k+1} (U)$$

例 3.3 设 ω 是 \mathbb{R}^2 上的 1-形式 fdx+gdy , 其中 f 和 g 是 \mathbb{R}^2 上的 C^{∞} 函数. 为了简化记法,写作 $f_x=\partial f/\partial x, f_y=\partial f/\partial y$,那么

$$d\omega = df \wedge dx + dg \wedge dy$$

= $(f_x dx + f_y dy) \wedge dx + (g_x dx + g_y dy) \wedge dy$
= $(g_x - f_y) dx \wedge dy$

定义 3.8 Let $A = \bigoplus_{k=0}^{\infty} A^k$ be a graded algebra over a field K. An antiderivation of the graded algebra A is a K-linear map $D: A \to A$ such that for $a \in A^k$ and $b \in A^\ell$,

$$D(ab) = (Da)b + (-1)^k aDb$$

命题 3.3 ★

• 外微分 d: $\Omega^*(U) \to \Omega^*(U)$ 是阶数为 1 的 antiderivation:

$$d(\boldsymbol{\omega} \wedge \boldsymbol{\tau}) = (d\boldsymbol{\omega}) \wedge \boldsymbol{\tau} + (-1)^{\deg \boldsymbol{\omega}} \, \boldsymbol{\omega} \wedge d\boldsymbol{\tau}$$

- $d^2 = 0$
- $\forall f \in C^{\infty}(U)$, $X \in \mathfrak{X}(U)$, \emptyset

$$(\mathrm{d}f)(X) = Xf$$

证明: (1) 因此只需检查 $\omega = f dx^I$ 和 $\tau = g dx^J$ 的等式:

$$d(\omega \wedge \tau) = d(fgdx^{I} \wedge dx^{J})$$

$$= \sum \frac{\partial (fg)}{\partial x^{i}} dx^{i} \wedge dx^{I} \wedge dx^{J}$$

$$= \sum \frac{\partial f}{\partial x^{i}} g dx^{i} \wedge dx^{I} \wedge dx^{J} + \sum f \frac{\partial g}{\partial x^{i}} dx^{i} \wedge dx^{I} \wedge dx^{J}$$

在第二个和中,将 1-形式 $\left(\partial g/\partial x^i\right)dx^i$ 移过 k -形式 dx^I 会根据反交换性产生符号 $(-1)^k$,因此,

$$d(\boldsymbol{\omega} \wedge \boldsymbol{\tau}) = \sum_{i} \frac{\partial f}{\partial x^{i}} dx^{i} \wedge dx^{I} \wedge g dx^{J} + (-1)^{k} \sum_{i} f dx^{I} \wedge \frac{\partial g}{\partial x^{i}} dx^{i} \wedge dx^{J}$$
$$= d\boldsymbol{\omega} \wedge \boldsymbol{\tau} + (-1)^{k} \boldsymbol{\omega} \wedge d\boldsymbol{\tau}$$

(2) 再次利用 d 的 \mathbb{R} -线性性质,足以说明 $\mathrm{d}^2\omega=0$ 对于 $\omega=f\mathrm{d}x^I$ 成立。我们计算如下:

$$d^{2}(fdx^{I}) = d\left(\sum \frac{\partial f}{\partial x^{i}}dx^{i} \wedge dx^{I}\right) = \sum \frac{\partial^{2} f}{\partial x^{j} \partial x^{i}}dx^{j} \wedge dx^{i} \wedge dx^{I}$$

在这个求和中,如果 i = j ,那么 $dx^j \wedge dx^i = 0$;如果 $i \neq j$,那么 $\partial^2 f / \partial x^i \partial x^j$ 在 i 和 j 上是对称的,但 $dx^j \wedge dx^i$ 在 i 和 j 上是交错的,所以带有 $i \neq j$ 的项会成对出现并相互抵消,故证毕.

(3) 函数外导数的定义,即函数的微分.

命题 **3.4** (Characterization of the exterior derivative)

命题 3.3 的三个性质唯一地定义了在开集 U 上的 \mathbb{R}^n 的外微分.

也就是说,如果 $D: \Omega^*(U) \to \Omega^*(U)$ 是

- (i) 一阶的反导数
- (ii) $D^2 = 0$
- (iii) (Df)(X) = Xf 对于 $f \in C^{\infty}(U)$ 和 $X \in \mathfrak{X}(U)$ 成立

那么D=d.

证明: 由于 U 上的每个 k -形式都是如 $f dx^{i_1} \wedge \cdots \wedge dx^{i_k}$ 这样的项的和,通过线性性质,我们只需证明 D = d 在这种类型的 k -形式上成立.

由 (iii) 可知, Df = df 在 C^{∞} 函数上成立,因此,根据 (ii) , $Ddx^i = DDx^i = 0$ 成立. 通过对 k 的简单归纳,并使用 D 的反导数性质,可以证明对于所有的 k 和所有长度为 k 的多指标 I,

$$D\left(\mathrm{d}x^{I}\right) = D\left(\mathrm{d}x^{i_{1}} \wedge \cdots \wedge \mathrm{d}x^{i_{k}}\right) = 0$$

最后,对于每个k-形式 $f dx^I$,

$$D(f dx^{I}) = (Df) \wedge dx^{I} + fD(dx^{I})$$
$$= (df) \wedge dx^{I}$$
$$= d(f dx^{I})$$

因此, $D = d \in \Omega^*(U)$ 上成立.

