Лабораторная работа № 2. Гармоники.

3530901/80201, Шелаев Н. Р.

3 июня 2021 г.

Оглавление

1	Осн	овные свойства преобразования Фурье	4
	1.1	Общие формулы	4
	1.2	Свойства	4
		1.2.1 Суммирование функций	4
		1.2.2 Смещение функций	5
		1.2.3 Изменение масштаба аргумента функции	5
		1.2.4 Перемножение функций	5
		1.2.5 Свертывание функций	5
		1.2.6 Дифференцирование функций	6
		1.2.7 Интегрирование функций	6
		1.2.8 Обратимость преобразования Фурье	7
2	_	угольный и прямоугольный сигналы	8
3	Бие	ения сигналов	11
4	Φy_1	нкция для быстрого преобразования Фурье	13
5	изи	иенение фазы сигнала	15
6	Упј	ражнения	16
	6.1	Задание 2	16
	6.2		19
	6.3	Задание 4	19
	6.4		21
	6.5		22
7	Вы	вол	25

Список иллюстраций

2.1	Треугольный сигнал	8
2.2	Спектр треугольного сигнала	
2.3	Прямоугольный сигнал	10
2.4	Спектр прямоугольного сигнала	10
3.1	Полученный сегмент сигнала	11
4.1	Спектр сигнала после быстрого преобразования Фурье	14
5.1	Результат изменения исходного сигнала	15
6.1	Пилообразный сигнал	17
6.2	Спектр пилообразного сигнала	17
6.3	Сравнение спектра пилообразного сигнала со спектром пря-	
	моугольного сигнала	18
6.4	Сравнение спектра пилообразного сигнала со спектром тре-	
	угольного сигнала	18
6.5	Спектр прямоугольного сигнала с биениями	19
6.6	Сигнал до изменений	20
6.7	Сравнение полученных сигналов	20
6.8	Применение этой функции для треугольного сигнала	21
6.9	Применение этой функции для прямоугольного сигнала	22
6.10	Полученный спектр	23
6.11	Полученный сигнал	23
6.12	Нужный спектр	24
6.13	Странный сигнал	24

Листинги

2.1	Построение треугольного сигнала	3
2.2	Построение спектра сигнала)
2.3	Построение прямоугольного сигнала)
3.1	Построение косинусоиды с высокой частотой	1
4.1	Функция для быстрого преобразования Фурье	3
5.1	Изменение сигнала	5
6.1	Получение пилообразного сигнала	3
6.2	Построение прямоугольного сигнала)
6.3	Создаем треугольный сигнал)
6.4	Изменяем амплитуду)
6.5	Сама функция	1
6.6	Теперь возьмём прямоугольный сигнал	1
6.7	Взяли пилообразный сигнал и уменьшили его амплитуду . 22	2
6.8	Второй способ	3

Основные свойства преобразования Фурье

1.1 Общие формулы

Формулы для прямого и обратного преобразования Фурье (ПФ и ОПФ). Сигнал f(t):

Прямое:
$$\Phi_i(\nu) = \int_{-\infty}^{\infty} \phi(t)e^{-2\pi i\nu t}dt$$

Обратное:
$$\phi(t) = \int_{-\infty}^{\infty} \Phi_i(\nu) e^{2\pi i \nu t} d\nu$$

1.2 Свойства

1.2.1 Суммирование функций

Преобразование Фурье - линейное преобразование. Отсюда следует, что $\Pi\Phi$ линейной комбинации некоторых функций равно аналогичной линейной комбинации $\Pi\Phi$ этих функций.

$$\sum_{i=1}^{n} \alpha_i \phi_i(t) \leftrightarrow \sum_{i=1}^{n} \alpha_i \Phi_i(\nu)$$

1.2.2 Смещение функций

При смещении функции по аргументу на Δt её ПФ умножается на $e^{2\pi i \nu \Delta t}$. Пусть $t'=t+\Delta t$, тогда:

$$\phi(t + \Delta t) \leftrightarrow \int_{-\infty}^{\infty} \phi(t + \Delta t) e^{-2\pi i \nu t} dt = \int_{-\infty}^{\infty} \phi(t') e^{-2\pi i \nu (t' - \Delta t)} dt$$
$$= e^{2\pi i \nu \Delta t} \cdot \Phi_i(\nu)$$

