

Aprendizaje Automático

Grado en Ingeniería Informática Computación y Sistemas Inteligentes

Profesores de la asignatura

Teoría :

Nicolás Pérez de la Blanca Capilla

- D.5 , Dpto. CCIA, 4º planta, ETSIIT
- Correo: (<u>nicolas@decsai.ugr.es</u>),
- Tutorías: Lunes (9.30h-13.30h),
 Martes (11.30-13.30)

Francisco J. Baldán Lozano (Grupo 3)

- Despacho 31 (4º planta)
- Correo: fjbaldan@decsai.ugr.es
- Tutorías: Lunes (12:00-13:00)

Ofelia Retamero Pascual (Grupos 1 y 2)

- D31 (4ª planta). (concertar cita por correo)
- Correo: : <u>oretamero@decsai.ugr.es</u>
- Tutorías: Jueves (11.00-12.00)

Bases y Funcionamiento

Información de la asignatura

- Web de la Plataforma PRADO UGR
 - Acceder a través de http://prado.ugr.es.
 - Toda la información y documentos relativos a la asignatura estarán disponible en dicha web.
 - Todos los alumnos deben verificar que el correo electrónico y la foto están disponibles en la web de la asignatura

Objetivos y Competencias

Competencias: Capacidad para conocer y desarrollar técnicas de aprendizaje computacional y diseñar e implementar aplicaciones y sistemas que las utilicen, incluyendo las dedicadas a extracción automática de información y conocimiento a partir de grandes volúmenes de datos.

Objetivos generales:

- Comprender el aprendizaje como mecanismo para obtener conocimiento, y mostrar las distintas formas en las que se puede realizar el aprendizaje.
- Distinguir entre aprendizaje supervisado, no supervisado y por refuerzo, así como determinar cuál de ellos es apropiado para resolver un determinado problema.
- Descripción y análisis de los distintos modelos de aprendizaje de conjuntos de hipótesis.
 Estudio de distintos métodos de aprendizaje
- Conocer diferentes modelos de aprendizaje supervisado y su aplicación en diferentes problemas. Conocer técnicas de validación y verificación de modelos, experimentar con dichas técnicas en diferentes problemas reales.
- Utilizar herramientas de aprendizaje en aplicaciones reales

Metas a alcanzar

- Al final del curso se debería conocer:
 - El conjunto de problemas, en el que las técnicas de A.A.
 son una aproximación adecuada.
 - Como identificar los modelos aplicables a un problema dado
 - Como aplicar los modelos estudiados
 - Las garantías que permiten aprender desde datos.

 Haber suscitado interés por aplicaciones en casos reales (Realizar TFG en aplicaciones)

Sistema de Evaluación Continua

- Teoría (ET): 1 examen escrito 55 puntos
 - Preguntas cortas
 - BONUS: al menos 10 puntos adicionales en trabajos adicionales. Plazo de entrega corto.
 - Relación de ejercicios de apoyo sobre los contenidos de la teoría.
- Prácticas (3 TP): 45 puntos
 - Individuales
 - PRÁCTICAS: implementación y experimentación con algoritmos
 - Plazo de entrega pre-fijado.
 - BONUS: puntos adicionales (> 5) (solo si se han obtenido 75% de los puntos obligatorios)
- Calificación final = (TP+ET+BONUS)/10
- Matrícula de Honor:
 - Haber obtenido al menos 100 puntos o más en la calificación final
- EVALUACIÓN EXTRAORDINARIA: examen escrito sobre los contenidos de la teoría e implementación de algoritmos de la asignatura
- EVALUACIÓN ÚNICA: se podrá elegir hacer un único examen final escrito de teoría y prácticas. Solicitar en la Sede Electrónica de la página web de la UGR.

¿Qué necesitamos recordar?

