Antimicrobial Resistance (AMR) Surveillance report

Hospital name: Hypothetical Hospital

Country name: Hypothetical Country

Data from:

02 Jan 2016 to 10 Jan 2017

Contact person: xxx_Can be changed in the dictionary_of_variable_data.csv_xxx Contact address: xxx_Can be changed in the dictionary_of_variable_data.csv_xxx

Contact email: xxx@xxx.xxx

Generated on: 21 Feb 2024 17:06

Software version: 3.0 released on 14 Feb 2024

Generated by

AutoMated tool for Antimicrobial resistance Surveillance System (AMASS) version 3.0 (released on 14 Feb 2024)

The AMASS application is available under the Creative Commons Attribution 4.0 International Public License (CC BY 4.0). The application can be downloaded at: https://www.amass.website

The AMASS application used microbiology_data and hospital_admission_data files that are stored in the same folder as the application (AMASS.bat) to generate this report.

The goal of the AMASS application is to enable hospitals with microbiology data available in electronic formats to analyze their own data and generate AMR surveillance reports promptly. If hospital admission date data are available, the reports will additionally be stratified by infection origin (community–origin or hospital–origin). If mortality data (such as patient discharge outcome data) are available, a report on mortality involving AMR infection will be added.

This automatically generated report has limitations, and requires users to understand those limitations and use the summary data in the report with careful interpretation.

A valid report could have local implications and much wider benefits if shared with national and international organizations.

This automatically generated report is under the jurisdiction of the hospital to copy, redistribute, and share with any individual or organization.

This automatically generated report contains no patient identifier, similar to standard reports on cumulative antimicrobial susceptibility.

For any query on AMASS, please contact: Chalida Rangsiwutisak (chalida@tropmedres.ac), Cherry Lim (cherry@tropmedres.ac), and Direk Limmathurotsakul (direk@tropmedres.ac)

Suggested title for citation:

Antimicrobial resistance surveillance report, Hypothetical Hospital, Hypothetical Country, 02 Jan 2016 to 10 Jan 2017.

Content

ntroduction	1
Section [1]: Data overview	3
Section [2]: AMR proportion report	5
Section [3]: AMR proportion report with stratification by infection origin	12
Section [4]: AMR frequency report	24
Section [5]: AMR frequency report with stratification by infection origin	27
Section [6]: Mortality involving AMR and antimicrobial-susceptible infections	32
Annex A: Supplementary report on notifiable bacterial infections	38
Annex B: Supplementary report on data indicators	41
Annex C: Cluster signals	43
Methods	58
Acknowledgements	62

Introduction

Antimicrobial resistance (AMR) is a global health crisis [1]. The report by Lord Jim O'Neill estimated that 700,000 global deaths could be attributable to AMR in 2015, and projected that the annual death toll could reach 10 million by 2050 [1]. However, data of AMR surveillance from low and middle–income countries (LMICs) are scarce [1,2], and data of mortality associated with AMR infections are rarely available. A recent study estimated that 19,000 deaths are attributable to AMR infections in Thailand annually, using routinely available microbiological and hospital databases [3]. The study also proposed that hospitals in LMICs should utilize routinely available microbiological and hospital admission databases to generate reports on AMR surveillance systematically [3].

Reports on AMR surveillance can have a wide range of benefits [2]; including

- characterization of the frequency of resistance and organisms in different facilities and regions;
- prospective and retrospective information on emerging public health threats;
- evaluation and optimization of local and national standard treatment guidelines;
- evaluation of the impact of interventions beyond antimicrobial guidelines that aim to reduce AMR; and
- data sharing with national and international organizations to support decisions on resource allocation for interventions against AMR and to inform the implementation of action plans at national and global levels.

When reporting AMR surveillance results, it is generally recommended that (a) duplicate results of bacterial isolates are removed, and (b) reports are stratified by infection origin (community-origin or hospital-origin), if possible [2]. Many hospitals in LMICs lack time and resources needed to analyze the data (particularly to deduplicate data and to generate tables and figures), write the reports, and to release the data or reports [4].

AutoMated tool for Antimicrobial resistance Surveillance System (AMASS) was developed as an offline, open–access and easy–to–use application that allows a hospital to perform data analysis independently and generate AMR proportion and AMR frequency reports stratified by infection origin from routinely collected electronic databases. The application was built in a free software environment. The application has been placed within a user–friendly interface that only requires the user to double–click on the application icon. The AMASS application can be downloaded at: https://www.amass.website

Created on: 21 Feb 2024 17:06 Page 1 of 62

The AMASS version 3.0 additionally generates reports on notifiable bacterial diseases in Annex A and on data indicators (including proportion of contaminants and discordant AST results) in Annex B for the "microbiology_data" file that is used to generate this report. A careful review of the Annex B could help readers and data owners to identify potential errors in the microbiology data used to generate the report.

The AMASS version 3.0 also separately generates Supplementary data indictors report (in PDF and Excel formats) in a new folder "Report_with_patient_identifiers" to support users to check and validate records with notifiable bacteria, notifiable antibiotic-pathogen combinations, infrequent phenotypes or potential errors in the AST results at the local level. The identifiers listed include hospital number and specimen collection date. The files are generated in a separate folder "Report_with_patient_identifiers" so that it is clear that users should not share or transfer the Supplementary Data Indictors report (in PDF and Excel format) to any party outside of the hospital without data security management and confidential agreement.

