

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

원 번 **Application Number** 특허출원 2000년 제 42737 호

PATENT-2000-0042737

2000년 07월 25일 JUL 25, 2000

Date of Application

삼성에스디아이 주식회사 SAMSUNG SDI CO., LTD.

출 Applicant(s)

2001

07

COMMISSIONER

【서류명】 · 특허출원서

【권리구분】 특허

【수신처】 . 특허청장

【참조번호】 0005

【제출일자】 2000.07.25

【발명의 명칭】 리튬 설퍼 전지용 전해액

【발명의 영문명칭】 An Electrolyte for Lithium Sulfur batteries

【출원인】

【명칭】 삼성에스디아이 주식회사

【출원인코드】 1-1998-001805-8

【대리인】

【성명】 김원호

 【대리인코드】
 9-1998-000023-8

 【포괄위임등록번호】
 1999-065833-7

【대리인】

【성명】 김은진

【대리인코드】9-1998-000134-0【포괄위임등록번호】2000-041944-2

【발명자】

【성명의 국문표기】 황덕철

【성명의 영문표기】HWANG, Duck Chul【주민등록번호】701104-1173110

【우편번호】 330-300

【주소】 충청남도 천안시 성성동 508번지

【국적】 KR

【발명자】

【성명의 국문표기】 최윤석

【성명의 영문표기】CHOI, Yun Suk【주민등록번호】630314-1036419

【우편번호】 330-090

【주소】 충청남도 천안시 쌍용동 일성아파트 507동 401호

【국적】 KR

【취지】

【발명자】 최수석 【성명의 국문표기】 【성명의 영문표기】 CHOI, Su Suk 【주민등록번호】 681010-1804827 【우편번호】 330-220 【주소】 충청남도 천안시 백석동 현대아파트 105동 1002호 【국적】 KR 【발명자】 【성명의 국문표기】 이제완 【성명의 영문표기】 LEE, Jea Woan 【주민등록번호】 700920-1357214 【우편번호】 330-050 【주소】 충청남도 천안시 영성동 47-24 【국적】 KR 【발명자】 【성명의 국문표기】 정용주 【성명의 영문표기】 JUNG, Yong Ju 【주민등록번호】 680501-1657714 【우편번호】 305-503 【주소】 대전광역시 유성구 송강동 송강마을아파트 202동 602호 【국적】 KR 【발명자】 【성명의 국문표기】 김주석 【성명의 영문표기】 KIM, Joo Soak 【주민등록번호】 720625-1343827 【우편번호】 330-300 【주소】 충청남도 천안시 성성동 508번지 【국적】 KR 【심사청구】 청구

김원호 (인) 대리인

(인)

김은진

특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정

에 의한 출원심사 를 청구합니다. 대리인

【수수료】

-					
【기본출원료】	15	면		29,000	원
【가산출원료】	0	면		0	원
【우선권주장료】	0	건		0	원
【심사청구료】	9	항		397,000	원
[합계]	426,	000	원		
【첨부서류】	1. 9	⊇약서·	명세서(9	도면)_1통	

1020000042737

【요약서】

[요약]

본 발명은 리튬 설퍼 2차 전지용 전해액에 관한 것으로서, 황화합물을 양극으로 사용하고, 리튬금속 또는 리튬금속의 합금을 음극으로 사용하는 비수용성 리튬 설퍼 2차전지의 전해액에 있어서, 상기 전해액이 제 1성분으로 벤젠 및 그 유도체를 사용하고, 제 2성분으로 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 설포란(SL), 및 감마부티로락톤(GBL)로 이루어진 군에서 선택되는 물질을 사용하고, 제 3성분으로 디메틸렌카보네이트(DMC), 에틸렌메틸렌카보네이트(EMC), 디에틸카보네이트(DEC), 메틸프로필카보네이트(MPC), 메틸프로피오네이트(MP), 에틸프로피오네이트(EP), 메틸아세테이트(MA), 에틸아세테이트(EA), 프로필아세테이트(PA), 디메틸에스테르(DME), 1,3-디옥소란, 테트라하이드로퓨란(THF), 및 2-메틸테트라하이드로퓨란(2-MeTHF)으로 이루어진 군에서 선택되는 물질을 사용하는 3성분계, 및 첨가제를 더욱 포함하는 것을 특징으로 하는 리튬 설퍼 2차 전지용 전해액을 제공함으로써 리튬 설퍼 2차 전지의 수명특성 및 안정성을 향상시킬 수 있다.

