

BL0942 datasheet

BL0942 calibration-free Metering IC Datasheet

Table of Contents

1	Product	Des	cription	4
	1.1	Fu	nction Introduction	4
	1.2	Fea	atures	4
	1.3	Sys	stem Block Diagram	5
	1.4	Pir	Configuration and Function Description	6
	1.5	Re	gister List	8
	1.6	Sp	ecial Register Description	9
	1.7	Sp	ecifications	11
	1.7	7.1	Electrical Parameters	11
	1.7	7.2	Absolute Maximum Ratings	12
2	Theory	of O	peration	13
	2.1	Cu	rrent and Voltage Instantaneous Waveform	13
	2.2	Ac	tive Power	13
	2.3	An	ti-creep of Active Power	14
	2.4	En	ergy Measurement	15
	2.5	Vo	Itage/Current RMS	15
	2.6	Ov	er current detection	16
	2.7	Zei	ro-crossing Detection	18
	2.8	Lin	ne Voltage Frequency Detection	19
3	Commu	ınica	tion Interface	20
	3.1	SP	I	20
	3.1	1.1	Operation Mode	20
	3.1	1.2	Frame Structure	21

calibration-free metering IC

		3.1.3	Fault Tolerant Mechanism of SPI Interface	. 21
	3.2	UAI	RT	. 22
		3.2.1	Baud Rate Configuration	. 22
		3.2.2	Per Byte Format	. 22
		3.2.3	Write Timing	. 23
		3.2.4	Read Timing	. 23
		3.2.5	Timing Description	. 24
		3.2.6	Packet Reading Mode	. 25
		3.2.7	Protection Mechanism of UART Interface	. 26
4	Ord	er Inform	nation	. 26
5	Mar	king info	rmation	. 26
6	Pacl	kage Dim	ensions	27

1 Product Description

1.1 Function Introduction

BL0942 is a built-in clock calibration-free energy metering IC, which is suitable for single-phase multifunction electricity meters, smart sockets, smart home appliances and other applications, with more costefficient solution.

BL0942 incorporates two sigma delta ADC with a high accuracy energy measurement core. It measures line voltage and current and calculate active energy as well as instantaneous voltage and current.

BL0942 provides access to on-chip registers via UART/SPI interfaces. One configurable low jitter pulse output Pin provide pulse that is proportional to active energy. Zero-crossing voltage (ZX_V), zero-crossing current (ZX_I) and overcurrent are accessible via the external pin.

BL0942 has a patent active power no-load detection to prevent meter-creep.

1.2 Features

- Two independent Sigma-Delta ADC, one current and one voltage.
- Less than 0.1% error in active energy measurement over a dynamic range of 4000:1
- Current RMS range (10mA ~ 30A) @ 1mOhm
- Measure current, voltage RMS, fast current RMS, active power, sampled waveform
- The batch factory gain error is less than 1%, and the peripheral components can be free of calibration under certain conditions
- Programmable over-current detection
- ZX_V/ZX_I output
- Provide sampled waveform data for load type analysis
- SPI (maximum speed 900kHz)/ UART (4800~38400bps) communication(BL0942 TSSOP14L supports
 cascading up to 4 ICs through UART communication)
- On-chip power supply monitor
- On-chip reference 1.218v(typical)
- On-chip oscillator as clock source
- Single 3.3V supply, low power consumption 10mW (typical)
- SSOP10L/TSSOP14L package

1.3 System Block Diagram

Figure 1

1.4 Pin Configuration and Function Description

Figure 2

Pin Description (SSOP10L)

Pin No	Mnemonic	Description			
1	VDD	Power supply (3.3V)			
2,3	IP, IN	Analog input for Current Channel, this differential voltage input has a maximum			
		input range of ± 42mV p-p (30mV RMS)			
4	VP	Analog input for Voltage Channel, this voltage input has a maximum input range			
		of ± 100mV p-p (70mV RMS)			
5	GND	Ground reference			
6	CF1	Logic output. See the OT_FunX register configuration section			
7	SEL	UART/SPI mode selection (0: UART 1: SPI), internal pull-down resistance,			
		connected to GND is 0 level (UART), connected directly to VDD is high level (SPI)			
8	SCLK_BPS	Serial Clock input for SPI. If using UART, this pin is used to config baud rate of			
		UART			
9	RX/SDI	Receive Line for UART interface/Data input for SPI interface, need external pull-			
		up resistor for UART interface.			
10	TX/SDO	Transmit Lint for UART interface/Data output for SPI interface, need external			
		pull-up resistor for UART interface.			

