Limits

Consider an Eschenburg space E with parameters $(k_1, k_2, k_3, l_1, l_2, l_3)$. We say that the **parameters are bounded by** P if $|k_i| \leq P$ and $|l_i| \leq P$ for all i for some positive integer P. Similarly, we say that r is **bounded by** R if $|r(E)| \leq R$ for some positive integer R, where $|r(E)| = |H^4(E)|$. We say that E is given in **standard presentation** if the parameters satisfy the conditions of [CEZ07, Lemma 4.1]. (All spaces generated using **esch** -r=XXXX are in standard presentation.)

The default data types specified in config.h and their sizes are:¹

The implementation of the sin function used by esch^2 has a relative error of less than $1\epsilon^3$ for the data type long double.⁴

Claim 1. With the above configurations, the output of the program esch is reliable in the following ranges:

- For computing the invariants of an arbitrary space with parameters bounded by P=1500.
- For generating and analysing list of spaces in standard parametrization with r bounded by $R=600\,000$.

More generally, we claim the following:

Claim 2. Suppose r is bounded by R and the parameters are bounded by P. Suppose further that the data types used meet the following minimum requirements:

```
INT_R signed integer of size \mathcal{E}_R bits
INT_P signed integer of size \mathcal{E}_P bits
INT_KS signed integer of size \mathcal{E}_{KS} bits
```

FLOAT_KS base-2 float with significand of \mathcal{S}_{KS} bits (including sign bit)

Suppose further that, in the computation of the invariant $s_2(E)$, the sin-values are computed with a relative error of at most $A\epsilon$. Then the computations of the invariants r(E), s(E), $p_1(E)$, $s_2(E)$ and $s_{22}(E)$ are exact provided each of the following inequalities is satisfied:

$$P \le 2^{\mathcal{E}_{R}-1}$$
 (a) $RP^8 \le 2^{\mathcal{E}_{KS}-15.3}$ (c) $R < 2^{\mathcal{E}_{R}-1}$ (b) $P^5 < 2^{\mathcal{S}_{KS}-10.5} \cdot A^{-1}$ (d)

To obtain Claim 1 from Claim 2, we will use that the bounds P and R can be related as follows:

Note 1. For any Eschenburg space,

parameters bounded by
$$P$$
 \Rightarrow r bounded by $R = 6P^2$

For an Eschenburg space in standard presentation,

parameters bounded by
$$P = 2R^{1/2} \iff r \text{ bounded by } R$$

 $^{^{1}} http://www.boost.org/doc/libs/1_65_1/libs/multiprecision/doc/html/boost_multiprecision/tut/ints/cpp_int.html$

²We use sin_pi from boost/math/special_functions/sin_pi.hpp.

³Here, ϵ denotes the machine epsilon. See https://en.wikipedia.org/wiki/Machine_epsilon.

⁴http://www.boost.org/doc/libs/1_65_1/libs/math/doc/html/math_toolkit/powers/sin_pi.html

Verification of Claim 1 using Claim 2

We first verify Note 1. The first implication is clear from $r = \sigma_2(k_1, k_2, k_3)$ – $\sigma_2(l_1, l_2, l_3)$. For the second implication, note that while all parameters except k_3 are bounded by \sqrt{R} in the standard presentation, the parameter k_3 is bounded only by $2\sqrt{R}$.

To find the bound for P when analysing a single space, we can replace R by $6P^2$ in all inequalities in Claim 2. With $\mathcal{E}_P=32,\,\mathcal{E}_R=64$ and $\mathcal{E}_{KS}=128$ and A=1the standard values specified above, these inequalities become:

$$P \le 2^{31}$$
 (a) $6P^{10} \le 2^{112.7}$ (c) $6P^2 \le 2^{63}$ (b) $P^5 \le 2^{53.5}$ (d)

$$6P^2 \le 2^{63} \tag{b} P^5 \le 2^{53.5} \tag{d}$$

Here, the strongest inequality is inequality (d), which equates to $P \leq 1663$.

To find a bound for R when analysing spaces in standard presentation, repace Pby $2\sqrt{R}$ in all inequalities in Claim 2. They become:

$$2\sqrt{R} \le 2^{31} \tag{b}$$

$$R \le 2^{63}$$
 (a') $2^5 \sqrt{R}^5 \le 2^{53.5}$ (d)

Again, the strongest inequality is inequality (d). It equates to $R \leq 691\,802$.

Preliminary inequalities I (for integer types)

The invariants $s_2(E)$ and $s_{22}(E)$ are computed by a formulas of the following form [CEZ07, (2.1)]:

$$s_2(E) = (q-2)/d + \ell_1 + \ell_2 + \ell_3$$

$$= \frac{45(q-2) + ([45\ell_1] + [45\ell_2] + [45\ell_3])d}{45d}$$
(1)

$$s_{22}(E) = 2|r(E)| s_2(E)$$
(2)

Here, ℓ_i are lens space invariants such that $45\ell_i$ is an integer [CEZ07, Prop. 3.13].

Proposition 1. Suppose the parameters are bounded by P and r is bounded by R. Then the absolute values of the denominators and the numerators of $s_2(E)$ and $s_{22}(E)$, and the absolute values of the integers d, q and $45\ell_i$ appearing in (1), are bounded by $2^{15.3}RP^8$.

Proof. The integer d in (1) = [CEZ07, (2.1)] is a multiple of 2r(E). Thus, any bounds for numerator and generator of $s_2(E)$ will also be bounds for numerator and generator of $s_{22}(E)$.

The absolute value of q in (1) is bounded by a sum of six squares of differences of parameters $(k_i - l_i)$, so

$$|q| \le 6(2P)^2 \qquad <2^{4.6} \cdot P^2 \tag{3}$$

The absolute value of d is bounded by

$$|d| \le 3 \cdot 2^4 \cdot R \cdot (2P)^3 < 2^{8.6} \cdot RP^3 \tag{4}$$

An upper bound for the values of $45\ell_i$ is estimated as $2^{5.1}P^5$ in Propsition 2 below. Thus, altogether we obtain the following bounds for numerator and denominator of s_2 :

$$|\text{numerator}| \le 45 \cdot 2^{4.6} \cdot P^2 + 3 \cdot 2^{5.1} P^5 \cdot 2^{8.6} R P^3 \approx 2^{15.3} \cdot R P^8$$

$$|\text{denominator}| \le 45 \cdot |d| \le 2^{14.1} \cdot R P^3$$

Clearly, the first bound is greater than the second.

Preliminary inequalities II (for the float type)

The lens invariants ℓ_1 , ℓ_2 , ℓ_3 are computed as a sum

$$\ell_i := \sum_{v=1}^{|p|-1} L(\mathbf{x}^{(v)}),\tag{5}$$

where each $\mathbf{x}^{(v)}=(x_0^{(v)},\dots,x_4^{(v)})$ is a quintuple of real numbers and the function L is given by

$$L(\mathbf{x}) := (\cos(\pi x_0) - 1) \cdot \prod_{i=1}^4 \csc(\pi x_i),$$
 (6)

where $\csc(x) := 1/\sin(x)$. The coordinates x_i on which this function is evaluated are given by $x_0^{(v)} = \frac{v}{p}$ and $x_i^{(v)} = \frac{vp_i}{p}$ for $i = 1, \ldots, 4$, with each of p, p_1, \ldots, p_4 a difference of parameters $k_i - l_j$.

Proposition 2. If the parameters of the given Eschenburg space are bounded by P, then $|45\ell_i| \leq 2^{5.1}P^5$ for each $i \in \{1, 2, 3\}$.

