EE - 881: Princípios de Comunicações I Prova P3 - 14 de dezembro de 2009

- 1. (2,0) Ao sinal s(t) da Figura 1 foi adicionado ruído branco com densidade espectral de potência 10^{-2} Watt/Hz.
 - a) Projete o filtro casado para este sinal.
 - b) O que podemos afirmar sobre a razão sinal-ruído na saída do filtro ? Justifique sua resposta.
- 2. (1,0) Considere o uso da modulação FM para transmissão de voz. Para uma potência da portadora suficientemente grande, podemos afirmar que um aumento da largura de faixa do sinal FM transmitido irá melhorar a qualidade da voz detectada? Justifique sua resposta.
- 3. (2,5) Considere um sistema de transmissão digital que emprega símbolos binários. As amostras na recepção na ausência de ruído assumem os valores -A, A. Considere símbolos independentes e equiprováveis.
 - a)(1,5) Deduza a probabilidade de erro de símbolo, P_e , na recepção, considerando a presença de ruído gaussiano de média nula e variância σ^2 .
 - b)(0,5) Calcule P_e para A=1 V e $\sigma=250 \mathrm{mV}$.
 - c) (0,5) Qual ganho adicional deve ser inserido no transmissor para que P_e seja 10^{-12} ?
- 4. (2,5) Considere a Figura 2 em anexo. R é a taxa de transmissão de informação em bits por segundo, W é a largura de faixa de transmissão em Hz e P_M é a probabilidade de erro de símbolo.
 - a) Explique como foram obtidos os valores R/W para as modulações especificadas na Figura .
 - b) Qual a modulação da curva que não está especificada ? (região R/W>1).
 - c) Explique como foi obtido γ_b para as curvas.
 - d) Justifique o valor numérico de γ_b para a modulação 2-PSK.
 - e) Há um erro de digitação na Figura. Descreva-o.

- 5. (2,0) Um sistema FSK coerente utiliza os sinais $\{\cos[2\pi(f_c\pm\Delta/2)t], 0 \le t \le T_b\}$. Assuma que a energia dos sinais é igual a $T_b/2$.
 - a) Qual o menor valor de Δ para que os sinais sejam ortogonais ?
 - b) Qual o valor de Δ que minimiza a probabilidade de erro ?

FIGURA 1.

Probabilidade de erro para recepção coerente com decisão binaria OBS:

$$Pe = \frac{1}{2} urfc \left(\sqrt{\frac{E_b(1-e)}{2No}} \right)$$

Es, energia dos simais

$$\ell$$
, coeficiente de connelação
 $\ell = \frac{1}{E_b} \int_0^{T_b} S_0(t) S_1(t) dt$

