- 1. Solve these problems and submit by 21 April (Sunday) 9am before the discussion session.
- 2. There is no penalty for submitting incorrect attempts
- 3. However, plagiarism will result in serious penalties, such as an F grade.
- 2 1. What is the minimum distance between two parallel half-spaces $\{\mathbf{x} \in \mathbb{R}^n | \mathbf{a}^T \mathbf{x} \leq b_1 \}$ and $\{\mathbf{x} \in \mathbb{R}^n | \mathbf{a}^T \mathbf{x} \geq b_2 \}$?
- 2. Is the following set affine: $\{\mathbf{x} \in \mathbb{R}^n | \|\mathbf{x} \mathbf{x}_1\|_1 \le \|\mathbf{x} \mathbf{x}_2\|_1\}$?
- 2 3. Show that the set $\{\mathbf{x} \in \mathbb{R}^n | ||\mathbf{x}||_{\infty} \le 1\}$ is a polyhedra and express it as an intersection of finite number of half spaces (and hyperplanes, if required).
- 2 4. Given θ , consider the set $S = \{\mathbf{x} \in \mathbb{R}^n | ||\mathbf{x} \mathbf{a}||_2 \le \theta ||\mathbf{x} \mathbf{b}||_2 \}$ for $\mathbf{a} \ne \mathbf{b}$. Show that S is a halfspace for $\theta = 1$, convex for $\theta < 1$. Give an example to prove that S can be non-convex for $\theta > 1$.
- 2 5. Show that the intersection of two convex cones is a convex cone.