Introduction to Modern Control Systems Convex Optimization & Linear Matrix Inequalities

Kostas Margellos

University of Oxford

AIMS CDT 2024-25

Introduction to Modern Control

References

Convex Optimization & Duality Theory:

- Boyd & Vandenberghe (2004) Convex Optimization, Cambridge University Press.
- Bertsekas (2009) Convex Optimization Theory, Athena Scientific.
- Rockafellar (1970) Convex Analysis, Princeton, NJ: Princeton University Press.

Linear Matrix Inequalities (LMIs):

- Boyd, El Ghaoui, Feron & Balakrishnan (1994) Linear Matrix Inequalities in System and Control Theory, SIAM.
- VanAntwerp & Braatz (2000) A tutorial on linear and bilinear matrix inequalities, J. Process Control.

Convex Optimization

- Optimization programs
- Convex sets
- Convex functions
- Operations that preserve convexity
- Convex optimization programs

Linear Matrix Inequalities (LMIs)

- How do they look like?
- Are they convex?
- Why are they interesting

AIMS CDT 2024-25

Introduction to Modern Control

4 日 5 4 間 5 4 日 5 4 日 5 1 日 1

Optimization program - General description

A more common problem format:

$$\min_{x \in \mathcal{X}} f_0(x)$$

subject to: $f_i(x) \leq 0$ $i = 1, \dots, m$
 $h_i(x) = 0$ $i = 1, \dots, p$

- Objective function $f_0: \mathcal{X} \to \mathbb{R}$
- **Domain** $\mathcal{X} \subseteq \mathbb{R}^n$ of the objective function, from which the decision variable $x := (x_1; x_2; ...; x_n)$ must be chosen.
- Inequality constraint functions $f_i : \mathbb{R}^n \to \mathbb{R}$, for $i = 1, \dots, m$
- Equality constraint functions $h_i : \mathbb{R}^n \to \mathbb{R}$, for $i = 1, \dots, p$
- ⇒ Maximization fit the framework with a change of sign.

AIMS CDT 2024-25

Optimization program - Possible outcomes

Consider the problem

$$p^* = \min_{x \in \mathcal{X}} f(x)$$

- If $p^* = -\infty$, then the problem is **unbounded below**.
- If the set \mathcal{X} is empty, then the problem is **infeasible** (and we set $p^* = +\infty$).
- If $\mathcal{X} = \mathbb{R}^n$, the problem is **unconstrained**.
- There might be more than one solution. The set of solutions is:

$$\arg\min_{x\in\mathcal{X}}f(x):=\{x\in\mathcal{X}\mid f(x)=p^*\}$$

AIMS CDT 2024-25

Introduction to Modern Control

4 D > 4 B > 4 E > 4 E > E 990

イロト イ団ト イミト イミト ヨー めらぐ

Under convexity it is easier ...

Linear Program (LP):

$$\min_{x} c^{\top}x$$

subject to: $Gx \le h$

Ax = b

Convex Quadratic Program (QP) $-P \succeq 0$:

$$\min_{\mathbf{x}} \quad \frac{1}{2} \mathbf{x}^{\top} P \mathbf{x} + \mathbf{q}^{\top} \mathbf{x}$$

subject to: $Gx \le h$

⇒ Convex programs: Local optimum = Global optimum

Geometric view

Introduction to Modern Control

Convex sets

Definition (Convex Set)

AIMS CDT 2024-25

A set \mathcal{X} is convex if and only if for any pair of points x and y in \mathcal{X} , any **convex combination** of x and y lies in \mathcal{X} :

 \mathcal{X} is convex $\Leftrightarrow \lambda x + (1 - \lambda)y \in \mathcal{X}, \forall \lambda \in [0, 1], \forall x, y \in \mathcal{X}$

Interpretation: All line segments starting and ending in \mathcal{X} stay within \mathcal{X} .

Non-convex:

Convex sets

Definitions (Hyperplanes and halfspaces)

A hyperplane is defined by $\{x \in \mathbb{R}^n \mid a^\top x = b\}$ for $a \neq 0$, where $a \in \mathbb{R}^n$ is the normal vector to the hyperplane.

A halfspace is defined by $\{x \in \mathbb{R}^n \mid a^\top x \leq b\}$ for $a \neq 0$. It can either be open (strict inequality) or closed (non-strict inequality).

For n = 2, hyperplanes define lines. For n = 3, hyperplanes define planes.

 $\{x \mid a^{\mathsf{T}}x \leq b\}$

A hyperplane

AIMS CDT 2024-25

Introduction to Modern Control

A closed halfspace

Ellipsoid - Generalized norm ball

Definition (Ellipsoid)

An ellipsoid is a set defined as

$$\mathcal{E} = \{ x \mid (x - x_c)^{\top} A^{-1} (x - x_c) \le 1 \},$$

where x_c is the centre of the ellipsoid, and $A \succ 0$.

Alternatively, $\mathcal{E} = \{x \mid T(x) \leq 0\}$ where

$$T(x) = x^{\top}Ax + 2x^{\top}b + c$$
, with $A = A^{\top} > 0$.

Convex sets

Definitions (Polyhedra and polytopes)

A polyhedron is the intersection of a *finite* number of closed halfspaces:

$$\mathcal{X} = \{x \mid a_1^\top x \le b_1, \ a_2^\top x \le b_2, \dots, a_m^\top \le b_m\} = \{x \mid Ax \le b\}$$

where $A := [a_1, a_2, \dots, a_m]^{\top}$ and $b := [b_1, b_2, \dots, b_m]^{\top}$.

A polytope is a bounded polyhedron.

Polyhedra and polytopes are always convex.

Intersection of convex sets

Theorem

The intersection of two or more convex sets is itself convex.

Proof (for two sets): Consider any two points a and b which both lie in both of two convex sets \mathcal{X} and \mathcal{Y} . For any $\lambda \in [0,1]$, $\lambda a + (1-\lambda)b$ is in both \mathcal{X} and \mathcal{Y} . Therefore $\lambda a + (1 - \lambda)b \in \mathcal{X} \cap \mathcal{Y}$, $\forall \lambda \in [0, 1]$. This satisfies the definition of convexity for set $\mathcal{X} \cap \mathcal{Y}$.

Think of simultaneous constraint satisfaction.

Union of convex sets

Note that the union of two sets is not convex in general, regardless of whether the original sets were convex!

AIMS CDT 2024-25

Introduction to Modern Control

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ のQ○

AIMS CDT 2024-25

Convex functions

Definitions (Convex function)

A function $f : dom(f) \to \mathbb{R}$ is convex if and only if its domain dom(f) is convex and

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \quad \forall \lambda \in (0, 1), \quad \forall x, y \in \text{dom}(f)$$

The function f is strictly convex if this inequality is strict.

Convex functions – 1st-order condition

A differentiable function $f: dom(f) \to \mathbb{R}$ with a convex domain is **convex** if and only if

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x), \quad \forall x, y \in \text{dom}(f)$$

i.e. a first order approximator of f around any point x is a global underestimator of f.

