

Seeing is Believing: Exploring Convolutional Neural Networks

Yinan Guo

Statistics & Data Science

What is CNN? How DL transformed CV?

01 Object Detection

[1]

[3]

03 Image Reorganization

02 Image Segmentation

[2]

Generative models

[4]

The basics

We usually accept input images as pixel-wise matrix. i.e. a 1080 x 1080 x 3 RGB image.

Two Concepts

Feature Extraction and Convolution

Features: Eyes, Hand, Position of body, Color, etc.

Past: Manual Feature Extraction

Domain Knowledge Define Features

Label Features and Classify

Feature Extraction by Convolution operation

The Convolution Operation

The Convolution Operation

10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0

0	0	30	30	0	0
0	0	30	30	0	0
0	0	30	30	0	0
0	0	30	30	0	0
0	0	30	30	0	0
0	0	30	30	0	0

[6]

Example Credit: https://www.youtube.com/watch?v=gLwX3zHkims&t=333s

[7]

Padding

Edge of the original input is not used as often as the central ones.

0	0	0	0	0	0	0	0	0	0
0	10	10	10	10	0	0	0	0	0
0	10	10	10	10	0	0	0	0	0
0	10	10	10	10	0	0	0	0	0
0	10	10	10	10	0	0	0	0	0
0	10	10	10	10	0	0	0	0	0
0	10	10	10	10	0	0	0	0	0
0	10	10	10	10	0	0	0	0	0
0	10	10	10	10	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Convolution Layer (Padding, Stride)

Example of 1 filter, Padding =0, Stride =1

0 0
0 0
0 0 1 0 -1
0 0 * 1 0 -1
0 0 1 0 -1
0 0
0 0 Vertical
0 0

[6]

Pooling Layer (Filter size, Stride)

1	3	1	2			
2	9	1	1	Max Pooling	9	2
1	5	2	1	f = 2 s = 2	6	3
3	6	3	2			

Max pooling, Average pooling, etc.

[6]

[7]

State of Art Models

Research Direction: Classification Accuracy

$$(2015+)$$
 Layers >= 20

Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-**Layer Vanilla Convolutional Neural Networks**

Creidit: https://theaisummer.com/cnn-architectures/

Application 1: Document Organization

Problem: Time, Money, Accuracy

Application 2: Al cloud scale

Problem: Detect unlabeled vegetables

Cloud based Al Chip based Al

Large Scale Network Applications

Research Direction: Generative models

Nvidia DLSS

Image References:

- [1] Ragab DA, Sharkas M, Marshall S, Ren J. 2019. Breast cancer detection using deep convolutional neural networks and support vector machines. *PeerJ* 7:e6201 https://doi.org/10.7717/peerj.6201
- [2] Vyas, K. (2020, April 26). *Object segmentation*. Medium. Retrieved April 25, 2023, from https://medium.com/visionwizard/object-segmentation-4fc67077a678
- [3] Gayde, W. (2017, April 19). *Passengers leaving the US will have to pass facial recognition scanners at all international airports in the future*. TechSpot. Retrieved April 25, 2023, from https://www.techspot.com/news/69005-passengers-leaving-us-have-pass-facial-recognition-scanners.html
- [4] Steve, P. author B. (2016, March 24). *Face2Face: Real-time face capture Steve Diggins*. Steve Diggins. Retrieved April 25, 2023, from http://stevediggins.com/2016/03/23/face2face-real-time-face-capture/

[5] Mohammad B., Robert B., *A Critical Study on the Recent Deep Learning Based Semi-Supervised Video Anomaly Detection Methods*, https://arxiv.org/pdf/2111.01604.pdf

[6] Anh H. Reynolds. (2017, October 15). *Convolutional Neural Networks (cnns)*. Anh H. Reynolds. Retrieved April 25, 2023, from https://anhreynolds.com/blogs/cnn.html

[7] Shah, S. (2022, March 15). *Convolutional Neural Network: An overview*. Analytics Vidhya. Retrieved April 25, 2023, from https://www.analyticsvidhya.com/blog/2022/01/convolutional-neural-network-an-overview/

Large Scale Network Applications

Research Direction: Generative models

My Past Projects: Al cloud scale

Research Direction: Mobile CNN

