대 한 민 국 특 허 청 KOREAN INTELLECTUAL

PROPERTY OFFICE

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호

10-2003-0027604

Application Number

출 원 년 월 일 Date of Application 2003년 04월 30일

APR 30, 2003

출 원 인:

삼성에스디아이 주식회사 SAMSUNG SDI CO., LTD.

Applicant(s)

²⁰⁰³ 년 ⁰⁶ 월 ¹⁰ 일

특 허 청

COMMISSIONER

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

·【수신처】 특허청장

【제출일자】 2003.04.30

【발명의 명칭】 화상 표시 장치와 그 표시 패널 및 구동 방법

【발명의 영문명칭】 IMAGE DISPLAY AND DISPLAY PANEL AND DRIVING METHOD OF

THEREOF

【출원인】

【명칭】 삼성에스디아이 주식회사

【출원인코드】 1-1998-001805-8

【대리인】

【명칭】 유미특허법인

【대리인코드】 9-2001-100003-6

【지정된변리사】 이원일

【포괄위임등록번호】 2001-041982-6

【발명자】

【성명의 국문표기】 정보용

【성명의 영문표기】CHUNG, BO YONG【주민등록번호】740521-1019638

【우편번호】 138-162

【주소】 서울특별시 송파구 가락2동 173-19호

【국적】 KR

【발명자】

【성명의 국문표기】 박용성

【성명의 영문표기】PARK, YONG SUNG【주민등록번호】720424~1058314

【우편번호】 138-240

【주소】 서울특별시 송파구 신천동 한신코아아파트 1425호

【국적】 KR

【발명자】

【성명의 국문표기】 곽원규

【성명의 영문표기】KWAK,WON KYU【주민등록번호】721108-1396516

【우편번호】 463-500

【주소】 경기도 성남시 분당구 구미동 88번지 까치주공아파트 207

동 903호

【국적】 KR

【발명자】

【성명의 국문표기】 오춘열

【성명의 영문표기】 OH,CHOON YUL

【주민등록번호】 650211-1068619

【우편번호】 435-010

【주소】 경기도 군포시 당동 886 주공아파트 310동 1202호

【국적】 KR

【발명자】

【성명의 국문표기】 양선아

【성명의 영문표기】 YANG,SUN A

【주민등록번호】 741023-2095815

【우편번호】 442-726

【주소】 경기도 수원시 팔달구 영통동 벽적골9단지아파트 912동

1104호

【국적】 KR

【발명자】

【성명의 국문표기】 류도형

【성명의 영문표기】 RYU,DO HYUNG

【주민등록번호】 730927-1109414

【우편번호】 608-043

【주소】 부산광역시 남구 문현3동 15통 5반 97-1번지

【국적】 KR

【심사청구】 청구

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정

에 의한 출원심사 를 청구합니다. 대리인

유미특허법인 (인)

【수수료】

【기본출원료】20면29,000원【가산출원료】14면14.000원

 【우선권주장료】
 0
 건
 0
 원

【심사청구료】 24 항 877,000 원

【합계】 920,000 원

【첨부서류】 1. 요약서·명세서(도면)_1통

[요약서]

[요약]

유기 EL 표시 장치의 화소 회로에서, 구동 트랜지스터의 문턱 전압을 보상하기 위해 구동 트랜지스터의 게이트에 보상 트랜지스터의 게이트가 연결되어 있으며, 보상 트랜지스터는 다이오드 연결되어 있다. 그리고 다이오드 연결된 보상 트랜지스터에 의해데이터 전압이 전달되지 않는 것을 방지하기 위해, 직전 주사선에 선택 신호가 인가되는 동안 구동 트랜지스터의 게이트에 프리차지 전압을 인가한다. 이때, 프리차지 전압에 의해유기 EL 소자가 발광하는 것을 방지하기 위해 구동 트랜지스터와 유기 EL 소자를 전기적으로 차단한다. 그리고 데이터 전압이 충전되는 동안 유기 EL 소자가 발광하는 것을 방지하기 위해 구동 트랜지스터와 유기 EL 소자가 발광하는 것을 방지하기 위해 구동 트랜지스터와 유기 EL 소자가 발광하는 것을 방지하기 위해 구동 트랜지스터와 유기 EL 소자를 전기적으로 차단한다.

【대표도】

도 3

【색인어】

유기 티, 발광, 문턱 전압, 프리차지

【명세서】

【발명의 명칭】

화상 표시 장치와 그 표시 패널 및 구동 방법 {IMAGE DISPLAY AND DISPLAY PANEL AND DRIVING METHOD OF THEREOF}

【도면의 간단한 설명】

도 1은 종래 기술에 따른 화소 회로의 등가 회로도이다.

도 2는 본 발명의 실시예에 따른 유기 EL 표시 장치의 개략적인 평면도이다.

도 3, 도 5, 도 7, 도 8 및 도 10은 각각 본 발명의 실시예에 따른 화소 회로의 등 가 회로도이다.

도 4, 도 6 및 도 11은 각각 도 3, 도 5 및 도 10의 화소 회로를 구동하기 위한 구 동 파형도이다.

도 9는 화소 회로에서 유기 EL 소자에 흐르는 전류를 나타내는 도면이다.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 화상 표시 장치와 그 표시 패널 및 그 구동 방법에 관한 것으로, 특히 유기 전계발광(electroluminescent, 이하 EL이라 함) 표시 장치에 관한 것이다.
- 의반적으로 유기 EL 표시 장치는 형광성 유기 화합물을 전기적으로 여기시켜 발광시키는 표시 장치로서, N M 개의 유기 발광셀들을 전압 구동 혹은 전류 구동하여 영상을 표현할 수 있도록 되어 있다. 이러한 유기 발광셀은 도 1에 나타낸 바와 같이 애노드

(ITO), 유기 박막, 캐소드 레이어(metal)의 구조를 가지고 있다. 유기 박막은 전자와 정공의 균형을 좋게 하여 발광 효율을 향상시키기 위해 발광층(emitting layer, EML), 전자 수송층(electron transport layer, ETL) 및 정공 수송층(hole transport layer, HTL)을 포함한 다층 구조로 이루어지고, 또한 별도의 전자 주입층(electron injecting layer, EIL)과 정공 주입층(hole injecting layer, HIL)을 포함하고 있다.

