

Modelos de dados

Demóstenes Sena

(demostenes.sena@ifrn.edu.br)

Definição de modelos de dados

Conjunto de conceitos que podem ser usados para descrever a estrutura de um banco de dados (tipos de dados, relacionamentos e suas restrições)

Exemplo de modelo

modelos de dados conceituais (alto nível) representação para os usuários (modelo entidade-relacionamento)

modelos de dados lógicos (implementação) nível intermediário de representação (modelo relacional)

modelos de dados físicos (baixo nível) representação para desenvolvedores de SGBDs

Conceitos básicos da abordagem relacional

Esquemas, instâncias e estados de um banco de dados

Esquemas, instâncias e estado do banco de dados

Esquema (dicionário de dados ou metadados) é a descrição do banco de dados, normalmente, inalterado durante a manipulação

Exemplo de esquema

Esquemas, instâncias e estado do banco de dados

cada **esquema** possui um conjunto de **instâncias** associado, sendo estes, representações de elementos reais no banco de dados

o conjunto de instâncias, em um determinado instante, determina o **estado** do banco de dados

Consequentemente

- após o fornecimento do esquema ao SGBD, o banco de dados está no estado vazio
- com o povoamento, o banco de dados é adicionado de instâncias, e a cada operação de adição, o estado do banco de dados é alterado

Linguagens do SGBD relacional

INSTITUTO FEDERAL Linguagens de SGBD Relacional do Norte

Linguagens fornecidas pelo SGBD relacional, permitindo a definição e a manipulação do banco de dados

```
EXTRACT date string, time string, author string, tweet string
FROM "/Samples/Data/Tweets/{*}Tweets.csv"
USING Extractors.Csv();

@m =
    SELECT new SqlArray<string>(tweet.Split(' ').Where(x=>x.StartsWith("@"))) AS mentions
FROM @t;

@t =
    SELECT mention
    FROM @m CROSS APPLY EXPLODE(mentions) AS M(mention);

@res =
    SELECT mention, COUNT(*) AS count
    FROM @t
    GROUP BY mention;

OUTPUT @res TO "/output/result.csv" ORDER BY count DESC USING Outputters.Csv();

ONIBNI @Les 10 ".ontput/result.csv" ORDER BY count DESC USING Outputters.Csv();
```


Categorias das linguagens de SGBD Relacional

Linguagem de definição de dados (data definition language – DDL)

usada no mapeamento entre o esquema lógico (definida pelo DBA e projetista) e o esquema interno (SDL – storage definition language)

Linguagem de manipulação de dados (DML – data manipulation language)

usada na manipulação (operações de inserção, remoção e modificação dos dados)

Categorias das linguagens de SGBD Relacional

Linguagem de consulta de dados (data query language – DQL) usada para recuperar os dados armazenados

Categorias das linguagens de SGBD Relacional

SQL (*structured query language*) é uma linguagem que possui comandos DDL, DML e DQL.

Procedimentos dos Comandos DML

alto nível (não procedural)

permite a manipulação de conjunto de registros por ação (set-at-a-time)

baixo nível (procedural)

permite a manipulação de um registro por ação (record-at-a-time), utiliza procedimento de linguagens de programação (script)

Os comandos DML podem ser embutidos em uma linguagem de propósito geral (*host language*) ou utilizada de modo interativo (*query language*)

Modelagem Entidade-Relacionament o (ER)

Modelagem Entidade-Relacionamento (ER)

Abordagem que utiliza modelos de dados conceituais de alto nível, independente da implementação dos dados no computador

O diagrama ER é utilizado nessa abordagem e possui uma sintaxe semelhante a dos diagramas de classes UML

O diagrama ER é um padrão *de facto* para a modelagem conceitual

O diagrama ER descreve os dados com **entidades**, **relacionamentos** e **atributos**

Os principais elementos do Diagrama ER

Entidade

Uma **entidade** é um conjunto de objetos (**instâncias**) da realidade modelada sobre os quais deseja-se manter informações no banco de dados

Esta representa as informações dos elementos reais (do domínio, ex. pessoas) e abstratos (ex. departamentos) que se deseja representar

Exemplo de entidades

Relacionamento

Um relacionamento é a propriedade que permite descrever o conjunto de associações entre entidades

Exemplo de diagrama ER com relacionamento lotação

Diagrama de Ocorrências

Diagrama de ocorrências

Para cada entidade existem as **ocorrências** (instâncias), por exemplo, João é uma ocorrência da entidade Pessoa

