Estimable Functions

Peter von Rohr

Estimable Functions

Animal	Breed	Observation
1	Angus	16
2	Angus	10
3	Angus	19
4	Limousin	27
5	Simmental	11
6	Simmental	13

Model

$$y = Xb + e$$

$$\mathbf{y} = \begin{bmatrix} 16\\10\\19\\27\\11\\13 \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} 1 & 1 & 0 & 0\\1 & 1 & 0 & 0\\1 & 1 & 0 & 0\\1 & 0 & 1 & 0\\1 & 0 & 0 & 1\\1 & 0 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} \mu\\\alpha_1\\\alpha_2\\\alpha_3 \end{bmatrix}$$

Normal Equations

$$X^T X b^{(0)} = X^T y$$

$$\begin{bmatrix} 6 & 3 & 1 & 2 \\ 3 & 3 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} \mu^0 \\ \alpha_1^0 \\ \alpha_2^0 \\ \alpha_3^0 \end{bmatrix} = \begin{bmatrix} 96 \\ 45 \\ 27 \\ 24 \end{bmatrix}$$

A solution

$$b^{(0)} = \begin{bmatrix} 13.5 \\ 1.5 \\ 13.5 \\ -1.5 \end{bmatrix}$$

Solutions to Normal Equations

Elements of Solution	b_1^0	b_2^0	b_{3}^{0}	b_{4}^{0}
$\overline{\mu^0}$	13.5	15	15.25	15.5
α_1^0	1.5	0	-0.25	-0.5
α_2^0	13.5	12	11.75	11.5
$\alpha_2^{\stackrel{\circ}{0}}$ $\alpha_3^{\stackrel{\circ}{0}}$	-1.5	-3	-3.25	-3.5

Functions of Solutions

Linear Function	b_1^0	b_{2}^{0}	b_{3}^{0}	b_{4}^{0}
$\alpha_1^0 - \alpha_2^0$	-12.0	-12.0	-12.0	-12.0
$\mu^{ar{0}}+lpha_1^{ar{0}}$	15.0	15.0	15.0	15.0
$\mu^0 + 1/2(\alpha_2^0 + \alpha_3^0)$	19.5	19.5	19.5	19.5

- $\sim \alpha_1^0 \alpha_2^0$: estimate of the difference between breed effects for Angus and Simmental
- $\blacktriangleright \ \mu^0 + \alpha_1^0$: estimate of the general mean plus the breed effect of Angus
- $\mu^0 + 1/2(\alpha_2^0 + \alpha_3^0)$: estimate of the general mean plus mean effect of breeds Simmental and Limousin

Definition of Estimable Functions

$$\mathbf{q}^T \mathbf{b} = \mathbf{t}^T E(\mathbf{y})$$

- ightharpoonup Why is $\mathbf{q}^T\mathbf{b}$ estimable?
- ightharpoonup Based on the defintion of ${f b}$ and $E({f y})$

$$\mathbf{q}^T \mathbf{b} = \mathbf{t}^T \mathbf{X} \mathbf{G} \mathbf{X}^T \mathbf{y}$$

where \mathbf{XGX}^T is the same for all choices of \mathbf{G}

Examples

$$E(y_{1j})=\mu+\alpha_1$$
 with $\mathbf{t}^T=\left[\begin{array}{cccc}1&1&1&0&0\end{array}\right]$ and $\mathbf{q}^T=\left[\begin{array}{cccc}1&1&0&0\end{array}\right]$
$$E(y_{2j})=\mu+\alpha_2$$

$$E(y_{3j})=\mu+\alpha_3$$

Property

Based on the definition, the following property can be derived

$$\mathbf{q}^t = \mathbf{t}^T \mathbf{X}$$

with the definition of an estimable function $\mathbf{q}^T \mathbf{b}$, we get

$$\mathbf{q}^T \mathbf{b} = \mathbf{t}^T E(\mathbf{y})$$
$$\mathbf{q}^T \mathbf{G} \mathbf{X}^T \mathbf{y} = \mathbf{t}^T \mathbf{X} \mathbf{G} \mathbf{X}^T \mathbf{y}$$

hence for any ${f G}$, ${f q}^t={f t}^T{f X}$ which is helpful to find ${f q}$ for a given ${f t}$

Test

When we want to test whether a certain vector ${\bf q}$ can establish an estimable function, we can test wheter

$$\mathbf{q}^T \mathbf{H} = \mathbf{q}^T$$

with $\mathbf{H} = \mathbf{G}\mathbf{X}^T\mathbf{X}$

Setting $\mathbf{q}^T = \mathbf{t}^T \mathbf{X}$, we get

$$\mathbf{q}^T \mathbf{H} = \mathbf{t}^T \mathbf{X} \mathbf{H} = \mathbf{t}^T \mathbf{X} = \mathbf{q}^T$$