GEN 242: Linear Algebra

Chapter 1: Vectors

Solutions Guide

Instructor: Richard Bahin

Full Sail University

Table of Contents

ANSWERS	5
NORM, LENGTH, OR MAGNITUDE OF A VECTOR	5
NORMALIZED VECTORS	
VECTORS DIRECTION	5
CO-LINEAR AND PARALLEL VECTORS	5
BUILDING A VECTOR FROM 2 VERTICES	6
VECTORS ADDITION	6
DOT PRODUCT OF TWO VECTORS	6
ANGLE BETWEEN TWO VECTORS	6
TYPE OF ANGLE BETWEEN TWO VECTORS	7
ORTHOGONAL OR PERPENDICULAR VECTORS	7
VECTOR COMPONENTS	7
VECTOR PROJECTION	7
VECTOR REJECTION (PERPENDICULAR VECTOR OF a to b)	7
CROSS PRODUCT OF TWO VECTORS	7
VECTOR DIFFERENTIATION	8
PARTIAL DIFFERENTIATION OF VECTORS	9
VECTOR INTEGRATION	9
HOMOGENEOUS SYSTEMS OF LINEAR EQUATIONS	10
SYSTEM CONSISTENCY	10
FREE VARIABLES AND LEADING UNKNOWNS (PIVOTS)	10
GAUSSIAN ELIMINATION	11
SUBSPACES	11
LINEAR COMBINATION	11
LINEAR INDEPENDENCE	11
BASIS OF A VECTOR SPACE	12
DIMENSION OF A VECTOR SPACE	12
INNER PRODUCT SPACE	12
SOLUTIONS	14
NORM, LENGTH, OR MAGNITUDE OF A VECTOR	14
PROBLEM 1	
NORMALIZED VECTORS.	
PROBLEM 2	
VECTORS DIRECTION	
PROBLEM 3	
PROBLEM 4	
PROBLEM 5	
CO-LINEAR AND PARALLEL VECTORS	
PROBLEM 6	
BUILDING A VECTOR FROM TWO VERTICES	
PROBLEM 7	

PROBLEM 8	_
VECTORS ADDITION	_
PROBLEM 9	
DOT PRODUCT OF TWO VECTORS	
PROBLEM 10	
Angle Between Two Vectors	
PROBLEM 11	
Type of Angle Between Two Vectors	
PROBLEM 12	
Orthogonal or Perpendicular Vectors	
PROBLEM 13	
VECTOR COMPONENT	26
PROBLEM 14	26
VECTOR PROJECTION	27
PROBLEM 15	
Vector Rejection (Perpendicular Vector of a to b)	28
PROBLEM 16	
Cross Product of Two Vectors	
PROBLEM 17	31
PROBLEM 18	
PROBLEM 19	
VECTOR DIFFERENTIATION	
PROBLEM 20	
Partial Differentiation of Vectors	_
PROBLEM 21	
VECTOR INTEGRATION	
PROBLEM 22	
HOMOGENEOUS SYSTEMS OF LINEAR EQUATIONS	
PROBLEM 23	
System Consistency	
PROBLEM 24	
Free Variables and Leading Unknowns (Pivots)	_
PROBLEM 25	
GAUSSIAN ELIMINATION	
PROBLEM 26	
SUBSPACES	
PROBLEM 27	
LINEAR COMBINATION	
PROBLEM 28	
LINEAR INDEPENDENCE	
PROBLEM 29	
BASIS OF A VECTOR SPACE	
PROBLEM 30	
DIMENSION OF A VECTOR SPACE	
PROBLEM 31	
INNER PRODUCT SPACE	
PROBLEM 32	
PROBLEM 32	/U 71
F KUDI FIVI 3.3	/ .

Chapter 1 – Vectors – Solutions Guide

4

PROBLEM 34	73
PROBLEM 35	74
PROBLEM 36	77
PROPIEM 27	77

Full Sail University July 2019

Answers

Norm, Length, or Magnitude of a Vector

1.a
$$\|\vec{u}\| = \|(1,0,1)\| = \sqrt{2}$$

1.b
$$\|\vec{v}\| = \|(2.1, -2)\| = 3$$

1.c
$$\|\vec{w}\| = \|(3,0,-4)\| = 5$$

1.d
$$\|\vec{s}\| = \|(1, -1, 1)\| = \sqrt{3}$$

1.e
$$\|\vec{m}\| = \left\| \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2} \right) \right\| = 1$$

Normalized Vectors

2.a
$$\hat{u} = \frac{(1,0,1)}{\sqrt{2}} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

2.b
$$\hat{v} = \frac{(2,1,-2)}{3} = (\frac{2}{3},\frac{1}{3},-\frac{2}{3})$$

2.c
$$\widehat{w} = \frac{(3,0,-4)}{5} = (\frac{3}{5},0,-\frac{4}{5})$$

2.d
$$\hat{s} = \frac{(1,-1,1)}{\sqrt{3}} = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

2.e
$$\widehat{m} = \frac{\left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)}{1} = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)$$

Vectors Direction

3.a
$$\hat{u} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$
$$-\hat{u} = \left(-\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)$$

3.b
$$\hat{v} = \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$$
 $-\hat{v} = \left(-\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}\right)$

3.c
$$\widehat{w} = \left(\frac{3}{5}, 0, -\frac{4}{5}\right)$$
$$-\widehat{w} = \left(-\frac{3}{5}, 0, \frac{4}{5}\right)$$

3.d
$$\hat{s} = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\ -\hat{s} = \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$$

3.e
$$\widehat{m} = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)$$
$$-\widehat{m} = \left(-\frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2}\right)$$

4.
$$||\vec{v}|| = ||(\sqrt{3}, 0, 1)|| = 2$$

$$\hat{v} = \frac{(\sqrt{3}, 0, 1)}{2} = (\frac{\sqrt{3}}{2}, 0, \frac{1}{2})$$

5.
$$||\vec{v}|| = ||(-1,0,1)|| = \sqrt{2}$$
$$\hat{v} = \frac{(-1,0,1)}{\sqrt{2}} = \left(-\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$$

Co-linear and Parallel Vectors

6.a
$$(3,6,0) = 3(1,2,0)$$

 $\vec{q} = 3\vec{p} \rightarrow \vec{q} = k\vec{p}, k \in \mathbb{R} \rightarrow \vec{p} \parallel \vec{q}$

6.b
$$(8,0,-20) = 4(2,0,-5)$$

 $\vec{q} = 4\vec{p} \rightarrow \vec{q} = k\vec{p}, k \in \mathbb{R} \rightarrow \vec{p} \parallel \vec{q}$

6.c
$$(12, -30, 18) = -6(-2, 5, -3)$$
$$\vec{q} = -6\vec{p} \rightarrow \vec{q} = k\vec{p}, k \in \mathbb{R} \rightarrow \vec{p} \parallel \vec{q}$$

6.d
$$(6,9,15) = 3(2,3,5)$$

 $\vec{p} = 3\vec{q} \rightarrow \vec{p} = k\vec{q}, k \in \mathbb{R} \rightarrow \vec{p} \parallel \vec{q}$

Building a Vector From 2 Vertices

7.a
$$\overrightarrow{AB} = (1 - 2, 1 - 1, 1 - 0) = (-1, 0, 1)$$

 $\|\overrightarrow{AB}\| = \sqrt{2}$

7.b
$$\overrightarrow{AB} = (1 - 3,0 - 0,1 - 4) = (-2,0,-3)$$

 $\|\overrightarrow{AB}\| = \sqrt{13}$

7.c
$$\overrightarrow{AB} = (1 - 1, 1 - 0, 0 - 0) = (0, 1, 0)$$

 $\|\overrightarrow{AB}\| = 1$

8.
$$\|\overline{p_1}\overline{p_2}\| = \sqrt{(1-2)^2 + (5-5)^2 + (1-4)^2} = \sqrt{10}$$

Vectors Addition

9.a
$$-2\vec{A} + 3\vec{B} = -2(2, -5, 1) + 3(1, -2, -1) = (-1, 4, -5)$$

9.b
$$-\vec{A} + \vec{B} = -(2, -5, 1) + (1, -2, -1) = (-1, 3, -2)$$

9.c
$$-\vec{A} + 3\vec{B} + \vec{C} = -(2, -5, 1) + 3(1, -2, 1) + (1, 1, 0) = (2, 0, -4)$$

9.d
$$-\vec{B} - \vec{C} + \vec{A} = -(1, -2, -1) - (1, 1, 0) + (2, -5, 1) = (0, -4, 2)$$

9.e
$$-\vec{A} + \vec{B} + 2\vec{C} = -(2, -5, 1) + (1, -2, 1) + 2(1, 1, 0) = (1, 5, -2)$$

Dot Product of Two Vectors

10.a
$$(2,-1,3)\cdot(0,1,3)=8$$
 10.c $(0,-1,3)\cdot(0,3,1)=0$

10.b
$$(1,-2,0) \cdot (-2,4,0) = -10$$
 10.d $(3,-1,4) \cdot (1,1,2) = 10$

Angle Between Two Vectors

11.a
$$\theta_{(2,-1,3)}^{(0,1,3)} \approx 47.5^{\circ}$$
 11.c $\theta_{(0,-1,3)}^{(0,3,1)} = 90^{\circ}$

11.b
$$\theta_{(1,-2,0)}^{(-2,4,0)} = 180^{\circ}$$
 11.d $\theta_{(3,-1,4)}^{(1,1,2)} \approx 36.8^{\circ}$

Type of Angle Between Two Vectors

12.a
$$(2,-1,3)\cdot(0,1,3)=8\to \vec{A}\cdot\vec{B}>0\to \text{acute}$$

12.b
$$(1,-2,0)\cdot(-2,4,0) = -10 \rightarrow \vec{A}\cdot\vec{B} < 0 \rightarrow \text{obtuse}$$

12.c
$$(0,-1,3) \cdot (0,3,1) = 0 \rightarrow \text{right}$$

12.d
$$(1,-1,3)\cdot(1,3,1)=10 \to \vec{A}\cdot\vec{B}>0 \to \text{acute}$$

Orthogonal or Perpendicular Vectors

13.a
$$(2,-1,3)\cdot(0,3,1)=0+(-3)+3=0 \rightarrow \vec{a}\perp\vec{b}$$

13.b
$$(-1, -2, 0) \cdot (-2, 1, 0) = 2 + (-2) + 0 = 0 \rightarrow \vec{a} \perp \vec{b}$$

13.c
$$(0,-1,3) \cdot (0,3,1) = 0 + (-3) + 3 = 0 \rightarrow \vec{a} \perp \vec{b}$$

13.d
$$(3,-1,1)\cdot(1,1,-2)=3+(-1)+(-2)=0 \rightarrow \vec{a}\perp\vec{b}$$

Vector Components

14.a
$$Comp_{(1,1,1)}^{(1,2,1)} = \frac{4}{\sqrt{3}}$$
 14.c $Comp_{\hat{i}-\hat{k}}^{5\hat{i}+\hat{j}} = \frac{5}{\sqrt{2}}$

14.b
$$Comp_{\hat{i}+2\hat{j}-\hat{k}}^{3\hat{i}-2\hat{j}+\hat{k}} = \frac{-2}{\sqrt{6}}$$
 14.d $Comp_{(-2,3,1)}^{(1,0,2)} = 0$

Vector Projection

15.a
$$Proj_{(1,1,1)}^{(1,2,1)} = \left(\frac{4}{3}, \frac{4}{3}, \frac{4}{3}\right)$$
 15.c $Proj_{\hat{i}-\hat{k}}^{5\hat{i}+\hat{j}} = \left(\frac{5}{2}, 0, -\frac{5}{2}\right)$

15.b
$$Proj_{\hat{i}+2\hat{j}-\hat{k}}^{3\hat{i}-2\hat{j}+\hat{k}} = \left(-\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}\right)$$
 15.d $Proj_{(-2,3,1)}^{(1,0,2)} = (0,0,0)$

Vector Rejection (Perpendicular Vector of \vec{a} to \vec{b})

16.a
$$\vec{a}_{\perp(0,1,3)}^{(2,-1,3)} = \left(2, -\frac{9}{5}, \frac{3}{5}\right)$$
 16.c $\vec{a}_{\perp(0,3,1)}^{(0,-1,3)} = (0,-1,3)$

16.b
$$\vec{a}_{\perp(-2.4.0)}^{(1,-2,0)} = (0,0,0) = \vec{0}$$

Cross Product of two Vectors

17.a
$$(2,-1,3) \times (0,1,3) = (-6,-6,2)$$
 17.c $(0,-1,3) \times (0,3,1) = (-10,0,0)$

17.b
$$(1,-2,0) \times (-2,4,0) = (0,0,0)$$
 17.d $(3,-1,4) \times (1,1,2) = (-6,-2,4)$

18.a
$$(2\hat{\imath}) \times \hat{\jmath} = 2\hat{k}$$

18.b
$$(\hat{\imath} \times \hat{k}) \times (\hat{\imath} \times \hat{\jmath}) = -\hat{\imath}$$

18.c
$$(\hat{\imath} \times \hat{\imath}) \cdot (\hat{\imath} \times \hat{\jmath}) = 0$$

18.d
$$\hat{k} \times (2\hat{\imath} - \hat{\jmath}) = \hat{\imath} + 2\hat{\jmath}$$

18.e
$$(\hat{i} + \hat{j}) \times (\hat{i} + 5\hat{k}) = 5\hat{i} - 5\hat{j} - \hat{k}$$

18.f
$$\hat{\imath} \times (\hat{\jmath} \times \hat{k}) = \vec{0}$$

18.g
$$\hat{k} \cdot (\hat{j} \times \hat{k}) = 0$$

18.h
$$(\hat{\imath} \times \hat{k}) \times (\hat{\jmath} \times \hat{\imath}) = \hat{\imath}$$

19.a
$$\vec{C} = (2,1,1) \times (-1,2,2) = (0,-5,5)$$

19.b
$$\vec{C} = (1,0,1) \times (2,3,5) = (-3,-3,3)$$

19.c
$$\vec{C} = (1,0,0) \times (0,1,0) = (0,0,1)$$

19.d
$$\vec{C} = (3, -1, 1) \times (1, 1, -2) = (1, 7, 4)$$

Vector Differentiation

20.a
$$\frac{d}{dt} [3t^2\hat{i} + t^3\hat{j} - (t^2 - t^3)\hat{k}] = 6t\hat{i} + 3t^2\hat{j} - (2t - 3t^2)\hat{k}$$

20.b
$$\frac{d}{dt}(3t^2\hat{i} + 4t^3\hat{j} - 6t\hat{k}) = 6t\hat{i} + 12t^2\hat{j} - 6\hat{k}$$

20.c
$$\frac{d}{dt}[(t^2,\cos(t),7)] = (2t,-\sin(t),0)$$

20.d
$$\frac{d}{dt}[(t,4,-6t)] = (1,0,-6)$$

Partial Differentiation of Vectors

$$\frac{\partial \vec{u}}{\partial x} = (1,1,z^2)$$

$$\frac{\partial \vec{u}}{\partial y} = (2y,0,0)$$

$$21.a \quad \vec{u} = (x+y^2,z+x,xz^2) \rightarrow \frac{\partial \vec{u}}{\partial z} = (0,1,2xz)$$

$$\frac{\partial^2 \vec{u}}{\partial x \partial y} = (0,0,0)$$

$$\frac{\partial \vec{u}}{\partial x} = (3x^2,z,0)$$

$$\frac{\partial \vec{u}}{\partial y} = (2y,0,1)$$

$$\frac{\partial \vec{u}}{\partial z} = (0,x,2z)$$

$$\frac{\partial^2 \vec{u}}{\partial z} = (0,0,0)$$

$$\frac{\partial^2 \vec{u}}{\partial z \partial y} = (0,0,0)$$

$$\frac{\partial \vec{u}}{\partial z} = (2x,0,z^2)$$

$$\frac{\partial \vec{u}}{\partial z} = (2y,0,0)$$

$$\frac{\partial \vec{u}}{\partial z} = (2y,0,0)$$

$$\frac{\partial \vec{u}}{\partial z} = (2z,1,2xz)$$

$$\frac{\partial^2 \vec{u}}{\partial z} = (0,0,0)$$

Vector Integration

22.a
$$\int_{1}^{2} (3t^{2}\hat{\imath} + 4t^{3}\hat{\jmath} - 6t\hat{k})dt = 7\hat{\imath} + 15\hat{\jmath} - 9\hat{k}$$
22.b
$$\int_{1}^{2} (t^{2}\hat{\imath} + 4t^{3}\hat{\jmath} - \hat{k})dt = 2\hat{\imath} + 36\hat{\jmath} - \hat{k}$$
22.c
$$\int_{1}^{2} (1,\cos(t),\sin(t))dt \approx (1,.068,.956)$$
22.d
$$\int_{1}^{2} (2t\hat{\imath} + \hat{k}) = 2\hat{\imath} + \hat{k}$$

Homogeneous Systems of Linear Equations

23.a
$$\begin{cases} x+y-z=0\\ 2x+3y+z=0 \text{ is homogeneous.}\\ x-y+2z=0 \end{cases}$$

23.b
$$\begin{cases} x + 3y - z = 5 \\ x + 3y + 8z = 0 \text{ is not homogeneous.} \\ x - y + 2z = 0 \end{cases}$$

23.b
$$\begin{cases} x + 3y - z = 5 \\ x + 3y + 8z = 0 \text{ is not homogeneous.} \\ x - y + 2z = 0 \end{cases}$$
23.c
$$\begin{cases} x + y - z = 1 \\ 3y + z = 0 \text{ is not homogeneous.} \\ z = 0 \end{cases}$$

System Consistency

24.a
$$\begin{cases} x+y-z=1\\ 2x+3y+z=6 \text{ is consistent.}\\ x-y+2z=2 \end{cases}$$

24.b
$$\begin{cases} x + 3y - z = 5 \\ x + 3y + 8z = 0 \text{ is consistent.} \\ 0z = 0 \end{cases}$$
24.c
$$\begin{cases} x + y - z = 1 \\ 3y + z = 0 \text{ is not consistent.} \\ 0z = 4 \end{cases}$$

24.c
$$\begin{cases} x + y - z = 1 \\ 3y + z = 0 \text{ is not consistent.} \\ 0z = 4 \end{cases}$$

Free Variables and Leading Unknowns (Pivots)

25.a
$$\begin{cases} x+y-z=1\\ 3y+z=0 \end{cases}$$
 z is a free variable. x and y are the leading unknowns.

$$\begin{cases} x+3y-z+s-2t=5\\ 2y+8z+2s+5=4\\ s+2t=1 \end{cases}$$
 z and t are free variables. x and y and s are the leading unknowns.

25.c
$$x + y - z = 1$$
 y and z are free variables. x is the only leading unknown.

