台灣化學纖維股份有限公司 化工二部

SM廠(海豐)脫氫觸媒 性能預測及節能優化

> 報告人:何廷圻 2019年11月22日 【密】【會後收回】

內 容

- 一、動機說明
- 二、製程說明
- 三、模組開發應用成果
- 四、模組開發建置流程說明
- 五、製程優化調整與效益
- 六、結論

一、動機說明

- 1. 苯乙烯製程係以乙苯(EB)為原料,經脫氫反應及蒸餾單元純化產出苯乙烯(SM)成品,脫氫反應之SM產率的高低,直接影響未反應的EB於蒸餾單元回煉的蒸汽耗用量。
- 2. 以往因無法掌握各變數對脫氫觸媒衰退速率的影響, 為確保脫氫觸媒壽命2年使用期限,皆是依照觸媒 供應商及歷年操作經驗,將SM產率控制在60%的保守 操作模式,無法充分掌握觸媒性能。
- 3. 經檢討擬應用數據分析、機器學習等AI技術,開發 脫氫觸媒性能預測模組,在模組指導下,提昇SM產率 來節省EB回煉能耗。

一、動機說明

製程與問題點說明

苯乙烯製程分為脫氫反應單元及蒸餾純化單元。

問題點 (原操作管理模式)

目前操作受限於無法預測觸媒 衰退率,依先前經驗將SM產率控 制在60%保守操作,除無法對反應 環境條件改變,作精準的因應, 亦無法對每批次觸媒特性變化充 分掌握。

改善對策 (發展觸媒性能預測模組)

藉由AI技術,開發脫氫觸媒性能預測模組,在觸媒操作期限內,依反應環境的變化,提供最佳操作建議,將SM產率操作至最大值充分利用觸媒性能,達到節能操作的目的。

一、動機說明

模組架構

脫氫觸媒性能預測模組開發後,結合現有蒸餾單元,蒸汽耗用 理論計算模組,建立脫氫產率優化節能應用平台。

脫氫產率優化節能應用平台

開發

脫氫觸媒 性能預測模組 \Rightarrow

(SM產率)

現有

蒸餾單元 蒸汽耗用理論計算模組

模組預測在考慮觸媒操作 天數,且不影響產量下, 模擬可達最高之SM產率, 並提供操作條件供調整。

將模擬之SM產率代入, 計算出蒸餾所需蒸汽 耗用量,並與現狀做 比較算出蒸汽節省量。

二、脫氫反應單元製程流程說明

脫氫單元主要包含加熱爐、兩座反應器、熱交換器及油水分離槽, 反應器入料為乙苯,與過熱蒸汽混合後經觸媒進行脫氫反應, 反應之粗苯乙烯經冷凝後進入油水分離槽分離為三相(油、水、 氣),其中油相再進入蒸餾區純化產出苯乙烯產品。

DCS監控36個錶點, 品管分析57個錶點。

二、脫氫反應單元製程流程說明

脫氫反應各參數影響

脫氫觸媒隨使用時間越長,活性會逐漸衰退,製程操作可藉由 調整三項操作條件,以維持觸媒活性達到所需的SM產量, 說明如下:

項目	升/降	EB轉化率	SM選擇率	操作說明
1. 溫度	1	+	_	昇溫雖有助轉化率提升,但選擇率會下降, 溫度越高觸媒結焦速率越快,致使活性衰
	1	_	+	退,操作溫度由627℃逐步提升至645℃。 註:歷年溫昇模式第一年:0.5℃/月,第二年:1.0℃/月
2. S/O比 (蒸汽/EB)	1	+	+	調升S/O比能幫助觸媒除焦提高產率,但
	7	_	_	是相對耗能。考量蒸汽成本,在不影響產率下,S/O比操作在最低容許值。
3. 真空度	1	+	+	觸媒積垢、冷凝器效能等皆會影響真空度,
	7	_	_	真空度會隨著觸媒操作時間越長而變差, 進而造成產率下降。

註:EB轉化率 = 反應器進出口EB差量/反應器入口EB量

SM選擇率 = SM生成量/反應器進出口EB差量

SM產率 = 轉化率 × 選擇率

三、模組開發應用成果

1. 節能應用平台說明:

