

Data Science CSCI 3320 Project: Predictive Maintenance

Zaki Kurdya

Predictive maintenance refers to the use of data-driven, proactive maintenance methods that are designed to analyze the condition of equipment and help predict when maintenance should be performed.

Al based predictive maintenance uses a variety of data from:

- IoT sensors imbedded in equipment's.
- Manufacturing operations.
- Environmental data.
- And more.

Al models can:

- Look for patterns in data that indicate failure modes for specific components.
- Generate more accurate predictions of the lifespan for a component given environmental conditions.

Predictive maintenance insights are an extremely valuable asset in improving the overall maintenance and reliability of an operation. Benefits include:

- Minimize the number of unexpected breakdowns.
- Maximize asset uptime and improve asset reliability.
- Maximize production hours.
- Improve safety.

When predictive maintenance is working effectively as a maintenance strategy, maintenance is only performed on machines when it is required. This brings several cost savings:

- Minimizing the time the equipment is being maintained.
- Minimizing the production hours lost to maintenance.
- Minimizing the cost of spare parts and supplies.

Predictive maintenance programs have also been shown to lead to a tenfold increase in ROI (Return on Investment) by:

- 25% 30% reduction in maintenance costs.
- 70% 75% decrease of breakdowns.
- 35% 45% reduction in downtime.

Predictive maintenance	Preventive maintenance				
 Is proactive maintenance. Uses predictive maintenance technology to address potential problems and schedule corrective maintenance before a failure occurs. Does not often require machine downtime, and if it does, it's generally short. 	 Is planned maintenance, usually for set times and dates or after a specific data metric is reached. Often utilizes scheduling software to notify teams or individuals of upcoming equipment maintenance. Often requires machine downtime. 				

This synthetic dataset is modeled after an existing milling machine.

The dataset consists of **10,000 data points** stored as rows with **14 features** in columns:

- 1. UID: unique identifier ranging from 1 to 10000.
- 2. product ID: consisting of a letter L, M, or H for low (50% of all products), medium (30%) and high (20%) as product quality variants and a variant-specific serial number.
- 3. type: just the product type L, M or H from column 2.

- **4. air temperature [kelvin]:** generated using a random walk process later normalized to a standard deviation of 2 K around 300 K.
- 5. process temperature [kelvin]: generated using a random walk process normalized to a standard deviation of 1 K, added to the air temperature plus 10 K.
- 6. rotational speed [revolutions per minute]: calculated from a power of 2860 W, overlaid with a normally distributed noise.
- 7. torque [newton-meter]: torque values are normally distributed around 40 Nm with a SD = 10 Nm and no negative values.

- 8. tool wear [minutes]: (breakdown and gradual failure of a cutting tool due to regular operation) The quality variants H/M/L add 5/3/2 minutes of tool wear to the used tool in the process.
- 9. machine failure: label that indicates, whether the machine has failed in this particular datapoint for any of the following failure modes are true. The machine failure consists of five independent failure modes.

Machine failure modes:

- Tool wear failure (TWF)
- Heat dissipation failure (HDF)
- Power failure (PWF)
- Overstrain failure (OSF)
- Random failures (RNF)

If at least one of the above failure modes is true, the process fails and the **'machine failure**' label is set to 1.

This dataset is part of the following publication:

S. Matzka, "Explainable Artificial Intelligence for Predictive Maintenance Applications," 2020 Third International Conference on Artificial Intelligence for Industries (AI4I), 2020, pp. 69-74, doi: 10.1109/AI4I49448.2020.00023.

Dataset link on <u>UCI</u>.

