Lista de exercícios- Matrizes Vetores e Geometria Analítica Prof. Dr. Helton Hideraldo Bíscaro

- 1. Verifique, em cada um dos itens abaixo, se a aplicação <, > é um produto interno no espaço vetorial V.
 - (a) $V = \mathbb{R}^2$, $u = (x_1, y_1)$, $v = (x_2, y_2)$ e $\langle u, v \rangle = 2x_1x_2 + 4y_1y_2$;
 - (b) $V = \mathbb{R}^3$, $u = (x_1, y_1, z_1)$, $v = (x_2, y_2, z_2)$ e $\langle u, v \rangle = x_1 x_2 + y_1 y_2$;
 - (c) $V = \mathbb{R}^4$, $u = (x_1, y_1, z_1, t_1)$, $v = (x_2, y_2, z_2, t_2)$ e $< u, v >= x_1 x_2 + y_1 y_2 + z_1 z_2 t_1 t_2$;
- 2. Seja $V=\mathbb{R}^3$ com o produto interno usual. Determine < u,v>, $\|u\|$, $\|v\|$ e o ângulo entre u e v para u=(1,2,1)e v=(3,4,2). Verifique também se os vetores $u_1=(0,1,1)$ e $v_1=(1,1,0)$ são ortogonais.
- 3. Prove que em qualquer espaço vetorial, os vetores $\|u\|v + \|v\|u$ e $\|u\|v \|v\|u$ são ortogonais.
- 4. Mostre que a desigualdade de Cauchy-Schwarz se reduz a uma igualdade desde que os vetores u e v sejam LD.
- 5. (Teorema de Pitágoras Generalizado) Mostre que em qualquer espaço vetorial com produto interno vale, para quaisquer vetores u e v, a igualdade:

$$||u + v||^2 = ||u||^2 + ||v||^2 + 2||u|| ||v|| \cos(\theta)$$

onde θ é o ângulo entre os vetores u e v.