Figure 3

Pin Description (TSSOP14L)

Pin No	Mnemonic	Description
1	VDD	Power supply (3.3V)
2,3	IP,IN	Analog input for Current Channel, this differential voltage input has a
		maximum input range of ± 42mV p-p (30mV RMS)
4	VP	Analog input for Voltage Channel, this voltage input has a maximum input
		range of ± 100mV p-p (70mV RMS)
5	GND	Ground reference
6	A1	Chip Address set for UART interface
7	A2_NCS	Chip select for SPI interface.
		Chip Address set for UART interface
8	CF2	Logic output. See the OT_FunX register configuration section
9	ZX	Zero crossing Voltage logic output. See the OT_FunX register configuration
		section
10	CF1	Logic output. See the OT_FunX register configuration section
11	SEL	UART/SPI mode selection (0: UART 1: SPI), internal pull-down resistance,
		connected to GND is 0 level (UART), connected directly to VDD is high level
		(SPI)
12	SCLK_BPS	Serial Clock input for SPI. If using UART, this pin is used to config baud rate of
		UART
13	RX/SDI	Receive Line for UART interface/Data input for SPI interface, need external
		pull-up resistor for UART interface.
14	TX/SDO	Transmit Line for UART interface/Data output for SPI interface, need external
		pull-up resistor for UART interface.

1.5 Register List

Address	Register Name	Significant bit	Default	Register Description	
		Re	ad-only regi	ster	
0x01	I_WAVE	20	0x00000	Current waveform data, signed	
0x02	V_WAVE	20	0x00000	Voltage waveform data, signed	
0x03	I_RMS	24	0x000000	Current RMS, unsigned	
0x04	V_RMS	24	0x000000	Voltage RMS, unsigned	
0x05	I_FAST_RMS	24	0x000000	Current fast RMS, unsigned	
0x06	WATT	24	0x000000	Active power, signed	
0x07	CF_CNT	24	0x000000	Active energy pulse counter, unsigned	
0x08	FREQ	16	0x4E20	Line voltage frequency	
0x09	STATUS	10	0x000	System Status	
		User operation register (read / write)			
0x12	I_RMSOS	8	0x00	Current RMS Offset	
0x14	WA_CREEP	8	0x0B	Active power No-load threshold	
0x15	I_FAST_RMS_TH	16	0xFFFF	Current fast RMS threshold	
0x16	I_FAST_RMS_CYC	3	0x1	Line cycle for Current fast RMS measurement	
0x17	FREQ_CYC	2	0x3	Line cycle for Line voltage frequency measurement	
0x18	OT_ FUNX	6	0x24	Logic output configuration	
0x19	MODE	10	0x87	User mode selection	
0x1A	GAIN_CR	2	0x2	Current channel gain	
0x1C	SOFT_RESET	24	0x000000	Software reset, BL0942 resets if 0x5a5a5a is written to this register	
0x1D	USR_WRPROT	8	0x00	User write protection. Only 0x55 is written to this register, the user operation registe can be written	

Note: the data frame of communication protocol is 24bit, and the upper invalid bit need be supplemented with 0.

1.6 Special Register Description

User mode selection register

0x19	MODE					
Bits	Bit Name	Default	De	escription		
[1:0]	reserved	b11	re	eserv	ed	
[2]	CF EN	b1	Active energy and pulse	0: 0	isable	
[2]	CF_EIN	ŊΙ	output Enable	1: E	nable	
[3]	RMS_UPDATE_SEL	b0	Selection of refresh time	0:	400ms	
[3]	NIVIS_OFDATE_SEE	DO	for RMS	1:	800ms	
[4]	FAST RMS SEL	b0	FAST_RMS \	wavet	form from;	
ניין	1731_111113_322	50	0: full way	ve; 1	.; AC wave	
[5]	AC_FREQ_SEL	b0	Selection of AC frequency	0:	50Hz	
[3]	AC_INEQ_SEE	50	Selection of Ac frequency	1:	60Hz	
[6]	CF_CNT_CLR_SEL	b0	Clear after read of CF_CNT	0: [isable	
[0]	CI_CIVI_CEN_SEE		register Enable	1: E	nable	
			Mode selection of active	0: S	igned accumulation mode	
[7]	CF_CNT_ADD_SEL	b1	energy pulse	1: Absolute accumulation mod		
			accumulation		T	
					The baud rate is decided	
				00	by the external pin	
				01	SCLK_BPS	
[9:8]	UART_RATE_SEL	b00	Baud rate selection	01	SCLK_BPS=0, 4800bps	
					SCLK_BPS=1, 9600bps	
				10	19200bps	
				11	38400bps	
[23:10]	reserved	b0	re	eserv	ed	