References:

- [1] O'Neill J. (2014) Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Review on antimicrobial resistance. http://amr-review.org. (accessed on 3 Dec 2018).
- [2] World Health Organization (2018) Global Antimicrobial Resistance Surveillance System (GLASS) Report. Early implantation 2016–2017. http://apps.who.int/iris/bitstream/handle/10665/259744/9789241513449–eng.pdf. (accessed on 3 Dec 2018)
- [3] Lim C., et al. (2016) Epidemiology and burden of multidrug–resistant bacterial infection in a developing country. Elife 5: e18082.
- [4] Ashley EA, Shetty N, Patel J, et al. Harnessing alternative sources of antimicrobial resistance data to support surveillance in low–resource settings. J Antimicrob Chemother. 2019; 74(3):541–546.
- [5] Clinical and Laboratory Standards Institute (CLSI). Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edition. 2014. (accessed on 21 Jan 2020)
- [6] European Antimicrobial Resistance Surveillance Network (EARS–Net). Antimicrobial resistance (AMR) reporting protocol 2018. (accessed on 21 Jan 2020)
- [7] European Committee on Antimicrobial Susceptibility Testing (EUCAST). www.eucast.org (accessed on 21 Jan 2020)

Created on: 21 Feb 2024 17:06 Page 2 of 62

Section [1]: Data overview

Introduction

An overview of the data detected by the AMASS application is generated by default. The summary is based on the raw data files saved within the same folder as the application file (AMASS.bat).

Please review and validate this section carefully before proceeds to the next section.

Results

The microbiology_data file (stored in the same folder as the application file) had:

50404 specimen data records with collection dates ranging from

02 Jan 2016 to 10 Jan 2017

The hospital_admission_data file (stored in the same folder as the application file) had:

NA admission data records with hospital admission dates ranging from

NA to NA

The total number of patient-days was **NA**.

The total number of patient-days at risk of BSI of hospital-origin was **NA**.

Note:

[1] If the periods of the data in microbiology_data and hospital_admission_data files are not similar, the automatically-generated report should be interpreted with caution. The AMASS generates the reports based on the available data.

[2] A patient is defined as at risk of BSI of hospital-origin when the patient is admitted to the hospital for more than two calendar days with calendar day one equal to the day of admission.

Created on: 21 Feb 2024 17:06 Page 3 of 62

Reporting period by months:

Data was stratified by month to assist detection of missing data, and verification of whether the month distribution of data records in microbiology_data file and hospital_admission_data file reflected the microbiology culture frequency and admission rate of the hospital, respectively. For example if the number of specimens in the microbiology_data file reported below is lower than what is expected, please check the raw data file and data dictionary files.

Month	Number of specimen data records in microbiology_data file	Number of admission data records in hospital_admission_data file
January	4197	
February	4059	
March	4332	
April	4269	
May	4317	
June	4022	
July	4301	
August	4296	
September	3975	
October	4302	
November	4131	
December	4203	
Total	50404	NA

Note:

[1] Additional general demographic data will be made available in the next version of the AMASS application.

Introduction

An AMR proportion report is generated by default, even if the hospital_admission_data file is unavailable. This is to enable hospitals with only microbiology data available to utilize the de–duplication and report generation functions of AMASS. This report is without stratification by origin of infection.

The report generated by the AMASS application version 3.0 includes only blood samples. The next version of AMASS will include other specimen types, including cerebrospinal fluid (CSF), urine, stool, and other specimens.

Organisms under this survey:

- Staphylococcus aureus
- Enterococcus faecalis
- Enterococcus faecium
- Streptococcus pneumoniae
- Salmonella spp.
- Escherichia coli
- Klebsiella pneumoniae
- Pseudomonas aeruginosa
- Acinetobacter baumannii

Results

The microbiology_data file had:

Sample collection dates ranged from 02 Jan 2016 to 10 Jan 2017

Number of records of blood specimens collected within the above date range:

15878 blood specimens records

Number of records of blood specimens with *negative culture (no growth):

13315 blood specimens records

Number of records of blood specimens with culture positive for a microorganism:

2563 blood specimens records

Number of records of blood specimens with culture positive for organism under this survey:

857 blood specimens records

Created on: 21 Feb 2024 17:06 Page 5 of 62

The AMASS application de–duplicated the data by including only the first isolate per patient per specimen type per evaluation period as described in the method. The number of patients with positive samples is as follows:

Organism	Number of records of blood specimens culture positive for the organism	**Number of patients with blood culture positive for the organism (de-duplicated)
Staphylococcus aureus	113	96
Enterococcus faecalis	0	0
Enterococcus faecium	0	0
Streptococcus pneumoniae	25	20
Salmonella spp.	43	35
Escherichia coli	384	339
Klebsiella pneumoniae	135	120
Pseudomonas aeruginosa	56	48
Acinetobacter baumannii	101	90
Total:	<i>857</i>	748

The following figures and tables show the proportion of patients with blood culture positive for antimicrobial resistant isolates.

^{*}The negative culture included data values specified as 'no growth' in the dictionary_for_microbiology_data file (details on data dictionary files are in the method section) to represent specimens with negative culture for any microorganism.

^{**}Only the first isolate for each patient per specimen type, per pathogen, and per evaluation period was included in the analysis.

