

Lesson 03 Outline

- * Newton dynamics of particles
- * Ordinary differential equation (ODE) solver
- * Particle obstacle collision detection
- * Practical design of particle system
- * Demos / tools / libs

Newton's Dynamics

- * Three fundamental Newton's laws of motion
 - (1) Every body remains in a state of rest or uniform motion (constant velocity) unless it is acted upon by an external unbalanced force.
 - → (2) A body of mass m subject to a force f undergoes an acceleration a that has the same direction as the force and a magnitude that is directly proportional to the force and inversely proportional to the mass: f = ma.
 - (3) The mutual forces of action and reaction between two bodies are equal, opposite and collinear.

Particle Dynamics

- * Dynamical proprties of Particles
 - → Mass (m) in [kg]: parameter
 - \rightarrow Position (p) in [m]: dp = \vee
 - → Velocity (v) in [m/s]: dv = a
 - → Momentum (L) in [kgm/s]: L=mv
 - → Acceleration (a) in (m/s²): a = m⁻¹F; gravity, wind, user...
 - \rightarrow Force (F) in [kgm/s²]: F = ma = dL
- * The equation of unconstrained motion (ODE)
 - \rightarrow d(ρ , \vee) = (\vee , α)

Ordinary

Equations

Ordinary Differential Equations

- * **Definition:** An ordinary differential equation (ODE) is a relation that contains functions of only one independent variable, and one or more of their derivatives with respect to that variable.
- * Problem: How to evaluate (in time) position $\rho(t)$ of a particle, when we only know its change in time $\rho'(t)$ is a function of position and time: $\rho'(t) = F(\rho(t), t)$
- * Examples
 - ⇒ $\rho'(t) = -10\rho(t)$ ⇒ $\rho'(t) = t^2\rho(t) - 3\rho^2(t) + 7$
- * Objective: Given function F(ρ,t) and the value ρ(t) at some time t, we can compute ρ'(t) = F(ρ(t),t)

* Inaccuracy Problem

* Instability Problem

* Inaccuracy Problem

* Instability Problem

* Inaccuracy Problem

* Instability Problem

Particle trajectory small time step

* Inaccuracy Problem

* Instability Problem

* Inaccuracy Problem

* Instability Problem

ODE Solvers

- * Explicit Schemes
 - → Euler
 - Mid Point
 - → Runge Kutta 4
 - → Verlet
- * Implicit Schemes
 - → Implicit Euler

Explicit Euler Scheme

Explicit Euler Scheme

- * **Idea:** Given initial value $\rho(t_0)$ of function ρ at time t_0 we can find $\rho(t_0+h)$ using Taylor expansion as
- $*\rho(t_0+h) = \rho(t_0) + h\rho'(t_0) + O(h^2); \rho'(t_0) = F(\rho(t_0),t_0)$
- * Numerical algorithm:
- * $\rho_{n+1} = \rho_n + h^*F(\rho_n, t_n)$ where ρ_0 = some initial value
- * Pros / Cons:
 - Very simple, fast and easy to implement
 - \rightarrow Huge error = $O(h^2)$
 - Can be unstable cumulated error increases to infinity

Explicit Midpoint Scheme

- * **Idea:** Use approximate derivative p'(t+h/2) of p(t) at time t+h/2 instead of the the simple p'(t)
- * $\rho(t+h) = \rho(t) + hF(\rho(t+h/2), t+h/2) + O(h^3)$
- * **Problem:** We do not know function $\rho(t)$ or its derivative at time t+h/2.
- * Knowing $\rho'(t+h/2) = F(\rho(t+h/2), t+h/2)$ we need to estimate only $\rho(t+h/2)$
- * Solution: Estimate it using Taylor expansion
- * $\rho(t+h/2) = \rho(t) + (h/2)\rho'(t) + O(h^2)$
- * Finally:
- * $\rho(t+h) = \rho(t) + hF(\rho(t) + (h/2)\rho'(t), t+h/2) + O(h^3)$

Explicit Midpoint Scheme

Explicit Midpoint Scheme

- * Numerical algorithm:
- * $\rho_{n+1} = \rho_n + hF(\rho_n + (h/2)F(\rho_n, t_n), t_n + h/2)$
- * Pros / cons
 - Very simple, fast and easy to implement
 - \rightarrow Smaller error = $O(h^3)$
 - Need to evaluate F two times more computation

