Correct

Mark 1.00 out of 1.00

Feladat

Adott egy \boldsymbol{x} vektor. Egészítse ki a lenti ablakban az

u =

kezdetű sort úgy, hogy y egy olyan vektor legyen, mely az x 2. és 4. elemét tartalmazza (ugyanolyan sorrendben, mint x-ben). Ne feledkezzen meg a sorvégi pontosvesszőről!

Kiegészítő információk:

Az x vektornak legalább 4 eleme van.

Ha x sorvektor, akkor y is az legyen, ha x oszlopvektor, akkor y is oszlopvektor legyen.

For example:

Test	Result
x=[-1,5,0,3,-8]; y=fun(x); disp(y)	5 3
x=[4;5;-1;0;2;2]; y=fun(x); disp(y)	5

Answer: (penalty regime: 0, 10, 20, ... %)

```
1 | function y=fun(x)
2 | y = x([2 4]);
3 | end
```

	Test	Expected	Got	
~	x=[-1,5,0,3,-8]; y=fun(x); disp(y)	5 3	5 3	~
~	x=[4;5;-1;0;2;2]; y=fun(x); disp(y)	5	5	~

Correct

Mark 1.00 out of 1.00

Feladat

Adott egy x vektor és egy 6 elemű d vektor. Az x vektor 2.,3.,...,7. elemét ki szeretnénk cserélni a d elemeire (ugyanolyan sorrendben), az új vektort y-nak nevezzük.

Egészítse ki a lenti ablakban a kódot úgy, hogy ezt az y vektort kapjuk. Ne feledkezzen meg a sorvégi pontosvesszőről!

Kiegészítő információk:

Az x vektornak legalább 7 eleme van.

Az x és d ugyanolyan típusúak (vagy mindkettő sor-, vagy mindkettő oszlopvektor). Az y is ugyanilyen típusú legyen.

For example:

Test	Result
x=[-1,5,0,3,-8,1,4,-4]; d=[1,0,1,0,1,0]; y=fun(x,d); disp(y)	-1 1 0 1 0 1 0 -4
x=[4;5;-1;0;2;2;0;6];	4
d=[-3;-2;0;1;1;1];	-3
y=fun(x,d);	-2
disp(y)	0
	1
	1
	1
	6

Answer: (penalty regime: 0, 10, 20, ... %)

	Test	Expected	Got	
~	x=[-1,5,0,3,-8,1,4,-4]; d=[1,0,1,0,1,0]; y=fun(x,d); disp(y)	-1 1 0 1 0 1 0 -4	-1 1 0 1 0 1 0 -4	~

Question $\bf 3$

Correct

Mark 1.00 out of 1.00

Feladat

Adott egy x sorvektor. Az x vektor elé szeretnénk fűzni egy 10 elemű csupa 1-esből álló sorvektort. Egészítse ki a lenti ablakban az u=

 $kezdet \H{u} \text{ sort } \H{u} \text{gy, hogy ezt a vektort kapjuk. Ne feledkezzen meg a sorv\'{e} \text{gi pontosvessz\'{o}r\'{o}l!}$

For example:

Test	Result
x=[-1,5,0,3,-8]; y=fun(x); disp(y)	1 1 1 1 1 1 1 1 1 1 -1 5 0 3 -8
x=[4,5,-1,0,2,2]; y=fun(x); disp(y)	1 1 1 1 1 1 1 1 1 1 4 5 -1 0 2 2

Answer: (penalty regime: 0, 10, 20, ... %)

	Test	Expected	Got	
~	x=[-1,5,0,3,-8]; y=fun(x); disp(y)	1 1 1 1 1 1 1 1 1 1 -1 5 0 3 -8	1111111111-1503-8	~
~	x=[4,5,-1,0,2,2]; y=fun(x); disp(y)	1 1 1 1 1 1 1 1 1 1 4 5 -1 0 2 2	11111111145-1022	~
~	<pre>x=ones(1,7); y=fun(x); disp(y)</pre>	1111111111111111	1111111111111111	~

Correct

Mark 1.00 out of 1.00

Feladat

Adott egy x oszlopvektor. Az x vektor alá szeretnénk illeszteni egy 6 elemű csupa 1-esből álló oszlopvektort. Egészítse ki a lenti ablakban az y=

 $kezdet \H{u} \text{ sort } \H{u} \text{gy, hogy ezt a vektort kapjuk. Ne feledkezzen meg a sorv\'{e} \text{gi pontosvessz\'{o}r\'{o}l!}$

For example:

Test	Result
x=[-1;5;0;3;-8];	-1
y=fun(x);	5
disp(y)	0
	3
	-8
	1
	1
	1
	1
	1
	1
x=[4;5;-1;0;2;2];	4
y=fun(x);	5
disp(y)	-1
	0
	2
	2
	1
	1
	1
	1
	1
	1

Answer: (penalty regime: 0, 10, 20, ... %)

```
1 | function y=fun(x)

2 | y = [x ; ones(6, 1)];

end
```

Correct

Mark 1.00 out of 1.00

Feladat

Adott egy $x=(x_1,\dots,x_n)$ vektor. Egészítse ki a lenti ablakban az y= kezdetű sort úgy, hogy y az $y=(x_1-3,\dots,x_n-3)$ vektor legyen.

Ne feledkezzen meg a sorvégi pontosvesszőről!

For example:

Test	Result
x=[-1,5,0,3,-8]; y=fun(x); disp(y)	-4 2 -3 0 -11
x=[4,5,-1,0,2,2]; y=fun(x); disp(y)	1 2 -4 -3 -1 -1

Answer: (penalty regime: 0, 10, 20, ... %)

```
function y=fun(x)
    y = x-3;
end
```

	Test	Expected	Got	
~	x=[-1,5,0,3,-8]; y=fun(x); disp(y)	-4 2 -3 0 -11	-4 2 -3 0 -11	~
~	x=[4,5,-1,0,2,2]; y=fun(x); disp(y)	1 2 -4 -3 -1 -1	1 2 -4 -3 -1 -1	~

Correct

Mark 1.00 out of 1.00

Feladat

Adott két ugyanolyan méretű vektor: $x=(x_1,\ldots,x_n)$ és $y=(y_1,\ldots,y_n)$.

Egészítse ki a lenti ablakban az

z =

kezdetű sort úgy, hogy
$$z$$
 a következő vektor legyen: $z=\left(rac{x_1+1}{y_1},rac{x_2+1}{y_2},\ldots,rac{x_n+1}{y_n}
ight)$

Ne feledkezzen meg a sorvégi pontosvesszőről!

Kiegészítő információk:

 $\label{eq:definition} \text{Az } y \text{ vektor egyik eleme sem } 0.$

For example:

Test	Result
x=[-1,5,0,3]; y=[1,-1,3,2]; z=fun(x,y); disp(z)	0 -6 0.333333 2
x=[4,5,-1]; y=[1,4,1]; z=fun(x,y); disp(z)	5 1.5 0

Answer: (penalty regime: 0, 10, 20, ... %)

```
1 function z=fun(x,y)
2 | z = (x + 1) ./ y;
3 | end
```

	Test	Expected	Got	
	<pre>x=[-1,5,0,3]; y=[1,-1,3,2]; z=fun(x,y); disp(z)</pre>	0 -6 0.333333 2	0 -6 0.333333 2	~