



**US Army Corps  
of Engineers**

Construction Engineering  
Research Laboratories

# Ten-Year Summary and Final Report of Fort Irwin, CA, Family Housing Comparison Test: Operation and Maintenance Costs of Manufactured vs. Conventionally Built Units

by  
Robert D. Neathammer

To determine if manufactured/factory-built family housing is more cost-effective in providing housing than conventional construction, Congress directed that a test of construction methods be conducted. In 1982, Congress authorized the construction of 200 units of manufactured/factory-built housing at Fort Irwin, CA, and concurrently, 144 units of conventionally built units.

Congress directed the Department of Defense (DOD) to conduct a fair and reliable study comparing the operation and maintenance (O&M) costs of manufactured housing to those of conventional housing. DOD reported to Congressional committees on the conditions and parameters under which this test would be conducted and the results of the test after the housing had been in use for 5 years.

The Assistant Secretary of the Army for Installations, Logistics, and Environment requested that the study be extended beyond the 5 years. This report compares 10 years of O&M costs.

Through 10 years of occupancy, maintenance costs for the manufactured housing were significantly higher than for the conventionally built housing, with defective water piping a major problem.



19951116 103

DTIC QUALITY INSPECTED 5

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

***DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED***

***DO NOT RETURN IT TO THE ORIGINATOR***

## **USER EVALUATION OF REPORT**

REFERENCE: USACERL Technical Report 95/41, *Ten-Year Summary and Final Report of Fort Irwin, CA, Family Housing Comparison Test: Operation and Maintenance Costs of Manufactured vs. Conventionally Built Units*

Please take a few minutes to answer the questions below, tear out this sheet, and return it to USACERL. As user of this report, your customer comments will provide USACERL with information essential for improving future reports.

1. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

---

---

---

2. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

---

---

3. Has the information in this report led to any quantitative savings as far as manhours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

---

---

4. What is your evaluation of this report in the following areas?

a. Presentation: \_\_\_\_\_

b. Completeness: \_\_\_\_\_

c. Easy to Understand: \_\_\_\_\_

d. Easy to Implement: \_\_\_\_\_

e. Adequate Reference Material: \_\_\_\_\_

f. Relates to Area of Interest: \_\_\_\_\_

g. Did the report meet your expectations? \_\_\_\_\_

h. Does the report raise unanswered questions? \_\_\_\_\_

i. General Comments. (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

---

---

---

---

---

---

5. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

Name: \_\_\_\_\_

Telephone Number: \_\_\_\_\_

Organization Address: \_\_\_\_\_  
\_\_\_\_\_  
\_\_\_\_\_

6. Please mail the completed form to:

Department of the Army  
CONSTRUCTION ENGINEERING RESEARCH LABORATORIES  
ATTN: CECER-TR-I  
P.O. Box 9005  
Champaign, IL 61826-9005

# REPORT DOCUMENTATION PAGE

**Form Approved  
OMB No. 0704-0188**

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |                                                              |                                                          |                                                             |                                           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|--|
| 1. AGENCY USE ONLY (Leave Blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                                              | 2. REPORT DATE<br>September 1995                         |                                                             | 3. REPORT TYPE AND DATES COVERED<br>Final |  |
| 4. TITLE AND SUBTITLE<br><br>Ten-Year Summary and Final Report of Fort Irwin, CA, Family Housing Comparison Test: Operation and Maintenance Costs of Manufactured vs. Conventionally Built Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                                              | 5. FUNDING NUMBERS<br><br>MIPR<br>SFIM-IS 5CCER00014     |                                                             |                                           |  |
| 6. AUTHOR(S)<br><br>Robert D. Neathammer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |                                                              |                                                          |                                                             |                                           |  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)<br><br>U.S. Army Construction Engineering Research Laboratories (USACERL)<br>P.O. Box 9005<br>Champaign, IL 61826-9005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                                                              | 8. PERFORMING ORGANIZATION REPORT NUMBER<br><br>TR 95/41 |                                                             |                                           |  |
| 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)<br><br>Headquarters, Department of the Army<br>ATTN: DAIM-FDH-F<br>600 Army Pentagon<br>Washington, DC 20310-0600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |                                                              | 10. SPONSORING / MONITORING AGENCY REPORT NUMBER         |                                                             |                                           |  |
| 11. SUPPLEMENTARY NOTES<br><br>Copies are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |                                                              |                                                          |                                                             |                                           |  |
| 12a. DISTRIBUTION / AVAILABILITY STATEMENT<br><br>Approved for public release; distribution is unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                                                              | 12b. DISTRIBUTION CODE                                   |                                                             |                                           |  |
| 13. ABSTRACT (Maximum 200 words)<br><br>To determine if manufactured/factory-built family housing is more cost-effective in providing housing than conventional construction, Congress directed that a test of construction methods be conducted. In 1982, Congress authorized the construction of 200 units of manufactured/factory-built housing at Fort Irwin, CA, and concurrently, 144 units of conventionally built units. Congress directed the Department of Defense (DOD) to conduct a fair and reliable study comparing the operation and maintenance (O&M) costs of manufactured housing to those of conventional housing. DOD reported to Congressional committees on the conditions and parameters under which this test would be conducted and the results of the test after the housing had been in use for 5 years.<br><br>The Assistant Secretary of the Army for Installations, Logistics, and Environment requested that the study be extended beyond the 5 years. This report compares 10 years of O&M costs.<br><br>Through 10 years of occupancy, maintenance costs for the manufactured housing were significantly higher than for the conventionally built housing, with defective water piping a major problem. |  |                                                              |                                                          |                                                             |                                           |  |
| 14. SUBJECT TERMS<br><br>Fort Irwin, CA<br>family housing<br>industrialized building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |                                                              |                                                          |                                                             | 15. NUMBER OF PAGES<br>64                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |                                                              |                                                          |                                                             | 16. PRICE CODE                            |  |
| 17. SECURITY CLASSIFICATION OF REPORT<br><br>Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  | 18. SECURITY CLASSIFICATION OF THIS PAGE<br><br>Unclassified |                                                          | 19. SECURITY CLASSIFICATION OF ABSTRACT<br><br>Unclassified |                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |                                                              |                                                          | 20. LIMITATION OF ABSTRACT<br><br>SAR                       |                                           |  |

## FOREWORD

This research was conducted for the U.S. Army Center for Public Works (USACPW), and the Assistant Chief of Staff for Installation Management (ACS(IM)), Directorate of Facilities and Housing (DAIM-FDH-F), under the following Intra Agency Orders (IAOs) from Fort Irwin and Headquarters, U.S. Army Forces Command (FORSCOM): FHAA022-83, dated August 1983; R039-84, dated May 1984; S040-85, dated January 1985; T016-86, dated November 1986; CERL-87, dated December 1987; CERL-88, dated June 1988; CERL-89, dated 2 March 1989; Headquarters, U.S. Army Corps of Engineers (HQUSACE) FAD 90-080031, dated September 1990; HQUSACE FAD 91-080025, dated September 1991; HQUSACE FAD 92-080020, dated 10 August 1992; HQUSACE FAD 93-080024, dated 17 September 1993; HQUSACE FAD 940814461, dated 27 September 1994; and SFIM-IS MIPR 5CCER00014, dated 5 December 1994. The USACPW technical monitor was Alex Houtzager (DAIM-FDH-F). Other technical advisors from USACPW were Robert Lubbert and Joe Hovell. Coordination and advice from FORSCOM were provided by Bill Mann, FCEN-RDM. The Fort Irwin advisors were Tom Cragg, Walt Perry, Rene Quinones, and Apolonia Garcia.

The work was performed by the Maintenance Management and Preservation Division (FL-P) of the Facilities Technology Laboratory (FL), U.S. Army Construction Engineering Research Laboratories (USACERL). The principal investigator was Robert Neathammer, CECER-FL-P. Simon Kim is Chief, CECER-FL-P. Donald F. Fournier, Jr. is acting Operations Chief, CECER-FL, and Alvin Smith is acting Chief, CECER-FL. Data validation entry and analysis were performed by Robert F. Doerr Jr., Gwendolyn Karzon, and Jeffrey Schmidt, CECER-FL-P. Data collection efforts by Dyncorp were coordinated by Dee Foley and Donald Hamblett.

COL James T. Scott is Commander and Acting Director of USACERL, and Dr. Michael J. O'Connor is Technical Director.

|                     |                           |
|---------------------|---------------------------|
| Accesion For        |                           |
| NTIS                | CRA&I                     |
| DTIC                | TAB                       |
| Unannounced         |                           |
| Justification ..... |                           |
| By .....            |                           |
| Distribution /      |                           |
| Availability Codes  |                           |
| Dist                | Avail and / or<br>Special |
| A-1                 |                           |

## CONTENTS

|                                                          | Page |
|----------------------------------------------------------|------|
| <b>SF298</b>                                             | 1    |
| <b>FOREWORD</b>                                          | 2    |
| <b>FIGURES</b>                                           | 5    |
| <b>TABLES</b>                                            | 6    |
| <b>1 INTRODUCTION .....</b>                              | 7    |
| Background                                               |      |
| Objective                                                |      |
| Approach                                                 |      |
| Scope                                                    |      |
| <b>2 REVIEW OF TEST PLAN .....</b>                       | 9    |
| <b>3 DESCRIPTION OF THE FAMILY HOUSING UNITS .....</b>   | 10   |
| Manufactured Housing Units (MHUs)                        |      |
| Conventionally Built Units (CBUs)                        |      |
| Costs                                                    |      |
| General Comparison                                       |      |
| <b>4 DATA COLLECTION PROCEDURES .....</b>                | 14   |
| Data Collection                                          |      |
| Data Verification                                        |      |
| Data Analysis                                            |      |
| <b>5 WHOLE HOUSE ENERGY TESTS .....</b>                  | 16   |
| House Tightness                                          |      |
| Furnace Efficiency                                       |      |
| Wall Heat Transfer Characteristics                       |      |
| Summary                                                  |      |
| <b>6 OPERATION AND MAINTENANCE (O&amp;M) COSTS .....</b> | 18   |
| Overall Costs                                            |      |
| Discussion                                               |      |
| Certain Equipment Costs                                  |      |
| Costs Excluding Interior Painting and Equipment Costs    |      |
| Maintenance Costs Per Component                          |      |
| Component by Component Analysis of Table 9               |      |
| Water Piping Problems Discussion                         |      |
| Summary of M&R Costs                                     |      |
| <b>7 ENERGY COSTS .....</b>                              | 32   |
| Electricity Consumption                                  |      |
| Gas Consumption                                          |      |
| Statistical Analysis of Consumption                      |      |
| Total Energy Consumption                                 |      |
| Cost Comparison Summary                                  |      |
| Meter Problems                                           |      |
| Comments                                                 |      |

|          |                                                                                     |           |
|----------|-------------------------------------------------------------------------------------|-----------|
| <b>8</b> | <b>CONCLUSIONS AND RECOMMENDATIONS .....</b>                                        | <b>41</b> |
|          | Maintenance Costs                                                                   |           |
|          | Energy Costs                                                                        |           |
|          | Water Piping                                                                        |           |
|          | Design and Construction Problems                                                    |           |
|          | Specification Changes                                                               |           |
|          | Recommendations for Future Manufactured Housing                                     |           |
|          |                                                                                     |           |
|          | <b>APPENDIX A: Description of the MHU Construction Process</b>                      | <b>43</b> |
|          | <b>APPENDIX B: List of Housing Units</b>                                            | <b>51</b> |
|          | <b>APPENDIX C: Building Component/Subcomponent Codes</b>                            | <b>52</b> |
|          | <b>APPENDIX D: Energy Efficiency Tests of 15 Conventionally Built Housing Units</b> | <b>55</b> |
|          | <b>APPENDIX E: Energy Efficiency Tests of 16 Manufactured Housing Units</b>         | <b>58</b> |

**DISTRIBUTION**

## FIGURES

| <b>Number</b> |                                                                   | <b>Page</b> |
|---------------|-------------------------------------------------------------------|-------------|
| 1             | Front and rear views of typical MHUs                              | 11          |
| 2             | Front and rear views of typical CBUs                              | 12          |
| 3             | Cumulative cost per unit per month for ages 15 through 120 months | 20          |
| 4             | Total costs per unit per year                                     | 21          |
| 5             | Quarterly electricity consumption                                 | 35          |
| 6             | Yearly electricity consumption                                    | 36          |
| 7             | Quarterly gas consumption                                         | 38          |
| 8             | Yearly gas consumption.                                           | 39          |
| A1            | Construction in the factory                                       | 44          |
| A2            | Two modules loaded on truck                                       | 44          |
| A3            | Module being set in place by crane                                | 45          |
| A4            | Near completion of one building                                   | 45          |
| A5            | Completed assembly of modules                                     | 46          |
| A6            | Overview of buildings without garages                             | 46          |
| A7            | Floor plan for first floor MHU, Type A                            | 47          |
| A8            | Floor plan for first floor MHU, Type B                            | 48          |
| A9            | Floor plan for first floor CBU, Type A                            | 49          |
| A10           | Floor plan for second floor CBU, Type A                           | 50          |

## TABLES

|                                                                                     | <b>Page</b> |
|-------------------------------------------------------------------------------------|-------------|
| 1      Unit/Month Costs in First 10 Years' Occupancy                                | 18          |
| 2      Yearly M&R Costs by Type of Construction                                     | 19          |
| 3      Interior Painting Costs                                                      | 22          |
| 4      Yearly M&R Costs Excluding Interior Painting Costs                           | 22          |
| 5      Certain Equipment Costs                                                      | 23          |
| 6      Unit Costs Excluding Certain Equipment and Painting Costs                    | 23          |
| 7      Maintenance Actions Performed and Costs Per Component                        | 24          |
| 8      Maintenance Costs Per Component, Adjusted by Number of Units                 | 25          |
| 9      Components With Differing Costs for Type of Construction                     | 27          |
| 10     Maintenance Actions Performed and Costs for Component Group, 10-Year Summary | 30          |
| 11     Water Piping Costs                                                           | 31          |
| 12     Average Quarterly Electricity Consumption (kWh) Per Housing Unit             | 34          |
| 13     Average Quarterly Gas Consumption (cu ft) Per Housing Unit                   | 37          |
| 14     Total Energy Consumption                                                     | 40          |
| 15     Ten-Year Summary of Energy Consumption and Cost                              | 40          |
| D1     CBU Energy Efficiency Data After Construction                                | 56          |
| D2     CBU Energy Efficiency Data 5 Years After Construction                        | 57          |
| E1     MHU Energy Efficiency Data After Construction                                | 59          |
| E2     Insulation Void Locations                                                    | 60          |
| E3     MHU Energy Data 5 Years After Construction                                   | 61          |

# **TEN-YEAR SUMMARY AND FINAL REPORT OF FORT IRWIN, CA, FAMILY HOUSING COMPARISON TEST: OPERATION AND MAINTENANCE COSTS OF MANUFACTURED vs. CONVENTIONALLY BUILT UNITS**

## **1 INTRODUCTION**

### **Background**

Congress believed that use of manufactured (factory built) military housing, rather than conventionally built units, would result in lower overall costs and provide durable housing that meets contemporary housing standards. To verify this belief, Congress directed the Department of Defense (DOD) to construct 200 units of manufactured housing at Fort Irwin, CA, and compare them with similarly designed, conventionally built housing.<sup>1</sup> DOD was also directed to perform a study comparing the operation and maintenance (O&M) costs of the two types of construction over a 5-year period. The conditions and parameters for this test were submitted to Congress.