Gaussian Elimination

26.a
$$\begin{cases} x + 2y = 4 \\ 2x + y = 5 \end{cases} \to \begin{cases} x = 2 \\ y = 1 \end{cases}$$

26.b
$$\begin{cases} x - 3y = -2 \\ 5x + y = 6 \end{cases} \to \begin{cases} x = 1 \\ y = 1 \end{cases}$$

26.c
$$\begin{cases} x + 3y = 8 \\ 3x + y = 16 \end{cases} \rightarrow \begin{cases} x = 5 \\ y = 1 \end{cases}$$

26.d
$$\begin{cases} x + y - z = 1 \\ 2x + 3y + z = 6 \\ x - y + 2z = 2 \end{cases} \begin{cases} x = 1 \\ y = 1 \\ z = 1 \end{cases}$$

26.e
$$\begin{cases} x + 3y - z = 7 \\ 2x + 3y + z = 8 \\ 3x - y + 2z = 1 \end{cases} \begin{cases} x = 1 \\ y = 2 \\ z = 0 \end{cases}$$

26.f
$$\begin{cases} x + y - z = 0 \\ 5x - 3y + z = 2 \\ 3x - 2y + z = 2 \end{cases} \begin{cases} x = 1 \\ y = 2 \\ z = 3 \end{cases}$$

Subspaces

- 27.a $\{(3x, 5y) : x \in \mathbb{R}, y \in \mathbb{R}\}$ is a subspace of \mathbb{R}^2 .
- 27.b $\{(x, y + 1) : x \in \mathbb{R}, y \in \mathbb{R}\}$ is a subspace of \mathbb{R}^2 .
- 27.c $\{10x : x \in \mathbb{R}\}$ is *not* a subspace of \mathbb{R}^2 .

Linear Combination

- 28.a (0,2) is a linear combination of $\{(1,3),(2,4)\}$.
- 28.b (3,0) is a linear combination of $\{(1,0),(0,2)\}$.
- 28.c (5,2) is a linear combination of $\{(1,0),(0,1)\}$.
- 28.d (1,2,0) is a linear combination of $\{(1,0,0),(0,1,0)\}$.

Linear Independence

- 29.a $\{(1,3),(2,3)\}$ is linearly independent.
- 29.b $\{(6,4), (12,8)\}$ is linearly dependent.
- 29.c $\{(1,5), (3,4)\}$ is linearly independent.
- 29.d $\{(1,1,0), (1,2,1), (1,1,1)\}$ is linearly independent.
- 29.e $\{(1,1,1),(1,2,0),(0,-1,1)\}$ is linearly dependent.
- 29.f $\{(1,2,3), (3,2,9), (5,2,-1)\}$ is linearly independent.
- 29.g $\{(1,2,3),(3,2,1),(0,4,8)\}$ is linearly dependent.

Basis of a Vector Space

30.a
$$\{(1,3),(2,3)\}$$
 is a basis for \mathbb{R}^2 .

30.b
$$\{(6,4), (12,8)\}$$
 is not a basis for \mathbb{R}^2 .

30.c
$$\{(1,5), (3,4)\}$$
 is a basis for \mathbb{R}^2 .

30.d
$$\{(1,1,0), (1,2,1), (1,1,1)\}$$
 is a basis for \mathbb{R}^3 .

30.e
$$\{(1,1,1),(1,2,0),(0,-1,1)\}$$
 is not a basis for \mathbb{R}^3 .

30.f
$$\{(1,2,3), (3,2,9), (5,2,-1)\}$$
 is a basis for \mathbb{R}^3 .

30.g
$$\{(1,2,3),(3,2,1),(0,4,8)\}$$
 is not a basis for \mathbb{R}^3 .

Dimension of a Vector Space

31.a
$$dim(\{(1,3),(2,3)\}) = 2$$

31.b
$$dim(\{(1,1,0),(1,2,1),(1,1,1)\}) = 3$$

31.c
$$dim(\{1, x, x^2, x^3, x^4\}) = 5$$

31.d
$$dim(\{(1,0,0,0),(0,2,0,0),(0,0,1,0),(0,0,0,3)\}) = 4$$

Inner Product Space

32.a
$$\langle \vec{a}, \vec{c} \rangle = \langle (2.1.2), (1, -1.1) \rangle = 3$$

32.b
$$\langle \vec{b}, \vec{c} \rangle = \langle (1,0,-1), (1,-1,1) \rangle = 0$$

32.c
$$\langle 5\vec{a} - 2\vec{b}, \vec{c} \rangle = \langle 5(2,1,2) - 2(1,0,-1), (1,-1,1) \rangle = 15$$

32.d
$$\sqrt{\langle \vec{a}, \vec{a} \rangle} = \sqrt{\langle \{(2,1,2), (2,1,2) \rangle} = 3$$

33.a
$$(5x^2, x^3) = 0$$

33.b
$$||f|| = \sqrt{\int_{-1}^{1} (5x^2)(5x^2) dx} = \sqrt{10}$$

33.c
$$\hat{f} = \frac{5x^2}{\|f\|} = \frac{\sqrt{10}}{2}x^2$$

34.a
$$\langle x, x + 2 \rangle = \frac{4}{3}$$

34.b
$$||f|| = \sqrt{\int_0^1 (x)(x) dx} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \approx .577$$

34.c
$$\hat{f} = \frac{x}{\|f\|} = \sqrt{3} \cdot x$$

35.a
$$\langle f, g \rangle = \int_0^{\pi/2} [\cos(x)] [\sin(x)] dx = -\frac{1}{2}$$

35.b
$$||f|| = \sqrt{\langle \cos(x), \cos(x) \rangle} = \frac{\sqrt{\pi}}{2}$$

35.c
$$\hat{f} = \frac{\cos(x)}{\|f\|} = \frac{2}{\sqrt{\pi}}\cos(x)$$

36.
$$\langle 1 + 2x + x^2 + x^3, 1 + 5x^2 + x^3 \rangle = 7$$

37.
$$\langle 1 + 2x - x^2 + 3x^3, 1 + x - 2x^2 + 4x^3 \rangle = 17$$

Solutions

Norm, Length, or Magnitude of a Vector

Problem 1

Calculate the length (norm) of the following vectors:

1.a
$$\vec{u} = (1,0,1)$$

$$\|\vec{u}\| = \sqrt{u_x^2 + u_y^2 + u_z^2}$$

$$\|\vec{u}\| = \sqrt{(1)^2 + (0)^2 + (1)^2}$$

$$\|\vec{u}\| = \sqrt{2}$$

1.b
$$\vec{v} = (2,1,-2)$$

$$\|\vec{v}\| = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

$$\|\vec{v}\| = \sqrt{(2)^2 + (1)^2 + (-2)^2}$$

$$\|\vec{v}\| = \sqrt{9}$$

$$\|\vec{v}\| = 3$$

1.c
$$\vec{w} = (3,0,-4)$$

$$\|\vec{w}\| = \sqrt{w_x^2 + w_y^2 + w_z^2}$$

$$\|\vec{w}\| = \sqrt{(3)^2 + (0)^2 + (-4)^2}$$

$$\|\vec{w}\| = \sqrt{25}$$

$$\|\vec{w}\| = 5$$

d.
$$\vec{s} = (1, -1, 1)$$

 $\|\vec{s}\| = \sqrt{s_x^2 + s_y^2 + s_z^2}$
 $\|\vec{s}\| = \sqrt{(1)^2 + (1)^2 + (1)^2}$
 $\|\vec{s}\| = \sqrt{3}$

1.e
$$\overrightarrow{m} = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)$$

$$\|\overrightarrow{m}\| = \sqrt{m_x^2 + m_y^2 + m_z^2}$$

$$\|\overrightarrow{m}\| = \sqrt{\left(\frac{\sqrt{2}}{2}\right)^2 + (0)^2 + \left(\frac{\sqrt{2}}{2}\right)^2}$$

$$\|\overrightarrow{m}\| = \sqrt{1}$$

$$\|\overrightarrow{m}\| = 1$$

Normalized Vectors

Problem 2

Normalize the following vectors:

2.a
$$\vec{u} = (1,0,1)$$

$$\hat{u} = \frac{\vec{u}}{\|\vec{u}\|}$$

$$\hat{u} = \frac{(1,0,1)}{\sqrt{2}}$$

$$\hat{u} = \left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$$

2.b
$$\vec{v} = (2,1,-2)$$

$$\hat{v} = \frac{\vec{v}}{\|\vec{v}\|}$$

$$\hat{v} = \frac{(2,1,-2)}{3}$$

$$\hat{v} = \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$$

2.c
$$\overrightarrow{w} = (3,0,-4)$$

$$\widehat{w} = \frac{\overrightarrow{w}}{\|\overrightarrow{w}\|}$$

$$\widehat{w} = \frac{(3,0,-4)}{5}$$

$$\widehat{w} = \left(\frac{3}{5},0,-\frac{4}{5}\right)$$

2.d
$$\vec{s} = (1, -1, 1)$$

$$\hat{s} = \frac{\vec{s}}{\|\vec{s}\|}$$

$$\hat{s} = \frac{(1, -1, 1)}{\sqrt{3}}$$

$$\hat{s} = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

2.e
$$\overrightarrow{m} = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)$$

$$\widehat{m} = \frac{\overrightarrow{m}}{\|\overrightarrow{m}\|}$$

$$\widehat{m} = \frac{\left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)}{1}$$

$$\widehat{m} = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)$$

Vectors Direction

Problem 3

Find the direction and opposite direction of the following vectors:

Vector direction is the same as the vector's normalized form; answers are taken from Problem #2, above.

3.a
$$\vec{u} = (1,0,1)$$

$$\hat{u} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$
$$-\hat{u} = \left(-\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)$$

3.d
$$\vec{s} = (1, -1, 1)$$

$$\hat{s} = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$
$$-\hat{s} = \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$$

3.b
$$\vec{v} = (2,1,-2)$$

$$\hat{v} = \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right) \\ -\hat{v} = \left(-\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}\right)$$

3.e
$$\overrightarrow{m} = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)$$

$$\widehat{m} = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)$$
$$-\widehat{m} = \left(-\frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2}\right)$$

3.c
$$\vec{w} = (3,0,-4)$$

$$\widehat{w} = \left(\frac{3}{5}, 0, -\frac{4}{5}\right)$$
$$-\widehat{w} = \left(-\frac{3}{5}, 0, \frac{4}{5}\right)$$

Problem 4

Find the direction and speed of a car moving with velocity $\vec{v} = (\sqrt{3}, 0.1)$ m/s.

$$\|\vec{v}\| = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

$$\|\vec{v}\| = \sqrt{\left(\sqrt{3}\right)^2 + (0)^2 + (1)^2}$$

$$\|\vec{v}\| = \sqrt{4}$$

$$||\vec{v}|| = 2$$
 m/s (speed)

$$\hat{v} = \frac{\vec{v}}{\|\vec{v}\|}$$

$$\hat{v} = \frac{\left(\sqrt{3}, 0, 1\right)}{2}$$

$$\hat{v} = \left(\frac{\sqrt{3}}{2}, 0, \frac{1}{2}\right)$$
 (direction)

Problem 5

Find the direction and speed of a ball moving with velocity $\vec{v} = (-1,0,1)$ m/s.

$$\begin{split} \|\vec{v}\| &= \sqrt{v_x{}^2 + v_y{}^2 + v_z{}^2} \\ \|\vec{v}\| &= \sqrt{(-1)^2 + (0)^2 + (1)^2} \\ \|\vec{v}\| &= \sqrt{2} \text{ m/s (speed)} \\ \\ \hat{v} &= \frac{(-1,0,1)}{\sqrt{2}} \\ \hat{v} &= \left(-\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right) \end{split} \text{ (direction)}$$

Co-linear and Parallel Vectors

Problem 6

Given the following pairs of vectors, show that each pair is collinear.

6.a
$$\vec{p} = (1,2,0) \text{ and } \vec{q} = (3,6,0)$$
 6.c $\vec{p} = (-2,5,-3) \text{ and } \vec{q} = (12,-30,18)$ $\vec{q} = (3,6,0)$ $\vec{q} = 3(1,2,0)$ $\vec{q} = 3\vec{p}$ $\vec{q} = k\vec{p}$ $\vec{q} = k\vec{p}$ $\vec{p} \parallel \vec{q}$ 6.c $\vec{p} = (-2,5,-3) \text{ and } \vec{q} = (12,-30,18)$ $\vec{q} = (12,-30,18)$ $\vec{q} = -6(-2,5,-3)$ $\vec{q} = -6\vec{p}$ $\vec{q} = k\vec{p}$ $\vec{p} \parallel \vec{q}$

6.b
$$\vec{p} = (2,0,-5) \text{ and } \vec{q} = (8,0,-20)$$
 6.d $\vec{p} = (6,9,15) \text{ and } \vec{q} = (2,3,5)$ $\vec{q} = (8,0,-20)$ $\vec{p} = (6,9,15)$ $\vec{p} = (6,9,15)$ $\vec{p} = 3(2,3,5)$ $\vec{q} = 4\vec{p}$ $\vec{p} = 4\vec{p}$ $\vec{$

Building a Vector From Two Vertices

Problem 7

For each of the following pairs of vertices, find the vector between them and its length:

7.a
$$A = (2,1,0) \text{ and } B = (1,1,1)$$

$$\overrightarrow{AB} = B - A$$

$$\overrightarrow{AB} = (1,1,1) - (2,1,0)$$

$$\overrightarrow{AB} = (1-2,1-1,1-0)$$

$$||\overrightarrow{AB}|| = \sqrt{(-1)^2 + (0)^2 + (1)^2}$$

$$||\overrightarrow{AB}|| = \sqrt{2}$$

7.b
$$A = (3,0,4) \text{ and } B = (1,0,1)$$

$$\overrightarrow{AB} = B - A$$

$$\overrightarrow{AB} = (1,0,1) - (3,0,4)$$

$$\overrightarrow{AB} = (1-3,0-0,1-4)$$

$$||\overrightarrow{AB}|| = \sqrt{(ab)_x^2 + (ab)_y^2 + (ab)_z^2}$$

$$||\overrightarrow{AB}|| = \sqrt{(-2)^2 + (0)^2 + (-3)^2}$$

$$||\overrightarrow{AB}|| = \sqrt{13}$$

7.c
$$A = (1,0,0) \text{ and } B = (1,1,0)$$

$$\overrightarrow{AB} = B - A$$

$$\overrightarrow{AB} = (1,1,0) - (1,0,0)$$

$$\overrightarrow{AB} = (1-1,1-0,0-0)$$

$$||\overrightarrow{AB}|| = \sqrt{(ab)_x^2 + (ab)_y^2 + (ab)_z^2}$$

$$||\overrightarrow{AB}|| = \sqrt{(0)^2 + (1)^2 + (0)^2}$$

$$||\overrightarrow{AB}|| = \sqrt{1}$$

$$||\overrightarrow{AB}|| = 1$$

Problem 8

What is the distance between Ann, at $\vec{p}_1 = (2,5,4)$, and Paul, at $\vec{p}_2 = (1,5,1)$?

$$\overline{p_1 p_2} = p_2 - p_1
\overline{p_1 p_2} = (1,5,1) - (2,5,4)
\overline{p_1 p_2} = (1 - 2,5 - 5,1 - 4)
\overline{p_1 p_2} = (-1,0,-3)
||\overline{p_1 p_2}|| = \sqrt{(p_1 p_2)_x^2 + (p_1 p_2)_z^2 + (p_1 p_2)_z^2}
||\overline{p_1 p_2}|| = \sqrt{(-1)_x^2 + (0)_z^2 + (-3)_z^2}
||\overline{p_1 p_2}|| = \sqrt{10}$$

Vectors Addition

Problem 9

Given the vectors $\vec{a}=(2,-5,1)$, $\vec{b}=(1,-2,-1)$, and $\vec{c}=(1,1,0)$, calculate the following:

9.a
$$-2\vec{a} + 3\vec{b}$$
$$-2\vec{a} + 3\vec{b} = -2(2, -5, 1) + 3(1, -2, -1)$$
$$-2\vec{a} + 3\vec{b} = (-4, 10, -2) + (3, -6, -3)$$
$$-2\vec{a} + 3\vec{b} = (-4 + 3, 10 + (-6), -2 + (-3))$$
$$-2\vec{a} + 3\vec{b} = (-1, 4, -5)$$

9.b
$$-\vec{a} + \vec{b}$$
$$-\vec{a} + \vec{b} = -(2, -5, 1) + (1, -2, -1)$$
$$-\vec{a} + \vec{b} = (-2, 5, -1) + (1, -2, -1)$$
$$-\vec{a} + \vec{b} = (-2 + 1, 5 + (-2), -1 + (-1))$$
$$-\vec{a} + \vec{b} = (-1, 3, -2)$$

9.c
$$-\vec{a} + 3\vec{b} + \vec{c}$$
$$-\vec{a} + 3\vec{b} + \vec{c} = -(2, -5, 1) + 3(1, -2, -1) + (1, 1, 0)$$
$$-\vec{a} + 3\vec{b} + \vec{c} = (-2, 5, -1) + (3, -6, -3) + (1, 1, 0)$$
$$-\vec{a} + 3\vec{b} + \vec{c} = (-2 + 3 + 1, 5 + (-6) + 1, -1 + (-3) + 0)$$
$$-\vec{a} + 3\vec{b} + \vec{c} = (2, 0, -4)$$

9.d
$$-\vec{b} - \vec{c} + \vec{a}$$
$$-\vec{b} - \vec{c} + \vec{a} = -(1, -2, -1) - (1, 1, 0) + (2, -5, 1)$$
$$-\vec{b} - \vec{c} + \vec{a} = (-1, 2, 1) - (1, 1, 0) + (2, -5, 1)$$
$$-\vec{b} - \vec{c} + \vec{a} = (-1 - 1 + 2, 2 - 1 + (-5), 1 - 0 + 1)$$
$$-\vec{b} - \vec{c} + \vec{a} = (0, -4, 2)$$

9.e
$$-\vec{a} + \vec{b} + 2\vec{c}$$
$$-\vec{a} + \vec{b} + 2\vec{c} = -(2, -5, 1) + (1, -2, -1) + 2(1, 1, 0)$$
$$-\vec{a} + \vec{b} + 2c = (-2, 5, -1) + (1, -2, -1) + (2, 2, 0)$$
$$-\vec{a} + \vec{b} + 2c = (-2 + 1 + 2, 5 + (-2) + 2, -1 + (-1) + 0)$$
$$-\vec{a} + \vec{b} + 2\vec{c} = (1, 5, -2)$$

Dot Product of Two Vectors

Problem 10

Calculate the dot product of the following vectors:

10.a
$$\vec{a} = (2, -1, 3)$$
 and $\vec{b} = (0, 1, 3)$
 $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$
 $\vec{a} \cdot \vec{b} = (2)(0) + (-1)(1) + (3)(3)$
 $\vec{a} \cdot \vec{b} = 0 + (-1) + 9$
 $\vec{a} \cdot \vec{b} = 8$
10.c $\vec{a} = (0, -1, 3)$ and $\vec{b} = (0, 3, 1)$
 $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$
 $\vec{a} \cdot \vec{b} = (0)(0) + (-1)(3) + (3)(1)$
 $\vec{a} \cdot \vec{b} = 0 + (-3) + 3$
 $\vec{a} \cdot \vec{b} = 0$

10.b
$$\vec{a} = (1, -2, 0)$$
 and $\vec{b} = (-2, 4, 0)$ 10.d $\vec{a} = (3, -1, 4)$ and $\vec{b} = (1, 1, 2)$ $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$ $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$ $\vec{a} \cdot \vec{b} = (1)(-2) + (-2)(4) + (0)(0)$ $\vec{a} \cdot \vec{b} = (3)(1) + (-1)(1) + (4)(2)$ $\vec{a} \cdot \vec{b} = -2 + (-8) + 0$ $\vec{a} \cdot \vec{b} = 3 + (-1) + 8$ $\vec{a} \cdot \vec{b} = 10$

Angle Between Two Vectors

Problem 11

For the following pairs of vectors, calculate the angle between them:

