Redes neuronales artificiales

Aprendizaje profundo

Departamento de Sistemas Informáticos

E.T.S.I. de Sistemas Informáticos - UPM

Conceptos generales (I)

Las redes neuronales (ANN, del inglés *artificial neural networks*) son un modelo computacional inspirado en el funcionamiento del cerebro humano

- Están formadas por un conjunto de nodos (neuronas) interconectados
- Cada neurona recibe una serie de entradas, las procesa y produce una salida
- Las conexiones tienen un peso que modifica la influencia de la entrada en la salida
- La red se entrena ajustando los pesos de las conexiones para minimizar el error de la salida

La misma red neuronal puede adaptarse para diferentes tipos de entrada (imágenes, texto, numéricos) y obtener buenos resultados

Conceptos generales (II)

El proceso de funcionamiento de una red neuronal es el siguiente

- 1. Introducimos unos datos de entrada en la red
- 2. Realizamos la predicción, obteniendo la salida
 - También inferencia, propagación hacia adelante o, simplemente, propagación
- 3. Si estamos en el proceso del entrenamiento de la red, además:
 - i. Comparamos la predicción con la salida esperada, viendo el error
 - Esto sólo en el caso de un esquema de entrenamiento supervisado
 - ii. Ajustamos los parámetros internos para tratar de minimizar ese error y mejorar las futuras predicciones

Los datos se almacenan como vectores y matrices, por eso es útil el hardware destinado a cálculos matriciales como las GPU

Neurona artificial o perceptrón

Modelo matemático que simula el comportamiento de una neurona biológica

- 1. Toma las entradas x_1, x_2, \ldots, x_n , cada una con su peso w_1, w_2, \ldots, w_n
- 2. Aplica una función de activación a la suma ponderada de las entradas y los pesos

Figura 1. Esquema de neurona biológica

Figura 2. Esquema de neurona artificial

Inferencia

Obtención de la salida a partir de la suma ponderada de las entradas y sus pesos

Figura 3. La salida se obtiene en **función** de la suma ponderada de las entradas

Dos formas de obtener la salida:

1. Escalar

$$\hat{y} = f\left(\sum_{i=1}^n w_i x_i
ight)$$

2. Forma vectorial

$$\hat{y} = f(WX)$$

Ambas formas son equivalentes

Múltiples salidas (I)

Varias salidas para una misma entrada es equivalente a tener varias neuronas

Figura 4. Múltiples salidas para una misma entrada es, en esencia, varios perceptrones.

Las entradas siguen siendo un vector $oldsymbol{X}$

$$X = [x_1 \quad x_2 \quad \dots \quad x_n]$$

Los pesos de la red serán la $oldsymbol{\mathsf{matriz}}\ W$

$$W = egin{bmatrix} w_{11} & w_{12} & \dots & w_{1n} \ w_{21} & w_{22} & \dots & w_{2n} \ dots & dots & \ddots & dots \ w_{m1} & w_{m2} & \dots & w_{mn} \end{bmatrix}$$

Múltiples salidas (II)

Varias salidas para una misma entrada es equivalente a tener varias neuronas

Figura 4. Múltiples salidas para una misma entrada es, en esencia, varios perceptrones.

La salida será

$$\hat{y} = f\left(WX
ight) = egin{bmatrix} y_1 \ \hat{y}_2 \ dots \ \hat{y}_m \end{bmatrix}$$

Es decir, una inferencia por neurona

- Esta estructura se conoce como capa
- Cobrará importancia más adelante

Funciones de activación (i)

Son quienes determinan la salida de la neurona; algunos ejemplos son:

Funciones escalón

• Heaviside:
$$f(x) = egin{cases} 0 & ext{si } x < 0 \ 1 & ext{si } x \geq 0 \end{cases}$$

• Signo:
$$f(x) = egin{cases} -1 & ext{si } x < 0 \ 0 & ext{si } x = 0 \ 1 & ext{si } x > 0 \end{cases}$$

Funciones lineales

- Identidad: f(x) = x
- Lineal: f(x) = ax + b

Funciones sigmoide

- Logística: $f(x) = \frac{1}{1 + e^{-x}}$
- Tan. hiperbólica: f(x) = anh(x)

Funciones rectificadas

- ReLU: $f(x) = \max(0, x)$
- Leaky ReLU: $f(x) = \max(\alpha x, x)$

Funciones de activación suaves

• Softmax:
$$f(x) = rac{e^{x_i}}{\sum_{j=1}^n e^{x_j}}$$

Funciones de activación (II)

Figura 5. Algunas funciones de activación comunes.

