Guilliths.

5.10

$$a = \frac{1}{157}, \quad mc^{2} = 0.5 \text{ MeV. for detron.}$$
 $j = \frac{3}{2}, \quad \frac{1}{4n^{2}} \left(\frac{2n}{j+2} - \frac{3}{2} \right) = \frac{1}{16} \left(\frac{4}{2} - \frac{3}{2} \right)$
 $= \frac{1}{16} \left(\frac{4}{2} \right) = \frac{3}{32}.$
 $= \frac{1}{16} \left(\frac{5}{2} \right) = \frac{5}{32}.$
 $= \frac{1}{16} \left(\frac{5}{2} \right) = \frac{5}{32}.$

For $j = \frac{3}{2}$, SE $2 - \frac{1}{(157)^{4}} = \frac{1}{32} \times 5 \times 10^{5} \text{ eV}$

The $j = \frac{1}{2}$, SE $2 - \frac{1}{(157)^{4}} = \frac{1}{32} \times 5 \times 10^{5} \text{ eV}$

The se are extremely small.