

Objectifs

 Comprendre comment sont stockés les informations.

Apprendre à manipuler ces informations.

 Connaître l'évolution et l'avenir des Systèmes de gestion de fichiers.

Plan du module

- 1. Les concepts.
 - Fichiers et programmation

2. Réalisation des opérations.

3. Protection

1. Les concepts

- a. Le concept de fichier
- b. Fichier Logique
- c. Fichier Physique
- d. Correspondance
 - Fichier Logique / Fichier Physique

1.a. Le concept de fichier

La mémoire centrale est une mémoire volatile :

- → il faut stocker les données devant être conservées au delà de l'arrêt de la machine sur un support de masse permanent
- → l'unité de conservation sur le support de masse est le fichier

exemple : il faut conserver les programmes du système d'exploitation

1.a. Le concept de fichier

Les données dans le fichier sont organisées selon les besoins de l'utilisateur sous forme d'enregistrements (articles, records)

→ Fichier logique

Niveau utilisateur

Niveau Système ou physique

Système de Gestion de Fichiers :

- accès aux données du fichier
- allocation des fichiers sur le support de masse
- → Fichier physique

1.b. Le fichier logique

Un fichier logique est un ensemble d'enregistrements, désigné par un nom et accessible via des fonctions d'accès.

cp cm1	3ème	ce2	
dupont durant	rizzo	armici	
30 25	30	12	

Type de donnée standard

- Identifié par un nom
- Fonctions standards
 - Création / ouverture / fermeture / destruction

- Ensemble d'enregistrements = fichier logique
- Enregistrement = groupe de données de types divers

La gestion des fichiers – 1.b Le fichier logique

Fichier à mode d'accès séquentiel

Les enregistrements du fichier ne peuvent être accédés que les uns à la suite des autres.

- → Opération de lecture : délivre l'enregistrement courant et se positionne sur le suivant
- → Opération d'écriture : obligatoirement en fin de fichier

Accès à l'enregistrement 3

- il faut lire d'abord l'enregistrement 1,
- puis l'enregistrement 2

Un exemple concret de ce type d'accès serait les systèmes à bande

La gestion des fichiers — 1.b Le fichier logique

Fichier à mode d'accès indexé (ou aléatoire)

Permettre un accès immédiat à n'importe quel enregistrement du fichier on champ donné de l'enregistrement sert de clé d'accès

La gestion des fichiers — 1.b Le fichier logique

Fichier à mode d'accès direct

Un enregistrement est accédé en fonction de sa position relative par rapport au début du fichier

→ cas particulier du mode accès indexé (aléatoire) pour lequel la clé d'accès est la position de l'enregistrement dans le fichier

cp dupont	cm1 durant	3ème rizzo	ce2 armici	
30	25	30	12	

1.c. Le fichier physique

Le bloc physique

Pour un meilleur compromis: temps d'accès et capacité de stockage certains SGF organisent l'espace du disque en blocs de secteurs

Exemple : 1 bloc = 2 secteurs de 512 octets soit 1KO

Les opérations de lecture et d'écriture du SGF se font bloc par bloc

Allocation de la mémoire

Les enregistrements logiques doivent être écrits dans les secteurs constituants les blocs

→ il faut allouer les blocs physiques au fichier

Allocation contigüe

Un fichier occupe un ensemble de blocs contigus sur le disque

- Bien adapté au méthodes d'accès séquentielles et directes
- Difficultés:
 - Création de nouveaux fichiers
 - Extension du fichier

fichier 1 : adresse bloc 1, longueur 3 blocs

fichier 2 : adresse bloc 13, longueur 5 blocs

Allocation contigüe

Création d'un nouveau fichier

Allocation contigüe

Compactage

Allocation contigüe

Extension de fichier

Allocation par zones

Variante de l'allocation contigüe

Les fichiers sont morcelés

Allocation par bloc chainés

→ Un fichier est constitué comme une liste chainée de blocs physiques, qui peuvent être dispersés n'importe où.

