

Lecture 2: Security

Rachana Ananthakrishnan Argonne National Lab

1

Resources

Open Science Grid

What do we need?

- Identity
- Authentication
- Message Protection
- Authorization
- Single Sign On

3

Identity & Authentication

- Each entity should have an identity
- Authenticate: Establish identity
 - Is the entity who he claims he is?
 - Examples:
 - > Driving License
 - > Username/password
- Stops masquerading imposters

Open Science Grid

Authorization

- Establishing rights
- What can a said identity do?

Examples:

- Are you allowed to be on this flight?
 - > Passenger ?
 - > Pilot ?
- Unix read/write/execute permissions
- Must authenticate first

7

Single Sign-on

- Important for complex applications that need to use Grid resources
 - Enables easy coordination of varied resources
 - Enables automation of process
 - Allows remote processes and resources to act on user's behalf
 - Authentication and Delegation

Solutions

11

the globus project www.globus.org

Cryptography for Message Protection

- Enciphering and deciphering of messages in secret code
- Key
 - Collection of bits
 - Building block of cryptography
 - More bits, the stronger the key

Encryption

- Encryption is the process of taking some data and a key and feeding it into a function and getting encrypted data out
- Encrypted data is, in principal, unreadable unless decrypted

13

Decryption

- Decryption is the process of taking encrypted data and a key and feeding it into a function and getting out the original data
 - Encryption and decryption functions are linked

Asymmetric Encryption

- Encryption and decryption functions that use a key pair are called asymmetric
 - Keys are mathematically linked

15

Public and Private Keys

 With asymmetric encryption each user can be assigned a key pair: a private and public key

Private key is known only to owner

Public key is given away to the world

- Encrypt with public key, can decrypt with only private key
- Message Privacy

Digital Signatures

- Digital signatures allow the world to
 - determine if the data has been tampered
 - verify who created a chunk of data
- Sign with private key, verify with public key
- Message Integrity

the globus project

17

Public Key Infrastructure (PKI)

- PKI allows you to know that a given public key belongs to a given user
- PKI builds off of asymmetric encryption:
 - Each entity has two keys: public and private
 - The private key is known only to the entity
- The public key is given to the world encapsulated in a X.509 certificate

Certificates

- X509 Certificate binds a public key to a name.
- Similar to passport or driver's license

Certification Authorities (CAs)

- A Certification
 Authority is an entity
 that exists only to
 sign user certificates
- The CA signs it's own certificate which is distributed in a trusted manner
- Verify CA certificate, then verify issued certificate

Certificate Policy (CP)

- Each CA has a Certificate Policy (CP) which states
 - who it will issue certificates to
 - how it identifies people to issue certificates to
- Lenient CAs don't pose security threat, since resources determine the CAs they trust.

21

Certificate Issuance

- User generates public key and private key
- CA vets user identity using CA Policy
- Public key is sent to CA
 - Email
 - Browser upload
 - Implied
- Signs user's public key as X509 Certificate
- User private key is never seen by anyone, including the CA

Certificate Revocation

- CA can revoke any user certificate
 - Private key compromised
 - Malicious user
- Certificate Revocation List (CRL)
 - List of X509 Certificates revoked
 - Published, typically on CA web site.
- Before accepting certificate, resource must check CRLs

23

Authorization

- Establishing rights of an identity
- Chaining authorization schemes
 - Client must be User Green and have a candle stick and be in the library!
- Types:
 - Server side authorization
 - Client side authorization

Gridmap Authorization

- Commonly used in Globus for server side
- Gridmap is a list of mappings from allowed DNs to user name

"/C=US/O=Globus/O=ANL/OU=MCS/CN=Ben Clifford" benc "/C=US/O=Globus/O=ANL/OU=MCS/CN=MikeWilde" wilde

- ACL + some attribute
- Controlled by administrator
- Open read access

25

The Grid Security Infrastructure

- The Grid Security Infrastructure (GSI) is a set of tools, libraries and protocols used in Globus to allow users and applications to securely access resources.
- Based on PKI
- Uses Secure Socket Layer for authentication and message protection
 - Encryption
 - Signature
- Adds features needed for Single-Sign on
 - Proxy Credentials
 - Delegation

GSI: Credentials

- In the GSI system each user has a set of credentials they use to prove their identity on the grid
 - Consists of a X509 certificate and private key
- Long-term private key is kept encrypted with a pass phrase
 - Good for security, inconvenient for repeated usage

27

GSI: Proxy Credentials

- Proxy credentials are short-lived credentials created by user
 - Proxy signed by certificate private key
- Short term binding of user's identity to alternate private key
- Same effective identity as certificate

GSI: Proxy Credentials

- Stored unencrypted for easy repeated access
- Chain of trust
 - Trust CA -> Trust User Certificate -> Trust Proxy
- Key aspects:
 - Generate proxies with short lifetime
 - Set appropriate permissions on proxy file
 - Destroy when done

29

GSI Delegation

- Enabling another entity to run as you
- Provide the other entity with a proxy
- Ensure
 - Limited lifetime
 - Limited capability

Grid Security At Work

- Get certificate from relevant CA
- Request to be authorized for resources
- Generate proxy as needed
- Run clients
 - Authenticate
 - Authorize
 - Delegate as required

Numerous resource, different CAs, numerous credentials

Open Science Grid

31

MyProxy

- Developed at NCSA
- Credential Repository with different access mechanism (e.g username/pass phrase)
- Can act as a credential translator from username/pass phrase to GSI
- Online CA
- Supports various authentication schemes
 - Passphrase, Certificate, Kerberos

MyProxy: Use Cases

- Credential need not be stored in every machine
- Used by services that can only handle username and pass phrases to authenticate to Grid. E.g. web portals
- Handles credential renewal for longrunning tasks
- Can delegate to other services

33

Lab Session

- Focus on tools
 - Certificates
 - Proxies
 - Gridmap Authorization
 - Delegation
 - MyProxy

Slide Acknowledgements

- Von Welch
- Frank Siebenlist