- (1)SM廠(海豐) 脫氫產率優化節能應用平台,於2019年1月建置完成,在觸媒使用週期內提供最適化操作條件,將SM產率提昇至最大,達到節能目的。
- (2)每日由模組自動擷取數據進行運算,並提供盤控人員優化操作之建議。
- (3)後續系統每兩個月納入新的操作數據,供模組學習、訓練並更新各變數之 係數,提供更精準之預測。

註1:因進入蒸餾單元之組成固定少變化,經評估其蒸汽耗用使用理論模組即可精準推估,本次不另建AI模組。

三、模組開發應用成果

- 2. 依據模組之建議,在確保SM產量下,於8/5將脫氫反應器EB入料量由 154. 3噸/時降至150. 8噸/時,使S/O比(蒸汽/EB)相對由1.05提高至 1.08,結果產率由60.5%提升至62.0%。相對蒸餾單元因EB回煉量降低 3.6噸/時,蒸汽耗用共減少3.2噸/時,年效益24,883仟元。
- 3. AI模型建議調降EB入料量,使S/O(蒸汽/EB)比相對提高,相較於過往 皆是以提升蒸汽用量使提高S/O比,確保SM產量,是以前未曾測試過且 為更優越的操作方式。

模組開發流程摘要

步驟一

定義問題 與目標

- 1. 提升SM產率
- 2. 減少EB回煉 量節能操作

步驟二

資料盤點 與清理

- 1. 資料收集分組
- 2. 資料清理
- 3. 資料對齊

步驟三

資料探索 分析

- 1. 變數關連性 分析
- 2. 變數篩選

步驟四

模組開發 與評估

- 1. 開發產率預測模組
- 2. 評估準確度

步驟五

線上應用

- 1. 開發操作條 件模擬功能
- 2. 使用者介面

四、模組開發建置流程說明 步驟一、定義問題與目標

1. 定義問題:

脫氫反應之SM產率的高低直接影響蒸餾單元EB回煉的蒸汽耗用,因無法掌握各變數對觸媒衰退速率的影響,為確保脫氫觸媒使用期限,故均採以控制SM產率在60%的保守模式,不敢將SM產率進一步提昇,以降低蒸餾區EB回煉蒸汽用量。

2. 定義目標:

發展脫氫觸媒性能預測模組可兼顧相關變數,並建議優化操作條件。在觸媒使用週期內將SM產率提昇至最佳值,以降低蒸餾區EB回煉蒸汽耗用,達到節能目的。

步驟二、資料盤點與清理

1. 資料分組(依各別反應器及觸媒操作時間進行分批)

SM3至今共使用四批BASF脫氫觸媒,由於每批觸媒特性不同,如觸媒活性、及操作初始溫度等條件差異;且反應單元包含兩組反應器,故分為四組資料並將兩組反應器分開獨立訓練。

2. 資料清理(剔除離群值)

- (1) 離群值是指因製程開停車或異常時所產生的偏離數據。
- (2) 為避免模組學習錯誤訊息,需要進行資料清理,剔除偏離數據。
- (3) 資料清理後的有效數據量約為250萬筆。

- 3. 資料對齊(資料量一致化)
 - (1)品管數據2筆/天、DCS數據24筆/天,因資料頻率不同數據 需做資料對齊。經檢視數據操作穩定,將各錶點的數據整理 為1筆/天平均值。
 - (2)資料對齊後的數據量為243,204筆。

	SM3-DCS-TIC-2113	SM3-DCS-PI-2110	S.	27
起時	$^{\circ}$	Kg/cm2	轉化率(%)	選擇率(%)
2017/7/5 0:00	612.73	-0.4571	0.6608	0.9739
2017/7/5 1:00	612.69	-0.4569		
2017/7/5 2:00	612.65	-0.4587		
2017/7/5 3:00	612.61	-0.4592		
2017/7/5 4:00	612.57	-0.4577		
2017/7/5 5:00	612.53	-0.4565		
2017/7/5 6:00	612.50	-0.4552		
2017/7/5 7:00	613.09	-0.4509		
2017/7/5 8:00	611.63	-0.4598		
2017/7/5 9:00	611.08	-0.4594		
2017/7/5 10:00	612.53	-0.4502		
2017/7/5 11:00	611.08	-0.4474		
2017/7/5 12:00	611.25	-0.4467		
2017/7/5 13:00	612.50	-0.4439		
2017/7/5 14:00	612.57	-0.4429		
2017/7/5 15:00	613.38	-0.4437	0.6539	0.9712
2017/7/5 16:00	613.41	-0.4443		
2017/7/5 17:00	613.07	-0.4474		
2017/7/5 18:00	613.48	-0.4461		
2017/7/5 19:00	613.64	-0.4479		
2017/7/5 20:00	612.85	-0.4412		
2017/7/5 21:00	613.39	-0.4508		
2017/7/5 22:00	613.42	-0.4536		
2017/7/5 23:00	613.28	-0.4546		

