Une chaîne de salons de coiffure propose à ses clients qui viennent pour une coupe, deux prestations supplémentaires cumulables :

- · Une coloration naturelle à base de plantes appelée « couleur-soin »;
- · Des mèches blondes pour donner du relief à la chevelure, appelées « effet coup de soleil ».

Le tableauc ci-contre donne la répartition incomplète des demandes des clients sur une semaine.

On choisi un client au hasard.

On note C l'événement : «Le client souhaite une «couleur-soin» et E l'événement : « Le client souhaite un « effet coup de soleil ».

	C	\overline{C}	Total
E	10	15	25
\overline{E}	14	1	15
Total	24	16	40

Pour chaque question, plusieurs réponses peuvent être correctes.

1.	La	probabilité d	iue le	client ait	choisi une	e « couleur-soin »	et un « effet cou	n de soleil » est :
• •	Lu	probabilite c		Cticitt ait	CITOTOT WITE	s wedatear boiling	ct an wenter coa	p ac solcit, cst

$$\square P_E(C)$$

$$\checkmark P(C \cap E)$$
 $\checkmark 25\%$

- **2.** $P_{\overline{E}}(C)$ représente la probabilité que le client :
 - ☐ ait choisi une «couleur-soin» sans «effet coup de soleil»;
 - ☐ ait choisi une «couleur-soin» et «effet coup de soleil»;
 - ☐ n'ait pas choisi un « effet coup de soleil » sachant qu'il a choisi une « couleur-soin »;
 - ✓ ait choisi une « couleur-soin » sachant qu'il n'a pas choisi un « effet coup de soleil ».
- 3. La probabilité que le client n'ait choisi ni une « couleur-soin », ni un « effet coup de soleil » est :

$$\checkmark \frac{1}{40}$$

$$\square \frac{1}{16}$$

Corrigé:

D'après le tableau, on a :

1.
$$P(E \cap C) = \frac{10}{40}$$

= $\frac{1}{4}$
= 0,25
= 25%

3.
$$P(\overline{C} \cap \overline{E}) = \frac{1}{40}$$

= 0,025
= 2,5%

Une agence de voyage propose deux formules week-end pour se rendre à Londres depuis Paris. Les clients choisissent leur moyen de transport : train ou avion.

De plus, s'ils le souhaitent, ils peuvent compléter leur formule par l'option « visites guidées ».

Une étude a produit les données suivantes :

- 42 % des clients optent pour l'avion;
- · Parmi les clients ayant choisi le train, 44 % choisissent aussi l'option «visites guidées»;
- · 30 % des clients ont choisi à la fois l'avion et l'option « visites guidées ».

On interroge au hasard un client de l'agence ayant souscrit à une formule week-end à Londres. On considère les événements suivants :

- *A* : le client a choisi l'avion ;
- \cdot V: le client a choisi l'option « visites guidées ».
- **1.** Donner les probabilités P(A), $P_{\bar{A}}(V)$ et $P(A \cap V)$ et construire un arbre de probabilités représentant la situation.
- **2.** Calculer $P_A(V)$.
- 3. Démontrer que la probabilité pour que le client interrogé ait choisi l'option « visites guidées » est égale à 0,555 environ.
- **4.** Calculer la probabilité pour que le client interrogé ait pris l'avion sachant qu'il n'a pas choisi l'option «visites guidées ». Arrondir le résultat au centième.
- 5. On interroge au hasard deux clients de manière aléatoire et indépendante. Quelle est la probabilité qu'aucun des deux ne prenne l'option « visites guidées »? On donnera les résultats sous forme de valeurs approchées à 10^{-3} près.

Corrigé:

1. De l'énoncé, on déduit que :

$$P(A) = 0.42$$

 $P_{\bar{A}}(V) = 0.44$
 $P(A \cap V) = 0.3$

On peut alors construire cet arbre de probabilités :

2. On a donc
$$P_A(V) = \frac{P(A \cap V)}{P(A)} = \frac{0.3}{0.42} = \frac{30}{42} = \frac{5}{7}$$
.

3. Comme A et \bar{A} forment une partition de l'univers, on peut appliquer la loi des probabilités totales :

$$P(V) = P(A \cap V) + P(\bar{A} \cap V).$$

Or
$$P(\bar{A} \cap V) = P(\bar{A}) \times P_{\bar{A}}(V) = (1 - 0.42) \times 0.44 = 0.2552.$$

Donc
$$P(V) = 0.3 + 0.2552 = 0.5552$$
.

