Name of the task : Climbing Stair

Number of the task: 1
Team Number: 1

ID	Name	
20210897	مروان علي أحمد عبد الله	
20210914	مريم سعد محمد سعد	
20210917	مريم علي عبد الرحمن علي	
20210923	مريم محمد حامد عبد الحميد شلبي (team leader)	
20210962	منة الله محمد حفني محمد	
20211063	يوسف اسماعيل رياض ابراهيم	

first algorithm

Pseudo code:

```
 int \ climb Stairs (int \ n) \\ if (n == 0 \ || \ n == 1) \\ return \ 1; \\ else \\ Create \ array \ number Of Ways [n + 1]; \\ Initialize \ number Of Ways [0] = 1 \ and \ number Of Ways [1] = 1 \\ for \ i <- 2 \ to \ i <= n \\ Do \ number Of Ways [i] <- number Of Ways [i - 1] + number Of Ways [i - 2]; \\ return \ number Of Ways [n];
```

Complexity time:

$$\sum_{i=2}^{n} 1 = \text{n-2+1} \approx O(n)$$

Best case	Average case	Worst case
Ω(1)	$\Theta(n)$	O(n)
When number of steps = 0 or 1	When number of steps > 1 to n	When number of steps > 1 to n

Best case:

Average case:

Second algorithm

Pseudo code:

```
int numberOfWays(int n) {
     /*two base cases n==1 n==2*/
     if (n == 1) {
         return 1;}
     else if (n == 2){
         return 2; }
     else {
         return numberOfWays(n-1) + numberOfWays(n-2); }
}
```

Complexity time:

$$T(n) = t(n-1) + t(n-2)$$

$$(n-1) > (n-2) \text{ then } T(n) = 2T(n-2) + b$$

$$= 2[T(n-3) + T(n-4) + b] + b$$

$$\text{by substituting } T(n-2) \text{ in } (2)$$

$$2[T(n-4) + T(n-4) + b] + b$$

$$= 2^2T(n-4) + 2b + b$$

$$= 2^2[T(n-5) + T(n-6) + b] + 2b + b$$

$$\text{by substituting } T(n-4) \text{ in } (2)$$

$$\geq 2^3T(n-6) + (2^2 + 2^1 + 2^0)b \dots$$

$$2^kT(n-2k) + (2^{k-1} + 2^{k-2} + \dots + 2^1 + 2^0)b$$

$$= 2^kT(n-2k) + (2^k - 1)b$$
Hence $T(n) \geq 2(n-2)/2 T(2) + [2(n-2)/2 - 1]b$

$$= (b+c)2^{(n-2)/2} - b$$

=
$$[(b + c) / 2]^*(2)^{n/2} - b \approx \mathbf{0}(2^n)$$

Best case	Average case	Worst case
$\Omega(1)$	$\Theta(2^n)$	$O(2^n)$
When number of steps = 1 or 2	When number of steps > 2	When number of steps > 2

Comparison between algorithm one and two:

	Algorithm one	Algorithm two
Best case	Ω(1)	Ω(1)
Average case	Θ(n)	$\Theta(2^n)$
Worst case	$\mathrm{O}(n)$	$O(2^n)$

The best algorithm:

is the first algorithm in average case and worst case.