norwayCars

Venda de carros da Noruega

```
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(zoo)
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
library(forecast)
## Registered S3 method overwritten by 'quantmod':
     method
##
                        from
##
     as.zoo.data.frame zoo
library(ggplot2)
Os dados serão os dados de venda de carros da marca Volkswagen do período de 2007 a 2017.
data <- read.csv("norway_new_car_sales_by_make.csv")</pre>
car_brand <- "Volkswagen"</pre>
data <- data %>% dplyr::filter(data$Make == car_brand)
carSales <- zooreg(data$Quantity, frequency = 12, start = c(2007, 1))</pre>
plot(carSales, xlab = "Date", ylab = "Sales", main = "Sales of Volkswagen")
```

Sales of Volkswagen

Nosso objetivo é obter um modelo para dado a observação de 2 anos prever o mês seguinte, para conseguirmos avaliar o erro do modelo com os dados observados, iremos percorrer uma janela de 2 anos ao longo do período e calcularemos o erro com a previsão do mês seguinte.

```
trainSales <- vector("list", 96)
testSales <- NA
startDate <- as.yearmon("2007-01-01")
endDate <- as.yearmon("2008-12-01")
finalDate <- as.yearmon("2017-01-01")
i <- 1
while(endDate < finalDate){
   trainSales[[i]] <- window(carSales, start = startDate, end=endDate)
   startDate <- startDate + 1/12
   endDate <- endDate + 1/12
   testSales[i] <- window(carSales, start = endDate, end = endDate)
   i <- i +1
}
ModelMAPE <- NA</pre>
```

Tendência polinomial

Uma etapa inicial, considerando uma formulação simples, é modelar a série como $Z_t = T_t + a_t$ sendo T_t um polimônio em função do tempo. Iremos considerar três situações distintas, uma função linear, uma função com termo quadrático e uma função com termo cúbico.

```
#polynomial tendency
t <- rep(1:length(trainSales[[1]]))
predictions1 <- NA
predictions2 <- NA
predictions3 <- NA
for(n in seq_along(trainSales)){
  fit1 <- lm(trainSales[[n]]~t)</pre>
  fit2 <- lm(trainSales[[n]]~poly(t,2))</pre>
  fit3 <- lm(trainSales[[n]]~poly(t,3))</pre>
  predictions1[n] <- predict(fit1, newdata = data_frame(t = 25))[1]</pre>
  predictions2[n] <- predict(fit2, newdata = data_frame(t = 25))[1]</pre>
  predictions3[n] <- predict(fit3, newdata = data_frame(t = 25))[1]</pre>
## Warning: 'data_frame()' is deprecated as of tibble 1.1.0.
## Please use 'tibble()' instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_warnings()' to see where this warning was generated.
MAPE <- mean(abs((testSales-predictions1)/testSales))</pre>
ModelMAPE["Poly1T"] <- MAPE</pre>
MAPE <- mean(abs((testSales-predictions2)/testSales))</pre>
ModelMAPE["Poly2T"] <- MAPE</pre>
MAPE <- mean(abs((testSales-predictions3)/testSales))</pre>
ModelMAPE["Poly3T"] <- MAPE</pre>
print(ModelMAPE)
##
                 Poly1T
                            Poly2T
                                       Poly3T
##
          NA 0.1467764 0.1363978 0.1578839
```

O melhor resultado foi o obtido com o polinômio de terceiro grau, dessa forma, vamos visualizar o modelo resultante:

```
# visualization of fitted model
predictions <- NA
for(i in seq_along(trainSales)){
   fit <- lm(trainSales[[i]]~poly(t, 3))
   predictions[i] <- predict(fit, newdata = data_frame(t= 25))[1]
}
plot(x = index(carSales)[(121-96):121], y = predictions, type = 'l',
        col = 'red', xlab = "Date", ylab = "Sales", main = "Polinomial tendency of degree 3")
lines(carSales)
legend("topleft", legend=c("Predictions", "Real values"), col=c('red','black'), lty = 1:1, cex=0.8)</pre>
```

Polinomial tendency of degree 3

O modelo não é capaz de capturar a tendência presente nos dados.