Logic Output configuration register

0x18	OT_ FUNX		
Bits	Bit Name	Default	Description
			CF1 output selection bit:
			b00: Active energy calibration pulse Output (CF)
[1:0]	CF1_FUNX_SEL	b00	b01: Logic output of over-current event(O_C)
			b10: Logic output of zero crossing voltage (ZX_V)
			b11: Logic output of zero crossing current (ZX_I)
			CF2 output selection bit:
	CF2_FUNX_SEL	b01	b00: Active energy calibration pulse Output (CF)
[3:2]			b01: Logic output of over-current event(O_C)
			b10: Logic output of zero crossing voltage (ZX_V)
			b11: Logic output of zero crossing current (ZX_I)
			ZX output selection bit:
		b10	b00: Active energy calibration pulse Output (CF)
[5:4]	ZX_FUNX_SEL		b01: Logic output of over-current event(O_C)
			b10: Logic output of zero crossing voltage (ZX_V)
			b11: Logic output of zero crossing current (ZX_I)
[23:6]	reserved	b0	reserved

System Status register

0x09	STATUS				
Bits	Bit Name	Default	Description		
[0]	CE DEV/D E	b0	This bit indicates the direction of the last energy Pulse CF		
[0]	CF_REVP_F	Ud	0: active forward; 1: active reverse		
[1]	CREEP F	b0	This bit indicates whether the BL0942 is in active power no-load status		
[1]	CKEEP_F	bu	0: not active power no-load state; 1: active power no-load state		
[7:2]	reserved	b0	reserved		
[0]	1 7V 1TH E	г b0	This bit indicates the current signal is below zero crossing current		
[0]	[8] I_ZX_LTH_F b0		detection threshold		
[9]	[9] V ZX LTH F b0 This bit indicates the current signal is below zero cro		This bit indicates the current signal is below zero crossing current		
[3]	V_ZX_LTH_F	detection threshold			
[23:10]	reserved	b0	reserved		

The Gain config of Current channel

0x1A	GAIN_CR	The Gain config of Current channel				
No.	name	default value description				
[1:0]	GAIN_CR	B10	00: Gain=1; 01: Gain=4; 10: Gain=16(default); 11: Gain=24;			
[23:10]	reserved	b0	reserved			

1.7 Specifications

1.7.1 Electrical Parameters

(VDD = 3.3V, GND = 0V, 25 $^{\circ}$ C, Energy accuracy error measure via CF output)

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
Power Supply	VDD		3.0		3.6	V
Power Consumption	lop	VDD=3.3V		3		mA
Active Energy Measurement Error		Dynamic range 4000:1		0.1		%
Active Power Measurement Error (big signal)		30A~100mA@1mOhm sampling resistor		0.2		%
Active Power Measurement Error (small signal)		100mA~50mA@1mOhm sampling resistor		0.4		%
Active Power Measurement Error (small signal)		50mA~10mA@1mOhm sampling resistor		0.6		%
RMS Measurement Error (big signal)		35A~100mA@1mOhm sampling resistor		0.2		%
RMS Measurement Error (small signal)		100mA~50mA@1mOhm sampling resistor		2		%
RMS Measurement Error (small signal)		50mA~10mA@1mOhm sampling resistor		6		%
Refresh time of	50Hz	Set by I_FAST_RMS_CYC	10		160	mS
I_FAST_RMS	60Hz	register	8.3		133	mS
Zero-crossing logic output delay		ZX_V/ZX_I		570		uS
Phase Error	PF08err	Phase lead 37° (PF=0.8C)			0.5	%
between Channels	PF05err	Phase lag 60° (PF=0.5L)			0.5	%
AC Power Supply Rejection (output frequency variation)	ACPSRR	IP/N=100mV		0.1		%
DC Power Supply	DCPSRR	VP/N=100mV		0.1		%

