PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C11D 7/50, D06L 1/02

(11) International Publication Number:

WO 97/22683

A1

(43) International Publication Date:

26 June 1997 (26.06.97)

(21) International Application Number:

PCT/US96/07157

(22) International Filing Date:

17 May 1996 (17.05.96)

(30) Priority Data:

08/573,416

15 December 1995 (15.12.95) US

(71) Applicant: MINNESOTA MINING AND MANUFACTUR-ING COMPANY [US/US]; 3M Center, P.O. Box 33427, Saint Paul, MN 55133-3427 (US).

(72) Inventors: FLYNN, Richard, M.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). MOORE, George, G., I.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). GRENFELL, Mark, W.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). OWENS, John, G.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). MILBRATH, Dean, S.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US).

(74) Agents: SCHULTE, Daniel, C. et al.; Minnesota Mining and Manufacturing Company, Office of Intellectual Property Counsel, P.O. Box 33427, Saint Paul, MN 55133-3427 (US). (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: CLEANING PROCESS AND COMPOSITION

(57) Abstract

A process for removing contaminants from the surface of a substrate comprises contacting the substrate with a cleaning composition comprising at least one mono-, di-, or trialkoxy-substituted perfluoroalkane, perfluorocycloalkane, perfluorocycloalkyl-containing perfluoroalkane, or perfluorocycloalkylene-containing perfluoroalkane compound, the compound optionally containing additional catenary heteroatoms. The compounds exhibit good solvency properties while being environmentally acceptable.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

CLEANING PROCESS AND COMPOSITION

5 This application is a continuation-in-part of Application No. 08/573,416 filed December 15, 1995.

Field of the Invention

This invention relates to cleaning compositions comprising at least one partially-fluorinated ether compound and to processes for removing contaminants from substrate surfaces using such compositions. In another aspect, this invention relates to certain novel partially-fluorinated ether compounds. In yet another aspect, this invention relates to coating compositions comprising at least one partially-fluorinated ether compound and to processes for depositing coatings on substrate surfaces using such compositions.

20

10

15

Background of the Invention

Solvent cleaning applications where contaminated articles are immersed in (or washed with) solvent liquids and/or vapors are well-known.

- Applications involving one or more stages of immersion, rinsing, and/or drying are common. Solvents can be used at ambient temperature (often, accompanied by ultrasonic agitation) or at elevated temperatures up to the boiling point of the solvent.
- A major concern in solvent cleaning is the tendency (especially where solvent is used at an

elevated temperature) for solvent vapor loss from the cleaning system into the atmosphere. Although care is generally exercised to minimize such losses (e.g., through good equipment design and vapor recovery systems), most practical cleaning applications result in some loss of solvent vapor into the atmosphere.

5

25

30

Solvent cleaning processes have traditionally utilized chlorinated solvents (e.g., chlorofluorocarbons such as 1,1,2-trichloro-1,2,2trifluoroethane and chlorocarbons such as 1,1,1-10 trichloroethane) alone or in admixture with one or more cosolvents such as aliphatic alcohols or other low molecular weight, polar compounds. Such solvents were initially believed to be environmentally-benign, but have now been linked to ozone depletion. According to 15 the Montreal Protocol and its attendant amendments, production and use of the solvents must be discontinued (see, e.g., P. S. Zurer, "Looming Ban on Production of CFCs, Halons Spurs Switch to Substitutes, " Chemical & 20 Engineering News, page 12, November 15, 1993).

Thus, there has developed a need in the art for substitutes or replacements for the commonly-used cleaning solvents. Such substitutes should have a low ozone depletion potential, should have boiling ranges suitable for a variety of solvent cleaning applications, and should have the ability to dissolve both hydrocarbon-based and fluorocarbon-based soils. Preferably, substitutes will also be low in toxicity, have no flash points (as measured by ASTM D3278-89), have acceptable stability for use in cleaning

applications, and have short atmospheric lifetimes and low global warming potentials.

Partially-fluorinated ethers have been suggested as chlorofluorocarbon alternatives (see, e.g., Yamashita et al., International Conference on CFC and BFC (Halons), Shanghai, China, August 7-10, 1994, pages 55-58).

European Patent Publication No. 0 450 855 A2

(Imperial Chemical Industries PLC) describes the use of
low molecular weight, fluorine-containing ethers of
boiling point 20-120°C in solvent cleaning applications.

International Patent Publication No. WO 93/11280 (Allied-Signal, Inc.) discloses a non-aqueous cleaning process which utilizes a fluorocarbon-based rinsing solvent.

15

20

25

U.S. Patent No. 5,275,669 (Van Der Puy et al.) describes hydrofluorocarbon solvents useful for dissolving contaminants or removing contaminants from the surface of a substrate. The solvents have 4 to 7 carbon atoms and have a portion which is fluorocarbon, the remaining portion being hydrocarbon.

U.S. Patent No. 3,453,333 (Litt et al.) discloses fluorinated ethers containing at least one halogen substituent other than fluorine and states that those ethers which are liquid can be used as solvents for high molecular weight resinous perhalogenated compounds such as solid polychlorotrifluoroethylene resins.

French Patent Publication No. 2,287,432

(Societe Nationale des Poudres et Explosifs) describes new partially-fluorinated ethers and a process for

their preparation. The compounds are said to be useful as hypnotic and anesthetic agents; as monomers for preparing heat-stable, fire-resistant, or self-lubricant polymers; and in phyto-sanitary and phyto-pharmaceutical fields.

German Patent Publication No. 1,294,949
(Farbwerke Hoechst AG) describes a technique for the production of perfluoroalkyl-alkyl ethers, said to be useful as narcotics and as intermediates for the preparation of narcotics and polymers.

Summary of the Invention

5

10

30

In one aspect, this invention provides a process for removing contaminants (e.g., hydrocarbons, fluorocarbons, or even water) from the surface of a 15 substrate (e.g., metal, glass, ceramic, plastic, or fabric). The process comprises contacting the substrate with (or exposing the substrate to) a liquidand/or vapor-phase cleaning composition comprising at 20 least one mono-, di-, or trialkoxy-substituted perfluoroalkane, perfluorocycloalkane, perfluorocycloalkyl-containing perfluoroalkane, or perfluorocycloalkylene-containing perfluoroalkane compound. The compound can optionally contain additional catenary (i.e., in-chain) heteroatoms (e.g., 25 oxygen or nitrogen) and preferably has a boiling point in the range of from about 25°C to about 200°C.

The alkoxy-substituted compounds used in the process of the invention exhibit unexpectedly high stabilities in the presence of acids, bases, and oxidizing agents. In addition, in spite of their

fluorine content, the compounds are surprisingly good solvents for hydrocarbons (as well as fluorocarbons). The compounds are low in toxicity and flammability, have ozone depletion potentials of zero, and have short atmospheric lifetimes and low global warming potentials relative to chlorofluorocarbons and many chlorofluorocarbon substitutes. Since the compounds exhibit good solvency properties while being environmentally acceptable, they satisfy the need in the art for substitutes or replacements for the commonly-used cleaning solvents which have been linked to the destruction of the earth's ozone layer.

In other aspects, this invention also provides certain novel mono-, di-, and trialkoxysubstituted perfluorocompounds; a cleaning composition; a coating composition; and a process for depositing coatings (e.g., coatings of lubricant) on substrate surfaces.

20 Detailed Description of the Invention

5

10

25

Compounds which can be utilized in the processes of the invention are mono-, di-, or trialkoxy-substituted perfluoroalkane, perfluorocycloalkyl-containing perfluoroalkane, and perfluorocycloalkylene-containing perfluoroalkane compounds. The compounds include those which contain additional catenary heteroatoms (as well as those which do not) and can be utilized alone, in combination with one another, or in combination with other common cleaning solvents (e.g., alcohols, ethers, alkanes, alkenes, perfluorocarbons, perfluorinated

tertiary amines, perfluoroethers, cycloalkanes, esters, ketones, aromatics, siloxanes, hydrochlorocarbons, hydrochlorofluorocarbons, and hydrofluorocarbons). The compounds can be solids or liquids under ambient conditions of temperature and pressure, but are generally utilized for cleaning in either the liquid or the vapor state (or both). Thus, normally solid compounds can be utilized after tranformation to liquid and/or vapor through melting, sublimation, or dissolution in liquid co-solvent.

A class of useful alkoxy-substituted perfluorocompounds is that which can be represented by the following general formula (I):

 $R_{f}-(O-R_{h})_{x} \qquad (I)$

5

10

wherein x is an integer of 1 to 3; when x is 1, R_f is selected from the group consisting of linear or branched perfluoroalkyl groups having from 2 to about 15 carbon atoms, perfluorocycloalkyl-containing perfluoroalkyl groups having from 5 to about 15 carbon atoms, and perfluorocycloalkyl groups having from 3 to about 12 carbon atoms; when x is 2, R_f is selected from the group consisting of linear or branched perfluoroalkanediyl groups or perfluoroalkylidene groups having from 2 to about 15 carbon atoms, perfluorocycloalkyl- or perfluorocycloalkylene-containing perfluoroalkanediyl or perfluoroalkylidene

groups having from 6 to about 15 carbon atoms, and

group consisting of linear or branched perfluoroalkanetriyl groups having from 2 to about 15 carbon atoms, perfluorocycloalkyl- or perfluorocycloalkylene-containing perfluoroalkanetriyl 5 groups having from 6 to about 15 carbon atoms, and perfluorocycloalkanetriyl groups having from 3 to about 12 carbon atoms; each R_h is independently selected from the group consisting of linear or branched alkyl groups having from 1 to about 8 carbon atoms, cycloalkylcontaining alkyl groups having from 4 to about 8 carbon 10 atoms, and cycloalkyl groups having from 3 to about 8 carbon atoms; wherein either or both of the groups R, and R_h can contain (optionally contain) one or more catenary heteroatoms; and wherein the sum of the number of carbon atoms in $R_{\rm f}$ and the number of carbon atoms in 15 R_h is greater than or equal to 4. perfluorocycloalkyl and perfluorocycloalkylene groups contained within the perfluoroalkyl, perfluoroalkanediyl, perfluoroalkylidene and 20 perfluoroalkanetriyl groups can optionally (and independently) be substituted with, e.g., one or more perfluoroalkyl groups having from 1 to about 4 carbon atoms.

Preferably, x is 1; R_f is as defined above; R_h is an alkyl group having from 1 to about 6 carbon atoms; R_f but not R_h can contain one or more catenary heteroatoms; and the sum of the number of carbon atoms in R_f and the number of carbon atoms in R_h is greater than or equal to 4. Most preferably, x is 1; R_f is selected from the group consisting of linear or branched perfluoroalkyl groups having from 3 to about 6

carbon atoms, perfluorocycloalkyl-containing perfluoroalkyl or perfluoroalkylidene groups having from 5 to about 8 carbon atoms, and perfluorocycloalkyl groups having from 5 to about 6 carbon atoms; R_h is an alkyl group having from 1 to about 3 carbon atoms; R_f but not R_h can contain one or more catenary heteroatoms; and the sum of the number of carbon atoms in R_f and the number of carbon atoms in R_h is greater than or equal to 4. The perfluorocycloalkyl and

perfluorocycloalkylene groups contained within the perfluoroalkyl, perfluoroalkanediyl, perfluoroalkylidene and perfluoroalkanetriyl groups can optionally (and independently) be substituted with, e.g., one or more perfluoromethyl groups. These compounds are preferred due to their ease of preparation and their performance characteristics.

Representative examples of alkoxy-substituted perfluorocompounds suitable for use in the processes of the invention include the following compounds:

20

and 1,1-dimethoxyperfluorocyclohexane, where cyclic structures having an interior "F" are perfluorinated.

A novel subclass of the alkoxy-substituted perfluorocompounds is that which can be represented by the following general formula (II):

5

5

10

20

25

30

$$R_f^{1} - N(R_f^{2}) - C_v F_{2v} - O - R_b$$
 (II)

wherein $R_f^{\ 1}$ and $R_f^{\ 2}$ are both substituted or unsubstituted perfluoroalkyl groups having from 1 to about 6 carbon atoms or are both substituted or unsubstituted perfluoroalkylene groups having from 2 to about 4 carbon atoms, the perfluoroalkylene groups being bonded to one another to form a ring; y is an integer of 1 to about 8; C_yF_{2y} can be linear or branched; and R_h is selected from the group consisting of linear or branched alkyl groups having from 1 to about 8 carbon atoms, cycloalkyl-containing alkyl groups having from 4 to about 8 carbon atoms, and cycloalkyl groups having from 3 to about 8 carbon atoms; wherein the groups $R_f^{\ 1}$, $R_f^{\ 2}$, and R_h can optionally (and independently) contain one or more catenary heteroatoms.

Preferably, the perfluoroalkyl groups have from 1 to about 3 carbon atoms, the perfluoroalkylene groups have from 2 to about 3 carbon atoms; y is an integer of 1 to about 3; R_h is selected from the group consisting of linear or branched alkyl groups having from 1 to about 6 carbon atoms; and $R_f^{\ 1}$ and $R_f^{\ 2}$ but not R_h can independently contain one or more catenary heteroatoms. These compounds are preferred due to their ease of preparation and their performance characteristics.

Representative examples of novel compounds according to Formula II above include the following compounds:

 $(CF_3)_2N(CF_2)_3OCH_3$ $(C_4F_9)_2N(CF_2)_3OC_4H_9$ (CF₃)₂N(CF₂)₂OC₂H₅ $(C_4F_9)_2N(CF_2)_3OCH_3$ $(C_2F_5)_2N(CF_2)_6OCH_3$ (C₂F₅)₂NCF₂CF₂OCH₃ C₂F₅NCF₂CF₂CF₂OC₂H₅ N(CF₂)₃OC₂H₅ ĊF₃ (C₃F₇)₂NCF₂CF₂CF₂OCH₃ N(CF₂)₂OCH₃ $(C_3F_7)_2NCF_2CF_2CF_2OC_2H_5$ CF₃ (C₃F₇)₂NCF₂CF₂CF₂OC₃H₇ N(CF₂)₃OCH₃ NCFCF2CF2OCH3

 CF_3 CF_3 O F $N(CF_2)_3O(CH_2)_2OCH_3$

A second novel subclass of the alkoxysubstituted perfluorocompounds is that which can be represented by the following general formula (III):

5
$$R_f^3 (CF_2OR_h)_x$$
. (III)

10

15

20

25

wherein R_f^3 is a substituted or unsubstituted perfluorocycloalkyl, perfluorocycloalkanediyl, or perfluorocycloalkanetriyl group having from 3 to about 12 carbon atoms; each R_h is independently selected from the group consisting of linear or branched alkyl groups having from 1 to about 8 carbon atoms, cycloalkyl-containing alkyl groups having from 4 to about 8 carbon atoms, and cycloalkyl groups having from 3 to about 8 carbon atoms, and cycloalkyl groups having from 3 to about 8 carbon atoms; and x' is an integer of 1 to 3; wherein either or both of the groups R_f^3 and R_h can contain (optionally contain) one or more catenary heteroatoms.

Preferably, R_f^3 has from 5 to about 6 carbon atoms; each R_h is independently selected from the group consisting of linear or branched alkyl groups having from 1 to about 6 carbon atoms; x' is an integer of 1 or 2; and R_f^3 but not R_h can contain one or more catenary heteroatoms. These compounds are preferred due to their ease of preparation and their performance characteristics.

Representative examples of novel compounds according to Formula III above include the following compounds:

5

10

The alkoxy-substituted perfluorocompounds suitable for use in the process of the invention can be prepared by alkylation of perfluorinated alkoxides prepared by the reaction of the corresponding perfluorinated acyl fluoride or perfluorinated ketone

with an anhydrous alkali metal fluoride (e.g., potassium fluoride or cesium fluoride) or anhydrous silver fluoride in an anhydrous polar, aprotic solvent. (See, e.g., the preparative methods described in French Patent Publication No. 2,287,432 and German Patent Publication No. 1,294,949, supra.) Alternatively, a fluorinated tertiary alcohol can be allowed to react with a base, e.g., potassium hydroxide or sodium hydride, to produce a perfluorinated tertiary alkoxide which can then be alkylated by reaction with alkylating agent.

Suitable alkylating agents for use in the preparation include dialkyl sulfates (e.g., dimethyl sulfate), alkyl halides (e.g., methyl iodide), alkyl p-toluenesulfonates (e.g., methyl p-toluenesulfonate), alkyl perfluoroalkanesulfonates (e.g., methyl perfluoromethanesulfonate), and the like. Suitable polar, aprotic solvents include acyclic ethers such as diethyl ether, ethylene glycol dimethyl ether, and diethylene glycol dimethyl ether; carboxylic acid esters such as methyl formate, ethyl formate, methyl acetate, diethyl carbonate, propylene carbonate, and ethylene carbonate; alkyl nitriles such as acetonitrile; alkyl amides such as

N,N-dimethylformamide, N,N-diethylformamide, and N-methylpyrrolidone; alkyl sulfoxides such as dimethyl sulfoxide; alkyl sulfones such as dimethylsulfone, tetramethylene sulfone, and other sulfolanes; oxazolidones such as N-methyl-2-oxazolidone; and mixtures thereof.

Perfluorinated acyl fluorides (for use in

preparing the alkoxy-substituted perfluorocompounds) can be prepared by electrochemical fluorination (ECF) of the corresponding hydrocarbon carboxylic acid (or a derivative thereof), using either anhydrous hydrogen fluoride (Simons ECF) or KF.2HF (Phillips ECF) as the 5 electrolyte. Perfluorinated acyl fluorides and perfluorinated ketones can also be prepared by dissociation of perfluorinated carboxylic acid esters (which can be prepared from the corresponding hydrocarbon or partially-fluorinated carboxylic acid 10 esters by direct fluorination with fluorine gas). Dissociation can be achieved by contacting the perfluorinated ester with a source of fluoride ion under reacting conditions (see the method described in U.S. Patent No. 3,900,372 (Childs), the description of 15 which is incorporated herein by reference) or by combining the ester with at least one initiating reagent selected from the group consisting of gaseous, non-hydroxylic nucleophiles; liquid, non-hydroxylic nucleophiles; and mixtures of at least one non-20 hydroxylic nucleophile (gaseous, liquid, or solid) and at least one solvent which is inert to acylating agents.

Initiating reagents which can be employed in
the dissociation are those gaseous or liquid, nonhydroxylic nucleophiles and mixtures of gaseous,
liquid, or solid, non-hydroxylic nucleophile(s) and
solvent (hereinafter termed "solvent mixtures") which
are capable of nucleophilic reaction with
perfluorinated esters. The presence of small amounts
of hydroxylic nucleophiles can be tolerated. Suitable

gaseous or liquid, non-hydroxylic nucleophiles include dialkylamines, trialkylamines, carboxamides, alkyl sulfoxides, amine oxides, oxazolidones, pyridines, and the like, and mixtures thereof. Suitable non-

- hydroxylic nucleophiles for use in solvent mixtures include such gaseous or liquid, non-hydroxylic nucleophiles, as well as solid, non-hydroxylic nucleophiles, e.g., fluoride, cyanide, cyanate, iodide, chloride, bromide, acetate, mercaptide, alkoxide,
- thiocyanate, azide, trimethylsilyl difluoride, bisulfite, and bifluoride anions, which can be utilized in the form of alkali metal, ammonium, alkylsubstituted ammonium (mono-, di-, tri-, or tetrasubstituted), or quaternary phosphonium salts, and
- nixtures thereof. Such salts are in general commercially available but, if desired, can be prepared by known methods, e.g., those described by M. C. Sneed and R. C. Brasted in Comprehensive Inorganic Chemistry, Volume Six (The Alkali Metals), pages 61-64, D. Van
- Nostrand Company, Inc., New York (1957), and by H.

 Kobler et al. in Justus Liebigs Ann. Chem. 1978, 1937.

 1,4-diazabicyclo[2.2.2]octane and the like are also suitable solid nucleophiles.

The cleaning process of the invention can be

carried out by contacting a contaminated substrate with

a cleaning composition comprising at least one of the

above-described alkoxy-substituted perfluorocompounds.

The perfluorocompounds can be utilized alone or in

admixture with each other or with other commonly-used

cleaning solvents, e.g., alcohols, ethers, alkanes,

alkenes, perfluorocarbons, perfluorinated tertiary

amines, perfluoroethers, cycloalkanes, esters, ketones, aromatics, siloxanes, hydrochlorocarbons, hydrochlorofluorocarbons, and hydrofluorocarbons. Such co-solvents can be chosen to modify or enhance the solvency properties of a cleaning composition for a particular use and can be utilized in ratios (of co-solvent to perfluorocompound(s)) such that the resulting composition has no flash point. Preferably, the perfluorocompound(s) used in the composition have boiling points in the range of from about 25°C to about 200°C, more preferably from about 25°C to about 125°C.

To remove soils from fiber and textile substrates, the cleaning process of the invention can be carried out by contacting the fiber or textile with 15 a cleaning composition comprising an alkoxy-substituted perfluoroalkane at ambient or elevated temperatures. The soiled textile can be agitated to promote the dissolving, dispersing or displacing of soil using any conventional agitation means including shaking, stirring and ultrasonic agitation. When the textile is 20 sufficiently cleaned, the cleaning composition may be removed (e.g. by decantation), the textile optionally rinsed using an alkoxy-substituted perfluoroalkane or any conventional dry-cleaning solvent to ensure soil removal and prevent redeposition, and the textile can 25 be dried, for example, by air-drying with or without added heat.

Optionally and preferably, the cleaning composition further comprises a surfactant. Suitable surfactants include those surfactants that are sufficiently soluble in the alkoxy-substituted

30

perfluoroalkane, and which promote soil removal by dissolving, dispersing or displacing the soil. One useful class of surfactants are those nonionic surfactants that have a hydrophilic-lipophilic balance

5 (HLB) value of less than about 14. Examples include ethoxylated alcohols, ethoxylated alkylphenols, ethoxylated fatty acids, alkylaryl sulfonates, glycerol esters, ethoxylated fluoroalcohols, and fluorinated sulfonamides. Mixtures of surfactants having

10 complementary properties may be used in which one surfactant is added to the cleaning composition to promote oily soil removal and another added to promote water-soluble soil removal.

The surfactant, if used, can be added in an amount sufficient to promote soil removal. Typically, surfactant is added in amounts from about 0.1 to 5.0 wt.%, preferably in amounts from about 0.2 to 2.0 wt.% of the cleaning composition.

either the gaseous or the liquid state (or both), and any of the known techniques for "contacting" a substrate can be utilized. For example, a liquid cleaning composition can be sprayed or brushed onto the substrate, a gaseous cleaning composition can be blown across the substrate, or the substrate can be immersed in either a gaseous or a liquid composition. Elevated temperatures, ultrasonic energy, and/or agitation can be used to facilitate the cleaning. Various different solvent cleaning techniques are described by B. N.

30 Ellis in <u>Cleaning and Contamination of Electronics</u>

<u>Components and Assemblies</u>, Electrochemical Publications Limited, Ayr, Scotland, pages 182-94 (1986).

Both organic and inorganic substrates can be cleaned by the process of the invention.

Representative examples of the substrates include metals; ceramics; glass; polycarbonate; polystyrene; acrylonitrile-butadiene-styrene copolymer; synthetic non-woven materials; natural fibers (and fabrics derived therefrom) such as cotton, silk, fur, suede,

leather, linen, and wool; synthetic fibers (and fabrics) such as polyester, rayon, acrylics, nylon, and blends thereof; fabrics comprising a blend of natural and synthetic fibers; and composites of the foregoing materials. The process is especially useful in the

precision cleaning of electronic components (e.g., circuit boards), optical or magnetic media, and medical devices.

20

25

The cleaning process of the invention can be used to dissolve or remove most contaminants from the surface of a substrate. For example, materials such as light hydrocarbon contaminants; higher molecular weight hydrocarbon contaminants such as mineral oils and greases; fluorocarbon contaminants such as perfluoropolyethers, bromotrifluoroethylene oligomers (gyroscope fluids), and chlorotrifluoroethylene oligomers (hydraulic fluids, lubricants); silicone oils and greases; solder fluxes; particulates; and other contaminants encountered in precision, electronic, metal, and medical device cleaning can be removed.

The process is particularly useful for the removal of hydrocarbon contaminants (especially, light hydrocarbon

oils), fluorocarbon contaminants, particulates, and water (as described in the next paragraph).

To displace or remove water from substrate surfaces, the cleaning process of the invention can be carried out as described in U.S. Patent No. 5,125,978 5 (Flynn et al.) by contacting the surface of an article with a liquid cleaning composition which preferably contains a non-ionic fluoroaliphatic surface active agent. The wet article is immersed in the liquid composition and agitated therein, the displaced water 10 is separated from the liquid composition, and the resulting water-free article is removed from the liquid composition. Further description of the process and the articles which can be treated are found in said 15 U.S. Patent No. 5,125,978, which description is incorporated herein by reference. The process can also be carried out as described in U.S. Patent No. 3,903,012 (Brandreth), the description of which is also incorporated herein.

This invention also provides a cleaning composition comprising (a) a major amount (preferably, at least about 60 percent of the composition by weight) of at least one mono-, di-, or trialkoxy-substituted perfluoroalkane, perfluorocycloalkane,

perfluorocycloalkyl-containing perfluoroalkane, or
 perfluorocycloalkylene-containing perfluoroalkane
 compound, the compound optionally containing additional
 catenary heteroatoms; and (b) a minor amount of at
 least one co-solvent selected from the group consisting
 of alcohols, ethers, alkanes, alkenes,
 perfluorocarbons, perfluorinated tertiary amines,

perfluoroethers, cycloalkanes, esters, ketones, aromatics, siloxanes, hydrochlorocarbons, hydrochlorofluorocarbons, and hydrofluorocarbons.

Preferably, the co-solvent is selected from the group consisting of alcohols, alkanes, alkenes, cycloalkanes, esters, aromatics, hydrochlorocarbons, and hydrofluorocarbons.

Representative examples of co-solvents which can be used in the cleaning composition include

10 methanol, ethanol, isopropanol, t-butyl alcohol, methyl t-butyl ether, methyl t-amyl ether, 1,2-dimethoxyethane, cyclohexane, 2,2,4-trimethylpentane, n-decane, terpenes (e.g., a-pinene, camphene, and limonene), trans-1,2-dichloroethylene,

- methylcyclopentane, decalin, methyl decanoate, t-butyl acetate, ethyl acetate, diethyl phthalate, 2-butanone, methyl isobutyl ketone, naphthalene, toluene, p-chlorobenzotrifluoride, trifluorotoluene, hexamethyl disiloxane, octamethyl trisiloxane, perfluorohexane,
- perfluoroheptane, perfluorooctane,
 perfluorotributylamine, perfluoro-N-methyl morpholine,
 perfluoro-2-butyl oxacyclopentane, methylene chloride,
 chlorocyclohexane, 1-chlorobutane, 1,1-dichloro-1fluoroethane, 1,1,1-trifluoro-2,2-dichloroethane,
- 25 1,1,1,2,2-pentafluoro-3,3-dichloropropane,
 1,1,2,2,3-pentafluoro-1,3-dichloropropane, 2,3 dihydroperfluoropentane, 1,1,1,2,2,4-hexafluorobutane,
 1-trifluoromethyl-1,2,2-trifluorocyclobutane, 3-methyl 1,1,2,2-tetrafluorocyclobutane, and 1-
- 30 hydropentadecafluoroheptane.

The above-described alkoxy-substituted perfluorocompounds can be useful not only in cleaning but also in coating deposition, where the perfluorocompound functions as a carrier for a coating material to enable deposition of the material on the 5 surface of a substrate. The invention thus also provides a coating composition and a process for depositing a coating on a substrate surface using the composition. The process comprises the step of applying to at least a portion of at least one surface 10 of a substrate a coating of a liquid coating composition comprising (a) a solvent composition comprising at least one mono-, di-, or trialkoxysubstituted perfluoroalkane, perfluorocycloalkane, perfluorocycloalkyl-containing perfluoroalkane, or 15 perfluorocycloalkylene-containing perfluoroalkane compound, the compound optionally containing additional catenary heteroatoms; and (b) at least one coating material which is soluble or dispersible in the solvent 20 composition. The solvent composition can further comprise one or more co-dispersants or co-solvents (as defined supra, preferably those having boiling points below about 125°C) and/or one or more additives (e.g., surfactants, coloring agents, stabilizers, antioxidants, flame retardants, and the like). Preferably, 25 the process further comprises the step of removing the solvent composition from the coating by, e.g., allowing evaporation (which can be aided by the application of, e.g., heat or vacuum).

Coating materials which can be deposited by the process include pigments, lubricants, stabilizers,

adhesives, anti-oxidants, dyes, polymers, pharmaceuticals, release agents, inorganic oxides, and the like, and combinations thereof. Preferred materials include perfluoropolyether, hydrocarbon, and silicone lubricants; amorphous copolymers of tetrafluoroethylene; polytetrafluoroethylene; and combinations thereof. Representative examples of materials suitable for use in the process include titanium dioxide, iron oxides, magnesium oxide, perfluoropolyethers, polysiloxanes, stearic acid. 10 acrylic adhesives, polytetrafluoroethylene, amorphous copolymers of tetrafluoroethylene, and combinations thereof. Any of the substrates described above (for cleaning applications) can be coated via the process of 15 the invention. The process can be particularly useful for coating magnetic hard disks or electrical connectors with perfluoropolyether lubricants or medical devices with silicone lubricants.

To form a coating composition, the components 20 of the composition (i.e., the alkoxy-substituted perfluorocompound(s), the coating material(s), and any co-dispersant(s) or co-solvent(s) utilized) can be combined by any conventional mixing technique used for dissolving, dispersing, or emulsifying coating materials, e.g., by mechanical agitation, ultrasonic 25 agitation, manual agitation, and the like. The solvent composition and the coating material(s) can be combined in any ratio depending upon the desired thickness of the coating, but the coating material(s) preferably constitute from about 0.1 to about 10 weight percent of 30 the coating composition for most coating applications.

The deposition process of the invention can be carried out by applying the coating composition to a substrate by any conventional technique. For example, the composition can be brushed or sprayed (e.g., as an aerosol) onto the substrate, or the substrate can be spin-coated. Preferably, the substrate is coated by immersion in the composition. Immersion can be carried out at any suitable temperature and can be maintained for any convenient length of time. If the substrate is a tubing, such as a catheter, and it is desired to ensure that the composition coats the lumen wall, it may be advantageous to draw the composition into the lumen by the application of reduced pressure.

After a coating is applied to a substrate,

the solvent composition can be removed from the coating
by evaporation. If desired, the rate of evaporation
can be accelerated by application of reduced pressure
or mild heat. The coating can be of any convenient
thickness, and, in practice, the thickness will be

determined by such factors as the viscosity of the
coating material, the temperature at which the coating
is applied, and the rate of withdrawal (if immersion is
utilized).

Objects and advantages of this invention are
further illustrated by the following examples, but the
particular materials and amounts thereof recited in
these examples, as well as other conditions and
details, should not be construed to unduly limit this
invention.

5

10

Examples

The environmental impact of the alkoxysubstituted perfluorocompounds used in the processes
and compositions of the invention was assessed by
determination of the atmospheric lifetime and the
global warming potential (GWP) of certain compounds, as
described below:

Atmospheric Lifetime

- The atmospheric lifetime (t_{sample}) of various sample compounds was calculated by the technique described in Y. Tang, <u>Atmospheric Fate of Various Fluorocarbons</u>, M.S. Thesis, Massachusetts Institute of Technology (1993). According to this technique, an ultraviolet
- 15 (UV) gas cell was charged with a sample compound, a reference compound (either CH4 or CH3Cl), ozone, and water vapor. Hydroxyl radicals were then generated by photolytic decomposition of the ozone in the presence of the water vapor and an inert buffer gas, i.e.,
- helium. As the sample compounds and reference compounds reacted with the hydroxyl radicals in the gas phase, their concentrations were measured by Fourier transform infrared spectroscopy (FTIR). The rate constant for reaction of the sample compound (k_{sample})
- with hydroxyl radical was measured relative to the rate constant for a reference compound $(k_{\rm ref})$, and the atmospheric lifetime was then calculated using the following formula (where $t_{\rm CH4}$ and $k_{\rm CH4}$ are known values):

$$\tau_{sample} = \frac{\tau_{CH4}}{\left(\frac{k_{sample}}{k_{ref}}\right)\left(\frac{k_{ref}}{k_{CHA}}\right)}$$

5

10

The rate constant for each sample compound was measured (using CH₄ as the reference compound and again using CH₃Cl) at 298K, and the atmospheric lifetime values were calculated and then averaged. The results are shown in Table A under the heading "Atmospheric Lifetime." For comparative purposes, the atmospheric lifetime for several hydrofluorocarbons is also shown in Table A.

Atmospheric lifetime was also estimated from a correlation developed between the highest occupied 15 molecular orbital (HOMO) energy and the known atmospheric lifetimes of hydrofluorocarbons and hydrofluorocarbon ethers, in a manner similar to that described by Cooper et al. in Atmos. Environ. 26A, 7, 1331 (1992). The correlation differed from that found 20 in Cooper et al. in the following respects: the correlation was developed using a larger data set; lifetimes for the correlations were determined by relative hydroxyl reactivity of the sample to CH, CCl, at 277K, as described by Zhang et al. in J. Phys. Chem. 98(16), 4312 (1994); HOMO energy was calculated using 25 MOPAC/PM3, a semi-empirical molecular orbital package; and the number of hydrogen atoms present in the sample was included in the correlation. The results are reported in Table A under the heading "Estimated

30 Atmospheric Lifetime."

Global Warming Potential

Global warming potential (GWP) was determined for the various sample compounds using the abovedescribed calculated values for atmospheric lifetime and experimentally determined infrared absorbance data integrated over the spectral region of interest, typically 500 to 2500 cm⁻¹. The calculations were based on the definition of GWP set forth by the Intergovernmental Panel in Climate Change in Climate 10 Change: The IPCC Scientific Assessment, Cambridge University Press (1990). According to the Panel, GWP is the integrated potential warming due to the release of 1 kilogram of sample compound relative to the warming due to 1 kilogram of CO2 over a specified 15 integration time horizon (ITH) using the following equation:

$$GWP_{sample} = \frac{\int\limits_{0}^{ITH} \Delta T_{r} C_{or} e^{-t/\tau_{s}} dt}{\int\limits_{0}^{ITH} \Delta T_{cOr} C_{cor} dt}$$

25

30

where ΔT is the calculated change in temperature at the earth's surface due to the presence of a particular compound in the atmosphere [calculated using a spreadsheet model (using parameters described by Fisher et al. in Nature 344, 513 (1990)) derived from Atmospheric and Environmental Research, Inc.'s more complete one-dimensional radiative-convective model (described by Wang et al. in J. Atmos. Sci. 38, 1167 (1981) and J. Geophys. Res. 90, 12971 (1985)], C is the

atmospheric concentration of the compound, t is the atmospheric lifetime of the compound (the calculated value described above), and x designates the compound of interest. Upon integration, the formula is as follows:

where A_1 = 0.30036, A_2 = 0.34278, A_3 = 0.35686, τ_1 = 6.993, τ_2 = 71.108, and τ_3 = 815.73 in the Siegenthaler

$$GWP_{sample} = \frac{\Delta T_x C_{or} \tau_x [1 - e^{-ITH/\tau_x}]}{\Delta T_{CO_2} (1.3x 10^{-10}) [A_1 \tau_1 (1 - e^{-ITH/\tau_1}) + A_2 \tau_2 (1 - e^{-ITH/\tau_2}) + A_3 \tau_3 (1 - e^{-ITH/\tau_3})]}$$

(1983) coupled ocean-atmosphere CO_2 model. The results of the calculations are shown in Table A below.

10 Table A

			Global
	Estimated		Warming
	Atmospheric	Atmospheric	Potential
	Lifetime	Lifetime	(100 year
Compound	(years)	(years)	ITH)
CF ₃ -CH ₃	62.2		
CF ₃ -O-CH ₃	1.6		
$C_2F_5-CH_3$	12.6		
C ₂ F ₅ -O-CH ₃	1.6		
C ₃ F ₇ -CH ₃	9.6		
C ₃ F ₇ -O-CH ₃	1.9		
C_4F_9 - CH_3	7.0		
C ₄ F ₉ -O-CH ₃	1.9	5.5	330
$C_4F_9-C_2H_5$	2.0		
C ₄ F ₉ -O-C ₂ H ₅	0.5	1.2	70
C ₅ F ₁₁ OCH ₃	4.3		
CF ₃ CF (OCH ₃) CF (CF ₃) ₂	4-5		
C ₅ F ₁₁ OC ₂ H ₅	~1		
C-C ₆ F ₁₁ -CH ₃	13.7		

Compound	Estimated Atmospheric Lifetime (years)	Atmospheric Lifetime (years)	Global Warming Potential (100 year ITH)
C-C ₆ F ₁₁ -O-CH ₃	1.8	3.8	170
C ₂ F ₅ CF (OCH ₃) CF (CF ₃) ₂	4-5	·	
CF ₃ CFHCFHCF ₂ CF ₃	23*		1000

* A. M. Schmoltner et al., J. Phys. Chem. <u>97</u>, 8976 (1993)

As can be seen in Table A, each of the various alkoxy-substituted perfluorocompounds unexpectedly has a lower atmospheric lifetime than the corresponding hydrofluorocarbon, i.e., the hydrofluorocarbon having the same carbon number. The alkoxy-substituted perfluorocompounds are thus more environmentally acceptable than the hydrofluorocarbons (which have previously been proposed as chlorofluorocarbon replacements).

15

20

The chemical stability of the alkoxy-substituted perfluorocompounds used in the processes and compositions of the invention was also evaluated to determine their suitability for use in cleaning and coating applications. In these tests, a compound was contacted with a chemical agent such as aqueous sodium acetate, aqueous KOH, concentrated sulfuric acid, or potassium permanganate in acetone to determine the stability of the compound to base, acid, or oxidant, as described below:

Stability in the Presence of Base

To assess hydrolytic stability, a ten gram sample of alkoxy-substituted perfluorocompound was combined with 10 g of 0.1M NaOAc and sealed in a 5 2.54 cm (internal diameter) by 9.84 cm Monel 400 alloy (66% nickel, 31.5% copper, and 1.2% iron and several minor components) tube (available from Paar Instrument Co. of Moline, Illinois as Part Number 4713cm). The tube was heated at 110°C in a forced air convection oven for 16 hours. After cooling to room 10 temperature, a 1 mL sample of the tube contents was diluted with 1 mL of total ionic strength adjustment buffer (TISAB, available from Orion Research, Inc., a mixture of 1,2-cyclohexylene dinitrilotetraacetic acid, deionized water, sodium acetate, sodium chloride, and 15 acetic acid). The concentration of fluoride ion (resulting from any reaction of the perfluorocompound with the aqueous NaOAc) was measured using an Orion Model 720A Coulombmeter with a F specific electrode which had been previously calibrated using 0.5 and 20 500 ppm F solutions. Based on the measured fluoride ion concentration, the rate at which HF had been generated by reaction of the aqueous NaOAc with the perfluorocompound was calculated. The results are shown below in Table B and indicate that the alkoxy-25 substituted perfluorocompounds are much more stable to base than is the comparative compound.

Table B

	C ₄ F ₉ OCH ₃	C ₄ F ₉ OC ₂ H ₅	c-C ₆ F ₁₁ OCH ₃	CF ₃ CFHCFHCF ₂ CF ₃
HF	0.67	0.22	0.33	42.9
Generation			,	
Rate				
(μg/g/hr)				

To assess hydrolytic stability under more severely basic conditions, C4F9OCH3 (125 g of 99.8% purity, 0.5 mole) was combined with potassium hydroxide (29.4 g, 0.45 mole, dissolved in 26.1 g water) in a 250 mL flask equipped with an overhead stirrer, a condenser, and a thermometer, and the resulting solution was refluxed at 58°C for 19 hours. Water 10 (50 mL) was added to the solution after refluxing, and the resulting product was distilled. The lower fluorochemical phase of the resulting distillate was separated from the upper phase and was washed with water (100 mL) to yield 121.3 g of recovered C4F,OCH3, which was identical in purity and composition to the 15 starting material (as shown by gas chromatography). The aqueous base solution remaining in the reaction flask was titrated with standard 1.0 N HCl to reveal that none of the KOH originally charged had been 20 consumed, indicating that the perfluorocompound was stable in the presence of the base.

Stability in the Presence of Acid

To assess hydrolytic stability under acidic conditions, C₄F₉OCH₃ (15 g, 0.06 mole) was combined with sulfuric acid (10 g of 96% by weight, 0.097 mole) in a 50 mL flask containing a stir bar and fitted with a

reflux condenser. The resulting mixture was stirred for 16 hours at room temperature, and then the resulting upper fluorochemical phase was separated from the resulting lower sulfuric acid phase. Gas-liquid chromatographic (GLC) analysis of the fluorochemical 5 phase revealed the presence of only the starting perfluorocompound and no detectable amount of C3F7CO2CH3, the expected product of hydrolysis. This result (indicating that the perfluorocompound was stable in the presence of the acid) was surprising in view of the 10 discussion by England in J.Org. Chem. 49, 4007 (1984), which states that "[f]luorine atoms attached to carbon which also bears an alkyl ether group are known to be labile to electrophilic reagents. They are readily 15 hydrolyzed in concentrated sulfuric acid, thus providing a route to some esters of fluoroacids."

Stability in the Presence of Oxidant

To assess oxidative stability, potassium 20 permanganate (20 g, 0.126 mole) was dissolved in acetone, and C₄F₉OCH₃ (500 g of 99.9% purity, 2.0 mole) was added to the resulting solution. The solution was refluxed for four hours, with no indication that the permanganate had been consumed (as evidenced by the absence of brown MnO2). The refluxed solution was then 25 distilled into a 500 mL Barrett trap filled with water. The lower fluorochemical phase of the resulting mixture was separated from the upper phase, was washed with four 1.5 L aliquots of water, and was dried by passage through a column of silica gel to yield 471 g of 30 resulting product. Gas chromatographic analysis of the

product revealed no evidence of degradation of the starting perfluorocompound, indicating that the compound was stable in the presence of the oxidant.

5 Flash Point Testing

The alkoxy-substituted perfluorocompounds $C_4F_9OCH_3$, $C_4F_9OC_2H_5$, and $c-C_6F_{11}OCH_3$ were tested for flash point by the standard method defined by ASTM D3278-89. Each compound was determined to have no flash point.

10

20

Examples 1-7 describe the preparation of novel alkoxysubstituted perfluorocompounds of the invention.