Os relacionamentos também possuem ocorrências (instâncias)

Uma ocorrência de relacionamento associa ocorrências de entidades

Exemplo de diagrama de ocorrências

Tipos e as propriedades dos Relacionamentos

Auto-relacionamento

Uma ocorrência de relacionamento pode associar ocorrências da mesma entidade (auto-relacionamento)

para definir a função de uma ocorrência em um autorelacionamento é necessário informar o papel deste no relacionamento

Auto-relacionamento e os papéis de uma entidade

Exemplo de diagrama ER

Exemplo de diagrama de ocorrências

Cardinalidade dos relacionamentos

A cardinalidade é formada pelo número **mínimo** e **máximo** de **ocorrências** de entidade associadas a uma ocorrência da entidade em questão através do relacionamento

Cardinalidade dos relacionamentos

A partir das possíveis **cardinalidades máximas** dos relacionamentos, pode-se classificar os relacionamentos

1:1 (um-para-um)

1:n (um-para-muitos)

n:m (muitos-para-muitos)

Exemplo de relacionamento 1:1

Exemplos de relacionamentos 1:n

Exemplos de relacionamentos n:m

Exemplo de relacionamento com cardinalidade mínima

Relacionamento ternário

Um relacionamento ternário associa três entidades

Exemplo de diagrama ER com relacionamento ternário distribuição

Relacionamento ternário

Um relacionamento ternário associa três entidades

Exemplo de diagrama ER com relacionamento ternário distribuição

Exercícios

- Construa o diagrama ER para o relacionamento casamento com sua cardinalidade máxima e mínima
- 2. Qual é o diagrama ER para o relacionamento supervisão entre empregados?
- 3. Construa o diagrama ER para o relacionamento capacidade de fornecimento contendo as peças e os fornecedores
- 4. Construa o diagrama ER para o relacionamento composição entre produtos (reagentes e derivados).

Exercício

Descreva o modelo ER de um sistema de gestão acadêmica de uma instituição de ensino superior. Implemente a partir dos seguintes cenários.

cenário #1. "Um departamento é responsável por diversas disciplinas."

cenário #2. "As disciplinas podem se relacionar a outras disciplinas como pré-requisitos."

cenário #3. "Um curso é formado por diversas
disciplinas"

cenário #4. "Um aluno deve estar inscrito em um
curso."

Atributo

Um atributo é dado associado a cada ocorrência de uma entidade ou de um relacionamento

Exemplo de diagrama ER com os atributos código, telefone e nome

No exemplo, código e nome são atributos simples e telefone é multivalorado

NSTITUTO FEDERAL Atributos nos relacionamentos

Os relacionamentos também possuem atributos

Exemplo. "Um engenheiro atua em um mesmo projeto em diferentes funções."

INSTITUTO FEDERAL Atributos nos relacionamentos do Norte

Os relacionamentos também possuem atributos

Exemplo. "Um engenheiro atua em um mesmo projeto em diferentes funções."

UNSTITUT Outro exemplo de atributo nos Rio Grande do Norte relacionamentos

Cenário. "Uma financeira pode financiar uma mesma venda com diferentes número de parcelas e taxas de juros."

Atributos identificadores

Definição. Conjunto de atributos e/ou relacionamentos que identificam uma ocorrência de entidade

Por questões de eficiência da base de dados, o conjunto de identificadores deve ser mínimo

Exemplo de diagrama ER com o atributo identificador cpf

Atributos identificadores compostos

Em algumas elementos, as instâncias são diferenciadas por mais de um atributo

Exemplo de diagrama ER com os atributos identificadores compostos CEP e número

Relacionamento identificador e Entidade fraca

É necessário quando uma instância depende de outra para ser identificada

A entidade dependente é denominada entidade fraca

Exemplo de diagrama ER com um relacionamento identificador e a entidade fraca Dependente

Exercício

Implemente o diagrama ER para modelar o seguinte cenário.

cenário. "Um médico pode consultar o mesmo paciente em diferentes datas."

Exercício

Implemente o diagrama ER para modelar os seguintes cenários.

cenário #1. "Um grupo é formado por várias
empresas. Essas empresas podem possuir
filiais. Cada filial possui um número de
sequência na empresa associada."

cenário #2. "Cada grupo possui um código único."

cenário #3. "As empresas possuem um número relativo ao grupo que pertencem."

Modelos de dados

Demóstenes Sena

(demostenes.sena@ifrn.edu.br)