L. Vandenberghe EE236C (Spring 2016)

10. Proximal point method

- proximal point method
- augmented Lagrangian method
- Moreau-Yosida smoothing

Proximal point method

a 'conceptual' algorithm for minimizing a closed convex function f:

$$x^{(k)} = \operatorname{prox}_{t_k f}(x^{(k-1)})$$

$$= \operatorname{argmin}_{u} \left(f(u) + \frac{1}{2t_k} \|u - x^{(k-1)}\|_2^2 \right)$$

- ullet can be viewed as proximal gradient method (page 6-3) with g(x)=0
- \bullet of interest if prox evaluations are much easier than minimizing f directly
- a practical algorithm if inexact prox evaluations are used
- step size $t_k > 0$ affects number of iterations, cost of prox evaluations
- basis of the augmented Lagrangian method

Convergence

Assumptions

- f is closed and convex (hence, $prox_{tf}(x)$ is uniquely defined for all x)
- ullet optimal value f^\star is finite and attained at x^\star

Result

$$f(x^{(k)}) - f^* \le \frac{\|x^{(0)} - x^*\|_2^2}{2\sum_{i=1}^k t_i}$$
 for $k \ge 1$

- implies convergence if $\sum_i t_i \to \infty$
- rate is 1/k if t_i is fixed, or variable but bounded away from zero
- ullet t_i is arbitrary; however cost of prox evaluations will depend on t_i

Proof: apply analysis of proximal gradient method (lecture 6) with g(x) = 0

- since g is zero, inequality (3) on page 6-13 holds for any t>0
- from page 6-15, $f(x^{(i)})$ is nonincreasing and

$$t_i \left(f(x^{(i)}) - f^* \right) \le \frac{1}{2} \left(\|x^{(i)} - x^*\|_2^2 - \|x^{(i-1)} - x^*\|_2^2 \right)$$

ullet combine inequalities for i=1 to i=k to get

$$\left(\sum_{i=1}^{k} t_{i}\right) \left(f(x^{(k)}) - f^{\star}\right) \leq \sum_{i=1}^{k} t_{i} \left(f(x^{(i)}) - f^{\star}\right)$$

$$\leq \frac{1}{2} ||x^{(0)} - x^{\star}||_{2}^{2}$$

Accelerated proximal point algorithms

• we take g(x) = 0 in FISTA on page 9-7:

$$x^{(1)} = \operatorname{prox}_{t_1 f}(x^{(0)})$$

$$x^{(k)} = \operatorname{prox}_{t_k f} \left(x^{(k-1)} + \theta_k \left(\frac{1}{\theta_{k-1}} - 1 \right) \left(x^{(k-1)} - x^{(k-2)} \right) \right) \quad \text{for } k \ge 2$$

• choose any $t_k > 0$, determine θ_k from equation

$$\frac{\theta_k^2}{t_k} = (1 - \theta_k) \frac{\theta_{k-1}^2}{t_{k-1}}$$

- convergence if $\sum_i \sqrt{t_i} \to \infty$ (lecture 9)
- rate is $1/k^2$ if t_i is fixed or variable but bounded away from zero

Outline

- proximal point method
- augmented Lagrangian method
- Moreau-Yosida smoothing

Standard problem format

Primal and dual problem (page 7-18)

primal: minimize f(x) + g(Ax)

dual: maximize $-g^*(z) - f^*(-A^Tz)$

Examples

• set constraints $(g(y) = \delta_C(y))$:

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax \in C \end{array}$

• regularized norm approximation (g(y) = ||y - b||):

minimize f(x) + ||Ax - b||

Augmented Lagrangian method: proximal point method applied to dual

Proximal mapping of dual function

Definition: proximal mapping of $h(z) = f^*(-A^Tz) + g^*(z)$ is defined as

$$prox_{th}(z) = \underset{u}{\operatorname{argmin}} \left(f^*(-A^T u) + g^*(u) + \frac{1}{2t} ||u - z||_2^2 \right)$$

Dual expression: $prox_{th}(z) = z + t(A\hat{x} - \hat{y})$ where

$$(\hat{x}, \hat{y}) = \underset{x,y}{\operatorname{argmin}} \left(f(x) + g(y) + z^T (Ax - y) + \frac{t}{2} ||Ax - y||_2^2 \right)$$

 \hat{x} , \hat{y} minimize the augmented Lagrangian (Lagrangian + quadratic penalty)

Proof.

write augmented Lagrangian minimization as

minimize (over
$$x, y, w$$
) $f(x) + g(y) + \frac{t}{2} ||w||_2^2$ subject to
$$Ax - y + z/t = w$$

• optimality conditions (*u* is multiplier for equality):

$$Ax - y + \frac{1}{t}z = w,$$
 $-A^T u \in \partial f(x),$ $u \in \partial g(y),$ $tw = u$

ullet eliminating x, y, w gives u = z + t(Ax - y) and

$$0 \in -A\partial f^*(-A^T u) + \partial g^*(u) + \frac{1}{t}(u - z)$$

this is the optimality condition for problem in the definition of $u = prox_{th}(z)$

Augmented Lagrangian method

choose initial $z^{(0)}$ and repeat:

1. minimize augmented Lagrangian

$$(\hat{x}, \hat{y}) = \underset{x,y}{\operatorname{argmin}} \left(f(x) + g(y) + \frac{t_k}{2} \left\| Ax - y + (1/t_k) z^{(k-1)} \right\|_2^2 \right)$$

2. dual update

$$z^{(k)} = z^{(k-1)} + t_k (A\hat{x} - \hat{y})$$

- also known as method of multipliers, Bregman iteration
- this is the proximal point method applied to the dual problem
- as variants, can apply the accelerated proximal point methods to the dual
- usually implemented with inexact minimization in step 1

