1. Find the current I through a resistor of resistance $R = 2 \Omega$ if the voltage across the resistor is 6 V.

V = IR
Volts = Current * Resistance
Volts = 6 V
Resistance =
$$2 \Omega$$

I = ?
I = V/R
I = $6V / 2 \Omega$
I = 3A

2. In the circuit below resistors R1 and R2 are in series and have resistances of 5 Ω and 10 Ω , respectively. The total voltage (VT) is equal to 5 V. Find the current passing through the circuit and the voltage drop across R1 and R2. Compute for the total voltage drop in the circuit.


```
R_T = R1 + R2
R_T = 5 \Omega + 10 \Omega
R_T = 15 \Omega
V = 5V
I = ?
I = V/R
I = 5V / 15 \Omega
I = 0.33A
V = IR
V1 = IR1
V1 = 0.33 (5 \Omega)
V1 = 1.65V (Voltage Drop)
V2 = IR2
V2 = 0.33 (10 \Omega)
V2 = 3.3V (Voltage Drop)
Total Voltage drop = V1 + V2
Total Voltage drop = 1.65V + 3.3V
Total Voltage drop = 4.95V (\sim 5V)
```

3. In the circuit below resistors R1 and R2 are in parallel and have resistances of 8 Ω and 4 Ω , respectively. The current passing through R1 is 0.2 A. Find the voltage across resistor R2 and the current passing through the same resistor.

Given:

4. Find the total resistance RT and total current IT if the voltage source is 5 V.

R1 = 5
$$\Omega$$

R2 = 4 Ω
R3 = 10 Ω
R4 = 8 Ω
R2 || 18 Ω = (4 Ω * 18 Ω)/ (4 Ω + 18 Ω)
R2 || 18 Ω = (72 Ω)/ (22 Ω)
R2 || 18 Ω = 3.27 Ω
R_T = R1 + 3.27 Ω
R_T = 5 Ω + 3.27 Ω
R_T = 8.27 Ω
I_T = ?
I_T = $\nabla \nabla / R \nabla$
I_T = 5 $\nabla / R \nabla$
I_T = 5 $\nabla / R \nabla$
I_T = 5 $\nabla / R \nabla$