		SM3-DCS-TIC-2113	SM3-DCS-PI-2110	SZ	27
	起時	$^{\circ}\!$	Kg/cm2	轉化率(%)	選擇率(%)
ı	2017/7/5	612.66	-0.4513	0.6573	0.9725
Ī	2017/7/6	613.69	-0.4459	0.6465	0.9705
	2017/7/7	615.87	-0.4387	0.6480	0.9724
	2017/7/8	618.17	-0.4438	0.6397	0.9690
Ì	2017/7/9	622.18	-0.4335	0.6443	0.9718

將品管數據2筆/天、DCS數據24筆/天 取平均值整理為1筆/天。

步驟三、資料探索分析

1. 以統計分析方法篩選:

將資料收集的93個錶點,分別以相關係數法及glmboost演算法分析後,取交集挑選出10個影響脫氫反應產率的特徵錶點,提供後續模組開發。

註:93個錶點含DCS監控36個錶點; 品管分析57個錶點。

NO.		原錶點
1	TIC-2113	反應器入口溫
2	FIC-2101	反應器蒸汽量
3	FIC-2201	反應器EB入料量
4	TI-2116	反應器出口溫
5	PI-2250	V-202壓力
6	TI-2250	V-202溫度
7	FIC-2240	CSM流量
8	TI-2403B	壓縮機入口溫
9	PI-2114	反應器入口壓
10	PI-2116	反應器出口壓

2. 製程錶點轉換

為使各錶點應用上具有理論及操作意義,將部分錶點進行運算轉化。將其中3個錶點轉為3個參數,保留7個錶點,並利用反應器入出口壓力新增1個參數,共挑選出11個特徵參數。

No.	原錶點		運算方式		
1	TIC-2113	反應器入口溫	反應器溫昇	:今日溫度	- 前日溫度
2	FIC-2101	反應器蒸汽量	 	反應器蒸汽 反應器EB入	
3	FIC-2201	反應器EB入料量	空速比:一	反應器EB入 觸媒安裝量	
4	TI-2116	反應器出口溫		維持原錶點	
5	PI-2250	V-202壓力		維持原錶點	
6	TI-2250	V-202溫度		維持原錶點	
7	FIC-2240	CSM流量		維持原錶點	
8	TI-2403B	壓縮機入口溫		維持原錶點	
9	PI-2114	反應器入口壓		維持原錶點	
10	PI-2116	反應器出口壓		維持原錶點	
11	_	_	反應器壓差	:入口壓 -	出口壓

取代3個

維持7個

子<mark>新增1個</mark>

3. 以演算法測試影響權重

將11個特徵參數使用多變數迴歸(Multivariable Regression),針對各參數與產率的相關性進行初步確認,將權值低於10⁻⁵的參數與製程專業討論,確認實際操作對產率的影響性低則予以剔除,最終選出6個特徵參數。

11個特徵參數

最終選出6個特徵 參數進行模組開發

NO.	特徵參數	理論意義
1	反應器溫昇	透過提昇溫度彌補觸媒衰退之影響
2	空速比	每單位觸媒需處理的入料量
3	S/0比(蒸汽/EB)	反應器蒸汽量與EB入料量的比值, 其值越大越有利反應進行
4	反應器壓差	反應器觸媒粉化或結焦的指標參數
5	反應器入口壓	反應器入口操作壓力
6	反應器出口壓	反應器出口操作壓力

步驟四、模組開發與評估

1. 模組演算法建立及修正進程:

Step 1

多變數迴歸

(一次式)

藉由迴歸方式訓練各項特徵參數對於產率(Y)的影響。

$$Y = \sum_{n=1}^{6} a_n X_n + b$$

 $R^2: 0.71$

Step 2

多變數迴歸

(二次式)

調整演算法考慮變數之平方項及交叉影響關係,逐漸經由訓練調整模型,同時將各參數與產率的影響相關性(an,bij)修正為與理論相符。

$$Y = \sum_{n=1}^{6} \mathbf{a_n} X_n + \sum_{1 \le i \le j \le 6} \mathbf{b_{ij}} X_i X_j + \mathbf{b}$$

