EECS 470 Power and Architecture

Many slides taken from Prof. David Brooks, Harvard University and modified by Mark Brehob. A couple of slides are also taken from Prof. Wenisch. Any errors are almost certainly Mark's.

Thanks to both!

Outline

- Why is power a problem?
- What uses power in a chip?
- How can we reduce power?

Outline

- Why is power a problem?
- What uses power in a chip?
- Relationship between power and performance.
- How can we reduce power?

Why is power a problem in a µP?

- Power used by the μP, vs. system power
- Dissipating Heat
 - Melting (very bad)
 - Packaging (to cool → \$)
 - Heat leads to poorer performance.
- Providing Energy
 - Battery
 - Cost of electricity

Why worry about power dissipation?

Thermal issues: affect cooling, packaging, reliability, timing

Environment

Where does power go?

- Obviously desktop and servers are going to be different.
 - But if CPUs are a small fraction of the power, maybe we don't care much?
- Let's take a look.
 - But first a few caveats
 - –I can't find recent studies on this
 - I do find that different studies can get radically different results. I'm using some fairly well-discussed numbers.

Where does the juice go in laptops?

- Microsoft, 2009.
- The processor power can be a lot higher depending on whathe laptop is doing. [Hsu+Kremer, 2002]

What about servers?

Need whole-system approaches to save energy

Power usage effectiveness (PUE)

A PUE of 2.0 means that for every 2W of power supplied to the data center, only 1W is consumed by computing equipment. Values of around 2.9 are pretty common

Total Power Dissipation Trends

A Paradigm Shift In Computing

Spot Heat Issues in Microprocessors

Data center energy use

Improving energy efficiency is a critical challenge

Where does all the power go?

Servers account for barely half of power

- 1W of cooling per 1.5W of IT load
- 10MW data center: cooling costs \$4M to \$8M / yr.

System designers must think about cooling

This may be getting worse.

- **UPS**: Power supplies/converters
- **CRAC**: Computer Room Air Conditioner.
- **PDU**: Power distribution unit

Power Usage Effectiveness (PUE)

A PUE of 2.0 means that for every 2W of power supplied to the data center, only 1W is consumed by computing equipment. Values of around 2.8 are pretty common these days, while 1.9 was a common number in 2007.

Not clear why.

Why is cooling so costly? (1)

Server density increasing

- Integration, disaggregation reduce hardware costs
- Need for high-BW interconnect
- Data center floor space costs up to \$15,000 /m²

Heat flux up to 500W per ft² floor space; Racks draw 4 to 20kW each

Why is cooling so costly? (2)

Heat density drives cooling cost
Cooling power grows super-linearly with thermal load

Servers' 3-year power & cooling costs nearing their purchase price

Intel Itanium packaging

Complex and expensive (note heatpipe)

Source: H. Xie et al. "Packaging the Itanium Microprocessor" Electronic Components and Technology Conference 2002

P4 packaging

Simpler, but still...

From Tiwari, et al., DAC98

Source: Intel web site

Power-Aware Computing Applications

Temperature/di-dt-Constrained

Environment

- Environment Protection Agency (EPA): computers consume 10% of commercial electricity consumption
 - This incl. peripherals, possibly also manufacturing
 - A DOE report suggested this percentage is much lower (3.0-3.5%)
 - No consensus, but it's still a lot
 - Interesting to look at the numbers:
 - http://enduse.lbl.gov/projects/infotech.html
- Data center growth was cited as a contribution to the 2000/2001 California Energy Crisis
- Equivalent power (with only 30% efficiency) for AC
- CFCs used for refrigeration
- Lap burn
- Fan noise

Power-Aware Needed across all computing platforms

- Mobile/portable (cell phones, laptops, PDA)
 - Battery life is critical
- Desktops/Set-Top (PCs and game machines)
 - Packaging cost is critical
- Servers (Mainframes and compute-farms)
 - Packaging limits
 - Volumetric (performance density)

What uses power in a chip?

How CMOS Transistors Work

MOS Transistors are Switches

Static CMOS

PUN and PDN are Dual Networks

Basic Logic Gates

CMOS Water Analogy

Electron: water molecule

Charge: weight of water

Voltage: height

Current: flow rate

Capacitance: container cross-section

(Think of power-plants that store energy in water towers)

Liquid Inverter

- Capacitance at input
 - Gates of NMOS, PMOS
 - Metal interconnect
- Capacitance at output
 - Fanout (# connections) to other gates
 - Metal Interconnect

NMOS conducts when water level is above switching threshold PMOS conducts below No conduction after container full

Slide courtesy D. Brooks, Harvard

Inverter Signal Propagation (1)

Slide courtesy D. Brooks, Harvard

Inverter Signal Propagation (2)

Delay and Power Observations

- Load capacitance increases delay
 - High fanout (gates attached to output)
 - Interconnection
- Higher current can increase speed
 - Increasing transistor width raises currents but also raises capacitance
- Energy per switching event independent of current
 - Depends on amount of charge moved, not rate

Power: The Basics

- Dynamic power vs. Static power
 - Dynamic: "switching" power
 - Static: "leakage" power
 - Dynamic power dominates, but static power increasing in importance
- Static power: steady, per-cycle energy cost
- Dynamic power: capacitive and short-circuit
- Capacitive power: charging/discharging at transitions from 0→1 and 1→0
- Short-circuit power: power due to brief short-circuit current during transitions.

