Вариант №23

Исходные данные:

- число скоростей привода: Z = 15;
- структурная формула привода: Z = 3(1 + 2.2);
- вид структуры: AII;
- знаменатель ряда геометрической прогрессии: φ = 1,26;
- тип станка: зубофрезерный. Принимаем станок модели 5Д36.

Порядок выполнения работы

1. Полностью раскрыть структурную формулу с указанием характеристик передач, проверить условие о возможности применения данной формулы в приводе главного движения с определением диапазона регулирования последней переборной группы передач и рассчитать

возможное количество вариантов привода.

Структурная формула привода представляет собой сложенную структуру, которую в общем виде имеет вид:

$$Z = Z^{O}(1 + Z^{\prime}),$$

где: Z^O – основная структура привода;

Z' - дополнительная структура привода.

Основная структура состоит из одной группы передач $Z^{O} = P^{O}_{1}$, а дополнительная – из двух групп $Z' = P_1' \cdot P_2'$ Тогда с учетом групп передач структурную формулу можно представить в виде:

$$Z = P_1^{O} (1 + P_1 \cdot P_2) = 3(1 + 2 \cdot 2),$$

где: $P_1^0 = 3$ – основная группа передач;

 $P_{1}^{\prime}=2, P_{2}^{\prime}=2$ — первая и вторая переборные группы соответственно.

Цифры 2 и 3 определяют соответственно количество передач в группе.

С учетом характеристик передач в группе структурная формула представляется как:

$$Z = P_{1X_0}^{O} (1 + P_{1X_1}^{I} \cdot P_{2X_2}^{I}) = 3_{X_0} (1 + 2_{X_1} \cdot 2_{X_2}),$$

где: $x_0 = 1$ – характеристика основной группы передач;

 $x_1 = x_0 \cdot P_1 = 1 \cdot 3 = 3 -$ характеристика первой переборной группы передач;

 $x_2 = x_1 \cdot P_1 = 3 \cdot 2 = 6$ — характеристика второй (последней) переборной группы передач.

Таким образом с учетом групп и характеристик передач структурная формула имеет вид:

$$Z = P_{1X_0}^{O} (1 + P_{1X_1}^{I} \cdot P_{2X_2}^{I}) = 3_{X_0} (1 + 2_{X_1} \cdot 2_{X_2}) = 3_1 (1 + 2_3 \cdot 2_6)$$

Проверяем условие применяемости структурной формулы в приводе главного движения, которое записывается как: $R_{\Pi i} = \phi^{Kmax} \le 8$, где $K_{max} = x_2 = 6$

Диапазон регулирования последней переборной группы передач ($P_2=2_6$) Равен $R_{\text{Пi}}=\phi^{\text{Kmax}}=1,26^6=4$ (Условие выполнено).

Определяем возможное количество вариантов привода:

$$B = B_{\text{кон.}} \cdot B_{\text{кин.}};$$

где: $B_{\text{кон}} = K! -$ количество конструктивных вариантов привода;

$$B_{\text{кин}} = \frac{K!}{m!}$$
 - количество кинематических вариантов привода.

Таким образом, общее количество вариантов привода рассчитывается по формуле:

$$B = \frac{(K!)^2}{m!}$$

Для структурной формулы $Z = 3_1(i_\Pi + 2_3 \cdot 2_6)$ и структуры вида AII общее количество вариантов привода определяется по формуле:

$$B = 4 \frac{(K^0!)^2}{m^0!} \frac{(K'!)^2}{m'!};$$

где: к – число групп передач;

т – количество групп с одинаковым числом передач.

В нашем случае $K^0 = m^0 = 1$; K' = m' = 2

Таким образом:
$$B=4\frac{(1!)^2}{1!}\frac{(2!)^2}{2!}=8$$

2. С учетом заданной формулы нарисовать вид структуры и построить структурную сетку.

Структура вида AII представляет собой сложенную структуру с одной дополнительной структурой Z^{\prime} и соединением основной структуры Z^{0} со шпинделем (выходным валов коробки скоростей) посредством муфты M (рис.1).

Рис. 1. Общий вид сложенной структуры вида AII.

Структура привода вида AII, разработанная с учетом структурной формулы $Z=3_1(1+2_3\cdot 2_6)$ и однонаправленности вращения шпинделя при передаче движения по различным кинематическим цепям, представлена на рис.2.

Структура привода (рис.2) состоит из 4-х валов, 2-х двухвенцовых блоков зубчатых колес ($P_1/=2$, $P_2/=2$) и одного трехвенцового блока $P_1^{\ 0}=3$, причем передача $P_1/=2$ имеет три положения, т.к. блок является также левой полумуфтой. Передача движения со II вала на III вал обеспечивается соединением полумуфт M.

