PROYECTO AUTOMATAS

Juan Pablo Sibecas
juan.sibecas@gmail.com
Matias Gaviño
matias.linares.g@gmail.com
Autómatas y Control Discreto, Facultad de Ingeniería,
Universidad Nacional de Cuyo,
Mendoza, Argentina

Junio de 2024

Resumen

1. Introducción

2. Desarrollo

2.1. Modelo del Sistema Físico

2.1.1. Subsistema de Izaje

Segunda ley de Newton del lado tambor:

$$J_{hd+hEb}\frac{d\omega_{hd}}{dt} = T_{hd}(t) + T_{hEb}(t) - b_{hd}\omega_{hd}(t) - T_{hdl}(t)$$
(1)

Segunda ley de Newton del lado motor:

$$J_{hm+hb}\frac{d\omega_{hm}}{dt} = T_{hm}(t) + T_{hb}(t) - b_{hm}\omega_{hm}(t) - T_{hml}(t)$$
(2)

relacion de transmision

$$i_h = \frac{\omega_{hm}(t)}{\omega_{hd}(t)} = \frac{T_{hd}(t)}{T_{hml}(t)} \tag{3}$$

si reemplazo 3 en 2 y despejo $T_{hd}(t)$

$$T_{hd}(t) = J_{hm+hb} \frac{d\omega_{hd}}{dt} i_h^2 - b_{hm}\omega_{hd}(t) i_h^2 + i_h (T_{hm}(t) + T_{hb}(t))$$
(4)

reemplazando en 1 y operando se obtiene

$$(J_{hd+hEb} + J_{hm+hb}i_h^2) \frac{d\omega_{hd}}{dt} = -(b_{hd} + b_{hm}i_h^2)\omega_{hd}(t) + i_h(T_{hm}(t) + T_{hb}(t)) + T_{hEb}(t) - T_{hdl}(t)$$
como $T_{hdl}(t) = F_{hw}(t) * r_{hd}, \; 2V_h = r_{hd} * \omega_{hd}(t) \; y \; V_h = -\frac{dl_h(t)}{dt} \; y \; \text{dividiendo por } r_{hd}$:

$$2\frac{(J_{hd+hEb} + J_{hm+hb}i_h^2)}{r_{hd}^2}\frac{d^2l_h(t)}{dt^2} = -2\frac{(b_{hd} + b_{hm}i_h^2)}{r_{hd}^2}\frac{dl_h(t)}{dt} - \frac{i_h}{r_{hd}}(T_{hm}(t) + T_{hb}(t)) - \frac{T_{hEb}(t)}{r_{hd}} + F_{hw}(t)$$
(6)

Reemplazando por parametros equivalentes:

$$M_{Eh}\ddot{l}_{h}(t) = -b_{Eh}\dot{l}_{h}(t) - \frac{i_{h}}{r_{hd}}(T_{hm}(t) + T_{hb}(t)) - \frac{T_{hEb}(t)}{r_{hd}} + F_{hw}(t)$$
(7)

Donde

$$M_{Eh} = 2 \frac{(J_{hd+hEb} + J_{hm+hb}i_h^2)}{r_{hd}^2} \tag{8}$$

$$b_{Eh} = 2\frac{(b_{hd} + b_{hm}i_h^2)}{r_{hd}^2} \tag{9}$$

(10)

2.1.2. Subsistema Carro

Segunda ley de Newton del lado tambor:

$$J_{td}\frac{d\omega_{td}(t)}{dt} = T_{td}(t) - b_{td}\omega_{td}(t) - T_{tdl}(t)$$
(11)

Segunda ley de Newton del lado motor:

$$J_{tm+tb}\frac{d\omega_{tm}(t)}{dt} = T_{tm}(t) + T_{tb}(t) - b_{tm}\omega_{tm}(t) - T_{tml}(t)$$
(12)

relacion de transmision

$$i_t = \frac{\omega_{tm}(t)}{\omega_{td}(t)} = \frac{T_{td}(t)}{T_{tml}(t)} \tag{13}$$

si reemplazo 13 en 12 y despejo $T_{td}(t)$

$$T_{td}(t) = J_{tm+tb} \frac{d\omega_{td}(t)}{dt} i_t^2 - b_{tm}\omega_{td}(t) i_t^2 + i_t (T_{tm}(t) + T_{tb}(t))$$
(14)

