NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

17. März 2019

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

3-SAT

Beweis: 3-SAT \leq_{ρ} SA

Clique Problem
Beweis

Knapsack Problem

Partition Problem

Inhalt I

Komplexitätsklassen

Satisfiability Problem (SAT)

3-SAT

Beweis: $3-SAT \leq_p SAT$

Clique Problem

Beweis

Knapsack Problem

Beweis

Partition Problem

Beweis

NP-Vollständigkeit wichtiger Probleme Sebastian

......

ompiexitatskiassen

Problem (SAT)
3-SAT

3-SAT

Beweis: 3-SAT \leq_{ρ} SA

jue Problem eis

apsack Problem _{weis}

weis

Komplexitätsklassen

Definition: \leq_p "ordnet" Entscheidungsprobleme bezüglich ihrer Komplexität.

Aufsteigende Komplexitätsklassen:

1. P - polynomiell lösbar

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

3-SAT

Beweis: 3-5A1 ≤_p 5/

Clique Problem Beweis

Knapsack Problem Beweis

Partition Problem

Komplexitätsklassen

Definition: \leq_p "ordnet" Entscheidungsprobleme bezüglich ihrer Komplexität.

Aufsteigende Komplexitätsklassen:

- 1. P polynomiell lösbar
- 2. NP nichtdeterministisch polynomiell lösbar

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

3-SAT

Beweis: 3-SAT \leq_{ρ} SA

Clique Problem

Knapsack Problem

Partition Problem

Definition: \leq_p "ordnet" Entscheidungsprobleme bezüglich ihrer Komplexität.

Aufsteigende Komplexitätsklassen:

- 1. P polynomiell lösbar
- 2. NP nichtdeterministisch polynomiell lösbar
- 3. NP-vollständig

$$\rightarrow L \in NP$$
 und $\forall L' \in NP : L' \leq_p L$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

3-SAT

Beweis: 3-5A1 ≤_p 5A

Clique Problem
Beweis

Knapsack Problem

Partition Problem

I de anna en con-

Definition: \leq_p "ordnet" Entscheidungsprobleme bezüglich ihrer Komplexität.

Aufsteigende Komplexitätsklassen:

- 1. P polynomiell lösbar
- 2. NP nichtdeterministisch polynomiell lösbar
- 3. NP-vollständig
 - $\rightarrow L \in NP \text{ und } \forall L' \in NP : L' \leq_{p} L$
 - ightarrowAlle folgenden Probleme sind NP-vollständig

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

3-SAT

Beweis: 3-SAT \leq_{ρ} SA

Clique Problem
Beweis

Knapsack Problem

Partition Problem

Definition: \leq_p "ordnet" Entscheidungsprobleme bezüglich ihrer Komplexität.

Aufsteigende Komplexitätsklassen:

- 1. P polynomiell lösbar
- 2. NP nichtdeterministisch polynomiell lösbar
- 3. NP-vollständig
 - $\rightarrow L \in NP$ und $\forall L' \in NP : L' \leq_p L$
 - →Alle folgenden Probleme sind NP-vollständig
- 4. NP-schwierig

$$\rightarrow \forall L' \in NP : L' \leq_{p} L$$

Sebastian Bernauer

Komplexitätsklassen

Definition: \leq_p "ordnet" Entscheidungsprobleme bezüglich ihrer Komplexität.

Aufsteigende Komplexitätsklassen:

- 1. P polynomiell lösbar
- 2. NP nichtdeterministisch polynomiell lösbar
- 3. NP-vollständig

$$\rightarrow L \in NP \text{ und } \forall L' \in NP : L' \leq_p L$$

- ightarrowAlle folgenden Probleme sind NP-vollständig
- 4. NP-schwierig

$$\rightarrow \forall L' \in NP : L' \leq_{p} L$$

5. nicht rekursiv

Für natürliche Zahlen n und m seien m Klauseln über n Variablen gegeben. Eine Klausel ist die Disjunktion [Veroderung] von einigen Literalen x_i bzw. $\overline{x_i}$ mit $i,j \in \{1,...,n\}$. Es soll entschieden werden, ob es eine Belegung $a = \{a_1,...,a_n\} \in \{0,1\}^n$ der Variablen $x_1,...,x_n$ gibt, so dass alle Klauseln erfüllt sind.

