第二章 线性规划

修贤超

https://xianchaoxiu.github.io

■ 例 1

□ 美佳公司计划制造 I、II 两种家电产品。已知各制造一件时分别占用的设备 A、设备 B 的台时、调试工序时间及每天可用于这两种家电的能力、各售出一件时的获利情况。问该公司应制造两种家电各多少件,使获取的利润为最大?

项目	产品I	产品	每天可用能力
设备 A/h	0	5	15
设备 B/h	6	2	24
调试工序/h	1	1	5
利润/元	2	1	

■ 例 1

 \Box 设两种家电产量分别为变量 x_1, x_2 , 于是

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

决策变量: x₁,x₂

• 目标函数: $\max z = 2x_1 + x_2$

• 约束条件: $5x_2 \le 15$, $6x_1 + 2x_2 \le 24$, $x_1 + x_2 \le 5$, $x_1, x_2 \ge 0$

■ 例 2

□ 捷运公司拟在下一年度的 1-4 月的 4 个月内需租用仓库堆放物资。已知各月份所需仓库 面积列于表

月份	1	2	3	4
所需仓库面积 (100m²)	15	10	20	12

仓库租借费用随合同期限而定, 合同期越长折扣越大, 见表

合同租借期限	1 个月	2 个月	3 个月	4 个月
合同期内的租费 $(\pi/100m^2)$	2800	4500	6000	7300

租借仓库的合同每月初都可办理,每份合同具体规定租用面积和期限。因此该厂可根据需要,在任何一个月初办理租借合同。每次办理时可签一份合同,也可签若干份租用面积和租借期限不同的合同。试确定该公司签订租借合同的最优决策,使所付租借费用最小?

■ 例 2

- ② 设 x_{ij} 表示在第 i (i=1,2,3,4) 个月初签订的租借期为 j (j=1,2,3,4) 个月的仓库面积的合同,于是
 - 决策变量: x_{ij} (i, j = 1, 2, 3, 4)
 - 目标函数:

min
$$z = 2800(x_{11} + x_{21} + x_{31} + x_{41}) + 4500(x_{12} + x_{22} + x_{32} + x_{42})$$

 $+ 6000(x_{13} + x_{23} + x_{33} + x_{43}) + 7300(x_{14} + x_{24} + x_{34} + x_{44})$
 $\downarrow \downarrow$
min $z = 2800(x_{11} + x_{21} + x_{31} + x_{41}) + 4500(x_{12} + x_{22} + x_{32})$
 $+ 6000(x_{13} + x_{23}) + 7300x_{14}$

约束条件:

$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} \ge 15 \\ x_{12} + x_{13} + x_{14} + x_{21} + x_{22} + x_{23} \ge 10 \\ x_{13} + x_{14} + x_{22} + x_{23} + x_{31} + x_{32} \ge 20 \\ x_{14} + x_{23} + x_{32} + x_{41} \ge 12 \\ x_{ij} \ge 0 \end{cases}$$

■ 课堂练习 1

© 某工厂用三种原料 P_1 、原料 P_2 、原料 P_3 生产三种产品 Q_1 、产品 Q_2 、产品 Q_3 ,如表 所示。<mark>试制订总利润最大的生产计划?</mark>

单位产品所需原料数量	产品 Q_1	产品 Q_2	产品 Q_3	原料可用量
原料 P_1 /公斤	2	3	0	1500
原料 P_2 /公斤	0	2	4	800
原料 P_3 /公斤	3	2	5	2000
位产品的利润/千元	3	5	4	

■ 课堂练习 1

 \Box 设每天生产三种产品的数量,分别设为 x_1,x_2,x_3 ,于是

决策变量: x₁, x₂, x₃

• 目标函数: $\max z = 3x_1 + 5x_2 + 4x_3$

• 约束条件: $2x_1 + 3x_2 \le 1500$, $2x_2 + 4x_3 \le 800$, $3x_1 + 2x_2 + 5x_3 \le 2000$ $x_1, x_2, x_3 > 0$

□ 数学模型为

$$\max z = 3x_1 + 5x_2 + 4x_3$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 1500 \\ 2x_2 + 4x_3 \le 800 \\ 3x_1 + 2x_2 + 5x_3 \le 2000 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- 线性规划问题的数学模型
 - □ 三要素: 决策变量, 目标函数, 约束条件

$$\max z = 3x_1 + 5x_2 + 4x_3$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 1500 \\ 2x_2 + 4x_3 \le 800 \\ 3x_1 + 2x_2 + 5x_3 \le 2000 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- 决策变量的取值是连续的
- 目标函数是决策变量的线性函数
- 约束条件是含决策变量的线性等式或不等式

- 设线性规划问题的数学模型
 - □ 一般形式

$$\max(\min) \ z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
s.t.
$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le (=, \ge) b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \le (=, \ge) b_2 \\ \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le (=, \ge) b_m \\ x_1, \dots, x_n \ge 0 \end{cases}$$

□ x_j: 决策变量

□ c_j: 价值系数

□ b_i: 资源量/右端项

□ a_{ij}: 技术系数/工艺系数

■ 设线性规划问题的数学模型

□ 一般形式

$$\max(\min) \ z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le (=, \ge) b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \le (=, \ge) b_2 \\ \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le (=, \ge) b_m \\ x_1, \dots, x_n \ge 0 \end{cases}$$

□ 简写形式

$$\max(\min) \ z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j \le (=, \ge) b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

- 设线性规划问题的数学模型
 - □记

$$\mathbf{C} = [c_1 \dots c_n] \quad \mathbf{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

□ 用矩阵和向量表示

$$\max(\min) \ z = \mathbf{CX}$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} \mathbf{P}_{j} x_{j} \le (=, \ge) \mathbf{b} \\ \mathbf{X} \ge 0 \end{cases}$$

$$\max(\min) \ z = \mathbf{CX}$$
s.t.
$$\begin{cases} \mathbf{AX} \le (=, \ge) \mathbf{b} \\ \mathbf{X} \ge 0 \end{cases}$$

- 线性规划问题的数学模型
 - □ 标准形式

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

- 目标函数是求最大值
- 所有约束条件均用等式表示
- 所有决策变量均取非负数
- 所有右端项常数均为非负数

- 非标准型转化为标准形式
 - □ 基本思路

目标函数 ⇒ 约束条件 ⇒ 决策变量

□ 第一步: 目标函数的转换

$$\min z = \sum_{j=1}^{n} c_j x_j \implies \max z' = -\sum_{j=1}^{n} c_j x_j$$

- 非标准型转化为标准型
 - □ 第二步: 约束条件的转换
 - 右端项常数的转换

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \ b_i < 0 \quad \Rightarrow \quad -\sum_{j=1}^{n} a_{ij} x_j = -b_i$$

• 不等式的转换——引入松弛变量

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \quad \Rightarrow \quad \sum_{j=1}^{n} a_{ij} x_j + s_i = b_i, \ s_i \ge 0$$

• 不等式的转换——引入剩余变量

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \quad \Rightarrow \quad \sum_{j=1}^{n} a_{ij} x_j - \mathbf{s}_i = b_i, \ s_i \ge 0$$

- 非标准型转化为标准型
 - □ 第三步: 决策变量的转换
 - 取值无约束的转化

$$x_k$$
取值无约束 \Rightarrow $x_k = x_k' - x_k'', x_k', x_k'' \geq 0$

• 取值非正的转化

$$x_k \le 0 \quad \Rightarrow \quad x_k' = -x_k$$

■ 例 3

□ 请将下式转化为线性规划标准形式

min
$$z = x_1 + 2x_2 + 3x_3$$

s.t.
$$\begin{cases}
-2x_1 + x_2 + x_3 \le 9 \\
-3x_1 + x_2 + 2x_3 \ge 4 \\
4x_1 - 2x_2 - 3x_3 = -6 \\
x_1 \le 0, \ x_2 \ge 0, \ x_3$$
取值无约束

 \Box 第一步: 目标函数的转换, 令 z' = -z, 于是

max
$$z' = -x_1 - 2x_2 - 3x_3$$

s.t.
$$\begin{cases}
-2x_1 + x_2 + x_3 \le 9 \\
-3x_1 + x_2 + 2x_3 \ge 4 \\
4x_1 - 2x_2 - 3x_3 = -6 \\
x_1 \le 0, x_2 \ge 0, x_3$$
取值无约束

■ 转化为标准形式

- □ 第二步: 约束条件的转换
 - 右端项常数的转换

max
$$z' = -x_1 - 2x_2 - 3x_3$$

s.t.
$$\begin{cases} -2x_1 + x_2 + x_3 \le 9\\ -3x_1 + x_2 + 2x_3 \ge 4\\ -4x_1 + 2x_2 + 3x_3 = 6\\ x_1 \le 0, \ x_2 \ge 0, \ x_3$$
取值无约束