Results of the 5-year study showed no difference in O&M costs between the two types of construction. However, the Assistant Secretary of the Army for Installations, Logistics, and Environment, and managers at the Office of the Assistant Chief of Staff for Installation Management (OACS(IM)), U.S. Army Center for Public Works (USACPW), and the U.S. Army Construction Engineering Research Laboratories (USACERL) thought 5 years was too short a time for valid comparisons of O&M costs. Thus, USACERL was asked to continue collecting and analyzing data and to report results at the end of each year for an additional 5 years in order to identify broad trends. Then a final report based on 10 years of data was to be provided.

The manufactured units met Federal Manufactured Housing Construction and Safety Standards (FMHCSS); however, upgrades in certain criteria were specified to bring the units into conformance with DOD standards. These areas of concern included net usable floor space, energy efficiency, fire and life safety, and durability of certain materials and components. The study compared the impact of the modified FMHCSS versus standard DOD criteria, except for the essential criteria listed in the previous sentence.

The study began when the housing units were first occupied; initial occupancy of some units started in February 1983. The study compares 200 two-bedroom manufactured units to 144 two-bedroom, conventionally built units. The two types of units were similar in floor area, floor plans, and materials used.

The data collected address O&M costs for both types of housing. The study identifies not only the differences, if any, in O&M costs, but also the reasons for the differences and their importance for future construction criteria and construction methods.

### **Objective**

This report summarizes the O&M costs for both conventionally built and manufactured housing from construction through the first 10 years of occupancy.

---

<sup>1</sup> Report No. 97-44, *Military Construction Authorization Act* (House of Representatives Committee on Armed Services, 1982), pp 8-9.

## Approach

The first step was to develop uniform data collection and data analysis procedures. The cost comparisons and analyses for this study were established in USACERL Special Report (SR) P-140.<sup>2</sup> Data were collected throughout the study and summarized/reported yearly. First-year data were reported in USACERL Interim Report (IR) P-85/14;<sup>3</sup> second-year data in USACERL IR P-86/06;<sup>4</sup> third-year data in USACERL IR P-87/10;<sup>5</sup> fourth-year data in USACERL IR P-88/09;<sup>6</sup> 4 1/2-year data in USACERL IR P-89/14;<sup>7</sup> fifth-year data in USACERL TR P-90/11;<sup>8</sup> sixth-year data in USACERL TR P-91/37<sup>9</sup>; seventh-year date in USACERL TR FF-92/08;<sup>10</sup> eighth-year data in USACERL TR FF-93/09;<sup>11</sup> and ninth-year data in USACERL TR FF-94/21.<sup>12</sup>

Individuals were assigned to quarters with no distinction between the two types of units. The units all have the same floor area and were occupied by essentially the same ranks/ages of sponsors; assignment of families was not biased by the type of construction.

## Scope

Study costs were limited to the buildings themselves, as the intent of the study was to compare O&M costs of the two types of construction. Thus, sidewalks, driveways, streets, lawns, playgrounds, and utility lines outside the buildings were not included. Also, the replacement costs of refrigerators, kitchen stoves, and utility meters were excluded. (Because of these exclusions, the unit cost data in this report is *not comparable* to standard unit cost data reported for family housing in many Army financial reports, which normally includes costs such as streets and utility lines.)

---

<sup>2</sup> M.J. O'Connor, *Fort Irwin Housing Comparison Test*, Special Report (SR) P-140/ADA130349 (USACERL, 1983).

<sup>3</sup> R.D. Neathammer, *Fort Irwin, CA, Family Housing Comparison Test: Operation and Maintenance Costs of Manufactured vs. Conventionally Built Units*, Interim Report (IR) P-85/14/ADA159740 (USACERL, 1985).

<sup>4</sup> R.D. Neathammer, *Two-Year Summary of Fort Irwin, CA, Family Housing Comparison Test: Operation and Maintenance Costs of Manufactured vs. Conventionally Built Units*, IR P-86/06/ADA175995 (USACERL, 1986).

<sup>5</sup> R.D. Neathammer, *Three-Year Summary of Fort Irwin, CA, Family Housing Comparison Test: Operation and Maintenance Costs of Manufactured vs. Conventionally Built Units*, IR P-87/10/ ADA180001 (USACERL, 1987).

<sup>6</sup> R.D. Neathammer, *Four-Year Summary of Fort Irwin, CA, Family Housing Comparison Test: Operation and Maintenance Costs of Manufactured vs. Conventionally Built Units*, IR P-88/09/ADA190017 (USACERL, 1988).

<sup>7</sup> R.D. Neathammer, *May 1984 to September 1988 Summary of Fort Irwin, CA, Family Housing Comparison Test: Operation and Maintenance Costs of Manufactured vs. Conventionally Built Units*, IR P-89/14/ADA209421 (USACERL, 1989).

<sup>8</sup> R.D. Neathammer, *Five-Year Summary of Fort Irwin, CA, Family Housing Comparison Test: Operation and Maintenance Costs of Manufactured vs. Conventionally Built Units*, TR P-90/11/ADA222176 (USACERL, 1990).

<sup>9</sup> R.D. Neathammer, *Six-Year Summary of Fort Irwin, CA, Family Housing Comparison Test: Operation and Maintenance Costs of Manufactured vs. Conventionally Built Units*, TR P-91/37/ADA237479 (USACERL, 1991).

<sup>10</sup> R.D. Neathammer, *Seven-Year Summary of Fort Irwin, CA, Family Housing Comparison Test: Operation and Maintenance Costs of Manufactured vs. Conventionally Built Units*, TR FF-92/08/ADA256255 (USACERL, 1992).

<sup>11</sup> R.D. Neathammer, *Eight-Year Summary of Fort Irwin, CA, Family Housing Comparison Test: Operation and Maintenance Costs of Manufactured vs. Conventionally Built Units*, TR FF-93/09/ADA273102 (USACERL, 1993).

<sup>12</sup> R.D. Neathammer, *Nine-Year Summary of Fort Irwin, CA, Family Housing Comparison Test, Operation and Maintenance Costs of Manufactured vs. Conventionally Built Units*, TR FF-94/21/ADA280407 (USACERL, 1994).

## **2 REVIEW OF TEST PLAN**

USACERL SR P-140 detailed the cost data collection plan and analysis methods. Four basic questions on costs were:

1. Did the average annual O&M costs differ significantly?
2. If different, where were they significantly different?
3. Why did the costs differ?
4. What criteria, design features, etc., need to be changed as a result?

Overall maintenance costs and utility costs were compared separately. If significant differences were found, then the causes of these differences were determined.

In addition to the overall cost comparison, the maintenance costs for major building components were compared. These comparisons provide more detail about where and why cost differences occur.

Occupant satisfaction with the overall apartments and each physical part of the unit was compared for the two types of construction after the first 5 years of occupancy and reported in USACERL P-90/11. When occupant satisfaction differed for a building component, that component was evaluated to determine the reason for the difference.

### **3 DESCRIPTION OF THE FAMILY HOUSING UNITS**

#### **Manufactured Housing Units (MHUs)**

These 200 units consist of 50 two-story fourplexes (two units on each of the first and second floors). Net floor area is 950 sq ft/unit\* and gross area averages 1160 sq ft/unit. These were constructed on perimeter footings with wood floors and crawl spaces. Each upper unit has a balcony-porch and each lower unit has a patio with privacy fencing. Figure 1 shows front and rear views of typical buildings. Each unit has a refrigerator, gas range, gas water heater, garbage disposal, dishwasher, central air conditioning, and gas-fired forced-air furnace (all provided by the contractor). Each unit has two bedrooms, a kitchen, living-dining area, one bathroom, a utility room, and a one-car garage. The garage was constructed on site.

A detailed description of the construction process including photographs and floor plans for the units is shown in Appendix A.

The notice to proceed date was 10 January 1983. Initial occupancy was:

|    |       |        |
|----|-------|--------|
| 61 | units | Dec 83 |
| 7  | units | Jan 84 |
| 64 | units | Feb 84 |
| 57 | units | Apr 84 |
| 9  | units | May 84 |
| 2  | units | Jun 84 |

#### **Conventionally Built Units (CBUs)**

The 144 units consist of 13 sixplexes, 6 fiveplexes, and 9 fourplexes, all two-story buildings. Net floor area is 950 sq ft/unit and gross area averages 1120 sq ft/unit. These units were constructed on perimeter footings with building slab. Each unit has two bedrooms, a kitchen, living-dining area, one bathroom, utility room, either a fenced patio or balcony-porch (for upper unit), and a one-car garage. Figure 2 shows front and rear views of typical buildings. The fourplexes have two units on each level. There are two units on the second story in the five- and sixplexes with the additional unit(s) on the first level. The CBUs also have a refrigerator, gas range, gas water heater, garbage disposal, dishwasher, central air conditioning, and gas-fired forced-air furnace.

The notice to proceed date was 3 May 1982. Initial occupancy was:

|    |       |        |
|----|-------|--------|
| 8  | units | Feb 83 |
| 28 | units | Mar 83 |
| 38 | units | Apr 83 |
| 31 | units | May 83 |
| 23 | units | Jun 83 |
| 14 | units | Jul 83 |
| 2  | units | Aug 83 |

---

\* Metric conversions: 1 cu ft = 0.028 m<sup>3</sup>; 1 sq ft = 0.093 m<sup>2</sup>; °C = 0.55 x (°F-32).



Front View - MHU



Rear View - MHU

**Figure 1.** Front and rear views of typical MHUs.



Front View - CBU



Rear View - CBU

**Figure 2. Front and rear views of typical CBUs.**

A detailed description of all units can be found in the Los Angeles District Office report.<sup>13</sup> The buildings were not specifically adapted to the desert environment but are typical Southern California design.

## Costs

A clear-cut initial cost comparison of the two unit types was not possible. The 144 CBUs were part of a project of 254 units. The cost for this project was \$51.83/sq ft. The 200 MHUs costs were \$51.22/sq ft. However, the supervision and administration costs for the MHUs were based on the same 5 percent rate used for the CBUs. More labor was required since quality assurance inspection was required at the manufacturing plant as well as at the construction site. It was estimated that the additional labor would have raised the cost to \$55/sq ft (no records were kept as these are all indirect costs).

## General Comparison

Fort Irwin is located in a high desert environment. Annual rainfall averages 4 in, and temperatures often exceed 100 °F. The housing construction was not adapted to this climate but is representative of Southern California design. For example, rain gutters and downspouts were installed. As they began to fall off because of wind effects, they were not replaced.

The exterior finish of both unit types is stucco with some brick veneer on the garages. Exterior trim is painted wood. Asphalt shingles were used on both types, and gutters and downspouts were installed.

Interior walls are painted gypsum board. Floors on the second level are carpeted and are vinyl tile or vinyl sheet covering on the first floor.

Water piping is polybutylene in the MHUs and copper in the CBUs.

Windows are single pane in the MHUs and thermal pane in the CBUs.

First-story floors in MHUs are wood on crawl spaces and in CBUs are concrete slabs.

Grass was planted in the immediate yard area of the buildings, but not in play yard areas. Each first-floor unit has a concrete patio with a wooden privacy fence; each second-story unit has a wooden balcony-porch.

The Fort Irwin region averages 2,597 Heating Degree Days and 2,272 Cooling Degree Days annually.

---

<sup>13</sup> *Fort Irwin Family Housing Study—A Report on Manufactured/Factory-Built Housing and Site-Built Housing, Fort Irwin, CA* (U.S. Army Corps of Engineers, Los Angeles District, September 1984).

## **4 DATA COLLECTION PROCEDURES**

Data were collected in enough detail that any differences found between the two types of construction could be explained. Appendix B lists the housing units and their identification numbers used in the data collection. Appendix C lists the building components and subcomponents. Each service order was coded to a component so the costs of components could be compared. A discussion of the data collected is included in USACERL SR P-140.

### **Data Collection**

Discussions were held with representatives of the U. S. Army Engineering and Housing Support Center (USAEHSC) technical monitor; Forces Command Headquarters; Fort Irwin personnel; and the base operations contractor, Boeing Services International (BSI); to establish the best methods of collecting the data.

BSI was contracted to segregate all maintenance service orders for the test units and report the cost data to USACERL through the Fort Irwin Directorate of Engineering and Housing (DEH) monthly. BSI was also contracted to read gas and electric meters at the end of each month and report similarly.

A new contractor, Dynalectron (DynCorp), became the base operations contractor effective 1 October 1986 and has performed the same services.

### **Data Verification**

USACERL verified the reported data several ways. For the first 5 years, each original work order (WO) document was checked against the reported data forwarded by the contractor. Discrepancies were resolved on verification visits to Fort Irwin. Additionally, the contractor set up separate accounting codes for the two groups of units and the total billed was compared to the total obtained from summing all the individual WO data. For years 6 through 10 the reported data was checked for obvious errors, which were resolved with the contractor. No detailed validation of each WO was made as the purpose of the continued study was to search for overall trends.