Allocation par bloc chainés – variante : FAT

- Une table d'allocation des fichiers
- DOS/Windows

Allocation indexée

→ Les adresses des blocs physiques constituant un fichier sont rangées dans une table appelée bloc d'index, elle même contenue dans un ou plusieurs blocs disque

Allocation indexée : solution UNIX

Allocation indexée : solution UNIX

Allocation indexée : solution UNIX

Gestion de l'espace libre

Le système maintient une liste d'espace libre, qui mémorise tous les blocs disque libres (non alloués)

Création/extension d'un fichier : recherche dans la liste d'espace libre de la quantité requise d'espace et allocation au fichier :

l'espace alloué est supprimé de la liste

Destruction d'un fichier : l'espace libéré est intégré à la liste d'espace libre

Il existe différentes représentations possibles de l'espace libre

- vecteur de bits
- liste chainée des blocs libres

Gestion de l'espace libre par vecteur de bits

La liste d'espace libre est représentée par un vecteur binaire, dans lequel chaque

bloc est figuré par un bit.

■ Bloc libre : bit à o

■ Bloc alloué : bit à 1

10101010001010101000

Gestion de l'espace libre par liste chainée

La liste d'espace libre est représentée par une liste chainée des blocs libres

Gestion de l'espace libre : FAT

1.d. fichier logique / fichier physique

Désignation des fichiers : le répertoire

Gestion de l'espace alloué

- Le système de fichier est découpé en partitions ou volumes.
- Chaque partition contient une "table des matières" ou "répertoire" contenant des informations sur les fichiers de la partition.

Partition A		
Partition A	répertoire	fichiers
Partition B	répertoire	fichiers
Partition C	répertoire	fichiers

La gestion des fichiers – fichier logique / fichier physique Structure des répertoires

Répertoire à 1 niveau

La gestion des fichiers – fichier logique / fichier physique Structure des répertoires

Répertoire à 2 niveaux

La gestion des fichiers – fichier logique / fichier physique Structure des répertoires

Répertoire à n niveaux

La gestion des fichiers – fichier logique / fichier physique Volume ou partition

La gestion des fichiers – fichier logique / fichier physique

Ex: partition FAT

Divisée en 6

- Amorçage
- Boot
- FAT
- Copie FAT
- Racine
- Données

La gestion des fichiers – fichier logique / fichier physique

Ex : partition FAT – répertoire racine

112 entrées de 32 octets

- Nom du fichier 8 octets
- Extension 3 octets
- Attributs 1 octet
- 10 octets réservé à DOS
- Heure de dernière modification 2 octets
- Date de dernière modification 2 octets
- Numéro du premier bloc 2 octets
- Taille en octets du fichier 2 octets

La gestion des fichiers – fichier logique / fichier physique

Ex: UNIX

Un répertoire est un fichier dont les données sont une suite d'éléments qui comprennent pour chaque fichier chacun un n° d'inode et le nom du fichier

La gestion des fichiers – fichier logique / fichier physique

Ex: UNIX

Format de partition UNIX

Pause – réflexion sur cette 1^{ière} partie

Avez-vous des questions?

2. Réalisation des opérations

Plan

- a. Les commandes et les requêtes
- b. Exemple sous DOS
- c. Exemple sous UNIX

2.a les commandes et les requêtes

Les commandes:

- interface SGF utilisateurs
- langage de commande ex: shell d'unix, commandes MS-DOS
- Niveau des fichiers et non du contenu des fichiers

>> DIR liste du répertoire courant MS-DOS \$ Is -la liste du répertoire courant Unix

Les requêtes (appels systèmes):

- interface SGF logiciel
- appel dans un programme aux fonctions du SGF (langage C, Java...)
- niveau fichier et enregistrements

read (fic, tampon, nb_oct)

2.a les commandes et les requêtes

Les commandes du S.E. incluent un certain nombre de commandes SGF

Langage de commandes

Quelques commandes du SGF:

- liste du répertoire (ls, dir)
- changement de répertoire (cd)
- création répertoire (mkdir)
- suppression répertoire (rmdir)
- suppression fichier (rm, del)
- modification d'attributs d'un fichier (chmod)
- changement de nom de fichier... (mv, ren)

2.a les commandes et les requêtes

Les requêtes sont des appels aux fonctions SGF dans un programme.

Les requêtes permettent de modifier le contenu des fichiers

Quelques requêtes du SGF:

- ouverture fichier (open)
- création de fichier (create)
- fermeture fichier (close)

Et

- lecture d'enregistrement (read)
- écriture d'enregistrement (write)

Pause – réflexion sur cette 2^{ième} partie

Avez-vous des questions?

3. La protection des fichiers

Plan

- a. Protection contre les dégâts physiques
 - Fiabilité
 - Redondance, sauvegarde
- b. Protection contre les accès inappropriés
 - Protection
 - Droits d'accès, mots de passe

3.a Protection contre les accès inappropriés

Définition de droits d'accès

– lecture (r), écriture (w), exécution (x), destruction ...

A chaque fichier est associé une liste d'accès, spécifiant pour chaque utilisateur, les types d'accès qui lui sont autorisés

3.a Protection contre les accès inappropriés

Définition de droits d'accès

Ainsi, dans le monde UNIX, nous différencions les droits standards suivants : lecture (r), écriture (w), exécution (x).

Ces droits sont appliqués à chaque fichiers et peuvent être modifiés via la commande « chmod », en indiquant les valeurs décimales de chaque droit + le nom du fichier. (ex: chmod 750 file.txt)

Les droits peuvent être calculés de la manière suivante :

	Owner	Group	Others
Lecture (r)	2 ²	2 ²	(2 ²)
Ecriture (w)	2 ¹	(2 ¹)	(2 ¹)
Execution (x)	2 ⁰	2 ⁰	(2°)
Valeur = Somme	7	5	0

3.a Protection contre les accès inappropriés

La liste d'accès peut être longue et difficile à gérer

- définition de groupes auxquels sont associés des droits
- un utilisateur hérite des droits du groupe auxquels il appartient

3.a Protection contre les accès inappropriés

Exemple Unix

- Définition de trois groupes :
- le propriétaire : celui qui a crée le fichier
- le groupe : le groupe de travail
- les autres : tous les autres

```
> ls -l
drwxr-xr-x 2 delacroi 4096 Oct 22 1998 repertoire
```

```
-rw-r--r-- 1 delacroi 6401 Jan 8 1997 eleve.c
```

-rwxr-xr-x 1 delacroi 24576 Dec 15 1998 essai

-rw-r--r-- 1 delacroi 67 Dec 15 1998 essai.c

- > chmod a+w essai.c
- > 1s -1 essai.c

-rw-rw-rw- 1 delacroi 67 Dec 15 1998 essai.c

3.a Protection contre les dégâts physiques

Utilisation de la redondance interne :

- L'information existe en double exemplaire : une version primaire, une version secondaire
- Le système maintient la **cohérence** entre les deux versions exemple : MSDOS dispose de deux exemplaires de la FAT

Redondance par sauvegarde périodique :

- sauvegarde complète : la totalité des objets est dupliquée même si ils n'ont pas été modifiés
- sauvegarde incrémentale : seuls les objets modifiés depuis la dernière sauvegarde sont dupliqués.

Pause – réflexion sur cette 3^{ième} partie

Avez-vous des questions?

Résumé du module

Dans ce module, nous avons abordé :

- Les fichiers physiques
- La protection des fichiers
- Les partitions
- Les fichiers logiques
- Les répertoires

Références

- ☐ Contenu de cours et présentation basée sur l'ouvrage « Linux : Programmation système et réseau » (éd Dunod) de madame Joëlle Delacroix, et de monsieur François Hortolland, Professeur certifié d'Informatique et Gestion, enseignant de l'éducation nationale et de l'école supérieur d'informatique.
- □Et sur la « webliographie » suivante :
- http://cui.unige.ch/~billard/systemell/
- http://krakowiak.developpez.com/cours/systeme-reseau/
- http://revuz.developpez.com/cours/programmation-systeme/
- http://fr.wikipedia.org/wiki/Syst%C3%A8me_d%27exploitation
- http://fr.wikipedia.org/wiki/Syst%C3%A8me_de_fichiers
- http://www.commentcamarche.net/contents/1017-le-systeme-de-fichiers
- •http://deptinfo.cnam.fr/Enseignement/CycleA/AMSI/cours_systemes/03_generalites/gene_s.htm
- http://www.commentcamarche.net/contents/1092-systeme-d-exploitation

Références

- http://www.microsoft.com/france/windows/vista/default.mspx
- http://www.docsdunet.com/doc_ado.html
- http://www.linux-france.org/article/dalox/

Publications

Systèmes d'exploitation, Andrew Tanenbaum

Architectures des machines et des systèmes informatiques

Alain Cazes
Joëlle Delacroix

