Information Coding and Compression

Hiroki Sayama sayama@binghamton.edu

From measurement to coding

· So far:

We measured the amount of information produced by an event or a stochastic system

· Today:

We will discuss how to represent the produced information effectively using symbols (information coding)

Information Coding

Shannon's model

Source coding Channel coding

Source coding

- Representing the behavior of a stochastic system (information source) using symbols
 - Temporal behavior (e.g., text, sound)
 - Spatial behavior (e.g., image)
 - Spatio-temporal behavior (e.g., video)

Example

Stochastic system

Symbols

System's behavior

Representation 1 0 0 1 0 1

101001

Terminologies (1)

- Source alphabet 5: A set of symbols that can arise in the information source
- Target alphabet T: A set of symbols that can be used in a code word
- Code word: A sequence of symbols in T used to represent a symbol in S

Terminologies (2)

- Code: A mapping of each symbol in S to a code word made of symbols in T
- Encoding: Conversion of a symbol in S
 to a code word made of symbols in T
- Decoding: Conversion of a code word made of symbols in T to a symbol in S

Terminologies (3)

· Fixed-length code:

A code in which the length of code words are always the same

Variable-length code:

A code in which the length of code words vary depending on which symbol in S is encoded

Example of fixed-length codes

· ASCII code

USASCII code chart

D, - Β b						° 0 0	°0 ,	0 0	0 1 1	100	0	10	1 1
		b 3	p ⁵	₽.	Row	0	-	2	3	4	5	6	7
`]	0	0	0	0	0	NUL .	DLE	SP	0	@	P	```	Р
	0	0	0	_		SOH	DC1	!	1	A	•	0	q
	0	0	-	0	2	STX	DC2	•	2	В	R	. b	r
	0	0	_	-	3	ETX	DC3	#	3	C	S	С	S
	0	1	0	0	4	EOT	DC4	•	4	D	T	đ	1
	0	_	0	-	5	ENQ	NAK	%	5	E	ט	e	U
	0	1	-	0	6	ACK	SYN	8	6	F	>	f	٧
	0	_	-	1	7	BEL	ET8	•	7	G	W	g	w
	_	0	0	0	8	BS	CAN	(8	н	×	h	×
	-	0	0	-	9	нТ	EM)	9	1	Y	i	у
	_	0	1	0	10	LF	SUB	*	:	J	Z	j	Z
	1	0	1	1	11	VT	ESC	+		K	C	k,	{
	-	1	0	0	12	FF	FS	•	<	L	\	l	1
	1	1	0	ı	13	CR	GS	-	#	М)	m	}
	•	.1	I	0	14	so	RS		>	N	^	n	>
	-	1	1	-	15	SI	US	1	?	0	-	0	DEL

Example of variable-length codes

 International Morse code

· UTF-8

 Most of image, audio, and video formats

Very important for data compression

 What is the minimal length of code words when n different symbols in S are to be encoded using a fixedlength code using r symbols?

- · When is such a code most efficient?
 - In terms of the relationship between n and r

- (1) abdcdabccabdcdba
- (2) acdacabcaabaabad
- Encode each of the above sequences using the following codes:

```
Fixed length: a\rightarrow 00, b\rightarrow 01, c\rightarrow 10, d\rightarrow 11 Variable length: a\rightarrow 0, b\rightarrow 10, c\rightarrow 110, d\rightarrow 111
```

Code Trees, Prefix Codes and Kraft's Inequality

Code tree

A tree used to decode the provided code words

$$a\rightarrow00$$
, $b\rightarrow01$, $c\rightarrow10$, $d\rightarrow11$

$$a\rightarrow 0$$
, $b\rightarrow 001$, $c\rightarrow 101$, $d\rightarrow 11$

Black nodes: original symbols (= code words)

 Decode the following input using the code tree provided below

· Create code trees for the following:

$$-a\rightarrow0$$
, $b\rightarrow001$, $c\rightarrow101$, $d\rightarrow11$

$$-a\rightarrow 1$$
, $b\rightarrow 100$, $c\rightarrow 101$, $d\rightarrow 11$

 $-a \rightarrow 01$, $b \rightarrow 0100$, $c \rightarrow 0111$, $d \rightarrow 010000$

Uniquely decodable code

- A code is called uniquely decodable if and only if any finite sequence of code words generated by it can be decoded to a unique sequence of original symbols with no ambiguity
 - Decoding may be ambiguous in the middle of the sequence, but not at the end

Codes must be uniquely decodable in order to be useful

· Are these codes uniquely decodable?

$$-a\rightarrow0$$
, $b\rightarrow001$, $c\rightarrow101$, $d\rightarrow11$

$$-a\rightarrow 1$$
, $b\rightarrow 100$, $c\rightarrow 101$, $d\rightarrow 11$

$$-a \rightarrow 01$$
, $b \rightarrow 0100$, $c \rightarrow 0111$, $d \rightarrow 010000$

Prefix code

 A code whose code words appear only as "leaves" (end points) in its code tree

No code words in the middle of a branch → Uniquely, and <u>immediately</u> decodable

 Decode the following input using the code tree provided below

- A code generated by reverting the order of letters in each code word (e.g., 100→001) of a uniquely decodable code is known to be uniquely decodable too
- Check this with the example on the right
- Why is this the case?

