4.

Resolution

Goal

Deductive reasoning in language as close as possible to full FOL

$$\neg$$
, \wedge , \vee , \exists , \forall

Knowledge Level:

given KB, α , determine if KB |= α .

or given an open $\alpha[x_1,x_2,...x_n]$, find $t_1,t_2,...t_n$ such that KB $\models \alpha[t_1,t_2,...t_n]$

When KB is finite $\{\alpha_1, \alpha_2, ..., \alpha_k\}$

$$\begin{aligned} \mathsf{KB} &\models \alpha \\ & \text{iff } \mid = [(\alpha_1 \land \alpha_2 \land ... \land \alpha_k) \supset \alpha] \\ & \text{iff } \mathsf{KB} \cup \{\neg \alpha\} \text{ is unsatisfiable} \\ & \text{iff } \mathsf{KB} \cup \{\neg \alpha\} \mid = \mathsf{FALSE} \\ & \text{where FALSE is something like } \exists x.(x \neq x) \end{aligned}$$

So want a procedure to test for validity, or satisfiability, or for entailing FALSE.

Will now consider such a procedure (first without quantifiers)

Clausal representation

Formula = set of clauses

Clause = set of literals

Literal = atomic sentence or its negation

positive literal and negative literal

Notation:

If ho is a literal, then $ar{
ho}$ is its complement

$$\overline{p} \Rightarrow \neg p \qquad \overline{\neg p} \Rightarrow p$$

To distinguish clauses from formulas:

[and] for clauses:
$$[p, \overline{r}, s]$$
 { and } for formulas: { $[p, \overline{r}, s], [p, r, s], [\overline{p}]$ }
[] is the empty clause {} is the empty formula So {} is different from {[]}!

Interpretation:

Formula understood as <u>conjunction</u> of clauses Clause understood as <u>disjunction</u> of literals Literals understood normally

$$\{[p, \neg q], [r], [s]\}$$
 []
represents represents
 $((p \lor \neg q) \land r \land s)$ FALSE

CNF and **DNF**

Every propositional wff α can be converted into a formula α' in Conjunctive Normal Form (CNF) in such a way that $|= \alpha = \alpha'$.

- 1. eliminate \supset and \equiv using $(\alpha \supset \beta) \implies (\neg \alpha \lor \beta)$ etc.
- 2. push \neg inward using $\neg(\alpha \land \beta) \implies (\neg\alpha \lor \neg\beta)$ etc.
- 3. distribute \vee over \wedge using $((\alpha \wedge \beta) \vee \gamma) \implies ((\alpha \vee \gamma) \wedge (\beta \vee \gamma))$
- 4. collect terms using $(\alpha \vee \alpha) \Rightarrow \alpha$ etc.

Result is a conjunction of disjunction of literals.

an analogous procedure produces DNF, a disjunction of conjunction of literals

We can identify CNF wffs with clausal formulas

$$(p \vee \neg q \vee r) \wedge (s \vee \neg r) \implies \{ [p, \neg q, r], [s, \neg r] \}$$

So: given a finite KB, to find out if KB $\models \alpha$, it will be sufficient to

- 1. put (KB $\wedge \neg \alpha$) into CNF, as above
- 2. determine the satisfiability of the clauses

Resolution rule of inference

Given two clauses, infer a new clause:

From clause
$$\{p\} \cup C_1$$
, and $\{\neg p\} \cup C_2$, infer clause $C_1 \cup C_2$.

 $C_1 \cup C_2$ is called a <u>resolvent</u> of input clauses with respect to p.

Example:

clauses [w, r, q] and $[w, s, \neg r]$ have [w, q, s] as resolvent wrt r.

Special Case:

[p] and $[\neg p]$ resolve to [] (the C_1 and C_2 are empty)

A <u>derivation</u> of a clause c from a set S of clauses is a sequence $c_1, c_2, ..., c_n$ of clauses, where $c_n = c$, and for each c_i , either

- 1. $c_i \in S$, or
- 2. c_i is a resolvent of two earlier clauses in the derivation

Write: $S \rightarrow c$ if there is a derivation

Rationale

Resolution is a symbol-level rule of inference, but has a connection to knowledge-level logical interpretations

Claim: Resolvent is entailed by input clauses.

