SQL DML (cont)

GROUP BY, HAVING ODER BY

Valoarea NULL

- În anumite situații valorile particulare ale unor attribute (câmpuri) pot fi *necunoscute* sau *inaplicabile* temporar.
 - SQL permite utilizarea unei valori speciale <u>null</u> pentru astfel de situații.
- Prezența valorii *null* implică unele probleme suplimentare:
 - E necesară implementarea unei logici cu 3 valori: *true, false* și *null* (de exemplu o condiție de tipul *rating>8* va fi intotdeauna evaluată cu *false* daca valoarea câmpului rating este *null*)
 - E necesară adăugarea unui operator special IS NULL / IS NOT NULL.

Operatori de agregare

```
COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

atribut
```

```
SELECT
        COUNT (*)
      Students S
FROM
SELECT AVG (S.age)
                             SELECT S.name
      Students S
FROM
                             FROM Students S
      S.gr=921
WHERE
                             WHERE S.age = ANY
                                    (SELECT MAX(S2.age)
                                     FROM
                                           Students S2)
SELECT COUNT (DISTINCT S.gr)
FROM
      Students S
WHERE S.name='Bob'
```

GROUP BY / HAVING

```
For i = 221,222,223,224...:
```

SELECT MIN(S.age)

FROM Students S

WHERE S.gr = i

GROUP BY / HAVING

```
SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification
```

GROUP BY / HAVING

```
SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification
```

- Un *grup* este o mulțime de tupluri care au aceeași valoare pentru toate atributele din *grouping-list*.
- *target-list* conține (i) <u>nume de atribute</u> sau (ii) termeni ce utilizează operatori de agregare (e.g., MIN (*S.age*)).
 - numele de atribute (i) trebuie să fie o submulțime a *grouping-list*.
 - Intuitiv, fiecare tuplu din rezultat corespunde unui *grup*, și toate atributele vor avea o singură valoare per grup.

Numarul studentilor cu nota la cursurile cu 6 credite si media notelor acestora

SELECT C.cid, COUNT (*) AS scount, AVG(grade)
FROM Enrolled E, Courses C
WHERE E.cid=C.cid AND C.credits=6
GROUP BY C.cid

Courses

cid	cname	credits
Alg1	Algorithms1	7
DB1	Databases1	6
DB2	Databases2	6

Students

sid	name	email	age	gr
1234	John	j@cs.ro	21	331
1235	Smith	s@cs.ro	22	331
1236	Anne	a@cs.ro	21	332

Enrolled

sid	cid	grade
1234	Alg1	9
1235	Alg1	10
1234	DB1	10
1234	DB2	9
1236	DB1	7

Enrolled Courses

sid	cid	grade	cid	cname	credits
1234	Alg1	9	Alg1	Algorithms1	7
1234	Alg1	9	DB1	Databases1	6
1234	Alg1	9	DB2	Databases2	6
1235	Alg1	10	Alg1	Algorithms1	7
1235	Alg1	10	DB1	Databases1	6
1235	Alg1	10	DB2	Databases2	6
1234	DB1	10	Alg1	Algorithms1	7
1234	DB1	10	DB1	Databases1	6
1234	DB1	10	DB2	Databases2	6
1234	DB2	9	Alg1	Algorithms1	7
1234	DB2	9	DB1	Databases1	6
1234	DB2	9	DB2	Databases2	6
1236	DB1	7	Alg1	Algorithms1	7
1236	DB1	7	DB1	Databases1	6
1236	DB1	7	DB2	Databases2	6

SELECT C.cid, COUNT(*) AS scount, AVG(grade) AS average Enrolled E, FROM Courses C

WHERE

E.cid=C.cid AND

C.credits=6 GROUP BY C.cid

Enrolled

Courses

sid	cid	grade	cid	cname	credits
1234	Alg1	9	Alg1	Algoritmics 1	7
1235	Alg1	10	Alg1	Algoritmics 1	7
1234	DB1	10	DB1	Databases1	6
1234	DB2	9	DB2	Databases2	6
1236	DB1	7	DB1	Databases1	6

```
SELECT C.cid,
COUNT(*)AS scount,
AVG(grade)AS average
FROM Enrolled E,
Courses C
WHERE E.cid=C.cid
AND
C.credits=6
GROUP BY C.cid
```

sid	cid	grade	cid	cname	credits
1234	DB1	10	DB1	Databases1	6
1234	DB2	9	DB2	Databases2	6
1236	DB1	7	DB1	Databases1	6

cid	scount	average
DB1	2	8.5
DB2	\	9

SELECT (C.cid)
COUNT(*) AS scount,
AVG(grade) AS average

FROM Enrolled E,

Courses C

WHERE E.cid=C.cid

AND

C.credits=6

GROUP BY (C.cid)

HAVING MAX(grade) = 10

Sortarea rezultatului interogărilor

■ ORDER BY column [ASC | DESC] [, ...]

```
SELECT cname, sname, grade
FROM Courses C
    INNER JOIN Enrolled E ON C.cid = E.cid
    INNER JOIN Students S ON E.sid = S.sid
ORDER BY cname, grade DESC , sname
```

Sortarea rezultatului interogărilor

■ Rezultatul e sortat după orice câmp din clauza SELECT, inclusiv expresii sau agregări:

```
SELECT gr, Count(*) as StudNo
FROM Students C
GROUP BY gr
ORDER BY StudNo
```

Rafinarea structurii bazelor de date

(Dependențe funcționale)

3

Structura bazei de date

Structura relațiilor

+

Constrângeri

Exemplu: relația MovieList

Title	Director	Cinema	Phone	Time
The Hobbit	Jackson	Florin Piersic	441111	11:30
The Lord of the Rings 3	Jackson	Florin Piersic	441111	14:30
Adventures of Tintin	Spielberg	Victoria	442222	11:30
The Lord of the Rings 3	Jackson	Victoria	442222	14:00
War Horse	Spielberg	Victoria	442222	16:30

Constrângeri:

- Fiecare film are un regizor
- Fiecare cinematograf are un număr de telefon
- Fiecare cinematograf începe proiecția unui singur film al un moment dat

Proiectare defectuoasă!

Title	Director	Cinema	Phone	Time
The Hobbit	Jackson	Florin Piersic	441111	11:30
The Lord of the Rings 3	Jackson	Florin Piersic	441111	14:30
Adventures of Tintin	Spielberg	Victoria	442222	11:30
The Lord of the Rings 3	Jackson	Victoria	442222	14:00
War Horse	Spielberg	Victoria	442222	16:30

Anomalie de inserare Anomalie de ştergere Anomalie de actualizare

Rafinarea unei structuri defectuoase prin descompunerea în mai multe structuri "bune"

Movies

Title	Director
The Hobbit	Jackson
The Lord of the Rings 3	Jackson
Adventures of Tintin	Spielberg
War Horse	Spielberg

Screens

Cinema	Time	Title
Florin Piersic	11:30	The Hobbit
Florin Piersic	14:30	The Lord of the Rings 3
Victoria	11:30	Adventures of Tintin
Victoria	14:00	The Lord of the Rings 3
Victoria	16:30	War Horse

Cinema

Cinema	Phone
Florin Piersic	441111
Victoria	442222

Anomalie de inserare

✓ Anomalie de ştergere

Anomalie de actualizare

Cum determinăm
dacă o structură este
"bună" sau "defectuoasă"?

Cum transformăm
o structură *defectuoasă*într-una *bună*?

Teoria *dependențelor funcționale* furnizează o abordare sistematică a celor două întrebări

Introdusă de Edgar Frank Codd în:

"A relational model for large shared data banks", Com. of the ACM, 13(6), 1970, pp.377-387.