Example 1

Preparation of c-C₆F₁₁CF₂OC₂H₅

A one liter jacketed round bottom flask was equipped with a reflux condenser, an overhead stirrer, and an addition funnel. The flask was charged with anhydrous dimethyl formamide (300 g) and diethyl sulfate (239 g, 1.55 mole) under a flow of dry nitrogen gas. The resulting stirred solution was cooled to -20°C, and spray-dried potassium fluoride (Aldrich Chemical, which was further dried at 120°C, 67.5 g, 1.16 mole) was added. A mixture of

perfluorocyclohexane carbonyl fluoride and isomers of perfluoro methylcyclopentane carbonyl fluoride (approximately 80% purity, 318 g, 0.77 mole) was then added to the resulting mixture over a period of 45 minutes. (Hereinafter, c-C₆F₁₁- refers to a mixture of the perfluorinated cyclohexyl and methyl cyclopentyl isomers.) The mixture was held at -20°C for two hours

and then allowed to come to ambient temperature while stirring overnight. The mixture was transferred to a two liter round bottom flask and was heated to 50°C for one hour. One liter of water was added and the resulting mixture distilled. The lower fluorochemical phase of the resulting distillate was then separated from the upper phase and was washed once with water to afford 236 g of 61.9 % purity c-C₆F₁₁CF₂OC₂H₅. The product was distilled to a purity of 99% (b.=128-134°C). The product identity was confirmed by gas chromatography/ mass spectrometry (GCMS) and by ¹H and ¹⁹F nuclear magnetic resonance spectroscopy (NMR).

Example 2

5

10

15 Preparation of c-C₆F₁₁CF₂OCH₃

A 500 mL round bottom flask was equipped with an overhead stirrer, a condenser, and an addition funnel, and was then charged with spray-dried potassium fluoride (Aldrich, which was further dried at 120°C, 20 39.8 g, 0.68 mole) and anhydrous dimethyl formamide (250 g). $c-C_6F_{11}COF$ (150 g of 70% purity, 0.32 mole) was added slowly to the resulting mixture at rocm temperature. An ice bath was then placed around the flask, and dimethyl sulfate (74.8 g, 0.59 mole) was 25 added dropwise. The resulting mixture was held in the ice bath for five hours, followed by warming to ambient temperature with stirring overnight. Water (100 mL) was then added to the mixture, and the resulting product was distilled. The lower fluorochemical phase of the 30 resulting distillate was separated from the upper aqueous phase to yield 143 g of c-C₆F₁₁CF₂OCH₃ of 63%

purity. The products of several reactions were combined and distilled (b.=110-120°C). The product identity was confirmed by GCMS and by ¹H and ¹⁹F NMR.

5 Example 3

Preparation of 4-CF₃-c-C₆F₁₀CF₂OCH₃

A one liter round bottom flask was equipped with an overhead stirrer, a condenser, and an addition funnel and was then charged with spray-dried potassium fluoride (Aldrich, which was further dried at 120°C, 10 15.4 g, 0.26 mole), anhydrous cesium fluoride (6.5 g, 0.043 mole), and anhydrous dimethyl formamide (250 g). A mixture of perfluoro-4-methylcyclohexane carbonyl fluoride and perfluorodimethyl cyclopentane carbonyl fluorides (100 g of 72% purity, 0.189 mole) was then 15 added to the resulting mixture, and the mixture was stirred at ambient temperature for four hours. Dimethyl sulfate (33.3 g, 0.264 mole) was then added to the stirred mixture, and the mixture was further 20 stirred for 72 hours followed by addition of water (500 mL).

The mixture was worked up essentially as described in Example 1 to yield 67 g of a mixture of several components, which was subsequently distilled to give 26.5 g of 4-CF₃-c-C₆F₁₀CF₂OCH₃ (b.=118-137°C) of 88% purity. The product identity was confirmed by GCMS and by ¹H and ¹⁹F NMR, which showed the product to be about 60% of the trans-1,4 isomer and 15% of the cis-1,4 isomer. The product also contained several other

the perfluoromethylcyclohexane carbonyl fluoride which were present in the starting material.

Example 4

5 Preparation of

The title compound was prepared essentially as in Example 3 using anhydrous potassium fluoride (27 g, 0.46 mole), anhydrous dimethyl formamide (250 g),

- perfluoro-3- piperidinopropionyl fluoride (322 g of 40.4% purity, 0.32 mole), and dimethyl sulfate (52 g, 0.41 mole). 275 g of a product mixture of 38% purity was obtained, which was fractionally distilled to give a main fraction of the desired compound (b.=137-139°C,
- 91% purity). The product identity was confirmed by infrared spectroscopy (IR), GCMS, and ¹H and ¹⁹F NMR.

Example 5

Preparation of

The title compound was prepared essentially as in Example 3 using anhydrous potassium fluoride (42 g, 0.72 mole), anhydrous dimethyl formamide (300 g), perfluoro-2-piperidinoacetyl fluoride (354 g of 47.2% purity, 0.46 mole), and diethyl sulfate (94 g, 0.61 mole). 349 g of a product mixture of 39% purity was obtained, which was fractionally distilled to give a main fraction of the desired compound (b.=135-137°C).

The product identity was confirmed by IR, GCMS, and $^{1}\mathrm{H}$ and $^{19}\mathrm{F}$ NMR.

Example 6

5 Preparation of

CF₂CF₂ O N (CF₂)₃OCH₃ CF₂CF₃

The title compound was prepared essentially as in Example 3 using anhydrous potassium fluoride (17.7 g, 0.30 mole), anhydrous dimethyl formamide (300 g), perfluoro-3-morpholinopropionyl fluoride (890 g of 8.6% purity, 0.2 mole), and dimethyl sulfate (37 g, 0.29 mole). 88 g of a product mixture of 57% purity was obtained, which was fractionally distilled to give a main fraction of the desired compound (b.p.=129°C, 90% purity). The product identity was confirmed by IR, GCMS, and ¹H and ¹⁹F NMR.

Example 7

Preparation of CH3OCF2-c-C6F10CF2OCH3

The title compound was prepared essentially as in Example 3 using anhydrous potassium fluoride (6.62 g, 0.011 mole), anhydrous dimethyl formamide (200 g), FCO-c-C₆F₁₀COF (253 g of approximately 26% purity, 0.185 mole; the remainder of the material comprised a mixture of mono-functional, non-functional, and isomeric compounds), and dimethyl sulfate (14.4 g, 0.011 mole). 21 g of solid CH₃OCF₂-c-C₆F₁₀CF₂OCH₃ was obtained (product identity confirmed by IR and ¹H and ¹⁹F NMR).

Examples 8-28 describe the use of alkoxy-substituted perfluorocompounds in various different cleaning applications according to the cleaning process of the invention.

A number of different alkoxy-substituted perfluorocompounds were prepared for use in cleaning, as described below:

10

5

Preparation of C4F,OC2H5

A 20 gallon Hastalloy C reactor, equipped with a stirrer and a cooling system, was charged with spraydried potassium fluoride (7.0 kg, 120.3 mole). The reactor was sealed, and the pressure inside the reactor 15 was reduced to less than 100 torr. Anhydrous dimethyl formamide (22.5 kg) was then added to the reactor, and the reactor was cooled to below 0°C with constant agitation. Heptafluorobutyryl fluoride (22.5 kg of 58% 20 purity, 60.6 mole) was added to the reactor contents. When the temperature of the reactor reached -20°C, diethyl sulfate (18.6 kg, 120.8 mole) was added to the reactor over a period of approximately two hours. resulting mixture was then held for 16 hours with 25 continued agitation, was raised to 50°C for an additional four hours to facilitate complete reaction, and was cooled to 20°C. Then, volatile material (primarily perfluorooxacyclopentane present in the starting heptafluorobutyryl fluoride) was vented from 30 the reactor over a three-hour period. The reactor was

then resealed, and water (6.0 kg) was added slowly to the reactor. After the exothermic reaction of the water with unreacted perfluorobutyryl fluoride subsided, the reactor was cooled to 25°C, and the reactor contents were stirred for 30 minutes. The reactor pressure was carefully vented, and the lower organic phase of the resulting product was removed to afford 17.3 kg of material which was 73% C₄F₉OC₂H₅ (b.p.=75°C). The product identity was confirmed by GCMS and by ¹H and ¹⁹F NMR.

Preparation of C₄F₉OCH₃

5

10

The reaction was carried out in the same equipment and in a similar manner to the procedure of Example 7 above, but using the following materials: spray-dried potassium fluoride (6 kg, 103.1 mole), anhydrous dimethyl formamide (25.1 kg), perfluorobutyryl fluoride (58% purity, 25.1 kg, 67.3 mole), and dimethyl sulfate (12.0 kg, 95.1 mole). 22.6 kg of product was obtained, which was 63.2% C₄F₉OCH₃ (b.=58-60°C). The product identity was confirmed by GCMS and by ¹H and ¹⁹F NMR.

Preparation of c-C₆F₁₁OCH₃

A 500 ml, 3-necked round bottom flask equipped with an overhead stirrer, an addition funnel, and a condenser was charged with anhydrous cesium fluoride (27.4 g, 0.18 mole), anhydrous diethylene glycol dimethyl ether (258 g, hereinafter diglyme), and 30 dimethyl sulfate (22.7 g, 0.18 mole).

Perfluorocyclohexanone (50g, 0.18 mole) was then added

dropwise to the resulting stirred mixture, and stirring was continued for 18 hours after the addition. Water (approximately 200 ml) was added to the resulting mixture, and the lower fluorochemical phase of the 5 mixture was separated from the upper phase and washed once with saturated aqueous sodium chloride solution. Since the fluorochemical phase still contained about 12% diglyme, water was added to it, and the resulting product was azeotropically distilled to yield 32.8 g of 10 c-C₆F₁₁OCH₃ (b.p.=100°C), which was free of diglyme. The product identity was confirmed by IR, GCMS, and ¹H and ¹⁹F NMR.

Preparation of (CF₃), CFCF₂OCH₃

15 The title compound was prepared essentially as in Example 1 using anhydrous potassium fluoride (31.9 g, 0.55 mole), anhydrous dimethyl formamide (186 g), perfluoroisobutryl fluoride (108 g of 99% purity, 0.5 mole), and dimethyl sulfate (81.9 g, 0.65 mole). The resulting mixture was held at -20°C for 16 hours, was warmed to 40°C for 3.5 hours, and was then

distilled to yield 109 g of the title compound (83.6% purity by GLC; also containing 11.6% (CF₃)₂CFCOF). The reaction mixtures from several runs were combined and distilled (b. CO. CLOC)

25 distilled (b.=60-61°C).

30

Preparation of (CF₃)₂CFCF₂OC₂H₅

The title compound was prepared essentially as in Example 1 using anhydrous potassium fluoride (31.9 g, 0.55 mole), anhydrous dimethyl formamide (184 g), perfluoroisobutryl fluoride (112.3 g of 77%

purity, 0.4 mole), and diethyl sulfate (100.1 g, 0.65 mole). The resulting mixture was worked up essentially as in Example 3 to yield 80 g of the title compound. The product identity was confirmed by IR, GCMS, and ¹H and ¹⁹F NMR.

Preparation of C₈F₁₇OCH₃

The title compound was prepared essentially as in Example 3 using anhydrous potassium fluoride

(6.62 g, 0.011 mole), anhydrous dimethyl formamide

(800 g), C₇F₁₅COF (456.7 g, 1.09 mole), and dimethyl sulfate (14.4 g, 0.011 mole). The resulting mixture was worked up essentially as in Example 3 to give 444 g of the title compound (99.7% purity, b.=142-144°C).

The product identity was confirmed by IR, GCMS, and ¹H

15 The product identity was confirmed by IR, GCMS, and ¹H and ¹⁹F NMR.

The title compound was prepared essentially

Preparation of $C_2F_5CF(OCH_3)CF(CF_3)$,

as in Example 3 using anhydrous potassium fluoride

(7.2 g, 0.123 mol), anhydrous diethylene glycol
dimethyl ether (diglyme, 60 g),
methyltrialkyl(C₈.C₁₀)ammonium chloride (Adogen™ 464,
available from Aldrich Chemical Company, 1.8 g),

C₂F₅COCF(CF₃)₂ (30 g, 0.095 mol, prepared by the reaction
of pentafluoropropionyl fluoride with KF and
hexafluoropropene), and dimethyl sulfate (15.5 g,
0.123 mol). The reaction mixture was stirred at room
temperature for 72 hours. Approximately 100 mL of 10%
30 aqueous potassium hydroxide was then added to the
reaction mixture, and the resulting product was

azeotropically distilled from the mixture. The lower phase of the resulting distillate was separated from the upper phase, was washed with water, and was distilled to give 26.7 g of product ether (boiling range 90-92°C; >99% purity by gas-liquid chromatography (GLC)). The product identity was confirmed by GCMS and ¹H and ¹⁹F NMR.

Preparation of C₃F₇OCH₃

5

10 A jacketed one liter round bottom flask was equipped with an overhead stirrer, a solid carbon dioxide/acetone condenser, and an addition funnel. flask was charged with spray-dried potassium fluoride (85 g, 1.46 mol) and anhydrous diethylene glycol 15 dimethyl ether (375 g) and was then cooled to about -20°C using a recirculating refrigeration system. C_2F_5COF (196 g, 1.18 mol) was added to the flask over a period of about one hour. The flask was then warmed to about 24°C, and dimethyl sulfate (184.3 g, 1.46 mol) was 20 then added dropwise via the addition funnel over a 45 minute period. The resulting mixture was then stirred at room temperature overnight. Water (a total of 318 mL) was then added dropwise to the mixture. mixture was transferred to a one liter round bottom 25 flask, and the resulting product ether was azeotropically distilled. The lower product phase of the resulting distillate was separated from the upper aqueous phase, was washed once with cold water, and was subsequently distilled to give 180 g of product (b.p. 36°C; >99.9% purity by GLC). The product identity was 30 confirmed by GCMS and by 1H and 19F NMR.

Preparation of CF₃CF(OCH₃)CF(CF₃)₂

The title compound was prepared essentially as in Example 3 using anhydrous potassium fluoride (12.8 g, 0.22 mol), anhydrous diethylene glycol dimethyl ether (diglyme, 106 g), methyltrialkyl (C₈₋C₁₀) ammonium chloride (Adogen™ 464. available from Aldrich Chemical Company, 4 q), CF₃COCF(CF₃)₂ (53.2 g, 0.20 mol, prepared essentially by the procedure of Smith et al., J. Am. Chem. Soc., 84, 10 4285 (1962)), and dimethyl sulfate (33.9 g, 0.72 mol). Aqueous potassium hydroxide was added to the reaction mixture (approximately 25 g of 50% solution), followed by water (200 mL). The resulting crude product was 15 azeotropically distilled from the reaction mixture. The lower phase of the resulting distillate was separated from the upper phase, was washed with water, was dried over anhydrous sodium sulfate, and was distilled (b.p. 82-83°C; yield of 45 g). The product identity was confirmed by GCMS and by FTIR. 20

Preparation of C₅F₁₁OCH₃

The title compound was prepared essentially as in Example 3 using anhydrous potassium fluoride

25 (32 g, 0.55 mol), anhydrous diethylene glycol dimethyl ether (diglyme, 375 g), methyltrialkyl(C₈-C₁₀)ammonium chloride (Adogen™ 464, available from Aldrich Chemical Company, 12.5 g), C₄F₉COF (218 g of 60.7% purity, 0.5 mol), and dimethyl sulfate (69.3 g, 0.55 mol). The reaction mixture was stirred at room temperature overnight. Approximately 100 mL of 10% aqueous

potassium hydroxide was then added to the mixture, and the resulting product was azeotropically distilled from the mixture. The lower phase of the resulting distillate was separated from the upper phase, was washed with water, was treated with aqueous potassium hydroxide solution (53 g of 50%), and was then refluxed for one hour. A second azeotropic distillation and water washing yielded crude product which was further purified by distillation through a ten-plate perforated column to provide the product ether (boiling range 82-84°C; 96.2% purity by GLC). The product identity was confirmed by GCMS and by ¹H and ¹⁹F NMR.

Preparation of C₅F₁₁OC₂H₅

5

10

15 The title compound was prepared essentially as in Example 3 using anhydrous potassium fluoride (38.6 g, 0.67 mol), anhydrous diethylene glycol dimethyl ether (diglyme, 500 g), methyltrialkyl(C₈₋C₁₀)ammonium chloride (Adogen™ 464, 20 available from Aldrich Chemical Company, 10.5 g), C_4F_9COF (260 g of 60.7% purity, 0.59 mol), and diethyl sulfate (102.4 g, 0.67 mol). The reaction mixture was stirred at room temperature overnight, and then the resulting product was azeotropically distilled from the 25 reaction mixture. The lower product phase of the resulting distillate was separated from the upper phase and was treated with approximately 50 g of 50% aqueous potassium hydroxide, was refluxed for four hours, and was stirred at room temperature overnight. A second azeotropic distillation and water washing gave crude 30 product which was further purified by distillation

through a ten-plate perforated column to provide the product ether (boiling point 96°C; 99.6% purity by GLC). The product identity was confirmed by GCMS and by ¹H and ¹⁹F NMR.

5

Solvency Properties

A number of potential solvents were tested for their ability to dissolve hydrocarbons of increasing molecular weight according to the procedure described in U.S. Patent No. 5,275,669 (Van Der Puy et al.), the 10 description of which is incorporated herein by reference. The data shown in Table 1 were obtained by determining the largest normal hydrocarbon alkane which was soluble in a particular solvent at a level of 50 percent by volume. The numbers in the Table correspond with the carbon number of the largest alkane, e.g., "8" refers to octane. Measurements were made from room temperature up to the boiling point of the solvent. For comparative purposes, hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) were also tested using this 20 method.

Table 1

С6F13H	7		8	ω		6	10	
C ₅ F ₁₁ H C ₆ F ₁₃ H	7		8					
C ₈ F ₁₈	5		9	9		2	2	6
C_6F_{14}	9		9	7		7		
C4F9OC2H5 C-C6F11OCH3 CF3CFHCFHC2F5	7	7	ω	8	6			
c-C ₆ F ₁₁ OCH ₃	10	11	11	13	13	13	15	18
C4F9OC2H5	12	12	13	14	15	15	11	
C4F9OCH3	6	10	10	12	12	12	-	
Temperature (°C)	23	30	. 40	50	55	09	73	101

The data in Table 1 show that hydrocarbon alkanes are significantly more soluble in the alkoxysubstituted perfluorocompounds used in the cleaning process of this invention than in the comparative compounds, the HFCs and PFCs. This improved solvency was more pronounced at elevated temperatures. Thus, the cleaning process of the invention can be used to remove higher molecular weight hydrocarbons (e.g., oils and greases) from substrate surfaces than can be removed using HFCs or PFCs. The higher solvency of the alkoxy-substituted perfluorocompounds for hydrocarbon alkanes indicates that these perfluorocompounds can serve not only as superior cleaning solvents for removing hydrocarbon soils, but can also be effective as solvents for depositing hydrocarbon coatings, e.g., coatings of lubricant, onto substrate surfaces.

5

10

15

20

Using essentially the above-described method, the solvency properties of other alkoxy-substituted perfluorocompounds were tested at room temperature. The compounds tested and the results obtained are shown in Table 2 below.

Table 2

Compound	Largest Soluble
F CF ₂ OCH ₃	9
F — CF ₂ OC ₂ H ₅	11
C ₈ F ₁₇ OCH ₃	6
(CF ₃) ₂ CFCF ₂ OCH ₃	9
C ₂ F ₅ CF (OCH ₃) CF (CF ₃) ₂	8
CF ₃ CF (OCH ₃) CF (CF ₃) ₂	9
C ₃ F ₇ OCH ₃	10
C ₅ F ₁₁ OCH ₃	8
$C_5F_{11}OC_2H_5$	10
CF3	8
F N(CF ₂) ₃ OCH ₃	7
F N(CF ₂) ₂ OCH ₁	9
O F N(CF ₂) ₃ OCH ₃	8

Examples 8-10 and Comparative Examples A-C

In the following Examples and Comparative
Examples, the cleaning ability of the alkoxysubstituted perfluorocompounds used in the cleaning

process of the invention was further evaluated. A 1.28 cm x 1.28 cm x 0.225 cm wire-wrapped, aluminum coupon was coated with white heavy mineral oil (available from Aldrich Chemical) by immersing the coupon in an oil-filled beaker. The initial amount of the oil on the coupon was determined by weighing it on an analytical balance to the nearest 0.1 mg. The coupon was immersed in a container of solvent and sonicated for 1 minute at the indicated temperature (see Table 3 below for the solvents and temperatures used). The coupon was then weighed again, and the results were recorded in Table 3 as percent oil removal.

10

Table 3

	CF2C1CFC12	CF2ClCFCl2	CF2C1CFC12 98.9
^	$C_6F_{13}H$	C ₆ F ₁₃ H	C ₆ F ₁₃ H 71.7 86.8
	C ₆ F ₁₄	C ₆ F ₁₄ 54.9	C ₆ F ₁₄ 54.9 67.6
-			
24	$c - C_6 F_{11} O C H_3$	c-C ₆ F ₁₁ OCH ₃	c-C ₆ F ₁₁ OCH ₃ 74.4 96.5
`	5	v	v
0	C4F,OCH, C4F,OC2H	C4F,OCH3 60.3	C4F,OCH3 60.3 98.7
באמווויים	_		

The data in Table 3 show that the alkoxysubstituted perfluorocompounds removed amounts of the
mineral oil which were comparable to the amounts
removed by the comparative PFC and HFC compounds at
room temperature. At elevated temperature, the
cleaning properties of the perfluorocompounds were
superior to those of the PFC and HFC compounds and
equivalent to those of the comparative CFC compound.