4. On a $P_{\bar{V}}(A) = \frac{P(\bar{V} \cap A)}{P(\bar{V})} = \frac{P(A \cap \bar{V})}{P(\bar{V})} = \frac{P(A) \times P_A(\bar{V})}{P(\bar{V})}.$

Or, d'après la question précédente : $P(\bar{V}) = 1 - P(V) = 1 - 0.5552 = 0.4448$ et d'après la question $2: P_A(\bar{V}) = 1 - P_A(V) = 1 - \frac{5}{7} = \frac{2}{7}$.

et d'après la question
$$2: P_A(\bar{V}) = 1 - P_A(V) = 1 - \frac{5}{7} = \frac{2}{7}$$

Donc
$$P_{\bar{V}}(A) = \frac{0.42 \times \frac{12}{42}}{0.4448} \approx 0.27.$$

5. On a vu que $P(\bar{V}) = 1 - 0.5552 = 0.4448$.

Comme les deux événements sont indépendants, en les appelant \bar{V}_1 et \bar{V}_2 , on a : $P(\bar{V}_1 \cap \bar{V}_2) =$ $P(\bar{V_1}) \times P(\bar{V_2})$

La probabilité cherchée est donc égale à $P(\bar{V}_1 \cap \bar{V}_2) = 0.4448 \times 0.4448 \approx 0.198$.

Exercice 3

Soit x un réel compris entre 0 et 1.

Soient A et B deux événements tels que P(A) = x, P(B) = 1 - x et $P(A \cap B) = \frac{3}{16}$.

Déterminer toutes les valeurs de x possibles pour que A et B soient indépendants.

Corrigé:

$$A$$
 et B sont indépendants \iff $P(A\cap B)=P(A)\times P(B)$ \iff $\frac{3}{16}=x\times(1-x)$ $\xrightarrow{3}=x$ x^2

$$\iff \frac{3}{16} = x - x^2$$

$$\iff \quad x^2 - x + \frac{3}{16} = 0$$

Le discriminant de ce polynôme est :

$$\Delta = (-1)^2 - 4 \times 1 \times \frac{3}{16}$$
$$= 1 - \frac{3}{4}$$
$$= \frac{1}{4}$$

Les racines de ce polynôme sont donc :

$$x_1 = \frac{+1 + \sqrt{\frac{1}{4}}}{2 \times 1}$$
 et $x_2 = \frac{+1 - \sqrt{\frac{1}{4}}}{2 \times 1}$
$$= \frac{1 + \frac{1}{2}}{2}$$

$$= \frac{1 - \frac{1}{2}}{2}$$

$$x_1 = \frac{3}{2} \times \frac{1}{2}$$
 $x_2 = \frac{1}{2} \times \frac{1}{2}$ $x_3 = \frac{3}{4}$ $x_4 = \frac{1}{2} \times \frac{1}{2}$

On a donc : A et B sont indépendants si et seulement si $x=\frac{3}{4}$ ou $x=\frac{1}{4}$.

Une chaîne de salons de coiffure propose à ses clients qui viennent pour une coupe, deux prestations supplémentaires cumulables :

- · Une coloration naturelle à base de plantes appelée « couleur-soin »;
- · Des mèches blondes pour donner du relief à la chevelure, appelées « effet coup de soleil ».

Le tableauc ci-contre donne la répartition incomplète des demandes des clients sur une semaine.

On choisi un client au hasard.

On note C l'événement : «Le client souhaite une «couleur-soin» et E l'événement : «Le client souhaite un « effet coup de soleil ».

	C	\overline{C}	Total
E	8	10	18
\overline{E}	17	5	22
Total	25	15	40

Pour chaque question, plusieurs réponses peuvent être correctes.

La probabilité que le client ait choisi une « couleur-soin » et un « effet coup de soleil » est :

$$\checkmark P(C \cap E)$$

$$\square P_E(C)$$

 $P_{\overline{E}}(C)$ représente la probabilité que le client :

- ☐ n'ait pas choisi un « effet coup de soleil » sachant qu'il a choisi une « couleur-soin » ;
- ✓ ait choisi une «couleur-soin» sachant qu'il n'a pas choisi un «effet coup de soleil»;
- ☐ ait choisi une «couleur-soin» sans «effet coup de soleil»;
- ☐ ait choisi une « couleur-soin » et « effet coup de soleil »;

La probabilité que le client n'ait choisi ni une « couleur-soin », ni un « effet coup de soleil » est :

$$\Box \frac{5}{15}$$

$$\Box \frac{4}{40}$$

Corrigé:

D'après le tableau, on a :

1.
$$P(C \cap E) = \frac{8}{40}$$
$$= \frac{1}{5}$$
$$= 0.2$$
$$= 20\%$$

3.
$$P(\overline{C} \cap \overline{E}) = \frac{5}{40}$$

= $\frac{1}{8}$
= 0,125
= 12,5%

Une agence de voyage propose deux formules week-end pour se rendre à Londres depuis Paris. Les clients choisissent leur moyen de transport : train ou avion.

De plus, s'ils le souhaitent, ils peuvent compléter leur formule par l'option « visites guidées ».