- Notación y manipulación de matrices
- Conceptos básicos de probabilidad
- Cálculo de derivadas
- Cálculo de máximos y mínimos de una función
- Para repasar todos estos conceptos hay disponibles en la web documentos de ayuda y repaso.
- Si necesita ayuda con alguno de ellos acuda a tutorías

Documentos de consulta y apoyo

- El curso se intenta que sea lo más auto contenido posible.
- Transparencias de clase y otros documentos de apoyo están en la web de la asignatura (Inglés)
- Monografías de consulta:
 - Y.S. Abu-Mustafa, M. Magdom-Ismail, H. Lin, Learning from Data, AMLbook.com, 2012 (biblioteca)
 - V.Cherkassky, F.Mulier, Learning from Data: concepts, theory and methods, Wiley-Interscience, 2007 (en pdf)
- Otros libros complementarios:
 - G. James, D. Witten, T. Hastie and R. Tibshirani: An Introduction to Statistical Learning with Applications in R. Springer (http://www-bcf.usc.edu/~gareth/ISL/index.html)
 - Hastie, Tibshirani, Friedman, The Elements of Statistical Learning, (en pdf)

Prácticas de laboratorio

- Prácticas: lenguajes Python
 - Lenguaje relevante para análisis de datos: Scikit-learn
 - Instalar Anaconda 3.7 y la librería scikit_learn
 - Descargar e instalar en el ordenador portátil (Windows, Linux, MacOS)
 - Para su uso en las aulas, instalar en un disco/pendrive externo
 - En clase de prácticas se darán los detalles
- Tres grupos de prácticas: lunes, martes y jueves (17.30-19.30):
 - Apuntarse en la web de PRADO
 - Las prácticas se corrigen por el profesor del grupo en el que se este
 - En caso de sobrecarga de un grupo, se asignarán los alumnos de la forma más razonable posible por parte de los profesores.
 - Ocasionalmente es posible asistir a otro grupo si hay espacio

Código de Honor

Trabajos de Teoría y Prácticas :

- Se fomenta la colaboración entre alumnos a nivel de comprensión de conceptos e ideas
- El desarrollo y escritura de los trabajos ES estrictamente individual
- Si se usa información de alguna fuente debe explicitarse claramente en el TRABAJO de donde/ de quien se ha obtenido. En caso contrario se entenderá como COPIA.

Detección positiva de copia

Se aplicará el Reglamento de exámenes de la UGR

A.A.: Programa de la Asignatura

Sesión	Semana	CLASES DE TEORÍA	PRÁCTICAS-SEMINARIOS	ENTREGA DE TRABAJOS	
1	17 febrero	Presentación de la Asignatura (1h) Definición de Aprendizaje Automático (1h)	Software de prácticas.		
2	24 febrero	Modelo lineal: Regresión y Clasificación	Software de prácticas.		
3	2 marzo	Modelo lineal: Estimación de la probabilidad Transformaciones no lineales	PRÁCTICA-1 Conceptos y algoritmos básicos	Ejercicios Python	
4	9 marzo	Compromiso Sesgo-varianza Justificación del Aprendizaje Estadístico	PRÁCTICA-1 Conceptos y algoritmos básicos		
5	16 marzo	Teoría de la generalización La dimensión VC	PRÁCTICA-1 Conceptos y algoritmos básicos		
6	22 marzo	Sobreajuste Regularización	PRÁCTICA-2: Modelo lineales		
7	29 marzo	Validación Principios Generales	PRÁCTICA-2 Modelo lineales	25 marzo: Entrega T1	
	5 Abril	VACACIONES			
8	13 abril	SVM	PRÁCTICA-2 Modelo lineales		
9	20 abril	SVM+Núcleos	PRÁCTICA-2 Modelo lineales		
	27 abril	Árboles "Random Forest"	PRÁCTICA-2 Modelo lineales	26 Abril: Entrega T2	
10	4 mayo	"Boosting" Redes Neuronales	PRÁCTICA-3 Boosting, RN, FBR		
11	11 mayo	Redes Neuronales	PRÁCTICA-3 Boosting, RN, FBR		
12	18 mayo	KNN - Funciones de base radial K-Medias & Mixturas Gaussianas	PRÁCTICA-3 Boosting, RN, FBR		
13	25 mayo	Extracción automática de características	PRÁCTICA-3 Boosting, RN, FBR	31 Mayo: Entrega T3	
	9 Junio	EXAMEN TEORIA			