10 **Examples 11-13**

5

Using essentially the same procedure as that described in Examples 8-10, the ability of the alkoxysubstituted perfluorocompounds to remove a fluorinated oil was evaluated. As in the previous Examples, a coupon was immersed in Krytox™ 157FSM perfluoropolyether oil having carboxylic acid end groups (available from DuPont), and the percent oil remaining after immersion in the solvent (at room temperature) was determined. The results are shown in Table 4 below.

Table 4

Example	11	12	13
Compound	C ₄ F ₉ OCH ₃	$C_4F_9OC_2H_5$	$C-C_6F_{11}OCH_3$
% Removed	99.1	99.3	96.5

25 The data show that the alkoxy-substituted perfluorocompounds very effectively removed the perfluoropolyether oil from the surface of the coupon. This indicates that the perfluorocompounds can function

well as cleaning solvents for the removal of halogenated compounds such as halogenated oils and greases.

Examples 14-16 and Comparative Examples D-E

The ability of alkoxy-substituted perfluorocompounds to function as a rinse agent in a co-solvent cleaning process was evaluated. The above-described aluminum coupon was coated with solder flux (available from Alpha Metals as Alpha 611 rosin, mildly activated flux) by immersing the coupon into a flux-filled beaker. The flux-coated coupon was then dried using a forced air convection drier. The initial amount of the flux on the coupon was determined by weighing it on an analytical balance to the nearest 0.1 mg. The coupon was immersed in a container of a mixed solvating agent comprising approximately 50% methyl decanoate and 50% dipropylene glycol di-n-butyl ether and was sonicated for 1 minute at approximately 55°C. The coupon was then immersed for 30 seconds into alkoxy-substituted perfluorocompound which had been heated to its boiling point. The coupon was weighed again, and the results were recorded in Table 5 below as percent oil removed from the coupon.

25

5

10

15

20

Table 5

Example	14	15	16	Comparative	Comparative
				D	E
Compound	C4F9OCH3	C ₄ F ₉ OC ₂ H ₅	C-C ₆ F ₁₁ OCH ₃	C ₆ F ₁₄	C ₆ F ₁₃ H
% Removed	100.0	100.0	100.0	51.9	91.2

The data in Table 5 show that the alkoxy-substituted perfluorocompounds (used according to the cleaning process of the invention) effectively removed the solvating agent and flux residues, showing solvency properties superior to those of the comparative PFC and HFC compounds.

Examples 17-18 and Comparative Example F

5

25

The above-described aluminum coupon was dipped into Brayco 815Z perfluoropolyether oil (available from Castrol Inc., molecular weight of about 10,000) and then immersed in alkoxy-substituted perfluorocompound vapor (over the boiling liquid) for 60 seconds. The percent oil removal was determined in the above
described manner. The results are shown in Table 6.

Table 6

	17	18	Comparative F
Compound	C ₄ F ₉ OCH ₃	C4F9OC2H5	C_6F_{14}
Percent Soil Removed	89.9%	93.3%	92.9%

20 Examples 19-20 and Comparative Example G

The above-described test coupon was dipped into a paraffinic oil comprising a mixture of linear and branched hydrocarbons (DuoSeal Pump Oil, available from Sargent Welch), was immersed in mixed solvating agent comprising approximately 50% methyl caproate and 50% dipropylene glycol di-n-butyl ether for 30 seconds, and was then rinsed in boiling alkoxy-substituted

perfluorocompound for 30 seconds. The percent oil removal was determined in the above-described manner. The results are shown in Table 7.

5

Table 7

	19	20	Comparative G
Compound	C ₄ F ₉ OCH ₃	C ₄ F ₉ OC ₂ H ₅	C_6F_{14}
Percent Soil Removed	99.8%	100.0%	89.2%

Examples 21-22

The above-described test coupon was dipped in

white heavy mineral oil (available from Aldrich
Chemical), was immersed in a boiling single-phase
mixture of 40 volume % of a solvating agent comprising
essentially methyl decanoate and 60 volume % of alkoxysubstituted perfluorocompound (a cleaning composition

of the invention) for 60 seconds, was cooled for 60
seconds, and was then immersed in mixture vapor for 30
seconds. The percent oil removal was determined in the
above-described manner. The results are shown in
Table 8.

20

Table 8

	21	22
Fluorinated Component of Cleaning Composition	C ₄ F ₉ OCH ₃	C ₄ F ₉ OC ₂ H ₅
Percent Soil Removed	94.61%	94.28%

Examples 23-24 and Comparative Example H

The above-described test coupon was dipped into DuoSeal Pump Oil (available from Sargent-Welch), was immersed in a boiling mixture of 40 volume % of a solvating agent comprising mixed terpenes having a boiling range of 243-274°C and 60 volume % of alkoxy-substituted perfluorocompound (a cleaning composition of the invention), was cooled for 60 seconds, and was then immersed in mixture vapor for 30 seconds. The percent oil removal was determined in the abovedescribed manner. The results are shown in Table 9.

Table 9

	23	24	Comparative H
Fluorinated Component of Cleaning Composition	C ₄ F ₉ OCH ₃	C ₄ F ₉ OC ₂ H ₅	C ₆ F ₁₄
Percent Soil Removed	86.4%	99.4%	75.7%

15

10

Examples 25-26 and Comparative Example I

The above-described test coupon was dipped into DuoSeal Pump Oil (available from Sargent-Welch) and was then immersed in a mixture of 40 volume % n- C_6H_{14} and 60 volume % alkoxy-substituted perfluorocompound (a cleaning composition of the invention) for 60 seconds at room temperature with ultrasonic agitation. The percent oil removal was determined in the above-described manner. The results are shown in Table 10.

25

20

Table 10

	25	26	Comparative I
Fluorinated Component of Cleaning Composition	C₄F₃OCH₃	C₄F₃OC₂H₅	C ₆ F ₁₄
Percent Soil Removed	92.5%	99.0%	88.5%

Examples 27-28 and Comparative Example J

The above-described test coupon was dipped into DuoSeal Pump Oil (available from Sargent-Welch) and was then immersed in the vapor of a boiling mixture of 40 volume % $n-C_6H_{14}$ and 60 volume % alkoxy-substituted perfluorocompound (a cleaning composition of the invention) for 60 seconds. The percent oil removal was determined in the above-described manner. The results are shown in Table 11.

Table 11

Example	27	28	Comparative J
Fluorinated	C ₄ F ₉ OCH ₃	C ₄ F ₉ OC ₂ H ₅	C_6F_{14}
Component of			·
Cleaning Composition			
Percent Soil Removed	90.8%	97.1%	73.8%

15

20

5

10

The results obtained in Examples 17-28 show that alkoxy-substituted perfluorocompounds are effective at removing a variety of contaminants from substrate surfaces.

In Examples 29 to 70 the process of cleaning textiles using alkoxy-substituted perfluoroalkanes was demonstrated. The cleaning compositions used were as follows:

Cleaning

composition

A $C_4F_9OCH_3$ (neat)

B $C_4F_9OC_2H_5$ (neat)

C 0.5 wt.% $C_4F_9OC_2F_4OCF_2C(O)$ NHC₂H₄OH, 0.2 wt.% Brij 30TM in $C_4F_9OCH_7$

D 0.5 wt.% $C_4F_9OC_2F_4OCF_2C(O)$ NHC₂H₄OH, 0.2 wt.% Igepal CO-210TM in $C_4F_9OCH_3$

E 0.5 wt.% FC-171TM, 0.2 wt.% TRITON X-15TM, in $C_4F_9OCH_3$

F 0.5 wt.% FC-171TM, 0.2 wt.% TRITON X-15TM, in $C_4F_9OC_2H_5$

5 BRIJ 30[™] is an ethoxylated (poly)ethylene oxide available from ICI Chemical

IGEPAL CO-210 TM is a nonylphenoxyethoxylate) is available from Rhone-Poulenc

TRITON $X-15^{TM}$ is an octylphenoxyethoxylate) is available

10 from Union Carbide

FC-171TM is a fluorinated sulfonamide surfactant available from 3M Company, St. Paul, MN $C_4F_9OC_2F_4OCF_2C(O)\,NHC_2H_4OH \ may \ be \ prepared \ by \ the \ method \ described in U.S. 5,125,978 \ (Flynn, et la.) \ and U.S.$

15 5,089,152 (Flynn et al.)

In these Examples, fabric samples measuring about 15×15 cm and weighing about 10 grams were stained by adding three drops of mineral oil, and separately,

three drops of corn oil, to the fabric, covering the stain with wax paper, and applying a 500 g weight for about one minute to ensure oil penetration into the fabric. The samples were then allowed to stand for about thirty minutes prior to each cleaning trial.

The stained fabrics were placed into individual quart glass jars with 200 mL of a cleaning solution, capped, and then shaken for ten minutes. The cleaning solution was then drained and the fabric samples rinsed with 200 mL of the same neat alkoxy-substituted perfluoroalkane for five minutes, followed by air drying. The rinse step was omitted in Examples in which the neat fluorinated ether was used as the cleaning solution.

10

15

20

25

The fabric samples were evaluated visually comparing the size and appearance of the stain on the untreated fabric to that of the cleaned fabric. The stains were then evaluated with a Model CR-300TM Chromometer (Minolta Camera, Japan) to quantify the color of the stain before and after cleaning. Results are tabulated in the Tables below, organized by the identity of the Oil and Fabric tested. In the tables, the value ΔE represents the difference in color measurements between a stained and an unstained portion of the same fabric sample. In practice, a cleaned stain should have a Delta E value that is lower than an untreated (stained but not cleaned) sample.

Table 12

Example	Cleaning	Oil	Fabric	ΔE	Visual Observation
	Solution				
29	Untreated	Corn Oil	65/35	7.1	
Control			Polyester	±0.04	
j			Cotton Twill		
30	А	=		4.52	Spot size decreased to 2/3
				±0.04	
31	В	=	=	4.58	Spot size decreased to 2/3
				±0.06	
32	ບ	=	=	4.56	Spot size decreased to 1/2
				∓0.00	
33	Д		=	5.26	Spot size decreased to 1/2
				±0.04	
34	ច	=		3.54	Spot size decreased to
				±0.12	less than 1/2
35	ĹĿ	"	-	4.56	Spot size decreased to
				±0.23	less than 1/4

Table 13

Example	Cleaning	0i1	Fabric	ΛΕ	Visual Observation
ı	Solution				
36	Untreated	Corn Oil	Corn Oil 100% Cotton	0.27	
Control			style 400	±0.03	
37	А	=	=	1.86	Spot size decreased
				±0.30	to 1/2
38	В	"		2.6	Spot size decreased
				±0.04	to 1/4
39	۵	=		0.39	Spot size decreased
				±0.07	to less than 1/2
40	D	"	11	0.34	Spot size nearly
				+0.0€	gone
41	B	:		0.88	Spot size
				±0.01	decreased to 1/2
42	L	=		0.76	Spot size decreased
	<u> </u>			±0.05	to 1/4

Table 14

Example	Cleaning	011	Fabric	ΛE	Visual
	Solution				Observation
43	Untreated	Corn Oil	100 % Wool	11.41	
Control				±0.75	
44	A	=	-	10.46	No Change
				±0.13	
45	В	=	=	8.87	No Change
				40.07	
46	Ü	"	=	8.96	No Change
				±0.16	
47	Ω	=	=	9.78	No Change
				±0.08	
48	E	"	=	8.74	No Change
				±0.22	
49	Į14	:	=	8.54	No Change
				∓0.06	

Table 15

Example	Cleaning	110	Fabric	PΣ	Visual Observation
	Solution				
50	Untreated	Light	65/35	5.80	
Control		Mineral	Polyester	±0.03	
		Oil	Cotton Twill		
51	A	11		0.50	Spot not visible
				±0.07	
52	В	=		0.14	Spot not visible
				70.16	
53	Ü	1	=	0.44	Spot not visible
				±0.04	
54	D	=		0.36	Spot not visible
				±0.0€	
55	Ħ	:	ı	0.44	Spot not visible
				±0.19	
56	拞	=		0.20	Spot not visible
				±0.05	

Table 16

Example	Cleaning	0il	Fabric	ΔE	Visual
	Solution				Observation
57	Untreated	Heavy	100% Cotton	0.40	
Control		Mineral Oil	style 400	70.0€	
58	А	:	11	0.37	Not visible
				±0.28	
59	В	ıı.	=	0.13	Not visible
				±0.08	
60	ນ	ı	II.	0.22	Not visible
				土0.04	
61	Д	11		0.17	Not visible
				+0.0€	
62	团	"	ll l	0.15	Not visible
				±0.01	
63	[I4	"		1.20	Not visible
				±0.08	

Table 17

Example	Cleaning Solution	011	Fabric	ΔE	Visual Observation
64	Untreated	Heavy Mineral	100% Wool	8.58	
Control		oil		±0.33	
65	Ą	=	=	0.76	Faintly visible
				±0.16	
99	В	1	11	0.84	Faintly visible
				±0.13	
67	Ü	1	=	29.0	Faintly visible
				±0.10	
68	Ω	=	=	0.39	Not visible
				±0.01	
69	旦		11	0.57	Not visible
				±0.21	
70	Ŀ	=	11	0.79	Not visible
				±0.04	

As can be seen in the above Tables, the mineral oil stains were essentially completely removed with all cleaning solutions, based on both visual and colorimetric analysis. The corn oil stains remained to some degree on all fabrics. The polyester/cotton samples showed a decrease in stain size (diameter) and a lighter (less color) stain than with the untreated control, but addition of a surfactant to the alkoxy-substituted perfluoroalkane was more effective in reducing the size and color of the stain. On the 100% cotton samples, the neat alkoxy-substituted perfluoroalkane reduced the size of the stain, but made the stain darker by the colorimetric measurements.

Various modifications and alterations of this
invention will be apparent to those skilled in the art
without departing from the scope and spirit of this
invention.

10

We claim:

A dry cleaning process for removing contaminants from the surface of a fabric substrate,
 the process comprising the step of contacting a fabric substrate with a liquid- and/or vapor-phase cleaning composition comprising at least one mono-, di-, or trialkoxy-substituted perfluoroalkane, perfluorocycloalkyl-containing
 perfluoroalkane, perfluorocycloalkyl-containing perfluoroalkane, or perfluorocycloalkylene-containing perfluoroalkane compound, said compound optionally containing one or more additional catenary heteroatoms.

- The process of Claim 1 wherein said compound
 has a boiling point in the range of from about 25°C to about 200°C.
 - 3. The process of Claim 1 wherein said compound is represented by the general formula

20

25

30

$$R_f - (O - R_h)_x$$

wherein x is an integer of 1 to 3; when x is 1, R_f is selected from the group consisting of linear or branched perfluoroalkyl groups having from 2 to about 15 carbon atoms, perfluorocycloalkyl-containing perfluoroalkyl groups having from 5 to about 15 carbon atoms, and perfluorocycloalkyl groups having from 3 to about 12 carbon atoms; when x is 2, R_f is selected from the group consisting of linear or branched

perfluoroalkanediyl groups or perfluoroalkylidene groups having from 2 to about 15 carbon atoms, perfluorocycloalkyl- or perfluorocycloalkylenecontaining perfluoroalkanediyl or perfluoroalkylidene groups having from 6 to about 15 carbon atoms, and 5 perfluorocycloalkanediyl groups or perfluorocycloalkylidene groups having from 3 to about 12 carbon atoms; when x is 3, $R_{\rm f}$ is selected from the group consisting of linear or branched perfluoroalkanetriyl groups having from 2 to about 15 10 carbon atoms, perfluorocycloalkyl- or perfluorocycloalkylene-containing perfluoroalkanetriyl groups having from 6 to about 15 carbon atoms, and perfluorocycloalkanetriyl groups having from 3 to about 12 carbon atoms; each R_h is independently selected from 15 the group consisting of linear or branched alkyl groups having from 1 to about 8 carbon atoms, cycloalkylcontaining alkyl groups having from 4 to about 8 carbon atoms, and cycloalkyl groups having from 3 to about 8 carbon atoms; wherein either or both of the groups $\boldsymbol{R}_{\mathrm{f}}$ 20

25

equal to 4.

4. The process of Claim 3 wherein x is 1; R_h is an alkyl group having from 1 to about 6 carbon atoms; and R_f but not R_h can contain one or more catenary heteroatoms.

and $R_{\rm h}$ can contain one or more catenary heteroatoms; and

wherein the sum of the number of carbon atoms in $\boldsymbol{R}_{\mathrm{f}}$ and

the number of carbon atoms in R_{h} is greater than or

5. The process of Claim 4 wherein $R_{\rm f}$ is selected from the group consisting of linear or branched perfluoroalkyl groups having from 3 to about 6 carbon atoms, perfluorocycloalkyl-containing perfluoroalkyl groups having from 5 to about 8 carbon atoms, and perfluorocycloalkyl groups having from 5 to about 6 carbon atoms; and $R_{\rm h}$ is an alkyl group having from 1 to about 3 carbon atoms.

- 10 6. The process of claim 1, wherein the cleaning composition further comprises surfactant.
- 7. The process of claim 6, wherein the surfactant comprises a nonionic surfactant chosen from the group consisting of an ethoxylated alcohol, an ethoxylated alkylphenol, an ethoxylated fatty acid, an alkylaryl sulfonate, a glycerol ester, an ethoxylated fluoroalcohol, a fluorinated sulfonamide, and mixtures thereof.

20

5

8. The process of claim 6, wherein the cleaning composition comprises from about 0.1 to about 5 percent by weight surfactant.

9. A dry cleaning process for removing contaminants from the surface of a fabric substrate, the process comprising the step of contacting a fabric substrate with a liquid- and/or vapor-phase cleaning composition comprising at least one compound selected from the group consisting of $c-C_6F_{11}CF_2OC_2H_5$, $c-C_6F_{11}CF_2OCH_3$, $4-CF_3-c-C_6F_{10}CF_2OCH_3$,

10. The process of claim 9, wherein the cleaning composition further comprises surfactant.

15

11. The process of claim 10, wherein the
20 surfactant comprises a nonionic surfactant chosen from
the group consisting of an ethoxylated alcohol, an
ethoxylated alkylphenol, an ethoxylated fatty acid, an
alkylaryl sulfonate, a glycerol ester, an ethoxylated
fluoroalcohol, a fluorinated sulfonamide, and mixtures
thereof.

12. The process of claim 10, wherein the cleaning composition comprises from about 0.1 to about 5 percent by weight surfactant.

5

10

25

30

- 13. A cleaning composition comprising (a) a major amount of at least one mono-, di-, or trialkoxy-substituted perfluoroalkane, perfluorocycloalkane, perfluorocycloalkyl-containing perfluoroalkane, or perfluorocycloalkylene-containing perfluoroalkane compound, said compound optionally containing one or more additional catenary heteroatoms; and (b) surfactant.
- 15 14. The composition of Claim 13, wherein said compound has a boiling point in the range of from about 25°C to about 200°C.
- 15. The composition of Claim 13, wherein said 20 compound is represented by the general formula

$$R_f - (O - R_h)_x$$
,

wherein x is an integer of 1 to 3; when x is 1, R_f is selected from the group consisting of linear or branched perfluoroalkyl groups having from 2 to about 15 carbon atoms, perfluorocycloalkyl-containing perfluoroalkyl groups having from 5 to about 15 carbon atoms, and perfluorocycloalkyl groups having from 3 to about 12 carbon atoms; when x is 2, R_f is selected from

WO 97/22683 PCT/US96/07157

the group consisting of linear or branched perfluoroalkanediyl groups or perfluoroalkylidene groups having from 2 to about 15 carbon atoms, perfluorocycloalkyl- or perfluorocycloalkylenecontaining perfluoroalkanediyl or perfluoroalkylidene 5 groups having from 6 to about 15 carbon atoms, and perfluorocycloalkanediyl groups or perfluorocycloalkylidene groups having from 3 to about 12 carbon atoms; when x is 3, R_f is selected from the group consisting of linear or branched 10 perfluoroalkanetriyl groups having from 2 to about 15 carbon atoms, perfluorocycloalkyl- or perfluorocycloalkylene-containing perfluoroalkanetriyl groups having from 6 to about 15 carbon atoms, and perfluorocycloalkanetriyl groups having from 3 to about 15 12 carbon atoms; each R_h is independently selected from the group consisting of linear or branched alkyl groups having from 1 to about 8 carbon atoms, cycloalkylcontaining alkyl groups having from 4 to about 8 carbon atoms, and cycloalkyl groups having from 3 to about 8 20 carbon atoms; wherein either or both of the groups $R_{\rm f}$ and R_{h} can contain one or more catenary heteroatoms; and wherein the sum of the number of carbon atoms in R_{f} and the number of carbon atoms in R_{h} is greater than or 25 equal to 4.

16. The composition of claim 13, wherein the surfactant comprises a nonionic surfactant.

WO 97/22683 PCT/US96/07157

17. The composition of claim 16, wherein the nonionic surfactant is selected from the group consisting of an ethoxylated alcohol, an ethoxylated alkylphenol, an ethoxylated fatty acids, an alkylaryl sulfonate, a glycerol ester, an ethoxylated fluoroalcohol, a fluorinated sulfonamide, and mixtures thereof.

