

Automotive 6-axis inertial module with embedded machine learning core and dual operating modes

Typ: 2.5 x 3.0 x 0.83 mm³

Product status link

ASM330LHHX

Product summary			
Order code ASM330LHHXTR			
Temp. range [°C]	-40 to +105		
Package	LGA-14L (2.5 x 3.0 x 0.83 mm ³)		
Packing	Tape and reel		

Product resources

TN0018 (Design and soldering)

Product label SUSTAINABLE TECHNOLOGY

Features

- AEC-Q100 qualified
- Extended temperature range from -40 to +105 °C
- Embedded compensation for high stability over temperature
- Android compliant
- Accelerometer user-selectable full scale up to ±16 g
- Extended gyroscope range from ±125 to ±4000 dps
- · Dual operating modes: high-performance and low-power mode
- I²C, MIPI I3CSM, and SPI serial interfaces
- Six-channel synchronized output to enhance accuracy of dead-reckoning algorithms
- · Programmable finite state machine
- Machine learning core
- · Smart programmable interrupts
- Embedded 3 kbyte FIFO available to underload host processor
- · ECOPACK, RoHS and "Green" compliant

Applications

- Dead reckoning (DR)
- Vehicle-to-everything (V2X)
- Telematics, eTolling
- Anti-theft systems
- · Impact detection and crash reconstruction
- · Motion-activated functions
- · Driving comfort
- Vibration monitoring and compensation

Description

The ASM330LHHX is a system-in-package featuring a 3-axis digital accelerometer and a 3-axis digital gyroscope with an extended temperature range up to +105 °C and designed to address automotive non-safety applications.

ST's family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes to serve both the automotive and consumer markets. The ASM330LHHX is AEC-Q100 compliant and industrialized through a dedicated MEMS production flow to meet automotive reliability standards. All the parts are fully tested with respect to temperature to ensure the highest quality level.

The sensing elements are manufactured using ST's proprietary micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The ASM330LHHX has a full-scale acceleration range of $\pm 2/\pm 4/\pm 8/\pm 16$ g and a wide angular rate range of $\pm 125/\pm 250/\pm 500/\pm 1000/\pm 2000/\pm 4000$ dps that enables its usage in a broad range of automotive applications.

The device supports dual operating modes: high-performance mode and low-power mode.

All the design aspects of the ASM330LHHX have been optimized to reach superior output stability, extremely low noise, and full data synchronization to the benefit of sensor-assisted applications like dead reckoning and sensor fusion.

The ASM330LHHX is available in a 14-lead plastic land grid array (LGA) package.

DS13197 - Rev 3 page 2/160

Overview

The ASM330LHHX is a system-in-package featuring a high-performance 3-axis digital accelerometer and 3-axis digital gyroscope.

This device is suitable for telematics and dead-reckoning applications as well as vehicle-to-vehicle (V2X) and impact detection as a result of its high stability over temperature and time, combined with superior sensing precision.

Supporting dual operating modes, the device has enhanced flexibility versus application requirements, leveraging on multiple voltage and multiple ODR selections. The device also includes digital features like a finite state machine and an ST proprietary machine learning core, allowing defined motion pattern detection or some complex algorithms run in the application processor to be moved to the MEMS sensor with the advantage of consistent reduction in power consumption.

The event-detection interrupts enable efficient and reliable motion-activated functions, implementing hardware recognition of free-fall events, 6D orientation, activity or inactivity, and wake-up events.

Like the entire portfolio of MEMS sensor modules, the ASM330LHHX leverages the robust and mature in-house manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The ASM330LHHX is available in a small plastic land grid array (LGA) package of $2.5 \times 3.0 \times 0.83$ mm to address ultra-compact solutions.

DS13197 - Rev 3 page 3/160

2 Embedded low-power features

The ASM330LHHX has been designed to feature the following on-chip functions:

- 3 kbytes data buffering
 - 100% efficiency with flexible configurations and partitioning
 - Possibility to store timestamp
- Event-detection interrupts (fully configurable)
 - Free-fall
 - Wake-up
 - 6D orientation
 - Activity/inactivity recognition
 - Stationary/motion detection
- · Specific IP blocks with negligible power consumption and high performance
 - Finite state machine (FSM) for accelerometer, gyroscope, and external sensors
 - Machine learning core (MLC) for accelerometer, gyroscope, and external sensors
- · Sensor hub
 - Up to six total sensors: two internal (accelerometer and gyroscope) and four external sensors

2.1 Finite state machine

The ASM330LHHX can be configured to generate interrupt signals activated by user-defined motion patterns. To do this, up to 16 embedded finite state machines can be programmed independently for motion detection such as vehicle status (stationary or moving), anti-theft alarm and shock detection.

Definition of finite state machine

A state machine is a mathematical abstraction used to design logic connections. It is a behavioral model composed of a finite number of states and transitions between states, similar to a flow chart in which one can inspect the way logic runs when certain conditions are met. The state machine begins with a start state, goes to different states through transitions dependent on the inputs, and can finally end in a specific state (called stop state). The current state is determined by the past states of the system. The figure below shows a generic state machine.

Figure 1. Generic state machine

DS13197 - Rev 3 page 4/160

Finite state machine in the ASM330LHHX

The ASM330LHHX works as a combo accelerometer-gyroscope sensor, generating acceleration and angular rate output data. It is also possible to connect an external sensor (magnetometer) by using the sensor hub feature (mode 2). These data can be used as input of up to 16 programs in the embedded finite state machine (Figure 2. State machine in the ASM330LHHX).

All 16 finite state machines are independent: each one has its dedicated memory area and it is independently executed. An interrupt is generated when the end state is reached or when some specific command is performed.

Figure 2. State machine in the ASM330LHHX

DS13197 - Rev 3 page 5/160

2.2 Machine learning core

The ASM330LHHX embeds a dedicated core for machine learning processing that provides system flexibility, allowing some algorithms run in the application processor to be moved to the MEMS sensor with the advantage of consistent reduction in power consumption.

Machine learning core logic allows identifying if a data pattern (for example motion, pressure, temperature, magnetic data, and so forth) matches a user-defined set of classes. Typical examples of applications could be activity detection like running, walking, driving, and so forth.

The ASM330LHHX machine learning core works on data patterns coming from the accelerometer and gyroscope sensors, but it is also possible to connect and process external sensor data (like magnetometer) by using the sensor hub feature (mode 2).

The input data can be filtered using a dedicated configurable computation block containing filters and features computed in a fixed time window defined by the user.

Machine learning processing is based on logical processing composed of a series of configurable nodes characterized by "if-then-else" conditions where the "feature" values are evaluated against defined thresholds.

Figure 3. Machine learning core in the ASM330LHHX

The ASM330LHHX can be configured to run up to 8 flows simultaneously and independently and every flow can generate up to 256 results. The total number of nodes can be up to 512.

The results of the machine learning processing are available in dedicated output registers readable from the application processor at any time.

The ASM330LHHX machine learning core can be configured to generate an interrupt when a change in the result occurs.

DS13197 - Rev 3 page 6/160

3 Pin description

Figure 4. Pin connections

Direction of detectable accelerations (top view)

Direction of detectable angular rates (top view)

DS13197 - Rev 3 page 7/160

3.1 Pin connections

The ASM330LHHX offers flexibility to connect the pins in order to have two different mode connections and functionalities. In detail:

- Mode 1: I²C / MIPI I3CSM slave interface or SPI (3- and 4-wire) serial interface is available;
- Mode 2: I²C / MIPI I3CSM slave interface or SPI (3- and 4-wire) serial interface and I²C interface master for external sensor connections are available;

Figure 5. ASM330LHHX connection modes

DS13197 - Rev 3 page 8/160

In the following table, each mode is described for the pin connections and function.

Table 1. Pin description

Pin#	Name	Mode 1 function	Mode 2 function		
1	SDO/SA0	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)		
'	3D0/3A0	I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)		
2	MSDA	Connect to Vdd_IO or GND	I ² C serial data master (MSDA)		
3	MSCL	Connect to Vdd_IO or GND	I ² C serial clock master (MSCL)		
4	INT1	Programmable interrupt in I ² C and SPI			
5	Vdd_IO ⁽¹⁾	Power supply for I/O pins			
6	NC	Leave unconnected ⁽²⁾			
7	GND	0 V supply			
8	Vdd ⁽¹⁾	Power supply			
9	INT2	Programmable interrupt 2 (INT2) / Data enable (DEN)	Programmable interrupt 2 (INT2) / Data enable (DEN) /		
		(DEN)	I ² C master external synchronization signal (MDRDY)		
10	NC	Leave unconnected ⁽²⁾	Leave unconnected ⁽²⁾		
11	NC	Leave unconnected ⁽²⁾	Leave unconnected ⁽²⁾		
		I ² C/MIPI I3C SM /SPI mode selection	I ² C/MIPI I3C SM /SPI mode selection		
12	CS	(1: SPI idle mode / $I^2C/MIPI\ I3C^{SM}$ communication enabled;	(1: SPI idle mode / I²C/MIPI I3C SM communication enabled;		
		0: SPI communication mode / I²C/MIPI I3C SM disabled)	0: SPI communication mode / I²C/MIPI I3C SM disabled)		
13	SCL	I ² C/MIPI I3C SM serial clock (SCL)	I ² C/MIPI I3C SM serial clock (SCL)		
13	SUL	SPI serial port clock (SPC)	SPI serial port clock (SPC)		
		I ² C/MIPI I3C SM serial data (SDA)	I²C/MIPI I3C SM serial data (SDA)		
14	SDA	SPI serial data input (SDI)	SPI serial data input (SDI)		
		3-wire interface serial data output (SDO)	3-wire interface serial data output (SDO)		

^{1.} Vdd_IO: Recommended 100 nF filter capacitor. Vdd: Recommended 100 nF plus 10 μF capacitors.

DS13197 - Rev 3 page 9/160

^{2.} Leave pin electrically unconnected and soldered to PCB.

4 Module specifications

4.1 Mechanical characteristics

@Vdd = 3.0 V, T = $-40 ^{\circ}\text{C}$ to $+105 ^{\circ}\text{C}$, up to gyroscope FS = $\pm 2000 \text{ dps}$ unless otherwise noted. The product is factory calibrated at 3.0 V. The operational power supply range is from 1.71 V to 3.6 V.

Table 2. Mechanical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit	
				±2			
LA_FS	Linear acceleration measurement range			±4		a	
LA_I 0	Linear acceleration measurement range			±8		g	
				±16			
				±125			
				±250			
G_FS	Angular rate measurement range			±500		dps	
0_10	Angular rate measurement range			±1000		ирз	
				±2000			
				±4000			
		@LA_FS = ±2 g		0.061			
LA_So	Linear acceleration sensitivity	@LA_FS = ±4 g		0.122		m <i>g/</i> LSB	
LA_50	Linear acceleration sensitivity	@LA_FS = ±8 g		0.244		IIIg/LSB	
		@LA_FS = ±16 g		0.488			
		@G_FS = ±125 dps		4.37		mdps/LSB	
	@G	@G_FS = ±250 dps		8.75			
G_So		@G_FS = ±500 dps		17.5			
0_00		@G_FS = ±1000 dps		35.0			
		@G_FS = ±2000 dps		70.0			
		@G_FS = ±4000 dps		140.0			
LA_So%	Sensitivity tolerance ⁽²⁾	@25 °C		±2		%	
LA_30 %	Sensitivity tolerance - long term ⁽³⁾		-6		+6	%	
0.0-1/	Sensitivity tolerance ⁽²⁾	@25 °C		±2		%	
G_So%	Sensitivity tolerance - long term ⁽³⁾		-8		+8	%	
LA_SoDr	Linear acceleration sensitivity change vs. temperature			±100		ppm/°C	
G_SoDr	Angular rate sensitivity change vs. temperature			±70		ppm/°C	
LA_TyOff	Linear acceleration zero-g level offset accuracy(2)	@25 °C		±20		m <i>g</i>	
LA_Off	Linear acceleration offset accuracy - long term ⁽³⁾		-150		+150	m <i>g</i>	
G_TyOff	Angular rate zero-rate level accuracy ⁽²⁾	@25 °C		±2		dps	
G_Off	Angular rate offset accuracy - long term ⁽³⁾		-7		+7	dps	
LA_TCOff	Linear acceleration zero-g level change vs. temperature			±0.10		m <i>g</i> /°C	
G_TCOff	Angular rate typical zero-rate level change vs. temperature			±0.005		dps/°C	
LA_Cx	Linear acceleration cross-axis sensitivity	@25 °C		±1		%	

DS13197 - Rev 3 page 10/160

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit	
G_Cx	Angular rate cross-axis sensitivity	@25 °C		±1		%	
An	Acceleration noise density ⁽⁴⁾⁽⁶⁾	@LA_FS = ±2 g		60	200	µ <i>g</i> /√Hz	
AnRMS	Acceleration RMS noise in low-power mode ⁽⁵⁾			1.8		mg(RMS)	
Rn	Rate noise density ⁽⁴⁾⁽⁶⁾			5	12	mdps/√Hz	
RnRMS	Gyroscope RMS noise in low-power mode ⁽⁵⁾			90		mdps	
XL_NL	Accelerometer nonlinearity ⁽⁷⁾	Best-fit straight line		0.5		% FS	
G_NL	Gyroscope nonlinearity ⁽⁷⁾	Best-fit straight line		0.01		% FS	
VRW	Velocity random walk ⁽⁷⁾	@25 °C		0.03		m/sec/√h	
XL_BI	Accelerometer bias instability ⁽⁷⁾	@25 °C		40		μg	
ARW	Angular random walk ⁽⁷⁾	@25 °C		0.21		°/√h	
G_BI	Gyroscope bias instability ⁽⁷⁾	@25 °C		3		°/h	
				1.6 ⁽⁸⁾			
				12.5			
				26			
				52		Hz	
				104			
LA_ODR	Linear acceleration output data rate			208			
				416			
				833			
				1667			
				3333			
				6667			
				12.5			
				26			
				52			
				104			
0.000				208			
G_ODR	Angular rate output data rate			416		Hz	
				833			
				1667			
				3333			
				6667			
	Linear acceleration self-test output change - long term(3)(9)(10)(11)		40		1700	m <i>g</i>	
Vst	Angular rate colf foot outsit shares less to(3)/42/43	FS = ±250 dps	20		80	dps	
	Angular rate self-test output change - long term ⁽³⁾⁽¹²⁾⁽¹³⁾	FS = ±2000 dps	150		700	dps	
Тор	Operating temperature range		-40		+105	°C	

- 1. Typical specifications are not guaranteed.
- 2. Values after factory calibration test and trimming at T = 25 °C.
- 3. Long term includes the following conditions: post solder, drift in temperature in the range [-40 $^{\circ}$ C to +105 $^{\circ}$ C] and over life.
- 4. Max. values from design and characterization at ambient temperature (T = 25 $^{\circ}$ C).
- 5. RMS noise is the same for all ODRs.
- 6. Noise density is the same for all ODRs.
- 7. Based on characterization data on a limited number of samples. Not measured during final test for production.
- 8. This ODR is available when the accelerometer is in low-power mode.

DS13197 - Rev 3 page 11/160

- 9. Accelerometer self-test limits are full-scale independent.
- 10. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in a dedicated register for all axes.
- 11. The linear acceleration self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 0.061 mg at ±2 g full scale.
- 12. The angular rate self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 70 mdps at ±2000 dps full scale.
- 13. The sign of the angular rate self-test output change is defined by the STx_G bits in a dedicated register for all axes.

4.2 Electrical characteristics

@ Vdd = 3.0 V, T = -40 °C to +105 °C, up to gyroscope FS = ±2000 dps unless otherwise noted.

Table 3. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.71		3.6	V
Vdd_IO	Power supply for I/O		1.62		3.6	V
GA_ldd	Gyroscope and accelerometer current consumption	ODR = 1.6 kHz		1.3	1.6	mA
A_lddHP	Accelerometer current consumption in high-performance mode	ODR < 1.6 kHz		360	530	μA
		Vdd = 3 V, ODR = 52 Hz		80	150	μA
		Vdd = 3 V, ODR = 12.5 Hz ⁽³⁾		14		μA
	A colored to consider the first to the colored to	Vdd = 3 V, ODR = 1.6 Hz ⁽³⁾		7		μA
LA_IddLIVI	Accelerometer current consumption in low-power mode	Vdd = 1.71 V, ODR = 52 Hz		60	150	μA
		Vdd = 1.71 V, ODR = 12.5 Hz ⁽³⁾		11		μA
		Vdd = 1.71 V, ODR = 1.6 Hz ⁽³⁾		5.5		μA
		Vdd = 3 V, ODR = 52 Hz		530	800	μA
		Vdd = 3 V, ODR = 12.5 Hz ⁽³⁾		475		μΑ
LC_IddLM	Current consumption in low-power mode, combo mode	Vdd = 1.71 V, ODR = 52 Hz		520	800	μA
		Vdd = 1.71 V, ODR = 12.5 Hz ⁽³⁾		470		μA
IddPD	Gyroscope and accelerometer current consumption during power-down	@25°C		8	13	μA
Ton	Turn-on time ⁽²⁾			35		ms
V _{IH} ⁽³⁾	Digital high-level input voltage		0.7 * Vdd_IO			V
V _{IL} (3)	Digital low-level input voltage				0.3 * Vdd_IO	V
V _{OH} ⁽³⁾	High-level output voltage	I _{OH} = 4 mA ⁽⁴⁾	Vdd_IO - 0.2			V
V _{OL} ⁽³⁾	Low-level output voltage	I _{OL} = 4 mA ⁽⁴⁾			0.2	V
Тор	Operating temperature range		-40		+105	°C

- 1. Typical specifications are not guaranteed.
- 2. Time to obtain stable sensitivity (within ±5% of final value) switching from power-down to normal operation
- 3. Evaluated by characterization not tested in production
- 4 mA is the minimum driving capability, that is, the minimum DC current that can be sourced/sunk by the digital pad in order to guarantee
 the correct digital output voltage levels V_{OH} and V_{OL}.

DS13197 - Rev 3 page 12/160

4.3 Temperature sensor characteristics

0 Vdd = 3.0 V, T = 25 °C unless otherwise noted. The product is factory calibrated at 3.0 V.

Table 4. Temperature sensor characteristics

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
TODR ⁽²⁾	Temperature refresh rate			52		Hz
Toff	Temperature offset ⁽³⁾		-15		+15	°C
TSen	Temperature sensitivity			256		LSB/°C
TST	Temperature stabilization time ⁽⁴⁾				500	μs
T_ADC_res	Temperature ADC resolution			16		bit
Тор	Operating temperature range		-40		+105	°C

^{1.} Typical specifications are not guaranteed.

DS13197 - Rev 3 page 13/160

^{2.} When the accelerometer is in low-power mode and the gyroscope part is turned off, the TODR value is equal to the accelerometer ODR.

^{3.} The output of the temperature sensor is 0 LSB (typ.) at 25 °C.

^{4.} Time from power ON to valid output data. Based on characterization.

4.4 Communication interface characteristics

4.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.

Table 5. SPI slave timing values (in mode 3)

Symbol	Parameter	Val	Unit	
Syllibol	Falallietei	Min	Max	Oille
t _{c(SPC)}	SPI clock cycle	100		ns
f _{c(SPC)}	SPI clock frequency		10	MHz
t _{su(CS)}	CS setup time	5		
t _{h(CS)}	CS hold time	20		
t _{su(SI)}	SDI input setup time	5		
t _{h(SI)}	SDI input hold time	15		ns
t _{v(SO)}	SDO valid output time		50	
t _{h(SO)}	SDO output hold time	5		
t _{dis(SO)}	SDO output disable time		50	

^{1.} Values are evaluated at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production.

Figure 6. SPI slave timing diagram (in mode 3)

Note: Measurement points are done at 0.3·Vdd_IO and 0.7·Vdd_IO for both input and output ports.

DS13197 - Rev 3 page 14/160

4.4.2 I²C - inter-IC control interface

Subject to general operating conditions for Vdd and Top.

Table 6. I²C slave timing values

Symbol	Parameter -	I ² C standa	ard mode ⁽¹⁾	I ² C fast	Unit	
Syllibol	r al allietei	Min	Max	Min	Max	
f _(SCL)	SCL clock frequency	0	100	0	400	kHz
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		ns
t _{h(SDA)}	SDA data hold time	0	3.45	0	0.9	
t _{h(ST)}	START condition hold time	4		0.6		
t _{su(SR)}	Repeated START condition setup time	4.7		0.6		μs
t _{su(SP)}	STOP condition setup time	4		0.6		
t _{w(SP:SR)}	Bus free time between STOP and START condition	4.7		1.3		

^{1.} Data based on standard I²C protocol requirement, not tested in production.

SDA

START

Figure 7. I²C slave timing diagram

Note: Measurement points are done at 0.3·Vdd_IO and 0.7·Vdd_IO for both ports.

DS13197 - Rev 3 page 15/160

Table 7. I²C high-speed mode specifications at 1 MHz

	Symbol	Parameter	Min.	Max.	Unit
	f _{SCL}	SCL clock frequency	0	1	MHz
	t _{HD;STA}	Hold time (repeated) START condition	260	-	
	t _{LOW}	Low period of the SCL clock	500	-	
	t _{HIGH}	High period of the SCL clock	260	-	
	t _{SU;STA}	Setup time for a repeated START condition	260	-	
	t _{HD;DAT}	Data hold time	0	-	
	t _{SU;DAT}	Data setup time	50	-	ns
	t _{rDA}	Rise time of SDA signal	-	120	
Fast mode plus ⁽¹⁾	t _{fDA}	Fall time of SDA signal	-	120	
Fast mode plus	t _{rCL}	Rise time of SCL signal	20*Vdd/5.5	120	
	t _{fCL}	Fall time of SCL signal	20*Vdd/5.5	120	
	t _{SU;STO}	Setup time for STOP condition	260	-	
	C _b	Capacitive load for each bus line	-	550	pF
	t _{VD;DAT}	Data valid time	-	450	ns
	t _{VD;ACK}	Data valid acknowledge time	-	450	115
	V _{nL}	Noise margin at low level	0.1Vdd	-	V
	V _{nH}	Noise margin at high level	0.2Vdd	-	\ \ \ \ \ \
	t _{SP}	Pulse width of spikes that must be suppressed by the input filter	0	50	ns

^{1.} Data based on characterization, not tested in production

DS13197 - Rev 3 page 16/160

4.5 Absolute maximum ratings

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	V
T _{STG}	Storage temperature range	-40 to +125	°C
Sg	Acceleration g for 0.3 ms	3000	g
ESD	Electrostatic discharge protection (HBM)	2	kV
Vin	Input voltage on any control pin (including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)	0.3 to Vdd_IO +0.3	V

Note: Supply voltage on any pin should never exceed 4.8 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

DS13197 - Rev 3 page 17/160

4.6 Terminology

4.6.1 Sensitivity

Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky), and noting the output value again. By doing so, ± 1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors (see Table 2).

An angular rate gyroscope is a device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time (see Table 2).

4.6.2 Zero-g and zero-rate level

Linear acceleration zero-*g* level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface measures 0*g* on both the X-axis and Y-axis, whereas the Z-axis measures 1 *g*. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2's complement number). A deviation from the ideal value in this case is called zero-*g* offset.

Offset is to some extent a result of stress to the MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Linear acceleration zero-*g* level change vs. temperature" in Table 2. The zero-*g* level tolerance (TyOff) describes the standard deviation of the range of zero-*g* levels of a group of sensors.

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time (see Table 2).

DS13197 - Rev 3 page 18/160

5 Digital interfaces

5.1 I²C/SPI interface

The registers embedded inside the ASM330LHHX may be accessed through both the I²C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The device is compatible with SPI modes 0 and 3.

The serial interfaces are mapped onto the same pins. To select/exploit the I²C interface, the CS line must be tied high (that is, connected to Vdd IO).

Table 9. Serial interface pin description

Pin name	Pin description
	Enable SPI
CS	I²C/SPI mode selection (1: SPI idle mode / I²C communication enabled;
	0: SPI communication mode / I ² C disabled)
SCL/SPC	I ² C serial clock (SCL)
30L/3FC	SPI serial port clock (SPC)
	I ² C serial data (SDA)
SDA/SDI/SDO	SPI serial data input (SDI)
	3-wire interface serial data output (SDO)
SDO/SA0	SPI serial data output (SDO)
3DO/3A0	I ² C less significant bit of the device address

5.1.1 I²C serial interface

The ASM330LHHX I²C is a bus slave. The I²C is employed to write the data to the registers, whose content can also be read back.

The relevant I²C terminology is provided in the table below.

Table 10. I²C terminology

Term	Description
Transmitter	The device which sends data to the bus
Receiver	The device which receives data from the bus
Master	The device which initiates a transfer, generates clock signals, and terminates a transfer
Slave	The device addressed by the master

There are two signals associated with the I²C bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both the lines are high.

The I²C interface is implemented with fast mode (400 kHz) I²C standards as well as with the standard mode. In order to disable the I²C block, (I2C disable) = 1 must be written in CTRL4 C (13h).

DS13197 - Rev 3 page 19/160

5.1.1.1 I²C operation

The transaction on the bus is started through a start (ST) signal. A start condition is defined as a high to low transition on the data line while the SCL line is held high. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The slave address (SAD) associated to the ASM330LHHX is 110101xb. The SDO/SA0 pin can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is connected to the supply voltage, LSb is 1 (address 1101011b); else if the SDO/SA0 pin is connected to ground, the LSb value is 0 (address 1101010b). This solution permits to connect and address two different inertial modules to the same I²C bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line low so that it remains stable low during the high period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded inside the ASM330LHHX behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit subaddress (SUB) is transmitted. The increment of the address is configured by CTRL3_C (12h) (IF_INC).

The slave address is completed with a read/write bit. If the bit is 1 (read), a repeated start (SR) condition must be issued after the two subaddress bytes; if the bit is 0 (write) the master transmits to the slave with direction unchanged. Table 11 explains how the SAD+read/write bit pattern is composed, listing all the possible configurations.

Table 11. SAD + read/write patterns

Command	SAD[6:1]	SAD[0] = SA0	R/W	SAD+R/W
Read	110101	0	1	11010101 (D5h)
Write	110101	0	0	11010100 (D4h)
Read	110101	1	1	11010111 (D7h)
Write	110101	1	0	11010110 (D6h)

Table 12. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP	
Slave			SAK		SAK		SAK		

Table 13. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Table 14. Transfer when master is receiving (reading) one byte of data from slave

Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave

Master	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DATA		DATA		

DS13197 - Rev 3 page 20/160

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit (MSb) first. If a slave receiver does not acknowledge the slave address (that is, it is not able to receive because it is performing some real-time function) the data line must be left high by the slave. The master can then abort the transfer. A low to high transition on the SDA line while the SCL line is high is defined as a stop condition. Each data transfer must be terminated by the generation of a stop (SP) condition.

In the presented communication format MAK is master acknowledge and NMAK is no master acknowledge.

5.1.2 SPI bus interface

The ASM330LHHX SPI is a bus slave. The SPI allows writing to and reading from the registers of the device. The serial interface communicates to the application using four wires: **CS**, **SPC**, **SDI**, and **SDO**.

Figure 8. Read and write protocol (in mode 3)

CS enables the serial port and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are, respectively, the serial port data input and output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of **SPC** just before the rising edge of **CS**.

bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip drives **SDO** at the start of bit 8.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands, further blocks of eight clock periods are added. When the CTRL3_C (12h) (IF_INC) bit is 0, the address used to read/write data remains the same for every block. When the CTRL3_C (12h) (IF_INC) bit is 1, the address used to read/write data is increased at every block.

The function and the behavior of SDI and SDO remain unchanged.

DS13197 - Rev 3 page 21/160

5.1.2.1 SPI read

Figure 9. SPI read protocol (in mode 3)

The SPI read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

bit 16-...: data DO(...-8). Further data in multiple byte reads.

Figure 10. Multiple byte SPI read protocol (2-byte example) (in mode 3)

DS13197 - Rev 3 page 22/160

5.1.2.2 SPI write

Figure 11. SPI write protocol (in mode 3)

The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: WRITE bit. The value is 0.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).

bit 16-...: data DI(...-8). Further data in multiple byte writes.

Figure 12. Multiple byte SPI write protocol (2-byte example) (in mode 3)

DS13197 - Rev 3 page 23/160

5.1.2.3 SPI read in 3-wire mode

A 3-wire mode is entered by setting the CTRL3_C (12h) (SIM) bit equal to 1 (SPI serial interface mode selection).

Figure 13. SPI read protocol in 3-wire mode (in mode 3)

The SPI read command is performed with 16 clock pulses:

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

A multiple read command is also available in 3-wire mode.

DS13197 - Rev 3 page 24/160

5.2 MIPI I3CSM interface

5.2.1 MIPI I3CSM slave interface

The ASM330LHHX interface includes a MIPI I3CSM SDR only slave interface with MIPI I3CSM SDR embedded features:

- CCC command
- Direct CCC communication (SET and GET)
- Broadcast CCC communication
- Private communications
- · Private read and write for single byte
- Multiple read and write
- Error detection and recovery methods

Refer to Section 5.3 I²C/I3C coexistence in ASM330LHHX for details concerning the choice of the interface when powering up the device.

5.2.2 MIPI I3CSM CCC supported commands

The list of MIPI I3CSM CCC commands supported by the device is detailed in the following table.