【색인어】

리튬 설퍼 2차 전지, 3성분계 전해액, SEI

【명세서】

【발명의 명칭】

리튬 설퍼 전지용 전해액{An Electrolyte for Lithium Sulfur batteries}

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 첨가제가 첨가된 리튬 설퍼 2차 전지용 전해액에 관한 것으로서, 더욱 상세하게는 3성분계 전해액을 사용하는 리튬 설퍼 2차 전지용 전해액에 첨가제를 더욱 첨가함으로써 리튬 설퍼 2차 전지의 수명 특성 및 안정성을 향상시키고자 하는 리튬 설 퍼 2차 전지의 전해액에 관한 것이다.
- 휴대용 전자기기의 급속한 발전에 따라 2차 전지의 수요를 증가시키고 있다. 휴대용 전자기기의 경박단소의 추세에 부응할 수 있는 고 에너지 밀도의 전지의 등장이 지속적으로 요구되고 있으며, 이러한 요구에 부응하기 위해서는 값싸고 안전하고 환경친화적인 면을 만족시키는 전지의 개발이 필요하다.
- 이러한 요구를 만족시키는 여러 가지 전지들 중에 리튬설퍼전지는 현재까지 개발되고 있는 전지 중 에너지 밀도면에서 가장 유망하며, 리튬의 에너지 밀도는 3830 mAh/g, 황(S₈)의 에너지 밀도가 1675 mAh/g으로 사용되는 활물질 자체가 값싸고 환경친화적인 물질이나 아직 이 전지 시스템으로 상용화에 성공한 예는 없는 실정이다.
- 리튬 설퍼 전지가 상용화될 수 없는 이유는 우선 황을 활물질로 사용하면 투입된 황의 양에 대한 전지 내 전기화학적 산화환원 반응에 참여하는 황의 양을 나타내는 이용

율이 낮아 극히 낮은 전지 용량을 나타낸다는 것이다.

- 또한, 산화환원 반응시에 황의 전해질로의 유출로 야기되는 전지수명의 열화 및 적절한 전해액을 선택하지 못했을 경우 황의 환원물질인 리튬설파이드(Li₂S)가 석출되어 더 이상 전기화학반응에 참여하지 못하게 되는 문제점이 있다.
- 이고, R은 알킬 또는 알콕시 그룹), 공용매는 도우너(donor) 넘버가 15 이상인 혼합 용매를 사용한다.
- 또한, 크라운 에테르(crown ether), 크립탠드(crypt and), 도우너 용매(donor number) 중 적어도 하나를 포함하는 용매를 포함하는 액체 전해액을 사용하다.
- 스라고, 방전된 후 결과적으로 캐솔라이트(catholyte)가 되는 전해액으로 전지의 세퍼레이션 디스턴스(separation distance)가 400 μm 이하이다.
- 또한, 미국 특허 제5,961,672호에서는 리튬 금속 음극에 폴리머 필름을 입혀 수명과 안정성을 개선하기 위하여 1M의 LiSO₃CF₃, 1,3-디옥소란/디그라임/설포란/디메톡시에탄(50/20/10/20)의 비율의 혼합액을 전해액으로 사용한 것을 개시하고 있다.
- <10> 미국특허 제 5,523179호와 미국특허 제 5,814,420호 및 미국특허 제 6,030,720호에 서는 상기의 문제점들을 해결하기 위한 기술적 개선 방향을 제시하고 있다.
- 한편, 리튬 금속을 음극으로 사용함으로써 전지수명의 열화를 해결해야 한다는 문제점이 있다.
- <12> 상기의 원인으로는 우선 충방전이 진행됨으로 인해 리튬 금속 표면에서 석출되어 성장하는 덴드라이트가 양극표면까지 닿아 전지를 단락시켜 더 이상 전지로서의 기능을

하지 못하게 되며, 또한 리튬표면과 전해액과의 반응으로 야기되는 리튬의 부식으로 전 지용량의 감소가 있다.

