(12)公開特許公報(A)

(11)特許出關公開番号

特開2002-56870 (P2002-56870A) (P2002-56870A) (43)公開日 平成14年2月22日(2002.2.22)

	(51) Int. C I. ' H 0 M
8/10	8/04
	क्रमाटङ
	F I F I
8/10	8/04
	≭ Z
	テーマコード(参考) 5H026 5H027

(21) 出國番号 密査請求 未請求 請求項の数3 特頃2000-243370 (P2000-243370)

(22) 出頭日

平成12年8月10日(2000.8.10)

10 (71) 出層人

(全10頁)

000005326 本田技研工類株式会社

(72) 発明者 杏藤 勝英 東京都港区南南山二丁目1番1号

(72) 発明者

哲术 和也

本田技烦研究所内 埼玉県和光市中央1丁目4番1号 株式会社

本田技術研究所内

埼玉県和光市中央1丁目4番1号 株式会社

(74)代理人 100064908 弁理士 志賀 正武

(外5名)

母終回に据へ

(54) 【発明の名称】燃料電池の流体供給販置

(57)【熨粉】

ストイキ特性を配保しつつ、必要流量の燃料を流せるよ 【糾跏】 小流盘から大流盘まで広範囲に且って所定の

替え弁60は、第1通路62と第2通路63のいずれか と卵2エゼクタ50と切り替え弁60を内蔵する。切り るディフューザ通路43を有し、第2エゼクタ50は復 を有する。第1通路62は第1エゼクタ40のノズル4 を介して水素出口管32に接続する。 ューザ通路 4 3 とディフューザ通路 5 3 は合流通路 3 6 流室34に連なるディフューザ通路53を有し、ディフ 5 | に連通する。 第1エゼクタ 4 0 は復流室 3 4 に連な |に選通し、第2通路63は第2エゼクタ50のノズル 一方を選択して弁宜61と連通させ他方を遮断する機能 【解決手段】 ユニット本体33に、第1エゼクタ40

【特許請求の範囲】

有することを特徴とする燃料電池の流体供給装置。 ゼクタと前記エゼクタ切り替え手段とを内蔵する弦体を に形成したエゼクタ切り替え手段を備え、前記複数のエ タのノズルへの流路をいずれか一つに選択切り替え可能 せてなるエゼクタを複数備え、さらに前記複数のエゼク 合流させて送出する一つのディフューサと、を組み合わ 発生する負圧によって第2流体を吸引し前記第1流体に ノズルの軸線方向に設けられ前記第1流体の呪射により 【辯求項1】 第1流体を啞射する一つのノズルと、該

に流体を送出することを特徴とする請求項しに記載の燃 る以外の第1流体が流通可能な第1流体通路が前記室体 料電池の流体供給装置。 内に設けられ、前記複数のエゼクタは前記第1流体通路 【贈求項2】 前記複数のエゼクタのノズルに供給され

流体供給装置。 特徴とする請求項しまたは請求項2に記載の燃料電池の エゼクタ切り替え手段を制御する制御部を備えることを 【請求項3】 要求流量に関する入力信号に応じて前紀

【発明の詳細な説明】

等供給系に使用される流体供給装置に関するものであ 【発明の属する技術分野】この発明は、燃料電池の燃料

えており、アノードに燃料として水素が供給され、カソ **高分子電解質膜をアノードとカソードとで両側から挟み** 成されたスタック(以下において燃料電池と呼ぶ)を開 込んで形成されたセルに対し、複数のセルを観層して構 反応により発生した水紫イオンが、固体高分子電解質膜 ードに酸化剤として空気が供給されて、アノードで触媒 気化学反応を起こして発ਧするようになっている。 を通過してカソードまで移動して、カソードで酸霖と電 [0002] 【従来の技術】従来、固体高分子膜型燃料電池は、固体

流散が設定されている。 が塞がれることがないように、排出燃料には所定の排出 **鉛油の色極内のガス流路に水が治まって、このガス流路** 等によって過剰の水が混合されている。このため、燃料 を保つために、燃料電池に供給される水素には加温装置 【0003】ここで、固体分子短解質膜のイオン導電性

イキ値は小さくなる。

効に活用することができ、固体応分子膜型燃料電池のエ なわち水焼)に混合して再循環させることで、燃料を有 クタによって燃料を再循環させる燃料電池装置が知られ 3 5 3 写公報に関示された燃料協治数額のように、よせ たような燃料電池装置として、例えば特開平9-213 ネルギー効率を向上させることができる。従来、上述し こともある)を、新たに燃料電池に導入される燃料(す 【0004】この際、排出燃料(以下、水紫復流という

[00009]

