Package 'GenHMM1d'

March 13, 2025

Type Package	
Title Goodness-of-Fit for Zero-Inflated Univariate Hidden Markov Models	
Version 0.2.1	
Description Inference, goodness-of-fit tests, and predictions for continuous and discrete univariate Hidden Markov Models (HMM), including zero-inflated distributions. The goodness-of-fit test is based on a Cramer-von Mises statistic and uses parametric bootstrap to estimate the value. The description of the methodology is taken from Nasri et al (2020) <doi:10.1029 2019wr025122="">.</doi:10.1029>	
License GPL-3	
Encoding UTF-8	
Maintainer Bouchra R. Nasri 	
RoxygenNote 7.3.2	
Depends R (>= 3.5.0), doParallel, parallel, foreach	
Imports ggplot2, stats, matrixcalc, reshape2, rmutil, VaRES, VGAM, EnvStats, GLDEX, GeneralizedHyperbolic, actuar, extraDistr, gamlss.dist, sgt, skewt, sn, ssdtools, stabledist	
NeedsCompilation no	
Author Bouchra R. Nasri [aut, cre, cph], Mamadou Yamar Thioub [aut, cph], Bruno N. Remillard [aut, cph]	
Repository CRAN	
Date/Publication 2025-03-13 12:20:02 UTC	
Contents	
CDF	

2 CDF

	ForecastHMMeta	7
	ForecastHMMPdf	8
	ForecastHMMVAR	9
	GofHMMGen	10
	graphEstim	12
	GridSearchS0	12
	PDF	13
	QUANTILE	14
	SimHMMGen	15
	SimMarkovChain	15
	Snd1	16
Index		17

CDF

Cumulative distribution function

Description

This function computes the cumulative distribution function (cdf) of a univariate distribution

Usage

```
CDF(family, y, param, size = 0)
```

Arguments

family	distribution name; run the function distributions() for help
У	values at which the cdf is evaluated
param	parameters of the distribution; (1 x p)
size	additional parameter for some discrete distributions; run the command distributions() for help

Value

f cdf

distributions 3

distributions The names and descriptions of the univariate distributions		distributions	The names and descriptions of the univariate distributions
--	--	---------------	--

Description

This function allows the users to find the details on the available distributions.

Usage

```
distributions()
```

Value

No returned value, allows the users to know the different distributions and parameters

ES	Expected shortfall function	

Description

This function computes the expected shortfall of an univariate distribution, excluding zero-inflated.

Usage

```
ES(p, param, family, size = 0, Nsim = 25000)
```

Arguments

p	value (1 x 1) at which the expected shortfall needs to be computed; between 0 and 1; (e.g 0.01, 0.05)
param	parameters of the distribution; (1 x p)
family	distribution name; run the function distributions() for help
size	additional parameter for some discrete distributions; run the command distributions() for help
Nsim	number of simulations

Value

es expected shortfall

4 EstHMMGen

Examples

```
family = "gaussian"

theta = c(-1.5, 1.7);
es = ES( 0.01, theta, family)
print('Expected shortfall : ')
print(es$es)
```

EstHMMGen

Estimation of univariate hidden Markov model

Description

This function estimates the parameters from a univariate hidden Markov model

Usage

```
EstHMMGen(
   y,
   ZI = 0,
   reg,
   family,
   start = 0,
   max_iter = 100000,
   eps = 1e-04,
   size = 0,
   theta0 = NULL,
   graph = FALSE
)
```

Arguments

```
У
                   observations; (n x 1)
ΖI
                   1 if zero-inflated, 0 otherwise (default)
                   number of regimes (including zero-inflated; must be > ZI)
reg
                   distribution name; run the function distributions() for help
family
start
                   starting parameters for the estimation; (1 \times p)
max_iter
                   maximum number of iterations of the EM algorithm; suggestion 10000
                   precision (stopping criteria); suggestion 0.001.
eps
                   additional parameter for some discrete distributions; run the command distribu-
size
                   tions() for help
                   initial parameters for each regimes; (r x p), default is NULL
theta0
                   TRUE a graph, FALSE otherwise (default); only for continuous distributions
graph
```

