Probability & Statistics. Assignment 9

1. It is given that
$$(\xi,\eta,\zeta)^T\sim N(\mu,K)$$
 where $\mu=\begin{pmatrix}1\\0\\-2\end{pmatrix}$ and $K=\begin{pmatrix}2&3&-1\\3&6&-1\\-1&-1&1\end{pmatrix}$.

- (a) Find probability density f(x, y, z) of the given random vector as well as the marginal probability densities $f_1(x), f_2(y), f_3(z), f_{13}(x, z)$.
- (b) Calculate probabilities $P(2\xi-3\eta-\zeta<9)$ and $P(|2\eta-5\zeta|<16)$.
- 2. Let us consider a random vector from the previous task. Find probability densities and characteristic functions of the following:

(a)
$$u = 2\xi - 3\eta - \zeta$$
;

(b)
$$v = 2\eta - 5\zeta - 7$$
.

Hint: the characteristic function of a normally distributed random variable is $\varphi(t) = \exp(\mu i t - \frac{1}{2}\sigma^2 t^2)$.

- 3. Probability density $f(x_1,x_2,x_3)$ of random vector $\xi=(\xi_1,\xi_2,\xi_3)^T$ is $f(x_1,x_2,x_3)=a\exp\left\{-\frac{1}{2}(x_1+3)^2-(x_2-2)^2-3(x_3+1)^2+(x_1+3)(x_2-2)+2(x_1+3)(x_3+1)-3(x_2-2)(x_3+1)\right\}$
 - (a) Find constant a, mathematical expectation μ , covariance matrix K of random vector ξ ;
 - (b) Calculate probabilities $P(0<\xi_1+2\xi_2-3\xi_3<8)$ and $P(-10<3\xi_1+2\xi_2-\xi_3<2)$.
- 4. Probability density $f(x_1,x_2,x_3)$ of random vector $\xi=(\xi_1,\xi_2,\xi_3)^T$ is $f(x_1,x_2,x_3)=a\exp\left\{-2(x_1+1)^2-3(x_2-1)^2-9x_3^2+4(x_1+1)(x_2-1)+2(x_2-1)x_3\right\}$.
 - (a) Find constant a, mathematical expectation μ and covariance matrix K of random vector ξ ;
 - (b) Find the value of λ which satisfies the relation $P(2\xi_1-\xi_2-3\xi_3<\lambda)=rac{1}{4}$.
- 5. Random vector $(\xi,\eta)^T\sim N(\mu,K)$ where $\mu=\begin{pmatrix}-3\\1\end{pmatrix}$ and $K=\begin{pmatrix}1&-1\\-1&4\end{pmatrix}$ is given.

Calculate conditional probabilities: (a) $P(\eta < 3|\xi = 0)$; (b) $P(\eta < 0|\xi = 1)$; (c) $P(|\eta + 4| < 2|\xi = 2)$.

Hint: conditional pdf induces a random variable L from a normal distribution $L(\eta|\xi=a)\equiv N\left(\nu+\rho\frac{\sigma_{\eta}}{\sigma_{\xi}}(a-\mu),\sigma_{\eta}^2\left(1-\rho^2\right)\right)$, where a is a fixed value.

6. Let us consider random vector $(\xi,\eta,\zeta)^T\sim N(\mu,K)$ where $\mu=\begin{pmatrix}1\\0\\-2\end{pmatrix}$ and $K=\begin{pmatrix}2&3&-1\\3&6&-1\\-1&-1&1\end{pmatrix}$.

Calculate conditional probabilities: (a) $P(|\zeta| > 1 | \xi = 1)$; (b) $P(|\zeta + 3| < 1 | \eta = 6)$.

- 7. It is known that $\xi_1, \xi_2, \dots \xi_{100}$ are *i.i.d.* random variables with N(0,1) distribution; $\eta_1 = \xi_1 + \xi_2 + \dots \xi_{40}$, $\eta_2 = \xi_1 + \xi_2 + \dots \xi_{100}$. Find the probability density function of vector $\eta = (\eta_1, \eta_2)^T$.
- 8. Let ξ and η be independent random variables with N(0;1) distribution. Find the probability that a point with coordinates $(\xi;\eta)$ is situated within figure:

(a)
$$1 < |x| + |y|$$
;

(b)
$$1 \le |x| + |y| \le 2$$
;

(c)
$$\sqrt{x^2+y^2} \leq 2$$
.

Hint: tasks 10 and 11 from Assignment 7 could be helpful.

- 9. Let ξ_1 and ξ_2 be independent random variables with N(0,1) distribution. Find probabilities
 - (a) $P(\xi_1 < 3\xi_2)$;
 - (b) $P(|\xi_1| \leq \sqrt{3}|\xi_2|)$.
- 10. Let us consider two random variables ξ and η with N(0,1) distribution. And it is known that their correlation coefficient is equal to ρ .

Calculate the expected value of $\xi^3 \eta^3$.

Hint: random variables ξ and $\eta - \rho \xi$ are independent.

11. Let us consider a sequence of independent random variables ξ_1,ξ_2,\ldots such that $rac{Var\,\xi_n}{n} o 0$, when $n o\infty$. Prove that law of large numbers (LLN) holds.

Hint: use Chebyshev's inequality.

12. We are given a sequence of independent random variables ξ_1,ξ_2,\ldots where

$$\xi_n \sim egin{pmatrix} -\sqrt{n} & 0 & \sqrt{n} \ rac{1}{2n} & 1 - rac{1}{n} & rac{1}{2n} \end{pmatrix}$$
 for any $n \in \mathbb{N}$.

13. Let us consider a sequence of independent random variables
$$\xi_1,\xi_2,\ldots$$
 where $\xi_n\sim \begin{pmatrix} -n&0&n\\2^{-n}&1-2^{-n+1}&2^{-n}\end{pmatrix}$ for any $n\in\mathbb{N}.$

Determine if LLN holds.