

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(23) International Publication Date
13 June 2002 (13.06.2002)

PCT

(18) International Publication Number
WO 02/46767 A2

(51) International Patent Classification²: G01N 33/68, C07K 14/47, 16/00, A61K 38/00, C12Q 1/68

(74) Agents: LEE, Nicholas, John et al.; Kilburn & Strode, 20 Red Lion Street, London WC1R 4PJ (GB).

(21) International Application Number: PCT/GB01/05289

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(22) International Filing Date:

29 November 2001 (29.11.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/254,431 6 December 2000 (08.12.2000) US

(73) Applicant (for all designated States except US): OXFORD GLYCOSCIENCES (UK) LTD. [GB/GB]; The Forum, 86 Milton Park, Abingdon, Oxfordshire OX14 4RY (GB).

(84) Designated States (*regional*): AROPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(73) Inventors/Applicants (for US only): HERATH, Herath, Mudiyanselage, Athula, Chandrasiri [GB/GB]; The Forum, 86 Milton Park, Abingdon, Oxfordshire OX14 4RY (GB). PAREKH, Rajesh, Bhikhu [GB/GB]; The Forum, 86 Milton Park, Abingdon, Oxfordshire OX14 4RY (GB). ROHLFF, Christian [GB/GB]; The Forum, 86 Milton Park, Abingdon, Oxfordshire OX14 4RY (GB).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

WO 02/46767

(54) Title: NUCLEARIC ACID MOLECULES, POLYPEPTIDES AND USES THEREFOR, INCLUDING DIAGNOSIS AND TREATMENT OF ALZHEIMER'S DISEASE

(57) Abstract: The present invention provides methods and compositions for screening, diagnosis and prognosis of Alzheimer's disease, for monitoring the effectiveness of Alzheimer's disease treatment and for drug development. Alzheimer's disease-Associated Features (ADFs) detectable by two-dimensional electrophoresis of brain tissue are described. The invention further provides Alzheimer's disease-Associated Protein Isoforms (ADPIs) detectable in brain tissue, preparations comprising isolated ADPIs, antibodies specific for ADPIs and kits comprising the aforesaid.

NUCLEIC ACID MOLECULES, POLYPEPTIDES AND USES THEREFOR,
INCLUDING DIAGNOSIS AND TREATMENT OF ALZHEIMER'S DISEASE

1. INTRODUCTION

5 The present invention relates to the identification of proteins and protein isoforms that are associated with Alzheimer's disease and its onset and development, and of genes and nucleic acid molecules, encoding the same, and to their use for e.g., clinical screening, diagnosis, treatment, as well as for drug screening and drug development.

10

2. BACKGROUND OF THE INVENTION

Alzheimer's Disease (AD) is an increasingly prevalent form of neurodegeneration that accounts for approximately 50 % - 60 % of the overall cases of dementia among people over 65 years of age. It currently affects an estimated 15 million people worldwide and owing to the relative increase of elderly people in the population its prevalence is likely to increase over the next 2 to 3 decades.

15 Alzheimer's disease is a progressive disorder with a mean duration of around 8.5 years between onset of clinical symptoms and death. Death of pyramidal neurons and loss of neuronal synapses in brains regions associated with higher mental functions results in the typical symptomology, characterized by gross and progressive impairment of cognitive function (Francis et al., 1999, J. Neurol. Neurosurg. Psychiatry 66:137-47). Currently, a diagnosis of Alzheimer's disease requires a careful medical history and physical examination; a detailed neurological and psychiatric examination; laboratory blood studies to exclude underlying metabolic and medical illnesses that masquerade 20 as AD; a mental status assessment and formal cognitive tests; and a computed tomographic scan or magnetic resonance image of the brain (Growdon, JH., 1995, Advances in the diagnosis of Alzheimer's disease. In: Iqbal, K., Mortimer, JA., Winblad, B., Wisniewski, HM eds Research Advances in Alzheimer's Disease and 25 Related Disorders. New York, NY: John Wiley & Sons Inc. 1995:139-153). Due to the

time consuming nature of these tests, their expense, and their inconvenience to patients, it would be highly desirable to measure a substance or substances in body samples, such as samples of tissue, cerebrospinal fluid (CSF), blood or urine, that would lead to a positive diagnosis of Alzheimer's disease or that would help to 5 exclude AD from the differential diagnosis. Since the CSF bathes the brain, changes in its protein composition may most accurately reveal alterations in brain protein expression patterns that are causatively or diagnostically linked to the disease.

Current candidate biomarkers for Alzheimer's disease include: (1) mutations in presenilin 1 (PS1), presenilin 2 (PS2) and amyloid precursor protein (APP) genes; (2) 10 the detection of alleles of apolipoprotein E (ApoE); and (3) altered concentrations of amyloid β -peptides ($A\beta$), tau protein, and neuronal thread protein (NTP) in the CSF. See, e.g., *Neurobiology of Aging* 19:109-116 (1998) for a review. Mutations in PS1, PS2 and APP genes are indicative of early-onset familial Alzheimer's disease. However, early-onset familial Alzheimer's disease is relatively rare; only 120 families 15 worldwide are currently known to carry deterministic mutations (*Neurobiology of Aging* 19:109-116 (1998)). The detection of the e4 allele of ApoE has been shown to correlate with late-onset and sporadic forms of Alzheimer's disease. However, e4 alone cannot be used as a biomarker for Alzheimer's disease, since e4 has been detected in many individuals not suffering from Alzheimer's disease and the absence 20 of e4 does not exclude Alzheimer's disease from the diagnosis (*Neurobiology of Aging* 19:109-116 (1998)).

A decrease in the $A\beta$ peptide $A\beta42$ and an increase in tau protein in the CSF of Alzheimer's disease have been shown to correlate with the presence of Alzheimer's disease (*Neurobiology of Aging* 19:109-116 (1998)). However, the specificity and 25 sensitivity of $A\beta42$ and tau protein as biomarkers of Alzheimer's disease are limited. For example, it has been difficult to determine a cutoff level of CSF tau protein that is diagnostically informative. Also, elevated levels of NTP in the CSF of postmortem subjects have been shown to correlate with the presence of Alzheimer's disease (*Neurobiology of Aging* 19:109-116 (1998)). Therefore, a need exists to identify

sensitive and specific biomarkers for the diagnosis of Alzheimer's disease in living subjects.

Therefore, a need exists to identify sensitive and specific biomarkers for the diagnosis of Alzheimer's disease in living subjects. Additionally, there is a clear need
5 for new therapeutic agents for Alzheimer's disease that work quickly, potently,
specifically and with fewer side effects.

3. SUMMARY OF THE INVENTION

The present invention provides methods and compositions for screening,
10 diagnosis and treatment of Alzheimer's disease and for screening and development of drugs for treatment of Alzheimer's disease.

A first aspect of the invention provides methods for identification of Alzheimer's disease that comprise analyzing a sample of brain tissue by two-dimensional electrophoresis to detect the presence or level of at least one
15 Alzheimer's Disease-Associated Feature (ADF), e.g., one or more of the ADFs disclosed herein, or any combination thereof. These methods are also suitable for clinical screening, prognosis, monitoring the results of therapy, for identifying patients most likely to respond to a particular therapeutic treatment, drug screening and development, and identification of new targets for drug treatment.

20 A second aspect of the invention provides methods for diagnosis of Alzheimer's disease that comprise detecting in a sample of brain tissue the presence or level of at least one Alzheimer's Disease-Associated Protein Isoform (ADPI), e.g., one or more of the ADPIs disclosed herein or any combination thereof.

25 A third aspect of the invention provides antibodies, e.g., monoclonal and polyclonal and chimeric (bispecific) antibodies capable of immunospecific binding to a ADPI, e.g., a ADPI disclosed herein.

A fourth aspect of the invention provides a preparation comprising an isolated ADPI, i.e., a ADPI substantially free from proteins or Protein Isoforms having a significantly different isoelectric point or a significantly different apparent molecular

weight from the ADPI.

A fifth aspect of the invention provides kits that may be used in the above recited methods and that may comprise single or multiple preparations, or antibodies, together with other reagents, labels, substrates, if needed, and directions for use. The 5 kits may be used for diagnosis of disease, or may be assays for the identification of new diagnostic and/or therapeutic agents.

A sixth aspect of the invention provides methods of treating Alzheimer's disease, comprising administering to a subject a therapeutically effective amount of an agent that modulates (e.g., upregulates or downregulates) the expression or activity 10 (e.g. enzymatic or binding activity), or both, of a ADF or a ADPI in subjects having Alzheimer's disease.

A seventh aspect of the invention provides methods of screening for agents that modulate (e.g., upregulate or downregulate) a characteristic of, e.g., the expression or 15 the enzymatic or binding activity, of a ADF, a ADPI, a ADPI analog, or a ADPI-related polypeptide.

Other objects and advantages will become apparent from a review of the ensuing detailed description taken in conjunction with the following illustrative drawing.

20 4. BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is an image obtained from 2-dimensional electrophoresis of normal tissue, which has been annotated to identify ten landmark features, designated BR1 to BR10;

25 Figure 2 shows nucleic acid sequence of ADPI-41 (Figure 2a) and the corresponding amino acid sequence (Figure 2b) where the tryptic peptides identified by mass spectrometry are underlined, and the conserved motifs are in italics;

Figure 3 shows the nucleic acid sequence (Figure 3a) and the corresponding amino acid sequence (Figure 3b) of the splice variant identified for ADPI-41. The protein sequence (Figure 3b) shows in bold the amino acids unique to this clone, the

tryptic digest peptides identified by mass spectroscopy are underlined and the conserved motifs are in italics; and

Figure 4 is a flow chart depicting the characterization of a Feature and relationship of a Feature and Protein Isoform. A Feature may be further characterized as or by a Protein Isoform having a particular peptide sequence associated with its pI and MW. As depicted herein, a Feature may comprise one or more Protein Isoform(s), which have indistinguishable pI and MWs using the Preferred Technology, but which have distinct peptide sequences. The peptide sequence of the Protein Isoform can be utilized to search database(s) for previously identified proteins comprising such peptide sequence. In some instances, it can be ascertained whether a commercially available antibody exists which may recognize the previously-identified protein and/or a variant thereof. It should be noted that the ADPI may either correspond to the previously-identified protein, or be a variant of the previously-identified protein.

15 5. DETAILED DESCRIPTION OF THE INVENTION

The present invention described in detail below provides methods, compositions and kits useful, e.g., for screening, diagnosis and treatment of Alzheimer's disease in a mammalian subject, and for drug screening and drug development. The invention also encompasses the administration of therapeutic compositions to a mammalian subject to treat or prevent Alzheimer's disease. The mammalian subject may be a non-human mammal, but is preferably human, more preferably a human adult, i.e. a human subject at least 21 (more particularly at least 35, at least 50, at least 60, at least 70, or at least 80) years old. For clarity of disclosure, and not by way of limitation, the invention will be described with respect to the analysis of brain tissue samples, which may be taken from a subject at risk of having or developing Alzheimer's disease. However, as one skilled in the art will appreciate, based on the present description the assays and techniques described below can be applied to other types of samples, including blood, serum, plasma, or saliva. The methods and compositions of the present invention are useful, such as for example,

screening, diagnosis and treatment of a living subject, but may also be used for postmortem diagnosis in a subject, for example, to identify family members of the subject who are at risk of developing the same disease.

The following definitions are provided to assist in the review of the instant disclosure.

5.1. DEFINITIONS

"Feature" refers to a spot detected in a 2D gel, and the term "Alzheimer's Disease-Associated Feature" (ADF) refers to a feature that is differentially present in a sample from a subject having Alzheimer's disease compared with a sample from a subject free from Alzheimer's disease. A feature or spot detected in a 2D gel is characterized by its isoelectric point (pI) and molecular weight (MW), preferably as determined by 2D gel electrophoresis, particularly utilizing the Preferred Technology described herein. As used herein, a feature is "differentially present" in a first sample with respect to a second sample when a method for detecting the said feature (e.g., 2D electrophoresis) gives a different signal when applied to the first and second samples. An ADF (or a Protein Isoform, i.e. ADPI, as defined *infra*) is "increased" in the first sample with respect to the second if the method of detection indicates that the ADF, or ADPI, is more abundant in the first sample than in the second sample, or if the ADF, or ADPI, is detectable in the first sample and substantially undetectable in the second sample. Conversely, a ADF, or ADPI, is "decreased" in the first sample with respect to the second if the method of detection indicates that the ADF, or ADPI, is less abundant in the first sample than in the second sample or if the ADF, or ADPI, is undetectable in the first sample and detectable in the second sample.

Particularly, the relative abundance of a feature in two samples may be determined in reference to its normalized signal, in two steps. First, the signal obtained upon detecting the feature in a sample is normalized by reference to a suitable background parameter, e.g., (a) to the total protein in the sample being analyzed (e.g., total protein loaded onto a gel); (b) to an Expression Reference Feature (ERF) i.e., a

feature whose abundance is substantially invariant, within the limits of variability of the Preferred Technology, in the population of subjects being examined, e.g. the ERFs disclosed below, or (c) more preferably to the total signal detected as the sum of each of all proteins in the sample. Secondly, the normalized signal for the feature in one sample or sample set is compared with the normalized signal for the same feature in another sample or sample set in order to identify features that are "differentially present" in the first sample (or sample set) with respect to the second.

"Fold change" includes "fold increase" and "fold decrease" and refers to the relative increase or decrease in abundance of a ADF or the relative increase or decrease in expression or activity of a polypeptide (e.g. a ADPI, as defined *infra*) in a first sample or sample set compared to a second sample (or sample set). An ADF or polypeptide fold change may be measured by any technique known to those of skill in the art, albeit the observed increase or decrease will vary depending upon the technique used. Preferably, fold change is determined herein as described in the Examples *infra*.

"Alzheimer's Disease-Associated Protein Isoform" (ADPI) refers to a protein that is differentially present in a sample from a subject having Alzheimer's Disease compared with a sample from a subject free from Alzheimer's Disease, or that is differentially present in a sample from a subject having one or more particular Alzheimer's Disease compared with a sample from a subject free from such one or more particular Alzheimer's Disease or having a distinct Alzheimer's Disease. As used herein, an ADPI is "differentially present" in a first sample with respect to a second sample when a method for detecting the said feature, (e.g., 2D electrophoresis or immunoassay) gives a different signal when applied to the first and second samples (refer to ADF definition). An ADPI is characterised by one or more peptide sequences of which it is comprised, and further by a pI and MW, preferably determined by 2D electrophoresis, particularly utilising the Preferred Technology as described herein. Typically, ADPIs are identified or characterised by the amino acid sequencing of ADFs (Figure 4).

Figure 4 is a flow chart depicting the characterization of an ADF and relationship of a ADF and ADPI(s). An ADF may be further characterized as, or by, an ADPI having a particular peptide sequence associated with its pI and MW. As depicted herein, a ADF may comprise one or more ADPI(s), which have indistinguishable pIs and MWs using the Preferred Technology, but which have distinct peptide sequences. The peptide sequence(s) of the ADPI can be utilized to search database(s) for previously-identified proteins comprising such peptide sequence(s). In some instances, it can be ascertained whether a commercially available antibody exists which may recognize the previously-identified protein and/or a variant thereof. It should be noted that the ADPI may either correspond to the previously-identified protein, or be a variant of the previously-identified protein.

"Variant" as used herein refers to a polypeptide which is a member of a family of polypeptides that are encoded by a single gene or from a gene sequence within a family of related genes and which differ in their pI or MW, or both. Such variants can differ in their amino acid composition (*e.g.*, as a result of alternative mRNA or pre-mRNA processing, *e.g.*, alternative splicing or limited proteolysis) and in addition, or in the alternative, may arise from differential post-translational modification (*e.g.*, glycosylation, acylation, phosphorylation).

"Modulate" in reference to expression or activity of a ADF, ADPI or a ADPI-related polypeptide refers to any change, *e.g.*, upregulation or downregulation, increase or decrease, of the expression or activity of the ADF, ADPI or a ADPI-related polypeptide. Those skilled in the art, based on the present disclosure, will understand that such modulation can be determined by assays known to those of skill in the art.

"ADPI analog" refers to a polypeptide that possesses similar or identical function(s) as a ADPI but need not necessarily comprise an amino acid sequence that is similar or identical to the amino acid sequence of the ADPI, or possess a structure that is similar or identical to that of the ADPI. As used herein, an amino acid sequence of a polypeptide is "similar" to that of a ADPI if it satisfies at least one of the following criteria: (a) the polypeptide has an amino acid sequence that is at least 30%

(more preferably, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 99%) identical to the amino acid sequence of the ADPI; (b) the polypeptide is encoded by a nucleotide sequence that hybridizes under stringent conditions to a nucleotide sequence encoding at least 5 amino acid residues (more preferably, at least 10 amino acid residues, at least 15 amino acid residues, at least 20 amino acid residues, at least 25 amino acid residues, at least 40 amino acid residues, at least 50 amino acid residues, at least 60 amino residues, at least 70 amino acid residues, at least 80 amino acid residues, at least 90 amino acid residues, at least 100 amino acid residues, at least 125 amino acid residues, or at least 150 amino acid residues) of the ADPI; or (c) the polypeptide is encoded by a nucleotide sequence that is at least 30% (more preferably, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 99%) identical to the nucleotide sequence encoding the ADPI. As used herein, a polypeptide with "similar structure" to that of a ADPI refers to a polypeptide that has a similar secondary, tertiary or quarternary structure as that of the ADPI. The structure of a polypeptide can be determined by methods known to those skilled in the art, including but not limited to, X-ray crystallography, nuclear magnetic resonance, and crystallographic electron microscopy.

"ADPI fusion protein" refers to a polypeptide that comprises (i) an amino acid sequence of a ADPI, a ADPI fragment, a ADPI-related polypeptide or a fragment of a ADPI-related polypeptide and (ii) an amino acid sequence of a heterologous polypeptide (i.e., a non-ADPI, non-ADPI fragment or non-ADPI-related polypeptide).

"ADPI homolog" refers to a polypeptide that comprises an amino acid sequence similar to that of a ADPI but does not necessarily possess a similar or identical function as the ADPI.

"ADPI ortholog" refers to a non-human polypeptide that (i) comprises an amino acid sequence similar to that of a ADPI and (ii) possesses a similar or identical

function to that of the ADPI.

"ADPI-related polypeptide" refers to a ADPI homolog, a ADPI analog, a variant of ADPI, a ADPI ortholog, or any combination thereof.

"Chimeric Antibody" refers to a molecule in which different portions are
5 derived from different animal species, such as those having a human immunoglobulin constant region and a variable region derived from a murine mAb. (See, e.g., Cabilly et al., U.S. Patent No. 4,816,567; and Boss et al., U.S. Patent No. 4,816397, which are incorporated herein by reference in their entirety.)

"Derivative" refers to a polypeptide that comprises an amino acid sequence of a
10 second polypeptide that has been altered by the introduction of amino acid residue substitutions, deletions or additions. The derivative polypeptide possesses a similar or identical function as the second polypeptide.

"Fragment" refers to a peptide or polypeptide comprising an amino acid sequence of at least 5 amino acid residues (preferably, at least 10 amino acid residues,
15 at least 15 amino acid residues, at least 20 amino acid residues, at least 25 amino acid residues, at least 40 amino acid residues, at least 50 amino acid residues, at least 60 amino residues, at least 70 amino acid residues, at least 80 amino acid residues, at least 90 amino acid residues, at least 100 amino acid residues, at least 125 amino acid residues, at least 150 amino acid residues, at least 175 amino acid residues, at least 200
20 amino acid residues, or at least 250 amino acid residues) of the amino acid sequence of a second polypeptide. The fragment of a ADPI may or may not possess a functional activity of the second polypeptide.

The "percent identity" of two amino acid sequences or of two nucleic acid sequences can be or is generally determined by aligning the sequences for optimal
25 comparison purposes (e.g., gaps can be introduced in either sequence for best alignment with the other sequence) and comparing the amino acid residues or nucleotides at corresponding positions. The "best alignment" is an alignment of two sequences that results in the highest percent identity. The percent identity is determined by the number of identical amino acid residues or nucleotides in the

sequences being compared (i.e., % identity = # of identical positions/total # of positions x 100).

The determination of percent identity between two sequences can be accomplished using a mathematical algorithm known to those of skill in the art. An example of a mathematical algorithm for comparing two sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877. The NBLAST and XBLAST programs of Altschul, et al. (1990) J. Mol. Biol. 215:403-410 have incorporated such an algorithm. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to a nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to a protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402. Alternatively, PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules (*Id.*). When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See <http://www.ncbi.nlm.nih.gov>.

Another example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, CABIOS (1989). The ALIGN program (version 2.0) which is part of the GCG sequence alignment software package has incorporated such an algorithm. Other algorithms for sequence analysis known in the art include ADVANCE and ADAM as described in Torellis and Robotti (1994) Comput. Appl. Biosci., 10:3-5; and FASTA described in Pearson and Lipman (1988) Proc. Natl. Acad. Sci. 85:2444-8. Within FASTA, ktup is a control option that sets the sensitivity and speed of the search.

"Diagnosis" refers to diagnosis, prognosis, monitoring, characterizing, selecting patients, including participants in clinical trials, and identifying patients at

risk for or having a particular disorder or those most likely to respond to a particular therapeutic treatment, or for assessing or monitoring a patient's response to a particular therapeutic treatment.

"Treatment" refers to therapy, prevention and prophylaxis and particularly 5 refers to the administration of medicine or the performance of medical procedures with respect to a patient, for either prophylaxis (prevention) or to cure the infirmity or malady in the instance where the patient is afflicted.

"Agent" refers to all materials that may be used to prepare pharmaceutical and diagnostic compositions, or that may be compounds, nucleic acids, polypeptides, 10 fragments, isoforms, variants, or other materials that may be used independently for such purposes, all in accordance with the present invention.

"Brain tissue" refers to homogenate brain samples of anatomically-defined areas of the brain.

15 5.2 Alzheimer's Disease-Associated Features (ADFs)

In one aspect of the invention, two-dimensional electrophoresis is used to analyze brain tissue from a subject, preferably a living subject, in order to detect or quantify the expression of one or more Alzheimer's Disease-Associated Features (ADFs) for screening, treatment or diagnosis of Alzheimer's disease.

20 By way of example and not of limitation, using the Preferred Technology, a number of samples from subjects having Alzheimer's disease and samples from subjects free from Alzheimer's disease are separated by two-dimensional electrophoresis, and the fluorescent digital images of the resulting gels are matched to a chosen representative primary master gel image. This process allows any gel feature, 25 characterised by its pI and MW, to be identified and examined on any gel of the study. In particular, the amount of protein present in a given feature can be measured in each gel; this feature abundance can be averaged amongst gels from similar samples (e.g. gels from samples from subjects having Alzheimer's disease). Finally, statistical analyses can be conducted on the thus created sample sets, in order to compare 2 or

more sample sets to each other.

As used herein, "two-dimensional electrophoresis" (2D-electrophoresis) means a technique comprising isoelectric focusing, followed by denaturing electrophoresis; this generates a two-dimensional gel (2D-gel) containing a plurality of separated 5 proteins. Preferably, the step of denaturing electrophoresis uses polyacrylamide electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE). Especially preferred are the highly accurate and automatable methods and apparatus ("the Preferred Technology") described in PCT Publication No WO 98/23950 and in U.S. Patent No 6,064,754, both filed December 1, 1997, each of which is incorporated 10 herein by reference in its entirety with particular reference to the experimental protocol. Briefly, the Preferred Technology provides efficient, computer-assisted methods and apparatus for identifying, selecting and characterizing biomolecules (e.g. proteins, including glycoproteins) in a biological sample. A two-dimensional array is generated by separating biomolecules on a two-dimensional gel according to their 15 electrophoretic mobility and isoelectric point. A computer-generated digital profile of the array is generated, representing the identity, apparent molecular weight, isoelectric point, and relative abundance of a plurality of biomolecules detected in the two-dimensional array, thereby permitting computer-mediated comparison of profiles from multiple biological samples, as well as computer aided excision of separated 20 proteins of interest.

A particular scanner for detecting fluorescently labeled proteins is described in WO 96/36882 and in the Ph.D. thesis of David A. Basiji, entitled "Development of a High-throughput Fluorescence Scanner Employing Internal Reflection Optics and Phase-sensitive Detection (Total Internal Reflection, Electrophoresis)", University of 25 Washington (1997), Volume 58/12-B of Dissertation Abstracts International, page 6686, the contents of each of which are incorporated herein by reference. These documents describe an image scanner designed specifically for automated, integrated operation at high speeds. The scanner can image gels that have been stained with fluorescent dyes or silver stains, as well as storage phosphor screens. The Basiji thesis

provides a phase-sensitive detection system for discriminating modulated fluorescence from baseline noise due to laser scatter or homogeneous fluorescence, but the scanner can also be operated in a non-phase-sensitive mode. This phase-sensitive detection capability would increase the sensitivity of the instrument by an order of magnitude or 5 more compared to conventional fluorescence imaging systems. The increased sensitivity would reduce the sample-preparation load on the upstream instruments while the enhanced image quality simplifies image analysis downstream in the process.

A more highly preferred scanner is the Apollo 2 scanner (Oxford 10 Glycosciences, Oxford, UK), which is a modified version of the above described scanner. In the Apollo 2 scanner, the gel is transported through the scanner on a precision lead-screw drive system. This is preferable to laying the glass plate on the belt-driven system that is described in the Basiji thesis, as it provides a reproducible means of accurately transporting the gel past the imaging optics.

In the Apollo 2 scanner, the gel is secured against three alignment stops that 15 rigidly hold the glass plate in a known position. By doing this in conjunction with the above precision transport system, the absolute position of the gel can be predicted and recorded. This ensures that co-ordinates of each feature on the gel can be determined more accurately and communicated, if desired, to a cutting robot for excision of the 20 feature. In the Apollo 2 scanner, the carrier that holds the gel has four integral fluorescent markers for use to correct the image geometry. These markers are a quality control feature that confirms that the scanning has been performed correctly.

In comparison to the scanner described in the Basiji thesis, the optical 25 components of the Apollo 2 scanner have been inverted. In the Apollo 2 scanner, the laser, mirror, waveguide and other optical components are above the glass plate being scanned. The scanner described in the Basiji thesis has these components underneath. In the Apollo 2 scanner, the glass plate is mounted onto the scanner gel side down, so that the optical path remains through the glass plate. By doing this, any particles of gel that may break away from the glass plate will fall onto the base of the instrument

rather than into the optics. This does not affect the functionality of the system, but increases its reliability.

Still more preferred is the Apollo 3 scanner, in which the signal output is digitized to the full 16-bit data without any peak saturation or without square root encoding of the signal. A compensation algorithm has also been applied to correct for any variation in detection sensitivity along the path of the scanning beam. This variation is due to anomalies in the optics and differences in collection efficiency across the waveguide. A calibration is performed using a perspex plate with an even fluorescence throughout. The data received from a scan of this plate are used to determine the multiplication factors needed to increase the signal from each pixel level to a target level. These factors are then used in subsequent scans of gels to remove any internal optical variations.

As defined above, a "feature" refers to a spot detected in a 2D gel, and the term "Alzheimer's Disease-Associated Feature" (ADF) refers to a feature that is differentially present in a sample (e.g. a sample of brain tissue) from a subject having Alzheimer's disease compared with a sample (e.g. a sample of brain tissue) from a subject free from Alzheimer's disease.

The ADFs disclosed herein have been identified by comparing tissue samples from subjects having Alzheimer's disease against tissue samples from subjects free from Alzheimer's disease. Subjects free from Alzheimer's disease include subjects with no known disease or condition (normal subjects) and subjects with diseases (including neurological and neurodegenerative diseases) other than Alzheimer's disease. Thus, the present invention, in as much as features are provided and characterized in subjects free from Alzheimer's disease and subjects having Alzheimer's disease, provides for the identification and characterization of features (ADFs), and by virtue of the amino acid sequence characterization of features provides protein isoforms (ADPIs), which are diagnostic or indicative of Alzheimer's disease.

The tissue of subjects having Alzheimer's disease was compared with tissue of subjects free from Alzheimer's Disease for each of the following five anatomically

defined regions of the brain: hippocampus, entorhinal cortex, amygdala, frontal cortex and neocortex. In addition, a comparison was made between areas which are affected early and severely in Alzheimer's disease (the entorhinal cortex and hippocampus) and those which are only affected later in the disease progression. This comparison will 5 provide information on early markers of Alzheimer's disease. In addition, all Alzheimer's disease samples were compared with all control samples to reveal proteins which are altered across the Alzheimer's disease brain.

The ADFs identified through the methods and apparatus of the Preferred Technology are listed in Table I. Table I shows ADFs that were found to be altered in 10 one or more of the five tissue types examined in subjects having Alzheimer's disease as compared with the tissue of subjects free from Alzheimer's disease. ADFs were classified into one of 3 groups for each disease condition. The first group consists of ADFs that are present in at least 50% of disease or control samples and have a fold change (increase or decrease) of at least 1.5, (a+: fold increase of at least 1.5 relative to 15 controls, a-: fold decrease of at least 1.5 relative to control). The second group consists of ADFs that are present in at least 50% of disease or controls samples with a fold change of at least 1.5 where the p-value for the fold change is less than 0.05 (b+: fold increase of at least 1.5 with p<0.05, b-: fold decrease of at least 1.5 with p<0.05). The third group consists of ADFs that are present in at least 50% of either the disease 20 or the control samples but is absent from all samples in the other group, (c+: present in at least 50% of patient samples and absent from all control samples, c-: present in at least 50% of control samples and absent from all disease samples). These ADFs can be described by apparent molecular weight (MW) and isoelectric point (pI) as provided in Table I.

25 Blank cells in Table I reflect an ADF which did not meet the criteria for inclusion in any of the above groups for a given condition.

Table I. ADFs Altered in brain tissue of Subjects Having Alzheimer's Disease*

Table I

ADF#	pI	MW (Da)	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
ADF-1	5.07	41958	b+	a+		a-	a-		a+	b+
ADF-3	5.53	51762	b-					a-		
ADF-5	5.88	50355	a+							
ADF-6	5.39	48281	b+	b+	b+	a+	a+	a+	b+	b+
ADF-8	4.96	40177	b+	b+		a-	a-	a+	b+	b+
ADF-9	4.94	55118		a-		a+		a+	a+	a-
ADF-10	5.16	46069	b+	b+			a+	a+	b+	b+
ADF-11	4.81	39554			b-		a-			
ADF-12	4.88	38224		a+						b+
ADF-13	5.41	67038					a-			
ADF-15	4.64	50029				a-	a-	a-		
ADF-16	5.57	48424	a-			a+		a-	a-	
ADF-22	5.19	102608				a+		a-		
ADF-23	5.22	38803	b-	b-			a+	a-		b-
ADF-24	5.47	77449			a+			a+		
ADF-25	5.06	52537			b+	a-				a-
ADF-26	5.13	48692	b+	b+	a+	a+	a+	a+	b+	b+
ADF-27	5.02	44949	b+	b+			a+	a+	a+	b+
ADF-29	4.9	39388	a+	a+		a+	a-			b+
ADF-31	5.36	46573	b+	a+	a-			a-	a+	b+
ADF-33	9.07	42881	a-			a-				
ADF-35	7.84	42531					a+			
ADF-37	7.57	30563	b-	b-						
ADF-39	7.26	42323		a+						
ADF-41	9.84	32806					a-			
ADF-42	7.92	54422		b-		a-				
ADF-54	7.53	90365		b-						
ADF-56	7.45	91453	b-	b-		a-				
ADF-61	8.02	65431				a-	a-			
ADF-62	5.57	92331		a-		a+		a+		
ADF-66	6.6	115748		b-			a+	a-		
ADF-67	7.57	49062	a-	a-	a+	a-		a-	a-	b+
ADF-68	5.63	91712					a-			
ADF-70	6.78	116449					a+			
ADF-72	5.8	91999						a-		
ADF-77	5.28	46016	b+	b+		a-			a+	b+

Table I

ADF#	pI	MW (Da)	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
ADF-78	4.88	55952					a-	c+		
ADF-79	6.04	51058					a-	a+		b-
ADF-81	4.83	42229	a-			a+	a-			
ADF-82	8.93	40442				c-		a-	a-	
ADF-85	5.71	41191				a-		a-		b+
ADF-87	5.48	34110						a-		
ADF-88	5.22	24404				a-				
ADF-90	5.12	40883	b+	b+		a+			b+	b+
ADF-91	6.95	39784				a-		a-		b+
ADF-92	8.98	34521				a+	a+	a-		
ADF-94	5.84	43662						a+		
ADF-95	6.65	40709				a+	a-	a+		
ADF-97	5.12	19201	b+	b+				a+		
ADF-98	6.35	14707	b+	a+	a+	a-		a+	b+	
ADF-101	8.99	15085				a-				
ADF-102	5.13	38984		b-			a+	a-		b-
ADF-103	7.14	20196	a+	a+	a+	a-	a-			b+
ADF-105	4.81	38327				a+	a-	a-		
ADF-107	7.05	18005					a-			
ADF-108	5.74	34823						a+		
ADF-109	8.03	47014				a-				
ADF-111	4.87	43065				a+	c-	a+		
ADF-112	6.94	76640				a-	a-			
ADF-113	8.39	50091				a-				
ADF-115	7.4	78857					a-			
ADF-117	4.95	47483					a+	a+		
ADF-119	4.95	41245	b+	a+		c-		a+	b+	b+
ADF-120	5.06	46276	b+	b+	b+	c+	a+		b+	b+
ADF-121	6.34	60932								b-
ADF-124	6.8	70243		b-	b-	a-			b-	a+
ADF-125	4.84	43088					c+	a-		
ADF-126	5.15	42785					c-	a+		
ADF-127	5.21	40033			a-	a+		a-		
ADF-128	5.8	28231					a-	a-		
ADF-129	5.58	15554	b-	b-			a-			
ADF-130	4.9	41328					a-	a+	a-	
ADF-131	5.13	33239	b-				a-	a-		
ADF-132	5.06	40834	a+	a+		a-	a-		a+	b+
ADF-133	6.81	42650				a-	a-	a-		

Table I

ADF#	pI	MW (Da)	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
ADF-138	9.72	26137				a-		a+		
ADF-139	9.81	44026		b-			c-	a+		
ADF-140	4.58	15950					c-			
ADF-141	4.66	41227				a-		c-		
ADF-142	6.53	39774	a-			a-				a+
ADF-143	8.99	32577				a-				
ADF-144	4.96	43397	b+	b+		c+	e-	a+		b+
ADF-146	5.25	11857						a-		
ADF-148	5.47	48199	b+	b+	b+	a+	a+		b+	a+
ADF-149	5.13	43744						a+		a+
ADF-150	5.12	46104	b+	b+	a+		a+	a+	a+	b+
ADF-151	4.84	38334	a+			c+	a-	a-		a+
ADF-152	5.32	48338	b+	b+	b+	a+	a+		b+	b+
ADF-153	4.99	53853					a+			
ADF-154	4.85	39486	b+			a+	a-			b+
ADF-155	5.56	66533				a+				b-
ADF-156	5.16	47248			b+	a+		a+		
ADF-157	5.45	42821					a+			b-
ADF-159	5.19	48581	b+	b+	b+	a+	a+	a+	b+	b+
ADF-160	4.86	47558					a+			b-
ADF-162	5.26	48579	b+	b+	a+	a+	a+	a+	b+	b+
ADF-163	5.03	41674	b+	a+	b+			a+	b+	b+
ADF-165	6.42	24608	b+	b+						b+
ADF-172	9.32	10855		b-		a+	a+			
ADF-173	6.76	64255		b-						b-
ADF-175	9.55	36150				a+	a-	c-		a+
ADF-176	6.94	63236	b-	b-						b-
ADF-182	9.36	32746				a-				
ADF-183	5.42	23634	b-	b-						
ADF-188	4.96	93776				a+	a-	a+		
ADF-189	5.83	65453				a+				
ADF-191	6.9	50019		b-						
ADF-193	5.91	64954	a-	b-				a+		b-
ADF-194	7.16	49777		b-						
ADF-196	7.07	51831			b+		a+	a+		
ADF-202	7.14	63134	b-	b-						b-
ADF-204	6.29	11406	b+	a+	b+				b+	b+
ADF-208	5.26	19241						a+		
ADF-209	5.03	11738		b+				a+		

Table I

ADF#	pI	MW (Da)	All HC	selected HC	EC	NC	EC	Am	All	EC/HC vs FC/NC/Am
ADF-216	7.76	21455					a+			
ADF-217	7.53	10660				a+	a+			
ADF-220	7.17	26848			a+	a+	a+			
ADF-223	7.08	42854	b-	b-				a-		
ADF-228	6.41	74736					c+			
ADF-229	7.77	46953	b-	b-						
ADF-230	4.87	53678					c-			
ADF-232	5	37305			b-					
ADF-236	4.64	18906				c+	a+			
ADF-237	4.67	25143	b-	a-		a+	a-	a-	b-	
ADF-240	9.56	32166	a-			a+				
ADF-243	5.35	39493					a+	a-		
ADF-245	5.82	26143	a-					c-		
ADF-250	5.07	167558					a+		b+	
ADF-251	5.52	171859					a+	a-	a+	
ADF-252	5.37	126296					a+			
ADF-253	6.56	138727		b-						
ADF-254	6.63	138817		a-		a+				
ADF-255	6.77	138133	a-	b-						
ADF-256	6.91	136744	a-	b-						
ADF-257	5.42	52510	b+	a+		a-	a+			
ADF-258	8.85	42977	b+	b+		c-	a+	a+		
ADF-259	7.16	42747			a-					
ADF-260	9.64	42986		b-		a+		a-	a-	
ADF-261	5.26	41426					a+	a-		
ADF-262	5.02	40870	b+	a+	b+	c-	a-		b+	
ADF-263	5.58	40684		b-						
ADF-264	5.53	40345				a+				
ADF-265	6.77	41249						a+		
ADF-266	7.41	40715					a+		b+	
ADF-267	5.28	39907					a+			
ADF-268	5.32	39751	b-	a-	a-	a-	a-	b-		
ADF-269	9.72	40657		a-		a-	a+			
ADF-270	4.91	40409	b+	b+	a+		a-	b+	a+	
ADF-271	5.01	39858	a+					a+	a+	
ADF-272	8.13	40619					a+	a-	a+	
ADF-273	5.7	39437	b-	b-						
ADF-274	5.05	39078					a+			
ADF-275	4.94	39423	b+	a+	a+		a-	a+	b+	b+

Table I

ADF#	pI	MW (Da)	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
ADF-276	7.51	39969	b-	b-						
ADF-277	4.98	39146			b-	a+	a+	a-		
ADF-278	7.25	39463		a-	a-		c+			
ADF-279	8.09	39011					a-			
ADF-280	5.83	37149							b-	
ADF-281	5.4	37687			a-					
ADF-282	5.69	37186		b-						a-
ADF-283	5.58	36661					a-		b+	
ADF-284	6.28	36705	b-	b-		a+	a-	a-	b-	
ADF-285	5.7	36544				a+				
ADF-286	7.79	36912			b-				b+	
ADF-287	6.86	35923			b-					
ADF-288	6.17	35958		a-			a-	a+	b-	
ADF-289	9.18	36921				c+	a+	c-		
ADF-290	6.63	36052		a+						
ADF-291	7.79	36208			a-	a-	a-	a+		
ADF-292	9.67	36144				a-	c+			
ADF-293	7.04	34992		b-						
ADF-294	5.16	34573				a-	a-	a-	b-	
ADF-295	5.39	34366							b-	
ADF-296	4.76	34122				a-	a-			
ADF-297	5.03	33778	a-	a-		a+	a-	b-		
ADF-298	5.37	33180				a-		c-		
ADF-299	9.26	34579					a-			
ADF-300	9.93	33122	a-	a-	a+	a-	a+		a-	
ADF-301	9.79	33445					c+			
ADF-302	7.09	32791					a+		a+	
ADF-303	4.91	32291	b+					a+		
ADF-304	5.36	31776							b-	
ADF-305	4.6	32146	a-	b-				a-		
ADF-306	4.67	31899				a+				
ADF-307	4.61	31610					a-			
ADF-308	9.64	32303	b-	b-		a-	a+			
ADF-309	4.69	30667					a-			
ADF-311	5.33	28896		b+				a+		
ADF-312	7.39	28434					a+	a-		
ADF-313	5.04	28096				a-		a+		
ADF-314	5.63	27914					a-	a+		
ADF-315	6.13	25520			a+	a-				

Table I

ADF#	pI	MW (Da)	All HC	selected HC	FC	NC	EC	Am	All	EC/HC vs FC/NC/Am
ADF-316	6.05	25158				a+	a+			
ADF-317	4.61	25514					a-			
ADF-318	7.15	24544	b-	b-		a+	a-	a-	b-	
ADF-319	9.97	24740	b-	b-			a+			b-
ADF-320	6.44	23908						a-		
ADF-321	6.28	23240		b+	b+					b+
ADF-322	5.89	22204	b-				a-			
ADF-323	5.23	22730		a-						
ADF-324	7.43	22516		b-						
ADF-325	7.24	22428	b-							
ADF-326	9.69	23002		a-			c-			
ADF-327	5.48	21128					a-			
ADF-328	4.94	21882	b-	b-	b-		a-		b-	
ADF-329	5.02	21444			a-					
ADF-330	9.53	21378				a+				
ADF-331	9.32	21202					a+		b+	
ADF-332	10.02	21013	a-	b-			c-			
ADF-333	7.8	20396					c+			
ADF-334	7.08	18540		a-			a-	a+		
ADF-335	5.13	17557	b-				c-		b+	
ADF-336	4.52	16749		a-	a-	a+			a-	
ADF-337	6.61	16325		a+		a-	a-	a-		b+
ADF-338	5.71	15618	a+		a+	a+	a+	a+	b+	
ADF-339	4.68	16126				a-		a-		
ADF-340	4.31	15235		b-						
ADF-341	4.68	15288			a-	a-	a+	a-		
ADF-342	7.51	14929	a-	b-		a-	a-			
ADF-343	9.12	15079				a-	a+			
ADF-344	4.77	14226	b-	b-			a+			
ADF-345	7.75	13620				a-				
ADF-346	4.56	14197	b-	b-					b-	
ADF-347	4.52	14033					a-			
ADF-348	7.36	12068				a+		a+		
ADF-349	4.73	13198	b+	b+		a-	a+	a-		
ADF-350	5.03	12536					a-			
ADF-351	5.91	10930	b-	b-						
ADF-352	6.12	10966	b-							
ADF-353	7.35	10655				a+	a+	a+		
ADF-354	5.62	10558					a+			

Table I

ADF#	pI	MW (Da)	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
ADF-355	9.64	10941	a+					a+		a+
ADF-356	7.04	136798		a-				a+		
ADF-357	5.17	115959						a+		
ADF-358	6.73	105628		a-	b+	a+				
ADF-359	5.71	91189						a-		
ADF-360	7.36	92269	b-	b-		a-				
ADF-361	6.32	81004	a+			a+	a+	a-		
ADF-362	6.81	76774	b-	b-						
ADF-363	6.36	75388						a-		
ADF-364	6.09	73832								b-
ADF-365	6.47	74592						a-		
ADF-366	6.34	73530	b-	b-	a-			a-		b-
ADF-367	5.35	66839								b-
ADF-368	5.49	65816		b-						b-
ADF-369	6.7	69857		a+						
ADF-370	9.3	69099		b-		a-		a+		
ADF-371	5.98	64860				a+				
ADF-372	5.68	63210				a+				
ADF-373	6.61	65116			b-					b-
ADF-374	7.01	65362		b-						
ADF-375	6.12	63693				a-		a-		a-
ADF-376	6.52	65065		c-	b-		a+	a+		a-
ADF-377	9.59	44257					c-	a+		
ADF-378	5.66	38000					c-			
ADF-379	7.09	37275						a+		
ADF-380	8.69	32065					a+	a-		
ADF-381	5.48	29061		a+			a+	c-		a+
ADF-382	6.36	22175	a+	a+	b+	a+	a+	a+	b+	
ADF-383	4.52	17290				c-		a+		
ADF-384	9.43	16119	a-	a-			a-		b-	
ADF-386	5.94	12563	b-	a-		a+		a+		
ADF-387	5.33	11323	b+	b+						b+
ADF-388	6.22	11486		a-						
ADF-389	6.63	126012		b-						
ADF-390	5.01	93773	a+	b-		a-	a+	c-		a+
ADF-391	7.62	88209						c-		
ADF-392	5.47	75385		b-			a+			
ADF-393	5.42	70689				a-	a-			
ADF-394	5.62	66442						a-		

Table I

ADF#	pI	MW (Da)	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
ADF-395	7.82	53530	b-	b-				a-		
ADF-396	7.15	53305	b-		b-					
ADF-397	5.29	51553						a-		
ADF-398	6.02	51914		b-						
ADF-399	6.63	52447					a-		b+	
ADF-400	9.14	52590	b-	b-		a+		a-		a-
ADF-401	6.27	51636	a-					a-		
ADF-402	5.58	51111					a+			
ADF-403	7.48	51603				a+				a-
ADF-404	6.73	51384								b+
ADF-405	4.83	50675	b-	b-						b-
ADF-406	6.53	51024			b-					
ADF-407	4.9	50459	b-	a-			a+			
ADF-408	5.79	50212		b-						
ADF-409	5.69	50034			a+	a-				
ADF-410	5.11	49646			b-		a+	a-		a+
ADF-411	5.33	49692	b+	b+			a-	a-	a+	
ADF-412	5.06	49556	a+			a-	a+			a+
ADF-413	7.59	50213	a-			a-	a-	a+	a-	
ADF-414	4.94	49167					a+	c+		a+
ADF-415	5.61	48968				a-				b+
ADF-416	6.8	49576					a+	a-		
ADF-417	5	48877				a-				
ADF-418	4.82	47830		a+						
ADF-419	6.52	47975	b+	b+				a+	b+	b+
ADF-420	4.85	16376			a-			a-		
ADF-421	7.61	15176					c+			
ADF-422	5.33	126111		a+				a-		
ADF-423	6.21	61089								b-
ADF-424	4.83	52105						c+		
ADF-425	7.89	50602		b-				a+		
ADF-426	7.68	50266				a+				
ADF-427	8.66	50180	a-	b-					a-	
ADF-428	5.04	48509					a+			
ADF-429	7.56	47861	a+	a+		a-		a+		b+
ADF-430	5.67	46344		b-						
ADF-431	7.65	46361		b-						
ADF-432	9.42	46974				a-		a-		
ADF-433	9.55	46884				a+		c-		

Table I

ADF#	pI	MW (Da)	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
ADF-434	5.46	45846	b-	b-			a-			b-
ADF-435	7.25	45448				a-				
ADF-436	6.1	44528		b-			a-			
ADF-437	4.88	45571	a+	a+	a-		a-	a-		b+
ADF-438	6.15	44253						a+		
ADF-439	6.84	44245	b-	b-						
ADF-440	5.31	44519	a+	b+						
ADF-441	6.56	43942	b-	b-	b-					
ADF-442	5.36	43816					a-			a+
ADF-443	4.91	43591	b+	a+		a+		a+	a+	
ADF-444	6.48	43383					a+			a-
ADF-445	5.55	42883					a-			
ADF-446	6.64	43189								b-
ADF-447	5	43269	b+	b+		a-	a+			
ADF-448	7.84	43648		b-	a-					
ADF-449	4.75	43300	b+			a-				
ADF-450	5.1	42818	b+	b+	a+	a+	a+	b+		
ADF-451	6.59	42651				a-	a-			
ADF-452	8.65	42868			b+	a-	a-	a+	a-	
ADF-453	6.54	41562	b-							
ADF-454	6.17	40304		a+	b+		a+			
ADF-455	4.89	37155					a+	c-		
ADF-456	5.05	35647	b-	a-		a+	a-	a-	b-	a-
ADF-457	7.77	32435		a-		a+				
ADF-458	5.13	32364				a-	a-	b-		
ADF-459	7.67	31505	b-					a-		
ADF-460	6.61	15951						c-		
ADF-461	5.16	103474			b+	a-				
ADF-462	6.88	66241	a-			c+	a-	a-		
ADF-463	6.58	63519		b-						
ADF-464	6.01	58817						c-		
ADF-465	6.94	59947						a-		
ADF-466	7.05	60297						a+		
ADF-467	7.16	59914		b-				a-		
ADF-468	6.45	58723		b+				a-		
ADF-469	5.48	55802								b-
ADF-470	6.5	56254	a-	a-				a-		
ADF-471	6.1	55319		a+	a+					a-
ADF-472	5.24	54138			a-			c-		b+

Table I

Table I

ADF#	pI	MW (Da)	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
ADF-512	6.42	22602				a-				
ADF-513	8.34	55698				a-				
ADF-514	6.44	52514	b+			a+				b+
ADF-515	7.52	49586	a-	a+	b-	a+				
ADF-516	7.77	44058					a-			
ADF-517	4.86	40635				a+	c-	a-		
ADF-518	6.1	61221								b-
ADF-519	4.84	53906					c-			
ADF-520	4.77	51522			b-		c-	c+		
ADF-521	5.24	47302		a-		a+	c+	a-		
ADF-522	5.7	46027					c-	c+		
ADF-523	9.71	47395					a-	c-		
ADF-524	4.96	44893	b+	b+						b+
ADF-525	4.88	43587					a-	a-		
ADF-526	4.61	38042				a+	a-	a+		
ADF-527	8.1	13928				a-				a+
ADF-528	4.93	94807						a-		
ADF-529	9.71	33463				a-				
ADF-530	4.9	53903					c-			
ADF-531	7.73	88666					a-	a-		
ADF-532	7.9	56000					c-			
ADF-533	4.85	57995					a-			
ADF-534	8.6	44086					a-	a-		
ADF-535	8.78	55742	a+				a-			a+
ADF-536	4.52	55713					c+			
ADF-537	4.78	44895					a-			
ADF-538	4.73	74425					c-			
ADF-539	5.52	49807					c+	c-		
ADF-540	5.21	40933					c+			
ADF-541	8.65	41532					c-	a+		
ADF-542	7.68	16766					a-			
ADF-543	8.85	32258						a-		
ADF-544	5.53	38484						a-		
ADF-545	5.4	64958					c-			
ADF-546	8.85	51770					c-			
ADF-547	4.89	59987						c-		
ADF-548	6.62	23128					a-			
ADF-549	6.61	105070					c+	a+		

*HC = hippocampus, EC = Entorhinal cortex, FC = Frontal Cortex, NC = Neocortex, AM = amygdala,
Early = EC/HC vs. FC/NC/AM, ALL = all Alzheimer's disease samples vs all control samples.

?????????????????????????????????

For any given ADF, the signal obtained upon analysing brain tissue from subjects having Alzheimer's disease relative to the signal obtained upon analysing brain tissue from subjects free from Alzheimer's disease will depend upon the 5 particular analytical protocol and detection technique that is used. Accordingly, those skilled in the art will understand that any laboratory, based on the present description, can establish a suitable reference range for any ADF in subjects free from Alzheimer's disease according to the analytical protocol and detection technique in use. In particular, at least one positive control brain tissue sample from a subject known to 10 have Alzheimer's disease or at least one negative control brain tissue sample from a subject known to be free from Alzheimer's disease (and more preferably both positive and negative control samples) are included in each batch of test samples analysed. In one embodiment, the level of expression of a feature is determined relative to a background value, which is defined as the level of signal obtained from a proximal 15 region of the image that (a) is equivalent in area to the particular feature in question; and (b) contains no substantial discernable protein feature.

In a preferred embodiment, the signal associated with an ADF in the brain tissue of a subject (e.g., a subject suspected of having or known to have Alzheimer's disease) is normalized with reference to one or more Expression Reference Features 20 (ERFs) detected in the same 2D gel. As will be apparent to one of ordinary skill in the art, such ERFs may readily be determined by comparing different samples using techniques and protocols such as the Preferred Technology. Suitable ERFs include (but are not limited to) that described in the following table.

25 Table II. Expression Reference Features

Table II

ERF#	pI	MW (Da)
ERF-1	6.56	31197
ERF-2	4.64	27085

Table II

ERF#	pI	MW (Da)
ERF-3	7.53	25830
ERF-4	7.15	25763
ERF-5	6.94	23823
ERF-6	7.21	23437
ERF-7	6.18	21580
ERF-8	5.57	21794
ERF-9	5.51	19853
ERF-10	5.17	20351
ERF-11	5.72	15301
ERF-12	4.85	12056
ERF-13	4.98	77409
ERF-14	5.4	78003
ERF-15	5.86	16146

As those of skill in the art will readily appreciate, the measured MW and pI of a given feature or Protein Isoform will vary to some extent depending on the precise protocol used for each step of the 2D electrophoresis and for landmark matching. As used herein, the terms "MW" and "pI" are defined, respectively, to mean the apparent molecular weight in Daltons and the apparent isoelectric point of a feature or Protein Isoform as measured in careful accordance with the Reference Protocol identified in Section 6 below. When the Reference Protocol is followed and when samples are run in duplicate or a higher number of replicates, variation in the measured mean pI of a ADF or ADPI is typically less than 3% and variation in the measured mean MW of an ADF or ADPI is typically less than 5%. Where the skilled artisan wishes to diverge from the Reference Protocol, calibration experiments should be performed to compare the MW and pI for each ADF or Protein Isoform as detected (a) by the Reference Protocol and (b) by the divergent.

The ADFs of the invention can be used, for example, for detection, treatment, diagnosis, or for drug development. In one embodiment of the invention, brain tissue from a subject (e.g., a subject suspected of having Alzheimer's disease) is analyzed by 2D electrophoresis for quantitative detection of one or more of the following ADFs: ADF-1, ADF-3, ADF-5, ADF-6, ADF-8, ADF-9, ADF-10, ADF-11, ADF-12, ADF-

13, ADF-15, ADF-16, ADF-22, ADF-23, ADF-24, ADF-25, ADF-26, ADF-27, ADF-
29, ADF-31, ADF-33, ADF-35, ADF-37, ADF-39, ADF-42, ADF-54, ADF-56, ADF-
61, ADF-62, ADF-66, ADF-67, ADF-68, ADF-70, ADF-72, ADF-77, ADF-78, ADF-
79, ADF-81, ADF-82, ADF-85, ADF-87, ADF-88, ADF-90, ADF-91, ADF-92, ADF-
5 94, ADF-95, ADF-97, ADF-98, ADF-101, ADF-102, ADF-103, ADF-105, ADF-107,
ADF-108, ADF-109, ADF-111, ADF-112, ADF-113, ADF-115, ADF-117, ADF-119,
ADF-120, ADF-121, ADF-124, ADF-125, ADF-126, ADF-127, ADF-128, ADF-129,
ADF-130, ADF-131, ADF-132, ADF-133, ADF-138, ADF-139, ADF-140, ADF-141,
ADF-142, ADF-143, ADF-144, ADF-146, ADF-148, ADF-149, ADF-150, ADF-151,
10 ADF-152, ADF-153, ADF-154, ADF-155, ADF-156, ADF-157, ADF-159, ADF-160,
ADF-162, ADF-163, ADF-165, ADF-172, ADF-173, ADF-175, ADF-176, ADF-182,
ADF-183, ADF-188, ADF-189, ADF-191, ADF-193, ADF-194, ADF-196, ADF-202,
ADF-204, ADF-208, ADF-209, ADF-216, ADF-217, ADF-220, ADF-223, ADF-228,
ADF-229, ADF-230, ADF-232, ADF-236, ADF-237, ADF-240, ADF-243, ADF-245,
15 ADF-250, ADF-251, ADF-252, ADF-253, ADF-254, ADF-255, ADF-256, ADF-257,
ADF-258, ADF-259, ADF-260, ADF-261, ADF-262, ADF-263, ADF-264, ADF-265,
ADF-266, ADF-267, ADF-268, ADF-269, ADF-270, ADF-271, ADF-272, ADF-273,
ADF-274, ADF-275, ADF-276, ADF-277, ADF-278, ADF-279, ADF-280, ADF-281,
ADF-282, ADF-283, ADF-284, ADF-285, ADF-286, ADF-287, ADF-288, ADF-289,
20 ADF-290, ADF-291, ADF-292, ADF-293, ADF-294, ADF-295, ADF-296, ADF-297,
ADF-298, ADF-299, ADF-300, ADF-301, ADF-302, ADF-303, ADF-304, ADF-305,
ADF-306, ADF-307, ADF-308, ADF-309, ADF-311, ADF-312, ADF-313, ADF-314,
ADF-315, ADF-316, ADF-317, ADF-318, ADF-319, ADF-320, ADF-321, ADF-322,
ADF-323, ADF-324, ADF-325, ADF-326, ADF-327, ADF-328, ADF-329, ADF-330,
25 ADF-331, ADF-332, ADF-333, ADF-334, ADF-335, ADF-336, ADF-337, ADF-338,
ADF-339, ADF-340, ADF-341, ADF-342, ADF-343, ADF-344, ADF-345, ADF-346,
ADF-347, ADF-348, ADF-349, ADF-350, ADF-351, ADF-352, ADF-353, ADF-354,
ADF-355, ADF-356, ADF-357, ADF-358, ADF-359, ADF-360, ADF-361, ADF-362,
ADF-363, ADF-364, ADF-365, ADF-366, ADF-367, ADF-368, ADF-369, ADF-370,

ADF-371, ADF-372, ADF-373, ADF-374, ADF-375, ADF-376, ADF-377, ADF-378, ADF-379, ADF-380, ADF-381, ADF-382, ADF-383, ADF-384, ADF-386, ADF-387, ADF-388, ADF-389, ADF-390, ADF-391, ADF-392, ADF-393, ADF-394, ADF-395, ADF-396, ADF-397, ADF-398, ADF-399, ADF-400, ADF-401, ADF-402, ADF-403,
5 ADF-404, ADF-405, ADF-406, ADF-407, ADF-408, ADF-409, ADF-410, ADF-411, ADF-412, ADF-413, ADF-414, ADF-415, ADF-416, ADF-417, ADF-418, ADF-419, ADF-420, ADF-421, ADF-422, ADF-423, ADF-424, ADF-425, ADF-426, ADF-427, ADF-428, ADF-429, ADF-430, ADF-431, ADF-432, ADF-433, ADF-434, ADF-435, ADF-436, ADF-437, ADF-438, ADF-439, ADF-440, ADF-441, ADF-442, ADF-443,
10 ADF-444, ADF-445, ADF-446, ADF-447, ADF-448, ADF-449, ADF-450, ADF-451, ADF-452, ADF-453, ADF-454, ADF-455, ADF-456, ADF-457, ADF-458, ADF-459, ADF-460, ADF-461, ADF-462, ADF-463, ADF-464, ADF-465, ADF-466, ADF-467, ADF-468, ADF-469, ADF-470, ADF-471, ADF-472, ADF-473, ADF-474, ADF-475, ADF-476, ADF-477, ADF-478, ADF-479, ADF-480, ADF-481, ADF-482, ADF-483,
15 ADF-484, ADF-485, ADF-486, ADF-487, ADF-488, ADF-489, ADF-490, ADF-491, ADF-492, ADF-493, ADF-494, ADF-495, ADF-496, ADF-497, ADF-498, ADF-499, ADF-500, ADF-501, ADF-502, ADF-503, ADF-504, ADF-505, ADF-506, ADF-507, ADF-508, ADF-509, ADF-510, ADF-511, ADF-512, ADF-513, ADF-514, ADF-515, ADF-516, ADF-517, ADF-518, ADF-519, ADF-520, ADF-521, ADF-522, ADF-523,
20 ADF-524, ADF-525, ADF-526, ADF-527, ADF-528, ADF-529, ADF-530, ADF-531, ADF-532, ADF-533, ADF-534, ADF-535, ADF-536, ADF-537, ADF-538, ADF-539, ADF-540, ADF-541, ADF-542, ADF-543, ADF-544, ADF-545, ADF-546, ADF-547, ADF-548, ADF-549 in any suitable combination. An altered abundance of one or more in any suitable combination of such ADFs in the brain tissue from one region of
25 the subject relative to brain tissue from a one region of a subject or subjects free from Alzheimer's disease (e.g., a control sample or a previously determined reference range) indicates the presence of Alzheimer's disease.

In yet another embodiment of the invention, brain tissue from a subject is analyzed by 2D electrophoresis for quantitative detection of one or more of the

following ADFs: ADF-1, ADF-3, ADF-5, ADF-6, ADF-8, ADF-9, ADF-10, ADF-11, ADF-12, ADF-13, ADF-15, ADF-16, ADF-22, ADF-23, ADF-24, ADF-25, ADF-26, ADF-27, ADF-29, ADF-31, ADF-33, ADF-35, ADF-37, ADF-39, ADF-42, ADF-54, ADF-56, ADF-61, ADF-62, ADF-66, ADF-67, ADF-68, ADF-70, ADF-72, ADF-77, 5 ADF-78, ADF-79, ADF-81, ADF-82, ADF-85, ADF-87, ADF-88, ADF-90, ADF-91, ADF-92, ADF-94, ADF-95, ADF-97, ADF-98, ADF-101, ADF-102, ADF-103, ADF-105, ADF-107, ADF-108, ADF-109, ADF-111, ADF-112, ADF-113, ADF-115, ADF-117, ADF-119, ADF-120, ADF-121, ADF-124, ADF-125, ADF-126, ADF-127, ADF-128, ADF-129, ADF-130, ADF-131, ADF-132, ADF-133, ADF-138, ADF-139, ADF-10 ADF-140, ADF-141, ADF-142, ADF-143, ADF-144, ADF-146, ADF-148, ADF-149, ADF-150, ADF-151, ADF-152, ADF-153, ADF-154, ADF-155, ADF-156, ADF-157, ADF-159, ADF-160, ADF-162, ADF-163, ADF-165, ADF-172, ADF-173, ADF-175, ADF-176, ADF-182, ADF-183, ADF-188, ADF-189, ADF-191, ADF-193, ADF-194, ADF-196, ADF-202, ADF-204, ADF-208, ADF-209, ADF-216, ADF-217, ADF-220, ADF-15 223, ADF-228, ADF-229, ADF-230, ADF-232, ADF-236, ADF-237, ADF-240, ADF-243, ADF-245, ADF-250, ADF-251, ADF-252, ADF-253, ADF-254, ADF-255, ADF-256, ADF-257, ADF-258, ADF-259, ADF-260, ADF-261, ADF-262, ADF-263, ADF-264, ADF-265, ADF-266, ADF-267, ADF-268, ADF-269, ADF-270, ADF-271, ADF-272, ADF-273, ADF-274, ADF-275, ADF-276, ADF-277, ADF-278, ADF-279, ADF-20 280, ADF-281, ADF-282, ADF-283, ADF-284, ADF-285, ADF-286, ADF-287, ADF-288, ADF-289, ADF-290, ADF-291, ADF-292, ADF-293, ADF-294, ADF-295, ADF-296, ADF-297, ADF-298, ADF-299, ADF-300, ADF-301, ADF-302, ADF-303, ADF-304, ADF-305, ADF-306, ADF-307, ADF-308, ADF-309, ADF-311, ADF-312, ADF-313, ADF-314, ADF-315, ADF-316, ADF-317, ADF-318, ADF-319, ADF-320, 25 ADF-321, ADF-322, ADF-323, ADF-324, ADF-325, ADF-326, ADF-327, ADF-328, ADF-329, ADF-330, ADF-331, ADF-332, ADF-333, ADF-334, ADF-335, ADF-336, ADF-337, ADF-338, ADF-339, ADF-340, ADF-341, ADF-342, ADF-343, ADF-344, ADF-345, ADF-346, ADF-347, ADF-348, ADF-349, ADF-350, ADF-351, ADF-352, ADF-353, ADF-354, ADF-355, ADF-356, ADF-357, ADF-358, ADF-359, ADF-360,

ADF-361, ADF-362, ADF-363, ADF-364, ADF-365, ADF-366, ADF-367, ADF-368, ADF-369, ADF-370, ADF-371, ADF-372, ADF-373, ADF-374, ADF-375, ADF-376, ADF-377, ADF-378, ADF-379, ADF-380, ADF-381, ADF-382, ADF-383, ADF-384, ADF-386, ADF-387, ADF-388, ADF-389, ADF-390, ADF-391, ADF-392, ADF-393,

5 ADF-394, ADF-395, ADF-396, ADF-397, ADF-398, ADF-399, ADF-400, ADF-401, ADF-402, ADF-403, ADF-404, ADF-405, ADF-406, ADF-407, ADF-408, ADF-409, ADF-410, ADF-411, ADF-412, ADF-413, ADF-414, ADF-415, ADF-416, ADF-417, ADF-418, ADF-419, ADF-420, ADF-421, ADF-422, ADF-423, ADF-424, ADF-425, ADF-426, ADF-427, ADF-428, ADF-429, ADF-430, ADF-431, ADF-432, ADF-433,

10 ADF-434, ADF-435, ADF-436, ADF-437, ADF-438, ADF-439, ADF-440, ADF-441, ADF-442, ADF-443, ADF-444, ADF-445, ADF-446, ADF-447, ADF-448, ADF-449, ADF-450, ADF-451, ADF-452, ADF-453, ADF-454, ADF-455, ADF-456, ADF-457, ADF-458, ADF-459, ADF-460, ADF-461, ADF-462, ADF-463, ADF-464, ADF-465, ADF-466, ADF-467, ADF-468, ADF-469, ADF-470, ADF-471, ADF-472, ADF-473,

15 ADF-474, ADF-475, ADF-476, ADF-477, ADF-478, ADF-479, ADF-480, ADF-481, ADF-482, ADF-483, ADF-484, ADF-485, ADF-486, ADF-487, ADF-488, ADF-489, ADF-490, ADF-491, ADF-492, ADF-493, ADF-494, ADF-495, ADF-496, ADF-497, ADF-498, ADF-499, ADF-500, ADF-501, ADF-502, ADF-503, ADF-504, ADF-505, ADF-506, ADF-507, ADF-508, ADF-509, ADF-510, ADF-511, ADF-512, ADF-513,

20 ADF-514, ADF-515, ADF-516, ADF-517, ADF-518, ADF-519, ADF-520, ADF-521, ADF-522, ADF-523, ADF-524, ADF-525, ADF-526, ADF-527, ADF-528, ADF-529, ADF-530, ADF-531, ADF-532, ADF-533, ADF-534, ADF-535, ADF-536, ADF-537, ADF-538, ADF-539, ADF-540, ADF-541, ADF-542, ADF-543, ADF-544, ADF-545, ADF-546, ADF-547, ADF-548, ADF-549, wherein the ratio of the one or more ADFs relative to an Expression Reference Feature (ERF) in one region of the brain indicates that Alzheimer's disease is present.

In a further embodiment of the invention, brain tissue from a subject is analyzed by 2D electrophoresis for quantitative detection of one or more ADFs, or any suitable combination of them, whose altered ADF/ERF ratio(s) in a test sample from

one region relative to the ADF/ERF ratio(s) in a control sample from the same brain region indicates the presence of Alzheimer's disease, i.e., ADF-1, ADF-3, ADF-5, ADF-6, ADF-8, ADF-9, ADF-10, ADF-11, ADF-12, ADF-13, ADF-15, ADF-16, ADF-22, ADF-23, ADF-24, ADF-25, ADF-26, ADF-27, ADF-29, ADF-31, ADF-33, 5 ADF-35, ADF-37, ADF-39, ADF-42, ADF-54, ADF-56, ADF-61, ADF-62, ADF-66, ADF-67, ADF-68, ADF-70, ADF-72, ADF-77, ADF-78, ADF-79, ADF-81, ADF-82, ADF-85, ADF-87, ADF-88, ADF-90, ADF-91, ADF-92, ADF-94, ADF-95, ADF-97, ADF-98, ADF-101, ADF-102, ADF-103, ADF-105, ADF-107, ADF-108, ADF-109, ADF-111, ADF-112, ADF-113, ADF-115, ADF-117, ADF-119, ADF-120, ADF-121, 10 ADF-124, ADF-125, ADF-126, ADF-127, ADF-128, ADF-129, ADF-130, ADF-131, ADF-132, ADF-133, ADF-138, ADF-139, ADF-140, ADF-141, ADF-142, ADF-143, ADF-144, ADF-146, ADF-148, ADF-149, ADF-150, ADF-151, ADF-152, ADF-153, ADF-154, ADF-155, ADF-156, ADF-157, ADF-159, ADF-160, ADF-162, ADF-163, ADF-165, ADF-172, ADF-173, ADF-175, ADF-176, ADF-182, ADF-183, ADF-188, 15 ADF-189, ADF-191, ADF-193, ADF-194, ADF-196, ADF-202, ADF-204, ADF-208, ADF-209, ADF-216, ADF-217, ADF-220, ADF-223, ADF-228, ADF-229, ADF-230, ADF-232, ADF-236, ADF-237, ADF-240, ADF-243, ADF-245, ADF-250, ADF-251, ADF-252, ADF-253, ADF-254, ADF-255, ADF-256, ADF-257, ADF-258, ADF-259, ADF-260, ADF-261, ADF-262, ADF-263, ADF-264, ADF-265, ADF-266, ADF-267, 20 ADF-268, ADF-269, ADF-270, ADF-271, ADF-272, ADF-273, ADF-274, ADF-275, ADF-276, ADF-277, ADF-278, ADF-279, ADF-280, ADF-281, ADF-282, ADF-283, ADF-284, ADF-285, ADF-286, ADF-287, ADF-288, ADF-289, ADF-290, ADF-291, ADF-292, ADF-293, ADF-294, ADF-295, ADF-296, ADF-297, ADF-298, ADF-299, ADF-300, ADF-301, ADF-302, ADF-303, ADF-304, ADF-305, ADF-306, ADF-307, 25 ADF-308, ADF-309, , ADF-311, ADF-312, ADF-313, ADF-314, ADF-315, ADF-316, ADF-317, ADF-318, ADF-319, ADF-320, ADF-321, ADF-322, ADF-323, ADF-324, ADF-325, ADF-326, ADF-327, ADF-328, ADF-329, ADF-330, ADF-331, ADF-332, ADF-333, ADF-334, ADF-335, ADF-336, ADF-337, ADF-338, ADF-339, ADF-340, ADF-341, ADF-342, ADF-343, ADF-344, ADF-345, ADF-346, ADF-347, ADF-

348, ADF-349, ADF-350, ADF-351, ADF-352, ADF-353, ADF-354, ADF-355, ADF-
356, ADF-357, ADF-358, ADF-359, ADF-360, ADF-361, ADF-362, ADF-363, ADF-
364, ADF-365, ADF-366, ADF-367, ADF-368, ADF-369, ADF-370, ADF-371, ADF-
372, ADF-373, ADF-374, ADF-375, ADF-376, ADF-377, ADF-378, ADF-379, ADF-
5 380, ADF-381, ADF-382, ADF-383, ADF-384, ADF-386, ADF-387, ADF-388, ADF-
389, ADF-390, ADF-391, ADF-392, ADF-393, ADF-394, ADF-395, ADF-396, ADF-
397, ADF-398, ADF-399, ADF-400, ADF-401, ADF-402, ADF-403, ADF-404, ADF-
405, ADF-406, ADF-407, ADF-408, ADF-409, ADF-410, ADF-411, ADF-412, ADF-
413, ADF-414, ADF-415, ADF-416, ADF-417, ADF-418, ADF-419, ADF-420, ADF-
10 421, ADF-422, ADF-423, ADF-424, ADF-425, ADF-426, ADF-427, ADF-428, ADF-
429, ADF-430, ADF-431, ADF-432, ADF-433, ADF-434, ADF-435, ADF-436, ADF-
437, ADF-438, ADF-439, ADF-440, ADF-441, ADF-442, ADF-443, ADF-444, ADF-
445, ADF-446, ADF-447, ADF-448, ADF-449, ADF-450, ADF-451, ADF-452, ADF-
453, ADF-454, ADF-455, ADF-456, ADF-457, ADF-458, ADF-459, ADF-460, ADF-
15 461, ADF-462, ADF-463, ADF-464, ADF-465, ADF-466, ADF-467, ADF-468, ADF-
469, ADF-470, ADF-471, ADF-472, ADF-473, ADF-474, ADF-475, ADF-476, ADF-
477, ADF-478, ADF-479, ADF-480, ADF-481, ADF-482, ADF-483, ADF-484, ADF-
485, ADF-486, ADF-487, ADF-488, ADF-489, ADF-490, ADF-491, ADF-492, ADF-
493, ADF-494, ADF-495, ADF-496, ADF-497, ADF-498, ADF-499, ADF-500, ADF-
20 501, ADF-502, ADF-503, ADF-504, ADF-505, ADF-506, ADF-507, ADF-508, ADF-
509, ADF-510, ADF-511, ADF-512, ADF-513, ADF-514, ADF-515, ADF-516, ADF-
517, ADF-518, ADF-519, ADF-520, ADF-521, ADF-522, ADF-523, ADF-524, ADF-
525, ADF-526, ADF-527, ADF-528, ADF-529, ADF-530, ADF-531, ADF-532, ADF-
533, ADF-534, ADF-535, ADF-536, ADF-537, ADF-538, ADF-539, ADF-540, ADF-
25 541, ADF-542, ADF-543, ADF-544, ADF-545, ADF-546, ADF-547, ADF-548, ADF-
549.

In a preferred embodiment, brain tissue from a subject is analyzed for quantitative detection of a plurality of ADFs.

In a preferred embodiment of the invention, brain tissue from a subject (*e.g.*, a

subject suspected of having Alzheimer's disease) is analysed by 2D electrophoresis for quantitative detection of one or more of the following ADFs: ADF-1, ADF-6, ADF-8, ADF-9, ADF-10, ADF-16, ADF-26, ADF-27, ADF-31, ADF-67, ADF-77, ADF-82, ADF-90, ADF-98, ADF-119, ADF-120, ADF-124, ADF-130, ADF-132, ADF-148, 5 ADF-150, ADF-152, ADF-159, ADF-162, ADF-163, ADF-204, ADF-237, ADF-268, ADF-270, ADF-271, ADF-275, ADF-284, ADF-294, ADF-297, ADF-318, ADF-328, ADF-338, ADF-346, ADF-382, ADF-384, ADF-411, ADF-413, ADF-419, ADF-427, ADF-443, ADF-450, ADF-452, ADF-456, ADF-458, ADF-491, ADF-507, ADF-510 in any suitable combination. An altered abundance of one or more in any suitable 10 combination of such ADFs in the brain tissue from any region of the brain of the subject relative to brain tissue from any region of the brain of a subject or subjects free from Alzheimer's disease (e.g., a control sample or a previously determined reference range) indicates the presence of Alzheimer's disease.

In yet another embodiment of the invention, brain tissue from a subject is 15 analyzed by 2D electrophoresis for quantitative detection of one or more of the following ADFs ADF-1, ADF-6, ADF-8, ADF-9, ADF-10, ADF-16, ADF-26, ADF-27, ADF-31, ADF-67, ADF-77, ADF-82, ADF-90, ADF-98, ADF-119, ADF-120, ADF-124, ADF-130, ADF-132, ADF-148, ADF-150, ADF-152, ADF-159, ADF-162, ADF-163, ADF-204, ADF-237, ADF-268, ADF-270, ADF-271, ADF-275, ADF-284, ADF-294, ADF-297, ADF-318, ADF-328, ADF-338, ADF-346, ADF-382, ADF-384, ADF-411, ADF-413, ADF-419, ADF-427, ADF-443, ADF-450, ADF-452, ADF-456, ADF-458, ADF-491, ADF-507, ADF-510 wherein the ratio of the one or more ADFs 20 relative to an Expression Reference Feature (ERF) in any region of the brain indicates that Alzheimer's disease is present.

25 In a further embodiment of the invention, brain tissue from a subject is analyzed by 2D electrophoresis for quantitative detection of one or more ADFs, or any suitable combination of them, whose altered ADF/ERF ratio(s) in a test sample from any region of the brain relative to the ADF/ERF ratio(s) in a control sample from any region of the brain indicates the presence of Alzheimer's disease, i.e., ADF-1, ADF-6,

ADF-8, ADF-9, ADF-10, ADF-16, ADF-26, ADF-27, ADF-31, ADF-67, ADF-77, ADF-82, ADF-90, ADF-98, ADF-119, ADF-120, ADF-124, ADF-130, ADF-132, ADF-148, ADF-150, ADF-152, ADF-159, ADF-162, ADF-163, ADF-204, ADF-237, ADF-268, ADF-270, ADF-271, ADF-275, ADF-284, ADF-294, ADF-297, ADF-318, 5 ADF-328, ADF-338, ADF-346, ADF-382, ADF-384, ADF-411, ADF-413, ADF-419, ADF-427, ADF-443, ADF-450, ADF-452, ADF-456, ADF-458, ADF-491, ADF-507, ADF-510.

In a preferred embodiment, brain tissue from a subject is analyzed for quantitative detection of a plurality of ADFs.

10 The ADFs of the invention can be used, for example, for detection, treatment, diagnosis, or for drug development. In one embodiment of the invention, brain tissue from a subject (e.g., a subject suspected of having Alzheimer's disease) is analyzed by 2D electrophoresis for quantitative detection of one or more of the following ADFs: ADF-1, ADF-6, ADF-8, ADF-9, ADF-10, ADF-12, ADF-23, ADF-25, ADF-26, ADF- 15 27, ADF-29, ADF-31, ADF-67, ADF-77, ADF-79, ADF-85, ADF-90, ADF-91, ADF- 102, ADF-103, ADF-119, ADF-120, ADF-121, ADF-124, ADF-132, ADF-142, ADF- 144, ADF-148; ADF-149, ADF-150, ADF-151, ADF-152, ADF-154, ADF-155, ADF- 157, ADF-159, ADF-160, ADF-162, ADF-163, ADF-165, ADF-173, ADF-175, ADF- 20 176, ADF-193; ADF-202, ADF-204, ADF-250, ADF-251, ADF-260, ADF-262, ADF- 266, ADF-270, ADF-271, ADF-272, ADF-275, ADF-280, ADF-282, ADF-283, ADF- 286, ADF-288, ADF-295, ADF-300, ADF-302, ADF-304, ADF-319, ADF-321, ADF- 331, ADF-335, ADF-336, ADF-337, ADF-355, ADF-364, ADF-366, ADF-367, ADF- 368, ADF-373, ADF-375, ADF-376, ADF-381, ADF-387, ADF-390, ADF-399, ADF- 400, ADF-403, ADF-404, ADF-405, ADF-410, ADF-412, ADF-414, ADF-415, ADF- 25 419, ADF-423, ADF-429, ADF-434, ADF-437, ADF-442, ADF-443, ADF-444, ADF- 446, ADF-452, ADF-456, ADF-469, ADF-471, ADF-472, ADF-478, ADF-485, ADF- 491, ADF-493, ADF-495, ADF-504, ADF-505, ADF-510, ADF-511, ADF-514, ADF- 518, ADF-524, ADF-527, ADF-535 in any suitable combination. An altered abundance of one or more in any suitable combination of such ADFs in the brain

tissue from the subject relative to brain tissue from a subject or subjects free from Alzheimer's disease (*e.g.*, a control sample or a previously determined reference range) is an early indicator of the presence of Alzheimer's disease.

In yet another embodiment of the invention, brain tissue from a subject is analyzed by 2D electrophoresis for quantitative detection of one or more of the following ADFs ADF-1, ADF-6, ADF-8, ADF-9, ADF-10, ADF-12, ADF-23, ADF-25, ADF-26, ADF-27, ADF-29, ADF-31, ADF-67, ADF-77, ADF-79, ADF-85, ADF-90, ADF-91, ADF-102, ADF-103, ADF-119, ADF-120, ADF-121, ADF-124, ADF-132, ADF-142, ADF-144, ADF-148, ADF-149, ADF-150, ADF-151, ADF-152, ADF-154, ADF-155, ADF-157, ADF-159, ADF-160, ADF-162, ADF-163, ADF-165, ADF-173, ADF-175, ADF-176, ADF-193, ADF-202, ADF-204, ADF-250, ADF-251, ADF-260, ADF-262, ADF-266, ADF-270, ADF-271, ADF-272, ADF-275, ADF-280, ADF-282, ADF-283, ADF-286, ADF-288, ADF-295, ADF-300, ADF-302, ADF-304, ADF-319, ADF-321, ADF-331, ADF-335, ADF-336, ADF-337, ADF-355, ADF-364, ADF-366, ADF-367, ADF-368, ADF-373, ADF-375, ADF-376, ADF-381, ADF-387, ADF-390, ADF-399, ADF-400, ADF-403, ADF-404, ADF-405, ADF-410, ADF-412, ADF-414, ADF-415, ADF-419, ADF-423, ADF-429, ADF-434, ADF-437, ADF-442, ADF-443, ADF-444, ADF-446, ADF-452, ADF-456, ADF-469, ADF-471, ADF-472, ADF-478, ADF-485, ADF-491, ADF-493, ADF-495, ADF-504, ADF-505, ADF-510, ADF-511, ADF-514, ADF-518, ADF-524, ADF-527, ADF-535 wherein the ratio of the one or more ADFs relative to an Expression Reference Feature (ERF) is an early indicator of the presence of Alzheimer's disease.

In a further embodiment of the invention, brain tissue from a subject is analyzed by 2D electrophoresis for quantitative detection of one or more ADFs, or any suitable combination of them, whose altered ADF/ERF ratio(s) in a test sample relative to the ADF/ERF ratio(s) in a control sample is an early indicator of the presence of Alzheimer's disease, *i.e.*, ADF-1, ADF-6, ADF-8, ADF-9, ADF-10, ADF-12, ADF-23, ADF-25, ADF-26, ADF-27, ADF-29, ADF-31, ADF-67, ADF-77, ADF-79, ADF-85, ADF-90, ADF-91, ADF-102, ADF-103, ADF-119, ADF-120, ADF-121,

ADF-124, ADF-132, ADF-142, ADF-144, ADF-148, ADF-149, ADF-150, ADF-151, ADF-152, ADF-154, ADF-155, ADF-157, ADF-159, ADF-160, ADF-162, ADF-163, ADF-165, ADF-173, ADF-175, ADF-176, ADF-193, ADF-202, ADF-204, ADF-250, ADF-251, ADF-260, ADF-262, ADF-266, ADF-270, ADF-271, ADF-272, ADF-275, 5 ADF-280, ADF-282, ADF-283, ADF-286, ADF-288, ADF-295, ADF-300, ADF-302, ADF-304, ADF-319, ADF-321, ADF-331, ADF-335, ADF-336, ADF-337, ADF-355, ADF-364, ADF-366, ADF-367, ADF-368, ADF-373, ADF-375, ADF-376, ADF-381, ADF-387, ADF-390, ADF-399, ADF-400, ADF-403, ADF-404, ADF-405, ADF-410, 10 ADF-412, ADF-414, ADF-415, ADF-419, ADF-423, ADF-429, ADF-434, ADF-437, ADF-442, ADF-443, ADF-444, ADF-446, ADF-452, ADF-456, ADF-469, ADF-471, ADF-472, ADF-478, ADF-485, ADF-491, ADF-493, ADF-495, ADF-504, ADF-505, ADF-510, ADF-511, ADF-514, ADF-518, ADF-524, ADF-527, ADF-535.

In a preferred embodiment, brain tissue from a subject is analyzed for quantitative detection of a plurality of ADFs.

15

5.3 Alzheimer's Disease-Associated Protein Isoforms (ADPIs)

In another aspect of the invention, brain tissue from a subject is analyzed for quantitative detection of one or more Alzheimer's Disease-Associated Protein Isoforms (ADPIs), *e.g.* for screening, treatment or diagnosis of Alzheimer's disease or for development of pharmaceutical products. As is well known in the art, a given protein may be expressed as one or more variant forms that differ in amino acid composition (*e.g.* as a result of alternative mRNA or pre-mRNA processing, *e.g.* alternative splicing or limited proteolysis) or as a result of differential post-translational modification (*e.g.*, glycosylation, phosphorylation, acylation), or both, so that proteins of identical amino acid sequence can differ in their pI, MW, or both. "Alzheimer's Disease-Associated Protein Isoform" refers to a protein that is differentially present in brain tissue from a subject having Alzheimer's disease compared with brain tissue from a subject free from Alzheimer's disease.

ADPIs are described herein by the amino acid sequencing of ADFs, as depicted

in Figure 4 and described above. Three groups of ADPIs have been identified by partial amino acid sequencing of ADFs, using the methods and apparatus of the Preferred Technology. One skilled in the art can identify sequence information from proteins analysed by mass spectrometry and/or tandem mass spectrometry using various spectral interpretation methods and database searching tools. Examples of some of these methods and tools can be found at the Swiss Institute of Bioinformatics web site at <http://www.expasy.com/>, and the European Molecular Biology Laboratory web site at <http://www.narrador.embl-heidelberg.de/GroupPages/PageLink/peptidesearchpage.html>. Identification of ADPIs was performed primarily using the SEQUEST search program (Eng et al., 1994, J. Am. Soc. Mass Spectrom. 5:976-989) and the method described in PCT Application No. PCT/GB01/04034, which is incorporated herein by reference in its entirety.

ADPIs were classified into one of 3 groups for each statistical analysis. The first group consists of ADPIs that are present in at least 50% of disease or control samples and have a fold change (increase or decrease) of at least 1.5, (a+: fold increase of at least 1.5 relative to controls, a-: fold decrease of at least 1.5 relative to control). The second group consists of ADPIs that are present in at least 50% of disease or controls samples with a fold change of at least 1.5 where the p-value for the fold change is less than 0.05 (b+: fold increase of at least 1.5 with p<0.05, b-: fold decrease of at least 1.5 with p<0.05). The third group consists of ADPIs that are present in at least 50% of either the disease or the control samples but is absent from all samples in the other group, (c+: present in at least 50% of patient samples and absent from all control samples, c-: present in at least 50% of control samples and absent from all disease samples). Blank cells in Table III reflect an ADPI which did not meet the criteria for inclusion in any of the above groups for a given condition.

