```
In [ ]:
```

In [21]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: s=pd.read_csv(r"C:\Users\user\Downloads\11_winequality-red - 11_winequality-red.csv")
s

Out[2]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1594	6.2	0.600	80.0	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

1599 rows × 12 columns

In [3]: s.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

Column Non-Null Count Dtype -------------0 fixed acidity 1599 non-null float64 volatile acidity 1599 non-null float64 1 citric acid 1599 non-null float64 3 residual sugar 1599 non-null float64 1599 non-null chlorides float64 4 free sulfur dioxide 1599 non-null float64 6 total sulfur dioxide 1599 non-null float64 7 density 1599 non-null float64 8 рΗ 1599 non-null float64 9 sulphates 1599 non-null float64 10 alcohol 1599 non-null float64 11 quality 1599 non-null int64

dtypes: float64(11), int64(1)
memory usage: 150.0 KB

```
In [4]: s.describe()
```

Out[4]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulp
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.0
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	0.6
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	0.1
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	0.3
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.5
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	0.6
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	0.7
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010000	2.0
4										•

```
In [5]: s.columns
```

In [6]: | sns.pairplot(s)

Out[6]: <seaborn.axisgrid.PairGrid at 0x134853d6340>


```
In [7]: | sns.distplot(s['citric acid'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a d
eprecated function and will be removed in a future version. Please adapt your code to use either `displot`
(a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[7]: <AxesSubplot:xlabel='citric acid', ylabel='Density'>

Out[9]: <AxesSubplot:>


```
In [12]: x=s1[['fixed acidity','volatile acidity','citric acid','residual sugar','chlorides','density','pH']]
y=s1['alcohol']
```

```
In [15]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

Out[16]: LinearRegression()

```
In [17]: lr.intercept_
```

Out[17]: 600.2513570238982

```
In [18]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[18]:

	Co-efficient
fixed acidity	0.562598
volatile acidity	0.105747
citric acid	0.784472
residual sugar	0.266820
chlorides	0.714977
density	-610.651841
рН	3.967954

```
In [19]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[19]: <matplotlib.collections.PathCollection at 0x13492c184c0>


```
In [20]: print(lr.score(x_test,y_test))
```

0.653163547160061

In []: