Genome Editing and Engineering

Course No: BT-637

LECTURE-16

Dr. Kusum K. Singh
Department of Biosciences and Bioengineering
Indian Institute of Technology Guwahati

History of CRISPR

JOURNAL OF BACTERIOLOGY, Dec. 1987, p. 5429-5433 0021-9193/87/125429-05\$02.00/0 Copyright © 1987, American Society for Microbiology

Vol. 169, No. 12

Nucleotide Sequence of the *iap* Gene, Responsible for Alkaline Phosphatase Isozyme Conversion in *Escherichia coli*, and Identification of the Gene Product

YOSHIZUMI ISHINO, HIDEO SHINAGAWA, KOZO MAKINO, MITSUKO AMEMURA, AND ATSUO NAKATA*

Department of Experimental Chemotherapy, The Research Institute for Microbial Diseases, Osaka University, 3-1

Department of Experimental Chemotherapy, The Research Institute for Microbial Diseases, Osaka University Yamadaoka, Suita, Osaka 565, Japan

Received 1 May 1987/Accepted 22 August 1987

IAP flanking region sequencing

IAP flanking region sequencing

consensus: CGGTTTATCCCCGCTAACTC

An unusual structure was found in the 3'-end flanking region of iap (Fig. 5). Five highly homologous sequences of 29 nucleotides were arranged as direct repeats with 32 nucleotides as spacing. The first sequence was included in the putative transcriptional termination site and had less homology than the others. Well-conserved nucleotide sequences containing a dyad symmetry, named REP sequences, have been found in E. coli and Salmonella typhimurium (28) and may act to stabilize mRNA (18). A dyad symmetry with 14 nucleotide pairs was also found in the middle of these sequences (underlining, Fig. 5), but no homology was found between these sequences and the REP sequence. So far, no sequence homologous to these has been found elsewhere in procaryotes, and the biological significance of these sequences is not known.

History of CRISPR (1987-2002)

DVR (Direct Variable Repeats)

TREP (Tandem Repeats)

LTRR (Long Tandemly Repeated Repetitive Sequences)

SRSR (Short Regularly Spaced Repeats)

LCTR (Large Clusters of Tandem Repeats)

SPIDR (Spacer Interspersed Direct Repeats)

CRISPR

Clustered Regularly Interspaced Short Palindromic Repeats

Jansen et al., molecular microbiology 2002

History of CRISPR (1987-2002)

Molecular Microbiology (2002) 43(6), 1565-1575

Ruud. Jansen,1* Jan. D. A. van Embden,2

The Netherlands.

Identification of genes that are associated with DNA repeats in prokaryotes

Wim. Gaastra¹ and Leo. M. Schouls²

¹Department of Infectious Diseases and Immunology,
Bacteriology Division, Veterinary Faculty,
Utrecht University, Yalelaan 1, 3584 CL Utrecht,
The Netherlands.

²Laboratory of Bacteriology of the Research Laboratory
of Infectious Diseases, National Institute of Public
Health and Environmental Protection,
A. van Leeuwenhoeklaan 1, 3720 BA Bilthoven,

History of CRISPR (1987-2002)

DNA metabolism or gene expression

Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements

JOURNAL OF MOLECULAR EVOLUTION

Francisco J.M. Mojica, César Díez-Villaseñor, Jesús García-Martínez, Elena Soria

División de Microbiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Campus de San Vicente, E-03080, Spain

CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies

Microbiology (2005).

C. Pourcel, G. Salvignol and G. Vergnaud 1,2

¹GPMS, Institut de Génétique et Microbiologie, Université Paris XI, 91405 Orsay cedex, France ²Centre d'Etudes du Bouchet, 5 rue Lavoisier, 91710 Vert le Petit, France

Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin

Microbiology (2005),

Alexander Bolotin, Benoit Quinquis, Alexei Sorokin and S. Dusko Ehrlich

Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas CEDEX, France

Table 4. Features of the sequences most similar to CRISPR spacers from Methanothermobacter thermoautotrophicum

Location	Phage	Activity	Alignment ^a
40 bp 3' from ORF31	Ч М100	Not applicable	cttctagcaagagacattgacgatatacacaagtac
ORF31	ΨM100	Unknown	aagcgccgggcagacagcacatacaagacttcacaa
ORF31	ΨM100	Unknown	tttcacgatgactctgttgagttcatcgtattctttcc
ORF21	ΨM100	Tail protein	tgatgttgggaaggtttggccatctgaatgatttga
pei P	ΨМ2	Pseudomurein endoisopeptidase	<pre>aatattgaaacgttcaaggacatgttgaagaggtatg </pre>
ORF6	ΨМ2	Unknown	agtatgtgcagtatcetetetatgteeeetteatte
ORF6	ΨМ2	Unknown	aacttcacagaaaagcctccatggagcaagtgctct

Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements

JOURNAL OF MOLECULAR EVOLUTION

Francisco J.M. Mojica, César Díez-Villaseñor, Jesús García-Martínez, Elena Soria

División de Microbiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Campus de San Vicente, E-03080, Spain

CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies

Microbiology (2005).

