C12 - Table of Contents

Duotang/Notes/Homework

C12 - Formula Sheet

C12 - Methods

C12 - Remember

C12 - General Equation Formulas

C12 - General Equation Graphs

C12 - 1.0 - Transformations Review

C12 - 3.0 - Polynomials Review

C12 - 4.0 - Trig Review

C12 - 5.0 - Trig Functions Review

C12 - 6.0 - Trig Identities Steps

C12 - 6.0 - Trig Identities Proofs

C12 - 6.0 - Fraction Algebra Fact/Foil

C12 - 7.0 - Exponentials Review

C12 - 8.0 - Logs Review

C12 - 9.0 - Rationals Review

C12 - 9.0 - Rationals Steps

C12 - 10.0 - Function Operation Review

C12 - 11.0 - Combinatorics Review

C12 - 11.0 - nCr nPr Tables

C12 - 11.0 - Cards in Poker

C12 - 1.1 - Point Translation

C12 - 1.2 - Point Expansion Compression

C12 - 1.3 - Point Reflection Inverse

C12 - 1.3 - Inverse Equation

C12 - 1.124 - Order Matters Point

C12 - 1.1234 - Order Matters Equation

C12 - 2.1 - Radical Translations

C12 - 2.2 - Radical Transformation

C12 - 2.3 - Radical Reflection

C12 - 2.4 - Radical Graphs

C12 - 3.1 - Long Division

C12 - 3.1 - Synthetic Division

C12 - 3.2 - Factor/Remainder Theorem

C12 - 3.2 - Factoring Trinomial's

C12 - 3.2 - Potential Factors

C12 - 3.3 - End Behaviour

C12 - 3.4 - Multiplicity

C12 - 3.4 - Graphing Polynomials

C12 - 3.5 - Open Top Rectangular Box

C12 - 4.1 - Degree/Radian Conversions

C12 - 4.2 - Arc Length/Sector area

C12 - 4.3 - Reference Angles and in Standard Position

C12 - 4.3 - ASTC/Special Triangles

C12 - 4.3 - Trig Ratios

C12 - 4.3 - Trigonometric Equations ASTC

C12 - 4.3 - Calculator

C12 - 4.3 - Algebra

C12 - 4.4 - Unit Circle

C12 - 4.4 - Factoring

C12 - 4.5 - Trigonometric Equations Period Change

C12 - 5.1 - Graphing Sin Cos and Tan

C12 - 5.2 - Amplitude and Period

C12 - 5.3 - Horizontal Centre-Line and Phase Shift

C12 - 5.3 - Graphing Equations

C12 - 5.3 - Finding Equations

C12 - 5.4 - Word Problems

C12 - 6.1 - Trig Identities

C12 - 7.1 - Simplifying Exponentials

C12 - 7.2 - Exponential Graphs

C12 - 7.1 - Word Problems

C12 - 8.1 - Definition

C12 - 8.2 - Exponential Form/Factoring

C12 - 8.3 - Change of Base

C12 - 8.4 - Adding and Subtracting Logs

C12 - 8.4 - Log Equations

C12 - 8.5 - Log Operations

C12 - 8.6 - Log Both Sides

C12 - 8.7 - Log Graphs/Inverse

C12 - 9.0 - Rationals Definition

C12 - 9.1 - Vertical Asymptote

C12 - 9.2 - Horizontal Asymptote

C12 - 9.3 - x,y Intercepts

C12 - 9.4 - Holes

C12 - 9.5 - Slant

C12 - 10.1 - Composite Functions

C12 - 10.2 - Composite Graphs

C12 - 11.1 - Fundamental Counting Principle

C12 - 11.2 - Factorial Notation

C12 - 11.3 - Outcomes Per Trial

C12 - 11.4 - ABC/123 Factorial/ Permutation/Comb

C12 - 11.4 - Cases

C12 - 11.4 - President/Committee

C12 - 11.4 - All Minus None

C12 - 11.4 - Identical Objects

C12 - 11.4 - Paths in Squares

C12 - 11.4 - nCr nPr Algebra

C12 - 11.5 - Pascals Triangle

C12 - 11.5 - Binomial Expansion

C12 - Methods

Transformations	Trigonometry	Exponentials
General Formula Graphing Translations Expansions/Compressions Reflections	Radians/Conversions Arc Length/Sector Area Solving Equations ASTC/Unit Circle	TOV Change of Base Take both sides to reciprocal exponent Exponent/Radical laws
Inverse Invariant Points Domain/Range	Special Triangles STP/Reference Angles Substitution $m = 2x$ $m = sinx$	Logarithms Laws
