Compte rendu TP:

U.E : E.D.P - Analyse numérique.

Master Mathématiques et Applications.

Master 1 M.A.A.P

Projet TP3 : Problème parabolique de diffusion de la chaleur.

FALL MADOU

04 Mai 2023

Résolution numérique du problème aux limites de diffusion instationnaire de la chaleur.

On cherche à résoudre par des schémas aux différences finies le problème aux limites de Dirichlet pour l'équation de la chaleur sur l'intervalle [0, 1] en espace et [0, T] en temps :

$$\begin{cases} u_t(t,x) - au_{xx}(t,x) &= 0, \ x \in]0,1[, \ t > 0 \\ u(t,0) = u(t,1) &= 0, \ t > 0 \\ u(0,x) &= u_0(x), \ x \in]0,1[\end{cases}$$

avec un coefficient de diffusion a>0 et une condition initiale u_0 donnés comme ci-dessous :

$$\left\{ \begin{array}{lll} \textbf{Cas test 1} : a = 1, \ u_0(x) & := & sin(k\pi x), \ k \in \mathbb{N} \\ \textbf{Cas test 2} : a = 1, \ u_0(x) & := & \mathbb{1}_{[1/4, 3/4]}(x). \end{array} \right.$$

..0.1 Question 1

Ecrivons un script qui programme le θ -schéma $(\theta \in [0, 1])$ de pas uniformes h= $\delta x = \frac{1}{N+1}$ en espace et δt en temps.

On étudie les trois schémas suivants :

schéma explicite (S.E) avec $\theta = 0$, schéma implicite pur (S.I) avec $\theta = 1$ et schéma de Crank-Nicolson (C.K) (1947) pour $\theta = 1/2$.

Voici quelques résultat après simulation :

Number of cells
$$nx = 10$$

Number of mesh points $(nx + 1) = 11$
Number of interior points $N = (nx - 1) = 9$

..0.2 Question 2

Cas test 1. Vérifions que la solution analytique du problème s'écrit comme suit :

$$u_{ex}(t,x) := e^{-k^2\pi^2t} sin(k\pi x), \ x \in [0,1], \ t > 0$$

Considérons une fonction u définie par $(t,x) \mapsto e^{-k^2\pi^2t} \sin(k\pi x)$ pour tout $x \in [0,1]$, pour tout t > 0.

On remarque d'abord que $x \mapsto u(t,x)$ est bien définie et est de classe C^{∞} sur]1;0[donc deux fois dérivables, sa dérivée seconde est donnée par $u_{xx}: x \mapsto -(k\pi)^2 u(t,x)$ pour tout $x \in]0,1[$,

FALL MADOU 1 M1 M.A.A.P

de la même manière on a $t\mapsto u(t,x)$ qui est bien définie et de classe C^{∞} pour tout t>0 donc dérivable, sa dérivée première est donnée par $u_t: t\mapsto -(k\pi)^2 u(t,x)$.

Comme a = 1 ainsi pour tout $x \in]0,1[$, pour tout t > 0 on a :

$$u_t - au_{xx} = u_t - u_{xx}$$

et donc

$$u_t - u_{xx} = -(k\pi)^2 u(t,x) - (-(k\pi)^2 u(t,x)) = -(k\pi)^2 u(t,x) + (k\pi)^2 u(t,x)) = 0$$

Ainsi on vient de montrer que pour tout $x \in]0,1[$, pour tout t>0, la fonction considérée u vérifie :

$$u_t - au_{xx} = 0$$

D'après les remarques faites précédemment, on a la continuité de la fonction u sur $[0,1]\times]0,+\infty[$ donc

pour tout t > 0, on a :

$$u(t,1) = \lim_{x \to 1} u(t,x) = 0$$
 et $u(t,0) = \lim_{x \to 0} u(t,x) = 0$

alors

$$u(t,0) = u(t,1) = 0$$

de plus pour tout $x \in]0,1[$, on a :

$$u(0,x) = \lim_{t\to 0} u(t,x) = \sin(k\pi x) = u_0(x) \ alors \ u(0,x) = u_0(x)$$

En résumé : la fonction u ainsi définie est bien solution exacte du problème, autrement-dit u_{ex} est bien la solution analytique du problème.

FALL MADOU 2 M1 M.A.A.P

..0.3 Question 3

On choisi de travailler avec k = 1.

Illustration:

Pour T = 0.1

Pour T = 0.5

On constate que dans le script qui programme les schémas en faisant variée les pas δt pour un temps T=0, les solutions des schémas atteint la stabilité pour un δt petit trés rapidement. Par contre pour le temps T=0.5, les solutions des schémas atteint la stabilité pour un δt assez faible (très petit).

FALL MADOU 3 M1 M.A.A.P

..0.4 Question 4

Rappel: On dit qu'un schéma de la forme $U^{n+1} = GU^n$ est L^2 stable si le rayon spectral de Gvérifie $\rho(G) < 1$.