The gradient is given by
$$\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right]^{\top}$$

Convex functions – 2nd-order condition

A twice-differentiable function $f: dom(f) \to \mathbb{R}$ is **convex** *if and only if* its domain dom(f) is convex and

$$\nabla^2 f(x) \succeq 0, \quad \forall x \in \text{dom}(f),$$

where the Hessian $\nabla^2 f(x)$ is defined by

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

If dom(f) is convex and $\nabla^2 f(x) \succ 0$ for all $x \in \text{dom}(f)$, then f is **strictly** convex.

Convex functions – Epigraph

The **epigraph** of a function $f: dom(f) \to \mathbb{R}$ is the **set**

$$\operatorname{epi}(f) = \left\{ \left[egin{array}{c} x \\ t \end{array} \right] \ \middle| \ x \in \operatorname{dom}(f), \ f(x) \leq t
ight\} \subseteq \operatorname{dom}(f) imes \mathbb{R}$$

It has dimension one higher than the domain of f.

A function is convex if and only if its epigraph is a convex set.

Convex optimization program – standard form

A standard form **convex** optimization problem:

$$\begin{aligned} \min_{x \in \mathcal{X}} \quad f_0(x) \\ \text{subject to:} \quad f_i(x) \leq 0 \quad i = 1, \dots, m \\ a_i^\top x = b_i \quad i = 1, \dots, p \end{aligned}$$

This problem is convex if:

AIMS CDT 2024-25

- The domain \mathcal{X} is a convex set.
- The objective function f_0 is a convex function.
- The inequality constraint functions f_i are all convex.
- The equality constraint functions $h_i(x) = a_i^\top x$ are all affine.

Operations that preserve convexity

Theorem (Non-negative weighted sum)

If f is a function convex, then αf is convex for $\alpha > 0$. For several convex functions f_i , $\sum_i \alpha_i f_i$ is convex if all $\alpha_i \geq 0$.

Theorem (Composition with affine function)

If f is a convex function, then f(Ax + b) is convex.

Example: ||Ax - b|| is convex for any norm; Exponential functions.

Theorem (Pointwise maximum)

If f_1, \ldots, f_m are convex functions, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is

Example: Piecewise linear functions $\max_{i=1,...,m} \{a_i^\top x + b\}$ are convex. AIMS CDT 2024-25

Introduction to Modern Control

Convex optimization program – standard form

A standard form **convex** optimization problem:

$$\begin{aligned} & \min_{x \in \mathcal{X}} \quad f_0(x) \\ \text{subject to:} & f_i(x) \leq 0 \quad i = 1, \dots, m \\ & Ax = b \quad A \in \mathbb{R}^{p \times m} \end{aligned}$$

This problem is convex if:

- The domain \mathcal{X} is a convex set.
- The objective function f_0 is a convex function.
- The inequality constraint functions f_i are all convex.
- The equality constraint functions $h_i(x) = a_i^{\top} x$ are all affine.

Convex programs: Local optimum = Global optimum

Theorem

For a convex optimization problem, every locally optimal solution is globally optimal.

Proof:

- Assume that x is locally optimal, but not globally optimal.
- Therefore there is some other point y such that f(y) < f(x).
- x locally optimal implies that there is some R > 0 such that

$$||z-x||_2 \le R \Rightarrow f(x) \le f(z)$$

• The problem can't be convex.

Example: Piecewise affine minimization (con'd)

Piecewise affine minimization:

$$\min_{x} \left[\max_{i=1,\dots,m} \left\{ c_i^{\top} x + d_i \right\} \right]$$

subject to: Gx < h

is **equivalent** to an LP:

$$\begin{aligned} & \min_{x,t} & t \\ \text{subject to:} & & c_i^\top x + d_i \leq t & \forall i = 1, \dots, m \\ & & \textit{Gx} \leq h \end{aligned}$$

Add variables and write the problem in epigraph form \Rightarrow epigraphic reformulation.

Example: Piecewise affine minimization

Piecewise affine minimization:

$$\min_{x} \quad \left[\max_{i=1,\dots,m} \left\{ c_i^\top x + d_i \right\} \right]$$
 subject to: $Gx < h$

The function is affine on

each region \mathcal{R}_i .

 Any convex and piecewise affine function can be written this way (e.g. 1st norm).

 Can be reformulated as an IP.

AIMS CDT 2024-25

January 23, 2025

What are LMIs?

A **Linear Matrix Inequality** (LMI) is a constraint of the form:

$$x_1A_1 + x_2A_2 + \cdots + x_nA_n \leq B$$

where the matrices $A_1, \ldots, A_n, B \in \mathbb{R}^{m \times m}$ are all symmetric.

• This is a constraint that imposes matrix

$$B - \sum_{i}^{n} x_{i} A_{i}$$

to be positive semidefinite (positive definite if \prec replaced by \prec).

- It is equivalent to imposing *m* polynomial inequalities
 - Not element-wise constraints.
 - All leading principle minors are positive (for positive definite matrices).

AIMS CDT 2024-25 Introduction to Modern Control January 23, 2025 24 / 82

AIMS CDT 2024-25 Introduction to Modern Control

What are LMIs?

A Linear Matrix Inequality (LMI) is a constraint of the form:

$$x_1A_1 + x_2A_2 + \cdots + x_nA_n \leq B$$

where the matrices (A_1, \ldots, A_n, B) are all symmetric.

Consider the constraint

$$Q = \begin{bmatrix} x_1 & x_2 \\ x_2 & x_3 \end{bmatrix} \succ 0$$

• This is equivalent to (2 inequalities) leading principle minors as inequality is strict):

$$x_1 > 0$$

$$\det(Q) > 0 \Leftrightarrow x_1 x_3 - x_2^2 > 0$$

AIMS CDT 2024-25

(ロ) (部) (目) (目) (目) () (O)

LMIs are convex constraints

Theorem

The following LMI constraint is convex.

$$F(x) = B - \sum_{i}^{n} x_{i} A_{i} \succeq 0$$

Proof: Let x, y such that F(x), $F(y) \succeq 0$, and $\lambda \in (0,1)$.

$$F(\lambda x + (1 - \lambda)y) = B - \sum_{i} (\lambda x_{i} + (1 - \lambda)y_{i})A_{i}$$

$$= \lambda B + (1 - \lambda)B - \lambda \sum_{i} x_{i}A_{i} - (1 - \lambda)\sum_{i} y_{i}A_{i}$$

$$= \lambda F(x) + (1 - \lambda)F(y)$$

$$\succeq 0$$

General form LMIs

Example 1:
$$y - x^2 > 0$$
, $y > 0 \iff \begin{bmatrix} y & x \\ x & 1 \end{bmatrix} > 0$

- Check leading principle minors (as inequality is strict)
- That is an LMI: rewrite as

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + y \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + x \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \succ 0$$

Example 2:
$$x_1^2 + x_2^2 < 1 \iff \begin{bmatrix} 1 & 0 & x_1 \\ 0 & 1 & x_2 \\ x_1 & x_2 & 1 \end{bmatrix} \succ 0$$

• Leading principle minors are: 1 > 0, $\det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} > 0$, and

$$1 \cdot \det \begin{bmatrix} 1 & x_2 \\ x_2 & 1 \end{bmatrix} - 0 \cdot \det \begin{bmatrix} 0 & x_2 \\ x_1 & 1 \end{bmatrix} + x_1 \cdot \det \begin{bmatrix} 0 & 1 \\ x_1 & x_2 \end{bmatrix} > 0$$

AIMS CDT 2024-25

Introduction to Modern Control

January 23, 2025

Theorem

The following LMI constraint is convex.