	$ heta_r = \sin^{-1}(+)$ $0 \le x < 2\pi$ Gen Sol: $ heta = heta + pn$, nei	TOV Domain: Set the thing you are logging to greater than
Radicals	• '	or equal to zero, then solve.
	Linear/Angular Velocity	
Transformations		Rational's
	Trig Functions	Factor Holes
	Box Model 2π	VA's
	DACB $p = \frac{2\pi}{b}$	HA's SA's
Polynomials	100	3/13
Factoring Cubics		Function operations
I DIII	Trig Identities	•
Long Division — Synthetic Division +	Identities	f(x) + g(x) f(x) - g(x)
Synthetic Division	Fractions/LCD	f(x) - g(x) $f(x) \times g(x)$
Factor theorem	Factoring/FOIL	$f(x) \div g(x)$
Remainder theorem	Conjugates	f(g(x))
Potential Factors Solve by Inspection x-intercepts (x, 0)		Inverse
•		Combinatorics
Graphing		
End behavior		FCP Factorials
Multiplicity		Tree Diagram
y-intercept (0,y)		nPr, nCr
TOV		Cases
		All minus none
		Identical Objects

Paths in Squares Pascal 'Triangle Binomial Theorem

C12 - Remember

Transformations

Remember: Factor out "b" so "x" has a coefficient of "1"

$$(2x)^2 = 4x^2$$

$$\cos(x + \pi) \neq \cos x + \cos \pi$$

 $\sin^2 x = \sin x \times \sin x = (\sin(x))^2 \neq \sin x^2$

Inverse Check:

$$f(g(x)) = x$$
$$g(f(x)) = x$$

$$\sqrt{x^2} = |x|$$

Radicals

$$\sqrt{4x} = 2\sqrt{x}$$

Polynomials

Missing Terms "Insert 0" Store x, 2nd Calc Zero

Trigonometry

Radian mode only matters if you press sin cos or tan

Trig Functions

$$sin\theta = 0 @ 0, \pi, 2\pi$$

$$cos\theta = 0 @ \frac{\pi}{2}, \frac{3\pi}{2}$$

$$tan\theta = \frac{sin\theta}{cos\theta}$$

Sin starts in the middle and goes up

Cos starts from the top and goes down

$$x$$
 -Increments = $\frac{\pi}{lcd \ c,p}$

Exponentials

Trig Identities

$$2(2)^x \neq 4^x$$

Variable Exponents

Logarithms

The base of the log is the base of the exponent The exponent is the Answer $log(x + 3) \neq logx + log3$

Rational's

Holes before VA's A graph can cross a horizontal asymptote but not a vertical asymptote

Function operations

 $f(x)^3$ We dont write this

$$f(x^3) \neq = (f(x))^3 = f^3(x)$$

Combinatorics

n + 1 terms k is always one less than the term number.

C12 - Formula Sheet

Pythagorean Identities

$$\sin^2 \theta + \cos^2 \theta = 1 \qquad 1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

Reciprocal and Quotient Identities

$$sec\theta = \frac{1}{cos\theta}$$

$$csc\theta = \frac{1}{sin\theta}$$

$$cot\theta = \frac{1}{tan\theta}$$

$$cot\theta = \frac{1}{tan\theta}$$

$$tan\theta = \frac{sin\theta}{cos\theta}$$

$$cot\theta = \frac{cos\theta}{sin\theta}$$

Addition Identities

$$\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

Double Angle Identities

$$cos2\theta = cos^{2} \theta - sin^{2} \theta$$
$$= 2 cos^{2} \theta - 1$$
$$= 1 - 2 sin^{2} \theta$$

$$sin2\theta = 2sin\theta cos\theta$$

Permutations and Combinations

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

$$_{n}C_{r}=\frac{n!}{r!\left(n-r\right) !}$$

$$t_{k+1} = {}_n C_k a^{n-k} b^k$$

Note:
$$_{n}C_{r}=\frac{_{n}P_{r}}{r!}$$

Arc Length

$$a = \theta r$$

$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta}$$

$$\tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \tan\beta}$$

$$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$$

C12 - 1.0 - Transformations Review

$$y = af(b(x-h)) + k \leftarrow +k$$
: Vertical Translation $VT = k$ (up) $-k$: Vertical Translation $VT = k$ (down)

