

SEQUENCE LISTING

<110> Israeli, Ron S.

Heston, Warren D.W.

Fair, William R.

<120> PROSTATE-SPECIFIC MEMBRANE ANTIGEN

<130> 1769/41426-C/JPW/CY

<140> US 08/466,381

<141> 1995-06-06

<150> US 08/403,803

<151> 1995-03-17

<150> PCT/US93/10624

<151> 1993-11-05

<150> US 07/973,337

<151> 1992-11-05

<160> 38

<170> PatentIn version 3.1

<210> 1

<211> 2653

<212> DNA

<213> Human

<400> 1 ctcaaaaggg gccggatttc cttctcctgg aggcagatgt tgcctctctc tctcgctcgg

Page 1

60

		,	
		aga aactggaccc caggtctgga	120
		agt gagattgaga.gagactttac	180
		agc acaggcgcgg gtcccgggag	240
		acg aaaccgactc ggctgtggcc	300
accgegegee geeegeg	jetg getgtgeget ggggeget	gg tgctggcggg tggcttcttt	360
ctcctcggct tcctctt	cgg gtggtttata aaatcctc	cca atgaagctac taacattact	420
ccaaagcata atatgaa	lagc atttttggat gaattgaa	aag ctgagaacat caagaagttc	480
ttatataatt ttacaca	igat accacattta gcaggaac	cag aacaaaactt tcagcttgca	540
aagcaaattc aatccca	igtg gaaagaattt ggcctgga	att ctgttgagct agcacattat	600
gatgtcctgt tgtccta	eccc aaataagact catcccaa	act acatctcaat aattaatgaa	660
gatggaaatg agatttt	caa cacatcatta tttgaacc	cac ctcctccagg atatgaaaat	720
gtttcggata ttgtacc	acc tttcagtgct ttctctcc	etc aaggaatgee agagggegat	780
ctagtgtatg ttaacta	tgc acgaactgaa gacttctt	ta aattggaacg ggacatgaaa	840
atcaattgct ctgggaa	aat tgtaattgcc agatatgg	gga aagttttcag aggaaataag	900
gttaaaaatg cccagct	ggc aggggccaaa ggagtcat	to totactooga cootgotgac	960 .
tactttgctc ctggggt	gaa gteetateea gatggttg:	gga atcttcctgg aggtggtgtc	1020
cagcgtggaa atatcct	aaa tctgaatggt gcaggaga:	acc ctctcacacc aggttaccca	1080
gcaaatgaat atgctta	ıtag gegtggaatt geagagge	etg ttggtcttcc aagtattcct	1140
gttcatccaa ttggata	icta tgatgcacag aagctcct	ag aaaaaatggg tggctcagca	1200
ccaccagata gcagctg	ggag aggaagtete aaagtgee	ect acaatgttgg acctggcttt	1260
actggaaact tttctac	caca aaaagtcaag atgcacat	cc actctaccaa tgaagtgaca	1320
agaatttaca atgtgat	agg tactctcaga ggagcagt	gg aaccagacag atatgtcatt	1380
ctgggaggtc accggga	actc atgggtgttt ggtggtat	tg accetcagag tggagcaget	1440
gttgttcatg aaattgt	gag gagċtttgga acactgaə	aaa aggaagggtg gagacctaga	1500
agaacaattt tgtttgc	aag ctgggatgca gaagaatt	tg gtcttcttgg ttctactgag	1560
tgggcagagg agaattc	aag acteetteaa gagegtge	gcg tggcttatat taatgctgac	1620
tcatctatag aaggaaa	acta cactctgaga gttgattç	gta caccgctgat gtacagcttg	1680 .
gtacacaacc taacaaa	aga gctgaaaagc cctgatga	aag getttgaagg caaatetett	1740
tatgaaagtt ggactaa	aaaa aagtccttcc ccagagtt	ca gtggcatgcc caggataagc	1800
aaattgggat ctggaaa	atga ttttgaggtg ttcttcca	aac gacttggaat tgcttcaggc	1860
agagcacggt atactaa	aaa ttgggaaaca aacaaatt	ca geggetatee actgtateae	1920
agtgtctatg aaacata	atga gttggtggaa aagtttta	atg atccaatgtt taaatatcac	1980
ctcactgtgg cccaggt		age tagecaatte catagtgete	2040
	Pag	e 2	

