LAN - Network Topology Architectures

- > Three-tier Architecture.
- > Two-tier Architecture.
- > Spine-Leaf Architecture (Data Center).

Three-Tier Architecture

Provides network access to the users

Represents the network edge

Access Layer Distribution Layer

Core Layer (Backbone)

Core Layer

Functions as an aggregator for all the campus blocks

Provides high-speed backbone connectivity

Provides uninterrupted forwarding service

Ensures timely data transfer between layers

Layer 3 **OSPF**

www.everestacademy.in

Distribution Layer

Is the boundary between the layer 2 domains and the layer 3 routed network

Implements network access policy

Distribution Layer

Aggregates the data received from the access layer switches

Access Layer

Layer 2 STP

Two-Tier (Collapsed Core) Architecture

- ➤ Most appropriate for small network designs .
- Single device handles the core and the distribution layer.
- ➤ More cost-effective than three-tier architecture.

Spine-Leaf Architecture (Data Center)

Small Office Home Office (SOHO)

Power over Ethernet (PoE)

- Power over Ethernet (PoE) is a networking technology that can transmit both data and electric power over one single twisted-pair (UTP) Ethernet cable.
- Power over Ethernet (PoE) allows a single cable to provide both data connection and electric power to devices such as wireless access points, IP cameras, and VoIP phones.

The Benefits of PoE

☐ Time and cost savings:

PoE can reduce the time and expense of having electrical power cabling installed.

☐ Flexibility:

Without being tethered to electrical outlets, devices such as IP Phone, security cameras, and wireless access points can be positioned in ideal locations.

☐ Safety:

Power delivery using PoE is designed to intelligently protect network equipment from overload, underpowering, and incorrect installation.

☐ Reliability:

PoE power comes from a central and universally compatible source and not from a collection of distributed wall adapters. It can be backed up by an uninterruptible power supply (UPS), allowing for continuous operation even during power failures.

☐ Scalability:

Having power available on the network means that the installation and distribution of network connections are simple and effective.

PoE Standards

PoE Types and Classes

☐ The class defines the maximum power that can be delivered by the PSE to a PD.

Туре	Class	PoE Standard	Power over twisted pairs	Max. Power Output of PSE	Max. Power Input of PD	
1	1			4W	3.84W	
	2	IEEE 802.3af (PoE)	2 pairs	7W	6.49W	
	3			15.4W	12.95W	
2	4	IEEE 802.3at (PoE+)	2 pairs	30W	25.5W	
3		Cisco UPoE	4 pairs	60W	51W	
	5	IEEE 802.3bt (PoE++)	4 pairs	45W	40W	
	6	TEEE 802.3bt (POE++)	4 pairs	60W	51W	
4	7	IEEE 902 2bt (DoELL)		75W	62W	
	8	IEEE 802.3bt (PoE++)	4 pairs	90W	71W	
		Cisco UPoE+		90W	71W	

PoE Applications

PoE Injector and PoE Splitter

PoE Injector and PoE Splitter

PoE Injector and PoE Splitter

Switch>
Switch>ena
Switch#show power
Switch#show power in
Switch#show power inline

Interface	Admin	0per	Power (Watts)	Device	Class	Max
Fa0/1	auto	off	0.0	n/a	n/a	15.4
Fa0/2	auto	off	0.0	n/a	n/a	15.4
Fa0/3	auto	off	0.0	n/a	n/a	15.4
Fa0/4	auto	off	0.0	n/a	n/a	15.4
Fa0/5	auto	off	0.0	n/a	n/a	15.4
Fa0/6	auto	off	0.0	n/a	n/a	15.4
Fa0/7	auto	off	0.0	n/a	n/a	15.4
Fa0/8	auto	off	0.0	n/a	n/a	15.4
Fa0/9	auto	off	0.0	n/a	n/a	15.4
Fa0/10	auto	off	0.0	n/a	n/a	15.4
Fa0/11	auto	on	6.3	IP Phone 7960	n/a	15.4
Fa0/12	auto	off	0.0	n/a	n/a	15.4
Fa0/13	auto	off	0.0	n/a	n/a	15.4
Fa0/14	auto	off	0.0	n/a	n/a	15.4