• 不等式的转换,松弛变量 x_4 ,剩余变量 x_5

max
$$z' = -x_1 - 2x_2 - 3x_3' + 3x_3'' + 0x_4 + 0x_5$$

s.t.
$$\begin{cases} -2x_1 + x_2 + x_3 + x_4 = 9 \\ -3x_1 + x_2 + 2x_3 - x_5 = 4 \\ -4x_1 + 2x_2 + 3x_3 = 6 \\ x_1 \le 0, \ x_2, x_4, x_5 \ge 0, \ x_3$$
取值无约束

■ 转化为标准型

□ 第三步: 决策变量的转换

•
$$\diamondsuit$$
 $x_3 = x_3' - x_3'', x_3', x_3'' \ge 0$

$$\max z' = -x_1 - 2x_2 - 3x_3' + 3x_3'' + 0x_4 + 0x_5$$
s.t.
$$\begin{cases}
-2x_1 + x_2 + x_3' - x_3'' + x_4 = 9 \\
-3x_1 + x_2 + 2x_3' - 2x_3'' - x_5 = 4 \\
-4x_1 + 2x_2 + 3x_3' - 3x_3'' = 6 \\
x_1 \le 0, \ x_2, x_3', x_3'', x_4, x_5 \ge 0
\end{cases}$$

• 令 $x_1' = -x_1$, 于是

$$\max z' = x_1' - 2x_2 - 3x_3' + 3x_3'' + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} 2x_1' + x_2 + x_3' - x_3'' + x_4 = 9\\ 3x_1' + x_2 + 2x_3' - 2x_3'' - x_5 = 4\\ 4x_1' + 2x_2 + 3x_3' - 3x_3'' = 6\\ x_1', x_2, x_3', x_3'', x_4, x_5 \ge 0 \end{cases}$$

■ 转化为标准型

□ 为了方便,标准型通常记为

$$\max z' = x_1' - 2x_2 - 3x_3' + 3x_3'' + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} 2x_1' + x_2 + x_3' - x_3'' + x_4 = 9\\ 3x_1' + x_2 + 2x_3' - 2x_3'' - x_5 = 4\\ 4x_1' + 2x_2 + 3x_3' - 3x_3'' = 6\\ x_1', x_2, x_3', x_3'', x_4, x_5 \ge 0 \end{cases}$$

$$\Rightarrow \max z = x_1 - 2x_2 - 3x_3 + 3x_4$$
s.t.
$$\begin{cases} 2x_1 + x_2 + x_3 - x_4 + x_5 = 9\\ 3x_1 + x_2 + 2x_3 - 2x_4 - x_6 = 4\\ 4x_1 + 2x_2 + 3x_3 - 3x_4 = 6\\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

- 课堂练习 2
 - □ 请将下式转化为线性规划标准形式

min
$$z = -x_1 + x_2$$

s.t.
$$\begin{cases} 2x_1 - x_2 \ge -2 \\ x_1 - 2x_2 \le 2 \\ x_1 + x_2 \le 5 \\ x_1 \ge 0, \ x_2$$
取值无约束

$$\downarrow \qquad \qquad \qquad \downarrow$$
max $z = x_1 - x_2 + x_3$
s.t.
$$\begin{cases} -2x_1 + x_2 - x_3 + x_4 = 2 \\ x_1 - 2x_2 + 2x_3 + x_5 = 2 \\ x_1 + x_2 - x_3 + x_6 = 5 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

■ 课堂练习 3

□ 请将下式转化为线性规划标准形式

min
$$z = -x_1 + 2x_2 - 3x_3$$

s.t.
$$\begin{cases} x_1 + x_2 + x_3 \le 7 \\ x_1 - x_2 + x_3 \ge 2 \\ x_1, x_2 \ge 0, \ x_3$$
取值无约束

$$\downarrow \downarrow$$
max $z = x_1 - 2x_2 + 3x_3 - 3x_4$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 - x_4 + x_5 = 7 \\ x_1 - x_2 + x_3 - x_4 - x_6 = 2 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

- 小结
 - □ 线性规划问题的标准形式

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

- □ 三要素: 决策变量, 目标函数, 约束条件
- □ 非标准型转化为标准形式

目标函数 ⇒ 约束条件 ⇒ 决策变量

■ 课后作业: P43, 习题 1.2

- 线性规划问题的数学模型
 - □ 标准形式

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

- \square 满足约束条件的 x_i $(j=1,\cdots,n)$ 称为可行解
- 全部可行解的集合称为可行域
- □ 使目标函数达到最优的可行解称为最优解

■ 适用范围

□ 只有两个变量的线性规划问题

max
$$z = c_1 x_1 + c_2 x_2$$

s.t.
$$\begin{cases} a_{i1} x_1 + a_{i2} x_2 = b_i \ (i = 1, \dots, m) \\ x_1 x_2 \ge 0 \end{cases}$$

■ 具体步骤

□ 第一步: 建立平面直角坐标系

□ 第二步: 图示约束条件, 找出可行域

🚨 第三步: 图示目标函数

□ 第四步: 确定最优解

■ 例 1

□ 用图解法求解线性规划问题

$$\max z = 2x_1 + 3x_2$$
s.t.
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

决策变量: x₁,x₂

• 目标函数: $\max z = 2x_1 + 3x_2$

• 约束条件: $x_1 + 2x_2 \le 8$, $4x_1 \le 16$, $4x_2 \le 12$, $x_1, x_2 \ge 0$

■ 具体步骤

□ 第一步: 建立平面直角坐标系

□ 第二步: 图示约束条件, 找出可行域

■ 具体步骤

□ 第一步: 建立平面直角坐标系

□ 第二步: 图示约束条件, 找出可行域

② 第三步: 图示目标函数 $\max z = 2x_1 + 3x_2$

 \square 第四步: 确定最优解为 $x_1=4, x_2=2$,最优值为 z=14

■ 无穷多最优解 (多重最优解)

□ 目标函数的直线族与约束条件平行

$$\text{s.t. } \begin{cases} x_1 + 4x_2 \\ x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

■ 无界解

□ 建立数学模型时遗漏了某些必要的资源约束条件

$$\max z = x_1 + x_2$$
s.t.
$$\begin{cases}
-2x_1 + x_2 \le 4 \\
x_1 - x_2 \le 2 \\
x_1, x_2 \ge 0
\end{cases}$$

■ 无可行解

□ 当存在矛盾的约束条件时会出现无可行域

$$\max z = 2x_1 + 3x_2$$
s.t.
$$\begin{cases} x_1 + x_2 \ge 10 \\ x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

■ 课堂练习 1

□ 用图解法求解线性规划问题

$$\max z = 4x_1 + 3x_2$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 6 \\ -3x_1 + 2x_2 \le 3 \\ 2x_1 + x_2 \le 4 \\ 2x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

■ 课堂练习 2

□ 用图解法求解线性规划问题

$$\max z = 2x_1 + 3x_2$$
s.t.
$$\begin{cases} 2x_1 + 2x_2 \le 14 \\ 4x_1 \le 12 \\ 3x_2 \le 15 \\ x_1, x_2 \ge 0 \end{cases}$$

■启示

- 🛘 若线性规划问题的可行域存在,则可行域是一个<mark>凸集</mark>。
- □ 若线性规划问题的最优解存在,则最优解或最优解之一(如果有无穷多的话)一定是可 行域的凸集的某个<mark>顶点</mark>。
- 解题思路是,先找出凸集的任一顶点,计算在顶点处的目标函数值。比较周围相邻顶点的目标函数值是否比这个值大,如果为否,则该顶点就是最优解的点或最优解的点之一,否则转到比这个点的目标函数值更大的另一顶点,重复上述过程,一直到找出使目标函数值达到最大的顶点为止。

- 小结
 - □ 标准形式
 - 可行解
 - 可行域
 - 最优解
 - □ 解的存在性
 - 唯一解
 - 无穷多解
 - 无界解
 - 无可行解
- 课后作业: P43, 习题 1.1

单纯形法原理

■ 解的概念

□ 标准形式

(LP)
$$\max z = \sum_{j=1}^{n} c_j x_j$$
 (1.1)

s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$
 (1.2)

- oxdota 满足约束条件 (1.2) 和 (1.3) 的 x_j $(j=1,\cdots,n)$ 称为<mark>可行解</mark>
- 🛘 全部可行解的集合称为<mark>可行域</mark>
- □ 满足 (1.1) 的可行解称为最优解
- □ 最优解所对应的函数值称为最优值

单纯形法原理

■ 解的概念

② 设 A 为约束方程组 (1.2) 的 $m \times n$ (n > m) 阶系数矩阵, 其秩为 m, B 是矩阵 A 中的一个 $m \times m$ 阶的满秩子矩阵, 记为

$$\mathbf{B} = \begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mm} \end{bmatrix} = (\mathbf{P}_1, \cdots, \mathbf{P}_m)$$