ccttttgatt	gtcgagatta	tgctgtagtt	ttaagaaagt	atgctgacaa	aatctacagt	2100
atttctatga	aacatccaca	ggaaatgaag	acatacagtg	tatcatttga	ttcacttttt	2160
tctgcagtaa	agaattttac	agaaattgct	tccaagttca	gtgagagact	ccaggacttt	2220
gacaaaagca	acccaatagt	attaagaatg	atgaatgatc	aactcatgtt	tctggaaaga	2280
gcatttattg	atccattagg	gttaccagac	aggccttttt	ataggcatgt	catctatgct	2340
ccaagcagcc	acaacaagta	tgcaggggag	tcattcccag	gaatttatga	tgctctgttt	2400
gatattgaaa	gcaaagtgga	cccttccaag	gcctggggag	aagtgaagag	acagatttat	2460
gttgcagcct	tcacagtgca	ggcagctgca	gagactttga	gtgaagtagc	ctaagaggat	2520
tctttagaga	atccgtattg	aatttgtgtg	gtatgtcact	cagaaagaat	cgtaatgggt	2580
atattgataa	attttaaaat	tggtatatit	gaaataaagt	tgaatattat	atataaaaaa	2640
aaaaaaaaa	aaa					2653

<210> 2

<211> 750

<212> PRT

<213> Human

<400> 2

Met Trp Asn Leu Leu His Glu Thr Asp Ser Ala Val Ala Thr Ala Arg 1 5 10 15

Arg Pro Arg Trp Leu Cys Ala Gly Ala Leu Val Leu Ala Gly Gly Phe .20 25 30

Phe Leu Gly Phe Leu Phe Gly Trp Phe Ile Lys Ser Ser Asn Glu 35 40 45

Ala Thr Asn Ile Thr Pro Lys His Asn Met Lys Ala Phe Leu Asp Glu 50 60

Leu Lys Ala Glu Asn Ile Lys Lys Phe Leu Tyr Asn Phe Thr Gln Ile 65 70 75 80

Pro His Leu Ala Gly Thr Glu Gln Asn Phe Gln Leu Ala Lys Gln Ile 85 90 95

Gln Ser Gln Trp Lys Glu Phe Gly Leu Asp Ser Val Glu Leu Ala His 100 105 110

Tyr Asp Val Leu Leu Ser Tyr Pro Asn Lys Thr His Pro Asn Tyr Ile Page 3 115 120 125

Ser	11e 130	Ile	Asn	Glu	Asp	Gly 135	Asn	Glu	Ile	Phe	Asn 140	Thr	Ser	Leu	Phe
Glu 145	Pro	Pro	Pro	Pro	Gly 150	Tyr	Glu	Asn	Val	Ser 155	Asp	Ile	Val	Pro	Pro 160
Phe	Ser	Ala	Phe	Ser 165	Pro	Gln	Gly	Met	Pro 170	Glu	Gly	Asp	Leu	Val 175	Tyr
Val	Asn	Tyr	Ala 180	Arg	Thr	Glu	Asp	Phe 185	Phe	Lys	Leu	Glu	Arg 190	Asp	Met
Lys	Ile	Asn 195	Cys	Ser	Gly	Lys	Ile 200	Val	Ile	Ala	Arg	Tyr 205	Gly	Lys	Val
Phe	Arg 210	Gly	Asn	Lys	Val	Lys 215	Asn	Ala	Gln	Leu	Ala 220	Gly	Ala	Lys	Gly
Val 225	Ile	Leu	Tyr	Ser	Asp 230	Pro	Ala	Asp	Tyr	Phe 235	Ala	Pro	Gly	Val	Lys 240
Ser	Tyr	Pro	Asp	Gly 245	Trp	Asn	Leu	Pro	Gly 250	Gly	Gly	Val	Gln	Arg 255	Gly
Asn	Ile	Leu	Asn 260	Leu	Asn	Gly	Ala	Gly 265	Asp	Pro	Leu	Thr	Pro 270	Gly	Tyr
Pro	Ala	Asn 275	Glu	Tyr	Ala	Tyr	Arg 280	Arg	Gly	Ile	Ala	Glu 285	Ala	Val	Gly
Leu	Pro 290	Ser	Ile	Pro	Val	His 295	Pro	Ile	Gly	Tyr	Tyr 300	Asp	Ala	Gln	Lys
Leu 305	Leu	Glu	Lys	Met	Gly 310		Ser	Ala		Pro 315		Ser	Ser	Trp	Arg 320
Gly	Ser	Leu	Lys	Val 325	Pro	Tyr	Asn	Val	Gly 330	Pro	Gly	Phe	Thr	Gly 335	Asn
Phe	Ser	Thr	Gln 340	Lys	Val	Lys	Met	His 345	Ile	His	Ser	Thr	Asn 350	Glu	Val
Thr	Arg	Ile 355	Tyr	Asn	Val	Ile	Gly 360	Thr	Leu	Arg	Gly	Ala 365	Val	Glu	Pro
Asp	Arg 370	Tyr	Val	Ile	Leu	Gly 375	Gly	His		Asp ige 4	380	Trp	Val	Phe	Gly