• Dataset shape:

Number of rows: 10000, Number of columns: 14

UDI	Product ID	Туре	Air temp. [K]	Process temp. [K]	Rotational speed [rpm]	Torque [Nm]	Tool wear [min]	Machine failure	TWF	HDF	PWF	OSF	RNF
1	M1486 0	М	298.1	308.6	1551	42.8	0	0	0	0	0	0	0
2	L47181	L	298.2	308.7	1408	46.3	3	0	0	0	0	0	0
3	L47182	L	298.1	308.5	1498	49.4	5	0	0	0	0	0	0

• The dataset does not contain missing values

#	Column	Non-Null Count	Dtype
0	Туре	10000 non-null	object
1	Air temperature	10000 non-null	float64
2	Process temperature	10000 non-null	float64
3	Rotational speed	10000 non-null	int64
4	Torque	10000 non-null	float64
5	Tool wear	10000 non-null	int64
6	Machine failure	10000 non-null	int64
7	TWF	10000 non-null	int64
8	HDF	10000 non-null	int64
9	PWF	10000 non-null	int64
10	OSF	10000 non-null	int64
11	RNF	10000 non-null	int64

Descriptive information on numerical attributes

index	count	mean	std	min	25%	50%	75%	max
Air temperature	10000.0	300.0049	2.0002	295.3	298.3	300.1	301.5	304.5
Process temperature	10000.0	310.0056	1.4837	305.7	308.8	310.1	311.1	313.8
Rotational speed	10000.0	1538.7761	179.2841	1168.0	1423.0	1503.0	1612.0	2886.0
Torque	10000.0	39.9869	9.9689	3.8	33.2	40.1	46.8	76.6
Tool wear	10000.0	107.951	63.6541	0.0	53.0	108.0	162.0	253.0

Descriptive information on numerical attributes

index	count	mean	std	min	25%	50%	75%	max
Machine failure	10000.0	0.0339	0.1809	0.0	0.0	0.0	0.0	1.0
TWF	10000.0	0.0046	0.0676	0.0	0.0	0.0	0.0	1.0
HDF	10000.0	0.0115	0.1066	0.0	0.0	0.0	0.0	1.0
PWF	10000.0	0.0095	0.0970	0.0	0.0	0.0	0.0	1.0
OSF	10000.0	0.0098	0.0985	0.0	0.0	0.0	0.0	1.0

Descriptive information on categorical attributes

index	count	unique	top	frequency
Туре	10000	3	L	6000

We can see that the data is **imbalanced** on these attributes:

- Type
- Machine failure
- TWF, HDF, PWF, OSF, RNF

We can see that the data is **normally distributed** across these attributes:

- Air temperature
- Process temperature
- Rotational speed (skewed right)
- Torque

We can see that the data is roughly **uniformly distributed** on (Tool wear).

As shown here, 24 records contain more than one type of failure, but their count is very small compared to the entire dataset, so we will combine the failure types into one feature, and then drop the individual ones.

The result after the last edit (it's still biased, so we'll try to oversample it before training the ML models).

We can derive a new attribute (Power) using this formula:

 $Power = Torque \times Rotational \ speed$

Data Preparation

Data preparation

Data type conversion:

• First, convert **Type** attribute into numbers, such that:

L = 0, M = 1, and H = 2.

Then convert each attribute to float for easier processing later.

Handling outliers:

Calculate and handle the outliers for each attribute using **IQR** (interquartile range) and **LOF** (Density-Based Anomaly Detection).

Number of rows after removing outliers: 9400

IQR (interquartile range):

```
for col in df.columns:
    if col not in excluded_columns:
        # calculate the IQR (interquartile range)
    Q1 = df[col].quantile(0.25)
    Q3 = df[col].quantile(0.75)
    IQR = Q3 - Q1
    outliers = df[(df[col] <= (Q1 - 1.5 * IQR)) | (df[col] >= (Q3 + 1.5 * IQR))]
    if not outliers.empty:
        #df.loc[outliers.index, col] = winsorize(outliers[col], limits=[0.08, 0.08])
        df.drop(outliers.index, inplace=True)
```


LOF (Density-Based Anomaly Detection):

```
from sklearn.neighbors import LocalOutlierFactor
# Create the LOF model
model = LocalOutlierFactor(n_neighbors=5)
# Use the model to predict the outlier scores for each row
scores = model.fit_predict(df)
# Identify the outlier rows (those with a negative score) and remove them
outliers = df[scores == -1]
if not outliers.empty:
  df.drop(outliers.index, inplace=True)
```


Transformation:

