CS157A:

Introduction to Database

Assignment Project Exam Help Management Systems

https://powcoder.com

Add WeChat powcoder

Chapter 3. Design Theory for Relational Databases

Database Design

- Designing a relational database schema for an application.
- If a database sumenta has flaws, it will cause problems referred to as "design anomalies".
- Often, the design anomalies are caused by too much information is crammed into a single relation.
- "Dependencies" can imply what makes a good relational database schema and what we can do about a schema if it has flaws.

Design Anomalies

- Anomalies: problems caused by too much information is crammed into a single relation
 - Redundance meanturing of Family Perimes
 - Update Andmaliespotorgetete update in a tuple
 - Deletion Anomalies deleting a tuple causes a loss of other information as a side effect

Solution: Normalization

The goal of normalization is to decompose a relation into several in a way that the decomposition will Project Exam Help

- Elimination SAM POWS A PERSON
- Recoverability of Information
- Preservation of Dependencies

Normalization

- $1NF \rightarrow 2NF \rightarrow 3NF \rightarrow BCNF \rightarrow 4NF (optional)$
- The higher NF implies the lower NF.
- These days, there is little use for 1NF and 2NF
- BCNF will be covered in detail.
- 3NF is more relaxed condition than BCNF to allow a relational schema that Assignment of the schema that Assignment of the loss less-join and dependency preservation properties https://powcoder.com
- https://powcoder.com
 The most commonly used and easiest normal form to get to that will give you a good database is known to be third normal form (3NF).

Figure 3.12: 4NF implies BCNF implies 3NF

BCNF Normalization

https://powcoder.com

Add WeChat powcoder

Idea of Normalization

- Define BCNF in terms of FD and key.
- From a given mega relation, discover all true Assignment Project Exam Help FD's: closure algorithm
- Identify BCNF violations and decompose relations until 40 BCNF violations and decompose

Functional Dependencies

Definition

- In a relation R, a set of attributes \underline{A} is said to functionally determine another set of attributes \underline{B} ($\underline{A} \rightarrow \underline{B}$) Aif sign two less regarded \underline{A} this is the latest and \underline{A} this is a latest and \underline{A} th
- R satisfies antipit the PDR every instance of R
- Implication Add WeChat powcoder
 - Each \underline{A} value is associated with precisely one \underline{B} value.
 - If the <u>A</u> value is known, then the <u>B</u> value corresponding to <u>A</u> can be determined by looking up in any tuple of R containing the <u>A</u> value.

Functional Dependencies

Suppose a relational schema is $(\underline{A}, \underline{B}, \underline{C})$ and $\underline{A} \rightarrow \underline{\mathbb{R}}$ ssignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Example: Functional Dependencies

Based on the knowledge of the real world:

Movies1(title, year, length, genre, studioName, starName)

title	year	length	genre	studioName	starName
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1975SI	ignmer 1224mer	it Projec	t Exam He	Mark Hamill
Star Wars	1977	https:/	SciFi DOWCOO	leg com	Harrison Ford
Gone With the Wind			SciFi /POWCOO drama VeChat 1		Vivien Leigh
Wayne's World	1992	95	comedy	Paramount	Dana Carvey
Wayne's World	1992	95	comedy	Paramount	Mike Meyers

```
title year \rightarrow length genre studioName (o) title year \rightarrow starName (x)
```

Keys

- In a relation R with no duplicates, if $\underline{A} \rightarrow$ all other attributes, then \underline{A} is a key of R.
- Minimal keyighment operesubset of features
 functionally determines all other attributes
 https://powcoder.com
- Super key: a set of attributes that contains a Add WeChat powcoder key.

Example: Keys

[Q] Is {title, year, starName} a key for Movie1?[A] Yes. {title, year, starName} functionally determines all other attributes of Movie1.

Assignment Project Exam Help

[Q] Is the key mutipa: [Powcoder.com

[A] Yes. No proper wheehof the keyesan functionally determine all other attributes.

{title} {year} {starName} {title, year}
{title, starName}{year, starName}

Functional Dependency Rules

With a given set of FDs, we can deduce other functional dependencies using following rules.

