

CS-834 Intro to Information Retrieval First Presentation

Seminal and Cited Papers

Plinio H. Vargas September 15, 2016

Old Dominion University

Table of Contents

- 1. Introduction
- 2. Google PageRanking
- 3. TextRank
- 4. Conclusion

Introduction

Pre-Google WWW

In the beginning there was the World Wide Web; and the traffic of knowledge kept increasing, so the number of irrelevant documents recall. Then Google was born with the pure notion of using PageRank to bring order to the Web.

Google PageRanking

PageRank Calculation

$$PR(A) = (1 - d) + d \left(\frac{PR(T_1)}{C(T_1)} + \dots + \frac{PR(T_n)}{C(T_n)} \right) [1]$$

$$S(V_i) = (1 - d) + d * \sum_{j \in In(V_i)} \frac{1}{|Out(V_j)|} S(V_j) [3]$$

3

PageRank Calculation Cont.

Internet consisting of only 3 pages.

Figure 1: Three Web-pages

Since we do not know any of the pages ranking, we will assume that:

$$PR(A) = PR(B) = PR(C) = \frac{1}{3} \approx 0.33$$

PageRank Calculation Cont.

First iteration:

$$PR(C) = \frac{PR(A)}{2} + \frac{PR(B)}{1} = \frac{0.33}{2} + \frac{0.33}{1} = 0.5$$

$$PR(A) = \frac{PR(C)}{1} = \frac{0.33}{1} \approx 0.33$$

$$PR(B) = \frac{PR(A)}{2} = \frac{0.33}{2} \approx 0.17$$

Second iteration:

$$PR(C) = \frac{PR(A)}{2} + \frac{PR(B)}{1} = \frac{0.33}{2} + \frac{0.17}{1} \approx 0.33$$

$$PR(A) = \frac{PR(C)}{1} = \frac{0.5}{1} = 0.5$$

$$PR(B) = \frac{PR(A)}{2} = \frac{0.33}{2} \approx 0.17$$

PageRank Calculation Cont.

Third iteration:

$$PR(C) = \frac{PR(A)}{2} + \frac{PR(B)}{1} = \frac{0.5}{2} + \frac{0.17}{1} \approx 0.42$$

$$PR(A) = \frac{PR(C)}{1} = \frac{0.33}{1} \approx 0.33$$

$$PR(B) = \frac{PR(A)}{2} = \frac{0.5}{2} = 0.25$$

After few more iterations:

$$PR(C) = \frac{PR(A)}{2} + \frac{PR(B)}{1} \approx 0.4$$

$$PR(A) = \frac{PR(C)}{1} \approx 0.4$$

$$PR(B) = \frac{PR(A)}{2} \approx 0.2$$

TextRank

TextRank

A graph-based ranking algorithm of natural language texts with the purpose of:

Keyword Extraction

TextRank

A graph-based ranking algorithm of natural language texts with the purpose of:

- Keyword Extraction
- Sentence Extraction

TextRank Equation

TextRank modified Google PageRank "random surfer model" equation:

$$S(V_i) = (1 - d) + d * \sum_{j \in In(V_i)} \frac{1}{|Out(V_j)|} S(V_j)$$
 (1)

Taking into account edge weights to compute the score associated with a vertex in the graph:

$$WS(V_i) = (1 - d) + d * \sum_{V_j \in In(V_i)} \frac{W_{ji}}{\sum_{V_k \in Out(V_j)} W_{jk}} WS(V_j)$$
 (2)

TextRank Work Comparison

Although TextRank work is based on equation (2) taken from Google PageRank equation (1), its research innovation is in great deal related to A. Hulth [2] "Improved automatic keyword extraction given more linguistic knowledge".

TextRank vs Hulth-2003

Application

Comparison between TextRank and Hulth-2003 algorithms:

TextRank

Hulth, 2003

Application
Keyword Extraction
Sentence Extraction
Approach
Supervised
Example
Block content.

TextRank Keyword Extraction Example

Figure 2: Keywords Extraction Graph Example

Compatibility of systems of linear constraints over the set of natural numbers. Criterias of compatibility of a system of linear Diophantine equations, strict inequations, and nonatrier inequations are considered Upper bounds for components of a minumal set of solutions and adaptivitims of construction of national spectral properties are given. These criteria and the corresponding algorithms for constructing a minimal supporting set of solutions for all types of yestems are sprices of mixed by gas.

Keywords assigned by TextRank: linear constraints; linear diophantine equations; natural numbers; nonstrict inconations; strict inconations; upper bounds

Keywords assigned by human annotators:

linear constraints; linear diophantine equations; minimal generating sets; nonstrict inequations; set of natural numbers; strict inequations; upper bounds

Sample graph built for keyphrase extraction from an Inspec abstract.

Source: [3]

1. Text is tokenized

- 1. Text is tokenized
- 2. Edge is added between lexical units

- 1. Text is tokenized
- 2. Edge is added between lexical units
- 3. Each vertex is set to initial value of 1

- 1. Text is tokenized
- 2. Edge is added between lexical units
- 3. Each vertex is set to initial value of 1
- 4. TextRank algorithm runs until it converges

Conclusion

Summary

Working on it.

Questions?

Tables

Table 1: PageRank Iteration Calculation for Figure 1

Iteration	А	В	С	A-Error	B-Error	C-Error
0	0.333333	0.333333	0.333333	-	-	-
1	0.333333	0.500000	0.166667	0.0000	0.1667	0.1667
2	0.500000	0.333333	0.166667	0.1667	0.1667	0.0000
3	0.333333	0.416667	0.250000	0.1667	0.0833	0.0833
4	0.416667	0.416667	0.166667	0.0833	0.0000	0.0833
5	0.416667	0.375000	0.208333	0.0000	0.0417	0.0417
6	0.375000	0.416667	0.208333	0.0417	0.0417	0.0000
7	0.416667	0.395833	0.187500	0.0417	0.0208	0.0208
8	0.395833	0.395833	0.208333	0.0208	0.0000	0.0208
9	0.395833	0.406250	0.197917	0.0000	0.0104	0.0104
10	0.406250	0.395833	0.197917	0.0104	0.0104	0.0000
11	0.395833	0.401042	0.203125	0.0104	0.0052	0.0052
12	0.401042	0.401042	0.197917	0.0052	0.0000	0.0052
13	0.401042	0.398438	0.200521	0.0000	0.0026	0.0026
14	0.398438	0.401042	0.200521	0.0026	0.0026	0.0000
15	0.401042	0.399740	0.199219	0.0026	0.0013	0.0013
16	0.399740	0.399740	0.200521	0.0013	0.0000	0.0013
17	0.399740	0.400391	0.199870	0.0000	0.0007	0.0007
18	0.400391	0.399740	0.199870	0.0007	0.0007	0.0000
19	0.399740	0.400065	0.200195	0.0007	0.0003	0.0003
20	0.400065	0.400065	0.199870	0.0003	0.0000	0.0003
21	0.400065	0.399902	0.200033	0.0000	0.0002	0.0002
22	0.399902	0.400065	0.200033	0.0002	0.0002	0.0000
23	0.400065	0.399984	0.199951	0.0002	0.0001	0.0001
24	0.399984	0.399984	0.200033	0.0001	0.0000	0.0001

Final result is shown on page 6

Keyword Extraction Results

 Table 2:
 Results for automatic keyword extraction using TextRank or supervised learning (Hulth, 2003)

	Assi	gned	Cor	rect			
Method	Total	Mean	Total	Mean	Precision	Recall	F-measure
TextRank							
Undirected, Co-occ.window=2	6,784	13.7	2,116	4.2	31.2	43.1	36.2
Undirected, Co-occ.window=3	6,715	13.4	1,897	3.8	28.2	38.6	32.6
Undirected, Co-occ.window=5	6,558	13.1	1,851	3.7	28.2	37.7	32.2
Undirected, Co-occ.window=10	6,570	13.1	1,846	3.7	28.1	37.6	32.2
Directed, forward, Co-occ.window=2	6,662	13.3	2,081	4.1	31.2	42.3	35.9
Directed, backward, Co-occ.window=2	6,636	13.3	2,082	4.1	31.2	42.3	35.9
Hulth (2003)							
Ngram with tag	7,815	15.6	1,973	3.9	25.2	51.7	33.9
NP-chunks with tag	4,788	9.6	1,421	2.8	29.7	37.2	33.0
Pattern with tag	7,012	14.0	1,523	3.1	21.7	39.9	28.1

References L

S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine, Computer Networks and ISDN Systems, 30 (1998), pp. 107--117.

A. Hulth, Improved automatic keyword extraction given more linguistic knowledge, in Proceedings of the 2003 conference on Empirical methods in natural language processing, Association for Computational Linguistics, 2003, pp. 216-223.

R. MIHALCEA AND P. TARAU, Textrank: Bringing order into texts, Barcelona, Spain, 2004, Association for Computational Linguistics, pp. 404-401.

http://www.aclweb.org/anthology/W04-3252.

T. S. W.B. CROFT, D. METZLER, Search Engine Information Retrieval in Practice, Pearson Education, 2015.