- 18. The composition of claim 13, wherein the
 10 composition comprises from about 0.1 to about 5 percent
 by weight surfactant.
- 19. A composition comprising (a) a major amount
 of at least one compound selected from the group
 15 consisting of
 c-C₆F₁₁CF₂OC₂H₅, c-C₆F₁₁CF₂OCH₃, 4-CF₃-c-C₆F₁₀CF₂OCH₃,

 WO 97/22683 PCT/US96/07157

20. The composition of claim 19, wherein the surfactant comprises a nonionic surfactant.

- 21. The composition of claim 20, wherein the
 5 nonionic surfactant is selected from the group
 consisting of an ethoxylated alcohol, an ethoxylated
 alkylphenol, an ethoxylated fatty acids, an alkylaryl
 sulfonate, a glycerol ester, an ethoxylated
 fluoroalcohol, a fluorinated sulfonamide, and mixtures
 thereof.
 - 22. The composition of claim 19, wherein the composition comprises from about 0.1 to about 5 percent by weight surfactant.

15

23. A process for removing contaminants from a substrate comprising the steps of contacting a substrate with a liquid- and/or vapor-phase cleaning composition comprising (a) at least one mono-, di-, or trialkyloxy-substituted perfluoroalkane, perfluorocycloalkyl-containing perfluoroalkane, or perfluorocycloalkyl-containing perfluoroalkane, or perfluorocycloalkylene-containing perfluoroalkane compound, said compound optionally containing one or more additional catenary heteroatoms; and (b) surfactant.

INTERNATIONAL SEARCH REPORT

Inter onal Application No PC I/US 96/07157

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C11D7/50 D06L1/ D06L1/02 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 CIID CO7D CO7C DO6L Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Ε DATABASE WPI 1-5,23 Section Ch. Week 9650 Derwent Publications Ltd., London, GB; Class D25, AN 96-503018 XP002029482 & JP 08 259 995 A (AGENCY OF IND SCI & TECHNOLOGY), 8 October 1996 see abstract EP 0 450 855 A (ICI PLC) 9 October 1991 A 1,2,23 cited in the application see claims WO 93 09272 A (ALLIED SIGNAL INC) 13 May A 1,2,23 see page 16, line 20 - page 17, line 14; claims -/--X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention 'E' earlier document but published on or after the international 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-'O' document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 15 April 1997 2 3, 04, 97 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Grittern, A

1

INTERNATIONAL SEARCH REPORT

Inter conal Application No PCI/US 96/07157

	PC:/US 96/07157						
	suon) DOCUMENTS CONSIDERED TO BE RELEVANT						
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.					
A	US 3 854 871 A (EANZEL A) 17 December 1974 see claims	1,2,23					
A	DATABASE WPI Section Ch, Week 9117 Derwent Publications Ltd., London, GB; Class B03, AN 91-123600 XP002003769 & SU 1 427 780 A (NOVOS ORG CHEM INST), 15 September 1990 see abstract						

INTERNATIONAL SEARCH REPORT

information on patent family members

Inter onal Application No PCI/US 96/07157

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0450855 A	09-10-91	AU 640760 B AU 7391391 A CA 2039828 A JP 5271692 A NZ 237628 A	02-09-93 10-10-91 05-10-91 19-10-93 26-07-94
WO 9309272 A	13-05-93	US 5273592 A AU 2906892 A	28-12-93 07-06-93
US 3854871 A	17-12-74	US 3920389 A	18-11-75

= US 6039766 (allached)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-140499

(43)公開日 平成11年(1999)5月25日

		FΙ					
		C 1	1D 1	7/00			
				1/00			
				1/34			
				3/20			
				3/24			
	家產業	未請求	請求功	頁の数4	OL	(全 11 頁)	最終頁に続く
特願平9-304438		(71)	出願人			会社	
平成9年(1997)11月6日				福井県	福井市	文京4丁目23	番1号
		(72)	発明者	濱 裕	平		
				福井県	福井市	高木北1丁目	604番地
		(72)	発明者	川村	義裕		
				福井県	坂井郡	金津町後山85	号46番地
		(72)	発明者	近藤	志郎		
				福井県	鯖江市	舟津町4丁目	7番16号
		(74)	代理人	弁理士	内山	夵	
		審査請求 特願平9-304438	審査請求 未請求 特願平9-304438 (71) 平成9年(1997)11月6日 (72) (72)	審査請求 未請求 請求項 特願平9-304438 (71)出顧人 平成9年(1997)11月6日 (72)発明者 (72)発明者 (72)発明者	1/00 1/34 3/20 3/24 審査請求 未請求 請求項の数 4 特願平9-304438 (71)出願人 000226 日華化 平成9年(1997)11月6日 (72)発明者 濱 裕 福井県 (72)発明者 川村 福井県 (72)発明者 近藤 福井県	1/00 1/34 3/20 3/24 審査請求 未請求 請求項の数4 OL 特願平9-304438 (71)出顧人 000226161 日華化学株式 福井県福井市 (72)発明者 濱 裕平 福井県福井市 (72)発明者 川村 義裕 福井県坂井郡 (72)発明者 近藤 志郎 福井県坂井郡	1/00 1/34 3/20 3/24 審査請求 未請求 請求項の数4 OL (全 11 頁) 特願平9-304438 (71)出願人 000226161 日華化学株式会社 福井県福井市文京4丁目23 (72)発明者 濱 裕平 福井県福井市高木北1丁目 (72)発明者 川村 義裕 福井県坂井郡金津町後山85

(54) 【発明の名称】 ドライクリーニング用洗浄剤組成物

(57)【要約】

【課題】ドライクリーニング用洗浄剤に要求される洗浄性などの性能を損なうことなく、再汚染防止性や帯電防止性及び柔軟性などに優れ、第三世代のフロン系溶剤に添加して使用することができるドライクリーニング用洗浄剤組成物を提供する。

【解決手段】フッ素系ポリオキシアルキレンアルキルエーテルリン酸エステル、フッ素系ポリオキシアルキレンアルキルスルホンアミドエーテルリン酸エステル、フッ素系アルキルスルホンアミドカルボン酸、フッ素系アルキルカルボン酸、フッ素系アルキルスルホン酸及びフッ素系リン酸エステルから選ばれる少なくとも1種のフッ素系化合物の塩からなるフッ素系界面活性剤1~90重量%並びにフッ化炭化水素系溶剤及び/又は溶解助剤10~99重量%を含有することを特徴とするドライクリーニング用洗浄剤組成物。

【特許請求の範囲】

ルキル基である。)

【請求項1】フッ素系界面活性剤並びにフッ化炭化水素 系溶剤及び/又は溶解助剤を含有するドライクリーニン グ用洗浄剤組成物において、フッ素系界面活性剤が、一 般式[1]で表されるフッ素系ポリオキシアルキレンア ルキルエーテルリン酸エステル、一般式 [2]で表され るフッ素系ポリオキシアルキレンアルキルスルホンアミ ドエーテルリン酸エステル、一般式[3]で表されるフ ッ素系アルキルスルホンアミドカルボン酸、一般式

[4]で表されるフッ素系アルキルカルボン酸、一般式 [5]で表されるフッ素系アルキルスルホン酸及び一般 式[6]で表されるフッ素系リン酸エステルから選ばれ る少なくとも1種のフッ素系化合物の塩であり、かつ、 フッ素系界面活性剤の含有量が1~90重量%であり、 フッ化炭化水素系溶剤及び/又は溶解助剤の含有量が1 0~99重量%であることを特徴とするドライクリーニ ング用洗浄剤組成物。

 $[R^1CH_2CH_2O(R^2O)_o]_pPO(OH)_{3-p}$...[1]

(ただし、式中、R1は炭素数3~12のパーフロロア ルキル基であり、R2は炭素数2~4のアルキレン基で

あり、oは0~10であり、pは1~2である。) 【化1】

 $[R^{3}SO_{2}NCH_{2}CH_{2}O(R^{5}O)_{o}]_{r}PO(OH)_{3-r}$... [2]

(ただし、式中、R3は炭素数3~12のパーフロロア ルキル基であり、R4は炭素数1~5のアルキル基であ り、R5は炭素数2~4のアルキレン基であり、qはO

~10であり、rは1~2である。) 【化2】

R4

··· [3]

(ただし、式中、R6は炭素数3~12のパーフロロア ルキル基であり、R7は炭素数1~5のアルキル基であ

R⁸CH₂COOH

(ただし、式中、R®は炭素数3~12のパーフロロア

R⁹SO₂H (ただし、式中、R9は炭素数6~12のパーフロロア ... [4]

ルキル基である。) ... [5]

【化3】

る。)

$$\begin{array}{c}
O \\
| \\
CF_3-(CF_2CFO)_{\bullet}-(CF_2O)_{\bullet}-CF_2CF_2(OR^{10})_{\bullet}O-P-OH \\
| \\
CF_3
\end{array}$$

... [6]

(ただし、式中、R10は炭素数2~4のアルキレン基で あり、sは1~10であり、tは0~1であり、uは1 ~10である。)

【請求項2】フッ素系界面活性剤が、一般式[7]で表 されるアミン、一般式[8]で表されるジアミン、一般

(ただし、式中、R11及びR12は水素、炭素数1~12 のアルキル基、シクロヘキシル基、ベンジル基又は炭素 数 $1\sim4$ のヒドロキシアルキル基であり、 R^{11} と R^{12} は

(ただし、式中、R13及びR14は水素又は炭素数1~6 のアルキル基であり、R13とR14は同一でも異なってい 式[9]で表されるトリアミン、一般式[10]で表さ れるアルコキシアルキルアミン又はこれらの化合物のア ルキレンオキサイド付加物の塩である請求項1記載のド ライクリーニング用洗浄剤組成物。

【化4】

... [7]

同一でも、異なっていてもよい。) 【化5】

... [8]

てもよく、R15は炭素数1~10のアルキレン基、-C $_{2}H_{4}OC_{2}H_{4}-,-C_{2}H_{4}OC_{2}H_{4}OC_{2}H_{4}-,-C_{3}$

 $H_6 O C H_2 C (C H_3)_2 C H_2 O C_3 H_6 - X は - C_3 H_6 O C_2 H_4 (O C_2 H_4)_k O C_3 H_6 - であり、k は0 ~ 5 であ$

(ただし、式中、 R^{16} は水素又は炭素数 $1\sim4$ のアルキル基であり、 R^{17} 及び R^{18} は炭素数 $2\sim6$ のアルキレン $R^{19}-O-R^{20}NH$

(ただし、式中、 R^{19} は炭素数 $1\sim14$ のアルキル基であり、 R^{20} は炭素数 $2\sim6$ のアルキレン基である。) 【請求項3】フッ化炭化水素系溶剤が、一般式[11]で表されるアルコキシパーフロロアルカン及び/又は一 C_nF_{2n+1} OC_mH_{2n+1}

(ただし、式中、nは3 \sim 4であり、mは1 \sim 3であ $C_5\,H_2\,F_8$

【請求項4】溶解助剤が、アルコール系溶剤、アルコールのアルキレンオキサイド付加物からなるエーテル系溶剤、グリコール系溶剤、炭化水素系溶剤、ケトン系溶剤から選ばれる1種又は2種以上の混合物である請求項1、請求項2又は請求項3記載のドライクリーニング用洗浄剤組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ドライクリーニング用洗浄剤組成物に関する。さらに詳しくは、本発明は、洗浄性と再汚染防止性に優れ、被洗物に帯電防止性と柔軟性を与えることができるドライクリーニング用洗浄剤組成物に関する。

[0002]

【従来の技術】衣類などの洗濯には、水を用いる中性洗 濯のウエットクリーニング、アルカリ性洗濯のランドリ ークリーニング、石油系溶剤、パークロロエチレン、C FC-113、1,1,1-トリクロロエタン、代替フロ ン溶剤などを用いるドライクリーニングがある。199 5年末をもってトリクロロエタン、特定フロンの生産が 中止され、代替フロン溶剤として、HCFC-225、 HCFC-141bなどの溶剤が、ドライクリーニング 用溶剤として使用されている。しかしながら、これらの 溶剤は、沸点が低く、乾燥は容易で速く、衣類に対する 乾燥時の機械的損傷は比較的小さいものの、オゾン破壊 係数、地球温暖化係数が大きく、使用可能な期間が限定 されている。また、HCFC-225には、アクリル樹 脂などを損傷するケミカルアタックがある。特開平6-158531号公報には、化学的な障害を被洗物に与え ることなく汚れを除去することが可能な洗濯方法とし T、FC-51-14、FC-61-16、FC-71 -18などのフッ化炭素液体類に、フッ素系界面活性剤 を添加した液体を洗浄液として使用する洗濯方法が提案 されている。しかし、このようなフッ化炭素液体類は洗 浄力が弱く、フッ素系界面活性剤を添加しても、満足す

る。) 【化6】

... [9]

基であり、 R^{17} と R^{18} は同一でも異なっていてもよい。)

...[10]

般式[12]で表されるオクタフロロシクロペンタンである請求項1又は請求項2記載のドライクリーニング用 洗浄剤組成物。

...[11]

る。)

...[12]

べき洗浄性を得ることは困難である。従来のドライクリ ーニング用洗浄剤組成物は、炭化水素を親油基とするカ チオン系界面活性剤若しくはアニオン系界面活性剤及び ノニオン系界面活性剤を主成分とし、洗浄性や再汚染防 止性、帯電防止性、柔軟性、抗菌性などの性能を有して いて、さらに新規な界面活性剤を使用する必要はなかっ た。近年、オゾン破壊係数と地球温暖化係数が小さいフ ッ化炭化水素系のいわゆる第三世代フロン系溶剤が、H CFC系溶剤を代替する溶剤として、金属部品、電子部 材の洗浄などで使用され始めており、ドライクリーニン グ用代替フロン溶剤としても使用が予定されている。し かし、これらの第三世代フロン系溶剤は、従来のドライ クリーニング用溶剤に比較してKB値(カウリブタノー ル値)がかなり小さく、溶解力が極めて弱いために、従 来ドライクリーニング用洗浄剤組成物に使用されてきた 炭化水素系界面活性剤を用いることができない。このた め、洗浄性と再汚染防止性に優れ、しかも被洗物に帯電 防止性と柔軟性を与え、第三世代の代替フロン溶剤に添 加して使用することができるドライクリーニング用洗浄 剤組成物が求められている。

[0003]

【発明が解決しようとする課題】本発明は、ドライクリーニング用洗浄剤に要求される洗浄性などの性能を損なうことなく、再汚染防止性や帯電防止性及び柔軟性などに優れ、第三世代のフロン系溶剤に添加して使用することができるドライクリーニング用洗浄剤組成物を提供することを目的としてなされたものである。

[0004]

【課題を解決するための手段】本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、特定構造を有するフッ素系界面活性剤とフッ化炭化水素系溶剤及び/又は溶解助剤を含有するドライクリーニング用洗浄剤組成物が、KB値が低い第三世代のフロン系溶剤であるメチルパーフロロブチルエーテル、エチルパーフロロブチルエーテルなどのアルコキシパーフロロアルカン及びオク

タフロロシクロペンタンなどのフロン系溶剤に可溶であり、優れた洗浄性、再汚染防止性、帯電防止性、柔軟性などを発揮することを見いだし、この知見に基づいて本発明を完成するに至った。すなわち、本発明は、(1)フッ素系界面活性剤並びにフッ化炭化水素系溶剤及び/又は溶解助剤を含有するドライクリーニング用洗浄剤組成物において、フッ素系界面活性剤が、一般式[1]で表されるフッ素系ポリオキシアルキレンアルキルエーテルリン酸エステル、一般式[2]で表されるフッ素系ポリオキシアルキレンアルキルスルホンアミドエーテルリ

ン酸エステル、一般式 [3]で表されるフッ素系アルキルスルホンアミドカルボン酸、一般式 [4]で表されるフッ素系アルキルカルボン酸、一般式 [5]で表されるフッ素系アルキルスルホン酸及び一般式 [6]で表されるフッ素系リン酸エステルから選ばれる少なくとも1種のフッ素系化合物の塩であり、かつ、フッ素系界面活性剤の含有量が1~90重量%であり、フッ化炭化水素系溶剤及び/又は溶解助剤の含有量が10~99重量%であることを特徴とするドライクリーニング用洗浄剤組成物。

 $[R^1CH_2CH_2O(R^2O)_o]_pPO(OH)_{3-p}$

(ただし、式中、 R^1 は炭素数3~12のパーフロロアルキル基であり、 R^2 は炭素数2~4のアルキレン基で

)(OH)_{3-p} … [1] あり、oは0~10であり、pは1~2である。) 【化7】

 $[R^3SO_2NCH_2CH_2O(R^5O)_a]_PO(OH)_{3-r}$... [2]

(ただし、式中、 R^3 は炭素数 $3\sim12$ のパーフロロアルキル基であり、 R^4 は炭素数 $1\sim5$ のアルキル基であり、 R^5 は炭素数 $2\sim4$ のアルキレン基であり、qは0

~10であり、rは1~2である。) 【化8】

R⁷ | | R⁶SO₂NCH₂COOH

R4

··· [3]

(ただし、式中、 R^6 は炭素数 $3\sim12$ のパーフロロアルキル基であり、 R^7 は炭素数 $1\sim5$ のアルキル基であ

 R^8CH_2COOH

(ただし、式中、R⁸は炭素数3~12のパーフロロア R⁹SO₃H

(ただし、式中、 R^9 は炭素数 $6\sim12$ のパーフロロアルキル基である。)

... [4]

ルキル基である。) … [5]

【化9】

る。)

(ただし、式中、 R^{10} は炭素数 $2\sim 4$ のアルキレン基であり、sは $1\sim 1$ 0であり、tは $0\sim 1$ であり、uは $1\sim 1$ 0である。)、(2)フッ素系界面活性剤が、一般式 [7] で表されるアミン、一般式 [8] で表されるジアミン、一般式 [9] で表されるトリアミン、一般式

(ただし、式中、 R^{11} 及び R^{12} は水素、炭素数 $1\sim12$ のアルキル基、シクロヘキシル基、ベンジル基又は炭素数 $1\sim4$ のヒドロキシアルキル基であり、 R^{11} と R^{12} は

(ただし、式中、R13及びR14は水素又は炭素数1~6

… [6]
[10]で表されるアルコキシアルキルアミン又はこれらの化合物のアルキレンオキサイド付加物の塩である第(1)項記載のドライクリーニング用洗浄剤組成物、【化10】

··· [7]

同一でも、異なっていてもよい。) 【化11】

... [8]

のアルキル基であり、R13とR14は同一でも異なってい

てもよく、R15は炭素数1~10のアルキレン基、-C $_{2}H_{4}OC_{2}H_{4}-, -C_{2}H_{4}OC_{2}H_{4}OC_{2}H_{4}-, -C_{3}$ $H_6OCH_2C(CH_3)_2CH_2OC_3H_6-Xi_2-C_3H_6O$

(ただし、式中、R16は水素又は炭素数1~4のアルキ ル基であり、R17及びR18は炭素数2~6のアルキレン R19-O-R20NH2

(ただし、式中、R19は炭素数1~14のアルキル基で あり、R²⁰は炭素数2~6のアルキレン基である。)、 (3)フッ化炭化水素系溶剤が、一般式[11]で表さ れるアルコキシパーフロロアルカン及び/又は一般式

 $C_n F_{2n+1} O C_m H_{2m+1}$

(ただし、式中、nは3~4であり、mは1~3であ $C_5 H_2 F_8$

及び、(4)溶解助剤が、アルコール系溶剤、アルコー ルのアルキレンオキサイド付加物からなるエーテル系溶 剤、グリコール系溶剤、炭化水素系溶剤、ケトン系溶剤 から選ばれる1種又は2種以上の混合物である第(1) 項、第(2)項又は第(3)項記載のドライクリーニング用 洗浄剤組成物、を提供するものである。

[0005]

【発明の実施の形態】本発明のドライクリーニング用洗 浄剤組成物は、ドライクリーニング用溶剤に添加溶解し て用いることができる。本発明組成物は、ドライクリー ニング用溶剤として第三世代のフロン系溶剤を使用する 場合には特に有用である。本発明組成物は、フッ素系界 面活性剤1~90重量%並びにフッ化炭化水素系溶剤及 び/又は溶解助剤10~99重量%を含有し、より好ま しくは、フッ素系界面活性剤5~70重量%並びにフッ

 $[R^1CH_2CH_2O(R^2O)_0]_DPO(OH)_{3-D}$

ただし、一般式「1]において、R1は炭素数3~1 2、より好ましくは炭素数6~8のパーフロロアルキル 基であり、R²は炭素数2~4、より好ましくは炭素数 2~3のアルキレン基であり、oは0~10、より好ま しくは1~5であり、pは1~2、より好ましくは1で $C_2H_4(OC_2H_4)_kOC_3H_6$ -rable kito~5rb る。) 【化12】

··· [9]

基であり、R17とR18は同一でも異なっていてもよ 11,

...[10]

「12]で表されるオクタフロロシクロペンタンである 請求項1又は請求項2記載のドライクリーニング用洗浄 剤組成物、

...[11]

る。)

...[12]

化炭化水素溶剤及び/又は溶解助剤30~95重量%を 含有する。本発明組成物において、フッ素系界面活性剤 の含有量が1重量%未満であると、洗浄力、帯電防止 性、柔軟性が十分に発現しないおそれがある。フッ素系 界面活性剤の含有量が90重量%を超えると、ドライク リーニング用洗浄剤組成物の粘性、安定性、使い易さに 難点が生ずるおそれがある。

