

Departamento Académico de Economía Matemáticas III (30651)
Primer Semestre 2015
Profesores Diago Winkelviola Educado A

Profesores Diego Winkelried, Eduardo Mantilla, Jorge Rodas y Jorge Cortéz

Práctica Calificada 3

1. Transformaciones (4 ptos)

Considere el proceso de producción descrito por el siguiente diagrama, donde las transformaciones f, g y h producen bienes intermedios, necesarios para la producción del bien final z:

a) (1.5 ptos) Complete el siguiente cuadro, teniendo en cuenta el esquema del proceso productivo.

Funciones	De	A
$f_1 \ f_2$	\mathbb{R}^4 \mathbb{R}^3	\mathbb{R}^2
g_1 g_2 g_3	\mathbb{R}^2 \mathbb{R} \mathbb{R}^2	$?$ $?$ \mathbb{R}^2
$h_1 h_2$	\mathbb{R}^3 ?	\mathbb{R}^2 ?
z	\mathbb{R}^4	\mathbb{R}

Asuma que si el proceso A utiliza como insumo algún bien intermedio producido en el proceso B, entonces A utiliza todos los bienes intermedios producidos por B.

b) (2.5 ptos) Obtenga una expresión detallada del diferencial de z en función de las matrices Jacobianas de los procesos f, g y h.

2. Modelo de comercio internacional (9 ptos)

Considere el siguiente modelo macroeconómico en un mundo de dos países (nacional y extranjero):

$$\begin{array}{lll} Y & = & C(Y) + G + X(Y^*,q) - M(Y,q) & 0 < C_Y < 1 \,, \\ Y^* & = & C^*(Y^*) + G^* + X^*(Y,q) - M^*(Y^*,q) & 0 < C_{Y^*}^* < 1 \,, \\ X^*(Y,q) & = & M(Y,q) & 0 < M_Y < 1, \quad M_q < 0 \,, \\ M^*(Y^*,q) & = & X(Y^*,q) & 0 < X_{Y^*} < 1, \quad X_q > 0 \,, \end{array}$$

donde Y es el ingreso nacional, Y^* es el ingreso extranjero, G es el gasto del gobierno nacional, G^* es el gasto del gobierno extranjero y q es el tipo de cambio entre ambos países. Los signos de las derivadas parciales de las funciones $C(\cdot)$, $X(\cdot)$, $M(\cdot)$, $C^*(\cdot)$, $X^*(\cdot)$ y $M^*(\cdot)$ son provistos por la teoría económica. Las últimas dos ecuaciones indican que, en un mundo de dos países, las exportaciones de un país son las importaciones del otro, y vice versa.

Tratando a G, G^* y q como variables exógenas:

- a) (2 ptos) Mencione cuáles son las condiciones para la existencia de funciones implícitas de las variables endógenas en términos de las variables exógenas. Ayuda: Plantee un sistema de dos ecuaciones.
- b) (1 pto) Asumiendo que estas condiciones su cumplen, indique cuál es el efecto sobre Y e Y^* de un incremento en G manteniendo G^* y q constantes.
- c) (1 pto) Asumiendo que estas condiciones su cumplen, indique cuál es el efecto sobre Y e Y^* de un incremento en G^* manteniendo G y q constantes.
- d) (1 pto) ¿Bajo qué condiciones un incremento en q no tendrá efectos sobre el ingreso mundial $Y + Y^*$?

Tratando a G, G^* e Y^* como variables exógenas:

- e) (2 ptos) Mencione cuáles son las condiciones para la existencia de funciones implícitas de las variables endógenas en términos de las variables exógenas.
- f) (1 pto) Asumiendo que estas condiciones su cumplen, indique cuál es el efecto sobre Y y q de un incremento en G manteniendo G^* e Y^* constantes.
- g) (1 pto) Asumiendo que estas condiciones su cumplen, indique cuál es el efecto sobre Y y q de un incremento en Y^* manteniendo G^* y G constantes.

3. Funciones trigonométricas hiperbólicas (7 ptos)

Para x real, las funciones seno hiperbólico y coseno hiperbólico se definen como

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
 y $\cosh(x) = \frac{e^x + e^{-x}}{2}$.

- a) (1 pto) Encuentre la serie de McLaurin de sinh(x) y determine su rango de convergencia.
- b) (1 pto) Encuentre la serie de McLaurin de cosh(x) y determine su rango de convergencia.

Unica y exclusivamente manipulando series de potencias verifique las siguientes identidades:

- c) (1 pto) $\cosh(x) = \cos(ix)$, donde i es la unidad imaginaria y $\cos(\cdot)$ es la función coseno,
- d) (1 pto) $\sinh(x) = -i\sin(ix)$, donde i es la unidad imaginaria y $\sin(\cdot)$ es la función seno,

e) (1 pto)
$$\frac{d^2 \cosh(x)}{dx^2} = \cosh(x)$$
,

$$f)$$
 (1 pto) $\frac{d^2 \sinh(x)}{dx^2} = \sinh(x),$

g) (1 pto)
$$\int \sinh(ax)dx = \frac{\cosh(ax)}{a} + C.$$

Indicación: Puede utilizar sin demostración el desarrollo de series de potencias de las funciones e^x , $\cos(x)$ y $\sin(x)$, siempre y cuando indique claramente que está utilizando un resultado "conocido".