Nom: Correcteur: Note:

Soit E et F deux \mathbb{K} -ev, soit $\varphi \in \mathcal{L}(E,F)$ injective, soit (x_1,\ldots,x_n) une famille libre de vecteurs de E. Que peut-on dire de la famille $(\varphi(x_1),\ldots,\varphi(x_n))$? Le démontrer.

Soit E un \mathbb{K} -ev, $f \in \mathcal{L}(E)$ vérifiant $f^2 = f$. Que peut-on dire sur f?

Soit F et G deux sous-espaces vectoriels supplémentaires d'un \mathbb{K} -espace vectoriel E. Donner la définition de la symétrie par rapport à F et parallèlement à G. Un petit schéma sera le bienvenu.

Donner le $\mathrm{DL}_2(0)$ de $\frac{x}{\ln(1+x)}$ puis celui de $\frac{x\mathrm{e}^{\,x}}{\ln(1+x)}$.