重庆理工大学本科生课程考试试卷

2022 ~ 2023 学年第 2 学期

开课学院 <u>理学院</u> 考试时间 <u>120</u> 分	2.30	<u>数学【机电(2)】</u> 卷	考核方式 <u>闭卷</u> 第 1 页 共 2	_ 页	
考生姓名			考生学号		
说明: 试卷分为试题册和答题册,请将答案写在答题册上,请标明大小题号,并按照题号顺序答题!注意答题字迹工整!答在试题册上的答案无效!					
一、单项选择题(本大题共5个小题,每小题3分,总计15分)					
1、点(l,0,-l)到平	面 $3x-2y+6z-11=$	=0 的距离为()		
(A) 7	(B) 2	(C) 14	(D) $\sqrt{17}$		
2、 函数 $u = \sqrt{x - y^2 + z}$ 在点 $P(1, -1, \frac{1}{4})$ 处方向导数的最大值为()					
(A) 1	(B) $\sqrt{2}$	(C) $\sqrt{3}$	(D) $\sqrt{6}$		
3 、二重积分 $\int_0^1 dx$	$\int_{x}^{1} 2\sin\frac{x}{y} dy = 0$)			
(A) 1	(B) $1 - \frac{\pi}{2}$	(C) 1-cos1	(D) cos1-	1	
4、 L 是连接(1,0)及(0,1)的直线段,则 $\oint_L (x+y)ds = ($)					
(A) $\sqrt{2}$	(B) $1+\sqrt{2}$	(C) 1	(D) 0		
5、设函数 $f(x)$ 是以 2π 为周期的周期函数,在 $[-\pi,\pi]$ 上有 $f(x) = \begin{cases} x & -\pi \le x < 0 \\ 1+x & 0 \le x \le \pi \end{cases}$					
则 $f(x)$ 的傅里叶级数在 $x=1$ 处收敛于()					
(A) $\frac{1}{2}$	(B.) 1	(C) 2	(D) 0		
二、填空题(本大题共5小题,每小题3分,总计15分)					
6、设 $z = xy^2 + \frac{x}{y}$,则d $z \Big _{\substack{x=1 \ y=1}} = \underline{\hspace{1cm}}$.					
7、椭球面 $x^2 + 2y^2 + 3z^2 = 6$ 在点 $(1,-1,1)$ 处的切平面方程					
8、已知 Σ 是平面 $x-y-z=1$ 被柱面 $x^2+y^2=1$ 截下的有限部分,则					
$\iint_{\Sigma} (x-y-z)dS = \underline{\hspace{1cm}}.$					

重庆理工大学本科生课程考试试卷

2022 ~ 2023 学年第 2 学期

开课学院 <u>理学院</u>	课程名称 高等数学【机电(2)】	考核方式 <u>闭卷</u>
考试时间 120 分钟	A 卷	第2页共2页
考生姓名	考生班级	考生学号

9、级数
$$\sum_{n=0}^{\infty} \left(-\frac{2}{3}\right)^n = \underline{\hspace{1cm}}.$$

- 10、微分方程 $y' + y = e^{-x}$ 满足条件 $y|_{x=0} = 0$ 的解为 $y = _____.$
- 三、计算题(本大题共5小题,每小题6分,总计30分)
- 11、求通过三点(1,1,-1)、(-2,-2,2)和(1,-1,2)的平面方程.
- 12、求极限 $\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)e^{x^2y^2}}$.
- 13、设 $z = x^4 y^3 2y^2 x \arctan(x+1)$, 求 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=1 \ y=1}}$
- 14、计算 $I = \bigoplus_{\Sigma} (xy^2 3y) dy dz + (yx^2 3z) dz dx + (3z zx^2 zy^2) dx dy$, 其中 Σ 是球面 $x^2 + y^2 + z^2 = 2z$ 的外侧.
- 15、将函数 $\frac{1}{x+4}$ 展开成x-2的幂级数,并指出其收敛域.
- 四、解答题(本大题共5小题,每小题8分,总计40分)
- 16、求微分方程 $y'' 4y' + 3y = 2e^{-x}$ 的通解。
- 17、 Ω 为平面曲线 $\begin{cases} y^2 = 4z \\ x = 0 \end{cases}$ 绕 z 轴旋转一周形成的曲面 Σ ,与平面 z = 1 围成的区域.
 - (1) 写出旋转曲面 Σ 的曲面方程; (2) 计算 $\iint_{\Omega} \sqrt{x^2 + y^2} dv$.
- 18、计算 $\oint_{T} (x^2 xy) dx + (xy^2 y) dy$, 其中 L 为正向圆周 $x^2 + y^2 = 2$.
- 19、级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{3n-2}}$ 是否收敛?若收敛,是条件收敛,还是绝对收敛?
- 20、求二元函数 $f(x,y) = x(3y-x^2) + y(3x-y^2)$ 的极值.