

数学分析 3

作者: UnsunSk8er

组织: ElegantIATEX Program

时间: November 19, 2022

版本: 0.1

第1章 含参变量的积分

1.1 含参变量的积分

1.1.1 含参变量积分的概念

定义 1.1 (含参变量的积分)

f(x,y) 在 $[a,b] \times [c,d]$ 有定义, 且对每个固定的 $y \in [c,d]$, 关于 x 的函数 f(x,y) 在 [a,b] 上 R 可积. 令

$$I(y) := \int_{a}^{b} f(x, y) \, \mathrm{d}x, \quad y \in [c, d]$$

称为含参变量的积分, 其中 y 是参数. 它对应数列或函数列中的变数 n.

定义 1.2 (一致收敛极限)

设 $y_0 \in [c,d]$, 若存在函数 $\varphi(x), x \in [a,b]$, 使得 $\forall \varepsilon > 0, \exists \delta > 0, \forall y \in \mathring{N}(\delta, y_0)$:

$$|f(x,y)-\varphi(x)|<\varepsilon,\quad \forall x\in [a,b]$$

则称当 $y \to y_0$ 时, f(x, y) 在 $x \in [a, b]$ 上一致收敛于 $\varphi(x)$.

注 若 f(x,y) 为 $[a,b] \times [c,d]$ 上的连续函数,则由紧集上连续函数的一致连续性可知,当 $y \to y_0$ 时,f(x,y) 在 $x \in [a,b]$ 上一致收敛于 $f(x,y_0)$.

以下讨论一致收敛的极限函数的性质(参照一致收敛函数列的性质).

定理 1.1 (极限函数一致收敛的 Cauchy 准则)

 $\lim_{y\to y_0} f(x,y)$ 在 [a,b] 上一致收敛当且仅当 $\forall \varepsilon, \exists \delta > 0$, 当 $y_1,y_2 \in \check{N}(\delta,y_0)$ 时,

$$|f(x, y_1) - f(x, y_2)| < \varepsilon, \quad \forall x \in [a, b].$$

命题 1.1 (极限函数连续的充分条件)

对每个固定的 $y \in [a,b]$, f(x,y) 都是关于 $x \in [a,b]$ 的连续函数, 若极限函数

$$\lim_{y \to y_0} f(x, y) = \varphi(x)$$

在 [a,b] 上一致收敛,则 $\varphi(x)$ 是 [a,b] 上的连续函数.

1.2 含参变量的广义积分

1.2.1 一致收敛及其判别法