LMIs are convex constraints

$$F(x) = B - \sum_{i=1}^{n} x_i A_i \succeq 0$$

Alternative proof: We want to show that the set $\{x: F(x) \succeq 0\}$ is convex. We have that ...

$$\{x: F(x) \succeq 0\} = \{x: z^{\top} F(x) z \ge 0, \text{ for all } z\}$$
$$= \bigcap_{z} \{x: z^{\top} F(x) z \ge 0\}$$

... but this is an infinite intersection of sets affine in x ... so it is convex!

- LMI much harder than linear constraints an infinite number of them!
- Result can be piecewise affine LMIs nonlinear!

Why are LMIs interesting?

Linear Matrix Inequalities:

- Appear in many common control design problems (more later on)
- Most of the problems presented so far can be written using LMI constraints

Linear constraints

$$Ax \le b \iff \operatorname{diag}(Ax) \le \operatorname{diag}(b)$$

Quadratic constraints (It will be clear later on)

$$x^{\top}Qx + b^{\top}x + c \leq 0, \quad Q \succ 0 \quad \iff \quad \begin{bmatrix} c + b^{\top}x & x^{\top} \\ x & -Q^{-1} \end{bmatrix} \leq 0$$

4 D > 4 B > 4 E > 4 E > E 990

AIMS CDT 2024-25

Introduction to Modern Control

January 23, 2025 29 / 82

AIMS CDT 2024-25

Summarv

Introduction to Modern Control

Interplay between convex functions and sets (epigraphic reformulation)

• Generalize many of the well known constraints (e.g. linear, quadratic)

4 D > 4 A > 4 B > 4 B > B = 40 0

LMIs in optimization

Consider the following optimization program

Introduction to convex optimization

2 Linear Matrix Inequalities (LMIs)

LMI constraints are convex!

Nonlinear constraints

• Under convexity: local = global optima

Recognizing convexity makes life easier

$$\min \quad c^{\top}x$$
 (SDP): subject to: $x_1A_1 + x_2A_2 + \cdots + x_nA_n \leq B$

where the matrices (A_1, \ldots, A_n, B) are all symmetric.

- We could also have equality constraints
- Optimization over LMI constraints

Why is this class of optimization programs interesting?

- Semidefinite programming (SDP)
- Many control analysis and synthesis problems can be written as SDPs
- Most of the problems presented so far can be written as SDPs

Duality Theory

- The Lagrangian function
- The dual problem
- Weak and strong duality
- Optimality conditions
- Game theoretic view

LMIs in optimization

- Semidefinite programming (SDP)
- The dual of an SDP

∢□▶∢∰▶∢差▶∢差♪

Introduction to Modern Control

AIMS CDT 2024-25

Introduction to Modern Control

Semidefinite optimization programs (SDPs)

Consider the following optimization program

$$\begin{array}{c} \text{min} \quad c^{\top}x \\ \text{(SDP)}: \quad \text{subject to:} \quad x_1A_1+x_2A_2+\cdots x_nA_n \preceq B \end{array}$$

where the matrices (A_1, \ldots, A_n, B) are all symmetric.

- Assume we are interested in the optimal value p^* of (SDP)
- Can we construct a lower bound for p^* , i.e. $d^* \leq p^*$, by solving another problem?
- This problem, called *dual*, might sometimes be easier to solve

To do this we first need some machinery – Duality Theory

AIMS CDT 2024-25

Introduction to Modern Control

Lagrange dual function

The dual function $g: \mathbb{R}^m \times \mathbb{R}^p$ is

$$g(\lambda, \nu) = \inf_{x \in \mathcal{X}} L(x, \lambda, \nu)$$

$$= \inf_{x \in \mathcal{X}} \left[f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right]$$

The dual function $g(\lambda, \nu)$ is always a **concave** function.

• $g(\lambda, \nu)$ is the pointwise infimum of affine functions Do you recall pointwise maximum?

The Lagrangian function

Recall our standard form (primal) optimization problem:

$$\min_{x \in \mathcal{X}} f_0(x)$$
 $(\mathcal{P}): \quad \text{subject to:} \quad f_i(x) \leq 0 \quad i = 1 \dots m \\ h_i(x) = 0 \quad i = 1 \dots p$

with (primal) decision variable x, domain \mathcal{X} and optimal value p^* .

Lagrangian Function: $L: \mathcal{X} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

- λ_i : inequality Lagrange multiplier for $f_i(x) < 0$.
- ν_i : equality Lagrange multiplier for $h_i(x) = 0$.
- Lagrangian: weighted sum of the objective and constraint functions.

AIMS CDT 2024-25

Introduction to Modern Control

January 23, 2025 34 / 82

Lagrange dual function

The dual function $g: \mathbb{R}^m \times \mathbb{R}^p$ is

$$g(\lambda, \nu) = \inf_{x \in \mathcal{X}} L(x, \lambda, \nu)$$
$$= \inf_{x \in \mathcal{X}} \left[f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right]$$

The dual function generates lower bounds for the primal optimal value, i.e. $g(\lambda, \nu) \leq p^*$ for $\lambda \geq 0$:

Proof:

For any primal feasible solution \bar{x} : $\sum_{i=1}^{m} \lambda_i f_i(\bar{x}) + \sum_{i=1}^{p} \nu_i h_i(\bar{x}) \leq 0$

$$g(\lambda, \nu) = \inf_{x \in \mathcal{X}} L(x, \lambda, \nu) \le L(\bar{x}, \lambda, \nu) \le f_0(\bar{x}) \text{ for all } \bar{x}$$
$$g(\lambda, \nu) \le \inf_{x \in \mathcal{X}} f_0(x) \le p^*$$

 $\bullet \ g(\lambda,\nu) \ \text{might be} \ -\infty; \ \text{Non-trivial if dom} \ g := \{\lambda,\nu \mid g(\lambda,\nu) > -\infty\}$

The dual problem

Every $\nu \in \mathbb{R}^p$, $\lambda \geq 0$ produces a lower bound for p^* using the dual function.

Which is the best?

$$(\mathcal{D}): egin{array}{ccc} \max & g(\lambda,
u) \\ \lambda,
u & \text{subject to: } \lambda \geq 0 \end{array}$$

- Problem (\mathcal{D}) is **convex**, even if (\mathcal{P}) is not.
- Problem (\mathcal{D}) has optimal value $d^* < p^*$.
- The point (λ, ν) is **dual feasible** if $\lambda > 0$ and $(\lambda, \nu) \in \text{dom } g$.
- Often impose the constraint $(\lambda, \nu) \in \text{dom } g$ explicitly in (\mathcal{D}) .