(x - h): Horizontal Translation HT = h (right) (h is positive) (x + h): Horizontal Translation HT = h (left) (h is negative)

a < 0: Vertical Reflection (VR) over the x-axis

|a| > 1: Vertical Expansion VE = a

0 < |a| < 1: Vertical Compression VC = a

b < 0: Horizontal Reflection (HR) over the y-axis

|b| > 1: Horizontal Compression $HC = \frac{1}{h}$

0 < |b| < 1: Horizontal Expansion $HE = \frac{1}{b}$

Methods: Equation Substitution

Put $\frac{1}{2}y$ in for 'y'. Vertical Expansion of 2:

Put 2y in for 'y'. Vertical Compression of $\frac{1}{2}$:

Put $\frac{1}{2}x$ in for 'x'. Horizontal Expansion of 2:

Horizontal Compression of $\frac{1}{2}$: Put 2x in for 'x'.

Vertical Reflection: Put -y in for y.

Horizontal Reflection: Put -x in for x.

Vertical Translation up 3: Put (y-3) in for 'y'.

Vertical Translation down 2: Put (y + 2) in for 'y'

Horizontal Translation left 2: Put (x + 2) in for 'x'

Horizontal Translation right 4: Put (x - 4) in for 'x'

Mapping

 $\left(\frac{x}{h} + h, ay + k\right)$; new point (x,y); old point \longrightarrow

 $(2,3) \longrightarrow (2,6)$ multiply y-value by two (x, 2y) (x, ay)

 $(3,4) \longrightarrow (3,2)$ multiply y-value by a half $(x, \frac{1}{2}y)$

(2x,y) $(\frac{1}{h}x,y)$ $(2,3) \longrightarrow (4,3)$ multiply x-value by two

 $(\frac{1}{2}x,y)$ (4,1) \longrightarrow (2,1) multiply x-value by a half

(3,5) \longrightarrow (3,-5) Multiply y-value by -1

 $-4,3) \longrightarrow (4,3)$ Multiply x-value by -1

 $(2,1) \longrightarrow (2,4)$ add 3 to y-value $(x, y + 3) (x, y \pm k)$

 $(1,4) \longrightarrow (1,2)$ Subtract 2 from y-value (x, y - 2)

 $(4,1) \longrightarrow (2,1)$ Subtract 2 from x-value (x-2,y) $(x \pm h,y)$

(2,3) \longrightarrow (6,3) Add 4 to x-value (x + 4.v)

Remember: Horizontal Translations are the Opposite of what you see inside the brackets.

Remember: "k" may be on the left hand side of the equation. g(x) - k = f(x - h). So add or subtract "k" to both sides.

Remember: Horizontal Compressions and Expansions are the Reciprocal of "b"

Remember: "a" may be on the left side of the equation: ag(x) = f(x - h). So multiply or divide by ato both sides.

Remember: Factor the brackets so x has a coefficient of 1

Inverse $(f^{-1}(x))$: switch x and y $y = f(x) \rightarrow x = f(y)$ A reflection over the xy axis (y = x)f(g(x)) = xg(f(x)) = x

Invariant Points:

Horizontal Reflections: y-intercepts (0,y) Vertical Reflections: x-intercepts (x,0)

Inverses: (a,a) (2,2) (any points on the line y=x)

Roots: (x,0)(x,1)

*We work functions stuff 1st. Bedmas

C12 - 3.0 - Polynomials Review

Synthetic

Ascending Order

Steps: Bring Down Multiply Add

Repeat last two steps

$$+\frac{a|Synthetic}{Factor} = f(a) = x - int (a, 0)$$

The x intercept, the thing you put into synthetic division and f() is all the same.

The factor is the only opposite

Insert 0 if you are missing a degree term $x^3 + 0x^2 - 2x + 4$

If you are going to put the opposite sign of the x intercept into synthetic division, you must subtract

Potential Factors	Solve by Inspection	x-intercepts	End behavior
$= \frac{\pm factors\ of\ d}{\pm factors\ of\ a}$	f(a) = 0	$ \begin{aligned} x - 2 &= 0 \\ x &= 2 \end{aligned} $	$\pm x^{even}$, $\pm x^{odd}$
	(x-a); is a factor	x - int: (2,0)	
Multiplicity	f(a)=R	y-intercept	TOV
	(x-a); is not a factor	(0, y)	
$(x-2)^1(x-1)^2(x+3)^3$			

