Aggregations

Step 1. Import the necessary libraries

```
In [41]:
```

```
import pandas as pd
import numpy as np
import seaborn as sb
```

Step 2. Import the dataset occupation.csv from the folder

In [42]:

```
A=pd.read_csv("occupation.csv",sep="|")
A.head()
```

Out[42]:

	user_id	age	gender	occupation	zip_code
0	1	24	М	technician	85711
1	2	53	F	other	94043
2	3	23	М	writer	32067
3	4	24	М	technician	43537
4	5	33	F	other	15213

Step 3. Assign it to a variable called users.

```
In [43]:
```

users=A

Step 4. Discover what is the mean age per occupation

```
In [44]:
```

```
user=users.groupby('occupation')
user.mean()
```

Out[44]:

	user_id	age
occupation		
administrator	430.949367	38.746835
artist	451.892857	31.392857
doctor	533.714286	43.571429
educator	466.905263	42.010526
engineer	456.328358	36.388060
entertainment	398.000000	29.22222
executive	422.312500	38.718750
healthcare	501.437500	41.562500
homemaker	443.000000	32.571429
lawyer	359.083333	36.750000
librarian	486.588235	40.000000
marketing	437.807692	37.615385
none	368.666667	26.555556
other	542.733333	34.523810
programmer	435.530303	33.121212
retired	515.714286	63.071429
salesman	494.916667	35.666667
scientist	465.129032	35.548387
student	484.954082	22.081633
technician	497.629630	33.148148
writer	495.711111	36.311111

Step 5. Discover the Male ratio per occupation and sort it from the most to the least.

Use numpy.where() to encode gender column.

In []:

Step 6. For each occupation, calculate the minimum and maximum ages

```
In [52]:
```

```
users.groupby('occupation')['age'].aggregate([min,max])
```

Out[52]:

	min	max
occupation		
administrator	21	70
artist	19	48
doctor	28	64
educator	23	63
engineer	22	70
entertainment	15	50
executive	22	69
healthcare	22	62
homemaker	20	50
lawyer	21	53
librarian	23	69
marketing	24	55
none	11	55
other	13	64
programmer	20	63
retired	51	73
salesman	18	66
scientist	23	55
student	7	42
technician	21	55
writer	18	60

Step 7. For each combination of occupation and gender, calculate the mean age

```
In [50]:
users.groupby(['gender','occupation'])['age'].mean()
```

Out[50]:

gender	occupation	
F	administrator	40.638889
	artist	30.307692
	educator	39.115385
	engineer	29.500000
	entertainment	31.000000
	executive	44.000000
	healthcare	39.818182
	homemaker	34.166667
	lawyer	39.500000
	librarian	40.000000
	marketing	37.200000
	none	36.500000
	other	35.472222
	programmer	32.166667
	retired	70.000000
	salesman	27.000000
	scientist	28.333333
	student	20.750000
	technician	38.000000
	writer	37.631579
М	administrator	37.162791
	artist	32.333333
	doctor	43.571429
	educator	43.101449
	engineer	36.600000
	entertainment	29.000000
	executive	38.172414
	healthcare	45.400000
	homemaker	23.000000
	lawyer	36.200000
	librarian	40.000000
	marketing	37.875000
	none	18.600000
	other	34.028986
	programmer	33.216667
	retired	62.538462
	salesman	38.555556
	scientist	36.321429
	student	22.669118
	technician	32.961538
	writer	35.346154
Name:	age dtyne floa	+64

Name: age, dtype: float64

Step 8. For each occupation present the percentage of women and men

In []: