Zadania na ocenę dobrą:

Założenia początkowe:

- -Automat przyjmuje monety 1, 2 lub 5, a koszt biletu to 9,
- -Automat po wydaniu biletu i ewentualnej reszty kończy działanie,
- -Cena na pływalnie to 9,

$$\begin{split} \Sigma &= \{1,\,2,\,5\} \\ Q &= \{q0,\,q1,\,q2,\,q3,\,q4,\,q5,\,q6,\,q7,\,q8,\,q9,\,q10,\,q11,\,q12,\,q13\} \\ A &= \{q5,\,q10,\,q11,\,q12,\,q13\} \\ q0 &= q0 \end{split}$$

 δ - funkcja przejścia jest określona poniższym diagramem i tabelą stanów.

	1	2	5
q0	q1	q2	q3
q1	q2	q 7	q6
q2	q7	q9	q4
q3	q6	q4	q10
q4	q8	q5	q12
q5	q5	q5	q5
q6	q4	q8	q11
q 7	q9	q 3	q8
q8	q5	q10	q13
q 9	q3	q6	q5
q10	q10	q10	q10
q11	q11	q11	q11
q12	q12	q12	q12
q13	q13	q13	q13

Sprawdzenie:

Wprowadzamy monety $5 \rightarrow 2 \rightarrow 5$

Stan początkowy q0 następnie wprowadzamy monetę 5 przechodzimy do stanu q3, następnie moneta 2 przechodzimy do stanu q4. Następną monetą jest moneta 5, przechodzimy do stanu q12 który jest stanem akceptującym. Automat wydaje bilet i 3 reszty.

Sprawdzenie w programie:

```
"E:\Uczelnia\Lingwistyka matematyczna\LAB_1\cmake-build-debug\LAB_1.exe"

Aktualny stan to q0
Wrzuc monete o nominale 1, 2 lub 5 jako liczbe:5

Wrzuciles: 5, aktualny stan to q3
Wrzuc monete o nominale 1, 2 lub 5 jako liczbe:2

Wrzuciles: 2, aktualny stan to q4
Wrzuc monete o nominale 1, 2 lub 5 jako liczbe:5

Wrzuciles: 5, aktualny stan to q12
Wydano bilet, a reszta rowna jest 3
Stan koncowy to q12
Sciezka jaka pokonal
q0 -> q3 -> q4 -> q12

Process finished with exit code 0
```