Degree

	xeR	xeR
	x^{even}	x^{odd}
Max number of x-intercepts	Degree	Degree
Min number of x-intercepts	0	1
Max number of turns	Degree -1	Degree -1
Min number of turns	1	0*

Min Degree = # turns +1
$$y \ge min$$
 yeR $y \le max$

Long Division

Steps: Goes Into Multiply Subtract Bring Down Repeat Coefficient Binomials, Quadratic divisors - Use Long Division

Factored Form

$$y = a(x-z)^{1}(x-r)^{2}(x-s)^{3}...$$

y = 5; Constant y = 2x; Linear $y = -x^2$; Quadratic $y = 5x^3$; Cubic $y = -2x^4$; Quartic $y = 2x^5$; Quintic

C12 - 4.0 - Trigonometry Review

$$\begin{vmatrix}
sin\theta &= \frac{O}{H} \\
csc\theta &= \frac{1}{sin\theta} &= \frac{H}{O}
\end{vmatrix}
\begin{vmatrix}
cos\theta &= \frac{A}{H} \\
sec\theta &= \frac{1}{cos\theta} &= \frac{H}{A}
\end{vmatrix}
\begin{vmatrix}
tan\theta &= \frac{O}{A} \\
cot\theta &= \frac{1}{tan\theta} &= \frac{A}{O}
\end{vmatrix}$$

$$\theta = \sin^{-1}(\frac{O}{H}) \qquad tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\theta_{cot} = \theta_{stp} \pm 2\pi n$$

$$p = \frac{2\pi}{b} (sin, cos) \qquad p = \frac{360^{\circ}}{b} (sin, cos)$$

General Solution: $\theta = \theta_{stp} \pm pn, n \in I$

$$p = \frac{\pi}{b} (tan) \qquad p = \frac{180^o}{b} (tan)$$

$$y = a\sin(b(x-c)) + d$$

GRAPH tan(x)

Tan is Zero when sin is zero Tan is und when cos is zero

C12 - 5.0 - Trigonometric Functions Review *(h,k)(c,d)

$$y = a \sin(b(x-c)) + d$$

Amplitude: |a|

Period: $p = \frac{2\pi}{h}$ Phase Shift: c

Horizontal center line: d

Remember: Factor the brackets so x has a coefficient of 1

 $y = a \sin(b(x-h)) + k$ $y = a \cos(b(x-h)) + k$

$$y = a \tan(b(x - c)) + d$$

Period of tan: $\frac{\pi}{h}$

Tan is Zero when sin is zero Tan is und when cos is zero

x-intercepts/Domain Restrictions

x-intercepts:

 $sinx: b(x-c) = \pi n_i nEI$

 $cosx: b(x-c) = \frac{\pi}{2} + \pi n, nEI$

 $tanx: b(x - c) = \pi n, nEI$

Domain:

 $\frac{\Box}{\sin x}$: $b(x-c) \neq \pi n$, nEI

 $\frac{\Box}{\cos x}:b(x-c)\neq\frac{\pi}{2}+\pi n, nEI$

 $\frac{\Box}{tanx}:b(x-c)\neq\pi n,\frac{\pi}{2}+\pi n,nEI$

Transformations

$$sinx = cos(x - 90)$$

$$sin(-x) = -sinx$$

$$tan(-x) = -tanx$$

$$cosx = sin(x + 90)$$

$$cos(-x) = cosx$$

$$sinx = cos(90 - x)$$

$$cosx = sin(90 - x)$$

Rearranged Formula

$$y = \operatorname{asin}\left(\frac{2\pi}{p}(x-c)\right) + d$$

$$b=\frac{2\pi}{p}$$

$$y = a \sin\left(\frac{2\pi(x-c)}{p}\right) + d$$

C12 - 6.0 - Steps Trig Identities Review

Trig Identities: Steps

Get into sin and cos

Identities

Fractions
Simplify
Adding and subtracting fractions
LCD: Do to the top do to the bottom
Multiplying by 1
Flip and multiply
Separate fractions

Rearrange terms

Factoring GCF Trinomials Differences of Squares

Conjugates

Distribution and FOIL (where necessary)

Choose a $cos2\theta$ to cross off the '1' or combine with the #

Add and subtract 1

Multiply by LCD (Complex Fractions)