【0006】本発明のドライクリーニング用洗浄剤組成 物において、フッ素系界面活性剤は、一般式[1]~ [6]で表される構造を有するリン酸エステル、カルボ ン酸及びスルホン酸から選ばれる少なくとも1種のフッ 素系化合物の塩である。

(1)一般式[1]で表されるフッ素系ポリオキシアル キレンアルキルエーテルリン酸エステル、

... [1]

【0007】(2)一般式[2]で表されるフッ素系ポ リオキシアルキレンアルキルスルホンアミドエーテルリ ン酸エステル、

【化13】

$[R^3SO_2NCH_2CH_2O(R^5O)_q]_rPO(OH)_{3-r}$ ··· [2]

ただし、一般式[2]において、R3は炭素数3~1 2、より好ましくは炭素数6~8のパーフロロアルキル 基であり、R4は炭素数1~5、より好ましくは炭素数 1~3のアルキル基であり、R5は炭素数2~4、より 好ましくは2~3のアルキレン基であり、gは0~1

> R 7 R⁶SO₂NCH₂COOH

ただし、一般式[3]において、R6は炭素数3~1 2、より好ましくは炭素数6~8のパーフロロアルキル 0、より好ましくは $1\sim5$ であり、rは $1\sim2$ 、より好 ましくは1である。

(3)一般式[3]で表されるフッ素系アルキルスルホ ンアミドカルボン酸、

【化14】

··· [3]

基であり、R7は炭素数1~5、より好ましくは炭素数 1~3のアルキル基である。

(4) 一般式 [4] で表されるフッ素系アルキルカルボ R⁸ C H₂ C O O H

ただし、一般式 [4] において、 R^8 は炭素数 $3\sim1$ 2、より好ましくは炭素数 $6\sim1$ 0のパーフロロアルキル基である。

$R^9 S O_3 H$

ただし、一般式 [5] において、 R^9 は炭素数 $6\sim1$ 2、より好ましくは炭素数 $6\sim8$ のパーフロロアルキル基である。及び、

... [4]

【0008】(5)一般式[5]で表されるフッ素系アルキルスルホン酸、

(6)一般式 [6] で表されるフッ素系リン酸エステル、 【化15】

$$CF_3-(CF_2CFO)_1-(CF_2O)_1-CF_2CF_2(OR^{10})_1O-P-OH$$

$$CF_3$$

$$OH$$

... [6]

ただし、一般式 [6] において、 R^{10} は炭素数 $2\sim4$ 、より好ましくは炭素数 $2\sim3$ のアルキレン基であり、sは $1\sim10$ 、より好ましくは $3\sim6$ であり、tは $0\sim1$ であり、uは $1\sim10$ 、より好ましくは $3\sim5$ である。 $1\sim10$ 000 $1\sim10$ 000 $1\sim10$ 00 $1\sim10$ 0 $1\sim$

ただし、一般式 [7] において、 R^{11} 及び R^{12} は水素、 炭素数 $1\sim12$ のアルキル基、シクロヘキシル基、ベン ジル基又は炭素数 $1\sim4$ のヒドロキシアルキル基であ り、 R^{11} と R^{12} は同一でも、異なっていてもよい。一般 式 [7] において、 R^{11} 又は R^{12} の少なくとも一方が、

ただし、一般式 [8] において、 R^{13} 及び R^{14} は水素又は炭素数 $1\sim 6$ のアルキル基であり、 R^{13} と R^{14} は同一でも異なっていてもよく、 R^{15} は炭素数 $1\sim 1$ ののアルキレン基、 $-C_2H_4OC_2H_4-$ 、 $-C_2H_4OC_2H_4OC_2H_4$ OC $_2H_4-$ 、 $-C_3H_6OCH_2C(CH_3)_2CH_2OC_3H_6-$ 又は $-C_3H_6OC_2H_4(OC_2H_4)_kOC_3H_6-$ であり、k

ただし、一般式 [9] において、 R^{16} は水素又は炭素数 $1\sim 4$ のアルキル基であり、 R^{17} 及び R^{18} は炭素数 $2\sim 6$ のアルキレン基であり、 R^{17} と R^{18} は同一であっても、異なっていてもよい。一般式 [9] において、 R^{16} R^{19} - O - R^{20} N H ,

ただし、一般式 [10] において、 R^{19} は炭素数 $1\sim1$ 4のアルキル基であり、 R^{20} は炭素数 $2\sim6$ のアルキレン基である。一般式 [10] において、 R^{20} が炭素数 $2\sim4$ のアルキレン基であることがより好ましい。

【0011】一般式[1]~[6]で表されるフッ素系

物においては、フッ素系界面活性剤が、一般式[7]~ [10]で表されるアミン又はこれらの化合物のアルキレンオキサイド付加物の塩であることが好ましい。 (7)一般式[7]で表されるアミン、

【化16】

... [7]

炭素数1~10のアルキル基、シクロヘキシル基、ベンジル基又は炭素数2~3のヒドロキシアルキル基であることがより好ましい。

(8) 一般式 [8] で表されるジアミン、

【化17】

... [8]

は $0\sim5$ である。一般式 [8] において、 R^{13} 及び R^{14} が水素又は炭素数 $1\sim2$ のアルキル基であることがより好ましい。

【0010】(9)一般式[9]で表されるトリアミン、

【化18】

... [9]

が水素又は炭素数 $1\sim2$ のアルキル基であることがより 好ましい。及び、

(10)一般式 [10] で表されるアルコキシアルキルアミン、

のリン酸エステル、カルボン酸及びスルホン酸から選ばれる化合物と、一般式 [7]~[10]で表されるアミン又はそれらのアルキレンオキサイド付加物の塩からなるフッ素系界面活性剤を用いることにより、ドライクリーニング用洗浄剤組成物の洗浄性と再汚染防止性を高

め、被洗物に優れた帯電防止性と柔軟性を与えることが 可能となるとともに、ドライクリーニング用洗浄剤組成 物のドライクリーニング用溶剤に対する溶解性を高め、 臭気を抑えることができる。

【0012】本発明のドライクリーニング用洗浄剤組成

 $C_n F_{2n+1} O C_m H_{2m+1}$

ただし、一般式 [11] において、nは3~4であり、 $C_5H_9F_8$

本発明のドライクリーニング用洗浄剤組成物において は、溶解助剤が、メタノール、エタノール、イソプロパ ノールなどのアルコール系溶剤、アルコールのアルキレ ンオキサイド付加物からなるエーテル系溶剤、グリコー ル系溶剤、炭化水素系溶剤又はケトン系溶剤であること が好ましい。これらの溶解助剤は、1種を単独で使用す ることができ、あるいは2種以上を混合して使用するこ とができる。本発明組成物において、溶解助剤を含有せ しめることにより、ドライクリーニング用洗浄剤組成物 の粘度を下げ、安定性を向上することができる。溶解助 剤の中では、毒性が低く、引火点が比較的高い3-メチ ルー3ーメトキシブタノールを特に好適に用いることが できる。本発明のドライクリーニング用洗浄剤組成物に おいては、必要に応じて、さらにポリオキシプロピレン (7モル)パーフロロアルキルエーテル、ポリオキシエチ レン(2モル)ノニルフェニルエーテル、ポリオキシエチ レン(3モル)ラウリルエーテルなどのノニオン界面活性 剤、シリコーンオイル、防錆剤などを適宜配合すること ができる。

[0013]

【実施例】以下に、実施例を挙げて本発明をさらに詳細 に説明するが、本発明はこれらの実施例によりなんら限 定されるものではない。なお、実施例及び比較例におい て、評価は下記の方法により行った。

(1)洗浄率及び再汚染率

容量500mlのステンレスポットを用いて、メチルパーフロロブチルエーテル(溶剤1)又はエチルパーフロロブチルエーテル(溶剤2)100mlに、洗浄剤組成物を0.3容量%添加溶解して洗浄液を調製する。ラウンダ・オ・メーター[大栄科学精器製作所(株)、L-20]を用いて、40番綿ブロード、ウールモスリン、アクリルメリヤス及びポリエステルジャージの4cm×8cmの大きさの白布及び日本油化学協会法に準じて作製した4cm×8cmの大きさの汚染布を、洗浄液で20℃×10分間洗浄する。その後、遠心脱水機[英光産業(株)、H-120A]を用いて、1分間脱液し、60分間風乾する。洗浄前後の白布及び汚染布について、色彩計[(株)村上

物においては、フッ化炭化水素系溶剤が、一般式[1 1]で表されるアルコキシパーフロロアルカン及び/又は一般式[12]で表されるオクタフロロシクロペンタンであることが好ましい。

...[11]

mは1~3である。

... [12]

色彩技術研究所、クリーンマスターCM-53D]を用いて、550nmにおける反射率を測定し、次式にしたがって洗浄率と再汚染率を算出する。

洗浄率 (%) = { ($S_2 - S_1$) / ($W_1 - S_1$) } × 10

再汚染率 $(%) = \{(W_1 - W_2) / W_1\} \times 100$ ただし、 S_1 : 洗浄前の汚染布反射率、 S_2 : 洗浄後の汚染布反射率、 W_1 : 洗浄前の白布反射率、 W_2 : 洗浄後の白布反射率である。

(2)帯電防止性

ドライクリーニング用洗浄剤組成物を、エチルパーフロロブチルエーテル10リットルに0.2容量%添加して溶解し、ドライクリーニングテスター [(株)大栄科学精器製作所、テスターDC-2]を用いて、着用により汚れた紳士用ズボン(ウール100%品)及び婦人用スカート(ポリエステル100%品)を半分に裁断した試験布を、室温で15分間洗浄する。次いで、遠心脱液機を用いて1分間脱液する。その後、50℃に保った熱風循環式乾燥機で10分間乾燥し、取り出した直後の表面抵抗値を絶縁抵抗計 [東亜電波(株)、SM-8210]を用いて測定する。

(3)柔軟性

帯電防止性を評価した後の試験布を室内に1時間放置し たのち、触感法により次の5段階で柔軟性を評価する。

- 1 (粗硬)
- 2 (やや硬い)
- 3 (柔らかい)
- 4 (かなり柔らかい)
- 5(非常に柔らかい)

柔らかいほど皺の発生が少なく、仕上げ性が良好で、着 用感にも優れる。

(4)洗浄性

柔軟性を評価した後の試験布の汚れ部分を、洗浄前の試験布と目視にて比較する。また 、実施例及び比較例において使用した化合物の構造式を、以下に示す。

(1) パーフロロヘプチル酢酸のジエタノールアミン塩

 $C_7 F_{15} CH_2 COOH \cdot NH(C_2 H_4 OH)_2$

...[13]

(2) N-エチルパーフロロオクチルスルホンアミド酢 酸のオクチルジエタノールアミン塩 【化19】

$$C_2H_5$$

| $C_8F_{17}SO_2NCH_2COOH \cdot C_8H_{17}N(C_2H_4OH)_2 \cdots [14]$

(3) N-エチルパーフロロオクチルスルホンアミドエ 【化20】

チルリン酸のシクロヘキシルジプロパノールアミン塩

$$C_{8}F_{17}SO_{2}NC_{2}H_{4}O-P-OH \cdot 2 \longrightarrow N(C_{8}H_{6}OH)_{2} \cdots [15]$$

(4) 2-パーフロロヘキシルエトキシエチルリン酸の N, N, N', N'-テトラプロパノールエチレンジアミン 【化21】

• (HOC₃H₆)₂NC₂H₄N(C₃H₆OH)₂

... [16]

(5) ポリオキシプロピレン(7モル)-2-パーフロロヘキシルエチルエーテル $C_6 F_{13} C_2 H_4 O (C_3 H_6 O)_7 H$... [17]

(6) ポリオキシエチレン(3モル)ラウリルエーテル $C_{12}H_{25}O(C_{2}H_{4}O)_{3}H$... [18]

(7)ドデシルベンゼンスルホン酸のトリエタノールアミン塩

【化22】

$$C_{12}H_{25}$$
 $SO_{3}H \cdot N(C_{2}H_{4}OH)_{3}$... [19]

(8) N-エチルパーフロロオクチルスルホンアミドエトキシエトキシエチルリ ン酸のメチルビス(ジヒドロキシプロピルアミノメチル)アミン塩

【化23】

$$C_{2}H_{5}$$
 O | 0 | 1 | 3 $C_{8}F_{17}SO_{2}NC_{2}H_{4}O(C_{2}H_{4}O)_{2}-P-OH$ | OH

 $\cdot 2CH_3N\{C_3H_6N(C_3H_6OH)_2\}_2$

... [20]

実施例1

式[13]で表されるペンタデカフロロカプリル酸のジ エタノールアミン塩10重量部、3-メチル-3-メト キシブタノール50重量部及びエチルパーフロロブチル エーテル40重量部を混合して、ドライクリーニング用 洗浄剤組成物を調製し、洗浄率と再汚染率の評価を行っ た。溶剤1を用いた場合、洗浄率は、綿ブロードが11 %、ウールモスリンが13%、アクリルメリヤスが6

%、ポリエステルジャージが8%であり、再汚染率は、 綿ブロードが4.1%、ウールモスリンが4.0%、アク リルメリヤスが7.3%、ポリエステルジャージが12. 2%であった。溶剤2を用いた場合、洗浄率は、綿ブロ ードが14%、ウールモスリンが23%、アクリルメリ ヤスが10%、ポリエステルジャージが11%であり、 再汚染率は、綿ブロードが5.4%、ウールモスリンが 5.2%、アクリルメリヤスが10.7%、ポリエステル ジャージが15.3%であった。

実施例2

式[14]で表されるN-エチルパーフロロオクチルス ルホンアミド酢酸のオクチルジエタノールアミン塩70 重量部及び3-メチル-3-メトキシブタノール30重 量部を混合して、ドライクリーニング用洗浄剤組成物を 調製し、洗浄率と再汚染率の評価を行った。溶剤1を用 いた場合、洗浄率は、綿ブロードが11%、ウールモス リンが13%、アクリルメリヤスが7%、ポリエステル ジャージが7%であり、再汚染率は、綿ブロードが3. 7%、ウールモスリンが5.0%、アクリルメリヤスが 7.9%、ポリエステルジャージが11.6%であった。 溶剤2を用いた場合、洗浄率は、綿ブロードが13%、 ウールモスリンが23%、アクリルメリヤスが10%、 ポリエステルジャージが10%であり、再汚染率は、綿 ブロードが4.9%、ウールモスリンが5.1%、アクリ ルメリヤスが11.5%、ポリエステルジャージが16. **0%であった。**

実施例3

式[15]で表されるN-エチルパーフロロオクチルス ルホンアミドエチルリン酸のシクロヘキシルジプロパノ ールアミン塩30重量部、3-メチル-3-メトキシブ タノール20重量部及びエチルパーフロロブチルエーテ ル50重量部を混合して、ドライクリーニング用洗浄剤 組成物を調製し、洗浄率と再汚染率の評価を行った。溶 剤1を用いた場合、洗浄率は、綿ブロードが12%、ウ ールモスリンが14%、アクリルメリヤスが7%、ポリ エステルジャージが7%であり、再汚染率は、綿ブロー ドが3.8%、ウールモスリンが4.8%、アクリルメリ ヤスが6.6%、ポリエステルジャージが9.0%であっ た。溶剤2を用いた場合、洗浄率は、綿ブロードが15 %、 $p-\mu$ Eスリンが24%、pクリルメリヤスが11 %、ポリエステルジャージが11%であり、再汚染率 は、綿ブロードが4.0%、ウールモスリンが4.3%、 アクリルメリヤスが9.8%、ポリエステルジャージが 17.6%であった。

実施例4

式[16]で表される2-パーフロロへキシルエトキシエチルリン酸のN,N,N',N'ーテトラプロパノールエチレンジアミン塩30重量部、3-メチルー3-メトキシブタノール40重量部及びエチルパーフロロブチルエーテル30重量部を混合して、ドライクリーニング用洗浄剤組成物を調製し、洗浄率と再汚染率の評価を行った。溶剤1を用いた場合、洗浄率は、綿ブロードが12%、ウールモスリンが12%、アクリルメリヤスが6%、ポリエステルジャージが7%であり、再汚染率は、綿ブロードが3.5%、ウールモスリンが4.1%、アクリルメリヤスが8.2%、ポリエステルジャージが10.3%であった。溶剤2を用いた場合、洗浄率は、綿ブロードが13%、ウールモスリンが21%、アクリルメリ

ヤスが9%、ポリエステルジャージが9%であり、再汚染率は、綿ブロードが4.5%、ウールモスリンが4.0%、アクリルメリヤスが12.8%、ポリエステルジャージが17.7%であった。

比較例1

式「17]で表されるポリオキシプロピレン(7モル)-2-パーフロロヘキシルエチルエーテル50重量部及び 3-メチル-3-メトキシブタノール50重量部を混合 して、ドライクリーニング用洗浄剤組成物を調製し、洗 浄率と再汚染率の評価を行った。溶剤1を用いた場合、 洗浄率は、綿ブロードが9%、ウールモスリンが10 %、アクリルメリヤスが4%、ポリエステルジャージが 4%であり、再汚染率は、綿ブロードが6.2%、ウー ルモスリンが6.3%、アクリルメリヤスが10.9%、 ポリエステルジャージが17.3%であった。溶剤2を 用いた場合、洗浄率は、綿ブロードが12%、ウールモ スリンが20%、アクリルメリヤスが8%、ポリエステ ルジャージが8%であり、再汚染率は、綿ブロードが 6.9%、ウールモスリンが5.6%、アクリルメリヤス が17.1%、ポリエステルジャージが24.3%であっ た。

比較例2

式[18]で表されるポリオキシエチレン(3モル)ラウリルエーテル30重量部及び3ーメチルー3ーメトキシブタノール70重量部を混合して、ドライクリーニング用洗浄剤組成物を調製し、洗浄率は、綿ブロードが8%、ウールモスリンが10%、アクリルメリヤスが5%、ポリエステルジャージが5%であり、再汚染率は、綿ブロードが6.2%、ウールモスリンが5.4%、アクリルメリヤスが10.7%、ポリエステルジャージが16.6%であった。溶剤2を用いた場合、洗浄率は、綿ブロードが11%、ウールモスリンが20%、アクリルメリヤスが7%、ポリエステルジャージが7%であり、再汚染率は、綿ブロードが7.5%、ウールモスリンが6.0%、アクリルメリヤスが16.3%、ポリエステルジャージが23.5%であった。

比較例3

式[19]で表されるドデシルベンゼンスルホン酸のトリエタノールアミン塩20重量部、3ーメチルー3ーメトキシブタノール30重量部及びエチルパーフロロブチルエーテル50重量部を混合して、ドライクリーニング用洗浄剤組成物を調製し、洗浄率と再汚染率の評価を試みた。しかし、調製したドライクリーニング用洗浄剤組成物は、溶剤1(メチルパーフロロブチルエーテル)にも、溶剤2(エチルパーフロロブチルエーテル)にも不溶であり、洗浄試験を行うことができなかった。

比較例4

ドライクリーニング用洗浄剤組成物を添加することな く、溶剤のみを用いて、洗浄率と再汚染率の評価を行っ た。溶剤1を用いた場合、洗浄率は、綿ブロードが8%、ウールモスリンが9%、アクリルメリヤスが4%、ポリエステルジャージが4%であり、再汚染率は、綿ブロードが6.7%、ウールモスリンが6.1%、アクリルメリヤスが12.5%、ポリエステルジャージが19.3%であった。溶剤2を用いた場合、洗浄率は、綿ブロードが10%、ウールモスリンが19%、アクリルメリヤスが7%、ポリエステルジャージが7%であり、再汚染

率は、綿ブロードが7.1%、ウールモスリンが6.8%、アクリルメリヤスが18.1%、ポリエステルジャージが25.6%であった。実施例1~4及び比較例1~3のドライクリーニング用洗浄剤組成物の配合組成を第1表に、実施例1~4及び比較例1~4の洗浄率及び再汚染率の評価結果を第2表に示す。

[0014]

【表1】

第1表

			実施例1	実施例2	実施例3	実施例4	比較例1	比較例2	比較例3
		式 [13] で表される化合物	10	_	-	-	_	_	
配	フッ素系	式 [14] で表される化合物		70		_	-	<u> </u>	_
合	界面活性剤	式 [15] で表される化合物	_	_	3 0	-	-	_	
組		式[16]で表される化合物	_	_	***	30		_	_
成		式 [17] で表される化合物	_	_	_	_	50	_	_
^	界面活性剤	式 [18] で表される化合物	-	_	_	-	-	30	_
重		式 [19] で表される化合物	_	_		_	-	_	20
量部	溶解助剤	3ーメチルー3ーメトキシブ タノール	5 0	30	20	40	50	70	3 0
)	フッ化炭化 水業系溶剤	エチルパーフロロブチルエー テル	40		50	30	-		50

[0015]