4 D > 4 A > 4 E > 4 E > E 900

AIMS CDT 2024-25

Introduction to Modern Control

Example: Dual of LPs - (cont'd)

$$\min_{x \in \mathbb{R}^n} c^{\top}x$$

$$(\mathcal{P}): \text{ subject to: } Ax = b$$

$$Cx \le d$$

The dual problem is

$$\begin{array}{ll} \max_{\lambda,\nu} & -b^\top \nu - d^\top \lambda \\ (\mathcal{D}): & \text{subject to: } A^\top \nu + C^\top \lambda + c = 0 \\ & \lambda \geq 0 \end{array}$$

- Lower bound property: $-b^{\top}\nu - d^{\top}\lambda < p^*$ whenever $\lambda > 0$.
- The dual of a linear program is also a linear program.

Example: Dual of LPs

$$\min_{x \in \mathbb{R}^n} c^\top x$$

$$(\mathcal{P}) : \text{ subject to: } Ax = b$$

$$Cx \le d$$

The dual function is

$$g(\lambda, \nu) = \min_{\mathbf{x} \in \mathbb{R}^n} \left[c^\top \mathbf{x} + \nu^\top (A\mathbf{x} - b) + \lambda^\top (C\mathbf{x} - d) \right]$$

$$= \min_{\mathbf{x} \in \mathbb{R}^n} \left[(A^\top \nu + C^\top \lambda + c)^\top \mathbf{x} - b^\top \nu - d^\top \lambda \right]$$

$$= \begin{cases} -b^\top \nu - d^\top \lambda & \text{if } A^\top \nu + C^\top \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

AIMS CDT 2024-25

Introduction to Modern Control

4 □ ト 4 □ ト 4 亘 ト 4 亘 ・ 夕 Q ○

Example: Dual of a mixed-integer linear program (MILP)

$$\begin{aligned} \min_{x \in \mathcal{X}} & c^\top x \\ (\mathcal{P}) : & \text{subject to: } & Ax \leq b \\ & \mathcal{X} = \{-1, 1\} \end{aligned}$$

The dual function is

$$g(\lambda) = \min_{x_i \in \{-1,1\}} \left[c^\top x + \lambda^\top (Ax - b) \right]$$
$$= -\|A^\top \lambda + c\|_1 - b^\top \lambda$$

The dual problem is

$$(\mathcal{D}): egin{array}{cccc} \max_{\lambda} & -\|A^{ op}\lambda + c\|_1 - b^{ op}\lambda \ & ext{subject to:} & \lambda \geq 0 \end{array}$$

The dual of a mixed-integer linear program is a linear program!

Weak and strong duality

Weak Duality

- It is always true that $d^* < p^*$.
- Sometimes the dual is much easier to solve than the primal (or vice-versa).
- Example: The dual of an MILP (difficult to solve) is a standard LP (easy to solve).

Strong Duality

- It is **sometimes** true that $d^* = p^*$.
- Strong duality usually holds for convex problems.
- Strong duality usually does not hold for non-convex problems.
- Can impose conditions on convex problems to guarantee that $d^* = p^*$.

AIMS CDT 2024-25

Introduction to Modern Control

Introduction to Modern Control

Duality – A geometric view

Assume one inequality constraint only:

$$\mathcal{G} := \{(u,t) \mid t = f_0(x), \ u = f_1(x), \ x \in \mathcal{X}\}$$

Primal problem:

$$p^* = \min\{t \mid (u, t) \in \mathcal{G}, u \leq 0\}$$

Dual function:

$$g(\lambda) = \min_{(u,t) \in \mathcal{G}} (t + \lambda u)$$

Dual problem:

$$d^* = \max_{\lambda > 0} g(\lambda)$$

The quantity $p^* - d^*$ is the **duality gap**.

Strong duality for convex problems

An optimization problem with f_0 and all f_i convex:

min
$$f_0(x)$$

(
$$\mathcal{P}$$
): subject to: $f_i(x) \leq 0$ $i = 1 \dots m$
 $Ax = b$ $A \in \mathbb{R}^{p \times n}$

Slater Condition

If there is at least one **strictly feasible point**, i.e.

$$\left\{x \mid Ax = b, f_i(x) < 0, \forall i \in \{1, \ldots, m\}\right\} \neq \emptyset$$

Then $p^* = d^*$.

- Stronger version: Only the nonlinear functions $f_i(x)$ must be strictly satisfiable (non-empty interior).
- Other constraint qualification conditions exist.

AIMS CDT 2024-25

Primal and dual solution properties

Assume that strong duality holds, with optimal solution x^* and (λ^*, ν^*) .

- From strong duality, $d^* = p^* \Rightarrow g(\lambda^*, \nu^*) = f_0(x^*)$.
- From the definition of the dual function:

[weak duality]

$$f_0(x^*) = g(\lambda^*, \nu^*) = \min_{x} \left\{ f_0(x) + \sum_{i=1}^{m} \lambda_i^* f_i(x) + \sum_{i=1}^{p} \nu_i^* h_i(x) \right\}$$

$$\leq f_0(x^*) + \sum_{i=1}^{m} \lambda_i^* f_i(x^*) + \sum_{i=1}^{p} \nu_i^* h_i(x^*) \leq f_0(x^*)$$

$$\implies f_0(x^*) = g(\lambda^*, \nu^*) = f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$

$$\Rightarrow \begin{cases} \lambda_i^* = 0 \text{ for every } f_i(x^*) < 0. \\ f_i(x^*) = 0 \text{ for every } \lambda_i^* > 0. \end{cases}$$
 Complementary slackness

 $g(\lambda) = t + u\lambda$

Karush-Kuhn-Tucker (KKT) optimality conditions

Assume that all f_i and h_i are differentiable. **Necessary** conditions for optimality:

Primal Feasibility:

$$f_i(x^*) \le 0$$
 $i = 1, ..., m$
 $h_i(x^*) = 0$ $i = 1, ..., p$

Dual Feasibility:

$$\lambda^* \geq 0$$

Complementary Slackness:

$$\lambda_i^* f_i(x^*) = 0$$
 $i = 1, \ldots, m$

Stationarity:

$$\nabla_{x} L(x^{*}, \lambda^{*}, \nu^{*}) = \nabla f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} \nabla f_{i}(x^{*}) + \sum_{i=1}^{p} \nu_{i}^{*} \nabla h_{i}(x^{*}) = 0$$

AIMS CDT 2024-25

AIMS CDT 2024-25

Introduction to Modern Control

4 D > 4 A > 4 B > 4 B > B = 40 0

Game theoretic view

Assume inequality constraints only.