【0005】ここで、エゼクタについて説明すると、従 50

ディフューザー内に吸引され、ノズル4から吸射された 生し、この負圧により復流室2に導入された水素復流が 吸射すると、ディフューザーのスロート部5に負圧が発 導入される水素をノズル 4 からディフューザーに同けて 軸線を同一にして配置したノズル4を復流室 2内に突き この復流室 2 に復流通路 3 を通通し、ディフューザーと をなすディフューザーの基端閉口に復流室2を連設し、 **米索と米素復流とが混合されてディフューザーの出口か** 構成されている。このエゼクタでは、燃料気池に新たに 出してその先端をディフューザーの甚端間口に臨ませて 米の一般的なエゼクタは、図1に示すように、ラッパ状

鼠)Qaに対するティフューザから流出する水素流盘 イキがある。ここで、ストイキとは、前記例で貸えば、 tの比(Qt/Qa)として定義される。また、復流室 (すなわち、燃料電池に供給される水素供給金流費) Q ノズルから呉出される水煮流戲(すなわち、水煮消費流 【0006】このエゼクタの吸引効率を示す指標にスト

いうことができる。 競すると、ストイキ値が大きいほど吸引効率が大きいと ると、Qt=Qa+Qbであるから、ストイキは(Qa +Qb) /Qaと定綴される。このようにストイキを定

からディフューザに吸引される水素復流流量をQbとす

のストイキ値が最大になる流体流肌(前紀例で含えば水 料色治の燃料供給用エガクタにおいて、ストイキョと米 選定し使用するのが一般的である。この場合、エゼクタ れているため、使用流体の流量範囲内で各々最適な径を ゼクタにおいてディフューザ怪およびノズル径が固定さ 径が大きくなると水素消費流量Qaは大きくなるがスト するが、水素消費流量Qaが少なくなり、一方、ノズル 示しており、ノズル径が小さくなるとストイキ倒は上昇 をノズル锋をパラメータとして求めた実験結果の一例を 紫消費流型Qaとの関係(以下、ストイキ特性という) 裁消毀流型Qa)は一定の値に決定される。図8は、燃 【0001】ところで、従来のエゼクタでは、一つのコ

が決まっている上、燃料電池自動車の場合には、アイド 要求されるストイキ菌 (以下、要求ストイキ窟という) て太い実線で示すように、燃料電池の通転状態によって 水ストイキ値を満足させることは困難であった。 するため、一つのエゼクタで水栽流型の会域に辿って殴 リングから全関出力まで水素流量が10~20倍も変化 [0008] ここで、燃料電池の場合には、図8におい

の流体通路に設けておいた低低弁を開き、小流低用エゼ **悩え、小流型用エゼクタへの流体道路を常時間にして常** クタだけでは流費が足りない時に、大流費用エゼクタへ に小流位用エゼクタを動作するようにし、小流乱用エゼ めに、例えば、小流盘用エゼクタと大流型用エゼクタを 【発明が解決しようとする課題】この問題を回避するた 8

特開2002-56870

ゼクタ構造が考えられる。 クタと大流母用エゼクタを両方動作させるようにしたエ

ルとディフューザの最適値のパランスが崩れるため、大 用エゼクタへの流体通路が開となった時に、両エゼクタ 定のストイキ性能を確保することができる燃料電池の流 じる。そこで、この発明は、広範囲の流量域において所 流風時のストイキ性能が曖保できないという不具合が生 のディフューザの関口面積の和が大きくなり過ぎ、ノズ のノズルから頃射する流体の流位に対して、両エゼクタ 体供給装置を提供するものである。 【0010】しかし、このようにした場合には、大流園 =

0)は、第1流体(例えば、後述する実施の形態におけ する実施の形態における切り替え弁60)を腐え、前記 エゼクタのノズルへの流路をいずれか一つに選択切り替 たは第2エゼクタ50)を複数幅え、さらに前記複数の ューザ酒路53)と、を組み合わせてなるエゼクタ(例 災燵の形倣におけるディフューザ道路 4 3 またはディフ させて送出する一つのディフューザ(例えば、後述する の形態における水紫復流)を吸引し前紀第1流体に合流 発生する負圧によって第2流体(例えば、後述する災施 施の形態におけるノズル41またはノズル51)と、該 る水素)を噴射する一つのノズル(例えば、後述する実 数型(例えば、安肺の形態におけるエゼクタユニット 3 後述する更施の形態における燃料電池11)の流体供給 に、鶴水項しに記載した発明に係る燃料電池(例えば、 本体33)を有することを特徴とする。 扱数のエゼクタと前記エゼクタ切り替え手段とを内蔵す え可能に形成したエセクタ切り替え手段(例えば、後述 えば、後述する災陥の形態における第1エゼクタ40ま ノズルの軸線方向に設けられ前記第1流体の頃射により 【原題を解決するための手段】上記即題を解決するため る口体(例えば、後述する灾権の形態におけるユニット 20

