PROVA SCRITTA DI ELETTROTECNICA

A. A. 2002/2003, 14 Gennaio 2003

1) Trovare l'equivalente di Norton in continua del seguente bipolo:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione sulla impedenza $z_{\rm u}=5-3{\rm j}~\Omega$ e le relative potenze $P_{\rm u}$ e $Q_{\rm u}$. Calcolare, inoltre, la corrente erogata dal generatore. $(\tau_{\it J})$

3) Calcolare la potenza attiva e reattiva assorbita da un carico equilibrato a triangolo, sapendo che $z = 10 - 3j \Omega$ e la tensione di alimentazione concatenata è 220 V efficace.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2002/2003, 28 Gennaio 2003

1) Trovare l'equivalente di Thevenin in continua del seguente bipolo:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione sulla impedenza $z_{\rm u}=6+2{\rm j}~\Omega$ e le relative potenze $P_{\rm u}$ e $Q_{\rm u}$. Calcolare, inoltre, la corrente $I_{\rm g}$ erogata dal generatore.

3) Calcolare la potenza attiva e reattiva assorbita da un carico equilibrato a triangolo, sapendo che $z = 15 + 6j \Omega$ e la tensione di alimentazione concatenata è 380 V efficace.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2002/2003, 10 Febbraio 2003

1) Trovare l'equivalente di Norton in continua del seguente bipolo:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione $V_{\rm u}$ sul carico di figura e le relative potenze $P_{\rm u}$ e $Q_{\rm u}$. Calcolare, inoltre, la corrente $I_{\rm g}$ erogata dal generatore.

3) Calcolare la potenza attiva executiva assorbita dal carico squilibrato di figura, sapendo che $z_1 = 5 + 6j \Omega$, $z_2 = 3 - 4j \Omega$, $z_3 = 2 + 2j \Omega$ e la tensione di alimentazione concatenata è 380 V efficace.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2002/2003, 10 Giugno 2003

1) Trovare l'equivalente di Thevenin in continua del seguente bipolo:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione $V_{\rm u}$ sul carico di figura e le relative potenze $P_{\rm u}$ e $Q_{\rm u}$. Calcolare, inoltre, la corrente $I_{\rm g}$ erogata dal generatore.

3) Calcolare la potenza attiva e reattiva assorbita dal carico squilibrato di figura, sapendo che $z_1 = 3 + 4j \Omega$, $z_2 = 5 - j \Omega$, $z_3 = 2 + 5j \Omega$ e la tensione di alimentazione concatenata è 380 V efficace.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2002/2003, 24 Giugno 2003

1) Trovare l'equivalente di Norton in continua del seguente bipolo:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione $V_{\rm u}$ sul carico di figura e le relative potenze $P_{\rm u}$ e $Q_{\rm u}$. Calcolare, inoltre, la corrente $I_{\rm g}$ erogata dal generatore.

3) Calcolare la potenza attiva e reattiva assorbita dal carico squilibrato di figura, sapendo che $z_1 = 2 + 4j \Omega$, $z_2 = 3 - j \Omega$, $z_3 = 2 + 6j \Omega$ e la tensione di alimentazione concatenata è 380 V efficace.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2002/2003, 8 Luglio 2003

1) Trovare l'equivalente di Thevenin in continua del seguente bipolo:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione $V_{\rm u}$ sul carico di figura e le relative potenze $P_{\rm u}$ e $Q_{\rm u}$. Calcolare, inoltre, la corrente $I_{\rm g}$ erogata dal generatore.

3) Calcolare la potenza attiva e reattiva assorbita dal carico equilibrato di figura, sapendo che $z = 4 + 2j \Omega$ e la tensione di alimentazione concatenata è 380 V efficace.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2002/2003, 9 Settembre 2003

1) Scrivere l'espressione di $v_C(t)$ per $t \ge 0$ sapendo che $v_C(0) = -1$ V:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione $V_{\rm u}$ sul carico di figura e le relative potenze $P_{\rm u}$ e $Q_{\rm u}$. Calcolare, inoltre, la corrente $I_{\rm g}$ erogata dal generatore.

3) Calcolare la potenza attiva e reattiva assorbita dal carico equilibrato di figura, sapendo che $z = 10 + j \Omega$ e la tensione di alimentazione concatenata è 220 V efficace.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2002/2003, 13 Gennaio 2004

1) Scrivere l'espressione di $v_C(t)$ per $t \ge 0$ sapendo che $v_C(0) = -2$ V:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione $V_{\rm u}$ sul carico di figura e le relative potenze $P_{\rm u}$ e $Q_{\rm u}$. Calcolare, inoltre, la corrente $I_{\rm g}$ erogata dal generatore.