Assignment Project Exam Help

Transitive rule

- Splitting rule https://powcoder.com
- Combining rule Add WeChat powcoder
- Trivial dependency rules (two of them)

Transitive Rule

Example: If we are told that a relation R (A, B, C) satisfies the FD's A \rightarrow B and B \rightarrow C, we can deduce that R also satisfies the FD A \rightarrow C.

Assignment Project Exam Help

Let (a, b₁, c₁) and (a, b₂, c₂) be two tuples that

- Let (a, b₁, c₁) and (a, b₂, c₂) be two tuples that agree on attribute A.
- Since R satisfies $A \rightarrow B$ it follows that $b_1 = b_2$ so the tuples are: (a, b, c_1) and (a, b, c_2)
- Similarly, since R satisfies $B \rightarrow C$ and the tuples agree on B they will agree also on C. So, $c_1 = c_2$.

The Splitting/Combining Rule involving the right side of FDs

$$\begin{array}{lll} A_1A_2...A_n & \rightarrow & \text{Bsignmentingiral Exam Help} \\ A_1A_2...A_n & \rightarrow & \text{https://powcoder.com} \\ ... & & A_1A_2...A_n \rightarrow & \text{B}_1B_2...B_m. \\ A_1A_2...A_n & \rightarrow & \text{B}_m \end{array}$$

Example: The Splitting/Combining Rule involving the right side of FDs

```
title year -> lengthsignortti Pingerule xame Help->
title year -> genre
title year -> studioName
studioName

Add Wir Ghru peowcoder
```

Can we split the left side?

```
[Q]
From, title year → length, can we deduce
Assignment Project Exam Help
title → length (false FD)

year → length (false FD)

[A] No

Add WeChat powcoder
```

Trivial Functional Dependencies

• A functional dependency $A_1A_2...A_n \rightarrow B$ is **trivial** if B is a subset of A

- Example: title year \rightarrow title Assignment Project Exam Help A functional dependency $A_1A_2...A_n \rightarrow B_1B_2...B_m$ is:
 - Nontrivial if attleast one of the B's is not among the A's. Add WeChat powcoder
 - Completely nontrivial if A and B do not have any overlap.

Example: title year \rightarrow year length is nontrivial but not completely nontrivial.

Trivial Dependency Rule

- We can always remove from the right side of a FD those attributes that appear on the left.
- Suppose A → B. Then, A → C
 e.g) title, year → year, length. Then, title, year → length

Computing the Closure of Attributes

- The closure of a set of attributes $\{A_1, A_2, ..., A_n\}$: $\{A_1, A_2, ..., A_n\}^+$
- Suppose {Aus figure of Prise set of attributes and S is a set of FD's, {A₁, A₂, ..., A_n}⁺ under the https://powcoder.com/dependencies in S is the set of attributes B, which are functionally determined by Aer A₂, ..., A_n
- That is, it finds $A_1A_2...A_n \rightarrow B$ that follows from S
- Since we allow trivial dependencies, A₁, A₂, ..., A_n are in {A₁, A₂, ..., A_n}⁺.

Algorithm 3.7: Closure of a Set of Attributes

Input: A set of attributes $\{A_1, A_2, ..., A_n\}$ and a set of FD's S

Output: The closure $\{A_1, A_2, ..., A_n\}^+$

- 1 Let X be a set of attributes that eventually will become the closure. Initialize X to significantly project Exam Help
- 2 Now, repeatedly search for some FD in S: $B_1B_2...B_m \rightarrow C$ https://powcoder.com

such that all of B's are in the cet Xt but C is not. We then add C to X.

- 3 Repeat step 2 as many times as necessary until no more attributes can be added to X. (Since X can only grow, and the number of attributes is finite, eventually nothing more can be added to X.)
- 4 The set X after no more attributes can be added to it is the: $\{A_1, A_2, ..., A_n\}^+$.

Example

Let's consider a relation with attributes A, B, C, D, E and F.
 Suppose that this relation satisfies the FD's:

$$X = \{A,B\}$$
 https://paw.coder.com
 $X = \{A,B,C\}$ Add WeChat powcoder
 $X = \{A,B,C,D\}$ Use: $D \rightarrow E$
 $X = \{A,B,C,D,E\}$ No more changes to X are possible so $X = \{A,B\}^+$.