Estimación de error o loss

El error de la red se mide con una función de pérdida (loss function)

- Mide la diferencia entre la salida de la red y la salida esperada
- El objetivo es minimizar esta función
- Algunas funciones de pérdida comunes son:
 - \circ Error cuadrático medio: $rac{1}{n}\sum_{i=1}^n (y_i \hat{y}_i)^2$
 - \circ Entropía cruzada: $-\sum_{i=1}^n y_i \log(\hat{y}_i)$
 - \circ Error absoluto medio: $rac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$
- La elección de la función de pérdida depende del problema a resolver
- En general, se busca que sea derivable para poder aplicar algoritmos de optimización

Entrenamiento de redes neuronales

¿En qué consiste el entrenamiento?

Consiste en ajustar los pesos de las conexiones para minimizar el error

Para aumentar su fiabilidad, se suele realizar una división de tres conjuntos:

- 1. Entrenamiento: Ajuste de parámetros (pesos)
- 2. Validación: Ajuste de hiperparámetros
- 3. **Test**: Validación una vez finalizado el entrenamiento

El conjunto de validación se usa durante el entrenamiento

• El conjunto de test se utiliza al final del entrenamiento

Figura 6. Diferentes conjuntos de datos

Problemas de ajuste (I)

Compromismo sesgo-varianza (*bias-variance tradeoff*): Dos métricas que ayudan a evaluar el comportamiento de un modelo:

- Sesgo (bias): Error por suposiciones incorrectas en el modelo
- Varianza (variance): Error por la sensibilidad del modelo a variaciones en los datos

Figura 7. Ilustración del compromiso >bias-variance. Fuente: Data Science Central

Problemas de ajuste (II)

Sesgo y varianza son dos fuentes de error que afectan a los modelos de ML

Figura 8. Sesgo y varianza en función de la complejidad del modelo. Fuente: Wikipedia

Problemas de ajuste (III)

No posible minimizar el sesgo y la varianza a la vez

Sesgo alto

- Subajuste (underfitting)
- Sobresimplificación del problema
- Losses demasiado altos
- No captura la tendencia de los datos

Varianza alta

- Sobreajuste (overfitting)
- Sobrecomplicación del problema
- Dataset demasiado ruidos
- Demasiada complejidad

Compromiso sesgo-varianza en el entrenamiento (I)

El objetivo del entrenamiento es encontrar un **equilibrio entre sesgo y varianza**

Figura 8. Proceso de entrenamiento de un modelo teniendo en cuenta el compromiso sesgo-varianza

Compromiso sesgo-varianza en el entrenamiento (II)

¿Cómo reducimos sesgo?

- Más entrenamiento
- Cambiar de arquitectura
- Aumentar complejidad del modelo
 - Añadir neuronas
 - Añadir capas
- ...

¿Cómo reducimos varianza?

- Aumentar el dataset
- Cambiar de arquitectura
- Regularización
 - Dropout
 - *L*1, *L*2, ...
- Menos entrenamiento
- ...

Técnicas de regularización

Regularización

Es el proceso por el cual se evita el sobreajuste de un modelo

- Regularización $\mathcal{L}1$ y $\mathcal{L}2$
- Decaimiento de pesos
- Dropout
- Batch normalization
- Data augmentation
- Early stopping

Regularización $\mathcal{L}1$

La idea de estas técnicas es reducir el valor de los parámetros para que sean pequeños

• Introduce una **penalización** a la función de corte \mathcal{L} , añadiendo a su valor el valor absoluto de los parámetros (ω)

$$\mathcal{L}\mathit{1}(X,\omega) = L(X,\omega) + \lambda \sum |\omega|$$

 $oldsymbol{\cdot}$ λ es un parámetro que controla la fuerza de la regularización

 $\mathcal{L}1$ «empuja» el valor de los parámetros hacia valores muy pequeños pequeños

- Hay que tener cuidado que podemos anular valores de entrada a la red.
- Se puede ver como una suerte de selección de variables automática

Regularización $\mathcal{L}2$

Es una técnica muy parecida a la anterior donde los parámetros usan el cuadrado de los parámetros en lugar del valor absoluto

$$\mathcal{L}\mathcal{Z}(X,\omega) = L(X,\omega) + \lambda \sum \omega_i^2$$

• Mediante el parámetro λ podemos ajustar la regularización

El resultado de $\mathcal{L}1$ y $\mathcal{L}2$ es una mejor generalización (hasta cierto punto)

Dropout

Desactiva neuronas de la red durante el entrenamiento de forma aleatoria

Figura 9. Ejemplo de actuación del *dropout* durante un entrenamiento

Deactivando neuronas, la red se obliga a aprender de forma más robusta

• Esto es, reparte el conocimiento de todos los ejemplos entre todas las neuronas

Regularización dropout.ipynb

Batch normalization

Es una técnica que **normaliza** las salidas de las neuronas añadiendo una capa extra entre las neuronas y la función de activación

- Ocasiona que el rango de la entrada escale fácilmente hasta el rango de salida, lo que ayudará y reducirá las oscilaciones de la función de coste
- Como consecuencia de esto podremos aumentar la tasa de aprendizaje (no hay tanto riesgo de acabar en un mínimo local) y la convergencia hacia el mínimo global se producirá más rápidamente.

Cuidado: No siempre beneficia a nuestra red, hay estudios que describen una mayor tendencia a la aparición de problemas de desvanicimiento del gradiente

Data augmentation

Consisite en aumentar el tamaño del dataset de entrenamiento de forma sintética

- En realidad no es un algoritmo de regularización, sino una estrategia
- Al aumentar el tamaño del conjunto de datos, se reduce el riesgo de sobreajuste

Los métodos más comunes para dataset de imágenes son:

- Voltear la imagen en horizontal / vertical
- Rotar la imagen X grados.
- Recortar, añadir relleno, redimensionar, ...
- Introducir ruido, defectos, ...

En la actualidad disponemos de modelos de DL capaces de generar datos sintéticos más fieles a la realidad

Problemas del gradiente

¿Qué pasa con el gradiente?

El gradiente es la herramienta principal para ajustar los pesos de la red

$$W_{t+1} = W_t - lpha rac{\partial L}{\partial W_t}$$

- 1. Al entrenar, usamos algoritmos de descenso del gradiente para minimizar el error
- 2. En n capas, el gradiente se propaga hacia atrás, ajustando los pesos de la red
- 3. Dependiendo del valor de los gradientes, los valores se pueden descontrolar:
 - Pequeños → Gradiente disminuye exponencialmente (desvanecimiento del gradiente)
 - Grandes → Gradiente aumenta exponencialmente (explosión del gradiente)

Afortunadamente, hay soluciones para estos problemas

Desvanecimiento y explosión del gradiente

Están directamente influenciados por el número de capas que posee una red

- 1. Desvanecimiento del gradiente: Los pesos de las primeras capas no se actualizan
- 2. Explosión del gradiente: Los pesos de las primeras capas se actualizan en exceso

En la retropropagación se propagan los errores desde la salida hasta la entrada

• La acumulación de valores puede hacer que las derivadas de las funciones de activación se descontrolen

Desvanecimiento del gradiente (vanishing gradient) (I)

Figura 11. En sus extremos la derivada de la sigmoida el casi 0. Fuente: neptune.ai.

Ocurre al usar funciones de activación con derivada **muy pequeña**

Tangente hiperbólica y sigmoide

Se prefieren **ReLU** o **Leaky ReLU**:

- Son más estables y no sufren de saturación
- La derivada de ReLU y LeakyReLU es $1 \sin x > 0$
- Ambas siguen siendo no lienales

Se identifica cuando el *loss* no disminuye o lo hace muy lentamente

Desvanecimiento del gradiente (vanishing gradient) (II)

Algunas posibles soluciones para resolver este problema son las siguientes:

- Reducir la cantidad de capas, propagando así menos errores
- Elección cuidadosa de los pesos de inicialización de la red
- Usar funciones de activación alternativas, como ReLU o Leaky ReLU
- Uso de arquitecturas como las redes residuales¹
 - También ayudan contra la explosión del gradiente, ya que estabilizan el entrenamiento

¹ He, K., Zhang, X., Ren, S., & Sun, J. (2016). *Deep residual learning for image recognition*. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Desvanecimiento del gradiente (vanishing gradient) (III)

Figura 12. Bloque residual de una red residual, donde la entrada se salta una capa para propagar el error evitando. Fuente: Wikipedia.

Explosión del gradiente (exploding gradient)

Ocurre cuando las derivadas de las funciones de activación son muy grandes

- Y claro, los gradientes se amplifican durante el entrenamiento
- Se suele identificar por un aumento drástico en el *loss* (o directamente NaN)

¿Qué lo causa? Pues generalmente una combinación de:

- Uso de funciones de activación con derivadas grandes
- Inicialización inadecuada de los pesos
- Profundidad excesiva en la arquitectura de la red

¿Cómo lo mitigamos?

- Gradient Clipping: Limita el valor máximo de los gradientes
- Inicialización de Pesos: Xavier o He ayudan a estabilizar los valores iniciales
- Regularización y técnicas avanzadas: E.g. normalización y conexiones residuales

Ejercicios sugeridos

- Comparación de rendimiento de modelos
- California housing

Licencia

Esta obra está licenciada bajo una licencia Creative Commons Atribución-NoComercial-Compartirlgual 4.0 Internacional.

Puedes encontrar su código en el siguiente enlace: https://github.com/etsisi/Aprendizaje-profundo