- <13> 이러한 문제점을 해결하기 위한 것으로서는 미국특허 제6,017,651호, 미국특허 제6,025,094호 및 미국특허 제5,961,672호 등에서는 리튬전극의 표면에 보호막을 형성하는 기술을 개시하고 있다.
- <14> 상기의 리튬 보호막이 제대로 작동하기 위한 전제 조건은 리튬 이온의 출입은 자유로워야 하나 리튬과 전해질과의 접촉을 막아야 한다. 그러나, 현재까지 알려진 방법들은 몇 가지 문제점을 안고 있다.
- <15> 대부분의 리튬 보호막들은 전지가 조립된 후 전해액 중 첨가제와 리튬의 반응에 의해 리튬 보호막이 형성되도록 하고 있으나, 이 방법은 그 막의 형성이 치밀하지 못하여 틈으로 상당량의 전해액이 리튬 금속에 침투해 접촉할 수 있게 된다는 문제점이 있다.
- 또 한가지 방법으로는 질소 플라즈마를 리튬 표면에서 반응시켜 리튬나이트라이드 (Li₃N)층을 리튬 표면에 형성시키는 방법이 있으나 이 방법도 그레인 바운더리(grain boundary)를 통한 전해액의 침투가 가능하고, 리튬나이트라이드가 수분에 약해 그 층이 분해되기 쉽고 무엇보다도 포텐셜 윈도우(potential window)가 낮아(0.45 V) 실제로 사용되기 어렵다는 문제점이 있다.
- 또 다른 방법으로는 LiPON(Litium phosphorus oxynitride)을 리튬표면에 스퍼터링하는 방법에 의해 박막을 입히는 방법이 있다. 그러나, 이 방법에 의해 제조된 LiPON도다공성이어서 사용하기엔 적합하지 않으며 또 그 방법 자체가 고비용이어서 전지 공정에 불리한 면이 있다는 문제점이 있다.

【발명이 이루고자 하는 기술적 과제】

본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 충전시 음극 표면에 SEI가 전해액이 분해되면서 생성되어 덴드라이트의 생성을 억제하는 역할을 하고, 음극 표면에서의 부반응을 억제하여 수명향상에 도움을 주므로 음극 표면에 SEI를 형성하는데 도움을 줄 수 있는 첨가제를 전해액에 첨가하여 전지의 수명을 향상시키고자 함에 있다.

【발명의 구성 및 작용】

- <19> 본 발명은 상기한 바와 같은 목적을 달성하기 위하여, 본 발명은
- **** 황화합물을 양극으로 사용하고, 리튬금속 또는 리튬금속의 합금을 음극으로 사용하는 비수용성 리튬 설퍼 2차 전지의 전해액에 있어서,
- ◇21> 상기 전해액이 제 1성분으로 벤젠 및 그 유도체를 사용하고, 제 2성분으로 예탈렌카보네이트(EC), 프로필렌카보네이트(PC), 설포란(SL), 및 감마부티로락톤(GBL)으로 이루어진 군에서 선택되는 물질을 사용하고, 제 3성분으로 디메틸카보네이트(DMC), 에틸렌메틸렌카보네이트(EMC), 디에틸카보네이트(DEC), 메틸프로필카보네이트(MPC), 메틸프로 피오네이트(MP), 에틸프로피오네이트(EP), 메틸아세테이트(MA), 에틸아세테이트(EA), 프로필아세테이트(PA), 디메틸에스테르(DME), 1,3-디옥소란, 테트라하이드로퓨란(THF), 및 2-메틸테트라하이드로퓨란(2-MeTHF)으로 이루어진 군에서 선택되는 물질을 사용하는 3 성분계 전해액, 및 첨가제를 포함하는 것을 특징으로 하는 리튬 설퍼 2차 전지용 전해액을 제공한다.
- <22> 이하, 본 발명을 설명하면 다음과 같다.

리튬 설퍼 2차 전지를 충방전하는 경우 전지 수명에 영향을 미치는 요소 중의 하나가 음국인 리튬 금속의 표면에는 덴드라이트가 형성된다. 충방전이 계속되면서 리튬 금속 표면에서 생성되는 덴드라이트는 전지 쇼트의 원인이 될 뿐만 아니라 전지 수명에도 악영향을 미치는데, 리튬 설퍼 2차 전지에서는 충전시 음국 표면에 SEI(Solid Electrolyte Interface)가 전해액이 분해되면서 생성되어 덴드라이트의 생성을 억제하는 역할을 하고 음국 표면에서의 부반을 억제하여 수명 향상에 도움을 준다.

