Day 7/8 Guided Notes

Name: Date:

objective: SWBAT <u>add</u>, subtract, <u>multiply</u>, and divide numbers and fractions in linear equations.

NEGATIVE NUMBERS

Addition and Subtraction

When adding and subtracting negative numbers, it may help to have a number line.

ADDING Negative Numbers

Negative + Negative = <u>Negative</u>

EX:
$$(-5) + (-3) = \frac{-8}{}$$

• When adding two negatives, the value becomes **more negative**

- Positive + negative OR Negative + positive
 - When performing addition in this case, we need to <u>subtract</u>

 the <u>Smaller</u> number from the <u>larger</u> number and then we use the sign of the <u>larger</u> for our solution.

SUBTRACTING negative numbers

When we have a **positive** and **negative** sign next to each other, the Negative sign takes over:

Ex:
$$(-3) + (-1) = \frac{-3 - 1}{} = -4$$

• Negative - Positive = <u>negative</u>

EX:
$$(-5)$$
 - $(3) = \frac{-5 - 3}{} = \frac{-8}{}$

When we have two **negative** signs next to each other, then the two negative signs will change to a <u>positive</u> sign:

Examples:

Positive — Negative = Positive

EX:
$$5 - (-3) = \frac{5+3}{} = \frac{6}{}$$

Negative - Negative = <u>negative + positive</u>

EX:
$$(-5)_{\frac{1}{2}}(-3) = -\frac{5+3}{3} = -\frac{2}{3}$$

MULTIPLYING and DIVIDING Negative Numbers

- When you <u>Multiply</u> or <u>divide</u> two numbers with the same sign (both positive or both negative), the result is <u>positive</u>.
 - a. If both signs are <u>Same</u>, answer is positive

1.
$$-5 \times (-6) = 30$$

2.
$$-42 \div (-7) =$$

b. If there is one positive and one negative, then the answer is $\underline{\text{Negative}}$.

1.
$$7 \times (-2) = -14$$

2.
$$-35 \div (5) = -7$$

PRACTICE PROBLEMS:

1. Complete the table.

+	-2	-1	2	5	10
-6	-6+-2=-8	-6+(-1) = -7	-6+2=-4	-6 + 5 = -1	76+10 = 4
-10	-10 + -2 = -12	-10-1 = -11	-10+2=-8	-10+5=-5	-10+10 =0
2	2+(-2) = 0	2-1=1	2+2 = 4	2+5=7	2+10=12
3	3+ (-2) =	3-1-2	3 + 2 = 5	3+5=8	3+10=13
-4	-4+(-2) = -6	-4-1 = -5	-4+2=-2	-4+5=1	-4+10 = 6

2. Multiplication Arithmagons 1: The numbers in the circles multiply to make the numbers in the squares between them

3. Show your work for the following exercises below

a.
$$6x = -54$$

 $\div 6 \div 6$

b.
$$8k - 7 = -71$$

c.
$$6p = -30$$

d.
$$-4z = -20 + 4$$

e.
$$-2x + 5x = 20 - 4$$
 f. $-5 - (3)4 = -2m$

$$x = \frac{16}{3}$$

$$f. -5 - (3)4 = -2m$$

$$-5-12 = -2m$$

$$-17 = -2m$$

g.
$$8b(2b - 3) = 30$$

$$16b^2 - 24b = 30$$

h.
$$2x + 3(-9) = -5$$

$$2x = 22$$

i.
$$3h + (-3(2h + 5)) = 3$$

$$3h + (-6h - 15) = 3$$

DAY 8: FRACTIONS

ADDING AND SUBTRACTING

Before beginning to perform addition or subtraction with fractions, we need to make sure that each fraction has a $\underline{\mathcal{C}}$ denominator ($\underline{\mathcal{C}}$ number in fraction) \rightarrow "Like Denominator"

Addition/Subtraction with Common Denominator: Add or subtract the
 humerator and keep the denominator the same

Ex 1:
$$\frac{2}{5} - \frac{1}{5} = \frac{3}{5}$$

Ex 1:

$$\frac{5}{6} - \frac{3}{6} = \frac{2}{6}$$

- Addition/Subtraction with Uncommon Denominator:
 - a. Find the <u>least</u> <u>CMMM</u> denominator.
 - b. Rewrite each fraction with the same <u>Cammon</u> <u>denominator</u> by multiplying each fraction's numerator and denominator by the other fraction's <u>denominator</u>

Ex 1:

$$\frac{2}{3} \cdot \frac{2}{5} = \frac{2 \times 5}{3 \times 5} + \frac{2 \times 3}{5 \times 3} = \frac{10}{15} + \frac{6}{15} = \frac{16}{15}$$

Ex 2:

$$\frac{5}{8} - \frac{1}{4} = \frac{5}{8} - \frac{2}{8} = \frac{3}{8}$$

MULTIPLYING AND DIVIDING

• Multiplying fractions:

a. Multiply the hum evalve (top numbers) of each fraction

b. Multiply the devoluted (bottom numbers) of each fraction

c. Simplify the fraction to the <u>fraction</u> terms by finding the greatest

Common denominator (GCD) and dividing both the numerator and denominator by it.

