EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

n-Type and p-Type Semiconductors

Effects of heat:

Conductor is heated → atoms tend to vibrate
reduces electrons movement
current flow reduces = resistance increases
positive temperature coefficient (PTC) of resistance

n-Type and p-Type Semiconductors

Effects of heat:

Undoped semiconductor material at absolute zero temperature (-273°C) → no electrons in conduction band + no holes in valence band = insulator

Semiconductor is heated \rightarrow

electrons in conduction band + holes in valence band + thermal vibration of atoms few electrons to be impeded + e-h pairs generation dominates =

pn-Junction

<u>Junction of *p*-type and *n*-type:</u>

p-type \rightarrow holes are uniformly distributed

n-type \rightarrow electrons are uniformly distributed

n-type

pn-junction \rightarrow

electrons and holes diffuse across junction free electrons fill adjacent holes on p-side \rightarrow

create negative ions

electrons leave positive ions on *n*-side

close to junction \rightarrow

positive ions create positive voltage on *n*-side negative ions create negative voltage on *p*-side negative voltage repels electrons crossing from *n*-side positive voltage repels holes movement from *n*-side creates barrier voltage

$$Ge = 0.3 \text{ V}, Si = 0.7 \text{ V}$$

barrier voltage → opposes flow of majority carriers assists flow of minority carriers

- O Hole
- Free Electron
- O Negative Ion
- Positive Ion

pn-Junction

Depletion region:

n-side → donor impurity atoms lost free electrons = becomes positively charged ions

p-side → acceptor impurity atoms lost holes = becomes negatively charged ions

Equal number of impurity atoms involved Equal doping densities → equal widths on each side

Unequal doping densities →
depletion region penetrates deeper
into lightly doped side

Electron

Biased Junction

Reverse-biased junction:

External reverse bias voltage = positive to *n*-side negative to *p*-side

Holes on *p*-side are attracted away from junction Electrons on *n*-side are attracted away from junction = Depletion region widens + Barrier voltage increases

Majority charge carrier current flow stops

Minority carriers on each side can cross junction =

Very small reverse current flows

Nanoamps to microamps current flows

Very small reverse bias voltage is necessary for all minority carriers flow Equivalent current = Reverse saturation current

Biased Junction

Forward-biased junction:

External forward bias voltage = positive to p-side negative to n-side

Holes on *p*-side are repelled from +ve terminal toward junction + Electrons on *n*-side are repelled from -ve terminal toward junction = Depletion region reduced + Barrier voltage decreases

High applied bias voltage →

barrier voltage disappears

e from n-side attracted to +ve bias terminal

h from p-side attracted to -ve bias terminal

majority charge carrier current flows easily

Very little forward current flows until

 V_F > junction barrier voltage

Above knee voltage, I_F increases linearly with increase in V_F

forward bias

Junction Current and Voltage

Shockley equation:

Relating *pn*-junction current and voltage levels.

Also known as diode equation.

$$I_D = I_0 [e^{V_D/nV_T} - 1] (1.1)$$

 I_D = junction current

 I_0 = reverse saturation current

 V_D = junction voltage

n = 1 for Ge, 2 for Si

$$V_T = kT/q$$
 = thermal voltage (1.2)

 $k = \text{Boltzmann's constant} = 1.38 \times 10^{-23} \text{ J/K } [\text{m}^2\text{kgs}^{-2}\text{K}^{-1}]$

T = absolute temperature

 $q = \text{electric charge} = 1.6 \times 10^{-19} \text{ C}$

Junction voltage for a given forward current →

$$V_D = (nV_T)\ln(I_D/I_0)$$
 (1.3) [assumption: $I_D >> I_0$]

Junction Current and Voltage

Problem-1:

A silicon *pn*-junction has a reverse saturation current $I_0 = 30$ nA at a temperature of 300 K. Calculate the junction current when the applied voltage is (a) 0.7 V forward bias, (b) 10 V reverse bias. Assume $V_T = 26$ mV at T = 300 K.

(a) 0.7 V forward bias

$$V_D/nV_T = 0.7/(2 \times 26 \times 10^{-3}) = 13.46$$

 $I_D = I_0 [e^{V_D/nV_T} - 1] = 30 \times 10^{-9} [e^{13.46} - 1] = 21 \text{ mA}$

(b) 10 V reverse bias

$$V_D/nV_T = -10/(2 \times 26 \times 10^{-3}) = -192$$

 $I_D = I_0 [e^{V_D/nV_T} - 1] = 30 \times 10^{-9} [e^{-192} - 1] = -30 \text{ nA}$

Junction Current and Voltage

Problem-2:

A silicon *pn*-junction has a reverse saturation current $I_0 = 30$ nA at a temperature of 300 K. Calculate the junction forward bias voltage required to produce a current of (a) 0.1 mA, (b) 10 mA. Assume $V_T = 26$ mV at T = 300 K.

(a)
$$I_D = 0.1 \text{ mA}$$

 $V_D = (nV_T)\ln(I_D/I_0)$
 $= 2 \times 26 \times 10^{-3} \times \ln(0.1 \times 10^{-3}/30 \times 10^{-9})$
 $= 422 \text{ mV}$

(b)
$$I_D = 10 \text{ mA}$$

 $V_D = (nV_T)\ln(I_D/I_0)$
 $= 2 \times 26 \times 10^{-3} \times \ln(10 \times 10^{-3}/30 \times 10^{-9})$
 $= 661 \text{ mV}$

pn-Junction Diode

Diode \rightarrow *pn*-junction + connecting leads one-way device = low resistance when forward biased open switch when reverse biased p-type n-type constant forward voltage drop sillicon silicon Anade Cathode constant reverse saturation current Cathode Diode is destroyed if \rightarrow +I (mA) high forward current overheats device Forward large reverse voltage causes junction to break down = Current reverse breakdown Forward Bias Reverse "kn ee' Typical forward and reverse characteristics of diode → Breakdown Voltage Forward Voltage -50mA 0.3v Germanium Germanium "Zener" 0.7v Silicon -20mA Silicon Breakdown or Avalanche Reverse

Region

Bias