- Mettons en évidence l'instabilité du schéma explicite ($\theta = 0$) lorsque $\mu = a\delta t/\delta x^2 > 1/2$.

Pour n=0,..., M+1, on introduit le vecteur $U^n = \begin{pmatrix} u_1^n \\ u_2^n \\ \vdots \\ n \end{pmatrix}$ et A la matrice définit par

$$A = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & 0 & \dots & \dots & 0 \\ -1 & 2 & -1 & 0 & \dots & \dots & 0 \\ 0 & -1 & 2 & -1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & -1 & 2 & -1 & 0 \\ 0 & \dots & \dots & 0 & -1 & 2 & -1 \\ 0 & \dots & \dots & \dots & 0 & -1 & 2 \end{pmatrix}$$

On vérifie aisément que le schémas peut se récrire sous la forme matricielle comme suit :

$$(S.E) \equiv U^{n+1} = (I - dtA)U^n$$

La matrice A admet N valeurs propres (λ_k) distinctes données pour tout $k=1,\ldots, N$ par $\lambda_k=\frac{2}{h^2}(1-\cos(\frac{k\pi}{N+1}))$, associées aux vecteurs propres $V_k=(\sin(\frac{kj\pi}{N+1})_{1\leq j\leq N})$. Ces valeurs propres λ_k sont toutes positives, par conséquent, la matrice (I-dtA) admettent N valeurs propres réelles qui sont $\beta_k = 1 - \frac{2dt}{h^2} (1 - \cos(\frac{k\pi}{N+1})).$

Avec a = 1, nous raisonnons par l'absurde.

Soit $\mu = a\delta t/\delta x^2 > 1/2$, on suppose que le schémas (S.E) est stable, i.e pour tout k = 1,..,N on a $-1 < \beta_k < 1.$

$$-1 < 1 - \frac{2dt}{h^2}(1 - \cos(\frac{k\pi}{N+1})) < 1$$

ou encore

$$-1 < 1 - 2\mu(1 - \cos(\frac{k\pi}{N+1})) < 1$$

d'où

$$0<2\mu(1-\cos(\frac{k\pi}{N+1}))<2$$

D'autres part pour tout k=1,...,N, on a $0<(1-\cos(\frac{k\pi}{N+1}))<2$ alors $4\mu<2$ ainsi $\mu<1/2$ or par hypothése $\mu > 1/2$ ce qui est contradictoire.

En résumé: Par le principe de l'absurde, on conclut que la solution du schéma explicite (S.E) est instable pour $\mu = a\delta t/\delta x^2 > 1/2$.

FALL MADOU 4 M1 M.A.A.P

..0.5 Question 5

Vérifions que pour $\mu > 1$, la solution du schéma de Crank - Nicholson n'est pas toujours positive comme l'est la solution exacte avec k = 1, i.e ce schéma ne vérifie pas le principe du maximum discret.

Pour cela on procéde par l'absurde. Soit $\mu > 1$, on suppose que le schéma ne vérifie pas le principe du maximum discret. On va montrer que sous une condition μ appropriée, le schéma de Crank-Nicholson vérifie le principe du maximum discret.

Soit k et l tels que

$$u_k^{n+1} = M = \max_i (u_i^{n+1}) \ et \ u_l^{n+1} = m = \min_i (u_i^{n+1})$$

Notons que M est positif ou nul et m négatif ou nul. On va montrer que :

$$M \le \max(0, \max_{i}(u_i^n)) \ et \ \min(0, \min_{i}(u_i^n)) \le m$$

Dans un premier temps, on considère l'inégalité $M \leq \max(0, \max_i(u_i^n))$. Cette dernière est trivialement vérifiée si M=0. On peut donc se restreindre au cas $M\neq 0$. Le maximum de u_j^{n+1} pour tout $j\in\{0,\ldots,N+1\}$ est atteint en un élément $k\in\{1,\ldots,N\}$ avec $\theta=1/2$.

$$M - u_i^n + \frac{1}{2}\mu(-u_{i-i}^{n+1} + 2M - u_{i+1}^{n+1}) + \frac{1}{2}\mu(-u_{i-i}^n + 2u_i^n - u_{i+1}^{n+1}) = 0$$

$$M - (1 - \mu)u_i^n - \frac{1}{2}\mu(u_{i-i}^n + u_{i+1}^{n+1}) = -\frac{1}{2}\mu(-u_{i-i}^{n+1} + 2M - u_{i+1}^{n+1}) \le 0$$

soit

$$M \le (1 - \mu)u_i^n + \frac{1}{2}\mu(u_{i-i}^n + u_{i+1}^{n+1})$$

 Si

$$\mu = \frac{a\delta t}{\delta x^2} \le 1$$

Le terme de droite est une combinaison convexe des coordonnées de u^n et donc le premier inégalité est vérifiée. La minoration de m s'en déduit en remplaçant u^n par $-u^n$ et M par -m.

