Caminho de Dados com Pipeline

Yuri Kaszubowski Lopes

UDESC

Revisão: Pipeline

- Dividimos nosso processador MIPS em 5 estágios:

 - IF: Instruction fetch (busca de instrução)
 ID: Instruction decode and register read (decodificação e leitura de registradores)

 - EX: Execution or address calculation (execução)
 MEM: Data memory access(acesso a memória)
 WB: Write back (escrita dos resultados)
- Nunca voltamos no tempo
- No geral, nossos estágios vão da esquerda para a direita, exceto WB, onde o circuito retorna o resultado para os registradores

 - não viola os princípios do nosso pipeline
 Basta visualizar que apesar de alguns componentes desses estágios estarem antes no pipeline, eles são utilizados em estágios posteriores

Anotações

Anotações

Anotações

Revisão: Pipeline

Problemas na fronteira

 Considere o seguinte programa:

1 lw \$2, 100(\$0) 2 lw \$3, 200(\$0) 3 lw \$4, 300(\$0)

Anotações		

Problemas na fronteira

 Considere o seguinte programa:

```
11w $2, 100 ($0) # No estágio IF
21w $3, 200 ($0)
31w $4, 300 ($0)
```


Anotações

Problemas na fronteira

 Considere o seguinte programa:

1 1w	\$2,	100 (\$0)	#	No	estágio	ID
2 1w	\$3,	200 (\$0)	#	No	estágio	IF
3 lw	\$4,	300 (\$0)				

- PC (atualizado) é enviado no primeiro estágio, de onde vai sair a segunda instrução
- Primeira instrução é enviado para o estágio ID, para ler os registradores

Anotações			
-			

Problemas na fronteira

 Considere o seguinte programa:

```
1 lw $2, 100($8)
2 lw $3, 200($8)
3 lw $4, 300($8)
                               # No estágio ID
                               # No estágio IF
```

Problema: no estágio ID, desejamos a instrução que havia sido carregada no estágio IF no ciclo de clock anterior (1w \$2, 100 (\$8)), mas agora só temos o sinal da instrução atual em IF

Problemas na fronteira

- Problema: no estágio ID, desejamos a instrução que havia sido carregada no estágio IF no ciclo de clock anterior (1w \$2, 100 (\$8)), mas agora só temos o sinal da instrução atual em IF
- O problema se repete nos demais estágios, conforme as instruções "caminham" em nosso fluxo
- Como resolver?
 - No próximo ciclo de clock, o próximo estágio espera continuar o trabalho do estágio anterior
 - O trabalho feito no ciclo de clock anterior necessita ser salvo
 - Utilizamos registradores de pipeline
 - Salvamos toda a informação que é pertinente para o próximo estágio do pipeline no próximo ciclo de clock
 Continuando com a analogia da lavanderia, teríamos cestos de roupas para
 - armazenar a roupa antes de passar para o próximo estágio

Anotações

Registradores de Pipeline (Em azul)

- Os registradores que separam o estágio i do estágio j, são chamados registradores i/j, e.g., IF/ID
- Os registradores IF/ID precisam armazenar pelo menos 64 bits (32 do PC+4, e 32 da instrução)
- Considerando o estado atual do circuito, quantos bits possuem os demais registradores de pipeline?
 - ID/EX: 128 bits EX/MEM: 97 bits

IVI LIVI	MAD: 6	54 DIIS	5	

		_

Exemplo lw

- Fluxo de uma instrução 1w no pipeline
- Considere que:

 - Quando a área sombreada dos registradores é a esquerda, os registradores estão sendo escritos
 Quando a área sombreada dos registradores é a direita, os registradores estão sendo lidos

Anotaçoes	

Anotações

lw no pipeline

lw no pipeline

Anotações

lw no pipeline

Anotações

Caminho de Dados com Pipeline

10/00

lw no pipeline

Anotações

lw no pipeline

Anotações

Exemplo sw

- Fluxo de uma instrução sw no pipeline
- Os primeiros estágios do sw são os mesmos do lw

Anotações		

VKI (LIDESC)

Caminho de Dados com Pineline

....

sw no pipeline

Anotações

sw no pipeline

Anotações

sw no pipeline

Anotações			

sw no pipeline

- No estágio WB, a instrução sw não realiza trabalho algum
 Ainda assim não podemos "pular estágios"
 "Adiantar" a execução da instrução que vem logo após o sw não pode ser feito
 - O estágio anterior pode ainda não ter terminado o seu trabalho
 O componente poderá não estar livre

Anotações			

BUG!

- O que é feito no estágio WB?
- Qual o problema com o registrador a ser escrito?
 - Dados de um estágio (uma instrução anterior), endereço de outro estágio (instrução mais "à frente").

Anotações			

BUG!

- Precisamos salvar pelo menos o endereço do registrador de escrita até o estágio WB
- Por enquanto esse valor está se perdendo em nosso pipeline, e estamos escrevendo no registrador endereçado pela instrução que se encontra no estágio ID, e não pela instrução do estágio WB

Anotações			

Correção do BUG

Anotações

YKL (UDESC)

Caminho de Dados com Pipeline

23/30

Anotações

Exercício

Considere as instruções

```
1 lw $10, 20($1)
2 sub $11, $2, $3
3 add $12, $3, $4
4 lw $13, 24($1)
5 add $14, $5, $6
```

Faça um diagrama de múltiplos ciclos de clock para essas instruções (veja o exemplo para o lw). Em cada componente do diagrama, pinte-o de acordo com o exemplo para indicar que a unidade está sendo utilizada naquele estágio

Exercício

Considere as instruções

```
1 lw $10, 20($1)
2 sub $11, $2, $3
3 add $12, $3, $4
4 lw $13, 24($1)
5 add $14, $5, $6
```

Faça um diagrama de múltiplos ciclos de clock para essas instruções (veja o exemplo para o lw). Em cada componente do diagrama, pinte-o de acordo com o exemplo para indicar que a unidade está sendo utilizada naquele estágio

Anotações

Adicionando sinais de controle

- Os sinais de controle são (por enquanto) os mesmos que na máquina de ciclo único

 - O sinal pode ser definido já no estágio ID
 Podemos simplesmente ligá-los em nossa CPU? Problemas?
 Diferentes sinais são utilizados em diferentes estágios do nosso pipeline
 Assim como os dados, devemos salvar os sinais de controle

 - ... também nos registradores de Pipeline

Anotações		

Adicionando sinais de controle

Anotações			

Adicionando sinais de controle

Anotações	

Exercícios

Considere os registradores de pipeline do exercício anterior, agora com os sinais de controle. Qual o tamanho de cada um dos registradores de pipeline (IF/ID, ID/EX, ...)?

Anotações		

YKL (UDESC

Caminho de Dados com Pipeline

28/30

Referências

- D. Patterson; J. Henessy. Organização e Projeto de Computadores: Interface Hardware/Software. 5a Edição. Elsevier Brasil, 2017.
- Andrew S. Tanenbaum. Organização estruturada de computadores.
 5. ed. São Paulo: Pearson, 2007.
- Harris, D. and Harris, S. Digital Design and Computer Architecture. 2a
 ed. 2012
- courses.missouristate.edu/KenVollmar/mars/

Anotações		