Blood: Staphylococcus aureus

(No. of patients = 96)

Methicillin	-	⊣				
Cefoxitin	-	-				
Oxacillin by MIC						
Vancomycin +	4					
Clindamycin	F	Н				
Chloramphenicol						
Ō	2	_	40 portion	60 n of R (%	80	100

Antibiotic agent	Proportion of R	95% CI
Methicillin	16% (15/96)	10% - 24%
Cefoxitin	16% (15/96)	10% - 24%
Oxacillin by MIC	NA	-
Vancomycin	0% (0/96)	0% - 4%
Clindamycin	22% (21/96)	15% - 31%
Chloramphenicol	NA	-

Blood: Enterococcus faecalis

(No. of patients = 0)

Penicillin G					
Ampicillin					
Vancomycin					
Teicoplanin					
Linezolid					
Daptomycin					
Ó	20	40 Proportio	60 on of R (%	80	100

Proportion of R	95% CI
NA	-
	NA NA NA NA NA

Created on: 21 Feb 2024 17:06 Page 7 of 62

^{*}Proportion of R represents the number of patients with blood culture positive for resistant isolates (numerator) over the total number of patients with blood culture positive for the organism and the organism was tested for susceptibility against the antibiotic (denominator). The AMASS application de–duplicated the data by including only the first isolate per patient per specimen type per evaluation period. Grey bars indicate that AST unknown results are more than 30% of the total number of patients with blood culture positive for the organism. Cl=confidence interval; NA=not available/reported/tested; Methicillin: cefoxitin or oxacillin by MIC

Blood: Enterococcus faecium

(No. of patients = 0)

	Ó	20	40	60	80	100
Daptomyc	in					
Linezol	id					
Teicoplan	in					
Vancomyc	in					
Ampicill	in					
Penicillin	G					

Antibiotic agent	Proportion of R	95% CI
Penicillin G	NA	-
Ampicillin	NA	-
Vancomycin	NA	-
Teicoplanin	NA	-
Linezolid	NA	-
Daptomycin	NA	-

Blood: Streptococcus pneumoniae

*Proportion of R (%)

(No. of patients = 20)

Antibiotic agent	Proportion of R	95% CI
Penicillin G	0% (0/16)	0% - 19%
Oxacillin	NA	-
Co-trimoxazole	58% (11/19)	36% - 77%
3GC	0% (0/19)	0% - 17%
Ceftriaxone	NA	-
Cefotaxime	NA	-
Erythromycin	20% (4/20)	8% - 42%
Clindamycin	20% (4/20)	8% - 42%
Levofloxacin	NA	-

*Proportion of R represents the number of patients with blood culture positive for resistant isolates (numerator) over the total number of patients with blood culture positive for the organism and the organism was tested for susceptibility against the antibiotic (denominator). The AMASS application de–duplicated the data by including only the first isolate per patient per specimen type per evaluation period. Grey bars indicate that AST unknown results are more than 30% of the total number of patients with blood culture positive for the organism. CI=confidence interval; NA=not available/reported/tested; 3GC=3rd-generation cephalosporin

Created on: 21 Feb 2024 17:06 Page 8 of 62

Blood: Salmonella spp.

(No. of patients = 35)

FLUOROQUINOLONES	—
Ciprofloxacin	-
Levofloxacin	
3GC	-
Ceftriaxone	—
Ceftazidime	
Cefotaxime	—
CARBAPENEMS	
Imipenem	
Meropenem	
Doripenem	
Ertapenem	
Ć	0 20 40 60 80 100 *Proportion of R (%)

Antibiotic agent	Proportion of R	95% CI
FLUOROQUINOLONES	40% (14/35)	26% - 56%
Ciprofloxacin	40% (14/35)	26% - 56%
Levofloxacin	NA	-
3GC	14% (5/35)	6% - 29%
Ceftriaxone	14% (5/35)	6% - 29%
Ceftazidime	NA	-
Cefotaxime	14% (5/35)	6% - 29%
CARBAPENEMS	NA	-
Imipenem	NA	-
Meropenem	NA	-
Doripenem	NA	-
Ertapenem	NA	-

^{*}Proportion of R represents the number of patients with blood culture positive for resistant isolates (numerator) over the total number of patients with blood culture positive for the organism and the organism was tested for susceptibility against the antibiotic (denominator). The AMASS application de–duplicated the data by including only the first isolate per patient per specimen type per evaluation period. Grey bars indicate that AST unknown results are more than 30% of the total number of patients with blood culture positive for the organism. Cl=confidence interval; NA=not available/reported/tested; FLUOROQUINOLONES: ciprofloxacin or levofloxacin; 3GC=3rd_generation cephalosporin; CARBAPENEMS: imipenem, meropenem, ertapenem or doripenem

Blood: Escherichia coli

(No. of patients = 339)

Ampicillin	
Gentamicin	H
Amikacin	н
Co-trimoxazole	⊢
FLUOROQUINOLONES	H
Ciprofloxacin	H
Levofloxacin	
3GC	⊢
Cefpodoxime	
Ceftriaxone	⊢
Ceftazidime	
Cefotaxime	Н
Cefepime	—
CARBAPENEMS H	
Imipenem <mark>H</mark>	
Meropenem H	
Ertapenem <mark>H</mark>	
Doripenem	
Colistin	
Piperacillin/tazobactam	
Cefoperazone/sulbactam	
Ó	20 40 60 80 100 *Proportion of R (%)

