

Yuxin Chen
Princeton University, Fall 2018

Outline

- Random vectors
- Gaussian random vectors

• Let X_1, X_2, \ldots, X_n be r.v.s defined on the same sample space. We define a random vector (RV) as

$$\boldsymbol{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$

• X is completely specified by its joint CDF for $x = (x_1, x_2, \dots, x_n)$:

$$F_{\boldsymbol{X}}(\boldsymbol{x}) = \mathbb{P}\{X_1 \leq x_1, X_2 \leq x_2, \dots, X_n \leq x_n\}, \quad \boldsymbol{x} \in \mathbb{R}^n$$

• If X is continuous, i.e. $F_X(x)$ is a continuous function of x, then X can be specified by its joint PDF

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = f_{X_1,\dots,X_n}(x_1,\dots,x_n)$$

If X is discrete then it can be specified by its joint PMF

$$p_{\boldsymbol{X}}(\boldsymbol{x}) = p_{X_1, \dots, X_n}(x_1, \dots, x_n)$$

• A marginal CDF (PDF, PMF) is the joint CDF (PDF, PMF) for a subset of $\{X_1, \ldots, X_n\}$; e.g. for

$$\boldsymbol{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

the marginals are

$$f_{X_1}(x_1), \quad f_{X_2}(x_2), \quad f_{X_3}(x_3)$$

 $f_{X_1,X_2}(x_1,x_2), \quad f_{X_1,X_3}(x_1,x_3), \quad f_{X_2,X_3}(x_2,x_3)$

The marginals can be obtained from the joint in the usual way.
 For the previous example,

$$F_{X_1}(x_1) = \lim_{x_2, x_3 \to \infty} F_{\mathbf{X}}(x_1, x_2, x_3)$$
$$f_{X_1, X_2}(x_1, x_2) = \int_{-\infty}^{\infty} f_{X_1, X_2, X_3}(x_1, x_2, x_3) dx_3$$

• Conditional CDF (PDF, PMF) can also be defined in the usual way; e.g. the conditional PDF of $\boldsymbol{X}_{k+1}^n=(X_{k+1},\ldots,X_n)$ given $\boldsymbol{X}_1^k=(X_1,\ldots,X_k)$ is

$$f_{\boldsymbol{X}_{k+1}^{n}|\boldsymbol{X}_{1}^{k}}(\boldsymbol{x}_{k+1}^{n}|\boldsymbol{x}_{1}^{k}) = \frac{f_{\boldsymbol{X}}(x_{1}, x_{2}, \dots, x_{n})}{f_{\boldsymbol{X}_{1}^{k}}(x_{1}, x_{2}, \dots, x_{k})} = \frac{f_{\boldsymbol{X}}(\boldsymbol{x})}{f_{\boldsymbol{X}_{1}^{k}}(\boldsymbol{x}_{1}^{k})}$$

• Chain rule:

$$f_{\mathbf{X}}(\mathbf{x}) = f_{X_1}(x_1) f_{X_2|X_1}(x_2|x_1) \cdots f_{X_n|\mathbf{X}_1^{n-1}}(x_n|\mathbf{x}_1^{n-1})$$

Independence and conditional independence

ullet Independence is defined in the usual way: X_1, \cdots, X_n are independent if

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \prod_{i=1}^{n} f_{X_i}(x_i)$$
 for all x_1, \dots, x_n

- X_1, \dots, X_n are said to be independent, identically distributed (i.i.d.) if they are independent and have the same marginals
 - \circ Example: if we flip a coin n times independently, we generate i.i.d. Bern(p) r.v.s. X_1, \cdots, X_n

Mean and covariance matrix

The mean of the random vector X is defined as

$$\mathbb{E}[\boldsymbol{X}] = \left[\mathbb{E}[X_1], \mathbb{E}[X_2], \cdots, \mathbb{E}[X_n]\right]^{\top}$$

- Denote the covariance between X_i and X_j , $Cov(X_i, X_j)$, by σ_{ij} (so the variance of X_i is denoted by σ_{ii} , $Var(X_i)$, or $\sigma^2_{X_i}$)
- ullet The covariance matrix of X is defined as

$$\mathsf{Cov}(\boldsymbol{X}) = \boldsymbol{\Sigma}_{\boldsymbol{X}} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix}$$

• For n=2, $\Sigma_{\boldsymbol{X}}$ can be expressed via correlation coefficients:

$$\boldsymbol{\Sigma}_{\boldsymbol{X}} = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix} = \begin{bmatrix} \sigma_{X_1}^2 & \rho_{X_1, X_2} \sigma_{X_1} \sigma_{X_2} \\ \rho_{X_1, X_2} \sigma_{X_1} \sigma_{X_2} & \sigma_{X_2}^2 \end{bmatrix}$$

Properties of covariance matrix

- ullet $\Sigma_{oldsymbol{X}}$ is real and symmetric (since $\sigma_{ij}=\sigma_{ji}$)
- ullet Σ_X is positive semidefinite $(\Sigma_X\succeq 0)$, i.e. the quadratic form

$$\boldsymbol{a}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{X}} \boldsymbol{a} \geq 0$$
 for every real vector \boldsymbol{a}

This implies that all eigenvalues of Σ_X are nonnegative, and also all leading principal minors are nonnegative

 \circ The kth leading principal minor of a matrix is the determinant of its upper-left k by k sub-matrix

Properties of covariance matrix

ullet To show that $\Sigma_X\succeq 0$, we write

$$oldsymbol{\Sigma}_{oldsymbol{X}} = \mathbb{E}\left[(oldsymbol{X} - \mathbb{E}[oldsymbol{X}])(oldsymbol{X} - \mathbb{E}[oldsymbol{X}])^{ op}
ight]$$

Thus

$$egin{aligned} oldsymbol{a}^{ op} oldsymbol{\Sigma}_{oldsymbol{X}} oldsymbol{a} &= oldsymbol{a}^{ op} oldsymbol{\mathbb{E}}[oldsymbol{X} - oldsymbol{\mathbb{E}}[oldsymbol{X}])^{ op} oldsymbol{a} \ &= oldsymbol{\mathbb{E}}\left[oldsymbol{a}^{ op}(oldsymbol{X} - oldsymbol{\mathbb{E}}[oldsymbol{X}])(oldsymbol{X} - oldsymbol{\mathbb{E}}[oldsymbol{X}])^{ op} oldsymbol{a} \ &= oldsymbol{\mathbb{E}}\left[(oldsymbol{a}^{ op}(oldsymbol{X} - oldsymbol{\mathbb{E}}[oldsymbol{X}]))^2\right] \ \geq \ 0 \end{aligned}$$

Which of the following can be a covariance matrix?

$$\begin{array}{cccc}
3. & \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix}
\end{array}$$

5.
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$

$$\begin{array}{cccc}
1 & 2 & 1 \\
2 & 1 & 1 \\
1 & 1 & 1
\end{array}$$

$$\begin{array}{ccccc}
 -1 & 1 & 1 \\
 1 & 1 & 1 \\
 1 & 1 & 1
\end{array}$$

$$6. \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

Square root of covariance matrix

Let Σ be a covariance matrix. Then there exists an $n\times n$ positive semidefinite matrix $\Sigma^{1/2}$ such that $\Sigma=\Sigma^{1/2}(\Sigma^{1/2})$. The matrix $\Sigma^{1/2}$ is called the square root of Σ

- Since $\Sigma \succeq 0$, its eigendecomposition can be written as $\Sigma = U \Lambda U^{\top}$, where each column of the *orthonormal* matrix U is an eigenvector of Σ , and Λ is a diagonal matrix whose diagonal elements are the corresponding eigenvalues.
- ullet Then $oldsymbol{M} = oldsymbol{U} oldsymbol{\Lambda}^{1/2} oldsymbol{U}^ op$ is the square root of $oldsymbol{\Sigma}$

Proof: Clearly, $M \succeq 0$. Since U is orthonormal,

$$egin{aligned} oldsymbol{M}oldsymbol{M} &= oldsymbol{U}oldsymbol{\Lambda}^{1/2}oldsymbol{U}^ op oldsymbol{U}oldsymbol{\Lambda}^{1/2}oldsymbol{U}^ op &= oldsymbol{U}oldsymbol{\Lambda}oldsymbol{U}^ op \ &= oldsymbol{U}oldsymbol{\Lambda}oldsymbol{U}^ op \end{aligned}$$

Coloring and whitening

- Let ${m X}$ be white RV, i.e. it has zero mean and ${m \Sigma}_{{m X}} = a {m I}$ for some a>0.
- ullet Let $oldsymbol{\Sigma}$ be a covariance matrix, then the RV $oldsymbol{Y} = oldsymbol{\Sigma}^{1/2} oldsymbol{X}$ has covariance matrix $oldsymbol{\Sigma}$