3.5 Closed Forms and Exact Forms

定义 3.9

- 一个 k-形式 ω 在 U 上是**闭**的,如果 $d\omega = 0$.
- 如果存在一个 (k-1)-形式 τ 使得 $\omega = d\tau$,则称 ω 是恰当的.

注 3.7 由于 $d(d\tau) = d^2\tau = 0$, 所以每个恰当形式都是闭形式.

例 3.4 (在 punctured 平面上的闭 1-形式) 在 $\mathbb{R}^2 - \{0\}$ 上定义一个 1-形式 ω:

$$\omega = \frac{x dy - y dx}{x^2 + y^2}$$

则它是一个闭形式.

证明:

$$d\omega = \frac{y^2 - x^2}{(x^2 + y^2)^2} dx \wedge dy + \frac{y^2 - x^2}{(x^2 + y^2)^2} dy \wedge dx = 0$$

A collection of vector spaces $\left\{V^k\right\}_{k=0}^\infty$ with linear maps $d_k:V^k\to V^{k+1}$ such that $d_{k+1}\circ d_k=0$ is called a differential complex or a cochain complex. For any open subset U of \mathbb{R}^n , the exterior derivative d makes the vector space $\Omega^*(U)$ of C^∞ forms on U into a cochain complex, called the de Rham complex of U:

$$0 \to \Omega^0(U) \xrightarrow{d} \Omega^1(U) \xrightarrow{d} \Omega^2(U) \to \cdots$$

The closed forms are precisely the elements of the kernel of d, and the exact forms are the elements of the image of d.

3.6 Applications to Vector Calculus

By a vector-valued function on an open subset U of \mathbb{R}^3 , we mean a function $\mathbf{F} = \langle P, Q, R \rangle$: $U \to \mathbb{R}^3$. Such a function assigns to each point $p \in U$ a vector $\mathbf{F}_p \in \mathbb{R}^3 \simeq T_p\left(\mathbb{R}^3\right)$. Hence, a vector-valued function on U is precisely a vector field on U. Recall the three operators gradient, curl, and divergence on scalar- and vector-valued functions on U:

 $\{scalar\ func.\}\xrightarrow{grad} \{vector\ func.\}\xrightarrow{curl} \{vector\ func.\}\xrightarrow{div} \{scalar\ func.\}$

$$\operatorname{grad} f = \begin{bmatrix} \partial/\partial x \\ \partial/\partial y \\ \partial/\partial z \end{bmatrix} f = \begin{bmatrix} f_x \\ f_y \\ f_z \end{bmatrix}$$

$$\operatorname{curl} \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \begin{bmatrix} \partial/\partial x \\ \partial/\partial y \\ \partial/\partial z \end{bmatrix} \times \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \begin{bmatrix} R_y - Q_z \\ -(R_x - P_z) \\ Q_x - P_y \end{bmatrix}$$

$$\operatorname{div} \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \begin{bmatrix} \partial/\partial x \\ \partial/\partial y \\ \partial/\partial z \end{bmatrix} \cdot \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = P_x + Q_y + R_z$$

Since every 1-form on U is a linear combination with function coefficients of dx, dy, and dz, we can identify 1-forms with vector fields on U via

$$Pdx + Qdy + Rdz \leftrightarrow \begin{bmatrix} P \\ Q \\ R \end{bmatrix}$$

Similarly, 2-forms on U can also be identified with vector fields on U:

$$Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy \leftrightarrow \begin{bmatrix} P \\ Q \\ R \end{bmatrix}$$

and 3-forms on U can be identified with functions on U:

$$fdx \wedge dy \wedge dz \leftrightarrow f$$

¹梯度,旋度与散度

In terms of these identifications, the exterior derivative of a 0 -form f is

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz \leftrightarrow \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial x} \end{bmatrix} = \operatorname{grad} f$$

the exterior derivative of a 1-form is

$$d(Pdx + Qdy + Rdz) = (R_y - Q_z)dy \wedge dz - (R_x - P_z)dz \wedge dx + (Q_x - P_y)dx \wedge dy$$

which corresponds to

$$\operatorname{curl}\begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \begin{bmatrix} R_y - Q_z \\ -(R_x - P_z) \\ Q_x - P_y \end{bmatrix}$$

the exterior derivative of a 2-form is

$$d(Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy) = (P_x + Q_y + R_z) dx \wedge dy \wedge dz$$

which corresponds to

$$\operatorname{div} \left[\begin{array}{c} P \\ Q \\ R \end{array} \right] = P_x + Q_y + R_z$$

Thus, after appropriate identifications, the exterior derivatives d on 0-forms,1- forms, and 2-forms are simply the three operators grad, curl, and div. In summary, on an open subset U of \mathbb{R}^3 , there are identifications

Under these identifications, a vector field $\langle P,Q,R\rangle$ on \mathbb{R}^3 is the gradient of a C^{∞} function f if and only if the corresponding 1-form Pdx+Qdy+Rdz is df.

命题 3.5 (一些基本事实)

- $\operatorname{curl} (\operatorname{grad} f) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.
- div $\left(\begin{array}{c} P \\ Q \\ R \end{array} \right) = 0$.
- On \mathbb{R}^3 , a vector field \mathbf{F} is the gradient of some scalar function f if and only if $\operatorname{curl} \mathbf{F} = 0$.

命题 A 和 B 表达了外导数在 \mathbb{R}^3 的开子集上的性质 $d^2 = 0$; 这些是简单的计算. 命题 C 表达了 \mathbb{R}^3 上的 1-形式是精确的当且仅当它是闭的.