## [C100/SQP255]

Mathematics Advanced Higher Specimen Solutions for use in and after 2004 NATIONAL QUALIFICATIONS



1. (a) 
$$\frac{4}{x^2 - 4} = \frac{4}{(x - 2)(x + 2)} = \frac{A}{x - 2} + \frac{B}{x - 2}$$
$$= \frac{1}{x - 2} - \frac{1}{x + 2}$$
[2]

(b) 
$$\int \frac{x^2}{x^2 - 4} dx = \int 1 + \frac{4}{x^2 - 4} dx$$
$$= \int 1 + \frac{1}{x - 2} - \frac{1}{x + 2} dx$$
$$= x + \ln(x - 2) - \ln(x + 2) + c$$
 [4]

2. 
$$239 = 1 \times 195 + 44$$
  
 $195 = 4 \times 44 + 19$   
 $44 = 2 \times 19 + 6$   
 $19 = 3 \times 6 + 1$   
So  $1 = 19 - 3 \times 6$   
 $= 19 - 3(44 - 2 \times 19)$   
 $= 7 \times (195 - 4 \times 44) - 3 \times 44$   
 $= 7 \times 195 - 31(239 - 195)$   
 $= 38 \times 195 - 31 \times 239$   
ie  $195x + 239y = 1$  when  $x = 38$  and  $y = -31$ 

3. (a) 
$$a = 8 + 10t - \frac{3}{4}t^{2}$$

$$v = \int 8 + 10t - \frac{3}{4}t^{2}dt$$

$$= 8t + 5t^{2} - \frac{1}{4}t^{3} + c$$

$$t = 0; v = 0 \Rightarrow c = 0$$

$$v = 8t + 5t^{2} - \frac{1}{4}t^{3}$$
[2]

(b) 
$$s = \int v \, dt = 4t^2 + \frac{5}{3}t^3 - \frac{1}{16}t^4 + c'$$

$$t = 0; s = 0 \Rightarrow c' = 0$$

$$\therefore \text{ when } t = 10, s = 400 + \frac{5000}{3} - 625 = 1441\frac{2}{3}$$
[3]

4. 
$$A^2 = 5A + 3I$$
  
 $\therefore A^2 - 5A = 3I$   
 $A(\frac{1}{3}A - \frac{5}{3}I) = I$ 

$$A^{4} = (5A + 3I)^{2}$$

$$= 25A^{2} + 30A + 9I$$

$$= 155A + 84I$$

 $\therefore A$  is invertible and  $A^{-1} = \frac{1}{3}(A - 5I)$ 

[2, 2]

$$5. \int_{0}^{2} \frac{x+1}{\sqrt{16-x^2}} dx$$

$$= \int_{0}^{\pi/6} \frac{4\sin t + 1}{16 - 16\sin^{2}} 4\cos t \, dt$$

$$= \int_{0}^{\pi/6} \frac{(4\sin t + 1) \times 4\cos t}{4\cos t} \, dt$$

$$= \int_{0}^{\pi/6} (4\sin t + 1) \, dt$$

$$x = 4\sin t$$

$$\Rightarrow \frac{dx}{dt} = 4 \cos t$$

$$x = 0 \Rightarrow t = 0;$$

$$x = 2 \Rightarrow t = \frac{\pi}{6}$$

$$= \left[-4\cos t + t\right]_{0}^{\pi/6} = 2\sqrt{3} + 4 + \frac{\pi}{6} \approx 1.059$$

[5]

**6.** 1 1 1 
$$\begin{vmatrix} 0 \\ 2 & -1 & 1 \\ 1 & 3 & 2 \end{vmatrix}$$
 0 · 9

Hence 
$$z = 0.5$$
;  $y = (1 \cdot 1 - 0 \cdot 5)/3 = 0 \cdot 2$ ;  $x = -0.2 - 0.5 = -0.7$ 

[5]

7. (i) 
$$f(x) = \sqrt{1+x}$$
  $f(0) = 1$   
 $= (1+x)^{1/2}$   
 $f'(x) = \frac{1}{2}(1+x)^{-1/2}$   $f'(0) = \frac{1}{2}$   
 $f''(x) = -\frac{1}{4}(1+x)^{-3/2}$   $f''(0) = -\frac{1}{4}$   
 $f'''(x) = \frac{3}{8}(1+x)^{-5/2}$   $f'''(0) = \frac{3}{8}$   
 $\therefore \sqrt{1+x} \approx 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3$  [3]

(ii) 
$$f(x) = (1-x)^{-2}$$
  $f(0) = 1$   
 $f'(x) = 2(1-x)^{-3}$   $f'(0) = 2$   
 $f''(x) = 6(1-x)^{-4}$   $f''(0) = 6$   
 $f'''(x) = 24(1-x)^{-5}$   $f'''(0) = 24$   
 $\therefore (1-x)^{-2} \approx 1 + 2x + 3x^2 + 4x^3$  [2]