- 본 발명에서는 음극 표면에 SEI를 형성하는데 도움이 되는 첨가제를 전해액에 첨가하여 수명을 향상시키고자 하는 것으로 SEI의 형성에 도움이 되는 첨가제를 3성분계 전해액에 첨가한다.
- <25> 상기 첨가제로는 비닐렌 카보네이트(Vinylene Carbonate), 에틸렌 설파이트 (Ethylene Sulfite), 및 비스무스 카보네이트(Bismeth Carbonate)로 이루어진 군에서 선택된 첨가제를 사용하는 것이 바람직하다.
- <26> 상기 첨가제의 양은 무게비로 전해액 조성 전체양에 대하여 0.2 내지 10 %를 사용하는 것이 바람직하다.
- <27> 첨가제의 양이 0.2 % 이하이면 첨가제의 효과가 미미해서 바람직하지 않고, 10 %이상이면 첨가제의 가격이 비싸고, 그 효과가 더 좋아지는 것이 아니기 때문에 바람직하지 않다.
- 한편, 리튬 설퍼 2차 전지는 활성 황(S₈), 리튬 설파이드(Li₂S), 리튬 폴리설파이드(Li₂S_n, n= 2, 4, 6, 8)를 음극으로 사용하고 있으며, 이러한 음극을 잘 용해시키는 전해액을 사용하여야 한다.

*29> 황은 비극성 물질이고, 나머지 황의 화합물은 이온성 화합물이기 때문에 이러한 물질을 잘 용해시키기 위해서는 극성이 약한 비양자성 용매와 극성이 강한 비양자성 용매의 혼합 용매를 사용하여야만 한다.

- 또한, 전해액은 고온 특성 및 저온 특성이 우수해야 하기 때문에 어는점이 낮아야하고, 끓는점이 높아야 할 뿐 아니라, 리튬염에 대한 용해도가 우수하고 이온 전도성이우수해야 한다.
- '31' 일반적으로 상기의 조건을 만족할 수 있는 단일 용매는 거의 찾기 어렵기 때문에 보통 2 내지 4종의 혼합 용매를 사용한다.
- <32> 본 발명에서는 3종의 혼합 용매인 3성분계를 사용한다.
- <33> 제 1성분으로는 비극성의 황(S₈)을 잘 녹일 수 있는 벤젠 및 그 유도체를 사용하는 것이 바람직하다.
- 지 2성분으로는 이온성 화합물인 리튬 설파이드(Li₂S), 리튬 폴리설파이드(Li₂S_n, n= 2, 4, 6, 8)를 잘 녹이기 위해서는 유전 상수가 큰 용매를 사용한다. 본 발명에서는 유전 상수가 85.1인 에틸렌카보네이트, 69인 프로필렌카보네이트 및 43.3인 설포란 (sulfolane)을 사용하는 것이 바람직하다.
- 한편, 제 3성분으로는 제 2성분인 에틸렌카보네이트, 프로필렌카보네이트 및 설포란(sulfolane)의 점성도가 크기 때문에 이를 완화시켜 주기 위해서 디메틸카보네이트 (DMC), 에틸렌메틸렌카보네이트(EMC), 디에틸카보네이트(DEC), 메틸프로필카보네이트 (MPC), 메틸프로피오네이트(MP), 에틸프로피오네이트(EP), 메틸아세테이트(MA), 에틸아세테이트(EA), 프로필아세테이트(PA), 디메틸에스테르(DME), 1,3-디옥소란(DOXL), 테트

라하이드로퓨란(THF), 2-메틸테트라하이드로퓨란(2-MeTHF)으로 이루어진 군에서 선택되는 용매를 사용하는 것이 바람직하다.

- 《36》 상기 제 1성분은 5 내지 30 %을 사용하는 것이 바람직하다. 제 1성분이 5 % 이하를 사용하면, 황에 대한 용해도가 뛰어난 반면, 리튬(폴리)설파이드(Li₂S_n; n = 8,6,4,2,1)에 대한 용해도는 뛰어나지 못하기 때문에 바람직하지 않고, 충방전이 진행되면서 나타나는 화학종은 6가지가 되는데 그중 황은 극성이 작고, 5 개종의 리튬폴리설파이드는 극성이 큰 이온화합물이므로 황에 대한 용해도가 뛰어안 1성분은 2성분에 비해서적은 양을 사용하는 것이 전체적인 용해도면에서 충방전에 바람직하기 때문에 30 % 정도 이내로 사용하는 것이 바람직하다.
- <37> 상기 제 2성분은 20 내지 50 %를 사용하는 것이 바람직하며, 제 3성분은 20 내지 50 %로 사용하는 것이 바람직하다.
- 상기 2성분과 3성분은 점성도와 유전율 상수의 관계로 설명될 수 있다. 상기 2성분은 극성이 커서 전해액으로는 아주 좋은 조건이 되지만 점도가 크다는 약점이 있고 상기 3성분은 극성은 그다지 크지 않지만 점도가 낮다는 장점이 있다. 따라서 2성분을 과도하게 사용해도 곤란하고 3성분을 과도하게 사용해도 곤란하다.
- 2성분과 3성분은 비율은 보통 1:1정도가 적당하다. 이는 실험적인 결론으로써, 예를 들어서 2성분을 50 % 이상 사용하면 방전량이 급감하는 현상이 발생한다. 특히 2성분 중에서 PC를 제외한 나머지 성분은 상온에서 고체이므로 점성도가 크기 때문이다. 특히 2성분은 세퍼레이터에 함침이 안되는 경향이 있다. 이 또한 2성분이 50 % 이상 사용되면 방전량이 감소하는 이유중의 하나가 될 수도 있다.

