UNCLASSIFIED

AD NUMBER AD015365 CLASSIFICATION CHANGES TO: unclassified FROM: confidential LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;

Administrative/Operational Use; JUN 1952. Other requests shall be referred to Army Armament Research and Development Command, Dover, NJ.

AUTHORITY

ARRADCOM ltr, 4 Sep 1981; ARRADCOM ltr, 4 Sep 1981

TWENTY-THIRD

PROGRESS REPORT

OF

THE FIRESTONE TIRE & RUBBER CO.

ON

105 MM BATTALION ANTI-TANK PROJECT

Contract No.
DA-33-019-ORD-33 (Negotiated)
RAD ORDTS 1-12383

THE FIRESTONE TIRE & RUBBER CO.

Defense Research Division

Akron, Ohio

JUNE, 1952

INDEX

	P	age
I.	Abstract	1
II.	The Weapon System	2
	T-138 Projectile	
IV.	T-171 Projectile	19
v.	T-119 Projectile	20
VI.	Penetration Studies	22
·· VII.	Fuzes	30

ABSTRACT

There are four Firestone 105mm BAT weapon systems in use. The location and use of each is given. A schedule of manufacture for four additional weapon systems is presented and the changes incorporated in these additional weapons are explained. New developments in the weapon design are discussed.

The direct sights which have been subjected to extended firing programs have developed some difficulties and are being returned to Frankford Arsenal for reworking. The design for indirect sight mounting is shown.

The accuracy of the T46 spotting rifle has been measured using the spotting cartridges T175 and T176. The data for the firings are presented and the results discussed.

The various modifications to the nose element mounting and tee cap, studied in investigating the causes for the malfunctions of the T138E57 HEAT projectiles, have been listed. The test data are presented and the tests discussed.

Two accuracy firings were made at a 2000-yard range with the T138E57 projectile. The firing data are given.

There were no tests conducted with the T171 projectile during the month.

The firing tests using a new housing design for the Tll9 projectile are reported and the results analyzed. A revised housing is illustrated.

Various programs in the field of penetration are presented. Data are given for studies of penetration using Tl7l bodies, the effect of the booster system, machined versus drawn liners and the effect of rotation.

A calculation and measurement of impulse by the T138E57 projectile when passing through a wood bursting screen is presented and a firing program to check results is reported. Other investigations involving the role, in the malfunctions, of the various fuze system elements are discussed. Performance tests of the Fuze, PD, T222E4 were made and the data are given.

THE WEAPON SYSTEM

Four Firestone BAT weapon systems, each condisting of, Ti37El rifle, Tl52E2 mount, T46 spotting rifle, M62E4 direct sight and Tl83 sight mount, are mounted on M38 1/4-ton trucks and in use at the following locations:

AND STREET OF THE PARTY OF THE

Unit 1. Fort Benning, Georgia, for informal evaluation tests of weapon and ammunition.

Units 2 and 4. Erie Ordnance Depot for Firestone weapon and ammunition studies.

Unit 3. Aberdeen Proving Ground for ammunition evaluation.

Four additional BAT weapon systems are being manufactured. These systems will consist of T137E2 rifles, T152E4

mounts, T46 spotting rifles, T183 direct sight mounts, M62E4 direct sights and modified M3Al indirect sights. Scheduled completion of these four systems is as follows:

Unit 5. July 15, 1952 Unit 6. July 30, 1952 Units 7 and 8. Sept. 15, 1952

The T137E2 rifle (Units 5, 6, 7 and 8) differs from the T137E1 in that it incorporates the M27 breech mechanism and a barrel 105 in. long. The T152E4 mount incorporates the following modifications: (1) firing buttons are located in the handwheel knobs instead of in the wheel center (See Fig. 1), (2) positive leg locks, (3) lock for keeping mount in free traverse and (4) mount for the modified M3A1 indirect sight. (See Fig. 2).

Fig. 1. Redesigned Firing Control.

Fig. 2. Mount for Modified M3A! Indirect Sight.

New Developments

A rubber shock pad is being designed and will be manufactured for the direct sight. When completed, vibration tests are to be made.

A recoil mount for the spotting rifle has been discussed with Springfield Armory and it is concluded that such a mount would seriously affect the operation of this type of rifle; therefore, no further work is contemplated on such a mount.

A major caliber mount to be made of aluminum is in the preliminary design stage. It is believed that sufficient rigidity can be obtained in a mount weighing only 90 pounds.

Sighting System

Although it is intended that the T137 weapon system will include both a direct and an indirect sight, the weapon assemblies produced to date have not included an indirect sight.

Direct Sight

Frankford Arsenal has reported (Report No. R-1068) that the telescope mounts, T183, which have been subjected to extended firing programs have developed a boresight backlash of the order of 0.5 mil and have attributed the difficulty to the brinelling of the protective surface finishes used on internal parts. Consequently all T183 direct sight mounts have been recalled for removal of the protective finish, general reconditioning, and installation of a new molded-type head rest.

One direct sight, mount No. 12, telescope M62E4 No. 18009, was shipped to Frankford June 28, 1952. The remaining three sights will be returned for processing as rapidly as circumstances permit.

Indirect Sight

The following indirect sights have been received from Frankford Arsenal:

Mount M3ALEI	Telescope M62	Adapter M9
#2	#286	#HO1641
#7389	3490	#4612
#2438	7883	#1379
#7449	4735	No Serial No.
#7446	8392	#HO2199

Indirect sight brackets are being manufactured. A sketch of the proposed mounting bracket is shown in Fig. 2.

Spotting Rifle

(Tests at Erie Ordnance Depot)

The accuracy of the spotting rifle T46 No. I has been measured using the spotting cartridges T175 and T176. The T175 was designed by Frankford Arsenal and has an air gap fuze; the T176 was designed by Winchester Repeating Arms Company and is of the 'differential crimp' type. The spotting rifle was mounted on a T152E2 mount. The target, a homogeneous armor plate 107 in. wide by $137 \frac{1}{2}$ in. high by 3/4 in. thick, was located at a range of 1030 yards. The optical axis of the sight (M62E4-T183) and the rifle boresight were adjusted to intersect at the center of the target. Tracer cartridges, T177, were employed to assist in ranging in on the target.

No difficulty was experienced in maintaining rifle and sight alignment or in chambering any of the cartridges, but 22 of the 53 cartridges fired failed to eject properly from the chamber. The difficulty was found to be caused by a bent extractor spring.

T175 Spotting Cartridge

(Tests at Erie Ordnance Depot)

Fifteen rounds were fired for accuracy and nine for determination of velocity. The accuracy rounds all struck the target

and functioned by giving a plainly visible flash of light and puff of smoke. The V.P.E. was \pm .27 mil; the H.P.E. was \pm .17 mil.

The nine velocity rounds functioned on the shorting screen (two layers of lead foil separated by heavy kraft paper), thereby demonstrating the sensitivity of the bullet, but casting some uncertainty upon the reliability of the measurements which showed the average instrumental velocity to be 1828 ft/sec at a distance of 79.3 ft. from the muzzle.

The firing record is shown in Table I.

T176 Spotting Cartridge

(Tests at Erie Ordnance Depot)

Fourteen T176 cartridges were fired for accuracy and five for velocity determination. All of the fourteen accuracy rounds struck the target, with visible light and smoke, and showed a V.P.E. of \pm . 26 mil and a H.P.E. of \pm . 46 mil.

The average instrumental velocity of the five velocity rounds was 1868 ft/sec at a distance of 80.4 ft. from the muzzle. This average velocity is in general agreement with previous tests with ammunition from the same lot, using the same rifle.

The firing record is shown in Table II.

Future Program

- 1. Evaluate the design changes in T137E2 rifle and T152E4 mount.
- 2. Continue trajectory-matching studies of spotting and major caliber ammunition.
- 3. Stress analysis studies of the T152 E2 mount, using strain gages, have been initiated and will be continued.
- 4. Complete design study of an aluminum mount.
- 5. Start design layouts for semiautomatic rifles.
- 6. Continue study of rifle design using annular ring of propellent.

7-176 Fathi, 126 7-176 Gathi, 126	126 126 126 126 126 126 126 126 126 126
7-175 Godting 126 2646 41.43 426.00 4.70 4.84	7-175 Governing 126
761	126
Stated - Miles	126
Continued In Superior	