笛り考

【表2】

			実施例1	実施例2	実施例3	実施例4	比較例1	比較例2	比較例3	比較例4
		綿ブロード	11	11	12	12	9	8	_	8
	洗浄率	ウールモスリン	13	13	14	12	10	10	-	9
溶	(%)	アクリルメリヤス	6	7	7	6	4	5	_	4
剤		ポリエステルジャージ	8	7	7	7	4	5	_	4
1		絶ブロード	4.1	3.7	3.8	3.5	6. 2	6.2	-	6.7
	再污染率	ウールモスリン	4.0	5. 0	4.8	4.1	6.3	5.4	_	6. 1
	(%)	アクリルメリヤス	7.8	7. 9	6.6	8.2	10.9	10.7	_	12.5
1		ポリエステルジャージ	12.2	11.6	9.0	10.3	17.3	16.6	-	19.3
		綿ブロード	14	13	15	13	12	11		10
	洗净率	ウールモスリン	23	23	24	21	20	20		19
溶	(%)	アクリルメリヤス	10	10	11	9	8	7	<u>-</u>	7
剤		ポリエステルジャージ	11	10	11	9	8	7		7
2		綿ブロード	5.4	4.9	4.0	4.5	6. 9	7.5		7.1
	再污染率	ウールモスリン	5. 2	5.1	4.3	4.0	5. 6	6.0		6.8
	(%)	アクリルメリヤス	10.7	11.5	9.8	12.8	17.1	16.3		18.1
		ポリエステルジャージ	15.3	16.0	17.6	17.7	24.3	23.5	_	25.6

【0016】第2表の結果を、同一繊維素材及び同一溶 剤について比較すると、洗浄率は、本発明のドライクリ ーニング用洗浄剤組成物を用いた実施例の方が、従来の ドライクリーニング用洗浄剤組成物を用いた比較例より も約3%高く、本発明のドライクリーニング用洗浄剤組 成物が、優れた洗浄性を有することが分かる。また、再 汚染率は、本発明のドライクリーニング用洗浄剤組成物 を用いた実施例の方が、従来のドライクリーニング用洗 浄剤組成物を用いた比較例よりも1~8%低く、本発明 のドライクリーニング用洗浄剤組成物が、優れた再汚染 防止性を有することが分かる。

実施例5

式「20]で表されるN-エチルパーフロロオクチルス ルホンアミドエトキシエトキシエチルリン酸のメチルビ ス(ジヒドロキシプロピルアミノプロピル)アミン塩30 重量部、メチルパーフロロブチルエーテル60重量部及 びイソプロピルアルコール10重量部を混合して、ドラ イクリーニング用洗浄剤組成物を調製した。このドライ クリーニング用洗浄剤組成物の帯電防止性は、ズボンに ついて $4\times10^{12}\Omega$ 、スカートについて $2\times10^{11}\Omega$ で あり、柔軟性は、ズボンについて4、スカートについて 4であった。また、洗浄性はズボン、スカートとも、洗 浄前の汚れが洗浄後においてほぼ除去されていた。 比較例5

ポリオキシエチレン(2モル)-2-エチルヘキシルエー テル15重量部、ポリオキシエチレン(2モル)ノニルフ ェニルエーテル15重量部及びイソプロピルアルコール 70重量部を混合して、ドライクリーニング用洗浄剤組 成物を調製した。このドライクリーニング用洗浄剤組成 物の帯電防止性は、ズボンについて $2 \times 10^{13} \Omega$ 、スカ ートについて 10^{14} Ω以上であり、柔軟性は、ズボンに ついて3、スカートについて3であった。また、洗浄性 はズボン、スカートとも、洗浄前の汚れが洗浄後におい ても多く残留していた。実施例5及び比較例5の結果 を、第3表に示す。

[0017]

【表3】

第3表

		実施例5	比較例5
带電防止性	ズボン	4×1012	2×10 ¹³
(Ω)	スカート	2×10 ¹¹	>1014
柔軟性	ズボン	4	3
杂取性	スカート	4	3
. 54-30c. £st.	ズボン	汚れがほぼ 除去されている	汚れの 残留が多い
洗浄性	スカート	汚れかほぼ 除去されている	汚れの 残留が多い

【0018】一般式 [4] で表される N-アルキルパー フロロアルキルスルホンアミドアルキルポリオキシアル キレンリン酸エステルと一般式[11]で表されるトリ アミンのプロピレンオキサイド付加物の塩を含有する実 施例5のドライクリーニング用洗浄剤組成物を、エチル パーフロロブチルエーテル溶剤に0.2容量%添加溶解 してドライクリーニングに用いたとき、ズボン、スカー トともに帯電防止性、柔軟性及び洗浄性に優れている。 これに対して、比較例5の炭化水素系洗浄剤組成物は、 エチルパーフロロブチルエーテル溶剤に0.2容量%添

加溶解してドライクリーニングに用いたとき、ズボン、 スカートともに帯電防止性が劣り、風合いがやや硬い。 また洗浄性にも劣っている。

[0019]

【発明の効果】本発明のドライクリーニング用洗浄剤組 成物を、第三世代のフロン系溶剤といわれるアルコキシ パーフロロアルカン、オクタフロロシクロペンタンなど のドライクリーニング溶剤に添加して洗濯することによ り、優れた洗浄性と再汚染防止性が得られ、洗濯物に帯 電防止性と柔軟性を付与することができる。

フロントページの続き

(51) Int. Cl. 6

識別記号

FΙ

C11D 3/43

C11D 3/43

		* - *

= JP 11-140499 (attached)

United States Patent [19] [11] Patent Number:

6,039,766

of Potont.

Miz	zuno et a	il.	[45]	Da	te of]	Patent:	Mar. 21, 2000
[54]	CLEAND	NG PROCESS FOR DRY CLEANING	3,948	•			510/254
[75]	Inventors:	Yuhei Mizuno, Fukui; Yoshihiro Kawamura, Sakai-gun; Shiro Kondo, Sabae, all of Japan	5,004	•		Yoshida et al. PATENT DO	558/131 CUMENTS
[73]	Assignee:	Nicca Chemical Co., Ltd., Fukui,	1493		6/1972	Germany .	
[' ک]	rasignoo.	Japan	6-130		5/1994	Japan .	
		-	6-158		6/1994	Japan .	
[21]	Appl. No.	: 09/174,310	9-49	094	2/1997	Japan .	
[22]	Filed:	Oct. 19, 1998	Primary I	Exam	iner—A	lan Diamond	
[30]	Fore	ign Application Priority Data	-			m—Young &	Thompson
No	v. 6, 1997	[JP] Japan 9-304438	[57]			ABSTRACT	_
[51]	Int. Cl. ⁷	D06L 1/04 ; C11D 3/24; C11D 3/26		for o			eaning composition for
[52]	U.S. Cl		dry clear	ing	which in	icludes 1 to	90% by weight of a
		288; 510/289; 510/175; 134/42; 134/22.19	surfactant	cont	aining fl	uorine and 10	to 99% by weight of a
[58]	Field of S	Search 8/142, 137; 510/285, 510/288, 289, 175; 134/42, 22.19	fluorohyd	rocar	bon solv	ent and/or an	auxiliary solubilizing orine being a salt of a
[56]		References Cited	phosphor ether con				ylenealkylsulfonamide
	U.	S. PATENT DOCUMENTS			5		
3	3,920,389 11	1/1975 Eanzel 8/142			4 Cla	ims, No Drav	wings

CLEANING PROCESS FOR DRY CLEANING

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a process for dry cleaning 5 of fabrics comprising using a cleaning composition for dry cleaning. More particularly, the present invention relates to a process for dry cleaning comprising using a cleaning composition which shows an excellent cleaning property and property to prevent soiling of cleaned articles and provides a cleaned article with the antistatic property and softness.

2. Description of the Related Arts

Cloths and the like can be cleaned by wet cleaning which is an alkaline cleaning, or by dry cleaning using a petroleum solvent, tetrachloroethylene, CFC-113, 1,1,1trichloroethane, or a fluorine-containing solvent which is used in place of the restricted fluorine-containing solvents. The production of trichloroethane and the restricted 20 fluorine-containing solvents was discontinued at the end of 1995, and solvents such as HCFC-225 and HCFC-141b are used as the solvent for dry cleaning in place of the restricted fluorine-containing solvents.

However, the use of these solvents is allowed within a 25 limited period of time because of high coefficients of ozonosphere destruction and high coefficients of global warming although these solvents have low boiling points, can be dried rapidly and easily and give a relatively small degree of mechanical damage to cloths during drying. Moreover, 30 HCFC-225 shows chemical attack to give damage to acrylic resins. A method cleaning which can remove soils without chemical damage to articles for cleaning is proposed in Japanese Patent Application Laid-Open No. Heisei 6(1994)-158531, in which a liquid prepared by adding a surfactant 35 containing fluorine to a fluorocarbon liquid such as FC-51-14, FC-61-16 and FC-71-18 is used as the cleaning liquid. However, the fluorocarbon liquids show weak cleaning ability, and it is difficult to obtain satisfactory cleaning ability even when a surfactant containing fluorine is added. 40

Conventional cleaning compositions for dry cleaning contain a cationic or anionic surfactant having a hydrocarbon group as the lipophilic group and a nonionic surfactant as the main components and have the cleaning property and the property to prevent soiling of cleaned articles and provides 45 cleaned articles with the antistatic property, softness and the antibacterial property. Therefore, it is not necessary that an additional surfactant is used. In recent years, fluorinecontaining solvents of the so-called third generation which are fluorohydrocarbons having smaller coefficients of ozo- 50 nosphere destruction and smaller coefficients of global warming are being used as the solvent for cleaning metal parts and electronic parts in place of the HCFC solvents. These solvents will be used also as the cleaning solvent for dry cleaning in place of the restricted fluorine-containing 55 solvents. However, the fluorine-containing solvents of the third generation have considerably smaller KB values (kauri-butanol values) and show very small solubilizing ability. Therefore, surfactants having hydrocarbon groups which have heretofore been used in cleaning compositions 60 for dry cleaning cannot be used for the fluorine-containing solvents of the third generation.

A cleaning composition which shows an excellent cleaning property and property to prevent soiling of cleaned articles, provides cleaned articles with the antistatic property 65 and softness and can be used in combination with a fluorinecontaining solvent of the third generation has been desired.

SUMMARY OF THE INVENTION

Accordingly, an object of the present invention is to provide a process for dry cleaning comprising the step of dry cleaning using a cleaning composition which does not adversely affect the properties required for a cleaning agent for dry cleaning such as the cleaning property, shows an excellent property to prevent soiling of cleaned articles, provides cleaned articles with the antistatic property and softness and can be used as an additive to fluorinecontaining solvents of the third generation.

As the result of extensive studies by the present inventors is a neutral cleaning using water, by laundry cleaning which 15 to solve the above problems, it was found that a cleaning composition comprising a surfactant containing fluorine and having a specific structure and a fluorohydrocarbon solvent and/or an auxiliary solubilizing agent is soluble in fluorinecontaining solvents of the third generation having a low KB value, such as alkoxyperfluoroalkanes such as methyl perfluorobutyl ether and ethyl perfluorobutyl ether, and exhibits an excellent cleaning property and property for preventing soiling of cleaned articles and provides cleaned articles with the antistatic property and softness. The present invention was completed on the basis of this knowledge.

Accordingly, the present invention provides:

(1) A process for dry cleaning comprising using a cleaning composition for dry cleaning which comprises 1 to 90% by weight of a surfactant containing fluorine and 10 to 99% by weight of a fluorohydrocarbon solvent and/or an auxiliary solubilizing agent, wherein the surfactant containing fluorine is a salt of a phosphoric acid ester of a polyoxyalkylenealkylsulfonamide ether containing fluorine which is represented by general formula [1]:

$$\begin{array}{c} R^2 \\ | \\ [R^1SO_2NCH_2CH_2O(R^3O)_q]_!PO(OH)_{3-r} \end{array}$$

wherein R1 represents a perfluoroalkyl group having 3 to 12 carbon atoms, R² represents an alkyl group having 1 to 5 carbon atoms, R³ represents an alkylene group having 2 to 4 carbon atoms, q represents a number of 0 to 10, and r represents a number of 1 or 2;

(2) A process described in (1), wherein the salt of a phosphoric acid ester of a polyoxyalkylenealkylsulfonamide ether containing fluorine is a salt of said ester with a compound represented by general formula [2]:

wherein R4 and R5 each represents hydrogen atom, an alkyl group having 1 to 12 carbon atoms, cyclohexyl group, benzyl group, or a hydroxyalkyl group having 1 to 4 carbon atoms, and R⁴ and R⁵ may be the same with or different from each other;

5

25

[3]

wherein R⁶ and R⁷ each represents hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R⁶ and R⁷ may be the same with or different from each other, and R⁸ represents an alkylene group having 1 to 10 carbon atoms:

a triamine represented by general formula [4]:

wherein R⁹ represents hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R¹⁰ and R¹¹ represents an alkylene group having 2 to 6 carbon atoms, and R¹⁰ and R¹¹ may be the same with or different from each other; or

an adduct of an alkylene oxide with the amine, the diamine, or the triamine;

(3) A process described in (1) or (2), wherein the fluorohydrocarbon solvent is an alkoxyperfluoroalkane represented by general formula [5]:

$$C_n F_{2n+1} O C_m H_{2m+1}$$
 [5]

wherein n represents a number of 3 or 4, and m represents a number of 1 to 3; and

(4) A process described in (1), (2) or (3), wherein the auxiliary solubilizing agent is a solvent or a mixture of solvents selected from the group consisting of alcohol solvents, ether solvents which are adducts of alkylene oxides with alcohols, glycol solvents, hydrocarbon 40 solvents and ketone solvents.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The cleaning composition for dry cleaning of the present 45 invention is added and dissolved into a solvent for dry cleaning. The cleaning composition of the present invention is particularly advantageously used in combination with fluorine-containing solvents of the third generation.

The cleaning composition of the present invention comprises 1 to 90% by weight of a surfactant containing fluorine and 10 to 99% by weight of a fluorohydrocarbon solvent and/or an auxiliary solubilizing agent. Preferably, the cleaning composition comprises 5 to 70% by weight of a surfactant containing fluorine and 30 to 95% by weight of a fluorohydrocarbon solvent and/or an auxiliary solubilizing agent. When the content of the surfactant containing fluorine is less than 1% by weight, there is the possibility that the cleaning ability, the antistatic property and softness are not sufficiently exhibited. When the content of the surfactant containing fluorine exceeds 90% by weight, there is the possibility that viscosity, stability and easiness for use of the cleaning composition for dry cleaning are inferior.

In the cleaning composition for dry cleaning of the present invention, the surfactant containing fluorine is a salt 65 of a phosphoric acid ester containing fluorine which is represented by general formula [1].

4

(1) A phosphoric acid ester of a polyoxyalkylenealkylsulfonamide ether containing fluorine which is represented by general formula [1]:

$$\begin{array}{c} R^2 \\ | \\ [R^1SO_2NCH_2CH_2O(R^3O)_q]_tPO(OH)_{3-r} \end{array}$$

wherein R¹ represents a perfluoroalkyl group having 3 to 12 carbon atoms, preferably 6 to 8 carbon atoms, R² represents an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, R³ represents an alkylene group having 2 to 4 carbon atoms, preferably 2 or 3 carbon atoms, q represents a number of 0 to 10, preferably 1 to 5, and r represents a number of 1 or 2, preferably 1.

In the cleaning composition for dry cleaning of the present invention, it is preferable that the salt of a phosphoric acid ester of a polyoxyalkylenealkylsulfonamide ether containing fluorine is a salt of said ester with an amine represented by general formula [2], [3], or [4] or an adduct of an alkylene oxide with said amine.

(2) An amine represented by general formula [2]:

wherein R⁴ and R⁵ each represents hydrogen atom, an alkyl group having 1 to 12 carbon atoms, cyclohexyl group, benzyl group or a hydroxyalkyl group having 1 to 4 carbon atoms, and R⁴ and R⁵ may be the same with or different from each other. In general formula [2], it is preferable that at least one of R⁴ and R⁵ represents an alkyl group having 1 to 10 carbon atoms, cyclohexyl group, benzyl group, or a hydroxyalkyl group having 2 or 3 carbon atoms.

(3) A diamine represented by general formula [3]:

$$R^6 - N - R^8 NH_2$$
 R^7

wherein R⁶ and R⁷ each represents hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R⁶ and R⁷ may be the same with or different from each other, and R⁸ represents an alkylene group having 1 to 10 carbon atoms. In general formula [3], it is preferable that R⁶ and R⁷ each represents hydrogen atom or an alkyl group having 1 or 2 carbon atoms.

(4) A triamine represented by general formula [4]:

cleaning ability, the antistatic property and softness are not sufficiently exhibited. When the content of the surfactant containing fluorine exceeds 90% by weight, there is the possibility that viscosity, stability and easiness for use of the cleaning composition for dry cleaning are inferior.

In the cleaning composition for dry cleaning of the surfactant formula [4], it is preferable that R° represents hydrogen atom or an alkyl group having 2 to 6 carbon atoms, and R¹¹ alkylene group having 2 to 6 carbon atoms, and R¹¹ and R¹¹ may be the same with or different from each other. In general formula [4], it is preferable that R° represents hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R¹¹ and R¹¹ and R¹¹ and R¹¹ and R¹¹ and R¹¹.

By the use of the surfactant containing fluorine which is the salt of the amine represented by general formula [2], [3],or [4] or an adduct of an alkylene oxide with the amine 5

with the phosphoric acid ester containing fluorine which is represented by general formula [1], the cleaning composition for dry cleaning exhibits an enhanced cleaning property and property for preventing soiling of cleaned articles and provides cleaned articles with an excellent antistatic property and softness. Moreover, solubility of the cleaning composition for dry cleaning into a solvent for dry cleaning can be increased.

In the cleaning composition for dry cleaning, it is preferable that the fluorohydrocarbon solvent is an alkoxyper- 10 fluoroalkane represented by general formula [5]:

$$C_n F_{2n+1} O C_m H_{2m+1}$$
 [5]

wherein n represents a number of 3 or 4, and m represents a number of 1 to 3.

In the cleaning composition for dry cleaning of the present invention, it is preferable that the auxiliary solubilizing agent is an alcohol solvent such as methanol, ethanol and isopropanol, an ether solvent which is an adduct of an alkylene oxide with an alcohol, a glycol solvent, a hydrocarbon solvent, or a ketone solvent. The auxiliary solubilizing agent can be used singly or as a mixture of two or more agents. In the composition of the present invention, the cleaning composition for dry cleaning can have a decreased viscosity and an increased stability when the auxiliary solubilizing agent is comprised. Among the auxiliary solubilizing agents, 3-methyl-3-methoxybutanol which has a low toxicity and a relatively high flash point is preferably used.

In the cleaning composition for dry cleaning of the present invention, where necessary, nonionic surfactants, such as polyoxypropylene(7mol) perfluoroalkyl ether, polyoxyethylene(2 mol) nonylphenyl ether, polyoxyethylene(3 mol) lauryl ether, silicone oils and rust preventives may suitably be added.

To summarize the advantages obtained by the present invention, when dry cleaning is carried out using a solution obtained by adding the cleaning composition for dry cleaning of the present invention to an alkoxyperfluoroalkane, i.e., a so-called dry cleaning solvent of the third generation, the excellent cleaning property and the property of preventing soiling of cleaned articles can be obtained, and the cleaned article is provided with the antistatic property and softness.

EXAMPLES

The present invention is described more specifically with reference to examples in the following. However, the present invention is not limited to the examples.

In the examples and the comparative examples, evaluation of the properties was conducted in accordance with the following methods.

(1) Degree of Cleaning and Degree of Soiling of Cleaned Articles

In a 500 ml stainless pot, 0.3% by volume of a cleaning composition was dissolved into 100 ml of methyl perfluorobutyl ether (solvent 1) or ethyl perfluorobutyl ether (solvent 2) to prepare a cleaning liquid. White cloths of a No. 40 cotton broad cloth, a wool muslin, an acrylic knit fabric 60 and a polyester jersey which had a dimension of 4 cm×8 cm and soiled cloths which were prepared from the white cloths in accordance with the method of Japanese Association of Oil Chemistry and had a dimension of 4 cm×8 cm were cleaned with the above cleaning liquid at 20° C. for 10 65 minutes using ROUNDA-O-METER (manufactured by TAIEI KAGAKUSEIKI SEISAKUSHO Co., Ltd.; L-20). In

6

the method of Japanese Association of Oil Chemistry, cloths were treated by patting in a soiling bath prepared by dissolving 1 g of hardened beef tallow, 3 g of liquid paraffin and 0.5 g of carbon black in 800 g of carbon tetrachloride, and the reflectivity was adjusted to about 30%. The liquid was removed from the soiled cloths using a centrifugal dehydrator (manufactured by EIKO SANGYO Co., Ltd.; H120A) for 1 minute, and the obtained cloths were left standing for 60 minutes for drying. The reflectivity at 550 nm of the white cloths and the soiled cloths before and after the cleaning was measured using a calorimeter (manufactured by MURAKAMI SHIKISAIGIJUTU KENKYUSHO Co., Ltd.; CLEANMASTER CM-53D),, and the degree of cleaning and the degree of soiling of cleaned articles were calculated in accordance with the following equations:

degree of cleaning (%)= $\{(S_2-S_1)/(W_1-S_1)\}\times 100$

degree of soiling of cleaned articles (%)= $\{(W_1-W_2)/W_{11x}100\}$

wherein:

S₁: the reflectivity of a soiled cloth before the cleaning

S₂: the reflectivity of a soiled cloth after the cleaning

W₁: the reflectivity of a white cloth before the soiling and the cleaning

W₂: the reflectivity of a white cloth after the cleaning. The cotton broad cloth, the wool muslin, the acrylic knit fabric and the polyester jersey are hereinafter abbreviated as cotton, wool, acrylic and polyester, respectively.

