

MMstm32F103R

User's Manual

CONTENTS

1.	Introduction	3
1	Features	3
2.	The Module	4
1	Block Diagram	4
	Terminals Layout	5
	STM32F103Rx Microcontroller	6
	Serial Flash Memory	7
1	RESET circuit	8
	Voltage Regulator	8
(USB D+ Pull-Up Circuit	9
•	JTAG Connection	9
<i>3.</i>	Evaluation Board	10
4.	Specifications	11
5.	Technical Assistance	11
6.	Guarantee	11
7.	Assembly Drawings	12
<i>8.</i>	Dimensions	13
9.	Schematic	13

1. Introduction

MMstm32F103R is universal minimodule for the STM32 Cortex-3 microcontrollers from STMicroelectronics. This microcontroller is available in the TQFP64 case which is difficult to apply to prototype and amateur circuits due to the compactness of pins. We have undertaken an attempt at placing it on a board of 40,5x35,5mm with a layout of leads which matches the commonly available prototype circuit boards. In addition, we have included 3.3V voltage regulator, a Serial Flash memory with a capacity of up to 8MB, a circuit monitoring the supply voltage and clock generator for microcontroller. All ports and signals of the microcontroller are lead out by means of two-row pin connectors with 0.1' pitch. This minimodule is not only an adapter but a complete main board for STM32F103Rx. It needs only a connection to the supply voltage and to the JTAG connector and we can start loading 128kBytes of Flash memory of the microcontroller.

Through integration of the peripherals with the microcontrollers on one board, the application of this module can lead to a shorter design period and facilitate the construction of systems based on ARM microcontrollers, by eliminating the need to design the printed board. The module is supplied with example software.

The **MMstm32F103R** minimodule can be also used in didactic laboratories of informatics colleges and universities, and can be also used to build circuits realizing thesis projects.

Features

MMstm32F103R minimodule:

- Complete, ready to use microprocessor system
- Fast ARM Cotex-3 microcontroller STM32F103Rx with up to 90 DMIPS throughput
- Serial Flash memory 64Mb (8MB)
- Reliable reset circuit
- Built-in system generator 8MHz
- Built-in 32.768kHz crystal resonator for RTC
- Built-in voltage regulator 3.3V 400mA
- Module supply voltage: 3.3V or 3.8 9V
- 2 x 32 terminals with 0.1" (2.54mm) pitch fitting every prototype board
- Small dimensions: 40.5mm x 35.5mm
- Available evaluation board and sample applications

2. The Module

Block Diagram

A block diagram of MMstm32F103R minimodule is shown on the image below:

Figure 1 Block diagram of MMstm32F103R

Minimodule can be ordered in different configurations with use of selector:

Terminals Layout

Figure 2 Terminals Layout – top view

	J1		J2		
Pin	Main Function	Alternate Function	Pin	Main Function	Alternate Function
1	PA9	USART1_TX/TIM1_CH2	1	VCC	
2	PA8	USART1_CK/ TIM1_CH1/MCO	2	GND	
3	PA11	USART1_CTS / CANRX TIM1_CH4 / USBDM	3	3.3V	
4	PA10	USART1_RX/TIM1_CH3	4	GND	
5	JTMS/SWDIO	PA13	5	PC9	
6	PA12	USART1_RTS / CANTX TIM1_ETR / USBDP	6	PC8	
7	JTDI	PA15	7	PC7	
8	JTCK/SWCLK	PA14	8	PC6	
9	PC11		9	PB15	SPI2_MOSI / TIM1_CH3N
10	PC10		10	PB14	SPI2_MISO/USART3_RTS TIM1_CH2N
11	PD2	TIM3_ETR	11	PB13	SPI2_SCK/ USART3_CTS/TIM1_CH1N
12	PC12		12	PB12	SPI2_NSS /I2C2_SMBAI/ USART3_CK/TIM1_BKIN
13	NTRST	PB4	13	PB11	I2C2_SDA / USART3_RX
14	JTDO	PB3/TRACESWO	14	PB10	I2C2_SCL / USART3_TX
15	PB6	I2C1_SCL / TIM4_CH1	15	PB2/BOOT1	

16	PB5	I2C1_SMBAI	16	PB1	ADC_IN9 / TIM3_CH4
17	BOOT0		17	PB0	ADC_IN8 / TIM3_CH3
18	UDP_PUP		18	PC5	ADC_IN15
19	PB7	I2C1_SDA / TIM4_CH2	19	PC4	ADC_IN14
20	PB8	TIM4_CH3	20	PA7	SPI1_MOSI/ ADC_IN7 / TIM3_CH2
21	PB9	TIM4_CH4	21	PA6	SPI1_MISO/ ADC_IN6 / TIM3_CH1
22	VBAT		22	PA5	SPI1_SCK / ADC_IN5
23	PC2	ADC_IN12	23	PA4	SPI1_NSS/ USART2_CK / ADC_IN4
24	PC1	ADC_IN11	24	PA3	USART2_RX/ ADC_IN3 / TIM2_CH4
25	PC0	ADC_IN10	25	PA2	USART2_TX/ ADC_IN2 / TIM2_CH3
26	PC13	ANTI_TAMP	26	PA1	USART2_RTS/ ADC_IN1 / TIM2_CH2
27	#NRST		27	PA0	WKUP/USART2_CTS/AD C_IN0 / TIM2_CH1_ETR
28	NC		28	PC3	ADC_IN13
29	NC		29	PA4-DF_CS	
30	NC		30	PA6-DF_Q	
31	NC		31	PA5-DF_C	
32	NC		32	PA7-DF_D	