- 《》 이와 같이 이루어지는 유기 발광셀을 구동하는 방식에는 단순 매트릭스(passive matrix) 방식과 박막 트랜지스터(thin film transistor, TFT)를 이용한 능동 구동 (active matrix) 방식이 있다. 단순 매트릭스 방식은 양극과 음극을 직교하도록 형성하고 라인을 선택하여 구동하는데 비해, 능동 구동 방식은 박막 트랜지스터와 커패시터를 각 ITO(indium tin oxide) 화소 전극에 접속하여 커패시터 용량에 의해 전압을 유지하도록 하는 구동 방식이다. 이때, 커패시터에 전압을 유지시키기 위해 인가되는 신호의 형태에 따라 능동 구동 방식은 전압 기입(voltage programming) 방식으로 나누어진다.
- 이때, 전압 기입 방식은 계조도를 나타내는 데이터 전압을 화소 회로에 공급하여 화상을 표시하는 방식으로, 구동 트랜지스터의 문턱 전압 및 전자 이동도의 편차로 인해 불균일성의 문제가 발생한다. 전류 기입 방식은 계조도를 나타내는 데이터 전류를 화소 회로에 공급하여 화상을 표시하는 방식으로, 균일성은 확보할 수 있다. 그러나 전류 기 입 방식에서는 미세한 전류로서 유기 EL 소자를 제어하여야 하므로 데이터선의 부하를 충전하기 위한 충전 시간을 확보하지 못한다는 문제점이 있다.
- <10> 전압 기입 방식에서 구동 트랜지스터의 문턱 전압을 보상하기 위한 화소 회로로서 무츠미(Mutsumi) 등에 의해 제안된 미국특허 6,362,798호가 있다.

<11> 도 1에 나타낸 바와 같이, 미국특허 6,362,798호의 화소 회로는 4개의 트랜지스터 (M1-M4) 및 유기 EL 소자(OLED)로 이루어진다. 구동 트랜지스터(M1)는 게이트와 소스 사이의 전압에 대응하는 전류를 유기 EL 소자(OLED)에 전달하며, 게이트와 소스 사이에 커패시터(Cst)가 형성되어 있다. 트랜지스터(M2)는 다이오드 연결되어 있으며 게이트가 트랜지스터(M1)의 게이트에 연결되어 있다. 그리고 스위칭 트랜지스터(M3)는 게이트가 현재·주사선(Sn)에 연결되어 있으며, 트랜지스터(M4)는 게이트가 직전 주사선(Sn-1)에 연결되어 있다.

- 이때, 트랜지스터(M1, M2)의 문턱 전압이 동일하다면 트랜지스터(M2)에 의해 트랜지스터(M1)의 문턱 전압이 보상된다. 그런데 구동 트랜지스터(M1)의 게이트 전압이 트랜지스터(M3)를 통하여 인가되는 데이터 전압보다 높은 경우에는 트랜지스터(M2)는 역방향으로 다이오드 연결되게 된다. 따라서 데이터 전압이 구동 트랜지스터(M1)의 게이트로 전달되지 않게 된다. 이를 방지하기 위해 종래 기술에서는 직전 주사선(S_{n-1})에서 선택 신호가 인가되는 동안 프리차지 전압(Vp)을 구동 트랜지스터(M1)의 게이트에 인가하고, 프리차지 전압(Vp)을 가장 낮은 데이터 전압보다 작은 값으로 하였다. 이와 같이 하면, 데이터 전압이 인가될 때 구동 트랜지스터(M1)의 게이트 전압이 프리차지 전압(Vp)으로 되어 있으므로, 트랜지스터(M2)는 항상 순방향으로 연결되게 된다.
- 스크로데, 프리차지 전압(Vp)이 구동 트랜지스터(M1)의 게이트에 전달되면, 프리차지 전압(Vp)과 전원 전압(VDD)의 차이에 해당되는 전압에 의해 구동 트랜지스터(M1)에서는 전류가 흐르게 된다. 이 전류에 의해 유기 EL 소자(OLED)는 항상 발광하게 되어, 블랙 레벨의 계조를 표현하는 경우에는 정상적인 블랙 레벨을 표현할 수 없게 된다. 또한 데 이터 전압이 구동 트랜지스터(M1)의 게이트에 전달되어 커패시터(Cst)에 충전되는 동안

에도 유기 EL 소자(OLED)에 전류가 흐르게 되어, 소비 전력이 증가한다는 문제점이 있다.

【발명이 이루고자 하는 기술적 과제】

본 발명이 이루고자 하는 기술적 과제는 구동 트랜지스터의 문턱 전압을 보상하고 표시 소자에 불필요한 전류가 흐르지 않게 할 수 있는 화상 표시 장치를 제공하는 것이다.

【발명의 구성 및 작용】

<15> 이러한 과제를 해결하기 위해 본 발명은 구동 트랜지스터와 표시 소자 사이에 트랜지스터를 추가한다.

본 발명의 한 특징에 따르면, 화상 신호를 나타내는 데이터 전압을 전달하는 복수의 데이터선, 선택 신호를 전달하는 복수의 주사선, 그리고 이웃하는 두 데이터선과 이웃하는 두 주사선 사이에 형성되는 화소 영역에 각각 형성되는 복수의 화소 회로를 포함하는 화상 표시 장치의 표시 패널이 제공된다. 화소 회로는 표시 소자, 제1 및 제2 트랜지스터, 제1 내지 제3 스위칭 소자를 포함한다. 제1 트랜지스터는 주 전극과 제어 전국사이의 전압에 대응하는 전류를 출력하며, 주 전극과 제어 전국사이에 커패시터가 형성되어 있다. 제2 트랜지스터는 다이오드 연결되어 있으며, 제1 트랜지스터의 제어 전극에 제어 전극이 연결되어 있다. 제1 스위칭 소자는 제2 트랜지스터의 주 전극에 연결되어 있으며, 현재 주사선으로부터의 선택 신호에 응답하여 데이터선으로부터의 데이터 전압을 제2 트랜지스터로 전달한다. 제2 스위칭 소자는 데이터 전압이 공급되기 전에 제1 제어 신호에 응답하여 프리차지 전압을 제1 트랜지스터의 제어 전극으로 전달한다. 그리고

제3 스위칭 소자는 제2 제어 신호에 응답하여 턴오프되어 제1 트랜지스터와 표시 소자를 전기적으로 차단한다.

- <17> 제1 제어 신호에 의해 프리차지 전압이 전달되는 기간과 현재 주사선에 선택 신호 가 인가되는 기간 사이에서 데이터 전압이 데이터선으로 인가되는 것이 바람직하다.
- <18> 제2 제어 신호는 제1 제어 신호일 수 있다. 이때, 제1 및 제2 제어 신호는 직전 주 사선으로부터의 선택 신호이고, 제2 스위칭 소자와 제3 스위칭 소자는 서로 반대되는 전 도 타입의 트랜지스터인 것이 바람직하다.
- 또는 제2 제어 신호는 현재 주사선으로부터의 선택 신호일 수 있다. 이때, 제2 스위칭 소자와 제3 스위칭 소자는 서로 반대되는 전도 타입의 트랜지스터인 것이 바람직하다. 그리고 제1 제어 신호는 직전 주사선으로부터의 선택 신호일 수 있다.
- <20> 본 발명의 다른 특징에 따르면 위에서 설명한 표시 패널을 포함하는 화상 표시 장 치가 제공된다.
- 본 발명의 또다른 특징에 따르면, 제어 전극과 주 전극 사이에 커패시터가 형성되며 커패시터에 충전된 전압에 대응하는 전류를 출력하는 제1 트랜지스터, 제1 트랜지스터의 제어 전극에 제어 전극이 연결되며 다이오드 연결되어 있는 제2 트랜지스터, 그리고 제1 트랜지스터로부터 출력되는 전류의 양에 대응하여 화상을 표시하는 표시 소자를 포함하는 화소 회로가 형성된 화상 표시 장치를 구동하는 방법이 제공된다. 이 방법에 의하면, 제1 기간동안 제1 제어 신호에 응답하여 제1 트랜지스터의 제어 전극에 프리차지 전압이 전달된다. 제2 기간동안 현재 주사선으로부터의 선택 신호에 응답하여 제2 트랜지스터를 통하여 제1 트랜지스터의 제어 전극에 데이터 전압이 전달된다. 그리고 데이

터 전압이 차단된다. 이때, 제1 기간 및 제2 기간 중 적어도 한 기간에서 제1 트랜지스 터와 표시 소자는 전기적으로 차단된다.

- <22> 제1 제어 신호는 직전 주사선으로부터의 선택 신호일 수 있다. 이때, 제1 기간에서 제1 트랜지스터와 표시 소자는 제1 제어 신호에 응답하여 전기적으로 차단되는 것이 바람직하다.
- <23> 제2 기간에서 제1 트랜지스터와 표시 소자는 제2 제어 신호에 응답하여 전기적으로 차단될 수 있다. 제2 제어 신호는 현재 주사선으로부터의 선택 신호인 것이 바람직하다
- <24> 그리고 제1 기간과 제2 기간 사이에서, 트랜지스터의 제어 전극에 프리차지 전압 및 데이터 전압의 전달을 차단하는 기간을 포함하는 것이 바람직하다.
- 본 발명의 또다른 특징에 따르면, 제1 신호선으로부터의 프리차지 전압과 제2 신호 선으로부터의 화상을 나타내는 데이터 전압에 응답하는 화소 회로가 제공된다. 이 화소 회로는 제1 및 제2 트랜지스터, 표시 소자, 그리고 스위칭부를 포함한다. 제1 트랜지스 터는 커패시터에 충전된 전압에 대응하는 전류를 출력하며, 제어 전극과 주 전극 사이에 커패시터가 형성되어 있다. 제2 트랜지스터는 제1 트랜지스터의 제어 전극에 제어 전극 이 연결되며 다이오드 연결되어 있다. 스위칭부는 제1 트랜지스터와 표시 소자 사이에 전기적으로 연결되어 있다. 이때, 제1 기간동안 체어 신호에 응답하여 프리차지 전압이 제1 트랜지스터의 제어 전극에 전달되고 제2 기간동안 선택 신호에 응답하여 데이터 전 압이 제1 트랜지스터의 제어 전극에 전달된다. 그리고 스위칭부는 제1 기간과 제2 기간 중 적어도 한 기간에서 제1 트랜지스터와 표시 소자를 전기적으로 차단한다.

<26> 아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.

- 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다. 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우 뿐 아니라 그 중간에 다른 소자를 사이에 두고 전기적으로 연결되어 있는 경우도 포함한다.
- <28> 먼저, 도 2를 참조하여 본 발명의 실시예에 따른 유기 EL 표시 장치에 대하여 설명한다. 도 2는 본 발명의 실시예에 따른 유기 EL 표시 장치의 개략적인 평면도이다.
- 도 2에 나타낸 바와 같이, 본 발명의 실시예에 따른 유기 EL 표시 장치는 유기 EL 표시 패널(10), 주사 구동부(20) 및 데이터 구동부(30)를 포함한다.
- 유기 EL 표시 패널(10)은 행 방향으로 뻗어 있는 복수의 데이터선(D₁-D_M), 열 방향으로 뻗어 있는 복수의 주사선(S₁-S_N) 및 복수의 화소 회로(11)를 포함한다.
 데이터선(D₁-D_M)은 화상 신호를 나타내는 데이터 전압을 화소 회로(11)로 전달하며, 주사선(S₁-S_N)은 화소 회로(11)를 선택하기 위한 선택 신호를 화소 회로(11)로 전달한다.
 화소 회로(11)는 이웃한 두 데이터선(D₁-D_M)과 이웃한 두 주사선(S₁-S_N)에 의해 정의되는 화소 영역에 형성되어 있다.

<31> 주사 구동부(20)는 주사선(S₁-S_N)에 선택 신호를 순차적으로 인가하며, 데이터 구동부(30)는 데이터선(D₁-D_M) 에 화상 신호를 나타내는 데이터 전압을 인가한다.

