מבוא לקריפטוגרפיה מודרנית (0368-3049)

נכתב ע"י רון גולדמן ע"פ הרצאות של פרופ' בני אפלבאום

1 בנובמבר 2025

תוכן העניינים

1	מבוא												
	1.1	הגדרות ומושגים ראשונים	2										
	1.2	דוגמאות	3										
	1.3	בטיחות מושלמת	4										

פרק 1

מבוא

1.1 הגדרות ומושגים ראשונים

מערכת הצפנה

.ciphertext-ה $E_k(m)=E(k,m)=c\in\mathcal{C}$ נסמן $k\in\mathcal{K}, m\in\mathcal{M}$ לכל $E:\mathcal{K}\times\mathcal{M}\to\mathcal{C}$. $E:\mathcal{K}\times\mathcal{M}\to\mathcal{C}$.plaintext- .plaintext- .plaintext נסמן $k\in\mathcal{K}, c\in\mathcal{C}$ נסמן $k\in\mathcal{K}, c\in\mathcal{C}$ ה-.plaintext הגדרה 1.2 [פונקצית פיענות]. $E_k(c)=D(k,c)=m\in\mathcal{M}$ מתקיים $E_k(c)=D(k,c)=m\in\mathcal{M}$ ומפתח $E_k(c)=D(k,c)=m\in\mathcal{M}$ מתקיים $E_k(c)=D(k,c)=m\in\mathcal{M}$ ומפתח .plaintext- .plaintext- $E_k(m)=m\in\mathcal{M}$ מתקיים $E_k(m)=m\in\mathcal{M}$ מתקיים .plaintext- .p

הגדרה 1.4 [מערכת הצפנה סימטרית]. מערכת הצפנה שבה משתמשים במפתח יחיד לצורך הצפנה ופיענוח.

 $.k \sim \mathrm{Unif}(\mathcal{K})$ המפתח • הערות].

- $\mathcal{M} = \{0,1\}^*$ מרחב ההודעות •
- הרבה פעמים אורך ההודעות קשור למרחב המפתחות.

מודל התקשורת

- שתי צדדים אליס ובוב
 - קו תקשורת אמין
- E,D,k :סכמת הצפנה משותפת
- m מטרה: לשלוח בבטיחות הודעה \bullet

מטרות אבטחה

- m אף יריב לא יכול לקבוע את ullet
- m אף יריב לא יכול לקבוע אף אינפורציה לגבי ullet
- m אף יריב לא יכול לקבוע אינפורציה משמעותית לגבי ullet

פרק 1. מבוא

שאלות חשובות

- מה היריב יודע מראש?
- מה המגבלות החישוביות של היריב?
- האם בכלל אפשר לפרמל מתמטית את מושג הסודיות?

מודל היריב: מאזין פאסיבי

- m איב מנסה לגלות אינפורציה לגבי ullet
- (עיקרון קרכהוף) E,D איב יודעת את אלגוריתמים \bullet
 - איב יודעת את מרחב ההודעות
 - $E_k(m)$ איב תפסה את
 - k איב לא יודעת את •

1.2 דוגמאות

 $k \in \{0,1,\dots,25\}$ מפתח: \bullet מפתח: 1.6 דוגמה 1.6 צופן קיסר

- $p \in \{0,1,\dots,25\}$ כל אות מיוצגת כמספר
 - $E_k(p) = p + k \mod 26$ הצפנה: •
 - $D_k(p) = p k \mod 26$ פיענות:
 - פתרון: חיפוש ממצה.
 - מסקנה: דרוש מרחב מפתחות גדול.

 $\sigma:[26]\hookrightarrow[26]$ מפתח: תמורה (26) פולפה]. מפתח: תמורה מחלפה

- $p \in \{0,1,\dots,25\}$ כל אות מיוצגת כמספר
 - $.E_{\sigma}(p) = \sigma(p)$ הצפנה: •
 - $D_{\sigma}(p) = \sigma^{-1}(p)$ פיענוח: •
- עבוד. איעבוד. מפתחות ולכן מפתחות $26! \approx 4 \cdot 10^{27}$ יש
- ניתן לשבור את ההצפנה באמצעות סטטיסטיקות של שפה טבעית, שכן התדירות שימוש במילים לא אחידה.

דוגמה 1.8 [צופן ויז'נר]. המפתח הוא beads:

t	h	e	m	a	n	a	n	d	t	h	e	W	0	m	a	n
Ъ	e	a	d	S	Ъ	e	a	d	S	b	e	a	d	S	b	e
V	M	F	Q	T	P	F	Ο	Н	M	J	J	X	S	F	С	S

• האם הוא מאובטח?

פרק 1. מבוא

• ויז'נר: אני לא מצליח לשבור אותו אז הוא מאובטח.

• קסיסיקי (1863): שבר אותו.

1.3 בטיחות מושלמת

התקפה כללית (נראות מירבית)

 $\mathcal M$ נניח וליריב יש מידע מקדים על ההודעות, הנתון כהתפלגות על מרחב ההודעות נניח וליריב יש מידע מקדים על ההודעות, $C=E_k(M) \stackrel{R}{\leftarrow} \mathcal K$ בהינתן סייפרטקסט

• פענח לכל מפתח אפשרי:

$$D_{000}(C) = \text{blabla}, D_{001}(C) = \text{lunch}, \dots, D_{111}(C) = \text{attack}$$

בחר את ההודעה הכי סבירה M בחר אל ההתפסס על ההתפלגות \bullet

שאלה: האם ניתן להביס כזה יריב?

