SEGURIDAD DE LA INFORMACIÓN

TEMA 2

TÉCNICAS CRIPTOGRÁFICAS BÁSICAS

(Y SERVICIOS DE SEGURIDAD ASOCIADOS)

Indice del tema (I)

- Introducción a la criptografía clásica
 - Cifrados por sustitución y transposición. Ejemplos
 - Cifrado producto
 - Cifrado Vernam (one-time pad)
- Algoritmos simétricos
 - Fundamentos
 - Algoritmo DES
 - Algoritmo triple-DES
 - Algoritmo AES
 - Otros algoritmos simétricos
 - Modos de operación para algoritmos simétricos
 - Ventajas y desventajas de los algoritmos simétricos

Indice del tema (II)

- Algoritmos asimétricos (o de clave pública)
 - Cifrado/descifrado
 - Firma Digital
 - Intercambio de Claves
 - Algoritmo de Diffie-Hellman
 - Algoritmo RSA
- Otras primitivas criptográficas
 - Funciones hash
 - Códigos de autenticación de mensajes
- Referencias bibliográficas

Introducción a la criptografía clásica

Cifrados por sustitución y transposición. Ejemplos

- Como se ha visto en la última tabla del capítulo anterior, un algoritmo de cifrado es uno de los mecanismos para la implementación de servicios de seguridad
- Criptografía: ciencia que estudia cómo mantener la seguridad en los mensajes (*M*)
 - usando, entre otros mecanismos, los algoritmos de cifrado
- Criptoanálisis: ciencia que estudia cómo romper los textos cifrados
- Criptología: Criptografía + Criptoanálisis

- El algoritmo de cifrado es un mecanismo que transforma un texto en claro en texto ininteligible
 - Su objetivo es dar cobertura al servicio de Confidencialidad
 - El algoritmo de cifrado se denota por E (del inglés "encrypt") y opera sobre el texto en claro M (mensaje) para producir el texto cifrado C (criptograma) |E(M) = C|
- La transformación inversa, o sea, de un texto cifrado en un texto en claro, se denomina algoritmo de descifrado
 - El algoritmo de descifrado se denota por \mathbf{D} ("decrypt") opera sobre C para producir el mensaje M D (C) = M
- Se cumple que:

$$D(E(M)) = M$$

- Antes de la existencia de ordenadores, la criptografía clásica consistía en algoritmos basados en caracteres
- Los algoritmos criptográficos clásicos o bien sustituían caracteres o bien los transponían
 - Cifrado por sustitución:
 - cifrado en el que cada carácter del texto en claro se sustituye por otro carácter en el texto cifrado
 - $-A \rightarrow V$
 - $-V \rightarrow W$
 - **–** ...
 - Cifrado por transposición:
 - consiste en realizar una permutación de las posiciones que ocupan los símbolos en el mensaje en claro
 - HOLA → ALHO

Ejemplo: cifrado por sustitución César

• Consiste en una transformación única. Cada carácter de texto en claro se reemplaza por el carácter tercero a la derecha, módulo 27

$$C: M \rightarrow M + 3 \pmod{27}$$

Ejemplo texto cifrado: WX WDPELHQ, EUXWR, KLMR PLR

¿Cómo sería el descifrado de este texto cifrado?

 Generalizado después a un sistema de cifrado con 27 posibles combinaciones

$$C: M \rightarrow M + i \pmod{27}$$
 $1 \le i \le 27$

• Ese algoritmo da ventaja al criptoanalista, porque la frecuencia de aparición de las letras es bien conocida. Así:

En	glish									Sp	anish								
E T A	12.4% 8.9% 8.0% 7.6%	H S R	6.5% 6.2% 6.1% 4.6%	U M W C	2.7% 2.5% 2.3% 2.2%	G Y P B	2.0% 2.0% 1.6% 1.3%	K Q X J	0.7% 0.1% 0.1% 0.1%	A O	13.0% 11.1% 9.7%	S T C	6.9% 5.3% 5.2%	U P M	3.6% 3.0% 2.9%	V F Y	1.0% 0.8% 0.7%	J Z X	0.3%
N	7.0%	L	3.6%	F	2.2%	v	0.8%	z	0.0%	N R	8.2% 8.0% 7.7%	L	4.5% 3.6%	B	1.4%	Q	0.6%	K	0.1%

