第6章 样本及抽样分布

Chpt. 6 Sampling and Distribution

Introduction

概率论:

- □假设(已知)随机变量服从某一分布,研究它的性质、特点与规律,如数字特征、分布函数的特性;
- □人类客观对实践的总结形成了概率论;

但是我们可以问:

- □概率所描述的知识是如何获取的? 比如,假如X服从正态分布,如何获取其参数?
- □实际中,如何判断一个随机变量是否服从某一分布。 比如,如何判断X是否为正态分布?

Introduction

数理统计:

- 随机变量的分布未知或者不完全知道(如:是正态分布,但不知参数),希望通过重复的、独立的观察得到许多数据,以概率论为理论基础,通过对这些数据的分析,估计分布的参数,乃至推断出随机变量的分布。
- □ 统计要进行抽样、需要推断,这些工作形成了一定的理论:统计推断理论.

Introduction

Diagram showing the difference between statistics and probability. (Image by MIT OpenCourseWare. Based on Gilbert, Norma. Statistics. W.B. Saunders Co., 1976.)

统计推断的理论基础:

□概率论 描述了一些随机现象,以及研究随机现象的手段。

□大数定理

1频率稳定性:事件A发生的频率以概率收敛到概率p

$$\frac{n_A}{n} \xrightarrow{p} p \ (n \to \infty)$$

2 算术均值稳定性: $\frac{1}{n}(X_1 + X_2 + \dots + X_n) \xrightarrow{p} \mu \ (n \to \infty)$

□中心极限定理

大量相互独立的随机因素的综合影响,尽管这诸多的 因素之分布是未知的,但是他们的和服从正态分布。

数理统计

以数学和概率论为工具,研究:

- (1) 如何有效收集有随机性的数据? (抽样+试验设计)
- (2) 如何分析数据? (e.g. 数据整理, 判断是否有效)
- (3) 在给定的统计模型下进行统计推断
 - 估计(点估计、区间估计)
 - 检验(参数检验、非参数检验)

统计推断

例:某工厂生产大批电子元件,认为元件的寿命服从参数为 θ 的指数分布。在实际应用中,我们可以提出许多感兴趣的问题,例如:

- 1. 元件的平均寿命如何?
- 如果你是采购单位,要求平均寿命能达到某个指定数值 l, 例如5000小时。问这批元件是否可以被接受?
 我们知道,参数θ是指数分布的期望(均值),但在实际应用中,θ是未知的,我们只能从一大批元件中抽取若干个,例如n个,测出其寿命X₁,X₂,…,X_n, 这n个元件如何抽取?
 主要是保证这一批元件中,每一件抽到的机会相同。

统计推断

有了数据以后,一个直观的想法是用均值 $\overline{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$ 来估计未知的 θ 。

显然 \overline{X} 不一定恰好等于 θ ,实际上,我们也不会要求丝毫不差,但可能会关心一些问题:

- 误差可能有多大?
- 产生指定大小的误差的机会(概率)有多大?
- 为了使误差降低到指定的限度,抽取的元件个数n应该 达到多少?

本例中第1个问题想了解元件的平均寿命,就是一个典型的 参数估计的问题

现在来看第2个问题,我们可以按照以下规则来判断元件是否被接收:

如果 $\overline{X}\geq l$,则接收该批元件,否则不接受但应该注意到,用 \overline{X} 估计平均寿命有误差,我们得根据实际情况进行调整,即把接收的准则改为 $\overline{X}\geq l_1$, l_1 是某个选定的数,可以大于、小于、等于l。定的大些,表示我们的要

但无论怎么确定11,从理论上说,我们仍然会犯2种错误:

本来寿命达标,但是被拒收了;

求更严格,反之,表示我们的要求更宽松。

> 本来寿命不达标,但是接收了。

这类问题是要在两个决定中,选择一个,被称为假设检验。

6.1 样本概念

背景:

- 一个研究对象可能有多个指标
 - □ 研究人(年龄、性别、身高等指标)
 - □ 研究经济(人口、投资、企业数目等指标)
 - □ 研究搜索引擎(响应时间、top N的准确性等指标)

在生产生活中,我们需要研究某些感兴趣的指标。

6.1 样本概念--总体、个体

[定义]:

