数学扩展研究 I - 三角形

李宇轩

2020.03.09

目录

1	三角	形	3
	1.1	三角形的符号约定	3
	1.2	三角形的第一组面积公式	4
		1.2.1 三角形面积公式 01	4
		1.2.2 三角形面积公式 02	4
		1.2.3 三角形面积公式 03	5
		1.2.4 三角形面积公式 04	5
		1.2.5 三角形面积公式 05	6
		1.2.6 三角形面积公式 06	7
		1.2.7 三角形面积公式 07	7
		1.2.8 三角形面积公式 08	8
		1.2.9 三角形面积公式 09	9
		1.2.10 三角形面积公式 10	10
		1.2.11 三角形面积公式 11	11
		1.2.12 三角形面积公式 12	11
		1.2.13 三角形面积公式 13	12
		1.2.14 三角形面积公式 14	13
		1.2.15 三角形面积公式 15	13
	1.3	三角形的相关圆半径。	14
		1.3.1 第一组关系	14
		1.3.2 第二组关系	15

1 三角形

1.1 三角形的符号约定

我们首先进行符号约定,若没有特殊说明,这些符号将在后文表达相同的含义。 我们依照下方表格的规定进行符号约定:

 符号	含义	符号	含义
\overline{A}	角 A 的角度	h _a	垂线的长度(边 a 上)
В	角 B 的角度	h_b	垂线的长度(边b上)
С	角 C 的角度	h_c	垂线的长度(边 c 上)
а	边 a 的长度	m_a	中线的长度(边 a 上)
b	边 b 的长度	m_b	中线的长度(边 b 上)
С	边 c 的长度	m_c	中线的长度(边 c 上)
R	外接圆半径	t_a	角平分线的长度(角 a 上)
r	内切圆半径	t_b	角平分线的长度(角 b 上)
r_a	旁切圆半径(边 a 侧)	t_c	角平分线的长度(角 c 上)
r_b	旁切圆半径(边 b 侧)	p	半周长的大小
r_c	旁切圆半径(边 c 侧)		

表 1: 三角形的符号约定

我们将下方图片所示的三角形作为参考:

图 1: 三角形的示意图

除此之外,重心记为G,垂心记为H,外心记为O,内心记为I,旁心记为P。

1.2 三角形的第一组面积公式

本章将研究三角形中较为基本的面积公式,并进行相应推导。

1.2.1 三角形面积公式 01

三角形面积公式 01:

$$egin{aligned} S_{ riangle} &= rac{1}{2} \cdot a \cdot h_a \ S_{ riangle} &= rac{1}{2} \cdot b \cdot h_b \ S_{ riangle} &= rac{1}{2} \cdot b \cdot h_b \end{aligned}$$

1.2.2 三角形面积公式 02

三角形面积公式 02:

$$S_{\triangle} = rac{1}{2} \cdot a \cdot b \cdot \sin C$$

 $S_{\triangle} = rac{1}{2} \cdot b \cdot c \cdot \sin A$
 $S_{\triangle} = rac{1}{2} \cdot c \cdot a \cdot \sin B$

将高用边和角的正弦表示并代入公式 01:

$$S_{\triangle} = \frac{1}{2} \cdot a \cdot h_a$$

$$= \frac{1}{2} \cdot a \cdot (b \cdot \sin C)$$
(1)
(2)

图 2: 三角形面积公式 02 示意图

1.2.3 三角形面积公式 03

三角形面积公式 03:

$$S_{\triangle} = \frac{1}{4R} \cdot a \cdot b \cdot c$$

将正弦定理代入公式 02:

$$S_{\triangle} = \frac{1}{2} \cdot a \cdot b \cdot \sin C \tag{1}$$

$$=\frac{1}{2}\cdot a\cdot b\cdot \left(\frac{c}{2R}\right) \tag{2}$$

$$=\frac{1}{4R}\cdot a\cdot b\cdot c\tag{3}$$

1.2.4 三角形面积公式 04

三角形面积公式 04:

$$S_{\triangle} = 2R^2 \cdot \sin A \cdot \sin B \cdot \sin C$$

将正弦定理代入公式 02:

$$S_{\triangle} = \frac{1}{2} \cdot a \cdot b \cdot \sin C \tag{4}$$

$$= \frac{1}{2} \cdot (2R \cdot \sin A) \cdot (2R \cdot \sin B) \cdot \sin C \tag{5}$$

$$=2R^2\cdot\sin A\cdot\sin B\cdot\sin C\tag{6}$$

1.2.5 三角形面积公式 05

三角形面积公式 05:

$$S_{\triangle} = r \cdot p$$

用角平分线将三角形分为三个小三角形:

$$S_{\triangle} = S_{\triangle IBC} + S_{\triangle ICA} + S_{\triangle IAB} \tag{1}$$

$$= \frac{1}{2} \cdot a \cdot r + \frac{1}{2} \cdot b \cdot r + \frac{1}{2} \cdot c \cdot r \tag{2}$$

$$=\frac{1}{2}\cdot(a+b+c)\cdot r\tag{3}$$

$$=r\cdot p\tag{4}$$

图 3: 三角形面积公式 05 示意图

1.2.6 三角形面积公式 06

三角形面积公式 06:

$$S_{\triangle} = r^2 \cdot \left(\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}\right)$$

将边长用内切圆半径和角的余切表示并代入公式 05:

$$S_{\triangle} = r \cdot p \tag{5}$$

$$= r \cdot \frac{1}{2} \cdot (a+b+c) \tag{6}$$

$$= r \cdot \frac{1}{2} \cdot \left(2r \cdot \cot \frac{A}{2} + 2r \cdot \cot \frac{B}{2} + 2r \cdot \cot \frac{C}{2} \right) \tag{7}$$

$$= r^2 \cdot \left(\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}\right) \tag{8}$$

1.2.7 三角形面积公式 07

三角形面积公式 07:

$$S_{\triangle} = R \cdot r \cdot (\sin A + \sin B + \sin C)$$

将正弦定理代入公式 05:

$$S_{\triangle} = r \cdot p \tag{1}$$

$$=r\cdot\frac{1}{2}\cdot(a+b+c)\tag{2}$$

$$= r \cdot \frac{1}{2} \cdot (2R \cdot \sin A + 2R \cdot \sin B + 2R \cdot \sin C) \tag{3}$$

$$= R \cdot r \cdot (\sin A + \sin B + \sin C) \tag{4}$$

1.2.8 三角形面积公式 08

三角形面积公式 08:

$$egin{split} S_{ riangle} &= rac{1}{2} \cdot \sqrt{a^2 \cdot b^2 - \left(rac{a^2 + b^2 - c^2}{2}
ight)^2} \ S_{ riangle} &= rac{1}{2} \cdot \sqrt{b^2 \cdot c^2 - \left(rac{b^2 + c^2 - a^2}{2}
ight)^2} \ S_{ riangle} &= rac{1}{2} \cdot \sqrt{c^2 \cdot a^2 - \left(rac{c^2 + a^2 - b^2}{2}
ight)^2} \end{split}$$

对公式 02 进行变形:

$$S_{\triangle} = \frac{1}{2} \cdot a \cdot b \cdot \sin C \tag{1}$$

$$= \frac{1}{2} \cdot a \cdot b \cdot \sqrt{1 - \cos^2 C} \tag{2}$$

(3)

将余弦定理代入:

$$S_{\triangle} = \frac{1}{2} \cdot a \cdot b \cdot \sqrt{1 - \left(\frac{a^2 + b^2 - c^2}{2 \cdot a \cdot b}\right)} \tag{4}$$

$$= \frac{1}{2} \cdot \sqrt{a^2 \cdot b^2 - \left(\frac{a^2 + b^2 - c^2}{2}\right)} \tag{5}$$

