Chapter 11.7 Bayesian Inferences with Simple Linear Regression

Jim Albert and Monika Hu

Chapter 11 Simple Linear Regression

Simulate fits from the regression model

▶ The intercept β_0 and slope β_1 determine the linear relationship between the mean of the response Y and the predictor x

$$E(Y) = \beta_0 + \beta_1 x \tag{1}$$

- ▶ Each pair of values (β_0, β_1) corresponds to a line $\beta_0 + \beta_1 x$ in the space of values of x and y
- lacksquare Posterior means: $ildeeta_0$ and $ildeeta_1$
- The line

$$y = \tilde{\beta}_0 + \tilde{\beta}_1 x$$

corresponds to a "best" line of fit through the data

Simulate fits from the regression model cont'd

- ► This best line represents a most likely value of the line $\beta_0 + \beta_1 x$ from the posterior distribution
- ▶ How about the uncertainty of this line estimate?
- ▶ We can draw a sample of J rows from the matrix of posterior draws of (β_0, β_1) and collecting the line estimates

$$\tilde{\beta_0}^{(j)} + \tilde{\beta_1}^{(j)} x,$$

where j = 1, ..., J

Simulate fits from the regression model cont'd

```
post <- as.mcmc(posterior)</pre>
post means <- apply(post, 2, mean)</pre>
post <- as.data.frame(post)</pre>
ggplot(PriceAreaData, aes(newsize, price)) +
  geom_point(size=3) +
  geom_abline(data=post[1:10, ],
              aes(intercept=beta0, slope=beta1),
               alpha = 0.5) +
  geom_abline(intercept = post means[1],
               slope = post means[2],
               size = 2) +
  ylab("Price") + xlab("Size") +
  theme_grey(base size = 18, base family = "")
```

Simulate fits from the regression model cont'd

- ▶ Variation among the ten fits
- ▶ What happens with a larger sample size?

- ► Learn about the expected response *E*(*Y*) for a specific value of the predictor *x*
- ► How?
- We can obtain a simulated sample from the posterior of $\beta_0 + \beta_1 x$ by computing this linear function, $E(Y) = \beta_0 + \beta_1 x$, on each of the simulated pairs from the posterior of (β_0, β_1)

Suppose we are interested in the expected price E(Y) for a house with a size of 1, i.e. x = 1 (1000 sq feet)

```
size <- 1
mean_response <- post[, "beta0"] +
    size * post[, "beta1"]</pre>
```

```
one expected <- function(x){
  lp <- post[ , "beta0"] + x * post[ , "beta1"]</pre>
  data.frame(Value = paste("Size =", x),
             Expected Price = lp)
df \leftarrow map_df(c(1.2, 1.6, 2.0, 2.4), one expected)
ggplot(df, aes(x = Expected Price, y = Value)) +
  geom density ridges(fill = crcblue,
                       color = "white") +
  theme grey(base size = 18, base family = "")
```

▶ Density plots of the simulated posterior samples for the expected prices $E(Y \mid 1.2)$, $E(Y \mid 1.6)$, $E(Y \mid 2.0)$, $E(Y \mid 2.4)$ for these four house sizes.

Picking joint bandwidth of 2.03

Prediction of future response

- ▶ So far, we have seen
 - the variability among the fitted lines
 - the variability among the simulated house price for fixed size (reflects the variability in the posterior draws of β_0 and β_1)
- ► To predict future values for a house sale price Y given its size x, we also need to incorporate the sampling model in the simulation process

$$Y_i \mid \beta_0, \beta_1, \sigma \stackrel{ind}{\sim} \text{Normal}(\beta_0 + \beta_1 x_i, \sigma)$$
 (2)

simulate
$$E[y]^{(1)} = \beta_0^{(1)} + \beta_1^{(1)} x \rightarrow \text{sample } \tilde{y}^{(1)} \sim \text{Normal}(E[y]^{(1)})$$

simulate $E[y]^{(2)} = \beta_0^{(2)} + \beta_1^{(2)} x \rightarrow \text{sample } \tilde{y}^{(2)} \sim \text{Normal}(E[y]^{(2)})$
 \vdots
simulate $E[y]^{(S)} = \beta_0^{(S)} + \beta_1^{(S)} x \rightarrow \text{sample } \tilde{y}^{(S)} \sim \text{Normal}(E[y]^{(S)})$

Picking joint bandwidth of 7.68

► The prediction interval is substantially wider than the posterior interval - why?

Posterior predictive model checking

► Review:

- helpful in judging the suitability of the linear regression model
- the observed response values should be consistent with predicted responses generated from the fitted model

Posterior predictive model checking

- Review:
 - helpful in judging the suitability of the linear regression model
 - the observed response values should be consistent with predicted responses generated from the fitted model
- ▶ Two steps to get a replicated sample (same sample size):
- 1. Values of the parameters $(\beta_0, \beta_1, \sigma)$ are simulated from the posterior distribution call these simulated values $(\beta_0^*, \beta_1^*, \sigma^*)$
- 2. A sample $\{y_1^R, ..., y_n^R\}$ is simulated where the sample size is n=24 and y_i^R is $Normal(\mu_i^*, \sigma^*)$, where $\mu_i^*=\beta_0^*+\beta_1^*x_i$.

Posterior predictive model checking cont'd

Your conclusion?

Predictive residuals

- ▶ Consider the observed point (x_i, y_i)
- ▶ Is the observed response value y_i consistent with predictions \tilde{y}_i of this observation from the fitted model?

Predictive residuals

- ▶ Consider the observed point (x_i, y_i)
- ▶ Is the observed response value y_i consistent with predictions \tilde{y}_i of this observation from the fitted model?
- ▶ We can simulate predictions \tilde{y}_i from the posterior predictive distribution in two steps:
- 1. One simulates $(\beta_0, \beta_1, \sigma)$ from the posterior distribution
- 2. One simulates \tilde{y}_i from a normal distribution with mean $\beta_0 + \beta_1 x_i$ and standard deviation σ
- ▶ By repeating this process many times, we have a sample of values $\{\tilde{y}_i\}$ from the posterior predictive distribution

Predictive residuals cont'd

Compute the predictive residual

$$r_i = y_i - \tilde{y}_i \tag{3}$$

▶ If this predictive residual is away from zero, that indicates that the observation is not consistent with the linear regression model

Predictive residuals cont'd

► Your conclusion?