EstHMMGen 5

Details

Value

theta	estimated parameters; (r x p)
Q	estimated transition matrix for the regimes; (r x r)
eta	conditional probabilities of being in regime k at time t given observations up to time $t; (n \ x \ r)$
lambda	conditional probabilities of being in regime k at time t given all observations; (n $\boldsymbol{x}\ \boldsymbol{r})$
U	matrix of Rosenblatt transforms; (n x r)
cvm	cramer-von-Mises statistic for goodness-of-fit
W	pseudo-observations that should be uniformly distributed under the null hypothesis
LL	log-likelihood
nu	stationary distribution
AIC	Akaike information criterion
BIC	Bayesian information criterion
CAIC	consistent Akaike information criterion
AICcorrected	Akaike information criterion corrected
HQC	Hannan-Quinn information criterion
stats	empirical means and standard deviation of each regimes using lambda
pred_l	estimated regime using lambda
pred_e	estimated regime using eta
runs_l	estimated number of runs using lambda
runs_e	estimated number of runs using eta

```
family = "gaussian"  Q = matrix(c(0.8, 0.3, 0.2, 0.7), 2, 2) ; \\ theta = matrix(c(-1.5, 1.7, 1, 1), 2, 2) ; \\ y = SimHMMGen(theta, Q=Q, family=family, n=100)$SimData est = EstHMMGen(y, reg=2, family=family)
```

6 ForecastHMMCdf

ForecastHMMCdf	Forecasted cumulative distribution function of a univariate HMM at
	times $n+k1$, $n+k2$,

Description

This function computes the forecasted cumulative distribution function of a univariate HMM for multiple horizons, given observations up to time n

Usage

```
ForecastHMMCdf(
    x,
    ZI = 0,
    family,
    theta,
    Q,
    eta,
    size = 0,
    k = 1,
    graph = FALSE
)
```

Arguments

х	points at which the cdf function is computed
ZI	1 if zero-inflated, 0 otherwise (default)
family	distribution name; run the function distributions() for help
theta	parameters; (r x p)
Q	probability transition matrix for the regimes; (r x r)
eta	vector of the estimated probability of each regime at time n; (1 x r)
size	additional parameter for some discrete distributions; run the command distributions() for help
k	prediction times
graph	TRUE to produce plots (FALSE by default).

Value

cdf values of the cdf function

ForecastHMMeta 7

Examples

```
family = "gaussian"
theta = matrix(c(-1.5, 1.7, 1, 1),2,2)
Q = matrix(c(0.8, 0.3, 0.2, 0.7), 2, 2)
eta = c(0.96, 0.04)
x=seq(from=-6, to=6, by=0.1)
k=c(1,5,10,20)
cdf = ForecastHMMCdf(x, 0, family, theta, Q, eta, size=0, k, graph=TRUE)
```

ForecastHMMeta

Predicted probabilities of regimes of a univariate HMM for a new observation

Description

This function computes the predicted probabilities of the regimes for a new observation of a univariate HMM, given observations up to time n

Usage

```
ForecastHMMeta(ynew, ZI = 0, family, theta, Q, eta)
```

Arguments

ynew	new observations
ZI	1 if zero-inflated, 0 otherwise (default)
family	distribution name; run the function distributions() for help
theta	parameters; (r x p)
Q	probability transition matrix for the regimes; (r x r)
eta	vector of the estimated probability of each regime at time n; (1 x r)

Value

etanew predicted probabilities of the regimes

```
family = "gaussian" theta = matrix(c(-1.5, 1.7, 1, 1), 2, 2) Q = matrix(c(0.8, 0.3, 0.2, 0.7), 2, 2) eta = c(0.96, 0.04) ForecastHMMeta(1.5, 0, family, theta, Q, eta)
```

8 ForecastHMMPdf

ForecastHMMPdf	Forecasted density function of a univariate HMM at time $n+k1$, $n+k2$,
	•••

Description

This function computes the probability forecasted density function (with respect to Dirac(0)+Lesbesgue) of a univariate HMM for multiple horizons, given observations up to time n

Usage

```
ForecastHMMPdf(
   y,
   ZI = 0,
   family,
   theta,
   Q,
   eta,
   size = 0,
   k = 1,
   graph = FALSE
)
```

Arguments

у	points at which the pdf function is computed
ZI	1 if zero-inflated, 0 otherwise (default)
family	distribution name; run the function distributions() for help
theta	parameters; (r x p)
Q	probability transition matrix for the regimes; (r x r)
eta	vector of the estimated probability of each regime at time n ; $(1 \times r)$
size	additional parameter for some discrete distributions; run the command distributions() for help
k	prediction times (may be a vector of integers)
graph	TRUE to produce plots (FALSE is default)

Value

```
pdf values of the pdf function
```

ForecastHMMVAR 9

Examples

```
family = "gaussian" theta = matrix(c(-1.5, 1.7, 1, 1),2,2) Q = matrix(c(0.8, 0.3, 0.2, 0.7), 2, 2) eta = c(0.06, 0.94) x=seq(from=-6, to=6, by=0.1) k=c(1,5,10,20) pdf = ForecastHMMPdf(x, 1, family, theta, Q, eta, k=k, graph=TRUE)
```

ForecastHMMVAR

Value at risk (VAR) of a univariate HMM at time n+k1, n+k2, ...