3) Calcolare la potenza attiva e reattiva assorbita dal carico equilibrato di figura, sapendo che $z = 8 + 0.5 j \Omega$ e la tensione di alimentazione concatenata è 220 V efficace.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2002/2003, 27 Gennaio 2004

1) Scrivere l'espressione di $v_C(t)$ per $t \ge 0$ sapendo che $v_C(0) = -2$ V:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione $V_{\rm u}$ sul carico di figura e le relative potenze $P_{\rm u}$ e $Q_{\rm u}$. Calcolare, inoltre, la corrente $I_{\rm g}$ erogata dal generatore.

3) Calcolare la potenza attiva e reattiva assorbita dal carico equilibrato di figura, sapendo che $z = 9 + 1.5 j \Omega$ e la tensione di alimentazione concatenata è 380 V efficace.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2002/2003, 27 Gennaio 2004

1) Trovare l'equivalente di Thevenin in continua del seguente bipolo:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della corrente $I_{\rm u}$ relativa al carico $z_{\rm u}=50+5$ jue le relative potenze $P_{\rm u}$ e $Q_{\rm u}$. Calcolare, inoltre, la corrente $I_{\rm g}$ erogata dal generatore.

3) Calcolare la potenza attiva assorbita dal carico squilibrato di figura, sapendo che $z_1 = 9 + 1.5 j \Omega$, $z_2 = 6 - 0.5 j \Omega$, $z_3 = 2 + 2 j \Omega$ e la tensione di alimentazione concatenata è 380 V efficace.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2003/2004, 8 Giugno 2004

1) Scrivere l'espressione di $v_C(t)$ per $t \ge 0$ sapendo che $v_C(0) = -3V$:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della corrente \bar{I}_u relativa al carico $z_u = 4 + 3j \Omega$ e le relative potenze P_u e Q_u . Calcolare, inoltre, la corrente \bar{I}_g erogata dal generatore.

3) Calcolare la potenza attiva e quella reattiva assorbita dal carico equilibrato di figura, sapendo che $z=12+j~\Omega$ e la tensione di alimentazione concatenata è di 380 V efficace.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2003/2004, 22 Giugno 2004

1) Trovare l'equivalente di Thevenin del seguente bipolo:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della corrente I_u relativa al carico $z_u = 4 - 3j \Omega$ e le relative potenze P_u e Q_u . Calcolare, inoltre, la corrente I_g erogata dal generatore.

3) Calcolare la potenza attiva P_z e quella reattiva Q_z assorbita dal carico equilibrato di figura, sapendo che z=4+2j Ω , R=1 Ω e la tensione di alimentazione concatenata è di 380 V efficace.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2003/2004, 6 Luglio 2004

1) Calcolare la corrente $i_L(t)$ per $t \ge 0$, sapendo che $i_L(0) = -1.5$ A:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della corrente I_u relativa al carico $z_u = 5 + 2j \Omega$ e le relative potenze P_u e Q_u . Calcolare, inoltre, la corrente I_g erogata dal generatore.

3) Calcolare la potenza attiva P_z e quella reattiva Q_z assorbita dal carico equilibrato di figura, sapendo che $z = 5 + j \Omega$, $R = 1 \Omega$ e la tensione di alimentazione concatenata è di 380 V efficace.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2003/2004, 14 Settembre 2004

1) Trovare l'equivalente di Norton in continua del seguente bipolo:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione V_u sul carico z_u di figura e le relative potenze P_u e Q_u . Calcolare, inoltre, la corrente I_g erogata dal generatore.

3) Calcolare la potenza attiva P_z assorbita dal carico squilibrato di figura, sapendo che $z_1 = 5 + 6j \Omega$, $z_2 = 3 - 4j \Omega$ e $z_3 = 3 \Omega$, e la tensione di alimentazione concatenata è di 380 V efficace.

Università degli Studi di Trieste Facoltà di Ingegneria PROVA SCRITTA DI ELETTROTECNICA 45/12/04

1) Trovare l'equivalente di Thevenin in continua del seguente bipolo:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione sulla impedenza $z_u = 6 + 2j \Omega$ e le relative potenze P_u e Q_u . Calcolare, inoltre, la corrente I_g erogata dal generatore.

