

Task Lab02 ข้อ 1 (Lab02_1)

แบบฝึกปฏิบัติการครั้งที่ 2 การเขียนโปรแกรมเพื่อใช้งานเมท็อด

จุดประสงค์

เมื่อผ่านปฏิบัติการนี้แล้ว นักศึกษาจะสามารถเขียนโปรแกรมเพื่อนิยามและเรียกใช้เมท็อดได้

การส่งงาน

บน Grader ของวิชา โดย login ด้วย user และ password ที่แจกให้

- เลือก Contest และ เลือก Task ที่ต้องการส่งงาน
- Upload ไฟล์ .java ที่มีชื่อเดียวกันกับชื่อ Task เช่น Lab02_1.java
- ให้เขียน comment เป็นรหัสนักศึกษาและชื่อไว้ด้านบนไฟล์

คำสั่ง

จงเขียนโปรแกรมเพื่อรับตัวอักขระ 2 ตัว และตัวเลข 1 ตัว ใน main() แล้วส่งไปประมวลผลที่เมท็อดชื่อ printStartUp() หรือ printStarDown() หรือ printStarBoth() ที่ผลลัพธ์ของการทำงานขึ้นอยู่กับตัวอักขระและตัวเลขที่รับเข้ามา

Input มี 1 บรรทัด

ประกอบด้วยตัวอักขระ 2 ตัว และตัวเลข 1 ตัว แต่ละตัวจะคั่นด้วยช่องว่าง 1 ช่อง มีรายละเอียดดังนี้

- อักขระตัวแรกอาจเป็นตัวอักษรพิมพ์เล็ก ตัวอักษรพิมพ์ใหญ่ หรือตัวอักขระอื่นๆ
- อักขระตัวที่สองจะต้องเป็น # หรือ * เท่านั้น
- ตัวเลข 1 ตัว (1<=N<= 100)

Output มี N บรรทัด หรือ 2N-1 บรรทัด ขึ้นอยู่กับ Input

รูปสามเหลี่ยมแสดงด้วยเครื่องหมาย # หรือ * ซึ่งเกิดจากการเรียกใช้เมท็อด printStartUp() หรือ printStartDown() หรือ printStartBoth() ทั้งสามเมท็อดนี้จะมีการทำงานและแสดงผลลัพธ์ภายในเมท็อด โดยจะไม่มี การส่งค่ากลับมายังเมท็อด main()

รายละเอียดการประมวลผลของโปรแกรมมีดังนี้

• <u>แบบที่ 1</u> กรณีอักขระตัวแรกเป็น<u>ตัวอักษรพิมพ์เล็ก</u>ในช่วง 'a' ถึง 'z' ให้เรียกใช้เมท็อดชื่อ printStartDown() ซึ่ง จะพิมพ์รูปสามเหลี่ยมด้วยเครื่องหมาย # หรือ * และมีจำนวนแถว N แถว ดังตัวอย่าง

```
หากรับ a # 3 จะพิมพ์ 3 แถว ดังนี้ หากรับ z * 4 จะพิมพ์ 4 แถว ดังนี้ ### ****
## ***
## ***
# ***
```

• <u>แบบที่ 2</u> กรณีอักขระตัวแรกเป็น<u>ตัวพิมพ์ใหญ่</u>ในช่วง 'A' ถึง 'Z' ให้เรียกใช้เมท็อดชื่อ printStartUp() ซึ่ง จะพิมพ์รูปสามเหลี่ยมด้วยเครื่องหมาย # หรือ * และมีจำนวนแถว N แถว ดังตัวอย่าง หากรับ A # 4 จะพิมพ์ 4 แถว ดังนี้ หากรับ Z * 3 จะพิมพ์ 3 แถว ดังนี้

```
#
##
**
```

• <u>แบบที่ 3</u> กรณีอักขระตัวแรกเป็นตัวอักขระอื่นๆ ให้เรียกใช้เมท็อดชื่อ printStartBoth() ซึ่งจะจะพิมพ์รูป สามเหลี่ยมด้วยเครื่องหมาย # หรือ * และมีจำนวนแถว 2N-1 แถว ดังตัวอย่าง

