1	(i)	2 4 3 3 2 5 4		
		Box 1 2 4 2 Box 2 3 3 Box 3 5 Box 4 4	M1 A1 [2]	
	(ii)	5 4 4 3 3 2 2 Box 1 5 3 Box 2 4 4 Box 3 3 2 2	B1 M1 A1 [3]	For putting the weights into decreasing order (may be implied from packing) For packing the seven weights into three boxes with no more than 8 kg total in each box For this packing
	(iii)	15 × 2 ² = 60 seconds	M1 A1 [2]	For a correct calculation
2	(i)		M1 A1 [2]	Graphs may be in any order For a reasonable attempt For a graph that is topologically equivalent to one of these graphs
		graph A graph B graph C other solutions:	M1 A1 [2]	For a different reasonable attempt For a graph that is topologically equivalent to one of these graphs
		or V	M1 A1 [2]	For another different reasonable attempt For a graph that is topologically equivalent to one of these graphs
	(ii)	The graphs each have four odd nodes, but Eulerian graphs have no odd nodes.	B1 [1]	For any recognition that the nodes are not all even
				Z

1	(i)	Travelling salesperson	B1	[1]	Identifying TSP by name
"	(ii)	A-B-E-G-F-D-C-A	M1		For starting with $A - B - E - G$
1	(**/		A1		For this closed tour
1		130 (minutes)	B1		For 130
		Shortest possible time ≤ 130 minutes	B1	[4]	For less than or equal to their time, with units
	(iii)	Order of connecting: B, E, G, F, D, C	B1		For a valid vertex order (or arc order) for their starting point
		B 20 E or B 20 E	M1		For a diagram or listing showing a tree connecting the vertices B, C. D, E. F and G but not A
		G D G D	A1		For a diagram showing one of these trees (vertices must be labelled but arc weights are
		6 20 6 20 9 20 2 9 20 20 20 20 20 20 20 20 20 20 20 20 20	M1 M1		not needed)
		C F C F	A1	[6]	For stating or using the total weight of their tree
1		Lower bound = 10 + 15 + 95	1		For stating or using AB and AD or 10 + 15
		= 120 minutes			For 120 or calculating 25 + their 95, with units
	(iv)	A-B-E-G-F-C-D-A	M1		For a reasonable attempt
1	: (**)	or this in reverse	A1	[2]	For a valid tour of weight 125
					13

4	(i)	x < 2	B1	Strict inequalities used, penalise first time
1		y≥1	B1	only
		$y \leq 2x$	B1	All inequalities reversed, penalise first time
1		$x+y\leq 4$	B1 [4]	
1	(ii)	(2, 1), (2, 2)	B1	Both of these
1	1 ' '	(1/2, 1)	B1	This vertex in any exact form
	İ	(1½,,2½)	B1 [3]	This vertex in any exact form or correct to 3 sf
	(iii)	x y P=x+2y 2 1 4 2 2 6	M1	Evidence of checking value at any vertex or
		1/4 1 21/4 1/4 2/4 6/4		using a sliding profit line
		x = 1 %, y = 2 %	A1	Their x and y values at maximum in any
		(may be given in coordinate form)		exact form or correct to 3 sf
		$P = 6\frac{2}{3}$	A1 [3]	Their maximum P value in any exact form or correct to 3 sf
	(iv)	x y Q =2 x - y		
1		x y Q = 2 x - y 2 1 3 2 2 2 2	1	†
1		2 2 2 2 1 0	M1	Evidence of checking value at any vertex or
		½ 1 0 1½ 2½ 0		using a sliding profit line
		Q = 0		
1			, A1	0 (cao)
		(x, y) can be any point on the line segment joining $(\frac{1}{2}, \frac{1}{2})$ and $(\frac{1}{2}, \frac{2}{2})$	A1 [3]	The edge of the feasible region where $y = 2x$ No follow through
1	(v)	$P = Q \Rightarrow 2x - y = x + 2y$	M1	For considering $P = Q$, or equivalent
1	1.7	$\Rightarrow x = 3v$	A1	For this line, or any equivalent reasoning
1		$y = \frac{1}{3}x$ lies entirely in the shaded region	A1 [3]	For explanation of why there are no solutions
	!			16

5	(i)	2x - 5y + 2z + s = 10 2x + 3z + t = 30	B1 [1]	Slack variables used correctly
	(ii)	P x y z s t 1 -1 2 3 0 0 0 0 2 -5 2 1 0 10 0 2 0 3 0 1 30	M1 A1 [2]	For overall structure correct, including two slack variable columns and column for RHS (condone omission of P column or labels) For a completely correct initial tableau, with no extra constraints added (condone variations in order of rows or columns)
	(iii)	Pivot on x column since it is the only column with a negative value in the objective row $10 \div 2 = 5$ $5 < 15$ so pivot on this row $30 \div 2 = 15$	B1 [2]	For negative in objective row, top row, pay- off row, or equivalent For these two divisions shown
	(iv)	New row 2 = row 2 ÷ 2 New row 1 = row 1 + new row 2 New row 3 = row 3 - 2 × new row 2	B1 B1 [2]	For dealing with the pivot row correctly For dealing with the other rows correctly May be coded by rows of table
		1 0 -0.5 4 0.5 0 5 0 1 -2.5 1 0.5 0 5 0 0 5 1 -1 1 20	M1 M1 A1 [3]	For updating their pivot row correctly For a reasonable attempt at updating other rows For correct values in tableau (condone consistent order of rows or columns). Do not follow through errors in initial tableau or pivot choice.
		x = 5, $y = 0$, $z = 0P = 5Not the maximum feasible value of P sincethere is still a negative value in theobjective row$	B1 B1 B1 [3]	For reading off x, y and z from their tableau For reading off P from their tableau 'No' seen or implied and a correct reason

6	(a)	10 3 7		ANSWERED ON INSERT
		24 45	M1	Values correct at B, D and E (condone temporary labels implied from
		A B C	M1	permanent labels) Both 54 and 37 seen at H and both 51 and 47 seen at G (method)
		2 4 6 8	A1	All temporary labels correct and no extras
		18 25 42 47 54 47	B1	All permanent labels correct
		D E F G	B1	Order of labelling correct (condone boxes consistently swapped over)
		5 9 9 48 40 40		
		H J A - E - H - J 48 metres	B1 B1 [7]	For this route, including end vertices (cao) For 48 (cao)
	(b)	A and J are the only odd nodes 48 ± 300	B1 M1	Identifying odd nodes (or by implication) For their 48 + 300 (or their 300)
	(i)	= 348 metres	A1 [3]	348 (cao)
	(ii)	Odd nodes $A. B. H. J$ AB = 24 $AH = 37$ $AJ = 48HJ = 11$ $BJ = 38$ $BH = 34Repeat AB and BJ = 35300 = 30 = 270$ metres Shortest distance = $270 = 35 = 305$ metres	B1 B1 B1 M1 M1 A1 [6]	Identifying odd nodes (or by implication) For distances from A – or from their Dijkstra For distances HJ, BJ, BH correct Choosing their least pairing or by implication Or by implication 305 (cao)
				16