Informação mútua para canais em cascata

Resultado 2.6 Para a cascata dos canais AB e BC, tem-se $I(A;B) \geqslant I(A;C)$, verificando-se a igualdade se e só se P(a|c) = P(a|b) sempre que $P(b,c) \neq 0$.

Por outras palavras, a informação resultante da utilização de uma cascata de canais não pode exceder a informação resultante da utilização do primeiro canal.

Vejamos em seguida que, se o canal BC for isento de ruído, então I(A;B) = I(A;C). Para isso, mostramos que, sendo $P(b,c) \neq 0$, tem-se P(a|c) = P(a|b).

Pelo Teorema de Bayes e pela condição de cascata, temos

$$P(a|c) = \frac{P(a,c)}{P(c)} = \sum_{b' \in B} \frac{P(a,b',c)}{P(b',c)} \frac{P(b',c)}{P(c)} = \sum_{b' \in B} P(a|b',c)P(b'|c) = \sum_{b' \in B} P(a|b')P(b'|c).$$

Ora, sendo o canal BC isento de ruído, e $P(b,c) \neq 0$, temos P(b',c) = 0 = P(b'|c) para todo o $b' \in B \setminus \{b\}$ e P(b|c) = 1. Logo P(a|c) = P(a|b), donde, recordando que $I(A;X) = \sum_{a \in A} \sum_{x \in X} P(a|x)P(a)\log \frac{P(a|x)}{P(a)}$, segue que I(A;B) = I(A;C). \square

Exemplo

Note-se que

$$\mathbf{P}_{AC} = \mathbf{P}_{AB}\mathbf{P}_{BC} = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 1/3 & 1/3 & 1/3 \end{bmatrix} \begin{bmatrix} 3/4 & 0 & 1/4 \\ 0 & 1 & 0 \\ 1/4 & 0 & 3/4 \end{bmatrix} = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 1/3 & 1/3 & 1/3 \end{bmatrix},$$

donde resulta que I(A; B) = I(A; C) apesar do canal BC não ser isento de ruído.

Aditividade da informação mútua

- Para compensar a perda de informação resultante do ruído no canal de comunicação, estudaremos várias estratégias para introduzir redundância à entrada que permita recuperar a informação original da informação perturbada obtida à saída.
- Um método simples de introduzir redundância é obtido pela repetição da mensagem original.
- Uma forma de modelar uma tal repetição que tem a vantagem de ter aplicações mais gerais é considerar vários canais através dos quais a mesma informação é transmitida para um mesmo recetor.

Canais com saídas múltiplas

■ Por exemplo, para dois canais:

digamos com
$$A = \{a_1, \ldots, a_r\}, B = \{b_1, \ldots, b_s\},$$

 $C = \{c_1, \ldots, c_t\}.$

Supõe-se que, fornecido um símbolo a_i à entrada, o canal produz um símbolo b_j e um símbolo c_k à saída.

- As correspondentes probabilidades serão então:
 - $P(a_i)$: probabilidade a priori do símbolo de entrada a_i , desconhecidos os símbolos de saída;
 - $P(a_i|b_j)$: probabilidade a posteriori do símbolo de entrada a_i , conhecido o símbolo de saída b_j ;
 - $P(a_i|b_j,c_k)$: probabilidade a posteriori do símbolo de entrada a_i , conhecidos os símbolos de saída b_j e c_k .
- Definimos a entropia a posteriori de A dados b_j, c_k :

$$H(A|b_j, c_k) = \sum_{a \in A} P(a|b_j, c_k) \log \frac{1}{P(a|b_j, c_k)},$$

e o correspondente equívoco de A em relação a B e C:

$$H(A|B,C) = \sum_{b \in B} \sum_{c \in C} P(b,c)H(A|b,c).$$

■ Podemos agora definir a *informação mútua entre A e BC* dada pelo canal:

$$I(A; B, C) = H(A) - H(A|B, C)$$

ou seja, a quantidade de informação dada por A menos aquela que se perde na utilização dos canais AB e AC.

■ Note-se que

$$I(A; B, C) = H(A) - H(A|B) + H(A|B) - H(A|B, C)$$

= $I(A; B) + I(A; C|B)$

sendo I(A; C|B) a informação adicional sobre A fornecida pelo canal AC depois de conhecida a saída do canal AB.