- □ 对某一数量(或几个)指标进行随机实验、观察,将试验的全部可能的观察值称为总体。
- □ 每个可能的观察值称为<u>个体</u>
- □ 总体中所包含的个体的总数称为总体的<u>容量</u>。容量有限 的称为有限总体,容量为无限的称为无限总体。

总体是对研究对象某些指标的所有观察的值:

- 观察全校本科生的身高,得到12000个身高观测值;
- 扔硬币10000次,观察正反面的情况,得到10000个数值。

由此见到这些值有些会相同的,数目也可以是无限种的。

总体与随机变量

我们在研究总体时,不仅要知道研究对象某一指标的**全部取** 值,还要研究**取这些值的可能性**。

如果抛开实际背景,总体就是一堆数,这堆数中有大有小,有的出现的机会多,有的出现机会小,因此用一个概率分布去描述和归纳总体是恰当的。

从这个意义看,总体就是一个分布,而且数量指标就是服从这个分布的随机变量。

• 从总体中抽样==从某分布中抽样

总体与随机变量

[1] 随机变量与基本随机事件相对应,随机变量显然只是一组互异的值,进一步对应每个值(或一个区间)出现的可能性大小

总体是从另一个角度,所有试验结果一一罗列出,所以可能出现 大量相等的值。

Example 6.1: 随机抛一枚硬币,X表示随机变量,正面为0,反面为1

X	0	1	
р	0.5	0.5	

对此试验进行观察10000次,总体为

序号	1	2	3	4	•••	10000
取值	0	1	0	0	•••	1

总体与随机变量

[2] 总体中的每个值是对随机变量X的观察值,这样一个总体对应一个随机变量;

总体的研究 ◆ 随机变量的X的研究

随机变量的分布、数字特征就称为总体的分布、数字特征

[3] 总体是从统计的角度看 随机变量是从概率角度看的

Example 6.2 考察常见的测量问题,一个测量者对一个物理量 μ 进行重复测量,此时一切可能的测量结果为 $(-\infty,\infty)$,因此总体是一个取值位于 $(-\infty,\infty)$ 的随机变量X,关于总体的分布我们可以知道些什么呢?

测量结果X可以看作是物理量 μ 和误差 ϵ 的叠加,即 $X = \mu + \epsilon$

这里 μ 是一个确定但未知的量,我们称之为参数,于是关于总体分布的假设取决于 ϵ 的分布。常见的场合如下:

- (1) <u>假设 $\varepsilon \sim N(0, \sigma^2)$ </u>,于是测量值的总体就是一个正态分布,即 $X \sim N(\mu, \sigma^2)$,这里**总体有两个未知参数**;
- (2) 假设我们不仅知道误差服从正态分布,还知道方差为 σ_0^2 , σ_0 是一个已知的常数,我们**还需要确定位置参数** μ ;
- (3) 如果我们不能认定误差服从正态分布,但可以认为误差的分布是关于0对称的,则总体分布就变为一个分布类型未知但带有某种限制的分布,通常它不能被有限个参数描述,常称为非参数分布。

设有一个物体,其真实重量*a*未知,要通过多次测量的结果去估计它,请问在这个问题中总体是什么?

- A 这个物体
- B 重量a
- 6 所有可能的测量结果
- D 因为a未知,以上都不对

问题: 在实际中总体的分布是未知的, 如何解决?

途径一: 逐个观察总体中的每个个体

不现实、不可行(具有破坏性、无限则不可能)

途径二: 选取有代表性的个体

不知道总体,难以选择有代表性的个体

抽样:对总体进行一次观察并记录其结果 (取值是多种可能),称为一次抽样;对X独立进行n次观察,并将结果按顺序记为 X_1, \dots, X_n

样本: 随机抽取部分个体, 以用于推断总体的特性。

实际中一经完成,得到一组实数值, X_1 , X_2 , …, X_n 称为<mark>样本值</mark>。

从总体中抽取样本必须满足:

- (1) 随机性 为使样本具有充分的代表性,抽样必须是随机的,应使总体中的每一个个体都有同等的机会被抽取到.
- (2) 独立性 各次抽样必须是相互独立的,即每次抽样的结果既不影响其它各次抽样的结果,也不受其它各次抽样结果的影响.

