Ontology Languages Reasoning Problems

Objectives

Objective
Identify the kinds of reasoning in ontologies

Objective
Apply ontology tools
for reasoning
problems

Concept Satisfiability

Checking whether a concept C is satisfiable with respect to a knowledge base K, i.e., whether there exists a model I of K such that $C^I \neq \emptyset$.

Formally: K ⊭ C ≡ ⊥

Example: Concept Satisfiability

ParentOfOnlyMaleChildren ≡ Person⊓∃hasChild.Male⊓∀hasChild.Male

Male **□** ¬Female

Is each of the concepts satisfiable w.r.t. K?

- ParentOfOnlyMaleChildren □ ∃hasChild.Male
- ParentOfOnlyMaleChildren □ ∃hasChild.Female

Let's Test on Protégé

description logics	OWL in Protégé
concept	class
role	object property
constant/individual	individual
theory	ontology
Т	owl:Thing
<u>T</u>	owl:Nothing
$\exists r. C$	r some C
$\forall r. C$	r only C
$\neg C$	not C
$C_1 \sqcup C_2$	C_1 or C_2
$C_1 \sqcap C_2$	\mathcal{C}_1 and \mathcal{C}_2

Subsumption

This is the problem of checking whether C is subsumed by D with respect to a knowledge base K, i.e., whether $C^I \subseteq D^I$ in every model I of K.

Formally: K |= C ⊑ D

Example: Subsumption

Parent ≡ Person □ ∃hasChild.Person □ ∀hasChild.Person

ParentOfOnlyMaleChildren ≡ Person⊓∃hasChild.Male⊓∀hasChild.Male

Male

□ Person

Q: ParentOfOnlyMaleChildren ⊑ Parent?

Q: ParentOfOnlyMaleChildren

■ Male?

Taxonomies (1 of 3)

Taxonomies (2 of 3)

The subsumption relationship between concepts defined by ⊑ is a partial order (i.e., it is reflexive, antisymmetric and transitive).

Subsumption induces a taxonomy such as the one on the previous slide where only direct subsumptions have been explicitly drawn.

Taxonomies (3 of 3)

Question: What is the place of the following concept in the example taxonomy?

 $N \equiv ANIMATE \sqcap (STUDENT \sqcup PROFESSOR)$

Classification

The problem of classification: Given a concept C and a TBox T, for all concepts D, determine whether D subsumes C, or D is subsumed by C

Intuitively, this amounts to finding the "right place" for C in the taxonomy implicitly present in T

Classification is the task of inserting new concepts in a taxonomy. It is sorting in partial orders

What is the solution to the classification problem posed in the previous slide?

Knowledge Base Satisfiability

Checking whether K is satisfiable, i.e., whether it has a model.

Is the following KB satisfiable?

ParentOfOnlyMaleChildren ≡ Person⊓∃hasChild.Male⊓∀hasChild.Male

Male ⊑ Person, Female ⊑ Person, Male ⊑ ¬Female

Male(JOHN), Male(NICK), Female(ANNA),

hasChild(JOHN, NICK), hasChild(JOHN, ANNA),

ParentOfOnlyMaleChildren(JOHN)

Instance Checking

The problem of checking whether the assertion C(a) is satisfied in every model of K

Formally: K |= C(a)

Answering Concept Queries

Find all a such that $\{a \mid K \mid = C(a)\}.$

Reduction to Satisfiability

Some of the previous reasoning problems can be solved by reducing them to the problem of knowledge base satisfiability:

- Concept Satisfiability: K ⊭ C ≡ ⊥ iff there exists an x such that K ∪ {C(x)} is satisfiable
- Subsumption: $K = C \subseteq D$ iff there exists an x such that $K \cup \{(C \sqcap \neg D)(x)\}$ is not satisfiable
- Instance Checking: K |= C(a) iff K ∪ {¬C(a)} is not satisfiable

Reasoning Algorithms

- Terminating, complete and efficient algorithms for deciding satisfiability, and all the other reasoning problems mentioned earlier, are available for ALC
- These algorithms are based on tableaux-calculi techniques
- Completeness is important for the usability of description logics in real applications
- Such algorithms have been shown to be efficient for real knowledge bases, even if the problem in the corresponding logic is in PSPACE or EXPTIME

Wrap-Up