Normalize the attributes using z-score

$$z = \frac{x-\mu}{\sigma}$$

μ: mean, σ: standard deviation

Transformation:

```
# Iterate over the columns in the dataframe
for col in df.columns:
   if col not in excluded_columns:
      # Normalize the values in the column
      df[col] = zscore(df[col])
```


Box and Whisker plots for each attribute compared with Machine failure (target)

Box and Whisker plots for each attribute compared with Machine failure (target)

Box and Whisker plots for each attribute compared with Machine failure (target)

Box and Whisker plots for each attribute

Correlation between the attributes with threshold = 0.3

A scatter plot matrix (pair plot) to display the relationships between attributes in the dataset

Zaki Kurdya

47

Parallel coordinate plot (multi-dimensional view)

Data splitting:

Part	# of records	% percentage
Train	6850	70%
Test	2820	30%

Data splitting:

Data sampling:

Because the data is imbalanced, we oversample the training set.

```
from imblearn.over_sampling import RandomOverSampler

oversample = RandomOverSampler(random_state=0)

X_train, y_train = oversample.fit_resample(X_train, y_train)
```


Data sampling:

Training set after oversampling.

Partitional Clustering, K-means algorithm

Partitional Clustering, K-means algorithm

Partitional Clustering,

K-means algorithm

Pairplot of the data, colored by cluster label.

57

Partitional Clustering, K-means algorithm

As shown in the proximity matrices, the clusters are not so crisp.

Silhouette Coefficient: 0.225

Hierarchical clustering, Agglomerative

Dendrogram

Hierarchical clustering, Agglomerative


```
from sklearn.cluster import AgglomerativeClustering

# Hierarchical clustering
model = AgglomerativeClustering(n_clusters=3, affinity='euclidean', linkage='ward')
model.fit(X)

df["hierarchical_cluster"] = model.labels_
```


Hierarchical clustering, **Agglomerative**

Pairplot of the data, colored by cluster label.

Hierarchical clustering, Agglomerative

Silhouette Coefficient: 0.180

61

Density-based clustering, **DBSACN**

EPS = 0.7

Density-based clustering, **DBSACN**

Silhouette Coefficient: 0.292

```
from sklearn.cluster import DBSCAN

# create a DBSCAN model
model = DBSCAN(eps=0.7, min_samples=5)
model.fit(X)

# obtain the cluster labels
df['dbscan_cluster'] = model.labels_
```


Density-based clustering, **DBSACN**

Pairplot of the data, colored by cluster label.


```
from sklearn.metrics import f1_score, precision_score, recall_score,
                            accuracy score, classification report
import time
model performance = pd.DataFrame(columns=['Accuracy', 'Precision',
                                          'Recall', 'F1-Score', 'Training time',
                                          'Prediction time'])
def log scores(model name, y test, y predictions):
  accuracy = accuracy_score(y_test, y_predictions)
  precision = precision_score(y_test, y_predictions, average='weighted')
  recall = recall_score(y_test, y_predictions, average='weighted')
  precision = precision_score(y_test, y_predictions, average='weighted')
  f1 = f1 score(y test, y predictions, average='weighted')
  # save the scores in model performance dataframe
  model performance.loc[model name] = [accuracy, precision, recall, f1,
                                       end train-start, end predict-end train]
```

Decision Tree Model - Build


```
from sklearn.tree import DecisionTreeClassifier

start = time.time()
model = DecisionTreeClassifier(max_depth = 8).fit(X_train, y_train)
end_train = time.time()
y_predictions = model.predict(X_test)
end_predict = time.time()

# evaluate the model
log scores("Decision Tree", y test, y predictions)
```

Decision Tree Model – classification report

Decision	Tree				
		precision	recall	f1-score	support
	0.0	0.99	0.95	0.97	2746
	1.0	0.24	0.61	0.35	74
accur	racy			0.94	2820
macro	avg	0.62	0.78	0.66	2820
weighted	avg	0.97	0.94	0.95	2820