Kraft's inequality

- # of symbols in S: n
- # of symbols in T: r
- · Length of code word: Li (i = 1~n)
- Necessary & sufficient condition for such a prefix code (or uniquely decodable code) to exist is:

$$\Sigma_i r^{-L_i} \leq 1$$

 Check that Kraft's inequality holds for each of the following code trees

 Determine whether it is possible to design a uniquely decodable binary code (r = 2) with each of the following code word lengths:

$$\{L_i\}=\{1, 2, 3, 3\}$$

 $\{L_i\}=\{2, 2, 3, 3, 3, 4, 4\}$
 $\{L_i\}=\{2, 2, 3, 3, 3, 3, 4\}$

Complete code

Kraft's inequality holds with equality

The code is "complete"

(i.e., there are no more unused leaves)

Data Compression and Its Limit

Data compression by coding

How can one design an optimal code tree to achieve the shortest representation of the behavior of a stochastic system?

Average length and compression

$$L = \Sigma_i p_i L_i$$

(p_i: probability of i-th symbol in 5)

 Data compression is to reduce the average code word length L by optimizing code word lengths { L_i } given the probability distribution of original symbols { p_i }

FYI: Lossless and lossy compression

- Here we focus on lossless compression that does not discard any information in the original data
- Lossy compression is also used very often in real-world applications
 - Exploits properties and limitations of human perception/cognition
 - E.g. audio/visual data compression

How can we compress the data?

$$L = \Sigma_i p_i L_i$$

(p_i: probability of i-th symbol in 5)

· Basic idea:

Assign smaller L_i to larger p_i

How much can we compress the data?

$$L_{min} = min_{\{L_i\}}$$
 that satisfies $\Sigma_i r^{-L_i} \leq 1$ $\Sigma_i p_i L_i$

Discrete optimization problem with integer $\{L_i\} \rightarrow Very difficult to solve$

Replacing $\{L_i\}$ with continuous variables $\{x_i\}$ allows Σ_i $r^{-x_i} = 1$ to find the theoretical lower bound of L_{min}

· Find the lower bound of L_{\min} using the Lagrange multiplier

Quantity to minimize:

$$\Sigma_i p_i x_i$$

Constraint: $\Sigma_i r^{-x_i} = 1$

Exercise (solution)

$$g(x_{1}, x_{2}, ... x_{n}, x_{n+1})$$

$$= \sum_{i=1 \sim n} p_{i} x_{i} + x_{n+1} (\sum_{i} r^{-x_{i}} - 1)$$

$$\frac{\partial g}{\partial x_{i}} = p_{i} - x_{n+1} r^{-x_{i}} \ln r = 0 (i = 1 \sim n)$$

$$\frac{\partial g}{\partial x_{n+1}} = \sum_{i} r^{-x_{i}} - 1 = 0$$

$$x_{n+1} = 1/\ln r$$

$$r^{-x_{i}} = p_{i} / (x_{n+1} \ln r) (i = 1 \sim n)$$

$$x_{i} = -\log_{r} \frac{p_{i}}{34}$$

Lower bound of average code word length

$$L_{min} \ge \min \sum_{i} p_{i} x_{i}$$

$$= -\sum_{i} p_{i} \log_{r} p_{i}$$
Information entropy

Average code word length cannot be shorter than the entropy of the information source

In other words...

Information entropy is the amount of information the source is producing; you can't compress the data below that

Data compression is only removing redundant part

Huffman Coding

How to design an efficient code

- · {p_i} is given
- · How to determine code word lengths {L_i} to make the code most efficient?

- Continuous analog $x_i = -\log_r p_i$ serves as a good reference length
 - If $\{x_i\}$ are all integers, the average length can equal information entropy!

• Design the most efficient code tree for each of the following probability distributions $\{p_i\}$ (with r = 2):

```
{p_i} = {1/4, 1/2, 1/4}

{p_i} = {1/4, 1/4, 1/8, 1/8, 1/8, 1/16, 1/16}
```

What if $\{x_i\}$ are not integers?

- It is no longer possible to make the average code word length equal the information entropy of the source
- · However, there is an algorithm known for determining $\{L_i\}$ (in integers) of the most efficient code

Huffman coding

David A. Huffman (1925-1999)

"A method of the construction of minimum-redundancy codes"

Proc. Inst. Radio Eng. 40:1098-1101, 1952.