3) Calcolare la potenza attiva e reattiva assorbita da un carico equilibrato a triangolo, sapendo che $z = 15 + 6j \Omega$ e la tensione di alimentazione concatenata è 380 V efficace.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2004/2005, 18 Gennaio 2005

1) Calcolare l'andamento della tensione $v_C(t)$ per $t \ge 0$, sapendo che $v_C(0) = -1$ V.

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione $V_{\rm u}$ sul carico $z_{\rm u}$ di figura e le relative potenze $P_{\rm u}$ e $Q_{\rm u}$. Calcolare, inoltre, la corrente $I_{\rm g}$ erogata dal generatore.

3) Calcolare la potenza attiva P_z e quella passiva Qz assorbita dal carico equilibrato di figura, sapendo che $z = 8 + 2j \Omega$ e la tensione di alimentazione concatenata è di 380 V efficaci.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2004/2005, 1 Febbraio 2005

1) Trovare l'equivalente di Thevenin per il seguente bipolo alimentato in continua.

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione V_u sul carico $z_u = 15 + 2j \Omega$ di figura e le relative potenze P_u e Q_u . Calcolare, inoltre, la corrente I_g erogata dal generatore.

3) Calcolare la potenza attiva P_z e quella passiva Q_z assorbita dal carico equilibrato di figura, sapendo che $z_{\perp} = 5 + 2j \Omega$ e la tensione di alimentazione concatenata è di 380 V efficaci.

Università degli Studi di Trieste Facoltà di Ingegneria PROVA SCRITTA DI ELETTROTECNICA

A. A. 2004/2005, 15 Febbraio 2005

1) Calcolare il transitorio della corrente $i_L(t)$ per t 0, sapendo che $i_L(0) = -0.5$ A.

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione $V_{\rm u}$ sul carico $z_{\rm u}$ (dato dal parallelo della resistenza $R_{\rm u}$ e dell'induttore $L_{\rm u}$) e le relative potenze $P_{\rm u}$ e $Q_{\rm u}$. Calcolare, inoltre, la corrente $I_{\rm g}$ erogata dal generatore.

3) Calcolare la potenza attiva P_z e quella passiva Q_z assorbita dal carico equilibrato di figura, sapendo che $z_u = 5 + 2j \Omega$ e la tensione di alimentazione concatenata è di 380 V efficaci.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2004/2005, 07 giugno 2005

1) Calcolare il transitorio della tensione $v_C(t)$ per $t \ge 0$, sapendo che $v_C(0) = -1.5$ V.

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione $V_{\rm u}$ sul carico $z_{\rm u}$ (data dalla serie della resistenza $R_{\rm u}$ e dell'induttore $L_{\rm u}$) e le relative potenze $P_{\rm u}$ e $Q_{\rm u}$. Calcolare, inoltre, la corrente $I_{\rm g}$ erogata dal generatore.

3) Calcolare la potenza attiva P_z e quella passiva Q_z assorbita dal carico equilibrato di figura, sapendo che $z_u = 5 - 2j \Omega$ e la tensione di alimentazione concatenata è di 380 V efficaci.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2004/2005, 21 Giugno 2005

1) Calcolare il transitorio della corrente $i_L(t)$ per $t \ge 0$, sapendo che $i_L(0) = -3.5$ A.

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione V_u sul carico $z_u = 5 - 3j$ e le relative potenze P_u e Q_u . Calcolare, inoltre, la corrente I_g erogata dal generatore.

3) Calcolare la potenza attiva P_z e quella passiva Q_z assorbita dal carico equilibrato di figura, sapendo che $z_u = 30 + 6j \Omega$ e la tensione di alimentazione concatenata è di 380 V efficaci.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2004/2005, 5 Luglio 2005

1) Calcolare il transitorio della tensione $v_C(t)$ per $t \ge 0$, sapendo che $v_C(0) = -2.5$ V.

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione V_u sul carico formato dalla serie di R_u e di L_u e le relative potenze P_u e Q_u . Calcolare, inoltre, la corrente I_g erogata dal generatore.

3) Calcolare la potenza attiva P_z e quella passiva Q_z assorbita dal carico equilibrato di figura, sapendo che $z_u = 15 - 2j \Omega$ e la tensione di alimentazione concatenata è di 380 V efficaci.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2004/2005, 5 Luglio 2005 13 SETTERBRE

1) Calcolare l'equivalente di Thevenin del bipolo in figura.

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione V_u sul carico formato dalla serie di R_u e di L_u e le relative potenze P_u e Q_u . Calcolare, inoltre, la corrente I_g erogata dal generatore.