Variáveis sazonais categóricas

Uma segunda forma de modelar a série de forma linear é utilizar cada um dos meses como uma variável categórica, isto é, um conjunto de 11 variáveis i tal que i=1 se o mês da observação é o mêss i (um dos meses é utilizado como valor de referência).

```
Q <- factor(rep(1:12, length.out = 121))
predictions <- NA
for(n in seq_along(trainSales)){
   Qn <- Q[n:(n+23)]
   Qnew <- Q[(n:24)]
   fit <- lm(trainSales[[n]]~Qn+poly(t,3))
   predictions[n] <- predict(fit, newdata = data_frame(t = 25, Qn = Qnew))[1]
}
MAPE <- mean(abs((testSales-predictions)/testSales))
ModelMAPE["SazonalDummy"] <- MAPE
print(ModelMAPE)</pre>
```

```
## Poly1T Poly2T Poly3T SazonalDummy
## NA 0.1467764 0.1363978 0.1578839 0.2002887
```

Obtivémos um resultado praticamente o mesmo do que o anterior, visualizando o resultado:

```
# visualization of fitted model
predictions <- NA
for(n in seq_along(trainSales)){
   Qn <- Q[n:(n+23)]
   Qnew <- Q[(n:24)]
   fit <- lm(trainSales[[n]]~Qn+poly(t,3))
   predictions[n] <- predict(fit, newdata = data_frame(t = 25, Qn = Qnew))[1]
}
plot(x = index(carSales)[(121-96):121], y = predictions, type = 'l',
        col = 'red', xlab = "Date", ylab = "Sales", main = "Polinomial model with month as dummies", ylim
lines(carSales)
legend("topleft", legend=c("Predictions", "Real values"), col=c('red', 'black'), lty = 1:1, cex=0.8)</pre>
```

Polinomial model with month as dummies

Loess

Para o modelo com Loess, criamos uma nova coluna nos dados que junta o mês com o ano:

```
data<-transform(data, Yearmon = as.yearmon(paste(Year, Month, sep = "-")))
data$Date<-as.Date(data$Yearmon)</pre>
```

Com isso, criamos a timeseries dos dados, com a frequência igual a 12 indicando os anos

2008 1224 1767 1503 1795 1402 1182 1203 1432 1229 1442 1306 1256
2009 725 921 909 1207 1094 965 1356 1174 1358 1458 1529 1571
2010 1524 1411 1585 1906 1591 1425 1916 1458 1575 1659 1824 1298
2011 1665 1501 1908 1845 1822 1222 1590 1827 1674 1854 1960 2030
2012 1528 1340 1701 2107 1712 1480 2031 1873 1445 1848 2064 1378
2013 1680 1592 1440 2200 1351 1482 1556 1551 1512 1550 1735 1481
2014 1360 1379 1722 1893 1716 1620 2197 2065 1707 2061 1920 2019
2015 2057 1895 2274 2667 2076 2501 2415 2254 1768 2210 2346 1881
2016 1743 2044 2236 3017 2222 2287 2076 2359 2084 2161 2106 2239
2017 1688

Para cada janela de 25 meses, decompomos a série temporal com o loess, através da função STL e calculamos a quantidade para o próximo mês com a função forecast:

```
predictions <- NA
for(i in 0:96){
  ano_0 <- 2007+i%/%12
  mes_0 <- 1+i%%12
  ano_1 <- ano_0+2
  mes_1 <- mes_0
  cmmts_w <- window(cmmts, start=c(ano_0,mes_0), end = c(ano_1,mes_1))
  fitstl<-stl(cmmts_w, s.window = "period")
  etsfc<-forecast(fitstl, method = "ets", h=1)
  predictions[i] <- etsfc$mean
}
ModelMAPE["Loess"] <- mean(abs((testSales[-1]-predictions)/testSales[-1]))</pre>
```

Utilizamos a janela de 25 meses, ao invés de 24, por conta da função STL solicitar dados que sejam maiores que duas vezes a frequência da série temporal.

O MAPE utilizando loess é o menor até então:

ModelMAPE

```
## Poly1T Poly2T Poly3T SazonalDummy Loess
## NA 0.1467764 0.1363978 0.1578839 0.2002887 0.1240543

plot(x = index(carSales)[(121-95):121], y = predictions, type = "l",xlab="Month", ylab="Quantity", col=lines(carSales[(121-95):121])

legend("topleft", legend=c("Predictions", "Real values"), col=c('red','black'), lty = 1:1, cex=0.8)
```

