

A reliability-aware model

for

intelligibility classification

in

pathological speech

Naveen Kumar, Shrikanth Narayanan

Signal Analysis and Interpretation Lab University of Southern California

Overview

- 1. Pathological Speech
- 2. Defining reliability
- 3. Reliability-aware classification model
- 4. Results
- 5. Summary

Pathological Speech

- Atypicality resulting from disease or surgery of the vocal tract
- Reduced speech intelligibility
- Decrease of intelligibility might be perceived by different factors

Database

NKI CCRT Speech Corpus

- Speech Intelligibility before and after treatment.
- Released during Interspeech 2012 speaker trait challenge^[1]
- 2385 sentence level utterances
- Ratings thresholded to
 - intelligible (I)
 - non-intelligible (NI)

Feature Subsets

Utterance level feature subsystems adapted from [2]

- Prosody (6)
 - Pitch L0 norm, polynomial fit, variance
- Pronunciation (2)
 - CMN 39 dim. MFCC, phone duration
- Voice Quality (5)
 - HNR, Jitter, Shimmer

Defining Reliability

How was the label Y assigned given features X? (discriminative)

reliable (R=1)

unreliable (R=0)

Reliability of labels

How was the label Y assigned given features X? (discriminative)

reliable (R=1)

unreliable (R=0)

Why model label reliability?

- human annotations are inherently subjective
- noisy features on some samples

Reliability formulation

$$Pr(X,Y|R) = Pr(X,Y;\Theta)^{R} [Pr(X;\Phi)Pr(Y;\Phi)]^{1-R}$$

- R={0,1} : reliable at random model
- Θ : data dependent reliable model
- Φ : data independent unreliable model

Latent reliability **R** controls **dependence** between data **X** and label **Y**

Discriminative reliability assumption

- unreliable: Label Y generated independent of data
- reliable: label Y generated according to a data-dependent model

$$Pr(Y|X,R) = \underbrace{Pr(Y|X;\Theta)^R}_{reliable} \underbrace{Pr(Y;\Phi)^{1-R}}_{unreliable}$$

Discriminative reliability assumption

- unreliable: Label Y generated independent of data
- reliable: label Y generated according to a data-dependent model

$$Pr(Y|X,R) = \underbrace{Pr(Y|X;\Theta)^R}_{reliable} \underbrace{Pr(Y;\Phi)^{1-R}}_{unreliable}$$

data-dependent reliability

$$Pr(Y, R|X) = Pr(R|X) Pr(Y|X; \Theta)^R Pr(Y; \Phi)^{1-R}$$

mixture of experts model

Choice of models

reliable $oldsymbol{W}$	maximum-entropy (softmax)	$Pr(Y_i = k X_i; \mathbf{\Theta}) = \frac{e^{W_k^T X_i}}{\sum_{j=1}^K e^{W_j^T X_i}}$	$\Psi_{ik}(W)$
unreliable λ	multinomial	$Pr(Y_i = k; \Phi) = \lambda_k$	λ_k
reliability model	logistic regression	$Pr(R_i = 1 X_i) = \sigma(\mathbf{r}^T X)$	$ ho_i$

Parameter estimation

ML estimation via EM algorithm

• E-step γ_i

$$Pr(R_i = 1|X_i, Y_i) = \frac{Pr(Y_i|R_i = 1, X_i) Pr(R_i = 1|X_i)}{Pr(Y_i|X_i)}$$

• **M step** estimate parameters \mathbf{W}^* $\boldsymbol{\lambda}^*$ \boldsymbol{r}^* by maximizing expected data log-likelihood.

Data log-likelihood

data dependent reliability model

$$=\sum_{i=1}^{N} \gamma_i \ln \rho_i + (1-\gamma_i) \ln(1-\rho_i)$$

$$r^*$$

reliable and unreliable models

$$+\sum_{i=1}^{N}\sum_{k=1}^{K}\frac{Y_{ik}[\gamma_{i}\ ln\ \Psi_{ik}]}{[1-\gamma_{i}]ln\ \lambda_{k}]}$$

Data log-likelihood

logistic regression with label γ_i

$$= \sum_{i=1}^{N} \gamma_i \ln \rho_i + (1 - \gamma_i) \ln(1 - \rho_i)$$

weighted maxent with weights γ_i

$$+\sum_{i=1}^{N}\sum_{k=1}^{K}\underline{Y_{ik}[\gamma_{i}\ ln\ \Psi_{ik}}+(1-\gamma_{i})ln\ \lambda_{k}]$$

Parameter updates and Inference

λ_k	$\frac{\sum_{i=1}^{N} Y_{ik} (1 - \gamma_i)}{\sum_{i=1}^{N} Y_{ik}}$	one step
r	logistic	gradient ascent (L-BFGS)
W	weighted-maxent	gradient ascent (L-BFGS)

Parameter updates and Inference

λ_k	$\frac{\sum_{i=1}^{N} Y_{ik} (1 - \gamma_i)}{\sum_{i=1}^{N} Y_{ik}}$	one step
r	logistic	gradient ascent (L-BFGS)
W	weighted-maxent	gradient ascent (L-BFGS)

Inference of class labels

$$Pr(Y = k|Z) = \Psi_k(\mathbf{W}^*, Z)\sigma(\mathbf{r}^{*T}Z) + \lambda_k^*[1 - \sigma(\mathbf{r}^{*T}Z)]$$
 test feature

Experiment: Intelligibility classification

- 5 fold cross validation
- Baseline: Reliability blind classifier, always assumes R=1

Feature set	Logistic regression	Reliability aware	
voice quality	58.2 59.8		
prosody	67.1	66.7	
pronunciation	55.1	56.2	
feature fusion	68.0	67.8	

Analysis: Intelligibility classification

R ~ Bernoulli (ρ)

Feature set	Logistic regression	Reliability aware	Avg. Reliability
voice quality	58.2	59.8	0.43
prosody	67.1	66.7	0.73
pronunciation	55.1	56.2	0.16
feature fusion	68.0	67.8	0.78

Reliability aware model improves classification when feature set is less reliable

Summary

Pros

- discriminative modeling allows for reliable parameter estimation
- learns regions in feature space where annotations are more reliable

Cons

- linear class boundary for reliability in feature space may not be ideal
- model is unable to combine reliable information from different feature subsets

Questions?