3) Calcolare la potenza attiva P_z e quella passiva Q_z assorbita dal carico equilibrato di figura, sapendo che $z_u = 15 + 6j \Omega$ e la tensione di alimentazione concatenata è di 380 V efficaci.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2005/2006, 17 Gennaio 2006

1) Calcolare il transitorio della corrente $i_L(t)$ per $t \ge 0$, sapendo che $i_L(0) = -1.2$ A.

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della corrente I_u sul carico $z_u = 5 + 2j \Omega$ e le relative potenze P_u e Q_u . Calcolare, inoltre, la corrente I_g erogata dal generatore.

3) Calcolare la potenza attiva P_z e quella passiva Q_z assorbita dal carico equilibrato di figura, sapendo che $z_u = 5 + j \Omega$, $R = 1 \Omega$ e la tensione di alimentazione concatenata è di 380 V efficaci.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2005/2006, 31 Gennaio 2006

1) Calcolare il transitorio della tensione $v_C(t)$ per $t \ge 0$, sapendo che $v_C(0) = -2.2$ V.

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della corrente I_u sul carico $z_u = 5 + 3$ Ω e le relative potenze P_u e Q_u . Calcolare, inoltre, la corrente I_g erogata dal generatore.

3) Calcolare la potenza attiva P_z e quella rearttiva Q_z assorbita dal carico equilibrato di figura, sapendo che $z_u = 10 - 2j$ e la tensione di alimentazione concatenata è di 380 V efficaci.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2005/2006, 14 Febbraio 2006

1) Trovare l'equivalente di Thevenin in continua del seguente bipolo:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della corrente I_u sul carico $z_u = 5 - j \Omega$ e le relative potenze P_u e Q_u . Calcolare, inoltre, la corrente I_g erogata dal generatore.

3) Calcolare la potenza attiva P_z assorbita dal carico squilibrato di figura, sapendo che $z_1 = 3 + 4j \Omega$, $z_2 = 5 - j \Omega$ e $z_3 = 2 + 5j \Omega$ e la tensione di alimentazione concatenata è di 380 V efficaci.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2005/2006, 6 Giugno 2006

1) Scrivere l'espressione di $v_C(t)$ per $t \ge 0$ sapendo che $v_C(0) = -2$ V:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione $V_{\rm u}$ sul carico $z_{\rm u}=50+15{\rm j}~\Omega$ e le relative potenze $P_{\rm u}$ e $Q_{\rm u}$. Calcolare, inoltre, la corrente $I_{\rm g}$ erogata dal generatore.

3) Calcolare la potenza attiva P_z e reattiva Q_z assorbita dal carico equilibrato di figura, sapendo che z=8+0.5j e la tensione di alimentazione concatenata è di 220 V efficaci.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2005/2006, 20 Giugno 2006

1) Trovare l'equivalente di Thevenin del seguente bipolo resistivo:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione V_u sul carico z_u e le relative potenze P_u e Q_u . Calcolare, inoltre, la corrente I_g erogata dal generatore.

3) Calcolare la potenza attiva P_z e reattiva Q_z assorbita dal carico equilibrato di figura, sapendo che z=6+1.5j e la tensione di alimentazione concatenata è di 220 V efficaci.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2005/2006, 11 Luglio 2006

1) Calcolare il transitorio della corrente $i_L(t)$ per $t \ge 0$ sapendo che $i_L(0) = -3$ A:

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione V_u sul carico $z_u = 5 - 3j \Omega$ e le relative potenze P_u e Q_u . Calcolare, inoltre, la corrente I_g erogata dal generatore.

3) Calcolare la potenza attiva P_z e reattiva Q_z assorbita dal carico equilibrato di figura, sapendo che $z_u = 30 + 6$ j Ω e la tensione di alimentazione concatenata è di 220 V efficaci.

PROVA SCRITTA DI ELETTROTECNICA

A. A. 2005/200 Settembre 2006

1) Calcolare il transitorio della tensione $v_C(t)$ per $t \ge 0$ sapendo che $v_C(0) = -1$ V.

2) Sapendo che la sorgente è sinusoidale a 50 Hz (è dato il valore efficace), calcolare il valore della tensione V_u sul carico $z_u = 5 + 2j \Omega$ e le relative potenze P_u e Q_u . Calcolare, inoltre, la corrente I_g erogata dal generatore.

3) Calcolare la potenza attiva P_z e reattiva Q_z assorbita dal carico equilibrato di figura, sapendo che $z_u = 8 + 2j \Omega$ e la tensione di alimentazione concatenata è di 380 V efficaci.

