TSP-GA (berlin52)

Integrantes

- Abby Donis
- Cindy Gualim
- Josué Say

Enlaces

• Repositorio

Estructura del proyecto

```
ga.py # Núcleo del GA: operadores + bucle runGa()

io_tsp.py # I/O TSPLIB + distancias (matriz simétrica comprimida)

poblation.py # Generación de población y semillas (random + nearest-insertion)

viz.py # Visualización: frames PNG, GIF y plot final

main.py # CLI/orquestación (args, llamada a runGa, plots, GIF)

optimal.py # Visualiza la ruta óptima provista por el problema

requirements.txt
```

Contenido por archivo

ga.py

- selectionTournament, crossoverOX, crossoverSCX
- mutateInsertion, mutateSwap, apply2optOnce
- runGa(...): lazo principal del GA (selección → cruce → mutación graphResult 2-opt ocasional → reemplazo), logging de mejoras, cortes por estancamiento/tiempo, guardado de frames.

io_tsp.py

- parseTsp: lee formato TSPLIB (NAME, NODE COORD SECTION, etc.).
- buildDistanceMatrixCompressed: crea matriz de distancias simétrica comprimida (triángulo superior) con EUC_2D (redondeo entero).
- getDistance, tourDistance: lookups O(1) y costo total del tour.

poblation.py

- makeRandomTour, nearestInsertionSeed (semilla heurística)
- initPopulation: mezcla semillas heurísticas + tours aleatorios.

viz.py

- saveFrame: guarda PNG (mejor tour + curva de costo).

- makeGifFromFrames: construye GIF desde los PNG.
- plotResults: muestra figura final con tour y evolución.

main.py

- CLI con argparse. Ejecuta runGa, imprime resumen, invoca plotResults/makeGifFromFrames. Incluye modo --estimate (calienta y estima tiempo).

optimal.py

- Script auxiliar para graficar la ruta óptima que provee el problema (usa utilidades de io_tsp.py y viz.py). Útil para comparar vs. el mejor tour encontrado por el GA.

Instalación

pip install -r requirements.txt

Comando "óptimo"

Estos parámetros dieron el mejor resultado en tus corridas (con seed=42):

python main.py --N 600 --maxIter 200000 --survivors 0.10 --crossover 0.80 --mutation 0.10

--pc 0.98 --pm -1 --elitism 0.03 --k 3 --scx --twoOptProb 0.30 --stall 4000

--timeLimit 0 --seed 42 --estimate 300 --noPlot

Sugerencia: si se desea GIF se debe añadir -- record -- framesDir frames -- gifOut berlin52 tsp optimal.gif.

Resultados

Gráfica de costos y solución óptima:

GIF del proceso seguido por el algoritmo genético:

Algoritmo Genético

Este algoritmo genético (AG) para TSP itera sobre generaciones construyendo una nueva población a partir de: sobrevivientes (S%), hijos por cruce (C%) y mutación pura (M%), con intensificación local (2-opt) y protección del mejor (elitismo). Dispone de **tres criterios de paro** que se evalúan **en cada generación**:

- -- stall = s
 - Si pasan **s** generaciones seguidas sin best nuevo \rightarrow **STOP** (motivo: "stall").
- --timeLimit = T (segundos)
 - Si time.time() t0 \geq T \rightarrow STOP (motivo: "time"), independiente de stall.
- --maxIter = G
 - Si se alcanzan **G** generaciones → **STOP** (motivo: "maxIter").

Prioridad: tiempo excedido → para; si no, stall excedido → para; si no, si gen
> maxIter → para.

Las técnicas empleadas se resumen en las siguientes fases:

- Selección por torneo (k): controla la presión selectiva (k grande → más explotación; k pequeño → más diversidad).
- · Cruces de permutación:
 - **OX** (Order Crossover): conserva un segmento del padre 1 y respeta el orden relativo del padre 2 (no mira distancias).
 - SCX (Sequential Constructive): elige el siguiente más cercano entre recomendaciones de ambos padres; aprovecha distancias locales.

Mutación:

- Ligera (pm) sobre hijos de cruce: insertion o swap (una operación, con prob. pm).
- Pura (M%): crea individuos siempre mutados desde tours base (diversidad garantizada).
- 2-opt (intensificación): aplica, en sitio, una inversión si mejora el costo; cantidad controlada por twoOptProb.
- Elitismo: reinyecta los mejores de la generación previa (elites) para no perder soluciones de alta calidad.
- Control de tamaños: S% + C% + M% = 1 \rightarrow población exacta de tamaño N en cada generación.
- Paro robusto: combinación de timeLimit, stall y maxIter con la prioridad indicada arriba.

Configuración

Ciudades y distancias (simétricas, tipo Manhattan)

Ciudades: A, B, C, D, E, F, G, H

Matriz de distancias $d_{ij}=d_{ji}$ (enteros):

	Α	В	С	D	Е	F	G	Н
Α	0	2	4	6	9	7	5	3

	Α	В	С	D	Ε	F	G	Н
В	2	0	2	4	7	5	3	5
С	4	2	0	2	5	3	5	7
D	6	4	2	0	3	5	7	9
Ε	9	7	5	3	0	2	4	6
F	7	5	3	5	2	0	2	4
G	5	3	5	7	4	2	0	2
Н	3	5	7	9	6	4	2	0
_						-		

Ejemplo de tour y costo: $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow G \rightarrow H \rightarrow A = 2+2+2+3+2+2+2+3 = 18.$

Población inicial (N=10)

Tours (permutaciones) y costos ya precalculados con la tabla:

ID	Cromosoma					Costo			
Р0	Α	В	С	D	Ε	F	G	Н	18
P1	Α	Н	G	F	Ε	D	С	В	18
P2	Α	В	С	F	Ε	D	G	Н	20
Р3	Α	С	В	D	Ε	F	G	Н	19
P4	Α	В	D	С	Ε	F	Н	G	21
P5	Α	D	С	В	Ε	F	G	Н	22
P6	Α	В	C	D	F	Ε	G	Н	19
P7	Α	G	F	Ε	D	С	В	Н	23
P8	Α	Ε	F	G	Н	D	С	В	24
P9	Α	С	D	Ε	F	G	Н	В	20

(Menor costo = mejor; P0 y P1 son co-mejores.)

Parámetros para el ejemplo

- N=10
- --survivors= $0.20 \rightarrow S = 2$
- --crossover=0.60 \rightarrow C = 6
- --mutation= $0.20 \rightarrow M = 2$
- --pc=0.95 (prob. de cruce por pareja)
- -- pm=0.30
- --elitism=0.10 → **élites = 1**

- --k=5 (torneo)
- --twoOptProb=0.30 → con 8 hijos nuevos ⇒ poolSize=int(0.3*8)=2
- -- stall=400 (paro por 400 gens sin mejorar)

Fases

Sobrevivir (S%)

- 1. Cálculo de S
 - Fórmula del código: S = max(1, int(N * survivors)).
 - Con N=10 y survivors=0.20 \rightarrow S = max(1, int(10*0.20)) = max(1, 2) = 2.
- 2. Ordenar por costo
 - El código ordena la población por fitness (menor costo = mejor).
 - Si hay empates, Python mantiene el orden relativo previo (sort estable).

 Para este ejemplo tomamos el orden listado.
- 3. Selección de los S mejores
 - Se copian tal cual los primeros S individuos de la población ordenada a la nueva generación.
 - No se cruzan, no se mutan en esta fase, no se les aplica 2-opt aquí. Es literalmente un "copiar y pegar" para preservar calidad.
- 4. Resultado concreto con tu población inicial
 - Población ordenada por costo (de menor a mayor): P0 (18), P1 (18), P3
 (19), P6 (19), P2 (20), P9 (20), P4 (21), P5 (22), P7 (23), P8 (24).
 - S=2 \rightarrow sobreviven: **P0** y **P1**.
 - Se colocan al inicio de la nueva población:
 newPop (parcial) = [P0(18), P1(18)]

```
tamaño actual = 2 faltan = N - S = 10 - 2 = 8
```

- Estos "faltan" se completarán luego con C hijos por cruce y M hijos por mutación (fases posteriores).
- 5. Qué significa exactamente "sobrevivir"
 - "Sobrevivir" = pasar intacto a la siguiente generación.
 - Ventaja: garantiza estabilidad del mejor desempeño conocido (explotación).
 - Nota: estos sobrevivientes sí pueden ser elegidos más adelante como padres en la fase de selección (torneo k), porque la selección de padres muestrea desde toda la población de la generación actual.