Table I (Cont.) Accuracy Firing Data 146 Spotting Rifle, 7175 Spotting Cartridge

Date Lune 23. 1952 Program Sugarlamentary III	TEST GUN Model 746 No. / Type 420 cativer Spetting Rifle. Lingth of Tube 42 iz. Ammunitien Sharpe - 75° Tailst of Rifling 1-12. Ambient - 65° Sighting Equipment 2462 E. 66°.		Corrected to center of torget from 1000 yd.	ballistic reficie setting of top of torget. Top Corrected to 24.46	mitsV,+t-43mile H	Wind Chamber Muzzie Vidocity Elev. Azimuth Position of Hit Corrected Position Bourrelet Clears	free instr. Actual (mile) (mile) Vert. Horiz, Front Reor Front Reor	8646 +143 +1801 +40.50 +.87 +1.09	20.46 +1.48 +2.00 +07 +.78 " " " " " " " " " " " " " " " " " " "	2446 +1.45 +16.56 +21.00 +.45	2006 -1.45 +1.881 +1.85 +.87 +.47 " " " " " ")	1766 - \ Fired for velocity			Sporting derings (Components of 1/17 Auge Cartrage Notes:		- TIMO RIA-35 Observing Buildt - ThopE3 Tracer Cident point on the 1030 yard target.	2.7	1901 flatter Nois) Muzzle Velocity - 1827HS and hand loaded into chome	Dasi. Pressure - 40 600 pag (pieze) not 4/10 wed to slam hame but was eased	Lot - FAX -50 - 1675 a/034	Dotad - Feb 1962		relocity tomoth Firestone losming a velocity to match Frankford beadme lose during fring and permitted	Assens 105 mm BAT TIBEIS round. play in the vertees thene	4. Couse for Housing eject	ctor spring	5. Wind Varied from 6-12 mph. and from 16-70		
256 185 1952	JN 6. No. 1 126 to Spottin Ube 22. in Ing 1-12.	(apuo	if from 1000 yd.	top of torget. Top			٦		\neg						- 1	1	175 Dung	- TASPES T.	- WRA No. 2	Velog. 74 - 1	0 - 40 600 P	0	-			1 1					
Date alua	TEST GL Model Z 4 1 Type 52 2 Length of Tr Telet of Riff	Jore Dio. (L	ter of torge	er #1.88 m			_									"Lead"	Case - F	Bullet.	Primer	Muzzle	Pressure	1	Dotod	Remar		Arse					-
	27 - 28		led to cent	or reficie		\Box	-					1	١	1	,	200															
	Shape		Correct	Paris Paris		Muzzle	- 1					I	1766	1811		•				(7)];
	erarues nunitien bient -			-	т	Chamber										Mertus				- 1				ed to a	1						7 - 77 - 77 .
	TEWP Ami Ami	1			\$5.0.	Wind Vel. B Dir.											Fe 2888	5 Observing	7	1901 4/15.	pse.	2		dges land	. Tinesta	.pana					7. 70 1 =/
	Jacing			200	+	Powder Charge	(grains)	72/	126	126	126	126	126	126	,	1/76	200	E-14-3	1 No.26	-	000 35-	FAX-50-1786	1 1952	astri	mete	ES7 4					78 7 = /1
	LE Lage & 7			DISTAN	201.19	Type of Builet		Sperting	Spetting	:	•	•		•		22			WEA	ا.ه	à	FAX-	1 - May	- KS -	ity to	TABLEST					
	PROJECTILE Model ZIZS & TIV7 Type Sparting & Trucing Weight (Nominal) C.G. Location	Special Features.		SCREEN DISTANCES		Type of			7-175	7-175	1-175	7-175	7-175	7-175	-	Components	Cose	Bullet	Prima	Muzzh	Press	tot -	Puted	Remorks -	reloc	BAT	* *	í,			
	Model Type	2005				Round No.		2450-25	72 - 542	2452-27	24.20 - 2.0	24.34 - 29	24.25 - 50	2434-31	,	30.5														_	

Table II Accuracy Firing Data 146 Spotting Rifle, 7176 Spotting Cartridge Homogeneous Armor Target at 1030-yard Range

	. H						Date June	Date - June 18,1952		Program	Supple //	Program Sugalamentery VIII Pecuracy Program Against Armor Program	1 to		-	2	4
Model ZZZZ Ca	PROJECTILE Nodel <i>Iliza Cartridge</i>	9600				- 2)	S H	Model 746 No. /						Range	MISCELLANEOUS DATA Range 1030 4 ds.	Eous 6.	DATA
Type Sportting	trios		Bml	Ambient Temp. = 16°F	. = 76	_	anoth of	Length of Tube 32./a.	19.					Propellant			
Weight (Nominal).	minal)						wist of A	Twist of Rifling 4-72	2	;	;			1,000		q	Charge Wf.
Bourrelet Dia (Nom.)	Die (Mom.)		i			U)	Briting	Sighting Equipment T.B.3. Stabl mount //6.12	T.183.5	ow Jak	unt No.	V		Proof D	Proof Director ME Tau His	METO	- HIG
Special Fe	Special Features Manual Muzzle	M. Jamie	waste				ore Dia.	Bore Dia. (Lands)	1	1					ì		
TITI	tracer	cortri	1065. MV -	1087 4/5 (1	Jemine!	_	Scre	SCREEN DISTAINSES	W. C.3	46	8	1/6/6	Velocities ,	Deerv	R With	Shore	Merven E . Loury E . CLARK.
100	(30)	s range	ware used as range finders. Lot PA-x80-1495	ot PA-X5	5491-0						Corrected mils V:0	Corrected to 24.07		Bo. + ft	from t	he muzz	ore at 80.4 ft from the muzzle. All rounds functioned on impact
No. Type o	Type of Type of	Purpose	Wind	Chamber	-		٦,	Azimuth	Position of Hit	H 102	Correcte	Corrected Position	Bourrelet	5 <u>1</u>	Clearance	306	Gun Functioning
Cartrid	Cartridge Bullet		Vel. de Dir.	Pressure	_	yards	S E	(mils)	Vert	Horiz.	Vert	Horiz	Front	Regi	Front	Rear	
2457 -1 TITE		Spetting Velocity	5-4"		1868		\vdash						Г				
2488-2 TITE		,	5 -8.		1882		4										
2439-3 7176	. 9	•	6-5.		1864												
2440-4 7177	7 Tracer	Renging				1000	24.07	0									
2441 -S T177		:	_			006	21.13	0									Failed to extract
2442-6 7177		,				1000	23.32	0									
2443 -7 7176		Spotting Accuracy				1000	23.32	0	-43	+8	14	+.22					
2445 -8 7176						1000	24.07	0	- 36	+11	97	08.+					
2006 -9 TITE	,	;						0	8*+	+26	+1.30	+. 70					
2447-10 T/76								0	+26 1/2	+43	+.72	9//+					
2448 -11 TITL	. 9	:	-					-1.45	***	1	6114	+1.48					Failed to extract
2449-12 T176		:	~-			.:	:		18+	- 7	41.00	+1.26					
2450-13 7176		:	×						*6 +	2-	4.92	+1.26					
2451 -14 T176			ν.			,			+28%	-71/2	+.77	+1.24					
2462-16 TITE		Velocity	L		1871												Failed to extract
2463-16 7176	. 9	Accuracy					2		+36	-20	+.86	16.4					
2455-17 T176	. 9	•	, 0				•	:	723%	6 +	4.64	+1.65					Failed to extract
2456-18 TITL	. 7		7						61+	*-	15.4	+1.34					
29 57 -19 TITE		,				:	-1	,	-22	-12 %	59	11.14					
2458 -20 T/76	:								+3	- 16	4.08	+1:04		Towet Size	5,xc	107 in.	107 in wide x 137 12 in high
2469-21 T176	,	:					,	-	+27%	+3	+.74	+155		×	\$ in thick	hick ((Ormor plete)
2460-22 7/76		Velocity	-		1866		;										
				Overage	Overage 1868 1/s		Correc	ted to	vertical	center	of targ	Corrected to vertical center of target from 1000 yd. bellistic fetale	000 yd be	11.stic +	str/e		
							Sateli	setting of a point 140 mile		10		1	***		F		

Conter of Impact <u>Variation</u>; <u>Harington</u>; <u>A Flevetion</u> is given in Probable Error-Vertical <u>J. Ste mil</u>, <u>T. Flevetion</u> in mils frobable Error-Horizontal <u>Ste mil</u>

T138 PROJECTILE

Performance Studies Using T138E57 - HEAT Projectiles

The Twenty-First and Twenty-Second Progress Reports presented data on the functioning of one hundred and ten T138E57 HEAT projectiles and nineteen T264 WP projectiles. Approximately 50% of these projectiles detonated properly upon impact with the target. The search for the cause or causes for the malfunctions has continued.

The higher proportion of functioning rounds noted when the rounds are fired without tee caps against a 2-inch pine screen (Twenty-Second Progress Report) suggests that a tee cap of lighter construction might increase the percentage of functioning rounds. Thirty-one T138 E57 HEAT projectiles, embodying various modifications of the nose element mounting and tee cap have therefore been tested. The test data are shown in Table III.

0

In each of the tests, described in the following paragraphs, the T137El No. 4 rifle and mount were used for firing live loaded T138E57 HEAT projectiles of Lot No. PA-E 9588. The target consisted of a 2-inch thick pine board screen at zero degrees obliquity and located 400 ft. from the gun. In previous tests the projectiles of this ammunition lot have shown one function out of ten when fired with tee caps, against 60° armor and eight out of ten when fired without tee caps against a normal 2-inch pine screen.

Test 1 Evaluation of Compression Washers (Figure 3)

Six rounds, modified by inserting a flat spring compression washer (compressed height .010 in., free height .030

in.minimum) between the crystal and the tee were fired against a bursting screen. In addition to the compression washer, other modifications were: wrapping two layers of cellulose tape around the outside of the crystal, and replacing the cambric insulator by a felt pad placed between the terminal and the tee cap. Three rounds functioned on the bursting screen and three rounds impact-detonated on the steel back-up plate. This performance is much better than that of projectiles without modification but much poorer than the performance of those fired without tee caps. The firing record is given in Table III.

Fig. 3. Tee Cap and Nose Element. With Compression Washer.

Test 2 Thin-Waii Tee Caps With Reduced Clearance (Figure 4)

Ten rounds having tee caps as shown in Fig. 4 were tested. Nine rounds functioned on the screen and one round impact-detonated on the steel plate.

Five rounds having caps as above, but with the felt washer of Fig. 3 substituted for the cambric insulating washer, were

fired. Four of these rounds functioned on the bursting screen, the other round impact-detonated on the steel back-up plate. Table III is the firing record for these rounds.

This record of thirteen functions out of fifteen rounds is at least as good as previously obtained by firing without tee caps and is regarded as satisfactory.

C

0

0

Fig. 4. Tee Cap and Nose Element.
Thin-Wall Cap, Raducad Clearance.

Test 3 Thin-Wall Tee Caps With Normal Clearance (Figure 5)

Five rounds having tee caps as shown in Fig. 5 were fired through the bursting screen. Four of the five rounds func-

Fig. 5. Tee Cap and Nose Element. Thin-Wall Cap, Normal Clearance.

tioned on the screen and the fifth round impact-detonated against the steel plate. The firing record is found in Table III.

This performance record is similar to that of Test 2 and indicates that the thin cap, not the reduced clearance, is responsible for the improved performance.

Test 4 Heavy-Wall Tee Caps With Reduced Clearance (Figure 6)

Five rounds having tee caps with normal wall thickness (.100 in.) and a clearance of .010 in. between crystal and cap (Fig. 6) were fired through a bursting screen. Two rounds functioned on the screen and a third functioned on the steel plate. The two remaining rounds impact-detonated on the steel plate. The firing data is given in Table III.

These results are much better than were obtained in earlier tests with heavy-wall caps and with a greater clearance.

Fig. 6. Tee Cap and Nose Element. Heavy-Wall Cap, Reduced Clearance.

