

# Produits scalaires et espaces euclidiens

# Sommaire 1 Produit scalair

| 1 | Produ                                  | uit scalaire et norme associée                                        |
|---|----------------------------------------|-----------------------------------------------------------------------|
|   | 1.1                                    | Produit scalaire                                                      |
|   | 1.2                                    | Exemples usuels                                                       |
|   | 1.3                                    | Norme                                                                 |
| 2 | 2 Orthogonalité                        |                                                                       |
|   | 2.1                                    | Définitions et premières propriétés                                   |
|   | 2.2                                    | Orthogonalité et familles de vecteurs                                 |
|   | 2.3                                    | Orthonormalisation de Gram-Schmidt                                    |
|   | 2.4                                    | Bases orthonormées                                                    |
| 3 | Proje                                  | ction orthogonale sur un sous-espace vectoriel de dimension finie 540 |
|   | 3.1                                    | Supplémentaire orthogonal                                             |
|   | 3.2                                    | Projection orthogonale                                                |
| 4 | Compétences à acquérir sur ce chapitre |                                                                       |
| 5 | Exercices                              |                                                                       |

Dans tout le chapitre  $\mathbb{E}$  est un espace vectoriel sur  $\mathbb{K}$ .

# 1 Produit scalaire et norme associée

### 1.1 Produit scalaire

On se donne une application  $\phi : \mathbb{E} \times \mathbb{E} \longrightarrow \mathbb{R}$ 

### Définition 1 – Forme bilinéaire

On dit que  $\phi$  est une *forme bilinéaire* si et seulement si :

•  $\phi$  est linéaire à gauche:

$$\forall (u, v, w) \in \mathbb{E}^3, \forall (\lambda, \mu) \in \mathbb{R}^2, \quad \phi(\lambda.u + \mu.v, w) = \lambda.\phi(u, w) + \mu.\phi(v, w)$$

• φ est linéaire à droite :

$$\forall \big(u,v,w\big) \in \mathbb{E}^3, \forall (\lambda,\mu) \in \mathbb{R}^2, \quad \phi\big(u,\lambda.v+\mu.w\big) = \lambda.\phi\big(u,v\big) + \mu.\phi\big(u,w\big)$$

# Proposition 2 – Cas du vecteur nul

Si  $\phi$  est une forme bilinéaire :

$$\forall (u, v) \in \mathbb{E}^2, \quad \phi(u, 0_{\mathbb{E}}) = \phi(0_{\mathbb{E}}, v) = 0$$

Si  $\mathbb{E}$  est de dimension finie et si  $\mathscr{B} = (e_1, ..., e_n)$  est une base de  $\mathbb{E}$ , on peut « développer » une forme bilinéaire sur une base.

# Proposition 3 – Développement d'une forme bilinéaire sur une base

On suppose que  $\mathbb{E}$  est de dimension finie avec  $\mathscr{B} = (e_1, ..., e_n)$  base de  $\mathbb{E}$ , et que  $\phi$  une forme bilinéaire. Soient deux vecteurs décomposés sur la base  $\mathscr{B}$ :

$$u = \sum_{i=1}^{n} \alpha_i . e_i$$
 et  $v = \sum_{j=1}^{n} \beta_j . e_j$ 

alors:

$$\phi(u, v) = \sum_{i=1}^{n} \left( \sum_{j=1}^{n} \alpha_i . \beta_j . \phi(e_i, e_j) \right)$$

L'application bilinéaire  $\phi$  est donc entièrement déterminée par la donnée des réels  $\phi(e_i, e_j)$ , pour  $(i, j) \in [1, n]^2$ .

# Définition 4 – Forme symétrique

On dit que  $\phi$  est une *forme symétrique* lorsque :

$$\forall (u, v) \in \mathbb{E}^2, \quad \phi(u, v) = \phi(v, u)$$

# Proposition 5 – Bilinéarité et symétrie

On suppose que  $\phi$  est une forme symétrique. On a équivalence de :

- (i)  $\phi$  est une forme bilinéaire;
- (ii)  $\phi$  est linéaire à gauche;
- (iii)  $\phi$  est linéaire à droite;

Doncs si montre que  $\phi$  est une forme symétrique et linéaire à gauche, alors on aura montré que c'est une *forme bilinéaire symétrique*.

# Définition 6 – Forme positive

On dit que  $\phi$  est une *forme positive* lorsque :

$$\forall u \in \mathbb{E}, \quad \phi(u, u) \ge 0$$

Si  $\phi$  est bilinéaire, on a toujours  $\phi(0_{\mathbb{E}}, 0_{\mathbb{E}}) \ge 0$  car  $\phi(0_{\mathbb{E}}, 0_{\mathbb{E}}) = 0$ .

# Définition 7 – Forme définie

On dit que  $\phi$  est une *forme définie* lorsque :

$$\forall u \in \mathbb{E}, \quad (\phi(u, u) = 0 \iff u = 0_{\mathbb{E}})$$

 $\triangle$  Ne pas confondre forme définie et bien définie.

On définit ensuite la notion de produit scalaire sur  $\mathbb E$ .

# Définition 8 – Produit scalaire

On appelle *produit scalaire* sur  $\mathbb{E}$ , toute application  $\phi : \mathbb{E} \times \mathbb{E} \longrightarrow \mathbb{R}$  qui est une forme bilinéaire symétrique définie et positive.

Lorsque  $\phi$  est un produit scalaire, le réel  $\phi(u, v)$  est noté  $\langle u, v \rangle$  ou (u|v), ou encore u.v.

PCSI1, Lycée Saliège, Toulouse. http://mathcpge.org/

### Définition 9 – Espace préhilbertien/euclidien

- 1. Si  $\phi$  est un produit scalaire sur  $\mathbb{E}$ , on dit que le couple ( $\mathbb{E}$ ,  $\phi$ ) est un *espace préhilbertien réel*.
- 2. De plus, si  $\mathbb{E}$  est de dimension finie, alors on dit que le couple ( $\mathbb{E}$ , $\phi$ ) est un *espace euclidien*.

# 1.2 Exemples usuels

### Théorème 10 – Produit scalaire canonique sur $\mathbb{R}^n$

On définit une application  $\mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$  par :

$$\forall u = (x_1, \dots, x_n) \in \mathbb{R}^n, \forall v = (y_1, \dots, y_n) \in \mathbb{R}^n, \quad \langle u, v \rangle = \sum_{k=1}^n x_k . y_k$$

Alors  $\langle .,. \rangle$  est un produit scalaire sur  $\mathbb{R}^n$ .

Le produit scalaire défini dans le théorème précédent est appelé *produit scalaire canonique sur*  $\mathbb{R}^n$ . On dit aussi qu'on a muni  $\mathbb{R}^n$  de sa *structure canonique d'espace euclidien*.

**Exemple.** Dans  $\mathbb{R}^3$ , on retrouve que si u=(x,y,z) et v=(x',y',z') alors  $\langle u,v\rangle=xx'+yy'+zz'$ .

Si [a, b] est un segment de  $\mathbb{R}$ , on note  $C^0([a, b]; \mathbb{R})$  l'ensemble des fonctions continues sur le segment [a, b] et à valeurs réelles.

# **Théorème 11 – Produit scalaire canonique sur** $C^0([a,b];\mathbb{R})$

On définit une application  $C^0([a,b];\mathbb{R}) \times C^0([a,b];\mathbb{R}) \longrightarrow \mathbb{R}$  par :

$$\forall (f,g) \in C^0([a,b];\mathbb{R}) \times C^0([a,b];\mathbb{R}), \quad \langle f,g \rangle = \int_a^b f(t).g(t) \, \mathrm{d}t$$

Alors  $\langle .,. \rangle$  est un produit scalaire sur  $C^0([a,b];\mathbb{R})$ .

Le produit scalaire défini dans le théorème précédent est appelé *produit scalaire canonique sur*  $C^0([a,b];\mathbb{R})$ . On dit aussi qu'on a muni  $C^0([a,b];\mathbb{R})$  de sa *structure canonique d'espace préhilbertien*.

533

### 1.3 Norme

On suppose que  $\mathbb E$  est un espace préhilbertien et on note  $\langle .,. \rangle$  le produit scalaire.

### Définition 12 - Norme

On appelle *norme* associée à l'application ||.|| définie par :

$$||u|| = \sqrt{\langle u, u \rangle}$$

Exemple. Vérifier les identités remarquables:

$$\|u+v\|^2 = \|u\|^2 + \|v\|^2 + 2\langle u, v \rangle$$
 et  $\|u-v\|^2 = \|u\|^2 + \|v\|^2 - 2\langle u, v \rangle$ 

# Théorème 13 – Propriétés d'une norme

La norme vérifie les deux propriétés :

- Séparation:  $\forall u \in \mathbb{E}, \quad (\|u\| = 0 \iff u = 0_{\mathbb{E}})$
- Homogénéité:  $\forall u \in \mathbb{E}, \forall \lambda \in \mathbb{R}, \|\lambda u\| = |\lambda| \cdot \|u\|$

L'homégénité donne en particulier que ||-u|| = ||u||.

L'inégalité suivante est fondamentale.

# Théorème 14 – Inégalité de Cauchy-Schwarz

On l'inégalité :

$$\forall (u, v) \in \mathbb{E}^2, \quad |\langle u, v \rangle| \le ||u|| \times ||v||$$

avec égalité si, et seulement si, u et v sont colinéaires.

On a donc:

$$\forall (u, v) \in \mathbb{E}^2, \quad \langle u, v \rangle \leq |\langle u, v \rangle| \leq ||u|| \times ||v||$$

**Exemple.** Si  $x_1,...,x_n,y_1,...,y_n$  sont des réels :

$$\left| \sum_{k=1}^{n} x_k . y_k \right| \le \sqrt{\sum_{k=1}^{n} x_k^2} \times \sqrt{\sum_{k=1}^{n} y_k^2}$$

ou encore:

$$\left(\sum_{k=1}^{n} x_k.y_k\right)^2 \le \left(\sum_{k=1}^{n} x_k^2\right) \times \left(\sum_{k=1}^{n} y_k^2\right)$$

avec égalité si, et seulement si, les listes  $(x_1, \ldots, x_n)$  et  $(y_1, \ldots, y_n)$  sont proportionnelles.

PCSI1, Lycée Saliège, Toulouse. http://mathcpge.org/

 $\bigcirc$  **Exemple.** Si f et g sont deux fonctions continues sur le segment [a,b]:

$$\left| \int_a^b f(t).g(t) \, \mathrm{d}t \right| \le \sqrt{\int_a^b f(t)^2 \, \mathrm{d}t} \times \sqrt{\int_a^b g(t)^2 \, \mathrm{d}t}$$

ou encore:

$$\left(\int_{a}^{b} f(t).g(t) dt\right)^{2} \le \left(\int_{a}^{b} f(t)^{2} dt\right) \times \left(\int_{a}^{b} g(t)^{2} dt\right)$$

avec égalité si, et seulement si, les fonctions f et g sont proportionnelles.

# Corollaire 15 - Inégalité triangulaire

On a l'inégalité:

$$\forall (u, v) \in \mathbb{E}^2, \quad ||u + v|| \le ||u|| + ||v||$$

avec égalité si, et seulement si  $u=0_{\mathbb{E}}$  ou  $(u\neq 0_{\mathbb{E}}$  et il existe  $\lambda\in\mathbb{R}^+$  tel que  $(u\neq 0_{\mathbb{E}})$ 

Le cas d'égalité pour l'inégalité triangulaire signifie que u et v sont colinéaires et « de même sens ».

Les propriétés de *séparation, homogénéité* et *inégalité triangulaire* font que la norme représente la « longueur » du vecteur. Mais attention, cette « longueur » dépend du produit scalaire choisi!

