Computational Physics Homework Assignment #2

March 25, 2019; Due April 15, 2019

Reading Assignment

- 1. Read lecture notes and references; Study sample programs and prepare your own programs with any languages you prefer.
- 2. Complete one Lab Assignments before you lave the laboratory.

Laboratory Assignments (Total Points: 120), on April 01, 2019

- 1. (10 points) Consider the function $f(x) = xe^x$ at x = 1. Calculate its first and second derivatives for h = 0.5, 0.45, ..., 0.05, using the forward and central difference formulae. Plot the log error versus $\log(h)$. Compare your results with that of Richardson extrapolation.
- 2. (15 points) Use the two-point, three-point, and five-point formulae to estimate the first five derivatives of f(x) at x = 0.

$$f(x) = \frac{e^x}{\sin^3(x) + \cos^3(x)}$$

As a check, $f^{(v)}(x=0) = -164$

You are recommended to change the value of h in the fashion of $h = \frac{1}{2^n}$, n = 1, 2, ...

3. (10 points) Use library functions and subroutines, to prove the following equalities *numerically*:

$$(AB)C = A(BC) \tag{1}$$

$$A(B+C) = AB + BC \tag{2}$$

$$(AB)^{T} = B^{T}A^{T} \tag{3}$$

$$(AB)^{-1} = B^{-1}A^{-1} \tag{4}$$

$$\det(AB) = \det(A) \det(B) \tag{5}$$

With

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & -2 \\ -2 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{pmatrix}, C = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \\ 1 & -1 & 1 \end{pmatrix}$$

4. (20 points) Study the Hilbert matrix again.

$$H_n = \begin{pmatrix} \frac{1}{1} & \frac{1}{2} & \frac{1}{3} & \dots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \dots & \frac{1}{n+1} \\ \dots & \dots & \dots & \dots & \dots \\ \frac{1}{n} & \frac{1}{n+1} & \frac{1}{n+2} & \dots & \frac{1}{2n-1} \end{pmatrix}$$

Diagonalizing H_n and calculate the ratio of the largest eigenvalue to the smallest eigenvalue, $\log(\max|\lambda|/\min|\lambda|)$, and plot it as a function of n. Discuss your results.

Do the problem for both single and double precisions. Indicate which diagonalization

routine you are using.

5. Coupled Oscillators (35 Points: 10, 10, 15)

Use program similar to *Oscillators* to solve the dynamics equation of motion for N=10 oscillators with the initial conditions $u_j(t=0)=0$, $v_1(t=0)=1$. Compare numerical results of $u_j(t)$ with the analytic one.

- (a) What is the maximum deviation of $u_i(t)$?
- (b) How well is the total energy conserved as function of Δt ?
- (c) How well is the total energy conserved as function of Δt if one uses Runge-Kutta 4th order algorithm?
- 6. (20 points) Table 3.1 lists a few values of Bessel functions. Estimate $J_1(4.5)$ by Lagrange polynomial interpolation for n = 1, 2, 3, and 5. Compare with exact value of $J_1(4.5)$ from math library. Recalculate $J_1(4.5)$ by Hermite interpolation for n 1, 3, and 5. The derivative of $J_1(x)$ is $(J_1(x) J_2(x))/2$.

P	$J_0(ho)$	$J_1(ho)$	$J_2(ho)$
0.0	1.00000 00000	0.0000 00000	0.00000 000000
1.0	0.76519 76866	0.44005 05857	0.11490 34849
2.0	0.22389 07791	0.57672 48078	0.35283 40286
3.0	-0.26005 19549	0.33905 89585	0.48609 12606
4.0	-0.39714 98099	-0.0660433280	0.36412 81459
5.0	-0.17759 67713	-0.3275791376	0.04656 51163
6.0	0.15064 52573	-0.2766838581	-0.2428732100
7.0	0.30007 92705	-0.0046828235	-0.3014172201
8.0	0.17165 08071	0.23463 63469	-0.11299 17204
9.0	-0.09033 36112	0.24531 17866	0.14484 73415
10.0	-0.2459357645	0.04347 27462	0.25463 03137