Assignment Problem

Hungarian Method

Balanced Assignment Problem: Hungarian Method

(No. of rows = N0. of Column)

Phase 1: Row and Column Reduction.

Find the minimum value row wise and subtract from each elements of row. Find the minimum value column wise and subtract from element of column

Operators /Jobs	1	2	3	4	5	Row Redution
1	9/2/2	11/4/4	14/7/7	11/4/2	7/0/0	7
2	6/0/0	15/9/9	13/7/7	13/7/5	10/4/4	6
3	12/6/6	13/7/7	6/0/0	8/2/0	8/2/2	6
4	11/2/2	9/0/0	10/1/1	12/3/1	9/0/0	9
5	7/0/0	12/5/5	14/7/7	10/3/1	14/7/7	7
Column Reduction	0	0	0	2	0	

Step 2: Next row wise identify single 0 (Zero) and draw vertical lines to delete the column

- If row has more than one O values ignore
- Then column wise identify single 0 (Zero) and draw horizontal lines to delete the row.
- If row has more than one O values ignore

	1	2	3	4	5
1	2	4	7	2	0
2	0	9	7	5	4
3	-6	7	0	0	2
4	2	0	1	1	0
5	0	5	7	1	7

No. of rows =5

No. of squared zero = 4

The solution is not optimal

Phase 2: Optimization

- 1. Draw minimum lines to cover all zeros of matrix
 - 1. Row scanning
 - 2. Column scanning
- 2. Add minimum value from undeleted cells to intersecting cells
- 3. Subtract minimum values from remaining cells to undeleted cell values

	1	2	3	4	5
1	2	4	7-1	2-1	0
2	0	9	7-1	5-1	4
3	6+1	7+1	0	0	2+1
4	2	0	1-1	1-1	0
5	0	5	7-1	1-1	7

New Matrix is shown next slide

New Matrix

	1	2	3	4	5
1	2	4	6	1	0
2	0	9	6	4	4
3	7	8	0	0	3
4	2	0	0	0	0
5	0	5	6	0	7

Now perform row and column scanning on new matrix

Perform row scan and column scan on the new matrix

	1	2	3	4	5
1	2	4	6	1	0
2	0	9	6	4	4
3	7	8	Û	0	3
4	2	0	0	0	0
5	0	5	6	0	7

All zeroes are now covered the solution is optimal Solution: Job 1: 5; Job 2: 1; Job 3: 3; Job 4: 2; Job 5: 4.