หากรับ \$ * 3 จะพิมพ์ 5 แถว ดังนี้ หากรับ @ # 4 จะพิมพ์ จะพิมพ์ 7 แถว ดังนี้ * ** ** ** ** ** ** ** ** ### ** ### ### ### ### ### ### ### ### ### ####	y.	y
* ** ** ** ** ** ** ### ** #### #### ####	หากรับ \$ * 3 จะพิมพ์ 5 แถว ดังนี้	หากรับ @ # 4 จะพิมพ์ จะพิมพ์ 7 แถว ดังนี้
*** ** ** ### * ### ### ###	*	#
** ** ### ### ###	**	##
* #### * ### ###	***	###
##	**	####
	*	###
#		##
		#

ตัวอย่าง Input และ Output

ตัวอย่างที่	Input	Output	คำอธิบาย
1	a#5	##### #### ### ##	พิมพ์แบบที่ 1 เนื่องจากอักขระตัวแรก เป็นตัวอักษรพิมพ์เล็ก
2	B#5	# ## ### #### #####	พิมพ์แบบที่ 2 เนื่องจากอักขระตัวแรก เป็นตัวอักษรพิมพ์ใหญ่
3	@ * 5	*	พิมพ์แบบที่ 3 เนื่องจากอักขระตัวแรก เป็นตัวอักขระอื่นๆ

Task Lab02 ข้อ 2 (Lab02_2)

แบบฝึกปฏิบัติการครั้งที่ 2 การเขียนโปรแกรมเพื่อใช้งานเมท็อด

จุดประสงค์

เมื่อผ่านปฏิบัติการนี้แล้ว นักศึกษาจะสามารถเขียนโปรแกรมเพื่อนิยามและเรียกใช้เมท็อดได้

การส่งงาน

บน Grader ของวิชา โดย login ด้วย user และ password ที่แจกให้

- เลือก Contest และ เลือก Task ที่ต้องการส่งงาน
- Upload ไฟล์ .java ที่มีชื่อเดียวกันกับชื่อ Task เช่น Lab02_2.java
- ให้เขียน comment เป็นรหัสนักศึกษาและชื่อไว้ด้านบนไฟล์

คำสั่ง

จงเขียนโปรแกรมเพื่อรับเลขจำนวนเต็มบวก 1 จำนวนใน main() แล้วส่งไปประมวลผลที่เมท็อดชื่อ checkOddEven() เพื่อทำการตรวจสอบว่าเป็นเลขคี่หรือเลขคู่ และ checkPrime() เพื่อให้เมท็อดทำการตรวจสอบว่าเลขที่รับเข้ามาเป็น จำนวนเฉพาะหรือไม่ (จำนวนเฉพาะคือจำนวนเต็มบวกที่มากกว่า 1 ซึ่งนอกจาก 1 และตัวมันเองแล้ว จะไม่มีเลขจำนวน ใดหารลงตัว เช่นเลข 2 3 5 7 11 677 10301 เป็นต้น) โดยแสดงผลลัพธ์ดังตัวอย่าง

Input มี 1 บรรทัด

เป็นเลขจำนวนเต็ม N 1 จำนวนโดยที่ 1 ≤ N ≤ 100000000

Output มี 2 บรรทัด

บรรทัดแรกคือคำว่า odd หรือ even บรรทัดที่สอง คือ คำว่า prime หรือ not prime

ตัวอย่าง Input และ Output

ตัวอย่างที่	Input	Output
1	677	odd
		prime
2	24	even
		not prime

Task Lab02 ข้อ 3 (Lab02_3)

แบบฝึกปฏิบัติการครั้งที่ 2 การเขียนโปรแกรมเพื่อใช้งานเมท็อด

จุดประสงค์

เมื่อผ่านปฏิบัติการนี้แล้ว นักศึกษาจะสามารถเขียนโปรแกรมเพื่อนิยามและเรียกใช้เมท็อดได้