Description

This function computes the VAR of a univariate HMM for multiple horizons, given observations up to time n

Usage

```
ForecastHMMVAR(U, ZI = 0, family, theta, Q, eta, k = 1)
```

Arguments

U	values (n x 1) between 0 and 1
ZI	1 if zero-inflated, 0 otherwise (default)
family	distribution name; run the function distributions() for help
theta	parameters; (r x p)
Q	probability transition matrix for the regimes; (r x r)
eta	vector of the estimated probability of each regime at time n ; $(1 \ x \ r)$
k	prediction times (may be a vector of integers).

Value

```
var values at risk (1 x horizon)
```

```
family = "gaussian" theta = matrix(c(-1.5, 1.7, 1, 1), 2, 2) Q = matrix(c(0.8, 0.3, 0.2, 0.7), 2, 2) eta = c(0.96, 0.04) U=c(0.01, 0.05) k=c(1,2,3,4,5) ForecastHMMVAR(U, 0, family, theta, Q, eta=eta,k)
```

10 GofHMMGen

GofHMMGen

Goodness-of-fit of univariate hidden Markov model

Description

This function performs a goodness-of-fit test for a univariate hidden Markov model

Usage

```
GofHMMGen(
   y,
   ZI = 0,
   reg,
   family,
   start = 0,
   max_iter = 10000,
   eps = 1e-04,
   size = 0,
   n_samples = 1000,
   n_cores = 1,
   useFest = TRUE
)
```

Arguments

у	observations
ZI	1 if zero-inflated, 0 otherwise (default)
reg	number of regimes
family	distribution name; run the function distributions() for help
start	starting parameter for the estimation
max_iter	maximum number of iterations of the EM algorithm; suggestion 10000
eps	precision (stopping criteria); suggestion 0.0001.
size	additional parameter for some discrete distributions; run the command distributions() for help
n_samples	number of bootstrap samples; suggestion 1000
n_cores	number of cores to use in the parallel computing
useFest	TRUE (default) to use the first estimated parameters as starting value for the bootstrap, FALSE otherwise

GofHMMGen 11

Value

pvalue	pvalue of the Cramer-von Mises statistic in percent	
theta	Estimated parameters; (r x p)	
Q	estimated transition matrix; ; (r x r)	
eta	(conditional probabilities of being in regime k at time t given observations up to time $t;(n\;x\;r)$	
lambda	conditional probabilities of being in regime k at time t given all observations; (n $x \; r)$	
U	matrix of Rosenblatt transforms; (n x r)	
CVM	Cramer-von-Mises statistic for goodness-of-fit	
W	pseudo-observations that should be uniformly distributed under the null hypothesis	
LL	log-likelihood	
nu	stationary distribution	
AIC	Akaike information criterion	
BIC	bayesian information criterion	
CAIC	consistent Akaike information criterion	
AICcorrected	Akaike information criterion corrected	
HQC	Hannan-Quinn information criterion	
stats	Empirical means and standard deviation of each regimes using lambda	
pred_l	Estimated regime using lambda	
pred_e	Estimated regime using eta	
runs_l	Estimated number of runs using lambda	
runs_e	Estimated number of runs using eta	

```
family = "gaussian"  Q = matrix(c(0.8, 0.3, 0.2, 0.7), 2, 2) ; theta = matrix(c(0, 1.7, 0, 1), 2, 2) ; \\ y = SimHMMGen(theta, size=0, Q, ZI=1, family, 100) $SimData \\ out=GofHMMGen(y,1,2,family,n_samples=10)
```

12 GridSearchS0

graphEstim Graphs
im Graphs

Description

This function shows the graphs resulting from the estimation of a HMM model

Usage

```
graphEstim(y, ZI = 0, reg, theta, family, pred_l, pred_e)
```

Arguments

У	observations
ZI	1 if zero-inflated, 0 otherwise (default)
reg	number of regimes
theta	estimated parameters; (r x p)
family	distribution name; run the function distributions() for help
pred_l	estimated regime using lambda
pred_e	estimated regime using eta

Value

No returned value; produces figures of interest for the HMM model

Description

This function performs a gridsearch to find a good starting value for the EM algorithm. A good starting value for the EM algorithm is one for which all observations have strictly positive density (the higher the better)