Runge-Kutta Scheme

* Numerical algorithm

$$k_{1} = hF(\mathbf{p}(t_{0}), t_{0})$$

$$k_{2} = hF(\mathbf{p}(t_{0}) + \frac{k_{1}}{2}, t_{0} + \frac{h}{2})$$

$$k_{3} = hF(\mathbf{p}(t_{0}) + \frac{k_{2}}{2}, t_{0} + \frac{h}{2})$$

$$k_{4} = hF(\mathbf{p}(t_{0}) + k_{3}, t_{0} + h)$$

$$\mathbf{p}(t_{0} + h) = \mathbf{p}(t_{0}) + \frac{k_{1}}{6} + \frac{k_{2}}{3} + \frac{k_{3}}{3} + \frac{k_{4}}{6} + O(h^{5})$$

Explicit Integration schemes

Verlet Scheme

- * Preconditions: Equations are pure 2-order ODEs.
- * Idea: Taylor expand p(t) at p(t+h) and p(t-h) and subtract / add equations

$$\mathbf{p}(t+h) = \mathbf{p}(t) + h\,\dot{\mathbf{p}}(t) + \frac{h^2}{2}\,\ddot{\mathbf{p}}(t) + \frac{h^3}{6}\,\ddot{\mathbf{p}}(t) + O(h^4)$$

$$\mathbf{p}(t-h) = \mathbf{p}(t) - h\,\dot{\mathbf{p}}(t) + \frac{h^2}{2}\,\ddot{\mathbf{p}}(t) - \frac{h^3}{6}\,\ddot{\mathbf{p}}(t) + O(h^4)$$

$$\mathbf{p}(t+h) = 2\,\mathbf{p}(t) - h\,\mathbf{p}(t-h) + h^2\,\ddot{\mathbf{p}}(t) + O(h^4)$$

$$\dot{\mathbf{p}}(t+h) = \frac{1}{2h}\,\mathbf{p}(t+h) - \frac{1}{2h}\,\mathbf{p}(t-h) + O(h^2)$$

Implicit Euler

- * Explicit Euler: $\rho(t+h) = \rho(t) + hF(\rho(t),t) + O(h^2)$
- * Implicit Euler: $\rho(t+h) = \rho(t) + hF(\rho(t+h),t+h) + O(h^2)$
- * Problem: We need to solve for p(t+h)
- * Solution: Taylor expand F(p,t) in p
- * $F(\rho + \Delta \rho, t) = F(\rho, t) + \Delta \rho F'(\rho, t) + O(\Delta \rho^2)$
- * Set: $\Delta \rho$ as hF $(\rho + \Delta \rho, t)$
- * $F(\rho+\Delta\rho,t) = F(\rho,t) + hF(\rho+\Delta\rho,t)F'(\rho,t) + O(\Delta\rho^2)$
- * $F(\rho + \Delta \rho, t) = (1 hF'(\rho, t))^{-1}F(\rho, t) + O(\Delta \rho^2)$
- * Problem: F'(p,t) (Jacobian) must be known
- * More on cloth modeling

Example

Euler (pronounced "oiler")

Runge-Kutta (pronounced Run-gah Kut-tah)

$$\frac{dy}{dt} = 6y - .007y^2$$

Runge-Kutta (4th order)

$$f'(t, y) = derivative at(t, y)$$

$$k_1 = f'(t, y)$$

 $k_2 = f'(t + \Delta t / 2, y + k_1 \Delta t / 2)$

$$k_3 = f'(t + \Delta t / 2, y + k_2 \Delta t / 2)$$

$$k_4 = f'(t + \Delta t, y + k_3 \Delta t)$$

$$y_{t+\Delta} = y_t + \Delta t \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

Step 1: Evaluate slope at current value of state variable.

Step 2: Calculate y_1 at $t + \Delta t/2$ using k_I . Evaluate slope at y_1 .

Step 3: Calculate y_2 at $t + \Delta t/2$ using k_2 . Evaluate slope at y_2 .

Step 4: Calculate y_3 at $t + \Delta t$ using k_3 . Evaluate slope at y_3 .

Step 5: Calculate weighted slope.

Use weighted slope to estimate y at $t + \Delta t$

weighted slope =
$$\frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$Y_{t+\Delta} = Y_t + \Delta t \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
true value

weighted slope

estimated value

Conclusions

- 4th order Runge-Kutta offers substantial improvement over Eulers.
- Both techniques provide estimates, not "true" values.
- The accuracy of the estimate depends on the size of the step used in the algorithm.

