ANT 6973: DATA VISUALIZATION AND EXPLORATION

VISUALIZING RELATIONSHIPS AND CHANGE OVER TIME

PREVIOUSLY...

Single distributions

Multiple distributions

TODAY'S TOPICS

- Visualizing relationships between variables
- Visualizing change over time
- Activities:
 - Baby names
 - Katrina
 - Gender pay gap (if there's time)

NEW SKILLS

- More practice filtering: multiple and nested logical tests
- Annotations, including positioning and justifying text and other marks
- Extend the axes with expand_limits()
- A glimpse of ggplot2's spatial plotting capabilities
- Axis scales: breaks and labels
- Paste text to data with the glue package
- Fine-tuning appearance to make a publication-ready plot

VISUALIZING RELATIONSHIPS AND CHANGE OVER TIME

VISUALIZING RELATIONSHIPS AND CHANGE OVER TIME

• Scatterplots are your bread and butter for examining relationships between two numerical variables.

• We have already practiced making scatterplots.

```
ggplot(storms, aes(x = pressure, y = wind)) +
  geom_point()
```


 Third categorical variable can be represented as color or shape.

Points can be labeled (here using ggrepel)

BUBBLE CHART

Third numerical variable can be shown by color or size.

- Create a new folder for the week and a new R markdown file.
- Create a new R chunk and load the tidyverse package.
- Install the packages gapminder and scales
- Load the packages tidyverse, gapminder, and scales
- Look at the gapminder data set

country	continent	year	lifeExp	рор	gdpPercap
Afghanistan	Asia	1952	28.801	8425333	779.4453
Afghanistan	Asia	1957	30.332	9240934	820.8530
Afghanistan	Asia	1962	31.997	10267083	853.1007
Afghanistan	Asia	1967	34.020	11537966	836.1971
Afghanistan	Asia	1972	36.088	13079460	739.9811
Afghanistan	Asia	1977	38.438	14880372	786.1134
Afghanistan	Asia	1982	39.854	12881816	978.0114
Afghanistan	Asia	1987	40.822	13867957	852.3959
Afghanistan	Asia	1992	41.674	16317921	649.3414
Afghanistan	Asia	1997	41.763	22227415	635.3414

- Plot data lifeExp (y) vs. gdpPerCap (x) for 2007 only
- Divide pop by 1 million and encode as point size; color points by continent
- Use log 10 for x axis


```
ggplot(filter(gapminder, year == 2007),
         aes(x = gdpPercap, y = lifeExp,
              size = pop / 1e6, color = continent)) +
  geom_point(alpha = 0.6) +
  scale_x_log10(labels = dollar) +
  scale_size_area(max_size = 20, labels = comma,
                       name = "Pop (millions)")
                                              Pop (millions)
                                              continent

    Oceania

                 $300.00
                       $1,000,00
                                  $10,000.00
                                       $30,000,00
                            $3,000,00
                             gdpPercap
```

LINE GRAPHS

- Typically used when the x-axis represents date/time and the y-axis represents some other numerical variable.
- This is called a time series.
- The line between points implies that they are connected through some defined order.
- Line graphs should not be used when there is not a natural sequential ordering to the the data!

LINE GRAPHS

ggplot2

- Geometric object is geom_line()
- One numeric variable to mapped to x
- Another numeric variable to mapped to y

- Go to this week's assignments on the course website.
- Install the babynames package.
- Follow the instructions in the babynames.Rmd file, and answer the questions about trends in baby names.
- Submit the html report (not the Rmd).

SPATIAL DATA: A GLIMPSE

SPATIAL DATA: A GLIMPSE

- ggplot2 has robust spatial plotting capabilities.
- Creating maps in GIS software involves visually preparing a map, analogous to plotting in Excel.
- With ggplot2 (and other R plotting packages), we can draw maps programmatically.

SPATIAL DATA: A GLIMPSE

- The advantages are much the same as with other kinds of plots that we have been making.
 - Elements of a map can be added or removed with ease
 — R code can be tweaked to make major enhancements with a stroke of a key.
 - Easy to reproduce the same maps for different data sets.
 - It uses that same ggplot2 syntax that is now (sort of) familiar to you.

- Install the packages rnaturalearth and rnaturalearthdata.
- Create a new R markdown file for this interactive activity (nothing to turn in).

 Let's create a map in ggplot2 using the storms dataset that comes with tidyverse

name	year	month	day	hour	lat	long	status	category	wind	pressure	ts_diameter	hu_diameter
Amy	1975	6	27	0	27.5	-79.0	tropical depression	-1	25	1013	NA	NA
Amy	1975	6	27	6	28.5	-79.0	tropical depression	-1	25	1013	NA	NA
Amy	1975	6	27	12	29.5	-79.0	tropical depression	-1	25	1013	NA	NA
Amy	1975	6	27	18	30.5	-79.0	tropical depression	-1	25	1013	NA	NA
Amy	1975	6	28	0	31.5	-78.8	tropical depression	-1	25	1012	NA	NA
Amy	1975	6	28	6	32.4	-78.7	tropical depression	-1	25	1012	NA	NA

 Specifically, we want to plot the progression of hurricane Katrina (2005), showing its path and windspeed at each reading.

