

(b) y = 1/x, x > 0

EXERCÍCIOS 16.2

- **1.** $\frac{1}{54}(145^{3/2}-1)$ **3.** 1638,4
- **5.** $\frac{243}{8}$

- **9.** $\sqrt{5} \pi$ **11.** $\frac{1}{12} \sqrt{14} (e^6 1)$
- **13.** $\frac{2}{5}$ (e-1)

- **17.** (a) Positiva **21.** $\frac{6}{5} - \cos 1 - \sin 1$
- (b) Negativa **23.** 1,9633
- **19.** 45
 - **25.** 15,0074

27. $3\pi + \frac{2}{3}$

- **29.** (a) $\frac{11}{8} 1/e$
- (b)

- **31.** $\frac{172\,704}{5\,632\,705}\sqrt{2}(1-e^{-14\pi})$
- **33.** $2\pi k$, $(4/\pi, 0)$
- **35.** (a) $\overline{x} = (1/m) \int_C x \rho(x, y, z) ds$,
- $\overline{y} = (1/m) \int_C y \rho(x, y, z) ds,$

 $\overline{z} = (1/m) \int_C^C z \rho(x, y, z) ds$, onde $m = \int_C \rho(x, y, z) ds$

- **37.** $I_x = k(\frac{1}{2}\pi \frac{4}{3}), I_y = k(\frac{1}{2}\pi \frac{2}{3})$ **39.** $2\pi^2$ **41.** $\frac{7}{3}$
- **43.** (a) $2ma \mathbf{i} + 6mbt \mathbf{j}, 0 \le t \le 1$ (b) $2ma^2 + \frac{9}{2}mb^2$
- **51**. ≈22 J
- **45.** ≈1,67 × 10^4 pés-lb
- **47.** (b) Sim

EXERCÍCIOS 16.3

- **3.** $f(x, y) = x^2 3xy + 2y^2 8y + K$
- **5.** Não conservativo **7.** $f(x, y) = ye^x + x \operatorname{sen} y + K$

(b) 2

- **9.** $f(x, y) = x \ln y + x^2 y^3 + K$
- **11.** (b) 16 **13.** (a) $f(x, y) = \frac{1}{2}x^2y^2$
- **15.** (a) $f(x, y, z) = xyz + z^2$ (b) 77
- **17.** (a) $f(x, y, z) = ye^{xz}$ (b) 4
- 21. Não importa qual curva é escolhida.
- **25**. Não **23.** 30 27. Conservativo **31**. (a) Sim (b) Sim
- (c) Sim **33.** (a) Não (b) Sim (c) Sim

EXERCÍCIOS 16.4

- - **3.** $\frac{2}{3}$ **5.** 12
- **9**. -24π
- **15.** $-8e + 48e^{-1}$
 - 17. $-\frac{1}{12}$ 19. 3π
- **23.** $(4a/3\pi, 4a/3\pi)$ se a região é a porção do disco $x^2 + y^2 = a^2$ no primeiro quadrante

7. $\frac{1}{3}$

27. 0

EXERCÍCIOS 16.5

- **1.** (a) $-x^2 \mathbf{i} + 3xy \mathbf{j} xz \mathbf{k}$ (b) yz
- **3.** (a) $ze^x \mathbf{i} + (xye^z yze^x) \mathbf{j} xe^z \mathbf{k}$ (b) $y(e^z + e^x)$
- **5.** (a) **0** (b) $2/\sqrt{x^2 + y^2 + z^2}$
- 7. (a) $\langle -e^y \cos z, -e^z \cos x, -e^x \cos y \rangle$
- (b) $e^x \operatorname{sen} y + e^y \operatorname{sen} z + e^z \operatorname{sen} x$
- **9.** (a) Negativa (b) rot $\mathbf{F} = \mathbf{0}$
- **11.** (a) Zero (b) rot \mathbf{F} pontos na direção negativa de z
- **13.** $f(x, y, z) = xy^2z^3 + K$
- 15. Não conservativo
- **17.** $f(x, y, z) = xe^{yz} + K$ **19**. Não

EXERCÍCIOS 16.6

- **1.** *P*: não; *Q*: sim
- **3.** Plano por (0, 3, 1) contendo os vetores $\langle 1, 0, 4 \rangle, \langle 1, -1, 5 \rangle$
- 5. Paraboloide hiperbólico
- 7.

8.

11.

