A NOVEL COMPUTATIONAL MODEL OF THE AXONEME FOR MICROSWIMMERS IN STOKES FLOW Peter M N Hull

MATHS FOR SPERM CELLS

A New Approach to Modelling Microswimmers in Stokes Flow

Peter M N Hull

1. What is the problem?

- 1. What is the problem?
- 2. What is my solution?

- 1. What is the problem?
- 2. What is my solution?
- 3. How can I test it?

- 1. What is the problem?
- 2. What is my solution?
- 3. How can I test it?
- 4. Did it work?

- 1. What is the problem?
- 2. What is my solution?
- 3. How can I test it?
- 4. Did it work?
- 5. What's next?

WHAT IS THE PROBLEM? PART I

Problem: Sperm cells are hard to understand

Lindemann & Lesich (2010) Flagellar axoneme Outer doublets "Pairs of tubes" Outer Basal body dynein arm 9 Inner Nexin link dynein arm DRC Outer-doublet 8 B subtubule` Beat Central pair plane 4 Radial spoke Central pairprojection 6 Outer-doublet A subtubule 5-6 bridge

Why should we care?

Why should we care?

Because sperm are important!

WHAT IS MY SOLUTION? PART II

ANSWER: SIMPLIFY

Han & Peskin (2018)

CAN IT BE SIMPLER?

First Assumption:

First Assumption:

Using a pair of two-dimensional rods is good enough.

Hilfinger, Jülicher & Chattopadhyay (2009)

Second Assumption:

Second Assumption:

Can use internal clocks.

Second Assumption:

Can use internal clocks.

(Spoke-Axis Hypothesis)

Peter Hull (2020)

AXONEME MODEL

Use Springs to Represent Axoneme Driving Forces

Two Components

Two Components

1. Maintain body structure

Two Components

- 1. Maintain body structure
- 2. Generate motion with active links

Maintaining Body Structure

$$F_{1,n}^{(\text{yellow})} = -F_{2,n}^{(\text{yellow})}$$

$$F_{1,n}^{(\text{yellow})} = -F_{2,n}^{(\text{yellow})} := D - l_{n,n}(t)$$

$$F_{1,n}^{(\text{red})} = -F_{2,n+1}^{(\text{red})}$$

$$F_{1,n}^{(\text{red})} = -F_{2,n+1}^{(\text{red})} := r_{n,n+1}^{(\text{red})}(t) - l_{n,n+1}(t)$$

$$F_{1,n}^{(\text{red})} = -F_{2,n+1}^{(\text{red})} := (r_{n,n+1}^{(\text{red})}(t) - l_{n,n+1}(t))$$

$$F_{1,n}^{(\text{red})} = -F_{2,n+1}^{(\text{red})} := r_{n,n+1}^{(\text{red})}(t) - l_{n,n+1}(t)$$
 $(r_{n,n+1}^{(\text{red})}(t)) = C + f_n^{(\text{red})}(t)$

$$F_{1,n}^{(\text{red})} = -F_{2,n+1}^{(\text{red})} := r_{n,n+1}^{(\text{red})}(t) - l_{n,n+1}(t)$$

$$r_{n,n+1}^{(\text{red})}(t) = C + f_n^{(\text{red})}(t)$$

$$F_{1,n}^{(\text{red})} = -F_{2,n+1}^{(\text{red})} := r_{n,n+1}^{(\text{red})}(t) - l_{n,n+1}(t)$$

$$r_{n,n+1}^{(\text{red})}(t) = C + f_n^{(\text{red})}(t)$$

$$f_n^{(\text{red})}(t) = \lambda \sin\left(\omega t + \frac{kn}{N}\right)$$

$$F_{1,n}^{(\text{red})} = -F_{2,n+1}^{(\text{red})} := r_{n,n+1}^{(\text{red})}(t) - l_{n,n+1}(t)$$

$$r_{n,n+1}^{(\text{red})}(t) = C + f_n^{(\text{red})}(t)$$

$$f_n^{(\text{red})}(t) = \lambda \sin\left(\omega t + \frac{kn}{N}\right)$$

$$F_{1,n+1}^{(\text{blue})} = -F_{2,n}^{(\text{blue})} := r_{n+1,n}^{(\text{blue})}(t) - l_{n+1,n}(t)$$