8. (a) 
$$x^{2} + xy + y^{2} = 1$$
  
 $2x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0$   

$$\frac{dy}{dx} = \frac{-(2x + y)}{x + 2y}$$
[2]

(b) (i) 
$$x = 2t + 1;$$
  $y = 2t(t - 1)$ 

$$\frac{dx}{dt} = 2; \frac{dy}{dt} = 4t - 2 \Rightarrow \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = 2t - 1$$
[2]

(ii) 
$$t = \frac{1}{2}(x-1)$$
  $y = (x-1)\left[\frac{1}{2}(x-1)-1\right]$   $= \frac{1}{2}(x-1)(x-3)$  [1]

9. (a) 
$$u_3 = 2d + u_1 = 5$$
  
 $2d = 5 - 45$   
 $d = -20$   
 $u_{11} = 45 + 10(-20)$   
 $= -155$  [2]

(b) 
$$45r^2 = 5$$
  
 $r = \frac{1}{3}$  since  $v_1$ , ... are positive  
 $S = \frac{45}{1 - \frac{1}{3}} = 67\frac{1}{2}$  [3]

10. 
$$n=1$$
 LHS =  $1 \times 2 = 2$   
RHS =  $\frac{1}{3} \times 1 \times 2 \times 3 = 2$   
True for  $n=1$ .

Assume true for k and consider

$$\sum_{r=1}^{k+1} r(r+1) = \sum_{r=1}^{k} r(r+1) + (k+1)(k+2)$$
$$= \frac{1}{3}k(k+1)(k+2) + (k+1)(k+2)$$
$$= \frac{1}{3}(k+1)(k+2)(k+3)$$

Thus if true for k then true for k+1.

Therefore since true for n = 1, true for all  $n \ge 1$ .

[5]

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = f(x)$$
A.E.  $m^2 - 5m + 6 = 0$   

$$\therefore m = 2 \text{ or } m = 3$$
C.F.  $y = Ae^{2x} + Be^{3x}$ 

(i) 
$$f(x) = 20 \cos x$$
; P.I. =  $a \cos x + b \sin x$   
 $\Rightarrow -a \cos x - b \sin x + 5a \sin x - 5b \cos x + 6a \cos x + 6b \sin x = 20 \cos x$   
 $5a - 5b = 20$   
 $5a + 5b = 0 \Rightarrow a = -b$   
 $-10b = 20 \Rightarrow b = -2$ ;  $a = 2$   
Solution  $y = Ae^{2x} + Be^{3x} + 2 \cos x - 2 \sin x$  [3]

(ii) 
$$f(x) = 20 \sin x$$
; P.I. =  $c \cos x + d \sin x$   
 $5c - 5d = 0 \Rightarrow c = d$   
 $5c + 5d = 20 \Rightarrow c = d = 2$   
Solution  $y = Ae^{2x} + Be^{3x} + 2 \cos x + 2 \sin x$  [3]

(iii) 
$$f(x) = 20 \cos x + 20 \sin x$$
  
Solution  $y = Ae^{2x} + Be^{3x} + 4 \cos x$  [1]

**12.** 
$$f(x) = \frac{2x^3 - 7x^2 + 4x + 5}{(x - 2)^2}$$

(a) 
$$x = 0 \Rightarrow y = \frac{5}{4} \Rightarrow a = \frac{5}{4}$$
 [1]

(b) (i) 
$$x = 2$$

(ii) After division, the function can be expressed in quotient/remainder form:

$$f(x) = 2x + 1 + \frac{1}{(x-2)^2}$$

Thus the line y = 2x + 1 is a slant asymptote.

[3]

(c) From (b), 
$$f'(x) = 2 - \frac{2}{(x-2)^3}$$
. Turning point when

$$2 - \frac{2}{(x-2)^3} = 0$$
$$(x-2)^3 = 1$$
$$x-2 = 1 \Rightarrow x = 3$$

$$f''(x) = \frac{6}{(x-2)^4} > 0$$
 for all x.

The stationary point at (3, 8) is a minimum turning point.

[4]

(d) 
$$f(-2) = \frac{-16 - 28 - 8 + 5}{(-4)^2} < 0;$$
  $f(0) = \frac{5}{4} > 0.$ 

Hence a root between -2 and 0.