- □ B 是线性规划问题 (LP) 的一个基
- □ B 中的每一个列向量 P_i $(j = 1, \dots, m)$ 称为基向量
- ⑤ 与基向量 \mathbf{P}_j $(j=1,\cdots,m)$ 对应的变量 x_j $(j=1,\cdots,m)$ 称为基变量,记为 $\mathbf{X}_B=(x_1,\cdots,x_m)$
- \square 除基变量以外的变量称为非基变量,记为 $\mathbf{X}_N = (x_{m+1}, \cdots, x_n)$

- 例 1
 - □ 找出线性规划问题的基、基向量和基变量

$$\max z = 70x_1 + 120x_2$$
s.t.
$$\begin{cases} 9x_1 + 4x_2 + x_3 = 360 \\ 4x_1 + 5x_2 + x_4 = 200 \\ 3x_1 + 10x_2 + x_5 = 300 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

- 例 1
 - □ 写出技术系数矩阵

$$\mathbf{A} = \left[\begin{array}{ccccc} 9 & 4 & 1 & 0 & 0 \\ 4 & 5 & 0 & 1 & 0 \\ 3 & 10 & 0 & 0 & 1 \end{array} \right]$$

寻找阶为 m 的满秩子矩阵

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = (\mathbf{P}_3, \mathbf{P}_4, \mathbf{P}_5)$$

基变量为 $\mathbf{X}_B = (x_3, x_4, x_5)^{\mathsf{T}}$, 非基变量为 $\mathbf{X}_N = (x_1, x_2)^{\mathsf{T}}$

□ 另一个基为

$$\mathbf{B}' = \begin{vmatrix} 4 & 0 & 0 \\ 5 & 1 & 0 \\ 10 & 0 & 1 \end{vmatrix} = (\mathbf{P}_2, \mathbf{P}_4, \mathbf{P}_5)$$

基变量为 $\mathbf{X}_B = (x_2, x_4, x_5)^{\mathsf{T}}$, 非基变量为 $\mathbf{X}_N = (x_1, x_3)^{\mathsf{T}}$

■ 解的概念

 \Box 在 (1.2) 中,令所有非基变量 x_{m+1}, \dots, x_n 等于 0,则称

$$\mathbf{X} = (x_1, \cdots, x_m, 0, \cdots, 0)^{\top}$$

为线性规划问题 (LP) 的基解

- □ 满足变量非负约束条件 (1.3) 的基解称为基可行解
- □ 对应于基可行解的基称为可行基

- 例 2
 - □ 求出全部基解,指出其中的基可行解,并确定最优解

$$\max z = 2x_1 + 3x_2 + x_3$$
s.t.
$$\begin{cases} x_1 + x_3 = 5 \\ x_1 + 2x_2 + x_4 = 10 \\ x_2 + x_5 = 4 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 例 2

□ 全部基解见下表

序号	x_1	x_2	x_3	x_4	x_5	z	可行解
1	0	0	5	10	4	5	\checkmark
2	0	4	5	2	0	17	\checkmark
3	5	0	0	5	4	10	\checkmark
4	0	5	5	0	-1	20	×
(5)	10	0	-5	0	4	15	×
6	5	2.5	0	0	0	1.5	\checkmark
\bigcirc	5	4	0	-3	0	22	×
8	2	4	3	0	0	19	√

□ 最优解为 (2,4,3,0,0), 最优值为 19

■ 凸集

 \square 对于任意两点 $\mathbf{X}_1, \ \mathbf{X}_2 \in \Omega$, 满足

$$\alpha \mathbf{X}_1 + (1 - \alpha) \mathbf{X}_2 \in \Omega \quad (0 < \alpha < 1)$$

则称 Ω 为凸集。

 \square 对于凸集 Ω 中的点 X, 如果不存在 $X_1, X_2 \in \Omega$ 使得

$$\mathbf{X} = \alpha \mathbf{X}_1 + (1 - \alpha) \mathbf{X}_2 \in \Omega \quad (0 < \alpha < 1)$$

则称 X 是凸集 Ω 的顶点 (极点)。

■几个基本定理

- 定理 1: 若线性规划问题存在可行解,则可行域是凸集。
 - (证) 记 Ω 为满足线性规划问题束条件的集合

$$\sum_{j=1}^{n} \mathbf{P}_{j} x_{j} = \mathbf{b}, \ x_{j} \geq 0 \quad (j = 1, \dots, n)$$

设 Ω 内的任意两点为

$$\mathbf{X}_1 = (x_{11}, \cdots, x_{1n})^{\top}, \ \mathbf{X}_2 = (x_{21}, \cdots, x_{2n})^{\top}$$

且 $X_1 \neq X_2$, 一定满足

$$\sum_{j=1}^{n} \mathbf{P}_{j} x_{1j} = \mathbf{b}, \ x_{1j} \ge 0 \quad (j = 1, \dots, n)$$
$$\sum_{j=1}^{n} \mathbf{P}_{j} x_{2j} = \mathbf{b}, \ x_{2j} \ge 0 \quad (j = 1, \dots, n)$$

■几个基本定理

- 定理 1: 若线性规划问题存在可行解,则可行域是凸集。
 - (续) 令 $\mathbf{X} = (x_1, \dots, x_n)^{\top}$ 为 \mathbf{X}_1 , \mathbf{X}_2 连线上任意一点,即

$$\mathbf{X} = \alpha \mathbf{X}_1 + (1 - \alpha) \mathbf{X}_2 \quad (0 < \alpha < 1)$$

其中 $x_j = \alpha x_{1j} + (1 - \alpha) x_{2j}$ 。 于是

$$\sum_{j=1}^{n} \mathbf{P}_{j} x_{j} = \sum_{j=1}^{n} \mathbf{P}_{j} \left(\alpha x_{1j} + (1 - \alpha) x_{2j} \right)$$

$$= \alpha \sum_{j=1}^{n} \mathbf{P}_{j} x_{1j} + \sum_{j=1}^{n} \mathbf{P}_{j} x_{2j} - \alpha \sum_{j=1}^{n} \mathbf{P}_{j} x_{2j}$$

$$= \alpha \mathbf{b} + \mathbf{b} - \alpha \mathbf{b}$$

$$= \mathbf{b}$$

考虑 $x_{1j}, x_{2j} \geq 0$, $\alpha > 0$, $1 - \alpha > 0$, 可知 $x_j \geq 0$ $(j = 1, \dots, n)$ 。于是集合中任意两点连线上的点均在集合内,所以 Ω 是凸集。

■ 几个基本定理

- © 引理: 线性规划问题的可行解 $\mathbf{X} = (x_1, x_2 \dots, x_n)^{\top}$ 为基可行解的充要条件是 \mathbf{X} 的正分量所对应的系数列向量是线性独立的。
 - (必要性) 由基可行解的定义可知。
 - (充分性) 若向量 $\mathbf{P}_1, \mathbf{P}_2, \cdots, \mathbf{P}_k$ 线性独立,则必有 $k \leq m$ 。
 - (1) 当 k=m 时, $\mathbf{P}_1,\mathbf{P}_2,\cdots,\mathbf{P}_k$ 恰构成一个基,从而

$$\mathbf{X} = (x_1, x_2, \cdots, x_m, 0, \cdots, 0)^{\top}$$

为相应的基可行解。

(2) 当 k < m 时,则一定可以从其余的列向量中取出 m - k 个与 $\mathbf{P}_1, \mathbf{P}_2, \cdots, \mathbf{P}_k$ 构成最大的 线性独立向量组,其对应的解恰为 \mathbf{X} ,所以根据定义它是基可行解。

■几个基本定理

- □ 定理 2: 线性规划问题的基可行解 X 对应线性规划问题可行域 (凸集) 的顶点。
- □ 定理 3: 若线性规划问题有最优解,那么一定存在一个基可行解是最优解。
- □ 定理 4: 可行域有界,目标函数最优值必可在顶点得到。

② 虽然顶点数目是有限的,若采用"枚举法"找所有基可行解,然后一一比较,最终可能找到最优解。但当 n, m 的数较大时,这种办法是行不通的。

■单纯形法

□ 先找出一个基可行解,判断其是否为最优解,如果否,则转换到相邻的基可行解,并使 目标函数值不断增大,一直找到最优解为止。

□ 迭代步骤

• 第一步: 求初始基可行解, 列出初始单纯形表

• 第二步: 最优性检验

• 第三步: 从一个基可行解转换到相邻的目标函数值更大的基可行解, 列出新的单纯形表

• 第四步: 重复二、三步, 一直到计算结束为止

■ 小结

- □ 可行解, 最优解
- □ 基, 基解, 基可行解, 可行基
- □ 凸集, 顶点
- □ 解的性质
 - 线性规划问题的所有可行解构成的集合是凸集
 - 线性规划问题的每个基可行解对应可行域的一个顶点
 - 若线性规划问题有最优解,必在某顶点上得到
- 课后作业: P44, 习题 1.3

