Support Vector Machines with Python

Import Libraries

```
In [1]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Get the Data

```
In [2]:
```

```
IRIS = pd.read_csv('IRIS.csv')
```

In [3]:

```
IRIS.keys()
```

Out[3]:

In [4]:

```
IRIS.head()
```

Out[4]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

```
In [5]:
```

147

148 149 Iris-virginica Iris-virginica

Iris-virginica

Name: species, Length: 150, dtype: object

```
print(IRIS['petal_width'])
0
       0.2
1
       0.2
2
       0.2
3
       0.2
4
       0.2
      . . .
145
       2.3
146
       1.9
147
       2.0
148
       2.3
149
       1.8
Name: petal_width, Length: 150, dtype: float64
In [6]:
print(IRIS['species'])
0
          Iris-setosa
1
          Iris-setosa
2
          Iris-setosa
3
          Iris-setosa
4
          Iris-setosa
145
       Iris-virginica
146
       Iris-virginica
```

In [7]:

```
sns.pairplot(data=IRIS, hue='species', palette='Set2')
```

Out[7]:

<seaborn.axisgrid.PairGrid at 0x1ef17977df0>

Set up DataFrame

In [8]:

```
df_IRIS = pd.DataFrame(IRIS['sepal_length'],columns=IRIS['species'])
df_IRIS.info()
```

<class 'pandas.core.frame.DataFrame'>

Index: 0 entries

Columns: 150 entries, Iris-setosa to Iris-virginica

dtypes: object(150)
memory usage: 0.0+ bytes

```
In [9]:
IRIS['petal_width']
Out[9]:
       0.2
0
1
       0.2
2
       0.2
3
       0.2
       0.2
145
      2.3
      1.9
146
147
       2.0
148
       2.3
149
       1.8
Name: petal_width, Length: 150, dtype: float64
In [10]:
df_petal_width = pd.DataFrame(IRIS['petal_width'],columns=['IRIS'])
Train Test Split
In [11]:
from sklearn.model_selection import train_test_split
In [12]:
x=IRIS.iloc[:,:-1]
y=IRIS.iloc[:,4]
x_train,x_test, y_train, y_test=train_test_split(x,y,test_size=0.30)
In [13]:
from sklearn.svm import SVC
model=SVC()
In [14]:
model.fit(x_train, y_train)
Out[14]:
 ▼ SVC
SV¢()
```

```
In [15]:
```

```
pred=model.predict(x_test)
```

Model Evaluation

In [16]:

```
from sklearn.metrics import classification_report, confusion_matrix
```

In [17]:

```
print(confusion_matrix(y_test,pred))
```

```
[[20 0 0]
[ 0 12 0]
[ 0 2 11]]
```

In [18]:

```
print(classification_report(y_test, pred))
```

precision	recall	f1-score	support
1 00	4 00	4 00	20
1.00	1.00	1.00	20
0.86	1.00	0.92	12
1.00	0.85	0.92	13
		0.96	45
0.95	0.95	0.95	45
0.96	0.96	0.96	45
	1.00 0.86 1.00	1.00 1.00 0.86 1.00 1.00 0.85	1.00 1.00 1.00 0.86 1.00 0.92 1.00 0.85 0.92 0.96 0.95 0.95 0.95

Gridsearch

In [19]:

```
param_grid = {'C': [0.1,1,5, 10, 50, 100, 1000], 'gamma': [10,1,0.1,0.01,0.001,0.0001],
```

In [20]:

```
from sklearn.model_selection import GridSearchCV
```

In [21]:

```
grid = GridSearchCV(SVC(),param_grid,refit=True,verbose=5)
```

```
In [22]:
grid.fit(x_train,y_train)
    0.0s
me=
[CV 1/5] END ....C=10, gamma=0.1, kernel=linear;, score=1.000 total ti
     0.0s
[CV 2/5] END ....C=10, gamma=0.1, kernel=linear;, score=0.952 total ti
[CV 3/5] END ....C=10, gamma=0.1, kernel=linear;, score=1.000 total ti
[CV 4/5] END ....C=10, gamma=0.1, kernel=linear;, score=0.905 total ti
me=
     0.0s
[CV 5/5] END ....C=10, gamma=0.1, kernel=linear;, score=1.000 total ti
     0.0s
[CV 1/5] END .....C=10, gamma=0.01, kernel=rbf;, score=0.952 total ti
me=
     0.0s
[CV 2/5] END .....C=10, gamma=0.01, kernel=rbf;, score=0.952 total ti
me=
     0.0s
[CV 3/5] END .....C=10, gamma=0.01, kernel=rbf;, score=1.000 total ti
     0.0s
[CV 4/5] END .....C=10, gamma=0.01, kernel=rbf;, score=0.905 total ti
     0.0s
me=
                   C-10 gamma-0 01 konnol-nhf: scono-1 000 total ti
[C// E/E] END
In [23]:
grid.best_params_
Out[23]:
{'C': 5, 'gamma': 10, 'kernel': 'linear'}
In [24]:
grid.best_estimator_
Out[24]:
                 dvc
SVC(C=5, gamma=10, kernel='linear')
In [25]:
grid_predictions = grid.predict(x_test)
In [26]:
```

```
[[20 0 0]
[ 0 11 1]
```

[0 0 13]]

print(confusion_matrix(y_test,grid_predictions))

In [27]:

print(classification_report(y_test,grid_predictions))

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	20
Iris-versicolor	1.00	0.92	0.96	12
Iris-virginica	0.93	1.00	0.96	13
accuracy			0.98	45
macro avg	0.98	0.97	0.97	45
weighted avg	0.98	0.98	0.98	45

In []: