import pandas as pd
import numpy as np

df=pd.read_csv("/content/bike_buyers_cleaned.csv")
df

₹	Unr	named: 0	ID	Marital Status	Gender	Income	Children	Education	Occupation	Home Owner	Cars	Commute Distance	Region	Age	Purchased Bike	
	0	0	12496	Married	Female	40000.0	1.0	Bachelors	Skilled Manual	Yes	0.0	0-1 Miles	Europe	42.0	No	11.
	1	1	24107	Married	Male	30000.0	3.0	Partial College	Clerical	Yes	1.0	0-1 Miles	Europe	43.0	No	
	2	2	14177	Married	Male	80000.0	5.0	Partial College	Professional	No	2.0	2-5 Miles	Europe	60.0	No	
	3	3	24381	Single	Male	70000.0	0.0	Bachelors	Professional	Yes	1.0	5-10 Miles	Pacific	41.0	Yes	
	4	4	25597	Single	Male	30000.0	0.0	Bachelors	Clerical	No	0.0	0-1 Miles	Europe	36.0	Yes	
									•••							
	995	995	23731	Married	Male	60000.0	2.0	High School	Professional	Yes	2.0	2-5 Miles	North America	54.0	Yes	
	996	996	28672	Single	Male	70000.0	4.0	Graduate Degree	Professional	Yes	0.0	2-5 Miles	North America	35.0	Yes	
	997	997	11809	Married	Male	60000.0	2.0	Bachelors	Skilled Manual	Yes	0.0	0-1 Miles	North America	38.0	Yes	
	998	998	19664	Single	Male	100000.0	3.0	Bachelors	Management	No	3.0	1-2 Miles	North America	38.0	No	
	999	999	12121	Single	Male	60000.0	3.0	High School	Professional	Yes	2.0	10+ Miles	North America	53.0	Yes	
1	1000 rows × 14 columns															

Next steps:

Generate code with df

View recommended plots

New interactive sheet

df.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 1000 entries, 0 to 999
 Data columns (total 14 columns):

υаτа	columns (total 14	columns):						
#	Column	Non-Null Count	Dtype					
0	Unnamed: 0	1000 non-null	int64					
1	ID	1000 non-null	int64					
2	Marital Status	1000 non-null	object					
3	Gender	1000 non-null	object					
4	Income	994 non-null	float64					
5	Children	992 non-null	float64					
6	Education	1000 non-null	object					
7	Occupation	1000 non-null	object					
8	Home Owner	1000 non-null	object					
9	Cars	991 non-null	float64					
10	Commute Distance	1000 non-null	object					
11	Region	1000 non-null	object					
12	Age	992 non-null	float64					
13	Purchased Bike	1000 non-null	object					
<pre>dtypes: float64(4), int64(2), object(8)</pre>								
memory usage: 109.5+ KB								

df.describe()

df.head()

₹	Un	named: 0	ID	Marital Status	Gender	Income	Children	Education	Occupation	Home Owner	Cars	Commute Distance	Region	Age	Purchased Bike	
	0	0	12496	Married	Female	40000.0	1.0	Bachelors	Skilled Manual	Yes	0.0	0-1 Miles	Europe	42.0	No	ıl.
	1	1	24107	Married	Male	30000.0	3.0	Partial College	Clerical	Yes	1.0	0-1 Miles	Europe	43.0	No	
	2	2	14177	Married	Male	80000.0	5.0	Partial College	Professional	No	2.0	2-5 Miles	Europe	60.0	No	
	3	3	24381	Single	Male	70000.0	0.0	Bachelors	Professional	Yes	1.0	5-10 Miles	Pacific	41.0	Yes	
	4	4	25597	Single	Male	30000.0	0.0	Bachelors	Clerical	No	0.0	0-1 Miles	Europe	36.0	Yes	

df.tail()