Таким образом, для получения 15 различных частот вращения в структуре привода необходимо реализовать 2 кинематические цепи: $Z = Z_1 + Z_2$,

где:
$$Z_1 = P_1^O(M) = 3_1(M) = 3$$

 $Z_2 = P_1^O(P_1)P_2 = 3_1 2_3 \cdot 2_6 = 12$
Или $Z = Z_1 + Z_2 = 3 + 12 = 15$

Рис. 2. Структура привода вида АП с учетом формулы $Z = 3_1(1 + 2_3 \cdot 2_6)$ и групп передач.

Структурная сетка для $Z = 3_1(1 + 2_3 \cdot 2_6) = 15$ представлена на рис.3

Рис.3. Структурная сетка привода.

3. Самостоятельно задавшись по ГОСТ параметрами электродвигателя, а также Π_{min} частоты вращения выходного вала коробки скоростей, определить с учетом ϕ и Z промежуточные частоты вращения и Π_{max} . Построить график частот вращения с учетом кинематики заданного станка и определить передаточные отношения передач.

С учетом базового станка по ГОСТ 18399-81 задаемся параметрами электродвигателя привода главного движения:

- тип электродвигателя 4A160S4У3;
- мощность N = 3 кВт;
- частота вращения при номинальной мощности n_н = 1460 об/мин.

Принимая во внимание частоты вращения базового станка, а также ϕ =1,26 и Z=10 задаемся n_1 = n_{min} =16 об/мин. По Нормали станкостроения H11-1 получаем промежуточные и n_{max} частоты вращения шпинделя:

Учитывая, что частоты вращения вала электродвигателя $n_{\rm H}$ =1450об/мин определяем последующие частоты вращения:

Анализ кинематической схемы привода главного движения станка модели 5Д32 (рис.4).

Вращение фрезе передается от электродвигателя N=2,98кВт (n=1420об/мин), клиноременной передачей 105/224, коплекта миенных зубчатых колес, а также постоянных передач 24/24, 24/24, 17/17 и 16/64. Общее

передаточное отношение постоянных передач равно $i=1\4$. В нашем случае, эти постоянные передачи оставим без изменения, а в разрабатываемом приводе дополнительно введем четыре вала (V, VI, VII и VIII).

Рис. 4 – Кинематическая схема станка мод. 5Д32

При построении графика частот вращения шпинделя необходимо принять во внимание, что для $\phi = 1,26$ число допустимых интервалов может быть: понижающих -6, повышающих -3.

Рис. 5 – График частот вращения

По рис. 5 определяем передаточные отношения:

- для ременной передачи между I^l -I валами: i_p =1250/1460=0,86. Приняв D_2 =224мм (как в базовом станке), получим D_1 = D_2 · i_p =224·0,86=196мм

- остальных зубчатых передач по формуле $\mathbf{i} = \boldsymbol{\varphi}^{^{\pm \mathrm{m}}}$,

где: m — число повышений (+) или понижений (-) луча на графика частот вращения.

$$\begin{split} \mathbf{i}_1 &= \varphi = 1{,}26; \quad \mathbf{i}_2 = \varphi^0 = 1; \quad \mathbf{i}_3 = \varphi^{-1} = \frac{1}{1{,}26}; \quad \mathbf{i}_4 = \varphi^{-3} = 1/1{,}26^3; \quad \mathbf{i}_6 = \varphi^{-1} = \frac{1}{1{,}41}; \\ \mathbf{i}_5 &= \varphi^{-6} = 1/1{,}26^6; \quad \mathbf{i}_6 = \varphi^0 = 1; \quad \mathbf{i}_7 = \varphi^{-6} = \frac{1}{1{,}26^6}; \end{split}$$

4. Разработать кинематическую схему привода главного движения (рисунок кинематической схемы базового станка приложить в контрольной работе).

При разработке кинематической схемы привода главного движения (рис.6) применены:

- фланцевый электродвигатель с аналогичными базовому станку техническими характеристиками и постоянная ременная передача D_1/D_2 ;
 - соединение валов II и III обеспечивается муфтой M;
- введены постоянные зубчатые передачи и валы V, VI, VII и VIII в соответствии с базовым станком.

Рис. 6. Кинематическая схема привода главного движения

5. Расчет чисел зубьев зубчатых передач и определение кинематической точности (погрешности) частот вращения цепи, в которую входит наиболее нагруженная группа передач.

Наиболее нагруженной группой передач является группа $P_2 = 2_6$, которая имеет передаточные отношения:

$$i_6 = \frac{Z_{14}}{Z_{15}} = 1$$
 $i_7 = \varphi^{-6} = \frac{Z_{16}}{Z_{17}} = \frac{1}{1,26^6};$

Для данной группы передач расчет чисел зубьев колес производим при зацепления прямозубых цилиндрических зубчатых колес одинаковым модулем в группе передач.