1.2.3 Изменение масштаба аргумента функции

Если аргумент t функции $\phi(t)$ заменить на αt , где α - постоянный коэффициент, то $\Pi \Phi$ функции с $\Phi_i(\nu)$ изменится на $\frac{1}{|\alpha|}\Phi\left(\frac{\nu}{\alpha}\right)$. Это доказывается заменой $t'=\alpha t$:

$$\phi(\alpha t) \leftrightarrow \int_{-\infty}^{\infty} \phi(\alpha t) e^{-2\pi i \nu t} dt = \frac{1}{|\alpha|} \dot{\int}_{-\infty}^{\infty} \phi(t') e^{-2\pi i \nu \frac{t'}{\alpha}} dt$$
$$= \frac{1}{|\alpha|} \Phi\left(\frac{\nu}{\alpha}\right)$$

Появление модуля коээфициента α вызвано тем, что при отрицательном коэффициенте α замена переменной приводит к изменению знаков у пределов интегрирования.

1.2.4 Перемножение функций

 $\Pi\Phi$ произведения двух функций равно свёртке их $\Pi\Phi$. Это свойство доказывается путём использования $\Pi\Phi$ и изменения порядка интегрирования:

$$\phi_1(t)\phi_2(t) \leftrightarrow \int_{-\infty}^{\infty} \phi_1(t)\phi_2(t)e^{-2\pi i\nu t}dt = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \Phi_1(\nu')e^{2\pi i\nu' t}d\nu'\right)\phi_2(t)e^{-2\pi i\nu t}dt$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \Phi_1(\nu')\phi_2(t)e^{2\pi i(\nu-\nu')t}dt\right)d\nu'$$

$$= \int_{-\infty}^{\infty} \Phi_1(\nu')\Phi_2(\nu-\nu')d\nu'$$

$$= \Phi_1(\nu) * \Phi_2(\nu)$$

1.2.5 Свертывание функций

 $\Pi\Phi$ свёртки двух функций равно произведению $\Pi\Phi$ свертываемых функций.

$$\phi_1(t) * \phi_2(t) \leftrightarrow \Phi_1(\nu)\Phi_2(\nu)$$

Доказывается аналогично доказательству предыдущего свойства.

1.2.6 Дифференцирование функций

При дифференцировании функции $\phi(t)$ по t её П Φ умножается на $2\pi i\nu$. Используется формула интегрирования по частям.

$$\int_{-\infty}^{\infty} \frac{d\phi(t)}{dt} e^{-2\pi i \nu t} dt = \phi(t) e^{-2\pi \nu t} \Big|_{-\infty}^{t=\infty} + 2\pi i \nu \int_{-\infty}^{\infty} \phi(t) e^{-2\pi i \nu t} dt$$
$$= \phi(t) e^{-2\pi \nu t} \Big|_{-\infty}^{\infty} + 2\pi i \nu \cdot \Phi(\nu)$$
$$= 2\pi i \nu \cdot \Phi(\nu)$$

Слагаемое $\phi(t)e^{-2\pi\nu t}\Big|_{-\infty}^{\infty}$ равно нулю, так как функция, для которой существует ПФ, стремится к нулю при стремлении аргумента к ∞ . Прямое и обратное преобразования Фурье существуют только для функций с ограниченной энергией, т. е. таких функций, для которых:

$$\int_{-\infty}^{\infty} |\phi(t)|^2 dt \neq \infty$$

1.2.7 Интегрирование функций

При интегрировании от $-\infty$ до t функции, имеющей равную нулю постоянную состовляющую, её $\Pi\Phi$ делится на $2\pi i\nu$. Снова применяем формулу интегрирования по частям.

$$\begin{split} \int_{-\infty}^{t} \phi(t')dt' \\ &= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{t} \phi(t')dt' \right) e^{-2\pi i \nu t} dt \\ &= -\frac{1}{2\pi i \nu} \cdot \left[e^{-2\pi i \nu t} \int_{-\infty}^{t} \phi(t')dt' \Big|_{-\infty}^{t=\infty} - \int_{-\infty}^{\infty} e^{-2\pi i \nu t} \phi(t)dt \right] \\ &= \frac{1}{2\pi i \nu} \cdot \int_{-\infty}^{\infty} e^{-2\pi i \nu t} \phi(t)dt \\ &= \frac{1}{2\pi i \nu} \cdot \Phi(\nu) \end{split}$$

При условии, что $\int_{-\infty}^{\infty} \phi(t')dt' = 0$.

