# 1. DS codage

Thème 1 : Types de bases

DS

**Codage des caractères** 



#### Table ASCII



Décoder l'expression suivante, écrite en ASCII :





Latin-9



**Q.1.** Le mot représenté par les octets ci-dessous est-il codé en ASCII ou en Latin 9 ? Donner ce mot :

00000000<mark>6</mark>4 C3 A9 C3 A7 75 65 73 0A

Q.2. Représenter goûté en Latin-9



Définition du nombre d'octets utilisés dans le codage (uniquement les séquences valides)

| Caractères codés    | Représentation binaire      | UTF-8                  | Premier octet valide (hexadécimal)                    | Signification             |
|---------------------|-----------------------------|------------------------|-------------------------------------------------------|---------------------------|
| U+0000 à U+007F     |                             | <mark>0</mark> xxxxxxx | 00 à 7F                                               | 1 octet, codant 7 bits    |
| U+0080 à U+07FF     | <u> </u>                    | 10 <i>xxxxx</i>        | C2 à DF                                               | 2 octets, codant 11 bits  |
| U+0800 à U+0FFF     | 11100000 101xxxx            | 10xxxxxx               | E0 (le 2 <sup>e</sup> octet est restreint de A0 à BF) |                           |
| U+1000 à U+1FFF     | 11100001 10xxxxxx           | 10xxxxxx               | E1                                                    |                           |
| U+2000 à U+3FFF     | 1110001x 10xxxxxx           | 10 <i>xxxxx</i>        | E2 à E3                                               |                           |
| U+4000 à U+7FFF     | 111001xx 10xxxxxx           | 10 <i>xxxxx</i>        | E4 à E7                                               | 3 octets, codant 16 bits  |
| U+8000 à U+BFFF     | 111010xx 10xxxxx            | 10 <i>xxxxx</i>        | E8 à EB                                               | 5 octets, coddiit 16 bits |
| U+C000 à U+CFFF     | 11101100 10xxxxx            | 10 <i>xxxxx</i>        | EC                                                    |                           |
| U+D000 à U+D7FF     | 11101101 100xxxxx           | 10 <i>xxxxx</i>        | ED (le 2 <sup>e</sup> octet est restreint de 80 à 9F) |                           |
| U+E000 à U+FFFF     | 1110111x 10xxxxxx           | 10 <i>xxxxx</i>        | EE à EF                                               |                           |
| U+10000 à U+1FFFF   | 111110000 1001xxxx 10xxxxxx | 10 <i>xxxxx</i>        | F0 (le 2 <sup>e</sup> octet est restreint de 90 à BF) |                           |
| U+20000 à U+3FFFF   | 111110000 101xxxxx 10xxxxxx | 10 <b>xxxxx</b>        | ro (le 2- octet est restremt de 90 a Br)              |                           |
| U+40000 à U+7FFFF   | 11110001 10xxxxxx 10xxxxxx  | 10 <i>xxxxx</i>        | F1                                                    | 4 octets, codant 21 bits  |
| U+80000 à U+FFFFF   | 11111001x 10xxxxxx 10xxxxxx | 10 <i>xxxxx</i>        | F2 à F3                                               |                           |
| U+100000 à U+10FFFF | 111110100 1000xxxx 10xxxxxx | 10 <i>xxxxx</i>        | F4 (le 2 <sup>e</sup> octet est restreint de 80 à 8F) |                           |

## **Exercice 3**:

#### Latin étendu B

| HEX |     | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | A  | В  | С  | D  | E  | F  |
|-----|-----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|     | DEC | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| 180 | 384 | ħ | В  | Б  | Б  | Ъ  | b  | Э  | Ç  | ď  | Đ  | D  | а  | đ  | 9  | 3  | ə  |
| 190 | 400 | 3 | F  | f  | ď  | ¥  | h  | ι  | ŧ  | К  | ƙ  | ŧ  | λ  | ш  | И  | η  | θ  |
| 1A0 | 416 | Q | σ  | a  | aı | ъ  | þ  | Ŗ  | S  | s  | Σ  | l  | ţ  | т  | ť  | τ  | ľ  |
| 1B0 | 432 | ư | Ω  | υ  | Υ  | У  | Z  | Z  | 3  | 3  | 3  | 3  | 2  | 5  | 5  | 5  | р  |
| 1C0 | 448 | _ | I  | ŧ  | !  | DŽ | Dž | dž | IJ | Lj | lj | NJ | Nj | nj | Ă  | ă  | Ĭ  |
| 1D0 | 464 | ĭ | Ŏ  | ŏ  | Ŭ  | ŭ  | Ü  | ü  | Ú  | ű  | Ŭ  | ŭ  | Ù  | ù  | ә  | Ä  | ä  |
| 1E0 | 480 | Ā | ā  | Æ  | æ  | G  | g  | Ğ  | ğ  | K  | Ř  | Q  | Q  | Ō  | Ō  | ž  | ž  |
| 1F0 | 496 | Ĭ | DZ | Dz | dz | Ġ  | ģ  | н  | р  | Ň  | 'n | Å  | á  | Æ  | ǽ  | Ø  | ø  |
| 200 | 512 | Ä | ä  | Â  | â  | È  | è  | Ê  | ê  | ĩ  | ĩ  | î  | î  | ő  | ő  | ô  | ô  |
| 210 | 528 | Ř | ř  | Ŕ  | î  | Ű  | ű  | Û  | û  | Ş  | ş  | Ţ  | ţ  | 3  | 3  | Ĥ  | ň  |
| 220 | 544 | η | d, | 8  | 8  | ζ  | 3  | À  | à  | Ę  | ę  | Ö  | ö  | Õ  | õ  | Ò  | ò  |
| 230 | 560 | Ō | ō  | Ÿ  | ÿ  | L  | ղ  | ţ. | J  | ф  | ф  | Æ  | Ø  | Ø  | Ł  | 7  | ş  |
| 240 | 576 | ζ | ?  | 2  | B  | ¥  | ٨  | Ľ  | ø  | ł  | į  | q  | q  | R  | f  | ٧  | ¥  |