11.a
$$\vec{a} = (2, -1, 3) \text{ and } \vec{b} = (0, 1, 3)$$

$$\cos(\theta) = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \cdot \|\vec{b}\|}$$

$$\theta = \cos^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \cdot \|\vec{b}\|}\right)$$

$$\theta = \cos^{-1}\left(\frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_z^2 + b_z^2}}\right)$$

$$\theta = \cos^{-1}\left[\frac{(2)(0) + (-1)(1) + (3)(3)}{\sqrt{(2)^2 + (-1)^2 + (3)^2} \cdot \sqrt{(0)^2 + (1)^2 + (3)^2}}\right]$$

$$\theta = \cos^{-1}\left[\frac{0 + (-1) + 9}{\sqrt{4 + 1 + 9} \cdot \sqrt{0 + 1 + 9}}\right]$$

$$\theta = \cos^{-1}\left(\frac{8}{\sqrt{14} \cdot \sqrt{10}}\right)$$

$$\theta = \cos^{-1}\left(\frac{8}{2\sqrt{35}}\right)$$

$$\theta \approx 47.5^{\circ}$$

11.b
$$\vec{a} = (1, -2, 0) \text{ and } \vec{b} = (-2, 4, 0)$$

$$\theta = \cos^{-1} \left(\frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_z^2 + b_z^2}} \right)$$

$$\theta = \cos^{-1} \left[\frac{(1)(-2) + (-2)(4) + (0)(0)}{\sqrt{(1)^2 + (-2)^2 + (0)^2} \cdot \sqrt{(-2)^2 + (4)^2 + (0)^2}} \right]$$

$$\theta = \cos^{-1} \left[\frac{-2 + (-8) + 0}{\sqrt{1 + 4 + 0} \cdot \sqrt{4 + 16 + 0}} \right]$$

$$\theta = \cos^{-1} \left(\frac{-10}{\sqrt{5} \cdot \sqrt{20}} \right)$$

$$\theta = \cos^{-1} \left(-\frac{10}{10} \right)$$

$$\theta = 180^{\circ}$$

11.c
$$\vec{a} = (0, -1, 3)$$
 and $\vec{b} = (0, 3, 1)$

$$\theta = \cos^{-1}\left(\frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_z^2 + b_z^2}}\right)$$

$$\theta = \cos^{-1}\left[\frac{(0)(0) + (-1)(3) + (3)(1)}{\sqrt{(0)^2 + (-1)^2 + (3)^2} \cdot \sqrt{(0)^2 + (3)^2 + (1)^2}}\right]$$

$$\theta = \cos^{-1}\left[\frac{0 + (-3) + 3}{\sqrt{0 + 1 + 9} \cdot \sqrt{0 + 9 + 1}}\right]$$

$$\theta = \cos^{-1}\left(\frac{0}{\sqrt{10} \cdot \sqrt{10}}\right)$$

$$\theta = \cos^{-1}(0)$$

11.d
$$\vec{a} = (3, -1, 4)$$
 and $\vec{b} = (1, 1, 2)$

 $\theta = 90^{\circ}$

 $\theta \approx 36.8^{\circ}$

$$\theta = \cos^{-1}\left(\frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_z^2 + b_z^2}}\right)$$

$$\theta = \cos^{-1}\left[\frac{(3)(1) + (-1)(1) + (4)(2)}{\sqrt{(3)^2 + (-1)^2 + (4)^2} \cdot \sqrt{(1)^2 + (1)^2 + (2)^2}}\right]$$

$$\theta = \cos^{-1}\left[\frac{3 + (-1) + 8}{\sqrt{9 + 1 + 16} \cdot \sqrt{1 + 1 + 4}}\right]$$

$$\theta = \cos^{-1}\left(\frac{10}{\sqrt{26} \cdot \sqrt{6}}\right)$$

$$\theta = \cos^{-1}\left(\frac{10}{2\sqrt{39}}\right)$$

Type of Angle Between Two Vectors

Problem 12

For the following pairs of vectors, determine the type of angle between them, without directly computing it:

12.a
$$\vec{a} = (2, -1, 3)$$
 and $\vec{b} = (0, 1, 3)$
 $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$
 $\vec{a} \cdot \vec{b} = (2)(0) + (-1)(1) + (3)(3)$
 $\vec{a} \cdot \vec{b} = 0 + (-1) + 9$
 $\vec{a} \cdot \vec{b} = 8$

Since $\vec{a} \cdot \vec{b} > 0$, the angle between them must be **acute**.

12.b
$$\vec{a} = (1, -2, 0)$$
 and $\vec{b} = (-2, 4, 0)$
$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$

$$\vec{a} \cdot \vec{b} = (1)(-2) + (-2)(4) + (0)(0)$$

$$\vec{a} \cdot \vec{b} = -2 + (-8) + 0$$

$$\vec{a} \cdot \vec{b} = -10$$

Since $\vec{a}\cdot\vec{b}<0$, the angle between them must be **obtuse**.

12.c
$$\vec{a} = (0, -1, 3) \text{ and } \vec{b} = (0, 3, 1)$$

 $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$
 $\vec{a} \cdot \vec{b} = (0)(0) + (-1)(3) + (3)(1)$
 $\vec{a} \cdot \vec{b} = 0 + (-3) + 3$
 $\vec{a} \cdot \vec{b} = 0$

Since $\vec{a} \cdot \vec{b} = 0$, the angle between them must be **right**.

12.d
$$\vec{a} = (3, -1, 4)$$
 and $\vec{b} = (1, 1, 2)$
 $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$
 $\vec{a} \cdot \vec{b} = (3)(1) + (-1)(1) + (4)(2)$
 $\vec{a} \cdot \vec{b} = 3 + (-1) + 8$
 $\vec{a} \cdot \vec{b} = 10$

Since $\vec{a} \cdot \vec{b} > 0$, the angle between them must be **acute**.

Orthogonal or Perpendicular Vectors

Problem 13

For the following pairs of vectors, show that each pair is orthogonal.

The dot product of orthogonal vectors is zero.

13.a
$$\vec{a} = (2, -1, 3) \text{ and } \vec{b} = (0, 3, 1)$$

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$

$$\vec{a} \cdot \vec{b} = (2)(0) + (-1)(3) + (3)(1)$$

$$\vec{a} \cdot \vec{b} = 0 + (-3) + 3$$

$$\vec{a} \cdot \vec{b} = 0$$

Since $\vec{a} \cdot \vec{b} = 0$, the angle between them must be right, meaning $\vec{a} \perp \vec{b}$.

13.b
$$\vec{a} = (-1, -2, 0) \text{ and } \vec{b} = (-2, 1, 0)$$

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$

$$\vec{a} \cdot \vec{b} = (-1)(-2) + (-2)(1) + (0)(0)$$

$$\vec{a} \cdot \vec{b} = 2 + (-2) + 0$$

$$\vec{a} \cdot \vec{b} = 0$$

Since $\vec{a} \cdot \vec{b} = 0$, the angle between them must be right, meaning $\vec{a} \perp \vec{b}$.

13.c
$$\vec{a} = (0, -1, 3) \text{ and } \vec{b} = (0, 3, 1)$$

 $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$
 $\vec{a} \cdot \vec{b} = (0)(0) + (-1)(3) + (3)(1)$
 $\vec{a} \cdot \vec{b} = 0 + (-3) + 3$
 $\vec{a} \cdot \vec{b} = 0$

Since $\vec{a} \cdot \vec{b} = 0$, the angle between them must be right, meaning $\vec{a} \perp \vec{b}$.

13.d
$$\vec{a} = (3, -1, 1)$$
 and $\vec{b} = (1, 1, -2)$
 $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$
 $\vec{a} \cdot \vec{b} = (3)(1) + (-1)(1) + (1)(-2)$
 $\vec{a} \cdot \vec{b} = 3 + (-1) + (-2)$
 $\vec{a} \cdot \vec{b} = 0$

Since $\vec{a}\cdot\vec{b}=0$, the angle between them must be right, meaning $\vec{a}\perp\vec{b}$.

Vector Component

Problem 14

For the following pairs of vectors, calculate $Comp_{\vec{v}}^{\vec{u}}$:

14.a
$$\vec{U} = (1,2,1) \text{ and } \vec{V} = (1,1,1)$$
 14.c $\vec{U} = 5\hat{\imath} + \hat{\jmath} \text{ and } \vec{V} = \hat{\imath} - \hat{k}$
$$Comp_{\vec{v}}^{\vec{u}} = \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|}$$

$$Comp_{\vec{v}}^{\vec{u}} = \frac{\vec{u} \cdot \vec{v}}{\sqrt{v_x^2 + v_y^2 + v_z^2}}$$

$$Comp_{\vec{v}}^{\vec{u}} = \frac{u_x v_x + u_y v_y + u_z v_z}{\sqrt{v_x^2 + v_y^2 + v_z^2}}$$

$$Comp_{\vec{v}}^{\vec{u}} = \frac{(1)(1) + (2)(1) + (1)(1)}{\sqrt{(1)^2 + (1)^2 + (1)^2}}$$

$$Comp_{\vec{v}}^{\vec{u}} = \frac{(5)(1) + (1)(0) + (0)(-1)}{\sqrt{(1)^2 + (0)^2 + (-1)^2}}$$

$$Comp_{\vec{v}}^{\vec{u}} = \frac{5 + 0 + 0}{\sqrt{1 + 0 + 1}}$$

$$Comp_{\vec{v}}^{\vec{u}} = \frac{5}{\sqrt{2}}$$

14.b
$$\vec{U} = 3\hat{\imath} - 2\hat{\jmath} + \hat{k}$$
 and $\vec{V} = \hat{\imath} + 2\hat{\jmath} - \hat{k}$ 14.d $\vec{U} = (1,0,2)$ and $\vec{V} = (-2,3,1)$
$$Comp_{\vec{v}}^{\vec{u}} = \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|}$$

$$Comp_{\vec{v}}^{\vec{u}} = \frac{\vec{u} \cdot v_x + u_y v_y + u_z v_z}{\sqrt{v_x^2 + v_y^2 + v_z^2}}$$

$$Comp_{\vec{v}}^{\vec{u}} = \frac{(3)(1) + (-2)(2) + (1)(-1)}{\sqrt{(1)^2 + (2)^2 + (-1)^2}}$$

$$Comp_{\vec{v}}^{\vec{u}} = \frac{(3)(1) + (-2)(2) + (1)(-1)}{\sqrt{(1)^2 + (2)^2 + (-1)^2}}$$

$$Comp_{\vec{v}}^{\vec{u}} = \frac{(1)(-2) + (0)(3) + (2)(1)}{\sqrt{(-2)^2 + (3)^2 + (1)^2}}$$

$$Comp_{\vec{v}}^{\vec{u}} = \frac{-2 + 0 + 2}{\sqrt{4 + 9 + 1}}$$

$$Comp_{\vec{v}}^{\vec{u}} = \frac{0}{\sqrt{14}}$$

$$Comp_{\vec{v}}^{\vec{u}} = 0$$

Vector Projection

Problem 15

For the following pairs of vectors, calculate $Proj_{\vec{v}}^{\hat{u}}$:

15.a
$$\vec{U} = (1,2,1) \text{ and } \vec{V} = (1,1,1)$$
 15.c $Proj_{\vec{v}}^{\vec{u}} = Comp_{\vec{v}}^{\vec{u}} \cdot \hat{v}$ $Proj_{\vec{v}}^{\hat{u}} = Comp_{\vec{v}}^{\vec{u}} \cdot \frac{\vec{v}}{\|\vec{v}\|}$ $Proj_{\vec{v}}^{\hat{u}} = \frac{4}{\sqrt{3}} \cdot \frac{(1,1,1)}{\sqrt{3}}$ $Proj_{\vec{v}}^{\hat{u}} = \frac{4}{3} \cdot (1,1,1)$ $Proj_{\vec{v}}^{\hat{u}} = \left(\frac{4}{3}, \frac{4}{3}, \frac{4}{3}\right)$

15.b
$$\vec{U} = 3\hat{\imath} - 2\hat{\jmath} + \hat{k} \text{ and } \vec{V} = \hat{\imath} + 2\hat{\jmath} - \hat{k}$$

$$Proj_{\vec{v}}^{\hat{u}} = Comp_{\vec{v}}^{\vec{u}} \cdot \hat{v}$$

$$Proj_{\vec{v}}^{\hat{u}} = Comp_{\vec{v}}^{\vec{u}} \cdot \frac{\vec{v}}{\|\vec{v}\|}$$

$$Proj_{\vec{v}}^{\hat{u}} = -\frac{2}{\sqrt{6}} \cdot \frac{(1,2,-1)}{\sqrt{6}}$$

$$Proj_{\vec{v}}^{\hat{u}} = -\frac{2}{6} \cdot (1,2,-1)$$

$$Proj_{\vec{v}}^{\hat{u}} = -\frac{1}{3} \cdot (1,2,-1)$$

$$Proj_{\vec{v}}^{\hat{u}} = \left(-\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}\right)$$

15.c
$$\vec{U} = 5\hat{\imath} + \hat{\jmath} \text{ and } \vec{V} = \hat{\imath} - \hat{k}$$

$$Proj_{\vec{v}}^{\hat{u}} = Comp_{\vec{v}}^{\vec{u}} \cdot \hat{v}$$

$$Proj_{\vec{v}}^{\hat{u}} = Comp_{\vec{v}}^{\vec{u}} \cdot \frac{\vec{v}}{\|\vec{v}\|}$$

$$Proj_{\vec{v}}^{\hat{u}} = \frac{5}{\sqrt{2}} \cdot \frac{(1,0,-1)}{\sqrt{2}}$$

$$Proj_{\vec{v}}^{\hat{u}} = \frac{5}{2} \cdot (1,0,-1)$$

$$Proj_{\vec{v}}^{\hat{u}} = (\frac{5}{2},0,-\frac{5}{2})$$

15.d
$$\vec{U} = (1,0,2) \text{ and } \vec{V} = (-2,3,1)$$

$$Proj_{\vec{v}}^{\hat{u}} = Comp_{\vec{v}}^{\vec{u}} \cdot \hat{v}$$

$$Proj_{\vec{v}}^{\hat{u}} = Comp_{\vec{v}}^{\vec{u}} \cdot \frac{\vec{v}}{\|\vec{v}\|}$$

$$Proj_{\vec{v}}^{\hat{u}} = 0 \cdot \frac{(-2,3,1)}{\sqrt{14}}$$

$$Proj_{\vec{v}}^{\hat{u}} = 0 \cdot (1,0,-1)$$

$$Proj_{\vec{v}}^{\hat{u}} = (0,0,0)$$

Vector Rejection (Perpendicular Vector of \vec{a} to \vec{b})

Problem 16

For the following pairs of vectors, calculate the perpendicular [rejection] vector of \vec{a} to \vec{b} . That is, calculate $\vec{a}_{\perp} = \vec{a} - Proj_{\vec{b}}^{\vec{a}} = \vec{a} - (\vec{a} \cdot \hat{b})\hat{b}$:

$$\begin{split} \vec{a} &= (2, -1, 3) \text{ and } \vec{b} = (0, 1, 3) \\ \vec{a}_{\perp} &= \vec{a} - (\vec{a} \cdot \hat{b}) \hat{b} \\ \vec{b} &= \frac{\vec{b}}{\|\vec{b}\|} \\ \hat{b} &= \frac{\vec{b}}{\sqrt{b_x^2 + b_y^2 + b_z^2}} \\ \hat{b} &= \frac{(0, 1, 3)}{\sqrt{(0)^2 + (-1)^2 + (3)^2}} \\ \hat{b} &= \frac{(0, 1, 3)}{\sqrt{0 + 1 + 9}} \\ \hat{b} &= \frac{(0, 1, 3)}{\sqrt{10}} \\ \hat{b} &= (0, \frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}) \\ \vec{a}_{\perp} &= \vec{a} - (a_x b_{n,x} + a_y b_{n,y} + a_z b_{n,z}) \cdot \hat{b} \\ \vec{a}_{\perp} &= (2, -1, 3) - \left[(2)(0) + (-1) \left(\frac{1}{\sqrt{10}} \right) + (3) \left(\frac{3}{\sqrt{10}} \right) \right] \cdot \left(0, \frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}} \right) \\ \vec{a}_{\perp} &= (2, -1, 3) - \left[0 + \left(-\frac{1}{\sqrt{10}} \right) + \frac{9}{\sqrt{10}} \right] \cdot \left(0, \frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}} \right) \\ \vec{a}_{\perp} &= (2, -1, 3) - \left(0, \frac{8}{10}, \frac{24}{10} \right) \\ \vec{a}_{\perp} &= (2, -1, 3) - \cdot \left(0, \frac{4}{5}, \frac{12}{5} \right) \\ \vec{a}_{\perp} &= \left(2 - 0, -1 - \frac{4}{5}, 3 - \frac{12}{5} \right) \\ \vec{a}_{\perp} &= \left(2, -\frac{9}{5}, \frac{3}{5} \right) \\ \vec{a}_{\perp} &= \left(2, -\frac{9}{5}, \frac{3}{5} \right) \\ \vec{a}_{\perp} &= \vec{b} &= 0 \\ \vec{a}_{\perp} &\perp \vec{b} &= 0 \\ \vec{b}_{\perp} &\perp \vec{b} &\perp \vec{b} &\perp$$

16.b
$$\vec{a} = (1, -2, 0) \text{ and } \vec{b} = (-2, 4, 0)$$

$$\vec{a}_{\perp} = \vec{a} - (\vec{a} \cdot \hat{b})\hat{b}$$

$$\hat{b} = \frac{\vec{b}}{\|\vec{b}\|}$$

$$\hat{b} = \frac{\vec{b}}{\sqrt{b_x^2 + b_y^2 + b_z^2}}$$

$$\hat{b} = \frac{(-2, 4, 0)}{\sqrt{(-2)^2 + (4)^2 + (0)^2}}$$

$$\hat{b} = \frac{(-2, 4, 0)}{\sqrt{4 + 16 + 0}}$$

$$\hat{b} = \frac{(-2, 4, 0)}{\sqrt{20}}$$

$$\hat{b} = \frac{(-2, 4, 0)}{2\sqrt{5}}$$

$$\hat{b} = (\frac{-2, 4, 0}{2\sqrt{5}})$$

$$\hat{b} = (\frac{-2}{\sqrt{5}}, \frac{4}{2\sqrt{5}}, \frac{0}{2\sqrt{5}})$$

$$\hat{b} = (-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0)$$

$$\vec{a}_{\perp} = \vec{a} - (a_x b_{n,x} + a_y b_{n,y} + a_z b_{n,z}) \cdot \hat{b}$$

$$\vec{a}_{\perp} = (1, -2, 0) - \left[(1)\left(-\frac{1}{\sqrt{5}}\right) + (-2)\left(\frac{2}{\sqrt{5}}\right) + (0)(0)\right] \cdot \left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right)$$

$$\vec{a}_{\perp} = (1, -2, 0) - \frac{1}{\sqrt{5}} \cdot \left(-\frac{4}{\sqrt{5}}\right) + 0\mathbb{Z} \cdot \left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right)$$

$$\vec{a}_{\perp} = (1, -2, 0) + \frac{5}{\sqrt{5}} \cdot \left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right)$$

$$\vec{a}_{\perp} = (1, -2, 0) + \left(-\frac{5}{5}, \frac{10}{5}, 0\right)$$

$$\vec{a}_{\perp} = (1, -2, 0) + (-1, 2, 0)$$

$$\vec{a}_{\perp} = [1, (-2, 0) + (-1, 2, 0)$$

$$\vec{a}_{\perp} = [1, (-2, 0) + (-1, 2, 0)$$

$$\vec{a}_{\perp} = [1, (-2, 0) + (-1, 2, 0)$$

$$\vec{a}_{\perp} = [1, (-2, 0) + (-1, 2, 0)$$

$$\vec{a}_{\perp} = [1, (-2, 0) + (-1, 2, 0)$$

$$\vec{a}_{\perp} = [1, (-2, 0) + (-1, 2, 0)$$

 $\vec{a}_{\perp} = (0,0,0) = \vec{0}$

Check:

$$\vec{b} = (-2,4,0)$$

 $\vec{b} = -2(1,-2,0)$
 $\vec{b} = -2\vec{a}$
 $\vec{b} = k\vec{a}, k \neq 0$

16.c
$$\vec{a} = (0, -1, 3)$$
 and $\vec{b} = (0, 3, 1)$

$$\vec{a}_{\perp} = \vec{a} - (\vec{a} \cdot \hat{b})\hat{b}$$

$$\hat{b} = \frac{\vec{b}}{\|\vec{b}\|}$$

$$\hat{b} = \frac{\vec{b}}{\sqrt{b_x^2 + b_y^2 + b_z^2}}$$

$$\hat{b} = \frac{(0, 3, 1)}{\sqrt{(0)^2 + (3)^2 + (1)^2}}$$

$$\hat{b} = \frac{(0, 3, 1)}{\sqrt{0 + 9 + 1}}$$

$$\hat{b} = \frac{(0, 3, 1)}{\sqrt{10}}$$

$$\hat{b} = (0, \frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}})$$

$$\vec{a}_{\perp} = \vec{a} - (a_x b_{n,x} + a_y b_{n,y} + a_z b_{n,z}) \cdot \hat{b}$$

$$\vec{a}_{\perp} = (0, -1, 3) - \left[(0)(0) + (-1)\left(\frac{3}{\sqrt{10}}\right) + (3)\left(\frac{1}{\sqrt{10}}\right)\right] \cdot \left(0, \frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right)$$

$$\vec{a}_{\perp} = (0, -1, 3) - \left[0 + \left(-\frac{3}{\sqrt{10}}\right) + \frac{3}{\sqrt{10}}\right] \cdot \left(0, \frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right)$$

$$\vec{a}_{\perp} = (0, -1, 3) - 0 \cdot \left(0, \frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right)$$
$$\vec{a}_{\perp} = (0, -1, 3) - 0$$
$$\vec{a}_{\perp} = (0, -1, 3)$$

Check: $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$ $\vec{a} \cdot \vec{b} = (0)(0) + (-1)(3) + (3)(1)$ $\vec{a} \cdot \vec{b} = 0 + (-3) + 3$ $\vec{a} \cdot \vec{b} = 0$

 $\vec{a} \perp \vec{b}$

Cross Product of Two Vectors

Problem 17

For the following pairs of vectors, calculate their cross product:

17.a
$$\vec{a} = (2, -1, 3)$$
 and $\vec{b} = (0, 1, 3)$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -1 & 3 \\ 0 & 1 & 3 \end{vmatrix}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} -1 & 3 \\ 1 & 3 \end{vmatrix} \hat{\imath} - \begin{vmatrix} 2 & 3 \\ 0 & 3 \end{vmatrix} \hat{\jmath} + \begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix} \hat{k}$$

$$\vec{a} \times \vec{b} = [(-1)(3) - (1)(3)]\hat{\imath} - [(2)(3) - (0)(3)]\hat{\jmath} + [(2)(1) - (0)(-1)]\hat{k}$$

$$\vec{a} \times \vec{b} = (-3 - 3)\hat{\imath} - (6 - 0)\hat{\jmath} + (2 - 0)\hat{k}$$

$$\vec{a} \times \vec{b} = -6\hat{\imath} - 6\hat{\jmath} + 2\hat{k} \end{vmatrix}$$

17.b
$$\vec{a} = (1, -2, 0)$$
 and $\vec{b} = (-2, 4, 0)$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & -2 & 0 \\ -2 & 4 & 0 \end{vmatrix}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} -2 & 0 \\ 4 & 0 \end{vmatrix} \hat{\imath} - \begin{vmatrix} 1 & 0 \\ -2 & 0 \end{vmatrix} \hat{\jmath} + \begin{vmatrix} 1 & -2 \\ -2 & 4 \end{vmatrix} \hat{k}$$

$$\vec{a} \times \vec{b} = [(-2)(0) - (4)(0)]\hat{\imath} - [(1)(0) - 2)(0) \mathbf{r} \hat{\jmath} + [(1)(4) - 2)(-2) \mathbf{r} \hat{k}$$

$$\vec{a} \times \vec{b} = (0 - 0)\hat{\imath} - (0 - 0)\hat{\jmath} + (4 - 4)\hat{k}$$

$$\vec{a} \times \vec{b} = \vec{0}$$

17.c
$$\vec{a} = (0, -1, 3)$$
 and $\vec{b} = (0, 3, 1)$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 0 & -1 & 3 \\ 0 & 3 & 1 \end{vmatrix}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} -1 & 3 \\ 3 & 1 \end{vmatrix} \hat{\imath} - \begin{vmatrix} 0 & 3 \\ 0 & 1 \end{vmatrix} \hat{\jmath} + \begin{vmatrix} 0 & -1 \\ 0 & 3 \end{vmatrix} \hat{k}$$

$$\vec{a} \times \vec{b} = [(-1)(1) - (3)(3)]\hat{\imath} - [(0)(1) - (0)(3)]\hat{\jmath} + [(0)(3) - (0)(-1)]\hat{k}$$

$$\vec{a} \times \vec{b} = (-1 - 9)\hat{\imath} - (0 - 0)\hat{\jmath} + (0 - 0)\hat{k}$$

$$\vec{a} \times \vec{b} = -10\hat{\imath}$$

17.d
$$\vec{a} = (3, -1, 4)$$
 and $\vec{b} = (1, 1, 2)$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & -1 & 4 \\ 1 & 1 & 2 \end{vmatrix}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} -1 & 4 \\ 1 & 2 \end{vmatrix} \hat{\imath} - \begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix} \hat{\jmath} + \begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix} \hat{k}$$

$$\vec{a} \times \vec{b} = [(-1)(2) - (1)(4)]\hat{\imath} - [(3)(2) - (1)(4)]\hat{\jmath} + [(3)(1) - (1)(-1)]\hat{k}$$

$$\vec{a} \times \vec{b} = (-2 - 4)\hat{\imath} - (6 - 4)\hat{\jmath} + [3 - 1) \mathbf{B}\hat{k}$$

$$\vec{a} \times \vec{b} = -6\hat{\imath} - 2\hat{\jmath} + 4\hat{k}$$

Problem 18

Simplify the following operations:

18.a
$$(2\hat{\imath}) \times \hat{\jmath}$$

$$(2\hat{\imath}) \times \hat{\jmath} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2i_x & 2i_y & 2i_z \\ j_x & j_y & j_z \end{vmatrix}$$

$$(2\hat{\imath}) \times \hat{\jmath} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix}$$

$$(2\hat{\imath}) \times \hat{\jmath} = \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix} \hat{\imath} - \begin{vmatrix} 2 & 0 \\ 0 & 0 \end{vmatrix} \hat{\jmath} + \begin{vmatrix} 2 & 0 \\ 0 & 1 \end{vmatrix} \hat{k}$$

$$(2\hat{\imath}) \times \hat{\jmath} = [(0)(0) - (1)(0)]\hat{\imath} - [(2)(0) - (0)(0)]\hat{\jmath} + [(2)(1) - (0)(0)]\hat{k}$$

$$(2\hat{\imath}) \times \hat{\jmath} = (0 - 0)\hat{\imath} - (0 - 0)\hat{\jmath} + (2 - 0)\hat{k}$$

$$(2\hat{\imath}) \times \hat{\jmath} = 2\hat{k}$$

18.b
$$(\hat{\imath} \times \hat{k}) \times (\hat{\imath} \times \hat{\jmath})$$

 $(\hat{\imath} \times \hat{k}) \times (\hat{\imath} \times \hat{\jmath}) = -\hat{\jmath} \times \hat{k}$
 $(\hat{\imath} \times \hat{k}) \times (\hat{\imath} \times \hat{\jmath}) = -\hat{\imath}$

18.c
$$(\vec{\imath} \times \vec{\imath}) \cdot (\vec{\imath} \times \vec{\jmath})$$

 $(\vec{\imath} \times \vec{\imath}) \cdot (\vec{\imath} \times \vec{\jmath}) = \hat{0} \cdot \vec{k}$

$$(\vec{\imath} \times \vec{\imath}) \cdot (\vec{\imath} \times \vec{\jmath}) = 0$$

18.d
$$\hat{k} \times (2\hat{\imath} - \hat{\jmath})$$

 $\hat{k} \times (2\hat{\imath} - \hat{\jmath}) = \hat{k} \times [2(1,0,0) - (0,1,0)]$
 $\hat{k} \times (2\hat{\imath} - \hat{\jmath}) = \hat{k} \times [(2,0,0) - (0,1,0)]$
 $\hat{k} \times (2\hat{\imath} - \hat{\jmath}) = \hat{k} \times (2,-1,0)$
 $\hat{k} \times (2\hat{\imath} - \hat{\jmath}) = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 0 & 0 & 1 \\ 2 & -1 & 0 \end{vmatrix}$
 $\hat{k} \times (2\hat{\imath} - \hat{\jmath}) = \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix} \hat{\imath} - \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} \hat{\jmath} + \begin{vmatrix} 0 & 0 \\ 2 & -1 \end{vmatrix} \hat{k}$
 $\hat{k} \times (2\hat{\imath} - \hat{\jmath}) = [(0)(0) - 1)(1) \mathbb{I} \hat{\imath} - [(0)(0) - (2)(1)] \hat{\jmath} + [(0)(-1) - (2)(0)] \hat{k}$
 $\hat{k} \times (2\hat{\imath} - \hat{\jmath}) = [0 - 1) \mathbb{I} \hat{\imath} - (0 - 2) \hat{\jmath} + (0 - 0) \hat{k}$
 $\hat{k} \times (2\hat{\imath} - \hat{\jmath}) = \hat{\imath} + 2\hat{\jmath}$

18.e
$$(\hat{\imath} + \hat{\jmath}) \times (\hat{\imath} + 5\hat{k})$$

 $(\hat{\imath} + \hat{\jmath}) \times (\hat{\imath} + 5\hat{k}) = [(1,0,0) + (0,1,0)] \times [(1,0,0) + 5(0,0,1)]$
 $(\hat{\imath} + \hat{\jmath}) \times (\hat{\imath} + 5\hat{k}) = [(1,0,0) + (0,1,0)] \times [(1,0,0) + (0,0,5)]$
 $(\hat{\imath} + \hat{\jmath}) \times (\hat{\imath} + 5\hat{k}) = (1,1,0) \times (1,0,5)$
 $(\hat{\imath} + \hat{\jmath}) \times (\hat{\imath} + 5\hat{k}) = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 1 & 0 \\ 1 & 0 & 5 \end{vmatrix}$
 $(\hat{\imath} + \hat{\jmath}) \times (\hat{\imath} + 5\hat{k}) = \begin{vmatrix} 1 & 0 \\ 0 & 5 \end{vmatrix} \hat{\imath} - \begin{vmatrix} 1 & 0 \\ 1 & 5 \end{vmatrix} \hat{\jmath} + \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} \hat{k}$
 $(\hat{\imath} + \hat{\jmath}) \times (\hat{\imath} + 5\hat{k}) = [(1)(5) - (0)(0)]\hat{\imath} - [(1)(5) - (1)(0)]\hat{\jmath} + [(1)(0) - (1)(1)]\hat{k}$
 $(\hat{\imath} + \hat{\jmath}) \times (\hat{\imath} + 5\hat{k}) = (5 - 0)\hat{\imath} - (5 - 0)\hat{\jmath} + (0 - 1)\hat{k}$
 $(\hat{\imath} + \hat{\jmath}) \times (\hat{\imath} + 5\hat{k}) = 5\hat{\imath} - 5\hat{\jmath} - \hat{k}$

18.f
$$\hat{\imath} \times (\hat{\jmath} \times \hat{k})$$

 $\hat{\imath} \times (\hat{\jmath} \times \hat{k}) = \hat{\imath} \times \hat{\imath}$
 $\hat{\imath} \times (\hat{\jmath} \times \hat{k}) = \vec{0}$

18.g
$$\hat{k} \cdot (\hat{j} \times \hat{k})$$

 $\hat{k} \cdot (\hat{j} \times \hat{k}) = \hat{k} \cdot \hat{i}$
 $\hat{k} \cdot (\hat{j} \times \hat{k}) = k_x i_x + k_y i_y + k_z i_z$
 $\hat{k} \cdot (\hat{j} \times \hat{k}) = (0)(1) + (0)(0) + (1)(0)$
 $\hat{k} \cdot (\hat{j} \times \hat{k}) = 0$

The $\hat{\imath}$, $\hat{\jmath}$, and \hat{k} unit vectors are perpendicular to each other. The dot product of perpendicular vectors is always 0.

18.h
$$(\hat{\imath} \times \hat{k}) \times (\hat{\jmath} \times \hat{\imath})$$

 $(\hat{\imath} \times \hat{k}) \times (\hat{\jmath} \times \hat{\imath}) = -\hat{\jmath} \times -\hat{k}$

$$(\hat{\imath} \times \hat{k}) \times (\hat{\jmath} \times \hat{\imath}) = \hat{\imath}$$

Problem 19

For each of the following pairs of vectors, find a vector \vec{C} that is orthogonal to both:

An orthogonal vector to a vector pair may be found by calculating the cross product of the vector pair.

19.a
$$\vec{A} = (2,1,1)$$
 and $\vec{B} = (-1,2,2)$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 1 & 1 \\ -1 & 2 & 2 \end{vmatrix}$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix} \hat{\imath} - \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} \hat{\jmath} + \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} \hat{k}$$

$$\vec{A} \times \vec{B} = [(1)(2) - (2)(1)]\hat{\imath} - [(2)(2) - 1)(1) \mathbb{Z}\hat{\jmath} + [(2)(2) - 1)(1) \mathbb{Z}\hat{k}$$

$$\vec{A} \times \vec{B} = (2 - 2)\hat{\imath} - [4 - 1) \mathbb{Z}\hat{\jmath} + [4 - 1] \mathbb{Z}\hat{k}$$

$$\vec{A} \times \vec{B} = 0\hat{\imath} - 5\hat{\jmath} + 5\hat{k}$$

$$\vec{A} \times \vec{B} = (0, -5, 5)$$

19.b
$$\vec{A} = (1,0,1)$$
 and $\vec{B} = (2,3,5)$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 0 & 1 \\ 2 & 3 & 5 \end{vmatrix}$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} 0 & 1 \\ 3 & 5 \end{vmatrix} \hat{\imath} - \begin{vmatrix} 1 & 1 \\ 2 & 5 \end{vmatrix} \hat{\jmath} + \begin{vmatrix} 1 & 0 \\ 2 & 3 \end{vmatrix} \hat{k}$$

$$\vec{A} \times \vec{B} = [(0)(5) - (3)(1)]\hat{\imath} - [(1)(5) - (2)(1)]\hat{\jmath} + [(1)(3) - (2)(0)]\hat{k}$$

$$\vec{A} \times \vec{B} = (0-3)\hat{\imath} - (5-2)\hat{\jmath} + (3-0)\hat{k}$$

$$\vec{A} \times \vec{B} = -3\hat{\imath} - 3\hat{\jmath} + 3\hat{k}$$

$$\vec{A} \times \vec{B} = (-3, -3, 3)$$

19.c
$$\vec{A} = (1,0,0)$$
 and $\vec{B} = (0,1,0)$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix}$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix} \hat{\imath} - \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} \hat{\jmath} + \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \hat{k}$$

$$\vec{A} \times \vec{B} = [(0)(0) - (1)(0)]\hat{\imath} - [(1)(0) - (0)(0)]\hat{\jmath} + [(1)(1) - (0)(0)]\hat{k}$$

$$\vec{A} \times \vec{B} = (0-0)\hat{\imath} - (0-0)\hat{\jmath} + (1-0)\hat{k}$$

$$\vec{A} \times \vec{B} = 0\hat{\imath} - 0\hat{\jmath} + 1\hat{k}$$

$$\vec{A} \times \vec{B} = (0,0,1)$$

9.d
$$\vec{A} = (3, -1, 1)$$
 and $\vec{B} = (1, 1, -2)$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & -1 & 1 \\ 1 & 1 & -2 \end{vmatrix}$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} -1 & 1 \\ 1 & -2 \end{vmatrix} \hat{\imath} - \begin{vmatrix} 3 & 1 \\ 1 & -2 \end{vmatrix} \hat{\jmath} + \begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix} \hat{k}$$

$$\vec{A} \times \vec{B} = [(-1)(-2) - (1)(1)]\hat{\imath} - [(3)(-2) - (1)(1)]\hat{\jmath} + [(3)(1) - (1)(-1)]\hat{k}$$

$$\vec{A} \times \vec{B} = (2 - 1)\hat{\imath} - 6 - 1\mathbb{Z}\hat{\jmath} + [3 - 1)\mathbb{Z}\hat{k}$$

$$\vec{A} \times \vec{B} = 1\hat{\imath} - 7\mathbb{Z}\hat{\jmath} + 4\hat{k}$$

$$\vec{A} \times \vec{B} = (1,7,4)$$

Vector Differentiation

Problem 20

For each of the following vectors, calculate $\frac{d\vec{a}}{dt}$:

20.a
$$\vec{a} = 3t^2\hat{\imath} + t^3\hat{\jmath} - (t^2 - t^3)\hat{k}$$

$$\frac{d\vec{a}}{dt} = \frac{d}{dt} \left[3t^2\hat{\imath} + t^3\hat{\jmath} - (t^2 - t^3)\hat{k} \right]$$

$$\frac{d\vec{a}}{dt} = \frac{d}{dt} (3t^2)\hat{\imath} + \frac{d}{dt} (t^3)\hat{\jmath} - \frac{d}{dt} (t^2 - t^3)\hat{k}$$

$$\frac{d\vec{a}}{dt} = 3 \cdot \frac{d}{dt} (t^2)\hat{\imath} + \frac{d}{dt} (t^3)\hat{\jmath} - \left[\frac{d}{dt} (t^2) - \frac{d}{dt} (t^3) \right]\hat{k}$$

$$\frac{d\vec{a}}{dt} = 3 \cdot (2t^{2-1})\hat{\imath} + (3t^{3-1})\hat{\jmath} - (2t^{2-1} - 3t^{3-1})\hat{k}$$

$$\frac{d\vec{a}}{dt} = 6t^1\hat{\imath} + 3t^2\hat{\jmath} - (2t^1 - 3t^2)\hat{k}$$

$$\frac{d\vec{a}}{dt} = 6t\hat{\imath} + 3t^2\hat{\jmath} - (2t - 3t^2)\hat{k}$$

20.b
$$\vec{a} = 3t^2\hat{\imath} + 4t^3\hat{\jmath} - 6t\hat{k}$$

$$\frac{d\vec{a}}{dt} = \frac{d}{dt}(3t^2\hat{\imath} + 4t^3\hat{\jmath} - 6t\hat{k})$$

$$\frac{d\vec{a}}{dt} = \frac{d}{dt}(3t^2)\hat{\imath} + \frac{d}{dt}(4t^3)\hat{\jmath} - \frac{d}{dt}(6t)\hat{k}$$

$$\frac{d\vec{a}}{dt} = 3 \cdot \frac{d}{dt}(t^2)\hat{\imath} + 4 \cdot \frac{d}{dt}(t^3)\hat{\jmath} - 6 \cdot \frac{d}{dt}(t^1)\hat{k}$$

$$\frac{d\vec{a}}{dt} = 3 \cdot (2t^{2-1})\hat{\imath} + 4 \cdot (3t^{3-1})\hat{\jmath} - 6 \cdot t^{1-1}\hat{k}$$

$$\frac{d\vec{a}}{dt} = 6t^2\hat{\imath} + 12t^2\hat{\jmath} - 6t^0\hat{k}$$

$$\frac{d\vec{a}}{dt} = 6t\hat{\imath} + 12t^2\hat{\jmath} - 6(1)\hat{k}$$

$$\frac{d\vec{a}}{dt} = 6t\hat{\imath} + 12t^2\hat{\jmath} - 6\hat{k}$$

20.c
$$\vec{a} = (t^2, \cos(t), 7)$$

$$\frac{d\vec{a}}{dt} = \frac{d}{dt} \left[t^2 \hat{i} + \cos(t) \hat{j} - 7 \hat{k} \right]$$

$$\frac{d\vec{a}}{dt} = \frac{d}{dt} (t^2) \hat{i} + \frac{d}{dt} [\cos(t)] \hat{j} - \frac{d}{dt} (7t^0) \hat{k}$$

$$\frac{d\vec{a}}{dt} = \frac{d}{dt} (t^2) \hat{i} + \frac{d}{dt} [\cos(t)] \hat{j} - 7 \cdot \frac{d}{dt} (t^0) \hat{k}$$

$$\frac{d\vec{a}}{dt} = 2t^{2-1} \hat{i} + [-\sin(t)] \hat{j} - 7 \cdot (0t^{0-1}) \hat{k}$$

$$\frac{d\vec{a}}{dt} = 2t^1 \hat{i} - \sin(t) \hat{j} - 7 \cdot (0) \hat{k}$$

$$\frac{d\vec{a}}{dt} = 2t \hat{i} - \sin(t) \hat{j} - 0 \hat{k}$$

$$\frac{d\vec{a}}{dt} = (2t, -\sin(t), 0)$$

20.d
$$\vec{a} = (t, 4, -6t)$$

$$\frac{d\vec{a}}{dt} = \frac{d}{dt} (t\hat{\imath} + 4\hat{\jmath} - 6t\hat{k})$$

$$\frac{d\vec{a}}{dt} = \frac{d}{dt} (t^{1})\hat{\imath} + \frac{d}{dt} (4t^{0})\hat{\jmath} - \frac{d}{dt} (6t^{1})\hat{k}$$

$$\frac{d\vec{a}}{dt} = \frac{d}{dt} (t^{1})\hat{\imath} + 4 \cdot \frac{d}{dt} (t^{0})\hat{\jmath} - 6 \cdot \frac{d}{dt} (t^{1})\hat{k}$$

$$\frac{d\vec{a}}{dt} = 1t^{1-1}\hat{\imath} + 4 \cdot (0t^{0-1})\hat{\jmath} - 6 \cdot (1t^{1-1})\hat{k}$$

$$\frac{d\vec{a}}{dt} = t^{0}\hat{\imath} + 3(0)t^{2}\hat{\jmath} - 6t^{0}\hat{k}$$

$$\frac{d\vec{a}}{dt} = 1\hat{\imath} + 0\hat{\jmath} - 6\hat{k}$$

$$\frac{d\vec{a}}{dt} = (1,0,-6)$$

Partial Differentiation of Vectors

Problem 21

For each of the following vectors, calculate $\frac{\partial \vec{u}}{\partial x'}$, $\frac{\partial \vec{u}}{\partial y'}$, $\frac{\partial \vec{u}}{\partial z}$, and $\frac{\partial^2 \vec{u}}{\partial x \partial y}$:

21.a
$$\vec{u}(u_x, u_y, u_z) = (x + y^2, z + x, xz^2)$$

$$\frac{\partial \vec{u}}{\partial x} = \frac{\partial}{\partial x} \left[(x + y^2)\hat{i} + (z + x)\hat{j} + xz^2\hat{k} \right]$$

$$\frac{\partial \vec{u}}{\partial x} = \frac{\partial}{\partial x} \left[(x + y^2)\hat{i} \right] + \frac{\partial}{\partial x} \left[(z + x)\hat{j} \right] + \frac{\partial}{\partial x} (xz^2\hat{k})$$

$$\frac{\partial \vec{u}}{\partial x} = (1 + 0)\hat{i} + (0 + 1)\hat{j} + z^2\hat{k}$$

$$\frac{\partial \vec{u}}{\partial x} = 1\hat{i} + 1\hat{j} + z^2\hat{k}$$

$$\frac{\partial \vec{u}}{\partial x} = (1, 1, z^2)$$

$$\frac{\partial \vec{u}}{\partial y} = \frac{\partial}{\partial y} \left[(x + y^2)\hat{i} + (z + x)\hat{j} + xz^2 \hat{k} \right]$$

$$\frac{\partial \vec{u}}{\partial y} = \frac{\partial}{\partial y} \left[(x + y^2)\hat{i} \right] + \frac{\partial}{\partial y} \left[(z + x)\hat{j} \right] + \frac{\partial}{\partial y} \left(xz^2 \hat{k} \right)$$

$$\frac{\partial \vec{u}}{\partial y} = (0 + 2y)\hat{i} + (0 + 0)\hat{j} + 0\hat{k}$$

$$\frac{\partial \vec{u}}{\partial y} = 2y\hat{i} + 0\hat{j} + 0\hat{k}$$

$$\frac{\partial \vec{u}}{\partial y} = (2y, 0, 0)$$

$$\frac{\partial \vec{u}}{\partial z} = \frac{\partial}{\partial z} \left[(x + y^2)\hat{i} + (z + x)\hat{j} + xz^2 \hat{k} \right]$$

$$\frac{\partial \vec{u}}{\partial z} = \frac{\partial}{\partial z} \left[(x + y^2)\hat{i} \right] + \frac{\partial}{\partial z} \left[(z + x)\hat{j} \right] + \frac{\partial}{\partial z} \left(xz^2 \hat{k} \right)$$

$$\frac{\partial \vec{u}}{\partial z} = (0 + 0)\hat{i} + (1 + 0)\hat{j} + 2xz\hat{k}$$

$$\frac{\partial \vec{u}}{\partial z} = 0\hat{i} + 1\hat{j} + 2xz\hat{k}$$

$$\frac{\partial \vec{u}}{\partial z} = (0, 1, 2xz)$$

$$\frac{\partial^2 \vec{u}}{\partial x \partial y} = \frac{\partial^2}{\partial x \partial y} \left[(x + y^2)\hat{i} + (z + x)\hat{j} + xz^2 \hat{k} \right]$$

$$\frac{\partial^2 \vec{u}}{\partial x \partial y} = \frac{\partial}{\partial x} \left\{ \frac{\partial}{\partial y} \left[(x + y^2)\hat{i} + (z + x)\hat{j} + xz^2 \hat{k} \right] \right\}$$

$$\frac{\partial^2 \vec{u}}{\partial x \partial y} = \frac{\partial}{\partial x} \left(2y\hat{i} + 0\hat{j} + 0\hat{k} \right)$$

$$\frac{\partial^2 \vec{u}}{\partial x \partial y} = 0\hat{i} + 0\hat{j} + 0\hat{k}$$

$$\frac{\partial^2 \vec{u}}{\partial x \partial y} = \vec{0}$$

21.b
$$\vec{u}(u_x, u_y, u_z) = (x^3 + y^2, zx, z^2 + y)$$

$$\frac{\partial \vec{u}}{\partial x} = \frac{\partial}{\partial x} [(x^3 + y^2)\hat{i} + zx\hat{j} + (z^2 + y)\hat{k}]$$

$$\frac{\partial \vec{u}}{\partial x} = (3x^2 + 0)\hat{i} + z\hat{j} + (0 + 0)\hat{k}$$

$$\frac{\partial \vec{u}}{\partial x} = 3x^2\hat{i} + z\hat{j} + 0\hat{k}$$

$$\frac{\partial \vec{u}}{\partial x} = (3x^2, z, 0)$$

$$\frac{\partial \vec{u}}{\partial y} = \frac{\partial}{\partial y} \left[(x^3 + y^2)\hat{i} + zx\hat{j} + (z^2 + y)\hat{k} \right]$$

$$\frac{\partial \vec{u}}{\partial y} = (0 + 2y)\hat{i} + 0\hat{j} + (0 + 1)\hat{k}$$

$$\frac{\partial \vec{u}}{\partial y} = 2y\hat{i} + 0\hat{j} + 1\hat{k}$$

$$\frac{\partial \vec{u}}{\partial y} = (2y, 0, 1)$$

$$\frac{\partial \vec{u}}{\partial z} = \frac{\partial}{\partial z} \left[(x^3 + y^2)\hat{i} + zx\hat{j} + (z^2 + y)\hat{k} \right]$$

$$\frac{\partial \vec{u}}{\partial z} = (0 + 0)\hat{i} + x\hat{j} + (2z + 0)\hat{k}$$

$$\frac{\partial \vec{u}}{\partial z} = 0\hat{i} + x\hat{j} + 2z\hat{k}$$

$$\frac{\partial \vec{u}}{\partial z} = (0, x, 2z)$$

$$\frac{\partial^2 \vec{u}}{\partial x \partial y} = \frac{\partial^2}{\partial x \partial y} \left[(x^3 + y^3)\hat{i} + zx\hat{j} + (z^2 + y)\hat{k} \right]$$

$$\frac{\partial^2 \vec{u}}{\partial x \partial y} = \frac{\partial}{\partial x} \left\{ \frac{\partial}{\partial y} \left[(x^3 + y^3)\hat{i} + zx\hat{j} + (z^2 + y)\hat{k} \right] \right\}$$

$$\frac{\partial^2 \vec{u}}{\partial x \partial y} = \frac{\partial}{\partial x} \left(3y^2 \hat{i} + 0\hat{j} + 1\hat{k} \right)$$

$$\frac{\partial^2 \vec{u}}{\partial x \partial y} = 0\hat{i} + 0\hat{j} + 0\hat{k}$$

$$\frac{\partial^2 \vec{u}}{\partial x \partial y} = \hat{0}$$

21.c
$$\vec{u}(u_x, u_y, u_z) = (x^2 + y^2 + z^2, z, xz^2 + 2)$$

$$\frac{\partial \vec{u}}{\partial x} = \frac{\partial}{\partial x} [(x^2 + y^2 + z^2)\hat{i} + z\hat{j} + (xz^2 + 2)\hat{k}]$$

$$\frac{\partial \vec{u}}{\partial x} = (2x + 0 + 0)\hat{i} + 0\hat{j} + (z^2 + 0)\hat{k}$$

$$\frac{\partial \vec{u}}{\partial x} = 2x\hat{i} + 0\hat{j} + z^2\hat{k}$$

$$\frac{\partial \vec{u}}{\partial x} = (2x, 0, z^2)$$

$$\frac{\partial \vec{u}}{\partial y} = \frac{\partial}{\partial y} \left[(x^2 + y^2 + z^2)\hat{\imath} + z\hat{\jmath} + (xz^2 + 2)\hat{k} \right]$$

$$\frac{\partial \vec{u}}{\partial y} = (0 + 2y + 0)\hat{\imath} + 0\hat{\jmath} + (0 + 0)\hat{k}$$

$$\frac{\partial \vec{u}}{\partial y} = 2y\hat{\imath} + 0\hat{\jmath} + 0\hat{k}$$

$$\frac{\partial \vec{u}}{\partial y} = (2y, 0, 0)$$

$$\frac{\partial \vec{u}}{\partial z} = \frac{\partial}{\partial z} \left[(x^2 + y^2 + z^2)\hat{i} + z\hat{j} + (xz^2 + 2)\hat{k} \right]$$

$$\frac{\partial \vec{u}}{\partial z} = (0 + 0 + 2z)\hat{i} + 1\hat{j} + (2xz + 0)\hat{k}$$

$$\frac{\partial \vec{u}}{\partial z} = 2z\hat{i} + 1\hat{j} + 2xz\hat{k}$$

$$\frac{\partial \vec{u}}{\partial z} = (2z, 1, 2xz)$$

$$\frac{\partial^2 \vec{u}}{\partial x \partial y} = \frac{\partial^2}{\partial x \partial y} \left[(x^2 + y^2 + z^2)\hat{i} + z\hat{j} + (xz^2 + 2)\hat{k} \right]$$

$$\frac{\partial^2 \vec{u}}{\partial x \partial y} = \frac{\partial}{\partial x} \left\{ \frac{\partial}{\partial y} \left[(x^2 + y^2 + z^2)\hat{i} + z\hat{j} + (xz^2 + 2)\hat{k} \right] \right\}$$

$$\frac{\partial^2 \vec{u}}{\partial x \partial y} = \frac{\partial}{\partial x} \left(2y\hat{i} + 0\hat{j} + 0\hat{k} \right)$$

$$\frac{\partial^2 \vec{u}}{\partial x \partial y} = 0\hat{i} + 0\hat{j} + 0\hat{k}$$

$$\frac{\partial^2 \vec{u}}{\partial x \partial y} = \hat{0}$$

Vector Integration

Problem 22

For each of the following vectors, calculate $\int_1^2 \vec{a}(t)dt$:

22.a
$$\vec{a} = 3t^2\hat{\imath} + 4t^3\hat{\jmath} - 6t\hat{k}$$

$$\int_{1}^{2} \vec{a}(t)dt = \int_{1}^{2} (3t^2\hat{\imath} + 4t^3\hat{\jmath} - 6t\hat{k})dt$$

$$\int_{1}^{2} \vec{a}(t)dt = t^3\hat{\imath} + t^4\hat{\jmath} - 3t^2\hat{k}\big|_{1}^{2}$$

$$\int_{1}^{2} \vec{a}(t)dt = [(2)^3 - (1)^3]\hat{\imath} + [(2)^4 - (1)^4]\hat{\jmath} - 3[(2)^2 - (1)^2]\hat{k}$$

$$\int_{1}^{2} \vec{a}(t)dt = (8 - 1)\hat{\imath} + (16 - 1)\hat{\jmath} - 3(4 - 1)\hat{k}$$

$$\int_{1}^{2} \vec{a}(t)dt = 7\hat{\imath} + 15\hat{\jmath} - 9\hat{k}$$

22.b
$$\vec{a} = t^2 \hat{\imath} + 4t^3 \hat{\jmath} - \hat{k}$$

$$\int_{1}^{2} \vec{a}(t)dt = \int_{1}^{2} (t^2 \hat{\imath} + 4t^3 \hat{\jmath} - \hat{k})dt$$

$$\int_{1}^{2} \vec{a}(t)dt = 2t\hat{\imath} + 12t^2 \hat{\jmath} - t\hat{k} \Big|_{1}^{2}$$

$$\int_{1}^{2} \vec{a}(t)dt = [2(2) - 2(1)]\hat{\imath} + [12(2)^2 - 12(1)^2]\hat{\jmath} - [(2) - (1)]\hat{k}$$

$$\int_{1}^{2} \vec{a}(t)dt = [2(2) - 2(1)]\hat{\imath} + [12(4) - 12(1)]\hat{\jmath} - [(2) - (1)]\hat{k}$$

$$\int_{1}^{2} \vec{a}(t)dt = (4 - 2)\hat{\imath} + (48 - 12)\hat{\jmath} - (2 - 1)\hat{k}$$

$$\int_{1}^{2} \vec{a}(t)dt = 2\hat{\imath} + 36\hat{\jmath} - \hat{k}$$

$$\vec{a} = (1, \cos(t), \sin(t))$$

$$\int_{1}^{2} \vec{a}(t)dt = \int_{1}^{2} \left[\hat{i} + \cos(t)\hat{j} + \sin(t)\hat{k}\right]dt$$

$$\int_{1}^{2} \vec{a}(t)dt = t\hat{i} + \sin(t)\hat{j} + \left[-\cos(t)\right]\hat{k}\Big|_{1}^{2}$$

$$\int_{1}^{2} \vec{a}(t)dt = \left[(2) - (1)\right]\hat{i} + \left[\sin(2) - \sin(1)\right]\hat{j} - \left[\cos(2) - \cos(1)\right]\hat{k}$$

$$\int_{1}^{2} \vec{a}(t)dt \approx (2 - 1)\hat{i} + (.909 - .841)\hat{j} - (-.416 - .540)\hat{k}$$

$$\int_{1}^{2} \vec{a}(t)dt \approx \hat{i} + .068\hat{j} + .956\hat{k}$$

$$\int_{1}^{2} \vec{a}(t)dt \approx (1,.068,.956)$$

22.d
$$\vec{a} = 2t\hat{\imath} + \hat{k}$$

$$\int_{1}^{2} \vec{a}(t)dt = \int_{1}^{2} (2t\hat{\imath} + \hat{k})dt$$

$$\int_{1}^{2} \vec{a}(t)dt = t^{2}\hat{\imath} + t\hat{k}\Big|_{1}^{2}$$

$$\int_{1}^{2} \vec{a}(t)dt = [(2)^{2} - (1)^{2}]\hat{\imath} + [(2) - (1)]\hat{k}$$

$$\int_{1}^{2} \vec{a}(t)dt = (4 - 2)\hat{\imath} + (2 - 1)\hat{k}$$

$$\int_{1}^{2} \vec{a}(t)dt = 2\hat{\imath} + \hat{k}$$

Homogeneous Systems of Linear Equations

Problem 23

For each of the following systems of linear equations, determine if the system is homogeneous:

For a system of linear equations to be homogeneous, the constant term of each equation must be zero.

23.a
$$\begin{cases} x+y-z=0\\ 2x+3y+z=0\\ x-y+2z=0 \end{cases}$$
 Homogeneous.

23.b
$$\begin{cases} x+3y-z=5\\ x+3y+8z=0\\ x-y+2z=0 \end{cases}$$
 Not homogeneous due to first equation.

23.c
$$\begin{cases} x+y-z=1\\ 3y+z=0\\ z=0 \end{cases}$$
 Not homogeneous due to first equation.

System Consistency

Problem 24

For each of the following systems of linear equations, determine if it is inconsistent or consistent:

An inconsistent system of linear equations has no solution and may be identified if it shows a contradiction when placed in row-echelon form.

24.a
$$\begin{cases} x + y - z = 1 \\ 2x + 3y + z = 6 \\ x - y + 2z = 2 \end{cases}$$

$$\begin{cases} x + y - z = 1 \\ 2x + 3y + z = 6 \\ x - y + 2z = 2 \end{cases} \xrightarrow{-2E_1 + E_2} + \frac{2x + 3y + z = 6}{y + 3z = 4}$$

$$\begin{cases} x + y - z = 1 \\ y + 3z = 4 \\ x - y + 2z = 2 \xrightarrow{-E_1 + E_3} \end{cases} \xrightarrow{-x - y + z = -1} + \frac{x - y + 2z = 2}{-2y + 3z = 1}$$

$$\begin{cases} x + y - z = 1 \\ y + 3z = 4 \\ -2y + 3z = 1 \xrightarrow{2E_2 + E_3} \end{cases} \xrightarrow{-2y + 6z = 8} + \frac{2y + 6z = 8}{-2y + 3z = 1}$$

$$\begin{cases} x + y - z = 1 \\ y + 3z = 4 \\ -2y + 3z = 1 \end{cases} \xrightarrow{-2E_3 + E_3} \xrightarrow{-2$$

24.b
$$\begin{cases} x + 3y - z = 5 \\ x + 3y + 8z = 0 \\ 0z = 0 \end{cases}$$

$$\begin{cases} x + 3y - z = 5 \\ x + 3y + 8z = 0 \end{cases} \xrightarrow{E_2 + (-E_1)} + \frac{x + 3y + 8z = 0}{9z = -5}$$

$$\begin{cases} x + 3y - z = 5 \\ 9z = -5 \end{cases} \xrightarrow{9z = -5}$$

$$\begin{cases} x + 3y - z = 5 \\ 9z = -5 \end{cases} \xrightarrow{0 = 0} z = -\frac{5}{9}$$

$$\begin{cases} x + 3y - z = 5 \\ 0 = 0 \end{cases} \xrightarrow{0} \text{Appears consistent; no contradictions.}$$

$$\begin{cases} x + 3y - z = 5 \\ 0 = 0 \end{cases} \xrightarrow{0} \text{Appears consistent; no contradictions.}$$

24.c
$$\begin{cases} x + y - z = 1 \\ 3y + z = 0 \\ 0z = 4 \end{cases}$$
 Inconsistent due to third equation; $0 \neq 4$.

Free Variables and Leading Unknowns (Pivots)

Problem 25

For each of the following systems of linear equations, identify the free variables and the leading unknowns:

25.a
$$\begin{cases} x + y - z = 1 \\ 3y + z = 0 \end{cases}$$

By inspection, Leading unknowns: x, yFree variables: z

25.b
$$\begin{cases} x + 3y - z + s - 2t = 5 \\ 2y + 8z + 2s + t = 4 \\ s + 2t = 1 \end{cases}$$

By inspection, Leading unknowns: x, y, sFree variables: z, t

25.c
$$x + y - z = 1$$

By inspection, Leading unknowns: xFree variables: y, z

Gaussian Elimination

Problem 26

Solve the following systems of linear equations using Gaussian elimination:

26.a
$$\begin{cases} x + 2y = 4 \\ 2x + y = 5 \end{cases}$$
$$\begin{cases} x + 2y = 4 \\ 2x + y = 5 \xrightarrow{E_2 + (-2E_1)} + (-2x - 4y) = -8 \\ -3y = -3 \end{cases}$$
$$\begin{cases} x + 2y = 4 \\ -3y = -3 \xrightarrow{-E_2/3} y = 1 \end{cases}$$
$$\begin{cases} x + 2y = 4 \\ y = 1 \end{cases}$$

If y = -1, we can substitute this into the first equation:

$$x + 2(1) = 4$$

$$x + 2 = 4$$

$$x + 2 - 2 = 4 - 2$$

$$x = 2$$

$$(2,1)$$

26.b
$$\begin{cases} x - 3y = -2 \\ 5x + y = 6 \end{cases}$$

$$\begin{cases} x - 3y = -2 \\ 5x + y = 6 \end{cases} \xrightarrow{E_2 - 5E_1} \frac{5x + y = 6}{16y = 16}$$

$$\begin{cases} x - 3y = -2 \\ 16y = 16 \end{cases} \xrightarrow{E_2/16} y = 1$$

$$\begin{cases} x - 3y = -2 \\ y = 1 \end{cases}$$

If y = 1, we can substitute into the first equation:

$$x - 3(1) = -2$$

$$x - 3 = -2$$

$$x - 3 + 3 = -2 + 3$$

$$x = 1$$

$$(1,1)$$

26.c
$$\begin{cases} x + 3y = 8 \\ 3x + y = 16 \end{cases}$$
$$\begin{cases} x + 3y = 8 \\ 3x + y = 16 \xrightarrow{E_2 - 3E_1} \frac{3x + y = 16}{-8y = -24} \\ -8y = -8 \xrightarrow{-E_2/8} y = 1 \end{cases}$$
$$\begin{cases} x + 3y = 8 \\ -8y = -8 \xrightarrow{-E_2/8} y = 1 \end{cases}$$
$$\begin{cases} x + 3y = 8 \\ y = 1 \end{cases}$$

If y = 1, we can substitute into the first equation:

$$x + 3(1) = 8$$

$$x + 3 = 8$$

$$x + 3 - 3 = 8 - 3$$

$$x = 5$$

$$(5,1)$$

26.d
$$\begin{cases} x + y - z = 1 \\ 2x + 3y + z = 6 \\ x - y + 2z = 2 \end{cases}$$

$$\begin{cases} x + y - z = 1 \\ 2x + 3y + z = 6 \end{cases} \xrightarrow{E_2 + (-2E_1)} \xrightarrow{+(-2x - 2y + 2z) = -2} \\ x - y + 2z = 2 \end{cases} \xrightarrow{y + 3z = 4}$$

$$\begin{cases} x + y - z = 1 \\ y + 3z = 4 \\ x - y + 2z = 2 \end{cases} \xrightarrow{E_3 + (-E_1)} \xrightarrow{-2y + 3z = 1}$$

$$\begin{cases} x + y - z = 1 \\ y + 3z = 4 \\ -2y + 3z = 1 \end{cases} \xrightarrow{E_3 + 2E_2} \xrightarrow{9z = 9}$$

$$\begin{cases} x + y - z = 1 \\ y + 3z = 4 \\ 9z = 9 \xrightarrow{E_3/9} z = 1 \end{cases}$$

$$\begin{cases} x + y - z = 1 \\ y + 3z = 4 \\ 2z = 1 \end{cases}$$

If z = 1, we can substitute into Equation 2:

$$y + 3(1) = 4$$

$$y + 3 = 4$$

$$y + 3 - 3 = 4 - 3$$

$$y = 1$$
If $y = 1$ and $z = 1$, we can substitute into Equation 1:
$$x + (1) - (1) = 1$$

$$x = 1$$

$$\boxed{(1,1,1)}$$

26.e
$$\begin{cases} x + 3y - z = 7 \\ 2x + 3y + z = 8 \\ 3x - y + 2z = 1 \end{cases}$$

$$\begin{cases} x + 3y - z = 7 \\ 2x + 3y + z = 8 \end{cases} \xrightarrow{E_2 - 2E_1} \frac{2x + 3y + z = 8}{-3y + 3z = -6}$$

$$\begin{cases} x + 3y - z = 7 \\ -3y + 3z = -6 \end{cases} \xrightarrow{E_2 - 2E_1} \frac{1}{-3y + 3z = -6}$$

$$\begin{cases} x + 3y - z = 7 \\ -3y + 3z = -6 \end{cases} \xrightarrow{E_2 / 3} y - z = 2$$

$$3x - y + 2z = 1 \end{cases}$$

$$\begin{cases} x + 3y - z = 7 \\ y - z = 2 \end{cases} \xrightarrow{-10y + 5z = -20}$$

$$\begin{cases} x + 3y - z = 7 \\ y - z = 2 \end{cases} \xrightarrow{-10y + 5z = -20}$$

$$\begin{cases} x + 3y - z = 7 \\ y - z = 2 \end{cases} \xrightarrow{-5z = 0} \xrightarrow{E_3 + 10E_2} \xrightarrow{-5z = 0}$$

$$\begin{cases} x + 3y - z = 7 \\ y - z = 2 \\ -5z = 0 \end{cases} \xrightarrow{E_3 / 5} z = 0$$

$$\begin{cases} x + 3y - z = 7 \\ y - z = 2 \\ z = 0 \end{cases}$$

If z = 0, we can substitute into the second equation:

$$y - (0) = 2$$

$$y = 2$$

If y = 2 and z = 0, we can substitute into the first equation:

$$x + 3(2) - (0) = 7$$

$$x + 6 = 7$$

$$x + 6 - 6 = 7 - 6$$
$$x = 1$$
$$(1,2,0)$$

26.f
$$\begin{cases} x + y - z = 0 \\ 5x - 3y + z = 2 \\ 3x - 2y + z = 2 \end{cases}$$

$$\begin{cases} x + y - z = 0 \\ 5x - 3y + z = 2 \end{cases} \xrightarrow{E_2 + (-5E_1)} + (-5x - 5y + 5z) = 0 \\ -8y + 6z = 2 \xrightarrow{-E_2/8} y - \frac{3}{4}z = -\frac{1}{4} \end{cases}$$

$$\begin{cases} x + y - z = 0 \\ -8y + 6z = 2 \xrightarrow{-E_2/8} y - \frac{3}{4}z = -\frac{1}{4} \end{cases}$$

$$\begin{cases} x + y - z = 0 \\ -8y + 6z = 2 \xrightarrow{-E_2/8} y - \frac{3}{4}z = -\frac{1}{4} \end{cases}$$

$$\begin{cases} x + y - z = 0 \\ y - \frac{3}{4}z = -\frac{1}{4} \\ -5y + 4z = 2 \end{cases} \xrightarrow{-5y + 4z = 2} \xrightarrow{-5y + 4z = 2} \end{cases}$$

$$\begin{cases} x + y - z = 0 \\ y - \frac{3}{4}z = -\frac{1}{4} \\ -5y + 4z = 2 \end{cases} \xrightarrow{\frac{1}{4}z = -\frac{5}{4}} \xrightarrow{\frac{1}{4}z = -\frac{5}{4}}$$

$$\begin{cases} x + y - z = 0 \\ y - \frac{3}{4}z = -\frac{1}{4} \\ \frac{1}{4}z = \frac{3}{4} \end{cases} \xrightarrow{\frac{4E_3}{3}} z = 3$$

$$\begin{cases} x + y - z = 0 \\ y - \frac{3}{4}z = -\frac{1}{4} \\ \frac{1}{4}z = \frac{3}{4} \end{cases} \xrightarrow{\frac{4E_3}{3}} z = 3$$

If z = 3, we can substitute into the second equation:

$$y - \frac{3}{4}(3) = -\frac{1}{4}$$
$$y - \frac{9}{4} = -\frac{1}{4}$$
$$y - \frac{9}{4} + \frac{9}{4} = -\frac{1}{4} + \frac{9}{4}$$

$$y = \frac{8}{4} = 2$$

If y = 2 and z = 3, we can substitute into the first equation:

$$x + (2) - (3) = 0$$

$$x - 1 = 0$$

$$x - 1 + 1 = 0 + 1$$

$$x = 1$$

Subspaces

Problem 27

Determine if any of the following sets are subspaces of \mathbb{R}^2 .

Four-step process to determine subspace status:

- Is the set a subset of the larger space?
- Does $\vec{0}$ exist in the set?
- For arbitrary \vec{p} and \vec{q} in the set, is $\vec{p} + \vec{q}$ also in the set?
- For arbitrary \vec{p} in the set, is $k\vec{p}$ also in the set?

27.a Is
$$W = \{(3x, 5y) : x \in \mathbb{R}, y \in \mathbb{R}\}$$
 a subspace of \mathbb{R}^2 ? Subset:

The elements of W are all 2-tuples, so W is a subset of \mathbb{R}^2 .

Identity property:

$$(0,0) = (3x_1, 5y_1)$$

$$3x_1 = 0 5y_1 = 0$$

$$x_1 = 0 \in \mathbb{R} \qquad \qquad y_1 = 0 \in \mathbb{R}$$

Set W contains $\vec{0}$.

Addition closure:

Let
$$\vec{p} = (3x_1, 5y_1)$$
 and $\vec{p} = (3x_2, 5y_2)$: $\vec{p} + \vec{q} = (3x_1 + 3x_2, 5y_1 + 5y_2)$ $\vec{p} + \vec{q} = (3(x_1 + x_2), 5(y_1 + y_2))$ $\vec{p} + \vec{q} = (3x_3, 5y_3)$: $x \in \mathbb{R}, y \in \mathbb{R}$ $\vec{p} + \vec{q} \in W$ Closed under addition.

Multiplication closure:

Let
$$\vec{p} = (3x_1, 5y_1)$$
:
 $k\vec{p} = k(3x_1, 5y_1)$
 $k\vec{p} = (3kx_1, 5ky_1)$
 $k\vec{p} = (3(kx_1), 5(ky_1))$
 $k\vec{p} = (3x_2, 5y_2)$: $x_2 \in \mathbb{R}, y_2 \in \mathbb{R}$
 $k\vec{p} \in W$ Closed under scalar multiplication.

W is a subspace of \mathbb{R}^2 .

27.b Is
$$W = \{(x, y + 1) : x \in \mathbb{R}, y \in \mathbb{R}\}$$
 a subspace of \mathbb{R}^2 ? Subset:

The elements of W are all 2-tuples, so W is a subset of \mathbb{R}^2 .

Identity Property:

$$(0,0) = (x_1, y_1 + 1)$$

$$x_1 = 0 \in \mathbb{R}$$

$$y_1 + 1 = 0$$

$$y_1 = -1 \in \mathbb{R}$$

Set W contains $\vec{0}$.

Addition closure.

Let
$$\vec{p} = (x_1, y_1 + 1)$$
 and $\vec{q} = (x_2, y_2 + 1)$:
 $\vec{p} + \vec{q} = (x_1 + x_2, (y_1 + 1) + (y_2 + 1))$
 $\vec{p} + \vec{q} = (x_1 + x_2, (y_1 + y_2) + 2)$
 $\vec{p} + \vec{q} = ((x_1 + x_2), (y_1 + y_2 + 1) + 1)$
 $\vec{p} + \vec{q} = (x_3, y_3 + 1)$: $x_3 \in \mathbb{R}, y_3 \in \mathbb{R}$
 $\vec{P} + \vec{Q} \in W$ Closed under addition.

Multiplication closure:

Let
$$\vec{p} = (x_1, y_1 + 1)$$
:
 $k\vec{p} = k(x_1, y_1 + 1)$
 $k\vec{p} = (kx_1, k(y_1 + 1))$
 $k\vec{p} = (kx_1, ky_1 + k)$
 $k\vec{p} = (kx_1, ky_1 + k - 1 + 1)$
 $k\vec{p} = (kx_1, (ky_1 + k - 1) + 1)$
 $k\vec{p} = (x_2, y_2 + 1)$: $x_2 \in \mathbb{R}, y_2 \in \mathbb{R}$
 $k\vec{p} \in W$ Closed under scalar multiplication.

W is a subspace of \mathbb{R}^2 .

27.c Is
$$W = \{10x : x \in \mathbb{R}\}$$
 a subspace of \mathbb{R}^2 ? Subset:

The elements of W are all 1-tuples, so W is *not* a subset of \mathbb{R}^2 .

W is *not* a subspace of \mathbb{R}^2 .

Linear Combination

Problem 28

For the following vector sets, determine whether \vec{w} is a linear combination of \vec{u} and \vec{v} .

28.a
$$\vec{w} = (0,2), \vec{u} = (1,3), \vec{v} = (2,4)$$

$$x\vec{u} + y\vec{v} = \vec{w}$$

$$a(1,3) + b(2,4) = (0,2)$$

$$\begin{cases} a + 2b = 0 \\ 3a + 4b = 2 \end{cases}$$

$$\begin{cases} a + 2b = 0 \\ 3a + 4b = 2 \end{cases} \xrightarrow{E_2 + (-3E_1)} \frac{3a + 4b = 2}{(-3a - 6b) = 0}$$

$$-2b = 2 \xrightarrow{-E_2/2} b = -1$$

$$\begin{cases} a + 2b = 0 \\ -2b = 2 \xrightarrow{-E_2/2} b = -1 \end{cases}$$

$$\begin{cases} a + 2b = 0 \\ b = -1 \end{cases}$$
If $b = -1$, we can substitute into the first equation: $a + 2(-1) = 0$

$$a - 2 = 0$$

$$a = 2$$

$$(2,-1) \rightarrow 2\vec{u} - \vec{v} = \vec{w}$$

linear combination

28.b
$$\vec{w} = (3,0), \vec{u} = (1,0), \vec{v} = (0,2)$$

$$a\vec{u} + b\vec{v} = \vec{w}$$

$$a(1,0) + b(0,2) = (3,0)$$

$$a + 0b = 3$$

$$\log a + 2b = 0$$

$$a = 3$$

$$\log b = 0$$

$$\begin{cases} a = 3 \\ 2b = 0 \xrightarrow{E_2 = E_2/2} b = 0 \end{cases}$$

$$\int a = 3$$

$$b = 0$$

$$(3,0) \rightarrow 3\vec{u} = \vec{w}$$

linear combination

28.c
$$\vec{w} = (5,2), \vec{u} = (1,0), \vec{v} = (0,1)$$

$$a\vec{u} + b\vec{v} = \vec{w}$$

$$a(1,0) + b(0,1) = (5,2)$$

$$(a + 0b = 5)$$

$$0a + b = 2$$

$$\int a = 5$$

$$b = 2$$

$$(5,2) \rightarrow 5\vec{u} + 2\vec{v} = \vec{w}$$

linear combination

28.d
$$\vec{w} = (1,2,0), \vec{u} = (1,0,0), \vec{v} = (0,1,0)$$

$$a\vec{u} + b\vec{v} = \vec{w}$$

$$a(1,0,0) + b(0,1,0) = (1,2,0)$$

$$(a + 0b = 1)$$

$$\{0a + b = 2$$

$$(0a + 0b = 0$$

$$(a = 1)$$

$$b = 2$$

$$0 = 0$$

$$(1,2,0) \to \vec{u} + 2\vec{v} = \vec{w}$$

linear combination

Linear Independence

Problem 29

For the following vector sets, determine if the vectors are linearly dependent or independent:

If a set of vectors are linearly independent, the only set of coefficients (c_n) for which the sum of products of the coefficients and the individual vectors will equal the zero vector is zero. That is $c_n=0$.

Declare coefficient variables, create summation, create equations for each vector component, solve resultant system.

29.a
$$\vec{a} = (1,3)$$
 and $\vec{b} = (2,3)$
$$c_1 \vec{a} + c_2 \vec{b} = \hat{0}$$

$$c_1(1,3) + c_2(2,3) = (0,0)$$

$$\begin{cases} c_1 + 2c_2 = 0 \\ 3c_1 + 3c_2 = 0 \end{cases} \xrightarrow{E_2 + (-3E_1)} \frac{3c_1 + 3c_2 = 0}{-3c_2 = 0}$$

$$\begin{cases} c_1 + 2c_2 = 0 \\ -3c_2 = 0 \xrightarrow{-E_2/3} c_2 = 0 \end{cases}$$

$$c_1 + 2c_2 = 0$$

$$c_1 + 2c_2 = 0$$

$$c_2 = 0$$

If $c_2 = 0$, we can substitute into the first equation:

$$c_1 + 2(0) = 0$$

 $c_1 + 0 = 0$
 $c_1 = 0$
 $c_1 = c_2 = 0$

Therefore, these two vectors are linearly **independent**.

