Chapter: 14. MEASUREMENT OF ANGLES

Exercise: 14

Question: 1 A

Using a protracto

Solution:

- Draw a straight line AB.
- Place a dot at B. This dot represents the vertex of the angle.
- Place the centre of the protractor at B and the baseline of the protractor along the arm BA.
- Find 60° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, BC, of the angle.
- Mark the angle with a small arc as shown below.

Question: 1 B

Using a protracto

Solution:

- Draw a straight line AB.
- Place a dot at B. This dot represents the vertex of the angle.

- Place the centre of the protractor at B and the baseline of the protractor along the arm BA.
- Find 130° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, BC, of the angle.
- Mark the angle with a small arc as shown below.

Question: 1 CUsing a protracto

Solution:

- Draw a straight line AB.
- Place a dot at B. This dot represents the vertex of the angle.
- Place the centre of the protractor at B and the baseline of the protractor along the arm BA.
- \bullet Find 300° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, BC, of the angle.
- Mark the angle with a small arc as shown below.

Question: 1 D

Using a protracto

Solution:

The given angle is greater than 360°

Adding or subtracting 360° from a particular angle does'nt changes its position.

Therefore, Angle can also be written at as = 430° - 360° = 70°

- Draw a straight line AB.
- Place a dot at B. This dot represents the vertex of the angle.
- Place the centre of the protractor at B and the baseline of the protractor along the arm BA.
- Find 70° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, BC, of the angle.
- Mark the angle with a small arc as shown below.

Question: 1 E

Using a protracto

Solution:

The given angle is negative

Adding or subtracting 360° from a particular angle does'nt changes its position.

Therefore, Angle can also be written as= $-40^{\circ} + 360^{\circ} = 320^{\circ}$

- Draw a straight line AB.
- Place a dot at B. This dot represents the vertex of the angle.
- Place the centre of the protractor at B and the baseline of the protractor along the arm BA.
- Find 320° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, BC, of the angle.
- Mark the angle with a small arc as shown below.

Question: 1 F

Using a protracto

Solution:

Given angle can be completely written in degree as = -220°

$$-220^{\circ} = 360^{\circ} - 220^{\circ} = 140^{\circ}$$

Question: 1 G

Using a protracto

Solution:

The given angle is negative

Adding or subtracting 360° from a particular angle does'nt changes its position.

Therefore, Angle can also be written as= $-310^{\circ} + 360^{\circ} = 50^{\circ}$

- Draw a straight line AB.
- Place a dot at B. This dot represents the vertex of the angle.
- Place the centre of the protractor at B and the baseline of the protractor along the arm BA.
- Find 50° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, BC, of the angle.
- Mark the angle with a small arc as shown below.

Question: 1 H

Using a protracto

Solution:

The given angle is negative

Adding or subtracting 360° from a particular angle does'nt changes its position.

Therefore, Angle can also be written as= $-400^{\circ} + 360^{\circ} = -40^{\circ}$

The angle is still negative, so we will further add 360° to it.

Therefore, Angle can also be written as=-40° + 360°=320°

- Draw a straight line AB.
- Place a dot at B. This dot represents the vertex of the angle.
- Place the centre of the protractor at B and the baseline of the protractor along the arm BA.
- Find 320° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, BC, of the angle.
- Mark the angle with a small arc as shown below.

Question: 1

Express each of t

Solution:

Formula : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

Therefore, Angle in radians = $.36 \times \frac{\pi}{180} = \frac{\pi}{5}$

Question: 2 A

Express each of t

Solution:

Formula : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

Therefore, Angle in radians = $120 \times \frac{\pi}{180} = \frac{2\pi}{3}$

Question: 2 C

Express each of t

Solution:

Formula : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

Therefore, Angle in radians = $225 \times$	π	=	51
, g <u> </u>	180		4

Question: 2 D

Express each of t

Solution:

Formula : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

Therefore, Angle in radians = $330 \times \frac{\pi}{180} = \frac{11\pi}{6}$

Question: 2 E

Express each of t

Solution:

Formula : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

Therefore, Angle in radians = $400 \times \frac{\pi}{180} = \frac{20\pi}{9}$

Question: 2 F

Express each of t

Solution:

Formula : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

The angle in radians = $\frac{\text{angle in minutes}}{60}$

Therefore, the total angle = $7 + \frac{30}{60} = 7.5$

Therefore, Angle in radians = 7.5 $\times \frac{\pi}{180} = \frac{\pi}{24}$

Question: 2 G

Express each of t

Solution:

Formula : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

Therefore, Angle in radians = $-270 \times \frac{\pi}{180} = -\frac{3\pi}{2}$

Question: 2 H

Express each of t

Solution:

Formula : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

The angle in radians = $\frac{\text{angle in minutes}}{60}$

Therefore, the total angle = $-\left(22 + \frac{30}{60}\right) = -22.5$

Therefore, Angle in radians = $-22.5 \times \frac{\pi}{180} = -\frac{\pi}{8}$

Question: 3

(i) Formula : Angle in degrees = Angle in radians $\times \frac{180}{\pi}$

Therefore, Angle in degrees = $\frac{5\pi}{12} \times \frac{180}{\pi} = 75^{\circ}$

(ii) Formula : Angle in degrees = Angle in radians $\times \frac{180}{\pi}$

Therefore, Angle in degrees = $-\frac{18\pi}{5} \times \frac{180}{\pi} = -648^{\circ}$

(iii) Formula : Angle in degrees = Angle in radians $\times \frac{180}{\pi}$

The angle in minutes = Decimal of angle in radian x 60.'

The angle in seconds = Decimal of angle in minutes $x\ 60.$ "

Therefore, Angle in degrees = $\frac{5}{6} \times \frac{180}{\pi} = \frac{150}{22/7} = 47.7272^{\circ}$

Angle in minutes = $0.7272 \times 60' = 43.632'$

Angle in seconds = $0.632 \times 60'' = 37.92''$

Final angle = $47^{\circ} 43' 38''$

(iv) Formula : Angle in degrees = Angle in radians $\times \frac{180}{\pi}$

The angle in minutes = Decimal of angle in radian x 60.

The angle in seconds = Decimal of angle in minutes x 60."

Therefore, Angle in degrees = $-4 \times \frac{180}{\pi} = -\frac{720}{22/7} = -229.0909^{\circ}$

Angle in minutes = $0.0909 \times 60' = 5.4545'$

Angle in seconds = $0.4545 \times 60'' = 27.27''$

Final angle = $-229^{\circ} 5' 27''$

Question: 4

The angles of a t

Solution:

Let a - d, a, a + d be the three angles of the triangle that form AP.Given that the greatest angle is double the least.Now, a + d = 2(a - d)2a - 2d = a + da = 3d(1)Now by angle sum property,(a - d) + a + (a + d) = $180^{\circ}3a$ = $180^{\circ}a$ = 60° (2)from (1) and (2),3d = $60^{\circ}d$ = 20° Now, the angles are,a - d = 60° - 20° = $40^{\circ}a$ = $60^{\circ}a$ + d = 60° + 20° = 80° .

Therefore the required angles are 40° 60° 80°

Question: 5

The difference be

Solution:

The angle in degree = $\frac{\pi}{5} \times \frac{180}{\pi} = 36^{\circ}$

= 36°

Let, two acute angles are x and y

so,

ATQ,
$$x - y = 36^{\circ}.....(1)$$

$$x + y = 90^{\circ}....(2)$$

solving 1 & 2, we get;

$$\Rightarrow$$
 2x= 126°

$$\Rightarrow$$
 x= 63°

putting the value of x in 2, we get;

$$\Rightarrow$$
 63°+ y= 90°

so, Two acute angles are 63° & 27°

Question: 6

Find the radius o

Solution:

Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

 $\theta = \frac{1}{r}$ where θ is central angle, l=length of arc, r=radius

Therefore angle = $45 \times \frac{\pi}{180} = \frac{\pi}{4}$

Now,

$$r=\frac{1}{\theta}$$

$$=\frac{33}{\pi/4}=\frac{132}{22/7}=\frac{924}{22}=42$$

Therefore radius is 42 cm

Question: 7

Find the length o

Solution:

Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

 $\theta {=} \frac{1}{r}$ where θ is central angle, l=length of arc, r=radius

Therefore angle = $36 \times \frac{\pi}{180} = \frac{\pi}{5}$

Now,

$$l = r \times \theta$$

$$= 14 \times \frac{\pi}{5} = 14 \times \frac{22}{35} = \frac{44}{5} = 8.8$$

Therefore the length of the arc is $8.8\ cm$

Question: 8

If the arcs of th

Solution:

Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

 $\theta {=} \frac{l}{r}$ where θ is central angle, l=length of arc, r=radius

Therefore $\theta_1 = 75 \times \frac{\pi}{180} = \frac{5\pi}{12}$

$$\theta_2 = 120 \times \frac{\pi}{180} = \frac{2\pi}{3}$$

$$l = r \times \theta$$

Now, as the length is the same

Therefore,
$$\mathbf{r}_1 \times \mathbf{\theta}_1 = \mathbf{r}_2 \times \mathbf{\theta}_2$$

$$r_1 \times \frac{5\pi}{12} = r_2 \times \frac{2\pi}{3}$$

$$\frac{r_1}{r_2} = \frac{12}{5\pi} \times \frac{2\pi}{3} = \frac{24}{15} = \frac{8}{5}$$

