论题 1-9 作业

姓名: 陈劭源 学号: 161240004

1 [UD] Problem 10.2

- (a) $\{(1,1),(2,2),(3,3),(4,4),(5,5)\};$
- (b) $\{(1,1),(2,2),(2,3),(3,3),(3,4),(4,4),(5,5)\};$
- (c) $\{(1,2),(2,1)\}$
- (d) $\{(1,2),(2,3),(3,4),(4,5),(5,1)\};$

2 [UD] Problem 10.4

Yes. First, it is reflexive, because $x_1 - y_1 = x_2 - y_2 = 0$ are even when $(x_1, x_2) = (y_1, y_2)$. Second, it is symmetry because both $x_1 - y_1$ and $x_2 - y_2$ are even if and only if $y_1 - x_1$ and $y_2 - x_2$ are even. Third, it is transitive, because that both $x_1 - y_1$ and $y_1 - z_1$ are even implies $x_1 - z_1$ is even, and $x_2 - z_2$ is even likewise.

3 [UD] Problem 10.5

"If": for all $a \in E_x$, we have $a \sim x$, since $x \sim y$, we get $a \sim y$, therefore $a \in E_y$. Hence E_x is a subset of E_y . Likewise E_y is a subset of E_x . So $E_x = E_y$.

"Only if": by the definition of equivalence class, $E_x = \{a \in X : x \sim a\}$, since $y \in E_y$ and $E_x = E_y$, we have $y \in E_x$, that is, $x \sim y$.

4 [UD] Problem 10.8

- (a) Yes. The equivalence class is $\{\sum_{i=0}^{n} a_i x^i : a_0 = 0\}$.
- (b) Yes. E_r is the set of all the polynomials of degree 1.
- (c) No. Because it is not reflexive.

5 [UD] Problem 11.3

- (a) Yes. A_r represents a plane, on which the sum of the coordinates of a point is r.
- (b) Yes. A_r represents a sphere whose center is the origin and its radius is |r|.

6 [UD] Problem 11.7

- (a) Yes. Obviously, for all $m \in \mathbb{N}$, A_m is nonempty. Since every polynomial has a degree, so $\bigcup_{m \in \mathbb{N}} A_m = P$. Every polynomial has only one degree, so that for all $\alpha, \beta \in \mathbb{N}$, $A_\alpha = A_\beta$ (when $\alpha = \beta$) or $A_\alpha \cap A_\beta = \emptyset$ (when $\alpha \neq \beta$) holds. Therefore, A_m determine a partition.
- (b) Yes. For all $c \in \mathbb{R}$, there exists a polynomial such that p(0) = c, so A_c is always nonempty. We have that $\bigcup_{c \in \mathbb{R}} A_c = P$. For every polynomial, p(0) is a constant, so that for all $\alpha, \beta \in \mathbb{R}$, $A_{\alpha} = A_{\beta}$ (when $\alpha = \beta$) or $A_{\alpha} \cap A_{\beta} = \emptyset$ (when $\alpha \neq \beta$) holds.
- (c) No. Consider A_x and A_{x^2} , x^2 is an element of both, however, $A_x \neq A_{x^2}$ because x is an element of the former one but not an element of the latter one.
- (d) No. Consider A_0 and A_1 , $x^2 x$ is an element of both, however, $A_0 \neq A_1$ because x is an element of the former one but not an element of the latter one.

7 [UD] Problem 11.8

First, for all $\alpha \in I \cup J$, A_{α} is nonempty because $\{A_{\alpha} : \alpha \in I\}$ and $\{A_{\alpha} : \alpha \in J\}$ are both nonempty. Second, for every real number x, there exists $\alpha \in I \cup J$ ($\alpha \in I$ when x > 0 and $\alpha \in J$ when $x \leq 0$), therefore $\bigcup_{\alpha \in I \cup J} A_{\alpha} = \mathbb{R}$. Third, for all $\alpha, \beta \in I$ (or J), $A_{\alpha} = A_{\beta}$ or $A_{\alpha} \cap A_{\beta}$ holds, and for all $\alpha \in I$ and $\beta \in J$, $A_{\alpha} \cap A_{\beta} = \emptyset$, therefore for all $\alpha, \beta \in I \cup J$, $A_{\alpha} = A_{\beta}$ or $A_{\alpha} \cap A_{\beta}$ holds. Hence $\{A_{\alpha} : \alpha \in I \cup J\}$ is a partition of \mathbb{R} .

8 [UD] Problem 11.9

- (a) No. Let $X = \{1, 2, 3\}$, and $\{A_{\alpha} : \alpha \in I\} = \{\{1\}, \{2, 3\}\}$ be a partition of X. Let $B = \{1, 2\} \subseteq X$ such that $B \cap \{1\} \neq \emptyset$ and $B \cap \{2, 3\} \neq \emptyset$. However, $\{A_{\alpha} \cap B : \alpha \in I\} = \{\{1\}, \{2\}\}$ is not a partition of B, because $\bigcup_{\alpha \in I} A_{\alpha} \cap B = \{1, 2\} \neq X$.
- (b) No. Let $X = \{1,2,3\}$, and $\{A_{\alpha} : \alpha \in I\} = \{\{1\},\{2\},\{3\}\}\}$ be a partition of X. However, $\{X \setminus A_{\alpha} : \alpha \in I\} = \{\{1,2\},\{1,3\},\{2,3\}\}\}$ is not a partition of X because $\{1,2\} \neq \{1,3\}$ and $\{1,2\} \cap \{1,3\} \neq \emptyset$.