Gly 385	Ile	Asp	Pro	Gln	Ser 390	Gly	Ala	Ala	Val	Val 395	His	Glu	Ile	Val	Arg 400
Ser	Phe	Gly	Thr	Leu 405	Lys	Lys	Glu	Gly	Trp 410	Arg	Pro	Arg	Arg	Thr 415	Ile
Leu	Phe	Ala	Ser 420	Trp	Asp	Ala	Glu	Glu 425	Phe	Gly	Leu	Leu	Gly 430	Ser	Thr
Glu	Trp	Ala 435	Glu	Glu	Asn	Ser	Arg 440	Leu	Leu	Gln	Glu	Arg 445	Gly	Val	Ala
Tyr	Ile 450	Asn	Ala	Asp	Ser	Ser 455	Ile	Glu	Gly	Asn	Tyr 460	Thr	Leu	Arg	Val
Asp 465	Cys	Thr	Pro	Leu	Met 470	Tyr	Ser	Leu	Val	His 475	Asn	Leu	Thr	Lys	Glu 480
Leu	Lys	Ser	Pro	Asp 485	Glu	Gly	Phe	Glu	Gly 490	Lys	Ser	Leu	Tyr	Glu 495	Ser
Trp	Thr	Lys	Lys 500	Ser	Pro	Ser	Pro	Glu 505	Phe	Ser	Gly	Met	Pro 510	Arg	Ile
Ser	Lys	Leu 515	Gly	Ser	Gly	Asn	Asp 520	Phe	Glu	Val	Phe	Phe 525	Gln	Arg	Leu
Lys	Ile 530	Ala	Ser	Gly	Arg	Ala 535	Arg	Tyr	Thr	Lys	Asn 540	Trp	Glu	Thr	Asn
Lys 545	Phe	Ser	Gly	Tyr	Pro 550	Leu	Tyr	His	Ser	Val 555	Tyr	Glu	Thr	Tyr	Glu 560
Leu	Val	Glu	Lys	Phe 565	Tyr	Asp	Pro	Met	Phe 570	Lys	Tyr	His	Leu	Thr 575	Val
Ala	Gln	Val	Arg 580	Gly	Gly	Met	Val	Phe 585	Glu	Leu	Ala	Asn	Ser 590	Ile	Val
Leu	Pro	Phe 595	Asp	Cys	Arg	Asp	Tyr 600	Ala	Val	Val	Leu	Arg 605	Lys	Tyr	Ala
Asp	Lys 610	Ile	Tyr	Ser	Ile	Ser 615	Met	Lys	His	Pro	Gln 620	Glu	Met	Lys	Thr
Tyr 625	Ser	Val	Ser	Phe	Asp 630	Ser	Leu	Phe	Ser	Ala 635	Val	Lys	Asn	Phe	Thr 640

Glu Ile Ala Ser Lys Phe Ser Glu Arg Leu Gln Asp Phe Asp Lys Ser 645 650 655

Asn Pro Ile Val Leu Arg Met Met Asn Asp Gln Leu Met Phe Leu Glu 660 665 670

Arg Ala Phe Ile Asp Pro Leu Gly Leu Pro Asp Arg Pro Phe Tyr Arg 675 680 685

His Val Ile Tyr Ala Pro Ser Ser His Asn Lys Tyr Ala Gly Glu Ser 690 700

Phe Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile Glu Ser Lys Val Asp 705 710 715 720