Antibiotic agent	Proportion of R	95% CI
Ampicillin	50% (118/236)	44% - 56%
Gentamicin	22% (74/339)	18% - 26%
Amikacin	100% (100/100)	96% - 100%
Co-trimoxazole	60% (144/239)	54% - 66%
FLUOROQUINOLONES	50% (118/236)	44% - 56%
Ciprofloxacin	50% (118/236)	44% - 56%
Levofloxacin	NA	-
3GC	47% (113/239)	41% - 54%
Cefpodoxime	NA	-
Ceftriaxone	47% (113/239)	41% - 54%
Ceftazidime	45% (79/174)	38% - 53%
Cefotaxime	100% (113/113)	97% - 100%
Cefepime	33% (9/27)	19% - 52%
CARBAPENEMS	2% (4/239)	0.7% - 4%
Imipenem	2% (4/239)	0.7% - 4%
Meropenem	2% (4/199)	0.8% - 5%
Ertapenem	2% (4/239)	0.7% - 4%
Doripenem	NA	-
Colistin	NA	-
Piperacillin/tazobactam	NA	-
Cefoperazone/sulbactam	NA	-

^{*}Proportion of R represents the number of patients with blood culture positive for resistant isolates (numerator) over the total number of patients with blood culture positive for the organism and the organism was tested for susceptibility against the antibiotic (denominator). The AMASS application de–duplicated the data by including only the first isolate per patient per specimen type per evaluation period. Grey bars indicate that AST unknown results are more than 30% of the total number of patients with blood culture positive for the organism. Cl=confidence interval; NA=not available/reported/tested; FLUOROQUINOLONES: ciprofloxacin or levofloxacin; 3GC=3rd_generation cephalosporin; CARBAPENEMS: imipenem, meropenem, ertapenem or doripenem

Blood: Klebsiella pneumoniae

(No. of patients = 120)

Ampicillin						
Gentamicin		Н				
Amikacin						
Co-trimoxazole			-	-		
FLUOROQUINOLONES			-	⊣		
Ciprofloxacin			-	⊣		
Levofloxacin						
3GC			-	-		
Cefpodoxime						
Ceftriaxone			-	-		
Ceftazidime			-	4		
Cefotaxime			-	⊣		
Cefepime					—	4
CARBAPENEMS	Н					
Imipenem	Н					
Meropenem	Н					
Ertapenem	Н					
Doripenem						
Colistin						
Piperacillin/tazobactam						
Cefoperazone/sulbactam						
			-			
1	0	20 *Pro	40 portio	60 n of R	80 (%)	100

Antibiotic agent	Proportion of R	95% CI
Ampicillin	NA	-
Gentamicin	19% (23/120)	13% - 27%
Amikacin	NA	-
Co-trimoxazole	48% (58/120)	40% - 57%
FLUOROQUINOLONES	46% (52/112)	38% - 56%
Ciprofloxacin	46% (52/112)	38% - 56%
Levofloxacin	NA	-
3GC	48% (58/120)	40% - 57%
Cefpodoxime	NA	-
Ceftriaxone	48% (57/120)	39% - 56%
Ceftazidime	46% (54/117)	37% - 55%
Cefotaxime	48% (58/120)	40% - 57%
Cefepime	90% (36/40)	77% - 96%
CARBAPENEMS	3% (4/120)	1% - 8%
Imipenem	0% (0/120)	0% - 3%
Meropenem	0% (0/31)	0% - 11%
Ertapenem	3% (4/120)	1% - 8%
Doripenem	NA	-
Colistin	NA	-
Piperacillin/tazobactam	NA	-
Cefoperazone/sulbactam	NA	-

^{*}Proportion of R represents the number of patients with blood culture positive for resistant isolates (numerator) over the total number of patients with blood culture positive for the organism and the organism was tested for susceptibility against the antibiotic (denominator). The AMASS application de–duplicated the data by including only the first isolate per patient per specimen type per evaluation period. Grey bars indicate that AST unknown results are more than 30% of the total number of patients with blood culture positive for the organism. Cl=confidence interval; NA=not available/reported/tested; FLUOROQUINOLONES: ciprofloxacin or levofloxacin; 3GC=3rd_generation cephalosporin; CARBAPENEMS: imipenem, meropenem, ertapenem or doripenem

Blood: Pseudomonas aeruginosa

(No. of patients = 48)

A . (1) 1 . (1)	D	050/ 01
Antibiotic agent	Proportion of R	95% CI
Ceftazidime	10% (5/48)	4% - 22%
Ciprofloxacin	6% (3/48)	2% - 17%
AMINOGLYCOSIDES	10% (5/48)	4% - 22%
Gentamicin	10% (5/48)	4% - 22%
Amikacin	NA	-
CARBAPENEMS	10% (5/48)	4% - 22%
Imipenem	10% (5/48)	4% - 22%
Meropenem	12% (5/42)	5% - 25%
Doripenem	NA	-
Colistin	NA	-
Piperacillin/tazobactam	20% (2/10)	6% - 51%
Cefoperazone/sulbactam	NA	-

Blood: Acinetobacter baumannii

(No. of patients = 90)

Antibiotic agent	Proportion of R	95% CI
Tigecycline	0% (0/90)	0% - 4%
Minocycline	NA	-
AMINOGLYCOSIDES	58% (52/90)	48% - 68%
Gentamicin	58% (52/90)	48% - 68%
Amikacin	NA	-
CARBAPENEMS	59% (53/90)	49% - 68%
Imipenem	59% (53/90)	49% - 68%
Meropenem	58% (52/90)	48% - 68%
Doripenem	NA	-
Colistin	NA	-
Piperacillin/tazobactam	NA	-
Cefoperazone/sulbactam	NA	-