Next steps: Generate code with df View recommended plots

New interactive sheet

₹		Unnamed:	ID	Marital Status	Gender	Income	Children	Education	Occupation	Home Owner	Cars	Commute Distance	Region	Age	Purchased Bike
	995	995	23731	Married	Male	60000.0	2.0	High School	Professional	Yes	2.0	2-5 Miles	North America	54.0	Yes
	996	996	28672	Single	Male	70000.0	4.0	Graduate Degree	Professional	Yes	0.0	2-5 Miles	North America	35.0	Yes
	997	997	11809	Married	Male	60000.0	2.0	Bachelors	Skilled Manual	Yes	0.0	0-1 Miles	North America	38.0	Yes
	998	998	19664	Single	Male	100000.0	3.0	Bachelors	Management	No	3.0	1-2 Miles	North America	38.0	No
	999	999	12121	Single	Male	60000.0	3.0	High School	Professional	Yes	2.0	10+ Miles	North America	53.0	Yes

df.isnull().mean()

III III $\overline{2}$

	0
Unnamed: 0	0.000
ID	0.000
Marital Status	0.000
Gender	0.000
Income	0.006
Children	0.008
Education	0.000
Occupation	0.000
Home Owner	0.000
Cars	0.009
Commute Distance	0.000
Region	0.000
Age	0.008
Purchased Bike	0.000