Представим передаточные отношения в виде простой дроби $i_x = \frac{I_x}{g}$:

$$i_{_{6}}=\frac{f_{_{6}}}{q_{_{6}}}=\frac{Z_{_{14}}}{Z_{_{15}}}\approx\frac{1}{1} \qquad \qquad i_{_{7}}=\frac{f_{_{7}}}{q_{_{7}}}=\frac{Z_{_{16}}}{Z_{_{17}}}\approx\frac{1}{4}$$

Определяем наименьшее кратное К для сумм (f_x+q_x):

$$f_6 + q_6 = 1 + 1 = 2$$

$$f_7 + q_7 = 1 + 4 = 5$$

Таким образом K = 10

Определим
$$E_{min}$$
 для зубчатой передачи с i_7 :
$$E_{min} = \frac{17(f_7 + q_7)}{K \cdot f_7} = \frac{17(1+4)}{10 \cdot 1} = 8,5 \qquad \qquad$$
 Принимаем $E_{min} = 9$

Сумма чисел зубьев сопряженных колес: $2Z_0 = K \cdot E_{min} = 10.9 = 90$

По Нормали Н21-5 задавшись модулем зубчатых колес т=4мм получаем $2Z_0=90$, при этом межосевое расстояние между валами составляет $A_{III-IV}=180$ мм.

Определяем числа зубьев сопряженных колес:

$$\begin{split} Z_{14} &= 2Z_{O} \, \frac{f_{6}}{f_{6} + q_{6}} = 90 \frac{1}{1+1} = 45 \\ Z_{15} &= 2Z_{O} \, \frac{q_{6}}{f_{6} + q_{6}} = 90 \frac{1}{1+1} = 45 \\ Z_{16} &= 2Z_{O} \, \frac{f_{9}}{f_{9} + q_{9}} = 90 \frac{1}{1+4} = 18 \\ Z_{17} &= 2Z_{O} \, \frac{q_{9}}{f_{9} + q_{9}} = 90 \frac{4}{1+4} = 72 \\ \Pi \text{роверка:} \ \ Z_{14} + Z_{15} = Z_{16} + Z_{17} = 2Z_{O} \end{split}$$

45+45 = 18+72 = 90

Расчет чисел зубьев остальных зубчатых передач выполняется с учетом Нормали Н21-5 решая систему уравнений:

Расчет чисел зубьев зубчатой передачи между II и IV валами:

Т.к. передача с вала ІІ на вал ІІІ осуществляется муфтой, то межосевые расстояния $A_{\text{II-IV}} = A_{\text{III-IV}} = 180$ мм. При модуле m = 3мм по H21-5 имеем $2Z_0 = 120$.

Определяем числа зубьев сопряженных колес:

$$\begin{cases} Z_{10} + Z_{11} = 120 \\ \frac{Z_{10}}{Z_{11}} = i_4 = \frac{1}{1,26^3} \end{cases} Z_{11} = 1,26^3 \ Z_{10}; \ Z_{10} + 2 \ Z_{10} = 120; \ Z_{10} = 40; \ Z_{11} = 120 - 40 = 80 \\ \begin{cases} Z_{12} + Z_{13} = 120 \\ \frac{Z_{12}}{Z_{13}} = i_5 = \frac{1}{1,26^6} \end{cases} Z_{13} = 1,26^6 \ Z_{12}; \ Z_{12} + 4 \ Z_{12} = 120; \ Z_{12} = 24; \ Z_{13} = 120 - 24 = 96 \\ \text{Проверка:} \ Z_{10} + Z_{11} = Z_{12} + Z_{13} = 2Z_{O} \end{cases}$$

Проверка:
$$Z_{10}+Z_{11}=Z_{12}+Z_{13}=2Z_{0}$$

 $40+80=24+96=120$

Расчет чисел зубьев между I и II валами:

Передача движения между валами обеспечивается передачей $i_1=z_4/z_5=1,26$. С целбю обеспечения наименьших радиальных размеров коробки скоростей принимаем для i_1 , что $z_5=20$. Тогда $z_4=1.26\cdot z_5=1,26\cdot 20=25$, а $2Z_o=Z_4+Z_5=20+25=45$. По H21-5 при m=3мм принимаем $2Z_o=60$ ($A_{I-II}=90$ мм).

