CSE 421 Last Homework

Rohan Mukherjee

Problem 1.

The LP in standard form is the following:

$$\min \quad 3x_1 - x_2$$
s.t., $x_1 + x_2 + z_1 - z_2 \le 1$

$$-x_1 - x_2 - z_1 + z_2 \le -1$$

$$-2x_1 + x_2 + z_1 - z_2 \le 2$$

$$x_1, x_2, z_1, z_2 \ge 0$$

Problem 2.

The standard form of the LP is just:

$$\max - \sum_{i=1}^{m} c_i x_i$$
s.t.,
$$-\sum_{i:j \in S_i} x_i \le -1 \quad \forall j \in \{1, \dots, n\}$$

$$x_i \ge 0 \quad \forall i \in \{1, \dots, m\}$$

We see that the LP in question is a relaxation of the weighted set cover problem because given a minimum cost family $F \subset \{S_1, ..., S_m\}$, let $x_i = 1$ if $S_i \in F$ and $x_i = 0$ otherwise. The condition that every element in $\{1, ..., n\}$ is in at least one set is thus equivalent to the following:

$$\sum_{i:j\in S_i} x_i \ge 1$$

Since this sum counts the number of sets in our family with j in it for each j. Clearly the $x_i \ge 0$, so the answer to the weighted set cover problem is a feasible solution to the LP and hence the LP is a relaxation of the weighted set cover problem. If you let y_j be the variable for the constraint $\sum_{i:j-\in S_i} x_i \le -1$, then we need the coefficient of x_i to be $\ge -c_i$. Notice that x_i shows up in the above sum iff $j \in S_i$ for each j. Thus the coefficient of x_i in terms of the y_i is just $-\sum_{j\in S_i} x_i$. This gives the following dual LP:

min
$$-\sum_{j=1}^{n} y_{j}$$
s.t.,
$$-\sum_{j\in S_{i}} y_{j} \ge -c_{i} \quad \forall i \in \{1, \dots, m\}$$

$$y_{j} \ge 0 \quad \forall j \in \{1, \dots, n\}$$

Putting this in standard forms yields:

$$\max \sum_{j=1}^{n} y_{j}$$
s.t.,
$$\sum_{j \in S_{i}} y_{j} \le c_{i} \quad \forall i \in \{1, \dots, m\}$$

$$y_{j} \ge 0 \quad \forall j \in \{1, \dots, n\}$$

Problem 3.

Define a free variable x_e for each directed edge $e \in E$. This will represent the flow passing along edge e. By the flow constraint that the incoming and outgoing flow have to be equal for each vertex, we can see that $f(v) = \sum_{e \text{ into } v} x_e$ and clearly $f(e) = x_e$. From these observations, we can see that we want the following constraints:

$$x_e \le c_e \quad \forall e \in E$$

$$\sum_{e \text{ into } v} x_e \le c_v \quad \forall v \in V - \{s, t\}$$

With the above observations about the flow values, we can see that the old payment value:

$$\sum_{v} f(v)p_v + \sum_{e} f(e)p_e = \sum_{v} \sum_{e \text{ into } v} x_e p_v + \sum_{e} x_e p_e$$

Since each edge e = (u, v) is going into precisely one vertex v, we can rewrite the first sum on the right hand side as:

$$\sum_{e=(u,v)} p_v x_e$$

We also want the constraints that the incoming flow to a vertex is the same as the outcoming flow, and finally that the flow leaving *S* is equal to *D*, by the demand constraint. Since we want to minimize the total payment, the LP becomes the following:

min
$$\sum_{e=(u,v)} p_v x_e$$
s.t., $x_e \le c_e \quad \forall e \in E$

$$\sum_{e \text{ into } v} x_e \le c_v \quad \forall v \in V - \{s,t\}$$

$$\sum_{e \text{ into } v} x_e = \sum_{e \text{ out of } v} x_e \quad \forall v \in V - \{s,t\}$$

$$\sum_{e \text{ out of } s} x_e = D$$

$$x_e \ge 0 \quad \forall e \in E$$

Problem 4.

Construct an undirected graph G' so that for each vertex $v \in G$, we add 3 new vertices to G': v_s, v, v_e with two new edges $v_s \to v$ and $v \to v_e$. For each edge $u \to v$ in the original directed graph G, add an edge $u_e \to v_s$ in G. We claim that G has a hamiltonian path from a to b iff G' has a hamiltonian path from a_s to b_e . If G has a hamiltonian path from a to b, say $P = a = v_1, \ldots, a_n = b$, then we can construct a hamiltonian path for G' by setting $P' = a_s, a, a_e, \ldots, b_s, b, b_e$. Since the edge from $v_{i,e} \to v_{i+1,s}$ always exists, and this path runs through all vertices of G' by looking at our construction, this gives a Hamiltonian path for G'. Similarly, suppose that P is a Hamiltonian path for G' starting at a_s and ending at b_e . We seek to show that if v_s is in this path for some s, the next two elements of the path must be v and v_e . Suppose otherwise. The vertex v of G' has precisely two edges: $v_s \to v$ and $v_e \to v$. Since this is a Hamiltonian path, and v did not come right after v_s , we must have used the edge $v_e \to v$. But then there would be no way to escape v: v must be the last element in the path. But this is clearly nonsensical, a contradiction. Thus after every v_s , the next two elements of the Hamiltonian path are v_s . The only edges out of v_e are those of the form $v_e \to u_s$ for some v_s . By stringing these together, we see that every path has the

aforementioned form, that being,

$$a_s$$
, a , a_e , $v_{1,s}$, v_1 , $v_{1,e}$, ..., b_s , b , b_e

This shows that we can take the path $P = a, v_1, ..., b$ in G to get a Hamiltonian path of the original graph. The function transforming G to G' is clearly polynomial in the input size: we simply add 3 vertices for each vertex of G and add 2 edges for vertex of G. Thus we see that

Directed Hamiltonian Path \leq_p Undirected Hamiltonian Path