Suppose
$$\mathcal{S} \models (p \lor \alpha)$$
 and $\mathcal{S} \models (\neg p \lor \beta)$
Case 1: $\mathcal{S} \models p$
then $\mathcal{S} \models \beta$, so $\mathcal{S} \models (\alpha \lor \beta)$.
Case 2: $\mathcal{S} \not\models p$
then $\mathcal{S} \models \alpha$, so $\mathcal{S} \models (\alpha \lor \beta)$.
Either way, $\mathcal{S} \models (\alpha \lor \beta)$.
So: $\{(p \lor \alpha), (\neg p \lor \beta)\} \models (\alpha \lor \beta)$.

Special case:

```
[p] and [\neg p] resolve to [\ ], so \{[p], [\neg p]\} |= FALSE that is: \{[p], [\neg p]\} is unsatisfiable
```

Derivations and entailment

Can extend the previous argument to derivations:

If
$$S \rightarrow c$$
 then $S \models c$

Proof: by induction on the length of the derivation. Show (by looking at the two cases) that $S \models c_i$.

But the converse does not hold in general

Can have $S \models c$ without having $S \rightarrow c$.

Example: $\{ [\neg p] \} \models [\neg p, \neg q]$ i.e. $\neg p \models (\neg p \vee \neg q)$ but no derivation

However.... Resolution is refutation complete!

Theorem: $S \rightarrow []$ iff $S \models []$

Result will carry over to quantified clauses (later)

sound and complete when restricted to []

So for any set S of clauses: S is unsatisfiable iff $S \rightarrow []$.

Provides method for determining satisfiability: search all derivations for []. So provides a method for determining all entailments

A procedure for entailment

To determine if KB $\mid = \alpha$,

• put KB, $\neg \alpha$ into CNF to get S, as before

If KB = $\{\}$, then we are testing the validity of α

• check if $S \rightarrow []$.

Non-deterministic procedure

- 1. Check if [] is in *S*.

 If yes, then return **UNSATISFIABLE**
- Check if there are two clauses in S such that they resolve to produce a clause that is not already in S.
 If no, then return SATISFIABLE
- 3. Add the new clause to S and go to 1.

Note: need only convert KB to CNF once

- can handle multiple queries with same KB
- after addition of new fact α , can simply add new clauses α' to KB

So: good idea to keep KB in CNF

Example 1

KB

FirstGrade

FirstGrade ⊃ Child

Child \wedge Male \supset Boy

Kindergarten ⊃ Child

Child ∧ Female ⊃ Girl

Female

Show that KB |= Girl

Example 2

KB

(Rain \vee Sun) (Sun \supset Mail) ((Rain \vee Sleet) \supset Mail)

Show KB |= Mail

[¬Sleet, Mail]

[Rain , Sun] [¬Sun, Mail] [¬Rain, Mail] [¬Mail]

[¬Rain]

[¬Rain]

Note: every clause not in S has 2 parents

Similarly KB |≠ Rain

Can enumerate all resolvents given ¬Rain, and [] will not be generated

Quantifiers

Clausal form as before, but atom is $P(t_1, t_2, ..., t_n)$, where t_i may contain variables

Interpretation as before, but variables are understood universally

Example: {
$$[P(x), \neg R(a, f(b, x))], [Q(x, y)]$$
 } interpreted as $\forall x \forall y \{ [R(a, f(b, x)) \supset P(x)] \land Q(x, y) \}$

Substitutions: $\theta = \{v_1/t_1, v_2/t_2, ..., v_n/t_n\}$

Notation: If ρ is a literal and θ is a substitution, then $\rho\theta$ is the result of the substitution (and similarly, $c\theta$ where c is a clause)

Example:
$$\theta = \{x/a, y/g(x,b,z)\}$$

 $P(x,z,f(x,y)) \theta = P(a,z,f(a,g(x,b,z)))$

A literal is ground if it contains no variables.

A literal ρ is an <u>instance</u> of ρ' , if for some θ , $\rho = \rho'\theta$.