 The FD: CF→B cannot be used because its left side is never contained in X.

Use of the closure of attributes

We can test whether any given functional dependency $A_1A_2...A_n \rightarrow B$ **follows** from a set of dependencies **S**.

• Compute {Assagnment Projeing then sptepf dependencies S.

https://powcoder.com

- If $B \in \{A_1, A_2, ...A_n\}$ which is the follow from S.
- If $B \notin \{A_1, A_2, ..., A_n\}^+$ then the FD: $A_1A_2...A_n \rightarrow B$ doesn't follow from **S**.

Example: Use of the closure of attributes

[Q] Consider the previous example. Test whether $AB \rightarrow D$ follows from the set of the dependencies.

- [Q] Consider the Hatps://powcoder.com
- [A] No since A ∉ {D}⁺ = {D,E}. We say, D→A does not follow from the given set of dependencies.

$$X = \{D\}$$
 Use $D \rightarrow E$

X= {D, E} we have reached the closure.

The Transitive Rule

- If $A_1A_2...A_n \rightarrow B_1B_2...B_m$ and $B_1B_2...B_m \rightarrow C_1C_2...C_m$, then $A_1A_2...A_n \rightarrow C_1C_2...C_k$
- Prove this rule weing the alexure reflattributes
 - 1. With $\{A_1A_2, A_n\}$ and two FDs $A_1A_2...A_n \rightarrow B_1B_2...B_m$ and $B_1B_2...B_m \rightarrow C_1C_2...C_m$
 - 2. $\{A_1, A_2, ..., A_n\} = \{A_1, A_2, ..., A$
 - 3. Therefore, $A_1A_2...A_n \rightarrow C_1C_2...C_k$ follows from the given FDs.

Example: The Transitive Rule

title	year	length	genre	studioName	studioAddr
Star Wars	1977	124	sciFi	Fox	Hollywood
Eight Below	2005	120	drama	Disney	Buena Vista
Wayne's	1992	95	comedy	Paramount	Hollywood
World	Assig	nment Pro	ject Exan	n Help	

title year → studioNa/prevcoder.com studioName → studioAddr powcoder

Then, we can deduce a new FD based on the transitive rule.

title year → studioAddr

Closures and Keys

- $\{A_1, A_2, ..., A_n\}^+$ is the set of **all** attributes of a relation if and only if $\{A_1, A_2, ..., A_n\}$ is a **superkey** for the relation.
- We can testsified protect. Projets to Emaininh believe for a relation by checking:
 - relation by checking: https://powcoder.com first that $\{A_1, A_2, ..., A_n\}^+$ contains all attributes,
 - and if any of dath mothers permoved from $\{A_1, A_2, ..., A_n\}$, then {reduced set of attributes} + will not contain all the attributes.

Design of Relational Database Schemas

• The principal problem that we encounter is redundancy, where a fact is repeated in more Assignment Project Exam Help than one tuple.

https://powcoder.com

Add WeChat powcoder

Example: relation with redundancy

Movie1 Relation

Assignment Project Exam Help

title	year	length	genre	studioName	starName
Star Wars	1977	https://	/spowco	der.com	Carrie Fisher
Star Wars	1977	124	SciFi	Fox powcoder Fox	Mark Hamill
Star Wars	1977	Add V	SciFi	powcoder	Harrison Ford
Gone With the Wind	1939	231	drama	MGM	Vivien Leigh
Wayne's World	1992	95	comedy	Paramount	Dana Carvey
Wayne's World	1992	95	comedy	Paramount	Mike Meyers

Anomalies

Redundancy.

 capturing info multiple times unnecessarily. E.g. length and genre.

Update anomalies Assignment Project Exam Help

- forget to update in a tuple
- E.g. we could the second and forget to do the same in the second and third tuple.

Deletion anomalies.

- deleting a tuple causes a loss of other information as a side effect
- E.g. if we delete Vivien Leigh. we will lose all the information about Gone With the Wind.

