Tema 2: Gestión de Procesos

- 1. Introducción
- 2. Conceptos fundamentales
- 3. Implementación de procesos
- 4. Hilos (Threads)
- 5. Planificación de la CPU

Bibliografía

W. Stalling. Sistemas Operativos. 5^a Edición.
Capítulos 3, 9 y 10.

Introducción

- Procesamiento concurrente:
 - Multiprogramación
 - Multiprocesamiento
 - Procesamiento distribuido
- Proceso: Programa en ejecución
- Proceso ≠ programa
- Servicios del SO
 - Ejecución concurrente
 - Sincronización de procesos
 - Comunicación entre procesos

Conceptos fundamentales (I)

- Relación entre procesos:
 - Independientes
 - Cooperativos
 - Competitivos
- Estado de un proceso:
 - Suspendido
 - Activado
 - Ejecución
 - Preparado 🖸

Estado global del sistema

Conceptos fundamentales (y II)

- Operaciones con procesos:
 - Creación de procesos: fork
 - Proceso padre e hijos
 - Árbol de procesos
 - Terminación de procesos: exit, kill

Árbol de procesos en un sistema UNIX representativo

Implementación de procesos (I)

El **bloque de control de procesos (PCB)** es la estructura de datos del sistema que mantiene toda la información sobre un proceso.

- El PCB de cada proceso se crea cuando se crea un proceso y se destruye cuando el proceso termina.
- Información que contiene:
 - ▶ Identificador del proceso: *pid*
 - Estado de un proceso
 - ▶ Registros de la CPU: *CP*, *flags*, ... □
 - ► Información de planificación de la CPU: *prioridad*, ...
 - Información de gestión de memoria: *punteros*, *tablas*, *registros*, ...
 - ► Información contable: *tiempo consumido*, *límites de tiempo*, ...
 - ▶ Información de estado de E/S: *lista de dispositivos de E/S, lista de archivos abiertos,*

. . .

Implementación de procesos (II)

pid

estado

registros

prioridad

punteros a memoria

lista de archivos abiertos

lista de dispositivos de E/S asignados

. . .

PCB de un proceso

Implementación de procesos (III)

Cambio de contexto de un proceso

Retirar de la CPU el proceso en ejecución y asignarla a un proceso en estado de preparado.

- Acciones necesarias
 - Salvar el contenido del proceso en ejecución a su PCB
 - Restaurar el contexto del nuevo proceso desde su PCB
- ▶ Reducen la utilización de la CPU

Utilización =
$$\frac{T(P1) + T(P2) + T(P3)}{T(P1) + T(P2) + T(P3) + 3 \cdot t}$$

Implementación de procesos (IV)

- Cambio de contexto de un proceso
 - Motivos que lo provocan
 - Finalización normal de un proceso en ejecución
 - Espera de un proceso al realizar una operación de E/S
 - Existencia de una interrupción
- SO como manejador de interrupciones

Implementación de procesos (V)

- Colas de procesos: Tipo Abstracto de Datos que mantiene los PCB de los procesos en una estructura dinámica de lista.
 - ➤ Se mantiene un cola de procesos por cada estado de los procesos.

- Sistemas con varios procesadores
- Lista de espera por recursos

Implementación de procesos (y VI)

Hilos (Threads)

Flujos de control independientes dentro de un mismo proceso con pila, variables locales y CP propios.

- Ventajas
 - Posibilidad de compartir une espacio de direcciones y recursos
 - ► El tiempo empleado en el cambio de contexto es menor que en los *procesos* completos
- Inconvenientes
 - Sincronización entre los hilos y entre los procesos.
 - Complejidad en la programación y depuración
- Diseño de programas basados en hilos
 - ► Aplicaciones con paralelismo potencial
 - Existencia de numerosas tareas de E/S
 - Existencia de eventos asíncronos

Planificación de la CPU (I)

- Conceptos de planificación
 - Escasez de recursos
 - ► Recursos de acceso exclusivo: CPU, Impresoras, etc.
 - ▶ Política de Asignación
- Situaciones de planificación
 - Cuando un proceso pasa del estado de ejecución a espera
 - Cuando un proceso pasa del estado de ejecución a preparado
 - Cuando un proceso pasa del estado de espera al estado de preparado
 - Cuando un proceso termina
- Tipos de planificación
 - Expropiativa
 - ► No expropiativa

Planificación de la CPU (II)

- Planificador de la CPU: Scheduler
- Cargador: Dispatcher
 - ► Cambiar de contexto
 - ➤ Saltar al punto apropiado del proceso para continuar desde ahí.
- Criterios de planificación
 - ► Utilización de la CPU Utilización = $\frac{t_{CPU_ocupada}}{t_{CPU_total}}$
 - ► Rendimiento Rendimiento = $\frac{n^{\circ} \text{ procesos terminados}}{t}$
 - ► Tiempo de retorno
 - ► Tiempo de espera
 - ► Tiempo de respuesta

Planificación de la CPU (II)

- Algoritmos de planificación no expropiativos
 - Servicio por orden de llegada (FCFS)
 - Planificación con prioridad
 - Estática
 - Dinámica
 - Primero la tarea más corta (SJF)

Planificación de la CPU (III)

- Algoritmos de planificación expropiativos
 - ▶ Planificación por turno circular (RR)
 - Planificación con prioridad
 - ► Tiempo que queda más corto (SRT)
 - ▶ Planificación con colas multinivel (MLQ)
 - Número de colas
 - Algoritmo de planificación para cada cola
 - Prioridad de las colas
 - Criterio que indique la cola en la que entra una tarea cuando necesite un servicio
 - ► Planificación con colas multinivel con realimentación (MLFQ)
 - Criterio que determine el movimiento de las tareas entre las colas
 - Planificación de múltiples procesadores
 - Planificación en tiempo real

Planificación de la CPU (y IV)

- Evaluación de algoritmos
 - Criterios
 - Maximizar la utilización
 - Maximizar el rendimiento
 - Otros o combinación de ellos.
 - ► Modelo determinista
 - ▶ Modelo de colas
 - ► Simulación
 - Implementación