

دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران)

گزارشکار آزمایشگاه معماری کامپیوتر - شماره ۶

عنوان آزمایش:بررس جمع کننده BCD

نام و نام خانوادگی گردآورندگان: حسنا اویارحسینی و پویا محمدی

استاد آزمایشگاه: جناب آقای مهندس عاروان

تاریخ آزمایش: ۱۴۰۰/۸/۱۸

آزمایش۱)

نام آزمایش: پیاده سازی و بررسی BCD adder

Binary Code ABCD	Decimal Number	BCD Code B ₅ B ₄ B ₃ B ₂ B ₁
0000	0	0 0 0 0 0
0001	ĭ	0 0 0 0 1
0010	2	0 0 0 1 0
0011	3	0 0 0 1 1
0100	4	0 0 1 0 0
0101	5	0 0 1 0 1
0110	6	0 0 1 1 0
0111	7	0 0 1 1 1
1000	8	0 1000
1001	9	0 1 0 0 1
1010	10	1 0 0 0 0
1011	11	1 0 0 0 1
1100	12	1 0 0 1 0
1101	13	1 0 0 1 1
1110	14	1 0 1 0 0
1111	15	1 0 1 0 1

شرح آزمایش: در این آزمایش یک 4-bit BCD adder پیاده سازی و تست شده است. جمع کننده bcd برای جمع کردن اعداد با نمایش (bcd(binary coded decimal) می باشد. در این نوع نمایش هر رقم از اعداد در مبنای ۱۰ به صورت جداگانه به مبنای ۲ برده می شود. در روبه رو جدول اعداد bcd را مشاهده میکنیم:

اعداد بزرگتر از ۹ که نمایش آنها در BCD متفاوت با نمایش آنها در باینری است

با توجه به اینو نوع نمایش چون ورودی ها جمع کننده ما ۴ بیتی هستند میتوانیم اعداد \cdot تا 9 را در نمایش RA به bcd جمع کنیم و خروجی(A + B + Cin) میتواند بین \cdot تا ۱۹ باشد. در ابتدا اعداد را به کمک یک bcd بیت صورت عادی جمع میزنیم، زمانی که خروجی بین \cdot تا ۹ باشد چون نمایش \cdot تا ۹ به صورت اور چهار بیت مشکلی ندارد نیاز به اعمال تغییر نمی باشیم، ولی زمانی که خروجی بیشتر از ۹ بشود (بین \cdot ۱ تا ۱۹) چون نمایش باینری با bcd متفاوت میشود نیاز داریم تا خروجی را به نحوی تغییر دهیم که نمایش bcd ایجاد شود. برای این کار کافیست مقدار (\cdot) \cdot (\cdot) را با خروجی جمع بزنیم، پس به طور خلاصه، اگر حاصل جمع را در مبنای دو به صورت \cdot S = S₃S₂S₁S₀ = \cdot نشان دهیم خواهیم داشت:

اقدام لازم برای تبدیل به	رز با	هم ا	حالت های مختلف S
BCD			
-			S<10
در این حالت حاصل را با		S = 1x1x	9 <s<12< td=""></s<12<>
۶ جمع می کنیم	S3S2 + S3S1 + Cout	S = 11xx	11 <s<16< td=""></s<16<>
1-1		Cout = 1	15 <s< td=""></s<>

پس در هنگام پیاده سازی یک RA دیگر اضافه میکنیم و خروجی S3S2 + S3S1 + Cout را به بیت دوم و سوم یکی از ورودی ها و خروجی RA قبلی را به ورودی دیگر میدهیم تا زمانی که نیاز بود خروجی قبلی را با ۶ جمع بزند. لازم به ذکر است که S3S2 + S3S1 + Cout همان Cout نهایی و یا رقم دهگان می باشد. شماتیک مدار نهایی را در ادامه میتوان مشاهده کرد:

نتایج آزمایش:

خروجی شبیه سازی:

Name	Value	0 ns 50 ns 100 ns 150 ns
▶ 🦥 a[3:0]	1001	01/91 10/91
▶ b [3:0]	1001	(0000 X 0001 X 0010 X 0011 X 0100 X 0101 X 0110 X 0111 X 1000 X 1001 X 0000 X 0001 X 0010 X 0011 X 0100 X 0101 X 0110 X 0111 X 1000 X 1001
ิ in cin	0	
► [3:0]	1000	(0110 X0111 X 1000 X 1001 X 0000 X 0001 X 0010 X 0011 X 0100 X 0101 X 1001 X 0000 X 0001 X 0010 X 0011 X 0100 X 0101 X 0100 X 01
le cout	1	

در این شکل جمع ۵ با ۰تا ۹ با cin=1 و سپس جمع ۹ با اعداد ۰ تا ۹ با cin=0 بررسی شده اند.

بررسی زمان و مساحت:

مساحت	Device Utilization Summary (estimated values)						
	Logic Utilization	Used	Available	Utilization			
	Number of Slices	6	768	0%			
	Number of 4 input LUTs	11	1536	0%			
	Number of bonded IOBs	14	124	11%			
زمان	Timing Summary:						
	Speed Grade: -5 Minimum period: No path found Minimum input arrival time before clock: No path found Maximum output required time after clock: No path found Maximum combinational path delay: 14.422ns						