

ΑΡΙΣΤΟΤΕΛΕΙΟ

ΠΑΝΕΠΙΣΤΗΜΙΟ

ΘΕΣΣΑΛΟΝΙΚΗΣ

CBGL: Fast Monte Carlo Passive Global Localisation of 2D LIDAR Sensor

Setup & Motivation

Unknown $\mathcal{S}_R(oldsymbol{p})$ and virtual $\mathcal{S}_V(\hat{\boldsymbol{p}})$ scans, in the local coestimate $\hat{\boldsymbol{p}}(\hat{x},\hat{y},\theta).$ $\hat{\boldsymbol{p}}-\hat{\boldsymbol{p}}=(\Delta\hat{\boldsymbol{l}},\Delta\hat{\theta})$ ordinate frame of each sensor

The gist

The method estimates the pose of a 2D LIDAR given only a single measurement and the map of the environment, while

- being robust against
- -environment repetitions
- -map distortions
- -sensor noise
- -sensor FOV (radial & angular)
- executing at ≈ 1 sec per 100 m² of environment area
- requiring no parameters to be tuned
- making no assumptions about the environment

because CAER (eq. (1))

- scales with position and orientation error
- computationally cheap at • 1S \sim O(sensor rays)

Pose densities

 $(d_{\boldsymbol{l}},d_{lpha})$

 \mathcal{H}

 $\mathcal{H}_2 \not\subseteq \mathcal{H}; \, \mathcal{H}_2 \neq \mathcal{H}_1$

 $k \ll |\mathcal{H}|$

Generate Hypotheses Randomly

 $\mathcal{H}_1 \subseteq \mathcal{H}$

Final sensor pose estimate $\hat{\boldsymbol{p}}$

 \mathcal{S}_R MEstimate bottom-k of pose errors compute ranks compute CAERs scan_map $\{\mathcal{S}_V\}$ CAER $\mathtt{sort}(\Psi,\mathtt{asc})$ $\mathtt{I}^*,\Psi_{\uparrow}:\Psi[\mathtt{I}^*]=\Psi_{\uparrow}$ $\mathcal{P}_{\triangledown} = \{\mathcal{P}[\mathtt{I}^*[0]], \mathcal{P}[\mathtt{I}^*[1]], \dots, \mathcal{P}[\mathtt{I}^*[k-1]]\}$

Experiments with real and synthetic data

In > 6000 attempts	Mean Position Error [m]	Mean Orientation Error [rad]	Mean Execution Time [sec]
ALS [1]	0.500	1.956	6.15
CBGL	0.041	0.011	1.61

[1] Naoki Akai, "Reliable Monte Carlo Localization for Mobile Robots", Journal of Field Robotics, 2023

scan rays—1

