Smart Plug

จัดทำโดย

นาย	อัศวิน	อินทกูล	รหัสนักศึกษา	65006866
นาย	เมธาสิทธิ์	มุขเพชร	รหัสนักศึกษา	65032957
นาย	ดนัย	อุไรเรื่อง	รหัสนักศึกษา	65023890
นาย	ยศภัทร	แซ่ติน	รหัสนักศึกษา	65012935

เสนอ

อาจารย์ จิโรจน์ จริตควร

รายงานฉบับนี้เป็นส่วนหนึ่งของวิชา

วิชา การวิเคราะห์วงจรไฟฟ้าสำหรับวิศวกรรมคอมพิวเตอร์ (661GN-CPE212)

สาขา วิศวกรรมคอมพิวเตอร์

มหาวิทยาลัยศรีปทุม

คำนำ

รายงานฉบับนี้จัดทำขึ้นเพื่อเป็นส่วนหนึ่งของวิชา CPE212 ชั้นปีที่ 2 เพื่อให้ได้ศึกษาหาความรู้ ในเรื่อง Smart Plug และได้ศึกษาต่ออย่างเข้าใจเพื่อเป็นปะโยชน์กับการเรียน

ผู้จัดทำหวังว่ารายงานฉบับนี้จะเป็นประโยชน์กับผู้อ่าน หรือนักเรียน นักศึกษา ที่กำลังหา ข้อมูลในเรื่องนี้อยู่ หากมีข้อแนะนำ หรือข้อผิดพลาดประการใด ผู้จัดทำขอน้อมรับไว้ และขออภัยมา ณ ที่นี้

วันที่จัดทำ

28/11/66

สารบัญ

เรื่อง	หน้า
คำนำ	1
สารบัญ	2
ที่มาและความสำคัญ	3
วัตถุประสงค์	4
ประโยชน์ที่คาดว่าจะได้รับ	5
วิธีการดำเนินงาน	6
ผลการศึกษาค้นคว้า	7
สรุป อภิปราย และเสนอแนะ	9
ภาคผนวก	10

ที่มาและความสำคัญ

ความเป็นมา คือ ปลั๊กไฟอาจมีการไหม้หรือละลายได้ จึงได้สร้างขึ้นเพื่อความปลอดภัยของผู้ใช้ ซึ่งมีข้อดี คือ สามารถดูอุณหภูมิผ่าน smart phone ได้

ความสำคัญในการใช้ในบ้าน เป็นการแก้ไขปัญหาปลั๊กไฟอุณหภูมิเกินขีดจำกัด คือเมื่อปลั๊กไฟมีอุณหภูมิ เกินขีดจำกัด จะมีการส่งแจ้งเตือนมาที่แอปพลิเคชั่นของผู้ใช้ เพื่อไม่ให้เกิดอันตรายภายในบ้าน หรือมีความสูญเสีย เกิดขึ้น เป้าหมายเพื่อให้มีความปลอดภัย ราคาจับต้องได้ และสามารถใช้ได้ทุกบ้าน

วัตถุประสงค์

- 1. เพื่อให้นักเรียนมีความรู้ ความเข้าใจเลือกใช้เครื่องมืองานไฟฟ้าและวัสดุอุปกรณ์ไฟฟ้าให้เหมาะสมและ ปลอดภัยตามหลักวิชาการ
- 2. เพื่อให้นักเรียนมีกิจนิสัยที่ดีด้านคุณธรรม จริยธรรม เรื่อง ความตรงต่อเวลา ความรับผิดชอบ ความใฝ่รู้ ความมีระเบียบวินัย
- 3. เพื่อใช้เป็นอุปกรณ์ในการส่งเสริมความปลอดภัยของผู้ที่ใช้งานปลั๊กไฟ

ประโยชน์ที่คาดว่าจะได้รับ

Smart plug ของผู้จัดทำจะทำให้เกิดความปลอดภัยในการใช้งานเนื่องจากสามารถคำนวณกระแสไฟฟ้า ได้ และทำให้เกิดความสบายใจมากขึ้นในการใช้งานอุปกรณ์ไฟฟ้าภายในบ้าน