Table 16. MIPI I3CSM CCC commands

Command	Command code	Default	Description
ENTDAA	0x07		DAA procedure
SETDASA	0x87		Assign dynamic address using static address 0x6B/0x6A depending on SDO pin
ENEC	0x80 / 0x00		Slave activity control (direct and broadcast)
DISEC	0x81/ 0x01		Slave activity control (direct and broadcast)
ENTAS0	0x82 / 0x02		Enter activity state (direct and broadcast)
ENTAS1	0x83 / 0x03		Enter activity state (direct and broadcast)
ENTAS2	0x84 / 0x04		Enter activity state (direct and broadcast)
ENTAS3	0x85 / 0x05		Enter activity state (direct and broadcast)
RSTDAA	0x86 / 0x06		Reset the assigned dynamic address (direct and broadcast)
SETMWL	0x89 / 0x08		Define maximum write length during private write (direct and broadcast)
SETMRL	0x8A / 0x09		Define maximum read length during private read (direct and broadcast)
SETNEWDA	0x88		Change dynamic address
		0x00	
GETMWL	0x8B	0x08	Get maximum write length during private write
		(2 byte)	
		0x00	
GETMRL	0x8C	0x10	Get maximum read length during private read
		0x09	
		(3 byte)	
		0x02	
		0x08 0x00	
GETPID	0x8D	0x6B	Device ID register
		0x0B	
		0x10	
		UNUD	

DS13197 - Rev 3 page 25/160

Command	Command code	Default	Description
GETBCR	0x8E	0x07	Bus characteristics register
OLIBOR	UNUL	(1 byte)	Dus Characteristics register
GETDCR	0x8F	0x00	MIPI I3C SM device characteristics register
		0x00	
GETSTATUS	0x90	0x00	Status register
		(2 byte)	
		0x00	
GETMXDS	0x94	0x38	Return max data speed ⁽¹⁾
		(2 byte)	

^{1.} Bits[5:3] are set to "111" which indicates that Tsco is greater than 12 nsec. To calculate the effective bus frequency, Tsco should be used together with line capacitance, number of slaves and stubs (if present).

DS13197 - Rev 3 page 26/160

5.3 I²C/I3C coexistence in ASM330LHHX

In the ASM330LHHX, the SDA and SCL lines are common to both I²C and I3C. The I²C bus requires anti-spike filters on the SDA and SCL pins that are not compatible with I3C timing.

The device can be connected to both I²C and I3C or only to the I3C bus depending on the connection of the INT1 pin when the device is powered up:

- INT1 pin floating (internal pull-down): I2C/I3C both active, see Figure 14
- INT1 pin connected to Vdd_IO: only I3C active, see Figure 15

Figure 14. I²C and I3C both active (INT1 pin not connected)

1. Address assignment (DAA or ENTDA) must be performed with I²C fast mode plus timing. When the slave is addressed, the I²C slave is disabled and the timing is compatible with I3C specifications.

INT1 pin connected to Vdd_IO

→ Only I3C active

Dynamic
Address
Assignment (1)

I3C bus case

Master resets
DA

CCC commands

Figure 15. Only I3C active (INT1 pin connected to Vdd_IO)

When the slave is I3C only, the I2C slave is always disabled. The address can be assigned using I3C SDR timing.

DS13197 - Rev 3 page 27/160

5.4 Master I²C interface

If the ASM330LHHX is configured in mode 2, a master I^2C line is available. The master serial interface is mapped to the following dedicated pins.

Table 17. Master I²C pin details

Pin name	Pin description
MSCL	I ² C serial clock master
MSDA	I ² C serial data master
MDRDY	I ² C master external synchronization signal

DS13197 - Rev 3 page 28/160

6 Functionality

6.1 Operating modes

In the ASM330LHHX, the accelerometer and the gyroscope can be turned on/off independently of each other and are allowed to have different ODRs and power modes.

The ASM330LHHX has three operating modes available:

- only accelerometer active and gyroscope in power-down or sleep mode
- · only gyroscope active and accelerometer in power-down
- both accelerometer and gyroscope sensors active with independent ODR

The accelerometer is activated from power-down by writing ODR_XL[3:0] in CTRL1_XL (10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in CTRL2_G (11h). For combo mode the ODRs are totally independent.

Note:

If the accelerometer is to be activated in high-performance operating mode while the gyroscope is already running (that is, the gyroscope is not in power-down mode), proceed as follows:

- Disable the accelerometer high-performance operating mode (set the XL_HM_MODE bit to 1 in the CTRL6_C (15h) register).
- 2. Write the CTRL1_XL (10h) register to 50h.
- Read the OUTZ H A (2Dh) register to clear the XLDA bit in the STATUS REG (1Eh) register.
- 4. Wait for 1/ODR_XL time period or wait until the XLDA bit in the STATUS_REG (1Eh) register becomes equal to 1.
- 5. Enable the accelerometer high-performance operating mode (set the XL_HM_MODE bit to 0 in the CTRL6_C (15h) register).
- 6. Write the CTRL1_XL (10h) register to the desired value.

6.2 Gyroscope power modes

In the ASM330LHHX, the gyroscope can be configured in two different operating modes: low-power and high-performance mode. The operating mode selected depends on the value of the G_HM_MODE bit in CTRL7_G (16h). If G_HM_MODE is set to 0, high-performance mode is valid for all ODRs (from 12.5 Hz up to 6667 Hz). To enable low-power mode, the G_HM_MODE bit has to be set to 1. Low-power mode is available for ODRs equal to 12.5 Hz, 26 Hz, 52 Hz, 104 Hz and 208 Hz.

6.3 Accelerometer power modes

In the ASM330LHHX, the accelerometer can be configured in two different operating modes: low-power and high-performance mode. The operating mode selected depends on the value of the XL_HM_MODE bit in CTRL6_C (15h). If XL_HM_MODE is set to 0, high-performance mode is valid for all ODRs (from 12.5 Hz up to 6667 Hz). To enable low-power mode, the XL_HM_MODE bit has to be set to 1. Low-power mode is available for ODRs equal to 1.6 Hz, 12.5 Hz, 26 Hz, 52 Hz, 104 Hz and 208 Hz.

DS13197 - Rev 3 page 29/160

6.4 Block diagram of filters

Figure 16. Block diagram of filters

DS13197 - Rev 3 page 30/160

6.4.1 Block diagram of the gyroscope filter

The gyroscope filtering chain appears below.

Figure 17. Gyroscope filtering chain

The gyroscope ODR is selectable from 12.5 Hz up to 6667 Hz. A low-pass filter (LPF1) is available, for more details about the filter characteristics see Table 59. Gyroscope LPF1 bandwidth selection. The digital LPF2 filter cannot be configured by the user and its cutoff frequency depends on the selected gyroscope ODR, as indicated in the following table.

Table 18. Gyroscope LPF2 bandwidth selection

Data can be acquired from the output registers and FIFO.

Gyroscope ODR [Hz]	LPF2 cutoff [Hz]
12.5	4.3
26	8.3
52	16.7
104	33
208	67
417	133
833	267
1667	539
3333	1137
6667	3333

DS13197 - Rev 3 page 31/160

6.4.2 Block diagrams of the accelerometer filters

In the ASM330LHHX, the filtering chain for the accelerometer part is composed of the following:

- Digital filter (LPF1)
- Composite filter

Details of the block diagram appear in the following figure.

Figure 18. Accelerometer chain

Figure 19. Accelerometer composite filter

1. The cutoff value of the LPF1 output is ODR/2 when the accelerometer is in high-performance mode and ODR up to 833 Hz. This value is equal to 780 Hz when the accelerometer is in low-power mode.

DS13197 - Rev 3 page 32/160

6.5 FIFO

The presence of a FIFO allows consistent power saving for the system since the host processor does not need continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO.

The ASM330LHHX embeds 3 kbytes of data in FIFO to store the following data:

- Gyroscope
- Accelerometer
- External sensors (up to 4)
- Timestamp
- Temperature

Writing data in the FIFO can be configured to be triggered by the:

- Accelerometer / gyroscope data-ready signal
- Sensor hub data-ready signal

The applications have maximum flexibility in choosing the rate of batching for physical sensors with FIFO-dedicated configurations: accelerometer, gyroscope and temperature sensor batch rates can be selected by the user. Writing external sensor data in FIFO can be triggered by the accelerometer data-ready signal or by an external sensor interrupt. It is possible to select decimation for timestamp batching in FIFO with a factor of 1, 8, or 32.

The reconstruction of a FIFO stream is a simple task thanks to the FIFO_DATA_OUT_TAG byte that allows recognizing the meaning of a word in FIFO.

FIFO allows correct reconstruction of the timestamp information for each sensor stored in FIFO. If a change in the ODR or BDR (batch data rate) configuration is performed, the application can correctly reconstruct the timestamp and know exactly when the change was applied without disabling FIFO batching. FIFO stores information of the new configuration and timestamp in which the change was applied in the device.

The programmable FIFO watermark threshold can be set in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h) using the WTM[8:0] bits. To monitor the FIFO status, dedicated registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh)) can be read to detect FIFO overrun events, FIFO full status, FIFO empty status, FIFO watermark status and the number of unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2 pins of these status events, the configuration can be set in INT1_CTRL (0Dh) and INT2_CTRL (0Eh).

The FIFO buffer can be configured according to six different modes:

- Bypass mode
- FIFO mode
- · Continuous mode
- · Continuous-to-FIFO mode
- Bypass-to-continuous mode
- Bypass-to-FIFO mode

Each mode is selected by the FIFO_MODE_[2:0] bits in the FIFO_CTRL4 (0Ah) register.

6.5.1 Bypass mode

In bypass mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 000), the FIFO is not operational and it remains empty. Bypass mode is also used to reset the FIFO when in FIFO mode.

DS13197 - Rev 3 page 33/160

6.5.2 FIFO mode

In FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 001) data from the output channels are stored in the FIFO until it is full.

To reset FIFO content, bypass mode should be selected by writing FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0]) to 000. After this reset command, it is possible to restart FIFO mode by writing FIFO_CTRL4 (0Ah) (FIFO MODE [2:0]) to 001.

The FIFO buffer memorizes up to 3 kbytes of data but the depth of the FIFO can be resized by setting the WTM[8:0] bits in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h). If the STOP_ON_WTM bit in FIFO_CTRL2 (08h) is set to 1, FIFO depth is limited up to the WTM[8:0] bits in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h).

6.5.3 Continuous mode

Continuous mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 110) provides a continuous FIFO update: as new data arrives, the older data is discarded.

A FIFO threshold flag FIFO_STATUS2 (3Bh)(FIFO_WTM_IA) is asserted when the number of unread samples in FIFO is greater than or equal to FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h) (WTM[8:0]).

It is possible to route the FIFO_WTM_IA flag to the INT1 pin by writing in register INT1_CTRL (0Dh) (INT1_FIFO_TH) = 1 or to the INT2 pin by writing in register INT2_CTRL (0Eh)(INT2_FIFO_TH) = 1.

A full-flag interrupt can be enabled, INT1_CTRL (0Dh)(INT1_FIFO_FULL) = 1 or INT2_CTRL (0Eh) (INT2_FIFO_FULL) = 1, in order to indicate FIFO saturation and eventually read its content all at once.

If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and the FIFO_OVR_IA flag in FIFO_STATUS2 (3Bh) is asserted.

In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples available in FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh)(DIFF_FIFO_[9:0]).

6.5.4 Continuous-to-FIFO mode

In continuous-to-FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 011), FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Wake-up
- Free-fall
- D6D

When the selected trigger bit is equal to 1, FIFO operates in FIFO mode.

When the selected trigger bit is equal to 0, FIFO operates in continuous mode.

6.5.5 Bypass-to-continuous mode

In bypass-to-continuous mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 100), data measurement storage inside FIFO operates in continuous mode when selected triggers are equal to 1, otherwise FIFO content is reset (bypass mode).

FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Wake-up
- Free-fall
- D6D

6.5.6 Bypass-to-FIFO mode

n bypass-to-FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 111), data measurement storage inside FIFO operates in FIFO mode when selected triggers are equal to 1, otherwise FIFO content is reset (bypass mode).

FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Wake-up
- Free-fall
- D6D

DS13197 - Rev 3 page 34/160

6.5.7 FIFO reading procedure

The data stored in FIFO are accessible from dedicated registers and each FIFO word is composed of 7 bytes: one tag byte (FIFO_DATA_OUT_TAG (78h), in order to identify the sensor, and 6 bytes of fixed data (FIFO_DATA_OUT_registers from (79h) to (7Eh)).

The DIFF_FIFO_[9:0] field in the FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh) registers contains the number of words (1 byte TAG + 6 bytes DATA) collected in FIFO.

In addition, it is possible to configure a counter of the batch events of accelerometer or gyroscope sensors. The flag COUNTER_BDR_IA in FIFO_STATUS2 (3Bh) alerts that the counter reaches a selectable threshold (CNT_BDR_TH_[10:0] field in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch)). This allows triggering the reading of FIFO with the desired latency of one single sensor. The sensor is selectable using the TRIG_COUNTER_BDR bit in COUNTER_BDR_REG1 (0Bh). As for the other FIFO status events, the flag COUNTER_BDR_IA can be routed on the INT1 or INT2 pins by asserting the corresponding bits (INT1_CNT_BDR of INT1_CTRL (0Dh) and INT2_CNT_BDR of INT2_CTRL (0Eh)).

Meta information about accelerometer and gyroscope sensor configuration changes can be managed by enabling the ODR_CHG_EN bit in FIFO_CTRL2 (08h).

DS13197 - Rev 3 page 35/160

Application hints

ASM330LHHX electrical connections in mode 1 7.1

Figure 20. ASM330LHHX electrical connections in mode 1

Vdd: Recommended 100 nF plus 10 μF capacitors.

Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C/MIPI I3CSM primary interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C/MIPI I3CSM primary interface.

DS13197 - Rev 3 page 36/160

7.2 ASM330LHHX electrical connections in mode 2

Mode 2 HOST I²C / MIPI I3CSM/ SPI (3/4-w) ASM330LHHX NC (1) DO/SAO NC (1) TOP MSDA **VIEW** MSCL MDRDY/INT2 4 8 External Vdd sensors 100 nF I²C configuration GND Vdd IO Vdd IO 100 nF SCL GND SDA Pull-up to be added R_{pu}=10kOhm

Figure 21. ASM330LHHX electrical connections in mode 2

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C/MIPI I3CSM primary interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C/MIPI I3CSM primary interface.

DS13197 - Rev 3 page 37/160

Table 19. Internal pin status

Pin#	Name	Mode 1 function	Mode 2 function	Pin status mode 1	Pin status mode 2
	SDO	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)		
		I ² C least significant bit of the device address	I ² C least significant bit of the device address	Default: input without pull-up	Default: input without pull-up
1	SA0	(SA0) MIPI I3C SM least significant bit of the static address (SA0)	(SA0) MIPI I3C SM least significant bit of the static address (SA0)	Pull-up is enabled if bit SDO_PU_EN = 1 in register PIN_CTRL (02h).	Pull-up is enabled if bit SDO_PU_EN = 1 in register PIN_CTRL (02h).
		, ,	, ,	Default: input without pull-up	Default: input without pull-up
2	MSDA	Connect to Vdd_IO or GND	I ² C serial data master (MSDA)	Pull-up is enabled if bit SHUB_PU_EN = 1 in register MASTER_CONFIG (14h).	Pull-up is enabled if bit SHUB_PU_EN = 1 in registe MASTER_CONFIG (14h).
				(see Note to enable pull-up)	(see Note to enable pull-up)
				Default: input without pull-up	Default: input without pull-up
3	MSCL	Connect to Vdd_IO or GND	I ² C serial clock master (MSCL)	Pull-up is enabled if bit SHUB_PU_EN = 1 in register MASTER_CONFIG (14h).	Pull-up is enabled if bit SHUB_PU_EN = 1 in registe MASTER_CONFIG (14h).
				(see Note to enable pull-up)	(see Note to enable pull-up)
		Programmable interrupt 1.	Programmable interrupt 1.	Default: input with pull-down ⁽¹⁾	Default: input with pull-down ⁽¹⁾
4	INT1	If device is used as MIPI I3C SM pure slave, this pin must be set to 1.	If device is used as MIPI I3C SM pure slave, this pin must be set to 1.	Pull-down is disabled if bit PD_DIS_INT1 = 1 in register I3C_BUS_AVB (62h).	Pull-down is disabled if bit PD_DIS_INT1 = 1 in register I3C_BUS_AVB (62h).
5	Vdd_IO	Power supply for I/O pins	Power supply for I/O pins		
6	NC	Leave unconnected	Leave unconnected		
7	GND	0 V supply	0 V supply		
8	Vdd	Power supply	Power supply		
9	INT2	Programmable interrupt 2 (INT2) / Data enabled (DEN)	Programmable interrupt 2 (INT2) / Data enabled (DEN)/ I²C master external synchronization signal	Default: output forced to ground	Default: output forced to ground
40	NO	La constant d	(MDRDY)		
10	NC	Leave unconnected	Leave unconnected		
11	NC	Leave unconnected	Leave unconnected		
		I ² C and MIPI I3C SM /SPI mode selection	I ² C and MIPI I3C SM /SPI mode selection	Default: input with pull-up	Default: input with pull-up
12	CS	(1:SPI idle mode / I²C and MIPI I3C SM communication enabled;	(1:SPI idle mode / I²C and MIPI I3C SM communication enabled;	Pull-up is disabled if bit I2C_disable = 1 in register CTRL4_C (13h) and	Pull-up is disabled if bit I2C_disable = 1 in register CTRL4_C (13h) and
		0: SPI communication mode / I ² C and MIPI I3C SM disabled)	0: SPI communication mode / I ² C and MIPI I3C SM disabled)	I3C_disable = 1 in register CTRL9_XL (18h).	I3C_disable = 1 in register CTRL9_XL (18h).
13	SCL	I ² C/MIPI I3C SM serial clock (SCL) / SPI serial port clock (SPC)	I ² C/MIPI I3C SM serial clock (SCL) / SPI serial port clock (SPC)	Default: input without pull-up	Default: input without pull-up
		I ² C/MIPI I3C SM serial data (SDA) /	I ² C/MIPI I3C SM serial data (SDA) /		
14	SDA	SPI serial data input (SDI) /	SPI serial data input (SDI) /	Default: input without pull-up	Default: input without pull-up
		3-wire interface serial data output (SDO)	3-wire interface serial data output (SDO)		

^{1.} INT1 must be set to 0 or left unconnected during power-on if the I²C/SPI interfaces are used.

Internal pull-up value is from 30 k Ω to 50 k Ω , depending on Vdd_IO.

Note: The procedure to enable the pull-up on pins 2 and 3 is as follows:

- 1. From the primary I²C/I3C/SPI interface: write 40h in register at address 01h (enable access to the sensor hub registers)
- 2. From the primary I²C/I3C/SPI interface: write 08h in register at address 14h (enable the pull-up on pins 2 and 3)
- 3. From the primary I²C/I3C/SPI interface: write 00h in register at address 01h (disable access to the sensor hub registers)

8 Register map

The table given below provides a list of the 8/16-bit registers embedded in the device and the corresponding addresses.

Table 20. Registers address map

		Regis	ster address		
Name	Туре	Hex	Binary	- Default	Comment
FUNC_CFG_ACCESS	R/W	01	0000001	00000000	
PIN_CTRL	R/W	02	00000010	00111111	
RESERVED	-	03-06			Reserved
FIFO_CTRL1	R/W	07	00000111	00000000	
FIFO_CTRL2	R/W	08	00001000	00000000	
FIFO_CTRL3	R/W	09	00001001	00000000	
FIFO_CTRL4	R/W	0A	00001010	00000000	
COUNTER_BDR_REG1	R/W	0B	00001011	00000000	
COUNTER_BDR_REG2	R/W	0C	00001100	00000000	
INT1_CTRL	R/W	0D	00001101	00000000	
INT2_CTRL	R/W	0E	00001110	00000000	
WHO_AM_I	R	0F	00001111	01101011	
CTRL1_XL	R/W	10	00010000	00000000	
CTRL2_G	R/W	11	00010001	00000000	
CTRL3_C	R/W	12	00010010	00000100	
CTRL4_C	R/W	13	00010011	00000000	
CTRL5_C	R/W	14	00010100	00000000	
CTRL6_C	R/W	15	00010101	00000000	
CTRL7_G	R/W	16	00010110	00000000	
CTRL8_XL	R/W	17	00010111	00000000	
CTRL9_XL	R/W	18	00011000	11100000	
CTRL10_C	R/W	19	00011001	00000000	
ALL_INT_SRC	R	1A	00011010	output	
WAKE_UP_SRC	R	1B	00011011	output	
RESERVED	-	1C			Reserved
D6D_SRC	R	1D	00011101	output	
STATUS_REG	R	1E	00011110	output	
RESERVED	-	1F			Reserved
OUT_TEMP_L	R	20	00100000	output	
OUT_TEMP_H	R	21	00100001	output	
OUTX_L_G	R	22	00100010	output	
OUTX_H_G	R	23	00100011	output	
OUTY_L_G	R	24	00100100	output	
OUTY_H_G	R	25	00100101	output	
OUTZ_L_G	R	26	00100110	output	

DS13197 - Rev 3 page 40/160

		Regis	ter address		
Name	Туре	Hex Binary		Default	Comment
OUTZ_H_G	R	27	00100111	output	
OUTX_L_A	R	28	00101000	output	
OUTX_H_A	R	29	00101001	output	
OUTY_L_A	R	2A	00101010	output	
OUTY_H_A	R	2B	00101011	output	
OUTZ_L_A	R	2C	00101100	output	
OUTZ_H_A	R	2D	00101101	output	
RESERVED	-	2E-34			Reserved
EMB_FUNC_STATUS_MAINPAGE	R	35	00110101	output	
FSM_STATUS_A_MAINPAGE	R	36	00110110	output	
SM_STATUS_B_MAINPAGE	R	37	00110111	output	
MLC_STATUS_MAINPAGE	R	38	00111000	output	
STATUS_MASTER_MAINPAGE	R	39	00111001	output	
FIFO_STATUS1	R	3A	00111010	output	
FIFO_STATUS2	R	3B	00111011	output	
RESERVED	-	3C-3F			Reserved
TIMESTAMP0_REG	R	40	01000000	output	
TIMESTAMP1_REG	R	41	01000001	output	
TIMESTAMP2_REG	R	42	01000010	output	
TIMESTAMP3_REG	R	43	01000011	output	
RESERVED	-	44-55			Reserved
NT_CFG0	R/W	56	01010110	00000000	
RESERVED	-	57			Reserved
NT_CFG1	R/W	58	01011000	00000000	
THS_6D	R/W	59	01011001	00000000	
RESERVED	-	5A			Reserved
WAKE_UP_THS	R/W	5B	01011011	00000000	
WAKE_UP_DUR	R/W	5C	01011100	00000000	
FREE_FALL	R/W	5D	01011101	00000000	
MD1_CFG	R/W	5E	01011110	00000000	
MD2_CFG	R/W	5F	01011111	00000000	
RESERVED	-	60-61		0000000	Reserved
I3C_BUS_AVB	R/W	62	01100010	00000000	
NTERNAL_FREQ_FINE	R	63	01100011	output	
RESERVED	-	64-72			Reserved
X_OFS_USR	R/W	73	01110011	0000000	
Y_OFS_USR	R/W	74	01110100	0000000	
Z_OFS_USR	R/W	75	01110101	0000000	
RESERVED	-	76-77			Reserved
FIFO_DATA_OUT_TAG	R	78	01111000	output	

DS13197 - Rev 3 page 41/160

Name	Tyma	Regis	ter address	Default	Commont
Name	Туре	Hex	Binary		Comment
FIFO_DATA_OUT_X_L	R	79	01111001	output	
FIFO_DATA_OUT_X_H	R	7A	01111010	output	
FIFO_DATA_OUT_Y_L	R	7B	01111011	output	
FIFO_DATA_OUT_Y_H	R	7C	01111100	output	
FIFO_DATA_OUT_Z_L	R	7D	01111101	output	
FIFO_DATA_OUT_Z_H	R	7E	01111110	output	

Reserved registers must not be changed. Writing to those registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

DS13197 - Rev 3 page 42/160

9 Register description

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write data through the serial interface.

9.1 FUNC_CFG_ACCESS (01h)

Enable embedded functions register (R/W)

Table 21. FUNC_CFG_ACCESS register

400500	EG_ SS 0 ⁽¹⁾	0 ⁽¹⁾				
--------	----------------------------	------------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 22. FUNC_CFG_ACCESS register description

FUNC_CFG_ACCESS	Enables access to the embedded functions configuration registers. Default value: 0 ⁽¹⁾
SHUB_REG_ACCESS	Enables access to the sensor hub (I²C master) registers. Default value: 0 ⁽²⁾

Details concerning the embedded functions configuration registers are available in Section 10 Embedded functions register mapping and Section 11 Embedded functions register description.

9.2 PIN CTRL (02h)

Enable SDO pin pull-up register (R/W)

Table 23. PIN_CTRL register

0(1)	SDO_ PU_EN	1 ⁽²⁾						
------	---------------	------------------	------------------	------------------	------------------	------------------	------------------	--

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 24. PIN_CTRL register description

SDO PU EN	Enables pull-up on SDO pin. Default value: 0
	(0: SDO pin pull-up disconnected (default); 1: SDO pin with pull-up)

DS13197 - Rev 3 page 43/160

Details concerning the sensor hub registers are available in Section 14 Sensor hub register mapping and Section 15 Sensor hub register description.

^{2.} This bit must be set to 1 for the correct operation of the device.

9.3 FIFO_CTRL1 (07h)

FIFO control register 1 (R/W)

Table 25. FIFO_CTRL1 register

WTM7	WTM6	WTM5	WTM4	WTM3	WTM2	WTM1	WTM0

Table 26. FIFO_CTRL1 register description

	FIFO watermark threshold, in conjunction with WTM8 in FIFO_CTRL2 (08h)	
WTM[7:0]	1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO	
	Watermark flag rises when the number of bytes written in the FIFO is greater than or equal to the threshold level.	

9.4 FIFO_CTRL2 (08h)

FIFO control register 2 (R/W)

Table 27. FIFO_CTRL2 register

STOP_ON _WTM	0(1)	0(1)	ODRCHG _EN	0 ⁽¹⁾	0(1)	0(1)	WTM8	
-----------------	------	------	---------------	------------------	------	------	------	--

1. This bit must be set to 0 for the correct operation of the device.

Table 28. FIFO_CTRL2 register

	Sensing chain FIFO stop values memorization at threshold level
STOP_ON_WTM	(0: FIFO depth is not limited (default);
	1: FIFO depth is limited to the threshold level, defined in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h)
ODRCHG_EN	Enables ODR CHANGE virtual sensor to be batched in FIFO
	FIFO watermark threshold, in conjunction with WTM[7:0] in FIFO_CTRL1 (07h)
WTM8	1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO
	Watermark flag rises when the number of bytes written in FIFO is greater than or equal to the threshold level.

DS13197 - Rev 3 page 44/160

9.5 FIFO_CTRL3 (09h)

FIFO control register 3 (R/W)

Table 29. FIFO_CTRL3 register

Table 30. FIFO_CTRL3 register description

```
Selects batch data rate (write frequency in FIFO) for gyroscope data.
                      (0000: gyroscope not batched in FIFO (default);
                      0001: 12.5 Hz;
                      0010: 26 Hz;
                      0011: 52 Hz;
                      0100: 104 Hz;
                      0101: 208 Hz;
BDR_GY_[3:0]
                      0110: 417 Hz;
                      0111: 833 Hz;
                      1000: 1667 Hz;
                      1001: 3333 Hz;
                      1010: 6667 Hz;
                      1011: 6.5 Hz;
                      1100-1111: reserved)
                      Selects batch data rate (write frequency in FIFO) for accelerometer data.
                      (0000: accelerometer not batched in FIFO (default);
                      0001: 12.5 Hz;
                      0010: 26 Hz;
                      0011: 52 Hz;
                      0100: 104 Hz;
                      0101: 208 Hz;
BDR_XL_[3:0]
                      0110: 417 Hz;
                      0111: 833 Hz;
                      1000: 1667 Hz;
                      1001: 3333 Hz;
                      1010: 6667 Hz;
                      1011: 1.6 Hz;
                      1100-1111: reserved)
```

DS13197 - Rev 3 page 45/160

9.6 FIFO_CTRL4 (0Ah)

FIFO control register 4 (R/W)

Table 31. FIFO_CTRL4 register

BATCH_1 BATCH_0 BATCH_1 BATCH_0 MODE2 MODE1	BATCH 1	BATCH 0	BATCH 1	BATCH 0	0 ⁽¹⁾			FIFO_ MODE0	
---	---------	---------	---------	---------	------------------	--	--	----------------	--

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 32. FIFO_CTRL4 register description

DEC_TS_BATCH_[1:0]	Selects decimation for timestamp batching in FIFO. The write rate is the maximum rate between accelerometer and gyroscope BDR divided by decimation decoder. (00: timestamp not batched in FIFO (default); 01: decimation 1: max(BDR_XL[Hz],BDR_GY[Hz]) [Hz]; 10: decimation 8: max(BDR_XL[Hz],BDR_GY[Hz])/8 [Hz]; 11: decimation 32: max(BDR_XL[Hz],BDR_GY[Hz])/32 [Hz])
ODR_T_BATCH_[1:0]	Selects batch data rate (write frequency in FIFO) for temperature data (00: temperature not batched in FIFO (default); 01: 1.6 Hz; 10: 12.5 Hz; 11: 52 Hz)
FIFO_MODE[2:0]	FIFO mode selection (000: bypass mode: FIFO disabled; 001: FIFO mode: stops collecting data when FIFO is full; 010: reserved; 011: continuous-to-FIFO mode: continuous mode until trigger is deasserted, then FIFO mode; 100: bypass-to-continuous mode: bypass mode until trigger is deasserted, then continuous mode; 101: reserved; 110: continuous mode: if the FIFO is full, the new sample overwrites the older one; 111: bypass-to-FIFO mode: bypass mode until trigger is deasserted, then FIFO mode.)

