COGNOME NOME MATRICOLA......

○ Gr. 1 Bader (A-De) ○ Gr. 2 Cioffi (Df-Mk) ○ Gr. 3 Biondi (Ml-Z) ○ Recupero Durante

Risolvere gli esercizi inserendo le risposte negli **spazi predisposti** con indicazione dei **calcoli** effettuati e fornendo **spiegazioni** chiare ed essenziali. NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

1. Dare la definizione di sottospazio vettoriale di uno spazio vettoriale V e dire se il sottoinsieme $\{(0,h)\in\mathbb{R}^2\mid h\geq 0\}$ di \mathbb{R}^2 è un sottospazio di \mathbb{R}^2 .

2. ((1,-2),(-2,4)) è un riferimento di \mathbb{R}^2 ? \bigcirc Si \bigcirc No Perché?

3. Cosa vuole dire che $S = \{v_1, \dots, v_t\}$ è un sistema di generatori di uno spazio vettoriale V?

4. Dire se il vettore (0,0,0,0) di \mathbb{R}^4 appartiene a L((1,0,-1,0),(1,1,1,1),(0,0,1,1),(1,1,0,0),(1,0,1,1)). \bigcirc Si \bigcirc No Perché?

5. Determinare la dimensione e una base del sottospazio

 $\{a(0,1,1)+b(2,0,1)+c(2,-1,0)\ |\ a,b,c\in\mathbb{R}\}\subseteq\mathbb{R}^3.$

6. L'applicazione $f:(x,y,z)\in\mathbb{R}^3\to(x,x,y,0)\in\mathbb{R}^4$ è lineare? \bigcirc Si \bigcirc No Perché?

7. Si consideri l'endomorfismo $g:(x,y,z)\in\mathbb{R}^3\to(x+y,y-z,y+z)\in\mathbb{R}^3$. È un automorfismo? \bigcirc Si \bigcirc No Perché?

È diagonalizzabile? O Si O No Perché?

8.	Scrivere una	matrice $3 \times$	3	invertibile e	spiegare	perché è	invertibile
\circ	DOLLY OLD ULLO	I IIIaurice o A	v	III VOI UIDIIC C	bpicgarc	porone c	m vor urbiro.

9. Dato un endomorfismo $f:V\to V$ e un suo autovalore λ , dimostrare che $\{v\in V\mid f(v)=\lambda v\}$ è un sottospazio di V.

 ${f 10.}$ Sia fissato un riferimento cartesiano monometrico ortogonale del piano della geometria elementare.

- (i) Dire se il triangolo di vertici $A(2,-3),\,B(0,1),\,C(2,2)$ è rettangolo in B.
- Si No Perché?

(ii) Verificare che le rette r:(x,y)=t(1,-1)+(2,-1) ed s:x+y-1=0 sono impropriamente parallele.

- 11. Fissato un riferimento cartesiano monometrico ortogonale dello spazio della geometria elementare,
- (i) scrivere un'equazione del piano per l'origine parallelo alla retta r:(x,y,z)=(1,0,1)+t(1,-1,2) e ortogonale al piano α di equazione x-y+3z=0;

(ii) dimostrare che il piano di equazione x-y=0 è tangente alla sfera di equazione $x^2+y^2+z^2-2x+2y=0$.