Dependențe funcționale

$$\alpha \rightarrow \beta$$

 α , β sunt submulțimi de atribute ale R

"α determină funcțional β" sau

" β depinde functional de α "

Definiție dependențe funcționale

Dependența funcțională $\alpha \to \beta$ este satisfăcută de R dacă și numai dacă

pentru *orice* instanță a lui R, oricare două tupluri t_1 și t_2 pentru care valorile lui α sunt identice

vor avea de asemenea valori identice pentru β .

O dependență funcțională

$$\alpha \rightarrow \beta$$

este trivială dacă

$$a \supseteq \beta$$
.

Title	Director	Cinema	Phone	Time
The Hobbit	Jackson	Florin Piersic	441111	11:30
The Lord of the Rings 3	Jackson	Florin Piersic	441111	14:30
Adventures of Tintin	Spielberg	Victoria	442222	11:30
The Lord of the Rings 3	Jackson	Victoria	442222	14:00
War Horse	Spielberg	Victoria	442222	16:30

Dependențe funcționale pentru relația *MovieList*:

- 1. Title \rightarrow Director
- 2. Cinema \rightarrow Phone
- 3. Cinema, Time \rightarrow Title

Fie r instanța unei relații R

Spunem că r satisface DF $\alpha \rightarrow \beta$ dacă pentru orice pereche de tupluri t_1 și t_2 din r astfel încât $\pi_{\alpha}(t_1) = \pi_{\alpha}(t_2)$, este de asemenea adevărat că $\pi_{\beta}(t_1) = \pi_{\beta}(t_2)$.

sau

$$\forall t_1, t_2 \in r$$

$$\pi_{\alpha}(t_1) = \pi_{\alpha}(t_2) \implies \pi_{\beta}(t_1) = \pi_{\beta}(t_2) *$$

^{*} $\pi_{\alpha}(t)$ este proiecția atributelor α pentru tuplul t

Fie r instanța unei relații R

lacktriangle o lacktriangle lacktriangle orice instanță r a lui R satisface f

 \blacksquare r nu respectă o DF f dacă r nu satisface f.

■ *r* este o **instanță legală a lui R** dacă *r* satisface toate dependențele funcționale definite pentru *R*.

Exemplu: *Movie*(Title, Director, Composer)

Title	Director	Composer
Schindler's List	Spielberg	Williams
Saving Private Ryan	Spielberg	Williams
North by Northwest	Hitchcock	Herrmann
Angela's Ashes	Parker	Williams
Vertigo	Hitchcock	Herrmann

- DF *composer* → *director* nu este respectată de relația *Movie*
- r satisface DF $director \rightarrow composer$

Acest lucru nu înseamnă că *director→composer* e respectat de *Movie*!

Problema implicației

Putem deduce că o DF *f* e respectată de *R* pe baza unei mulțimi de DF *F* ?

```
Exemplu: în MovieList, avem
F = \{ Title \rightarrow Director \\ Cinema \rightarrow Phone \\ Cinema, Time \rightarrow Title \}
```

- *Time* → *Director* este respectată?
- Dar Cinema, Time → Director?

F implică logic pe f

notat prin

 $F \Rightarrow f$

daca fiecare instanță r a relației R ce satisface F satisfice și f

F & G : mulțimi de dependențe funcționale f : dependeța funcțională

F implică logic G

notat prin

$$F \Rightarrow G$$

dacă $F \Rightarrow g$ pentru fiecare $g \in G$

Închiderea lui F

(notată prin F^+)

este mulţimea tuturor DF implicate de F

$$F^+ = \{ f \mid F \Longrightarrow f \}$$

F și *G* sunt **echivalente**

(notat prin
$$F \equiv G$$
)

$$F^+ = G^+$$

$$(adică F \Rightarrow G si G \Rightarrow F)$$

Axiomele lui Armstrong

Fie α , β , $\gamma \subseteq R$

Reflexivitate: Dacă $\beta \subseteq \alpha$, atunci $\alpha \rightarrow \beta$

Augmentare: Dacă $\alpha \rightarrow \beta$, atunci $\alpha \gamma \rightarrow \beta \gamma$

