

PRACOWNIA PROBLEMOWA

Programowanie rzeczywistego robota przemysłowego Kawasaki FS03N w połączeniu z systemem wizyjnym Balluff BVS.

Zadanie typu Pick & Place.

data opracowania instrukcji: 09.2017 instrukcję przygotował: mgr inż. Grzegorz Piecuch

PRZYDATNE INFORMACJE

Podstawowe komendy w języku AS

Komenda	Przykład	Opis
jmove	jmove PHome	Ruch krzywoliniowy do punktu PHome
Imove	Imove PHome	Ruch prostoliniowy do punktu PHome
speed	speed 50	Prędkość maksymalna robota w %
twait	twait 0.1	Odczekanie ok. 0.1 s
accuracy	accuracy 0.1	Dokładność 0.1 mm
point	point nowy_punkt	Definiowanie pozycji nowy_punkt na
		podstawie znanej zmiennej pozycji
signal	signal -10,9	Komenda wykorzystująca zewnętrzne we/wy
		kontrolera robota. W tym przykładzie użycie
		komendy spowoduje wyłączenie przyssawki.
		Ujemna wartość sygnału – OFF
		Dodatnia wartość sygnału – ON
.program	.program nazwa_funkcji()	Rozpoczyna program
.end	.end	Kończy program
;	; ruch do punktu początkowego	komentarz

Obsługa konsoli KCwinTCP

- 1. Połączenie z kontrolerem robota: podać adres IP umieszczony na robocie
- 2. Logowanie login: as
- 3. Pobranie współrzędnych here <nazwa punktu>
- 4. Wysłanie programu do kontrolera: load <nazwa_programu.pg>
- 5. Uruchomienie programu na kontrolerze: prime <nazwa_funkcji>
- 6. Zatrzymanie wykonywanego procesu: kill

Obsługa oprogramowania czujnika wizyjnego

- 1. Połączenie z czujnikiem
- 2. Utworzenie nowej inspekcji (w tym wczytanie zdjęcia referencyjnego)
- 3. Wybór narzędzia kody QR (w trybie porównania) i utworzenie narzędzia tyle razy ile kodów QR będzie należało rozróżniać
- 4. Za pomocą narzędzi logicznych dostępnych w zakładce Ustawienia wyjść należy odpowiednio zakodować w postaci kodu binarnego odczytany kod. Niezbędne jest to dlatego, iż czujnik posiada 3 wyjścia binarne, a rozpoznać należy co najmniej 4 detale.

Zadanie

Należy zrealizować aplikację typu Pick&Place - przenoszenie detali z linii produkcyjnej na odpowiednie miejsce w magazynie za pomocą robota przemysłowego Kawasaki. Każdy detal posiada niepowtarzalny identyfikator zapisany w postaci kodu QR. Należy zdekodować identyfikator za pomocą czujnika wizyjnego, a następnie umieścić element w magazynie w miejscu do niego przypisanym.

Wymagania projektowe:

- Model robota: Kawasaki FS03NCzujnik wizyjny: Balluff BVS001N
- Zadanie należy zrealizować dla co najmniej 4 elementów.
- Należy tak dobrać elementy, aby wykorzystać co najmniej 2 poziomy magazynu.
- Wyprowadzić 2 sygnały wyjściowe z kontrolera robota:
 - o Zapalić zieloną kontrolkę podczas ruchu robota bez elementu.
 - o Zapalić czerwoną kontrolkę podczas ruchu robota wraz z elementem.
 - Jeśli do momentu odłożenia elementu do magazynu w polu widzenia czujnika wizyjnego nie pojawi się kolejny element, robot powinien ustawić się w pozycji bazowej. Po ustawieniu się w pozycji bazowej należy zgasić obie kontrolki.
- Podczas pobrania i odkładania detalu robot powinien poruszać się z prędkością nie większą niż 30%.