Matemática Discreta 2

2° Parcial curso 2003 15 / 7 / 2003 RESOLUCIÓN

a) Sea G un grupo tal que |G| = 100. Demostrar que G tiene un subgrupo normal no trivial (esto es, distinto de G y de {e}).

Dem: Por el teorema de Sylow, G tendrá n_5 subgrupos de orden 25 cumpliéndose que n_5 = 1 (mod 5) y n_5 divide a 100, por lo tanto n_5 debe ser 1 y por lo tanto el único subgrupo correspondiente deberá ser normal.

b) Sea G un grupo tal que |G| = 66i)Probar que existe H subgrupo **normal** de G tal que |H| = 11.

Dem: igual que antes, $n_{11} = 1 \pmod{11}$ y debe dividir a 66, por lo que $n_{11} = 1$ y el subgrupo correspondiente será normal

ii) Probar que existe K subgrupo de G tal que |K| = 3.

Dem: tanto por el teorema de Sylow como por el de Cauchy debe existir un tal subgrupo por ser 66 múltiplo de 3

iii) Probar que existe S subgrupo de G tal que |S| = 33.

Dem: Si llamamos N al subgrupo de la parte i) y H al de la parte ii), por el ejercicio 2 del práctico 7, el conjunto HN es un subgrupo de G y, por el ej 15 del práctico 7, tiene orden |H||N|= 33

iv) Probar que S es normal en G
 Dem: El índice de HN en G es 2, pues |G/HN|= |G|/|HN| = 2. Pero todo subgrupo S con índice 2 es normal, pues para todo x∈G\S, G = S ∪ xS = S ∪ Sx donde las uniones anteriores son disjuntas, por lo tanto xS = Sx.

1) a) ¿Cuál es el máximo orden de un elemento de S_7 ? Justificar. Dar un ejemplo de una permutación de S_7 que tenga ese orden. Calcular su cuadrado y su inverso.

Sol:

 el máximo orden es12, pues dada una permutación de S_7, su descomposición en ciclos disjuntos será de alguna de las siguientes formas: (a), (a b), (abc), (abcd), (abcde), (abcdef), (abcdefg), (ab)(cd), (ab)(cde),(ab)(cdef),(ab)(cdefg),(abc) (def), (abc)(defg),(ab)(cd)(ef), (ab)(cd) (efg), cuyos órdenes son1,2,3,4,5,6,7,2,6,4,10,3,12,2,6, respectivamente.

 Un ejemplo es p = (123)(4567), su cuadrado será p² =(132)(46) (57) y su inverso p⁻¹ =(321) (7654).

b) Dados s = (123) y t = (134) de S_4 , hallar el subgrupo de S_4 con la mínima cantidad de elementos y que contiene a s y a t. Justificar. (Puede servir observar que s y t son pares).

Sol: Hay varias maneras: 1) Como s y t son pares A₄ (subgrupo alternante) es un subgrupo que contiene a s y a t. Si H es un subgrupo con la mínima cantidad de elementos que contiene a s y a t entonces H está incluido en A4 ya que si no fuera así H intersección A₄ es un subgrupo que contiene a s y a t con menos elementos que H. Absurdo. Como e, s, s^2, t, t^2, s.t y t.s están en H v son todos distintos, se tiene que |H|>6. Como H es subgrupo de A₄ entonces |H| divide a 12 y por lo tanto |H|= 12 con lo que $H=A_4$. 2) Como s tiene orden 3, y |S₄|=24, por Lagrange, el sugrupo H buscado, solo puede tener 3, 6, 12 o 24 elementos. Si tuviera 6, por Sylow, tendría un único subgrupo de orden 3, lo cual es falso ya que <s> y <t> son subgrupos de orden 3 diferentes. Por lo tanto H tiene orden o bien 12 o bien 24. Como A₄ contiene 12 elementos y contiene a s y a t, será el subgrupo buscado. 3) hallar todo los productos posibles y ver que así se llega a A₄.

3) a) Hallar un a natural, $110 \le a \le 126$, tal que $[a]_{165}$ es una unidad en $(Z_{165},+,.)$ y $[a]_{238}$ es una unidad en $(Z_{238},+,.)$

Sol: como 165 = 3.5.11 y 238 = 2.7.17, basta ver los $110 \le a \le 126$ que no sean múltiplos ni de 2, ni de 3, ni de 5 ni de 7 ni de 17, 110,111,112,113,114,115,116,117, 118,119,120,121,122,122,123,124, 125,126 no múltiplos de 2: 111,113, 115,117, 119,121, 123, ,125,

no múltiplos de 3:113, 115, 119, 121, 125, no múltiplos de 5:113, 119, 121, no múltiplos de 7:113, 121, no múltiplos de 11:113, no múltiplos de 17:113

Por lo tanto a puede ser 113

b) Hallar ([a]₁₆₅)-1 en Z_{165} y ([a]₂₃₈)-1 en Z_{238} .

