Нижегородский государственный университет имени Н. И. Лобачевского Радиофизический факультет
Отчет по лабораторной работе №211
Отчет по лаобраторной работе №211
D
Продольные ультразвуковые волны в проволоке

Введение

<u>Цель работы:</u> измерение длины возбуждаемой волны и скорости ее распространения <u>Оборудование:</u> передатчик, приемник, натянутая никелевая проволока, передающая и принимающая катушки, осциллограф

В работе изучается распространение продольных упругих волн в никелевой проволоке (диаметр проволоки мал по сравнению с длиной волны). Чтобы получить в никелевой проволоке длину волны порядка 1 см, необходимо для возбуждения применять генератор с частотой порядка 500 кГц. Колебания такой частоты называют ультразвуковыми в отличие от колебаний звуковых частот, воспринимаемых ухом человека (верхней границей слухового восприятия считаются колебания с частотами около 20 кГц). В данной лабораторной работе изучаются такие ультразвуковые колебания

Теоретическая часть

1. Продольные упругие волны

В пренебрежении поглощением распространение продольных упругих волн в проволоке описывается волновым уравнением

$$\frac{\partial^2 s}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 s}{\partial x^2} \quad (1)$$

где s(x,t) - смешение в момент t сечения, равновесная координата которого равна x (x и s отсчитываются вдоль оси. параллельной проволоке). E и ρ - соответственно модуль Юнга и плотность материала проволоки. Уравнение (1) справедливо при малых деформациях, лежащих в пределах применимости закона Гука. Общее решение этого уравнения представляет собой суперпозицию двух бегущих навстречу недеформирующихся волн: $s=s_1(x+ut)+s_2(x-ut)$

Здесь $u=\sqrt{\frac{E}{p}}$ — скорость распространения волны, s_1 и s_2 — произвольные функции, зависящие от способа возбуждения волн и от граничных условий

Важен случай, когда s_1 и s_2 - плоские синусоидальные волны с циклической частотой ω и волновым числом k:

$$s_1 = A_1 \cos(\omega t + kx - \alpha_1), \qquad s_2 = A_2 \cos(\omega t - kx - \alpha_2), \qquad \omega = uk$$

В рассматриваемом случае связь частоты волны с волновым числом линейная (скорость распространения волны и не зависит от частоты ω), без свободного члена. Такие среды называются средами без дисперсии.

В нашей установке волны могут генерироваться в двух режимах: непрерывном и импульсном. В первом режиме непрерывно возбуждаются синусоидальные волны. Во втором режиме возбуждение

синусоидальных волн периодически прерывается (генерируются обрывки синусоид - радиоимпульсы).

Рассмотрим суперпозицию двух плоских синусоидальных волн одинаковой амплитуды ($A=A_1=A_2$), распространяющихся во встречных направлениях: $s=s_1+s_2$

Путем тригонометрических преобразований сумма двух гармоник может быть представлена в виде:

$$s = 2A\cos\left(kx - \frac{\alpha_1 + \alpha_2}{2}\right)\cos\left(\omega t + \frac{\alpha_1 - \alpha_2}{2}\right) \quad (2)$$

которая описывает синусоидальную стоячую волну. Величина s во всех точках струны совершает гармоническое колебание c одинаковой частотой, но амплитуда колебаний $2A\left|\left(kx-\frac{\alpha_1+\alpha_2}{2}\right)\right|$ различна в разных точках. Точки, где амплитуда равна нулю, и, следовательно, s=0 в любой момент времени, называются узлами стоячей волны. Точки, где амплитуда колебаний максимальна $\left(\left|\left(kx-\frac{\alpha_1+\alpha_2}{2}\right)\right|=1\right)$, называются пучностями стоячей волны. Амплитуда стоячей волны в пучности вдвое больше амплитуды каждой из бегущих волн. Расстояние между соседними пучностями, как и расстояние между соседними узлами, равно $\frac{\lambda}{2}$. Пучности и узлы сдвинуты друг относительно друга на четверть длины волны.

На практике получить такую идеальную волну не представляется возможным. Поэтому рассмотрим более общий случай суперпозиции двух бегущих плоских волн одинаковой частоты с различными амплитудами, которые представим в виде:

$$A_2 = A$$
, $A = A + a$

Легко видеть, что $s=s_1+s_2$ есть суперпозиция стоячей волны, описываемой уравнением (2), и бегущей волны

$$acos(kx - \omega t - \alpha_1)$$

Величина $(a/A)^2$ называется коэффициентом бегучести. Отношение $\frac{A_1^2 + A_2^2}{A_1^2 - A_2^2}$ называется коэффициентом стоячести волны (КСВ). Очевидно, что в стоячей волне КСВ равен бесконечности, а в чисто бегущей — единице.