OR

Add/Subtract Fractions top and bottom, flip and multiply

C12 - 6.0 - Trig Proofs

Pythagorean Identity

$$\sin^{2} x + \cos^{2} x = 1$$

$$1 + \tan^{2} \theta = \sec^{2} \theta$$

$$1 + \cot^{2} \theta = \csc^{2} \theta$$

$$1 + \cot^{2} \theta = \cot^{2} \theta$$

$$1 +$$

Pythagerous Theorm

Reciprocal Identities

$$\frac{sinx}{cosx} = \frac{o}{h} \div \frac{a}{h} = \frac{o}{h} \times \frac{h}{a} = \frac{o}{a} = tanx$$

$$sec\theta = \frac{1}{cos\theta} = \frac{1}{(\frac{a}{h})} = 1 \times \frac{h}{a} = \frac{h}{a}$$
 $sec\theta = \frac{h}{a}$

$$csc\theta = \frac{1}{sin\theta} = \frac{1}{\left(\frac{o}{h}\right)} = 1 \times \frac{h}{o} = \frac{h}{o}$$

$$csc\theta = \frac{h}{o}$$

$$cot\theta = \frac{1}{tan\theta} = \frac{1}{\left(\frac{o}{a}\right)} = 1 \times \frac{a}{o} = \frac{a}{o}$$
 $cot\theta = \frac{a}{o}$

Double Angle Identities

$$sin2x = 2sinxcosx$$
 $cos2x = cos^2 x - sin^2 x$
 $sin(x + x) =$ $cos(x + x) =$
 $sinxcosx + cosxsinx = 2sinxcosx$ $cosxcosx - sinxsinx = cos^2 x - sin^2 x$

$$cos2x = 1 - 2(1 - cos^{2}x)$$

$$cos2x = 1 - 2 + 2cos^{2}x$$

$$cos2x = 1 - 2 + 2cos^{2}x$$

$$cos2x = -1 + 2cos^{2}x$$

$$cos2x = 2cos^{2}x - 1$$

$$cos2x = 1 - 2sin^{2}x$$

 $\cos 2x = 1 - 2\sin^2 x$

C12 - 6.0 - Fractions Algebra Fact/FOIL Theory

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

$$a \times \frac{b}{c} = \frac{ab}{c}$$

$$\frac{a}{b} \times c = \frac{ac}{b}$$

$$\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc} \qquad \frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}$$

$$\frac{a}{\left(\frac{b}{c}\right)} = a \div \frac{b}{c} = a \cdot \frac{b}{c} = a \cdot \frac{c}{b} = \frac{ac}{b}$$

$$a \times \frac{c}{b} = \frac{ac}{b} \qquad a \times \frac{c}{b} = \frac{ac}{b}$$

$$\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{b} \div c = \frac{a}{b} \div c = \frac{a}{b} \times \frac{1}{c} = \frac{a}{bc}$$

$$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}$$

$$\frac{x+1}{x} = \frac{x}{x} + \frac{1}{x} = 1 + \frac{1}{x}$$

$$x \times x = x^2$$

$$x \times x^2 = x^3$$

$$\frac{x^2}{x} = x$$

$$\frac{x^3}{x^2} = x$$

$$\frac{x^2}{x} = x \qquad \qquad \frac{x^3}{x^2} = x \qquad \qquad \frac{x}{x} = x^2 \qquad \qquad \frac{x}{x} = 1$$

$$\frac{x}{x} = 1$$

$$x^2 + x$$
$$x(x+1)$$

$$x^2 - x - 2$$

(x - 2)(x + 1)

$$x^2 - 1$$

(x + 1)(x - 1)

(x + 1)(x - 1) FOIL Conjugates: FL

$$a+b+c=a+c+b$$

$$ab = ba$$

$$\frac{1}{a} \times a = 1$$

C12 - 7.0 - Exponential Review

Interest

KEY

 $F = P(1 \pm r)^t$

 $F: Future\ Amount$

 $F = 100(.87)^t$

P: Present Amount

r: Interest rate as decimal

; += Growth

t:time

-= Decay

 $F = P\left(1 \pm \frac{r}{n}\right)^{tn}$

; with Compounding

n: # of compounding periods per year

Yearly: n = 1Monthly; n = 12

 $\frac{r}{n}$: Rate per period

tn: number of periods

Weekly; n = 52

Growth & Decay

$$F = P(r)^{\frac{t}{T}}$$

; Growth with "T"

