

1/6

Figure 1: Job's Plot for Apo6622

$[\text{Fe}^{3+}]_{\text{total}} + [\text{Apo6622}]_{\text{total}} = \text{Constant} = 8 \times 10^{-4} \text{ M}$
 Solvent: 0.1 M MOPS pH=7.4 Buffer

5

Figure 2: Job's Plot for Apo6617

$[\text{Fe}^{3+}]_{\text{total}} + [\text{Apo6617}]_{\text{total}} = 8 \times 10^{-4} \text{ M}$
 Solvent: 0.1 M MOPS Buffer pH 7.4

10

2/6

5

Figure 3: Job's Plot for Apo6619
 $[\text{Fe}^{3+}]_{\text{total}} + [\text{Apo6619}]_{\text{total}} = 8 \times 10^{-4}$
Solvent: 0.1 M MOPS Buffer pH 7.4

Figure 4: Speciation Plot for Fe^{3+} -Apo6619
 $[\text{Fe}^{3+}]_{\text{total}} = 1 \times 10^{-6} \text{ M}$, $[\text{Apo6619}]_{\text{total}} = 1 \times 10^{-5} \text{ M}$

3/6

Figure 5: Speciation Plot for Fe^{3+} -Apo6617
 $[\text{Fe}^{3+}]_{\text{total}} = 1 \times 10^{-6} \text{ M}$, $[\text{Apo6617}]_{\text{total}} = 1 \times 10^{-5} \text{ M}$

5

Figure 6**Effectiveness of Apo6619 and Apo6617 in Promoting Urinary Iron Excretion**

4/6

5 Figure 7The crystal structure of Fe(Apo6617)₃.

FIG. 8 Single Crystal Structure of Fe(Apo6619)₃ chelate

6/6

5

FIG. 9 Cyclic voltammogram of a. $K_3Fe(CN)_6$; b. Fe(DFO); c. Fe(deferiprone); d. $Fe(Apo6619)_3$ at pH 7.4. $K_3Fe(CN)_6$ is used as an standard to validate the results.