BIOSTAT 651

Notes #2: Linear regression review

- Lecture Topics:
 - $\circ\;$ Review of linear regression
 - \circ Weighted least squares

Linear regression

 \circ response: Y_i

 \circ covariate: $\mathbf{x}_i^T = (x_{i1}, x_{i2}, \cdots, x_{ip})$

 \circ i: index of subject

 \circ n: total number of subjects in the data

Model

- Linearly relate predictors to the mean response (assume X is deterministic)
- For *i*-th subject,

$$Y_{i} = \beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{p}x_{ip} + \epsilon_{i}$$
$$= \mathbf{x}_{i}^{T}\boldsymbol{\beta} + \epsilon_{i},$$

where $\epsilon_i \sim N(0, \sigma^2)$.

• Matrix form:

$$\circ$$
 set $\mathbf{Y} = (Y_1, \dots, Y_n)^T$

• design matrix:

$$\mathbf{X} = egin{bmatrix} \mathbf{x}_1^T \ \mathbf{x}_2^T \ dots \ \mathbf{x}_n^T \end{bmatrix}$$

• Model:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \ \boldsymbol{\epsilon} \sim MVN_n(\mathbf{0}, \sigma^2 I)$$

i.e.

$$\mathbf{Y} \sim MVN_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 I).$$

Model

- Assumptions:
 - Systematic component: predictor effect through linear regression on the mean (linearity assumption)

$$E[Y_i|\mathbf{x}_i] = \mu_i = \mathbf{x}_i^T \boldsymbol{\beta}$$

• Random component: at each level of the predictor, variation in the response is characterized as

$$N(0, \sigma^2)$$

• Independence (between subjects)

Interpretation

• In simple linear regression:

$$Y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i,$$

 \circ β_1 : change in mean response per unit increase of x_1 .

$$\beta_1 = E[Y_i|x_{i1} = a+1] - E[Y_i|x_{i1} = a]$$

• Multiple linear regression: need to adjust for other covariates (or holding them constant)

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

 \circ β_1 : change in mean response per unit increase of x_1 , adjusting for x_2 (holding x_2 constant)

$$\beta_1 = E[Y_i|x_{i1} = a+1, x_{i2} = c]$$

$$-E[Y_i|x_{i1} = a, x_{i2} = c]$$

Parameter Estimation

• Least Squares Estimation (LSE): minimize the sum of squared errors

$$\min_{\boldsymbol{\beta}} \ (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

• Estimator:

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y},$$

where \mathbf{X} is of full rank.

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y},$$

• $\widehat{\boldsymbol{\beta}}$ is unbiased for $\boldsymbol{\beta}$.

$$E[\widehat{\boldsymbol{\beta}}] = \boldsymbol{\beta}$$

• Variance of $\widehat{\beta}$:

$$V(\widehat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{X}^T \mathbf{X})^{-1}.$$

• σ^2 estimator:

$$\widehat{\sigma}^2 = \frac{1}{n-p-1} SSE = \frac{1}{n-p-1} \mathbf{Y}^T (\mathbf{I} - \mathbf{H}) \mathbf{Y},$$
where $\mathbf{H} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$.

• Residual:

$$e = Y - X\widehat{\beta}.$$

Analysis of Variance

• ANOVA

 \circ SST: total variation of **Y** around mean

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \mathbf{Y}^T (\mathbf{I} - \mathbf{1}\mathbf{1}^T/n)\mathbf{Y}$$

 \circ SSR: variation of **Y** explained by regression

$$SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 = \mathbf{Y}^T (\mathbf{H} - \mathbf{1}\mathbf{1}^T/n)\mathbf{Y}$$

 \circ SSE: variation of **Y** unexplained by regression

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \mathbf{Y}^T (\mathbf{I} - \mathbf{H}) \mathbf{Y}$$

$$\circ$$
 $SST = SSR + SSE$

• Sum of squares

[http://www.trizsigma.com/regression.html]

• ANOVA table

Source	SS	DF	MS	F
Regression	SSR	p	SSR/p	
Error	SSE	n-p-1	SSE/(n-p-1)	
Total	SST	n-1	SST/(n-1)	

• R^2 : explained sum of squares over total sum of square

$$R^2 = SSR/SST$$

Example: Child obesity data

- Example: A study on childhood obesity examined the relationship between a child's weight, age and exposure to pre-natal smoke.
 - Response: weight (kg)
 - o Predictors: age, pre-natal smoke
- Linear regression model

$$Y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2)$$

$$= \beta_0 + \beta_1 A_i + \beta_2 S_i + \beta_3 A_i \times S_i + \epsilon_i$$

where

 \circ A_i : Age in years

 \circ S_i : =1 if exposed; =0 if unexposed

 $\circ A_i \times S_i$: interaction term

Example: Child obesity data

```
DATA Weights;
INPUT id wt age smoke obesity;
wt_kg = wt / 1000;
A_S = age * smoke;
datalines;
1 22509.41 7 0 1
2 33452.27 7 1 0
3 13380.91 3 0 1
4 24947.45 8 1 1
5 15875.65 4 1 1
. . . .

proc reg;
model wt_kg = age smoke A_S;
run;
```

Linear regression for continuous responses

The REG Procedure Model: MODEL1 Dependent Variable: wt_kg

Number of Observations Read	30
Number of Observations Used	30

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	3	973.37997	324.45999	6.74	0.0016		
Error	26	1250.94969	48.11345				
Corrected Total	29	2224.32967					

Root MSE	6.93639	R-Square	0.4376
Dependent Mean	23.22381	Adj R-Sq	0.3727
Coeff Var	29.86756		

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t				
Intercept	1	4.95865	6.65202	0.75	0.4627				
age	1	2.87548	1.05916	2.71	0.0116				
smoke	1	0.52160	8.58019	0.06	0.9520				
A_S	1	0.20133	1.37335	0.15	0.8846				

Hypothesis Test

• Test whether β s or linear combinations of β s have specific values:

$$- H_0: \beta_1 = 0$$

$$- H_0: \beta_1 = \beta_2 = 0$$

$$- H_0: \beta_1 - \beta_2 = 1$$

• Can be written as

$$H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{b}$$

(most often $\mathbf{b} = \mathbf{0}$), where \mathbf{C} is of rank r.

• Test statistics:

$$\frac{(\mathbf{C}\widehat{\boldsymbol{\beta}} - \mathbf{b})^T \{ \mathbf{C} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{C}^T \}^{-1} (\mathbf{C}\widehat{\boldsymbol{\beta}} - \mathbf{b}) / r}{\widehat{\sigma}^2} \sim F_{r,n-p-1}.$$

- For $\mathbf{b} = \mathbf{0}$:
 - i. If $\mathbf{C} = (0, ..., 0, 1, 0, ...)$, a single vector with $c_j = 1$ and $c_k = 0$ for all $k \neq j$. Then it is the same as the t-test for $\beta_j = 0$,

$$t = \frac{\widehat{\beta}_j}{SE(\widehat{\beta}_j)} \sim t_{n-p-1},$$

and $t^2 = F$ where $F \sim F_{1,n-p-1}$.

ii. If $\mathbf{C} = \text{diag}(0, 1, 1, \dots, 1)$. Then it is an overall F test (i.e. $\beta_1 = \dots = \beta_p = 0$).

• Hypothesis test using full and reduced model:

$$F = \frac{SSR(\text{full}) - SSR(\text{reduced})/\Delta df}{SSE(\text{full})/(n-p-1)}$$

$$\sim F_{\Delta df,n-p-1}$$

or

$$F = \frac{SSE(\text{reduced}) - SSE(\text{full})/\Delta df}{SSE(\text{full})/(n-p-1)}$$

$$\sim F_{\Delta df,n-p-1}$$

• Exactly same result as previous!

Example: Child obesity data

- Test for the main and interaction effect of Smoke.
 - H0: $\beta_2 = \beta_3 = 0$
- Use the contrast matrix

$$C =$$

- Use full and reduced models
 - Full Model:
 - Reduced Model:

Example: Child obesity data

• Use the contrast matrix:

```
proc reg;
model wt_kg = age smoke A_S;
age: test smoke=0, A_S=0;
run;
```

• Fit the full and the reduced models:

```
proc reg;
model wt_kg = age smoke A_S;
run;
proc reg;
model wt_kg = age ;
run;
```

Use the contrast matrix

Friday, January 8, 2016 12:54:50 PM **7**

The REG Procedure Model: MODEL1

Test age Results for Dependent Variable wt_kg							
Source	DF	Mean Square	F Value	Pr > F			
Numerator	2	9.75141	0.20	0.8178			
Denominator	26	48.11345					

Fit the full and the reduced models

Friday, January 8, 2016 12:54:50 PM 8

The REG Procedure Model: MODEL1 Dependent Variable: wt_kg

Number of Observations Read	30
Number of Observations Used	30

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	3	973.37997	324.45999	6.74	0.0016		
Error	26	1250.94969	48.11345				
Corrected Total	29	2224.32967					

Root MSE	6.93639	R-Square	0.4376
Dependent Mean	23.22381	Adj R-Sq	0.3727
Coeff Var	29.86756		

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t				
Intercept	1	4.95865	6.65202	0.75	0.4627				
age	1	2.87548	1.05916	2.71	0.0116				
smoke	1	0.52160	8.58019	0.06	0.9520				
A_S	1	0.20133	1.37335	0.15	0.8846				

The REG Procedure Model: MODEL1 Dependent Variable: wt_kg

Number of Observations Read	30
Number of Observations Used	30

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	1	953.87715	953.87715	21.02	<.0001		
Error	28	1270.45252	45.37330				
Corrected Total	29	2224.32967					

Root MSE	6.73597	R-Square	0.4288
Dependent Mean	23.22381	Adj R-Sq	0.4084
Coeff Var	29.00459		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	5.41375	4.07439	1.33	0.1947		
age	1	3.00170	0.65467	4.59	<.0001		