Real and predicted values with Loess

Suavização exponencial simples

Esse método não considera tendência e também não considera sazonalidade, ele utiliza de um hiperparâmetro que irá ser otimizado para aquele que minimiza o MAPE.

```
#SIMPLE EXPONENTIAL SMOOTHING
#TUNNING ALPHA PARAMETER
alpha \leftarrow seq(0.05, 0.95, by = .05)
MAPE <- NA
for(i in seq_along(alpha)){
  predictions <- NA
  for(j in seq_along(trainSales)){
    fit <- ses(trainSales[[j]], alpha = alpha[i], h = 1)</pre>
    predictions[j] <- fit$mean[1]</pre>
  MAPE[i] <- mean(abs((testSales-predictions)/testSales))</pre>
}
alpha.err <- tibble(alpha, MAPE)</pre>
alpha.min <- filter(alpha.err, MAPE == min(MAPE))</pre>
ModelMAPE["ses"] <- alpha.min$MAPE</pre>
ggplot() +
  geom_line(data = alpha.err, aes(x = alpha, y = MAPE)) +
```

```
geom_point(data = alpha.min, aes(x = alpha, y = MAPE), color = 'blue') +
ggtitle("MAPE error for different alpha values")
```

MAPE error for different alpha values

ModelMAPE

```
##
                       Poly1T
                                     Poly2T
                                                  Poly3T SazonalDummy
                                                                               Loess
                                 0.1363978
##
             NA
                    0.1467764
                                               0.1578839
                                                             0.2002887
                                                                           0.1240543
##
            ses
      0.1280711
##
```

O valor ótimo encontrado para o alpha foi de 0.3 com um MAPE = 0.128, dessa forma, vamos criar o modelo com o alpha estimado e visualizar:

```
# visualization of fitted model
predictions <- NA
for(i in seq_along(trainSales)){
   fit <- ses(trainSales[[i]], alpha = 0.3, h = 1)
    predictions[i] <- fit$mean[1]
}

plot(x = index(carSales)[(121-96):121], y = predictions,
        type = 'l', col = 'red', xlab = "Date", ylab = "Sales", main = "SES model of sales", ylim = c(1000 lines(carSales))
legend("topleft", legend=c("Predictions", "Real values"), col=c('red', 'black'), lty = 1:1, cex=0.8)</pre>
```

SES model of sales

Método de Holt

Nesse segundo modelo, método de Holt, também é considerada a existência de uma tendência nos dados.

```
betap \leftarrow seq(0.01, 0.3, by = 0.01)
MAPE <- NA
for(k in seq_along(betap)){
  predictions <- NA
  for(j in seq_along(trainSales)){
    fit <- holt(trainSales[[j]], beta = betap[k], h = 1, type = "Additive")</pre>
    predictions[j] <- fit$mean[1]</pre>
  }
  MAPE[k] <- mean(abs((testSales-predictions)/testSales))</pre>
}
beta.err <- data frame(betap, MAPE)</pre>
beta.min <- filter(beta.err, MAPE == min(MAPE))</pre>
ModelMAPE["HoltAdd"] <- beta.min$MAPE</pre>
ggplot() +
  geom_line(data = beta.err, aes(x = betap, y = MAPE)) +
  geom_point(data = beta.min, aes(x = betap, y = MAPE), color = 'blue')
```


print(ModelMAPE)

```
##
                       Poly1T
                                     Poly2T
                                                   Poly3T SazonalDummy
                                                                               Loess
                                  0.1363978
##
             NA
                    0.1467764
                                                0.1578839
                                                              0.2002887
                                                                           0.1240543
##
                      HoltAdd
            ses
      0.1280711
                    0.1353717
##
```

Obtemos um MAPE mínimo de 0.135 para o valor de beta =0.06. Vamos visualizar as predições para este modelo:

```
# visualization of fitted model
predictions <- NA
for(i in seq_along(trainSales)){
   fit <- holt(trainSales[[i]], beta = 0.06, h = 1, type = "Additive")
   predictions[i] <- fit$mean[1]
}
plot(fit, xlim = c(startDate - 6, finalDate), ylim = c(1000, 3000),
        xlab = "Date", ylab = "Sales", main = "Additive Holt model of sales")
lines(x = index(carSales)[(121-96):121], y = predictions, col = 'red')
lines(carSales)
legend("topleft", legend=c("Predictions", "Real values"), col=c('red', 'black'), lty = 1:1, cex=0.8)</pre>
```

