Name:

1 (a) A solid cylinder of height h and density ρ rests on a flat surface as shown in Fig. 1.1.

Fig. 1.1

Show that pc = hpg where pc is the pressure exerted by the cylinder on the surface.

[2]

(b) Fig 1.2 shows a tube of constant circular cross-section, sealed at one end, contains an ideal gas trapped by a cylinder of mercury of length 0.035 m. The whole arrangement is in the Earth's atmosphere. The density of mercury is 1.36 × 10⁴ kg m⁻³.

Fig. 1.2

When the mercury is above the gas column the length of the gas column is 0.190 m.

H2 Physics Revision

Topic: Kinetic Theory of Gases

Structured Questions

Name:

(i) Explain what is meant by an ideal gas.

.....

.....[2]

(ii) Given

 p_0 = atmospheric pressure

 p_m = pressure due to the mercury column

T = temperature of the trapped gas

n = number of moles of the trapped gas

A = cross-sectional area of the tube

Show that $(p_o + p_m) \times 0.190 = \frac{nRT}{A}$.

[1]

Structured Questions

Name:

1 (iii) The tube is slowly rotated until the gas column is above the mercury.

The length of the gas column is now $0.208\,\mathrm{m}$. The temperature of the trapped gas does not change during the process.

Determine po.

	<i>p</i> ₀ = Pa [2]
(iv)	Using the First Law of Thermodynamics, explain the heat exchange between the gas and the surrounding during the process mentioned in (b)(iii) .
	[2]

2 (a) The kinetic theory of gases is based on a number of assumptions about the molecules of a gas. State the assumption that is related to the volume of the molecules of the gas. [1] (b) An ideal gas occupies a volume of 2.40 × 10 ⁻² m³ at a pressure of 4.60 × 10 ⁵ Pa and a temperature of 23 °C. Each molecule has a diameter of approximately 3 × 10 ⁻¹⁰ m. Estimate the total volume of the gas molecules.	H2 Physics	Revision	Topic:	Kinetic Theory of Gases
State the assumption that is related to the volume of the molecules of the gas. [1] (b) An ideal gas occupies a volume of 2.40 × 10 ⁻² m³ at a pressure of 4.60 × 10 ⁵ Pa and a temperature of 23 °C. Each molecule has a diameter of approximately 3 × 10 ⁻¹⁰ m. Estimate the total volume of the gas molecules. volume =	Structured Q	uestions	Name:	
(b) An ideal gas occupies a volume of 2.40 × 10-2 m³ at a pressure of 4.60 × 10 ⁵ Pa and a temperature of 23 °C. Each molecule has a diameter of approximately 3 × 10-10 m. Estimate the total volume of the gas molecules. volume =	2 (a)	a gas.		•
(b) An ideal gas occupies a volume of 2.40 × 10 ⁻² m³ at a pressure of 4.60 × 10 ⁵ Pa and a temperature of 23 °C. Each molecule has a diameter of approximately 3 × 10 ⁻¹⁰ m. Estimate the total volume of the gas molecules. volume =				_
temperature of 23 °C. Each molecule has a diameter of approximately 3 × 10 ⁻¹⁰ m. Estimate the total volume of the gas molecules. volume =				
volume =	(b)	An ideal gas occupies temperature of 23 °C.	a volume Each mole	of 2.40×10^{-2} m ³ at a pressure of 4.60×10^{5} Pa and a ecule has a diameter of approximately 3×10^{-10} m.
(c) By reference to your answer in (b), suggest why the assumption in (a) is justified.		Estimate the total volu	ume of the	gas molecules.
(c) By reference to your answer in (b), suggest why the assumption in (a) is justified.				
(c) By reference to your answer in (b), suggest why the assumption in (a) is justified.				
(c) By reference to your answer in (b), suggest why the assumption in (a) is justified.				
(c) By reference to your answer in (b), suggest why the assumption in (a) is justified.				
(c) By reference to your answer in (b), suggest why the assumption in (a) is justified.				
				volume =m ³ [3]
	(c)	By reference to your a	answer in (I	b), suggest why the assumption in (a) is justified.
				[1]

Structured Questions

Name:

2 (d) The ideal gas undergoes the cycle of changes PQRP as shown in Fig. 2.1.