[1]



[2]

13. (a) 
$$L_1$$
:  $x = 3 + 2s$ ;  $y = -1 + 3s$ ;  $z = 6 + s$   
 $L_2$ :  $x = 3 - t$ ;  $y = 6 + 2t$ ;  $z = 11 + 2t$ 

$$\therefore \text{ for } x \colon 3 + 2s = 3 - t \Rightarrow t = -2s$$

:. for 
$$y: 3s - 1 = 6 + 2t$$

$$7s = 7 \Rightarrow s = 1; t = -2$$

$$L_1$$
:  $x = 5$ ;  $y = 2$ ;  $z = 6 + s = 7$ 

$$L_2$$
:  $x = 5$ ;  $y = 2$ ;  $z = 11 + 2t = 11 - 4 = 7$  ie  $L_1$  and  $L_2$  intersect at  $(5, 2, 7)$ 

[6]

(b) 
$$A(2,1,0); B(3,3,-1); C(5,0,2)$$

$$\vec{AB} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}; \quad \vec{AC} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -1 \\ 3 & -1 & 2 \end{vmatrix} = 3\mathbf{i} - 5\mathbf{j} - 7\mathbf{k}$$

Equation of plane has form 3x-5y-7z=k

$$(2,1,0) \Rightarrow k = 1$$

Equation is 
$$3x - 5y - 7z = 1$$
.

[5]

14. (a) 
$$z^4 = (\cos \theta + i \sin \theta)^4$$
  
 $= \cos^4 \theta + 4 \cos^3 \theta (i \sin \theta) + 6 \cos^2 \theta (i \sin \theta)^2 + 4 \cos \theta (i \sin \theta)^3 + (i \sin \theta)^4$   
 $= \cos^4 \theta + 4i \cos^3 \theta \sin \theta - 6 \cos^2 \theta \sin^2 \theta - 4i \cos \theta \sin^3 \theta + \sin^4 \theta$   
 $= \cos^4 \theta - 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta + i (4\cos^3 \theta \sin \theta - 4 \cos \theta \sin^3 \theta)$ 

Hence the real part is  $\cos^4 \theta - 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta$ .

The imaginary part is  $(4\cos^3\theta \sin\theta - 4\cos\theta \sin^3\theta)$ 

= 
$$4 \cos \theta \sin \theta (\cos^2 \theta - \sin^2 \theta)$$
 [5]

(b) 
$$(\cos \theta + i \sin \theta)^4 = \cos 4\theta + i \sin 4\theta$$
 [1]

(c) 
$$\cos 4\theta = \cos^4 \theta - 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta$$
. [1]

(d) 
$$\cos 4\theta = \cos^4 \theta - 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta$$
  
 $= \cos^4 \theta - 6 \cos^2 \theta (1 - \cos^2 \theta) + (1 - \cos^2 \theta)^2$   
 $= \cos^4 \theta - 6 \cos^2 \theta + 6 \cos^4 \theta + 1 - 2 \cos^2 \theta + \cos^4 \theta$   
 $= 8 \cos^4 \theta - 8 \cos^2 \theta + 1$   
 $= 8 (\cos^4 \theta - \cos^2 \theta) + 1$   
ie  $k = 8$ ,  $m = 4$ ,  $n = 2$ ,  $p = 1$ . [4]

15. (a) 
$$900 = A(15 - Q) + B(30 - Q)$$
  
Letting  $Q = 30$  gives  $A = -60$   
and  $Q = 15$  gives  $B = 60$ 

$$\frac{900}{(30-Q)(15-Q)} = \frac{-60}{(30-Q)} + \frac{60}{(15-Q)}$$

(b) 
$$\frac{dQ}{dt} = \frac{(30 - Q)(15 - Q)}{900}$$

$$\therefore \int \frac{900}{(30 - Q)(15 - Q)} dQ = \int dt$$

$$\therefore \int \frac{-60}{(30 - Q)} + \frac{60}{(15 - Q)} dQ = \int dt$$

$$60 \ln (30 - Q) - 60 \ln (15 - Q) = t + C$$

$$ie 60 \ln \left(\frac{30 - Q}{15 - Q}\right) = t + C$$

$$A = 60$$

$$C = 60 \ln 2 = 41.59 \text{ to 2 decimal places}$$
[4]

(i) 
$$t = 60 \ln \left( \frac{30 - Q}{15 - Q} \right) - 60 \ln 2 = 60 \ln \left( \frac{30 - Q}{2(15 - Q)} \right)$$
  
When  $Q = 5$ ,  $t = 60 \ln \frac{25}{20} = 13.39$  minutes to 2 decimal places [1]

(ii) 
$$\ln\left(\frac{30-Q}{2(15-Q)}\right) = \frac{t}{60}$$
$$30-Q = 2(15-Q)e^{t/60}$$
$$Q(2e^{t/60}-1) = 30(e^{t/60}-1)$$
$$Q = \frac{30(e^{t/60}-1)}{2e^{t/60}-1}$$

When t = 45, Q = 10.36 grams to 2 decimal places. [2]

[END OF SPECIMEN MARKING SOLUTIONS]