Functioning Test Data Various Modifications of T138E57 Projectile 400-ft. Range, Bursting Screen Table III

Date 6-12-52 TEST GUN

Type Lat Lote 96884 Base Element Lot PA-E0053 Weight (Nominal) 174 16.

Model TUBBEST Live PROJECTILE

Special Features. See information below for each test. C.G. Location 5.25 in from base Bourrelet Dia Cham. 4. 452 in.

Progrem - detectaine fuze functioning of TISB EST HEAT rounds.

Sighting Equipment <u>MAZEE with Trasmount</u> Model TIEZE No. 4
Type LOG may Recollers Rifle. ength of Tube 25 in. Tates of Riffling 4-200

Bore Dia. (Lands)_

Type 2462.42 we budge in Champe Wt. 716.1402. Namp 400 ft. Wood Burster S S in Stad withers plate. Propellant MISCELLANEOUS DATA

Proof Director Mad Frankoan

Observen C.M. Cox

- 14		i de	Parte	Wind	Chamber	Muzzie Veloci	Mochy	7	Distance -	Depth of	Clearance	Clearance	Dist Cyalo	Tee Cop	Tee Can	Resistance	Sec. Sec.	
NOWNO NO.	Flight		Charge (15 oz)	Val. & Dir.	Pressure	Inetr.	91		Top of Cristo to the Shildr.	Cap	Crystol to After Ins Cap(Orig.) Washer	After pet- oil, of Wosher	Crystol to After Inst- 10 les Share Cap(Orig.) Vasher LieingWish:		Fore	Picke of Cystel Old Cop	Old Cop	Functioning
TEST (Cos.pres	sion Was	her Ben	Cos.pression Wather Behilpen Crystal &	Tee Fell Pod Inquistor	Pod ins	ا ما	Barneen Te	Se Cap and Crystal Cearer Plate	rystal Cer	ther Plate.	Tope Ar	Tope Areund Crystal.	of See Fig.3	6.3			
398		17.4	7-14				1664		.637	. 472	.085	002	-676	.100	.126	135,000		Good
783			:				699/		.636	. 673	-038	003	229.	00/	.126	170,000		Low Order
116			1				(643		***	.473	.024	002	.675	001	.125	136,000		Good
850		•	,				1660		.487	.673	980.	1.001	229.	001.	.125	136,000		Non-Function
868			•				6771	<u> </u>	989.	.673	.035	F.002	.671 405	00/	.13.6	140,000		Non-Function
764		:		7			1991	-	.437	.472	.035	008	9/9.	%/.	.126	190,000		Good
TEST 2	Thin Wo	" Tee Ce	ps. Rede	Thin Woll Tee Caps. Reduced Clearance. See Fig.	ce. See Fid	•												
266		+21	2-14				4571		489.	669.	010.			\$40.	+2/-	1.8000		Good
772			,				16.57		187	747.	600.			.049	./23	149000		Good
808	1		:				6591		.645	.658	610.			8.	62/:	170,000		Good
438		*	•				7656		.449	.660	010.			940	124	120,000		Good
818		:	;				1653		13	199	010			aso.	./23	169.00		Good
966			:				16.57		638	640	010.			.06/	.725	172,000		Good
878		٠	:				477/		.40	.650	0/0			290	124	155,000		Good
4.87	1.4	3	:				1660		.636	.645	.00			150.	.12.5	145,000		Good
457			:				1655	-	.644	.654	0/0			080	./26	150,000		Low Order
439			:				1650		.637	648	110.			نصحه	126	122,000		Good
	Some or		P#12) EL	Aboverlest 2) Except Fell Injuisting Pay Added	wloting Po	_												
184		17.4	41-1				1654		7835	.645	010			aso	.125	148,000	.673	Good
775		•	:				1657		787.	959	0/0			.049	.125	170,000	27.4.	Good
982		•					1660		.644	100	010			150.	125	137,000	673	Good
200		"					577/		.636	.646	010.			200	756	oas km.	.672	Low Grober
888		:	,				1	-	≠89 .	***	0/0			000	./26"	140,000	47.3	General

Center of Impact
Probable Error-Vertical ____
Probable Error-Horizontal_

Functioning Test Data Various Medifications of 7138E57 Projectile Table III (Cont.)

Date 6-12-52

Program <u>Ta determ</u>ine fuze functioning of Ti38EST HEAT rounds.

Type Lat PA-E 2580 & Base Element Lot PA-E 0050

Model T138 ESZ Live PROJECTILE

Special Features See latermation below for each test. C.G. Location 5.25 in from bese. Bourrelet Dia (Nam.) 4.132 in. Weight (Nominal) 12416.

Model <u>71,37.E</u>/ No.4 Type <u>105.ma</u>r. Feco.//es R: f/e. Twis, of Ritling 4-200 Length of Tube 95 10. TEST GUN

Sighting Equipment ALLEF weth 7183 Mount

Bore Dia. (Lands)__

Type MIGDIE Web GASIGL Change W. 216 1474. Range Ago ft. Wood Bursting Screen MISCELLANEOUS DATA Propellant

Proof Director Mak Finns GAN

Observers C. M. Cox

	Functioning		Good	Low Order	Good	Good	Good		Low Order	Complete on Steel Diete	Good on wood. Solit Let	No tunction on Wood	Good on Wood.										W (3.
-							_	-								-	-	_	_				Singer - CM P.
Patronce	to Ground		170,000	166,000	135,000	000 89/	132.000		160,000	146,000	168.000	160,000	164000	-	-					-	-		3
ı	-		860	./23	./05	104	+01		125 nom 160,000		,		:										
Depth of Tee Cop Tee Cop	Wall Foce Thickness Thickness		640	640.	290	.047	050		.100 nom.	:	,		:										
Depth of	දී		.683	629	.673	67.4	472		.647	643	**7	249	197										
Clearance	Crystal to Cap		200	¥\$0.	₩.034	.035	200.		0/0.	010	010.	010.	010-				*						
г			.673	673.	673	673	474		673	.673	673	37.9.	.672										
Distance-Top Depth of	of Crystoffo Original Tee Shild'r Cop		.646	645	689	.637	456	-	1697	633	484	.632	149.									-	
E 0														-							-		
/elocity	Actual		1,664	1654	1658	1663	į		1650	1646	1644	1654	1									+	
Muzzle Veloc	Inetr.	5.6																					
Chamber	Pressure	ance. See F						rance															
Wi.d	Vel. & Dir.	Thin-Wall Tee Caps With Wormal Charpnes. See Fig. 5						Heavy Whil Tee Caps With Reduced Cledrance															
Powder	Charge (\$ cx)	S WITH A	7-14	:	:	:		ps With	7-14	•	ı	ı	:										
ē	_	Tee Co	17.4	1	,	:	:	II Tee C	17.4	:													
Time of		Thin-Wol						Heavy W.						1									
Round No Time of		1EST 3	774	000	346	833	829	TEST 4	788	972	402	808	8/2									-	

Probable Error - Verticai __ Probable Error - Horizontoi. Center of Impact

Summary

The data for the various modifications of Lot PA-E 9588 that have been tested are shown below in Table IV.

The results of the functioning tests indicate that:

1. A reduced wall thickness of the tee

cap increased the proportion of functioning rounds.

2. A reduction in the clearance between the crystal and the tee cap appears helpful when a heavy-wall cap is used, but is not, of itself, sufficient to solve the problem of malfunctions.

Table IV
Summary of Functioning Tests
Lot PA-E 9588

Modification	Fired	Functioned	Target
Heavy-wall cap, .030 in.	0		
clearance	10	1	60° homogeneous armor
No tee cap	10	8	2-in. pine screen
Heavy-wall cap, comp.	3		5- S
spring, felt insulator	6	3	11
Thin-wall cap, .010 in.			* *
clearance	10	9	11 **
Thin-wall cap, .010 in. clearance, felt			
insulator	5	4	. 11
Thin-wall cap, .035 in.			15
clearance	5	4	11
Heavy-wall cap, .010 in.			
clearance	5	2* (3)	"

*A third round functioned on a steel witness plate placed behind the wooden screen

T138E57 Projectiles At 2000-yard Range

The Eighteenth and Nineteenth Progress Reports presented data for the performance of the T138E57 projectile when fired at a 1500-yard range. This report presents data for two T138E57 accuracy programs fired at a range of 2044 yards. The two programs were fired at Erie Ordnance Depot from two different T137El rifles but the same T152 E3 mount was used in both cases. Complete cartridges as shown in Fig. 7 were used.

Program I

Table V is a copy of the firing record for the first twenty-eight T138E57 inert rounds, fired as received from Picatinny Arsenal, at an 18 ft. by 18 ft. target placed 2044 yards from the gun. The first six rounds were used in "ranging in" on the target. Thirteen of the remaining twenty-two rounds hit the target. The probable

errors for the thirteen hits were, V.P.E. = ±.67 mil and H.P.E. = ±.63 mil.

The observers reported that three of the nine rounds which missed the target flew well. The remaining six appeared to become somewhat unstable after passing the peak of the trajectory.

Program II

Table VI is a copy of the firing record for the second group of twenty-eight rounds. In this program the target was 24 ft. by 24 ft. The first six rounds were used in "ranging in" on the target. Seventeen of the twenty-two rounds fired after getting "on the target" hit the target with a V.P.E.=±.76 mil and H.P.E.=±.83 mil. The measured yaw at the target for all hits was between 1° and 14°. The observers reported that one of the five misses appeared to have good flight but passed about 1 mil right of the target. The other four misses appeared to precess and struck short and left of the target.

rig. 7. Complete TI38 E57 HEAT Certridge.

Future Program

Tests to evaluate the various possible causes of malfunctions of the T222 E3 fuze assemblies will continue.

	DATA	Propellant PA 20239 Type MLLAL web-0326 LitChage W. Libe-1993. Prime — MST Norm-Up Runnls Proof Director Z. Accuracy Tourns	Observen D. Miller, C.M.Cax, M. Tochig	omils asimuth.	Observetions		and	grad	Good flight chank teristics.	Good flight characteristics.		hit velocity screen.	cherocteristics.	bserred in flight.	choracteristics		flight characteristics								flight characteristics.			Flight choractaristics.	•		Signed - W. Horrey.
	EOUS	web-23	iller, (on, on	a)	Rear	20 20	UP R.	Flight	11942		11.5	fliant	bserv	£11.040		Liant	١.	,	,					Flight			246:13	1		ned
	LLAN	MONE webs	T. W.	=/anst/	Clearance	Front	Worm Up Round	Worm Up Round	Door	2000		Round	Good	Not 0	Good		6000		:		:				Good			Good		:	818
	Program 2,0,33C AZB 269-0 Range 2004 water	Tube 2/ 8/28C Mount Tiss E3 Propellant PASC299 Sight Mount Tiss"/2 Type MCM webs Sight Mount Tiss"/2 Type McMare Proof Director <u>PLACE</u>	Observer	Corrected to 68.6 mils clamstion,	Bourrelet	Front Rear		1)	9		K		,																	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nov.		Correc	sifion	-									+/ 3C		12.16	+2.11	+2.78		4.67				151+			+ 58	+.15	+86	
Program 7-138 BB	2044 Hd. Accuracy Frogram Chember 2.8133 Breech 22.8261	Tube Mount Signt		ret	Corrected Position of Hit-mils	÷.					-		-		-1.29 +		96 -	+ ++++	-2.22 +		- 01-			-	64			1.57		-2.26 +	
77-7 W	ž.	adopt.		is top left of target	કર્જુ		_				-		4	_	-		Н	_	_		-			-				-		Н	200
Progn	8	bour To	[o left	Position of Hit (inches)	Horiz.	,				_	-		4	4/00		+154	+166	+204		++5				1114			+43	\vdash	+136/2	on Next Page
•		200	1.6.2.		Position (177	Vert.									7,06-		406-	+ 32	-251		4-				29-			- /30	-177	3,001-	
Date:	TEST GUN Model ZAZZE/	Length of Tube 75 /m. Tellst of Ritling / -200 74° Sighting Equipment 462 Elbau Telescope 77° Bose Dia 11 and at 460 model	Screen Vierances	Zero Zero	Azimuth	(mils)	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	914	+/3	0	0	0	0	0	0	+10	Continued
2	TEST GUN	Length C Twist of Sighting			Elev.	(mils)	1	1	8.0	61.5	2.99	66.2	2.99	71.0	789	18.6	787	686	674	1.89	68.6	929	68.6	68.6	484	+87	+89	684	+89	68.4	ပ
			. 8		Hocity	Actual	;	7652	/6.73	1683	1678	1683	14.78	1683	8891	1683	1678	1688	1683	1688	1678	889/	1683	1678	1673	1668	1678	1678	1673	1678	
	Mostine Temperature Minimum 10* Meximum 11* Present 10*	- 3 - A A		. 406	2	Instr.	1	16/5	1650	1660	1665	1660	1666	1660	1665	1640	1656	999/	1660	1665	1655	999/	1660	1655	1650	1646	9991	1655	_	1665	
	16mp6 14m 17m 17m	LOADING ROOM TEMP. AMMO. STORAGE TEMP. AMBIENT TEMPERATUR. 10.45.AM. 713" E. B. 11.AM. 116. G. B.		05 20	Wind	-	١	1	45	6.6	¥	4.9	9.0	/,9	£.5	1.9	5.8	3.9	2.9	5.0	75	4.9	8.7	3.8	8.7	87-89-	26	4.9	80	6.8	
	King Temp Minimum Meximum Present	401NG ROOM 140. STORAG 104.N 71° 10.45AM 71° 11.4M. 70		1 mil		뉙	1	4	5 20	0 45	5 64	5 30	21/2	36	2.5	3.6	7 4.2	5.5	5 42	5.0	-24	8 - 6	5.0	21 0	5.2	2 -6.6	30	*/ S	00	91/ 2	
	Maor			7.8.5 in " 1 mil of 2044 yes.	Wind Vel & Dir		1	١	5 - 205	6 - 280	5-245	7 - 205	4-195	7-210	5-210	7-210	7-215	7-230	5-235	7-225	091 - 8	5-170	10-210	4- 200	10 - 210	7-285	8-200	2-162	081-8	961-9	
		7.65. Dembos	900		Powder	(16 - 02) Imph	1-14	2-14	2-14	2-14	7-16	2-10	7-1	7-14	¥-6	2-14	4-14	2-14	2.7	4-6	2-14	21-14	7-14	2-14	1-14	1-14	11-6	7-40	4-6	4-6	poct
	ш	101) /Z.c. 53/ in.£ Nom.l 46	ting 6			, elon	17.34	17.34					¥0,	3			20	١	1	6					7			29	5	54	Center of Impact.
	PROJECTILE Model 7.458	Type <u>E-5-7</u> Weight (Nominal) <u>/2-5-/6s.</u> C.G. Location 5:3/ in from base Bourrelet Dio(<u>Nom.) 4./39 -79</u>	Special Features WRA 360 Rocating Band			OL	5/44	3/49							1			!	ļ		1469	14-61	14:73	14.78	14.57	1488	6601	1466	1460	2661	5
	PRO	Type Weigi C.G. L. Bourn	Ded y		Round No.		2297 - 4	8688	1- 6622	2300 -2	2301 - 3	2302 -4	2303-5	2304-6	2305-7	2306-8	2307-9	2308-10	11- 6082	2310-12	5311-18	2312-14	2313 -16	2314-16	23/5 -17	23/6 -18		2318-20		25-0252	

	MISCELLANEOUS DATA	Propellant PA 302.39 Type Medic web. 6836 in. Change Wit. 11 / 162.140.25. Primer Nest Newmer's Rounds Proof Director Place & Councey Rounds	Observen De Milac C. M. Cat. M. Tea tris.	ion, Omits aximuth.		Observations	flight characteristics	ž	•	*	•				ient into on errotic	-	003		7		not oppear to be as smooth		and went right		pert of range.					7		
	ANEOUS	Propellant PA 30239 Type MeME web.as Proof Director Peace	2. Miller	Corrected to 68.6mils absention,	Clearance	Rear		•	•	,	:				Tieht we	_	-				did not		down		lotter	last quarter			$\frac{1}{1}$	_[3	Ė	
	MISCELLANE(pellant / Type 4/22.	Herven Z	68.600	5	Front	Good	*	•	•	:				about 1000 yands the projectile fli	dropoed of	191 mat 100	possing tra	ns, then	_	LIGHT.		broke		7870	over ,			-	Siened		
	₹ 8	בֿ בֿ	ð	ected t	Bourrelet	Reg			-						Proie	othe de	2	_			procession but flight	۲,	4at it		.ce06/0	observed over			<u> </u>	<u>)</u>	<u> </u>	1
	218133C 228 2698-8	Tube KIDISBC Nount TIBS "IE Sight Mount TIBS "IE IFF				F.			\downarrow						eds the	on finelly		ss ofter	\		. assion	" Flight.	except the		n notice						,	
7	6027 had	4.0128C 7.62E3 Yount 7.1		200	Corrected Position	Horiz.	\vdash		4	10	1		50		1000 40	4075535		prec	precessiond		-	9000			dession					: 		
Program 71.38 68	2044 Je. Accuracy Tragram Chamber 218133 Breech 228 2698	Nowat Sight / Sight /			Correcte	Vert.	-2.53		-6.9/	-2.7/	62		Nores			ine pr		ed to		of target.	No observed	normal	032	2	1 pred	wn	١ ١					
Program	*****	Toles.		is top left	of Hit	Horiz.	1814		+78	797	+86		MOLLE		After	climb	Smooth	Stort	Severa	of to	No ol	as n	Some	of t	Smal	Medi						-
N	9	a co	36 Ta		Position of Hit	Vert.	-208		-170	-636	. 9		OBSER	Round No	80		8	14		1+	15	-	7/		8/	61				300	1	
Date 5 1952	TEST GUN Wodel I 1822 E/	Longth of Tube <u>95.77.</u> Traist of Rithing <u>7-200.</u> Sighting Equipment <u>466. Elbour Z</u> olescope	77° Bore Dia. (Lende) 4.634 Tal. 75° Screen Distraces	Laro, Lora	Azimuth	(mile)	07+	0/+	11.0	410	110	41.0					e linges	propellent	ese of		Zeact)						t.					
Date	TEST GUN		Bore Di	7	Elev.	(mile)	187	487	9.00	_	147	787		Arsenal		-	d rayor	Y.	and b		(7263	120								9	Ke	
	ATURE	. 🦞 🕏	8:00 P.M. 75		Muzzle Velocity	Actual	1683			_	. 1688	1688		Resting			polyethylene and	on top	(lena)		Cuse (ce/ Co.		Š	i.		
	70.	5 70 00 7 6 10 10 10 10 10 10 10 10 10 10 10 10 10		Se	Muzzh	<u>i</u>	3 1660	1665	16.80	1655	1665	1665		b. Re			othy/e	placed	polyethy len		to		ą		>		Chem		- 1			. 1
	Macazine Temperatur Mirimum 70* Maximum 71*	Present 10. Loading Koom Tane 12. Rinning Streams Tane 16. Rinding Tanmer 12. 10:00 AM 11. III. 10 AM 12.	10:45AM, 75* 11:00A.M, 76*	****	Component	-	8.8 8.4	-1.0 2.8	29 91	1.0 4.7	0.0 0.0	2.6 4.3		assem bled	6			SK'S P.	~]	.	rimpe	4300	E 90.	00	-E 95.		trice!		Mon	11.	mi/	mil
	Mag	1	10.77	73.5 in = 1 mil of 2004 yds.	Wind	(16 02) (mak. dee)	501-9	· 1	7 - 210	$\overline{}$	081-6	5-210		- 1		•	sses with	rubber disks	outer liner		TISBEST type projectile crimped	MIO, MP USed	Lot PA-E 902.	Dummy Fure TROBET WAS	Ammunition Lot No. PA-E 9511		Hydroelectrical Chamical Co.	Oxido	C Johns Mannille	7.	Center of Impact V= 7.48 : N=7.02 Probable From Vertical 69 mil	Probable Error - Harizontol 63
		F / (65.	9 Bend	73.5	Powder		1-10	7-14	2-14	7-14	7-14	7-14		"plet	1	nsisted of:	prototype cases	Sponge c	charge between		e pro	Powder 74 30234	TBI used	20 7	n Los	(er:	81 % PEN	Iron	9% Celite]	apact	ror – Hari
	E.E.	mol)	tures <i>DPB 340</i> Rototing Bond		Proj.	Weight	3,5		2	1	,,	1		00 20	E 9511		proto		De 60	ectile	57 24	201	181	4 FE	uniti	Inst Filler:	819	10%	99		inter of I	abable Er
	PROJECTILE	Type <u>FSZ</u> Weight (Nominal) <u>ZS /65.</u> C.G. Location <i>SSJ in from base</i> . Bourrelet Dia(Nom.) 5.25 /70.	Special Features <i>DRB SLO</i> Rocating Bene		Proj.	¥o.	1462	5/+/	1436	1404	1460	1482		Rounds were completely	ot PA-E	Rounds C.	752	Three	char	proj	7/384	Pounde	Primer	Dumn	Amm	In		-		<u> </u>	ತ ಹಿ	ă.
	2 3	Type C. G. Bou	8,		Round No.		2561 - 25	2322 - 24	2323 - 25	25.24 - 26	2525-27	25.52		Row	7	Rou			83	***												

