	[Arun Ragavendhar]								
	[104837257]								
COS60009 – Database Management System for t	he Big Data age								
Individual Assignment -1									
Name: Arun Ragavendhar Arunachalam Palaniyappan									
Student ID: 104837257									

Task A -

Specify the following queries in SQL on the database schema of Figure 1.2.

- a. Retrieve the name of each course along with the name of the instructor who taught that course during the fall of 08.
- b. For each section taught by Professor Anderson, retrieve the course number, semester, year, and number of students who took the section.
- c. For each student who completed more than two courses, retrieve the name, student number of the student and the number of courses completed by that student.

			C4.		oer Class					\neg		
STUDENT	Smith	ame	Sit	Student_number C				Major CS				
	Brown			8	1 2		-	CS				
	BIOWII			•		2		CS				
COURSE	Cou	urse_name		Course_number		Credit_hours			Department			
	Intro to Co	mputer Science CS1310		4			CS					
	Data Struc	ictures CS33			20) 4		cs				
	Discrete M	athematics	MATH2410			3			MATH			
	Database			CS3380				3		cs		
SECTION Section		_identifier	C	Course_number		Sen	mester Y		Year		Instruc	tor
		85		MATH2410) Fe		all	07			King	ı
	92 CS1310		F	Fall C		7	7 Anders		on			
		102	2 CS3320			Spring (08 Kn		Knut	h	
		112		MATH2410		Fall		08			Chan	g
	119 135		CS1310 CS3380			Fall Fall		08			Anderson Stone	
									80			
GRADE_REPORT		Student_number			Section_identifier		Grade					
		17			112		В					
		17		119					2			
		8		85					٩			
		8		92					٩			
			8			102		В				
PREREQUISITE		8			135				۹			
		Course_number			Prerequisite_number							
		CS3380			CS3320							

Figure 1.2 Example of a simple database

CS3380

CS3320

I understand that it was not an assignment requirement to submit the execution of the queries in SQL, but I have presented it out of own interest as well as for hands on practice.

MATH2410

CS1310

First, I created the respective table in my local host of my SQL workbench and then proceeded to work on the questions:

create database assignment1;

create table student(name varchar(30), student_number int ,class int,major varchar(20)); insert into student values('smith',17,1,'CS');

insert into student values('brown',8,2,'CS');

select* from student;

create table course(course_name varchar(30),course_number varchar(20),course_hours int,department varchar(20));

insert into course(course_name,course_number,course_hours,department) values ('intro to computer science','CS1310',4,'CS'),('data structures','CS3320',4,'CS'),('discrete mathematics','MATH2410',3,'MATH'),('database','CS3380',3,'CS'); select* from course;

create table section(section_identifier int,course_number varchar(30),semester varchar(30),year int,instructor varchar(30));

insert into section(section_identifier,course_number,semester,year,instructor) values

(85,'MATH2410','fall',7,'king'),(92,'CS1310','fall',7,'anderson'),(102,'CS320','spring',8,'knuth'),(11 2,'MATH2410','fall',8,'chang'),(119,'CS1310','fall',8,'anderson'),(135,'CS3380','fall',8,'stone'); select* from section;

create table grade_report(student_number int,section_identifier int, grade varchar(30));

insert into grade_report(student_number,section_identifier,grade) values (17,112,'B'),(17,119,'C'),(8,85,'A'),(8,92,'A'),(8,102,'B'),(8,135,'A'); select* from grade_report;

create table prerequisite(course_number varchar(30),prerequisite_number varchar(30)); insert into prerequisite(course_number,prerequisite_number) values ('CS3380','CS3320'),('CS3380','MATH2410'),('CS3320','CS1310'); select* from prerequisite;

1). Retrieve the name of each course along with the name of the instructor who taught that course during the fall of 08.

SQL Query:

SELECT course_name,instructor

FROM course c

JOIN section s

ON c.course number=s.course number

WHERE semester='fall' AND year='8'

GROUP BY c.course_name,s.instructor;

```
32
 33
        SELECT course_name,instructor
 34 •
 35
        FROM course c
 36
        JOIN section s
        ON c.course_number=s.course_number
 37
        WHERE semester='fall' AND year='8'
 38
        GROUP BY c.course_name,s.instructor;
 39
 40
 41
 42
 43
 44
                                         Export: Wrap Cell Content: 1A
course_name
                       instructor
  intro to computer science
                      anderson
  discrete mathematics
                      chang
  database
                       stone
```

b) For each section taught by Professor Anderson, retrieve the course number, semester, year, and number of students who took the section.

SQL Query:

SELECT course_number,semester,year,count(*) **AS** no_of_students

FROM section

WHERE instructor='anderson'

GROUP BY section_identifier,course_number,semester,year;

c) For each student who completed more than two courses, retrieve the name, student number of the student and the number of courses completed by that student.

SQL Query:

SELECT name,st.student number,count(*) AS no of courses completed

FROM student st

JOIN grade report g

ON st.student_number=g.student_number

JOIN section s

ON g.section_identifier=s.section_identifier

GROUP BY name,st.student number

HAVING count(*)>2;

b) Map the BANK ER schema of shown in Figure 3.22 into a relational schema. Specify all primary keys and foreign keys.

Figure 3.22
An ER diagram for a BANK database schema.

BANK (<u>Code</u> , Name , Addr)

Primary key - Code

BANK_BRANCH (Code, Branch_no, Addr)

weak entity, hence have included attribute 'code' from BANK to reference it and make it stronger

Primary key – Code, Branch_no

Foreign key – Code - to reference BANK

CUSTOMER (Ssn, Name, Addr, Phone)

Primary key – Ssn

A_C (Ssn, Acct_no)

Primary key - Ssn, Acct no

Foreign keys – Ssn – to reference CUSTOMER and Acct_no – to reference ACCOUNT

ACCOUNT (Acct no , Type , Balance , Code, Branch no)

Primary key - Acct no

Foreign key – Code, Branch_no - to reference BANK_BRANCH

L_C (Ssn, Loan_no)

Primary key - Ssn,Loan no

Foreign keys - Ssn - to reference CUSTOMER and Loan_no - to reference LOAN

LOAN (Loan no , Type , Amount , Code, Branch no)

Primary key - Loan no

Foreign key - Code, Branch_no - to reference BANK_BRANCH

This relational schema is then laid out as a diagram below:

[104837257]