Resultado 2.7 Para um canal com entrada A e saídas B e C, tem-se

$$I(A; B, C) \geqslant I(A; B),$$

verificando-se a igualdade se e só se H(A|B) = H(A|B,C).

■ Em particular, a utilização dupla de um canal aumenta potencialmente a informação sobre a fonte em relação à sua utilização simples.

Prova. Basta aplicar o Lema 1.1 em face da seguinte expressão para I(A; C|B):

$$\begin{split} H(A|B) - H(A|B,C) &= \sum_{b} P(b)H(A|b) - \sum_{b,c} P(b,c)H(A|b,c) \\ &= \sum_{b} P(b) \sum_{a} P(a|b) \log \frac{1}{P(a|b)} - \sum_{b,c} P(b,c) \sum_{a} P(a|b,c) \log \frac{1}{P(a|b,c)} \\ &= \sum_{a,b} P(a,b) \log \frac{1}{P(a|b)} - \sum_{a,b,c} P(a,b,c) \log \frac{1}{P(a|b,c)} \\ &= \sum_{a,b,c} P(a,b,c) \log \frac{1}{P(a|b)} - \sum_{a,b,c} P(a,b,c) \log \frac{1}{P(a|b,c)} \\ &= \sum_{a,b,c} P(a,b,c) \log \frac{P(a|b,c)}{P(a|b)} \\ &= \sum_{a,b,c} P(a,b,c) \log \frac{P(a,b,c)}{P(a|b)}. \ \Box \end{split}$$

Nota: analogamente, mostra-se que $I(A;B,C) = \sum_{a,b,c} P(a,b,c) \log \frac{P(a,b,c)}{P(a)P(b,c)}$.

Exemplo

Consideremos um BSC

no qual cada símbolo a_i é transmitido duas vezes, e representemos por b_j e c_k o resultado da primeira e da segunda transmissão do símbolo, respetivamente, pelo que temos

$$\mathbf{P}_{AB} = \mathbf{P}_{AC} = \left[egin{array}{cc} p & q \ q & p \end{array}
ight].$$

Tínhamos anteriormente calculado $I(A; B) = 1 - (q \log \frac{1}{q} + p \log \frac{1}{p}).$

Para calcular $I(A;B,C) = \sum_{a,b,c} P(a,b,c) \log \frac{P(a,b,c)}{P(a)P(b,c)}, \text{ sendo } P(a) = 1/2,$

 $P(b,c) = \sum_a P(a,b,c)$ e $P(a,b,c) = P(a)P(b|a)P(c|b,a) = \frac{1}{2}P(b|a)P(c|a)$, consideremos a seguinte tabela dos valores relevantes, onde a última coluna representa a contribuição global das parcelas desse tipo para a expressão acima para I(A;B,C):

abc	P(a,b,c)	P(b,c)	Tipo	Contribuição
0 00	$p^{2}/2$	$\frac{1}{2}(p^2+q^2)$	X	$2\left(\frac{1}{2}p^2\log\frac{\frac{1}{2}p^2}{\frac{1}{2}\frac{1}{2}(p^2+q^2)}\right) = p^2\log\frac{2p^2}{p^2+q^2}$
1 11	p / 2	$\frac{1}{2}(p+q)$	Λ	
0 01	pq/2	pq	Z	
1 01				$4\left(\frac{1}{2}pq\log\frac{\frac{1}{2}pq}{\frac{1}{2}pq}\right) = 0$
0 10				
1 10				
0 11	$q^{2}/2$	$1(n^2+a^2)$	Y	$2\left(\frac{1}{a^2}\log^2\frac{\frac{1}{2}q^2}{a^2}\right) - a^2\log^2q^2$
1 00	<i>q / \(\(\) \)</i>	$\frac{1}{2}(p^2+q^2)$	1	$2\left(\frac{1}{2}q^2\log\frac{\frac{1}{2}q^2}{\frac{1}{2}\frac{1}{2}(p^2+q^2)}\right) = q^2\log\frac{2q^2}{p^2+q^2}$

donde
$$I(A; B, C) = p^2 \log \frac{2p^2}{p^2 + q^2} + q^2 \log \frac{2q^2}{p^2 + q^2}$$
.

Comparação de I(A; B) com I(A; B, C):

Casos particulares:

- q = 0: sem ruído, I(A; B) = I(A; B, C) = I(A) = 1;
- $\blacksquare q=1$: garantia de inversão do bit, I(A;B)=I(A;B,C)=I(A)=1;
- $\blacksquare q = 1/2$, ambiguidade total do resultado, I(A; B) = I(A; B, C) = 0.

