1 Simultaneous vs Selective Inference

Last time: Solve all inference problems at once, guarantee 0 type I errors (w.p. $1 - \alpha$) **Logic**: Then, ok to cherrypick "interesting" results

Example 1.1. $X_i = \mu_i + \varepsilon_i$, $\varepsilon_i \stackrel{\text{iid}}{\sim} N(0,1)$, $i = 1, \ldots, n$

- 1. Select $i^* = \arg \max X_i$
- 2. Report a CI for μ_{i^*} . Note μ_{i^*} not necessarily equal to $\max_i \mu_i$.

1.1 Simultaneous approach

Construct intervals $C_i = X_i \pm z_{\tilde{\alpha}_n/2}$ where

$$\tilde{\alpha}_n = 1 - (1 - \alpha)^{1/n} \approx \alpha/n \tag{1.1}$$

$$z_{\tilde{\alpha}_n/2} \approx \sqrt{2\log n} \tag{1.2}$$

Report $C_{i^*(X)(X)}$.

$$\mathbb{P}_{u}[\mu_{i^*} \notin C_{i^*}] \le \mathbb{P}_{u}[\mu_{i} \notin C_{i}, \text{ any } i] = \alpha \tag{1.3}$$

Two issues:

- 1) We expect $X_{i^*} > \mu_{i^*}$ So why inflate symmetrically?
- 2) What if $\mu_1 \gg \max_{i>1} \mu_i$ $\mathbb{P}[i^* = 1] \approx 1$ $\mathbb{P}[\mu_{i^*} \notin C_{i^*}] \approx P[\mu_1 \notin C_1] \approx \alpha/n$

1.2 Selective approach

Idea: Design C_i to guarantee

$$\mathbb{P}_{\mu}[\mu_i \not\in C_i \mid i^* = i] = \alpha \tag{1.4}$$

Then we have

$$\mathbb{P}_{\mu}[\mu_{i^*} \notin C_{i^*}] = \mathbb{E}_{\mu}[\mathbb{P}_{\mu}[\mu_i^* \notin C_{i^*} \mid i^*]] = \alpha \tag{1.5}$$

The conditional distribution

$$P(X \mid i^*(x) = i) \propto e^{-\frac{1}{2}||x - \mu||^2} 1_{\underset{j \neq i}{\underbrace{x_i > \max_{j \neq i} x_j}}}$$
(1.6)

$$\propto e^{\mu' x} e^{-\|x\|^2/2} 1_{x \in A_i} \tag{1.7}$$

$$= e^{\mu_i x_i + \mu'_{-i} x_{-i}} e^{-\|x\|^2 / 2} \mathbf{1}_{x \in A_i}$$
(1.8)

UMPU test of $H_0: \mu_i = c$ condition on x_i

Reduced the problem to same case as when we had nuisance parameters.

TODO: Fig 28.1

Note: Interval for μ_i only defined as A_i .

Suppose $\mu_1 \gg \max_{i>1} \mu_i$.

Then $X_1 \gg \max_{i>1} X_i$ (whp) and conditional inference \approx marginal inference. So $C_{i^*} \stackrel{whp}{=} C_1 \approx X_1 \pm z_{\alpha/2}.$

False Discovery Rate (FDR) 2

In 19951988 Benjamini & Hochberg proposed controlling a more liberal error criterion for multiple testing: False Discovery Rate.

Idea: Test 500k hypothesis and make 100 rejections, of which 5 are false.

Let V = # false rejections and R = # total rejections.

Definition 2.1. The False Discovery Proportion (FDP)

$$FDP = \frac{V}{R} \quad \left[\frac{0}{0} = 0 \right] \tag{2.1}$$

The FDP is a random variable, so the False Discovery Rate (FDR)

$$FDR = \mathbb{E}[FDP] \tag{2.2}$$

Proposal: control $FDR \leq \alpha$

BH Procedure 2.1

Setup: p_1, \ldots, p_n *p*-values for $H_{0,1}, \ldots, H_{0,n}$ independent [uniform if null].

Let $p_{(1)} \le p_{(2)} \le \cdots \le p_{(n)}$, $H_{0,(i)} =$ hypothesis corresponding to $p_{(i)}$. Select $R = \{r : p_{(r)} \le \frac{\alpha r}{n} \text{ (or 0)}\}.$

Reject $H_{0,(1)}, ..., H_{0,(R)}$ (or none if R = 0).

TODO: Fig 28.2

Intuition: Consider the rule rejecting all $p_i \le t$ for fixd $t \in [0,1]$.

$$FDP(t) = \frac{\#\{i \in \mathcal{H}_0 : p_i \le t\}}{1 \vee \#\{i : p_i \le t\}} = \frac{V_t}{1 \vee R_t}$$
 (2.3)

But $\mathbb{E}V_t = t | \mathcal{H}_0 rvert \leq tn$ and

$$\widehat{FDP}(t) = \frac{nt}{1 \vee R_t} \tag{2.4}$$

Idea: Could take $t^* = \sup\{t : \widehat{FDP}(t) \le \alpha\}$. Reject all $H_{0,i}$ with $p_i \le t^*$.

Remark 2.2. If *R* is BH procedure, then $p_{(R)} \le t^* \le p_{(R+1)} \implies$ BH-procedure equivalent to " t^* procedure"

Proof. Consider $t = p_{(i)}$.

$$\widehat{FDP}(p_{(i)}) \le \alpha \iff \frac{np_{(i)}}{i} \le \alpha \iff p_{(i)} \le \alpha \tag{2.5}$$

Also $\widehat{FDP}(t) \uparrow$ in t between order statistics (jumps at order statistics) TODO: Fig 28.3

Theorem 2.3 (Storey, Taylor, & Siegmund). *BH-procedure controls FDR*.

Define $M_t = \frac{V_t}{nt}$. M_t is a MG as t goes from $1 \to 0$ wrt $\mathcal{F} = \sigma(p_i : i \notin \mathcal{H}_0 \text{ or } p_i > t)$ For s < t, $V_s \mid \mathcal{F}_t \sim Binom(V_t, \frac{s}{t})$.

$$\mathbb{E}[M_s \mid \mathcal{F}_t] = \frac{1}{ns} \mathbb{E}[V_s \mid \mathcal{F}_t]$$
 (2.6)

$$=\frac{1}{ns}V_t\cdot\frac{s}{t}\tag{2.7}$$

$$=\frac{1}{ns}(M_tnt)\frac{s}{t}=M_t \tag{2.8}$$

 t^* is a stopping time wrt (\mathcal{F}_t) .

$$FDR = \mathbb{E}[FDP(t^*)] = \mathbb{E}[\widehat{FDP}(t^*M_{t^*})] = \mathbb{E}[\alpha M_{t^*}] = \alpha \mathbb{E}[M_1] = \alpha \frac{|\mathcal{H}_0|}{TODO: ??} \le \alpha \quad (2.9)$$