^{*}Proportion of R represents the number of patients with blood culture positive for resistant isolates (numerator) over the total number of patients with blood culture positive for the organism and the organism was tested for susceptibility against the antibiotic (denominator). The AMASS application de–duplicated the data by including only the first isolate per patient per specimen type per evaluation period. Grey bars indicate that AST unknown results are more than 30% of the total number of patients with blood culture positive for the organism. Cl=confidence interval; NA=not available/reported/tested; AMINOGLYCOSIDES: either gentamicin or amikacin; CARBAPENEMS: imipenem, meropenem, ertapenem or doripenem

Created on: 21 Feb 2024 17:06 Page 11-A of 62

Section [3]: AMR proportion report with stratification by infection origin

Proportions of antimicrobial-resistance infection stratified by origin of infection is not calculated because hospital admission date data is not available and infection origin variable is not available.

Created on: 21 Feb 2024 17:06 Page 12 of 62

Section [4]: AMR frequency report

Introduction

A AMR frequency report is generated if data of culture negative is available.

The AMR frequency approach involves the collection of data on all blood samples taken for microbiological testing and includes information on the number of positive blood samples for a specific specimen type (both pathogens under the survey and other bacteria) as well as number of negative (no microbial growth) samples. After removal of duplicate results and assuming that routine blood culture testing is applied systematically, we can use the number of tested patients as a proxy for a number of patients with new cases of bloodstream infection (BSI).

Results

The microbiology_data file had:

Specimen collection dates ranged from 02 Jan 2016 to 10 Jan 2017

Number of records on blood specimen collected within the above date range:

15878 blood specimen records

*Number of patients sampled for blood culture within the above date range:

15638 patients sampled for blood culture

Note

*Number of patients sampled for blood culture is used as denominator to estimate the frequency of infections per 100,000 tested patients

The following figures show the frequncy of infections for patients with blood culture tested.

Created on: 21 Feb 2024 17:06 Page 24 of 62

Section [4]: AMR frequency report

Blood: Pathogens

(No. of patients = 15638)

Pathogens	*Frequency of infection (per 100,000 tested patients; 95% CI)
S. aureus	614 (504-750)
E. faecalis	0 (0-25)
E. faecium	0 (0-25)
S. pneumoniae	128 (83-198)
Salmonella spp.	224 (161-312)
E. coli	2168 (1952-2409)
K. pneumoniae	768 (643-917)
P. aeruginosa	307 (232-407)
A. baumannii	576 (469-707)

^{*}Frequency of infection per 100,000 tested patients represents the number of patients with blood culture positive for a pathogen (numerator) over the total number of tested patients (denominator). The AMASS application de–duplicates the data by included only the first isolate of each patient per specimen type per reporting period. CI=confidence interval; R=resistant; NA=not available/reported/tested

Section [4]: AMR frequency report

Blood: Resistant pathogens

(No. of patients = 15638)

Resistant (NS) pathogens	*Frequency of infection (per 100,000 tested patients; 95% CI)
MRSA	96 (59-159)
Vancomycin-R	0
E. faecalis	(0-25)
Vancomycin-R	0
E. faecium	(0-25)
Penicillin-R	0
S. pneumoniae	(0-25)
Fluoroquinolone-R	90
Salmonella spp.	(54-151)
3GC-R	723
E. coli	(602-868)
Carbapenem-R	26
E. coli	(10-66)
3GC-R	371
K. pneumoniae	(288-480)
Carbapenem-R	26
K. pneumoniae	(10-66)
Carbapenem-R P. aeruginosa	32 (14-75)
Carbapenem-R	339
A. baumannii	(260-444)

^{*}Frequency of infection per 100,000 tested patients represents the number of patients with blood culture positive for a pathogen (numerator) over the total number of tested patients (denominator). The AMASS application de–duplicates the data by included only the first isolate of each patient per specimen type per reporting period. Cl=confidence interval; R=resistant; NA=not available/reported/tested; FLUOROQUINOLONES: ciprofloxacin or levofloxacin; 3GC=3rd-generation cephalosporin; CARBAPENEMS: imipenem, meropenem, ertapenem or doripenem

Report [5]: AMR frequency report with stratification by infection origin

Incidence of infections per 100,000 tested population stratified by infection origin is not calculated because data on blood specimen with no growth is not available, or stratification by origin of infection cannot be done (due to hospital admission date variable is not available).

Created on: 21 Feb 2024 17:06 Page 27 of 62

Report [6] Mortality in AMR antimicrobial—susceptible infections

Not applicable because hospital_admission_data.csv file is not available, or in-hospital outcome (in hospital_admission_data.csv file) is not available.

Created on: 21 Feb 2024 17:06 Page 32 of 62

Annex A: Supplementary report on notifiable bacterial infections

Introduction

This supplementary report has two parts; including (A1) notifiable bacterial infections and (A2) mortality involving notifiable bacterial infections. The AMR proportion notifiable bacterial infections supplementary report is generated by default, even if the hospital_admission_data file is unavailable. This is to enable hospitals with only microbiology data available to utilize the de-duplication and report generation functions of AMASS.

