1990 年全国硕士研究生招生考试试题

(试卷 Ⅲ)

一、填空题(本题共5小题,每小题3分,满分15分)

(1) 曲线
$$\begin{cases} x = \cos^3 t, \\ y = \sin^3 t \end{cases}$$
上对应于 $t = \frac{\pi}{6}$ 处的法线方程是_____.

$$(3) \int_0^1 x \sqrt{1 - x} dx = \underline{\qquad}.$$

(4) 下列两个积分的大小关系是:
$$\int_{-2}^{-1} e^{-x^3} dx$$
 _____ $\int_{-2}^{-1} e^{x^3} dx$.

(5) 设函数
$$f(x) = \begin{cases} 1, & |x| \leq 1, \\ 0, & |x| > 1, \end{cases}$$
 则函数 $f[f(x)] =$ _____.

二、选择题(本题共5小题,每小题3分,满分15分)

(1) 已知
$$\lim_{x \to \infty} \left(\frac{x^2}{x+1} - ax - b \right) = 0$$
,其中 a, b 是常数,则()

$$(A)a = 1, b = 1.$$

$$(B)a = -1, b = 1.$$

$$(C)a = 1, b = -1.$$

(D)
$$a = -1, b = -1.$$

(2) 设函数
$$f(x)$$
 在($-\infty$, $+\infty$) 上连续,则 d $\left[\int f(x) dx\right]$ 等于()

$$(A)f(x). (B)f(x) dx.$$

$$(C) f(x) + C.$$

(3) 已知函数f(x) 具有任意阶导数,且 $f'(x) = [f(x)]^2$,则当n为大于2的正整数时, f(x)的n阶 导数 $f^{(n)}(x)$ 是($(A) n! [f(x)]^{n+1}.$ $(B) n [f(x)]^{n+1}.$ $(C) [f(x)]^{2n}.$

$$(A) n! [f(x)]^{n+1}$$

$$(B)n[f(x)]^{n+1}$$
.

$$(C)[f(x)]^{2n}$$
.

(D)
$$n![f(x)]^{2n}$$
.

(4) 设 f(x) 是连续函数,且 $F(x) = \int_{a}^{e^{-x}} f(t) dt$,则 F'(x) 等于(

$$(A) - e^{-x} f(e^{-x}) - f(x).$$

(B)
$$-e^{-x}f(e^{-x}) + f(x)$$
.

$$(C)e^{-x}f(e^{-x}) - f(x).$$

(D)
$$e^{-x} f(e^{-x}) + f(x)$$
.

(A) 连续点.

(B) 第一类间断点.

(C) 第二类间断点.

(D) 连续点或间断点不能由此确定.

三、(本题共5小题,每小题5分,满分25分)

(1) 已知
$$\lim_{x\to\infty} \left(\frac{x+a}{x-a}\right)^x = 9$$
,求常数 a .

(2) 求由方程 $2y - x = (x - y)\ln(x - y)$ 所确定的函数 y = y(x) 的微分 dy.

历年考研数学真题解析及复习思路(数学二)

(3) 求曲线 $y = \frac{1}{1 + x^2} (x > 0)$ 的拐点.

$$(4) 计算 \int \frac{\ln x}{(1-x)^2} \mathrm{d}x.$$

(5) 求微分方程 $x \ln x dy + (y - \ln x) dx = 0$ 满足条件 $y \Big|_{x=e} = 1$ 的特解.

四、(本题满分9分)

在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 的第一象限部分上求一点 P,使该点处的切线,椭圆及两坐标轴所围图形面积为最小(其中 a > 0, b > 0).

五、(本题满分9分)

证明: 当 x > 0 时,有不等式 $\arctan x + \frac{1}{x} > \frac{\pi}{2}$.

六、(本题满分9分)

设
$$f(x) = \int_1^x \frac{\ln t}{1+t} \mathrm{d}t$$
,其中 $x > 0$,求 $f(x) + f\left(\frac{1}{x}\right)$.

七、(本题满分9分)

过点 P(1,0) 作抛物线 $y = \sqrt{x-2}$ 的切线,该切线与上述抛物线及 x 轴围成一平面图形. 求此平面图形绕 x 轴旋转一周所成旋转体的体积.

八、(本题满分9分)

求微分方程 $y'' + 4y' + 4y = e^{ax}$ 的通解,其中 a 为实数.