universität freiburg

Stochastic processes

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber

Assistance: Samuel Adeosun

https://pfaffelh.github.io/hp/2024ws_stochproc.html

https://www.stochastik.uni-freiburg.de/

Tutorial 4 - Filtrations, stopping times, measurability

In all exercises, we have a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ with a filtration $(\mathcal{F}_t)_{t>0}$.

Exercise 1 (4 points).

Verify that

$$\mathcal{F}_T := \{ A \in \mathcal{F} : A \cap \{ T \le t \} \in \mathcal{F}_t, t \in I \}$$

is a σ -algebra.

Solution.

Clearly, the empty set \emptyset is in \mathcal{F}_T since $\emptyset \cap \{T \leq t\} = \emptyset \in \mathcal{F}_T$ for all $t \in I$. Now if $B \in \mathcal{F}_t$ it follows that

$$B^c \cap \{T \le t\} = \{T \le t\} \setminus (B \cap \{T \le t\}) \in \mathcal{F}_T \text{ for all } t \in I,$$

since both $\{T \leq t\}$ and $B \cap \{T \leq t\}$ are in \mathcal{F}_T for each $t \in I$. Thus $B^c \in \mathcal{F}_T$. Lastly, for $B_1, B_2, \ldots \in \mathcal{F}_T$ we obtain

$$\left(\bigcup_{k=1}^{\infty} B_k\right) \cap \{T \le t\} = \bigcup_{k=1}^{\infty} (B_k \cap \{T \le t\}) \in \mathcal{F}_T \quad \text{for all} \quad t \in I.$$

Thus, $\bigcup_{k=1}^{\infty} B_k \in \mathcal{F}_T$.

Exercise 2 (4 Points).

Let $\Omega = [0,1]$ and $\mathcal{F} = \mathcal{B}([0,1])$. Define a stochastic process $\mathcal{X} = (X_n)_{n \in \mathbb{N}}$ by

$$X_n(\omega) := 2\omega \mathbb{1}_{[0,1-\frac{1}{n}]}(\omega).$$

Show that the generated filtration $(\mathcal{F}_n^{\mathcal{X}})_{n\in\mathbb{N}}$ is given by

$$\mathcal{F}_n^{\mathcal{X}} = \left\{ A \cup B : A \in \mathcal{B}((0,1-\frac{1}{n}]), B \in \{\emptyset, \{0\} \cup (1-\frac{1}{n},1]\} \right\}$$

Solution.

For every $n \in \mathbb{N}$ and $C \in \mathcal{B}(\mathbb{R})$ the definition of X_n yields

$$(X_n(B))^{-1} = \begin{cases} \frac{1}{2}C \cap [0,1-\frac{1}{n}], & \text{if } 0 \notin C, \\ \left(\frac{1}{2}C \cap [0,1-\frac{1}{n}]\right) \bigcup (1-\frac{1}{n},1], & \text{if } 0 \in C, \end{cases}$$
$$= \begin{cases} \frac{1}{2}C \cap (0,1-\frac{1}{n}], & \text{if } 0 \notin C, \\ \left(\frac{1}{2}C \cap (0,1-\frac{1}{n}]\right) \bigcup (1-\frac{1}{n},1] \bigcup \{0\}, & \text{if } 0 \in C, \end{cases}$$

where we have use the shorthand notation $\frac{1}{2}C := \{\frac{1}{2}y : y \in C\}$. Hence, the σ -field $\mathcal{F}_n^{\mathcal{X}}$ must contain at least

$$\mathcal{C} := \left\{ \frac{1}{2}C \cap (0, 1 - \frac{1}{n}], \, \frac{1}{2}C \cap [0, 1 - \frac{1}{n}] \cup (1 - \frac{1}{n}, 1] \cup \{0\} \, \text{ for all } C \in \mathcal{B}(\mathbb{R}) \right\}.$$

Since $\{\frac{1}{2}C \cap (0,1-\frac{1}{n}]: C \in \mathcal{B}(\mathbb{R}) = \mathcal{B}((0,1-\frac{1}{n}])\}$ this can be written in the form

$$C = \left\{ A \cup B : A \in \mathcal{B}((0, 1 - \frac{1}{n}]), B = \emptyset \text{ or } B = (1 - \frac{1}{n}, 1] \cup \{0\} \right\}$$

 \mathcal{C} is already a σ -field (this we can verify!) and $\mathcal{F}_n^{\mathcal{X}}$ is the smallest σ -field which contains \mathcal{C} it follows that $\mathcal{F}_n^{\mathcal{X}} = \mathcal{C}$.

Exercise 3 (4 points).

Given an optional time T of the filtration $(\mathcal{F}_t)_{t\in I}$, consider the sequence $(T_n)_{n\geq 1}$ of random times given by

$$T_n(\omega) = \begin{cases} T(\omega); & \text{on } \{\omega; \ T(\omega) = +\infty\} \\ \frac{k}{2^n}; & \text{on } \{\omega; \ \frac{k-1}{2^n} \le T(\omega) < \frac{k}{2^n}\} \end{cases}$$

for $n \ge 1, k \ge 1$. Clearly, $T_n \ge T_{n+1} \ge T$, for $n \ge 1$. Show that each T_n is a stopping time, and that $\lim_{n\to\infty} T_n = T$.

Solution.

We will first show that each T_n is a stopping time. For all $n \geq 1$

$$\{\omega \in \{\omega : T(\omega) = +\infty\} : T_n(\omega) \le t\} = \{\omega \in \{\omega : T(\omega) = +\infty\} : \infty \le t\} = \emptyset.$$

It holds that for every $t \in I$, $\exists k \in \mathbb{N}$ with $\frac{k}{2^n} \leq t \leq \frac{k+1}{2^n}$ such that

$$\{T_n \le t\} = \left\{T_n \le \frac{k}{2^n}\right\} = \bigcup_{1 \le m \le k} \left\{T_n = \frac{m}{2^n}\right\}$$
$$= \bigcup_{1 \le m \le k} \left\{\frac{m-1}{2^n} \le T \le \frac{m}{2^n}\right\}$$
$$= \left\{T < \frac{k}{2^n}\right\} \in \mathcal{F}_{\frac{k}{2^n}} \subseteq \mathcal{F}_t.$$

Thus, each T_n is a stopping time. Now to show that $\lim_{n\to\infty} T_n = T$, first, if

$$\omega \in \{\omega : T(\omega) = +\infty\}, \text{ then } \lim_{n \to \infty} T_n(\omega) = \lim_{n \to \infty} T(\omega) = T(\omega).$$

Otherwise, if $\omega \notin \{\omega : T(\omega) = +\infty\}$, then there exists $k \in \mathbb{N}$ such that $T_n(\omega) = \frac{k}{2^n}$ and $T(\omega) \geq \frac{k-1}{2^n}$.

$$\implies |T_n(\omega) - T(\omega)| = \left| \frac{k}{2^n} - T(\omega) \right| \le \left| \frac{k}{2^n} - \frac{k-1}{2^n} \right| = \frac{1}{2^n} \xrightarrow{n \to \infty} 0.$$

In both cases, $\lim_{n\to\infty} T_n = T$.

Exercise 4 (2+2 Points).

1. Let $(X_t)_{t\in[0,\infty)}$ be a stochastic process, such that, for all $t\geq 0$,

$$Y_t: \begin{cases} I \cap [0,t] \times \Omega & \to E \\ (s,\omega) & \mapsto X_s(\omega) \end{cases}$$

is measurable with respect to $I \cap \mathcal{B}([0,t]) \otimes \mathcal{F}_t/\mathcal{B}(E)$. Show that $(X_t)_{t\geq 0}$ is adapted to $(\mathcal{F}_t)_{t\geq 0}$.

We call $(X_t)_{t>0}$ measurable if

$$\begin{cases} I \times \Omega & \to E \\ (s, \omega) & \mapsto X_s(\omega) \end{cases}$$

is measurable with respect to $\mathcal{B}([0,\infty)) \otimes \mathcal{F}/\mathcal{B}(E)$. Show that every progressively measurable process is measurable, but need not even be adapted if it is only measurable.

2. Let $(\mathcal{X}_t)_{t\geq 0}$ be a stochastic process, which is progressively measurable with respect to $(\mathcal{F}_t)_{t\geq 0}$ and T be an $(\mathcal{F}_t)_{t\geq 0}$ stopping time. Show that the stopped process $(X_{T\wedge t})_{t\geq 0}$ is also progressively measurable.

Solution.

First, for adaptiveness, note that progressive measurability implies by measurability of projections that for all t, the map $\omega \mapsto Y_t|_{\{t\} \times \Omega}$ is measurable. However, this restriction is the same as measurability of $\omega \mapsto X_t(\omega)$ with respect to \mathcal{F}_t . That is, since $(X_t)_{t\geq 0}$ is progressively measurable with respect to $(\mathcal{F}_t)_{t\geq 0}$, we have for every $t\geq 0$ and $A\in \mathcal{B}(E)$:

$$Y_t^{-1}(A) = \{(s,\omega) \in [0,t] \times \Omega : X_s(\omega) \in A\} \in \mathcal{B}([0,t]) \otimes \mathcal{F}_t.$$

We therefore obtain for every $s \in [0,t]$, $\{\omega \in \Omega : (s,\omega) \in Y_t^{-1}(A)\} \in \mathcal{F}_t$. This holds in particular for $t \in [0,t]$ and so

$$\{\omega \in \Omega : (t,\omega) \in Y_t^{-1}(A)\} = \{\omega \in \Omega : X_t(\omega) \in A\} = X_t^{-1}(A) \in \mathcal{F}_t.$$

That is for every $t \geq 0$, $A \in \mathcal{B}(E)$, $X_t^{-1}(A) \in \mathcal{F}_t$. Thus, X_t is $\mathcal{F}_t/\mathcal{B}(E)$ -measurable.

Second, $\{I \cap \mathcal{B}([0,t]) : t \geq 0\}$ generates $\mathcal{B}([0,\infty)$. The first claim then follows from $\mathcal{F}_t \subseteq \mathcal{F}$. That is if we fix $A \in \mathcal{B}(E)$, and we let $(X_t)_{t \in [0,\infty)}$ be progressively measurable with respect to $(\mathcal{F}_t)_{t \in [0,\infty)}$, that is for every $t \in [0,\infty)$, $\{(s,\omega) \in [0,t] \times \Omega : X_s(\omega) \in A\} \in \mathcal{B}([0,t]) \otimes \mathcal{F}_t$. Since $[0,t] \in \mathcal{B}([0,\infty])$, then $\mathcal{B}([0,t]) \subseteq \mathcal{B}([0,\infty)) \ \forall \ t \in [0,\infty)$. And since $\mathcal{F}_t \subset \mathcal{F} \ \forall \ t \in [0,\infty)$ (by the definition of filtration!) we get $\mathcal{B}([0,t]) \otimes \mathcal{F}_t \subseteq \mathcal{B}([0,\infty)) \otimes \mathcal{F}$. Because

$$\{B_1 \times B_2 : B_1 \in \mathcal{B}([0,t]), B_2 \in \mathcal{F}_t\} \subseteq \{C_1 \times C_2 : C_1 \in \mathcal{B}([0,\infty)), C_2 \in \mathcal{F}\}$$

and then the same holds for the σ -algebras generated by those two sets. So we get

$$\{(s,\omega)\in[0,t]\times\Omega:X_s(\omega)|inA\}\in\mathcal{B}([0,\infty))\otimes\mathcal{F}$$

and since this holds for any $t \in [0,\infty)$ we also have

$$\{(s,\omega)\in[0,\infty)\times\Omega:X_s(\omega)\in A\}\in\mathcal{B}([0,\infty))\otimes\mathcal{F}.$$

Since $A \in \mathcal{B}(E)$ was arbitrarily chosen, we are done. $(X_t)_{t \in [0,\infty)}$ is measurable.

For the third claim, note that the argument from the first claim only gives measurability of X_t with respect to \mathcal{F} , which does not suffice for adaptivity of X. We further construct the following counterexample to show this clearly. Let $\Omega = \{a,b\}$, $\mathcal{F} = \{\emptyset,\Omega,\{a\},\{b\}\}$. For an arbitrary T > 0, we set the filtration $(\mathcal{F})_{t>0}$

$$\mathcal{F}_t = \begin{cases} \{\emptyset, \Omega\}, & \text{if} \quad t \leq T; \\ \mathcal{F} & \text{if} \quad t > T. \end{cases}$$

We define a stochastic process $\mathcal{X} = (X_t)_{t \geq 0}$ thus:

$$X_t(a) = 1$$
, $X_t(b) = 0$ for all $t \ge 0$.

We claim that \mathcal{X} is measurable since for every $A \in \mathcal{B}(\mathbb{R})$:

$$C := \{(s,\omega) \in [0,\infty) \times \Omega : X_s(\omega) \in A\} \in \mathcal{B}([0,\infty)) \otimes \mathcal{F}.$$

$$1 \in A, 0 \notin A : \quad C = [0,\infty) \times \{a\} \in \mathcal{B}([0,\infty)) \otimes \mathcal{F},$$

$$1 \notin A, 0 \in A : \quad C = [0,\infty) \times \{b\} \in \mathcal{B}([0,\infty)) \otimes \mathcal{F},$$

$$1 \in A, 0 \in A : \quad C = [0,\infty) \times \{\Omega\} \in \mathcal{B}([0,\infty)) \otimes \mathcal{F},$$

$$1 \notin A, 0 \notin A : \quad C = \emptyset \times \emptyset \in \mathcal{B}([0,\infty)) \otimes \mathcal{F}.$$

But \mathcal{X} is not adapted to $\mathcal{F}_{t\geq 0}$: For an arbitrary $s\leq T$ and $\{1\}\in\mathcal{B}(\mathbb{R}),\,X_s^{-1}(\{1\})=\{a\}\notin\mathcal{F}_s$.

To show that the stopped process $(X_{T \wedge t})_{t \geq 0}$ is also progressively measurable, we have to show that the map

$$Y_{t \wedge T} : \begin{cases} [0,t] \times \Omega & \to E \\ (s,\omega) & \mapsto X_{s \wedge T(\omega)}(\omega) \end{cases}$$

is $\mathcal{B}([0,t]) \otimes \mathcal{F}_t/\mathcal{B}(E)$ -measurable for all $t \in [0,\infty)$. Fix $t \geq 0$ and write $Y_{t \wedge T} = \varphi_t \circ \Psi_t$ with

$$\varphi_t : \begin{cases} [0,t] \times \Omega & \to [0,t] \times \Omega \\ (s,w) & \mapsto (s \wedge T(\omega),\omega) \end{cases}$$

and

$$\Psi_t : \begin{cases} [0,t] \times \Omega & \to E \\ (s,w) & \mapsto X_s(\omega). \end{cases}$$

By assumption, φ_t is $\mathcal{B}([0,t]) \otimes \mathcal{F}_t/\mathcal{B}(E)$ -measurable. And since the composition of measurable functions is again measurable, we just need to show that Ψ_t is $\mathcal{B}([0,t]) \otimes \mathcal{F}_t/\mathcal{B}([0,t]) \otimes \mathcal{F}_t$ -measurable. $\mathcal{B}([0,t]) \otimes \mathcal{F}_t$ is generated by

$$\mathcal{C} := \{ A \times B : A \in \mathcal{B}([0,t]) \mid B \in \mathcal{F}_t \},\$$

so we have to check $\Psi_{(}^{-1}t)(A\times B)$ for $A\times B\in\mathcal{C}$. We compute

$$\begin{split} \Psi_t^{-1}(A\times B) &= \{(s,\omega)\in [0,t]\times \Omega: s\wedge T(\omega)\in A, \, \omega\in B\} \\ &= \{(s,\omega)\in [0,t]\times \Omega: s\wedge T(\omega)\leq r, \, \omega\in B\cap (\{T\leq r\}\cup \{T>r\})\} \\ &= \{(s,\omega): s\wedge T(\omega)\leq r, \, \omega\in B\cap \{T\leq r\}\}\cup \{(s,\omega): s\wedge T(\omega)\leq r, \, \omega\in B\cap \{T>r\}\} \\ &= (\underbrace{[0,t]}_{\in\mathcal{B}([0,t])}\times B\cap \underbrace{\{T\leq r\}}_{\in\mathcal{F}_t})\cup (\underbrace{[0,r]}_{\in\mathcal{B}([0,t])}\times B\cap \underbrace{\{T>r\}}_{\in\mathcal{F}_t}). \end{split}$$

Both sets in this union are in the generator of $\mathcal{B}([0,t]) \otimes \mathcal{F}_t$, then they are in $\mathcal{B}([0,t]) \otimes \mathcal{F}_t$. Thus, Ψ_t is measurable.