Pro Ser Lys Ala Trp Gly Glu Val Lys Arg Gln Ile Tyr Val Ala Ala 725 730 735

Phe Thr Val Gln Ala Ala Ala Glu Thr Leu Ser Glu Val Ala 740 745 750

<210> 3

<211> 8

<212> PRT

<213> Human

<400> 3

Ser Leu Tyr Glu Ser Trp Thr Lys

<210> 4

<211> 15

<212> PRT

<213> Human

<220>

<221> MISC_FEATURE

<222> (6)..(7)

<223> Xaa=unknown

```
Ser Tyr Pro Asp Gly Xaa Xaa Leu Pro Gly Gly Gly Val Gln Arg
<210> 5
<211> 7
<212> PRT
<213> Human
<400> 5
Phe Tyr Asp Pro Met Phe Lys
               5
<210> 6
<211> 9
<212> PRT
<213> Human
<400> 6
Ile Tyr Asn Val Ile Gly Thr Leu Lys
<210> 7
<211> 22
<212> PRT
<213> Human
<220>
<221> MISC FEATURE
<222>
      (4)..(5)
<223> Xaa=unknown
<400> 7
Phe Leu Tyr Xaa Xaa Thr Gln Ile Pro His Leu Ala Gly Thr Glu Gln
                                   10
Asn Phe Gln Leu Ala Lys
```

<400> 4

Page 7

```
<210> 8
<211> 17
<212>
      PRT
<213> Human
<400> 8
Gly Val Ile Leu Tyr Ser Asp Pro Ala Asp Tyr Phe Ala Pro Asp Val
Lys
<210> 9
<211:>
      17
<212>
      PRT
<213> Human
<400> 9
Pro Val Ile Leu Tyr Ser Asp Pro Ala Asp Tyr Phe Ala Pro Gly Val
Lys
<210> 10
<211> 15
<212> PRT
<213> Human
<400> 10
Ala Phe Ile Asp Pro Leu Gly Leu Pro Asp Arg Pro Phe Tyr Arg
<210> 11
<211> 19
<212> PRT
```

```
<400> 11
Tyr Ala Gly Glu Ser Phe Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile
Glu Ser Lys
<210> 12
<211> 22
<212>
     PRT
<213> Human
<220>
<221> MISC_FEATURE
<222> (14)..(15)
<223> Xaa=unknown
<400> 12
Thr Ile Leu Phe Ala Ser Trp Asp Ala Glu Glu Phe Gly Xaa Xaa Gly
Ser Thr Glu Glu Ala Glu
<210> 13
<211> 17
<212> DNA
<213> artificial sequence
<220>
<223>
     primer
<220>
<221> misc_feature
<222>
     (12)..(12)
<223> n=any nucleotide
```

Page 9

<213> Human

<400> ttytay	13 gayc cnatgtt	17
<210>	14	
<211>	17	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	primer	
<220>		
<221>	misc_feature	
<222>	(6)(6)	
<223>	n=any nucleotide	
<400> aacatn	14 nggrt crtaraa	17
<210>	15	
<211>	17	
<212>	DNA	
<213>	artificial sequence	
<220>		
	primer	
<220>		
	misc_feature	
	(12)(12)	
<223>	n=any nucleotide	
<400>	15	
	yaayg tnathgg	17
<210>	16	

```
<211> 17
<212> DNA
<213> artificial sequence
<220>
<223>
      primer
<220>
<221> misc_feature
<222> (6)..(6)
<223> n=any nucleotide
<400> 16
                                                                    17
ccdatnacrt trtadat
<210> 17
<211> 17
<212> DNA
<213> artificial sequence
<220>
<223> primer
<220>
<221> misc feature
<222> (3)..(3)
<223> n=any nucleotide
<220>
<221> misc_feature
<222> (6)..(6)
<223> n=any nucleotide
<400> 17
                                                                    17
ccngcngayt ayttygc
```