Example: Child obesity data

- Use the contrast matrix:
 - Test statistics:
 - Null distribution:
- Use the full and the reduced model:
 - Test statistics:

- Null distribution:

Diagnostics: Violations of Assumptions

- Assumptions:
 - \circ Linearity: $E[\mathbf{Y}] = \mathbf{X}\boldsymbol{\beta}$
 - Normality
 - Equal variance (homoscedasticity)
 - Independence

Diagnostics: Violations of Assumptions

• Linearity:

- Check: Partial regression plot, residual plot.
- Remedy: Transformation, Add another regressor (ex. add x^2)

• Normality:

- Check: Normal quantile plot, Statistical tests for normality (ex. Shapiro-Wilk test)
- Remedy: Transformation, GLM

• Equal variance:

- Check: Residual plot
- Remedy: Transformation (ex. log),
 Weighted Least Square, GLM

• Independence:

- Check: Done by intuition (e.g., repeatedly measured..), Residual plots
- Remedy: Longitudinal, Time series

• Violation of which assumption?

The REG Procedure Model: MODEL1 Dependent Variable: Y

The REG Procedure Model: MODEL1 Dependent Variable: Y

The REG Procedure Model: MODEL1 Dependent Variable: Y

Weighted Least Squares

• Suppose that each observation has difference variance (heteroscedasticity):

$$\sigma_1 \neq \sigma_2 \neq \cdots \neq \sigma_n$$

$$V = diag[\sigma_1^2, \cdots, \sigma_n^2]$$

- Grouped (Aggregate) data: Y_i is an average of n_i observations:

$$Y_i = \frac{1}{n_i} \sum_{j=1}^{n_i} E_{ij}, \quad Var(E_{ij}) = \sigma^2,$$

and then

$$Var(Y_i) = \sigma_i^2 = \sigma^2/n_i$$

 Count data: variance increases as the mean increases:

$$\sigma_i^2 \approx \mu_i \sigma^2$$

• Original model:

$$Y = X\beta + \epsilon$$

• Transformed model:

$$\tilde{Y} = \tilde{X}\beta + \tilde{\epsilon}$$

where $\tilde{Y} = V^{-1/2}Y$, $\tilde{X} = V^{-1/2}X$ and $\tilde{\epsilon} = V^{-1/2}\epsilon$

- Satisfy the equal variance assumption

$$Var(\tilde{\epsilon}) = V^{-1/2}Var(\epsilon)V^{-1/2}$$
$$= V^{-1/2}VV^{-1/2} = I$$

• Weighted Least Squares (WLS) estimator

$$\beta_{wls} = (\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T \tilde{Y}$$
$$= (X^T V^{-1} X)^{-1} X^T V^{-1} Y \qquad (1)$$

- Researchers recorded the average number of stem shots in apple trees in each day. Varying numbers of trees n_i are observed in each day.
- Model:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2/n_i)$$

- \circ Response: $Y_i = \frac{1}{n_i} \sum_{j=1}^{n_i} E_{ij}$
- \circ E_{ij} : number of stem shoots from the jth tree on the ith day of the growing season.
- $\circ x_i$: number of days since dormancy.

```
data apple;
input day ni Y;
cards;
0 5 10.2
3 5 10.4
7 5 10.6
13 6 12.5
18 5 12.0
24 4 15.0
25 6 15.17
32 5 17.0
38 7 18.71
```

```
proc reg data=apple;
model Y = day;
weight ni;
run;
```

 \circ SAS will construct a weight matrix equals to

$$V^{-1} = \left(\begin{array}{ccc} w_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_n \end{array} \right)$$

where $w_i = n_i$ in this example.

• Use IML to estimate β

```
proc iml;
use apple;
 read all var {Y} into Y;
 read all var {day} into X_1;
 read all var {ni} into W;
 n=nrow(Y);
 one_n=j(n,1,1);
 X=one_n||X_1;
 V_inv=DIAG(W);
 beta=inv(t(X)*V_inv*X)*t(X)*V_inv * Y;
print beta;
quit;
```

Wednesday, January 6,

PROC REG

The REG Procedure Model: MODEL1 Dependent Variable: Y

Number of Observations Read	22
Number of Observations Used	22

Weight: ni

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	6164.27627	6164.27627	1657.24	<.0001
Error	20	74.39209	3.71960		
Corrected Total	21	6238.66835			

Root MSE	1.92863	R-Square	0.9881
Dependent Mean	21.42212	Adj R-Sq	0.9875
Coeff Var	9.00297		

Parameter Estimates						
Variable DF		Parameter Estimate Standard Error		t Value	Pr > t	
Intercept	1	9.97375	0.31427	31.74	<.0001	
day	1	0.21733	0.00534	40.71	<.0001	

IML

beta

9.9737537

0.2173303

Weighted Least Squares

- Important technique in linear regression to address for heteroscedasticity.
- GLM model: WLS is used to estimate parameters
 - Iteratively Reweighted Least Squares (IRWLS)