USACERL developed a computer program to compare gas and electricity meter readings. When apparently erroneous data occurred, the contractor was notified and corrections made if needed.

### **Data Analysis**

#### *Maintenance Costs*

Maintenance costs were compared on a unit-month basis and yearly basis. The data were also summarized by building component to determine if one or more components for one of the types of units had large maintenance costs. If so, the reasons for these costs were determined to help define what criteria or design features should be reviewed/changed.

Cost differences could have been caused by material quality, installation, differences inherent to manufactured or conventional construction, and possible errors in specifications for the two projects.

Warranty work referred to the construction contractor was not included in the cost comparison since no cost data were available or applicable, as it was not a cost to the government. However, the cost of a service call to assess a problem was included.

### *Energy Consumption*

Gas and electricity consumption were compared on a quarterly basis and a yearly basis. Since most of the MHUs were not completed until May 1984, prior energy consumption data for the CBUs was not used in comparisons. (Energy consumption comparisons are valid only for the same time frame because of varying weather conditions.)

## 5 WHOLE HOUSE ENERGY TESTS

Energy evaluations of sample units of each type of construction were performed immediately after construction was completed on each of the two groups of housing and again after 5 years of occupancy. The objective was to determine if energy characteristics had changed over the 5-year period. Three whole-house energy tests were performed. Appendixes D and E give details of the tests for the CBUs and MHUs, respectively.

### House Tightness

The number of air changes per hour were measured with the following results:

| Type | Immediately After Construction |                                           |                                  | After 5 Years       |                                           |                                  |
|------|--------------------------------|-------------------------------------------|----------------------------------|---------------------|-------------------------------------------|----------------------------------|
|      | No.<br><u>Units</u>            | Average<br><u>Air Change<br/>Per Hour</u> | Standard<br><u>Deviation (%)</u> | No.<br><u>Units</u> | Average<br><u>Air Change<br/>Per Hour</u> | Standard<br><u>Deviation (%)</u> |
|      | CBU                            | 15                                        | 13.0                             | 1.06                | 15                                        | 12.1                             |
| MHU  | 12                             | 10.9                                      | 2.67                             | 14                  | 9.7                                       | 1.60                             |

A statistically significant difference existed between the two types of construction for both the initial and 5-year tests, the MHUs being more airtight on the average. Neither type of unit changed significantly over the 5 years. These results indicate that the MHUs should have had less air infiltration/leakage.

### Furnace Efficiency

The furnace efficiency results were as follows:

| Type | Immediately After Construction |                                             |                                  | After 5 Years       |                                             |                                  |
|------|--------------------------------|---------------------------------------------|----------------------------------|---------------------|---------------------------------------------|----------------------------------|
|      | No.<br><u>Units</u>            | Average<br><u>Efficiency %<br/>Per Hour</u> | Standard<br><u>Deviation (%)</u> | No.<br><u>Units</u> | Average<br><u>Efficiency %<br/>Per Hour</u> | Standard<br><u>Deviation (%)</u> |
|      | CBU                            | 13                                          | 66.2                             | 6.24                | 14                                          | 64.2                             |
| MHU  | 16                             | 79.3                                        | 3.36                             | 15                  | 77.3                                        | 2.84                             |

The furnace efficiencies of the MHUs were significantly higher than those of the CBU for both the initial and 5-year tests. Neither type of unit changed significantly over the 5 years.

### Wall Heat Transfer Characteristics

This parameter was not initially measured for the CBUs because of unfavorable weather during the testing period. This parameter was calculated for both types of construction using the designed wall construction.

| Type | No.<br><u>Units</u> | Average<br><u>Heat Loss<br/>(Btu/hr-°F)</u> |
|------|---------------------|---------------------------------------------|
| CBU  | 16                  | 1,072                                       |
| MHU  | 15                  | 1,220                                       |

## **Summary**

The whole-house energy tests did not conclusively indicate which type of unit would use less energy for heating/cooling. The CBUs are more energy efficient considering only the wall heat loss test, but the MHUs perform better when tested for air tightness and furnace efficiency. Additionally, the CBUs are built on concrete slabs while the MHUs have a crawl space. Houses on concrete slabs use less energy than houses on crawl spaces. This has an impact on the first floor units' energy use.

Therefore, the tests are inconclusive in predicting which type of construction would use more energy for heating/cooling.

## **6 OPERATION AND MAINTENANCE (O&M) COSTS**

O&M costs for each type of unit were compared over the first 10 years of occupancy. The test period for CBUs was 1 August 1983 through 31 July 1993; the test period for MHUs was 1 June 1984 through 31 May 1994.

### **Overall Costs**

The total housing unit-months and maintenance costs for the first 10 years of occupancy are shown in Table 1. (Maintenance includes all types of repairs and "preventive maintenance" performed.)

### **Discussion**

The MHUs cost about \$105/ month more than the CBUs over the first 10 years of occupancy; the difference in cost per unit per year is \$1,262. There were large increases in M&R costs in years 5, 7, 8, and 9. This is illustrated in Table 2, which shows M&R costs per year of occupancy.

Costs per unit have been increasing over time. Figure 3 shows the cumulative costs per unit per month for ages 15 to 120 months, illustrating this trend. The costs for the MHUs increased faster than for the CBUs. This trend can also be seen in Figure 4, which shows total costs per unit per year. Note: Figures 3 and 4 do not include the eaves cost in year 4 or the waterline replacement cost as these would distort the depiction of normal M&R cost growth.

Increased costs in years 5 and 8 were attributable partly to interior painting done in units vacated for the first time and in those which required painting on change of occupancy. Increased costs in years 8 and 9 for MHUs were due to water piping and roofing costs. Table 3 shows the painting costs per year of occupancy. Note the large increases for MHUs in year 5 and for CBUs in year 6. Painting costs for both increased again in year 9.

Table 4 lists the yearly costs excluding interior painting. This table shows that the MHUs' costs increased faster than the CBUs' through year 10. Both showed decreases in year 6 and increases in years 7, 8, and 9.

For comparison purposes, the M&R costs for all 1,808 permanent housing units (including the 144 CBU and 200 MHU test units) at Fort Irwin were:

FY94 - \$3,488,000 or \$1,929/unit

FY95 - \$3,780,000 or \$2,091/unit.

These costs cover all repairs, including those beyond the 5-ft line which the cost comparison did not cover. Thus, the study's year 10 costs of \$1,047 for CBUs and \$1,608 for MHUs are lower than the overall average cost for all units.

**Table 1**

### **Certain Equipment Costs**

**Unit/Month Costs in First 10 Years' Occupancy**

Since the purpose of this study was to compare maintenance costs attributable to the method of construction, a comparison was made excluding certain costs. Table 5 gives the costs for the 10 years of occupancy of each type unit for maintenance of water heaters,

| Type | No. Unit Months | Total Cost (\$) | Cost/Unit/ Month (\$) | Cost/Unit/ Year (\$) |
|------|-----------------|-----------------|-----------------------|----------------------|
| CBU  | 17,280          | 868,818         | 50                    | 603                  |
| MHU  | 24,000          | 3,729,854       | 155                   | 1,865                |

**Table 2**  
**Yearly M&R Costs by Type of Construction**

| Year                 | Total CBU (\$) | Cost/Unit (\$)  | Total MHU (\$)   | Cost/Unit (\$)    |
|----------------------|----------------|-----------------|------------------|-------------------|
| 1                    | 31,592         | 219             | 34,164           | 171               |
| 2                    | 29,107         | 202             | 59,076           | 295               |
| 3                    | 44,391         | 308             | 63,717           | 319               |
| *4                   | 45,565         | 316             | 449,328          | 2,247             |
| 5                    | 89,186         | 619             | 189,122          | 946               |
| 6                    | 96,700         | 672             | 175,725          | 879               |
| 7                    | 111,892        | 777             | 218,198          | 1,091             |
| 8                    | 104,370        | 725             | 474,394          | 2,372             |
| 9                    | 165,209        | 1,147           | 519,472          | 2,597             |
| 10                   | 150,807        | 1,047           | 321,658          | 1,608             |
| **                   | ---            | ---             | 1,225,000        | 6,125             |
| <b>10-Year Total</b> | <b>868,818</b> | <b>603./yr)</b> | <b>3,729,854</b> | <b>1,865./yr)</b> |

\*MHUs include the \$334,600 eaves repair discussed later in the report.

\*\*MHU plumbing replacement over several years.

garbage disposals, dishwashers, ranges, range hoods, and refrigerators (equipment not part of the construction process).

#### **Costs Excluding Interior Painting and Equipment Costs**

In Table 6 equipment costs and painting costs are excluded. The difference for unit cost is \$1,134 per year versus the \$1,262 difference in Table 1.

#### **Maintenance Costs Per Component**

Table 7 lists the frequencies of work orders and costs per building component for the two types of units. However, the costs are not directly comparable across the two types of units since there are 200 MHUs and 144 CBUs. Table 8 shows the cost data adjusted by multiplying the MHU costs by 0.72 (144/200). Also shown in Table 8 are the 10-year costs on a unit basis.

Table 8 shows that the total 10-year cost was less than \$1,000 for both construction types for 23 of the 80 components. For 42 of the other 57 components, the MHUs had a higher cost.

Neither Table 7 nor 8 includes the eaves cost in year 4 or the waterline replacement cost.



Figure 3. Cumulative cost per unit per month for ages 15 through 120 months.



Figure 4. Total costs per unit per year.

**Table 3**  
**Interior Painting Costs**

| <b>Year</b>   | <b>Total CBU (\$)</b> | <b>Cost/Unit (\$)</b> | <b>Total MHU (\$)</b> | <b>Cost/Unit (\$)</b> |
|---------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 1             | 603                   | 4                     | 314                   | 2                     |
| 2             | 1,234                 | 9                     | 4,486                 | 22                    |
| 3             | 7,031                 | 49                    | 13,231                | 66                    |
| 4             | 11,368                | 79                    | 24,343                | 122                   |
| 5             | 29,720                | 206                   | 80,485                | 402                   |
| 6             | 49,445                | 343                   | 74,764                | 374                   |
| 7             | 53,235                | 370                   | 67,676                | 338                   |
| 8             | 29,583                | 205                   | 76,157                | 381                   |
| 9             | 55,128                | 383                   | 102,533               | 513                   |
| 10            | 51,867                | 360                   | 104,442               | 522                   |
| 10-Year Total | 289,214               | 201/yr                | 548,431               | 274/yr                |

**Table 4**  
**Yearly M&R Costs Excluding Interior Painting Costs**

| <b>Year</b>       | <b>Total CBU (\$)</b> | <b>Cost/Unit (\$)</b> | <b>Total MHU (\$)</b> | <b>Cost/Unit (\$)</b> |
|-------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 1                 | 30,989                | 215                   | 33,850                | 169                   |
| 2                 | 27,873                | 194                   | 54,590                | 273                   |
| 3                 | 37,360                | 259                   | 50,486                | 252                   |
| 4                 | 34,197                | 237                   | 424,985               | 2,125                 |
| 5                 | 59,466                | 413                   | 108,637               | 543                   |
| 6                 | 47,255                | 328                   | 100,961               | 505                   |
| 7                 | 58,657                | 407                   | 150,522               | 753                   |
| 8                 | 74,787                | 519                   | 398,237               | 1,991                 |
| 9                 | 110,081               | 764                   | 416,939               | 2,085                 |
| 10                | 98,940                | 687                   | 217,216               | 1,086                 |
| *                 | ---                   | ---                   | 1,225,000             | 6,125                 |
| 10-Year Total     | 579,604               | 4,025                 | 3,181,423             | 15,907                |
| Cost/unit/yr (\$) | ---                   | 402                   | ---                   | 1,591                 |

\* Plumbing replacement costs.

**Table 5**  
**Certain Equipment Costs**

| <b>Year</b>   | <b>Total CBU (\$)</b> | <b>Cost/Unit (\$)</b> | <b>Total MHU (\$)</b> | <b>Cost/Unit (\$)</b> |
|---------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 1             | 4,007                 | 29                    | 6,658                 | 33                    |
| 2             | 3,640                 | 25                    | 10,683                | 53                    |
| 3             | 5,810                 | 40                    | 10,121                | 51                    |
| 4             | 4,850                 | 34                    | 18,978                | 95                    |
| 5             | 7,658                 | 53                    | 25,446                | 127                   |
| 6             | 5,990                 | 42                    | 30,316                | 152                   |
| 7             | 8,318                 | 58                    | 22,105                | 111                   |
| 8             | 7,034                 | 49                    | 39,550                | 198                   |
| 9             | 13,199                | 92                    | 26,819                | 134                   |
| 10            | 11,971                | 83                    | 18,681                | 93                    |
| 10-Year Total | 72,478                | 50/yr                 | 209,359               | 105/yr                |

**Table 6**  
**Unit Costs Excluding Certain Equipment and Painting Costs**

| <b>Year</b>   | <b>Total CBU (\$)</b> | <b>Cost/Unit (\$)</b> | <b>Total MHU (\$)</b> | <b>Cost/Unit (\$)</b> |
|---------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 1             | 26,982                | 187                   | 27,192                | 136                   |
| 2             | 24,233                | 168                   | 43,907                | 220                   |
| 3             | 31,550                | 219                   | 40,365                | 202                   |
| 4             | 29,347                | 204                   | 406,007               | 3,030                 |
| 5             | 51,808                | 360                   | 83,191                | 416                   |
| 6             | 41,265                | 287                   | 70,645                | 353                   |
| 7             | 50,339                | 350                   | 128,417               | 642                   |
| 8             | 67,753                | 471                   | 358,687               | 1,791                 |
| 9             | 96,882                | 673                   | 390,120               | 1,951                 |
| 10            | 86,969                | 604                   | 198,535               | 991                   |
| *             | ---                   | ---                   | 1,225,000             | 6,125                 |
| 10-Year Total | 507,126               | 352/yr                | 2,972,064             | 1,486/yr              |

\* Plumbing replacement costs.