三角形面积公式 08 也被称为秦九韶公式。

1.2.9 三角形面积公式 09

三角形面积公式 09:

$$S_{\triangle} = \sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}$$

对公式 02 进行变形:

$$S_{\triangle} = \frac{1}{2} \cdot a \cdot b \cdot \sin C \tag{1}$$

$$=\sqrt{\left(\frac{a\cdot b}{2}\right)^2\cdot\sin^2 C}\tag{2}$$

$$=\sqrt{\left(\frac{a\cdot b}{2}\right)^2\cdot\left(1-\cos^2C\right)}\tag{3}$$

$$=\sqrt{\left(\frac{a\cdot b}{2}\right)^2\cdot (1+\cos C)\cdot (1-\cos C)}\tag{4}$$

$$=\sqrt{\frac{a\cdot b\cdot (1+\cos C)}{2}\cdot \frac{a\cdot b\cdot (1-\cos C)}{2}}$$
 (5)

将余弦定理代入:

$$S_{\triangle} = \sqrt{\frac{a \cdot b \cdot \left(1 + \frac{a^2 + b^2 - c^2}{2 \cdot a \cdot b}\right)}{2} \cdot \frac{a \cdot b \cdot \left(1 - \frac{a^2 + b^2 - c^2}{2 \cdot a \cdot b}\right)}{2}}$$
(6)

$$=\sqrt{\frac{a \cdot b + \frac{a^2 + b^2 - c^2}{2}}{2} \cdot \frac{a \cdot b - \frac{a^2 + b^2 - c^2}{2}}{2}}$$
(7)

$$=\sqrt{\frac{(a^2+2ab+b^2)-c^2}{4}\cdot\frac{c^2-(a^2-2ab+b^2)}{4}}$$
 (8)

$$=\sqrt{\frac{(a+b)^2-c^2}{4}\cdot\frac{c^2-(a+b)^2}{4}}$$
 (9)

$$=\sqrt{\frac{a+b+c}{2}\cdot\frac{a+b-c}{2}\cdot\frac{c+a-b}{2}\cdot\frac{c-a+b}{2}}$$
 (10)

$$= \sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)} \tag{11}$$

三角形面积公式09也被称为海伦公式。

1.2.10 三角形面积公式 10

三角形面积公式 10:

$$S_{\triangle} = \frac{1}{4} \cdot \sqrt{[(a+b)^2 - c^2] \cdot [c^2 - (a+b)^2]}$$

$$S_{\triangle} = \frac{1}{4} \cdot \sqrt{[(b+c)^2 - a^2] \cdot [a^2 - (b+c)^2]}$$

$$S_{\triangle} = \frac{1}{4} \cdot \sqrt{[(c+a)^2 - b^2] \cdot [b^2 - (c+a)^2]}$$

对公式 08 进行变形:

$$S_{\triangle} = \frac{1}{2} \cdot \sqrt{a^2 \cdot b^2 - \left(\frac{a^2 + b^2 - c^2}{2}\right)^2} \tag{1}$$

$$= \frac{1}{2} \cdot \sqrt{\left(a \cdot b + \frac{a^2 + b^2 - c^2}{2}\right) \cdot \left(a \cdot b - \frac{a^2 + b^2 - c^2}{2}\right)} \tag{2}$$

$$= \frac{1}{4} \cdot \sqrt{(a^2 + b^2 + 2ab - c^2) \cdot (c^2 - a^2 - b^2 + 2ab)}$$
 (3)

$$= \frac{1}{4} \cdot \sqrt{[(a+b)^2 - c^2] \cdot [c^2 - (a-b)^2]}$$
 (4)

三角形面积公式 10 常用于解决已知三角形边长和与边长差的问题。

1.2.11 三角形面积公式 11

三角形面积公式 11:

$$S_{\triangle} = h_a^2 \cdot rac{\sin A}{2 \cdot \sin B \cdot \sin C}$$
 $S_{\triangle} = h_b^2 \cdot rac{\sin B}{2 \cdot \sin C \cdot \sin A}$
 $S_{\triangle} = h_c^2 \cdot rac{\sin C}{2 \cdot \sin A \cdot \sin B}$

