National Solar Power Usage

Project 1 for UCSD Extension Data Science and Analytics Bootcamp

"JFG" Team Members:
Dominic Gonzales
Gage Stout
Michelle Sullivan
Nicolas Tacos
Lorelei Wong

Motivation

Hypothesis:

We are massively underutilizing solar power in the United States

Core questions:

What does US solar power production look like?

Further questions:

- Is solar power as big of a trend in other states as it is in California? Do we love it because our energy is expensive?
- Are we underutilizing solar power?
- ♦ How much energy does the US use and how much of that is solar?
- Are states increasing solar production at a steady rate across the board or are some states doing better than others?

Motivation continued...

Why ask these questions?

- Importance of renewable energy
- Impact on our daily lives

Could we answer them?

- Sometimes!
- Finding exactly the right data sometimes got in our way

A Brief Summary of Findings

- Solar power is one of the least utilized energy sources in the US
- Coal makes up almost half of all energy production (1990-2019)
- California produces A LOT of solar power
- Energy prices in California are definitely increasing, as is solar power
- Other very sunny states are not producing at the same rate as California

Questions and Data

- How much energy is created by solar compared to other energy sources?
- What states could show potential for solar energy production?
 - > Needed to understand potential sunshine hours for states and cities across the US
- How much solar power is the US producing by state?
 - Last year
 - > The past decade
- Does cost of energy affect a state's likelihood to produce more solar power?

Data Clean-up and Exploration

- lambda functions are mini versions of a normal function without a return statement
- In the example above we used lambda to remove % symbol in our sunshine data in order to change the datatype to a float variable instead of an object

	CITY	STATE	ANNUAL % AVG POSSIBLE SUNSF	IINE NO. OF YEARS	OF DATA		City	State	Annual % Average Possible Su	unshine	# of Data Years
)	YUMA	AZ		90%	42	0	YUMA	AZ		90.0	4:
	REDDING	CA		88%	10	1	REDDING	CA		88.0	1
\$ #	City State Annual % Av # of Data N Htype: obje	/ears	e Possible Sunshine	object object object int64			City State Annual % A # of Data dtype: obj	Years	ge Possible Sunshine s	obj floa	ect ect t64 t64

Data Analysis - National Energy Production

- 1. Solar power makes up for only 0.3% of energy production.
- 2. Largest contributors are coal, natural gas, and nuclear.
- 3. Other Category:
 - a. Other biomass,
 - b. Other gases,
 - c. Pumped storage,
 - d. Other (Not specified)

Data Analysis - National Energy Production

Total National Energy Production: Coal vs All Energy Sources (MWh)

- 1. All other energy production sources combined equates to 54.9%.
- 2. Coal is by far the largest single contributor to energy production in the United states.
- 3. This visualization better grasps how underutilized solar energy.

Data Analysis - Energy Sources in the US

Data Analysis - Energy Sources in the US

2012			2019			2012	-2019	
1.	29.03%	Coal	1.	28.02%	Natural Gas	1.	24.76%	Coal
2.	23.51%	Petroleum	2.	28.02%	Petroleum	2.	24.65%	Petroleum
3.	23.51%	Natural Gas	3.	17.05%	Coal	3.	24.65%	Natural Gas
4.	14.75%	Nuclear	4.	14.30%	Nuclear	4.	14.92%	Nuclear
5.	5.29%	Hydroelectric	5.	5.21%	Wind	5.	5.14%	Hydroelectric
6.	2.70%	Wind	6.	5.08%	Hydroelectric	6.	4.05%	Wind
7.	0.72%	Wood	7.	1.27%	Solar	7.	0.76%	Wood
8.	0.29%	Geothermal	8.	0.68%	Wood	8.	0.66%	Solar
9.	0.09%	Pumped Storage	9.	0.27%	Geothermal	9.	0.29%	Geothermal
10.	0.08%	Solar	10.	0.09%	Pumped Storage	10.	0.11%	Pumped Storage

Data Analysis - Cities ≥ 70% Sunshine

Data Analysis

Top State Avg % Sunshine:

- 2. 76.25% Nevada
- 3. 75.00% New Mexico
- 4. 72.00% Colorado
- 5. 71.86% California
- 6. 68.00% Utah
- 7. 66.83% Florida
- 8. 65.75% Kansas
- 9. 65.67% Wyoming
- 10. 65.21% Texas

Data Analysis - Solar Power by State

Top 5 States:

- 1. CA 28,331,513
- 2. NC 7,451,338
- 3. AZ 5,278,019
- 4. NV 4,810,511
- 5. TX 4,365,125

Bottom 5 States:

- 1. LA 1,506
- 2. SD 1,829
- 3. ME 7,050
- 4. KS 11,323
- 5. IA 15,436

Data Analysis - Solar Power by State

Top 5 States:

- 1. CA 13,072,409
- 2. AZ 2,890,447
- 3. NC 2,471,711
- 4. NV 2,137,167
- 5. TX 1,149,194

Bottom 5 States:

- 1. LA 544
- 2. SD 592
- 3. ME 2,451
- 4. KS 2,823
- 5. IA 3,188

Data Analysis - Is there a cost correlation?

Hypothesis reminder:

Californians like solar power because we pay so much for electricity and are trying to lower our costs.

Is it true?

Let's look at the data...

Data Analysis - Cost Correlation Cont...

Avg. Price of Energy v. Avg. Solar Generation in California(2008-2018)

Data Analysis - Cost Correlation Cont...

Avg. Price of Energy v. Avg. Solar Generation by State(2008-2018)

Discussion

- **Expected to see more** solar power usage throughout the US than we did.
- Our perception of solar power ubiquity is probably skewed by living in CA.
- Expected to see far more solar power creation in the Southwest US than we did.
 North Carolina was a big surprise producer!
- Solar power uptake seems partially based on sunshine availability but California's output figures suggest other states are no where near their potential.

Post Mortem

- Why has California solar production behaved this way?
- Do other states with high energy costs have similar correlations that we can't see in the ten year averaged all-state graph?
- To further investigate the potential solar power production for each state we would need to understand:
 - Potential sunshine hours/state
 - Solar power produced/sunshine hour
 - Capabilities and limitations of solar power
 - Space, maintenance, ROI, etc.
- Is solar the best option for power generation and distribution?
 - What would be the most efficient source of power for each state?

Questions?

Ask us questions!

