Towards a Categorical Model of the Lilac Separation Logic

John Li li.john@northeastern.edu Jon Aytac jmaytac@sandia.gov Philip Johnson-Freyd pajohn@sandia.gov

Amal Ahmed amal@ccs.neu.edu

Steven Holtzen s.holtzen@northeastern.edu

• In ordinary separation logic,

$$x = \text{new } 0;$$

$$y = \text{new } 1;$$

$$(x \mapsto 0) * (y \mapsto 1)$$

x and y point to disjoint heap locations

• In probabilistic separation logic,

$$X \leftarrow \text{flip } 1/2;$$

$$Y \leftarrow \text{flip } 1/2;$$

$$X \sim \text{Ber}(1/2) * Y \sim \text{Ber}(1/2)$$

X and Y are independent random variables

- Lilac's separation is complete for independence
- We used Lilac to verify a weighted sampling algorithm
- For more, see:

Lilac: A Modal Separation Logic for Conditional Probability

JOHN M. LI, Northeastern University, USA AMAL AHMED, Northeastern University, USA STEVEN HOLTZEN, Northeastern University, USA

PLDI'23

The key idea

• Separate probability spaces into independent subspaces:

The fine print

PROOF. 1 is indeed a unit: if (\mathcal{F}, μ) is some other probability space on Ω then $\langle \mathcal{F}, \mathcal{F}_1 \rangle = \mathcal{F}$ and μ witnesses the independent combination of itself with μ_1 . And the relation " \mathcal{P} is an independent combination of Q and \mathcal{R} " is clearly symmetric in Q and \mathcal{R} , so (\bullet) is commutative. We just need to show (\bullet) is associative and respects (\sqsubseteq) .

For associativity, suppose $(\mathcal{F}_1, \mu_1) \bullet (\mathcal{F}_2, \mu_2) = (\mathcal{F}_{12}, \mu_{12})$ and $(\mathcal{F}_{12}, \mu_{12}) \bullet (\mathcal{F}_3, \mu_3) = (\mathcal{F}_{(12)3}, \mu_{(12)3})$. There are three things to check:

- Some μ_{23} witnesses the combination of (\mathcal{F}_2, μ_2) and (\mathcal{F}_3, μ_3) .
- Some $\mu_{1(23)}$ witnesses the combination of (\mathcal{F}_1, μ_1) and $(\mathcal{F}_{23}, \mu_{23})$.
- $(\langle \mathcal{F}_1, \langle \mathcal{F}_2, \mathcal{F}_3 \rangle), \mu_{1(23)}) = (\langle \langle \mathcal{F}_1, \mathcal{F}_2 \rangle, \mathcal{F}_3 \rangle, \mu_{(12)3}).$

We'll show this as follows:

- (1) $\langle \mathcal{F}_1, \langle \mathcal{F}_2, \mathcal{F}_3 \rangle \rangle = \langle \langle \mathcal{F}_1, \mathcal{F}_2 \rangle, \mathcal{F}_3 \rangle$.
- (2) Define $\mu_{23} := \mu_{(12)3}|_{\mathcal{F}_{23}}$. This is a witness for (\mathcal{F}_2, μ_2) and (\mathcal{F}_3, μ_3) .
- (3) Define $\mu_{1(23)} := \mu_{(12)3}$. This is a witness for (\mathcal{F}_1, μ_1) and $(\mathcal{F}_{23}, \mu_{23})$.

To show the left-to-right inclusion for (1): by the universal property of freely-generated σ -algebras, we just need to show $\langle\langle \mathcal{F}_1, \mathcal{F}_2 \rangle, \mathcal{F}_3 \rangle$ is a σ -algebra containing \mathcal{F}_1 and $\langle \mathcal{F}_2, \mathcal{F}_3 \rangle$. It clearly contains \mathcal{F}_1 . To show it contains $\langle \mathcal{F}_2, \mathcal{F}_3 \rangle$, we just need to show it contains \mathcal{F}_2 and \mathcal{F}_3 (by the universal property again), which it clearly does. The right-to-left inclusion is similar.

For (2), if $E_2 \in \mathcal{F}_2$ and $E_3 \in \mathcal{F}_3$ then $\mu_{23}(E_2 \cap E_3) = \mu_{(12)3}(E_2 \cap E_3) = \mu_{(12)3}((\Omega \cap E_2) \cap E_3) = \mu_{12}(\Omega \cap E_2)\mu_3(E_3) = \mu_1(\Omega)\mu_2(E_2)\mu_3(E_3) = \mu_2(E_2)\mu_3(E_3)$ as desired.

For (3), we need $\mu_{(12)3}(E_1 \cap E_{23}) = \mu_1(E_1)\mu_{23}(E_{23})$ for all $E_1 \in \mathcal{F}_1$ and $E_{23} \in \langle \mathcal{F}_2, \mathcal{F}_3 \rangle$. For this we use the π - λ theorem. Let \mathcal{E} be the set $\{E_2 \cap E_3 \mid E_2 \in \mathcal{F}_2, E_3 \in \mathcal{F}_3\}$ of intersections of events in \mathcal{F}_2 and \mathcal{F}_3 . \mathcal{E} is a π -system that generates $\langle \mathcal{F}_2, \mathcal{F}_3 \rangle$ (lemma B.2). Let \mathcal{G} be the set of events E_{23} such that $\mu_{(12)3}(E_1 \cap E_{23}) = \mu_1(E_1)\mu_{23}(E_{23})$ for all $E_1 \in \mathcal{F}_1$. We are done if $\langle \mathcal{E} \rangle \subseteq \mathcal{G}$. By the π - λ theorem, we just need to check that $\mathcal{E} \subseteq \mathcal{G}$ and that \mathcal{G} is a λ -system. We have $\mathcal{E} \subseteq \mathcal{G}$ because if $E_2 \in \mathcal{F}_2$ and $E_3 \in \mathcal{F}_3$ then $\mu_{(12)3}(E_1 \cap (E_2 \cap E_3)) = \mu_1(E_1)\mu_2(E_2)\mu_3(E_3) = \mu_1(E_1)\mu_{23}(E_2 \cap E_3)$. To see that \mathcal{G} is a λ -system, note that $\mu_1(E_1)\mu_{23}(E_{23}) = \mu_{(12)3}(E_1)\mu_{(12)3}(E_{23})$ and so \mathcal{G} is actually equal to \mathcal{F}_1^{\perp} (the set of events independent of \mathcal{F}_1), a λ -system by Lemma B.3.

To show (•) respects (\sqsubseteq), suppose (\mathcal{F} , μ) \sqsubseteq (\mathcal{F}' , μ') and (\mathcal{G} , ν) \sqsubseteq (\mathcal{G}' , ν') and (\mathcal{F}' , μ')•(\mathcal{G}' , ν') = ($\langle \mathcal{F}', \mathcal{G}' \rangle$, ρ'). We need to show (1) (\mathcal{F} , μ)•(\mathcal{G} , ν) = ($\langle \mathcal{F}, \mathcal{G} \rangle$, ρ) and (2) ($\langle \mathcal{F}, \mathcal{G} \rangle$, ρ) \sqsubseteq ($\langle \mathcal{F}', \mathcal{G}' \rangle$, ρ') for some ρ . Define ρ to be the restriction of ρ' to $\langle \mathcal{F}, \mathcal{G} \rangle$. Now (1) holds because $\rho(F \cap G) = \rho'(F)\rho'(G) = \rho(F)\rho(G)$ for all $F \in \mathcal{F}$ and $G \in \mathcal{G}$ (the second step follows from $\mathcal{F} \subseteq \mathcal{F}'$ and $\mathcal{G} \subseteq \mathcal{G}'$). For (2), $\langle \mathcal{F}, \mathcal{G} \rangle \subseteq \langle \mathcal{F}', \mathcal{G}' \rangle$ because $\mathcal{F} \subseteq \mathcal{F}'$ and $\mathcal{G} \subseteq \mathcal{G}'$, and $\rho = \rho'|_{\langle \mathcal{F}, \mathcal{G} \rangle}$ by construction.