Ex:
$$\frac{2}{5} \times \frac{6}{7} = \frac{12}{35}$$

• Dividing fractions:

a. Find the <u>Yethpyround</u> of the divisor by <u>finging</u> the fraction's numerator and denominator.

b. Multiply by the <u>record</u>.

c. Simplify your solution.

EX:
$$\frac{2}{5} \div \frac{2}{3} = \frac{2}{5} \times \frac{3}{2} = \frac{6}{10} = \frac{3}{5}$$

Emiliano/ 2ak Method

K: keep

C: change

F: FIIP

FRACTIONS TIP: If you encounter a <u>Mixed</u> <u>Number</u> (ie $1\frac{1}{2}$, $3\frac{2}{5}$, etc)

1. Multiply the whole number by the denominator

2. Add the <u>Numerator</u> to the product.

3. Write the <u>SUM</u> on top of the original <u>numerator</u> which becomes the new numerator

$$2^{\frac{1}{4}} = \frac{11}{4}$$

PRACTICE PROBLEMS:

a.
$$\frac{7}{8} + \frac{3}{4} = \frac{13}{8}$$

$$= \frac{7}{8} + \frac{6}{8} = \frac{13}{8}$$

b.
$$\frac{10}{11} \times 1\frac{7}{15}$$

$$\frac{10}{11} \cdot \frac{22}{15}$$

$$= \frac{4}{3}$$

$$\frac{5}{6} \div \frac{1}{2} \\
\frac{5}{6} \times \frac{2}{1} = \frac{10}{6} \\
= \frac{5}{3}$$

a.
$$\frac{7}{8} + \frac{3 \times 2}{4 \times 2}$$
 b. $\frac{10}{11} \times 1\frac{7}{15}$ c. $\frac{5}{6} \div \frac{1}{2}$ d. $\frac{7}{8} - \frac{3}{4}$
$$= \frac{7}{8} + \frac{6}{8} = \boxed{\frac{13}{8}}$$

$$\frac{10}{11} \cdot \frac{22}{15}$$

$$\frac{5}{6} \times \frac{2}{1} = \boxed{0}$$

$$\frac{7}{8} - \frac{6}{8} = \boxed{\frac{1}{8}}$$

e.
$$4\frac{1}{2} \times \frac{2}{3}$$

g.
$$1\frac{1}{4} + \frac{3}{8}$$
= $1\frac{5}{8}$

e.
$$4\frac{1}{2} \times \frac{2}{3}$$
 f. $3\frac{1}{7} \div 2\frac{5}{14}$ g. $1\frac{1}{4} + \frac{3}{8}$ h. $2\frac{1}{6} \times 1\frac{1}{2}$ = $\frac{13}{6} \cdot \frac{3}{2}$ = $\frac{13}{4}$

i.
$$6 \times 1\frac{1}{9}$$

= $6 \cdot \frac{10}{9}$
= $\frac{60}{9} = \frac{20}{3}$

$$6 \times 1\frac{1}{9}$$
 j. $\frac{3}{4} \div \frac{3}{7}$ k
= $6 \cdot \frac{10}{9}$ = $\frac{3}{4} \times \frac{7}{3}$ = $\frac{21}{12} = \frac{7}{4}$

k.
$$\frac{29}{8} + \frac{9}{7}$$
= 215

$$\begin{array}{c}
1. \ \frac{1}{2} \div 6 \\
\frac{1}{2} \cdot \cancel{6} \\
= \boxed{12}
\end{array}$$

m.
$$\frac{16}{27} - \frac{5}{24}$$

$$= 83$$

$$216$$

n.
$$3 \div 1\frac{2}{5}$$
 o. $3\frac{3}{8} \times 2\frac{2}{9}$

$$= \boxed{15}$$

$$= 7\frac{1}{2}$$

p.
$$\frac{2}{3} + \frac{1}{21} - \frac{2}{7}$$