Sub Code: ECT-001 ROLL NO......

II SEMESTER EXAMINATION, 2022 – 23 I Year–B. Tech. BASIC ELECTRONICS ENGINEERING

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

Q 1.	Answer any four parts of the following.	5x4=20			
	Calculate the electrons and hole concentrations in an N-type semiconductor with a $^{17} \mathrm{cm}^{-3}$ doping concentration.				
	b) Explain the working of Tunnel diode with suitable energy band diagram and I-V characteristics.				
	c) Why is the biasing done in amplifier circuits? d) Explain the Zener and Avalanche breakdown mechanism with the help of suitable diagram? e) For an n-channel JFET, V _P = -5V, I _{DSS} = 8mA, and VGS= -2.5 V. Determine (i) I _D (ii) and (iii) gm. f) Find the binary equivalent of (17E.F6)16 and the hex equivalent of (1011001110.011011101)2.				
			Q 2.	Answer any four parts of the following.	5x4=20
				a) In the following figure, initially, the Ge diode is forward-biased. Suddenly, the Ge diode connection direction is reversed. Find the change in output voltage (Vo). (Assume: Cut-in voltage of the Ge and Si diodes is 0.3V and 0.7V, respectively, and the breakdown voltage of the Ge diode is very high).	
12V Si SKR VO					
Fig.1.					
b) Consider silicon at T = 300 K doped with arsenic atoms at a concentration of $N_d=8\times 10^{15}~cm^{-3}$. Assume mobility values of $\mu_n=1350~cm^2/V-s$ and $\mu_p=480~cm^2/V-s$. Calculate the conductivity of the semiconductor material.					
c) Plot the I/V characteristic of the circuit shown in Fig.2. Assume the cut-in voltage of diode D1 is 0.7V.					
$V_X $ \downarrow					
Fig.2.					
d) An npn transistor is biased in the forward-active mode. The base current is $I_B = 5.0 \mu A$ and the collector current is $I_C = 0.62$ mA. Determine I_E , β , and α .					

e) Explain the working of n-channel enhancement -type MOSFETs.