								Set A	Date 6-20-52	. 8	Program 7/18 88	78867	الہ							
	į	I		,		-	•	100			ž	1 2	2044 yd. Program.							
Ě	PROJECTILE	W L		COMPONENTS	ENTS:			IESI GUN	NOS						MISC	MISCELLANEOUS DATA	<u> </u>	DATA		
90	Model 7/30			40		A- 426 9324 -A	_	Model 7/375/	757		300	SCHEEN LOCATIONS		Rona 2044 uds	Roman	2000 40	نو			
	6.574			, K		0 2640	_	Type 4025	Type 105 mar for 0,1/ess	1/455		63.3	1	6.76 Des	16.					
Ž.	178 60 72	1		Ž			_	enath of	Length of Tube 26 12.	a.		98.25'	1	54.7/ FBS	La Propeil	A ABSTONELLAND THE BORSE OF THE PARTY OF	7 6520	1.000	ò	
Waix	Weight (Nominal) 175/65	nai) 774	<u> </u>		M62 -1		_	what of	Twist of Ritling 1-200	00			**		Ě	Type MIRME, we because in Charge Wt. 216-1502	m b-care	Lie Chan	F 77.2	6-150z
9.3	Location	£3/10.1	C.G. Location £2/10. from base		!		•	Inthina	Sighting Equipment Tutt sieht Courses Convert.	Till Sich	t (Summe	vs Ower	ent.							
Bor	rrelet Dic	1 3c	Bourrelet Dia (W -14/32 in.	١,				•		4					Proof (Proof Director E. Hurranda	Hure	MAK	1	
S	ziol Featu	ur. Am	Special Feature . Ranguartion :		T52 Shell Case.			Jore Die.	Bore Dia. (Lands) 522 10.	257	J					A .0				
					Tar polyethylans & rayon li	4000	5									CLARK BROWN O MILER	CARA BROWN O MILLER	O MILL	707	
		000	Ave. of a number of recordings jaten	٠	78/ primer.			Reference Points: Vertical - center	Conter			Corrected 70,75 mile	10: -0anter						!	
		3	Duncto	3		97	Mirele	8-	North Control - Control	Protetor		- 1	Comme	Rourrelet	•			2000		
Round No.	3 4	Ę	8	200	200g	SUC L	Vetocity		Azimuth	(inches)	3	S E	of Hit - mile	Diometer		ᆉ	ĺ.		Angle	
	į	Woles	(16 - 02)				_	(elim	(mile)	Vert	Horiz.	Vert.	Horiz.	Front	Regr	Powder	<u>.</u>			
2373-3449	522				(Strong)		1991	44,00	0			-				41/4	,	,	ı	
2374-Shy	521	17.40	:	1	:		199/		0			ı	1	ı		**	1/2	1	,	
2376-3407	523	17.46	-	07 4	S SHIPP S SHIPP	5.36	1231	70.76	**	missad	٧	8144	200	4.129	4129	6	**°	3.7	ı	
2376-2090	1	17.43		97-8	8	6.34	1731	:	*	W.S.	69	mis	560	4.150	4.129	70	1,00	3.8	1	
2577-36/6	525	17.46	:	27-6	:	5.34	1724	z	+6	4624	69-	+.87	87-	4.130	4.129	5	70	3.8	4.5	
2578-3020	217	17.42		9-60	:	5.33	1715	:	20	miss	,	mis	300	4.129	4.129	ي	70	1	1	
2379-304	5.28	17.44	:	7-46	:	€.3¢	1725	T	*6	miss	100	mis	missed	4.130	4130	8.3	,	4.0	1	
2580-30V	2//	17.49	:	7-47	•	5.36	1720	,	6.4	missed	100	mi	missed	4.129	4.129	الم		Ş	457	60.
2561-307	8.09	17.42		8 - 38		€.34	1722	,	+6	9/-	+80	-222	+1.09	4.130	4.129	510	24,		6.5	
2882-2095	6070	17.44	;	34-6	:	5.32	1723	7	+0-	Sim	3	mis	1.7	4.129	4.129	24.9	· 2	da.	1	5
1302-5962	9204	12.41		8-49		6:38	6161	:	46	98/-	+36	-1.88	444	4.130	4129	٦	2		1	7
2884-2042	5/4	17.45	:	8-44		6.38	1715	*	+6	-137	+8%	-1.86	+./2	4.128	4.128	24	*	-44	i	ره.
2565-3016	529	17.45	:	8-63		5.34	1717	:	+6	- 42	·6-	1.5-	20	4.130	4.129	5.4	*		77	5 A 2
2386-3000	5/9	17.48	•	64-11	2		1726		+5	+77	/8-	+1.05	-110	4.430	4.129	20	*	.0	0,	11.
2887-2095	5/8	17.42		11-45	:	5.32	1716	:	4.6	743%	-30	4.69	141-	4.129	4129	25	1.5	به	9.9	2
2888-3004	515	17.52	:	10 -31		6.34	17/5	:	+6	9//-	-77	-7.60	-206	4.130	4.130	**	'n		,	يو او
2889-2096	525	17.41	:	05-6	•	6.36	1716	;	T6 1/2	784	469	4.49	56	4.130	4.129	56	*	~	1674	رد
2340 -2044	5.2/	12.5	:	11 -80	1	6.04	/7/3	z	24	-88	9/-	-1.20	-7.20	4.129	4.430	5%	*	۵.	97	29 19 10 10
2397-3001	523	17.46	:	11-36	•	5.34	17/3	,	4-6	-67	-/27	91	-2.78	4.130	4./30	24	*	- 2	,	2/10/10/10/10
2392-3002	500	17.47	:	9-47	+	6.34	1707	:	+6%	-/4.2	+8-	867-	♦9. 2-	4.480	4/39	v	180	•	1	2,00
2343-2098		12.46	:	76-8	*	6:34	1702	27.26	7.94	-72	+8+	-1.48	28	4.129	4.129	,	M	• /	6.5	1
1105-362	1014	1521	,	8-39	•	€:3€	1709	2	7494	m/2500	200	miss	3	4.180	4.129	7.	*	-,	1	25
- 5086		17.59	£.	8-5/	9	6.33	9/1/	•	+6	19+	305+	4.19	4.52	4130	A. 130	ž	*	n	*	12 5 10 V
2396-2099	10xa	17.46	:	14-01	5	6.36	+141	r	200	+27 1/2	-87	٠. /5	9//-	4.150	4.129	26	,		27	
		Caster of h																1	1	

Table VI (Cont.) Accuracy Range Data 7138E57 Projectile At 2044-yard Range

A M	PROJECTILE Model 1/38	E LE		ć	Con PONENTS: Chamber - 228324-A Ring — 228349 B-A			Dete 6-20-		Hous R. fle.	इ. श।।	COREM TISBER 2044 YO Prayram SEREEN DISTANCES	- FE ST	j .		MISCELLANEOUS DATA	EOUS 1	DATA		
B C. W	Weight (N.minal). <u>(2.6. /ks.</u> C.G. Location <u>5.31 in, from</u> &ese Bourrelet Dia(<u>Mam.) 4.582 in</u>	521 in.	form bes	ا و	7.66 - 22 8 355 T 7.63 - 10 M.62 - 1 746 - 28	72 8364 /0 / 26		Length of Tube_ Twist of Rifling_ Sighting Equipm	Length of Tube <u>96 in</u> Twist of Ritling <u>/-200</u> Sighting Equipment <u>7.085 Sight</u> & Gunners Quedrant	700 200 700 700 700 700 700	**************************************	ress from	hant	3	Ĕ Ě	Type diadic web <u>esseria</u> Cl Proof Director <u>E Murfina M</u>	reb.0356	Sachone Tel	pelion to soze the transport of the tran	203
Š	Special Features	100	Bernaition:	:	Shell Con	· d Ray	- 5	Jore Dia.	Bore Dia. (Lands) 4.134	134 10.	ı				Observ	Cherren De Maces, Taueman.	MER TE	WEMAN	Car	
		Ave. of a number of readings taken be- fore 8 other firing	wimber of laken be- ir firing		3 ort unicellular pada TBI Primar 716-1502. PA 30239 powder	م مدءه		Reference Perfical Porizonto	Reference Points: Vertical — center Horizontal – center			Corrected to: 70.75 mils-center +5mils-center	to; p-center enter			Cree	CLARK, BROWN, O.MULTE	w, 0 w	ž	
Round No.		.		Wind Pind	۳.	0. f	Muzz le Velocity	Elex.	Azimuth	Position of Hit		Orrected Position of Hit - mils	Petton	Bourrelet Diameter	10 10	Depth		Zero	YOK	
	9	Weight	(10-41)	The De			Actual	(mile)	(mile)	Vert.	riz.	Vert.	Horiz.	Front	Rear	Powder	Pads	_	Angle (•)	
2347-3018		17.44	7-16	8 - 52	valor Haler	5.32	1715	71.25	+6	missed	,	missed	poo	4.490	4.130	5%	,	40	,	
2398-3006	3309	17.46		0 -45		5.34	1709		+6	miss	200	missed	pes	4.130	4.129	5%	26		1	
2349-2074	818	1743		11 -53	6	6.32	1709		+6	-181	89/-	-2.65	-2.28	4. 150	4.129	5	%	:	J	
2400-2081	1	17.46		6-46	*	5:33	1712	,	9+	miss	ed.	mis	pos	4.129	4.129	,	3/	•	1	
2401-7085	2/4	1740	,	9+- 11	•	5.34	1114	:	47	60+	69-	12.4	-2.94	4.130	4.128	25	*/		8	
2402 30VE	525	17.46	:	16 - 59	*	5.34	1705	:	+8	194	¥01+	4.33	-204	4.129	4.150	5.8	*		2/	
	1 1011	vinds o	100 001	unds are corrected to	o degraes	£10m	line	ه در دروه												
	2. All 1	spunds	consi	sted of	consisted of 7138EST	proje	projectiles	and	T52 5moll-	-holed C	dies and	were	losdedaso	pso unit.	4					
	3. Max.	temp.	· 7.6	Min. tem	temp. = 71 F, Min. temp. = 69°F.	Presen		D. = 71 P.	F. Powde.	Powder room	= 80°F	Ambien	Ambient = 60°	ı:				-		
	4 Opt,	x0 100	is and	mojor G	4 Optical axis and major deliber oxis were lined	is wer	= linea	in	15108044	6.							-		_	
	S. First	Six	Six rounds	used to	. line in or target, oil other	r torge	110'2	other	rounds	Fired A	fired for occaracy.	rocy.							-	
								1												
																	+	+		
										- The State of the		F							14	
													F					\dagger		
						2			X			<u></u>								
					}													+		
									1											
	٤	Mer of 1s	7	1.69:-=	Contact of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															
	3	: 5 :																		