 $R^2: 0.85$

註.使用三次式迴歸,R²無法高於0.85

模組利用一次式多變數迴歸,其準確率(R²)僅能達0.71, 提昇至二次式迴歸,準確率達0.85後即無法再突破,後續測 試三次式迴歸亦無法再高於0.85,陷入瓶頸。

再進一步探索分析後,將前三批觸媒每筆模組產率預測值與歷年實際值相減作圖,發現偏差曲線趨近於雙曲正切函數(Hyperbolic tangent 函數): [tanh(x)],且各批觸媒偏差趨勢類似,故將X以累積天數代入,利用其減項來作為觸媒衰退的預估值。

加入觸媒衰退函數

以Hyperbolic tangent函數: [tanh(x)](x=累積天數), 作為觸媒衰退函數,並加入模組作為產率修正值。

$$Y = \sum_{n=1}^{6} \mathbf{a}_n X_n + \sum_{1 \le i \le j \le 6} \mathbf{b}_{ij} X_i X_j - \mathbf{c} \cdot \tanh(\mathbf{x}) + \mathbf{b}$$

雙曲函數(Hyperbolic function)

雙曲函數是一類與常見的三角函數(也叫圓函數)類似的函數。 最基本的雙曲函數是雙曲正弦函數sinh()和雙曲餘弦函數cosh(), 從它們可以導出雙曲正切函數tanh()。

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
 $\cosh(x) = \frac{e^x + e^{-x}}{2}$ $\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

雙曲正切函數(Hyperbolic tangent function)

f(x)=tanh(x)函數圖形為過原點並且穿越1、3象限的嚴格單調遞增曲線,其圖形被限制在兩水準漸近線y=1和y=-1之間。在類神經網路架構中,常應用作為修正邏輯迴歸的函數之一。

2. 模組準確度驗證

脱氫觸媒性能預測方程式:
$$Y = \sum_{n=1}^{6} a_n X_n + \sum_{1 \le i \le j \le 6} b_{ij} X_i X_j - c \cdot \tanh(x) + b$$

代號	變數(Xn)	變數與產 率相關性	係數(a _n)	係數 代號
Y	產率			
X 1	反應器溫昇	+	0. 000135	\mathbf{a}_1
X 2	反應器入口壓力	_	-0. 021539	a ₂
X 3	反應器出口壓力		-0.063054	a ₃
X 4	反應器壓差		-0.001601	a ₄
X 5	空速比	_	-0.005768	a ₅
X 6	S/O比	+	0.006498	a ₆
X 7	tanh(x)	+	0.017112	С
b	_		-0. 013550	b

代號	變數(X _i X _j)	係數	係數代號(b _{ij})
X8	X1*X1	-0.006816	b ₁₁
X 9	X1*X2	-0.000513	b ₁₂
X10	X1*X3	-0.008829	b ₁₃
X11	X1*X4	0.002014	b ₁₄
X12	X1*X5	0.005383	b ₁₅
X13	X1*X6	0.006240	b ₁₆
X14	X2*X2	-0.000877	b ₂₂
X15	X2*X3	0.000364	b ₂₃
	•	•	:
X28	X6*X6	0.008398	b ₆₆

為進一步確定方程式準確度,經由三項驗證指標確認,包括決定係數(R²)、 均方根誤差(RMSE)及平均絕對誤差率(MAPE),結果均符合驗證標準。

驗證項目	\mathbf{R}^2	RMSE(%)	MAPE(%)
驗證標準	>0.90	越趨近於0越準確	<5.0
驗證結果	0. 97	0. 231	0.86

$$R^2 = \frac{\sum_{i=1}^n (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^n (y_i - \bar{y})^2} \qquad \text{RMSE (\%)} \quad = \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2} \qquad \text{MAPE(\%)} = \frac{100\%}{n} \sum_{i=1}^n \left| \frac{(y_i - \hat{y}_i)}{y_i} \right| \qquad \begin{array}{c} y_i :$$
 實際值 $\hat{y}_i :$ 預測值 $\bar{y} :$ 平均值

步驟五、線上應用(操作條件模擬)

1. 為開發操作條件建議功能,經檢討將脫氫觸媒性能預測模組之 特徵參數區分為可調、不可控及連動變數3類:

分類	代號	特徵參數	使用之原錶點
可調變數	\mathbf{X}_1	反應器入口溫昇	反應器入口溫度
	\mathbf{X}_6	S/O比(蒸汽/EB)	反應器蒸汽用量 反應器EB入料量
不可控變數	$egin{array}{c} \mathbf{X}_2 \ \mathbf{X}_3 \ \mathbf{X}_4 \end{array}$	反應器入口壓 反應器出口壓 反應器壓差	反應器入口壓 反應器出口壓
連動變數	\mathbf{X}_{5} \mathbf{X}_{7}	空速比 (單位觸媒入料負荷) 觸媒活性衰退函數 (操作天數代入tanh(x))	反應器EB入料量 觸媒安裝量 操作天數

操作介面需提供可調變數建議值,並還原為原錶點以方便盤控人員直接進行調整;不可控變數屬於目前反應環境條件;連動變數為被影響之變數。

- 2. 利用所開發的脫氫觸媒性能預測模組進行模擬,找出產率最高的操作組合,轉換為可調變數建議值供盤控遵循。
- 3. 結合蒸餾單元蒸汽耗用理論計算模組算出蒸汽耗用量,推估脫氫 產率優化下之節能效益。
- 4.每日由模組自動擷取特徵參數,模擬反應器操作溫度、產率、產量 及蒸汽總耗用量,至下次更換觸媒期限之趨勢,提供製程人員調整 及判斷。

5. 介面需求:

- ①輸入觸媒操作期限、觸媒 末期溫度及SM產量等基本 設定條件。
- ②由觸媒性能預測模組自動將 基本條件及目前反應環境 條件代入,模擬最高之SM 產率操作條件,除轉為錶點 值供盤控員做為調整依據, 並提供預測趨勢供判斷。
- ③由蒸汽耗用計算模組算出 調整後蒸餾段所需蒸汽用量, 再與反應段蒸汽合計後比較 調整前後之效益。
- 註.使用8/5 AI製程調整當時反應條件 代入運算,提供建議值

【輸入基本條件】				
觸媒操作期間 2019/6/6-2021/4/15				
觸媒末期溫度	645℃			
SM目標產量	2,160噸/日			

脫氫觸媒性 能預測模組				
		操作建議	現狀	建議值
	-T-700	反應器溫度(℃)	630 -	→ 630
	可調變數	反應器EB入料量(T/h)	154.3 -	→ 151.1
	交数	反應器蒸汽用量(T/h)	162.5 -	→ 162.5
	預測值	SM產率(%)	60.5 -	→ 62.1

 蒸餾單元	Д				
 蒸汽耗用 里論模組	結果	現狀	計算值		
	單元 蒸汽耗用(T/h)	93.8 -	→ 90.5		
					
	合計	現狀	計算值		
SMI	區蒸汽總耗用(T/h)	256.3 -	→ 253, 0		

6. 操作介面設計

預測模組及操作條件建議功能開發完成後,節能應用平台操作介面如下圖。依功能可分為四個部分:

D. 趨勢預測

A

即時運轉資訊

<mark>操作天數:</mark>第 60 天

EB入料: 154312.7 kg/h

S/O比: 1.05 空速比: 0.42

R2011 入口温度 630.0 ℃

入口壓力 -0.396 kg/cm2 出口壓力 -0.459 kg/cm2

R2012 入口温度 632.8 ℃

入口壓力 -0.498 kg/cm2 出口壓力 -0.629 kg/cm2

壓降 0.228

產率 60.5

反應器EB入料純度 98.4

A. 即時運轉資訊

顯示影響產率之錶點即時數據,供製程人員使用模組時進行確認比對。

B. 模組監控

即時確認準確度並對異常數據提出警示。每兩個月將新數據納入模組進行訓練,修正模組偏差。

B

模型準確度評估

Model	UpDated	R2	RMSE	MAPE
自前	2019/8/5	0.85	0.591	0.78
前坎	2019/1/23	0.97	0.231	0.86

- € 操作建議與預測
- (1)輸入脫氫反應基本設定條件,包含觸媒操作期限、SM目標產量、及觸媒末期溫度。
- (2)將輸入的條件進行試算, 模組自動由PI系統抓取 目前的操作數據,模擬最 高SM產率的操作條件, 提供盤控建議。
- (3)最後呈現產率的預測結果 以及總蒸汽耗用量,供 確認節能效益。