การส่งงาน

บน Grader ของวิชา โดย login ด้วย user และ password ที่แจกให้

- เลือก Contest และ เลือก Task ที่ต้องการส่งงาน
- Upload ไฟล์ .java ที่มีชื่อเดียวกันกับชื่อ Task เช่น Lab02_3.java
- ให้เขียน comment เป็นรหัสนักศึกษาและชื่อไว้ด้านบนไฟล์

คำสั่ง

จงเขียนโปรแกรมเพื่อรับค่ารับค่า X_1 , Y_1 , X_2 , Y_2 (ทุกค่าเป็นเลขจำนวนเต็ม 4 ค่า อยู่ในช่วง 1 ถึง 10000) แทนค่าจุด A (ค่า X_1 และ Y_1) และ B (ค่า X_2 และ Y_2) โดยที่ A และ B ไม่ใช่จุดเดียวกัน (ไม่ต้องตรวจสอบ) จากนั้นรับจำนวนเต็มบวก N (อยู่ในช่วง 1 ถึง 10000000) เพื่อรับค่า X_3 , Y_3 (ทุกค่าเป็นเลขจำนวนเต็ม 2 ค่า อยู่ในช่วง 1 ถึง 10000) ของจุด C ใน main () จำนวน N รอบ

ในแต่ละรอบให้ส่งไปประมวลผลที่เมท็อดชื่อ checkBoundary() เพื่อเช็คสถานะของจุด C จนครบ N รอบ โดย เมท็อด checkBoundary() จะทำการตรวจสอบสถานะของ จุด C ว่าอยู่ภายในหรือภายนอกหรือบนเส้นขอบของกรอบ สี่เหลี่ยมที่สร้างจากจุด A และ B จากนั้นจะ<u>ส่งค่ากลับ</u>เป็นหมายเลขสถานะของจุด C ดังนี้

- ส่งค่ากลับเป็น 1 แสดงว่า จุด C อยู่ภายในกรอบสี่เหลี่ยม
- ส่งค่ากลับเป็น 2 แสดงว่าจุด C บนเส้นขอบของกรอบสี่เหลี่ยม
- ส่งค่ากลับเป็น 3 แสดงว่า จุด C อยู่ภายนอกกรอบสี่เหลี่ยม

แล้วให้โปรแกรมสรุปจำนวนผลลัพธ์ จำนวนจุด ในแต่ละสถานะ

Input มี N + 2 บรรทัด (ในแต่ละบรรทัด เป็นเลขจำนวนเต็ม แต่ละค่าคั่นด้วยช่องว่าง 1 ช่อง)

บรรทัดแรก รับค่าเลขจำนวนเต็ม 4 ค่า $X_1 Y_1 X_2 Y_2$ ของจุด A และ B โดย -10000 $\leq X_1 , Y_1 , X_2 , Y_2 \leq$ 10000 บรรทัดที่สอง รับค่าเลขจำนวนเต็ม N แทนจำนวนของจุด C ที่จะตรวจสอบสถานะ โดยที่ $1 \leq N \leq$ 10000000 อีก N บรรทัด แต่ละบรรทัดรับค่าเลขจำนวนเต็ม 2 ค่า $X_3 Y_3$ ของจุด C โดย -10000 $\leq X_3 , Y_3 \leq$ 10000

Output มี 1 บรรทัด

เป็นเลขจำนวนเต็ม 3 ค่า แทนจำนวนจุด C ที่อยู่ในสถานะภายในกรอบสี่เหลี่ยม บนเส้นขอบของกรอบสี่เหลี่ยม และอยู่ภายนอกกรอบสี่เหลี่ยม ตามลำดับ

