الهندسة الفضائية

الدرس الحادي

	محتوى الدرس	
2	المتجهات في الفضاء	1
2	1.1 عمومتیات	
2	1.2 الاستقامية – الاستوائية برورورورورورورورورورورورورورورورورورورو	
2	1.3 التَّعريفُ المتجهِيُّ لمستقيم - التعريف المتجهي لمستوى	
3	تحليلية الفضاء	2
3	2.1 الأساس و المعلم في الفضاء – الاحداثيات	
4	2.2 استقامية متجهتين	
4	2.3 استوائية ثلاث مُتَجهات	
5	2.4 تمثيل بارامتري لمستقيم	
5	2.5 تمثيل بارامتري لمستویٰ	
6	2.6 معادلة ديكارتية لمستوى	
6	2.7 معادلتان دیکارتیتان لمستقیم	
	•	

السنة الأولى باكلوريا

1. المتجهات في الفضاء

1.1. عمومیات

يعمم مفهوم المتجهات في المستوى إلى الفضاء، و تبقى خاصة الخاصيات التالية صحيحة:

خاصيات

- $\overrightarrow{AB} = \vec{u}$ عيث \overrightarrow{a} من الفضاء، توجد نقطة وحيدة \overrightarrow{a} بحيث لكل نقطة \overrightarrow{a}
- تبقى تعاريف و خصائص الجمع و الضرب في عدد حقيقى لمتجهَّة في المستوى صحيحة في الفضاء.
- لكل نقط A و B و D من الفضاء، $\overrightarrow{AB} = \overrightarrow{DC}$ إذا و فقط إذا كان \overrightarrow{ABCD} متوازي الأضلاع.
- لكل نقط A و B و D و D من الفضاء، $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$ إذا و فقط إذا كان \overrightarrow{ABCD} متوازي الأضلاع.
 - و لكل نقط A و B و B من الفضاء، لدينا $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ علاقة شال)

1.2. الإستقامية - الإستوائية

خاصيات

- - $a\vec{u} + b\vec{v} = \vec{0} \Rightarrow a = b = 0$ متجهتان \vec{v} متجهتان و \vec{v} غير مستقيميتان إذا و فقط إذا كان
- (2) $.a\vec{u}+b\vec{v}+c\vec{w}=\vec{0}$ عيث \vec{v} و \vec{v} عيث \vec{v} و متجهات \vec{v} و متجهات \vec{v} عيث \vec{v} عيث \vec{v} عيد \vec{v}
 - $a\vec{u}+b\vec{v}+c\vec{w}=\vec{0}\Rightarrow a=b=c=0$ متجهات \vec{u} و \vec{v} و \vec{v} غير مستوائية إذا و فقط إذا كان

ملاحظات

- بوضع $x = -\frac{a}{b}$ تصبح الخاصية (1) كما يلي:
- $\vec{v} = x\vec{u}$ جيث \vec{v} مستقيميتان إذا و فقط إذا وجد عدد x من \vec{v} متجهتان \vec{v}
 - بوضع $x = -\frac{a}{c}$ و $x = -\frac{b}{c}$ بوضع $x = -\frac{a}{c}$
- $\vec{w} = x\vec{u} + y\vec{v}$ متجهات \vec{v} و \vec{v} مستوائية إذا و فقط إذا وجدت أعداد x و y من \vec{v} متجهات

1.3. التعريف المتجهي لمستقيم - التعريف المتجهي لمستوى

تعاریف

- لتكن A نقطة و $ec{u}$ متجهة من الفضاء.
- مجموعة النقط M من الفضاء التي تحقق $\overrightarrow{AM} = x\vec{u}$ حيث x عدد حقيقي، هي المستقيم المار من A و الموجه بالمتجهة \vec{u} و يرمن له بالرمن $D(A, \vec{u})$.
 - $A(AB) = D(A, \overrightarrow{AB})$ اذا كانت A و B نقطتين مختلفتين من الفضاء فإن
 - لتكن A نقطة و $ec{u}$ و $ec{v}$ متجهتين غير مستقيميتين من الفضاء.
- مجموعة النقط M من الفضاء التي تحقق $\vec{x} = x\vec{u} + y\vec{v}$ بحيث x و y عددين حقيقيين، هو المستوى المار من A و الموجه بالمتجهتين \vec{u} و \vec{v} يرمن له بالرمن $P(A, \vec{u}, \vec{v})$.
 - $A(ABC) = P(A, \overrightarrow{AB}, \overrightarrow{AC})$ اذا كانت $A \in B$ و $B \in C$ نقط غير مستقيمية من الفضاء فإن

