Dynamic Summation

Given a tree of *N* nodes, where each node is uniquely numbered in between [1, N]. Each node also has a value which is initially 0. You need to perform following two operations in the tree.

- 1. Update Operation
- 2. Report Operation

Update Operation

Urtab

Adds $a^b + (a+1)^b + (b+1)^a$ to all nodes in the subtree rooted at t, considering that tree is rooted at r (see explanation for more details).

Report Operation

Rrtm

Output the sum of all nodes in the subtree rooted at t, considering that tree is rooted at r. Output the sum modulo m (see explanation for more details).

Input Format

First line contains *N*, number of nodes in the tree.

Next N-1 lines contain two space separated integers x and y which denote that there is an edge between node x and node y.

Next line contains Q, number of queries to follow.

Next Q lines follow, each line will be either a report operation or an update operation.

Output Format

For each report query output the answer in a separate line.

Constraints

```
1 \le N \le 100000

1 \le Q \le 100000

1 \le m \le 101

1 \le r, t, x, y \le N

x \ne y

1 \le a, b \le 10^{18}
```

Notes

- 1. There will be at most one edge between a pair of nodes.
- 2. There will be no loop.
- 3. Tree will be completely connected.

Sample Input

```
4
12
23
34
4
U 3 2 2 2
```

```
U 2 3 2 2
R 1 2 8
R 4 3 9
```

Sample Output

```
2
3
```

Explanation

Initially Values in each node: [0,0,0,0]

The first query is U 3 2 2 2. Here, tree is rooted at 3. It looks like

```
3(0)
/\
/\
/ \
2(0) 4(0)
|
|
1(0)
```

For the sub tree rooted at 2 (nodes 2 and 1), we add a b + $(a+1)^b$ + $(b+1)^a$ = 2^2 + 3^2 + 3^2 = 22. After first update operation, nodes 1, 2, 3, and 4 will have values 22, 22, 0 and 0 respectively.

```
3(0)
/\
/\
/ \
2(22) 4(0)
|
|
1(22)
```

The second query is U 2 3 2 2. Here, tree is rooted at 2. It looks like

```
2(22)
/\
/\
/ \
1(22) 3(0)
|
|
4(0)
```

For the sub tree rooted at 3 (nodes 3 and 4), we add $a^b + (a+1)^b + (b+1)^a = 2^2 + 3^2 + 3^2 = 22$. After second update operation, nodes 1, 2, 3, and 4 each have values 22,22,22 respectively.

```
2(22)
/\
/\
/ \
1(22) 3(22)
|
|
|
4(22)
```

The first report query is R 1 2 8 asks for the sum modulo 8 of the subtree rooted at 2, when the tree is rooted at 1. The tree looks like

```
1(22)
\
\
2*(22)
|
|
|
3*(22)
|
```

```
4*(22)
```

The sum of the values of nodes 2, 3 and 4 are

```
(22 + 22 + 22) % 8 = 2
```

The second report query is R439 asks for the sum modulo 9 of the subtree rooted at 3 when the tree is rooted at 4. The tree looks like

```
4(22)
\
\
3*(22)
|
|
2*(22)
|
|
1*(22)
```

The sum of the values of nodes 3, 2 and 1 are

```
(22 + 22 + 22) % 9 = 3
```

Time Limits:

C, C++: 4s | Java and other JVM based languages: 10s | Python, Python3 = 45s | Other interpreted Language: 30s | C#, Haskell: 10s | Rest: 3 times of default.