**Table 7**  
**Maintenance Actions Performed and Costs Per Component**

| <b>Component</b> |                               | <b>Maintenance/Repair Actions</b> |        |            |      | <b>Cost (\$)</b> |                    |              |
|------------------|-------------------------------|-----------------------------------|--------|------------|------|------------------|--------------------|--------------|
| <b>No.</b>       | <b>Description</b>            | <b>CBU</b>                        |        | <b>MHU</b> |      | <b>CBU</b>       | <b>Cost (\$)</b>   |              |
|                  |                               | (N=18,597)*                       |        | (N=30,448) |      | (Total= 868,818) | (Total= 2,170,254) |              |
| 101              | Roofing surface               | 205                               | (1%)** | 458        | (2%) | 20924            | (2%)               | 347920 (16%) |
| 103              | Flashing, vents               | 35                                |        | 24         |      | 774              |                    | 1434         |
| 104              | Gutters and downspouts        | 267                               | (1%)   | 319        | (1%) | 4334             |                    | 4877         |
| 105              | Other roof repairs            | 0                                 |        | 2          |      | 0                |                    | 16           |
| 201              | Foundation and anchorage      | 3                                 |        | 2          |      | 24               |                    | 24           |
| 202              | Structure                     | 20                                |        | 75         |      | 377              |                    | 2851         |
| 203              | Insulation                    | 3                                 |        | 0          |      | 42               |                    | 0            |
| 204              | Masonry                       | 12                                |        | 25         |      | 537              |                    | 2282         |
| 205              | Exterior siding               | 4                                 |        | 3          |      | 207              |                    | 280          |
| 206              | Exterior doors and frames     | 755                               | (4%)   | 1149       | (4%) | 21637            | (2%)               | 35535 (2%)   |
| 207              | Storm and screen doors        | 900                               | (5%)   | 1268       | (4%) | 33808            | (4%)               | 51303 (2%)   |
| 208              | Windows and frames            | 196                               | (1%)   | 274        | (1%) | 5193             | (1%)               | 8380         |
| 209              | Storm windows and screens     | 456                               | (2%)   | 422        | (1%) | 11859            | (1%)               | 9750         |
| 210              | Exterior trim                 | 0                                 |        | 2          |      | 0                |                    | 26           |
| 211              | Porch/deck                    | 5                                 |        | 5          |      | 102              |                    | 159          |
| 212              | Interior drywall              | 316                               | (2%)   | 888        | (3%) | 9194             | (1%)               | 59989 (3%)   |
| 213              | Wall coverings and paneling   | 13                                |        | 1          |      | 249              |                    | 83           |
| 214              | Interior doors                | 1528                              | (8%)   | 1605       | (5%) | 31503            | (4%)               | 27992 (1%)   |
| 215              | Interior casework             | 58                                |        | 94         |      | 1067             |                    | 2191         |
| 216              | Bathroom accessories          | 257                               | (1%)   | 275        | (1%) | 5612             | (1%)               | 4011         |
| 217              | Kitchen accessories, cabinets | 404                               | (2%)   | 607        | (2%) | 7553             | (1%)               | 15162 (1%)   |
| 218              | Drapery hardware              | 30                                |        | 102        |      | 504              |                    | 2165         |
| 219              | Other exterior/interior       | 372                               | (2%)   | 735        | (2%) | 19006            | (2%)               | 70268 (3%)   |
| 220              | Garage doors                  | 762                               | (4%)   | 582        | (2%) | 22908            | (3%)               | 14384 (1%)   |
| 301              | Resilient flooring            | 55                                |        | 380        | (1%) | 2088             |                    | 18379 (1%)   |
| 302              | Carpet and pad                | 20                                |        | 94         |      | 1112             |                    | 6298         |
| 304              | Underlayment/substrate        | 2                                 |        | 6          |      | 13               |                    | 70           |
| 305              | Other flooring                | 42                                |        | 250        | (1%) | 7076             | (1%)               | 35024 (2%)   |
| 401              | Paint, walls and ceilings     | 380                               | (2%)   | 588        | (2%) | 285709           | (33%)              | 530529 (24%) |
| 402              | Paint, trim                   | 1                                 |        | 0          |      | 20               |                    | 0            |
| 403              | Paint, touchup, interior      | 127                               | (1%)   | 352        | (1%) | 3484             |                    | 17903 (1%)   |
| 404              | Bathtub, shower caulking      | 292                               | (2%)   | 437        | (1%) | 4409             | (1%)               | 6965         |
| 405              | Other interior painting       | 38                                |        | 23         |      | 881              |                    | 975          |
| 501              | Paint, exterior walls         | 3                                 |        | 3          |      | 92               |                    | 45           |
| 502              | Paint, exterior doors, frames | 6                                 |        | 5          |      | 141              |                    | 125          |
| 503              | Paint, exterior trim          | 0                                 |        | 13         |      | 0                |                    | 17767 (1%)   |
| 504              | Exterior caulking             | 0                                 |        | 1          |      | 0                |                    | 20           |
| 506              | Other exterior painting       | 2                                 |        | 3          |      | 44               |                    | 75           |
| 601              | Heating plant, valve          | 102                               | (1%)   | 56         |      | 3617             |                    | 4000         |
| 602              | Motors, blowers, pumps        | 62                                |        | 95         |      | 4399             | (1%)               | 6674         |
| 603              | Ducts                         | 3                                 |        | 42         |      | 148              |                    | 2837         |
| 604              | Piping                        | 7                                 |        | 6          |      | 190              |                    | 293          |
| 605              | Diffusers, grills             | 14                                |        | 66         |      | 325              |                    | 1049         |
| 606              | Insulation                    | 0                                 |        | 2          |      | 0                |                    | 61           |
| 607              | Heating controls              | 149                               | (1%)   | 101        |      | 6612             | (1%)               | 4447         |
| 608              | Other heating                 | 577                               | (3%)   | 930        | (3%) | 12832            | (1%)               | 30140 (1%)   |
| 701              | Cooling coils, compressor     | 48                                |        | 55         |      | 9719             | (1%)               | 3884         |
| 702              | A/C motors, blowers, pumps    | 111                               | (1%)   | 130        |      | 10307            | (1%)               | 8987         |
| 703              | A/C piping, ducting           | 7                                 |        | 44         |      | 180              |                    | 1419         |
| 704              | A/C refrigerant               | 394                               | (2%)   | 205        | (1%) | 13860            | (2%)               | 7004         |
| 705              | A/C insulation                | 1                                 |        | 0          |      | 7                |                    | 0            |
| 706              | A/C controls                  | 105                               | (1%)   | 90         |      | 4644             | (1%)               | 3601         |
| 707              | Other cooling                 | 1055                              | (6%)   | 1487       | (5%) | 41106            | (5%)               | 61031 (3%)   |

\*N = Number of maintenance actions

\*\*Percents are given for number maintenance actions and costs when the value is 1% or more of the total.

Table 7 (Cont'd)

| <u>Component</u> |                            | <u>Maintenance/Repair Actions</u> |      |      | <u>Cost (\$)</u> |       |             |
|------------------|----------------------------|-----------------------------------|------|------|------------------|-------|-------------|
| No.              | Description                | CBU                               | MHU  | CBU  | MHU              |       |             |
| 801              | Water heater               | 315                               | (2%) | 748  | (2%)             | 7398  | (1%)        |
| 803              | Piping, supply             | 195                               | (1%) | 1528 | (5%)             | 9245  | (1%)        |
| 804              | Faucets and shower heads   | 868                               | (5%) | 1778 | (6%)             | 26466 | (3%)        |
| 805              | Lavatories                 | 493                               | (3%) | 1106 | (4%)             | 10098 | (1%)        |
| 806              | Water closets              | 909                               | (5%) | 1364 | (4%)             | 21034 | (2%)        |
| 807              | Bathtub/shower unit        | 182                               | (1%) | 517  | (2%)             | 4046  |             |
| 809              | Other plumbing             | 247                               | (1%) | 830  | (3%)             | 5970  | (1%)        |
| 901              | Service entrance           | 2                                 |      | 2    |                  | 65    | 188         |
| 902              | Panel box/circuit breakers | 78                                |      | 189  | (1%)             | 3241  | 8733        |
| 903              | Branch circuits            | 21                                |      | 21   |                  | 945   | 1358        |
| 904              | Wall receptacles           | 366                               | (2%) | 611  | (2%)             | 8237  | (1%)        |
| 905              | Doorbells and chimes       | 2                                 |      | 2    |                  | 46    | 34          |
| 906              | Light fixtures             | 1557                              | (8%) | 1551 | (5%)             | 31939 | (4%)        |
| 907              | Vents, fans                | 54                                |      | 68   |                  | 1403  | 1850        |
| 908              | Other electrical           | 53                                |      | 62   |                  | 2020  | 4712        |
| 1001             | Garbage disposal           | 469                               | (3%) | 929  | (3%)             | 10210 | (1%)        |
| 1002             | Dishwasher                 | 430                               | (2%) | 1154 | (4%)             | 26180 | (3%)        |
| 1003             | Range                      | 978                               | (5%) | 1428 | (5%)             | 26496 | (3%)        |
| 1004             | Range hood                 | 108                               | (1%) | 111  |                  | 2097  | 1980        |
| 1005             | Refrigerator               | 269                               | (1%) | 603  | (2%)             | 6819  | (1%)        |
| 1006             | Other equipment            | 158                               | (1%) | 243  | (1%)             | 1818  | 3557        |
| 1201             | Water supply               | 93                                | (1%) | 218  | (1%)             | 2422  | 9349        |
| 1202             | Gas supply                 | 83                                |      | 162  | (1%)             | 2386  | 6192        |
| 1203             | Electrical service         | 68                                |      | 96   |                  | 6318  | (1%)        |
| 1204             | Sanitary/sewer lines       | 5                                 |      | 4    |                  | 657   | 191         |
| 1205             | Other utility service      | 0                                 |      | 1    |                  | 0     | 8           |
| 1300             | Miscellaneous              | 390                               | (2%) | 741  | (2%)             | 40831 | (5%)        |
|                  |                            |                                   |      |      |                  |       | 152429 (7%) |

Table 8

## Maintenance Costs Per Component, Adjusted by Number of Units

| No. | Description                   | Costs (\$) |        |                  |           |           |
|-----|-------------------------------|------------|--------|------------------|-----------|-----------|
|     |                               | CBU        | MHU    | MHU<br>Adjusted* | CBU/144** | MHU/200** |
| 101 | Roofing surface               | 20924      | 347920 | 250502           | 145       | 1740      |
| 103 | Flashing, vents               | 774        | 1434   | 1032             | 5         | 7         |
| 104 | Gutters and downspouts        | 4334       | 4877   | 3511             | 30        | 24        |
| 105 | Other roof repairs            | 0          | 16     | 12               | 0         | 0         |
| 201 | Foundations and anchorage     | 24         | 24     | 17               | 0         | 0         |
| 202 | Structure                     | 377        | 2851   | 2053             | 3         | 14        |
| 203 | Insulation                    | 42         | 0      | 0                | 0         | 0         |
| 204 | Masonry                       | 537        | 2282   | 1643             | 4         | 11        |
| 205 | Exterior siding               | 207        | 280    | 202              | 1         | 1         |
| 206 | Exterior doors and frames     | 21637      | 35535  | 25585            | 150       | 178       |
| 207 | Storm and screen doors        | 33808      | 51303  | 36938            | 235       | 257       |
| 208 | Windows and frames            | 5193       | 8380   | 6034             | 36        | 42        |
| 209 | Storm windows and screens     | 11859      | 9750   | 7020             | 82        | 49        |
| 210 | Exterior trim                 | 0          | 26     | 19               | 0         | 0         |
| 211 | Porch/deck                    | 102        | 159    | 114              | 1         | 1         |
| 212 | Interior drywall              | 9194       | 59989  | 43192            | 64        | 300       |
| 213 | Wall coverings and paneling   | 249        | 83     | 60               | 2         | 0         |
| 214 | Interior doors                | 31503      | 27992  | 20154            | 219       | 140       |
| 215 | Interior casework             | 1067       | 2191   | 1578             | 7         | 11        |
| 216 | Bathroom accessories          | 5612       | 4011   | 2888             | 39        | 20        |
| 217 | Kitchen accessories, cabinets | 7553       | 15162  | 10917            | 52        | 76        |
| 218 | Drapery hardware              | 504        | 2165   | 1559             | 4         | 11        |
| 219 | Other exterior/interior       | 19006      | 70268  | 50593            | 132       | 351       |
| 220 | Garage doors                  | 22908      | 14384  | 10356            | 159       | 72        |

Table 8 (Cont'd)

| No.  | Component                     | Costs (\$) |           |                  |           |
|------|-------------------------------|------------|-----------|------------------|-----------|
|      |                               | CBU        | MHU       | MHU<br>Adjusted* | CBU/144** |
| 301  | Resilient flooring            | 2088       | 18379     | 13233            | 14        |
| 302  | Carpet and pad                | 1112       | 6298      | 4535             | 8         |
| 304  | Underlayment/substrate        | 13         | 70        | 50               | 0         |
| 305  | Other flooring                | 7076       | 35024     | 25217            | 49        |
| 401  | Paint, walls and ceilings     | 285709     | 530529    | 381981           | 1984      |
| 402  | Paint, trim                   | 20         | 0         | 0                | 0         |
| 403  | Paint, touchup, interior      | 3484       | 17903     | 12890            | 24        |
| 404  | Bathtub, shower caulking      | 4409       | 6965      | 5015             | 31        |
| 405  | Other interior painting       | 881        | 975       | 702              | 6         |
| 501  | Paint, exterior walls         | 92         | 45        | 32               | 1         |
| 502  | Paint, exterior doors, frames | 141        | 125       | 90               | 1         |
| 503  | Paint, exterior trim          | 0          | 17767     | 12792            | 0         |
| 504  | Exterior caulking             | 0          | 20        | 14               | 0         |
| 506  | Other exterior painting       | 44         | 75        | 54               | 0         |
| 601  | Heating plant, valve          | 3617       | 4000      | 2880             | 25        |
| 602  | Motors, blowers, pumps        | 4339       | 6674      | 4805             | 31        |
| 603  | Ducts                         | 148        | 2837      | 2043             | 1         |
| 604  | Piping                        | 190        | 293       | 211              | 1         |
| 605  | Diffusers, grills             | 325        | 1049      | 755              | 2         |
| 606  | Insulation                    | 0          | 61        | 44               | 0         |
| 607  | Heating controls              | 6612       | 4447      | 3202             | 46        |
| 608  | Other heating                 | 12832      | 30140     | 21701            | 89        |
| 701  | Cooling coils, compressor     | 9719       | 3884      | 2796             | 67        |
| 702  | A/C motors, blowers, pumps    | 10307      | 8987      | 6471             | 72        |
| 703  | A/C piping, ducts             | 180        | 1419      | 1022             | 1         |
| 704  | A/C refrigerant               | 13860      | 7004      | 5043             | 96        |
| 705  | A/C insulation                | 7          | 0         | 0                | 0         |
| 706  | A/C controls                  | 4644       | 3601      | 2593             | 32        |
| 707  | Other cooling                 | 41106      | 61031     | 43942            | 285       |
| 801  | Water heater                  | 7398       | 31603     | 22754            | 51        |
| 803  | Piping, supply                | 9245       | 117834    | 84840            | 64        |
| 804  | Faucets and shower heads      | 26466      | 49206     | 35428            | 184       |
| 805  | Lavatories                    | 10098      | 33728     | 24284            | 70        |
| 806  | Water closets                 | 21034      | 31581     | 22738            | 146       |
| 807  | Bathtub/shower unit           | 4046       | 13843     | 9967             | 28        |
| 809  | Other plumbing                | 5970       | 31513     | 22689            | 41        |
| 901  | Service entrance              | 65         | 188       | 135              | 0         |
| 902  | Panel box/circuit breakers    | 3241       | 8733      | 6288             | 23        |
| 903  | Branch circuits               | 945        | 1358      | 978              | 7         |
| 904  | Wall receptacles              | 8237       | 17290     | 12449            | 57        |
| 905  | Doorbells and chimes          | 46         | 34        | 24               | 0         |
| 906  | Light fixtures                | 31939      | 38715     | 27875            | 222       |
| 907  | Vents, fans                   | 1403       | 1850      | 1332             | 10        |
| 908  | Other electrical              | 2020       | 4712      | 3393             | 14        |
| 1001 | Garbage disposal              | 10210      | 24077     | 17335            | 71        |
| 1002 | Dishwasher                    | 26180      | 91598     | 65951            | 182       |
| 1003 | Range                         | 26496      | 36729     | 26445            | 184       |
| 1004 | Range hood                    | 2097       | 1980      | 1426             | 15        |
| 1005 | Refrigerator                  | 6819       | 21058     | 15162            | 47        |
| 1006 | Other equipment               | 1818       | 3557      | 2561             | 13        |
| 1201 | Water supply                  | 2422       | 9349      | 6731             | 17        |
| 1202 | Gas supply                    | 2386       | 6192      | 4458             | 17        |
| 1203 | Electrical service            | 6318       | 10214     | 7354             | 44        |
| 1204 | Sanitary/sewer lines          | 657        | 191       | 138              | 5         |
| 1205 | Other utility service         | 0          | 8         | 6                | 0         |
| 1300 | Miscellaneous                 | 40831      | 152429    | 109749           | 284       |
|      | Totals                        | 868,818    | 2,170,254 | 1,562,583        | 762       |

\*The MHU column adjusted by multiplying by 0.72.

\*\*These are costs per unit for the 10 years.

Most of the costs shown in Tables 7 and 8 were for building components independent of type of construction. For example, about \$26,000 was spent on the ranges (#1003) for each type, \$26,000 for CBUs and \$66,000 for MHUs was spent on dishwashers (#1002), and over \$28,000 was spent on light fixtures (#906) for each type. Although a large difference existed for painting, Comp 401, this cost depended on rotation of occupants and occupant wear and tear. Complete or extensive quarters painting was done on 407 MHUs and 243 CBUs. The large difference in roofing surface resulted from reroofing in the MHUs in years 8 and 9.

Note the \$17,767 cost for exterior-trim painting of MHUs and \$0 for CBUs (component no. 503). The exterior trim was to be painted on a cyclic basis. The CBU cycle in 1988 was deferred. Both CBU and MHU exterior-trim painting for 1989-94 was deferred. The most significant costs for components are shown in Table 9.

**Table 9**  
**Components With Differing Costs for Type of Construction**

| Comp |                                | CBU (\$) | MHU (\$) | MHU (\$)<br>Adjusted |
|------|--------------------------------|----------|----------|----------------------|
| 101  | Roofing Surface                | 20,924   | 347,920  | 250,502              |
| 212  | Interior Drywall               | 9,194    | 59,989   | 43,192               |
| 214  | Interior Doors                 | 31,503   | 27,992   | 20,154               |
| 219  | Other Exterior/Interior Repair | 19,006   | 70,268   | 50,593               |
| 220  | Garage Doors                   | 22,908   | 14,384   | 10,356               |
| 301  | Resilient Flooring             | 2,088    | 18,379   | 13,233               |
| 305  | Other Flooring                 | 7,076    | 35,024   | 25,217               |
| 803  | Water Piping                   | 9,245    | 117,834  | 84,840               |
| 804  | Faucet/Shower Heads            | 26,466   | 49,206   | 35,428               |
| 805  | Lavatories                     | 10,098   | 33,728   | 24,284               |
| 809  | Other Plumbing                 | 5,970    | 31,513   | 22,689               |

#### Component by Component Analysis of Table 9

A repair action as discussed below was either (a) a service order or (b) a task accomplished under the "cyclic maintenance" (CM) program conducted in some years or a task accomplished under vacant quarters maintenance (VQM). In CM or VQM, the maintenance personnel corrected all deficiencies found during their inspection or wrote a service order to make the repair. Thus, many actions done during CM/VQM would not have been done on a called-in service order as they were very minor in nature, such as a chipped floor tile or scratch on a door.

#### 101 - Roofing Surface

|      | # Repair Actions | # Actions > \$100 |
|------|------------------|-------------------|
| CBUs | 507              | 63                |
| MHUs | 458              | 170               |

Comments - The largest repair for CBUs was \$877 to replace four squares of shingles. Until 1992, the largest action cost \$859. As stated in the 5-year report, an inspection of the shingles on the MHUs showed low quality installation—e.g., too few staples were used per shingle. Additionally, the MHUs are in a very windy part of the base and low pitched shingle roofs were not appropriate.

#### 212 - Interior Drywall

|      | # Repair Actions | # Actions > \$100 |
|------|------------------|-------------------|
| CBUs | 316              | 7                 |
| MHUs | 888              | 149               |

Comments - Most actions were minor repairs done during CM or VQM. For MHUs, the largest cost was \$1,372 for a ceiling repair after a water leak. Most of the 149 actions costing more than \$100 were repairs after water leaks, with a total cost of \$35,137.

#### 214 - Interior Doors

|      | #Repair Actions | \$ Actions > \$100 |
|------|-----------------|--------------------|
| CBUs | 1528            | 40                 |
| MHUs | 1605            | 20                 |

Comments - Most repairs were very minor and were done during CM or VQM. i.e., any little scratch/dent was repaired, hinges tightened, door stops replaced, etc.

#### 219 - Other Exterior/Interior

|      | # Repair Actions | # Actions > \$100 |
|------|------------------|-------------------|
| CBUs | 372              | 72                |
| MHUs | 735              | 267               |

Comments - This component includes venetian blinds. Of the 372 CBU actions, 317 were on venetian blinds and all of the 72 actions over \$100 were for venetian blinds. Similarly for MHUs, 679 actions were for venetian blinds, and all but two of the 267 actions over \$100 were for replacing venetian blinds.

#### 220 - Garage Doors

|      | # Repair Actions | # Actions > \$100 |
|------|------------------|-------------------|
| CBUs | 762              | 33                |
| MHUs | 582              | 15                |

Comments - Most of the actions for both CBUs and MHUs were done on CM or VQM. Most of these were minor—renail strips of wood, adjust cabling, adjust locks, etc.

#### 301 - Resilient Flooring

|      | # Repair Actions | # Actions > \$100 |
|------|------------------|-------------------|
| CBUs | 55               | 4                 |
| MHUs | 730              | 44                |

Comments - Most of the actions were accomplished during CM or VQM and most were for small repairs—replace/repair a few tiles. The much larger number for MHUs is partially due to the modular construction being less rigid, with settling causing tile cracking. Additionally, the MHUs' floors received much water damage from water pipe leaks. As the MHUs piping is being replaced, many of the floors are being carpeted because of floor tile condition and the higher cost to repair/replace tiles versus laying carpet over them.

#### 305 - Other Flooring

|      | # Repair Actions | # Actions > \$100 |
|------|------------------|-------------------|
| CBUs | 42               | 2                 |
| MHUs | 250              | 70                |

Comments - One of the CBU actions was a floor replacement, costing \$5,795. Again, damage from water piping leaks was a cause for many of the MHU actions. For MHUs, 66 actions were on CM or VQM. Four of those over \$100 were over \$800—\$1,909, \$2,067, \$2,164, and \$4,294—the total of the 70 actions was \$29,072.

#### 0803 - Water Piping

|      | # Repair Actions | # Actions > \$100 |
|------|------------------|-------------------|
| CBUs | 195              | 23                |
| MHUs | 1,528            | 413               |

Comments - The large number of actions for MHUs verifies the water piping problem discussed later in this section of the report. USACERL Technical Report FF-93/09 (see page 8, footnote 11) discusses the water piping problem in detail. Use of inappropriate acetal fittings created numerous piping failures and resulted in the decision to replace all water piping in the MHUs at a cost of over \$1.2M.

#### 0804 - Faucet/Shower Heads

|      | # Repair Actions | # Actions > \$100 |
|------|------------------|-------------------|
| CBUs | 868              | 32                |
| MHUs | 1,778            | 46                |

Comments - Over 300 of the CBU and over 800 of the MHU actions were accomplished during normal CM or VQM, indicating many minor actions such as leaking heads.

#### 0805 - Lavatories

|      | # Repair Actions | # Actions > \$100 |
|------|------------------|-------------------|
| CBUs | 593              | 1                 |
| MHUs | 1,106            | 66                |

Comments - Over half of the CBU actions were done on CM or VQM. Some 212 of the CBU actions were recaulking sinks. Similarly, over half of the MHU actions were done on CM or VQM. Some 243 of the MHU actions were recaulking sinks. Most of the 66 MHU actions over \$100 were replacements. These actions are done on CM/VQM to put the unit in good shape.

## 0809 - Other Plumbing

|      | # Repair Actions | # Actions > \$100 |
|------|------------------|-------------------|
| CBUs | 247              | 7                 |
| MHUs | 830              | 45                |

Comments - Most of the actions for CBUs and MHUs were CM or VQM. For CBUs, 169 were repairs on drains, and for MHUs, 485 were repairs on drains.

Table 10 groups the Table 8 data into the 12 major building component codes (Appendix C). Although the 0201-0220 structure is a high cost item, Table 8 shows most of these costs are related to doors and windows, and some of the damage to these items was caused by the occupant. Note the plumbing costs for the MHUs is 2.6 times that for the CBUs.

### Water Piping Problems Discussion

The manufacturer used polybutylene piping in the MHU units. The piping was installed in the building modules at the plant in Southern California and many connections made after the modules were assembled at Fort Irwin (after 200 miles of transportation).

These manufactured apartments are two-story fourplexes; two units above two units. Piping runs through walls, the ceiling of the first floor units (i.e., the floor of the upper units) and under the first floor units in the crawl space.

There have been many leaks in the piping with several major breaks in a "tec" joint in the ceiling of the first floor units of the MHUs. A detailed analysis of plumbing service orders shows a higher cost for MHUs for the category leaking or broken piping. Costs for each of the 10 years are shown in Table 11.

Most leaks are breaks of the hard plastic tees and valves, usually under the crimped metal band. The problem is so bad that all piping is to be replaced at an estimated cost of \$1.2 million.

**Table 10**  
**Maintenance Actions Performed and Costs for Component Group, 10-Year Summary**

| Component Group | Description       | <b>Maintenance/Repair Actions</b> |             |               |               | <b>Cost (\$)</b> |            |  | <b>MHU Adjusted</b> |  |
|-----------------|-------------------|-----------------------------------|-------------|---------------|---------------|------------------|------------|--|---------------------|--|
|                 |                   | <b>CBU</b>                        | <b>MHU</b>  |               |               | <b>CBU</b>       | <b>MHU</b> |  |                     |  |
|                 |                   |                                   |             | (Total =      | (Total =      |                  |            |  |                     |  |
|                 |                   | (N=18,597)                        | (N=30,448)  |               |               | 868,818)         | 2,170,254  |  | 1,562,583           |  |
| 0101-0105       | Roofing           | 507 (3%)                          | 803 (3%)    | 26,032 (3%)   | 354,248 (16%) |                  |            |  | 255,059             |  |
| 0201-0220       | Structure         | 6,094 (33%)                       | 8,114 (27%) | 171,382 (20%) | 306,835 (14%) |                  |            |  | 220,921             |  |
| 0301-0305       | Floor coverings   | 119 (1%)                          | 730 (2%)    | 10,289 (1%)   | 59,772 (3%)   |                  |            |  | 43,036              |  |
| 0401-0405       | Interior painting | 848 (5%)                          | 1,400 (5%)  | 294,504 (34%) | 556,372 (26%) |                  |            |  | 400,588             |  |
| 0501-0506       | Exterior painting | 11 (0%)                           | 25 (0%)     | 277 (0%)      | 18,032 (1%)   |                  |            |  | 13,177              |  |
| 0601-0608       | Heating           | 914 (5%)                          | 1,298 (4%)  | 28,123 (3%)   | 49,500 (2%)   |                  |            |  | 35,640              |  |
| 0701-0707       | Air conditioning  | 1,721 (9%)                        | 2,011 (7%)  | 79,822 (9%)   | 85,926 (4%)   |                  |            |  | 61,867              |  |
| 0801-0809       | Plumbing          | 3,209 (17%)                       | 7,871 (26%) | 84,257 (10%)  | 309,307 (14%) |                  |            |  | 222,701             |  |
| 0901-0908       | Electrical        | 2,133 (11%)                       | 2,506 (8%)  | 47,897 (6%)   | 72,880 (4%)   |                  |            |  | 52,474              |  |
| 1001-1006       | Equipment         | 2,412 (13%)                       | 4,468 (15%) | 73,620 (8%)   | 178,998 (8%)  |                  |            |  | 128,879             |  |
| 1201-1205       | Utility service   | 249 (1%)                          | 481 (2%)    | 11,783 (1%)   | 25,953 (1%)   |                  |            |  | 18,686              |  |
| 1300            | Miscellaneous     | 390 (2%)                          | 741 (2%)    | 40,831 (5%)   | 152,429 (7%)  |                  |            |  | 109,749             |  |

**Table 11**  
**Water Piping Costs**

| Year  | CBUs (\$) | MHUs (\$) |
|-------|-----------|-----------|
| 1     | 776       | 1,134     |
| 2     | 473       | 2,524     |
| 3     | 408       | 758       |
| 4     | 408       | 1,769     |
| 5     | 108       | 2,462     |
| 6     | 487       | 4,870     |
| 7     | 557       | 12,458    |
| 8     | 1,665     | 33,270    |
| 9     | 1,978     | 39,558    |
| 10    | 2,386     | 19,030    |
| Total | 9,245     | 117,834   |

This problem is not new in the plastic pipe industry. A "60 Minutes" television program shown in December 1990 described many problems in the Southwest in using acetal fittings with these plumbing materials.

#### Summary of M&R Costs

The two major deficiencies found in the MHUs to date were the improperly installed hingeable eaves and the water piping. Both of these were caused by improper design (eaves), improper material specification, and poor quality workmanship (water piping). Neither of these problems is considered a defect due to the type of construction—manufactured. Although not due to type of construction (in this instance at Fort Irwin), the project will cost the Army an additional \$334,600 (eaves repair) + \$1,225,000 (piping replacement) = \$1,559,600

(\$7,800 per unit), which would not have occurred if the same conventional construction had been used as in the 144 units. Ignoring these two costs, the MHUs were still higher. In year 10, the MHUs cost \$1,608 - \$1,047 = \$561/unit more (statistically significant) than the CBUs overall and \$991 - \$604 = \$387 more excluding certain equipment and painting costs. About \$79 of these differences was due to water piping alone. The \$561 - \$79 = \$482 difference for overall M&R costs in year 10 is significant.

For the 10 years, the MHUs cost \$1,865 - \$603 = \$1,262/unit/yr more than the CBUs overall and \$1,486 - \$352 = \$1,134/unit/yr more excluding certain equipment and painting costs. About \$671 of these differences was due to water piping alone.

## 7 ENERGY COSTS

Comparisons of gas and electricity consumption began in May 1984, since most MHUs were not occupied before then.

### Electricity Consumption

The average quarterly electric usage (in kWh) per housing unit is shown in Table 12 and Figure 5. The MHUs had higher average consumptions than the CBUs in 17 of the 40 quarters and higher in 9 of the 10 summer quarters, Jun-Aug. For the entire 120-month data collection period, an MHU used an average total of 93,640 kWh, while a CBU used an average total of 93,654 kWh. This was a difference of  $6 \text{ kWh} \div 120 \text{ months} = 0 \text{ kWh/month}$ . For the 10 years the two types of housing used the same amount of electricity. Average yearly electricity usage is shown in Figure 6.

### Gas Consumption

The type of fuel used was liquid propane (LP). LP is delivered to a central facility on post and is converted to gas and distributed to housing units through underground pipes. The average quarterly usage (cu ft) per housing unit is shown in Table 13 and Figure 7.

For the 120-month period, an MHU used an average total of 191,260 cu ft while a CBU used an average total of 176,410 cu ft. The MHUs had higher average consumptions in 33 of the quarters, always higher in the winter, Dec-Feb, and in eight of the ten spring quarters, Mar-May. This is a difference of  $14,850 \text{ cu ft} \div 120 \text{ months} = 124 \text{ cu ft/month}$ . At the June cost of \$0.01663/cu ft, an MHU cost \$2.06 more than a CBU for gas per month. Average yearly gas usage is shown in Figure 8.

### Statistical Analysis of Consumption

One-way analysis of variance tests showed significant differences among the 10 years of data for gas and electricity consumption for each of the types of construction.

T-tests were performed comparing the construction types for each year for both gas and electricity consumption. Results are shown below:

| Average Consumptions for Each Year |      |        |        |       |       |       |        |        |        |        |       |
|------------------------------------|------|--------|--------|-------|-------|-------|--------|--------|--------|--------|-------|
|                                    | 1    | 2      | 3      | 4     | 5     | 6     | 7      | 8      | 9      | 10     |       |
| Electricity<br>(kWh)               | MHUs | 8613   | 9027   | 8895  | 8959  | 9658  | 9358   | 9279   | 10180  | 9904   | 9882  |
|                                    | CBUs | 8195   | 8757   | 9093  | 9255  | 9654  | 9223   | 9054   | 10251  | 10002  | 10200 |
| Gas<br>(Cu Ft)                     | MHUs | 21340* | 18020* | 19320 | 19890 | 19060 | 18320* | 20310* | 18420* | 19590* | 17010 |
|                                    | CBUs | 19200  | 16810  | 19010 | 19360 | 18170 | 16650  | 17470  | 16050  | 17600  | 16020 |
| Total<br>Energy<br>(MBtu/sf)       | MHUs | 89.79* | 82.12  | 85.36 | 86.96 | 87.39 | 84.28* | 89.53* | 87.40* | 89.77  | 82.45 |
|                                    | CBUs | 82.40  | 77.83  | 85.29 | 86.62 | 85.23 | 79.26  | 80.96  | 81.04  | 84.72  | 79.89 |

An asterisk (\*) means there is a statistically significant difference between the types of construction for average unit consumption for a year. (Tests were at the 99 percent confidence level.) Note there were no significant differences for electricity consumption.

## **Total Energy Consumption**

The total energy consumption for the housing units is shown in Table 14. It was calculated by converting the gas and electricity consumption data to MBtu/KSF. (One cubic foot of propane gas = 2,618.5 Btu and one kWh of electricity = 3,413 Btu.) The gross area of the housing units is approximately 1,160 sq ft for MHUs and 1,120 sq ft for CBUs, so multipliers of  $1000/1160 = 0.86$  and  $1000/1120 = 0.89$ , respectively, were used to convert usage to MBtu/KSF.

The two types used comparable amounts of energy: MHUs - 71 MBtu/yr and CBUs - 70 MBtu/yr. *Both of these are about 17 to 18 percent higher than the DOD Design Energy target of 60 MBtu/yr.*

## **Cost Comparison Summary**

The averages for dwelling unit energy consumption and cost for the 10-year period (Jun 1984 to May 1994) are given in Table 15. The MHUs on the average have cost \$25 more (2 percent) per year for gas and electricity than the CBUs.

## **Meter Problems**

Many meters have become defective over the past 10 years. For the CBUs, 49 electric and 9 gas meters have failed while for the MHUs, 20 electric and 5 gas have failed.

## **Comments**

The data in Chapter 5 (better air tightness and higher furnace efficiencies for the MHUs) would indicate the MHUs should use less energy than the CBUs. However, this is offset by the higher overall heat loss of the MHUs. Detailed energy simulations (performed using the Building Loads Analysis and System Thermodynamics\* program) indicate two design/construction features that cause the higher wall-heat loss: the MHUs have more window/door glass area; and the MHUs have single-pane glass while the CBUs have thermal-pane. Additionally, the CBUs were built on concrete slabs while the MHUs have crawl spaces, which are less energy efficient.

---

\*The Building Loads Analysis and System Thermodynamics (BLAST) program was developed by USACERL and is used throughout the Department of Defense for military construction projects.

Table 12

## Average Quarterly Electricity Consumption (kWh) Per Housing Unit

|     | 1984<br>Jun-Aug | Sep-Nov | 1984-5<br>Dec-Feb | 1985<br>Mar-May | Jun-Aug | Sep-Nov | 1985-6<br>Dec-Feb  | 1986<br>Mar-May |
|-----|-----------------|---------|-------------------|-----------------|---------|---------|--------------------|-----------------|
| MHU | 3492            | 2005    | 1399              | 1737            | 4053    | 1743    | 1470               | 1763            |
| CBU | 3263            | 1925    | 1353              | 1655            | 3752    | 1857    | 1410               | 1738            |
|     |                 |         |                   |                 |         |         |                    |                 |
|     |                 |         |                   |                 |         |         |                    |                 |
|     |                 |         |                   |                 |         |         |                    |                 |
|     |                 |         |                   |                 |         |         |                    |                 |
|     |                 |         |                   |                 |         |         |                    |                 |
|     |                 |         |                   |                 |         |         |                    |                 |
|     | 1986<br>Jun-Aug | Sep-Nov | 1986-7<br>Dec-Feb | 1987<br>Mar-May | Jun-Aug | Sep-Nov | 1987-8<br>Dec-Feb  | 1988<br>Mar-May |
| MHU | 3951            | 1778    | 1500              | 1725            | 3644    | 2191    | 1483               | 1702            |
| CBU | 3683            | 1934    | 1630              | 1813            | 3550    | 2411    | 1494               | 1768            |
|     |                 |         |                   |                 |         |         |                    |                 |
|     |                 |         |                   |                 |         |         |                    |                 |
|     |                 |         |                   |                 |         |         |                    |                 |
|     |                 |         |                   |                 |         |         |                    |                 |
|     | 1988<br>Jun-Aug | Sep-Nov | 1988-9<br>Dec-Feb | 1989<br>Mar-May | Jun-Aug | Sep-Nov | 1989-90<br>Dec-Feb | 1990<br>Mar-May |
| MHU | 3738            | 2366    | 1550              | 1996            | 3892    | 2192    | 1523               | 1750            |
| CBU | 3513            | 2445    | 1610              | 2024            | 3634    | 2180    | 1478               | 1823            |
|     |                 |         |                   |                 |         |         |                    |                 |
|     |                 |         |                   |                 |         |         |                    |                 |
|     | 1990<br>Jun-Aug | Sep-Nov | 1990-1<br>Dec-Feb | 1991<br>Mar-May | Jun-Aug | Sep-Nov | 1991-2<br>Dec-Feb  | 1992<br>Mar-May |
| MHU | 3796            | 2348    | 1473              | 1628            | 3654    | 2717    | 1664               | 2113            |
| CBU | 3406            | 2252    | 1600              | 1730            | 3616    | 2650    | 1680               | 2237            |
|     |                 |         |                   |                 |         |         |                    |                 |
|     |                 |         |                   |                 |         |         |                    |                 |
|     | 1992<br>Jun-Aug | Sep-Nov | 1992-3<br>Dec-Feb | 1993<br>Mar-May | Jun-Aug | Sep-Nov | 1993-4<br>Dec-Feb  | 1994<br>Mar-May |
| MHU | 4014            | 2486    | 1566              | 1855            | 4061    | 2406    | 1535               | 1880            |
| CBU | 3934            | 2322    | 1691              | 1974            | 3926    | 2578    | 1545               | 2151            |



Figure 5. Quarterly electricity consumption.



Figure 6. Yearly electricity consumption.

Table 13

## Average Quarterly Gas Consumption (cu ft) Per Housing Unit

|     | 1984<br>Jun-Aug | Sep-Nov | 1984-5<br>Dec-Feb | 1985<br>Mar-May | Jun-Aug | Sep-Nov | 1985-6<br>Dec-Feb  | 1986<br>Mar-May |
|-----|-----------------|---------|-------------------|-----------------|---------|---------|--------------------|-----------------|
| MHU | 1890            | 4400    | 10050             | 5130            | 1890    | 4440    | 7670               | 4020            |
|     | 1780            | 3750    | 9200              | 4500            | 1840    | 3970    | 7080               | 3950            |
| CBU |                 |         |                   |                 |         |         |                    |                 |
|     |                 |         |                   |                 |         |         |                    |                 |
|     | 1986<br>Jun-Aug | Sep-Nov | 1986-7<br>Dec-Feb | 1987<br>Mar-May | Jun-Aug | Sep-Nov | 1987-8<br>Dec-Feb  | 1988<br>Mar-May |
| MHU | 1800            | 3810    | 9340              | 4390            | 1910    | 3300    | 9930               | 4740            |
|     | 2130            | 3520    | 9070              | 4500            | 2160    | 3430    | 9500               | 4460            |
| CBU |                 |         |                   |                 |         |         |                    |                 |
|     |                 |         |                   |                 |         |         |                    |                 |
|     | 1988<br>Jun-Aug | Sep-Nov | 1988-9<br>Dec-Feb | 1989<br>Mar-May | Jun-Aug | Sep-Nov | 1989-90<br>Dec-Feb | 1990<br>Mar-May |
| MHU | 1880            | 3490    | 10000             | 3700            | 1920    | 3400    | 9080               | 3910            |
|     | 1960            | 3250    | 9400              | 3550            | 1960    | 3140    | 8160               | 3390            |
| CBU |                 |         |                   |                 |         |         |                    |                 |
|     |                 |         |                   |                 |         |         |                    |                 |
|     | 1990<br>Jun-Aug | Sep-Nov | 1990-1<br>Dec-Feb | 1991<br>Mar-May | Jun-Aug | Sep-Nov | 1991-2<br>Dec-Feb  | 1992<br>Mar-May |
| MHU | 1850            | 3350    | 9130              | 5980            | 1820    | 3290    | 8960               | 4250            |
|     | 1790            | 2920    | 7810              | 4950            | 1730    | 2780    | 7590               | 3950            |
| CBU |                 |         |                   |                 |         |         |                    |                 |
|     |                 |         |                   |                 |         |         |                    |                 |
|     | 1992<br>Jun-Aug | Sep-Nov | 1992-3<br>Dec-Feb | 1993<br>Mar-May | Jul-Aug | Sep-Nov | 1993-4<br>Dec-Feb  | 1994<br>Mar-May |
| MHU | 2400            | 3850    | 9720              | 4200            | 2110    | 3830    | 8090               | 3640            |
|     | 1720            | 3240    | 8870              | 3730            | 1990    | 3120    | 7660               | 3240            |



Figure 7. Quarterly gas consumption.