Generalizing CNF

Resolution will generalize to handling variables

Ignore = for now

But to convert wffs to CNF, we need three additional steps:

- 1. eliminate \supset and \equiv
- 2. push \neg inward using also $\neg \forall x.\alpha \Rightarrow \exists x. \neg \alpha$ etc.
- 3. standardize variables: each quantifier gets its own variable

e.g.
$$\exists x [P(x)] \land Q(x) \implies \exists z [P(z)] \land Q(x)$$
 where z is a new variable

- 4. eliminate all existentials (discussed later)
- 5. move universals to the front using $(\forall x\alpha) \land \beta \implies \forall x(\alpha \land \beta)$ where β does not use x
- 6. distribute ∨ over ∧
- 7. collect terms

Get universally quantified conjunction of disjunction of literals then drop all the quantifiers...

First-order resolution

Main idea: a literal (with variables) stands for all its instances; so allow all such inferences

So given
$$[P(x,a), \neg Q(x)]$$
 and $[\neg P(b,y), \neg R(b,f(y))],$
want to infer $[\neg Q(b), \neg R(b,f(a))]$ among others
since $[P(x,a), \neg Q(x)]$ has $[P(b,a), \neg Q(b)]$ and $[\neg P(b,y), \neg R(b,f(y))]$ has $[\neg P(b,a), \neg R(b,f(a))]$

Resolution:

Given clauses: $\{\rho_1\} \cup C_1$ and $\{\overline{\rho}_2\} \cup C_2$.

Rename variables, so that distinct in two clauses.

For any θ such that $\rho_1\theta = \rho_2\theta$, can infer $(C_1 \cup C_2)\theta$.

We say that ρ_1 unifies with ρ_2 and that θ is a unifier of the two literals

Resolution derivation: as before

Theorem: $S \rightarrow []$ iff $S \models []$ iff S is unsatisfiable

Note: There are pathological examples where a slightly more general definition of Resolution is required. We ignore them for now...

Example 3

The 3 block example

$$KB = \{On(a,b), On(b,c), Green(a), \neg Green(c)\}$$
 already in CNF
$$Query = \exists x \exists y [On(x,y) \land Green(x) \land \neg Green(y)]$$
 Note: $\neg Q$ has no existentials, so yields
$$[\neg On(x,y), \neg Green(x), Green(y)]$$

$$[\neg Green(b), Green(c)]$$

$$[\neg Green(a), Green(b)]$$

$$[\neg Green(b)]$$

Arithmetic

KB: Plus(zero, x, x)

 $Plus(x,y,z) \supset Plus(succ(x),y,succ(z))$

Q: $\exists u \text{ Plus}(2,3,u)$

Skolemization

So far, converting wff to CNF ignored existentials

e.g.
$$\exists x \forall y \exists z P(x,y,z)$$

Idea: names for individuals claimed to exist, called <u>Skolem</u> constant and function symbols

there exists an x, call it a

for each y, there is a z, call it f(y)

get
$$\forall y P(a, y, f(y))$$

So replace
$$\forall x_1 (... \forall x_2 (... \forall x_n (... \exists y [... \ y \ ...] \ ...) ...) ...)$$

by $\forall x_1 (... \forall x_2 (... \forall x_n (\ ... \ [... f(x_1, x_2, ..., x_n) \ ...] \ ...) ...)$

f is a new function symbol that appears nowhere else

Skolemization does <u>not</u> preserve equivalence

e.g.
$$\neq \exists x P(x) \equiv P(a)$$

But it does preserve satisfiability

 α is satisfiable iff α' is satisfiable (where α' is the result of Skolemization) sufficient for resolution!

Variable dependence

Show that
$$\exists x \forall y R(x,y) \models \forall y \exists x R(x,y)$$

show $\{\exists x \forall y R(x,y), \neg \forall y \exists x R(x,y)\}$ unsatisfiable
$$\exists x \forall y R(x,y) \implies \forall y R(a,y)$$

$$\neg \forall y \exists x R(x,y) \implies \exists y \forall x \neg R(x,y) \implies \forall x \neg R(x,b)$$
then $\{ [R(a,y)], [\neg R(x,b)] \} \rightarrow []$ with $\{x/a, y/b\}$.

