Relações de recorrência

Sequências.

Relações de recorrência.

Equação caraterística.

Relações de recorrência de 2ª ordem não homogéneas.

Referência: Discrete Mathematics with Graph Theory

Edgar Goodaire e Michael Parmenter, 3rd ed 2006

Capítulo: 4

Sequências definidas recursivamente

Definição de fatorial

$$- n! = \begin{cases} 1 & se \ n = 0 \\ n(n-1)(n-2) \dots 2.1 & se \ n \ge 1 \end{cases}$$

Exemplos

$$-0! = 1$$
 $1! = 1$ $3! = 3.2.1 = 6$ $6! = 6.5.4.3.2.1 = 720$

□ Definição **recursiva** de fatorial (recorrente, indutiva)

$$- n! = \begin{cases} 1 & \text{se } n = 0 \\ n \times (n-1)! & \text{se } n \ge 1 \end{cases}$$

□ Fatorial de ordem n definido à custa de fatorial de ordem n-1

Cálculo iterativo do fatorial

```
Fatorial(n){
i=1
fat=1
while (i<n) {
 i=i+1
  fat= fat*i
```

- Mostrar que, no final, fat=n!
- □ Invariante (afirmação a provar): no final de cada ciclo fat=i!
- \square Base: antes do ciclo i=1 e fat =1=i!
- Indutivo: assumir que fat=i!; se i<n executa-se outro ciclo e i passa a i+1 e fat passa a fat*(i+1)=i!*(i+1)= (i+1)!</p>

Implementação recursiva

```
Fatorial(n){
if (n<=1)
   return 1
else
   return n*Fatorial(n-1)
}</pre>
```

- □ Calcula o fatorial(n) à custa do n e do fatorial(n-1)
- □ Segue a prova indutiva

Sequência

- Uma **sequência** é uma função cujo domínio é um conjunto infinito de inteiros e que toma valores num conjunto de números reais
- Definição da sequência $f_1(n) = n^2$
 - Por lista: 1, 4, 9, 16, ...
- \square Definição da sequência $f_2(n)$
 - Por lista: 2, 4, 8, 16, ...
 - Recursivamente:
 - \circ $a_1=2$

condição inicial

o $a_{k+1} = 2a_k$, para k≥1 relação de recorrência

- Por fórmula explícita
 - $a_n = 2^n$

solução da relação de recorrência

Sequências aritmética e geométrica

□ A sequência aritmética de primeiro termo a e diferença d

$$\begin{cases} a_1 = a \\ a_{k+1} = a_k + d, & k \ge 1. \end{cases}$$

- \Box O termo geral é $a_n = a + (n-1)d$
- □ A soma dos n primeiros termos é $S = \frac{n}{2}[2a + (n-1)d]$
- □ Ex: -7, -4, -1, 2, 5, 8, ...
- □ A sequência geométrica de primeiro termo a e razão r

$$\begin{cases} a_1 = a \\ a_{k+1} = ra_k, & k \ge 1. \end{cases}$$

- \Box O termo geral é $a_n = ar^{n-1}$
- □ A soma dos n primeiros termos é $S = \frac{a(1-r^n)}{1-r}$
- □ Ex: 1, 2, 4, 8, 16, 32, ...

Problema

- □ Como descobrir a relação de recorrência?
 - Certos problemas são naturalmente formulados como relações de recorrência
 - O cálculo de um termo de ordem n depende de termos anteriores, recursivamente até à condição inicial
- □ Como descobrir a solução explícita para uma relação de recorrência?
 - A solução explícita é necessária para o cálculo direto do termo de ordem n

Depósito com capitalização

- O banco tem um depósito com juros de 4% ao ano, automaticamente acumulados ao capital inicial. Se depositar, em 2012-01-01, 1000€, ao fim de quanto tempo tem mais do que 1400€na conta?
- E se o cálculo e capitalização dos juros for mensal?
- Arr R: $c_n = (1+J)c_{n-1}$, $n \ge 1$, $c_0 = C$
- □ A solução da relação de recorrência é $c_n = (1+J)^nC > 1400$
- □ Resolvendo em ordem a n, $n > \log_{1+J} \frac{1400}{C}$ com C=1000
- □ No caso da capitalização anual J=0.04 e n>8.58, 9 anos
- □ No caso da mensal J=0.04/12=0.0033 e n>101.9, 102 meses