Decomposing Relations - Example

Movie2 Relation

title	year	length	genre	studioName
Star Wars	1977	124	sciFi	Fox
Star Wars Gone With the Wind	ssignme	ent ₂ grojec	t Haam He	lpoisney
Wayne's World	1992	, ,95	comedy	Paramount
Wayne's World 1992 95 comedy Paramount https://powcoder.com				

title	yeaAd	d swarmat powcod	ler
Star Wars	1977	Carrie Fisher	Movie3 Relation
Star Wars	1977	Mark Hamill	
Star Wars	1977	Harrison Ford	
Gone With the Wind	1939	Vivien Leigh	
Wayne's World	1992	Dana Carvey	
Wayne's World	1992	Mike Meyers	

Decomposing Relations - Example

- No true redundancy!
- The update anomaly disappeared of we change the length of a movie, it is done only once.

Add WeChat powcoder

 The deletion anomaly disappeared. If we delete all the stars from Movie₂ we still will have the other info for a movie.

Boyce-Codd Normal Form (BCNF)

- The goal of decomposition is to replace a relation by several that do not exhibit anomalies.
- There is a simple condition called Boyce-Codd Normal Fokusigndernt/Richethe Exportables can be guaranteed not to exist.
- guaranteed not to exist.

 https://powcoder.com

 A relation is in BCNF if and only if: whenever there is a nontrivial deaddown (V) A₁/povAnoder₁B₂...B_m for R, it must be the case that {A₁, A₂, ..., A_n} is a superkey for R.
- That is, the left side of every nontrivial functional dependency must contain a key.

Example: BCNF

Relation Movie1 is not in BCNF.

- {title, year, starName} is a key of the relation.
- Consider the FD: title year—length genre studioName
- The left side of the above dependency is not a super key. In particular, we know that the title and the year does not functionally determine star. Name.

Movie2 is in BCNF.

- The only key is {title, year} and
- title year → length genre studioName holds in the relation

Example: BCNF

A relation with two attributes is always in BCNF.

- (a) If there is no non-Trivial ED Exthennitis in BCNF
- (b) $A \rightarrow B$, but not $B \rightarrow A$: A is the only key and the left side of non-trivial FD $A \rightarrow B$ contains A.
- (c) $B \rightarrow A$, but not $A \rightarrow B$: Symmetric to (b)
- (d) $A \rightarrow B$ and $B \rightarrow A$: both A and B are keys. $A \rightarrow B$ contains a key (A) and $B \rightarrow A$ contains a key(B) in their left sides, respectively.

Decomposition into BCNF

- Decomposition Strategy
 - Find a non-trivial FD $A_1A_2...A_n \rightarrow B_1B_2...B_m$ that violates BCNF, i.e. $A_1A_2...A_n$ is not a super key.
 - Decompose the relation schema into two overlapping relation schemas:
 - One is all the lattribut point of in the violating FD and
 - The other is the left side of the FD and all the other attributes not involved in the Powcoder
 - By repeatedly, choosing suitable decompositions, we can break any relation schema into a collection of smaller schemas in BCNF.
- The original relation should be able to be reconstructed from the decomposed relations.

Projecting Functional Dependencies

- It will be used to find FDs for the decomposed relations so that we can eventually check that the decomposed relations are in BCNF.

 Assignment Project Exam Help
- Suppose a relation R with a set of FD's S and R1 https://powcoder.com is a projection of R.
 - -What FDs hold for R1?
 - The algorithm will find all FDs that follow from S and involve only attributes of R1

Algorithm 3.12: Projecting Functional Dependencies

Input: R1 and a set of FD's on R

Output: a set of FD's T that hold in R1

Method:

- Consider Rachalds At Mofest Pibutes Polif R1.
- Compute X⁺ using the FD on R.
- At the end, throw out the attributes of R, which aren't in R1. Add WeChat powcoder
- Then, add to T all nontrivial FD's X→ A such that A is in X⁺ and A is an attribute of R1
- Construct a minimal basis of T.