Figure 8. Yearly gas consumption.

**Table 14**  
**Total Energy Consumption**

|                           | <b>MHU</b>             |                              | <b>CBU</b>             |                              |
|---------------------------|------------------------|------------------------------|------------------------|------------------------------|
|                           | <b>Gas<br/>(cu ft)</b> | <b>Electricity<br/>(kWh)</b> | <b>Gas<br/>(cu ft)</b> | <b>Electricity<br/>(kWh)</b> |
| 10 year total             | 191,260                | 93,640                       | 176,410                | 93,654                       |
| Yearly average            | 19,126                 | 9,364                        | 17,641                 | 9,365                        |
| MBtu/year                 | 50.08                  | 31.96                        | 46.19                  | 31.96                        |
| Total energy per year     | 82.04 MBtu             |                              | 78.16 MBtu             |                              |
| Conversion to MBtu/ksq ft | 70.55 MBtu/yr*         |                              | 69.56 MBtu/yr*         |                              |

(MBtu = million British thermal units)

\* The DOD Design Energy target is 60 MBtu/yr.

**Table 15**  
**Ten-Year Summary of Energy Consumption and Cost**

|                                           | <b>MHU</b>             |                              | <b>CBU</b>             |                              |
|-------------------------------------------|------------------------|------------------------------|------------------------|------------------------------|
|                                           | <b>Gas<br/>(cu ft)</b> | <b>Electricity<br/>(kWh)</b> | <b>Gas<br/>(cu ft)</b> | <b>Electricity<br/>(kWh)</b> |
| Average Consumption/Year Per Housing Unit | 19,126                 | 9,364                        | 17,641                 | 9,365                        |
| Average Cost/Year Per Housing Unit        | \$318                  | \$895                        | \$293                  | \$895                        |
| Total Cost/Year                           | \$1,213                |                              | \$1,188                |                              |

## **8 CONCLUSIONS AND RECOMMENDATIONS**

### **Maintenance Costs**

After 10 years' occupancy, the two types of units have a significant difference in maintenance costs. For all 10 years, the MHUs cost \$1,134 more per unit per year for maintenance (ignoring interior painting and equipment costs, such as ranges and dishwashers). This is a 322 percent difference in costs (\$1,486/yr for MHU vs \$352/yr for CBU, Table 6).

### **Energy Costs**

MHUs cost slightly more than CBUs for energy used—\$25 more per unit per year for gas and electricity.

### **Water Piping**

The MHU water piping is being replaced. Piping failures not only significantly increased the cost, but also affected the morale of families in units with major problems. There is a significant difference to the government in costs between the two types of construction due to this problem.

### **Design and Construction Problems**

#### *Manufactured Units*

Fitting and valves for the polybutylene piping. As explained in the 8-year report, the acetal valves and fittings used were not appropriate for use with chlorine-treated or chlorinated water. Copper, brass, or polybutylene should be used. Also, the piping was improperly installed in many cases, resulting in crushed or flattened piping with nails sometimes driven into it. Consequently, the government paid some \$1.225 million to correct the problem by installing new lines in all 200 units. The failure of the acetal valves and fittings was not a problem unique to the units constructed at Fort Irwin, but occurred throughout the Southwest in the early 1980s.

Hinged eaves. The eaves were hinged to allow a module width that was transportable over the interstate highways. The single, flimsy metal straps were not appropriate to fasten the eaves, and the government paid \$0.335 million to properly fasten them to the structure.

Asphalt shingles. Asphalt shingles were used on low pitch roofs in a location subject to high winds. (New housing uses concrete Spanish-type tiles.) Also, construction was substandard as many strips had only one or two fasteners rather than the four specified by the Uniform Building Code.

Floor covering. Some cracking and buckling of resilient floor covering in the second floor units was due possibly to settling and movement of the modules. Costs for floor covering for the MHUs was four times that for the CBUs of the 10 years.

Gutters and downspouts. Gutters and downspouts were not needed for these units. At most, they need gutters over entranceways. As the gutters and downspouts fell, due to high winds, they were not replaced.

### *Conventionally Built Units*

Asphalt Shingles. These units experienced the same roofing problems as the MHUs, but not to the same extent. Their location on post was in less of a "wind tunnel." However, the same construction process quality defect was found—an inadequate number of staples used to fasten the shingle strips.

Garage Doors. The garage doors for these units were of poor design. Lightly built, the doors were significantly warped.

### **Specification Changes**

One purpose of the 5-year study as originally conceived was to use the test comparison results to improve the specifications used for manufactured housing. The original specifications failed to ensure good construction in two areas, roofing and water piping.

#### *Roofing*

The specification was for "220# Class A wind resistant type fiberglass shingles," and "Starter course shall be doubled and shingles shall be attached with four galvanized nails or staples per shingle, in accordance with FS SS-S-0300."

The housing is in an area subject to very high winds, so the low-pitch shingle roofing was not appropriate for the locale. Another problem was reported in the 5-year report, USACERL TR P-90/11 (1990). An inspection of the roofs revealed poor installation with fewer than four staples per shingle frequently observed. These two problems resulted in complete reroofing in years 8 and 9.

#### *Water Piping*

The specification stated "All interior water piping within the building shall be polybutylene pipe and fittings, conforming to ASTM D 3309, 180 degrees, at 100 psi." Corps of Engineers Guide Specification (CEGS) 15400 also allowed the use of the acetal fittings. This CEGS and future specific project specifications should state that designers will not allow the use of acetal valves or fittings in distribution systems containing chlorine treated or chlorinated water. Copper, brass, or polybutylene valves and fittings should be used. Future specifications on polybutylene piping use in Army family housing should be very clear on this point.

Additionally, the specifications and drawings required installation of gutters and downspouts. This requirement was an error as Fort Irwin is located in the high desert, and these components are not needed. Most have blown loose and been removed. Project specifications for housing in the Fort Irwin area should not include gutters and downspouts unless needed over doorways or stairs.

### **Recommendations for Future Manufactured Housing**

- Design reviews for unique features such as hinged eaves.
- Review of "different" types of materials such as polybutylene for water piping to ensure materials are appropriate.
- Quality assurance inspections of construction to detect problems such as improper installation of the polybutylene piping, shingles, and eaves.

## **APPENDIX A: Description of the MHU Construction Process**

The MHUs were not typical of manufactured housing in that the manufacturer was not allowed to design the housing. The contractor was given designs based on the fourplexes being built using conventional construction methods and was required to manufacture accordingly. Thus, it is possible that given the opportunity to both design and manufacture, the final structure might be somewhat different and less costly.

The concept used was to manufacture complete modules in the factory, which could be transported (about 200 miles from the factory in the Los Angeles area to Fort Irwin) and assembled on site. Thus, the process involved several steps: manufacture of complete modules (electrical, plumbing, HVAC, etc., included at the plant); construction of perimeter footings at the site; transportation of modules to the site; assembly of the modules into fourplexes using a crane; joining modules together including connection of piping and electrical wiring; application of stucco exterior finish; roofing at the module joints and securing of eaves; and on-site construction of the garages. On-site construction was limited by contract to foundations, utilities, slabs, garages, exterior finishes, final painting, exterior stairways and balconies. Figures A1 through A6 show factory work, modules on trucks, crane assembly and a completed fourplex without stucco and garages.

The eaves were attached using flat metal straps and folded onto the roof for transportation (this decreased the width for highway transportation). Upon assembly at the site, the eaves were folded down and secured with only a few nails. This was a defect in the design/construction, as the eaves began to loosen; one fell to the ground. All eaves were then permanently secured at a cost of over \$300,000 (\$6,000 per building).

The MHUs are essentially the same as the CBUs; floor plans of the two types are very similar. Figures A7 through A10 show sample floor plans for the MHUs and the CBUs.



**Figure A1.** Construction in the factory.



**Figure A2.** Two modules loaded on truck.



**Figure A3.** Module being set in place by crane.



**Figure A4.** Near completion of one building.



**Figure A5.** Completed assembly of modules.



**Figure A6.** Overview of buildings without garages.



Figure A7. Floor plan for first floor MHU, Type A.



**Figure A8. Floor plan for first floor MHU, Type B.**



Figure A9. Floor plan for first floor CBU, Type A.



Figure A10. Floor plan for second floor CBU, Type A.

## **APPENDIX B: List of Housing Units**

### **Conventionally Built**

|          |          |          |
|----------|----------|----------|
| 3680 A-F | 3705 A-E | 3727 A-E |
| 3681 A-D | 3712 A-F | 3731 A-D |
| 3684 A-D | 3715 A-F | 3732 A-F |
| 3685 A-F | 3720 A-F | 3738 A-F |
| 3690 A-F | 3721 A-E | 3742 A-D |
| 3691 A-D | 3722 A-E | 3743 A-F |
| 3693 A-F | 3723 A-E | 3745 A-F |
| 3694 A-D | 3724 A-D | 3747 A-D |
| 3695 A-D | 3725 A-E | 3750 A-F |
| 3700 A-F |          |          |

### **Manufactured (Each with four apartments, A-D)**

|      |      |      |
|------|------|------|
| 3800 | 3821 | 3841 |
| 3801 | 3822 | 3842 |
| 3802 | 3823 | 3843 |
| 3803 | 3824 | 3844 |
| 3804 | 3825 | 3845 |
| 3805 | 3826 | 3846 |
| 3806 | 3827 | 3848 |
| 3807 | 3828 | 3850 |
| 3809 | 3829 | 3851 |
| 3811 | 3831 | 3852 |
| 3812 | 3832 | 3853 |
| 3813 | 3833 | 3854 |
| 3814 | 3834 | 3855 |
| 3815 | 3835 | 3856 |
| 3816 | 3837 | 3857 |
| 3818 | 3839 | 3858 |
| 3820 | 3840 |      |

## **APPENDIX C: Building Component/Subcomponent Codes**

### **01 Roofing**

- 0101      Roofing surface
- 0102      Fasteners
- 0103      Flashing, vents, protrusions
- 0104      Gutter and downspouts
- 0105      Other roof repairs

### **02 Structure**

- 0201      Foundation and anchorage
- 0202      Structure, incl. framing and sheathing, stairs, cracked wall
- 0203      Insulation and moisture protection
- 0204      Masonry
- 0205      Exterior siding, incl. skirting
- 0206      Exterior doors and frames, incl. hardware and weatherstripping
- 0207      Storm and screen doors
- 0208      Window and frames, incl. hardware and weatherstripping
- 0209      Storm windows and screens
- 0210      Exterior trim
- 0211      Porch/deck construction
- 0212      Interior drywall, incl. fasteners and accessories
- 0213      Wall coverings and paneling
- 0214      Interior doors, frames, and hardware, incl. bifold and sliding
- 0215      Interior casework and finish carpentry
- 0216      Bathroom accessories, mirror
- 0217      Kitchen accessories, cabinets
- 0218      Drapery hardware
- 0219      Other exterior/interior repair, venetian blinds
- 0220      Garage door

### **03 Floor Coverings**

- 0301      Resilient flooring
- 0302      Carpet and pad
- 0303      Ceramic flooring
- 0304      Underlayment/substrate
- 0305      Other flooring repairs

### **04 Interior Painting**

- 0401      Walls and ceilings, incl. patching
- 0402      Trim
- 0403      Touch-up
- 0404      Bathtub/shower unit caulking
- 0405      Other Interior painting

## **05 Exterior Painting**

- 0501      Walls, siding, incl. skirting
- 0502      Doors, frames, trim
- 0503      Exterior trim, incl. window, fascia, rake, soffit, etc.
- 0504      Caulking and sealing
- 0505      Glazing
- 0506      Other exterior painting

## **06 Heating**

- 0601      Heating plant, valve
- 0602      Motors, blowers, pumps, G-60
- 0603      Ducts
- 0604      Piping
- 0605      Diffusers, grills
- 0606      Insulation
- 0607      Heating controls
- 0608      Other heating repairs, instructions for thermostat, turn on gas

## **07 Air Conditioning**

- 0701      Cooling coils, compressor, condenser, valve, contactor
- 0702      Motors, blowers, pumps, transformer, fuses
- 0703      Piping, ducting
- 0704      Refrigerant
- 0705      Insulation
- 0706      Controls, delay module, relay
- 0707      Other cooling repairs, instruct thermostat use, filter

## **08 Plumbing**

- 0801      Water heater
- 0802      Water softener
- 0803      Piping, supply, incl. valves, arrestors
- 0804      Faucets and shower heads
- 0805      Lavatories, incl. support and fasteners, caulking
- 0806      Water closets (i.e., toilets and commodes), incl. support and seals, caulking
- 0807      Bathtub/shower unit
- 0809      Other plumbing repair

## **09 Electrical**

- 0901      Service entrance
- 0902      Panel box, incl. circuit breakers
- 0903      Branch circuits, incl. junctions, fasteners
- 0904      Wall receptacles and switches
- 0905      Doorbells, chimes
- 0906      Light fixtures
- 0907      Vents, fans
- 0908      Other electrical repair

## **10 Equipment**

- |      |                 |
|------|-----------------|
| 1001 | Disposal        |
| 1002 | Dishwasher      |
| 1003 | Stove, range    |
| 1004 | Range hood      |
| 1005 | Refrigerator    |
| 1006 | Other equipment |

## **11 Utility Plant Equipment**

Not applicable

## **12 Utility Service**

- |      |                       |
|------|-----------------------|
| 1201 | Water supply          |
| 1202 | Gas supply            |
| 1203 | Electrical service    |
| 1204 | Sanitary/sewer        |
| 1205 | Other utility service |

## **13 Miscellaneous**

## **APPENDIX D: Energy Efficiency Tests of 15 Conventionally Built Housing Units**

The objective of these tests was to provide data concerning the energy efficiency of conventionally built housing. Tests were performed to determine the airtightness of the units (a measure of the resistance to air infiltration), furnace efficiencies, and heat transfer characteristics of the building envelope.

