As Vias Férreas Kunming-Cingapura

Por Arthur Nascimento, Universidade de São Paulo 🔯 Brazil

Timelimit: 10

A via férrea Kunming-Cingapura é um conjunto de vias (já construídas e em plano de construção) que têm como objetivo ligar diferentes cidades da Ásia. Esse projeto começou em 1900 com a proposta de construir uma via férrea que ligasse a cidade de Kunming (China) a Cingapura, por parte do império britânico. Depois, em 1918, essa via férrea foi conectada ao conjunto de vias de Tailândia mediante uma via férrea que ligava Bangkok e Cingapura. No ano 2000, a ASEAN (Associação de Nações do Sudeste Asiático) propôs completar esse sistema de vias férreas.

O término desse projeto está previsto para o ano 2020. Devido à importância desse sistema para a integração do sudeste asiático, as empreiteiras responsáveis têm contactado você para calcular o custo mínimo para manter este sistema ao longo do tempo. Cada via (já construída e por construir) tem um custo de manutenção. O que se deseja é, dadas as N cidades que o sistema Kumming-Cingapura liga, as M vias iniciais do sistema e as Q vias que serão adicionadas ao longo do tempo, calcular o custo mínimo para manter o sistema conectado após construir cada uma dessas Q vias. Consideramos que o sistema está conectado se, para cada par de cidades existe um conjunto de vias que as ligam.

Entrada

A entrada é composta por diversas instâncias. A primeira linha da entrada contém um inteiro **T** indicando o número de instâncias.

Cada instância é composta por diversas linhas. A primeira linha de cada instância contém três inteiros, \mathbf{N} , \mathbf{M} e \mathbf{Q} (descritos no enunciado, $1 \le \mathbf{N}$, \mathbf{M} , $\mathbf{Q} \le 3*10^4$) separados por um espaço. As seguintes \mathbf{M} linhas descrevem as vias iniciais do sistema. Cada via é representada por três inteiros \mathbf{a} , \mathbf{b} e \mathbf{c} ($1 \le \mathbf{a}$, $\mathbf{b} \le \mathbf{N}$ e $1 \le \mathbf{c} \le 3*10^4$), onde \mathbf{a} e \mathbf{b} representam as cidades que são ligadas por essa via, e \mathbf{c} é o custo de manutenção. As \mathbf{Q} linhas seguintes representam as vias adicionadas ao sistema. A \mathbf{i} -ésima linha desse grupo de \mathbf{Q} linhas descreve a \mathbf{i} -ésima via adicionada ao sistema através de três inteiros, como no caso anterior.

Saída

Para cada instância, imprima **Q** linhas. A *i*-ésima linha desse grupo de **Q** linhas deve conter um único inteiro que representa o custo mínimo de manutenção do sistema após a adição da *i*-ésima via.

Exemplo de Entrada	Exemplo de Saída
1	18
4 3 5	17
1 2 5	15
2 3 6	14
3 4 7	14
1 4 8	
1 2 4	
2 4 5	
3 4 5	
1 4 6	