将边长用高和角的正弦表示并代入公式 02:

$$S_{\triangle} = \frac{1}{2} \cdot b \cdot c \cdot \sin A \tag{1}$$

$$= \frac{1}{2} \cdot \frac{h_a}{\sin B} \cdot \frac{h_a}{\sin C} \cdot \sin A \tag{2}$$

$$=h_a^2 \cdot \frac{\sin A}{2 \cdot \sin B \cdot \sin C} \tag{3}$$

1.2.12 三角形面积公式 12

三角形面积公式 12:

$$S_{\triangle} = \frac{a \cdot b \cdot c}{2 \cdot (a + b + c)} \cdot (\sin A + \sin B + \sin C)$$

联立公式 03 和公式 05:

$$\frac{1}{4R} \cdot (a \cdot b \cdot c) = r \cdot p \tag{1}$$

$$\frac{1}{4R} \cdot (a \cdot b \cdot c) = \frac{r}{2} \cdot (a + b + c) \tag{2}$$

$$2 \cdot R \cdot r = \frac{a \cdot b \cdot c}{a + b + c} \tag{3}$$

$$R \cdot r = \frac{a \cdot b \cdot c}{2 \cdot (a + b + c)} \tag{4}$$

代入公式 07:

$$S_{\triangle} = R \cdot r \cdot (\sin A + \sin B + \sin C) \tag{5}$$

$$= \frac{a \cdot b \cdot c}{2 \cdot (a+b+c)} \cdot (\sin A + \sin B + \sin C) \tag{6}$$

1.2.13 三角形面积公式 13

三角形面积公式 13:

$$S_{\triangle} = r_a \cdot (p - a)$$

$$S_{\triangle} = r_b \cdot (p-b)$$

$$S_{\triangle} = r_c \cdot (p - c)$$

用角平分线将三角形分为三个小三角形:

$$S_{\triangle} = S_{\triangle PBA} + S_{\triangle PBC} - S_{\triangle PAC} \tag{1}$$

$$= \frac{1}{2} \cdot c \cdot r_b + \frac{1}{2} \cdot a \cdot r_b - \frac{1}{2} \cdot b \cdot r_b \tag{2}$$

$$=\frac{1}{2}\cdot(c+a-b)\cdot r_b\tag{3}$$

$$=r_b\cdot(p-b)\tag{4}$$

图 4: 三角形面积公式 13 示意图

1.2.14 三角形面积公式 14

三角形面积公式 14:

$$S_{\triangle} = \sqrt{r \cdot r_a \cdot r_b \cdot r_c}$$

将公式 05 和公式 13 变形代入公式 09:

$$S_{\triangle} = \sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)} \tag{1}$$

$$S_{\triangle} = \sqrt{\frac{S_{\triangle}}{r} \cdot \frac{S_{\triangle}}{r_a} \cdot \frac{S_{\triangle}}{r_b} \cdot \frac{S_{\triangle}}{r_c}}$$
 (2)

$$S_{\triangle} = \sqrt{\frac{S_{\triangle}^{4}}{r \cdot r_{a} \cdot r_{b} \cdot r_{c}}} \tag{3}$$

$$S_{\triangle}^{2} = \frac{S_{\triangle}^{4}}{r \cdot r_{a} \cdot r_{b} \cdot r_{c}} \tag{4}$$

$$S_{\triangle}^{2} = r \cdot r_{a} \cdot r_{b} \cdot r_{c} \tag{5}$$

$$S_{\triangle} = \sqrt{r \cdot r_a \cdot r_b \cdot r_c} \tag{6}$$

1.2.15 三角形面积公式 15

三角形面积公式 15:

$$S_{\triangle} = \frac{1}{p} \cdot r_a \cdot r_b \cdot r_c$$

将公式 05 变形代入如公式 12:

$$S_{\triangle} = \sqrt{r \cdot r_a \cdot r_b \cdot r_c} \tag{1}$$

$$S_{\triangle} = \sqrt{\frac{S_{\triangle}}{p} \cdot r_a \cdot r_b \cdot r_c} \tag{2}$$

$$S_{\triangle}^{2} = \frac{S_{\triangle}}{p} \cdot r_{a} \cdot r_{b} \cdot r_{c} \tag{3}$$