2. Метод возбуждения и приема упругих волн

Для получения ультразвуковых волн в проволоке используется магнитострикционный эффект. Это явление, заключающееся в том, что при изменении состояния намагниченности тела его объем и линейные размеры изменяются. Эффект вызван изменением взаимосвязей между атомами в кристаллической решётке, и поэтому свойственен всем веществам. Изменение формы тела может проявляться, например, в растяжении, сжатии, изменении объёма, что зависит как от действующего магнитного поля, так и от кристаллической структуры тела. Наибольшие изменения размеров обычно происходят у сильномагнитных материалов.

Практическая часть

1. Импульсный режим измерений

Задание 1.

Получены осциллограммы напряжений с разъемов «Выход» и «Видеоимпульс»:

Длительность импульсов au в обоих случаях оказалась одинаковой, и равна 12 микросекундам Период же T оказался равен 1,09 миллисекунды

Отсюда получаем, что скважность $T/_{ au}$ примерно равна 90.8

Задание 2.

Получена осциллограмма напряжений с выхода приемника

Среди наблюдаемых импульсов:

1-ый – пришел без отражений

2-ой и 3-ий отразился однократно

4-ый - отразился двухкратно

Задание 3.

Nº	Время распространения	<u>Дальность</u> распространения	Скорость распространения	Абсолютная погрешность, м/с	Относительная погрешность		
1	104 мкс	554 mm	5326 ^M / _C	100	2%		
2	196 мкс	1004 мм	5122 ^M / _C	50	1%		
3	250 мкс	1318 мм	5272 ^M / _C	40	1%		
4	342 мкс	1768 мм	5170 ^M / _C	30	1%		
Средняя скорость распространения — 5223 $^{ m M}/_{ m C}$							

KYPCOPL

Источник

Кан 2

X1

X1X2

X↔Y

Разъем «Выход»

Задание 4.

При сдвиге приемника на 200 мм смещение осциллограммы составило 40 мс, откуда $u=5000\,{}^{\rm M}/c$ (Абсолютная погрешность — 225 м/с, относительная погрешность — 4,5%)

Из теоретических расчетов же, имея $\nu=500$ кГц и $\lambda=0.01$ м, получаем, что u=5000 $^{
m M}/_{\it C}$

Значит, метод определения скорости распространения путем сдвига приемника гораздо точнее, чем метод определения через замер времени распространения волны по проволоке.

2. Непрерывный режим измерений

Задание 1.

Получена осциллограмма напряжения с разъема «Выход» С помощью осциллографа измерен период и частота колебаний:

$$T = 2$$
 мкс, $\nu = 500$ кГц

При измерении периода по 20-ти колебаниям значение не изменилось

Шаг цены деления осциллографа при измерении – 0,1 мкс

Задание 2.

Из результатов опыта, расстояние между двумя узлами составило порядка 5 мм $\,\Rightarrow\,\lambda=10$ мм.

Измерив расстояние между 5-ю и 10-ю узлами, длину волны удалось посчитать более точно — $\lambda=10.4$

мм и $\lambda=10$,6 мм соответственно. Отсюда, $\lambda_{\mathrm{cp}}=10$,5 мм.

Отсюда, по формуле, по формуле $u=\lambda v$ получаем, что скорость распространения волны в проволоке составляет 5250 $^{
m M}/_{\it C}$

(Абсолютная погрешность – 100 м/с, относительная погрешность – 2%)

Задание 3.

Определили коэффициент стоячести волны (КСВ), т.е. отношение амплитуды в максимуме к отношению амплитуды в минимуме при различных положениях катушек (схема расстановки представлена на

	1
	2
	3
	4
	5
	6
	7

Схема расстановки катушек

рисунке). Результаты эксперимента занесли в таблицу, сделали вывод, что КСВ зависит от взаимного положения катушек

Номер положения катушек	A_{min}	A_{max}	КСВ
1	178	72	2.47
2	272	70	3.88
3	14	18	6.33

4	124	30	4.13
5	116	18	6.44
6	158	38	4.15
7	180	60	3

Зажим проволоки рукой влияет в данных случаях:

- На минимум, если зажим происходит справа от обеих катушек (повышение с 22 до 60 мВ), это приведет к понижению КСВ
- На максимум, если зажим происходит между первой и второй катушкой (понижение со 130 до 108 мВ), это приведет к понижению КСВ

Задание 4.

Изучили зависимость фазы принимаемого сигнала от положения приёмной катушки. За изменением фазы следили по эллипсу, полученному на экране осциллографа, когда на вертикально отклоняющие пластины подаётся усиленное напряжение с приёмной катушки, а на горизонтально отклоняющие пластины — напряжение с передающей катушки. Определили длину волны - $\lambda = 10.6$ мм

Вывод

В ходе лабораторной работы были изучены ультразвуковые колебания в проволоке, различные способы вычисления скорости ее распространения и длины волны.