We have that for all x

$$\max_{\lambda \geq 0} L(x, \lambda) = \max_{\lambda \geq 0} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) \right)$$
$$= \begin{cases} f_0(x) & \text{if } f_i(x) \leq 0 \text{ for all i;} \\ \infty & \text{otherwise.} \end{cases}$$

Since this holds for all x, we then have that

$$p^* = \min_{x \in \mathcal{X}} \max_{\lambda > 0} L(x, \lambda)$$

$$d^* = \max_{\lambda > 0} \min_{x \in \mathcal{X}} L(x, \lambda)$$

KKT optimality conditions

Assume that all f_i and h_i are differentiable and problem is convex:

- ① If (x^*, λ^*, ν^*) satisfy the KKT conditions, then
 - they are primal and dual optimal
 - they result in zero duality gap, i.e. $p^* = d^*$
- If in addition Slater's condition holds, then
 - duality gap is zero and the dual optimum is attained (existence of (λ^*, ν^*) is guaranteed)
 - x^* is optimal **if and only if** there exists (λ^*, ν^*) that, together with x^* , satisfy the KKT conditions

Game theoretic view

• Game between primal (Peter) and dual (Debbie) variables:

$$p^* = \min_{x} \max_{\lambda} L(x, \lambda)$$
$$d^* = \max_{\lambda} \min_{x} L(x, \lambda)$$

• Consider the d* game - Debbie plays first, Peter plays second

$$d^* = \max_{\lambda} \quad \min_{x} \quad L(x,\lambda) \leq \text{ any value}$$

$$= \forall \lambda \quad \exists x \quad L(x,\lambda) \leq \text{ any value}$$

$$= \exists x(\lambda) \quad \forall \lambda \quad L(x,\lambda) \leq \text{ any value} \quad [x(\cdot) \text{ is parametric in } \lambda]$$

$$\leq \exists x \quad \forall \lambda \quad L(x,\lambda) \leq \text{ any value}$$

$$= \min_{x} \quad \max_{\lambda} \quad L(x,\lambda)$$

$$= p^*$$

→□▶→□▶→注▶→注▶

Game theoretic view

• Game between primal (Peter) and dual (Debbie) variables:

$$p^* = \min_{x} \max_{\lambda} L(x, \lambda)$$
$$d^* = \max_{\lambda} \min_{x} L(x, \lambda)$$

• If Peter plays second \Rightarrow

$$d^* \leq p^*$$
 [weak duality]

- Duality gap corresponds to the advantage of Peter
- Strong duality = Zero duality gap \Rightarrow No advantage for any of the players

AIMS CDT 2024-25

Introduction to Modern Control

4 D > 4 B > 4 B > 4 B > B = 900

Semidefinite programming

Primal SDP problem (all matrices are symmetric):

min
$$c^{\top}x$$

subject to:
$$x_1A_1 + x_2A_2 + \cdots + x_nA_n \leq B$$

Lagrangian:

$$\mathcal{L}(x,\Lambda) = c^{\top}x + \sum_{i} \langle \Lambda, A_i \rangle x_i - \langle \Lambda, B \rangle,$$

where
$$\langle X, Y \rangle = \operatorname{trace}(X^\top Y) = \sum_{i,j} X_{ij} Y_{ij}$$
.

This fact relies on "dual cone" arguments, and the fact that trace is the inner product for matrices. Alternatively, recall that

$$F(x) = \sum_{i} x_{i} A_{i} - B \leq 0 \Leftrightarrow z^{\top} F(x) z \leq 0, \ \forall z \neq 0$$
$$\Leftrightarrow \max_{z \neq 0} z^{\top} F(x) z \leq 0$$

AIMS CDT 2024-25

Semidefinite programming – Interpretation of the dual

We can lift this constraint in the objective with Lagrange multiplier $\lambda > 0$:

$$c^{\top}x + \lambda \max_{z \neq 0} z^{\top}F(x)z = c^{\top}x + \lambda \max_{z \neq 0} \langle zz^{\top}, F(x) \rangle,$$

where $z^{\top}F(x)z = \sum_{i,j} z_i z_j F(x)_{ij} = \sum_{i,j} (zz^{\top})_{ij} F(x)_{ij} = \langle zz^{\top}, F(x) \rangle$. We have that

$$\begin{aligned} & \min_{x} \max_{\lambda \geq 0, z \neq 0} c^\top x + \lambda \langle zz^\top, F(x) \rangle & \text{ combine max over } \lambda, z \\ & = \min_{x} \max_{\Lambda = \Lambda^\top \succeq 0} c^\top x + \langle \Lambda, F(x) \rangle & \text{ replace } \lambda(zz^\top) \text{ with } \Lambda = \Lambda^\top \succeq 0 \\ & \geq \max_{\Lambda = \Lambda^\top \succeq 0} \min_{x} c^\top x + \langle \Lambda, F(x) \rangle, & \text{ since min - max } \geq \max_{x} - \min_{x} c^\top x + \langle \Lambda, F(x) \rangle. \end{aligned}$$

where $\lambda(zz^{\top})$ is symmetric, positive semi-definite, with trace equal to λ (that is to be optimized); we equivalently represent it by $\Lambda \succeq 0$ (which has a non-negative trace). Set $\mathcal{L}(x, \Lambda) = c^{\top}x + \langle \Lambda, F(x) \rangle$.

Semidefinite programming

Primal SDP problem:

$$\min \ c^{\top} x$$

subject to:
$$x_1A_1 + x_2A_2 + \cdots + x_nA_n \leq B$$

where the matrices (A_1, \ldots, A_n, B) are all symmetric.

Lagrangian:

$$\mathcal{L}(x,\Lambda) = c^{\top}x + \sum_{i} \langle \Lambda, A_{i} \rangle x_{i} - \langle \Lambda, B \rangle$$
$$= \sum_{i} (c_{i} + \langle \Lambda, A_{i} \rangle) x_{i} - \langle \Lambda, B \rangle$$

Dual function:

$$g(\lambda) = \begin{cases} -\langle \Lambda, B \rangle & \text{if } c_i + \langle \Lambda, A_i \rangle = 0 \text{ for } i = 1 \dots n \\ -\infty & \text{otherwise} \end{cases}$$

Semidefinite programming

Primal SDP problem:

min
$$c^{\top}x$$

subject to:
$$x_1A_1 + x_2A_2 + \cdots + x_nA_n \leq B$$

where the matrices (A_1, \ldots, A_n, B) are all symmetric.

Dual function:

$$g(\lambda) = egin{cases} -\langle \Lambda, B
angle & ext{if } c_i + \langle \Lambda, A_i
angle = 0 ext{ for } i = 1 \dots n \ -\infty & ext{otherwise} \end{cases}$$

The dual problem:

max
$$-\langle B, \Lambda \rangle$$

subject to:
$$\langle A_i, \Lambda \rangle = -c_i$$
, for all i

$$\Lambda \succeq 0$$

AIMS CDT 2024-25

Introduction to Modern Control

4□ > 4□ > 4□ > 4□ > 4□ > 9

Semidefinite programming

Primal SDP problem:

min
$$c^{\top}x$$

subject to:
$$x_1A_1 + x_2A_2 + \cdots + x_nA_n \leq B$$

The dual problem:

max
$$-\langle B, \Lambda \rangle$$

subject to:
$$\langle A_i, \Lambda \rangle = -c_i$$
, for all i

$$\Lambda \succ 0$$

Weak duality: $p^* - d^* \ge 0$

Strong duality:

Under Slater's condition, i.e. constraints in the primal need to be satisfied with \prec instead of \preceq . For SDPs the *dual of the dual* is the primal.