■ 第一步: 列出初始单纯形表

- 为检验一个基可行解是否最优,需要将其目标函数值与相邻基可行解的目标函数值进行 比较。为了书写规范和便于计算,对单纯形法的计算设计了一种专门表格,称为单纯形表。
- □ 考虑约束条件

$$\begin{cases} x_1 + a_{1,m+1}x_{m+1} + \dots + a_{1,n}x_n = b_1 \\ x_2 + a_{2,m+1}x_{m+1} + \dots + a_{2,n}x_n = b_2 \\ \dots \\ x_m + a_{m,m+1}x_{m+1} + \dots + a_{m,n}x_n = b_m \end{cases}$$

系数矩阵

$$A = \begin{bmatrix} 1 & 0 & \cdots & 0 & a_{1,m+1} & \cdots & a_{1,n} \\ 0 & 1 & \cdots & 0 & a_{2,m+1} & \cdots & a_{2,n} \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 & a_{m,m+1} & \cdots & a_{m,n} \end{bmatrix}$$

- 第一步: 列出初始单纯形表
 - □ 初始单纯形表

	$c_j \rightarrow$		c_1	 $ c_m $		c_j	 c_n
	$ \mathbf{X}_B $						
c_1	x_1	b_1	1	 0		a_{1j}	 a_{1n}
c_2	x_2	b_2	0	 0		a_{2j}	 a_{2n}
:	:	:	:	:		:	:
c_m	$\begin{array}{c c} x_1 \\ x_2 \\ \vdots \\ x_m \end{array}$	b_m	0	 1		a_{mj}	 a_{mn}
	$c_j - z_j$						

- \Box 检验数 $\sigma_j = c_j z_j = c_j \sum_{i=1}^m c_i a_{ij}$
- \square 选取 $m \times m$ 的单位矩阵作为可行基

- 第一步: 列出初始单纯形表
 - □ 例 1

max
$$z = 2x_1 + x_2$$

s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

□ 标准化

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} 5x_2 + x_3 = 15 \\ 6x_1 + 2x_2 + x_4 = 24 \\ x_1 + x_2 + x_5 = 5 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

- 第一步: 列出初始单纯形表
 - □ 系数矩阵

$$A = \begin{bmatrix} 0 & 5 & 1 & 0 & 0 \\ 6 & 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

□ 列出初始单纯形表

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_B	\mathbf{X}_{B}	b	x_1	x_2	x_3	x_4	x_5
0	x_3	15	0	5	1	0	0
0	x_4	24	6	2	0	1	0
0	$\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$	5	1	1	0	0	1
C	$z_j - z_j$		2	1	0	0	0

- 第二步: 最优性检验
 - \Box 计算各非基变量 x_i 的检验数

$$\sigma_j = c_j - \sum_{i=1}^m c_i a_{ij}$$

- \square 如果所有检验数 $\sigma_i \leq 0$,且基变量中不含有人工变量时,则停止迭代,得到最优解。
- \square 如果存在 $\sigma_i > 0$,且有 $\mathbf{P}_i \leq 0$,则停止迭代,问题为无界解。
- □ 否则转三步。

- 第二步: 最优性检验
 - □ 例 1

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	x_2	x_3	x_4	x_5
0	$\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$	15	0	5	1	0	0
0	x_4	24	6	2	0	1	0
0	x_5	5	1	1	0	0	1
C	$z_j - z_j$		2	1	0	0	0

- \Box 检验数 $\sigma_i > 0$,因此初始基可行解不是最优解
- □ 按照单纯形法转第三步

- 第三步: 基可行解转化
 - □ 从一个基可行解转换到相邻的目标函数值更大的基可行解,列出新的单纯形表。
 - 确定换入变量 x_k (最大增加原则)

$$\sigma_k = \max_j \ \{ \sigma_j \mid \sigma_j > 0 \}$$

• 确定换出变量 x1 (最小比值原则)

$$\theta = \min_{i} \left\{ \frac{b_i}{a_{ik}} \mid a_{ik} > 0 \right\} = \frac{b_l}{a_{lk}}$$

确定 x_l 为换出变量, a_{lk} 为主元素。

- 第三步: 基可行解转化
 - 回 用换入变量 x_k 替换基变量中的换出变量 x_l , 得到一个新的基 $(\mathbf{P}_1, \dots, \mathbf{P}_{l-1}, \mathbf{P}_k, \mathbf{P}_{l+1}, \dots, \mathbf{P}_m)$, 进行初等变换。

$$\mathbf{P}_k = egin{bmatrix} a_{1,k} \ a_{2,k} \ dots \ a_{l,k} \ dots \ a_{m,k} \end{bmatrix}$$
 高斯消元 $\mathbf{P}_l = egin{bmatrix} 0 \ 0 \ dots \ 1 \ dots \ 0 \end{bmatrix}$

■ 第三步: 基可行解转化

□ 例 1

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$\underline{x_1}$	$ x_2 $	$ x_3 $	$ x_4 $	$ x_5 $
0	$\begin{array}{ c c } x_3 \\ \underline{x_4} \\ x_5 \end{array}$	15	0	5	1	0	0
0	x_4	24	[6]	2	0	1	0
0	$\overline{x_5}$	5	1	1	0	0	1
-	$z_j - z_j$		2	1	0	0	0

- 因 $\sigma_1 > \sigma_2$, 确定 x_1 为换入变量
- $\theta = \min\left\{\infty, \frac{24}{6}, \frac{5}{1}\right\} = 4$, 因此确定 6 为主元素
- x4 为换出变量

■ 第三步: 基可行解转化

□ 具体过程

■ 第四步: 重复二、三步

□ 例 1

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$\underline{x_2}$	x_3	x_4	$ x_5 $
0	x_3	15	0	5	1	0	0
2	x_1	4	1	$^{2/6}$	0	1/6	0
0	$\underline{x_5}$	1	0	[4/6]	0	$0 \\ 1/6 \\ -1/6$	1
-	$z_j - z_j$		0	1/3	0	-1/3	0

- 因 $\sigma_2 > 0$, 确定 x_2 为换入变量
- $\theta = \min\left\{\frac{15}{5}, \frac{4}{2/6}, \frac{1}{4/6}\right\} = \frac{6}{4}$, 因此确定 4/6 为主元素
- x₅ 为换出变量

■ 第四步: 重复二、三步

□ 例 1

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	x_2	x_3	x_4	x_5
0	x_3	15/2	0	0	1	5/4	-15/2
2	x_1	7/2	1	0	0	1/4	-1/2
1	x_2	3/2	0	1	0	$ \begin{array}{c c} 5/4 \\ 1/4 \\ -1/4 \end{array} $	3/2
	$c_j - z_j$	j	0	0	0	-1/4	-1.2

- 所有检验数 $\sigma_j \leq 0$, 得到最忧解 $\mathbf{X} = (7/2, 3/2, 15/2, 0, 0)^{\top}$
- 代入目标函数得最优值 $z = 2x_1 + x_2 = 17/2$

■ 例 2

□ 用单纯形法求解线性规划问题

$$\max z = 2x_1 + 3x_2$$
s.t.
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

□ 标准化

$$\max z = 2x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + 2x_2 + x_3 = 8 \\ 4x_1 + x_4 = 16 \\ 4x_2 + x_5 = 12 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 例 2

□ 第一步: 求初始基可行解, 列出初始单纯形表

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	x_2	x_3	x_4	x_5
0	x_3	8	1	2	1	0	0
0	x_3 x_4	16	4	$\frac{2}{0}$	0	1	0
0	x_5	12	0	4	0	0	1
($c_j - z_j$		2	3	0	0	0

□ 第二步: 检验数大于零, 因此初始基可行解不是最优解

■ 例 2

□ 第三步: 基可行解的转换

	$c_j \rightarrow$		2	3	0	0	0
	$ \mathbf{X}_B $						
0	x_3	8	1	2	1	0	0
0	x_4	16	4	0	0	1	0
0	$\begin{array}{c c} x_3 \\ x_4 \\ \underline{x_5} \end{array}$	12	0	[4]	0	0	1
	$z_j - z_j$		2	3			0

- 因 $\sigma_2 > \sigma_1$, 确定 x_2 为换入变量
- $\theta = \min\left\{\frac{8}{2}, \infty, \frac{12}{4}\right\} = 3$, 因此确定 4 为主元素
- x₅ 为换出变量

- 例 2
 - □ 具体过程

■ 例 2

□ 第四步: 重复二、三步

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	x_2	x_3	x_4	x_5
0	x_3	2	[1]	0	1	0	$ \begin{array}{c c} -1/2 \\ 0 \\ 1/4 \end{array} $
0	$\overline{x_4}$	16	4	0	0	1	0
3	x_2	3	0	1	0	0	1/4
-	$z_j - z_j$		2	0	0	0	-3/4

- 因 $\sigma_1 > 0$, 确定 x_1 为换入变量
- $\theta = \min\left\{\frac{2}{1}, \frac{16}{4}, \infty\right\} = 2$, 因此确定 1 为主元素
- x3 为换出变量

