

你能学到什么

什么是数据分析建模,可以用来干嘛

建模的基本套路,帮助大家实现起飞

案例:房价预测

讨论:猜猜这个小区的房价?

小区的房价: 40,000/平米

所在城市:上海

所在区域:浦东新区唐镇

建造年代:2013年

离地铁站距离:2公里

生活配套:家乐福,购物中心,

华夏公园,唐镇社区中心

学区情况:唐镇小学

开发商:唐城投资公司

容积率:1.8

绿化率:36%

案例:魔镜系统

护拍贷 ppdai.com

什么是分析建模

建模是指把具体问题抽象成为某一类问题并用数学模型表示,是应用于工程、科学等各方面的通用方法,是一种对现实世界的抽象总结。

所在区域,生活配套, 交通情况,等 预测目标

小区房价

建模四大步骤

训练样本如何选取, 生成模型需要的特征 样本定义 特征工程 Target如何定义 效果评估 模型训练 把数据整理好喂给模 评估模型效果,根据 效果进行优化 型进行训练

需要反映预测数据集

• 首先明确模型的使用场景,即是在什么样本上进行预测?

• 训练样本需要按照预测样本来定义,尽量保持一致。

Choose a dev set and test set to reflect data you expert to get in the future and consider important to do well on.

--- Andrew Ng

分层抽样

是从一个可以分成不同子总体(或称为层)的总体中,按规定的比例从不同层中随机抽取样品(个体)的方法。

优点:样本的代表性比较好,抽样误差比较小。

预测目标Y

选择合适的预测目标

Y的定义:业务模型的Y多数都跟时间相关,所以时间窗要明确。

与时间无关,有客观定义:人脸识别

与时间有关,有客观定义:某段时间的购买

与时间有关,无客观定义:客户流失

2 特征工程

特征工程是什么

"数据和特征决定了机器学习的上限,而模型和 算法只是逼近这个上限而已。"

Feature engineering is the process of using domain knowledge of the data to create features that make machine learning algorithms work.

from Wikipedia

特征主题分类

交易/持有/收益表现 Transaction/Position/Performance

接触信息 Contact 浏览信息 Visit 用户权益 User Rights 市场环境 Market

用户属性 User Attributes 设备信息 Device Info 三方数据 Third-party

强业务数据

弱业务数据

业务无关数据

生成特征

特征主题

主动接触

接触信息 Contact

被动接触

业务行为

拨打客服电话 留言咨询客服 在论坛上发帖/回帖

营销电话 营销短信 营销优惠券

生成特征

过去1个月拨打客服电话次数是否在论坛发过帖吐槽拍拍贷

过去3个月是否收到过营销电话或短信注册后被成功营销总次数

衍生特征

原始特征:年龄

衍生特征:年龄是否大于30岁,年龄是否大于40岁,年龄除以10再取整,log(年龄)

衍生特征的其他例子:

14天内购买和 吐槽拍拍贷次数 注册渠道WOE

30天最大登录时间 是否是高净值用户 职业WOE

首付款比例 短信分 省份WOE

相邻月的购买差

WOE的全称是"Weight of Evidence",即证据权重。WOE是对原始自变量的一种编码形式。表示的实际上是"当前分组中响应客户占所有响应客户的比例"和"当前分组中没有响应的客户占所有没有响应的客户的比例"的差异。

数据处理

整个分析建模套路中,特征工程应该是最耗时的一步,而数据处理则是特征工程中最基础的一步。

实用类。	功能。	简介。	
StandardScaler -	标准化。	均值-标准差化数据标准化。	
MinMaxScaler -	标准化。	极值化法数据标准化。	
Normalizer.	归一化。	行记录单位化。	
Binarizer	二值化。	连续变量离散化。	
OneHotEncoder -	分类编码。	将定性数据编码为定量数据。	
Imputer.	缺失值插补。	缺失值插补。	
PolynomialFeatures -	多项式变换。	多项式数据变换。	

特征选择

单变量分析:

我们只关注1个变量(特征),看看这个变量在不同取值上的 target rate 区分度怎么样。

性别	数量	百分比	购买	购买率
男	500	50%	250	50%
女	400	40%	100	25%
缺失	100	10%	20	20%
总计	1,000	100%	370	37%

变量IV值:0.33

变量的IV值

IV**值(Information Value)**,即信息价值指标,可以体现变量对于一个二分类问题的重要程度,一般用做特征选择。

IV值	预测能力	
< 0.02	无预测能力	
0.02 ~ 0.1	较弱的预测能力	
** 0.1 ~ 0.3 **	** 预测能力一般 **	
** 0.3 ~0.5 **	** 较强的预测能力 **	
> 0.5	可疑	

