We claim:

- 1. An isolated nucleic acid comprising any one of SEQ ID NOs: 1-4 and 9-126, or of a complementary nucleotide sequence.
- 2. An isolated nucleic acid comprising at least eight consecutive nucleotides of a nucleotide sequence of any one of SEQ ID NOs: 1-4 and 9-126, or of a complementary nucleotide sequence.
- 3. An isolated nucleic acid comprising at least 80% nucleotide identity with a nucleic acid comprising any one of SEQ ID NOs: 1-4 and 9-126, or of a complementary nucleotide sequence.
- 4. The isolated nucleic acid according to claim 3, wherein the nucleic acid has 85%, 90%, 95%, or 98% nucleotide identity with the nucleic acid comprising any one of SEQ ID NOs: 1-4 and 9-126, or of a complementary nucleotide sequence.
- 5. An isolated nucleic acid that hybridizes under high stringency conditions with a nucleic acid comprising any one of SEQ ID NOs: 1-4 and 9-126 or of a complementary nucleotide sequence.
- 6. An isolated nucleic acid comprising a nucleotide sequence as depicted in any one of SEQ ID NOs: 1-4 and 9-126 or of a complementary nucleotide sequence.
- 7. A nucleotide probe or primer specific for any one of ABCA5, ABCA6, ABCA9, and ABCA10 genes, wherein the nucleotide probe or primer comprises at least 15 consecutive nucleotides of a nucleotide sequence of any one of SEQ ID NOs: 1-4 and 9-126 or of a complementary nucleotide sequence.
- 8. A nucleotide probe or primer specific for an ABCA5 gene, wherein the nucleotide probe or primer comprises a nucleotide sequence of any one of SEQ ID NOS:127-144 or a complementary nucleotide sequence.
- 9. A nucleotide probe or primer specific for an ABCA6 gene, wherein the nucleotide probe or primer comprises a nucleotide sequence of any one of SEQ ID NOs: 145-172, or of a complementary nucleotide sequence.
- 10. A nucleotide probe or primer specific for an ABCA9 gene, wherein the nucleotide probe or primer comprises a nucleotide sequence of any one of SEQ ID NOs: 173-203, or of a complementary nucleotide sequence.
- 11. A nucleotide probe or primer specific for an ABCA10 gene, wherein the nucleotide probe or primer comprises a nucleotide sequence of any one of SEQ ID NOs: 204-217 or of a complementary nucleotide sequence.

- 12. A method of amplifying a region of the nucleic acid according to claim 1, wherein the method comprises:
- a) contacting the nucleic acid with two nucleotide primers, wherein the first nucleotide primer hybridizes at a position 5' of the region of the nucleic acid, and the second nucleotide primer hybridizes at a position 3' of the region of the nucleic acid, in the presence of reagents necessary for an amplification reaction; and
 - b) detecting the amplified nucleic acid region.
- 13. A method of amplifying a region of the nucleic acid according to claim 12, wherein the two nucleotide primers are selected from the group consisting of
- a) a nucleotide primer comprising at least 15 consecutive nucleotides of a nucleotide sequence of any one of SEQ ID NOs: 1-4 and 9-126 or of a complementary nucleotide sequence;
 - b) a nucleotide primer according to claim 7;
- c) a nucleotide primer comprising a nucleotide sequence of any one of SEQ ID NOs: 127-217, or a nucleic acid having a complementary sequence.
- 14. A kit for amplifying the nucleic acid according to claim 1, wherein the kit comprises:
- a) two nucleotide primers whose hybridization position is located respectively 5' and 3' of the region of the nucleic acid; and, optionally,
 - b) reagents necessary for an amplification reaction.
- 15. The kit according to claim 14, wherein the two nucleotide primers are selected from the group consisting of
- a) a nucleotide primer comprising at least 15 consecutive nucleotides of a nucleotide sequence of any one of SEQ ID NOs: 1-4 and 9-126, or of a complementary nucleotide sequence;
 - b) nucleotide primer according to claim 7;
- c) nucleotide primer comprising a nucleotide sequence of any one of SEQ ID NOs: 127-217, or a nucleic acid having a complementary sequence.
- 16. The nucleotide probe or primer according to claim 7, wherein the nucleotide probe or primer comprises a marker compound.
- 17. A method of detecting a nucleic acid according to claim 1, wherein the method comprises:
 - a) contacting the nucleic acid with a nucleotide probe selected from the group

