Particle Filter

Computer Vision (CS0029)

Why Particle Filter?

- Kalman filter
 - Kalman filter is limited to linear system with Gaussian noise
 - Extended KF and Unscented KF are limited to Gaussian distribution
 - Many practical problem show non linear dynamics and non Gaussian noises
 - We often find multi-model distributions
- Find an approximate solution using a complex model rather than a exact solution using a simplified model

Multi-model distribution

- A Gaussian distribution is unimodal
- For a multimodal distribution, the mode, mean and median do not coincide
- Kalman filter is not suitable for multi-model distribution

Particle Filter

- Particle filter is often called:
 - Condensation algorithm
 - Sequential Monte Carlo methods
 - Bootstrap filters ...
- Particle filter is based on representing the posterior PDF by a set of randomly chosen weighted samples
- "Randomly chosen" = "Monte carlo"

Basic Principle

- Represent the PDF as a set of weighted samples
- For $N \to \infty$, PF converges to the true PDF
- For $N \to \infty$, PF approaches optimal Bayesian estimate
- Region of high density
 - Many particle
 - Large weight particle

 $\{x_{0:k}^i\}$: set of particles

 $\{w_k^i\}$: associated weights, normalized to $\sum_i w_k^i = 1$

 $p(x|Z_{1:k}) = \sum_{i=1}^{N} w_k^i \delta(x_{0:k} - x_{0:k}^i)$

Basic Principle

- Density is represented by both where the particles are and their weight
- $p(x = x_0)$ is now probability of drawing an x with value (really close to) x_0

Robot Localization Example

Prior density

Add sensor information

Resample and Move the Robot

Next Sensor Reading

Robot see a hole again

Move Again

Move and Resample

Algorithm of Particle Filter

Particles from previous time step:
$$\{S_{t-1} = \langle x_{t-1}^j, w_{t-1}^j \rangle, u_t, z_t\}$$

1.
$$S_t = \emptyset$$
, $\eta = 0$
2. For $i = 1 \dots n$ (Resample, generate n new samples)
3. Sample index j(i) from the discrete distribution give by w_{t-1}
4. Sample x_t^i from $p(x_t|x_{t-1},u_t)$ using $x_{t-1}^{j(i)}$ and u_t Control
5. $w_t^i = p(z_t|x_t^i)$ (Compute importance weight - reweight)
6. $\eta = \eta + w_t^i$ (Update normalization factor)
7. $S_t = S_t \cup \{< x_t^i, w_t^i > \}$
8. For $i = 1 \dots n$
9. $w_t^i = \frac{w_t^i}{\eta}$. (Normalize weights)

Practice

Time (t)	Observation (z)	Control (u)		
0	1	1		
1	0	←		
2	1	1		
3	1	1		
4	0	\rightarrow		
5	1			

1		2		3	
					4
5			6		
7	A STATE OF THE STA	8		9	
	10				

Simple Example in Image Tracking

• Track the redshirt in a video

Simple Example in Image Tracking

Track the redshirt in a video

• Likelihood:
$$P(Z_n|X_n^k) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{d^2}{2\sigma^2}\right)$$

•
$$d = \sqrt{(r-255)^2 + g^2 + b^2}$$

Summary

- A implementation of Bayes filter
- Use particles (Monte Carlo method) to present a distribution
 - Arbitrary distribution

Steps

- Resample by each particles' weight from previous time step
- Predict particles' locations at time t from t-1 $P(X_t)$
- Likelihood of measurements from each particles' location $P(Z_t|X_t)$
- Update the weight of each particle by the likelihood of particle's measurement
- Normalize particle's weights : $\sum_{i=0}^{n} w_i = 1$