Proof:

$$egin{aligned} oldsymbol{\Sigma}_{oldsymbol{Y}} &= \mathbb{E}\left[\left(oldsymbol{Y} - \mathbb{E}[oldsymbol{Y}]
ight) \left(oldsymbol{Y} - \mathbb{E}[oldsymbol{Y}]
ight)^{ op}
ight] \ &= \mathbb{E}\left[\left(oldsymbol{\Sigma}^{rac{1}{2}} oldsymbol{X} - \mathbb{E}[oldsymbol{\Sigma}^{rac{1}{2}} oldsymbol{X} - \mathbb{E}[oldsymbol{\Sigma}^{rac{1}{2}} oldsymbol{X}]
ight)^{ op}
ight] oldsymbol{\Sigma}^{rac{1}{2}} \ &= oldsymbol{\Sigma}^{rac{1}{2}} oldsymbol{I} oldsymbol{\Sigma}^{rac{1}{2}} = oldsymbol{\Sigma} \end{aligned}$$

Hence we can generate a RV with any prescribed covariance from a white RV

Coloring and whitening

Whitening: Given a zero mean RV $m{Y}$ with nonsingular covariance matrix $m{\Sigma}$, then the RV $m{X} = m{\Sigma}^{-1/2} m{Y}$ is white

- Hence, we can generate a white RV from any RV with nonsingular covariance matrix
- Coloring and whitening have applications in simulations, detection, and estimation

Gaussian random variables

A Gaussian r.v. $X \sim \mathcal{N}(\mu, \sigma^2)$ has PDF

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Gaussian has many nice properties
 - \circ If Y = aX + b for some constants a and b, then

$$Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$$

 \circ If X_1, \cdots, X_n are independent and $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, then

$$\sum_{i} a_i X_i \sim \mathcal{N}\left(\sum_{i} a_i \mu_i, \sum_{i} a_i^2 \sigma_i^2\right)$$

Central limit theorem (optional)

Let X_1, \dots, X_n be a sequence of i.i.d. r.v.s with mean μ_i and variance σ^2 . Then the normalized sum

$$Z_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n \frac{X_k - \mathbb{E}[X_k]}{\sigma}$$

can be well-approximated by a standard Gaussian variable $\mathcal{N}(0,1)$ when $n\to\infty$

• This is an important reason for the popularity of Gaussians

Gaussian random vectors

• A random vector $\boldsymbol{X} = [X_1, \cdots, X_n]^{\top}$ is a Gaussian random vector (GRV) (or X_1, \cdots, X_n are jointly Gaussian r.v.s) if the joint PDF is of the form

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \underbrace{\frac{1}{(2\pi)^{\frac{n}{2}}\det(\boldsymbol{\Sigma})^{\frac{1}{2}}}}_{\text{normalizing constant}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}\,,$$

where μ is the mean and Σ is the covariance matrix of X, and $\det(\Sigma)>0$, i.e. Σ is positive definite

ullet Notation: $oldsymbol{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$ denotes a GRV with given mean and covariance matrix

Gaussian random vectors

ullet Since Σ is positive definite, Σ^{-1} is positive definite. Thus if $x-\mu
eq 0$,

$$(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) > 0,$$

which means that the contours of equal pdf are ellipsoids

• The GRV $X \sim \mathcal{N}(\mathbf{0}, a\mathbf{I})$, where \mathbf{I} is the identity matrix and a>0, is called white; its contours of equal joint PDF are spheres centered at the origin

Property 1: For a GRV, uncorrelation implies independence

• This can be verified by substituting $\sigma_{ij}=0$ for all $i\neq j$ in the joint PDF.

