MAST90105 Methods of Mathematical Statistics, Semester 1 2019

Lab Test

Name :	Student Number :	
permitted to any lab/w online or any kind of o permitted to communic	. You are permitted to use any notes, computer or calculator every corkshop-related material, including the sample lab test a copy. You may access general material on R or Mathematate with other students during the test. Please write your eks are 100. Your raw mark of this exam will be multiplical subject mark.	and answers, either atica. You are not answers in the boxes
	or ${\bf R}$ to complete the questions, as appropriate. Simplify resimal places for numerical answers.	ults when possible.
Question 1.		
Let X be a random variable	le with the pmf	
	$Pr(X = k) = \frac{k^2}{73810}, k = 1, 2, \dots, 60.$	
(a). Find the probability	$\Pr(30 \le X \le 50).$	[6]
Answer: 3437/738	1 or 0.4657. In R: x = 1:60; pmf = x^2/73810; p=sum(pmf[[30:50])
(b). Find the mean $E(X)$	·).	[5]
Answer: 5490/121	or 45.3719. In R: m1=sum(x*pmf)	
(c). Find the mean E(1/	(X^2) .	[5]
Answer: 6/7381 or	0.0008129. In R: m2 = sum(pmf/x^2)	
(d). Let $M_X(t)$ be the m	noment generating function of X. Find $M_X(-0.05)$.	[6]
Answer: 0.1262. In	n R: mgf = sum(pmf*exp(-0.05*y))	

Question 2.

Let a continuous random variable X have the following pdf

$$f(x) = \begin{cases} e^{-2x} + e^{-3x} + e^{-6x}, & x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

(a). Find the cdf F(x) of X.

Answer:

$$F(x) = \begin{cases} 1 - \frac{1}{2}e^{-2x} - \frac{1}{3}e^{-3x} - \frac{1}{6}e^{-6x}, & x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

(b). Find the probability Pr(0.5 < X < 0.9). [5]

Answer: P(0.5 < X < 0.9) = 0.1608.

(c). Find the mgf of X, $M_X(t)$.

Answer:

$$M_X(t) = \frac{1}{(2-t)} + \frac{1}{(3-t)} + \frac{1}{(6-t)}.$$

(d). Find the mean E(X).

Answer: 7/18 or 0.3889.

(e). Find the third moment $E(X^3)$.

Answer: 49/108 or 0.4537.

- (f). Let $Y = e^X$.
 - (i) Find the range (i.e., possible values) of Y. [5]

Answer: $1 < x < \infty$.

(ii) Find the pdf g(y) of Y. [6]

Answer:

$$g(y) = \begin{cases} y^{-3} + y^{-4} + y^{-7}, & y > 1, \\ 0, & \text{otherwise.} \end{cases}$$

Question 3.

The R dataset named "cars" gives the stopping distance (feet) in the variable "dist" of 50 cars from the 1920's at varying speeds (miles per hour), recorded in the variable "speed". *Hint*: To access the dataset the R command "attach(cars)" will enable you refer to dist and speed without prefixing them with the cars dataframe and the \$ sign.

- (a). Do boxplots of the two variables and use these to briefly describe the two distributions. [6]

 Answer: any two sensible comments such as: speed is roughly symmetrically distributed while distance has an outlier. In R: boxplot(c(dist, speed))
- (b). Find the minimum, quartiles, median and maximum for the "dist" variable. [5]

 Answer: Minimum is 2.000, first quartile is 26.00, median is 36.00, third quartile is 56.00, maximum is 120.0. In R: summary(dist)
- (c). Find the mean and standard deviation of the "speed" variable. [5]

 Answer: the mean is 15.40 and the standard deviation is 5.288. In R: mean(speed); sd(speed)
- (d). Plot dist versus speed (i.e., dist on y-axis, speed on x-axis). Comment on the plot. [6]

 Answer: Stopping distance increases with speed but there is a lot of variation in stopping distances for similar speed. In R: plot(speed, dist)
- (e). Find the intercept and slope of the line of best fit for dist versus speed. [5]
 Answer: intercept is −17.5791, slope is 3.9324. In R: out=lm(dist~speed); out\$coef
- (f). Plot the residuals of the fitted model versus speed. Comment on the plot. [6]

 Answer: The residuals are more scattered for higher values of speed. In R: plot(out\$residuals, speed)
- (g). Find the predicted value of the stopping distance when the speed is 30.

 Answer: 100.3932. In R: sum(out\$coef*c(1,30))

Total marks = 100

MAST90105: Methods of Mathematical Statistics	Lab Test
MIND 190100. Wellious of Wathernatical Statistics	Lab Test
THIS PAGE LEFT INTENTIONALLY BI	LANK