$$S_{\triangle} = \frac{1}{p} \cdot r_a \cdot r_b \cdot r_c \tag{4}$$

1.3 三角形的相关圆半径

本章将研究三角形中,外接圆半径,内切圆半径,旁切圆半径,三者间的数量关系。

1.3.1 第一组关系

第一组关系:

$$\frac{1}{r} = \frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c}$$

由公式 05 可得:

$$\frac{1}{r} = \frac{p}{S_{\wedge}} \tag{1}$$

由公式11可得:

$$\frac{1}{r_a} = \frac{p - a}{S_{\triangle}} \tag{2}$$

$$\frac{1}{r_b} = \frac{p - b}{S_{\triangle}} \tag{3}$$

$$\frac{1}{r_c} = \frac{p - c}{S_{\triangle}} \tag{4}$$

我们可以进行以下推导:

$$\frac{1}{r} = \frac{p}{S_{\triangle}} \tag{5}$$

$$=\frac{3p-(a+b+c)}{S_{\wedge}}\tag{6}$$

$$= \frac{(p-a) + (p-b) + (p-c)}{S_{\triangle}}$$
 (7)

$$=\frac{p-a}{S_{\triangle}} + \frac{p-b}{S_{\triangle}} + \frac{p-c}{S_{\triangle}} \tag{8}$$

$$= \frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} \tag{9}$$

1.3.2 第二组关系

第二组关系:

$$r_a + r_b + r_c - r = 4R$$

我们可以进行以下推导:

$$r_a + r_b + r_c - r = \frac{S_{\triangle}}{p - a} + \frac{S_{\triangle}}{p - b} + \frac{S_{\triangle}}{p - c} - \frac{S_{\triangle}}{p}$$

$$\tag{1}$$

$$= \frac{S_{\triangle} \cdot p - S_{\triangle} \cdot (p-a)}{p \cdot (p-a)} + \frac{S_{\triangle} \cdot (p-b) - S_{\triangle} \cdot (p-c)}{(p-b) \cdot (p-c)}$$
(2)

$$= \frac{S_{\triangle} \cdot p - S_{\triangle} \cdot p + S_{\triangle} \cdot a}{p \cdot (p - a)} + \frac{S_{\triangle} \cdot p - S_{\triangle} \cdot b + S_{\triangle} \cdot p - S_{\triangle} \cdot c}{(p - b) \cdot (p - c)}$$
(3)

$$= \frac{S_{\triangle} \cdot p - S_{\triangle} \cdot p + S_{\triangle} \cdot a}{p \cdot (p - a)} + \frac{S_{\triangle} \cdot (a + b + c) - S_{\triangle} \cdot (b - c)}{(p - b) \cdot (p - c)} \tag{4}$$

$$= \frac{S_{\triangle} \cdot a}{p \cdot (p-a)} + \frac{S_{\triangle} \cdot a}{(p-b) \cdot (p-c)} \tag{5}$$

$$= \frac{S_{\triangle} \cdot a \cdot [p \cdot (p-a) + (p-b) \cdot (p-c)]}{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}$$
(6)

代入公式 09 可得:

$$r_a + r_b + r_c - r = \frac{S_\triangle \cdot a \cdot [p \cdot (p-a) + (p-b) \cdot (p-c)]}{S_\triangle^2}$$

$$(7)$$

$$=\frac{a\cdot[p\cdot(p-a)+(p-b)\cdot(p-c)]}{S_{\triangle}}\tag{8}$$

$$=\frac{a\cdot[p^2-ap+p^2-cp-bp+bc]}{S_{\triangle}}\tag{9}$$

$$=\frac{a\cdot[2p^2-p\cdot(a+b+c)+bc]}{S_{\triangle}}\tag{10}$$

$$=\frac{a\cdot[2p^2-2p^2+bc]}{S_{\triangle}}\tag{11}$$

$$=\frac{a\cdot b\cdot c}{S_{\wedge}}\tag{12}$$

代入公式 03 可得:

$$r_a + r_b + r_c - r = 4R \tag{13}$$