称这种随机的、独立的抽样为简单随机抽样 由此得到的样本称为简单随机样本.

从总体中抽取样本必须满足:

若从总体中进行放回抽样,属于简单随机抽样,得到的样本就是简单随机样本;

若从有限总体中进行不放回抽样,则不是简单随机抽样。

当总体容量N很大而样本容量n较小(n/N≤10%) 时,可近似看作放回抽样,从而可近似看作简单随机抽样,得到的样本也可近似地作为简单随机样本.

样本分布由总体分布和抽样方式决定

6.1 样本概念

从总体中抽取容量为n的样本,就是对代表总体的随机变量X随机地、独立地进行n次观测,每次观测的结果仍可以看作一个随机变量。

n次观测的结果就是n个随机变量: $X_1,...,X_n$,它们相互独立,并与总体X服从相同的分布.

若将样本 $X_1, ..., X_n$ 看作一个n 维随机变量($X_1, ..., X_n$),则

(1) 当总体X是离散随机变量 $_{I}$ 且概率分布为 $_{I}$ $_{I}$

$$p(x_1, \dots, x_n) = p(x_1) p(x_2) \dots p(x_n)$$

(2) 当总体X是连续随机变量,且概率密度为f(x)时, $(X_1,...,X_n)$ 的概率密度 $f(x_1,...,x_n) = f(x_1)f(x_2)...f(x_n)$

6.2 统计量

背景:为了对总体X的某些概率特征(分布、均值、方差)作出推断,需要对所抽取的样本,进行函数的变换进一步得到一定的推断。

如大数定理(辛钦): $X_1,...,X_n$ 独立同分布,且 $E(X_i)=\mu$,则 $\frac{1}{n}\sum_{i=1}^n X_i \xrightarrow{p} \mu$

样本是总体X的代表和反映,容量为n的样本 $X_1, ..., X_n$,可以看作是一个n维随机变量($X_1, ..., X_n$),则 $\frac{1}{n}\sum_{i=1}^n X_i \xrightarrow{p} \mu$ 如果有一组样本值 $x_1, x_2, ..., x_n$,那么我们可以估计

6.2 统计量

来自总体X的样本 $X_1,...,X_n$ 构成n维随机变量 $(X_1,...,X_n)$, 若其函数 $g(X_1,...,X_n)$ 中**不含任何未知量,**则称其为<u>统计量</u>。

统计量是对样本加工,为了刻画总体的某个特征而提出

统计量都是随机变量,由样本 $X_1, ..., X_n$ 的观测值 $x_1, ..., x_n$, 算得的函数值 $g(x_1, ..., x_n)$ 是统计量 $g(X_1, ..., X_n)$ 的观测值。

研究规律得用随机变量

实际计算可以直接用观测值

6.2 统计量

Example 6.3

设在总体 $N(\mu,\sigma^2)$ 中抽取样本 (X_1,X_2,X_3) ,其中 μ 已知, σ^2 未知.指出在

(1)
$$X_1 + X_2 + X_3$$
 (2) $X_2 + 2\mu$ (3) $\max(X_1, X_2, X_3)$

$$(4) \frac{1}{\sigma^2} \sum_{i=1}^{3} X_i^2 \quad (5) |X_3 - X_1|$$

中哪些是统计量,哪些不是统计量,为什么?

只有(4)不是统计量。

常用统计量及其观测值:

(1) 样本均值
$$\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$$
 观测值为 $\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$

(2) 样本方差
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

观测值为
$$s^2 = \frac{1}{n-1} \sum_{k=1}^{n} (x_i - \bar{x})^2$$

(3) 样本标准差
$$S = \sqrt{S^2} = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (X_i - \overline{X})^2}$$

观测值为
$$s = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (x_i - \overline{x})^2}$$

常用统计量及其观测值:

(4) 样本k阶原点矩 $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$

观测值为

$$a_k = \frac{1}{n} \sum_{i=1}^n x_i^k$$

(5) 样本k阶中心矩 $B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k$

$$b_{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{k}$$

我们来比较一下

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \qquad Y_{n}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

假设 $E(X_i) = \mu$ $D(X_i) = \sigma^2$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \qquad E(\overline{X}) = \mu, \ D(\overline{X}) = \frac{1}{n} \sigma^{2}$$

$$S^{2} \xrightarrow{P} \sigma^{2} \qquad Y_{n}^{2} \xrightarrow{P} \sigma^{2}$$

$$S^{2} \approx \sigma^{2} \qquad y_{n}^{2} \approx \sigma^{2}$$

假如我们要用样本估计 σ^2 时,用 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$

而不用 $Y_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ 。因前者均值为 σ^2

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$
$$= \frac{1}{n-1} \sum_{i=1}^{n} (X_{i}^{2} - 2X_{i}\overline{X} + \overline{X}^{2})$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} X_i^2 - 2\overline{X} \frac{1}{n-1} \sum_{i=1}^{n} X_i + \frac{n}{n-1} \overline{X}^2$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} X_i^2 - 2 \frac{n}{n-1} \overline{X}^2 + \frac{n}{n-1} \overline{X}^2$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2} - \frac{n}{n-1} \overline{X}^{2}$$

$$E(X_i^2) = D(X_i) + (EX_i)^2$$

$$E(\overline{X}^2) = D(\overline{X}) + (E\overline{X})^2$$

$$E(X_i^2) = \sigma^2 + \mu^2$$

$$E(\overline{X}^2) = \frac{\sigma^2}{n} + \mu^2$$

$$E(S^{2}) = \frac{1}{n-1} \sum_{i=1}^{n} E(X_{i}^{2}) - \frac{n}{n-1} E(\overline{X}^{2})$$

$$= \frac{n}{n-1} (\sigma^{2} + \mu^{2}) - \frac{n}{n-1} \left(\frac{1}{n} \sigma^{2} + \mu^{2}\right)$$

$$= \sigma^{2}$$

$$Y_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

$$= \frac{n-1}{n} \bullet \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

$$= \frac{n-1}{n} S^2$$

$$E(Y_n^2) = \frac{n-1}{n} ES^2$$
$$= \frac{n-1}{n} \sigma^2$$

经验分布函数

我们通过抽样得到 X_1, X_2, \cdots, X_n ,可以作出与总体分布函数F(x)相应的统计量——**经验分布函数**。具体作法如下:

-用S(x)表示 X_1, X_2, \dots, X_n 中不大于x的随机变量的个数,即

$$F_n(x) = \frac{1}{n}S(x), -\infty < x < \infty$$

Example 6.4 设总体F具有样本值1, 2, 3, 则经验分布函数 $F_3(x)$

的观察值为

$$F_n(x) = \begin{cases} 0, & x < 1 \\ \frac{1}{3}, & 1 \le x < 2 \\ \frac{2}{3}, & 2 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

一般地,若 x_1 , x_2 , …, x_n 是总体F的一个容量为n的样本值,先将 x_1 , x_2 , …, x_n 按从小到大排列 $x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}$,则经验分布函数的观察值为

$$F_n(x) = \begin{cases} 0, & x < x_{(1)} \\ \frac{k}{n}, & x_{(k)} \le x < x_{(k+1)}, k = 1, 2, \dots, n-1 \\ 1, & x \ge x_{(n)} \end{cases}$$

[定理6.1 格里汶科定理] 对于任一实数x,当 $n \to \infty$ 时, $F_n(x)$ 以概率1一致收敛于总体分布函数F(x),即

$$P\left\{\lim_{n\to\infty}\sup_{-\infty< x<\infty}|F_n(x)-F(x)|=0\right\}=1$$

对于任一实数x,当n充分大时,经验分布函数是总体分布函数的一个良好的近似!