DS13197 - Rev 3 page 46/160

9.7 COUNTER_BDR_REG1 (0Bh)

Counter batch data rate register 1 (R/W)

Table 33. COUNTER_BDR_REG1 register

dataready_ pulsed	RST_COUNTER _BDR	TRIG_COUNTER _BDR	0(1)	0 ⁽¹⁾	CNT_BDR_ TH_10	CNT_BDR_ TH_9	CNT_BDR_ TH_8	
----------------------	---------------------	----------------------	------	------------------	-------------------	------------------	------------------	--

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 34. COUNTER_BDR_REG1 register description

dataready_pulsed	Enables pulsed data-ready mode (0: data-ready latched mode (returns to 0 only after an interface reading) (default); 1: data-ready pulsed mode (the data ready pulses are 75 µs long)
RST_COUNTER_BDR	Resets the internal counter of batch events for a single sensor. This bit is automatically reset to zero if it was set to 1.
TRIG_COUNTER_BDR	Selects the trigger for the internal counter of batch events between the accelerometer and gyroscope. (0: accelerometer batch event; 1: gyroscope batch event)
CNT_BDR_TH_[10:8]	In conjunction with CNT_BDR_TH_[7:0] in COUNTER_BDR_REG2 (0Ch), sets the threshold for the internal counter of batch events. When this counter reaches the threshold, the counter is reset and the COUNTER_BDR_IA flag in FIFO_STATUS2 (3Bh) is set to 1.

9.8 COUNTER_BDR_REG2 (0Ch)

Counter batch data rate register 2 (R/W)

Table 35. COUNTER_BDR_REG2 register

| CNT_BDR_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| TH_7 | TH_6 | TH_5 | TH_4 | TH_3 | TH_2 | TH_1 | TH_0 |

Table 36. COUNTER_BDR_REG2 register description

	In conjunction with CNT_BDR_TH_[10:8] in COUNTER_BDR_REG1 (0Bh), sets the threshold for the
CNT_BDR_TH_[7:0]	internal counter of batch events. When this counter reaches the threshold, the counter is reset and the
	COUNTER_BDR_IA flag in FIFO_STATUS2 (3Bh) is set to 1.

DS13197 - Rev 3 page 47/160

9.9 INT1_CTRL (0Dh)

INT1 pin control register (R/W)

Each bit in this register enables a signal to be carried over INT1 when the MIPI I3CSM dynamic address is not assigned (I²C or SPI is used). Some bits can be also used to trigger an IBI (in-band interrupt) when the MIPI I3CSM interface is used. The output of the pad is the OR combination of the signals selected here and in register MD1 CFG (5Eh).

Table 37. INT1_CTRL register

DEN_DRDY	INT1_	INT1_	INT1_	INT1_	INT1_	INT1_	INT1_
_flag	CNT_BDR	FIFO_FULL	FIFO_OVR	FIFO_TH	BOOT	DRDY_G	DRDY_XL

Table 38. INT1_CTRL register description

DEN_DRDY_flag	Sends DEN_DRDY (DEN stamped on sensor data flag) to INT1 pin.
INT1_CNT_BDR	Enables COUNTER_BDR_IA interrupt on INT1.
INT1 FIFO FULL	Enables FIFO full flag interrupt on INT1 pin.
INTI_TII O_I OLL	It can be also used to trigger an IBI when the MIPI I3CSM interface is used.
INT1_FIFO_OVR	Enables FIFO overrun interrupt on INT1 pin.
INTI_TITO_OVK	It can be also used to trigger an IBI when the MIPI I3CSM interface is used.
INT1 FIFO TH	Enables FIFO threshold interrupt on INT1 pin.
	It can be also used to trigger an IBI when the MIPI I3CSM interface is used.
INT1_BOOT	Enables boot status on INT1 pin.
INT1 DRDY G	Enables gyroscope data-ready interrupt on INT1 pin.
INTI_DRDT_G	It can be also used to trigger an IBI when the MIPI I3CSM interface is used.
INT1 DRDY XL	Enables accelerometer data-ready interrupt on INT1 pin.
INTI_DRDT_AL	It can be also used to trigger an IBI when the MIPI I3CSM interface is used.

DS13197 - Rev 3 page 48/160

9.10 INT2_CTRL (0Eh)

INT2 pin control register (R/W)

Each bit in this register enables a signal to be carried over INT2 when the MIPI I3CSM dynamic address is not assigned (I²C or SPI is used). Some bits can be also used to trigger an IBI when the MIPI I3CSM interface is used. The output of the pad is the OR combination of the signals selected here and in register MD2_CFG (5Fh).

Table 39. INT2_CTRL register

n (1)	INT2_	INT2_	INT2_	INT2_	INT2_	INT2_	INT2_
0(1)	CNT_BDR	FIFO_FULL	FIFO_OVR	FIFO_TH	DRDY_TEMP	DRDY_G	DRDY_XL

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 40. INT2_CTRL register description

INT2_CNT_BDR	Enables COUNTER_BDR_IA interrupt on INT2 pin.
INT2_FIFO_FULL	Enables FIFO full flag interrupt on INT2 pin.
INT2_FIFO_OVR	Enables FIFO overrun interrupt on INT2 pin.
INT2_FIFO_TH	Enables FIFO threshold interrupt on INT2 pin.
	Enables temperature sensor data-ready interrupt on INT2 pin.
INT2_DRDY_TEMP	It can be also used to trigger an IBI when the MIPI I3C SM interface is used and INT2_ON_INT1 = 1 in CTRL4_C (13h).
INT2_DRDY_G	Enables gyroscope data-ready interrupt on INT2 pin.
INT2_DRDY_XL	Enables accelerometer data-ready interrupt on INT2 pin.

DS13197 - Rev 3 page 49/160

9.11 WHO_AM_I (0Fh)

WHO_AM_I register (R). This is a read-only register. Its value is fixed at 6Bh.

Table 41. Who_Am_I register

Ω	1	1	Λ	1 1	0	1 1	1 1
U			0		0		

9.12 CTRL1_XL (10h)

Accelerometer control register 1 (R/W)

Table 42. CTRL1_XL register

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 43. CTRL1_XL register description

ODR_XL[3:0]	Accelerometer ODR selection (see Table 44)			
FS[1:0] XL	Accelerometer full-scale selection. Default value: 00			
F3[1.0]_XL	(00: ±2 g; 01: ±16 g; 10: ±4 g; 11: ±8 g)			
	Accelerometer high-resolution selection			
LPF2_XL_EN	(0: output from first stage digital filtering selected (default);			
	1: output from LPF2 second filtering stage selected)			

Table 44. Accelerometer ODR register setting

ODR_XL3	ODR_XL2	ODR_XL1	ODR_XL0	ODR selection [Hz] when XL_HM_MODE = 1 in CTRL6_C (15h)	ODR selection [Hz] when XL_HM_MODE = 0 in CTRL6_C (15h)
0	0	0	0	Power-down	Power-down
1	0	1	1	1.6 Hz (low power only)	N.A.
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (low power)	104 Hz (high performance)
0	1	0	1	208 Hz (low power)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1667 Hz (high performance)	1667 Hz (high performance)
1	0	0	1	3333 Hz (high performance) 3333 Hz (high perform	
1	0	1	0	6667 Hz (high performance)	6667 Hz (high performance)
1	1	х	х	Reserved	Reserved

DS13197 - Rev 3 page 50/160

9.13 CTRL2_G (11h)

Gyroscope control register 2 (R/W)

Table 45. CTRL2_G register

ODR G3	ODR G2	ODR G1	ODR G0	FS1 G	FS0 G	FS_125	FS 4000
_	_	_	_	_	_	_	_

Table 46. CTRL2_G register description

ODR_G[3:0]	Gyroscope output data rate selection. Default value: 0000 (Refer to Table 47)
FS[1:0]_G	Gyroscope chain full-scale selection (00: ±250 dps; 01: ±500 dps; 10: ±1000 dps; 11: ±2000 dps)
FS_125	Selects gyroscope chain full-scale ±125 dps (0: FS selected through bits FS[1:0]_G; 1: FS set to ±125 dps)
FS_4000	Selects gyroscope chain full-scale ±4000 dps (0: FS selected through bits FS[1:0]_G or FS_125; 1: FS set to ±4000 dps)

Table 47. Gyroscope ODR configuration setting

ODR_G3	ODR_G2	ODR G1	ODR_G0	ODR selection [Hz] when	ODR selection [Hz] when
ODIC_00	ODIC_02	ODIC_O1	051(_00	G_HM_MODE = 1 in CTRL7_G (16h)	G_HM_MODE = 0 in CTRL7_G (16h)
0	0	0	0	Power-down	Power-down
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (low power)	104 Hz (high performance)
0	1	0	1	208 Hz (low power)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance) 416 Hz (high performa	
0	1	1	1	833 Hz (high performance) 833 Hz (high performa	
1	0	0	0	1667 Hz (high performance)	1667 Hz (high performance)
1	0	0	1	3333 Hz (high performance) 3333 Hz (high performa	
1	0	1	0	6667 Hz (high performance) 6667 Hz (high performance)	
1	0	1	1	Reserved	Reserved

DS13197 - Rev 3 page 51/160

9.14 CTRL3_C (12h)

Control register 3 (R/W)

Table 48. CTRL3_C register

BOOT BDU H_LACTIVE PP_OD SIM IF_INC 0 ⁽¹⁾ SW_R	воот	BDU	H_LACTIVE		SIM		0 ⁽¹⁾	SW_RESET
---	------	-----	-----------	--	-----	--	------------------	----------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 49. CTRL3_C register description

	Reboots memory content. Default value: 0
BOOT	(0: normal mode; 1: reboot memory content)
	Note: the accelerometer must be ON. This bit is automatically cleared.
	Block data update. Default value: 0
BDU	(0: continuous update;
	1: output registers are not updated until MSB and LSB have been read)
H LACTIVE	Interrupt activation level. Default value: 0
II_LACTIVE	(0: interrupt output pins active high; 1: interrupt output pins active low
PP_OD	Push-pull/open-drain selection on INT1 and INT2 pins. This bit must be set to 0 when H_LACTIVE is set to 1. Default value: 0
	(0: push-pull mode; 1: open-drain mode)
SIM	SPI serial interface mode selection. Default value: 0
SIIVI	(0: 4-wire interface; 1: 3-wire interface)
IF_INC	Register address automatically incremented during a multiple byte access with a serial interface (I ² C or SPI). Default value: 1
	(0: disabled; 1: enabled)
	Software reset. Default value: 0
SW_RESET	(0: normal mode; 1: reset device)
	This bit is automatically cleared.

DS13197 - Rev 3 page 52/160

9.15 CTRL4_C (13h)

Control register 4 (R/W)

Table 50. CTRL4_C register

0 ⁽¹⁾	SLEEP_G	INT2_on _INT1	0 ⁽¹⁾	DRDY_MASK	I2C_disable	LPF1_SEL_G	0 ⁽¹⁾
------------------	---------	------------------	------------------	-----------	-------------	------------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 51. CTRL4_C register description

SLEEP G	Enables gyroscope sleep mode. Default value:0
SLLLF_G	(0: disabled; 1: enabled)
	Enables all interrupt signals available on INT1 pin. Default value: 0
INT2_on_INT1	(0: interrupt signals divided between INT1 and INT2 pins;
	1: all interrupt signals in logic or on INT1 pin)
	Enables data available
DRDY_MASK	(0: disabled;
	1: mask DRDY on pin (both accelerometer and gyroscope) until filter settling ends (accelerometer and gyroscope independently masked).
IOC dipable	Disables I ² C interface. Default value: 0
I2C_disable	(0: SPI, I²C and MIPI I3C SM interfaces enabled (default); 1: I²C interface disabled)
LPF1 SEL G	Enables gyroscope digital LPF1; the bandwidth can be selected through FTYPE[2:0] in CTRL6_C (15h).
LFI I_SEL_G	(0: disabled; 1: enabled)

DS13197 - Rev 3 page 53/160

9.16 CTRL5_C (14h)

Control register 5 (R/W)

Table 52. CTRL5_C register

0 ⁽¹⁾	ROUNDING1	ROUNDING0	0 ⁽¹⁾	ST1_G	ST0_G	ST1_XL	ST0_XL
------------------	-----------	-----------	------------------	-------	-------	--------	--------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 53. CTRL5_C register description

	Circular burst-mode (rounding) read of the output registers. Default value: 00
	(00: no rounding;
ROUNDING[1:0]	01: accelerometer only;
	10: gyroscope only;
	11: gyroscope + accelerometer)
O-T-1 03 0	Enables angular rate sensor self-test. Default value: 00
ST[1:0]_G	(00: self-test disabled; other: refer to Table 54)
O-Tr. 03 N/I	Enables linear acceleration sensor self-test. Default value: 00
ST[1:0]_XL	(00: self-test disabled; other: refer to Table 55)

Table 54. Angular rate sensor self-test mode selection

ST1_G	ST0_G	Self-test mode			
0	0	Normal mode			
0	1	Positive sign self-test			
1	0	Not allowed			
1	1	Negative sign self-test			

Table 55. Linear acceleration sensor self-test mode selection

ST1_XL	ST0_XL	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Negative sign self-test
1	1	Not allowed

DS13197 - Rev 3 page 54/160

9.17 CTRL6_C (15h)

Control register 6 (R/W)

Table 56. CTRL6_C register

TRIG_EN	LVL1_EN LVL2_E	XL_HM_ MODE	USR_ OFF_W	FTYPE_2	FTYPE_1	FTYPE_0	
---------	----------------	----------------	---------------	---------	---------	---------	--

Table 57. CTRL6_C register description

TRIG_EN	Enables DEN data edge-sensitive trigger mode. Refer to Table 58.
LVL1_EN	Enables DEN data level-sensitive trigger mode. Refer to Table 58.
LVL2_EN	Enables DEN level-sensitive latched mode. Refer to Table 58.
	Disables high-performance operating mode for accelerometer. Default value: 0
XL_HM_MODE	(0: high-performance operating mode enabled;
	1: high-performance operating mode disabled)
	Weight of XL user offset bits of registers X_OFS_USR (73h), Y_OFS_USR (74h), Z_OFS_USR (75h)
USR_OFF_W	(0: 2 ⁻¹⁰ g/LSB;
	1: 2 ⁻⁶ g/LSB)
FTYPE[2:0]	Gyroscope low-pass filter (LPF1) bandwidth selection. Table 59 shows the selectable bandwidth values.

Table 58. Trigger mode selection

TRIG_EN, LVL1_EN, LVL2_EN	Trigger mode
100	Edge-sensitive trigger mode is selected
010	Level-sensitive trigger mode is selected
011	Level-sensitive latched mode is selected
110	Level-sensitive FIFO mode is selected

Table 59. Gyroscope LPF1 bandwidth selection

FTYPE[2:0]	12.5 Hz	26 Hz	52 Hz	104 Hz	208 Hz	416 Hz	833 Hz	1667 Hz	3333 Hz	6667 Hz
000	4.3	8.3	16.7	33	67	133	222	274	292	297
001	4.3	8.3	16.7	33	67	128	186	212	220	223
010	4.3	8.3	16.7	33	67	112	140	150	153	154
011	4.3	8.3	16.7	33	67	134	260	390	451	470
100	4.3	8.3	16.7	34	62	86	96	99	N	IA
101	4.3	8.3	16.9	31	43	48	49	50	N	IA
110	4.3	8.3	13.4	19	23	24.6	25	25	NA	
111	4.3	8.3	9.8	11.6	12.2	12.4	12.6	12.6	N	IA

DS13197 - Rev 3 page 55/160

9.18 CTRL7_G (16h)

Control register 7 (R/W)

Table 60. CTRL7_G register

G_HM_ MODE	HP_EN_G	HPM1_G	HPM0_G	0 ⁽¹⁾	0(1)	USR_OFF_ ON_OUT	0 ⁽¹⁾
---------------	---------	--------	--------	------------------	------	--------------------	------------------

1. This bit must be set to 0 for the correct operation of the device.

G_HM_MODE	Disables high-performance operating mode for gyroscope. Default: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)
HP_EN_G	Enables gyroscope digital high-pass filter. The filter is enabled only if the gyroscope is in HP mode. Default value: 0 (0: HPF disabled; 1: HPF enabled)
HPM_G[1:0]	Gyroscope digital HP filter cutoff selection. Default: 00 (00: 16 mHz; 01: 65 mHz; 10: 260 mHz; 11: 1.04 Hz)
USR_OFF_ON_OUT	Enables accelerometer user offset correction block; it's valid for the low-pass path - see Figure 19. Default value: 0 (0: accelerometer user offset correction block bypassed; 1: accelerometer user offset correction block enabled)

9.19 CTRL8_XL (17h)

Control register 8 (R/W)

Table 61. CTRL8_XL register

HPCF_XL_2	HPCF_XL_1	HPCF_XL_0	HP_REF_ MODE_XL	FASTSETTL_ MODE_XL	HP_SLOPE_ XL_EN	0 ⁽¹⁾	LOW_PASS_ ON_6D	
-----------	-----------	-----------	--------------------	-----------------------	--------------------	------------------	--------------------	--

1. This bit must be set to 0 for the correct operation of the device.

HPCF_XL_[2:0]	Accelerometer LPF2 and HP filter configuration and cutoff setting. Refer to Table 62.
HP_REF_MODE_XL	Enables accelerometer high-pass filter reference mode (valid for high-pass path - HP_SLOPE_XL_EN bit must be 1). Default value: 0 ⁽¹⁾ (0: disabled, 1: enabled)
FASTSETTL_MODE_XL	Enables accelerometer LPF2 and HPF fast-settling mode. The filter sets the second samples after writing this bit. Active only during device exit from power- down mode. Default value: 0 (0: disabled, 1: enabled)
HP_SLOPE_XL_EN	Accelerometer slope filter / high-pass filter selection. Refer to Figure 22.
LOW_PASS_ON_6D	LPF2 on 6D function selection. Refer to Figure 22. Default value: 0 (0: ODR/2 low-pass filtered data sent to 6D interrupt function; 1: LPF2 output data sent to 6D interrupt function)

1. When enabled, the first output data have to be discarded.

DS13197 - Rev 3 page 56/160

Filter type	HP_SLOPE_ XL_EN	LPF2_XL_EN	HPCF_XL_[2:0]	Bandwidth
		0	-	ODR/2
			000	ODR/4
			001	ODR/10
			010	ODR/20
Low pass	0	1	011	ODR/45
		l	100	ODR/100
			101	ODR/200
			110	ODR/400
			111	ODR/800
			000	SLOPE (ODR/4)
			001	ODR/10
			010	ODR/20
Lligh noon			011	ODR/45
High pass	1	-	100	ODR/100
			101	ODR/200
			110	ODR/400
			111	ODR/800

Figure 22. Accelerometer block diagram

1. The cutoff value of the LPF1 output is ODR/2 when the accelerometer is in high-performance mode and ODR up to 833 Hz. This value is equal to 780 Hz when the accelerometer is in low-power mode.

DS13197 - Rev 3 page 57/160

9.20 CTRL9_XL (18h)

Control register 9 (R/W)

Table 63. CTRL9_XL register

DEN_X	DEN_Y	DEN_Z	DEN_XL_G	DEN_XL_EN	DEN_LH	I3C_disable	0 ⁽¹⁾
-------	-------	-------	----------	-----------	--------	-------------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 64. CTRL9_XL register description

DEN X	DEN value stored in LSB of X-axis. Default value: 1
DEN_X	(0: DEN not stored in X-axis LSB; 1: DEN stored in X-axis LSB)
DEN Y	DEN value stored in LSB of Y-axis. Default value: 1
DEN_1	(0: DEN not stored in Y-axis LSB; 1: DEN stored in Y-axis LSB)
DEN Z	DEN value stored in LSB of Z-axis. Default value: 1
DLN_Z	(0: DEN not stored in Z-axis LSB; 1: DEN stored in Z-axis LSB)
	DEN stamping sensor selection. Default value: 0
DEN_XL_G	(0: DEN pin info stamped in the gyroscope axis selected by bits [7:5];
	1: DEN pin info stamped in the accelerometer axis selected by bits [7:5])
DEN XL EN	Extends DEN functionality to accelerometer sensor. Default value: 0
DEN_XL_EN	(0: disabled; 1: enabled)
DEN_LH	DEN active level configuration. Default value: 0
DEN_EIT	(0: active low; 1: active high)
	Disables MIPI I3C SM communication protocol ⁽¹⁾
I3C_disable	(0: SPI, I²C, MIPI I3C SM interfaces enabled (default);
	1: MIPI I3C SM interface disabled)

^{1.} It is recommended to set this bit to 1 during the initial device configuration phase, when the I3C interface is not used.

9.21 CTRL10_C (19h)

Control register 10 (R/W)

Table 65. CTRL10_C register

0 ⁽¹⁾	0 ⁽¹⁾	TIMESTAMP _EN	0 ⁽¹⁾				
------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 66. CTRL10_C register description

	Enables timestamp counter. Default value: 0	
TIMESTAMP EN	(0: disabled; 1: enabled)	
	The counter is readable in TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h).	

DS13197 - Rev 3 page 58/160

9.22 ALL_INT_SRC (1A)

Source register for all interrupts (R)

Table 67. ALL_INT_SRC register

TIMESTAMP 0 SLEEP_CHANGE_IA	D6D_IA	0	0	WU_IA	FF_IA	
-----------------------------	--------	---	---	-------	-------	--

Table 68. ALL_INT_SRC register description

TIMESTAMP_ENDCOUNT	Alerts timestamp overflow within 6.4 ms
SLEEP_CHANGE_IA	Detects change event in activity/inactivity status. Default value: 0 (0: change status not detected; 1: change status detected)
D6D_IA	Interrupt active for change in position of portrait, landscape, face-up, face-down. Default value: 0 (0: change in position not detected; 1: change in position detected)
WU_IA	Wake-up event status. Default value: 0 (0: event not detected, 1: event detected)
FF_IA	Free-fall event status. Default value: 0 (0: event not detected, 1: event detected)

9.23 WAKE_UP_SRC (1Bh)

Wake-up interrupt source register (R)

Table 69. WAKE_UP_SRC register

	0	SLEEP_ CHANGE_IA	FF_IA	SLEEP_ STATE	WU_IA	x_wu	Y_WU	Z_WU	
--	---	---------------------	-------	-----------------	-------	------	------	------	--

Table 70. WAKE_UP_SRC register description

SLEEP_CHANGE_IA	Detects change event in activity/inactivity status. Default value: 0 (0: change status not detected; 1: change status detected)
FF_IA	Free-fall event detection status. Default: 0 (0: free-fall event not detected; 1: free-fall event detected)
SLEEP_STATE	Sleep event status. Default value: 0 (0: sleep event not detected; 1: sleep event detected)
WU_IA	Wake-up event detection status. Default value: 0 (0: wake-up event not detected; 1: wake-up event detected.)
X_WU	Wake-up event detection status on X-axis. Default value: 0 (0: wake-up event on X-axis not detected; 1: wake-up event on X-axis detected)
Y_WU	Wake-up event detection status on Y-axis. Default value: 0 (0: wake-up event on Y-axis not detected; 1: wake-up event on Y-axis detected)
Z_WU	Wake-up event detection status on Z-axis. Default value: 0 (0: wake-up event on Z-axis not detected; 1: wake-up event on Z-axis detected)

DS13197 - Rev 3 page 59/160

9.24 DRD_SRC (1Dh)

Portrait, landscape, face-up and face-down source register (R)

Table 71. D6D_SRC register

DEN_DRDY	D6D_IA	ZH	ZL	YH	YL	XH	XL
----------	--------	----	----	----	----	----	----

Table 72. D6D_SRC register description

DEN_DRDY	DEN data-ready signal. It is set high when data output is related to the data coming from a DEN active condition. (1)
D6D IA	Interrupt active for change position portrait, landscape, face-up, face-down. Default value: 0
B0B_#*	(0: change position not detected; 1: change position detected)
ZH	Z-axis high event (over threshold). Default value: 0
211	(0: event not detected; 1: event (over threshold) detected)
ZL	Z-axis low event (under threshold). Default value: 0
ZL	(0: event not detected; 1: event (under threshold) detected)
YH	Y-axis high event (over threshold). Default value: 0
	(0: event not detected; 1: event (over threshold) detected)
YL	Y-axis low event (under threshold). Default value: 0
T	(0: event not detected; 1: event (under threshold) detected)
XH	X-axis high event (over threshold). Default value: 0
All	(0: event not detected; 1: event (over threshold) detected)
XL	X-axis low event (under threshold). Default value: 0
\L	(0: event not detected; 1: event (under threshold) detected)

The DEN data-ready signal can be latched or pulsed depending on the value of the dataready_pulsed bit of the COUNTER_BDR_REG1 (0Bh) register.

DS13197 - Rev 3 page 60/160

9.25 STATUS_REG (1Eh)

Status register (R)

Table 73. STATUS_REG register

0 0 0	0	0 TDA	GDA	XLDA
-------	---	-------	-----	------

Table 74. STATUS_REG register description

	Temperature new data available. Default: 0
TDA	(0: no set of data is available at temperature sensor output;
	1: a new set of data is available at temperature sensor output)
	Gyroscope new data available. Default value: 0
GDA	(0: no set of data available at gyroscope output;
	1: a new set of data is available at gyroscope output)
	Accelerometer new data available. Default value: 0
XLDA	(0: no set of data available at accelerometer output;
	1: a new set of data is available at accelerometer output)

9.26 OUT_TEMP_L (20h), OUT_TEMP_H (21h)

Temperature data output register (R). L and H registers together express a 16-bit word in two's complement.

Table 75. OUT_TEMP_L register

Temp7	Temp6	Temp5	Temp4	Temp3	Temp2	Temp1	Temp0
					_		
		Tal	ole 76. OUT_1	TEMP_H regis	ter		
Temp15	Temp14	Temp13	Temp12	Temp11	Temp10	Temp9	Temp8

Table 77. OUT_TEMP register description

Tomp[45:0]	Temperature sensor output data
Temp[15:0]	The value is expressed as two's complement sign extended on the MSB.

DS13197 - Rev 3 page 61/160

9.27 OUTX_H_C (23h), OUTX_L_G (22h)

Angular rate sensor pitch axis (X) angular rate output register (R). The value is expressed as a 16-bit word in two's complement.

Table 78. OUTX_H_G register

D15	D14	D13	D12	D11	D10	D9	D8
		т	able 79. OUT	X_L_G registe	er		
D7	D6	D5	D4	D3	D2	D1	D0

Table 80. OUTX_H_G, OUTX_L_G register description

D[15:0]	Gyroscope pitch axis output expressed in 2's complement
---------	---

9.28 OUTY_H_G (25h), OUTY_L_G (24h)

Angular rate sensor roll axis (Y) angular rate output register (R). The value is expressed as a 16-bit word in two's complement.

Table 81. OUTY_H_G register

D15	D14	D13	D12	D11	D10	D9	D8
		т	ahla 82 OUT	Y_L_G registe	ır		
		•	able 02. 001	I_L_O registe			
D7	D6	D5	D4	D3	D2	D1	D0

Table 83. OUTY_H_G, OUTY_L_G register description

D[15:0] Gyroscope roll axis output expressed in 2's complement	

DS13197 - Rev 3 page 62/160

OUTZ_H_G (27h), OUTZ_L_G (26h)

9.29 OUTZ_H_G (27h), OUTZ_L_G (26h)

Angular rate sensor pitch yaw (Z) angular rate output register (R). The value is expressed as a 16-bit word in two's complement.

Table 84. OUTZ_H_G register

D15	D14	D13	D12	D11	D10	D9	D8
		Т	able 85. OUT	Z_L_G registe	er		
D7	D6	D5	D4	D3	D2	D1	D0

Table 86. OUTZ_H_G, OUTZ_L_G register description

D[15:0]

9.30 OUTX_H_A (29h), OUTX_L_A (28h)

Linear acceleration sensor X-axis output register (R). The value is expressed as a 16-bit word in two's complement.

Table 87. OUTX_H_A register

D15	D14	D13	D12	D11	D10	D9	D8
		т.	ahla 88 OUT	X_L_A registe	ar.		
		'	able 66. OUT	K_L_A registe	;I		
D7	D6	D5	D4	D3	D2	D1	D0

Table 89. OUTX_H_A, OUTX_L_A register description

D[15:0]	Accelerometer X-axis output expressed as 2's complement
D[10.0]	Accelerometer A-axis output expressed as 2.5 complement

DS13197 - Rev 3 page 63/160

9.31 OUTY_H_A (2Bh), OUTY_L_A (2Ah)

Linear acceleration sensor Y-axis output register (R). The value is expressed as a 16-bit word in two's complement.