CONFIDENTIAL T171 PROJECTILE

There were no firings conducted with the T171 projectile during the month of June, 1952.

T119 PROJECTILE

In planning for a pilot lot of 500 T119 projectiles, certain modifications were made to ease manufacturing difficulties. As described in the Twenty-First Progress Report attempts to obtain a cast housing of sufficient strength were unsuccessful. A modified housing, shown in Fig. 8, which could be easily machined from 24S-T4 aluminum bar, was then tested. The first housing tested failed in the gun. It was evident from an examination of the recovered fragments that the housing had collapsed at

the threaded end due to the high pressure of the propellent gases. An estimate was made of the stress at the point of failure, and a steel sleeve was designed to strengthen this region (see Fig. 9). The sleeve was pressed into the threadedend of the housing and four samples of the strengthened housing were fired successfully. The steel sleeve is therefore incorporated in this projectile design.

Table VII contains the data for the firing tests.

Future Program

- 1. Fire a combined accuracy and penetration program using an M27 rifle.
- 2. Continue the manufacture of a pilot lot of 500 Tl19 production-type projectiles.

The first sample of the forged aluminum fin, planned for use in these rounds has been received and appears to be satisfactory.

Fig. 8. Modified Housing for T119 Projectile.

HOUSING & SLEEVE ASS'Y

Fig. 9. Housing With Steel Sleeve.

Table VII Ranga Data, T119 Project

	MISCELLANEOUS DATA Range Becavary Box - tour you cords Propellant Type MICKE websassiachans w. Variable Lot No. Pasossy Proof Director E. Hureman	LUCAS, TOOMIG.
Ranga Data, T119 Projectile To Test Aluminum Housing DRC 412		13.57 Fried
	Blunt Nosa Blunt Nosa Body - DRC 341-4 Dum my Bose Evenent Plug - DR A 288-9 Housing - DRC 442-2 Housing - DRC 442-2 Fore - DRB 198-5(a) Free - DRB 198-5(a)	Inert Load - Moster
	PROJECTILE Model Z.1/9 Type Blust Mass for Recovery Weight (Nominal). Z.7/6 C.G. Location Bourrelet Dis Mass J.4/64 Ja. Special Features Massing	

		Projectile the 187 Aprilad in the ada. Alubinum bell marks were found in the our tube.	varia showed projectile servetion. Re-	1 %	t, but you pards indicated satisfactory		recovered. No failures occurred when housing shere was used.	1	were merelined from SAE offer start ber futice was borde, heat treated and	indusins The finished Steepes had Rectuell Andress of 37- 40 on the C scale.												
	Observations	10. A/uh.	The first you sold, of so fe from the muzzle	e of hove	escaped from recovery box and was last, but		1. No fail.		which we	Rockwell						.		P CAST	SUBSTITUTED FOR BETTER RECOVERY	tor axe		
		\$ 60 0	0 50	001/00	bex of	,	Covere		1/201	5 400								PLASTE	TER RE	1		Ì
	3	ti had in	d. o.r.	bowed	reovery		tiles re		3000	Sleeve						+		ED BY	OF BET	2		
		16 137 7	you as	arts s	from ,	ance.	projectiles		· SAE +	Stred								REPLAC	VITED F	LABLE		
		/octile	he first	overed p	sco ped	performance	Allother		ined fren	The fil				. 1	U	Ī		I COME & HIGH EXPLOSIVE REPLACED BY PLASTER CAST	SUBSTIT	WHICH WAS NOT AVAILABLE	NOTE HOUSING STRENG	
			7	0		'	114		moch	Siens.				HOUSING SLEEVE	्)	HIGH E	T NOSE	K WAS	MOON	
Sleeve	Thick-	1	no steer	\$\$0.	.065	160	.063	10.		diman				HOU		1		I CONE	2. BLUN	WHICH	N NOTE	L
Housing S	Length (In.)	1	200	.75	:	:	1	.246	E Cest	fine!												
Chember	Pressure	0188	8930	00101	10180	9406	3400	vermeter	steeres for these tests	to the finel d												
Recoil	inches-rear Pressure	,	2/48	1	1	1	1	(a) Piston prifice dismeter		Finished												4
Powder	Charge (bs on	21-6	1-14	0-0	8-0	0-8	0-8	Poston	Housing	then	1											
i		1	6521	1221	2521	1621	7621	(a) 7	4 (4)								e .					
Pote	Fired	20-11-9	,	25-77-9	G-13-12	-	,		-						ı							
	NORTH NO.	2327-5h	2928-137	2328 -168 6-16-52	2403 -168 6-23-62 1792	2404-171	2405-170															

PENETRATION STUDIES

Tests With 1171 Type Projectile Body

Table X of the Sixteenth Progress Report showed data obtained in tests at the Ballistics Research Laboratories at Aberdeen Proving Ground with the T171 type projectile (DRC193 body and a DRB83 nose ring as shown in Fig. 15 of the Sixteenth Progress Report). The poor performance of the round was attributed to the nose ring design. Accordingly ten rounds were prepared using DRC 193 bodies and DRB91 nose rings as shown in Fig. 10. As before, DRB2, 45°, .100in. wall copper cones were used. These rounds were loaded with Comp B at Ravenna Arseral and fired at Erie Ordnance Depot. The test data are presented in Table VIII.

The change in the ring resulted in a doubling of the penetration. The slight effect of increased standoff is of considerable interest.

Penetration type rounds with DRB2 cones normally have a penetration of 18.0 in. at a standoff of 7.5 in. and 22.0 in. at a standoff of 18.0 in. It would therefore appear that less standoff is required for optimum performance when the charge is tapered. Further tests are being considered.

Now that the potential penetration of the T171 type round has been established further accuracy tests would be appropriate.

Fig. 10. T171 Type Penetration Assemblies.

Table VIII
Penetration Data for T171 Type Projectile

Round No.	Lbs.Comp B	Rev /Sec	Standoff (inches)	Penetration inches M.S.	Max. Spread (in.)	Std. Deviation (in.)
P551	1.86	0	7.5	19.38		
P552	1.86	11	11	19.18		
P553	1.86	11	11	21.69		
P554	1.88	11	11	21.25		
P560	1.88	. 11	11	19.50		
				Avg. 20.20	2.51	±1.11
P555	1.86	0	18.0	18,56		
P556	1.86	11	111	20.00		
P557	1.88	11	11	22.69	ŤS - 1	
P558	1.88	66	11 12	21.56	1	
P559	1.88	11	11	20.94		
		ş)	1	Avg. 20.75	4.13	±1.58

Notes:

- 1. DRC193 bodies, DRB91 Nose Rings, DRA53 base plug.
- 2. Loaded at Ravenna Arsenal, BAT Lot No. 9, Comp B Holston Lot 3-126
- 3. Tested at Erie Ordnance Depot.

DRB 398 Copper Cones

The copper cones being used in the T138E57 and T119 HEAT projectiles are drawn from copper sheet and finished in accordance with DRB398 as shown in Fig. 1. The penetrating power of these

cones in both DRC376 test bodies and Tl38 E57 projectiles, with different boostering systems, and at different spin rates has been determined. The inspection data for all of the cones included in these experiments are shown in Table IX.

- B. ALL INDICATED SURFACES MUST BE CONCENTRIC WITHIN .003 T.I.R. WITH RESPECT TO \$ 540 REGISTER DIA.
- D. IN THIS REGION VARIATION IN STRAIGHTNESS OF THICKNESS OF WALL SHALL NOT EXCEED ,006
- E. PREFERED MATERIAL: OXYGEN FREE, NO RESIDUAL DEOXIDANTS COTTER, ALTERNATIVE MATERIAL: ELECTROLYTIC, TOUGH PITCH COPPER.

 COPPER DEEP DRAWING; SEE NOTE E SPEC 00-C-576

Fig. 11. DRB 398, 42-degree Copper Cone.