T: Time/Amount for Rate to OCCUR

 $F = 100 \left(\frac{1}{2}\right)^{\frac{5}{5}}$

 $F = Pe^{kt}$

; Continuous Growth

 $e:constant \approx 2.718$

k: proportional constant

Growth	10% = .1	15% = .15	40% = .4	50% = .5	60% = .6	100% = 1.00	Double
(1 + r)	(1 + .1)	(1 + .15)	(1 + .4)	(1 + .5)	(1 + .5)	(1 + 1.00)	
()	(1.1)	(1.15)	(1.4)	(1.5)	(1.5)	(2)	(2)

Decay	10% = .1	15% = .15	40% = .4	50% = .5	60% = .6	95% = .95	Half — Life
(1 - r)	(11)	(115)	(14)	(15)	(15)	(195)	
()	(.9)	(.85)	(.6)	(.5)	(.4)	(.05)	$(\frac{1}{2})$

Method: Arbitrarily set P = 100% or 100 or 1

Remember: The exponent is the time or the number of time periods.

Intensity

 $I = 10^{b-s}$

KEY

; Earthquakes, pH

 $I = \frac{I_b}{I_s}: Intensity$

 $I = 10^{\frac{b-s}{10}}$

; Sound

 $b-Larger\ Richter, Debibel, pH\ etc$

s – Smaller Richter, Decibel, pH etc

 $pH = -\log(H^+)$ H+- Concentration of Hydrogen

C12 - 8.0 - Laws of Logarithms Review

Math Alpha Math

Laws of logarithms

'a' is "the thing you are logging"

What power must you raise "b" to, to equal "a"? Slide "b" across.
$$a > 0$$

 $b > 0, b \ne 1$

$$2. \quad \log_b a^m = m \log_b a$$

The exponent of "a" can come down in front. Vice versa.

3.
$$\log_b a = \frac{\log a}{\log b}$$

 $\log_b a = \frac{\log_c a}{\log_c b}$:"c" is arbitrary Change of base.

$$4. \log_b m + \log_b n = \log_b mn$$

Positives go on top, negatives go on bottom and vice versa.

$$5. \log_b m - \log_b n = \log_b \frac{m}{n}$$

Rule 3, 4 and 5 Must have coefficient of 1.

$$6. \log_b a = \log_{b^n} a^n$$

"a" and "b" can both be taken to the same exponent, $n \neq 0$

$$7. b^{\log_b a} = a$$

Same base of exponent as logarithm, answer is "a"

8.
$$\log_a a = 1$$

Natural Logarithms: (same rules as logs)

9.
$$\log_a 1 = 0$$

10. $\log x = \log_{10} x$

$$ln e = 1 ln x = log_e x ln x is log_e x$$

Methods: "log" both sides

Methods: "In" both sides. "de-In" both sides.

"de-log" both sides "inverse": switch x and ySet Log arbitrarily = x

$f(x)=2^x$	<i>y</i> =	2 ^x	
	<u> </u>		
	(0,1)	x	y
-5 -4 -3 -2	-1 2 3	<u>*</u> -1	$\frac{1}{2}$
		0	1
		1	2

Domain: $x \in R$

Range: $y > k \ (a > 0)$

 $y < k \ (a < 0)$

HA: y = k

 $y = a(C)^{b(x-h)} + k$

Domain: b(x-h) > 0

& base > 0, $base \neq 1$

Range: $v \in R$

VA: b(x-h) = 0

y = alog(b(x-h)) + k

C12 - 9.0 - Rationals Review

Remember: Check for holes first because

they might cancel out a Vertical Asymptote.

Holes:

Factor the top, Factor the bottom If a term cancels, there is a hole when the term=0

$$y = \frac{x-3}{(x-3)(x+2)} = \frac{1}{x+2}$$
 $y = \frac{1}{(3)+2} = \frac{1}{5}$

$$y = \frac{1}{(3)+2} = \frac{1}{5}$$

$$(x-3)$$
 cancels so,

Hole at
$$\left(3, \frac{1}{5}\right)$$

Hole at
$$x - 3 = 0$$

Vertical Asymptote:

$$y = \frac{1}{x+1} \qquad x+1 = 0$$

$$x + 1 = 0$$
$$x = -1$$

Set denominator equal to zero and solve.

denominator = 0

VAs, NPVs:

Domain Restriction:

$$x = -1$$

$$x \neq -1$$

Horizontal Asymptote:

Case 1:
$$x^2, \frac{x^2}{x}$$
 (No HA)

Case 2:
$$\frac{1}{x}$$
, $\frac{1}{x^2}$ (Asymptote at $y = 0$)