Example: Projecting Functional Dependencies

- Consider R(A, B, C, D, E) decomposed into R1(A, C, D) and another relation. Let FDs of R be: $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$.
- $\{A\}^+ = \{A, B, C, D\} T = \{A \rightarrow C, A \rightarrow D\}$
- {C}+={C,D} T={Assignment Project Exam Help
- $\{D\}^+=\{D\}\ T=\{A\rightarrow C, A\rightarrow D, C\rightarrow D\}$

Since {A}+includes all attributes, we don't need to consider any superset of {A}.

Add WeChat powcoder

- {C,D}+={C,D} CD→ C or CD→ D are trivial. Therefore, T won't be changed.
- Based on the transitive rule, A→ D follows from A→ C and C→ D.
- $T = \{A \rightarrow C, C \rightarrow D\}$ which is a minimal basis.

Some simplifications

- Don't need to compute the closure of the empty set or of the set of all attributes because they never yield a non-trivial FD.
- If we find X + https://attributes, don't bother computing the do bourse of anyoslapersets of X.

Algorithm 3.20: BCNF Decomposition Algorithm

Input: A Relation R with a set of functional dependencies S

Output: Decomposed relations in BCNF

The following steps can be applied recursively to any relation R and a set of FDASSignment Project Exam Help

- Check if R is in BCNF. If so, return R as it is.
- If there are BCN that topic wet of the beauty Y.
- Use Algorithm 3.7 to compute X^+ . The relation will be decomposed into $X^+ = X^+$ and $X^2 = X^+$ and X^+ are not in X^+ .
- Use Algorithm 3.12 to project FD's for R1 and R2. Let these be S1 and S2, respectively.
- Recursively decompose R1 and R2 using this algorithm.

Return the union of the results of these decompositions.

Consider a schema:

```
(title, year, studioName, president, presAddr)

and functional dependencies:

title year → studioName

studioName → president

president → Signment Project Exam Help
```

- To find BCNF violating FDs, you need to find keys of this relation. https://powcoder.com
 Compute {title, year}+, {studioName}+, {president}+ and see if you get all the attribute of the relation of the point of t
- Last two violate BCNF.

- Decomposition can start with any of these violating FDs. Let's starting with studioName → president
- Add to the right-hand side any other attributes in the closure of atudio Name posional but often reduces the amount of work)

https://powcoder.com

- 1. X={studioName} Add WeChat powcoder president
- 2. X={studioName, president} president → presAddr
- 3. X={studioName}+={studioName, president, presAddr}

The choice of FD is now studioName \rightarrow president presAddr Therefore, the original relation is decomposed into

```
Movies1(title, year, studioName)
Movies2(studio Naisen mental Projects Exam Help
```

[Q1] Is Movies1 in BCNF? //powcoder.com

[A] Yes

- 1. Using Algorithm 3.12, find a minimal basis of FDs that hold in Movies1.
- 2. You will find that Movies1 has a basis title year \rightarrow studioName.
- See if {title, year} is a key by finding its closure and see if the closure includes all attributes of Movie1. {title, year} + = {title, year, studioName}

```
Movies2(studioName, president, presAddr)
[Q2] Is Movies2 in BCNF?
[A] No
```

- 1. Using Algorithm 3.12 find a minimal haris of FDs that hold in Movies 2.
- 2. You will find that the view 2 was descom
 studioName → president & president → presiden
- 3. See if {studioName} and {president} are keys. {studioName} += {studioName, present, presAddr} {president} += {president, presAddr} and thus it is not a key. We conclude president >> presAddr is a BCNF voilation.

We have to decompose Movie2 into

Movie2-1 (president, presidentAddr)

Movie2-2 (president, studioName)

Assignment Project Exam Help

Both of them artetpelations with contributes and thus in BCNF.

Add WeChat powcoder

Final result

Movies1(title, year, studioName)

Movie2-1 (president, presidentAddr)

Movie2-2 (president, studioName)

3NF

- In some cases, it is not possible to decompose a relation into BCNF Assignment Project Exam Help relations that have both the lossless-join and dependency preservation properties. Add WeChat powcoder
- 3NF allows us to make a tradeoff between preserving dependencies and BNCF.

