

CSCI 3403 INTRO TO CYBERSECURITY

Lecture: 5-2

Topic:

Authentication

Presenter: Matt

Niemiec

Announcements

- Project 2 is going up soon
- Concerns with unprofessional behavior on Piazza
 - "Love prospers when a fault is forgiven, but dwelling on it separates close friends"
 - I'm more sympathetic when you communicate nicely!

Authentication

What is Authentication?

- Prove a user is who they say they are
- Different than authorization
- Verify your identity
 - Whatever that is!

Four Means of Authenticating a User

- Something you have
 - Credit card, badge, smart card, key, etc.
- Something you know
 - PIN, password, security questions, etc.
- Something you are
 - Fingerprint, retinal scan, facial recognition, etc.
- Something you do
 - Voice pattern, typing rhythm, gait analysis, etc.

Something You Know

Passwords

- Easy to verify
- Choose between
 - Easy to remember
 - Difficult to guess
- Should be hashed in case of a breach

Rainbow tables

- Pre-compute common hashes (>30GB worth!)
- Useful for offline or online?

Salting

(a) Loading a new password

Figure 3.3 UNIX Password Scheme

Figure 3.4 The Percentage of Passwords Guessed After a Given Number of Guesses

- Say we want to prevent n passwords
- Idea: Every time a user submits a password, we scan through n known bad passwords to to check if it's bad
- Current solution: O(?) runtime and O(?) space

- Say we want to prevent n passwords
- Idea: Every time a user submits a password, we scan through n known bad passwords to to check if it's bad
- Current solution: O(n) runtime and O(n) space

- Say we want to prevent n passwords
- Idea: Every time a user submits a password, we scan through n known bad passwords to to check if it's bad
- Current solution: O(n) runtime and O(n) space
- Improve: Can we get down to O(1) runtime?

- Say we want to prevent n passwords
- Idea: Every time a user submits a password, we scan through n known bad passwords to to check if it's bad
- Current solution: O(n) runtime and O(n) space
- Improve: Can we get down to O(1) runtime?
- Improve again: Can we get down to O(1) space?*

*Still would scale in order to be effective, but saves a lot of space regardless

Solution: Bloom Filters

Creation

- Use 3* hash functions to hash password
- Mark each hash location as "set"
- Repeat for all known bad passwords

Checking

- Take user's entered password
- Hash with same 3 hash functions
- If all 3 locations are marked, don't permit the password

Something You Have

Something You Have

- Advantages
 - Very practical
 - Not easily misunderstood
 - Requires physical interaction to steal
- Disadvantages
 - Can be stolen
 - Can be lost
 - May be replicated

Something You Are/Do

Something You Are

- "Static biometrics"
- Retinal scan, fingerprint
- Advantages
 - Requires a physical presence
- Disadvantages
 - Difficult to change

Something You Do

- "Dynamic biometrics"
- Gait, typing rhythm, voice, etc.

Something You Are/Do

- Requires physical presence
- Typically very accurate
 - How accurate is accurate enough?

Accuracy

Figure 3.8 Cost Versus Accuracy of Various Biometric Characteristics in User Authentication Schemes.

Figure 3.10 Profiles of a Biometric Characteristic of an Imposter and an Authorized Users In this depiction, the comparison between presented feature and a reference feature is reduced to a single numeric value. If the input value (s) is greater than a preassigned threshold (t), a match is declared.

ROC Curves

- Way of visually expressing the previous slide
- Gives simple way to analyze where to put the threshold

Visualization

ROC Curve FPR Threshold (drag left or right) Negatives Positives

http://www.navan.name/roc/

Replay Attacks

Replay Attacks

- Attacker doesn't need your password
 - Can simply re-sent your encrypted password
- Big idea: attackers don't need to know what they're sending!
- Let's look at 3 cases

Notation

- $X \rightarrow Y : \{ Z \mid\mid W \} k_{X,Y}$
 - X sends a message, Z concatenated with W, to Y
 - The message is encrypted with a shared secret key between X and Y
 - || is concatenation
 - {}k is a message encrypted with k
- r₁, r₂ are nonces (nonrepeating random numbers)
- Alice wants to talk to Bob
 - Cathy is a trusted third party
- T is the time

Case 1

The rest of the conversation, encrypted with k_s

Case 2

Alice –	Alice Bob r ₁	Cathy
Alice +	{ Alice Bob r_1 k_s { Alice k_s } k_B } k_A	Cathy
Alice -	{ Alice k _s } k _B	Bob
Alice +	$\{r_2\}k_s$	Bob
Alice -	$\{r_2-1\}k_s$	Bob

Case 3

Alice Alice || Bob ||
$$r_1$$
 | Cathy

Alice $\{ \text{Alice } || \text{Bob } || r_1 || k_s || \{ \text{Alice } || T || k_s \} k_B \} k_A \}$ Cathy

Alice $\{ \text{Alice } || T || k_s \} k_B \}$ Bob

Alice $\{ r_2 \} k_s \}$ Bob

Alice $\{ r_2 - 1 \} k_s \}$ Bob

Takeaways

- Case 1 provides perfect confidentiality and integrity
 - But doesn't guarantee the message is sent currently!
- Case 2 is the Needham-Schroeder Protocol
 - Prevents replay attack
 - Still vulnerable if an attacker gets the session key
- Case 3 is the Needham-Schroeder Protocol with Denning-Sacco Modification
 - Fixes replay attacks, but we may have time issues
- I don't care if you know the names, but you may hear those terms

Kerberos

Kerberos

- Initially developed at MIT
- Authentication protocol
 - For both the client and server!
- "Ticket-based" Single-Sign On (SSO) protocol
- Most commonly seen today in Windows AD
 - Or Federated Identity Service!
- Based on Needham-Schroeder Protocol with Denning-Sacco modification

Kerberos

2. AS verifies user's access right in database, creates ticket-granting ticket and session key. Results are encrypted using key derived from user's password.

Figure 23.1 Overview of Kerberos

Realms

Kerberos Problems

- Generally seen as outdated
- Relies on having synchronized clocks
 - And caching exchanges for a certain amount of time
- Fixed field sizes leads to possible dictionary attacks

Basically...

Is Kerberos secure?

Kerberos is a network authentication protocol that is designed to provide strong authentication to client/ server applications by using secret-key cryptography. ... **Kerberos** is more **secure** than other authentication methods because it does not send plain text pass- words over the network and instead uses **encrypted** tickets.

www.pistolstar.com > pdfs > 18_Things_Kerberos

18 Things You Should Know About Kerberos Secure ... - PistolStar Inc.

www.scmagazineuk.com > article *

'Devastating flaws' in Kerberos authentication protocol

Dec 14, 2015 - Security watchers warn of authentication and authorisation flaws in ... have surfaced relating to the Kerberos network authentication protocol.