READING: 6.3 - 6.5

7.3-7.6

EXERCISES: CH 6. 38

CH 7.34

ASSIGNED: NONE

PRODUCER: DR. MARIO

Example: Grades on Different Exams

Data

	Barb	Betsy	Bill	Bob	Bud	Mean 72
Exam #1:	62	94	68	86	50	87
Exam #2:	87	95	93	97	63	68
Exam #3:	74	86	82	70	28	73
Exam #4:	77	89	73	79	47	
Mean	75	91	79	83	47	75

- Using One-Way ANOVA:
 - No Significant Differences Between Exams
 - Significant Differences Between Students
- Question: Can we use **both** factors to explain variability in scores?

Simple Block Design

- **Simple Block Design** has two factors with exactly one observation in each combination of factors
- Example: Examine Effect of Different Treatments at Different Severities
 - Factor A (Treatments) has I Levels
 - Factor B (Severity) has J Levels
 - Sample Size is n = I * J in a Simple Block Design
- Question: What is the problem of this design?

Means Version

$$Y = \mu_{ij} + \epsilon$$

Treatment: $i \in \{1, 2, \dots, I\}$

Block: $j \in \{1, 2, \dots, J\}$

Mean of Y for Treatment i and Block j

• Effects Version (Additive)

$$Y = \mu + \alpha_i + \beta_j + \epsilon$$

Grand

Mean

Sa Al

Effect of Block j

Same Assumptions
About Error Term

Effect of Treatment i

$$Y = \mu + \alpha_i + \beta_j + \epsilon$$

Factor A: $i \in \{1, 2, \dots, I\}$ Factor B: $j \in \{1, 2, \dots, J\}$

Estimation of Model

Parameter	Estimate
μ	$\overline{\mathcal{y}}$
α_i	$\bar{y}_i - \bar{y}$
eta_j	$\bar{y}_j - \bar{y}$
σ_ϵ	\sqrt{MSE}

Group Means for A: \bar{y}_i

Group Means for B: \bar{y}_j

Partition of Variation

$$SST = \sum_{i} \sum_{j} (y_{ij} - \bar{y})^2 = (n-1)s^2$$

$$SSA = \sum_{i} \sum_{j} (\overline{y}_i - \overline{y})^2 = \sum_{i} J(\overline{y}_i - \overline{y})^2$$

$$SSB = \sum_{i} \sum_{j} (\bar{y}_{j} - \bar{y})^{2} = \sum_{j} I(\bar{y}_{j} - \bar{y})^{2}$$

$$SSE = SST - SSA - SSB$$

ANOVA Table (Assume One Observation Per Combination)

Source	d.f.	Sum of Squares	Mean Square	F	P-value
Factor A	<i>I</i> − 1	SSA	$\frac{SSA}{I-1}$	$\frac{MSA}{MSE}$	$F_{I-1,(I-1)(J-1)}$
Factor B	J – 1	SSB	$\frac{SSB}{J-1}$	$\frac{MSB}{MSE}$	$F_{J-1,(I-1)(J-1)}$
Residual	(I-1)(J-1)	SSE	$\frac{SSE}{(I-1)(J-1)}$		
Total	<i>IJ</i> − 1	SSTotal		•	

- Hypothesis Test for Factor A
 - H_0 : $\alpha_1 = \alpha_2 = \cdots = \alpha_I = 0$
 - H_a : $\alpha_i \neq 0$ for some i
- Hypothesis Test for Factor B
 - $H_0: \beta_1 = \beta_2 = \dots = \beta_I = 0$
 - $H_a: \beta_i \neq 0$ for some j

Supplement for Lecture 26

- Fit One-Way ANOVA Models
- Two-Way ANOVA Model

```
Y = \mu + \alpha_i + \beta_j + \epsilon
Factor A (Exam) i \in \{1,2,3,4\}
Factor B (Student) j \in \{Barb, Betsy, Bill, Bob, Bud\}
```

- Compare to Results from One-Way ANOVA Models
- Confidence Intervals for All Pairwise Comparisons (Tukey HSD)

 An Interaction Effect Occurs When a Significant Difference is Present at a Specific Combination of Factors

$$Y = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon$$

- Example: Readability of Colored Text on Colored Background
 - Yellow Text Hurts Readability ($\alpha_{
 m v} < 0$)
 - Black Background Hurts Readability ($\beta_{\rm b} < 0$)
 - Yellow Text on Black Background Helps Readability ($\gamma_{
 m vb}>0$)

Book: Interaction is a difference of differences.

• Example:

•	White Background	Black Background	Diff	
Yellow Text	10	70	-60	 Different
Gray Text	40	50	-10	Differences
Diff	-30	20		

Different Differences

- Estimation of Interaction Requires Multiple Observations Per Combo $n_{ij} = \# \ of \ Observations \ in \ (i,j)^{th} \ cell$
- Balanced: $n_{ij} = c$ (Constant for all cells)
 - Randomized Complete Block Design: c = 1
 - Factorial Design: c > 1
- Use Interaction Plot to Inspect Presence of an Interaction Effect
 - Plot Means of Each Cell Versus One of the Factors With Different Lines for the Other Factor
 - Called Cell Means Plot

ANOVA Table

Source	d.f.	Sum of Squares	Mean Square	F	P-value
Factor A	<i>I</i> – 1	SSA	$\frac{SSA}{I-1}$	$\frac{MSA}{MSE}$	$F_{I-1,IJ(c-1)}$
Factor B	J – 1	SSB	$\frac{SSB}{J-1}$	$\frac{MSB}{MSE}$	$F_{J-1,IJ(c-1)}$
A * B	(I-1)(J-1)	SSAB	$\frac{SSAB}{(I-1)(J-1)}$	MSAB MSE	$F_{(I-1)(J-1)}$, $IJ(c-1)$
Residual	IJ(c-1)	SSE	$\frac{SSE}{IJ(c-1)}$		
Total	n-1	SSTotal		.	

- New Hypothesis Test for Interaction
 - $H_0: \gamma_{11} = \gamma_{12} = \gamma_{21} = \dots = \gamma_{IJ} = 0$
 - $H_a: \gamma_{ij} \neq 0$ for some i, j
- Similar to the Addition of Interaction Effect in Linear Regression

Example: Glue

- Data Organized in Grid
 - A: Thickness (thin, moderate, heavy)
 - B: Glue Type (*plastic, wood*)
 - Y: Force Required to Separate (in Newtons)

DATA	Plastic	Wood	
Thin	52 64	72 60	
Moderate	67 55	78 68	
Heavy	86 72	43 51	

$$I = 3$$

$$J = 2$$

$$c = 2$$

$$n = I * J * c = 12$$

Supplement for Lecture 26

- Inspect Interaction Plot
- Fit One-Way ANOVA Models
- Fit Two-Way ANOVA Model Without Interaction
- Fit Two-Way ANOVA Model With Interaction
- Compare the Models and Inspect Cl's for Interaction Effects

Thank You

Make Reasonable Decisions

