AI25BTECH11003 - Bhavesh Gaikwad

Question: Let \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} be three vectors such that $|\overrightarrow{a}| = 1$, $|\overrightarrow{b}| = 2$, and $|\overrightarrow{c}| = 3$. If the projection of \overrightarrow{b} along $|\overrightarrow{a}|$ is equal to the projection of $|\overrightarrow{c}|$ along $|\overrightarrow{a}|$, and $|\overrightarrow{b}|$ and $|\overrightarrow{c}|$ are perpendicular to each other, then find $|3\overrightarrow{a}| - 2\overrightarrow{b}| + 2\overrightarrow{c}|$.

Solution:

Given: $\|\mathbf{a}\| = 1$, $\|\mathbf{b}\| = 2$, $\|\mathbf{c}\| = 3$

$$\mathbf{b}^T \frac{\mathbf{a}}{\|\mathbf{a}\|} = \mathbf{c}^T \frac{\mathbf{a}}{\|\mathbf{a}\|}$$

Since **b** and **c** are perpendicular: $\mathbf{b}^T \mathbf{c} = 0$

Let
$$\mathbf{v} = 3\mathbf{a} - 2\mathbf{b} + 2\mathbf{c}$$

 $\|\mathbf{v}\|^2 = (3\mathbf{a} - 2\mathbf{b} + 2\mathbf{c})^T (3\mathbf{a} - 2\mathbf{b} + 2\mathbf{c})$
 $\Rightarrow 9 \|\mathbf{a}\|^2 + 4 \|\mathbf{b}\|^2 + 4 \|\mathbf{c}\|^2 - 12(\mathbf{a}^T\mathbf{b}) + -12(\mathbf{a}^T\mathbf{b}) - 8(\mathbf{b}^T\mathbf{c}) = 9 + 16 + 36 = 61$

$$\|3\mathbf{a} - 2\mathbf{b} + 2\mathbf{c}\| = \sqrt{61}$$
(0.1)

l

Vectors a, b and c

Fig. 0.1: Vector Representation