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

3-SAT

Beweis: 3-SAT \leq_{ρ} SA

Clique Problem

Beweis

Knapsack Problem

Partition Problem

NP-Vollständigkeit

wichtiger Probleme

Für natürliche Zahlen n und m seien m Klauseln über n Variablen gegeben. Eine Klausel ist die Disjunktion [Veroderung] von einigen Literalen x_i bzw. $\overline{x_i}$ mit $i, j \in \{1, ..., n\}$. Es soll entschieden werden, ob es eine Belegung $a = \{a_1, ..., a_n\} \in \{0, 1\}^n$ der Variablen $x_1, ..., x_n$ gibt, so dass alle Klauseln erfüllt sind.

Fragestellung: Existiert eine Wahrheitsbelegung der Variablen x_1, \dots, x_n so dass alle Klauseln erfüllt sind?

Für natürliche Zahlen n und m seien m Klauseln über n Variablen gegeben. Eine Klausel ist die Disjunktion [Veroderung] von einigen Literalen x_i bzw. $\overline{x_i}$ mit $i, j \in \{1, ..., n\}$. Es soll entschieden werden, ob es eine Belegung $a = \{a_1, ..., a_n\} \in \{0, 1\}^n$ der Variablen $x_1, ..., x_n$ gibt, so dass alle Klauseln erfüllt sind.

Fragestellung: Existiert eine Wahrheitsbelegung der Variablen x_1, \dots, x_n so dass alle Klauseln erfüllt sind?

→Satz von Cook: SAT is NP-vollständig

Jede Klausel enthält 3 Literale

gleich komplex (NP-vollständig)

► Zu Beweisen: SAT ist durch 3-SAT abbildbar und beide sind damit

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

3-SAT

Beweis: 3-SAT \leq_p SA

Clique Problem

Beweis

Knapsack Problem

Beweis

Partition Problem

Literatur

Beweis: 3-SAT \leq_p SAT

- ► Klausel 1 Literal z
 - $\rightarrow z \lor z \lor z$
- ► Klausel 2 Literale $z \lor y$
 - \rightarrow z \lor z \lor y
- ► Klausel 3 Literale $z \lor y \lor z$
 - →Keine Änderung
- ► Klausel \geq 4 Literale $z_1 \lor ... \lor z_k$
 - →siehe nächste Folie

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

Beweis: $3-SAT \leq_{\rho} SAT$

Clique Problem Beweis

Knapsack Problem

Partition Problem

Beispiel: $k = 7 \text{ mit } z_1 \vee ... \vee z_k$:

- \triangleright $z_1 \lor z_2 \lor y_1$
- $ightharpoonup \overline{y_1} \lor z_3 \lor y_2$
- $ightharpoonup \overline{y_2} \lor z_4 \lor y_3$
- $ightharpoonup \overline{y_3} \lor z_5 \lor y_4$
- $ightharpoonup \overline{y_4} \lor z_6 \lor z_7$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasse

Satisfiability Problem (SAT)

Beweis: 3-SAT \leq_p SAT

Beweis

Beweis

Partition Problem

Beweis

Beweis: 3-SAT \leq_p SAT

- ► SAT lässt sich durch 3-SAT abbilden
- ▶ 3-SAT \leq_p SAT
- ➤ 3-SAT ist NP-vollständig

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasse

Satisfiability Problem (SAT) 3-SAT

Beweis: 3-SAT ≤_p SAT

Clique Problem

Knapsack Problem

Partition Problem

Clique Problem

In einem ungerichteten Graphen G = (V, E) bildet die Knotenmenge $V' \subseteq V$ eine Clique, wenn für alle $v, v' \in V'$ gilt $v, v' \in E$. [1]

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability
Problem (SAT)

Clique Problem

Clique Problem

napsack Pro

Partition Problem

Clique Problem

In einem ungerichteten Graphen G = (V, E) bildet die Knotenmenge $V' \subseteq V$ eine Clique, wenn für alle $v, v' \in V'$ gilt $v, v' \in E$. [1]

Abbildung: Ein Graph mit einer Clique der Größe 3.

 $Quelle: \ https://de.wikipedia.org/wiki/Clique_(Graphentheorie) \#/media/File: 6n-graf-clique.svg$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

Beweis: 3-SAT ≤_p SA

Clique Problem

Beweis

Knapsack Problem
Beweis

Partition Problem
Beweis

Clique - Beispiel

Abbildung: Ein Graph mit 2 Cliquen der Größe 4.

 $Quelle: \ https://en.wikipedia.org/wiki/Clique_(graph_theory)\#/media/File: VR_complex.svg$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT

Beweis: 3-SAT < , SA

Clique Problem

Beweis

Knapsack Problem

Partition Problem

Clique - Fragestellungen

- 1. Gibt es eine Clique der Größe k?
 - \rightarrow Entscheidungsproblem

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

3-SAT

Clique Problem

Clique Problem

Knapsack Problem

Partition Problem

Clique - Fragestellungen

- 1. Gibt es eine Clique der Größe k?
 - \rightarrow Entscheidungsproblem
- 2. Berechne das größte k, so dass eine Clique der Größe k vorhanden ist.
 - →Optimale Lösung

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability
Problem (SAT)

Beweis: 3-SAT \leq_{ρ} SAT

Clique Problem Beweis

Knapsack Problem

Partition Problem

. . . .

_iteratur

NP-Vollständigkeit

_iteratur

- 1. Gibt es eine Clique der Größe k?
 - \rightarrow Entscheidungsproblem
- 2. Berechne das größte k, so dass eine Clique der Größe k vorhanden ist.
 - →Optimale Lösung
- 3. Berechne eine Clique mit dem größten k.
 - ightarrow Optimierungsproblem

Clique ist in NP enthalten. Beweis:

1. NTM zählt Anzahl *n* der Knoten im Graphen

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

3-SAT

Clique Problem

Beweis

Knapsack Problem

Partition Problem

Clique ist in NP enthalten. Beweis:

- 1. NTM zählt Anzahl *n* der Knoten im Graphen
- 2. Rät Wort $w \in \{0,1\}^n$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

3-SAT

Beweis: 3-SAT <

Clique Problem

Daniela

Beweis

Knapsack Problem

Partition Problem

Clique ist in NP enthalten. Beweis:

- 1. NTM zählt Anzahl n der Knoten im Graphen
- 2. Rät Wort $w \in \{0,1\}^n$
- 3. Das Wort wird als Knotenauswahl interpretiert, V' enthält alle Knoten i mit $w_i=1$

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

Deweis. 3-3A1 ≤_p 3A

Clique Problem

Beweis

Knapsack Problem

Beweis

Partition Problem

- 1. NTM zählt Anzahl n der Knoten im Graphen
- 2. Rät Wort $w \in \{0,1\}^n$
- 3. Das Wort wird als Knotenauswahl interpretiert, V' enthält alle Knoten i mit $w_i = 1$
- 4. Es wird getestet, ob
 - 4.1 V' genau k Knoten beinhaltet.
 - 4.2 G eine Clique auf V' enthält

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

Deweis. 3-3A1 ≤_p 3A

Clique Problem

Beweis

Knapsack Problem

Beweis

Partition Problem

Beweis

Beweis:

- 1. NTM zählt Anzahl *n* der Knoten im Graphen
- 2. Rät Wort $w \in \{0,1\}^n$

Clique ist in NP enthalten.