ตัวอย่าง Input และ Output

ตัวอย่างที่	Input	Output	คำอธิบาย				
1	-10 5 -2 -3	212	ข้อมูลนำเข้า				
	5		- รับจุด A และ B แทนกรอบสี่เหลี่ยม โดย A เป็นจุดบน				
	-5 5 //อยู่บนกร	รอบสี่เหลี่ยม	ซ้าย และ B เป็นจุดล่างขวา				
	-6 6 //อยู่นอกก _ั	รอบสี่เหลี่ยม	- รับค่า N = 5 แทนจำนวนจุด C				
	-3 -2 //อยู่ในกรอ	บสี่เหลี่ยม	- รับจุด C จำนวน 5 จุด				
	-5 0 //อยู่ในกรอ	บสี่เหลี่ยม	ข้อมูลส่งออก				
	0 3 //อยู่นอกก	รอบสี่เหลี่ยม	 มีจำนวนจุด C ที่อยู่ อยู่ภายในกรอบสี่เหลี่ยม 2 จุด 				
			 มีจำนวนจุด C ที่อยู่ อยู่บนขอบของกรอบสี่เหลี่ยม 1 จุด 				
			 มีจำนวนจุด C ที่อยู่ อยู่ภายนอกกรอบสี่เหลี่ยม 2 จุด 				
2	4 -3 -1 3	2 4 4	ข้อมูลนำเข้า				
	10		- รับจุด A และ B แทนกรอบสี่เหลี่ยม โดย B เป็นจุดบน				
	2 3 //อยู่บนกร	รอบสี่เหลี่ยม	ซ้าย และ A เป็นจุดล่างขวา				
	-2 3 //อยู่นอกก	รอบสี่เหลี่ยม	- รับค่า N = 10 แทนจำนวนจุด C				
	-2 -3 //อยู่นอกก	รอบสี่เหลี่ยม	- รับจุด C จำนวน 10 จุด				
	2 -3 //อยู่บนกรส	อบสี่เหลี่ยม	ข้อมูลส่งออก				
	0 3 //อยู่บนกรส	อบสี่เหลี่ยม	 มีจำนวนจุด C ที่อยู่ อยู่ภายในกรอบสี่เหลี่ยม 2 จุด 				
	3 0 //อยู่ในกรอ	บสี่เหลี่ยม	 มีจำนวนจุด C ที่อยู่ อยู่บนขอบของกรอบสี่เหลี่ยม 4 จุด 				
	0 -3 //อยู่บนกรส	อบสี่เหลี่ยม	 มีจำนวนจุด C ที่อยู่ อยู่ภายนอกกรอบสี่เหลี่ยม 4 จุด 				
	-3 0 //อยู่นอกก	รอบสี่เหลี่ยม					
	0 0 //อยู่ในกร	อบสี่เหลี่ยม					
	5 1 //อยู่นอกก	รอบสี่เหลี่ยม					

<u>หมายเหตุ</u> : A และ B อาจเป็นจุดในแนวทแยงของกรอบสี่เหลี่ยม ซึ่งเป็นไปได้ 4 แบบ

- 1) A เป็นจุดบนซ้าย และ B เป็นจุดล่างขวา
- 2) B เป็นจุดบนซ้าย และ A เป็นจุดล่างขวา
- 3) A เป็นจุดบนขวา และ B เป็นจุดล่างซ้าย
- 4) B เป็นจุดบนขวา และ A เป็นจุดล่างซ้าย

Task Lab02 ข้อ 4 (Lab02_4)

แบบฝึกปฏิบัติการครั้งที่ 2 การเขียนโปรแกรมเพื่อใช้งานเมท็อด

จุดประสงค์

เมื่อผ่านปฏิบัติการนี้แล้ว นักศึกษาจะสามารถเขียนโปรแกรมเพื่อนิยามและเรียกใช้เมท็อดได้

การส่งงาน

บน Grader ของวิชา โดย login ด้วย user และ password ที่แจกให้

- เลือก Contest และ เลือก Task ที่ต้องการส่งงาน
- Upload ไฟล์ .java ที่มีชื่อเดียวกันกับชื่อ Task เช่น Lab02_4.java
- ให้เขียน comment เป็นรหัสนักศึกษาและชื่อไว้ด้านบนไฟล์