Example

- Bookings (title, theater, city)
- FD's: theater → city, title city → theater
- Keys: {title, city} (theater, title}
- BCNF violationistment Project Exam Help
- If Bookings is determposed into (theater, city) and (theater, title) to satisfy the BNCF condition, the Add WeChat powcoder functional dependency "title city theater" cannot be preserved as shown below ——

theater	city
Guild	Menlo Park
Park	Menlo Park

theater	title
Guild	Antz
Park	Antz

theater	city	title
Guild	Menlo Park	Antz
Park	Menlo Park	Antz

Definition of 3NF

A relation R is in 3NF if and only if for every non-trivial FD A1A2...An → B, either

{A1, A2, ...A Angrishers Upper Les YERS Melp B is an attribute in some key (prime). https://powcoder.com

3NF violation

A non-trivial FD X A violates 3NF If and only if X is not a super key and A is not prime.

• If there exists a 3NF violation, decompose R using the synthesis algorithm presented in the next slide.

The Synthesis Algorithm for 3NF Schemas

- Input: A relation R and a set F of functional dependencies that hold for R
- Output: A decomposition of R into a collection of relations, each of which is in 3NF. The composition has the lossless-join and dependancy presental project perties Help
- Method: https://powcoder.com
 Find a minimal basis for F, say G
- 2. For each functional development of the control o schema of one of the relations in the decomposition.
- If none of the relation schemas from Step 2 is a super key for R, add another relation whose schema is a key for R.

Example

R(A, B, C, D) with FD's $AB \rightarrow C, C \rightarrow D$, and $D \rightarrow A$

- There are 14 nontrivial dependencies. They are: $C \rightarrow A$, $C \rightarrow D$, $D \rightarrow A$, $AB \rightarrow D$, $AB \rightarrow C$, $AC \rightarrow D$, $BC \rightarrow A$, $BC \rightarrow D$, $BD \rightarrow A$, $BD \rightarrow C$, $CD \rightarrow A$, $ABC \rightarrow D$, $ABD \rightarrow C$, and $BCD \rightarrow A$.

 https://powcoder.com
- There are three keys. When he for and BD. Since all the attributes on the right sides of the FDs are prime, there are no 3NF violations.
- Since there are no 3NF violations, it is not necessary to decompose the relation.

Example

R(A, B, C, D) with FD's $B \rightarrow C$ and $B \rightarrow D$

- There are 8 nontrivial dependencies. They are: $B \rightarrow C$, $B \rightarrow D$, $AB \rightarrow C$, $AB \rightarrow D$, $BC \rightarrow D$, $BD \rightarrow C$, $ABC \rightarrow D$ and $ABD \rightarrow C$.
- AB is the only key. FDs where the left side is not a superkey and the attributes on the right are not part of some key (prime) are 3NF violations. The SNF violations are B→C, B→D, BC→D and BD→C.
 Using the synthesis algorithm 3.26, we can decompose into
- Using the synthesis algorithm 3.26, we can decompose into relations using the minimal basis B→C and B→D. The resulting decomposed relations would be BC and BD.
- However, none of these two sets of attributes is a superkey.
 Thus we add relation AB to the result. The final set of decomposed relations is BC, BD and AB.

2NF

- Every non-key attribute is dependent on the key – the whole key for composite keys
- Not 2NF because name, role, and dID are dependent on the key (eID, skill) but they are also dependent on poor posteder.com

elD	name Add	WeChat po	weoder	skill
1	John	Developer	1	Java
1	John	Developer	1	Python
2	Dan	DBA	2	MySQL

Solution – decompose skills table (like before)

1NF

Each attribute is atomic.

Not 1NF because skills has multiple values.

Assignment Project Exam Help

eID2	name	role	dID	skills
1	John https:/	/pawcoder.c	com	Java, Python
2	Dan	DBA	2	MySQL, Oracle
Dan DBA 2 MySQL, Oracle Add WeChat powcoder				

Solution

eID	name	role	dID
1	John	IT	1
2	Dan	DBA	2

elD	Skill
1	Java
1	Python
2	MySQL
2	Oracle