Table 90. OUTY_H_A register

D15	D14	D13	D12	D11	D10	D9	D8
		т	able 91. OUT	Y_L_A registe	er		
D7	D6	D5	D4	D3	D2	D1	D0

Table 92. OUTY_H_A, OUTY_L_A register description

|--|

9.32 OUTZ_H_A (2Dh), OUTZ_L_A (2Ch)

Linear acceleration sensor Z-axis output register (R). The value is expressed as a 16-bit word in two's complement.

Table 93. OUTZ_H_A register

D15	D14	D13	D12	D11	D10	D9	D8
		т	ahle 94 OUT	Z_L_A registe	ır		
			able 54. 0017	L_L_A registe	,		
D7	D6	D5	D4	D3	D2	D1	D0

Table 95. OUTZ_H_A, OUTZ_L_A register description

D[15:0]	Accelerometer Z-axis output expressed as 2's complement
D[10.0]	Acceleration 2-axis output expressed as 2.5 complement

DS13197 - Rev 3 page 64/160

9.33 EMB_FUNC_STATUS_MAINPAGE (35h)

Embedded function status register (R)

Table 96. EMB_FUNC_STATUS_MAINPAGE register

IS_FSM_LC 0 0 0 0 0 0

Table 97. EMB_FUNC_STATUS_MAINPAGE register description

IS_FSM_LC	Interrupt status bit for FSM long counter timeout interrupt event. (1: interrupt detected; 0: no interrupt)
-----------	---

9.34 FSM_STATUS_A_MAINPAGE (36h)

Finite state machine status register (R)

Table 98. FSM_STATUS_A_MAINPAGE register

IS FSM8 IS FSM7 IS FSM6 IS FSM5 IS FSM4 IS FSM3 IS FSM2	S FSM3 IS FSM2 IS FSM	IS FSM4	IS FSM5	IS FSM6	IS FSM7	IS FSM8
---	---------------------------	---------	---------	---------	---------	---------

Table 99. FSM_STATUS_A_MAINPAGE register description

IS_FSM8	Interrupt status bit for FSM8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM7	Interrupt status bit for FSM7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM6	Interrupt status bit for FSM6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM5	Interrupt status bit for FSM5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM4	Interrupt status bit for FSM4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM3	Interrupt status bit for FSM3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM2	Interrupt status bit for FSM2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM1	Interrupt status bit for FSM1 interrupt event. (1: interrupt detected; 0: no interrupt)

DS13197 - Rev 3 page 65/160

9.35 FSM_STATUS_B_MAINPAGE (37h)

Finite state machine status register (R)

Table 100. FSM_STATUS_B_MAINPAGE register

IS_FSM16	IS_FSM15	IS_FSM14	IS_FSM13	IS_FSM12	IS_FSM11	IS_FSM10	IS_FSM9
----------	----------	----------	----------	----------	----------	----------	---------

Table 101. FSM_STATUS_B_MAINPAGE register description

IS_FSM16	Interrupt status bit for FSM16 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM15	Interrupt status bit for FSM15 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM14	Interrupt status bit for FSM14 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM13	Interrupt status bit for FSM13 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM12	Interrupt status bit for FSM12 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM11	Interrupt status bit for FSM11 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM10	Interrupt status bit for FSM10 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM9	Interrupt status bit for FSM9 interrupt event. (1: interrupt detected; 0: no interrupt)

9.36 MLC_STATUS_MAINPAGE (38h)

Machine learning core status register (R)

Table 102. MLC_STATUS_MAINPAGE register

IS_MLC8	IS_MLC7	IS_MLC6	IS_MLC5	IS_MLC4	IS_MLC3	IS_MLC2	IS_MLC1	
---------	---------	---------	---------	---------	---------	---------	---------	--

Table 103. MLC_STATUS_MAINPAGE register description

IS_MLC8	Interrupt status bit for MLC8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC7	Interrupt status bit for MLC7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC6	Interrupt status bit for MLC6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC5	Interrupt status bit for MLC5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC4	Interrupt status bit for MLC4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC3	Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC2	Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC1	Interrupt status bit for MLC1 interrupt event. (1: interrupt detected; 0: no interrupt)

DS13197 - Rev 3 page 66/160

9.37 STATUS_MASTER_MAINPAGE (39h)

Sensor hub source register (R)

Table 104. STATUS_MASTER_MAINPAGE register

WR_ONCE_	SLAVE3_	SLAVE2_	SLAVE1_	SLAVE0_	0	0	SENS_HUB_	
DONE	NACK	NACK	NACK	NACK			ENDOP	

Table 105. STATUS_MASTER_MAINPAGE register description

WR_ONCE_DONE	When the bit WRITE_ONCE in MASTER_CONFIG (14h) is configured as 1, this bit is set to 1 when the write operation on slave 0 has been performed and completed. Default value: 0
SLAVE3_NACK	This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK	This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK	This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK	This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
	Sensor hub communication status. Default value: 0
SENS_HUB_ENDOP	(0: sensor hub communication not concluded;
	1: sensor hub communication concluded)

9.38 FIFO_STATUS1 (3Ah)

FIFO status register 1 (R)

Table 106. FIFO_STATUS1 register

DIFF_FIFO_7 DIFF_FIFO_6 DIFF_FIFO_5 DIFF_FIFO_4 DIFF_FIFO_3 DIFF_FIFO_2 DIFF_FIFO_1 DIFF_FIFO_0	DIFF_FIFO_7 D	DIFF_FIFO_6	DIFF_FIFO_5	DIFF_FIFO_4	DIFF_FIFO_3	DIFF_FIFO_2	DIFF_FIFO_1	DIFF_FIFO_0
---	---------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------

Table 107. FIFO_STATUS1 register description

DIFF FIFO [7:0]	Number of unread sensor data (TAG + 6 bytes) stored in FIFO
Dii 1 _1 ii O_[7.0]	In conjunction with DIFF_FIFO[9:8] in FIFO_STATUS2 (3Bh).

DS13197 - Rev 3 page 67/160

9.39 FIFO_STATUS2 (3Bh)

FIFO status register 2 (R)

Table 108. FIFO_STATUS2 register

FIFO_ WTM_IA	FIFO_ OVR_IA	FIFO_ FULL_IA	COUNTER_ BDR_IA	FIFO_OVR_ LATCHED	0	DIFF_FIFO_9	DIFF_FIFO_8
-----------------	-----------------	------------------	--------------------	----------------------	---	-------------	-------------

Table 109. FIFO_STATUS2 register description

	FIFO watermark status. Default value: 0 (0: FIFO filling is lower than WTM;
FIFO_WTM_IA	1: FIFO filling is equal to or greater than WTM)
	Watermark is set through bits WTM[8:0] in FIFO_CTRL2 (08h) and FIFO_CTRL1 (07h).
FIFO OVR IA	FIFO overrun status. Default value: 0
FIFO_OVK_IA	(0: FIFO is not completely filled; 1: FIFO is completely filled)
FIFO FULL IA	Smart FIFO full status. Default value: 0
FIFO_FOLL_IA	(0: FIFO is not full; 1: FIFO will be full at the next ODR)
COUNTER_BDR_IA	Counter BDR reaches the CNT_BDR_TH_[10:0] threshold set in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch). Default value: 0
	This bit is reset when these registers are read.
FIFO OVR LATCHED	Latched FIFO overrun status. Default value: 0
THO_OVK_LATCHED	This bit is reset when this register is read.
DIFF_FIFO_[9:8]	Number of unread sensor data (TAG + 6 bytes) stored in FIFO. Default value: 00
Dii 1 _i ii O_[9.6]	In conjunction with DIFF_FIFO[7:0] in FIFO_STATUS1 (3Ah)

DS13197 - Rev 3 page 68/160

9.40 TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h)

Timestamp first data output register (R). The value is expressed as a 32-bit word and the bit resolution is 25 μs.

Table 110. TIMESTAMP3 register

D31	D30	D29	D28	D27	D26	D25	D24			
Table 111. TIMESTAMP2 register										
D23	D22	D21	D20	D19	D18	D17	D16			
Table 112. TIMESTAMP1 register										
D15	D14	D13	D12	D11	D10	D9	D8			
Table 113. TIMESTAMP0 register										
D7	D6	D5	D4	D3	D2	D1	D0			
D[31:0]	Timestan	np output registe	ers: 1LSB = 25 µ	S						

The formula below can be used to calculate a better estimation of the actual timestamp resolution: $TS_Res = 1 / (40000 + (0.0015 * INTERNAL_FREQ_FINE * 40000)) \\$ where INTERNAL_FREQ_FINE is the content of INTERNAL_FREQ_FINE (63h).

DS13197 - Rev 3 page 69/160

9.41 INT_CFG0 (56h)

Activity/inactivity functions, configuration of filtering, and interrupt latch mode configuration (R/W)

Table 114. INT_CFG0 register

O ⁽¹⁾	INT_CLR_ ON_READ	SLEEP_ STATUS_ON _INT	SLOPE_ FDS	0(1)	0 ⁽¹⁾	0 ⁽¹⁾	LIR
------------------	---------------------	-----------------------------	---------------	------	------------------	------------------	-----

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 115. INT_CFG0 register description

INT_CLR_ON_READ	This bit allows immediately clearing the latched interrupts of an event detection upon the read of the corresponding status register. It must be set to 1 together with LIR. Default value: 0
	(0: latched interrupt signal cleared at the end of the ODR period;
	1: latched interrupt signal immediately cleared)
SLEEP_STATUS_ON_INT	Activity/inactivity interrupt mode configuration.
	If INT1_SLEEP_CHANGE or INT2_SLEEP_CHANGE bits are enabled, drives the sleep status or sleep change on INT pins. Default value: 0
	(0: sleep change notification on INT pins; 1: sleep status reported on INT pins)
SLOPE FDS	HPF or slope filter selection on wake-up and activity/inactivity functions. Default value: 0
SLOFE_I DS	(0: SLOPE filter applied; 1: HPF applied)
LIR	Latched interrupt. Default value: 0
LIIX	(0: interrupt request not latched; 1: interrupt request latched)

9.42 INT_CFG1 (58h)

Enable interrupt function register (R/W)

Table 116. INT_CFG1 register

INTERRUPTS_ INACT_EN1 INACT_E	N0 0 ⁽¹⁾					
-------------------------------	---------------------	------------------	------------------	------------------	------------------	--

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 117. INT_CFG1 register description

INTERRUPTS_ENABLE	Enables hardcoded functions
	Enables activity/inactivity (sleep) function. Default value: 00
	(00: stationary/motion-only interrupts generated, XL and gyro do not change;
INACT_EN[1:0]	01: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro does not change;
	10: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to sleep mode;
	11: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to power-down mode)

DS13197 - Rev 3 page 70/160

9.43 THS_6D (59h)

Portrait/landscape position register (R/W)

Table 118. THS_6D register

D4D_EN	SIXD_THS1	SIXD_THS0	0 ⁽¹⁾				
--------	-----------	-----------	------------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 119. THS_6D register description

D4D_EN	Enables detection of 4D orientation. Z-axis position detection is disabled. Default value: 0 (0: disabled; 1: enabled)
SIXD_THS[1:0]	Threshold for 4D/6D function (00: 80 degrees (default); 01: 70 degrees; 10: 60 degrees; 11: 50 degrees)

9.44 WAKE_UP_THS (5Bh)

Wake-up configuration register (R/W)

Table 120. WAKE_UP_THS register

0 ⁽¹⁾ USR_OFF_ ON_WU WK_THS5	WK_THS4 WK_THS3	WK_THS2 WK_THS1	WK_THS0
--	-----------------	-----------------	---------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 121. WAKE_UP_THS register description

USR_OFF_ON_WU	Sends the low-pass filtered data with user offset correction (instead of high-pass filtered data) to the wake-up function.
WK_THS[5:0]	Threshold for wake-up: 1 LSB weight depends on WAKE_THS_W in WAKE_UP_DUR (5Ch). Default value: 000000

DS13197 - Rev 3 page 71/160

9.45 WAKE_UP_DUR (5Ch)

Free-fall, wake-up and sleep mode functions duration setting register (R/W)

Table 122. WAKE_UP_DUR register

FF_DUR5	WAKE_DUR1	WAKE_DUR0	WAKE_ THS W	SLEEP_ DUR3	SLEEP_ DUR2	SLEEP_ DUR1	SLEEP_ DUR0
			1110_**	DOILO	DOINE	DOILL	DOILO

Table 123. WAKE_UP_DUR register description

	Free-fall duration event. Default: 0
FF_DUR5	For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in FREE_FALL (5Dh) configuration.
	1 LSB = 1 ODR_time
WAKE DUR[1:0]	Wake-up duration event. Default: 00
WARE_DOR[1.0]	1LSB = 1 ODR_time
	Weight of 1 LSB of wake-up threshold. Default: 0
WAKE_THS_W	(0: 1 LSB =FS_XL / (2 ⁶);
	1: 1 LSB = FS_XL / (2 ⁸))
SI EED DUDIS-01	Duration to go in sleep mode. Default value: 0000 (this corresponds to 16 ODR)
SLEEP_DUR[3:0]	1 LSB = 512 ODR

9.46 FREE_FALL (5Dh)

Free-fall function duration setting register (R/W)

Table 124. FREE_FALL register

FF DUR4	FF DUR3	FF DUR2	FF DUR1	FF DUR0	FF THS2	FF THS1	FF THS0	1
_	_	_	_	_	_	_	_	

Table 125. FREE_FALL register description

	Free-fall duration event. Default: 0					
FF_DUR[4:0]	For the complete configuration of the free fall duration, refer to FF_DUR5 in WAKE_UP_DUR (5Ch) configuration					
	Free-fall threshold setting					
	(000: 156 mg (default);					
	001: 219 mg;					
	010: 250 mg;					
FF_THS[2:0]	011: 312 mg;					
	100: 344 mg;					
	101: 406 mg;					
	110: 469 mg;					
	111: 500 mg)					

DS13197 - Rev 3 page 72/160

9.47 MD1_CFG (5Eh)

Functions routing on INT1 register (R/W)

Table 126. MD1_CFG register

INT1_SLEEP _CHANGE	0 ⁽¹⁾	INT1_WU	INT1_FF	0 ⁽¹⁾	INT1_6D	INT1_ EMB_FUNC	INT1_ SHUB
-----------------------	------------------	---------	---------	------------------	---------	-------------------	---------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 127. MD1_CFG register description

	Routing of activity/inactivity recognition event on INT1. Default: 0
INT1_SLEEP_CHANGE ⁽¹⁾	(0: routing of activity/inactivity event on INT1 disabled;
	1: routing of activity/inactivity event on INT1 enabled)
	Routing of wake-up event on INT1. Default value: 0
INT1_WU	(0: routing of wake-up event on INT1 disabled;
	1: routing of wake-up event on INT1 enabled)
	Routing of free-fall event on INT1. Default value: 0
INT1_FF	(0: routing of free-fall event on INT1 disabled;
	1: routing of free-fall event on INT1 enabled)
	Routing of 6D event on INT1. Default value: 0
INT1_6D	(0: routing of 6D event on INT1 disabled;
	1: routing of 6D event on INT1 enabled)
	Routing of embedded functions event on INT1. Default value: 0
INT1_EMB_FUNC	(0: routing of embedded functions event on INT1 disabled;
	1: routing of embedded functions event on INT1 enabled)
	Routing of sensor hub communication concluded event on INT1. Default value: 0
INT1_SHUB	(0: routing of sensor hub communication concluded event on INT1 disabled;
	1: routing of sensor hub communication concluded event on INT1 enabled)

Activity/inactivity interrupt mode (sleep change or sleep status) depends on the SLEEP_STATUS_ON_INT bit in the INT_CFG0 (56h) register.

DS13197 - Rev 3 page 73/160

9.48 MD2_CFG (5Fh)

Functions routing on INT2 register (R/W)

Table 128. MD2_CFG register

INT2_SLEEP _CHANGE	0 ⁽¹⁾	INT2_WU	INT2_FF	0 ⁽¹⁾	INT2_6D	INT2_ EMB_FUNC	INT2_ TIMESTAMP	
-----------------------	------------------	---------	---------	------------------	---------	-------------------	--------------------	--

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 129. MD2_CFG register description

	Routing of activity/inactivity recognition event on INT2. Default: 0
INT2_SLEEP_CHANGE(1)	(0: routing of activity/inactivity event on INT2 disabled;
	1: routing of activity/inactivity event on INT2 enabled)
	Routing of wake-up event on INT2. Default value: 0
INT2_WU	(0: routing of wake-up event on INT2 disabled;
	1: routing of wake-up event on INT2 enabled)
	Routing of free-fall event on INT2. Default value: 0
INT2_FF	(0: routing of free-fall event on INT2 disabled;
	1: routing of free-fall event on INT2 enabled)
	Routing of 6D event on INT2. Default value: 0
INT2_6D	(0: routing of 6D event on INT2 disabled;
	1: routing of 6D event on INT2 enabled)
	Routing of embedded functions event on INT2. Default value: 0
INT2_EMB_FUNC	(0: routing of embedded functions event on INT2 disabled;
	1: routing of embedded functions event on INT2 enabled)
INT2_TIMESTAMP	Enables routing on INT2 pin of the alert for timestamp overflow within 6.4 ms.

Activity/inactivity interrupt mode (sleep change or sleep status) depends on the SLEEP_STATUS_ON_INT bit in the INT_CFG0 (56h) register.

DS13197 - Rev 3 page 74/160

9.49 I3C_BUS_AVB (62h)

I3C_BUS_AVB register (R/W)

Table 130. I3C_BUS_AVB register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	I3C_Bus_ Avb_Sel1	I3C_Bus_ Avb_Sel0	0 ⁽¹⁾	0 ⁽¹⁾	PD_DIS_ INT1	
------------------	------------------	------------------	----------------------	----------------------	------------------	------------------	-----------------	--

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 131. I3C_BUS_AVB register description

	These bits are used to select the bus available time when I3C IBI is used.
	Default value: 00
I3C_Bus_Avb_Sel[1:0]	(00: bus available time equal to 50 μs (default);
	01: bus available time equal to 2 μs;
	10: bus available time equal to 1 ms;
	11: bus available time equal to 25 ms)
	This bit allows disabling the INT1 pull-down.
PD_DIS_INT1	(0: pull-down on INT1 enabled (pull-down is effectively connected only when no interrupts are routed to the INT1 pin or when the I3C dynamic address is assigned);
	1: pull-down on INT1 disabled (pull-down not connected))

Note:

The IBI (in-band interrupt) is continuously generated (each time a bus available condition is satisfied) until an interrupt is served. The master should execute the interrupt service routine (ISR) at a time lower than the configured bus available time, otherwise the master should disable the interrupt (I3C DISEC in order to disable the interrupt request) at a time lower than the bus available time.

If the master needs more time to analyze and start the correct ISR, then the master can change the bus available time from 50 μ s (default) to a higher time.

DS13197 - Rev 3 page 75/160

9.50 INTERNAL_FREQ_FINE (63h)

Internal frequency register (R)

Table 132. INTERNAL_FREQ_FINE register

FREQ FINE7	FREQ FINE6	FREQ FINE5	FREQ FINE4	FREQ FINE3	FREQ FINE2	FREQ FINE1	FREQ FINE0

Table 133. INTERNAL_FREQ_FINE register description

FREQ_FINE[7:0] Difference in percentage of the effective ODR (and timestamp rate) with respect to the typical. Step: 0.15%. 8-bit format, 2's complement.

The formula below can be used to calculate a better estimation of the actual ODR: ODR_Actual = (6667 + ((0.0015 * INTERNAL_FREQ_FINE) * 6667)) / ODR_Coeff

Selected_ODR	ODR_Coeff
12.5	512
26	256
52	128
104	64
208	32
416	16
833	8
1667	4
3333	2
6667	1

The Selected_ODR parameter has to be derived from the ODR_XL selection (Table 43. CTRL1_XL register description) in order to estimate the accelerometer ODR and from the ODR_G selection (Table 46. CTRL2_G register description) in order to estimate the gyroscope ODR.

DS13197 - Rev 3 page 76/160

9.51 X_OFS_USR (73h)

Accelerometer X-axis user offset correction (R/W). The offset value set in the X_OFS_USR offset register is internally subtracted from the acceleration value measured on the X-axis.

Table 134. X_OFS_USR register

X_OFS	_ X_OFS_	X_OFS_	X_OFS_	X_OFS_	X_OFS_	X_OFS_	X_OFS_
USR_	7 USR_6	USR_5	USR_4	USR_3	USR_2	USR_1	USR_0

Table 135. X_OFS_USR register description

X_OFS_USR_[7:0] Accelerometer X-axis user offset correction expressed in 2's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127 127].

9.52 Y_OFS_USR (74h)

Accelerometer Y-axis user offset correction (R/W). The offset value set in the Y_OFS_USR offset register is internally subtracted from the acceleration value measured on the Y-axis.

Table 136. Y_OFS_USR register

| Y_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| USR_7 | USR_6 | USR_5 | USR_4 | USR_3 | USR_2 | USR_1 | USR_0 |

Y_OFS_USR_[7:0] Accelerometer Y-axis user offset calibration expressed in 2's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127].

9.53 Z_OFS_USR (75h)

Accelerometer Z-axis user offset correction (R/W). The offset value set in the Z_OFS_USR offset register is internally subtracted from the acceleration value measured on the Z-axis.

Table 137. Z_OFS_USR register

| Z_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| USR_7 | USR_6 | USR_5 | USR_4 | USR_3 | USR_2 | USR_1 | USR_0 |

Table 138. Z_OFS_USR register description

Z_OFS_USR_[7:0] Accelerometer Z-axis user offset calibration expressed in 2's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127].

DS13197 - Rev 3 page 77/160

9.54 FIFO_DATA_OUT_TAG (78h)

FIFO tag register (R)

Table 139. FIFO_DATA_OUT_TAG register

TAG_ SENSOR_	TAG_ SENSOR_3	TAG_ SENSOR_2	TAG_ SENSOR_1	TAG_ SENSOR_0	TAG_CNT_1	TAG_CNT_0	TAG_ PARITY	
-----------------	------------------	------------------	------------------	------------------	-----------	-----------	----------------	--

Table 140. FIFO_DATA_OUT_TAG register description

	Identifies the sensor in:
TAG_SENSOR_[4:0]	FIFO_DATA_OUT_X_H (7Ah) and FIFO_DATA_OUT_X_L (79h), FIFO_DATA_OUT_Y_H (7Ch) and FIFO_DATA_OUT_Y_L (7Bh), and FIFO_DATA_OUT_Z_H (7Eh) and FIFO_DATA_OUT_Z_L (7Dh)
TAG_CNT_[1:0]	2-bit counter which identifies sensor time slot
TAG_PARITY	Parity check of TAG content

Table 141. FIFO tag

TAG_SENSOR_[4:0]	Sensor name		
0x01	Gyroscope		
0x02	Accelerometer		
0x03	Temperature		
0x04	Timestamp		
0x05	CFG_Change		
0x0E	Sensor hub slave 0		
0x0F	Sensor hub slave 1		
0x10	Sensor hub slave 2		
0x11	Sensor hub slave 3		
0x19	Sensor hub nack		

DS13197 - Rev 3 page 78/160

9.55 FIFO_DATA_OUT_X_H (7Ah) and FIFO_DATA_OUT_X_L (79h)

FIFO data output X (R)

Table 142. FIFO_DATA_OUT_X_H register

D15	D14	D13	D12	D11	D10	D9	D8		
Table 143. FIFO_DATA_OUT_X_L register									
TUDIO 140.1 II O_DAIA_OO1_A_E Teglatei									
D7	D6	D5	D4	D3	D2	D1	D0		

Table 144. FIFO_DATA_OUT_X_H, FIFO_DATA_OUT_X_L register description

D[15:0] FIFO X-axis output

9.56 FIFO_DATA_OUT_Y_H (7Ch) and FIFO_DATA_OUT_Y_L (7Bh)

FIFO data output Y (R)

Table 145. FIFO_DATA_OUT_Y_H register

D15	D14	D13	D12	D11	D10	D9	D8				
Table 146. FIFO_DATA_OUT_Y_L register											
D7	De	DE	D4	Da	D2	D1	DO				

Table 147. FIFO_DATA_OUT_Y_H, FIFO_DATA_OUT_Y_L register description

D[15:0] FIFO Y-axis output

9.57 FIFO_DATA_OUT_Z_H (7Eh) and FIFO_DATA_OUT_Z_L (7Dh)

FIFO data output Z (R)

Table 148. FIFO_DATA_OUT_Z_H register

D15	D14	D13	D12	D11	D10	D9	D8				
Table 149. FIFO_DATA_OUT_Z_L register											
D7	D6	D5	D4	D3	D2	D1	D0				

Table 150. FIFO_DATA_OUT_Z_H, FIFO_DATA_OUT_Z_L register description

D[15:0] FIFO Z-axis output

DS13197 - Rev 3 page 79/160

10 Embedded functions register mapping

The table given below provides a list of the registers for the embedded functions available in the device and the corresponding addresses. Embedded functions registers are accessible when FUNC_CFG_EN is set to 1 in FUNC_CFG_ACCESS (01h).

Table 151. Register address map - embedded functions

		Regis	ster address	7 6 11	Commont
lame	Type	Hex	Binary	Default	Comment
AGE_SEL	R/W	02	0000010	0000001	
RESERVED	-	03-04			Reserved
MB_FUNC_EN_B	R/W	05	00000101	00000000	
AGE_ADDRESS	R/W	08	00001000	00000000	
AGE_VALUE	R/W	09	00001001	00000000	
MB_FUNC_INT1	R/W	0A	00001010	00000000	
SM_INT1_A	R/W	0B	00001011	00000000	
SM_INT1_B	R/W	0C	00001100	00000000	
ILC_INT1	R/W	0D	00001101	00000000	
MB_FUNC_INT2	R/W	0E	00001110	00000000	
SM_INT2_A	R	0F	00001111	01101011	
SM_INT2_B	R/W	10	00010000	00000000	
ILC_INT2	R/W	11	00010001	00000000	
MB_FUNC_STATUS	R	12	00010010	output	
SM_STATUS_A	R	13	00010011	output	
SM_STATUS_B	R	14	00010100	output	
ILC_STATUS	R	15	00010101	output	
AGE_RW	R/W	17	00010111	00000000	
RESERVED	-	18-45			Reserved
SM_ENABLE_A	R/W	46	01000110	00000000	
SM_ENABLE_B	R/W	47	01000111	00000000	
SM_LONG_COUNTER_L	R/W	48	01001000	00000000	
SM_LONG_COUNTER_H	R/W	49	01001001	00000000	
SM_LONG_COUNTER_CLEAR	R/W	4A	01001010	00000000	
SM_OUTS1	R	4C	01001100	output	
SM_OUTS2	R	4D	01001101	output	
SM_OUTS3	R	4E	01001110	output	
SM_OUTS4	R	4F	01001111	output	
SM_OUTS5	R	50	01010000	output	
SM_OUTS6	R	51	01010001	output	
SM_OUTS7	R	52	01010010	output	
SM_OUTS8	R	53	01010011	output	
SM_OUTS9	R	54	01010100	output	
SM_OUTS10	R	55	01010101	output	

DS13197 - Rev 3 page 80/160

Nome	Ŧ	Register address		Defect!	C
Name	Туре	Hex	Binary	Default	Comment
FSM_OUTS11	R	56	01010110	output	
FSM_OUTS12	R	57	01010111	output	
FSM_OUTS13	R	58	01011000	output	
FSM_OUTS14	R	59	01011001	output	
FSM_OUTS15	R	5A	01011010	output	
FSM_OUTS16	R	5B	01011011	output	
RESERVED	-	5C-5E			Reserved
EMB_FUNC_ODR_CFG_B	R/W	5F	01011111	01001011	
EMB_FUNC_ODR_CFG_C	R/W	60	01100000	00010101	
RESERVED	-	61-66			Reserved
EMB_FUNC_INIT_B	R/W	67	01100111	00000000	
MLC0_SRC	R	70	01110000	output	
MLC1_SRC	R	71	01110001	output	
MLC2_SRC	R	72	01110010	output	
MLC3_SRC	R	73	01110011	output	
MLC4_SRC	R	74	01110100	output	
MLC5_SRC	R	75	01110101	output	
MLC6_SRC	R	76	01110110	output	
MLC7_SRC	R	77	01110111	output	

Reserved registers must not be changed. Writing to those registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

DS13197 - Rev 3 page 81/160

11 Embedded functions register description

11.1 PAGE_SEL (02h)

Enable advanced features dedicated page (R/W)

Table 152. PAGE_SEL register

PAGE_SEL3	PAGE_SEL2	PAGE_SEL1	PAGE_SEL0	0 ⁽¹⁾	0 ⁽¹⁾	EMB_FUNC _CLK_DIS	1 ⁽²⁾
-----------	-----------	-----------	-----------	------------------	------------------	----------------------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 153. PAGE_SEL register description

PAGE_SEL[3:0]	Selects the advanced features dedicated page. Default value: 0000
EMB FUNC CLK DIS	Disables the embedded functions clock. Default value: 0
EMB_FUNC_CLK_DIS	(0: clock enabled; 1: clock disabled)

11.2 EMB_FUNC_EN_B (05h)

Enable embedded functions register (R/W)

Table 154. EMB_FUNC_EN_B register

a(1)	0(1)	0(1)	MI O EN	0(1)	0(1)	0(1)	FOM EN
0(1)	0(1)	0(1)	MLC_EN	0(1)	0(1)	0 ⁽¹⁾	FSM_EN

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 155. EMB_FUNC_EN_B register description

MLC_EN	Enables machine learning core feature. Default value: 0 (0: machine learning core feature disabled;			
	1: machine learning core feature enabled)			
FSM EN	Enables finite state machine (FSM) feature. Default value: 0			
I SIVI_LIV	(0: FSM feature disabled; 1: FSM feature enabled)			

11.3 PAGE_ADDRESS (08h)

Page address register (R/W)

Table 156. PAGE_ADDRESS register

| PAGE_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADDR7 | ADDR6 | ADDR5 | ADDR4 | ADDR3 | ADDR2 | ADDR1 | ADDR0 |

Table 157. PAGE_ADDRESS register description

	After setting the bit PAGE_WRITE / PAGE_READ in register PAGE_RW (17h), this register is used to set
PAGE_ADDR[7:0]	the address of the register to be written/read in the advanced features page selected through the bits
	PAGE_SEL[3:0] in register PAGE_SEL (02h).

DS13197 - Rev 3 page 82/160

^{2.} This bit must be set to 1 for the correct operation of the device.

11.4 PAGE_VALUE (09h)

Page value register (R/W)

Table 158. PAGE_VALUE register

PAGE_ VALUE7	PAGE_ VALUE6	PAGE_ VALUE5	PAGE_ VALUE4	PAGE_ VALUE3	PAGE_ VALUE2	PAGE_ VALUE1	PAGE_ VALUE0	1
VALULI	VALUEO	VALUES	VALUL4	VALUES	VALULZ	VALULI	VALULU	ı

Table 159. PAGE_VALUE register description

	These bits are used to write (if the bit PAGE_WRITE = 1 in register PAGE_RW (17h)) or read (if the bit PAGE_READ = 1 in register PAGE_RW (17h)) the data at the address PAGE_ADDR[7:0] of the selected
	advanced features page.

11.5 EMB_FUNC_INT1 (0Ah)

INT1 pin control register (R/W)

Each bit in this register enables a signal to be carried over INT1. The pin's output supplies the OR combination of the selected signals.

Table 160. EMB_FUNC_INT1 register

INT1_ FSM_LC	0 ⁽¹⁾	0(1)	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0(1)
-----------------	------------------	------	------------------	------------------	------------------	------------------	------

1. This bit must be set to 0 for the correct operation of the device.

Table 161. EMB_FUNC_INT1 register description

INT1 FSM LC ⁽¹⁾	Routing of FSM long counter timeout interrupt event on INT1. Default value: 0
INTI_FSM_LC**	(0: routing on INT1 disabled; 1: routing on INT1 enabled)

1. This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

DS13197 - Rev 3 page 83/160

11.6 FSM_INT1_A (0Bh)

INT1 pin control register (R/W)

Each bit in this register enables a signal to be carried over INT1. The pin's output supplies the OR combination of the selected signals.

Table 162. FSM_INT1_A register

INT1 FSM8	INT1 FSM7	INT1 FSM6	INT1 FSM5	INT1 FSM4	INT1 FSM3	INT1 FSM2	INT1 FSM1
IIVI I_FSIVIO	INTI_FONT	IIVI I_FSIVIO	IIVI I_FSIVIS	INTI_FSIVI4	IIVI I_FSIVIS	IINTI_FSIVIZ	INTI_FONT

Table 163. FSM_INT1_A register description

Routing of FSM8 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM7 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM6 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM5 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM4 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM3 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM2 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM1 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)

^{1.} This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

DS13197 - Rev 3 page 84/160

11.7 FSM_INT1_B (0Ch)

INT1 pin control register (R/W)

Each bit in this register enables a signal to be carried over INT1. The pin's output supplies the OR combination of the selected signals.

Table 164. FSM_INT1_B register

	NIT1 ESM16	INIT1 EQM15	INIT1 ESM14	INIT1 ESM13	INIT1 ESM12	INIT1 ESM11	INT1 FSM10	INIT1 ESMO
1.	INTI_I SIMIO	IIVI I_I SIVI IS	1141 1_1 31VI 14	IIVI I_I SIVI IS	1141 1_1 314112	IINI I_I SIVI I I	1141 1_1 314110	IIVI I_I SIVIS

Table 165. FSM_INT1_B register description

(1)	Routing of FSM16 interrupt event on INT1. Default value: 0
INT1_FSM16 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INITA FORMAF(1)	Routing of FSM15 interrupt event on INT1. Default value: 0
INT1_FSM15 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INITA FONA(4(1)	Routing of FSM14 interrupt event on INT1. Default value: 0
INT1_FSM14 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INITA FONAQ(1)	Routing of FSM13 interrupt event on INT1. Default value: 0
INT1_FSM13 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INIT4 EQM42(1)	Routing of FSM12 interrupt event on INT1. Default value: 0
INT1_FSM12 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM11 ⁽¹⁾	Routing of FSM11 interrupt event on INT1. Default value: 0
INTI_FSWITE	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM10 ⁽¹⁾	Routing of FSM10 interrupt event on INT1. Default value: 0
INTI_FSWITO	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM9 ⁽¹⁾	Routing of FSM9 interrupt event on INT1. Default value: 0
IIVI I_I SIVIB	(0: routing on INT1 disabled; 1: routing on INT1 enabled)

^{1.} This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

DS13197 - Rev 3 page 85/160

11.8 MLC_INT1 (0Dh)

INT1 pin control register (R/W)

Each bit in this register enables a signal to be carried over INT1. The pin's output supplies the OR combination of the selected signals.

Table 166. MLC_INT1 register

INT1 MLC8	INT1 MLC7	INT1 MLC6	INT1 MLC5	INT1 MLC4	INT1 MLC3	INT1 MLC2	INT1 MLC1
INT1_MLC8	INTI_IVILC7	INTI_IVILUO	IIVI I_IVILCO	INTI_WLC4	IINT I_IVILUS	INTI_WLC2	INTI_MLCT

Table 167. MLC_INT1 register description

INT1 MLC8	Routing of MLC8 interrupt event on INT1. Default value: 0
INTI_WILCO	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_MLC7	Routing of MLC7 interrupt event on INT1. Default value: 0
INTI_MEOT	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 MLC6	Routing of MLC6 interrupt event on INT1. Default value: 0
INTI_MEGO	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_MLC5	Routing of MLC5 interrupt event on INT1. Default value: 0
INTI_MEGS	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 MLC4	Routing of MLC4 interrupt event on INT1. Default value: 0
INTI_MEO+	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 MLC3	Routing of MLC3 interrupt event on INT1. Default value: 0
INTI_MEOS	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_MLC2	Routing of MLC2 interrupt event on INT1. Default value: 0
INTI_MEGZ	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_MLC1	Routing of MLC1 interrupt event on INT1. Default value: 0
INTI_INEOT	(0: routing on INT1 disabled; 1: routing on INT1 enabled)

DS13197 - Rev 3 page 86/160

11.9 EMB_FUNC_INT2 (0Eh)

INT2 pin control register (R/W)

Each bit in this register enables a signal to be carried over INT2. The pin's output supplies the OR combination of the selected signals.

Table 168. EMB_FUNC_INT2 register

INT2_ FSM_LC 0 ⁽¹⁾ 0 ⁽¹⁾	0 ⁽¹⁾				
---	------------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 169. EMB_FUNC_INT2 register description

INTO FOM LO(1)	Routing of FSM long counter timeout interrupt event on INT2. Default value: 0
INT2_FSM_LC ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)

^{1.} This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

11.10 FSM_INT2_A (0Fh)

INT2 pin control register (R/W)

Each bit in this register enables a signal to be carried over INT2. The pin's output supplies the OR combination of the selected signals.

Table 170. FSM_INT2_A register

	INT2_FSM8	INT2_FSM7	INT2_FSM6	INT2_FSM5	INT2_FSM4	INT2_FSM3	INT2_FSM2	INT2_FSM1	
--	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	--

Table 171. FSM_INT2_A register description

INT2 FSM8 ⁽¹⁾	Routing of FSM8 interrupt event on INT2. Default value: 0
INTZ_I SIVIO	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO FOMZ(1)	Routing of FSM7 interrupt event on INT2. Default value: 0
INT2_FSM7 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2 FSM6 ⁽¹⁾	Routing of FSM6 interrupt event on INT2. Default value: 0
INTZ_FSIVIO	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO ECME(1)	Routing of FSM5 interrupt event on INT2. Default value: 0
INT2_FSM5 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM4 ⁽¹⁾	Routing of FSM4 interrupt event on INT2. Default value: 0
11V12_1 31V14	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
	Routing of FSM3 interrupt event on INT2. Default value: 0
INT2_FSM3 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT2 FSM2 ⁽¹⁾	Routing of FSM2 interrupt event on INT2. Default value: 0
INTZ_I SIVIZ	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2 FSM1 ⁽¹⁾	Routing of FSM1 interrupt event on INT2. Default value: 0
INTZ_I SIVITO	(0: routing on INT2 disabled; 1: routing on INT2 enabled)

^{1.} This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

DS13197 - Rev 3 page 87/160

11.11 FSM_INT2_B (10h)

INT2 pin control register (R/W)

Each bit in this register enables a signal to be carried over INT2. The pin's output supplies the OR combination of the selected signals.

Table 172. FSM_INT2_B register

INT2 FSM16	INT2 FSM15	INT2 FSM14	INT2 FSM13	INT2 FSM12	INT2 FSM11	INT2 FSM10	INT2 FSM9
		_		_	_		

Table 173. FSM_INT2_B register description

INITO FOMAC(1)	Routing of FSM16 interrupt event on INT2. Default value: 0
INT2_FSM16 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO FOMAE(1)	Routing of FSM15 interrupt event on INT2. Default value: 0
INT2_FSM15 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO FON444(1)	Routing of FSM14 interrupt event on INT2. Default value: 0
INT2_FSM14 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INIT2 FCM42(1)	Routing of FSM13 interrupt event on INT2. Default value: 0
INT2_FSM13 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2 FSM12 ⁽¹⁾	Routing of FSM12 interrupt event on INT2. Default value: 0
INTZ_FSWITZ	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
	Routing of FSM11 interrupt event on INT2. Default value: 0
INT2_FSM11 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT2 FSM10 ⁽¹⁾	Routing of FSM10 interrupt event on INT2. Default value: 0
INTZ_I SWITO	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM9 ⁽¹⁾	Routing of FSM9 interrupt event on INT2. Default value: 0
11412_1 SW19(**)	(0: routing on INT2 disabled; 1: routing on INT2 enabled)

^{1.} This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

DS13197 - Rev 3 page 88/160

11.12 MLC_INT2 (11h)

INT2 pin control register (R/W)

Each bit in this register enables a signal to be carried over INT2. The pin's output supplies the OR combination of the selected signals.

Table 174. MLC_INT2 register

INT2 MLC8	INT2 MLC7	INT2 MLC6	INT2 MLC5	INT2 MLC4	INT2 MLC3	INT2 MLC2	INT2 MLC1
_	_	_	_	_	_	_	_

Table 175. MLC_INT2 register description

INT2 MLC8	Routing of MLC8 interrupt event on INT2. Default value: 0
	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_MLC7	Routing of MLC7 interrupt event on INT2. Default value: 0
INTZ_INLOT	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INTO MLC6	Routing of MLC6 interrupt event on INT2. Default value: 0
INT2_MLC6	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO MLC5	Routing of MLC5 interrupt event on INT2. Default value: 0
INT2_MLC5	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_MLC4	Routing of MLC4 interrupt event on INT2. Default value: 0
INTZ_IVILO4	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2 MLC3	Routing of MLC3 interrupt event on INT2. Default value: 0
INTZ_IVILOS	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO MLCO	Routing of MLC2 interrupt event on INT2. Default value: 0
INT2_MLC2	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO MLC1	Routing of MLC1 interrupt event on INT2. Default value: 0
INT2_MLC1	(0: routing on INT2 disabled; 1: routing on INT2 enabled)

11.13 EMB_FUNC_STATUS (12h)

Embedded function status register (R)

Table 176. EMB_FUNC_STATUS register

IS_FSM_LC 0	0	0	0	0	0	0
-------------	---	---	---	---	---	---

Table 177. EMB_FUNC_STATUS register description

IS FSM LC	Interrupt status bit for FSM long counter timeout interrupt event.
IS_I SIVI_LO	(1: interrupt detected; 0: no interrupt)

DS13197 - Rev 3 page 89/160

11.14 FSM_STATUS_A (13h)

Finite state machine status register (R)

Table 178. FSM_STATUS_A register

IS_FSM8	IS_FSM7	IS_FSM6	IS_FSM5	IS_FSM4	IS_FSM3	IS_FSM2	IS_FSM1
_	_	_					

Table 179. FSM_STATUS_A register description

IS_FSM8	Interrupt status bit for FSM8 interrupt event.
13_1 31/10	(1: interrupt detected; 0: no interrupt)
IS ESM7	Interrupt status bit for FSM7 interrupt event.
IS_FSM7	(1: interrupt detected; 0: no interrupt)
IS ESM6	Interrupt status bit for FSM6 interrupt event.
IS_FSM6	(1: interrupt detected; 0: no interrupt)
IS FSM5	Interrupt status bit for FSM5 interrupt event.
13_F31013	(1: interrupt detected; 0: no interrupt)
IS FSM4	Interrupt status bit for FSM4 interrupt event.
13_1 31014	(1: interrupt detected; 0: no interrupt)
IS FSM3	Interrupt status bit for FSM3 interrupt event.
13_1 31013	(1: interrupt detected; 0: no interrupt)
IS_FSM2	Interrupt status bit for FSM2 interrupt event.
13_1 31112	(1: interrupt detected; 0: no interrupt)
IS FSM1	Interrupt status bit for FSM1 interrupt event.
10_1 51011	(1: interrupt detected; 0: no interrupt)

DS13197 - Rev 3 page 90/160

11.15 FSM_STATUS_B (14h)

Finite state machine status register (R)

Table 180. FSM_STATUS_B register

IS_FSM16

Table 181. FSM_STATUS_B register description

IS FSM16	Interrupt status bit for FSM16 interrupt event.
	(1: interrupt detected; 0: no interrupt)
IS FSM15	Interrupt status bit for FSM15 interrupt event.
10_1 010110	(1: interrupt detected; 0: no interrupt)
IC ECM14	Interrupt status bit for FSM14 interrupt event.
IS_FSM14	(1: interrupt detected; 0: no interrupt)
IS_FSM13	Interrupt status bit for FSM13 interrupt event.
	(1: interrupt detected; 0: no interrupt)
IS FSM12	Interrupt status bit for FSM12 interrupt event.
13_1 31112	(1: interrupt detected; 0: no interrupt)
IC ECM11	Interrupt status bit for FSM11 interrupt event.
IS_FSM11	(1: interrupt detected; 0: no interrupt)
IS ESMIO	Interrupt status bit for FSM10 interrupt event.
IS_FSM10	(1: interrupt detected; 0: no interrupt)
IS ESMO	Interrupt status bit for FSM9 interrupt event.
IS_FSM9	(1: interrupt detected; 0: no interrupt)

DS13197 - Rev 3 page 91/160

11.16 MLC_STATUS (15h)

Machine learning core status register (R)

Table 182. MLC_STATUS register

S_MLC8 IS_MLC7 IS_MLC6 IS_MLC5 IS_MLC4 IS	S_MLC3 IS_MLC2 IS_MLC1
---	------------------------

Table 183. MLC_STATUS register description

IS_MLC8	Interrupt status bit for MLC8 interrupt event.
IS_INIECO	(1: interrupt detected; 0: no interrupt)
IC MI C7	Interrupt status bit for MLC7 interrupt event.
IS_MLC7	(1: interrupt detected; 0: no interrupt)
IS MI C6	Interrupt status bit for MLC6 interrupt event.
IS_MLC6	(1: interrupt detected; 0: no interrupt)
IS_MLC5	Interrupt status bit for MLC5 interrupt event.
	(1: interrupt detected; 0: no interrupt)
IS_MLC4	Interrupt status bit for MLC4 interrupt event.
IO_IVILO4	(1: interrupt detected; 0: no interrupt)
IS MLC3	Interrupt status bit for MLC3 interrupt event.
IS_WILCS	(1: interrupt detected; 0: no interrupt)
IS MLC2	Interrupt status bit for MLC2 interrupt event.
IS_IVILO2	(1: interrupt detected; 0: no interrupt)
IS MLC1	Interrupt status bit for MLC1 interrupt event.
IO_IVILOT	(1: interrupt detected; 0: no interrupt)

DS13197 - Rev 3 page 92/160

11.17 PAGE_RW (17h)

Enable read and write mode of advanced features dedicated page (R/W)

Table 184. PAGE_RW register

EMB_ PAGE_ FUNC_LIR WRITE	PAGE_ READ	0 ⁽¹⁾				
------------------------------	---------------	------------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 185. PAGE_RW register description

EMB_FUNC_LIR	Latched interrupt mode for embedded functions. Default value: 0 (0: embedded functions interrupt request not latched; 1: embedded functions interrupt request latched)
PAGE_WRITE	Enables writes to the selected advanced features dedicated page. (1) Default value: 0 (1: enable; 0: disable)
PAGE_READ	Enables reads from the selected advanced features dedicated page. (1) Default value: 0 (1: enable; 0: disable)

^{1.} Page selected by PAGE_SEL[3:0] in PAGE_SEL (02h) register.

DS13197 - Rev 3 page 93/160

11.18 FSM_ENABLE_A (46h)

Enable FSM register (R/W)

Table 186. FSM_ENABLE_A register

FSM8_EN FSM7_EN FSM6_EN FSM5_EN FSM4_EN FSM	_EN FSM2_EN FSM1_EN
---	---------------------

Table 187. FSM_ENABLE_A register description

FSM8_EN	Enables FSM8. Default value: 0 (0: FSM8 disabled; 1: FSM8 enabled)
FSM7_EN	Enables FSM7. Default value: 0 (0: FSM7 disabled; 1: FSM7 enabled)
FSM6_EN	Enables FSM6. Default value: 0 (0: FSM6 disabled; 1: FSM6 enabled)
FSM5_EN	Enables FSM5. Default value: 0 (0: FSM5 disabled; 1: FSM5 enabled)
FSM4_EN	Enables FSM4. Default value: 0 (0: FSM4 disabled; 1: FSM4 enabled)
FSM3_EN	Enables FSM3. Default value: 0 (0: FSM3 disabled; 1: FSM3 enabled)
FSM2_EN	Enables FSM2. Default value: 0 (0: FSM2 disabled; 1: FSM2 enabled)
FSM1_EN	Enables FSM1. Default value: 0 (0: FSM1 disabled; 1: FSM1 enabled)

11.19 FSM_ENABLE_B (47h)

Enable FSM register (R/W)

Table 188. FSM_ENABLE_B register

FSM16 EN	FSM15 EN	FSM14 EN	FSM13 EN	FSM12 EN	FSM11 EN	FSM10 EN	FSM9 EN
_	_	_	_	_	_	_	_

Table 189. FSM_ENABLE_B register description

FSM16_EN	Enables FSM16. Default value: 0 (0: FSM16 disabled; 1: FSM16 enabled)
FSM15_EN	Enables FSM15. Default value: 0 (0: FSM15 disabled; 1: FSM15 enabled)
FSM14_EN	Enables FSM14. Default value: 0 (0: FSM14 disabled; 1: FSM14 enabled)
FSM13_EN	Enables FSM13. Default value: 0 (0: FSM13 disabled; 1: FSM13 enabled)
FSM12_EN	Enables FSM12. Default value: 0 (0: FSM12 disabled; 1: FSM12 enabled)
FSM11_EN	Enables FSM11. Default value: 0 (0: FSM11 disabled; 1: FSM11 enabled)
FSM10_EN	Enables FSM10. Default value: 0 (0: FSM10 disabled; 1: FSM10 enabled)
FSM9_EN	Enables FSM9. Default value: 0 (0: FSM9 disabled; 1: FSM9 enabled)

DS13197 - Rev 3 page 94/160

11.20 FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)

FSM long counter status register (R/W)

Long counter value is an unsigned integer value (16-bit format); this value can be reset using the LC_CLEAR bit in FSM_LONG_COUNTER_CLEAR (4Ah) register.

Table 190. FSM_LONG_COUNTER_L register

	FSM LC	7 FSM LC 6	FSM LC 5	FSM LC 4	FSM LC 3	FSM LC 2	FSM LC 1	FSM LC 0
--	--------	------------	----------	----------	----------	----------	----------	----------

Table 191. FSM_LONG_COUNTER_L register description

FSM_LC_[7:0] Long counter current value (LSbyte). Default value: 00000000

Table 192. FSM LONG COUNTER H register

FSM_LC_15	FSM_LC_14	FSM_LC_13	FSM_LC_12	FSM_LC_11	FSM_LC_10	FSM_LC_9	FSM_LC_8

Table 193. FSM_LONG_COUNTER_H register description

FSM_LC_[15:8] Long counter current value (MSbyte). Default value: 00000000

11.21 FSM LONG COUNTER CLEAR (4Ah)

FSM long counter reset register (R/W)

Table 194. FSM_LONG_COUNTER_CLEAR register

0 ⁽¹⁾	FSM_LC_ CLEARED	FSM_LC_ CLEAR					
------------------	------------------	------------------	------------------	------------------	------------------	--------------------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 195. FSM_LONG_COUNTER_CLEAR register description

FSM_LC_CLEARED	This read-only bit is automatically set to 1 when the long counter reset is done. Default value: 0
FSM_LC_CLEAR	Clear FSM long counter value. Default value: 0

DS13197 - Rev 3 page 95/160

11.22 FSM_OUTS1 (4Ch)

FSM1 output register (R)

Table 196. FSM_OUTS1 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 197. FSM_OUTS1 register description

D V	FSM1 output: positive event detected on the X-axis.
P_X	(0: event not detected; 1: event detected)
N. Y	FSM1 output: negative event detected on the X-axis.
N_X	(0: event not detected; 1: event detected)
P_Y	FSM1 output: positive event detected on the Y-axis.
- '	(0: event not detected; 1: event detected)
N_Y	FSM1 output: negative event detected on the Y-axis.
IN_I	(0: event not detected; 1: event detected)
P_Z	FSM1 output: positive event detected on the Z-axis.
\ \ _Z	(0: event not detected; 1: event detected)
N_Z	FSM1 output: negative event detected on the Z-axis.
N_Z	(0: event not detected; 1: event detected)
P_V	FSM1 output: positive event detected on the vector.
' _v	(0: event not detected; 1: event detected)
N_V	FSM1 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS13197 - Rev 3 page 96/160

11.23 FSM_OUTS2 (4Dh)

FSM2 output register (R)

Table 198. FSM_OUTS2 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 199. FSM_OUTS2 register description

D V	FSM2 output: positive event detected on the X-axis.
P_X	(0: event not detected; 1: event detected)
N. V	FSM2 output: negative event detected on the X-axis.
N_X	(0: event not detected; 1: event detected)
P_Y	FSM2 output: positive event detected on the Y-axis.
- '	(0: event not detected; 1: event detected)
N_Y	FSM2 output: negative event detected on the Y-axis.
IN_1	(0: event not detected; 1: event detected)
P_Z	FSM2 output: positive event detected on the Z-axis.
' <u>_</u> _	(0: event not detected; 1: event detected)
N_Z	FSM2 output: negative event detected on the Z-axis.
11_2	(0: event not detected; 1: event detected)
P_V	FSM2 output: positive event detected on the vector.
' _ '	(0: event not detected; 1: event detected)
N_V	FSM2 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS13197 - Rev 3 page 97/160

11.24 FSM_OUTS3 (4Eh)

FSM3 output register (R)

Table 200. FSM_OUTS3 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 201. FSM_OUTS3 register description

D V	FSM3 output: positive event detected on the X-axis.
P_X	(0: event not detected; 1: event detected)
N. Y	FSM3 output: negative event detected on the X-axis.
N_X	(0: event not detected; 1: event detected)
P_Y	FSM3 output: positive event detected on the Y-axis.
- '	(0: event not detected; 1: event detected)
N_Y	FSM3 output: negative event detected on the Y-axis.
11/_1	(0: event not detected; 1: event detected)
P_Z	FSM3 output: positive event detected on the Z-axis.
\	(0: event not detected; 1: event detected)
N_Z	FSM3 output: negative event detected on the Z-axis.
11_2	(0: event not detected; 1: event detected)
P_V	FSM3 output: positive event detected on the vector.
' _ '	(0: event not detected; 1: event detected)
N_V	FSM3 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS13197 - Rev 3 page 98/160

11.25 FSM_OUTS4 (4Fh)

FSM4 output register (R)

Table 202. FSM_OUTS4 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 203. FSM_OUTS4 register description

D V	FSM4 output: positive event detected on the X-axis.
P_X	(0: event not detected; 1: event detected)
N. Y	FSM4 output: negative event detected on the X-axis.
N_X	(0: event not detected; 1: event detected)
P_Y	FSM4 output: positive event detected on the Y-axis.
- '	(0: event not detected; 1: event detected)
N_Y	FSM4 output: negative event detected on the Y-axis.
IN_I	(0: event not detected; 1: event detected)
P_Z	FSM4 output: positive event detected on the Z-axis.
\ \ _Z	(0: event not detected; 1: event detected)
N_Z	FSM4 output: negative event detected on the Z-axis.
N_Z	(0: event not detected; 1: event detected)
P_V	FSM4 output: positive event detected on the vector.
' _v	(0: event not detected; 1: event detected)
N_V	FSM4 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS13197 - Rev 3 page 99/160

11.26 FSM_OUTS5 (50h)

FSM5 output register (R)

Table 204. FSM_OUTS5 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 205. FSM_OUTS5 register description

D V	FSM5 output: positive event detected on the X-axis.
P_X	(0: event not detected; 1: event detected)
N. Y	FSM5 output: negative event detected on the X-axis.
N_X	(0: event not detected; 1: event detected)
P_Y	FSM5 output: positive event detected on the Y-axis.
- '	(0: event not detected; 1: event detected)
N_Y	FSM5 output: negative event detected on the Y-axis.
11/_1	(0: event not detected; 1: event detected)
P_Z	FSM5 output: positive event detected on the Z-axis.
\	(0: event not detected; 1: event detected)
N_Z	FSM5 output: negative event detected on the Z-axis.
11_2	(0: event not detected; 1: event detected)
P_V	FSM5 output: positive event detected on the vector.
' _ '	(0: event not detected; 1: event detected)
N_V	FSM5 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS13197 - Rev 3 page 100/160

11.27 FSM_OUTS6 (51h)

FSM6 output register (R)

Table 206. FSM_OUTS6 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 207. FSM_OUTS6 register description

D V	FSM6 output: positive event detected on the X-axis.
P_X	(0: event not detected; 1: event detected)
N. Y	FSM6 output: negative event detected on the X-axis.
N_X	(0: event not detected; 1: event detected)
P_Y	FSM6 output: positive event detected on the Y-axis.
- '	(0: event not detected; 1: event detected)
N_Y	FSM6 output: negative event detected on the Y-axis.
IN_I	(0: event not detected; 1: event detected)
P_Z	FSM6 output: positive event detected on the Z-axis.
1 _2	(0: event not detected; 1: event detected)
N_Z	FSM6 output: negative event detected on the Z-axis.
11_2	(0: event not detected; 1: event detected)
P_V	FSM6 output: positive event detected on the vector.
' _ '	(0: event not detected; 1: event detected)
N_V	FSM6 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS13197 - Rev 3 page 101/160

11.28 FSM_OUTS7 (52h)

FSM7 output register (R)

Table 208. FSM_OUTS7 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 209. FSM_OUTS7 register description

D V	FSM7 output: positive event detected on the X-axis.
P_X	(0: event not detected; 1: event detected)
NI V	FSM7 output: negative event detected on the X-axis.
N_X	(0: event not detected; 1: event detected)
D V	FSM7 output: positive event detected on the Y-axis.
P_Y	(0: event not detected; 1: event detected)
N_Y	FSM7 output: negative event detected on the Y-axis.
IN_1	(0: event not detected; 1: event detected)
P_Z	FSM7 output: positive event detected on the Z-axis.
\ \	(0: event not detected; 1: event detected)
N_Z	FSM7 output: negative event detected on the Z-axis.
11_2	(0: event not detected; 1: event detected)
P_V	FSM7 output: positive event detected on the vector.
' _ '	(0: event not detected; 1: event detected)
N_V	FSM7 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS13197 - Rev 3 page 102/160

11.29 FSM_OUTS8 (53h)

FSM8 output register (R)

Table 210. FSM_OUTS8 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 211. FSM_OUTS8 register description

P_X	FSM8 output: positive event detected on the X-axis.
/ `	(0: event not detected; 1: event detected)
N. V	FSM8 output: negative event detected on the X-axis.
N_X	(0: event not detected; 1: event detected)
D. V	FSM8 output: positive event detected on the Y-axis.
P_Y	(0: event not detected; 1: event detected)
N. V	FSM8 output: negative event detected on the Y-axis.
N_Y	(0: event not detected; 1: event detected)
D 7	FSM8 output: positive event detected on the Z-axis.
P_Z	(0: event not detected; 1: event detected)
N 7	FSM8 output: negative event detected on the Z-axis.
N_Z	(0: event not detected; 1: event detected)
D.V	FSM8 output: positive event detected on the vector.
P_V	(0: event not detected; 1: event detected)
N V	FSM8 output: negative event detected on the vector.
N_V	(0: event not detected; 1: event detected)

