

CI 3 – CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES

Chapitre 5 – Cinématique du solide indéformable

EXERCICES D'APPLICATION

D'après ressources de Jean-Pierre Pupier.

Exercice 1 – Dérivation vectorielle

Question 1

$$\textit{Faire les calculs suivants}: \left[\frac{d\ \overrightarrow{y_1}}{d\ t}\right]_{\mathscr{R}_0}, \left[\frac{d\ \overrightarrow{x_0}}{d\ t}\right]_{\mathscr{R}_1}, \left[\frac{d\ \overrightarrow{y_1}}{d\ t}\right]_{\mathscr{R}_3}, \left[\frac{d\ \overrightarrow{z_2}}{d\ t}\right]_{\mathscr{R}_0}, \left[\frac{d\ \overrightarrow{y_3}}{d\ t}\right]_{\mathscr{R}_0}, \left[\frac{d\ \overrightarrow{x_3}}{d\ t}\right]_{\mathscr{R}_0}.$$

Question 2

Faire les calculs suivants :
$$\left[\frac{d\overrightarrow{V}}{dt}\right]_{\Re_0}$$
 avec $\overrightarrow{V} = 3\cos\alpha(t)\overrightarrow{x_1}$, $\left[\frac{d\overrightarrow{U}}{dt}\right]_{\Re_0}$ avec $\overrightarrow{U} = -7\sin\alpha(t)\overrightarrow{y_2}$, $\left[\frac{d\overrightarrow{W}}{dt}\right]_{\Re_0}$ avec $\overrightarrow{W} = -3\alpha(t)^3\overrightarrow{y_1} + 6\sin\alpha(t)\overrightarrow{y_0}$, $\left[\frac{d\overrightarrow{S}}{dt}\right]_{\Re_0}$ avec $\overrightarrow{S} = 4t^3\alpha(t)\cos\alpha(t)\overrightarrow{y_1}$.

Exercice 2

Soit le mécanisme plan constitué par :

- solide S_0 : fixe, repère lié $\mathcal{R}_0 = (O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$;
- solide S_1 : barre OP de longueur L, en liaison pivot d'axe $(O, \overrightarrow{z_0})$ par rapport à S_0 , repère lié à $\mathcal{R}_1 = (O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})$
- solide S_2 : disque de centre P et de rayon R, en liaison pivot d'axe $(P, \overrightarrow{z_0})$ par rapport à S_1 , repère lié à $\Re_2 = (P, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_0})$.

On note:

$$-\alpha = (\overrightarrow{x_0}; \overrightarrow{x_1});$$

$$-\beta = (\overrightarrow{x_1}; \overrightarrow{x_2}).$$

Question 1

Déterminer la trajectoire du point M dans le repère \mathcal{R}_0 .

Question 2

Déterminer $\Omega(S_1/S_0)$, $\Omega(S_2/S_1)$, $\Omega(S_2/S_0)$.

Question 3

Déterminer $\overrightarrow{V(M \in S_2/S_0)}$.

Question 4

Déterminer $\overline{V(I \in S_2/S_0)}$.

Question 5

Pourquoi ne faut-il absolument pas dériver le vecteur \overrightarrow{OI} ?.

Question 6

Déterminer $\Gamma(I \in S_2/S_0)$.

Le mécanisme précédent a été en réalité complété par un cercle de centre O lié à S_0 et de rayon R (voir la figure ci-contre).

Par ailleurs on adopte L=R. De plus à t=0, $\alpha=\beta=0$.

 S_1 est un bras porte satellite et S_2 un satellite qui roule sans glisser en I sur S_0 . Cette condition se traduit par $\overrightarrow{V(I \in S_2/S_0)}$.

Question 7

Déduire des questions précédentes la relation entre $\dot{\alpha}$ et $\dot{\beta}$.

Question 8

Donner l'expression de $\overrightarrow{V(M \in S_2/S_0)}$ en projection dans $\mathcal{R}_0 = (O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$.

Question 9

En déduire la trajectoire du point M par rapport à \mathcal{R}_0 .