Special Relativity - Summary 3

by Dr. Helga Dénes (hdenes@yachaytech.edu.ec)

This summary is based on the book chapters 3.6 - 3.7 of Robert Resnick: Introduction to Special Relativity

1 Relativistic dynamics

1.1 The equivalence of mass and energy

The rest mass of a body is equivalent to energy \rightarrow rest-mass energy.

- This follows from the Lorentz transformation and the momentum conservation.
- The total energy is conserved in inelastic collisions
- The conservation of total energy is equivalent to conservation of rest mass
- Mass and energy are equivalent → they form a single invariant: mass-energy
- relation: $E = mc^2$ or $m = E/c^2 \rightarrow$ we can convert one into the other
- The conversion of mass into energy is often used in nuclear physics: e.g. eV or MeV units for the mass of particles
- Or a mass less particle (e.g. photon) can get a "mass" assigned to it based on its energy
- We can think of the kinetic energy as an external energy and of the rest-mass energy as an internal
 energy.
- **Internal energy** is to the largest part mad up of the total rest-mass energy of the constituent fundamental particles, but it can also include:
 - molecular motion,
 - intermolecular potential energy,
 - atomic potential energy,
 - nuclear potential energy
- The rest mass or (proper mass) of a body is generally not constant.
- We can assign a rest mass to any collection of particles in motion in a frame at which the centre of mass is at rest.
- In classical physics we have 2 conservation laws: energy and mass conservation \rightarrow in SR we have 1: mass-energy conservation.

1.2 Lorentz transformation of momentum, energy, mass and force

1.2.1 Momentum and energy

$$\begin{split} p_x &= \frac{1}{\sqrt{1 - v^2/c^2}} \left(p_x' + \frac{E'v}{c^2} \right) & p_x' = \frac{1}{\sqrt{1 - v^2/c^2}} \left(p_x - \frac{Ev}{c^2} \right) \\ p_y &= p_y' \\ p_z &= p_z' \\ E &= \frac{1}{\sqrt{1 - v^2/c^2}} \left(E' + v p_x \right) & E' &= \frac{1}{\sqrt{1 - v^2/c^2}} \left(E - v p_x \right) \end{split}$$

$$\sqrt{1-v^2/c^2} \qquad \sqrt{1-v^2/c^2}$$

Very similar to the Lorentz transformation of x, y, z, t:

$$x' = \frac{x - vt}{\sqrt{1 - v^2/c^2}} \qquad p'_x = \frac{p_x - v(E/c^2)}{\sqrt{1 - v^2/c^2}}$$
$$t' = \frac{t - (v/c^2)x}{\sqrt{1 - v^2/c^2}} \qquad \frac{E'}{c^2} = \frac{(E/c^2) - (v/c^2)p_x}{\sqrt{1 - v^2/c^2}}$$

- When relativity is put into 4 dimensional space-time form a four-vector can be created out of the space and time coordinates
- Similarly a four-vector can be created out of the three momentum components and the energy
- \bullet If energy and momentum are conserved in one interaction in an inertial frame \rightarrow then they are also conserved for the interaction in another inertial frame
- If momentum is conserved \rightarrow energy must be conserved as well.

1.2.2 Mass

The transformation of mass follows directly from the transformation of energy:

$$m = \frac{m'(1 + u'_x v/c^2)}{\sqrt{1 - v^2/c^2}} \qquad m' = \frac{m(1 - u_x v/c^2)}{\sqrt{1 - v^2/c^2}}$$

1.2.3 Force

$$F_x = F'_x + \frac{u'_y v}{c^2 + u'_x v} F'_y + \frac{u'_z v}{c^2 + u'_x v} F'_z \qquad F'_x = F_x - \frac{u_y v}{c^2 - u_x v} F_y - \frac{u_z v}{c^2 - u_x v} F_z$$

$$F_y = \frac{\sqrt{1 - v^2/c^2}}{1 + u'_x v/c^2} F'_y \qquad F'_y = \frac{\sqrt{1 - v^2/c^2}}{1 - u_x v/c^2} F_y$$

$$F_z = \frac{\sqrt{1 - v^2/c^2}}{1 + u'_x v/c^2} F'_z \qquad F'_z = \frac{\sqrt{1 - v^2/c^2}}{1 - u_x v/c^2} F_z$$

A more **compact version**:

$$\frac{1}{\sqrt{1 - v^2/c^2}} = \gamma$$

$$F_x = \frac{F'_x + (v/c^2)\bar{u}' \cdot \bar{F}'}{1 + u'_x v/c^2} \qquad F'_x = \frac{F_x - (v/c^2)\bar{u} \cdot \bar{F}}{1 - u_x v/c^2}$$

$$F_y = \frac{F'_y}{1 + u'_x v/c^2} \qquad F'_y = \frac{F_y}{1 - u_x v/c^2}$$

$$F_z = \frac{F'_z}{1 + u'_x v/c^2} \qquad F'_z = \frac{F_z}{1 - u_x v/c^2}$$

 F_x depends on $\bar{u} \cdot \bar{F}$ the power developed by the force in another frame \to power and force are related in 4D space, similar to momentum and energy.

The 4th relation that goes together with the force is:

$$\bar{u} \cdot \bar{F} = \frac{\bar{u}' \cdot \bar{F}' + vF_x}{1 + u'_x v/c^2} \qquad \bar{u}' \cdot \bar{F}' = \frac{\bar{u} \cdot \bar{F} - vF_x}{1 - u'_x v/c^2}$$

Special case: if a body is at rest (u'=0) in the S' frame and it is subjected to a force with components F'_x, F'_y, F'_z

$$F_x = F'_x$$

$$F_y = \frac{F'_y}{\gamma} = \frac{F'_y}{\sqrt{1 - v^2/c^2}}$$

$$F_z = \frac{F'_z}{\gamma} = \frac{F'_z}{\sqrt{1 - v^2/c^2}}$$

The force is the gratest in the rest frame of the object and smaller in all other inertial frames.