# Corollaire 16 – Précisions sur l'inégalité triangulaire

1. Si u et v sont deux vecteurs de  $\mathbb{E}$ :

$$||u|| - ||v|| | \le ||u + v|| \le ||u|| + ||v||$$

2. Si u et v sont deux vecteurs de  $\mathbb{E}$ :

$$||u|| - ||v|| | \le ||u - v|| \le ||u|| + ||v||$$

### Définition 17 – Vecteur normé

Un vecteur  $u \in \mathbb{E}$  est dit *unitaire* ou *normé* lorsque ||u|| = 1.

**Exemple.** Si  $u \neq 0_E$  est un vecteur quelconque alors le vecteur  $\frac{1}{\|u\|} u$  est unitaire.

2 Orthogonalité 535

# 2 Orthogonalité

Dans ce paragraphe,  $\mathbb E$  est un espace préhilbertien. Le produit scalaire est noté  $\langle .,. \rangle$ .

# 2.1 Définitions et premières propriétés

### Définition 18 - Orthogonalité de deux vecteurs

On dit que deux vecteurs  $(u, v) \in \mathbb{E}^2$  sont *orthogonaux* lorsque  $\langle u, v \rangle = 0$ . On le note  $u \perp v$ .

**Exemple.** Dans  $\mathbb{R}^3$  muni de sa structure euclidienne canonique, i = (1,0,0) et j = (0,1,0) sont orthogonaux.

Exemple. Dans  $C^0([0,2\pi];\mathbb{R})$  muni de sa structure préhilbertienne canonique, la fonction cos est orthogonale aux fonctions constantes.

### Proposition 19 – Caractérisation du vecteur nul

Le vecteur nul  $0_{\mathbb{E}}$  est orthogonal à tous les vecteurs de  $\mathbb{E}$ . De plus, c'est le seul vecteur de  $\mathbb{E}$  ayant cette propriété :

$$(\forall u \in \mathbb{E}, \langle u, v \rangle = 0) \iff v = 0_{\mathbb{E}}$$

**Exemple.** Si  $f \in C^0([0,1];\mathbb{R})$  vérifie  $\int_0^1 f(t)g(t) dt = 0$  pour toute fonction  $g \in C^0([0,1];\mathbb{R})$ , alors f est constante nulle.

# Définition 20 – Orthogonal d'une partie de $\ensuremath{\mathbb{E}}$

Si A est une partie quelconque de  $\mathbb{E}$ , on appelle *orthogonal de A*, noté  $A^{\perp}$ , l'ensemble des vecteurs de  $\mathbb{E}$  qui sont orthogonaux à tous les vecteurs de A.

On a donc:

$$A^{\perp} = \left\{ u \in \mathbb{E}; \, \forall \, a \in A, \langle a, u \rangle = 0 \right\}$$

et si  $u \in \mathbb{E}$ :

$$u \in A^{\perp} \iff \forall a \in A, \langle a, u \rangle = 0$$

 $\triangle$  **Exemple.**  $\emptyset^{\perp} = \{0_{\mathbb{E}}\}^{\perp} = \mathbb{E}$ 

 $\bigcirc$  *Exemple.*  $\mathbb{E}^{\perp} = \{0_{\mathbb{E}}\}$ 

**Exemple.** Déterminer l'orthogonal de  $A = \{(1, 1, 1)\}.$ 

# Théorème 21 – Propriété de $A^\perp$ pour A une partie quelconque de $\mathbb E$

Soient A et B deux parties de  $\mathbb{E}$ .

- 1.  $A^{\perp}$  est un sous-espace vectoriel de  $\mathbb{E}$ .
- 2. Si  $A = \text{Vect}(e_1, ..., e_p)$  alors, pour tout  $u \in \mathbb{E}$ :

$$u \in A^{\perp} \iff \forall k \in [1, p], \langle u, e_k \rangle = 0$$

- 3. Si  $A \subseteq B$ , alors  $B^{\perp} \subseteq A^{\perp}$ .
- $4. \ A \subseteq \left(A^{\perp}\right)^{\perp}$

Il est remarquable que  $A^{\perp}$  est un sous-espace vectoriel de  $\mathbb{E}$ , même si A n'en est pas un.

Dans le même ordre d'idées, la seconde propriété s'énonce :  $\{e_1, \dots, e_p\}^{\perp} = \text{Vect}(e_1, \dots, e_p)^{\perp}$ 

**Exemple.** 
$$\mathbb{F} = \text{Vect}((1,1,1))^{\perp} = \{(1,1,1)\}^{\perp}$$
.

# 2.2 Orthogonalité et familles de vecteurs

On se donne  $\mathscr{F} = (u_1, \dots, u_p)$  une famille finie de vecteurs de  $\mathbb{E}$ .

# D'efinition~22-Famille~orthogonale

La famille  $(u_1, ..., u_p)$  est dite *orthogonale* lorsque les vecteurs qui la compose sont deux à deux orthogonaux :

$$\forall (i,j) \in [1,p]^2, \quad \left(i \neq j \Longrightarrow \left\langle u_i, u_j \right\rangle = 0\right)$$

### Définition 23 – Famille orthonormée

La famille  $(u_1, ..., u_p)$  est dite *orthonormale* ou *orthonormée* lorsqu'elle est orthogonale et lorsque tous les vecteurs qui la compose sont unitaires.

On a donc:

$$\forall (i,j) \in [1,p]^2, \quad \langle u_i, u_j \rangle = \delta_{i,j} = \begin{cases} 0 & \text{si } i \neq j \\ 1 & \text{si } i = j \end{cases}$$

où  $\delta_{i,j}$  est le symbole de Kronecker.

PCSI1, Lycée Saliège, Toulouse. http://mathcpge.org/

### Proposition 24 - Théorème de Pythagore

1. Si  $u_1$  et  $u_2$  sont deux vecteurs de  $\mathbb{E}$ :

$$||u_1 + u_2||^2 = ||u_1||^2 + ||u_2||^2 \iff u_1 \perp u_2$$

2. Si  $(u_1, ..., u_p)$  est une famille orthogonale :

$$\left\| \sum_{k=1}^{p} u_k \right\|^2 = \sum_{k=1}^{p} \|u_k\|^2$$

 $\triangle$  La réciproque de 2. est fausse dès que  $p \ge 3$ . Considérer par exemple  $u_1 = (1,1,1), u_2 = (1,0,0)$  et  $u_3 = (0,-1,0)$ .

# Théorème 25 – Liberté d'une famille orthogonale

Toute famille orthogonale de vecteurs non nuls est libre.

S *Exemple.* Soit  $n \in \mathbb{N}^*$ . Montrer que la famille  $(t \mapsto \sin(t), t \mapsto \sin(2t), ..., t \mapsto \sin(nt))$  est libre.

### Corollaire 26 - Liberté d'une famille orthonormée

Toute famille orthonormée est libre.

### 2.3 Orthonormalisation de Gram-Schmidt

On se donne  $\mathscr{F} = (u_1, \dots, u_p)$  une famille finie de vecteurs de  $\mathbb{E}$ .

### Théorème 27 – Théorème d'orthonormalisation de Gram-Schmidt

On suppose que la famille  $(u_1,...,u_p)$  est libre. Il existe une unique famille *orthonormée*  $\mathscr{C} = (w_1,...,w_p)$  de  $\mathbb{E}$  vérifiant :

- 1.  $\forall i \in [1, p], w_i \in \text{Vect}(u_1, ..., u_i);$
- 2.  $\forall i \in [1, p], \langle u_i, w_i \rangle > 0$ .

Pour tout k entre 1 et p on a Vect(u1,...,uk)=Vect(w1,...,wk)

En pratique:

- on pose  $v_1 = \frac{1}{\|v_1\|} v_1$
- on pose  $v_2 = u_2 + \lambda . w_1$ , on choisit  $\lambda \in \mathbb{R}$  pour que  $\langle w_1, v_2 \rangle = 0$ , puis on pose  $w_2 = \frac{1}{\|v_2\|} . v_2$
- on pose  $v_3 = u_3 + \lambda . w_1 + \mu . w_2$ , on choisit  $\lambda \in \mathbb{R}$  et  $\mu \in \mathbb{R}$  pour que  $\langle w_1, v_3 \rangle = \langle w_2, v_3 \rangle = 0$ , puis on pose  $w_3 = \frac{1}{\|v_3\|} . v_3$

538

• . . .



La formule générale est la suivante :

$$\forall k \in [1, p], \quad w_k = \frac{1}{\left\| u_k - \sum_{j=1}^{k-1} \left\langle u_k, w_j \right\rangle . w_j \right\|} . \left( u_k - \sum_{j=1}^{k-1} \left\langle u_k, w_j \right\rangle . w_j \right)$$

 $\triangle$  *Exemple.* Dans  $\mathbb{R}^3$ , orthonormaliser la famille (0,1,1);(1,0,1);(1,1,0).

**Exemple.** Dans l'espace  $\mathbb{E} = \mathbb{R}_2[X]$  muni du produit scalaire  $\langle P, Q \rangle = \int_{-1}^1 P(t)Q(t) \, dt$ , orthonormaliser la base canonique.

### 2.4 Bases orthonormées

Dans cette section,  $\mathbb{E}$  est supposé de dimension finie n. Le couple  $(\mathbb{E}, \langle .,. \rangle)$  est donc un espace euclidien.

### Définition 28 – Base orthonormée

Une *base orthonormée* de  $\mathbb E$  est une base de  $\mathbb E$  qui est une famille orthonormée.

### Proposition 29 - Caractérisation des base orthonormées

Une famille de vecteurs de  $\mathbb E$  est une base orthonormée de  $\mathbb E$  si, et seulement si, c'est une famille orthonormée formée de n vecteurs.

*Exemple.* La base canonique de  $\mathbb{R}^n$  est une base orthonormée pour le produit scalaire canonique.

**Exemple.** La famille  $\left(\left(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right),\left(\frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}}\right),\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)\right)$  est une base orthonormée de  $\mathbb{R}^3$  pour le produit scalaire canonique.

Exemple. La base canonique de  $\mathbb{R}_n[X]$  est une base orthonormée de  $\mathbb{R}_n[X]$  muni du produit scalaire  $\langle P,Q\rangle = \sum_{k=0}^{n} \frac{P^{(k)}(0)}{k!} \times \frac{Q^{(k)}(0)}{k!}$ .

2 Orthogonalité 539

**Exemple.** La famille  $\left(\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}X, \frac{3\sqrt{5}}{2\sqrt{2}}\left(X^2 - \frac{1}{3}\right)\right)$  est une base orthonormée de  $\mathbb{R}_2[X]$  muni du produit scalaire  $\langle P,Q\rangle = \int_{-1}^1 P(t).Q(t)\,\mathrm{d}t.$ 

### Théorème 30 - Existence de bases orthonormées

Dans un espace euclidien, il existe des bases orthonormées.

### Théorème 31 – Théorème de la base orthonormée incomplète

Si  $(u_1,...,u_p)$  est une famille orthonormée de  $\mathbb{E}$ , alors on peut la compléter en une base orthonormée de  $\mathbb{E}$ .

Exemple. Après avoir normalisé le vecteur  $u_1 = (3,0,4)$ , compléter en une base orthonormée de  $\mathbb{R}^3$  muni du produit scalaire usuel.

Dans la suite, on se donne  $\mathscr{B} = (e_1, ..., e_n)$  une base orthonormée de  $\mathbb{E}$ .

### Théorème 32 - Coordonnées d'un vecteur dans une base orthonormée

Les coordonnées d'un vecteur  $u \in \mathbb{E}$  dans la base orthonormée  $\mathscr{B}$  sont des produits scalaires :

$$u = \sum_{i=1}^{n} \langle u, e_i \rangle . e_i$$

### Théorème 33 – Produit scalaire et norme dans une base orthonormée

1. Si  $u = x_1 \cdot e_1 + \dots + x_n \cdot e_n$  et  $v = y_1 \cdot e_1 + \dots + y_n \cdot e_n$ , alors:

$$\langle u, v \rangle = \sum_{i=1}^{n} x_i \times y_i = x_1 \times y_1 + \dots + x_n \times y_n = \sum_{i=1}^{n} \langle u, e_i \rangle \times \langle v, e_i \rangle$$

2. Si  $u = x_1 \cdot e_1 + \cdots + x_n \cdot e_n$ :

$$||u||^2 = \sum_{i=1}^n x_i^2 = x_1^2 + \dots + x_n^2 = \sum_{i=1}^n \langle u, e_i \rangle^2$$

canonique

 $\triangle$  On a donc une analogie avec le produit scalaire de  $\mathbb{R}^n$ . Mais ces formules ne sont valables que dans une base orthonormée.

# 3 Projection orthogonale sur un sous-espace vectoriel de dimension finie

On considère dans ce paragraphe un espace préhilbertien réel  $\mathbb{E}$ . Le produit scalaire est noté  $\langle .,. \rangle$ .

# 3.1 Supplémentaire orthogonal

### Théorème 34 – Existence du supplémentaire orthogonal d'un sev de dim finie

Si  $\mathbb{F}$  est un sous-espace vectoriel de dimension finie de  $\mathbb{E}$  alors :

$$\mathbb{E} = \mathbb{F} \oplus \mathbb{F}^{\perp}$$

Si  $\mathbb{F}$  est de dimension infinie alors  $\mathbb{F} \cap \mathbb{F}^{\perp} = \{0_{\mathbb{E}}\}$  mais en général  $\mathbb{F} \oplus \mathbb{F}^{\perp} \subsetneq \mathbb{E}$ .

# Définition 35 – Suppémentaire orthogonal d'un sev de dim finie

Si  $\mathbb{F}$  est un sous-espace vectoriel de dimension finie de  $\mathbb{E}$ , alors  $\mathbb{F}^{\perp}$  est appelé *supplémentaire orthogonal de*  $\mathbb{E}$ .

On dit donc **un** supplémentaire de F et **le** supplémentaire orthogonal de  $\mathbb{F}$ .

 $\triangle$  Le théorème d'existence d'un supplémentaire demande que  $\mathbb E$  soit de dimension finie (donc  $\mathbb F$  aussi). Pour l'existence du supplémentaire orthogonal,  $\mathbb E$  peut être de dimension infinie mais  $\mathbb F$  doit être de dimension finie.

# Corollaire 36 – Supplémentaire orthogonal dans un espace euclidien

Si  $\mathbb E$  est un espace euclidien et  $\mathbb F$  est un sous-espace vectoriel de  $\mathbb E$  :

- 1.  $\dim(\mathbb{F}^{\perp}) = \dim(\mathbb{E}) \dim(\mathbb{F})$
- 2.  $(\mathbb{F}^{\perp})^{\perp} = \mathbb{F}$
- 3. Si  $\mathbb{G}$  est un sev de  $\mathbb{E}$ :

$$\mathbb{G} = \mathbb{F}^{\perp} \Longleftrightarrow \begin{cases} \mathbb{E} = \mathbb{F} \oplus \mathbb{G} \\ \forall (u, v) \in \mathbb{F} \times \mathbb{G}, \ \langle u, v \rangle = 0 \end{cases}$$

**Exemple.** Considérons  $\mathbb{E} = \mathbb{R}^3$  et  $\mathbb{F}$  le sous-espace défini par l'équation x + y + z = 0. Alors  $\mathbb{F}^{\perp} = \text{Vect}(1,1,1)$  est le supplémentaire orthogonal de  $\mathbb{F}$ .

 $\underline{\wedge}$  Le deuxième point n'est pas vrai en dimension infinie : on a  $\mathbb{F} \subseteq (\mathbb{F}^{\perp})^{\perp}$ , mais ce n'est pas une égalité en général.

*Exemple.* On considère E l'espace vectoriel des suites réelles nulles à partir d'un certain rang, muni du produit scalaire :

$$\langle u, v \rangle = \sum_{n=0}^{+\infty} u_n v_n$$

On pose 
$$\mathbb{F} = \left\{ u \in \mathbb{E}; \sum_{n=0}^{+\infty} u_n = 0 \right\}.$$

- 1. Montrer que  $\mathbb{F}^{\perp} = \{0_{\mathbb{E}}\}.$
- 2. En déduire que  $\mathbb{F} \subsetneq (\mathbb{F}^{\perp})^{\perp}$  et que  $\mathbb{F} \oplus \mathbb{F}^{\perp} \subsetneq \mathbb{E}$ .

# 3.2 Projection orthogonale

Soit  $\mathbb{F}$  un sous-espace vectoriel de dimension finie de  $\mathbb{E}$ . On sait que  $\mathbb{E} = \mathbb{F} \oplus \mathbb{F}^{\perp}$ .

# Définition 37 - Projecteur orthogonal

On appelle *projection orthogonale sur*  $\mathbb{F}$  la projection sur  $\mathbb{F}$  dans la direction  $\mathbb{F}^{\perp}$ . On la note  $p_{\mathbb{F}}$ .

 $\triangle$  Il existe une infinité de projecteur sur  $\mathbb{F}$ , mais un *unique* projecteur *orthogonal*.

Dasn un espace euclidien on peut aussi définir le projecteur orthogonal sur  $\mathbb{F}^{\perp}$  et on a  $p_{\mathbb{F}^{\perp}}=\mathrm{id}_{\mathbb{E}}-p_{\mathbb{F}}.$ 

# Théorème 38 – Détermination du projeté orthogonal

Si  $x \in \mathbb{E}$  et si  $(e_1, ..., e_p)$  est une base orthonormale de  $\mathbb{F}$ , alors le projeté orthogonal  $p_{\mathbb{F}}(x)$  du vecteur x sur le sous-espace  $\mathbb{F}$  vaut :

$$p_{\mathbb{F}}(x) = \sum_{k=1}^{p} \langle x, e_k \rangle . e_k$$

Exemple. Dans  $\mathbb{R}^4$  muni du produit scalaire canonique, on considère  $\mathbb{F}$  le sous-espace d'équations :

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - x_4 = 0 \end{cases}$$

- 1. Déterminer une base orthonormale de  $\mathbb{F}$ .
- 2. Déterminer la matrice, dans la base canonique, de la projection orthogonale sur  $\mathbb{F}$ .

On a aussi la caractérisation suivante.

# Théorème 39 – Caractérisation géométrique de $p_{\mathbb{F}}(x)$

Si  $x \in \mathbb{E}$ , alors  $p_{\mathbb{F}}(x)$  est l'unique vecteur y de  $\mathbb{E}$  vérifiant les conditions :  $\begin{cases} x - y \in \mathbb{F}^{\perp} \\ y \in \mathbb{F} \end{cases}$ 



Exemple. Refaire l'exemple précédent.

### Retour sur l'algorithme de Gram-Schmidt.

Soit  $(u_1, u_p)$  une famille libre de vecteurs de  $\mathbb{E}$ , et notons  $\mathbb{F}_k = \text{Vect}(w_1, \dots, w_k)$  pour  $k \in [1, n-1]$ 

On peut réécrire le procédé d'orthonormalisation de Gram-Schmidt de la manière suivante :

- poser  $w_1 = \frac{1}{\|u_1\|} . u_1$
- une fois les vecteurs  $w_1, ..., w_k$  construits

\* poser 
$$v_{k+1} = u_{k+1} - p_{\mathbb{F}_k}(u_{k+1}) = p_{\mathbb{F}_k^{\perp}}(u_{k+1})$$

$$\star$$
 poser  $w_{k+1} = \frac{1}{\|v_{k+1}\|} \cdot v_{k+1}$ 

La projection orthogonale permet de calculer la distance à un sev.

### Définition 40 – Distance à un sev

Soit  $\overline{\mathbb{F}}$  un sev de  $\mathbb{E}$  et un vecteur  $x \in \mathbb{E}$ . On appelle *distance* de x au sous-espace  $\mathbb{F}$ :

$$d(x,\mathbb{F}) = \inf_{y \in \mathbb{F}} \|x - y\|$$

Cette distance s'exprime à l'aide du projeté orthogonal.

### Théorème 41 – Meilleure approximation

Si  $\mathbb{F}$  un sev de dimension finie de  $\mathbb{E}$  et si  $x \in \mathbb{E}$ , alors  $p_{\mathbb{F}}(x)$  est l'unique vecteur de  $\mathbb{F}$  qui vérifie :

$$d(x,\mathbb{F}) = ||x - p_{\mathbb{F}}(x)||$$

On a donc:

$$d(x,\mathbb{F}) = \min_{y \in \mathbb{F}} \|x - y\|$$

et ce minimum est atteint en l'unique vecteur  $y = p_{\mathbb{F}}(x)$ .

Donc si  $(e_1, ..., e_p)$  est une base orthonormée de  $\mathbb F$  on a :

$$d(x,\mathbb{F}) = \sqrt{\|x\|^2 - \sum_{k=1}^p \langle x, e_k \rangle^2}$$

Si  $\mathbb{E}$  est euclidien on a aussi :

$$d(x,\mathbb{F}) = ||x - p_{\mathbb{F}}(x)|| = ||p_{\mathbb{F}^{\perp}}(x)||$$

- **Exemple.** Si  $\mathbb{F}$  est un sev de dimension finie de  $\mathbb{E}$  montrer que :  $d(x, \mathbb{F}) = 0 \iff x \in \mathbb{F}$ .
- Exemple. Dans  $\mathbb{E} = \mathbb{R}^4$  muni du produit scalaire usuel, on considère le sous-espace  $\mathbb{F} = \text{Vect}((0,0,1,0),(1,1,1,1))$ .

Écrire la matrice du projecteur orthogonal sur  $\mathbb{F}$  dans la base canonique. Calculer  $d(u,\mathbb{F})$  où u=(2,0,0,1).

- **Exemple.** Dans  $\mathbb{R}[X]$  calculer  $d(X^3, \mathbb{R}_2[X])$  pour le produit scalaire  $\langle P, Q \rangle = \int_{-1}^1 P(t) \cdot Q(t) \, dt$ .
- **Exemple.** Dans  $\mathcal{M}_3(\mathbb{R})$  on pose  $M = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ . Calculer  $d(M, S_3(\mathbb{R}))$ .

On a aussi l'inégalité suivante.

### Théorème 42 – Inégalité de Bessel

Si  $\mathbb{F}$  est un sev de dim finie et si  $x \in \mathbb{E}$  on a  $\|p_{\mathbb{F}}(x)\| \le \|x\|$  avec égalité si, et seulement si,  $x \in \mathbb{F}$ .

Donc si  $(e_1, ..., e_p)$  est une base orthonormée de  $\mathbb F$  on a  $\sum_{k=1}^p \langle x, e_k \rangle^2 \le \|x\|^2$  avec égalité si, et seulement si,  $x \in \mathbb F$ .

Exemple. Sur  $C^0([0,2\pi];\mathbb{R})$  on choisit comme produit scalaire  $(f|g) = \int_0^{2\pi} f(t)g(t) dt$ . Si  $f \in C^0([0,2\pi];\mathbb{R})$ , on pose  $\forall n \in \mathbb{N}^*$ ,  $a_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos(nt) dt$ . Alors:

$$\forall N \in \mathbb{N}, \quad \frac{1}{2} \sum_{n=1}^{N} a_n(f)^2 \le \frac{1}{2\pi} \int_0^{2\pi} f(t)^2 dt$$

# 4 Compétences à acquérir sur ce chapitre

- ightharpoonup Savoir montrer qu'une application de  $\mathbb{E}^2$  dans  $\mathbb{R}$  est un produit scalaire sur  $\mathbb{E}$ .
  - Ne pas confondre forme définie et bien définie.
- ightharpoonup Connaître les exemples usuels : produit scalaire canonique sur  $\mathbb{R}^n$  et sur  $C^0([a,b];\mathbb{R})$ .
- Connaître les règles de calculs pour le produit scalaire et la norme.
  - Savoir démontrer des inégalités grâce à l'inégalité triangulaire ou l'inégalité de Cauchy-Schwartz.
- ➤ Savoir déterminer l'orthogonal d'une partie.
  - En dimension finie, on peut prédire sa dimension ce qui simplifie la recherche.
- ➤ Connaître les propriétés des familles orthogonales et orthonormales.
  - Savoir orthonormaliser une famille libre avec l'algorithme de Gram-Schmidt.
- Connaître les propriétés des projection orthogonales.
  - Savoir déterminer un projeté orthogonal « géométriquement ».
  - $\bullet$  Savoir déterminer un projeté orthogonal sur  $\mathbb{F}$  à l'aide d'une base orthonormale de  $\mathbb{F}$ .
  - Savoir identifier et résoudre un problème de meilleure approximation.

# 5 Exercices

# Produits scalaires et normes

### **EXERCICE 1. Produits scalaires classiques**

1. Sur  $\mathbb{E} = \mathcal{M}_n(\mathbb{R})$ , montrer qu'on peut définir le produit scalaire :

$$\langle A, B \rangle = \text{Tr}(A.^tB)$$

Ecrire l'inégalité de Cauchy-Schwarz.

2. Sur  $\mathbb{E} = \mathbb{R}_n[X]$ , montrer qu'on peut définir le produit scalaire :

$$\langle P, Q \rangle = \sum_{k=0}^{n} P(k).Q(k)$$

3. Sur  $\mathbb{E} = \mathbb{R}[X]$ , montrer qu'on peut définir le produit scalaire :

$$\langle P, Q \rangle = \int_{-1}^{1} P(t).Q(t) dt$$

### EXERCICE 2. Propriétés d'une norme

On suppose que  $\mathbb{E}$  est un espace préhibertien et on note  $\langle .,. \rangle$  le produit scalaire.

1. Vérifier les identités de polarisation :

$$\langle x, y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2)$$
 et  $\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$ 

2. Démontrer l'*identité du parallélogramme*, pour deux vecteurs  $(x, y) \in \mathbb{E}^2$ ,

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

### EXERCICE 3. Inégalité de cauchy-Schwarz

1. Si  $x_1, ..., x_n$  sont des réels :

$$\left| \sum_{k=1}^{n} x_k \right| \le \sqrt{n} \times \sqrt{\sum_{k=1}^{n} x_k^2}$$

avec égalité si, et seulement si :  $x_1 = \cdots = x_n$ .

2. Si *f* est une fonction continue sur le segment [*a*, *b*] :

$$\left| \int_{a}^{b} f(t) \, \mathrm{d}t \right| \le \sqrt{b - a} \times \sqrt{\int_{a}^{b} f(t)^{2} \, \mathrm{d}t}$$

avec égalité si, et seulement si : f est constante.

5 Exercices 547

### **EXERCICE 4.** Produits scalaire sur $\mathbb{R}[X]$

Sur  $\mathbb{E} = \mathbb{R}[X]$ , montrer qu'on peut définir le produit scalaire :

$$\langle P, Q \rangle = \sum_{n=0}^{+\infty} P(n)Q(n)e^{-n}$$

# **EXERCICE 5.** Produit scalaire avec poids sur $C^0([a,b],\mathbb{R})$

Sur  $\mathbb{E} = C^0([a,b],\mathbb{R})$ , si  $\omega$  est une fonction continue sur [a,b] et strictement positive, montrer qu'on a un produit scalaire :  $(f|g) = \int_a^b f(t)g(t)\omega(t)\,\mathrm{d}t$ Remarque : la fonction  $\omega$  est appelée  $fonction\ poids$ .

# **EXERCICE 6.** Produit scalaire sur $\mathbb{R}_n[X]$

Dans l'espace  $\mathbb{E} = \mathbb{R}_n[X]$ , on considère (n+1) réels distincts  $(a_0, \dots, a_n)$  et on définit :

$$\phi: \mathbb{R}_n[X] \times \mathbb{R}_n[X] \longrightarrow \mathbb{R}$$

$$(P,Q) \longmapsto \sum_{k=0}^n P(a_k)Q(a_k)$$

1. Vérifier que  $\phi$  définit un produit scalaire sur  $\mathbb{R}_n[X]$ .

Dans la suite on note  $(P|Q) = \phi(P,Q)$ .

- 2. Trouver sans calcul (ou presque) une base orthonormale de  $\mathbb{E}$ .
- 3. Quelles sont les coordonnées de  $P \in \mathbb{R}_n[X]$  dans cette base?

# **EXERCICE 7.** Produit scalaire sur $C^1([0,1];\mathbb{R})$

Soit  $\mathbb{E} = C^1([0,1];\mathbb{R})$ . Pour  $(f,g) \in \mathbb{E}^2$ , on pose :

$$(f|g) = f(0)g(0) + \int_0^1 (f(t) + f'(t))(g(t) + g'(t)) dt$$

Montrer que (.|.) est un produit scalaire sur  $\mathbb{E}$ .

### **EXERCICE 8. Familles obtusangles**

- 1. Soient  $p \ge 2$  vecteurs  $(x_1, ..., x_p)$  d'un espace préhilbertien réel  $\mathbb E$ . On suppose que  $\forall i \ne j$ ,  $\langle x_i, x_j \rangle < 0$ . Montrer que toute sous-famille de p-1 vecteurs est libre. Hint: Procéder par récurrence sur p et dans une CL nulle distinguer les coefficients  $\ge 0$  des coefficients < 0.
- 2. En déduire que dans  $\mathbb{R}^n$  muni du produit scalaire usuel, il est impossible de trouver (n+2) vecteurs formant deux à deux un angle obtu.

# Orthogonalité

### **EXERCICE 9. Produits scalaires classiques**

Sur  $\mathbb{E} = \mathcal{M}_n(\mathbb{R})$ , on définit le produit scalaire :

$$\langle A, B \rangle = \text{Tr}(A \times {}^t B)$$

Montrer que  $(S_n(\mathbb{R}))^{\perp} = A_n(\mathbb{R})$ .

### EXERCICE 10. Propriétés de l'orthogonal

Si  $\mathbb{F}$  et  $\mathbb{G}$  sont deux sev d'un espace euclidien, montrer que :

$$(\mathbb{F} + \mathbb{G})^{\perp} = \mathbb{F}^{\perp} \cap \mathbb{G}^{\perp} \qquad \text{et} \qquad (\mathbb{F} \cap \mathbb{G})^{\perp} = \mathbb{F}^{\perp} + \mathbb{G}^{\perp}$$

### **EXERCICE 11. Caractérisation des BON**

Soient  $\mathbb{E}$  un espace euclidien et  $(e_1,...,e_n)$  une famille de vecteurs *unitaires* de  $\mathbb{E}$ . Établir l'équivalence des propositions :

- $(e_1,...,e_n)$  est une base orthonormale de  $\mathbb{E}$ ;
- $\forall x \in \mathbb{E}, \|x\|^2 = \sum_{i=1}^n \langle x, e_i \rangle^2$

### EXERCICE 12. Endomorphisme dans un espace euclidien

Soit  $f \in \mathcal{L}(\mathbb{E})$  vérifiant  $\forall x \in \mathbb{E}, \langle f(x), x \rangle = 0$ .

- 1. Montrer que  $\forall (x, y) \in \mathbb{E}^2$ ,  $\langle x, f(y) \rangle = -\langle f(x), y \rangle$ .
- 2. En déduire que  $Ker(f) = (Im(f))^{\perp}$ .

### EXERCICE 13. Exemple de polynômes orthogonaux

On définit

$$Q_n(X) = \frac{1}{2^n n!} \left( (X^2 - 1)^n \right)^{(n)}$$

- 1. Soit  $n \ge 1$ . Montrer que  $Q_n$  possède n racines simples dans ]-1,1[.
- 2. Montrer que

$$Q_n = X^n + (X^2 - 1)R_n(X)$$

avec  $R_n \in \mathbb{R}[X]$ . En déduire  $Q_n(1)$  et  $Q_n(-1)$ .

3. On pose, pour  $(P,Q) \in \mathbb{R}[X]^2$ ,

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t) dt$$

Montrer que  $Q_n$  est orthogonal à  $\mathbb{R}_{n-1}[X]$ .

4. Calculer  $||Q_n||^2$ .

# **Projections** orthogonales

### EXERCICE 14. Projection orthogonale sur un hyperplan

Dans  $\mathbb{E} = \mathbb{R}^n$  muni du produit scalaire canonique, on considère un vecteur  $b = (b_1, \dots, b_n)$ , avec ||b|| = 1.

Calculer  $P = \operatorname{Mat}_{\mathscr{B}}(p)$  où p est le projecteur orthogonal sur l'hyperplan  $H = \operatorname{Vect}(b)^{\perp}$  et  $\mathscr{B}$  la base canonique. On l'exprimera à l'aide de la matrice  $B = \operatorname{Mat}_{\mathscr{B}}(b)$ .

### EXERCICE 15. Distance à un s.e.v.

Soit  $\mathbb{E} = C^0([-\pi,\pi];\mathbb{R})$ . Trouver  $(a,b,c) \in \mathbb{R}^3$  tels que la quantité

$$\frac{1}{\pi} \int_{-\pi}^{\pi} \left( e^t - (a + b \sin t + c \cos t) \right)^2 dt$$

soit minimale.

#### EXERCICE 16. Distance à un s.e.v.

On note  $\mathscr{S}_n(\mathbb{R})$  l'ensemble des matrices symétriques réelles. Soit  $A \in \mathscr{M}_n(\mathbb{R})$  une matrice quelconque. Déterminer

$$\inf_{S \in \mathscr{S}_n(\mathbb{R})} \left( \sum_{1 \leq i,j \leq n} (a_{ij} - s_{ij})^2 \right)$$

### EXERCICE 17. Distance à un s.e.v.

Céterminer 
$$\inf_{(a,b,c)\in\mathbb{R}^3} \left( \int_{-1}^1 \left( t^3 - at^2 - bt - c \right)^2 dt \right).$$

### EXERCICE 18. Matrice d'une projection orthogonale dans une BON

Soient  $\mathbb{E}$  un espace vectoriel euclidien muni d'une base orthonormée  $\mathscr{B} = (e_1, \ldots, e_n)$  et  $\mathbb{F}$  un sous-espace vectoriel de  $\mathbb{E}$  muni d'une base orthonormée  $(x_1, \ldots, x_p)$ . Montrer que la matrice de  $p_{\mathbb{F}}$ , projecteur orthogonal sur  $\mathbb{F}$ , dans la base  $\mathscr{B}$  est

$$\sum_{k=1}^{p} X_k \times {}^{t}X_k$$

où  $X_k$  est la colonne des coordonnées du vecteur  $x_k$  dans  $\mathscr{B}$ .

### EXERCICE 19. Matrice de Gram

Soit  $\mathbb{E}$  un espace euclidien. Pour  $(u_1,...,u_p)$  famille de vecteurs de  $\mathbb{E}$  on note  $G(u_1,...,u_p)$  la matrice de  $\mathcal{M}_p(\mathbb{R})$  dont le coefficient d'indice [i,j] est  $\langle u_i,u_j\rangle$ .

- 1. Montrer que  $(u_1, ..., u_p)$  est libre si, et seulement si,  $\det (G(u_1, ..., u_p)) \neq 0$ .
- 2. Montrer que si  $(e_1, ..., e_p)$  est une base d'un sev  $\mathbb{F}$  de  $\mathbb{E}$ , alors, pour tout  $x \in \mathbb{E}$ :

$$d(x,\mathbb{F}) = \sqrt{\frac{\det \left(G(e_1,\ldots,e_p,x)\right)}{\det \left(G(e_1,\ldots,e_p)\right)}}$$