Ejemplo: cifrado por sustitución homofónico

- Se basa en la idea de asignar a un símbolo del alfabeto fuente varios del alfabeto cifrado, solventando el problema de la frecuencia de letras
- Correspondencia uno a muchos ⇒ al cifrar un mensaje podemos obtener varios criptogramas

• Ejemplo:

Letra	% (redondeado)	Símbolos asignados
A	8	10, 11, 23, 45, 76, 79, 87, 98
L	6	02, 15, 21, 25, 56, 60
N	3	44, 63, 71
O	8	04, 16, 28, 29, 37, 52, 69, 90
P	2	30, 88
T	2	24, 77

"PLATON" se cifra como "882110772963"

Ejemplo: cifrado por sustitución polialfabética

• Alfabeto para posiciones impares:

• Alfabeto para posiciones pares:

• Cifrado del texto: "HOLA A TODOS"

• Descifrado:

[Intipedia]

Ejemplo: cifrado por sustitución polialfabética

• Alfabeto para posiciones impares:

• Alfabeto para posiciones pares:

Cifrado del texto: "HOLA A TODOS"

Н	0	L	Α	Α	Т	0	D	0	S
N	Ñ	b	Z	V	Н	t	Υ	t	С

Descifrado:

N	Ñ	b	Z	V	Н	t	Υ	t	С
Н	0	L	Α	Α	Т	0	D	0	S

Ejemplo: cifrado por transposición

- La forma más simple de transposición: el texto en claro se escribe como secuencia de filas (con una cierta profundidad) y se lee como secuencia de columnas
- Ejemplo: "EN ANDALUCIA, EL MULHACEN Y EL VELETA, SON LAS MONTAÑAS MAS ALTAS"

ENANDALUCIAELMULHACENYELVE

LETASONLASMONTAÑASMASALTAS

Mensaje cifrado:

ELNEATNADSAOLNULCAISAMEOLNMTUALÑHAASCMEANSYAELLTVAES

[Intipedia]

Ejemplo: cifrado por transposición con clave

- Se podría complicar el procedimiento anterior estableciendo una restricción en el número de columnas cuyo valor va a depender del tamaño que tenga una clave
- Ejemplo:
 - Texto en claro: "HOLA A TODOS, QUE TENGÁIS UN BUEN DÍA"
 - Clave: "SECRETO" con un tamaño de 7

S	Е	С	R	Е	Т	0
Н	0	L	А	А	Т	0
D	0	S	Q	U	E	Т
Е	N	G	Α	1	S	U
N	В	U	N	D	I	Α

Para el cifrado se puede poner la condición siguiente: se va a ir cogiendo las letras de aquellas columnas por orden alfabético del secreto, es decir: C, E, E, O, R, S, T, resultando en: "

[Intipedia]

Ejemplo: cifrado por transposición con clave

- Se podría complicar el procedimiento anterior estableciendo una restricción en el número de columnas cuyo valor va a depender del tamaño que tenga una clave
- Ejemplo:
 - Texto en claro: "HOLA A TODOS, QUE TENGÁIS UN BUEN DÍA"
 - Clave: "SECRETO" con un tamaño de 7

S	E	С	R	E	Т	0
Н	0	L	А	А	Т	0
D	0	S	Q	U	Е	Т
Е	N	G	Α	1	S	U
N	В	U	N	D	1	А

Para el cifrado se puede poner la condición siguiente: se va a ir cogiendo las letras de aquellas <u>columnas</u> por orden alfabético del secreto, es decir: C, E, E,
 O, R, S, T, resultando en: "LSGUOONBAUIDOTUAAQANHDENTESI"

Ejemplo: cifrado por transposición Railfence

- El cifrado consiste
 - en escribir diagonalmente el texto en claro con una profundidad
 P específica
 - el criptograma se escribe leyendo las filas

- Ejemplo: M = "Hola a todos", con una profundidad de P=4, entonces el criptograma es: **Hoot d laoas**
 - por simplemente computar:

[Intipedia]

Ejemplo: métodos polialfabéticos y nomenclátores

• Para complicar el proceso de cifrado, se puede hacer uso del disco de Alberti junto con nomenclátores, los cuales consisten en asociar a determinados palabras, códigos específicos

Felipe II	123
Rey	124
Walshingan	122

- Se desea descifrar el siguiente texto: "baa&hpmiyvsvoiylrlxckngkl"
- Uso del disco:
 - Cada diez letras descifradas, se ha de girar el disco externo (de las mayúsculas) dos posiciones en el sentido de las agujas del reloj
 - En el disco de Alberti, la **u** se identifica con la **v** al cifrar. Al descifrar, por el sentido de la frase, se puede conocer si se ha de escribir una u otra letra

[Intipedia]

Ejemplo: métodos polialfabéticos y nomenclátores

- Funcionamiento para cifrar:
 - Posicionar los disco en el estado inicial

b	a	а	&	Н	р	m	i	Y	V
1	2								

"baa&hpmiyvsvoiylrlxckngkl"

 Con el disco externo girar 2 posiciones en el sentido de las agujas del reloj (sólo en cada diez letras descifrada):

s	v	0	1	Y	1	r	1	Х	С
N	F								

"baa&hpmiyv<u>svoiylrlxc</u>kngkl"

Ejemplo: métodos polialfabéticos y nomenclátores

Funcionamiento:

- Con el disco externo volver a girar 2 posiciones en el sentido de las agujas del

reloj:

k	n	g	k	L
2	4	1	2	3

"baa&hpmiyvsvoiylrlxc<u>kngkl</u>"

Por consiguiente, el texto en claro es:

b	а	а	&	Н	p	m	i		() \
1	2	2	М	V	E	R	1	. ,	
s	v	0	1	Y	1	r	E	x	С
N	F	0	R	М	A	D	A	L	1
k	n	g	k	L				70	

"1 2 2 M V E R T O I N F O R M A D A L 1 2 4 1 2 3"

Si, además, añadimos los nomenclátores + la restricción de la V → U:

Felipe II	123
Rey	124
Walshingan	122

"WALSHINGAN MUERTO INFORMAD AL REY FELIPE II"

Cifrado Producto

- Combina sustitución y transposición
- Se pueden considerar como la aplicación sucesiva de varios cifrados $E_{\rm i}$

$$E = E_1 . E_2 . \cdots . E_r$$

 $E (M) = E_1 (E_2 (\cdots (E_r (M)))$

• La composición de funciones de descifrado D_i se realiza en orden inverso

$$D = D_r \cdot D_{r-1} \cdots D_1$$

$$M = D(C) = D_r (D_{r-1} (... (D_1 (C)))$$

- Es un esquema utilizado para obtener un alto grado de seguridad con sistemas relativamente sencillos aplicados reiterativamente
- Dan lugar a sistemas de cifrado complejos, seguros, difíciles de atacar, fácilmente trasladables a un ordenador

Cifrado Vernam

- Variante del cifrado llamado one-time pad (OTP)
- Un one-time pad es un *conjunto infinito y*no repetitivo de letras aleatorias
- Cada letra del pad se usa para cifrar una
 única letra del texto en claro, en módulo n (longitud del alfabeto)

Texto: THIS IS SECRET

OTP: X VHE UW NOPGCZ

Cifrado: QCPW CO FSRXHS

One-time pad booklet and microdot reader, concealed in a toy truck and used by an illegal agent that operated in Canada. © Canadian Security Intelligence Service

• Otro dos ejemplos:

 Aquí se observan grupos de tres filas, que se corresponden con texto en claro (en decimal), clave y criptograma

Fuente: http://www.caslab.cl/che.php

Fuente: http://bit.ly/2cqBu8D

Cifrado: (carácter del texto en claro + key) + mod 27

Descifrado: (carácter del criptograma - key) + mod 27

• En los ordenadores, el OTP aleatorio de longitud infinita se combina mediante XOR con el texto en claro. Ejemplo:

Texto en claro	1	1	0	0	1	0	1	1	0	0	0	1	1	0	1	0	0	1	1	0	1	1	\oplus
OTP	1	0	0	1	1	0	1	0	1	0	1	1	0	1	0	0	1	1	0	0	1	0	=
Criptograma	0	1	0	1	0	0	0	1	1	0	1	0	1	1	1	0	1	0	1	0	0	1	\oplus
OTP	1	0	0	1	1	0	1	0	1	0	1	1	0	1	0	0	1	1	0	0	1	0	=
Texto en claro	1	1	0	0	1	0	1	1	0	0	0	1	1	0	1	0	0	1	1	0	1	1	

- Inconvenientes del cifrado Vernam:
 - las letras del OTP (o bits si se usa en ordenador) han de generarse aleatoriamente
 - el OTP no se vuelve a usar

1. Considerando el alfabeto común (incluyendo la ñ en el alfabeto) y un desplazamiento de 3 posiciones para el proceso de cifrado o descifrado, aplicar la técnica de sustitución Caesar para cifrar el siguiente texto:

"EL PATIO DE MI CASA ES PARTICULAR"

Nota: se empieza a contar desde la posición 1 (A del alfabeto)

SOLUCIÓN: HÑ SDWLR GH OL FDVD HV SDUWLFXÑDU

2. Dado el criptograma C = "FMIRZIRMHS E PE EWMKREXYVE HI WIKYVMHEH HI PE MRJSVQEGMKR" descifrar el contenido del mismo, sabiendo, además, que hay que usar la técnica de sustitución Caesar con un desplazamiento de 4 posiciones modulo n=26

Nota: se empieza a contar desde la posición 1 (A del alfabeto)

SOLUCIÓN: BIENVENIDO A LA ASIGNATURA DE SEGURIDAD DE LA INFORMACIÓN

3. El siguiente algoritmo aplicará una sustitución monoalfabética, pero esta vez teniendo en cuenta la siguiente regla: $C_i = M_i + K_i \mod 26$ donde K representa una clave de longitud L. El objetivo es cifrar el texto original usando el alfabeto inglés

¿Cuál sería el criptograma del mensaje M = "HOLA AMIGOS" usando una clave K = CIFRA?

Nota: se empieza a contar desde la posición 1 (A del alfabeto)

	A	В	С	D	Ε	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

Н	0	L	Α	Α	М	ı	G	0	S
8	16	12	1	1	13	9	7	15	19
С	1	F	R	Α	С	1	F	R	Α
+3	+8	+6	+18	+1	+3	+9	+6	+18	+1
K	X	R	S	В	Р	R	M	G	Т
11	24	17	19	2	16	18	13	32→7	20

SOLUCIÓN: KXRS BPRMGT

4. Mediante la técnica Railfence, determinar el criptograma correspondiente al mensaje "*El perro de San Roque no tiene rabo porque Ramón Ramírez se lo ha robado*" con una profundidad P=7 (alfabeto inglés)

SOLUCIÓN: ER rmhln oe aan oapaq nb RRlre Sueo eaeore eipóu msbírdn to qr za ooored

Algoritmos simétricos

Fundamentos

• En la mayoría de los ejemplos de la sección anterior la comunicación entre los usuarios puede representarse como sigue:

- El esquema anterior es útil siempre que se mantengan en "secreto" la transformación E y su inversa D
 - Esto es factible para un intercambio de información entre dos usuarios específicos (por ejemplo, *Alice* y *Bob*)
 - Sin embargo, esta forma de funcionamiento resulta no escalable
 - Es decir, cuando *Alice* necesite comunicar con alguien distinto de *Bob*, habría de usar un algoritmo distinto a *E*, como muestra la figura inferior
 - Más concretamente, *Alice* necesitaría un algoritmo distinto para cada usuario con quien necesitara contactar

- Esta problemática se puede solucionar introduciendo un parámetro adicional, la clave secreta *K*, en el algoritmo de cifrado *E*
 - De esta forma, Alice puede usar el mismo algoritmo E en sus comunicaciones con todos los usuarios (Bob, Carol, Dave, ...), pero selecciona una clave K distinta para cada uno de ellos

- En esta situación, el mismo algoritmo de descifrado D será usado por todos los receptores, pero cada uno necesitará la clave correspondiente de descifrado $(K_1^*, K_2^*, K_3^* ...)$
- En resumen, para la comunicación específica entre *Alice* y *Bob*:

$$D_{K1*}(E_{K1}(M)) = M$$

- Por lo tanto, en las nuevas condiciones anteriores, es posible hacer públicos los algoritmos E y D
- De hecho, se pueden evaluar públicamente para detectar posibles fallos
 - En caso de no tener fallos, entonces se pueden introducir en herramientas comerciales, etc.
- Esto se formaliza en el segundo principio de Kerckhoffs:
 - "The system must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience"
- Por lo tanto, la seguridad del sistema dependerá finalmente de que *Alice* y *Bob* mantengan en secreto las claves secretas *K* y *K**
 - Los algoritmos simétricos son aquellos en los que K y K* son la misma clave, y se denomina clave de sesión
 - En los algoritmos asimétricos, las claves K y K* son distintas