Table III ADPIs Altered in brain tissue of Subjects Having Alzheimer's disease

Table III

ADF#	ADPI#	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
ADF-1	ADPI-1	b+	a+		a-	a-		a+	b+
ADF-3	ADPI-3.1	b-					a-		
ADF-3	ADPI-3.2	b-					a-		
ADF-3	ADPI-3.3	b-					a-		
ADF-5	ADPI-5.3	a+							
ADF-6	ADPI-6	b+	b+	b+	a+	a+	a+	b+	b+
ADF-8	ADPI-8	b+	b+		a-	a-	a+	b+	b+
ADF-9	ADPI-9		a-		a+		a+	a+	a-
ADF-10	ADPI-10	b+	b+			a+	a+	b+	b+
ADF-11	ADPI-11			b-		a-			
ADF-12	ADPI-12.1		a+						b+
ADF-12	ADPI-12.2		a+						b+
ADF-13	ADPI-13						a-		
ADF-15	ADPI-15				a-	a-	a-		
ADF-16	ADPI-16	a-			a+		a-	a-	
ADF-22	ADPI-22				a+		a-		
ADF-23	ADPI-23	b-	b-			a+	a-		b-
ADF-24	ADPI-24			a+			a+		
ADF-25	ADPI-25.3			b+	a-				a-
ADF-25	ADPI-25.2			b+	a-				a-
ADF-26	ADPI-26	b+	b+	a+	a+	a+	a+	b+	b+
ADF-27	ADPI-27	b+	b+			a+	a+	a+	b+
ADF-29	ADPI-29	a+	a+		a+	a-			b+
ADF-31	ADPI-31	b+	a+	a-			a-	a+	b+
ADF-33	ADPI-33.1	a-			a-				
ADF-35	ADPI-35						a+		
ADF-37	ADPI-37	b-	b-						
ADF-39	ADPI-39		a+						
ADF-41	ADPI-41					a-			
ADF-42	ADPI-42		b-		a-				
ADF-54	ADPI-54		b-						
ADF-56	ADPI-56	b-	b-		a-				
ADF-61	ADPI-61				a-	a-			
ADF-62	ADPI-62		a-		a+		a+		
ADF-66	ADPI-66		b-			a+	a-		
ADF-67	ADPI-67	a-	a-	a+	a-		a-	a-	b+
ADF-68	ADPI-68					a-			
ADF-70	ADPI-70					a+			
ADF-72	ADPI-72						a-		

Table III

ADF#	ADPI#	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs. FC/NC/Am
ADF-77	ADPI-77	b+	b+		a-			a+	b+
ADF-78	ADPI-78.2					a-	c+		
ADF-78	ADPI-78.3					a-	c+		
ADF-79	ADPI-79					a-	a+		b-
ADF-81	ADPI-81.2	a-			a+	a-			
ADF-82	ADPI-82				c-	a-	a-		
ADF-85	ADPI-85				a-	a-			b+
ADF-87	ADPI-87.1						a-		
ADF-88	ADPI-88				a-				
ADF-90	ADPI-90	b+	b+		a+			b+	b+
ADF-91	ADPI-91.1				a-	a-			b+
ADF-91	ADPI-91.2				a-	a-			b+
ADF-92	ADPI-92				a+	a+	a-		
ADF-94	ADPI-94						a+		
ADF-95	ADPI-95				a+	a-	a+		
ADF-97	ADPI-97	b+	b+				a+		
ADF-98	ADPI-98	b+	a+	a+	a-		a+	b+	
ADF-101	ADPI-101				a-				
ADF-102	ADPI-102.1		b-			a+	a-		b-
ADF-103	ADPI-103	a+	a+	a+	a-	a-			b+
ADF-105	ADPI-105.2				a+	a-	a-		
ADF-105	ADPI-105.1				a+	a-	a-		
ADF-107	ADPI-107					a-			
ADF-108	ADPI-108						a+		
ADF-109	ADPI-109				a-				
ADF-111	ADPI-111.1				a+	c-	a+		
ADF-112	ADPI-112				a-	a-			
ADF-113	ADPI-113				a-				
ADF-115	ADPI-115					a-			
ADF-117	ADPI-117.1				a+	a+			
ADF-119	ADPI-119	b+	a+		c-	a+	b+	b+	
ADF-120	ADPI-120	b+	b+	b+	c+	a+		b+	b+
ADF-121	ADPI-121								b-
ADF-124	ADPI-124		b-	b-	a-		b-	a+	
ADF-125	ADPI-125					c+	a-		
ADF-126	ADPI-126					c-	a+		
ADF-126	ADPI-126					c-	a+		
ADF-126	ADPI-126					c-	a+		
ADF-127	ADPI-127				a-	a+	a-		

Table III

ADF#	ADPI#	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
ADF-128	ADPI-128					a-	a-		
ADF-129	ADPI-129	b-	b-			a-			
ADF-130	ADPI-130					a-	a+	a-	
ADF-131	ADPI-131	b-				a-	a-		
ADF-132	ADPI-132	a+	a+		a-	a-		a+	b+
ADF-133	ADPI-133			a-	a-	a-			
ADF-138	ADPI-138				a-		a+		
ADF-139	ADPI-139		b-			c-	a+		
ADF-140	ADPI-140					c-			
ADF-141	ADPI-141				a-		c-		
ADF-142	ADPI-142.2	a-			a-				a+
ADF-142	ADPI-142.1	a-			a-				a+
ADF-143	ADPI-143.1				a-				
ADF-143	ADPI-143.2				a-				
ADF-144	ADPI-144	b+	b+		c+	c-	a+	b+	
ADF-146	ADPI-146.2						a-		
ADF-146	ADPI-146.1						a-		
ADF-148	ADPI-148	b+	b+	b+	a+	a+		b+	a+
ADF-149	ADPI-149.1						a+		a+
ADF-150	ADPI-150	b+	b+	a+		a+	a+	a+	b+
ADF-151	ADPI-151.2	a+			c+	a-	a-		a+
ADF-151	ADPI-151.1	a+			c+	a-	a-		a+
ADF-152	ADPI-152	b+	b+	b+	a+	a+		b+	b+
ADF-153	ADPI-153.1					a+			
ADF-153	ADPI-153.2					a+			
ADF-153	ADPI-153.3					a+			
ADF-154	ADPI-154	b+			a+	a-			b+
ADF-155	ADPI-155				a+				b-
ADF-156	ADPI-156.2			b+	a+		a+		
ADF-156	ADPI-156.1			b+	a+		a+		
ADF-157	ADPI-157					a+			b-
ADF-159	ADPI-159.1	b+	b+	b+	a+	a+	a+	b+	b+
ADF-159	ADPI-159.2	b+	b+	b+	a+	a+	a+	b+	b+
ADF-160	ADPI-160					a+			b-
ADF-162	ADPI-162.2	b+	b+	a+	a+	a+	a+	b+	b+
ADF-162	ADPI-162.3	b+	b+	a+	a+	a+	a+	b+	b+
ADF-162	ADPI-162.1	b+	b+	a+	a+	a+	a+	b+	b+
ADF-163	ADPI-163	b+	a+	b+			a+	b+	b+
ADF-165	ADPI-165	b+	b+						b+

Table III

ADF#	ADPI#	All	selected	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
		HC	HC						
ADF-172	ADPI-172		b-		a+	a+			
ADF-173	ADPI-173.1		b-						b-
ADF-173	ADPI-173.2		b-						b-
ADF-175	ADPI-175.2				a+	a-	c-		a+
ADF-175	ADPI-175.1				a+	a-	c-		a+
ADF-176	ADPI-176	b-	b-						b-
ADF-182	ADPI-182				a-				
ADF-183	ADPI-183	b-	b-						
ADF-188	ADPI-188.1				a+	a-	a+		
ADF-189	ADPI-189.2				a+				
ADF-191	ADPI-191		b-						
ADF-193	ADPI-193	a-	b-				a+		b-
ADF-194	ADPI-194.2		b-						
ADF-196	ADPI-196.2			b+		a+	a+		
ADF-196	ADPI-196.3			b+		a+	a+		
ADF-196	ADPI-196.1			b+		a+	a+		
ADF-196	ADPI-196.4			b+		a+	a+		
ADF-202	ADPI-202	b-	b-						b-
ADF-204	ADPI-204	b+	a+	b+				b+	b+
ADF-208	ADPI-208						a+		
ADF-209	ADPI-209		b+				a+		
ADF-216	ADPI-216					a+			
ADF-217	ADPI-217				a+	a+			
ADF-220	ADPI-220			a+	a+	a+			
ADF-223	ADPI-223	b-	b-				a-		
ADF-228	ADPI-228					c+			
ADF-229	ADPI-229	b-	b-						
ADF-230	ADPI-230.1						c-		
ADF-230	ADPI-230.2						c-		
ADF-232	ADPI-232.1			b-					
ADF-232	ADPI-232.2			b-					
ADF-236	ADPI-236.2				c+	a+			
ADF-236	ADPI-236.3				c+	a+			
ADF-237	ADPI-237.2	b-	a-		a+	a-	a-	b-	
ADF-237	ADPI-237.1	b-	a-		a+	a-	a-	b-	
ADF-240	ADPI-240	a-			a+				
ADF-243	ADPI-243					a+	a-		
ADF-245	ADPI-245	a-					c-		
ADF-250	ADPI-250					a+			b+

Table III

ADF#	ADPI#	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs. FC/NC/Am
ADF-251	ADPI-251					a+	a-		a+
ADF-252	ADPI-252.1					a+			
ADF-252	ADPI-252.2					a+			
ADF-253	ADPI-253		b-						
ADF-254	ADPI-254		a-		a+				
ADF-255	ADPI-255	a-	b-						
ADF-256	ADPI-256	a-	b-						
ADF-257	ADPI-257.1	b+	a+		a-	a+			
ADF-257	ADPI-257.2	b+	a+		a-	a+			
ADF-258	ADPI-258	b+	b+		c-	a+	a+		
ADF-259	ADPI-259.1			a-					
ADF-259	ADPI-259.2			a-					
ADF-260	ADPI-260		b-		a+		a-		a-
ADF-261	ADPI-261					a+	a-		
ADF-262	ADPI-262	b+	a+	b+	c-	a-			b+
ADF-263	ADPI-263		b-						
ADF-264	ADPI-264				a+				
ADF-265	ADPI-265						a+		
ADF-266	ADPI-266					a+			b+
ADF-267	ADPI-267					a+			
ADF-268	ADPI-268.1	b-	a-	a-	a-	a-			b-
ADF-268	ADPI-268.2	b-	a-	a-	a-	a-			b-
ADF-269	ADPI-269		a-		a-	a+			
ADF-270	ADPI-270	b+	b+	a+		a-	b+	a+	
ADF-271	ADPI-271	a+					a+	a+	
ADF-272	ADPI-272					a+	a-		a+
ADF-273	ADPI-273	b-	b-						
ADF-274	ADPI-274					a+			
ADF-275	ADPI-275	b+	a+	a+		a-	a+	b+	b+
ADF-276	ADPI-276	b-	b-						
ADF-277	ADPI-277			b-	a+	a+	a-		
ADF-278	ADPI-278.1	a-	a-				c+		
ADF-278	ADPI-278.2	a-	a-				c+		
ADF-279	ADPI-279.1						a-		
ADF-279	ADPI-279.2						a-		
ADF-280	ADPI-280							b-	
ADF-281	ADPI-281				a-				
ADF-282	ADPI-282		b-					a-	
ADF-283	ADPI-283						a-	b+	

Table III

ADF#	ADPI#	All HC	selected HC	FC	NC	EC	Am	All	EC/HC vs FC/NC/Am
ADF-284	ADPI-284	b-	b-		a+	a-	a-	b-	
ADF-285	ADPI-285				a+				
ADF-286	ADPI-286							b+	
ADF-287	ADPI-287			b-					
ADF-288	ADPI-288		a-			a-	a+	b-	
ADF-289	ADPI-289				c+	a+	c-		
ADF-290	ADPI-290		a+						
ADF-291	ADPI-291			a-	a-		a+		
ADF-292	ADPI-292				a-	c+			
ADF-293	ADPI-293		b-						
ADF-294	ADPI-294				a-	a-	a-	b-	
ADF-295	ADPI-295							b-	
ADF-296	ADPI-296				a-		a-		
ADF-297	ADPI-297	a-	a-		a+	a-		b-	
ADF-298	ADPI-298				a-		c-		
ADF-299	ADPI-299					a-			
ADF-300	ADPI-300	a-	a-	a+	a-	a+		a-	
ADF-301	ADPI-301					c+			
ADF-302	ADPI-302				a+			a+	
ADF-303	ADPI-303	b+					a+		
ADF-304	ADPI-304							b-	
ADF-305	ADPI-305	a-	b-				a-		
ADF-306	ADPI-306				a+				
ADF-307	ADPI-307.1					a-			
ADF-307	ADPI-307.2					a-			
ADF-308	ADPI-308	b-	b-		a-		a+		
ADF-309	ADPI-309					a-			
ADF-311	ADPI-311		b+				a+		
ADF-312	ADPI-312					a+	a-		
ADF-313	ADPI-313				a-		a+		
ADF-314	ADPI-314					a-	a+		
ADF-315	ADPI-315			a+	a-				
ADF-316	ADPI-316.1				a+	a+			
ADF-316	ADPI-316.2				a+	a+			
ADF-317	ADPI-317					a-			
ADF-318	ADPI-318	b-	b-		a+	a-	a-	b-	
ADF-319	ADPI-319	b-	b-			a+		b-	
ADF-320	ADPI-320.1						a-		
ADF-320	ADPI-320.2						a-		

Table III

ADF#	ADPI#	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
ADF-321	ADPI-321		b+	b+					b+
ADF-322	ADPI-322	b-			a-				
ADF-323	ADPI-323		a-						
ADF-324	ADPI-324		b-						
ADF-325	ADPI-325	b-							
ADF-326	ADPI-326		a-				c-		
ADF-327	ADPI-327					a-			
ADF-328	ADPI-328	b-	b-	b-		a-		b-	
ADF-329	ADPI-329			a-					
ADF-330	ADPI-330				a+				
ADF-331	ADPI-331					a+			b+
ADF-332	ADPI-332	a-	b-				c-		
ADF-333	ADPI-333.1					c+			
ADF-333	ADPI-333.2					c+			
ADF-334	ADPI-334		a-			a-	a+		
ADF-335	ADPI-335	b-					c-		b+
ADF-336	ADPI-336		a-	a+	a+				a-
ADF-337	ADPI-337		a+		a-	a-	a-		b+
ADF-338	ADPI-338	a+		a+	a+	a+	a+	b+	
ADF-339	ADPI-339				a-		a-		
ADF-340	ADPI-340		b-						
ADF-341	ADPI-341			a-	a-	a+	a-		
ADF-342	ADPI-342	a-	b-		a-	a-			
ADF-343	ADPI-343				a-	a+			
ADF-344	ADPI-344	b-	b-			a+			
ADF-345	ADPI-345				a-				
ADF-346	ADPI-346	b-	b-					b-	
ADF-347	ADPI-347					a-			
ADF-348	ADPI-348				a+		a+		
ADF-349	ADPI-349	b+	b+		a-	a+	a-		
ADF-350	ADPI-350					a-			
ADF-351	ADPI-351	b-	b-						
ADF-352	ADPI-352	b-							
ADF-353	ADPI-353			a+	a+	a+			
ADF-354	ADPI-354					a+			
ADF-355	ADPI-355	a+					a+		a+
ADF-356	ADPI-356		a-			a+			
ADF-357	ADPI-357					a+			
ADF-358	ADPI-358		a-	b+	a+				

Table III

ADF#	ADPI#	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
ADF-359	ADPI-359					a-			
ADF-360	ADPI-360	b-	b-		a-				
ADF-361	ADPI-361	a+			a+	a+	a-		
ADF-362	ADPI-362	b-	b-						
ADF-363	ADPI-363					a-			
ADF-364	ADPI-364							b-	
ADF-365	ADPI-365.1					a-			
ADF-365	ADPI-365.2					a-			
ADF-366	ADPI-366	b-	b-	a-		a-		b-	
ADF-367	ADPI-367.1							b-	
ADF-367	ADPI-367.2							b-	
ADF-368	ADPI-368.1		b-					b-	
ADF-368	ADPI-368.2		b-					b-	
ADF-369	ADPI-369.1	a+							
ADF-369	ADPI-369.2	a+							
ADF-370	ADPI-370		b-		a-		a+		
ADF-371	ADPI-371				a+				
ADF-372	ADPI-372				a+				
ADF-373	ADPI-373			b-				b-	
ADF-374	ADPI-374		b-						
ADF-375	ADPI-375				a-	a-		a-	
ADF-376	ADPI-376		c-	b-		a+	a+	a-	
ADF-377	ADPI-377					c-	a+		
ADF-378	ADPI-378					c-			
ADF-379	ADPI-379						a+		
ADF-380	ADPI-380					a+	a-		
ADF-381	ADPI-381		a+			a+	c-	a+	
ADF-382	ADPI-382	a+	a+	b+	a+	a+	a+	b+	
ADF-383	ADPI-383				c-		a+		
ADF-384	ADPI-384	a-	a-			a-		b-	
ADF-386	ADPI-386	b-	a-		a+		a+		
ADF-387	ADPI-387	b+	b+					b+	
ADF-388	ADPI-388		a-						
ADF-389	ADPI-389		b-						
ADF-390	ADPI-390	a+	b-		a-	a+	c-	a+	
ADF-391	ADPI-391						c-		
ADF-392	ADPI-392		b-			a+			
ADF-393	ADPI-393				a-	a-			
ADF-394	ADPI-394						a-		

Table III

ADF#	ADPI#	All	selected	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
		HC	HC						
ADF-395	ADPI-395	b-	b-				a-		
ADF-396	ADPI-396	b-		b-					
ADF-397	ADPI-397					a-			
ADF-398	ADPI-398		b-						
ADF-399	ADPI-399.1					a-		b+	
ADF-399	ADPI-399.2					a-		b+	
ADF-400	ADPI-400	b-	b-		a+		a-		a-
ADF-401	ADPI-401	a-					a-		
ADF-402	ADPI-402					a+			
ADF-403	ADPI-403				a+			a-	
ADF-404	ADPI-404.1							b+	
ADF-404	ADPI-404.2							b+	
ADF-405	ADPI-405	b-	b-					b-	
ADF-406	ADPI-406			b-					
ADF-407	ADPI-407	b-	a-			a+			
ADF-408	ADPI-408		b-						
ADF-409	ADPI-409			a+	a-				
ADF-410	ADPI-410			b-		a+	a-	a+	
ADF-411	ADPI-411	b+	b+			a-	a-	a+	
ADF-412	ADPI-412.1	a+			a-	a+			a+
ADF-412	ADPI-412.2	a+			a-	a+			a+
ADF-413	ADPI-413	a-			a-	a-	a+	a-	
ADF-414	ADPI-414					a+	c+	a+	
ADF-415	ADPI-415				a-			b+	
ADF-416	ADPI-416					a+	a-		
ADF-417	ADPI-417				a-				
ADF-418	ADPI-418		a+						
ADF-419	ADPI-419	b+	b+				a+	b+	b+
ADF-420	ADPI-420			a-			a-		
ADF-421	ADPI-421					c+			
ADF-422	ADPI-422		a+				a-		
ADF-423	ADPI-423							b-	
ADF-424	ADPI-424						c+		
ADF-425	ADPI-425		b-				a+		
ADF-426	ADPI-426.1				a+				
ADF-426	ADPI-426.2				a+				
ADF-427	ADPI-427	a-	b-					a-	
ADF-428	ADPI-428					a+			
ADF-429	ADPI-429	a+	a+		a-		a+		b+

Table III

ADF#	ADPI#	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
ADF-430	ADPI-430		b-						
ADF-431	ADPI-431		b-						
ADF-432	ADPI-432				a-	a-			
ADF-433	ADPI-433				a+	c-			
ADF-434	ADPI-434	b-	b-			a-		b-	
ADF-435	ADPI-435				a+				
ADF-436	ADPI-436		b-			a-			
ADF-437	ADPI-437	a+	a+	a-		a-	a-	b+	
ADF-438	ADPI-438					a+			
ADF-439	ADPI-439	b-	b-						
ADF-440	ADPI-440.1	a+	b+						
ADF-440	ADPI-440.2	a+	b+						
ADF-441	ADPI-441	b-	b-	b-					
ADF-442	ADPI-442					a-	a+		
ADF-443	ADPI-443	b+	a+		a+		a+	a+	
ADF-444	ADPI-444					a+		a-	
ADF-445	ADPI-445					a-			
ADF-446	ADPI-446							b-	
ADF-447	ADPI-447.1	b+	b+		a-	a+			
ADF-447	ADPI-447.2	b+	b+		a-	a+			
ADF-448	ADPI-448		b-		a-				
ADF-449	ADPI-449	b+				a-			
ADF-450	ADPI-450.1	b+	b+	a+	a+	a+	b+		
ADF-450	ADPI-450.2	b+	b+	a+	a+	a+	b+		
ADF-451	ADPI-451				a-	a-			
ADF-452	ADPI-452			b+	a-	a-	a+	a-	
ADF-453	ADPI-453	b-							
ADF-454	ADPI-454		a+	b+			a+		
ADF-455	ADPI-455					a+	c-		
ADF-456	ADPI-456	b-	a-		a+	a-	a-	b-	a-
ADF-457	ADPI-457		a-		a+				
ADF-458	ADPI-458				a-	a-	b-		
ADF-459	ADPI-459	b-					a-		
ADF-460	ADPI-460						c-		
ADF-461	ADPI-461			b+	a-				
ADF-462	ADPI-462	a-			c+	a-	a-		
ADF-463	ADPI-463		b-						
ADF-464	ADPI-464						c-		
ADF-465	ADPI-465						a-		

Table III

ADF#	ADPI#	All HC	selected HC	FC	NC	EC	Am	ALL	FC/HC vs FC/NC/Am
ADF-466	ADPI-466.1						a+		
ADF-466	ADPI-466.2						a+		
ADF-467	ADPI-467		b-				a-		
ADF-468	ADPI-468		b+				a-		
ADF-469	ADPI-469.1								b-
ADF-469	ADPI-469.2								b-
ADF-470	ADPI-470	a-	a-				a-		
ADF-471	ADPI-471		a+	a+					a-
ADF-472	ADPI-472			a-		c-			b+
ADF-473	ADPI-473		b-				a-		
ADF-474	ADPI-474		b-						
ADF-475	ADPI-475			a-			a+		
ADF-476	ADPI-476	b-	a-	b-	a+	a-			
ADF-477	ADPI-477		b-	a-		c-			
ADF-478	ADPI-478.1					a-			b+
ADF-478	ADPI-478.2					a-			b+
ADF-479	ADPI-479		b-				a-		
ADF-480	ADPI-480	a+	c-		a+	a-	a-		
ADF-481	ADPI-481					a-			
ADF-482	ADPI-482					a-			
ADF-483	ADPI-483	a-							
ADF-484	ADPI-484					c-			
ADF-485	ADPI-485					a-			b+
ADF-486	ADPI-486					c-	a-		
ADF-487	ADPI-487		a+		a-				
ADF-488	ADPI-488			a+			a-		
ADF-489	ADPI-489	a+	a+				c+		
ADF-490	ADPI-490					a-			
ADF-491	ADPI-491	b+	a+	a+	a+			b+	b+
ADF-492	ADPI-492	b-	a-		a+	c-			
ADF-493	ADPI-493.1	b+	b+			c+			b+
ADF-493	ADPI-493.2	b+	b+			c+			b+
ADF-494	ADPI-494				a+				
ADF-495	ADPI-495	b-	b-			a-			b-
ADF-496	ADPI-496					a-	a+		
ADF-497	ADPI-497					a-			
ADF-498	ADPI-498					c+			
ADF-499	ADPI-499					a-	a-		
ADF-500	ADPI-500					a-			

Table III

ADF#	ADPI#	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
ADF-501	ADPI-501		b+						
ADF-502	ADPI-502		b-						
ADF-503	ADPI-503		b-						
ADF-504	ADPI-504	b-							b-
ADF-505	ADPI-505								b-
ADF-506	ADPI-506			b+	a+	c+	a+		
ADF-507	ADPI-507	b+	b+					a+	
ADF-508	ADPI-508	a+				a+	a+		
ADF-509	ADPI-509						a+		
ADF-510	ADPI-510	b+				c+	b+	a+	
ADF-511	ADPI-511							a+	
ADF-512	ADPI-512				a-				
ADF-513	ADPI-513				a-				
ADF-514	ADPI-514	b+			a+				b+
ADF-515	ADPI-515	a-	a+	b-	a+				
ADF-516	ADPI-516					a-			
ADF-517	ADPI-517				a+	c-	a-		
ADF-518	ADPI-518							b-	
ADF-519	ADPI-519					c-			
ADF-520	ADPI-520			b-		c-	c+		
ADF-521	ADPI-521		a-		a+	c+	a-		
ADF-522	ADPI-522					c-	c+		
ADF-523	ADPI-523					a-	c-		
ADF-524	ADPI-524	b+	b+					b+	
ADF-525	ADPI-525					a-	a-		
ADF-526	ADPI-526.1				a+	a-	a+		
ADF-526	ADPI-526.2				a+	a-	a+		
ADF-527	ADPI-527				a-			a+	
ADF-528	ADPI-528						a-		
ADF-529	ADPI-529				a-				
ADF-530	ADPI-530.1					c-			
ADF-530	ADPI-530.2					c-			
ADF-531	ADPI-531					a-	a-		
ADF-532	ADPI-532					c-			
ADF-533	ADPI-533					a-			
ADF-534	ADPI-534					a-	a-		
ADF-535	ADPI-535	a+				a-		a+	
ADF-536	ADPI-536					c+			
ADF-537	ADPI-537					a-			

Table III

ADF#	ADPI#	All HC	selected HC	FC	NC	EC	Am	ALL	EC/HC vs FC/NC/Am
ADF-538	ADPI-538					c-			
ADF-539	ADPI-539				c+	c-			
ADF-540	ADPI-540				c+				
ADF-541	ADPI-541				c-	a+			
ADF-542	ADPI-542				a-				
ADF-543	ADPI-543						a-		
ADF-544	ADPI-544						a-		
ADF-545	ADPI-545				c-				
ADF-546	ADPI-546				c-				
ADF-547	ADPI-547.1					c-			
ADF-547	ADPI-547.2					c-			
ADF-547	ADPI-547.3					c-			
ADF-548	ADPI-548.1					a-			
ADF-548	ADPI-548.2					a-			
ADF-549	ADPI-549				c+	a+			

*BC = hippocampus, EC = Entorhinal cortex, FC = Frontal Cortex, NC = Neocortex, AM = amygdala,
 Early = EC/HC vs. FC/NC/Am, ALL = all Alzheimer's disease samples vs all control samples.

The amino acid sequences of tryptic digest peptides of these ADPIs identified
 5 by tandem mass spectrometry and database searching as described in the Examples,
infra are listed in Table IV, in addition to their corresponding pIs and MWs.

Table IV. ADPIs description by Amino Acid Sequence of Tryptic Digest Peptides

Table IV			
ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
ADF-1	ADPI-1	ALAAELNQLR, FADLTDAAR,	SEQ ID 30, SEQ ID 187
ADF-3	ADPI-3.1	LAVNMVPFPR,	SEQ ID 393
ADF-3	ADPI-3.2	EIEAEIQALR,	SEQ ID 146
ADF-3	ADPI-3.3	GFPGYMYTDLATIYER, NFIAQGPYENR, NYLSQPR, IPQSTLSEFYPR, QIYPPINVLPSLSR, TPVSEDMMLGR,	SEQ ID 249, SEQ ID 513, SEQ ID 540, SEQ ID 340, SEQ ID 558, SEQ ID 649

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
ADF-5	ADPI-5.3	TGQEIPVNVR, LPDGSEIPLPPILLGR, EGGSIPVLTTFQEAATGK, YIDENQDR, TVFGVEPDLTR,	SEQ ID 634, SEQ ID 450, SEQ ID 140, SEQ ID 726, SEQ ID 655
ADF-6	ADPI-6	LADVYQAEILR, ALAAELNQLR, KIESLEEEIR, LQDETNLR,	SEQ ID 388, SEQ ID 30, SEQ ID 378, SEQ ID 455
ADF-8	ADPI-8	LADVYQAEILR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-9	ADPI-9	QLICDPSYIPDR, TDDYLDQPCLETVNR, FQLLEGPPESMGR, MAGTAFDENMK,	SEQ ID 560, SEQ ID 625, SEQ ID 219, SEQ ID 484
ADF-10	ADPI-10	ALAAELNQLR, LADVYQAEILR, KIESLEEEIR,	SEQ ID 30, SEQ ID 388, SEQ ID 378
ADF-11	ADPI-11	LADVYQAEILR, EAASYQEALAR,	SEQ ID 388, SEQ ID 118
ADF-12	ADPI-12.2	FPGQLNADLR,	SEQ ID 217
ADF-12	ADPI-12.1	QLQSLTCDLESLR, ELQBQLAR, LADVYQAEILR, ALAAELNQLR, KIESLEEEIR, FADLTDAAAR,	SEQ ID 563, SEQ ID 164, SEQ ID 388, SEQ ID 30, SEQ ID 378, SEQ ID 187
ADF-13	ADPI-13	TTPSYVAFTDTER, TVTNAVVTVPAYFNDSQR, FEELNADLFR, VEIIANDQQGNR,	SEQ ID 653, SEQ ID 657, SEQ ID 199, SEQ ID 667
ADF-15	ADPI-15	AIIESDQEQQGR, EPAAEIEALLGMDLVR, MDAEHPELR,	SEQ ID 28, SEQ ID 170, SEQ ID 486
ADF-16	ADPI-16	LADVYQAEILR, ALAAELNQLR,	SEQ ID 388, SEQ ID 30
ADF-22	ADPI-22	ELQELVQYPVEHPDK, KGDIIFLVR, EVDIGIPDATGR,	SEQ ID 163, SEQ ID 375,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
			SEQ ID 179
ADF-23	ADPI-23	YYLDSLDR, JIHEDGFSGEDVK, LWGDSGIQECFNR, IGAADYQPTEQDILR,	SEQ ID 746, SEQ ID 321, SEQ ID 478, SEQ ID 314
ADF-24	ADPI-24	GFPVVLDSPLR, ELLGPDFGYVTR, ILIGSSFPLSGGR,	SEQ ID 250, SEQ ID 158, SEQ ID 330
ADF-25	ADPI-25.3	QLFHPEQLITGK, AVFVDLEPTVIDEVR,	SEQ ID 559, SEQ ID 62
ADF-25	ADPI-25.2	FASPIER, AQLQDLNDR, YEEEVLSR, SAYSSYSAPVSSSLSVR, ALYEQEIR, SAYGGLQTSSYLMSTR,	SEQ ID 191, SEQ ID 52, SEQ ID 721, SEQ ID 577, SEQ ID 43, SEQ ID 576
ADF-26	ADPI-26	ELQEQLAR, EAASYQEALAR, FADLTDAAAAR,	SEQ ID 164, SEQ ID 118, SEQ ID 187
ADF-27	ADPI-27	LADVYQAEILR, ALAAELNQLR, KIESLEEEIR, DNLAQDLATVR,	SEQ ID 388, SEQ ID 30, SEQ ID 378, SEQ ID 103
ADF-29	ADPI-29	LADVYQAEILR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-31	ADPI-31	ALAAELNQLR, LADVYQAEILR, KIESLEEEIR,	SEQ ID 30, SEQ ID 388, SEQ ID 378
ADF-33	ADPI-33.1	FHVEEEGK,	SEQ ID 206
ADF-35	ADPI-35	LYPPSAEYPDLR, LGYILT CPSNLGTGLR,	SEQ ID 480, SEQ ID 422
ADF-37	ADPI-37	LDLIAQQMMPEVR, AEEEFNIEK, IQMSNLMNQAR,	SEQ ID 398, SEQ ID 13, SEQ ID 346
ADF-39	ADPI-39	HIYLLPSGR, VGGVQSLGGTGALR, ITWSNPPAQGAR,	SEQ ID 293, SEQ ID 675, SEQ ID 362
ADF-41	ADPI-41	NILLTNEQLESAR, QAITQVVVSR,	SEQ ID 520,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
		VGIPVTDENGNR	SEQ ID 544, SEQ ID 677
ADF-42	ADPI-42	NTGIICTIGPASR, GDYPLEAVR, DPVQEAWAEDVDLR, EAEAAMFHR, TATESFASDPILYR, LDIDSPPIRAR,	SEQ ID 532, SEQ ID 240, SEQ ID 104, SEQ ID 120, SEQ ID 623, SEQ ID 396
ADF-54	ADPI-54	WVVIGDENYGEGRSSR, NAVTQEFGPVPDTAR, DGYAQILR, IVYGHLDPPASQIER, EGWPLDIR,	SEQ ID 719, SEQ ID 509, SEQ ID 86, SEQ ID 367, SEQ ID 143
ADF-56	ADPI-56	LEAPDADELPK, WVVIGDENYGEGRSSR, NAVTQEFGPVPDTAR, EGWPLDIR,	SEQ ID 402, SEQ ID 719, SEQ ID 509, SEQ ID 143
ADF-61	ADPI-61	VLDPFTIKPLDR, ISSLDLGHGPVPK, LDNLVAILDINR, SVPTSTVFYPSDGVATEK,	SEQ ID 683, SEQ ID 353, SEQ ID 399, SEQ ID 615
ADF-62	ADPI-62	TGAQELLR,	SEQ ID 632
ADF-66	ADPI-66	VPVGDQPPDIEFQIR, IEGSGDQIDTYELSGGAR,	SEQ ID 695, SEQ ID 307
ADF-67	ADPI-67	DDGSWEVIEGYR, MVEGFFDR, NLNHVSYGR,	SEQ ID 73, SEQ ID 504, SEQ ID 523
ADF-68	ADPI-68	EPGLQIWR, QTQVSVLPEGGETPLFK, YIETDPANR,	SEQ ID 171, SEQ ID 567, SEQ ID 728
ADF-70	ADPI-70	VPVGDQPPDIEFQIR, GISPVPINLR,	SEQ ID 695, SEQ ID 259
ADF-72	ADPI-72	TGAQELLR, EPGLQIWR, HVVPNEVVVQR, QTQVSVLPEGGETPLFK, YIETDPANR, VVEHPEFLK,	SEQ ID 632, SEQ ID 171, SEQ ID 299, SEQ ID 567, SEQ ID 728, SEQ ID 706
ADF-77	ADPI-77	LADVYQAEILR, ALAAELNQLR,	SEQ ID 388,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
		KIESLEEEIR,	SEQ ID 30, SEQ ID 378
ADF-78	ADPI-78.3	LADVYQAE LR, ALAAELNQLR,	SEQ ID 388, SEQ ID 30
ADF-78	ADPI-78.2	ISEQFTAMFR, FPGQLNADLR, LAVNMVPFPR, INVYYNEATGGNYVPR, AVLVVDLEPGTMDSVR, YLTVAAVFR,	SEQ ID 351, SEQ ID 217, SEQ ID 393, SEQ ID 336, SEQ ID 64, SEQ ID 732
ADF-79	ADPI-79	ELEEEETNAFN R, SLFDYHDTR, EFLSELQR,	SEQ ID 154, SEQ ID 594, SEQ ID 136
ADF-81	ADPI-81.2	LADVYQAE LR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-82	ADPI-82	PYQYPALTPEQK, LQSIGTENTEE NR, ALTFSYGR,	SEQ ID 543, SEQ ID 458, SEQ ID 40
ADF-85	ADPI-85	QEYDESGPSIVHR, SYELPDGQVITIGNER, DSYVGDEAQSK,	SEQ ID 549, SEQ ID 618, SEQ ID 106
ADF-87	ADPI-87.1	LIWDSYTTNK, IYAMHWGTD SR,	SEQ ID 428, SEQ ID 369
ADF-88	ADPI-88	VDIHENQVMDFR, LLLEFTDTSYEEK, FSWFAGEK, LKPOQYLEELPGQLK,	SEQ ID 664, SEQ ID 440, SEQ ID 223, SEQ ID 431
ADF-90	ADPI-90	LADVYQAE LR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-91	ADPI-91.1	MIEEAGAII STR, LMDEVAGIVAAR, VLEVPPVVYSR,	SEQ ID 491, SEQ ID 446, SEQ ID 685
ADF-91	ADPI-91.2	DDNGVPFVR, LSQIGVENTEE NR, ALQASALNAWR,	SEQ ID 75, SEQ ID 467, SEQ ID 38
ADF-92	ADPI-92	VTLTSEE EAR, LVIITAGAR, GEMMDLQHGSLFLR,	SEQ ID 701, SEQ ID 474,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
			SEQ ID 244
ADF-94	ADPI-94	EYYFAITMER, INFDSNSAYR,	SEQ ID 185, SEQ ID 333
ADF-95	ADPI-95	GQVFDVGPR,	SEQ ID 273
ADF-97	ADPI-97	NVNQSLLELHK, ELGDHVTNLR,	SEQ ID 537, SEQ ID 156
ADF-98	ADPI-98	YALYDATYETK,	SEQ ID 720
ADF-101	ADPI-101	NIILEEGK, YALYDATYETK,	SEQ ID 518, SEQ ID 720
ADF-102	ADPI-102.1	TTGIVETHFTFK, IHEHDFSGEDVK, IGAADYQPTEQDILR,	SEQ ID 651, SEQ ID 321, SEQ ID 314
ADF-103	ADPI-103	ATAVMPDGQFK, QITVNNDLPVGR,	SEQ ID 56, SEQ ID 557
ADF-105	ADPI-105.2	LYPEGLAQLAR, FFEHEVK, LLFEGAGSNPGDK, NVADYYPEYK,	SEQ ID 479, SEQ ID 200, SEQ ID 438, SEQ ID 534
ADF-105	ADPI-105.1	LADVYQAEILR, ALAAEUNQLR, KIESLEEEIR, DNLAQDLATVR, LQDETNLR,	SEQ ID 388, SEQ ID 30, SEQ ID 378, SEQ ID 103, SEQ ID 455
ADF-107	ADPI-107	QDEHGFISR, APSWFDTGLSEMR, VLGDVIEVHGK,	SEQ ID 546, SEQ ID 49, SEQ ID 687
ADF-108	ADPI-108	IVVVTAGVR, LKDDEVAQLK, MVVESAYEVIK, GEMMDLQHGSLFLQTPK, SADTLWDIQK, SLADELALVDVLEDK, LIAPVABEEATVPNNK,	SEQ ID 366, SEQ ID 430, SEQ ID 508, SEQ ID 243, SEQ ID 575, SEQ ID 590, SEQ ID 424
ADF-109	ADPI-109	GNYLVDVDGNR,	SEQ ID 270
ADF-111	ADPI-111.1	LADVYQAEILR, KIESLEEEIR, EAASYQAEALAR, DNLAQDLATVR,	SEQ ID 388, SEQ ID 378, SEQ ID 118, SEQ ID 103
ADF-112	ADPI-112	DFQSGQHVTVR, LFADAEEEQR,	SEQ ID 79,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
			SEQ ID 408
ADF-113	ADPI-113	EAYPGDVYFYLHSR, ILGADTSVDLEETGR, QMSLLLR, TGAIVDPVGEELLGR, TGTAEMSSILEER, AVDSLVPIGR,	SEQ ID 125, SEQ ID 329, SEQ ID 564, SEQ ID 631, SEQ ID 635, SEQ ID 59
ADF-115	ADPI-115	DFQSGQHVIVR, YVGSEANIR, LFADAAEEBQR,	SEQ ID 79, SEQ ID 744, SEQ ID 408
ADF-117	ADPI-117.1	LGAEVYHTLK, IEEELGDEAR,	SEQ ID 417, SEQ ID 306
ADF-119	ADPI-119	LADVYQAEGLR, ALAAELNQLR, KIESLEEEIR, EAASYQEALAR,	SEQ ID 388, SEQ ID 30, SEQ ID 378, SEQ ID 118
ADF-120	ADPI-120	LADVYQAEGLR, EAASYQEALAR,	SEQ ID 388, SEQ ID 118
ADF-121	ADPI-121	IAVGSDADLVIWDPDSVK, DHGVNSFLVYMAFK, MDENQFVAVTSTNAAK, VFNLVYPR, GLYDGPVCEVSVTPK, IVLEDGTLHVTEGSGR, DNFTLIPEGTNGTEER,	SEQ ID 303, SEQ ID 88, SEQ ID 487, SEQ ID 672, SEQ ID 265, SEQ ID 365, SEQ ID 102
ADF-124	ADPI-124	DVLTGQEFDVR, LVGAIVYYDGQHNDAR, LDIEQYR, GFITIVDVQR, RWPIVGVR, ALEHFPMLOQK,	SEQ ID 111, SEQ ID 472, SEQ ID 397, SEQ ID 248, SEQ ID 573, SEQ ID 32
ADF-125	ADPI-125	LADVYQAEGLR, ALAAELNQLR, KIESLEEEIR, EAASYQEALAR,	SEQ ID 388, SEQ ID 30, SEQ ID 378, SEQ ID 118
ADF-126	ADPI-126.1	FPGQLNADLR,	SEQ ID 217
ADF-126	ADPI-126.3	GTGGVDTAAVGGVFDVSNADR, VLTPELYAELR,	SEQ ID 277, SEQ ID 690
ADF-126	ADPI-126.2	LADVYQAEGLR, ALAAELNQLR,	SEQ ID 388,

Table IV

ADP#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
		KIESLEEEIR,	SEQ ID 30, SEQ ID 378
ADF-127	ADPI-127	AMDTLGIEYGDK, EYQLNDSAK, IHEHEDGFSGEDVK, IGAADYQPTEQDILR,	SEQ ID 44, SEQ ID 184, SEQ ID 321, SEQ ID 314
ADF-128	ADPI-128	GSAPPGPVPEGSIR,	SEQ ID 274
ADF-129	ADPI-129	SSYYVVSGNDPAAEPPSR, NVDVEFFK,	SEQ ID 609, SEQ ID 536
ADF-130	ADPI-130	LADVYQAEILR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-131	ADPI-131	AILVDLEPGTMDSVR, FPGQLNADLR, LAVNMVPFPR, ISVYYNEATGGK,	SEQ ID 29, SEQ ID 217, SEQ ID 393, SEQ ID 355
ADF-132	ADPI-132	ALAAELNQLR, LADVYQAEILR, KIESLEEEIR,	SEQ ID 30, SEQ ID 388, SEQ ID 378
ADF-133	ADPI-133	LEEGPPVTTVLTR,	SEQ ID 404
ADF-138	ADPI-138	LTFDSSFSPTNGK, WTEYGLTFTEK, VTQSNFAVGYK, SENGLEFTSSGSANTETTK,	SEQ ID 468, SEQ ID 718, SEQ ID 703, SEQ ID 583
ADF-139	ADPI-139	ILVLDLDTNHER, AGQVFLEELGNRK, APGAEEYAAQQDVLK, LSPTDNLPR,	SEQ ID 331, SEQ ID 23, SEQ ID 46, SEQ ID 466
ADF-140	ADPI-140	ISEQFTAMFR, TAVCDIPPR,	SEQ ID 351, SEQ ID 624
ADF-141	ADPI-141	LGDLYEEEMR, VELQELNDR,	SEQ ID 418, SEQ ID 668
ADF-142	ADPI-142.2	LSQIGVENTEENR, QVLFSADDR,	SEQ ID 467, SEQ ID 569
ADF-142	ADPI-142.1	LADMALALESAR, AEGDSWVLNGTK, ITEIYEGTSEIQR,	SEQ ID 387, SEQ ID 14, SEQ ID 357
ADF-143	ADPI-143.1	LFSGDVVL TAR, GQAAVQQLOAQEGLSPR,	SEQ ID 413, SEQ ID 272

Table IV

ADP#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
ADF-143	ADPI-143.2	LTFDSSFSPNTGK, WTEYGLTFTEK, VTQSNEAVGYK, YQIDPDACFSAK, SENGLEFTSSGSANTETTK, LTLSALLDGK,	SEQ ID 468, SEQ ID 718, SEQ ID 703, SEQ ID 741, SEQ ID 583, SEQ ID 470
ADF-144	ADPI-144	LADVYQAE LR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-146	ADPI-146.1	MVMTLTFGDVVAVR, ALGVGFATR, LTNSQNFDEYMK,	SEQ ID 506, SEQ ID 33, SEQ ID 471
ADF-146	ADPI-146.2	MVMTLTFGDVVAVR, ALGVGFATR, LTNSQNFDEYMK,	SEQ ID 506, SEQ ID 33, SEQ ID 471
ADF-148	ADPI-148	ITIPVQTFSNLQIR, LADVYQAE LR, ALAAELNQLR,	SEQ ID 358, SEQ ID 388, SEQ ID 30
ADF-149	ADPI-149.1	LADVYQAE LR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-150	ADPI-150	LADVYQAE LR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-151	ADPI-151.1	FPGQLNADLR,	SEQ ID 217
ADF-151	ADPI-151.2	LADVYQAE LR, ALAAELNQLR, QEADEATLAR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 548, SEQ ID 378
ADF-152	ADPI-152	LADVYQAE LR, ITIPVQTFSNLQIR, ALAAELNQLR, LEEEGQSLKDEM AR, KIESLEEEIR, LEAENNLAAYR, EAASYQEALAR,	SEQ ID 388, SEQ ID 358, SEQ ID 30, SEQ ID 403, SEQ ID 378, SEQ ID 401, SEQ ID 118
ADF-153	ADPI-153.1	IPVGCPETLGR,	SEQ ID 342
ADF-153	ADPI-153.2	SLYASSPGGVYATR, VELQELNDR,	SEQ ID 598, SEQ ID 668

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
ADF-153	ADPI-153.3	MAGTAFDFENMKR, TDDYLDQPCLETVNR, FLMANGQLVK, FQLLEGPPESMGR, MAGTAFDFENMK, FLVFVANFDENDPK, DWNVDLIPK, TFEGVDPQTTSMR, KQNDVFGEAEQ,	SEQ ID 485, SEQ ID 625, SEQ ID 209, SEQ ID 219, SEQ ID 484, SEQ ID 211, SEQ ID 114, SEQ ID 630, SEQ ID 384
ADF-154	ADPI-154	LADVYQAELR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-155	ADPI-155	TTPSYVAFTDTER, AQIHDLVLVGGSTR, DAGVIAGLNVLR, IINEPTAAAIAYGLDR,	SEQ ID 653, SEQ ID 51, SEQ ID 69, SEQ ID 323
ADF-156	ADPI-156.1	FADLTDAAAR	SEQ ID 187
ADF-156	ADPI-156.2	SAYSSYSAPVSSLSVR, ALYEQEIR, FASFIER,	SEQ ID 577, SEQ ID 43, SEQ ID 191
ADF-157	ADPI-157	GFCLPPHCSR, GTGGVDTAAVGGVFDVSNADR, LEQQQAIDDLMPAQK, VLTPELYAELR,	SEQ ID 245, SEQ ID 277, SEQ ID 407, SEQ ID 690
ADF-159	ADPI-159.2	QLQSLTCLES LR, DNLAQDLATVR	SEQ ID 563, SEQ ID 103
ADF-159	ADPI-159.1	AVFPSIVGR, EITALAPSTMK, SYELPDGQVITIGNER,	SEQ ID 61, SEQ ID 149, SEQ ID 618
ADF-160	ADPI-160	IVIGMDVAASEFYR, LGAEVYHTLK, AAVPSGASTGIYEALELR, IEEELGDEAR,	SEQ ID 364, SEQ ID 417, SEQ ID 8, SEQ ID 306
ADF-162	ADPI-162.1	QEYDESGPSIVHR, SYELPDGQVITIGNER,	SEQ ID 549, SEQ ID 618
ADF-162	ADPI-162.2	AQLQDLNDR, ALYEQEIR, FASFIER,	SEQ ID 52, SEQ ID 43, SEQ ID 191
ADF-162	ADPI-162.3	QLQSLTCLES LR, LADVYQAELR,	SEQ ID 563,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
		ALAAELNQLR, HLQEYQDLLNVK, KIESLEEEIR, DNLAQDLATVR,	SEQ ID 388, SEQ ID 30, SEQ ID 296, SEQ ID 378, SEQ ID 103
ADF-163	ADPI-163	LADVYQAE LR, ALAAELNQLR, IESLEEEIR, LEEEGQSLKDEMAR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 308, SEQ ID 403, SEQ ID 378
ADF-165	ADPI-165	DGDSVMVLPTIPEEEAK, DINAYNCEEPTEK, VVFVFGPDK, VVFVFGPDKK, ELAILLGMLDP AEK, LPFPIDDR, DFTPVCTTELGR, VATPVDWK,	SEQ ID 83, SEQ ID 90, SEQ ID 707, SEQ ID 708, SEQ ID 152, SEQ ID 452, SEQ ID 81, SEQ ID 661
ADF-172	ADPI-172	VGAHAGEYGAEALER, MFLSFPTTK,	SEQ ID 674, SEQ ID 490
ADF-173	ADPI-173.1	ISEQTYQLSR, VEQDLAMGTDAE GEK, DIMEDTIEDK, SQLLILDR,	SEQ ID 352, SEQ ID 669, SEQ ID 89, SEQ ID 605
ADF-173	ADPI-173.2	ISEQTYQLSR, VEQDLAMGTDAE GEK, DIMEDTIEDK, SQLLILDR,	SEQ ID 352, SEQ ID 669, SEQ ID 89, SEQ ID 605
ADF-175	ADPI-175.1	IFGVTTLDIVR, VDFPQDQLTALTGR, AGAGSATLSMAYAGAR,	SEQ ID 310, SEQ ID 663, SEQ ID 20
ADF-175	ADPI-175.2	GALQNIIPASTGAAK, LISWYDNEFGYSNR, VVVDLMAHMASK, LVINGNPITIFQER,	SEQ ID 234, SEQ ID 429, SEQ ID 705, SEQ ID 475
ADF-176	ADPI-176	ISEQTYQLSR, DIMEDTIEDK, HIAEVSQEVTR, SQLLILDR, SSASFSTTAVSAR,	SEQ ID 352, SEQ ID 89, SEQ ID 291, SEQ ID 605, SEQ ID 606

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
ADF-182	ADPI-182	LTFDSSFSPNTGK, VTQSNFAVGYK, YQIDPDACFSAK, SENGLEFTSSGSANTETTK,	SEQ ID 468, SEQ ID 703, SEQ ID 741, SEQ ID 583
ADF-183	ADPI-183	QFLSETEK, MPFPVNHGASSEDTLLK, MQLKPMEINPEMLNK, LGFEDGSVLK,	SEQ ID 550, SEQ ID 498, SEQ ID 500, SEQ ID 419
ADF-188	ADPI-188.1	NPDDITNEEYGEFYK, GVVDSEDLPLNISR, TKPIWTR, HFSVEGQLEFR, EDQTEYLEER,	SEQ ID 529, SEQ ID 280, SEQ ID 643, SEQ ID 287, SEQ ID 129
ADF-189	ADPI-189.2	YLYEIAR, AVMDDEAAFVEK, DVFLGMFLYELYAR, PQNALLVR, KVPQVSTPTLVEVSR,	SEQ ID 733, SEQ ID 65, SEQ ID 108, SEQ ID 220, SEQ ID 385
ADF-191	ADPI-191	WSLQSEAHK,	SEQ ID 717
ADF-193	ADPI-193	YLYEIAR, AVMDDEAAFVEK, PQNALLVR, DVFLGMFLYELYAR, VPQVSTPTLVEVSR,	SEQ ID 733, SEQ ID 65, SEQ ID 220, SEQ ID 108, SEQ ID 694
ADF-194	ADPI-194.2	LQHGSILGFPK, DDGSWEVIEGYR, MVEGFDFR, IIAEGANGPTTPEADK, EDDPNFFK,	SEQ ID 457, SEQ ID 73, SEQ ID 504, SEQ ID 320, SEQ ID 126
ADF-196	ADPI-196.1	MIGGPILPSER, EENEGVYNGSWGGR,	SEQ ID 492, SEQ ID 132
ADF-196	ADPI-196.2	QDGSVDFGR, QGFGNVATNDGK,	SEQ ID 547, SEQ ID 551
ADF-196	ADPI-196.3	DNDGWLTSDFPR, EDGGGWYWNR, QDGSVDFGR	SEQ ID 101, SEQ ID 127, SEQ ID 547
ADF-196	ADPI-196.4	DAQELYAAGENR, SELSGNFEK, SLYHDISGDTSGDYR, NTPAFFAER,	SEQ ID 71, SEQ ID 581, SEQ ID 599,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
			SEQ ID 533
ADF-202	ADPI-202	ISEQTYQLSR, DIMEDTHEDK, HIAEVSQEVTR, SQLLILDR, SSASFSTTAVSAR,	SEQ ID 352, SEQ ID 89, SEQ ID 291, SEQ ID 605, SEQ ID 606
ADF-204	ADPI-204	GFDEYMK, ELGVGIALR,	SEQ ID 246, SEQ ID 157
ADF-208	ADPI-208	ELGDHVTNLR,	SEQ ID 156
ADF-209	ADPI-209	LNLEAINYMAADGDFK, LPDGYEFK,	SEQ ID 449, SEQ ID 451
ADF-216	ADPI-216	LQAVTDDHIR,	SEQ ID 454
ADF-217	ADPI-217	LLVVYPWTQR, EFTPPVQAAYQK, VLGAFSDGLAHLNDNLK,	SEQ ID 445, SEQ ID 138, SEQ ID 686
ADF-220	ADPI-220	ESISVSSEQLAQFR, GGPFSDSYR,	SEQ ID 176, SEQ ID 253
ADF-223	ADPI-223	LEEGPPVTTVLTR, TREEIQEVR,	SEQ ID 404, SEQ ID 650
ADF-228	ADPI-228	APDFVFYAPR,	SEQ ID 45
ADF-229	ADPI-229	YPQFISR, GNYLVDVDGNR,	SEQ ID 737, SEQ ID 270
ADF-230	ADPI-230.1	FPGQLNADLR, ISEQFTAMFR, YLTVAAVFR,	SEQ ID 217, SEQ ID 351, SEQ ID 732
ADF-230	ADPI-230.2	LADVYQAE LR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-232	ADPI-232.1	ISEQFTAMFR, FPGQLNADLR,	SEQ ID 351, SEQ ID 217
ADF-232	ADPI-232.2	VPAFLSAAEVEEHLR, EAVLYVDSQEALK,	SEQ ID 693, SEQ ID 123
ADF-236	ADPI-236.2	APSTYGGGLSVSSR,	SEQ ID 48
ADF-236	ADPI-236.3	NGSGTLDEEFLR, GASGIQGLAR, SLDADEFR,	SEQ ID 517, SEQ ID 235, SEQ ID 592
ADF-237	ADPI-237.1	EQMAISGGFIR,	SEQ ID 174
ADF-237	ADPI-237.2	AILVDLEPGTMDSVR, INVYYNEAAGNK,	SEQ ID 29, SEQ ID 334

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
ADF-240	ADPI-240	IYGLGSLALYEK, HLLIGVSSDR,	SEQ ID 371, SEQ ID 295
ADF-243	ADPI-243	ALYDFEPENEGERGFK, RLDFDYK, QAVQILQQVTVR, TIEYLQPNPASR,	SEQ ID 42, SEQ ID 572, SEQ ID 545, SEQ ID 640
ADF-245	ADPI-245	ILDQGEDFPASEMTR,	SEQ ID 327
ADF-250	ADPI-250	HQAFEAELSANSQR, KHQALQAEIAGHEPR, LFGAAEVQR,	SEQ ID 297, SEQ ID 377, SEQ ID 412
ADF-251	ADPI-251	ELPTAFDYVEFTR, LLEAQSHFR, SSEEIESAFR, SQLLGSAAHEVQR,	SEQ ID 162, SEQ ID 436, SEQ ID 607, SEQ ID 604
ADF-252	ADPI-252.2	AVFDETYPDGVRR,	SEQ ID 60
ADF-252	ADPI-252.1	AENYDIPSADR, ALPAVQQNNLDDEDLIR, LAGTQPLEVLEAVQR, NEEDAAELVALAQAVNAR,	SEQ ID 16, SEQ ID 34, SEQ ID 389, SEQ ID 511
ADF-253	ADPI-253	FLSQIESDR, HIDLVEGDEGR,	SEQ ID 210, SEQ ID 292
ADF-254	ADPI-254	FLSQIESDR, HIDLVEGDEGR,	SEQ ID 210, SEQ ID 292
ADF-255	ADPI-255	FLSQIESDR, MLPTFVR, HIDLVEGDEGR,	SEQ ID 210, SEQ ID 496, SEQ ID 292
ADF-256	ADPI-256	MLPSFVR, FLSQIESDR, HIDLVEGDEGR,	SEQ ID 495, SEQ ID 210, SEQ ID 292
ADF-257	ADPI-257.1	EIEAEIQALR,	SEQ ID 146
ADF-257	ADPI-257.2	IPQSTLSEFYPR, NFIAQGPYENR, QIYPPINVLPSLSR,	SEQ ID 340, SEQ ID 513, SEQ ID 558
ADF-258	ADPI-258	YFDLGLPNR, NILGGTVFR, TIEAEAAHGTVTR,	SEQ ID 723, SEQ ID 519, SEQ ID 639
ADF-259	ADPI-259.2	THISYIDEQFER,	SEQ ID 641
ADF-259	ADPI-259.1	IYQIYEGTSQIQR, TGEYPVPLIR,	SEQ ID 372, SEQ ID 633

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
ADF-260	ADPI-260	ILVLDDTNHER, GAFSEEVYKR, AGQVFLEELGNHK, APGAEEYAAQQDVLK, LSPTDNLPR, GEEVGELSR, LYSLGNGR,	SEQ ID 331, SEQ ID 232, SEQ ID 23, SEQ ID 46, SEQ ID 466, SEQ ID 242, SEQ ID 481
ADF-261	ADPI-261	ALYDFEPENEVGGELGFK, RLDFDYK, QAVQILQQVTVR, TIEYLQPNPASR,	SEQ ID 42, SEQ ID 572, SEQ ID 545, SEQ ID 640
ADF-262	ADPI-262	LADVYQAEVR, ALAAELNQLR, KIESLEEEIR, EAASYQEALAR,	SEQ ID 388, SEQ ID 30, SEQ ID 378, SEQ ID 118
ADF-263	ADPI-263	VISFEEQVASIR,	SEQ ID 680
ADF-264	ADPI-264	VADPAYLPTQQDVLR, VSAFENPYVDAIK,	SEQ ID 659, SEQ ID 698
ADF-265	ADPI-265	DDNGVPFVR, LSQIGVENTEENR, ALQASALNAWR,	SEQ ID 75, SEQ ID 467, SEQ ID 38
ADF-266	ADPI-266	IINNTENLVR, FGTINIVHPK, DDLLGFALR, GVGISVLEM SHR,	SEQ ID 324, SEQ ID 204, SEQ ID 74, SEQ ID 278
ADF-267	ADPI-267	QAVQILQQVTVR, TIEYLQPNPASR,	SEQ ID 545, SEQ ID 640
ADF-268	ADPI-268.2	IAEFIAFEYAR,	SEQ ID 302
ADF-268	ADPI-268.1	GTGGVDTAAVGGVFDVSNADR, LEQQQAIDDLMPAQK, LAVEALSSLDGDLAGR,	SEQ ID 277, SEQ ID 407, SEQ ID 392
ADF-269	ADPI-269	FVTVQTISGTGALR, NMGLYGER, KMNLGVGAYR, DAGMQLQGYR, IAAAIILNTPDLR,	SEQ ID 228, SEQ ID 525, SEQ ID 382, SEQ ID 68, SEQ ID 300
ADF-270	ADPI-270	LADVYQAEVR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
ADF-271	ADPI-271	LADVYQAE LR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-272	ADPI-272	QLLLTADDR, PYQYPALTPEQK,	SEQ ID 561, SEQ ID 543
ADF-273	ADPI-273	TTGIVETHFTFK, MFDVGGQR,	SEQ ID 651, SEQ ID 488
ADF-274	ADPI-274	TTGIVETHFTFK, IHHEDGFSGEDVK, IGAADYQPTEQDILR,	SEQ ID 651, SEQ ID 321, SEQ ID 314
ADF-275	ADPI-275	LADVYQAE LR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-276	ADPI-276	LQSWLYSSR, ITSAYLQDIENAYK,	SEQ ID 460, SEQ ID 361
ADF-277	ADPI-277	LADVYQAE LR, KIESLEEEIR, EAASYQEALAR,	SEQ ID 388, SEQ ID 378, SEQ ID 118
ADF-278	ADPI-278.1	LMDEVAGIVAAR, VLEVPPVVYSR,	SEQ ID 446, SEQ ID 685
ADF-278	ADPI-278.2	DDNGVPFVR, LSQIGVENTEENR,	SEQ ID 75, SEQ ID 467
ADF-279	ADPI-279.1	SLAEGYFDAAGR,	SEQ ID 591
ADF-279	ADPI-279.2	SLAEGYFDAAGR,	SEQ ID 591
ADF-280	ADPI-280	LLDELTLEGVAR, ELEDLVR,	SEQ ID 434, SEQ ID 153
ADF-281	ADPI-281	DYAVSTVPVADGLHLK, DENATLDGGDVLFTR,	SEQ ID 115, SEQ ID 76
ADF-282	ADPI-282	LLDELTLEGVAR, ELEDLVR,	SEQ ID 434, SEQ ID 153
ADF-283	ADPI-283	AILVDEPGTMDSVR, LAVNMVPFPR,	SEQ ID 29, SEQ ID 393
ADF-284	ADPI-284	TLVMAVYDFDR, VPYSELGGK, VFVGYNSTGAELR,	SEQ ID 645, SEQ ID 696, SEQ ID 673
ADF-285	ADPI-285	YPENFFLLR, AHQVVEDGYEFFAK,	SEQ ID 735, SEQ ID 27
ADF-286	ADPI-286	LISWYDNEFGYSNR, LVINGNPITIFQER,	SEQ ID 429, SEQ ID 475

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
ADF-287	ADPI-287	GHWFLSPR, ISWAMEDSDLER,	SEQ ID 256, SEQ ID 356
ADF-288	ADPI-288	SPSTGLYDNLEK, LLDELTLEGVAR,	SEQ ID 602, SEQ ID 434
ADF-289	ADPI-289	GALQNIIPASTGAAK, LISWYDNEFGYSNR, LVINGNPITIFQER,	SEQ ID 234, SEQ ID 429, SEQ ID 475
ADF-290	ADPI-290	EHHFEAIALVEK, ALQAAYGASAPSVTSAALR, FFGNNSWAETYR,	SEQ ID 145, SEQ ID 37, SEQ ID 202
ADF-291	ADPI-291	GALQNIIPASTGAAK, LISWYDNEFGYSNR,	SEQ ID 234, SEQ ID 429
ADF-292	ADPI-292	VDFPQDQLTALTGR, AGAGSATLSMAYAGAR, HGVVNPNK, VNVPVIGGHAGK,	SEQ ID 663, SEQ ID 20, SEQ ID 290, SEQ ID 692
ADF-293	ADPI-293	EVGVYEALKDDSWLK, VIVVGNPANTNCLTASK, DVIATDKEDVAFK, EVGVYEALK, FVEGLPINDFSR,	SEQ ID 181, SEQ ID 681, SEQ ID 109, SEQ ID 180, SEQ ID 226
ADF-294	ADPI-294	EIIDLVLDR, AVFVDLEPTVIDEVR,	SEQ ID 148, SEQ ID 62
ADF-295	ADPI-295	AILVDLEPGTMDSVR, INVYYNEAAGNK, LAVNMVPFPR, GHYTEGAELVDSVLDVVR,	SEQ ID 29, SEQ ID 334, SEQ ID 393, SEQ ID 257
ADF-296	ADPI-296	FFEHFIEGGR, IQQEIAVQNPLVSER, LLTSGYLQR,	SEQ ID 201, SEQ ID 348, SEQ ID 444
ADF-297	ADPI-297	FPGQLNADLR, LAVNMVPFPR, INVYYNEATGGNYVPR, AVLVDLEPGTMDSVR,	SEQ ID 217, SEQ ID 393, SEQ ID 336, SEQ ID 64
ADF-298	ADPI-298	AILVDLEPGTMDSVR, INVYYNEAAGNK, FPGQLNADLR, LAVNMVPFPR, GHYTEGAELVDSVLDVVR,	SEQ ID 29, SEQ ID 334, SEQ ID 217, SEQ ID 393, SEQ ID 257

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
ADF-299	ADPI-299	LVIITAGAR,	SEQ ID 474
ADF-300	ADPI-300	LDASLVIAAGVR,	SEQ ID 394
ADF-301	ADPI-301	NILLTNEQLESAR,	SEQ ID 520
ADF-302	ADPI-302	LTFDSSFSPNTGK,	SEQ ID 468
ADF-303	ADPI-303	GAGTDDHTLIR, FITIFGTR, YMTISGFQIEETIDR, SEIDLFNIR,	SEQ ID 233, SEQ ID 208, SEQ ID 734, SEQ ID 579
ADF-304	ADPI-304	LIGTAVPQR, DYNPLLAR,	SEQ ID 427, SEQ ID 116
ADF-305	ADPI-305	AASDIAMTELPPTHPIR, YLAEFATGNDR,	SEQ ID 7, SEQ ID 731
ADF-306	ADPI-306	IQLVEEELDR, KLVHEGDLER, IQVLQQQADDAEER,	SEQ ID 345, SEQ ID 380, SEQ ID 349
ADF-307	ADPI-307.1	EKAEGDVAALNR, IQALQQQADEAEDR,	SEQ ID 150, SEQ ID 343
ADF-307	ADPI-307.2	YLAEFATGNDR, HLIPAANTGESK,	SEQ ID 731, SEQ ID 294
ADF-308	ADPI-308	THSDQFLVAFK, IYGL GSLALYEK, HLLIGVSSDR,	SEQ ID 637, SEQ ID 371, SEQ ID 295
ADF-309	ADPI-309	IQLVEREELDR, EDRYEEEIK, ETAEADVASLNR, LVIIESDLER,	SEQ ID 345, SEQ ID 130, SEQ ID 177, SEQ ID 473
ADF-311	ADPI-311	FDGILGMAYPR, YYTVFDR,	SEQ ID 193, SEQ ID 747
ADF-312	ADPI-312	DLPAJQPR, IGSTIFGER,	SEQ ID 98, SEQ ID 319
ADF-313	ADPI-313	LQVSQQEDITK, SLLVTELGSSR,	SEQ ID 462, SEQ ID 597
ADF-314	ADPI-314	GAEIVADTFR, ALQDLGLR,	SEQ ID 231, SEQ ID 39
ADF-315	ADPI-315	GREDWLYER,	SEQ ID 241
ADF-316	ADPI-316.2	NN TVGLIQLNRPK, LFYSTFATDDR,	SEQ ID 528, SEQ ID 416
ADF-316	ADPI-316.1	LATQSNEITIPVTFESR, LFDQAFGLPR, GPSWDPFR,	SEQ ID 391, SEQ ID 409,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
			SEQ ID 271
ADF-317	ADPI-317	EQMAISGGFIR, TLVMLDEQGEOLER,	SEQ ID 174, SEQ ID 646
ADF-318	ADPI-318	DIPNENELOFQIK, IQPGNPNYTLSLK, GLEISGTFTHR,	SEQ ID 91, SEQ ID 347, SEQ ID 263
ADF-319	ADPI-319	INVTVDVDIVFSK, VDLVDESGYVSGYK,	SEQ ID 538, SEQ ID 665
ADF-320	ADPI-320.1	SVGYKPFDVGFEIPDK,	SEQ ID 614,
		VFIPHGLIMDR,	SEQ ID 671
ADF-320	ADPI-320.2	LPFPHIIDDR, VVFVFGPDK,	SEQ ID 452, SEQ ID 707
ADF-321	ADPI-321	PMTLGYWNIR, EDILENQFMDSR, LLLEYTDSSYEEK,	SEQ ID 541, SEQ ID 128, SEQ ID 441
ADF-322	ADPI-322	VYEVATFYTMYNR, AAAALPVLDLAQR,	SEQ ID 715, SEQ ID 2
ADF-323	ADPI-323	THLAPYSDEL R, DEPPQSPWDR, DYVSQFEGSALGK, VQPYLDDFQK,	SEQ ID 636, SEQ ID 77, SEQ ID 117, SEQ ID 697
ADF-324	ADPI-324	FNVWDTAGQE K, NLQYYDISAK,	SEQ ID 214, SEQ ID 524
ADF-325	ADPI-325	ELVDDSINNVR, VFEVMLATDR,	SEQ ID 166, SEQ ID 670
ADF-326	ADPI-326	NNIAMALEV TYR,	SEQ ID 526
ADF-327	ADPI-327	IPNQFQSDPPAPS DK, EADYVAQATR, AALEG TATYR,	SEQ ID 339, SEQ ID 119, SEQ ID 5
ADF-328	ADPI-328	DFL LQQTMLR,	SEQ ID 78
ADF-329	ADPI-329	DFL LQQTMLR, SLDFYTR,	SEQ ID 78, SEQ ID 593
ADF-330	ADPI-330	ATEPVIAFYEK, EVQQGEEFER,	SEQ ID 58, SEQ ID 182
ADF-331	ADPI-331	QGGLGPMNIPLVSDPK, QITVN DLPVGR, LVQAFQFTDK, IGHPAPNFK,	SEQ ID 552, SEQ ID 557, SEQ ID 477, SEQ ID 317
ADF-332	ADPI-332	TDPSILGGMIVR, SFLSQGQVLK,	SEQ ID 626,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
		FSPLTTNLINLLAENGR,	SEQ ID 588, SEQ ID 222
ADF-333	ADPI-333.1	LYTLVLTDPDAPSR,	SEQ ID 482
ADF-333	ADPI-333.2	QITVNNDLPVGR, LVQAFQFTDK,	SEQ ID 557, SEQ ID 477
ADF-334	ADPI-334	QDEHGFISR, APSWFDTGLSEMR, HFSPEELK, VLGDVIEVHGK,	SEQ ID 546, SEQ ID 49, SEQ ID 286, SEQ ID 687
ADF-335	ADPI-335	YLAEFFATGNDR,	SEQ ID 731
ADF-336	ADPI-336	NDFTEEEEAQVR,	SEQ ID 510
ADF-337	ADPI-337	QDEHGFISR, APSWFDTGLSEMR, HFSPEELK, VLGDVIEVHGK,	SEQ ID 546, SEQ ID 49, SEQ ID 286, SEQ ID 687
ADF-338	ADPI-338	TEGDGVYTLNDKK, TEGDGVYTLNNEK, TEGDGVYTLNDK,	SEQ ID 628, SEQ ID 629, SEQ ID 627
ADF-339	ADPI-339	LNGTDPEDVIR, FTDEEVDELYR, GNFNYIEFTR, EAFNMIDQNR,	SEQ ID 448, SEQ ID 224, SEQ ID 269, SEQ ID 121
ADF-340	ADPI-340	EAFSLFDK, DTDSEEEIR,	SEQ ID 122, SEQ ID 107
ADF-341	ADPI-341	TVEGAGSIAATGFVK, EQVTNVGGAVVTGVTAVAQK, EGVVHGVTAVAEK,	SEQ ID 654, SEQ ID 175, SEQ ID 142
ADF-342	ADPI-342	HEWQVNGLDDIK, LGGNVVVSLEGPPL, YALYDATYETK,	SEQ ID 285, SEQ ID 420, SEQ ID 720
ADF-343	ADPI-343	YALYDATYETK,	SEQ ID 720
ADF-344	ADPI-344	AILVDLEPGTMDSVR, INVYYNBAAGNK,	SEQ ID 29, SEQ ID 334
ADF-345	ADPI-345	FEDENFILK, IIPGFMCQGGDFTR, EGMNTVEAMER, VSFELFADK,	SEQ ID 196, SEQ ID 325, SEQ ID 141, SEQ ID 699
ADF-346	ADPI-346	EFIEGVSQFSVK, DGYISNGELFQVLK,	SEQ ID 135, SEQ ID 87,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
		VIDIFDTDGNGEVDFK,	SEQ ID 678
ADF-347	ADPI-347	AQAEVLVGTAAEATR,	SEQ ID 50
ADF-348	ADPI-348	GNDISSERTVLSDYVGSGPPK, LYTLVLTDPDAPSR,	SEQ ID 268, SEQ ID 482
ADF-349	ADPI-349	AILVDLEPGTMDSVR, INVYYNEAAGNK,	SEQ ID 29, SEQ ID 334
ADF-350	ADPI-350	EFEEDLTGIDDR, MLVNENFEEYLR,	SEQ ID 134, SEQ ID 497
ADF-351	ADPI-351	DREGFFTNGLTLGAK, SQGGEPTYNVAVGR, EGFFTNGLTLGAK,	SEQ ID 105, SEQ ID 603, SEQ ID 139
ADF-352	ADPI-352	LGVEFDETTADDR,	SEQ ID 421
ADF-353	ADPI-353	LLVVYPWTQR, EFTPPVQAAYQK, VVAGVANALAHK, VLGAFSDGLAHLDNLK, LHVDPENFR,	SEQ ID 445, SEQ ID 138, SEQ ID 704, SEQ ID 686, SEQ ID 423
ADF-354	ADPI-354	ILDVLEEIPK,	SEQ ID 328
ADF-355	ADPI-355	VGAHAGEYGAEALER, MFLSFPTTK,	SEQ ID 674, SEQ ID 490
ADF-356	ADPI-356	FLSQIESDR, GDFIAALDLGGSSFR, HIDLVEGDEGR,	SEQ ID 210, SEQ ID 238, SEQ ID 292
ADF-357	ADPI-357	DIPNENELQFQIK, GLEISGTFTHR,	SEQ ID 91, SEQ ID 263
ADF-358	ADPI-358	VIFLENYR, GLAGLGDVAEVR,	SEQ ID 679, SEQ ID 261
ADF-359	ADPI-359	TGAQELLR, HVVPNEVVVQR, EPGLQIWR, QTQVSVLPEGGETPLFK, VEHPEFLK,	SEQ ID 632, SEQ ID 299, SEQ ID 171, SEQ ID 567, SEQ ID 666
ADF-360	ADPI-360	NAVTQEFGPVPTAR, WVVIIGDENYGBGSSR, EGWPLDIR,	SEQ ID 509, SEQ ID 719, SEQ ID 143
ADF-361	ADPI-361	QLLTLSSSELSQAR, APDFVFYAPR,	SEQ ID 562, SEQ ID 45
ADF-362	ADPI-362	EFSDFIFR, DFQSGQHVIVR, NFSGAEELEGIVR, LFADAEEEQR,	SEQ ID 137, SEQ ID 79,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
		YVGSEANIR,	SEQ ID 514, SEQ ID 408, SEQ ID 744
ADF-363	ADPI-363	SPLTYGVGVLR, ETAPTSAYSSPAR, ELSDQAGSEFENS D VR, TPTTILLT PER,	SEQ ID 601, SEQ ID 178, SEQ ID 165, SEQ ID 648
ADF-364	ADPI-364	TVNVVQFEPSK, YPLFEGQETGK,	SEQ ID 656, SEQ ID 736
ADF-365	ADPI-365.2	ELLQESALIR, GVVDSEDIPLNLSR,	SEQ ID 160, SEQ ID 279
ADF-365	ADPI-365.1	SPLTYGVGVLR, KFHSGFYAAR, ELSDQAGSEFENS D VR, TPTTILLT PER,	SEQ ID 601, SEQ ID 373, SEQ ID 165, SEQ ID 648
ADF-366	ADPI-366	VFNLYPR, DNFTLIP EG TNGTEER,	SEQ ID 672, SEQ ID 102
ADF-367	ADPI-367.2	LASFYER, VGHSELVGEIR, DDFLQQNGYTPYDR, HFTEFVPLR,	SEQ ID 390, SEQ ID 676, SEQ ID 72, SEQ ID 288
ADF-367	ADPI-367.1	TTPSYVAPIDTER, TVTNAVVTVPAYFNDSQR, STAGDTHLGGEDFDNR, FEELNADLFR, VEIIANDQGNR,	SEQ ID 653, SEQ ID 657, SEQ ID 610, SEQ ID 199, SEQ ID 667
ADF-368	ADPI-368.1	AQIHDVLVGGSTR, DAGVIAGLNVLR, ATAGDTHLGGEDFDNR, IINEPTAAAIAYGLDR,	SEQ ID 51, SEQ ID 69, SEQ ID 55, SEQ ID 323
ADF-368	ADPI-368.2	STPEYFAER, SEIDL NIR, SLHQIAIEGDTSGDFLK, TTGKPIEASIR, DLEADHIGDTSGHFQK,	SEQ ID 612, SEQ ID 580, SEQ ID 596, SEQ ID 652, SEQ ID 95
ADF-369	ADPI-369.1	ISEQTYQLSR, SQLLILDR,	SEQ ID 352, SEQ ID 605
ADF-369	ADPI-369.2	NVDLSTFYQNR, LR PESALAQAQK,	SEQ ID 535, SEQ ID 464

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
ADF-370	ADPI-370	LQVAGEITTGPR,	SEQ ID 461
ADF-371	ADPI-371	LVNEVTEFAK, DVFLGMFLYEYAR, FQNALLVR, VPQVSTPTLVEVSR,	SEQ ID 476, SEQ ID 108, SEQ ID 220, SEQ ID 694
ADF-372	ADPI-372	LVNEVTEFAK, DVFLGMFLYEYAR, FQNALLVR, VPQVSTPTLVEVSR,	SEQ ID 476, SEQ ID 108, SEQ ID 220, SEQ ID 694
ADF-373	ADPI-373	ISEQTYQLSR, SQLLILDR,	SEQ ID 352, SEQ ID 605
ADF-374	ADPI-374	SEVIGDGNQIEIEIPPTR, ASEGPAAFFPGR,	SEQ ID 585, SEQ ID 54
ADF-375	ADPI-375	VFNLYPR, MVIPGGIDVHTR,	SEQ ID 672, SEQ ID 505
ADF-376	ADPI-376	ISEQTYQLSR, SQLLILDR, SSASFSTIAVSAR,	SEQ ID 352, SEQ ID 605, SEQ ID 606
ADF-377	ADPI-377	ILVLDDTNHER, LYSLGNGR,	SEQ ID 331, SEQ ID 481
ADF-378	ADPI-378	NLFSQTLSLGSQK, LLDELTLEGVAR, ELEDLVR,	SEQ ID 521, SEQ ID 434, SEQ ID 153
ADF-379	ADPI-379	FFSEYEK, LLGELLLDR, LLSAEFLEQHYDR,	SEQ ID 203, SEQ ID 439, SEQ ID 443
ADF-380	ADPI-380	LFSGDVVLTAR, SETITEELVGLMNK, VVNVSSIMSVR,	SEQ ID 413, SEQ ID 584, SEQ ID 711
ADF-381	ADPI-381	IFTSIGEDYDER, FDAGELITQR, DLQNVNTLRL,	SEQ ID 312, SEQ ID 192, SEQ ID 100
ADF-382	ADPI-382	KNGIPLELR, TAMDQALQWLEDK, NGIPLELR,	SEQ ID 383, SEQ ID 622, SEQ ID 516
ADF-383	ADPI-383	LQSSDGEIFEVDVEIAK, NDFTEEEAAQVR,	SEQ ID 459, SEQ ID 510
ADF-384	ADPI-384	AENFFILR, VLIEGSINSVR, ELLLQPVTISR,	SEQ ID 15, SEQ ID 688,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
			SEQ ID 159
ADF-386	ADPI-386	LELFLPEEYPMAAPK, LLAEPVPGIK,	SEQ ID 406, SEQ ID 432
ADF-387	ADPI-387	AYELALYLR, SQGGEPTYNVAVGR, EGFFTNGLTLGAK,	SEQ ID 66, SEQ ID 603, SEQ ID 139
ADF-388	ADPI-388	LIEEVHAVVTVR, FILIQNR,	SEQ ID 425, SEQ ID 207
ADF-389	ADPI-389	FEEFLQR, QILLPFR, VYYDLTR,	SEQ ID 198, SEQ ID 556, SEQ ID 716
ADF-390	ADPI-390	IDIIPNPQER, NPDDITQEYGEFYK,	SEQ ID 305, SEQ ID 530
ADF-391	ADPI-391	ELVVVTQLGYDTR,	SEQ ID 168
ADF-392	ADPI-392	DAGVIAGLNVLR, IINEPTAAAIAYGLDR,	SEQ ID 69, SEQ ID 323
ADF-393	ADPI-393	FEELNADLFR,	SEQ ID 199
ADF-394	ADPI-394	FDLTGIPPAPR, VEIIANDQGNR,	SEQ ID 194, SEQ ID 667
ADF-395	ADPI-395	GGAEQFMEETER,	SEQ ID 251
ADF-396	ADPI-396	FPFAANSR, SEEQLKEEGIEYK, NLGLEELGIELDPR,	SEQ ID 216, SEQ ID 578, SEQ ID 522
ADF-397	ADPI-397	SEMPPVQFK, SVAQQASLTEQR,	SEQ ID 582, SEQ ID 613
ADF-398	ADPI-398	EMNDAATFYTNR,	SEQ ID 169
ADF-399	ADPI-399.2	TIPIDGNFFTYTR, IFVEESIYDEFVR,	SEQ ID 642, SEQ ID 313
ADF-399	ADPI-399.1	AGTVVDNVDLEAATR, DLPLLLFR, QHVTEAFQFH, GGIIVDEGALLR,	SEQ ID 24, SEQ ID 99, SEQ ID 554, SEQ ID 252
ADF-400	ADPI-400	FAAYFQQGDMESNGK, AVLHVVALR, HFVALSTNTIK, INYTEGR,	SEQ ID 186, SEQ ID 63, SEQ ID 289, SEQ ID 337
ADF-401	ADPI-401	GSGNLEAIHIIK, LIEEVMIGEDK, GATQQILDEAER,	SEQ ID 275, SEQ ID 426, SEQ ID 236

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
ADF-402	ADPI-402	IVLEDGTLHVTEGSGR, MDENQFVAVTSTNAAK, DNFTLIPETGTNGTEER,	SEQ ID 365, SEQ ID 487, SEQ ID 102
ADF-403	ADPI-403	GDYPLEAVR, LDIDSPPITAR,	SEQ ID 240, SEQ ID 396
ADF-404	ADPI-404.1	MPLFEHYTR, AAGIDEQENWHEGK, LFEASIETGDR,	SEQ ID 499, SEQ ID 3, SEQ ID 411
ADF-404	ADPI-404.2	MIGGPILPSER, IWADIPAPK, EENEGLVYNGSWGGR,	SEQ ID 492, SEQ ID 368, SEQ ID 132
ADF-405	ADPI-405	NSSYFVEWIPNNVK, AILVDLEPGTMDSVR, TAVCDIPPR, ISVYYNEATGGK, ISEQFTAMFR, LAVNMVPFPR,	SEQ ID 531, SEQ ID 29, SEQ ID 624, SEQ ID 355, SEQ ID 351, SEQ ID 393
ADF-406	ADPI-406	STLMDTLEFNTK, TAAELLQSQGSQAGGSQTLK,	SEQ ID 611, SEQ ID 621
ADF-407	ADPI-407	AVLVDLEPGTMDSVR, INVYYNEATGGK,	SEQ ID 64, SEQ ID 335
ADF-408	ADPI-408	TGQEIPVNVR, EGGSIPVTLTFQEATGK, TVFGVERFDLTR,	SEQ ID 634, SEQ ID 140, SEQ ID 655
ADF-409	ADPI-409	TVFGVERFDLTR,	SEQ ID 655
ADF-410	ADPI-410	EHDVLVLDL, AVFVDLEPTVIDEVR,	SEQ ID 148, SEQ ID 62
ADF-411	ADPI-411	LADVYQAE LR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-412	ADPI-412.2	LADVYQAE LR, EAASYQEALAR,	SEQ ID 388, SEQ ID 118
ADF-412	ADPI-412.1	VALVYQGMNEPPGAR, IMNVIGEPIDER, IGLFGGAGVGK, IPVGPETLGR,	SEQ ID 660, SEQ ID 332, SEQ ID 318, SEQ ID 342
ADF-413	ADPI-413	EAYPGDVFYLHSR, ILGADTSVDLEETGR, TGAIVDVFPVGEELLGR,	SEQ ID 125, SEQ ID 329, SEQ ID 631,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
		AVDSLVPIGR,	SEQ ID 59
ADF-414	ADPI-414	IMNVIGEPIDER,	SEQ ID 332
ADF-415	ADPI-415	EIEAEIQALR,	SEQ ID 146
ADF-416	ADPI-416	SLFNYHDTR, AAAQLLQSQAQQSGAQQTQK, SYELQESNVR,	SEQ ID 595, SEQ ID 1, SEQ ID 619
ADF-417	ADPI-417	AHGGYSVFAGVGER, VALVYQQMNEPPGAR, IMNVIGEPIDER, IGLFGGAGVGK, FTQAGSEVSALLGR, IPVGPETLGR, TIAMDGTTEGLVR,	SEQ ID 26, SEQ ID 660, SEQ ID 332, SEQ ID 318, SEQ ID 225, SEQ ID 342, SEQ ID 638
ADF-418	ADPI-418	IVIGMDVAASEFYR, LGAEVYHTLK,	SEQ ID 364, SEQ ID 417
ADF-419	ADPI-419	AAVPSGASTGIYEALELR, VVIGMDVAASEFFR,	SEQ ID 8, SEQ ID 709
ADF-420	ADPI-420	NGDGTIDFR,	SEQ ID 515
ADF-421	ADPI-421	HEWQVNGLDDIK, QHVEEAK, YALYDATYETK,	SEQ ID 285, SEQ ID 555, SEQ ID 720
ADF-422	ADPI-422	AVFDETYPDGVPR,	SEQ ID 60
ADF-423	ADPI-423	GSPLVVVISQGK, VFNLYPR, GLYDGPVCEVSVTPK, IVLEDGTLHVTEGSGR,	SEQ ID 276, SEQ ID 672, SEQ ID 265, SEQ ID 365
ADF-424	ADPI-424	ISEQFTAMFR, LAVNMVPFPR, INVYYNEATGGNYVPR, YLTVAAVFR,	SEQ ID 351, SEQ ID 393, SEQ ID 336, SEQ ID 732
ADF-425	ADPI-425	ILGADTSVDLEETGR, VLSIGDGIAR,	SEQ ID 329, SEQ ID 689
ADF-426	ADPI-426.2	SFENSLGINVPR,	SEQ ID 586
ADF-426	ADPI-426.1	EAYPGDVTYLYHSR, ILGADTSVDLEETGR, AVDSLVPIGR,	SEQ ID 125, SEQ ID 329, SEQ ID 59
ADF-427	ADPI-427	TGAIVDVPVGEELLGR, AVDSLVPIGR,	SEQ ID 631, SEQ ID 59
ADF-428	ADPI-428	LLEGEENR, LADVYQAE LR,	SEQ ID 437,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
		EAASYQEALAR, DNLAQDLATVR,	SEQ ID 388, SEQ ID 118, SEQ ID 103
ADF-429	ADPI-429	AAVPSGASTGIYEALELR, VVIGMDVAASEFFR, IGAEVYHNLK,	SEQ ID 8, SEQ ID 709, SEQ ID 315
ADF-430	ADPI-430	FVIDVGYER, KFVIDVGYER, NVVLSGGSTMFR,	SEQ ID 227, SEQ ID 374, SEQ ID 539
ADF-431	ADPI-431	VWDYETGDFER, EWIPRPPEK,	SEQ ID 714, SEQ ID 183
ADF-432	ADPI-432	FEDYLNAESR, DVTNNVHYENYR,	SEQ ID 197, SEQ ID 112
ADF-433	ADPI-433	FEDYLNAESR, DVTNNVHYENYR,	SEQ ID 197, SEQ ID 112
ADF-434	ADPI-434	IVFLEEASQQEK, FLYLGDDR, VKPIVTPR,	SEQ ID 363, SEQ ID 212, SEQ ID 682
ADF-435	ADPI-435	YYGAQTVR, IEYDTFGEKL, IYELAAGGTAVGTGLNTR,	SEQ ID 745, SEQ ID 309, SEQ ID 370
ADF-436	ADPI-436	KLEELELDEQQQR, DVKPSNILVNSR,	SEQ ID 379, SEQ ID 110
ADF-437	ADPI-437	LADVYQAE LR, ALAAEELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-438	ADPI-438	GISEETTIGVHNLYK, YPQLLPGIR, ILLAEGR,	SEQ ID 258, SEQ ID 738, SEQ ID 322
ADF-439	ADPI-439	AEAGDNL GALVR, YEEIDNAPEER,	SEQ ID 11, SEQ ID 722
ADF-440	ADPI-440.1	GYSFTTAER,	SEQ ID 283
ADF-440	ADPI-440.2	LADVYQAE LR, ALAAEELNQLR, EAASYQEALAR,	SEQ ID 388, SEQ ID 30, SEQ ID 118
ADF-441	ADPI-441	APGFAHLAGLDK, TYLQALPYFDR, LDELEELLTNRR, MFEFYER,	SEQ ID 47, SEQ ID 658, SEQ ID 395, SEQ ID 489

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
ADF-442	ADPI-442	LADVYQAE LR, KIESLEEEIR,	SEQ ID 388, SEQ ID 378
ADF-443	ADPI-443	ALAAELNQLR,	SEQ ID 30
ADF-444	ADPI-444	DIVEAHTYR, KG YFEDR,	SEQ ID 92, SEQ ID 376
ADF-445	ADPI-445	GTGGVDTAAVGGVFDVSNADR, VLTPELYAE LR, LAVEALSSLDGDLAGR,	SEQ ID 277, SEQ ID 690, SEQ ID 392
ADF-446	ADPI-446	YIEEAIK, DIVEAHYR, KG YFEDR, QVYMSLPQGEK,	SEQ ID 727, SEQ ID 92, SEQ ID 376, SEQ ID 570
ADF-447	ADPI-447.1	ELPTAFDYVEFTR, SSLSSAQADFNQLAELDR,	SEQ ID 162, SEQ ID 608
ADF-447	ADPI-447.2	LADVYQAE LR, ALAAELNQLR, KIESLEEEIR, EAASYQEALAR,	SEQ ID 388, SEQ ID 30, SEQ ID 378, SEQ ID 118
ADF-448	ADPI-448	LYPPSAEYPDLR, SFLIWVNEEDHTR, SGYFDER,	SEQ ID 480, SEQ ID 587, SEQ ID 589
ADF-449	ADPI-449	LADVYQAE LR, ALAAELNQLR,	SEQ ID 388, SEQ ID 30
ADF-450	ADPI-450.1	AGFAGDDAPR, SYELPDGQVITIGNER, GYSFTTTAER,	SEQ ID 21, SEQ ID 618, SEQ ID 283
ADF-450	ADPI-450.2	LADVYQAE LR, ALAAELNQLR, KIESLEEEIR, EAASYQEALAR, DNLAQDLATVR,	SEQ ID 388, SEQ ID 30, SEQ ID 378, SEQ ID 118, SEQ ID 103
ADF-451	ADPI-451	LEEGPPVTTVLTR, AHGFTFTR,	SEQ ID 404, SEQ ID 25
ADF-452	ADPI-452	AGQVFLEELGNHK, LYSLGNGR,	SEQ ID 23, SEQ ID 481
ADF-453	ADPI-453	SMLEVNYPMENGIVR, DLMVGDEASELR, GYAFNHSADFETVR,	SEQ ID 600, SEQ ID 97, SEQ ID 282
ADF-454	ADPI-454	LQFPLPTAQR,	SEQ ID 456,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
		EEFGAEPELAVSAPGR,	SEQ ID 131
ADF-455	ADPI-455	ISEQFTAMFR,	SEQ ID 351
ADF-456	ADPI-456	EHDLVLDRL, QLFHPEQLITGK, AVFVDLEPTVIDEVR,	SEQ ID 148, SEQ ID 559, SEQ ID 62
ADF-457	ADPI-457	FHQLDIDDLQSQIR, GQAAVQQQLQAEGLSPR, LFSGDVVLTAR, EGWPSSAYGVTK, VVNVSSIMSVR,	SEQ ID 205, SEQ ID 272, SEQ ID 413, SEQ ID 144, SEQ ID 711
ADF-458	ADPI-458	EHDLVLDRL, QLFHPEQLITGK, AVFVDLEPTVIDEVR,	SEQ ID 148, SEQ ID 559, SEQ ID 62
ADF-459	ADPI-459	LTFDTTFSPNTGK,	SEQ ID 469
ADF-460	ADPI-460	QDEHGFISR, APSWFDTGLSEMR, HFSPEELK,	SEQ ID 546, SEQ ID 49, SEQ ID 286
ADF-461	ADPI-461	KGDIFLVR, EVDIGIPDATGR,	SEQ ID 375, SEQ ID 179
ADF-462	ADPI-462	ISEQTYQLSR, SQLLILDR,	SEQ ID 352, SEQ ID 605
ADF-463	ADPI-463	ISEQTYQLSR, SQLLILDR, SSASFSTTAVSAR,	SEQ ID 352, SEQ ID 605, SEQ ID 606
ADF-464	ADPI-464	IFNLYPR, MADLHAVPR,	SEQ ID 311, SEQ ID 483
ADF-465	ADPI-465	AFPEHLYQR, IFNLYPR,	SEQ ID 19, SEQ ID 311
ADF-466	ADPI-466.1	LFTPDVIR, YIYIMGIQER, ALTSQLTDEELAQGR,	SEQ ID 414, SEQ ID 730, SEQ ID 41
ADF-466	ADPI-466.2	ELLSGPNR, ADNFNEYSDPVDGSIISR, IDAMHGIVVGPYVK,	SEQ ID 161, SEQ ID 9; SEQ ID 304
ADF-467	ADPI-467	GMYDGPVYEVPAATPK,	SEQ ID 267
ADF-468	ADPI-468	GMYDGPVFSDLTTTPK, IFNLYPR, ISVGSDSDLVIWDPDAVK,	SEQ ID 266, SEQ ID 311, SEQ ID 354
ADF-469	ADPI-469.2	FAEAFAEAIPR, LFVTNDAAATLR,	SEQ ID 188,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
			SEQ ID 415
ADF-469	ADPI-469.1	FSELTAEK, IADGYEQAAAR, QQISLATQMVR, DFSHPQMPK, LDVTSVEDYK,	SEQ ID 221, SEQ ID 301, SEQ ID 565, SEQ ID 80, SEQ ID 400
ADF-470	ADPI-470	ELVNNLAEIYGR, LFEAEEQDLFR,	SEQ ID 167, SEQ ID 410
ADF-471	ADPI-471	IQDWYDK, MTLDDFR,	SEQ ID 344, SEQ ID 503
ADF-472	ADPI-472	EIEAEIQALR,	SEQ ID 146
ADF-473	ADPI-473	ISEQTYQLSR, SQLLILDR,	SEQ ID 352, SEQ ID 605
ADF-474	ADPI-474	GDYPLEAVR, TATESFASDPILYR, LDIDSPPIAR,	SEQ ID 240, SEQ ID 623, SEQ ID 396
ADF-475	ADPI-475	FLVFVANFDENDPK, FOLLEGPPESMGR,	SEQ ID 211, SEQ ID 219
ADF-476	ADPI-476	DIMEDTIEDK, SQLLILDR,	SEQ ID 89, SEQ ID 605
ADF-477	ADPI-477	EPVVVTLEGHTK, AAPEASGTPSSDAVSR,	SEQ ID 172, SEQ ID 6
ADF-478	ADPI-478.1	IAVGSDADLVIWDPDSVK, IVLEDGTLHVTEGSGR, VFNLYPR, MVIPGGIDVHTR,	SEQ ID 303, SEQ ID 365, SEQ ID 672, SEQ ID 505
ADF-478	ADPI-478.2	IAVGSDADLVIWDPDSVK, IVLEDGTLHVTEGSGR, VFNLYPR, MVIPGGIDVHTR,	SEQ ID 303, SEQ ID 365, SEQ ID 672, SEQ ID 505
ADF-479	ADPI-479	ELEEEETNAFNR, EFLSELQR,	SEQ ID 154, SEQ ID 136
ADF-480	ADPI-480	EIIDLVILDR, AVFVDLEPTVIDEVR,	SEQ ID 148, SEQ ID 62
ADF-481	ADPI-481	MVSSYVGENAEFER, DGSVIAISKPR, FYTDPVEAVK, YGDLANWMIPGK,	SEQ ID 507, SEQ ID 85, SEQ ID 230, SEQ ID 725
ADF-482	ADPI-482	LIEEVMIGEDK, GATQQILDEAER,	SEQ ID 426,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
			SEQ ID 236
ADF-483	ADPI-483	HALIHYDDLSK, ILGADTSVDLEETGR, TGAIVDVPVGEGELLGR, VLSIGDGIAAR, TGTAEMSSILEER, AVDSLVPIGR,	SEQ ID 284, SEQ ID 329, SEQ ID 631, SEQ ID 689, SEQ ID 635, SEQ ID 59
ADF-484	ADPI-484	ILGADTSVDLEETGR, TGAIVDVPVGEGELLGR, AVDSLVPIGR,	SEQ ID 329, SEQ ID 631, SEQ ID 59
ADF-485	ADPI-485	ELEEEVNNFQK, SYELQESNVR,	SEQ ID 155, SEQ ID 619
ADF-486	ADPI-486	ALAAELNQLR, LADVYQAE LR,	SEQ ID 30, SEQ ID 388
ADF-487	ADPI-487	RIPLAEWESR, IPLAEWESR,	SEQ ID 571, SEQ ID 338
ADF-488	ADPI-488	ITQYLDAGGIPR, FYFENLWSR,	SEQ ID 360, SEQ ID 229
ADF-489	ADPI-489	LADVYQAE LR, ALAAELNQLR, KIESLEEEIR, EAASYQEALAR,	SEQ ID 388, SEQ ID 30, SEQ ID 378, SEQ ID 118
ADF-490	ADPI-490	MLLYTEVTR, DLGTESQIFISR,	SEQ ID 494, SEQ ID 96
ADF-491	ADPI-491	EAASYQEALAR,	SEQ ID 118
ADF-492	ADPI-492	ADTLGELDLER, GLAPEQPVTLR,	SEQ ID 10, SEQ ID 262
ADF-493	ADPI-493.1	AGFAGDDAPR, SYELPDGQVITIGNER, GYSFTTTAER, QEYDESGPSIVHR,	SEQ ID 21, SEQ ID 618, SEQ ID 283, SEQ ID 549
ADF-493	ADPI-493.2	ALAAELNQLR, HLQEYQDLLNVK, KIESLEEEIR, EAASYQEALAR, DNLAQDLATVR,	SEQ ID 30, SEQ ID 296, SEQ ID 378, SEQ ID 118, SEQ ID 103
ADF-494	ADPI-494	AEAGDNLGALVR, YEEIDNAPEER,	SEQ ID 11, SEQ ID 722
ADF-495	ADPI-495	GKPVPTQGSR, LYSLGNGR,	SEQ ID 260,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
			SEQ ID 481
ADF-496	ADPI-496	SGYFDER, GWEFMWNER, IPTPVIHTK,	SEQ ID 589, SEQ ID 281, SEQ ID 341
ADF-497	ADPI-497	ISAEAGGEQVER, ALAEEVEEQVHR,	SEQ ID 350, SEQ ID 31
ADF-498	ADPI-498	LYPEGLAQLAR, LLFEGAGSNPGDK,	SEQ ID 479, SEQ ID 438
ADF-499	ADPI-499	QFLSETEK,	SEQ ID 550
ADF-500	ADPI-500	VFNLYPR, DNFTLIPETGTINGTEER,	SEQ ID 672, SEQ ID 102
ADF-501	ADPI-501	FPAFGFGAR, NNLNPSWEPFR, DIVQFVPFR, LLDGDDGPLR,	SEQ ID 215, SEQ ID 527, SEQ ID 94, SEQ ID 435
ADF-502	ADPI-502	YFVEAGAMAVR, YINENLIVNTDELGR, AFHNEAQVNPER, EQLAIAEFAR,	SEQ ID 724, SEQ ID 729, SEQ ID 17, SEQ ID 173
ADF-503	ADPI-503	LLNLYPR, MSVIWER,	SEQ ID 442, SEQ ID 501
ADF-504	ADPI-504	LLNLYPR, MSVIWER,	SEQ ID 442, SEQ ID 501
ADF-505	ADPI-505	FANLNEQAAR,	SEQ ID 189
ADF-506	ADPI-506	EDGGGGWWYNR, QDGCSVDFGR, DNDGWLTSDPR,	SEQ ID 127, SEQ ID 547, SEQ ID 101
ADF-507	ADPI-507	EIEAEIQALR, LRDDTEAAIR,	SEQ ID 146, SEQ ID 463
ADF-508	ADPI-508	LADVYQAEILR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-509	ADPI-509	ILVLDDTNHER,	SEQ ID 331
ADF-510	ADPI-510	ALAAELNQLR, LADVYQAEILR, KIESLEEEIR, EAASYQEALAR,	SEQ ID 30, SEQ ID 388, SEQ ID 378, SEQ ID 118
ADF-511	ADPI-511	AYTNFDAER, TNQELQEINR, AEDGSVIDYELIDQDAR,	SEQ ID 67, SEQ ID 647,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
		SYSPYDMLESIR,	SEQ ID 12, SEQ ID 620
ADF-512	ADPI-512	ELVDDSIINVR, VFEVMLATDR,	SEQ ID 166, SEQ ID 670
ADF-513	ADPI-513	DPVQEAWAEDVDLR, TATESFASDPILYR, LDIDSPPITAR,	SEQ ID 104, SEQ ID 623, SEQ ID 396
ADF-514	ADPI-514	DPLLLLFR, QHVTEAFQFH, TLGILGLGR, GGIIVDEGALLR,	SEQ ID 99, SEQ ID 554, SEQ ID 644, SEQ ID 252
ADF-515	ADPI-515	MVEGFDFR, DIVHSGLAYTMER, GFIGPGIDVPAPDMSTGER,	SEQ ID 504, SEQ ID 93, SEQ ID 247
ADF-516	ADPI-516	GLVYETSVLDPDEGIR, VVPGYGHAVLR,	SEQ ID 264, SEQ ID 712
ADF-517	ADPI-517	LADVYQAELR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-518	ADPI-518	GSPLVVVISQGK, IAVGSDADLVIWDPDSVK, MDENQFVAVTSTNAAK, MVIPGGIDVHTR, IVLEDGTLHVTEGSGR, DNFTLIPEGTNGTEER,	SEQ ID 276, SEQ ID 303, SEQ ID 487, SEQ ID 505, SEQ ID 365, SEQ ID 102
ADF-519	ADPI-519	AILVDLEPGTMDSVR, ISEQFTAMFR, LAVNMVPFPR,	SEQ ID 29, SEQ ID 351, SEQ ID 393
ADF-520	ADPI-520	ISEQFTAMFR, LAVNMVPFPR, AVLVDLEPGTMDSVR, INVYYNEATGGK,	SEQ ID 351, SEQ ID 393, SEQ ID 64, SEQ ID 335
ADF-521	ADPI-521	ALAAELNQLR, KIESLEEEIR, LEAENNLAAYR, EAASYQEALAR,	SEQ ID 30, SEQ ID 378, SEQ ID 401, SEQ ID 118
ADF-522	ADPI-522	EIBAEIQALR,	SEQ ID 146
ADF-523	ADPI-523	IGGIGTVPVGR, QTVAVGVIK, LPLQDVYK,	SEQ ID 316, SEQ ID 568,

Table IV

ADF#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
			SEQ ID 453
ADF-524	ADPI-524	LADVYQAE LR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-525	ADPI-525	ALAAELNQLR, KIESLEEEIR, EAASYQEALAR,	SEQ ID 30, SEQ ID 378, SEQ ID 118
ADF-526	ADPI-526.1	KLVILEGE LR, IQLVEEELDR,	SEQ ID 381, SEQ ID 345
ADF-526	ADPI-526.2	LADVYQAE LR, ALAAELNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-527	ADPI-527	FEDENFILK, VNPTVFFDIAVDGEPLGR, IIPGFM CQGGDFTR, EGMNIV EAMER, VSFELFADK,	SEQ ID 196, SEQ ID 691, SEQ ID 325, SEQ ID 141, SEQ ID 699
ADF-528	ADPI-528	GVVDS EDLPLNISR,	SEQ ID 280
ADF-529	ADPI-529	YQFNYYEAK, LDASLVIAGVR,	SEQ ID 740, SEQ ID 394
ADF-530	ADPI-530.1	AILVDLEPGTMD SVR, ISEQFTAMFR, LAVNMVPFPR,	SEQ ID 29, SEQ ID 351, SEQ ID 393
ADF-530	ADPI-530.2	LADVYQAE LR, ALAAELNQLR, EAASYQEALAR,	SEQ ID 388, SEQ ID 30, SEQ ID 118
ADF-531	ADPI-531	VTILGHVQR, ELVVTQLGYDTR, GGTPSAFDR,	SEQ ID 700, SEQ ID 168, SEQ ID 255
ADF-532	ADPI-532	DPVQEAWAEDVDLR, TATESFASDPILYR, LDIDSPPITAR,	SEQ ID 104, SEQ ID 623, SEQ ID 396
ADF-533	ADPI-533	IIVIGMDVAASEFYR,	SEQ ID 364
ADF-534	ADPI-534	AGQVFLEELGNHK, LYSLGN GR,	SEQ ID 23, SEQ ID 481
ADF-535	ADPI-535	GDYPLEAVR, DPVQEAWAEDVDLR,	SEQ ID 240, SEQ ID 104
ADF-536	ADPI-536	YTLNFEAAQK, LLASDAGLYR,	SEQ ID 742, SEQ ID 433

Table IV

ADP#	ADPI#	Amino Acid Sequences of Tryptic Digest Peptides	SEQ ID #
ADF-537	ADPI-537	LADVYQAE LR, ALAAE LNQLR, KIESLEEEIR,	SEQ ID 388, SEQ ID 30, SEQ ID 378
ADF-538	ADPI-538	VLEAELLVLR, FASFIER,	SEQ ID 684, SEQ ID 191
ADF-539	ADPI-539	LADVYQAE LR, KIESLEEEIR, EAASYQEALAR,	SEQ ID 388, SEQ ID 378, SEQ ID 118
ADF-540	ADPI-540	IGAADYQPTEQDILR,	SEQ ID 314
ADF-541	ADPI-541	NEQDAYAINS YTR, EAYMGNVLQGGEGOAPTR,	SEQ ID 512, SEQ ID 124
ADF-542	ADPI-542	VVYTGTYDTEGVPTK,	SEQ ID 713
ADF-543	ADPI-543	LTFDSSFSPNTGK, WTEYGLTFTEK,	SEQ ID 468, SEQ ID 718
ADF-544	ADPI-544	ALPESLGQHALR, DYAVSTVPVADGLHLK, DENATLDGGDVLFTR,	SEQ ID 35, SEQ ID 115, SEQ ID 76
ADF-545	ADPI-545	TPPSYVAFTDTER, FEELNADLFR,	SEQ ID 653, SEQ ID 199
ADF-546	ADPI-546	QGIQFYTQLK,	SEQ ID 553
ADF-547	ADPI-547.2	ALAAE LNQLR,	SEQ ID 30
ADF-547	ADPI-547.3	MTLDDFR,	SEQ ID 503
ADF-547	ADPI-547.1	FPGQLNADLR, ISEQFTAMFR,	SEQ ID 217, SEQ ID 351
ADF-548	ADPI-548.2	EIEQEA AVELSQLR,	SEQ ID 147
ADF-548	ADPI-548.1	LTFDSSFSPNTGK, WTEYGLTFTEK, SENGLEFTSSGSANTETTK,	SEQ ID 468, SEQ ID 718, SEQ ID 583
ADF-549	ADPI-549	VIFLENYR, GLAGLGDVAEVR,	SEQ ID 679, SEQ ID 261

Those skilled in the art will understand, based upon the present description, that a given ADPI can be described according to the data provided for that ADPI in Table IV or V. The ADPI is a protein comprising a peptide sequence described for that ADPI (preferably comprising a plurality of, more preferably all of, the peptide

sequences described for that ADPI) and has a pI of about the value stated for that ADPI (preferably within about 10%, more preferably within about 5% still more preferably within about 1% of the stated value) and has a MW of about the value stated for that ADPI (preferably within about 10%, more preferably within about 5%, still more preferably within about 1% of the stated value).

In one embodiment, brain tissue from one brain region of a subject is analyzed for quantitative detection of one or more of the following ADPIs: ADPI-1, ADPI-3.1, ADPI-3.2, ADPI-3.3, ADPI-5.3, ADPI-6, ADPI-8, ADPI-9, ADPI-10, ADPI-11, ADPI-12.1, ADPI-12.2, ADPI-13, ADPI-15, ADPI-16, ADPI-22, ADPI-23, ADPI-24, 10 ADPI-25.3, ADPI-25.2, ADPI-26, ADPI-27, ADPI-29, ADPI-31, ADPI-33.1, ADPI-35, ADPI-37, ADPI-39, ADPI-41, ADPI-42, ADPI-54, ADPI-56, ADPI-61, ADPI-62, ADPI-66, ADPI-67, ADPI-68, ADPI-70, ADPI-72, ADPI-77, ADPI-78.2, ADPI-78.3, ADPI-79, ADPI-81.2, ADPI-82, ADPI-85, ADPI-87.1, ADPI-88, ADPI-90, ADPI- 15 91.1, ADPI-91.2, ADPI-92, ADPI-94, ADPI-95, ADPI-97, ADPI-98, ADPI-101, ADPI-102.1, ADPI-103, ADPI-105.2, ADPI-105.1, ADPI-107, ADPI-108, ADPI-109, ADPI-111.1, ADPI-112, ADPI-113, ADPI-115, ADPI-117.1, ADPI-119, ADPI-120, ADPI-121, ADPI-124, ADPI-125, ADPI-126, ADPI-126, ADPI-126, ADPI-127, ADPI-128, ADPI-129, ADPI-130, ADPI-131, ADPI-132, ADPI-133, ADPI-138, ADPI-139, ADPI-140, ADPI-141, ADPI-142.2, ADPI-142.1, ADPI-143.1, ADPI- 20 143.2, ADPI-144, ADPI-146.2, ADPI-146.1, ADPI-148, ADPI-149.1, ADPI-150, ADPI-151.2, ADPI-151.1, ADPI-152, ADPI-153.1, ADPI-153.2, ADPI-153.3, ADPI-154, ADPI-155, ADPI-156.2, ADPI-156.1, ADPI-157, ADPI-159.1, ADPI-159.2, ADPI-160, ADPI-162.2, ADPI-162.3, ADPI-162.1, ADPI-163, ADPI-165, ADPI-172, ADPI-173.1, ADPI-173.2, ADPI-175.2, ADPI-175.1, ADPI-176, ADPI-182, ADPI- 25 183, ADPI-188.1, ADPI-189.2, ADPI-191, ADPI-193, ADPI-194.2, ADPI-196.2, ADPI-196.3, ADPI-196.1, ADPI-196.4, ADPI-202, ADPI-204, ADPI-208, ADPI-209, ADPI-216, ADPI-217, ADPI-220, ADPI-223, ADPI-228, ADPI-229, ADPI-230.1, ADPI-230.2, ADPI-232.1, ADPI-232.2, ADPI-236.2, ADPI-236.3, ADPI-237.2, ADPI-237.1, ADPI-240, ADPI-243, ADPI-245, ADPI-250, ADPI-251, ADPI-252.1,

ADPI-252.2, ADPI-253, ADPI-254, ADPI-255, ADPI-256, ADPI-257.1, ADPI-257.2,
ADPI-258, ADPI-259.1, ADPI-259.2, ADPI-260, ADPI-261, ADPI-262, ADPI-263,
ADPI-264, ADPI-265, ADPI-266, ADPI-267, ADPI-268.1, ADPI-268.2, ADPI-269,
ADPI-270, ADPI-271, ADPI-272, ADPI-273, ADPI-274, ADPI-275, ADPI-276,
5 ADPI-277, ADPI-278.1, ADPI-278.2, ADPI-279.1, ADPI-279.2, ADPI-280, ADPI-
281, ADPI-282, ADPI-283, ADPI-284, ADPI-285, ADPI-286, ADPI-287, ADPI-288,
ADPI-289, ADPI-290, ADPI-291, ADPI-292, ADPI-293, ADPI-294, ADPI-295,
ADPI-296, ADPI-297, ADPI-298, ADPI-299, ADPI-300, ADPI-301, ADPI-302,
ADPI-303, ADPI-304, ADPI-305, ADPI-306, ADPI-307.1, ADPI-307.2, ADPI-308,
10 ADPI-309, ADPI-311, ADPI-312, ADPI-313, ADPI-314, ADPI-315, ADPI-316.1,
ADPI-316.2, ADPI-317, ADPI-318, ADPI-319, ADPI-320.1, ADPI-320.2, ADPI-321,
ADPI-322, ADPI-323, ADPI-324, ADPI-325, ADPI-326, ADPI-327, ADPI-328,
ADPI-329, ADPI-330, ADPI-331, ADPI-332, ADPI-333.1, ADPI-333.2, ADPI-334,
ADPI-335, ADPI-336, ADPI-337, ADPI-338, ADPI-339, ADPI-340, ADPI-341,
15 ADPI-342, ADPI-343, ADPI-344, ADPI-345, ADPI-346, ADPI-347, ADPI-348,
ADPI-349, ADPI-350, ADPI-351, ADPI-352, ADPI-353, ADPI-354, ADPI-355,
ADPI-356, ADPI-357, ADPI-358, ADPI-359, ADPI-360, ADPI-361, ADPI-362,
ADPI-363, ADPI-364, ADPI-365.1, ADPI-365.2, ADPI-366, ADPI-367.1, ADPI-
367.2, ADPI-368.1, ADPI-368.2, ADPI-369.1, ADPI-369.2, ADPI-370, ADPI-371,
20 ADPI-372, ADPI-373, ADPI-374, ADPI-375, ADPI-376, ADPI-377, ADPI-378,
ADPI-379, ADPI-380, ADPI-381, ADPI-382, ADPI-383, ADPI-384, ADPI-386,
ADPI-387, ADPI-388, ADPI-389, ADPI-390, ADPI-391, ADPI-392, ADPI-393,
ADPI-394, ADPI-395, ADPI-396, ADPI-397, ADPI-398, ADPI-399.1, ADPI-399.2,
ADPI-400, ADPI-401, ADPI-402, ADPI-403, ADPI-404.1, ADPI-404.2, ADPI-405,
25 ADPI-406, ADPI-407, ADPI-408, ADPI-409, ADPI-410, ADPI-411, ADPI-412.1,
ADPI-412.2, ADPI-413, ADPI-414, ADPI-415, ADPI-416, ADPI-417, ADPI-418,
ADPI-419, ADPI-420, ADPI-421, ADPI-422, ADPI-423, ADPI-424, ADPI-425,
ADPI-426.1, ADPI-426.2, ADPI-427, ADPI-428, ADPI-429, ADPI-430, ADPI-431,
ADPI-432, ADPI-433, ADPI-434, ADPI-435, ADPI-435, ADPI-436, ADPI-437,

ADPI-438, ADPI-439, ADPI-440.1, ADPI-440.2, ADPI-441, ADPI-442, ADPI-443, ADPI-444, ADPI-445, ADPI-446, ADPI-447.1, ADPI-447.2, ADPI-448, ADPI-449, ADPI-450.1, ADPI-450.2, ADPI-451, ADPI-452, ADPI-453, ADPI-454, ADPI-455, ADPI-456, ADPI-457, ADPI-458, ADPI-459, ADPI-460, ADPI-461, ADPI-462, 5 ADPI-463, ADPI-464, ADPI-465, ADPI-466.1, ADPI-466.2, ADPI-467, ADPI-468, ADPI-469.1, ADPI-469.2, ADPI-470, ADPI-471, ADPI-472, ADPI-473, ADPI-474, ADPI-475, ADPI-476, ADPI-477, ADPI-478.1, ADPI-478.2, ADPI-479, ADPI-480, ADPI-481, ADPI-482, ADPI-483, ADPI-484, ADPI-485, ADPI-486, ADPI-487, ADPI-488, ADPI-489, ADPI-490, ADPI-491, ADPI-492, ADPI-493.1, ADPI-493.2, 10 ADPI-494, ADPI-495, ADPI-496, ADPI-497, ADPI-498, ADPI-499, ADPI-500, ADPI-501, ADPI-502, ADPI-503, ADPI-504, ADPI-505, ADPI-506, ADPI-507, ADPI-508, ADPI-509, ADPI-510, ADPI-511, ADPI-512, ADPI-513, ADPI-514, ADPI-515, ADPI-516, ADPI-517, ADPI-518, ADPI-519, ADPI-520, ADPI-521, ADPI-522, ADPI-523, ADPI-524, ADPI-525, ADPI-526.1, ADPI-526.2, ADPI-527, 15 ADPI-528, ADPI-529, ADPI-530.1, ADPI-530.2, ADPI-531, ADPI-532, ADPI-533, ADPI-534, ADPI-535, ADPI-536, ADPI-537, ADPI-538, ADPI-539, ADPI-540, ADPI-541, ADPI-542, ADPI-543, ADPI-544, ADPI-545, ADPI-546, ADPI-547.1, ADPI-547.2, ADPI-547.3, ADPI-548.1, ADPI-548.2, ADPI-549 or any suitable combination of them, wherein an altered abundance of the ADPI or ADPIs (or any 20 suitable combination of them) in the brain tissue from one brain region of the subject relative to brain tissue from the same region in a subject or subjects free from Alzheimer's disease (e.g., a control sample or a previously determined reference range) indicates the presence of Alzheimer's disease.

In yet a further embodiment, brain tissue from a subject is analyzed for 25 quantitative detection of one or more ADPIs and one or more previously known biomarkers of Alzheimer's disease. In accordance with this embodiment, the abundance of each ADPI and known biomarker relative to a control or reference range indicates whether a subject has Alzheimer's disease.

In another embodiment, brain tissue from a subject is analyzed for quantitative

detection of one or more of the following ADPIs: ADPI-1, ADPI-6, ADPI-8, ADPI-9, ADPI-10, ADPI-16, ADPI-26, ADPI-27, ADPI-31, ADPI-67, ADPI-77, ADPI-82, ADPI-90, ADPI-98, ADPI-119, ADPI-120, ADPI-124, ADPI-130, ADPI-132, ADPI-148, ADPI-150, ADPI-152, ADPI-159.1, ADPI-159.2, ADPI-162.2, ADPI-162.3, 5 ADPI-162.1, ADPI-163, ADPI-204, ADPI-237.2, ADPI-237.1, ADPI-268.1, ADPI-268.2, ADPI-270, ADPI-271, ADPI-275, ADPI-284, ADPI-294, ADPI-297, ADPI-318, ADPI-328, ADPI-338, ADPI-346, ADPI-382, ADPI-384, ADPI-411, ADPI-413, ADPI-419, ADPI-427, ADPI-443, ADPI-450.1, ADPI-450.2, ADPI-452, ADPI-456, ADPI-458, ADPI-491, ADPI-507, ADPI-510 or any suitable combination of them, 10 wherein an altered abundance of the ADPI or ADPIs (or any suitable combination of them) in the brain tissue from any region of the brain of the subject relative to brain tissue from a subject or subjects free from Alzheimer's disease (e.g., a control sample or a previously determined reference range) indicates the presence of Alzheimer's disease.

15 In yet a further embodiment, brain tissue from a subject is analyzed for quantitative detection of one or more ADPIs and one or more previously known biomarkers of Alzheimer's disease. In accordance with this embodiment, the abundance of each ADPI and known biomarker relative to a control or reference range indicates whether a subject has Alzheimer's disease.

20 In one embodiment, brain tissue from a subject is analyzed for quantitative detection of one or more of the following ADPIs: ADPI-1, ADPI-6, ADPI-8, ADPI-9, ADPI-10, ADPI-12.1, ADPI-12.2, ADPI-23, ADPI-25.3, ADPI-25.2, ADPI-26, ADPI-27, ADPI-29, ADPI-31, ADPI-67, ADPI-77, ADPI-79, ADPI-85, ADPI-90, ADPI-91.1, ADPI-91.2, ADPI-102.1, ADPI-103, ADPI-119, ADPI-120, ADPI-121, ADPI- 25 124, ADPI-132, ADPI-142.2, ADPI-142.1, ADPI-144, ADPI-148, ADPI-149.1, ADPI-150, ADPI-151.2, ADPI-151.1, ADPI-152, ADPI-154, ADPI-155, ADPI-157, ADPI-159.1, ADPI-159.2, ADPI-160, ADPI-162.2, ADPI-162.3, ADPI-162.1, ADPI-163, ADPI-165, ADPI-173.1, ADPI-173.2, ADPI-175.2, ADPI-175.1, ADPI-176, ADPI-193, ADPI-202, ADPI-204, ADPI-250, ADPI-251, ADPI-260, ADPI-262,

ADPI-266, ADPI-270, ADPI-271, ADPI-272, ADPI-275, ADPI-280, ADPI-282, ADPI-283, ADPI-286, ADPI-288, ADPI-295, ADPI-300, ADPI-302, ADPI-304, ADPI-319, ADPI-321, ADPI-331, ADPI-335, ADPI-336, ADPI-337, ADPI-355, ADPI-364, ADPI-366, ADPI-367.1, ADPI-367.2, ADPI-368.1, ADPI-368.2, ADPI-
5 373, ADPI-375, ADPI-376, ADPI-381, ADPI-387, ADPI-390, ADPI-399.1, ADPI-399.2, ADPI-400, ADPI-403, ADPI-404.1, ADPI-404.2, ADPI-405, ADPI-410, ADPI-412.1, ADPI-412.2, ADPI-414, ADPI-415, ADPI-419, ADPI-423, ADPI-429, ADPI-434, ADPI-437, ADPI-442, ADPI-443, ADPI-444, ADPI-446, ADPI-452, ADPI-456, ADPI-469.1, ADPI-469.2, ADPI-471, ADPI-472, ADPI-478.1, ADPI-
10 478.2, ADPI-485, ADPI-491, ADPI-493.1, ADPI-493.2, ADPI-495, ADPI-504, ADPI-505, ADPI-510, ADPI-511, ADPI-514, ADPI-518, ADPI-524, ADPI-527, ADPI-535 or any suitable combination of them, wherein an altered abundance of the ADPI or ADPIs (or any suitable combination of them) in the brain tissue from the subject relative to brain tissue from a subject or subjects free from Alzheimer's disease
15 (e.g., a control sample or a previously determined reference range) is an early indicator for the presence of Alzheimer's disease.

In yet a further embodiment, brain tissue from a subject is analyzed for quantitative detection of one or more ADPIs and one or more previously known biomarkers of Alzheimer's disease. In accordance with this embodiment, the abundance of each ADPI and known biomarker relative to a control or reference range indicates whether a subject has Alzheimer's disease.
20

Preferably, the abundance of a ADPI is normalized to an Expression Reference Protein Isoform (ERPI). ERPIs can be identified by partial amino acid sequence characterization of ERFs, which are described above, and which may be accomplished
25 using e.g. the methods and apparatus of the Preferred Technology. The partial amino acid sequences of ERPIs are presented in Table VI.

Table V. Expression Reference Protein Isoforms

Table V

ERF#	ERPI#	Amino Acid Sequence of Tryptic Digest Peptides	SEQ ID #
ERF-1	ERPI-1	YQETFNVIER,	SEQ ID 739
ERF-10	ERPI-10	AGLVDDFEK, KYPYWPHQPIENL, SWNETLTSR,	SEQ ID 22, SEQ ID 386, SEQ ID 617
ERF-11	ERPI-11	HVGDLGNVTADK, GDGPVQGINFEQK,	SEQ ID 298, SEQ ID 239
ERF-12	ERPI-12	LNDFASTVR,	SEQ ID 447
ERF-13	ERPI-13	ITPSYVAFTPEGER,	SEQ ID 359
ERF-14	ERPI-14	FASEIAGVDDLGITGR, LEEVSPLNLR, FEAPLFNAR, DFYMTDSISR, VAVTPPGLAR,	SEQ ID 190, SEQ ID 405, SEQ ID 195, SEQ ID 82, SEQ ID 662
ERF-15	ERPI-15	FMQASEDLLK, GDFCIQVGR,	SEQ ID 213, SEQ ID 237
ERF-2	ERPI-2	EKIETELR, SVTEQGAELSNEER,	SEQ ID 151, SEQ ID 616
ERF-3	ERPI-3	QSPVDIDTHTAK, GGPLDGTYR, SADFTNFDPR,	SEQ ID 566, SEQ ID 254, SEQ ID 574
ERF-4	ERPI-4	ALPFWNEEIVPQIK, DAGYEFDICFTSVQK,	SEQ ID 36, SEQ ID 70
ERF-5	ERPI-5.1	YTMGDAFDYDR,	SEQ ID 743
ERF-5	ERPI-5.2	MTDSFTEQADQVTAEVGK, AALDGTPGMIGYGMAK,	SEQ ID 502, SEQ ID 4
ERF-6	ERPI-6	IIYGGSVTGATCK, VTNGAFTGEISPGMIK, VVLAYEPVWAIGTGK,	SEQ ID 326, SEQ ID 702, SEQ ID 710
ERF-7	ERPI-7	DVVICPDASLEDAK, DGLILTSR,	SEQ ID 113, SEQ ID 84
ERF-8	ERPI-8	EEVVTVETWQEGSLK, MLLADQQQSWK, AFLASPEYVNLPINGNGK, ASCLYGQLPK, FQDGDLTLYQSNTILR, PPYTVVYFPVR,	SEQ ID 133, SEQ ID 493, SEQ ID 18, SEQ ID 53, SEQ ID 218, SEQ ID 542
ERF-9	ERPI-9	QITVNNDLPVGR, LSEDYGVLK, ATAVVDGAFK,	SEQ ID 557, SEQ ID 465, SEQ ID 57

As shown above, the ADPIs described herein include previously unknown proteins or unknown variants of known proteins, as well as variants of known proteins where the variants were not previously known to be associated with Alzheimer's disease. For each ADPI, the present invention additionally provides: (a) a preparation comprising the isolated ADPI; (b) a preparation comprising one or more fragments of a ADPI; and (c) antibodies that bind to said ADPI, to said fragments, or both to said ADPI and to said fragments. As used herein, a ADPI is "isolated" when it is present in a preparation that is substantially free of other proteins, i.e., a preparation in which less than 10% (particularly less than 5%, more particularly less than 1%) of the total protein present is contaminating protein(s). Another protein is a protein or Protein Isoform having a significantly different pI or MW from those of the isolated ADPI, as determined by 2D electrophoresis. As used herein, a "significantly different" pI or MW is one that permits the other protein to be resolved from the ADPI on 2D electrophoresis, performed according to the Reference Protocol.

In one embodiment, an isolated protein is provided, that comprises a peptide with the amino acid sequence identified in Table IV for a ADPI, said protein having a pI and MW within 10% (particularly within 5%, more particularly within 1%) of the values identified in Table IV for that ADPI.

The ADPIs of the invention can be qualitatively or quantitatively detected by any method known to those skilled in the art, including but not limited to the Preferred Technology described herein, kinase assays, enzyme assays, binding assays and other functional assays, immunoassays, and western blotting. In one embodiment, the ADPIs are separated on a 2-D gel by virtue of their MWs and pIs and are visualized by staining the gel. In one embodiment, the ADPIs are stained with a fluorescent dye and imaged with a fluorescence scanner. Sypro Red (Molecular Probes, Inc., Eugene, Oregon) is a suitable dye for this purpose. Alternative dyes are described in USSN 09/412,168, filed October 5 1999, and incorporated herein by reference in its entirety.

Alternatively, ADPIs can be detected in an immunoassay. In one embodiment, an immunoassay is performed by contacting a sample with an anti-ADPI antibody

under conditions such that immunospecific binding can occur if the ADPI is present, and detecting or measuring the amount of any immunospecific binding by the antibody. Anti-ADPI antibodies can be produced by the methods and techniques described herein; examples of such antibodies known in the art are set forth in Table VI. These antibodies shown in Table VI are already known to bind to the protein of which the ADPI is itself a family member. Particularly, the anti-ADPI antibody preferentially binds to the ADPI rather than to other isoforms of the same protein. In a particular embodiment, the anti-ADPI antibody binds to the ADPI with at least 2-fold greater affinity, more particularly at least 5-fold greater affinity, still more particularly at least 10-fold greater affinity, than to said other isoforms of the same protein. When the antibodies shown in Table VI do not display the required preferential selectivity for the target ADPI, one skilled in the art can generate additional antibodies by using the ADPI itself for the generation of such antibodies.

ADPIs can be transferred from a gel to a suitable membrane (e.g. a PVDF membrane) and subsequently probed in suitable assays that include, without limitation, competitive and non-competitive assay systems using techniques such as western blots and "sandwich" immunoassays using anti-ADPI antibodies as described herein, e.g., the antibodies identified in Table VI, or others raised against the ADPIs of interest as those skilled in the art will appreciate based on the present description. The immunoblots can be used to identify those anti-ADPI antibodies displaying the selectivity required to immuno-specifically differentiate a ADPI from other isoforms encoded by the same gene.

Table VI. Known Antibodies that Recognize ADPIs or ADPI-Related Polypeptides
25.

Table VI

ADPI#	Antibody	Manufacturer	Cat. No.
ADPI-62	Gelsolin, plasma + cytoplasmic, Sheep anti-	ACCURATE CHEMICAL & SCIENTIFIC CORPORATION	YBG- 4628-6210
ADPI-68	Gelsolin, plasma +	ACCURATE CHEMICAL &	YBG- 4628-6210

Table VI

ADPI#	Antibody	Manufacturer	Cat. No.
	cytoplasmic, Sheep anti-	SCIENTIFIC CORPORATION	
ADPI-72	Gelsolin, plasma + cytoplasmic, Sheep anti-	ACCURATE CHEMICAL & SCIENTIFIC CORPORATION	YBG- 4628-6210
ADPI-78.2	mouse anti-beta-Tubulin (monoclonal)	SANTA CRUZ BIOTECHNOLOGY, INC - RESEARCH ANTIBODIES 98/99	sc-5274
ADPI-108	Lactic Dehydrogenase (LDH) (H-subunit), Clone: HH-17, Mab anti-Human	ACCURATE CHEMICAL & SCIENTIFIC CORPORATION	BYA- 6019-1
ADPI-140	mouse anti-beta-Tubulin (monoclonal)	SANTA CRUZ BIOTECHNOLOGY, INC - RESEARCH ANTIBODIES 98/99	sc-5274
ADPI-141	Monoclonal to Vimentin, intermediate filaments	Abcam Ltd	ab66
ADPI-153.2	Monoclonal to Vimentin, intermediate filaments	Abcam Ltd	ab66
ADPI-175.2	Glyceraldehyde-3-Phosphate Dehydrogenase	BIODESIGN INTERNATIONAL	H86504M
ADPI-188.1	Mouse monoclonal to heat shock protein 90 (HSP90)	Abcam Ltd	ab6536
ADPI-189.2	Albumin, Human, Chicken anti-	ACCURATE CHEMICAL & SCIENTIFIC CORPORATION	IMS- 01-026-02
ADPI-193	Albumin, Human, Chicken anti-	ACCURATE CHEMICAL & SCIENTIFIC CORPORATION	IMS- 01-026-02
ADPI-196.2	Fibrinogen, Fibrin I, B-beta chain (Bβ 1-42), Clone: 18C6, Mab anti-Human	ACCURATE CHEMICAL & SCIENTIFIC CORPORATION	NYB- 18C6
ADPI-217	Hemoglobin, Goat anti-Human	ACCURATE CHEMICAL & SCIENTIFIC CORPORATION	RMD- J16
ADPI-220	Goat anti-human Carbonic Anhydrase I	Abcam Ltd.	ab6618

Table VI

ADPI#	Antibody (polyclonal)	Manufacturer	Cat. No.
ADPI-228	Mouse Monoclonal Anti Moesin antibody	Lab Vision Corporation	MS-727-PLABX
ADPI-230.1	mouse anti-beta-Tubulin (monoclonal)	SANTA CRUZ BIOTECHNOLOGY, INC - RESEARCH ANTIBODIES 98/99	sc-5274
ADPI-286	Glyceraldehyde-3-Phosphate Dehydrogenase	BIODESIGN INTERNATIONAL	H86504M
ADPI-289	Glyceraldehyde-3-Phosphate Dehydrogenase	BIODESIGN INTERNATIONAL	H86504M
ADPI-291	Glyceraldehyde-3-Phosphate Dehydrogenase	BIODESIGN INTERNATIONAL	H86504M
ADPI-297	mouse anti-beta-Tubulin (monoclonal)	SANTA CRUZ BIOTECHNOLOGY, INC - RESEARCH ANTIBODIES 98/99	sc-5274
ADPI-311	Cathepsin D (CTD19)	Abcam Ltd.	ab7433
ADPI-323	Apolipoprotein A1 (HDL), Sheep anti-Human	ACCURATE CHEMICAL & SCIENTIFIC CORPORATION	ACL- 20075AP
ADPI-351	Anti-Profilin affinity purified rabbit antibody	immunoGlobe	IG706
ADPI-353	Hemoglobin, Goat anti-Human	ACCURATE CHEMICAL & SCIENTIFIC CORPORATION	BMD- J16
ADPI-359	Geisolin, plasma + cytoplasmic, Sheep anti-	ACCURATE CHEMICAL & SCIENTIFIC CORPORATION	YBG- 4628-6210
ADPI-371	Albumin, Human, Chicken anti-	ACCURATE CHEMICAL & SCIENTIFIC CORPORATION	IMS- 01-026-02
ADPI-372	Albumin, Human, Chicken anti-	ACCURATE CHEMICAL & SCIENTIFIC CORPORATION	IMS- 01-026-02
ADPI-387	Anti-Profilin affinity purified rabbit antibody	immunoGlobe	IG706
ADPI-390	HSP 90 (H-114)	SANTA CRUZ BIOTECHNOLOGY, INC - RESEARCH ANTIBODIES 98/99	sc-7947

Table VI

ADPI#	Antibody	Manufacturer	Cat. No.
ADPI-399.2	Anti-Aldehyde Dehydrogenase, rabbit polyclonal	Abcam Ltd	ab6192
ADPI-419	Monoclonal anti-Neuron Specific Enolase	BIODESIGN INTERNATIONAL	M37403M
ADPI-424	mouse anti-beta-Tubulin (monoclonal)	SANTA CRUZ BIOTECHNOLOGY, INC - RESEARCH ANTIBODIES 98/99	sc-5274
ADPI-429	Monoclonal anti-Neuron Specific Enolase	BIODESIGN INTERNATIONAL	M37403M
ADPI-471	Monoclonal Anti-Cytokeratin	BIODESIGN INTERNATIONAL	M42107M
ADPI-506	Fibrinogen, Fibrin I, B-beta chain (B β 1-42), Clone: 18C6, Mab anti-Human	ACCURATE CHEMICAL & SCIENTIFIC CORPORATION	NYB- 18C6
ADPI-511	Rabbit anti-Annexin II monomer	BIODESIGN INTERNATIONAL	K80100R
ADPI-528	Mouse monoclonal to heat shock protein 90 (HSP90)	Abcam Ltd	ab6536
ADPI-547.3	Monoclonal Anti-Cytokeratin	BIODESIGN INTERNATIONAL	M42107M
ADPI-547.1	mouse anti-beta-Tubulin (monoclonal)	SANTA CRUZ BIOTECHNOLOGY, INC - RESEARCH ANTIBODIES 98/99	sc-5274

**Further information about these antibodies can be obtained from their commercial sources at:
 ACCURATE CHEMICAL & SCIENTIFIC CORPORATION - <http://www.accuratechemical.com/>;
 BIODESIGN INTERNATIONAL - <http://www.biodesign.com/>; DAKO CORPORATION - <http://www.dakousa.com>; RDI RESEARCH DIAGNOSTICS, INC - <http://www.researchd.com>; SANTA CRUZ BIOTECHNOLOGY, INC - <http://www.scbt.com>. ImmunoGlobe - www.immunoGlobe.com;
 Abcam Ltd - www.abcam.co.uk

- In one embodiment, binding of antibody in tissue sections can be used to detect
 5 ADPI localization or the level of one or more ADPIs. In a specific embodiment,
 10 antibody to a ADPI can be used to assay a tissue sample (e.g., a brain biopsy) from a
 subject for the level of the ADPI where a substantially changed level of ADPI is

indicative of Alzheimer's disease. As used herein, a "substantially changed level" means a level that is increased or decreased compared with the level in a subject free from Alzheimer's disease or a reference level. If desired, the comparison can be performed with a matched sample from the same subject, taken from a portion of the body not affected by Alzheimer's disease.

Any suitable immunoassay can be used to detect a ADPI, including, without limitation, competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISAs (enzyme linked immunosorbent assays), "sandwich" immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays and protein A immunoassays.

For example, an ADPI can be detected in a fluid sample (*e.g.*, brain tissue, blood, urine, or tissue homogenate) by means of a two-step sandwich assay. In the first step, a capture reagent (*e.g.*, an anti-ADPI antibody) is used to capture the ADPI. Examples of such antibodies known in the art are set forth in Table VII. The capture reagent can optionally be immobilized on a solid phase. In the second step, a directly or indirectly labelled detection reagent is used to detect the captured ADPI. In one embodiment, the detection reagent is a lectin. A lectin can be used for this purpose that preferentially binds to the ADPI rather than to other isoforms that have the same core protein as the ADPI or to other proteins that share the antigenic determinant recognized by the antibody. In a preferred embodiment, the chosen lectin binds to the ADPI with at least 2-fold greater affinity, more preferably at least 5-fold greater affinity, still more preferably at least 10-fold greater affinity, than to said other isoforms that have the same core protein as the ADPI or to said other proteins that share the antigenic determinant recognized by the antibody. Based on the present description, a lectin that is suitable for detecting a given ADPI can readily be identified by those skilled in the art using methods well known in the art, for instance upon testing one or more lectins enumerated in Table I on pages 158-159 of Sumar et

al., Lectins as Indicators of Disease-Associated Glycoforms, In: Gabius H-J & Gabius S (eds.), 1993, Lectins and Glycobiology, at pp. 158-174 (which is incorporated herein by reference in its entirety). Lectins with the desired oligosaccharide specificity can be identified, for example, by their ability to detect the ADPI in a 2D gel, in a replica of a 2D gel following transfer to a suitable solid substrate such as a nitrocellulose membrane, or in a two-step assay following capture by an antibody. In an alternative embodiment, the detection reagent is an antibody, e.g., an antibody that immunospecifically detects other post-translational modifications, such as an antibody that immunospecifically binds to phosphorylated amino acids. Examples of such antibodies include those that bind to phosphotyrosine (BD Transduction Laboratories, catalog nos.: P11230-050/P11230-150; P11120; P38820; P39020), those that bind to phosphoserine (Zymed Laboratories Inc., South San Francisco, CA, catalog no. 61-8100) and those that bind to phosphothreonine (Zymed Laboratories Inc., South San Francisco, CA, catalog nos. 71-8200, 13-9200).

If desired, a gene encoding an ADPI, a related gene (e.g. a gene having sequence homology), or related nucleic acid sequences or subsequences, including complementary sequences, can also be used in hybridization assays. A nucleotide encoding an ADPI, or subsequences thereof comprising at least 8 nucleotides, preferably at least 12 nucleotides, and most preferably at least 15 nucleotides can be used as a hybridization probe. Hybridization assays can be used for detection, treatment, diagnosis, or monitoring of conditions, disorders, or disease states, associated with aberrant expression of genes encoding ADPIs, or for differential diagnosis of subjects with signs or symptoms suggestive of Alzheimer's disease. In particular, such a hybridization assay can be carried out by a method comprising contacting a subject's sample containing nucleic acid with a nucleic acid probe capable of hybridizing to a DNA or RNA that encodes a ADPI, under conditions such that hybridization can occur, and detecting or measuring any resulting hybridization. Nucleotides can be used for therapy of subjects having Alzheimer's disease, as described below.

The invention also provides diagnostic kits, comprising an anti-ADPI antibody. In addition, such a kit may optionally comprise one or more of the following: (1) instructions for using the anti-ADPI antibody for diagnosis, prognosis, therapeutic monitoring or any suitable combination of these applications; (2) a labelled binding partner to the antibody; (3) a solid phase (such as a reagent strip) upon which the anti-ADPI antibody is immobilized; and (4) a label or insert indicating regulatory approval for diagnostic, prognostic or therapeutic use or any suitable combination thereof. If no labelled binding partner to the antibody is provided, the anti-ADPI antibody itself can be labelled with a detectable marker, e.g., a chemiluminescent, enzymatic, fluorescent, or radioactive moiety.

The invention also provides a kit comprising a nucleic acid probe capable of hybridizing to RNA encoding a ADPI. In a specific embodiment, a kit comprises in one or more containers a pair of primers (e.g., each in the size range of 6-30 nucleotides, more preferably 10-30 nucleotides and still more preferably 10-20 nucleotides) that under appropriate reaction conditions can prime amplification of at least a portion of a nucleic acid encoding a ADPI, such as by polymerase chain reaction (see, e.g., Innis et al., 1990, PCR Protocols, Academic Press, Inc., San Diego, CA), ligase chain reaction (see EP 320,308) use of Q β replicase, cyclic probe reaction, or other methods known in the art.

Kits are also provided which allow for the detection of a plurality of ADPIs or a plurality of nucleic acids each encoding a ADPI. A kit can optionally further comprise a predetermined amount of an isolated ADPI protein or a nucleic acid encoding a ADPI, e.g., for use as a standard or control.

25 5.4 Statistical Techniques for Identifying ADFs and ADF Clusters

Uni-variate differential analysis tools, such as fold changes, Wilcoxon rank sum test and t-test, are useful in identifying individual ADFs or ADPIs that are diagnostically associated with Alzheimer's disease or in identifying individual ADPIs that regulate the disease process. However, those skilled in the art will appreciate that

the disease process is associated with a suitable combination of ADFs or ADPIs (and to be regulated by a suitable combination of ADPIs), rather than individual ADFs and ADPIs in isolation. The strategies for discovering such suitable combinations of ADFs and ADPIs differ from those for discovering individual ADFs and ADPIs. In 5 such cases, each individual ADF and ADPI can be regarded as one variable and the disease can be regarded as a joint, multi-variate effect caused by interaction of these variables.

The following steps can be used to identify markers from data produced by the Preferred Technology.

10 The first step is to identify a collection of ADFs or ADPIs that individually show significant association with Alzheimer's disease. The association between the identified individual ADFs or individual ADPIs and Alzheimer's disease need not be as highly significant when a collection of ADFs and ADPIs is used as a diagnostic as is desirable when an individual ADF or ADPI is used as a diagnostic. Any of the tests 15 discussed above (fold changes, Wilcoxon rank sum test, etc.) can be used at this stage. Once a suitable collection of ADFs or ADPIs has been identified, a sophisticated multi-variate analysis capable of identifying clusters can then be used to estimate the significant multivariate associations with Alzheimer's disease.

20 Linear Discriminant Analysis (LDA) is one such procedure, which can be used to detect significant association between a cluster of variables (i.e., ADFs or ADPIs) and Alzheimer's disease. In performing LDA, a set of weights is associated with each variable (i.e., ADF or ADPI) so that the linear combination of weights and the measured values of the variables can identify the disease state by discriminating between subjects having Alzheimer's disease and subjects free from Alzheimer's 25 disease. Enhancements to the LDA allow stepwise inclusion (or removal) of variables to optimize the discriminant power of the model. The result of the LDA is therefore a cluster of ADFs or ADPIs which can be used for diagnosis, treatment or development of pharmaceutical products. Other enhanced variations of LDA, such as Flexible Discriminant Analysis permit the use of non-linear combinations of variables to

discriminate a disease state from a state in which there is no disease. The results of the discriminant analysis can be verified by post-hoc tests and also by repeating the analysis using alternative techniques such as classification trees.

A further category of ADFs or ADPIs can be identified by qualitative measures
5 by comparing the percentage feature presence of an ADF or ADPI of one group of samples (e.g., samples from diseased subjects) with the percentage feature presence of an ADF or ADPI in another group of samples (e.g., samples from control subjects). The "percentage feature presence" of an ADF or ADPI is the percentage of samples in a group of samples in which the ADF or ADPI is detectable by the detection method of choice.
10 For example, if an ADF is detectable in 95 percent of samples from diseased subjects, the percentage feature presence of that ADF in that sample group is 95 percent. If only 5 percent of samples from non-diseased subjects have detectable levels of the same ADF, detection of that ADF in the sample of a subject would suggest that it is likely that the subject has Alzheimer's disease.

15

5.5 Use in Clinical Studies

The diagnostic methods and compositions of the present invention can assist in monitoring a clinical study, e.g. to evaluate therapies for Alzheimer's disease. In one embodiment, candidate molecules are tested for their ability to restore ADF or ADPI levels in a subject having Alzheimer's disease to levels found in subjects free from Alzheimer's disease or, in a treated subject (e.g. after treatment with a cholinesterase inhibitor such as tacrine), to preserve ADF or ADPI levels at or near non-Alzheimer's disease values. The levels of one or more ADFs or ADPIs can be assayed.

In another embodiment, the methods and compositions of the present invention are used to screen individuals for entry into a clinical study to identify individuals having Alzheimer's disease; individuals already having Alzheimer's disease can then be excluded from the study or can be placed in a separate cohort for treatment or analysis. If desired, the candidates can concurrently be screened to identify individuals with Lewy Body disease and/or vascular dementia; procedures for these

screens are well known in the art (Harding and Halliday, 1998, *Neuropathol. Appl. Neurobiol.* 24:195-201).

5.6 Purification of ADPIs

5 In particular aspects, the invention provides isolated mammalian ADPIs, preferably human ADPIs, and fragments thereof which comprise an antigenic determinant (i.e., can be recognized by an antibody) or which are otherwise functionally active, as well as nucleic acid sequences encoding the foregoing. "Functionally active" as used herein refers to material displaying one or more functional activities associated with a full-length (wild-type) ADPI, e.g., binding to a ADPI substrate or ADPI binding partner, antigenicity (binding to an anti-ADPI antibody), immunogenicity, enzymatic activity and the like.

10 15

In specific embodiments, the invention provides fragments of an ADPI comprising at least 5 amino acids, at least 10 amino acids, at least 50 amino acids, or at least 75 amino acids. Fragments lacking some or all of the regions of an ADPI are also provided, as are proteins (e.g., fusion proteins) comprising such fragments. Nucleic acids encoding the foregoing are provided.

Once a recombinant nucleic acid which encodes the ADPI, a portion of the ADPI, or a precursor of the ADPI is identified, the gene product can be analysed. This 20 can be achieved by assays based on the physical or functional properties of the given product, including, for example, radioactive labelling of the product followed by analysis by gel electrophoresis, immunoassay, etc.

The ADPIs identified herein can be isolated and purified by standard methods including chromatography (e.g., ion exchange, affinity, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins.

Alternatively, once a recombinant nucleic acid that encodes the ADPI is identified, the entire amino acid sequence of the ADPI can be deduced from the nucleotide sequence of the gene coding region contained in the recombinant nucleic

acid. As a result, the protein can be synthesized by standard chemical methods known in the art (e.g., see Hunkapiller et al., 1984, *Nature* 310:105-111).

In another alternative embodiment, native ADPIs can be purified from natural sources, by standard methods such as those described above (e.g., immunoaffinity 5 purification).

In a preferred embodiment, ADPIs are isolated by the Preferred Technology described *supra*. For preparative-scale runs, a narrow-range "zoom gel" having a pH range of 2 pH units or less is preferred for the isoelectric step, according to the method described in Westermeyer, 1993, *Electrophoresis in Practice* (VCH, Weinheim, 10 Germany), pp. 197-209 (which is incorporated herein by reference in its entirety); this modification permits a larger quantity of a target protein to be loaded onto the gel, and thereby increases the quantity of isolated ADPI that can be recovered from the gel. When used in this way for preparative-scale runs, the Preferred Technology typically provides up to 100 ng, and can provide up to 1000 ng, of an isolated ADPI in a single 15 run. Those of skill in the art will appreciate that a zoom gel can be used in any separation strategy which employs gel isoelectric focusing.

The invention thus provides an isolated ADPI, an isolated ADPI-related polypeptide, and an isolated derivative or fragment of a ADPI or a ADPI-related polypeptide; any of the foregoing can be produced by recombinant DNA techniques or 20 by chemical synthetic methods.

5.7. Isolation of DNA Encoding a ADPI

Particular embodiments for the cloning of a gene encoding a ADPI, are presented below by way of example and not of limitation.

25 The nucleotide sequences of the present invention, including DNA and RNA, and comprising a sequence encoding a ADPI or a fragment thereof, or a ADPI-related polypeptide, may be synthesized using methods known in the art, such as using conventional chemical approaches or polymerase chain reaction (PCR) amplification. The nucleotide sequences of the present invention also permit the identification and

cloning of the gene encoding a ADPI homolog or ADPI ortholog including, for example, by screening cDNA libraries, genomic libraries or expression libraries.

- For example, to clone a gene encoding a ADPI by PCR techniques, anchored degenerate oligonucleotides (or a set of most likely oligonucleotides) can be designed for all ADPI peptide fragments identified as part of the same protein. PCR reactions under a variety of conditions can be performed with relevant cDNA and genomic DNAs (*e.g.*, from a brain biopsy or from cells of the immune system) from one or more species. Also vectorette reactions can be performed on any available cDNA and genomic DNA using the oligonucleotides (which preferably are nested) as above.
- 10 Vectorette PCR is a method that enables the amplification of specific DNA fragments in situations where the sequence of only one primer is known. Thus, it extends the application of PCR to stretches of DNA where the sequence information is only available at one end. (Arnold C, 1991, PCR Methods Appl. 1(1):39-42; Dyer KD, Biotechniques, 1995, 19(4):550-2). Vectorette PCR may be performed with probes that are, for example, anchored degenerate oligonucleotides (or most likely oligonucleotides) coding for ADPI peptide fragments, using as a template a genomic library or cDNA library pools.

Anchored degenerate oligonucleotides (and most likely oligonucleotides) can be designed for all ADPI peptide fragments. These oligonucleotides may be labelled and hybridised to filters containing cDNA and genomic DNA libraries.

20 Oligonucleotides to different peptides from the same protein will often identify the same members of the library. The cDNA and genomic DNA libraries may be obtained from any suitable or desired mammalian species, for example from humans.

Nucleotide sequences comprising a nucleotide sequence encoding a ADPI or 25 ADPI fragment of the present invention are useful, for example, for their ability to hybridise selectively with complementary stretches of genes encoding other proteins. Depending on the application, a variety of hybridisation conditions may be employed to obtain nucleotide sequences at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 99% identical, or 100% identical, to the

sequence of a nucleotide encoding a ADPI.

For a high degree of selectivity, relatively stringent conditions are used to form the duplexes, such as low salt or high temperature conditions. As used herein, "highly stringent conditions" means hybridisation to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1xSSC/0.1% SDS at 68°C (Ausabel F.M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & Sons, Inc., New York, at p. 2.10.3; incorporated herein by reference in its entirety.) For some applications, less stringent conditions for duplex formation are required. As used herein "moderately stringent conditions" means washing in 0.2xSSC/0.1% SDS at 42°C (Ausabel et al., 1989, *supra*). Hybridization conditions can also be rendered more stringent by the addition of increasing amounts of formamide, to destabilize the hybrid duplex. Thus, particular hybridisation conditions can be readily manipulated, and will generally be chosen depending on the desired results. In general, convenient hybridisation temperatures in the presence of 50% formamide are: 42°C for a probe which is 95 to 100% identical to the fragment of a gene encoding a ADPI, 37°C for 90 to 95% identity and 32°C for 70 to 90% identity.

In the preparation of genomic libraries, DNA fragments are generated, some of which will encode parts or the whole of an ADPI. Any suitable method for preparing DNA fragments may be used in the present invention. For example, the DNA may be cleaved at specific sites using various restriction enzymes. Alternatively, one may use DNase in the presence of manganese to fragment the DNA, or the DNA can be physically sheared, as for example, by sonication. The DNA fragments can then be separated according to size by standard techniques, including but not limited to agarose and polyacrylamide gel electrophoresis, column chromatography and sucrose gradient centrifugation. The DNA fragments can then be inserted into suitable vectors, including but not limited to plasmids, cosmids, bacteriophages lambda or T4, and yeast artificial chromosome (YAC). (See, e.g., Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Cold

Spring Harbor, New York; Glover, D.M. (ed.), 1985, DNA Cloning: A Practical Approach, MRL Press, Ltd., Oxford, U.K. Vol. I, II; Ausubel F.M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc., New York). The genomic library may be screened by nucleic acid hybridization to labeled probe (Benton and Davis, 1977, Science 196:180; Grunstein and Hogness, 1975, Proc. Natl. Acad. Sci. U.S.A. 72:3961).

Based on the present description, the genomic libraries may be screened with labelled degenerate oligonucleotide probes corresponding to the amino acid sequence of any peptide of the ADPI using optimal approaches well known in the art. Any probe used is at least 10 nucleotides, at least 15 nucleotides, at least 20 nucleotides, at least 25 nucleotides, at least 30 nucleotides, at least 40 nucleotides, at least 50 nucleotides, at least 60 nucleotides, at least 70 nucleotides, at least 80 nucleotides, or at least 100 nucleotides. Preferably a probe is 10 nucleotides or longer, and more preferably 15 nucleotides or longer.

In Table IV above, some ADPIs disclosed herein correspond to variants of previously identified proteins encoded by genes whose sequences are publicly known. To screen such a gene, any probe may be used that is complementary to the gene or its complement; preferably the probe is 10 nucleotides or longer, more preferably 15 nucleotides or longer. The SWISS-PROT and trEMBL databases (held by the Swiss Institute of Bioinformatics (SIB) and the European Bioinformatics Institute (EBI) which are available at <http://www.expasy.ch/>) and the GenBank database (held by the National Institute of Health (NIH) which is available at <http://www.ncbi.nlm.nih.gov/>) provide protein sequences comprising the amino acid sequences listed for the ADPIs in Tables IV and V under the following accession numbers and each sequence is incorporated herein by reference:

Table VII. Nucleotide sequences encoding ADPIs, ADPI-Related Proteins or ERPIs

Table VII

ADF#	ADPI#	ACCESSION
ADF-1	ADPI-1	P14136
ADF-3	ADPI-3.1	AF141349.1
ADF-3	ADPI-3.2	P07197
ADF-3	ADPI-3.3	P21281
ADF-5	ADPI-5.3	8922699
ADF-6	ADPI-6	P14136
ADF-8	ADPI-8	P14136
ADF-9	ADPI-9	P31150
ADF-10	ADPI-10	P14136
ADF-11	ADPI-11	P14136
ADF-12	ADPI-12.1	P14136
ADF-12	ADPI-12.2	U47634.1
ADF-13	ADPI-13	P11142
ADF-15	ADPI-15	Q12765
ADF-16	ADPI-16	P14136
ADF-22	ADPI-22	P55072
ADF-23	ADPI-23	P29777
ADF-24	ADPI-24	Q9Y2J8
ADF-25	ADPI-25.3	P04687
ADF-25	ADPI-25.2	P07196
ADF-26	ADPI-26	P14136
ADF-27	ADPI-27	P14136
ADF-29	ADPI-29	P14136
ADF-31	ADPI-31	P14136
ADF-33	ADPI-33.1	P00558
ADF-35	ADPI-35	P12532
ADF-37	ADPI-37	P36543
ADF-39	ADPI-39	P17174
ADF-41	ADPI-41	NOVEL
ADF-42	ADPI-42	2117873
ADF-54	ADPI-54	Q99798
ADF-56	ADPI-56	Q99798
ADF-61	ADPI-61	P29401
ADF-62	ADPI-62	P06396
ADF-66	ADPI-66	Q05193
ADF-67	ADPI-67	P00367
ADF-68	ADPI-68	P06396
ADF-70	ADPI-70	Q05193
ADF-72	ADPI-72	P06396
ADF-77	ADPI-77	P14136

Table VII

ADF#	ADPI#	ACCESSION
ADF-78	ADPI-78.2	P04350
ADF-78	ADPI-78.3	P14136
ADF-79	ADPI-79	D86957.1
ADF-81	ADPI-81.2	P14136
ADF-82	ADPI-82	P04075
ADF-85	ADPI-85	X04098.1
ADF-87	ADPI-87.1	P11016
ADF-88	ADPI-88	P21266
ADF-90	ADPI-90	P14136
ADF-91	ADPI-91.1	O00154
ADF-91	ADPI-91.2	P09972
ADF-92	ADPI-92	P00338
ADF-94	ADPI-94	7328935
ADF-95	ADPI-95	P28482
ADF-97	ADPI-97	P02794
ADF-98	ADPI-98	P23528
ADF-101	ADPI-101	P23528
ADF-102	ADPI-102.1	P29777
ADF-103	ADPI-103	Q06830
ADF-105	ADPI-105.2	P12953
ADF-105	ADPI-105.1	P14136
ADF-107	ADPI-107	P02511
ADF-108	ADPI-108	P07195
ADF-109	ADPI-109	P80404
ADF-111	ADPI-111.1	P14136
ADF-112	ADPI-112	P46459
ADF-113	ADPI-113	P25705
ADF-115	ADPI-115	P46459
ADF-117	ADPI-117.1	I732416
ADF-119	ADPI-119	P14136
ADF-120	ADPI-120	P14136
ADF-121	ADPI-121	Q16555
ADF-124	ADPI-124	I389721
ADF-125	ADPI-125	P14136
ADF-126	ADPI-126	AF141349.1
ADF-126	ADPI-126	P12277
ADF-126	ADPI-126	P14136
ADF-127	ADPI-127	P29777
ADF-128	ADPI-128	P78417
ADF-129	ADPI-129	P46821

Table VII

ADF#	ADPI#	ACCESSION
ADF-130	ADPI-130	P14136
ADF-131	ADPI-131	P07437
ADF-132	ADPI-132	P14136
ADF-133	ADPI-133	P08559
ADF-138	ADPI-138	P21796
ADF-139	ADPI-139	P09543
ADF-140	ADPI-140	P04350
ADF-141	ADPI-141	P08670
ADF-142	ADPI-142.2	P09972
ADF-142	ADPI-142.1	P16219
ADF-143	ADPI-143.1	P16152
ADF-143	ADPI-143.2	P21796
ADF-144	ADPI-144	P14136
ADF-146	ADPI-146.2	O15540
ADF-146	ADPI-146.1	U81235.1
ADF-148	ADPI-148	P14136
ADF-149	ADPI-149.1	P14136
ADF-150	ADPI-150	P14136
ADF-151	ADPI-151.2	P14136
ADF-151	ADPI-151.1	U47634.1
ADF-152	ADPI-152	P14136
ADF-153	ADPI-153.2	P08670
ADF-153	ADPI-153.1	P06576
ADF-153	ADPI-153.3	P31150
ADF-154	ADPI-154	P14136
ADF-155	ADPI-155	M11717.1
ADF-156	ADPI-156.2	P07196
ADF-156	ADPI-156.1	P14136
ADF-157	ADPI-157	P12277
ADF-159	ADPI-159.1	P02571
ADF-159	ADPI-159.2	P14136
ADF-160	ADPI-160	1732416
ADF-162	ADPI-162.2	P07196
ADF-162	ADPI-162.3	P14136
ADF-162	ADPI-162.1	X04098.1
ADF-163	ADPI-163	P14136
ADF-165	ADPI-165	P30041
ADF-172	ADPI-172	P01922
ADF-173	ADPI-173.1	3041875
ADF-173	ADPI-173.2	3041875

Table VII

ADF#	ADPI#	ACCESSION
ADF-175	ADPI-175.2	P04406
ADF-175	ADPI-175.1	P40926
ADF-176	ADPI-176	3041875
ADF-182	ADPI-182	P21796
ADF-183	ADPI-183	P09936
ADF-188	ADPI-188.1	P07900
ADF-189	ADPI-189.2	P02768
ADF-191	ADPI-191	Q16653
ADF-193	ADPI-193	P02768
ADF-194	ADPI-194.2	P00367
ADF-196	ADPI-196.2	P02675
ADF-196	ADPI-196.3	P02675
ADF-196	ADPI-196.1	P49419
ADF-196	ADPI-196.4	P50995
ADF-202	ADPI-202	3041875
ADF-204	ADPI-204	Q01469
ADF-208	ADPI-208	P02794
ADF-209	ADPI-209	P09382
ADF-216	ADPI-216	P30043
ADF-217	ADPI-217	P02023
ADF-220	ADPI-220	P00915
ADF-223	ADPI-223	P08559
ADF-228	ADPI-228	P26038
ADF-229	ADPI-229	P80404
ADF-230	ADPI-230.1	P04350
ADF-230	ADPI-230.2	P14136
ADF-232	ADPI-232.1	P05217
ADF-232	ADPI-232.2	Q14894
ADF-236	ADPI-236.2	4321795
ADF-236	ADPI-236.3	Q13938
ADF-237	ADPI-237.2	7441369
ADF-237	ADPI-237.1	P13795
ADF-240	ADPI-240	P36542
ADF-243	ADPI-243	Q99962
ADF-245	ADPI-245	P30040
ADF-250	ADPI-250	1805280
ADF-251	ADPI-251	1805280
ADF-252	ADPI-252.1	P22314
ADF-252	ADPI-252.2	P49588
ADF-253	ADPI-253	P19367

Table VII

ADF#	ADPI#	ACCESSION
ADF-254	ADPI-254	P19367
ADF-255	ADPI-255	P19367
ADF-256	ADPI-256	P19367
ADF-257	ADPI-257.1	P07197
ADF-257	ADPI-257.2	P21281
ADF-258	ADPI-258	P48735
ADF-259	ADPI-259.1	P11310
ADF-259	ADPI-259.2	Q15019
ADF-260	ADPI-260	P09543
ADF-261	ADPI-261	Q99962
ADF-262	ADPI-262	P14136
ADF-263	ADPI-263	S410300
ADF-264	ADPI-264	P50148
ADF-265	ADPI-265	P09972
ADF-266	ADPI-266	Q9Y617
ADF-267	ADPI-267	Q99962
ADF-268	ADPI-268.1	P12277
ADF-268	ADPI-268.2	P50213
ADF-269	ADPI-269	P00505
ADF-270	ADPI-270	P14136
ADF-271	ADPI-271	P14136
ADF-272	ADPI-272	P04075
ADF-273	ADPI-273	P04898
ADF-274	ADPI-274	P29777
ADF-275	ADPI-275	P14136
ADF-276	ADPI-276	O95299
ADF-277	ADPI-277	P14136
ADF-278	ADPI-278.1	O00154
ADF-278	ADPI-278.2	P09972
ADF-279	ADPI-279.1	S174445
ADF-279	ADPI-279.2	S174445
ADF-280	ADPI-280	S225320
ADF-281	ADPI-281	O94760
ADF-282	ADPI-282	S225320
ADF-283	ADPI-283	P07437
ADF-284	ADPI-284	P21579
ADF-285	ADPI-285	P08129
ADF-286	ADPI-286	P04406
ADF-287	ADPI-287	Q92561
ADF-288	ADPI-288	S225320

Table VII

ADF#	ADPI#	ACCESSION
ADF-289	ADPI-289	P04406
ADF-290	ADPI-290	O43488
ADF-291	ADPI-291	P04406
ADF-292	ADPI-292	P40926
ADF-293	ADPI-293	P40925
ADF-294	ADPI-294	AF081484.1
ADF-295	ADPI-295	7441369
ADF-296	ADPI-296	6841176, 8923114
ADF-297	ADPI-297	P04350
ADF-298	ADPI-298	631483
ADF-299	ADPI-299	P00338
ADF-300	ADPI-300	11094293
ADF-301	ADPI-301	AK022287.1
ADF-302	ADPI-302	P21796
ADF-303	ADPI-303	P08758
ADF-304	ADPI-304	10800412
ADF-305	ADPI-305	P42655
ADF-306	ADPI-306	P12324
ADF-307	ADPI-307.1	P07226
ADF-307	ADPI-307.2	P42655
ADF-308	ADPI-308	P36542
ADF-309	ADPI-309	P10469
ADF-311	ADPI-311	P07339
ADF-312	ADPI-312	6005842
ADF-313	ADPI-313	P29218
ADF-314	ADPI-314	O95865
ADF-315	ADPI-315	8922498
ADF-316	ADPI-316.1	P04792
ADF-316	ADPI-316.2	P30084
ADF-317	ADPI-317	P13795
ADF-318	ADPI-318	P21851
ADF-319	ADPI-319	5902018
ADF-320	ADPI-320.1	P00492
ADF-320	ADPI-320.2	P30041
ADF-321	ADPI-321	P28161
ADF-322	ADPI-322	P19404
ADF-323	ADPI-323	P02647
ADF-324	ADPI-324	P17080
ADF-325	ADPI-325	P22061

Table VII

ADF#	ADPI#	ACCESSION
ADF-326	ADPI-326	P24539
ADF-327	ADPI-327	9622095
ADF-328	ADPI-328	Q04760
ADF-329	ADPI-329	Q04760
ADF-330	ADPI-330	P00568
ADF-331	ADPI-331	Q06830
ADF-332	ADPI-332	P48047
ADF-333	ADPI-333.1	P30086
ADF-333	ADPI-333.2	Q06830
ADF-334	ADPI-334	P02511
ADF-335	ADPI-335	P42655
ADF-336	ADPI-336	P34991
ADF-337	ADPI-337	P02511
ADF-338	ADPI-338	P00738
ADF-339	ADPI-339	P19105
ADF-340	ADPI-340	P02593
ADF-341	ADPI-341	P37840
ADF-342	ADPI-342	Q9Y281
ADF-343	ADPI-343	P23528
ADF-344	ADPI-344	7441369
ADF-345	ADPI-345	P05092
ADF-346	ADPI-346	P06705
ADF-347	ADPI-347	P30049
ADF-348	ADPI-348	P30086
ADF-349	ADPI-349	7441369
ADF-350	ADPI-350	P09455
ADF-351	ADPI-351	P35080
ADF-352	ADPI-352	P05413
ADF-353	ADPI-353	P02023
ADF-354	ADPI-354	Q16718
ADF-355	ADPI-355	P01922
ADF-356	ADPI-356	P19367
ADF-357	ADPI-357	P21851
ADF-358	ADPI-358	P11216
ADF-359	ADPI-359	P06396
ADF-360	ADPI-360	Q99798
ADF-361	ADPI-361	7328175
ADF-362	ADPI-362	P46459
ADF-363	ADPI-363	7512974
ADF-364	ADPI-364	P41250

Table VII

ADF#	ADPI#	ACCESSION
ADF-365	ADPI-365.1	7512974
ADF-365	ADPI-365.2	Q12931
ADF-366	ADPI-366	Q16555
ADF-367	ADPI-367.1	P11142
ADF-367	ADPI-367.2	P38606
ADF-368	ADPI-368.1	P08107
ADF-368	ADPI-368.2	P08133
ADF-369	ADPI-369.1	3041875
ADF-369	ADPI-369.2	7662673
ADF-370	ADPI-370	4507007
ADF-371	ADPI-371	P02768
ADF-372	ADPI-372	P02768
ADF-373	ADPI-373	3041875
ADF-374	ADPI-374	7768938
ADF-375	ADPI-375	Q16555
ADF-376	ADPI-376	3041875
ADF-377	ADPI-377	P09543
ADF-378	ADPI-378	S225320
ADF-379	ADPI-379	6523827
ADF-380	ADPI-380	P16152
ADF-381	ADPI-381	P35232
ADF-382	ADPI-382	P30712
ADF-383	ADPI-383	P34991
ADF-384	ADPI-384	O15509
ADF-386	ADPI-386	Q16781
ADF-387	ADPI-387	P35080
ADF-388	ADPI-388	P53680
ADF-389	ADPI-389	Q02218
ADF-390	ADPI-390	P08238
ADF-391	ADPI-391	Q01813
ADF-392	ADPI-392	P08107
ADF-393	ADPI-393	P11142
ADF-394	ADPI-394	P54652
ADF-395	ADPI-395	Q99832
ADF-396	ADPI-396	P09622
ADF-397	ADPI-397	7239381
ADF-398	ADPI-398	P40123
ADF-399	ADPI-399.2	P00352
ADF-399	ADPI-399.1	O43175
ADF-400	ADPI-400	P06744

Table VII

ADF#	ADPI#	ACCESSION
ADF-401	ADPI-401	P78371
ADF-402	ADPI-402	Q16555
ADF-403	ADPI-403	P14618
ADF-404	ADPI-404.1	4335941
ADF-404	ADPI-404.2	P49419
ADF-405	ADPI-405	AF141349.1
ADF-406	ADPI-406	Q14141
ADF-407	ADPI-407	P05217
ADF-408	ADPI-408	8922699
ADF-409	ADPI-409	8922699
ADF-410	ADPI-410	AF081484.1
ADF-411	ADPI-411	P14136
ADF-412	ADPI-412.1	P06576
ADF-412	ADPI-412.2	P14136
ADF-413	ADPI-413	P25705
ADF-414	ADPI-414	P06576
ADF-415	ADPI-415	P07197
ADF-416	ADPI-416	8922712
ADF-417	ADPI-417	P06576
ADF-418	ADPI-418	1732416
ADF-419	ADPI-419	P06733
ADF-420	ADPI-420	4104814
ADF-421	ADPI-421	Q9Y281
ADF-422	ADPI-422	P49588
ADF-423	ADPI-423	Q16555
ADF-424	ADPI-424	P04350
ADF-425	ADPI-425	P25705
ADF-426	ADPI-426.1	P25705
ADF-426	ADPI-426.2	Q16851
ADF-427	ADPI-427	P25705
ADF-428	ADPI-428	P14136
ADF-429	ADPI-429	P06733
ADF-430	ADPI-430	4090868
ADF-431	ADPI-431	P43034
ADF-432	ADPI-432	Q16181
ADF-433	ADPI-433	Q16181
ADF-434	ADPI-434	Q9Y2T3
ADF-435	ADPI-435	P07954
ADF-436	ADPI-436	Q02750
ADF-437	ADPI-437	P14136

Table VII

ADF#	ADPI#	ACCESSION
ADF-438	ADPI-438	P23526
ADF-439	ADPI-439	P49411
ADF-440	ADPI-440.1	P02571
ADF-440	ADPI-440.2	P14136
ADF-441	ADPI-441	Q75306
ADF-442	ADPI-442	P14136
ADF-443	ADPI-443	P14136
ADF-444	ADPI-444	P15104
ADF-445	ADPI-445	P12277
ADF-446	ADPI-446	P15104
ADF-447	ADPI-447.1	1805280
ADF-447	ADPI-447.2	P14136
ADF-448	ADPI-448	P12532
ADF-449	ADPI-449	P14136
ADF-450	ADPI-450.1	P02571
ADF-450	ADPI-450.2	P14136
ADF-451	ADPI-451	P08559
ADF-452	ADPI-452	P09543
ADF-453	ADPI-453	Q15142
ADF-454	ADPI-454	P51570
ADF-455	ADPI-455	AF141349.1
ADF-456	ADPI-456	P04687
ADF-457	ADPI-457	P16152
ADF-458	ADPI-458	P04687
ADF-459	ADPI-459	P45880
ADF-460	ADPI-460	P02511
ADF-461	ADPI-461	P55072
ADF-462	ADPI-462	3041875
ADF-463	ADPI-463	3041875
ADF-464	ADPI-464	Q14195
ADF-465	ADPI-465	Q14194
ADF-466	ADPI-466.1	P23368
ADF-466	ADPI-466.2	P36871
ADF-467	ADPI-467	Q14194
ADF-468	ADPI-468	Q14195
ADF-469	ADPI-469.1	P48643
ADF-469	ADPI-469.2	P50990
ADF-470	ADPI-470	6942004
ADF-471	ADPI-471	P35527
ADF-472	ADPI-472	P07197

Table VII

ADF#	ADPI#	ACCESSION
ADF-473	ADPI-473	3041875
ADF-474	ADPI-474	P14618
ADF-475	ADPI-475	P31150
ADF-476	ADPI-476	3041875
ADF-477	ADPI-477	P31146
ADF-478	ADPI-478.1	Q16555
ADF-478	ADPI-478.2	Q16555
ADF-479	ADPI-479	Q92599
ADF-480	ADPI-480	P04687
ADF-481	ADPI-481	P55809
ADF-482	ADPI-482	P78371
ADF-483	ADPI-483	P25705
ADF-484	ADPI-484	P25705
ADF-485	ADPI-485	8922712
ADF-486	ADPI-486	P14136
ADF-487	ADPI-487	P31930
ADF-488	ADPI-488	5915912
ADF-489	ADPI-489	P14136
ADF-490	ADPI-490	P50395
ADF-491	ADPI-491	P14136
ADF-492	ADPI-492	9800545
ADF-493	ADPI-493.1	P02571
ADF-493	ADPI-493.2	P14136
ADF-494	ADPI-494	P49411
ADF-495	ADPI-495	P09543
ADF-496	ADPI-496	P12532
ADF-497	ADPI-497	5725224
ADF-498	ADPI-498	Q02547
ADF-499	ADPI-499	P09936
ADF-500	ADPI-500	Q16555
ADF-501	ADPI-501	Q95741
ADF-502	ADPI-502	P17987
ADF-503	ADPI-503	8671168
ADF-504	ADPI-504	8886025
ADF-505	ADPI-505	Q16352
ADF-506	ADPI-506	P02675
ADF-507	ADPI-507	P07197
ADF-508	ADPI-508	P14136
ADF-509	ADPI-509	P09543
ADF-510	ADPI-510	P14136

Table VII

ADF#	ADPI#	ACCESSION
ADF-511	ADPI-511	P07355
ADF-512	ADPI-512	P22061
ADF-513	ADPI-513	P14618
ADF-514	ADPI-514	Q43175
ADF-515	ADPI-515	P00367
ADF-516	ADPI-516	Q75390
ADF-517	ADPI-517	P14136
ADF-518	ADPI-518	Q16555
ADF-519	ADPI-519	AF141349.1
ADF-520	ADPI-520	P05217
ADF-521	ADPI-521	P14136
ADF-522	ADPI-522	P07197
ADF-523	ADPI-523	P04720
ADF-524	ADPI-524	P14136
ADF-525	ADPI-525	P14136
ADF-526	ADPI-526.1	P06468
ADF-526	ADPI-526.2	P14136
ADF-527	ADPI-527	P05092
ADF-528	ADPI-528	P07900
ADF-529	ADPI-529	11094293
ADF-530	ADPI-530.1	P07437
ADF-530	ADPI-530.2	P14136
ADF-531	ADPI-531	Q01813
ADF-532	ADPI-532	P14618
ADF-533	ADPI-533	1732416
ADF-534	ADPI-534	P09543
ADF-535	ADPI-535	P14618
ADF-536	ADPI-536	P13611
ADF-537	ADPI-537	P14136
ADF-538	ADPI-538	P07196
ADF-539	ADPI-539	P14136
ADF-540	ADPI-540	P29777
ADF-541	ADPI-541	P24752
ADF-542	ADPI-542	7512834
ADF-543	ADPI-543	P21796
ADF-544	ADPI-544	Q94760
ADF-545	ADPI-545	P11142
ADF-546	ADPI-546	Q02252
ADF-547	ADPI-547.3	P35527
ADF-547	ADPI-547.1	P04350

Table VII

ADE#	ADPI#	ACCESSION
ADF-547	ADPI-547.2	P14136
ADF-548	ADPI-548.1	P21796
ADF-548	ADPI-548.2	P47985
ADF-549	ADPI-549	P11216

For ADPI-41, the partial sequence information derived from tandem mass spectrometry was not found to be described as a transcribed protein in any known public database. ADPI-41 is therefore listed as >NOVEL' in Table VII. ADPI-41 has
 5 been cloned, and is further described below. For any ADPI, degenerate probes, or probes taken from the sequences described above by accession number may be used for screening. In the case of degenerate probes, they can be constructed from the partial amino sequence information obtained from tandem mass spectra of tryptic digest peptides of the ADPI. To screen such a gene, any probe may be used that is
 10 complementary to the gene or its complement; preferably the probe is 10 nucleotides or longer, more preferably 15 nucleotides or longer.

When a library is screened, clones with insert DNA encoding the ADPI of interest or a fragment thereof will hybridise to one or more members of the corresponding set of degenerate oligonucleotide probes (or their complement).
 15 Hybridisation of such oligonucleotide probes to genomic libraries is carried out using methods known in the art. For example, hybridisation with one of the above-mentioned degenerate sets of oligonucleotide probes, or their complement (or with any member of such a set, or its complement) can be performed under highly stringent or moderately stringent conditions as defined above, or can be carried out in
 20 2X SSC, 1.0% SDS at 50°C and washed using the washing conditions described *supra* for highly stringent or moderately stringent hybridisation.

In yet another aspect of the invention, clones containing nucleotide sequences encoding the entire ADPI, a fragment of an ADPI, an ADPI-related polypeptide, or a fragment of an ADPI-related polypeptide or any of the foregoing may also be obtained
 25 by screening expression libraries. For example, DNA from the relevant source is

isolated and random fragments are prepared and ligated into an expression vector (e.g., a bacteriophage, plasmid, phagemid or cosmid) such that the inserted sequence in the vector is capable of being expressed by the host cell into which the vector is then introduced. Various screening assays can then be used to select for the expressed 5 ADPI or ADPI-related polypeptides. In one embodiment, the various anti-ADPI antibodies of the invention can be used to identify the desired clones using methods known in the art. See, for example, Harlow and Lane, 1988, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Appendix IV. Colonies or plaques from the library are brought into contact with the antibodies 10 to identify those clones that bind antibody.

In an embodiment, colonies or plaques containing DNA that encodes a ADPI, a fragment of a ADPI, a ADPI-related polypeptide, or a fragment of a ADPI-related polypeptide can be detected using DYNA Beads according to Olswick et al., 29th 13 ICAAC, Houston, Tex. 1989, incorporated herein by reference. Anti-ADPI antibodies are crosslinked to tosylated DYNA Beads M280, and these antibody-containing beads are then contacted with colonies or plaques expressing recombinant polypeptides. Colonies or plaques expressing a ADPI or ADPI-related polypeptide are identified as any of those that bind the beads.

Alternatively, the anti-ADPI antibodies can be nonspecifically immobilized to 20 a suitable support, such as silica or Celite⁷ resin. This material is then used to adsorb to bacterial colonies expressing the ADPI protein or ADPI-related polypeptide as described herein.

In another aspect, PCR amplification may be used to isolate from genomic 25 DNA a substantially pure DNA (i.e., a DNA substantially free of contaminating nucleic acids) encoding the entire ADPI or a part thereof. Preferably such a DNA is at least 95% pure, more preferably at least 99% pure. Oligonucleotide sequences, degenerate or otherwise, that correspond to peptide sequences of ADPIs disclosed herein can be used as primers.

PCR can be carried out, e.g., by use of a Perkin-Elmer Cetus thermal cycler

and Taq polymerase (Gene Amp[®] 7 or AmpliTaq DNA polymerase). One can choose to synthesize several different degenerate primers, for use in the PCR reactions. It is also possible to vary the stringency of hybridisation conditions used in priming the PCR reactions, to allow for greater or lesser degrees of nucleotide sequence similarity

5 between the degenerate primers and the corresponding sequences in the DNA. After successful amplification of a segment of the sequence encoding an ADPI, that segment may be molecularly cloned and sequenced, and utilized as a probe to isolate a complete genomic clone. This, in turn, will permit the determination of the gene's complete nucleotide sequence, the analysis of its expression, and the production of its

10 protein product for functional analysis, as described *infra*.

The gene encoding an ADPI can also be identified by mRNA selection by nucleic acid hybridisation followed by *in vitro* translation. In this procedure, fragments are used to isolate complementary mRNAs by hybridisation. Such DNA fragments may represent available, purified DNA encoding a ADPI of another species (e.g., mouse, human). Immunoprecipitation analysis or functional assays (e.g., aggregation ability *in vitro*; binding to receptor) of the *in vitro* translation products of the isolated products of the isolated mRNAs identifies the mRNA and, therefore, the complementary DNA fragments that contain the desired sequences. In addition, specific mRNAs may be selected by adsorption of polysomes isolated from cells to

15 immobilized antibodies that specifically recognize a ADPI. A radiolabelled cDNA encoding a ADPI can be synthesized using the selected mRNA (from the adsorbed polysomes) as a template. The radiolabelled mRNA or cDNA may then be used as a probe to identify the DNA fragments encoding an ADPI from among other genomic DNA fragments.

20 Alternatives to isolating genomic DNA encoding an ADPI include, but are not limited to, chemically synthesizing the gene sequence itself from a known sequence or making cDNA to the mRNA which encodes the ADPI. For example, RNA for cDNA cloning of the gene encoding a ADPI can be isolated from cells which express the ADPI. Those skilled in the art will understand from the present description that other

methods may be used and are within the scope of the invention.

Any suitable eukaryotic cell can serve as the nucleic acid source for the molecular cloning of the gene encoding an ADPI. The nucleic acid sequences encoding the ADPI can be isolated from vertebrate, mammalian, primate, human, 5 porcine, bovine, feline, avian, equine, canine or murine sources. The DNA may be obtained by standard procedures known in the art from cloned DNA (e.g., a DNA "library"), by chemical synthesis, by cDNA cloning, or by the cloning of genomic DNA, or fragments thereof, purified from the desired cell. (See, e.g., Sambrook et al., 10 1989, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; Glover, D.M. (ed.), 1985, DNA Cloning: A Practical Approach, MRL Press, Ltd., Oxford, U.K. Vol. I, II.) Clones derived from genomic DNA may contain regulatory and intron DNA regions in addition to coding regions; clones derived from cDNA will contain only exon 15 sequences.

15 The identified and isolated gene or cDNA can then be inserted into any suitable cloning vector. A large number of vector-host systems known in the art may be used. As those skilled in the art will appreciate, the vector system chosen should be compatible with the host cell used. Such vectors include, but are not limited to, bacteriophages such as lambda derivatives, plasmids such as PBR322 or pUC plasmid 20 derivatives or the Bluescript vector (Stratagene) or modified viruses such as adenoviruses, adeno-associated viruses or retroviruses. The insertion into a cloning vector can be accomplished, for example, by ligating the DNA fragment into a cloning vector which has complementary cohesive termini. However, if the complementary restriction sites used to fragment the DNA are not present in the cloning vector, the 25 ends of the DNA molecules may be enzymatically modified. Alternatively, any site desired may be produced by ligating nucleotide sequences (linkers) onto the DNA termini; these ligated linkers may comprise specific chemically synthesized oligonucleotides encoding restriction endonuclease recognition sequences. In an alternative method, the cleaved vector and the gene encoding a ADPI may be modified

by homopolymeric tailing. Recombinant molecules can be introduced into host cells via transformation, transfection, infection, electroporation, etc., so that many copies of the gene sequence are generated.

In specific embodiments, transformation of host cells with recombinant DNA molecules that incorporate the isolated gene encoding the ADPI, cDNA, or synthesized DNA sequence enables generation of multiple copies of the gene. Thus, the gene may be obtained in large quantities by growing transformants, isolating the recombinant DNA molecules from the transformants and, when necessary, retrieving the inserted gene from the isolated recombinant DNA.

The nucleotide sequences of the present invention include nucleotide sequences encoding amino acid sequences with substantially the same amino acid sequences as native ADPI, nucleotide sequences encoding amino acid sequences with functionally equivalent amino acids, nucleotide sequences encoding ADPIs, fragments of ADPIs, ADPI-related polypeptides, or fragments of ADPI-related polypeptides.

In a specific embodiment, an isolated nucleic acid molecule encoding a ADPI-related polypeptide can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of a ADPI such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Standard techniques known to those of skill in the art can be used to introduce mutations, including, for example, site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a side chain with a similar charge. Families of amino acid residues having side chains with similar charges have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine,

tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Alternatively, mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened 5 for biological activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed and the activity of the protein can be determined.

5.8 Expression of DNA Encoding ADPIs

The nucleotide sequence coding for a ADPI, a ADPI analogue, a ADPI-related peptide, or a fragment or other derivative of any of the foregoing, can be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for the transcription and translation of the inserted protein-coding sequence. The necessary transcriptional and translational signals can also be supplied by the native gene encoding the ADPI or its flanking regions, or the native gene encoding the ADPI-related polypeptide or its flanking regions. A variety of host-vector systems may be utilized in the present invention to express the protein-coding sequence. These include but are not limited to mammalian cell systems infected with virus (e.g., vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g., baculovirus); microorganisms such as yeast containing yeast vectors; or bacteria transformed with 10 bacteriophage, DNA, plasmid DNA, or cosmid DNA. The expression elements of vectors vary in their strengths and specificities. Depending on the host-vector system utilized, any one of a number of suitable transcription and translation elements may be used. In specific embodiments, a nucleotide sequence encoding a human gene (or a nucleotide sequence encoding a functionally active portion of a human ADPI) is 15 expressed. In yet another embodiment, a fragment of an ADPI comprising a domain of the ADPI is expressed.

Any of the methods previously described for the insertion of DNA fragments into a vector may be used to construct expression vectors containing a chimeric gene consisting of appropriate transcriptional and translational control signals and the

protein coding sequences. These methods may include *in vitro* recombinant DNA and synthetic techniques and *in vivo* recombinants (genetic recombination). Expression of nucleic acid sequence encoding an ADPI or fragment thereof may be regulated by a second nucleic acid sequence so that the ADPI or fragment is expressed in a host transformed with the recombinant DNA molecule. For example, expression of an ADPI may be controlled by any promoter or enhancer element known in the art. Promoters which may be used to control the expression of the gene encoding a ADPI or a ADPI-related polypeptide include, but are not limited to, the SV40 early promoter region (Benoist and Chambon, 1981, *Nature* 290:304-310), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto, et al., 1980, *Cell* 22:787-797), the herpes thymidine kinase promoter (Wagner et al., 1981, *Proc. Natl. Acad. Sci. U.S.A.* 78:1441-1445), the regulatory sequences of the metallothionein gene (Brinster et al., 1982, *Nature* 296:39-42), the tetracycline (Tet) promoter (Gossen et al., 1995, *Proc. Natl. Acad. Sci. USA* 89:5547-5551); prokaryotic expression vectors such as the β -lactamase promoter (Villa-Kamaroff, et al., 1978, *Proc. Natl. Acad. Sci. U.S.A.* 75:3727-3731), or the tac promoter (DeBoer, et al., 1983, *Proc. Natl. Acad. Sci. U.S.A.* 80:21-25; see also "Useful proteins from recombinant bacteria" in *Scientific American*, 1980, 242:74-94); plant expression vectors comprising the nopaline synthetase promoter region (Herrera-Estrella et al., *Nature* 303:209-213) or the cauliflower mosaic virus 35S RNA promoter (Gardner, et al., 1981, *Nucl. Acids Res.* 9:2871), and the promoter of the photosynthetic enzyme ribulose biphosphate carboxylase (Herrera-Estrella et al., 1984, *Nature* 310:115-120); promoter elements from yeast or other fungi such as the Gal 4 promoter, the ADC (alcohol dehydrogenase) promoter, PGK (phosphoglycerol kinase) promoter, alkaline phosphatase promoter, and the following animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: elastase I gene control region which is active in pancreatic acinar cells (Swift et al., 1984, *Cell* 38:639-646; Ormitz et al., 1986, *Cold Spring Harbor Symp. Quant. Biol.* 50:399-409; MacDonald, 1987, *Hepatology* 7:425-515); insulin gene control region which is active

in pancreatic beta cells (Hanahan, 1985, *Nature* 315:115-122), immunoglobulin gene control region which is active in lymphoid cells (Grosschedl et al., 1984, *Cell* 38:647-658; Adames et al., 1985, *Nature* 318:533-538; Alexander et al., 1987, *Mol. Cell. Biol.* 7:1436-1444), mouse mammary tumor virus control region which is active 5 in testicular, breast, lymphoid and mast cells (Leder et al., 1986, *Cell* 45:485-495), albumin gene control region which is active in liver (Pinkert et al., 1987, *Genes and Devel.* 1:268-276), alpha-fetoprotein gene control region which is active in liver (Krumlauf et al., 1985, *Mol. Cell. Biol.* 5:1639-1648; Hammer et al., 1987, *Science* 235:53-58; alpha 1-antitrypsin gene control region which is active in the liver (Kelsey et al., 1987, *Genes and Devel.* 1:161-171), beta-globin gene control region which is 10 active in myeloid cells (Mogram et al., 1985, *Nature* 315:338-340; Kollias et al., 1986, *Cell* 46:89-94; myelin basic protein gene control region which is active in oligodendrocyte cells in the brain (Readhead et al., 1987, *Cell* 48:703-712); myosin 15 light chain-2 gene control region which is active in skeletal muscle (Sani, 1985, *Nature* 314:283-286); neuronal-specific enolase (NSE) which is active in neuronal cells (Morelli et al., 1999, *Gen. Virol.* 80:571-83); brain-derived neurotrophic factor (BDNF) gene control region which is active in neuronal cells (Tabuchi et al., 1998, *Biochem. Biophysic. Res. Com.* 253:818-823); glial fibrillary acidic protein (GFAP) promoter which is active in astrocytes (Gomes et al., 1999, *Braz J Med Biol Res* 20 32(5):619-631; Morelli et al., 1999, *Gen. Virol.* 80:571-83) and gonadotropin releasing hormone gene control region which is active in the hypothalamus (Mason et al., 1986, *Science* 234:1372-1378).

In a specific embodiment, a vector is used that comprises a promoter operably linked to a ADPI-encoding nucleic acid, one or more origins of replication, and, 25 optionally, one or more selectable markers (e.g., an antibiotic resistance gene).

In a specific embodiment, an expression construct is made by subcloning a ADPI or a ADPI-related polypeptide coding sequence into the EcoRI restriction site of each of the three pGEX vectors (Glutathione S-Transferase expression vectors; Smith and Johnson, 1988, *Gene* 7:31-40). This allows for the expression of the ADPI

product or ADPI-related polypeptide from the subclone in the correct reading frame.

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the ADPI coding sequence or ADPI-related polypeptide coding sequence may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by *in vitro* or *in vivo* recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing the antibody molecule in infected hosts. (e.g., see Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:355-359). Specific initiation signals may also be required for efficient translation of inserted antibody coding sequences. These signals include the ATG initiation codon and adjacent sequences. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bittner et al., 1987, Methods in Enzymol. 153:51-544).