consisting of

- 1) a nucleotide probe comprising at least 15 consecutive nucleotides of a nucleotide sequence of any one of SEQ ID NOs: 1-4 and 9-126, or of a complementary nucleotide sequence;
 - 2) a nucleotide primer according to claim 7;
- 3) a nucleotide probe comprising a nucleotide sequence of any one of SEQ ID NOs: 127-217, or of a complementary nucleotide sequence; and
 - b) detecting a complex formed between the nucleic acid and the probe.
- 18. The method of detection according to claim 17, wherein the probe is immobilized on a support.
- 19. A kit for detecting the nucleic acid according to claim 1, wherein the kit comprises
 - a) a nucleotide probe selected from the group consisting of
- 1) a nucleotide probe comprising at least 15 consecutive nucleotides of a nucleotide sequence of any one of SEQ ID NOs: 1-4 and 9-126, or of a complementary nucleotide sequence;
 - 2) a nucleotide primer according to claim 7; and
- 3) a nucleotide probe comprising a nucleotide sequence of any one of SEQ ID NOs: 127-217, or of a complementary nucleotide sequence, and, optionally,
 - b) reagents necessary for a hybridization reaction.
- 20. The kit according to claim 19, wherein the probe is immobilized on a support.
 - 21. A recombinant vector comprising the nucleic acid according claim 1.
 - 22. The vector according to claim 21, wherein the vector is an adenovirus.
 - 23. A recombinant host cell comprising the recombinant vector according to claim 21.
 - 24. A recombinant host cell comprising the nucleic acid according claim 1.
- 25. An isolated nucleic acid encoding a polypeptide comprising an amino acid sequence of any one of SEQ ID NOS: 5-8.
 - 26. A recombinant vector comprising the nucleic acid according to claim 25.
 - 27. A recombinant host cell comprising the nucleic acid according to claim 25.
- 28. A recombinant host cell comprising the recombinant vector according to claim 26.

- 29. An isolated polypeptide selected from the group consisting of
 a) a polypeptide comprising an amino acid sequence of any one of
 SEQ ID NOs: 5-8;
- b) a polypeptide fragment or variant of a polypeptide comprising an amino acid sequence of any one of SEQ ID NOs: 5-8; and
- c) a polypeptide homologous to a polypeptide comprising amino acid sequence of any one of SEQ ID NOS: 5-8.
- 30. An antibody directed against the isolated polypeptide according to claim 29.
- 31. The antibody according to claim 30, wherein the antibody comprises a detectable compound.
 - 32. A method of detecting a polypeptide, wherein the method comprises
 - a) contacting the polypeptide with an antibody according to claim 31; and
- b) detecting an antigen/antibody complex formed between the polypeptide and the antibody.
 - 33. A diagnostic kit for detecting a polypeptide, wherein the kit comprises a) the antibody according to claim 31; and
- b) a reagent allowing detection of an antigen/antibody complex formed between the polypeptide and the antibody.
- 34. A composition comprising the nucleic acid according to claim 1 and a physiologically-compatible excipient.
- 35. A composition comprising the recombinant vector according to claim 21 and a physiologically-compatible excipient.
- 36. Use of the nucleic acid according to claim 1 for the manufacture of a medicament intended for the prevention and/or treatment of a subject affected by a dysfunction in the reverse transport of cholesterol.
- 37. Use of a recombinant vector according to claim 21 for the manufacture of a medicament for the prevention and/or treatment of subjects affected by a dysfunction in the lipophilic subtance transport.
- 38. Use of any one of isolated ABCA5, ABCA6, ABCA9, and ABCA10 polypeptides comprising an amino acid sequence of SEQ ID NOS: 5-8 for the manufacture of a medicament intended for the prevention and/or treatment of subjects affected by a dysfunction in the lipophilic subtance transport.

- 39. A composition comprising a polypeptide comprising an amino acid sequence of any one of SEQ ID NOs: 5-8, and a physiologically-compatible excipient.
- 40. Use of any one of isolated ABCA5, ABCA6, ABCA9, and ABCA10 polypeptides comprising an amino acid sequence of any one of SEQ ID NOs: 5-8 for screening an active ingredient for the prevention or treatment of a disease resulting from a dysfunction in the lipophilic subtance transport.
- 41. Use of a recombinant host cell expressing any one of the ABCA5, ABCA6, ABCA9, and ABCA10 polypeptides comprising an amino acid sequence of SEQ ID NOs: 5-8 for screening an active ingredient for the prevention or treatment of a disease resulting from a dysfunction in the lipophilic subtance transport.
- 42. A method of screening a compound active on cholesterol metabolism, an agonist, or an antagonist of any one of the ABCA5, ABCA6, ABCA9, and ABCA10 polypeptides, wherein the method comprises
- a) preparing a membrane vesicle comprising at least one of the ABCA5, ABCA6, ABCA9, and ABCA10 polypeptides and a lipid substrate comprising a detectable marker;
- b) incubating the vesicle obtained in step a) with an agonist or antagonist candidate compound;
- c) qualitatively and/or quantitatively measuring a release of the lipid substrate comprising the detectable marker; and
- d) comparing the release of the lipid substrate measured in step b) with a measurement of a release of a labeled lipid substrate by a membrane vesicle that has not been previously incubated with the agonist or antagonist candidate compound.
- 43. A method of screening a compound active on cholesterol metabolism, an agonist, or an antagonist of any one of ABCA5, ABCA6, ABCA9, and ABCA10 polypeptides, wherein the method comprises
- a) incubating a cell that expresses at least one of the ABCA5, ABCA6, ABCA9, and ABCA10 polypeptides with an anion labeled with a detectable marker;
- b) washing the cell of step a) whereby excess labeled anion that has not penetrated into the cell is removed;
- c) incubating the cell obtained in step b) with an agonist or antagonist candidate compound for any one of the ABCA5, ABCA6, ABCA9, and ABCA10 polypeptide;
 - d) measuring efflux of the labeled anion from the cell; and

- e) comparing the efflux of the labeled anion determined in step d) with efflux of a labeled anion measured with a cell that has not been previously incubated with the agonist or antagonist candidate compound.
 - 44. An implant comprising the recombinant host cell according to claim 23.