Therefore the ratio of their radii is 8:5

Question: 9

Find the degree m

Solution:

Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

 $\theta {=} \frac{l}{r}$ where θ is central angle, l=length of arc, r=radius

Now,

$$\theta = \frac{1}{r}$$
 and $r = 0.5 \text{ x diameter}$

$$=\frac{16.5}{30}$$
 radians

$$\theta \text{ in degrees} = \frac{16.5}{30} \times \frac{180}{\pi} = \frac{16.5}{30} \times \frac{180}{22/7} = \frac{16.5}{30} \times \frac{180 \times 7}{22} = \frac{20790}{660} = 31.5^{\circ}$$

$$\theta$$
 in minutes = 0.5 x 60 = 30'

Therefore angle subtended at the center is 31° 30'

Question: 10

In a circle of di

Solution:

Diameter = 30 cm

Length of chord = 15 cm

Radius = 15 cm [r = 0.5 x diameter]

Since the radius is equal to the length of the chord

Hence the formed triangle in the circle is an equilateral triangle.

$$\theta = 60^{\circ}$$

We know that $l = r \times \theta$

$$l = 15 \times 60 \times \frac{\pi}{180} = 5 \times \pi = 5 \times 3.14 = 15.7$$

Therefore, the length of the minor arc is 15.7 cm

Question: 11

Find the angle in

Solution:

We know that $l = r \times \theta$

Here l = length of arc = 11 cm

R = radius = length of pendulum = 45 cm

We need to find θ

$$11 = 45 \times \theta$$

$$\theta = \frac{11}{45}$$
 radian

$$\theta$$
 in degree = $\frac{11}{45} \times \frac{180}{\pi} = \frac{44}{22/7} = 14^{\circ}$

Question: 12

The large hand of

Solution:

For 20 minutes = $\theta = 4 \times 30^{\circ} = 120^{\circ}$

We know that $l = r \times \theta$

$$l = 42 \times 120 \times \frac{\pi}{180} = 28 \times \frac{22}{7} = 88$$

Therefore, the length is equal to 88 cm.

Question: 13

A wheel makes 180

Solution:

Given that Number of revolutions per minute = 180

Then per second, it will be = 180/60 = 3

We know that In one complete revolution, the wheel turns at an angle of 2π rad.

Then for 3 complete revolutions, it will take $3 \times 2\pi = 6\pi$ radians.

Question: 14

A train is moving

Solution:

Radius = 1500 m.

Train speed at rate of 66km/hr = 18.33 m/s

Therefore, Distance covered in 1 second = 18.33 m

Distance covered in 10 second = $18.33 \times 10 = 183.33$ m

We know that θ = Distance / radius

$$\theta = 183.33 / 1500$$

$$= 0.122$$
 radian

Therefore
$$\theta = 0.122 \times \frac{180}{\pi} = 7^{\circ}$$

Question: 15

A wire of length

Solution:

 $\boldsymbol{\theta}$ will be in degrees.

Arc-length can be given by the formula : θ / $360^{\circ} \times 2\pi r$

Hence it is given that 121 cm is the arclength.

$$\Rightarrow 121 = \theta / 360^{\circ} \times 2\pi r$$

$$= 121 = \theta / 360^{\circ} \times 2 \times 22 / 7 \times 180$$

$$= 121 = \theta / 360^{\circ} \times 360 \times 22 / 7$$

$$= 121 = \theta \times 22 / 7$$

$$\Rightarrow \theta = 121 \times 7 / 22$$

$$= 38.5^{\circ}$$

Hence the angle subtended at the middle is 38.5°

Which can also be written as 38° 30.'

Question: 16

The angles of a q

Solution:

Let the smallest term be x, and the largest term be 2x

Then AP formed= x, ?, ?, 2x

so,

$$S_n = \frac{n}{2}[2a + (n-1)d]$$

$$S_n = \frac{n}{2}[a + (a + (n-1)d)] = \frac{n}{2}[First \, term + (Last \, term)]$$

 $360^{\circ} = 4/2 [x + 2x]...[We know that \rightarrow a+(n-1) d= last term = 2x]$

$$\Rightarrow$$
 x= 60°

Now, 60° is least angle.

$$= 60^{\circ} = \pi/180^{\circ} \times 60^{\circ}$$

$$\Rightarrow 60^{\circ} = \pi/3 \text{ rad}$$