

Desarrollo de hardware y firmware para un sistema de control, gestión y comunicación de luminaria pública

Autor:

Ing. Juan Manuel Guariste

Director:

Ing. Juan Manuel Cruz (FIUBA)

${\rm \acute{I}ndice}$

1. Descripción técnica-conceptual del proyecto a realizar 5
2. Identificación y análisis de los interesados 6
3. Propósito del proyecto
4. Alcance del proyecto
5. Supuestos del proyecto
6. Requerimientos
7. Historias de usuarios ($Product\ backlog$)
8. Entregables principales del proyecto
9. Desglose del trabajo en tareas
10. Diagrama de Activity On Node
11. Diagrama de Gantt
12. Presupuesto detallado del proyecto
13. Gestión de riesgos
14. Gestión de la calidad
15. Procesos de cierre

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	20 de agosto de 2024
1	Se completa hasta el punto 5 inclusive	3 de septiembre de 2024

Acta de constitución del proyecto

Buenos Aires, 20 de agosto de 2024

Por medio de la presente se acuerda con el Ing. Juan Manuel Guariste que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Desarrollo de hardware y firmware para un sistema de control, gestión y comunicación de luminaria pública" y consistirá en la implementación de un prototipo para el control eficiente y remoto de las luminarias, permitiendo una comunicación efectiva y robusta entre ellas y una gestión centralizada. El trabajo tendrá un presupuesto preliminar estimado de 600 horas y un costo estimado de U\$D 1000, con fecha de inicio el 20 de agosto de 2024 y fecha de presentación pública el 15 de mayo de 2025.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Ing. Bernardo Martínez Sáenz Deitres S.A.

Ing. Juan Manuel Cruz Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

El proyecto está alineado con las necesidades de Deitres S.A., empresa donde el autor de este proyecto trabaja como ingeniero de desarrollo de hardware y firmware. Deitres S.A. se especializa en crear soluciones tecnológicas e innovadoras para la seguridad electrónica, domótica y la industria. Este proyecto aborda la ineficiencia en la gestión de la iluminación pública, un problema crítico en las ciudades modernas donde el control efectivo y el ahorro energético son esenciales. Muchas ciudades enfrentan dificultades para mantener un control preciso sobre sus redes de iluminación pública, lo que genera altos costos operativos, de mantenimiento y de consumo energético.

Actualmente, existen diversas soluciones para la gestión de la iluminación pública, desde sistemas básicos de encendido y apagado programado hasta tecnologías más avanzadas que permiten el control remoto y la automatización. Sin embargo, muchas de estas soluciones tienen limitaciones en términos de escalabilidad, robustez de comunicación y capacidad de integración con otras tecnologías.

La solución propuesta es el CityLight, un prototipo de luminaria inteligente que se conecta a internet a través de Wi-Fi y redes celulares. Estos dispositivos, una vez instalados, interactúan entre sí formando una red con topología mesh en 915 MHz, utilizando un protocolo propio desarrollado por la empresa e implementado en otros de sus productos. Si un dispositivo necesita comunicar un evento o el estado de una luminaria y no cuenta con conexión a internet, podrá utilizar esta red mesh para conectarse con otro CityLight que funcione como gateway. Esto no solo garantiza un sistema de comunicación eficiente y robusto, sino que también ofrece la ventaja de superar una eventual obsolescencia tecnológica. Por ejemplo, si en una ciudad se desmantelan las redes celulares 3G, los CityLight que utilizaban esa interfaz de conexión a internet podrán seguir comunicando sus eventos a través de la red mesh, conectándose a otros CityLight con otras formas de conexión, como Wi-Fi. Además, si surge una nueva tecnología de conexión a internet, como la satelital o 5G, bastará con que un solo CityLight disponga de esa interfaz para que pueda actuar como gateway para los demás nodos de la red mesh.

A continuación se detallan las funcionalidades específicas que se implementarán en el prototipo de luminaria inteligente, CityLight:

- Conector NEMA: Dispondrá de una interfaz física NEMA para conectarse a las luminarias, permitiendo una integración estándar con diversos sistemas de iluminación existentes.
- Medición de intensidad lumínica ambiental mediante sensor fotosensible (fotocélula): Permitirá ajustar la iluminación en función de las condiciones de luz externa.
- Actuación sobre la intensidad lumínica de la luminaria mediante circuito dimmer: Facilitará el ajuste de la intensidad de la luz según las necesidades.
- Medición de consumo de corriente AC: Para monitorear el consumo energético de las luminarias.
- Detección de presencia de tensión AC: Para asegurar el correcto funcionamiento del sistema.
- Utilización de circuito adaptador de señales para control de la luminaria: Adaptará las señales de control.

- Control de habilitación/deshabilitación de suministro de corriente a la luminaria mediante accionamiento de relé: Permitirá encender o apagar las luminarias de manera automatizada o por comandos enviados remotamente.
- Interfaz de conexión a internet: El sistema podrá recibir comandos y enviar reportes a través de interfaces Wi-Fi y celular. Se le podrá consultar el estado de la luminaria y actuar sobre ella.
- Red mesh: Implementación de la red mesh en 915 MHz que permita la comunicación entre dispositivos CityLight.
- Geo-posicionamiento de luminarias: Utilización de GPS para la localización precisa de cada unidad.
- Posibilidad de operar con alimentación alterna o a batería: Asegurará la operación del sistema bajo diversas condiciones de suministro energético.

En la figura 1 se presenta un diagrama en bloques del sistema propuesto en el que se observan las distintas funcionalidades a implementar.

Figura 1. Diagrama en bloques del sistema.

El cliente de este proyecto valora la aplicación de la red mesh en 915 MHz debido a su éxito en otros productos desarrollados por la empresa. La integración de esta red distingue al proyecto CityLight de otras soluciones, ofreciendo una comunicación más robusta y eficiente entre las luminarias y mejorando la escalabilidad del sistema. Este proyecto es crucial para Deitres S.A. porque permitirá expandir el uso de una tecnología ya validada y apreciada, reforzando su posición en el mercado de soluciones para la gestión de infraestructuras urbanas.

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Cliente	Ing. Bernardo	Deitres S.A.	CEO de Deitres S.A.
	Martínez Sáenz		
Responsable	Ing. Juan Manuel	FIUBA	Alumno
	Guariste		
Orientador	Ing. Juan Manuel	FIUBA	Director del Trabajo Final
	Cruz		
Usuario final	Municipalidades y em-	-	-
	presas de infraestruc-		
	tura urbana		

3. Propósito del proyecto

Mejorar la eficiencia en la gestión de la iluminación pública, reducir los costos operativos y de mantenimiento, y optimizar el consumo energético. Se busca desarrollar un sistema de luminarias inteligentes con conexión a internet que permita un control preciso y remoto, garantizando una comunicación robusta y escalable entre las luminarias mediante una red mesh.

4. Alcance del proyecto

El proyecto incluye el diseño de circuito impreso y desarrollo de firmware que permita:

- Conexión con el conector NEMA.
- Adquisición de señales y control de la luminaria.
- Implementar interfaces de conexión a internet mediante Wi-Fi y red celular.
- Geolocalización mediante modulo GPS.
- Implementación de red mesh en 915 MHz.
- Integración del CityLight con el software de control y gestión existente en la empresa.

El proyecto no incluye:

- Desarrollo de nuevo software de control y gestión para los dispositivos.
- Pruebas de campo del prototipo.
- Certificación del prototipo ante organismos regulatorios nacionales y/o internacionales.

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

■ El Ing. Juan Manuel Guariste, responsable del proyecto, y el Ing. Bernardo Martínez Sáenz, cliente del proyecto, estan de acuerdo con los requerimientos y alcance planteado en este documento.

- El presupuesto necesario para el desarrollo estará a cargo de la empresa Deitres S. A.
- El Ing. Juan Manuel Guariste dispondrá eventualmente de tiempo de la jornada laboral para llevar a cabo el proyecto en el plazo especificado en el acta de constitución.
- Se conseguirán todos los componentes necesarios para el desarrollo en tiempo y forma.

6. Requerimientos

Los requerimientos deben enumerarse y de ser posible estar agrupados por afinidad, por ejemplo:

- 1. Requerimientos funcionales:
 - 1.1. El sistema debe...
 - 1.2. Tal componente debe...
 - 1.3. El usuario debe poder...
- 2. Requerimientos de documentación:
 - 2.1. Requerimiento 1.
 - 2.2. Requerimiento 2 (prioridad menor)
- 3. Requerimiento de testing...
- 4. Requerimientos de la interfaz...
- 5. Requerimientos interoperabilidad...
- 6. etc...