상기 음극 활물질로는 금속 전극, 리튬 금속의 합금 또는 리튬/비활성 황의 복합 전극을 사용하는 것이 바람직하며, 양극 활물질로는 단체황, 고체 Li₂S_n (n≥1), Li₂S_n (n≥1)이 용해된 캐솔라이트(catholyte), 유기 황, 및 탄소-황 복합 폴리머((C₂S_x)_n:
 x= 2.5 내지 50, n≥2)로 이루어진 군에서 선택된 1종 이상의 활물질을 사용하는 것이 바람직하다.

이하, 본 발명의 바람직한 실시예를 제시한다. 다만, 하기하는 실시예는 본 발명의 이해를 돕기 위하여 제시되는 것일 뿐 본 발명이 하기하는 실시예에 한정되는 것은 아니다.

<42> 전지의 제조 (실시예 및 비교예의 내용 확인 요망)

<43> 실시예 1 내지 4 및 비교예 1

60 %의 단체 황, 20 %의 슈퍼-P, 20 %의 폴리(비닐 아세테이트)를 아세토니트릴 용 매에서 혼합하여 슬러리가 완전히 섞일 때까지 섞은후 이 슬러리를 카본이 코팅된 Al 전류 집전체에 코팅하였다. 코팅된 양극판을 조립하기 전에 12시간 이상 진공 하에서 건조하였다. 양극판과 진공 건조된 세퍼레이터를 글로브 박스로 옮겼다. 양극판 위에 1 M 농도의 LiSO₃CF₃를 염으로 사용하는 여러 가지 종류의 전해액을 적당량 떨어뜨렸다. 세퍼레이터를 그 위에 놓았다. 하기 표 1의 조성과 같은 실시예 1 내지 4, 비교예 1, 2의 참가제가 참가된 전해액과 참가제가 참가되지 않은 전해액을 조금 더 가하였다. 그위에 리튬 전극을 얹었다. 조립된 전지를 상은에서 24시간 숙성한 후 컷-오프 전압이 1.5 내지 2.8 V의 조건으로 0.1 C 1회 충방전, 0.2 C 3회 충방전, 0.5 C 5회 충방전, 1.0 C 100회 충방전을 실시하였다. 본 실시예 및 비교예에서 사용된 전해액의 조성과

충방전 실시 결과를 표 1에 나타내었다.

<45> <u>丑 1</u>

-1C>							
<46>		수명특성(100회)/초기 %	초기 방전 용량 mAh/g	비고			
	1,3-디옥소란/디그라임 /설포란/디메톡시에탄 (50/20/10/20), VC(2 중량%)	55	568	실시예 1			
	2-MeTHF/EC/DMC(20/40/ 40), VC(2 중량%)	60	632	실시예 2			
	2-MeTHF/EC/DMC(20/40/ 40), ES(2 중량%)	59	640	실시예 3			
	2-MeTHF/EC/DMC(20/40/ 40), BC(2 중량%)	52	625	실시예 4			
	1,3-디옥소란/디그라임 /설포란/디메톡시에탄 (50/20/10/20)	44	571	비교예 1			
į	2-MeTHF/EC/DMC(20/40/ 40)	49	635	비교예 2			

- 47> 실시예 1과 비교예 1을 실시예 2 내지 4와 비교예 2를 비교하면 초기방전용량은 첨가제로 인한 증가는 나타나지 않았다. 이는 첨가제가 SEI(Solid Electrolyte Interface) 형성으로 인한 수명 증대의 효과만 있다는 것을 알 수 있고, 용량을 증대하기 위해서는 전해액의 조성에 영향을 받는다는 것을 알 수 있다.
- 리튬 설퍼 2차 전지의 수명은 첨가제를 넣을 경우 44 %에서 55 %로 11 % 정도 증가하였고(실시예 1과 비교예 1 비교), 비교예 2와 실시예 2 내지 4를 비교하면 49 %에서 52 내지 60 %로 첨가제의 종류에 따라 작게는 3 %, 크게는 11 %의 수명증가를 보여주었다.
- <49> 이는 실시예 1 내지 4의 전해액 첨가제가 충전시 리튬 표면에 SEI를 형성하여 덴드

라이트의 형성을 억제하고, 리튬 표면에서의 부반응을 억제하였기 때문으로 판단된다.