Table IX
Inspection Data for DRB 398 Cones
See Tables X and XI for Penetration Results

<u> </u>	Max. Trans.	Max. Long.	Min.	Max.
Cone No.	Variation	Variation	Wall Thickness	Wall Thickness
Q341	.002	00.7	00.0	
Q342	.002	.007	.098	.105
Q343	.003	.006	.097	.103
Q344		.004	.098	.102
Q345	.005	.008	. 095	.103
Q346		.004	.097	.102
	.003	.005	.097	.103
Q347	.002	.004	. 097	.102
Q349	.002	.003	.099	. 102
Q350	.004	.003	. 099	. 103
Q351	.002	.002	.099	.101
Q352	.003	.003	. 098	.102
Q353	.002	.002	.098	.100
Q354	.004	.005	.097	. 102
Q355	.003	. 00 2	. 099	.102
Q383	.003	. 00 5	. 097	.102
Q384	.003	.006	. 098	.104
Q385	.004	.007	. 096	.104
Q386	003	.005	. 099	.105
-Q387	.004	.006	. 098	.104
Q388	.004	.006	. 096	.102
Q389	.003	.007	. 095	.103
Q390	.004	.006	.097	.104
Q397	.003	.006	.096	.103
Q398	.003	.006	. 098	. 105
Q399	.003	.005	. 099	. 105
Q400	.003	.006	.097	.104
Q401	.003	. 006	.097	.103
Q402	.003	.005	.098	.103
Q403	.003	.005	. 098	.104
Q404	.003	. 00 5	.097	.103
Q405	.003	.006	.098	. 104
Q422	.003	.006	. 096	. 102
Q428	.003	.005	. 098	. 103
Q429	.004	.007	. 096	. 103
Q430	.002	.006	. 096	.102
Q431	.003	. 005	.098	. 105
Q432	.003	. 006	.098	.104
Q433	.003	. 006	. 096	.102
Q483	.004	.006	.097	. 104
FS518	.002	.002	. 102	.104
FS521	. 001	.004	.103	.107
FS523	.001	.001	.103	.104
FS524	.000	.001	.103	.104
FS528	.000	.002	. 105	.107
1.0000	1.000	.002	• 105	1,07

Effect of the Booster System

In actual projectiles initiation of the Composition B is accomplished by means of the T208E7 base element. In static penetration tests it is more convenient to employ a dummy base element system. Figure 12 illustrates the two systems. Nine DRB398 cones, cased in DRC376 test assemblies, were loaded at Ravenna Arsenal and tested for penetration into mild steel at Erie Ordnance Depot. Five rounds utilized the penetration test base element system and four rounds contained T208E7 base elements which had previously been armed in a centrifuge. All rounds were tested at 0 rev/sec and at a standoff of 7.50 inches. The penetration data are presented in Table X, Part A. The average penetration measured for the two booster systems agrees within the known experimental error. It is concluded (1) that the T208E7 base element provides adequate boostering for either the T138E57 or the T119 HEAT round, and (2) that the penetration booster system may be used interchangeably with the T208E7 base element in static penetration tests.

An examination of the radiographs of all rounds has revealed that three of the cones used with the penetration booster system and one of the cones used with the T208E7 system had been distorted in being pressed into the nose rings, as shown in Fig. 13. The average penetration of the four distorted cones is 17.8

Fig. 13. Radiograph Showing Distorted Cone.

Fig. 12. Two Means of High Explosive Initiation.

inches, while the average for the undistorted cones is 19.8 inches. It is apparent that great care must be exercised in the assembly of cones into tees (or rings) to prevent such distortion.

Machined Versus Drawn Liners

Five cones were carefully machined

to drawing DRB398 from hard drawn copper bar. These cones were assembled in DRC376 test assemblies and tested for penetration into mild steel at 0 rev/sec and 7.50 inches standoff. The data are shown in Table X, Part B. The average penetration of 19.5 inches shows that machined and drawn cones penetrate equally well when well made.

Table X

Penetration Test Data Effect of Booster System On Penetration and.

Penetration Results With Machined DRB 398 Cones

DRC 376 Test Assemblies Standoff - 7.50 inches Spin - 0 rev/sec

Loaded at Ravenna Arsenal, BAT Lot No. 8, Holson Lot 3-126

Round No.	Booster System	Lbs. Comp B	Penetration (inches M.S.)	Max. Spread	Std. Deviation (in.)
Part A	Effect of B	ooster Sys	stem (Fig. 12), DR	B398, Drawn Con	e s
Q383	Test	2.46	18.81*		*.
Q384	Test	2.48	20.31	· ·	
Q385	Test	2.48	17.25*		4
Q386	Test	2.46	16.69*	ar ar	
Q387	Test	2.48	20.18		8
200	10.50		Avg. 18.63	3.62	±1.65
				10	
Q388	T208E7	2.48	19.62		
Q389	T208E7	2.50	18.56*	v.	
Q390	T208E7	2.50	18.88		
Q397	T208E7	2.48	20.12		
***	•		Avg. 19.29	2.56	±.71
*Distor	ted Liners				
*D15001		penetratio	on for all distorted	lliners	17.83 inches
	_	-	on for all undistore		19.82 inches
Part B	Machined D	RB398 Co	ne s		
FS518	Test	2.44	18,62		
FS521	Test	2.48	19.44	·	
FS523	Test	2.48	19.81	150 25 250	
FS524	Test	2.46	19.62		
FS528	Test	2.46	19.75		
			Avg. 19.45	1.19	±. 48
(Co	mpare with	average fo	or undistorted con	s - 19.82 in.)	

Effect of Rotation

The effect of rotation upon the penetration of drawn copper cones when cased in DRC376 test assemblies and when cased in Tl38E57 assemblies is shown in Table XI and Fig. 14. All rounds utilized the penetration test booster systems.

Certain of the rounds shown in Table XI contained cones which had been distorted during assembly of the rounds. The penetration data clearly shows the loss in penetration resulting from this cone

distortion.

At 25 rev/sec the penetration is independent of the type of assembly but at zero rev/sec the penetration is nearly five inches greater using the DRC 376 test assembly than with the Tl38E57 assembly. These data suggest that the tee does not interfere with penetration at 25 rev/ sec, but that it reduces penetration substantially at zero rev/sec. Additional tests are now being conducted to more precisely determine the magnitude of the effect of the tee.

Table XI

Penetration Test Data

Effect of Rotation Upon Penetration of DRS 398 Drawn Cones

Round No.	Lbs. Comp B	Rev/Sec	Penetration (inches M.S.)	Max. Spread (in.)	Std. Deviation (in.)
DRC 376	Test Ass	mbly:Rav	enna BAT Lot No	8 Holston Lot 3	-126
Q384	2.48	0	20.31		
Q387	2.48	0	20.18		
Q388	2.48	0	19.62	127	
Q390	2.50	0	18.88		
Q397	2.48	0	20.12		
			Avg. 19.82	1.43	±.59
Q398	2.48	25	13.31		
Q399	2.50	25	13.56		
Q400	2.48	25	13.69		_
Q461	2.50	25	13.18	i	
Q402	2.46	25	13.69	11.11	
			Avg. 13.49	.51	±. 24
Q429	2.46	30	12.00		
Q430	2.48	30	13.88		
Q431	2.48	30	11.94		V 1
		1	Avg. 12.44	1.94	±1.13
Q403	2.48	45	12.25		
Q404	2.46	45	10.25	*	
Q405	2.44	45	13.06		. 28
Q422	2.50	45	7.75		, a
Q428	2.48	45	11.69	200	
	200		Avg. 11.00	5.31	±2.09

Continued on next page

Table XI (Cont.)

Round No	Lbs. Comp B	Rev/Sec	Penetration (inches M.S.)	Max. Spread(in.)	Std.Deviation(
Q432	2.48	60	7.06		
Q# 33	2.48	60	7.38		
Q483	2.50	60	7.18		
A.0		1	vg. 7.21	. 32	±.16
T138E57	Assembly:	Picatinny	Arsenal, PA-E	9695, Holston Lot	3-166
Q341	2.30	0	(13.31)*		
Q344	2.26	0	15.50	1	
Q345	2.28	0	16.50		
Q349	2.24	0	14.69		80
Q352	2.28	0	13.75		
		Av	rg. 15.11	2.75	±1.17
Q343	2.27	25	(10.75)*		
Q346	2.29	25	13.44	*	
Q351	2.29	25	13, 80		
Q354	2.30	25	13,94		
Q355	2.31	25	13.81		
-		A	vg. 13.77	.50	±.23
Q342	2.27	30	(11.75)*	,	
Q347	2.29	30	13.06	. 10	
Q350	2.29	30	12.81		
Q353	2.31	30	(12.06)*		
		•	rg. 12.94	. 25	
T138E57	7 Assembly:	Picatinny	Arsenal, PA-E	9806, Holston Lot	3-89
768	2.28	0	15.06		
811	2.30	0	14.75		
821	2.30	0	14.75		, F
877	2.27	0	16.38		2
989	2.31	0	15.56		
		A	rg. 15.30	1.63	±.69
	2.28	25	16.12	12.5	
254	2.28	25	12.56		
25 4 356			15.62		9
	2. 28	25			
356		25	14.56		İ
356 769	2. 28			3.56	*1

Fig. 14. Rotation Verus Penetration. DRC 376 Assemblies and TI38 E57 Assemblies.

Future Program

- 1. Conduct penetration versus standoff tests for 45° and 20° copper cones (.100-inch wall) with the head of H.E. held constant at 3.63 inches.
- 2. Evaluate the influence of DRC314 tees made of (a) mild steel (b) high ductility malleable iron, and (c) low ductility malleable iron.
- 3. Compare DRC314 tees and DRC376 nose rings with respect to their effect upon penetration.
- 4. Compare DRC376 test assemblies employing the penetration test base element assembly and similar rounds with the booster set in the base plug (No dummy base element).

FUZES

Calculation and Measurement of Impulse Sustained by a T138E57 Projectile in Passing Through a Bursting Screen

The impulse sustained by a projectile, in perforating a wood bursting screen, is equal to the sum of (1) the impulse required to shear out a plug of wood and (2) the impulse required to accelerate the wood punched out of the target. Neglecting the shear impulse, a value for the ratio of the velocity after hitting the screen to the velocity before hitting the screen, can be calculated as follows:

Let A=cross sectional area of proj.-sq. in.

t=thickness of screen - inches

d=density of screen - lb/cu. in.

g=gravitational constant-32 ft/sec/sec.

m=mass of wood punched out

M=mass of projectile

V₁ =striking velocity of projectile-ft/sec

V₂ =exit velocity of projectile-ft/sec.

=velocity attained by wooden plug

Then,
$$m = \frac{Atd}{a}$$
 (1)

$$M(V_1 - V_2) = mV_2 \tag{2}$$

$$MV_{i} = V_{g}(M+m) \tag{3}$$

$$\frac{M}{M+m} = \frac{V_z}{V_I} \tag{4}$$

A firing program to test Equation (4) has been completed. One set of velocity screens was set up in front of a bursting screen and a second set was placed behind the bursting screen. The firing data and the comparison of experimental and calculated ratios are shown in Table XII.

