CODE No.: 19BT40403	SVEC-19

Roll No.

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

II B.Tech II Semester (SVEC-19) Regular Examinations August – 2021

LINEAR AND DIGITAL IC APPLICATIONS

[Electronics and Communication Engineering, Electronics and Instrumentation Engineering]

Time: 3 hours				Max. Marks: 60			
Answer One Question from each Unit All questions carry equal marks							
UNIT-I							
1.	a)	Illustrate the operation of instrumentation amplifier with neat sketches.	6 Marks	L2	CO1	PO1	
	b)	List out and explain the applications of PLL. (OR)	6 Marks	L1	CO1	PO2	
2.	a)	Draw the functional block diagram of timer in Astable mode and derive expression for free running frequency.	6 Marks	L2	CO1	PO2	
	b)	List out and explain the applications of monostable multivibrator. UNIT-II	6 Marks	L1	CO1	PO2	
3.	a)	Explain the operation of R-2R DAC.	6 Marks	L2	CO2	PO3	
	b)	Explain about second order HPF with neat sketches and derive the expression for F _L .	6 Marks	L2	CO2	PO3	
(OR)							
4.	a)	Explain the operation of Dual Slope ADC.	6 Marks	L2	CO2	PO3	
	b)	Design a second order LPF with a cutoff frequency of 10KHz. UNIT-III	6 Marks	L4	CO2	PO3	
5.	a)	Write the basics in HDL programming using structural and data flow modeling.	6 Marks	L2	CO3	PO5	
	b)	Write a process based HDL program for the prime-number detector of 4-bit input and explain the flow using logic circuit. (OR)	6 Marks	L3	CO3	PO5	
6.	a)	Explain about dataflow design elements of VHDL.	6 Marks	L2	CO3	PO5	
	b)	Write a VHDL code for basic gates in dataflow model. UNIT-IV	6 Marks	L3	CO3	PO5	
7.	a)	Write a VHDL program for 4x1 Multiplexer and 1x4 Demultiplexer.	6 Marks	L3	CO4	PO5	
	b)	Explain about parity generator and checker. (OR)	6 Marks	L2	CO4	PO5	
8.	a)	Write a HDL code for Barrel Shifter using 74x151 multiplexer.	6 Marks	L3	CO4	PO5	
	b)	Write a HDL code 74x181 Arithmetic and Logic Unit. UNIT-V	6 Marks	L3	CO4	PO5	
9.	a)	Explain how a JK- flip-flop can be constructed using a T- flip-flop.	6 Marks	L2	CO5	PO1	
	b)	Write a HDL code for JK flip-flop. (OR)	6 Marks	L3	CO5	PO5	
10	a)	Draw the circuit of MOD 8 Down ripple counter with D-flip-flops and explain its operation.	6 Marks	L2	CO5	PO1	
	b)	Write a HDL code for 74x194 universal shift register.	6 Marks	L3	CO5	PO5	