1.2.8 Обратимость преобразования Фурье

Преобразование Фурье обратимо с точностью до знака аргумента. Производя в формулах ПФ и ОПФ замену переменных $\nu'=t$ и $t'=\nu$ получаем что, если $\phi(t) \leftrightarrow \Phi(\nu)$, то:

$$\Phi(t) \leftrightarrow \phi(-\nu)$$

$$\Phi(-t) \leftrightarrow \phi(\nu)$$

Для четно-симметричных функций, для которых $\phi(t)=\phi(-t)$, $\Pi\Phi$ тоже будет четно-симметричным: $\Phi(\nu)=\Phi(-\nu)$. Для таких функций преобразование Фурье полностью обратимо.

Треугольный и прямоугольный сигналы

Знакомимся с этими видами сигналов и исследуем их спектр.

```
from thinkdsp import TriangleSignal

signal = TriangleSignal(200)
duration = signal.period * 3
segment = signal.make_wave(duration, framerate = 10000)
segment.plot()
```

Листинг 2.1: Построение треугольного сигнала

Рис. 2.1: Треугольный сигнал

```
wave = signal.make_wave(duration = 0.5, framerate =
10000)
wave.apodize()
spectrum = wave.make_spectrum()
spectrum.plot()
```

Листинг 2.2: Построение спектра сигнала

Рис. 2.2: Спектр треугольного сигнала

Амплитуда спадает пропорционально квадрату частоты.

```
from thinkdsp import SquareSignal

signal = SquareSignal(200)
duration = signal.period * 3
segment = signal.make_wave(duration, framerate = 10000)
segment.plot()
```

Листинг 2.3: Построение прямоугольного сигнала

Рис. 2.3: Прямоугольный сигнал

Рис. 2.4: Спектр прямоугольного сигнала

Амплитуда спадает пропорционально частоте (линейная зависимость).

Биения сигналов

Изучаем биения сигналов.

```
from thinkdsp import CosSignal

signal = CosSignal(5000)
duration = signal.period * 5
segment = signal.make_wave(duration, framerate = 10000)
segment.plot()
```

Листинг 3.1: Построение косинусоиды с высокой частотой

Рис. 3.1: Полученный сегмент сигнала

Если сигнал 5000 Гц и 10000 выборок в секунду, то количества выборок

становится недостаточно, и теряется информация о сигнале. Это приводит к тому, что выборки из сигнала с высокой частотой кажутся выборками из сигнала с низкой частотой.

Функция для быстрого преобразования Фурье

Изучим работу функций fft и rfft.

```
import numpy as np

hs = np.fft.rfft(wave.ys)
n = len(wave.ys)
d = 1 / wave.framerate
fs = np.fft.rfftfreq(n, d)
magnitude = np.absolute(hs)
plt.plot(fs, magnitude)
```

Листинг 4.1: Функция для быстрого преобразования Фурье

Рис. 4.1: Спектр сигнала после быстрого преобразования Фурье

Изменение фазы сигнала

Перемешали фазы сигнала и изменили углы спектра.

```
import random
random.shuffle(angle)
i = complex(0, 1)
spectrum = wave.make_spectrum()
spectrum.hs = magnitude * np.exp(i * angle)
wave2 = spectrum.make_wave()
wave2.normalize()
segment = wave2.segment(duration = 0.005)
segment.plot()
```

Листинг 5.1: Изменение сигнала

Рис. 5.1: Результат изменения исходного сигнала

Упражнения

6.1 Задание 2

```
Создаем и изучаем пилообразный сигнал
```

```
from thinkdsp import Sinusoid
          from thinkdsp import normalize, unbias
          import numpy as np
          class SawtoothSignal(Sinusoid):
                   def evaluate(self, ts):
                       cycles = self.freq * ts + self.offset /
     np.pi / 2
                   frac, _ = np.modf(cycles)
                       ys = normalize(unbias(frac), self.amp)
                       return ys
12
          sawtooth = SawtoothSignal().make_wave(duration = 0.5,
13
      framerate = 20000)
          sawtooth.make_spectrum().plot()
14
15
```