<ロ > ←回 > ←回 > ← 巨 > 一豆 の へ ○

Semidefinite programming

Primal SDP problem:

min
$$c^{\top}x$$

subject to:
$$x_1A_1 + x_2A_2 + \cdots + x_nA_n \leq B$$

The dual problem:

max
$$-\langle B, \Lambda \rangle$$

subject to:
$$\langle A_i, \Lambda \rangle = -c_i$$
, for all *i*

$$\Lambda \succ 0$$

Weak duality:

$$p^* - d^* = c^\top x + \langle B, \Lambda \rangle$$
 [primal feasibility]
$$\geq c^\top x + \sum_i \langle A_i, \Lambda \rangle x_i$$
 [dual feasibility]
$$= \sum_i c_i x_i - \sum_i c_i x_i = 0$$

AIMS CDT 2024-25

Introduction to Modern Control

Summary

- Duality Theory
 - Construct $d^* < p^*$ in three steps
 - Construct the Lagrangian (lift and weight constraints in the objective)
 - 2 Construct dual function and "eliminate" primal variables
 - § Formulate dual problem (don't forget constraints on dual variables)
 - Optimality conditions
 - Geometric and gaming interpretation of duality
- 2 LMIs in optimization
 - Semidefinite programming (SDP)
 - Construct the dual of an SDP (similar procedure with linear programs)
 - Weak duality, strong duality under Slater's condition

Reformulation in LMIs

- The Schur complement
 - Non-obvious LMIs
 - From nonlinear constraints to LMIs
- The *S*-procedure
 - From quadratic implications to LMIs
 - Turning set containment arguments in LMIs

LMIs for stability & controller synthesis

- Recap of stability theorems
- Lyapunov matrix inequality
- Controller synthesis by means of an example

4 D > 4 B > 4 E > 4 E > E 900

AIMS CDT 2024-25

Introduction to Modern Control

Schur complement

Schur complement: The non-strict case

Assume that $Q(x) = Q(x)^{\top}$, $R(x) = R(x)^{\top} \succ 0$: affine functions of x

We then have that

$$Q(x) - S(x)R(x)^{-1}S(x)^{\top} \succeq 0 \Leftrightarrow \begin{bmatrix} Q(x) & S(x) \\ S(x)^{\top} & R(x) \end{bmatrix} \succeq 0$$

Example 1:

$$||A||_2 \le t \Leftrightarrow A^\top A \le t^2 I, \ t \ge 0 \Leftrightarrow \begin{bmatrix} tI & A^\top \\ A & tI \end{bmatrix} \succeq 0$$

Example 2: The QP (we have seen this before)

$$x^{\top}Qx + b^{\top}x + c \le 0, \quad Q \succ 0 \quad \Leftrightarrow \quad \begin{bmatrix} c + b^{\top}x & x^{\top} \\ x & -Q^{-1} \end{bmatrix} \le 0$$

Non-obvious LMIs

Some cases (like the QP) are harder to write as LMIs.

The Schur complement provides the means to do so

Schur complement: Turns a nonlinear constraint into an LMI

Theorem (Schur complement)

Assume that $Q(x) = Q(x)^{\top}$, $R(x) = R(x)^{\top}$: affine functions of x. We then have that

$$R(x) \succ 0 \text{ and } Q(x) - S(x)R(x)^{-1}S(x)^{\top} \succ 0$$

 $\Leftrightarrow \begin{bmatrix} Q(x) & S(x) \\ S(x)^{\top} & R(x) \end{bmatrix} \succ 0$

AIMS CDT 2024-25

Introduction to Modern Control

Schur complement – Proof for the strict case

Proof of (\Leftarrow) :

Assume $\begin{bmatrix} Q(x) & S(x) \\ S(x)^{\top} & R(x) \end{bmatrix} \succ 0$. For all $[u \ v] \neq 0$ we have

$$F(u,v) = \begin{bmatrix} u \\ v \end{bmatrix}^{\top} \begin{bmatrix} Q(x) & S(x) \\ S(x)^{\top} & R(x) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} > 0$$

Considering u = 0 we have

$$F(0, v) = v^{\top} R(x) v > 0$$
, for all $v \neq 0 \Rightarrow R(x) \succ 0$

Consider now $v = -R(x)^{-1}S(x)^{\top}u$, with $u \neq 0$

$$F(u,v) = u^{\top} (Q(x) - S(x)R(x)^{-1}S(x)^{\top})u > 0, \text{ for all } u \neq 0$$

$$\Rightarrow Q(x) - S(x)R(x)^{-1}S(x)^{\top} \succ 0$$

Schur complement – Proof for the strict case

Proof of (\Rightarrow) :

Now assume $R(x) \succ 0$ and $Q(x) - S(x)R(x)^{-1}S(x)^{\top} \succ 0$, and as before

$$F(u,v) = \begin{bmatrix} u \\ v \end{bmatrix}^{\top} \begin{bmatrix} Q(x) & S(x) \\ S(x)^{\top} & R(x) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} > 0$$

Fix u and minimize over v: $\nabla_v F(u, v) = 2R(x)v + 2S(x)^\top u = 0$. Since R(x) > 0, we have that $v^* = -R(x)^{-1}S(x)^{\top}u$. Substitute it in the expression of F(u, v) to obtain

$$F(u) = u^{\top} (Q(x) - S(x)R(x)^{-1}S(x)^{\top})u$$

Since $Q(x) - S(x)R(x)^{-1}S(x)^{\top} \succ 0$, $u^* = 0$ minimizes F(u). As a result, $(u^*, v^*) = (0, 0)$ and $F(u^*, v^*) = 0$.

Hence,
$$F(u, v) > 0$$
 for all $u, v \neq 0 \Rightarrow \begin{bmatrix} Q(x) & S(x) \\ S(x)^{\top} & R(x) \end{bmatrix} \succ 0$.

AIMS CDT 2024-25

Introduction to Modern Control

Schur complement – Maximum singular value

Assume that $Q(x) = Q(x)^{\top}$, $R(x) = R(x)^{\top} > 0$: affine functions of x. We then have that

$$Q(x) - S(x)R(x)^{-1}S(x)^{\top} \succeq 0 \Leftrightarrow \begin{bmatrix} Q(x) & S(x) \\ S(x)^{\top} & R(x) \end{bmatrix} \succeq 0$$

Let A(x): affine in x and real valued.