Then Σ becomes diagonal and so does Σ^{-1} , and the joint PDF reduces to the product of the marginals $X_i \sim \mathcal{N}(\mu_i, \sigma_{ii})$

For the white GRV $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{0}, a\boldsymbol{I})$, the r.v.s are i.i.d. $\mathcal{N}(0, a)$

Property 2: Linear transformation of a GRV yields a GRV, i.e. given any matrix $A \in \mathbb{R}^{m \times n}$ $(m \le n)$ that has full rank m, then

$$oldsymbol{Y} = oldsymbol{A}oldsymbol{X} \sim \mathcal{N}(oldsymbol{A}oldsymbol{\mu}, \, oldsymbol{A}oldsymbol{\Sigma}oldsymbol{A}^{ op})$$

• Example: Let

$$m{X} \sim \mathcal{N}\left(m{0}, egin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}\right)$$

Find the joint PDF of

$$\boldsymbol{Y} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \boldsymbol{X}$$

• Solution: From Property 2, we conclude that

$$m{Y} \sim \mathcal{N}\left(m{0}, egin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} egin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} egin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \right) = \mathcal{N}\left(m{0}, egin{bmatrix} 7 & 3 \\ 3 & 2 \end{bmatrix} \right)$$

Before we prove Property 2, let us show that

$$\mathbb{E}[Y] = A \mu \quad ext{and} \quad \mathbf{\Sigma}_Y = A \mathbf{\Sigma} A^{ op}$$

• **Proof:** These follow from linearity of expectation. First, expectation:

$$\mathbb{E}[Y] = \mathbb{E}[AX] = A \, \mathbb{E}[X] = A \mu$$

Next consider the covariance matrix:

$$egin{aligned} oldsymbol{\Sigma}_{oldsymbol{Y}} &= \mathbb{E}\left[(oldsymbol{Y} - \mathbb{E}(oldsymbol{Y}))(oldsymbol{Y} - \mathbb{E}(oldsymbol{Y}))^{ op}
ight] \ &= \mathbb{E}\left[(oldsymbol{A}oldsymbol{X} - oldsymbol{A}oldsymbol{\mu})(oldsymbol{A}oldsymbol{X} - oldsymbol{\mu})^{ op}
ight] oldsymbol{A}^{ op} &= oldsymbol{A}oldsymbol{\Sigma}oldsymbol{A}^{ op} \end{aligned}$$

Of course these are insufficient to show that Y is a GRV—we must also show that the joint PDF has the right form. We do so using the characteristic function for a random vector

Aside: characteristic function

Definition: If $X \sim f_X$, the characteristic function of X is

$$\Phi_{\boldsymbol{X}}(\boldsymbol{w}) \stackrel{\text{def}}{=} \mathbb{E}\left[e^{i\boldsymbol{w}^{\top}\boldsymbol{X}}\right],$$

where $\boldsymbol{w} \in \mathbb{R}^n$ and $i = \sqrt{-1}$

• It is seen that

$$\Phi_{\boldsymbol{X}}(\boldsymbol{w}) = \int f_{\boldsymbol{X}}(\boldsymbol{x}) e^{i\boldsymbol{w}^{\top}\boldsymbol{x}} \, \mathrm{d}\boldsymbol{x}$$

This is the multi-dimensional inverse Fourier transform of $f_{\boldsymbol{X}}(\boldsymbol{x})$.

Aside: characteristic function

- Uniqueness: the characterstic function $\Phi_{\boldsymbol{X}}(\boldsymbol{w})$ uniquely specifies the joint distribution $f_{\boldsymbol{X}}(\boldsymbol{x})$ of \boldsymbol{X} .
- \bullet The joint PDF can be found by taking the Fourier transform of $\Phi_{\boldsymbol{X}}(\boldsymbol{w}),$ i.e.

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \int \frac{1}{(2\pi)^n} \Phi_{\boldsymbol{X}}(\boldsymbol{w}) e^{-i\boldsymbol{w}^{\top}\boldsymbol{x}} d\boldsymbol{w}$$

Aside: characteristic function

• Example: The characteristic function for $X \sim \mathcal{N}(\mu, \sigma^2)$ is

$$\Phi_X(\omega) = e^{-\frac{1}{2}\omega^2\sigma^2 + i\mu\omega},$$

and for a GRV $oldsymbol{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$,

$$\Phi_{\boldsymbol{X}}(\boldsymbol{w}) = e^{-\frac{1}{2}\boldsymbol{w}^{\top}\boldsymbol{\Sigma}\boldsymbol{w} + i\boldsymbol{w}^{\top}\boldsymbol{\mu}}$$

 Joint CDF of a GRV is completely determined by the mean and the covariance matrix.

Characteristic function for Gaussians (optional)

Proof: Let
$$y=\Sigma^{-\frac{1}{2}}(x-\mu)$$
, then $x=\sum_{\mathsf{Jacobian\ matrix}}^{\frac{1}{2}}y+\mu$.

