

ENGINEERING MATHEMATICS III (AAS0301A) UNIT-II

SESSION: 2022-23

Branch: CSE/IT/CS

Sem: III

Assignment Given Date: 14/10/22
Assignment Submission Date: 28/10/22

Weightage in University Exam: 30 Marks
Faculty Name: Mr. Raman Chauhan

Faculty Mail Id: ramanchauhan.m@niet.co.in

Note: Write solution of each question in clear handwriting.

Q.N.	Question Statement	Pts	СО	BLOOM'S KNOWLEDGE LEVEL
1	Evaluate $\int_0^{1+2i} Re(z) dz$ along the real axis from $z = 0$ to $z = 1$ and then along a line parallel to imaginary axis from $z = 1$ to $z = 1 + 2i$.	2	2	K ₅
2	Evaluate the integral $\int_C (z-z^2)dz$ where C is upper half of the circle $ z =1$. What is the value of integral if C is lower half of the circle?	6	2	K ₅
3	Verify Cauchy integral theorem for $f(z) = z^3$ taken over the rectangle with vertices -1 , 1 , $1 + i$, $-1 + i$.	10	2	K ₃
4	Evaluate $\int_C \frac{z}{z^2+1} dz$ where C is I. $C: \left z + \frac{1}{z}\right = 2$ II. $C: \left z + i\right = -1$	10	2	K ₅
5	Evaluate $\int_C \frac{z^2+1}{z^2-1} dz$ by Cauchy Integral Formula where C is circle (i) $ z = \frac{3}{2}$ (ii) $ z-1 = 1$ (iii) $ z = \frac{1}{2}$	10	2	K ₅
6	Expand $f(z) = \frac{z}{(z-1)(2-z)}$ I. $ z-1 > 1$ II. $0 < z-2 < 1$ Discuss the type of singularity of the following-	10	2	K ₃
7	Discuss the type of singularity of the following- I. $\frac{1}{\sin z - \cos z}$ at $z = \frac{\pi}{4}$ II. $\sin\left(\frac{1}{z}\right)$ at $z = 0$ III. $\frac{z - \sin z}{z^3}$ at $z = 0$	6	2	K ₅
8	Using Residue theorem, evaluate $\int_C \frac{z-3}{z^2+2z+5} dz$ where C is the circle $ z+1-i =2$.	6	2	K ₅

9	Using Contour integration evaluate-	6	2	K ₅
	I. $\int_{0}^{2\pi} \frac{\sin^{2}\theta}{5-4\cos\theta} d\theta$ II. $\int_{0}^{\pi} \frac{ad\theta}{a^{2}+\sin^{2}\theta} \text{ where } a > 0$ III. $\int_{0}^{2\pi} \frac{d\theta}{3-2\cos\theta+\sin\theta}$ IV. $\int_{-\infty}^{\infty} \frac{\cos x}{(x^{2}+a^{2})(x^{2}+b^{2})} dx \text{ where } a, b > 0$			
10	Evaluate by contour integration $\int_0^{2\pi} \frac{d\theta}{a+b\sin\theta}$ where $a> b $. Hence evaluate $\int_0^{2\pi} \frac{d\theta}{1-2a\sin\theta+a^2}$	2	2	K ₅

Solution:

1.
$$2i + \frac{1}{2}$$

1.
$$2i + \frac{1}{2}$$

2. $\frac{2}{3}$, $-\frac{2}{3}$

4.
$$2\pi i, \pi i$$

5.
$$0, 2\pi i, 0$$

6.
$$f(z) = \frac{1}{z-1} - \frac{2}{z-1} \sum_{n=0}^{\infty} \frac{1}{(z-1)^n}$$
, $f(z) = \sum_{n=0}^{\infty} (-1)^n (z-2)^n - \frac{2}{z-2}$

7. Simple pole, Isolated essential singularity, removable singularity

8.
$$\pi(i-2)$$

9.
$$\frac{\pi}{4}$$
, $\frac{\pi}{\sqrt{(1+a^2)}}$, π , $\frac{\pi}{2(a^2-b^2)} \left(\frac{e^{-b}}{b} - \frac{e^{-a}}{a}\right)$

10.
$$\frac{2\pi}{\sqrt{(a^2-b^2)}}$$
, $\frac{2\pi}{1-a^2}$