■ 例 2

□ 具体过程

■ 例 2

□ 第四步: 重复二、三步

	$c_j \to$		2	3	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$ \underline{x_5} $
2	x_1	2	1	0	1	0	-1/2
0	x_4	8	0	0	-4	1	[2]
3	$\overline{x_2}$	3	0	1	0	0	$ \begin{vmatrix} -1/2 \\ [2] \\ 1/4 \end{vmatrix} $
c	$j-z_j$		0	0	-2	0	1/4

- 因 $\sigma_5 > 0$, 确定 x_5 为换入变量
- $\theta = \min\left\{-, \frac{8}{2}, \frac{3}{1/4}\right\} = 4$, 因此确定 2 为主元素
- x₄ 为换出变量

■ 例 2

□ 具体过程

■ 例 2

□ 第四步: 重复二、三步

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ x_2 $	x_3	$ x_4 $	$ \underline{x_5} $
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	$\begin{vmatrix} 1/4 \\ 1/2 \\ -1/8 \end{vmatrix}$	0
c	$j-z_j$		0	0	-3/2	-1/8	0

- 所有检验数 $\sigma_j \leq 0$, 得到最优解
- 最优解 $X = (4, 2, 0, 0, 4)^{\top}$
- 最优值 $z = 2x_1 + 3x_2 = 14$

- 课堂练习 1
 - □ 用单纯形法求解线性规划问题

max
$$z = 50x_1 + 100x_2$$

s.t.
$$\begin{cases} x_1 + x_2 \le 300 \\ 2x_1 + x_2 \le 400 \\ x_2 \le 250 \\ x_1, x_2 \ge 0 \end{cases}$$

■ 课堂练习 1

□ 经过分析得到

$c_j \rightarrow$			50	100	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	x_2	$ x_3 $	x_4	$\underline{x_5}$
50	x_1	50	1	0	1	0	-1
0	x_4	50	0	0	1 -2 0	1	1
100	$\begin{array}{ c c c } X_B \\ \hline x_1 \\ x_4 \\ x_2 \\ \end{array}$	250	0	1	0	0	1
$c_j - z_j$ \mid 0 \mid 0 \mid -50 \mid 0 \mid -50							

- \Box 所有检验数 $\sigma_i \leq 0$, 得到唯一最优解
- \bigcirc 最优值 $z = 50x_1 + 100x_2 = 27500$

■ 小结

- □ 单纯形表
- □ 检验数
- □ 计算步骤
 - 第一步: 列出初始单纯形表
 - 第二步: 最优性检验
 - 第三步: 基可行解转化
 - 第四步: 重复二、三步, 一直到计算结束为止

■ 人工变量法

□ 考虑求解线性规划问题

$$\max z = -3x_1 + x_3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \le 4 \\ -2x_1 + x_2 - x_3 \ge 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\max z = -3x_1 + x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ x_1 + x_2 + x_3 - x_5 = 1 \\ -2x_1 + x_2 - x_3 = 9 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

没有可作为初始基的单位矩阵,则分别给每一个约束添加人工变量。

■ 大 *M* 法

□ 添加人工变量 x₆, x₇

■ 大 *M* 法

□ 用单纯形法求解

$c_j o$	-3	0	1	0	0	-M	-M
$\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{b}$	$ x_1 $	$ x_2 $	x_3	$ x_4 $	x_5	$ x_6 $	x_7
$ \begin{array}{c ccccc} 0 & x_4 & 4 \\ -M & x_6 & 1 \\ -M & x_7 & 9 \end{array} $	1 -2 0	$egin{bmatrix} 1 \\ [1] \\ 3 \end{bmatrix}$	1 -1 1	$\begin{array}{ c c } 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ -1 \\ 0 \end{array}$	$egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix}$	0 0 1
$c_j - z_j$	-3-2M	4M	1	0	-M	0	0
0 x_4 3	3	0	2	1	1	-1	0
$\begin{array}{c cccc} 0 & x_4 & 3 \\ 0 & x_2 & 1 \end{array}$	3 -2	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	2 -1	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	1 -1	-1 1	0
	_	_		$\left \begin{array}{c}1\\0\\0\end{array}\right $	$1\\-1\\3$	$ \begin{array}{c c} -1 \\ 1 \\ -3 \end{array} $	0 0 1

■ 大 *M* 法

□ 用单纯形法求解 (续)

	$c_j \rightarrow$		-3	0	1	0	0	-M	-M
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1$	$ x_2 $	x_3	$ x_4 $	x_5	x_6	$ x_7 $
$0\\0\\-3$	$\begin{array}{c c} x_4 \\ x_2 \\ x_1 \end{array}$	$egin{array}{c} 0 \\ 3 \\ 1 \end{array}$	0 0 1	$\left \begin{array}{c} 0\\1\\0\end{array}\right $	0 1/3 [2/3]	$\begin{array}{ c c } 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} -1/2 \\ 0 \\ 1/2 \end{array}$	$ \begin{array}{c c} -1/2 \\ 0 \\ -1/2 \end{array} $	1/2 1/3 1/6
	$c_j - z_j$		0	0	3	0	3/2	-3/2 - M	1/2-M
0 0 1	$\begin{array}{ c c c c c } x_4 \\ x_2 \\ x_3 \end{array}$	$ \begin{vmatrix} 0 \\ 5/2 \\ 3/2 \end{vmatrix} $	0 -1/2 3/2	$\left \begin{array}{c} 0\\1\\0\end{array}\right $	0 0 1	$\begin{array}{ c c } 1 \\ 0 \\ 0 \end{array}$	$-1/2 \\ -1/4 \\ 3/4$	$ \begin{array}{c c} & 1/2 \\ & 1/4 \\ & -3/4 \end{array} $	$ \begin{array}{ c c } -1/2 \\ 1/4 \\ 1/4 \end{array} $
	$c_j - z_j$		-9/2	0	0	0	-3/4	3/4-M	$\mid -1/4 - M$

■ 例 1

□ 用大 M 法求解线性规划问题

$$\max z = 6x_1 + 4x_2$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 100 \\ 4x_1 + 2x_2 \le 120 \\ x_1 = 14 \\ x_2 \ge 22 \\ x_1, x_2 \ge 0 \end{cases}$$

□ 标准化,增加人工变量

$$\max \ z = 6x_1 + 4x_2 + 0x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$
 s.t.
$$\begin{cases} 2x_1 + 3x_2 + x_3 = 100 \\ 4x_1 + 2x_2 + x_4 = 120 \\ x_1 + x_6 = 14 \\ x_2 - x_5 + x_7 = 22 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

■ 例 1

□ 用单纯形法求解

	$c_j \rightarrow$		6	4	0	0	0	-M	-M
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	x_2	x_3	$ x_4 $	x_5	x_6	$ x_7 $
0	x_3	100	2	3	1	0	0	0	0
0	x_4	120	4	2	0	1	0	0	0
-M	x_6	14	[1]	0	0	0	0	1	0
-M	x_7	22	0	1	0	0	-1	0	1
	$c_j - z_j$		M+6	M+4	0	0	$\mid -M \mid$	0	0
0	x_3	72	0	3	1	0	0	-2	0
0	x_4	64	0	2	0	1	0	-4	0
6	x_1	14	1	0	0	0	0	1	0
-M	x_7	22	0	[1]	0	0	-1	0	1

■ 例 1

□ 用单纯形法求解 (续)

	$c_j \rightarrow$		6	4	0	0	0	-M	- <i>M</i>
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	x_2	x_3	x_4	x_5	x_6	x_7
0	x_3	6	0	0	1	0	[3]	-2	-3
0	x_4	20	0	0	0	1	2	-4	-2
6	x_1	14	1	0	0	0	0	1	0
4	x_2	22	0	1	0	0	-1	0	1
($c_j - z_j$		0	0	0	0	4	-6-M	-4-M
0	x_5	2	0	0	1/3	0	1	-2/3	-1
0	x_4	16	0	0	-2/3	1	0	-8/3	0
6	x_1	14	1	0	Ô	0	0	1	0
4	x_2	24	0	1	1/3	0	0	-2/3	0

■ 两阶段法

- \square 为了克服大 M 法采用计算机处理 M 的困难(精度——误差),将添加人工变量后的线性规划问题分两个阶段来计算。
- □ 对于标准形式线性规划问题

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

引入辅助问题

min
$$w = \sum_{i=1}^{m} y_i$$

s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j + y_i = b_i \ (i = 1, \dots, m) \\ x_i, y_i > 0 \ (i = 1, \dots, m) \end{cases}$$

79 / 116

■两阶段法

□ 第一阶段: 采用单纯形法求解, 求解辅助问题。

当人工变量取值为 0 时,目标函数值也为 0。这时候的最优解就是原线性规划问题的一个基可行解。如果第一阶段求解结果最优解的目标函数值不为 0,也即最优解的基变量中含有非零的人工变量,表明原线性规划问题无可行解。