6.3 抽样分布

样本是随机变量 (研究规律时)

统计量是样本的函数,从而统计量也是随机变量

统计量的分布称为抽样分布

为什么要研究抽样分布:

- 一般而言,总体分布已知,抽样分布也是知道的,但是确切得 到是困难的;
- 从另外一个角度,我们希望由统计量的分布(特别是在观测值得到后),估计、推断出总体的一些特征。我们希望研究抽样分布,以便作出统计推断。

几类抽样分布

 $X \sim N(\mu, \sigma^2)$ 而言的; 取得 n 个样本

□ 样本均值分布
$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

$$\square$$
 χ^2 分布 $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$ $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$

□ F分布
$$\frac{S_1^2}{\sigma_1^2} / \frac{S_2^2}{\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

一. 样本均值分布

假设总体分布的均值与方差都是已知的,那么我们可以对 来自总体的多个样本的均值做出估计。

假设 X_1, \dots, X_n 是来自总体X的独立样本,样本均值为

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$
 。一般情况下我们知道 $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \rightarrow N(0, 1)$

假设 X_1, \cdots, X_n 是来自正态总体 $X \sim N(\mu, \sigma^2)$ 的独立样本,则样本均值 \overline{X} 服从正态分布 $N(\mu, \frac{\sigma^2}{n})$,标准量服从标准正态分布 $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$

一. 样本均值分布

当总体均值与方差已知 $E(X)=\mu, D(X)=\sigma^2$, $\{X_i\}$ 是来自总体的独立样本,我们知道 $\dfrac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ 近似为标准正态分布 $\dfrac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ \to N(0,1)

由此可以估计 $\dfrac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ 或 \overline{X} 。

如果其中已知 σ 我们就可以估计 μ ,或者反过来 ρ 知道 μ 估计 σ 。

如果X是正态分布,那就可以确切得到 $\frac{X-\mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

二. χ^2 分布

前面我们讨论了样本均值的分布,关于样本方差有什么样的分布?

一般的总体不会得到很直接的结果;

对于正态总体 $X \sim N(\mu, \sigma^2)$,则统计量 $\frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu)^2$ 服从自由度为n的 χ^2 分布. 事实上

$$Y_i = (X_i - \mu) / \sigma \sim N(0,1)$$
 $(i = 1, 2, \dots, n)$

且相互独立,由以下定理知

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 = Y_1^2 + \dots + Y_n^2 \sim \chi^2(n)$$

二. χ^2 分布

[定理6.2] 设随机变量 X_1, \dots, X_n 是来自标准正态总体

 $X \sim N(0,1)$ 的独立样本。 则随机变量 $\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2$

服从自由度为n的 χ^2 分布,记为 $\chi^2(n)$,其概率密度:

$$f_{\chi^{2}}(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}}} x^{\frac{n}{2}-1} e^{-\frac{x}{2}}, & x > 0\\ 2^{\frac{n}{2}} \Gamma(\frac{n}{2}), & x \le 0 \end{cases}$$

Remark 1: χ^2 分布具有可加性,也就是说,

$$\chi_1^2 \sim \chi^2(n_1), \chi_2^2 \sim \chi^2(n_2)$$
 且它们相互独立,

则
$$\chi_1^2 + \chi_2^2 \sim \chi^2 (n_1 + n_2)$$

Remark 2: $\chi^2 \sim \chi^2(n)$

则
$$E(\chi^2) = n$$
 , $D(\chi^2) = 2n$

[分位点] 随机变量X, 对一个正数 α (0< α <1), 满足 $P\{X > x_{\alpha}\} = \alpha$ 的值 X_{α} 称为X分布的 α 分位点.

对不同的自由度n及不同的数 $\alpha(0 < \alpha < 1)$,满足的

$$P\{\chi^2 > \chi_\alpha^2(n)\} = \int_{\chi_\alpha^2(n)}^\infty f(x) dx = \alpha$$

值 $\chi_{\alpha}^{2}(n)$ 称为 χ^{2} 分 布的上 α 分位点。

上面结果的作用:

假设正态分布X~N(μ , σ^2),N个样本 X_1, \dots, X_n ,观测值为 x_1, x_2, \dots, x_n ,知道 $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$ 服从 χ^2 分布

- □ 在µ已知,可估计σ;或反之。
- □ 当均值μ未知时,考虑用 $(n-1)S^2 = \sum_{k=1}^n (X_i \overline{X})^2$ 来代替 $\sum_{k=1}^n (X_i \mu)^2$,一方面得到分布估计,另一方面可以估计 σ 。

[定理6.3] 假设 X_1, \dots, X_n 是来自正态总体 $X \sim N(\mu, \sigma^2)$

的独立样本,则

(1)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

(2) 样本均值 \overline{X} 与样本方差 S^2 独立。 $S^2 = X_2 \dots$

可证: \bar{X} 只与 X_1 有关, S^2 与 X_2 ,…, X_n 有关

对比

$$\frac{(n-1)S}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \bar{X})^2 \sim \chi^2(n-1)$$