- 주사 구동부(20) 및/또는 데이터 구동부(30)는 표시 패널(10)에 전기적으로 연결될수 있으며 또는 표시 패널(10)에 접착되어 전기적으로 연결되어 있는 테이프 캐리어 패키지(tape carrier package, TCP) 등에 칩 등의 형태로 장착될 수 있다. 또는 표시 패널(10)에 접착되어 전기적으로 연결되어 있는 가요성 인쇄 회로 기판(flexible printed circuit, FPC) 또는 필름(film) 등에 칩 등의 형태로 장착될 수도 있으며, 이를 CoF(chip on flexible board, chip on film) 방식이라 한다. 이와는 달리 주사 구동부 (20) 및/또는 데이터 구동부(30)는 표시 패널의 유리 기판 위에 직접 장착될 수도 있으며, 또는 유리 기판 위에 주사선, 데이터선 및 박막 트랜지스터와 동일한 층들로 형성되어 있는 구동 회로와 대체될 수도 직접 장착될 수도 있다. 이를 CoG(chip on glass) 방식이라 한다.
- 아래에서는 도 3 및 도 4를 참조하여 본 발명의 제1 실시예에 따른 유기 EL 표시 장치의 화소 회로(11)에 대하여 상세하게 설명한다. 도 3은 본 발명의 제1 실시예에 따른 화소 회로의 등가 회로도이며, 도 4는 도 3의 화소 회로를 구동하기 위한 구동 파형 도이다. 도 3에서는 설명의 편의상 m번째 데이터선(Dm)과 n번째 주사선(Sn)에 연결된 화소 회로만을 도시하였다. 그리고 주사선에 관한 용어를 정의하면, 현재 선택 신호를 전달하려고 하는 주사선을 "현재 주사선"이라 하고 현재 선택 신호가 전달되기 전에 선택 신호를 전달한 주사선을 "직전 주사선"이라 한다.

도 3에 나타낸 바와 같이, 본 발명의 제1 실시예에 따른 화소 회로(11)는 유기 EL소자(OLED), 트랜지스터(M1-M5) 및 커패시터(Cst)를 포함한다. 그리고 트랜지스터 (M1-M4)는 PMOS형 트랜지스터로 형성되고 트랜지스터(M5)는 NMOS형 트랜지스터로 형성되어 있다. 이러한 트랜지스터(M1-M5)는 표시 패널(10)의 유리 기판 위에 형성되는 게이트 전국, 드레인 전국 및 소스 전국을 각각 제어 전국 및 2개의 주 전국으로 가지는 박막 트랜지스터인 것이 바람직하다.

- → 구동 트랜지스터(M1)는 전압 전압(VDD)에 소스가 연결되고, 게이트와 소스 사이에 커패시터(Cst)가 연결되어 있다. 커패시터(Cst)는 트랜지스터(M1)의 게이트-소스 전압(VGS)을 일정 기간 유지한다. 보상 트랜지스터(M2)는 다이오드 연결되어 있으며 트랜지스터(M1)의 게이트에 게이트가 연결되어 있다. 스위칭 트랜지스터(M3)는 현재 주사선(Sn)으로부터의 선택 신호에 응답하여 데이터선(Dm)으로부터의 데이터 전압을 트랜지스터(M2)로 전달한다. 트랜지스터(M2)의 드레인에는 트랜지스터(M4)가 연결되어 있으며, 트랜지스터(M4)는 직전 주사선(Sn)으로부터의 선택 신호에 응답하여 프리차지 전압(Vp)을 트랜지스터(M2)로 전달한다.
- (36) 트랜지스터(M5)는 트랜지스터(M1)의 드레인과 유기 EL 소자(OLED)의 애노드 사이에 연결되어, 직전 주사선(S_n)으로부터의 선택 신호에 응답하여 트랜지스터(M1)와 유기 EL 소자(OLED)를 전기적으로 차단한다. 유기 EL 소자(OLED)는 캐소드가 기준 전압(Vss)에 연결되며 인가되는 전류에 대응하는 빛을 발광한다. 이러한 기준 전압(Vss)은 전원 전압 (VDD)보다 낮은 레벨의 전압으로서 그라운드 전압 등이 사용될 수 있다.
- <37> 아래에서는 도 4를 참조하여 본 발명의 제1 실시예에 따른 화소 회로의 동작에 대하여 상세하게 설명한다.

도 4를 보면, 먼저 프리차지 기간(T1) 동안 직전 주사선(S_{n-1})으로부터의 선택 신호가 로우 레벨로 되어 트랜지스터(M4)는 턴온되고 트랜지스터(M5)는 턴오프된다. 턴온된 트랜지스터(M4)에 의해 프리차지 전압(Vp)이 트랜지스터(M1)의 게이트로 전달된다.이때, 프리차지 전압(Vp)은 최대 계조 레벨에 도달하기 위해 트랜지스터의 게이트에 인가되는 전압, 즉 데이터선(Dm)을 통하여 인가되는 최저 데이터 전압보다 약간 낮은 값이바람직하다.이와 같이 하면, 데이터선(Dm)을 통하여 데이터 전압이 인가될 때, 데이터전압이 트랜지스터(M1)의 게이트 전압보다 항상 크게된다. 즉, 트랜지스터(M1)는 순방향으로 연결되게 되어 데이터 전압이 커패시터(Cst)에 충전될 수 있게 된다.

이때, 프리차지 전압(Vp)에 의해 트랜지스터(M1)의 게이트-소스 전압(VgS)의 크기는 증가하게 되어, 트랜지스터(M1)에는 큰 전류가 흐를 수 있다. 이러한 전류가 유기 EL소자(OLED)에 공급된다면 유기 EL소자(OLED)는 발광하게 되고, 블랙 계조를 표현하여야하는 경우에는 정확한 블랙 계조가 표현될 수 없게 된다. 그런데 본 발명의 제1 실시예에 의하면 턴오프된 트랜지스터(M5)에 의해 트랜지스터(M1)와 유기 EL소자(OLED)가 전기적으로 차단되어 프리차지 전압(Vp)에 의한 전류가 흐르지 않게 된다. 따라서 블랙 계조를 정확하게 표현할 수 있게 되며, 또한 불필요한 전류가 흐르는 것을 막으므로 소비전력을 줄일 수 있다.