Case 2:
$$\frac{1}{x} + c_1 \frac{1}{x^2} + c$$
 (Asymptote at $y = c$)

Case 3:
$$\frac{3x^2}{2x^2}$$
 (Asymptote at $y = \frac{3}{2}$)

Case 3:
$$\frac{3x^2}{2x^2} + c$$
 (Asymptote at $y = \frac{3}{2} + c$)

Range Restrictions: $y \neq HA$ or Holes

Intercepts

$$x - intercepts$$
: Set $y = 0$ and Solve

$$y - interceptes$$
: Set $x = 0$ and Solve

A graph can cross a horizontal asymptote but not a vertical asymptote

x	y
99999	?

Horizontal Asymptotes

Divide top and bottom by highest exponent of x in denominator

Slant Asymptote:

Do Synthetic or Long Division and if the Quotient, the Answer, is a linear function that is the equation of the slant asymptote. (Case #1)

C12 - 10.0 - Function Operations Review

Operations

$$f(x) + g(x) = (f + g)(x)$$

Add y - values

$$f(x) - g(x) = (f - g)(x)$$

Subtract y - values

about. We aren't talking about another x-value till were done talking about that x-value.

Pick an x-value to talk

$$f(x)\cdot g(x)=f(x)\times g(x)$$

Multiply y - values

$$\frac{f(x)}{g(x)} = \frac{f}{g}(x)$$

Divide y - values

$$(fg)(x) = f(x) \cdot g(x)$$

AKA

Composite Functions

$$f \circ g(x) = f(g(x))$$

Put g(x) into f's x

$$g \circ f(x) = g(f(x))$$

Put f(x) into g's x

Inverse

$$y = 2x + 4$$
$$x = 2y + 4$$

Switch x and y

$$x - 2y$$

$$x - 4 = 2y$$

$$\frac{x}{2} - 2 = y$$

Algebra

$$y = \frac{1}{2}x - 2$$

Solve for y =

$$f(g(x)) = x$$
$$g(f(x)) = x$$

Remember: If you put g(x) f's x, and if you put f(x) into g's x, both should solve to x.

C12 - 11.0 - Combinatorics Review

Logic

Fundamental Counting Principle

Blanks

$$\frac{\textit{\# options}}{\textit{options}}$$

Repeats?

× 2

 $(outcomes\ per\ trial)^{number\ of\ trials}$

Tree Diagrams

Cases: Multiply within cases, add separate cases.

Cases!

All-None

Factorial Notation!

$$\frac{\textit{(\# of letters)!}}{\textit{(repeating letter)! (other repeating letter)! \dots}}$$

Identical Objects

Guess and Check

Paths in Squares:
$$\frac{(l+w)!}{l! w!}$$
 Paths in Cubes: $\frac{(l+w+h)!}{l! w! h!}$

Paths in Cubes:
$$\frac{(l+w+h)!}{l! w! h!}$$

Circle: (n-1)!

Combinatorics Formulas

Order Matters/Doesn't Matter

$${}_{n}P_{r}=\frac{n!}{(n-r)!}$$

$$_{n}C_{r}=\frac{n!}{r!\left(n-r\right) !}$$

$$_{n}C_{r}=\frac{_{n}P_{r}}{r!}$$

Binomial Theorem

$$t_{k+1} = {}_n C_k a^{n-k} b^k$$

$$(a+b)^n$$

$$; n + 1 terms$$

Probability

C12 - 11.0 - nCr, nPr Tables

$${}_{n}P_{n} = n!$$
 ${}_{n}P_{1} = n$ ${}_{n}P_{0} = 1$ ${}_{n}P_{n-1} = n!$ ${}_{n}P_{n-2} = n(n-1)!$
 ${}_{3}P_{3} = 3!$ ${}_{3}P_{1} = 3$ ${}_{5}P_{1} = 5$ ${}_{2}P_{0} = 1$ ${}_{2}P_{1} = 2$ ${}_{2}P_{1} = 2$
 ${}_{2}P_{1} = 2$
 ${}_{3}P_{0} = 1$ ${}_{1}P_{0} = 1$ ${}_{2}P_{1} = 2$ ${}_{3}P_{1} = 3$ ${}_{4}P_{1} = 4$ ${}_{5}P_{1} = 5$ ${}_{5}P_{2} = 20$ ${}_{2}P_{2} = 1$ ${}_{3}P_{2} = 6$ ${}_{4}P_{3} = 24$ ${}_{5}P_{3} = 60$ ${}_{5}P_{4} = 120$