dtype: float64

NUMERICAL DATA FILLING

```
Filling Data by Mean.
# Percentage of null values in Income.
df["Income"].isnull().mean()
 →▼
          0.006
# Filling Data
df["Income"].fillna(df["Income"].mean(),inplace=True)
          <ipython-input-30-0da5aa769eed>:2: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignm
           The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value.
           For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method(\{col: value\}, inplace=True)' or df[col] = df[col].method(\{col: value\}, inplace=True)' or df[col] = df
                df["Income"].fillna(df["Income"].mean(),inplace=True)
df["Income"].isnull().mean()
 → 0.0
df["Income"].to_string()
                               40000.000000\n1
                                                                                 30000.000000\n2
                                                                                                                                  80000.000000\n3
                                                                                                                                                                                     70000.000000\n4
                                                                                                                                                                                                                                      30000.000000\n5
                                                                                                                                                                                                                                                                                        10000.000000\n6
           160000.000000\n7
                                                               40000.000000\n8
                                                                                                                 20000.000000\n9
                                                                                                                                                                   56267.605634\n10
                                                                                                                                                                                                                     30000.000000\n11
                                                                                                                                                                                                                                                                      90000.000000\n12
           000.000000\n13
                                                        40000.000000\n14
                                                                                                          60000.000000\n15
                                                                                                                                                            10000.000000\n16
                                                                                                                                                                                                              30000.000000\n17
                                                                                                                                                                                                                                                               30000.000000\n18
                                                                                                                                                                                                                                                                                                                 4000
           0.000000\n19
                                                   20000.000000\n20
                                                                                                     40000.000000\n21
                                                                                                                                                       80000.000000\n22
                                                                                                                                                                                                         40000.000000\n23
                                                                                                                                                                                                                                                           80000.000000\n24
                                                                                                                                                                                                                                                                                                             40000.0
           00000\n25
                                             30000.000000\n26
                                                                                              30000.000000\n27
                                                                                                                                              100000.000000\n28
                                                                                                                                                                                                  70000.000000\n29
                                                                                                                                                                                                                                                    20000.000000\n30
                                                                                                                                                                                                                                                                                                      20000.0000
           00\n31
                                      10000.000000\n32
                                                                                        20000.000000\n33
                                                                                                                                          80000.000000\n34
                                                                                                                                                                                            90000.000000\n35
                                                                                                                                                                                                                                             10000.000000\n36
                                                                                                                                                                                                                                                                                              10000.000000
                                                                                                                                     10000.000000\n40
           \n37
                                 30000.000000\n38
                                                                                   20000.000000\n39
                                                                                                                                                                                       30000.000000\n41
                                                                                                                                                                                                                                        40000.000000\n42
                                                                                                                                                                                                                                                                                          10000.000000\n4
                         170000.000000\n44
                                                                            20000.000000\n45
                                                                                                                               20...'
Filling Data by Median.
# Check the isnull values in Children.
df["Children"].isnull().mean()
 € 0.008
```

```
df["Children"].fillna(df["Children"].median(),inplace=True)
 🚁 n-input-34-ca3d5b94e71d>:1: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment usi
         avior will change in pandas 3.0. This implace method will never work because the intermediate object on which we are setting values alwa
         \label{lem:model} \verb|mple|, when doing 'df[col].method(value, inplace=True)', try using 'df.method(\{col: value\}, inplace=True)' or df[col] = df[col].method(value, inplace=True)', try using 'df.method(\{col: value\}, inplace=True)' or df[col] = df[col].method(value, inplace=True)', try using 'df.method(\{col: value\}, inplace=True)') or df[col] = df[col].method(value, inplace=True)') and the description of the de
         hildren"].fillna(df["Children"].median(),inplace=True)
df["Children"].isnull().mean()
 → 0.0
df["Children"].to_string()
          '0
                                                                                                                                                                        2.0\n7
 ₹
                         1.0\n1
                                                 3.0\n2
                                                                         5.0\n3
                                                                                                 0.0\n4
                                                                                                                         0.0\n5
                                                                                                                                                 2.0\n6
                                                                                                                                                                                                1.0\n8
                                                                                                                                                                                                                        2.0\n9
                                                                                                                                                                                                                                                2.0\n10
                                                                                                                                                                                                                                                                        3.0\n11
          0.0\n12
                                                                          1.0\n15
                                                                                                                               3.0\n17
                                 5.0\n13
                                                      2.0\n14
                                                                                                       2.0\n16
                                                                                                                                                        1.0\n18
                                                                                                                                                                                2.0\n19
                                                                                                                                                                                                       2.0\n20
                                                                                                                                                                                                                                0.0\n21
                                                                                                                                                                                                                                                        0.0\n22
                                                                                                                                                                                                                                                                               2.0
                            5.0\n24
                                                    2.0\n25
                                                                           1.0\n26
                                                                                                   0.0\n27
                                                                                                                           0.0\n28
                                                                                                                                                   5.0\n29
                                                                                                                                                                           0.0\n30
                                                                                                                                                                                                  2.0\n31
                                                                                                                                                                                                                          0.0\n32
                                                                                                                                                                                                                                                  0.0\n33
                                                                                                                                                                                                                                                                          2.0\n3
          \n23
                     5.0\n35
                                             5.0\n36
                                                                     2.0\n37
                                                                                             0.0\n38
                                                                                                                     0.0\n39
                                                                                                                                             4.0\n40
                                                                                                                                                                     2.0\n41
                                                                                                                                                                                            2.0\n42
                                                                                                                                                                                                                    1.0\n43
                                                                                                                                                                                                                                            4.0\n44
                                                                                                                                                                                                                                                                    3.0\n45
          1.0\n46
                                                                                                                                                                                                       4.0\n54
                                1.0\n47
                                                         2.0\n48
                                                                                 2.0\n49
                                                                                                       0.0\n50
                                                                                                                                0.0\n51
                                                                                                                                                        0.0\n52
                                                                                                                                                                               1.0\n53
                                                                                                                                                                                                                                0.0\n55
                                                                                                                                                                                                                                                        4.0\n56
                                                                                                                                                                                                                                                                               0.0
                           4.0\n58
                                                   1.0\n59
                                                                           2.0\n60
                                                                                                   1.0\n61
                                                                                                                           2.0\n62
                                                                                                                                                   2.0\n63
                                                                                                                                                                          4.0\n64
                                                                                                                                                                                                  1.0\n65
                                                                                                                                                                                                                          2.0\n66
                                                                                                                                                                                                                                                  0.0\n67
                                                                                                                                                                                                                                                                          0.0\n6
                                                                0.0\n71 0.0\n72
                     4.0\n69
                                        0.0\n70
                                                                                                                     3.0\n73
                                                                                                                                             0.0\n74
                                                                                                                                                                     3.0\n75
                                                                                                                                                                                            4.0\n76
                                                                                                                                                                                                                    0.0\n77
                                                                                                                                                                                                                                            0.0\n78
                                                                                                                                                                                                                                                                    2.0\n79
          2.0\n80
                                 4.0\n81
                                                         4.0\n82
                                                                                 0.0\n83 ...'
Filling Data by Mode.
# percentage of isnull vales in Cars.
df["Cars"].isnull().mean()
 → 0.009
# Filling the Cars Data.
df["Cars"].fillna(df["Cars"].mode()[0],inplace=True)
         <ipython-input-39-44217a1b17d7>:2: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignm
          The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value.
          For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
              df["Cars"].fillna(df["Cars"].mode()[0],inplace=True)
df["Cars"].isnull().mean()
```

→ 0.0