Maciej Byczko	Prowadzący:	Numer ćwiczenia		
Bartosz Matysiak	dr inż. Jacek Mazurkiewicz	2		
PN 10:50 TP	Temat ćwiczenia: Układy Sekwencyjne	Ocena:		
Grupa: B	Data wykonania: 10 Października 2021			

Spis treści

1	Zad	anie 1		2								
	1.1	Polecenie										
	1.2	Rozwiązanie										
		1.2.1	Schemat stanów	2								
		1.2.2	Tabela prawdy	2								
		1.2.3	Siatki Karnaugh	3								
		1.2.4	Schemat układu	4								
		1.2.5	Kod VHDL	4								
		1.2.6	Symulacja	4								
2	Zad	danie 2 4 Polecenie 4										
	2.1	Polecenie										
	2.2	Rozwi	ązanie	4								
		2.2.1	Opis symboliki	4								
		2.2.2	Schemat grafowy	4								
		2.2.3	Tabela prawdy	5								
		2.2.4	Siatka Karnaugh	6								
		2.2.5	Schemat układu	6								
		2.2.6	Kod VHDL	6								
		2.2.7	Symulacja	6								
3	Wni	ioski		6								

1 Zadanie 1

1.1 Polecenie

Zaprojektować licznik synchroniczny liczący w tył na bazie kodu Aikena w zakresie 0-6 (mod 7).

1.2 Rozwiązanie

1.2.1 Schemat stanów

1.2.2 Tabela prawdy

10	Q(t)				Q(t+1)				JK							
n	Q_3	Q_2	Q_1	Q_0	Q_3	Q_2	Q_1	Q_0	J_3	K_3	J_2	K_2	J_1	K_1	J_0	K_0
0	0	0	0	0	1	1	0	0	1	-	1	-	0	-	0	-
1	0	0	0	1	0	0	0	0	0	-	0	-	0	-	_	1
2	0	0	1	0	0	0	0	1	0	-	0	-	-	1	1	-
3	0	0	1	1	0	0	1	0	0	-	0	-	-	0	-	1
4	0	1	0	0	0	0	1	1	0	-	-	1	1	-	1	-
5	1	0	1	1	0	1	0	0	-	1	1	_	-	1	_	1
6	1	1	0	0	1	0	1	1	-	0	-	1	1	-	1	-

1.2.3 Siatki Karnaugh

1.2.4 Schemat układu

1.2.5 Kod VHDL

1.2.6 Symulacja

2 Zadanie 2

2.1 Polecenie

Detektor sekwencji 11011, automat Mealy-ego, jedno wejście, jedno wyjście, brak resetu, sekwencja prawidłowa 5-bitowa.

2.2 Rozwiązanie

2.2.1 Opis symboliki

Alfabet wejściowy

- $z_0 = 0$
- $z_1 = 1$

Stany wewnętrzne

- q_0 stan początkowy | wprowadzono niepoprawny ciąg bitów
- q_1 wprowadzono pierwszą cyfrę prawidłowego ciągu
- q_2 wprowadzono drugą cyfrę prawidłowego ciągu
- q_3 wprowadzono trzecią cyfrę prawidłowego ciągu
- q_4 wprowadzono czwartą cyfrę prawidłowego ciągu
- q_5 wprowadzono poprawną sekwencję

Alfabet wyjścia

- y_0 Wprowadzony ciąg nadal jest niepoprawny
- y_1 Wprowadzono poprawną sekwencję

2.2.2 Schemat grafowy

2.2.3 Tabela prawdy

S	Q(t)			7		$\sqrt{(t+1)}$.)	1 7	D(t)			
	Q_2	Q_1	Q_0	Z	Q_2	Q_1	Q_0	Y	T_2	T_1	T_0	
Q_0	0	0	0	0	0	0	0	0	0	0	0	
Q_0	0	0	0	1	0	0	1	0	0	0	1	
Q_1	0	0	1	0	0	0	0	0	0	0	1	
Q_1	0	0	1	1	0	1	0	0	0	1	1	
Q_2	0	1	0	0	0	1	1	0	0	0	1	
Q_2	0	1	0	1	0	1	0	0	0	0	0	
Q_3	0	1	1	0	0	0	0	0	0	1	1	
Q_3	0	1	1	1	1	0	0	0	1	1	1	
Q_4	1	0	0	0	0	0	0	0	1	0	0	
Q_4	1	0	0	1	1	0	1	0	0	0	1	
Q_5	1	0	1	0	0	1	1	1	1	1	0	
Q_5	1	0	1	1	0	1	0	1	1	1	1	
_	1	1	0	0	_	_	_	-	-	_	_	
-	1	1	0	1	_	-	_	_	-	_	_	
-	1	1	1	0	_	-	_	_	-	_	_	
_	1	1	1	1	_	_	-	_	_	_	_	

2.2.4 Siatka Karnaugh

- 2.2.5 Schemat układu
- $2.2.6 \mod VHDL$
- 2.2.7 Symulacja
- 3 Wnioski