- Found this optimal algorithm when he was still a graduate student at MIT struggling with a final project of a course

Huffman coding

- An algorithm that generates the most efficient prefix code tree for a given probability distribution $\{p_i\}$ (with r=2)
- A prefix code generated by Huffman coding always achieves the <u>shortest</u> average code word length
 - It is also known that the achieved average length are always less than the source's information entropy + 1

How Huffman coding works (1)

 Represent each letter in S as a node at the lowest level, with its probability

How Huffman coding works (2)

- Choose two nodes (without a parent node) that have the smallest probabilities
- Create a new parent node by adding the probabilities of two

How Huffman coding works (3)

- Repeat it until there is only one tree
- Assign code words based on the generated tree

```
A: 0, B: 10, C: 110, D: 111
L_{min} = 0.5 * 1 + 0.3 * 2 + 0.1 * 3 + 0.1 * 3
= 1 7
```


- Design the Huffman code tree for each of the following probability distributions $\{p_i\}$ (with r = 2):
- Compare their average code word lengths with theoretical lower bounds

```
{p_i} = {0.3, 0.25, 0.2, 0.1, 0.1, 0.05}
{p_i} = {0.4, 0.3, 0.1, 0.05, 0.05, 0.05, 0.05}
```

· Compress the following text using Huffman coding (ignore space or line break):

CDEGF EBAEA
CEFAD AEFEA
BBEAC GDABC
AECAG CEAFG

- Implement a program that generates a Huffman code for a given data set
- Apply the program to the text in the previous exercise to automatically generate an encoded text

Shannon's Source Coding Theorem

Average code word length and information entropy

- Information entropy of the source sets the lower bound of average code word length
- · Can you reduce their difference?

Yes you can.

Shannon's source coding theorem

What it basically says

If you define an "extended information source" of 5 by combining its k consecutive symbols as a new symbol, then the average code word length (per original symbol) becomes arbitrarily close to its entropy as $k \to \infty$

Extended information source

• $S = \{s_i\}$ (prob. distribution: $\{p_i\}$)

 K-th order extended information source of S:

$$S^k = \{ s_{i_1} s_{i_2} ... s_{i_k} \}$$

Prob. distribution: { pinia ik }

Example

```
Source: Coin tossS = { H, T }
```

• 5³ = { HHH, HHT, HTH, HTH, HTH, THH, THT, TTH, TTT }

Properties of Sk

$$\cdot \sum p_{i_1 i_2 \dots i_k} = 1$$

 If S's behavior is independent and identically distributed (i.i.d.):

$$p_{i_1i_2 \dots i_k} = p_{i_1} p_{i_2} \dots p_{i_k}$$

 $H(S^k) = k H(S)$

Average code word length of Sk

- · Huffman coding can be applied to Sk
- \rightarrow How does its average code word length $L_{min}(k)$ behave as $k \rightarrow \infty$?
- \rightarrow How does its average code word length per original symbol $L_{min}(k)$ / k behave as $k \rightarrow \infty$?

- $S = \{A, B\}, \{p_i\} = \{1/4, 3/4\}$ (i.i.d.)
- Obtain probability distributions and their entropies of S^2 , S^3 and S^4
- · Construct their Huffman codes
- · Calculate L_{min}(k)
- · Calculate L_{min}(k) / k

Results (k = 1, 2)

Entropy of original source

$$H = 2 - 3/4 \log_2 3$$

~ 0.811

$$k = 2$$

$$k = 1$$

$$L_{min}(k) \qquad \qquad 1$$

$$L_{min}(k)/k \qquad \qquad 1$$

1.688

0.844

Results (k = 3)

Results (k = 4)

59

L_{min}(k) / k approaching entropy

Why?

 Range of optimal average code word length:

$$H(X) \leq L_{min} < H(X) + 1$$

· k-th order extended version:

$$H(X^k) \leq L_{\min}(k) < H(X^k) + 1$$

Why?

$$H(X^k) \leq L_{min}(k) < H(X^k) + 1$$

· Dividing both sides by k:

$$H(X^k)/k \le L_{min}(k)/k$$

 $< H(X^k)/k + 1/k$

 $L_{min}(k)/k$ converges to $\lim_{k\to\infty} H(X^k)/k$ as $k\to\infty$

Why?

 $L_{min}(k)/k$ converges to $\lim_{k\to\infty} H(X^k)/k$ as $k\to\infty$

If X's behavior is i.i.d., then $H(X^k) = k H(X)$ i.e., the above limit is always H(X)

Average code word length (per original symbol) becomes arbitrarily close to its entropy as $k \to \infty$!!

FYI: Generalization of entropy

• If the stochastic system's behavior is not i.i.d. (i.e., the values are correlated), then its information entropy is defined as follows:

$$\overline{H}(X) = \lim_{k\to\infty} H(X^k)/k$$

This is different from simple $H(X) = -\Sigma p_i \log p_i$ but the meaning is the same

Average # of bits needed to describe one event

Therefore...

If you define an "extended information source" of 5 by combining its k consecutive symbols as a new symbol, then the average code word length (per original symbol) becomes arbitrarily close to its entropy

as $k \to \infty$

This holds for any information source

- Apply the Huffman coding program to a k-th order extended information source of some real-world data and measure how compact the data is compressed
- Plot the length of compressed data for $k = 1 \sim 6$