نتائج

لتكن A و B نقطتين و \vec{u} و \vec{v} و \vec{v} متجهات من الفضاء. نعتبر المستقيمان $D(A, \vec{u})$ و $D(A, \vec{v})$

- متوزیان أو منطبقان إذا و فقط إذا كانت $ec{u}$ و $D(B,ec{v})$ متوزیان أو منطبقان إذا و فقط إذا
- مستوائية مع \vec{u} و \vec{v} متقاطعان إذا و فقط إذا كانت \vec{u} و \vec{v} و مستوائية مع \vec{v} و \vec{v} غير مستقيميتان.
- $D(B, \vec{v})$ و $D(B, \vec{v})$ غير مستوائيان إذا و فقط إذا كانت \vec{u} و \vec{v} و فير مستوائية مع \vec{v} غير مستقيميتان.

 $P(B, ec{u}', ec{v}')$ و $P(A, ec{u}, ec{v})$ نعتبر المستويان

- و \vec{v} و \vec{v} و \vec{v} و \vec{v} و \vec{v} و \vec{v} متوازیان أو منطبقان إذا كانت \vec{v} و \vec{v} و \vec{v} مستوائیة و \vec{v} و مستوائیة و \vec{v} و مستوائیة و \vec{v} مستوائیة و \vec{v} مستوائیة و \vec{v} مستوائیة و \vec{v}
 - و $P(B,ec{u}',ec{v}')$ متقاطعان إذا كانت $ec{u}$ و $ec{v}$ غير مستوائية أو $ec{v}$ و $ec{v}$ غير مستوائية.

تمرين 1

- $\overrightarrow{BK} = \frac{1}{4}\overrightarrow{BC}$ و $\overrightarrow{AJ} = \frac{3}{4}\overrightarrow{AB}$ رباعي أوجه و I و منتصفي I منتصفي I و I و I و I و I و I و I و I و I هل النقط I و I و I مستوائية ؟
 - مكعب و I و I منتصفات I و I و I و I و I و I مركز ثقل المثلث I مكعب و I مكعب و I منتصفات I
 - $\cdot (CK)//(IJB)$ بين أن (ا)
 - (() بين أن (KL) / / (IJB) ماذا تستنتج

2. تحليلية الفضاء

2.1. الأساس و المعلم في الفضاء - الاحداثيات

تعاريف

- نسمي أساساً للفضاء كل مثلوث $(ec{i},ec{j},ec{k})$ بحيث $ec{i}$ و $ec{k}$ متجهات غير مستوائية.
 - نسمي معلما للفضاء كل مربع $(O; ec{i}, ec{j}, ec{k})$ بحيث $(ec{i}, ec{j}, ec{k})$ أساس و O نقطة.
 - كل أربع نقط غير مستوائية تكون أساسا و معلما للفضاء.
- $\overrightarrow{OM} = x\vec{i} + y\vec{j} + z\vec{k}$ في فقطة X و X و Z بحيث X و الفضاء توجد أعداد حقيقية X و المثلوث X المثلوث X إحداثيات النقطة X و المثلوث X إحداثيات النقطة X

$$M\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 أو $M(x; y; z)$ نكتب

 $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ متجهة \vec{u} من الفضاء توجد أعداد حقيقية x و y و y بحيث \vec{u} من الفضاء توجد أعداد المتجهة \vec{u} المثلوث (x;y;z) يسمى إحداثيات المتجهة \vec{u}

$$\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 أو $\vec{u}(x; y; z)$ نكتب

تمرين 2

ليكن ABCD رباعي أوجه.

- $A(A;\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD})$ النقط A و B و C و D و D و المعلم ($A;\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD}$).
- 2. حدد في نفس المعلم إحداثيات النقطة E بحيث يكون ABED متوازي أضلاع.
- ه. حدد في نفس المعلم إحداثيات المتجهة \overrightarrow{DE} و إحداثيات منتصف القطعة [DE].
- (D;4) و (C;-3) و (B;2) النقط المتزنة (B;2) و رحم النقط المتزنة (B;3) و G
 - رُ أجب عن نفس الأسئلة في المعلم ($B; \overrightarrow{BC}, \overrightarrow{BD}, \overrightarrow{BA}$).

