

SCHOOL OF SCIENCE AND TECHNOLOGY

COURSEWORK FOR THE BSC (HONS) INFORMATION SYSTEMS (BUSINESS ANALYTICS); YEAR 2

ACADEMIC SESSION AUGUST 2020; SEMESTER 4,5,6

BIS 2216: DATA MINING and KNOWLEDGE DISCOVERY FUNDAMENTALS

DEADLINE: 22ND NOVEMBER 2020

Name: Ng Wei Xiang Student ID: 18033167

INSTRUCTIONS TO CANDIDATES

IMPORTANT

The University requires students to adhere to submission deadlines for any form of assessment. Penalties are applied in relation to unauthorized late submission of work.

- Coursework submitted after the deadline but within 1 week will be accepted for a maximum mark of 40%.
- Work handed in following the extension of 1 week after the original deadline will be regarded as a non-submission and marked zero.

Lecturer's Remark	(Use additional	I sheet if required)
-------------------	-----------------	----------------------

We (Names and IDs stated above) received the assignment and read the comments

	(Signature/date)
Academic Honesty Acknowledgement	

"Me
paragraphs from another student. I realize the penalties (refer to page 16, 5.5, Appendix 2, page 44 of the student handbook diploma and undergraduate programme) for any kind of copying or collaboration on any assignment."
χίανg (Student's signature / Date)

1. Data preparation

Attribute Processed	Rationale for processing	Methods for processing	
Absences	Is a numeric datatype ranging from 0 to 93	Change to interval level	
Age	Is a numeric datatype ranging from 15 to 22	Change to interval level	
Dalc	Is a categorical variable with logical order from 0 to 4	Change to ordinal level	
Fedu	Is a categorical variable with logical order from 0 to 4	Change to ordinal level	
Fjob	Is a categorical variable with no logical order	Change to nominal level	
Gender	Is a categorical variable with no logical order	Change to nominal level	
Goout	Is a categorical variable with logical order from 1 to 5	Change to ordinal level	
Health	Is a categorical variable with logical order from 1 to 5	Change to ordinal level	
Internet	Is a binary datatype with yes or no only	Change to binary level	
Medu	Is a categorical variable with logical order from 0 to 4	Change to ordinal level	
Mjob	Is a categorical variable with no logical order	Change to nominal level	
Result	Is a numeric datatype ranging from 0 to 20	Change to interval level	
Studytime	Is a categorical variable with logical order from 1 to 5	Change to ordinal level	
Traveltime	Is a categorical variable with logical order from 1 to 5	Change to ordinal level	
walc	Is a categorical variable with logical order from 1 to 5	Change to ordinal level	

2. Models and performance (T for training, V for validation)(Benchmark for model performance is Train Average Squared Error(ASE))

No.	Modelling	Partition	Other preparation Methods	Model
	Technique	Ratio		performance
1	Linear Regression	40T:30V	Variable selection to exclude	13.79
			"fedu", "fjob", "medu", "mjob"	
2	Logistic	40T:30V	None	12.83
	Regression			
3	Logistic	40T:30V	Dropped "age" and performed	13.77
	Regression		backward selection	
4	Decision Tree	40T:30V	Dropped "age"	16.37
5	Logistic	60T:40V	Performed stepwise selection	13.46
	Regression			
6	Logistic	60T:40V	None	12.72
	Regression			
7	Decision Tree	60T:40V	None	12.73
8	Logistic	60T:40V	Performed interactive binning	13.61
	Regression			
9	Logistic	70T:30V	None	12.63
	Regression			

3. Screenshot of the Model Comparison Node's Fit Statistics result using SAS Miner.

Selected Model	Predecessor Node	Model Node	Model Description	Target Variable	Target Label	Selection Criterion: Train: Average Squared Error
Υ	Reg7	Reg7	Regression (7)	result	result	12.6376
	Reg5	Reg5	Regression (5)	result	result	12.72
	Tree2	Tree2	60/40 Decision tree	result	result	12.730
	Reg	Reg	Regression	result	result	12.830
	Reg3	Reg3	Regression_stepwise	result	result	13.468
	Reg6	Reg6	IB Regression	result	result	13.611
	Reg2	Reg2	Regression_backward_sele	result	result	13.775
	Reg4	Reg4	Linear Reg	result	result	13.790
	Tree	Tree	Decision Tree	result	result	16.379

4. Present the best model.

The best model selected among all is the model "Regression(7)" which is selected based on the lowest value among all models at 12.63 based on the average squared error of the training set. The formula for this model would be $Y = 1.01(dalc=1)x_1 - 0.08(dalc=2)x_2 + 1.08(dalc=3)x_3 - 1.75(dalc=4)x_4 - 0.56(fjob=at home)x_5 - 0.37(fjob=health)x_6 + 0.17(fjob=other)x_7 - 0.52(fjob=services)x_8 - 0.13(goout=1)x_9 + 1.2(goout=2)x_{10} + 0.45(goout=3)x_{11} - 0.34(goout=4)x_{12} + 1.02(health=1)x_{13} - 0.49(health=2)x_{14} - 0.44(health=3)x_{15} + 0.29(health=4)x_{16} - 1.01(studytime=1)x_{17} - 0.32(studytime=2)x_{18} + 0.76(studytime=3)x_{19}.$

5. Interpret the best mode selected.

Based on te output of the model, it had a p-value of <0.001 which means it had significant variables affecting the model. The R-square value is at 0.1631 which means the model fits the variables at roughly 16%, which indicates it's a weak model. By evaluating the variables in this model individually, the variables that are below the 0.05 significant figure are : "dalc", "fjob", "goout", "health", and "studytime". That being said, the best model that I am able to generate for this given dataset had a conclusion that says : workday alcohol consumption, father's job, the total time of going out, health status, and time spent on studying are variables that may affect one's result.

6. Present the screenshot of the whole modelling process diagram in SAS Miner.