Tranzitivitate: Dacă $\alpha \rightarrow \beta$ și $\beta \rightarrow \gamma$, atunci $\alpha \rightarrow \gamma$

Sistemul axiomelor lui Armstrong este

Corect

(Orice FD derivată este implicată de F)

Complet

(Toate DF din F⁺ pot fi derivate)

Exemplu: Fie R(A, B, C, D, E) cu mulțimea
$$F = \{A \rightarrow C; B \rightarrow C; CD \rightarrow E\}.$$
 Arătați că $F \Rightarrow AD \rightarrow E$

Soluție:

- 1. $A \rightarrow C$ (dat)
- 2. AD \rightarrow CD (augumentare cu (1))
- 3. $CD \rightarrow E (dat)$
- 4. AD \rightarrow E (tranzitivitate cu (2) si (3))

Reguli de inferență adiționale

Reuniunea:

Dacă $\alpha \rightarrow \beta$ și $\alpha \rightarrow \gamma$, atunci $\alpha \rightarrow \beta \gamma$

Descompunerea:

Dacă $\alpha \to \beta$, atunci $\alpha \to \beta'$ pentru orice $\beta' \subseteq \beta$

Exemplu: Aratati ca
$$\{A \rightarrow BCD\} \equiv \{A \rightarrow B; A \rightarrow C; A \rightarrow D\}$$

Fie
$$F = \{A \rightarrow BCD\}$$

Fie G =
$$\{A \rightarrow B; A \rightarrow C; A \rightarrow D\}$$

Prin regula de descompunere avem

$$F \Rightarrow A \rightarrow B$$
,
 $F \Rightarrow A \rightarrow C$, si
 $F \Rightarrow A \rightarrow D$

Prin urmare $F \Rightarrow G$

Din regula reuniunii avem

$${A \rightarrow B; A \rightarrow C} \Rightarrow A \rightarrow BC \text{ si}$$

 ${A \rightarrow BC; A \rightarrow D} \Rightarrow A \rightarrow BCD$

Prin urmare $G \Rightarrow F$, deci $F \equiv G$

Superchei, chei & atribute prime

■ O mulțime de atribute α reprezintă o supercheie a relației R (având mulțimea de DF F) dacă

$$F \Rightarrow \alpha \rightarrow R$$
.

- O mulțime de atribute α e o cheie a relației R dacă
 - (1) α este o supercheie, şi
 - (2) nici o submulțime a lui α nu e supercheie (adică, pentru fiecare $\beta \subset \alpha$, $\beta \to R \notin F^+$)
- Un atribut $A \in R$ se numeşte atribut prim dacă A face parte dintr-o cheie a lui R; în caz contrar, A se numeşte atribut neprim.

- Considerăm din nou relația
 MovieList (Title, Director, Cinema, Phone, Time)
 cu DF
 - (1) Cinema, Time \rightarrow Title
 - (2) Cinema \rightarrow Phone
 - (3) Title \rightarrow Director
- {Cinema, Time} este singura cheie a relației MovieList.
- Cinema și Time sunt singurele atribute prime din MovieList.
- Orice mulțime ce include {Cinema; Time} e supercheie a MovieList.

