Machine Learning Project -Online Payments Fraud Detection

By: James Cheung

Online Payments Fraud Detection Dataset

- From Kaggle
- Columns:
 - step (1 step equals 1 hour)
 - type of online transaction
 - amount of transaction
 - o initiating customer name
 - o balance before the transaction
 - balance after the transaction
 - recipient name
 - initial balance of recipient
 - new balance of recipient
 - whether is fraud transaction

Importing Data to Google Collab

- Total data set: 6.36 million rows x 9 columns
- Not Fraud Records vs Fraud Records
 - o 99.87% vs 0.13%
- Dropping Irrelevant Columns
- Selecting only 10000 rows
- OneHotEncoding Transaction Types
 - Cash Out
 - Payment
 - Cash In
 - Transfer Debit
- StandardScaler for Feature Scaling

Feature Importance on 3,000,000 Records

- Features less important:
 - o step
 - new balance of payee
 - type cash out
 - o type debit
 - type payment
 - type transfer
- Dropping 3 Columns and start over

Classifiers

- Restarting on 10,000 Records
- Classifiers used:
 - o KNN
 - Decision Tree
 - Naive Bayes
 - XGBoost
 - Random Forest
- Area under Curve best performance:
 - XGBoost
 - Random Forest

Performance on Raw Data

- Low Performance on Precision, Recall & F1-score
- Generally high False Negative Numbers

<u>Classifier</u>	Classification I	Report precision	recall	f1-score	support
KNN - 99.3%	0	0.99	1.00	1.00	1986 14
Decision Tree - 99.7%	0	1.00	1.00	1.00 0.75	1986 14
Naive Bayes - 98.05%	0	0.99 0.07	0.99	0.99	1986 14
XGBoost - 99.35%	0	0.99 1.00	1.00	1.00 0.13	1986 14
Random Forest - 99.5%	0	0.99 1.00	1.00	1.00	1986 14

Class Imbalance - SMOTEENN & ReSampling

- SMOTEENN & ReSampling on Raw Data
- Random Forest & XGBoost used

<u>Classifier</u>	Classificatio	n Report precision	recall	f1-score	support	Confusion Matrix
SMOTEENN on Random Forest	0	1.00	0.99	0.99	1986 14	[[1962 24] [2 12]]
SMOTEENN on XGBoost	0 1	1.00 0.97	0.97	0.98	1909 1957	[[1853 56] [8 1949]]
DownSampling on Random Forest	0 1	0.93	0.93	0.93	14 14	[[13 1] [1 13]]
UpSampling on Random Forest	0 1	1.00 0.99	0.99	1.00	1925 2048	[[1903 22] [0 2048]]

Hyper Parameter Optimization on Raw Data

- HPT method used:
 - Manuel HPT on Random Forest
 - Randomized Search on Random Forest
 - Grid Search on Random Forest
 - Randomized Search on XGBoost

Hyper Parameter Tuning on ReSampled Data

- Manuel HPT on SMOTEENN Data on Random Forest
- Randomized Search on SMOTEENN Data on Random Forest
 - Improvement of 0.05%
- Grid Search on SMOTEENN Data on Random Forest
 - Improvement of 0.21%
- Randomized Search on SMOTEENN Data on XGBoost
- Manuel HPT on Up-Sampled Data on Random Forest

Applying HPO on ReSampled Data

- XGBoost Hyper Parameters:
 - classifier_SM_HPO_FINAL=xgboost.XGBClassifier(colsample_bytree=0.7, gamma=0.0, learning_rate=0.2, max_depth=15, min_child_weight=5)
- Random Forest Hyper Parameters:
 - RandomForestClassifier(bootstrap=True,max_depth=80, max_features=3, min_samples_leaf=3, min_samples_split=8, n_estimators=100)

Final Accuracies

<u>Classifier</u>	Classification Report					Confusion Matrix
XGBoost on SMOTEENN Data	Classification 0 1 accuracy macro avg weighted avg Accuracy: 0.9	precision 1.00 0.99 1.00 1.00	recall 0.99 1.00 1.00 229	f1-score 1.00 1.00 1.00 1.00 1.00	support 1909 1957 3866 3866 3866	[[1894 15] [0 1957]]
Random Forest on SMOTEENN Data	Classification 0 1 accuracy macro avg weighted avg Accuracy: 0.	precision 1.00 0.99 1.00 1.00	recall 0.99 1.00 1.00 1.00	f1-score 0.99 0.99 1.00 1.00	support 1909 1957 3866 3866 3866	[[1891 18] [2 1955]]

~ The End ~

Q&A