Expression vectors containing inserts of a gene encoding a ADPI or a ADPI-related polypeptide can be identified, for example, by three general approaches: (a) nucleic acid hybridisation, (b) presence or absence of "marker" gene functions, and (c) expression of inserted sequences. In the first approach, the presence of a gene encoding a ADPI inserted in an expression vector can be detected by nucleic acid hybridisation using probes comprising sequences that are homologous to an inserted gene encoding a ADPI. In the second approach, the recombinant vector/host system can be identified and selected based upon the presence or absence of certain "marker" gene functions (e.g., thymidine kinase activity, resistance to antibiotics, transformation phenotype, occlusion body formation in baculovirus, etc.) caused by the insertion of a gene encoding a ADPI in the vector. For example, if the gene encoding the ADPI is

inserted within the marker gene sequence of the vector, recombinants containing the gene encoding the ADPI insert can be identified by the absence of the marker gene function. In the third approach, recombinant expression vectors can be identified by assaying the gene product (i.e., ADPI) expressed by the recombinant. Such assays can 5 be based, for example, on the physical or functional properties of the ADPI in *in vitro* assay systems, e.g., binding with anti-ADPI antibody.

In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Expression from certain promoters can be elevated in the presence of 10 certain inducers; thus, expression of the genetically engineered ADPI or ADPI-related polypeptide may be controlled. Furthermore, different host cells have characteristic and specific mechanisms for the translational and post-translational processing and modification (e.g., glycosylation, phosphorylation of proteins). Appropriate cell lines or host systems can be chosen to ensure the desired modification and processing of the 15 foreign protein expressed. For example, expression in a bacterial system will produce an unglycosylated product and expression in yeast will produce a glycosylated product. Eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include but are not limited to CHO, 20 VERY, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, and in particular, neuronal cell lines such as, for example, SK-N-AS, SK-N-Fl, SK-N-DZ human neuroblastomas (Sugimoto et al., 1984, J. Natl. Cancer Inst. 73: 51-57), SK-N-SH human neuroblastoma (Biochim. Biophys. Acta, 1982, 704: 450-460), Daoy human cerebellar medulloblastoma (He et al., 1992, Cancer Res. 52: 1144-1148) DBTRG-05MG 25 glioblastoma cells (Kruse et al., 1992, In Vitro Cell. Dev. Biol. 28A: 609-614), IMR-32 human neuroblastoma (Cancer Res., 1970, 30: 2110-2118), 1321N1 human astrocytoma (Proc. Natl Acad. Sci. USA, 1977, 74: 4816), MOG-G-CCM human astrocytoma (Br. J. Cancer, 1984, 49: 269), U87MG human glioblastoma-astrocytoma (Acta Pathol. Microbiol. Scand., 1968, 74: 465-486), A172 human glioblastoma

(Olopade et al., 1992, *Cancer Res.* 52: 2523-2529), C6 rat glioma cells (Benda et al., 1968, *Science* 161: 370-371), Neuro-2a mouse neuroblastoma (Proc. Natl. Acad. Sci. USA, 1970, 65: 129-136), NB41A3 mouse neuroblastoma (Proc. Natl. Acad. Sci. USA, 1962, 48: 1184-1190), SCP sheep choroid plexus (Bolin et al., 1994, *J. Virol. Methods* 48: 211-221), G355-5, PG-4 Cat normal astrocyte (Haapala et al., 1985, *J. Virol.* 53: 827-833), Mpf ferret brain (Trowbridge et al., 1982, *In Vitro* 18: 952-960), and normal cell lines such as, for example, CTX TNA2 rat normal cortex brain (Radany et al., 1992, Proc. Natl. Acad. Sci. USA 89: 6467-6471) such as, for example, CRL7030 and Hs578Bst. Furthermore, different vector/host expression systems may effect processing reactions to different extents.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the differentially expressed or pathway gene protein may be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (*e.g.*, promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched medium, and then are switched to a selective medium. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci, which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the differentially expressed or pathway gene protein. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the differentially expressed or pathway gene protein.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, *Cell* 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al.,

1980, Cell 22:817) genes can be employed in tk-, hprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers 5 resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147) genes.

In other embodiments, the ADPI, fragment, analogue, or derivative may be
10 expressed as a fusion, or chimeric protein product (comprising the protein, fragment, analogue, or derivative joined via a peptide bond to a heterologous protein sequence). For example, the polypeptides of the present invention may be fused with the constant domain of immunoglobulins (IgA, IgE, IgG, IgM), or portions thereof (CH1, CH2, CH3, or any combination thereof and portions thereof) resulting in chimeric
15 polypeptides. Such fusion proteins may facilitate purification, increase half-life *in vivo*, and enhance the delivery of an antigen across an epithelial barrier to the immune system. An increase in the half-life *in vivo* and facilitated purification has been shown for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light
20 chains of mammalian immunoglobulins. See, e.g., EP 394,827; Traunecker et al., Nature, 331:84-86 (1988). Enhanced delivery of an antigen across the epithelial barrier to the immune system has been demonstrated for antigens (e.g., insulin) conjugated to an FcRn binding partner such as IgG or Fc fragments (see, e.g., PCT publications WO 96/22024 and WO 99/04813).

25 Nucleic acids encoding an ADPI, a fragment of an ADPI, an ADPI-related polypeptide, or a fragment of an ADPI-related polypeptide can be fused to an epitope tag (e.g., the hemagglutinin ("HA") tag or flag tag) to aid in detection and purification of the expressed polypeptide. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human

cell lines (Janknecht et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972-897).

An ADPI fusion protein can be made by ligating the appropriate nucleic acid sequences encoding the desired amino acid sequences to each other by methods known in the art, in the proper coding frame, and expressing the chimeric product by methods commonly known in the art. Alternatively, a ADPI fusion protein may be made by 5 protein synthetic techniques, e.g., by use of a peptide synthesizer.

Both cDNA and genomic sequences can be cloned and expressed.

5.9 Domain Structure of ADPIs

Domains of some of the ADPIs provided by the present invention are known in the art and have been described in the scientific literature. Moreover, domains of a ADPI can be identified using techniques known to those of skill in the art. For example, one or more domains of a ADPI can be identified by using one or more of the following programs: ProDom, TMpred, and SAPS. ProDom compares the amino acid sequence of a polypeptide to a database of compiled domains (see, e.g., <http://www.toulouse.inra.fr/prodom.html>; Corpet F., Gouzy J. & Kahn D., 1999, Nucleic Acids Res., 27:263-267). TMpred predicts membrane-spanning regions of a polypeptide and their orientation. This program uses an algorithm that is based on the statistical analysis of TMbase, a database of naturally occurring transmembrane 15 proteins (see, e.g., http://www.ch.embnet.org/software/TMPRED_form.html; Hofmann & Stoffel, (1993) "TMbase - A database of membrane spanning proteins segments." Biol. Chem. Hoppe-Seyler 347,166). The SAPS program analyses polypeptides for statistically significant features like charge-clusters, repeats, hydrophobic regions, compositional domains (see, e.g., Brendel et al., 1992, Proc. 20 Natl. Acad. Sci. USA 89: 2002-2006). Thus, based on the present description, those skilled in the art can identify domains of a ADPI having enzymatic or binding activity, and further can identify nucleotide sequences encoding such domains. These 25 nucleotide sequences can then be used for recombinant expression of a ADPI fragment that retains the enzymatic or binding activity of the ADPI.

Based on the present description, those skilled in the art can identify domains of a ADPI having enzymatic or binding activity, and further can identify nucleotide sequences encoding such domains. These nucleotide sequences can then be used for recombinant expression of ADPI fragments that retain the enzymatic or binding activity of the ADPI.

In one embodiment, a ADPI has an amino acid sequence sufficiently similar to an identified domain of a known polypeptide. As used herein, the term "sufficiently similar" refers to a first amino acid or nucleotide sequence which contains a sufficient number of identical or equivalent (e.g., with a similar side chain) amino acid residues or nucleotides to a second amino acid or nucleotide sequence such that the first and second amino acid or nucleotide sequences have or encode a common structural domain or common functional activity or both.

An ADPI domain can be assessed for its function using techniques well known to those of skill in the art. For example, a domain can be assessed for its kinase activity or for its ability to bind to DNA using techniques known to the skilled artisan. Kinase activity can be assessed, for example, by measuring the ability of a polypeptide to phosphorylate a substrate. DNA binding activity can be assessed, for example, by measuring the ability of a polypeptide to bind to a DNA binding element in an electromobility shift assay. In a preferred embodiment, the function of a domain of an ADPI is determined using an assay described in one or more of the references identified in Table VIII, *infra*.

5.10 Production of Antibodies to ADPIs

According to the invention a ADPI, ADPI analogue, ADPI-related protein or a fragment or derivative of any of the foregoing may be used as an immunogen to generate antibodies which immunospecifically bind such an immunogen. Such immunogens can be isolated by any convenient means, including the methods described above. Antibodies of the invention include, but are not limited to polyclonal, monoclonal, bispecific, humanized or chimeric antibodies, single chain

antibodies, Fab fragments and F(ab') fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., 5 molecules that contain an antigen binding site that specifically binds an antigen. The immunoglobulin molecules of the invention can be of any class (e.g., IgG, IgE, IgM, IgD and IgA) or subclass of immunoglobulin molecule.

In one embodiment, antibodies that recognize gene products of genes encoding ADPIs may be prepared. For example, antibodies that recognize these ADPIs and/or 10 their isoforms include antibodies recognizing ADPI-62, ADPI-68, ADPI-72, ADPI-78.2, ADPI-108, ADPI-140, ADPI-141, ADPI-153.2, ADPI-175.2, ADPI-188.1, ADPI-189.2, ADPI-193, ADPI-196.2, ADPI-217, ADPI-220, ADPI-228, ADPI-230.1, ADPI-286, ADPI-289, ADPI-291, ADPI-297, ADPI-311, ADPI-323, ADPI-351, 15 ADPI-353, ADPI-359, ADPI-371, ADPI-372, ADPI-387, ADPI-390, ADPI-399.2, ADPI-419, ADPI-424, ADPI-429, ADPI-471, ADPI-506, ADPI-511, ADPI-528, ADPI-547.3, ADPI-547.1. Certain antibodies are already known and can be purchased 20 from commercial sources as shown in Table VII above. In another embodiment, methods known to those skilled in the art are used to produce antibodies that recognize an ADPI, an ADPI analogue, an ADPI-related polypeptide, or a derivative or fragment of any of the foregoing.

In one embodiment of the invention, antibodies to a specific domain of a ADPI are produced. In a specific embodiment, hydrophilic fragments of a ADPI are used as immunogens for antibody production.

In the production of antibodies, screening for the desired antibody can be 25 accomplished by techniques known in the art, e.g. ELISA (enzyme-linked immunosorbent assay). For example, to select antibodies that recognize a specific domain of a ADPI, one may assay generated hybridomas for a product which binds to a ADPI fragment containing such domain. For selection of an antibody that specifically binds a first ADPI homologue but which does not specifically bind to (or

binds less avidly to) a second ADPI homologue, one can select on the basis of positive binding to the first ADPI homologue and a lack of binding to (or reduced binding to) the second ADPI homologue. Similarly, for selection of an antibody that specifically binds a ADPI but which does not specifically bind to (or binds less avidly to) a different isoform of the same protein (such as a different glycoform having the same core peptide as the ADPI), one can select on the basis of positive binding to the ADPI and a lack of binding to (or reduced binding to) the different isoform (e.g., a different glycoform). Thus, the present invention provides an antibody (particularly a monoclonal antibody) that binds with greater affinity (particularly at least 2-fold, more particularly at least 5-fold still more particularly at least 10-fold greater affinity) to a ADPI than to a different isoform or isoforms (e.g., glycoforms) of the ADPI.

Polyclonal antibodies which may be used in the methods of the invention are heterogeneous populations of antibody molecules derived from the sera of immunized animals. Unfractionated immune serum can also be used. Various procedures known in the art may be used for the production of polyclonal antibodies to a ADPI, a fragment of a ADPI, a ADPI-related polypeptide, or a fragment of a ADPI-related polypeptide. In a particular embodiment, rabbit polyclonal antibodies to an epitope of a ADPI or a ADPI-related polypeptide can be obtained. For example, for the production of polyclonal or monoclonal antibodies, various host animals can be immunized by injection with the native or a synthetic (e.g., recombinant) version of a ADPI, a fragment of a ADPI, a ADPI-related polypeptide, or a fragment of a ADPI-related polypeptide, including but not limited to rabbits, mice, rats, etc. Isolated ADPIs suitable for such immunization may be obtained by the use of discovery techniques, such as the preferred technology described herein. If the ADPI is purified by gel electrophoresis, the ADPI can be used for immunization with or without prior extraction from the polyacrylamide gel. Various adjuvants may be used to enhance the immunological response, depending on the host species, including, but not limited to, complete or incomplete Freund's adjuvant, a mineral gel such as aluminium hydroxide, surface active substance such as lyssolecithin, pluronic polyol, a polyanion, a peptide,

an oil emulsion, keyhole limpet hemocyanin, dinitrophenol, and an adjuvant such as BCG (bacille Calmette-Guerin) or corynebacterium parvum. Additional adjuvants are also well known in the art.

For preparation of monoclonal antibodies (mAbs) directed toward an ADPI, a fragment of an ADPI, an ADPI-related polypeptide, or a fragment of an ADPI-related polypeptide, any technique that provides for the production of antibody molecules by continuous cell lines in culture may be used. For example, the hybridoma technique originally developed by Kohler and Milstein (1975, *Nature* 256:495-497), as well as the trioma technique, the human B-cell hybridoma technique (Kozbor et al., 1983, 5 *Immunology Today* 4:72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., 1985, in *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAbs of the invention may be cultivated *in vitro* or *in vivo*. In an additional embodiment of the invention, monoclonal antibodies can be 10 produced in germ-free animals utilizing known technology (PCT/US90/02545, incorporated herein by reference).

The monoclonal antibodies include but are not limited to human monoclonal antibodies and chimeric monoclonal antibodies (e.g., human-mouse chimeras). 15 Humanized antibodies are antibody molecules from non-human species having one or more complementarily determining regions (CDRs) from the non-human species and a framework region from a human immunoglobulin molecule. (See, e.g., Queen, U.S. Patent No. 5,585,089, which is incorporated herein by reference in its entirety.)

Chimeric and humanized monoclonal antibodies can be produced by 20 recombinant DNA techniques known in the art, for example using methods described in PCT Publication No. WO 87/02671; European Patent Application 184,187; European Patent Application 171,496; European Patent Application 173,494; PCT Publication No. WO 86/01533; U.S. Patent No. 4,816,567; European Patent Application 125,023; Better et al., 1988, *Science* 240:1041-1043; Liu et al., 1987,

Proc. Natl. Acad. Sci. USA 84:3439-3443; Liu et al., 1987, J. Immunol. 139:3521-3526; Sun et al., 1987, Proc. Natl. Acad. Sci. USA 84:214-218; Nishimura et al., 1987, Canc. Res. 47:999-1005; Wood et al., 1985, Nature 314:446-449; and Shaw et al., 1988, J. Natl. Cancer Inst. 80:1553-1559; Morrison, 1985, Science 229:1202-1207; Oi et al., 1986, Bio/Techniques 4:214; U.S. Patent 5,225,539; Jones et al., 1986, Nature 321:552-525; Verhoeven et al. (1988) Science 239:1534; and Beidler et al., 1988, J. Immunol. 141:4053-4060.

Completely human antibodies are particularly desirable for therapeutic treatment of human subjects. Such antibodies can be produced using transgenic mice which are incapable of expressing endogenous immunoglobulin heavy and light chains genes, but which can express human heavy and light chain genes. The transgenic mice are immunized in the normal fashion with selected antigens, e.g., all or a portion of a ADPI of the invention. Monoclonal antibodies directed against the antigen can be obtained using conventional hybridoma technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA, IgM and IgE antibodies. For an overview of this technology for producing human antibodies, see Lonberg and Huszar (1995, Int. Rev. Immunol. 13:65-93). For a detailed discussion of this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, see, e.g., U.S. Patent 5,625,126; U.S. Patent 5,633,425; U.S. Patent 5,569,825; U.S. Patent 5,661,016; and U.S. Patent 5,545,806. In addition, companies such as Abgenix, Inc. (Freemont, CA) and Genpharm (San Jose, CA) can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.

Completely human antibodies which recognize a selected epitope can be generated using a technique referred to as "guided selection." In this approach a selected non-human monoclonal antibody, e.g., a mouse antibody, is used to guide the selection of a completely human antibody recognizing the same epitope. (Jespers et al.

(1994) Biotechnology 12:899-903).

The antibodies of the present invention can also be generated using various phage display methods known in the art. In phage display methods, functional antibody domains are displayed on the surface of phage particles which carry the 5 polynucleotide sequences encoding them. In a particular, such phage can be utilized to display antigen binding domains expressed from a repertoire or combinatorial antibody library (*e.g.*, human or murine). Phage expressing an antigen binding domain that binds the antigen of interest can be selected or identified with antigen, *e.g.*, using labeled antigen or antigen bound or captured to a solid surface or bead. Phage used in 10 these methods are typically filamentous phage including fd and M13 binding domains expressed from phage with Fab, Fv or disulfide stabilized Fv antibody domains recombinantly fused to either the phage gene III or gene VIII protein. Phage display methods that can be used to make the antibodies of the present invention include those disclosed in Brinkman et al., J. Immunol. Methods 182:41-50 (1995); Ames et al., J. 15 Immunol. Methods 184:177-186 (1995); Kettleborough et al., Eur. J. Immunol. 24:952-958 (1994); Persic et al., Gene 187 9-18 (1997); Burton et al., Advances in Immunology 57:191-280 (1994); PCT Application No. PCT/GB91/01134; PCT Publications WO 90/02809; WO 91/10737; WO 92/01047; WO 92/18619; WO 93/11236; WO 95/15982; WO 95/20401; and U.S. Patent Nos. 5,698,426; 5,223,409; 20 5,403,484; 5,580,717; 5,427,908; 5,750,753; 5,821,047; 5,571,698; 5,427,908; 5,516,637; 5,780,225; 5,658,727; 5,733,743 and 5,969,108; each of which is incorporated herein by reference in its entirety.

As described in the above references, after phage selection, the antibody coding regions from the phage can be isolated and used to generate whole antibodies, 25 including human antibodies, or any other desired antigen binding fragment, and expressed in any desired host, including mammalian cells, insect cells, plant cells, yeast, and bacteria, *e.g.*, as described in detail below. For example, techniques to recombinantly produce Fab, Fab' and F(ab')2 fragments can also be employed using methods known in the art such as those disclosed in PCT publication WO 92/22324;

Mullinax et al., BioTechniques 12(6):864-869 (1992); and Sawai et al., AJRI 34:26-34 (1995); and Better et al., Science 240:1041-1043 (1988) (said references incorporated by reference in their entireties).

Examples of suitable techniques which can be used to produce single-chain Fvs and antibodies against ADPIs of the present invention include those described in U.S. Patents 4,946,778 and 5,258,498; Huston et al., Methods in Enzymology 203:46-88 (1991); Shu et al., PNAS 90:7995-7999 (1993); and Skerra et al., Science 240:1038-1040 (1988).

The invention further provides for the use of bispecific antibodies, which can be made by methods known in the art. Traditional production of full length bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Milstein et al., 1983, Nature 305:537-539). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., 1991, EMBO J. 10:3655-3659.

According to a different and more preferred approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH₂, and CH₃ regions. It is preferred to have the first heavy-chain constant region (CH₁) containing the site necessary for light chain binding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments

when unequal ratios of the three polypeptide chains used in the construction provide the optimum yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of 5 no particular significance.

In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric 10 structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690 published March 3, 1994. For further details for generating bispecific antibodies see, for example, Suresh et al., 15 Methods in Enzymology, 1986, 121:210.

The invention provides functionally active fragments, derivatives or analogues of the anti-ADPI immunoglobulin molecules. Functionally active means that the fragment, derivative or analogue is able to elicit anti-anti-idiotypic antibodies (i.e., tertiary antibodies) that recognize the same antigen that is recognized by the antibody 20 from which the fragment, derivative or analogue is derived. Specifically, in a preferred embodiment the antigenicity of the idiotype of the immunoglobulin molecule may be enhanced by deletion of framework and CDR sequences that are C-terminal to the CDR sequence that specifically recognizes the antigen. To determine which CDR sequences bind the antigen, synthetic peptides containing the CDR sequences can be 25 used in binding assays with the antigen by any suitable binding assay known in the art.

The present invention provides antibody fragments such as, but not limited to, F(ab')₂ fragments and Fab fragments. Antibody fragments which recognize specific epitopes may be generated by known techniques. F(ab')₂ fragments consist of the variable region, the light chain constant region and the CH1 domain of the heavy chain

and are generated by pepsin digestion of the antibody molecule. Fab fragments are generated by reducing the disulfide bridges of the F(ab')₂ fragments. The invention also provides heavy chain and light chain dimers of the antibodies of the invention, or any minimal fragment thereof such as Fvs or single chain antibodies (SCAs) (e.g., as described in U.S. Patent 4,946,778; Bird, 1988, Science 242:423-42; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; and Ward et al., 1989, Nature 334:544-54), or any other molecule with the same specificity as the antibody of the invention. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide. Techniques for the assembly of functional Fv fragments in *E. coli* may be used (Skerra et al., 1988, Science 242:1038-1041).

In other embodiments, the invention provides fusion proteins of the immunoglobulins of the invention (or functionally active fragments thereof), for example in which the immunoglobulin is fused via a covalent bond (e.g., a peptide bond), at either the N-terminus or the C-terminus to an amino acid sequence of another protein (or portion thereof, preferably at least 10, 20 or 50 amino acid portion of the protein) that is not the immunoglobulin. Preferably the immunoglobulin, or fragment thereof, is covalently linked to the other protein at the N-terminus of the constant domain. As stated above, such fusion proteins may facilitate purification, increase half-life *in vivo*, and enhance the delivery of an antigen across an epithelial barrier to the immune system.

The immunoglobulins of the invention include analogues and derivatives that are either modified, i.e., by the covalent attachment of any type of molecule as long as such covalent attachment that does not impair immunospecific binding. For example, but not by way of limitation, the derivatives and analogues of the immunoglobulins include those that have been further modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including,

but not limited to specific chemical cleavage, acetylation, formylation, etc.

Additionally, the antibody or derivative may contain one or more non-classical or unnatural amino acids.

The foregoing antibodies can be used in methods known in the art relating to
5 the localization and activity of the ADPIs of the invention, e.g., for imaging these proteins, measuring levels thereof in appropriate physiological samples, in diagnostic methods, etc.

5.11 Expression of Antibodies

10 The antibodies of the invention can be produced by any suitable method known in the art for the synthesis of antibodies, in particular, by chemical synthesis or by recombinant expression, and are preferably produced by recombinant expression techniques.

15 Recombinant expression of antibodies, or fragments, derivatives or analogues thereof, requires construction of a nucleic acid that encodes the antibody. If the nucleotide sequence of the antibody is known, a nucleic acid encoding the antibody may be assembled from chemically synthesized oligonucleotides (e.g., as described in Kutmeier et al., 1994, BioTechniques 17:242), which, briefly, involves the synthesis of overlapping oligonucleotides containing portions of the sequence encoding antibody,
20 annealing and ligation of those oligonucleotides, and then amplification of the ligated oligonucleotides by PCR.

25 Alternatively, the nucleic acid encoding the antibody may be obtained by cloning the antibody. If a clone containing the nucleic acid encoding the particular antibody is not available, but the sequence of the antibody molecule is known, a nucleic acid encoding the antibody may be obtained from a suitable source (e.g., an antibody cDNA library, or cDNA library generated from any tissue or cells expressing the antibody) by PCR amplification using synthetic primers hybridisable to the 3' and 5' ends of the sequence or by cloning using an oligonucleotide probe specific for the particular gene sequence.

If an antibody molecule that specifically recognizes a particular antigen is not available (or a source for a cDNA library for cloning a nucleic acid encoding such an antibody), antibodies specific for a particular antigen may be generated by any method known in the art, for example, by immunizing an animal, such as a rabbit, to generate 5 polyclonal antibodies or, more preferably, by generating monoclonal antibodies.

Alternatively, a clone encoding at least the Fab portion of the antibody may be obtained by screening Fab expression libraries (e.g., as described in Huse et al., 1989, Science 246:1275-1281) for clones of Fab fragments that bind the specific antigen or by screening antibody libraries (See, e.g., Clackson et al., 1991, Nature 352:624; Hane 10 et al., 1997 Proc. Natl. Acad. Sci. USA 94:4937).

Once a nucleic acid encoding at least the variable domain of the antibody molecule is obtained, it may be introduced into a vector containing the nucleotide sequence encoding the constant region of the antibody molecule (see, e.g., PCT Publication WO 86/05807; PCT Publication WO 89/01036; and U.S. Patent No. 15 5,122,464). Vectors containing the complete light or heavy chain for co-expression with the nucleic acid to allow the expression of a complete antibody molecule are also available. Then, the nucleic acid encoding the antibody can be used to introduce the nucleotide substitution(s) or deletion(s) necessary to substitute (or delete) the one or more variable region cysteine residues participating in an intrachain disulfide bond 20 with an amino acid residue that does not contain a sulphydryl group. Such modifications can be carried out by any method known in the art for the introduction of specific mutations or deletions in a nucleotide sequence, for example, but not limited to, chemical mutagenesis, *in vitro* site directed mutagenesis (Hutchinson et al., 1978, J. Biol. Chem. 253:6551), PCT based methods, etc.

25 In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. Acad. Sci. 81:851-855; Neuberger et al., 1984, Nature 312:604-608; Takeda et al., 1985, Nature 314:452-454) by splicing genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. As

described *supra*, a chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human antibody constant region, e.g., humanized antibodies.

Once a nucleic acid encoding an antibody molecule of the invention has been obtained, the vector for the production of the antibody molecule may be produced by recombinant DNA technology using techniques well known in the art. Thus, methods for preparing the protein of the invention by expressing nucleic acid containing the antibody molecule sequences are described herein. Methods which are well known to those skilled in the art can be used to construct expression vectors containing an antibody molecule coding sequences and appropriate transcriptional and translational control signals. These methods include, for example, *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* genetic recombination. See, for example, the techniques described in Sambrook et al. (1990, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) and Ausubel et al. (eds., 1998, Current Protocols in Molecular Biology, John Wiley & Sons, NY).

The expression vector is transferred to a host cell by conventional techniques and the transfected cells are then cultured by conventional techniques to produce an antibody of the invention.

The host cells used to express a recombinant antibody of the invention may be either bacterial cells such as *Escherichia coli*, or, preferably, eukaryotic cells, especially for the expression of whole recombinant antibody molecule. In particular, mammalian cells such as Chinese hamster ovary cells (CHO), in conjunction with a vector such as the major intermediate early gene promoter element from human cytomegalovirus is an effective expression system for antibodies (Foecking et al., 1986, Gene 45:101; Cockett et al., 1990, Bio/Technology 8:2).

A variety of host-expression vector systems may be utilized to express an antibody molecule of the invention. Such host-expression systems represent vehicles

by which the coding sequences of interest may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, express the antibody molecule of the invention *in situ*. These include but are not limited to microorganisms such as bacteria (e.g., *E. coli*, *B. subtilis*) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing antibody coding sequences; yeast (e.g., *Saccharomyces*, *Pichia*) transformed with recombinant yeast expression vectors containing antibody coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the antibody coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing antibody coding sequences; or mammalian cell systems (e.g., COS, CHO, BHK, HEK 293, 3T3 cells) harbouring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the antibody molecule being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of pharmaceutical compositions comprising an antibody molecule, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the *E. coli* expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which the antibody coding sequence may be ligated individually into the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 24:5503-5509); and the like. pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by

adsorption and binding to a matrix glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.

- 5 In an insect system, *Autographa californica* nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in *Spodoptera frugiperda* cells. The antibody coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). In mammalian 10 host cells, a number of viral-based expression systems (e.g., an adenovirus expression system) may be utilized.

As discussed above, a host cell strain may be chosen based on the present description which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for 15 the function of the protein.

For long-term, high-yield production of recombinant antibodies, stable expression is preferred. For example, cells lines that stably express an antibody of interest can be produced by transfecting the cells with an expression vector comprising 20 the nucleotide sequence of the antibody and the nucleotide sequence of a selectable (e.g., neomycin or hygromycin), and selecting for expression of the selectable marker. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that interact directly or indirectly with the antibody molecule.

The expression levels of the antibody molecule can be increased by vector 25 amplification (for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol.3. (Academic Press, New York, 1987)). When a marker in the vector system expressing antibody is amplifiable, an increase in the level of inhibitor present in culture of host cell will increase the number of copies of the marker gene. Since the

amplified region is associated with the antibody gene, production of the antibody will also increase (Crouse et al., 1983, Mol. Cell. Biol. 3:257).

The host cell may be co-transfected with two expression vectors of the invention, the first vector encoding a heavy chain derived polypeptide and the second 5 vector encoding a light chain derived polypeptide. The two vectors may contain identical selectable markers which enable equal expression of heavy and light chain polypeptides. Alternatively, a single vector may be used which encodes both heavy and light chain polypeptides. In such situations, the light chain should be placed before the heavy chain to avoid an excess of toxic free heavy chain (Proudfoot, 1986, 10 Nature 322:52; Kohler, 1980, Proc. Natl. Acad. Sci. USA 77:2197). The coding sequences for the heavy and light chains may comprise cDNA or genomic DNA.

Once the antibody molecule of the invention has been recombinantly expressed, it may be purified by any method known in the art for purification of an antibody molecule, for example, by chromatography (e.g., ion exchange 15 chromatography, affinity chromatography such as with protein A or specific antigen, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins.

Alternatively, any fusion protein may be readily purified by utilizing an antibody specific for the fusion protein being expressed. For example, a system 20 described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972-897). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the open reading frame of the gene is translationally fused to an amino-terminal tag consisting of six histidine residues. The tag serves as a 25 matrix binding domain for the fusion protein. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni²⁺ nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing buffers.

5.12 Conjugated Antibodies

In a preferred embodiment, anti-ADPI antibodies or fragments thereof are conjugated to a diagnostic or a therapeutic moiety. The antibodies can be used, for example, for diagnosis or to determine the efficacy of a given treatment regimen.

- 5 Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive nuclides, positron emitting metals (for use in positron emission tomography), and nonradioactive paramagnetic metal ions. See generally U.S. Patent No. 4,741,900 for 10 metal ions which can be conjugated to antibodies for use as diagnostics according to the present invention. Suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; suitable prosthetic groups include streptavidin, avidin and biotin; suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, 15 dichlorotriazinylamine fluorescein, dansyl chloride and phycoerythrin; suitable luminescent materials include luminol; suitable bioluminescent materials include luciferase, luciferin, and aequorin; and suitable radioactive nuclides include ^{125}I , ^{131}I , ^{113}In and ^{99}Tc .

- Anti-ADPI antibodies or fragments thereof can be conjugated to a therapeutic 20 agent or drug moiety to modify a given biological response. The therapeutic agent or drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired 25 biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, α -interferon, β -interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, a thrombotic agent or an anti-angiogenic agent, e.g., angiostatin or endostatin; or, a biological response modifier such as a lymphokine, interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-6 (IL-6), granulocyte macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating

factor (G-CSF), nerve growth factor (NGF) or other growth factor.

Techniques for conjugating such therapeutic moiety to antibodies are well known, see, e.g., Arnon et al., "Monoclonal Antibodies For Immunotargeting of Drugs In Cancer Therapy", in *Monoclonal Antibodies And Cancer Therapy*, Reisfeld et al.

- 5 (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellstrom et al., "Antibodies For Drug Delivery", in *Controlled Drug Delivery* (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers of Cytotoxic Agents In Cancer Therapy: A Review", in *Monoclonal Antibodies '84: Biological And Clinical Applications*, Pinchera et al. (eds.), pp. 475-506 (1985); "Analysis, Results, And Future Prospective of The Therapeutic Use of Radiolabeled Antibody In Cancer Therapy", in *Monoclonal Antibodies For Cancer Detection And Therapy*, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985), and Thorpe et al., "The Preparation And Cytotoxic Properties of Antibody-Toxin Conjugates", *Immunol. Rev.*, 62:119-58 (1982). These references are incorporated herein in their entirety.

- 10 15 Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980.

An antibody with or without a therapeutic moiety conjugated to it can be used as a therapeutic that is administered alone or in combination with cytotoxic factor(s) and/or cytokine(s).

20

5.13 Diagnosis of Alzheimer's Disease

In accordance with the present invention, suitable test samples, e.g., of brain tissue, obtained from a subject suspected of having or known to have Alzheimer's disease can be used for diagnosis. In one embodiment, an altered abundance of one or 25 more ADFs or ADPIs (or any combination of them) in a test sample relative to a control sample (from a subject or subjects free from Alzheimer's disease) or a previously determined reference range indicates the presence of Alzheimer's disease; ADFs and ADPIs suitable for this purpose are identified in Tables I and III, respectively, as described in detail above. In another embodiment, the relative

abundance of one or more ADFs or ADPIs (or any combination of them) in a test sample compared to a control sample or a previously determined reference range indicates a subtype of Alzheimer's disease (e.g., familial or sporadic Alzheimer's disease). In yet another embodiment, the relative abundance of one or more ADFs or 5 ADPIs (or any combination of them) in a test sample relative to a control sample or a previously determined reference range indicates the degree or severity of Alzheimer's disease. In any of the aforesaid methods, detection of one or more ADPIs described herein may optionally be combined with detection of one or more additional biomarkers for Alzheimer's disease including, but not limited to apolipoprotein E 10 (ApoE), amyloid β -peptides (A β), tau and neural thread protein (NTP). Any suitable method in the art can be employed to measure the level of ADFs and ADPIs, including but not limited to the Preferred Technology described herein, kinase assays, immunoassays to detect and/or visualize the ADPIs (e.g., Western blot, immunoprecipitation followed by sodium dodecyl sulfate polyacrylamide gel 15 electrophoresis, immunocytochemistry, etc.). In cases where an ADPI has a known function, an assay for that function may be used to measure ADPI expression. In a further embodiment, an altered abundance of mRNA encoding one or more ADPIs identified in Table III (or any combination of them) in a test sample relative to a control sample or a previously determined reference range indicates the presence of 20 Alzheimer's disease. Any suitable hybridisation assay can be used to detect ADPI expression by detecting and/or visualizing mRNA encoding the ADPI (e.g., Northern assays; dot blots, in situ hybridisation, etc.).

In another embodiment of the invention, labelled antibodies, derivatives and analogues thereof, which specifically bind to an ADPI can be used for diagnostic purposes, e.g., to detect, diagnose, or monitor Alzheimer's disease. Preferably, 25 Alzheimer's disease is detected in an animal, more preferably in a mammal and most preferably in a human.

5.14 Screening Assays

The invention provides methods for identifying agents (e.g., chemical compounds, proteins, or peptides) that bind to an ADPI or have a stimulatory or inhibitory effect on the expression or activity of an ADPI. The invention also provides methods of identifying agents, candidate compounds or test compounds that bind to a 5 ADPI-related polypeptide or a ADPI fusion protein or have a stimulatory or inhibitory effect on the expression or activity of a ADPI-related polypeptide or a ADPI fusion protein. Examples of agents, candidate compounds or test compounds include, but are not limited to, nucleic acids (e.g., DNA and RNA), carbohydrates, lipids, proteins, peptides, peptidomimetics, small molecules and other drugs. Agents can be obtained 10 using any of the numerous suitable approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound" library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to 15 peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam, 1997, Anticancer Drug Des. 12:145; U.S. Patent No. 5,738,996; and U.S. Patent No. 5,807,683, each of which is incorporated herein in its entirety by reference).

Examples of methods for the synthesis of molecular libraries can be found in 20 the art, for example in: DeWitt et al., 1993, Proc. Natl. Acad. Sci. USA 90:6909; Erb et al., 1994, Proc. Natl. Acad. Sci. USA 91:11422; Zuckermann et al., 1994, J. Med. Chem. 37:2678; Cho et al., 1993, Science 261:1303; Carell et al., 1994, Angew. Chem. Int. Ed. Engl. 33:2059; Carell et al., 1994, Angew. Chem. Int. Ed. Engl. 33:2061; and Gallop et al., 1994, J. Med. Chem. 37:1233, each of which is 25 incorporated herein in its entirety by reference.

Libraries of compounds may be presented, e.g., presented in solution (e.g., Houghten, 1992, Bio/Techniques 13:412-421), or on beads (Lam, 1991, Nature 354:82-84), chips (Fodor, 1993, Nature 364:555-556), bacteria (U.S. Patent No. 5,223,409), spores (Patent Nos. 5,571,698; 5,403,484; and 5,223,409), plasmids (Cull

et al., 1992, Proc. Natl. Acad. Sci. USA 89:1865-1869) or phage (Scott and Smith, 1990, Science 249:386-390; Devlin, 1990, Science 249:404-406; Cwirla et al., 1990, Proc. Natl. Acad. Sci. USA 87:6378-6382; and Felici, 1991, J. Mol. Biol. 222:301-310), each of which is incorporated herein in its entirety by reference.

- 5 In one embodiment, agents that interact with (i.e., bind to) an ADPI, an ADPI fragment (e.g. a functionally active fragment), an ADPI-related polypeptide, a fragment of an ADPI-related polypeptide, or an ADPI fusion protein are identified in a cell-based assay system. In accordance with this embodiment, cells expressing an ADPI, a fragment of an ADPI, an ADPI-related polypeptide, a fragment of an 10 ADPI-related polypeptide, or an ADPI fusion protein are contacted with a candidate compound or a control compound and the ability of the candidate compound to interact with the ADPI is determined. If desired, this assay may be used to screen a plurality (e.g. a library) of candidate compounds. The cell, for example, can be of prokaryotic origin (e.g., *E. coli*) or eukaryotic origin (e.g., yeast or mammalian). 15 Further, the cells can express the ADPI, fragment of the ADPI, ADPI-related polypeptide, a fragment of the ADPI-related polypeptide, or a ADPI fusion protein endogenously or be genetically engineered to express the ADPI, fragment of the ADPI, ADPI-related polypeptide, a fragment of the ADPI-related polypeptide, or an ADPI fusion protein. In some embodiments, the ADPI, fragment of the ADPI, ADPI-related polypeptide, a fragment of the ADPI-related polypeptide, or an ADPI fusion protein or the candidate compound is labelled, for example with a radioactive label 20 (such as ³²P, ³⁵S or ¹²⁵I) or a fluorescent label (such as fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthaldehyde or fluorescamine) to enable detection of an interaction between a ADPI and a candidate compound. The ability of the candidate compound to interact directly or indirectly 25 with an ADPI, an fragment of an ADPI, an ADPI-related polypeptide, a fragment of an ADPI-related polypeptide, or an ADPI fusion protein can be determined by methods known to those of skill in the art. For example, the interaction between a candidate compound and an ADPI, a fragment of an ADPI, an ADPI-related polypeptide, a

fragment of an ADPI-related polypeptide, or an ADPI fusion protein can be determined by flow cytometry, a scintillation assay, immunoprecipitation or western blot analysis.

In another embodiment, agents that interact with (i.e., bind to) an ADPI, an ADPI fragment (e.g., a functionally active fragment) an ADPI-related polypeptide, a fragment of an ADPI-related polypeptide, or an ADPI fusion protein are identified in a cell-free assay system. In accordance with this embodiment, a native or recombinant ADPI or fragment thereof, or a native or recombinant ADPI-related polypeptide or fragment thereof, or an ADPI-fusion protein or fragment thereof, is contacted with a candidate compound or a control compound and the ability of the candidate compound to interact with the ADPI or ADPI-related polypeptide, or ADPI fusion protein is determined. If desired, this assay may be used to screen a plurality (e.g. a library) of candidate compounds. Preferably, the ADPI, ADPI fragment, ADPI-related polypeptide, fragment of a ADPI-related polypeptide, or ADPI-fusion protein is first immobilized, by, for example, contacting the ADPI, ADPI fragment, ADPI-related polypeptide, fragment of a ADPI-related polypeptide, or ADPI fusion protein with an immobilized antibody which specifically recognizes and binds it, or by contacting a purified preparation of the ADPI, ADPI fragment, ADPI-related polypeptide, fragment of an ADPI-related polypeptide, or ADPI fusion protein with a surface designed to bind proteins. The ADPI, ADPI fragment, ADPI-related polypeptide, fragment of a ADPI-related polypeptide, or ADPI fusion protein may be partially or completely purified (e.g., partially or completely free of other polypeptides) or part of a cell lysate. Further, the ADPI, ADPI fragment, ADPI-related polypeptide, fragment of a ADPI-related polypeptide may be a fusion protein comprising the ADPI or a biologically active portion thereof, or ADPI-related polypeptide and a domain such as glutathione-S-transferase. Alternatively, the ADPI, ADPI fragment, ADPI-related polypeptide, fragment of a ADPI-related polypeptide or ADPI fusion protein can be biotinylated using techniques well known to those of skill in the art (e.g., biotinylation kit, Pierce Chemicals; Rockford, IL). The ability of the candidate compound to

interact with a ADPI, ADPI fragment, ADPI-related polypeptide, fragment of an ADPI-related polypeptide, or ADPI fusion protein can be determined by methods known to those of skill in the art.

In another embodiment, a cell-based assay system is used to identify agents that bind to or modulate the activity of a protein, such as an enzyme, or a biologically active portion thereof, which is responsible for the production or degradation of a ADPI or is responsible for the post-translational modification of a ADPI. In a primary screen, a plurality (e.g., a library) of compounds are contacted with cells that naturally or recombinantly express: (i) an ADPI, an isoform of an ADPI, an ADPI homologue, 5 an ADPI-related polypeptide, an ADPI fusion protein, or a biologically active fragment of any of the foregoing; and (ii) a protein that is responsible for processing of the ADPI, ADPI isoform, ADPI homologue, ADPI-related polypeptide, ADPI fusion protein, or fragment in order to identify compounds that modulate the production, degradation, or post-translational modification of the ADPI, ADPI isoform, ADPI 10 homologue, ADPI-related polypeptide, ADPI fusion protein or fragment. If desired, compounds identified in the primary screen can then be assayed in a secondary screen against cells naturally or recombinantly expressing the specific ADPIs of interest. The ability of the candidate compound to modulate the production, degradation or 15 post-translational modification of a ADPI, isoform, homologue, ADPI-related polypeptide, or ADPI fusion protein can be determined by methods known to those of skill in the art, including without limitation, flow cytometry, a scintillation assay, 20 immunoprecipitation and western blot analysis.

In another embodiment, agents that competitively interact with (i.e., bind to) an ADPI, ADPI fragment, ADPI-related polypeptide, a fragment of an ADPI-related polypeptide, or an ADPI fusion protein are identified in a competitive binding assay. 25 In accordance with this embodiment, cells expressing an ADPI, ADPI fragment, ADPI-related polypeptide, a fragment of an ADPI-related polypeptide, or an ADPI fusion protein are contacted with a candidate compound and a compound known to interact with the ADPI, ADPI fragment, ADPI-related polypeptide, a fragment of an

ADPI-related polypeptide or an ADPI fusion protein; the ability of the candidate compound to competitively interact with the ADPI, ADPI fragment, ADPI-related polypeptide, fragment of a ADPI-related polypeptide, or ADPI fusion protein is then determined. Alternatively, agents that competitively interact with (i.e., bind to) a 5 ADPI, ADPI fragment, ADPI-related polypeptide or fragment of a ADPI-related polypeptide are identified in a cell-free assay system by contacting a ADPI, ADPI fragment, ADPI-related polypeptide, fragment of a ADPI-related polypeptide, or a ADPI fusion protein with a candidate compound and a compound known to interact with the ADPI, ADPI-related polypeptide or ADPI fusion protein. As stated above, 10 the ability of the candidate compound to interact with a ADPI, ADPI fragment, ADPI-related polypeptide, a fragment of a ADPI-related polypeptide, or a ADPI fusion protein can be determined by methods known to those of skill in the art. These assays, whether cell-based or cell-free, can be used to screen a plurality (e.g., a library) of candidate compounds.

15 In another embodiment, agents that modulate (i.e., upregulate or downregulate) the expression of a ADPI, or a ADPI-related polypeptide are identified by contacting cells (e.g., cells of prokaryotic origin or eukaryotic origin) expressing the ADPI, or ADPI-related polypeptide with a candidate compound or a control compound (e.g., phosphate buffered saline (PBS)) and determining the expression of the ADPI, ADPI-related polypeptide, or ADPI fusion protein, mRNA encoding the ADPI, or mRNA 20 encoding the ADPI-related polypeptide. The level of expression of a selected ADPI, ADPI-related polypeptide, mRNA encoding the ADPI, or mRNA encoding the ADPI-related polypeptide in the presence of the candidate compound is compared to the level of expression of the ADPI, ADPI-related polypeptide, mRNA encoding the ADPI, or mRNA encoding the ADPI-related polypeptide in the absence of the candidate 25 compound (e.g., in the presence of a control compound). The candidate compound can then be identified as a modulator of the expression of the ADPI, or a ADPI-related polypeptide based on this comparison. For example, when expression of the ADPI or mRNA is significantly greater in the presence of the candidate compound than in its

absence, the candidate compound is identified as a stimulator of expression of the ADPI or mRNA. Alternatively, when expression of the ADPI or mRNA is significantly less in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of the expression of the ADPI or 5 mRNA. The level of expression of a ADPI or the mRNA that encodes it can be determined by methods known to those of skill in the art based on the present description. For example, mRNA expression can be assessed by Northern blot analysis or RT-PCR, and protein levels can be assessed by western blot analysis.

In another embodiment, agents that modulate the activity of an ADPI, or an 10 ADPI-related polypeptide are identified by contacting a preparation containing the ADPI or ADPI-related polypeptide, or cells (e.g., prokaryotic or eukaryotic cells) expressing the ADPI or ADPI-related polypeptide with a test compound or a control compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the ADPI or ADPI-related polypeptide. The 15 activity of an ADPI or an ADPI-related polypeptide can be assessed by detecting induction of a cellular signal transduction pathway of the ADPI or ADPI-related polypeptide (e.g., intracellular Ca²⁺, diacylglycerol, IP₃, etc.), detecting catalytic or enzymatic activity of the target on a suitable substrate, detecting the induction of a reporter gene (e.g., a regulatory element that is responsive to a ADPI or a 20 ADPI-related polypeptide and is operably linked to a nucleic acid encoding a detectable marker, e.g., luciferase), or detecting a cellular response, for example, cellular differentiation, or cell proliferation as the case may be, based on the present description, techniques known to those of skill in the art can be used for measuring these activities (see, e.g., U.S. Patent No. 5,401,639, which is incorporated in its 25 entirety herein by reference). The candidate agent can then be identified as a modulator of the activity of a ADPI or ADPI-related polypeptide by comparing the effects of the candidate compound to the control compound. Suitable control compounds include phosphate buffered saline (PBS) and normal saline (NS).

In another embodiment, agents that modulate (i.e., upregulate or downregulate)

- the expression, activity or both the expression and activity of a ADPI or ADPI-related polypeptide are identified in an animal model. Examples of suitable animals include, but are not limited to, mice, rats, rabbits, monkeys, guinea pigs, dogs and cats. Preferably, the animal used represent a model of Alzheimer's disease (e.g., (e.g., 5 animals that express human familial Alzheimer's disease (FAD) β -amyloid precursor (APP), animals that over-express human wild-type APP, animals that over-express β -amyloid 1-42 (β A), animals that express FAD presenillin-1 (PS-1). See, e.g., Higgins, LS, 1999, Molecular Medicine Today 5:274-276.). In accordance with this embodiment, the test compound or a control compound is administered (e.g., orally, 10 rectally or parenterally such as intraperitoneally or intravenously) to a suitable animal and the effect on the expression, activity or both expression and activity of the ADPI or ADPI-related polypeptide is determined. Changes in the expression of an ADPI or ADPI-related polypeptide can be assessed by any suitable method described above, based on the present description.
- 15 In yet another embodiment, an ADPI or ADPI-related polypeptide is used as a "bait protein" in a two-hybrid assay or three hybrid assay to identify other proteins that bind to or interact with a ADPI or ADPI-related polypeptide (see, e.g., U.S. Patent No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Bio/Techniques 14:920-924; Iwabuchi et al. 20 (1993) Oncogene 8:1693-1696; and PCT Publication No. WO 94/10300). As those skilled in the art will appreciate, such binding proteins are also likely to be involved in the propagation of signals by the ADPIs of the invention as, for example, upstream or downstream elements of a signaling pathway involving the ADPIs of the invention.
- As those skilled in the art will appreciate, Table VIII enumerates scientific 25 publications describing suitable assays for detecting or quantifying enzymatic or binding activity of an ADPI, an ADPI analogue, an ADPI-related polypeptide, or a fragment of any of the foregoing. Each such reference is hereby incorporated in its entirety. In a preferred embodiment, an assay referenced in Table VIII is used in the screens and assays described herein, for example, to screen for or to identify an agent

that modulates the activity of (or that modulates both the expression and activity of) an ADPI, ADPI analogue, or ADPI-related polypeptide, a fragment of any of the foregoing or an ADPI fusion protein.

5 Table VIII. Known Scientific assays for ADPIs.

Table VIII

ADPI#	Scientific Assay Reference
ADPI-109	"omega-Fluoromethyl analogues of omega-amino acids as irreversible inhibitors of 4-aminobutyrate:2-oxoglutarate aminotransferase." J Neurochem 1981 Nov 37:5 1341-4
ADPI-229	"4-Aminobutyrate aminotransferase. Different susceptibility to inhibitors, microenvironment of the cofactor binding site and distance of the catalytic sites." Eur J Biochem 1982 126:3 507-11
ADPI-108	"Kinetic and crystallographic studies on the active site Arg289Lys mutant of flavocytochrome b2 (yeast L-lactate dehydrogenase)", (2000), 39(12), pp3266-75
ADPI-139	"Determination of the Structure of the N-terminal Splice Region of the Cyclic AMP-specific Phosphodiesterase RD1 (RNPDE4A1) by 1H NMR and Identification of the Membrane Association Domain Using Chimeric Constructs." J Biol Chem 1996, 271:16703-16711.
ADPI-260	"The effect of Met-->Leu mutations on calmodulin's ability to activate cyclic nucleotide phosphodiesterase ." J Biol Chem 1994, 269:15546-15552,
ADPI-377	
ADPI-452	
ADPI-495	
ADPI-509	
ADPI-534	
ADPI-399.2	"Cytosolic aldehyde dehydrogenase (ALDH1) variants found in alcohol flushers" (1989), Ann Hum Genet. 53 pp1-7 "Studies of the esterase activity of cytosolic aldehyde dehydrogenase with resorufin acetate as substrate" (1997), Biochem J, 332, pp701-708. "Hepatic lipid peroxidation and aldehyde dehydrogenase activity in alcoholic and non-alcoholic liver disease" (1989) Alcohol Alcohol, 24(2), pp121-8
ADPI-183	"Capillary electrophoresis assay for ubiquitin carboxyl-terminal hydrolases with chemically synthesized ubiquitin-valine as substrate." Anal Biochem 1997 May 1;247(2):305-9
ADPI-499	
ADPI-175.2	"Alteration of glyceraldehyde-3-phosphate dehydrogenase activity and messenger mRNA content by androgen in human prostate carcinoma cells", (1995), Cancer Res. 55(19, pp4234-6
ADPI-286	

Table VIII

ADPI#	Scientific Assay Reference
ADPI-289	"Increased membrane activity of glyceraldehyde 3-phosphate dehydrogenase in erythrocytes of patients with homozygous sickle cell anaemia", (1992), Clin Chim Acta 209(3), pp189-95
ADPI-291	"Heterogeneity of glyceraldehyde-3-phosphate dehydrogenase from human brain" (1988), 954(3), pp309-24
ADPI-95	"A single amino acid substitution makes ERK2 susceptible to pyridinyl imidazole inhibitors of p38 MAP kinase." Protein Sci 1998 Nov 7:11 2249-55
ADPI-466.2	" Purification and partial characterization of the phosphoglucomutase isozymes from human placenta" (1990), Prep. Biochem. 20(3-4), pp219-240. " Isoenzymes of human red blood cells: isolation and kinetic properties", (1989), Prep Biochem. 19(3), pp251-271 "Human erythrocyte phosphoglucomutase: comparison of the properties of PGMI and PGM2 isoenzymes" (1984), Biochimie, 66(9-10), pp617-623
ADPI-390	" Hsp90 Chaperone Activity Requires the Full-length Protein and Interaction among Its Multiple Domains" (2000) J. Biol. Chem., 275(42), pp32499-32507.

This invention further provides novel agents identified by the above-described screening assays and uses thereof for treatments as described herein.

5 5.15 Therapeutic Uses of ADPIs

The invention provides for treatment or prevention of various diseases and disorders by administration of a therapeutic agent. Such agents include but are not limited to: ADPIs, ADPI analogues, ADPI-related polypeptides and derivatives (including fragments) thereof; antibodies to the foregoing; nucleic acids encoding ADPIs, ADPI analogues, ADPI-related polypeptides and fragments thereof; antisense nucleic acids to a gene encoding a ADPI or ADPI-related polypeptide; and modulator (e.g., agonists and antagonists) of a gene encoding a ADPI or ADPI-related polypeptide. An important feature of the present invention is the identification of genes encoding ADPIs involved in Alzheimer's disease. Alzheimer's disease can be treated (e.g. to ameliorate symptoms or to retard onset or progression) or prevented by administration of a therapeutic compound that promotes function or expression of one or more ADPIs that are decreased in the brain tissue of subjects having Alzheimer's disease, or by administration of a therapeutic compound that reduces function or

expression of one or more ADPIs that are increased in the brain tissue of subjects having Alzheimer's disease.

In one embodiment, one or more antibodies each specifically binding to a ADPI are administered alone or in combination with one or more additional 5 therapeutic compounds or treatments. Examples of such therapeutic compounds or treatments include, but are not limited to, acetylcholinesterase inhibitors e.g. Tacrine (Cognex®), Donepezil (Aricept®), Rivastigmine (Exelon®).

Preferably, a biological product such as an antibody is allogeneic to the subject to which it is administered. In a preferred embodiment, a human ADPI or a human 10 human ADPI-related polypeptide, a nucleotide sequence encoding a human ADPI or a human ADPI-related polypeptide, or an antibody to a human ADPI or a human ADPI-related polypeptide, is administered to a human subject for therapy (e.g. to ameliorate symptoms or to retard onset or progression) or prophylaxis.

15 5.15.1 Treatment and Prevention of Alzheimer's Disease

Alzheimer's disease can be treated or prevented by administration to a subject suspected of having or known to have Alzheimer's disease or to be at risk of developing Alzheimer's disease of an agent that modulates (*i.e.*, increases or decreases) the level or activity (*i.e.*, function) of one or more ADPIs -- or the level of one or more 20 ADPs -- that are differentially present in the brain tissue of subjects having Alzheimer's disease compared with brain tissue of subjects free from Alzheimer's disease. In one embodiment, Alzheimer's disease is treated by administering to a subject suspected of having or known to have Alzheimer's disease or to be at risk of developing Alzheimer's disease an agent that upregulates (*i.e.*, increases) the level or 25 activity (*i.e.*, function) of one or more ADPIs -- or the level of one or more ADPs -- that are decreased in the brain tissue of subjects having Alzheimer's disease. In another embodiment, an agent is administered that downregulates the level or activity (*i.e.*, function) of one or more ADPIs -- or the level of one or more ADPs -- that are increased in the brain tissue of subjects having Alzheimer's disease. Examples of

such a compound include but are not limited to: ADPIs, ADPI fragments and ADPI-related polypeptides; nucleic acids encoding an ADPI, an ADPI fragment and an ADPI-related polypeptide (e.g., for use in gene therapy); and, for those ADPIs or ADPI-related polypeptides with enzymatic activity, compounds or molecules known to modulate that enzymatic activity. Other compounds that can be used, e.g., ADPI agonists, can be identified using *in vitro* assays, as defined or described above or earlier.

Alzheimer's disease is also treated or prevented by administration to a subject suspected of having or known to have Alzheimer's disease or to be at risk of developing Alzheimer's disease of a compound that downregulates the level or activity of one or more ADPIs -- or the level of one or more ADFs -- that are increased in the brain tissue of subjects having Alzheimer's disease. In another embodiment, a compound is administered that upregulates the level or activity of one or more ADPIs -- or the level of one or more ADFs -- that are decreased in the brain tissue of subjects having Alzheimer's disease. Examples of such a compound include, but are not limited to, ADPI antisense oligonucleotides, ribozymes, antibodies directed against ADPIs, and compounds that inhibit the enzymatic activity of a ADPI. Other useful compounds e.g., ADPI antagonists and small molecule ADPI antagonists, can be identified using *in vitro* assays.

In a preferred embodiment, therapy or prophylaxis is tailored to the needs of an individual subject. Thus, in specific embodiments, compounds that promote the level or function of one or more ADPIs, or the level of one or more ADFs, are therapeutically or prophylactically administered to a subject suspected of having or known to have Alzheimer's disease, in whom the levels or functions of said one or more ADPIs, or levels of said one or more ADFs, are absent or are decreased relative to a control or normal reference range. In further embodiments, compounds that promote the level or function of one or more ADPIs, or the level of one or more ADFs, are therapeutically or prophylactically administered to a subject suspected of having or known to have Alzheimer's disease in whom the levels or functions of said one or

more ADPIs, or levels of said one or more ADFs, are increased relative to a control or to a reference range. In further embodiments, compounds that decrease the level or function of one or more ADPIs, or the level of one or more ADFs, are therapeutically or prophylactically administered to a subject suspected of having or known to have

5 Alzheimer's disease in whom the levels or functions of said one or more ADPIs, or levels of said one or more ADFs, are increased relative to a control or to a reference range. In further embodiments, compounds that decrease the level or function of one or more ADPIs, or the level of one or more ADFs, are therapeutically or prophylactically administered to a subject suspected of having or known to have

10 Alzheimer's disease in whom the levels or functions of said one or more ADPIs, or levels of said one or more ADFs, are decreased relative to a control or to a reference range. The change in ADPI function or level, or ADF level, due to the administration of such compounds can be readily detected, e.g., by obtaining a sample (e.g., a sample of brain tissue, blood or urine or a tissue sample such as biopsy tissue) and assaying *in vitro* the levels of said ADFs or the levels or activities of said ADPIs, or the levels of mRNAs encoding said ADPIs, or any combination of the foregoing. Such assays can be performed before and after the administration of the compound as described herein.

15

The compounds of the invention include but are not limited to any compound, e.g., a small organic molecule, protein, peptide, antibody, nucleic acid, etc. that restores the Alzheimer's disease ADPI or ADF profile towards normal with the proviso that such compounds do not include Tacrine (Cognex®), Donepezil (Aricept®), Rivastigmine (Exelon®).

5.15.2 Gene Therapy

25 In another embodiment, nucleic acids comprising a sequence encoding a ADPI, a ADPI fragment, ADPI-related polypeptide or fragment of a ADPI-related polypeptide, are administered to promote ADPI function by way of gene therapy. Gene therapy refers to the administration of an expressed or expressible nucleic acid to a subject. In this embodiment, the nucleic acid produces its encoded polypeptide and

the polypeptide mediates a therapeutic effect by promoting ADPI function.

Any suitable methods for gene therapy available in the art can be used according to the present invention.

For general reviews of the methods of gene therapy, see Goldspiel et al., 1993, 5 Clinical Pharmacy 12:488-505; Wu and Wu, 1991, Biotherapy 3:87-95; Tolstoshev, 1993, Ann. Rev. Pharmacol. Toxicol. 32:573-596; Mulligan, 1993, Science 260:926-932; and Morgan and Anderson, 1993, Ann. Rev. Biochem. 62:191-217; May, 1993, TIBTECH 11(5):155-215. Methods commonly known in the art of recombinant DNA technology which can be used in the present invention are 10 described in Ausubel et al. (eds.), 1993, Current Protocols in Molecular Biology, John Wiley & Sons, NY; and Kriegler, 1990, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY.

In a particular aspect, the compound comprises a nucleic acid encoding a ADPI or fragment or chimeric protein thereof, said nucleic acid being part of an expression 15 vector that expresses a ADPI or fragment or chimeric protein thereof in a suitable host. In particular, such a nucleic acid has a promoter operably linked to the ADPI coding region, said promoter being inducible or constitutive (and, optionally, tissue-specific). In another particular embodiment, a nucleic acid molecule is used in which the ADPI coding sequences and any other desired sequences are flanked by regions that promote 20 homologous recombination at a desired site in the genome, thus providing for intrachromosomal expression of the ADPI nucleic acid (Koller and Smithies, 1989, Proc. Natl. Acad. Sci. USA 86:8932-8935; Zijlstra et al., 1989, Nature 342:435-438).

Delivery of the nucleic acid into a subject may be direct, in which case the 25 subject is directly exposed to the nucleic acid or nucleic acid-carrying vector; this approach is known as *in vivo* gene therapy. Alternatively, delivery of the nucleic acid into the subject may be indirect, in which case cells are first transformed with the nucleic acid *in vitro* and then transplanted into the subject, known as "*ex vivo* gene therapy".

In another embodiment, the nucleic acid is directly administered *in vivo*, where

it is expressed to produce the encoded product. This can be accomplished by any of numerous methods known in the art, e.g., by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by infection using a defective or attenuated retroviral or other viral vector (see 5 U.S. Patent No. 4,980,286); by direct injection of naked DNA; by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont); by coating with lipids, cell-surface receptors or transfecting agents; by encapsulation in liposomes, microparticles or microcapsules; by administering it in linkage to a peptide which is known to enter the nucleus; or by administering it in linkage to a ligand subject to receptor-mediated 10 endocytosis (see, e.g., Wu and Wu, 1987, J. Biol. Chem. 262:4429-4432), which can be used to target cell types specifically expressing the receptors. In another embodiment, a nucleic acid-ligand complex can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation. In yet another embodiment, the nucleic acid can be 15 targeted *in vivo* for cell specific uptake and expression, by targeting a specific receptor (see, e.g., PCT Publications WO 92/06180 dated April 16, 1992 (Wu et al.); WO 92/22635 dated December 23, 1992 (Wilson et al.); WO92/20316 dated November 26, 1992 (Findeis et al.); WO93/14188 dated July 22, 1993 (Clarke et al.), WO 93/20221 dated October 14, 1993 (Young)). Alternatively, the nucleic acid can be introduced 20 intracellularly and incorporated within host cell DNA for expression, by homologous recombination (Koller and Smithies, 1989, Proc. Natl. Acad. Sci. USA 86:8932-8935; Zijlstra et al., 1989, Nature 342:435-438).

In a further embodiment, a viral vector that contains a nucleic acid encoding a ADPI is used. For example, a retroviral vector can be used (see Miller et al., 1993, 25 Meth. Enzymol. 217:581-599). These retroviral vectors have been modified to delete retroviral sequences that are not necessary for packaging of the viral genome and integration into host cell DNA. The nucleic acid encoding the ADPI to be used in gene therapy is cloned into the vector, which facilitates delivery of the gene into a subject. More detail about retroviral vectors can be found in Boesen et al., 1994,

Biotherapy 6:291-302, which describes the use of a retroviral vector to deliver the mdrl gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherapy. Other references illustrating the use of retroviral vectors in gene therapy are: Clowes et al., 1994, J. Clin. Invest. 93:644-651; Kiern et al., 1994, Blood 83:1467-1473; Salmons and Gunzberg, 1993, Human Gene Therapy 4:129-141; and Grossman and Wilson, 1993, Curr. Opin. in Genetics and Devel. 3:110-114.

Adenoviruses are other viral vectors that can be used in gene therapy. Adenoviruses are especially attractive vehicles for delivering genes to respiratory epithelia. Adenoviruses naturally infect respiratory epithelia where they cause a mild disease. Other targets for adenovirus-based delivery systems are liver, the central nervous system, endothelial cells, and muscle. Adenoviruses have the advantage of being capable of infecting non-dividing cells. Kozarsky and Wilson, 1993, Current Opinion in Genetics and Development 3:499-503 present a review of adenovirus-based gene therapy. Bout et al., 1994, Human Gene Therapy 5:3-10 demonstrated the use of adenovirus vectors to transfer genes to the respiratory epithelia of rhesus monkeys. Other instances of the use of adenoviruses in gene therapy can be found in Rosenfeld et al., 1991, Science 252:431-434; Rosenfeld et al., 1992, Cell 68:143-155; Mastrangeli et al., 1993, J. Clin. Invest. 91:225-234; PCT Publication WO94/12649; and Wang, et al., 1995, Gene Therapy 2:775-783.

Adeno-associated virus (AAV) has also been proposed for use in gene therapy (Walsh et al., 1993, Proc. Soc. Exp. Biol. Med. 204:289-300; U.S. Patent No. 5,436,146).

Another suitable approach to gene therapy involves transferring a gene to cells in tissue culture by such methods as electroporation, lipofection, calcium phosphate mediated transfection, or viral infection. Usually, the method of transfer includes the transfer of a selectable marker to the cells. The cells are then placed under selection to isolate those cells that have taken up and are expressing the transferred gene. Those cells are then delivered to a subject.

In this embodiment, the nucleic acid is introduced into a cell prior to

administration *in vivo* of the resulting recombinant cell. Such introduction can be carried out by any method known in the art, including but not limited to transfection, electroporation, microinjection, infection with a viral or bacteriophage vector containing the nucleic acid sequences, cell fusion, chromosome-mediated gene transfer, microcell-mediated gene transfer, spheroplast fusion, etc. Numerous techniques are known in the art for the introduction of foreign genes into cells (see, e.g., Loeffler and Behr, 1993, Meth. Enzymol. 217:599-618; Cohen et al., 1993, Meth. Enzymol. 217:618-644; Cline, 1985, Pharmac. Ther. 29:69-92) and may be used in accordance with the present invention, provided that the necessary developmental and physiological functions of the recipient cells are not disrupted. The technique should provide for the stable transfer of the nucleic acid to the cell, so that the nucleic acid is expressible by the cell and preferably heritable and expressible by its cell progeny.

The resulting recombinant cells can be delivered to a subject by various methods known in the art. In a preferred embodiment, epithelial cells are injected, e.g., subcutaneously. In another embodiment, recombinant skin cells may be applied as a skin graft onto the subject. Recombinant blood cells (e.g., hematopoietic stem or progenitor cells) are preferably administered intravenously. The amount of cells envisioned for use depends on the desired effect, the condition of the subject, etc., and can be determined by one skilled in the art.

Cells into which a nucleic acid can be introduced for purposes of gene therapy encompass any desired, available cell type, and include but are not limited to neuronal cells, glial cells (e.g., oligodendrocytes or astrocytes), epithelial cells, endothelial cells, keratinocytes, fibroblasts, muscle cells, hepatocytes; blood cells such as T lymphocytes, B lymphocytes, monocytes, macrophages, neutrophils, eosinophils, megakaryocytes, granulocytes; various stem or progenitor cells, in particular hematopoietic stem or progenitor cells, e.g., as obtained from bone marrow, umbilical cord blood, peripheral blood or fetal liver.

In a preferred embodiment, the cell used for gene therapy is autologous to the subject that is treated.

- In an embodiment in which recombinant cells are used in gene therapy, a nucleic acid encoding a ADPI is introduced into the cells such that it is expressible by the cells or their progeny, and the recombinant cells are then administered *in vivo* for therapeutic effect. In a specific embodiment, stem or progenitor cells are used. Any 5 stem or progenitor cells which can be isolated and maintained *in vitro* can be used in accordance with this embodiment of the present invention (see e.g. PCT Publication WO 94/08598, dated April 28, 1994; Stemple and Anderson, 1992, Cell 71:973-985; Rheinwald, 1980, Meth. Cell Bio. 21A:229; and Pittelkow and Scott, 1986, Mayo Clinic Proc. 61:771).
- 10 In another embodiment, the nucleic acid to be introduced for purposes of gene therapy may comprise an inducible promoter operably linked to the coding region, such that expression of the nucleic acid is controllable by controlling the presence or absence of the appropriate inducer of transcription.

15 Direct injection of a DNA coding for a ADPI may also be performed according to, for example, the techniques described in United States Patent No. 5,589,466. These techniques involve the injection of "naked DNA", i.e., isolated DNA molecules in the absence of liposomes, cells, or any other material besides a suitable carrier. The injection of DNA encoding a protein and operably linked to a suitable promoter results in the production of the protein in cells near the site of injection and the elicitation of 20 an immune response in the subject to the protein encoded by the injected DNA. In a preferred embodiment, naked DNA comprising (a) DNA encoding a ADPI and (b) a promoter are injected into a subject to elicit an immune response to the ADPI.

5.15.3 Inhibition of ADPIs to Treat Alzheimer's Disease

25 In one embodiment of the invention, Alzheimer's disease is treated or prevented by administration of a compound that antagonizes (inhibits) the level(s) and/or function(s) of one or more ADPIs which are elevated in the brain tissue of subjects having Alzheimer's disease as compared with brain tissue of subjects free from Alzheimer's disease. Compounds useful for this purpose include but are not

limited to anti-ADPI antibodies (and fragments and derivatives containing the binding region thereof), ADPI antisense or ribozyme nucleic acids, and nucleic acids encoding dysfunctional ADPIs that are used to "knockout" endogenous ADPI function by homologous recombination (see, e.g., Capecchi, 1989, Science 244:1288-1292). Other 5 compounds that inhibit ADPI function can be identified by use of known *in vitro* assays, e.g., assays for the ability of a test compound to inhibit binding of a ADPI to another protein or a binding partner, or to inhibit a known ADPI function. Preferably such inhibition is assayed *in vitro* or in cell culture, but genetic assays may also be employed. The Preferred Technology can also be used to detect levels of the ADPI 10 before and after the administration of the compound. Preferably, suitable *in vitro* or *in vivo* assays are utilized to determine the effect of a specific compound and whether its administration is indicated for treatment of the affected tissue, as described in more detail below.

In a particular embodiment, a compound that inhibits a ADPI function is 15 administered therapeutically or prophylactically to a subject in whom an increased brain tissue level or functional activity of the ADPI (e.g., greater than the normal level or desired level) is detected as compared with brain tissue of subjects free from Alzheimer's disease or a predetermined reference range. Methods standard in the art can be employed to measure the increase in a ADPI level or function, as outlined 20 above. Preferred ADPI inhibitor compositions include small molecules, i.e., molecules of 1000 daltons or less. Such small molecules can be identified by the screening methods described herein.

5.15.4 Antisense Regulation of ADPIs

25 In a further embodiment, ADPI expression is inhibited by use of ADPI antisense nucleic acids. The present invention provides the therapeutic or prophylactic use of nucleic acids comprising at least six nucleotides that are antisense to a gene or cDNA encoding a ADPI or a portion thereof. As used herein, a ADPI "antisense" nucleic acid refers to a nucleic acid capable of hybridizing by virtue of some sequence

complementarity to a portion of an RNA (preferably mRNA) encoding a ADPI. The antisense nucleic acid may be complementary to a coding and/or noncoding region of an mRNA encoding a ADPI. Such antisense nucleic acids have utility as compounds that inhibit ADPI expression, and can be used in the treatment or prevention of
5 Alzheimer's disease.

The antisense nucleic acids of the invention are double-stranded or single-stranded oligonucleotides, RNA or DNA or a modification or derivative thereof, and can be directly administered to a cell or produced intracellularly by transcription of exogenous, introduced sequences.

10 The invention further provides pharmaceutical compositions comprising a therapeutically effective amount of a ADPI antisense nucleic acid, and a pharmaceutically-acceptable carrier, vehicle or diluent.

In another embodiment, the invention provides methods for inhibiting the expression of a ADPI nucleic acid sequence in a prokaryotic or eukaryotic cell
15 comprising providing the cell with an effective amount of a composition comprising a ADPI antisense nucleic acid of the invention.

ADPI antisense nucleic acids and their uses are described in detail below.

5.15.5 ADPI Antisense Nucleic Acids

20 The ADPI antisense nucleic acids are of at least six nucleotides and are preferably oligonucleotides ranging from 6 to about 50 oligonucleotides. In specific aspects, the oligonucleotide is at least 10 nucleotides, at least 15 nucleotides, at least 100 nucleotides, or at least 200 nucleotides. The oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof and can be
25 single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone. The oligonucleotide may include other appended groups such as peptides; agents that facilitate transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. WO

88/09810, published December 15, 1988) or blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134, published April 25, 1989); hybridization-triggered cleavage agents (see, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents (see, e.g., Zon, 1988, Pharm. Res. 5:539-549).

5 In a particular aspect of the invention, a ADPI antisense oligonucleotide is provided, preferably of single-stranded DNA. The oligonucleotide may be modified at any position on its structure with substituents generally known in the art.

The ADPI antisense oligonucleotide may comprise any suitable of the following modified base moieties, e.g. 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 10 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxymethyl)uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 15 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 20 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, 2,6-diaminopurine, and other base analogs.

In another embodiment, the oligonucleotide comprises at least one modified sugar moiety, e.g., one of the following sugar moieties: arabinose, 2-fluoroarabinose, 25 xylulose, and hexose.

In yet another embodiment, the oligonucleotide comprises at least one of the following modified phosphate backbones: a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, a formacetal, or an analogue of

formacetal.

- In yet another embodiment, the oligonucleotide is an α -anomeric oligonucleotide. An α -anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641).

The oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, or hybridization-triggered cleavage agent.

- Oligonucleotides of the invention may be synthesized by standard methods known in the art, e.g., by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides may be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), and methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. USA 85:7448-7451).

In another embodiment, the ADPI antisense nucleic acid of the invention is produced intracellularly by transcription from an exogenous sequence. For example, a vector can be introduced *in vivo* such that it is taken up by a cell, within which cell the vector or a portion thereof is transcribed, producing an antisense nucleic acid (RNA) of the invention. Such a vector would contain a sequence encoding the ADPI antisense nucleic acid. Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA. Such vectors can be constructed by recombinant DNA technology standard in the art. Vectors can be plasmid, viral, or others known in the art, used for replication and expression in mammalian cells. Expression of the sequence encoding the ADPI antisense RNA can be by any promoter known in the art to act in mammalian, preferably human, cells. Such promoters can be inducible or constitutive. Examples of such promoters are outlined above.

The antisense nucleic acids of the invention comprise a sequence

complementary to at least a portion of an RNA transcript of a gene encoding a ADPI, preferably a human gene encoding a ADPI. However, absolute complementarity, although preferred, is not required. A sequence "complementary to at least a portion of an RNA," as referred to herein, means a sequence having sufficient complementarity to be able to hybridise under stringent conditions (e.g., highly stringent conditions comprising hybridisation in 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C and washing in 0.1xSSC/0.1% SDS at 68°C, or moderately stringent conditions comprising washing in 0.2xSSC/0.1% SDS at 42°C) with the RNA, forming a stable duplex; in the case of double-stranded ADPI antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridise will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridising nucleic acid, the more base mismatches with an RNA encoding a ADPI it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridised complex.

5.15.6 Therapeutic Use of ADPI Antisense Nucleic Acids

The ADPI antisense nucleic acids can be used to treat or prevent Alzheimer's disease when the target ADPI is overexpressed in the brain tissue of subjects suspected of having or suffering from Alzheimer's disease. In a preferred embodiment, a single-stranded DNA antisense ADPI oligonucleotide is used.

Cell types which express or over-express RNA encoding a ADPI can be identified by various methods known in the art. Such cell types include but are not limited to leukocytes (e.g., neutrophils, macrophages, monocytes) and resident cells (e.g., astrocytes, glial cells, neuronal cells, and ependymal cells). Such methods include, but are not limited to, hybridisation with a ADPI-specific nucleic acid (e.g., by Northern hybridisation, dot blot hybridisation, in situ hybridisation), observing the ability of RNA from the cell type to be translated *in vitro* into a ADPI, immunoassay,

etc. In a preferred aspect, primary tissue from a subject can be assayed for ADPI expression prior to treatment, e.g., by immunocytochemistry or in situ hybridisation.

Pharmaceutical compositions of the invention, comprising an effective amount of a ADPI antisense nucleic acid in a pharmaceutically acceptable carrier, vehicle or diluent can be administered to a subject having Alzheimer's disease.

The amount of ADPI antisense nucleic acid which will be effective in the treatment of Alzheimer's disease can be determined by standard clinical techniques.

In a specific embodiment, pharmaceutical compositions comprising one or more ADPI antisense nucleic acids are administered via liposomes, microparticles, or microcapsules. In various embodiments of the invention, such compositions may be used to achieve sustained release of the ADPI antisense nucleic acids.

5.15.7. Inhibitory Ribozyme and Triple Helix Approaches

In another embodiment, symptoms of Alzheimer's disease may be ameliorated by decreasing the level of a ADPI or ADPI activity by using gene sequences encoding the ADPI in conjunction with well-known gene "knock-out," ribozyme or triple helix methods to decrease gene expression of a ADPI. In this approach ribozyme or triple helix molecules are used to modulate the activity, expression or synthesis of the gene encoding the ADPI, and thus to ameliorate the symptoms of Alzheimer's disease.

Such molecules may be designed to reduce or inhibit expression of a mutant or non-mutant target gene. Techniques for the production and use of such molecules are well known to those of skill in the art.

Ribozyme molecules designed to catalytically cleave gene mRNA transcripts encoding a ADPI can be used to prevent translation of target gene mRNA and, therefore, expression of the gene product. (See, e.g., PCT International Publication WO90/11364, published October 4, 1990; Sarver et al., 1990, *Science* 247:1222-1225).

Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. (For a review, see Rossi, 1994, *Current Biology* 4, 469-471). The

mechanism of ribozyme action involves sequence specific hybridisation of the ribozyme molecule to complementary target RNA, followed by an endonucleolytic cleavage event. The composition of ribozyme molecules must include one or more sequences complementary to the target gene mRNA, and must include the well known 5 catalytic sequence responsible for mRNA cleavage. For this sequence, see, e.g., U.S. Patent No. 5,093,246, which is incorporated herein by reference in its entirety.

While ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy mRNAs encoding a ADPI, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking 10 regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5'-UG-3'. The construction and production of hammerhead ribozymes is well known in the art and is described more fully in Myers, 1995, Molecular Biology and Biotechnology: A Comprehensive Desk Reference, VCH Publishers, New York, (see especially Figure 4, page 833) and in Haseloff and Gerlach, 1988, Nature, 334, 15 585-591, each of which is incorporated herein by reference in its entirety.

Preferably the ribozyme is engineered so that the cleavage recognition site is located near the 5' end of the mRNA encoding the ADPI, i.e., to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts.

20 The ribozymes of the present invention also include RNA endoribonucleases (hereinafter "Cech-type ribozymes") such as the one that occurs naturally in *Tetrahymena thermophila* (known as the IVS, or L-19 IVS RNA) and that has been extensively described by Thomas Cech and collaborators (Zaug, et al., 1984, Science, 224, 574-578; Zaug and Cech, 1986, Science, 231, 470-475; Zaug, et al., 1986, Nature, 25 324, 429-433; published International patent application No. WO 88/04300 by University Patents Inc.; Been and Cech, 1986, Cell, 47, 207-216). The Cech-type ribozymes have an eight base pair active site which hybridizes to a target RNA sequence whereafter cleavage of the target RNA takes place. The invention encompasses those Cech-type ribozymes which target eight base-pair active site

sequences that are present in the gene encoding the ADPI.

As in the antisense approach, the ribozymes can be composed of modified oligonucleotides (e.g., for improved stability, targeting, etc.) and should be delivered to cells that express the ADPI *in vivo*. A preferred method of delivery involves using a DNA construct "encoding" the ribozyme under the control of a strong constitutive pol III or pol II promoter, so that transfected cells will produce sufficient quantities of the ribozyme to destroy endogenous mRNA encoding the ADPI and inhibit translation. Because ribozymes, unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficacy.

- 10 Endogenous ADPI expression can also be reduced by inactivating or "knocking out" the gene encoding the ADPI, or the promoter of such a gene, using targeted homologous recombination (e.g., see Smithies, et al., 1985, *Nature* 317:230-234; Thomas and Capecchi, 1987, *Cell* 51:503-512; Thompson et al., 1989, *Cell* 5:313-321; and Zijlstra et al., 1989, *Nature* 342:435-438, each of which is incorporated by reference herein in its entirety). For example, a mutant gene encoding a non-functional ADPI (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous gene (either the coding regions or regulatory regions of the gene encoding the ADPI) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express the target gene *in vivo*.
- 15 Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the target gene. Such approaches are particularly suited in the agricultural field where modifications to ES (embryonic stem) cells can be used to generate animal offspring with an inactive target gene (e.g., see Thomas and Capecchi, 1987 and Thompson, 1989, *supra*). However, this approach can be adapted for use in humans provided the recombinant DNA constructs are directly administered or targeted to the required site *in vivo* using appropriate viral vectors.

Alternatively, the endogenous expression of a gene encoding a ADPI can be reduced by targeting deoxyribonucleotide sequences complementary to the regulatory region of the gene (i.e., the gene promoter and/or enhancers) to form triple helical

structures that prevent transcription of the gene encoding the ADPI in target cells in the body. (See generally, Helene, 1991, Anticancer Drug Des., 6(6), 569-584; Helene, et al., 1992, Ann. N.Y. Acad. Sci., 660, 27-36; and Maher, 1992, Bioassays 14(12), 807-815).

5 Nucleic acid molecules to be used in triplex helix formation for the inhibition of transcription in the present invention should be single stranded and composed of deoxynucleotides. The base composition of these oligonucleotides must be designed to promote triple helix formation via Hoogsteen base pairing rules, which generally require sizeable stretches of either purines or pyrimidines to be present on one strand 10 of a duplex. Nucleotide sequences may be pyrimidine-based, which will result in TAT and CGC+ triplets across the three associated strands of the resulting triple helix. The pyrimidine-rich molecules provide base complementarity to a purine-rich region of a single strand of the duplex in a parallel orientation to that strand. In addition, nucleic acid molecules may be chosen that are purine-rich, for example, contain a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in 15 GC pairs, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in GGC triplets across the three strands in the triplex.

Alternatively, the potential sequences that can be targeted for triple helix formation may be increased by creating a so called "switchback" nucleic acid 20 molecule. Switchback molecules are synthesized in an alternating 5'-3', 3'-5' manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizeable stretch of either purines or pyrimidines to be present on one strand of a duplex.

In one embodiment, wherein the antisense, ribozyme, or triple helix molecules 25 described herein are utilized to inhibit mutant gene expression, it is possible that the technique may so efficiently reduce or inhibit the transcription (triplex helix) or translation (antisense, ribozyme) of mRNA produced by normal gene alleles of a ADPI that the situation may arise wherein the concentration of ADPI present may be lower than is necessary for a normal phenotype. In such cases, to ensure that

substantially normal levels of activity of a gene encoding a ADPI are maintained, gene therapy may be used to introduce into cells nucleic acid molecules that encode and express the ADPI that exhibit normal gene activity and that do not contain sequences susceptible to whatever antisense, ribozyme, or triple helix treatments are being utilized. Alternatively, in instances whereby the gene encodes an extracellular protein, normal ADPI can be co-administered in order to maintain the requisite level of ADPI activity.

Antisense RNA and DNA, ribozyme, and triple helix molecules of the invention may be prepared by any method known in the art for the synthesis of DNA and RNA molecules, as discussed above. These include techniques for chemically synthesizing oligodeoxyribonucleotides and oligoribonucleotides well known in the art such as for example solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by *in vitro* and *in vivo* transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may be incorporated into a wide variety of vectors that incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.

20 5.16 Assays for Therapeutic or Prophylactic Compounds

The present invention also provides assays for use in discovery of pharmaceutical products in order to identify or verify the efficacy of compounds for treatment or prevention of Alzheimer's disease. Agents can be assayed for their ability to restore ADF or ADPI levels in a subject having Alzheimer's disease towards levels found in subjects free from Alzheimer's disease or to produce similar changes in experimental animal models of Alzheimer's disease. Compounds able to restore ADF or ADPI levels in a subject having Alzheimer's disease towards levels found in subjects free from Alzheimer's disease or to produce similar changes in experimental animal models of Alzheimer's disease can be used as lead compounds for further drug

discovery, or used therapeutically. ADF and ADPI expression can be assayed by the Preferred Technology, immunoassays, gel electrophoresis followed by visualization, detection of ADPI activity, or any other method taught herein or known to those skilled in the art. Such assays can be used to screen candidate drugs, in clinical monitoring or in drug development, where abundance of an ADF or ADPI can serve as a surrogate marker for clinical disease.

In various embodiments, *in vitro* assays can be carried out with cells representative of cell types involved in a subject's disorder, to determine if a compound has a desired effect upon such cell types.

Compounds for use in therapy can be tested in suitable animal model systems prior to testing in humans, including but not limited to rats, mice, chicken, cows, monkeys, rabbits, etc. For *in vivo* testing, prior to administration to humans, any animal model system known in the art may be used. It is also apparent to the skilled artisan that, based upon the present disclosure, transgenic animals can be produced with "knock-out" mutations of the gene or genes encoding one or more ADPIs. A "knock-out" mutation of a gene is a mutation that causes the mutated gene to not be expressed, or expressed in an aberrant form or at a low level, such that the activity associated with the gene product is nearly or entirely absent. Preferably, the transgenic animal is a mammal, more preferably, the transgenic animal is a mouse.

In one embodiment, test compounds that modulate the expression of a ADPI are identified in non-human animals (e.g., mice, rats, monkeys, rabbits, and guinea pigs), preferably non-human animal models for Alzheimer's disease, expressing the ADPI. In accordance with this embodiment, a test compound or a control compound is administered to the animals, and the effect of the test compound on expression of one or more ADPIs is determined. A test compound that alters the expression of a ADPI (or a plurality of ADPIs) can be identified by comparing the level of the selected ADPI or ADPIs (or mRNA(s) encoding the same) in an animal or group of animals treated with a test compound with the level of the ADPI(s) or mRNA(s) in an animal or group of animals treated with a control compound. Techniques known to those of

skill in the art can be used to determine the mRNA and protein levels, for example, *in situ* hybridisation. The animals may or may not be sacrificed to assay the effects of a test compound.

In another embodiment, test compounds that modulate the activity of an ADPI or a biologically active portion thereof are identified in non-human animals (e.g., mice, rats, monkeys, rabbits, and guinea pigs), preferably non-human animal models for Alzheimer's disease, expressing the ADPI. In accordance with this embodiment, a test compound or a control compound is administered to the animals, and the effect of a test compound on the activity of an ADPI is determined. A test compound that alters the activity of an ADPI (or a plurality of ADPIs) can be identified by assaying animals treated with a control compound and animals treated with the test compound. The activity of the ADPI can be assessed by detecting induction of a cellular second messenger of the ADPI (e.g., intracellular Ca²⁺, diacylglycerol, IP₃, etc.), detecting catalytic or enzymatic activity of the ADPI or binding partner thereof, detecting the induction of a reporter gene (e.g., a regulatory element that is responsive to a ADPI of the invention operably linked to a nucleic acid encoding a detectable marker, such as luciferase or green fluorescent protein), or detecting a cellular response (e.g., cellular differentiation or cell proliferation). Techniques known to those of skill in the art can be utilized to detect changes in the activity of a ADPI (see, e.g., U.S. Patent No. 5,401,639, which is incorporated herein in its entirety by reference).

In yet another embodiment, test compounds that modulate the level or expression of a ADPI (or plurality of ADPIs) are identified in human subjects having Alzheimer's disease, most preferably those having severe Alzheimer's disease. In accordance with this embodiment, a test compound or a control compound is administered to the human subject, and the effect of a test compound on ADPI expression is determined by analysing the expression of the ADPI or the mRNA encoding the same in a biological sample (e.g., brain tissue, cerebrospinal fluid, serum, plasma, or urine). A test compound that alters the expression of a ADPI can be identified by comparing the level of the ADPI or mRNA encoding the same in a

subject or group of subjects treated with a control compound to that in a subject or group of subjects treated with a test compound. Alternatively, alterations in the expression of a ADPI can be identified by comparing the level of the ADPI or mRNA encoding the same in a subject or group of subjects before and after the administration of a test compound. Any suitable techniques known to those of skill in the art can be used to obtain the biological sample and analyse the mRNA or protein expression. For example, the Preferred Technology described herein can be used to assess changes in the level of a ADPL.

In another embodiment, test compounds that modulate the activity of a ADPI (or plurality of ADPIs) are identified in human subjects having Alzheimer's disease, most preferably those with severe Alzheimer's disease. In this embodiment, a test compound or a control compound is administered to the human subject, and the effect of a test compound on the activity of an ADPI is determined. A test compound that alters the activity of an ADPI can be identified by comparing biological samples from subjects treated with a control compound to samples from subjects treated with the test compound. Alternatively, alterations in the activity of an ADPI can be identified by comparing the activity of an ADPI in a subject or group of subjects before and after the administration of a test compound. The activity of the ADPI can be assessed by detecting in a biological sample (e.g., brain tissue, cerebrospinal fluid, serum, plasma, or urine) induction of a cellular signal transduction pathway of the ADPI (e.g., intracellular Ca²⁺, diacylglycerol, IP₃, etc.), catalytic or enzymatic activity of the ADPI or a binding partner thereof, or a cellular response, for example, cellular differentiation, or cell proliferation. Techniques known to those of skill in the art can be used to detect changes in the induction of a second messenger of an ADPI or changes in a cellular response. For example, RT-PCR can be used to detect changes in the induction of a cellular second messenger.

In a particular embodiment, an agent that changes the level or expression of an ADPI towards levels detected in control subjects (e.g., humans free from Alzheimer's disease) is selected for further testing or therapeutic use. In another preferred

embodiment, a test compound that changes the activity of an ADPI towards the activity found in control subjects (e.g., humans free from Alzheimer's disease) is selected for further testing or therapeutic use.

In another embodiment, test compounds that reduce the severity of one or more symptoms associated with Alzheimer's disease are identified in human subjects having Alzheimer's disease, most preferably subjects with severe Alzheimer's disease. In accordance with this embodiment, a test compound or a control compound is administered to the subjects, and the effect of a test compound on one or more symptoms of Alzheimer's disease is determined. A test compound that reduces one or 10 more symptoms can be identified by comparing the subjects treated with a control compound to the subjects treated with the test compound. Techniques known to physicians familiar with Alzheimer's disease can be used to determine whether a test compound reduces one or more symptoms associated with Alzheimer's disease. For example, a test compound that improves cognitive ability in a subject having 15 Alzheimer's disease will be beneficial for treating subjects having Alzheimer's disease.

In a preferred embodiment, an agent that reduces the severity of one or more symptoms associated with Alzheimer's disease in a human having Alzheimer's disease is selected for further testing or therapeutic use.

20 5.17 Therapeutic and Prophylactic Compositions and Their Use

The invention provides methods of treatment comprising administering to a subject an effective amount of an agent of the invention. In a preferred aspect, the compound is substantially purified (e.g., substantially free from substances that limit its effect or produce undesired side-effects). The subject is preferably an animal, 25 including but not limited to animals such as cows, pigs, horses, chickens, cats, dogs, etc., and is preferably a mammal, and most preferably human. In a specific embodiment, a non-human mammal is the subject.

Formulations and methods of administration that can be employed when the compound comprises a nucleic acid are described above; additional appropriate

formulations and routes of administration are described below.

Various delivery systems are known and can be used to administer a compound of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the compound, receptor-mediated endocytosis 5 (see, e.g., Wu and Wu, 1987, J. Biol. Chem. 262:4429-4432), construction of a nucleic acid as part of a retroviral or other vector, etc. Methods of introduction can be enteral or parenteral and include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The compounds may be administered by any convenient route, for example by infusion or 10 bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. In addition, it may be desirable to introduce the pharmaceutical compositions of the invention into 15 the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.

In a specific embodiment, it may be desirable to administer the pharmaceutical 20 compositions of the invention locally to the area in need of treatment; this may be achieved, for example, and not by way of limitation, by local infusion during surgery, topical application, e.g., by injection, by means of a catheter, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. In one embodiment, 25 administration can be by direct injection into cerebrospinal fluid or at the site (or former site) of neurodegeneration or to CNS tissue.