- 3. Das Wort wird als Knotenauswahl interpretiert, V' enthält alle Knoten i mit $w_i = 1$
- 4. Es wird getestet, ob
 - 4.1 V' genau k Knoten beinhaltet.
 - 4.2 G eine Clique auf V' enthält
- Rechenaufwand ist polynomiell in der Knotenzahl n

- Es wurde bereits bewiesen: NTM können durch DTM abgebildet werden
- ▶ Polynomielle Laufzeit + Nichtdeterminismus →NP
- ▶ Daraus folgt: Clique ist in NP enthalten

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

Beweis: 3-SAT \leq_{ρ} S

Clique Problem

Beweis

Knapsack Problem

Partition Problem

. . . .

Es wurde bereits bewiesen, dass $Clique \in NP$ und SAT (und 3-SAT) NP-vollständig ist.

Nun ist zu beweisen, dass $SAT \leq_p Clique$.

Daraus folgt: Clique ist NP-vollständig.

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

Beweis: 3-SAT \leq_{ρ} SA

Clique Problem

Beweis

Knapsack Problem

Partition Problem

Konstruiere einen Graphen, der mittels *Clique* ein Problem löst, welches ein *SAT*-Problem ist.

1. Füge für jedes Literal in den Klauseln einen Knoten hinzu.

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability
Problem (SAT)

Beweis: 3-SAT < . S

Clique Problem

Clique Problem
Beweis

Knapsack Problem

Partition Problem

Konstruiere einen Graphen, der mittels Clique ein Problem löst, welches ein SAT-Problem ist.

- 1. Füge für jedes Literal in den Klauseln einen Knoten hinzu.
- 2. Verbinde alle Literale außer folgende Kanten:
 - Klauselgruppen untereinander
 - Gegensätzliche Literale (z.B. x_1 und $\overline{x_1}$)

Sebastian Bernauer

Reweis

Beweis: 3-SAT ≤_p SA

Clique Problem

Beweis

apsack Pi

Partition Problem

Beweis Problem

Literatur

Konstruiere einen Graphen, der mittels *Clique* ein Problem löst, welches ein *SAT*-Problem ist.

- 1. Füge für jedes Literal in den Klauseln einen Knoten hinzu.
- 2. Verbinde alle Literale außer folgende Kanten:
 - ► Klauselgruppen untereinander
 - ► Gegensätzliche Literale (z.B. x_1 und $\overline{x_1}$)
- 3. Suche eine Clique der Größe k, k ist die Anzahl der Klauseln. Da die Knoten einer Klauselgruppe nicht verbunden sind, muss aus jeder Klausel ein Literal "wahr" sein. Da die Literale in den Klauseln ODER-verknüpft sind, sind alle Klauseln erfüllt.

Abbildung: Graph nach Transformation von Clique- in SAT-Problem

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

Beweis: 3-SAT \leq_{ρ} S

Clique Problem

Beweis

Knapsack Problem

Partition Problem
Beweis

NP-Vollständigkeit

wichtiger Probleme

Beweis

► *SAT*-Probleme können in ein *Clique*-Problem transferiert werden (mit polynomialen Zeitaufwand).

- ► $SAT \leq_p Clique$
- Clique ist NP-vollständig.

Knapsack Problem

Gegeben sind ein Rucksack und n Objekte mit Gewichten $g_1,...,g_n \in \mathbb{N}$ sowie eine Gewichtsschranke G. Zusätzlich seien $a_1,...,a_n \in \mathbb{N}$ die Nutzenwerte für die Objekte. [1]

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

Clique Problem

Knapsack Problem

Partition Problem

Knapsack Problem

Gegeben sind ein Rucksack und n Objekte mit Gewichten $g_1,...,g_n \in \mathbb{N}$ sowie eine Gewichtsschranke G. Zusätzlich seien $a_1,...,a_n \in \mathbb{N}$ die Nutzenwerte für die Objekte. [1]

Abbildung: Ein zu befüllender Rucksack.