Proof. As each of k_i and l_i is bounded by P, each of the parameters p, p_1 , ..., p_4 used to define the quintuples $\mathbf{x}^{(v)}$ is bounded by 2P. It follows that each coordinate of each $\mathbf{x}^{(v)}$ has a distance of at least $^{1}/_{2P}$ to the nearest integer. Thus, we can apply Lemma 1 below to each csc-factor of $L(\mathbf{x}^{(v)})$ with $\epsilon = ^{1}/_{2P}$ to obtain

$$\left| L(\mathbf{x}^{(v)}) \right| \le 2 \cdot (2^{-1.6} \cdot 2P)^4 = 2^{-1.4}P^4$$

Now take a (|p|-1)-fold sum and multiply by 45, and note that (|p|-1) < 2P and $45 < 2^{5.5}$.

Lemma 1. Let $\varepsilon > 0$ be sufficiently small $(\leq 1/100)$. Then $|\csc(\pi \cdot x)| \leq 2^{-1.6} \varepsilon^{-1}$ for any real number x whose distance to the nearest integer is at least ε .

Proof. It suffices to show that $\sin(\pi \cdot x) \geq 2^{1.6}\varepsilon$ for any real $x \in [\varepsilon, 1/2]$, where $\varepsilon \in (0, 1/100)$ is some given lower bound. As $\tan(\pi x) \geq \pi x$ for all $x \in [0, 1/2)$, we have $\sin(\pi x) \geq \pi x \cdot \cos(\pi x)$ for all $x \in [0, 1/2]$. So for $x \in [\varepsilon, 1/2]$ we find that

$$\sin(\pi x) \ge \sin(\pi \varepsilon) \ge \pi \varepsilon \cdot \cos(\pi \varepsilon).$$

If ε is sufficiently small, then $\pi \cdot \cos(\pi \varepsilon)$ is close to π . The result is obtained by explicitly calculating this value for $\varepsilon = 1/100$.

Verification of claim 2

The inequalities (a) and (b) simply state that INT_P and INT_K need to be large enough to hold the values of the parameters and the value of r(E), respectively. The data type INT_KS must be large enough to hold all integers used in computing $s_2(E)$, so inequality (c) follows directly from Proposition 1.

It remains to verify that the data type FLOAT_KS is sufficiently precise to compute the integer values $45\ell_i$ appearing in (1). By assumption, the sin-values in (5)/(6) are computed with a relative error of at most $\eta = A\epsilon$, where $\epsilon = 2^{1-S_{\rm KS}}$. (Note that one bit of the significand is used to store the sign of the number, so we only have $S_{\rm KS}-1$ bits to store the value.) That is, the computed values of $\sin(\pi x_i)$ may differ from the actual values by a factor of at most $1\pm\delta$. As the coordinates $x_i^{(v)}$ used as input to the sin-functions may also be exact only up to a factor of $1\pm\delta$, we find that altogether the computed values of $\sin(\pi x_i)$ may differ from the actual values by a factor of $(1\pm\delta)^2$, and likewise for the values of $\cos(\pi x_0)$. It follows that the computed values of L and ℓ_i differ from the actual values by a factor of $(1\pm\delta)^2(1\mp\delta)^{-10}\approx 1\pm10\delta < 1+A\cdot 2^{4.4-S_{\rm KS}}$. By Proposition 2, this leads to an absolute error for $45\ell_i$ of at most

$$A \cdot 2^{4.4 - \mathcal{S}_{\mathrm{KS}}} \cdot |45\ell_i| = A \cdot 2^{4.4 - \mathcal{S}_{\mathrm{KS}}} \cdot 2^{5.1} P^5 = A \cdot 2^{9.5 - \mathcal{S}_{\mathrm{KS}}} \cdot P^5.$$

To obtain the correct integer value of $45\ell_i$ after rounding, we need this absolute error to be less than $0.5=2^{-1}$. That is, we need $A\cdot 2^{9.5-\mathcal{S}_{\mathrm{KS}}}\cdot P^5<2^{-1}$, or, equivalently, $P^5< A^{-1}\cdot 2^{\mathcal{S}_{\mathrm{KS}}-10.5}$. This is inequality (d).

Reference

[CEZ07] T. Chinburg, C. Escher, and W. Ziller, Topological properties of Eschenburg spaces and 3-Sasakian manifolds, Math. Ann. 339 (2007), no. 1, 3–20. [MR2317760]