Thus,

$$\mathrm{d} oldsymbol{x} = \mathrm{det}(oldsymbol{\Sigma}^{rac{1}{2}})\mathrm{d} oldsymbol{y} = \mathrm{det}\left(oldsymbol{\Sigma}
ight)^{rac{1}{2}}\mathrm{d} oldsymbol{y}$$
 (change of variables)

and hence

$$\begin{split} \Phi_{\boldsymbol{X}}(\boldsymbol{w}) &= \frac{1}{(2\pi)^{\frac{n}{2}} \det(\boldsymbol{\Sigma})^{\frac{1}{2}}} \int \exp\left(i\boldsymbol{w}^{\top}\boldsymbol{x}\right) \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right) d\boldsymbol{x} \\ &= \frac{1}{(2\pi)^{\frac{n}{2}}} \int \exp\left(i\boldsymbol{w}^{\top} \left(\boldsymbol{\Sigma}^{\frac{1}{2}} \boldsymbol{y} + \boldsymbol{\mu}\right)\right) \exp\left(-\frac{1}{2} \boldsymbol{y}^{\top} \boldsymbol{y}\right) d\boldsymbol{y} \end{split}$$

Characteristic function for Gaussians (optional)

Further, setting $oldsymbol{u} = oldsymbol{\Sigma}^{rac{1}{2}} oldsymbol{w}$ gives

$$\Phi_{\boldsymbol{X}}(\boldsymbol{w}) = \frac{\exp\left(i\boldsymbol{w}^{\top}\boldsymbol{\mu}\right)}{(2\pi)^{\frac{n}{2}}} \int \exp\left(i\boldsymbol{u}^{\top}\boldsymbol{y}\right) \exp\left(-\frac{1}{2}\boldsymbol{y}^{\top}\boldsymbol{y}\right) d\boldsymbol{y}
= \frac{\exp\left(i\boldsymbol{w}^{\top}\boldsymbol{\mu}\right) \exp\left(-\frac{1}{2}\boldsymbol{u}^{\top}\boldsymbol{u}\right)}{(2\pi)^{\frac{n}{2}}} \int \exp\left(-\frac{1}{2}(\boldsymbol{y} - i\boldsymbol{u})^{\top}(\boldsymbol{y} - i\boldsymbol{u})\right) d\boldsymbol{y}
= \exp\left(i\boldsymbol{w}^{\top}\boldsymbol{\mu}\right) \exp\left(-\frac{1}{2}\boldsymbol{u}^{\top}\boldsymbol{u}\right) \prod_{k=1}^{n} \int \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(y_{k} - iu_{k})^{2}\right) dy_{k}
= \exp\left(i\boldsymbol{w}^{\top}\boldsymbol{\mu}\right) \exp\left(-\frac{1}{2}\boldsymbol{u}^{\top}\boldsymbol{u}\right)
= \exp\left(i\boldsymbol{w}^{\top}\boldsymbol{\mu} - \frac{1}{2}\boldsymbol{w}^{\top}\boldsymbol{\Sigma}\boldsymbol{w}\right)$$

Proof of Property 2: Compute the characteristic function of \boldsymbol{Y} as follows

$$\begin{split} \Phi_{\boldsymbol{Y}}(\boldsymbol{w}) &= \mathbb{E}\left[e^{i\boldsymbol{w}^{\top}\boldsymbol{Y}}\right] \\ &= \mathbb{E}\left[e^{i\boldsymbol{w}^{\top}\boldsymbol{A}\boldsymbol{X}}\right] \\ &= \Phi_{\boldsymbol{X}}(\boldsymbol{A}^{\top}\boldsymbol{w}) \\ &= e^{-\frac{1}{2}(\boldsymbol{A}^{\top}\boldsymbol{w})^{\top}\boldsymbol{\Sigma}(\boldsymbol{A}^{\top}\boldsymbol{w}) + i\boldsymbol{w}^{\top}\boldsymbol{A}\boldsymbol{\mu}} \\ &= e^{-\frac{1}{2}\boldsymbol{w}^{\top}(\boldsymbol{A}\boldsymbol{\Sigma}\boldsymbol{A}^{\top})\boldsymbol{w} + i\boldsymbol{w}^{\top}\boldsymbol{A}\boldsymbol{\mu}} \end{split}$$

The uniqueness property shows that $Y = AX \sim \mathcal{N}(A\mu, A\Sigma A^{ op})$

