Mid Semester Examination

Particle Physics (PHY680A), IIT Kanpur

Time: 2hrs (23.02.2024)

Marks: 30

1. Starting from the expression of the differential cross section for a $2 \rightarrow 2$ process in the center of mass frame

 $\left(\frac{d\sigma}{d\Omega}\right)_{CM} = \frac{1}{64\pi^2 s} \frac{|\vec{p}_f|}{|\vec{p}_i|} |\overline{\mathcal{M}}|^2 ,$

obtain the differential cross-section in terms of Lorentz invariant quantities such as Mandelstam variables and masses. Here, $|\overline{\mathcal{M}}|^2$ is the spin averaged amplitude squared, and $\vec{p_f}$ and $\vec{p_i}$ represent the initial and final state three momenta respectively. Assume m_1, m_2 to be the masses of the initial state and m_3, m_4 to be the masses for the final state particles. (Hint: Try to use the energy conservation.)

(10)

2. Consider the Lagrangian

$$\mathcal{L} \supset \lambda \ \phi \overline{\psi} \psi + m_{\psi} \ \overline{\psi} \psi \ ,$$

where λ is a real coupling constant between the fermion field ψ and the scalar field ϕ , of mass m_{ϕ} .

- (a) Deduce the mass dimension for the coupling λ .
- (a) Draw the Feynman diagram for the decay process $\phi(p_1) \to \psi(p_2)\overline{\psi}(p_3)$,
- **(b)** Compute the decay width (Γ) for $\phi \to \psi \overline{\psi}$.

$$(2+2+6=10)$$

- 3. Consider the elastic neutrino-electron scattering process $\nu(k) + e(p) \rightarrow \nu(k') + e(p')$ in the four Fermi theory .
 - (a) Draw the Feynman diagrams depicting this scattering.
 - (b) Assume the following current

$$J^{\mu}_{(\nu)} = \bar{\psi}_{\nu} \gamma^{\mu} (1 - \gamma_5) \psi_{\nu} ,$$

$$J_{(e)\mu} = \bar{\psi}_e \gamma_{\mu} (C_V - C_A \gamma_5) \psi_e ,$$

to compute the spin-averaged amplitude square $(|\overline{\mathcal{M}}|^2)$ for this process. Write the result in terms of Lorentz invariant quantities. You can ignore the masses for the electrons.

(c) Consider the potential of a real scalar field:

$$V\left(\phi\right) = -\frac{\mu^{2}}{2}\phi^{2} + \frac{2\xi}{3}\phi^{3} + \frac{\lambda}{4}\phi^{4} \ .$$

Plot the potential and find out the degeneracy in the minima when $\xi = 0$, What happens to the old minima if we switch on the cubic term?

$$(2+5+(1+2)=10)$$

Useful expression: You may need the following

$$\operatorname{Tr}\left[k_1(1+\gamma_5)\gamma_{\nu}k_2\gamma_{\mu}(1-\gamma_5)\right]\operatorname{Tr}\left[p_1\gamma^{\mu}(C_V-C_A\gamma_5)p_2(C_V+C_A\gamma_5)\gamma^{\nu}\right]$$

$$=64\left[(C_A+C_V)^2(k_1.p_2)(k_2.p_1)+(C_A-C_V)^2(k_1.p_1)(k_2.p_2)\right].$$