Une étude a produit les données suivantes :

- · 49 % des clients optent pour l'avion;
- · Parmi les clients ayant choisi le train, 35 % choisissent aussi l'option «visites guidées»;
- · 25 % des clients ont choisi à la fois l'avion et l'option « visites guidées ».

On interroge au hasard un client de l'agence ayant souscrit à une formule week-end à Londres. On considère les événements suivants :

- A: le client a choisi l'avion;
- \cdot V: le client a choisi l'option « visites guidées ».
- **1.** Donner les probabilités P(A), $P_{\bar{A}}(V)$ et $P(A \cap V)$ et construire un arbre de probabilités représentant la situation.
- **2.** Calculer $P_A(V)$.
- 3. Démontrer que la probabilité pour que le client interrogé ait choisi l'option « visites guidées » est égale à 0,429 environ.
- **4.** Calculer la probabilité pour que le client interrogé ait pris l'avion sachant qu'il n'a pas choisi l'option «visites guidées ». Arrondir le résultat au centième.
- 5. On interroge au hasard deux clients de manière aléatoire et indépendante. Quelle est la probabilité qu'aucun des deux ne prenne l'option « visites guidées »? On donnera les résultats sous forme de valeurs approchées à 10^{-3} près.

Corrigé:

1. De l'énoncé, on déduit que :

$$P(A) = 0.49$$

 $P_{\bar{A}}(V) = 0.35$
 $P(A \cap V) = 0.25$

On peut alors construire cet arbre de probabilités :

2. On a donc
$$P_A(V) = \frac{P(A \cap V)}{P(A)} = \frac{0.25}{0.49} = \frac{25}{49}$$
.

3. Comme A et \bar{A} forment une partition de l'univers, on peut appliquer la loi des probabilités totales :

$$P(V) = P(A \cap V) + P(\bar{A} \cap V).$$

Or
$$P(\bar{A} \cap V) = P(\bar{A}) \times P_{\bar{A}}(V) = (1 - 0.49) \times 0.35 = 0.1785.$$

Donc
$$P(V) = 0.25 + 0.1785 = 0.4285$$
.

4. On a
$$P_{\bar{V}}(A) = \frac{P(\bar{V} \cap A)}{P(\bar{V})} = \frac{P(A \cap \bar{V})}{P(\bar{V})} = \frac{P(A) \times P_A(\bar{V})}{P(\bar{V})}.$$

Or, d'après la question précédente :
$$P(\bar{V}) = 1 - P(V) = 1 - 0.4285 = 0.5715$$
 et d'après la question $2: P_A(\bar{V}) = 1 - P_A(V) = 1 - \frac{25}{49} = \frac{24}{49}$.

Donc
$$P_{\bar{V}}(A) = \frac{0.49 \times \frac{24}{49}}{0.5715} \approx 0.42.$$

5. On a vu que $P(\bar{V}) = 1 - 0.4285 = 0.5715$.

Comme les deux événements sont indépendants, en les appelant \bar{V}_1 et \bar{V}_2 , on a : $P(\bar{V}_1 \cap \bar{V}_2) =$ $P(\bar{V_1}) \times P(\bar{V_2})$

La probabilité cherchée est donc égale à $P(\bar{V}_1 \cap \bar{V}_2) = 0.5715 \times 0.5715 \approx 0.327$.

Exercice 3

Soit x un réel compris entre 0 et 1.

Soient
$$A$$
 et B deux événements tels que $P(A)=x$, $P(B)=1-x$ et $P(A\cap B)=\frac{2}{9}$.

Déterminer toutes les valeurs de x possibles pour que A et B soient indépendants.

Corrigé:

$$A ext{ et } B ext{ sont indépendants} \qquad \Longleftrightarrow \qquad P(A \cap B) = P(A) \times P(B)$$
 $\iff \qquad \frac{2}{9} = x \times (1-x)$ $\iff \qquad \frac{2}{9} = x - x^2$ $\iff \qquad x^2 - x + \frac{2}{9} = 0$

Le discriminant de ce polynôme est :

$$\Delta = (-1)^2 - 4 \times 1 \times \frac{2}{9}$$

$$= 1 - \frac{8}{9}$$

$$= \frac{1}{9}$$

Les racines de ce polynôme sont donc :

$$x_1 = \frac{+1 + \sqrt{\frac{1}{9}}}{2 \times 1}$$
 et $x_2 = \frac{+1 - \sqrt{\frac{1}{9}}}{2 \times 1}$
$$= \frac{1 + \frac{1}{3}}{2}$$

$$= \frac{1 - \frac{1}{3}}{2}$$

$$x_1 = \frac{4}{3} \times \frac{1}{2}$$
 $x_2 = \frac{2}{3} \times \frac{1}{2}$ $x_3 = \frac{2}{3}$ $x_4 = \frac{2}{3}$

On a donc : A et B sont indépendants si et seulement si $x=\frac{2}{3}$ ou $x=\frac{1}{3}$.