东南大学电工电子实验中心 实验报告

课程名称:	电路实验	

第 5 次实验

实验	盆名称:	双端口网络频率等	寺性测	试及谐振	电路分析
院	(系):	信息科学与工程学	<u>院</u> 专	业:	_信息工程
姓	名: _	钟源	学	号:_	04022212
实!	验室:_	电子技术7室	实验	:组别:_	
同组	1人员:	实验	讨问:	2023 年	8月 <u>30</u> 日
评定	区成绩:	审阅]教师:		

一、实验目的

- (1) 掌握低通、高通、带通电路、带阻电路的频率特性;
- (2) 应用 Multisim 软件测试低通、高通、带通电路、带阻电路及有关参数;
- (3) 掌握 Multisim 软件中的交流分析功能测试电路的频率特性;
- (4) 掌握电路谐振及其特征;
- (5) 掌握 RLC 串联谐振现象观察、测量方法。

二、实验原理(预习报告内容,如无,则简述相关的理论知识点。)

1. 了解一阶 RC 电路的频率特性

2) 一阶 RC 低通电路频率特性曲线

(a) 电路 $H(j\omega) = \frac{\dot{U}_2}{U_1}$

(b) 曲线 $\omega_0 = \frac{1}{RC}$

 ω_0

3) 一阶 RC 高通电路频率特性曲线

(a) 电路 $H(j\omega) = \frac{\dot{v}_2}{\dot{v}_1}$

(b) 曲线 $\omega_0 = \frac{1}{RC}$

2. 在现有器件参数的基础上完成实验内容 2 电路的设计

3. 复习 RLC 串联谐振电路相关内容知识

1) RLC 串联电压谐振

在具有电阻、电感和电容元件的电路中,电路两端的电压与电路中的电流一般是不同相的。如果调节电路中电感和电容元件的参数或改变电源的频率,就能够使得电路中的电流和电压出现了同相的情况。电路的这种状态称为谐振。RLC 串联谐振又称为电压谐振。由 RLC 组成的串联电路如下图 3 所示。

图 3 RLC 串联电路

当感抗等于容抗时,电路的电抗等于零。即 $X_L = X_C$; $\omega L = \frac{1}{\omega c}$; $2\pi f L = \frac{1}{2\pi f C}$;

 $X = \omega L - \frac{1}{\omega C} = 0$ 则 $\varphi = \tan^{-1} \frac{X_L - X_C}{R} = 0$; 即电源电压 \dot{U} 电路中电流 \dot{I} 同相。

谐振时频率 $f_0=rac{1}{2\pi\sqrt{LC}}$; 角频率 $\omega_0=rac{1}{\sqrt{LC}}$, 周期 $T_0=2\pi\sqrt{LC}$

串联谐振电路的谐振频率fa完全由电路本身的有关参数来决定, 是电路本身的固有性质,

2) RLC 串联电压谐振特征

① 电路的阻抗

$$|Z| = \sqrt{R^2 + (X_L - X_C)^2} = R$$

电路对电源呈现电阻性, 电源供给电路的能量全部被电阻所消耗, 电源与电路之间不发生能量互换。能量互换只能发生在电感线圈 L 与电容器 C 之间。

②电路的电流

$$I = I_0 = \frac{U}{R}$$

当电源电压 U 不变的情况下,如下图 4 所示,电路的电流将在谐振时达到最大值,电流的大小取决于电阻 R 的大小,电阻 R 越小电流越大。反之电流越小。

图 4 电流随频率变化曲线

③电路的电压

$$\dot{U} = \dot{U_R}$$

由于 $X_L = X_C$,则 $U_L = U_C$,如下图所示, \dot{U}_L \dot{U}_C 在相位上相反,互相抵消,对整个电路不起作用,因此电阻 R 上电压 \dot{U}_R 等于电源电压 \dot{U} 。