In another embodiment, the compound can be delivered in a vesicle, in particular a liposome (see Langer, 1990, Science 249:1527-1533; Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and

Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Berestein, *ibid.*, pp. 317-327; see generally *ibid.*)

In yet another embodiment, the compound can be delivered in a controlled release system. In one embodiment, a pump may be used (see Langer, *supra*; Sefton, 5 1987, CRC Crit. Ref. Biomed. Eng. 14:201; Buchwald et al., 1980, Surgery 88:507; Saudek et al., 1989, N. Engl. J. Med. 321:574). In another embodiment, polymeric materials can be used (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Florida (1974); Controlled Drug Bioavailability, 10 Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, J., 1983, Macromol. Sci. Rev. Macromol. Chem. 23:61; see also Levy et al., 1985, Science 228:190; During et al., 1989, Ann. Neurol. 25:351; Howard et al., 1989, J. Neurosurg. 71:105). In yet another embodiment, a controlled release system can be placed in proximity of the therapeutic target, i.e., the brain, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical 15 Applications of Controlled Release, *supra*, vol. 2, pp. 115-138 (1984)).

Other suitable controlled release systems are discussed in the review by Langer (1990, Science 249:1527-1533).

In another embodiment where the compound of the invention is a nucleic acid encoding a protein, the nucleic acid can be administered *in vivo* to promote expression 20 of its encoded protein, by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see U.S. Patent No. 4,980,286), or by direct injection, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a 25 homeobox-like peptide which is known to enter the nucleus (see e.g., Joliot et al., 1991, Proc. Natl. Acad. Sci. USA 88:1864-1868), etc. Alternatively, a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination.

The present invention also provides pharmaceutical compositions. Such

compositions comprise a therapeutically effective amount of an agent, and a pharmaceutically acceptable carrier. In a particular embodiment, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E.W. Martin. Such compositions will contain a therapeutically effective amount of the compound, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the subject. The formulation should suit the mode of administration.

In a preferred embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous

administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anaesthetic such as lidocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

The compounds of the invention can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with free amino groups such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with free carboxyl groups such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.

The amount of the compound of the invention which will be effective in the treatment of Alzheimer's disease can be determined by standard clinical techniques based on the present description. In addition, *in vitro* assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each subject's circumstances. However, suitable dosage ranges for intravenous administration are generally about 20-500 micrograms of active compound per kilogram body weight. Suitable dosage ranges for intranasal administration are generally about 0.01 pg/kg body weight to 1 mg/kg body weight. Effective doses may be extrapolated from dose-response curves derived from *in vitro* or animal model test systems.

Suppositories generally contain active ingredient in the range of 0.5% to 10% by weight; oral formulations preferably contain 10% to 95% active ingredient.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects (a) approval by the agency of manufacture, use or sale for human administration, (b) directions for use, or both.

The invention will now be described further with reference to the following non-limited examples.

6. EXAMPLE 1: IDENTIFICATION OF PROTEINS DIFFERENTIALLY EXPRESSED IN THE BRAIN TISSUE OF ALZHEIMER'S DISEASE PATIENTS

Using the following exemplary and non-limiting procedure, proteins from a total of 37 brain tissue samples from subjects having Alzheimer's disease and 39 brain tissue samples from control subjects were separated by isoelectric focusing followed by SDS-PAGE and analysed, see table IX for the details of patient numbers for each anatomical region studied. Parts 6.1.1 to 6.1.14 (inclusive) of the procedure set forth below are hereby designated as the "Reference Protocol" and are presented for purposes of setting forth the standard procedures that the artisan may follow in the practice of the invention.

6.1 MATERIALS AND METHODS

6.1.1 Sample Preparation

Tissue samples used in this study were taken post mortem from anatomically defined regions including hippocampus, entorhinal cortex, frontal cortex, neocortex and amygdala, from subjects having Alzheimer's disease and control subjects.

Samples were selected with the minimum possible post-mortem interval (PMI) and

similar age of the control and Alzheimer's patients as summarised below.

Table IX. Summary of samples used.

Anatomical region	Alzheimer's disease patients	Control subjects
All Hippocampus	18	20
Selected Hippocampus (post-mortem delay of less than 4h)	9	11
Frontal Cortex	10	10
Neocortex	3	3
Entorhinal Cortex	3	3
Amygdala	3	3

5

Samples were stored at minus 80°C throughout. For cryostat sectioning, samples were mounted on cork disks with OCT. Sections of each block were stained with haematoxylin and eosin (H&E) and then evaluated by a pathologist to confirm the diagnosis and presence of characteristic features of Alzheimer's disease in the diseased samples. These included: neurofibrillary tangles in the cortical neurons and neuritic (amyloid) plaques. An approximate estimate on the percentage of target neurons (cortical vs pyramidal) remaining was carried out. The brain samples were mounted on cork discs and supported in OCT Embedding Matrix (CellPath plc, UK). Seven frozen sections approximately 5um each were cut on a cryostat and were transferred directly to eppendorf tubes (1.5ml) containing 200ul of lysis buffer 8M urea (BDH 452043w), 4% CHAPS (Sigma C3023), 65mM dithiothreitol (DTT), 2% (v/v) Resolytes 3.5-10 (BDH 44338 2x). Eppendorf tubes were vortexed for about 30 seconds, briefly centrifuged, frozen and stored at -70°C. Approximately 75 - 120 µg of total protein were taken forward to 2-dimensional gel electrophoresis.

10

6.1.2 Isoelectric Focusing

Isoelectric focusing (IEF), was performed using the Immobiline™ DryStrip Kit (Pharmacia BioTech), following the procedure described in the manufacturer's

15

20

instructions, see Instructions for Immobiline™ DryStrip Kit, Pharmacia, 18-1038-63, Edition AB (incorporated herein by reference in its entirety). Immobilized pH Gradient (IPG) strips (18cm, pH 3-10 non-linear strips; Pharmacia 17-1235-01) were rehydrated overnight at 20°C with the 370 microl. of sample prepared in 6.1.1. The 5 reswelled IPG strips were then transferred to a Multiphor II Electrophoresis Unit (Pharmacia 18-1018-06), covered with mineral oil (Pharmacia 17-3335-01) and subjected to first dimension isoelectric focussing using a Pharmacia EPS3500XL power supply (19-3500-01) according to the following profile:

- Initial voltage = 300V for 2 hrs
10 Linear Ramp from 300V to 3500V over 3hrs
Hold at 3500V for 19hrs

For all stages of the process, the current limit was set to 10mA for 12 gels, and the power limit to 5W. The temperature was held constant at 20°C throughout the run.

15 6.1.3 Gel Equilibration and SDS-PAGE

After the final 19hr step, the strips were immediately removed and immersed for 10 mins at 20°C in a solution of the following composition: 6M urea; 2% (w/v) DTT; 2% (w/v) SDS; 30% (v/v) glycerol (Fluka 49767); 0.05M Tris/HCl, pH 6.8 (Sigma T-1503). After removal from the solution, the strips were loaded onto supported gels for SDS-PAGE according to Hochstrasser et al., 1988, Analytical Biochemistry 173: 412-423 (incorporated herein by reference in its entirety), with modifications as specified below.

25 6.1.4 Preparation of supported gels

The gels were cast between two glass plates of the following dimensions: 23cm wide x 24cm long (back plate); 23cm wide x 24cm long with a 2cm deep notch in the central 19cm (front plate). To promote covalent attachment of SDS-PAGE gels, the back plate was treated with a 0.4% solution of γ -methacryl-oxypropyltrimethoxysilane

in ethanol (BindSilane^J; Pharmacia 17-1330-01). The front plate was treated with (RepelSilane^J Pharmacia 17-1332-01) to reduce adhesion of the gel. Excess reagent was removed by washing with water, and the plates were allowed to dry. At this stage, both as identification for the gel, and as a marker to identify the coated face of the 5 plate, an adhesive bar-code was attached to the back plate in a position such that it would not come into contact with the gel matrix.

The dried plates were assembled into a casting box with a capacity of 13 gel sandwiches. The front and back plates of each sandwich were spaced by means of 10 1mm thick spacers, 2.5 cm wide. The sandwiches were interleaved with acetate sheets to facilitate separation of the sandwiches after gel polymerisation. Casting was then carried out according to Hochstrasser et al., op. cit.

A 9-16% linear polyacrylamide gradient was cast, extending up to a point 2cm below the level of the notch in the front plate, using the Angelique gradient casting system (Large Scale Biology). Stock solutions were as follows. Acrylamide (40% in 15 water) was from Serva (10677). The cross-linking agent was PDA (BioRad 161-0202), at a concentration of 2.6% (w/w) of the total starting monomer content. The gel buffer was 0.375M Tris/HCl, pH 8.8. The polymerisation catalyst was 0.05% (v/v) TEMED (BioRad 161-0861), and the initiator was 0.1% (w/v) APS (BioRad 161-0700). No SDS was included in the gel and no stacking gel was used. The cast 20 gels were allowed to polymerise at 20°C overnight, and then stored at 4°C in sealed polyethylene bags with 6ml of gel buffer, and were used within 4 weeks.

6.1.5 SDS-PAGE

A solution of 0.5% (w/v) agarose (Fluka 05075) was prepared in running 25 buffer (0.025M Tris, 0.192M glycine (Fluka 50050), 0.1% (w/v) SDS), supplemented also by a trace of bromophenol blue. The agarose suspension was heated to 70°C with stirring, until the agarose had dissolved. The top of the supported 2nd D gel was filled with the agarose solution, and the equilibrated IPG strip was placed into the agarose, and tapped gently with a palette knife until the IPG strip was intimately in contact with

the 2nd D gel. The gels were placed in the 2nd D running tank, as described by Amess et al., 1995, Electrophoresis 16: 1255-1267 (incorporated herein by reference in its entirety). The tank was filled with running buffer (as above) until the level of the buffer just exceeded the top of the slab gel, which promoted efficient cooling of the active gel area. Running buffer was added to the top buffer compartments formed by the gels, and then voltage was applied immediately to the gels using a Consort E-833 power supply. The gels were run at 10mA/gel for 10 mins. The power limit was set to 150W for a tank containing 6 gels, and the voltage limit was set to 600V. After 10 mins, the gels were then run at 30mA/gel, with the same voltage and power limits as before, until the bromophenol blue line was 0.5 cm from the bottom of the gel. The temperature of the buffer was held constant at 16°C throughout the run.

6.1.6 Staining

Upon completion of the electrophoresis run, the gels were immediately removed from the tank for fixation. The top plate of the gel cassette was carefully removed, leaving the gel bonded to the bottom plate. The bottom plate with its attached gel was then placed into a staining apparatus, which can accommodate 12 gels. The gels were completely immersed in fixative solution of 40% (v/v) ethanol (BDH 28719), 10% (v/v) acetic acid (BDH 100016X), 50% (v/v) water (MilliQ-Millipore), which was continuously circulated over the gels. After an overnight incubation at room temperature, the fixative solution was drained from the tank, and the gels were primed by immersion in 7.5% (v/v) acetic acid, 0.05% (w/v) SDS, 92.5% (v/v) water for 30 mins. The priming solution was then drained, and the gels were stained by complete immersion for 4 hours in a staining solution of Sypro Red (Molecular Probes, Inc., Eugene, Oregon). Alternative dyes which can be used for this purpose are described in US patent application number 09/412168, filed October 5 1999, and incorporated herein by reference in its entirety.

6.1.7 Imaging of the gel

A computer-readable output was produced by imaging the fluorescently stained gels with the Apollo 3 scanner (Oxford Glycosciences, Oxford, UK) described in section 5.2, *supra*. This scanner has a gel carrier with four integral fluorescent markers (Designated M1, M2, M3, M4) that are used to correct the image geometry and are a quality control feature to confirm that the scanning has been performed correctly.

For scanning, the gels were removed from the stain, rinsed with water and allowed to air dry briefly, before they were scanned. After imaging, the gels were sealed in polyethylene bags containing a small volume of staining solution, and then stored at 4°C.

6.1.8 Digital Analysis of the Data

The data were processed as described in U.S. Patent No 6,064,754, (published as WO 98/23950) at Sections 5.4 and 5.5 (incorporated herein by reference), as set forth more particularly below.

The output from the scanner was first processed using the MELANIE 7 II 2D PAGE analysis program (Release 2.2, 1997, BioRad Laboratories, Hercules, California, Cat. # 170-7566) to autodetect the registration points, M1, M2, M3 and M4; to autocrop the images (i.e., to eliminate signals originating from areas of the scanned image lying outside the boundaries of the gel, e.g. the reference frame); to filter out artifacts due to dust; to detect and quantify features; and to create image files in GIF format. Features were detected using the following parameters:

Smooths = 2
25 Laplacian threshold 50
Partials threshold 1
Saturation = 100
Peakedness = 0
Minimum Perimeter = 10

6.1.9 Assignment of pI and MW Values

Landmark identification was used to determine the pI and MW of features detected in the images. Ten landmark features, designated BR1 to BR10, were identified in a standard brain tissue image. These landmark features are identified in Figure 1 and were assigned the pI and/or MW values identified in Table X.

Table X. Landmark Features Used in this Study

Table X

BR#	pI	MW (Da)
BR1	4.84	176396
BR2	4.96	94107
BR3	5.34	69139
BR4	7.80	54509
BR5	5.74	34187
BR6	4.60	29905
BR7	5.42	23589
BR8	6.19	21003
BR9	7.42	18398
BR10	9.39	10912

10

As many of these landmarks as possible were identified in each gel image of the dataset. Each feature in the study gels was then assigned a pI value by linear interpolation or extrapolation (using the MELANIE7-II software) to the two nearest landmarks, and was assigned a MW value by linear interpolation or extrapolation 15 (using the MELANIE7-II software) to the two nearest landmarks.

6.1.10 Matching With Primary Master Image

Images were edited to remove gross artefacts such as dust, to reject images which had gross abnormalities such as smearing of protein features, or were of too low 20 a loading or overall image intensity to allow identification of more than the most intense features, or were of too poor a resolution to allow accurate detection of

features. Images were then compared by pairing with one common image from the whole sample set. This common image, the "primary master image", was selected on the basis of protein load (maximum load consistent with maximum feature detection), and general image quality. Additionally, the primary master image was chosen to be 5 an image which appeared to be generally representative of all those to be included in the analysis. (This process by which a primary master gel was judged to be representative of the study gels was rechecked by the method described below and in the event that the primary master gel was seen to be unrepresentative, it was rejected and the process repeated until a representative primary master gel was found.)

10 Each of the remaining study gel images was individually matched to the primary master image such that common protein features were paired between the primary master image and each individual study gel image as described below.

6.1.11 Cross-matching Between Samples

15 To facilitate statistical analysis of large numbers of samples for purposes of identifying features that are differentially expressed, the geometry of each study gel was adjusted for maximum alignment between its pattern of protein features, and that of the primary master, as follows. Each of the study gel images was individually transformed into the geometry of the primary master image using a multi-resolution warping procedure. This procedure corrects the image geometry for the distortions brought about by small changes in the physical parameters of the electrophoresis 20 separation process from one sample to another. The observed changes are such that the distortions found are not simple geometric distortions, but rather a smooth flow, with variations at both local and global scale.

25 The fundamental principle in multi-resolution modelling is that smooth signals may be modelled as an evolution through 'scale space', in which details at successively finer scales are added to a low resolution approximation to obtain the high resolution signal. This type of model is applied to the flow field of vectors (defined at each pixel position on the reference image) and allows flows of arbitrary smoothness to be

modelled with relatively few degrees of freedom. Each image is first reduced to a stack, or pyramid, of images derived from the initial image, but smoothed and reduced in resolution by a factor of 2 in each direction at every level (Gaussian pyramid) and a corresponding difference image is also computed at each level, representing the difference between the smoothed image and its progenitor (Laplacian pyramid). Thus the Laplacian images represent the details in the image at different scales.

To estimate the distortion between any 2 given images, a calculation was performed at level 7 in the pyramid (i.e. after 7 successive reductions in resolution). The Laplacian images were segmented into a grid of 16x16 pixels, with 50% overlap between adjacent grid positions in both directions, and the cross correlation between corresponding grid squares on the reference and the test images was computed. The distortion displacement was then given by the location of the maximum in the correlation matrix. After all displacements had been calculated at a particular level, they were interpolated to the next level in the pyramid, applied to the test image, and then further corrections to the displacements were calculated at the next scale.

The warping process brought about good alignment between the common features in the primary master image, and the images for the other samples. The MELANIE 7 II 2D PAGE analysis program was used to calculate and record approximately 500-700 matched feature pairs between the primary master and each of the other images. The accuracy of this program was significantly enhanced by the alignment of the images in the manner described above. To improve accuracy still further, all pairings were finally examined by eye in the MelView interactive editing program and residual recognizably incorrect pairings were removed. Where the number of such recognizably incorrect pairings exceeded the overall reproducibility of the Preferred Technology (as measured by repeat analysis of the same biological sample) the gel selected to be the primary master gel was judged to be insufficiently representative of the study gels to serve as a primary master gel. In that case, the gel chosen as the primary master gel was rejected, and different gel was selected as the primary master gel, and the process was repeated.

All the images were then added together to create a composite master image, and the positions and shapes of all the gel features of all the component images were super-imposed onto this composite master as described below.

Once all the initial pairs had been computed, corrected and saved, a second 5 pass was performed whereby the original (unwarped) images were transformed a second time to the geometry of the primary master, this time using a flow field computed by smooth interpolation of the multiple tie-points defined by the centroids of the paired gel features. A composite master image was thus generated by initializing the primary master image with its feature descriptors. As each image was 10 transformed into the primary master geometry, it was digitally summed pixel by pixel into the composite master image, and the features that had not been paired by the procedure outlined above were likewise added to the composite master image description, with their centroids adjusted to the master geometry using the flow field correction.

15 The final stage of processing was applied to the composite master image and its feature descriptors, which now represent all the features from all the images in the study transformed to a common geometry. The features were grouped together into linked sets or "clusters", according to the degree of overlap between them. Each cluster was then given a unique identifying index, the molecular cluster index (MCI).

20 An MCI identifies a set of matched features on different images. Thus an MCI represents a protein or proteins eluting at equivalent positions in the 2D separation in different samples.

6.1.12. Construction of Profiles

25 After matching all component gels in the study to the final composite master image, the intensity of each feature was measured and stored. The end result of this analysis was the generation of a digital profile which contained, for each identified feature: 1) a unique identification code relative to corresponding feature within the composite master image (MCI), 2) the x, y coordinates of the features within the gel,

3) the isoelectric point (pI) of the ADFs, 4) the apparent molecular weight (MW) of the ADFs, 5) the signal value, 6) the standard deviation for each of the preceding measurements, and 7) a method of linking the MCI of each feature to the master gel to which this feature was matched. By virtue of a Laboratory Information Management System (LIMS), this MCI profile was traceable to the actual stored gel from which it was generated, so that proteins identified by computer analysis of gel profile databases could be retrieved. The LIMS also permitted the profile to be traced back to an original sample or patient.

10 6.1.13. Statistical Analysis of the Profiles

The statistical strategies specified below were used in the order in which they are listed to identify ADFs from the MCIs within the mastergroup.

15 A percentage feature presence was calculated across the control samples and the Alzheimer's disease samples for each MCI that was a potential ADF. The MCI was required to be present in at least 50% of samples from Alzheimer's disease or in at least 50% of the samples from the control group. The MCIs which fulfilled these criteria were then subjected to further analysis.

20 The percentage feature presence for each remaining MCI was then further examined and the MCIs were divided into 2 groups – those which had at least 50% feature presence in the Alzheimer's disease sample group but were absent from all samples in the control group (designated e+), those with at least 50% feature presence in the control sample group but which were absent from all samples in the Alzheimer's disease sample group (designated e-) and those MCIs which were present in both disease and control sample groups. The MCIs that were present in both sample groups were subjected to further analysis.

25 A second selection strategy for the MCIs remaining from (b) was based on the fold change. A fold change representing the ratio of the average normalized protein abundances of the ADFs within an MCI, was calculated for each MCI between each the neurological disorder samples and its age-matched set of controls. A minimum

threshold of 1.5 was set for the fold change to be considered significant.

For the final selection strategy the Wilcoxon Rank-Sum test was used. This test was performed between the control and the Alzheimer's disease samples for each MCI with a fold change greater than 1.5. The MCIs which recorded a p-value less than or equal to 0.05 were selected as statistically significant ADFs with 95% selectivity. The MCIs with a statistically significant change ($p < 0.05$) were designated "b" and the MCIs which did not reach statistical significance were designated "a". For the latter two groups a "+" or "-" sign was used to indicate a fold increase or a fold decrease respectively.

Application of these four analysis strategies allowed ADFs to be selected on the basis of: (a) feature presence in at least 50% of samples from control subjects or patients with a neurological disorders (b) qualitative differences with a chosen selectivity, (c) a significant fold change above a threshold with a chosen selectivity or (d) statistically significant changes as measured by the Wilcoxon Rank-Sum test

15

6.1.14 Recovery and analysis of selected proteins

Proteins in ADFs were robotically excised and processed to generate tryptic digest peptides. Tryptic peptides were analysed by mass spectrometry using a PerSeptive Biosystems Voyager- DETM STR Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) mass spectrometer, and selected tryptic peptides were analysed by tandem mass spectrometry (MS/MS) using a Micromass Quadrupole Time-of-Flight (Q-TOF) mass spectrometer (Micromass, Altrincham, U.K.) equipped with a nanoflowTM electrospray Z-spray source. For partial amino acid sequencing and identification of ADPs uninterpreted tandem mass spectra of tryptic peptides were searched using the SEQUEST search program (Eng et al., 1994, J. Am. Soc. Mass Spectrom. 5:976-989), version v.C.1. Criteria for database identification included: the cleavage specificity of trypsin; and the detection of a suite of a, b and y ions in peptides returned from the database. The database searched was a database constructed of protein entries in the non-redundant database held by the

National Centre for Biotechnology Information (NCBI) which is accessible at <http://www.ncbi.nlm.nih.gov/>. Following identification of proteins through spectral-spectral correlation using the SEQUEST program, masses detected in MALDI-TOF mass spectra were assigned to tryptic digest peptides within the proteins identified. In cases where no amino acid sequences could be identified through searching with uninterpreted MS/MS spectra of tryptic digest peptides using the SEQUEST program, tandem mass spectra of the peptides were interpreted manually, using methods known in the art. (In the case of interpretation of low-energy fragmentation mass spectra of peptide ions see Gaskell et al., 1992, *Rapid Commun. Mass Spectrom.* 6:658-662). The method described in PCT Application No. PCT/GB01/04034, which is incorporated herein by reference in its entirety, was also used to interpret mass spectra.

6.2 RESULTS

These initial experiments identified 427 features that were altered in Alzheimer's disease brain tissue as compared with normal brain tissue. Details of these ADFs are provided in Tables I and II. Each ADF was differentially present in Alzheimer's disease brain tissue as compared with normal brain tissue. For some preferred ADFs (ADF-1, ADF-3, ADF-6, ADF-8, ADF-10, ADF-11, ADF-12, ADF-23, ADF-26, ADF-27, ADF-29, ADF-31, ADF-37, ADF-42, ADF-54, ADF-56, ADF-67, ADF-77, ADF-79, ADF-85, ADF-90, ADF-91, ADF-97, ADF-102, ADF-103, ADF-119, ADF-120, ADF-121, ADF-129, ADF-131, ADF-132, ADF-139, ADF-144, ADF-148, ADF-150, ADF-152, ADF-154, ADF-155, ADF-157, ADF-159, ADF-160, ADF-162, ADF-163, ADF-165, ADF-172, ADF-173, ADF-176, ADF-183, ADF-191, ADF-193, ADF-194, ADF-202, ADF-204, ADF-209, ADF-223, ADF-232, ADF-237, ADF-250, ADF-262, ADF-266, ADF-268, ADF-270, ADF-273, ADF-275, ADF-276, ADF-277, ADF-280, ADF-282, ADF-283, ADF-284, ADF-286, ADF-288, ADF-293, ADF-295, ADF-297, ADF-303, ADF-304, ADF-305, ADF-318, ADF-319, ADF-321, ADF-324, ADF-325, ADF-328, ADF-331, ADF-332, ADF-335, ADF-337, ADF-338,

ADF-342, ADF-346, ADF-351, ADF-358, ADF-362, ADF-364, ADF-366, ADF-367, ADF-368, ADF-370, ADF-373, ADF-374, ADF-376, ADF-382, ADF-387, ADF-389, ADF-395, ADF-396, ADF-398, ADF-399, ADF-400, ADF-404, ADF-405, ADF-406, ADF-410, ADF-411, ADF-415, ADF-419, ADF-423, ADF-425, ADF-429, ADF-430, 5 ADF-431, ADF-434, ADF-437, ADF-439, ADF-440, ADF-441, ADF-446, ADF-447, ADF-449, ADF-450, ADF-452, ADF-456, ADF-461, ADF-463, ADF-467, ADF-468, ADF-469, ADF-472, ADF-473, ADF-474, ADF-477, ADF-478, ADF-479, ADF-480, ADF-491, ADF-492, ADF-493, ADF-495, ADF-501, ADF-503, ADF-504, ADF-505, ADF-506, ADF-507, ADF-510, ADF-514, ADF-515, ADF-518, ADF-520, ADF-524),
10 the difference was highly significant ($p < 0.01$), and for certain highly preferred ADFs (ADF-6, ADF-10, ADF-11, ADF-27, ADF-31, ADF-37, ADF-102, ADF-120, ADF-121, ADF-129, ADF-131, ADF-148, ADF-152, ADF-159, ADF-162, ADF-165, ADF-172, ADF-176, ADF-183, ADF-191, ADF-202, ADF-204, ADF-282, ADF-303, ADF-304, ADF-305, ADF-321, ADF-325, ADF-328, ADF-332, ADF-335, ADF-338, ADF-15 346, ADF-358, ADF-364, ADF-366, ADF-370, ADF-373, ADF-376, ADF-387, ADF-389, ADF-411, ADF-423, ADF-425, ADF-431, ADF-439, ADF-440, ADF-450, ADF-452, ADF-463, ADF-472, ADF-480, ADF-495, ADF-503, ADF-505, ADF-506, ADF-507, ADF-510, ADF-515, ADF-518, ADF-520), the difference was still more significant ($p < 0.001$).

20

6.2.1 Hippocampus

6.2.1.1 All Hippocampal Samples

These initial experiments identified 132 features that were altered in the whole set of hippocampal Alzheimer's disease samples as compared with control hippocampal samples.

Details of these ADFs are provided in Table I. Each ADF was differentially present in Alzheimer's disease tissue as compared with control tissue. For some preferred ADFs, listed in Table XI(a), the fold change was greater than 1.5, and for

certain highly preferred ADFs, listed in Table XI(b), the difference was significant, p<0.05.

Table XI (a). ADFs altered in Alzheimer's disease hippocampus,

Table XI (a)

ADF#	pI	MW (Da)	Fold Change
ADF-305	4.6	32146	-2.767
ADF-515	7.52	49586	-2.364
ADF-427	8.66	50180	-2.150
ADF-256	6.91	136744	-2.015
ADF-300	9.93	33122	-1.973
ADF-332	10.02	21013	-1.918
ADF-255	6.77	138133	-1.853
ADF-81	4.83	42229	-1.837
ADF-483	7.81	50189	-1.752
ADF-33	9.07	42881	-1.676
ADF-297	5.03	33778	-1.635
ADF-384	9.43	16119	-1.614
ADF-16	5.57	48424	-1.604
ADF-413	7.59	50213	-1.602
ADF-401	6.27	51636	-1.590
ADF-342	7.51	14929	-1.575
ADF-240	9.56	32166	-1.574
ADF-462	6.88	66241	-1.569
ADF-57	7.57	49062	-1.556
ADF-245	5.82	26143	-1.534
ADF-193	5.91	64954	-1.533
ADF-142	6.53	39774	-1.525
ADF-470	6.5	56254	-1.507
ADF-349	4.73	13198	1.525
ADF-429	7.56	47861	1.526
ADF-489	4.96	46544	1.597
ADF-412	5.06	49536	1.631
ADF-361	6.32	81004	1.672
ADF-480	4.94	53281	1.677
ADF-103	7.14	20196	1.737
ADF-5	5.88	50355	1.751
ADF-535	8.78	55742	1.770
ADF-437	4.88	45571	1.775
ADF-271	5.01	39858	1.915

Table XI (a)

ADF#	pI	MW (Da)	Fold Change
ADF-151	4.84	38334	1.978
ADF-29	4.9	39388	2.046
ADF-390	5.01	93773	2.476
ADF-132	5.06	40834	2.507
ADF-355	9.64	10941	2.657
ADF-382	6.36	22175	2.696
ADF-508	4.94	46443	2.834
ADF-440	5.31	44519	2.990
ADF-338	5.71	15618	3.068

Table XI (b). ADFs altered in Alzheimer's disease hippocampus, p<0.05

Table XI (b)

ADF#	pI	MW (Da)	Fold Change	p-value
ADF-319	9.97	24740	-2.761	0.001
ADF-335	5.13	17557	-2.595	0.033
ADF-129	5.58	15554	-2.546	0.001
ADF-495	7.46	43838	-2.538	<0.001
ADF-486	5.05	35647	-2.221	0.011
ADF-346	4.56	14197	-2.061	0.001
ADF-434	5.46	45846	-2.028	0.001
ADF-386	5.94	12563	-2.003	0.020
ADF-202	7.14	63134	-1.959	<0.001
ADF-284	6.28	36705	-1.940	0.003
ADF-131	5.13	33239	-1.923	<0.001
ADF-395	7.82	53530	-1.902	0.002
ADF-229	7.77	46953	-1.896	0.020
ADF-405	4.83	50675	-1.869	0.012
ADF-400	9.14	52590	-1.852	0.007
ADF-366	6.34	73530	-1.819	<0.001
ADF-237	4.67	25143	-1.773	0.030
ADF-328	4.94	21882	-1.762	0.005
ADF-459	7.67	31505	-1.741	0.043
ADF-56	7.45	91453	-1.696	0.012
ADF-396	7.15	53305	-1.687	0.004
ADF-318	7.15	24544	-1.686	0.002
ADF-407	4.9	50459	-1.683	0.020
ADF-351	5.91	10930	-1.671	0.008
ADF-362	6.81	76774	-1.670	0.013
ADF-453	6.54	41562	-1.663	0.010

Table XI (b)

ADF#	pI	MW (Da)	Fold Change	p-value
ADF-3	5.53	51762	-1.627	0.003
ADF-360	7.36	92269	-1.625	0.012
ADF-441	6.56	43942	-1.621	0.001
ADF-37	7.57	30563	-1.613	<0.001
ADF-308	9.64	32303	-1.610	0.013
ADF-325	7.24	22428	-1.602	<0.001
ADF-268	5.32	39751	-1.586	0.011
ADF-276	7.51	39969	-1.586	0.002
ADF-176	6.94	63236	-1.586	0.003
ADF-183	5.42	23634	-1.582	<0.001
ADF-476	6.45	54211	-1.566	0.032
ADF-344	4.77	14226	-1.566	0.025
ADF-273	5.7	39437	-1.563	0.001
ADF-492	7.5	44639	-1.551	0.008
ADF-504	7.47	59218	-1.547	0.021
ADF-23	5.22	38803	-1.534	0.006
ADF-223	7.08	42854	-1.526	0.006
ADF-352	6.12	10966	-1.525	0.028
ADF-322	5.89	22204	-1.519	0.030
ADF-439	6.84	44245	-1.503	0.004
ADF-514	6.44	52514	1.520	0.011
ADF-387	5.33	11323	1.540	<0.001
ADF-165	6.42	24608	1.547	0.001
ADF-447	5.	43269	1.621	0.004
ADF-258	8.85	42977	1.650	0.025
ADF-449	4.75	43300	1.655	0.008
ADF-303	4.91	32291	1.670	<0.001
ADF-97	5.12	19201	1.713	0.002
ADF-257	5.42	52510	1.738	0.039
ADF-419	6.52	47975	1.760	0.008
ADF-144	4.96	43397	1.832	0.026
ADF-262	5.02	40870	1.892	0.026
ADF-204	6.29	11406	1.962	0.002
ADF-90	5.12	40883	1.972	0.007
ADF-275	4.94	39423	2.015	0.020
ADF-98	6.35	14707	2.043	0.029
ADF-77	5.28	46016	2.057	0.004
ADF-27	5.02	44949	2.065	0.014
ADF-8	4.96	40177	2.081	0.009
ADF-154	4.85	39486	2.110	0.038
ADF-491	5.23	45828	2.145	0.019

Table XI (b)

ADF#	pI	MW (Da)	Fold Change	p-value
ADF-119	4.95	41245	2.422	0.005
ADF-524	4.96	44893	2.462	0.003
ADF-150	5.12	46104	2.738	0.006
ADF-493	5.08	44646	2.770	0.008
ADF-26	5.13	48692	2.834	0.001
ADF-163	5.03	41674	2.938	0.001
ADF-510	5.06	39851	3.074	<0.001
ADF-450	5.1	42818	3.080	<0.001
ADF-1	5.07	41958	3.105	0.040
ADF-120	5.06	46276	3.414	<0.001
ADF-162	5.26	48579	3.505	<0.001
ADF-31	5.36	46573	3.515	0.005
ADF-159	5.19	48581	3.669	<0.001
ADF-270	4.91	40409	3.692	0.001
ADF-148	5.47	48199	3.842	<0.001
ADF-152	5.32	48338	4.283	<0.001
ADF-443	4.91	43591	4.320	0.041
ADF-6	5.39	48281	4.628	<0.001
ADF-411	5.33	49692	4.874	0.018
ADF-10	5.16	46069	4.995	<0.001
ADF-507	5.47	49332	6.299	0.047

Partial amino acid sequences were determined for the ADPIs present in these ADFs. Details of these ADPIs are provided in Tables IV.

5 6.2.1.2 Selected Hippocampal Samples

These initial experiments identified 166 features that were altered in the selected set of hippocampal Alzheimer's disease samples as compared with control hippocampal samples.

Details of these ADFs are provided in Table I. Each ADF was differentially present in Alzheimer's disease tissue as compared with control tissue. For some preferred ADFs, listed in Table XII(a), the fold change was greater than 1.5, and for certain highly preferred ADFs, listed in Table XII(b), the difference was significant, $p<0.05$. For some preferred ADFs, listed in Table XII (c), there was a qualitative difference in ADF expression.

Table XII (a). ADFs altered in Alzheimer's disease hippocampus,

Table XII (a)

ADF#	pI	MW (Da)	Fold Change
ADF-323	5.23	22730	-2.124
ADF-521	5.24	47302	-1.931
ADF-254	6.63	138817	-1.873
ADF-384	9.43	16119	-1.811
ADF-476	6.45	54211	-1.806
ADF-62	5.57	92331	-1.785
ADF-456	5.05	35647	-1.784
ADF-386	5.94	12563	-1.784
ADF-358	6.73	105628	-1.775
ADF-278	7.25	39463	-1.754
ADF-67	7.57	49062	-1.725
ADF-229	7.77	46953	-1.717
ADF-237	4.67	25143	-1.686
ADF-326	9.69	23002	-1.685
ADF-300	9.93	33122	-1.675
ADF-457	7.77	32435	-1.655
ADF-269	9.72	40657	-1.653
ADF-407	4.9	50459	-1.643
ADF-297	5.03	33778	-1.610
ADF-470	6.5	56254	-1.600
ADF-9	4.94	55118	-1.587
ADF-356	7.04	136798	-1.582
ADF-336	4.52	16749	-1.572
ADF-268	5.32	39751	-1.568
ADF-334	7.08	18540	-1.557
ADF-492	7.5	44639	-1.530
ADF-288	6.17	35958	-1.515
ADF-388	6.22	11486	-1.514
ADF-337	6.61	16325	1.530
ADF-487	5.41	46720	1.537
ADF-369	6.7	69857	1.548
ADF-454	6.17	40304	1.564
ADF-275	4.94	39423	1.565
ADF-39	7.26	42323	1.570
ADF-381	5.48	29061	1.579
ADF-257	5.42	52510	1.588
ADF-290	6.63	36052	1.596

Table XII (a)

ADF#	pI	MW (Da)	Fold Change
ADF-12	4.88	38224	1.601
ADF-262	5.02	40870	1.606
ADF-443	4.91	43591	1.625
ADF-471	6.1	55319	1.647
ADF-103	7.14	20196	1.663
ADF-418	4.82	47830	1.686
ADF-119	4.95	41245	1.696
ADF-422	5.33	126111	1.718
ADF-382	6.36	22175	1.748
ADF-29	4.9	39388	1.857
ADF-204	6.29	11406	1.870
ADF-132	5.06	40834	1.872
ADF-491	5.23	45828	1.884
ADF-163	5.03	41674	1.937
ADF-98	6.35	14707	2.124
ADF-489	4.96	46544	2.156
ADF-8	4.96	40177	2.388
ADF-429	7.56	47861	2.438
ADF-1	5.07	41958	2.533
ADF-31	5.36	46573	2.676
ADF-515	7.52	49586	2.821
ADF-437	4.88	45571	3.388

Table XII (b). ADFs altered in Alzheimer's disease hippocampus, p<0.05

Table XII (b).

ADF#	pI	MW (Da)	Fold Change	p-value
ADF-129	5.58	15554	-3.950	<0.001
ADF-427	8.66	50180	-3.744	0.038
ADF-139	9.81	44026	-3.061	0.001
ADF-370	9.3	69099	-2.791	<0.001
ADF-495	7.46	43838	-2.721	<0.001
ADF-342	7.51	14929	-2.682	0.004
ADF-202	7.14	63134	-2.664	<0.001
ADF-256	6.91	136744	-2.601	0.020
ADF-319	9.97	24740	-2.587	0.028
ADF-389	6.63	126012	-2.535	<0.001
ADF-305	4.6	32146	-2.501	<0.001
ADF-176	6.94	63236	-2.421	<0.001

Table XII (b)

ADF#	pI	MW (Da)	Fold Change	p-value
ADF-434	5.46	45846	-2.415	0.002
ADF-253	6.56	138727	-2.397	0.013
ADF-390	5.01	93773	-2.349	0.024
ADF-173	6.76	64255	-2.308	0.007
ADF-346	4.56	14197	-2.299	0.002
ADF-405	4.83	50675	-2.237	0.020
ADF-318	7.15	24544	-2.198	0.003
ADF-255	6.77	138133	-2.192	0.019
ADF-193	5.91	64954	-2.096	0.020
ADF-503	7.33	59558	-2.046	<0.001
ADF-395	7.82	53530	-2.025	0.019
ADF-332	10.02	21013	-2.000	<0.001
ADF-284	6.28	36705	-1.975	0.022
ADF-400	9.14	52590	-1.975	0.012
ADF-362	6.81	76774	-1.955	0.002
ADF-260	9.64	42986	-1.954	0.031
ADF-328	4.94	21882	-1.868	0.011
ADF-273	5.7	39437	-1.829	0.001
ADF-473	6.33	54465	-1.814	0.007
ADF-194	7.16	49777	-1.806	0.001
ADF-42	7.92	54422	-1.778	0.001
ADF-477	6.51	54406	-1.765	0.004
ADF-366	6.34	73530	-1.763	0.025
ADF-56	7.45	91453	-1.755	0.001
ADF-223	7.08	42854	-1.741	0.009
ADF-374	7.01	65362	-1.728	0.006
ADF-463	6.58	63519	-1.719	<0.001
ADF-276	7.51	39969	-1.718	0.004
ADF-66	6.6	115748	-1.709	0.020
ADF-479	6.09	53874	-1.704	0.001
ADF-474	7.68	54716	-1.693	0.002
ADF-102	5.13	38984	-1.679	<0.001
ADF-431	7.65	46361	-1.678	<0.001
ADF-430	5.67	46344	-1.673	0.005
ADF-124	6.8	70243	-1.670	0.018
ADF-282	5.69	37186	-1.666	<0.001
ADF-308	9.64	52303	-1.650	0.033
ADF-191	6.9	50019	-1.636	<0.001
ADF-439	6.84	44245	-1.630	<0.001
ADF-293	7.04	34992	-1.630	0.001

Table XII (b)

ADF#	pI	MW (Da)	Fold Change	p-value
ADF-360	7.36	92269	-1.627	0.016
ADF-263	5.58	40684	-1.623	0.010
ADF-54	7.53	90365	-1.615	0.002
ADF-172	9.32	10855	-1.613	<0.001
ADF-392	5.47	73385	-1.610	0.022
ADF-23	5.22	38803	-1.602	0.010
ADF-344	4.77	14226	-1.598	0.022
ADF-351	5.91	10930	-1.581	0.038
ADF-368	5.49	65816	-1.569	0.007
ADF-467	7.16	59914	-1.567	0.009
ADF-441	6.56	43942	-1.548	0.001
ADF-425	7.89	50602	-1.546	<0.001
ADF-408	5.79	50212	-1.545	0.020
ADF-502	5.95	57646	-1.542	0.010
ADF-37	7.57	30563	-1.540	0.003
ADF-340	4.31	15235	-1.536	0.033
ADF-436	6.1	44528	-1.535	0.046
ADF-398	6.02	51914	-1.534	0.001
ADF-448	7.84	43648	-1.517	0.016
ADF-183	5.42	23634	-1.504	0.010
ADF-324	7.43	22516	-1.417	<0.001
ADF-209	5.03	11738	1.553	0.006
ADF-165	6.42	24608	1.566	0.010
ADF-321	6.28	23240	1.605	0.046
ADF-387	5.33	11323	1.663	0.004
ADF-501	5.33	58448	1.692	0.004
ADF-447	5	43269	1.749	0.008
ADF-349	4.73	13198	1.753	0.040
ADF-411	5.33	49692	1.757	<0.001
ADF-419	6.52	47975	1.771	0.027
ADF-311	5.33	28896	1.890	0.010
ADF-90	5.12	40883	1.960	0.026
ADF-468	6.45	58723	1.987	0.007
ADF-77	5.28	46016	2.082	0.022
ADF-258	8.85	42977	2.100	0.018
ADF-97	5.12	19201	2.104	0.014
ADF-440	5.31	44519	2.184	<0.001
ADF-144	4.96	43397	2.364	0.003
ADF-27	5.02	44949	2.563	0.040
ADF-270	4.91	40409	2.767	0.021

Table XII (b)

ADF#	pI	MW (Da)	Fold Change	p-value
ADF-493	5.08	44646	2.843	0.014
ADF-26	5.13	48692	2.927	0.006
ADF-162	5.26	48579	3.090	0.013
ADF-150	5.12	46104	3.114	0.033
ADF-120	5.06	46276	3.226	0.012
ADF-159	5.19	48581	3.235	0.012
ADF-524	4.96	44893	3.348	0.004
ADF-10	5.16	46069	3.824	0.030
ADF-507	5.47	49332	4.142	<0.001
ADF-450	5.1	42818	4.635	0.001
ADF-148	5.47	48199	5.014	0.016
ADF-152	5.32	48338	5.574	0.001
ADF-6	5.39	48281	6.167	0.002

Table XII (c). ADFs with a qualitative difference in expression between Alzheimer's disease samples and control samples.

Table XII (c)

ADF#	pI	MW (Da)	% Feature presence in Alzheimer's disease (n=9)	% Feature presence in control samples (n=11)
ADF-480	4.94	53281	0	64
ADF-376	6.52	65065	0	55

5 Partial amino acid sequences were determined for the ADPIs present in these ADFs. Details of these ADPIs are provided in Tables IV.

6.2.2 Frontal Cortex

These initial experiments identified 70 features that were altered in the frontal cortex Alzheimer's disease samples as compared with control frontal cortex samples.

10 Details of these ADFs are provided in Table I. Each ADF was differentially present in Alzheimer's disease tissue as compared with control tissue. For some preferred ADFs, listed in Table XIII (a), the fold change was greater than 1.5, and for certain highly preferred ADFs, listed in Table XIII (b), the difference was significant,

15 p<0.05.

Table XIII (a). ADFs altered in Alzheimer's disease Frontal Cortex,

Table XIII (a)

ADF#	pI	MW (Da)	Fold Change
ADF-281	5.4	37687	-2.882
ADF-278	7.25	39463	-2.778
ADF-291	7.79	36208	-2.422
ADF-475	4.99	54607	-2.347
ADF-31	5.36	46573	-2.012
ADF-133	6.81	42650	-1.987
ADF-472	5.24	54138	-1.802
ADF-127	5.21	40033	-1.660
ADF-420	4.85	16376	-1.641
ADF-366	6.34	73530	-1.618
ADF-341	4.68	15288	-1.563
ADF-336	4.52	16749	-1.560
ADF-437	4.88	45571	-1.558
ADF-477	6.51	54406	-1.548
ADF-268	5.32	39751	-1.545
ADF-329	5.02	21444	-1.541
ADF-259	7.16	42747	-1.533
ADF-471	6.1	55319	1.515
ADF-409	5.69	50034	1.527
ADF-353	7.35	10655	1.530
ADF-24	5.47	77449	1.546
ADF-220	7.17	26848	1.547
ADF-270	4.91	40409	1.567
ADF-98	6.35	14707	1.584
ADF-275	4.94	39423	1.621
ADF-488	7.09	46981	1.732
ADF-26	5.13	48692	1.739
ADF-315	6.13	25520	1.768
ADF-103	7.14	20196	1.804
ADF-67	7.57	49062	1.963
ADF-159	5.19	48581	1.970
ADF-300	9.93	33122	1.980
ADF-162	5.26	48579	2.000
ADF-338	5.71	15618	2.096
ADF-491	5.23	45828	2.332
ADF-450	5.1	42818	2.653
ADF-150	5.12	46104	2.758

Table XIII (b). ADFs altered in Alzheimer's disease Frontal Cortex, p<0.05

Table XIII (b)

ADF#	pI	MW (Da)	Fold Change	p-value
ADF-520	4.77	51522	-3.195	<0.001
ADF-11	4.81	39554	-3.046	<0.001
ADF-476	6.45	54211	-2.177	0.023
ADF-124	6.8	70243	-1.781	0.030
ADF-376	6.52	65065	-1.729	0.004
ADF-406	6.53	51024	-1.633	0.009
ADF-410	5.11	49646	-1.608	0.006
ADF-277	4.98	39146	-1.596	0.003
ADF-515	7.52	49586	-1.591	<0.001
ADF-373	6.61	65116	-1.589	<0.001
ADF-441	6.56	43942	-1.578	0.005
ADF-328	4.94	21882	-1.575	0.021
ADF-287	6.86	35923	-1.571	0.015
ADF-396	7.15	53305	-1.538	0.011
ADF-232	5	37305	-1.503	0.005
ADF-262	5.02	40870	1.599	0.024
ADF-321	6.28	23240	1.719	0.035
ADF-204	6.29	11406	1.747	0.001
ADF-156	5.16	47248	1.764	0.027
ADF-25	5.06	52537	1.771	0.027
ADF-506	6.68	52348	1.819	<0.001
ADF-454	6.17	40304	1.879	0.015
ADF-461	5.16	103474	1.890	0.005
ADF-382	6.36	22175	2.114	0.019
ADF-358	6.73	105628	2.179	<0.001
ADF-196	7.07	51831	2.182	0.023
ADF-120	5.06	46276	2.481	0.048
ADF-452	8.65	42868	2.516	<0.001
ADF-163	5.03	41674	2.680	0.043
ADF-148	5.47	48199	2.914	0.035
ADF-152	5.32	48338	2.987	0.009
ADF-6	5.39	48281	2.991	0.023

Partial amino acid sequences were determined for the ADPIs present in these 5 ADFs. Details of these ADPIs are provided in Tables IV.

6.2.3 Neocortex

These initial experiments identified 160 features that were altered in the neocortical Alzheimer's disease samples as compared with control neocortical
5 samples.

Details of these ADFs are provided in Table I. Each ADF was differentially present in Alzheimer's disease tissue as compared with control tissue. For some preferred ADFs, listed in Table XIV(a), the fold change was greater than 1.5, and for certain preferred ADFs, listed in Table XIV(b), there was a qualitative difference in
10 ADF expression.

Table XIV (a). ADFs altered in Alzheimer's disease Neocortex

Table IV (a)

ADF#	pI	MW (Da)	Fold Change
ADF-298	5.37	33180	-20.277
ADF-113	8.39	50091	-15.338
ADF-343	9.12	15079	-6.871
ADF-452	8.65	42868	-5.210
ADF-300	9.93	33122	-5.159
ADF-542	7.68	16766	-4.074
ADF-67	7.57	49062	-3.737
ADF-370	9.3	69099	-3.658
ADF-109	8.03	147014	-3.463
ADF-1	5.07	41958	-3.300
ADF-292	9.67	36144	-3.230
ADF-124	6.8	70243	-3.053
ADF-291	7.79	36208	-3.022
ADF-91	6.95	39784	-2.913
ADF-257	5.42	52510	-2.743
ADF-513	8.34	55698	-2.714
ADF-132	5.06	40834	-2.699
ADF-527	8.1	13928	-2.663
ADF-482	6.15	51602	-2.627
ADF-101	8.99	15083	-2.559
ADF-98	6.35	14707	-2.531
ADF-112	6.94	76640	-2.411

Table IV (a)

ADF#	pI	MW (Da)	Fold Change
ADF-413	7.59	50213	-2.309
ADF-61	8.02	65431	-2.305
ADF-393	5.42	70689	-2.288
ADF-375	6.12	63693	-2.236
ADF-308	9.64	32303	-2.218
ADF-451	6.59	42651	-2.180
ADF-412	5.06	49556	-2.175
ADF-103	7.14	20196	-2.126
ADF-341	4.68	15288	-2.119
ADF-349	4.73	13198	-2.118
ADF-142	6.53	39774	-2.088
ADF-182	9.36	32746	-1.992
ADF-458	5.13	32364	-1.970
ADF-33	9.07	42881	-1.962
ADF-294	5.16	34573	-1.938
ADF-8	4.96	40177	-1.879
ADF-342	7.51	14929	-1.872
ADF-143	8.99	32577	-1.863
ADF-77	5.28	46016	-1.861
ADF-56	7.45	91453	-1.843
ADF-269	9.72	40657	-1.831
ADF-417	5	48877	-1.810
ADF-268	5.32	39751	-1.804
ADF-313	5.04	28096	-1.796
ADF-133	6.81	42650	-1.793
ADF-409	5.69	50034	-1.778
ADF-461	5.16	103474	-1.775
ADF-339	4.68	16126	-1.769
ADF-296	4.76	34122	-1.706
ADF-432	9.42	46974	-1.705
ADF-85	5.71	41191	-1.688
ADF-138	9.72	26137	-1.684
ADF-315	6.13	25520	-1.664
ADF-390	5.01	93773	-1.661
ADF-429	7.56	47861	-1.636
ADF-337	6.61	16325	-1.634
ADF-435	7.25	45448	-1.631
ADF-345	7.75	13620	-1.630
ADF-322	5.89	22204	-1.621
ADF-448	7.84	43648	-1.611

Table IV (a)

ADF#	pI	MW (Da)	Fold Change
ADF-487	5.41	46720	-1.598
ADF-512	6.42	22602	-1.588
ADF-25	5.06	52537	-1.587
ADF-415	5.61	48968	-1.575
ADF-481	6.18	53133	-1.568
ADF-88	5.22	24404	-1.560
ADF-15	4.64	50029	-1.551
ADF-42	7.92	54422	-1.529
ADF-141	4.66	41227	-1.512
ADF-360	7.36	92269	-1.510
ADF-529	9.71	33463	-1.504
ADF-188	4.96	93776	1.505
ADF-254	6.63	138817	1.512
ADF-260	9.64	42986	1.519
ADF-457	7.77	32435	1.525
ADF-492	7.5	44639	1.526
ADF-95	6.65	40709	1.542
ADF-237	4.67	25143	1.543
ADF-348	7.36	12068	1.546
ADF-16	5.57	48424	1.578
ADF-105	4.81	38327	1.580
ADF-494	6.95	44465	1.587
ADF-316	6.05	25158	1.592
ADF-156	5.16	47248	1.594
ADF-29	4.9	39388	1.603
ADF-162	5.26	48579	1.605
ADF-175	9.55	36150	1.632
ADF-306	4.67	31899	1.645
ADF-264	5.53	40345	1.659
ADF-514	6.44	52514	1.671
ADF-284	6.28	36705	1.692
ADF-285	5.7	36544	1.698
ADF-456	5.05	35647	1.714
ADF-372	5.68	63210	1.744
ADF-297	5.03	33778	1.805
ADF-450	5.1	42818	1.828
ADF-426	7.68	50266	1.828
ADF-353	7.35	10655	1.844
ADF-111	4.87	43065	1.862
ADF-515	7.52	49586	1.873

Table IV (a)

ADF#	pI	MW (Da)	Fold Change
ADF-400	9.14	52590	1.874
ADF-217	7.53	10660	1.964
ADF-90	5.12	40883	2.022
ADF-189	5.83	65453	2.069
ADF-361	6.32	81004	2.375
ADF-154	4.85	39486	2.107
ADF-382	6.36	22175	2.130
ADF-155	5.56	66533	2.149
ADF-476	6.45	54211	2.182
ADF-22	5.19	102608	2.196
ADF-386	5.94	12563	2.226
ADF-220	7.17	26848	2.235
ADF-62	5.57	92331	2.247
ADF-403	7.48	51603	2.303
ADF-318	7.15	24544	2.346
ADF-277	4.98	39146	2.347
ADF-443	4.91	43591	2.350
ADF-172	9.32	10855	2.399
ADF-26	5.13	48692	2.405
ADF-6	5.39	48281	2.430
ADF-240	9.56	32166	2.450
ADF-371	5.98	64860	2.499
ADF-152	5.32	48338	2.599
ADF-506	6.68	52348	2.602
ADF-92	8.98	34521	2.606
ADF-526	4.61	38042	2.614
ADF-521	5.24	47302	2.722
ADF-480	4.94	53281	2.805
ADF-517	4.86	40635	2.831
ADF-9	4.94	55118	2.991
ADF-358	6.73	105628	3.301
ADF-159	5.19	48581	3.380
ADF-127	5.21	40033	3.651
ADF-433	9.55	46884	3.801
ADF-330	9.53	21378	3.837
ADF-148	5.47	48199	3.924
ADF-336	4.52	16749	4.835
ADF-81	4.83	42229	5.742
ADF-338	5.71	15618	7.517
ADF-491	5.23	45828	8.018

Table XIV (b). ADFs with a qualitative difference in expression between Alzheimer's disease samples and control samples.

Table XIV (b)

ADF#	pI	MW (Da)	% Feature presence in Alzheimer's disease (n=3)	% Feature presence in control samples (n=3)
ADF-82	8.93	40442	0	100
ADF-545	5.4	64958	0	67
ADF-258	8.85	42977	0	67
ADF-546	8.85	51770	0	67
ADF-484	8.91	50220	0	67
ADF-383	4.52	17290	0	67
ADF-541	8.65	41532	0	67
ADF-119	4.95	41245	0	67
ADF-262	5.02	40870	0	67
ADF-539	5.52	49807	67	0
ADF-236	4.64	18906	67	0
ADF-120	5.06	46276	67	0
ADF-549	6.61	105070	100	0
ADF-144	4.96	43397	67	0
ADF-462	6.88	66241	100	0
ADF-540	5.21	40933	67	0
ADF-151	4.84	38334	67	0
ADF-289	9.18	36921	67	0

5 Partial amino acid sequences were determined for the ADPIs present in these
ADFs. Details of these ADPIs are provided in Tables IV.

6.2.4 Entorhinal Cortex

10 These initial experiments identified 184 features that were altered in the
entorhinal cortex Alzheimer's disease samples as compared with control entorhinal
cortex samples.

15 Details of these ADFs are provided in Table I. Each ADF was differentially
present in Alzheimer's disease tissue as compared with control tissue. For some
preferred ADFs, listed in Table XV (a), the fold change was greater than 1.5, and for
certain preferred ADFs, listed in Table XV (b), there was a qualitative difference in

ADF expression.

Table XV (a): ADFs altered in Alzheimer's disease hippocampus,

Table XV (a)

ADF#	pI	MW (Da)	Fold Change
ADF-533	4.85	57993	-48.166
ADF-41	9.84	32806	-11.481
ADF-175	9.55	36150	-7.527
ADF-154	4.85	39486	-5.929
ADF-129	5.58	15554	-5.428
ADF-384	9.43	16119	-5.204
ADF-452	8.65	42868	-5.105
ADF-78	4.88	55952	-5.006
ADF-297	5.03	33778	-4.943
ADF-526	4.61	38042	-4.168
ADF-534	8.6	44086	-4.157
ADF-130	4.9	41328	-3.846
ADF-437	4.88	45571	-3.709
ADF-107	7.05	18005	-3.520
ADF-262	5.02	40870	-3.362
ADF-535	8.78	55742	-2.960
ADF-334	7.08	18540	-2.945
ADF-8	4.96	40177	-2.913
ADF-294	5.16	34573	-2.735
ADF-458	5.13	32364	-2.641
ADF-516	7.77	44058	-2.499
ADF-537	4.78	44895	-2.495
ADF-29	4.9	39388	-2.483
ADF-523	9.71	47395	-2.446
ADF-79	6.04	51058	-2.426
ADF-284	6.28	36705	-2.403
ADF-61	8.02	65431	-2.326
ADF-337	6.61	16325	-2.256
ADF-456	5.05	35647	-2.226
ADF-451	6.59	42651	-2.185
ADF-270	4.91	40409	-2.143
ADF-525	4.88	43587	-2.140
ADF-327	5.48	21128	-2.108
ADF-299	9.26	34579	-2.108
ADF-476	6.45	54211	-2.081

Table XV (a)

ADF#	pI	MW (Da)	Fold Change
ADF-478	5.48	53235	-2.069
ADF-112	6.94	76640	-2.067
ADF-495	7.46	43838	-2.032
ADF-500	6.06	60911	-2.024
ADF-413	7.59	50213	-2.006
ADF-347	4.52	14033	-1.991
ADF-268	5.32	39751	-1.981
ADF-496	7.63	43211	-1.966
ADF-449	4.75	43300	-1.944
ADF-131	5.13	33239	-1.942
ADF-11	4.81	39554	-1.877
ADF-288	6.17	35958	-1.841
ADF-480	4.94	53281	-1.830
ADF-350	5.03	12536	-1.828
ADF-1	5.07	41958	-1.818
ADF-81	4.83	42229	-1.808
ADF-128	5.8	28231	-1.801
ADF-328	4.94	21882	-1.773
ADF-115	7.4	78857	-1.767
ADF-363	6.36	75388	-1.764
ADF-411	5.33	49692	-1.744
ADF-15	4.64	30029	-1.721
ADF-237	4.67	25143	-1.715
ADF-317	4.61	25514	-1.698
ADF-314	5.63	27914	-1.685
ADF-462	6.88	66241	-1.684
ADF-103	7.14	20196	-1.658
ADF-531	7.73	88666	-1.651
ADF-490	6.25	46318	-1.647
ADF-485	6.27	48105	-1.625
ADF-275	4.94	39423	-1.618
ADF-132	5.06	40834	-1.616
ADF-309	4.69	30667	-1.612
ADF-497	6.22	37984	-1.589
ADF-548	6.62	23128	-1.585
ADF-188	4.96	93776	-1.584
ADF-95	6.65	40709	-1.584
ADF-151	4.84	38334	-1.584
ADF-447	5	43269	-1.576
ADF-342	7.51	14929	-1.574

Table XV (a)

ADF#	pI	MW (Da)	Fold Change
ADF-307	4.61	31610	-1.567
ADF-499	5.34	23685	-1.564
ADF-133	6.81	42650	-1.558
ADF-105	4.81	38327	-1.547
ADF-359	5.71	91189	-1.547
ADF-318	7.15	24544	-1.540
ADF-399	6.63	52447	-1.538
ADF-393	5.42	70689	-1.530
ADF-68	5.63	91712	-1.506
ADF-257	5.42	52510	1.505
ADF-66	6.6	115748	1.505
ADF-331	9.32	21202	1.529
ADF-508	4.94	46443	1.558
ADF-392	5.47	75385	1.564
ADF-160	4.86	47558	1.568
ADF-277	4.98	39146	1.588
ADF-251	5.52	171859	1.591
ADF-153	4.99	53853	1.618
ADF-549	6.61	105070	1.627
ADF-312	7.39	28434	1.641
ADF-150	5.12	46104	1.644
ADF-353	7.35	10655	1.656
ADF-410	5.11	49646	1.657
ADF-266	7.41	40715	1.669
ADF-252	5.37	126296	1.674
ADF-381	5.48	29061	1.694
ADF-216	7.76	21455	1.698
ADF-196	7.07	51831	1.707
ADF-261	5.26	41426	1.714
ADF-70	6.78	116449	1.745
ADF-341	4.68	15288	1.773
ADF-258	8.85	42977	1.778
ADF-92	8.98	34521	1.786
ADF-316	6.05	25158	1.834
ADF-23	5.22	38803	1.839
ADF-274	5.05	39078	1.868
ADF-172	9.32	10855	1.869
ADF-220	7.17	26848	1.870
ADF-272	8.13	40619	1.875
ADF-157	5.45	42821	1.879

Table XV (a)

ADF#	pI	MW (Da)	Fold Change
ADF-289	9.18	36921	1.908
ADF-356	7.04	136798	1.927
ADF-361	6.32	81004	1.930
ADF-217	7.53	10660	1.955
ADF-27	5.02	44949	2.010
ADF-354	5.62	10558	2.016
ADF-319	9.97	24740	2.060
ADF-250	5.07	167558	2.094
ADF-267	5.28	39907	2.118
ADF-236	4.64	18906	2.138
ADF-412	5.06	49556	2.139
ADF-302	7.09	32791	2.148
ADF-269	9.72	40657	2.159
ADF-455	4.89	37155	2.217
ADF-357	5.17	115959	2.218
ADF-117	4.95	47483	2.296
ADF-376	6.52	65065	2.322
ADF-428	5.04	48509	2.360
ADF-349	4.73	13198	2.416
ADF-26	5.13	48692	2.427
ADF-416	6.8	49576	2.457
ADF-450	5.1	42818	2.513
ADF-102	5.13	38984	2.521
ADF-407	4.9	50459	2.614
ADF-402	5.58	51111	2.636
ADF-541	8.65	41532	2.728
ADF-380	8.69	32065	2.967
ADF-148	5.47	48199	2.986
ADF-382	6.36	22175	3.076
ADF-300	9.93	33122	3.143
ADF-120	5.06	46276	3.205
ADF-343	9.12	15079	3.277
ADF-344	4.77	14226	3.503
ADF-10	5.16	46069	3.518
ADF-159	5.19	48581	3.829
ADF-338	5.71	15618	4.002
ADF-162	5.26	48579	4.154
ADF-390	5.01	193773	4.290
ADF-6	5.39	48281	4.570
ADF-414	4.94	49167	5.162

Table XV (a)

ADF#	pI	MW (Da)	Fold Change
ADF-152	5.32	48338	5.214
ADF-243	5.35	39493	7.183

Table XV (b). ADFs with a qualitative difference in expression between Alzheimer's disease samples and control samples.

Table XV (b)

ADF#	pI	MW (Da)	% Feature presence in Alzheimer's disease (n=3)	% Feature presence in control samples (n=3)
ADF-520	4.77	51522	0	67
ADF-517	4.86	40635	0	67
ADF-144	4.96	43397	0	67
ADF-111	4.87	43065	0	100
ADF-532	7.9	56000	0	67
ADF-139	9.81	44026	0	100
ADF-492	7.5	44639	0	67
ADF-126	5.15	42785	0	67
ADF-519	4.84	53906	0	67
ADF-378	5.66	38000	0	67
ADF-486	4.77	47947	0	100
ADF-377	9.59	44257	0	100
ADF-538	4.73	74425	0	67
ADF-522	5.7	46027	0	67
ADF-140	4.58	15950	0	67
ADF-539	5.52	49807	0	67
ADF-498	4.77	38566	67	0
ADF-301	9.79	33445	67	0
ADF-228	6.41	74736	67	0
ADF-125	4.84	43088	67	0
ADF-536	4.52	55713	67	0
ADF-521	5.24	47302	67	0
ADF-493	5.08	44646	67	0
ADF-421	7.61	15176	67	0
ADF-333	7.8	20396	67	0
ADF-506	6.68	52348	67	0
ADF-292	9.67	36144	67	0

5 Partial amino acid sequences were determined for the ADPIs present in these

ADFs. Details of these ADPIs are provided in Tables IV.

6.2.5 Amygdala

These initial experiments identified 188 features that were altered in the amygdala Alzheimer's disease samples as compared with control amygdala samples.

Details of these ADFs are provided in Table I. Each ADF was differentially present in Alzheimer's disease tissue as compared with control tissue. For some preferred ADFs, listed in Table XVI (a), the fold change was greater than 1.5, and for certain preferred ADFs, listed in Table XVI (b), there was a qualitative difference in ADF expression.

Table XVI (a). ADFs altered in Alzheimer's disease amygdala,

Table XVI (a)

ADF#	pI	MW (Da)	Fold Change
ADF-499	5.34	23685	-10.320
ADF-279	8.09	39011	-8.556
ADF-272	8.13	40619	-5.076
ADF-349	4.73	13198	-3.020
ADF-237	4.67	25143	-4.637
ADF-16	5.57	48424	-4.349
ADF-127	5.21	40033	-4.029
ADF-521	5.24	47302	-3.840
ADF-146	5.25	11857	-3.740
ADF-380	8.69	32065	-3.661
ADF-243	5.35	39493	-3.616
ADF-67	7.57	49062	-3.540
ADF-251	5.52	171859	-3.486
ADF-284	6.28	36705	-3.473
ADF-261	5.26	41426	-3.251
ADF-31	5.36	46573	-3.222
ADF-92	8.98	34521	-2.847
ADF-260	9.64	42986	-2.845
ADF-394	5.62	66442	-2.671
ADF-531	7.73	88666	-2.583
ADF-486	4.77	47947	-2.563
ADF-410	5.11	49646	-2.559

Table XVI (a)

ADF#	pI	MW (Da)	Fold Change
ADF-432	9.42	46974	-2.536
ADF-277	4.98	39146	-2.480
ADF-23	5.22	38803	-2.361
ADF-400	9.14	52590	-2.355
ADF-488	7.09	46981	-2.314
ADF-128	5.8	28231	-2.222
ADF-528	4.93	94807	-2.210
ADF-468	6.45	58723	-2.207
ADF-480	4.94	53281	-2.192
ADF-473	6.33	54465	-2.174
ADF-91	6.95	39784	-2.156
ADF-422	5.33	126111	-2.065
ADF-470	6.5	56254	-2.023
ADF-341	4.68	15288	-2.012
ADF-434	5.46	45846	-1.966
ADF-543	8.85	32258	-1.965
ADF-534	8.6	44086	-1.918
ADF-72	5.8	91999	-1.893
ADF-305	4.6	32146	-1.870
ADF-318	7.15	24544	-1.863
ADF-339	4.68	16126	-1.848
ADF-459	7.67	31505	-1.844
ADF-85	5.71	41191	-1.840
ADF-66	6.6	115748	-1.817
ADF-151	4.84	38334	-1.808
ADF-411	5.33	49692	-1.792
ADF-82	8.93	40442	-1.789
ADF-312	7.39	28434	-1.770
ADF-544	5.53	38484	-1.763
ADF-3	5.53	51762	-1.760
ADF-465	6.94	59947	-1.754
ADF-401	6.27	51636	-1.750
ADF-467	7.16	59914	-1.749
ADF-456	5.05	35647	-1.727
ADF-395	7.82	53530	-1.722
ADF-420	4.85	16376	-1.720
ADF-479	6.09	53874	-1.697
ADF-397	5.29	51553	-1.690
ADF-462	6.88	66241	-1.679
ADF-375	6.12	63693	-1.679

Table XVI (a)

ADF#	pI	MW (Da)	Fold Change
ADF-436	6.1	44528	-1.674
ADF-223	7.08	42854	-1.660
ADF-283	5.58	36661	-1.659
ADF-337	6.61	16325	-1.657
ADF-361	6.32	81004	-1.655
ADF-125	4.84	43088	-1.647
ADF-13	5.41	67038	-1.644
ADF-102	5.13	38984	-1.641
ADF-365	6.47	74592	-1.623
ADF-517	4.86	40635	-1.616
ADF-87	5.48	34110	-1.616
ADF-131	5.13	33239	-1.615
ADF-296	4.76	34122	-1.612
ADF-442	5.36	43816	-1.609
ADF-294	5.16	34573	-1.604
ADF-437	4.88	45571	-1.596
ADF-15	4.64	50029	-1.585
ADF-105	4.81	38327	-1.579
ADF-416	6.8	49576	-1.560
ADF-366	6.34	73530	-1.535
ADF-445	5.55	42883	-1.533
ADF-525	4.88	43587	-1.518
ADF-22	5.19	102608	-1.518
ADF-320	6.44	23908	-1.507
ADF-150	5.12	46104	1.510
ADF-348	7.36	12068	1.511
ADF-209	5.03	11738	1.511
ADF-475	4.99	54607	1.519
ADF-62	5.57	92331	1.523
ADF-438	6.15	44253	1.537
ADF-193	5.91	64954	1.538
ADF-419	6.52	47975	1.546
ADF-355	9.64	10941	1.550
ADF-108	5.74	34823	1.551
ADF-258	8.85	42977	1.554
ADF-119	4.95	41245	1.556
ADF-425	7.89	50602	1.557
ADF-413	7.59	50213	1.561
ADF-27	5.02	44949	1.567
ADF-303	4.91	32291	1.567

Table XVI (a)

ADF#	pI	MW (Da)	Fold Change
ADF-94	5.84	43662	1.581
ADF-24	5.47	77449	1.602
ADF-208	5.26	19241	1.602
ADF-126	5.15	42785	1.632
ADF-444	6.48	43383	1.634
ADF-275	4.94	39423	1.659
ADF-314	5.63	27914	1.660
ADF-6	5.39	48281	1.660
ADF-98	6.35	14707	1.677
ADF-188	4.96	93776	1.681
ADF-313	5.04	28096	1.685
ADF-79	6.04	51058	1.693
ADF-130	4.9	41328	1.696
ADF-149	5.13	43744	1.699
ADF-452	8.65	42868	1.704
ADF-159	5.19	48581	1.704
ADF-334	7.08	18540	1.714
ADF-379	7.09	37275	1.715
ADF-429	7.56	147861	1.755
ADF-386	5.94	12563	1.767
ADF-454	6.17	40304	1.786
ADF-35	7.84	42531	1.790
ADF-265	6.77	41249	1.794
ADF-447	5	43269	1.809
ADF-138	9.72	26137	1.870
ADF-156	5.16	47248	1.879
ADF-97	5.12	19201	1.910
ADF-10	5.16	46069	1.918
ADF-311	5.33	28896	1.926
ADF-288	6.17	35958	1.959
ADF-526	4.61	38042	2.007
ADF-376	6.52	65065	2.018
ADF-111	4.87	43065	2.040
ADF-196	7.07	51831	2.078
ADF-26	5.13	48692	2.146
ADF-144	4.96	43397	2.156
ADF-95	6.65	40709	2.162
ADF-509	9.08	44787	2.199
ADF-466	7.05	60297	2.221
ADF-117	4.95	47483	2.229

Table XVI (a)

ADF#	pI	MW (Da)	Fold Change
ADF-370	9.3	69099	2.230
ADF-163	5.03	41674	2.452
ADF-291	7.79	36208	2.669
ADF-162	5.26	48579	2.690
ADF-308	9.64	32303	2.707
ADF-377	9.59	44257	2.832
ADF-338	5.71	15618	3.041
ADF-382	6.36	22175	4.063
ADF-9	4.94	55118	5.228
ADF-8	4.96	40177	5.460
ADF-496	7.63	43211	6.277
ADF-506	6.68	52348	6.543
ADF-383	4.52	17290	7.935
ADF-508	4.94	46443	8.478
ADF-139	9.81	44026	9.345

Table XVI (b). ADFs with a qualitative difference in expression between Alzheimer's disease samples and control samples.

Table XVI (b)

ADF#	pI	MW (Da)	% Feature presence in Alzheimer's disease (n=3)	% Feature presence in control samples (n=3)
ADF-230	4.87	53678	0	67
ADF-289	9.18	36921	0	67
ADF-477	6.51	54406	0	67
ADF-175	9.55	36150	0	67
ADF-390	5.01	93773	0	67
ADF-530	4.9	53903	0	67
ADF-326	9.69	23002	0	67
ADF-547	4.89	59987	0	67
ADF-141	4.66	41227	0	67
ADF-332	10.02	21013	0	67
ADF-433	9.55	46884	0	100
ADF-455	4.89	37155	0	67
ADF-391	7.62	88209	0	67
ADF-523	9.71	47395	0	67
ADF-381	5.48	29061	0	67
ADF-245	5.82	26143	0	100
ADF-335	5.13	17557	0	67

Table XVI (b)

ADF#	pI	MW (Da)	% Feature presence in Alzheimer's disease (n=3)	% Feature presence in control samples (n=3)
ADF-464	6.01	58817	0	100
ADF-298	5.37	33180	0	67
ADF-472	5.24	54138	0	67
ADF-460	6.61	15951	0	67
ADF-522	5.7	46027	67	0
ADF-489	4.96	46544	67	0
ADF-510	5.06	39851	67	0
ADF-278	7.25	39463	100	0
ADF-78	4.88	55952	67	0
ADF-414	4.94	49167	67	0
ADF-520	4.77	51522	67	0
ADF-424	4.83	52105	67	0

Partial amino acid sequences were determined for the ADPIs present in these ADFs. Details of these ADPIs are provided in Tables IV.

5 6.2.6 All Alzheimer's disease samples vs. all control samples

These initial experiments identified 52 features that were altered in the whole set of Alzheimer's disease samples as compared with control samples.

Details of these ADFs are provided in Table I. Each ADF was differentially present in Alzheimer's disease tissue as compared with control tissue. For some preferred ADFs, listed in Table XVII (a), the fold change was greater than 1.5, and for certain highly preferred ADFs, listed in Table XVII (b), the difference was significant, p<0.05.

Table XVII (a). ADFs altered in Alzheimer's disease hippocampus,

Table XVII (a)

ADF#	pI	MW (Da)	Fold Change
ADF-16	5.57	48424	-1.681
ADF-452	8.65	42868	-1.672
ADF-82	8.93	40442	-1.657
ADF-67	7.57	49062	-1.547

Table XVII (a)

ADF#	pI	MW (Da)	Fold Change
ADF-130	4.9	41328	-1.519
ADF-427	8.66	50180	-1.512
ADF-413	7.59	50213	-1.510
ADF-271	5.01	39858	1.558
ADF-77	5.28	46016	1.613
ADF-132	5.06	40834	1.694
ADF-9	4.94	55118	1.744
ADF-27	5.02	44949	1.772
ADF-1	5.07	41958	2.083
ADF-31	5.36	46573	2.154
ADF-150	5.12	46104	2.181
ADF-443	4.91	43591	2.303
ADF-411	5.33	49692	2.422
ADF-507	5.47	49332	4.102

Table XVII (b). ADFs altered in Alzheimer's disease hippocampus, p<0.05

Table XVII (b)

ADF#	pI	MW (Da)	Fold Change	p-value
ADF-456	5.05	35647	-1.938	0.004
ADF-297	5.03	33778	-1.757	0.005
ADF-384	9.43	16119	-1.713	0.043
ADF-284	6.28	36705	-1.677	0.006
ADF-237	4.67	25143	-1.631	0.008
ADF-346	4.56	14197	-1.625	<0.001
ADF-294	5.16	34573	-1.592	0.032
ADF-328	4.94	21882	-1.580	<0.001
ADF-458	5.13	32364	-1.577	0.028
ADF-124	6.8	70243	-1.523	0.010
ADF-318	7.15	24544	-1.511	0.007
ADF-268	5.32	39751	-1.510	0.001
ADF-8	4.96	40177	1.503	0.045
ADF-419	6.52	47975	1.511	0.029
ADF-98	6.35	14707	1.550	0.028
ADF-90	5.12	40883	1.558	0.010
ADF-204	6.29	11406	1.625	0.008
ADF-275	4.94	39423	1.795	0.048
ADF-270	4.91	40409	1.932	0.009
ADF-119	4.95	41245	2.000	0.044

Table XVII (b)

ADF#	pI	MW (Da)	Fold Change	p-value
ADF-491	5.23	45828	2.065	0.007
ADF-510	5.06	39851	2.282	<0.001
ADF-163	5.03	41674	2.360	0.003
ADF-26	5.13	48692	2.366	0.001
ADF-382	5.36	22175	2.447	0.001
ADF-120	5.06	46276	2.575	0.004
ADF-450	5.1	42818	2.680	<0.001
ADF-162	5.26	48579	2.967	<0.001
ADF-159	5.19	48581	3.040	<0.001
ADF-148	5.47	48199	3.153	<0.001
ADF-338	5.71	15618	3.201	<0.001
ADF-10	5.16	46069	3.526	0.003
ADF-152	5.32	48338	3.563	<0.001
ADF-6	5.39	48281	3.895	<0.001

Partial amino acid sequences were determined for the ADPIs present in these ADFs. Details of these ADPIs are provided in Tables IV.

5 6.2.7 Early Markers of Alzheimer's disease

These initial experiments identified 118 features that were altered in the hippocampus and entorhinal cortex Alzheimer's disease samples as compared with the neocortex, frontal cortex and amygdala Alzheimer's disease samples. They are useful as markers of early Alzheimer's disease.

10 Details of these ADFs are provided in Table I. Each ADF was differentially present in Alzheimer's disease tissue as compared with control tissue. For some preferred ADFs, listed in Table XVIII(a), the fold change was greater than 1.5, and for certain highly preferred ADFs, listed in Table XVIII(b), the difference was significant, $p<0.05$.

Table XVIII (a). ADFs altered in Early Alzheimer's disease

Table XVIII (a)

ADF#	pI	MW (Da)	Fold Change
ADF-452	8.65	42868	-2.118
ADF-9	4.94	55118	-2.014
ADF-336	4.52	16749	-1.802
ADF-282	5.69	37186	-1.750
ADF-471	6.1	55319	-1.662
ADF-300	9.93	33122	-1.653
ADF-260	9.64	42986	-1.646
ADF-375	6.12	63693	-1.625
ADF-444	6.48	43383	-1.590
ADF-25	5.06	52537	-1.577
ADF-376	6.52	65065	-1.574
ADF-403	7.48	51603	-1.555
ADF-400	9.14	52590	-1.546
ADF-456	5.05	35647	-1.502
ADF-412	5.06	49556	1.528
ADF-442	5.36	43816	1.535
ADF-142	6.53	39774	1.548
ADF-272	8.13	40619	1.550
ADF-381	5.48	29061	1.558
ADF-511	7.71	35365	1.562
ADF-149	5.13	43744	1.569
ADF-355	9.64	10941	1.626
ADF-302	7.09	32791	1.630
ADF-510	5.06	39851	1.665
ADF-485	6.27	48105	1.668
ADF-527	8.1	13928	1.687
ADF-251	5.52	171859	1.759
ADF-271	5.01	39858	1.812
ADF-148	5.47	48199	1.911
ADF-390	5.01	93773	1.964
ADF-535	8.78	55742	2.037
ADF-270	4.91	40409	2.098
ADF-414	4.94	49167	2.146
ADF-124	6.8	70243	2.214
ADF-410	5.11	49646	2.225
ADF-151	4.84	38334	2.269
ADF-443	4.91	43591	2.426
ADF-175	9.55	36150	2.804

Table XI I(b). ADFs altered in Early Alzheimer's disease, p<0.05

Table XVIII (b)

ADF#	pI	MW (Da)	Fold Change	p-value
ADF-495	7.46	43838	-2.440	0.003
ADF-373	6.61	65116	-2.129	<0.001
ADF-173	6.76	64255	-2.062	0.006
ADF-518	6.1	61221	-1.901	<0.001
ADF-304	5.36	31776	-1.887	<0.001
ADF-121	6.34	60952	-1.886	<0.001
ADF-79	6.04	51058	-1.855	0.007
ADF-319	9.97	24740	-1.764	0.005
ADF-295	5.39	34366	-1.763	0.033
ADF-423	6.21	61089	-1.760	<0.001
ADF-366	6.34	73530	-1.733	0.010
ADF-446	6.64	43189	-1.713	0.001
ADF-202	7.14	63134	-1.679	0.006
ADF-288	6.17	35958	-1.678	0.040
ADF-505	5.32	55892	-1.669	<0.001
ADF-155	5.56	66533	-1.656	0.009
ADF-364	6.09	73832	-1.652	<0.001
ADF-504	7.47	59218	-1.648	0.001
ADF-176	6.94	63236	-1.598	0.009
ADF-434	5.46	45846	-1.578	0.003
ADF-405	4.83	50675	-1.562	0.016
ADF-23	5.22	38803	-1.560	0.021
ADF-368	5.49	65816	-1.557	0.005
ADF-102	5.13	38984	-1.542	0.001
ADF-193	5.91	64954	-1.537	0.011
ADF-160	4.86	47558	-1.525	0.004
ADF-280	5.83	37149	-1.518	0.029
ADF-157	5.45	42821	-1.515	0.001
ADF-469	5.48	55802	-1.513	0.002
ADF-367	5.35	66839	-1.505	0.001
ADF-399	6.63	52447	1.500	0.037
ADF-514	6.44	52514	1.530	0.009
ADF-404	6.73	51384	1.545	0.003
ADF-331	9.32	21202	1.548	0.021
ADF-250	5.07	167558	1.575	0.046
ADF-91	6.95	39784	1.598	0.032
ADF-321	6.28	23240	1.601	<0.001

Table XVIII (b)

ADF#	pI	MW (Da)	Fold Change	p-value
ADF-415	5.61	48968	1.636	0.011
ADF-283	5.58	36661	1.670	0.025
ADF-387	5.33	11323	1.724	<0.001
ADF-266	7.41	40715	1.759	0.001
ADF-286	7.79	36912	1.774	0.005
ADF-335	5.13	17557	1.801	<0.001
ADF-478	5.48	53235	1.804	0.003
ADF-262	5.02	40870	1.840	0.043
ADF-90	5.12	40883	1.850	0.013
ADF-165	6.42	24608	1.867	<0.001
ADF-337	6.61	16325	1.880	0.003
ADF-119	4.95	41245	1.967	0.007
ADF-491	5.23	45828	1.998	0.015
ADF-472	5.24	54138	2.091	<0.001
ADF-419	6.52	47975	2.121	0.001
ADF-85	5.71	41191	2.274	0.001
ADF-103	7.14	20196	2.287	0.015
ADF-8	4.96	40177	2.325	0.004
ADF-144	4.96	43397	2.382	0.003
ADF-204	6.29	11406	2.416	<0.001
ADF-26	5.13	48692	2.493	0.016
ADF-275	4.94	39423	2.558	0.003
ADF-154	4.85	39486	2.597	0.004
ADF-67	7.57	49062	2.685	0.003
ADF-429	7.56	47861	2.691	0.039
ADF-132	5.06	40834	2.857	0.019
ADF-77	5.28	46016	2.907	0.005
ADF-152	5.32	48338	3.000	0.001
ADF-437	4.88	45571	3.000	0.033
ADF-150	5.12	46104	3.008	0.006
ADF-159	5.19	48581	3.026	0.003
ADF-12	4.88	38224	3.107	0.003
ADF-6	5.39	48281	3.164	0.001
ADF-29	4.9	39388	3.199	0.001
ADF-163	5.03	41674	3.360	0.001
ADF-120	5.06	46276	3.465	0.001
ADF-1	5.07	41958	3.479	0.017
ADF-162	5.26	48579	3.559	<0.001
ADF-27	5.02	44949	3.690	<0.001
ADF-493	5.08	44646	4.346	0.003

Table XVIII (b)

ADF#	pI	MW (Da)	Fold Change	p-value
ADF-10	5.16	46069	5.130	<0.001
ADF-524	4.96	44893	5.588	0.002
ADF-31	5.36	46573	5.977	<0.001

Partial amino acid sequences were determined for the ADPIs present in these ADFs. Details of these ADPIs are provided in Tables IV.

5 EXAMPLE 2: CLONING AND CHARACTERIZATION OF ADPI-41

ADPI-41 was isolated, subjected to proteolysis, and analysed by mass spectrometry using the methods and apparatus of the Preferred Technology. Using the SEQUEST search program as described *infra*, uninterpreted tandem mass spectra of tryptic digest peptides were searched against a database of public domain proteins constructed of protein entries in the non-redundant database held by the National Centre for Biotechnology Information (NCBI), which is accessible at <http://www.ncbi.nlm.nih.gov/> and also constructed of Expressed Sequence Tags entries (<http://www.ncbi.nlm.nih.gov/dbEST/index.html>). As a result of database searching, the following amino acid sequences of tryptic digest peptides of ADPI-41 (shown in Figure 2a) were determined from matches to tryptic digest peptides in conceptual translation of ESTs:

BE298534, AI014241, and AV655958: NILLTNEQLESAR.
 AA568689, AW796078, AA782417: QAITQVVVSR.
 20 BF126487, BG388906, BG577432: VGIPVTDENGKR.

These sequences have a very high similarity to tryptic digest peptides in the mouse sideroflexin 1 protein (from mitochondria, accession number 15147224, accessible at <http://www.ncbi.nlm.nih.gov/entrez/>), identified with a subsequent Blast search (<http://www.ncbi.nlm.nih.gov/blast>).

Cloning of ADPI-41 and identification of splice variants

ADPI 41 was cloned (SEQ ID No. 753, shown in Figure 2a and SEQ ID No. 748, shown in Figure 2b) using the following primers:

5

Sense (F1) - 5' actgagcgggacctgcgagc 3'

Antisense (R1) - 5' tccgttaactggagaaccagg 3'

A Blast search against High Throughput Genomic Sequencing data

10 (<http://www.ncbi.nlm.nih.gov/blast>) localised the ADPI 41 sequence to chromosome 5 clone RP11-606P24 (AC025713).

The DNA sequences encoding the two identified peptides are as follows:

15 aac att ctg tta acc aac gaa caa ctc gag agt gcg aga
Asn Ile Leu Leu Thr Asn Glu Gln Leu Glu Ser Ala Arg

and

20 caa gcc atc acg caa gtt gtc gtg tcc agg
Gln Ala Ile Thr Gln Val Val Val Ser Arg

(ESTs AV655958 and AV655932 respectively) suggest there is a splice variant that lacks amino acids 65-82 when translated. These ESTs are both from a liver library. Using the primers described above, a splice variant was amplified from both brain and liver (SEQ ID No. 754 shown in Figure 3a and SEQ ID No. 749 shown in Figure 3b), in addition to the full-length clone. When compared to the genomic sequence, the splice variant is lacking a complete exon. The reading frame, however, is not maintained in this shorter version, and so the translated protein is different after the unspliced exon.

Protein Characterisation

Several arguments suggest an important role for this protein as a marker and/or therapeutic target in Alzheimer's disease. Several groups have confirmed an iron dysregulation in Alzheimer's disease associated with an accumulation of iron (Smith, M. A., A. Nunomura, et al. (2000). Antioxid Redox Signal 2(3): 413-20; Kala, S. V., B. B. Hasmoff, et al. (1996). Int J Neurosci 86(3-4): 263-9.). This is in agreement with the proposed role of Sxfin in sideroblastic anaemia where a loss of Sxfin protein is associated with an accumulation of iron in mitochondria of normoblasts (Fleming, M. D., D. R. Campagna, et al. (2001). "A mutation in a mitochondrial transmembrane protein is responsible for the pleiotropic hematological and skeletal phenotype of flexed-tail (*fl/fl*) mice." Genes Dev 15(6): 652-7). Iron is able to mediate free-radical production via the Fenton Reaction and this may well contribute to the oxidative damage seen throughout the brain in Alzheimer's disease patients (Smith, M. A., P. L. Harris, et al. (1997). Proc Natl Acad Sci U.S.A 94(18): 9866-8.).

In addition, we provide the first evidence that the protein undergoes alternative splicing to result in an isoform of 261 amino acids.

Various publications in addition to the immediately foregoing are cited herein, the disclosures of which are incorporated by reference in their entireties. The citation of any reference herein should not be deemed as an admission that such reference is available as prior art to the instant invention.

EXAMPLE 3: DIAGNOSIS AND TREATMENT OF ALZHEIMER'S DISEASE

The following example illustrate the use of an ADPI of the invention for screening or diagnosis of Alzheimer's disease, determining the prognosis of a subject having Alzheimer's disease, or monitoring the effectiveness of Alzheimer's disease therapy. The following example also illustrates the use of modulators (e.g., agonist or antagonists) of an ADPI of the invention to treat or prevent Alzheimer's disease.

Mitogen-Activated Protein Kinases (MAPKs) play a central role in response to a broad

spectrum of extracellular stimuli including growth factors, neurotrophic factors, cytokines, hormones, neurotransmitters and cellular stress. Receptors activating the MAPK cascade include receptor tyrosine kinases, G-protein coupled receptors, integrins and ion channels. Extracellular signal-regulated kinases (ERKs) are emerging 5 as important regulators of neuronal function. Numerous second messengers, such as cyclic adenosine monophosphate, protein kinase A, calcium, and diacylglycerol, can control ERK signalling via the small G proteins including Ras and Rap1 and may be responsible for the role of ERKs in the regulation of activity-dependent neuronal events, such as synaptic plasticity, long-term potentiation and cell survival. An 10 activated ERK dimer regulates targets in the cytosol and also translocates to the nucleus, where it phosphorylates a variety of transcription factors regulating gene expression.

The expression of ERK-2 with a molecular weight of 40,709 kDa and pI of 6.65 respectively has been shown herein to be significantly increased in the Amygdala 15 and Neocortex of subjects having Alzheimer's disease as compared with the Amygdala and Neocortex of subjects free from Alzheimer's disease. Thus, quantitative detection of ERK-2 in Amygdala and Neocortex can be used to diagnose Alzheimer's disease, determine the progression of Alzheimer's disease or monitor the effectiveness of a therapy for Alzheimer's disease.

20 In one embodiment of the invention, compounds that modulate (i.e., upregulate or downregulate) the expression, activity or both the expression and activity of ERK-2 are administered to a subject in need of treatment or for prophylaxis of Alzheimer's disease. Antibodies that modulate the expression, activity or both the expression and activity of ERK-2 are suitable for this purpose. In addition, nucleic acids coding for 25 all or a portion of ERK-2, or nucleic acids complementary to all or a portion of ERK-2, may be administered. ERK-2, or fragments of the ERK-2 polypeptide may also be administered.

The invention also provides screening assays to identify additional compounds that modulate the expression of ERK-2 or activity of ERK-2. Compounds that

modulate the expression of ERK-2 *in vitro* can be identified by comparing the expression of ERK-2 in cells treated with a test compound to the expression of ERK-2 in cells treated with a control compound (e.g., saline). Methods for detecting expression of ERK-2 are known in the art and include measuring the level of ERK-2 RNA (e.g., by northern blot analysis or RT-PCR) and measuring ERK-2 protein (e.g., by immunoassay or western blot analysis). Compounds that modulate the activity of ERK-2 can be identified by comparing the ability of a test compound to agonize or antagonize a function of ERK-2, such as its neurotrophic activity, to the ability of a control compound (e.g., saline) to inhibit the same function of ERK-2. Compounds capable of modulating ERK-2 activity are identified as compounds suitable for further development as a compound useful for the treatment of Alzheimer's disease.

Compounds identified *in vitro* that affect the expression or activity of ERK-2 can be tested *in vivo* in animal models of Alzheimer's disease or Downs syndrome, or in subjects having Alzheimer's disease, to determine their therapeutic efficacy.

The present invention is not to be limited in terms of the particular embodiments described in this application, which are intended as single illustrations of individual aspects of the invention. Functionally equivalent methods and apparatus within the scope of the invention, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications and variations are intended to fall within the scope of the appended claims. The contents of each reference, patent and patent application cited in this application is hereby incorporated by reference in its entirety.

When a reference is made herein to a method of treating or preventing a disease or condition using a particular agent or combination of agents, it is to be understood that such a reference is intended to include the use of that agent or combination of agents in the preparation of a medicament for the treatment or prevention of the disease or condition.

Preferred features of each aspect of the invention are as for each of the other aspects *mutatis mutandis*.