### **I. Tests Performed Upon Completion of Construction**

Tests were conducted over 4 days in June 1983 on three types of buildings: a fourplex, a fiveplex, and a sixplex. Weather conditions were typical of the high desert area: light to negligible winds, clear skies, low humidity, and temperatures ranging from lows near 70 °F to highs near 110 °F.

#### **House Tightness**

A blower door apparatus was used to measure each unit's tightness. The blower door consisted of a variable speed fan, a digital tachometer to measure the fan blade rotation speed, and an inclined manometer to measure pressure differences. The fan could be operated to induce a positive or negative pressure difference in the house with respect to the outdoors.

To perform this test, the fan was fitted tightly into an outside door frame. A barbed fitting that penetrates the blower door was fitted with rubber tubing and connected to one side of the manometer. The other side of the manometer was open to the house. When the fan was operated, it could either force air into the house (pressurized) or force air out of the house (depressurized) depending on the direction of rotation. In either case, the pressure difference between the house and the outdoors could be read on the manometer. The fan speed was adjusted until a specified pressure difference existed (usually 0.1 or 0.2 in. of water). The fan speed required to achieve a given pressure was correlated to air flow, which indicated how tightly the house was sealed.

Each of the units was tested at 0.1 and 0.2 in. H<sub>2</sub>O pressurized, and 0.2 in. H<sub>2</sub>O depressurized. Some of the more obvious leaks (furnace room doors, dryer vents, attic doors) were then taped, and the house was again tested at 0.2 in. H<sub>2</sub>O depressurized.

As shown in Table D1, airtightness was adequate, requiring no corrective work.

#### **Furnace Efficiency**

The furnaces in all the units were propane-fired. Tests were performed with a Fuel Efficiency Monitor (FEM), a hand-held automatic flue gas analyzer that measures the flue gas temperature, oxygen content, and ambient conditions and uses this information to calculate and display the percent efficiency of the furnace.

Each housing unit was first cooled down to allow the furnace to operate. The thermostats in the houses were of the "energy-saving" type, and included night setback and temperature limits. These were disconnected before each test so that the heating and air conditioning could be manually adjusted. The safety relief on the front of each furnace was covered so that room air would not be introduced into the flue. The furnace was then turned on, and a sample was taken of the intake air using the FEM. A 1/8-in. hole was then drilled in the flue of the furnace. After allowing a few minutes for the furnace to reach steady state, the FEM probe was inserted into the flue pipe and a sample was taken of the exhaust gas. The FEM took 2 to 3 min to calculate the furnace efficiency. Table D1 shows the furnaces' operational efficiencies.

**Table D1**  
**CBU Energy Efficiency Data After Construction**

| <b>Building/Unit</b> | <b>UA*</b><br><b>Btu/Hr-°F</b> | <b>No. Air Changes**</b><br><b>Per Hour</b> | <b>Furnace***</b><br><b>Efficiency (%)</b> |
|----------------------|--------------------------------|---------------------------------------------|--------------------------------------------|
| 3720A                | 213                            | 11.4                                        | 52.6                                       |
| 3720B                | 181                            | 12.1                                        | 61.3                                       |
| 3720C                | 181                            | 13.1                                        | 62.8                                       |
| 3720D                | 213                            | 12.8                                        | 67.2                                       |
| 3720E                | 304                            | 12.4                                        | 71.7                                       |
| 3720F                | 304                            | 13.2                                        | 73.0                                       |
| 3724A                | 181                            | 11.8                                        | 61.9                                       |
| 3724B                | 181                            | 13.3                                        | 62.6                                       |
| 3724C                | 304                            | 13.0                                        | 71.4                                       |
| 3724D                | 304                            | 15.1                                        | 72.3                                       |
| 3725A                | 181                            | 11.7                                        | 61.6                                       |
| 3725B                | 181                            | 12.8                                        | ****                                       |
| 3725C                | 213                            | 13.9                                        | 69.3                                       |
| 3725D                | 304                            | 13.4                                        | 72.7                                       |
| 3725E                | 304                            | 14.8                                        | ****                                       |

\*These are calculated values based on the wall construction. U=heat transfer; A = area

\*\*The following rating of air changes per hour at 0.2in. water column is based on work currently being done by Mansville Corp. for the U.S. Navy; 0 to 5, objectively tight; 5 to 10, excellent; 10 to 15, satisfactory; 15 and above merits corrective work.

\*\*\*Most gas fired furnace manufacturers claim 80 percent efficiency.

\*\*\*\*Unable to test furnace due to lack of access to the units.

### Wall Heat Transfer Characteristics

A Thermo Flow Energy Meter (TEM) was obtained to test the heat transfer characteristics of the walls. The TEM is an infrared radiometer that displays heat flow digitally in units of Btu/hr/sq ft. It can be used to detect insulation defects and to estimate the thermal resistance of exterior walls.

Due to unfavorable weather, the TEM could not be used to calculate R-values. The device was also useful for detecting insulation voids. No insulation voids were found.

### II. Tests Performed after 5 Years' Occupancy

The house tightness and furnace efficiency tests were performed again in May 1988. Results are summarized below in Table D2. Again, no wall insulation tests were performed because of weather conditions.

**Table D2**  
**CBU Energy Efficiency Data 5 Years After Construction**

| <b>Unit No.</b> | <b>No. Air Changes<br/>Per Hour</b> | <b>Furnace<br/>Efficiency (%)</b> |
|-----------------|-------------------------------------|-----------------------------------|
| 3720A           | 11.0                                | 58.5                              |
| 3720B           | 11.4                                | 68.6                              |
| 3720C           | 12.9                                | 65.8                              |
| 3720D           | 10.2                                | 70.6                              |
| 3720E           | 10.6                                | 74.2                              |
| 3720F           | 10.8                                | 59.5                              |
| 3724A           | 10.6                                | 68.9                              |
| 3724B           | 11.6                                | 57.8                              |
| 3724C           | 14.4                                | 67.4                              |
| 3724D           | 12.3                                | 70.4                              |
| 3725A           | 11.3                                | 66.0                              |
| 3725B           | 11.8                                | 24.1                              |
| 3725C           | 14.4                                | 68.8                              |
| 3725D           | 16.2                                | 67.3                              |
| 3725E           | 12.4                                | 74.5                              |

## **APPENDIX E: Energy Efficiency Tests of 16 Manufactured Housing Units**

The objective of these tests was to provide data on the energy efficiency of manufactured housing units for comparison to existing energy efficiency data taken on conventionally built housing units. Tests were performed to determine the airtightness of the units (a measure of the resistance to air infiltration), furnace efficiencies, and heat transfer characteristics of the building envelope.

### **I. Tests Performed Upon Completion of Construction**

Tests were conducted on three types of fourplexes; Type I (Building 3809), II (Building 3802), and IV (Buildings 3800 and 3806). The tests were conducted over 4 days in April 1984. The weather during the testing was mild for high desert area; medium to strong winds, overcast skies, low humidity, and temperatures ranging from morning lows of 40 °F to highs near 80 °F.

#### **House Tightness**

To measure the tightness of each housing unit a blower door apparatus was used, as described in Appendix D.

Each of the manufactured housing units was tested at 0.1, 0.2, and 0.3 in. of water during pressurization and then tested at 0.1 and 0.2 in. under depressurization. Then air leaks were taped (furnace doors and kitchen vents) and the unit was retested at 0.2 in. during pressurization. During the final day the winds were gusting so high that no consistent manometer reading could be taken, so Building 3809 had no data for air infiltration.

The results of the USACERL testing, as presented in Table E1, demonstrate that the airtightness of all the units except one is acceptable. Unit 3800-C had a significantly higher value than the other units and should have corrective work done to improve its tightness.

During the airtightness testing, several leaks were found. In Type II, Unit 3802-C, serious leaks were found in the door to the furnace room. In Type IV, Units 3800 and 3806, leaks were found while depressurizing around the furnace vents and doors (Unit A in both buildings). Also, leaks were found around sliding doors (Unit 3800-C), kitchen window area (Unit 3806-D), utility outlets (Unit 3800-D), and a crack in the dining room wall (Unit 3806-D).

#### **Furnace Efficiency**

The furnaces in all of the units were propane-fired. Tests were performed using a FEM, as described in Appendix D. A carbon monoxide meter similar to the FEM was used to ensure that each furnace's burner was completely combusting its fuel and that there was no unusual concentration of carbon monoxide.

**Table E1**  
**MHU Energy Efficiency Data After Construction**

| Building/Unit | UA*<br>Btu/Hr-°F | No. Air Changes<br>Per Hour | Furnace<br>Efficiency (%) |
|---------------|------------------|-----------------------------|---------------------------|
| 3800A         | 296              | 9.9                         | 75.5                      |
| 3800B         | 296              | 11.5                        | 81.8                      |
| 3800C         | 363              | 18.4                        | 80.5                      |
| 3800D         | 363              | 11.3                        | 82.6                      |
| 3802A         | 271              | 9.0                         | 70.1                      |
| 3802B         | 271              | 10.1                        | 75.1                      |
| 3802C         | 370              | 12.1                        | 81.8                      |
| 3802D         | 370              | 11.3                        | 80.3                      |
| 3806A         | 296              | 8.0                         | 78.2                      |
| 3806B         | 296              | 9.8                         | 77.4                      |
| 3806C         | 363              | 8.7                         | 80.7                      |
| 3806D         | 363              | 10.6                        | 82.2                      |
| 3809A         | 249              | **                          | 80.0                      |
| 3809B         | 249              | **                          | 82.0                      |
| 3809C         | 336              | **                          | 80.7                      |
| 3809D         | 336              | **                          | 79.6                      |

\*These are calculated based on the wall construction. U = heat transfer coefficient; A = area.

\*\*Unable to test airtightness due to high winds.

The testing was performed in the early morning hours so there would be a low outdoor temperature to start the furnace. The safety relief on the front of each furnace was taped over to prevent room air from entering the flue. A 1/8-in. hole was drilled into the flue near the furnace. The furnace was turned on and a sample of the ambient air was taken. The furnace was then left to reach steady state (approximately 15 min) and then the FEM probe was inserted into the hole and a sample of the exhaust gas was taken. The FEM took approximately 2 to 3 min to calculate and display the efficiency. Three samples were taken to ensure furnace steady state. The hole in the flue was then taped closed.

The furnace efficiencies are typical for the size and type of furnace installed.

#### Wall Heat Transfer Characteristics

A TEM, as described in Appendix D, was used to test the heat transfer characteristics of the exterior walls of each unit and to detect insulation defects.

This testing was done in the early morning hours because there must be a constant temperature difference of at least 20 °F between outdoor and indoor temperatures. First the outdoor and indoor temperatures were taken until they appeared steady. The TEM was then aimed at an interior wall and the net heat flow reading was recorded. Then the TEM was aimed at an exterior wall and the heat flow through the wall was recorded. Finally, the same measurement was made on the outside of the exterior wall (being sure that the area was shaded from sunlight). These results were used in conjunction with a standardized chart to determine the wall's thermal resistance. After these measurements were taken, the TEM was used to detect areas of high net flow readings, which indicate areas of insulation defects. There appear to be a number of insulation voids in Type I, II, and IV Units.

The UA values were calculated for the units, representing the overall heat transfer for the unit inclusive of walls, windows, doors, and roof (heat transferred from one unit to the next unit was considered negligible). The insulation voids listed in Table E2 were determined when the net heat flow varied by 10 Btu/hr-°F.

## II. Tests Performed After 5 Years' Occupancy

The house tightness and furnace efficiency tests were performed again 5 years after construction. Results are given in Table E3.

**Table E2**

**Insulation Void Locations**

| <b>Building/Unit</b> | <b>Location of Void</b>                                               |
|----------------------|-----------------------------------------------------------------------|
| 3802A                | Void area at upper left corner of window in front bedroom.            |
| 3802C                | Void area above sliding glass door in dining room.                    |
| 3802D                | Void area at right electrical outlet in dining room.                  |
| 3806C                | Void areas in all wall-to-wall seams (corners).                       |
| 3806D                | Void areas in all wall-to-wall seams (corners).                       |
| 3809B                | Void area at upper right corner of sliding glass door in dining room. |

**Table E3**  
**MHU Energy Data 5 Years After Construction**

| <b>Building/Unit</b> | <b>No. Air Changes<br/>Per Hour</b> | <b>Furnace<br/>Efficiency (%)</b> |
|----------------------|-------------------------------------|-----------------------------------|
| 3800A                | 7.8                                 | 75.9                              |
| 3800B                | 9.4                                 | 80.2                              |
| 380c0                | *                                   | 76.3                              |
| 3800D                | 10.2                                | 72.8                              |
| 3802A                | 9.6                                 | 71.2                              |
| 3802B                | 10.2                                | 80.4                              |
| 3802C                | 10.8                                | 79.1                              |
| 3802D                | *                                   | *                                 |
| 3806A                | 8.6                                 | 79.9                              |
| 3806B                | 10.3                                | 77.1                              |
| 3806C                | 11.4                                | 79.8                              |
| 3806D                | 12.9                                | 76.6                              |
| 3809A                | 7.4                                 | 78.7                              |
| 3809B                | 7.0                                 | 73.9                              |
| 3809C                | 10.2                                | 79.2                              |
| 3809D                | 10.3                                | 78.3                              |

## **DISTRIBUTION**

Chief of Engineers  
ATTN: CEHEC-IM-LP (2)  
ATTN: CEHEC-IM-LH (2)  
ATTN: CERD-L  
ATTN: CECC-R  
ATTN: CEMP-EC

ACSIM  
ATTN: DAIM-FDP  
ATTN: DAIM-FD  
ATTN: SFIM-IS

CECPW  
ATTN: CECPW-ZC 22060  
ATTN: CECPW-F 22060  
ATTN: CECPW-FB 22060  
ATTN: CECPW-HM-O (30) 20314

Defense Technical Info. Center 22304  
ATTN: DTIC-FAB (2)

Huntsville Division 35807  
ATTN: CEHND-ED

Commander 92310  
National Training Center and Fort Irwin  
ATTN: DPW (2)