<50> 리튬-이온 전지에서도 효과가 입증된 VC를 비롯해서 ES(Ethylene Sulfide)도 수명 향상에 큰 효과가 있음을 알 수 있었다.

【발명의 효과】

<51> 본 발명의 첨가제가 첨가된 전해액을 사용하여 제조된 리튬 설퍼 2차 전지는 초기 방전 용량 및 수명특성이 향상되었음을 알 수 있다.

【특허청구범위】

【청구항 1】

황화합물을 양극으로 사용하고, 리튬금속 또는 리튬금속의 합금을 음극으로 사용하는 비수용성 리튬 설퍼 2차 전지의 전해액에 있어서,

상기 전해액이 제 1성분으로 벤젠 및 그 유도체를 사용하고, 제 2성분으로 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 설포란(SL), 및 감마부티로락톤(GBL)로 이루어진 군에서 선택되는 물질을 사용하고, 제 3성분으로 디메틸렌카보네이트(DMC), 에틸렌메틸렌카보네이트(EMC), 디에틸카보네이트(DEC), 메틸프로필카보네이트(MPC), 메틸프로피오네이트(MPC), 메틸프로피오네이트(MPC), 메틸프로피오네이트(MPC), 메틸아세테이트(MA), 에틸아세테이트(EA), 프로필아세테이트(PA), 디메틸에스테르(DME), 1,3-디옥소란, 테트라하이드로퓨란(THF), 및 2-메틸테트라하이드로퓨란(2-MeTHF)으로 이루어진 군에서 선택되는 물질을 사용하는 3 성분계 전해액, 및 첨가제를 포함하는 것을 특징으로 하는 리튬 설퍼 2차 전지용 전해액

【청구항 2】

제 1항에 있어서,

상기 제 1성분이 5 내지 30 %이고, 제 2성분은 20 내지 50 %이며, 제 3성분은 20 내지 50 %의 비율로 혼합된 전해액.

【청구항 3】

제 1항에 있어서,

상기 전해염이 리튬헥사플루오르포스페이트(lithium hexafluorophosphate, LiPF₆),

리튬테트라플루오르보레이트(LiBF₄), 리튬헥사플루오르아르센네이트(LiAsF₆), 리튬퍼클로레이트(LiClO₄), 리튬 트리플로오로메탄술포닐 이미드(LiN(CF₃SO₂)₂) 및 리튬트리플루오르설포네이트(CF₃SO₃Li)로 이루어진 군에서 선택되는 1종 이상의 물질인 전해액.

【청구항 4】

제 3항에 있어서,

상기 전해염의 농도가 0.5 내지 2.0 M인 전해액.

【청구항 5】

제 1항에 있어서,

상기 음극 활물질이 금속 전극, 리튬 금속의 합금 또는 리튬/비활성 황의 복합 전 극을 사용하는 것인 전해액.

【청구항 6】

제 1항에 있어서,

상기 양극 활물질이 단체황, 고체 Li₂S_n (n≥1), Li₂S_n (n≥1)이 용해된 캐솔라이 트(catholyte), 유기 황, 및 탄소-황 복합 폴리머((C₂S_x)_n : x= 2.5 내지 50, n≥2)로 이루어진 군에서 선택된 1종 이상의 활물질을 사용하는 것인 전해액.

【청구항 7】

제 1항에 있어서,

상기 첨가제가 비닐렌 카보네이트(Vinylene Carbonate), 에틸렌 설파이트(Ethylene Sulfite) 및 비스무스 카보네이트(Bismuth Carbonate)로 이루어진 군에서 선택된 것인 전해액.

【청구항 8】

제 7항에 있어서,

상기 첨가제의 양이 전해액 전체에 대하여 0.2 내지 10 %인 전해액.

【청구항 9】

제 1항의 전해액을 사용하여 제조된 것을 특징으로 하는 리튬 설퍼 2차 전지.