Page 11

<210> 18

```
<211> 17
<212> DNA
<213> artificial sequence
<220>
<223>
      primer
<220>
<221> misc_feature
<222>
      (11)..(11)
<223> n=any nucleotide
<220>
<221> misc_feature
<222> (15)..(15)
<223> n=any nucleotide
<400> 18
                                                                    17
gcraartart ncgcngg
<210> 19
<211> 20
<212> DNA
<213> artificial sequence
<220>
<223>
      primer
<220>
<221> misc_feature
<222> (3)..(3)
<223> n=any nucleotide
<400> 19
```

acngarcara ayttycarct

20

<210>	20	
<211>	20	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	primer	
<220>		
<221>	misc_feature	
<222>	(18)(18)	
<223>	n=any nucleotide	
<400>	20 aart tytgytcngt	20
agytgi	aart tytgytengt	20
<210>	21	
<211>	17	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	primer	
<400>	21 aayt tycarct	17
garcar	aayt tycalct	Ι,
<210>	22	
<211>	17	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	primer	
<400>	22 aart tytgytc	17
agytyr	aute cycyyce	Τ,

<210> 23

```
<211> 20
<212> DNA
<213> artificial sequence
<220>
<223>
     primer
<220>
<221> misc_feature
<222> (9)..(9)
<223> n=any nucleotide
<400> 23
                                                                    20
tgggaygcng argarttygg
<210> 24
<211> 20
<212> DNA
<213> artificial sequence
<220>
<223>
      primer
<220>
<221> misc_feature
<222> (12)..(12)
<223> n=any nucleotide
<400> 24
                                                                    20
ccraaytcyt cngcrtccca
<210> 25
<211> 17
<212> DNA
```

<213> artificial sequence

```
<220>
<223> primer
<220>
<221> misc_feature
<222> (9)..(9)
<223> n=any nucleotide
<400> 25
                                                                     17
tgggaygcng argartt
<210> 26
<211> 17
<212> DNA
<213> artificial sequence
<220>
<223> primer
<220>
<221> misc_feature
<222> (9)..(9)
<223> n=any nucleotide
<400> 26
                                                                     17
aaytcytcng crtccca
<210> 27
<211> 780
<212> DNA
<213> chicken
<220>
<221> misc_feature
<222> (82)..(84)
```

<223> n=any nucleotide

```
<220>
<221> misc_feature
<222>
     (193)..(193)
<223> n=any nucleotide
<220>
<221> misc_feature
<222>
     (196)..(197)
<223> n=any nucleotide
<220>
<221> misc_feature
<222> (217)..(219)
<223> n=any nucleotide
<220>
<221> misc_feature
<222> (232)..(233)
<223> n=any nucleotide
<220>
<221> misc_feature
<222>
      (237)..(238)
<223> n=any nucleotide
<220>
<221> misc_feature
<222> (253)..(256)
<223> n=any nucleotide
<220>
```

<221> misc_feature

```
<222> (263)..(263)
```

<223> n=any nucleotide

<220>

<221> misc feature

<222> (600)..(601)

<223> n=any nucleotide

<220>

<221> misc_feature

<222> (721)..(724)

<223> n=any nucleotide

<400> 27 tacacttate ceatteggae atgeceaect tggaactgga gaecettaea ceeeaggett 60 cccttcgttc aaccacacc annngtttcc accagttgaa tcttcaggac taccccacat 120 180 tgctgttcag accatctcta gcagtgcagc agccaggctg ttcagcaaaa tggatggaga 240 cacatgctct ganagnngtt ggaaaggtgc gatccannnt tcctgtaagg tnngacnnaa 300 caaagcagga gannnngcca gantaatggt gaaactagat gtgaacaatt ccatgaaaga caggaagatt ctgaacatct tcggtgctat ccagggattt gaagaacctg atcggtatgt 360 tgtgattgga gcccagagag actcctgggg cccaggagtg gctaaagctg gcactggaac 420 480 tgctatattg ttggaacttg cccgtgtgat ctcagacata gtgaaaaacg agggctacaa accgaggcga agcatcatct ttgctagctg gagtgcagga gactacggag ctgtgggtgc 540 tactgaatgg ctggaggggt actctgccat gctgcatgcc aaagctttca cttacatcan 600 ngcttggatg ctccagtcct gggagcaagc catgtcaaga tttctgccag ccccttgctg 660 720 tatatgctgc tggggagtat tatgaagggg gtgaagaatc cagcagcagt ctcagagagc 780 nnnnctctat aacagacttg gcccagactg ggtaaaagca gttgttcctc ttggcctgga