Donnée le codage Unicode la lettre H puis son codage en UTF-8



H - -> Unicode : +U021E

- -> sur 11 bits :
  - E en binaire -> 1110 (4 bits)
  - 1 en binaire -> 0001 (4 bits)
  - 2 en binaire -> 010 (3 bits restants)
- -> on remplie les 2 octects :
  - 110<mark>010</mark>00
  - 10011110
- -> en repassant à l'hexadécimal :
  - 12 soit C et 8
  - 9 et E
- donc en UTF-8, on obtient C8 9E



# **Exercice 4**

Décoder le message suivant :





### **★** Exercice 5

Le défi du cours : codage UTF-8 (Latin-9), décoder le texte ci-dessous :

`56 65 72 73 20 6C 27 69 6E 66 69 6E 69 20 65 74 20 6C 27 61 75 2D 64 65 6C C3 A0``



**Q.1.** Le nombre 65, donné ici en écriture décimale, s'écrit 01000001 en notation binaire. En détaillant la méthode utilisée, donner l'écriture binaire du nombre 97.



Q.2. La fonction logique OU EXCLUSIF, appelée XOR et représentée par le symbole ⊕, fournit une sortie égale à 1 si l'une ou l'autre des deux entrées vaut 1 mais pas les deux.

On donne ci-dessous la table de vérité de la fonction XOR

| А | В | A XOR B |
|---|---|---------|
| 0 | 0 | 0       |
| 0 | 1 | 1       |
| 1 | 0 | 1       |
| 1 | 1 | 0       |

Poser et calculer l'opération : 11011101 ⊕ 01101011



On donne, ci-dessous, un extrait de la table ASCII qui permet d'encoder les caractères de A à Z.

On peut alors considérer l'opération XOR entre deux caractères en effectuant le XOR entre les codes ASCII des deux caractères.

Par exemple : 'F' XOR 'S' sera le résultat de 01000110 ⊕ 01010011.

| Code    | Code     |           |
|---------|----------|-----------|
| ASCII   | ASCII    |           |
| Décimal | Binaire  | Caractère |
| 65      | 01000001 | Α         |
| 66      | 01000010 | В         |
| 67      | 01000011 | С         |
| 68      | 01000100 | D         |
| 69      | 01000101 | E         |
| 70      | 01000110 | F         |
| 71      | 01000111 | G         |
| 72      | 01001000 | Н         |
| 73      | 01001001 | I         |
| 74      | 01001010 | J         |
| 75      | 01001011 | K         |
| 76      | 01001100 | L         |
| 77      | 01001101 | M         |

| Code<br>ASCII | Code<br>ASCII |           |
|---------------|---------------|-----------|
| Décimal       | Binaire       | Caractère |
| 78            | 01001110      | N         |
| 79            | 01001111      | 0         |
| 80            | 01010000      | Р         |
| 81            | 01010001      | Q         |
| 82            | 01010010      | R         |
| 83            | 01010011      | S         |
| 84            | 01010100      | Т         |
| 85            | 01010101      | U         |
| 86            | 01010110      | V         |
| 87            | 01010111      | W         |
| 88            | 01011000      | X         |
| 89            | 01011001      | Υ         |
| 90            | 01011010      | Z         |

On souhaite mettre au point une méthode de cryptage à l'aide de la fonction XOR. Pour cela, on dispose d'un message à crypter et d'une clé de cryptage de même longueur que ce message. Le message et la clé sont composés uniquement des caractères du tableau ci-

dessus et on applique la fonction XOR caractère par caractère entre les lettres du message à crypter et les lettres de la clé de cryptage.

**Question 3.** Chiffrer **INFORMATIQUE** avec la clé **NSI**. Pour cela recopier et compléter le tableau ci-dessous :

| LETTRE  | I | N | F | 0 | R | М | Α | Т | I | Q | U | E |
|---------|---|---|---|---|---|---|---|---|---|---|---|---|
| ASCII   |   |   |   |   |   |   |   |   |   |   |   |   |
| BINAIRE |   |   |   |   |   |   |   |   |   |   |   |   |
| CLE     | N | S | I | N | S | I | N |   |   |   |   |   |
| ASCII   |   |   |   |   |   |   |   |   |   |   |   |   |
| BINAIRE |   |   |   |   |   |   |   |   |   |   |   |   |
| XOR     |   |   |   |   |   |   |   |   |   |   |   |   |
| ASCII   |   |   |   |   |   |   |   |   |   |   |   |   |



**Q.4.** Recopier et compléter la table de vérité de  $(E1 \oplus E2) \oplus E2$ .

| $\boldsymbol{E_1}$ | $\boldsymbol{E_2}$ | $E_1 \oplus E_2$ | $(E_1 \oplus E_2) \oplus E_2$ |
|--------------------|--------------------|------------------|-------------------------------|
| 0                  | 0                  | 0                |                               |
| 0                  | 1                  | 1                |                               |
| 1                  | 0                  | 1                |                               |
| 1                  | 1                  | 0                |                               |



A l'aide de ce résultat, proposer une démarche pour décrypter un message crypté.