Seleccionar padres

- 1. ¿Cuántos padres se necesitan?
 - Objetivo de cruce: C = 6 hijos por cruce.
 - Regla del código: parentsNeeded = $max(C*2, 2) \rightarrow parentsNeeded = 12$.
 - Motivo: cada hijo se construye a partir de una **pareja** (2 padres). Con $C=6 \rightarrow 6$ parejas \rightarrow 12 padres.
- 2. ;De dónde salen los 12 padres?
 - Se hacen 12 torneos independientes de tamaño k=5.
 - En cada torneo: se muestran 5 individuos al azar (sin repetir dentro del torneo, pero sí pueden repetirse entre torneos distintos). Gana el de menor costo entre esos 5.
 - Se repite hasta obtener **12 ganadores**. Estos 12 ganadores pueden contener **repetidos** (por eso un mismo individuo puede participar en varias parejas).
- 3. ¿Sobre qué población se hacen los torneos?
 - Sobre la población actual ordenada (P0..P9).
 - Nota: que P0 y P1 hayan "sobrevivido" en la fase 1 no cambia esta fase;
 la selección de padres siempre muestrea desde toda la población actual
 (no desde newPop parcial).
- 4. Ejecución concreta (12 torneos k=5)

```
• T1: {P1, P4, P7, P9, P2} \rightarrow gana P1 (18)
```

- T2: {P3, P0, P5, P8, P6} \rightarrow gana **P0 (18)**
- T3: {P2, P7, P5, P4, P9} \rightarrow gana **P2 (20)**
- T4: $\{P0, P1, P2, P3, P4\} \rightarrow gana P0 (18)$
- T5: {P3, P4, P6, P7, P8} \rightarrow gana **P3 (19)**
- T6: {P1, P2, P5, P6, P9} \rightarrow gana **P1 (18)**
- T7: {P0, P2, P3, P5, P7} \rightarrow gana **P0 (18)**
- T8: {P6, P7, P8, P9, P4} \rightarrow gana **P6 (19)**
- T9: {P1, P3, P4, P5, P9} \rightarrow gana **P1 (18)**
- T10: {P0, P8, P2, P4, P7} \rightarrow gana **P0 (18)**
- T11: {P5, P6, P7, P8, P9} \rightarrow gana **P6 (19)**
- T12: {P2, P3, P4, P5, P1} \rightarrow gana **P1 (18)**

Lista de 12 padres (en orden): [P1, P0, P2, P0, P3, P1, P0, P6, P1, P0, P6, P1]

- 5. Formar las 6 parejas (en pares consecutivos)
 - Pareja 1: (P1, P0)

- Pareja 2: (P2, P0)
- Pareja 3: (P3, P1)
- Pareja 4: (P0, P6)
- Pareja 5: (P1, P0)
- Pareja 6: (P6, P1)

Estas 6 parejas alimentarán la fase de cruce. Ahí entra pc:

- Por cada pareja, con pc=0.95 \rightarrow cruce (OX o SCX).
- Con prob. 1 pc = $0.05 \rightarrow$ "no cruce" y se copia el primer padre (hijo = padre1).

Parejas y cruce (OX o SCX) con pc

1. Parejas (vienen de la Fase 2, 12 ganadores en orden): [P1, P0, P2, P0, P3, P1, P0, P6, P1, P0, P6, P1] Se forman 6 parejas consecutivas:

```
#1 (P1, P0) #2 (P2, P0) #3 (P3, P1)
#4 (P0, P6) #5 (P1, P0) #6 (P6, P1)
```

2. Moneda con pc=0.95 por pareja Ejemplo de resultado (consistente con pc alto): #1 Sí #2 Sí #3 Sí #4 Sí #5 NO #6 Sí

Esto da 5 hijos por **cruce** y 1 **copia** (el de la pareja #5). En total, tras recorrer las 6 parejas: childrenC = [c1,c2,c3,c4,copy,c6] Esperado estadístico: $pc*6 = 5.7 \rightarrow α

