AIC HW2 111511076 陳彥宇

Corner	Temp	Circuit	Waveform		lds	DC gain	Rout	Cin	Cout
	(°C)			(mV)	(A)	(V/V)	(Ω)	(F)	(F)
TT	25	(b)	9 104 204 304 404 504 605 605 605 605 605 605 605 605 605 605	726.117	42.4507u	-2.6400	7.3868k	37.8985f	47.3303f
TT	0	(a)	9 100 200 600 6056 6006 6006 6006 6006 6006 600	945.275	17.5753u	-2.4806	10.2106k	4.7420f	42.1002f
TT	25	(a)	10 100 200 300 400 500 600 600 600 600 100 200 300 400 300 600 600 600 600 600 600 600 600 6	918.353	20.6289u	-2.4679	9.8549k	4.7640f	42.1827f
TT	75	(a)	9 1.Du 2.Du 5.Du 6.Du 6.Du 6.Du 6.Du 6.Du 6.Du 6.Du 6	870.359	26.1780u	-2.4174	9.4633k	4.7856f	42.3225f

FF	25	(a)	2 1 2 50 50 60 600 600 600 600 600 600 600 60		33.0366u		7.6539k		42.4229f
SS	25	(a)	500m 500m 500m 500m 1 1 900m 900m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11.5971u		13.4338k	4.7264f	41.9959f
FnSp	25	(a)	P 100 200 300 400 500 600 600m 600m 550m 600m 600m 800m 100 100 100 100 100 100 100 100 100 10	845.718	25.5978u	-2.6229	9.0640k	4.6852f	42.4630f
SnFp	25	(a)	\$ 100 100 100 100 100 100 100 100 100 10	992.596	16.0392u	-2.2991	10.9135k	4.8468f	41.9022f

Code for Problem 1

```
1. ***----***
2. *** setting
3. ***----***
4. .lib "~/U18_HSPICE_Model/mm180_reg18_v124.lib" tt
5. .TEMP 25
6. .op
7. ***----***
8. *** simulation ***
9. ***----***
10. .option post
11. .option captab
12. .tf V(Vout) Vinput
13. .tran 0.01u 60u
14. .probe id_mos = I(MN)
15.
16. ***----***
17. *** parameters ***
18. ***----***
19. .param wn = 6u
20. .param ln = 0.9u
21. .param wp = 5u
22. .param lp = 1u
23. .global VDD GND
24.
25. ***----***
26. *** power/input ***
27. ***----***
28. Vsupply VDD GND 1.8v
      SIN(Offset Amplitude Freq. Delay)
30. Vinput Vin GND SIN(0.6V 0.01V
                               100k 0)
31. ***----***
32. *** circuit ***
33. ***----***
34. MP Vout Vout VDD VDD
                           p_18_mm w=wp l=lp
35. MN Vout Vin GND GND
                           n_18_mm w=wn l=ln
36.
37. ***----***
38. *** alter ***
39. ***----***
40. .alter
41. .TEMP 0
42. .param wn = 2u
43. .param ln = 0.3u
45. .alter
46. .TEMP 25
47. .param wn = 2u
48. .param ln = 0.3u
49.
50. .alter
51. .TEMP 75
52. .param wn = 2u
53. .param ln = 0.3u
54.
```

Problem 2

Corner	Temp	Circuit	Rout	Av
	(°C)		(Ω)	(V/V)
TT	25	(a)	9.8549k	-2.4679
TT	25	(b)	7.3868k	-2.6400
TT	75	(a)	9.4633k	-2.4174
TT	75	(b)	7.6529k	-2.5072

Relationship Between MOSFET Dimensions & Resistance:

The resistance difference between circuit (a) & (b) might be caused by short channel effects like velocity saturation. Velocity saturation occurs when the electric field in the channel becomes so strong that the carrier velocity (electrons or holes) reaches a maximum value and cannot increase further, despite increases in the electric field. This effectively increases the resistance of the channel. The effect is more pronounced in smaller MOSFETs. Therefore, even though $6\mu m/0.9\mu m$ & $2\mu m/0.3\mu m$ are of the same ratio, circuit (a) has higher R_{out} .