Dynamic (Capacitive) Power Dissipation

Data dependent – a function of switching activity

Capacitive Power dissipation

Capacitance: Supply Voltage: Function of wire Has been dropping with successive fab length, transistor size generations Power $\sim \frac{1}{2}$ CV²Af Clock frequency: Increasing... **Activity factor:** How often, on average, do wires switch?

Lowering Dynamic Power

- Reducing Vdd has a quadratic effect
 - Has a negative (~linear) effect on performance however
- Lowering C_L
 - May improve performance as well
 - Keep transistors small (keeps intrinsic capacitance (gate and diffusion) small)
- Reduce switching activity
 - A function of signal transition stats and clock rate
 - Clock Gating idle units
 - Impacted by logic and architecture decisions

Static Power: Leakage Currents

- Subthreshold currents grow exponentially with increases in temperature, decreases in threshold voltage
 - But threshold voltage scaling is key to circuit performance!
- Gate leakage primarily dependent on gate oxide thickness, biases
- Both type of leakage heavily dependent on stacking and input pattern

Lowering Static Power

- Design-time Decisions
 - Use fewer, smaller transistors -- stack when possible to minimize contacts with Vdd/Gnd
 - Multithreshold process technology (multiple oxides too!)
 - Use "high-Vt" slow transistors whenever possible
- Dynamic Techniques
 - Reverse-Body Bias (dynamically adjust threshold)
 - Low-leakage sleep mode (maintain state), e.g. XScale
 - Vdd-gating (Cut voltage/gnd connection to circuits)
 - Zero-leakage sleep mode
 - Lose state, overheads to enable/disable

Power vs. Energy

- Power consumption in Watts
 - Determines battery life in hours
 - Sets packaging limits
- Energy efficiency in joules
 - Rate at which energy is consumed over time
 - Energy = power * delay (joules = watts * seconds)
 - Lower energy number means less power to perform a computation at same frequency

Power vs. Energy

Power vs. Energy

- Power-delay Product (PDP) = P_{avg} * t
 - PDP is the average energy consumed per switching event
- Energy-delay Product (EDP) = PDP * t
 - Takes into account that one can trade increased delay for lower energy/operation
- Energy-delay² Product (EDDP) = EDP * t
 - Why do we need so many formulas?!!?
 - We want a voltage-invariant efficiency metric! Why?
 - Power ~ ½ CV²Af, Performance ~ f (and V)

E vs. EDP vs. ED²P

- Power ~ CV²f ~ V³ (fixed microarch/design)
- Performance ~ f ~ V (fixed microarch/design)
- (For the nominal voltage range, f varies linearly with V)

- Comparing processors that can only use freq/voltage scaling as the primary method of power control:
 - (perf)³ / power, or MIPS³ / W is a fair metric to compare energy efficiencies.
 - This is an ED² P metric. We could also use: (CPI)³ * W for a given application

E vs. EDP vs. ED²P

- Currently have a processor design:
 - 80W, 1 BIPS, 1.5V, 1GHz
 - Want to reduce power, willing to lose some performance
 - Cache Optimization:
 - -IPC decreases by 10%, reduces power by 20% => Final Processor: 900 MIPS, 64W
 - -Relative E = MIPS/W (higher is better) = 14/12.5 = 1.125x
 - Energy is better, but is this a "better" processor?

Not necessarily

- 80W, 1 BIPS, 1.5V, 1GHz
 - Cache Optimization:
 - IPC decreases by 10%, reduces power by 20% => Final Processor: 900 MIPS, 64W
 - Relative E = MIPS/W (higher is better) = 14/12.5 = 1.125x
 - Relative EDP = MIPS 2 /W = 1.01x
 - Relative $ED^2P = MIPS^3/W = .911x$
- What if we just adjust frequency/voltage on processor?
 - How to reduce power by 20%?
 - P = CV²F = CV³ => Drop voltage by 7% (and also Freq) => .93*.93*.93 = .8x
 - So for equal power (64W)
 - Cache Optimization = 900MIPS
 - Simple Voltage/Frequency Scaling = 930MIPS

What do we mean by Power?

CPU Cycles

- Max Power: Artificial code generating max CPU activity
- Worst-case App Trace: Practical applications worst-case
- Thermal Power: Running average of worst-case app power over a time period corresponding to thermal time constant
- Average Power: Long-term average of typical apps (minutes)
- Transient Power: Variability in power consumption for supply net