Nota sobre notação

Na Aula 2, enunciámos e provámos o seguinte resultado:

Teorema 1.6
$$H(P) = H(P_T) + H(P_{S|T}) = H(P_S) + H(P_{T|S}),$$

onde $H(PS_{S|T})$ teve de ser intepretado não como a entropia duma distribuição de probabilidades mas como uma "entropia condicional", definida como a média pesada (com pesos dados por P_T) das entropias $H(P_{S|t})$.

Na notação que temos vindo a usar no estudo dos canais de informação, preferimos para $H(P_{S|T})$ a notação H(S|T), onde desaparece a confusão com a entropia duma distribuição de probabilidades.

Com esta notação, não abusiva, o Teorema 1.6 passa a ter o seguinte enunciado, onde uniformizamos também a notação de forma a torná-la mais sugestiva:

Teorema 1.6
$$H(S,T) = H(T) + H(S|T) = H(S) + H(T|S)$$
.

Nesta forma, o Teorema 1.6 apareceu também na página 107, no contexto do estudo de canais de informação. (Ver também o diagrama da página 108.)

Capacidade de um canal

■ Recorde-se que a informação mútua dada por um canal foi definida como a informação fornecida à entrada menos o equívoco da informação à entrada condicionada ao conhecimento da saída.

$$I(A;B) = H(A) - H(A|B).$$

- Em particular, a informação mútua só faz sentido quando é dada uma fonte de informação a transmitir pelo canal e depende desta, nomeadamente da distribuição de probabilidades $\{P_A(a)\}_{a\in A}$.
- A capacidade de um canal AB é

$$C = \max_{\{P_A(a)\}_{a \in A}} I(A; B).$$

- Note-se que:
 - $\blacksquare C \geqslant 0$ pois todo o $I(A; B) \geqslant 0$;
 - $\blacksquare C \leqslant \min\{\log |A|, \log |B|\}$ pois cada $I(A; B) \leqslant H(A) \leqslant \log |A|$ e idem para B.
- \blacksquare O cálculo de C é um problema de maximização da função contínua $\mathbb{R}^{|A|} \to \mathbb{R}$

$$I(A;B) = \sum_{a \in A} \sum_{b \in B} P(a,b) \log \frac{P(a,b)}{P(a)P(b)}$$
$$= \sum_{a \in A} \sum_{b \in B} P(a)P(b|a) \log \frac{P(a)P(b|a)}{P(a)\sum_{a \in A} P(a)P(b|a)}$$

onde as probabilidades do canal P(b|a) poderão ser conhecidas ou estimadas estatisticamente e a maximização é feita relativamente ao domínio compacto

$$\{(P(a_i))_i \in \mathbb{R}^{|A|} : P(a_i) \geqslant 0 \ (\forall i), \ \sum_i P(a_i) = 1\}.$$

Problema de maximização

- A existência de um tal máximo segue de resultados bem conhecidos da Análise/Topologia.
- Mas o seu cálculo está longe de ser um problema trivial em geral. Em alguns casos concretos, os seguintes métodos poderão ser eficazes:
 - método dos multiplicadores de Lagrange;
 - algoritmos baseados na procura na direção do gradiente (que é a direção de variação máxima);
 - algoritmos iterativos desenvolvidos por alguns autores (Arimoto (1972), Blahut (1972)).

Capacidade de um BSC

Para um BSC, obtivemos anteriormente a seguinte expressão para a informação mútua

$$I(A;B) = \left((\omega p + \overline{\omega}q) \log \frac{1}{\omega p + \overline{\omega}q} + (\overline{\omega}p + \omega q) \log \frac{1}{\overline{\omega}p + \omega q} \right) - (q \log \frac{1}{q} + p \log \frac{1}{p}),$$

que é aqui considerada função $f_q(\omega)$ de ω , sendo $\overline{\omega}=1-\omega$ e sendo p,q parâmetros não negativos com p+q=1.