- **15**. II
- **19.** x = u, y = v u, z = -v
- **21.** $y = y, z = z, x = \sqrt{1 + y^2 + \frac{1}{4}z^2}$
- **23.** $x = 2 \operatorname{sen} \phi \cos \theta, y = 2 \operatorname{sen} \phi \operatorname{sen} \theta,$
- $z = 2\cos\phi, 0 \le \phi \le \pi/4, 0 \le \theta \le 2\pi$

[ou
$$x = x, y = y, z = \sqrt{4 - x^2 - y^2}, x^2 + y^2 \le 2$$
]

25.
$$x = x, y = 4 \cos \theta, z = 4 \sin \theta, 0 \le x \le 5, 0 \le \theta \le 2\pi$$

- **29.** $x = x, y = e^{-x} \cos \theta$,
- $z = e^{-x} \operatorname{sen} \theta, 0 \le x \le 3,$
- $0 \le \theta \le 2\pi$

31. (a) Direção reversa (b) Número de bobinas duplas

33.
$$3x - y + 3z = 3$$

33.
$$3x - y + 3z = 3$$
 35. $\frac{\sqrt{3}}{2}x - \frac{1}{2}y + z = \frac{\pi}{3}$

37.
$$-x + 2z = 1$$

37.
$$-x + 2z = 1$$
 39. $3\sqrt{14}$ **41.** $\sqrt{14}\pi$ **43.** $\frac{4}{15}(3^{5/2} - 2^{7/2} + 1)$ **45.** $(2\pi/3)(2\sqrt{2} - 1)$

43.
$$\frac{4}{15} (3^{5/2} - 2^{7/2} + 1)$$

45.
$$(2\pi/3)(2\sqrt{2} -$$

47.
$$\frac{1}{2}\sqrt{21} + \frac{17}{4}[\ln(2+\sqrt{21}) - \ln\sqrt{17}]$$

51.
$$A(S) \le \sqrt{3}\pi R^2$$

57.
$$\frac{45}{8}\sqrt{14}$$
 +

$$1\sqrt{5} + 3\sqrt{70})/(3\sqrt{3})$$

57.
$$\frac{45}{8}\sqrt{14} + \frac{15}{16}\ln[(11\sqrt{5} + 3)]$$

57.
$$\frac{45}{8}\sqrt{14} + \frac{15}{16}\ln[(11\sqrt{5} + 3\sqrt{70})/(3\sqrt{5} + \sqrt{70})]$$

(c)
$$\int_0^{2\pi} \int_0^{\pi} \sqrt{36} \operatorname{sen}^4 u \cos^2 v + 9 \operatorname{sen}^4 u \operatorname{sen}^2 v + 4 \cos^2 u \operatorname{sen}^2 u \, du \, dv$$

61.
$$4\pi$$

63.
$$2a^2(\pi-2)$$

EXERCÍCIOS 16.7

5.
$$11\sqrt{14}$$
 7. $\frac{2}{3}(2\sqrt{2}-1)$

9.
$$171\sqrt{14}$$
 11. $\sqrt{21/3}$ **13.** $364\sqrt{2}\pi/3$

9.
$$171\sqrt{14}$$
 11. $\sqrt{21/3}$ **15.** $(\pi/60)(391\sqrt{17} + 1)$

13.
$$364\sqrt{2\pi/3}$$
 17. 16π **19.** 12

23.
$$\frac{713}{180}$$

25.
$$-\frac{4}{3}\pi$$

31.
$$2\pi + \frac{8}{3}$$

37.
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} [P(\partial h/\partial x) - Q + R(\partial h/\partial z)] dA$$
, onde

27. 0

D = projeção de S no plano xz

39. (0, 0, *a*/2)

41. (a)
$$I_z = \iint_S (x^2 + y^2) \rho(x, y, z) dS$$

(b)
$$4\ 329\sqrt{2}\pi/5$$

45.
$$\frac{8}{3}\pi a^3 \varepsilon_0$$

47. 1 248
$$\pi$$

EXERCÍCIOS 16.8

3. 0 **5.** 0

11. (a) $81\pi/2$

(c)
$$x = 3 \cos t$$
, $y = 3 \sin t$,
 $z = 1 - 3(\cos t + \sin t)$,

$$0 \le t \le 2\pi$$

17. 3

EXERCÍCIOS 16.9

5.
$$\frac{9}{2}$$
 7. $9\pi/2$ **9.** 0

15.
$$341\sqrt{2}/60 + \frac{81}{20} \arcsin(\sqrt{3}/3)$$

17.
$$13\pi/20$$

19. Negativa em
$$P_1$$
, positiva em P_2

11. $32\pi/3$

21. div
$$\mathbf{F} > 0$$
 em quadrantes I, II; div $\mathbf{F} < 0$ em quadrantes III, IV