The fine print

Theorem B.25. Let $\mathcal{M}_{disintegrable}$ be the set of countably-generated probability spaces \mathcal{P} that have finite footprint and can be extended to a Borel measure on the entire Hilbert cube. The restriction of the KRM given by Theorem 2.4 to $\mathcal{M}_{disintegrable}$ is still a KRM.

?!

• Q: Why isn't separation just about product spaces?

?!

- Q: Why isn't separation just about product spaces?
- A: ...

Towards a categorical answer

- Q: Why isn't separation just about product spaces?
- A: ...

Towards a categorical answer

- Q: Why isn't separation just about product spaces?
- A: It is just about product spaces... up to a suitable equivalence of categories

- Today, the standard model of separation is heap-disjoint-union.
- But it didn't always used to be this way:

A Model for Syntactic Control of Interference

P. W. O'Hearn

School of Computer and Information Science Syracuse University, Syracuse, NY, USA 13224-4100

MSCS'93

- Today, the standard model of separation is heap-disjoint-union.
- But it didn't always used to be this way:

6.1. The Tensor Product the Schanuel topos* Sch

The bifunctor \otimes on \mathbf{K} is a subfunctor of the categorical product \times , restricted so that different components are independent of one another.

Day convolution w.r.t. coproduct of heap shapes

- Q: What does Day convolution have to do with disjoint union?
- A: It is disjoint union... up to a suitable equivalence of categories

Saunders Mac Lane leke Moerdijk

Sheaves in Geometry and Logic

A First Introduction to Topos Theory

the category of nominal sets

, Theorem III.9.2: Sch \simeq Nom.

- Q: What does Day convolution have to do with disjoint union?
- A: It is disjoint union... up to a suitable equivalence of categories

Across this equivalence,

Day conv. w.r.t. coproduct pairs of disjoint heaps in \simeq in Sch Nom

Back to the present day

- Q: Why isn't separation just about product spaces?
- A: It is just about product spaces... up to a suitable equivalence of categories

ProbSch

 \sim

ProbNom

A "probabilistic Schanuel topos"

"Probabilistic nominal sets"

Back to the present day

- Q: Why isn't separation just about product spaces?
- A: It is just about product spaces... up to a suitable equivalence of categories

Across this equivalence,

The naive picture is right (with enough category theory):

• And independent combination is right too!

Corroborates recent work linking probability to names

Probabilistic Programming Semantics for Name Generation

MARCIN SABOK, McGill University, Canada SAM STATON, University of Oxford, United Kingdom DARIO STEIN, University of Oxford, United Kingdom MICHAEL WOLMAN, McGill University, Canada

Probability Sheaves and the Giry Monad*

Alex Simpson

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia Alex.Simpson@fmf.uni-lj.si

- Corroborates recent work linking probability to names
- New nominal interpretations of probabilistic concepts:

- Corroborates recent work linking probability to names
- New nominal interpretations of probabilistic concepts:

Probability theory		Nominal sets
Measurable space	~	Support
Measurability	~	Supportedness
Probability space	~	Store
Probabilistic independence	~	Disjointness of stores

https://johnm.li/lafi24.pdf

Upshot

- Corroborates recent work linking probability to names
- New nominal interpretations of probabilistic concepts:

Probability theory		Nominal sets
Measurable space	~	Support
Measurability	~	Supportedness
Probability space	~	Store
Probabilistic independence	~	Disjointness of stores

==> maybe nominal techniques apply to probability?