Temperature's impact on MOSFETs:

- As temperature rises, more charge carriers are thermally generated, which reduces the voltage needed to form the conductive channel. This can lead to increased conduction (more current flow) at lower gate voltages. According to Sedra Smith's Microelectronic Circuits, the magnitude of V_{th} decreases by about 2mV per 1 °C rise in temperature. Reduced threshold voltage can shift the operating point of the MOSFET.
- As for the gain, $A_v = -g_m r_o$. Both g_m and r_o typically decrease with temperature, this often results in a net decrease in voltage gain as

temperature rises.

Code for Problem 2

```
1. ***----***
2. *** setting ***
3. ***----***
4. .lib "~/U18_HSPICE_Model/mm180_reg18_v124.lib" tt
5. .TEMP 25
6. .op
7. ***----***
8. *** simulation ***
9. ***----***
10. .option post
11. .option captab
12. .tf V(Vout) Vinput
13. .tran 0.01u 60u
14. .probe id_mos = I(MN)
15.
16. ***----***
17. *** parameters ***
18. ***----***
19. .param wn = 2u
20. .param ln = 0.3u
21. .param wp = 5u
22. .param lp = 1u
23. .global VDD GND
24.
25. ***----***
26. *** power/input ***
27. ***----***
28. Vsupply VDD GND 1.8v
            SIN(Offset Amplitude Freq. Delay)
30. Vinput Vin GND SIN(0.6V 0.01V
31. ***----***
32. *** circuit
33. ***----***
34. MP Vout Vout VDD VDD
                           p_18_mm w=wp l=lp
35. MN Vout Vin GND GND
                           n_18_mm w=wn l=ln
37. ***----***
38. ***
        alter
39. ***----***
40. .alter
41. .param wn = 6u
42. .param ln = 0.9u
43.
44. .alter
45. .TEMP 75
46. .param wn = 2u
47. .param ln = 0.3u
```

```
48.
49. .alter
50. .TEMP 75
51. .param wn = 6u
52. .param ln = 0.9u
53.
54. .end
```

Problem 3

Fig 1. Circuit(a) $~I_{D}\text{-}V_{GS}~$ Curve at Temperatures 0 $\sim 80~^{\circ}\text{C}$

Fig 2. Circuit(b) $I_D\text{-}V_{GS}$ Curve at Temperatures 0 \sim 80 °C

- I_D increases very slightly with temperature at lower V_{GS} but decreases with temperature at higher V_{GS} . Let first examine how temperature affects electrons/holes. Temperature has 2 effects on carriers:
 - 1. Higher temperatures can increase the number of carriers through thermal generation. This is likely what leads to the decrease in V_{th} as mentioned in problem 2.
 - 2. Carrier mobility typically decreases with temperature due to increased lattice vibrations (phonon scattering).
- I believe that at lower V_{GS} . the effect of increasing carrier concentration takes dominance, and higher temperatures allow more current to flow through. However, at higher V_{GS} , the slowing effect is more dominant. Increased lattice vibrations lead to more frequent collisions between carriers and the crystal lattice, so the higher the temperature, the less the current.

Code for Problem 3

```
1. ***-----***
2. *** setting ***
3. ***----***
4. .lib "~/U18_HSPICE_Model/mm180_reg18_v124.lib" tt
5. .TEMP T
6. .op
```

```
7. ***----***
8. *** simulation ***
9. ***----***
10. .option post
11. .DC Vgs 0V 1.8V 0.05V sweep T 0 80 10
12. .probe id_mos = I(MN)
13.
14. ***----***
15. *** parameters ***
16. ***----***
17. .param wn = 6u
18. .param ln = 0.9u
19. .param wp = 5u
20. \cdotparam lp = 1u
21. .global VDD GND
22.
23. ***----***
24. *** power/input ***
25. ***----***
26. Vsupply VDD GND 1.8v
27. * SIN(Offset Amplitude Freq. Delay)
28. Vgs Vin GND 1.8v
29. ***----***
30. *** circuit ***
31. ***----***
32. MP Vout Vout VDD VDD p_18_mm w=wp l=lp
33. MN Vout Vin GND GND n_18_mm w=wn l=ln
34.
35. .end
```