#### CS151 Intro to Data Structures

Array-based Heaps

### Outline

- Array Based Trees
- Breath First Traversal
- Array Based Heaps
- More efficient way to Construct Heaps

### Announcements

HW05 due next Tuesday
Will be released very shortly (just fixing checkstyle in starter code)

Midterm & Grading

### Array

Physical memory is one-dimensional

an enormous array of bytes

All data structures (are in our heads)

- differ only in the organization of data
- how each element is accessed (search/traversal) in relationship with the next
- how insert/remove/update affects the organization

### Organizational Types

#### Arrays

- Contiguous next element is next in memory
- Directional

#### Linked List

- Noncontiguous
- Directional

#### Tree

- Noncontiguous
- Multi-Directional

 The numbering can then be used as indices for storing the nodes directly in an array

• f(root) = 0

 $\bullet f(l) = 2f(p) + 1$ 

 $\bullet f(r) = 2f(p) + 2$ 





 The numbering can then be used as indices for storing the nodes directly in an array

• f(root) = 0

 $\bullet \ f(l) = 2f(p) + 1$ 

 $\bullet f(r) = 2f(p) + 2$ 





- If we don't enforce any ordering properties, then we can ensure the tree is complete
- Complete tree every level is full, except for the last and all nodes in the last level are as far left as possible





- If we don't enforce any ordering properties, then we can ensure the tree is complete
- Complete tree every level is full, except for the last and all nodes in the last level are as far left as possible



### Binary Heap

Binary tree storing keys at its nodes and satisfying:

- 1. heap-order: for every internal node v other than root,  $key(v) \ge key(parent(v))$
- 2. complete binary tree: let h be the height of the heap
  - there are  $2^i$  nodes of depth i,  $0 \le i \le h-1$
  - at depth h, the leaf nodes are in the leftmost positions

• last node of a heap is the rightmost node of max depth



## Array based heap

Array/ArrayList of length *n* for heap with *n* keys



## Array based heap

Array/ArrayList of length *n* for heap with *n* keys

#### Node at index i

- Left child index:
  - 2i + I
- Right child index:
  - 2i + 2



## Array based heap

Array/ArrayList of length *n* for heap with *n* keys

#### Node at index i

- Left child index:
  - 2i + I
- Right child index:
  - 2i + 2

- Peek:
  - Get element at index 0
- Poll:
  - Remove element at index 0
- No need to store references/links



## Binary Tree Interface

```
public interface BinaryTree<E extends Comparable<E>>
    E getRootElement();
     int size();
    boolean isEmpty();
    boolean contains (E element);
    void insert(E element);
    boolean remove (E element);
    String toStringInOrder();
     String toStringPreOrder();
     String toStringPostOrder();
```

```
public class ArrayBinaryTree<E extends Comparable<E>>
implements BinaryTree<E>{
     public static final int CAPACITY=1000;
     //instance variables?
     private int size;
     private E[] data;
     public ArrayBinaryTree() {
       // what would our constructor look like?
     //E getRootElement();
     //int size();
     //boolean isEmpty();
```

```
public class ArrayBinaryTree<E extends Comparable<E>>
implements BinaryTree<E>{
     public static final int CAPACITY=1000;
     //instance variables?
     private int size;
     private E[] data;
     public ArrayBinaryTree() {
           data = (E[]) new Comparable[CAPACITY];
     //E getRootElement();
     //int size();
     //boolean isEmpty();
```

### Array Based Binary Tree Methods

- boolean contains (E element);
- void insert (E element);
- boolean remove (E element);

$$f(root) = 0$$
  

$$f(l) = 2f(p) + 1$$
  

$$f(r) = 2f(p) + 2$$





CS151 - Lecture 17 - Fall '23

#### Traversals

```
String toStringInorder();
```

String toStringPreorder();

String toStringPostorder();

String toStringBreadthFirst();





CS151 - Lecture 17 - Fall '23

### Outline

- Array Based Trees
- Breath First Traversal
- Array Based Heaps
- More efficient way to Construct Heaps