Please note that the completion of this supplementary report is strongly associated with the availability of data (particularly, all bacterial pathogens and all types of specimens) and the completion of the data dictionary files to make sure that the AMASS application understands the notifiable bacteria and each type of specimens.

Annex A includes various type of specimens including blood, cerebrospinal fluid (CSF), respiratory tract specimens, urine, genital swab, stool and other or unknown sample types. The microorganisms in this report were initially selected from common notifiable bacterial diseases in Thailand.

Notifiable bacteria under the survey

- Burkholderia pseudomallei
- Brucella spp.
- Corynebacterium diphtheriae
- Neisseria gonorrhoeae
- Neisseria meningitidis
- Non-typhoidal Salmonella spp.

- Salmonella Paratyphi
- Salmonella Typhi
- Shigella spp.
- Streptococcus suis
- Vibrio spp.

Note: The list of notifiable bacteria included in the AMASS application version 3.0 was generated based on the literature review and the collaboration with Department of Disease Control, Ministry of Public Health, Thailand. The list could be expanded or modified in the next version of AMASS.

Created on: 21 Feb 2024 17:06 Page 38 of 62

Annex A1: Notifiable bacterial infections

Results

The microbiology_data file had:

Sample collection dates ranged from 02 Jan 2016 to 10 Jan 2017

Number of records of clinical specimens collected with culture positive for a notifiable bacteria under this survey:

615 specimen records (**176**, **3**, **3**, **99**, **125**, **175**, **34** were blood, CSF, genital swab, respiratory tract specimens, stool, urine, and other or unknown sample types, respectively)

The AMASS application de-duplicated the data by including only the first isolate per patient per specimen type per evaluation period as described in the method. The number of patients with positive samples is as follows:

Pathogens	Total number of patients*	Blood	CSF	Genital swab	RTS	Stool	Urine	Others
B. pseudomallei	331	109	3	3	92	0	155	34
Brucella spp.	0	0	0	0	0	0	0	0
C. diphtheriae	0	0	0	0	0	0	0	0
N. gonorrhoeae	0	0	0	0	0	0	0	0
N. meningitidis	0	0	0	0	0	0	0	0
Non-typhoidal Salmonella spp.	60	35	0	0	0	54	0	0
S. Paratyphi	0	0	0	0	0	0	0	0
S. Typhi	0	0	0	0	0	0	0	0
Shigella spp.	0	0	0	0	0	0	0	0
S. suis	0	0	0	0	0	0	0	0
Vibrio spp.	16	12	0	0	0	16	0	0
Total	407	156	3	3	92	70	155	34

Created on: 21 Feb 2024 17:06 Page 39 of 62

^{*}Some patients may have more than one type of clinical specimen culture positive for the notifiable bacteria under the survey, and some may have more than one notifiable organism per evaluation period.

CSF = Cerebrospinal fluid; RTS = Respiratory tract specimens; Others = Other or unknown sample types;

NA = Not applicable (i.e. the specimen type is not available or identified in the microbiology_data file)

Annex A2: Mortality involving notifiable bacterial infections

Mortality involving the notifiable bacterial diseases is not applicable because hospital_admission_data.csv file is not available, or in-hospital outcome (in hospital_admission_data.csv file) is not available.

Created on: 21 Feb 2024 17:06 Page 40 of 62

Annex B: Supplementary report on data indicators

Introduction

This supplementary report is generated by default, even if the hospital_admission_data file is unavailable. The management of clinical and laboratory practice can be supported by some data indictors such as blood culture contamination rate, proportion of notifiable antibiotic-pathogen combinations, and proportion of isolates with infrequent phenotypes or potential errors in AST results. Isolates with infrequent phenotypes or potential errors in AST results include (a) reports of organisms which are intrinsically resistant to an antibiotic but are reported as susceptible and (b) reports of organisms with discordant AST results.

This supplementary report could support the clinicians, policy makers and the laboratory staff to understand their summary data quickly. The laboratory staff could also use "Supplementary_data_indicators_report.pdf" generated in the folder "Report_with_patient_identifiers" to check and validate individual data records further.

This supplementary report was estimated from data of blood specimens only. Please note that the data indicators do not represent quality of the clinical or laboratory practice.

Results

	Number of observations				
Indicators	Total (n)	Critical priority (n)	High priority (n)	Medium priority (n)	
Blood culture contamination rate*	5% (742/15878)	NA	NA	5% (742/15878)	
Proportion of notifiable antibiotic-pathogen combinations**	30% (308/1017)	27% (275/1017)	3% (33/1017)	0% (0/1017)	
Proportion of isolates with infrequent phenotypes or potential errors in AST results ***	10% (100/1017)	NA	NA	10% (100/1017)	

*Blood culture contamination rate is defined as the number of raw contaminated cultures per number of blood cultures received by the laboratory per reporting period. Blood culture contamination rate will not be estimated in case that the data of negative culture (specified as 'no growth' in the dictionary_for_microbiology_data file) is not available. **Notifiable antibiotic-pathogen combinations and their classifications are defined as WHO list of AMR priority pathogen published in 2017. **, ***The proportion is estimated per number of blood specimens culture positive for any organisms with AST result in the raw microbiology data. *, **, ***Details of the criteria are available in Table 3 and Table 4 of "Supplementary_data_indicators_report.pdf", and "list_of_indicators.xlsx" in the folder "Configuration". NA = Not applicable

Created on: 21 Feb 2024 17:06 Page 41 of 62

Annex B: Supplementary report on data indicators

Reporting period by months

Data was stratified by month to assist detection of missing data and understand the change of indicators by months.