Usage

```
GridSearchS0(family, y, params, size = 0, lbpdf = 0)
```

PDF 13

Arguments

family	distribution name; run the function distributions() for help
У	observations
params	list of six vectors named (p1, p2, p3, p4, p5, p6). Each corresponding to a parameter of the distribution (additionnal parameters will be ignored). For example : params = list(p1=c(0.5, 5, 0.5), p2=c(1, 5, 1), p3=c(0.1, 0.9, 0.1), p4=c(1,1,1), p5=c(1,1,1), p6=c(1,1,1)) where p1 is the grid of value for the first parameter.
size	additional parameter for some discrete distributions; run the command distributions() for help
lbpdf	minimal acceptable value of the density; (should be >= 0)

Value

goodStart accepted parameter set

Examples

```
family = "gaussian"

Q = matrix(c(0.8, 0.3, 0.2, 0.7), 2, 2);
theta = matrix(c(-1.5, 1.7, 1, 1),2,2);
sim = SimHMMGen(theta, size=0, Q, ZI=0, "gaussian", 50)$SimData;
params = list(p1=c(-2, 2, 0.5), p2=c(1, 5, 1), p3=c(1, 1, 1), p4=c(1,1,1), p5=c(1,1,1), p6=c(1,1,1))
accepted_params = GridSearchS0(family, sim, params)
```

PDF

Probability density function

Description

This function computes the probability density function (pdf) of a univariate distribution

Usage

```
PDF(family, y, param, size = 0)
```

Arguments

family	distribution name; run the function distributions() for help
У	observations
param	parameters of the distribution; (1 x p)
	additional parameter for some discrete distributions; run the command distributions() for help

14 QUANTILE

Value

f pdf

QUANTILE

Quantile function

Description

This function computes the quantile function of a univariate distribution, excluding zero-inflated.

Usage

```
QUANTILE(p, param, family, size = 0)
```

Arguments

p values at which the quantile needs to be computed; between 0 and 1; (e.g 0.01,

0.05)

param parameters of the distribution; (1 x p)

family distribution name; run the function distributions() for help

size additional parameter for some discrete distributions; run the command distribu-

tions() for help

Value

q quantile/VAR

```
family = "gaussian"

theta = matrix(c(-1.5, 1.7),1,2) ;
quantile = QUANTILE(0.01, theta, family)
print('Quantile : ')
print(quantile)
```

SimHMMGen 15

SimHMMGen Simulation of univariate hidden Markov model	el
--	----

Description

This function simulates observation from a univariate hidden Markov model

Usage

```
SimHMMGen(theta, size = 0, Q, ZI = 0, family, n)
```

Arguments

theta	parameters; (r x p)
size	additional parameter for some discrete distributions; run the command distributions() for help
Q	transition probability matrix for regimes; (r x r)
ZI	1 if zero-inflated, 0 otherwise (default)
family	distribution name; run the function distributions() for help
n	number of simulated observations

Value

SimData	Simulated data
MC	Simulated Markov chain

Examples

```
family = "gaussian"  Q = matrix(c(0.8, 0.3, 0.2, 0.7), 2, 2) ; \\ theta = matrix(c(0, 1.7, 0, 10), 2, 2) ; \\ y = SimHMMGen(theta, Q=Q, ZI=1, family=family, n=50)$SimData
```

SimMarkovChain

Markov chain simulation

Description

This function generates a Markov chain X(1), ..., X(n) with transition matrix Q, starting from a state eta0 or the uniform distribution on 1,..., r.

Usage

```
SimMarkovChain(Q, n, eta0)
```

16 Snd1

Arguments

Q transition probability matrix n number of simulated vectors

eta0 initial value in 1,...,r.

Value

x Generated Markov chain

Snd1 *Cramer-von Mises statistic for the goodness-of-fit test of the null hypothesis of a univariate uniform distribution over* [0,1]

Description

This function computes the Cramer-von Mises statistic Sn for goodness-of-fit of the null hypothesis of a univariate uniform distrubtion over [0,1]

Usage

Snd1(U)

Arguments

U vector of pseudos-observations (approximating uniform)

Value

sta Cramer-von Mises statistic

Index

```
CDF, 2
distributions, 3
ES, 3
EstHMMGen, 4
ForecastHMMCdf, 6
{\it ForecastHMMeta}, {\it \ref{thm:main}}
ForecastHMMPdf, 8
ForecastHMMVAR, 9
GofHMMGen, 10
{\tt graphEstim},\, {\color{red} 12}
GridSearchS0, 12
PDF, 13
QUANTILE, 14
SimHMMGen, 15
SimMarkovChain, 15
Snd1, 16
```