图 5 串联谐振向量图

 U_L 、 U_C 单独作用不容忽视,因为 $U_L=IX_L=\frac{U}{R}X_L$, $U_C=IX_C=\frac{U}{R}X_C$,当 $X_L=X_C>R$ 时, U_L U_C 都大于电源电压 U, $X_L=X_C< R$ 时, U_L U_C 都小于电源电压。当 $X_L=X_C\gg R$ 时, U_L U_C 将远远高于电源电压多少倍。

④电路的品质因数 O

$$Q = \frac{U_C}{U} = \frac{U_L}{U} = \frac{1}{\omega_0 CR} = \frac{\omega_0 L}{R}$$

品质因数 Q 也是由电路的参数决定的,当 L、C 一定,R 值越小,Q 值越大,谐振曲线越尖锐,R 值越大,Q 值越小,谐振曲线越平坦。

4. 理论计算实验内容 4 的 RLC 串联电路的谐振频率

三、实验内容

1. 用 Multisim 分析功能测试一阶 RC 低通电路的频率特性

①.建立电路如图 6。输入信号取信号源库(Sources)中的交流电压源(AC Voltage Source), 双击图标、将其电压设置为 1V, 频率设置为 1kHz。

图 6 一阶 RC 低通电路频率特性的测试

- ②.测试电路的截止频率:f。=7.236kHz,计算的理论值: f。=7.234kHz;
- ③.用上述方法分别测试 $0.01~f_{\circ}$ 、 $0.1f_{\circ}$ 、 $0.5f_{\circ}$ 、 f_{\circ} 、 $5f_{\circ}$ 、 $10f_{\circ}$ 、 $100f_{\circ}$ 点所对应的 $|H(j\omega)|$ 和 ϕ 的值。

测量	$0.01 f_0$	0.1 f ₀	$0.5 f_0$	f_0	$5f_0$	10 f ₀	$100 f_0$
Η(jω)	0.999	0.995	0.916	0.707	0.196	0.0996	0.0100
φ(°)	-0.57244	-5.7056	-23.623	-44.975	-78.680	-84.2844	-89.4266

表1. 一阶 RC 低通电路频率特性测量

2. 设计一阶高通电路,用 Multisim 分析测试其频率特性

- ①. 测试电路的截止频率 f_0 =904.0169Hz, 计算的理论值: f_0 = f_0 =904.289Hz;
- ②.用上述方法分别测试 0.01 f_o、0.1f_o、0.5f_o、f_o、5f_o、10f_o、100f_o点所对应的|H(jω)| 和φ的值。

测量	$0.01 f_0$	$0.1 f_0$	$0.5 f_0$	f_0	$5f_0$	10 f ₀	$100 f_0$
Η(jω)	0.009997	0.09947	0.447	0.707	0.9806	0.995	0.99995
φ(°)	889.4272	84.2911	63.4419	45.0086	11.3135	5.7123	0.57312

表2. 一阶 RC 高通电路频率特性测量

3. 将实验内容 2、1 电路串联,用 Multisim 测试其电路的频率特性,并进行说明分析

①. 由曲线可知,f0=2.5586kHz,f1=618.96Hz,f2=10.57kHz

对比计算的理论值: f0=2.5572kHz

4. RLC 串联谐振电路测量

- (1) R=1kΩ , L=330μ H, C=3.3n F, 激励电压 4V RMS。
- (2) 用 Multisim 软件仿真, 观察记录 UR、UL、Uc 随激励信号频率变化而变化的规律, 分析实验现象的理论依据。测量谐振频率点 UR、UL、Uc 值及波形。

RLC 仿真电路图

UL,UR,Uc波形图

测得 f0=152.4053kHz, 计算的理论值为 f0=152.513kHz.

(3) 根据上述测量, 试分析如何利用 RLC 谐振电路实现带通及带阻。

可以调节电感 L 和电容 C,使得 1/√LC 接近于需要的信号的频率,而使得 1/√LC 与不需要的信号的频率有一定的差异。

(4) 搭试实物电路, 再现谐振现象, 测量谐振频率, 记录此时 UR、UL、UC 值及波形。 (验收)

U_R波形图(电源电压有效值为4V)

Uc波形图(电源电压有效值为 4V)

UL波形图(电源电压有效值为 4V)

以上三图中,可见(有效值) U_R =3.78V; U_C =642.5mV; U_L =691.2mV,谐振频率为 152 kHz。

(5) 分析比较软件仿真及实物实验结果的差异,分析产生差异的原因。 差异:

- ①. 软件仿真测得的谐振频率小干实验得出的谐振频率:
- ②. 软件仿真中电容电压与电感电压十分接近并且小于电阻的电压,而实验得出的电容电压与电感电压相差较大并且大于电阻电压。

产生差异的可能原因:

- ①. 元件的标定值与其真实值存在着一定的差异;
- ②. 电源实际输出的频率和电压值与设定值也存在着一定的差异;
- ③. 除了电感和电容, 电路中的其他部分可能也存在着一定的电抗性;
- ④. 电路中的某些部分接触不良。

四、实验使用仪器设备(名称、型号、规格、编号、使用状况)

示波器: 鼎阳 SDS1202X 示波器 良好

信号源: SDG1062X 信号源 良好

数字万用表: LINI-T UT803 良好

稳压电源: SPD3303C 系列可编程线性直流电源 良好

五、实验总结

(实验误差分析、实验出现的问题及解决方法、思考题(如有)、收获体会等)

实验误差分析

- ①. RLC 串联电路中的电阻 R 的阻值、电压源电压 Us 应当适中,若 R 太小或 Us 太大,则电路中电流过大,由于电源内阻而造成的误差会增大,若 R 太大或 Us 太小,则电路中电流过小,读数的相对误差会增大;
- ②. 对于实验过程中所用的电容,其电容值应当稍大些,以免电容两端电压过大而造成电容被击穿。

思考题

(1) Multisim 仿真电路中输入信号源起什么作用,改变信号源的参数对测试结果有无影响?

Multisim 仿真电路中输入信号源可以提供具有一定频率的输出电压,由于仿真电路中的电源为理想电源,元件的标定值和与放入电路时的值相同,因此改变信号源的参数对测试结果无影响。

(2) 试写出判定 RLC 串联电路处于谐振状态的三种实验方法。

- ①.分别测电源的输出电压和电阻两端电压,若两者的幅值和相位都近似相同,则说明该RLC 串联电路处于谐振状态;
- ②.分别测电感和电容两端电压,若两者的幅值近似相同,相位大约相差 180°,则说明该RLC 串联电路处于谐振状态;
- ③.测电感的电容的串联总电压, 若所得到的电压值近似为 0, 则说明该 RLC 电路处于谐振状态。
- (3) RLC 串联谐振电路实物实验中,信号源输出信号幅度该如何选择?测量过程中,信号源信号幅度有没有变化?

信号源输出信号的幅度要适中,若太小,则读数时的偶然误差会偏大,若太大则有可能损坏 电路元件。测量过程中,由于信号源自身有一定的内阻,随着电路中电流的幅度发生变化,信号源信号幅度也会有一定的变化。

- (4) 在谐振频率点、及谐振频率左右, 电路的特性有什么变化?
- ①. 在谐振频率点,电阻两端的电压达到最大值,约为信号源电压,电感和电容的电压等大并且相位正好相差 180°,因此相互抵消,整个电路显电阻性;
- ②. 信号源频率比谐振频率大时,电感的感抗大于电容的容抗,电路显感性;信号源频率比谐振频率小时,电感的感抗小于电容的容抗,电路显容性。

六、参考资料(预习、实验中参考阅读的资料)

电路实验 2023 教学计划(2023-2024 第一学期)(学生版)