DS13197 - Rev 3 page 103/160

11.30 FSM_OUTS9 (54h)

FSM9 output register (R)

Table 212. FSM_OUTS9 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 213. FSM_OUTS9 register description

D V	FSM9 output: positive event detected on the X-axis.
P_X	(0: event not detected; 1: event detected)
N. Y	FSM9 output: negative event detected on the X-axis.
N_X	(0: event not detected; 1: event detected)
P_Y	FSM9 output: positive event detected on the Y-axis.
- '	(0: event not detected; 1: event detected)
N_Y	FSM9 output: negative event detected on the Y-axis.
IN_I	(0: event not detected; 1: event detected)
P_Z	FSM9 output: positive event detected on the Z-axis.
\ \	(0: event not detected; 1: event detected)
N_Z	FSM9 output: negative event detected on the Z-axis.
N_Z	(0: event not detected; 1: event detected)
P_V	FSM9 output: positive event detected on the vector.
' _v	(0: event not detected; 1: event detected)
N_V	FSM9 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS13197 - Rev 3 page 104/160

11.31 FSM_OUTS10 (55h)

FSM10 output register (R)

Table 214. FSM_OUTS10 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 215. FSM_OUTS10 register description

	FSM10 output: positive event detected on the X-axis.
P_X	1 3W 10 output. positive event detected on the A-axis.
_	(0: event not detected; 1: event detected)
NI V	FSM10 output: negative event detected on the X-axis.
N_X	(0: event not detected; 1: event detected)
D. V	FSM10 output: positive event detected on the Y-axis.
P_Y	(0: event not detected; 1: event detected)
N. V	FSM10 output: negative event detected on the Y-axis.
N_Y	(0: event not detected; 1: event detected)
P_Z	FSM10 output: positive event detected on the Z-axis.
'	(0: event not detected; 1: event detected)
N 7	FSM10 output: negative event detected on the Z-axis.
N_Z	(0: event not detected; 1: event detected)
D V	FSM10 output: positive event detected on the vector.
P_V	(0: event not detected; 1: event detected)
NL V	FSM10 output: negative event detected on the vector.
N_V	(0: event not detected; 1: event detected)

DS13197 - Rev 3 page 105/160

11.32 FSM_OUTS11 (56h)

FSM11 output register (R)

Table 216. FSM_OUTS11 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 217. FSM_OUTS11 register description

P_X	FSM11 output: positive event detected on the X-axis.
_	(0: event not detected; 1: event detected)
N_X	FSM11 output: negative event detected on the X-axis.
IN_X	(0: event not detected; 1: event detected)
D V	FSM11 output: positive event detected on the Y-axis.
P_Y	(0: event not detected; 1: event detected)
N_Y	FSM11 output: negative event detected on the Y-axis.
IN_1	(0: event not detected; 1: event detected)
P_Z	FSM11 output: positive event detected on the Z-axis.
\ \ _Z	(0: event not detected; 1: event detected)
N 7	FSM11 output: negative event detected on the Z-axis.
N_Z	(0: event not detected; 1: event detected)
P_V	FSM11 output: positive event detected on the vector.
' _v	(0: event not detected; 1: event detected)
N_V	FSM11 output: negative event detected on the vector.
IN_V	(0: event not detected; 1: event detected)

DS13197 - Rev 3 page 106/160

11.33 FSM_OUTS12 (57h)

FSM12 output register (R)

Table 218. FSM_OUTS12 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 219. FSM_OUTS12 register description

	FSM12 output: positive event detected on the X-axis.
P_X	
_	(0: event not detected; 1: event detected)
NI V	FSM12 output: negative event detected on the X-axis.
N_X	(0: event not detected; 1: event detected)
D V	FSM12 output: positive event detected on the Y-axis.
P_Y	(0: event not detected; 1: event detected)
N. V	FSM12 output: negative event detected on the Y-axis.
N_Y	(0: event not detected; 1: event detected)
P_Z	FSM12 output: positive event detected on the Z-axis.
'	(0: event not detected; 1: event detected)
N 7	FSM12 output: negative event detected on the Z-axis.
N_Z	(0: event not detected; 1: event detected)
D V	FSM12 output: positive event detected on the vector.
P_V	(0: event not detected; 1: event detected)
NL V	FSM12 output: negative event detected on the vector.
N_V	(0: event not detected; 1: event detected)

DS13197 - Rev 3 page 107/160

11.34 FSM_OUTS13 (58h)

FSM13 output register (R)

Table 220. FSM_OUTS13 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 221. FSM_OUTS13 register description

	FSM13 output: positive event detected on the X-axis.
P_X	
_	(0: event not detected; 1: event detected)
N. V	FSM13 output: negative event detected on the X-axis.
N_X	(0: event not detected; 1: event detected)
D. V	FSM13 output: positive event detected on the Y-axis.
P_Y	(0: event not detected; 1: event detected)
N. V	FSM13 output: negative event detected on the Y-axis.
N_Y	(0: event not detected; 1: event detected)
P_Z	FSM13 output: positive event detected on the Z-axis.
'	(0: event not detected; 1: event detected)
N 7	FSM13 output: negative event detected on the Z-axis.
N_Z	(0: event not detected; 1: event detected)
D V	FSM13 output: positive event detected on the vector.
P_V	(0: event not detected; 1: event detected)
NL V	FSM13 output: negative event detected on the vector.
N_V	(0: event not detected; 1: event detected)

DS13197 - Rev 3 page 108/160

11.35 FSM_OUTS14 (59h)

FSM14 output register (R)

Table 222. FSM_OUTS14 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 223. FSM_OUTS14 register description

P_X	FSM14 output: positive event detected on the X-axis.
^	(0: event not detected; 1: event detected)
NI V	FSM14 output: negative event detected on the X-axis.
N_X	(0: event not detected; 1: event detected)
D.V	FSM14 output: positive event detected on the Y-axis.
P_Y	(0: event not detected; 1: event detected)
N. V	FSM14 output: negative event detected on the Y-axis.
N_Y	(0: event not detected; 1: event detected)
D 7	FSM14 output: positive event detected on the Z-axis.
P_Z	(0: event not detected; 1: event detected)
N 7	FSM14 output: negative event detected on the Z-axis.
N_Z	(0: event not detected; 1: event detected)
D.V	FSM14 output: positive event detected on the vector.
P_V	(0: event not detected; 1: event detected)
N. V	FSM14 output: negative event detected on the vector.
N_V	(0: event not detected; 1: event detected)

DS13197 - Rev 3 page 109/160

11.36 FSM_OUTS15 (5Ah)

FSM15 output register (R)

Table 224. FSM_OUTS15 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 225. FSM_OUTS15 register description

P_X	FSM15 output: positive event detected on the X-axis.
1 _/	(0: event not detected; 1: event detected)
NI V	FSM15 output: negative event detected on the X-axis.
N_X	(0: event not detected; 1: event detected)
D. V	FSM15 output: positive event detected on the Y-axis.
P_Y	(0: event not detected; 1: event detected)
N. V	FSM15 output: negative event detected on the Y-axis.
N_Y	(0: event not detected; 1: event detected)
D 7	FSM15 output: positive event detected on the Z-axis.
P_Z	(0: event not detected; 1: event detected)
N 7	FSM15 output: negative event detected on the Z-axis.
N_Z	(0: event not detected; 1: event detected)
D.V	FSM15 output: positive event detected on the vector.
P_V	(0: event not detected; 1: event detected)
N V	FSM15 output: negative event detected on the vector.
N_V	(0: event not detected; 1: event detected)

DS13197 - Rev 3 page 110/160

11.37 FSM_OUTS16 (5Bh)

FSM16 output register (R)

Table 226. FSM_OUTS16 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 227. FSM_OUTS16 register description

P_X	FSM16 output: positive event detected on the X-axis.
	(0: event not detected; 1: event detected)
N_X	FSM16 output: negative event detected on the X-axis.
IN_X	(0: event not detected; 1: event detected)
D V	FSM16 output: positive event detected on the Y-axis.
P_Y	(0: event not detected; 1: event detected)
N_Y	FSM16 output: negative event detected on the Y-axis.
IN_I	(0: event not detected; 1: event detected)
P_Z	FSM16 output: positive event detected on the Z-axis.
	(0: event not detected; 1: event detected)
N 7	FSM16 output: negative event detected on the Z-axis.
N_Z	(0: event not detected; 1: event detected)
P_V	FSM16 output: positive event detected on the vector.
' _v	(0: event not detected; 1: event detected)
NL V	FSM16 output: negative event detected on the vector.
N_V	(0: event not detected; 1: event detected)

11.38 EMB_FUNC_ODR_CFG_B (5Fh)

Finite state machine output data rate configuration register (R/W)

Table 228. EMB_FUNC_ODR_CFG_B register

0 ⁽¹⁾	1(2)	0 ⁽¹⁾	FSM_ODR1	FSM_ODR0	0 ⁽¹⁾	1 ⁽²⁾	1 ⁽²⁾
------------------	------	------------------	----------	----------	------------------	-------------------------	------------------

- 1. This bit must be set to 0 for the correct operation of the device.
- 2. This bit must be set to 1 for the correct operation of the device

Table 229. EMB_FUNC_ODR_CFG_B register description

	Finite state machine ODR configuration:
	(00: 12.5 Hz;
FSM_ODR[1:0]	01: 26 Hz (default);
	10: 52 Hz;
	11: 104 Hz)

DS13197 - Rev 3 page 111/160

11.39 EMB_FUNC_ODR_CFG_C (60h)

Machine learning core output data rate configuration register (R/W)

Table 230. EMB_FUNC_ODR_CFG_C register

0 ⁽¹⁾	0 ⁽¹⁾	MLC_ODR1	MLC_ODR0	0 ⁽¹⁾	1(2)	0 ⁽¹⁾	1 ⁽²⁾
------------------	------------------	----------	----------	------------------	------	------------------	------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 231. EMB_FUNC_ODR_CFG_C register description

	Machine learning core ODR configuration:
	(00: 12.5 Hz;
MLC_ODR[1:0]	01: 26 Hz (default);
	10: 52 Hz;
	11: 104 Hz)

11.40 EMB_FUNC_INIT_B (67h)

Embedded functions initialization register (R/W)

Table 232. EMB_FUNC_INIT_B register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	MLC_INIT	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	FSM_INIT
------------------	------------------	------------------	----------	------------------	------------------	------------------	----------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 233. EMB_FUNC_INIT_B register description

MLC_INIT	Machine learning core initialization request. Default value: 0
FSM_INIT	Finite state machine initialization request. Default value: 0

11.41 MLC0_SRC (70h)

Machine learning core source register (R)

Table 234. MLC0_SRC register

| MLC0_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 235. MLC0_SRC register description

MLC0 SRC [7:0]	Output value of MLC0 decision tree
WLCU_SKC_[7.0]	Output value of MECO decision free

DS13197 - Rev 3 page 112/160

^{2.} This bit must be set to 1 for the correct operation of the device.

11.42 MLC1_SRC (71h)

Machine learning core source register (R)

Table 236. MLC1_SRC register

| MLC1_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 237. MLC1_SRC register description

MLC1 SRC [7:0]	Output value of MLC1 decision tree	
----------------	------------------------------------	--

11.43 MLC2_SRC (72h)

Machine learning core source register (R)

Table 238. MLC2_SRC register

| MLC2_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 239. MLC2_SRC register description

MLC2_SRC_[7:0] Output value of i	MLC2 decision tree
----------------------------------	--------------------

11.44 MLC3_SRC (73h)

Machine learning core source register (R)

Table 240. MLC3_SRC register

| MLC3_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 241. MLC3_SRC register description

MLC3_SRC_[7:0] Output value of MLC3 decision tree	
---	--

11.45 MLC4_SRC (74h)

Machine learning core source register (R)

Table 242. MLC4_SRC register

| MLC4_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 243. MLC4_SRC register description

MLC4_SRC_[7:0]	Output value of MLC4 decision tree

DS13197 - Rev 3 page 113/160

11.46 MLC5_SRC (75h)

Machine learning core source register (R)

Table 244. MLC5_SRC register

| MLC5_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 245. MLC5_SRC register description

MLC5 SRC [7:0]	Output value of MLC5 decision tree	
----------------	------------------------------------	--

11.47 MLC6_SRC (76h)

Machine learning core source register (R)

Table 246. MLC6_SRC register

| MLC6_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 247. MLC6_SRC register description

MLC6_SRC_[7:0] Output value of MLC6 decision tree	
---	--

11.48 MLC7_SRC (77h)

Machine learning core source register (R)

Table 248. MLC7_SRC register

| MLC7_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 249. MLC7_SRC register description

MLC7_SRC_[7:0] Output value of MLC7 decision tree	
---	--

DS13197 - Rev 3 page 114/160

12 Embedded advanced features

The following table provides a list of the registers for the embedded advanced features page 0. These registers are accessible when PAGE_SEL[3:0] are set to 0000 in PAGE_SEL (02h).

Table 250. Register address map - embedded advanced features page 0

Name	Time	Re	gister address	Default	Comment	
Name	Туре	Hex	Binary	Delault	Comment	
MAG_SENSITIVITY_L	R/W	BA	10111010	00100100		
MAG_SENSITIVITY_H	R/W	BB	10111011	00010110		
MAG_OFFX_L	R/W	C0	11000000	00000000		
MAG_OFFX_H	R/W	C1	11000001	00000000		
MAG_OFFY_L	R/W	C2	11000010	00000000		
MAG_OFFY_H	R/W	C3	11000011	00000000		
MAG_OFFZ_L	R/W	C4	11000100	00000000		
MAG_OFFZ_H	R/W	C5	11000101	00000000		
MAG_SI_XX_L	R/W	C6	11000110	00000000		
MAG_SI_XX_H	R/W	C7	11000111	00111100		
MAG_SI_XY_L	R/W	C8	11001000	00000000		
MAG_SI_XY_H	R/W	C9	11001001	00000000		
MAG_SI_XZ_L	R/W	CA	11001010	00000000		
MAG_SI_XZ_H	R/W	СВ	11001011	00000000		
MAG_SI_YY_L	R/W	CC	11001100	00000000		
MAG_SI_YY_H	R/W	CD	11001101	00111100		
MAG_SI_YZ_L	R/W	CE	11001110	00000000		
MAG_SI_YZ_H	R/W	CF	11001111	00000000		
MAG_SI_ZZ_L	R/W	D0	11010000	00000000		
MAG_SI_ZZ_H	R/W	D1	11010001	00111100		
MAG_CFG_A	R/W	D4	11010100	00000101		
MAG_CFG_B	R/W	D5	11010101	0000010		

The following table provides a list of the registers for the embedded advanced features page 1. These registers are accessible when PAGE_SEL[3:0] are set to 0001 in PAGE_SEL (02h).

Table 251. Register address map - embedded advanced features page 1

Name	Type	Reç	jister address	Default	Comment
Name	туре	Hex	Binary	Delauit	
FSM_LC_TIMEOUT_L	R/W	7A	01111010	00000000	
FSM_LC_TIMEOUT_H	R/W	7B	01111011	00000000	
FSM_PROGRAMS	R/W	7C	01111100	00000000	
FSM_START_ADD_L	R/W	7E	01111110	00000000	
FSM_START_ADD_H	R/W	7F	01111111	00000000	
MLC_MAG_SENSITIVITY_L	R/W	E8	11101000	00000000	
MLC_MAG_SENSITIVITY_H	R/W	E9	11101001	00111100	

Reserved registers must not be changed. Writing to those registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

DS13197 - Rev 3 page 115/160

Write procedure example:

Example: write value 01h in register at address 7Ch (FSM_PROGRAMS) in Page 1

1.	Write bit FUNC_CFG_EN = 1 in FUNC_CFG_ACCESS (01h)	// Enable access to embedded functions registers
2.	Write bit PAGE_WRITE = 1 in PAGE_RW (17h) register	// Select write operation mode
3.	Write 0001 in PAGE_SEL[3:0] field of register PAGE_SEL (02h)	// Select page 1
4.	Write 7Ch in PAGE_ADDR register (08h)	// Set address
5.	Write 01h in PAGE_DATA register (09h)	// Set value to be written
6.	Write bit PAGE_WRITE = 0 in PAGE_RW (17h) register	// Write operation disabled
7.	Write bit FUNC_CFG_EN = 0 in FUNC_CFG_ACCESS (01h)	// Disable access to embedded functions registers

Read procedure example:

Example: read value of register at address 7Ch (FSM_PROGRAMS) in Page 1

1.	Write bit FUNC_CFG_EN = 1 in FUNC_CFG_ACCESS (01h)	// Enable access to embedded functions registers
2.	Write bit PAGE_READ = 1 in PAGE_RW (17h) register	// Select read operation mode
3.	Write 0001 in PAGE_SEL[3:0] field of register PAGE_SEL (02h)	// Select page 1
4.	Write 7Ch in PAGE_ADDR register (08h)	// Set address
5.	Read value of PAGE_DATA register (09h)	// Get register value
6.	Write bit PAGE_READ = 0 in PAGE_RW (17h) register	// Read operation disabled
7.	Write bit FUNC_CFG_EN = 0 in FUNC_CFG_ACCESS (01h)	// Disable access to embedded functions registers

Note:

Steps 1 and 2 of both procedures are intended to be performed at the beginning of the procedure. Steps 6 and 7 of both procedures are intended to be performed at the end of the procedure. If the procedure involves multiple operations, only steps 3, 4 and 5 must be repeated for each operation. If, in particular, the multiple operations involve consecutive registers, only step 5 can be performed.

DS13197 - Rev 3 page 116/160

13 Embedded advanced features register description

13.1 Page 0 - Embedded advanced features registers

13.1.1 MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh)

External magnetometer sensitivity value register for the finite state machine (R/W)

This register corresponds to the LSB-to-gauss conversion value of the external magnetometer sensor. The register value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Default value of MAG_SENS[15:0] is 0x1624, corresponding to 0.0015 gauss/LSB.

Table 252. MAG_SENSITIVITY_L register

| MAG_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SENS_7 | SENS_6 | SENS_5 | SENS_4 | SENS_3 | SENS_2 | SENS_1 | SENS_0 |

Table 253. MAG_SENSITIVITY_L register description

Table 254. MAG_SENSITIVITY_H register

MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_
SENS_15	SENS_14	SENS_13	SENS_12	SENS_11	SENS_10	SENS_9	SENS_8

Table 255. MAG_SENSITIVITY_H register description

MAG SENS [15:8]	External magnetometer sensitivity (MSbyte). Default value: 00010110

DS13197 - Rev 3 page 117/160

13.1.2 MAG_OFFX_L (C0h) and MAG_OFFX_H (C1h)

Offset for X-axis hard-iron compensation register (R/W)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 256. MAG_OFFX_L register

| MAG_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OFFX_7 | OFFX_6 | OFFX_5 | OFFX_4 | OFFX_3 | OFFX_2 | OFFX_1 | OFFX_0 |

Table 257. MAG_OFFX_L register description

MAG_OFFX_[7:0]	Offset for X-axis hard-iron compensation (LSbyte). Default value: 00000000	
----------------	--	--

Table 258. MAG_OFFX_H register

MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_
OFFX_15	OFFX_14	OFFX_13	OFFX_12	OFFX_11	OFFX_10	OFFX_9	OFFX_8

Table 259. MAG_OFFX_H register description

MAG_OFFA_[15.6] Oliset for X-axis hard-iron compensation (MSbyte). Default value, 00000000		MAG_OFFX_[15:8]	Offset for X-axis hard-iron compensation (MSbyte). Default value: 00000000	
--	--	-----------------	--	--

13.1.3 MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h)

Offset for Y-axis hard-iron compensation register (R/W)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 260. MAG_OFFY_L register

MAG_								
OFFY_7	OFFY_6	OFFY_5	OFFY_4	OFFY_3	OFFY_2	OFFY_1	OFFY_0	

Table 261. MAG_OFFY_L register description

MAG_OFFY_[7:0]	Offset for Y-axis hard-iron compensation (LSbyte). Default value: 00000000
----------------	--

Table 262. MAG_OFFY_H register

MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	
OFFY_15	OFFY_14	OFFY_13	OFFY_12	OFFY_11	OFFY_10	OFFY_9	OFFY_8	

Table 263. MAG_OFFY_H register description

MAG_OFFY_[15:8]	Offset for Y-axis hard-iron compensation (MSbyte). Default value: 00000000	
-----------------	--	--

DS13197 - Rev 3 page 118/160

13.1.4 MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h)

Offset for Z-axis hard-iron compensation register (R/W)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 264. MAG_OFFZ_L register

| MAG_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OFFZ_7 | OFFZ_6 | OFFZ_5 | OFFZ_4 | OFFZ_3 | OFFZ_2 | OFFZ_1 | OFFZ_0 |

Table 265. MAG_OFFZ_L register description

MAG_OFFZ_[7:0]	Offset for Z-axis hard-iron compensation (LSbyte). Default value: 00000000
----------------	--

Table 266. MAG_OFFZ_H register

MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_
OFFZ_15	OFFZ_14	OFFZ_13	OFFZ_12	OFFZ_11	OFFZ_10	OFFZ_9	OFFZ_8

Table 267. MAG_OFFZ_H register description

MAG_OFFZ_[15:8]	Offset for Z-axis hard-iron compensation (MSbyte). Default value: 00000000	
-----------------	--	--

13.1.5 MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)

Soft-iron (3x3 symmetric) matrix correction register (R/W)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 268. MAG_SI_XX_L register

MAG_SI_								
XX_7	XX_6	XX_5	XX_4	XX_3	XX_2	XX_1	XX_0	

Table 269. MAG_SI_XX_L register description

MAG SI XX [7:0]	Soft-iron correction row1 col1 coefficient (LSbyte), Default value; 00000000
IMAG SI XX I/:UI	Soft-iron correction row1 col1 coefficient (LSbyte). Default value: 00000000

Table 270. MAG_SI_XX_H register

MAG_SI_								
XX_15	XX_14	XX_13	XX_12	XX_11	XX_10	XX_9	XX_8	

Table 271. MAG_SI_XX_H register description

MAC CL VV [4E:0]	0 - ft to	
MAG SI XX [15:8]	Soft-iron correction row1 col1 coefficient (MSbvte), Default value: 00111100	

DS13197 - Rev 3 page 119/160

13.1.6 MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h)

Soft-iron (3x3 symmetric) matrix correction register (R/W)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 272. MAG_SI_XY_L register

MAG_SI_								
XY_7	XY_6	XY_5	XY_4	XY_3	XY_2	XY_1	XY_0	

Table 273. MAG_SI_XY_L register description

MAG_SI_XY_[7:0] Soft-iron correction row1 col2 (and row2 col1) coefficient (LSbyte). Default value: 00000000

Table 274. MAG_SI_XY_H register

MAG_SI_								
XY_15	XY_14	XY_13	XY_12	XY_11	XY_10	XY_9	XY_8	

Table 275. MAG_SI_XY_H register description

MAG_SI_XY_[15:8] Soft-iron correction row1 col2 (and row2 col1) coefficient (MSbyte). Default value: 00000000

13.1.7 MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)

Soft-iron (3x3 symmetric) matrix correction register (R/W)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 276. MAG_SI_XZ_L register

MAG_SI_								
XZ_7	XZ_6	XZ_5	XZ_4	XZ_3	XZ_2	XZ_1	XZ_0	

Table 277. MAG_SI_XZ_L register description

MAG_SI_XZ_[7:0] Soft-iron correction row1 col3 (and row3 col1) coefficient (LSbyte). Default value: 00000000

Table 278. MAG_SI_XZ_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XZ_15 | XZ_14 | XZ_13 | XZ_12 | XZ_11 | XZ_10 | XZ_9 | XZ_8 |

Table 279. MAG_SI_XZ_H register description

MAG_SI_XZ_[15:8] Soft-iron correction row1 col3 (and row3 col1) coefficient (MSbyte). Default value: 00000000

DS13197 - Rev 3 page 120/160

13.1.8 MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)

Soft-iron (3x3 symmetric) matrix correction register (R/W)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 280. MAG_SI_YY_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| YY_7 | YY_6 | YY_5 | YY_4 | YY_3 | YY_2 | YY_1 | YY_0 |

Table 281. MAG_SI_YY_L register description

MAG_SI_YY_[7:0] Soft-iron correction row2 col2 coefficient (LSbyte). Default value: 00000000

Table 282. MAG_SI_YY_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| YY_15 | YY_14 | YY_13 | YY_12 | YY_11 | YY_10 | YY_9 | YY_8 |

Table 283. MAG_SI_YY_H register description

MAG_SI_YY_[15:8] Soft-iron correction row2 col2 coefficient (MSbyte). Default value: 00111100

13.1.9 MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh)

Soft-iron (3x3 symmetric) matrix correction register (R/W)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 284. MAG_SI_YZ_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| YZ_7 | YZ_6 | YZ_5 | YZ_4 | YZ_3 | YZ_2 | YZ_1 | YZ_0 |

Table 285. MAG_SI_YZ_L register description

MAG_SI_YZ_[7:0] Soft-iron correction row2 col3 (and row3 col2) coefficient (LSbyte). Default value: 00000000

Table 286. MAG_SI_YZ_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| YZ_15 | YZ_14 | YZ_13 | YZ_12 | YZ_11 | YZ_10 | YZ_9 | YZ_8 |

Table 287. MAG_SI_YZ_H register description

MAG_SI_YZ_[15:8] Soft-iron correction row2 col3 (and row3 col2) coefficient (MSbyte). Default value: 00000000

DS13197 - Rev 3 page 121/160

13.1.10 MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h)

Soft-iron (3x3 symmetric) matrix correction register (R/W)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 288. MAG_SI_ZZ_L register

MAG_S	_ MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_
ZZ_7	ZZ_6	ZZ_5	ZZ_4	ZZ_3	ZZ_2	ZZ_1	ZZ_0

Table 289. MAG_SI_ZZ_L register description

MAG_SI_ZZ_[7:0]	Soft-iron correction row3 col3 coefficient (LSbyte). Default value: 00000000	
-----------------	--	--

Table 290. MAG_SI_ZZ_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ZZ_15 | ZZ_14 | ZZ_13 | ZZ_12 | ZZ_11 | ZZ_10 | ZZ_9 | ZZ_8 |

Table 291. MAG_SI_ZZ_H register description

MAG_SI_ZZ_[15:8]	Soft-iron correction row3 col3 coefficient (MSbyte). Default value: 00111100
------------------	--

DS13197 - Rev 3 page 122/160

13.1.11 MAG_CFG_A (D4h)

External magnetometer coordinates (Z and Y axes) rotation register (R/W)

Table 292. MAG_CFG_A register

0 ⁽¹⁾	MAG_Y_ AXIS2	MAG_Y_ AXIS1	MAG_Y_ AXIS0	0 ⁽¹⁾	MAG_Z_ AXIS2	MAG_Z_ AXIS1	MAG_Z_ AXIS0
------------------	-----------------	-----------------	-----------------	------------------	-----------------	-----------------	-----------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 293. MAG_CFG_A register description

	Magnetometer Y-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
	(000: Y = Y; (default)
	001: Y = -Y;
MAG_Y_AXIS[2:0]	010: Y = X;
	011: Y = -X;
	100: Y = -Z;
	101: Y = Z;
	Others: Y = Y)
	Magnetometer Z-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
	(000: Z = Y;
	001: Z = -Y;
MAC 7 AVISIS:01	010: Z = X;
MAG_Z_AXIS[2:0]	011: Z = -X;
	100: Z = -Z;
	101: Z = Z; (default)
	Others: Z = Y)

13.1.12 MAG_CFG_B (D5h)

External magnetometer coordinates (X-axis) rotation register (R/W)

Table 294. MAG_CFG_B register

0 ⁽¹⁾	MAG_X_ AXIS2	MAG_X_ AXIS1	MAG_X_ AXIS0				
------------------	------------------	------------------	------------------	------------------	-----------------	-----------------	-----------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 295. MAG_CFG_B register description

	Magnetometer X-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
	(000: X = Y;
	001: X = -Y;
MAC V AVIORAL	010: X = X; (default)
MAG_X_AXIS[2:0]	011: X = -X;
	100: X = -Z;
	101: X = Z;
	Others: X = Y)

DS13197 - Rev 3 page 123/160

13.2 Page 1 - Embedded advanced features registers

13.2.1 FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh)

FSM long counter timeout register (R/W)

The long counter timeout value is an unsigned integer value (16-bit format). When the long counter value reaches this value, the FSM generates an interrupt.