□ 第二阶段: 在第一阶段已求得原问题的一个初始基可行解的基础上, 再求原问题的最优解。

对第一阶段的最优单纯形表稍加改动,首先把第一行的价值向量替换成原问题的价值向量,人工变量全部从表中去掉,然后继续用单纯形法计算。

□ 原问题有可行解时,辅助问题最优值为 0。

■ 例 2

□ 求解线性规划问题

$$\max z = -3x_1 + x_3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \le 4 \\ -2x_1 + x_2 - x_3 \ge 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

□ 大 M 法

$$\max z = -3x_1 + x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 + x_6 = 1 \\ 3x_2 + x_3 + x_7 = 9 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

■ 例 2

□ 第一阶段

min
$$w = x_6 + x_7 \text{ (max } w' = -x_6 - x_7)$$

s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 + x_6 = 1 \\ 3x_2 + x_3 + x_7 = 9 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

□ 第二阶段

$$\max z = -3x_1 + 0x_2 + x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 = 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 例 2

□ 第一阶段

($c_j \rightarrow$		0	0	0	0	0	-1	-1
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	$ x_2 $	x_3	$ x_4 $	x_5	x_6	x_7
0	x_4	4	1	1	1	1	0	0	0
-1	x_6	1	-2	[1]	-1	0	-1	1	0
-1	x_7	9	0	3	1	0	0	0	1
c_j	$-z_j$		-2	4	0	0	-1	0	0
0	x_4	3	3	0	2	1	1	-1	0
0	x_2	1	-2	1	-1	0	-1	1	0
-1	x_7	6	[6]	0	4	0	3	-3	1
c_j	$-z_j$		6	0	4	0	3	-4	0
0	x_4	0	0	0	0	1	-1/2	1/2	-1/2
0	x_2	3	0	1	1/3	0	0	0	1/3

■ 例 2

□ 第二阶段

$c_j \rightarrow$	-3	0	1	0	0
$\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{b}$	x_1	$ x_2 $	x_3	$ x_4 $	x_5
$ \begin{array}{c cccc} 0 & x_4 & 0 \\ 0 & x_2 & 3 \\ -3 & x_1 & 1 \end{array} $	0 0 1	$\begin{array}{ c c }\hline 0\\1\\0\\\end{array}$	0 1/3 [2/3]	1 0 0	$ \begin{array}{ c c } -1/2 \\ 0 \\ 1/2 \end{array} $
$c_j - z_j$	0	0	3	0	3/2
$ \begin{array}{c cccc} 0 & x_4 & 0 \\ 0 & x_2 & 5/2 \\ 1 & x_3 & 3/2 \end{array} $		$\left \begin{array}{c} 0\\1\\0\end{array}\right $	0 0 1	$\begin{array}{ c c } 1 \\ 0 \\ 0 \end{array}$	$ \begin{vmatrix} -1/2 \\ -1/4 \\ 3/4 \end{vmatrix} $
$c_j - z_j$	-9/2	0	0	0	-3/4

- 单纯形法计算中的几个问题——无穷多最优解
 - $flue{\Box}$ 所有 $\sigma_j \leq 0$,且某个非基变量的检验数为 0,那么线性规划问题有无穷多最优解。
 - □ 例 3: 考虑求解线性规划问题

$$\max z = x_1 + 2x_2$$
s.t.
$$\begin{cases} x_1 \le 4 \\ x_2 \le 3 \\ x_1 + 2x_2 \le 8 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\max z = x_1 + 2x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_3 = 4 \\ x_2 + x_4 = 3 \\ x_1 + 2x_2 + x_5 = 8 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 例 3

□ 用单纯形法求解

	$c_j \to$		1	2	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	x_2	x_3	x_4	x_5
0	$\begin{bmatrix} x_3 \\ x_4 \end{bmatrix}$	$\begin{vmatrix} 4 \\ 3 \end{vmatrix}$	1 0	0 [1]	1 0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	0
0	$\begin{vmatrix} x_4 \\ x_5 \end{vmatrix}$	8	1	2	0	0	1
c	$j-z_j$		1	2	0	0	0
0	x_3	4	1	0	1	0	0
0	x_2	3	0	1	0	1	0
0	x_5	2	[1]	0	0	-2	1
c	$j-z_j$		1	0	0	-2	0

■ 例 3

□ 用单纯形法求解 (续)

	$c_j \rightarrow$		1	2	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	x_2	x_3	x_4	x_5
0	x_3	2	0	0	1	[2]	-1
$\frac{2}{1}$	$\begin{array}{c c} x_2 \\ x_1 \end{array}$	$\frac{3}{2}$	0 1	$\begin{array}{c} 1 \\ 0 \end{array}$	0	-2	1
c	$j-z_j$		0	0	0	0	-1
0	x_4	1	0	0	[1/2]	1	-1/2
2	x_2	2	0	1	-1/2	0	1/2
1	x_1	4	1	0	1	0	0
c	$j-z_j$		0	0	0	0	-1

 \square 无穷多解, $\mathbf{X}_1 = (2,3), \ \mathbf{X}_2 = (4,2)$

- 单纯形法计算中的几个问题——无可行解
 - \Box 当结果出现所有 $\sigma_j \leq 0$ 时, 如基变量中仍含有非零的人工变量 (两阶段法求解时第一阶段目标函数值不等于零), 表明问题无可行解。
 - □ 例 4: 考虑求解线性规划问题

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} x_1 + x_2 \le 2 \\ 2x_1 + 2x_2 \ge 6 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\max z = 2x_1 + x_2 + 0x_3 + 0x_4 - Mx_5$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 = 2 \\ 2x_1 + 2x_2 - x_4 + x_5 = 6 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 例 4

□ 用单纯形法求解

-	$c_j \rightarrow$		2	1	0	0	-M
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	x_2	x_3	$ x_4$	x_5
0	x_3	2	[1] 2	1	1	0	0
				2	0	-1	<u>. </u>
	$-z_j$		2+2M	1+2M		<i>-M</i>	<u>. </u>
	x_1	$\frac{2}{2}$	1	1	1	$\begin{vmatrix} 0 \\ -1 \end{vmatrix}$	0
-M	x_5		U	0			
c_j	$-z_j$		0	-1	-2-2M	$\mid -M$	0

 $_{\square}$ 当所有 $\sigma_j \leq 0$ 时,基变量中仍含有非零的人工变量 $x_5=2$,故线性规划问题无可行解。

- 单纯形法计算中的几个问题——极小化
 - \Box 目标函数极小化时解的判别,以 $\sigma_j \geq 0$ 作为判别最优解的标准。
 - □ 例 5: 考虑求解线性规划问题

$$\min \ z = x_1 - x_2 + x_3 - 3x_5$$
 s.t.
$$\begin{cases} x_2 + x_3 - x_4 + 2x_5 = 6 \\ x_1 + 2x_2 - 2x_4 = 5 \\ 2x_2 + x_4 + 3x_5 + x_6 = 8 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

■ 例 5

□ 用单纯形法求解

	$c_j \rightarrow$		1	-1	1	0	-3	0
\mathbf{C}_{B}	$\mid \mathbf{X}_B \mid$	b	$ x_1 $	$ x_2 $	x_3	x_4	$ x_5 $	x_6
1	x_3	6	0	1	1	-1	2	0
1	x_1	5	1	2	0	-2	0	0
0	x_6	8	0	2	0	1	[3]	1
	$c_j - z_j$		0	-4	0	3	-5	0
1	x_3	2/3	0	-1/3	1	-5/3	0	-2/3
1	x_1	5	1	[2]	0	-2	0	0
-3	x_5	8/3	0	2/3	0	1/3	1	1/3
	$c_j - z_j$		0	-2/3	0	14/3	0	5/3

- 例 5
 - □ 用单纯形法求解 (续)

	$c_j \rightarrow$		1	-1	1	0	-3	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	$ x_2 $	x_3	$ x_4 $	$ x_5 $	$ x_6 $
1	x_3	3/2	1/6	0	1	-2	0	-2/3
-1	x_2	5/2	1/2	1	0	-1	0	0
-3	x_5	1	-2/3	0	0	1	1	$\begin{vmatrix} -2/3 \\ 0 \\ 1/3 \end{vmatrix}$
	$c_j - z_j$		1/3	0	0	4	0	5/3

- \Box 最优解 $\mathbf{X} = (0, 5/2, 3/2, 0, 1)$
- \Box 最优值 z=-4

■ 单纯形法计算中的几个问题——退化

- ② 按最小比值 θ 来确定换出基的变量时,有时出现存在两个以上相同的最小比值,从而使下一个表的基可行解中出现一个或多个基变量等于零的退化解。
- □ 退化解的出现原因是模型中存在多余的约束,使多个基可行解对应同一顶点。当存在退化解时,就有可能出现迭代计算的循环。

□ 解决办法

- 当存在多个 $\sigma_i > 0$ 时,始终选取中下标值为最小的变量作为换入变量。
- 当计算 θ 值出现两个以上相同的最小比值时,始终选取下标值为最小的变量作为换出变量。