		T				
Rejection (output						
frequency variation)						
Analog input		differential input (neak)			42	mV
(current)		differential input (peak)			42	IIIV
Analog input		differential input (neals)			100	mV
(voltage)		differential input (peak)			100	IIIV
Analog input		ID INLVD		370		kΩ
impedance		IP, IN,VP		370		K 75
SEL pull-down		SEL PIN		56.9		l. O
resistor		SEL PIIN		50.9		kΩ
Analog input		(-3dB)		2.5		kHz
bandwidth		(-308)		3.5		КПZ
On-chip reference	Vref			1.218		V
Logic input high	M	VDD=3.3V±5%	2.6			V
voltage	V_{INH}	VDD=3.3V <u>1</u> 5%	2.0			V
Logic input low	V_{INL}	VDD=3.3V±5%			0.8	V
voltage	VINL	VUU-3.3V ± 5%			0.8	V
Logic output high	V	VDD=3.3V±5%	VDD-0.5			V
voltage	V_{OH}	IOH=5mA	VDD-0.5			V
Logic output low	\ <u>\</u>	VDD=3.3V±5%			0.5	V
voltage	V_{OL}	IOL=5mA			0.5	V

1.7.2 Absolute Maximum Ratings

 $(T = 25 \ ^{\circ}C)$

Paramter	Symbol	Rating	Unit
Supply Voltage VDD	VDD	-0.3 ~ +4	V
Analog Input Voltage (to GND)	IP, IN, VP	-4 ~ +4	V
Digital Input Voltage (to GND)	A1, A2_NCS, SEL, SCLK_BPS, RX/SDI	-0.3 ~ VDD+0.3	V
Digital Output Voltage (to GND)	CF1,CF2,ZX,TX/SDO	-0.3 ~ VDD+0.3	V
Operating Temperature Range	Topr	-40 ~ +85	$^{\circ}\!\mathbb{C}$
Storage Temperature Range	Tstr	-55 ~ +150	$^{\circ}$

2 Theory of Operation

BL0942 includes two-channel PGA, two-channel sigma delta ADC, internal clock, POR, LDO and digital signal processing module (DSP).

2.1 Current and Voltage Instantaneous Waveform

Figure 4

The current and voltage waveform data are updated at a rate of 7.8kSPS (samples per second). Each sampling data is 20bit signed and stored in the waveform data register (I_WAVE, V_WAVE).

Note: the register is 24bit. If the number of bits is insufficient, zero is added to the high invalid bit.

address	Register Name	Significant bit	Default	Register Description
0x01	I_WAVE	20	0x00000	Current Waveform Data, signed
0x02	V_WAVE	20	0x00000	Voltage Waveform Data, signed

2.2 Active Power

Figure 5

calibration-free metering IC

address	Register Name	Significant bit	Default	Register Description
0x06	WATT	24	0x000000	Active power, signed

WATT Register value: WATT=
$$\frac{3537*I(A)*V(V)*COS~(\phi)}{Vref^2}$$

Where:

I(A)/ V(V) is the rms voltage (mV) of the input signal of current/voltage channel.

 Φ is the angle between current and voltage signals.

Vref is the on-chip reference voltage, the typical value is 1.218V;

This register indicates whether the active power is positive or negative, bit [23] = 0, active power is positive power, bit [23] = 1, active power is negative power. complement code form.

2.3 Anti-creep of Active Power

Bl0942 has a patent active power no-load detection to prevent meter-creep, which ensures that the board level noise power will not accumulate energy when there is no-load.

Active power anti-creep threshold register (WA_CREEP) is an 8-bit unsigned value, and the default value is $0x0B_{\circ}$. When the absolute value of instantaneous active power is less than this threshold, the output active power is set to 0. This can make the value of the active power register is 0 even if there is a small noise signal in no-load, and the active energy is not accumulated.

address	Register Name	Significant bit	Default	Register Description
0x14	WA_CREEP	8	0x0B	Active power No-load threshold

The corresponding relationship between the WA_CREEP and WATT register is shown in the following equation:

$$WA_CREEP = WATT * \frac{256}{3125}$$

Note: when the BL0942 is in the Anti-creep state, the current RMS value is also cut off to 0.

2.4 Energy Measurement

BL0942 provides energy pulse output. The active energy can be obtained by integrating the instantaneous active power for a period of time, and output the calibration pulse (CF). The CF_CNT register stores the number of output energy pulses CF, as shown in the figure below.