Table 296. FSM_LC_TIMEOUT_L register

| FSM_LC_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| TIMEOUT7 | TIMEOUT6 | TIMEOUT5 | TIMEOUT4 | TIMEOUT3 | TIMEOUT2 | TIMEOUT1 | TIMEOUT0 |

Table 297. FSM_LC_TIMEOUT_L register description

Table 298. FSM_LC_TIMEOUT_H register

FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_
TIMEOUT15	TIMEOUT14	TIMEOUT13	TIMEOUT12	TIMEOUT11	TIMEOUT10	TIMEOUT9	TIMEOUT8

Table 299. FSM_LC_TIMEOUT_H register description

I_LC_TIMEOUT[15:8] FSM long counter timeout value (MSbyte). Default value: 00000000	
---	--

13.2.2 FSM_PROGRAMS (7Ch)

FSM number of programs register (R/W)

Table 300. FSM_PROGRAMS register

FSM_	N_ FSM_N_	FSM_N_	FSM_N_	FSM_N_	FSM_N_	FSM_N_	FSM_N_
PROC		PROG5	PROG4	PROG3	PROG2	PROG1	PROG0

Table 301. FSM_PROGRAMS register description

FSM N PROGI7:01	Number of FSM programs; must be less than or equal to 16. Default value: 00000000	
1 0111_1 1 1 0 0 [1 .0]	realison of Form programo, made so loco than of oqual to To. Boladit value. Coccood	

DS13197 - Rev 3 page 124/160

13.2.3 FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh)

FSM start address register (R/W). First available address is 0x033C.

Table 302. FSM_START_ADD_L register

START STARTS STARTS STARTS STARTS		FSM_ START7	FSM_ START6	FSM_ START5	FSM_ START4	FSM_ START3	FSM_ START2	FSM_ START1	FSM_ STARTO
-----------------------------------	--	----------------	----------------	----------------	----------------	----------------	----------------	----------------	----------------

Table 303. FSM_START_ADD_L register description

FSM_START[7:0] FSM start address value (LSbyte). Default value: 00000000
--

Table 304. FSM_START_ADD_H register

FSM_	FSM_	FSM_	FSM_	FSM_	FSM_	FSM_	FSM_
START15	START14	START13	START12	START11	START10	START9	START8

Table 305. FSM_START_ADD_H register description

FSM_START[15:8]	FSM start address value (MSbyte). Default value: 00000000
-----------------	---

DS13197 - Rev 3 page 125/160

13.2.4 MLC_MAG_SENSITIVITY_L (E8h) and MLC_MAG_SENSITIVITY_H (E9h)

External magnetometer sensitivity value register for the machine learning core (R/W)

This register corresponds to the LSB-to-gauss conversion value of the external magnetometer sensor. The register value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits). Default value of MLC_MAG_S_[15:0] is 0x3C00, corresponding to 1 gauss/LSB.

Table 306. MLC_MAG_SENSITIVITY_L register

MLC_	1							
MAG_S_7	MAG_S_6	MAG_S_5	MAG_S_4	MAG_S_3	MAG_S_2	MAG_S_1	MAG_S_0	

Table 307. MLC_MAG_SENSITIVITY_L register description

MLC_MAG_S_[7:0]	External magnetometer sensitivity (LSbyte). Default value: 00000000
-----------------	---

Table 308. MLC_MAG_SENSITIVITY_H register

MLC_	MLC_	MLC_	MLC_	MLC_	MLC_	MLC_	MLC_
MAG_S_15	MAG_S_14	MAG_S_13	MAG_S_12	MAG_S_11	MAG_S_10	MAG_S_9	MAG_S_8

Table 309. MLC_MAG_SENSITIVITY_H register description

MLC_MAG_S_[15:8]	External magnetometer sensitivity (MSbyte). Default value: 00111100	
------------------	---	--

DS13197 - Rev 3 page 126/160

14 Sensor hub register mapping

The table given below provides a list of the registers for the sensor hub functions available in the device and the corresponding addresses. The sensor hub registers are accessible when bit SHUB_REG_ACCESS is set to 1 in FUNC_CFG_ACCESS (01h).

Table 310. Registers address map

		Re	egister address		
Name	Туре	Hex	Binary	Default	Comment
SENSOR_HUB_1	R	02	0000010	output	
SENSOR_HUB_2	R	03	00000011	output	
SENSOR_HUB_3	R	04	00000100	output	
SENSOR_HUB_4	R	05	00000101	output	
SENSOR_HUB_5	R	06	00000110	output	
SENSOR_HUB_6	R	07	00000111	output	
SENSOR_HUB_7	R	08	00001000	output	
SENSOR_HUB_8	R	09	00001001	output	
SENSOR_HUB_9	R	0A	00001010	output	
SENSOR_HUB_10	R	0B	00001011	output	
SENSOR_HUB_11	R	0C	00001100	output	
SENSOR_HUB_12	R	0D	00001101	output	
SENSOR_HUB_13	R	0E	00001110	output	
SENSOR_HUB_14	R	0F	00001111	output	
SENSOR_HUB_15	R	10	00010000	output	
SENSOR_HUB_16	R	11	00010001	output	
SENSOR_HUB_17	R	12	00010010	output	
SENSOR_HUB_18	R	13	00010011	output	
MASTER_CONFIG	R/W	14	00010100	00000000	
SLV0_ADD	R/W	15	00010101	00000000	
SLV0_SUBADD	R/W	16	00010110	00000000	
SLV0_CONFIG	R/W	17	00010111	00000000	
SLV1_ADD	R/W	18	00011000	00000000	
SLV1_SUBADD	R/W	19	00011001	00000000	
SLV1_CONFIG	R/W	1A	00011010	00000000	
SLV2_ADD	R/W	1B	00011011	00000000	
SLV2_SUBADD	R/W	1C	00011100	00000000	
SLV2_CONFIG	R/W	1D	00011101	00000000	
SLV3_ADD	R/W	1E	00011110	00000000	
SLV3_SUBADD	R/W	1F	00011111	00000000	
SLV3_CONFIG	R/W	20	00100000	00000000	
DATAWRITE_SLV0	R/W	21	00100001	00000000	
STATUS_MASTER	R	22	00100010	output	
		1	1	<u> </u>	

Reserved registers must not be changed. Writing to those registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

DS13197 - Rev 3 page 127/160

15 Sensor hub register description

15.1 SENSOR_HUB_1 (02h)

Sensor hub output register (R)

First byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 311. SENSOR_HUB_1 register

		Sensor Hub1 7	Sensor Hub1 6	Sensor Hub1 5	Sensor Hub1 4	Sensor Hub1 3	Sensor Hub1 2	Sensor Hub1 1	Sensor Hub1 0
--	--	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------

Table 312. SENSOR_HUB_1 register description

SensorHub1[7:0]	First byte associated to external sensors

15.2 SENSOR_HUB_2 (03h)

Sensor hub output register (R)

Second byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 313. SENSOR_HUB_2 register

Sensor								
Hub2_7	Hub2_6	Hub2_5	Hub2_4	Hub2_3	Hub2_2	Hub2_1	Hub2_0	

Table 314. SENSOR_HUB_2 register description

SensorHub2[7:0]	Second byte associated to external sensors
-----------------	--

15.3 SENSOR_HUB_3 (04h)

Sensor hub output register (R)

Third byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 315. SENSOR_HUB_3 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub3_7 | Hub3_6 | Hub3_5 | Hub3_4 | Hub3_3 | Hub3_2 | Hub3_1 | Hub3_0 |

Table 316. SENSOR_HUB_3 register description

SensorHub3[7:0]	Third h	vte associated to external sensors
	ITIIIUU	yte associated to external sensors

DS13197 - Rev 3 page 128/160

15.4 SENSOR_HUB_4 (05h)

Sensor hub output register (R)

Fourth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 317. SENSOR_HUB_4 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub4_7 | Hub4_6 | Hub4_5 | Hub4_4 | Hub4_3 | Hub4_2 | Hub4_1 | Hub4_0 |

Table 318. SENSOR_HUB_4 register description

SensorHub4[7:0]	Fourth byte associated to external sensors
-----------------	--

15.5 SENSOR HUB 5 (06h)

Sensor hub output register (R)

Fifth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 319. SENSOR_HUB_5 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub5_7 | Hub5_6 | Hub5_5 | Hub5_4 | Hub5_3 | Hub5_2 | Hub5_1 | Hub5_0 |

Table 320. SENSOR_HUB_5 register description

SensorHub5[7:0]	Fifth byte associated to external sensors

15.6 SENSOR_HUB_6 (07h)

Sensor hub output register (R)

Sixth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 321. SENSOR_HUB_6 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub6_7 | Hub6_6 | Hub6_5 | Hub6_4 | Hub6_3 | Hub6_2 | Hub6_1 | Hub6_0 |

Table 322. SENSOR_HUB_6 register description

Sixti byte associated to external sensors	SensorHub6[7:0]	Sixth byte associated to external sensors
---	-----------------	---

DS13197 - Rev 3 page 129/160

15.7 SENSOR_HUB_7 (08h)

Sensor hub output register (R)

Seventh byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 323. SENSOR_HUB_7 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub7_7 | Hub7_6 | Hub7_5 | Hub7_4 | Hub7_3 | Hub7_2 | Hub7_1 | Hub7_0 |

Table 324. SENSOR_HUB_7 register description

SensorHub7[7:0]	Seventh byte associated to external sensors
-----------------	---

15.8 SENSOR_HUB_8 (09h)

Sensor hub output register (R)

Eighth byte associated to external sensors. The content of the register is consistent with the $SLVx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 325. SENSOR_HUB_8 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub8_7 | Hub8_6 | Hub8_5 | Hub8_4 | Hub8_3 | Hub8_2 | Hub8_1 | Hub8_0 |

Table 326. SENSOR_HUB_8 register description

SensorHub8[7:0]	Eighth byte associated to external sensors

15.9 **SENSOR_HUB_9 (0Ah)**

Sensor hub output register (R)

Ninth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 327. SENSOR_HUB_9 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub9_7 | Hub9_6 | Hub9_5 | Hub9_4 | Hub9_3 | Hub9_2 | Hub9_1 | Hub9_0 |

Table 328. SENSOR_HUB_9 register description

SensorHub9[7:0] Ninth byte associated to external sensors	
---	--

DS13197 - Rev 3 page 130/160

SENSOR_HUB_10 (0Bh)

15.10 SENSOR_HUB_10 (0Bh)

Sensor hub output register (R)

Tenth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 329. SENSOR_HUB_10 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub10_7 | Hub10_6 | Hub10_5 | Hub10_4 | Hub10_3 | Hub10_2 | Hub10_1 | Hub10_0 |

Table 330. SENSOR_HUB_10 register description

SensorHub10[7:0]	Tenth byte associated to external sensors
------------------	---

15.11 SENSOR HUB 11 (0Ch)

Sensor hub output register (R)

Eleventh byte associated to external sensors. The content of the register is consistent with the $SLVx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 331. SENSOR_HUB_11 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub11_7 | Hub11_6 | Hub11_5 | Hub11_4 | Hub11_3 | Hub11_2 | Hub11_1 | Hub11_0 |

Table 332. SENSOR_HUB_11 register description

SensorHub11[7:0]	Eleventh byte associated to external sensors
------------------	--

15.12 SENSOR_HUB_12 (0Dh)

Sensor hub output register (R)

Twelfth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 333. SENSOR_HUB_12 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub12_7 | Hub12_6 | Hub12_5 | Hub12_4 | Hub12_3 | Hub12_2 | Hub12_1 | Hub12_0 |

Table 334. SENSOR_HUB_12 register description

SensorHub12[7:0]	Twelfth byte associated to external sensors	
------------------	---	--

DS13197 - Rev 3 page 131/160

SENSOR_HUB_13 (0Eh)

15.13 SENSOR_HUB_13 (0Eh)

Sensor hub output register (R)

Thirteenth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 335. SENSOR_HUB_13 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub13_7 | Hub13_6 | Hub13_5 | Hub13_4 | Hub13_3 | Hub13_2 | Hub13_1 | Hub13_0 |

Table 336. SENSOR_HUB_13 register description

SensorHub13[7:0]	Thirteenth byte associated to external sensors

15.14 SENSOR HUB 14 (0Fh)

Sensor hub output register (R)

Fourteenth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 337. SENSOR_HUB_14 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub14_7 | Hub14_6 | Hub14_5 | Hub14_4 | Hub14_3 | Hub14_2 | Hub14_1 | Hub14_0 |

Table 338. SENSOR_HUB_14 register description

SensorHub14[7:0]	Fourteenth byte associated to external sensors
001100111001-1[1.0]	i duricelli byte accordated to external certools

15.15 SENSOR_HUB_15 (10h)

Sensor hub output register (R)

Fifteenth byte associated to external sensors. The content of the register is consistent with the $SLVx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 339. SENSOR_HUB_15 register

Sensor Hub15 7	Sensor	Sensor	Sensor Hub15 4	Sensor	Sensor	Sensor	Sensor Hub15 0
Hub 15_1	Hub15_6	Hub15_5	Hub 15_4	Hub15_3	Hub15_2	Hub15_1	Hub 15_0

Table 340. SENSOR_HUB_15 register description

SensorHub15[7:0]

DS13197 - Rev 3 page 132/160

15.16 SENSOR_HUB_16 (11h)

Sensor hub output register (R)

Sixteenth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 341. SENSOR_HUB_16 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub16_7 | Hub16_6 | Hub16_5 | Hub16_4 | Hub16_3 | Hub16_2 | Hub16_1 | Hub16_0 |

Table 342. SENSOR_HUB_16 register description

SensorHub16[7:0]	Sixteenth byte associated to external sensors
------------------	---

15.17 SENSOR_HUB_17 (12h)

Sensor hub output register (R)

Seventeenth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 343. SENSOR_HUB_17 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub17_7 | Hub17_6 | Hub17_5 | Hub17_4 | Hub17_3 | Hub17_2 | Hub17_1 | Hub17_0 |

Table 344. SENSOR_HUB_17 register description

SensorHub17[7:0]	Seventeenth byte associated to external sensors
------------------	---

15.18 SENSOR_HUB_18 (13h)

Sensor hub output register (R)

Eighteenth byte associated to external sensors. The content of the register is consistent with the SLVx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 345. SENSOR_HUB_18 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub18_7 | Hub18_6 | Hub18_5 | Hub18_4 | Hub18_3 | Hub18_2 | Hub18_1 | Hub18_0 |

Table 346. SENSOR_HUB_18 register description

SensorHub18[7:0]

DS13197 - Rev 3 page 133/160

15.19 MASTER_CONFIG (14h)

Master configuration register (R/W)

Table 347. MASTER_CONFIG register

RST_MASTER	WRITE_	START_	PASS_THROUGH	SHUB_	MASTER	AUX_SENS	AUX_SENS
_REGS	ONCE	CONFIG	_MODE	PU_EN	_ON	_ON1	_ON0

Table 348. MASTER_CONFIG register description

RST_MASTER_REGS	Reset master logic and output registers. Must be set to 1 and then set it to 0. Default value: 0
	Slave 0 write operation is performed only at the first sensor hub cycle.
WRITE ONCE	Default value: 0
WRITE_ONCE	(0: write operation for each sensor hub cycle;
	1: write operation only for the first sensor hub cycle)
	Sensor hub trigger signal selection. Default value: 0
START_CONFIG	(0: sensor hub trigger signal is the accelerometer/gyro data-ready;
	1: sensor hub trigger signal external from INT2 pin)
	l²C interface pass-through. Default value: 0
PASS_THROUGH_MODE	(0: pass-through disabled;
	1: pass-through enabled, main I ² C line is short-circuited with the auxiliary line)
	Enables master I ² C pull-up. Default value: 0
SHUB_PU_EN	(0: internal pull-up on auxiliary I ² C line disabled;
	1: internal pull-up on auxiliary I ² C line enabled)
MASTER ON	Enables sensor hub I ² C master. Default: 0
MASTER_ON	(0: master I ² C of sensor hub disabled; 1: master I ² C of sensor hub enabled)
	Number of external sensors to be read by the sensor hub.
	(00: one sensor (default);
AUX_SENS_ON[1:0]	01: two sensors;
	10: three sensors;
	11: four sensors)

DS13197 - Rev 3 page 134/160

15.20 SLV0_ADD (15h)

I²C slave address of the first external sensor (sensor 1) register (R/W)

Table 349. SLV0_ADD register

slave0_	rw_0						
add6	add5	add4	add3	add2	add1	add0	

Table 350. SLV0_ADD register description

alaya0 add[G:0]	I ² C slave address of sensor 1 that can be read by the sensor hub.
slave0_add[6:0]	Default value: 0000000
nu 0	Read/write operation on Sensor 1. Default value: 0
rw_0	(0: write operation; 1: read operation)

15.21 SLV0_SUBADD (16h)

Address of register on the first external sensor (sensor 1) register (R/W)

Table 351. SLV0_SUBADD register

slave0_								
reg7	reg6	reg5	reg4	reg3	reg2	reg1	reg0	

Table 352. SLV0_SUBADD register description

slave0_reg[7:0	Address of register on sensor 1 that has to be read/written according to the rw_0 bit value in SLV0_ADD (15h). Default value: 00000000
----------------	--

15.22 SLV0_CONFIG (17h)

First external sensor (sensor 1) configuration and sensor hub settings register (R/W)

Table 353. SLV0_CONFIG register

SHUB_	SHUB_	0(1)	0(1)	BATCH_EXT_	Slave0_	Slave0_	Slave0_
ODR_1	ODR_0	0(1)	0(.)	SENS_0_EN	numop2	numop1	numop0

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 354. SLV0_CONFIG register description

	Rate at which the master communicates. Default value: 00
	(00: 104 Hz (or at the maximum ODR between the accelerometer and gyroscope if it is less than 104 Hz);
SHUB_ODR_[1:0]	01: 52 Hz (or at the maximum ODR between the accelerometer and gyroscope if it is less than 52 Hz);
	10: 26 Hz (or at the maximum ODR between the accelerometer and gyroscope if it is less than 26 Hz);
	11: 12.5 Hz (or at the maximum ODR between the accelerometer and gyroscope if it is less than 12.5 Hz)
BATCH_EXT_SENS_0_EN	Enables FIFO data batching of first slave. Default value: 0
Slave0_numop[2:0]	Number of read operations on sensor 1. Default value: 000

DS13197 - Rev 3 page 135/160

15.23 SLV1_ADD (18h)

I²C slave address of the second external sensor (sensor 2) register (R/W)

Table 355. SLV1_ADD register

Slave1_ add6	Slave1_ add5	Slave1_ add4	Slave1_ add3	Slave1_ add2	Slave1_ add1	Slave1_ add0	r_1
aaao	aaac	add i	addo	addz	add i	aaao	

Table 356. SLV1_ADD register description

Clave1 add[6:0]	I ² C slave address of sensor 2 that can be read by the sensor hub.
Slave1_add[6:0]	Default value: 0000000
r 1	Enables read operation on sensor 2. Default value: 0
1_1	(0: read operation disabled; 1: read operation enabled)

15.24 SLV1_SUBADD (19h)

Address of register on the second external sensor (sensor 2) register (R/W)

Table 357. SLV1_SUBADD register

Slave1_								
reg7	reg6	reg5	reg4	reg3	reg2	reg1	reg0	

Table 358. SLV1_SUBADD register description

Slave1_reg[7:0] Address of register on sensor 2 that has to be read/written according to the r_1 bit value in SLV1_ADD (18h).

15.25 SLV1_CONFIG (1Ah)

Second external sensor (sensor 2) configuration register (R/W)

Table 359. SLV1_CONFIG register

0(1)	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	BATCH_EXT_ SENS_1_EN	Slave1_ numop2	Slave1_ numop1	Slave1_ numop0	
----	----	------------------	------------------	------------------	-------------------------	-------------------	-------------------	-------------------	--

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 360. SLV1_CONFIG register description

BATCH_EXT_SENS_1_EN	Enables FIFO data batching of second slave. Default value: 0
Slave1_numop[2:0]	Number of read operations on sensor 2. Default value: 000

DS13197 - Rev 3 page 136/160

15.26 SLV2_ADD (1Bh)

I²C slave address of the third external sensor (sensor 3) register (R/W)

Table 361. SLV2_ADD register

Slave2_ add6	Slave2_ add5	Slave2_ add4	Slave2_ add3	Slave2_ add2	Slave2_ add1	Slave2_ add0	r_2

Table 362. SLV2_ADD register description

Slave2_add[6:0]	I ² C slave address of sensor 3 that can be read by the sensor hub.
r 2	Enables read operation on sensor 3. Default value: 0
1_2	(0: read operation disabled; 1: read operation enabled)

15.27 SLV2_SUBADD (1Ch)

Address of register on the third external sensor (sensor 3) register (R/W)

Table 363. SLV2_SUBADD register

| Slave2_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 364. SLV2_SUBADD register description

5	Slave2_reg[7:0]	Address of register on sensor 3 that has to be read/written according to the r_2 bit value in SLV2_ADD (1Bh).
---	-----------------	---

15.28 SLV2_CONFIG (1Dh)

Third external sensor (sensor 3) configuration register (R/W)

Table 365. SLV2_CONFIG register

0(1)	0(1)	0(1)	0 ⁽¹⁾	BATCH_EXT_ SENS_2_EN	Slave2_ numop2	Slave2_ numop1	Slave2_ numop0
------	------	------	------------------	-------------------------	-------------------	-------------------	-------------------

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 366. SLV2_CONFIG register description

BATCH_EXT_SENS_2_EN	Enables FIFO data batching of third slave. Default value: 0
Slave2_numop[2:0]	Number of read operations on sensor 3. Default value: 000

DS13197 - Rev 3 page 137/160

15.29 SLV3_ADD (1Eh)

I²C slave address of the fourth external sensor (sensor 4) register (R/W)

Table 367. SLV3_ADD register

add6 add5 add4 add3 add2 add1 add0 '-'
--

Table 368. SLV3_ADD register description

Slave3_add[6:0]	I ² C slave address of sensor 4 that can be read by the sensor hub.
r 2	Enables read operation on sensor 4. Default value: 0
1_3	(0: read operation disabled; 1: read operation enabled)

15.30 SLV3_SUBADD (1Fh)

Address of register on the fourth external sensor (sensor 4) register (R/W)

Table 369. SLV3_SUBADD register

| Slave3_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 370. SLV3_SUBADD register description

Slave3_reg[7:0] Address of register on sensor 4 that has to be read according to the r_3 bit value in SLV3_ADD (1Eh).

15.31 SLV3_CONFIG (20h)

Fourth external sensor (sensor 4) configuration register (R/W)

Table 371. SLV3_CONFIG register

	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	BATCH_EXT_ SENS_3_EN	Slave3_ numop2	Slave3_ numop1	Slave3_ numop0	
--	------------------	------------------	------------------	------------------	-------------------------	-------------------	-------------------	-------------------	--

^{1.} This bit must be set to 0 for the correct operation of the device.

Table 372. SLV3_CONFIG register description

BATCH_EXT_SENS_3_EN	Enables FIFO data batching of fourth slave. Default value: 0		
Slave3_numop[2:0]	Number of read operations on sensor 4. Default value: 000		

DS13197 - Rev 3 page 138/160

15.32 DATAWRITE_SLV0 (21h)

Data to be written into the slave device register (R/W)

Table 373. DATAWRITE_SLV0 register

| Slave0_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| dataw7 | dataw6 | dataw5 | dataw4 | dataw3 | dataw2 | dataw1 | dataw0 |

Table 374. DATAWRITE_SLV0 register description

	Slave0_dataw[7:0]	Data to be written into the slave 0 device according to the rw_0 bit in register SLV0_ADD (15h).
		Default value: 00000000

15.33 STATUS_MASTER (22h)

Sensor hub source register (R)

Table 375. STATUS_MASTER register

Table 376. STATUS_MASTER register description

WR_ONCE_DONE	When the bit WRITE_ONCE in MASTER_CONFIG (14h) is configured as 1, this bit is set to 1 when the write operation on slave 0 has been performed and completed. Default value: 0
SLAVE3_NACK	This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK	This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK	This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK	This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
	Sensor hub communication status. Default value: 0
SENS_HUB_ENDOP	(0: sensor hub communication not concluded;
	1: sensor hub communication concluded)

DS13197 - Rev 3 page 139/160

16 Soldering information

The LGA package is compliant with the ECOPACK, RoHS and "Green" standard.

It is qualified for soldering heat resistance according to JEDEC J-STD-020.

For land pattern and soldering recommendations, consult technical note TN0018 available on www.st.com.

DS13197 - Rev 3 page 140/160

17 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

17.1 LGA-14L package information

Figure 23. LGA-14L 2.5 x 3.0 x 0.86 mm package outline and mechanical data

Dimensions are in millimeter unless otherwise specified General tolerance is +/-0.1mm unless otherwise specified

OUTER DIMENSIONS

ITEM	DIMENSION [mm]	TOLERANCE [mm]
Length [L]	2.50	±0.1
Width [W]	3.00	±0.1
Height [H]	0.86	MAX

DM00249496_5

DS13197 - Rev 3 page 141/160

17.2 LGA-14 packing information

Po 4.00±0.10(II) E1 1.75<u>±</u>0.10 Ø 1.50 0.00 0.30±0.05 D1 Ø1.50 MIN. R0.20 TYP SECTION Y-Y SECTION X-X Measured from centreline of sprocket hole to controlline of pocket. Cumulative foliarance of 10 sprocket holes is 2.02. Measured from centreline of sprocket hole to centreline of pocket. Other material available. (1) +/- 0.05 Ao Во 3.30 +/- 0.05 (11) Ko 1.00 +/- 0.10 (111) +/- 0.05 +/- 0.10 +/- 0.30 F 5.50 8.00 (IV) Forming format : Press form - 17-B W Required length: 170 meter / 22B3 reel ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Figure 24. Carrier tape information for LGA-14 package

Figure 25. LGA-14 package orientation in carrier tape

DS13197 - Rev 3 page 142/160

A Full radius

Tape slot in core for tape start 2.5mm min. width

Figure 26. Reel information for carrier tape of LGA-14 package

Table 377. Reel dimensions for carrier tape of LGA-14 package

Reel dimensions (mm)				
A (max)	330			
B (min)	1.5			
С	13 ±0.25			
D (min)	20.2			
N (min)	60			
G	12.4 +2/-0			
T (max)	18.4			

DS13197 - Rev 3 page 143/160

Revision history

Table 378. Document revision history

Date	Version	Changes
04-Feb-2022	1	Initial release
18-Feb-2022	2	Updated Table 19. Internal pin status Updated bit 1 of PAGE_SEL (02h)
	3	Updated accelerometer and gyroscope output data rates to include 3333 Hz and 6667 Hz
17-Mar-2022		Specified "in high-performance mode" for accelerometer current consumption (A_IddHP) in Table 3. Electrical characteristics
		Updated procedure in Section 6.1 Operating modes

DS13197 - Rev 3 page 144/160

Contents

Ove	rview		3
Emb	edded	low-power features	4
2.1	Finite	state machine	4
2.2	Machi	ne learning core	6
Pin	descrip	tion	7
3.1			
Mod	lule spe	ecifications	10
4.1	-		
4.2	Electri	cal characteristics	12
4.3	Tempe	erature sensor characteristics	13
4.4	Comm	nunication interface characteristics	14
	4.4.1	SPI - serial peripheral interface	14
	4.4.2	I ² C - inter-IC control interface	15
4.5	Absolu	ute maximum ratings	17
4.6	Termin	nology	18
	4.6.1	Sensitivity	18
	4.6.2	Zero-g and zero-rate level	18
Digi	tal inter	faces	19
5.1	I ² C/SP	PI interface	19
	5.1.1	I ² C serial interface	19
	5.1.2	SPI bus interface	21
5.2	MIPI I	3C SM interface	25
	5.2.1	MIPI I3C SM slave interface	25
	5.2.2	MIPI I3C SM CCC supported commands	25
5.3	I ² C/I3C	C coexistence in ASM330LHHX	27
5.4	Maste	r I ² C interface	28
Fun	ctionali	ty	29
6.1	Opera	ting modes	29
6.2	Gyroso	cope power modes	29
6.3	Accele	erometer power modes	29
6.4	Block	diagram of filters	30
	6.4.1	Block diagram of the gyroscope filter	31
	6.4.2	Block diagrams of the accelerometer filters	32
6.5	FIFO .		
	Emk 2.1 2.2 Pin 3.1 Mod 4.1 4.2 4.3 4.4 4.5 4.6 Digi 5.1 5.2 5.3 5.4 Fun 6.1 6.2 6.3 6.4	Embedded 2.1 Finite 2.2 Machi Pin descrip 3.1 Pin co Module spe 4.1 Mecha 4.2 Electri 4.3 Tempe 4.4 Comm 4.4.1 4.4.2 4.5 Absold 4.6 Termin 4.6.1 4.6.2 Digital inter 5.1 I ² C/SF 5.1.1 5.1.2 5.2.1 5.2.2 5.3 I ² C/I30 5.4 Maste Functionali 6.1 Opera 6.2 Gyros 6.3 Accele 6.4 Block 6.4.1 6.4.2	2.2 Machine learning core Pin description 3.1 Pin connections Module specifications 4.1 Mechanical characteristics 4.2 Electrical characteristics 4.3 Temperature sensor characteristics 4.4 Communication interface characteristics 4.4.1 SPI - serial peripheral interface 4.4.2 I°C - inter-IC control interface 4.5 Absolute maximum ratings 4.6 Terminology 4.6.1 Sensitivity 4.6.2 Zero-g and zero-rate level. Digital interfaces 5.1 I°C/SPI interface 5.1.1 I°C serial interface 5.1.2 SPI bus interface. 5.1.2 SPI bus interface. 5.2.1 MIPI I3CSM slave interface 5.2.2 MIPI I3CSM slave interface 5.2.2 MIPI I3CSM CCC supported commands 5.3 I°C/I3C coexistence in ASM330LHHX 5.4 Master I°C interface Functionality 6.1 Operating modes. 6.2 Gyroscope power modes 6.3 Accelerometer power modes 6.4 Block diagram of filters 6.4.1 Block diagram of the accelerometer filters.