せることができ、したかって、エゼクタ毎にノズル径お こで、ストイキとは、第1流体の流量に対する第1流体 **捐型盘に応じてストイキ特性を変えることができる。こ** 替え手段によりいずれか一つのエゼクタを単独で動作さ え手段を内蔵しているので、燃料供給模置を小型化する いう。また、団体内に複数のエゼクタとエゼクタ切り替 および第2流体の流費の和(すなわち、金流鼠)の比を よびディフューザ倍を興にしておくことにより、燃料の 【00|2】このように構成することで、エゼクタ切り

に記載の燃料電池の流体供給装置において、前記複数の 体内に設けられ、南記複数のエゼクタは前記第1流体通 る合流通路36およびパイパス水素入口37)が前記図 能な項ー流体通路(例えば、後述する実施の形態におけ エゼクタのノズルに供給される以外の第1流体が流通可 路に流体を送出することを特徴とする。このように構成 【0013】請求項2に記載した発明は、前記請求項1

> させてから下流に送出することができる。 することで、エゼクタから送出される第1流体と、エセ クタに供給される以外の第1流体を第1流体通路で合流

る。このように構成することで、要求流量に応じたエセ の形態における燃料低池の出力電流)に応じて前記エセ て、要求流量に関する入力信号(例えば、後述する実施 または請求項2に記載の燃料電池の流体供給装置におい クタを適正に選択して動作せることができる。 灾姉の形態におけるECU)を僻えることを特徴とす クタ切り替え手段を制御する制御部(例えば、後述する 【0014】請求項3に記破した発明は、前記請求項1

料電池11と、加湿部13と、酸化剤供給部14と、熱 流体供給装置の実施の形態を図しから図6の図面を参照 体供給茲置)30と、燃料供給側圧力制御部18と、バ ムは、例えば電気自動車等の車両に搭載されており、燃 図1から図5の図面を参照して説明する。図1は本発明 て例えば酸素を含む空気が供給される空気極とを備えて 料として例えば水紫が供給される燃料極と、酸化剤とし 交換部15と、水分賦部16と、エゼクタユニット(流 ステム構成図である。この燃料電池の燃料供給系システ に係る流体供給装置を備えた燃料電池の燃料供給系のシ して説明する。初めに、この発明の第1の実施の形態を **複数のセルを根図して構成されたスタックからなり、熱** ソードとで両倒から挟み込んで形成されたセルに対し、 イバス側圧力制御部19とを溺えて構成されている。 ン交換膜等からなる固体高分子電解質膜をアノードとカ 【0016】燃料低池11は、例えば固体ポリマーイオ 【発明の実施の形態】以下、この発明に係る燃料電池の

出口20日が設けられている。一方、燃料商には、火料 供給される空気供給口20gと、空気極内の空気等を外 外部に排出するための然料排出口 2 0 dが設けられてい が供給される燃料供給口20cと、燃料極内の水紫等を 部に排出するための空気排出弁2 1が設けられた空気排 【0017】空気極には、酸化剂供給部し4から空気が

料供給口20cから燃料低池11の燃料極に供給され **部18、エゼクタユニット30.加湿部13を介して燃** て、エセクタユニット30の水紫復流入口35に、燃料 0の水素入口管31に接続され、加温部13はエゼクタ の構成については後で詳述するが、図1から図3に示す 接続する流路に設けられている。エゼクタユニット30 ット30は燃料供給側圧力制御部18と加湿部13とを 昭解虹膜のイオン専電性を確保している。 エゼクタユニ 水素を加湿してから燃料電池11へと供給し、固体分子 る。加湿部13は、供給される水素に水蒸気を混合して 【0018】燃料としての水煮は、燃料供給側圧力制御 ユニット30の水熱出口管32に接続されている。そし ように燃料供給側圧力制御部18はエゼクタユニット3

> が、水分賦部16で水分を除去され、逆止弁23を通じ 出された排出燃料を混合して燃料電池11に供給するも 力制御部18から供給された燃料と燃料電池11から排 て供給される。エゼクタユニット30は、燃料供給側圧 電池 1 Ⅰの燃料排出口 2 0 dから排出された排出燃料

ス通路22にはバイバス側圧力制御部19が設けられて 回するパイパス通路 2 2 が殴けられており、このパイパ 【0019】また、燃料供給側圧力制御部18と加湿部 | 3とを接続する流路には、エゼクタユニット30を迂