$$r_{n+1,n}^{(\text{blue})}(t) = C + f_n^{(\text{blue})}(t)$$

$$f_n^{(\text{blue})}(t) = \lambda \sin\left(\omega t + \frac{kn}{N}\right)$$

$$F_{1,n+1}^{(\text{blue})} = -F_{2,n}^{(\text{blue})} := r_{n+1,n}^{(\text{blue})}(t) - l_{n+1,n}(t)$$

$$r_{n+1,n}^{(\text{blue})}(t) = C + f_n^{(\text{blue})}(t)$$

$$f_n^{(\text{blue})}(t) = \lambda \sin\left(\omega t + \frac{kn}{N} + \pi\right)$$

$$F_{1,n}^{(\text{yellow})} = -F_{2,n}^{(\text{yellow})} := D - l_{n,n}(t)$$

$$F_{1,n}^{(\text{red})} = -F_{2,n+1}^{(\text{red})} := r_{n,n+1}^{(\text{red})}(t) - l_{n,n+1}(t)$$

$$r_{n,n+1}^{(\text{red})}(t) = C + f_n^{(\text{red})}(t)$$

$$f_n^{(\text{red})}(t) = \lambda \sin\left(\omega t + \frac{kn}{N}\right)$$

$$F_{1,n}^{(\text{yellow})} = -F_{2,n}^{(\text{yellow})} := D - l_{n,n}(t)$$

$$F_{1,n}^{(\text{red})} = -F_{2,n+1}^{(\text{red})} := r_{n,n+1}^{(\text{red})}(t) - l_{n,n+1}(t)$$

$$r_{n,n+1}^{(\text{red})}(t) = C + f_n^{(\text{red})}(t)$$

$$f_n^{(\text{red})}(t) = \lambda \sin\left(\omega t + \frac{kn}{N}\right)$$

$$F_{1,n}^{(\text{red})} = -F_{2,n+1}^{(\text{red})} := r_{n,n+1}^{(\text{red})}(t) - l_{n,n+1}(t)$$

$$F_{1,n}^{(\text{red})} = -F_{2,n+1}^{(\text{blue})} := r_{n+1,n}^{(\text{blue})}(t) - l_{n+1,n}(t)$$

$$F_{1,n+1}^{(\text{blue})} = -F_{2,n}^{(\text{blue})} := r_{n+1,n}^{(\text{blue})}(t) - l_{n+1,n}(t)$$

$$F_{1,n+1}^{(\text{blue})} = -F_{2,n}^{(\text{blue})} := r_{n+1,n}^{(\text{blue})}(t) - l_{n+1,n}(t)$$

$$F_{n+1,n}^{(\text{blue})}(t) = C + f_n^{(\text{blue})}(t)$$

$$F_{n+1,n}^{(\text{blue})}(t) = \lambda \sin\left(\omega t + \frac{kn}{N} + \pi\right)$$

$$F_{1,n}^{(\text{yellow})} = -F_{2,n}^{(\text{yellow})} := D - l_{n,n}(t)$$

$$F_{1,n}^{(\text{red})} = -F_{2,n+1}^{(\text{red})} := r_{n,n+1}^{(\text{red})}(t) - l_{n,n+1}(t)$$

$$r_{n,n+1}^{(\text{red})}(t) = C + f_n^{(\text{red})}(t)$$

$$f_n^{(\text{red})}(t) = \lambda \sin\left(\omega t + \frac{kn}{N}\right)$$

$$F_{1,n}^{(\text{red})} = -F_{2,n+1}^{(\text{red})} := r_{n,n+1}^{(\text{red})}(t) - l_{n,n+1}(t)$$

$$F_{1,n}^{(\text{red})} = -F_{2,n}^{(\text{blue})} := r_{n+1,n}^{(\text{blue})}(t) - l_{n+1,n}(t)$$

$$F_{1,n+1}^{(\text{blue})} = -F_{2,n}^{(\text{blue})} := r_{n+1,n}^{(\text{blue})}(t) - l_{n+1,n}(t)$$

$$F_{1,n+1}^{(\text{blue})} = -F_{2,n}^{(\text{blue})} := r_{n+1,n}^{(\text{blue})}(t) - l_{n+1,n}(t)$$