<210> 28

<211> 660

<212> DNA

<213> rat

```
<221> misc_feature
      (284)..(284)
<222>
<223> n=any nucleotide
<220>
<221>
      misc_feature
      (224)..(224)
<222>
      n=any nucleotide
<223>
<220>
<221> misc_feature
<222>
      (255)..(255)
<223> n=any nucleotide
<220>
<221> misc_feature
<222> (412)..(414)
<223> n=any nucleotide
<220>
<221> misc feature
      (433)..(433)
<222>
<223> n=any nucleotide
<220>
      misc_feature
<221>
       (520)..(521)
<222>
<223> n=any nucleotide
<220>
<221>
      misc_feature
```

<222>

(536)..(543)

<223> n=any nucleotide

	28 Lag	ctattcaaaa	acatggaagg	aaactgtcct	cctagttgga	atatagattc	60
			cacagaatca				120
_	_		acatctttgg				180
_			agagagacgc				240
			gaaacttgcc				300
		_	tattatcttt				360
			ggaggggtac				420
	_	`	aagtcgtcct				480
			tggggaagat				540
		•	tatcgaaaca	·	,		600
			ccttttcttg			* * * *	660
ccccggac	, a a	egetgeatte	coccecti		**	geeedeeede	000
<210> 2	9						
<211> 5	40			. •	,		
<212> D	ANO				•		
<213> h	uma	in					
<220>							
<221> m	nisc	_feature					
<222> (214)(214)					
<223> n	=ar	y nucleotio	de				
<220>							
<221> m	nisc	: feature					
<222> (377	()(377)					
<223> n	ı=ar	y nucleotio	de				
		-					
<400> 2	9						
tatggaag	jga	gactgtccct	ctgactggaa	aacagactct	acatgtagga	tggtaacctc	60
agaaagca	ag	aatgtgaagc	tcactgtgag	caatgtgctg	aaagagataa	aaattcttaa	120
catctttg	gga	gttattaaag	gctttgtaga	accagatcac	tatgttgtag	ttggggccca	180

```
gagagatgca tggggccctg gagctgcaaa atcncggtgt aggcacagct ctcctattga
                                                                     240
aacttgccca gatgttctca gatatggtct taaaagatgg gtttcagccc agcagaagca
                                                                     300
                                                                     360
ttatctttgc cagttggagt gctggagact ttggatcggt tggtgccact gaatggctag
agggatacct ttcgtcncct'gcatttaaag gctttcactt atattaatct ggataaagcg
                                                                     420
gttcttggta ccagcaactt caaggtttct gccagcccac tgttgtatac gcttattgag
                                                                     480
aaaacaatgc aaaatgtgaa gcatccggtt actgggcaat ttctatatca ggacagcaac
                                                                     540
<210> 30
<211>
       27
<212> DNA
<213> artificial sequence
<220>
<223> primer
<400> 30
                                                                      27
acggagcaaa actttcagct tgcaaag
       31
<210>
<211>
<212> PRT
<213> artificial sequence
<220>
<223> primer
<400> 31
Thr Glu Gln Asn Phe Gln Leu Ala Lys
<210>
       32
<211>
       36
<212>
      DNA
<213> artificial sequence
<220>
```

<223> primer

```
<400> 32
                                                                     36
ctcttcggca tcccagcttg caaacaaaat tgttct
<210> . 33
<211> 36
<212> DNA
<213> artificial sequence
<220>
<223> primer
<400> 33
agaacaattt tgtttgcaag ctgggatgcc aaggag
                                                                     36
<210> 34
<211> 12
<212> PRT
<213> artificial sequence
<220>
<223> primer
<400> 34
Arg Thr Ile Leu Phe Ala Ser Trp Asp Ala Glu Glu
<210> 35
<211> 6
<212> PRT
<213> human
<400> 35
Asp Glu Leu Lys Ala Glu
<210> 36
<211> 6
<212> PRT
<213> human
```

<400> 36

Asn Glu Asp Gly Asn Glu 1 5

<210> 37

<211> 6

<212> PRT

<213> human

<400> 37

Lys Ser Pro Asp Glu Gly 1 5

<210> 38

<211> 17

<212> PRT

<213> human

<400> 38

Phe