EC5811-Project-2 Design of Electronically steered phased array antenna for the detection of UAV

Prakash.E, Siva Chokkalingam.S, Srividhya Sutharsan, Yogeshwari.N.B

Department of Electronics and Communication Engineering, Madras Institute of Technology, Anna University, Chennai, Tamil Nadu

Under the guidance of

Dr.M.Ganesh Madhan

Professor, Dept. of Electronics Engineering, Madras Institute of Technology, Chennai

Outline

- Objective
- Matlab toolbox
- Phased array antenna
- Beamforming
- Methodology
- 6 Dipole antenna
- Antenna Array Designer Application
- Dipole antenna array
- Beamforming realtime simulation
- Parameters Evaluation
- Modeling Radar Detectability
- Modeling Radar Detectability
- Radar Scenario and Platforms
- **Tracking Target**
- 15 References

Objective

• To design a radar system using MATLAB Software for detecting drones/UAV's using beamforming technique.

Matlab toolbox

• RF toolbox:

This provides functions, objects, and apps for designing, modeling, analyzing, and visualizing networks of radio frequency (RF) components. The toolbox supports wireless communications, radar, and signal integrity projects.

Antenna toolbox:

This provides functions and apps for the design, analysis, and visualization of antenna elements and arrays.

• Phased Array System toolbox:

This Toolbox provides algorithms and apps for designing and simulating sensor array and beamforming systems in wireless communication, radar, sonar, acoustic, and medical imaging applications.

 These are used in our project for designing various RF components and to design the RADAR system.

Phased array antenna

- Computer controlled array of radiating elements that electronically steers the beam in the required direction
- Uses phase shifters and attenuators to control the phase and amplitude of individual antenna elements
- Due to the constructive interference(superposed) of all the antenna element output, the beam is pointed in a particular direction and can be changed by modifying the phase shift and the amplitude.
- The beamwidth can be controlled to point more accurately by changing the no. of antenna elements in the design.

Beamforming

- Beamforming is used in this application to focus our transmitted signals in particular direction so that interference of signals from other directions can be avoided.
- To overcome the physical difficulty of manually moving the antenna to scan the entire region of view.
- More power is transmitted in a given direction as it is highly important.

Methodology

- Design of single radiating element (dipole antenna) that can be replicated
- Design of divider circuit
- Representation of Amplitude and phase shift value for each radiating element
- Integration of all the parts as phased array antenna

Schematic representation

Wilkinson power divider

Wilkinson power divider

Phase Shifter

Attenuator

Dipole antenna

Dipole antenna

Antenna Array Designer Application

- Designed dipole array antenna using this application.
- backing as rectangular structure
- The operating frequency is set and the number of elements in the array is initalized and the design is accepted.
- The dimensions of the dipole array, reflector with exciter and the substrate are mentioned to get the design.

Dipole antenna array

Dipole antenna array

Dipole antenna array

Beamforming realtime simulation

Beamforming realtime simulation

Parameters Evaluation

- Design Requirements
- Signal parameters
- Target Parameters
- Radar Parameters

Parameters Evaluation

Parameters	Value
Frequency of operation	8.925 GHz
Wavelength	33.61 mm
Range Resolution	50 m
Maximum Range/ Unambiguous range	10 km
Probability of Detection	0.9
Probability of False Alarm	1e-6
Transmitting Power	2.5 MW
Bandwidth	3 MHz
Sample rate	6 MHz

Parameters Evaluation

Gain	31 dB
RCS of Target	1 m ²
Target Height	1km
Target Initial Position	9 km
Radar height from ground level	10 m
Azimuth range	[-60 60]
Elevation Range	[0 30]
No of Full scans	30

March 28, 2023 MIT campus 23

Modeling Radar Detectability

$$SNR = rac{P_t G_t G_r au \lambda^2 \sigma}{\left(4\pi\right)^3 k T_s R^4 L}$$

Modeling Radar Detectability

Modeling Radar Detectability

Radar Scenario and Platforms

- Scanning parameters Azimuth Scan Points; Elevation Scan points
- Evaluating Range Angle Resolution cells
- Scenario
- Platforms Radar, Target

Radar Scenario and Platforms

March 28, 2023

Radar Scenario and Platforms

Tracking Target

References

- Ondřej Jaroš, Ladislav Beran,," Design of an Electronically Steered Antenna Array in the X band", T-CZ, a. s. Pardubice, Czech Republic, 2019 IEEE Conference on Microwave Techniques(COMITE)
- L. G. Maloratsky and R. Collins, "Reviewing the basics of suspended striplines," Microw. J., vol. 45, no. 10, p. 82, Oct. 2002
- C. A. Balanis, Antenna theory: analysis and design. Hoboken: Wiley -Interscience, 2005, 1117 p. ISBN 978-0-471-66782-7
- Yang, Jianchao, et al. "A cylindrical phased array radar system for UAV detection." 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). IEEE, 2021.
- Klare, Jens, Oliver Biallawons, and Delphine Cerutti-Maori. "UAV detection with MIMO radar." 2017 18th International Radar Symposium (IRS). IEEE, 2017.

References

- Wang, Yaochen, et al. "64 GHz 5G-Based Phased-Arrays for UAV Detection and Automotive Traffic-Monitoring Radars." 2019 IEEE International Symposium on Phased Array System Technology (PAST). IEEE, 2019.
- Tang, Liming, et al. "Small phased array radar based on AD9361 For UAV detection." 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC). Vol. 1. IEEE, 2019.
- Al-Nuaim, Tareq, Mubashir Alam, and Abdulrazaq Aldowesh. "Low-cost implementation of a multiple-input multiple-output radar prototype for drone detection." 2019 International Symposium ELMAR. IEEE, 2019.
- Shen, Jing, et al. "Phased array radar system design based on single-send and multiple-receive for LSS-UAV target." Journal of Physics: Conference Series. Vol. 1920. No. 1. IOP Publishing, 2021.