Reprodução de coelhos

- Suponha que numa ilha sem coelhos nem predadores se coloca à nascença um casal de coelhos e se pretende estudar a evolução da população
- □ Cada casal de coelhos começa a reproduzir-se ao fim de dois meses de vida e a partir daí produz um novo casal todos os meses
- □ Qual a população de coelhos ao fim de 8 meses?
- \blacksquare R: $c_0=1$, $c_1=1$, $c_2=2$, $c_3=3$, $c_4=5$, $c_5=8$, $c_6=13$, $c_7=21$, $c_8=34$
- \Box $c_n = c_{n-1} + c_{n-2}$ sequência de Fibonacci
 - (Solução mais à frente a partir do polinómio caraterístico.)

Solução por abstração

Dada a relação de recorrência

$$\begin{cases}
a_1 = 1 \\
a_{k+1} = 3a_k + 1
\end{cases} k \ge 1$$

- Obtenha uma fórmula explícita para a_k e mostre que é correta.
- $-a_1=1$

$$a_2 = 3a_1 + 1 = 3(1) + 1 = 4$$

-
$$a_3 = 3a_2 + 1 = 3(3(1) + 1) + 1 = 13$$

$$a_4 = 3a_3 + 1 = 3(3(3(1) + 1) + 1) + 1 = 40$$

-
$$a_5 = 3a_4 + 1 = 3(3(3(3(1) + 1) + 1) + 1) + 1 = 121$$

- ...

$$-a_k = \frac{3^k - 1}{2}$$

Prova da correção por indução.

Polinómio caraterístico

□ Relação de recorrência linear de segunda ordem com coeficientes constantes

$$a_n = ra_{n-1} + sa_{n-2} + f(n)$$

- Linear porque a_{n-1} e a_{n-2} aparecem a somar e com expoente 1
 - o $a_n = a_{n-1}a_{n-2} + a_{n-1}^2 + 4$ não é linear por duas razões
- De segunda ordem porque a_n depende de a_{n-2}
 - o $a_n = 2a_{n-1} + a_{n-3} + n^2$ é de terceira ordem
- Com coeficientes constantes porque r e s n\u00e3o dependen de n
- Se f(n)=0 a relação de recorrência diz-se homogénea

$$a_n - ra_{n-1} - sa_{n-2} = 0$$

Polinómio caraterístico é

$$x^2 - rx - s = 0$$

Solução da recorrência homogénea

Sejam x_1 e x_2 as raízes do polinómio caraterístico. Então a solução de $a_n = ra_{n-1} + sa_{n-2}$ é, para $n \ge 2$,

$$a_n = c_1 x_1^n + c_2 x_2^n$$
, se $x_1 \neq x_2$
 $a_n = c_1 x^n + c_2 n x^n$, se $x_1 = x_2 = x$

 \Box c_1 e c_2 a determinar a partir das condições iniciais

Exemplo com $x_1 \neq x_2$

- Resolva a relação de recorrência $a_n = 5a_{n-1} 6a_{n-2}, n \ge 2$ com as condições iniciais $a_0 = 1$ e $a_1 = 4$.
- R: o polinómio característico é $x^2 5x + 6$ cujas raízes são $x_1 = 2 e x_2 = 3$
- □ A solução vai então ser da forma

$$a_n = c_1(2^n) + c_2(3^n)$$

☐ As condições iniciais forçam a que

$$a_0 = c_1 2^0 + c_2 3^0 = c_1 + c_2 = 1$$
 E se $a_0 = 0$ e $a_1 = 1$?
 $a_1 = c_1 2^1 + c_2 3^1 = 2c_1 + 3c_2 = 4$

Pelo que
$$c_1 = -1$$
 e $c_2 = 2$ e finalmente $a_n = -2^n + 2(3^n)$

$$c_1 = -1 e c_2 = 1$$

Condições iniciais diferentes

Exemplo com $x_1 = x_2$

- Resolva a relação de recorrência $a_n = 4a_{n-1} 4a_{n-2}$, $n \ge 2$ com as condições iniciais $a_0 = 1$ e $a_1 = 4$.
- R: o polinómio característico é $x^2 4x + 4$ que tem uma raíz dupla x = 2
- A solução vai então ser da forma