Определяем числа зубьев сопряженных колес:

$$\begin{cases} Z_4 + Z_5 = 60 \\ \frac{Z_4}{Z_5} = 1,26 \end{cases} \quad Z_4 = 1,26 \ Z_5; \quad Z_5 + 1,26 \ Z_5 = 60; \quad Z_5 = 26; \quad Z_4 = 60-26 = 34$$

$$\begin{cases} Z_6 + Z_7 = 60 \\ \frac{Z_6}{Z_7} = 1 \end{cases} \quad Z_6 = Z_7 = 60/2 = 30$$

Проверка:
$$Z_4+Z_5=Z_6+Z_7=2Z_0$$

 $34+26=30+30=60$

Для определения кинематической точности привода главного движения кинематических цепей, в состав которых входит наиболее нагруженная группа передач (т.е. для кинематической цепи Z_2) необходимо составить уравнения кинематического баланса, определить действительные значения частот вращения шпинделя ($n_{1\pi} \dots n_{8\pi}$), вычислить величину погрешности по формуле:

$$\begin{array}{l} \Delta n_i = \frac{n_{_{1a}} - n_{_{iii}}}{n_{_{iii}}} \cdot 100\% \qquad \text{и} \qquad \text{сравнить} \qquad \text{ее} \qquad \text{с} \qquad \text{допустимой} \\ [\Delta n] = \pm 10(\varphi - 1) = \pm 10(1,26 - 1) = \pm 2,6\% \,. \\ n_1 = 1460 \frac{196}{224} \frac{27}{33} \frac{24}{96} \frac{18}{72} \frac{24}{24} \frac{17}{24} \frac{16}{764} = 16,306/\text{мин} \qquad \Delta n_1 = \frac{16 - 16,3}{16} 100 = 1,8\% \\ n_2 = 1460 \frac{196}{224} \frac{30}{30} \frac{24}{96} \frac{18}{72} \frac{24}{24} \frac{24}{17} \frac{17}{16} = 19,806/\text{мин} \qquad \Delta n_2 = \frac{20 - 19,8}{20} 100 = 1\% \\ n_3 = 1460 \frac{196}{224} \frac{33}{27} \frac{24}{96} \frac{18}{72} \frac{24}{24} \frac{24}{17} \frac{17}{64} = 24,406/\text{мин} \qquad \Delta n_3 = \frac{25 - 24,4}{25} 100 = 2,4\% \\ n_4 = 1460 \frac{196}{224} \frac{30}{33} \frac{04}{80} \frac{18}{72} \frac{24}{24} \frac{24}{17} \frac{17}{64} = 31,606/\text{мин} \qquad \Delta n_4 = \frac{31,5 - 31,6}{31,5} 100 = 0,3\% \\ n_5 = 1460 \frac{196}{224} \frac{30}{30} \frac{40}{80} \frac{18}{72} \frac{24}{24} \frac{24}{17} \frac{17}{64} = 39,806/\text{мин} \qquad \Delta n_4 = \frac{40 - 39,8}{40} 100 = 0.5\% \\ n_6 = 1460 \frac{196}{224} \frac{30}{30} \frac{40}{30} \frac{18}{80} \frac{24}{72} \frac{24}{24} \frac{17}{17} \frac{16}{64} = 48,806/\text{мин} \qquad \Delta n_6 = \frac{50 - 48,8}{40} 100 = 2,4\% \\ n_7 = 1460 \frac{196}{224} \frac{30}{33} \frac{24}{96} \frac{45}{45} \frac{24}{24} \frac{24}{17} \frac{17}{64} = 62,506/\text{мин} \qquad \Delta n_8 = \frac{80 - 79,6}{80} 100 = 0,5\% \\ n_9 = 1460 \frac{196}{224} \frac{30}{30} \frac{24}{96} \frac{45}{45} \frac{24}{24} \frac{21}{17} \frac{16}{64} = 126,906/\text{мин} \qquad \Delta n_9 = \frac{100 - 97,6}{100} 100 = 2,4\% \\ n_{10} = 1460 \frac{196}{224} \frac{30}{30} \frac{40}{96} \frac{45}{45} \frac{24}{24} \frac{21}{17} \frac{16}{64} = 126,906/\text{мин} \qquad \Delta n_{10} = \frac{125 - 126,9}{125} 100 = 1,5\% \\ n_{11} = 1460 \frac{196}{224} \frac{30}{30} \frac{40}{96} \frac{45}{24} \frac{24}{24} \frac{17}{17} \frac{16}{64} = 159,706/\text{мин} \qquad \Delta n_{11} = \frac{160 - 159,7}{160} 100 = 0,3\% \\ n_{12} = 1400 \frac{196}{224} \frac{33}{27} \frac{40}{80} \frac{45}{45} \frac{24}{24} \frac{21}{17} \frac{16}{64} = 159,206/\text{мин} \qquad \Delta n_{12} = \frac{200 - 195,2}{200} 100 = 2,3\% \\ n_{12} = 1400 \frac{196}{224} \frac{30}{27} \frac{40}{80} \frac{45}{45} \frac{24}{24} \frac{21}{17} \frac{16}{64} = 159,206/\text{мин} \qquad \Delta n_{12} = \frac{160 - 159,7}{160} 100 = 2,3\% \\ n_{12} = 1400 \frac{196}{224} \frac{30}{27} \frac{40}{80} \frac{45}{45} \frac{24}{24} \frac{217}{17} \frac{16}{64} = 159,206/\text{мин} \qquad \Delta n_{12} = \frac{200 - 195,2}{200} 100 = 2,3\% \\ n_{12}$$

Величина погрешности находится в пределах допустимой, что указывает на то, что кинематическая точность цепей обеспечена.