Figure 6

Address	Register Name	Significant bit	Default	Register Description
0x07	CF_CNT	24	0x000000	Active energy pulse counter

BL0942 provide active energy via CF_CNT register. The power information also can be provided through CF1/CF2/ZX pin. When the active energy pulse period is shorter than 160mS, the duty cycle of the pulse output is 50%; when the pulse period is longer than 160mS, the high-level fixed pulse width is 80mS.

0x19	MODE	Operating mode register				
No.	name	default	desc	ription		
[2]	CE EN	b1	Active energy and pulse	0: Disable		
[2] CF_EN		b1	output Enable	1: Enable		
[6]	[6] CF_CNT_CLR_SEL		Clear after read of CF_CNT	0: Disable		
[b]			register Enable	1: Enable		
[7] CF CNT ADD CF		1.4	Mode selection of active	0: Signed accumulation mode		
[7]	CF_CNT_ADD_SEL	b1	energy pulse accumulation	1: Absolute accumulation mode		

Cumulative time of each CF pulse $t_{CF} = \frac{1638.4*256}{WATT}$

Where: WATT is the value of active power register(0x06).

2.5 Voltage/Current RMS

The RMS algorithm of current and voltage is shown in the figure below.

Figure 7

Address	Register Name	Significant bit	Default	Register Description
0x03	I_RMS	24	0x000000	Current RMS, unsigned
0x04	V_RMS	24	0x000000	Voltage RMS, unsigned

0x19	MODE	Operating mode register			
No.	name	default description		scription	
[3]	RMS_UPDATE_SEL	0b0	Selection of refresh time for RMS	0: 400ms 1: 800ms	

Current RMS register equation: I_RMS = $\frac{305978*I(A)}{Vref}$

Voltage RMS register equation: $V_RMS = \frac{73989*V(V)}{Vref}$

Where:

Vref: on-chip reference voltage, the typical value is 1.218 V. (the gain config of current is 16)

I(A): the voltage of IP&IN Pin(unit: mV).

V(V): the voltage of VP&GND Pin(unit: mV).

2.6 Over current detection

BL0942 provide over-current detection. The absolute value of I_WAVE_F is accumulated in half cycle or cycle time and stored in I_FAST_RMS register. If I_FAST_RMS[23:8] >= I_FAST_RMS_TH[15:0], the over-current logic output is high level.

Shanghai Belling Corp., Ltd. V1.06 810, Yishan Road, Shanghai, China, 200233 Tel: +86-21-24261000 www.belling.com.cn

Figure 8

Address	Register Name	Significant bit	Default	Register Description
0x15	I_FAST_RMS_TH	16	0xFFFF	Current fast RMS threshold

Address	Register Name	Significant bit	Default	Register Description
0x05	I_FAST_RMS	24	0x000000	Current fast RMS, unsigned

 $I_FAST_RMS \approx I_RMS * 0.363$

NOTE: the FAST_RMS is only used for large signal measurement. The accuracy error of FAST_RMS will be large in small signal because of DC bias on the board.

Address	Register Name	Significant bit	Default		Register Description
				Line cycle for	Current fast RMS measurement
				000	0.5 cycles
0x16	I_FAST_RMS_CYC	3	0x1	001	1 cycle
				010	2 cycles
				011	4 cycles
				other	8 cycles

The I_FAST_RMS measure period can be config by I_FAST_RMS_CYC register. MODE [5] is used to config AC frequency. If MODE [5]=0, the AC frequency is 50Hz, then 1 cycle is 20mS; if MODE[5]=1, the AC frequency is 60Hz, 1cycle is 16.7mS. the shorter the measure period, the more the measure value jitter. If need remove the DC bias, set MODE[4]=1 to select the waveform after HPF as the FAST_RMS source

0x19	MODE	Operating mode register				
No.	name	default value description				
[4]	FAST_RMS_SET	0b0	FAST_RMS waveform from; 0: full wave; 1; AC wave			
[5]	AC_FREQ_SEL	0b0	0: 50Hz			

Shanghai Belling Corp., Ltd.

V1.06

17 / 28

	frequency election	1: 60Hz
S	election	

2.7 Zero-crossing Detection

Bl0942 includes a zero-crossing detection on voltage and current channel. The voltage and current channel ZX information is configured to be output on CF1/CF2/ZX Pin. As shown in Figure 11, the ZX output goes high on the negative-going edge of the signal zero crossing and low on the positive-going edge of signal zero crossing. A delay of approximately 570uS should be expected on ZX logic output pin due to the time delay of HPF.