 $. orall d \in \mathcal{D}. \ \Pr[X=d] = \Pr[Y=d]$ אם \mathcal{D} אם עבור התפלגויות $X \equiv Y$ עבור $X \equiv Y$

בטיחות מושלמת

 $M|C\equiv M$ מתקיים מחקיים (שאנון 1.10). מתקיים הגדרה 1.10

 $c \in \mathcal{C}$ הגדרה אלטרנטיכית]. מתקיים כי לכל מתקיים - הגדרה אלטרנטיכית הגדרה אלטרנטיכית]. מתקיים בי לכל

$$\Pr_{k \leftarrow \mathcal{K}} [E_k(m_0) = c] = \Pr_{k \leftarrow \mathcal{K}} [E_k(m_1) = c]$$

טענה 1.12. ההגדרות שקולות.

 $\mathcal{M} = \left\{0,1\right\}^n$ מרחב ההודעות • מרחב חד-פעמין.

- . מרחב המפתחות $\mathcal{K} = \{0,1\}^n$ המפתח נבחר אקראי.
- כדי להצפין/לפענח נחשב XOR של ההודעה/הטקסט המצופן עם המפתח:

$$E_k(m) = m \oplus k$$

$$D_k(c) = c \oplus k$$

בטיחות פנקס חד-פעמי

משפט 1.14. לפנקס חד-פעמי יש בטיחות מושלמת.

- יתרון: בטיחות מושלמת.
- בעיה: גודל מרחב המפתחות.

פרק 1. מבוא

הערה 1.15. להשתמש במפתח רק פעם אחת! אחרת נקבל ויז'נר.

הוכחת בטיחות פנקס חד-פעמי

 $k \xleftarrow{R} \mathcal{K}$ נוכיח את משפט 1.14, כלומר, לכל $m_0, m_1 \in \{0,1\}^n$ מתקיים $m_0, m_1 \in \{0,1\}^n$, כאשר

הוכחה. מספיק להוכיח את הטענה הבאה:

טענה 1.16. לכל $m,c \in \{0,1\}^n$ מתקיים

$$\Pr_{k \stackrel{R}{\leftarrow} K} [E_k(m) = c] = \frac{1}{2^n} \iff E_k(m) \sim U_n$$

הטענה המשפט כי מטרנזטיביות שוויון ההתפלגות לכל $m_0, m_1 \in \left\{0,1\right\}^n$ מתקיים הטענה גוררת את המשפט כי מטרנזטיביות

$$E_k(m_0) \equiv U_n \equiv E_k(m_1)$$

כעת נוכיח את הטענה.

:נקבע $m,c\in\left\{ 0,1\right\} ^{n}$ נקבע

$$\Pr_{k}[E_{k}(m) = c] = \Pr_{k}[m \oplus k = c] = \Pr_{k}[k = m \oplus c] = \frac{1}{2^{n}}$$

 $.k \sim U_n$ -כי $m \oplus c$ כי

נשים לב שלפנקס חד-פעמי יש מפתחות בגודל הקלט, שזה נראה מאוד בזבזני, אך כעת נראה שזה הכרחי לבטיחות.

משפט שאנון

 $|\mathcal{K}| \geq |\mathcal{M}|$ אזי משפט 1.17. אם מערכת הצפנה $\mathcal{K} \times \mathcal{K} \to \mathcal{C}, D: \mathcal{K} \times \mathcal{C} \to \mathcal{M}$ משפט 2.1.1 אם מערכת הצפנה

הוכחת משפט שאנון

אם ורק $\{m,c\}\in E$ ו (בה"כ נזהה אותם כמרחבים שונים) אם $V=\mathcal{M}\oplus\mathcal{C}$ כאשר כאשר G=(V,E) אם ורק אם קייים $k\in\mathcal{K}$ אם קייים אורק כא כך שי

 $\{m,c\}\in E$ נניח בשלילה כי $|\mathcal{K}|<|\mathcal{M}|$, נקבע

 $\deg(c) \leq |\mathcal{K}|$ יכול להיות מחובר לכל היותר ל- $|\mathcal{K}|$ הודעות, כלומר יכול להיות מחובר לכל היותר יכול להיות

 $c=E_k(m_0)=$ כך ש- $m_0
eq m_1$ ו ו- $m_0
eq m_1$ ו פתח א ו- $\deg(c)>|\mathcal{K}|$ כך ש- $\deg(c)>|\mathcal{K}|$ כך ש- $E_k(m_0)=$ וזו סתירה לנכונות ההצפנה.

c שלנה שכנה שכנה אינה כך הודעה m^{st} סקיימת הודעה 1.19.

 $.\mathrm{Pr}_k[E_k(m^*)=c]=0$ ולכן ,
 $E_k(m^*)\neq c$,
 $k\in\mathcal{K}$ לכל

 $\operatorname{Pr}_k[E_k(m)=c] \geq rac{1}{|\mathcal{K}|} > 0$ ולכן ולכן $E_{k'}(m)=c$ עבורו $k' \in \mathcal{K}$ אזי יש $\{m,c\} \in E$ משום ש

. בפרט מתקיים כי $E_k(m^*)
ot\equiv E_k(m)$ וזו סתירה לבטיחות המושלמת