Additive Holt model of sales

Holt Winters

Por fim, este modelo considera que os dados possuem tendência e sazonalidade, dessa forma, utiliza de 3 parâmetros que devem ser otimizados. Para não percorrermos uma combinação muito grande de parâmetros, vamos utilizar do método automático de otimização da biblioteca.

```
autoModel <- HoltWinters(carSales)</pre>
print(autoModel)
## Holt-Winters exponential smoothing with trend and additive seasonal component.
##
## Call:
## HoltWinters(x = carSales)
##
## Smoothing parameters:
    alpha: 0.3241108
##
    beta: 0.02532339
##
##
    gamma: 0.4356731
##
##
  Coefficients:
##
               [,1]
       2036.038476
## a
          3.727398
## b
        -55.139433
## s1
```

```
145.770922
## s2
        596.581750
## s3
        -13.120264
##
   s4
         26.002733
##
  s5
##
   s6
         90.543842
##
  s7
        130.233673
## s8
       -166.944394
         92.313871
## s9
## s10
        141.239396
## s11
         13.800433
## s12 -212.414353
plot(forecast(autoModel), xlab = "Date", ylab = "Sales", main = "HoltWinters model for sales")
```

HoltWinters model for sales

Observando então os parâmetros escolhidos, vamos percorrer diferentes valores para parâmetros próximos aos obtidos pelo método, escolhendo assim aquele que minimiza o MAPE.

```
hwalpha <- seq(0.2, 0.5, length.out = 5)
hwbeta <- seq(0.001, 0.034, length.out = 5)
hwgamma <- seq(0.01, 0.5, length.out = 5)

MAPE <- array(dim = c(5, 5, 5))
for(i in seq_along(hwalpha)){
   for(j in seq_along(hwbeta)){
    for(k in seq_along(hwgamma)){
      predictions <- NA</pre>
```

```
for(n in seq_along(trainSales)){
        fit <- HoltWinters(trainSales[[n]], alpha = hwalpha[i],</pre>
                             beta = hwbeta[j], gamma = hwgamma[k])
        predictions[n] <- predict(fit, n.ahead = 1)[1]</pre>
      MAPE[i,j,k] <- mean(abs((testSales-predictions)/testSales))</pre>
  }
}
MAPEmin <- 10000
bestParams <- NA
for(i in seq along(hwalpha)){
  for(j in seq_along(hwbeta)){
    for(k in seq_along(hwgamma)){
      if(MAPEmin > MAPE[i, j, k]){
        MAPEmin <- MAPE[i, j, k]
        bestParams <- c(hwalpha[i], hwbeta[j], hwgamma[k])</pre>
      }
    }
  }
}
ModelMAPE["HoltWinterAdd"] <- MAPEmin</pre>
```

HoltWinter Additive model of sales

Finalizaremos tentando utilizar o modelo HoltWinters multiplicativo:

```
hwalpha \leftarrow seq(0.2, 0.5, length.out = 5)
hwbeta \leftarrow seq(0.001, 0.034, length.out = 5)
hwgamma \leftarrow seq(0.01, 0.5, length.out = 5)
MAPE \leftarrow array(dim = c(5, 5, 5))
for(i in seq_along(hwalpha)){
  for(j in seq_along(hwbeta)){
    for(k in seq_along(hwgamma)){
      predictions <- NA
      for(n in seq_along(trainSales)){
        fit <- HoltWinters(trainSales[[n]], alpha = hwalpha[i],</pre>
                             beta = hwbeta[j], gamma = hwgamma[k], seasonal = "multiplicative")
        predictions[n] <- predict(fit, n.ahead = 1)[1]</pre>
      MAPE[i,j,k] <- mean(abs((testSales-predictions)/testSales))</pre>
    }
  }
}
MAPEmin <- 10000
bestParams <- NA
for(i in seq_along(hwalpha)){
  for(j in seq_along(hwbeta)){
    for(k in seq_along(hwgamma)){
```

```
if(MAPEmin > MAPE[i, j, k]){
    MAPEmin <- MAPE[i, j, k]
    bestParams <- c(hwalpha[i], hwbeta[j], hwgamma[k])
    }
}

ModelMAPE["HoltWinterMul"] <- MAPEmin</pre>
```

HoltWinter Multiplicative model of sales

Resultados

Comporando por final o valor do erro MAPE para cada um dos modelos considerados.

print(ModelMAPE)

##		Poly1T	Poly2T	Poly3T	SazonalDummy
##	NA	0.1467764	0.1363978	0.1578839	0.2002887
##	Loess	ses	${\tt HoltAdd}$	${\tt HoltWinterAdd}$	${\tt HoltWinterMul}$
##	0.1240543	0.1280711	0.1353717	0.1552255	0.1538115