และเพื่อไม่ให้เกิดความสูญเสียทรัพย์สินภายในบ้าน และแก้ปัญหาปลั๊กไฟละลายที่มีสาเหตุมาจากความ ร้อนที่เกินขีดจำกัดของปลั๊กไฟ

วิธีการดำเนินงาน

- 1. เลือกหัวข้อโครงงานที่จะจัดทำ
- 2. ศึกษาและค้นคว้าข้อมูลเกี่ยวกับหัวข้อที่จะทำว่ามีข้อมูลเนื้อหามากน้อยเพียงใด
- 3. ศึกษาการสร้างและวิธีการทำขึ้นมา
- 4. นำเสนอแจ้งความคืบหน้าเป็นระยะกับอาจารย์ผู้สอน ซึ่งอาจารย์ผู้สอนก็จะให้ข้อเสนอแนะต่าง ๆ เพื่อทำ ให้งานเสร็จสมบูรณ์

ผลการศึกษาค้นคว้า

- 1. ฝึกให้รู้จักวิธีศึกษาค้นคว้าด้วยตนเอง
- 2. ส่งเสริมผู้ที่สนใจศึกษาหาความรู้เพิ่มเติมให้กว้างขวางและลึกซึ้งกว่าที่เรียนแบบปกติ
- 3. ส่งเสริมให้ผู้ที่สนใจศึกษามีความสามารถในการค้นคว้าหาความรู้จากแหล่งเรียนรู้ต่าง ๆ
- 4. ส่งเสริมให้คิดอย่างมีเหตุผลและเป็นระบบ
- 5. ส่งเสริมให้มีความสามารถในการใช้ภาษาเพื่อสื่อความรู้ความคิดในการศึกษาหาความรู้
- 6. ส่งเสริมให้ผู้ที่สนใจศึกษาสามารถนำไปประยุกต์ หรือปรับใช้ได้
- 7. เข้าใจเครื่องมือไฟฟ้า และการทำงานของอุปกรณ์มากขึ้น

BLYNK WEBSITE

BLYNK MOBILE

สรุป อภิปราย และเสนอแนะ

สรุปผล

จากผลการดำเนินงานสร้าง Smart Plug การเรียนรู้นั้นประกอบไปด้วยหน้าทั้งหมด 4 หน้า คือ

- หน้าหลัก เป็นหน้าที่รวบรวมเรื่องต่าง ๆ ที่เกี่ยวกับการเรียนรู้
- ทฤษฎีที่เกี่ยวข้อง เป็นหน้าที่รวบรวมทฤษฎีที่เกี่ยวข้องเบื้องต้น
- วิธีดำเนินงานในการทำ Smart Plug ไปประยุกต์ใช้งาน
- ผลการศึกษาค้นคว้า เป็นหน้าที่ผู้จัดทำแนะนำเกี่ยวกับเรื่อง Smart Plug ในเบื้องต้น

อภิปราย

ผู้ที่เข้ามาศึกษา Smart Plug จะได้ทักษะการเรียนรู้เบื้องต้น สามารถนำไปศึกษาต่อได้สะดวกผ่าน เครือข่ายอินเทอร์เน็ต โดยผู้ศึกษาจะได้ทั้งความรู้ ความคิด วิธีการดำเนินการ วิธีการทำ และสามารถพลิกแพลง นำไปประยุกต์ใช้ ทำให้ผู้ที่เข้ามาศึกษามีความรู้เพิ่มเติมในหลาย ๆ ด้าน และสามารถศึกษาหาความรู้ได้ด้วยตนเอง