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$$

三. T分布

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \rightarrow N(0,1)$$

如果我们不知道 σ 时,尽管 $\dfrac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ 可以估计,但还是无

法由此估计μ

可以想到用样本标准差S来代替 σ ,即得到 $\frac{X-\mu}{S/\sqrt{n}}$

但是一般我们根本不知道此服从何种分布,除非是正态 分布。

三. T分布

[定理6.4] 若总体服从正态分布 $X \sim N(\mu, \sigma^2)$, $\{X_i\}, S$

分别是来自总体的样本与样本标准差, $S^2 = \frac{1}{n-1} \sum_{k=1}^{n} (X_i - \overline{X})^2$

那么随机变量 $t = \frac{\overline{X} - \mu}{S/\sqrt{n}}$ 服从自由度为n-1的t分布,记

为 $t \sim t(n-1)$, 其概率密度为:

$$f_t(t) = \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)\sqrt{(n-1)\pi}} \left(1 + \frac{t^2}{n-1}\right)^{-\frac{n}{2}}, \qquad -\infty < t < +\infty$$

Remark1: 其中伽玛函数 $\Gamma(\alpha) = \int_{0}^{\infty} u^{\alpha-1} e^{-u} du$ $(\alpha > 0)$,

有如下性质:

(1)
$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

(2)
$$\Gamma(n) = (n-1)!$$

$$(3) \quad \Gamma(\frac{1}{2}) = \sqrt{\pi}$$

Remark2: 由定理可以知道总体为正态分布 $X \sim N(\mu, \sigma^2)$

随机变量 $t = \frac{X - \mu}{S/\sqrt{n}}$ 服从自由度为n-1的 t 分布。

$$t = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$
 中如 μ 是非统计量(未知),由对 t 的分析可以

估计出μ, 而且是在σ也未知的情况下

Remark 3: t 分布的分布曲线关于 t = 0 对称;

Remark 4: t 分布的形式如上所言。之所以叫做 t 分布是因为在1900年代,Dublin城的W.S.Gosset用笔名"Student"发表了一篇文章提出了该分布。

Remark 5: 由 t 分布的出处,我们可以知道它是对 $\frac{X-\mu}{\sigma/\sqrt{n}}$ 的一个近似,而后者在n无限大时趋近于标准正态分布。故此,可以推测当自由度n无限增大时, t 分布将趋近于标准正态分布 N(0,1), 或者

$$f_t(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma(n/2)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \rightarrow \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

对不同的自由度n及不同的数 α (0< α <1),满足

$$P\{t > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{\infty} f_{t}(t)dt = \alpha$$

的 $t_{\alpha}(n)$ 值称为t分布的上 α 分位数。

由 $f_t(t)$ 的对称性知:

$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$

[定理6.5] 若随机变量 $X \sim N(0,1)$, $Y \sim \chi^2(n)$, X和Y相互独立,则 $t = \frac{X}{\sqrt{V/n}} \sim t(n)$,概率密度

$$f_{t}(t) = \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})\sqrt{n\pi}} (1 + \frac{t^{2}}{n})^{-\frac{n+1}{2}}, \qquad -\infty < t < +\infty$$

注意到: 此与前面的定义有相似之处。

前面定理说
$$X \sim N(\mu, \sigma^2)$$
,则 $t = \frac{X - \mu}{S/\sqrt{n}} \sim t(n-1)$

四. 二个正态总体的统计量的分布

有时,需要比较来自两个总体的样本的方差, $F = \frac{S_1^2}{S_2^2}$

[定理6.6] 如果 S_1^2 和 S_2^2 是两个 n_1, n_2 独立样本的方差,来自两个具有相同方差(但是未知)的独立正态总体,那么 S_1^2/S_2^2 服从参数为 n_1-1, n_2-1 的F分布,记为 $F \sim F(n_1-1, n_2-1)$