Pareja #5: (P1, P0) Moneda falla (5%): NO cruce es decir que Hijo = copia
del primer padre: copy = P1[:] = [A, H, G, F, E, D, C, B]

Ejemplo OX (pareja #1: P1, P0) Padres (de la tabla):

- P1 = [A, H, G, F, E, D, C, B]
- P0 = [A, B, C, D, E, F, G, H]

OX hace:

- 1. Elegir segmento de **P1**. a=2, b=5 \rightarrow segmento [G, F, E, D].
- 2. Hijo con huecos: [_ , _ , G , F , E , D , _ , _]
- 3. Rellenar con orden relativo de **P0** saltando lo ya copiado (G,F,E,D): P0 filtrado \rightarrow [A, B, C, H]
- 4. Colocar en huecos por orden: posiciones $0,1,6,7 \rightarrow [A, B, C, H]$

OX no mira distancias; solo preserva el segmento de P1 y rellena respetando el orden de P0.

Ejemplo SCX (pareja #4: P0, P6) con la matriz de distancias dada Padres:

- P0 = [A, B, C, D, E, F, G, H]
- P6 = [A, B, C, D, F, E, G, H]

Regla SCX: en cada paso, desde current, mirar next1[current] (siguiente en P0) y next2[current] (siguiente en P6), elegir **el no usado** más **cercano** según la matriz. Si ninguno es válido, elegir el **no usado** más cercano global.

Pasos (distancias de la tabla):

- Inicio: current=A, candidatos: B (P0) y B (P6). $d(A,B)=2 \rightarrow elegir B$. Hijo: [A,B].
- current=B, candidatos: C (P0) y C (P6). $d(B,C)=2 \rightarrow C$. Hijo: [A,B,C].
- current=C, candidatos: D (P0) y D (P6). $d(C,D)=2 \rightarrow D$. Hijo: [A,B,C,D].
- current=D, candidatos: E (P0, d=3) y F (P6, d=5). Elegir E. Hijo: [A,B,C,D,E].
- current=E, candidatos: F (P0, d=2) y G (P6, d=4) \rightarrow F.
- current=F, candidatos: G (P0, d=2) y E (P6, usado) \rightarrow G.
- current=G, candidatos: H (P0, d=2) y H (P6, d=2) \rightarrow H.

Hijo SCX (#4): [A, B, C, D, E, F, G, H] (en esta instancia, SCX reconstruye el camino "lineal" porque sus vecinos inmediatos son siempre los más cercanos en la matriz).

SCX sí usa distancias: en D prefirió E (3) sobre F (5). En instancias más "irregulares" SCX arma hijos distintos y, a menudo, de mejor costo inicial.

Mutación ligera en hijos de cruce (pm)

Ahora, **por cada hijo de cruce**, lanzas una moneda con probabilidad pm para decidir si aplicas **una sola** mutación ligera:

- Regla del código: para cada hijo h en childrenC
 - con prob. pm \rightarrow aplicar **insertion** (70%) o **swap** (30%)
 - con prob. 1 pm \rightarrow no hacer nada
- Nota: esto **no** toca a los hijos "copy" de la fase de cruce, salvo que también sean parte de childrenC.

Valores típicos:

En berlin52, si pm=-1 → el código usa pm = 1/n. Con n=52, pm \$\approx\$ 0.019.
 Con 6 hijos → se espera 6 * 0.019 \$\approx\$ 0.11 mutaciones (casi siempre 0, a veces 1).

Para ver mutaciones en el ejemplo didáctico, usemos pm = 0.30 → se espera 6
 * 0.30 = 1.8 mutaciones.

