import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt

df=pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Datasets/kc_house_data.csv') df

⇒	id		date	price	bedrooms	bathrooms	sqft_living	sqft_lot
	0	7129300520	20141013T000000	221900.0	3	1.00	1180	5650
	1	6414100192	20141209T000000	538000.0	3	2.25	2570	7242
	2	5631500400	20150225T000000	180000.0	2	1.00	770	10000
	3	2487200875	20141209T000000	604000.0	4	3.00	1960	5000
	4	1954400510	20150218T000000	510000.0	3	2.00	1680	8080
	21608	263000018	20140521T000000	360000.0	3	2.50	1530	1131
	21609	6600060120	20150223T000000	400000.0	4	2.50	2310	5813
	21610	1523300141	20140623T000000	402101.0	2	0.75	1020	1350
	21611	291310100	20150116T000000	400000.0	3	2.50	1600	2388
	21612	1523300157	20141015T000000	325000.0	2	0.75	1020	107€
21613 rows × 21 columns								
	4							>

df.shape

(21613, 21)

df.isna().sum()

id 0 date 0 price 0 bedrooms 0 bathrooms 0 sqft_living 0 sqft_lot 0 floors 0 waterfront 0 view 0 condition 0 grade 0 sqft_above sqft_basement yr_built 0 0 yr_renovated 0 zipcode 0 lat 0 long 0 sqft_living15 0 sqft_lot15 0 dtype: int64

df.isnull().any()

False id date False price False bedrooms False bathrooms False False sqft_living sqft_lot False floors False waterfront False False view condition False grade False sqft_above sqft_basement False False yr_built

```
yr_renovated
                     False
     zipcode
                     False
                     False
    lat
                     False
    long
    sqft_living15
                     False
    sqft_lot15
                     False
    dtype: bool
df.dtypes
     id
                       int64
    date
                      object
    price
                     float64
    bedrooms
                       int64
    bathrooms
                     float64
    sqft_living
                       int64
    sqft_lot
                       int64
     floors
                     float64
    waterfront
                       int64
    view
    condition
                       int64
    grade
                       int64
    sqft_above
                       int64
    sqft_basement
                       int64
    yr_built
                       int64
    yr_renovated
                       int64
    zipcode
                       int64
    lat
                      float64
     long
                     float64
    sqft_living15
                       int64
     sqft_lot15
                       int64
    dtype: object
df.drop(['id','date'],axis=1,inplace=True)
```

		price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	vi
	0	221900.0	3	1.00	1180	5650	1.0	0	
	1	538000.0	3	2.25	2570	7242	2.0	0	
	2	180000.0	2	1.00	770	10000	1.0	0	
	3	604000.0	4	3.00	1960	5000	1.0	0	
	4	510000.0	3	2.00	1680	8080	1.0	0	
21	608	360000.0	3	2.50	1530	1131	3.0	0	
21	609	400000.0	4	2.50	2310	5813	2.0	0	
21	610	402101.0	2	0.75	1020	1350	2.0	0	
21	611	400000.0	3	2.50	1600	2388	2.0	0	
21	612	325000.0	2	0.75	1020	1076	2.0	0	
216	13 rc	ws × 19 col	lumns						•

```
x=df.iloc[:,1:].values
y=df["price"].values
     array([[ 3.00000e+00, 1.00000e+00, 1.18000e+03, ..., -1.22257e+02,
             1.34000e+03, 5.65000e+03],
[ 3.00000e+00, 2.25000e+00, 2.57000e+03, ..., -1.22319e+02,
              1.69000e+03, 7.63900e+03],
             [ 2.00000e+00, 1.00000e+00, 7.70000e+02, ..., -1.22233e+02,
              2.72000e+03, 8.06200e+03],
             [ 2.00000e+00, 7.50000e-01, 1.02000e+03, ..., -1.22299e+02,
               1.02000e+03, 2.00700e+03],
             [ 3.00000e+00, 2.50000e+00, 1.60000e+03, ..., -1.22069e+02,
            1.41000e+03, 1.28700e+03],
[ 2.00000e+00, 7.50000e-01, 1.02000e+03, ..., -1.22299e+02,
              1.02000e+03, 1.35700e+03]])
```

```
array([221900., 538000., 180000., ..., 402101., 400000., 325000.])
for i in df.columns:
 if i=="price":
   continue
 else:
   print(i)
   sns.regplot(x=df'')
     <matplotlib.axes._subplots.AxesSubplot at 0x7fb9f1160610>
         .
         60 8
     0
        0.00
              0.25
                    0.50
                          0.75
                               1.00
                                      1.25
                                            1.50
                          sqft lot15
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20,random_state=1)
# from sklearn.preprocessing import StandardScaler
# scaler=StandardScaler()
# scaler.fit(x_train)
# x_train=scaler.fit_transform(x_train)
# x_test=scaler.fit_transform(x_test)
# x_train
#model creation
from sklearn.linear_model import LinearRegression
mlr=LinearRegression()
mlr.fit(x_train,y_train)
y_pred=mlr.predict(x_test)
y_pred
    array([ 640058.17791108, 476677.53037962, 707658.73936309, ...,
             360521.61328911, 1387672.15189813, 367938.08050214])
print('Intersept',mlr.intercept_)
print('slope',mlr.coef_)
     Intersept 3956635.475128025
     slope [-3.20279315e+04 3.60409149e+04 1.06391432e+02 1.32288285e-01
      1.01348768e+04 5.38860457e+05 5.19958026e+04 2.76632242e+04
       9.55651532e+04 6.86621576e+01 3.77292747e+01 -2.51780015e+03
       2.10768444e+01 -5.49685041e+02 6.10241682e+05 -2.06289119e+05
       2.11939640e+01 -3.47658777e-01]
#Mean Absolute Error
from sklearn.metrics import mean_absolute_error,mean_absolute_percentage_error
print("Mean Absolute Error is ",mean_absolute_error(y_test,y_pred))
print("Error Percentage ",mean_absolute_percentage_error(y_test,y_pred))
    Mean Absolute Error is 129451.37388156046
    Error Percentage 0.2530088490531335
#Mean Squared Error
from sklearn.metrics import mean_squared_error
```

Colab paid products - Cancel contracts here