1. Consider applying the basic Newton method to minimise the function

$$h(x_1, x_2) = x_1^2 + x_2^2 - x_1 x_2 + 3x_2 - 1$$

on \mathbb{R}^2 , starting from the point $\boldsymbol{x}^{(1)} = (1, 1)^{\top}$.

(i) Calculate the Newton direction $s^{(1)}$ for h at $x^{(1)}$.

Solution. The gradient and Hessian are given by

$$\nabla h(\boldsymbol{x}) = \begin{pmatrix} 2x_1 - x_2 \\ 2x_2 - x_1 + 3 \end{pmatrix}, \ \nabla^2 h(\boldsymbol{x}) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}.$$

The Newton direction $s^{(1)}$ satisfies

$$\nabla^2 h(\boldsymbol{x}^{(1)}) \boldsymbol{s}^{(1)} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \boldsymbol{s}^{(1)} = -\nabla h(\boldsymbol{x}^{(1)}) = \begin{pmatrix} -1 \\ -4 \end{pmatrix}.$$

By row reduction:

$$\begin{pmatrix} 2 & -1 & | & -1 \\ -1 & 2 & | & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -\frac{1}{2} & | & -\frac{1}{2} \\ 1 & -2 & | & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -\frac{1}{2} & | & -\frac{1}{2} \\ 0 & -\frac{3}{2} & | & \frac{9}{2} \end{pmatrix},$$

giving $\mathbf{s}^{(1)} = (-2, -3)^{\top}$.

(ii) Is the Newton direction $\mathbf{s}^{(1)}$ a descent direction for h at $\mathbf{x}^{(1)}$. Give reasons for your answer.

Solution. It is a descent direction as

$$\nabla h(\boldsymbol{x}^{(1)})^{\top} \boldsymbol{s}^{(1)} = \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} -2 \\ -3 \end{pmatrix} = -14 < 0.$$

(iii) Find the next Newton iterate $x^{(2)}$.

Solution.
$$\boldsymbol{x}^{(2)} = \boldsymbol{x}^{(1)} + \boldsymbol{s}^{(1)} = (1,1)^{\top} + (-2,-3)^{\top} = (-1,-2)^{\top}.$$

(iv) Stating reasons, show that $x^{(2)}$ is the unique global minimiser for the function h.

Solution. The point $x^{(2)}$ is a stationary point because

$$\nabla h(\boldsymbol{x}^{(2)}) = \begin{pmatrix} (2)(-1) - (-2) \\ (2)(-2) - (-1) + 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Moreover, $\nabla^2 h(\boldsymbol{x}) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ with $\operatorname{tr}(\nabla^2 h(\boldsymbol{x})) = 4 > 0$ and $\det(\nabla^2 h(\boldsymbol{x})) = 3 > 0$ has positive eigenvalues, so $\nabla^2 h(\boldsymbol{x})$ is positive definite for all $\boldsymbol{x} \in \mathbb{R}^2$. Hence, h is a strictly convex function over \mathbb{R}^2 . Hence, the stationary point $\boldsymbol{x}^{(2)}$ is the unique global minimiser.

2. Consider the equality constrained optimization problem

(P₁)
$$\min_{\boldsymbol{x} \in \mathbb{R}^3} -x_1 x_2 x_3$$

 $s.t.$ $x_1 + x_2 + x_3 - 40 = 0$
 $x_1 + x_2 - x_3 = 0$,

where $f(\mathbf{x}) = -x_1x_2x_3$, $c_1(\mathbf{x}) = x_1 + x_2 + x_3 - 40$ and $c_2(\mathbf{x}) = x_1 + x_2 - x_3$. It is **given** that $\mathbf{x}^* = (10, 10, 20)^{\top}$ is a regular constrained stationary point for (P1) with the Lagrange multipliers $\lambda_1^* = 150$ and $\lambda_2^* = 50$. Using the second-order sufficient optimality conditions, determine whether or not \mathbf{x}^* is a (strict) local minimiser for (P1).

Solution. The Lagrangian function is $L(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) + \lambda_1 c_1(\boldsymbol{x}) + \lambda_2 c_2(\boldsymbol{x})$ with gradient and Hessian

$$\nabla L(\boldsymbol{x}, \boldsymbol{\lambda}) = \begin{pmatrix} -x_2 x_3 + \lambda_1 + \lambda_2 \\ -x_1 x_3 + \lambda_1 + \lambda_2 \\ -x_1 x_2 + \lambda_2 - \lambda_2 \end{pmatrix}, \ \nabla^2 L(\boldsymbol{x}, \boldsymbol{\lambda}) = \begin{pmatrix} 0 & -x_3 & -x_2 \\ -x_3 & 0 & -x_1 \\ -x_2 & -x_1 & 0 \end{pmatrix}, \ \nabla^2 L(\boldsymbol{x}^*, \boldsymbol{\lambda}^*) = \begin{pmatrix} 0 & -20 & -10 \\ -20 & 0 & -10 \\ -10 & -10 & 0 \end{pmatrix}.$$

The matrix $\nabla^2 L(\boldsymbol{x}^*, \boldsymbol{\lambda}^*)$ is not positive definite. So, to calculate the reduced Hessian matrix, we want to find $Z^* = (\alpha, \beta, \gamma)^{\top} \in \mathbb{R}^{3 \times 1}$ with full rank such that

$$(Z^*)^{\top} \left(\nabla c_1(\boldsymbol{x}^*) \quad \nabla c_2(\boldsymbol{x}^*) \right) = (Z^*)^{\top} \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -1 \end{pmatrix} = \left(\alpha + \beta + \gamma \quad \alpha + \beta - \gamma \right) = \begin{pmatrix} 0 & 0 \end{pmatrix}.$$

This means

$$\alpha + \beta + \gamma = 0$$
, and $\alpha + \beta - \gamma = 0$.