Închiderea atributelor

Fie $\alpha \subseteq R$ și F o mulțime de DF satisfăcute pe R

■ Închiderea lui α (cu respectarea mulțimii F de DF), notată cu α^+ , este mulțimea de atribute ce sunt determinate funcțional din α pe baza dependențelor funcționale din F; adică

$$\alpha^+ = \{A \in R \mid F \Rightarrow \alpha \rightarrow A\}$$

Se observă că $F \Rightarrow \alpha \rightarrow \beta$ dacă şi numai dacă $\beta \subseteq \alpha^+$ (cu respectarea DF din F)

Algoritm pt deteminarea închiderii atributelor

```
Input: \alpha, \mathbb{F}
Output: \alpha^+ (w.r.t. F)
Compute a sequence of sets of attrs \alpha_0,
\alpha_{\text{l}},\ldots,\alpha_{\text{k}},\alpha_{\text{k+1}} as follows:
        \alpha^{\circ} = \alpha
        \alpha_{i+1} = \alpha_i \cup \gamma such that there is some FD
                 \beta \rightarrow \gamma \in F \text{ and } \beta \subseteq \alpha_i
Terminate the computation once
                          \alpha_{k+1} = \alpha_k for some k
Return \alpha_{k}
```

Input: α , F Output: α^+ (w.r.t. F) Compute a sequence of sets of attrs α_0 , α_1 ,... α_k , α_{k+1} as follows: $\alpha_0 = \alpha$ $\alpha_{i+1} = \alpha_i \, \cup \, \gamma \, \text{ such that there is some FD}$ $\beta \!\!\to\!\! \gamma \, \in \, \text{F and } \beta \subseteq \alpha_i$ Terminate the computation once $\alpha_{k+1} = \alpha_k$ for some k Return α_k

Exemple: Fie F = {A \rightarrow C;B \rightarrow C;CD \rightarrow E}, aratati ca F \Rightarrow AD \rightarrow E

i	$lpha_{ m i}$	FD folosit
0	AD	dat
1	ACD	A→C
2	ACDE	$CD \rightarrow E$
3	ACDE	-

Deci AD⁺ = ACDE. Deoarece $E \in AD^+$, rezulta ca $F \Rightarrow AD \rightarrow E$

Descompunerea relațiilor

Descompunerea unei relații R

este o mulțime de (sub)relații

$$\{R_1, R_2, ..., R_n\}$$

astfel încât fiecare $R_i \subseteq R$ si $R = \bigcup R_i$

Dacă *r* este o instanță din R, atunci *r* se descompune în

$$\{\mathbf{r}_1, \, \mathbf{r}_2, ..., \, \mathbf{r}_n\},\$$

unde fiecare $r_i = \pi_{Ri}(r)$

Descompunerea relațiilor

```
\{M_1 = (Cinema, Time)\}

M_2 = (Time, Title),

M_3 = (Title, Director),

M_4 = (Cinema, Phone)\}
```

e o descompunere a:

MovieList(Title, Director, Cinema, Phone, Time)

Proprietățile descompunerii relațiilor

- 1. Descompunerea trebuie să păstreze informațiile
 - Datele din relația originală = Datele din relațiile descompunerii
 - Crucial pentru păstrarea consistenței datelor!

- 2. Descompunerea trebuie să respecte toate DF
 - Dependențele funcționale din relația originală = reuniunea dependențelor funcționale din relațiile descompunerii
 - Facilitează verificarea violărilor DF

1. Descompunerea trebuie să păstreze informațiile

Cu alte cuvinte:

putem reconstrui r

prin jonctiunea proiectiilor sale

$$\{\mathbf{r}_1, \, \mathbf{r}_2, \, \dots, \, \mathbf{r}_n\}$$

Observatie: daca $\{R_1, R_2, ..., R_n\}$ e o descompunere a R, atunci pentru orice instanta r din R, avem

$$\mathbf{r} \subseteq \pi_{R1}(\mathbf{r}) \otimes \pi_{R2}(\mathbf{r}) \otimes ... \otimes \pi_{Rn}(\mathbf{r})$$

MovieList(Title, Director, Cinema, Phone, Time)

*M*1

Cinema	Time
Florin Piersic	11:30
Florin Piersic	14:30
Victoria	11:30
Victoria	14:00
Victoria	16:30

*M*2

Time	Title
11:30	The Hobbit
14:30	The Lord of the Rings 3
11:30	Adventures of Tintin
14:00	The Lord of the Rings 3
16:30	War Horse

*M*3

Title	Director
The Hobbit	Jackson
The Lord of the Rings 3	Jackson
Adventures of Tintin	Spielberg
War Horse	Spielberg

*M*4

Cinema	Phone
Florin Piersic	441111
Victoria	442222

$M1 \otimes M2 \otimes M3 \otimes M4$

Title	Director	Cinema	Phone	Time
The Hobbit	Jackson	Florin Piersic	441111	11:30
The Hobbit	Jackson	Victoria	442222	11:30
The Lord of the Rings 3	Jackson	Florin Piersic	441111	14:30
Adventures of Tintin	Spielberg	Florin Piersic	441111	11:30
Adventures of Tintin	Spielberg	Victoria	442222	11:30
The Lord of the Rings 3	Jackson	Victoria	442222	14:00
War Horse	Spielberg	Victoria	442222	16:30

Descompunere cu joncțiune fără pierderi (Lossless - Join Decomposition)

O descompunere a R (având DF F) în

$$\{R_1, R_2, ..., R_n\}$$

este o

descompunere cu joncțiuni fără pierderi cu respectarea mulțimii F

dacă

$$\pi_{R1}(r) \otimes \pi_{R2}(r) \otimes ... \otimes \pi_{Rn}(r) = r$$

pentru orice instanță r din R ce satisface F.

Fie descompunere lui R(A,B,C)in $\{R_1(AC), R_2(BC)\}$

■ Deoarece $r \subset r_1 \otimes r_2$, descompunerea nu este cu joncțiuni fără pierderi (lossy decomposition)

Întrebarea 1

Cum determinăm dacă $\{R_1, R_2\}$ este o descompunere cu joncțiuni fără pierderi a lui R?

Întrebarea 2

Cum descompunem R în $\{R_1, R_2\}$ astfel încât aceasta e cu joncțiuni fără pierderi?

Întrebarea 1

Cum determinăm dacă $\{R_1, R_2\}$ este o descompunere cu joncțiuni fără pierderi a lui R?

Teorema: Descompunerea lui R (cu mulțimea F de DF) în {R₁, R₂} este cu joncțiuni fără pierderi cu respectarea mulțimii F dacă și numai dacă :

$$F \Rightarrow R_1 \cap R_2 \rightarrow R_1$$
sau
$$F \Rightarrow R_1 \cap R_2 \rightarrow R_2$$

Întrebarea 2

Cum descompunem R în $\{R_1, R_2\}$ astfel încât aceasta e cu joncțiuni fără pierderi?

Corolar: Dacă $\alpha \rightarrow \beta$ este satisfăcută pe R și $\alpha \cap \beta = \emptyset$, atunci descompunerea lui R în {R- β , $\alpha\beta$ } este o descompunere cu joncțiuni fără pierderi.

Exemplu

- Fie R(A,B,C) cu dependențele funcționale F = { $A \rightarrow B$ }
- Descompunerea {AB, AC} e cu jocntiuni fara pierderi deoarece

$$AB \cap AC = A$$
 şi $A \rightarrow AB$

■ Descompunere {AB, BC} nu e cu joncțiuni fara pierderi deoarece $AB \cap BC = B$ nici una din urmatoarele dependențe: $B \to AB$ sau

 $B \rightarrow BC$ nu sunt respectate de R $\mathbf{r}_1 \otimes \mathbf{r}_2$ \mathbf{r}_1 r \mathbf{r}_2 B \mathbf{C} \boldsymbol{A} \mathbf{C} B \mathbf{C} \boldsymbol{B} b_1 B \boldsymbol{A} a_1 $\mathbf{c_1}$ b_1 b_1 b_1 \mathbf{a}_1 \mathbf{c}_1 b_1 $\mathbf{c_2}$ a_1 \mathbf{a}_1 \mathbf{c}_1 b_1 $\mathbf{b_1}$ b_1 b_1 \mathbf{c}_1 \mathbf{a}_{2} $\mathbf{a_2}$ $\mathbf{c_2}$ $\mathbf{a_2}$ $\mathbf{c_2}$ b_1 $\mathbf{a_2}$ $\mathbf{c_2}$

Teorema

Dacă

 $\{R_1, R_2\}$ este o descompunere cu joncțiuni fără pierderi a lui R, $\mathbf{\hat{s}i}$ dacă

 $\{R_{1,1}, R_{1,2}\}$ e o descompunere cu joncțiuni fără pierderi a lui $R_{1,1}$

atunci

 $\{R_{1,1}, R_{1,2}, R_2\}$ e o descompunere cu joncțiuni fără pierderi a R:

MovieList

Title	Director	Cinema	Phone	Time
The Hobbit	Jackson	Florin Piersic	441111	11:30
The Lord of the Rings 3	Jackson	Florin Piersic	441111	14:30
Adventures of Tintin	Spielberg	Victoria	442222	11:30
War Horse	Spielberg	Victoria	442222	14:00
The Lord of the Rings 3	Jackson	Victoria	442222	16:30

Movie

Title	Director
The Hobbit	Jackson
The Lord of the Rings 3	Jackson
Adventures of Tintin	Spielberg
War Horse	Spielberg

Cinema-Screens

Cinema	Phone	Time	Title
F. Piersic	441111	11:30	The Hobbit
F. Piersic	441111	14:30	The Lord of the Rings 3
Victoria	442222	11:30	Adventures of Tintin
Victoria	442222	14:00	War Horse
Victoria	442222	16:30	The Lord of the Rings 3

Cinema-Screens

Movie

Title	Director
The Hobbit	Jackson
The Lord of the Rings 3	Jackson
Adventures of Tintin	Spielberg
War Horse	Spielberg

Cinema	Phone	Time	Title
F. Piersic	441111	11:30	The Hobbit
F. Piersic	441111	14:30	The Lord of the Rings 3
Victoria	442222	11:30	Adventures of Tintin
Victoria	442222	14:00	War Horse
Victoria	442222	16:30	The Lord of the Rings 3

Cinema

Cinema	Phone
F. Piersic	441111
Victoria	442222

Screens

Cinema	Time	Title
F. Piersic	11:30	The Hobbit
F. Piersic	14:30	Saving Private Ryan
Victoria	11:30	Adventures of Tintin
Victoria	14:00	War Horse
Victoria	16:30	Saving Private Ryan

Proiecția dependențelor funcționale

■ Proiecția mulțimii F pe α (notată prin F_{α}) este mulțimea acelor dependențe din F⁺ care implică doar attribute din α , adică:

$$F_{\alpha} = \{ \beta \rightarrow \gamma \in F^+ \mid \beta \gamma \subseteq \alpha \}$$

Algoritm pentru determinare proiecției DF:

```
Input: \alpha, F

Output: F_{\alpha} Complexitatea result = \emptyset;

for each \beta \subseteq \alpha do

T = \beta^+ (w.r.t. F)

result = result \cup {\beta \rightarrow T \cap \alpha}

return result
```

Descompunere cu păstrarea dependențelor

Descompunerea $\{R_1, R_2, ..., R_n\}$ a relației R e cu păstrarea dependențelor dacă $(F_{R1} \cup F_{R2} \cup ... \cup F_{Rn})$ și F sunt echivalente, adică:

$$(F_{R1} \cup F_{R2} \cup ... \cup F_{Rn}) \Rightarrow F \text{ şi}$$

 $F \Rightarrow (F_{R1} \cup F_{R2} \cup ... \cup F_{Rn})$