Short Notes On Similarity/Dissimilarity Measures

Ng Yen Kaow

Distance/Dissimilarity & Similarity

- □ Let d_{ij} denote the **distance**/**dissimilarity** between two objects x_i and x_j
 - The objects are, for example, strings, sequences, structures, words, documents, pixels, or vectors (of features)
- \square Similarly s_{ij} denotes the **similarity** between x_i and x_j
- Comparing some objects are better done with a similarity measure, while comparing some other objects are better with a dissimilarity measure

Desirable properties

- Conditions for metric distance
 - $d_{ij} \geq 0$ (non-negativity)
 - $d_{ij} = 0$ if and only if i = j (identity of indiscernible pairs)

 - $d_{ij} \leq d_{ik} + d_{kj}$ (triangular inequality)
- Similar intuitions for other dissimilarity (or similarity) measures
- Many dissimilarity/similarity measures can be defined

Examples of dissimilarity measures

- Strings/Sequences
 - Hamming distance
 - Sequence alignment, e.g. edit distance
- Structure
 - Root Mean Square Deviation (RMSD)
 - See https://en.wikipedia.org/wiki/Structural_alignment

Hamming distance, edit distance, RMSD are all metric

Vectors

- Euclidean distance
- Metric distance
- Non-metric distance

Examples of similarity measures

- Words/Documents
 - Bag-of-words, tf-idf
 - Semantic (https://en.wikipedia.org/wiki/Semantic_similarity)
 - **Vector** (https://en.wikipedia.org/wiki/Word_embedding)

Vectors

- Correlations (Pearson etc.)
- Covariance
 - Principal Component Analysis
- Gaussian $e^{-\|x_i-x_j\|^2/2\sigma^2}$
 - Mapping to infinite dimensional space (Kernel function)
 - Probability distribution (co-occurrence probability)
 - Heat function (transition probability)

Gaussian function

The Gaussian function is

$$K(x_i, x_j) = e^{-\|x_i - x_j\|^2 / 2\sigma^2}$$

- The mapped feature space has infinite dimension
- Most commonly used kernel function
- Image segmentation (Wu and Leary 1993, Normalized Cut 1997)
- Dimensionality reduction (Eigenmap 2003, Diffusion maps 2005, t-SNE 2007, UMAP 2018)
- Pros: Fast decay to zero, symmetric, nonnegative, identity
- \square Con: Sensitive to σ

Converting $d_{ij} \Leftrightarrow s_{ij}$

- \square Difficult to obtain s_{ij} from d_{ij} and vice versa
 - Most conversions will be dissatisfactory, resulting in non-metric distance
- □ Ad hoc conversion between dissimilarity $D = (d_{ij})$ and similarity $S = (s_{ij})$
 - Inverse conversion
 - $d_{ij} = \text{const} * (1 + s_{ij})^{-1}$
 - $s_{ij} = \text{const} * (1 + d_{ij})^{-1}$
 - Linear conversion
 - \Box $d_{ij} = \text{const} s_{ij}$
 - $\Box s_{ii} = const d_{ii}$

Euclidean distance $d_{ij} \Leftrightarrow s_{ij}$

 \Box Let $D = (d_{ij})$ be given by the Pythagorean

$$d_{ij}^2 = (x_i - x_j)(x_i - x_j)^{\mathrm{T}}$$

where x_i and x_i are row vectors

- \Box For $S = (s_{ij})$
 - Cosine similarity

$$s_{ij} = \frac{x_i x_j^{\mathrm{T}}}{\|x_i\| \|x_j\|}$$

Linear kernel similarity

$$s_{ij} = x_i x_j^{\mathrm{T}}$$

- \Box Con: $s_{ij} \leq s_{uv}$ does not imply $d_{ij} \geq d_{uv}$
- \square Pro: Can be converted to d_{ik} easily (next slide)

Euclidean distance $d_{ij} \Leftrightarrow s_{ij}$

- □ If s_{ij} is the linear kernel similarity, that is, $s_{ij} = x_i x_j^{\mathrm{T}}$
 - $d_{ij}^2 = (s_{ii} + s_{jj}) 2s_{ij}$
 - $S = -\frac{1}{2}CDC$

where

$$C = I - \frac{1}{n} \mathbf{1} \mathbf{1}^{T}$$
, the centering matrix

1 is a column vector of all ones (hence $\mathbf{11}^{T}$ is a matrix with all ones of the same dimension as D)

 No similar relation exists for the cosine distance (use ad hoc)

Gaussian similarity $s_{ij} \Leftrightarrow d_{ij}$

- □ For Gaussian similarity $S = (s_{ij})$ and dissimilarity $D = (d_{ij})$
 - $S_{ij} = e^{-\frac{d_{ij}}{2\sigma^2}}$
 - Intuitively $d_{ij} = -\alpha \log(s_{ij})$
 - Alternatively, define an induced distance $d'_{ij} = s_{ii} + s_{jj} 2s_{ij}$, then
 - $d'_{ij} = 2(1-s_{ij})$
 - $d'_{ii} = 0$
 - $d'_{ij} = d'_{ji}$

But still no triangular inequality guarantee