Si la condition μ est vérifiée, le schéma de Crank Nicholson vérifiée le principe du maximum discret. Ce qui est contradictoire car $\mu = \frac{a\delta t}{\delta x^2} > 1$.

Conclusion:

Par le principe de l'absurde, on conclut que la solution du schéma de Crank-Nicolson n'est pas toujours positive pour $\mu = \frac{a\delta t}{\delta x^2} > 1$,

FALL MADOU 5 M1 M.A.A.P

Pour le schéma implicite pur $\theta=0$:

On a

$$u_i^{n+1} - u_i^n + \mu(-u_{i-i}^{n+1} + 2u_i^{n+1} - u_{i+1}^{n+1}) = 0$$

soit

$$u_i^n = (1 + 2\mu)u_i^{n+1} - \mu(u_{i-i}^{n+1} + u_{i+1}^{n+1})$$

Si

$$\mu = \frac{a\delta t}{\delta x^2} \le -1/2$$

Le terme de droite est une combinaison convexe des coordonnées de u^{n+1} et donc si la condition μ est vérifiée, le schéma de implicite pur vérifiée le principe du maximum discret. (On utillise un raisonnement identique avec le schéma de Crank-Nicholson).

Conclusion:

Par le principe de l'absurde, on conclut que la solution du schéma de implicite pur n'est pas toujours positive pour $\mu = \frac{a\delta t}{\delta x^2} > -1/2$.

..0.6 Question 6

Space steps $h = \delta x = [0.1 \quad 0.01 \quad 0.001 \quad 0.0001]$

On peut remarquer que la norme d'erreur e_n^n (entre solution exacte et les solutions approchées) au temps T=0.5 en fonction du pas δx pour $L^{+\infty}(0,1)$ est constante du début jusqu'à 10^-4 puis décroit (convergence) en fonction de δx , et avec $L^2(0,1)$ l'erreur est strictement croissante de 10^-4 à 10^-2 puis à $h=\delta x=10^-2$, puis elle décroit (convergente), comme le montre la figure ci-dessus.

FALL MADOU 7 M1 M.A.A.P

On constant que suivant la variation de T le carré de la norme $L^2(0,1)$ du solution exacte et des solutions approchées de schémas (explicite, implicite pur, Crank Nicholson) décroit i.e la décroissance en temps de l'énergie; de plus on peut remarquer que la croissance du temps T entraine une décroissance de l'énergie jusqu'à atteindre une stabilité de valeur nulle (presque nulle).

FALL MADOU 8 M1 M.A.A.P

..0.8 Question 8

Cas test 2 (pas de solution analytique simple).

Pour T = 0.01

The solutions of the three schemes at time T = 0.01 with $\delta t = 10^{-3}$.

Pour T = 0.1

Pour T = 0.5

On constate qu'au temps T=0.01, on a une illustration qui ne ressemble pas à celle fait pour (une solution analytique simple).

Cependant au temps T=0.1 on a une petite ressemble des courbes tracer avec celle des solutions analytique. Et au temps T=0.5 on a une parfaite ressemblance.

En résumé, on remarque que plus le temps T augmente la variation des solutions se rapproche à celles trouvées dans la première partie (**cas test 1**.

..0.9 Question 9

On constate l'illustrations de u solution des schémas (explicite, implicite pur, Crank Nicholson) nous montre que également même si u_0 est à support compact, dès que t > 0, la fonction u(t, .) n'a plus un support compact sur [0, 1].

FALL MADOU 11 M1 M.A.A.P

On constant que suivant la variation de T le carré de la norme $L^2(0,1)$ des solutions approchées de schémas (explicite, implicite pur, Crank Nicholson) décroit i.e la décroissance en temps de l'énergie, de plus on peut remarquer que plus le temps T augmente plus la décroissance est fréquente jusqu'à atteindre la valeur nulle (presque nulle).

FALL MADOU 12 M1 M.A.A.P

..0.11 Question 11

On peut mettre en évidence le lien entre les schémas avec la décroissance de l'énergie, i.e imposer la stabilité pour les schémas co \ddot{i} ncide avec le fait d'imposer la décroissance de l'énergie discrète.

On peut aussi voir l'instabilité du schéma explicite et vérifier que la solution du schéma de Crank-Nicolson n'est pas toujours positive sous certains conditions pareil pour le schéma implicite pur.

L'existence et l'unicité des solutions approchées pour toute condition initiale U^0 et tout couple $(\delta t, \delta h)$, des schémas explicite (SE), implicite pur (SI), Crank Nicholson (SC).

Nota Bene:

Ce compte rendu est accompagné d'un fichier script de programmation python (format : .py) qui a permis d'illustrer les figures ci-dessus.

FALL MADOU 13 M1 M.A.A.P