

Dans un TP de physique à chaque masse mi (un poids) on obtiendra une extension xi, le tableau des données brutes est le suivant :

Mi (kg)	0	10	20	30	40
Xi (cm)	0	0.5	1.1	1.5	1.9

- 1) Donner la droite de régression de Y en fonction de X : y=ax+b. (avec Y la variable poids)
- 2) Donner la droite de régression de X en fonction de Y : x=a'y+b'. (avec Y la variable poids)
- 3) Cette droite est elle acceptable ? peut-on faire de la prédiction.
- 4) Si oui, quelle masse aurions nous si on veut une dilatation du ressort égale à xi= 3cm.

Solution

1.

						Somme
Y :mi	0	10	20	30	40	100
X :xi	0	0.5	1.1	1.5	1.9	5
mi.xi	0	5	22	45	76	148
X²:xi²	0	0.25	1.21	2.25	3.61	7.32
Y ² : mi ²	0	100	400	900	1600	3000

On obtient :

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} xi = \frac{1}{5} (0 + 0.5 + \dots + 1.9) = \frac{5}{5} = 1$$

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} mi = \frac{1}{5} (0 + 10 + \dots + 40) = \frac{100}{5} = 20$$

$$\overline{XY} = \frac{1}{n} \sum_{i=1}^{n} xi \cdot mi = \frac{1}{5} (0 + 5 + \dots + 76) = \frac{148}{5} = 29.6$$

$$\overline{X^2} = \frac{1}{n} \sum_{i=1}^{n} xi^2 = \frac{1}{5} (0 + 0.25 + \dots + 3.61) = \frac{7.32}{5} = 1.464$$

$$\overline{Y^2} = \frac{1}{n} \sum_{i=1}^{n} mi^2 = \frac{1}{5} (0 + 100 + \dots + 1600) = \frac{3000}{5} = 600$$

Ainsi

$$V(X) = \overline{X^2} - (\overline{X})^2 = 1.464 - 1^2 = 0.464 \implies \sigma_X = \sqrt{V(X)} = 0.681$$

 $V(Y) = \overline{Y^2} - (\overline{Y})^2 = 600 - 20^2 = 200 \implies \sigma_Y = \sqrt{V(Y)} = 14.142$
 $cov(X, Y) = \overline{XY} - \overline{X}, \overline{Y} = 29.6 - 1 \times 20 = 9.6$

En utilisant les formules obtenues avec la méthode des MC, la droite de régression qu'on obtiendra sera :

$$a = \frac{cov(X,Y)}{V(X)} = \frac{9.6}{0.464} = 20.689$$
$$b = \bar{y} - a.\,\bar{x} = 20 - 20.689 \times 1 = -0.689$$

Conclusion notre droite de régression (Δ) de y en fonction de x, sera la suivante :

2. En utilisant les formules obtenues avec la méthode des MC, la droite de régression qu'on obtiendra sera :

$$a' = \frac{cov(X,Y)}{V(Y)} = \frac{9.6}{200} = 0.048$$
$$b' = \bar{x} - a'.\bar{y} = 1 - 0.048 \times 20 = 0.048$$

Conclusion notre droite de régression (Δ') de x en fonction de y sera la suivante :

$$(\Delta')$$
: x= (0.048) y+0.04

3. pour savoir si la droite de régression est acceptable, calculons le coefficient de corrélation :

$$\rho_{xy} = \frac{cov(x,y)}{\sigma_x.\sigma_y} = \frac{9.6}{0.681 \times 14.142} = 0.996$$

$$|\rho_{xy}| = 0.996 \ge 0.85 \implies la \ droite \ de \ régression \ (\Delta) \ est \ acceptée$$
ainsi que les prédictions qui en découlerons

4

Selon la réponse précédente, on peut faire la prédiction du poids si l'extension xi=3cm $y=(20.689)x-0.689 \implies yi=(20.689)xi-0.689=20.689x3-0.689=61.378kg$

(Corrigé du TD2 sera sur le site)

Mme BENYELLES Wafaa

Une étude théorique de l'évolution d'une population en extinction conduit à penser que le nombre d'individus « N » de cette population varie avec le temps « t » suivant une loi de type :

$$N(t) = a*exp(-kt)$$

Où a et k sont des constantes strictement positives. On veut déterminer expérimentalement la valeur de la constante k.

Pour cela, on observe pendant 8 mois un échantillon composé initialement de 200 individus, notant à la fin de chaque mois le nombre de survivants. Les résultats sont les suivants :

t	1	2	3	4	5	6	7	8
Survivant après le t éme mois	180	154	140	120	112	97	84	76

En faisant un changement de variable on va étudié le modèle (t ,lnN)

t	0	1	2	3	4	5	6	7	8
LnN(b)									

-6-

1. En déduire les valeurs de ${\bf k}$ et ${\bf \alpha}$ lorsque ${\bf t}$ est exprimé en mois

En utilisant la méthode des moindres carrés (droite de régression de Y=lnN(t) par rapport à X=t ie le temps).

- 2. Calculer le coefficient de corrélation. Que peut-on en déduire ?
- 3. Quel sera, à votre avis, le nombre de survivants de cet échantillon à la fin de l'année en cours ? puis à la fin de l'année suivante ?

L'exercice 2 est laissé en travail personnel