Leyendo los requerimientos se debe poder interpretar cómo será el proyecto y su funcionalidad.

Indicar claramente cuál es la prioridad entre los distintos requerimientos y si hay requerimientos opcionales.

¡¡¡No olvidarse de que los requerimientos incluyen a las regulaciones y normas vigentes!!!

Y al escribirlos seguir las siguientes reglas:

- Ser breve y conciso (nadie lee cosas largas).
- Ser específico: no dejar lugar a confusiones.
- Expresar los requerimientos en términos que sean cuantificables y medibles.

7. Historias de usuarios (*Product backlog*)

Descripción: en esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

Se debe indicar explícitamente el criterio para calcular los story points de cada historia.

El formato propuesto es:

"Como [rol] quiero [tal cosa] para [tal otra cosa]."
 Story points: 8 (complejidad: 3, dificultad: 2, incertidumbre: 3)

8. Entregables principales del proyecto

Los entregables del proyecto son (ejemplo):

- Manual de usuario.
- Diagrama de circuitos esquemáticos.
- Código fuente del firmware.
- Diagrama de instalación.
- Memoria del trabajo final.
- etc...

9. Desglose del trabajo en tareas

El WBS debe tener relación directa o indirecta con los requerimientos. Son todas las actividades que se harán en el proyecto para dar cumplimiento a los requerimientos. Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1 (suma h)
 - 1.1. Tarea 1 (tantas h)
 - 1.2. Tarea 2 (tantas h)
 - 1.3. Tarea 3 (tantas h)
- 2. Grupo de tareas 2 (suma h)
 - 2.1. Tarea 1 (tantas h)

- 2.2. Tarea 2 (tantas h)
- 2.3. Tarea 3 (tantas h)
- 3. Grupo de tareas 3 (suma h)
 - 3.1. Tarea 1 (tantas h)
 - 3.2. Tarea 2 (tantas h)
 - 3.3. Tarea 3 (tantas h)
 - 3.4. Tarea 4 (tantas h)
 - 3.5. Tarea 5 (tantas h)

Cantidad total de horas: tantas.

¡Importante!: la unidad de horas es h y va separada por espacio del número. Es incorrecto escribir "23hs".

Se recomienda que no haya ninguna tarea que lleve más de 40 h. De ser así se recomienda dividirla en tareas de menor duración.

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Una herramienta simple para desarrollar los diagramas es el Draw.io (https://app.diagrams.net/). Draw.io

Figura 2. Diagrama de Activity on Node.

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semi críticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color.

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de Gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa.
 https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt
 http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 3, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Las fechas pueden ser calculadas utilizando alguna de las herramientas antes citadas. Sin embargo, el siguiente ejemplo fue elaborado utilizando esta hoja de cálculo.

Es importante destacar que el ancho del diagrama estará dado por la longitud del texto utilizado para las tareas (Ejemplo: tarea 1, tarea 2, etcétera) y el valor x unit. Para mejorar la apariencia del diagrama, es necesario ajustar este valor y, quizás, acortar los nombres de las tareas.

Figura 3. Diagrama de gantt de ejemplo

Figura 4. Ejemplo de diagrama de Gantt (apaisado).

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

Incluir la aclaración de si se emplea como moneda el peso argentino (ARS) o si se usa moneda extranjera (USD, EUR, etc). Si es en moneda extranjera se debe indicar la tasa de conversión respecto a la moneda local en una fecha dada.

COSTOS DIRECTOS						
Descripción	Cantidad	Valor unitario	Valor total			
SUBTOTAL						
COSTOS INDIRECTOS						
Descripción	Cantidad	Valor unitario	Valor total			
SUBTOTAL						
TOTAL						

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).

Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

Severidad (S): X.
 Justificación...

• Ocurrencia (O): Y. Justificación...

Riesgo 3:

Severidad (S): X.
 Justificación...

• Ocurrencia (O): Y. Justificación...

b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado:

Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación:

- Severidad (S*): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O*): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Elija al menos diez requerimientos que a su criterio sean los más importantes/críticos/que aportan más valor y para cada uno de ellos indique las acciones de verificación y validación que permitan asegurar su cumplimiento.

• Req #1: copiar acá el requerimiento con su correspondiente número.

- Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar.
- Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar.

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc.

Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno.

En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 - Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, los problemas que surgieron y cómo se solucionaron:
 - Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores:
 - Indicar esto y quién financiará los gastos correspondientes.