$$a_n = c_1(2^n) + c_2 n(2^n)$$

☐ As condições iniciais forçam a que

$$a_0 = c_1 2^0 + c_2(0) 2^0 = c_1 = 1$$

 $a_1 = c_1 2^1 + c_2(1) 2^1 = 2c_1 + 2c_2 = 4$

Pelo que $c_1 = 1$ e $c_2 = 1$ e finalmente $a_n = 2^n + n(2^n) = (n+1)2^n$

Sequência de Fibonacci

□ (exemplo dos coelhos)

$$a_0 = a_1 = 1$$

$$a_n = a_{n-1} + a_{n-2}$$

- □ Polinómio caraterístico: $x^2 x 1$ Raízes: $\frac{1 \pm \sqrt{5}}{2}$
- Solução da recorrência: $a_n = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$
- Das condições iniciais:
 - $-c_1 + c_2 = 1$
 - $c_1 \left(\frac{1+\sqrt{5}}{2}\right)^1 + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^1 = 1$
- Solução: $a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1}$

Caso geral (não homogéneo)

- □ Relação de recorrência $a_n = ra_{n-1} + sa_{n-2} + f(n)$
- Solução particular é uma solução específica p_n que portanto satisfaz $p_n = rp_{n-1} + sp_{n-2} + f(n)$
- Seja t_n outra solução particular; então também se verifica que $t_n = rt_{n-1} + st_{n-2} + f(n)$
- Chamando à diferença
- $q_n = t_n p_n = r(t_{n-1} p_{n-1}) + s(t_{n-2} p_{n-2})$ $q_n = rq_{n-1} + sq_{n-2}$
- Verifica-se que esta satisfaz a relação homogénea
- Portanto $t_n = p_n + q_n$ é a soma de uma solução particular mais a solução homogénea (já vista atrás)

Teorema

Seja p_n uma solução particular para a relação de recorrência $a_n = ra_{n-1} + sa_{n-2} + f(n)$ ignorando as condições iniciais. Seja q_n a solução da recorrência homogénea $a_n = ra_{n-1} + sa_{n-2}$, também ignorando as condições iniciais. Então $p_n + q_n$ é a solução para a relação de recorrência não homogénea. As condições iniciais determinam as constantes em q_n .

Solução particular

- lacktriangle A solução particular p_n depende de f(n) e nem sempre é fácil de encontrar
 - Um bom ponto de partida é fazer p_n da mesma forma de f(n), com as constantes por determinar
 - As constantes determinam-se por substituição na recorrência

Exemplo

- Exemplo: resolva a relação de recorrência não homogénea $a_n = -3a_{n-1} + n, n \ge 1 \text{ com } a_0 = 1$
- R: Determinação de uma solução particular; como f(n)=n é linear vamos escolher $p_n=c+bn$. Para determinar c e b vamos substituir p_n na relação de recorrência

$$c + bn = -3[c + b(n - 1)] + n =$$

$$-3c + 3b + (1 - 3b)n$$

Igualando os coeficientes das potências de n idênticas

$$c = -3c + 3b$$
 e $b = 1 - 3b$

Conclui-se que
$$c = \frac{3}{16}$$
 e $b = \frac{1}{4}$, pelo que
$$p_n = \frac{3}{16} + \frac{1}{4}n$$

Exemplo (cont.)

□ A relação de recorrência homogénea é

$$a_n = -3a_{n-1}$$

- \square O polinómio caraterístico resulta $x^2 + 3x$, com raízes -3 e 0
- ☐ A solução homogénea sem condições iniciais é da forma

$$q_n = c_1(-3)^n + c_2(0^n) = c_1(-3)^n$$

Então, a solução geral é da forma

$$p_n + q_n = \frac{3}{16} + \frac{1}{4}n + c_1(-3)^n$$

Para a condição inicial $a_0 = \frac{3}{16} + \frac{1}{4}(0) + c_1(-3)^0 = 1$ conclui-se que $c_1 = \frac{13}{16}$

$$a_n = \frac{3}{16} + \frac{1}{4}n + \frac{13}{16}(-3)^n$$

Outro exemplo

- □ Obter uma solução para $a_n = 2a_{n-1} + 3a_{n-2} + 5^n$, $n \ge 2$, $a_0 = -2$, $a_1 = 1$.
- R: Tentando $p_n = c(5^n)$ e substituindo na relação $c(5^n) = 2c(5^{n-1}) + 3c(5^{n-2}) + 5^n$ dividindo por 5^{n-2} 25c = 10c + 3c + 25, $\log c = \frac{25}{12} e p_n = \frac{25}{12} (5^n)$
- □ Polinómio caraterístico $x^2 2x 3$ com raízes -1 e 3
- □ Solução homogénea $q_n = c_1(-1)^n + c_2(3^n)$
- □ Solução geral $p_n + q_n = \frac{25}{12}(5^n) + c_1(-1)^n + c_2(3^n)$

Iniciais:
$$a_0 = -2 = \frac{25}{12} + c_1 + c_2$$
, $a_1 = 1 = \frac{25}{12}(5) - c_1 + 3c_2$

$$a_n = \frac{25}{12}(5^n) - \frac{17}{24}(-1)^n - \frac{27}{8}(3^n)$$

Sistema discreto (1)

□ Uma relação de recorrência é muitas vezes um modelo para um dado fenómeno. A sequência a_n pode ser vista como a série de valores que a variável a toma nos vários instantes n.

$$a_n = \frac{3}{4}a_{n-1} - \frac{1}{8}a_{n-2} + h(n)$$
 $n \ge 2$, $a_0 = 0$ e $a_1 = 0$

- □ isto é, a variável no instante n depende dos valores da variável no instante anterior e dois instantes atrás e ainda da sequência h(n)
- □ A equação descreve assim um sistema S com memória interna para dois instantes (n-1 e n-2), entrada h(n) e saída a_n

Sistema discreto (2)

Relações de recorrência - 24

Sistema discreto (3)

Relações de recorrência - 25

Sistema discreto (4)

$$a_n = \frac{3}{4}a_{n-1} - \frac{1}{8}a_{n-2} + h(n) \quad n \ge 2, a_0 = 0 \text{ e } a_1 = 0$$

$$h2(n) = \begin{cases} 1, & 2 \le n \le 4 \\ 0, & n \ge 5 \end{cases}$$

- \square Primeira parte $(2 \le n \le 4)$
- □ Solução particular (h(n)=1)

$$- p_n = b$$

-
$$b = \frac{3}{4}b - \frac{1}{8}b + 1$$
 $b = \frac{8}{3} = 2.6667$

Solução homogénea

– polinómio característico:
$$x^2 - \frac{3}{4}x + \frac{1}{8} = 0$$
 $x = \frac{1}{2} \vee \frac{1}{4}$

$$-q_n = c_1 \left(\frac{1}{2}\right)^n + c_2 \left(\frac{1}{4}\right)^n$$

Sistema discreto (5)

Solução geral

$$a_n = q_n + p_n = c_1 \left(\frac{1}{2}\right)^n + c_2 \left(\frac{1}{4}\right)^n + \frac{8}{3}$$

$$\begin{cases} a_0 = c_1 \left(\frac{1}{2}\right)^0 + c_2 \left(\frac{1}{4}\right)^0 + \frac{8}{3} = 0 \\ a_1 = c_1 \left(\frac{1}{2}\right)^1 + c_2 \left(\frac{1}{4}\right)^1 + \frac{8}{3} = 0 \end{cases}$$

$$\begin{cases} c_1 + c_2 = -\frac{8}{3} \\ \frac{c_1}{2} + \frac{c_2}{4} = -\frac{8}{3} \end{cases} \qquad \begin{cases} c_1 = -8 \\ c_2 = \frac{16}{3} \end{cases}$$

$$-a_n = -8\left(\frac{1}{2}\right)^n + \frac{16}{3}\left(\frac{1}{4}\right)^n + \frac{8}{3}$$

0	0
1	0
2	1
3	1.75
4	2.1875
(5)	(2.421875)
(6)	(2.542969)

Sistema discreto (6)

■ Segunda parte (n≥5)

A partir de n=5, considera-se o termo independente como sendo 0 (isto é, a entrada passa a ser 0) pelo que não é necessária a solução particular mas apenas a solução homogénea já calculada mas com condições iniciais (a₃ e a₄) impostas pela primeira parte; o sistema só tem memória para os dois últimos valores

(3)

1.75

2.1875

1,421875

0,79296875

0,416992188

0,213623047

0,108093262

 $-a_n = c_1 \left(\frac{1}{2}\right)^n + c_2 \left(\frac{1}{4}\right)^n$

$$\begin{cases} a_3 = c_1 \left(\frac{1}{2}\right)^3 + c_2 \left(\frac{1}{4}\right)^3 = 1.75 \\ a_4 = c_1 \left(\frac{1}{2}\right)^4 + c_2 \left(\frac{1}{4}\right)^4 = 2.1875 \end{cases} \begin{cases} c_1 = 56 \\ c_2 = -336 \end{cases}$$

- Sem entrada, este sistema tende para 0
 - é um sistema **estável** porque
 - todas as raízes da equação caraterística têm módulo inferior a 1
 Relações de recorrência 28

Sistema discreto (7)

- □ O sinal a_n pode ser visto como uma sequência ou como um sinal no domínio do tempo, n entendido como número de períodos de amostragem T, a(nT)
- □ Abordagem alternativa: usar a **Transformada z**
- □ Passar dos sinais a_n no domínio do tempo para os sinais A(z)
 no domínio das frequências
- Matematicamente z é uma variável complexa
- ☐ Interpretação "física": multiplicar por z⁻¹ é atrasar um intervalo de amostragem
 - Isto permite obter A(z) a partir do diagrama de blocos do sistema

Sistema discreto (8)

$$a_{n} = \frac{3}{4} a_{n-1} - \frac{1}{8} a_{n-2} + h(n) \quad n \ge 2, a_{0} = 0 \text{ e } a_{1} = 0$$

$$h(n) \quad S \quad a_{n}$$

$$-\frac{1}{8} a_{n-2} + h(n) \quad n \ge 2, a_{0} = 0 \text{ e } a_{1} = 0$$

$$A(z) \quad A(z) \quad$$

$$\Box G(z) = \frac{A(z)}{H(z)} = \frac{1}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}} = \frac{z^2}{z^2 - \frac{3}{4}z + \frac{1}{8}} = \frac{z^2}{\left(z - \frac{1}{2}\right)\left(z - \frac{1}{4}\right)}$$
Função de transferência de recorrência - 30

Sistema discreto (9)

□ Significado da função de transferência

- □ A transformada z da saída A(z) é o produto da função de transferência G(z) pela transformada z da entrada H(z)
- □ Se a entrada for um impulso de amplitude 1 em n=0, H(z)=1 e A(z)=G(z). Portanto, a função de transferência é a transformada z da resposta impulsional
- □ Vamos considerar só sinais causais: h(n)=0, para n<0

Sistema discreto (10)

- □ O impulso de amplitude 1 em n=0 força a saída a(0)=1
- Usando a solução homogénea $a_n = c_1 \left(\frac{1}{2}\right)^n + c_2 \left(\frac{1}{4}\right)^n$

$$a_0 = c_1 \left(\frac{1}{2}\right)^0 + c_2 \left(\frac{1}{4}\right)^0 = 1$$

$$a_{-1} = c_1 \left(\frac{1}{2}\right)^{-1} + c_2 \left(\frac{1}{4}\right)^{-1} = 0$$

- $c_1 = 1 c_2$
- \Box 2 $c_1 + 4c_2 = 0$
- $2(1-c_2)+4c_2=0$
- $c_2 = -1$ $c_1 = 2$

$$\Box a_n = 2\left(\frac{1}{2}\right)^n - \left(\frac{1}{4}\right)^n$$

Sistema discreto (11)

- □ A resposta ao degrau do exemplo $h2(n) = \begin{cases} 1, & 2 \le n \le 4 \\ 0, & n \ge 5 \end{cases}$
- pode ser vista com a sobreposição das três respostas impulsionais atrasadas 2, 3 e 4 períodos
- ☐ Este resultado é uma
- convolução do degrau
- ☐ da entrada com a resposta
- impulsional

Sistema discreto (12)

Propriedade	Domínio dos tempos (n)	Domínio das frequências (z)
Variável	Sequências de números (de períodos T)	Função de variável complexa z
Transformada	$x[n] = \mathbf{Z}^{-1}\{X(z)\}$	$X(z) = \mathbf{Z}\{x[n]\}$ $= \sum_{n=0}^{\infty} x[n]z^{-n}$
Linearidade	$a_1x_1[n] + a_2x_2[n]$	$a_1X_1(z) + a_2X_2(z)$
Atraso temporal	x[n-k], com $k>0$ e x: $x[n]=0$ se $n<0$	$z^{-k}X(z)$
Avanço temporal	x[n+k], com k>0	$z^k X(z) - z^k \sum_{n=0}^{k-1} x[n] z^{-n}$
Escalar em z	$a^nx[n]$	$X(a^{-1}z)$
Convolução	$x_1[n]*x_2[n]$	$X_1(z)X_2(z)$
Estabilidade	Resposta impulsional tende para 0	Polos da FT dentro do círculo de raio 1

Sistema discreto (13)

Sinal	Sequência	Transformada
Degrau de Heaviside	$u[n] = \begin{cases} 1, n \ge 0 \\ 0, n < 0 \end{cases}$	$\frac{z}{z-1}$
Impulso de Dirac	$\delta[n] = \begin{cases} 1, n = 0 \\ 0, n \neq 0 \end{cases}$	1
Exponencial	$a^nu[n]$	$\frac{z}{z-a}$
Cosseno	$\cos(w_0 n) u[n]$	$\frac{1 - z^{-1}\cos(w_0)}{1 - 2z^{-1}\cos(w_0) + z^{-2}}$
Seno	$\sin(w_0 n) u[n]$	$\frac{z^{-1}\sin(w_0)}{1 - 2z^{-1}\cos(w_0) + z^{-2}}$
Cosseno exponencial	$a^n \cos(w_0 n) u[n]$	$\frac{1 - az^{-1}\cos(w_0)}{1 - 2az^{-1}\cos(w_0) + a^2z^{-2}}$
Seno exponencial	$a^n \sin(w_0 n) u[n]$	$\frac{az^{-1}\sin(w_0)}{1 - 2az^{-1}\cos(w_0) + a^2z^{-2}}$

Sistema discreto (14)

resposta a um degrau unitário no instante 2

$$a_n = -8\left(\frac{1}{2}\right)^n + \frac{16}{3}\left(\frac{1}{4}\right)^n + \frac{8}{3}$$

Relações de recorrência - 36

Sistema discreto (15)

□ Para obter o patamar do exemplo, podemos adicionar um degrau negativo a partir do instante 5

$$A_2(z) = \frac{64z}{z - \frac{1}{2}} - \frac{\frac{1024}{3}z}{z - \frac{1}{4}} - \frac{\frac{8}{3}z}{z - 1}$$

$$a2_n = \left(64\left(\frac{1}{2}\right)^n + \frac{1024}{3}\left(\frac{1}{4}\right)^n + \frac{8}{3}\right)u(n-5)$$

- □ Adicionando este ao anterior,
- □ obtém-se a solução

Relações de recorrência - 37

Sistema discreto (16)

- □ Novo exemplo: $a_n = -a_{n-1} \frac{1}{2}a_{n-2} + h(n)$, com $h(n) = \delta(n)$
- $G(z) = \frac{1}{1+z^{-1}+\frac{1}{2}z^{-2}} \quad H(z) = 1$
- □ Raízes: $z = -\frac{1}{2} \pm j\frac{1}{2} = \frac{1}{\sqrt{2}}e^{j\frac{3\pi}{4}} = ae^{jw_0}$, $a = \frac{1}{\sqrt{2}}$, $w_0 = \frac{3\pi}{4}$
- Na tabela, a fração corresponde a $a^n \sin(w_0 n)$ e multiplicar por z corresponde a um avanço de 1 unidade

$$a_n = 2\left(\frac{1}{\sqrt{2}}\right)^{n+1} \sin\left(\frac{3\pi}{4}(n+1)\right) u[n]$$

Sistema discreto (17)

- □ A resposta impulsional é oscilatória: corresponde a raízes com parte imaginária, frequência é $w_0 = \tan^{-1} \frac{Im(z_1)}{Re(z_1)}$, em rad
- No entanto é estável (tende para 0) porque multiplica pela exponencial a^n , em que $a=|z_1|<1$, porque as raízes estão dentro do círculo unitário

 Relações de recorrência 39

Sistema discreto (18)

- □ Conclusão
- □ A mudança para a transformada z facilita o cálculo da resposta a entradas diversas, através do conceito de função de transferência
- □ Facilita a análise dos sistemas, prevendo o tipo de resposta, pela análise dos respetivos polos
- □ A transformada z é uma ferramenta poderosa na análise de sistemas descritos por relações de recorrência
- □ Paralelo: algo de semelhante se passa nos sistemas em tempo contínuo com a transformada de Laplace.
- □ Ambas estão relacionadas com a transformada de Fourier e com um algoritmo de implementação, a FFT Fast Fourier Transform.

 Relações de recorrência 40