四. 二个正态总体的统计量的分布

[定理6.6] 若随机变量 $U \sim \chi^2(n_1), V \sim \chi^2(n_2), U与V独立, 则$

随机变量 $F = \frac{U/n_1}{V/n_2}$ 服从自由度为 (n_1, n_2) 的 F 分布,记

为 $F \sim F(n_1, n_2)$, 其概率密度为

$$f_{F}(z) = \begin{cases} \frac{\Gamma\left(\frac{n_{1}+n_{2}}{2}\right)}{\Gamma\left(\frac{n_{1}}{2}\right)\Gamma\left(\frac{n_{2}}{2}\right)} n_{1}^{\frac{n_{1}}{2}} n_{2}^{\frac{n_{2}}{2}} \frac{z^{\frac{n_{1}}{2}-1}}{(n_{1}z+n_{2})^{\frac{n_{1}+n_{2}}{2}}} & z>0\\ 0 & z\leq 0 \end{cases}$$

F分布

 $F \sim F(n_1, n_2)$ 中, (n_1, n_2) 就是该分布的参数, 其中分子的自由度 n_1 为第一自由度;分母的自由度 n_2 为第二自由度。

Remark 1: 如果 $X \sim F(m, n)$, 则 $\frac{1}{X} \sim F(n, m)$ 。

F分布

满足
$$\int_{F_{\alpha}(n_1,n_2)}^{\infty} f(x;n_1,n_2) dx = \alpha$$
, $0 < \alpha < 1$

称 $F_{\alpha}(n_1, n_2)$ 为F 分布的上 α 分位点。

Remark 2:

$$F_{\alpha}(n_1, n_2) = \frac{1}{F_{1-\alpha}(n_2, n_1)}.$$

[定理6.7] 设 X_1, X_2, \dots, X_{n_1} 与 Y_1, Y_2, \dots, Y_{n_2} 分别是来自正态总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 的样本,且两个样本独立。

$$\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$$
, $\overline{Y} = \frac{1}{n_2} \sum_{j=1}^{n_2} Y_j$ 分别是两个样本的样本均值

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \overline{X})^2$$
, $S_2^2 = \frac{1}{n_2 - 1} \sum_{j=1}^{n_2} (Y_j - \overline{Y})^2$ 是样本方差

则有:

[1]
$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

[2]
$$\frac{S_1^2}{\sigma_1^2} = \frac{S_1^2}{\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$
$$\frac{S_2^2}{\sigma_2^2} = \frac{S_2^2}{\sigma_1^2} \sim F(n_1 - 1, n_2 - 1)$$

[3] 当σ₁=σ₂=σ时

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

其中
$$S_w = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$
 有意大學

证明:

[1]
$$riangleq X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2), X_1, X_2, \dots, X_{n_1}$$

 Y_1, Y_2, \dots, Y_n 分别是来自两个总体的简单样本

$$X_1, X_2, \cdots, X_{n_1}$$
的线性组合 $\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$ 服从正态分布 $N(\mu_1, \frac{\sigma_1^2}{n_1})$ 同理 $\overline{Y} \sim N(\mu_2, \frac{\sigma_2^2}{n_2})$

又由于 \overline{X} , \overline{Y} 独立,其组合是正态分布,所以

$$\overline{X} - \overline{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$

其标准化随机变量 $\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n}}} \sim N(0,1)$

[2]
$$\chi_1^2 = \frac{(n_1 - 1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1 - 1)$$

 $\chi_2^2 = \frac{(n_2 - 1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2 - 1)$

由于 S_1^2 与 S_2^2 独立,

$$\frac{\chi_1^2}{\binom{n_1-1}{\chi_2^2}} \sim F(n_1-1, n_2-1)$$

$$\frac{\chi_2^2}{(n_2-1)}$$

$$\frac{S_1^2}{S_1^2} = \frac{S_1^2}{\sigma_1^2} \sim F(n_1 - 1, n_2 - 1)$$

$$\frac{S_2^2}{\sigma_2^2} = \frac{S_2^2}{\sigma_1^2} \sim F(n_2 - 1, n_2 - 1)$$

[3] 随机变量
$$U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0,1)$$
,由上知,统计量

$$\chi_1^2 = \frac{(n_1 - 1)S_1^2}{\sigma^2} \sim \chi^2(n_1 - 1)$$

$$\chi_2^2 = \frac{(n_2 - 1)S_2^2}{\sigma^2} \sim \chi^2(n_2 - 1)$$

又由于 S_1^2 与 S_2^2 独立,利用 χ^2 分布的可加性知随机变量

$$V = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{\sigma^2} \sim \chi^2(n_1 + n_2 - 2)$$

