Traffic Collisions Involving Autonomous Vehicles in California: Bayesian Model Based Clustering

Subasish Das, Ph.D., Assoc. Trans. Researcher, Texas A&M Transportation Institute (s-das@tti.tamu.edu) **Anandi Dutta, Ph.D.,** Senior Lecturer, Dept. of CSE, Ohio State University (dutta.34@osu.edu) **Ioannis Tsapakis, Ph.D.,** Assoc. Research Scientist, Texas A&M Transportation Institute (i-tsapakis@tti.tamu.edu)

Abstract

- Safety outcomes from AV deployment is a critical issue. Ensuring safety of AVs requires a multi-disciplinary approach which monitors every aspect of these vehicles.
- This study collected all crash reports filed by different manufacturers testing autonomous vehicles in California (September 2014 to May 2019).
- This study demonstrated a variational inference algorithm for Bayesian latent class models.

Methodology

- Safety outcomes from AV deployment is a critical issue. Ensuring safety of AVs requires a multi-disciplinary approach which monitors every aspect of these vehicles.
- This study collected all crash reports filed by different manufacturers that are testing autonomous vehicles in California (September 2014 to May 2019).
- This study demonstrated a variational inference algorithm for Bayesian latent class models.

AV crash locations at Santa Clara

Distribution of Attributes by Classes (partial table on display)

Attribute	Count	Class 1 (28)	Class 2 (11)	Class 3 (21)	Class 4 (1)	Class 5 (26)	Class 6 (64)
DRIVING MODE							
Autonomous	89	21.35	4.49	12.36	0	24.72	37.08
Conventional	62	14.52	11.29	16.13	1.61	6.45	50
DRIVER SEVERITY							
No	143	19.58	7.69	11.19	0.7	16.08	44.76
Yes	8	0	0	62.5	0	37.5	0
PRIOR EVENT							
Left Turn	6	16.67	0	50	0	0	33.33
Right Turn	5	0	0	60	0	0	40
Stopped	43	0	0	2.33	0	0	97.67
Straight	25	0	0	56	4	0	40
Other/Unk.	72	37.5	15.28	0	0	36.11	11.11
VEHICLE WAS							
Moving	93	10.75	9.68	21.51	1.08	27.96	29.03
Stopped	58	31.03	3.45	1.72	0	0	63.79

Traigram bar plots from crash narratives

Conclusions

- A majority of the collision types were a rear-end collision (58 collisions), and the second most common type was sideswipe collisions (17 collisions). The damage level of the vehicle was most commonly minor (63 collisions) or moderate (17 collisions).
- Turning, multi-vehicle collisions, dark lighting conditions with streetlights, and sideswipe and rear-end collisions are associated with a higher proportion of injury severity level.
- When a vehicle was in autonomous mode, there was a high likelihood of adverse weather crash occurrences when the vehicle's prior condition was stopped.
- The crash narrative reports are insufficient to extract insightful information.