Month	Blood culture contamination rate (n)*	Proportion of notifiable antibiotic-pathogen combinations (n)**	Proportion of isolates with infrequent phenotypes or potential errors in AST results (n)***
January	4% (59/1316)	32% (29/92)	13% (12/92)
February	6% (69/1256)	33% (28/85)	7% (6/85)
March	4% (53/1331)	28% (23/81)	6% (5/81)
April	4% (53/1382)	29% (21/73)	8% (6/73)
May	4% (57/1345)	32% (24/76)	5% (4/76)
June	4% (56/1269)	23% (15/66)	11% (7/66)
July	4% (58/1361)	31% (32/103)	10% (10/103)
August	5% (70/1344)	32% (30/94)	10% (9/94)
September	5% (58/1261)	43% (34/79)	9% (7/79)
October	4% (60/1365)	26% (28/108)	12% (13/108)
November	6% (78/1301)	28% (22/78)	15% (12/78)
December	5% (71/1347)	27% (22/82)	11% (9/82)

Created on: 21 Feb 2024 17:06 Page 42 of 62

^{*}Blood culture contamination rate is defined as the number of raw contaminated cultures per number of blood cultures received by the laboratory per reporting period. Blood culture contamination rate will not be estimated in case that the data of negative culture (specified as 'no growth' in the dictionary_for_microbiology_data file) is not available. **Notifiable antibiotic-pathogen combinations and their classifications are defined as WHO list of AMR priority pathogen published in 2017. **, ***The proportion is estimated per number of blood specimens culture positive for any organisms with AST result in the raw microbiology data. *, **, ***Details of the criteria are available in Table 3 and Table 4 of "Supplementary_data_indicators_report.pdf", and "list_of_indicators.xlsx" in the folder "Configuration". NA = Not applicable

Annex C: Cluster signals

Not applicable because hospital_admission_data.csv file is not available, or in-hospital outcome (in hospital_admission_data.csv file) is not available.

Created on: 21 Feb 2024 17:06 Page 43 of 62

Methods used by the AMASS application

Data source:

For each run (double-click on AMASS.bat file), the AMASS application used the microbiology data file (microbiology_data) and the hospital admission data file (hospital_admission_data) that were stored in the same folder as the application file. Hence, if the user would like to update, correct, revise or change the data, the data files in the folder should be updated before the AMASS.bat file is double-clicked again. A new report based on the updated data would then be generated.

Requirements:

- Computer with Microsoft Windows 7 or 10

AMASS may work in other versions of Microsoft Windows and other operating systems. However, thorough testing and adjustment have not been performed.

- AMASSv3.0.zip package file

The AMASS application is to be downloaded from https://www.amass.website, and unzipped to generate an AMASS folder that could be stored under any folder in the computer. The AMASS folder contains 3 files (AMASS.bat, dictionary_for_microbiology_data.xlsx, and dictionary_for_hospital_admission_data.xlsx), and 5 folders (Configuration, Example_Dataset_1_WHONET, Example_Dataset_2, Example_Dataset_3_longformat, Programs).

Microbiology data file (microbiology_data in .csv or .xlsx file format)

The user needs to obtain microbiology data, and then copy & paste this data file into the same folder as the AMASS.bat file.

- [Optional] Hospital admission data file (hospital_admission_data)

If available, the user could obtain hospital admission data, and then copy & paste this data file into the same folder as the AMASS.bat file.

Not required:

Internet to run AMASS application

The AMASS application will run offline. No data are transferred while the application is running and reports are being generated; the reports are in PDF format (do not contain any patient identifier) and can be shared under the user's jurisdiction.

- R and Python

The download package (AMASSv3.0.zip) included Python portable and their libraries that the AMASS application requires. The user does not need to install any programme before using the AMASS. The user also does not have to uninstall Python if the computer already has the programme installed. The user does not need to know how to use Python.

Created on: 21 Feb 2024 17:06 Page 58 of 62

Note:

- [1] Please ensure that the file names of microbiology data file (microbiology_data) and the hospital admission data file (hospital_admission_data) are identical to what is written here. Please make sure that all are lower–cases with an underscore '_' at each space.
- [2] Please ensure that both microbiology and hospital admission data files have no empty rows before the row of the variable names (i.e. the variable names are the first row in both files).
- [3] For the first run, an user may need to fill the data dictionary files to make sure that the AMASS application understands your variable names and values.

AMASS uses a tier-based approach. In cases when only the microbiology data file with the results of culture positive samples is available, only section one and two would be generated for users. Section three would be generated only when data on admission date are available. This is because these data are required for the stratification by origin of infection. Section four would be generated only when data of specimens with culture negative (no microbial growth) are available in the microbiology data. This is because these data are required for the AMR frequency approach. Section five would be generated only when both data of specimens with culture negative and admission date are available. Section six would be generated only when mortality data are available.

Mortality was calculated from the number of in-hospital deaths (numerator) over the total number of patients with blood culture positive for the organism (denominator). Please note that this is the all-cause mortality calculated using the outcome data in the data file, and may not necessarily represent the mortality directly due to the infections.

