TTIC 31230 Fundamentals of Deep Learning

Problems For Language Modeling, Translation and Attention.

Problem 1. What is the order of the number of floating point operations (serial computer running time) as a function of input sentence length and output sentence length for both the forward and backward pass of sequence to sequence models for machine translation both with and without attention.

Problem 2. Consider a bidirectional RNN run on a sequence of words w_1, \ldots, w_T such that for each time t we have a forward hidden state $\vec{h}[t, J]$ computed from w_1, \ldots, w_t and a backward hidden state $\vec{h}[t, J]$ computed from $w_T, w_{T-1}, \ldots w_t$.

- (a) Given an explicit index (Einstein notation) definition of a cross entropy loss \mathcal{L}_t for $P(w[t] \mid w_1, \dots, w_{t-1}, w_{t+1}, \dots, w_T)$ as a function of $\vec{h}[t-1, J]$ and $\vec{h}[t+1, J]$. You should define the probability with a softmax and assume that softmax is given as a primitive. Assume a word embedding matrix e[W, J] where e[w, J] is the embedding vector for word w.
- (b) Suppose we take the loss of a given model on a sentence w_1, \ldots, w_t to be $\sum_t \mathcal{L}_t$ for \mathcal{L}_t defined as in part (a). What is the order of run time, as a function of sentence length, for the backpropagation with this loss function? Explain your answer.