ข้อเสนอแนะ

ควรศึกษาเนื้อหาที่หลากหลาย และควรศึกษา Smart Plug ให้น่าสนใจ

ภาคผนวก

```
#define BLYNK_TEMPLATE_ID
                                        "TMPL6YZk1Sysm"
    #define BLYNK_TEMPLATE_NAME
                                        "Quickstart Template"
                                        "kbzTwnJ0XVOtXbhi6M7X1a1lb5B9nBEj"
    #define BLYNK AUTH TOKEN
    #define BLYNK PRINT Serial
    #define LED D4
    #define RELAY D0
    #define ANALOG INPUT SENSOR A0
    #define currCalibration 150
    #include <ESP8266WiFi.h>
    #include <BlynkSimpleEsp8266.h>
#include "DHT.h"
14 DHT dht;
   #include <EmonLib.h>
    EnergyMonitor emon1;
    int timeS = 3580;
    int relay = 0;
    float kwhALL = 0;
    float Temps;
    double kwh = 0;
    char ssid[] = "Asaiwn_2.4G";
    char pass[] = "0909287745";
    BlynkTimer timer;
```

รูปที่ 1 Code

```
testplug1.ino
       // This function is called every time the device is connected
       BLYNK CONNECTED()
         // Change Web Link Button message to "Congratulations!"
         Blynk.setProperty(V3, "offImageUrl", "https://static-image
  32
         Blynk.setProperty(V3, "onImageUrl", "https://static-image
         Blynk.setProperty(V3, "url", "https://docs.blynk.io/en/get
       // This function sends Arduino's uptime every second to Virt
       void myTimerEvent()
         // You can send any value at any time.
         // Please don't send more that 10 values per second.
  41
         Blynk.virtualWrite(V2, millis() / 1000);
  42
  43
```

รูปที่ 2 Code

```
void setup()
{

// Debug console

Serial.begin(115200);

Blynk.begin(BLYNK_AUTH_TOKEN, ssid, pass);

// You can also specify server:

//Blynk.begin(BLYNK_AUTH_TOKEN, ssid, pass, "blynk.cloud", 80);

//Blynk.begin(BLYNK_AUTH_TOKEN, ssid, pass, IPAddress(192,168,1,100), 8080);

// Setup a function to be called every second timer.setInterval(1000L, myTimerEvent);
pinMode(RELAY, OUTPUT);
pinMode(LED, OUTPUT);
dht.setup(D1);

digitalWrite(RELAY, HIGH);
```

รูปที่ 3 Code

```
digitalWrite(KELAY, HIGH);
digitalWrite(LED, HIGH);
Temps = 0;
emon1.current(ANALOG_INPUT_SENSOR, currCalibration); // Current: input pin, calibration.
Serial.println("--- Smart Plug ON ---");

BLYNK_WRITE(V4)
{
   int Rv = param.asInt();
   if (Rv == 0){
        digitalWrite(RELAY, HIGH);
        relay = 1;
   }
   else{
        digitalWrite(RELAY, LOW);
}
```

รูปที่ 4 Code

```
digitalWrite(RELAY, LOW);
relay = 0;

BLYNK_WRITE(V5)

int state = param.asInt(); //looking for V0 value and store it to state variable
if (state == 0){ //when satet value is 1 the led is on, vice-versa
digitalWrite(LED, HIGH);
}

else{
digitalWrite(LED, LOW);
}

void loop()

void loop()
```

รูปที่ 5 Code

```
delay(1000);
       Blynk.virtualWrite(V6, Temps);
       if (Temps > 50) {
         digitalWrite(LED, LOW);
         Blynk.virtualWrite(V1, 0); // LED HIGH (on)
         Blynk.virtualWrite(V0, 0); // RELAY HIGH (off)
         digitalWrite(LED, HIGH);
102
       double Irms = emon1.calcIrms(1480); // Calculate Irms only
       Serial.print(Irms * 230.0);
       104
105
       Serial.print(Irms);
       Serial.println(" Amp");
Blynk.virtualWrite(V8, Irms); // current
       if (relay == 1) {
         timeS = timeS + 1;
         Serial.print(timeS);
         Serial.println(" sec");
         kwh = ((Irms * 230.0) * (times / 3600)) / 1000; // calculation Unit = <math>kwh * consume tiome
```

รูปที่ 6 Code

รูปที่ 7 Code