Claims

1. A method for screening, diagnosis or prognosis of Alzheimer's disease in a subject, for determining the stage or severity of Alzheimer's disease in a subject, for identifying a subject at risk of developing Alzheimer's disease, or for monitoring the effect of therapy administered to a subject having Alzheimer's disease, said method comprising:
 - (a) analysing a test sample of brain tissue from the subject by two dimensional electrophoresis to generate a two-dimensional array of features, said array comprising at least one chosen feature whose relative abundance correlates with the presence, absence, stage or severity of Alzheimer's disease or predicts the onset or course of Alzheimer's disease; and
 - (b) comparing the abundance of each chosen feature in the test sample with the abundance of that chosen feature in brain tissue from one or more persons free from Alzheimer's disease, or with a previously determined reference range for that feature in subjects free from Alzheimer's disease, or with the abundance at least one Expression Reference Feature (ERF) in the test sample.
2. The method of claim 1, wherein said method is for screening or diagnosis of Alzheimer's disease and the relative abundance of at least one chosen feature correlates with the presence or absence of Alzheimer's disease.
3. The method of claim 1, wherein said method is for monitoring the effect of therapy administered to a subject having Alzheimer's disease and the relative abundance of at least one chosen feature correlates with the severity of Alzheimer's disease.
4. The method of any preceding claim, wherein step (b) comprises comparing the abundance of each chosen feature in the sample with the abundance of that chosen

feature in brain tissue from one or more persons free from Alzheimer's disease or with a previously determined reference range for that chosen feature in subjects free from Alzheimer's disease.

- 5 5. The method of any preceding claim, wherein step (b) comprises quantitatively detecting one or more of the following Alzheimer's Disease-Associated Features (ADFs): ADF-1, ADF-3, ADF-5, ADF-6, ADF-8, ADF-9, ADF-10, ADF-11, ADF-12, ADF-13, ADF-15, ADF-16, ADF-22, ADF-23, ADF-24, ADF-25, ADF-26, ADF-27, ADF-29, ADF-31, ADF-33, ADF-35, ADF-37, ADF-39, ADF-42, ADF-54, ADF-56, ADF-61, ADF-62, ADF-66, ADF-67, ADF-68, ADF-70, ADF-72, ADF-77, ADF-78, ADF-79, ADF-81, ADF-82, ADF-85, ADF-87, ADF-88, ADF-90, ADF-91, ADF-92, ADF-94, ADF-95, ADF-97, ADF-98, ADF-101, ADF-102, ADF-103, ADF-105, ADF-107, ADF-108, ADF-109, ADF-111, ADF-112, ADF-113, ADF-115, ADF-117, ADF-119, ADF-120, ADF-121, ADF-124, ADF-125, ADF-126, ADF-127, ADF-128, ADF-129, ADF-130, ADF-131, ADF-132, ADF-133, ADF-138, ADF-139, ADF-140, ADF-141, ADF-142, ADF-143, ADF-144, ADF-146, ADF-148, ADF-149, ADF-150, ADF-151, ADF-152, ADF-153, ADF-154, ADF-155, ADF-156, ADF-157, ADF-159, ADF-160, ADF-162, ADF-163, ADF-165, ADF-172, ADF-173, ADF-175, ADF-176, ADF-182, ADF-183, ADF-188, ADF-189, ADF-191, ADF-193, ADF-194, ADF-196, ADF-202, ADF-204, ADF-208, ADF-209, ADF-216, ADF-217, ADF-220, ADF-223, ADF-228, ADF-229, ADF-230, ADF-232, ADF-236, ADF-237, ADF-240, ADF-243, ADF-245, ADF-250, ADF-251, ADF-252, ADF-253, ADF-254, ADF-255, ADF-256, ADF-257, ADF-258, ADF-259, ADF-260, ADF-261, ADF-262, ADF-263, ADF-264, ADF-265, ADF-266, ADF-267, ADF-268, ADF-269, ADF-270, ADF-271, ADF-272, ADF-273, ADF-274, ADF-275, ADF-276, ADF-277, ADF-278, ADF-279, ADF-280, ADF-281, ADF-282, ADF-283, ADF-284, ADF-285, ADF-286, ADF-287, ADF-288, ADF-289, ADF-290, ADF-291, ADF-292, ADF-293, ADF-294, ADF-295, ADF-296, ADF-297, ADF-298, ADF-299, ADF-300, ADF-301, ADF-302, ADF-303, ADF-304, ADF-305, ADF-306, ADF-307, ADF-308, ADF-309, ADF-311, ADF-312, ADF-313,

ADF-314, ADF-315, ADF-316, ADF-317, ADF-318, ADF-319, ADF-320, ADF-321,
ADF-322, ADF-323, ADF-324, ADF-325, ADF-326, ADF-327, ADF-328, ADF-329,
ADF-330, ADF-331, ADF-332, ADF-333, ADF-334, ADF-335, ADF-336, ADF-337,
ADF-338, ADF-339, ADF-340, ADF-341, ADF-342, ADF-343, ADF-344, ADF-345,
5 ADF-346, ADF-347, ADF-348, ADF-349, ADF-350, ADF-351, ADF-352, ADF-353,
ADF-354, ADF-355, ADF-356, ADF-357, ADF-358, ADF-359, ADF-360, ADF-361,
ADF-362, ADF-363, ADF-364, ADF-365, ADF-366, ADF-367, ADF-368, ADF-369,
ADF-370, ADF-371, ADF-372, ADF-373, ADF-374, ADF-375, ADF-376, ADF-377,
ADF-378, ADF-379, ADF-380, ADF-381, ADF-382, ADF-383, ADF-384, ADF-386,
10 ADF-387, ADF-388, ADF-389, ADF-390, ADF-391, ADF-392, ADF-393, ADF-394,
ADF-395, ADF-396, ADF-397, ADF-398, ADF-399, ADF-400, ADF-401, ADF-402,
ADF-403, ADF-404, ADF-405, ADF-406, ADF-407, ADF-408, ADF-409, ADF-410,
ADF-411, ADF-412, ADF-413, ADF-414, ADF-415, ADF-416, ADF-417, ADF-418,
ADF-419, ADF-420, ADF-421, ADF-422, ADF-423, ADF-424, ADF-425, ADF-426,
15 ADF-427, ADF-428, ADF-429, ADF-430, ADF-431, ADF-432, ADF-433, ADF-434,
ADF-435, ADF-436, ADF-437, ADF-438, ADF-439, ADF-440, ADF-441, ADF-442,
ADF-443, ADF-444, ADF-445, ADF-446, ADF-447, ADF-448, ADF-449, ADF-450,
ADF-451, ADF-452, ADF-453, ADF-454, ADF-455, ADF-456, ADF-457, ADF-458,
ADF-459, ADF-460, ADF-461, ADF-462, ADF-463, ADF-464, ADF-465, ADF-466,
20 ADF-467, ADF-468, ADF-469, ADF-470, ADF-471, ADF-472, ADF-473, ADF-474,
ADF-475, ADF-476, ADF-477, ADF-478, ADF-479, ADF-480, ADF-481, ADF-482,
ADF-483, ADF-484, ADF-485, ADF-486, ADF-487, ADF-488, ADF-489, ADF-490,
ADF-491, ADF-492, ADF-493, ADF-494, ADF-495, ADF-496, ADF-497, ADF-498,
ADF-499, ADF-500, ADF-501, ADF-502, ADF-503, ADF-504, ADF-505, ADF-506,
25 ADF-507, ADF-508, ADF-509, ADF-510, ADF-511, ADF-512, ADF-513, ADF-514,
ADF-515, ADF-516, ADF-517, ADF-518, ADF-519, ADF-520, ADF-521, ADF-522,
ADF-523, ADF-524, ADF-525, ADF-526, ADF-527, ADF-528, ADF-529, ADF-530,
ADF-531, ADF-532, ADF-533, ADF-534, ADF-535, ADF-536, ADF-537, ADF-538,
ADF-539, ADF-540, ADF-541, ADF-542, ADF-543, ADF-544, ADF-545, ADF-546,

ADF-547, ADF-548, ADF-549, optionally in combination with ADF-41.

6. The method of any preceding claim, wherein step (a) comprises isoelectric focussing followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis
5 (SDS-PAGE).

7. A method for screening, diagnosis or prognosis of Alzheimer's disease in a subject, for determining the stage or severity of Alzheimer's disease in a subject, for identifying a subject at risk of developing Alzheimer's disease, or for monitoring the
10 effect of therapy administered to a subject having Alzheimer's disease, said method comprising:

quantitatively detecting, in a sample of brain tissue from the subject, at least one of the following Alzheimer's Disease-Associated Protein Isoforms (ADPIs):
ADPI-1, ADPI-3.1, ADPI-3.2, ADPI-3.3, ADPI-5.3, ADPI-6, ADPI-8, ADPI-9,
15 ADPI-10, ADPI-11, ADPI-12.1, ADPI-12.2, ADPI-13, ADPI-15, ADPI-16, ADPI-22,
ADPI-23, ADPI-24, ADPI-25.3, ADPI-25.2, ADPI-26, ADPI-27, ADPI-29, ADPI-31,
ADPI-33.1, ADPI-35, ADPI-37, ADPI-39, ADPI-42, ADPI-54, ADPI-56, ADPI-61,
ADPI-62, ADPI-66, ADPI-67, ADPI-68, ADPI-70, ADPI-72, ADPI-77, ADPI-78.2,
ADPI-78.3, ADPI-79, ADPI-81.2, ADPI-82, ADPI-85, ADPI-87.1, ADPI-88, ADPI-
20 90, ADPI-91.1, ADPI-91.2, ADPI-92, ADPI-94, ADPI-95, ADPI-97, ADPI-98, ADPI-
101, ADPI-102.1, ADPI-103, ADPI-105.2, ADPI-105.1, ADPI-107, ADPI-108,
ADPI-109, ADPI-111.1, ADPI-112, ADPI-113, ADPI-115, ADPI-117.1, ADPI-119,
ADPI-120, ADPI-121, ADPI-124, ADPI-125, ADPI-126, ADPI-126, ADPI-126,
ADPI-127, ADPI-128, ADPI-129, ADPI-130, ADPI-131, ADPI-132, ADPI-133,
25 ADPI-138, ADPI-139, ADPI-140, ADPI-141, ADPI-142.2, ADPI-142.1, ADPI-143.1,
ADPI-143.2, ADPI-144, ADPI-146.2, ADPI-146.1, ADPI-148, ADPI-149.1, ADPI-
150, ADPI-151.2, ADPI-151.1, ADPI-152, ADPI-153.1, ADPI-153.2, ADPI-153.3,
ADPI-154, ADPI-155, ADPI-156.2, ADPI-156.1, ADPI-157, ADPI-159.1, ADPI-
159.2, ADPI-160, ADPI-162.2, ADPI-162.3, ADPI-162.1, ADPI-163, ADPI-165,

ADPI-172, ADPI-173.1, ADPI-173.2, ADPI-175.2, ADPI-175.1, ADPI-176, ADPI-182, ADPI-183, ADPI-188.1, ADPI-189.2, ADPI-191, ADPI-193, ADPI-194.2, ADPI-196.2, ADPI-196.3, ADPI-196.1, ADPI-196.4, ADPI-202, ADPI-204, ADPI-208, ADPI-209, ADPI-216, ADPI-217, ADPI-220, ADPI-223, ADPI-228, ADPI-229, 5 ADPI-230.1, ADPI-230.2, ADPI-232.1, ADPI-232.2, ADPI-236.2, ADPI-236.3, ADPI-237.2, ADPI-237.1, ADPI-240, ADPI-243, ADPI-245, ADPI-250, ADPI-251, ADPI-252.1, ADPI-252.2, ADPI-253, ADPI-254, ADPI-255, ADPI-256, ADPI-257.1, ADPI-257.2, ADPI-258, ADPI-259.1, ADPI-259.2, ADPI-260, ADPI-261, ADPI-262, ADPI-263, ADPI-264, ADPI-265, ADPI-266, ADPI-267, ADPI-268.1, ADPI-268.2, 10 ADPI-269, ADPI-270, ADPI-271, ADPI-272, ADPI-273, ADPI-274, ADPI-275, ADPI-276, ADPI-277, ADPI-278.1, ADPI-278.2, ADPI-279.1, ADPI-279.2, ADPI-280, ADPI-281, ADPI-282, ADPI-283, ADPI-284, ADPI-285, ADPI-286, ADPI-287, ADPI-288, ADPI-289, ADPI-290, ADPI-291, ADPI-292, ADPI-293, ADPI-294, 15 ADPI-295, ADPI-296, ADPI-297, ADPI-298, ADPI-299, ADPI-300, ADPI-301, ADPI-302, ADPI-303, ADPI-304, ADPI-305, ADPI-306, ADPI-307.1, ADPI-307.2, ADPI-308, ADPI-309, ADPI-311, ADPI-312, ADPI-313, ADPI-314, ADPI-315, ADPI-316.1, ADPI-316.2, ADPI-317, ADPI-318, ADPI-319, ADPI-320.1, ADPI-320.2, ADPI-321, ADPI-322, ADPI-323, ADPI-324, ADPI-325, ADPI-326, ADPI-327, ADPI-328, ADPI-329, ADPI-330, ADPI-331, ADPI-332, ADPI-333.1, ADPI- 20 333.2, ADPI-334, ADPI-335, ADPI-336, ADPI-337, ADPI-338, ADPI-339, ADPI-340, ADPI-341, ADPI-342, ADPI-343, ADPI-344, ADPI-345, ADPI-346, ADPI-347, ADPI-348, ADPI-349, ADPI-350, ADPI-351, ADPI-352, ADPI-353, ADPI-354, ADPI-355, ADPI-356, ADPI-357, ADPI-358, ADPI-359, ADPI-360, ADPI-361, ADPI-362, ADPI-363, ADPI-364, ADPI-365.1, ADPI-365.2, ADPI-366, ADPI-367.1, 25 ADPI-367.2, ADPI-368.1, ADPI-368.2, ADPI-369.1, ADPI-369.2, ADPI-370, ADPI-371, ADPI-372, ADPI-373, ADPI-374, ADPI-375, ADPI-376, ADPI-377, ADPI-378, ADPI-379, ADPI-380, ADPI-381, ADPI-382, ADPI-383, ADPI-384, ADPI-386, ADPI-387, ADPI-388, ADPI-389, ADPI-390, ADPI-391, ADPI-392, ADPI-393, ADPI-394, ADPI-395, ADPI-396, ADPI-397, ADPI-398, ADPI-399.1, ADPI-399.2,

ADPI-400, ADPI-401, ADPI-402, ADPI-403, ADPI-404.1, ADPI-404.2, ADPI-405,
ADPI-406, ADPI-407, ADPI-408, ADPI-409, ADPI-410, ADPI-411, ADPI-412.1,
ADPI-412.2, ADPI-413, ADPI-414, ADPI-415, ADPI-416, ADPI-417, ADPI-418,
ADPI-419, ADPI-420, ADPI-421, ADPI-422, ADPI-423, ADPI-424, ADPI-425,
5 ADPI-426.1, ADPI-426.2, ADPI-427, ADPI-428, ADPI-429, ADPI-430, ADPI-431,
ADPI-432, ADPI-433, ADPI-434, ADPI-435, ADPI-435, ADPI-436, ADPI-437,
ADPI-438, ADPI-439, ADPI-440.1, ADPI-440.2, ADPI-441, ADPI-442, ADPI-443,
ADPI-444, ADPI-445, ADPI-446, ADPI-447.1, ADPI-447.2, ADPI-448, ADPI-449,
ADPI-450.1, ADPI-450.2, ADPI-451, ADPI-452, ADPI-453, ADPI-454, ADPI-455,
10 ADPI-456, ADPI-457, ADPI-458, ADPI-459, ADPI-460, ADPI-461, ADPI-462,
ADPI-463, ADPI-464, ADPI-465, ADPI-466.1, ADPI-466.2, ADPI-467, ADPI-468,
ADPI-469.1, ADPI-469.2, ADPI-470, ADPI-471, ADPI-472, ADPI-473, ADPI-474,
ADPI-475, ADPI-476, ADPI-477, ADPI-478.1, ADPI-478.2, ADPI-479, ADPI-480,
ADPI-481, ADPI-482, ADPI-483, ADPI-484, ADPI-485, ADPI-486, ADPI-487,
15 ADPI-488, ADPI-489, ADPI-490, ADPI-491, ADPI-492, ADPI-493.1, ADPI-493.2,
ADPI-494, ADPI-495, ADPI-496, ADPI-497, ADPI-498, ADPI-499, ADPI-500,
ADPI-501, ADPI-502, ADPI-503, ADPI-504, ADPI-505, ADPI-506, ADPI-507,
ADPI-508, ADPI-509, ADPI-510, ADPI-511, ADPI-512, ADPI-513, ADPI-514,
ADPI-515, ADPI-516, ADPI-517, ADPI-518, ADPI-519, ADPI-520, ADPI-521,
20 ADPI-522, ADPI-523, ADPI-524, ADPI-525, ADPI-526.1, ADPI-526.2, ADPI-527,
ADPI-528, ADPI-529, ADPI-530.1, ADPI-530.2, ADPI-531, ADPI-532, ADPI-533,
ADPI-534, ADPI-535, ADPI-536, ADPI-537, ADPI-538, ADPI-539, ADPI-540,
ADPI-541, ADPI-542, ADPI-543, ADPI-544, ADPI-545, ADPI-546, ADPI-547.1,
ADPI-547.2, ADPI-547.3, ADPI-548.1, ADPI-548.2, ADPI-549, optionally in
25 combination with ADPI-41; and
comparing the level or amount of said isoform or isoforms detected in step (a)
with a control.

8. The method of claim 7, wherein the step of quantitatively detecting comprises

testing at least one aliquot of the sample, said step of testing comprising:

(a) contacting the aliquot with an antibody that is immunospecific for a preselected ADPI;

5 (b) quantitatively measuring any binding that has occurred between the antibody and at least one species in the aliquot; and

(c) comparing the results of step (b) to a control.

9. The method of claim 8, wherein the step of quantitatively detecting comprises testing a plurality of aliquots with a plurality of antibodies for quantitative detection of 10 a plurality of preselected ADPIs.

10. The method of claim 8 or claim 9, wherein the or each antibody is/are monoclonal.

15. 11. The method of claim 10, wherein the or each antibody is/are chimeric.

12. A preparation comprising at least one of the following isolated Alzheimer's Disease-Associated Protein Isoforms (ADPIs) said ADPI selected from ADPI-1, 20 ADPI-3.1, ADPI-3.2, ADPI-3.3, ADPI-5.3, ADPI-6, ADPI-8, ADPI-9, ADPI-10, ADPI-11, ADPI-12.1, ADPI-12.2, ADPI-13, ADPI-15, ADPI-16, ADPI-22, ADPI-23, ADPI-24, ADPI-25.3, ADPI-25.2, ADPI-26, ADPI-27, ADPI-29, ADPI-31, ADPI-33.1, ADPI-35, ADPI-37, ADPI-39, ADPI-42, ADPI-54, ADPI-56, ADPI-61, ADPI-62, ADPI-66, ADPI-67, ADPI-68, ADPI-70, ADPI-72, ADPI-77, ADPI-78.2, ADPI-78.3, ADPI-79, ADPI-81.2, ADPI-82, ADPI-85, ADPI-87.1, ADPI-88, ADPI-90, 25 ADPI-91.1, ADPI-91.2, ADPI-92, ADPI-94, ADPI-95, ADPI-97, ADPI-98, ADPI-101, ADPI-102.1, ADPI-103, ADPI-105.2, ADPI-105.1, ADPI-107, ADPI-108, ADPI-109, ADPI-111.1, ADPI-112, ADPI-113, ADPI-115, ADPI-117.1, ADPI-119, ADPI-120, ADPI-121, ADPI-124, ADPI-125, ADPI-126, ADPI-126, ADPI-126, ADPI-127, ADPI-128, ADPI-129, ADPI-130, ADPI-131, ADPI-132, ADPI-133,

ADPI-138, ADPI-139, ADPI-140, ADPI-141, ADPI-142.2, ADPI-142.1, ADPI-143.1,
ADPI-143.2, ADPI-144, ADPI-146.2, ADPI-146.1, ADPI-148, ADPI-149.1, ADPI-
150, ADPI-151.2, ADPI-151.1, ADPI-152, ADPI-153.1, ADPI-153.2, ADPI-153.3,
ADPI-154, ADPI-155, ADPI-156.2, ADPI-156.1, ADPI-157, ADPI-159.1, ADPI-
159.2, ADPI-160, ADPI-162.2, ADPI-162.3, ADPI-162.1, ADPI-163, ADPI-165,
5 ADPI-172, ADPI-173.1, ADPI-173.2, ADPI-175.2, ADPI-175.1, ADPI-176, ADPI-
182, ADPI-183, ADPI-188.1, ADPI-189.2, ADPI-191, ADPI-193, ADPI-194.2,
ADPI-196.2, ADPI-196.3, ADPI-196.1, ADPI-196.4, ADPI-202, ADPI-204, ADPI-
208, ADPI-209, ADPI-216, ADPI-217, ADPI-220, ADPI-223, ADPI-228, ADPI-229,
10 ADPI-230.1, ADPI-230.2, ADPI-232.1, ADPI-232.2, ADPI-236.2, ADPI-236.3,
ADPI-237.2, ADPI-237.1, ADPI-240, ADPI-243, ADPI-245, ADPI-250, ADPI-251,
ADPI-252.1, ADPI-252.2, ADPI-253, ADPI-254, ADPI-255, ADPI-256, ADPI-257.1,
ADPI-257.2, ADPI-258, ADPI-259.1, ADPI-259.2, ADPI-260, ADPI-261, ADPI-262,
ADPI-263, ADPI-264, ADPI-265, ADPI-266, ADPI-267, ADPI-268.1, ADPI-268.2,
15 ADPI-269, ADPI-270, ADPI-271, ADPI-272, ADPI-273, ADPI-274, ADPI-275,
ADPI-276, ADPI-277, ADPI-278.1, ADPI-278.2, ADPI-279.1, ADPI-279.2, ADPI-
280, ADPI-281, ADPI-282, ADPI-283, ADPI-284, ADPI-285, ADPI-286, ADPI-287,
ADPI-288, ADPI-289, ADPI-290, ADPI-291, ADPI-292, ADPI-293, ADPI-294,
ADPI-295, ADPI-296, ADPI-297, ADPI-298, ADPI-299, ADPI-300, ADPI-301,
20 ADPI-302, ADPI-303, ADPI-304, ADPI-305, ADPI-306, ADPI-307.1, ADPI-307.2,
ADPI-308, ADPI-309, ADPI-311, ADPI-312, ADPI-313, ADPI-314, ADPI-315,
ADPI-316.1, ADPI-316.2, ADPI-317, ADPI-318, ADPI-319, ADPI-320.1, ADPI-
320.2, ADPI-321, ADPI-322, ADPI-323, ADPI-324, ADPI-325, ADPI-326, ADPI-
327, ADPI-328, ADPI-329, ADPI-330, ADPI-331, ADPI-332, ADPI-333.1, ADPI-
25 333.2, ADPI-334, ADPI-335, ADPI-336, ADPI-337, ADPI-338, ADPI-339, ADPI-
340, ADPI-341, ADPI-342, ADPI-343, ADPI-344, ADPI-345, ADPI-346, ADPI-347,
ADPI-348, ADPI-349, ADPI-350, ADPI-351, ADPI-352, ADPI-353, ADPI-354,
ADPI-355, ADPI-356, ADPI-357, ADPI-358, ADPI-359, ADPI-360, ADPI-361,
ADPI-362, ADPI-363, ADPI-364, ADPI-365.1, ADPI-365.2, ADPI-366, ADPI-367.1,

ADPI-367.2, ADPI-368.1, ADPI-368.2, ADPI-369.1, ADPI-369.2, ADPI-370, ADPI-371, ADPI-372, ADPI-373, ADPI-374, ADPI-375, ADPI-376, ADPI-377, ADPI-378, ADPI-379, ADPI-380, ADPI-381, ADPI-382, ADPI-383, ADPI-384, ADPI-386, ADPI-387, ADPI-388, ADPI-389, ADPI-390, ADPI-391, ADPI-392, ADPI-393, 5 ADPI-394, ADPI-395, ADPI-396, ADPI-397, ADPI-398, ADPI-399.1, ADPI-399.2, ADPI-400, ADPI-401, ADPI-402, ADPI-403, ADPI-404.1, ADPI-404.2, ADPI-405, ADPI-406, ADPI-407, ADPI-408, ADPI-409, ADPI-410, ADPI-411, ADPI-412.1, ADPI-412.2, ADPI-413, ADPI-414, ADPI-415, ADPI-416, ADPI-417, ADPI-418, ADPI-419, ADPI-420, ADPI-421, ADPI-422, ADPI-423, ADPI-424, ADPI-425, 10 ADPI-426.1, ADPI-426.2, ADPI-427, ADPI-428, ADPI-429, ADPI-430, ADPI-431, ADPI-432, ADPI-433, ADPI-434, ADPI-435, ADPI-435, ADPI-436, ADPI-437, ADPI-438, ADPI-439, ADPI-440.1, ADPI-440.2, ADPI-441, ADPI-442, ADPI-443, ADPI-444, ADPI-445, ADPI-446, ADPI-447.1, ADPI-447.2, ADPI-448, ADPI-449, ADPI-450.1, ADPI-450.2, ADPI-451, ADPI-452, ADPI-453, ADPI-454, ADPI-455, 15 ADPI-456, ADPI-457, ADPI-458, ADPI-459, ADPI-460, ADPI-461, ADPI-462, ADPI-463, ADPI-464, ADPI-465, ADPI-466.1, ADPI-466.2, ADPI-467, ADPI-468, ADPI-469.1, ADPI-469.2, ADPI-470, ADPI-471, ADPI-472, ADPI-473, ADPI-474, ADPI-475, ADPI-476, ADPI-477, ADPI-478.1, ADPI-478.2, ADPI-479, ADPI-480, ADPI-481, ADPI-482, ADPI-483, ADPI-484, ADPI-485, ADPI-486, ADPI-487, 20 ADPI-488, ADPI-489, ADPI-490, ADPI-491, ADPI-492, ADPI-493.1, ADPI-493.2, ADPI-494, ADPI-495, ADPI-496, ADPI-497, ADPI-498, ADPI-499, ADPI-500, ADPI-501, ADPI-502, ADPI-503, ADPI-504, ADPI-505, ADPI-506, ADPI-507, ADPI-508, ADPI-509, ADPI-510, ADPI-511, ADPI-512, ADPI-513, ADPI-514, ADPI-515, ADPI-516, ADPI-517, ADPI-518, ADPI-519, ADPI-520, ADPI-521, 25 ADPI-522, ADPI-523, ADPI-524, ADPI-525, ADPI-526.1, ADPI-526.2, ADPI-527, ADPI-528, ADPI-529, ADPI-530.1, ADPI-530.2, ADPI-531, ADPI-532, ADPI-533, ADPI-534, ADPI-535, ADPI-536, ADPI-537, ADPI-538, ADPI-539, ADPI-540, ADPI-541, ADPI-542, ADPI-543, ADPI-544, ADPI-545, ADPI-546, ADPI-547.1, ADPI-547.2, ADPI-547.3, ADPI-548.1, ADPI-548.2, ADPI-549, optionally in

combination with ADF-41.

13. The preparation of claim 15, wherein the or each Alzheimer's Disease-Associated Protein Isoform (ADPI) is/are in recombinant or isolated form.

5

14. A kit comprising the preparation of claim 12 or claim 136, other reagents, and directions for use.

15. A kit comprising a plurality of distinct preparations as claimed in claim 12 or
10 claim 13.

16. An antibody capable of immunospecific binding to one of the following Alzheimer's Disease-Associated Protein Isoforms (ADPIs): ADPI-1, ADPI-3.1, ADPI-
3.2, ADPI-3.3, ADPI-5.3, ADPI-6, ADPI-8, ADPI-9, ADPI-10, ADPI-11, ADPI-12.1,
15 ADPI-12.2, ADPI-13, ADPI-15, ADPI-16, ADPI-22, ADPI-23, ADPI-24, ADPI-25.3,
ADPI-25.2, ADPI-26, ADPI-27, ADPI-29, ADPI-31, ADPI-33.1, ADPI-35, ADPI-37,
ADPI-39, ADPI-42, ADPI-54, ADPI-56, ADPI-61, ADPI-62, ADPI-66, ADPI-67,
ADPI-68, ADPI-70, ADPI-72, ADPI-77, ADPI-78.2, ADPI-78.3, ADPI-79, ADPI-
81.2, ADPI-82, ADPI-85, ADPI-87.1, ADPI-88, ADPI-90, ADPI-91.1, ADPI-91.2,
20 ADPI-92, ADPI-94, ADPI-95, ADPI-97, ADPI-98, ADPI-101, ADPI-102.1, ADPI-
103, ADPI-105.2, ADPI-105.1, ADPI-107, ADPI-108, ADPI-109, ADPI-111.1,
ADPI-112, ADPI-113, ADPI-115, ADPI-117.1, ADPI-119, ADPI-120, ADPI-121,
ADPI-124, ADPI-125, ADPI-126, ADPI-126, ADPI-126, ADPI-127, ADPI-128,
ADPI-129, ADPI-130, ADPI-131, ADPI-132, ADPI-133, ADPI-138, ADPI-139,
25 ADPI-140, ADPI-141, ADPI-142.2, ADPI-142.1, ADPI-143.1, ADPI-143.2, ADPI-
144, ADPI-146.2, ADPI-146.1, ADPI-148, ADPI-149.1, ADPI-150, ADPI-151.2,
ADPI-151.1, ADPI-152, ADPI-153.1, ADPI-153.2, ADPI-153.3, ADPI-154, ADPI-
155, ADPI-156.2, ADPI-156.1, ADPI-157, ADPI-159.1, ADPI-159.2, ADPI-160,
ADPI-162.2, ADPI-162.3, ADPI-162.1, ADPI-163, ADPI-165, ADPI-172, ADPI-

173.1, ADPI-173.2, ADPI-175.2, ADPI-175.1, ADPI-176, ADPI-182, ADPI-183,
ADPI-188.1, ADPI-189.2, ADPI-191, ADPI-193, ADPI-194.2, ADPI-196.2, ADPI-
196.3, ADPI-196.1, ADPI-196.4, ADPI-202, ADPI-204, ADPI-208, ADPI-209,
ADPI-216, ADPI-217, ADPI-220, ADPI-223, ADPI-228, ADPI-229, ADPI-230.1,
5 ADPI-230.2, ADPI-232.1, ADPI-232.2, ADPI-236.2, ADPI-236.3, ADPI-237.2,
ADPI-237.1, ADPI-240, ADPI-243, ADPI-245, ADPI-250, ADPI-251, ADPI-252.1,
ADPI-252.2, ADPI-253, ADPI-254, ADPI-255, ADPI-256, ADPI-257.1, ADPI-257.2,
ADPI-258, ADPI-259.1, ADPI-259.2, ADPI-260, ADPI-261, ADPI-262, ADPI-263,
10 ADPI-264, ADPI-265, ADPI-266, ADPI-267, ADPI-268.1, ADPI-268.2, ADPI-269,
ADPI-270, ADPI-271, ADPI-272, ADPI-273, ADPI-274, ADPI-275, ADPI-276,
ADPI-277, ADPI-278.1, ADPI-278.2, ADPI-279.1, ADPI-279.2, ADPI-280, ADPI-
281, ADPI-282, ADPI-283, ADPI-284, ADPI-285, ADPI-286, ADPI-287, ADPI-288,
ADPI-289, ADPI-290, ADPI-291, ADPI-292, ADPI-293, ADPI-294, ADPI-295,
ADPI-296, ADPI-297, ADPI-298, ADPI-299, ADPI-300, ADPI-301, ADPI-302,
15 ADPI-303, ADPI-304, ADPI-305, ADPI-306, ADPI-307.1, ADPI-307.2, ADPI-308,
ADPI-309, ADPI-311, ADPI-312, ADPI-313, ADPI-314, ADPI-315, ADPI-316.1,
ADPI-316.2, ADPI-317, ADPI-318, ADPI-319, ADPI-320.1, ADPI-320.2, ADPI-321,
ADPI-322, ADPI-323, ADPI-324, ADPI-325, ADPI-326, ADPI-327, ADPI-328,
ADPI-329, ADPI-330, ADPI-331, ADPI-332, ADPI-333.1, ADPI-333.2, ADPI-334,
20 ADPI-335, ADPI-336, ADPI-337, ADPI-338, ADPI-339, ADPI-340, ADPI-341,
ADPI-342, ADPI-343, ADPI-344, ADPI-345, ADPI-346, ADPI-347, ADPI-348,
ADPI-349, ADPI-350, ADPI-351, ADPI-352, ADPI-353, ADPI-354, ADPI-355,
ADPI-356, ADPI-357, ADPI-358, ADPI-359, ADPI-360, ADPI-361, ADPI-362,
ADPI-363, ADPI-364, ADPI-365.1, ADPI-365.2, ADPI-366, ADPI-367.1, ADPI-
25 367.2, ADPI-368.1, ADPI-368.2, ADPI-369.1, ADPI-369.2, ADPI-370, ADPI-371,
ADPI-372, ADPI-373, ADPI-374, ADPI-375, ADPI-376, ADPI-377, ADPI-378,
ADPI-379, ADPI-380, ADPI-381, ADPI-382, ADPI-383, ADPI-384, ADPI-386,
ADPI-387, ADPI-388, ADPI-389, ADPI-390, ADPI-391, ADPI-392, ADPI-393,
ADPI-394, ADPI-395, ADPI-396, ADPI-397, ADPI-398, ADPI-399.1, ADPI-399.2,

ADPI-400, ADPI-401, ADPI-402, ADPI-403, ADPI-404.1, ADPI-404.2, ADPI-405,
ADPI-406, ADPI-407, ADPI-408, ADPI-409, ADPI-410, ADPI-411, ADPI-412.1,
ADPI-412.2, ADPI-413, ADPI-414, ADPI-415, ADPI-416, ADPI-417, ADPI-418,
ADPI-419, ADPI-420, ADPI-421, ADPI-422, ADPI-423, ADPI-424, ADPI-425,
5 ADPI-426.1, ADPI-426.2, ADPI-427, ADPI-428, ADPI-429, ADPI-430, ADPI-431,
ADPI-432, ADPI-433, ADPI-434, ADPI-435, ADPI-435, ADPI-436, ADPI-437,
ADPI-438, ADPI-439, ADPI-440.1, ADPI-440.2, ADPI-441, ADPI-442, ADPI-443,
ADPI-444, ADPI-445, ADPI-446, ADPI-447.1, ADPI-447.2, ADPI-448, ADPI-449,
ADPI-450.1, ADPI-450.2, ADPI-451, ADPI-452, ADPI-453, ADPI-454, ADPI-455,
10 ADPI-456, ADPI-457, ADPI-458, ADPI-459, ADPI-460, ADPI-461, ADPI-462,
ADPI-463, ADPI-464, ADPI-465, ADPI-466.1, ADPI-466.2, ADPI-467, ADPI-468,
ADPI-469.1, ADPI-469.2, ADPI-470, ADPI-471, ADPI-472, ADPI-473, ADPI-474,
ADPI-475, ADPI-476, ADPI-477, ADPI-478.1, ADPI-478.2, ADPI-479, ADPI-480,
ADPI-481, ADPI-482, ADPI-483, ADPI-484, ADPI-485, ADPI-486, ADPI-487,
15 ADPI-488, ADPI-489, ADPI-490, ADPI-491, ADPI-492, ADPI-493.1, ADPI-493.2,
ADPI-494, ADPI-495, ADPI-496, ADPI-497, ADPI-498, ADPI-499, ADPI-500,
ADPI-501, ADPI-502, ADPI-503, ADPI-504, ADPI-505, ADPI-506, ADPI-507,
ADPI-508, ADPI-509, ADPI-510, ADPI-511, ADPI-512, ADPI-513, ADPI-514,
ADPI-515, ADPI-516, ADPI-517, ADPI-518, ADPI-519, ADPI-520, ADPI-521,
20 ADPI-522, ADPI-523, ADPI-524, ADPI-525, ADPI-526.1, ADPI-526.2, ADPI-527,
ADPI-528, ADPI-529, ADPI-530.1, ADPI-530.2, ADPI-531, ADPI-532, ADPI-533,
ADPI-534, ADPI-535, ADPI-536, ADPI-537, ADPI-538, ADPI-539, ADPI-540,
ADPI-541, ADPI-542, ADPI-543, ADPI-544, ADPI-545, ADPI-546, ADPI-547.1,
ADPI-547.2, ADPI-547.3, ADPI-548.1, ADPI-548.2, ADPI-549, optionally in
25 combination with ADPI-41.

17. The antibody of claim 16, which is a monoclonal antibody.

18. The antibody of claim 16 or claim 17, which is a chimeric antibody.

19. The antibody of claim 16, 17 or 18, which binds to the ADPI with greater affinity than to another isoform or variant of the ADPI.
- 5 20. A kit comprising an antibody as claimed in any one of claims 16 to 19, other reagents, and directions for use.
21. A kit comprising a plurality of distinct antibodies as claimed in any one of claims 16 to 19.
- 10 22. A pharmaceutical composition comprising a therapeutically effective amount of an antibody as claimed in any one of claims 16 to 19 or a fragment or derivative of such an antibody containing the binding domain of the antibody, and a pharmaceutically acceptable carrier.
- 15 23. A method of treating or preventing Alzheimer's disease comprising administering to a subject in need of such treatment or prevention a therapeutically effective amount of an antibody as claimed in any one of claims 16 to 19.
- 20 24. A method of treating or preventing Alzheimer's disease comprising administering to a subject in need of such treatment or prevention a therapeutically effective amount of one or more of the following Alzheimer's Disease-Associated Protein Isoforms (ADPIs) and/or a nucleic acid encoding such ADPIs: ADPI-1, ADPI-3.1, ADPI-3.2, ADPI-3.3, ADPI-5.3, ADPI-6, ADPI-8, ADPI-9, ADPI-10, ADPI-11, ADPI-12.1, ADPI-12.2, ADPI-13, ADPI-15, ADPI-16, ADPI-22, ADPI-23, ADPI-24, ADPI-25.3, ADPI-25.2, ADPI-26, ADPI-27, ADPI-29, ADPI-31, ADPI-33.1, ADPI-35, ADPI-37, ADPI-39, ADPI-42, ADPI-54, ADPI-56, ADPI-61, ADPI-62, ADPI-66, ADPI-67, ADPI-68, ADPI-70, ADPI-72, ADPI-77, ADPI-78.2, ADPI-78.3, ADPI-79, ADPI-81.2, ADPI-82, ADPI-85, ADPI-87.1, ADPI-88, ADPI-90, ADPI-91.1, ADPI-
- 25

91.2, ADPI-92, ADPI-94, ADPI-95, ADPI-97, ADPI-98, ADPI-101, ADPI-102.1,
ADPI-103, ADPI-105.2, ADPI-105.1, ADPI-107, ADPI-108, ADPI-109, ADPI-111.1,
ADPI-112, ADPI-113, ADPI-115, ADPI-117.1, ADPI-119, ADPI-120, ADPI-121,
ADPI-124, ADPI-125, ADPI-126, ADPI-126, ADPI-126, ADPI-127, ADPI-128,
5 ADPI-129, ADPI-130, ADPI-131, ADPI-132, ADPI-133, ADPI-138, ADPI-139,
ADPI-140, ADPI-141, ADPI-142.2, ADPI-142.1, ADPI-143.1, ADPI-143.2, ADPI-
144, ADPI-146.2, ADPI-146.1, ADPI-148, ADPI-149.1, ADPI-150, ADPI-151.2,
ADPI-151.1, ADPI-152, ADPI-153.1, ADPI-153.2, ADPI-153.3, ADPI-154, ADPI-
155, ADPI-156.2, ADPI-156.1, ADPI-157, ADPI-159.1, ADPI-159.2, ADPI-160,
10 ADPI-162.2, ADPI-162.3, ADPI-162.1, ADPI-163, ADPI-165, ADPI-172, ADPI-
173.1, ADPI-173.2, ADPI-175.2, ADPI-175.1, ADPI-176, ADPI-182, ADPI-183,
ADPI-188.1, ADPI-189.2, ADPI-191, ADPI-193, ADPI-194.2, ADPI-196.2, ADPI-
196.3, ADPI-196.1, ADPI-196.4, ADPI-202, ADPI-204, ADPI-208, ADPI-209,
ADPI-216, ADPI-217, ADPI-220, ADPI-223, ADPI-228, ADPI-229, ADPI-230.1,
15 ADPI-230.2, ADPI-232.1, ADPI-232.2, ADPI-236.2, ADPI-236.3, ADPI-237.2,
ADPI-237.1, ADPI-240, ADPI-243, ADPI-245, ADPI-250, ADPI-251, ADPI-252.1,
ADPI-252.2, ADPI-253, ADPI-254, ADPI-255, ADPI-256, ADPI-257.1, ADPI-257.2,
ADPI-258, ADPI-259.1, ADPI-259.2, ADPI-260, ADPI-261, ADPI-262, ADPI-263,
ADPI-264, ADPI-265, ADPI-266, ADPI-267, ADPI-268.1, ADPI-268.2, ADPI-269,
20 ADPI-270, ADPI-271, ADPI-272, ADPI-273, ADPI-274, ADPI-275, ADPI-276,
ADPI-277, ADPI-278.1, ADPI-278.2, ADPI-279.1, ADPI-279.2, ADPI-280, ADPI-
281, ADPI-282, ADPI-283, ADPI-284, ADPI-285, ADPI-286, ADPI-287, ADPI-288,
ADPI-289, ADPI-290, ADPI-291, ADPI-292, ADPI-293, ADPI-294, ADPI-295,
25 ADPI-296, ADPI-297, ADPI-298, ADPI-299, ADPI-300, ADPI-301, ADPI-302,
ADPI-303, ADPI-304, ADPI-305, ADPI-306, ADPI-307.1, ADPI-307.2, ADPI-308,
ADPI-309, ADPI-311, ADPI-312, ADPI-313, ADPI-314, ADPI-315, ADPI-316.1,
ADPI-316.2, ADPI-317, ADPI-318, ADPI-319, ADPI-320.1, ADPI-320.2, ADPI-321,
ADPI-322, ADPI-323, ADPI-324, ADPI-325, ADPI-326, ADPI-327, ADPI-328,
ADPI-329, ADPI-330, ADPI-331, ADPI-332, ADPI-333.1, ADPI-333.2, ADPI-334,

ADPI-335, ADPI-336, ADPI-337, ADPI-338, ADPI-339, ADPI-340, ADPI-341,
ADPI-342, ADPI-343, ADPI-344, ADPI-345, ADPI-346, ADPI-347, ADPI-348,
ADPI-349, ADPI-350, ADPI-351, ADPI-352, ADPI-353, ADPI-354, ADPI-355,
ADPI-356, ADPI-357, ADPI-358, ADPI-359, ADPI-360, ADPI-361, ADPI-362,
5 ADPI-363, ADPI-364, ADPI-365.1, ADPI-365.2, ADPI-366, ADPI-367.1, ADPI-
367.2, ADPI-368.1, ADPI-368.2, ADPI-369.1, ADPI-369.2, ADPI-370, ADPI-371,
ADPI-372, ADPI-373, ADPI-374, ADPI-375, ADPI-376, ADPI-377, ADPI-378,
ADPI-379, ADPI-380, ADPI-381, ADPI-382, ADPI-383, ADPI-384, ADPI-386,
ADPI-387, ADPI-388, ADPI-389, ADPI-390, ADPI-391, ADPI-392, ADPI-393,
10 ADPI-394, ADPI-395, ADPI-396, ADPI-397, ADPI-398, ADPI-399.1, ADPI-399.2,
ADPI-400, ADPI-401, ADPI-402, ADPI-403, ADPI-404.1, ADPI-404.2, ADPI-405,
ADPI-406, ADPI-407, ADPI-408, ADPI-409, ADPI-410, ADPI-411, ADPI-412.1,
ADPI-412.2, ADPI-413, ADPI-414, ADPI-415, ADPI-416, ADPI-417, ADPI-418,
ADPI-419, ADPI-420, ADPI-421, ADPI-422, ADPI-423, ADPI-424, ADPI-425,
15 ADPI-426.1, ADPI-426.2, ADPI-427, ADPI-428, ADPI-429, ADPI-430, ADPI-431,
ADPI-432, ADPI-433, ADPI-434, ADPI-435, ADPI-435, ADPI-436, ADPI-437,
ADPI-438, ADPI-439, ADPI-440.1, ADPI-440.2, ADPI-441, ADPI-442, ADPI-443,
ADPI-444, ADPI-445, ADPI-446, ADPI-447.1, ADPI-447.2, ADPI-448, ADPI-449,
ADPI-450.1, ADPI-450.2, ADPI-451, ADPI-452, ADPI-453, ADPI-454, ADPI-455,
20 ADPI-456, ADPI-457, ADPI-458, ADPI-459, ADPI-460, ADPI-461, ADPI-462,
ADPI-463, ADPI-464, ADPI-465, ADPI-466.1, ADPI-466.2, ADPI-467, ADPI-468,
ADPI-469.1, ADPI-469.2, ADPI-470, ADPI-471, ADPI-472, ADPI-473, ADPI-474,
ADPI-475, ADPI-476, ADPI-477, ADPI-478.1, ADPI-478.2, ADPI-479, ADPI-480,
ADPI-481, ADPI-482, ADPI-483, ADPI-484, ADPI-485, ADPI-486, ADPI-487,
25 ADPI-488, ADPI-489, ADPI-490, ADPI-491, ADPI-492, ADPI-493.1, ADPI-493.2,
ADPI-494, ADPI-495, ADPI-496, ADPI-497, ADPI-498, ADPI-499, ADPI-500,
ADPI-501, ADPI-502, ADPI-503, ADPI-504, ADPI-505, ADPI-506, ADPI-507,
ADPI-508, ADPI-509, ADPI-510, ADPI-511, ADPI-512, ADPI-513, ADPI-514,
ADPI-515, ADPI-516, ADPI-517, ADPI-518, ADPI-519, ADPI-520, ADPI-521,

- ADPI-522, ADPI-523, ADPI-524, ADPI-525, ADPI-526.1, ADPI-526.2, ADPI-527,
ADPI-528, ADPI-529, ADPI-530.1, ADPI-530.2, ADPI-531, ADPI-532, ADPI-533,
ADPI-534, ADPI-535, ADPI-536, ADPI-537, ADPI-538, ADPI-539, ADPI-540,
ADPI-541, ADPI-542, ADPI-543, ADPI-544, ADPI-545, ADPI-546, ADPI-547.1,
5 ADPI-547.2, ADPI-547.3, ADPI-548.1, ADPI-548.2, ADPI-549, optionally in
combination with ADPI-41.
25. A method of treating or preventing Alzheimer's disease comprising
administering to a subject in need of such treatment or prevention a therapeutically
10 effective amount of a nucleic acid that inhibits the function of one or more of the
following Alzheimer's Disease-Associated Protein Isoforms (ADPIs): ADPI-1, ADPI-
3.1, ADPI-3.2, ADPI-3.3, ADPI-5.3, ADPI-6, ADPI-8, ADPI-9, ADPI-10, ADPI-11,
ADPI-12.1, ADPI-12.2, ADPI-13, ADPI-15, ADPI-16, ADPI-22, ADPI-23, ADPI-24,
ADPI-25.3, ADPI-25.2, ADPI-26, ADPI-27, ADPI-29, ADPI-31, ADPI-33.1, ADPI-
15 35, ADPI-37, ADPI-39, ADPI-42, ADPI-54, ADPI-56, ADPI-61, ADPI-62, ADPI-66,
ADPI-67, ADPI-68, ADPI-70, ADPI-72, ADPI-77, ADPI-78.2, ADPI-78.3, ADPI-79,
ADPI-81.2, ADPI-82, ADPI-85, ADPI-87.1, ADPI-88, ADPI-90, ADPI-91.1, ADPI-
91.2, ADPI-92, ADPI-94, ADPI-95, ADPI-97, ADPI-98, ADPI-101, ADPI-102.1,
ADPI-103, ADPI-105.2, ADPI-105.1, ADPI-107, ADPI-108, ADPI-109, ADPI-111.1,
20 ADPI-112, ADPI-113, ADPI-115, ADPI-117.1, ADPI-119, ADPI-120, ADPI-121,
ADPI-124, ADPI-125, ADPI-126, ADPI-126, ADPI-126, ADPI-127, ADPI-128,
ADPI-129, ADPI-130, ADPI-131, ADPI-132, ADPI-133, ADPI-138, ADPI-139,
ADPI-140, ADPI-141, ADPI-142.2, ADPI-142.1, ADPI-143.1, ADPI-143.2, ADPI-
144, ADPI-146.2, ADPI-146.1, ADPI-148, ADPI-149.1, ADPI-150, ADPI-151.2,
25 ADPI-151.1, ADPI-152, ADPI-153.1, ADPI-153.2, ADPI-153.3, ADPI-154, ADPI-
155, ADPI-156.2, ADPI-156.1, ADPI-157, ADPI-159.1, ADPI-159.2, ADPI-160,
ADPI-162.2, ADPI-162.3, ADPI-162.1, ADPI-163, ADPI-165, ADPI-172, ADPI-
173.1, ADPI-173.2, ADPI-175.2, ADPI-175.1, ADPI-176, ADPI-182, ADPI-183,
ADPI-188.1, ADPI-189.2, ADPI-191, ADPI-193, ADPI-194.2, ADPI-196.2, ADPI-

196.3, ADPI-196.1, ADPI-196.4, ADPI-202, ADPI-204, ADPI-208, ADPI-209,
ADPI-216, ADPI-217, ADPI-220, ADPI-223, ADPI-228, ADPI-229, ADPI-230.1,
ADPI-230.2, ADPI-232.1, ADPI-232.2, ADPI-236.2, ADPI-236.3, ADPI-237.2,
ADPI-237.1, ADPI-240, ADPI-243, ADPI-245, ADPI-250, ADPI-251, ADPI-252.1,
5 ADPI-252.2, ADPI-253, ADPI-254, ADPI-255, ADPI-256, ADPI-257.1, ADPI-257.2,
ADPI-258, ADPI-259.1, ADPI-259.2, ADPI-260, ADPI-261, ADPI-262, ADPI-263,
ADPI-264, ADPI-265, ADPI-266, ADPI-267, ADPI-268.1, ADPI-268.2, ADPI-269,
ADPI-270, ADPI-271, ADPI-272, ADPI-273, ADPI-274, ADPI-275, ADPI-276,
ADPI-277, ADPI-278.1, ADPI-278.2, ADPI-279.1, ADPI-279.2, ADPI-280, ADPI-
10 281, ADPI-282, ADPI-283, ADPI-284, ADPI-285, ADPI-286, ADPI-287, ADPI-288,
ADPI-289, ADPI-290, ADPI-291, ADPI-292, ADPI-293, ADPI-294, ADPI-295,
ADPI-296, ADPI-297, ADPI-298, ADPI-299, ADPI-300, ADPI-301, ADPI-302,
ADPI-303, ADPI-304, ADPI-305, ADPI-306, ADPI-307.1, ADPI-307.2, ADPI-308,
ADPI-309, ADPI-311, ADPI-312, ADPI-313, ADPI-314, ADPI-315, ADPI-316.1,
15 ADPI-316.2, ADPI-317, ADPI-318, ADPI-319, ADPI-320.1, ADPI-320.2, ADPI-321,
ADPI-322, ADPI-323, ADPI-324, ADPI-325, ADPI-326, ADPI-327, ADPI-328,
ADPI-329, ADPI-330, ADPI-331, ADPI-332, ADPI-333.1, ADPI-333.2, ADPI-334,
ADPI-335, ADPI-336, ADPI-337, ADPI-338, ADPI-339, ADPI-340, ADPI-341,
ADPI-342, ADPI-343, ADPI-344, ADPI-345, ADPI-346, ADPI-347, ADPI-348,
20 ADPI-349, ADPI-350, ADPI-351, ADPI-352, ADPI-353, ADPI-354, ADPI-355,
ADPI-356, ADPI-357, ADPI-358, ADPI-359, ADPI-360, ADPI-361, ADPI-362,
ADPI-363, ADPI-364, ADPI-365.1, ADPI-365.2, ADPI-366, ADPI-367.1, ADPI-
367.2, ADPI-368.1, ADPI-368.2, ADPI-369.1, ADPI-369.2, ADPI-370, ADPI-371,
ADPI-372, ADPI-373, ADPI-374, ADPI-375, ADPI-376, ADPI-377, ADPI-378,
25 ADPI-379, ADPI-380, ADPI-381, ADPI-382, ADPI-383, ADPI-384, ADPI-386,
ADPI-387, ADPI-388, ADPI-389, ADPI-390, ADPI-391, ADPI-392, ADPI-393,
ADPI-394, ADPI-395, ADPI-396, ADPI-397, ADPI-398, ADPI-399.1, ADPI-399.2,
ADPI-400, ADPI-401, ADPI-402, ADPI-403, ADPI-404.1, ADPI-404.2, ADPI-405,
ADPI-406, ADPI-407, ADPI-408, ADPI-409, ADPI-410, ADPI-411, ADPI-412.1,

- ADPI-412.2, ADPI-413, ADPI-414, ADPI-415, ADPI-416, ADPI-417, ADPI-418,
ADPI-419, ADPI-420, ADPI-421, ADPI-422, ADPI-423, ADPI-424, ADPI-425,
ADPI-426.1, ADPI-426.2, ADPI-427, ADPI-428, ADPI-429, ADPI-430, ADPI-431,
ADPI-432, ADPI-433, ADPI-434, ADPI-435, ADPI-435, ADPI-436, ADPI-437,
5 ADPI-438, ADPI-439, ADPI-440.1, ADPI-440.2, ADPI-441, ADPI-442, ADPI-443,
ADPI-444, ADPI-445, ADPI-446, ADPI-447.1, ADPI-447.2, ADPI-448, ADPI-449,
ADPI-450.1, ADPI-450.2, ADPI-451, ADPI-452, ADPI-453, ADPI-454, ADPI-455,
ADPI-456, ADPI-457, ADPI-458, ADPI-459, ADPI-460, ADPI-461, ADPI-462,
ADPI-463, ADPI-464, ADPI-465, ADPI-466.1, ADPI-466.2, ADPI-467, ADPI-468,
10 ADPI-469.1, ADPI-469.2, ADPI-470, ADPI-471, ADPI-472, ADPI-473, ADPI-474,
ADPI-475, ADPI-476, ADPI-477, ADPI-478.1, ADPI-478.2, ADPI-479, ADPI-480,
ADPI-481, ADPI-482, ADPI-483, ADPI-484, ADPI-485, ADPI-486, ADPI-487,
ADPI-488, ADPI-489, ADPI-490, ADPI-491, ADPI-492, ADPI-493.1, ADPI-493.2,
15 ADPI-494, ADPI-495, ADPI-496, ADPI-497, ADPI-498, ADPI-499, ADPI-500,
ADPI-501, ADPI-502, ADPI-503, ADPI-504, ADPI-505, ADPI-506, ADPI-507,
ADPI-508, ADPI-509, ADPI-510, ADPI-511, ADPI-512, ADPI-513, ADPI-514,
ADPI-515, ADPI-516, ADPI-517, ADPI-518, ADPI-519, ADPI-520, ADPI-521,
ADPI-522, ADPI-523, ADPI-524, ADPI-525, ADPI-526.1, ADPI-526.2, ADPI-527,
ADPI-528, ADPI-529, ADPI-530.1, ADPI-530.2, ADPI-531, ADPI-532, ADPI-533,
20 ADPI-534, ADPI-535, ADPI-536, ADPI-537, ADPI-538, ADPI-539, ADPI-540,
ADPI-541, ADPI-542, ADPI-543, ADPI-544, ADPI-545, ADPI-546, ADPI-547.1,
ADPI-547.2, ADPI-547.3, ADPI-548.1, ADPI-548.2, ADPI-549, optionally in
combination with a therapeutically effective amount of a nucleic acid that inhibits the
function of ADPI-41.
- 25
26. The method of claim 25, wherein the nucleic acid is a ADPI antisense nucleic
acid or ribozyme.
27. A method of screening for agents that interact with one or more of the

Alzheimer's Disease-Associated Protein Isoforms (ADPIs) as defined in claim 25, a fragment of the or each ADPI (ADPI fragment), a polypeptide related to the or each ADPI (ADPI-related polypeptide), or a ADPI fusion protein, said method comprising:

- (a) contacting a ADPI, a biologically active portion of a ADPI, a
5 ADPI-related polypeptide, or a ADPI fusion protein with a candidate agent; and
(b) determining whether or not the candidate agent interacts with the ADPI,
the ADPI fragment, the ADPI-related polypeptide, or the ADPI fusion protein.

28. The method of claim 27, wherein the ADPI, the ADPI fragment, the ADPI-
10 related polypeptide, or the ADPI fusion protein is expressed by cells.

29. The method of claim 28, wherein the cells express a recombinant ADPI, a
recombinant ADPI fragment, a recombinant ADPI-related polypeptide, or a ADPI
fusion protein.

15 30. A method of screening for agents that modulate the expression or activity of
one or more of the Alzheimer's Disease-Associated Protein Isoforms (ADPIs) as
defined in claim 25, a fragment of the or each ADPI (ADPI fragment), a polypeptide
related to the or each ADPI (ADPI-related polypeptide), or a ADPI fusion protein, said
20 method comprising:

- (a) contacting a first population of cells expressing a ADPI, a ADPI
fragment, a ADPI-related polypeptide, or a ADPI fusion protein with a candidate
agent;
- (b) contacting a second population of cells expressing said ADPI, said
25 ADPI fragment, said ADPI-related polypeptide, or said ADPI fusion protein, with a
control agent; and
- (c) comparing the level of said ADPI, said ADPI fragment, said ADPI-
related polypeptide, said ADPI fusion protein, or mRNA encoding said ADPI, said
ADPI fragment, said ADPI-related polypeptide, or said ADPI fusion protein, in the

first and second populations of cells, or comparing the level of induction of a cellular second messenger in the first and second populations of cells.

31. The method as claimed in claim 30, wherein the level of said ADPI, said ADPI fragment, said ADPI-related polypeptide, said ADPI fusion protein, or mRNA

5 encoding said ADPI, said ADPI fragment, said ADPI-related polypeptide, said ADPI fusion protein, or said cellular second messenger is greater or less in the first population of cells than in the second population of cells.

10 32. A method of screening for or identifying agents that modulate the expression or activity of one or more of the Alzheimer's Disease-Associated Protein Isoforms (ADPIs) as defined in claim 25, a fragment of the or each ADPI (ADPI fragment), a polypeptide related to the or each ADPI (ADPI-related polypeptide), or a ADPI fusion protein, said method comprising:

15 (a) administering a candidate agent to a first mammal or group of mammals;

(b) administering a control agent to a second mammal or group of mammals; and

20 (c) comparing the level of expression of the ADPI, the ADPI fragment, the ADPI-related polypeptide or the ADPI fusion protein or of mRNA encoding the ADPI, the ADPI fragment, the ADPI-related polypeptide or the ADPI fusion protein in the first and second groups, or comparing the level of induction of a cellular second messenger in the first and second groups.

25 33. The method as claimed in claim 32, wherein the mammals are animal models for Alzheimer's disease.

34. The method as claimed in claim 32 or claim 33, wherein the level of expression of said ADPI, said ADPI fragment, said ADPI-related polypeptide or said ADPI fusion

protein, mRNA encoding said ADPI, said ADPI fragment, said ADPI-related polypeptide or said ADPI fusion protein or of said cellular second messenger is greater or less in the first group than in the second group.

5 35. The method as claimed in claim 33 or claim 34, wherein the levels of said ADPI, said ADPI fragment, said ADPI-related polypeptide or said ADPI fusion protein, mRNA encoding said ADPI, said ADPI fragment, said ADPI-related polypeptide or said ADPI fusion protein, or of said cellular second messenger in the first and second groups are further compared to the level of said ADPI, said ADPI fragment, said ADPI-related polypeptide or said ADPI fusion protein, or said mRNA encoding said ADPI, said ADPI fragment, said ADPI-related polypeptide or said ADPI fusion protein in normal control mammals.

10 36. The method as claimed in claim 33, 34 or 35, wherein administration of said candidate agent modulates the level of said ADPI, said ADPI fragment, said ADPI-related polypeptide or said ADPI fusion protein, or said mRNA encoding said ADPI, said ADPI fragment, said ADPI-related polypeptide or said ADPI fusion protein, or said cellular second messenger in the first group towards the levels of said ADPI, said ADPI fragment, said ADPI-related polypeptide or said ADPI fusion protein, or said mRNA or said cellular second messenger in the second group.

15 37. The method as claimed in any of one of claims 32 to 36, wherein said mammals are human subjects having Alzheimer's disease.

20 38. A method of screening for or identifying agents that interact with one or more of the Alzheimer's Disease-Associated Protein Isoforms (ADPIs) as defined in claim 25, a fragment of the or each ADPI (ADPI fragment), a polypeptide related to the or each ADPI (ADPI-related polypeptide), or a ADPI fusion protein, said method comprising:

- (a) contacting a candidate agent with the ADPI, the ADPI fragment, the ADPI-related polypeptide, or the ADPI fusion protein, and
- (b) quantitatively detecting binding, if any, between the agent and the ADPI, the ADPI fragment, the ADPI-related polypeptide, or the ADPI fusion protein.

5

39. A method of screening for or identifying agents that modulate the activity of one or more of the Alzheimer's Disease-Associated Protein Isoforms (ADPIs) as defined in claim 25, a fragment of the or each ADPI (ADPI fragment), a polypeptide related to the or each ADPI (ADPI-related polypeptide), or a ADPI fusion protein, said 10 method comprising:

- (a) in a first aliquot, contacting a candidate agent with the ADPI, the ADPI fragment, the ADPI-related polypeptide, or the ADPI fusion protein, and
- (b) comparing the activity of the ADPI, the ADPI fragment, the ADPI-related polypeptide, or the ADPI fusion protein in the first aliquot after addition of the 15 candidate agent with the activity of the ADPI, the ADPI fragment, the ADPI-related polypeptide, or the ADPI fusion protein in a control aliquot, or with a previously determined reference range.

40. The method as claimed in claim 38 or claim 39, wherein the ADPI, the ADPI fragment, the ADPI-related polypeptide, or the ADPI fusion protein is a recombinant 20 protein.

41. The method as claimed in claim 38, 39 or 40, wherein the ADPI, the ADPI fragment, the ADPI-related polypeptide, or the ADPI fusion protein is immobilized on 25 a solid phase.

42. A method for screening, diagnosis or prognosis of Alzheimer's disease in a subject or for monitoring the effect of an anti-Alzheimer's disease drug or therapy administered to a subject, comprising:

(a) contacting at least one oligonucleotide probe comprising 10 or more consecutive nucleotides complementary to a nucleotide sequence encoding a ADPI chosen from ADPI-1, ADPI-3.1, ADPI-3.2, ADPI-3.3, ADPI-5.3, ADPI-6, ADPI-8, ADPI-9, ADPI-10, ADPI-11, ADPI-12.1, ADPI-12.2, ADPI-13, ADPI-15, ADPI-16, 5 ADPI-22, ADPI-23, ADPI-24, ADPI-25.3, ADPI-25.2, ADPI-26, ADPI-27, ADPI-29, ADPI-31, ADPI-33.1, ADPI-35, ADPI-37, ADPI-39, ADPI-42, ADPI-54, ADPI-56, ADPI-61, ADPI-62, ADPI-66, ADPI-67, ADPI-68, ADPI-70, ADPI-72, ADPI-77, ADPI-78.2, ADPI-78.3, ADPI-79, ADPI-81.2, ADPI-82, ADPI-85, ADPI-87.1, ADPI- 10 88, ADPI-90, ADPI-91.1, ADPI-91.2, ADPI-92, ADPI-94, ADPI-95, ADPI-97, ADPI- 98, ADPI-101, ADPI-102.1, ADPI-103, ADPI-105.2, ADPI-105.1, ADPI-107, ADPI- 108, ADPI-109, ADPI-111.1, ADPI-112, ADPI-113, ADPI-115, ADPI-117.1, ADPI- 119, ADPI-120, ADPI-121, ADPI-124, ADPI-125, ADPI-126, ADPI-126, ADPI-126, ADPI-127, ADPI-128, ADPI-129, ADPI-130, ADPI-131, ADPI-132, ADPI-133, ADPI-138, ADPI-139, ADPI-140, ADPI-141, ADPI-142.2, ADPI-142.1, ADPI-143.1, 15 ADPI-143.2, ADPI-144, ADPI-146.2, ADPI-146.1, ADPI-148, ADPI-149.1, ADPI- 150, ADPI-151.2, ADPI-151.1, ADPI-152, ADPI-153.1, ADPI-153.2, ADPI-153.3, ADPI-154, ADPI-155, ADPI-156.2, ADPI-156.1, ADPI-157, ADPI-159.1, ADPI- 159.2, ADPI-160, ADPI-162.2, ADPI-162.3, ADPI-162.1, ADPI-163, ADPI-165, ADPI-172, ADPI-173.1, ADPI-173.2, ADPI-175.2, ADPI-175.1, ADPI-176, ADPI- 20 182, ADPI-183, ADPI-188.1, ADPI-189.2, ADPI-191, ADPI-193, ADPI-194.2, ADPI-196.2, ADPI-196.3, ADPI-196.1, ADPI-196.4, ADPI-202, ADPI-204, ADPI- 208, ADPI-209, ADPI-216, ADPI-217, ADPI-220, ADPI-223, ADPI-228, ADPI-229, ADPI-230.1, ADPI-230.2, ADPI-232.1, ADPI-232.2, ADPI-236.2, ADPI-236.3, ADPI-237.2, ADPI-237.1, ADPI-240, ADPI-243, ADPI-245, ADPI-250, ADPI-251, 25 ADPI-252.1, ADPI-252.2, ADPI-253, ADPI-254, ADPI-255, ADPI-256, ADPI-257.1, ADPI-257.2, ADPI-258, ADPI-259.1, ADPI-259.2, ADPI-260, ADPI-261, ADPI-262, ADPI-263, ADPI-264, ADPI-265, ADPI-266, ADPI-267, ADPI-268.1, ADPI-268.2, ADPI-269, ADPI-270, ADPI-271, ADPI-272, ADPI-273, ADPI-274, ADPI-275, ADPI-276, ADPI-277, ADPI-278.1, ADPI-278.2, ADPI-279.1, ADPI-279.2, ADPI-

280, ADPI-281, ADPI-282, ADPI-283, ADPI-284, ADPI-285, ADPI-286, ADPI-287,
ADPI-288, ADPI-289, ADPI-290, ADPI-291, ADPI-292, ADPI-293, ADPI-294,
ADPI-295, ADPI-296, ADPI-297, ADPI-298, ADPI-299, ADPI-300, ADPI-301,
ADPI-302, ADPI-303, ADPI-304, ADPI-305, ADPI-306, ADPI-307.1, ADPI-307.2,
5 ADPI-308, ADPI-309, ADPI-311, ADPI-312, ADPI-313, ADPI-314, ADPI-315,
ADPI-316.1, ADPI-316.2, ADPI-317, ADPI-318, ADPI-319, ADPI-320.1, ADPI-
320.2, ADPI-321, ADPI-322, ADPI-323, ADPI-324, ADPI-325, ADPI-326, ADPI-
327, ADPI-328, ADPI-329, ADPI-330, ADPI-331, ADPI-332, ADPI-333.1, ADPI-
333.2, ADPI-334, ADPI-335, ADPI-336, ADPI-337, ADPI-338, ADPI-339, ADPI-
10 340, ADPI-341, ADPI-342, ADPI-343, ADPI-344, ADPI-345, ADPI-346, ADPI-347,
ADPI-348, ADPI-349, ADPI-350, ADPI-351, ADPI-352, ADPI-353, ADPI-354,
ADPI-355, ADPI-356, ADPI-357, ADPI-358, ADPI-359, ADPI-360, ADPI-361,
ADPI-362, ADPI-363, ADPI-364, ADPI-365.1, ADPI-365.2, ADPI-366, ADPI-367.1,
ADPI-367.2, ADPI-368.1, ADPI-368.2, ADPI-369.1, ADPI-369.2, ADPI-370, ADPI-
15 371, ADPI-372, ADPI-373, ADPI-374, ADPI-375, ADPI-376, ADPI-377, ADPI-378,
ADPI-379, ADPI-380, ADPI-381, ADPI-382, ADPI-383, ADPI-384, ADPI-386,
ADPI-387, ADPI-388, ADPI-389, ADPI-390, ADPI-391, ADPI-392, ADPI-393,
ADPI-394, ADPI-395, ADPI-396, ADPI-397, ADPI-398, ADPI-399.1, ADPI-399.2,
ADPI-400, ADPI-401, ADPI-402, ADPI-403, ADPI-404.1, ADPI-404.2, ADPI-405,
20 ADPI-406, ADPI-407, ADPI-408, ADPI-409, ADPI-410, ADPI-411, ADPI-412.1,
ADPI-412.2, ADPI-413, ADPI-414, ADPI-415, ADPI-416, ADPI-417, ADPI-418,
ADPI-419, ADPI-420, ADPI-421, ADPI-422, ADPI-423, ADPI-424, ADPI-425,
ADPI-426.1, ADPI-426.2, ADPI-427, ADPI-428, ADPI-429, ADPI-430, ADPI-431,
ADPI-432, ADPI-433, ADPI-434, ADPI-435, ADPI-435, ADPI-436, ADPI-437,
25 ADPI-438, ADPI-439, ADPI-440.1, ADPI-440.2, ADPI-441, ADPI-442, ADPI-443,
ADPI-444, ADPI-445, ADPI-446, ADPI-447.1, ADPI-447.2, ADPI-448, ADPI-449,
ADPI-450.1, ADPI-450.2, ADPI-451, ADPI-452, ADPI-453, ADPI-454, ADPI-455,
ADPI-456, ADPI-457, ADPI-458, ADPI-459, ADPI-460, ADPI-461, ADPI-462,
ADPI-463, ADPI-464, ADPI-465, ADPI-466.1, ADPI-466.2, ADPI-467, ADPI-468,

- ADPI-469.1, ADPI-469.2, ADPI-470, ADPI-471, ADPI-472, ADPI-473, ADPI-474,
ADPI-475, ADPI-476, ADPI-477, ADPI-478.1, ADPI-478.2, ADPI-479, ADPI-480,
ADPI-481, ADPI-482, ADPI-483, ADPI-484, ADPI-485, ADPI-486, ADPI-487,
ADPI-488, ADPI-489, ADPI-490, ADPI-491, ADPI-492, ADPI-493.1, ADPI-493.2,
5 ADPI-494, ADPI-495, ADPI-496, ADPI-497, ADPI-498, ADPI-499, ADPI-500,
ADPI-501, ADPI-502, ADPI-503, ADPI-504, ADPI-505, ADPI-506, ADPI-507,
ADPI-508, ADPI-509, ADPI-510, ADPI-511, ADPI-512, ADPI-513, ADPI-514,
ADPI-515, ADPI-516, ADPI-517, ADPI-518, ADPI-519, ADPI-520, ADPI-521,
ADPI-522, ADPI-523, ADPI-524, ADPI-525, ADPI-526.1, ADPI-526.2, ADPI-527,
10 ADPI-528, ADPI-529, ADPI-530.1, ADPI-530.2, ADPI-531, ADPI-532, ADPI-533,
ADPI-534, ADPI-535, ADPI-536, ADPI-537, ADPI-538, ADPI-539, ADPI-540,
ADPI-541, ADPI-542, ADPI-543, ADPI-544, ADPI-545, ADPI-546, ADPI-547.1,
ADPI-547.2, ADPI-547.3, ADPI-548.1, ADPI-548.2, ADPI-549 with an RNA
obtained from a biological sample from the subject or with cDNA copied from the
15 RNA wherein said contacting occurs under conditions that permit hybridization of the
probe to the nucleotide sequence if present;
- (b) detecting hybridization, if any, between the probe and the nucleotide
sequence; and
- (c) comparing the hybridization, if any, detected in step (b) with the
20 hybridization detected in a control sample, or with a previously determined reference
range.

43. The method as claimed in claim 42, wherein step (a) comprises contacting a
plurality of oligonucleotide probes comprising 10 or more consecutive nucleotides
25 complementary to a nucleotide sequence encoding a ADPI chosen from ADPI-1,
ADPI-3.1, ADPI-3.2, ADPI-3.3, ADPI-5.3, ADPI-6, ADPI-8, ADPI-9, ADPI-10,
ADPI-11, ADPI-12.1, ADPI-12.2, ADPI-13, ADPI-15, ADPI-16, ADPI-22, ADPI-23,
ADPI-24, ADPI-25.3, ADPI-25.2, ADPI-26, ADPI-27, ADPI-29, ADPI-31, ADPI-
33.1, ADPI-35, ADPI-37, ADPI-39, ADPI-42, ADPI-54, ADPI-56, ADPI-61, ADPI-

62, ADPI-66, ADPI-67, ADPI-68, ADPI-70, ADPI-72, ADPI-77, ADPI-78.2, ADPI-
78.3, ADPI-79, ADPI-81.2, ADPI-82, ADPI-85, ADPI-87.1, ADPI-88, ADPI-90,
ADPI-91.1, ADPI-91.2, ADPI-92, ADPI-94, ADPI-95, ADPI-97, ADPI-98, ADPI-
101, ADPI-102.1, ADPI-103, ADPI-105.2, ADPI-105.1, ADPI-107, ADPI-108,
5 ADPI-109, ADPI-111.1, ADPI-112, ADPI-113, ADPI-115, ADPI-117.1, ADPI-119,
ADPI-120, ADPI-121, ADPI-124, ADPI-125, ADPI-126, ADPI-126, ADPI-126,
ADPI-127, ADPI-128, ADPI-129, ADPI-130, ADPI-131, ADPI-132, ADPI-133,
ADPI-138, ADPI-139, ADPI-140, ADPI-141, ADPI-142.2, ADPI-142.1, ADPI-143.1,
ADPI-143.2, ADPI-144, ADPI-146.2, ADPI-146.1, ADPI-148, ADPI-149.1, ADPI-
10 150, ADPI-151.2, ADPI-151.1, ADPI-152, ADPI-153.1, ADPI-153.2, ADPI-153.3,
ADPI-154, ADPI-155, ADPI-156.2, ADPI-156.1, ADPI-157, ADPI-159.1, ADPI-
159.2, ADPI-160, ADPI-162.2, ADPI-162.3, ADPI-162.1, ADPI-163, ADPI-165,
ADPI-172, ADPI-173.1, ADPI-173.2, ADPI-175.2, ADPI-175.1, ADPI-176, ADPI-
182, ADPI-183, ADPI-188.1, ADPI-189.2, ADPI-191, ADPI-193, ADPI-194.2,
15 ADPI-196.2, ADPI-196.3, ADPI-196.1, ADPI-196.4, ADPI-202, ADPI-204, ADPI-
208, ADPI-209, ADPI-216, ADPI-217, ADPI-220, ADPI-223, ADPI-228, ADPI-229,
ADPI-230.1, ADPI-230.2, ADPI-232.1, ADPI-232.2, ADPI-236.2, ADPI-236.3,
ADPI-237.2, ADPI-237.1, ADPI-240, ADPI-243, ADPI-245, ADPI-250, ADPI-251,
ADPI-252.1, ADPI-252.2, ADPI-253, ADPI-254, ADPI-255, ADPI-256, ADPI-257.1,
20 ADPI-257.2, ADPI-258, ADPI-259.1, ADPI-259.2, ADPI-260, ADPI-261, ADPI-262,
ADPI-263, ADPI-264, ADPI-265, ADPI-266, ADPI-267, ADPI-268.1, ADPI-268.2,
ADPI-269, ADPI-270, ADPI-271, ADPI-272, ADPI-273, ADPI-274, ADPI-275,
ADPI-276, ADPI-277, ADPI-278.1, ADPI-278.2, ADPI-279.1, ADPI-279.2, ADPI-
280, ADPI-281, ADPI-282, ADPI-283, ADPI-284, ADPI-285, ADPI-286, ADPI-287,
25 ADPI-288, ADPI-289, ADPI-290, ADPI-291, ADPI-292, ADPI-293, ADPI-294,
ADPI-295, ADPI-296, ADPI-297, ADPI-298, ADPI-299, ADPI-300, ADPI-301,
ADPI-302, ADPI-303, ADPI-304, ADPI-305, ADPI-306, ADPI-307.1, ADPI-307.2,
ADPI-308, ADPI-309, ADPI-311, ADPI-312, ADPI-313, ADPI-314, ADPI-315,
ADPI-316.1, ADPI-316.2, ADPI-317, ADPI-318, ADPI-319, ADPI-320.1, ADPI-

320.2, ADPI-321, ADPI-322, ADPI-323, ADPI-324, ADPI-325, ADPI-326, ADPI-
327, ADPI-328, ADPI-329, ADPI-330, ADPI-331, ADPI-332, ADPI-333.1, ADPI-
333.2, ADPI-334, ADPI-335, ADPI-336, ADPI-337, ADPI-338, ADPI-339, ADPI-
340, ADPI-341, ADPI-342, ADPI-343, ADPI-344, ADPI-345, ADPI-346, ADPI-347,
5 ADPI-348, ADPI-349, ADPI-350, ADPI-351, ADPI-352, ADPI-353, ADPI-354,
ADPI-355, ADPI-356, ADPI-357, ADPI-358, ADPI-359, ADPI-360, ADPI-361,
ADPI-362, ADPI-363, ADPI-364, ADPI-365.1, ADPI-365.2, ADPI-366, ADPI-367.,
ADPI-367.2, ADPI-368.1, ADPI-368.2, ADPI-369.1, ADPI-369.2, ADPI-370, ADPI-
371, ADPI-372, ADPI-373, ADPI-374, ADPI-375, ADPI-376, ADPI-377, ADPI-378,
10 ADPI-379, ADPI-380, ADPI-381, ADPI-382, ADPI-383, ADPI-384, ADPI-386,
ADPI-387, ADPI-388, ADPI-389, ADPI-390, ADPI-391, ADPI-392, ADPI-393,
ADPI-394, ADPI-395, ADPI-396, ADPI-397, ADPI-398, ADPI-399.1, ADPI-399.2,
ADPI-400, ADPI-401, ADPI-402, ADPI-403, ADPI-404.1, ADPI-404.2, ADPI-405,
ADPI-406, ADPI-407, ADPI-408, ADPI-409, ADPI-410, ADPI-411, ADPI-412.1,
15 ADPI-412.2, ADPI-413, ADPI-414, ADPI-415, ADPI-416, ADPI-417, ADPI-418,
ADPI-419, ADPI-420, ADPI-421, ADPI-422, ADPI-423, ADPI-424, ADPI-425,
ADPI-426.1, ADPI-426.2, ADPI-427, ADPI-428, ADPI-429, ADPI-430, ADPI-431,
ADPI-432, ADPI-433, ADPI-434, ADPI-435, ADPI-435, ADPI-436, ADPI-437,
ADPI-438, ADPI-439, ADPI-440.1, ADPI-440.2, ADPI-441, ADPI-442, ADPI-443,
20 ADPI-444, ADPI-445, ADPI-446, ADPI-447.1, ADPI-447.2, ADPI-448, ADPI-449,
ADPI-450.1, ADPI-450.2, ADPI-451, ADPI-452, ADPI-453, ADPI-454, ADPI-455,
ADPI-456, ADPI-457, ADPI-458, ADPI-459, ADPI-460, ADPI-461, ADPI-462,
ADPI-463, ADPI-464, ADPI-465, ADPI-466.1, ADPI-466.2, ADPI-467, ADPI-468,
ADPI-469.1, ADPI-469.2, ADPI-470, ADPI-471, ADPI-472, ADPI-473, ADPI-474,
25 ADPI-475, ADPI-476, ADPI-477, ADPI-478.1, ADPI-478.2, ADPI-479, ADPI-480,
ADPI-481, ADPI-482, ADPI-483, ADPI-484, ADPI-485, ADPI-486, ADPI-487,
ADPI-488, ADPI-489, ADPI-490, ADPI-491, ADPI-492, ADPI-493.1, ADPI-493.2,
ADPI-494, ADPI-495, ADPI-496, ADPI-497, ADPI-498, ADPI-499, ADPI-500,
ADPI-501, ADPI-502, ADPI-503, ADPI-504, ADPI-505, ADPI-506, ADPI-507,

ADPI-508, ADPI-509, ADPI-510, ADPI-511, ADPI-512, ADPI-513, ADPI-514,
ADPI-515, ADPI-516, ADPI-517, ADPI-518, ADPI-519, ADPI-520, ADPI-521,
ADPI-522, ADPI-523, ADPI-524, ADPI-525, ADPI-526.1, ADPI-526.2, ADPI-527,
ADPI-528, ADPI-529, ADPI-530.1, ADPI-530.2, ADPI-531, ADPI-532, ADPI-533,
5 ADPI-534, ADPI-535, ADPI-536, ADPI-537, ADPI-538, ADPI-539, ADPI-540,
ADPI-541, ADPI-542, ADPI-543, ADPI-544, ADPI-545, ADPI-546, ADPI-547.1,
ADPI-547.2, ADPI-547.3, ADPI-548.1, ADPI-548.2, ADPI-549 with an RNA
obtained from a biological sample from the subject or with cDNA copied from the
RNA wherein said contacting occurs under conditions that permit hybridization of the
10 probe to the nucleotide sequence if present.

44. The method as claimed in claim 43, wherein step (a) includes the step of
hybridizing the nucleotide sequence to a DNA array, wherein one or more members of
the array are the probes complementary to a plurality of nucleotide sequences
15 encoding distinct ADPIs.