Figure 11

0x18	OT_ FUNX		Output configuration register
No.	name	default value	description
			CF1 output selection bit:
			b00: Active energy calibration pulse Output (CF)
[1:0]	CF1_FUNX_SEL	0b00	b01: Logic output of over-current event(O_C)
			b10: Logic output of zero crossing voltage (ZX_V)
			b11: Logic output of zero crossing current (ZX_I)
			CF2 output selection bit:
			b00: Active energy calibration pulse Output (CF)
[3:2]	CF2_FUNX_SEL	0b01	b01: Logic output of over-current event(O_C)
			b10: Logic output of zero crossing voltage (ZX_V)
			b11: Logic output of zero crossing current (ZX_I)
			ZX output selection bit:
			b00: Active energy calibration pulse Output (CF)
[5:4]	ZX_FUNX_SEL	0b10	b01: Logic output of over-current event(O_C)
			b10: Logic output of zero crossing voltage (ZX_V)
			b11: Logic output of zero crossing current (ZX_I)

	•		
[22.62]		01:0	
[23:6]	reserved	0b0	reserved

0x19	STATUS		Working s	status register
No.	name	default		description
			This bit indicates the current	0: Current zero crossing detection is valid
[8]	I_ZX_LTH_F	0b0	signal is below zero crossing	1: Current zero crossing detection is invalid
			current detection threshold	1. Current zero crossing detection is invalid
			This bit indicates the current	0: Voltage zero crossing detection is valid
[9]	V_ZX_LTH_F	0b0	signal is below zero crossing	1. Voltage zero grassing detection is invalid
			current detection threshold	1: Voltage zero crossing detection is invalid

To prevent spurious zero crossing when a small input is present, there have zero-crossing threshold on all channels of the BL0942.

The fixed threshold of current channel is approximately set to a range of 64:1 of the input full scale. The fixed threshold of voltage channel is approximately set to a range of 32:1 of the input full scale. If any input signal falls below these levels, no zero-crossing signals are produced by BL0942, the ZX logic output keep low level.

2.8 Line Voltage Frequency Detection

BL0942 provides a frequency measurement of the voltage channel. The FREQ register is updated once every set FREQ_CYC cycle.

Address	Register Name	Significant bit	Default		Register Description
0x08	FREQ	16	0x4e20	Line	voltage register, unsigned
				Line volta	ge refresh time setting register
				00	2 cycles
0x17	FREQ_CYC	2	0x3	01	4 cycles
				10	8 cycles
				11	16 cycles

The frequency measurement has a resolution of 2us/LSB, which represents 0.01% when the line frequency is 50Hz and 0.012% when the line frequency is 60Hz.

The following equation can be used to compute the line frequency using the FREQ register:

$$f_{\text{measure}} = \frac{1000000}{FREQ}$$
 Hz

In addition, when the RMS voltage is lower than the zero-crossing threshold, the line voltage frequency detection is disable.

3 Communication Interface

BL0942 provides SPI/UART communication interfaces, these communication interface use the same group of pins. So only one method of communication can be used in each design. The length of the data transfer is 24bits. If the width of the register is less than 24bits long, the high invalid bit should be fixed with 0, make up 24bits long to transfer.

3.1 **SPI**

- If SEL Pin is pulled up to VDD, the communication method is SPI
- slave mode
- Half duplex communication, the maximum SPI speed is 900khz
- 8-bits data transmission, data order with MSB-first shifting
- Fixed clock polarity and phase (CPOL = 0, CPHA = 1)
- three or four wire communication method. In three wire mode, A2_NCS is connected to GND. In four-wire mode, the A2_NCS must be driven low for the entire read or write operation.

3.1.1 Operation Mode

CPOL = 0 and CPHA = 1. SCLK PIN has a low-level idle state. The second edge on the SCLK Pin is the MSBIT capture strobe. Data is latched on the occurrence of the first clock transition.

Figure 12

3.1.2 Frame Structure

In SPI communication method, first send 8bit initial byte (0x58) or (0xa8), (0x58) is read operation identification byte, (0xa8) is write operation identification byte, and then send register address of BL0942. The following figure shows the data transfer sequence of SPI Write and Read operations. A complete read/write operation contain 48 cycles.

