AUTOEVALUACIÓN 7.1

Falso-verdadero.

- I) Si T es una transformación lineal, entonces T(3x) = 3Tx.
- II) Si T es una transformación lineal, entonces T(x + y) = Tx + Ty.
- III) Si T es una transformación lineal, entonces T(xy) = TxTy.
- IV) Si A es una matriz de 4×5 , entonces $T\mathbf{x} = A\mathbf{x}$ es una transformación lineal de \mathbb{R}^4 en \mathbb{R}^5 .
 - V) Si A es una matriz de 4×5 , entonces Tx = Ax es una transformación lineal de \mathbb{R}^5 en \mathbb{R}^4 .

Respuestas a la autoevaluación

I) V

II) V

III) F

IV) F

V) V

PROBLEMAS 7.1

De los problemas 1 al 39 determine si la transformación de V en W dada es lineal.

1.
$$T: \mathbb{R} \to \mathbb{R}; T(x) = x^2$$

2.
$$T: \mathbb{R}^2 \to \mathbb{R}^2; T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

3.
$$T: \mathbb{R} \to \mathbb{R}^2$$
; $T(x) = \begin{pmatrix} x \\ 2x \end{pmatrix}$

4.
$$T: \mathbb{R}^2 \to \mathbb{R}^1$$
; $T\begin{pmatrix} x \\ y \end{pmatrix} = x + 1$

5.
$$T: \mathbb{R}^3 \to \mathbb{R}^2; T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

6.
$$T: \mathbb{R}^3 \to \mathbb{R}^2; T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ y \end{pmatrix}$$

7.
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
; $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y+z \end{pmatrix}$

8.
$$T: \mathbb{R}^3 \to \mathbb{R}; T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2x + y + 3z$$

9.
$$T: \mathbb{R}^2 \to \mathbb{R}^2; T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x^2 \\ y^2 \end{pmatrix}$$

10.
$$T: \mathbb{R}^2 \to \mathbb{R}^2; T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ \frac{x}{y} \end{pmatrix}$$

11.
$$T: \mathbb{R}^2 \to \mathbb{R}^2; T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}$$

12.
$$T: \mathbb{R}^2 \to \mathbb{R}^4$$
; $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ x+y \\ y \\ x-y \end{pmatrix}$

13.
$$T: \mathbb{R}^2 \to \mathbb{R}; T\begin{pmatrix} x \\ y \end{pmatrix} = xy$$

14.
$$T: \mathbb{R}^n \to \mathbb{R}; T\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 + x_2 + \dots + x_n$$