6. Рассчитать мощность и крутящий момент на валах привода, предварительно рассчитать диаметры валов.

Расчет мощности на валах привода главного движения производится по формуле:

- на I валу:
$$N_{_{\rm I}}=N_{_{_{\rm AB}}}\cdot\eta_{_p},$$
 [кВт], где $\eta_{_{\rm p}}=0.85$ - КПД ременной передачи;

$$N_{T} = 3.0,85 = 2,5 \text{kBT};$$

- на последующих валах по формуле:

$$N_i = N_{i-1} \cdot \eta_3 \cdot \eta_n^2$$
, κB_T

где: η_3 =0,97 – КПД зубчатой передачи;

 $\eta_{\rm n}$ =0,99 – КПД подшипников качения.

Учитывая, что $\eta_{_3} \cdot \eta_{_{\Pi}} = 0.97 \cdot 0.99^2 = 0.95$, получаем $N_{_{i}} = 0.95 \cdot N_{_{i-1}}$, [кВг]

$$N_{_{II}} = 0.95 \cdot N_{_{I}} = 2.5 \cdot 0.95 = 2.4 \, \text{kBT}$$

$$N_{\text{iv}} = 0.95 \cdot N_{\text{ii}} = 0.95 \cdot 2.4 = 2.3 \text{ kBT}$$

$$N_{III} = 0.95 \cdot N_{IV} = 0.95 \cdot 2.3 = 2.1 \text{ kBT}$$

Максимальные крутящие моменты на валах привода определяются по формулам:

- на I валу:
$$M_{_{\rm I}} = \frac{M_{_{\rm дв}}}{i_{_{\rm p}}} \eta_{_p} \eta_{_n}^{\ \ 2},$$
нм ;

где: $M_{_{\text{дв.}}} = \frac{N_{_{\text{дв.}}} \cdot 10^3 \cdot 60}{2 \cdot \pi \cdot n_{_{\text{H}}}} = \frac{3 \cdot 10^3 \cdot 60}{2 \cdot 3,14 \cdot 1460} = 20 \,\text{нм}$ — крутящий момент на валу электродвигателя.

$$M_1 = \frac{20}{0.86} 0.83 = 19 \text{HM}$$

- на последующих валах:
$$M_{_{\mathrm{i}}}=\frac{M_{_{\mathrm{i-1}}}}{\mathrm{i}_{\mathrm{min}}}\eta_{_{\scriptscriptstyle 3}}\cdot\eta^{_{_{_{\mathrm{II}}}}}=\frac{M_{_{\mathrm{i-1}}}}{\mathrm{i}_{_{\mathrm{min}}}}0,95$$
нм

$$M_{II} = \frac{M_{I}}{i_{3}}0,95 = 19 \cdot 1,26 \cdot 0,95 = 23 \text{HM}$$

$$M_{III} = \frac{M_{IV}}{i_7}0,95 = 87 \cdot 1,26^6 \cdot 0,95 = 330$$
HM

$$M_{_{\mathrm{IV}}} = \frac{M_{_{\mathrm{II}}}}{i_{_{5}}}0,95 = 23 \cdot 1,26^{6} \cdot 0,95 = 87 \text{Hm}$$

Предварительное определение диаметров валов:

$$d_{i} = \sqrt[3]{\frac{M_{i} \cdot 10^{3}}{0, 2 \cdot [\tau]}}, MM$$

где: $[\tau]=18...23$ МПа — допускаемое напряжение материала вала на кручение. Принимаем $[\tau]=20$ МПа. Учитывая постоянную данной формулы

$$(\frac{10^3}{0,2\cdot[\tau]} = \frac{10^3}{0,2\cdot20} = 250)$$
, окончательно получаем: $d_i = \sqrt[3]{M_i\cdot250}$,

$$d_1 = \sqrt[3]{19 \cdot 250} = 16.3 \text{ MM}$$

$$d_{II} = \sqrt[3]{23 \cdot 250} = 17,4 \text{MM}$$

$$d_{III} = \sqrt[3]{330 \cdot 250} = 41,8 \text{mm}$$

Принимаем
$$d_1 = 20$$
мм

Принимаем
$$d_{II} = 20$$
мм

Принимаем
$$d_{III} = 45$$
мм

$$d_{IV} = \sqrt[3]{87 \cdot 250} = 27,2MM$$

Принимаем $d_{IV} = 30$ мм

Для IV и III валов наиболее нагруженной группы передач с учетом базового станка выбираем подшипники качения по ГОСТ 8338-75:

- для IV вала шарикоподшипник радиальный однорядный 306: внутренний диаметр d=30мм, наружный диаметр D=72мм, ширина B=19мм;
- для III вала: шарикоподшипник радиальный однорядный 309: внутренний диаметр d=45мм, наружный диаметр D=100мм, ширина B=25мм;
 - **7.** Рассчитать геометрические параметры зубчатых колес и межосевое расстояние между валами.