Fig. 2.1

Some energy changes during one cycle PQRP are shown in Fig. 2.2.

	change P → Q	change Q → R	change R → P
thermal energy transferred to gas / J	+97.0	0	
work done on gas / J		-42.5	
increase in internal energy of gas / J			

Fig. 2.2

On Fig. 2.2, complete the energy changes for the gas.

[5]

[Total: 10]

H2 Physics Revision Topic : Kinetic Theory of Gases

Structured Questions	Name:

- The volume of air in the cylinder of a car engine is 540 cm³ at a pressure of 1.1 x 10⁵ Pa and a temperature of 27 °C. The air is suddenly compressed to a volume of 30 cm³. No heat energy enters or leaves the gas during the compression. The pressure then rises to 6.5 x 10⁶ Pa. Assume that air behaves as an ideal gas.
 - (a) Determine the temperature of the gas after the compression.

temperature =	=																				ŀ	([2]
---------------	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	----	---

(b) (i) State the first law of thermodynamics.

121	

(ii) Use the law to explain why the temperature of the air changes during compression.

.....[3]

H2 Physics Revision	Topic: Kinetic Theory of Gases
Structured Questions	Name:
3 (c) The temperature of a Calculate the ratio:	a gas depends on the root-mean-square (r.m.s.) speed of its molecules.
	r.m.s. speed of gas molecules at 350 K
	r.m.s. speed of gas molecules at 300 K
	ratio =[2]

H2 Physics Revision Structured Questions		Topic:	Kinetic Theory of Gases
		Name:	
	arge container of volu 1.0 × 10 ⁵ Pa at temper		led with 110 kg of an ideal gas. The pressure of the gas
Th	e mass of 1.0 mol of the	he gas is 32 g.	
(a)	Show that the temp	erature <i>T</i> of th	e gas is approximately 300 K.
			[3]
(b)	The temperature of capacity of the gas	f the gas is inc for this change	creased to 350 K at constant volume. The specific heat e is $0.66~J~kg^{-1}~K^{-1}$.
	Calculate the energ	y supplied to t	he gas by heating.
			energy = J [2]
(c)	Explain how moven	nent of the gas	molecules causes pressure in the container.
			[3]

H2 Physics Revision		Topic: Kinetic Theory of Gases
Structured 0	Questions	Name:
4 (d)	The temperature of a	gas depends on the root-mean-square (r.m.s.) speed of its molecules.
	Calculate the ratio:	
		r.m.s. speed of gas molecules at 350 K r.m.s. speed of gas molecules at 300 K
		-ati
		ratio =[2]
		[Total: 10]

H2 Phys	ICS R	levision lopic: Kinetic Theory of Gases	
Structured	d Que	stions Name:	
5 (3	a) Sta	ate how the temperature of an ideal gas is related to the energy of its molecules.	
			[1]
(1	an	oven with volume 0.029 m 3 contains air at a pressure and temperature of 1.0 \times 10 5 d 27 $^\circ$ C respectively. The mass of one mole of air is 0.030 kg. Assume that the haves as an ideal gas.	
	(i)	Determine the root-mean-square speed of the air molecules in the oven.	
	(ii)	root-mean-square speed = m s ⁻¹ Calculate the number of moles of air molecules in the oven.	[2]
		number of moles =	[2]
	(III	The oven is heated to a temperature of 220°C. Use your answer in (a) and the kinetic theory of gases to explain why the pressure the air in the oven increases.	e of
			[2]

H2 Physics Revision	Topic :	Kinetic Theory of Gases
Structured Questions	Name:	

(iv) The oven door is opened.

5

Calculate the mass of air that must escape from the oven for the pressure in the oven to return to $1.0\times10^5\,\text{Pa}$.

mass of air = _____kg [2]