(2) Antistatic property

A cleaning composition for dry cleaning in an amount of 0.2% by volume was dissolved into 10 liters of ethyl perfluorobutyl ether. Trousers for men (100% wool) and a skirt for women (100% polyester) which were soiled after use were cut into halves to prepare test cloths. The test cloths were cleaned with the above solution containing the cleaning composition using a dry cleaning tester (manufactured by TAIEI KAGAKUSEIKI SEISAKUSHO Co., Ltd.; TESTER DC-2) at a room temperature for 15 minutes. The liquid was removed from the cleaned cloths using a centrifugal dehydrator for 1 minute. The test cloths were then 45 dried in a drier with circulation of air heated at 50° C. for 10 minutes. The electric resistance at the surface of the test cloths was measured immediately after being taken out of the drier using an electric insulation-resistance tester (manufactured by TOA DENPA Co., Ltd.; SM-8210).

(3) Softness

After the test cloths used for the evaluation of the antistatic property were left standing in a room, the softness was evaluated by the feel of touch and classified into the following five grades:

1: rough and hard

2: slightly hard

3: soft

4: considerably soft

5: very soft

Softer the cloth, the less the formation of lines and the better the finishing and the feel in use.

(4) Cleaning Property

After being used for the evaluation of the softness, soiled portions of the test cloths and the original cloths were compared with each other by visual observation.

Chemical formulae of the compounds used in the Examples and Comparative Examples are as follows:

(1) Cyclohexyldipropanolamine salt of N-ethylperfluorooctylsulfonamidoethyl phosphate

$$\begin{array}{c|c} C_2H_5 & O & \\ \hline \\ C_8F_{17}SO_2NC_2H_4O & P & OH-2 \\ \hline \\ OH & OH\end{array}$$

(2) N,N-diethyl-N',N'-dihydroxypropyl-1,3-propyldiamine salt of N-ethylperfluorooctylsulfonamidoethyl phosphate

$$\begin{array}{c} C_{2}H_{5} & O \\ C_{8}F_{17}SO_{2}NC_{2}H_{4}O & P & OH^{\bullet} \\ OH & \\ C_{2}H_{5} & N & C_{3}H_{6}-N \\ C_{2}H_{5}OH & \\ \end{array}$$

(3) Octyldihydroxyethylamine salt of N-ethylperfluorooctylsulfonamidopropoxyethyl phosphate

(4) N,N-dimethyl-1,2-ethanediamine salt of N-ethylperfluorooctylsulfonamidoethyl phosphate

$$\begin{array}{c} C_2H_5 & O \\ C_8F_{17}SO_2N - C_2H_4O - P - OH \cdot CH_3 \\ OH & CH_3 \end{array} N - C_2H_4NH_2$$

(5) Polyoxypropylene(7 mol) 2-perfluorohexylethyl ether

$$C_6F_{13}C_2H_4O(C_3H_6O)_7H$$
 [10]

(6) Polyoxyethylene(3 mol) lauryl ether

$$C_{12}H_{25}O(C_2H_4O)_3H$$
 [11]

(7) Triethanolamine salt of dodecylbenzenesulfonic acid

$$C_{12}H_{25} - SO_3H^{\bullet}N(C_2H_4OH)_3$$

(8) Methylbis(dihydroxypropylaminomethyl)amine salt 65 of N-ethylperfluorooctylsulfonamidoethoxyethoxyethyl phosphate

$$\begin{array}{c} C_2H_5 & O \\ C_2H_5 & O \\ C_2H_4O(C_2H_4O)_2 & OH \cdot 2CH_3N\{C_3H_6N(C_3H_6OH)_2\}_2 \\ OH & OH \end{array}$$

(9) Polyoxyethylene(2 mol) 2-ethylhexyl ether

$$\begin{array}{c} C_2H_5 \\ CH_3(CH_2)_3CHCH_2O(C_2H_4O)_2H \end{array}$$

(10) Polyoxyethylene(2 mol) nonylphenyl ether

$$C_{9}H_{19} - O(C_{2}H_{4}O)_{2}H$$

Example 1

Cyclohexyldipropanolamine salt of N-ethylperfluorooctylsulfonamidoethyl phosphate expressed by formula [6] in an amount of 30 parts by weight, 20 parts by weight of 3-methyl-3-methoxybutanol and 50 parts by weight of ethyl perfluorobutyl ether were mixed together to prepare a cleaning composition for dry cleaning, and the degree of cleaning and the degree of soiling of cleaned articles were measured after cleaning using a cleaning liquid containing the prepared cleaning composition for dry cleaning.

When solvent 1 was used, the degree of cleaning was 12% for cotton, 14% for wool, 7% for acrylic and 7% for polyester. The degree of soiling of cleaned articles was 3.8% for cotton, 4.8% for wool, 6.6% for acrylic and 9.0% for 40 polyester.

When solvent 2 was used, the degree of cleaning was 15% for cotton, 24% for wool, 11% for acrylic and 11% for polyester. The degree of soiling of cleaned articles was 4.0% for cotton, 4.3% for wool, 9.8% for acrylic and 17.6% for 45 polyester.

Example 2

ther

N,N-diethyl-N',N'-dihydroxypropyl-1,3-propyldiamine salt of N-ethylperfluorooctylsulfonamidoethyl phosphate expressed by formula [7] in an amount of 10 parts by weight, 50 parts by weight of 3-methyl-3-methoxybutanol and 40 parts by weight of ethyl perfluorobutyl ether were mixed together to prepare a cleaning composition for dry cleaning, and the degree of cleaning and the degree of soiling of cleaned articles were measured after cleaning using a cleaning liquid containing the prepared cleaning composition for dry cleaning.

When solvent 1 was used, the degree of cleaning was 12% for cotton, 12% for wool, 7% for acrylic and 7% for polyester. The degree of soiling of cleaned articles was 3.9% for cotton, 5% for wool, 8.1% for acrylic and 11.8% for polyester.

When solvent 2 was used, the degree of cleaning was 15% for cotton, 23% for wool, 10% for acrylic and 10% for polyester. The degree of soiling of cleaned articles was 4.7% for cotton, 5.1% for wool, 12.5% for acrylic and 18% for polyester.

45

Example 3

Octyldihydroxyethylamine salt of N-ethylperfluorooctylsulfonamidopropoxyethyl phosphate expressed by formula [8] in an amount of 70 parts by weight and 30 parts by weight of 3-methyl-3-methoxybutanol were mixed together to prepare a cleaning composition for dry cleaning, and the degree of cleaning and the degree of soiling of cleaned articles were measured after cleaning using a cleaning liquid containing the prepared cleaning composition for dry cleaning.

When solvent 1 was used, the degree of cleaning was 11% for cotton, 13% for wool, 7% for acrylic and 7% for polyester. The degree of soiling of cleaned articles was 3% for cotton, 4.8% for wool, 6.8% for acrylic and 9.5% for polyester.

When solvent 2 was used, the degree of cleaning was 14% for cotton, 23% for wool, 11% for acrylic and 11% for polyester. The degree of soiling of cleaned articles was 3.9% for cotton, 4.1% for wool, 11.2% for acrylic and 17.6% for polyester.

Example 4

N,N-dimethyl-1,2-ethanediamine salt of N-ethylperfluorooctylsulfonamidoethyl phosphate expressed by formula [9] in an amount of 30 parts by weight, 40 parts by weight of 3-methyl-3-methoxybutanol, and 30 parts by weight of ethyl perfluorobutyl ether were mixed together to prepare a cleaning composition for dry cleaning, and the degree of cleaning and the degree of soiling of cleaned articles were measured after cleaning using a cleaning liquid containing the prepared cleaning composition for dry cleaning.

When solvent 1 was used, the degree of cleaning was 12% for cotton, 12% for wool, 6% for acrylic and 7% for $_{35}$ polyester. The degree of soiling of cleaned articles was 3.5% for cotton, 4.5% for wool, 8.2% for acrylic and 10.3% for polyester.

When solvent 2 was used, the degree of cleaning was 14% for cotton, 22% for wool, 9% for acrylic and 9% for 40 polyester. The degree of soiling of cleaned articles was 4.5% for cotton, 4.3% for wool, 12.8% for acrylic and 18.7% for polyester.

Comparative Example 1

Polyoxypropylene(7 mol) 2-perfluorohexylethyl ether expressed by formula [10] in an amount of 50 parts by weight and 50 parts by weight of 3-methyl-3-methoxybutanol were mixed together to prepare a cleaning composition for dry cleaning, and the degree of cleaning and 50 the degree of soiling of cleaned articles were measured after cleaning using a cleaning liquid containing the prepared cleaning composition for dry cleaning.

When solvent 1 was used, the degree of cleaning was 9% for cotton, 10% for wool, 4% for acrylic and 4% for 55 polyester. The degree of soiling of cleaned articles was 6.2% for cotton, 6.3% for wool, 10.9% for acrylic and 17.3% for polyester.

When solvent 2 was used, the degree of cleaning was 12% for cotton, 20% for wool, 8% for acrylic and 8% for 60 polyester. The degree of soiling of cleaned articles was 6.9% for cotton, 5.6% for wool, 17.1% for acrylic and 24.3% for polyester.

Comparative Example 2

Polyoxyethylene(3 mol) lauryl ether expressed by formula [11] in an amount of 30 parts by weight and 70 parts

by weight of 3-methyl-3-methoxybutanol were mixed together to prepare a cleaning composition for dry cleaning, and the degree of cleaning and the degree of soiling of cleaned articles were measured after cleaning using a cleaning liquid containing the prepared cleaning composition for dry cleaning.

When solvent 1 was used, the degree of cleaning was 8% for cotton, 10% for wool, 5% for acrylic and 5% for polyester. The degree of soiling of cleaned articles was 6.2% for cotton, 5.4% for wool, 10.7% for acrylic and 16.6% for polyester.

When solvent 2 was used, the degree of cleaning was 11% for cotton, 20% for wool, 7% for acrylic and 7% for polyester. The degree of soiling of cleaned articles was 7.5% for cotton, 6.0% for wool, 16.3% for acrylic and 23.5% for polyester.

Comparative Example 3

Triethanolamine salt of dodecylbenzenesulfonic acid expressed by formula [12] in an amount of 20 parts by weight, 30 parts by weight of 3-methyl-3-methoxybutanol, and 50 parts by weight of ethyl perfluorobutyl ether were mixed together to prepare a cleaning composition for dry cleaning, and cleaning using a cleaning liquid containing the prepared cleaning composition and measurement of the degree of cleaning and the degree of soiling of cleaned articles were attempted.

However, the prepared cleaning composition for dry cleaning was insoluble in solvent 1 (methyl perfluorobutyl ether) and solvent 2 (ethyl perfluorobutyl ether). Therefore, the cleaning tests could not be made.

Comparative Example 4

The degree of cleaning and the degree of soiling of cleaned articles were measured after cleaning using a solvent alone without adding a cleaning composition for dry cleaning.

When solvent 1 was used, the degree of cleaning was 8% for cotton, 9% for wool, 4% for acrylic and 4% for polyester. The degree of soiling of cleaned articles was 6.7% for cotton, 6.1% for wool, 12.5% for acrylic and 19.3% for polyester.

When solvent 2 was used, the degree of cleaning was 10% for cotton, 19% for wool, 7% for acrylic and 7% for polyester. The degree of soiling of cleaned articles was 7.1% for cotton, 6.8% for wool, 18.1% for acrylic and 25.6% for polyester.

The formulations of the cleaning compositions used in Examples 1 to 4 and Comparative Examples 1 to 3 are shown in Table 1. The results of the measurements of the degree of cleaning and the degree of soiling of cleaned articles are shown in Table 2.

TABLE 1

			Exan	ple			mparat ixampl		
0		1	2	3	4	1	2	3	
	Formulation (parts by weight)								
	surfactant containing fluorine								
5	compound of formula [6] compound of formula [7]	30 —	10		_	_	_	_	

TABLE 1-continued

		Exar	nple			mpara xamp		- ,
	1	2	3	4	1	2	3	
compound of formula [8]			70	_		_	_	-
compound of formula [9] surfactant		_	_	30		_		
compound of formula [10]		_			50		_	١
compound of formula [11]			_		_	30	_	
compound of formula [12]				_			20	
auxiliary solubilizing agent 3-methyl-3-methoxybutanol fluorohydrocarbon solvent	40	50	30	40	50	70	30	
ethyl perfluorobutyl ether	30	40		30			50	3

Methylbis(dihydroxypropylaminopropyl)amine salt of N-ethylperfluorooctylsulfonamidoethoxyethoxyethyl phosphate expressed by formula [13] in an amount of 30 parts by weight, 60 parts by weight of 3-methyl-3-methoxybutanol, and 10 parts by weight of isopropyl alcohol were mixed together to prepare a cleaning composition for dry cleaning.

The antistatic property was evaluated using a cleaning liquid containing the prepared cleaning composition for dry cleaning, and the electric resistance was found to be 4×10^{12} Ω with trousers and 2×10^{11} Ω with a skirt. The softness was 4 with trousers and 4 with a skirt. Soils on the trousers and the skirt which were found before cleaning were almost completely removed by the cleaning.

TABLE 2

		Ex	ample		С	omparati	ve Exam	ple
	1	2	3	4	1	2	3	4
Solvent 1								
degree of cleaning (%)								
cotton wool acrylic polyester degree of soiling of cleaned articles (%)	11 13 6 8	12 12 7 7	11 13 7 7	12 12 6 7	9 10 4 4	8 10 5 5	 	8 9 4 4
cotton wool acrylic polyester Solvent 2 degree of cleaning (%)	4.1 4.0 7.3 12.2	3.9 5.0 8.1 11.8	3.0 4.8 6.8 9.5	3.5 4.5 8.2 10.3	6.2 6.3 10.9 17.3	6.2 5.4 10.7 16.6		6.7 6.1 12.5 19.3
cotton wool acrylic polyester degree of soiling of cleaned articles (%)	14 23 10 11	15 23 10 10	14 23 11 11	14 22 9 9	12 20 8 8	11 20 7 7	- -	10 19 7 7
cotton wool acrylic polyester	5.4 5.2 10.7 15.3	4.7 5.1 12.5 18.0	3.9 4.1 11.2 17.6	4.5 4.3 12.8 18.7	6.9 5.6 17.1 24.3	7.5 6.0 16.3 23.5	_ _ _	7.1 6.8 25.6 25.6

When the results obtained by using the same fiber material and the same solvent shown in Table 2 are compared, it is understood that, with respect to the degree of cleaning, the results obtained in Examples in which the cleaning composition for dry cleaning of the present invention were used were better by about 3% than the results obtained in Comparative Examples in which conventional cleaning compositions for dry cleaning were used. Thus, the cleaning composition for dry cleaning of the present invention has a superior cleaning property. It is also understood that, with respect to the degree of soiling of cleaned articles, the results obtained in Examples in which the cleaning composition for dry cleaning of the present invention were used were better by 1 to 8% than the results obtained in Comparative Examples in which conventional cleaning compositions for dry cleaning were used. Thus, the cleaning composition for 65 dry cleaning of the present invention has a superior property for preventing soiling of cleaned articles.

Comparative Example 5

Polyoxyethylene(2 mol) 2-ethylhexyl ether expressed by formula [14] in an amount of 15 parts by weight, 15 parts by weight of polyoxyethylene(2 mol) nonylphenyl ether expressed by formula [15], and 70 parts by weight of isopropyl alcohol were mixed together to prepare a cleaning composition for dry cleaning.

The antistatic property was evaluated using a cleaning liquid containing the prepared cleaning composition for dry cleaning, and the electric resistance was found to be 2×10^{13} Ω with trousers and 10^{14} Ω or more with a skirt. The softness was 3 with trousers and 3 with a skirt. Soils on the trousers and the skirt which were found before cleaning mostly remained after the cleaning.

The results obtained in Example 5 and Comparative Example 5 are shown in Table 3.

TABLE 3

	Example 5	Comparative Example 5
Antistatic property (electric resistance, Ω)	_	
trousers	4×10^{12}	2×10^{13}
skirt	2×10^{11}	>1014
Softness		
trousers	4	3
skirt	4	3
Cleaning property		
trousers	soils almost completely removed	most of soils
skirt	soils almost completely removed	most of soils remained

When the cleaning composition for dry cleaning used in Example 5 which contained a salt of a propylene oxide adduct to a triamine represented by general formula [4] with an N-alkylperfluoroalkylsulfonamidoalkylpolyoxyalkylene phosphate represented by general formula [1] was dissolved into ethyl perfluorobutyl ether used as the solvent in an amount of 0.2% by volume and the obtained solution was used for dry cleaning, the cleaned trousers and skirt showed an excellent antistatic property, softness and cleaning property.

In contrast, when the hydrocarbon cleaning composition 30 used in Comparative Example 5 was dissolved into ethyl perfluorobutyl ether used as the solvent in an amount of 0.2% by volume and the obtained solution was used for dry cleaning, the cleaned trousers and skirt showed an inferior antistatic property and harder feel of touch. This solution 35 showed an inferior cleaning property.

What is claimed is:

1. A process for dry cleaning fabric, said process comprising the step of cleaning fabric by applying an effective amount of a cleaning composition for dry cleaning which 40 comprises 1 to 90% by weight of a surfactant containing fluorine and 10 to 99% by weight of a fluorohydrocarbon solvent and/or an auxiliary solubilizing agent, wherein the surfactant containing fluorine is a salt of a phosphoric acid ester of a polyoxyalkylenealkylsulfonamide ether containing 45 fluorine which is represented by general formula (1):

$$\begin{array}{c} R^2 \\ \downarrow \\ \{R^1SO_2NCH_2CH_2O(R^3O)_q\}_rPO(OH)_{3-r} \end{array}$$

wherein R¹ represents a perfluoroalkyl group having 3 to 12 carbon atoms, R² represents an alkyl group having 55 1 to 5 carbon atoms, R³ represents an alkylene group having 2 to 4 carbon atoms, q represents a number of 0 to 10, and r represents a number of 1 or 2,

wherein said step of cleaning with a composition which includes the fluorohydrocarbon solvent includes the 60 further step of providing an alkoxyperfluoroalkane represented by general formula (5):

$$C_n F_{2n+1} O C_m H_{2m+1}$$
 (5)

wherein n represents a number of 3 or 4, and m represents a number of 1 to 3.

2. A process according to claim 1, wherein said step of cleaning with a composition which includes the auxiliary solubilizing agent includes the further step of providing a solvent or a mixture of solvents selected from the group consisting of alcohol solvents, ether solvents which are adducts of alkylene oxides with alcohols, glycol solvents, hydrocarbon solvents and ketone solvents.

3. A process for dry cleaning fabric, said process comprising the step of cleaning fabric by applying an effective amount of a cleaning composition for dry cleaning which comprises 1 to 90% by weight of a surfactant containing fluorine and 10 to 99% by weight of a fluorohydrocarbon solvent and/or an auxiliary solubilizing agent, wherein the surfactant containing fluorine is a salt of a phosphoric acid ester of a polyoxyalkylenealkylsulfonamide ether containing fluorine which is represented by general formula (1):

$$\begin{array}{c} R^2 \\ R^1 \text{SO}_2 \text{NCH}_2 \text{CH}_2 \text{O}(R^3 \text{O})_q \}_r \text{PO}(\text{OH})_{3-r} \end{array}$$

wherein R¹ represents a perfluoroalkyl group having 3 to 12 carbon atoms, R² represents an alkyl group having 1 to 5 carbon atoms, R³ represents an alkylene group having 2 to 4 carbon atoms, q represents a number of 0 to 10, and r represents a number of 1 or 2,

wherein said step of cleaning with a composition which includes the salt of a phosphoric acid ester of polyoxyalkylenealkylsulfonamide ether containing fluorine includes the further step of providing a salt of said ester with a first compound represented by general formula (2):

wherein R⁴ and R⁵ each represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, cyclohexyl group, benzyl group or a hydroxyalkyl group having 1 to 4 carbon atoms, and R⁴ and R⁵ being the same or different from each other;

a diamine represented by general formula (3):

$$\begin{array}{ccc}
R^6 & & & & \\
& & & \\
& & & \\
R^7 & & & \\
\end{array}$$
(3)

wherein R⁶ and R⁷ each represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R⁶ and R⁷ being the same with or different from each other, and R⁸ represents an alkylene group having 1 to 10 carbon atoms; a triamine represented by general formula (4):

(5)

16

wherein R⁹ represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R¹⁰ and R¹¹ each represents an alkylene group having 2 to 6 carbon atoms, and R¹⁰ and R¹¹ being the same or different from each other; or

an adduct of an alkylene oxide with the first compound, the diamine, or the triamine,

wherein said step of cleaning with a composition which includes the fluorohydrocarbon solvent includes the further step of providing an alkoxyperfluoroalkane represented by general formula (5):

Consisting of alcohol solvents, einer solve

 $\mathsf{C}_n\mathsf{F}_{2n+1}\mathsf{OC}_m\mathsf{H}_{2m+1}$

wherein n represents a number of 3 or 4, and m represents a number of 1 to 3.

4. A process according to claim 3, wherein said step of cleaning with a composition which includes the auxiliary solubilizing agent includes the further step of providing a solvent or a mixture of solvents selected from the group consisting of alcohol solvents, ether solvents which are adducts of alkylene oxides with alcohols, glycol solvents, hydrocarbon solvents and ketone solvents.

* * * * *

			.*
			•