Листинг 6.1: Получение пилообразного сигнала

Рис. 6.1: Пилообразный сигнал

Рис. 6.2: Спектр пилообразного сигнала

Рис. 6.3: Сравнение спектра пилообразного сигнала со спектром прямоугольного сигнала

Рис. 6.4: Сравнение спектра пилообразного сигнала со спектром треугольного сигнала

Гармоники треугольного сигнала падают пропорционально $\frac{1}{f^2}$, в то время как гармоники пилообразного сигнала падают пропорционально $\frac{1}{f}$, но по сравнению с прямоугольным сигналом пилообразный сигнал включает в себя как четные, так и нечетные гармоники.

6.2 Задание 3

Создаём прямоугольный сигнал и проверяем его на биения.

```
square = SquareSignal(1100).make_wave(duration = 0.5, framerate = 10000)
square.make_spectrum().plot()
```

Листинг 6.2: Построение прямоугольного сигнала

Рис. 6.5: Спектр прямоугольного сигнала с биениями

Создав сигнал с большей частотой дискретизации и сравнив эти два сигнала, мы услышим разницу между ними. Значит, биения влияют на качество сигнала.

6.3 Задание 4

Эксперимент с изменением амплитуды компоненты с частотой 0.

```
triangle = TriangleSignal(440).make_wave(duration
=0.01)
triangle.plot()
```

Листинг 6.3: Создаем треугольный сигнал

Рис. 6.6: Сигнал до изменений

Амплитуда и фаза нулевого компонента равнялись 0 (с небольшой погрешностью)

```
spectrum = triangle.make_spectrum()
spectrum.hs[0] = 100
triangle.plot(color = 'gray')
spectrum.make_wave().plot()
```

Листинг 6.4: Изменяем амплитуду

Рис. 6.7: Сравнение полученных сигналов

В результате сигнал оказался смещен вверх по амплитуде.

6.4 Задание 5

Функция для деления амплитуды сигнала на его частоту.

Листинг 6.5: Сама функция

Рис. 6.8: Применение этой функции для треугольного сигнала

```
wave = SquareSignal(freq = 440).make_wave(duration
=0.5)

wave.make_audio()
spectrum = wave.make_spectrum()
spectrum.plot(high = 10000, color = 'gray')
filter_spectrum(spectrum1)
spectrum.scale(440)
```

```
spectrum.plot(high = 10000)
```

Листинг 6.6: Теперь возьмём прямоугольный сигнал

Рис. 6.9: Применение этой функции для прямоугольного сигнала

Полученные сигналы стали звучать как синосоидальный сигнал.

6.5 Задание 6

Ищем сигнал с четными и нечетными гармониками, спадающих пропорционально $\frac{1}{f^2}$.

```
signal = SawtoothSignal(freq = 1000)
wave = signal.make_wave(duration=0.5, framerate
=20000)
spectrum = wave.make_spectrum()
spectrum.plot(color = 'gray')
filter_spectrum(spectrum)
spectrum.scale(1000)
spectrum.plot()
wave = spectrum.make_wave()
wave.segment(duration = 0.01).plot()
```

Листинг 6.7: Взяли пилообразный сигнал и уменьшили его амплитуду

Рис. 6.10: Полученный спектр

Рис. 6.11: Полученный сигнал

Получился сигнал странной формы, но с заданными свойствами.

```
from thinkdsp import CosSignal

freqs = np.arange(500, 9500, 500)
amps = 1 / freqs ** 2
signal = sum(CosSignal(freq, amp) for freq, amp in zip(freqs, amps))
spectrum = wave.make_spectrum()
```

```
spectrum.plot()
wave = signal.make_wave(duration=0.5, framerate
=20000)
wave.segment(duration = 0.01).plot()
```

Листинг 6.8: Второй способ

Рис. 6.12: Нужный спектр

Рис. 6.13: Странный сигнал

В результате получился ParabolicSignal с заданными свойствами.

Вывод

В данной работе мы познакомились с треугольным, прямоугольным и пилообразным сигналами и посмотрели их спектры. Также мы узнали, что биения сигнала влияют на его качество.