CAPÍTULO 16 REVISÃO

Teste Verdadeiro-Falso

1. Falso 3. Verdadeiro

9. Verdadeiro

Exercícios

1. (a) Negativa

(b) Positiva

3. $6\sqrt{10}$

7.
$$\frac{110}{3}$$
 9. $\frac{11}{12} - 4/e$ 11. $f(x, y) = e^y + xe^{xy}$ 13. 0

17. -8π **25.** $\frac{1}{6}(27-5\sqrt{5})$ **27.** $(\pi/60)(391\sqrt{17}+1)$

29.
$$-64\pi/3$$
 33. $-\frac{1}{2}$

37. −4

CAPÍTULO 17

EXERCÍCIOS 17.1

1.
$$y = c_1 e^{3x} + c_2 e^{-2x}$$

3.
$$y = c_1 \cos 4x + c_2 \sin 4x$$

5.
$$y = c_1 e^{2x/3} + c_2 x e^{2x/3}$$
 7. $y = c_1 + c_2 e^{x/2}$

7.
$$y = c_1 + c_2 e^{x/2}$$

9.
$$y = e^{2x}(c_1 \cos 3x + c_2 \sin 3x)$$

11.
$$y = c_1 e^{(\sqrt{3}-1)t/2} + c_2 e^{-(\sqrt{3}+1)t/2}$$

13.
$$P = e^{-t} \left[c_1 \cos\left(\frac{1}{10}t\right) + c_2 \sin\left(\frac{1}{10}t\right) \right]$$

Todas as soluções de tendem a 0 ou $\pm \infty$ à medida que $x \to \pm \infty$.

17.
$$y = 2e^{-3x/2} + e^{-x}$$
 19. $y = e^{-2x/3} + \frac{2}{3}xe^{-2x/3}$

21.
$$y = e^{3x}(2\cos x - 3\sin x)$$

23.
$$y = \frac{1}{2}e^{4x-4} - \frac{1}{2}e^{3-3x}$$

23.
$$y = \frac{1}{7}e^{4x-4} - \frac{1}{7}e^{3-3x}$$
 25. $y = 5\cos 2x + 3\sin 2x$

27.
$$y = 2e^{-2x} - 2xe^{-2x}$$
 29. $y = \frac{e-2}{e-1} + \frac{e^x}{e-1}$

31. Sem solução **33.** (b)
$$\lambda = n^2 \pi^2 / L^2$$
, *n* um inteiro positivo; $y = C \operatorname{sen}(n\pi x/L)$

35. (a)
$$b - a \neq n\pi$$
, *n* qualquer inteiro

(b)
$$b - a = n\pi e \frac{c}{d} \neq e^{a-b} \frac{\cos a}{\cos b}$$
 a menos que $\cos b = 0$, então

$$\frac{c}{d} \neq e^{a-b} \frac{\operatorname{sen} a}{\operatorname{sen} b}$$

(c)
$$b - a = n\pi$$
 e $\frac{c}{d} = e^{a-b} \frac{\cos a}{\cos b}$ a menos que $\cos b = 0$, então

$$\frac{c}{d} = e^{a-b} \frac{\sin a}{\sin b}$$

EXERCÍCIOS 17.2

1.
$$y = c_1 e^{3x} + c_2 e^{-x} - \frac{7}{65} \cos 2x - \frac{4}{65} \sin 2x$$

3.
$$y = c_1 \cos 3x + c_2 \sin 3x + \frac{1}{13}e^{-2x}$$

5. $y = e^{2x}(c_1 \cos x + c_2 \sin x) + \frac{1}{10}e^{-x}$

7.
$$y = \frac{3}{2}\cos x + \frac{11}{2}\sin x + \frac{1}{2}e^x + x^3 - 6x$$

9. $y = e^x(\frac{1}{2}x^2 - x + 2)$

11.

As soluções são assintóticas a $y_p = \frac{1}{10}\cos x + \frac{3}{10}\sin x \text{ quando}$ $x \rightarrow \infty$. Exceto por y_p , todas as soluções aproximam-se de ∞ ou $-\infty$ quando $x \rightarrow -\infty$.

13.
$$y_p = Ae^{2x} + (Bx^2 + Cx + D)\cos x + (Ex^2 + Fx + G)\sin x$$

$$15. y_p = Axe^x + B\cos x + C\sin x$$

17.
$$y_p = xe^{-x} [(Ax^2 + Bx + C)\cos 3x + (Dx^2 + Ex + F)\sin 3x]$$

19.
$$y = c_1 \cos(\frac{1}{2}x) + c_2 \sin(\frac{1}{2}x) - \frac{1}{3}\cos x$$