Ejemplo1

July 16, 2025

```
[3]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import statsmodels.api as sm
[4]: data = pd.read_csv('1.01.+Simple+linear+regression.csv')
[5]:
    data
[5]:
          SAT
                GPA
     0
         1714
              2.40
     1
         1664 2.52
     2
         1760 2.54
     3
         1685 2.74
     4
         1693 2.83
          •••
     79
         1936 3.71
     80
         1810 3.71
     81
         1987
               3.73
     82
         1962 3.76
         2050
     83
              3.81
     [84 rows x 2 columns]
[6]: data.describe()
[6]:
                    SAT
                                GPA
              84.000000
                         84.000000
     count
            1845.273810
     mean
                           3.330238
     std
             104.530661
                           0.271617
            1634.000000
    min
                           2.400000
     25%
            1772.000000
                           3.190000
     50%
            1846.000000
                           3.380000
     75%
            1934.000000
                           3.502500
            2050.000000
                           3.810000
     max
[7]: y = data['GPA']
     x1 = data['SAT']
```

```
[8]: plt.scatter(x1,y)
  plt.xlabel('SAT',fontsize=20)
  plt.ylabel('GPA',fontsize=20)
  plt.show()
```



```
[9]: x = sm.add_constant(x1)
result = sm.OLS(y,x).fit()
result.summary()
```

[9]:

Dep. Variable:	GPA	R-squared:	0.406
Model:	OLS	Adj. R-squared:	0.399
Method:	Least Squares	F-statistic:	56.05
Date:	Tue, 08 Jul 2025	Prob (F-statistic):	7.20e-11
Time:	16:03:54	Log-Likelihood:	12.672
No. Observations:	84	AIC:	-21.34
Df Residuals:	82	BIC:	-16.48
Df Model:	1		
Covariance Type:	nonrobust		

		\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} \gt \mathbf{t} $	[0.025	0.975]
	onst AT	0.2750 0.0017	0.409	0.673 7.487	0.503	-0.538	1.088
		0.0011	0.000	11101	0.000	0.001	0.002
Omnibus:		12.839	Durbin-Watson:			0.950	
Prob(Omnibus):		0.002	Jarque-Bera (JB):			16.155	
Ske	\mathbf{w} :		-0.722	\mathbf{Prob}	o(JB):		0.000310
Kurtosis:		4.590	Cond. No.		3.29e+04		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.29e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
[12]: plt.scatter(x1,y)
  yhat = 0.0017*x1 + 0.275
  fig = plt.plot(x1,yhat, lw=4, c='orange', label ='regression line')
  plt.xlabel('SAT', fontsize = 20)
  plt.ylabel('GPA', fontsize = 20)
  plt.show()
```


[]:[