Let also $\bar{\sigma}[A(x)]$ be the maximum singular value of A(x), i.e. the square root of the largest eigenvalue of $A(x)A(x)^{\top}$, i.e. $\bar{\lambda}[A(x)A(x)^{\top}]^{\frac{1}{2}}$.

$$\bar{\sigma}(A(x)) \leq 1 \Leftrightarrow \bar{\lambda}[A(x)A(x)^{\top}] \leq 1$$
$$\Leftrightarrow A(x)A(x)^{\top} \leq I$$
$$\Leftrightarrow I - A(x)I^{-1}A(x)^{\top} \geq 0$$
$$\Leftrightarrow \begin{bmatrix} I & A(x) \\ A(x)^{\top} & I \end{bmatrix} \geq 0$$

Schur complement – Ellipsoidal inequality

Assume that $Q(x) = Q(x)^{\top}$, $R(x) = R(x)^{\top} > 0$: affine functions of x. We then have that

$$Q(x) - S(x)R(x)^{-1}S(x)^{\top} \succeq 0 \Leftrightarrow \begin{bmatrix} Q(x) & S(x) \\ S(x)^{\top} & R(x) \end{bmatrix} \succeq 0$$

Consider the ellipsoid

$$(x - x_c)^{\top} A^{-1} (x - x_c) \le 1, \quad A = A^{\top} > 0$$

(... and recall that it is convex)

Setting Q(x) = 1, R(x) = A and $S(x) = (x - x_c)^{\top}$:

$$\begin{bmatrix} 1 & (x-x_c)^{\top} \\ (x-x_c) & A \end{bmatrix} \succeq 0$$

Introduction to Modern Control

S-procedure

AIMS CDT 2024-25

S-procedure: Turns quadratic implications to LMIs

Consider two quadratic functions

$$f_0(x) = x^{\top} A_0 x + 2x^{\top} b_0 + c_0$$

 $f(x) = x^{\top} A x + 2x^{\top} b + c,$

where all matrices/vectors are given, and $A_0 = A_0^{\top}$, $A = A^{\top}$.

Problem: When is it true that one quadratic inequality implies another? In other words, when does

$$f(x) \ge 0, x \ne 0 \Rightarrow f_0(x) \ge 0$$

S-procedure (cont'd)

Theorem

The following implication holds

$$f(x) \ge 0, x \ne 0 \Rightarrow f_0(x) \ge 0$$

if there exists

$$\tau \geq 0$$
 such that $f_0(x) - \tau f(x) \geq 0$

Still not an LMI ... but $f_0(x)$, f(x), are quadratic in x.

4 D > 4 B > 4 B > 4 B > B = 900

AIMS CDT 2024-25

Introduction to Modern Control

S-procedure (cont'd)

Theorem

The following implication holds

$$f(x) \geq 0, x \neq 0 \Rightarrow f_0(x) \geq 0$$

if there exists

$$\tau \geq 0$$
 such that $f_0(x) - \tau f(x) \geq 0$

Since $f_0(x)$, f(x), are quadratic in x, the condition above is equivalent to an LMI in au

$$\begin{bmatrix} A_0 & b_0 \\ b_0^\top & c_0 \end{bmatrix} - \frac{\tau}{b} \begin{bmatrix} A & b \\ b^\top & c \end{bmatrix} \succeq 0$$

S-procedure (cont'd)

Theorem

The following implication holds

$$f(x) \ge 0, x \ne 0 \Rightarrow f_0(x) \ge 0$$

if there exists

$$\tau > 0$$
 such that $f_0(x) - \tau f(x) > 0$

For a quadratic function $f(x) = x^{T}Ax + 2x^{T}b + c$

$$\begin{bmatrix} x \\ 1 \end{bmatrix}^{\top} \begin{bmatrix} A & b \\ b^{\top} & c \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \ge 0, \ \forall x \Leftrightarrow \begin{bmatrix} \xi x \\ \xi \end{bmatrix}^{\top} \begin{bmatrix} A & b \\ b^{\top} & c \end{bmatrix} \begin{bmatrix} \xi x \\ \xi \end{bmatrix} \ge 0, \ \forall x, \xi$$
$$\Leftrightarrow \begin{bmatrix} A & b \\ b^{\top} & c \end{bmatrix} \succeq 0$$

AIMS CDT 2024-25

Introduction to Modern Control

4 D > 4 B > 4 E > 4 E > E 990

S-procedure (cont'd)

Theorem

The following implication holds

$$f(x) \ge 0, x \ne 0 \Rightarrow f_0(x) \ge 0$$

if there exists

$$\tau > 0$$
 such that $f_0(x) - \tau f(x) > 0$

Since $f_0(x)$, f(x), are quadratic in x, this is equivalent to an LMI in τ

$$\begin{bmatrix} A_0 & b_0 \\ b_0^\top & c_0 \end{bmatrix} - \frac{\tau}{b} \begin{bmatrix} A & b \\ b^\top & c \end{bmatrix} \succeq 0$$

The **only if** part also holds true (though non-obvious) if $\exists \bar{x}$ such that $f(\bar{x}) > 0$, i.e. the "ellipsoids" have non-empty interior condition. In that case we get equivalence!

A containment problem

Problem: Determine an ellipsoid \mathcal{E} centered at the origin

$$\mathcal{E} = \{ x \mid x^{\top} A^{-1} x \le 1 \},$$

that contains a polytope \mathcal{P} with vertices v_1, \ldots, v_n . In other words, we are looking for $\mathcal{P} \subseteq \mathcal{E}$.

Restate the problem: If $x \in \mathcal{P}$ then $x \in \mathcal{E}$. But $x \in \mathcal{P}$ is equivalent to $v_i \in \mathcal{P}$, for all $i = 1, \ldots, p$. Hence,

$$v_i^{\top} A^{-1} v_i \leq 1$$
, for all $i = 1, \dots, p$.
 $\Leftrightarrow 1 - v_i^{\top} A^{-1} v_i \geq 0$, for all $i = 1, \dots, p$.

Using the Schur complement lemma we can turn it into an LMI

$$egin{bmatrix} 1 & v_i^{\top} \ v_i & A \end{bmatrix} \succeq 0, \text{ for all } i=1,\ldots,p.$$

AIMS CDT 2024-25

Introduction to Modern Control

Stability analysis recap – Linear systems

Consider the linear, time-invariant (LTI) dynamical system

$$\dot{x}(t) = Ax(t), \quad x(0) = x_0$$

where $x(t) \in \mathbb{R}^n$ is the system state and $A \in \mathbb{R}^{n \times n}$.

It is called *autonomous* since there are no inputs.

Definition: The autonomous LTI system is asymptotically stable if, for all $x(0) \in \mathbb{R}^n$,

$$\lim_{t\to\infty}x(t)=0.$$

What if n > 1? Can we work the same way? The ODE solution is then

$$x(t) = e^{At}x_0$$

where e^{At} is the matrix exponential, i.e.

$$e^{At} = I + At + \frac{1}{2}A^2t^2 + \frac{1}{3}A^3t^3 + \dots$$

Stability analysis - Linear systems

Consider the linear, time-invariant (LTI) dynamical system

$$\dot{x}(t) = Ax(t), \quad x(0) = x_0$$

where $x(t) \in \mathbb{R}^n$ is the system state and $A \in \mathbb{R}^{n \times n}$.

It is called *autonomous* since there are no inputs.

