ESC201A Introduction to Electronics

Amit Verma

Department of Electrical Engineering

IIT Kanpur

Circuit Fundamentals

Concepts

- Charge, Current, Voltage, Power, and Energy
- Ohm's Law
- Kirchoff's Current Law (KCL)
- Kirchoff's Voltage Law (KVL)

Charge

- Charge is a fundamental property of matter and is said to be conserved
 - Can neither be created nor be destroyed
- Two types of charge
 - Same charge attract and opposite repel
- Charge is designated by symbol q has unit coulombs
- Negative charge carried by a single electron is -1.602×10⁻¹⁹ C
 - Smallest unit of charge that exists
- Charge flow leads to electric current

Electrical Current

- Current is simply a measure of how much charge is moved per unit of time
- Units are amperes (A), which are equivalent to coulombs per second (C/s)

$$i(t) = \frac{dq(t)}{dt}$$

André-Marie Ampère 1775-1836

Flow of electrons through a wire or other electrical conductor gives rise to current

Electrons are negatively charged particles

The charge per electron is -1.602×10⁻¹⁹ C

10¹⁶ electrons flow per second

How much current flows? $i(t) = \frac{dq(t)}{dt}$

$$I = \frac{Q}{t} = \frac{-1.6 \times 10^{-19} \times 10^{16}}{1} = -1.6 \times 10^{-3} A$$

Current has a magnitude and a direction

10¹⁶ electrons flow per second

Direction of current flow is opposite to direction of electron flow

Large number of electrons have to flow for appreciable current

Direct Current (DC) & Alternating Current (AC)

When current is constant with time, we say that we have direct current, abbreviated as DC.

On the other hand, a current that varies with time, reversing direction periodically, is called alternating current, abbreviated as AC

Voltage

- Voltage difference causes current to flow
- Potential difference for a unit positive charge between two points: Work done to move unit positive charge between two points
- Units of Voltage: volt (V)

Voltage is Relative

• In practice, it is ΔV that matters

- In a circuit (system), we choose a reference
 - Reference is called "ground"

Rest of the voltages in the circuit are w.r.t. ground

Voltage Sources

DC and **AC** voltages

$$V_{+} - V_{-} = 12V$$

Electrical Systems are made of Voltage sources, wires and a variety of electrical elements

Current flows in a loop

Electrical systems are called electrical circuits

Electrical Circuit

Connection of several circuit elements in closed paths by conductors

Before we learn how to analyze and design circuits, we must become familiar with some basic circuit elements.

Resistance

Ohm's law

The constant, R, is called the resistance of the component and is measured in units of Ohm (Ω)

Standard Multiples of Ohm

 $M\Omega$ Mega Ohm $(10^6 \Omega)$

 $k\Omega$ Kilo Ohm $(10^3 \Omega)$

Resistor Symbol:

Georg Simon Ohm 1789-1854

Conductance

$$v(t) = R \times i(t)$$

$$i(t) = \frac{v(t)}{R} = G \times v(t)$$

G = 1/R is called conductance and its unit is Siemens (S)

Ernst Werner von Siemens 1816-1892

Two special resistor values

$$R = \frac{v}{i}$$

$$G = \frac{i}{v}$$

Resistance Related to Physical Parameters

$$R = \rho \times \frac{L}{A}$$

Resistance is affected by the dimensions and geometry of the resistor as well as the particular material used

- ρ is the resistivity of the material in ohm meters [Ω -m]
- Conductors (Aluminum, Carbon, Copper, Gold)
- Insulators (Glass, Teflon)
- Semiconductors (Silicon)

Any electrical element which obeys ohms law can be modeled as a resistor

Can we model an electric bulb as a resistor?

Electrical Bulb

Even though characteristics are non-linear, over a certain range, the bulb can be thought of as a resistor