Lab #1 - Geometry (part 2)

Informática Gráfica

Adolfo Muñoz - Julio Marco Pablo Luesia - J. Daniel Subías — Óscar Pueyo

Before we begin...

- Practical sessions:
 - Intermediate assignments: no submission required
 - Highly recommended to be completed at certain tentative deadlines
 - For the first and second sessions: September 25th
 - Your final work will build upon the stuff you'll do here!
 - 80% of the final grade (including written report)

If you need to find a partner for lab sessions, message us

Your new job at FTL dynamics

Images generated using Stable Diffusion

Ideal scenario

Ideal scenario

Ideal scenario

City receptor

Ideal scenario

Fatal scenario (1)

Fatal scenario (1)

Fatal scenario (1)

Fatal scenario (2)

City receptor

Fatal scenario (2)

Fatal scenario (2)

Homogeneous coordinates

Point

$$\mathbf{p} = \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} \Rightarrow \mathbf{v} = \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix}$$

Direction

$$\mathbf{d} = \begin{pmatrix} d_{x} \\ d_{y} \\ d_{z} \end{pmatrix} \Rightarrow \mathbf{v} = \begin{pmatrix} a_{x} \\ d_{y} \\ d_{z} \\ 0 \end{pmatrix}$$

- Homogeneous coordinates
- Transformation matrices
 - Translation

- Homogeneous coordinates
- Transformation matrices
 - Translation
 - Rotation

- Homogeneous coordinates
- Transformation matrices
 - Translation
 - Rotation
 - Scale

- Homogeneous coordinates
- Transformation matrices
 - Translation
 - Rotation
 - Scale
 - Change of base

- Homogeneous coordinates
- Transformation matrices
 - Translation
 - Rotation
 - Scale
 - Change of base
 - Inverse transform

- Homogeneous coordinates
- Transformation matrices
 - Translation
 - Rotation
 - Scale
 - Change of base
 - Inverse transform
- Combine transform matrices

- Homogeneous coordinates
- Transformation matrices
 - Translation
 - Rotation
 - Scale
 - Change of base
 - Inverse transform
- Combine transform matrices

Planetary stations

How to define a planet

Planetary stations

- How to define a planet
- How to define a city

Planetary stations

- How to define a planet
- How to define a city
- Interplanetary connections

Questions

DO ASK questions, either now or after the lab

But be reasonable, please:)

<u>pluesia@unizar.es</u> | <u>dsubias@unizar.es</u> | <u>o.pueyo@unizar.es</u>

What to expect from this session

In the programming language of your choice, implement:

- Data basics: Matrices, homogeneous coordinates
- Transformation matrices:
 - Translation, rotation, scale
 - Change of basis, inverse transformation, combine transform matrices
 - Pretty stdout operator
- Use your new math powers on your job at FTL dynamics
- Recommended deadline: September 25th. Do you have extra time?
 - Go home and rest :)
 - Next session: read/write PPM images, tonemapping
 - Try programming ray-sphere intersections, test it with planetary stations