STEP 1: GET THE DATA

Obtain the data for Katrina only

```
katrina <- filter(storms, name == "Katrina" & year == 2005)
```


STEP 2: BUBBLE CHART

- Create a bubble chart using longitude and latitude for our x-y, and wind for size.
- Use coord_equal() to make x and y axis equal units

```
ggplot(katrina, aes(x = long, y = lat, size = wind)) +
  geom_point(alpha = 0.75) +
  coord_equal()
```


STEP 3: ADD COLOR

 Map color to wind as well, and use the "cividis" color option.

STEP 4: COMBINE LEGENDS

- Combine the legend and color bar using the guides() function
 - By default, scale_colour_viridis_c() uses a colorbar, but we want it to use a legend (like size)

STEP 5: OBTAIN MAP DATA

- Load the rnaturalearth package and, when prompted, download the data.
- Maps include:
 - 1. ne_countries() for country boundaries
 - 2. ne_states() for boundaries within countries
 - 3. ne_coastline() for world coastline

```
world <- ne_countries(scale = "medium", returnclass = "sf")</pre>
```

STEP 6: ADD THE MAP

- ggplot2
- geom_sf(data = world) beneath other layers.
- coord_sf() function allows us to "crop" the world map to our area of interest, and provides nice lat/long formatting.

STEP 7: THEME TWEAKS

- We will not talk much about customizing the built-in themes.
- But the appearance of just about every non-data element of the plot can be customized using the theme() function.
- Lots of examples in the online documentation: https://ggplot2.tidyverse.org/reference/theme.html
- Warning: tons of options; sort of tedious to learn

STEP 7: THEME TWEAKS

Just as an example...

```
ggplot() +
  geom_sf(data = world, fill = "antiquewhite1") +
  geom_point(data = katrina,
             aes(x = long, y = lat, size = wind, color = wind),
             alpha = 0.75) +
  scale_color_viridis_c(option = "cividis") +
  coord_sf(xlim = c(-102, -70), ylim = c(10, 38), expand = FALSE) +
  guides(color = guide_legend()) +
  labs(x = "Longitude", y = "Latitude") +
  theme(panel.grid.major = element_line(color = gray(0.5),
                                        linetype = "dashed",
                                        size = 0.5),
        panel.background = element_rect(fill = "aliceblue"),
        panel.border = element_rect(fill = NA))
```

STEP 7: THEME TWEAKS

Just as an ex

Fill color of land

```
Trim the edges
ggplot() +
                                                   of the axes
  geom_sf(data = world, fill = "antiquewhi
  geom_point(data = katrina
                                        ize = wind, color
                                                             wind),
                  Gray dashed graticules
                       (lat/lon grid)
  scale_color_vi
                                         ("zib
                                 vlim_=
  coord_sf(xlim_=c(-102.
                                                                ALSE) +
                                          Light blue background
  guides(color
                  Rectangular border (no
                                          for plot area (like water)
  labs(x = "Long)
                  fill) around entire panel
                                        he(color = gray(0.5),
  theme(panel.gr
                                           linetype = "dashed",
                                           size = 0.5),
        panel.background = element_rect(fill = "aliceblue"),
        panel.border = element_rect(fill = NA))
```


VISUALIZING CHANGE IN PAIRED DATA

- Go to this week's assignments on the course website and download the file "school_earnings.csv".
- Install the packages rcartocolor and glue.
- Create a new R markdown file for this interactive activity (nothing to turn in).

GOAL

- The data show median mid-career annual salary

 (in thousands) for men and women who graduated from various elite universities.
- Task: visualize the gender pay gap for each school.

School	Gap Gender	Pay
Berkeley	17 Men	88
Berkeley	17 Women	71
Brown	20 Men	92
Brown	20 Women	72
Chicago	40 Men	118
Chicago	40 Women	78
Columbia	33 Men	119
Columbia	33 Women	86
Cornell	27 Men	107
Cornell	27 Women	80

VISUALIZING CHANGE IN PAIRED DATA

OUR TARGET

WE DID NOT HAVE TIME FOR THE PAIRED PLOT ACTIVITY

See the "pay-gaps.html" file on the course website if you're interested in how to make the dumbbell plot.

ASIDE: THE GLUE PACKAGE


```
library("glue")
my_name <- "Fernando"</pre>
glue("My name is {my_name}.")
my_nums <- 1:5
glue("This is row {my_nums}.")
glue("The price is now ${1:5}.00 higher.")
glue("The average of 10, 14, and 33 is: {mean(c(10, 14, 33))}")
name_sequence <- c("first name", "middle name", "last name")</pre>
my_names <- c("Fernando", "Alonso", "Campos")</pre>
glue("My {name_sequence} is {my_names}.")
```