How to use data dictionary files

In cases when variable names in the microbiology and hospital admission data files were not the same as the one that AMASS used, the data dictionary files could be edited. The raw microbiology and hospital admission data files were to be left unchanged. The data dictionary files provided could be edited and re—used automatically when the microbiology and hospital admission data files were updated and the AMASS.bat were to be double—clicked again (i.e. the data dictionary files would allow the user to re—analyze data files without the need to adjust variable names and data value again every time).

Created on: 21 Feb 2024 17:06 Page 59 of 62

For example:

If variable name for 'hospital number' is written as 'hn' in the raw data file, the user would need to add 'hn' in the cell next to 'hospital_number'. If data value for blood specimens is defined by 'Blood-Hemoculture' in the raw data file, then the user would need to add 'Blood-Hemoculture' in the cell next to 'blood_specimen'.

Dictionary file (dictionary_for_microbiology_data.xlsx) may show up as in the table below:

Variable names used in AMASS	Variable names used in your microbiology data file	Requirements
Don't change values in this column, but you can add rows with similar values if you need	Change values in this column to represent how variable names are written in your raw microbiology data file	
hospital_number		Required
Values described in AMASS	Values used in your microbiology data file	Requirements
blood_specimen		Required

Please fill in your variable names as follows:

Variable names used in AMASS	Variable names used in your microbiology data file	Requirements
Don't change values in this column, but you can add rows with similar values if you need	Change values in this column to represent how variable names are written in your raw microbiology data file	
hospital_number	hn	Required
Values described in AMASS	Values used in your microbiology data file	Requirements
blood_specimen	Blood-Hemoculture	Required

Then, save the file. For every time the user double-clicked AMASS.bat, the application would know that the variable named 'hn' is similar to 'hospital_number' and represents the patient identifier in the analysis.

Created on: 21 Feb 2024 17:06

Organisms included for the AMR Surveillance Report:

Staphylococcus aureus
 Escherichia coli

Enterococcus faecalisKlebsiella pneumoniae

Enterococcus faeciumPseudomonas aeruginosa

Streptococcus pneumoniae
 Acinetobacter baumannii

- Salmonella spp.

Definitions:

The definitions of infection origin proposed by the WHO GLASS was used [1]. In brief, community-origin bloodstream infection (BSI) was defined for patients in the hospital within the first two calendar days of admission when the first blood culture positive specimens were taken. Hospital-origin BSI was defined for patients in the hospital longer than the first two calendar days of admission when the first blood culture positive specimens were taken. In cases when the user had additional data on infection origin defined by infection control team or based on referral data, the user could edit the data dictionary file (variable name 'infection_origin') and the AMASS application would use the data of that variable to stratify the data by origin of infection instead of the above definition. However, in cases when data on infection origin were not available (as in many hospitals in LMICs), the above definition would be calculated based on admission date and specimen collection date (with cutoff of 2 calendar days) and used to classify infections as community-origin or hospital-origin.

De-duplication:

When more than one blood culture was collected during patient management, duplicated findings of the same patient were excluded (de-duplicated). Only one result was reported for each patient per sample type (blood) and surveyed organisms (listed above). For example, if two blood cultures from the same patient had *E. coli*, only the first would be included in the report. If there was growth of *E. coli* in one blood culture and of *K. pneumoniae* in the other blood culture, then both results would be reported. One would be for the report on *E. coli* and the other one would be for the report on *K. pneumoniae*.

References:

[1] World Health Organization (2018) Global Antimicrobial Resistance Surveillance System (GLASS) Report. Early implantation 2016–2017. http://apps.who.int/iris/bitstream/handle/10665/259744/9789241513449–eng.pdf. (accessed on 3 Dec 2018)

[2] World Health Organization (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf. (accessed on 3 Dec 2018)

Created on: 21 Feb 2024 17:06 Page 61 of 62

Investigator team

The AMASS application version 1.0 was developed by Cherry Lim, Clare Ling, Elizabeth Ashley, Paul Turner, Rahul Batra, Rogier van Doorn, Soawapak Hinjoy, Sopon lamsirithaworn, Susanna Dunachie, Tri Wangrangsimakul, Viriya Hantrakun, William Schilling, John Stelling, Jonathan Edgeworth, Guy Thwaites, Nicholas PJ Day, Ben Cooper and Direk Limmathurotskul.

The AMASS application version 2.0 and 3.0 was developed by Chalida Rangsiwutisak, Preeyarach Klaytong, Prapass Wannapinij, Paul Tuner, John Stelling, Cherry Lim and Direk Limmathurotsakul.

Funding

The AMASS application version 1.0 was funded by the Wellcome Trust (grant no. 206736 and 101103). C.L. was funded by a Research Training Fellowship (grant no. 206736) and D.L. was funded by an Intermediate Training Fellowship (grant no. 101103) from the Wellcome Trust.

The AMASS application version 2.0 and 3.0 was funded by the Wellcome Trust (grant no. 224681/Z/21/Z and Institutional Translational Partnership Award-MORU)

If you have any queries about AMASS, please contact:

For technical information:

Chalida Rangsiwutisak (chalida@tropmedes.ac), Cherry Lim (cherry@tropmedres.ac), and

Direk Limmathurotsakul (direk@tropmedres.ac)

For implementation of AMASS at your hospitals in Thailand:

Preeyarach Klaytong (preeyarach@tropmedres.ac)

Created on: 21 Feb 2024 17:06 Page 62 of 62