		6.5.1	Bypass mode	33
		6.5.2	FIFO mode	34
		6.5.3	Continuous mode	34
		6.5.4	Continuous-to-FIFO mode	34
		6.5.5	Bypass-to-continuous mode	
		6.5.6	Bypass-to-FIFO mode	
		6.5.7	FIFO reading procedure	
7	Appl		hints	
	7.1		30LHHX electrical connections in mode 1	
	7.2	ASM33	BOLHHX electrical connections in mode 2	37
8	Regi	ster ma	ıp	40
9	Regi	ster des	scription	43
	9.1	FUNC_	_CFG_ACCESS (01h)	43
	9.2	PIN_C	TRL (02h)	43
	9.3	FIFO_0	CTRL1 (07h)	44
	9.4	FIFO_0	CTRL2 (08h)	44
	9.5	FIFO_0	CTRL3 (09h)	45
	9.6	FIFO_0	CTRL4 (0Ah)	46
	9.7	COUN	TER_BDR_REG1 (0Bh)	47
	9.8	COUN	TER_BDR_REG2 (0Ch)	47
	9.9	INT1_C	CTRL (0Dh)	48
	9.10	INT2_C	CTRL (0Eh)	49
	9.11	WHO_/	AM_I (0Fh)	50
	9.12	CTRL1	_XL (10h)	50
	9.13	CTRL2	2_G (11h)	51
	9.14	CTRL3	3_C (12h)	52
	9.15	CTRL4	L_C (13h)	53
	9.16		5_C (14h)	
	9.17	CTRL6	S_C (15h)	55
	9.18	CTRL7	Z_G (16h)	56
	9.19	CTRL8	3_XL (17h)	56
	9.20		9_XL (18h)	
	9.21		l0_C (19h)	
	9.22		NT_SRC (1A)	
	9.23	WAKE_		59
	9.24	DRD_S	SRC (1Dh)	60
		_	·	

	9.25	STATUS_REG (1Eh)	. 61
	9.26	OUT_TEMP_L (20h), OUT_TEMP_H (21h)	. 61
	9.27	OUTX_H_C (23h), OUTX_L_G (22h)	. 62
	9.28	OUTY_H_G (25h), OUTY_L_G (24h)	. 62
	9.29	OUTZ_H_G (27h), OUTZ_L_G (26h)	. 63
	9.30	OUTX_H_A (29h), OUTX_L_A (28h)	. 63
	9.31	OUTY_H_A (2Bh), OUTY_L_A (2Ah)	. 64
	9.32	OUTZ_H_A (2Dh), OUTZ_L_A (2Ch)	. 64
	9.33	EMB_FUNC_STATUS_MAINPAGE (35h)	. 65
	9.34	FSM_STATUS_A_MAINPAGE (36h)	. 65
	9.35	FSM_STATUS_B_MAINPAGE (37h)	. 66
	9.36	MLC_STATUS_MAINPAGE (38h)	. 66
	9.37	STATUS_MASTER_MAINPAGE (39h)	. 67
	9.38	FIFO_STATUS1 (3Ah)	. 67
	9.39	FIFO_STATUS2 (3Bh)	. 68
	9.40	TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h)	69
	9.41	INT_CFG0 (56h)	. 70
	9.42	INT_CFG1 (58h)	. 70
	9.43	THS_6D (59h)	. 71
	9.44	WAKE_UP_THS (5Bh)	. 71
	9.45	WAKE_UP_DUR (5Ch)	. 72
	9.46	FREE_FALL (5Dh)	. 72
	9.47	MD1_CFG (5Eh)	. 73
	9.48	MD2_CFG (5Fh)	. 74
	9.49	I3C_BUS_AVB (62h)	. 75
	9.50	INTERNAL_FREQ_FINE (63h)	. 76
	9.51	X_OFS_USR (73h)	. 77
	9.52	Y_OFS_USR (74h)	. 77
	9.53	Z_OFS_USR (75h)	
	9.54	FIFO_DATA_OUT_TAG (78h)	
	9.55	FIFO_DATA_OUT_X_H (7Ah) and FIFO_DATA_OUT_X_L (79h)	
	9.56	FIFO_DATA_OUT_Y_H (7Ch) and FIFO_DATA_OUT_Y_L (7Bh)	
	9.57	FIFO_DATA_OUT_Z_H (7Eh) and FIFO_DATA_OUT_Z_L (7Dh)	
10		edded functions register mapping	
11	Emb	edded functions register description	.82
	11.1	PAGE_SEL (02h)	. 82

11.2	EMB_FUNC_EN_B (05h)	82
11.3	PAGE_ADDRESS (08h)	82
11.4	PAGE_VALUE (09h)	83
11.5	EMB_FUNC_INT1 (0Ah)	83
11.6	FSM_INT1_A (0Bh)	84
11.7	FSM_INT1_B (0Ch)	85
11.8	MLC_INT1 (0Dh)	86
11.9	EMB_FUNC_INT2 (0Eh)	87
11.10	FSM_INT2_A (0Fh)	87
11.11	FSM_INT2_B (10h)	88
11.12	MLC_INT2 (11h)	89
11.13	EMB_FUNC_STATUS (12h)	89
11.14	FSM_STATUS_A (13h)	90
11.15	FSM_STATUS_B (14h)	91
11.16	MLC_STATUS (15h)	92
11.17	PAGE_RW (17h)	93
11.18	FSM_ENABLE_A (46h)	94
11.19		
11.20		
11.21	FSM_LONG_COUNTER_CLEAR (4Ah)	
11.22	FSM_OUTS1 (4Ch)	96
	FSM_OUTS2 (4Dh)	
	FSM_OUTS3 (4Eh)	
	FSM_OUTS4 (4Fh)	
	FSM_OUTS5 (50h)	
	FSM_OUTS6 (51h)	
	FSM_OUTS7 (52h)	
	FSM_OUTS8 (53h)	
	FSM_OUTS9 (54h)	
	FSM_OUTS10 (55h)	
	FSM_OUTS11 (56h)	
	FSM_OUTS12 (57h)	
	FSM_OUTS13 (58h)	
	FSM_OUTS14 (59h)	
11.36	FSM_OUTS15 (5Ah)	110
	_ ,	

11.40 11.41 11.42 11.43 11.44	EMB_F MLC0_S MLC1_S	TUNC_ODR_CFG_C (60h)	112
11.41 11.42 11.43 11.44	MLC0_S	SRC (70h)	112
11.42 11.43 11.44	MLC1_S		
11.43 11.44	_	SRC (71h)	440
11.44	MLC2_S		113
	_	SRC (72h)	113
	MLC3	SRC (73h)	113
11.45			
11.46			
11.47			
11.48	MLC7	SRC (77h)	114
	_		
Embe	edded a	dvanced features register description	117
13.1			
	13.1.1		
	13.1.2		
	13.1.3		
	13.1.4	MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h)	119
	13.1.5	MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)	119
	13.1.6	MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h)	120
	13.1.7	MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)	120
	13.1.8	MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)	121
	13.1.9		
	13.1.10	MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h)	122
	13.1.11	,	
	13.1.12	,	
13.2	Ū	<u> </u>	
	13.2.1		
Sens	or hub i	register description	128
15.1	SENSO	PR_HUB_1 (02h)	128
15.2	SENSO	PR_HUB_2 (03h)	128
15.3	SENSO	PR_HUB_3 (04h)	128
	11.45 11.46 11.47 11.48 Ember 13.1 13.2 Sens Sens 15.1 15.2	11.44 MLC3_1 11.45 MLC4_1 11.46 MLC5_1 11.47 MLC6_1 11.48 MLC7_1 Embedded a Embedded a 13.1 Page 0 13.1.1 13.1.2 13.1.3 13.1.4 13.1.5 13.1.6 13.1.7 13.1.8 13.1.9 13.1.10 13.1.11 13.1.12 13.2 Page 1 13.2.1 13.2.2 13.2.3 13.2.4 Sensor hub Sensor hub 15.1 SENSO 15.2 SENSO	11.44 MLC3_SRC (73h) 11.45 MLC4_SRC (74h) 11.46 MLC5_SRC (75h) 11.47 MLC6_SRC (76h) 11.48 MLC7_SRC (77h) Embedded advanced features. Embedded advanced features register description 13.1 Page 0 - Embedded advanced features registers 13.1.1 MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh) 13.1.2 MAG_OFFX_L (C0h) and MAG_OFFX_H (C1h). 13.1.3 MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h). 13.1.4 MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h). 13.1.5 MAG_SI_XX_L (C6h) and MAG_OFFY_H (C5h). 13.1.6 MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h). 13.1.6 MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h). 13.1.7 MAG_SI_XZ_L (CAh) and MAG_SI_XY_H (C9h). 13.1.8 MAG_SI_XY_L (C6h) and MAG_SI_XY_H (C9h). 13.1.9 MAG_SI_XZ_L (C6h) and MAG_SI_XY_H (C9h). 13.1.10 MAG_SI_XZ_L (C6h) and MAG_SI_XY_H (C7h). 13.1.11 MAG_CFG_A (D4h). 13.1.12 MAG_CFG_B (D5h). 13.1.13 MAG_CFG_B (D5h). 13.2.1 FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh). 13.2.2 FSM_PROGRAMS (7Ch). 13.2.3 FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh). 13.2.4 MLC_MAG_SENSITIVITY_L (E8h) and MLC_MAG_SENSITIVITY_H (E9h). Sensor hub register description. 15.1 SENSOR_HUB_1 (02h). 15.2 SENSOR_HUB_2 (03h).

Revi	ision h	nistory	44
	17.2	LGA-14 packing information	42
	17.1	LGA-14L package information	41
17	Packa	age information14	41
16	Solde	ering information	40
	15.33	STATUS_MASTER (22h)	39
	15.32	DATAWRITE_SLV0 (21h)1	39
	15.31	SLV3_CONFIG (20h)	38
	15.30	SLV3_SUBADD (1Fh)	38
	15.29	SLV3_ADD (1Eh)	38
	15.28	SLV2_CONFIG (1Dh)	37
	15.27	SLV2_SUBADD (1Ch)	37
	15.26	SLV2_ADD (1Bh)	37
	15.25	SLV1_CONFIG (1Ah)	36
		SLV1_SUBADD (19h)	
		SLV1_ADD (18h)	
		SLV0_CONFIG (17h)	
		SLV0_SUBADD (16h)	
		SLV0_ADD (15h)	
		MASTER_CONFIG (14h)	
		SENSOR_HUB_18 (13h)	
		SENSOR_HUB_17 (12h)	
		SENSOR_HUB_16 (11h)	
		SENSOR_HUB_15 (10h)	
		SENSOR_HUB_14 (0Fh)	
		SENSOR_HUB_13 (0Eh)	
		SENSOR_HUB_12 (0Dh)	
		SENSOR_HUB_11 (0Ch)	
		SENSOR_HUB_10 (0Bh)	
	15.9	SENSOR_HUB_9 (0Ah)	
	15.8	SENSOR_HUB_8 (09h)	
	15.7	SENSOR_HUB_7 (08h)	
	15.6	SENSOR_HUB_6 (07h)	
	15.5	SENSOR_HUB_5 (06h)	
	15.4	SENSOR_HUB_4 (05h)	29

_ist of tables	152
_ist of figures	159

DS13197 - Rev 3

Table 1.	Pin description	
Table 2.	Mechanical characteristics	
Table 3.	Electrical characteristics	
Table 4.	Temperature sensor characteristics	
Table 5.	SPI slave timing values (in mode 3)	
Table 6.	I ² C slave timing values	
Table 7.	I ² C high-speed mode specifications at 1 MHz	
Table 8.	Absolute maximum ratings	
Table 9.	Serial interface pin description	
Table 10.	I ² C terminology	
Table 11.	SAD + read/write patterns	
Table 12.	Transfer when master is writing one byte to slave	
Table 13.	Transfer when master is writing multiple bytes to slave	
Table 14.	Transfer when master is receiving (reading) one byte of data from slave	
Table 15.	Transfer when master is receiving (reading) multiple bytes of data from slave	
Table 16.	MIPI I3C SM CCC commands	25
Table 17.	Master I ² C pin details	28
Table 18.	Gyroscope LPF2 bandwidth selection	31
Table 19.	Internal pin status	38
Table 20.	Registers address map	40
Table 21.	FUNC_CFG_ACCESS register	43
Table 22.	FUNC_CFG_ACCESS register description	43
Table 23.	PIN_CTRL register	43
Table 24.	PIN_CTRL register description	43
Table 25.	FIFO_CTRL1 register	44
Table 26.	FIFO_CTRL1 register description	
Table 27.	FIFO_CTRL2 register	
Table 28.	FIFO_CTRL2 register	
Table 29.	FIFO_CTRL3 register	
Table 30.	FIFO_CTRL3 register description	
Table 31.	FIFO_CTRL4 register	
Table 32.	FIFO_CTRL4 register description	
Table 33.	COUNTER_BDR_REG1 register	
Table 34.	COUNTER_BDR_REG1 register description	
Table 35.	COUNTER_BDR_REG2 register	
Table 36.	COUNTER_BDR_REG2 register description	
Table 37.	INT1_CTRL register	
Table 38.	INT1_CTRL register description.	
Table 39.	INT2_CTRL register	
Table 40.	INT2_CTRL register description.	
Table 41.	Who Am I register	
Table 42.	CTRL1 XL register	
Table 43.	CTRL1 XL register description	
Table 44.	Accelerometer ODR register setting	
Table 45.	CTRL2_G register	
Table 46.	CTRL2_G register description	
Table 47.	Gyroscope ODR configuration setting	
Table 48.	CTRL3_C register	
Table 49.	CTRL3_C register description	
Table 50 .	CTRL4_C register	
Table 51.	CTRL4 C register description	
Table 51.	CTRL5_C register	
Table 52.	CTRL5 C register description	
.unie JJ.	OTITED_O TOGISTO GOODIPHON	-

Table 54.	Angular rate sensor self-test mode selection	
Table 55.	Linear acceleration sensor self-test mode selection	
Table 56.	CTRL6_C register	
Table 57.	CTRL6_C register description	
Table 58.	Trigger mode selection	
Table 59.	Gyroscope LPF1 bandwidth selection	55
Table 60.	CTRL7_G register	56
Table 61.	CTRL8_XL register	56
Table 62.	Accelerometer bandwidth configurations	57
Table 63.	CTRL9_XL register	58
Table 64.	CTRL9_XL register description	58
Table 65.	CTRL10_C register	58
Table 66.	CTRL10_C register description	58
Table 67.	ALL_INT_SRC register	59
Table 68.	ALL_INT_SRC register description	59
Table 69.	WAKE_UP_SRC register	59
Table 70.	WAKE_UP_SRC register description	59
Table 71.	D6D_SRC register	
Table 72.	D6D_SRC register description	
Table 73.	STATUS_REG register	
Table 74.	STATUS_REG register description	
Table 75.	OUT_TEMP_L register	
Table 76.	OUT_TEMP_H register.	
Table 77.	OUT_TEMP register description.	
Table 78.	OUTX_H_G register	
Table 79.	OUTX_L_G register	
Table 80.	OUTX_H_G, OUTX_L_G register description	
Table 81.	OUTY_H_G register.	
Table 82.	OUTY_L_G register	
Table 83.	OUTY_H_G, OUTY_L_G register description	
Table 84.	OUTZ_H_G register	
Table 85.	OUTZ_L_G register	
Table 86.	OUTZ_H_G, OUTZ_L_G register description.	
Table 87.	OUTX_H_A register	
Table 88.	OUTX_IT_A register	
Table 89.	OUTX_H_A, OUTX_L_A register description	
Table 90.	OUTY_H_A register	
Table 91. Table 92.	OUTY_L_A register	
	OUTZ_LL_A register description	
Table 93.	OUTZ_H_A register	
Table 94.		
Table 95.	OUTZ_H_A, OUTZ_L_A register description	
Table 96.	EMB_FUNC_STATUS_MAINPAGE register	
Table 97.	EMB_FUNC_STATUS_MAINPAGE register description	
Table 98.	FSM_STATUS_A_MAINPAGE register	
Table 99.	FSM_STATUS_A_MAINPAGE register description	
	FSM_STATUS_B_MAINPAGE register	
	FSM_STATUS_B_MAINPAGE register description	
	MLC_STATUS_MAINPAGE register	
	MLC_STATUS_MAINPAGE register description	
	STATUS_MASTER_MAINPAGE register	
	STATUS_MASTER_MAINPAGE register description	
	FIFO_STATUS1 register	
	FIFO_STATUS1 register description	
Table 108.	FIFO_STATUS2 register	68

FIFO_STATUS2 register description	
TIMESTAMP3 register	
TIMESTAMP2 register	
TIMESTAMP1 register	
TIMESTAMP0 register	
INT_CFG0 register	
INT_CFG0 register description	
INT_CFG1 register	
INT_CFG1 register description	
THS_6D register	
THS_6D register description	
WAKE_UP_THS register	
WAKE_UP_THS register description	
WAKE_UP_DUR register	
WAKE_UP_DUR register description	
FREE_FALL register	
FREE_FALL register description	
MD1_CFG register	
MD1_CFG register description.	
MD2_CFG register	
MD2_CFG register description.	
I3C_BUS_AVB register	
I3C_BUS_AVB register description.	
INTERNAL_FREQ_FINE register	
INTERNAL_FREQ_FINE register description.	
X_OFS_USR register	
X_OFS_USR register description.	
Y_OFS_USR register	
Z_OFS_USR register	
Z_OFS_USR register description	
FIFO_DATA_OUT_TAG register.	
FIFO_DATA_OUT_TAG register description	
FIFO DATA OUT X H register.	
·	
FIFO_DATA_OUT_X_L register	
FIFO_DATA_OUT_X_R, FIFO_DATA_OUT_X_L register description	
FIFO_DATA_OUT_Y_n register	
FIFO_DATA_OUT_Y_H, FIFO_DATA_OUT_Y_L register description	
FIFO_DATA_OUT_Z_Hregister	
FIFO_DATA_OUT_Z_L register	
FIFO_DATA_OUT_Z_H, FIFO_DATA_OUT_Z_L register description	
Register address map - embedded functions	
PAGE_SEL register	
PAGE_SEL register description	
EMB FUNC EN B register.	
EMB_FUNC_EN_B register description	
PAGE_ADDRESS register	
PAGE_ADDRESS register description	
PAGE_VALUE register	
PAGE_VALUE register description	
EMB_FUNC_INT1 register	
EMB FUNC INT1 register description	
FSM_INT1_A register	
FSM INT1 A register description.	
 · • • • • • • • • • • • • • • •	

	FSM_INT1_B register	
	FSM_INT1_B register description	
Table 166.	MLC_INT1 register	86
Table 167.	MLC_INT1 register description	86
Table 168.	EMB_FUNC_INT2 register	87
Table 169.	EMB_FUNC_INT2 register description	87
Table 170.	FSM_INT2_A register	87
Table 171.	FSM_INT2_A register description	87
Table 172.	FSM_INT2_B register	88
Table 173.	FSM_INT2_B register description	88
Table 174.	MLC_INT2 register	89
Table 175.	MLC_INT2 register description	89
Table 176.	EMB_FUNC_STATUS register	89
	EMB_FUNC_STATUS register description	
	FSM_STATUS_A register	
	FSM_STATUS_A register description	
	FSM_STATUS_B register	
	FSM_STATUS_B register description	
	MLC STATUS register	
	MLC_STATUS register description	
	PAGE RW register	
	PAGE_RW register description	
	FSM_ENABLE_A register	
	FSM_ENABLE_A register description	
	FSM_ENABLE_B register	
	FSM_ENABLE_B register description	
	FSM_LONG_COUNTER_L register	
	FSM_LONG_COUNTER_L register description	
	FSM_LONG_COUNTER_H register	
	FSM_LONG_COUNTER_H register description	
	FSM_LONG_COUNTER_CLEAR register	
	FSM_LONG_COUNTER_CLEAR register description	
	FSM_OUTS1 register	
	FSM_OUTS1 register description	
	FSM_OUTS2 register	
	FSM_OUTS2 register description	
	<u> </u>	98
	FSM_OUTS3 register description	
	FSM_OUTS4 register	
	FSM_OUTS4 register description	
	FSM_OUTS5 register	
Table 205.	FSM_OUTS5 register description.	100
Table 206.	FSM_OUTS6 register	101
Table 207.	FSM_OUTS6 register description	101
Table 208.	FSM_OUTS7 register	102
Table 209.	FSM_OUTS7 register description	102
Table 210.	FSM_OUTS8 register	103
Table 211.	FSM_OUTS8 register description	103
	FSM_OUTS9 register	
	FSM_OUTS9 register description	
	FSM_OUTS10 register	
	FSM_OUTS10 register description	
	FSM_OUTS11 register	
	FSM OUTS11 register description	
	FSM_OUTS12 register	

	FSM_OUTS12 register description	
	FSM_OUTS13 register	
	FSM_OUTS13 register description	
	FSM_OUTS14 register	
	FSM_OUTS14 register description	
	FSM_OUTS15 register	
	FSM_OUTS15 register description	
	FSM_OUTS16 register	
	FSM_OUTS16 register description	
Table 228.	EMB_FUNC_ODR_CFG_B register	.111
	EMB_FUNC_ODR_CFG_B register description	
Table 230.	EMB_FUNC_ODR_CFG_C register	.112
	EMB_FUNC_ODR_CFG_C register description	
Table 232.	EMB_FUNC_INIT_B register	.112
Table 233.	EMB_FUNC_INIT_B register description	.112
Table 234.	MLC0_SRC register	.112
Table 235.	MLC0_SRC register description	.112
Table 236.	MLC1_SRC register	.113
Table 237.	MLC1_SRC register description	.113
	MLC2_SRC register	
Table 239.	MLC2_SRC register description	.113
Table 240.	MLC3_SRC register	.113
Table 241.	MLC3_SRC register description	.113
Table 242.	MLC4_SRC register	.113
Table 243.	MLC4_SRC register description	.113
Table 244.	MLC5_SRC register	.114
Table 245.	MLC5_SRC register description	.114
Table 246.	MLC6_SRC register	.114
	MLC6_SRC register description	
	MLC7_SRC register	
	MLC7_SRC register description	
	Register address map - embedded advanced features page 0	
	Register address map - embedded advanced features page 1	
	MAG SENSITIVITY L register	
	MAG_SENSITIVITY_L register description	
	MAG SENSITIVITY H register	
Table 255.	MAG SENSITIVITY H register description	.117
	MAG_OFFX_L register	
	MAG_OFFX_L register description	
	MAG_OFFX_H register	
	MAG OFFX H register description	
	MAG_OFFY_L register	
	MAG_OFFY_L register description	
	MAG_OFFY_H register	
	MAG_OFFY_H register description	
	MAG_OFFZ_L register	
	MAG_OFFZ_L register description	
	MAG_OFFZ_H register	
	MAG_OFFZ_H register description	
	MAG_SI_XX_L register.	
	MAG_SI_XX_L register description	
	MAG_SI_XX_H register	
	MAG_SI_XX_H register description	
	MAG_SI_XY_L register.	
	MAG_SI_XY_L register description	

	MAG_SI_XY_H register	
	MAG_SI_XY_H register description	
	MAG_SI_XZ_L register	
	MAG_SI_XZ_L register description	
	MAG_SI_XZ_H register	
	MAG_SI_XZ_H register description	
	MAG_SI_YY_L register	
	MAG_SI_YY_L register description	
	MAG_SI_YY_H register	
	MAG_SI_YY_H register description	
	MAG_SI_YZ_L register	
	MAG_SI_YZ_L register description	
	MAG_SI_YZ_H register	
	MAG_SI_YZ_H register description	
	MAG_SI_ZZ_L register	
	MAG_SI_ZZ_L register description.	
	MAG_SI_ZZ_H register	
	MAG_SI_ZZ_H register description	
	MAG_CFG_A register	
	MAG_CFG_A register description	
	MAG_CFG_B register	
	MAG_CFG_B register description	
	FSM_LC_TIMEOUT_L register	
	FSM_LC_TIMEOUT_L register description	
	FSM_LC_TIMEOUT_H register	
	FSM_LC_TIMEOUT_H register description	
	FSM_PROGRAMS register	
	FSM_PROGRAMS register description	
	FSM_START_ADD_L register description	
	FSM_START_ADD_H register	
	FSM_START_ADD_H register description.	
	MLC MAG SENSITIVITY L register	
	MLC_MAG_SENSITIVITY_L register description	
	MLC_MAG_SENSITIVITY_H register	
	MLC MAG SENSITIVITY H register description	
	Registers address map	127
	SENSOR_HUB_1 register.	
	SENSOR_HUB_1 register description	
	SENSOR_HUB_2 register	
	SENSOR_HUB_2 register description	
	SENSOR_HUB_3 register	
	SENSOR_HUB_3 register description	
	SENSOR_HUB_4 register	
	SENSOR_HUB_4 register description	
Table 319.	SENSOR_HUB_5 register	129
Table 320.	SENSOR_HUB_5 register description	129
Table 321.	SENSOR_HUB_6 register	129
Table 322.	SENSOR_HUB_6 register description	129
	SENSOR_HUB_7 register	
Table 324.	SENSOR_HUB_7 register description	130
	SENSOR_HUB_8 register	
Table 326.	SENSOR_HUB_8 register description	130
	SENSOR_HUB_9 register	
Table 328.	SENSOR_HUB_9 register description	130

	SENSOR_HUB_10 register	
	SENSOR_HUB_10 register description	
	SENSOR_HUB_11 register	
	SENSOR_HUB_11 register description	
	SENSOR_HUB_12 register	
	SENSOR_HUB_12 register description	
	SENSOR_HUB_13 register	
	SENSOR_HUB_13 register description	
	SENSOR_HUB_14 register	
	SENSOR_HUB_14 register description	
	SENSOR_HUB_15 register	
	SENSOR_HUB_15 register description	
	SENSOR_HUB_16 register	
	SENSOR_HUB_16 register description	
	SENSOR_HUB_17 register	
	SENSOR_HUB_17 register description	
	SENSOR_HUB_18 register	
	SENSOR_HUB_18 register description	
	MASTER_CONFIG register	
	MASTER_CONFIG register description	
	SLV0_ADD register	
	SLV0_ADD register description	
	SLV0_SUBADD register	
	SLV0_SUBADD register description	
	SLV0_CONFIG register	
	SLV0_CONFIG register description	
	SLV1_ADD register	
	SLV1_ADD register description	
	SLV1_SUBADD register	
	SLV1_SUBADD register description	
	SLV1_CONFIG register	
	SLV1_CONFIG register description	
	SLV2_ADD register	
	SLV2_ADD register description	
	SLV2_SUBADD register	
	SLV2_SUBADD register description	
	SLV2_CONFIG register	
Table 366.	SLV2_CONFIG register description	137
	SLV3_ADD register	
	SLV3_ADD register description	
	SLV3_SUBADD register	
	SLV3_SUBADD register description	
	SLV3_CONFIG register	
	SLV3_CONFIG register description	
	DATAWRITE_SLV0 register	
	DATAWRITE_SLV0 register description	
	STATUS_MASTER register	
	STATUS_MASTER register description	
	Reel dimensions for carrier tape of LGA-14 package	
Table 378.	Document revision history	144

List of figures

Figure 1.	Generic state machine	. 4
Figure 2.	State machine in the ASM330LHHX	. 5
Figure 3.	Machine learning core in the ASM330LHHX	. 6
Figure 4.	Pin connections	. 7
Figure 5.	ASM330LHHX connection modes	. 8
Figure 6.	SPI slave timing diagram (in mode 3)	14
Figure 7.	I ² C slave timing diagram	15
Figure 8.	Read and write protocol (in mode 3)	21
Figure 9.	SPI read protocol (in mode 3)	22
Figure 10.	Multiple byte SPI read protocol (2-byte example) (in mode 3)	22
Figure 11.	SPI write protocol (in mode 3)	23
Figure 12.	Multiple byte SPI write protocol (2-byte example) (in mode 3)	23
Figure 13.	SPI read protocol in 3-wire mode (in mode 3)	24
Figure 14.	I ² C and I3C both active (INT1 pin not connected)	27
Figure 15.	Only I3C active (INT1 pin connected to Vdd_IO)	27
Figure 16.	Block diagram of filters	30
Figure 17.	Gyroscope filtering chain	31
Figure 18.	Accelerometer chain	32
Figure 19.	Accelerometer composite filter	32
Figure 20.	ASM330LHHX electrical connections in mode 1	36
Figure 21.	ASM330LHHX electrical connections in mode 2	37
Figure 22.	Accelerometer block diagram	57
Figure 23.	LGA-14L 2.5 x 3.0 x 0.86 mm package outline and mechanical data	41
Figure 24.	Carrier tape information for LGA-14 package	42
Figure 25.	LGA-14 package orientation in carrier tape	42
Figure 26.	Reel information for carrier tape of LGA-14 package	43

DS13197 - Rev 3 page 159/160

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics - All rights reserved

DS13197 - Rev 3 page 160/160

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

ASM330LHHXTR