Relations and Functions

Definition 1 (Function). If A and B are sets, then the subsets of $A \times B$ are called relations. Suppose $\varphi \subseteq A \times B$ is a relation.

- We say that φ is total if for every $a \in A$, there is a $b \in B$ such that $(a,b) \in \varphi$.
- We say that φ is well-defined if whenever $a \in A$ and $b_1, b_2 \in B$ such that $(a, b_1), (a, b_2) \in \varphi$, in fact $b_1 = b_2$.
- We say that φ is a function or mapping from A to B if it is both total and well-defined. We denote this by $\varphi: A \to B$.
- If $\varphi: A \to B$ is a function and $a \in A$, then there is a unique $b \in B$ such that $(a,b) \in \varphi$; we call this b the image of a under φ , and denote it $\varphi(a)$.

Proposition 1.

- 1. If A is a set, then the relation $1_A = \{(x, x) \mid x \in A\}$ is a function, called the identity on A, and $1_A(x) = x$ for all $x \in A$.
- 2. If $\varphi: A \to B$ and $\psi: B \to C$ are functions, then the relation

$$\psi \circ \varphi = \{(a, \psi(\varphi(a))) \mid a \in A\}$$

is a function $A \to C$.

Definition 2. Let $\varphi : A \to B$ be a function.

- We say that φ is injective if whenever $\varphi(a_1) = \varphi(a_2)$, in fact $a_1 = a_2$.
- We say that φ is surjective if for every $b \in B$, there is an element $a \in A$ such that $\varphi(a) = b$.
- If φ is both injective and surjective, we say it is bijective.

Definition 3 (Kernel). Let $\varphi: A \to B$ be a function. The relation

$$\ker(\varphi) = \{(x, y) \mid \varphi(x) = \varphi(y)\}\$$

is called the kernel of φ .