Reemplazo 14 en 11 y reordeno:

$$(J_{td} + J_{tm+tb} * i_t^2) \frac{d\omega_{td}(t)}{dt} = i_t (T_{tm}(t) + T_{tb}(t)) - (b_{td} + b_{tm}i_t^2)\omega_{td}(t) - T_{tdl}(t)$$
(15)

Como $\omega_{td}(t)r_{td} = V_{td}(t)$, $F_{tw}(t)r_{td} = T_{tdl}(t)$ y $V_{td}(t) = \frac{dx_{td}}{dt}$ y dividiendo por r_{td} :

$$\frac{(J_{td} + J_{tm+tb} * i_t^2)}{r_{td}^2} \frac{d^2 x_{td}(t)}{dt^2} = -\frac{(b_{td} + b_{tm} i_t^2)}{r_{td}^2} \frac{d x_{td}(t)}{dt} + \frac{i_t}{r_{td}} (T_{tm}(t) + T_{tb}(t)) - F_{tw}(t)$$
(16)

Reemplazando por parametros equivalentes se obtiene la ecuacion del tambor del subsistema carro:

$$M_{Etd}\ddot{x_{td}}(t) = -b_{Etd}\dot{x_{td}}(t) + \frac{i_t}{r_{td}}(T_{tm}(t) + T_{tb}(t)) - F_{tw}(t)$$
(17)

La ecuacion de movimiento del carro es:

$$M_t \ddot{x}_t(t) = -b_t \dot{x}_t(t) + F_{tw}(t) + 2F_{hw}(t) \sin \theta_l(t)$$
(18)

Y la fuerza transmitida por el cable del subsistema carro es:

$$F_{tw}(t) = K_{tw}(x_{td}(t) - x_t(t)) + b_{tw}(\dot{x_{td}}(t) - \dot{x_t}(t))$$
(19)

seria un sistema acoplado? preguntar si se resuelve asi

2.2. Diseño del controlador

$$T'_{m}(t) = b_{a}e_{\omega}(t) + K_{sa}e_{\theta}(t) + K_{sia} \int e_{\theta}(t)dt$$
(20)

Por lo tanto, por Laplace:

$$T_m(s) = G(s)[b_a E_{\omega}(s) + K_{sa} \frac{1}{s} + K_{sia} \frac{1}{s^2}]E_{\theta}(s)$$
(21)

Donde $G_T(s)$ es la función de transferencia del modulador de torque que, como se supone ideal, es igual a 1.

Para obtener la expresión que nos permita obtener las constante que definen al controlador se remplaza la ecuacion 20 en la ecuacion de movimiento del izaje y del carro, se obtiene: Para el izaje, reemplazando 20 en 7 y transformandola con Laplace, se obtiene:

$$M_{Eh}\ddot{L}_{h}(s) = -b_{Eh}sL_{h}(s) - \frac{i_{h}}{r_{hd}}[G(s)[b_{a}E_{\omega}(s) + K_{sa}\frac{1}{s} + K_{sia}\frac{1}{s^{2}}]E_{\theta}(s)] + F_{hw}(s)$$
(22)

despejando

2.2.1. Control de balanceo

Acontinuación se derivan las ecuaciones que modelan el sistema carro-pendulo. Se utilizará el metodo de Lagrange definiendo las cordenadas generalizadas x_t , θ y l. Donde x_t es la posición del carro, θ es el angulo del pendulo respecto a la vertical y l es la longitud del pendulo.