Show that $\forall y \exists x R(x,y) \models \exists x \forall y R(x,y)$
show $\{\forall y \exists x R(x,y), \neg \exists x \forall y R(x,y)\}$ satisfiable
$$\forall y \exists x R(x,y) \implies \forall y R(f(y),y)$$

$$\neg \exists x \forall y R(x,y) \implies \forall x \exists y \neg R(x,y) \implies \forall x \neg R(x,g(x))$$
then get $\{ [R(f(y),y)], [\neg R(x,g(x))] \}$
where the two literals do not unify

Note: important to get dependence of variables correct

R(f(y),y) vs. R(a,y) in the above

A problem

[LessThan(x,y), \neg LessThan(succ(x),y)]

KB:

LessThan(succ(x),y) \supset LessThan(x,y)

Query:

LessThan(zero,zero)

Should fail since KB |≠ Q

Infinite branch of resolvents

cannot use a simple depth-first procedure to search for []

Undecidability

Is there a way to detect when this happens?

No! FOL is very powerful

can be used as a full programming language

just as there is no way to detect in general when a program is looping

There can be no procedure that does this:

Proc[Clauses] =

If Clauses are unsatisfiable then return YES else return NO

However: Resolution is complete

some branch will contain [], for unsatisfiable clauses

So breadth-first search guaranteed to find []

search may not terminate on satisfiable clauses

Overly specific unifiers

In general, no way to guarantee efficiency, or even termination later: put control into users' hands

One thing that can be done:

reduce redundancy in search, by keeping search as general as possible

Example

...,
$$P(g(x),f(x),z)$$
] [$\neg P(y,f(w),a)$, ...
unified by
$$\theta_1 = \{x/b,\,y/g(b),\,z/a,\,w/b\} \text{ gives } P(g(b),f(b),a)$$
 and by
$$\theta_2 = \{x/f(z),\,y/g(f(z)),\,z/a,\,w/f(z)\} \text{ gives } P(g(f(z)),f(f(z)),a).$$

Might not be able to derive the empty clause from clauses having overly specific substitutions

wastes time in search!

Most general unifiers

 θ is a most general unifier (MGU) of literals ρ_1 and ρ_2 iff

- 1. θ unifies ρ_1 and ρ_2
- 2. for any other unifier θ' , there is a another substitution θ^* such that $\theta' = \theta\theta^*$

Note: composition $\theta\theta^*$ requires applying θ^* to terms in θ

for previous example, an MGU is

$$\theta = \{x/w, y/g(w), z/a\}$$

for which

$$\theta_1 = \theta \{ w/b \}$$

$$\theta_2 = \theta\{w/f(z)\}$$

Theorem: Can limit search to most general unifiers only without loss of completeness (with certain caveats)

Computing MGUs

Computing an MGU, given a set of literals $\{\rho_i\}$

usually only have two literals

- 1. Start with $\theta := \{\}$.
- 2. If all the $\rho_i\theta$ are identical, then done; otherwise, get disagreement set, *DS*

e.g
$$P(a,f(a,g(z),...) P(a,f(a,u,...)$$

disagreement set, $DS = \{u, g(z)\}$

- 3. Find a variable $v \in DS$, and a term $t \in DS$ not containing v. If not, fail.
- 4. $\theta := \theta \{ v/t \}$
- 5. Go to 2

Note: there is a better *linear* algorithm

Resolution is difficult!

First-order resolution is not guaranteed to terminate.

What can be said about the propositional case?

Shown by Haken in 1985 that there are unsatisfiable clauses $\{c_1, c_2, ..., c_n\}$ such that the *shortest* derivation of [] contains on the order of 2^n clauses

Even if we could always find a derivation immediately, the most clever search procedure will still require *exponential* time on some problems

Problem just with resolution?

Probably not.

Determining if a set of clauses is satisfiable was shown by Cook in 1972 to be NP-complete

No easier than an extremely large variety of computational tasks

Roughly: any search task where what is searched for can be verified in polynomial time can be recast as a satisfiability problem

- » satisfiability
- » does graph of cities allow for a full tour of size $\leq k$ miles?
- » can N queens be put on an N×N chessboard all safely? and many, many more....

Satisfiability is believed by most people to be unsolvable in polynomial time