Solving Recurrences Lecture

▼ First example question:

$$T(n)=4T(\frac{n}{2})+n^2$$

- ▼ Solving by substitution
 - I need to review on this more.
- ▼ Solving by recursion tree
 - Size of the problem is n, so the work we do at each level is n^2 .
 - a=4, so we have four subproblems to do, with each sub-problem having $\frac{n}{2}$ problem size.
 - The *work* done at each level is the problem size squared, or $\frac{n^2}{4}$. The total work at each level should be n^2 .
 - There are $log_b(n)$ levels in the tree.
 - There are $a^{log_b(n)}$ leaves in the tree.
 - $log_2(n) = 2 imes log_4(n)$. They're in a constant factor of each other.
- ▼ Solving by master theorem
 - Recurrence is case 2. Therefore it is $heta(n^2 lg(n))$.