45. A method of modulating the activity of one or more of the following
Alzheimer's Disease-Associated Protein Isoforms (ADPIs); ADPI-1, ADPI-3.1, ADPI-
3.2, ADPI-3.3, ADPI-5.3, ADPI-6, ADPI-8, ADPI-9, ADPI-10, ADPI-11, ADPI-12.1,
20 ADPI-12.2, ADPI-13, ADPI-15, ADPI-16, ADPI-22, ADPI-23, ADPI-24, ADPI-25.3,
ADPI-25.2, ADPI-26, ADPI-27, ADPI-29, ADPI-31, ADPI-33.1, ADPI-35, ADPI-37,
ADPI-39, ADPI-42, ADPI-54, ADPI-56, ADPI-61, ADPI-62, ADPI-66, ADPI-67,
ADPI-68, ADPI-70, ADPI-72, ADPI-77, ADPI-78.2, ADPI-78.3, ADPI-79, ADPI-
81.2, ADPI-82, ADPI-85, ADPI-87.1, ADPI-88, ADPI-90, ADPI-91.1, ADPI-91.2,
25 ADPI-92, ADPI-94, ADPI-95, ADPI-97, ADPI-98, ADPI-101, ADPI-102.1, ADPI-
103, ADPI-105.2, ADPI-105.1, ADPI-107, ADPI-108, ADPI-109, ADPI-111.1,
ADPI-112, ADPI-113, ADPI-115, ADPI-117.1, ADPI-119, ADPI-120, ADPI-121,
ADPI-124, ADPI-125, ADPI-126, ADPI-126, ADPI-126, ADPI-127, ADPI-128,
ADPI-129, ADPI-130, ADPI-131, ADPI-132, ADPI-133, ADPI-138, ADPI-139,

ADPI-140, ADPI-141, ADPI-142.2, ADPI-142.1, ADPI-143.1, ADPI-143.2, ADPI-
144, ADPI-146.2, ADPI-146.1, ADPI-148, ADPI-149.1, ADPI-150, ADPI-151.2,
ADPI-151.1, ADPI-152, ADPI-153.1, ADPI-153.2, ADPI-153.3, ADPI-154, ADPI-
155, ADPI-156.2, ADPI-156.1, ADPI-157, ADPI-159.1, ADPI-159.2, ADPI-160,
5 ADPI-162.2, ADPI-162.3, ADPI-162.1, ADPI-163, ADPI-165, ADPI-172, ADPI-
173.1, ADPI-173.2, ADPI-175.2, ADPI-175.1, ADPI-176, ADPI-182, ADPI-183,
ADPI-188.1, ADPI-189.2, ADPI-191, ADPI-193, ADPI-194.2, ADPI-196.2, ADPI-
196.3, ADPI-196.1, ADPI-196.4, ADPI-202, ADPI-204, ADPI-208, ADPI-209,
ADPI-216, ADPI-217, ADPI-220, ADPI-223, ADPI-228, ADPI-229, ADPI-230.1,
10 ADPI-230.2, ADPI-232.1, ADPI-232.2, ADPI-236.2, ADPI-236.3, ADPI-237.2,
ADPI-237.1, ADPI-240, ADPI-243, ADPI-245, ADPI-250, ADPI-251, ADPI-252.1,
ADPI-252.2, ADPI-253, ADPI-254, ADPI-255, ADPI-256, ADPI-257.1, ADPI-257.2,
ADPI-258, ADPI-259.1, ADPI-259.2, ADPI-260, ADPI-261, ADPI-262, ADPI-263,
ADPI-264, ADPI-265, ADPI-266, ADPI-267, ADPI-268.1, ADPI-268.2, ADPI-269,
15 ADPI-270, ADPI-271, ADPI-272, ADPI-273, ADPI-274, ADPI-275, ADPI-276,
ADPI-277, ADPI-278.1, ADPI-278.2, ADPI-279.1, ADPI-279.2, ADPI-280, ADPI-
281, ADPI-282, ADPI-283, ADPI-284, ADPI-285, ADPI-286, ADPI-287, ADPI-288,
ADPI-289, ADPI-290, ADPI-291, ADPI-292, ADPI-293, ADPI-294, ADPI-295,
ADPI-296, ADPI-297, ADPI-298, ADPI-299, ADPI-300, ADPI-301, ADPI-302,
20 ADPI-303, ADPI-304, ADPI-305, ADPI-306, ADPI-307.1, ADPI-307.2, ADPI-308,
ADPI-309, ADPI-311, ADPI-312, ADPI-313, ADPI-314, ADPI-315, ADPI-316.1,
ADPI-316.2, ADPI-317, ADPI-318, ADPI-319, ADPI-320.1, ADPI-320.2, ADPI-321,
ADPI-322, ADPI-323, ADPI-324, ADPI-325, ADPI-326, ADPI-327, ADPI-328,
ADPI-329, ADPI-330, ADPI-331, ADPI-332, ADPI-333.1, ADPI-333.2, ADPI-334,
25 ADPI-335, ADPI-336, ADPI-337, ADPI-338, ADPI-339, ADPI-340, ADPI-341,
ADPI-342, ADPI-343, ADPI-344, ADPI-345, ADPI-346, ADPI-347, ADPI-348,
ADPI-349, ADPI-350, ADPI-351, ADPI-352, ADPI-353, ADPI-354, ADPI-355,
ADPI-356, ADPI-357, ADPI-358, ADPI-359, ADPI-360, ADPI-361, ADPI-362,
ADPI-363, ADPI-364, ADPI-365.1, ADPI-365.2, ADPI-366, ADPI-367.1, ADPI-

367.2, ADPI-368.1, ADPI-368.2, ADPI-369.1, ADPI-369.2, ADPI-370, ADPI-371,
ADPI-372, ADPI-373, ADPI-374, ADPI-375, ADPI-376, ADPI-377, ADPI-378,
ADPI-379, ADPI-380, ADPI-381, ADPI-382, ADPI-383, ADPI-384, ADPI-386,
ADPI-387, ADPI-388, ADPI-389, ADPI-390, ADPI-391, ADPI-392, ADPI-393,
5 ADPI-394, ADPI-395, ADPI-396, ADPI-397, ADPI-398, ADPI-399.1, ADPI-399.2,
ADPI-400, ADPI-401, ADPI-402, ADPI-403, ADPI-404.1, ADPI-404.2, ADPI-405,
ADPI-406, ADPI-407, ADPI-408, ADPI-409, ADPI-410, ADPI-411, ADPI-412.1,
ADPI-412.2, ADPI-413, ADPI-414, ADPI-415, ADPI-416, ADPI-417, ADPI-418,
ADPI-419, ADPI-420, ADPI-421, ADPI-422, ADPI-423, ADPI-424, ADPI-425,
10 ADPI-426.1, ADPI-426.2, ADPI-427, ADPI-428, ADPI-429, ADPI-430, ADPI-431,
ADPI-432, ADPI-433, ADPI-434, ADPI-435, ADPI-435, ADPI-436, ADPI-437,
ADPI-438, ADPI-439, ADPI-440.1, ADPI-440.2, ADPI-441, ADPI-442, ADPI-443,
ADPI-444, ADPI-445, ADPI-446, ADPI-447.1, ADPI-447.2, ADPI-448, ADPI-449,
ADPI-450.1, ADPI-450.2, ADPI-451, ADPI-452, ADPI-453, ADPI-454, ADPI-455,
15 ADPI-456, ADPI-457, ADPI-458, ADPI-459, ADPI-460, ADPI-461, ADPI-462,
ADPI-463, ADPI-464, ADPI-465, ADPI-466.1, ADPI-466.2, ADPI-467, ADPI-468,
ADPI-469.1, ADPI-469.2, ADPI-470, ADPI-471, ADPI-472, ADPI-473, ADPI-474,
ADPI-475, ADPI-476, ADPI-477, ADPI-478.1, ADPI-478.2, ADPI-479, ADPI-480,
ADPI-481, ADPI-482, ADPI-483, ADPI-484, ADPI-485, ADPI-486, ADPI-487,
20 ADPI-488, ADPI-489, ADPI-490, ADPI-491, ADPI-492, ADPI-493.1, ADPI-493.2,
ADPI-494, ADPI-495, ADPI-496, ADPI-497, ADPI-498, ADPI-499, ADPI-500,
ADPI-501, ADPI-502, ADPI-503, ADPI-504, ADPI-505, ADPI-506, ADPI-507,
ADPI-508, ADPI-509, ADPI-510, ADPI-511, ADPI-512, ADPI-513, ADPI-514,
ADPI-515, ADPI-516, ADPI-517, ADPI-518, ADPI-519, ADPI-520, ADPI-521,
25 ADPI-522, ADPI-523, ADPI-524, ADPI-525, ADPI-526.1, ADPI-526.2, ADPI-527,
ADPI-528, ADPI-529, ADPI-530.1, ADPI-530.2, ADPI-531, ADPI-532, ADPI-533,
ADPI-534, ADPI-535, ADPI-536, ADPI-537, ADPI-538, ADPI-539, ADPI-540,
ADPI-541, ADPI-542, ADPI-543, ADPI-544, ADPI-545, ADPI-546, ADPI-547.1,
ADPI-547.2, ADPI-547.3, ADPI-548.1, ADPI-548.2, ADPI-549, comprising the step

of contacting a cell with an agent which specifically binds to one or more of the following Alzheimer's Disease-Associated Protein Isoforms (ADPIs): ADPI-1, ADPI-3.1, ADPI-3.2, ADPI-3.3, ADPI-5.3, ADPI-6, ADPI-8, ADPI-9, ADPI-10, ADPI-11, ADPI-12.1, ADPI-12.2, ADPI-13, ADPI-15, ADPI-16, ADPI-22, ADPI-23, ADPI-24, 5 ADPI-25.3, ADPI-25.2, ADPI-26, ADPI-27, ADPI-29, ADPI-31, ADPI-33.1, ADPI-35, ADPI-37, ADPI-39, ADPI-42, ADPI-54, ADPI-56, ADPI-61, ADPI-62, ADPI-66, ADPI-67, ADPI-68, ADPI-70, ADPI-72, ADPI-77, ADPI-78.2, ADPI-78.3, ADPI-79, ADPI-81.2, ADPI-82, ADPI-85, ADPI-87.1, ADPI-88, ADPI-90, ADPI-91.1, ADPI-91.2, ADPI-92, ADPI-94, ADPI-95, ADPI-97, ADPI-98, ADPI-101, ADPI-102.1, 10 ADPI-103, ADPI-105.2, ADPI-105.1, ADPI-107, ADPI-108, ADPI-109, ADPI-111.1, ADPI-112, ADPI-113, ADPI-115, ADPI-117.1, ADPI-119, ADPI-120, ADPI-121, ADPI-124, ADPI-125, ADPI-126, ADPI-126, ADPI-126, ADPI-127, ADPI-128, ADPI-129, ADPI-130, ADPI-121, ADPI-132, ADPI-133, ADPI-138, ADPI-139, 15 ADPI-140, ADPI-141, ADPI-142.2, ADPI-142.1, ADPI-143.1, ADPI-143.2, ADPI-144, ADPI-146.2, ADPI-146.1, ADPI-148, ADPI-149.1, ADPI-150, ADPI-151.2, ADPI-151.1, ADPI-152, ADPI-153.1, ADPI-153.2, ADPI-153.3, ADPI-154, ADPI-155, ADPI-156.2, ADPI-156.1, ADPI-157, ADPI-159.1, ADPI-159.2, ADPI-160, ADPI-162.2, ADPI-162.3, ADPI-162.1, ADPI-163, ADPI-165, ADPI-172, ADPI-173.1, ADPI-173.2, ADPI-175.2, ADPI-175.1, ADPI-176, ADPI-182, ADPI-183, 20 ADPI-188.1, ADPI-189.2, ADPI-191, ADPI-193, ADPI-194.2, ADPI-196.2, ADPI-196.3, ADPI-196.1, ADPI-196.4, ADPI-202, ADPI-204, ADPI-208, ADPI-209, ADPI-216, ADPI-217, ADPI-220, ADPI-223, ADPI-228, ADPI-229, ADPI-230.1, ADPI-230.2, ADPI-232.1, ADPI-232.2, ADPI-236.2, ADPI-236.3, ADPI-237.2, ADPI-237.1, ADPI-240, ADPI-243, ADPI-245, ADPI-250, ADPI-251, ADPI-252.1, 25 ADPI-252.2, ADPI-253, ADPI-254, ADPI-255, ADPI-256, ADPI-257.1, ADPI-257.2, ADPI-258, ADPI-259.1, ADPI-259.2, ADPI-260, ADPI-261, ADPI-262, ADPI-263, ADPI-264, ADPI-265, ADPI-266, ADPI-267, ADPI-268.1, ADPI-268.2, ADPI-269, ADPI-270, ADPI-271, ADPI-272, ADPI-273, ADPI-274, ADPI-275, ADPI-276, ADPI-277, ADPI-278.1, ADPI-278.2, ADPI-279.1, ADPI-279.2, ADPI-280, ADPI-

281, ADPI-282, ADPI-283, ADPI-284, ADPI-285, ADPI-286, ADPI-287, ADPI-288,
ADPI-289, ADPI-290, ADPI-291, ADPI-292, ADPI-293, ADPI-294, ADPI-295,
ADPI-296, ADPI-297, ADPI-298, ADPI-299, ADPI-300, ADPI-301, ADPI-302,
ADPI-303, ADPI-304, ADPI-305, ADPI-306, ADPI-307.1, ADPI-307.2, ADPI-308,
5 ADPI-309, ADPI-311, ADPI-312, ADPI-313, ADPI-314, ADPI-315, ADPI-316.1,
ADPI-316.2, ADPI-317, ADPI-318, ADPI-319, ADPI-320.1, ADPI-320.2, ADPI-321,
ADPI-322, ADPI-323, ADPI-324, ADPI-325, ADPI-326, ADPI-327, ADPI-328,
ADPI-329, ADPI-330, ADPI-331, ADPI-332, ADPI-333.1, ADPI-333.2, ADPI-334,
ADPI-335, ADPI-336, ADPI-337, ADPI-338, ADPI-339, ADPI-340, ADPI-341,
10 ADPI-342, ADPI-343, ADPI-344, ADPI-345, ADPI-346, ADPI-347, ADPI-348,
ADPI-349, ADPI-350, ADPI-351, ADPI-352, ADPI-353, ADPI-354, ADPI-355,
ADPI-356, ADPI-357, ADPI-358, ADPI-359, ADPI-360, ADPI-361, ADPI-362,
ADPI-363, ADPI-364, ADPI-365.1, ADPI-365.2, ADPI-366, ADPI-367.1, ADPI-
367.2, ADPI-368.1, ADPI-368.2, ADPI-369.1, ADPI-369.2, ADPI-370, ADPI-371,
15 ADPI-372, ADPI-373, ADPI-374, ADPI-375, ADPI-376, ADPI-377, ADPI-378,
ADPI-379, ADPI-380, ADPI-381, ADPI-382, ADPI-383, ADPI-384, ADPI-386,
ADPI-387, ADPI-388, ADPI-389, ADPI-390, ADPI-391, ADPI-392, ADPI-393,
ADPI-394, ADPI-395, ADPI-396, ADPI-397, ADPI-398, ADPI-399.1, ADPI-399.2,
ADPI-400, ADPI-401, ADPI-402, ADPI-403, ADPI-404.1, ADPI-404.2, ADPI-405,
20 ADPI-406, ADPI-407, ADPI-408, ADPI-409, ADPI-410, ADPI-411, ADPI-412.1,
ADPI-412.2, ADPI-413, ADPI-414, ADPI-415, ADPI-416, ADPI-417, ADPI-418,
ADPI-419, ADPI-420, ADPI-421, ADPI-422, ADPI-423, ADPI-424, ADPI-425,
ADPI-426.1, ADPI-426.2, ADPI-427, ADPI-428, ADPI-429, ADPI-430, ADPI-431,
ADPI-432, ADPI-433, ADPI-434, ADPI-435, ADPI-435, ADPI-436, ADPI-437,
25 ADPI-438, ADPI-439, ADPI-440.1, ADPI-440.2, ADPI-441, ADPI-442, ADPI-443,
ADPI-444, ADPI-445, ADPI-446, ADPI-447.1, ADPI-447.2, ADPI-448, ADPI-449,
ADPI-450.1, ADPI-450.2, ADPI-451, ADPI-452, ADPI-453, ADPI-454, ADPI-455,
ADPI-456, ADPI-457, ADPI-458, ADPI-459, ADPI-460, ADPI-461, ADPI-462,
ADPI-463, ADPI-464, ADPI-465, ADPI-466.1, ADPI-466.2, ADPI-467, ADPI-468,

- ADPI-469.1, ADPI-469.2, ADPI-470, ADPI-471, ADPI-472, ADPI-473, ADPI-474,
ADPI-475, ADPI-476, ADPI-477, ADPI-478.1, ADPI-478.2, ADPI-479, ADPI-480,
ADPI-481, ADPI-482, ADPI-483, ADPI-484, ADPI-485, ADPI-486, ADPI-487,
ADPI-488, ADPI-489, ADPI-490, ADPI-491, ADPI-492, ADPI-493.1, ADPI-493.2,
5 ADPI-494, ADPI-495, ADPI-496, ADPI-497, ADPI-498, ADPI-499, ADPI-500,
ADPI-501, ADPI-502, ADPI-503, ADPI-504, ADPI-505, ADPI-506, ADPI-507,
ADPI-508, ADPI-509, ADPI-510, ADPI-511, ADPI-512, ADPI-513, ADPI-514,
ADPI-515, ADPI-516, ADPI-517, ADPI-518, ADPI-519, ADPI-520, ADPI-521,
ADPI-522, ADPI-523, ADPI-524, ADPI-525, ADPI-526.1, ADPI-526.2, ADPI-527,
10 ADPI-528, ADPI-529, ADPI-530.1, ADPI-530.2, ADPI-531, ADPI-532, ADPI-533,
ADPI-534, ADPI-535, ADPI-536, ADPI-537, ADPI-538, ADPI-539, ADPI-540,
ADPI-541, ADPI-542, ADPI-543, ADPI-544, ADPI-545, ADPI-546, ADPI-547.1,
ADPI-547.2, ADPI-547.3, ADPI-548.1, ADPI-548.2, ADPI-549, whereby the activity
of the respective ADPI is modulated.
- 15 46. An agent that modulates the activity of one or more of the following
Alzheimer's Disease-Associated Protein Isoforms (ADPIs): ADPI-1, ADPI-3.1, ADPI-
3.2, ADPI-3.3, ADPI-5.3, ADPI-6, ADPI-8, ADPI-9, ADPI-10, ADPI-11, ADPI-12.1,
ADPI-12.2, ADPI-13, ADPI-15, ADPI-16, ADPI-22, ADPI-23, ADPI-24, ADPI-25.3,
20 ADPI-25.2, ADPI-26, ADPI-27, ADPI-29, ADPI-31, ADPI-33.1, ADPI-35, ADPI-37,
ADPI-39, ADPI-42, ADPI-54, ADPI-56, ADPI-61, ADPI-62, ADPI-66, ADPI-67,
ADPI-68, ADPI-70, ADPI-72, ADPI-77, ADPI-78.2, ADPI-78.3, ADPI-79, ADPI-
81.2, ADPI-82, ADPI-85, ADPI-87.1, ADPI-88, ADPI-90, ADPI-91.1, ADPI-91.2,
ADPI-92, ADPI-94, ADPI-95, ADPI-97, ADPI-98, ADPI-101, ADPI-102.1, ADPI-
25 103, ADPI-105.2, ADPI-105.1, ADPI-107, ADPI-108, ADPI-109, ADPI-111.1,
ADPI-112, ADPI-113, ADPI-115, ADPI-117.1, ADPI-119, ADPI-120, ADPI-121,
ADPI-124, ADPI-125, ADPI-126, ADPI-126, ADPI-126, ADPI-127, ADPI-128,
ADPI-129, ADPI-130, ADPI-131, ADPI-132, ADPI-133, ADPI-138, ADPI-139,
ADPI-140, ADPI-141, ADPI-142.2, ADPI-142.1, ADPI-143.1, ADPI-143.2, ADPI-

144, ADPI-146.2, ADPI-146.1, ADPI-148, ADPI-149.1, ADPI-150, ADPI-151.2,
ADPI-151.1, ADPI-152, ADPI-153.1, ADPI-153.2, ADPI-153.3, ADPI-154, ADPI-
155, ADPI-156.2, ADPI-156.1, ADPI-157, ADPI-159.1, ADPI-159.2, ADPI-160,
ADPI-162.2, ADPI-162.3, ADPI-162.1, ADPI-163, ADPI-165, ADPI-172, ADPI-
5 173.1, ADPI-173.2, ADPI-175.2, ADPI-175.1, ADPI-176, ADPI-182, ADPI-183,
ADPI-188.1, ADPI-189.2, ADPI-191, ADPI-193, ADPI-194.2, ADPI-196.2, ADPI-
196.3, ADPI-196.1, ADPI-196.4, ADPI-202, ADPI-204, ADPI-208, ADPI-209,
ADPI-216, ADPI-217, ADPI-220, ADPI-223, ADPI-228, ADPI-229, ADPI-230.1,
ADPI-230.2, ADPI-232.1, ADPI-232.2, ADPI-236.2, ADPI-236.3, ADPI-237.2,
10 ADPI-237.1, ADPI-240, ADPI-243, ADPI-245, ADPI-250, ADPI-251, ADPI-252.1,
ADPI-252.2, ADPI-253, ADPI-254, ADPI-255, ADPI-256, ADPI-257.1, ADPI-257.2,
ADPI-258, ADPI-259.1, ADPI-259.2, ADPI-260, ADPI-261, ADPI-262, ADPI-263,
ADPI-264, ADPI-265, ADPI-266, ADPI-267, ADPI-268.1, ADPI-268.2, ADPI-269,
ADPI-270, ADPI-271, ADPI-272, ADPI-273, ADPI-274, ADPI-275, ADPI-276,
15 ADPI-277, ADPI-278.1, ADPI-278.2, ADPI-279.1, ADPI-279.2, ADPI-280, ADPI-
281, ADPI-282, ADPI-283, ADPI-284, ADPI-285, ADPI-286, ADPI-287, ADPI-288,
ADPI-289, ADPI-290, ADPI-291, ADPI-292, ADPI-293, ADPI-294, ADPI-295,
ADPI-296, ADPI-297, ADPI-298, ADPI-299, ADPI-300, ADPI-301, ADPI-302,
ADPI-303, ADPI-304, ADPI-305, ADPI-306, ADPI-307.1, ADPI-307.2, ADPI-308,
20 ADPI-309, ADPI-311, ADPI-312, ADPI-313, ADPI-314, ADPI-315, ADPI-316.1,
ADPI-316.2, ADPI-317, ADPI-318, ADPI-319, ADPI-320.1, ADPI-320.2, ADPI-321,
ADPI-322, ADPI-323, ADPI-324, ADPI-325, ADPI-326, ADPI-327, ADPI-328,
ADPI-329, ADPI-330, ADPI-331, ADPI-332, ADPI-333.1, ADPI-333.2, ADPI-334,
ADPI-335, ADPI-336, ADPI-337, ADPI-338, ADPI-339, ADPI-340, ADPI-341,
25 ADPI-342, ADPI-343, ADPI-344, ADPI-345, ADPI-346, ADPI-347, ADPI-348,
ADPI-349, ADPI-350, ADPI-351, ADPI-352, ADPI-353, ADPI-354, ADPI-355,
ADPI-356, ADPI-357, ADPI-358, ADPI-359, ADPI-360, ADPI-361, ADPI-362,
ADPI-363, ADPI-364, ADPI-365.1, ADPI-365.2, ADPI-366, ADPI-367.1, ADPI-
367.2, ADPI-368.1, ADPI-368.2, ADPI-369.1, ADPI-369.2, ADPI-370, ADPI-371,

ADPI-372, ADPI-373, ADPI-374, ADPI-375, ADPI-376, ADPI-377, ADPI-378,
ADPI-379, ADPI-380, ADPI-381, ADPI-382, ADPI-383, ADPI-384, ADPI-386,
ADPI-387, ADPI-388, ADPI-389, ADPI-390, ADPI-391, ADPI-392, ADPI-393,
ADPI-394, ADPI-395, ADPI-396, ADPI-397, ADPI-398, ADPI-399.1, ADPI-399.2,
5 ADPI-400, ADPI-401, ADPI-402, ADPI-403, ADPI-404.1, ADPI-404.2, ADPI-405,
ADPI-406, ADPI-407, ADPI-408, ADPI-409, ADPI-410, ADPI-411, ADPI-412.1,
ADPI-412.2, ADPI-413, ADPI-414, ADPI-415, ADPI-416, ADPI-417, ADPI-418,
ADPI-419, ADPI-420, ADPI-421, ADPI-422, ADPI-423, ADPI-424, ADPI-425,
10 ADPI-426.1, ADPI-426.2, ADPI-427, ADPI-428, ADPI-429, ADPI-430, ADPI-431,
ADPI-432, ADPI-433, ADPI-434, ADPI-435, ADPI-435, ADPI-436, ADPI-437,
ADPI-438, ADPI-439, ADPI-440.1, ADPI-440.2, ADPI-441, ADPI-442, ADPI-443,
ADPI-444, ADPI-445, ADPI-446, ADPI-447.1, ADPI-447.2, ADPI-448, ADPI-449,
ADPI-450.1, ADPI-450.2, ADPI-451, ADPI-452, ADPI-453, ADPI-454, ADPI-455,
ADPI-456, ADPI-457, ADPI-458, ADPI-459, ADPI-460, ADPI-461, ADPI-462,
15 ADPI-463, ADPI-464, ADPI-465, ADPI-466.1, ADPI-466.2, ADPI-467, ADPI-468,
ADPI-469.1, ADPI-469.2, ADPI-470, ADPI-471, ADPI-472, ADPI-473, ADPI-474,
ADPI-475, ADPI-476, ADPI-477, ADPI-478.1, ADPI-478.2, ADPI-479, ADPI-480,
ADPI-481, ADPI-482, ADPI-483, ADPI-484, ADPI-485, ADPI-486, ADPI-487,
ADPI-488, ADPI-489, ADPI-490, ADPI-491, ADPI-492, ADPI-493.1, ADPI-493.2,
20 ADPI-494, ADPI-495, ADPI-496, ADPI-497, ADPI-498, ADPI-499, ADPI-500,
ADPI-501, ADPI-502, ADPI-503, ADPI-504, ADPI-505, ADPI-506, ADPI-507,
ADPI-508, ADPI-509, ADPI-510, ADPI-511, ADPI-512, ADPI-513, ADPI-514,
ADPI-515, ADPI-516, ADPI-517, ADPI-518, ADPI-519, ADPI-520, ADPI-521,
ADPI-522, ADPI-523, ADPI-524, ADPI-525, ADPI-526.1, ADPI-526.2, ADPI-527,
25 ADPI-528, ADPI-529, ADPI-530.1, ADPI-530.2, ADPI-531, ADPI-532, ADPI-533,
ADPI-534, ADPI-535, ADPI-536, ADPI-537, ADPI-538, ADPI-539, ADPI-540,
ADPI-541, ADPI-542, ADPI-543, ADPI-544, ADPI-545, ADPI-546, ADPI-547.1,
ADPI-547.2, ADPI-547.3, ADPI-548.1, ADPI-548.2, ADPI-549, wherein said agent is
identified by the method of any of claims 27-41.

47. A pharmaceutical composition, comprising the agent of claim 46 and a pharmaceutically acceptable carrier.

5 48. The use of an agent of claim 46 in the manufacture of a medicament for the treatment of Alzheimer's disease.

49. A method of treating or preventing Alzheimer's disease comprising administering to a subject in need of such treatment or prevention a therapeutically effective dose of an agent that modulates the activity of one or more of the following Alzheimer's Disease-Associated Protein Isoforms (ADPIs): ADPI-1, ADPI-3.1, ADPI-3.2, ADPI-3.3, ADPI-5.3, ADPI-6, ADPI-8, ADPI-9, ADPI-10, ADPI-11, ADPI-12.1, ADPI-12.2, ADPI-13, ADPI-15, ADPI-16, ADPI-22, ADPI-23, ADPI-24, ADPI-25.3, ADPI-25.2, ADPI-26, ADPI-27, ADPI-29, ADPI-31, ADPI-33.1, ADPI-35, ADPI-37, 15 ADPI-39, ADPI-42, ADPI-54, ADPI-56, ADPI-61, ADPI-62, ADPI-66, ADPI-67, ADPI-68, ADPI-70, ADPI-72, ADPI-77, ADPI-78.2, ADPI-78.3, ADPI-79, ADPI-81.2, ADPI-82, ADPI-85, ADPI-87.1, ADPI-88, ADPI-90, ADPI-91.1, ADPI-91.2, ADPI-92, ADPI-94, ADPI-95, ADPI-97, ADPI-98, ADPI-101, ADPI-102.1, ADPI-103, ADPI-105.2, ADPI-105.1, ADPI-107, ADPI-108, ADPI-109, ADPI-111.1, 20 ADPI-112, ADPI-113, ADPI-115, ADPI-117.1, ADPI-119, ADPI-120, ADPI-121, ADPI-124, ADPI-125, ADPI-126, ADPI-126, ADPI-126, ADPI-127, ADPI-128, ADPI-129, ADPI-130, ADPI-131, ADPI-132, ADPI-133, ADPI-138, ADPI-139, ADPI-140, ADPI-141, ADPI-142.2, ADPI-142.1, ADPI-143.1, ADPI-143.2, ADPI-144, ADPI-146.2, ADPI-146.1, ADPI-148, ADPI-149.1, ADPI-150, ADPI-151.2, 25 ADPI-151.1, ADPI-152, ADPI-153.1, ADPI-153.2, ADPI-153.3, ADPI-154, ADPI-155, ADPI-156.2, ADPI-156.1, ADPI-157, ADPI-159.1, ADPI-159.2, ADPI-160, ADPI-162.2, ADPI-162.3, ADPI-162.1, ADPI-163, ADPI-165, ADPI-172, ADPI-173.1, ADPI-173.2, ADPI-175.2, ADPI-175.1, ADPI-176, ADPI-182, ADPI-183, ADPI-188.1, ADPI-189.2, ADPI-191, ADPI-193, ADPI-194.2, ADPI-196.2, ADPI-

196.3, ADPI-196.1, ADPI-196.4, ADPI-202, ADPI-204, ADPI-208, ADPI-209,
ADPI-216, ADPI-217, ADPI-220, ADPI-223, ADPI-228, ADPI-229, ADPI-230.1,
ADPI-230.2, ADPI-232.1, ADPI-232.2, ADPI-236.2, ADPI-236.3, ADPI-237.2,
ADPI-237.1, ADPI-240, ADPI-243, ADPI-245, ADPI-250, ADPI-251, ADPI-252.1,
5 ADPI-252.2, ADPI-253, ADPI-254, ADPI-255, ADPI-256, ADPI-257.1, ADPI-257.2,
ADPI-258, ADPI-259.1, ADPI-259.2, ADPI-260, ADPI-261, ADPI-262, ADPI-263,
ADPI-264, ADPI-265, ADPI-266, ADPI-267, ADPI-268.1, ADPI-268.2, ADPI-269,
ADPI-270, ADPI-271, ADPI-272, ADPI-273, ADPI-274, ADPI-275, ADPI-276,
10 ADPI-277, ADPI-278.1, ADPI-278.2, ADPI-279.1, ADPI-279.2, ADPI-280, ADPI-
281, ADPI-282, ADPI-283, ADPI-284, ADPI-285, ADPI-286, ADPI-287, ADPI-288,
ADPI-289, ADPI-290, ADPI-291, ADPI-292, ADPI-293, ADPI-294, ADPI-295,
ADPI-296, ADPI-297, ADPI-298, ADPI-299, ADPI-300, ADPI-301, ADPI-302,
ADPI-303, ADPI-304, ADPI-305, ADPI-306, ADPI-307.1, ADPI-307.2, ADPI-308,
ADPI-309, ADPI-311, ADPI-312, ADPI-313, ADPI-314, ADPI-315, ADPI-316.1,
15 ADPI-316.2, ADPI-317, ADPI-318, ADPI-319, ADPI-320.1, ADPI-320.2, ADPI-321,
ADPI-322, ADPI-323, ADPI-324, ADPI-325, ADPI-326, ADPI-327, ADPI-328,
ADPI-329, ADPI-330, ADPI-331, ADPI-332, ADPI-333.1, ADPI-333.2, ADPI-334,
ADPI-335, ADPI-336, ADPI-337, ADPI-338, ADPI-339, ADPI-340, ADPI-341,
ADPI-342, ADPI-343, ADPI-344, ADPI-345, ADPI-346, ADPI-347, ADPI-348,
20 ADPI-349, ADPI-350, ADPI-351, ADPI-352, ADPI-353, ADPI-354, ADPI-355,
ADPI-356, ADPI-357, ADPI-358, ADPI-359, ADPI-360, ADPI-361, ADPI-362,
ADPI-363, ADPI-364, ADPI-365.1, ADPI-365.2, ADPI-366, ADPI-367.1, ADPI-
367.2, ADPI-368.1, ADPI-368.2, ADPI-369.1, ADPI-369.2, ADPI-370, ADPI-371,
ADPI-372, ADPI-373, ADPI-374, ADPI-375, ADPI-376, ADPI-377, ADPI-378,
25 ADPI-379, ADPI-380, ADPI-381, ADPI-382, ADPI-383, ADPI-384, ADPI-386,
ADPI-387, ADPI-388, ADPI-389, ADPI-390, ADPI-391, ADPI-392, ADPI-393,
ADPI-394, ADPI-395, ADPI-396, ADPI-397, ADPI-398, ADPI-399.1, ADPI-399.2,
ADPI-400, ADPI-401, ADPI-402, ADPI-403, ADPI-404.1, ADPI-404.2, ADPI-405,
ADPI-406, ADPI-407, ADPI-408, ADPI-409, ADPI-410, ADPI-411, ADPI-412.1,

- ADPI-412.2, ADPI-413, ADPI-414, ADPI-415, ADPI-416, ADPI-417, ADPI-418,
ADPI-419, ADPI-420, ADPI-421, ADPI-422, ADPI-423, ADPI-424, ADPI-425,
ADPI-426.1, ADPI-426.2, ADPI-427, ADPI-428, ADPI-429, ADPI-430, ADPI-431,
ADPI-432, ADPI-433, ADPI-434, ADPI-435, ADPI-435, ADPI-436, ADPI-437,
5 ADPI-438, ADPI-439, ADPI-440.1, ADPI-440.2, ADPI-441, ADPI-442, ADPI-443,
ADPI-444, ADPI-445, ADPI-446, ADPI-447.1, ADPI-447.2, ADPI-448, ADPI-449,
ADPI-450.1, ADPI-450.2, ADPI-451, ADPI-452, ADPI-453, ADPI-454, ADPI-455,
ADPI-456, ADPI-457, ADPI-458, ADPI-459, ADPI-460, ADPI-461, ADPI-462,
ADPI-463, ADPI-464, ADPI-465, ADPI-466.1, ADPI-466.2, ADPI-467, ADPI-468,
10 ADPI-469.1, ADPI-469.2, ADPI-470, ADPI-471, ADPI-472, ADPI-473, ADPI-474,
ADPI-475, ADPI-476, ADPI-477, ADPI-478.1, ADPI-478.2, ADPI-479, ADPI-480,
ADPI-481, ADPI-482, ADPI-483, ADPI-484, ADPI-485, ADPI-486, ADPI-487,
ADPI-488, ADPI-489, ADPI-490, ADPI-491, ADPI-492, ADPI-493.1, ADPI-493.2,
15 ADPI-494, ADPI-495, ADPI-496, ADPI-497, ADPI-498, ADPI-499, ADPI-500,
ADPI-501, ADPI-502, ADPI-503, ADPI-504, ADPI-505, ADPI-506, ADPI-507,
ADPI-508, ADPI-509, ADPI-510, ADPI-511, ADPI-512, ADPI-513, ADPI-514,
ADPI-515, ADPI-516, ADPI-517, ADPI-518, ADPI-519, ADPI-520, ADPI-521,
ADPI-522, ADPI-523, ADPI-524, ADPI-525, ADPI-526.1, ADPI-526.2, ADPI-527,
ADPI-528, ADPI-529, ADPI-530.1, ADPI-530.2, ADPI-531, ADPI-532, ADPI-533,
20 ADPI-534, ADPI-535, ADPI-536, ADPI-537, ADPI-538, ADPI-539, ADPI-540,
ADPI-541, ADPI-542, ADPI-543, ADPI-544, ADPI-545, ADPI-546, ADPI-547.1,
ADPI-547.2, ADPI-547.3, ADPI-548.1, ADPI-548.2, ADPI-549, whereby the
symptoms of Alzheimer's disease are ameliorated.
- 25 50. A method for identifying targets for therapeutic modulation of Alzheimer's
disease wherein the activity of one or more of the following Alzheimer's
Disease-Associated Protein Isoforms (ADPIs): ADPI-1, ADPI-3.1, ADPI-3.2, ADPI-
3.3, ADPI-5.3, ADPI-6, ADPI-8, ADPI-9, ADPI-10, ADPI-11, ADPI-12.1, ADPI-
12.2, ADPI-13, ADPI-15, ADPI-16, ADPI-22, ADPI-23, ADPI-24, ADPI-25.3, ADPI-

25.2, ADPI-26, ADPI-27, ADPI-29, ADPI-31, ADPI-33.1, ADPI-35, ADPI-37, ADPI-
39, ADPI-42, ADPI-54, ADPI-56, ADPI-61, ADPI-62, ADPI-66, ADPI-67, ADPI-68,
ADPI-70, ADPI-72, ADPI-77, ADPI-78.2, ADPI-78.3, ADPI-79, ADPI-81.2, ADPI-
82, ADPI-85, ADPI-87.1, ADPI-88, ADPI-90, ADPI-91.1, ADPI-91.2, ADPI-92,
5 ADPI-94, ADPI-95, ADPI-97, ADPI-98, ADPI-101, ADPI-102.1, ADPI-103, ADPI-
105.2, ADPI-105.1, ADPI-107, ADPI-108, ADPI-109, ADPI-111.1, ADPI-112,
ADPI-113, ADPI-115, ADPI-117.1, ADPI-119, ADPI-120, ADPI-121, ADPI-124,
ADPI-125, ADPI-126, ADPI-126, ADPI-126, ADPI-127, ADPI-128, ADPI-129,
ADPI-130, ADPI-131, ADPI-132, ADPI-133, ADPI-138, ADPI-139, ADPI-140,
10 ADPI-141, ADPI-142.2, ADPI-142.1, ADPI-143.1, ADPI-143.2, ADPI-144, ADPI-
146.2, ADPI-146.1, ADPI-148, ADPI-149.1, ADPI-150, ADPI-151.2, ADPI-151.1,
ADPI-152, ADPI-153.1, ADPI-153.2, ADPI-153.3, ADPI-154, ADPI-155, ADPI-
156.2, ADPI-156.1, ADPI-157, ADPI-159.1, ADPI-159.2, ADPI-160, ADPI-162.2,
ADPI-162.3, ADPI-162.1, ADPI-163, ADPI-165, ADPI-172, ADPI-173.1, ADPI-
15 ADPI-173.2, ADPI-175.2, ADPI-175.1, ADPI-176, ADPI-182, ADPI-183, ADPI-188.1,
ADPI-189.2, ADPI-191, ADPI-193, ADPI-194.2, ADPI-196.2, ADPI-196.3, ADPI-
196.1, ADPI-196.4, ADPI-202, ADPI-204, ADPI-208, ADPI-209, ADPI-216, ADPI-
217, ADPI-220, ADPI-223, ADPI-228, ADPI-229, ADPI-230.1, ADPI-230.2, ADPI-
232.1, ADPI-232.2, ADPI-236.2, ADPI-236.3, ADPI-237.2, ADPI-237.1, ADPI-240,
20 ADPI-243, ADPI-245, ADPI-250, ADPI-251, ADPI-252.1, ADPI-252.2, ADPI-253,
ADPI-254, ADPI-255, ADPI-256, ADPI-257.1, ADPI-257.2, ADPI-258, ADPI-259.1,
ADPI-259.2, ADPI-260, ADPI-261, ADPI-262, ADPI-263, ADPI-264, ADPI-265,
ADPI-266, ADPI-267, ADPI-268.1, ADPI-268.2, ADPI-269, ADPI-270, ADPI-271,
ADPI-272, ADPI-273, ADPI-274, ADPI-275, ADPI-276, ADPI-277, ADPI-278.1,
25 ADPI-278.2, ADPI-279.1, ADPI-279.2, ADPI-280, ADPI-281, ADPI-282, ADPI-283,
ADPI-284, ADPI-285, ADPI-286, ADPI-287, ADPI-288, ADPI-289, ADPI-290,
ADPI-291, ADPI-292, ADPI-293, ADPI-294, ADPI-295, ADPI-296, ADPI-297,
ADPI-298, ADPI-299, ADPI-300, ADPI-301, ADPI-302, ADPI-303, ADPI-304,
ADPI-305, ADPI-306, ADPI-307.1, ADPI-307.2, ADPI-308, ADPI-309, ADPI-311,

ADPI-312, ADPI-313, ADPI-314, ADPI-315, ADPI-316.1, ADPI-316.2, ADPI-317,
ADPI-318, ADPI-319, ADPI-320.1, ADPI-320.2, ADPI-321, ADPI-322, ADPI-323,
ADPI-324, ADPI-325, ADPI-326, ADPI-327, ADPI-328, ADPI-329, ADPI-330,
ADPI-331, ADPI-332, ADPI-333.1, ADPI-333.2, ADPI-334, ADPI-335, ADPI-336,
5 ADPI-337, ADPI-338, ADPI-339, ADPI-340, ADPI-341, ADPI-342, ADPI-343,
ADPI-344, ADPI-345, ADPI-346, ADPI-347, ADPI-348, ADPI-349, ADPI-350,
ADPI-351, ADPI-352, ADPI-353, ADPI-354, ADPI-355, ADPI-356, ADPI-357,
ADPI-358, ADPI-359, ADPI-360, ADPI-361, ADPI-362, ADPI-363, ADPI-364,
ADPI-365.1, ADPI-365.2, ADPI-366, ADPI-367.1, ADPI-367.2, ADPI-368.1, ADPI-
10 368.2, ADPI-369.1, ADPI-369.2, ADPI-370, ADPI-371, ADPI-372, ADPI-373,
ADPI-374, ADPI-375, ADPI-376, ADPI-377, ADPI-378, ADPI-379, ADPI-380,
ADPI-381, ADPI-382, ADPI-383, ADPI-384, ADPI-386, ADPI-387, ADPI-388,
ADPI-389, ADPI-390, ADPI-391, ADPI-392, ADPI-393, ADPI-394, ADPI-395,
ADPI-396, ADPI-397, ADPI-398, ADPI-399.1, ADPI-399.2, ADPI-400, ADPI-401,
15 ADPI-402, ADPI-403, ADPI-404.1, ADPI-404.2, ADPI-405, ADPI-406, ADPI-407,
ADPI-408, ADPI-409, ADPI-410, ADPI-411, ADPI-412.1, ADPI-412.2, ADPI-413,
ADPI-414, ADPI-415, ADPI-416, ADPI-417, ADPI-418, ADPI-419, ADPI-420,
ADPI-421, ADPI-422, ADPI-423, ADPI-424, ADPI-425, ADPI-426.1, ADPI-426.2,
ADPI-427, ADPI-428, ADPI-429, ADPI-430, ADPI-431, ADPI-432, ADPI-433,
20 ADPI-434, ADPI-435, ADPI-435, ADPI-436, ADPI-437, ADPI-438, ADPI-439,
ADPI-440.1, ADPI-440.2, ADPI-441, ADPI-442, ADPI-443, ADPI-444, ADPI-445,
ADPI-446, ADPI-447.1, ADPI-447.2, ADPI-448, ADPI-449, ADPI-450.1, ADPI-
450.2, ADPI-451, ADPI-452, ADPI-453, ADPI-454, ADPI-455, ADPI-456, ADPI-
457, ADPI-458, ADPI-459, ADPI-460, ADPI-461, ADPI-462, ADPI-463, ADPI-464,
25 ADPI-465, ADPI-466.1, ADPI-466.2, ADPI-467, ADPI-468, ADPI-469.1, ADPI-
469.2, ADPI-470, ADPI-471, ADPI-472, ADPI-473, ADPI-474, ADPI-475, ADPI-
476, ADPI-477, ADPI-478.1, ADPI-478.2, ADPI-479, ADPI-480, ADPI-481, ADPI-
482, ADPI-483, ADPI-484, ADPI-485, ADPI-486, ADPI-487, ADPI-488, ADPI-489,
ADPI-490, ADPI-491, ADPI-492, ADPI-493.1, ADPI-493.2, ADPI-494, ADPI-495,

ADPI-496, ADPI-497, ADPI-498, ADPI-499, ADPI-500, ADPI-501, ADPI-502,
ADPI-503, ADPI-504, ADPI-505, ADPI-506, ADPI-507, ADPI-508, ADPI-509,
ADPI-510, ADPI-511, ADPI-512, ADPI-513, ADPI-514, ADPI-515, ADPI-516,
ADPI-517, ADPI-518, ADPI-519, ADPI-520, ADPI-521, ADPI-522, ADPI-523,
5 ADPI-524, ADPI-525, ADPI-526.1, ADPI-526.2, ADPI-527, ADPI-528, ADPI-529,
ADPI-530.1, ADPI-530.2, ADPI-531, ADPI-532, ADPI-533, ADPI-534, ADPI-535,
ADPI-536, ADPI-537, ADPI-538, ADPI-539, ADPI-540, ADPI-541, ADPI-542,
ADPI-543, ADPI-544, ADPI-545, ADPI-546, ADPI-547.1, ADPI-547.2, ADPI-547.3,
ADPI-548.1, ADPI-548.2, ADPI-549 is utilized as a measure to determine whether a
10 candidate target is effective for modulation of Alzheimer's disease.

51. A method of screening for agents effective for the treatment of Alzheimer's
disease comprising:
- (a) contacting ERK-2 with a first population of cells expressing a receptor
15 for ERK-2 in the presence of a candidate agent;
 - (b) contacting ERK-2 with a second population of cells expressing said
receptor in the presence of a control agent;
 - (c) comparing the binding of said ERK-2 to the first and second
populations of cells, or comparing the level of induction of a cellular second
20 messenger in the first and second populations of cells, or comparing the level of an
ERK-2 mediated activity in the first and second population of cells; and
 - (d) testing for the ability of agents able to modulate the activity of ERK-2
to decrease clinical features of Alzheimer's disease in a Alzheimer's disease model
system.

25

52. The method as claimed in claim 51, wherein the ERK-2 and/or the receptor are
isolated and recombinantly produced.

53. The method as claimed in claim 51 or claim 52, wherein the cells are cerebellar

granule cells and the ERK-2 mediated activity is protection of immature cerebellar cells from apoptotic death.

54. The method as claimed in claim 53, wherein the cells are retinoblastoma or
5 cerebellar granule cells and the binding of ERK-2 to the cells is compared.

55. The method as claimed in any one of claims 51 to 54, wherein the candidate agent comprises at least 10 consecutive amino acids of ERK-2.

10 56. A method of screening for agents that modulate the binding of ERK-2 to a binding partner comprising:

(a) contacting ERK-2 with the ERK-2 binding partner in the presence of a candidate agent;

15 (b) contacting ERK-2 with a ERK-2 binding partner in the presence of a control agent; and

(c) comparing the binding of said ERK-2 to the binding partner in step (a) to the binding of said ERK-2 to the binding partner in step (b).

57. The method of claim 56, wherein the binding partner is an isolated 41 kDa
20 ERK-2 receptor.

1/4

FIGURE 1

Figure 2a

1 gtccgggacc atgtctggag aactaccacc AACACATTAAC atcaaggaac
 51 ctcgatggga tcaaaggact ttcatggac gagccaatca ttttttca
 101 gtaactgacc ccaggaacat tctgttaacc AACGAACAAC tcgagagtgc
 151 gagaaaaata gtacatgatt acaggcaagg aattgttctt cctggcttta
 201 cagaaaatqa attgtggaga gcaaagtaca totatgattc agctttcat
 251 cctgacactg gtgagaagat gatTTTgata ggaagaatgt cagcccaggt
 301 tccccatgaac atgaccatca caggttgtat gatgacgttt tacaggacta
 351 cgccggctgt gctgttctgg cagtggatta accagtccctt caatgccgtc
 401 gtcaattaca ccaacagaag tggagacgca cccctcactg tcaatgagtt
 451 gggAACAGCT tacgtttctg caacaactgg tgccgttagca acagotctag
 501 gactcaatgc attgaccaag catgtctcac cactgatagg acgtttitgtt
 551 cccttgcgtc ccgttagctgc tgctaattgc attaatattc cattaatgag
 601 gcaaaggaa ctcaaagttg gcattccgt cacggatgag aatgggaacc
 651 gcttggggaa gtcggcgaac gctgcgaaac aagccatcac gcaagttgtc
 701 gtgtccagga ttctcatggc agccctgac atggccatcc ctccattcat
 751 tatgaacact ttggaaaaaga aagccctttt gaagaggttc ccatggatga
 801 gtgcacccat tcaagttggg tttagttggct tctgtttggc gtttgctaca
 851 cccctgtgtt gtgcctgtt tccctcagaaa agttccatgt ctgtgacaag
 901 cttggaggcc gagttgcaag ctaagatcca agagagccat cctgaattgc
 951 gacgcgtgtt cttcaataag ggattgtaaa gcagggagga aacctctgca
 1001 gctcattctg ccactgcaaa gctggtgttag ccattgtggc gagaAAAATC
 1051 ctgttcaacc tgggttctcc cagttacgga aagggcgaat tcgcggccgc
 1101 taattcgatt cgccctatacg nagtnngtaac antc

Figure 2b

1 MSGELPPNIN IKEPRWDQST FIGRANHFFT VTDPRNILLIT NEOLESARKI
 51 VHDYRQGIVP PGLTENEILWR AKYIYDSAFH PDTGEKMLI GRMSAQVPMN
 101 MTITGCMMTF YRTTPAVLFW QWINQSFNAV VNYTNRSGDA PLTVNELGTA
 151 YVSATTGAVA TALGLNALTK HVSPPLIGRFV PFAAVAAANC INIPLMRQRE
 201 LKVGIPTDE NGNRLGESAN AAKOAITOVV VSRIILMAAPG MAIPFFINNT
 251 LEKK AFLKRF PWMSAPIQVG LVGPCLVFAT PLCCALFPQK SSMSVTSLEA
 301 ELQAKIQESH PELRRVYFNK GL*

FIGURE 3a

1 gtccgggacc atgtctggag aactaccacc aaacatthaac atcaaggaac
 51 ctcgatggga tcaaaggact ttcatggac gagcaatca ttttttca
 101 gtaaactgacc ccaggaacat tctgttaacc aacgaacaac tcgagagtgc
 151 gagaaaaata gtacatgatt acaggcaagg aattgttcct cctggctta
 201 cagaaaatga attgtggaga gcaaagtaca tctatgattc agcitttcat
 251 octgacactg gtgagaagat gatTTTgata ggaagaatgt cagcccaggt
 301 tcccatgaac atgaccatca caggttgtat gatgacgtt tacaggacta
 351 cgccggctgt gctgttctgg cagtgattt accagtcctt caatgccgtc
 401 gtcaatataca ccaacagaag tggagacgca cccctcaactg tcaatgagtt
 451 ggaaacagct tacgtttotg taacaactgg tgccgtagoa acagctctag
 501 gactcaatgc attgaccaag catgtctcad cactgatagg acgtttgtt
 551 ccctttgtg cogtagctgc tgctaattgc attaatattt cattaatgag
 601 gcaaaggccat ccctccattt attatgaaca ctggaaaaaa gaaagccccc
 651 ttgaagaggt tcccatggat gagtgacacc attcaagttg ggtagttgg
 701 cttctgtttg gtgtttgcta cacccctgtg ttgtccccctg tttccctcaga
 751 aaagttccat gtctgtgaca agcttggagg ccgagttgoa agctaagatc
 801 caagagagcc atccatgaaatt gcgacgcgtg tactcaata agggattgtt
 851 aagcagggag gaaacctctg cagtcatttcc tgccactgca aagctggtgt
 901 agccatgctg gtgagaaaaaa tcctgttcaa cctgggttct cccagttang
 951 gaaagggcga attcgccggcc gctgatttca ttac

Figure 3b

1 MSGELPPNIN IKEPRWDQST FIGRANHFFT VTDPRNILLT NEOLESARKI
 51 VHDYRQGIVP PGLTENELWR AKYIYDSAFH PDTGEKMLI GRMSAQVRMN
 101 MTITGCNMFT YRTTPAVLPW QWINQSFNAV VNYTNRSGDA PLTVNELGTA
 151 YVSVTGAVA TALGLNALTQ HVSPLIGRFV PFAAVAAANC INIPLMRQSH
 201 PSIHYEHFGK ESLFEEVPMD ECTHSSWVSW LLPGVCYTPV LCPVSSEKFH
 251 VCDKLGGGRVA S*

FIGURE 4

SEQUENCE LISTING

<110> Oxford GlycoSciences (UK) Ltd

<120> NUCLEIC ACID MOLECULES, POLYPEPTIDES AND USES THEREFOR, INCLUDING DIAGNOSIS AND TREATMENT OF ALZHEIMER'S DISEASE

<130> P33301WO

<160> 765

<170> PatentIn version 3.1

<210> 1

<211> 19

<212> PRT

<213> Homo sapiens

<400> 1

Ala	Ala	Ala	Gln	Leu	Leu	Gln	Ser	Gln	Ala	Gln
1				5			10			15

Gln Thr Lys

<210> 2

<211> 13

<212> PRT

<213> Homo sapiens

<400> 2

Ala	Ala	Ala	Val	Leu	Pro	Val	Leu	Asp	Leu	Ala	Gln	Arg
1				5				10				

<210> 3

<211> 14

<212> PRT

<213> Homo sapiens

<400> 3

Ala	Ala	Gly	Ile	Asp	Glu	Gln	Glu	Asn	Trp	His	Glu	Gly	Lys
1				5				10					

<210> 4

<211> 16

<212> PRT

<213> Homo sapiens

<400> 4

Ala	Ala	Leu	Asp	Gly	Thr	Pro	Gly	Met	Ile	Gly	Tyr	Gly	Met	Ala	Lys
1				5				10					15		

