# GitHub





# Taming the Tail in Class-Conditional GANs: Knowledge Sharing via Unconditional Training at Lower Resolutions

Oregon State<sup>1</sup> ETH zürich<sup>2</sup> University

Saeed Khorram<sup>1</sup>, Mingqi Jiang<sup>1</sup>, Mohamad Shahbazi<sup>2</sup>, Mohamad H. Danesh<sup>3</sup>, Li Fuxin<sup>1</sup>



#### Class-Conditional GAN Mode Collapse on Long-tailed Data

- Problem Training class-conditional GANs on long-tailed data leads to mode collapse.
- Past work focuses on regularization, normalization, and/or class balancing techniques.
- These are not helpful when tail classes are highly underrepresented
- We propose <u>knowledge sharing</u> between head and tail classes, agnostic of GAN architectures



#### **Motivation**

- Observation head and tail classes are often more similar at lower resolutions
- → Information at the lower resolutions tends to be more <u>class-independent</u> thus can be shared between the head and tail classes (e.g., background, configuration)
- → Class-specific features are usually unveiled at higher resolution (e.g., unique texture, fine details)



#### Lower Resolution

### **Unconditional Training at Lower Resolutions (UTLO)**

- UTLO's Design promotes knowledge sharing between head and tail classes via shared unconditional intermediate low resolution  $\hat{x}_l$
- Conditional information are injected at higher resolutions
- Simultaneously trained with both conditional and unconditional objectives
- Low resolution images/features primarily inherit rich information from head classes



# **Objective**

 $\mathcal{L}_{c}^{D} = \mathbb{E}_{\boldsymbol{x},y}[f_{D}\left(-D(\boldsymbol{x}|y)\right)] + \mathbb{E}_{\boldsymbol{z},y}[f_{D}\left(D\left(G\left(\boldsymbol{z},y\right)\right)\right)]$  $\mathcal{L}_{c}^{G} = \mathbb{E}_{\boldsymbol{z},y}[f_{G}\left(-D\left(G\left(\boldsymbol{z},y\right)\right)\right)]$ 

**UTLO Objective** 

 $\mathcal{L}^D = \mathcal{L}_c^D + \lambda \cdot \mathcal{L}_{uc}^D$  $\mathcal{L}^G = \mathcal{L}_c^G + \lambda \cdot \mathcal{L}_{uc}^G$ 

## **Evaluation Metrics For Long-Tail Datasets**

- For FID/KID, we sample from the same distribution as the largest available training dataset (e.g. before artificial imbalance)
- We propose FID/KID-FewShot (FS), tailored for evaluating the quality of generated samples in the tail classes
- We maintain an equal number of real images across all tail classes, emphasizing on the learning quality on tail classes.

#### **Evaluation**

 UTLO improves over baselines across all metrics, datasets, and architectures (FastGA and StyleGAN2-ADA).

| $AN = \begin{array}{c} 8 \times \\ 16 \times \\ 32 \times \end{array}$ | 16 27.5 5      | 0.3   | 13.7 2 | 9.6<br>20.8<br>4.3                     | 'Importance      |  |  |  |  |
|------------------------------------------------------------------------|----------------|-------|--------|----------------------------------------|------------------|--|--|--|--|
| Ablation: choice of uncond. low resolution of FS metrics               |                |       |        |                                        |                  |  |  |  |  |
| lethods                                                                |                | FID ↓ | FID-FS | $\downarrow$ KID $\downarrow$ $\times$ | KID-FS ↓<br>1000 |  |  |  |  |
| vleGAN2-Al                                                             | DA UnCond [16] | 30.4  | 104.1  | 173                                    | 27.6             |  |  |  |  |

|                        |         |                    | a         |                  | Methous        |
|------------------------|---------|--------------------|-----------|------------------|----------------|
| Methods                | FID↓    | FID-FS↓            | KID↓<br>× | KID-FS ↓<br>1000 | StyleGAN2-A    |
| PGAN (FastGAN)+DA [39] | 15.0    | 60.2               | 4.6       | 52.7             | StyleGAN2-A    |
| + GSR [35]             | 15.7    | 63.7               | 5.7       | 58.0             | + Transitional |
| + UTLO (Ours)          | 10.9    | 43.6               | 3.5       | 35.3             | + GSR[35]      |
| I CLINE 17             | - datas | ot   Fact <i>C</i> | 2 A N     |                  | + NoisyTwins   |

48.4 12.6 19.6 + UTLO (Ours)

nimalFaces-LT dataset | StyleGAN2-ADA





#### Conclusion

- ❖ We proposed UTLO for training class-conditional GANs on long-tailed data that addresses mode collapse by promoting knowledge sharing between head and tail classes.
- UTLO introduces a new category of class-conditional GANs featuring a partially unconditional generator, trained with both conditional and unconditional objectives.
- ❖ We introduced FID/KID FewShot metric, enabling a more precise evaluation of the generation quality in the long-tailed setup.
- ❖ We showed the effectiveness of UTLO through qualitative and quantitative experiments.
- This work is partially supported by National Science Foundation (NSF) under grant 1751412 and 1927564.