في كل ما يلي المستوى منسوب إلى معلم $(O; \vec{i}, \vec{j}, \vec{k})$.

2.2. استقامية متجهتين

خاصية

لتكن $\vec{u}(x;y;z)$ و $\vec{v}(x';y';z')$ متجهتين من الفضاء.

- $\begin{vmatrix} y & y' \\ z & z' \end{vmatrix} = 0$ و $\begin{vmatrix} x & x' \\ z & z' \end{vmatrix} = 0$ و $\begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = 0$ کان د تکون المتجهتین \vec{u} و مستقیمیتین إذا و فقط إذا کان \vec{v}
- $\begin{vmatrix} y & y' \\ z & z' \end{vmatrix} \neq 0$ $\Rightarrow \begin{vmatrix} x & x' \\ z & z' \end{vmatrix} \neq 0$ $\Rightarrow \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} \neq 0$ $\Rightarrow 0$

تمرين 3

- 1. هل النقط A و B و C مستقيمية في الحالات التالية:
- C(-1;-2;-6) و B(2;4;10) و A(1;2;5) و C(4;-20;9) و B(0;4;1) و A(1;-2;3)
 - A(1;-1;1) و C(1;-1;-1) و C(1;-1;-1) و A(1;-1;1) و A(1;-1;1) و A(1;-1;1) و A(1;-1;1) و بين أن المستقيمان A(1;-1;1) متوازيان.
 - 3. حدد العددين الحقيقيين a و b بحيث تكون النقط A(0;1;0) و B(2;0;1) و روزي مستقيمية.

2.3. استوائية ثلات متجهات

خاصية

لتكن $\vec{w}(x';y';z')$ و $\vec{v}(x';y';z')$ و $\vec{v}(x';y;z')$ متجهات من الفضاء. نسمى محددة المتجهات \vec{u} و \vec{v} و \vec{v} العدد الحقيقى:

$$\det(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} x & x' & x'' \\ y & y' & y'' \\ z & z' & z'' \end{vmatrix} = x \begin{vmatrix} y' & y'' \\ z' & z'' \end{vmatrix} - y \begin{vmatrix} x' & x'' \\ z' & z'' \end{vmatrix} + z \begin{vmatrix} x' & x'' \\ y' & y'' \end{vmatrix}$$

- تكون المتجهات \vec{u} و \vec{v} و \vec{v} مستوائية إذا و فقط إذا كان \vec{v} و \vec{v}
- تكون المتجهات \vec{u} و \vec{v} و \vec{v} غير مستوائية إذا و فقط إذا كان 0 \vec{v} و \vec{v} مستوائية إذا و

السنة الأولى باكلوريا

تمرين 4

- 1. بين أن المتجهات $\vec{u}(1;-1;1)$ و $\vec{v}(1;1;-3)$ و $\vec{v}(0;-2;4)$ مستوائية.
- 2. هل النقط (3;-1;1) و B(3;0;-1) و C(2;-2;-0) و D(4;2;-2) مستوائية ؟
- $B \in P(A, \vec{u}, \vec{v})$ و $\vec{v}(0;1;1)$ متجهتين من الفضاء و A(2;-3;1) نقطة. بين أن $\vec{v}(0;1;1)$ و $\vec{u}(1;0;1)$
 - 4. نعتبر النقط (0;0;4) و (1;0;3) و (0;1;7) و (0;1;7) و (4;1;2) و (5;2;4)
 - (۱) بین أن النقط A و B و C تحدد مستوی.
 - (ب) بين أن المستوى (ABC) و المستقيم (DE) متوازيان.

2.4. تمثيل بارامتري لمستقيم

تعریف

متجهة من الفضاء و $A(x_A; y_A; z_A)$ نقطة معلومة. $\vec{u}(a; b; c)$

.
$$\begin{cases} x = x_A + at \\ y = y_A + bt \quad (t \in \mathbb{R}) \end{cases}$$
 النظمة: $D(A, \vec{u})$ النظمة تثيلا بارامتريا للمستقيم $z = z_A + ct$

تمرين 5

- التالية: الحالات التالية: $D(A, \vec{u})$ في الحالات التالية:
- $\vec{u}(-2;5;3)$ و A(-2;1;3) ب