■ 小结

- □ LP 数学模型及标准型
- □ 图解法
- □ 单纯形法
 - 标准型中有单位基
 - 标准型中没有单位基, 用大 M 法加人工变量, 使之构成单位基
 - 判定最优解定理
- □ 解的几种情况
 - 最优解
 - 无穷多解: 最优表中非基变量检验数有 0
 - 无界解: $\sigma_j > 0$ 但 $\mathbf{P}_j \leq 0$
 - 无可行解: 最优表中人工变量在基变量中,且人工变量不为 0
- 课后作业: P44, 习题 1.6, 1.7

- 单纯形法计算的矩阵描述
 - □ 原问题

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j \le b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

□ 矩阵表达

$$\max z = \mathbf{CX}$$
s.t.
$$\begin{cases} \mathbf{AX} \le \mathbf{b} \\ \mathbf{X} \ge \mathbf{0} \end{cases}$$

- 单纯形法计算的矩阵描述
 - □ 引入松弛变量

$$\max \ z = \mathbf{CX} + 0\mathbf{X}_S$$

s.t.
$$\begin{cases} \mathbf{AX} + \mathbf{IX}_S = \mathbf{b} \\ \mathbf{X} \ge \mathbf{0}, \ \mathbf{X}_S \ge \mathbf{0} \end{cases}$$

- \square I 为 $m \times m$ 单位矩阵, 为初始基。
- \square 设迭代若干步后基变量为 \mathbf{X}_B , 决策变量为 $\mathbf{X} = (\mathbf{X}_B, \mathbf{X}_N)$ 。
- ② 将约束函数的系数矩阵 A 分为 A = (B, N), 其中 B 是基变量 X_B 的系数矩阵, N 是非基变量的系数矩阵。
- f C 将目标函数的系数向量 f C 分为 $f C=(f C_B, f C_N)$, 其中 $f C_B$ 是基变量的系数向量,f N 是非基变量的系数向量。

- 例 1
 - □ 写出下面问题的对偶问题

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

■ 例 1

□ 标准化

$$\max z = 2x_1 + x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} 5x_2 + x_3 = 15 \\ 6x_1 + 2x_2 + x_4 = 24 \\ x_1 + x_2 + x_5 = 5 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$ x_5 $
0	$egin{array}{c} x_3 \ x_4 \ x_5 \ \end{array}$	15	0	5	1	0	0
0	x_4	24	6	2	0	1	0
0	x_5	5	1	1	0	0	1

- 例 1
 - □ 初等行变换之前的单纯形表 (变量重排)

		\mathbf{X}_{B}		X	· <i>N</i>		\mathbf{X}_S	
	x_3	$ x_1 $	x_5	$ x_4 $	$ x_2 $	$ x_3 $	x_4	x_5
15	1	0	0	0 1 0	5	1	0	0
24	0	6	0	1	2	0	1	0
5	0	1	1	0	1	0	0	1
b		В		1	V		Ι	
<u> </u>								

			Ψ.			
	项目		非基	变量	基变量	
\mathbf{C}_{B}	基	b	\mathbf{X}_{B}	$ \mathbf{X}_N $	\mathbf{X}_S	
0	\mathbf{X}_{S}	b	В	N	I	
	~					

■ 例 1

□ 迭代之后的单纯形表 (变量重排)

		\mathbf{X}_{B}		X	N		\mathbf{X}_S	
	$ x_3 $	x_1	$ x_5 $	x_4	x_2	$ x_3 $	x_4	x_5
15	1	0	0	0	5	1	0	0
4 5	0	1	0	1/6	2/6	0	1/6	0
5	0	0	1	-1/6	4/6	0	$egin{array}{c} 0 \\ 1/6 \\ -1/6 \end{array}$	1
b		Ι		\mathbf{B}^{-}	$^{1}\mathbf{N}$		\mathbf{B}^{-1}	
	ı					1		

	<u> </u>				
项目	基变量	非基变量			
\mathbf{C}_B 基 \mathbf{b}	\mathbf{X}_{B}	$ \mathbf{X}_N $	$ \mathbf{X}_S $		
$oxed{\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{B}^{-1}\mathbf{b} \mid}$	$\mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$	$\mathbf{B}^{-1}\mathbf{N}$	$\mathbf{B}^{-1}\mathbf{I} = \mathbf{B}^{-1}$		
$C_{\dot{z}} - z_{\dot{z}} \qquad C_{P} - C_{P}I = 0 C_{N} - C_{P}B^{-1}N 0 - C_{P}B^{-1}$					

■ 例 1

□ 迭代前后对比对"增广"矩阵做初等行变换

项目	非基变量	基变量
$\mathbf{C}_B \mid \mathbf{E} \mid \mathbf{b}$	$\mid \mathbf{X}_B \mid \mathbf{X}_I$	$_{ m V} \mid { m f X}_{S}$
$0 \mid \mathbf{X}_S \mid \mathbf{b}$	B N	I
$c_j - z_j$	$\mid \mathbf{C}_B \mid \mathbf{C}_I$	v 0
	11	

项目	基变量		非基	变量		
$oxed{\mathbf{C}_B}$ 基 $oxed{\mathbf{b}}$	$ \mathbf{X}_B $		\mathbf{X}_N	$oxed{ \mid \mathbf{X}_S \mid}$		
$\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{B}^{-1}\mathbf{b}$	$\mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$		$\mathbf{B}^{-1}\mathbf{N}$	$\mid \mathbf{B}^{-1}\mathbf{I} = \mathbf{B}^{-1}$		
$c_j - z_j$						

■ 单纯形法计算的矩阵描述

- \square 对应初始单纯形表中的单位矩阵 I,迭代后的单纯形表中为 B^{-1} 。
- \square 初始单纯形表中基变量 $\mathbf{X}_S = \mathbf{b}$,迭代后的表中 $\mathbf{X}_B = \mathbf{B}^{-1}\mathbf{b}$ 。

	非基变量 基3	空量
$oxed{\mathbf{C}_B \mid \blue{\mathbf{B}} \mid \mathbf{b}}$	$\mid \mathbf{X}_B \mid \mathbf{X}_N \mid \mathbf{X}$	ζ_S
$0 \mid \mathbf{X}_S \mid \mathbf{b}$	B N :	Ι
$c_j - z_j$	$\mid \mathbf{C}_B \mid \mathbf{C}_N \mid$	0
	II	

项目	基变量	非基	非基变量		
$oxed{\mathbf{C}_B \mid \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\mathbf{X}_{B}	$ $ \mathbf{X}_N	$oxed{ \mathbf{X}_S }$		
$oxed{\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{B}^{-1}\mathbf{b} \mid}$	$\mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$	$\mathbf{B}^{-1}\mathbf{N}$	$\mathbf{B}^{-1}\mathbf{I} = \mathbf{B}^{-1}$		

■ 单纯形法计算的矩阵描述

 $\mathbf{C}_{\mathbf{B}} \mid \mathbf{X}_{\mathbf{B}} \mid \mathbf{B}^{-1}\mathbf{b}$

- ② 初始单纯形表中约束系数矩阵 [A, I] = [B, N, I], 迭代后的表中约束系数矩阵为 $[B^{-1}A, B^{-1}I] = [I, B^{-1}N, B^{-1}]$
- \square 若初始矩阵中的变量 x_i 的系数向量为 P_i , 迭代后的为 P_i , 则有 $P_i = B^{-1}P_i$

 项目
 基变量
 非基变量

 \mathbf{C}_B | 基 | \mathbf{b} | \mathbf{X}_B | \mathbf{X}_N | \mathbf{X}_S

 $\mathbf{B}^{-1}\mathbf{N}$

 $B^{-1}B = I$

 $R^{-1}I = R^{-1}$

- 单纯形法计算的矩阵描述
 - □ 迭代后达到最优,即检验数满足

$$\mathbf{C}_N - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{N} \le 0, -\mathbf{C}_B \mathbf{B}^{-1} \le 0$$

由于 $\mathbf{C}_B - \mathbf{C}_B \mathbf{I} = 0$, 得到

$$\mathbf{C} - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{A} \le 0, -\mathbf{C}_B \mathbf{B}^{-1} \le 0$$

这里 $C_B B^{-1}$ 称为单纯形乘子。若令 $Y^{\top} = C_B B^{-1}$,则上式可以改写为

$$\mathbf{A}^{\top}\mathbf{Y} \geq \mathbf{C}^{\top}, \ \mathbf{Y} \geq 0$$

 \square 上式表明 $\mathbf{C}_B\mathbf{B}^{-1}$ 的转置为其对偶问题的一个可行解,即

$$w = \mathbf{Y}^{\mathsf{T}} \mathbf{b} = \mathbf{C}_B \mathbf{B}^{-1} \mathbf{b} = z$$