Sol: Aplicamos el algoritmo de Euclides a a = 113: 165 = 113.1 + 52; 113 = 52.2 + 9; 52 = 9.5 + 7; 9 = 7.1 + 2; $7 = 2.3 + 1 \Rightarrow$ 1 = 7 + 2.3 = 7 - (9 - 7).3 = 7.4 - 9.3 = (52 - 9.5).4 - 9.3 = 52.4 - 9.23 = 52.4 - (113 - 52.2).23 = 52.50 - 113.23 = (165 - 113).50 - 113.23 = 165.50 - 113.73, por lo tanto $([113]_{165})^{-1} = [-73] = [92]$. Por otro lado 238 = 113.2 + 12; 113 = 12.9 + 5; 12 = 5.2 + 2; $5 = 2.2 + 1 \Rightarrow 1 = 5 - 2.2 = 5 - (12 - 5.2).2 = 5.5 - 12.2 = (113 - 12.9).5 - 12.2 = 113.5 - 12.47 = 113.5 - (238 - 113.2).47 = 113.99 - 238.47$ por lo tanto $([113]_{238})^{-1} = [99]$

- **4)** Se considera el anillo A = $(Z_2 \times Z_8, +,...)$ Sea J = { (0,0) , (0,2) , (0,4) , (0,6) }
 - a) Probar que J es un ideal de A.

Dem: basta observar que J = (0,2)A

b) Hallar explícitamente los elementos del anillo cociente A / J.

Sol: los elementos son $J = \{ (0,0), (0,2), (0,4), (0,6) \}; J+(0,1) = \{ (0,1), (0,3), (0,5), (0,7) \}; J+(1,0) = \{ (1,0), (1,2), (1,4), (1,6) \} y J+(1,1) = \{ (1,1), (1,3), (1,5), (1,7) \}.$

c) Construir las tablas de la suma y producto en A / J.

Sol:

+	[(0,0)]	[(0,1)]	[(1,0)]	[(1,1)]
[(0,0)]	[(0,0)]	[(0,1)]	[(1,0)]	[(1,1)]
[(0,1)]	[(0,1)]	[(0,0)]	[(1,1)]	[(1,0)]
[(1,0)]	[(1,0)]	[(1,1)]	[(0,0)]	[(0,1)]
[(1,1)]	[(1,1)]	[(1,0)]	[(0,1)]	[(0,0)]

 x
 [(0,0)]
 [(0,1)]
 [(1,0)]
 [(1,1)]

 (0,0)]
 [(0,0)]
 [(0,0)]
 [(0,0)]
 [(0,0)]

 [(0,1)]
 [(0,0)]
 [(0,1)]
 [(0,0)]
 [(1,0)]
 [(1,0)]

 [(1,0)]
 [(0,0)]
 [(0,0)]
 [(1,0)]
 [(1,1)]

d) ¿Es A / J un cuerpo ? ¿Es un dominio de integridad?. Justificar.

Sol. No es ni cuerpo ni dominio de integridad por tener divisores de cero, por ejemplo, [(1,0)][(0,1)] = [(0,0)]

a) Probar : Si f(x), $g(x) \in K[x]$ (K cuerpo) tienen una raíz común (esto es, existe $a \in K$ tal que f(a)=0 y g(a)=0) entonces f(x) y g(x) no son primos entre sí. (Dos polinomios son primos entre si su MCD es una constante diferente de cero)

Dem: Si fueran primos entre si tendríamos que existirían polinomios s(x) y t(x) tales que $s(x)f(x)+t(x)g(x) = k\neq 0$, pero si a fuera raíz de f y g, entonces k=s(a)f(a)+t(a)g(a) = s(a)0+t(a)0 = 0+0=0 contradiciendo lo supuesto.

b) Hallar todos los polinomios de 2° grado de $Z_3[x]$ que son irreducibles.

(*Sug.:* Hallar primero los polinomios mónicos irreducibles)

Sol: Los polinomios mónicos de 2º grado de Z3[x] son

 x^{2} $x^{2} + 1$ $x^{2} - 1$

 $X^{2} - 1$ $X^{2} + X$;

 x^2+x+1 ;

 x^2+x-1 ; x^2-x ;

 x^2-x+1 ;

 x^2-x-1 ;

De ellos, los irreducibles son los que no tiene raices en Z3, esto es

 $x^{2} + 1$ $x^{2} + x - 1$; $x^{2} - x - 1$;

Para obtener los otros polinomios irreducibles, basta multiplicarlos por la única unidad diferente de 1, esto es, -1 (o 2), obteniendo

-x² -1 -x²-x+1; -x²+x+1;

Puntajes:

1) 14: a) 4 b) 10 : i) 3 ii) 1 iii) 3 iv) 3

2) 13: a) 5 b) 8

3) 12: a) 4 b) 8

4) 10: a) 2 b) 2 c) 4 d) 2

5) 11: a) 4 b) 7