คำสั่ง

จงเขียนโปรแกรม เพื่อ

- 1) รับข้อมูลเลขจำนวนเต็มซึ่งไม่ซ้ำกันมาเก็บไว้ที่อาร์เรย์ A ทั้งหมด N จำนวน (ไม่ต้องเขียนส่วนการตรวจสอบว่า ข้อมูลซ้ำหรือไม่ ให้สมมุติว่า ผู้ใช้กรอกข้อมูลไม่ซ้ำกัน) ซึ่งการรับข้อมูลใส่อาร์เรย์ โดยเรียกใช้เมท็อดชื่อ getData() ซึ่งทำหน้าที่รับข้อมูลจากผู้ใช้ใส่ในอาร์เรย์ตามขนาดที่รับมาจากเมท็อด main () จากนั้นจึงส่งค่า อาร์เรย์กลับไปยังเมท็อด main()
- 2) เขียนเมท็อดใหม่ชื่อ findAinB() ทำหน้าที่
 - เรียกใช้ getData () อีกครั้ง แต่เพื่อรับข้อมูลจำนวนเต็มใส่ในอาร์เรย์ B ทั้งหมด M จำนวน (อาจมีค่าซ้ำกันได้)
 - ให้นับและแสดงว่ามีสมาชิกในอาร์เรย์ A ปรากฏอยู่ในอาร์เรย์ B อย่างละกี่ตัว ดังตัวย่าง
- 3) หาว่าค่าสูงสุดในอาร์เรย์ A คือ ค่าใด เช่น กำหนดให้ ตัวอย่างเช่น กรณี N = 3 และ M =12 และสมมุติผู้ใช้กรอกข้อมูลใน อาร์เรย์ A และ B ดังนี้ อาร์เรย์ A $\boxed{5}$ $\boxed{7}$ $\boxed{2}$

อาร์เรย์ B	1	7	7	7	2	8	7	2	9	20	15	7

ผลลัพธ์ที่ได้

052

7

เนื่องจากพบค่า 5 7 และ 2 ใน อาร์เรย์ B จำนวน 0 5 และ 2 ค่าตามลำดับ

Input มี 3 บรรทัด

บรรทัดแรก เป็นเลขจำนวนเต็มบวก M และ N แต่ละค่าเว้นด้วยช่องว่าง 1 ช่อง โดยที่ 1 ≤ M, N ≤ 10000 บรรทัดที่ 2- 3 เป็นเลขจำนวนเต็ม Ai, Bj จำนวน M และ N ค่าสำหรับอาร์เรย์ A และอาร์เรย์ B โดยแต่ละค่าเรียงลำดับจากน้อยไปมาก และแต่ละค่าเว้นด้วยช่องว่าง 1 ช่อง ซึ่งที่ -10000000 ≤ Ai, Bj ≤ 10000000 โดยที่ i = 1.. M และ j = 1... N

Output มี N+1 บรรทัด

N บรรทัดแรก เป็นผลการนับจำนวนตัวเลขในอาร์เรย์ A ที่พบในอาร์เรย์ B บรรทัดสุดท้าย คือ ค่าสูงสุดในอาร์เรย์ A

ตัวอย่าง Input และ Output

ตัวอย่างที่	Input	Output	คำอธิบาย
1	3 12 5 7 2 1 7 7 7 2 8 7 2 9 20 15 7	052	Finding 5 in array B พบ 0 จ้านวน Finding 7 in array B พบ 5 จ้านวน Finding 2 in array B พบ 2 จ้านวน Maximum in A is 7
2	4 2 12 7 20 2 33 7	0 1 0 0 20	Finding 12 in array B พบ 0 จ้านวน Finding 7 in array B พบ 1 จำนวน Finding 20 in array B พบ 0 จำนวน Finding 2 in array B พบ 0 จำนวน Maximum in A is 20 จำนวน