1) Write operation frame

			W	/rite	СМ	D					Reg	ister	Add	dres	s					Data	_H				ي ا				Da	ata_l	_						Che	ecks	um		
	1 (T	1	0	1	0	0	0	A	A	A	A	A	A	Α	A	D	D	D	D	D	D	D	D	Ш	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
L										6	5	4	3	2	1	0	′	ь	5	4	3	2	7	0	D	'	6	5	4	3	2	1	0	′	6	5	4	3	2	7	U

where the checksum byte = $((0xa8 + Address + Data_H + Data_M + Data_L) \& 0xff)$ and then inverted by bit.

2) Read operation frame

where the checksum byte is $((0x58 + Address + Data_H + Data_M + Data_L) \& 0xff)$ and then inverted by bit.

Note: the register data is fixed to 3 bytes (MSB first), if the effective byte of the register data is less than 3 bytes, the invalid bit should be filled with 0)

3.1.3 Fault Tolerant Mechanism of SPI Interface

If MCU send 6 bytes (0xFF), the BL0942 perform a reset function on the SPI communication interface.

3.2 UART

- SEL pin connected to GND, SEL = 0, UART communication method.
- slave mode
- Half duplex communication, the baud rate can be configured to 4800bps,9600bps, 19200bps,38400bps.
- 8-bit data transmission, no parity bit, stop bit 1
- Support packet reading
- TSSOP14L package can support the chip address function of the device, and the IC Address can be configurated to 0~3 by pins [A2_NCS, A1]. These IC Address set allow communication with multiple devices (maximum 4 pcs of BL0942) on the one UART interface of MCU.

3.2.1 Baud Rate Configuration

BL0942 can configurate Baud Rate by register MODE [9:8] and SCLK_BPS pin.

0x19	MODE		Operating mod	de regist	er
No.	name	default value		descript	tion
				00	SCLK_BPS pin = 0: 4800bps
				00	SCLK_BPS pin = 1: 9600bps
[9:8]	UART_RATE_SEL	0b00	Baud rate selection	01	Same as 00
				10	19200bps
				11	38400bps

3.2.2 Per Byte Format

Take baud rate = 4800bps as an example

Start bit low level duration T1 = 208us

Effective data bit duration T2 = 208 * 8 = 1664us

Stop bit high level duration T3 = 208us

3.2.3 Write Timing

The UART data writing sequence of the host is shown in the figure below. The host first sends command bytes {1,0,1,0,1,0, A2, A1}, and then sends the register address that need to write data. Next, the three data bytes are sent (the low byte is first, the high byte is later, if the valid bytes of the data is less than 3 bytes, the invalid byte is supplemented with 0), and finally the CHECKSUM byte is sent.

Where:

{1,0,1,0,1,0, A2, A1} is the frame initial byte of the write operation. If PIN A2_NCS=1, A1=0, the BL0942 address is 2, the frame initial byte is 0XAA.

ADDR is the register address of BL0942 that need to write data.

The CHECKSUM byte is ({1,0,1,0,1,0, A2, A1} + ADDR + DATA [7:0] + DATA [15:8] + DATA [23:16]) & 0xff then inverted by bit.

3.2.4 Read Timing

The UART data reading sequence of the host is shown in the figure below. The host first sends command byte {0,1,0,1,1,0, A2, A1}, and then sends the register address to be read. Next, BL0942 will return three data bytes (low byte comes first, high byte comes last, invalid bytes supplemented with 0 if valid byte is less than 3 bytes), and finally CHECKSUM byte.

Where:

 $\{0,1,0,1,1,0, A2, A1\}$ is the frame initial byte of read operation, assuming $\{A2, A1\} = 10$, the BL0942 address is 2, the frame initial byte is 0x5A.

ADDR is the register address of BL0942 need to read data.

The CHECKSUM byte is ({0,1,0,1,1,0, A2, A1} + ADDR + DATA [7:0] + DATA [15:8] + DATA [23:16]) & 0xff then inverted by bit.

Note: the IC Address of SSOP10L package is 0.

3.2.5 Timing Description

	Description	Min	Type	Max	Unit
t1	Byte-to Byte Delay by master	0		20	mS
t2	Delay between the end of MCU sending register address and		150		uS
	BL0942 sending byte in read operation				
t3	Frame-to-Frame delay	0.5			uS
t4	Byte-to Byte Delay by BL0942		0		uS

3.2.6Packet Reading Mode

The MCU sends a packet of two bytes "{0,1,0,1,1,0, A2, A1} + 0xAA", BL0942 will return a full electric parameter data packet. A total of 23 bytes are returned, which takes about 48ms when 4800bps is used.