Definition: The autonomous LTI system is asymptotically stable if, for all $x(0) \in \mathbb{R}^n$,

$$\lim_{t\to\infty}x(t)=0.$$

In the scalar case $(n = 1 \text{ and } A = a \in \mathbb{R})$, we can solve the ODE:

$$x(t) = e^{at}x_0$$

If a < 0, then the system is asymptotically stable.

AIMS CDT 2024-25

Introduction to Modern Control

Stability analysis recap – Linear systems

Consider the linear, time-invariant (LTI) dynamical system

$$\dot{x}(t) = Ax(t), \quad x(0) = x_0$$

where $x(t) \in \mathbb{R}^n$ is the system state and $A \in \mathbb{R}^{n \times n}$.

It is called *autonomous* since there are no inputs.

Definition: The autonomous LTI system is asymptotically stable if, for all $x(0) \in \mathbb{R}^n$,

$$\lim_{t\to\infty}x(t)=0.$$

What if n > 1? Can we work the same way? The ODE solution is then

$$x(t) = e^{At}x_0$$

where e^{At} is the matrix exponential. Can we do without computing e^{At} ?

Introduction to Modern Control

Stability analysis recap – Linear systems

Theorem

An autonomous LTI system is asymptotically stable, i.e. $\lim_{t\to\infty} x(t) = 0$, if and only if A is Hurwitz, i.e. all its eigenvalues have negative real part.

Moved from matrix exponential to eigenvalue computation – there must be some connection with I MIs.

Theorem

Given some matrix $Q = Q^{\top} \succ 0$, a matrix A is Hurwitz if and only if there exists $X = X^{\top} \succ 0$ that satisfies the Lyapunov Matrix Equation

$$A^{\mathsf{T}}X + XA = -Q$$

Equivalently, since $Q \succ 0$ and it is arbitrary ...

AIMS CDT 2024-25

Introduction to Modern Control

Stability analysis recap - Nonlinear systems

Asymptotic stability for nonlinear systems; Lyapunov theory again

Theorem

Let x = 0 be an equilibrium of $\dot{x}(t) = f(x(t))$, and let $\mathcal{D} \subset \mathbb{R}^n$ be a domain containing x = 0. If there exists a continuous, differentiable function $V: \mathcal{D} \to \mathbb{R}$ such that

$$V(0) = 0, \ V(x) > 0, \ \text{ for all } x \in \mathcal{D} \setminus \{0\}$$

 $\dot{V}(x) < 0, \ \text{ for all } x \in \mathcal{D} \setminus \{0\}$

then x = 0 is asymptotically stable.

AIMS CDT 2024-25

Linear systems stability comes then as a special case.

Stability analysis recap – Linear systems

For asymptotic stability A has to be Hurwitz, i.e.

Theorem

Given some matrix $Q = Q^{\top} \succ 0$, a matrix A is Hurwitz if and only if there exists $X = X^{\top} \succ 0$ that satisfies the Lyapunov Matrix Equation

$$A^{\mathsf{T}}X + XA = -Q$$

Equivalently, since $Q \succ 0$ and it is arbitrary ...

Theorem

A matrix A is Hurwitz if and only if there exists $X = X^{\top} \succ 0$ that satisfies the Lyapunov Matrix Inequality

$$A^{\top}X + XA \prec 0$$

This is an LMI in X!

AIMS CDT 2024-25

Introduction to Modern Control

Stability analysis recap – Nonlinear systems

Linear systems stability comes then as a special case. Consider $\dot{x}(t) = Ax(t)$ and let $V(x) = x^{\top}Xx$ be a Lyapunov function. The Lyapunov stability theorem requires

$$\begin{split} V(0) &= 0: & \text{ satisfied} \\ V(x) &> 0, & \text{ for all } x \in \mathcal{D} \setminus \{0\}: & \Leftrightarrow & X \succ 0 \\ \dot{V}(x) &< 0, & \text{ for all } x \in \mathcal{D} \setminus \{0\}: & \Leftrightarrow & x^\top \big(A^\top X + XA\big)x < 0 \\ & \Leftrightarrow & A^\top X + XA \prec 0 \end{split}$$

Using a quadratic Lyapunov function we can "prove" Lyapunov Matrix Equation from the nonlinear Lyapunov's stability theorem.

State feedback control design

Consider a system G: $\dot{x} = Ax + Bu$

Determine a feedback gain matrix K such that u = Kx renders the closed loop system stable.

Closed loop system: $\dot{x} = (A + BK)x$.

• Goal: Determine K such that A + BK is Hurwitz.

◆ロト 4回ト 4 至 ト 4 至 ト 至 め 9 (で)

AIMS CDT 2024-25

Introduction to Modern Control

AIMS CDT 2024-25

4 D > 4 A > 4 B > 4 B > B = 40 0

State feedback control design (cont'd)

Closed loop system: $\dot{x} = (A + BK)x$.

• Goal: Determine K such that A + BK is Hurwitz.

Lyapunov stability: A matrix A is stable if and only if there exists $X = X^{\top} \succ 0$ such that

$$XA^{\top} + AX \prec 0$$

Enforce this condition with A + BK in place of A and determine K and X:

$$X(A+BK)^{\top}+(A+BK)X\prec 0$$

which leads to

$$XA^{\top} + (XK^{\top})B^{\top} + AX + B(KX) \prec 0$$

Closed loop system: $\dot{x} = (A + BK)x$.

• Goal: Determine K such that A + BK is Hurwitz.

Lyapunov stability (recall from Lecture 3): A matrix A is Hurwitz if and only if there exists $P = P^{\top} \succ 0$ such that

$$A^{\top}P + PA \prec 0$$

Equivalent representation: Multiply by P^{-1} from the left and right:

$$P^{-1}A^{\top}PP^{-1} + P^{-1}PAP^{-1} \prec 0$$

and set $X = P^{-1}$. We then have

$$XA^{\top} + AX \prec 0$$

State feedback control design (cont'd)

Closed loop system: $\dot{x} = (A + BK)x$.

• Goal: Determine K such that A + BK is Hurwitz.

Lyapunov stability: A matrix A is stable if and only if there exists $X = X^{\top} \succ 0$ such that

$$XA^{\top} + AX \prec 0$$

We are left with this condition which is not nice!

$$XA^{\top} + (XK^{\top})B^{\top} + AX + B(KX) < 0$$

Setting Z = KX we have

$$XA^{\top} + Z^{\top}B^{\top} + AX + BZ < 0$$

Solve this LMI to determine X and Z and then compute $K = ZX^{-1}$

Summary

- Reformulation in LMI constraints
 - Schur complement
 - Commonly used "trick"
 - Appears in quadratic problems, and many others
 - The S-procedure
 - Turns quadratic implications in LMI constraints
 - Useful in set containment problems
- LMIs for stability & controller synthesis
 - Recap of stability theorems for linear and nonlinear systems
 - Lyapunov stability for linear systems by means of LMIs
 - Example for controller synthesis

AIMS CDT 2024-25

Introduction to Modern Control

AIMS CDT 2024-25

Thank you! Questions?

Contact at:

kostas.margellos@eng.ox.ac.uk

Introduction to Modern Control January 23, 2025 82 / 82