- An equivalent definition of GRV: X is a GRV iff for any real vector $a \neq 0$, the r.v. $Y = a^{T}X$ is Gaussian
- Whitening transforms a GRV to a white GRV; conversely, coloring transforms a white GRV to a GRV with prescribed covariance matrix

Property 3: Marginals of a GRV are Gaussian, i.e. if X is GRV then for any subset $\{i_1, i_2, \dots, i_k\} \subseteq \{1, 2, \dots, n\}$ of indexes, the RV

$$oldsymbol{Y} = egin{bmatrix} X_{i_1} \ X_{i_2} \ dots \ X_{i_k} \end{bmatrix}$$

is a GRV

 \bullet To show Property 3, we use Property 2. For example, let n=3 and $\boldsymbol{Y}=\begin{bmatrix} X_1\\ X_3 \end{bmatrix}$

We can express Y as a linear transformation of X:

$$\boldsymbol{Y} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} X_1 \\ X_3 \end{bmatrix}$$

Therefore

$$m{Y} \sim \mathcal{N} \left(egin{bmatrix} \mu_1 \\ \mu_3 \end{bmatrix}, egin{bmatrix} \sigma_{11} & \sigma_{13} \\ \sigma_{31} & \sigma_{33} \end{bmatrix}
ight)$$

The converse of Property 3 does not hold in general, i.e. Gaussian marginals do NOT necessarily imply that the r.v.s are jointly Gaussian

• Example: consider the following joint PDF

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{\pi} \exp\left\{-\frac{x^2+y^2}{2}\right\}, & \text{if } xy \ge 0 \\ 0, & \text{else} \end{cases}$$

Clearly, it is not 2-D Gaussian but still has Gaussian marginals.

Property 4: Conditionals of a GRV are Gaussian, more specifically, if

$$m{X} = egin{bmatrix} m{X}_1 \ -- \ m{X}_2 \end{bmatrix} \sim \mathcal{N} \left(egin{bmatrix} m{\mu}_1 \ -- \ m{\mu}_2 \end{bmatrix}, egin{bmatrix} m{\Sigma}_{11} & | & m{\Sigma}_{12} \ -- & | & -- \ m{\Sigma}_{21} & | & m{\Sigma}_{22} \end{bmatrix}
ight) \,,$$

where X_1 is a k-dim RV and X_2 is an (n-k)-dim RV, then

$$m{X}_2 \mid \{m{X}_1 = m{x}\} \sim \mathcal{N}\left(m{\Sigma}_{21}m{\Sigma}_{11}^{-1}(m{x} - m{\mu}_1) + m{\mu}_2\,,\; m{\Sigma}_{22} - m{\Sigma}_{21}m{\Sigma}_{11}^{-1}m{\Sigma}_{12}
ight)$$

• Compare this to the case of n=2 and k=1:

$$X_2 \mid \{X_1 = x\} \sim \mathcal{N}\left(\frac{\sigma_{21}}{\sigma_{11}}(x - \mu_1) + \mu_2, \ \sigma_{22} - \frac{\sigma_{12}^2}{\sigma_{11}}\right)$$

• Example:

$$\begin{bmatrix} X_1 \\ -- \\ X_2 \\ X_3 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 1 \\ -- \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 & | & 2 & 1 \\ -- & | & -- & -- \\ 2 & | & 5 & 2 \\ 1 & | & 2 & 9 \end{bmatrix} \right)$$

From Property 4, it follows that

$$\mathbb{E}[\mathbf{X}_2 \mid X_1 = x] = \begin{bmatrix} 2\\1 \end{bmatrix} (x-1) + \begin{bmatrix} 2\\2 \end{bmatrix} = \begin{bmatrix} 2x\\x+1 \end{bmatrix}$$

$$\Sigma_{\{X_2|X_1=x\}} = \begin{bmatrix} 5 & 2 \\ 2 & 9 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 8 \end{bmatrix}$$

Reference

- [1] "Lecture notes for Statistical Signal Processing," A. El Gamal.
- [2] "Stochastic Processes: Theory for Applications," R. Gallager, Cambridge University Press, 2013.
- [3] "Introduction to probability (2nd Edition)," D. Bertsekas, J. Tsitsiklis, Athena Scientific, 2008.
- [4] "Probability and Computing (2nd Edition)," M. Mitzenmacher, E. Upfal, Cambridge University Press, 2017.
- [5] "Statistical Inference (2nd Edition)," G. Casella, R. Berger, Cengage, 2002.