STM32F103Rx Microcontroller

- 32-bit Cortex-M3 core
- 72 MHz, 90 DMIPS with 1.25 DMIPS/MHz
- From 32 to 128kB in system programmable flash memory
- From 10 to 20kB SRAM memory
- Up to three 16-bit timers, each with up to 44 UART interfaces IC/OC/PWM or pulse counter
- 16-bit, 6-channel advanced control timer
- 2 x 16-bit watchdog timers
- Up to 2 x I2C interfaces (SMBus/PMBus)
- 2 SPI interfaces
- Up to 3 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control)
- Up to 2 SPIs (18 Mbit/s)
- USB 2.0 full speed interface
- CAN interface (2.0B Active)
- RTC clock
- 2 x 12-bit, 1 us A/D converters (16-channel)
- 49 5 V-tolerant I/Os
- Nested interrupt controller with 43 maskable interrupt channels
- Sleep, Stop and Standby modes
- 4-to-16 MHz quartz oscillator
- Internal 8 MHz factory-trimmed RC
- Internal 32 kHz RC
- PLL for CPU clock
- 2.0 to 3.6V application supply
- Serial wire debug (SWD) & JTAG interfaces

Serial Flash Memory

The minimodule can be equipped with Serial Flash memory M25P64 (8MB capacities). The memory is connected to a fast SPI bus with up to 18MBit/s transmission speed.

Figure 3 Serial Flash memory connection

Memory is available directly on minimodule pins:

PA4 – DF_CS	Chip Select
PA5 – DF_C	Clock Input
PA6 – DF_Q	Data Output
PA7 – DF_D	Data Input

It is also connect to microcontroller ports by 0Ω resistors and it can by directly use without outside connections.

It should be kept in mind that if Serial Flash memory is installed, the just outlined port terminals cannot be used externally to the module. Of course the SPI bus can be used for communication with external peripherals, under the condition that they will have circuit selection inputs (CS).

A detailed description of Serial Flash circuits is on the STMicroelectronics page: www.st.com.

RESET circuit

The MMstm32F103R has a built-in voltage monitoring circuit built around the DS1818 integrated circuit. The circuit generates a RESET signal in case when the supply voltage value is lower than 3V. This takes place when the supply voltage is switched on or off, when the VCC voltage changes its value from 0 to 3.3 V. The guard circuit detects also momentary VCC voltage drops. A short duration drop of VCC below 3V causes the generation of a resetting signal of 100 ms duration. This signal is applied directly to the resetting input of the microcontroller and is led out to a module connector and it can be used as the zeroing output resetting external circuits and as the input for resetting the module, e.g. by means of the RESET button. In such a case the RESET button can short the RESET line directly to ground. An implementation of the reset circuit is presented in the diagram below.

Figure 4 RESET circuit implementation

Voltage Regulator

Minimodule has built-in 3.3V voltage regulator. Thanks to it can be powered with 3.3V voltage supplied to J2 3 pin (+3.3V) or with voltage between 3.8-9V, supplied to J2 1 pin (VCC). When power is supplied to VCC pin, then 3.3V voltage is produced on the module by U3 regulator. In this case 3.3V voltage can be also used outside the module, if current draw will not exceed 300mA.

Figure 5 3.3V Voltage Regulator

USB D+ Pull-Up Circuit

USB host recognize presence of device on the bus by sensing pull-up on D+ line. MMstm32F103R has built-in pull-up circuit, shown on drawing below.

Figure 6 USB D+ Pull-Up circuit implementation

Pull-up is by default turned off by R7 resistor. Active reset signal or low level on UDP_PUP (R16 mounted) line turns on pull-up, what is interpreted by USB host as connection of USB device.

JTAG Connection

JTAG is a four-lead interface permitting the takeover of control over the processor's core. The possibilities offered by this interface are, among others: step operation, full-speed operation, hardware and software breakpoints, inspection and modification of contents of registers and data memories. The method of connecting the JTAG connector to the minimodule is shown in the drawing:

Figure 7 JTAG connection on module

JTAG programmer/debugger may be found on page:
ARM cable I http://www.propox.com/products/t 122.html

3. Evaluation Board

4. Specifications

MicrocontrollerSTM32F103RxProgram Memoryup to 128kBSRAM Memoryup to 20kB

Serial Flash Memory 8MB

Digital in/out up to 49

Analog inputs up to 15

Power Supply3.3V or 3.8-9VDimensions40,5x35,5mmWeightabout 80gTemperature range $0-70^{\circ}\text{C}$

Connectors Two gold-pin connectors - 2x32

5. Technical Assistance

In order to obtain technical assistance please contact support@propox.com. In the request please include the following information:

• a detailed description of the problem

6. Guarantee

The MMstm32F103R minimodule is covered by a six-month guarantee. All faults and defects not caused by the user will be removed at the Producer's cost. Transportation costs are borne by the buyer.

The Producer takes no responsibility for any damage and defects caused in the course of using the MMstm32F103R module.

7. Assembly Drawings

Figure 8 TOP

Figure 9 Bottom

8. Dimensions

Figure 10 Top View

Figure 11 Side View

9. Schematic