- $\vec{u}(1;1;1)$ و A(0;0;0) (۱
- عدد تمثيلا بارامتريا للمستقيم (AB) في الحالات التالية:
- B(2;-3;3) و A(3;-2;0)

•B(0;-1;1) • A(1;-1;0) (

2.5. تمثيل بارامتري لمستوى

تعريف

متجهتين من الفضاء و $A(x_A;y_A;z_A)$ و متجهتين من الفضاء و $\vec{v}(a';b';c')$ نقطة معلومة.

$$x = x_A + at + a't'$$
 $y = y_A + bt + b't'$ $((t;t') \in \mathbb{R}^2)$ النظمة: $P(A,\vec{u},\vec{v})$ النظمة $z = z_A + ct + c't'$

تمرین 6

- 1. تحقق أن \vec{u} و \vec{v} غير مستقيميتان ثم حدد تمثيلا بارامتريا للمستوى $P(A, \vec{u}, \vec{v})$ في الحالات التالية:
- $\vec{v}(2;1;-1)$ و $\vec{u}(-1;-1;4)$ و $\vec{u}(2;-1;3)$ و $\vec{v}(0;1;-1)$ و $\vec{v}(0;1;-1)$ و $\vec{v}(0;1;-1)$
 - 2. تحقق أن A و B و C تحدد مستوى ثم حدد تمثيلا بارامتريا للمستوى (ABC) في الحالات التالية:
- C(0;1;-1) و B(2;-2;1) و A(1;-2;0) و C(-1;0;1) و B(0;-1;1) و A(-1;1;0)

السنة الأولى باكلوريا

2.6. معادلة ديكارتية لمستوى

تعریف

معلومة. $\vec{v}(a';b';c')$ و $\vec{v}(a';b';c')$ متجهتين من الفضاء و $\vec{v}(a';b';c')$ نقطة معلومة.

نسمى معادلة ديكارتية للمستوى $P(A, \vec{u}, \vec{v})$ المعادلة:

$$(x-x_A)$$
 $\begin{vmatrix} b & b' \\ c & c' \end{vmatrix}$ $-(y-y_A)$ $\begin{vmatrix} a & a' \\ c & c' \end{vmatrix}$ $+(z-z_A)$ $\begin{vmatrix} a & a' \\ b & b' \end{vmatrix}$ $=0$

 $P(A, \vec{u}, \vec{v})$ من M(x; y; z) نقطة M(x; y; z) نقطة M(x; y; z) من أن $O(A, \vec{u}, \vec{v}) = 0$

تمرين 7

- 1. حدد معادلة ديكارتية للمستوى $P(A, \vec{u}, \vec{v})$ في الحالات التالية:
- $\vec{v}(0;1;-1)$, $\vec{u}(2;-1;3)$, A(1;0;2) (1 $\vec{v}(2;1;-1)$ و $\vec{u}(-1;-1;4)$ و A(-3;1;1)
 - 2. حدد معادلة ديكارتية للمستوى (ABC) في الحالات التالية:
- •C(-1;0;1) و B(0;-1;1) و A(-1;1;0)•C(0;1;-1) , B(2;-2;1) , A(1;-2;0)

2.7. معادلتان ديكارتيتان لمستقيم

تعریف

متجهة من الفضاء و $A(x_A;y_A;z_A)$ نقطة معلومة. $\vec{u}(a;b;c)$

نسمى معادلتان ديكارتيتان للمستقيم $D(A, \vec{u})$ النظمة $D(A, \vec{u})$ النظمة عداد a و b و b ع يلى:

- (S): $\frac{x-x_A}{a} = \frac{y-y_A}{b} = \frac{z-z_A}{c}$ ighthapproximates $\frac{z-z_A}{a} = \frac{z-z_A}{a}$ ighthapproximate
- $\bullet(S): \left\{ egin{array}{ll} y=y_A \ z=z_A \end{array}
 ight.$ فإن c=0 و b=0 مثلا مثلا مثلا b=0 فإن هذه الأعداد منعدمان، مثلا

تمرين 8

حدد معادلتان ديكارتيتان للمستقيم $D(A, \vec{u})$ في الحالات التالية:

• $\vec{u}(-2;3;1)$ • A(1;5;-2) (\) $\vec{u}(-3;2;0)$ و A(1;-2;2)

 $\vec{u}(0;-3;0)$ e^{-3}