Total No. of Questions—8]

[Total No. of Printed Pages—2

Seat	N (
No.	

[5559]-182

S.E. (Computer) (First Semester) EXAMINATION, 2019

DIGITAL ELECTRONICS AND LOGIC DESIGN

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

Instructions to the candidates:

- 1) Attempt Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8,
- 2) Neat diagram must be drawn wherever necessary
- 3) Assume suitable data if necessary
- Q.1. Solve the following equations using corresponding minimization techniques:

(i)
$$Z = f(A, B, C, D) = (2, 7, 8, 10, 11, 13, 15)$$

$$(ii)$$
 Z = f (A, B, C, D) = $(0, 3, 4, 9, 10, 12, 14)$.

OR

- Q.2. a. Solve by Quine-McClusky technique: Z = f(A, B, C, D) = (0, 1, 3, 4, 6, 8, 10, 12, 14).
 - b. Difference between Sequential and Combinational Circuit [4]
- Q.3. a. What is an ASM chart? Give its applications and explain the MUX [6] controlled method with suitable example
 - b. A combinational circuit is defined by following functions:

F1 (A,B,C) =
$$\sum m (0,2,4,5)$$
, F2 (A,B,C) = $\sum m (1,3,6,7)$

Implement this circuit using PLA

[12]

[8]

[6]

Q.4.	a.	What is VHDL? Explain entity architecture declaration for 2-Bit X-NOR gate	[2]
	b.	Write VHDL code for 2 bit comparator using data flow Modeling	[5]
		Technique.	
	c.	Design BCD to Gray code converter and Implement using PLA	[5]
Q.5.	a.	Draw 2-i/p standard TTL NAND gate with Totem Pole. Explain	[7]
		operation of transistor (ON/OFF) with suitable input conditions and truth table.	
	b.	Explain Tristate logic and Tristate TTL inverter	[6]
		OR E	
Q.6.	a.	Compare CMOS and TTL logic Family	[7]
	b.	Define the following terms and mention its standard value for TTL logic	[6]
		family.	
		1. Voltage and Current Parameter	
		2.Power dissipation	
		3. Noise Margin	
Q.7.	a.	State the registers used in Timer counter operation. Explain TMOD	17b
Q	•••	register	
	b.	Draw and explain the Program Status Word of 8051	[6]
		OR	
Q.8.	a.	Explain any three addressing modes of 8051 with example	[7]
2.01		Explain the function of following pins of 8051	[6]
	0.	i) (PSEN)	
•		ii) RST	
		iii) ALE	
		iv) EA	
[5559]]_1,9	OR Explain any three addressing modes of 8051 with example Explain the function of following pins of 8051 i) (PSEN) ii) RST iii) ALE iv) EA	
ָטטטט	1 10		
		×.	