特征选择的例子

原始特征:年龄

衍生特征:年龄是否大于30岁,年龄是否大于40岁,年龄除以10再取整,log(年龄)

特征选择的例子

原始特征:年龄

衍生特征:年龄是否大于30岁,年龄是否大于40岁,年龄除以10再取整,log(年龄)

相关性分析

对两两变量计算相关系数,系数高的变量对需要去掉1个。

建议:

0.8

-0.4

- 1. 相关系数最好不要超过0.5
- 2. 去掉哪个?
 - a) IV值小的
 - b) 业务解释不合理的
 - c) 计算复杂度大的

最后一步

生成一张大表, 扔给模型。

样本

ID	Time	X1	X2	 Y
1	20180302	男	22	 1
2	20180305	女	24	 0
3	20180401	Na	25	 0
4	20180402	女	Na	 1
5	20180402	男	43	 0
6	20180501	男	26	 1
7	20180502	男	Na	 0
8	20180606	男	23	 0

模型训练

为了同时提高模型的准确率和泛化能力,需要对模型样本进行切分。

训练集(training dataset)—— 用于训练模型 验证集(validation dataset)—— 数据对象与训练集相同,用于模型效果评估和调优 测试集(test dataset)—— 数据对象与训练集不同,仅用于模型效果评估

模型是怎么学习的

模型训练的目的:找X(特征)和Y(预测目标)的关系,即 y=f(x)

模型参数,模型需要算出来的东西,为 不同的 f 就代表了不同的模型 了使预测值与真实值尽量一致 $y = f(x, w, w_h)$ 样本的特征们 模型超参数,是模型本身的东西,与样 预测值 本无关,需要自己指定和调优

▶ 革故鼎新、追求卓越、简单靠谱、彼此成就

模型例子:逻辑回归

一个非常经典的针对二分类问题的模型,使用场景广泛。

$$y = f(x, w, w_h) = \frac{1}{1 + e^{-w^T x}}$$

预测值 y 的取值范围为0到1。

假设我们问题是抓坏人,越接近1代表我们预测这个人越像坏人。

模型选择

效果评估

评估指标(一)

模型效果评估:预测值 VS 真实值

准确率(Accuracy): 预测正确的样本量 / 总样本量

评估指标(二)

精确率 (Precision)

召回率 (Recall)

评估指标(三)

分类模型产生的结果通常是一个概率值不是直接的0/1分类(比如逻辑回归)。 如果能设定明确的阈值,可以使用Precision和Recall进行模型评估,否则需要新的评估 指标。

AUC (Area Under the ROC Curve)

AUC取值一般在0.5到1之间,值越大模型效果越好。AUC=0.5说明模型的预测能力与随机结 果没有差别。

KS (Kolmogorov-Smirnov)

KS值表示了模型将正负样本区分开来的能力。值越大,模型的预测准确性越好。一般来讲, KS>0.2即可认为模型有比较好的预测准确性。

拍拍贷 ppdai.com

过拟合 (overfitting)

过拟合 (overfitting)

过拟合 (overfitting)

需要在训练集/验证集/测试集上进行评估,比较效果。

METRIC	IS	oos	ООТ
AUC	0.85	0.72	0.37
KS	0.54	0.39	0.23

METRIC	IS	oos	ООТ
AUC	0.78	0.76	0.72
KS	0.45	0.44	0.41

解决方法举例:

丰富样本;减少选取特征的数量;模型调参(超参数 W_h)。

的知识 解对反的分辨 ppdai.com

第一届魔镜杯排行榜

初赛排行榜

排名	团队	最终分数	提交次数	最后提交时间
1	Deadshot	0.780529	14	16-03-31 23:39
2	涌泉	0.780442	9	16-03-30 12:40
3	三湖连江数据分析团队	0.779833	7	16-03-24 22:51
4	全民狙击	0.776913	12	16-03-31 16:18
5	秦晏观殊	0.775682	9	16-03-31 02:05
6	世属三	0.775304	16	16-03-31 09:35
7	我这么纯洁根本听不懂	0.774523	7	16-03-31 20:42
8	nemo	0.774514	16	16-03-31 00:41
9	liuxp	0.773645	4	16-03-31 23:16
10	GoDown	0.773497	13	16-03-31 10:43

课程内容回顾

1

- A. 需要反映预测数据集
- B. 分层抽样
- C. 选择合适的预测目标

- A. 5种评估指标
- B. 过拟合

4

2

- A. 主题分类
- B. 衍生特征
- C. 特征选择

- A. 样本切分
- B. 模型是如何学习的
- C. 逻辑回归

3