Examples

minimize
$$f(x) + g(Ax)$$

Equality constraints (g is indicator of $\{b\}$):

$$\hat{x} = \underset{x}{\operatorname{argmin}} \left(f(x) + z^T A x + \frac{t}{2} ||Ax - b||_2^2 \right)$$

$$z := z + t(A\hat{x} - b)$$

Set constraint (g indicator of convex set C):

$$\hat{x} = \underset{x}{\operatorname{argmin}} \left(f(x) + \frac{t}{2} d \left(Ax + z/t \right)^2 \right)$$

$$z := z + t \left(A\hat{x} - P(A\hat{x} + z/t) \right)$$

P(u) is projection of u on C, $d(u) = ||u - P(u)||_2$ is Euclidean distance

Outline

- proximal point method
- augmented Lagrangian method
- Moreau-Yosida smoothing

Moreau-Yosida smoothing

Definition: Moreau-Yosida regularization (Moreau envelope) of closed convex f is

$$f_{(t)}(x) = \inf_{u} \left(f(u) + \frac{1}{2t} \|u - x\|_{2}^{2} \right) \quad \text{(with } t > 0\text{)}$$

$$= f\left(\text{prox}_{tf}(x) \right) + \frac{1}{2t} \left\| \text{prox}_{tf}(x) - x \right\|_{2}^{2}$$

Immediate properties

- $f_{(t)}$ is convex (infimum over u of a convex function of x, u)
- domain of $f_{(t)}$ is \mathbf{R}^n (recall that $\mathrm{prox}_{tf}(x)$ is defined for all x)

Examples

Indicator function: smoothed f is squared Euclidean distance

$$f(x) = \delta_C(x),$$
 $f_{(t)}(x) = \frac{1}{2t}d(x)^2$

1-norm: smoothed function is Huber penalty

$$f(x) = ||x||_1,$$
 $f_{(t)}(x) = \sum_{k=1}^{n} \phi_t(x_k)$

$$\phi_t(z) = \begin{cases} z^2/(2t) & |z| \le t \\ |z| - t/2 & |z| \ge t \end{cases}$$

Conjugate of Moreau envelope

$$f_{(t)}(x) = \inf_{u} \left(f(u) + \frac{1}{2t} ||u - x||_{2}^{2} \right)$$

• $f_{(t)}$ is infimal convolution of f(u) and $||v||_2^2/(2t)$ (see page 7-11):

$$f_{(t)}(x) = \inf_{u+v=x} \left(f(u) + \frac{1}{2t} ||v||_2^2 \right)$$

• from page 7-11, conjugate is sum of conjugates of f(u) and $||v||_2^2/(2t)$:

$$(f_{(t)})^*(y) = f^*(y) + \frac{t}{2} ||y||_2^2$$

hence, conjugate is strongly convex with parameter t

Gradient of Moreau envelope

$$f_{(t)}(x) = \sup_{y} \left(x^{T}y - f^{*}(y) - \frac{t}{2} \|y\|_{2}^{2} \right)$$

maximizer in definition is unique and satisfies

$$x - ty \in \partial f^*(y) \iff y \in \partial f(x - ty)$$

• maximizing y is the gradient of $f_{(t)}$: from pages 6-7 and 8-4,

$$\nabla f_{(t)}(x) = \frac{1}{t} \left(x - \operatorname{prox}_{tf}(x) \right) = \operatorname{prox}_{(1/t)f^*}(x/t)$$

• gradient $\nabla f_{(t)}$ is Lipschitz continuous with constant 1/t (see p. 7-16 or p. 6-9)

Interpretation of proximal point algorithm

apply gradient method to minimize Moreau envelope

minimize
$$f_{(t)}(x) = \inf_{u} \left(f(u) + \frac{1}{2t} ||u - x||_{2}^{2} \right)$$

this is an **exact** smooth reformulation of problem of minimizing f(x):

- solution x is minimizer of f
- $f_{(t)}$ is differentiable with Lipschitz continuous gradient (L=1/t)

Gradient update: with fixed $t_k = 1/L = t$

$$x^{(k)} = x^{(k-1)} - t\nabla f_{(t)}(x^{(k-1)}) = \operatorname{prox}_{tf}(x^{(k-1)})$$

 \dots the proximal point update with constant step size $t_k = t$

Interpretation of augmented Lagrangian algorithm

Augmented Lagrangian iteration

$$(\hat{x}, \hat{y}) = \underset{x,y}{\operatorname{argmin}} \left(f(x) + g(y) + \frac{t}{2} \|Ax - y + (1/t)z\|_2^2 \right)$$

 $z := z + t(A\hat{x} - \hat{y})$

- with fixed t, dual update is gradient step applied to smoothed dual
- if we eliminate y, primal step can be interpreted as smoothing y:

$$\hat{x} = \underset{x}{\operatorname{argmin}} \left(f(x) + g_{(1/t)} \left(Ax + (1/t)z \right) \right)$$

Example: minimize $f(x) + ||Ax - b||_1$

$$\hat{x} = \underset{x}{\operatorname{argmin}} \left(f(x) + \phi_{1/t} (Ax - b + (1/t)z) \right)$$

with $\phi_{1/t}$ the Huber penalty applied componentwise (page 10-12)

References

Proximal point algorithm and fast proximal point algorithm

- O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control and Optimization (1991).
- O. Güler, New proximal point algorithms for convex minimization, SIOPT (1992).
- O. Güler, Augmented Lagrangian algorithm for linear programming, JOTA (1992).

Augmented Lagrangian algorithm

• D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (1982).

Proximal point method 10-17