다음, 블랭킹 기간(T2) 동안 현재 주사선(S_n)으로부터의 선택 신호가 하이 레벨로 유지된 상태에서 직전 주사선(S_{n-1})으로부터의 선택 신호가 하이 레벨로 된다. 그리고 이 기간(T2)에서 데이터선(D_m)으로부터의 데이터 전압이 현재 주사선(S_n)에 연결된 화소 회로에 대응하는 데이터 전압으로 변경된다. 그리고 이 데이터 전압은 실제 화소 회로에 인가되어야 하는 데이터 전압까지 변경되는 것이 바람직하다. 만약 블랭킹 기간(T2)이

없으면 현재의 데이터 전압이 인가되기 전에 현재 주사선(S_n)으로부터의 선택 신호가 로우 레벨이 되는 경우에, 데이터선(D_m)에 인가되어 있던 직전 데이터 전압이 트랜지스터 (M3)를 통해 트랜지스터(M1)에 인가되게 된다.

- ←41> 다음, 데이터 충전 기간(T3)에서는 현재 주사선(S_n)으로부터의 선택 신호가 로우 레벨이 되어 트랜지스터(M3)가 턴온된다. 그러면 트랜지스터(M3)를 통해 데이터선(D_m)으로부터의 데이터 전압이 트랜지스터(M2)에 전달된다. 그리고 트랜지스터(M2)는 다이오드 연결되어 있으므로, 데이터 전압에서 트랜지스터(M2)의 문턱 전압(V_{TH2})의 차에 해당되는 전압이 트랜지스터(M1)의 게이트에 전달된다. 이러한 전압은 커패시터(Cst)에 충전되어 일정 기간 유지되게 된다. 그리고 직전 주사선(S_{n-1})으로부터의 선택 신호는 하이 레벨이므로 트랜지스터(M5)는 턴온되어 있다.
- 스42> 그리고 발광 기간(T4) 동안, 트랜지스터(M1)의 게이트-소스 전압(V_{GS})에 대응하는 전류(I_{OLED})가 유기 EL 소자(OLED)에 공급되어, 유기 EL 소자(OLED)는 발광하게 된다. 이 전류(I_{OLED})는 수학식 1과 같이 된다.
- $^{<44>}$ 여기서, V_{TH1} 는 트랜지스터(M1)의 문턱 전압이며, V_{DATA} 는 데이터선(D_{m})으로부터의 데이터 전압이며, β 는 상수 값을 나타낸다.
- 이때, 트랜지스터(M1, M2)의 문턱 전압(V_{TH1}, V_{TH2})이 동일하다면 수학식 1은 수학식 2와 같이 된다.

<47> 따라서 트랜지스터(M1)의 문턱 전압(V_{TH1})에 관계없이 데이터선(D_m)을 통하여 인가되는 데이터 전압에 대응하는 전류가 유기 EL 소자(OLED)에 흐르게 된다.

- 이와 같이 본 발명의 제1 실시예에 의하면, 구동용 트랜지스터(M1)의 문턱 전압의 편차를 보상할 수 있으며, 또한 프리차지 전압(Vp)에 의하여 유기 EL 소자(OLED)에 흐를 수 있는 전류를 차단할 수 있다.
- 본 발명의 제1 실시예에 따른 화소 회로에서는 트랜지스터(M4, M5)를 제어하기 위해 직전 주사선(S_{n-1})이 사용되었지만, 프리차지 기간(T1) 동안 트랜지스터(M4)를 턴온하고 트랜지스터(M5)를 턴오프시킬 수 있는 제어 신호를 전달하는 별도의 제어선(도시하지 않음)이 사용될 수도 있다.
- -50> 그리고 프리차지 기간(T1) 동안 트랜지스터(M5)를 턴오프시키기 위해 트랜지스터 (M4)와 반대되는 타입의 트랜지스터(M5)가 사용되었다. 이와는 달리 트랜지스터(M4)와 동일 타입의 트랜지스터(M5)를 사용할 수도 있으며, 아래에서는 이러한 실시예에 대하여도 5 및 도 6을 참조하여 상세하게 설명한다.
- <51> 도 5는 본 발명의 제2 실시예에 따른 화소 회로의 등가 회로도이며, 도 6은 도 5의 화소 회로를 구동하기 위한 구동 파형도이다.
- 도 5에 나타낸 바와 같이, 본 발명의 제2 실시예에 따른 화소 회로는 트랜지스터 (M5)의 타입과 제어선(Cn)을 제외하면 제1 실시예와 동일한 구조를 가진다. 자세하게 설명하면, 트랜지스터(M5)는 트랜지스터(M1-M4)와 동일하게 PMOS형 트랜지스터로 형성되어 있으며, 제어선(Cn)으로부터의 하이 레벨의 제어 신호에 응답하여 턴오프된다. 그리고 제어선(Cn)에 인가되는 제어 신호는 도 6에 나타낸 바와 같이 직전 주사선(Sn-1)에 인가

되는 선택 신호에 대하여 반전된 형태이다. 이와 같이 하면 제1 실시예에서와 같이 프리차지 기간(T1) 동안 트랜지스터(M5)가 턴오프되어 유기 EL 소자(OLED)에 전류가 흐르는 것이 차단될 수 있다.

- <53> 이와 같이 제2 실시예에 의하면 동일 타입의 트랜지스터로 화소 회로를 구현할 수 있게 되어 제1 실시예에 비해 공정이 간단해질 수 있다.
- 스타 그리고 본 발명의 제1 및 제2 실시예에서는 프리차지 기간(T1) 동안 유기 EL 소자 (OLED)에 흐를 수 있는 전류를 차단하기 위해 트랜지스터(M5)가 추가되었지만, 이와는 달리 데이터 충전 기간(T3) 동안 유기 EL 소자에 흐를 수 있는 전류를 차단하기 위해 트랜지스터(M6)가 추가될 수도 있다. 아래에서는 이러한 실시예에 대하여 도 7을 참조하여 상세하게 설명한다.
- <55> 도 7은 본 발명의 제3 실시예에 따른 화소 회로의 등가 회로도이다.
- 도 7을 보면, 본 발명의 제3 실시예에 따른 화소 회로에서는 트랜지스터(M5) 대신에 트랜지스터(M6)가 트랜지스터(M1)와 유기 EL 소자(OLED) 사이에 연결되어 있다. 트랜지스터(M6)는 NMOS형 트랜지스터이며 트랜지스터(M6)의 게이트에는 현재 주사선(S_n)이 연결되어 있다. 그리고 제3 실시예에 따른 화소 회로는 도 4의 구동 파형에 의해 구동된다.
- 이와 같이 하면, 데이터 충전 기간(T3)에서 데이터선(Dm)으로부터의 데이터 전압이 커패시터(Cst)에 충전되는 동안 현재 주사선(Sn)으로부터의 선택 신호에 의해 트랜지스 터(M6)가 턴오프되어, 트랜지스터(M1)와 유기 EL 소자(OLED)가 전기적으로 차단된다. 따

라서 트랜지스터(M1)에 형성된 커패시터(Cst)에 데이터 전압이 충전되는 동안에 유기 EL소자(OLED)에 흐를 수 있는 전류가 차단된다.

