Intervals, Transformations, and Slope Solution (version 93)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-7, -4) \cup (0, 2)$
Negative	$(-9, -7) \cup (-4, 0)$
Increasing	$(-8, -6) \cup (-2, 2)$
Decreasing	$(-9, -8) \cup (-6, -2)$
Domain	(-9,2)
Range	(-7,7)

Intervals, Transformations, and Slope Solution (version 93)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=14$ and $x_2=38$. Express your answer as a reduced fraction.

\overline{x}	g(x)
14	55
38	64
55	38
64	14

$$\frac{g(38) - g(14)}{38 - 14} = \frac{64 - 55}{38 - 14} = \frac{9}{24}$$

The greatest common factor of 9 and 24 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{3}{8}$$

2