In These Slides

- Key takeaway: normal vectors *do not* transform the same way as points and vectors
- But instead with the *inverse transpose*

Normal

• Surface Normal: unit vector that is locally perpendicular to the surface

Why is the Normal important?

It's used for shading — makes things look 3D!

Visualization of Surface Normal

$$\pm x = \text{Red}$$

 $\pm y = \text{Green}$
 $\pm z = \text{Blue}$

How do we transform normals?

n_{WS}

World Space

Transform Normal like Object?

- translation?
- rotation?
- isotropic scale?
- scale?
- reflection?
- shear?
- perspective?

Transform Normal like Object?

- translation?
- rotation?
- isotropic scale?
- scale?
- reflection?
- shear?
- perspective?

What class of transforms?

Transformation for shear and scale

More Normal Visualizations

So how do we do it right?

• Think about transforming the *tangent plane* to the normal, not the normal *vector*

Pick any vector v_{OS} in the tangent plane, how is it transformed by matrix **M**?

$$v_{WS} = \mathbf{M} v_{OS}$$

Transform tangent vector v

v is perpendicular to normal *n*:

Dot product
$$n_{OS}^{T} v_{OS} = 0$$

$$n_{OS}^{T} (\mathbf{M}^{-1} \mathbf{M}) v_{OS} = 0$$

$$(n_{OS}^{T} \mathbf{M}^{-1}) (\mathbf{M} v_{OS}) = 0$$

$$(n_{OS}^{T} \mathbf{M}^{-1}) v_{WS} = 0$$

 v_{WS} is perpendicular to normal n_{WS} :

Digression

$$n_{WS} = (\mathbf{M}^{-1})^{\mathrm{T}} n_{OS}$$

- The previous proof is not quite rigorous; first you'd need to prove that tangents indeed transform with **M**.
 - Turns out they do, but we'll take it on faith here.
 - If you believe that, then the above formula follows.

Comment

- So the correct way to transform normals is: $n_{WS} = (\mathbf{M}^{-1})^{\mathrm{T}} n_{OS}$ Sometimes denoted M-T
- But why did $n_{WS} = \mathbf{M} n_{OS}$ work for similitudes?
- Because for similarity transforms, $(\mathbf{M}^{-1})^{\mathrm{T}} = \lambda \mathbf{M}$
- e.g. for orthonormal basis:

$$M^{-1} = M^{T}$$
 i.e. $(M^{-1})^{T} = M$

Connections

- Not part of class, but cool
 - "Covariant": transformed by the matrix
 - e.g., tangent
 - "Contravariant": transformed by the inverse transpose
 - e.g., the normal
 - a normal is a "co-vector"

• Google "differential geometry" to find out more