- What is clustering?
- Why would we want to cluster?
- How would you determine clusters?
- How can you do this efficiently?

- Strengths
 - Simple iterative method
 - User provides "K"
- Weaknesses
 - Often too simple → bad results
 - Difficult to guess the correct "K"

Basic Algorithm:

- Step 0: select K
- Step 1: randomly select initial cluster seeds

- An initial cluster seed represents the "mean value" of its cluster.
- In the preceding figure:
 - Cluster seed 1 = 650
 - Cluster seed 2 = 200

- Step 2: calculate distance from each object to each cluster seed.
- What type of distance should we use?
 - Squared Euclidean distance
- Step 3: Assign each object to the closest cluster

Step 4: Compute the new centroid for each cluster

- Iterate:
 - Calculate distance from objects to cluster centroids.
 - Assign objects to closest cluster
 - Recalculate new centroids
- Stop based on convergence criteria
 - No change in clusters
 - Max iterations

K-means Issues

- Distance measure is squared Euclidean
 - Scale should be similar in all dimensions
 - Rescale data?
 - Not good for nominal data. Why?
- Approach tries to minimize the within-cluster sum of squares error (WCSS)
 - Implicit assumption that SSE is similar for each group

WCSS

The over all WCSS is given by:

$$\sum_{i=1}^{k} \sum_{x \in C_i} ||x - \mu_i||^2$$

- The goal is to find the smallest WCSS
- Does this depend on the initial seed values?
- Possibly.

Bottom Line

- K-means
 - Easy to use
 - Need to know K
 - May need to scale data
 - Good initial method
- Local optima
 - No guarantee of optimal solution
 - Repeat with different starting values

K-Means Lab

Pause this set of slides and switch to lab slides