 $Quelle: \ https://de.wikipedia.org/wiki/Rucksackproblem\#/media/File:Knapsack.svg$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

Beweis: 3-5A1 ≤_p 5A

Clique Problem

Beweis

Knapsack Problem

Partition Problem

Knapsack - Fragestellungen

- 1. Gibt es unter Beachtung des Limits eine Beladung mit mindestens diesem Nutzwert?
 - \rightarrow Entscheidungsproblem

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

Beweis: 3-SAT ≤_p SA

Clique Problem

Knapsack Problem

Partition Problem

Knapsack - Fragestellungen

- 1. Gibt es unter Beachtung des Limits eine Beladung mit mindestens diesem Nutzwert?
 - \rightarrow Entscheidungsproblem
- 2. Berechne den größtmöglichen Nutzwert.
 - →Optimale Lösung

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

Beweis: 3-SAT ≤_p S

Clique Problem

Knapsack Problem

Beweis

Partition Problem
Beweis

NP-Vollständigkeit

Beweis: 3-SAT ≤_p

lique Proble

Knapsack Problem

Partition Problem

Beweis

- 1. Gibt es unter Beachtung des Limits eine Beladung mit mindestens diesem Nutzwert?
 - \rightarrow Entscheidungsproblem
- 2. Berechne den größtmöglichen Nutzwert.
 - →Optimale Lösung
- 3. Berechne die optimale Beladung.
 - ightarrow Optimierungsproblem

Der Beweis sei an dieser Stelle vorausgesetzt. Es wird bewiesen, dass $3-SAT \leq_p KP \text{ ist.}$

Für Interessierte ist er unter [1] im Kapitel 3.4.3 auf Seite 55 zu finden.

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Beweis

Gegeben sind $b_1, ..., b_n \in \mathbb{N}$. Gibt es eine Teilmenge $I \subseteq \{1, ..., n\}$, so dass die Summe aller $b_i, i \in I$ gleich der Summe aller $b_i, i \notin I$ ist? \rightarrow Teil eine Menge von Gewichten in 2 gleich schwere Haufen auf.

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

Beweis: 3-SAT

Clique Problem

Knapsack Problem

Partition Problem

Satisfiability Problem (SAT)

3-SAT

Beweis: 3-SAT \leq_{ρ} SA

Clique Problem

Beweis

Knapsack Problem

Partition Problem

Beweis

Literatur

Es wurde bereits bewiesen, dass ein (spezielles) Knapsack Problem KP^* NP-vollständig ist.

(Für $a_1, ..., a_n$ soll entschieden werden, ob es eine Auswahl gibt, so dass die Summe genau A beträgt).

Nun ist zu beweisen, dass $KP^* \leq_p PARTITION$.

Daraus folgt: PARTITION ist NP-vollständig.

Lösung für PARTITION, da

a: ist.

NP-Vollständigkeit wichtiger Probleme

Sei $(a_1, ..., a_n, A)$ eine Eingabe für KP^* .

Daraus konstruieren wir in polynomieller Zeit die Eingabe

 $(a_1, ..., a_n, S - A + 1, A + 1)$ für PARTITION, wobei S die Summe aller

Falls I eine Lösung für das KP ist, erhalten wir mit $I \cup \{n+1\}$ eine

 $\sum a_i + S - A + 1 = S + 1 = \sum a_i + 1 = \sum a_i + A + 1$

Sie Summe aller Zahlen in der Eingabe für *PARTITION* beträgt 2S + 2.

Ein Lösung für PARTITION muss also so aussehen, dass jeder Teil sich zu S+1 aufsummiert. Damit müssen die Zahlen S-A+1 und A+1 in verschiedenen Teilen sein. (S - A + 1) + (A + 1) = (S + 2) > (S + 1)

Die Zahlen, die S - A + 1 zu S + 1 ergänzen, haben die Summe A und hilden eine Lösung für die Fingahe von KP*

Quellen

Ingo WEGENER. Theoretische Informatik. Eine algorithmenorientierte Einführung. Teubner, 2005.

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

Beweis: 3-SAT <

Clique Problem

Beweis

Knapsack Problem

Partition Problem