 $_5P_5 = 120$

$$_{n}C_{n} = 1$$
 $_{n}C_{1} = n$ $_{n}C_{0} = 1$ $_{n}C_{n-1} = n$ $_{n}C_{r} = _{n}C_{n-r}$
 $_{3}C_{3} = 1$ $_{5}C_{5} = 1$ $_{5}C_{1} = 5$ $_{5}C_{0} = 1$ $_{5}C_{4} = 5$ $_{7}C_{6} = 7$

$${}_{0}C_{0} = 1$$
 ${}_{1}C_{0} = 1$ ${}_{2}C_{0} = 1$ ${}_{3}C_{0} = 1$ ${}_{4}C_{0} = 1$ ${}_{5}C_{0} = 1$ ${}_{5}C_{1} = 5$ ${}_{5}C_{1} = 5$ ${}_{5}C_{2} = 10$ ${}_{3}C_{3} = 1$ ${}_{4}C_{3} = 4$ ${}_{5}C_{4} = 5$ ${}_{5}C_{4} = 5$ ${}_{5}C_{5} = 1$

 $_{n}P_{r}$, $_{n}C_{r} \rightarrow r \leq n$ We can only choose objects from a larger number of objects.

C12 - 11.0 - Table of Cards

	Hearts ♥	Diamonds •	Spades •	Clubs 🕈
7	Ace ♥	Ace ◆	Ace ♠	Ace ♣
()	2 🛡	2 •	2 🏚	2 ♣
	3 ♥	3 ♦	3 ♠	3 ♠
	4 🕶	4 🔷	4 💠	4 🕈
}	5 ♥	5 ♦	5 🛧	5 ♠
	6♥	6 ♦	6 ♠	6 ♣
	7 🕶	7 🔸	7 🛧	7 🛧
	8 🕶	8 •	8 •	8 💠
	9 🕶	9 ♦	9 ♠	9 ♣
1	10 🕶	10 ♦	10 ♠	10 🛧
	Jack 🕶	Jack ♦	Jack 💠	Jack 🕈
	Queen 🕶	Queen •	Queen •	Queen 🛧
	King 🕶	King •	King •	King 🛧
\mathcal{A}	Aco i	s hoth high	and low	

52 card deck 4 suits 13 cards in each suit 4 of each rank

Ace is both high and low

5 card poker hands $_{52}C_5 = 2598960 \ Hands$ $P(hand) = \# \frac{of}{_{52}C_5}$

Hand							$_{n}C_{r}$	# of
Royal Flush	Ace 💙	King •	Queen 🕶	Jack 🛡	10 🕶	10-Ace same suit	$_4C_1 \times 1 = 4$	4
Straight Flush	5 🛊	6 🕈	7 🛖	8 •	10 ♠	5 card run same suit	$_4C_1 \times 10 - 4 = 36$	36
4 of a Kind	7 🕶	7 •	7 🛖	7 🛧	3 •	4 same rank, 1 other	₁₃ C _{1 4} C _{4 48} C ₁	624
Full House	2 🕶	2 •	2 •	4 •	4 💠	3 same rank, 1 pair	$_{13}C_{1} _{4}C_{3} _{12}C_{1} _{4}C_{2}$	3744
Flush	4 💠	8 •	Jack •	2 •	6 🛊	All same suit, no straight	$_{4}C_{1} \times _{13}C_{5} - 40$	5108
Straight	3 🕶	4 🕈	5 🔷	6 🕈	7 🛖	5 card run, not all same suit	$(_4C_1)^5 \times 10 - 40$	10200
3 of a kind	9 🕶	9 •	9 🏚	2 •	5 4	3 kind, 2 others not a pair	$_{13}C_{1} _{4}C_{3} _{12}C_{2} (_{4}C_{1})^{2}$	54912
2 pair	4 🕶	4 🏚	5 🔷	5 💠	Queen •	2 different pairs, 1 other	$_{13}C_2(_4C_2)^2_{44}C_1$	123552
Pair	King •	King •	6 🕶	9 🏚	2 •	1 pair 3 others	$_{13}C_{1} _{4}C_{2} _{12}C_{3}(_{4}C_{1})^{3}$	1098240
High Card	Jack •	8 •	4 💠	2 ♦	7 🛖	None of the above	$_{52}C_5$ – above sum	1302540

We choose 2,3 etc when we don't want them to be the same