Traverse the tree level-by-level



Traverse the tree level-by-level



Traverse the tree level-by-level



Traverse the tree level-by-level

Within a level go left-to-right



This is the array order of an array-based binary tree

Traverse the tree level-by-level



Traverse the tree level-by-level

Within a level go left-to-right





This is the array order of an array-based binary tree

CS151 - Lecture 17 - Fall '23

### Breath First Traversal Algorithms

```
Add root to queue
while queue is not empty:
    node n = deque()
    operate on n // in our case print or concat n
    for child c of n:
        enqeue(n)
```

### Breath First Search Algorithm

```
Add root to queue
while queue is not empty:
    node n = deque()
    if n is the target:
        stop
    for child c of n:
        enqeue(n)
```

### Breath First Search in action

#### Tree with an Empty Queue



https://www.codecademy.com/article/tree-traversal

### Outline

- Array Based Trees
- Breath First Traversal
- Array Based Heaps
- More efficient way to Construct Heaps

### Helper methods for Array-based binary heap

```
int parent(int i);
int leftChild(int i);
int rightChild(int i);
void swap(int i, int j);
int containsIdx(E element);
string toStringInORderRec(int root);
```

### PriorityQueue Interface

```
public interface PriorityQueue<E extends Comparable<E>>
extends BinaryTree<E> {
  E getRootElement();
  int size();
  boolean isEmpty();
  boolean contains (E element);
  void insert(E element);
  boolean remove (E element);
  String toStringInOrder();
  String toStringPreOrder();
  String toStringPostOrder();
  E peek();
  E poll();
```

### Heap-based Priority Queue

```
public class ArrayHeap<E extends Comparable<E>>
extends ArrayBinaryTree<E> implements
PriorityQueue<E>{
  //instance variables?
  //constructor, getters, setters
  //inherited methods
  E peek();
  E poll();
```

### Inherited Methods from ArrayBinaryTree

```
E getRootElement();
int size();
boolean isEmpty();
boolean contains (E element);
void insert(E element);
boolean remove (E element);
String toStringInOrder();
String toStringPreOrder();
String toStringPostOrder();
```

### Inherited Methods from ArrayBinaryTree

```
E getRootElement();
int size();
boolean isEmpty();
boolean contains (E element);
void insert(E element);
boolean remove (E element);
String toStringInOrder();
String toStringPreOrder();
String toStringPostOrder();
```

## Updating Key (Priority of an element)

What should happen when you change the key of an existing element in a heap?

What are the cases?

- increaseKey
- decreaseKey

### Outline

- Array Based Trees
- Breath First Traversal
- Array Based Heaps
- More efficient way to Construct Heaps

## Merging Two Heaps

- We are given two two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heap-order property







## Inserting n elements in a Heap (Construction)

Time complexity of making a heap with *n* elements:

- Call insert n times:
  - O(nlog(n))

#### More efficient alternative:

- merge & conquer!
- Bottom-up approach
  - 1. construct(n +1)/2elementary heaps storing one entry each
  - 2. merge pairwise into (! + 1)/4 larger heaps

## Bottom-up Heap Construction

 We can construct a heap storing n given keys using a bottom-up construction with log n phases

• In phase i, pairs of heaps with  $2^{i}-1$  keys are merged into heaps with  $2^{i+1}-1$  keys



## Example

Lets insert 15 numbers: 4, 16, 25, 7, 15, 10, 12, 8, 11, 9, 6, 27, 23, 20, 5

What will the height of the tree be?

Whats the first step:

Bottom up:

# Example



# Example (contd.)



# Example (contd.)



# Example (end)



### Runtime Analysis

$$n/4 + n/8 + n/16 + ... + 1 = O(n)$$
 merges

Each merge is O(log n) (because we need to fix heap order when merging)

### Runtime Analysis

- Complexity of merge depends on the height of the tree - generally O(log(n))
- height only reaches full O(log(n)) on the last merge. All other heaps are shorter
- In fact, half of the heaps have height 0
- Tighter analysis (with a fair bit more math) shows O(n)