度に加温して、燃料低池11へと供給している。 気を供給するとともに、燃料供給側圧力制御部18およ り、熱交換部 | 5を介して、燃料低池 | | の空気極に空 ル(図示せず)からの入力信号等に応じて制御されてお 交換部15は、酸化剤供給部14からの空気を所定の温 びバイバス側圧力制御部19に空気を供給している。熱 レッサーからなり、燃料館治11の食荷やアクセルペダ 【0020】酸化剤供給部14は、例えばエアーコンプ

各圧力制抑制18.19の出口で有する圧力、つまり供 号圧として、各圧力制御部18.19を通過した燃料が なり、酸化剤供給部14から供給される空気の圧力を俗 圧力制御部19は、例えば空気式の比例圧力制御弁から バイバス側圧力制御部19では、信号圧:供給圧=1: 制御部18では、信号圧:供給圧-1:3に設定され、 給圧を所定値に設定している。例えば、燃料供給似圧力 一に設定されている。 【0021】燃料供給側圧力制御部18及びバイバス側

いずれのエゼクタに水素を供給するかを選択的に切り替 は、燃料供給側圧力制御部18に接続されて水素を供給 および図3を参照して説明する。エゼクタユニット30 える切り替え弁(エゼクタ切り替え手段)60を内蔵し される水漿入口管31と加温部13に水素を送出する水 て構成されている。 と、別2エゼクタ50と、これらエゼクタ40,50の し、このユニット本体33の内部に、第1エゼクタ40 紫出口管32とを備えたユニット本体(旣体)33を有 【0022】次に、エゼクタユニット30について図2

【0 0 2 3】 ユニット本体 3 3には、水紫入口管 3 1に

になっている。 第1通路62は第1エゼクタ40のノズ 第1弁座64および第2弁座65に対して岩底雌間可能 クチュエータ67によって移動可能に支持されており、 る。弁体66は、ユニット本体33に固定された電磁プ り、両弁座64.65の間に弁体66が配置されてい 座64と第2弁座65は互いに対向して配置されてお 通部には環状の第2弁座65が設けられている。 第1弁 4が設けられ、弁室61と第2通路63とを連通する連 第1通路62とを連通する連通部には環状の第1弁座6 よび第2通路63が設けられている。また、弁室61と 運通する弁室61と、弁室61に運なる第1通路62お

特開2002-56870

ル41に接続され、第2適路63は第2エゼクタ50の ノズル5 |に接続されている。

されている。そして、弁体66が972井鹿65に召伍す ON状態では弁体66が第1弁座64に初座するように 路63と第1弁座64と第2弁座65と弁体66と低阻 れるようになり、第2通路63に流れることはない。一 室61に供給された水素はその全型が第1通路62に流 60はOFF状態で弁体66が第2弁風65に蟄囲し、 え弁60は図示しない中央電子制御数型(以下、ECU アクチュエータ67は切り替え弁60を構成し、切り替 第1通路62に流れることはない。 た水素はその全量が第2通路63に流れるようになり、 断されるので、水煮入口管31から井冱61に供給され **第2通路63が通通して弁宜61と第1通路62とが返** 方、弁体66が第1弁照64に智庭すると、弁冠61と 2通路63とが適節されるので、水素入口管31から弁 ると、弁얼61と好し適路62が通通して弁얼61と好 と略す)によってON/OFF刺鉤される。切り替え弁 【0024】ここで、弁室61と第1通路62と第2通

a, 52 aに連なっている。 設けられており、この復流室34はユニット本体33の 【0025】また、ユニット本体33には復流冠34が 路42,52を有し、流体道路42,52は先端(下 41.51は軸線を互いに平行にして配置されている。 うにしてユニット本体33に固定されており、両ノズル ル5|はそれぞれの先端部を復流冠34に突出させるよ 外面で開口する水紫復流入口35に接続されている。 卯 流)に進むにしたがって瀬次稲径し、先端の間口即42 ノズル41,51はそれぞれ軸線方向に貫通する流体通 | エゼクタ40のノズル4| と第2エゼクタ50のノズ

したがって漸次連続的に縮径する絞り節45が設けら ロート部44を打し、このスロート部44よりも上流側 ィフューザ通路43は、その途中に内径が最小となるス を同一にしてノズル51の下流倒に設けられている。デ られており、ディフューザ通路 5 3 はノズル 5 1 と輪級 **ズル41と勧奨を同一にしてノズル41の下流録に扱け** 3,53が設けられている。ディフューザ通路43はノ に連なる2つのディフューザ通路 (ディフューザ) 4 (図2および図3において上方)には下流方向に進むに 【0026】また、ユニット本体 3 3には、復流気 3 4