This gives $\gamma = 0$ and $\alpha = -\beta$. So Z^* is of the form $Z^* = (-\beta, \beta, 0), \beta \neq 0$. Choose $Z^* = (-1, 1, 0)^{\top}$. The reduced Hessian is

$$W^* = (Z^*)^{\top} \nabla L(\boldsymbol{x}^*, \boldsymbol{\lambda}^*) Z^* = \begin{pmatrix} -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -20 & -10 \\ -20 & 0 & -10 \\ -10 & -10 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = 40,$$

which is positive definite (1×1) matrix. By the second-order sufficient optimality condition, \boldsymbol{x}^* is a strict local minimiser.

3. Consider the convex optimization problem

(P2)
$$\min_{\mathbf{x} \in \mathbb{R}^2} e^{-2(x_1 + x_2)}$$

subject to $e^{x_1} + e^{x_2} - 4 \le 0$.

(i) Find a constrained stationary point z^* of the problem (P2).

Solution. Let $c_1(x_1, x_2) := e^{x_1} + e^{x_2} - 4$. Suppose that the constraint is active at \boldsymbol{z}^* , i.e., $c_1(z_1^*, z_2^*) = e^{z_1^*} + e^{z_2^*} - 4 = 0$. The Lagrangian function is $L(\boldsymbol{x}, \lambda_1) = e^{-2(x_1 + x_2)} + \lambda_1(e^{x_1} + e^{x_2} - 4)$. For \boldsymbol{z}^* to be a constrained stationary point, we require $\nabla_{\boldsymbol{z}} L(\boldsymbol{z}^*, \lambda_1^*) = \boldsymbol{0}$ and $c_1(\boldsymbol{z}^*) = 0$ for some λ_1^* , i.e.,

$$-2e^{-2(z_1^*+z_2^*)} + \lambda_1^*e^{z_1^*} = 0, (1)$$

$$-2e^{-2(z_1^*+z_2^*)} + \lambda_1^* e^{z_2^*} = 0. (2)$$

$$e^{z_1^*} + e^{z_2^*} - 4 = 0. (3)$$

Subtracting Eqn. (1) from Eqn. (2) yields $\lambda_1^*(e^{z_2^*}-e^{z_1^*})=0$. Then either $\lambda_1^*=0$ or $e^{z_1^*}=e^{z_2^*}$. If $\lambda_1^*=0$, then Eqn. (1) implies $-2e^{-2(z_1^*+z_2^*)}=0$ which is not possible. So, $e^{z_1^*}=e^{z_2^*}$, and $z_1^*=z_2^*$. Now, Eqn. (3) gives $z_1^*=z_2^*=\log 2$. Finally, from Eqn. (1), $\lambda_1^*=2^{-4}$. Hence, $\boldsymbol{z}^*=(\log 2,\log 2)$ is a constrained stationary point with the Lagrange multiplier $\lambda_1^*=2^{-4}$.

(ii) Is z^* of part (i) the only constrained stationary point for the problem (P2)? Give reasons for your answer.

Solution. Suppose that the constraint is not active at z^* , i.e., $e^{z_1^*} + e^{z_2^*} - 4 < 0$. Then, the first-order necessary optimality condition requires

$$\nabla_{\mathbf{z}}(e^{-2(z_1^*+z_2^*)}) = \begin{pmatrix} -2e^{-2(z_1^*+z_2^*)} \\ -2e^{-2(z_1^*+z_2^*)} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

which is not possible. Hence, $z^* = (\log 2, \log 2)$ is the **only** constrained stationary point.

- (iii) Explain why the constrained stationary point z^* of part (i) is a global minimizer for the problem (P2). Solution. It is given that (P₂) is a convex problem, and we have found $\lambda_1^* > 0$ for the active inequality constraint. By the KKT sufficient optimality conditions, the constrained stationary point z^* is a global minimiser.
- (iv) Stating clear reasons, show that \mathbf{z}^* of part (i) is the unique global minimizer for the problem (P2). Solution. Suppose that $\mathbf{y}^* = (y_1^*, y_2^*)$ is another global minimiser for (P_2) . Then, it is a regular local minimizer because $\nabla c_1(\mathbf{y}^*) = (e^{y_1^*}, e^{y_2^*})^{\top} \neq 0$. So, by the first-order necessary optimality conditions, it must be a constrained stationary point for (P_2) . By part (ii), \mathbf{z}^* is the only constrained stationary point for (P_2) , so $\mathbf{z}^* = \mathbf{y}^*$. Note that the constraint cannot be active at \mathbf{y}^* . Otherwise, the first-order necessary optimality condition gives

$$\nabla_{\boldsymbol{y}^*}(e^{-2(y_1^*+y_2^*)}) = \begin{pmatrix} -2e^{-2(z_1^*+z_2^*)} \\ -2e^{-2(z_1^*+z_2^*)} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

which is not possible. Hence, z^* is the unique global minimiser for (P_2) .