

Characterization of user behaviors for demand response in data centers

Maël Madon Euro-Par 2022 @ University of Glasgow

Introduction

Before After

Before After Energy Data center Data center = 1 Data center = 3 Energy = 2 Energy = 3

Rebound effect

Unrealized savings due to a rebound in the demand caused by the efficiency improvements

Systemic effect, from the user side => engineers typically unequipped to face it

Sufficiency policies (IPCC, 2022)

A set of measures and daily practices that avoid demand for energy, materials, land and water while delivering human well-being for all within planetary boundaries.

What would "sufficiency" mean for data centers?

- Auto-regulate ourselves, accept to make efforts
- Prerequisite: understand how the user submission behavior affects the load in the data center

Behavior during demand response window: rigid

Behavior during demand response window: renounce

Behavior during demand response window: delay

Simulating demand response behaviors

Five behaviors studied:

User behaviors for demand response in data centers

Experimental campaign

- Cleaning the original workload (Metacentrum2, from the Parallel Workloads Archive)
 - keep only requested cores < 16 and execution time < 1 day</p>

- Cleaning the original workload (Metacentrum2, from the Parallel Workloads Archive)
 - keep only requested cores < 16 and execution time < 1 day</p>
- Sizing the platform to fit the workload

- 1 Cleaning the original workload (Metacentrum2, from the Parallel Workloads Archive)
 - keep only requested cores < 16 and execution time < 1 day</p>
- Sizing the platform to fit the workload
- Selecting 105 days to run the experiments
 - all weekdays between Jun 1, 2014 and Oct 23, 2014

- Cleaning the original workload (Metacentrum2, from the Parallel Workloads Archive)
 - keep only requested cores < 16 and execution time < 1 day</p>
- Sizing the platform to fit the workload
- Selecting 105 days to run the experiments
 - all weekdays between Jun 1, 2014 and Oct 23, 2014
- Simulating the five behaviors for each day
 - starting the simulation one day before and stopping one day after to avoid side effects
 - demand response event arises at 16:00 on day 2 and lasts 1 (resp. 4) hour

- 1 Cleaning the original workload (Metacentrum2, from the Parallel Workloads Archive)
 - keep only requested cores < 16 and execution time < 1 day</p>
- Sizing the platform to fit the workload
- 3 Selecting 105 days to run the experiments
 - all weekdays between Jun 1, 2014 and Oct 23, 2014
- Simulating the five behaviors for each day
 - starting the simulation one day before and stopping one day after to avoid side effects
 - demand response event arises at 16:00 on day 2 and lasts 1 (resp. 4) hour

(FYI the exp. campaign ran in <2h on a general purpose machine.)

A characterization of each behavior Experimental results

What can we expect from each behavior in terms of

- energy saved
 - in the window
 - after the window
 - overall
- impact on the scheduling (= QoS)
 - \blacksquare waiting_{time} = starting_{time} submission_{time}
 - \blacksquare $slowdown = (finish_{time} submission_{time})/execution_{time}$

- In % difference from the baseline ("rigid" behavior)
- Window 4 hours:

User behaviors for demand response in data centers

- In % difference from the baseline ("rigid" behavior)
- Window 1 hour:

User behaviors for demand response in data centers

A characterization of each behavior Explanation of energy results

Fluid and residual mass

Gains wrt fluid-residual ratio

Conclusion and research directions

Pros and cons of each behavior:

behavior	energy in	energy overall	sched. metrics	"acceptability"	
renounce	1st	1st	1st*	4th	
delay	1st	4th	4th	2nd	
degrad	3rd	2nd	2nd	3rd	
reconfig	4th	3rd	3rd	1st	

Pros and cons of each behavior:

behavior	energy in	energy overall	sched. metrics	"acceptability"
renounce	1st	1st	1st*	4th
delay	1st	4th	4th	2nd
degrad	3rd	2nd	2nd	3rd
reconfig	4th	3rd	3rd	1st

- user submission patterns = a lever among others
 - has some inertia
 - leveraging the effort inside the scheduler seems essential
- quantify "acceptability", work on fairness, social sciences?

- Experimental part
 - Improve model (speedup, ...)
 - Try other schedulers (FCFS, easy backfilling, ...)
 - Try with anticipation
 - Home-made scheduler leveraging the user effort

- Experimental part
 - Improve model (speedup, ...)
 - Try other schedulers (FCFS, easy backfilling, ...)
 - Try with anticipation
 - Home-made scheduler leveraging the user effort
- User model
 - Analyze actual behaviors
 - More realistic user submission patterns (Feitelson et al. Resampling with Feedback)

- Experimental part
 - Improve model (speedup, ...)
 - Try other schedulers (FCFS, easy backfilling, ...)
 - Try with anticipation
 - Home-made scheduler leveraging the user effort
- 2 User model
 - Analyze actual behaviors
 - More realistic user submission patterns (Feitelson et al. Resampling with Feedback)
- Going further: what is a "sufficient data center"?
 - reflection to have on our basic digital needs
 - tools and relevant feedback to empower the users

- All the details in the article
- Material to reproduce the experiments:
 - experiment repository: gitlab.irit.fr/sepia-pub/ open-science/demand-response-user
 - plugin "Batmen" for Batsim: gitlab.irit.fr/sepia-pub/mael/batmen
- Contact me:
 - www.irit.fr/~Mael.Madon
 - mael.madon@irit.fr