0.88

Decision Tree Model – learning curve

Zaki Kurdya 69

Decision Tree Model – confusion matrix

Decision Tree Model – nodes

k-NN (K-nearest neighbors) Model

Grid search to find the best value for n_neighbors

'n_neighbors': 2

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model selection import GridSearchCV
# create the model
knn = KNeighborsClassifier()
# define the parameter grid
param grid = {'n neighbors': range(2, 20)}
# create the grid search object
grid search = GridSearchCV(knn, param grid,
                           cv=5, scoring='accuracy')
# fit the grid search to the data
grid search.fit(X train, y_train)
# print the best parameters
print(grid search.best params )
```

k-NN (K-nearest neighbors) Model - Build


```
start = time.time()
model = KNeighborsClassifier(n_neighbors=2).fit(X_train, y_train)
end_train = time.time()
y_predictions = model.predict(X_test) # predictions from the testset
end_predict = time.time()

# evaluate the model
log scores("k-NN", y test, y predictions)
```

k-NN Model – classification report

k-NN Model	precision	recall	f1-score	support
0.0	0.98	0.99	0.99	2746
1.0	0.50	0.36	0.42	74
accuracy			0.97	2820
macro avg	0.74	0.68	0.70	2820
weighted avg	0.97	0.97	0.97	2820

k-NN Model – learning curve

Zaki Kurdya

k-NN Model – confusion matrix

Random Forest Model - Build

Random Forest Model – classification report

support	f1-score	recall	Model precision	Random Forest
2746	0.99	1.00	0.99	0.0
74	0.62	0.53	0.76	1.0
2820	0.98			accuracy
2820	0.81	0.76	0.88	macro avg
2820	0.98	0.98	0.98	weighted avg

0.88

Random Forest Model – learning curve

Training score Testing score

2000

3000

1000

4000

5000

6000

Zaki Kurdya 79

Random Forest Model – confusion matrix

Gradient Boosting Model - Build


```
from sklearn.ensemble import GradientBoostingClassifier

start = time.time()
model = GradientBoostingClassifier().fit(X_train, y_train)
end_train = time.time()
y_predictions = model.predict(X_test)
end_predict = time.time()

# evaluate the model
log scores("Gradient Boosting", y test, y predictions)
```

Gradient Boosting Model – classification report

Gradient Boosting						
		precision	recall	f1-score	support	
	0.0	0.99	0.94	0.97	2746	
	1.0	0.27	0.81	0.41	74	
accur	acy			0.94	2820	
macro	avg	0.63	0.88	0.69	2820	
weighted	avg	0.98	0.94	0.95	2820	

Gradient Boosting Model – learning curve

Zaki Kurdya 83

Gradient Boosting Model – confusion matrix

Predicted label

Gaussian Naive Bayes Model - Build


```
from sklearn.naive_bayes import GaussianNB

start = time.time()
model = GaussianNB().fit(X_train, y_train)
end_train = time.time()
y_predictions = model.predict(X_test)
end_predict = time.time()

# evaluate the model
log scores("Gaussian Naive Bayes", y test, y predictions)
```

Gaussian Naive Bayes Model – classification report

Gaussian	Naiv	e Bayes			
		precision	recall	f1-score	support
	0.0	1.00	0.75	0.86	2746
	1.0	0.09	0.92	0.17	74
accur	racy			0.76	2820
macro	avg	0.54	0.84	0.51	2820
weighted	avg	0.97	0.76	0.84	2820

Gaussian Naive Bayes Model – learning curve

Zaki Kurdya 87

Gaussian Naive Bayes Model – confusion matrix

Models Evaluation

	Accuracy	Precision	Recall	F1-Score	Training time	Prediction time
Decision Tree	0.940426	0.969464	0.940426	0.952517	0.036945	0.002076
k-NN	0.973759	0.970333	0.973759	0.971756	0.019094	0.117287
Random Forest	0.983333	0.981517	0.983333	0.981835	1.202211	0.050093
Gradient Boosting	0.937589	0.975604	0.937589	0.952327	1.778598	0.006899
Gaussian Naive Bayes	0.757801	0.973338	0.757801	0.840162	0.007099	0.001722

Deployment

Demo the predictive machine learning model using Gradio

Conclusions

- Machine learning has the potential to significantly contribute to the domain of predictive maintenance.
- The data set is highly biased, which makes developing an accurate model challenging.
- We must collect sufficient data to create a reliable machine learning model.
- The Random Forest model outperforms the other models.