<210> 5
<211> 10
<212> PRT
<213> Homo sapiens

<400> 5

Ala Ala Leu Glu Gly Thr Ala Thr Tyr Arg
1 5 10

<210> 6
<211> 16
<212> PRT
<213> Homo sapiens

<400> 6

Ala Ala Pro Glu Ala Ser Gly Thr Pro Ser Ser Asp Ala Val Ser Arg
1 5 10 15

<210> 7
<211> 17
<212> PRT
<213> Homo sapiens

<400> 7

Ala Ala Ser Asp Ile Ala Met Thr Glu Leu Pro Pro Thr His Pro Ile
1 5 10 15

Arg

<210> 8
<211> 18
<212> PRT
<213> Homo sapiens

<400> 8

Ala Ala Val Pro Ser Gly Ala Ser Thr Gly Ile Tyr Glu Ala Leu Glu
1 5 10 15

Leu Arg

<210> 9
<211> 16
<212> PRT
<213> Homo sapiens

<400> 9

Ala Asp Asn Phe Glu Tyr Ser Asp Pro Val Asp Gly Ser Ile Ser Arg
1 5 10 15

<210> 10
<211> 11
<212> PRT
<213> Homo sapiens

<400> 10

Ala Asp Thr Leu Gly Glu Leu Asp Leu Glu Arg
1 5 10

<210> 11
<211> 12
<212> PRT
<213> Homo sapiens

<400> 11

Ala Glu Ala Gly Asp Asn Leu Gly Ala Leu Val Arg
1 5 10

<210> 12
<211> 17
<212> PRT
<213> Homo sapiens

<400> 12

Ala Glu Asp Gly Ser Val Ile Asp Tyr Glu Leu Ile Asp Gln Asp Ala
1 5 10 15

Arg

<210> 13
<211> 9
<212> PRT
<213> Homo sapiens

<400> 13

Ala Glu Glu Glu Phe Asn Ile Glu Lys
1 5

<210> 14
<211> 12
<212> PRT
<213> Homo sapiens

<400> 14

Ala Glu Gly Asp Ser Trp Val Leu Asn Gly Thr Lys
1 5 10

<210> 15
<211> 8
<212> PRT
<213> Homo sapiens

<400> 15

Ala Glu Asn Phe Phe Ile Leu Arg
1 5

<210> 16
<211> 11
<212> PRT
<213> Homo sapiens

<400> 16

Ala Glu Asn Tyr Asp Ile Pro Ser Ala Asp Arg
1 5 10

<210> 17
<211> 12
<212> PRT
<213> Homo sapiens

<400> 17

Ala Phe His Asn Glu Ala Gln Val Asn Pro Glu Arg
1 5 10

<210> 18
<211> 18
<212> PRT
<213> Homo sapiens

<400> 18

Ala Phe Leu Ala Ser Pro Glu Tyr Val Asn Leu Pro Ile Asn Gly Asn
1 5 10 15

Gly Lys

<210> 19
<211> 9
<212> PRT
<213> Homo sapiens

<400> 19

Ala Phe Pro Glu His Leu Tyr Gln Arg
1 5

<210> 20
<211> 16

4

5

<210> 26
<211> 14
<212> PRT
<213> Homo sapiens

<400> 26

Ala His Gly Gly Tyr Ser Val Phe Ala Gly Val Gly Glu Arg
1 5 10

<210> 27
<211> 14
<212> PRT
<213> Homo sapiens

<400> 27

Ala His Gln Val Val Glu Asp Gly Tyr Glu Phe Phe Ala Lys
1 5 10

<210> 28
<211> 11
<212> PRT
<213> Homo sapiens

<400> 28

Ala Ile Ile Glu Ser Asp Gln Glu Gln Gly Arg
1 5 10

<210> 29
<211> 15
<212> PRT
<213> Homo sapiens

<400> 29

Ala Ile Leu Val Asp Leu Glu Pro Gly Thr Met Asp Ser Val Arg
1 5 10 15

<210> 30
<211> 10
<212> PRT
<213> Homo sapiens

<400> 30

Ala Leu Ala Ala Glu Leu Asn Gln Leu Arg
1 5 10

<210> 31
<211> 11
<212> PRT

<213> Homo sapiens

<400> 31

Ala Leu Ala Glu Glu Val Glu Gln Val His Arg
1 5 10

<210> 32

<211> 10

<212> PRT

<213> Homo sapiens

<400> 32

Ala Leu Glu His Phe Pro Met Leu Gln Lys
1 5 10

<210> 33

<211> 9

<212> PRT

<213> Homo sapiens

<400> 33

Ala Leu Gly Val Gly Phe Ala Thr Arg
1 5

<210> 34

<211> 16

<212> PRT

<213> Homo sapiens

<400> 34

Ala Leu Pro Ala Val Gln Gln Asn Asn Leu Asp Glu Asp Ile Ile Arg
1 5 10 15

<210> 35

<211> 12

<212> PRT

<213> Homo sapiens

<400> 35

Ala Leu Pro Glu Ser Leu Gly Gln His Ala Leu Arg
1 5 10

<210> 36

<211> 14

<212> PRT

<213> Homo sapiens

<400> 36

Ala Leu Pro Phe Trp Asn Glu Glu Ile Val Pro Gln Ile Lys
1 5 10

<210> 37
<211> 19
<212> PRT
<213> Homo sapiens

<400> 37

Ala Leu Gln Ala Ala Tyr Gly Ala Ser Ala Pro Ser Val Thr Ser Ala
1 5 10 15

Ala Leu Arg

<210> 38
<211> 11
<212> PRT
<213> Homo sapiens

<400> 38

Ala Leu Gln Ala Ser Ala Leu Asn Ala Trp Arg
1 5 10

<210> 39
<211> 8
<212> PRT
<213> Homo sapiens

<400> 39

Ala Leu Gln Asp Leu Gly Leu Arg
1 5

<210> 40
<211> 8
<212> PRT
<213> Homo sapiens

<400> 40

Ala Leu Thr Phe Ser Tyr Gly Arg
1 5

<210> 41
<211> 15
<212> PRT
<213> Homo sapiens

<400> 41

Ala Leu Thr Ser Gln Leu Thr Asp Glu Glu Leu Ala Gln Gly Arg
1 5 10 15

<210> 42

<211> 16

<212> PRT

<213> Homo sapiens

<400> 42

Ala Leu Tyr Asp Phe Glu Pro Glu Asn Glu Gly Glu Leu Gly Phe Lys
1 5 10 15

<210> 43

<211> 8

<212> PRT

<213> Homo sapiens

<400> 43

Ala Leu Tyr Glu Gln Glu Ile Arg
1 5

<210> 44

<211> 12

<212> PRT

<213> Homo sapiens

<400> 44

Ala Met Asp Thr Leu Gly Ile Glu Tyr Gly Asp Lys
1 5 10

<210> 45

<211> 10

<212> PRT

<213> Homo sapiens

<400> 45

Ala Pro Asp Phe Val Phe Tyr Ala Pro Arg
1 5 10

<210> 46

<211> 14

<212> PRT

<213> Homo sapiens

<400> 46

Ala Pro Gly Ala Glu Glu Tyr Ala Gln Gln Asp Val Leu Lys
1 5 10

<210> 47

<211> 12

<212> PRT

<213> Homo sapiens

<400> 47

Ala Pro Gly Phe Ala His Leu Ala Gly Leu Asp Lys
1 5 10

<210> 48
<211> 14
<212> PRT
<213> Homo sapiens

<400> 48

Ala Pro Ser Thr Tyr Gly Gly Leu Ser Val Ser Ser Arg
1 5 10

<210> 49
<211> 13
<212> PRT
<213> Homo sapiens

<400> 49

Ala Pro Ser Trp Phe Asp Thr Gly Leu Ser Glu Met Arg
1 5 10

<210> 50
<211> 14
<212> PRT
<213> Homo sapiens

<400> 50

Ala Gln Ala Glu Leu Val Gly Thr Ala Asp Glu Ala Thr Arg
1 5 10

<210> 51
<211> 14
<212> PRT
<213> Homo sapiens

<400> 51

Ala Gln Ile His Asp Leu Val Leu Val Gly Gly Ser Thr Arg
1 5 10

<210> 52
<211> 9
<212> PRT
<213> Homo sapiens

<400> 52

Ala Gln Leu Gln Asp Leu Asn Asp Arg
1 5

<210> 53

<211> 10
<212> PRT
<213> Homo sapiens

<400> 53

Ala Ser Cys Leu Tyr Gly Gln Leu Pro Lys
1 5 10

<210> 54
<211> 11
<212> PRT
<213> Homo sapiens

<400> 54

Ala Ser Glu Gly Pro Ala Phe Phe Pro Gly Arg
1 5 10

<210> 55
<211> 16
<212> PRT
<213> Homo sapiens

<400> 55

Ala Thr Ala Gly Asp Thr His Leu Gly Glu Asp Phe Asp Asn Arg
1 5 10 15

<210> 56
<211> 11
<212> PRT
<213> Homo sapiens

<400> 56

Ala Thr Ala Val Met Pro Asp Gly Gln Phe Lys
1 5 10

<210> 57
<211> 10
<212> PRT
<213> Homo sapiens

<400> 57

Ala Thr Ala Val Val Asp Gly Ala Phe Lys
1 5 10

<210> 58
<211> 11
<212> PRT
<213> Homo sapiens

<400> 58

Ala Thr Glu Pro Val Ile Ala Phe Tyr Glu Lys
1 5 10

<210> 59

<211> 10

<212> PRT

<213> Homo sapiens

<400> 59

Ala Val Asp Ser Leu Val Pro Ile Gly Arg
1 5 10

<210> 60

<211> 12

<212> PRT

<213> Homo sapiens

<400> 60

Ala Val Phe Asp Glu Thr Tyr Pro Asp Pro Val Arg
1 5 10

<210> 61

<211> 9

<212> PRT

<213> Homo sapiens

<400> 61

Ala Val Phe Pro Ser Ile Val Gly Arg
1 5

<210> 62

<211> 15

<212> PRT

<213> Homo sapiens

<400> 62

Ala Val Phe Val Asp Leu Glu Pro Thr Val Ile Asp Glu Val Arg
1 5 10 15

<210> 63

<211> 8

<212> PRT

<213> Homo sapiens

<400> 63

Ala Val Leu His Val Ala Leu Arg
1 5

<210> 64

<211> 15

<212> PRT

<213> Homo sapiens

<400> 64

Ala Val Leu Val Asp Leu Glu Pro Gly Thr Met Asp Ser Val Arg
1 5 10 15

<210> 65

<211> 13

<212> PRT

<213> Homo sapiens

<400> 65

Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys
1 5 10

<210> 66

<211> 9

<212> PRT

<213> Homo sapiens

<400> 66

Ala Tyr Glu Leu Ala Leu Tyr Leu Arg
1 5

<210> 67

<211> 9

<212> PRT

<213> Homo sapiens

<400> 67

Ala Tyr Thr Asn Phe Asp Ala Glu Arg
1 5

<210> 68

<211> 10

<212> PRT

<213> Homo sapiens

<400> 68

Asp Ala Gly Met Gln Leu Gln Gly Tyr Arg
1 5 10

<210> 69

<211> 12

<212> PRT

<213> Homo sapiens

<400> 69

Asp Ala Gly Val Ile Ala Gly Leu Asn Val Leu Arg

1 5 10

<210> 70
<211> 15
<212> PRT
<213> Homo sapiens

<400> 70

Asp Ala Gly Tyr Glu Phe Asp Ile Cys Phe Thr Ser Val Gln Lys
1 5 10 15

<210> 71
<211> 12
<212> PRT
<213> Homo sapiens

<400> 71

Asp Ala Gln Glu Leu Tyr Ala Ala Gly Glu Asn Arg
1 5 10

<210> 72
<211> 14
<212> PRT
<213> Homo sapiens

<400> 72

Asp Asp Phe Leu Gln Gln Asn Gly Tyr Thr Pro Tyr Asp Arg
1 5 10

<210> 73
<211> 12
<212> PRT
<213> Homo sapiens

<400> 73

Asp Asp Gly Ser Trp Glu Val Ile Glu Gly Tyr Arg
1 5 10

<210> 74
<211> 9
<212> PRT
<213> Homo sapiens

<400> 74

Asp Asp Leu Leu Gly Phe Ala Leu Arg
1 5

<210> 75
<211> 9
<212> PRT

<213> Homo sapiens

<400> 75

Asp Asp Asn Gly Val Pro Phe Val Arg
1 5

<210> 76

<211> 16

<212> PRT

<213> Homo sapiens

<400> 76

Asp Glu Asn Ala Thr Leu Asp Gly Gly Asp Val Leu Phe Thr Gly Arg
1 5 10 15

<210> 77

<211> 10

<212> PRT

<213> Homo sapiens

<400> 77

Asp Glu Pro Pro Gln Ser Pro Trp Asp Arg
1 5 10

<210> 78

<211> 10

<212> PRT

<213> Homo sapiens

<400> 78

Asp Phe Leu Leu Gln Gln Thr Met Leu Arg
1 5 10

<210> 79

<211> 11

<212> PPT

<213> Homo sapiens

<400> 79

Asp Phe Gln Ser Gly Gln His Val Ile Val Arg
1 5 10

<210> 80

<211> 9

<212> PPT

<213> Homo sapiens

<400> 80

Asp Phe Ser His Pro Gln Met Pro Lys
1 5

<210> 81
<211> 12
<212> PRT
<213> Homo sapiens

<400> 81

Asp Phe Thr Pro Val Cys Thr Thr Glu Leu Gly Arg
1 5 10

<210> 82
<211> 16
<212> PRT
<213> Homo sapiens

<400> 82

Asp Phe Tyr Met Thr Asp Ser Ile Ser Arg
1 5 10

<210> 83
<211> 17
<212> PRT
<213> Homo sapiens

<400> 83

Asp Gly Asp Ser Val Met Val Leu Pro Thr Ile Pro Glu Glu Ala
1 5 10 15

Lys

<210> 84
<211> 8
<212> PRT
<213> Homo sapiens

<400> 84

Asp Gly Leu Ile Leu Thr Ser Arg
1 5

<210> 85
<211> 11
<212> PRT
<213> Homo sapiens

<400> 85

Asp Gly Ser Val Ala Ile Ala Ser Lys Pro Arg
1 5 10

<210> 86

<211> 6

<212> PRT

<213> Homo sapiens

<400> 86

Asp Gly Tyr Ala Gln Ile Leu Arg
1 5

<210> 87

<211> 14

<212> PRT

<213> Homo sapiens

<400> 87

Asp Gly Tyr Ile Ser Asn Gly Glu Leu Phe Gln Val Leu Lys
1 5 10

<210> 88

<211> 14

<212> PRT

<213> Homo sapiens

<400> 88

Asp His Gly Val Asn Ser Phe Leu Val Tyr Met Ala Phe Lys
1 5 10

<210> 89

<211> 10

<212> PRT

<213> Homo sapiens

<400> 89

Asp Ile Met Glu Asp Thr Ile Glu Asp Lys
1 5 10

<210> 90

<211> 13

<212> PRT

<213> Homo sapiens

<400> 90

Asp Ile Asn Ala Tyr Asn Cys Glu Glu Pro Thr Glu Lys
1 5 10

<210> 91

<211> 13

<212> PRT

<213> Homo sapiens

<400> 91

Asp Ile Pro Asn Glu Asn Glu Leu Gln Phe Gln Ile Lys
1 5 10

<210> 92

<211> 8

<212> PRT

<213> Homo sapiens

<400> 92

Asp Ile Val Glu Ala His Tyr Arg
1 5

<210> 93

<211> 13

<212> PRT

<213> Homo sapiens

<400> 93

Asp Ile Val His Ser Gly Leu Ala Tyr Thr Met Glu Arg
1 5 10

<210> 94

<211> 9

<212> PRT

<213> Homo sapiens

<400> 94

Asp Ile Val Gln Phe Val Pro Phe Arg
1 5

<210> 95

<211> 16

<212> PRT

<213> Homo sapiens

<400> 95

Asp Leu Glu Ala Asp Ile Ile Gly Asp Thr Ser Gly His Phe Gln Lys
1 5 10 15

<210> 96

<211> 12

<212> PRT

<213> Homo sapiens

<400> 96

Asp Leu Gly Thr Glu Ser Gln Ile Phe Ile Ser Arg
1 5 10

<210> 97

<211> 12
<212> PRT
<213> Homo sapiens

<400> 97

Asp Leu Met Val Gly Asp Glu Ala Ser Glu Leu Arg
1 5 10

<210> 98
<211> 6
<212> PRT
<213> Homo sapiens

<400> 98

Asp Leu Pro Ala Ile Gln Pro Arg
1 5

<210> 99
<211> 6
<212> PRT
<213> Homo sapiens

<400> 99

Asp Leu Pro Leu Leu Phe Arg
1 5

<210> 100
<211> 10
<212> PRT
<213> Homo sapiens

<400> 100

Asp Leu Gln Asn Val Asn Ile Thr Leu Arg
1 5 10

<210> 101
<211> 11
<212> PRT
<213> Homo sapiens

<400> 101

Asp Asn Asp Gly Trp Leu Thr Ser Asp Pro Arg
1 5 10

<210> 102
<211> 16
<212> PRT
<213> Homo sapiens

<400> 102

Asp Asn Phe Thr Leu Ile Pro Glu Gly Thr Asn Gly Thr Glu Glu Arg
1 5 10 15

<210> 103

<211> 11

<212> PRT

<213> Homo sapiens

<400> 103

Asp Asn Leu Ala Gln Asp Ieu Ala Thr Val Arg
1 5 10

<210> 104

<211> 14

<212> PRT

<213> Homo sapiens

<400> 104

Asp Pro Val Gln Glu Ala Trp Ala Glu Asp Val Asp Leu Arg
1 5 10

<210> 105

<211> 15

<212> PRT

<213> Homo sapiens

<400> 105

Asp Arg Glu Gly Phe Phe Thr Asn Gly Leu Thr Leu Gly Ala Lys
1 5 10 15

<210> 106

<211> 11

<212> PRT

<213> Homo sapiens

<400> 106

Asp Ser Tyr Val Gly Asp Glu Ala Gln Ser Lys
1 5 10

<210> 107

<211> 9

<212> PRT

<213> Homo sapiens

<400> 107

Asp Thr Asp Ser Glu Glu Glu Ile Arg
1 5

<210> 108

<211> 13

<212> PRT

<213> Homo sapiens

<400> 108

Asp Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg
1 5 10

<210> 109

<211> 13

<212> PRT

<213> Homo sapiens

<400> 109

Asp Val Ile Ala Thr Asp Lys Glu Asp Val Ala Phe Lys
1 5 10

<210> 110

<211> 13

<212> PRT

<213> Homo sapiens

<400> 110

Asp Val Lys Pro Ser Asn Ile Leu Val Asn Ser Arg
1 5 10

<210> 111

<211> 11

<212> PRT

<213> Homo sapiens

<400> 111

Asp Val Leu Thr Gly Gln Glu Phe Asp Val Arg
1 5 10

<210> 112

<211> 12

<212> PRT

<213> Homo sapiens

<400> 112

Asp Val Thr Asn Asn Val His Tyr Glu Asn Tyr Arg
1 5 10

<210> 113

<211> 14

<212> PRT

<213> Homo sapiens

<400> 113

Asp Val Val Ile Cys Pro Asp Ala Ser Leu Glu Asp Ala Lys

1 5 10

<210> 114
<211> 9
<212> PRT
<213> Homo sapiens

<400> 114

Asp Trp Asn Val Asp Leu Ile Pro Lys
1 5

<210> 115
<211> 16
<212> PRT
<213> Homo sapiens

<400> 115

Asp Tyr Ala Val Ser Thr Val Pro Val Ala Asp Gly Leu His Leu Lys
1 5 10 15

<210> 116
<211> 8
<212> PRT
<213> Homo sapiens

<400> 116

Asp Tyr Asn Pro Leu Leu Ala Arg
1 5

<210> 117
<211> 13
<212> PRT
<213> Homo sapiens

<400> 117

Asp Tyr Val Ser Gln Phe Glu Gly Ser Ala Leu Gly Lys
1 5 10

<210> 118
<211> 11
<212> PRT
<213> Homo sapiens

<400> 118

Glu Ala Ala Ser Tyr Gln Glu Ala Leu Ala Arg
1 5 10

<210> 119
<211> 16
<212> PRT

<213> Homo sapiens

<400> 119

Glu Ala Asp Tyr Val Ala Gin Ala Thr Arg
1 5 10

<210> 120

<211> 9

<212> PRT

<213> Homo sapiens

<400> 120

Glu Ala Glu Ala Ala Met Phe His Arg
1 5

<210> 121

<211> 10

<212> PRT

<213> Homo sapiens

<400> 121

Glu Ala Phe Asn Met Ile Asp Gln Asn Arg
1 5 10

<210> 122

<211> 8

<212> PRT

<213> Homo sapiens

<400> 122

Glu Ala Phe Ser Leu Phe Asp Lys
1 5

<210> 123

<211> 14

<212> PRT

<213> Homo sapiens

<400> 123

Glu Ala Val Leu Tyr Val Asp Ser Gln Glu Ala Ala Leu Lys
1 5 10

<210> 124

<211> 18

<212> PRT

<213> Homo sapiens

<400> 124

Glu Ala Tyr Met Gly Asn Val Leu Gln Gly Gly Glu Gly Gln Ala Pro
1 5 10 15

Thr Arg

<210> 125

<211> 13

<212> PRT

<213> Homo sapiens

<400> 125

Glu Ala Tyr Pro Gly Asp Val Phe Tyr Leu His Ser Arg
1 5 10

<210> 126

<211> 8

<212> PRT

<213> Homo sapiens

<400> 126

Glu Asp Asp Pro Asn Phe Phe Lys
1 5

<210> 127

<211> 10

<212> PRT

<213> Homo sapiens

<400> 127

Glu Asp Gly Gly Trp Trp Tyr Asn Arg
1 5 10

<210> 128

<211> 12

<212> PRT

<213> Homo sapiens

<400> 128

Glu Asp Ile Leu Glu Asn Gln Phe Met Asp Ser Arg
1 5 10

<210> 129

<211> 10

<212> PRT

<213> Homo sapiens

<400> 129

Glu Asp Gln Thr Glu Tyr Leu Glu Glu Arg
1 5 10

<210> 130

<211> 9

<212> PRT

<213> Homo sapiens

<400> 130

Glu Asp Arg Tyr Glu Glu Glu Ile Lys
1 5

<210> 131

<211> 16

<212> PRT

<213> Homo sapiens

<400> 131

Glu Glu Phe Gly Ala Glu Pro Glu Leu Ala Val Ser Ala Pro Gly Arg
1 5 10 15

<210> 132

<211> 14

<212> PRT

<213> Homo sapiens

<400> 132

Glu Glu Asn Glu Gly Val Tyr Asn Gly Ser Trp Gly Gly Arg
1 5 10

<210> 133

<211> 15

<212> PRT

<213> Homo sapiens

<400> 133

Glu Glu Val Val Thr Val Glu Thr Trp Gln Glu Gly Ser Leu Lys
1 5 10 15

<210> 134

<211> 12

<212> PRT

<213> Homo sapiens

<400> 134

Glu Phe Glu Glu Asp Leu Thr Gly Ile Asp Asp Arg
1 5 10

<210> 135

<211> 12

<212> PRT

<213> Homo sapiens

<400> 135

Glu Phe Ile Glu Gly Val Ser Gln Phe Ser Val Lys
1 5 10

<210> 136

<211> 8

<212> PRT

<213> Homo sapiens

<400> 136

Glu Phe Leu Ser Glu Leu Gln Arg
1 5

<210> 137

<211> 7

<212> PRT

<213> Homo sapiens

<400> 137

Glu Phe Ser Asp Ile Phe Arg
1 5

<210> 138

<211> 12

<212> PRT

<213> Homo sapiens

<400> 138

Glu Phe Thr Pro Pro Val Gln Ala Ala Tyr Gln Lys
1 5 10

<210> 139

<211> 13

<212> PRT

<213> Homo sapiens

<400> 139

Glu Gly Phe Phe Thr Asn Gly Leu Thr Leu Gly Ala Lys
1 5 10

<210> 140

<211> 17

<212> PRT

<213> Homo sapiens

<400> 140

Glu Gly Gly Ser Ile Pro Val Thr Leu Thr Phe Gln Glu Ala Thr Gly
1 5 10 15

Lys

<210> 141
<211> 11
<212> PRT
<213> Homo sapiens

<400> 141

Glu Gly Met Asn Ile Val Glu Ala Met Glu Arg
1 5 10

<210> 142
<211> 13
<212> PRT
<213> Homo sapiens

<400> 142

Glu Gly Val Val His Gly Val Ala Thr Val Ala Glu Lys
1 5 10

<210> 143
<211> 8
<212> PRT
<213> Homo sapiens

<400> 143

Glu Gly Trp Pro Leu Asp Ile Arg
1 5

<210> 144
<211> 12
<212> PRT
<213> Homo sapiens

<400> 144

Glu Gly Trp Pro Ser Ser Ala Tyr Gly Val Thr Lys
1 5 10

<210> 145
<211> 12
<212> PRT
<213> Homo sapiens

<400> 145

Glu His His Phe Glu Ala Ile Ala Leu Val Glu Lys
1 5 10

<210> 146
<211> 10
<212> PRT

<213> Homo sapiens

<400> 146

Glu Ile Glu Ala Glu Ile Gln Ala Leu Arg
1 S 10

<210> 147

<211> 14

<212> PRT

<213> Homo sapiens

<400> 147

Glu Ile Glu Gln Glu Ala Ala Val Glu Leu Ser Gln Leu Arg
1 S 10

<210> 148

<211> 9

<212> PRT

<213> Homo sapiens

<400> 148

Glu Ile Ile Asp Leu Val Leu Asp Arg
1 S

<210> 149

<211> 11

<212> PRT

<213> Homo sapiens

<400> 149

Glu Ile Thr Ala Leu Ala Pro Ser Thr Met Lys
1 S 10

<210> 150

<211> 12

<212> PRT

<213> Homo sapiens

<400> 150

Glu Lys Ala Glu Gly Asp Val Ala Ala Leu Asn Arg
1 S 10

<210> 151

<211> 8

<212> PRT

<213> Homo sapiens

<400> 151

Glu Lys Ile Glu Thr Glu Leu Arg
1 S

<210> 152

<211> 14

<212> PRT

<213> Homo sapiens

<400> 152

Glu Leu Ala Ile Leu Leu Gly Met Leu Asp Pro Ala Glu Lys
1 5 10

<210> 153

<211> 7

<212> PRT

<213> Homo sapiens

<400> 153

Glu Leu Glu Asp Leu Val Arg
1 5

<210> 154

<211> 11

<212> PRT

<213> Homo sapiens

<400> 154

Glu Leu Glu Glu Glu Thr Asn Ala Phe Asn Arg
1 5 10

<210> 155

<211> 11

<212> PRT

<213> Homo sapiens

<400> 155

Glu Leu Glu Glu Glu Val Asn Asn Phe Gln Lys
1 5 10

<210> 156

<211> 10

<212> PRT

<213> Homo sapiens

<400> 156

Glu Leu Gly Asp His Val Thr Asn Leu Arg
1 5 10

<210> 157

<211> 9

<212> PRT

<213> Homo sapiens

<400> 157

Glu Leu Gly Val Gly Ile Ala Leu Arg
1 5

<210> 158

<211> 13

<212> PRT

<213> Homo sapiens

<400> 158

Glu Leu Leu Gly Pro Asp Phe Gly Tyr Val Thr Arg
1 5 10

<210> 159

<211> 11

<212> PRT

<213> Homo sapiens

<400> 159

Glu Leu Leu Leu Gln Pro Val Thr Ile Ser Arg
1 5 10

<210> 160

<211> 10

<212> PRT

<213> Homo sapiens

<400> 160

Glu Leu Leu Gln Glu Ser Ala Leu Ile Arg
1 5 10

<210> 161

<211> 6

<212> PRT

<213> Homo sapiens

<400> 161

Glu Leu Leu Ser Gly Pro Asn Arg
1 5

<210> 162

<211> 13

<212> PRT

<213> Homo sapiens

<400> 162

Glu Leu Pro Thr Ala Phe Asp Tyr Val Glu Phe Thr Arg
1 5 10

<210> 163
<211> 19
<212> PRT
<213> Homo sapiens

<400> 163

Glu Leu Gln Glu Leu Val Gln Tyr Pro Val Glu His Pro Asp Lys
1 5 10 15

<210> 164
<211> 8
<212> PRT
<213> Homo sapiens

<400> 164

Glu Leu Gln Glu Gln Leu Ala Arg
1 5

<210> 165
<211> 16
<212> PRT
<213> Homo sapiens

<400> 165

Glu Leu Ser Asp Gln Ala Gly Ser Glu Phe Glu Asn Ser Asp Val Arg
1 5 10 15

<210> 166
<211> 31
<212> PRT
<213> Homo sapiens

<400> 166

Glu Leu Val Asp Asp Ser Ile Asn Asn Val Arg
1 5 10

<210> 167
<211> 12
<212> PRT
<213> Homo sapiens

<400> 167

Glu Leu Val Asn Asn Leu Ala Glu Ile Tyr Gly Arg
1 5 10

<210> 168
<211> 12
<212> PRT
<213> Homo sapiens

<400> 168

Glu Leu Val Val Thr Gln Leu Gly Tyr Asp Thr Arg
1 5 10

<210> 169

<211> 12

<212> PRT

<213> Homo sapiens

<400> 169

Glu Met Asn Asp Ala Ala Thr Phe Tyr Thr Asn Arg
1 5 10

<210> 170

<211> 16

<212> PRT

<213> Homo sapiens

<400> 170

Glu Pro Ala Ala Glu Ile Glu Ala Leu Leu Gly Met Asp Leu Val Arg
1 5 10 15

<210> 171

<211> 8

<212> PRT

<213> Homo sapiens

<400> 171

Glu Pro Gly Leu Gln Ile Trp Arg
1 5

<210> 172

<211> 11

<212> PRT

<213> Homo sapiens

<400> 172

Glu Pro Val Val Thr Leu Gln Gly His Thr Lys
1 5 10

<210> 173

<211> 10

<212> PRT

<213> Homo sapiens

<400> 173

Glu Gln Leu Ala Ile Ala Glu Phe Ala Arg
1 5 10

<210> 174

<211> 11

<212> PRT

<213> Homo sapiens

<400> 174

Glu Gln Met Ala Ile Ser Gly Gly Phe Ile Arg
1 5 10

<210> 175

<211> 20

<212> PRT

<213> Homo sapiens

<400> 175

Glu Gln Val Thr Asn Val Gly Gly Ala Val Val Thr Gly Val Thr Ala
1 5 10 15

Val Ala Gln Lys

20

<210> 176

<211> 14

<212> PRT

<213> Homo sapiens

<400> 176

Glu Ser Ile Ser Val Ser Ser Glu Gln Leu Ala Gln Phe Arg
1 5 10

<210> 177

<211> 12

<212> PRT

<213> Homo sapiens

<400> 177

Glu Thr Ala Glu Ala Asp Val Ala Ser Leu Asn Arg
1 5 10

<210> 178

<211> 13

<212> PRT

<213> Homo sapiens

<400> 178

Glu Thr Ala Pro Thr Ser Ala Tyr Ser Ser Pro Ala Arg
1 5 10

<210> 179

<211> 13

<212> PRT

<213> Homo sapiens

<400> 179

Glu Val Asp Ile Gly Ile Pro Asp Ala Thr Gly Arg
1 5 10

<210> 180

<211> 9

<212> PRT

<213> Homo sapiens

<400> 180

Glu Val Gly Val Tyr Glu Ala Leu Lys
1 5

<210> 181

<211> 18

<212> PRT

<213> Homo sapiens

<400> 181

Glu Val Gly Val Tyr Glu Ala Leu Lys Asp Asp Ser Trp Leu Lys
1 5 10 15

<210> 182

<211> 10

<212> PRT

<213> Homo sapiens

<400> 182

Glu Val Gln Gln Gly Glu Glu Phe Glu Arg
1 5 10

<210> 183

<211> 9

<212> PRT

<213> Homo sapiens

<400> 183

Glu Trp Ile Pro Arg Pro Pro Glu Lys
1 5

<210> 184

<211> 9

<212> PRT

<213> Homo sapiens

<400> 184

Glu Tyr Gln Leu Asn Asp Ser Ala Lys

1

5

<210> 185

<211> 19

<212> PRT

<213> Homo sapiens

<400> 185

Glu Tyr Tyr Phe Ala Ile Thr Met Glu Arg
1 5 10

<210> 186

<211> 19

<212> PRT

<213> Homo sapiens

<400> 186

Phe Ala Ala Tyr Phe Gln Gln Gly Asp Met Glu Ser Asn Gly Lys
1 5 10 15

<210> 187

<211> 19

<212> PRT

<213> Homo sapiens

<400> 187

Phe Ala Asp Leu Thr Asp Ala Ala Ala Arg
1 5 10

<210> 188

<211> 19

<212> PRT

<213> Homo sapiens

<400> 188

Phe Ala Glu Ala Phe Glu Ala Ile Pro Arg
1 5 10

<210> 189

<211> 19

<212> PRT

<213> Homo sapiens

<400> 189

Phe Ala Asn Leu Asn Glu Gln Ala Ala Arg
1 5 10

<210> 190

<211> 16

<212> PRT

<213> Homo sapiens

<400> 190

Phe Ala Ser Glu Ile Ala Gly Val Asp Asp Leu Gly Thr Thr Gly Arg
1 5 10 15

<210> 191

<211> 7

<212> PRT

<213> Homo sapiens

<400> 191

Phe Ala Ser Phe Ile Glu Arg
1 5

<210> 192

<211> 10

<212> PRT

<213> Homo sapiens

<400> 192

Phe Asp Ala Gly Glu Leu Ile Thr Gln Arg
1 5 10

<210> 193

<211> 11

<212> PRT

<213> Homo sapiens

<400> 193

Phe Asp Gly Ile Leu Gly Met Ala Tyr Pro Arg
1 5 10

<210> 194

<211> 11

<212> PRT

<213> Homo sapiens

<400> 194

Phe Asp Leu Thr Gly Ile Pro Pro Ala Pro Arg
1 5 10

<210> 195

<211> 9

<212> PRT

<213> Homo sapiens

<400> 195

Phe Glu Ala Pro Leu Phe Asn Ala Arg
1 5

<210> 196
<211> 9
<212> PRT
<213> Homo sapiens

<400> 196

Phe Glu Asp Glu Asn Phe Ile Leu Lys
1 S

<210> 197
<211> 10
<212> PRT
<213> Homo sapiens

<400> 197

Phe Glu Asp Tyr Leu Asn Ala Glu Ser Arg
1 S 10

<210> 198
<211> 7
<212> PRT
<213> Homo sapiens

<400> 198

Phe Glu Glu Phe Leu Gln Arg
1 S

<210> 199
<211> 10
<212> PRT
<213> Homo sapiens

<400> 199

Phe Glu Glu Leu Asn Ala Asp Leu Phe Arg
1 S 10

<210> 200
<211> 7
<212> PRT
<213> Homo sapiens

<400> 200

Phe Phe Glu His Glu Val Lys
1 S

<210> 201
<211> 10
<212> PRT
<213> Homo sapiens

<210> 207
<211> 7
<212> PRT
<213> Homo sapiens

<400> 207

Phe Ile Leu Ile Gln Asn Arg
1 5

<210> 208
<211> 8
<212> PRT
<213> Homo sapiens

<400> 208

Phe Ile Thr Ile Phe Gly Thr Arg
1 5

<210> 209
<211> 10
<212> PRT
<213> Homo sapiens

<400> 209

Phe Leu Met Ala Asn Gly Gln Leu Val Lys
1 5 10

<210> 210
<211> 9
<212> PRT
<213> Homo sapiens

<400> 210

Phe Leu Ser Gln Ile Glu Ser Asp Arg
1 5

<210> 211
<211> 14
<212> PRT
<213> Homo sapiens

<400> 211

Phe Leu Val Phe Val Ala Asn Phe Asp Glu Asn Asp Pro Lys
1 5 10

<210> 212
<211> 8
<212> PRT
<213> Homo sapiens

<400> 212

Phe Leu Tyr Leu Gly Asp Asp Arg
1 5

<210> 213

<211> 10

<212> PRT

<213> Homo sapiens

<400> 213

Phe Met Gln Ala Ser Glu Asp Leu Leu Lys
1 5 10

<210> 214

<211> 11

<212> PRT

<213> Homo sapiens

<400> 214

Phe Asn Val Trp Asp Thr Ala Gly Gln Glu Lys
1 5 10

<210> 215

<211> 9

<212> PRT

<213> Homo sapiens

<400> 215

Phe Pro Ala Phe Gly Phe Gly Ala Arg
1 5

<210> 216

<211> 8

<212> PRT

<213> Homo sapiens

<400> 216

Phe Pro Phe Ala Ala Asn Ser Arg
1 5

<210> 217

<211> 10

<212> PRT

<213> Homo sapiens

<400> 217

Phe Pro Gly Gln Leu Asn Ala Asp Leu Arg
1 5 10

<210> 218

<211> 16

<212> PRT

<213> Homo sapiens

<400> 218

Phe Gln Asp Gly Asp Leu Thr Leu Tyr Gin Ser Asn Thr Ile Leu Arg
1 5 10 15

<210> 219

<211> 13

<212> PRT

<213> Homo sapiens

<400> 219

Phe Gln Leu Leu Glu Gly Pro Pro Gln Ser Met Gly Arg
1 5 10

<210> 220

<211> 6

<212> PRT

<213> Homo sapiens

<400> 220

Phe Gln Asn Ala Leu Leu Val Arg
1 5

<210> 221

<211> 6

<212> PRT

<213> Homo sapiens

<400> 221

Phe Ser Glu Leu Thr Ala Glu Lys
1 5

<210> 222

<211> 17

<212> PRT

<213> Homo sapiens

<400> 222

Phe Ser Pro Leu Thr Thr Asn Leu Ile Asn Leu Leu Ala Glu Asn Gly
1 5 10 15

Arg

<210> 223

<211> 8

<212> PRT

<213> Homo sapiens

<400> 223

Phe Ser Trp Phe Ala Gly Glu Lys
1 5

<210> 224

<211> 11

<212> PRT

<213> Homo sapiens

<400> 224

Phe Thr Asp Glu Glu Val Asp Glu Leu Tyr Arg
1 5 10

<210> 225

<211> 14

<212> PRT

<213> Homo sapiens

<400> 225

Phe Thr Gln Ala Gly Ser Glu Val Ser Ala Leu Leu Gly Arg
1 5 10

<210> 226

<211> 12

<212> PRT

<213> Homo sapiens

<400> 226

Phe Val Glu Gly Leu Pro Ile Asn Asp Phe Ser Arg
1 5 10

<210> 227

<211> 9

<212> PRT

<213> Homo sapiens

<400> 227

Phe Val Ile Asp Val Gly Tyr Glu Arg
1 5

<210> 228

<211> 14

<212> PRT

<213> Homo sapiens

<400> 228

Phe Val Thr Val Gln Thr Ile Ser Gly Thr Gly Ala Leu Arg

1 5 10

<210> 229
<211> 9
<212> PRT
<213> Homo sapiens

<400> 229

Phe Tyr Phe Glu Asn Leu Trp Ser Arg
1 5

<210> 230
<211> 10
<212> PRT
<213> Homo sapiens

<400> 230

Phe Tyr Thr Asp Pro Val Glu Ala Val Lys
1 5 10

<210> 231
<211> 10
<212> PRT
<213> Homo sapiens

<400> 231

Gly Ala Glu Ile Val Ala Asp Thr Phe Arg
1 5 10

<210> 232
<211> 9
<212> PRT
<213> Homo sapiens

<400> 232

Gly Ala Phe Ser Glu Glu Tyr Lys Arg
1 5

<210> 233
<211> 11
<212> PRT
<213> Homo sapiens

<400> 233

Gly Ala Gly Thr Asp Asp His Thr Leu Ile Arg
1 5 10

<210> 234
<211> 15
<212> PRT

<210> 240

<211> 9

<212> PRT

<213> Homo sapiens

<400> 240

Gly Asp Tyr Pro Leu Glu Ala Val Arg
1 5

<210> 241

<211> 9

<212> PRT

<213> Homo sapiens

<400> 241

Gly Glu Glu Asp Trp Leu Tyr Glu Arg
1 5

<210> 242

<211> 9

<212> PRT

<213> Homo sapiens

<400> 242

Gly Glu Glu Val Gly Glu Leu Ser Arg
1 5

<210> 243

<211> 17

<212> PRT

<213> Homo sapiens

<400> 243

Gly Glu Met Met Asp Leu Gln His Gly Ser Leu Phe Leu Gln Thr Pro
1 5 10 15

Lys

<210> 244

<211> 14

<212> PRT

<213> Homo sapiens

<400> 244

Gly Glu Met Met Asp Leu Gln His Gly Ser Leu Phe Leu Arg
1 5 10

<210> 245
<211> 10
<212> PRT
<213> Homo sapiens

<400> 245

Gly Phe Cys Leu Pro Pro His Cys Ser Arg
1 5 10

<210> 246
<211> 7
<212> PRT
<213> Homo sapiens

<400> 246

Gly Phe Asp Glu Tyr Met Lys
1 5

<210> 247
<211> 19
<212> PRT
<213> Homo sapiens

<400> 247

Gly Phe Ile Gly Pro Gly Ile Asp Val Pro Ala Pro Asp Met Ser Thr
1 5 10 15

Gly Glu Arg

<210> 248
<211> 10
<212> PRT
<213> Homo sapiens

<400> 248

Gly Phe Ile Thr Ile Val Asp Val Gln Arg
1 5 10

<210> 249
<211> 16
<212> PRT
<213> Homo sapiens

<400> 249

Gly Phe Pro Gly Tyr Met Tyr Thr Asp Leu Ala Thr Ile Tyr Glu Arg
1 5 10 15

<210> 250
<211> 10

<212> PRT

<213> Homo sapiens

<400> 250

Gly Phe Pro Val Val Leu Asp Ser Pro Arg
1 5 10

<210> 251

<211> 12

<212> PRT

<213> Homo sapiens

<400> 251

Gly Gly Ala Glu Gln Phe Met Glu Glu Thr Gln Arg
1 5 10

<210> 252

<211> 11

<212> PRT

<213> Homo sapiens

<400> 252

Gly Gly Ile Val Asp Glu Gly Ala Leu Leu Arg
1 5 10

<210> 253

<211> 9

<212> PRT

<213> Homo sapiens

<400> 253

Gly Gly Pro Phe Ser Asp Ser Tyr Arg
1 5

<210> 254

<211> 9

<212> PRT

<213> Homo sapiens

<400> 254

Gly Gly Pro Leu Asp Gly Thr Tyr Arg
1 5

<210> 255

<211> 9

<212> PRT

<213> Homo sapiens

<400> 255

Gly Gly Thr Pro Ser Ala Phe Asp Arg

1 5

<210> 256
<211> 8
<212> PRT
<213> Homo sapiens

<400> 256

Gly His Trp Phe Leu Ser Pro Arg
1 5

<210> 257
<211> 18
<212> PRT
<213> Homo sapiens

<400> 257

Gly His Tyr Thr Glu Gly Ala Glu Leu Val Asp Ser Val Leu Asp Val
1 5 10 15

Val Arg

<210> 258
<211> 15
<212> PRT
<213> Homo sapiens

<400> 258

Gly Ile Ser Glu Glu Thr Thr Gly Val His Asn Leu Tyr Lys
1 5 10 15

<210> 259
<211> 10
<212> PRT
<213> Homo sapiens

<400> 259

Gly Ile Ser Pro Val Pro Ile Asn Leu Arg
1 5 10

<210> 260
<211> 10
<212> PRT
<213> Homo sapiens

<400> 260

Gly Lys Pro Val Pro Thr Gln Gly Ser Arg
1 5 10

<210> 261
<211> 12
<212> PRT
<213> Homo sapiens

<400> 261

Gly Leu Ala Gly Leu Gly Asp Val Ala Glu Val Arg
1 5 10

<210> 262
<211> 11
<212> PRT
<213> Homo sapiens

<400> 262

Gly Leu Ala Pro Glu Gin Pro Val Thr Leu Arg
1 5 10

<210> 263
<211> 11
<212> PRT
<213> Homo sapiens

<400> 263

Gly Leu Glu Ile Ser Gly Thr Phe Thr His Arg
1 5 10

<210> 264
<211> 16
<212> PRT
<213> Homo sapiens

<400> 264

Gly Leu Val Tyr Glu Thr Ser Val Leu Asp Pro Asp Glu Gly Ile Arg
1 5 10 15

<210> 265
<211> 15
<212> PRT
<213> Homo sapiens

<400> 265

Gly Leu Tyr Asp Gly Pro Val Cys Glu Val Ser Val Thr Pro Lys
1 5 10 15

<210> 266
<211> 15
<212> PRT
<213> Homo sapiens

<400> 266

Gly Met Tyr Asp Gly Pro Val Phe Asp Leu Thr Thr Thr Pro Lys
1 5 10 15

<210> 267

<211> 15

<212> PRT

<213> Homo sapiens

<400> 267

Gly Met Tyr Asp Gly Pro Val Tyr Glu Val Pro Ala Thr Pro Lys
1 5 10 15

<210> 268

<211> 30

<212> PRT

<213> Homo sapiens

<400> 268

Gly Asn Asp Ile Ser Ser Gly Thr Val Leu Ser Asp Tyr Val Gly Ser
1 5 10 15

Gly Pro Pro Lys

26

<210> 269

<211> 10

<212> PRT

<213> Homo sapiens

<400> 269

Gly Asn Phe Asn Tyr Ile Glu Phe Thr Arg
1 5 10

<210> 270

<211> 11

<212> PRT

<213> Homo sapiens

<400> 270

Gly Asn Tyr Leu Val Asp Val Asp Gly Asn Arg
1 5 10

<210> 271

<211> 6

<212> PRT

<213> Homo sapiens

<400> 271

Gly Pro Ser Trp Asp Pro Phe Arg
1 5

<210> 272

<211> 16

<212> PRT

<213> Homo sapiens

<400> 272

Gly Gln Ala Ala Val Gln Gln Leu Gln Ala Glu Gly Leu Ser Pro Arg
1 5 10 15

<210> 273

<211> 9

<212> PRT

<213> Homo sapiens

<400> 273

Gly Gln Val Phe Asp Val Gly Pro Arg
1 5

<210> 274

<211> 14

<212> PRT

<213> Homo sapiens

<400> 274

Gly Ser Ala Pro Pro Gly Pro Val Pro Glu Gly Ser Ile Arg
1 5 10

<210> 275

<211> 12

<212> PRT

<213> Homo sapiens

<400> 275

Gly Ser Gly Asn Leu Glu Ala Ile His Ile Ile Lys
1 5 10

<210> 276

<211> 11

<212> PRT

<213> Homo sapiens

<400> 276

Gly Ser Pro Leu Val Val Ile Ser Gln Gly Lys
1 5 10

<210> 277

<211> 21

<212> PRT

<213> Homo sapiens

<400> 277

Gly Thr Gly Gly Val Asp Thr Ala Ala Val Gly Gly Val Phe Asp Val
1 5 10 15

Ser Asn Ala Asp Arg
20

<210> 278

<211> 12

<212> PRT

<213> Homo sapiens

<400> 278

Gly Val Gly Ile Ser Val Leu Glu Met Ser His Arg
1 5 10

<210> 279

<211> 14

<212> PRT

<213> Homo sapiens

<400> 279

Gly Val Val Asp Ser Glu Asp Ile Pro Leu Asn Leu Ser Arg
1 5 10

<210> 280

<211> 14

<212> PRT

<213> Homo sapiens

<400> 280

Gly Val Val Asp Ser Glu Asp Leu Pro Leu Asn Ile Ser Arg
1 5 10

<210> 281

<211> 9

<212> PRT

<213> Homo sapiens

<400> 281

Gly Trp Glu Phe Met Trp Asn Glu Arg
1 5

<210> 282

<211> 14

<212> PRT

<213> Homo sapiens

<400> 282

Gly Tyr Ala Phe Asn His Ser Ala Asp Phe Glu Thr Val Arg
1 5 10

<210> 283

<211> 10

<212> PRT

<213> Homo sapiens

<400> 283

Gly Tyr Ser Phe Thr Thr Thr Ala Glu Arg
1 5 10

<210> 284

<211> 11

<212> PRT

<213> Homo sapiens

<400> 284

His Ala Leu Ile Ile Tyr Asp Asp Leu Ser Lys
1 5 10

<210> 285

<211> 12

<212> PRT

<213> Homo sapiens

<400> 285

His Glu Trp Gln Val Asn Gly Leu Asp Asp Ile Lys
1 5 10

<210> 286

<211> 8

<212> PRT

<213> Homo sapiens

<400> 286

His Phe Ser Pro Glu Glu Leu Lys
1 5

<210> 287

<211> 11

<212> PRT

<213> Homo sapiens

<400> 287

His Phe Ser Val Glu Gly Gln Leu Glu Phe Arg
1 5 10

<210> 288
<211> 9
<212> PRT
<213> Homo sapiens

<400> 288

His Phe Thr Glu Phe Val Pro Leu Arg
1 5

<210> 289
<211> 11
<212> PRT
<213> Homo sapiens

<400> 289

His Phe Val Ala Leu Ser Thr Asn Thr Lys
1 5 10

<210> 290
<211> 8
<212> PRT
<213> Homo sapiens

<400> 290

His Gly Val Tyr Asn Pro Asn Lys
1 5

<210> 291
<211> 11
<212> PRT
<213> Homo sapiens

<400> 291

His Ile Ala Glu Val Ser Gln Glu Val Thr Arg
1 5 10

<210> 292
<211> 11
<212> PRT
<213> Homo sapiens

<400> 292

His Ile Asp Leu Val Glu Gly Asp Glu Gly Arg
1 5 10

<210> 293
<211> 9
<212> PRT
<213> Homo sapiens

<400> 293

His Ile Tyr Leu Leu Pro Ser Gly Arg
1 5

<210> 294

<211> 12

<212> PRT

<213> Homo sapiens

<400> 294

His Leu Ile Pro Ala Ala Asn Thr Gly Glu Ser Lys
1 5 10

<210> 295

<211> 10

<212> PRT

<213> Homo sapiens

<400> 295

His Leu Ile Ile Gly Val Ser Ser Asp Arg
1 5 10

<210> 296

<211> 12

<212> PRT

<213> Homo sapiens

<400> 296

His Leu Gln Glu Tyr Gln Asp Leu Leu Asn Val Lys
1 5 10

<210> 297

<211> 14

<212> PRT

<213> Homo sapiens

<400> 297

His Gln Ala Phe Glu Ala Glu Leu Ser Ala Asn Gln Ser Arg
1 5 10

<210> 298

<211> 12

<212> PRT

<213> Homo sapiens

<400> 298

His Val Gly Asp Leu Gly Asn Val Thr Ala Asp Lys
1 5 10

<210> 299
<211> 11
<212> PRT
<213> Homo sapiens

<400> 299

His Val Val Pro Asn Glu Val Val Val Gln Arg
1 5 10

<210> 300
<211> 12
<212> PRT
<213> Homo sapiens

<400> 300

Ile Ala Ala Ala Ile Leu Asn Thr Pro Asp Leu Arg
1 5 10

<210> 301
<211> 10
<212> PRT
<213> Homo sapiens

<400> 301

Ile Ala Asp Gly Tyr Glu Gln Ala Ala Arg
1 5 10

<210> 302
<211> 10
<212> PRT
<213> Homo sapiens

<400> 302

Ile Ala Glu Phe Ala Phe Glu Tyr Ala Arg
1 5 10

<210> 303
<211> 18
<212> PRT
<213> Homo sapiens

<400> 303

Ile Ala Val Gly Ser Asp Ala Asp Leu Val Ile Trp Asp Pro Asp Ser
1 5 10 15

Val Lys

<210> 304
<211> 13

<212> PRT

<213> Homo sapiens

<400> 304

Ile Asp Ala Met His Gly Val Val Gly Pro Tyr Val Lys
1 5 10

<210> 305

<211> 10

<212> PRT

<213> Homo sapiens

<400> 305

Ile Asp Ile Ile Pro Asn Pro Gln Glu Arg
1 5 10

<210> 306

<211> 10

<212> PRT

<213> Homo sapiens

<400> 306

Ile Glu Glu Glu Leu Gly Asp Glu Ala Arg
1 5 10

<210> 307

<211> 18

<212> PRT

<213> Homo sapiens

<400> 307

Ile Glu Gly Ser Gly Asp Gln Ile Asp Thr Tyr Glu Leu Ser Gly Gly
1 5 10 15

Ala Arg

<210> 308

<211> 9

<212> PRT

<213> Homo sapiens

<400> 308

Ile Glu Ser Leu Glu Glu Glu Ile Arg
1 5

<210> 309

<211> 19

<212> PRT

<213> Homo sapiens

<400> 309

Ile Glu Tyr Asp Thr Phe Gly Glu Leu Lys
1 5 10

<210> 310

<211> 11

<212> PRT

<213> Homo sapiens

<400> 310

Ile Phe Gly Val Thr Thr Leu Asp Ile Val Arg
1 5 10

<210> 311

<211> 7

<212> PRT

<213> Homo sapiens

<400> 311

Ile Phe Asn Leu Tyr Pro Arg
1 5

<210> 312

<211> 12

<212> PRT

<213> Homo sapiens

<400> 312

Ile Phe Thr Ser Ile Gly Glu Asp Tyr Asp Glu Arg
1 5 10

<210> 313

<211> 13

<212> PRT

<213> Homo sapiens

<400> 313

Ile Phe Val Glu Glu Ser Ile Tyr Asp Glu Phe Val Arg
1 5 10

<210> 314

<211> 15

<212> PRT

<213> Homo sapiens

<400> 314

Ile Gly Ala Ala Asp Tyr Gln Pro Thr Glu Gln Asp Ile Leu Arg
1 5 10 15

<210> 315
<211> 10
<212> PRT
<213> *Homo sapiens*

◀ 400 ▶ 315

Ile Gly Ala Glu Val Tyr His Asn Leu Lys
1 S 10

<210> 316

4211 11

<212> PRT

<213> Homo sapiens

<400> 316

◀220▶ 317

(211) 30

<212> PRT

<213> Homo sapiens

A400> 317

Ile Gly His Pro Ala Pro Asn Phe Lys
1 5

4210 316

4311 > 12

2212 PRT

<213> Homo sapiens

4400> 316

Ile Gly Ileu Phe Gly Gly Ala Gly Val Gly Lys
 1 S 10

<210> 339

六三
○

42122 PRT

<213> Homo sapiens

<400> 318

Ile Gly Ser Thr Ile Phe Gly Glu Arg
1 5

<210> 320

<211> 16

<232> PRO

<213> Homo sapiens

<400> 320

Ile Ile Ala Glu Gly Ala Asn Gly Pro Thr Thr Pro Glu Ala Asp Lys
1 5 10 15

<210> 321

<211> 13

<212> PRT

<213> Homo sapiens

<400> 321

Ile Ile His Glu Asp Gly Phe Ser Gly Glu Asp Val Lys
1 5 10

<210> 322

<211> 9

<212> PRT

<213> Homo sapiens

<400> 322

Ile Ile Leu Leu Ala Glu Gly Arg
1 5

<210> 323

<211> 16

<212> PRT

<213> Homo sapiens

<400> 323

Ile Ile Asn Glu Pro Thr Ala Ala Ala Ile Ala Tyr Gly Leu Asp Arg
1 5 10 15

<210> 324

<211> 10

<212> PRT

<213> Homo sapiens

<400> 324

Ile Ile Asn Asn Thr Glu Asn Leu Val Arg
1 5 10

<210> 325

<211> 14

<212> PRT

<213> Homo sapiens

<400> 325

Ile Ile Pro Gly Phe Met Cys Gln Gly Gly Asp Phe Thr Arg
1 5 10

<210> 326

<211> 13

<212> PRT

<213> Homo sapiens

<400> 326

Ile Ile Tyr Gly Gly Ser Val Thr Gly Ala Thr Cys Lys
1 5 10

<210> 327

<211> 15

<212> PRT

<213> Homo sapiens

<400> 327

Ile Leu Asp Gln Gly Glu Asp Phe Pro Ala Ser Glu Met Thr Arg
1 5 10 15

<210> 328

<211> 10

<212> PRT

<213> Homo sapiens

<400> 328

Ile Leu Asp Val Leu Glu Glu Ile Pro Lys
1 5 10

<210> 329

<211> 15

<212> PRT

<213> Homo sapiens

<400> 329

Ile Leu Gly Ala Asp Thr Ser Val Asp Leu Glu Glu Thr Gly Arg
1 5 10 15

<210> 330

<211> 13

<212> PRT

<213> Homo sapiens

<400> 330

Ile Leu Ile Gly Ser Ser Phe Pro Leu Ser Gly Gly Arg
1 5 10

<210> 331

<211> 11

<212> PRT

<213> Homo sapiens

<400> 331

Ile Leu Val Leu Asp Asp Thr Asn His Glu Arg
1 5 10

<210> 332

<211> 12

<212> PRT

<213> Homo sapiens

<400> 332

Ile Met Asn Val Ile Gly Glu Pro Ile Asp Glu Arg
1 5 10

<210> 333

<211> 10

<212> PRP

<213> Homo sapiens

<400> 333

Ile Asn Phe Asp Ser Asn Ser Ala Tyr Arg
1 5 10

<210> 334

<211> 12

<212> PRT

<213> Homo sapiens

<400> 334

Ile Asn Val Tyr Tyr Asn Glu Ala Ala Gly Asn Lys
1 5 10

<210> 335

<211> 12

<212> PRT

<213> Homo sapiens

<400> 335

Ile Asn Val Tyr Tyr Asn Glu Ala Thr Gly Gly Lys
1 5 10

<210> 336

<211> 16

<212> PRT

<213> Homo sapiens

<400> 336

Ile Asn Val Tyr Tyr Asn Glu Ala Thr Gly Gly Asn Tyr Val Pro Arg
1 5 10 15

<210> 337

<211> 7
<212> PRT
<213> Homo sapiens

<400> 337

Ile Asn Tyr Thr Glu Gly Arg
1 5

<210> 338
<211> 9
<212> PRT
<213> Homo sapiens

<400> 338

Ile Pro Leu Ala Glu Trp Glu Ser Arg
1 5

<210> 339
<211> 15
<212> PRT
<213> Homo sapiens

<400> 339

Ile Pro Asn Gln Phe Gln Ser Asp Pro Pro Ala Pro Ser Asp Lys
1 5 10 15

<210> 340
<211> 12
<212> PRT
<213> Homo sapiens

<400> 340

Ile Pro Gln Ser Thr Leu Ser Glu Phe Tyr Pro Arg
1 5 10

<210> 341
<211> 9
<212> PRT
<213> Homo sapiens

<400> 341

Ile Pro Thr Pro Val Ile His Thr Lys
1 5

<210> 342
<211> 10
<212> PRT
<213> Homo sapiens

<400> 342

Ile Pro Val Gly Pro Glu Thr Leu Gly Arg
1 5 10

<210> 343
<211> 14
<212> PRT
<213> Homo sapiens

<400> 343

Ile Gln Ala Leu Gln Gln Ala Asp Glu Ala Glu Asp Arg
1 5 10

<210> 344
<211> 7
<212> PRT
<213> Homo sapiens

<400> 344

Ile Gln Asp Trp Tyr Asp Lys
1 5

<210> 345
<211> 10
<212> PRT
<213> Homo sapiens

<400> 345

Ile Gln Leu Val Glu Glu Leu Asp Arg
1 5 10

<210> 346
<211> 11
<212> PRT
<213> Homo sapiens

<400> 346

Ile Gln Met Ser Asn Leu Met Asn Gln Ala Arg
1 5 10

<210> 347
<211> 13
<212> PRT
<213> Homo sapiens

<400> 347

Ile Gln Pro Gly Asn Pro Asn Tyr Thr Leu Ser Leu Lys
1 5 10

<210> 348
<211> 15

<212> PRT

<213> Homo sapiens

<400> 348

Ile Gln Gln Glu Ile Ala Val Gln Asn Pro Leu Val Ser Glu Arg
1 5 10 15

<210> 349

<211> 14

<212> PRT

<213> Homo sapiens

<400> 349

Ile Gln Val Leu Gln Gln Ala Asp Asp Ala Gln Glu Arg
1 5 10

<210> 350

<211> 11

<212> PRT

<213> Homo sapiens

<400> 350

Ile Ser Ala Glu Gly Gly Gln Val Glu Arg
1 5 10

<210> 351

<211> 10

<212> PRT

<213> Homo sapiens

<400> 351

Ile Ser Glu Gln Phe Thr Ala Met Phe Arg
1 5 10

<210> 352

<211> 10

<212> PRT

<213> Homo sapiens

<400> 352

Ile Ser Glu Gln Thr Tyr Gln Leu Ser Arg
1 5 10

<210> 353

<211> 12

<212> PRT

<213> Homo sapiens

<400> 353

Ile Ser Ser Asp Leu Asp Gly His Pro Val Pro Lys

1 5 10

<210> 354
<211> 18
<212> PRT
<213> Homo sapiens

<400> 354

Ile Ser Val Gly Ser Asp Ser Asp Leu Val Ile Trp Asp Pro Asp Ala
1 5 10 15

Val Lys

<210> 355
<211> 12
<212> PRT
<213> Homo sapiens

<400> 355

Ile Ser Val Tyr Tyr Asn Glu Ala Thr Gly Gly Lys
1 5 10

<210> 356
<211> 12
<212> PRT
<213> Homo sapiens

<400> 356

Ile Ser Trp Ala Met Glu Asp Ser Asp Leu Glu Arg
1 5 10

<210> 357
<211> 13
<212> PRT
<213> Homo sapiens

<400> 357

Ile Thr Glu Ile Tyr Glu Gly Thr Ser Glu Ile Gln Arg
1 5 10

<210> 358
<211> 14
<212> PRT
<213> Homo sapiens

<400> 358

Ile Thr Ile Pro Val Gln Thr Phe Ser Asp Leu Gln Ile Arg
1 5 10

<210> 359

<211> 14

<212> FRT

<213> Homo sapiens

<400> 359

Ile Thr Pro Ser Tyr Val Ala Phe Thr Pro Glu Gly Glu Arg
1 5 10

<210> 360

<211> 12

<212> FRT

<213> Homo sapiens

<400> 360

Ile Thr Gln Tyr Leu Asp Ala Gly Gly Ile Pro Arg
1 5 10

<210> 361

<211> 14

<212> FRT

<213> Homo sapiens

<400> 361

Ile Thr Ser Ala Tyr Leu Gln Asp Ile Glu Asn Ala Tyr Lys
1 5 10

<210> 362

<211> 12

<212> FRT

<213> Homo sapiens

<400> 362

Ile Thr Trp Ser Asn Pro Pro Ala Gln Gly Ala Arg
1 5 10

<210> 363

<211> 12

<212> FRT

<213> Homo sapiens

<400> 363

Ile Val Phe Leu Glu Glu Ala Ser Gln Gln Glu Lys
1 5 10

<210> 364

<211> 14

<212> FRT

<213> Homo sapiens

<400> 364

Ile Val Ile Gly Met Asp Val Ala Ala Ser Glu Phe Tyr Arg
1 5 10

<210> 365

<211> 16

<212> PRT

<213> Homo sapiens

<400> 365

Ile Val Leu Glu Asp Gly Thr Leu His Val Thr Glu Gly Ser Gly Arg
1 5 10 15

<210> 366

<211> 9

<212> PRT

<213> Homo sapiens

<400> 366

Ile Val Val Val Thr Ala Gly Val Arg
1 5

<210> 367

<211> 16

<212> PRT

<213> Homo sapiens

<400> 367

Ile Val Tyr Gly His Leu Asp Asp Pro Ala Ser Gln Glu Ile Glu Arg
1 5 10 15

<210> 368

<211> 9

<212> PRT

<213> Homo sapiens

<400> 368

Ile Trp Ala Asp Ile Pro Ala Pro Lys
1 5

<210> 369

<211> 11

<212> PRT

<213> Homo sapiens

<400> 369

Ile Tyr Ala Met His Trp Gly Thr Asp Ser Arg
1 5 10

<210> 370

<211> 18

<212> PRT

<213> Homo sapiens

<400> 370

Ile Tyr Glu Leu Ala Ala Gly Gly Thr Ala Val Gly Thr Gly Leu Asn
1 5 10 15

Thr Arg

<210> 371

<211> 12

<212> PRT

<213> Homo sapiens

<400> 371

Ile Tyr Gly Leu Gly Ser Leu Ala Leu Tyr Glu Lys
1 5 10

<210> 372

<211> 13

<212> PRT

<213> Homo sapiens

<400> 372

Ile Tyr Gln Ile Tyr Glu Gly Thr Ser Gln Ile Gln Arg
1 5 10

<210> 373

<211> 10

<212> PRT

<213> Homo sapiens

<400> 373

Lys Phe His Ser Phe Gly Tyr Ala Ala Arg
1 5 10

<210> 374

<211> 10

<212> PRT

<213> Homo sapiens

<400> 374

Lys Phe Val Ile Asp Val Gly Tyr Glu Arg
1 5 10

<210> 375

<211> 8

<212> PRT

<213> Homo sapiens

<400> 375

Lys Gly Asp Ile Phe Leu Val Arg
1 5

<210> 376

<211> 7

<212> PRT

<213> Homo sapiens

<400> 376

Lys Gly Tyr Phe Glu Asp Arg
1 5

<210> 377

<211> 15

<212> PRT

<213> Homo sapiens

<400> 377

Lys His Gln Ala Leu Gln Ala Glu Ile Ala Gly His Glu Pro Arg
1 5 10 15

<210> 378

<211> 16

<212> PRT

<213> Homo sapiens

<400> 378

Lys Ile Glu Ser Leu Glu Glu Ile Arg
1 5 10

<210> 379

<211> 12

<212> PRT

<213> Homo sapiens

<400> 379

Lys Leu Glu Glu Leu Glu Leu Asp Glu Gln Gln Arg
1 5 10

<210> 380

<211> 11

<212> PRT

<213> Homo sapiens

<400> 380

Lys Leu Val Ile Ile Glu Gly Asp Leu Glu Arg

3 5 10

<210> 381
<211> 11
<212> PRT
<213> Homo sapiens

<400> 381

Lys Leu Val Ile Leu Glu Gly Glu Leu Glu Arg
1 5 10

<210> 382
<211> 10
<212> PRT
<213> Homo sapiens

<400> 382

Lys Met Asn Leu Gly Val Gly Ala Tyr Arg
1 5 10

<210> 383
<211> 9
<212> PRT
<213> Homo sapiens

<400> 383

Lys Asn Gly Ile Pro Leu Glu Leu Arg
1 5

<210> 384
<211> 11
<212> PRT
<213> Homo sapiens

<400> 384

Lys Gln Asn Asp Val Phe Gly Glu Ala Glu Gln
1 5 10

<210> 385
<211> 15
<212> PRT
<213> Homo sapiens

<400> 385

Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg
1 5 10 15

<210> 386
<211> 13
<212> PRT

<213> Homo sapiens

<400> 386

Lys Tyr Pro Tyr Trp Pro His Gln Pro Ile Glu Asn Leu
1 5 10

<210> 387

<211> 12

<212> PRT

<213> Homo sapiens

<400> 387

Leu Ala Asp Met Ala Leu Ala Leu Glu Ser Ala Arg
1 5 10

<210> 388

<211> 10

<212> PRT

<213> Homo sapiens

<400> 388

Leu Ala Asp Val Tyr Gln Ala Glu Leu Arg
1 5 10

<210> 389

<211> 15

<212> PRT

<213> Homo sapiens

<400> 389

Leu Ala Gly Thr Gln Pro Leu Glu Val Leu Glu Ala Val Gln Arg
1 5 10 15

<210> 390

<211> 7

<212> PRT

<213> Homo sapiens

<400> 390

Leu Ala Ser Phe Tyr Glu Arg
1 5

<210> 391

<211> 17

<212> PRT

<213> Homo sapiens

<400> 391

Leu Ala Thr Gln Ser Asn Glu Ile Thr Ile Pro Val Thr Phe Glu Ser
1 5 10 15

Arg

<210> 392

<211> 16

<212> PRT

<213> Homo sapiens

<400> 392

Leu Ala Val Glu Ala Leu Ser Ser Leu Asp Gly Asp Leu Ala Gly Arg
1 5 10 15

<210> 393

<211> 10

<212> PRT

<213> Homo sapiens

<400> 393

Leu Ala Val Asn Met Val Pro Phe Pro Arg
1 5 10

<210> 394

<211> 11

<212> PRT

<213> Homo sapiens

<400> 394

Leu Asp Ala Ser Leu Val Ile Ala Gly Val Arg
1 5 10

<210> 395

<211> 12

<212> PRT

<213> Homo sapiens

<400> 395

Leu Asp Glu Leu Glu Glu Leu Leu Thr Asn Asn Arg
1 5 10

<210> 396

<211> 11

<212> PRT

<213> Homo sapiens

<400> 396

Leu Asp Ile Asp Ser Pro Pro Ile Thr Ala Arg
1 5 10

<210> 397

<211> 7

<212> PRT

<213> Homo sapiens

<400> 397

Leu Asp Ile Glu Gln Tyr Arg
1 5

<210> 398

<211> 13

<212> PRT

<213> Homo sapiens

<400> 398

Leu Asp Leu Ile Ala Gln Gln Met Met Pro Glu Val Arg
1 5 10

<210> 399

<211> 12

<212> PRT

<213> Homo sapiens

<400> 399

Leu Asp Asn Leu Val Ala Ile Leu Asp Ile Asn Arg
1 5 10

<210> 400

<211> 10

<212> PRT

<213> Homo sapiens

<400> 400

Leu Asp Val Thr Ser Val Glu Asp Tyr Lys
1 5 10

<210> 401

<211> 11

<212> PRT

<213> Homo sapiens

<400> 401

Leu Glu Ala Glu Asn Asn Leu Ala Ala Tyr Arg
1 5 10

<210> 402

<211> 11

<212> PRT

<213> Homo sapiens

<400> 402

: Leu Glu Ala Pro Asp Ala Asp Glu Leu Pro Lys
1 5 10

<210> 403

<211> 14

<212> PRT

<213> Homo sapiens

<400> 403

Leu Glu Glu Glu Gly Gln Ser Leu Lys Asp Glu Met Ala Arg
1 5 10

<210> 404

<211> 13

<212> PRT

<213> Homo sapiens

<400> 404

Leu Glu Glu Gly Pro Pro Val Thr Thr Val Leu Thr Arg
1 5 10

<210> 405

<211> 16

<212> PRT

<213> Homo sapiens

<400> 405

Leu Glu Glu Val Ser Pro Asn Leu Val Arg
1 5 10

<210> 406

<211> 15

<212> PRT

<213> Homo sapiens

<400> 406

Leu Glu Leu Phe Leu Pro Glu Glu Tyr Pro Met Ala Ala Pro Lys
1 5 10 15

<210> 407

<211> 15

<212> PRT

<213> Homo sapiens

<400> 407

Leu Glu Gln Gly Gln Ala Thr Asp Asp Leu Met Pro Ala Gln Lys
1 5 10 15

<210> 408

<211> 10
<212> PRT
<213> Homo sapiens

<400> 408

Leu Phe Ala Asp Ala Glu Glu Glu Arg
1 5 10

<210> 409
<211> 10
<212> PRT
<213> Homo sapiens

<400> 409

Leu Phe Asp Gln Ala Phe Gly Leu Pro Arg
1 5 10

<210> 410
<211> 11
<212> PRT
<213> Homo sapiens

<400> 410

Leu Phe Glu Ala Glu Glu Gln Asp Leu Phe Arg
1 5 10

<210> 411
<211> 11
<212> PRT
<213> Homo sapiens

<400> 411

Leu Phe Glu Ala Ser Ile Glu Thr Gly Asp Arg
1 5 10

<210> 412
<211> 9
<212> PRT
<213> Homo sapiens

<400> 412

Leu Phe Gly Ala Ala Glu Val Gln Arg
1 5

<210> 413
<211> 11
<212> PRT
<213> Homo sapiens

<400> 413

Leu Phe Ser Gly Asp Val Val Leu Thr Ala Arg
1 5 10

<210> 414

<211> 8

<212> PRT

<213> Homo sapiens

<400> 414

Leu Phe Thr Pro Asp Val Ile Arg
1 5

<210> 415

<211> 12

<212> PRT

<213> Homo sapiens

<400> 415

Leu Phe Val Thr Asn Asp Ala Ala Thr Ile Leu Arg
1 5 10

<210> 416

<211> 11

<212> PRT

<213> Homo sapiens

<400> 416

Leu Phe Tyr Ser Thr Phe Ala Thr Asp Asp Arg
1 5 10

<210> 417

<211> 10

<212> PRT

<213> Homo sapiens

<400> 417

Leu Gly Ala Glu Val Tyr His Thr Leu Lys
1 5 10

<210> 418

<211> 10

<212> PRT

<213> Homo sapiens

<400> 418

Leu Gly Asp Leu Tyr Glu Glu Glu Met Arg
1 5 10

<210> 419

<211> 10

<212> PRT

<213> Homo sapiens

<400> 419

Leu Gly Phe Glu Asp Gly Ser Val Leu Lys
1 5 10

<210> 420

<211> 14

<212> PRT

<213> Homo sapiens

<400> 420

Leu Gly Gly Asn Val Val Val Ser Leu Glu Gly Lys Pro Leu
1 5 10

<210> 421

<211> 13

<212> PRT

<213> Homo sapiens

<400> 421

Leu Gly Val Glu Phe Asp Glu Thr Thr Ala Asp Asp Arg
1 5 10

<210> 422

<211> 16

<212> PRT

<213> Homo sapiens

<400> 422

Leu Gly Tyr Ile Leu Thr Cys Pro Ser Asn Leu Gly Thr Gly Leu Arg
1 5 10 15

<210> 423

<211> 9

<212> PRT

<213> Homo sapiens

<400> 423

Leu His Val Asp Pro Glu Asn Phe Arg
1 5

<210> 424

<211> 16

<212> PRT

<213> Homo sapiens

<400> 424

Leu Ile Ala Pro Val Ala Glu Glu Ala Thr Val Pro Asn Asn Lys

1 5 10 15

<210> 425
<211> 12
<212> PRT
<213> Homo sapiens

<400> 425

Leu Ile Glu Glu Val His Ala Val Val Thr Val Arg
1 5 10

<210> 426
<211> 11
<212> PRT
<213> Homo sapiens

<400> 426

Leu Ile Glu Glu Val Met Ile Gly Glu Asp Lys
1 5 10

<210> 427
<211> 9
<212> PRT
<213> Homo sapiens

<400> 427

Leu Ile Gly Thr Ala Val Pro Gln Arg
1 5

<210> 428
<211> 11
<212> PRT
<213> Homo sapiens

<400> 428

Leu Ile Ile Trp Asp Ser Tyr Thr Thr Asn Lys
1 5 10

<210> 429
<211> 14
<212> PRT
<213> Homo sapiens

<400> 429

Leu Ile Ser Trp Tyr Asp Asn Glu Phe Gly Tyr Ser Asn Arg
1 5 10

<210> 430
<211> 10
<212> PRT

<213> Homo sapiens

<400> 430

Leu Lys Asp Asp Glu Val Ala Gln Leu Lys
1 5 10

<210> 431

<211> 14

<212> PRT

<213> Homo sapiens

<400> 431

Leu Lys Pro Gln Tyr Leu Glu Glu Leu Pro Gly Gln Leu Lys
1 5 10

<210> 432

<211> 10

<212> PRT

<213> Homo sapiens

<400> 432

Leu Leu Ala Glu Pro Val Pro Gly Ile Lys
1 5 10

<210> 433

<211> 10

<212> PRT

<213> Homo sapiens

<400> 433

Leu Leu Ala Ser Asp Ala Gly Leu Tyr Arg
1 5 10

<210> 434

<211> 12

<212> PRT

<213> Homo sapiens

<400> 434

Leu Leu Asp Glu Leu Thr Leu Glu Gly Val Ala Arg
1 5 10

<210> 435

<211> 16

<212> PRT

<213> Homo sapiens

<400> 435

Leu Leu Asp Gly Asp Asp Gly Pro Leu Arg
1 5 10

<210> 436
<211> 9
<212> PRT
<213> Homo sapiens

<400> 436

Leu Leu Glu Ala Gln Ser His Phe Arg
1 5

<210> 437
<211> 8
<212> PRT
<213> Homo sapiens

<400> 437

Leu Leu Glu Gly Glu Glu Asn Arg
1 5

<210> 438
<211> 13
<212> PRT
<213> Homo sapiens

<400> 438

Leu Leu Phe Glu Gly Ala Gly Ser Asn Pro Gly Asp Lys
1 5 10

<210> 439
<211> 9
<212> PPT
<213> Homo sapiens

<400> 439

Leu Leu Gly Glu Leu Leu Leu Asp Arg
1 5

<210> 440
<211> 13
<212> PRT
<213> Homo sapiens

<400> 440

Leu Leu Leu Glu Phe Thr Asp Thr Ser Tyr Glu Glu Lys
1 5 10

<210> 441
<211> 13
<212> PPT
<213> Homo sapiens

<400> 441

Leu Leu Leu Glu Tyr Thr Asp Ser Ser Tyr Glu Glu Lys
1 5 10

<210> 442

<211> 7

<212> PRT

<213> Homo sapiens

<400> 443

Leu Leu Asn Leu Tyr Pro Arg
1 5

<210> 443

<211> 13

<212> PRT

<213> Homo sapiens

<400> 443

Leu Leu Ser Ala Glu Phe Leu Glu Gln His Tyr Asp Arg
1 5 10

<210> 444

<211> 9

<212> PRT

<213> Homo sapiens

<400> 444

Leu Leu Thr Ser Gly Tyr Leu Gln Arg
1 5

<210> 445

<211> 10

<212> PRT

<213> Homo sapiens

<400> 445

Leu Leu Val Val Tyr Pro Trp Thr Gln Arg
1 5 10

<210> 446

<211> 12

<212> PRT

<213> Homo sapiens

<400> 446

Leu Met Asp Glu Val Ala Gly Ile Val Ala Ala Arg
1 5 10

<210> 447

<211> 9

<212> PRT

<213> Homo sapiens

<400> 447

Leu Asn Asp Phe Ala Ser Thr Val Arg
1 5

<210> 448

<211> 11

<212> PRT

<213> Homo sapiens

<400> 448

Leu Asn GLY Thr Asp Pro Glu Asp Val Ile Arg
1 5 10

<210> 449

<211> 16

<212> PRT

<213> Homo sapiens

<400> 449

Leu Asn Leu Glu Ala Ile Asn Tyr Met Ala Ala Asp Gly Asp Phe Lys
1 5 10 15

<210> 450

<211> 16

<212> PRT

<213> Homo sapiens

<400> 450

Leu Pro Asp Gly Ser Glu Ile Pro Leu Pro Pro Ile Leu Leu Gly Arg
1 5 10 15

<210> 451

<211> 8

<212> PRT

<213> Homo sapiens

<400> 451

Leu Pro Asp Gly Tyr Glu Phe Lys
1 5

<210> 452

<211> 9

<212> PRT

<213> Homo sapiens

<400> 452

Leu Pro Phe Pro Ile Ile Asp Asp Arg
1 5

<310> 453

<211> 8

<212> PRT

<213> Homo sapiens

<400> 453

Leu Pro Leu Gln Asp Val Tyr Lys
1 5

<310> 454

<211> 10

<212> PRT

<213> Homo sapiens

<400> 454

Leu Gln Ala Val Thr Asp Asp His Ile Arg
1 5 10

<310> 455

<211> 9

<212> PRT

<213> Homo sapiens

<400> 455

Leu Gln Asp Glu Thr Asn Leu Arg
1 5

<210> 456

<211> 10

<212> PRT

<213> Homo sapiens

<400> 456

Leu Gln Phe Pro Leu Pro Thr Ala Gln Arg
1 5 10

<310> 457

<211> 11

<212> PRT

<213> Homo sapiens

<400> 457

Leu Gln His Gly Ser Ile Leu Gly Phe Pro Lys
1 5 10

<210> 466

<211> 13

<212> PRT

<213> Homo sapiens

<400> 466

Leu Gln Ser Ile Gly Thr Glu Asn Thr Glu Glu Asn Arg
1 5 10

<210> 459

<211> 17

<212> PRT

<213> Homo sapiens

<400> 459

Leu Gln Ser Ser Asp Gly Glu Ile Phe Glu Val Asp Val Glu Ile Ala
1 5 10 15

Lys

<210> 460

<211> 9

<212> PRT

<213> Homo sapiens

<400> 460

Leu Gln Ser Trp Leu Tyr Ser Ser Arg
1 5

<210> 461

<211> 12

<212> PRT

<213> Homo sapiens

<400> 461

Leu Gln Val Ala Gly Glu Ile Thr Thr Gly Pro Arg
1 5 10

<210> 462

<211> 11

<212> PRT

<213> Homo sapiens

<400> 462

Leu Gin Val Ser Gin Gin Glu Asp Ile Thr Lys
1 5 10

<210> 463

<211> 10

<212> PRT

<213> Homo sapiens

<400> 463

Leu Arg Asp Asp Thr Glu Ala Ala Ile Arg
1 5 10

<210> 464

<211> 12

<212> PRT

<213> Homo sapiens

<400> 464

Leu Arg Pro Glu Ser Ala Leu Ala Gln Ala Gln Lys
1 5 10

<210> 465

<211> 9

<212> PRT

<213> Homo sapiens

<400> 465

Leu Ser Glu Asp Tyr Gly Val Leu Lys
1 5

<210> 466

<211> 9

<212> PRT

<213> Homo sapiens

<400> 466

Leu Ser Pro Thr Asp Asn Leu Pro Arg
1 5

<210> 467

<211> 13

<212> PRT

<213> Homo sapiens

<400> 467

Leu Ser Gln Ile Gly Val Glu Asn Thr Glu Glu Asn Arg
1 5 10

<210> 468

<211> 13

<212> PRT

<213> Homo sapiens

<400> 468

Leu Thr Phe Asp Ser Ser Phe Ser Pro Asn Thr Gly Lys

1 5 10

<210> 469
<211> 13
<212> PRT
<213> Homo sapiens

<400> 469

Leu Thr Phe Asp Thr Thr Phe Ser Pro Asn Thr Gly Lys
1 5 10

<210> 470
<211> 10
<212> PRT
<213> Homo sapiens

<400> 470

Leu Thr Leu Ser Ala Leu Leu Asp Gly Lys
1 5 10

<210> 471
<211> 12
<212> PRT
<213> Homo sapiens

<400> 471

Leu Thr Asn Ser Gln Asn Phe Asp Glu Tyr Met Lys
1 5 10

<210> 472
<211> 16
<212> PRT
<213> Homo sapiens

<400> 472

Leu Val Gly Ala Ile Val Tyr Tyr Asp Gly Gln His Asn Asp Ala Arg
1 5 10 15

<210> 473
<211> 10
<212> PRT
<213> Homo sapiens

<400> 473

Leu Val Ile Ile Glu Ser Asp Leu Glu Arg
1 5 10

<210> 474
<211> 9
<212> PRT

<213> Homo sapiens

<400> 474

Leu Val Ile Ile Thr Ala Gly Ala Arg
1 5

<210> 475

<211> 14

<212> PPT

<213> Homo sapiens

<400> 475

Leu Val Ile Asn Gly Asn Pro Ile Thr Ile Phe Gln Glu Arg
1 5 10

<210> 476

<211> 10

<212> PPT

<213> Homo sapiens

<400> 476

Leu Val Asn Glu Val Thr Glu Phe Ala Lys
1 5 10

<210> 477

<211> 10

<212> PPT

<213> Homo sapiens

<400> 477

Leu Val Gln Ala Phe Gln Phe Thr Asp Lys
1 5 10

<210> 478

<211> 13

<212> PPT

<213> Homo sapiens

<400> 478

Leu Trp Gly Asp Ser Gly Ile Gln Glu Cys Phe Asn Arg
1 5 10

<210> 479

<211> 11

<212> PPT

<213> Homo sapiens

<400> 479

Leu Tyr Pro Glu Gly Leu Ala Gln Leu Ala Arg
1 5 10

<210> 480
<211> 12
<212> PRT
<213> Homo sapiens

<400> 480

Leu Tyr Pro Pro Ser Ala Glu Tyr Pro Asp Leu Arg
1 5 10

<210> 481
<211> 8
<212> PRT
<213> Homo sapiens

<400> 481

Leu Tyr Ser Leu Gly Asn Gly Arg
1 5

<210> 482
<211> 14
<212> PRT
<213> Homo sapiens

<400> 482

Leu Tyr Thr Leu Val Leu Thr Asp Pro Asp Ala Pro Ser Arg
1 5 10

<210> 483
<211> 9
<212> PRT
<213> Homo sapiens

<400> 483

Met Ala Asp Leu His Ala Val Pro Arg
1 5

<210> 484
<211> 12
<212> PRT
<213> Homo sapiens

<400> 484

Met Ala Gly Thr Ala Phe Asp Phe Glu Asn Met Lys
1 5 10

<210> 485
<211> 13
<212> PRT
<213> Homo sapiens

<400> 485

Met Ala Gly Thr Ala Phe Asp Phe Glu Asn Met Lys Arg
1 5 10

<210> 486

<211> 9

<212> PRT

<213> Homo sapiens

<400> 486

Met Asp Ala Glu His Pro Glu Leu Arg
1 5

<210> 487

<211> 16

<212> PRT

<213> Homo sapiens

<400> 487

Met Asp Glu Asn Gln Phe Val Ala Val Thr Ser Thr Asn Ala Ala Lys
1 5 10 15

<210> 488

<211> 6

<212> PRT

<213> Homo sapiens

<400> 488

Met Phe Asp Val Gly Gly Gln Arg
1 5

<210> 489

<211> 7

<212> PRT

<213> Homo sapiens

<400> 489

Met Phe Glu Phe Tyr Glu Arg
1 5

<210> 490

<211> 9

<212> PRT

<213> Homo sapiens

<400> 490

Met Phe Leu Ser Phe Pro Thr Thr Lys
1 5

<210> 491
<211> 12
<212> PRT
<213> Homo sapiens

<400> 491

Met Ile Glu Glu Ala Gly Ala Ile Ile Ser Thr Arg
1 5 10

<210> 492
<211> 11
<212> PRT
<213> Homo sapiens

<400> 492

Met Ile Gly Gly Pro Ile Leu Pro Ser Glu Arg
1 5 10

<210> 493
<211> 11
<212> PRT
<213> Homo sapiens

<400> 493

Met Leu Leu Ala Asp Gln Gly Gln Ser Trp Lys
1 5 10

<210> 494
<211> 9
<212> PRT
<213> Homo sapiens

<400> 494

Met Leu Leu Tyr Thr Glu Val Thr Arg
1 5

<210> 495
<211> 7
<212> PRT
<213> Homo sapiens

<400> 495

Met Leu Pro Ser Phe Val Arg
1 5

<210> 496
<211> 7
<212> PRT
<213> Homo sapiens

<400> 496

Met Leu Pro Thr Phe Val Arg
1 5

<210> 497

<211> 12

<212> PRT

<213> Homo sapiens

<400> 497

Met Leu Val Asn Glu Asn Phe Glu Glu Tyr Leu Arg
1 5 10

<210> 498

<211> 17

<212> PRT

<213> Homo sapiens

<400> 498

Met Pro Phe Pro Val Asn His Gly Ala Ser Ser Glu Asp Thr Leu Leu
1 5 10 15

Lys

<210> 499

<211> 9

<212> PRT

<213> Homo sapiens

<400> 499

Met Pro Leu Phe Glu His Tyr Thr Arg
1 5

<210> 500

<211> 15

<212> PRT

<213> Homo sapiens

<400> 500

Met Gln Leu Lys Pro Met Glu Ile Asn Pro Glu Met Leu Asn Lys
1 5 10 15

<210> 501

<211> 7

<212> PRT

<213> Homo sapiens

<400> 501

Met Ser Val Ile Trp Glu Arg
1 5

<210> 502
<211> 18
<212> PRT
<213> Homo sapiens

<400> 502

Met Thr Asp Ser Phe Thr Glu Gln Ala Asp Gln Val Thr Ala Glu Val
1 5 10 15

Gly Lys

<210> 503
<211> 7
<212> PRT
<213> Homo sapiens

<400> 503

Met Thr Leu Asp Asp Phe Arg
1 5

<210> 504
<211> 8
<212> PRT
<213> Homo sapiens
<400> 504

Met Val Glu Gly Phe Phe Asp Arg
1 5

<210> 505
<211> 12
<212> PRT
<213> Homo sapiens
<400> 505

Met Val Ile Pro Gly Gly Ile Asp Val His Thr Arg
1 5 10

<210> 506
<211> 14
<212> PRT
<213> Homo sapiens

<400> 506

Met Val Met Thr Leu Thr Phe Gly Asp Val Val Ala Val Arg
1 5 10

<210> 507
<211> 14
<212> PRT
<213> Homo sapiens

24002 503

Met Val Ser Ser Tyr Val Gly Glu Asn Ala Glu Phe Glu Arg
11 S 18

4210> 508

◀221▶ 22

<212> PRT

<213> Homo sapiens

400 508

4210 509

<211> 15

42123 PRT

<213> Homo sapiens

<400> 509

4210A 500

42112 12

-<212> FRT

<213> Homo sapiens

人名索引 三七〇

<2310> 521

<211> 18

<212> BRT

213 Homo sapiens

4000 511

Asn Glu Glu Asp Ala Ala Glu Leu Val Ala Leu Ala Sln Ala Val Asn
 1 S . . . 10 . . . 15

Ala Arg

<210> 512
<211> 13
<212> PRT
<213> Homo sapiens

<400> 512

Asn Glu Gln Asp Ala Tyr Ala Ile Asn Ser Tyr Thr Arg
1 5 10

<210> 513
<211> 11
<212> PRT
<213> Homo sapiens

<400> 513

Asn Phe Ile Ala Gln Gly Pro Tyr Glu Asn Arg
1 5 10

<210> 514
<211> 12
<212> PRT
<213> Homo sapiens

<400> 514

Asn Phe Ser Gly Ala Glu Leu Glu Gly Leu Val Arg
1 5 10

<210> 515
<211> 9
<212> PRT
<213> Homo sapiens

<400> 515

Asn Gly Asp Gly Thr Ile Asp Phe Arg
1 5

<210> 516
<211> 8
<212> PRT
<213> Homo sapiens

<400> 516

Asn Gly Ile Pro Leu Glu Leu Arg
1 5

<210> 517
<211> 13
<212> PRT
<213> Homo sapiens

<400> 517

Asn Gly Ser Gly Thr Leu Asp Leu Glu Glu Phe Leu Arg
1 5 10

<210> 518

<211> 6

<212> PRT

<213> Homo sapiens

<400> 518

Asn Ile Ile Leu Glu Glu Gly Lys
1 5

<210> 519

<211> 9

<212> PRT

<213> Homo sapiens

<400> 519

Asn Ile Leu Gly Gly Thr Val Phe Arg
1 5

<210> 520

<211> 13

<212> PRT

<213> Homo sapiens

<400> 520

Asn Ile Leu Leu Thr Asn Glu Gln Leu Glu Ser Ala Arg
1 5 10

<210> 521

<211> 13

<212> PRT

<213> Homo sapiens

<400> 521

Asn Leu Phe Ser Gln Thr Leu Ser Leu Gly Ser Gln Lys
1 5 10

<210> 522

<211> 14

<212> PRT

<213> Homo sapiens

<400> 522

Asn Leu Gly Leu Glu Glu Leu Gly Ile Glu Leu Asp Pro Arg
1 5 10

<210> 523

<211> 9

<212> PRT

<213> Homo sapiens

<400> 523

Asn Leu Asn His Val Ser Tyr Gly Arg

1 5

<210> 524

<211> 10

<212> PRT

<213> Homo sapiens

<400> 524

Asn Leu Glu Tyr Tyr Asp Ile Ser Ala Lys

1 5 10

<210> 525

<211> 6

<212> PRT

<213> Homo sapiens

<400> 525

Asn Met Gly Leu Tyr Gly Glu Arg

1 5

<210> 526

<211> 12

<212> PRT

<213> Homo sapiens

<400> 526

Asn Asn Ile Ala Met Ala Leu Glu Val Thr Tyr Arg

1 5 10

<210> 527

<211> 11

<212> PRT

<213> Homo sapiens

<400> 527

Asn Asn Leu Asn Pro Ser Trp Glu Pro Phe Arg

1 5 10

<210> 528

<211> 13

<212> PRT

<213> Homo sapiens

<400> 528

Asn Asn Thr Val Gly Leu Ile Gln Leu Asn Arg Pro Lys
1 5 10

<210> 529

<211> 15

<212> SRT

<213> Homo sapiens

<400> 529

Asn Pro Asp Asp Ile Thr Asn Glu Glu Tyr Gly Glu Phe Tyr Lys
1 5 10 15

<210> 530

<211> 15

<212> SRT

<213> Homo sapiens

<400> 530

Asn Pro Asp Asp Ile Thr Gln Glu Glu Tyr Gly Glu Phe Tyr Lys
1 5 10 15

<210> 531

<211> 14

<212> SRT

<213> Homo sapiens

<400> 531

Asn Ser Ser Tyr Phe Val Glu Trp Ile Pro Asn Asn Val Lys
1 5 10

<210> 532

<211> 13

<212> SRT

<213> Homo sapiens

<400> 532

Asn Thr Gly Ile Ile Cys Thr Ile Gly Pro Ala Ser Arg
1 5 10

<210> 533

<211> 9

<212> SRT

<213> Homo sapiens

<400> 533

Asn Thr Pro Ala Phe Phe Ala Glu Arg
1 5

<210> 534

<211> 10

<212> PRT

<213> Homo sapiens

<400> S34

Asn Val Ala Asp Tyr Tyr Pro Glu Tyr Lys
1 5 10

<210> S35

<211> 11

<212> PRT

<213> Homo sapiens

<400> S35

Asn Val Asp Leu Ser Thr Phe Tyr Gln Asn Arg
1 5 10

<210> S36

<211> 6

<212> PRT

<213> Homo sapiens

<400> S36

Asn Val Asp Val Glu Phe Phe Lys
1 5

<210> S37

<211> 11

<212> PRT

<213> Homo sapiens

<400> S37

Asn Val Asn Gln Ser Leu Leu Glu Leu His Lys
1 5 10

<210> S38

<211> 13

<212> PRT

<213> Homo sapiens

<400> S38

Asn Val Thr Val Thr Asp Val Asp Ile Val Phe Ser Lys
1 5 10

<210> S39

<211> 12

<212> PRT

<213> Homo sapiens

<400> S39

Asn Val Val Leu Ser Gly Gly Ser Thr Met Phe Arg

1 5 10

<210> 540
<211> 7
<212> PRT
<213> Homo sapiens

<400> 540

Asn Tyr Leu Ser Gln Pro Arg
1 5

<210> 541
<211> 10
<212> PRT
<213> Homo sapiens

<400> 541

Pro Met Thr Leu Gly Tyr Trp Asn Ile Arg
1 5 10

<210> 542
<211> 11
<212> PRT
<213> Homo sapiens

<400> 542

Pro Pro Tyr Thr Val Val Tyr Phe Pro Val Arg
1 5 10.

<210> 543
<211> 12
<212> PRT
<213> Homo sapiens

<400> 543

Pro Tyr Gln Tyr Pro Ala Leu Thr Pro Glu Gln Lys
1 5 10

<210> 544
<211> 10
<212> PRT
<213> Homo sapiens

<400> 544

Gln Ala Ile Thr Gln Val Val Val Ser Arg
1 5 10

<210> 545
<211> 12
<212> PRT

<213> Homo sapiens

<400> 545

Gln Ala Val Gln Ile Leu Gln Gln Val Thr Val Arg
1 5 10

<210> 546

<211> 9

<212> PRT

<213> Homo sapiens

<400> 546

Gln Asp Glu His Gly Phe Ile Ser Arg
1 5

<210> 547

<211> 9

<212> PRT

<213> Homo sapiens

<400> 547

Gln Asp Gly Ser Val Asp Phe Gly Arg
1 5

<210> 548

<211> 10

<212> PRT

<213> Homo sapiens

<400> 548

Gln Glu Ala Asp Glu Ala Thr Leu Ala Arg
1 5 10

<210> 549

<211> 13

<212> PRT

<213> Homo sapiens

<400> 549

Gln Glu Tyr Asp Glu Ser Gly Pro Ser Ile Val His Arg
1 5 10

<210> 550

<211> 8

<212> PRT

<213> Homo sapiens

<400> 550

Gln Phe Leu Ser Glu Thr Glu Lys
1 5

<210> 551
<211> 13
<212> PRT
<213> Homo sapiens

<400> 551

Gln Gly Phe Gly Asn Val Ala Thr Asn Thr Asp Gly Lys
1 S 10

<210> 552
<211> 16
<212> PRT
<213> Homo sapiens

<400> 552

Gln Gly Gly Leu Gly Pro Met Asn Ile Pro Leu Val Ser Asp Pro Lys
1 S 10 15

<210> 553
<211> 10
<212> PRT
<213> Homo sapiens

<400> 553

Gln Gly Ile Gln Phe Tyr Thr Gln Leu Lys
1 S 10

<210> 554
<211> 11
<212> PRT
<213> Homo sapiens

<400> 554

Gln His Val Thr Glu Ala Phe Gln Phe His Phe
1 S 10

<210> 555
<211> 8
<212> PRT
<213> Homo sapiens

<400> 555

Gln Ile Ile Val Glu Glu Ala Lys
1 S

<210> 556
<211> 7
<212> PRT
<213> Homo sapiens

<400> 556

Gln Ile Leu Leu Pro Phe Arg
1 5

<210> 557

<211> 11

<212> PRT

<213> Homo sapiens

<400> 557

Gln Ile Thr Val Asn Asp Leu Pro Val Gly Arg
1 5 10

<210> 558

<211> 14

<212> PRT

<213> Homo sapiens

<400> 558

Gln Ile Tyr Pro Pro Ile Asn Val Leu Pro Ser Leu Ser Arg
1 5 10

<210> 559

<211> 12

<212> PRT

<213> Homo sapiens

<400> 559

Gln Leu Phe His Pro Glu Gln Leu Ile Thr Gly Lys
1 5 10

<210> 560

<211> 12

<212> PRT

<213> Homo sapiens

<400> 560

Gln Leu Ile Cys Asp Pro Ser Tyr Ile Pro Asp Arg
1 5 10

<210> 561

<211> 9

<212> PRT

<213> Homo sapiens

<400> 561

Gln Leu Leu Leu Thr Ala Asp Asp Arg
1 5

<210> 562
<211> 13
<212> PRT
<213> Homo sapiens

<400> 562

Gln Leu Leu Thr Leu Ser Ser Glu Leu Ser Gln Ala Arg
1 5 10

<210> 563
<211> 13
<212> PRT
<213> Homo sapiens

<400> 563

Gln Leu Gln Ser Leu Thr Cys Asp Leu Glu Ser Leu Arg
1 5 10

<210> 564
<211> 7
<212> PRT
<213> Homo sapiens

<400> 564

Gln Met Ser Leu Leu Leu Arg
1 5

<210> 565
<211> 11
<212> PRT
<213> Homo sapiens

<400> 565

Gln Gln Ile Ser Leu Ala Thr Gln Met Val Arg
1 5 10

<210> 566
<211> 12
<212> PRT
<213> Homo sapiens

<400> 566

Gln Ser Pro Val Asp Ile Asp Thr His Thr Ala Lys
1 5 10

<210> 567
<211> 17
<212> PRT
<213> Homo sapiens

<400> 567

Gln Thr Gln Val Ser Val Leu Pro Glu Gly Gly Glu Thr Pro Leu Phe
1 5 10 15

Lys

<400> 568

<211> 9

<212> PRT

<213> Homo sapiens

<400> 568

Gln Thr Val Ala Val Gly Val Ile Lys
1 5

<400> 569

<211> 9

<212> PRT

<213> Homo sapiens

<400> 569

Gln Val Leu Phe Ser Ala Asp Asp Arg
1 5

<400> 570

<211> 11

<212> PRT

<213> Homo sapiens

<400> 570

Gln Val Tyr Met Ser Leu Pro Gln Gly Glu Lys
1 5 10

<400> 571

<211> 10

<212> PRT

<213> Homo sapiens

<400> 571

Arg Ile Pro Leu Ala Glu Trp Glu Ser Arg
1 5 10

<400> 572

<211> 7

<212> PRT

<213> Homo sapiens

<400> 572

Arg Leu Asp Phe Asp Tyr Lys
1 5

<210> 573
<211> 8
<212> PRT
<213> Homo sapiens

<400> 573

Arg Trp Pro Ile Val Gly Val Arg
1 5

<210> 574
<211> 10
<212> PRT
<213> Homo sapiens

<400> 574

Ser Ala Asp Phe Thr Asn Phe Asp Pro Arg
1 5 10

<210> 575
<211> 10
<212> PRT
<213> Homo sapiens

<400> 575

Ser Ala Asp Thr Leu Trp Asp Ile Gln Lys
1 5 10

<210> 576
<211> 16
<212> PRT
<213> Homo sapiens

<400> 576

Ser Ala Tyr Gly Gly Leu Gln Thr Ser Ser Tyr Leu Met Ser Thr Arg
1 5 10 15

<210> 577
<211> 17
<212> PRT
<213> Homo sapiens

<400> 577

Ser Ala Tyr Ser Ser Tyr Ser Ala Pro Val Ser Ser Ser Leu Ser Val
1 5 10 15

Arg

<210> 578
<211> 13
<212> PRT
<213> Homo sapiens

<400> 578

Ser Glu Glu Gln Leu Lys Glu Glu Gly Ile Glu Tyr Lys
1 5 10

<210> 579
<211> 9
<212> PRT
<213> Homo sapiens

<400> 579

Ser Glu Ile Asp Leu Phe Asn Ile Arg
1 5

<210> 580
<211> 9
<212> PRT
<213> Homo sapiens

<400> 580

Ser Glu Ile Asp Leu Leu Asn Ile Arg
1 5

<210> 581
<211> 9
<212> PRT
<213> Homo sapiens

<400> 581

Ser Glu Leu Ser Gly Asn Phe Glu Lys
1 5

<210> 582
<211> 9
<212> PRT
<213> Homo sapiens

<400> 582

Ser Glu Met Pro Pro Val Gln Phe Lys
1 5

<210> 583
<211> 19
<212> PRT
<213> Homo sapiens

<400> 583

Ser Glu Asn Gly Leu Glu Phe Thr Ser Ser Gly Ser Ala Asn Thr Glu
1 5 10 15

Thr Thr Lys

<210> 584

<211> 15

<212> PRT

<213> Homo sapiens

<400> 584

Ser Glu Thr Ile Thr Glu Glu Glu Leu Val Gly Leu Met Asn Lys
1 5 10 15

<210> 585

<211> 18

<212> PRT

<213> Homo sapiens

<400> 585

Ser Glu Val Ile Gly Asp Gly Asn Gln Ile Glu Ile Glu Ile Pro Pro
1 5 10 15

Thr Arg

<210> 586

<211> 12

<212> PRT

<213> Homo sapiens

<400> 586

Ser Phe Glu Asn Ser Leu Gly Ile Asn Val Pro Arg
1 5 10

<210> 587

<211> 13

<212> PRT

<213> Homo sapiens

<400> 587

Ser Phe Leu Ile Trp Val Asn Glu Glu Asp His Thr Arg
1 5 10

<210> 588

<211> 10

1

5 .

<210> 594
<211> 9
<212> PRT
<213> Homo sapiens

<400> 594

Ser Leu Phe Asp Tyr His Asp Thr Arg
1 5

<210> 595
<211> 9
<212> PRT
<213> Homo sapiens

<400> 595

Ser Leu Phe Asn Tyr His Asp Thr Arg
1 5

<210> 596
<211> 16
<212> PRT
<213> Homo sapiens

<400> 596

Ser Leu His Gln Ala Ile Glu Gly Asp Thr Ser Gly Asp Phe Leu Lys
1 5 10 15

<210> 597
<211> 11
<212> PRT
<213> Homo sapiens

<400> 597

Ser Leu Leu Val Thr Glu Leu Gly Ser Ser Arg
1 5 10

<210> 598
<211> 14
<212> PRT
<213> Homo sapiens

<400> 598

Ser Leu Tyr Ala Ser Ser Pro Gly Gly Val Tyr Ala Thr Arg
1 5 10

<210> 599
<211> 15
<212> PRT

<210> Homo sapiens

<400> 599

Ser Leu Tyr His Asp Ile Ser Gly Asp Thr Ser Gly Asp Tyr Arg
1 5 10 15

<210> 600

<211> 13

<212> PRT

<213> Homo sapiens

<400> 600

Ser Met Leu Glu Val Asn Tyr Pro Met Glu Asn Gly Ile Val Arg
1 5 10 15

<210> 601

<211> 12

<212> PRT

<213> Homo sapiens

<400> 601

Ser Pro Leu Thr Tyr Gly Val Gly Val Leu Asn Arg
1 5 10

<210> 602

<211> 12

<212> PRT

<213> Homo sapiens

<400> 602

Ser Pro Ser Thr Gly Leu Tyr Asp Asn Leu Glu Lys
1 5 10

<210> 603

<211> 14

<212> PRT

<213> Homo sapiens

<400> 603

Ser Gln Gly Gly Glu Pro Thr Tyr Asn Val Ala Val Gly Arg
1 5 10

<210> 604

<211> 12

<212> PRT

<213> Homo sapiens

<400> 604

Ser Gln Leu Leu Gly Ser Ala His Glu Val Gln Arg
1 5 10

<210> 605
<211> 8
<212> PRT
<213> Homo sapiens

<400> 605

Ser Gln Leu Leu Ile Leu Asp Arg
1 5

<210> 606
<211> 13
<212> PRT
<213> Homo sapiens

<400> 606

Ser Ser Ala Ser Phe Ser Thr Thr Ala Val Ser Ala Arg
1 5 10

<210> 607
<211> 16
<212> PRT
<213> Homo sapiens

<400> 607

Ser Ser Glu Glu Ile Glu Ser Ala Phe Arg
1 5 10

<210> 608
<211> 18
<212> PRT
<213> Homo sapiens

<400> 608

Ser Ser Leu Ser Ser Ala Gln Ala Asp Phe Asn Gln Leu Ala Glu Leu
1 5 10 15

Asp Arg

<210> 609
<211> 18
<212> PRT
<213> Homo sapiens

<400> 609

Ser Ser Tyr Tyr Val Val Ser Gly Asn Asp Pro Ala Ala Glu Glu Pro
1 5 10 15

Ser Arg

<210> 610
<211> 16
<212> PRF
<213> Homo sapiens

<400> 610

Ser Thr Ala Gly Asp Thr His Leu Gly Gly Glu Asp Phe Asp Asn Arg
1 5 10 15

<210> 611
<211> 11
<212> PRF
<213> Homo sapiens

<400> 611

Ser Thr Leu Met Asp Thr Leu Phe Asn Thr Lys
1 5 10

<210> 612
<211> 9
<212> PRF
<213> Homo sapiens

<400> 612

Ser Thr Pro Glu Tyr Phe Ala Glu Arg
1 5

<210> 613
<211> 12
<212> PRF
<213> Homo sapiens

<400> 613

Ser Val Ala Gln Gln Ala Ser Leu Thr Glu Gln Arg
1 5 10

<210> 614
<211> 16
<212> PRF
<213> Homo sapiens

<400> 614

Ser Val Gly Tyr Lys Pro Asp Phe Val Gly Phe Glu Ile Pro Asp Lys
1 5 10 15

<210> 615
<211> 18

<212> PRT

<213> Homo sapiens

<400> 615

Ser Val Pro Thr Ser Thr Val Phe Tyr Pro Ser Asp Gly Val Ala Thr
1 5 10 15

Glu Lys

<210> 616

<211> 14

<212> PRT

<213> Homo sapiens

<400> 616

Ser Val Thr Glu Gln Gly Ala Glu Leu Ser Asn Glu Glu Arg
1 5 10

<210> 617

<211> 9

<212> PRT

<213> Homo sapiens

<400> 617

Ser Trp Asn Glu Thr Leu Thr Ser Arg
1 5

<210> 618

<211> 15

<212> PRT

<213> Homo sapiens

<400> 618

Ser Tyr Glu Leu Pro Asp Gly Gln Val Ile Thr Ile Gly Asn Glu Arg
1 5 10 15

<210> 619

<211> 10

<212> PRT

<213> Homo sapiens

<400> 619

Ser Tyr Glu Leu Gln Gln Ser Asn Val Arg
1 5 10

<210> 620

<211> 12

<212> PRT

<213> Homo sapiens

WO 02/46767

PCT/GB01/05289

115/143

<400> 620

Ser Tyr Ser Pro Tyr Asp Met Leu Glu Ser Ile Arg
1 5 10

<210> 621

<211> 20

<212> PRT

<213> Homo sapiens

<400> 621

Thr Ala Ala Glu Leu Leu Gln Ser Gln Gly Ser Gln Ala Gly Gly Ser
1 5 10 15

Gln Thr Leu Lys
20

<210> 622

<211> 13

<212> PRT

<213> Homo sapiens

<400> 622

Thr Ala Met Asp Gln Ala Leu Gin Trp Leu Glu Asp Lys
1 5 10

<210> 623

<211> 14

<212> PRT

<213> Homo sapiens

<400> 623

Thr Ala Thr Glu Ser Phe Ala Ser Asp Pro Ile Leu Tyr Arg
1 5 10

<210> 624

<211> 9

<212> PRT

<213> Homo sapiens

<400> 624

Thr Ala Val Cys Asp Ile Pro Pro Arg
1 5

<210> 625

<211> 15

<212> PRT

<213> Homo sapiens

<400> 625

Thr Asp Asp Tyr Leu Asp Gln Pro Cys Leu Glu Thr Val Asn Arg
1 5 10 15

<210> 626

<211> 12

<212> PRT

<213> Homo sapiens

<400> 626

Thr Asp Pro Ser Ile Leu Gly Gly Met Ile Val Arg
1 5 10

<210> 627

<211> 12

<212> PRT

<213> Homo sapiens

<400> 627

Thr Glu Gly Asp Gly Val Tyr Thr Leu Asn Asp Lys
1 5 10

<210> 628

<211> 13

<212> PRT

<213> Homo sapiens

<400> 628

Thr Glu Gly Asp Gly Val Tyr Thr Leu Asn Asp Lys Lys
1 5 10

<210> 629

<211> 13

<212> PRT

<213> Homo sapiens

<400> 629

Thr Glu Gly Asp Gly Val Tyr Thr Leu Asn Asn Glu Lys
1 5 10

<210> 630

<211> 13

<212> PRT

<213> Homo sapiens

<400> 630

Thr Phe Glu Gly Val Asp Pro Gln Thr Ser Met Arg
1 5 10

<210> 631

<211> 16
<212> PRT
<213> Homo sapiens

<400> 631

Thr Gly Ala Ile Val Asp Val Pro Val Gly Glu Glu Leu Leu Gly Arg
1 5 10 15

<210> 632
<211> 6
<212> PRT
<213> Homo sapiens

<400> 632

Thr Gly Ala Gln Glu Leu Ieu Arg
1 5

<210> 633
<211> 16
<212> PRT
<213> Homo sapiens

<400> 633

Thr Gly Glu Tyr Pro Val Pro Leu Ile Arg
1 5 10

<210> 634
<211> 16
<212> PRT
<213> Homo sapiens

<400> 634

Thr Gly Gln Glu Ile Pro Val Asn Val Arg
1 5 10

<210> 635
<211> 13
<212> PRT
<213> Homo sapiens

<400> 635

Thr Gly Thr Ala Glu Met Ser Ser Ile Leu Glu Glu Arg
1 5 10

<210> 636
<211> 11
<212> PRT
<213> Homo sapiens

<400> 636

Thr His Leu Ala Pro Tyr Ser Asp Glu Leu Arg
1 5 10

<210> 637
<211> 11
<212> PRT
<213> Homo sapiens

<400> 637

Thr His Ser Asp Gln Phe Leu Val Ala Phe Lys
1 5 10

<210> 638
<211> 12
<212> PRT
<213> Homo sapiens

<400> 638

Thr Ile Ala Met Asp Gly Thr Glu Gly Leu Val Arg
1 5 10

<210> 639
<211> 13
<212> PRT
<213> Homo sapiens

<400> 639

Thr Ile Glu Ala Glu Ala Ala His Gly Thr Val Thr Arg
1 5 10

<210> 640
<211> 12
<212> PRT
<213> Homo sapiens

<400> 640

Thr Ile Glu Tyr Leu Gln Pro Asn Pro Ala Ser Arg
1 5 10

<210> 641
<211> 12
<212> PRT
<213> Homo sapiens

<400> 641

Thr Ile Ile Ser Tyr Ile Asp Glu Gln Phe Glu Arg
1 5 10

<210> 642
<211> 13

<212> PRT

<213> Homo sapiens

<400> 642

Thr Ile Pro Ile Asp Gly Asn Phe Phe Thr Tyr Thr Arg
1 5 10

<210> 643

<211> 7

<212> PRT

<213> Homo sapiens

<400> 643

Thr Lys Pro Ile Val Thr Arg
1 5

<210> 644

<211> 9

<212> PRT

<213> Homo sapiens

<400> 644

Thr Leu Gly Ile Leu Gly Leu Gly Arg
1 5

<210> 645

<211> 11

<212> PRT

<213> Homo sapiens

<400> 645

Thr Leu Val Met Ala Val Tyr Asp Phe Asp Arg
1 5 10

<210> 646

<211> 14

<212> PRT

<213> Homo sapiens

<400> 646

Thr Leu Val Met Leu Asp Glu Glu Gly Glu Gln Leu Glu Arg
1 5 10

<210> 647

<211> 10

<212> PRT

<213> Homo sapiens

<400> 647

Thr Asn Gln Glu Leu Gln Glu Ile Asn Arg

1 5 10

<210> 648
<211> 11
<212> PRT
<213> Homo sapiens

<400> 648

Thr Pro Thr Thr Ile Leu Leu Thr Pro Glu Arg
1 5 10

<210> 649
<211> 10
<212> PRT
<213> Homo sapiens

<400> 649

Thr Pro Val Ser Glu Asp Met Leu Gly Arg
1 5 10

<210> 650
<211> 9
<212> PRT
<213> Homo sapiens

<400> 650

Thr Arg Glu Glu Ile Gln Gln Val Arg
1 5

<210> 651
<211> 12
<212> PRT
<213> Homo sapiens

<400> 651

Thr Thr Gly Ile Val Glu Thr His Phe Thr Phe Lys
1 5 10

<210> 652
<211> 11
<212> PRT
<213> Homo sapiens

<400> 652

Thr Thr Gly Lys Pro Ile Glu Ala Ser Ile Arg
1 5 10

<210> 653
<211> 13
<212> PRT

<213> Homo sapiens

<400> 653

Thr Thr Pro Ser Tyr Val Ala Phe Thr Asp Thr Glu Arg
1 5 10

<210> 654

<211> 16

<212> PRT

<213> Homo sapiens

<400> 654

Thr Val Glu Gly Ala Gly Ser Ile Ala Ala Ala Thr Gly Phe Val Lys
1 5 10 15

<210> 655

<211> 11

<212> PRT

<213> Homo sapiens

<400> 655

Thr Val Phe Gly Val Glu Pro Asp Leu Thr Arg
1 5 10

<210> 656

<211> 11

<212> PRT

<213> Homo sapiens

<400> 656

Thr Val Asn Val Val Gln Phe Glu Pro Ser Lys
1 5 10

<210> 657

<211> 18

<212> PRT

<213> Homo sapiens

<400> 657

Thr Val Thr Asn Ala Val Val Thr Val Pro Ala Tyr Phe Asn Asp Ser
1 5 10 15

Gln Arg

<210> 658

<211> 11

<212> PRT

<213> Homo sapiens

<400> 658

Thr Tyr Leu Gln Ala Leu Pro Tyr Phe Asp Arg
1 5 10

<210> 659

<211> 15

<212> PRT

<213> Homo sapiens

<400> 659

Val Ala Asp Pro Ala Tyr Leu Pro Thr Gln Gln Asp Val Leu Arg
1 5 10 15

<210> 660

<211> 15

<212> PRT

<213> Homo sapiens

<400> 660

Val Ala Leu Val Tyr Gly Gln Met Asn Glu Pro Pro Gly Ala Arg
1 5 10 15

<210> 661

<211> 8

<212> PRT

<213> Homo sapiens

<400> 661

Val Ala Thr Pro Val Asp Trp Lys
1 5

<210> 662

<211> 10

<212> PRT

<213> Homo sapiens

<400> 662

Val Ala Val Thr Pro Pro Gly Leu Ala Arg
1 5 10

<210> 663

<211> 14

<212> PRT

<213> Homo sapiens

<400> 663

Val Asp Phe Pro Gln Asp Gln Leu Thr Ala Leu Thr Gly Arg
1 5 10

<210> 664

<211> 12

<212> PRT

<213> Homo sapiens

<400> 664

Val Asp Ile Ile Glu Asn Gln Val Met Asp Phe Arg
1 5 10

<210> 665

<211> 14

<212> PRT

<213> Homo sapiens

<400> 665

Val Asp Leu Val Asp Glu Ser Gly Tyr Val Ser Gly Tyr Lys
1 5 10

<210> 666

<211> 6

<212> PRT

<213> Homo sapiens

<400> 666

Val Glu His Pro Glu Phe Leu Lys
1 5

<210> 667

<211> 11

<212> PRT

<213> Homo sapiens

<400> 667

Val Glu Ile Ile Ala Asn Asp Gln Gly Asn Arg
1 5 10

<210> 668

<211> 9

<212> PRT

<213> Homo sapiens

<400> 668

Val Glu Leu Gln Glu Leu Asn Asp Arg
1 5

<210> 669

<211> 15

<212> PRT

<213> Homo sapiens

<400> 669

Val Glu Gln Asp Leu Ala Met Gly Thr Asp Ala Glu Gly Glu Lys
1 5 10 15

<210> 670

<211> 10

<212> PRT

<213> Homo sapiens

<400> 670

Val Phe Glu Val Met Leu Ala Thr Asp Arg
1 5 10

<210> 671

<211> 11

<212> PRT

<213> Homo sapiens

<400> 671

Val Phe Ile Pro His Gly Leu Ile Met Asp Arg
1 5 10

<210> 672

<211> 7

<212> PRT

<213> Homo sapiens

<400> 672

Val Phe Asn Leu Tyr Pro Arg
1 5

<210> 673

<211> 13

<212> PRT

<213> Homo sapiens

<400> 673

Val Phe Val Gly Tyr Asn Ser Thr Gly Ala Glu Leu Arg
1 5 10

<210> 674

<211> 15

<212> PRT

<213> Homo sapiens

<400> 674

Val Gly Ala His Ala Gly Glu Tyr Gly Ala Glu Ala Leu Glu Arg
1 5 10 15

<210> 675

<211> 14

<212> PRT

<213> Homo sapiens

<400> 675

Val Gly Gly Val Gin Ser Leu Gly Gly Thr Gly Ala Leu Arg
1 5 10

<210> 676

<211> 12

<212> PRT

<213> Homo sapiens

<400> 676

Val Gly His Ser Glu Leu Val Gly Glu Ile Ile Arg
1 5 10

<210> 677

<211> 12

<212> PRT

<213> Homo sapiens

<400> 677

Val Gly Ile Pro Val Thr Asp Gln Asn Gly Asn Arg
1 5 10

<210> 678

<211> 16

<212> PRT

<213> Homo sapiens

<400> 678

Val Ile Asp Ile Phe Asp Thr Asp Gly Asn Gly Glu Val Asp Phe Lys
1 5 10 15

<210> 679

<211> 8

<212> PRT

<213> Homo sapiens

<400> 679

Val Ile Phe Leu Glu Asn Tyr Arg
1 5

<210> 680

<211> 12

<212> PRT

<213> Homo sapiens

<400> 680

Val Ile Ser Phe Glu Glu Gln Val Ala Ser Ile Arg
1 5 10

<210> 681
<211> 17
<212> PRT
<213> Homo sapiens

<400> 681

Val Ile Val Val Gly Asn Pro Ala Asn Thr Asn Cys Leu Thr Ala Ser
1 5 10 15

Lys

<210> 682
<211> 8
<212> PRT
<213> Homo sapiens

<400> 682

Val Lys Pro Ile Val Thr Pro Arg
1 5

<210> 683
<211> 12
<212> PRT
<213> Homo sapiens

<400> 683

Val Leu Asp Pro Phe Thr Ile Lys Pro Leu Asp Arg
1 5 10

<210> 684
<211> 10
<212> PRT
<213> Homo sapiens

<400> 684

Val Leu Glu Ala Glu Leu Leu Val Leu Arg
1 5 10

<210> 685
<211> 11
<212> PRT
<213> Homo sapiens

<400> 685

Val Leu Glu Val Pro Pro Val Val Tyr Ser Arg
1 5 10

<210> 686

<211> 16

<212> PRT

<213> Homo sapiens

<400> 686

Val Leu Gly Ala Phe Ser Asp Gly Leu Ala His Leu Asp Asn Leu Lys
1 5 10 15

<210> 687

<211> 11

<212> PRT

<213> Homo sapiens

<400> 687

Val Leu Gly Asp Val Ile Glu Val Val His Gly Lys
1 5 10

<210> 688

<211> 11

<212> PRT

<213> Homo sapiens

<400> 688

Val Leu Ile Glu Gly Ser Ile Asn Ser Val Arg
1 5 10

<210> 689

<211> 10

<212> PRT

<213> Homo sapiens

<400> 689

Val Leu Ser Ile Gly Asp Gly Ile Ala Arg
1 5 10

<210> 690

<211> 11

<212> PRT

<213> Homo sapiens

<400> 690

Val Leu Thr Pro Glu Leu Tyr Ala Glu Leu Arg
1 5 10

<210> 691

<211> 16

<212> PRT

<213> Homo sapiens

<400> 691

Val Asn Pro Thr Val Phe Phe Asp Ile Ala Val Asp Gly Glu Pro Leu
1 5 10 15

Gly Arg

<210> 692

<211> 12

<212> PRT

<213> Homo sapiens

<400> 692

Val Asn Val Pro Val Ile Gly Gly His Ala Gly Lys
1 5 10

<210> 693

<211> 15

<212> PRT

<213> Homo sapiens

<400> 693

Val Pro Ala Phe Leu Ser Ala Ala Glu Val Glu Glu His Leu Arg
1 5 10 15

<210> 694

<211> 14

<212> PRT

<213> Homo sapiens

<400> 694

Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg
1 5 10

<210> 695

<211> 15

<212> PRT

<213> Homo sapiens

<400> 695

Val Pro Val Gly Asp Gln Pro Pro Asp Ile Glu Phe Gln Ile Arg
1 5 10 15

<210> 696

<211> 9

<212> PRT

<213> Homo sapiens

<400> 696

Val Pro Tyr Ser Glu Leu Gly Gly Lys
1 5

<210> 697
<211> 10
<212> PRT
<213> Homo sapiens

<400> 697

Val Gln Pro Tyr Leu Asp Asp Phe Gln Lys
1 5 10

<210> 698
<211> 13
<212> PRT
<213> Homo sapiens

<400> 698

Val Ser Ala Phe Glu Asn Pro Tyr Val Asp Ala Ile Lys
1 5 10

<210> 699
<211> 9
<212> PRT
<213> Homo sapiens

<400> 699

Val Ser Phe Glu Leu Phe Ala Asp Lys
1 5

<210> 700
<211> 9
<212> PRT
<213> Homo sapiens

<400> 700

Val Thr Ile Leu Gly His Val Gln Arg
1 5

<210> 701
<211> 10
<212> PRT
<213> Homo sapiens

<400> 701

Val Thr Leu Thr Ser Glu Glu Glu Ala Arg
1 5 10

<210> 702

<211> 16
<212> PPT
<213> Homo sapiens

<400> 702

Val Thr Asn Gly Ala Phe Thr Gly Glu Ile Ser Pro Gly Met Ile Lys
1 5 10 15

<210> 703
<211> 11
<212> PPT
<213> Homo sapiens

<400> 703

Val Thr Gln Ser Asn Phe Ala Val Gly Tyr Lys
1 5 10

<210> 704
<211> 12
<212> PPT
<213> Homo sapiens

<400> 704

Val Val Ala Gly Val Ala Asn Ala Leu Ala His Lys
1 5 10

<210> 705
<211> 11
<212> PPT
<213> Homo sapiens

<400> 705

Val Val Asp Leu Met Ala His Met Ala Ser Lys
1 5 10

<210> 706
<211> 9
<212> PPT
<213> Homo sapiens

<400> 706

Val Val Glu His Pro Glu Phe Leu Lys
1 5

<210> 707
<211> 9
<212> PPT
<213> Homo sapiens

<400> 707

Val Val Phe Val Phe Gly Pro Asp Lys
1 5

<210> 708
<211> 10
<212> PRT
<213> Homo sapiens

<400> 708

Val Val Phe Val Phe Gly Pro Asp Lys Lys
1 5 10

<210> 709
<211> 14
<212> PRT
<213> Homo sapiens

<400> 709

Val Val Ile Gly Met Asp Val Ala Ala Ser Glu Phe Phe Arg
1 5 10

<210> 710
<211> 15
<212> PRT
<213> Homo sapiens

<400> 710

Val Val Leu Ala Tyr Glu Pro Val Trp Ala Ile Gly Thr Gly Lys
1 5 10 15

<210> 711
<211> 11
<212> PRT
<213> Homo sapiens

<400> 711

Val Val Asn Val Ser Ser Ile Met Ser Val Arg
1 5 10

<210> 712
<211> 11
<212> PRT
<213> Homo sapiens

<400> 712

Val Val Pro Gly Tyr Gly His Ala Val Leu Arg
1 5 10

<210> 713
<211> 16

<212> PRT

<213> Homo sapiens

<400> 713

Val Val Tyr Thr Gly Thr Tyr Asp Thr Glu Gly Val Thr Pro Thr Lys
1 5 10 15

<210> 714

<211> 11

<212> PRT

<213> Homo sapiens

<400> 714

Val Trp Asp Tyr Glu Thr Gly Asp Phe Glu Arg
1 5 10

<210> 715

<211> 13

<212> PRT

<213> Homo sapiens

<400> 715

Val Tyr Glu Val Ala Thr Phe Tyr Thr Met Tyr Asn Arg
1 5 10

<210> 716

<211> 7

<212> PRT

<213> Homo sapiens

<400> 716

Val Tyr Tyr Asp Leu Thr Arg
1 5

<210> 717

<211> 9

<212> PRT

<213> Homo sapiens

<400> 717

Trp Ser Leu Gln Ser Glu Ala His Arg
1 5

<210> 718

<211> 11

<212> PRT

<213> Homo sapiens

<400> 718

Trp Thr Glu Tyr Gly Leu Thr Phe Thr Glu Lys

1 5 10

<210> 719
<211> 13
<212> PRT
<213> Homo sapiens

<400> 719

Trp Val Val Ile Gly Asp Glu Asn Tyr Gly Glu Gly Ser Ser Arg
1 5 10 15

<210> 720
<211> 11
<212> PRT
<213> Homo sapiens

<400> 720

Tyr Ala Leu Tyr Asp Ala Thr Tyr Glu Thr Lys
1 5 10

<210> 721
<211> 6
<212> PRT
<213> Homo sapiens

<400> 721

Tyr Glu Glu Glu Val Leu Ser Arg
1 5

<210> 722
<211> 11
<212> PRT
<213> Homo sapiens

<400> 722

Tyr Glu Glu Ile Asp Asn Ala Pro Glu Glu Arg
1 5 10

<210> 723
<211> 9
<212> PRT
<213> Homo sapiens

<400> 723

Tyr Phe Asp Leu Gly Leu Pro Asn Arg
1 5

<210> 724
<211> 11
<212> PRT

<213> Homo sapiens

<400> 724

Tyr Phe Val Glu Ala Gly Ala Met Ala Val Arg
1 5 10

<210> 725

<211> 12

<212> PRT

<213> Homo sapiens

<400> 725

Tyr Gly Asp Leu Ala Asn Trp Met Ile Pro Gly Lys
1 5 10

<210> 726

<211> 8

<212> PRT

<213> Homo sapiens

<400> 726

Tyr Ile Asp Glu Asn Gln Asp Arg
1 5

<210> 727

<211> 8

<212> PRT

<213> Homo sapiens

<400> 727

Tyr Ile Glu Glu Ala Ile Glu Lys
1 5

<210> 728

<211> 9

<212> PRT

<213> Homo sapiens

<400> 728

Tyr Ile Glu Thr Asp Pro Ala Asn Arg
1 5

<210> 729

<211> 18

<212> PRT

<213> Homo sapiens

<400> 729

Tyr Ile Asn Glu Asn Leu Ile Val Asn Thr Asp Glu Leu Gly Arg
1 5 10 15

<210> 730
<211> 10
<212> PRT
<213> Homo sapiens

<400> 730

Tyr Ile Tyr Ile Met Gly Ile Gln Glu Arg
1 5 10

<210> 731
<211> 11
<212> PRT
<213> Homo sapiens

<400> 731

Tyr Leu Ala Glu Phe Ala Thr Gly Asn Asp Arg
1 5 10

<210> 732
<211> 9
<212> PRT
<213> Homo sapiens

<400> 732

Tyr Leu Thr Val Ala Ala Val Phe Arg
1 5

<210> 733
<211> 7
<212> PRT
<213> Homo sapiens

<400> 733

Tyr Leu Tyr Glu Ile Ala Arg
1 5

<210> 734
<211> 19
<212> PRT
<213> Homo sapiens

<400> 734

Tyr Met Thr Ile Ser Gly Phe Gln Ile Glu Glu Thr Ile Asp Arg
1 5 10 15

<210> 735
<211> 9
<212> PRT
<213> Homo sapiens

<400> 735

Tyr Pro Glu Asn Phe Phe Leu Leu Arg
1 5

<210> 736

<211> 11

<212> PRT

<213> Homo sapiens

<400> 736

Tyr Pro Leu Phe Glu Gly Gln Glu Thr Gly Lys
1 5 10

<210> 737

<211> 7

<212> PRT

<213> Homo sapiens

<400> 737

Tyr Pro Gln Phe Ile Ser Arg
1 5

<210> 738

<211> 9

<212> PRT

<213> Homo sapiens

<400> 738

Tyr Pro Gln Leu Leu Pro Gly Ile Arg
1 5

<210> 739

<211> 10

<212> PRT

<213> Homo sapiens

<400> 739

Tyr Gln Glu Thr Phe Asn Val Ile Glu Arg
1 5 10

<210> 740

<211> 9

<212> PRT

<213> Homo sapiens

<400> 740

Tyr Gln Phe Asn Tyr Tyr Glu Ala Lys
1 5

<210> 741
<211> 12
<212> PRT
<213> Homo sapiens

<400> 741

Tyr Gln Ile Asp Pro Asp Ala Cys Phe Ser Ala Lys
1 5 10

<210> 742
<211> 10
<212> PRT
<213> Homo sapiens

<400> 742

Tyr Thr Leu Asn Phe Glu Ala Ala Gln Sys
1 5 10

<210> 743
<211> 11
<212> PRT
<213> Homo sapiens

<400> 743

Tyr Thr Met Gly Asp Ala Pro Asp Tyr Asp Arg
1 5 10

<210> 744
<211> 10
<212> PRT
<213> Homo sapiens

<400> 744

Tyr Val Gly Glu Ser Glu Ala Asn Ile Arg
1 5 10

<210> 745
<211> 8
<212> PRT
<213> Homo sapiens

<400> 745

Tyr Tyr Gly Ala Gln Thr Val Arg
1 5

<210> 746
<211> 8
<212> PRT
<213> Homo sapiens

<400> 746

Tyr Tyr Leu Asp Ser Leu Asp Arg
 1 5

<210> 747

<211> 7

<212> PRT

<213> Homo sapiens

<400> 747

Tyr Tyr Thr Val Phe Asp Arg
 1 5

<210> 748

<211> 322

<212> PRT

<213> Homo sapiens

<400> 748

Met Ser Gly Glu Leu Pro Pro Asn Ile Asn Ile Lys Glu Pro Arg Trp
 1 5 10 15

Asp Gln Ser Thr Phe Ile Gly Arg Ala Asn His Phe Phe Thr Val Thr
 20 25 30

Asp Pro Arg Asn Ile Leu Leu Thr Asn Glu Gln Leu Glu Ser Ala Arg
 35 40 45

Lys Ile Val His Asp Tyr Arg Gln Gly Ile Val Pro Pro Gly Leu Thr
 50 55 60

Glu Asn Glu Leu Trp Arg Ala Lys Tyr Ile Tyr Asp Ser Ala Phe His
 65 70 75 80

Pro Asp Thr Gly Glu Lys Met Ile Leu Ile Gly Arg Met Ser Ala Gln
 85 90 95

Val Pro Met Asn Met Thr Ile Thr Gly Cys Met Met Thr Phe Tyr Arg
 100 105 110

Thr Thr Pro Ala Val Leu Phe Trp Gln Trp Ile Asn Gln Ser Phe Asn
 115 120 125

Ala Val Val Asn Tyr Thr Asn Arg Ser Gly Asp Ala Pro Leu Thr Val
 130 135 140

Asn Glu Leu Gly Thr Ala Tyr Val Ser Ala Thr Thr Gly Ala Val Ala

139/143

145 150 155 160

Thr Ala Leu Gly Leu Asn Ala Leu Thr Lys His Val Ser Pro Leu Ile
165 170 175Gly Arg Phe Val Pro Phe Ala Ala Val Ala Ala Asn Cys Ile Asn
180 185 190Ile Pro Leu Met Arg Gln Arg Glu Leu Lys Val Gly Ile Pro Val Thr
195 200 205Asp Glu Asn Gly Asn Arg Leu Gly Glu Ser Ala Asn Ala Ala Lys Gln
210 215 220Ala Ile Thr Gln Val Val Val Ser Arg Ile Leu Met Ala Ala Pro Gly
235 230 235 240Met Ala Ile Pro Pro Phe Ile Met Asn Thr Leu Glu Lys Lys Ala Phe
245 250 255Leu Lys Arg Phe Pro Trp Met Ser Ala Pro Ile Gln Val Gly Leu Val
260 265 270Gly Phe Cys Leu Val Phe Ala Thr Pro Leu Cys Cys Ala Leu Phe Pro
275 280 285Gln Lys Ser Ser Met Ser Val Thr Ser Leu Glu Ala Glu Leu Gln Ala
290 295 300Lys Ile Gln Glu Ser His Pro Glu Leu Arg Arg Val Tyr Phe Asn Lys
305 310 315 320

Gly Leu

<210> 749

<211> 261

<212> PRT

<213> Homo sapiens

<400> 749

Met Ser Gly Glu Leu Pro Pro Asn Ile Asn Ile Lys Glu Pro Arg Trp
1 5 10 15Asp Gln Ser Thr Phe Ile Gly Arg Ala Asn His Phe Phe Thr Val Thr
20 25 30

Asp Pro Arg Asn Ile Leu Leu Thr Asn Glu Gln Leu Glu Ser Ala Arg
35 40 45

Lys Ile Val His Asp Tyr Arg Gln Gly Ile Val Pro Pro Gly Leu Thr
50 55 60

Glu Asn Glu Leu Trp Arg Ala Lys Tyr Ile Tyr Asp Ser Ala Phe His
65 70 75 80

Pro Asp Thr Gly Glu Lys Met Ile Leu Ile Gly Arg Met Ser Ala Gln
85 90 95

Val Pro Met Asn Met Thr Ile Thr Gly Cys Met Met Thr Phe Tyr Arg
100 105 110

Thr Thr Pro Ala Val Leu Phe Trp Gln Trp Ile Asn Gln Ser Phe Asn
115 120 125

Ala Val Val Asn Tyr Thr Asn Arg Ser Gly Asp Ala Pro Leu Thr Val
130 135 140

Asn Glu Leu Gly Thr Ala Tyr Val Ser Val Thr Thr Gly Ala Val Ala
145 150 155 160

Thr Ala Leu Gly Leu Asn Ala Leu Thr Lys His Val Ser Pro Leu Ile
165 170 175

Gly Arg Phe Val Pro Phe Ala Ala Val Ala Ala Asn Cys Ile Asn
180 185 190

Ile Pro Leu Met Arg Gln Ser His Pro Ser Ile His Tyr Glu His Phe
195 200 205

Gly Lys Glu Ser Leu Phe Glu Glu Val Pro Met Asp Glu Cys Thr His
210 215 220

Ser Ser Trp Val Ser Trp Leu Leu Phe Gly Val Cys Tyr Thr Pro Val
225 230 235 240

Leu Cys Pro Val Ser Ser Glu Lys Phe His Val Cys Asp Lys Leu Gly
245 250 255

Gly Arg Val Ala Ser
260

<210> 750
<211> 22
<212> DNA
<213> Homo sapiens

<400> 750
tccgttaactg ggagaaccca gg 22

<210> 751
<211> 39
<212> DNA
<213> Homo sapiens

<400> 751
aacattctgt taaccaacga acaactcgag agtgcgaga 39

<210> 752
<211> 30
<212> DNA
<213> Homo sapiens

<400> 752
caagccatca cgoaagttgt cgtgtccagg 30

<210> 753
<211> 1084
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1071)..(1072)
<223> Where "n" = any nucleotide

<220>
<221> misc_feature
<222> (1075)..(1076)
<223> Where "n" = any nucleotide

<220>
<221> misc_feature
<222> (1082)..(1083)
<223> Where "n" = any nucleotide

<400> 753
gtccgggacc atgttgttggag aactaccacc aaacatataac atcaagggaaac gtaactgacc 60
ccagggacat tctgttaacc aacgaacaaac tccgagatgc gagaaaaataa gtacatgatt 120
acagggcagg aattytttcct cctggtttca cagaaaatga atttgtggaga gcaaagtaca 180
tctatgtttc agttttttcat ctgtacactg gtgagaaatgt gattttgata ggaagaatgt 240
cagccccagg tccccatgtac atgaccatca caggttgtat gatgacgttt tacaggacta 300

<210> 734
 <211> 984
 <212> DNA
 <213> *Homo sapiens*

<220>
<221> misc_feature
<222> (949)..(950)
<223> Where "n" = any nucleotide

<220>
<221> misc_feature
<222> (979)..(980)
<223> Where "n" = any nucleotide

```

<460> 754
gtccgggacc atgtctggag aactaccacc asacatatac atcaaggaac ctcgatggga 60
tcasaggact ttcatggac gagccaatca tttcttcact gtasctgacc ccaggaacat 120
tgtgttaacc aacgaacaac tcgagagtgc gagaaamata gtacatgatt acaggcaagg 180
mattgttctt cctggtctta cagaaaatga attgtggaga gcaaagtaca tctatgattc 240
agcttttcat cctgacactg gtgagaaagat gattttgata ggaagaatgt cagcccaggt 300
tccatgyaac atgaccatca caggttgtat gatgacgttt tacaggacta cgccggctgt 360
ctgtttctgg catgtggatta accagtcctt caatgcggc gtcaattaca ccaacagaag 420

```

143/143

tggagacgca cccctcactg tcaatgagtt ggyaacagct tacgttttgc taacaactgg 480
tgccgttagca acagctctag gactcaatgc attgaccaag catgttcac cactgatagg 540
acgttttgtt ccctttgctg ccttagctgc tgctaattgc attaatatcc cattaatgag 600
gcasagccat ccctccattc attatgaaca ctttggaaas gaaaggccctt ttgaaggaggt 660
tcccatggat gagtgccccc attcaagtgg ggttagttgg cttctgttttgc gtgtttgtca 720
cacccctgtg ttgtgccctg ttcttcaga aaagtccat gtctgtgaca agcttggagg 780
ccgagtttgc agctaagatc caagagagcc atccgttaattt gcgcacgogtg tacttcaata 840
agggatttgc aagcagggag gaaacctctg cagtcattc tgccactgca aagctggtgt 900
agccatgtcg gtgagaaaaa ttctgttcaaa cctgggttct cccagttang gaaagggcga 960
atttagggcc gctgatccna ttac 984

<210> 755

<211> 20

<212> DNA

<213> Homo sapiens

<400> 755

actgagcggg acctgcgagc

20