The experimental ratio is corrected for the loss of velocity that occurs in air, as determined by rounds 2484, 2485 and 2486 in Table XII.

It appears that the loss in momentum experienced by a projectile passing through

Table XII

Firing Data

Measurement of Impulse Sustained By T138E57 Projectile Passing Through a Bursting Screen

Round	Weight of Projectile(Ib)	Screen	Instrumental	Velocity(f/s)	V ₂ - V ₁	(V,- V,) corr'd	V, corr'd	V. corr'd	V	2
No.	110,001110(15)	(in.)	V,	V ₂	12 1	1.2	1, 55		Exp.	Calc.
2484-1	17.14	0	1652	1626	26					
2485-2	17.12	"	1681	1660	21			1		
2486-3	16.84	"	1698	1677	. 21					
1	Avg. 17.03		1677	1654	23	0				
2488-5	17.43	1.62	1672	1596	76				*	
2489-6	17.37	**	1675	1617	58		1	1		
2490-7			1687	1619	68					l
1	Avg. 17.30	."	1678	1611	67	44	1666	1622	.974	. 979
2492-9	16.56	3.25	1714	1623	91					
2493-10	17.20	"	1693	1585	108					
2496-13	17.37	11	1672	1594	78					
	vg. 17.04	"	1672 1693	1601	$\frac{78}{92}$	69	1681	1612	.959	.958

Notes:

1. Screen spacing 112'6" 12'32 2142 58'32'

2. Target screen placed midway between screens B and C

3. Density of dry screen taken as 30 lb/cu. ft.

4. T137El Rifle and T152E2 Mount.

a wood bursting screen at 1700 ft/sec is nearly equal to the momentum acquired by the wood that is removed from the target. The small difference between the measured and calculated ratio is a measure of shear impulse. It is apparent that, in the case of a wooden screen, the shear impulse is negligible.

Evaluation of the Effect of RC Washer

In considering the malfunctions encountered in the T138E57 HEAT rounds fired at Aberdeen Proving Ground the question arose as to the effect of this RC washer upon the sensitivity of the fuze system. An experiment to show the effect of this RC washer on fuze sensi-

tivity has been performed, using the droptester. A crystal, tee and tee cap assembly was mounted in the tester and dropped from various heights. The tee cap had .030-in. walls and .010 in. clearance between cap and crystal. A heat squib (the equivalent of the T18 detonator from an energy requirement) was connected across the crystal and was used to determine functioning. In the first experiment the heat squib was used alone, in the second an RC washer was placed in parallel with the heat squib, and in the third .100-in. wall caps were used.

Table XIII shows the data for these tests. Some experimental difficultier

Table XIII

Test Data

Evaluation of the Effect of RC Washer

Drop Sequence	Drop Height	Squib	RC Resistance	Paralls! Res. of Squib and RC	Tee Cop Wall	Clearance	Tee Cap Distort-	Condition of Lucky ofter	Results
	(in.)	11.55.5141.05	1100000	Squib and HC			ion	Drop	
1	36	••			.030	.010		Powdered	OK
2	12				. 030	.010	1	"	No Probable open
3	12	4300	2.0		.030	.010		Crumbled	OK circui
4	6	3400	i i		.030	.010	70	Chipped	ок
5	3	1800			.030	.010		No Damage	NO
6	6	1800	1		.030	-006			
7	6	1700	· .					Chipped	No Probable short
8	5				. 330	.010	970		OK
_	1 3	1700			.030	.010	1	,,	ОК
10	1 1	3800	i	1	.030	.010	***	No Damage	OK
11	. 4	4100	•		.030	.010			OK
	ps 12 & 13 ·		ne best sq	uib and differ			<u> </u>		
12	1 3	4200	i :	1	.030	.010	1	11	NO
13	1 4	4200	-		.030	.010		**	OK
Dro	ps 17, 18 &	19 used the	aame hea	t squib and di	fferent car	ps.			
17	. 3	3000			. 030	.009	.007		NC Open circuit
18	3	4200		. 1	.030	.008	.003	**	NO " "
19	3	4500	5).		.030	.010	.003		ok
	-,							170	"
20	3	2400			.030	.010	.008		NO
21	1 4	1900	ł		.030	.010			
	•						.010		IOK
Drop	pe 22, 23,	24. & 25 us	ed the sar	ne beat aquib	and differ	ent caps, s	xcspt 24	₽ 25 used th	e same cap.
22	. 4	3600		ı .	. 030	012	.011		NO Open Circuit
23	4	3 300			. 030	.012	.010		(KO)
24	1	3500			.030	.012		Same cap	NC) Bad Squib
25	1	3600			.030	.003	003	Jame Cap	NO)
63		3000	i l		.030	1 .0	.003,		NO)
9	5	1	120K	2800	.030	.010	1	Chipped	ОК
14	1 4		120K	3200	.030	.010		No Damage	ОК
		!	1202	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.030	.0.0		140 Daurage	l or
26	4	1		2600	.030	.010	.008	N- D	l av
		ame squ	b{136K					No Damage	OK
27				2200	.030	.010	.009	•	NO
28	4	1	156K	2150	.030	.010	.009		ОК
29	4		156K	3800	.030	.010	.008		NO
						i			
30	5		110K	2400	.030	.010	.012		OK
31	5		110K	1650	.030	.010	.011		OK
32	5	į .	110K	3200	.030	.010	.009		l oк
33	5		160K	3500	.030	.010	.013		ок
34	5		160K	1500	.030	.010	.012		ок
15	48	4500			. 100	.005-9	.069	Powdersd	ок
16	24	4600			. 100	.008	.028	,,	ок
35	12	2600			.100	.010	.009		NO
	12	3000			.100	.010	.011		OK
36	-	1 300			. 100	.C10	.011		OK OK
_	12								
37	12				. 100				
37 38	12	2400			. 100	.010	.009		OK
37					.100 .100	.010	,010		OK OK

such as shorts, open circuits and faulty techniques were experienced. However, the results of Part I show that a drop of 3 inches was sometimes sufficient for functioning; a drop of four inches was frequently sufficient, and a drop of six inches was usually sufficient. When an RC washer was placed in parallel with the heat squib very consistent functioning was observed with five-inch drops. With a heavy wall cap (.100 in.) a drop of twelve inches functioned the heat squib in five of six tests. No shorter drops were tried.

These data indicate that:

- (1) The RC washer causes no important decrease in the sensitivity of the system.
- (2) A tee assembly mounted in the drop tester with a cap having .100-in. wall functions the heat squib on a 12-in. drop.

Performance Test of Fuze, PD, T222E4 (T222E3 Nose Element, FBE 6 [DRD 260] Base Element)

Ten FBE6 base elements (DRD260), loaded with heat squibs, (T18 detonator without lead azide) were assembled in T138 E57 projectiles, and fired through a bursting screen into a recovery box. The tee caps had wall thicknesses of .010 in.and the base elements had all armed satisfactorily when tested in the centrifuge. Five of the units had been modified by putting projections on the base terminals, in an effort to get more positive electrical contact. Nine of the ten rounds were recovered. Six of the nine base elements had armed, but none of the heat squibs had functioned. Examination of the three unarmed base elements showed that the pins were rusty and upon removal of this rust the rounds armed, as expected, when retested in the centrifuge. The base elements had been permitted to stand for some days in freshly filled

inert rounds and it seems likely that the moisture from the plaster cast caused the rusting. In five of the six armed base elements recovered, the base terminal had been driven forward by impact. Since this can occur only if the rotor is in the armed position at impact, the best explanation for the failure to set off the heat squibs is that insufficient electrical energy was supplied.

Failure to supply sufficient electrical energy can be caused by a failure in the electrical circuit, an open or short, or. by some failure of the nose element. Since the tee caps were thin-walled (.010 in.) it was decided to investigate other possibilities. A base element which had armed but which had failed to fire the heat squib was reassembled in the unarmed position, placed in centrifuge, and accelerated sufficiently to arm. The exact time of arming was determined by means of suitable slip rings connected to the terminals. The armed base element was removed from the centrifuge and an attempt was made to fire it by compressing a crystal assembly connected across the terminals. It was not possible to fire the heat squib but the heat squib itself was fired easily when connected directly to the crystal assembly.

These tests, together with those reported in the Twenty-Second Progress Report, indicate that some of the trouble encountered with poor functioning of the FBE6 base element is caused by failure of the sliding contact. This contact system is very similar to that used in the T208 base element.

A model of a redesigned contact has been made and tested. The base element was run in the centrifuge in the reversed position and it was found that over 2000 g's acceleration were necessary to cause the modified contact to open. Further tests with base elements, embodying this modified contact, are planned.

DISTRIBUTION

Number	*	* · · · · · · · · · · · · · · · · · · ·
Copies	NUMBERS	INSTALLATION Office, Chief of Ordnance
1	1	ORDTS
2	2-3	ORDTA
1	í	ORDTQ
1	5	ORDTR
1	6	ORDTB
		Arsenals
10	7-16 incl.	Frankford
2	17-18	Picatinny
1	19	Springfield Armory
		Ordnance Districts
1	20	Cleveland
1	20	Cievelatiu
		Aberdeen Proving Ground
2	21-22	Ballistics Research Laboratory
-1	23	Development and Proof Services
		Contractors
	0/05	
2	24-25	Frigidaire Div. Gen. Motors Corp.
1	26	Winchester Repeating Arms Co.
1	27	Remington Arms Co.
1 -	28	National Forge & Ordnance Co. Midwest Research Institute
2	29-30	Armour Research Foundation
2	31-32	
1	33	Carnegie Institute of Technology Arthur D. Little Co.
1	34	a contract of the contract of
1	35	The Budd Company Franklin Institute
1	36	Plankin Institute
		U. S. Navy
1	37	Bureau of Navy Ordnance
2	38-39	Naval Ordnance Laboratory,
1	40	White Oak Naval Ordnance Test Station,
	41	Inyokern
1	41	Naval Proving Ground, Dahlgren