$$K = K_t + K_{lx} + K_{ly} \tag{23}$$

$$x_l = x_t + l\sin\theta \tag{24}$$

$$\dot{x}_l = \dot{x}_t + l\cos\theta\dot{\theta} + \dot{l}\sin\theta \tag{25}$$

$$y_l = Y_{t0} - l\cos\theta \tag{26}$$

$$\dot{y}_l = l\sin\theta\dot{\theta} \tag{27}$$

$$K = \frac{1}{2}m_t \dot{x_t}^2 + \frac{1}{2}m_l \dot{x_l}^2 + \frac{1}{2}m_l \dot{y_l}^2$$
(28)

$$K = \frac{1}{2}m_t \dot{x_t}^2 + \frac{1}{2}m_l(\dot{x_t} + l\cos\theta\dot{\theta} + \dot{l}\sin\theta)^2 + \frac{1}{2}m_l(l\sin\theta\dot{\theta})^2$$
 (29)

$$K = \frac{1}{2} m_t \dot{x_t}^2 + \frac{1}{2} m_l (\dot{x_t}^2 + l^2 \cos^2 \theta \dot{\theta}^2 + \dot{l}^2 \sin^2 \theta + 2l \dot{x_t} \cos \theta \dot{\theta} + 2l \dot{l} \sin \theta \cos \theta \dot{\theta} + 2\dot{l} \dot{x_t} \sin \theta)$$

$$+ \frac{1}{2} m_l l^2 \sin^2 \theta \dot{\theta}^2$$
(30)

$$U = -m_l g l \cos \theta \tag{31}$$

$$L = K - U \tag{32}$$

$$L = \frac{1}{2} m_t \dot{x_t}^2 + \frac{1}{2} m_l (\dot{x_t}^2 + l^2 \cos^2 \theta \dot{\theta}^2 + \dot{l}^2 \sin^2 \theta + 2l \dot{x_t} \cos \theta \dot{\theta} + 2l \dot{l} \sin \theta \cos \theta \dot{\theta} + 2l \dot{x_t} \sin \theta) + \frac{1}{2} m_l l^2 \sin^2 \theta \dot{\theta}^2 + m_l g l \cos \theta$$
 (33)

$$L = \frac{1}{2} m_t \dot{x_t}^2 + \frac{1}{2} m_l \dot{x_t}^2 + \frac{1}{2} m_l l^2 \cos^2 \theta \dot{\theta}^2 + \frac{1}{2} m_l \dot{l}^2 \sin^2 \theta + m_l \dot{x_t} l \cos \theta \dot{\theta} + m_l \dot{l} l \sin \theta \cos \theta \dot{\theta} + m_l \dot{l} \dot{x_t} \sin \theta + \frac{1}{2} m_l l^2 \sin^2 \theta \dot{\theta}^2 + m_l g l \cos \theta$$
(34)

Se define el sistema de ecuaciones de Euler-Lagrange:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = Q_i \tag{35}$$

Para $q_i = x_t$:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}_t} \right) - \frac{\partial L}{\partial x_t} = Q_t \tag{36}$$

$$\frac{\partial L}{\partial \dot{x}_t} = (m_t + m_l)\dot{x}_t + m_l l\cos\theta \dot{\theta} + m_l \dot{l}\sin\theta \tag{37}$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}_t} \right) = \tag{38}$$

 $(m_t + m_l)\ddot{x}_t + m_l\dot{l}\cos\theta\dot{\theta} + m_ll\cos\theta\ddot{\theta} - m_ll\sin\theta\dot{\theta}^2 + m_l\ddot{l}\sin\theta + m_l\dot{l}\cos\theta\dot{\theta}$

$$\frac{\partial L}{\partial x_t} = 0 \tag{39}$$

Entonces:

$$(m_t + m_l)\ddot{x}_t + m_l\dot{l}\cos\theta\dot{\theta} + m_ll\cos\theta\ddot{\theta} - m_ll\sin\theta\dot{\theta}^2 + m_l\ddot{l}\sin\theta + m_l\dot{l}\cos\theta\dot{\theta} = F_t(t) - b_{eqt}\dot{x}_t$$
 (40)

Para $q_i = \theta$:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = Q_{\theta} \tag{41}$$

$$\frac{\partial L}{\partial \dot{\theta}} = m_l l^2 \cos \theta \dot{\theta} + m_l \dot{x}_t l \cos \theta + m_l l \dot{l} \sin \theta \cos \theta + m_l l^2 \sin^2 \theta \dot{\theta}$$
(42)

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) = \tag{43}$$

3. Resultados

4. Conclusión