Геометрические параметры зубчатых колес определяются по формулам(мм):

- делительный диаметр $d = m \cdot z$;
- диаметр вершин зубьев $d_a = d + 2m(1+x)$;
- диаметр впадин зубьев d_f =d-2m(1,25-x);
- ширина зубчатого колеса $\mathbf{B}_1 = \psi_{\mathbf{a}} \cdot \mathbf{A}_{\;;} \quad \psi_{\mathbf{a}} = 0,12;$
- ширина шестерни $B_2 = 1.12 \cdot B_1$

Коэффициент смещения для прямозубых зубчатых колес x=0 Результаты расчета сведены в таблицы 1 и 2.

Таблица 1 Геометрические параметры зубчатых колес наиболее нагруженной группы передач

Колесо/	Расчетные параметры							
/Шестерня	m, Z		d,	d _a ,	$d_{f,}$	В,		
	MM		MM	MM	MM	MM		
Z_{14}/Z_{15}	4	45/ 45	180/180	188/188	170/170	27/30		
Z_{16}/Z_{17}	4	18/72	72/288	80/ 296	62/278	27/30		

Таблица 2 Делительные диаметры зубчатых колес привода

Парамет ры	z_4/z_5	z_6/z_7	$\mathbf{z}_{8^{1}} \mathbf{z}_{9}$	$\mathbf{z}_{10}/\mathbf{z}_{11}$	z_{12}/z_{13}	z_{18} – принято по базовому станку
m, MM	3		3		4	
Z	34/26	30/30	26/ 34	40/80	24/96	24
d, мм	$\frac{102}{78}$	$\frac{90}{90}$	$\frac{78}{102}$	$\frac{120}{240}$	$\frac{72}{288}$	96

Расчет межосевых расстояний:

$$A = \frac{\sum Z \cdot m}{2}, MM$$

$$A_{I-II} = \frac{60 \cdot 3}{2} = 90 \text{ MM}$$
 $A_{II-III} = \frac{120 \cdot 3}{2} = 180 \text{ MM}$

 $A_{_{I_{-1}}}$. - принимается конструктивено.

Расчет межосевого расстояния между III-IV валами наиболее нагруженной группы передач производится из условия контактной прочности зубчатых колес:

$$A_{\text{III-IV}} = \left(\frac{1}{i_7} + 1\right)_{3}^{3} \sqrt{\left(\frac{340000}{\left[\sigma_{K}\right] \cdot 1/i_7}\right)^{2} \cdot \frac{1}{\psi_{a}} \cdot \frac{K \cdot N}{n}}, [cm],$$

где: $[\sigma_{\kappa}] = 5880 \ \kappa г c/cm^2 -$ допускаемое напряжение контактной прочности зубчатого колеса;

 $\psi_a = 0,12...0,15$ — коэффициент ширины венца колеса;

 $\kappa = 1,3...1,5$ – коэффициент нагрузки.

$$A_{\text{III-IV}} = (1,26^6 + 1) \sqrt[3]{\left(\frac{340000}{5880 \cdot 1,26^6}\right)^2 \cdot \frac{1}{0,12} \cdot \frac{1,3 \cdot 2,1}{5,6}} = 21,0 \text{ cm} = 210 \text{ mm}.$$

Учитывая, что по условиям контактной прочности зубатого колеса межосевое расстояние между валами III-IV наиболее нагруженной группы передач допускается до $210\,\mathrm{mm}$, принимаем ранее рассчитанное $A_{\mathrm{III-IV}} = 180\,\mathrm{mm}$.

8. Разработать эскизную компоновку коробки скоростей.

При разработке эскизной компоновки свертки коробки скоростей привода главного движения применены формулы и выполнены следующие расчеты:

- толщина корпуса: $\delta = 0.025 \cdot A + 3 = 0.025 \cdot 180 + 3 = 7.5 \,\mathrm{MM}$;
- расстояние от торца зубчатого колеса до внутренней стенки корпуса: $a = (1,0...1,2)\delta = 1,2\cdot7,5 = 9\,\mathrm{MM}$
- расстояние от наибольшего диаметра колеса до смежного вала:

$$c \ge 0.4\delta = 0.4 \cdot 7.5 = 3 \text{ mm}$$

- минимальное расстояние между торцами соседних зубчатых колес:

$$e = (0,4...0,6)\delta = 0,6 \cdot 7,5 = 4,5 \text{ MM}$$

- расстояние от венца зубчатого колеса до днища корпуса:

$$b \ge 3\delta = 3 \cdot 7, 5 = 22,5 \text{ mm}$$

- толщина крыши: $\delta_1 = (0,7...0,8)\delta = 0,7\cdot7,5 = 5,3$ мм

Рис. 7. Эскизная компоновка свертки коробки скоростей.