$$F_{n+1,n}^{(\text{blue})}(t) = C + f_n^{(\text{blue})}(t)$$

$$F_{n+1,n}^{(\text{blue})}(t) = C + f_n^{(\text{blue})}(t)$$

$$F_{n+1,n}^{(\text{blue})}(t) = \lambda \sin\left(\omega t + \frac{kn}{N} + \pi\right)$$

$$\mathbf{F}_{i,n}^{A} = \mathbf{F}_{i,n}^{(\text{yellow})} + \mathbf{F}_{i,n}^{(\text{red})} + \mathbf{F}_{i,n}^{(\text{blue})}$$

$$F_{1,n}^{(\text{yellow})} = -F_{2,n}^{(\text{yellow})} := D - l_{n,n}(t)$$

$$F_{1,n}^{(\text{red})} = -F_{2,n+1}^{(\text{red})} := r_{n,n+1}^{(\text{red})}(t) - l_{n,n+1}(t)$$

$$r_{n,n+1}^{(\text{red})}(t) = C + f_n^{(\text{red})}(t)$$

$$f_n^{(\text{red})}(t) = \lambda \sin\left(\omega t + \frac{kn}{N}\right)$$

$$F_{1,n}^{(\text{red})} = -F_{2,n+1}^{(\text{red})} := r_{n,n+1}^{(\text{red})}(t) - l_{n,n+1}(t)$$

$$F_{1,n}^{(\text{red})} = -F_{2,n}^{(\text{blue})} := r_{n+1,n}^{(\text{blue})}(t) - l_{n+1,n}(t)$$

$$F_{1,n+1}^{(\text{blue})} = -F_{2,n}^{(\text{blue})} := r_{n+1,n}^{(\text{blue})}(t) - l_{n+1,n}(t)$$

$$F_{1,n+1}^{(\text{blue})} = -F_{2,n}^{(\text{blue})} := r_{n+1,n}^{(\text{blue})}(t) - l_{n+1,n}(t)$$

$$F_{n+1,n}^{(\text{blue})}(t) = C + f_n^{(\text{blue})}(t)$$

$$F_{n+1,n}^{(\text{blue})}(t) = \lambda \sin\left(\omega t + \frac{kn}{N} + \pi\right)$$

$$F_{1,n}^{(\text{yellow})} = -F_{2,n}^{(\text{yellow})} := D - l_{n,n}(t)$$

HOW CAN ITEST IT? PART III

HOW CAN ITEST IT? PART III

WARNING: TECHNICAL DETAIL

FOUR STEPS TO SUCCESS

Schoeller et. al (2019)

$$\mathbf{F}_n^C = \mathbf{\Lambda}_{n+\frac{1}{2}} - \mathbf{\Lambda}_{n-\frac{1}{2}}$$

$$\mathbf{T}_{n}^{C} = \frac{\Delta L}{2} \hat{\mathbf{t}}_{n} \times \left(\mathbf{\Lambda}_{n+\frac{1}{2}} + \mathbf{\Lambda}_{n-\frac{1}{2}} \right) + \left(\mathbf{M}_{n-\frac{1}{2}} - \mathbf{M}_{n+\frac{1}{2}} \right)$$

$$\mathbf{F}_n^C = \mathbf{\Lambda}_{n+\frac{1}{2}} - \mathbf{\Lambda}_{n-\frac{1}{2}}$$

$$\mathbf{T}_{n}^{C} = \frac{\Delta L}{2} \hat{\mathbf{t}}_{n} \times \left(\mathbf{\Lambda}_{n+\frac{1}{2}} + \mathbf{\Lambda}_{n-\frac{1}{2}} \right) + \left(\mathbf{M}_{n-\frac{1}{2}} - \mathbf{M}_{n+\frac{1}{2}} \right)$$

$$\mathbf{F}_n^C = \mathbf{\Lambda}_{n+\frac{1}{2}} - \mathbf{\Lambda}_{n-\frac{1}{2}}$$

$$\mathbf{T}_{n}^{C} = \frac{\Delta L}{2} \hat{\mathbf{t}}_{n} \times \left(\mathbf{\Lambda}_{n+\frac{1}{2}} + \mathbf{\Lambda}_{n-\frac{1}{2}} \right) + \left(\mathbf{M}_{n-\frac{1}{2}} - \mathbf{M}_{n+\frac{1}{2}} \right)$$

