Apellido y Nombres:	
Carrera: DNI:	
[Llenar con letra mavúscula de imprenta GRANDE]	

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática Teoría de la Computación

Parcial 1, tema 1 [Miércoles 2 de Mayo de 2018]

La evaluación dura 3 (tres) horas. Entregar en hojas separadas por ejercicio, numeradas, cada una con el Apellido y Tema en el Margen Superior Derecho. Entregar este enunciado. Respuestas incompletas reciben puntajes incompletos y 0 si no justifica. No usar celulares, libros, ni apuntes.

- 1) a) Defina y simbolice equivalencia lógica. Luego, determine el Valor de Verdad (VV) de $(\neg p \lor \neg q) \to q$ cuando el VV de $p \to q$ es False, donde p y q son proposiciones dadas. Finalmente, justifique si $(p \land q) \lor ((\neg p \land \neg q) \lor q) \equiv q \lor \neg p$, para todas las proposiciones p y q, en donde el empleo de una Tabla de Verdad (TV) no será suficiente.
 - b) Demuestre que $\emptyset \times A = \emptyset$ para todo conjunto A. Luego, justifique si puede concluirse que los conjuntos A y B son iguales cuando $\mathcal{P}(A) = \mathcal{P}(B)$, en donde $\mathcal{P}(X)$ es el conjunto potencia (o de partes) del conjunto X.
- 2) a) Defina y simbolice con un Diagrama de Venn (DV) la diferencia A B y la diferencia simétrica $A \oplus B$ de los conjuntos A y B. Luego demuestre para todo A y B, con y sin DV, que $A \oplus B = (A B) \cup (B A)$.
 - b) Enuncie y simbolice el Principio de Inducción Matemática (PIM). Luego, utilice el PIM para demostrar que para todo entero n positivo se cumple la Ec.(1):

$$1 \cdot 2^{1} + 2 \cdot 2^{2} + 3 \cdot 2^{3} + \dots + n \cdot 2^{n} = (n-1)2^{n+1} + 2 \tag{1}$$

- 3) a) Sea la función $f: X \to Y$. A partir de $\neg(\forall y \ \exists x (f(x) = y))$, deducir la condición equivalente $\exists y \ \forall x (f(x) \neq y)$, para todo $x \in X$, $y \in Y$ ¿Qué expresan estas condiciones con respecto a si f es inyectiva, sobreyectiva o biyectiva?
 - b) Sean los conjuntos A, B, y C, la función $g:A\to B$, y la función $f:B\to C$. Si f y $(f\circ g)$ son inyectivas ¿es g inyectiva?
- 4) a) Defina y simbolice el cuantificador universal, e indique cuándo es *True* y cuándo es *False*. Luego, demuestre que las proposiciones $\exists x (P(x) \land \neg Q(x))$ y $\exists x \neg (P(x) \to Q(x))$ son lógicamente equivalentes.
 - b) Probar usando reducción al absurdo que los únicos enteros no-negativos consecutivos a, b, y c que satisfacen $a^2 + b^2 = c^2$ son 3, 4, y 5.
- 5) a) Enuncie la ley de De Morgan de la negación de la proposición cuantificada $\exists x : P(x)$, y demuéstrela.
 - b) Defina conjunto de partes $\mathcal{P}(A)$ de un conjunto finito A de n elementos. Luego, demuestre usando el Principio de Inducción Matemática (PIM) que $|\mathcal{P}(A)| = 2^n$ para todo entero n no-negativo.