Input Analysis

Alireza Sheikh-Zadeh, Ph.D.

Using a Fitted Distribution for Monte Carlo Simulation

When performing a simulation study, there is no substitution for actually observing the system and collecting the data required for the modeling effort.

Input modeling begins with data collection, probability, statistics, and analysis.

A typical input modeling process includes the following procedures:

- 1. Determine whether your data is discrete or continuous.
- 2. Visualize the data: Check the histogram, plot a time series plot, and make an autocorrelation plot of the data. Check if the week, period, or day of week influence the statistical properties of the count data.
- 3. Hypothesizing distributions. Fortunately, R has a very useful package for fitting a wide variety of discrete and continuous distributions call the fitdistributions package.
- 4. Estimating parameters.
- 5. Checking goodness of fit for hypothesized distributions.

Example In the newsvendor model, suppose we have a historical data for demand. We are interested to know what distribution can we fit for this data.

```
data = read.csv("http://tiny.cc/histDemand")
# 1. Data is discrete.
# 2. visualize data
```

Historical Demand

The distribution of the data is positively (right) skewed and unimodal.

```
plot(data$Sales, type="b", main="Historical Demand", ylab = "Count", xlab =
"Each Year")
```

Historical Demand

There is no noticable trend in the time-series plot

acf(data\$Sales) # Auto-correlation plot
#the autocorrelation plot shows no significant correlation with respect to
observation number (all lags are well within the confidence band). Therefore,
the data appears to be stationary (IID).

3. Hypothesizing distributions.

library(fitdistrplus)

Cullen and Frey graph


```
## summary statistics
## ----
## min: 40
             max:
## median: 43.5
## mean: 44.05
## estimated sd: 2.665076
## estimated skewness:
                       0.8859026
## estimated kurtosis: 4.019658
# Let's try Poisson
fit.nbinom = fitdist(data$Sales, "nbinom")
## Warning in sqrt(diag(varcovar)): NaNs produced
## Warning in sqrt(1/diag(V)): NaNs produced
## Warning in cov2cor(varcovar): diag(.) had 0 or NA entries; non-finite
## result is doubtful
summary(fit.nbinom)
## Fitting of the distribution ' nbinom ' by maximum likelihood
## Parameters :
##
            estimate Std. Error
## size 1.331700e+08
                           NaN
## mu 4.404782e+01 1.484009
```

```
## Loglikelihood: -57.76313 AIC: 119.5263 BIC: 121.5177
## Correlation matrix:
##
        size mu
## size
          1 NaN
## mu
        NaN
              1
fit.pois = fitdist(data$Sales, "pois")
summary(fit.pois)
## Fitting of the distribution ' pois ' by maximum likelihood
## Parameters :
##
         estimate Std. Error
## lambda
            44.05
                    1,484082
## Loglikelihood: -57.76313 AIC: 117.5263
                                               BIC: 118.522
gofstat(fit.pois)
## Chi-squared statistic: 15.9012
## Degree of freedom of the Chi-squared distribution: 3
## Chi-squared p-value: 0.001188116
     the p-value may be wrong with some theoretical counts < 5
## Chi-squared table:
        obscounts theocounts
## <= 41 3.000000
                    7.169223
## <= 42 3.000000
                    1.170599
                    1.199184
## <= 43 4.000000
## <= 45 5.000000
                    2.375748
## > 45
         5.000000 8.085247
##
## Goodness-of-fit criteria
                                 1-mle-pois
## Akaike's Information Criterion
                                   117.5263
## Bayesian Information Criterion
                                   118.5220
# HO: Data is distributed by Poisson distribution
# Test is rejected. p-value < 0.05
# Therefore, it's better to try to fit continuous distributions, otherwise,
use resampling (sampling with replacement) for simulation
```

Let's try continuous distributions:

The kurtosis and squared skewness of your sample is plotted as a blue point named "Observation". It seems that possible distributions include the Gamma Weibull and possibly the Normal distribution.

```
# If we assume data is continuous.
library(fitdistrplus)
descdist(data$Sales, discrete = FALSE)
```

Cullen and Frey graph

summary statistics ## ----## min: 40 51 max: ## median: 43.5 ## mean: 44.05 ## estimated sd: 2.665076 ## estimated skewness: 0.8859026 ## estimated kurtosis: 4.019658 fit.gamma <- fitdist(data\$Sales, "gamma")</pre> summary(fit.gamma) ## Fitting of the distribution ' gamma ' by maximum likelihood ## Parameters : estimate Std. Error ## shape 295.633054 93.434434 ## rate 6.711303 2.122893

```
## Loglikelihood: -47.17316 AIC: 98.34632 BIC: 100.3378
## Correlation matrix:
             shape
                       rate
## shape 1.0000000 0.9991545
## rate 0.9991545 1.0000000
fit.weibull <- fitdist(data$Sales, "weibull")</pre>
summary(fit.weibull)
## Fitting of the distribution 'weibull 'by maximum likelihood
## Parameters :
        estimate Std. Error
## shape 15.47879 2.3942226
## scale 45.34195 0.6971177
## Loglikelihood: -50.35435
                             AIC: 104.7087 BIC: 106.7002
## Correlation matrix:
##
             shape
                      scale
## shape 1.0000000 0.3421537
## scale 0.3421537 1.0000000
fit.norm <- fitdist(data$Sales, "norm")</pre>
summary(fit.norm)
## Fitting of the distribution ' norm ' by maximum likelihood
## Parameters :
##
        estimate Std. Error
## mean 44.050000 0.5808399
        2.597595 0.4107156
## Loglikelihood: -47.47049 AIC: 98.94098
                                               BIC: 100.9324
## Correlation matrix:
       mean sd
## mean
          1 0
## sd
          0 1
# So far Gamma has the best log-likelihood.
```


plot(fit.weibull)

plot(fit.norm)

Both Gamma and Normal look good.

```
fit.gamma$loglik

## [1] -47.17316

fit.norm$loglik

## [1] -47.47049
```

In our example, we pick Gamma distribution.

```
summary(fit.gamma)
## Fitting of the distribution ' gamma ' by maximum likelihood
## Parameters :
##
           estimate Std. Error
## shape 295.633054
                     93.434434
           6.711303
## rate
                      2.122893
## Loglikelihood:
                   -47.17316
                                AIC:
                                      98.34632
                                                 BIC:
                                                       100.3378
## Correlation matrix:
             shape
                        rate
## shape 1.0000000 0.9991545
## rate 0.9991545 1.0000000
```

Then we produce Gamma random numbers for our model.

```
# Let's solve the newsVendor model again, this time we assume demand is
distributed by gamma distribution.
# Data
R = 18 # Selling price
C = 12 \# Cost
S = 9 # Discount Price
# ModeL
netProfitFun = function(D, Q, R, S, C){
  R*min(D,Q) + S * max(0, Q-D) - C*Q
num_sim = 1000
Qrange = 40:50
sim_D = rgamma(num_sim, shape = 295.63, rate = 6.71)
profitMatrix <- matrix(0, nrow = num_sim, ncol = length(Qrange))</pre>
j = 0
for (Q in Qrange) {
  j = j+1
 for (i in 1:num_sim) {
    profitMatrix[i, j] = netProfitFun(sim_D[i], Q, R, S, C)
  }
}
# Expected profit for each Q
colMeans(profitMatrix)
## [1] 239.6134 244.8689 249.3444 252.7308 254.9158 255.8122 255.6180
## [8] 254.5315 252.5635 250.0959 247.3238
```


 $\# Q^* = 45$

Class Practice

The observations available in the file represent the count of the number of failures on a windmill turbine farm per year. Using the techniques discussed today, recommend an input distribution model for this situation.

```
numFailure <- read.csv("http://tiny.cc/numFailure")
numFailure <- numFailure$failure</pre>
```