広がり角度は絞り部45の広がり角度よりも小さい。デ いて下方)には下流方向に進むにしたがって順次連続的 れ、スロート部44よりも下流側(図2および図3にお スロート郎54と、校り部55と、拡径部56を行して イフューザ通路 5 3 もディフューザ通路 4 3 と同様に、 に拡揺する拡揺節46が設けられている。拡揺節46の

している。そして、各ディフューザ通路43,53の出 36に接続され、合流通路36は水煮出口管32に週通 【0027】各ディフューザ通路43,53は合流通路

路53に逆流して同一流体がディフューザ通路43.5 とストッパ48,58が数君されており、流体がディフ 口には、それぞれ逆流防止用のリードバルブ47.57 る。このように構成することにより、ディフューザ通路 ディフューザ通路43を閉塞するように構成されてい ザ通路 5 3 を流通する際にはリードバルブ 4 7 が閉じて じてディフューザ通路53を閉窓し、流体がディフュー ューザ道路 4 3 を流道する際にはリードバルブ 5 7 が閉 こと(つまりストイキが低下すること)を防止すること 3間で循環してしまい、契質的な水素復流量が減少する 4 3を通過した流体が合流道路 3 6 からディフューザ道

れた水紫仮流がディフューザ道路 4.3 で混合されること ズル4|から頃射された水素と復流室34から吸い込ま 内の水粘復流がディフューザ道路43に吸い込まれ、ノ 4の近傍に負圧が発生し、この負圧によって復流室34 **数を順射すると、ディフューザ通路43のスロート部4** 一の既口部428からナイフェーを追路43に何けて头 3と復流室34は第1エゼクタ40を構成し、ノズル4 【0028】 ここで、ノメガ41とディフューを通路4 8

た水紫復流がディフューザ通路 5 3 で混合されることに ル5|から噴射された水素と復流室3|から吸い込まれ の水素復流がディフューザ通路 5 3 に吸い込まれ、ノズ の近傍に負圧が発生し、この負圧によって復流室34円 を順射すると、ティフューザ道路53のスロート部54 の関口部52aからティフューザ通路53に向けて水紫 と復流室 3 4 は第 2 エゼクタ 5 0 を構成し、ノズル 5 1 【0029】また、ノズル51とディフューザ道路53

通路43のスロート館44の内径を4.0mmとし、/ 41の関口部42aの内径を1.0mm、ディフェーサ 位時に必要ストイキ値を設足させる大流虹用のエゼクタ **貸用のエゼクタとして模能し、第2エゼクタ50は大流** タ40は、小流型時に必要ストイキ値を衍足させる小流 路53の内径よりも小さく設定されていて、第1エゼク エゼクタ50のノズル51の内径およびディフェーザ道 怪およびディフューザ道路43の内径はそれぞれ、第2 ーザ道路 5 3のスロート部 5 4の内径を 4. 5 mmに設 ズル51の閉口部52aの内径を1.5mm、ディフェ として機能するように設定されている。例えば、ノズル 【0030】なお、第1エセクタ40のノズル41の内

説明する。エセクタユニット30の切り替え弁60は熱 所定値以上の時には、切り替え弁60はON状態に制御 OはOFF状態に影響され、燃料気池IIの出力電流が 料偽治一一の出力協演に描かいた無質され、繁粋協治一 1の出力電流が所定値よりも小さい時には切り替え弁6 【0031】次に、このエゼクタユニット30の作用を

> lから噴射された水素と復流室 3 4 から吸い込まれた水 向かって噴射される。すると、ディフューザ通路43の で、水紫入口管31から弁室61に供給された水素は第 が吸射されることはない。 なへ、したかって、ノズル51の鯉口部52aから氷紫 るので、弁宜61の水袋が羽2通路63に流れることは 井体66によって井釭61と第2通路63とが遮断され 介して燃料低池11に供給される。なお、この時には、 合流通路36から水紫出口管32を通り、加湿器13を ルブ47を辿って合流通路36に送出される。そして、 素復流がディフューザ通路43で混合されて、リードバ スロート部14の近傍に発生する負圧により、水素復流 2に示すように弁体66が第2弁座65に碧歴するの ューザ通路13内に吸い込まれる。その結果、ノズル4 入口35から復流室34に供給された水紫復流がディフ ノズル41の関口部428からディフューザ通路43に 1通路62を通ってノズル41の流体通路42に流れ、 【0032】切り替え弁60をOFF状態にすると、図

水素復流がティフューザ通路 5 3 を通って合流通路 3 6 値よりも小さく、水熱消費量が少ないときには、このエ 合流道路36内の圧力よりも低いので、復流室34内の 態の時に、合流道路36からディフューザ道路53へ水 第2エゼクタ50は機能しないこととなる。そして、第 紫が逆流することはない。また、復流室34内の圧力は 値よりも若干髙い所定のストイキ値を得ることができ に復出することもない。 5 7が設けられているので、切り替え弁6 0がOFF状 |エゼクタ40によれば、小流掛において原状ストイキ 【0033】すなわち、燃料電池11の出力電流が所定 ゼクタユニット30は第1エゼクタ40だけが機能し、 なお、ディフューザ道路53の下流にリードバルブ

れる。その結果、ノズル51から頃射された水紫と復流 3 で混合されて、リードバルブ57を通って合流通路3 3のスロート部54の近傍に発生する負圧により、復流 と、図3に示すように弁体66が第1弁座64に若座す 第Ⅰ通路62とが遮断されるので、弁室6Ⅰの水漿が第 れる。なお、この時には、弁体66によって弁室61と 蜜 3 4 から吸い込まれた水紫復流がディフューザ道路 5 3に向かって噴射される。すると、ディフューザ通路 5 れ、ノズル51の関口部52aからディフューサ辺路5 は第2通路63を通ってノズル51の流体通路52に流 るので、水紫入口管31から弁宜61に供給された水紫 |の関口部42aから水紫が噴射されることはない。 1 道路 6 2 に流れることはなく、したがって、ノズル 4 32を通り、加湿器13を介して燃料電池11に供給さ 6に送出される。そして、合流道路36から水栽出口質 【0034】一方、切り替え弁60をON状態にする

値以上になり、水熱消費量が大きいときには、このエゼ 【0035】すなわち、数料鉛油11の出力臨液が医院

> エゼクタ50によれば、大流量において要求ストイキ値 流がディフューザ道路43を通って合流道路36に流出 路36円の圧力よりも低いので、復流室34円の水紫仮 に、合流通路36からディフューザ道路43へ水紫が逆 が設けられているので、切り替え弁60かON状態の時 なお、ディフューザ通路43の下流にリードバルブ47 よりも若干芯い所定のストイキ値を得ることができる。 |エゼクタ40は機能しないこととなる。そして、第2 クタユニット30は第2エゼクタ50だけが根旋し、第 流することはない。また、復流室34内の圧力は合流通

にする。すると、ステップSI04で卯1通路62(す ステップS103に進んで切り替え弁60をOFF状態 いて、燃料臨池11の出力臨流をモニターし、次に、ス 燃料供給系システムの作用を説明する。まず、酸化剤供 流盘側通路)が閉ざされる。その結果、エゼクタユニッ わち大流粒側道路)が開き、第1通路62(すなわち小 する。すると、ステップSI06で第2通路63(すな ステップS | 05に進んで切り替え弁60をON状態に る。一方、ステップSI02で肯定判定した場合には、 ット30は小流位用エゼクタとして機能することにな 大流嵒側通路)が閉ざされる。その結果、エゼクタユニ なわち小流位側道路)が関き、第2道路63(すなわち 判定する。ステップSI02で否定判定した場合には、 テップS102に進んで、出力低流が所定値以上が否か ャートである。まず、ECUは、ステップSIOIにお 【0036】図4は、エゼクタ切り替え脚節のフローチ ト30は大流型用エゼクタとして機能することになる。 【0037】次に、この実施の形態における燃料電池の

ーP t で水素を供給するように設定されており、したが ット 3 0 の水紫入口管 3 1 及びパイパス通路 2 2 に向け れる。すると、燃料供給側圧力制御部18は、倡导圧P 圧力制御部18及びパイパス側圧力制御部19に供給さ Pt)の空気が、燃料電池11の空気極及び燃料供給向 ら供給される水紫の供給圧Pse以下に設定されてい って、この供給圧Psbは燃料供給側圧力制御部18か 側圧力制御部 I 9は、信号圧P t と同圧の供給圧P s b て水素を供給する。一方、パイパス通路 2 2 のパイパス tの3倍、つまり供給圧Pse=3Ptでエゼクタユニ 給部14から、曳えば繋料臼治11の負荷やアクセラベ ダルの操作重等に応じて設定される適宜の圧力(俗号圧

に制御されるため、燃料供給側圧力制御部18から供給 状態では、前述したように切り替え弁60か0FF状態 供給される燃料流量が微少の時には、ノズル41におけ 0へと供給される。そして、この状態で燃料質池11に される水紫は、切り替え弁60を介して第1エゼクタ4 よりも小さく、燃料極に供給される水紫の流質が少ない る圧力損失が小さく、第1エゼクタ40のディフューザ 【0038】ここで、燃料電池11の出力電流が所定値

設定される供給圧Psb以下になると、パイパス側圧力 における米紫の出口圧が、パイパス側圧力即回部 19で いき、第一エゼクタ40のディフューザ道路43の出口 **通過する水紫の流色が増加するのに伴って、第1エゼク** なく、バイバス側圧力制御部19で設定される水素の供 治!」に供給される水素の流型が徐々に均大し、パイパ 脚御部19が関弁されて、パイパス通路22から燃料塩 ストイキ値は、第1エゼクタ40のストイキ特性により ス側圧力脚節部19は開弁されず、パイパス通路22か 給圧Psbよりも大きくなっている。このため、パイパ ス道路22からも燃料臨池11へ水紫が供給されるよう ら然料館治11へ供給される水紫の流道はゼロであり、 力制御部18から供給される水素の供給圧Pseと大兒 通路43の出口における水素の出口圧は、燃料供給側圧 タ40のノズル41における水煮の圧力損失が怕大して 【0039】そして、跰 | エゼクタ40のノズル41を

鱼が増大し、燃料電池||の出力電流が前記所定値以上 介して932エゼクタ50へと供給される。 からON状態に切り替え制御されるため、燃料供給側圧 になると、前述したように切り替え弁60かOFF状態 力別御邸18から供給される水素は、切り替え弁60を 【0040】ならに、薮奘臼当一一な遊戯される大器の

圧Psbよりも大きい。このため、パイパス側圧力制御 部19は開弁されず、パイパス通路22から燃料電池1 は、バイバス側圧力制御部 | 9 で設定される水素の供給 における圧力損失が比較的に小さく、第2エゼクタ50 は、第2エゼクタ50のストイキ特性により決定され のディフューザ道路 5 3 の出口における水敷の出口圧 料価池 二への水素供給量が中流型域では、ノズル5 三 【0041】そして、切り替え弁60の切り替え後、熔 一へ供給される米糕の流費はゼロであり、ストイキ値

設定される供給圧Psb以下になると、バイパス側圧力 いき、浴2 ドガクタ 5 0 のディフュー が過路 5 3 の出口 池11に供給される水素の流質が徐々に増大し、パイパ における水敷の出口圧が、パイパス倒圧力型御部19で 不足する分の水素をパイパス通路22を介して燃料気池 になる。したがって、第2エゼクタ50の単独使用では ス通路22からも燃料低池11へ米紫が供給されるよう 即節部19が開弁されて、バイバス道路22から熱料的 タ50のノズル51における水素の圧力損失が怕大して 通過する水漿の流風が増加するのに伴って、第2エゼク 【0042】そして、第2エゼクタ50のノズル51を | | に供給することができ、大流盘時に対応することが

亘るほぼ全流位域において必要ストイキ値よりも大きな システムのストイキ特性図であり、小流費から大流盤に 【0043】図5は、この実施の形態における燃料供給

特期2002-56870

3

8

特例2002-56870

おいて破線はバイバス通路22から燃料が開光されてい ストイキ値を得られることが確認できる。なお、図5に

作させて水素復流を燃料電池11に再循環させることが によれば、切り替え弁60の切り替えによって、第1エ 池11に送出することができる。 アイドル時の小流量から大流量まで広範囲に亘って所定 **位用エゼクタとしてのストイキ特性を有しているので、** できる。しかも、第1エゼクタ40は小流位用エゼクタ ゼクタ 4 0 と第 2 エゼクタ 5 0 のいずれか一方のみを助 クタユニット30を加えた燃料電池の燃料供給システム のストイキ特性を囮保しつつ、必要な燃料流盘を燃料距 としてのストイキ特性を有し、第2エゼクタ50は大流 【0044】このように、この実施の形態におけるエセ 5

供給システムを小型化することができる。さらに、燃料 れ、燃料電池11で必要とされる水紫流型(要求流型) 塩油||の出力電流に応じて切り替え弁60を切り替え 館房/回館外報網回路を用いても掛わない。 池11の実際の出力電流を用いたが、ほかに目標電流や を確実に送出することができる。なお、この実施の形態 40,50と切り替え井60を内膜しているので、燃料 では、夏求する水紫流日に関する入力信号として燃料馆 るようにしているので、エセクタの選択が適正に行わ 【0045】また、ユニット本体33内に二つエセクタ 8

入口37にバイバス通路22の下流端が接続されるよう バス水転入口37が設けられていて、このバイバス氷紫 火柴出口町32が殴けられ、合流道路36の街路にパイ の形態では、ユニット本体33の合流通路36の一端に 入口を備えた点だけである。すなわち、この第2の実施 形態と相迫する点は、ユニット本体 3 3にパイパス大概 30の所面図である。第2の実施の形態が第1の実施の る。図6は第2の実施の形態におけるエゼクタユニット 置における第2の災陥の形態を図6を参照して説明す 【0046】次に、本発明に係る燃料電池の流体供給室

付して説明を省略する。 他のものと同じであるので、同一般標即分に同一符号を る利点もある。その他の構成については第1の実施の形 るので、燃料供給系をコンパクトに構成することができ この水素の合流部分を含めてユニット化することができ 後に、燃料処池11に供給することができる。そして、 ニット本体33内の合流通路36で予め充分に混合した される水森とバイバス通路 2 2 から供給される水気をユ ち、別1エセクタ40または第2エセクタ50から送出 ニット30の作用に加えて、次の作用がある。すなわ 0においては、前述した第一の実施の形態のエゼクタユ 【0047】このように構成されたエセクタユニット3

力制御部19を設けたが、これらはなくても構わない。 2の実施の形態では、バイバス通路 2 2 とバイバス側圧 【0048】なお、前述した第一の販施の形態および第 జ

また、ユニット本体33に内蔵するエゼクタの数は二つ

必要がある。 ることができるようにエゼクタ切り替え手段を構成する 構わない。その場合には、各エゼクタを単独で動作させ に限るものではなく、三つあるいはそれ以上であっても

[0049]

とができ、したかって、エゼクタ毎にノズル径およびテ かも、筺体内に複数のエゼクタとエゼクタ切り替え手段 必要な燃料流量を燃料電池に送出することができる。し まで広範囲に亘って所定のストイキ特性を確保しつつ、 えることができるので、アイドル時の小流盤から大流量 ィフューザ径を興じしておくことにより、流戱特性を変 段によりいずれか一つのエゼクタを単独で動作させるこ 燃料電池の燃料供給板置によれば、エゼクタ切り替え手 を内蔵しているので、燃料供給装置を小型化することが 【発明の効果】以上説明したように、請求項 | に記載の

た燃料供給装置を小型化することができる。さらに、簡 水紫流量を補充することができ、大流量の水素を燃料電 ができるので、エゼクタを通過させた時に不足する分の される第1流体と、エゼクタに供給される以外の第1流 給裝置によれば、前記効果に加えて、エゼクタから送出 キ値で供給することができる。 できるので、燃料館池に必要流量の燃料を最適なストイ 流盘に応じたエゼクタを適正に選択して動作せることが **求項3に記載の燃料電池の燃料供給装置によれば、要求** 池に送出することができる。また、バイバス通路を備え 体を第1流体通路で合流させてから下流に送出すること 【0050】また、請求項2に記載の燃料電池の燃料供

【図面の簡単な説明】

池の燃料供給系システム構成図である。 【図1】 この発明に係る流体供給装置を備えた燃料電

るエゼクタユニットの第1の実施の形態における断面図 であり、小流盘用エゼクタとして機能させた時を示す図 (図2) この発明に係る燃料電池の流体供給装置であ

た時を示す図である。 ットの断面図であり、大流位用エゼクタとして機能させ 【図4】 前記第1の実施の形態においてエゼクタ切り 【図3】 前記第1の実施の形態におけるエゼクタユニ

替え制御のフローチャートである。 ステムのストイキ特性図である。 【図5】 前記第1の実施の形態における燃料供給系:

【図6】 この発明に係る燃料電池の流体供給装置であ

るエゼクタユニットの第2の実施の形態における断面図 従来の一般的なエゼクタの断面図である。

[図8] てストイキ値と水紫消費流量との関係を示す図である。 【符号の説明】 **従来のエゼクタのノズル径をパラメータとし**

> 30・・・エゼクタユニット (流体供給装置) 40・・・別一 ユゼクタ 3 7・・・バイパス水転入口 36···合流通路(第1流体通路) 33・・・ユニット学体 ᄑ (⊠ | |-60・・・切り替え弁(エゼクタ切り替え手段) 53・・・ディフューザ道路(ディフューザ) 5 1・・・ノズル 50・・・第2エゼクタ 43・・・ティフューザ道路(ティフューザ) 41.../ズル Ξ

(72) 発明者 福間 一教

社本田技術研究所内

埼玉県和光市中央1丁目4番1号 株式会

(72)発明者 官原 竜也 均玉県和光市中央 | 丁目 4番 | 5) 株式会 北本田技術研究所内 ドターム(急針) 51026 AAO6

5H027 AA06 BA19 MM08

フロントページの続き

Ē

特別2002-56870