All electric parameter package format:

	Send byte order	content
HEAD	0	0x55
	1	I_RMS [7:0]
I_RMS	2	I_RMS [15:8]
	3	I_RMS [23:16]
	4	V_RMS [7:0]
V_RMS	5	V_RMS [15:8]
	6	V_RMS [23:16]
	7	I_FAST_RMS [7:0]
I_FAST_RMS	8	I_FAST_RMS [15:8]
	9	I_FAST_RMS [23:16]
	10	WATT [7:0]
WATT	11	WATT [15:8]
	12	WATT [23:16]
	13	CF_CNT [7:0]
CF_CNT	14	CF_CNT [15:8]
	15	CF_CNT [23:16]
	16	FREQ [7:0]
FREQ	17	FREQ [15:8]
	18	0x00
	19	STATUS [7:0]
STATUS	20	0x00
	21	0x00
CHECKSUM	22	

 $checksum = (({0,1,0,1,1,0,A2,A1} + 0x55 + data1_l + data1_m + data1_h +) & 0xff) then inverted by bit.$

3.2.7 Protection Mechanism of UART Interface

- If Byte-to Byte Delay by master exceeds 20ms, UART interface will reset.
- Command reset, the UART interface of BL0942 continuously receives more than 32 "0", and the UART interface is reset.

Note: in UART mode, multi-chip communication, Frame-to-Frame delay when switching to communicate with another IC should keep above 20mS.

4 Order Information

BL0942-X X=SSOP10L: SSOP10L package

X=TSSOP14L: TSSOP14L package

5 Marking information

TSSOP14L

BL0942 ↔ YYWW#ZZ↔ D85#SSSSS↔

SSOP10L

"YY" represents the packaging year

"WW" represents packaging week, 01-52 week

"ZZ" represents packaging plant

"#"represents space

"SSSSS" represents LOT Number

6 Package Dimensions

Humidity sensitivity grade: MSL3 The warranty period: two years

Packaging mode: SSOP10L tape packaging

Minimum package:3000

SECTION B-B

SYMBOL	M	IILLIME	TER
SYMBOL	MIN	NOM	MAX
Α	_	_	1.75
A1	0.10	-	0.225
A2	1.30	1.40	1.50
A3	0.60	0.65	0.70
b	0.39	-	0.47
bl	0.38	0.41	0.44
С	0.20	_	0.24
cl	0.19	0.20	0.21
D	4.80	4.90	5.00
Е	5.80	6.00	6.20
E1	3.80	3.90	4.00
e		1.00BS	С
h	0.25	-	0.50
L	0.50	_	0.80
LI	1	.05REI	7
θ	0	_	80

ITEM	W	A0	В0	D	D1	Е	F	K1	КО	P0	P2	P	T
								1.85					
TOLE	+0.3	±0.10	±0.10	+0, 1 -0, 0	+0, 1	± 0.1	± 0.10	±0.05	±0.10	± 0.1	±0.1	± 0.1	±0.05

Humidity sensitivity grade: MSL3 The warranty period: two years

Packaging method: TSSOP14L tape packaging

Minimum package: 3000

SYMBOL	M	ILLIMET	ER
SYMBOL	MIN	NOM	MAX
A	_	_	1.20
A1	0.05	_	0.15
A2	0.90	1.00	1.05
A3	0.39	0.44	0.49
b	0.20		0.28
b1	0.19	0.22	0.25
c	0.13	_	0.17
c1	0.12	0.13	0.14
D	4.90	5.00	5.10
El	4.30	4.40	4.50
E	6.20	6.40	6.60
e		0.65BSC	1
L	0.45	0.60	0.75
Ll		1.00BSC	
θ	0	_	8°

外观	尺寸(mm)
Е	1.75 ± 0.1
F	5.5 ± 0.1
P2	2.0 ± 0.05
D	1. 5 0 1
D1	1. 5 0 1
PO	4.0 ± 0.1
R	0. 5TYP
10P0	40.0 ± 0.20

W	12.0 ± 0.1
Р	8.0 ± 0.1
AO	6.8 ± 0.1
ВО	5.4 ± 0.1
KO	1.3 ± 0.1
t	0.3 ± 0.05
K1	1.7 ± 0.1
A1	3.8 ± 0.2
A2	4.4 ± 0.2
θ	3° TYP