29.b
$$\vec{a} = (6,4) \text{ and } \vec{b} = (12,8)$$

$$c_1 \vec{a} + c_2 \vec{b} = \hat{0}$$

$$c_1(6,4) + c_2(12,8) = (0,0)$$

$$\begin{cases} 6c_1 + 12c_2 = 0 \xrightarrow{E_1/6} c_1 + 2c_2 = 0 \\ 4c_1 + 8c_2 = 0 \end{cases}$$

$$\begin{cases} c_1 + 2c_2 = 0 \\ 4c_1 + 8c_2 = 0 \xrightarrow{E_2 + (-4E_1)} \xrightarrow{+(-4c_1 - 8c_2) = 0} 0 = 0 \end{cases}$$

$$\begin{cases} c_1 + 2c_2 = 0 \\ 0 = 0 \end{cases}$$

There is an infinite number of solutions, so these two vectors are linearly dependent.

$$29.c \quad \vec{a} = (1,5) \text{ and } \vec{b} = (3,4)$$

$$c_1 \vec{a} + c_2 \vec{b} = \hat{0}$$

$$c_1(1,5) + c_2(3,4) = (0,0)$$

$$\begin{cases} c_1 + 3c_2 = 0 \\ 5c_1 + 4c_2 = 0 \xrightarrow{E_2 + (53E_1)} \\ -11c_2 = 0 \end{cases} \xrightarrow{+(-5c_1 - 15c_2) = 0}$$

$$\begin{cases} c_1 + 3c_2 = 0 \\ -11c_2 = 0 \xrightarrow{-E_2/11} c_2 = 0 \end{cases}$$

$$\begin{cases} c_1 + 3c_2 = 0 \\ c_2 = 0 \end{cases}$$

If $c_2 = 0$, we can substitute into the first equation:

$$c_1 + 3(0) = 0$$

 $c_1 + 0 = 0$
 $c_1 = 0$
 $c_1 = c_2 = 0$

Therefore, these two vectors are linearly **independent**.

29.d
$$\vec{a} = (1,1,0), \vec{b} = (1,2,1), \text{ and } \vec{c} = (1,1,1)$$

$$e_1\vec{a} + e_2\vec{b} + e_3\vec{c} = \hat{0}$$

$$e_1(1,1,0) + e_2(1,2,1) + e_3(1,1,1) = (0,0,0)$$

$$\begin{cases} e_1 + e_2 + e_3 = 0 & e_1 + 2e_2 + e_3 = 0 \\ e_1 + 2e_2 + e_3 = 0 & \underbrace{E_2 + (-E_1)} + (-e_1 - e_2 - e_3) = 0 \\ e_2 + e_3 = 0 & e_2 = 0 \end{cases}$$

$$\begin{cases} e_1 + e_2 + e_3 = 0 & e_2 + e_3 = 0 \\ e_2 + e_3 = 0 & \underbrace{E_3 + (-E_2)} + (-e_2) = 0 \\ e_2 + e_3 = 0 & e_3 = 0 \end{cases}$$

$$\begin{cases} e_1 + e_2 + e_3 = 0 \\ e_2 + e_3 = 0 & e_3 = 0 \end{cases}$$

$$\begin{cases} e_1 + e_2 + e_3 = 0 \\ e_2 + e_3 = 0 & e_3 = 0 \end{cases}$$

If $e_2 = 0$ and $e_3 = 0$, we can substitute into the first equation:

$$e_1 + (0) + (0) = 0$$

 $e_1 = 0$
 $e_1 = e_2 = e_2 = 0$

Therefore, these three vectors are linearly **independent**.

9.e
$$\vec{a} = (1,1,1), \vec{b} = (1,2,0), \text{ and } \vec{c} = (0,-1,1)$$

$$e_1\vec{a} + e_2\vec{b} + e_3\vec{c} = \hat{0}$$

$$e_1(1,1,1) + e_2(1,2,0) + e_3(0,-1,1) = (0,0,0)$$

$$\begin{cases} e_1 + e_2 = 0 \\ e_1 + 2e_2 - e_3 = 0 & E_1 \leftrightarrow E_2 \\ e_1 + e_3 = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 & e_1 + e_3 = 0 \\ e_1 + e_2 = 0 & \xrightarrow{E_2 + (-E_1)} + (-e_1 - 2e_2 + e_3) = 0 \\ e_1 + e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_1 + e_3 = 0 & \xrightarrow{E_3 + (-E_1)} & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_1 + e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_1 + e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 & \xrightarrow{-2e_2 + 2e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 \end{cases}$$

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 \\ e_2 - e_3 = 0 \end{cases}$$

There is an infinite number of solutions, so these two vectors are linearly **dependent**.

29.f
$$\vec{a} = (1,2,3), \vec{b} = (3,2,9), \text{ and } \vec{c} = (5,2,-1)$$

$$e_1\vec{a} + e_2\vec{b} + e_3\vec{c} = \hat{0}$$

$$e_1(1,2,3) + e_2(3,2,9) + e_3(5,2,-1) = (0,0,0)$$

$$\begin{cases} e_1 + 3e_2 + 5e_3 = 0 & 2e_1 + 2e_2 + 2e_3 = 0 \\ 2e_1 + 2e_2 + 2e_3 = 0 & \frac{E_2 + (-2E_1)}{2} + (-2e_1 - 6e_2 - 10e_3) = 0 \\ 3e_1 + 9e_2 - e_3 = 0 & -4e_2 - 8e_3 = 0 \end{cases}$$

$$\begin{cases} e_1 + 3e_2 + 5e_3 = 0 & -4e_2 - 8e_3 = 0 \\ 3e_1 + 9e_2 - e_3 = 0 & 3e_1 + 9e_2 - e_3 = 0 \end{cases}$$

$$\begin{cases} e_1 + 3e_2 + 5e_3 = 0 & 3e_1 + 9e_2 - e_3 = 0 \\ 3e_1 + 9e_2 - e_3 = 0 & \frac{4(-3e_1 - 9e_2 - 15e_3) = 0}{2} & -16e_3 = 0 \end{cases}$$

$$\begin{cases} e_1 + 3e_2 + 5e_3 = 0 \\ e_2 + 2e_3 = 0 \\ -16e_3 = 0 \xrightarrow{-E_3/16} e_3 = 0 \end{cases}$$

$$\begin{cases} e_1 + 3e_2 + 5e_3 = 0 \\ e_2 + 2e_3 = 0 \\ e_3 = 0 \end{cases}$$

If $e_3 = 0$, we can substitute into the second equation:

$$e_2 + 2(0) = 0$$

$$e_2 + 0 = 0$$

$$e_2 = 0$$

If $e_2 = 0$ and $e_3 = 0$, we can substitute into the first equation:

$$e_1 + 3(0) + 5(0) = 0$$

$$e_1 + 0 + 0 = 0$$

$$e_1 = 0$$

$$e_1 = e_2 = e_3 = 0$$
 linearly **independent**

29.g
$$\vec{a} = (1,2,3), \vec{b} = (3,2,1), \text{ and } \vec{c} = (0,4,8)$$

$$e_1\vec{a} + e_2\vec{b} + e_3\vec{c} = \hat{0}$$

$$e_1(1,2,3) + e_2(3,2,1) + e_3(0,4,8) = (0,0,0)$$

$$\begin{cases} e_1 + 3e_2 = 0 & 2e_1 + 2e_2 + 4e_3 = 0 \\ 2e_1 + 2e_2 + 4e_3 = 0 & \xrightarrow{E_2 + (-2E_1)} + (-2e_1 - 6e_2) = 0 \\ 3e_1 + e_2 + 8e_3 = 0 & \xrightarrow{-4e_2 + 4e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 3e_2 = 0 \\ -4e_2 + 4e_3 = 0 & \xrightarrow{-E_2/4} e_2 - e_3 = 0 \end{cases}$$

$$\begin{cases} e_1 + 3e_2 = 0 & 3e_1 + e_2 + 8e_3 = 0 \\ e_2 - e_3 = 0 & +(-3e_1 - 9e_2) = 0 \\ 3e_1 + e_2 + 8e_3 = 0 & \xrightarrow{-8e_2 + 8e_3} = 0 \end{cases}$$

$$\begin{cases} e_1 + 3e_2 = 0 & -8e_2 + 8e_3 = 0 \\ e_2 - e_3 = 0 & -8e_2 + 8e_3 = 0 \\ -8e_2 + 8e_3 = 0 & 0 & 0 = 0 \end{cases}$$

There is an infinite number of solutions, so these two vectors are linearly **dependent**.

Basis of a Vector Space

Problem 30

For the following vector sets, determine if the set is a basis for the subsequent set:

Check that the vector set is linearly independent.

Show that any arbitrary vector can be expressed as multiples of the vectors in the subject set.

30.a
$$\vec{a} = (1,3) \text{ and } \vec{b} = (2,3) \text{ for } \mathbb{R}^2$$

Linear independence:

$$e_{1}\vec{a} + e_{2}\vec{b} = \hat{0}$$

$$e_{1}(1,3) + e_{2}(2,3) = (0,0)$$

$$\begin{cases} e_{1} + 2e_{2} = 0 \\ 3e_{1} + 3e_{2} = 0 \end{cases}$$

$$\begin{cases} e_{1} + 2e_{2} = 0 \\ 3e_{1} + 3e_{2} = 0 \end{cases} \xrightarrow{E_{2} + (-3E_{1})} \xrightarrow{+(-3e_{1} - 6e_{2}) = 0} \xrightarrow{-3e_{2} = 0}$$

$$\begin{cases} e_{1} + 2e_{2} = 0 \\ -3e_{2} = 0 \xrightarrow{-E_{2}/3} e_{2} = 0 \end{cases}$$

$$\begin{cases} e_{1} + 2e_{2} = 0 \\ e_{2} = 0 \end{cases}$$

If $e_2 = 0$, we can substitute into the first equation:

$$e_1 + 2(0) = 0$$

 $e_1 + 0 = 0$
 $e_1 = 0$

 $e_1=e_2=0\Rightarrow$ linearly independent

Span:

$$\vec{v} = (r, s)$$

$$x(1,3) + y(2,3) = (r, s)$$

$$\begin{cases} x + 2y = r \\ 3x + 3y = s \end{cases}$$

$$\begin{cases} x + 2y = r \\ 3x + 3y = s \end{cases} \xrightarrow{E_2 + (-3E_1)} \frac{3x + 3y = s}{+(-3x - 6y) = -3r} \xrightarrow{-3y = s - 3r}$$

$$\begin{cases} x + 2y = r \\ -3y = s - 3r \xrightarrow{-E_2/3} y = r - \frac{1}{3}s \end{cases}$$

$$\begin{cases} x + 2y = r \\ y = r - \frac{1}{3}s \end{cases}$$

If $y = r - \frac{1}{3}s$, we can substitute into the first equation:

$$x + 2\left(r - \frac{1}{3}s\right) = r$$

$$x + 2r - \frac{2}{3}s = r$$

$$x + 2r - \frac{2}{3}s + \frac{2}{3}s = r + \frac{2}{3}s$$

$$x + 2r = r + \frac{2}{3}s$$

$$x + 2r - 2r = r - 2r + \frac{2}{3}s$$

$$x = \frac{2}{3}s - r$$

$$\left(\frac{2}{3}s - r, r - \frac{1}{3}s\right) \Rightarrow \vec{a} \text{ and } \vec{b} \text{ span } \mathbb{R}^2$$

Since \vec{a} and \vec{b} are linearly independent and span \mathbb{R}^2 , they do form a basis for \mathbb{R}^2 .

30.b
$$\vec{a} = (6,4) \text{ and } \vec{b} = (12,8) \text{ for } \mathbb{R}^2$$

Linear independence:

$$e_{1}\vec{a} + e_{2}\vec{b} = \hat{0}$$

$$e_{1}(6,4) + e_{2}(12,8) = (0,0)$$

$$\begin{cases} 6e_{1} + 12e_{2} = 0 \\ 4e_{1} + 8e_{2} = 0 \end{cases}$$

$$\begin{cases} 6e_{1} + 12e_{2} = 0 \xrightarrow{E_{1}/6} e_{1} + 2e_{2} = 0 \\ 4e_{1} + 8e_{2} = 0 \end{cases}$$

$$\begin{cases} e_{1} + 2e_{2} = 0 \\ 4e_{1} + 8e_{2} = 0 \end{cases}$$

$$\begin{cases} e_{1} + 2e_{2} = 0 \\ 4e_{1} + 8e_{2} = 0 \end{cases}$$

$$\begin{cases} e_{1} + 2e_{2} = 0 \\ 4e_{1} + 8e_{2} = 0 \end{cases}$$

$$\begin{cases} e_{1} + 2e_{2} = 0 \\ 0 = 0 \end{cases}$$

There is an infinite number of solutions, so \vec{a} and \vec{b} are not linearly independent, so they **cannot be a basis** for \mathbb{R}^2 .

30.c
$$\vec{a} = (1,5)$$
 and $\vec{b} = (3,4)$ for \mathbb{R}^2

Linear independence:

$$\begin{split} e_1\vec{a} + e_2\vec{b} &= \hat{0} \\ e_1(1,5) + e_2(3,4) &= (0,0) \\ \left\{ \begin{array}{l} e_1 + 3e_2 &= 0 \\ 5e_1 + 4e_2 &= 0 \end{array} \right. \\ \left\{ \begin{array}{l} 5e_1 + 4e_2 &= 0 \\ 5e_1 + 4e_2 &= 0 \end{array} \right. \\ \left\{ \begin{array}{l} 5e_1 + 4e_2 &= 0 \\ -11e_2 &= 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 &= 0 \\ -11e_2 &= 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 &= 0 \\ -11e_2 &= 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 &= 0 \\ -11e_2 &= 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 &= 0 \\ -11e_2 &= 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 &= 0 \\ -12e_2 &= 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 &= 0 \\ -12e_2 &= 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 &= 0 \\ -12e_2 &= 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 &= 0 \\ -12e_2 &= 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 &= 0 \\ -12e_2 &= 0 \end{array} \right. \end{split}$$

If $e_2 = 0$, we can substitute into the first equation:

$$e_1 + 3(0) = 0$$

 $e_1 + 0 = 0$
 $e_1 = 0$

Since $e_1 = e_2 = 0$, \vec{a} and \vec{b} are linearly independent.

Span:

$$\vec{v} = (r, s)$$

$$x(1,5) + y(3,4) = (r, s)$$

$$\begin{cases} x + 3y = r \\ 5x + 4y = s \end{cases}$$

$$\begin{cases} x + 3y = r \\ 5x + 4y = s \xrightarrow{E_2 + (-5E_1)} \end{cases} \xrightarrow{+(-5x - 15y) = -5r} \xrightarrow{-11y = s - 5r}$$

$$\begin{cases} x + 3y = r \\ -11y = s - 5r \end{cases}$$

$$\begin{cases} x + 3y = r \\ -11y = s - 5r \xrightarrow{-E_2/11} y = \frac{5}{11}r - \frac{1}{11}s \end{cases}$$

$$\begin{cases} x + 3y = r \\ y = \frac{5}{11}r - \frac{1}{11}s \end{cases}$$

Since $y = \frac{5}{11}r - \frac{1}{11}s$, we can substitute into the first equation:

$$\begin{aligned} x + 3\left(\frac{5}{11}r - \frac{1}{11}s\right) &= r \\ x + \frac{15}{11}r - \frac{3}{11}s &= r \\ x + \frac{15}{11}r - \frac{3}{11}s + \frac{3}{11}s &= r + \frac{3}{11}s \\ x + \frac{15}{11}r - \frac{15}{11}r &= r - \frac{15}{11}r + \frac{3}{11}s \\ x &= \frac{3}{11}s - \frac{4}{11}r \\ \left(\frac{3}{11}s - \frac{4}{11}r, \frac{5}{11}r - \frac{1}{11}s\right) \Longrightarrow \vec{a} \text{ and } \vec{b} \text{ span } \mathbb{R}^2. \end{aligned}$$

Since \vec{a} and \vec{b} are linearly independent and span \mathbb{R}^2 , \vec{a} and \vec{b} are a basis for \mathbb{R}^2 .

30.d
$$\vec{a}=(1,1,0), \vec{b}=(1,2,1), \text{ and } \vec{c}=(1,1,1) \text{ for } \mathbb{R}^3$$

Linear independence:

$$\begin{cases} e_1 + e_2 + e_3 = 0 \\ e_2 + e_3 = 0 \\ -e_3 = 0 \end{cases}$$

$$\begin{cases} e_1 + e_2 + e_3 = 0 \\ e_2 + e_3 = 0 \\ -e_3 = 0 \xrightarrow{-E_3} e_3 = 0 \end{cases}$$

$$\begin{cases} e_1 + e_2 + e_3 = 0 \\ e_2 + e_3 = 0 \\ e_3 = 0 \end{cases}$$

Since $e_3 = 0$, we can substitute into the second equation:

$$e_2 + (0) = 0$$

$$e_2 = 0$$

Since $e_2 = 0$ and $e_3 = 0$, we can substitute into the first equation:

$$e_1 + (0) + (0) = 0$$

$$e_1 = 0$$

Since $e_1 = e_2 = e_3 = 0$, \vec{a} and \vec{b} and \vec{c} are linearly independent.

Span:

$$\vec{v} = (r, s, t)$$

$$x(1,1,0) + y(1,2,1) + z(1,1,1) = (r, s, t)$$

$$\begin{cases}
x + y + z = r \\
x + 2y + z = s \\
y + z = t
\end{cases}$$

$$\begin{cases}
x + y + z = r \\
x + 2y + z = s
\end{cases} \xrightarrow{E_2 + (-E_1)} \xrightarrow{-x - y - z = -r} y = s - r$$

$$\begin{cases}
x + y + z = r \\
y + z = t
\end{cases} \xrightarrow{y = s - r} y + z = t$$

$$\begin{cases}
x + y + z = r \\
y = s - r \\
y + z = t
\end{cases} \xrightarrow{y + z = t} \xrightarrow{-y = r - s} z = r + t - s$$

$$\begin{cases}
x + y + z = r \\
y = s - r \\
z = r + t - s
\end{cases}$$

If y = s - r and z = r + t - s, we can substitute into the first equation:

$$x + (s - r) + (r + t - s) = r$$

$$x+s-r+r+t-s=r$$

$$x-r+r+s-s+t=r$$

$$x+t=r$$

$$x=r-t$$

$$(r-t,s-r,r+t-s)\Rightarrow \text{this vector set spans }\mathbb{R}^3.$$

Since this vector set is linearly independent and spans \mathbb{R}^3 , it **is a basis** for \mathbb{R}^3 .

$$\begin{cases} e_1 + 2e_2 - e_3 = 0 & -2e_2 + 2e_3 = 0 \\ e_2 - e_3 = 0 & 2e_2 - 2e_3 = 0 \\ -2e_2 + 2e_3 = 0 & E_3 + 2E_2 & 0 = 0 \end{cases}$$

There is an infinite number of solutions for this system of equations, so this vector set is not linearly independent.

Since this vector set is not linearly independent, it is **not a basis** for \mathbb{R}^3 .

