Deep Neural Network for Speech Emotion Recognition —A Study of Deep Learning—

7huowei Han

Institut für Signalverarbeitung und Systemtheorie

Universität Stuttgart

05.06.2014

Motivation

Why speech emotion recognition

- Most current work focuses on speech processing based on linguistic information, e.g.: Skype Translator
- More natural human-machine interaction requires paralinguistic information such as age, gender, emotion.
- Speech Recognition / Speeker Identification / Emotion

Deep Network Applications

- Handwriting Digit Recognition
- Image Recognition

Motivation

Why speech emotion recognition

- Most current work focuses on speech processing based on linguistic information, e.g.: Skype Translator
- More natural human-machine interaction requires paralinguistic information such as age, gender, emotion.
- Speech Recognition / Speeker Identification / Emotion

Deep Network Applications

- Handwriting Digit Recognition
- Image Recognition

Table of Contents

Foundations

Deep Neural Networks Concept Problems

Table of Contents

Foundations

Deep Neural Networks
Concept
Problems

Mel Frequency Cepstral Features

- short-term power spectrum
- mel-scale approximate human perception
- widely-used in speech recognition tasks

Emotion Recognition Approaches

Traditional Approaches

- pre-selected features
- supervised training
- low-level features not appropriate for classification
- shallow structure of classifiers

Deep Learning Approaches

- learning representations from high-dim data
- extracting appropriate features without hand-crafting
- low-level features are used to build high-level features as network gets deeper

Table of Contents

Foundations

Deep Neural Networks Concept Problems

Computing net-activation

$$\begin{array}{rcl} \underline{z}_k^{(l+1)} & = & \mathbf{W}^{(l)}\underline{a}_k^{(l)} + \underline{b}^{(l)} \\ \underline{a}_k^{(l+1)} & = & \underline{\Phi}\left(\underline{z}_k^{(l+1)}\right) \\ & & & \\ \underline{\hat{y}}_k & = & \underline{a}_k^{(ol)} \end{array}$$

- Arbitrary non-linear mapping from \underline{x}_k to $\hat{\underline{y}}_k$ possible
- lacktriangle Relation $N\Leftrightarrow \mathsf{Complexity}$
- Deep Architectures $(l \uparrow)$ more efficient than shallow ones $(l \downarrow, N_l \uparrow)$

Determining the parameters

Training objective

$$J(\mathbf{W}, \underline{b}) = \sum_{\forall k} \frac{1}{2} ||\underline{y}_k - \underline{\hat{y}}_k||^2 + \frac{\lambda}{2} \sum_{\forall l} ||\mathbf{W}^{(l)}||_F^2$$
 (1)

$$\mathbf{W}, \underline{b} = \arg\min_{\mathbf{W}, b} J(\mathbf{W}, \underline{b})$$
 (2)

Numerical minimization

- Gradient calculation with Backpropagation
- Stochastic gradient descent
- Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

Problems

- Optimization problem non-convex ⇒ getting stuck in poor local minima
- Diffusion of gradients
- Large p small n problem \Rightarrow overfitting