随机变量U,V独立,因此

$$\frac{U}{\sqrt{\frac{V}{n_1 + n_2 - 2}}} = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

$$S_w = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

四. 二个正态总体的统计量的分布

特别地, 当两个正态总体方差相同时

[定理6.8] 如果 S_1^2 和 S_2^2 是两个 n_1, n_2 独立样本的方差,来自两个具有相同方差(但是未知)的独立正态总体,那么 S_1^2/S_2^2 服从参数为 n_1-1, n_2-1 的F分布,记为 $F \sim F(n_1-1, n_2-1)$

6.4 例题

- 1. 在总体N(12,4)中随机抽取,得到一容量为5的样本 X_1, X_2, X_3, X_4, X_5 。
 - (1) 求样本均值和总体均值之差的绝对值大于1的概率;
 - (2) 求概率 $P\{\max(X_1, X_2, X_3, X_4, X_5) > 15\};$
 - (3) 求概率 $P\{\min(X_1, X_2, X_3, X_4, X_5) < 10\}$ 。
- 2. 设 X_1, X_2, \dots, X_m 是来自二项分布总体B(n, p)的简单随机样本, \bar{X} 和 S^2 分别是样本均值和样本方差,记统计量 $T = \bar{X} S^2$,求E(T)。
- 3. 设总体X的概率密度函数为 $f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < \infty$,
- X_1, X_2, \cdots, X_m 为总体X的简单随机样本, S^2 是样本方差,求 $E(S^2)$ 。

6.4 例题

4. 设X和Y相互独立且都服从正态分布N(0,9), X_1,X_2,\cdots,X_9 和

 Y_1, Y_2, \cdots, Y_9 是分布来自X和Y的简单随机样本,求统计量 $U = \frac{X_1 + \cdots + X_9}{\sqrt{Y_1^2 + \cdots + Y_9^2}}$ 服从什么分布。

- 5. 设 X_1, X_2, X_3, X_4 是来自N(0, 4)的简单随机样本
- (1) 求C,使得 $Y = C[(X_1 X_2)^2 + (X_3 + X_4)^2]$ 服从卡方分布, 并指出自由度是多少;
 - (2) 证明 $Z = \frac{(X_1 X_2)^2}{(X_3 + X_4)^2}$ 服从 $F(1,1)_{\circ}$

6.4 例题

6. 设总体 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$,从两个总体中分别抽样得: $n_1 =$

8,
$$S_1^2 = 8.75$$
; $n_2 = 10$, $S_2^2 = 2.66$ 。 求 $P(\sigma_1^2 > \sigma_2^2)$ 。

- 7. 设在总体 $N(\mu,\sigma^2)$ 抽取一容量为16的样本,这里 μ,σ^2 均未知,
 - (1) 求 $P(\frac{S^2}{\sigma^2} \le 2.039)$, 其中 S^2 为样本方差;
 - (2) 求 $D(S^2)_{\circ}$

6.5 直方图和箱线图

直方图

- 频数表格(frequency chart)
 - 将数据划分到等间隔区间并计数
- Example. 考试成绩为 90, 85, 78, 55, 64, 94, 68, 83, 84, 71, 74, 75, 99, 52, 98, 84, 73, 96, 81, 58, 97, 75, 80, 78

Interval	50-59	60-69	70-79	80-89	90-99
Frequency of Data	3	2	7	6	6

画直方图

Interval	50-59	60-69	70-79	80-89	90-99
Frequency of Data	3	2	7	6	6

箱线图 (Box-and-Whisker Plots)

- 箱:包含了所有数据最中间的一半
- 线:延伸到样本的最大最小值

12, 13, 5, 8, 9, 20, 16, 14, 14, 6, 9, 12, 12

1. 从小到大排列数据

5, 6, 8, 9, 9, 12, 12, 12, 13, 14, 14, 16, 20

2. 中位数和第1、3四分位点

3. 画图

谢谢!