Note-se que:

- $\mathbf{I}_q(\omega) = f_q(\overline{\omega}), \text{ sendo } f_q(0) = f_q(1) = 0;$
- $f_{1/2} \equiv 0;$
- gráficos de $f_{n/20}$ para $n=0,\ldots,10$ (com cores evoluindo gradualmente de verde a vermelho):

Capacidade de um BEC

Consideremos um BEC dado por

Calculámos anteriormente

$$I(A; B) = \omega p \log \frac{1}{\omega p} + \overline{\omega} p \log \frac{1}{\overline{\omega} p} - p \log \frac{1}{p}$$
$$= p \left(\omega \log \frac{1}{\omega} + \overline{\omega} \log \frac{1}{\overline{\omega}} \right) = (1 - q)H(A)$$

pelo que concluímos que $C_{BEC}=1-q$ pois $\max_{\{P_A(a)\}_{a\in A}}H(A)=\log 2=1$, sendo o máximo atingido para $\omega=P(a=0)=1/2$.

Para q=0, o canal BEC atinge a sua capacidade de 1 bit, para a distribuição de probabilidade uniforme à entrada. Para q=1, o canal atinge a capacidade, de 0 bit, independentemente da distribuição de probabilidade de entrada.

Capacidade de canal fracamente simétrico

- Um canal diz-se *simétrico* se as linhas (respetivamente as colunas) da matriz do canal forem obtidas umas das outras por permutações.
- Um canal diz-se fracamente simétrico se as linhas da matriz do canal forem obtidas umas das outras por permutações e as somas das colunas $c_j = \sum_{a_i \in A} P(b_j | a_i)$ forem todas iguais.
- Note-se que todo o canal simétrico também é fracamente simétrico.
- Recorde-se que, num canal AB, temos

$$I(A; B) = H(B) - H(B|A)$$

$$= H(B) - \sum_{a \in A} P(a) \sum_{b \in B} P(b|a) \log \frac{1}{P(b|a)}$$

$$\leq \log|B| - \sum_{a \in A} P(a)H(B|a).$$

Suponhamos agora que temos um canal fracamente simétrico.

Ora $H(B|a_i) = \sum_{b \in B} P(b|a_i) \log \frac{1}{P(b|a_i)}$ depende das entradas na linha i da matriz do canal, pelo que se conclui que $H(B|a_i) = H(B|a)$ é constante, i.e. não varia com a_i . Logo $I(A;B) \leq \log |B| - H(B|a)$ e este é, portanto, um majorante da capacidade do canal. Considerando a distribuição de probabilidade uniforme à entrada $P(a) = \frac{1}{r}$, onde r = |A|, temos

$$P(b_j) = \sum_{a_i \in A} P(b_j | a_i) P(a_i) = \frac{1}{r} \sum_{a_i \in A} P(b_j | a_i) = \frac{c_j}{r},$$

sendo este valor constante, $\frac{c}{r}$, pois as somas das colunas da matriz do canal são constantes. Logo a distribuição à saída resultante é também uma distribuição uniforme, pelo que $H(B) = \log |B|$.

Teorema 2.8 Para um canal fracamente simétrico AB, a capacidade é dada por

$$C = \log|B| - H(B|a)$$

onde $H(B|a) = \sum_{b \in B} P(b|a) \log \frac{1}{P(b|a)}$ pode ser calculada a partir de qualquer linha da matriz do canal. A capacidade do canal é atingida para a distribuição uniforme de probabilidades à entrada, $P(a) = \frac{1}{|A|}$.

Exemplo: BSC de novo

Note-se que, num BSC, tem-se

$$\mathbf{P} = \left[\begin{array}{cc} p & q \\ q & p \end{array} \right].$$

Usando o Teorema 2.8 e as igualdades $\log |B| = \log 2 = 1$ e $H(B|a) = p \log \frac{1}{p} + q \log \frac{1}{q}$ concluímos que

$$C = 1 - \left(p\log\frac{1}{p} + q\log\frac{1}{q}\right)$$

capacidade que é atingida quando $P(a)=1/2,\,\,$ o que corrobora a expetativa criada com os gráficos

Outro exemplo

Consideremos o canal com matriz

$$\mathbf{P} = \begin{bmatrix} \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{6} & \frac{1}{3} \end{bmatrix}.$$

Temos aqui $\log |B| = \log 3 \simeq 1.58496$ e $H(B|a) = \tfrac{1}{6} \log 6 + \tfrac{1}{2} \log 2 + \tfrac{1}{3} \log 3 \simeq 1.45915 \ \text{ pelo que}$

$$C \in [1.5849 - 1.4592, 1.5850 - 1.4591] = [0.1257, 0.1259],$$

o que mostra que $C \simeq 0.126$, capacidade esta que é atingida tomando P(a) = 1/2.