- 다음, 현재 주사선(S_n)으로부터의 선택 신호가 하이 레벨이 되면 트랜지스터(M6)는 턴온되어 트랜지스터(M1)와 유기 EL 소자(OLED)는 전기적으로 연결된다. 따라서 커패시 터(Cst)에 충전된 전압에 대응하는 전류(I_{OLED})가 유기 EL 소자(OLED)에 흐르게 되어 유기 EL 소자(OLED)는 발광하게 된다(발광 기간(T4)).
- <59> 이러한 본 발명의 제3 실시예에 의하면, 데이터 전압이 충전되는 동안 유기 EL 소자(OLED)에 흐를 수 있는 전류가 차단되므로 소비 전력을 줄일 수 있다.
- <60> 그리고 제3 실시예에서도 트랜지스터(M6)를 스위칭 트랜지스터(M3)와 동일한 타입의 트랜지스터로 할 수 있으며, 이러한 경우에는 주사선(S_n)에 인가되는 선택 신호에 대하여 반전된 형태를 가지는 신호로 트랜지스터(M6)를 구동하면 된다.
- 본 발명의 제3 실시예에서는 데이터 충전 기간(T3) 동안에 유기 EL 소자(OLED)에 흐를 수 있는 전류를 차단하였지만, 이와 동시에 프리차지 기간(T1) 동안에 유기 EL 소자(OLED)에 흐를 수 있는 전류를 차단할 수도 있다. 아래에서는 이러한 실시예에 대하여도 8 및 도 9를 참조하여 상세하게 설명한다.
- <62> 도 8은 본 발명의 제4 실시예에 따른 화소 회로의 등가 회로도이며, 도 9는 화소 회로에서 유기 EL 소자에 흐르는 전류를 나타내는 도면이다.
- <63> 도 8을 보면, 본 발명의 제4 실시예에 따른 화소 회로는 도 3의 화소 회로에 제3 실시예와 같이 트랜지스터(M6)가 추가된 구조를 가진다. 즉, 트랜지스터(M6, M5)는 트랜 지스터(M1)와 유기 EL 소자(OLED)의 애노드 사이에 직렬로 연결되어 있으며, NMOS형 트

랜지스터로 형성되어 있다. 그리고 트랜지스터(M5)의 게이트는 직전 주사선(S_{n-1})에 연결되어 있으며, 트랜지스터(M6)의 게이트는 현재 주사선(S_n)에 연결되어 있다. 이때, 트랜지스터(M5, M6)의 위치는 서로 바뀔 수도 있다. 도 8의 화소 회로는 제1 및 제3 실시예에서와 동일하게 도 4의 구동 파형에 의해 구동된다.

- 이와 같이 하면, 프리차지 기간(T1) 동안 직전 주사선(S_{n-1})으로부터의 선택 신호에 의해 트랜지스터(M5)가 턴오프되어 프리차지 전압(Vp)에 의해 유기 EL 소자(OLED)에 흐를 수 있는 전류가 차단된다. 그리고 데이터 충전 기간(T3) 동안 현재 주사선(S_n)으로부터의 선택 신호에 의해 트랜지스터(M6)가 턴오프되어 데이터 전압이 충전되는 동안 유기 EL 소자(OLED)에 흐를 수 있는 전류가 차단된다. 다음, 발광 기간(T4)에서는 트랜지스터(M5, M6)가 모두 턴온되어 있으므로 커패시터(Cst)에 충전된 전압에 대응하는 전류가 유기 EL 소자(OLED)에 흐르게 된다.
- 본 발명의 제4 실시예에 따른 화소 회로에서도 트랜지스터(M5)의 게이트에 직전 주사선(S_{n-1})에 인가되는 선택 신호에 대하여 반전된 형태의 신호를 인가함으로써 트랜지스터(M5)를 트랜지스터(M4)와 동일한 타입의 트랜지스터로 형성할 수 있다. 마찬가지로 트랜지스터(M6)의 게이트에 현재 주사선(S_n)에 인가되는 선택 신호에 대하여 반전된 형 대의 신호를 인가함으로써 트랜지스터(M6)를 트랜지스터(M3)와 동일한 타입의 트랜지스터로 형성할 수도 있다.
- <66> 도 9를 보면, 도 1의 화소 회로에서는 프리차지 기간(T1) 동안에 유기 EL 소자 (OLED)에 큰 전류가 흐르며 마찬가지로 데이터 충전 기간(T3) 동안에도 유기 EL 소자 (OLED)에 전류가 흐른다. 도 3의 화소 회로에서는 프리차지 기간(T1)에서는 전류가 흐르지 않지만, 데이터 충전 기간(T3)에서는 전류가 흐르는 것을 알 수 있다. 그리고 도 8의

화소 회로에서는 프리차지 기간(T1) 및 데이터 충전 기간(T3)에서 모두 유기 EL 소자 (OLED)에 흐르는 전류가 차단되는 것을 알 수 있다.