1. Model each of the two walls as a Kirchhoff Rod

$$\mathbf{F}_n^C = \mathbf{\Lambda}_{n+\frac{1}{2}} - \mathbf{\Lambda}_{n-\frac{1}{2}}$$

$$\mathbf{T}_{n}^{C} = \frac{\Delta L}{2} \hat{\mathbf{t}}_{n} \times \left(\mathbf{\Lambda}_{n+\frac{1}{2}} + \mathbf{\Lambda}_{n-\frac{1}{2}} \right) + \left(\mathbf{M}_{n-\frac{1}{2}} - \mathbf{M}_{n+\frac{1}{2}} \right)$$

$$\mathbf{F}_n^H =$$
 $\mathbf{T}_n^H =$

$$egin{array}{lll} \mathbf{F}_n^H &=& \mathbf{F}_n^C + \mathbf{F}_n^A + \mathbf{F}_n^S \ \mathbf{T}_n^H &=& \mathbf{T}_n^C \end{array}$$

$$egin{array}{lll} \mathbf{F}_n^H &=& \mathbf{F}_n^C + \mathbf{F}_n^A + \mathbf{F}_n^S \ \mathbf{T}_n^H &=& \mathbf{T}_n^C \end{array}$$

$$\mathbf{F}_n^H = \mathbf{F}_n^C + \mathbf{F}_n^A + \mathbf{F}_n^S$$

$$\mathbf{T}_n^H = \mathbf{T}_n^C$$

$$\mathbf{F}_n^H = \mathbf{F}_n^C + \mathbf{F}_n^A + \mathbf{F}_n^S$$

$$\mathbf{T}_n^H = \mathbf{T}_n^C$$

Anything extra we want to add

3. Use hydrodynamics to get velocities

3. Use hydrodynamics to get velocities

$$egin{pmatrix} \mathbf{u}_n \\ \mathbf{\Omega}_n \end{pmatrix} = \sum_{m=1}^N \ \mathbf{M}_{n,m} \begin{pmatrix} \mathbf{F}_m^H \\ \mathbf{T}_m^H \end{pmatrix}$$

3. Use hydrodynamics to get velocities

$$egin{pmatrix} \mathbf{u}_n \ \mathbf{\Omega}_n \end{pmatrix} = \sum_{m=1}^N \mathbf{M}_{n,m} egin{pmatrix} \mathbf{F}_m^H \ \mathbf{T}_m^H \end{pmatrix}$$

Wajnryb et al. (2013)

$$\frac{\mathrm{d}\mathbf{x}_n}{dt} = \mathbf{u}_n$$

$$\frac{\mathrm{d}\theta_n}{\mathrm{d}t} = \Omega_n$$

$$\frac{\mathrm{d}\mathbf{x}_n}{\mathrm{d}t} = \mathbf{u}_n$$

$$\frac{\mathrm{d}\theta_n}{\mathrm{d}t} = \Omega_n$$

Restrict movement to a plane

$$\frac{\mathrm{d}\mathbf{x}_n}{dt} = \mathbf{u}_n$$
 Shortcut
$$\frac{\mathrm{d}\theta_n}{\mathrm{d}t} = \Omega_n$$

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \frac{\Delta L}{2} \left(\hat{\mathbf{t}}_n + \hat{\mathbf{t}}_{n+1} \right)$$

$$\Delta t = \frac{\frac{d\mathbf{x}_n}{dt}}{\frac{d\theta_n}{dt}} = \mathbf{u}_n$$

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \frac{\Delta L}{2} \left(\hat{\mathbf{t}}_n + \hat{\mathbf{t}}_{n+1}\right)$$

RECAP

1. Use two Kirchhoff Rods for the walls.

$$\mathbf{F}_{n}^{C} = \mathbf{\Lambda}_{n+\frac{1}{2}} - \mathbf{\Lambda}_{n-\frac{1}{2}}$$

$$\mathbf{T}_{n}^{C} = \frac{\Delta L}{2} \hat{\mathbf{t}}_{n} \times \left(\mathbf{\Lambda}_{n+\frac{1}{2}} + \mathbf{\Lambda}_{n-\frac{1}{2}} \right) + \left(\mathbf{M}_{n-\frac{1}{2}} - \mathbf{M}_{n+\frac{1}{2}} \right)$$