9. Уточненный расчет наиболее нагруженного вала.

Наиболее нагруженным валов в последней переборной группе передач (наиболее нагруженной группе передач) коробки скоростей является III вал, передающий крутящий момент $M_{\kappa p}=330$ нм зубчатой передачей $z_{16}/z_{17}=18/72$. При этом вал нагружен консольно конической зубчатой передачей.

Схема нагружения III вала и эпюры моментов, действующие на него, представлены на рис.8. Компоновочные размеры, осевое и радиальное размещение зубчатых колес на валах наиболее нагруженной группы передач, а также расстояние между опорами определены из рис.9.

Условные обозначения, принятые в расчете и на рис.8:

- $R_A^{\ \Gamma}$, $F_t^{\ }$, $F_t^{\ }$, $R_B^{\ \Gamma}$, силы и реакции, действующие в горизонтальной плоскости:
- плоскости; $R_A^{\ B}$, $F_r^{\ }$, F_r , $R_B^{\ B}$ силы и реакции, действующие в вертикальной плоскости.

Определяем силы, действующие в зубчатых зацеплениях:

-
$$F_t = \frac{2M_{sp}}{D_{17}} = \frac{2 \cdot 330}{0,284} = 2324 \text{ H}$$

-
$$F_r = F_t \cdot tg \alpha = 2324 \cdot 0,364 = 846$$
 н

Т.к. силы $F_r^{\,|},\, F_t^{\,|}$ в конической зубчатой передаче неизвестны, принимаем их равными $F_r\!=\!\!F_r^{\,|},\, F_t\!=\!\!F_t^{\,|}$

Определяем реакции в опорах:

- горизонтальная плоскость:

$$\begin{split} & \sum M_{_{\rm A}} = 0 \qquad -F_{_{\rm t}} \cdot 0,06 \cdot R_{_{\rm B}}{^{^{\Gamma}}} \cdot 0,18 - F_{_{\rm t}}{^{!}} \cdot 0,24 = 0 \\ & R_{_{\rm B}}{^{^{\Gamma}}} = -\frac{F_{_{\rm t}} \cdot 0,06 + F^{|}_{_{\rm t}} \cdot 0,24}{0,18} = -\frac{2324 \cdot 0,06 + 2324 \cdot 0,24}{0,18} = -3873 \, \mathrm{H} \\ & \sum M_{_{\rm B}} = 0 \qquad R_{_{\rm A}}{^{^{\Gamma}}} \cdot 0,18 - F_{_{\rm t}}{^{!}} \cdot 0,06 + F_{_{\rm t}} \cdot 0,12 = 0 \end{split}$$

$$R_A^F = \frac{-F_t^{\dagger} \cdot 0.06 - F_t \cdot 0.06}{0.18} = \frac{-2324 \cdot 0.12 + 2324 \cdot 0.06}{0.18} = -775 \text{ H}$$

- вертикальная плоскость:

$$\sum M_A = 0$$
 $F_r^{\top} \cdot 0.24 + F_r \cdot 0.06 - R_B^{\ B} \cdot 0.18 = 0$

$$R_{B}^{B} = \frac{F_{r} \cdot 0.06 + F_{r}^{I} \cdot 0.24}{0.18} = \frac{846 \cdot 0.06 + 846 \cdot 0.24}{0.18} = 1410 \,\mathrm{H}$$

$$R_{_{\rm A}}{^{^B}} = \frac{{}^{-}F_{_{\rm r}}^{^{|}} \cdot 0,06 + F_{_{\rm r}} \cdot 0,12}{0,18} = -\frac{846 \cdot 0,12 - 846 \cdot 0,06}{0,18} = 282\,{\rm H}$$

Полные реакции в опорах:

$$R_A = \sqrt{(R_A^{\Gamma})^2 + (R_A^B)^2} = \sqrt{775^2 + 282^2} = 825 \text{ H}$$
 $R_B = \sqrt{(R_B^{\Gamma})^2 + (R_B^B)^2} = \sqrt{3873^2 + 1410^2} = 4122 \text{ H}$

Изгибающие моменты:

- в горизонтальной плоскости:

$$M_{_{\rm H}}{^{^{\rm C}}}=R_{_{\rm A}}{^{^{\rm \Gamma}}}\cdot 0{,}06=-775\cdot 0{,}06=-464\,{\rm HM}$$

$$M_{_{\mathrm{H}}}{^{\mathrm{B}}} = -R_{_{\mathrm{A}}}{^{\Gamma}} \cdot 0.18 + F_{_{\mathrm{t}}} \cdot 0.12 = -775 \cdot 0.18 + 2324 \cdot 0.12 = 140 \,\mathrm{Hm}$$

- в вертикальной плоскости:

$${M_{_{\rm H}}}^{^{\rm C}} = {R_{_{\rm A}}}^{^{\rm B}} \cdot 0.06 = 282 \cdot 0.06 = 17~{\rm Hm}$$

$$M_{_{\rm H}}{^{\rm B}}=R_{_{\rm A}}{^{\rm B}}\cdot 0.18-F_{_{\rm r}}{^{\rm C}}\cdot 0.12=282\cdot 0.18-846\cdot 0.12=-50~{
m hm}$$

Результирующие изгибающие моменты:

$$M_{_{
m H}}{^{^{
m C}}} = \sqrt{465^2 + 17^2} = 466 \, {
m Hm}$$

$$M_{\rm M}^{\rm B} = \sqrt{140^2 + 50^2} = 148 \, \text{HM}$$

Эквивалентные моменты:

$$M_{2KB}^{C} = \sqrt{(M_{H}^{C})^2 + M_{KK}^2} = \sqrt{466^2 + 330^2} = 570 \text{ HM}$$
 $M_{2KB}^{B} = \sqrt{(M_{H}^{C})^2 + M_{KP}^2} = \sqrt{148^2 + 330^2} = 362 \text{ HM}$

Определяем диаметр III вала:

$$d_{\text{III}} = \sqrt[3]{rac{M_{\text{ЭКВ}}}{0,1\cdot \left[\sigma_{_{-1}}
ight]_{_{\text{II}}}}},$$
 где: $\left[\sigma_{_{-1}}
ight]_{_{\text{II}}} = 5\cdot 10^7\,rac{\text{H}}{\text{M}^2}$ - допускаемое напряжение материала вала

на изгиб.

$$d_{III} = \sqrt[3]{\frac{570}{0,1 \cdot 5 \cdot 10^7}} = 0.043 \text{ m} = 43 \text{ mm}$$

Принимаем диаметр III вала $d_{\text{III}} = 45 \text{ мм}$

Рис. 8. Схема нагружения III вала и эпюры моментов

10. Разработать компоновочную схему наиболее нагруженной группы передач.

Рис. 9. Компоновочная схема развертки наиболее нагруженной группы передач

11. Разработать механизм управления перемещением блока зубчатых колес наиболее нагруженной группы передач и рассчитать угол поворота рукоятки управления

Двойной блок $Б_3$, находящийся на IVвалу перемещается от поворота рукоятки 1 (рис.10,а). закрепленной на оси 2. Т.к. рукоятка осуществляет непосредственное управление перемещением блока, то при заданной длине рычага 3 (R=130мм) определяем угол поворота из тригонометрических преобразований (см.рис.10.б).

Рис.10 Схема механизма управления перемещением блока Б3

Длина перемещения блока составляет L=1+2·30,

где 1=64мм – длина блока (см.рис.9)

Тогда $L^1 = 65 + 2.30 = 125$ мм.

Таким образом угол поворота рукоятки, определяемый по формуле:

$$\sin \frac{\alpha}{2} = \frac{L^1}{2R} = \frac{125}{2 \cdot 130} = 0,47$$
 равен: $\alpha/2 = 23^0$, или полный угол поворота $\alpha = 46^0$.

12. Начертить сборочный чертеж развертки наиболее нагруженной группы

ЛИТЕРАТУРА

- 1. Тарзиманов Г.А. Проектирование металлорежущих станков. 3-е изд. М.: Машиностроение, 1980. 288c.
- 2. Пуш В.Э. Конструирование металлорежущих станков. М.: Машиностроение, 1977.- 385c.
- 3. Проников А.С. Расчет и конструирование металлорежущих станков. М.: Высшая школа, 1967.- 450с.
- 4. Тепинкичиев В.К. Металлорежущие станки. М.: Машиностроение, 1972.- 464c.
- 5. Кочергин А.И. Конструирование и расчет металлорежущих станков и станочных комплексов, Курсовое проектирование: Учеб. Пособие для вузов. Мн.: Высш. Шк, 1991.-282с.
- 6. Свирщевский Ю.И. Расчет и конструирование коробок скоростей и подач. Мн. Высш. Шк., 1976.-590с.
- 7. Лепший А.П.. Михайлов М.И. Практическое пособие к лабораторным и практическим занятиям по теме: «Расчет кинематики и изучение конструкции привода главного движения универсальных станков» по курсу «Конструирование станков» для студентов спец. Т.03.01.00.-Гомель: ГГТУ, 1998.-37с. (№2322).