30.f
$$\vec{a}=(1,2,3), \vec{b}=(3,2,9), \text{ and } \vec{c}=(5,2,-1) \text{ for } \mathbb{R}^3$$
 Linear independence:
$$e_1\vec{a}+e_2\vec{b}+e_3\vec{c}=\hat{0}$$

$$e_1(1,2,3)+e_2(3,2,9)+e_3(5,2,-1)=(0,0,0)$$

$$\left\{ \begin{array}{l} e_1+3e_2-e_3=0\\ 2e_1+2e_2+2e_3=0\\ 3e_1+9e_2-e_3=0 \end{array} \right.$$

$$\left\{ \begin{array}{l} 2e_1+2e_2+2e_3=0\\ 2e_1+2e_2+2e_3=0\\ 3e_1+9e_2-e_3=0 \end{array} \right.$$

$$\left\{ \begin{array}{l} 2e_1+2e_2+2e_3=0\\ 2e_1+2e_2+2e_3=0\\ 3e_1+9e_2-e_3=0 \end{array} \right.$$

$$\left\{ \begin{array}{l} 2e_1+2e_2+2e_3=0\\ 2e_1+2e_2+2e_3=0\\ 3e_1+9e_2-e_3=0 \end{array} \right.$$

$$\left\{ \begin{array}{l} e_1+3e_2-e_3=0\\ -4e_2+4e_3=0 \end{array} \right.$$

$$\left\{ \begin{array}{l} e_1+3e_2-e_3=0\\ 3e_1+9e_2-e_3=0 \end{array} \right.$$

$$\left\{ \begin{array}{l} 3e_1+9e_2-e_3=0\\ 3e_1+9e_2-e_3=0 \end{array} \right.$$

$$\left\{ \begin{array}{l} e_1+3e_2-e_3=0\\ 2e_3=0 \end{array} \right.$$

Since $e_3 = 0$, we can substitute into the second equation:

$$e_2 - (0) = 0$$

$$e_2 = 0$$

Since $e_2=0$ and $e_3=0$, we can substitute into the first equation:

$$e_1 + 3(0) - (0) = 0$$

$$e_1 = 0$$

Since $e_1=e_2=e_3=0$, this vector set is linearly independent.

Span:

$$\vec{v} = (r, s, t)$$

$$x(1,2,3) + y(3,2,9) + z(5,2,-1) = (r, s, t)$$

$$\begin{cases}
x + 3y + 5z = r \\
2x + 2y + 2z = s \\
3x + 9y - z = t
\end{cases}$$

$$\begin{cases}
x + 3y + 5z = r \\
2x + 2y + 2z = s
\end{cases}$$

$$\begin{cases}
x + 3y + 5z = r \\
2x + 2y + 2z = s
\end{cases}$$

$$\begin{cases}
x + 3y + 5z = r \\
-4y - 8z = s - 2r
\end{cases}$$

$$\begin{cases}
x + 3y + 5z = r \\
-4y - 8z = s - 2r
\end{cases}$$

$$3x + 9y - z = t$$

$$\begin{cases}
x + 3y + 5z = r \\
-4y - 8z = s - 2r
\end{cases}$$

$$3x + 9y - z = t$$

$$\begin{cases}
x + 3y + 5z = r \\
-4y - 8z = s - 2r
\end{cases}$$

$$3x + 9y - z = t$$

$$\begin{cases}
x + 3y + 5z = r \\
y + 2z = \frac{1}{2}r - \frac{1}{4}s
\end{cases}$$

$$3x + 9y - z = t$$

$$\begin{cases}
x + 3y + 5z = r \\
y + 2z = \frac{1}{2}r - \frac{1}{4}s
\end{cases}$$

$$3x + 9y - z = t$$

$$\begin{cases}
x + 3y + 5z = r \\
y + 2z = \frac{1}{2}r - \frac{1}{4}s
\end{cases}$$

$$-16z = t - 3r$$

$$\begin{cases}
x + 3y + 5z = r \\
y + 2z = \frac{1}{2}r - \frac{1}{4}s
\end{cases}$$

$$-16z = t - 3r$$

$$\begin{cases}
x + 3y + 5z = r \\
y + 2z = \frac{1}{2}r - \frac{1}{4}s
\end{cases}$$

$$-16z = t - 3r$$

$$\begin{cases}
x + 3y + 5z = r \\
y + 2z = \frac{1}{2}r - \frac{1}{4}s
\end{cases}$$

$$-16z = t - 3r$$

$$\begin{cases}
x + 3y + 5z = r \\
y + 2z = \frac{1}{2}r - \frac{1}{4}s
\end{cases}$$

$$-16z = t - 3r$$

$$\begin{cases} x + 3y + 5z = r \\ y + 2z = \frac{1}{2}r - \frac{1}{4}s \\ z = \frac{3}{16}r - \frac{1}{16}t \end{cases}$$

If $z = \frac{3}{16}r - \frac{1}{16}t$, we can substitute into the second equation:

$$y + 2\left(\frac{3}{16}r - \frac{1}{16}t\right) = \frac{1}{2}r - \frac{1}{4}s$$

$$y + \frac{3}{8}r - \frac{1}{8}t = \frac{1}{2}r - \frac{1}{4}s$$

$$y = \frac{1}{2}r - \frac{3}{8}r - \frac{1}{4}s + \frac{1}{8}t$$

$$y = \frac{1}{8}r - \frac{1}{4}s + \frac{1}{8}t$$

If $y = \frac{1}{8}r - \frac{1}{4}s + \frac{1}{8}t$ and $z = \frac{3}{16}r - \frac{1}{16}t$, we can substitute into the first equation:

$$x + 3\left(\frac{1}{8}r - \frac{1}{4}s + \frac{1}{8}t\right) + 5\left(\frac{3}{16}r - \frac{1}{16}t\right) = r$$

$$x + \frac{3}{8}r - \frac{3}{4}s + \frac{3}{8}t + \frac{15}{16}r - \frac{5}{16}t = r$$

$$x + \frac{3}{8}r + \frac{15}{16}r - \frac{3}{4}s + \frac{3}{8}t - \frac{5}{16}t = r$$

$$x + \frac{21}{16}r - \frac{3}{4}s + \frac{1}{16}t = r$$

$$x = r - \frac{21}{16}r + \frac{3}{4}s - \frac{1}{16}t$$

$$x = \frac{3}{4}s - \frac{5}{16}r - \frac{1}{16}t$$

$$\left(\frac{3}{4}s - \frac{5}{16}r - \frac{1}{16}t, \frac{1}{8}r - \frac{1}{4}s + \frac{1}{8}t, \frac{3}{16}r - \frac{1}{16}t\right) \Rightarrow \text{this vector set spans } \mathbb{R}^3.$$

Since this vector set is linearly independent and spans \mathbb{R}^3 , it is a basis for \mathbb{R}^3 .

30.g
$$\vec{a}=(1,2,3), \, \vec{b}=(3,2,1), \, \text{and} \, \vec{c}=(0,4,8) \, \text{for} \, \mathbb{R}^3$$

Linear independence:

$$\begin{array}{l} e_1\vec{a} + e_2\vec{b} + e_3\vec{c} = \hat{0} \\ e_1(1,2,3) + e_2(3,2,1) + e_3(0,4,8) = (0,0,0) \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ 2e_1 + 2e_2 + 4e_3 = 0 \\ 3e_1 + e_2 + 8e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ 3e_1 + 2e_2 + 4e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ 2e_1 + 2e_2 + 4e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ 3e_1 + e_2 + 8e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ -4e_2 + 4e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ -4e_2 + 4e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ -4e_2 + 4e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ -2e_2 + 3e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_2 - e_3 = 0 \\ e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_2 - e_3 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_1 + 3e_2 = 0 \end{array} \right. \\ \left\{ \begin{array}{l} e_2 - e_3 =$$

There is an infinite number of solutions for this system of equations, so this vector set is not linearly independent. So this set is **not a basis** for \mathbb{R}^3 .

Dimension of a Vector Space

Problem 31

For the following subspace bases, determine the dimension:

The dimension of a subspace basis is the number of vectors in the basis.

31.a
$$B = \{\vec{a}, \vec{b}\} = \{(1,3), (2,3)\}$$

By inspection $dim(B) = 2$.

31.b
$$B = \{\vec{a}, \vec{b}, \vec{c}\} = \{(1,1,0), (1,2,1), (1,1,1)\}$$

By inspection, $dim(B) = 3$.

31.c
$$B = \{1, x, x^2, x^3, x^4\}$$

By inspection, $dim(B) = 5$.

31.d
$$B = \{\vec{a}, \vec{b}, \vec{c}, \vec{d}\} = \{(1,0,0,0), (0,2,0,0), (0,0,1,0), (0,0,0,3)\}$$

By inspection, $dim(B) = 4$.

Inner Product Space

Problem 32

Given $\vec{a}=(2,1,2), \vec{b}=(1,0,-1),$ and $\vec{c}=(1,-1,1),$ compute the following inner products:

32.a
$$\langle \vec{a}, \vec{c} \rangle$$
 32.b $\langle \vec{b}, \vec{c} \rangle$ 32.b $\langle \vec{b}, \vec{c} \rangle = b_x c_x + b_y c_y + b_z c_z$ $\langle \vec{a}, \vec{c} \rangle = (2)(1) + (1)(-1) + (2)(1)$ $\langle \vec{a}, \vec{c} \rangle = 2 + (-1) + 2$ $\langle \vec{b}, \vec{c} \rangle = (1)(1) + (0)(-1) + (-1)(1)$ $\langle \vec{b}, \vec{c} \rangle = 1 + 0 + (-1)$

32.c
$$\langle 5\vec{a} - 2\vec{b}, \vec{c} \rangle$$

 $\langle 5\vec{a} - 2\vec{b}, \vec{c} \rangle = (5a_x - 2b_x)c_x + (5a_y - 2b_y)c_y + (5a_z - 2b_z)c_z$
 $\langle 5\vec{a} - 2\vec{b}, \vec{c} \rangle = [5(2) - 2(1)](1) + [5(1) - 2(0)](-1) + [5(2) - 2(-1)](1)$
 $\langle 5\vec{a} - 2\vec{b}, \vec{c} \rangle = (10 - 2)(1) + (5 - 0)(-1) + (10 + 2)(1)$
 $\langle 5\vec{a} - 2\vec{b}, \vec{c} \rangle = (8)(1) + (5)(-1) + (12)(1)$
 $\langle 5\vec{a} - 2\vec{b}, \vec{c} \rangle = 8 - 5 + 12$
 $\langle 5\vec{a} - 2\vec{b}, \vec{c} \rangle = 15$

32.d
$$\sqrt{\langle \vec{a}, \vec{a} \rangle} = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

$$\sqrt{\langle \vec{a}, \vec{a} \rangle} = \sqrt{(2)^2 + (1)^2 + (2)^2}$$

$$\sqrt{\langle \vec{a}, \vec{a} \rangle} = \sqrt{4 + 1 + 4}$$

$$\sqrt{\langle \vec{a}, \vec{a} \rangle} = \sqrt{9}$$

$$\sqrt{\langle \vec{a}, \vec{a} \rangle} = 3$$

Given $f(x) = 5x^2$ and $g(x) = x^3$ with inner product $\langle f, g \rangle = \int_{-1}^1 f(x)g(x)dx$, find:

33.a
$$\langle f, g \rangle$$

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

$$\langle f, g \rangle = \int_{-1}^{1} (5x^{2})(x^{3})dx$$

$$\langle f, g \rangle = \int_{-1}^{1} 5x^{5}dx$$

$$\langle f, g \rangle = \left[\frac{5}{6}x^{6}\right]_{-1}^{1}$$

$$\langle f, g \rangle = \left[\frac{5}{6}(1)^{6}\right] - \left[\frac{5}{6}(-1)^{6}\right]$$

$$\langle f, g \rangle = \frac{5}{6} - \frac{5}{6}$$

$$\overline{\langle f, g \rangle} = 0$$

33.b
$$||f||$$

$$||f|| = \sqrt{f,f}$$

$$||f|| = \sqrt{(5x^2, 5x^2)}$$

$$||f|| = \sqrt{\int_{-1}^{1} (5x^2)(5x^2) dx}$$

$$||f|| = \sqrt{\int_{-1}^{1} 25x^4 dx}$$

$$||f|| = \sqrt{\frac{25}{5}x^5} \Big|_{-1}^{1}$$

$$||f|| = \sqrt{5x^5} \Big|_{-1}^{1}$$

$$||f|| = \sqrt{[5(1)^5] - [5(-1)^5]}$$

$$||f|| = \sqrt{5} - (-5)$$

$$||f|| = \sqrt{10}$$

33.c
$$\hat{f}$$

$$\hat{f} = \frac{f(x)}{\|f\|}$$

$$\hat{f} = \frac{5x^2}{\sqrt{10}}$$

$$\hat{f} = \frac{5\sqrt{10}x^2}{10}$$

$$\hat{f} = \frac{\sqrt{10}}{2}x^2$$

Given f(x) = x and g(x) = x + 2 with inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$, find:

34.a
$$\langle f, g \rangle$$

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx$$

$$\langle f, g \rangle = \int_0^1 (x)(x+2)dx$$

$$\langle f, g \rangle = \int_0^1 (x^2 + 2x)dx$$

$$\langle f, g \rangle = \frac{1}{3}x^3 + x^2 \Big|_0^1$$

$$\langle f, g \rangle = \left[\frac{1}{3}(1)^3 + (1)^2\right] - \left[\frac{1}{3}(0)^3 + (0)^2\right]$$

$$\langle f, g \rangle = \frac{4}{3}$$

34.b
$$||f|| = \sqrt{\langle f, f \rangle}$$

$$||f|| = \sqrt{\langle x, x \rangle}$$

$$||f|| = \sqrt{\int_0^1 x^2 dx}$$

$$||f|| = \sqrt{\frac{x^3}{3}} \Big|_0^1$$

$$||f|| = \sqrt{\left[\frac{(1)^3}{3}\right] - \left[\frac{(0)^3}{3}\right]}$$

$$||f|| = \sqrt{\frac{1}{3} - 0}$$

$$||f|| = \sqrt{\frac{1}{3}}$$

$$||f|| = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \approx .577$$

34.c
$$\hat{f}$$

$$\hat{f} = \frac{f(x)}{\|f\|}$$

$$\hat{f} = \frac{x}{1/\sqrt{3}}$$

$$\hat{f} = \sqrt{3} \cdot x$$

Given $f(x) = \cos(x)$ and $g(x) = \sin(x)$ with inner product $\langle f, g \rangle = \int_0^{\pi/2} f(x)g(x) \, dx$:

35.a Find $\langle f, g \rangle$.

$$\langle f, g \rangle = \int_{0}^{\pi/2} [\cos(x)][\sin(x)] dx$$

$$u = \cos(x)$$

$$\frac{du}{dx} = \sin(x)$$

$$dx = \frac{du}{\sin(x)}$$

$$\langle f, g \rangle = \int_{x=0}^{x=\pi/2} u \sin(x) \cdot \frac{du}{\sin(x)}$$

$$\langle f, g \rangle = \int_{x=0}^{x=\pi/2} u du$$

$$\langle f, g \rangle = \frac{1}{2} u^{2} \Big|_{x=0}^{x=\pi/2}$$

$$\langle f, g \rangle = \left[\frac{1}{2} \cos^{2}(x) \right]_{0}^{\pi/2}$$

$$\langle f, g \rangle = \left[\frac{1}{2} \cos^{2}(\frac{\pi}{2}) \right] - \left[\frac{1}{2} \cos^{2}(0) \right]$$

$$\langle f, g \rangle = \left[\frac{1}{2} (0)^{2} \right] - \left[\frac{1}{2} (1)^{2} \right]$$

$$\langle f, g \rangle = -\frac{1}{2}$$

35.b
$$||f||$$
.

$$||f|| = \sqrt{\langle f, f \rangle}$$

$$||f|| = \sqrt{\langle \cos(x), \cos(x) \rangle}$$

$$||f|| = \sqrt{\int\limits_0^{\pi/2} \cos^2(x) \, dx}$$

$$||f|| = \sqrt{\int_{0}^{\pi/2} \left[\frac{1 + \cos(2x)}{2} \right] dx}$$

$$||f|| = \sqrt{\int_{0}^{\pi/2} \left[\frac{1}{2} + \frac{1}{2}\cos(2x)\right] dx}$$

$$u = 2x$$

$$\frac{du}{dx} = 2$$

$$dx = \frac{du}{2}$$

$$||f|| = \sqrt{\int_{x=0}^{x=\pi/2} \left[\frac{1}{2} + \frac{1}{2}\cos(u)\right] \cdot \frac{du}{2}}$$

$$||f|| = \sqrt{\int_{x=0}^{x=\pi/2} \left[\frac{1}{4} + \frac{1}{4}\cos(u)\right] du}$$

$$||f|| = \sqrt{\frac{1}{4}u + \frac{1}{4}\sin(u)\Big|_{x=0}^{x=\pi/2}}$$

$$||f|| = \sqrt{\frac{1}{4}(2x) + \frac{1}{4}\sin(2x)\Big|_0^{\pi/2}}$$

$$||f|| = \sqrt{\frac{1}{2}x + \frac{1}{4}\sin(2x)\Big|_0^{\pi/2}}$$

$$||f|| = \sqrt{\left[\frac{1}{2}\left(\frac{\pi}{2}\right) + \frac{1}{4}\sin\left(2\left(\frac{\pi}{2}\right)\right)\right] - \left[\frac{1}{2}(0) + \frac{1}{4}\sin(2(0))\right]}$$

$$||f|| = \sqrt{\left[\frac{1}{2}\left(\frac{\pi}{2}\right) + \frac{1}{4}\sin(\pi)\right] - \left[\frac{1}{2}(0) + \frac{1}{4}\sin(0)\right]}$$

$$||f|| = \sqrt{\left[\frac{\pi}{4} + \frac{1}{4}(0)\right] - \left[0 + \frac{1}{4}(0)\right]}$$

$$||f|| = \sqrt{\left[\frac{\pi}{4} + 0\right] - \left[0 + 0\right]}$$

$$||f|| = \sqrt{\frac{\pi}{4}}$$

$$||f|| = \frac{\sqrt{\pi}}{2}$$

35.c
$$\hat{f}$$

$$\hat{f} = \frac{f(x)}{\|f\|}$$

$$\hat{f} = \frac{\cos(x)}{\frac{\sqrt{\pi}}{2}}$$

$$\hat{f} = \cos(x) \cdot \frac{2}{\sqrt{\pi}}$$

$$\hat{f} = \frac{2}{\sqrt{\pi}}\cos(x) = \frac{2\sqrt{\pi}}{\pi}\cos(x)$$

Given $p = 1 + 2x + x^2 + x^3$ and $q = 1 + 5x^2 + x^3$, compute (p, q).

Inner Product of Polynomial Space

$$p = a_0 x^0 + a_1 x^1 + a_2 x^2 + a_3 x^3$$
 $q = b_0 x^0 + b_1 x^1 + b_2 x^2 + b_3 x^3$ $a_0 = 1$ $b_0 = 1$ $a_1 = 2$ $b_1 = 0$ $a_2 = 1$ $b_2 = 5$ $a_3 = 1$ $b_3 = 1$

$$\langle p, q \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2 + a_3 b_3$$

 $\langle p, q \rangle = (1)(1) + (2)(0) + (1)(5) + (1)(1)$
 $\langle p, q \rangle = 1 + 0 + 5 + 1$
 $\boxed{\langle p, q \rangle = 7}$

Problem 37

• Given
$$p=1+2x-x^2+3x^3$$
 and $q=1+x-2x^2+4x^3$, compute $\langle p,q\rangle$. $p=a_0x^0+a_1x^1+a_2x^2+a_3x^3$ $q=b_0x^0+b_1x^1+b_2x^2+b_3x^3$ $a_0=1$ $b_0=1$ $a_1=2$ $b_1=1$ $a_2=-1$ $b_2=-2$ $a_3=3$ $b_3=4$

$$\langle p, q \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2 + a_3 b_3$$

 $\langle p, q \rangle = (1)(1) + (2)(1) + (-1)(-2) + (3)(4)$
 $\langle p, q \rangle = 1 + 2 + 2 + 12$
 $\boxed{\langle p, q \rangle = 17}$