D 趨勢預測

模組依現有操作值及反應環境條件,預測至觸媒末期更換日之溫昇、產率、產量及蒸汽耗用量之趨勢,提供製程人員確保觸媒於使用期限內之性能。

AI模組測試進度,本案配合新、舊兩批觸媒分為兩階段進行:

第一階段:1/29應用平台建置完成,並於定檢前利用舊觸媒進行短期驗證。

- 第二階段:1.因新舊觸媒均由BASF提供(超低水油比),經訓練後發現各批 觸媒模組係數差異不大,故沿用既有模組進行修正即可。
 - 2. 定檢後使用新觸媒一個月數據修正模組權重,配合觸媒活化及數據收集,隨後於8/5投入使用。

- 第一階段調整說明-2019.1.29~2019.4.17(定檢)
- 1. 脫氫反應單元
- a. 由模組針對現階段脫氫反應(舊觸媒末期)自動進行操作條件預測, 在維持SM產量的前提下,產率可提升至61.2%。
- b. 製程人員依據模組選出的操作條件,於1/29將<u>入料量由155.5噸/時</u> 調降至151.6噸/時,反應器維持相同蒸汽耗用量,使S/O比(蒸汽/EB) 相對提高至1.08操作,實際產率可由59.6%提升至61.1%。

脫氫反應器		EB進料量(T/h)	蒸汽用量(T/h)	S/O比	SM產率(%)
調整前	(1/1~28)	155. 5	163. 4	1.05	59. 6
模組建議值	(1/29~)	151.6	163. 4	1.08	61.2
調整值	(1/29~)	151.6	163. 4	1.08	61.1

2. SM蒸餾單元

因SM產率提升1.5%, EB含量降低回煉量減少3.7噸/時,在相同的SM產量下。蒸汽耗用量由96.1噸/時降至93.1噸/時,減用蒸汽3.0噸/時,年效益23,484仟元。

項目		EB回煉量 (T/h)	蒸餾單元蒸汽總耗用量 (T/h)	SM產量 (T/h)
調整前	(1/1~28)	58. 2	96. 1	86. 9
調整後	(1/29~)	54. 5	93. 1	86. 9
差異量		-3.7噸	-3.0噸	0

- 第二階段調整說明-2019.8.5~2019.11.15
- 1. 脫氫反應單元
- a. 由模組針對現階段新觸媒脫氫反應自動進行操作條件預測,在維持 SM產量的前提下,產率可提升至62.0%。
- b. 製程人員依據模組選出的操作條件,於8/5將入料量由154.3噸/時 調降至150.8噸/時,反應器維持相同蒸汽耗用量,使S/O比(蒸汽/EB) 相對提高至1.08操作,實際產率可由60.5%提升至62.0%。

脫氫反應器		EB進料量(T/h)	蒸汽用量(T/h)	S/O比	SM產率(%)
調整前	(7/20~8/5)	154. 3	161.7	1.05	60. 5
模組建議值	(8/5~)	151.1	161. 7	1.08	62. 1
調整值		150.8	161. 7	1.08	62. 0

2. SM蒸餾單元

因SM產率提升1.5%, EB含量降低回煉量減少3.6噸/時,在相同的SM產量下。蒸汽耗用量由93.8噸/時降至90.6噸/時,減用蒸汽3.2噸/時,年效益24,883仟元。

項目		EB回煉量 (T/h)	蒸餾單元蒸汽總耗用量 (T/h)	SM產量 (T/h)
調整前	(7/20~8/5)	59. 4	93. 8	90.0
調整後	(8/5~)	55. 8	90. 6	90. 0
差異量		-3.6噸	-3.2噸	0

六、結論

- 1. SM廠(海豐)更換新觸媒後AI模組投入使用,依據其操作建 議調整,在產量2,160噸/日下,平均產率可由60.5%提升 至62.0%,節省蒸餾單元蒸汽3.2噸/時,年效益24,883仟元。
- 2. 現有蒸餾區的蒸汽耗用預測是依據理論計算,後續將結合 化工模擬軟體Aspen plus®理論模型與製程操作、品管分 析等大量數據建立蒸餾塔節能操作模組。
- 3. SM廠(麥寮)脫氫反應單元製程流程與SM廠(海豐)相似, 目前已將歷年操作數據資料前處理完成,進入AI建模步驟 利用大量數據進行機器學習,後續擬比照此操作模式(提 升SM產率減少EB回煉量)達到節能操作目的。

報告完準