Ejemplos sobre hijos concretos:

- Ejemplo c1 viene del OX de la pareja #1: c1 = [A, B, G, F, E, D, C, H]
 - Insertion (70%): elige indices i=3, j=6 (0-based). Quitar C de posición 6 e insertarlo en 3: antes \rightarrow [A, B, G, F, E, D, C, H] quitar C \rightarrow [A, B, G, F, E, D, H] insertar C en i=3 \rightarrow [A, B, G, C, F, E, D, H]
 - Swap (30%): elige i=1, j=4. Intercambia B y E: [A, E, G, F, B, D, C, H]
- Ejemplo c4 viene del SCX de la pareja #4 y era lineal: c4 = [A, B, C, D, E, F, G, H]
 - Insertion i=2, j=5 (mueve F a la pos 2): antes \rightarrow [A, B, C, D, E, F, G, H] quitar F \rightarrow [A, B, C, D, E, G, H] insertar en 2 \rightarrow [A, B, F, C, D, E, G, H]

Observación: esta mutación **ligera** introduce variación sin "romper" completamente la estructura heredada del cruce.

Mutación pura (bloque M%)

Ahora toca crear M individuos nuevos exclusivamente por mutación. Con M = 2:

- Para cada uno:
 - Elegir un tour base al azar de la población actual (con reemplazo).
 - Aplicar **siempre** una mutación (insertion o swap).
- Aquí no interviene pm (mutación garantizada).

Ejemplos concretos:

- m0 desde P9 = [A, C, D, E, F, G, H, B] Insertion i=2, j=7 (mover B a pos 2): antes \rightarrow [A, C, D, E, F, G, H, B] quitar B \rightarrow [A, C, D, E, F, G, H] insertar en 2 \rightarrow [A, C, B, D, E, F, G, H]
- m1 desde P4 = [A, B, D, C, E, F, H, G] Swap i=2, j=3 (intercambia D y C): [A, B, C, D, E, F, H, G]

Resultado acumulado de la generación (sin contar 2-opt ni elitismo aún):

- Survivors S = 2 \rightarrow [P0, P1]
- Hijos por cruce $C = 6 \rightarrow \text{childrenC}$ (con algunas mutaciones ligeras según pm)
- Hijos por mutación M = 2 → childrenM = [m0, m1]

Total \rightarrow 2 + 6 + 2 = 10 individuos para la nueva población (tamaño N se mantiene).

2-opt ocasional con twoOptProb

- 1. Cuántos hijos se intentan pulir
 - hijosNuevos = len(childrenC) + len(childrenM) = 6 + 2 = 8
 - poolSize = max(1, int(twoOptProb * hijosNuevos))
 - con twoOptProb=0.30 \rightarrow int(0.3*8)=2 \rightarrow se eligen 2 hijos distintos al azar
 - No crea individuos nuevos; modifica "in situ". Siempre ≥ 1 por el max(1, ...).
- 2. Qué hace exactamente 2-opt (en tu código apply2opt0nce)
 - Recorre pares de aristas no adyacentes y evalúa el cambio de costo al revertir el subsegmento t[i..j].
 - Reemplaza aristas (t[i-1], t[i]) y (t[j], t[j+1]) por (t[i-1], t[j]) y
 (t[i], t[j+1]) (con wrap en extremos).
 - Si encuentra alguna mejora (Δ < 0), aplica **una sola** inversión "mejor encontrada" y termina. Si no hay mejora, no cambia el tour.
- 3. Selección del pool (ejemplo)
 - Supón que el muestreo elige {c3, m1} de los 8 hijos nuevos.
- 4. Ejemplo 2-opt con mejora (sobre c3)
 - Antes (c3): [A, B, G, C, F, E, D, H] (uno de los hijos de cruce)
 - El algoritmo detecta que revertir el segmento i.. j = 2..6 ([G, C, F, E, D]) mejora.
 - Aristas que se reemplazan:
 - Antes: (B,G) \vee (D,H) \rightarrow d(B,G)=3, d(D,H)=9 \rightarrow suma antes = 12
 - Después: (B,D) y (G,H) \rightarrow d(B,D)=4, d(G,H)=2 \rightarrow suma después = 6
 - $-\Delta$ = 6 12 = -6 (mejora de 6 unidades)
 - Se invierte el subsegmento 2..6: [G, C, F, E, D] → [D, E, F, C, G]
 - Después (c3'): [A, B, D, E, F, C, G, H]
 - Comentario: 2-opt "descruza" aristas largas y suele bajar costo sin introducir ruido aleatorio.
- 5. Ejemplo 2-opt sin mejora (sobre m1)
 - Antes (m1), p.ej. el hijo por mutación pura: [A, B, C, D, E, F, H, G]

- apply2optOnce prueba pares (i,j); con la matriz dada, ninguna inversión reduce el costo.
- Después (m1'): queda igual.

Elitismo (--elitism)

- 1. ¿Cuántos élites?
 - Fórmula: elites = max(1, int(N * elitism)).
 - Con N=10 y elitism=0.10 \rightarrow elites = 1.
- 2. ¿Cuándo aplica y qué hace?
 - Tras armar newPop = survivors + childrenC + childrenM (ya se tienes S=2, C=6, M=2 \rightarrow tamaño 10).
 - Se sobrescriben las primeras posiciones de newPop con los mejores de la generación anterior: newPop[:elites] = pop[:elites]
 - No añade individuos; no cambia N. Solo garantiza que el mejor "antiguo" esté presente.
- 3. Ejemplo concreto con nuestro flujo
 - Antes del elitismo (supongamos):

```
survivors = [P0(18), P1(18)]
childrenC = [c1, c2, c3, c4, copy, c6]
childrenM = [m0, m1]
newPop_pre = [P0(18), P1(18), c1, c2, c3, c4, copy, c6, m0, m1] # tamaño 10
```

- pop[:elites] son los mejores **de la generación anterior** (ordenada). Aquí: [P0(18)].
- Aplicar elitismo: newPop_pre[:1] = [P0(18)] → en este caso no cambia nada (ya estaba P0 en newPop_pre[0]).
- Luego el código ordena newPop por costo:
 newPop = sorted(newPop_pre, key=fitness)
 - Si algún hijo (p. ej., c3) resulta mejor que 18, tras ordenar quedará primero.
 - El elitismo no "bloquea" al mejor nuevo; solo asegura que **P0** no se pierda si todo lo demás saliera peor.
- 4. ¿Y si S=0 o S muy bajo?
 - El elitismo sigue invectando al menos un mejor de la gen. anterior.
 - Sirve de "airbag" si por azar C/M generan población floja.
- 5. ¿Puede duplicar individuos?

- Sí, puede haber duplicados (p. ej., P0 ya estaba en survivors y además entra por elitismo).
- No hay deduplicación en esta fase; la diversidad se maneja con k, M%, pm, etc.

Cierre de generación

- 1. Ajuste de tamaño (si aplica)
 - Recortar o rellenar para que len(newPop) = N.
- 2. Ordenar por costo
 - newPop.sort(key=fitness) \rightarrow el mejor de la generación queda en newPop[0].
- 3. Actualizar métricas
 - currBest = newPop[0], currCost = fitness(currBest).
 - best/bestCost y history:
 - history.append(min(history[-1], currCost)) → guarda el best-so-far
 por generación.
 - Si currCost < bestCost: actualizar best, reiniciar noImprove, registrar events, opcionalmente saveFrame.

Parámetros

Explicación de parámetros

		Rango /		
Parámetro	Tipo	Valores	Default	Descripción
file	str	ruta	data/berlin52	.Asphivo TSPLIB a cargar.
	е	xistente		
N	int	≥ 10	300	Tamaño de población.
	int	≥ 1	1500	Iteraciones máximas (generaciones).
maxIter				
	float	[0,1]	0.20	Fracción S de sobrevivientes.
survivors				
	float	[0,1]	0.60	Fracción C creada por cruce.
crossover				
	float	[0,1]	0.20	Fracción M creada por mutación.
mutation				S+C+M=1.

		Rango /		
Parámetro	Tipo	Valores	Default	Descripción
pc	float	[0,1]	0.95	Probabilidad de aplicar cruce a una
				pareja.
pm	float	[0,1] o	-1	Mutación ligera a hijos (si -1 $ ightarrow$
		-1		usa 1/n).
	float	[0,1]	0.05	Fracción élite reinyectada.
elitism				
k	int	≥ 2	5	Tamaño de torneo (selección).
scx	flag	_	off	Si está presente, usa SCX en lugar
				de OX.
	float	[0,1]	0.05	Proporción de hijos sometidos a una
twoOptProb)			2-opt.
stall	int	≥ 0	400	Cortar si no mejora en stall
				generaciones.
	float	≥ 0	0.0	Cortar por tiempo (0 = $\sin limite$).
timeLimit		(seg)		
record	flag	_	off	Guarda un PNG en cada mejora.
	str	carpeta	frames	Carpeta para PNG de mejoras.
framesDir				
gifOut	str	ruta .gif	""	Construye GIF desde framesDir
				(requiererecord).
seed	int	cualquiera	42	Semilla aleatoria
				(reproducibilidad).
	int	≥ 1	0	Corre warmup N gen para estimar
estimate				tiempo total y termina.
noPlot	flag	_	off	No mostrar la figura final.

Uso de parámetros

Tabla 1 - Parámetros y efectos

			Si (-)	
Parán	metr Q ué controla	Si (+) (más)	(menos)	Interacciones clave
N	Tamaño de	+diversidad,	+ruido	Con k (torneo),
	población	+estabilidad,	estocástico,	twoOptProb (costo),
		+tiempo	+velocidad	stall/timeLimit

Darámot	rQué controla	Si (+) (más)	Si (-) (menos)	Interacciones clave
	•		<u> </u>	
(S%)	r\$ orción copiada tal cual	<pre>+explotación, +estabilidad, -diversidad</pre>	+diversidad, riesgo de olvidar buenos	Con elitism, con k
crossov	er orción creada	+recombinación	-exploración,	Con pc y operador
(C%)	por cruce	(si pc alto)	+copias	(scx/0X)
mutatio	n Porción por	+diversidad,	-diversidad	Con pm (mutación
(M%)	mutación pura	+escape locales		ligera); M% siempre
рс	Prob. de cruzar una pareja	+hijos recombinados	+copias de padres	Con C% y operador (SCX > OX en
		(menos copias)		calidad)
pm	Prob. de	+diversidad,	+conservación,	Si pm=0 y M%=0 ⇒
	mutación ligera	+escape	riesgo de	cero diversidad
	en hijos de cruce		estancamiento	
elitism	No./% élite	+protección	+diversidad,	No exceder S% (o
	reinyectado	del best, +explotación	riesgo de olvidar best	mantener bajo)
k	Tamaño de	+presión	+exploración,	Con N (k relativo a
	torneo	selectiva, -diversidad	+ruido	N), con S%
-scx	Usa SCX	Hijos con	(OX) más	SCX escala mejor en
	(vs. 0X)	mejor costo	neutro,	n grandes
		inicial	requiere 2-opt	
twoOptP:	r&b de hijos	+calidad	-tiempo,	Con N y C%+M%
	pulidos con	media,	-pulido	(No. de hijos)
	2-opt	+tiempo		
stall	Paro por	+chance	+cortes	Con
	estancamiento	mejoras tardías,	tempranos	timeLimit/maxIter
		+tiempo		
timeLim	<pre>itParo por tiempo (s)</pre>	Corta a tiempo fijo	_	Con stall/maxIter

		Si (-)	
Parámetr Q ué controla	Si (+) (más)	(menos)	Interacciones clave
maxIter Tope de	+búsqueda	+corte	Con stall/timeLimit
generaciones			

Tabla 2 – Quién aporta diversidad y quién aporta explotación

		Riesgo si	
Principal efecto	Riesgo si (+)	(-)	Úsalo para
Explotación	Convergencia	Olvidar	Estabilidad
(conserva	prematura	buenos tours	
buenos)			
Explotación (si	Pérdida de	Selecciones	Ajustar
k grande)	diversidad	ruidosas	presión
Exploración	- (si pc muy	Poca	Mezclar
(recombinar)	bajo \rightarrow copias)	recombinación	building
			blocks
Diversidad	Demasiado ruido	Falta de	Salir de
"fuerte"		diversidad	óptimos
			locales
Diversidad	Romper buenos	Estancarse	Afinar
"ligera"	hijos		variación
			fina
Intensificación	Coste extra	Menos pulido	Bajar costo
local			sin ruido
Protección del	Atasco si es	Pérdida del	Estabilidad
best	alto	best	del récord
	Explotación (conserva buenos) Explotación (si k grande) Exploración (recombinar) Diversidad "fuerte" Diversidad "ligera" Intensificación local Protección del	Explotación Convergencia prematura buenos) Explotación (si Pérdida de k grande) diversidad Exploración - (si pc muy (recombinar) bajo → copias) Diversidad Demasiado ruido "fuerte" Diversidad Romper buenos hijos Intensificación Coste extra local Protección del Atasco si es	Explotación Convergencia Olvidar (conserva prematura buenos tours buenos) Explotación (si Pérdida de Selecciones k grande) diversidad ruidosas Exploración — (si pc muy Poca (recombinar) bajo → copias) recombinación Diversidad Demasiado ruido Falta de diversidad "fuerte" diversidad Diversidad Romper buenos Estancarse hijos Intensificación Coste extra Menos pulido local Protección del Atasco si es Pérdida del

Tabla 3 - Chequeos de coherencia

Regla	Qué verificar	Por qué
S% + C% + M% = 1.0	Exacto (considera redondeos)	Evitar población ≠ N
N ≥ 10	Tu código lo exige	Evitar dinámica degenerada
elitism ≤ ~S%	O mantén elitism bajo	Evitar sobre-sobrescritura
		constante
pc ≥ 0.8	Ideal 0.9-1.0	Evitar demasiadas copias
(M% > 0) o (pm > 0)	Al menos uno > 0	Sin esto no hay diversidad

Regla	Qué verificar	Por qué
k en 3-7	No poner k $pprox$ N	Evitar presión excesiva
twoOptProb ≤ 0.3	Subir gradualmente	Evitar costes altos "inútiles"
stall y timeLimit	Consistentes con	No cortar demasiado pronto/
	maxIter	tarde

Tabla 4 - Síntomas y Ajustes rápidos

Síntoma	Causa probable	Ajuste
Se estanca muy	S alto, k alto,	$(-)$ S, $(-)$ k, $(+)$ pm $(p.ej. 1/n \rightarrow 2/n)$,
pronto	pm bajo, M=0	(+)M, (+)twoOptProb
Mejora pero luego	pm alto, M alto	(-)pm, (-)M, (+)S o (+)elitism
empeora mucho		levemente
Mucho tiempo sin	twoOptProb bajo,	(+)twoOptProb, (+)C, activarscx
mejoras	C bajo	
Población "clonada"	pc bajo, k alto, elitism alto	(+)pc, (-)k, (-)elitism, (+)M o (+)pm
Oscila/ruidosa	pm/M muy altos	(-)pm, (-)M, mantener twoOptProb
Corre lento	N alto,	(-)N, (-)twoOptProb, usa SCX (mejores
	twoOptProb alto	hijos con menos 2-opt)

Tabla 5 - Valores guía (base)

Escala	N	S% / C% / M%	рс	pm	elitismk		twoOptP srba bll	
52 nodos	150-	0.20 / 0.60 /	0.9-	\$≈ \$ 1/52	0.02-	5	0.05-	200-
	300	0.20	1.0	(0.02)	0.05		0.15	800
~500	800-	0.15-0.25 /	0.95-	1/n	0.02-	3-	0.03-	1000-
nodos	1200	0.55-0.65 /	1.0	(0.002)-0.02	0.05	5	0.10	5000
		0.15-0.25						

Para n grandes, **SCX** suele rendir mejor que OX; para n pequeños, OX va bien.

Reglas "huele a mal" (rápidas)

- S≥0.5 **y** elitism≥0.2 → clonación/atasco.
- $C \le 0.3$ o $pc \le 0.6 \rightarrow poca$ recombinación (copias).
- M=0 y pm=0 \rightarrow sin diversidad (casi seguro estancamiento).

- $k \ge N/2 \rightarrow \text{presión excesiva (ganan siempre los top)}$.
- twoOptProb \geqslant 0.5 con N grande \rightarrow tiempo muy alto con poca ganancia marginal.
- stall muy bajo (p.ej. <100 en 52 nodos) \rightarrow cortes prematuros; muy alto sin timeLimit \rightarrow runs eternos.