- 본 발명의 제4 실시예에서는 트랜지스터(M1-M4)를 PMOS형 트랜지스터로 형성하였지 만, NMOS형 트랜지스터로 형성할 수도 있다. 이러한 실시예에 대하여 도 10 및 도 11을 참조하여 상세하게 설명한다.
- <68> 도 10은 본 발명의 제5 실시예에 따른 화소 회로의 등가 회로도이며, 도 11은 도 10의 화소 회로의 구동 파형도이다.
- (69) 도 10에 나타낸 바와 같이, 제5 실시예에 따른 화소 회로는 도 8의 화소 회로에서 트랜지스터(M1-M4)가 NMOS형 트랜지스터로 형성되어 있고 트랜지스터(M5, M6)가 PMOS형 트랜지스터로 형성된 구조를 가진다. 그리고 도 10의 화소 회로는 도 8의 화소 회로에 대하여 대칭된 구조를 가진다. 자세하게 설명하면, 트랜지스터(M1)는 기준 전압(Vss)에 소스가 연결되어 있으며, 유기 EL 소자(OLED)는 애노드가 전원 전압(VDD)에 연결되어 있다. 그리고 트랜지스터(M5, M6)는 유기 EL 소자(OLED)의 캐소드와 트랜지스터(M1)의 드 레인 사이에 직렬로 연결되어 있다.
- <70> 도 11을 보면, 도 10의 화소 회로를 구동하기 위한 구동 파형은 도 8의 화소 회로를 구동하기 위한 구동 파형(도 4 참조)에 대하여 반전된 형태를 가진다. 그러면 도 10의 화소 회로는 도 8의 화소 회로와 동일하게 동작하게 되며, 동작에 대한 자세한 설명은 생략한다.
- <71> 이와 같이 트랜지스터(M1-M4)를 NMOS형 트랜지스터로 형성하는 것은 위에서 설명한 모든 실시예에 적용할 수 있다. 마찬가지로 위에서 설명한 트랜지스터와 동일한 기능을

한다면 PMOS와 NMOS의 조합 또는 다른 스위칭 소자를 사용하여 화소 회로를 구현할 수도 있다.

스키고 본 발명의 실시예에서는 유기 EL 표시 장치를 예를 들어 설명하였지만, 본 발명은 유기 EL 소자에 한정되지 않고 전류에 따라 빛을 발광할 수 있는 다른 발광 표시 장치에도 적용될 수 있다.

<73> 이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하 는 것이다.

【발명의 효과】

이와 같이 본 발명에 의하면, 구동 트랜지스터와 보상 트랜지스터의 문턱 전압이 동일하다면 트랜지스터의 문턱 전압의 편차를 보상할 수 있다. 또한 프리차지 전압이 충 전되는 동안, 프리차지 전압에 의해 형성될 수 있는 전류가 차단되어 블랙 레벨 계조가 명확하게 표현되고, 이에 따라 콘트라스트 비율이 향상된다. 그리고 데이터 전압이 충전 되는 동안에 흐를 수 있는 전류가 차단되므로 소비 전력을 줄일 수 있다.

【특허청구범위】

【청구항 1】

화상 신호를 나타내는 데이터 전압을 전달하는 복수의 데이터선, 선택 신호를 전달 한 복수의 주사선, 그리고 이웃하는 두 데이터선과 이웃하는 두 주사선 사이에 의해 정의되는 화소 영역에 각각 형성되는 복수의 화소 회로를 포함하는 화상 표시 장치의 표시 패널에 있어서,

상기 화소 회로는,

인가되는 전류의 양에 대응하여 화상을 표시하는 표시 소자,

주 전극과 제어 전극 사이에 커패시터가 형성되어 있으며, 상기 주 전극과 상기 제어 전극 사이의 전압에 대응하는 전류를 출력하는 제1 트랜지스터,

상기 제1 트랜지스터의 제어 전극에 제어 전극이 연결되어 있으며, 다이오드 연결 되어 있는 제2 트랜지스터,

상기 제2 트랜지스터의 주 전극에 연결되어 있으며, 상기 현재 주사선으로부터의 선택 신호에 응답하여 상기 데이터선으로부터의 데이터 전압을 상기 제2 트랜지스터로 전달하는 제1 스위칭 소자,

상기 데이터 전압이 공급되기 전에 제1 제어 신호에 응답하여 프리차지 전압을 상기 제1 트랜지스터의 제어 전극으로 전달하는 제2 스위칭 소자, 그리고

제2 제어 신호에 응답하여 턴오프되어 상기 제1 트랜지스터와 상기 발광 소자를 전기적으로 차단하는 제3 스위칭 소자를 포함하는 표시 패널.

【청구항 2】

제1항에 있어서,

상기 제1 제어 신호는 직전 주사선으로부터의 선택 신호인 것을 특징으로 하는 표시 패널.

【청구항 3】

제2항에 있어서,

상기 제1 제어 신호에 의해 상기 프리차지 전압이 전달되는 기간과 상기 현재 주사 선에 선택 신호가 인가되는 기간 사이에서 상기 데이터 전압이 상기 데이터선으로 인가 되는 표시 패널.

【청구항 4】

제3항에 있어서.

상기 현재 주사선에 선택 신호가 인가되기 전에 상기 데이터선에서의 상기 데이터 전압은 원하는 전압까지 변경되는 표시 패널.

【청구항 5】

제1항에 있어서.

상기 제2 제어 신호는 상기 제1 제어 신호인 것으로 특징으로 하는 표시 패널.

【청구항 6】

제5항에 있어서,

상기 제1 및 제2 제어 신호는 직전 주사선으로부터의 선택 신호이며,

상기 제2 스위칭 소자는 제1 전도 타입의 트랜지스터이며, 상기 제3 스위칭 소자는 상기 제1 전도 타입과 반대되는 제2 전도 타입의 트랜지스터인 표시 패널.

【청구항 7】

제1항에 있어서,

상기 제2 제어 신호는 상기 현재 주사선으로부터의 선택 신호이며,

상기 제2 스위칭 소자는 제1 전도 타입의 트랜지스터이며, 상기 제3 스위칭 소자는 상기 제1 전도 타입과 반대되는 제2 전도 타입의 트랜지스터인 표시 패널.

【청구항 8】

제7항에 있어서,

상기 제1 제어 신호는 직전 주사선으로부터의 선택 신호인 것을 특징으로 하는 표시 패널.

【청구항 9】

제1항에 있어서,

상기 제3 스위칭 소자는 상기 제1 제어 신호에 의해 상기 프리차지 전압이 전달되는 동안과 상기 현재 주사선으로부터의 선택 신호에 의해 상기 데이터 전압이 전달되는 동안에 턴오프되는 표시 패널.

【청구항 10】

제9항에 있어서,

상기 제3 스위칭 소자는 직렬로 연결되는 제3 및 제4 트랜지스터를 포함하며,

상기 제2 제어 신호는 상기 프리차지 전압이 전달되는 동안 상기 제3 트랜지스터를 턴오프시키는 제3 제어 신호 및 상기 데이터 전압이 전달되는 동안 상기 제4 트랜지스터 를 턴오프시키는 제4 제어 신호를 포함하는 표시 패널.

【청구항 11】

제10항에 있어서,

상기 제1 및 제3 제어 신호는 상기 직전 주사선으로부터의 선택 신호이며,

상기 제2 스위칭 소자는 제1 전도 타입의 트랜지스터이며, 상기 제3 트랜지스터는 상기 제1 전도 타입과 반대되는 제2 전도 타입의 트랜지스터인 표시 패널.

【청구항 12】

제10항에 있어서.

상기 제4 제어 신호는 상기 현재 주사선으로부터의 선택 신호이며,

상기 제4 트랜지스터는 상기 제1 트랜지스터와 반대되는 타입의 트랜지스터인 표시 패널.

【청구항 13】

제1항에 있어서.

상기 제1 및 제2 스위칭 소자는 상기 제1 및 제2 트랜지스터와 동일 타입의 트랜지스터인 것을 특징으로 하는 표시 패널.

【청구항 14】

제1항에 있어서,

상기 프리차지 전압은 상기 데이터선으로부터의 데이터 전압의 최저 전압보다 낮은 것을 특징으로 하는 표시 패널.

【청구항 15】

제1항에 기재된 표시 패널,

상기 표시 패널에 장착되거나 상기 표시 패널에 전기적으로 연결되어 상기 데이터 선에 상기 데이터 전압을 인가하는 데이터 구동부, 그리고

상기 표시 패널에 장착되거나 상기 표시 패널에 전기적으로 연결되어 상기 주사선 에 상기 선택 신호를 인가하는 주사 구동부

【청구항 16】

를 포함하는 표시 장치.

제어 전극과 주 전극 사이에 커패시터가 형성되며 상기 커패시터에 충전된 전압에 대응하는 전류를 출력하는 제1 트랜지스터, 상기 제1 트랜지스터의 제어 전극에 제어 전 극이 연결되며 다이오드 연결되어 있는 제2 트랜지스터, 그리고 상기 제1 트랜지스터로 부터 출력되는 전류의 양에 대응하여 화상을 표시하는 표시 소자를 포함하는 화소 회로가 형성된 화상 표시 장치를 구동하는 방법에 있어서,

제 1 기간동안 제1 제어 신호에 응답하여 상기 제1 트랜지스터의 제어 전국에 프리 차지 전압을 전달하는 단계, 그리고

제2 기간동안 현재 주사선으로부터의 선택 신호에 응답하여 상기 제2 트랜지스터를 통하여 상기 제1 트랜지스터의 제어 전극에 데이터 전압을 전달하는 단계 를 포함하며,

상기 제1 기간 및 상기 제2 기간 중 적어도 한 기간에서 상기 제1 트랜지스터와 상기 발광 소자는 전기적으로 차단되는 화상 표시 장치의 구동 방법.

【청구항 17】

제16항에 있어서,

상기 제1 제어 신호는 직전 주사선으로부터의 선택 신호인 것을 특징으로 하는 화 상 표시 장치의 구동 방법.

【청구항 18】

제16항 또는 제17항에 있어서,

상기 제1 기간에서 상기 제1 트랜지스터와 상기 표시 소자는 상기 제1 제어 신호에 응답하여 전기적으로 차단되는 화상 표시 장치의 구동 방법.

【청구항 19】

제16항에 있어서,

상기 제2 기간에서 상기 제1 트랜지스터와 상기 표시 소자는 제2 제어 신호에 응답 하여 전기적으로 차단되는 화상 표시 장치의 구동 방법.

【청구항 20】

제19항에 있어서,

상기 제2 제어 신호는 상기 현재 주사선으로부터의 선택 신호인 것을 특징으로 하는 화상 표시 장치의 구동 방법.

【청구항 21】

제16항에 있어서,

상기 제1 기간과 상기 제2 기간 사이에서,

상기 트랜지스터의 제어 전극에 상기 프리차지 전압 및 상기 데이터 전압의 전달을 차단하는 단계를 더 포함하는 화상 표시 장치의 구동 방법.

【청구항 22】

제21항에 있어서,

상기 제1 제어 신호는 직전 주사선으로부터의 선택 신호이며.

상기 제1 기간에서는 상기 직전 주사선으로부터의 선택 신호에 응답하여 상기 제1 트랜지스터와 상기 표시 소자가 전기적으로 차단되며.

상기 제2 기간에서는 상기 현재 주사선으로부터의 선택 신호에 응답하여 상기 제1 트랜지스터와 상기 표시 소자가 전기적으로 차단되는 화상 표시 장치의 구동 방법.

【청구항 23】

제1 신호선으로부터의 프리차지 전압과 제2 신호선으로부터의 화상을 나타내는 데이터 전압에 응답하는 화소 회로에 있어서.

제어 전극과 주 전극 사이에 커패시터가 형성되며 상기 커패시터에 충전된 전압에 대응하는 전류를 출력하는 제1 트랜지스터,

상기 제1 트랜지스터의 제어 전국에 제어 전국이 연결되며 다이오드 연결되어 있는 제2 트랜지스터,

상기 제1 트랜지스터로부터 출력되는 전류의 양에 대응하여 화상을 표시하는 표시 소자, 그리고

상기 제1 트랜지스터와 상기 표시 소자 사이에 전기적으로 연결되는 스위칭부

를 포함하며,

제 1 기간동안 제어 신호에 응답하여 상기 프리차지 전압이 상기 제1 트랜지스터의 제어 전극에 전달되고 제2 기간동안 선택 신호에 응답하여 상기 데이터 전압이 상기 제1 트랜지스터의 제어 전극에 전달되며,

상기 스위칭부는 상기 제1 기간과 상기 제2 기간 중 적어도 한 기간에서 상기 제1 트랜지스터와 상기 표시 소자를 전기적으로 차단하는 화소 회로.

【청구항 24】

제23항에 있어서,

상기 제어 신호는 직전 선택 신호인 것을 특징으로 하는 화소 회로.