Particle Obstacle

Collision Scenario

- * Particle-obstacle contact info
 - Penetration depth (d): minimal distance to separate particle from obstacle
 - Contact normal (n): direction vector along which we can get particle out of obstacle (by moving about penetration depth)

Newton's Impact Model

$$u_n(t^+) = -e_n u_n(t^-)$$

- * Pre-collision relative normal velocity: u_n (t⁻)
- * Post-collision relative normal velocity: u_n (t⁺)
- * Coefficient of restitution: 0 <= e_n <= 1
- * Plastic collisions: e_n == 0
- * Elastic collisions: e_n == 1

Impulse based Collision Resolution

* Collision Impulse: Time integral of repulsive forces acting on bodies during collision

$$\mathbf{j}(t) = \int_{t}^{t+h} \mathbf{f}(a) da$$

- * Impulses cause direct change of velocity: $\Delta \mathbf{u} = M^{-1}\mathbf{j}$
- * $\Delta u = \Delta u_1 \Delta u_2 = M_1^{-1}j M_2^{-1}j = (M_1^{-1} M_2^{-1})j = Kj$
- * $\Delta u_n = n^T K j = n^T u(t+h) n^T u(t) = -e_n n^T u(t) n^T u(t) = -(1+e_n) n^T u(t)$
- * $j = -(1+e_n) \mathbf{n}^T \mathbf{u}(t) / \mathbf{n}^T (M_1^{-1} M_2^{-1}) \mathbf{n}$
- * u₁ += jn; u₂ -= jn;

Particle – Sphere Collisions

- * Particle Sphere Model
 - → Particle position: $\rho = (x,y,z)$
 - → Sphere Center: c=(x,y,z)
 - → Sphere Radius: r
- * Penetration depth: d = |p c| r
- * Contact normal: $n = norm(\rho c)$

Particle - Plane Collisions

- * Particle Plane Model
 - → Particle position: $\rho = (x,y,z)$
 - \rightarrow Plane origin: o=(x,y,z)
 - \rightarrow Plane normal: m=(x,y,z); |m|==1
- * Penetration depth: $d = m^{T}(\rho-c)$
- * Contact normal: n = m

Particle - Capsule Collisions

Particle - Capsule Collisions

- * Particle Capsule Model
 - → Particle position: $\rho = (x,y,z)$
 - \rightarrow Center1/2: c1/2 = (x,y,z)
 - → Radius: r
- * Algorithm:
 - → Detect Voronoi Region (1,2,3)
 - → In region 1/2: Compute sphere penetration
 - → In region 3: Compute point-line distance
- * Voronoi detection: Project (p-c1) onto (c2-c1)
 - \rightarrow f = (c2-c1)^T(p-c1)
 - → Region1 (f<0); Region2 (0<f<F); Region3 (f>=F)
 - \rightarrow F = (c2-c1)²

Particle - Capsule Collisions

- * Point Centerl Case
 - → Penetration depth: $d = |\rho c1| r$
 - → Contact normal: n = norm (p c1)
- * Point Center2 Case
 - \Rightarrow Penetration depth: $d = |\rho c2| r$
 - → Contact normal: n = norm(p c2)
- * Point Axis Case
 - ⇒ u=norm (c2-c1); $v=(\rho-c1)$; $e=u^Tv$; $f=v^Tv$; $g^2=f-e^2$
 - → Penetration depth: d = r g
 - → Penetration normal: n = norm (v eu)

Particle System

- * Particle System
 - → A set of similar particles e.g. rendered with similar material
 - → Store in array bag structure
- * Particle
 - Has lifetime, physical and material properties
 - → During simulation lifetime is decremented until < 0 → dead
 - Dead particles are reused for newly emitted particles
- * Obstacles: Objects in the scene used as colliders
 - → Sphere, boxes, planes, capsules...

Emitters

- * Particle emitter: Creates new particles
 - → Particle emit rate: How many particles are emitted per sec
 - Particle initial values: Particle initialization before emission.
 - Custom (physical) and geometrical properties
- * Common emitters
 - Point emitter: Emit particle from point
 - → Sphere emitter: Emit particles inside volume (on surface)
 - → Box emitter: Emit particles inside generic box
 - Cone emitter: Emit particles inside a cone
 - And many more...

Attractors

- * Particle attractor:
 - → Is a generic description of forces attracting close particles
- * Common attractors:
 - → Linear drag: wind, gravity, user drag
 - > Vortex drag: rotational force field
 - Distance magnets: obstacles acts like magnets

Demos / Tools / Libs

* Particle Illusion (http://www.wondertouch.com/)

