

СЕТИ. КРИПТОГРАФИЯ

Урок 5. Симметричное шифрование

Шифрование

Шифрова́ние — обратимое преобразование информации в целях сокрытия от неавторизованных лиц...

... с предоставлением, в это же время, **авторизованным** пользователям доступа к ней.

Авторизация

- Авториза́ция предоставление определённому лицу или группе лиц прав на выполнение определённых действий; а также процесс проверки (подтверждения) данных прав при попытке выполнения этих действий.
- Аутентифика́ция процедура проверки подлинности данных, например:
 - проверка подлинности пользователя путём сравнения введённого им пароля с паролем, сохранённым в базе данных пользователей;
 - подтверждение подлинности электронного письма путём проверки цифровой подписи письма по открытому ключу отправителя;
 - проверка контрольной суммы файла на соответствие сумме, заявленной автором этого файла.

Шифрование

С помощью шифрования обеспечиваются три состояния безопасности информации:

- Конфиденциальность.
 - Шифрование используется для скрытия информации от неавторизованных пользователей при передаче или при хранении.
- Целостность.
 - Шифрование используется для предотвращения изменения информации при передаче или хранении.
- Идентифицируемость.
 - Шифрование используется для аутентификации источника информации и предотвращения отказа отправителя информации от того факта, что данные были отправлены именно им.

***шифрование

□ Шифрование – закрытие информации

 Расшифрование – открытие информации авторизованным лицом

Дешифрование – открытие информации
HEавторизованным лицом

Разновидности

• Блочные шифры.

• Обрабатывают информацию блоками определённой длины (обычно 64, 128 бит), применяя к блоку ключ в установленном порядке, как правило, несколькими циклами перемешивания и подстановки, называемыми раундами.

Поточные шифры

 В которых шифрование проводится над каждым битом либо байтом исходного текста с использованием гаммирования.

Разновидности

Открытый/Закрытый?

Принцип Шенонна: Враг знает систему

С.Ш. и А.Ш.

- Симметричное
 - Простое
 - Быстрое
 - □ Эффективное

- Ассиметричное
 - □ Архисложное
 - □ Долгое
 - □ Мистическое

С.Ш. = Кодирование+Ключ

Место для рисунка:

Основные требования

Функционал:

- Однозначность результата шифрования
- Ключ, как элемент алгоритма шифрования

Качество

- Сильная зависимость результата от входных данных
- □ Непредсказуемость результата
- Длина ключа равна длине сообщения

Стойкость

- Необратимость без ключа
- Стойкость к коллизиям первого рода: невозможно подобрать сообщение или пароль под известный результат
- Стойкость к коллизиям второго рода: невозможно подобрать пару сообщений или паролей с одинаковым результатом
- Стойкость алгоритма тождественна секретности ключа

Полная схема симметричного шифрования

□ Место для рисунка:

Мировые стандарты

Блочные шифрыAES (англ. Advanced Encryption Standard) - американский стандарт шифрования

□ ГОСТ 28147-89 советский и российский стандарт шифрования, также является стандартом СНГ

DES/AES (англ. Data Encryption Standard) - стандарт шифрования данных в США

3DES (Triple-DES, тройной DES)

RC2 (Шифр Ривеста (Rivest Cipher или Ron's Cipher))

□ RC5

Blowfish

Twofish

□ NUSH

IDEA (International Data Encryption Algorithm, международный алгоритм шифрования данных)

CAST (по инициалам разработчиков Carlisle Adams и Stafford Tavares)

CRAB

□ 3-WAY

Khufu и Khafre

Kuznechik

Потоковые шифры

- RC4 (алгоритм шифрования с ключом переменной длины)
- SEAL (Software Efficient Algorithm, программно-эффективный алгоритм)
- WAKE (World Auto Key Encryption algorithm, всемирный алгоритм шифрования на автоматическом ключе)

ПРАКТИЧЕСКИЙ БЛОК

Табличная перестановка.

Табличная перестановка

Табличная перестановка

→ [1 E	Л	И	К	Α	Н
7	2	5	3	4	1	6
7	Н	П	В	E	Г	Л
E	E A	P	Α	Д	0	Н
F	T	И	E	Ь	В	0
N	10	Б	T	M	П	Ч
V	1 P	Ы	С	0	0	Ь

Α	Е	И	К	Л	H	_
1	2	3	4	5	6	7
Γ	Н	В	Е	П	Л	Т
0	Α	Α	Д	Р	Н	E
В	Т	E	Ь	И	0	Р
П	0	Т	М	Б	ч	М
0	Р	C	0	Ы	Ь	И

До перестановки

После перестановки

Задачи

□ Задачи!! Вас ждут задачи!!!

Ключ vs Шифр-последовательность

Хеш-сумма – математическая функция от входной строки (пароля)

CRC32: F6DE2FEA

MD5: 026f8e459c8f89ef75fa7a78265a0025

■ **SHA-1**: 7DD987F846400079F4B03C058365A4869047B4A0

Каскадное применение ключа в блочных алгоритмах:

Сеть Фейстеля

- Один из методов построения блочных шифров. Сеть состоит из ячеек, называемых ячейками Фейстеля.
- На вход каждой ячейки поступают данные и ключ.
- На выходе каждой ячейки получают изменённые данные и изменённый ключ.
- □ Все ячейки однотипны
- Ключ выбирается в зависимости от алгоритма шифрования/расшифрования и меняется при переходе от одной ячейки к другой.
- При шифровании и расшифровании выполняются одни и те же операции; отличается только порядок ключей.
- Ввиду простоты операций сеть Фейстеля легко реализовать как программно, так и аппаратно. Большинство современных блочных шифров (DES, RC2, RC5, RC6, Blowfish, FEAL, CAS T-128, TEA, XTEA, XXTEA и др.) используют сеть Фейстеля в качестве основы.

Подстановочно-перестановочная сеть

- □ Шифр на основе SP-сети получает на вход блок и ключ и совершает несколько чередующихся раундов, состоящих из чередующихся стадий подстановки (англ. substitution stage) и стадий перестановки (англ. permutation stage).
 - Для достижения безопасности достаточно одного S-блока, но такой блок будет требовать большого объёма памяти. Поэтому используются маленькие S-блоки, смешанные с P-блоками.
 - Нелинейная стадия подстановки перемешивает биты ключа с битами открытого текста, создавая конфузию Шеннона.
 - Линейная стадия перестановки распределяет избыточность по всей структуре данных, порождая диффузию.
- S-блок (англ. substitution box or S-box) замещает маленький блок входных бит на другой блок выходных бит.
 - Эта замена должна быть взаимно однозначной, чтобы гарантировать обратимость.
 - Назначение S-блока заключается в нелинейном преобразовании, что препятствует проведению линейного криптоанализа.
 - Одним из свойств S-блока является лавинный эффект, т.е. изменение одного бита на входе приводит к изменению всех бит на выходе.
- Р-блок (англ. permutation box or P-box) перестановка всех бит: блок получает на вход вывод S-блока, меняет местами все биты и подает результат S-блоку следующего раунда.
 - Важным качеством Р-блока является возможность распределить вывод одного S-блока между входами как можно больших S-блоков.
- Для каждого раунда используется свой, получаемый из первоначального, ключ. Подобный ключ называется раундовым. Он может быть получен как делением первоначально ключа на равные части, так и каким-либо преобразование всего ключа.

Демонстрация

•Демонстрация **AES**

Демонстрация ГОСТ 28147-89

Использование физических принципов:

•Демонстрация клеточных автоматов Фредкина