- 1. Use two Kirchhoff Rods for the walls.
- 2. Use the rods to get hydrodynamic forces.

$$egin{array}{lcl} \mathbf{F}_n^H & = & \mathbf{F}_n^C + \mathbf{F}_n^A + \mathbf{F}_n^S \ \mathbf{T}_n^H & = & \mathbf{T}_n^C \end{array}$$

- 1. Use two Kirchhoff Rods for the walls.
- 2. Use the rods to get hydrodynamic forces.
 3. Use hydrodynamics to get velocities.

$$egin{pmatrix} \mathbf{u}_n \ \mathbf{\Omega}_n \end{pmatrix} = \sum_{m=1}^N \ \mathbf{M}_{n,m} egin{pmatrix} \mathbf{F}_m^H \ \mathbf{T}_m^H \end{pmatrix}$$

- 1. Use two Kirchhoff Rods for the walls.
- 2. Use the rods to get hydrodynamic forces.
- 3. Use hydrodynamics to get velocities.
- 4. Use velocities to get displacement.

$$\frac{\mathrm{d}\mathbf{x}_n}{dt} = \mathbf{u}_n$$

$$\frac{\mathrm{d}\theta_n}{\mathrm{d}t} = \Omega_n$$

- 1. Use two Kirchhoff Rods for the walls.
- 2. Use the rods to get hydrodynamic forces.
- 3. Use hydrodynamics to get velocities.
- 4. Use velocities to get displacement.
- 5. Watch it swim.

DID IT WORK? PART IV

THE GOOD

They swim as expected

They swim as expected

They coordinate

Variety of swimming styles is possible

This one not possible in a single filament model.

THE BAD

$$0.002\% < \eta < 0.07\%$$

Spagnolie & Lauga (2010), Majmudar et al. (2012)

WHAT'S NEXT? PARTV

• Improve efficiency.

- Improve efficiency.
- Improve biological accuracy.

- Improve efficiency.
- Improve biological accuracy.

Depending on goals.

- Improve efficiency.
- Improve biological accuracy.
- Expand to three-dimensions.

- Improve efficiency.
- Improve biological accuracy.
- Expand to three-dimensions.
- Dynamically evolving systems instead of internal clocks.

- Improve efficiency.
- Improve biological accuracy.
- Expand to three-dimensions.
- Dynamically evolving systems instead of internal clocks.
- Complex environments (mucus, etc.).

- Improve efficiency.
- Improve biological accuracy.
- Expand to three-dimensions.
- Dynamically evolving systems instead of internal clocks.
- Complex environments (mucus, etc.).

www.github.com/petermnhull/MastersProject

Bibliography

- Lindemann, C. B. and Lesich K, A. (2010), 'Flagellar and ciliary beating: the proven and the possible', Journal of Cell Science 123, 519-528
- Kumar, N. and Singh, K. A. (2015), 'Trends of male factor infertility, an important cause of infertility: A review of literature', Journal of Human Reproductive Sciences 8, 191-196
- Han, J. and Peskin, C. S. (2018), 'Spontaneous oscillation and fluid-structure interaction of cilia', Proceedings of the National Academy of Sciences of the United States of America, 155, 4417-4422
- Hilginfer, A., Jülicher, F. and Chattopadhyay, A. K. (2009), 'Nonlinear dynamics of cilia and flagella', *Physical Review E.* **79**.
- Landau, L. D and Lifshitz, E. M. (1970), Course of Theoretical Physics, Volume 7: Theory of Elasticity, Permagon Press Ltd.
- Wajnryb, E., Mizerski, K. A., Zuk, P. K. and Szymczak (2013), 'Generalization of the Rotne-Yamakawa mobility and shear disturbance tensors', *Journal of Fluid Mechanics*, 731.
- Schoeller, E., Townsend, A. K., Westwood, T.A. and Keaveny, E. E. (2019), Methods for suspensions of passive and active filaments'. arXiv:1903.12609
- Spagnolie, S. E. and Lauga, E. (2010), 'The optimal elastic flagellum', *Physics of Fluids* 22
- Majmudar, T. Keaveny, E. E., Zhang, J. and Shelly, M. K. (2012) 'Experiments and theory of undulation in a simple structured medium', *Journal of Royal Society Interface* **9**, 1809-1823