因此,当原问题为最优解时,对偶问题为可行解,且两者具有相同的目标函数值。

■ 对偶问题的基本性质——弱对偶性

 $\ \square$ 如果 \overline{x}_j $(j=1,\ldots,n)$ 是原问题的可行解, \overline{y}_i $(i=1,\ldots,m)$ 是其对偶问题的可行解,则恒有

$$\sum_{j=1}^{n} c_j \overline{x}_j \le \sum_{i=1}^{m} b_i \overline{y}_i$$

证: 根据定义易知

$$\sum_{j=1}^{n} c_j \overline{x}_j \le \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} \overline{y}_i \right) \overline{x}_j = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \overline{x}_j \overline{y}_i$$

$$\sum_{i=1}^{m} b_i \overline{y}_i \ge \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \overline{x}_j \right) \overline{y}_i = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \overline{y}_i \overline{x}_j$$

■ 对偶问题的基本性质——弱对偶性

 $\ \square$ 如果 \overline{x}_j $(j=1,\ldots,n)$ 是原问题的可行解, \overline{y}_i $(i=1,\ldots,m)$ 是其对偶问题的可行解,则恒有

$$\sum_{j=1}^{n} c_j \overline{x}_j \le \sum_{i=1}^{m} b_i \overline{y}_i$$

- □ 推论 1: 原问题任一可行解的目标函数值是其对偶问题目标函数值的下界,反之,对偶问题任一可行解的目标函数值是其原问题目标函数值的上界。
- 推论 2: 若原问题有可行解且目标函数值无界,则其对偶问题无可行解;反之,对偶问题有无界解,则原问题无可行解。
- 推论 3: 若原问题有可行解,对偶问题无可行解,则原问题目标函数值无界;反之,对偶问题有可行解,而原问题无可行解,则对偶问题的目标函数值无界。

■ 对偶问题的基本性质——最优性

回 如果 \hat{x}_{j} $(j=1,\ldots,n)$ 是原问题的可行解, \hat{y}_{i} $(i=1,\ldots,m)$ 是其对偶问题的可行解,且有 $\sum_{j=1}^{n} c_{j}\hat{x}_{j} = \sum_{i=1}^{m} b_{i}\hat{y}_{i}$ 则 \hat{x}_{j} $(j=1,\ldots,n)$ 是原问题的最优解, \hat{y}_{i} $(i=1,\ldots,m)$ 是其对偶问题的最优解。

证: 设 x_j^* $(j=1,\ldots,n)$ 是原问题的最优解, y_i^* $(i=1,\ldots,m)$ 是其对偶问题的最优解,有

$$\sum_{j=1}^n c_j \hat{x}_j \le \sum_{j=1}^n c_j x_j^*, \ \sum_{i=1}^m b_i y_i^* \le \sum_{i=1}^m b_i \hat{y}_i$$

$$\sum_{j=1}^{n} c_j \hat{x}_j = \sum_{i=1}^{m} b_i \hat{y}_i, \quad \sum_{j=1}^{n} c_j x_j^* \le \sum_{i=1}^{m} b_i y_i^*$$

因此

$$\sum_{j=1}^n c_j \hat{x}_j = \sum_{j=1}^n c_j x_j^* = \sum_{i=1}^m b_i y_i^* = \sum_{i=1}^m b_i \hat{y}_i$$

■ 对偶问题的基本性质——强对偶性

□ 若原问题有最优解,对偶问题也有最优解,且目标函数值相等。或若原问题与对偶问题 均具有可行解,则两者均具有最优解,且它们最优解的目标函数值相等。

证: 一方面,由于两者均有可行解,根据弱对偶性的推论 1, 对原问题的目标函数值具有上界, 对偶问题的目标函数值具有下界, 因此两者均具有最优解。

另一方面,又由(2.19)和(2.20)知,当原问题为最优解时,其对偶问题的解为可行解,且有 z=w。

由最优性知, 这时两者的解均为最优解。

■ 对偶问题的基本性质——互补松驰性

- □ 在线性规划问题的最优解中,如果对应某一约束条件的对偶变量值为零,则改约束条件 取严格等式; 反之,如果约束条件取严格不等式,则其对应的对偶变量一定为零。也即
 - $\hat{x}_i > 0$, 则有 $\sum_{j=1}^n a_{ij} \hat{x}_j = b_i$, 即 $\hat{x}_{si} = 0$
 - 若 $\sum_{j=1}^{n} a_{ij} \hat{x}_{j} < b_{i}$,即 $\hat{x}_{si} = 0$,则有 $\hat{y}_{i} = 0$

因此一定有 $\hat{x}_{si} \cdot \hat{y}_i = 0$

证: 由弱对偶性知

$$\sum_{j=1}^{n} c_j \hat{x}_j \le \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \hat{x}_j \hat{y}_i \le \sum_{i=1}^{m} \sum_{j=1}^{n} b_i \hat{y}_i$$

又根据最优性 $\sum\limits_{j=1}^n c_j \hat{x}_j = \sum\limits_{i=1}^m b_i \hat{y}_i$,故上式中全为等式。

■ 对偶问题的基本性质——互补松驰性

□ 证: 由右端等式得

$$\sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \hat{x}_{j} - b_{i} \right) \hat{y}_{i} = 0$$

由于 $\hat{y}_i \geq 0$, $\sum_{i=1}^n a_{ij} \hat{x}_j - b_i \leq 0$, 故对所有 $i = 1, \ldots, m$ 有

$$\left(\sum_{j=1}^{n} a_{ij}\hat{x}_j - b_i\right)\hat{y}_i = 0$$

- 当 $\hat{y}_i > 0$ 时,必有 $\sum_{j=1}^n a_{ij} \hat{x}_j b_i = 0$
- 当 $\sum_{i=1}^{n} a_{ij} \hat{x}_j b_i < 0$ 时,必有 $\hat{y}_i = 0$

- 对偶问题的基本性质——互补松驰性
 - □ 将互补松弛性质应用于其对偶问题时,可以描述为
 - 如果有 $\hat{x}_i > 0$,则有 $\sum\limits_{i=1}^m a_{ij} \hat{y}_i = c_j$
 - 如果有 $\sum_{i=1}^{m} a_{ij} \hat{y}_{j} > c_{j}$,即 $\hat{x}_{j} = 0$
 - □ 上述针对对称形式证明得对偶问题得性质,同样适用于非对称形式。
 - □ 互补松弛性质是理解非线性规划中 KKT 条件得重要基础。

■ 例 2

□ 试用对偶理论证明上述线性规划问题无最优解

$$\max z = x_1 + x_2$$
s.t.
$$\begin{cases} -x_1 + x_2 + x_3 \le 2\\ -2x_1 + x_2 - x_3 \le 1\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

□ 上述问题的对偶问题

min
$$w = 2y_1 + y_2$$

s.t.
$$\begin{cases}
-y_1 - 2y_2 \ge 1 \\
y_1 + y_2 \ge 1 \\
y_1 - y_2 \ge 0 \\
y_1, y_2 > 0
\end{cases}$$

□ 由第 1 个约束条件可知对偶问题无可行解,因而无最优解,由推论 3知原问题也无最优 解。

- 例 3
 - □ 已知线性规划问题

min
$$w = 2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5$$

s.t.
$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4\\ 2x_1 - x_2 + 3x_3 + x_4 + x_5 \ge 3\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

已知其对偶问题的最优解为 $y_1^* = 4/5, y_2^* = 3/5, z = 5$, 试用对偶理论找出原问题的最优解。

■ 例 3

□ 原问题

$$\min \ w = 2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5$$
s.t.
$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4\\ 2x_1 - x_2 + 3x_3 + x_4 + x_5 \ge 3\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

□ 对偶问题

$$\text{s.t.} \begin{cases} y_1 + 3y_2 \\ y_1 + 2y_2 \le 2 & (1) \\ y_1 - y_2 \le 3 & (2) \\ 2y_1 + 3y_2 \le 5 & (3) \\ y_1 + y_2 \le 2 & (4) \\ 3y_1 + y_2 \le 3 & (5) \\ y_1, y_2 \ge 0 \end{cases}$$

■ 例 3

 $y_1^* = 4/5, y_2^* = 3/5$ 的值代入约束条件得

$$(2) = 1/5 < 3, (3) = 17/5 < 5, (4) = 7/5 < 2$$

它们为严格不等式,由互补松弛性得 $x_2^* = x_3^* = x_4^* = 0$ 。

由于 $y_1^*, y_2^* > 0$,由<mark>互补松弛性</mark>可知原问题的两个约束条件应取等式,即

$$x_1^* + 3x_5^* = 4, \ 2x_1^* + x_5^* = 3$$

求解后得到 $x_1^* = 1$, $x_5^* = 1$.

因此原问题的最优解为 $X^* = (1,0,0,0,1)^{\top}$,最优值为 $w^* = 5$ 。

- 小结
 - □ 单纯形计算的矩阵描述
 - □ 对偶问题的基本性质
 - 弱对偶定理
 - 最优性定理
 - 对偶定理
 - 互补松弛性
- 课后作业: P75, 习题 2.5, 2.6

Q&A

Thank you!

感谢您的聆听和反馈