C. Pourcel, G. Salvignol and G. Vergnaud 1,2

¹GPMS, Institut de Génétique et Microbiologie, Université Paris XI, 91405 Orsay cedex, France ²Centre d'Etudes du Bouchet, 5 rue Lavoisier, 91710 Vert le Petit, France

Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin

Microbiology (2005),

Alexander Bolotin, Benoit Quinquis, Alexei Sorokin and S. Dusko Ehrlich

Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas CEDEX, France

Table 2. Sequence of newly characterized spacers and their position outside the CRISPR loci

Chr. region	Spacer	Sequence	Position in CO92	YPO gene	Gene or product
I	Z	AGATCGTGATGATAAACACACTTCCAACACAT	684 074–684 043	Between YPO0622 and YPO0623	
	y	TTGTAAGCCTTGGAACTCTGGACGCATTTTTC	684 222-684 191	YPO0623	aspC
II	g2	TAACGAGAAAGTCTTAATCTTTAATTCATCAG	2 357 592–2 357 561	Between YPO2075 and YPO2076	
		Between 2 363 016 and 2 409 384 putative of			
	n	TCACCAATGAGGGCGACCATGCCGAGGACTTG	2 370 263–2 370 232	Between YPO2094 and YPO2095	
	h2	TTAACGTAGCCAGGGCGTGTGGAACATGCCTAGT	2 374 566-2 374 597	YPO2101	Phage protein
	g	AAAAAGAATTTGGGATTAAAGTTACCCATCAG	2 374 731-2 374 762	YPO2102	Phage protein
	0	ACGTCATCCTGAAGGCTAGGCAGCTCGGCTTC	2 375 250-2 375 281	YPO2103	Unknown protein
	i2	TGGGACGCTTTACAGTCTGCACGTCTCTGAGT	2 375 515-2 375 546	YPO2103	
	i	GATGAGTAATGCCTTCAGCGCATTTCTCTTCA	377 2 7512 377 720	Between IS285 and YPO2106	
	n2	ACATCTGGCCCACGACAAACATCGCGAACCGT	2 378 009-2 377 978	YPO2106	Phage protein
	d3	TTGGCAATCATGTTTGGCTGCGCTTGGTTAAAC	2 378 885–2 378 853	Between YPO2106 and YPO2108	
	S	CAGGAATGTTGGCCGCGATTGTTGCAGCTTGG	2 379 140–2 379 171	Between YPO2106 and YPO2108	
	e3	TGTCAGGCTGGGACTCTGATTTTTCAATTCGT	2 379 295–2 379 263	Between YPO2106 and YPO2108	
	k	TCAGTCCCGTTATGGTGCTGGTGTTGCCCGTAAG	2 379 357-2 379 389	YPO2108	Phage protein
	m2	TATGAGTGACAGCCGTTTTCACCACCGCCGTG	2 379 919–2 379 888	YP02108	Phage protein
	m	TTATCCGTGACCGACTCAAATACACGCTGGAACG	2 380 022-2 280 053	YPO2108	Phage protein
	a2	TCTGTACGCATACCGCCATCTTGCATCAGTCT	2 380 328-2 380 297	YPO2108	Phage protein
	u	AGCAATAAATCCCAAGGGGACAGCATGCTATT	2 380 514–2 380 545	Between YPO2108	

Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements

JOURNAL OF MOLECULAR EVOLUTION

Francisco J.M. Mojica, César Díez-Villaseñor, Jesús García-Martínez, Elena Soria

División de Microbiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Campus de San Vicente, E-03080, Spain

CRISPR elements in *Yersinia pestis* acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies

Microbiology (2005).

C. Pourcel, G. Salvignol and G. Vergnaud 1,2

¹GPMS, Institut de Génétique et Microbiologie, Université Paris XI, 91405 Orsay cedex, France ²Centre d'Etudes du Bouchet, 5 rue Lavoisier, 91710 Vert le Petit, France

Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin

Microbiology (2005),

Alexander Bolotin, Benoit Quinquis, Alexei Sorokin and S. Dusko Ehrlich

Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas CEDEX, France

Fig. 4. Localization of spacer-matching sequences along the phage Sfi21 genome. The phage genetic map is drawn after GenBank entry NC_000872 (ORFs are shown as arrows), the regions involved in different stages of phage development, identified by comparative analysis (Desiere *et al.*, 2002), are indicated above the map, and the scale (in kb) below it. Phage regions having a BLAST E score < 0.001 with the CRISPR spacers are indicated by the diamonds placed above or below the map, denoting homology with the top or the bottom DNA strand, respectively.

History of CRISPR- experimental evidence (2007)

CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes

Rodolphe Barrangou, ¹ Christophe Fremaux, ² Hélène Deveau, ³ Melissa Richards, ¹ Patrick Boyaval, ² Sylvain Moineau, ³ Dennis A. Romero, ¹ Philippe Horvath ²*

SCIENCE VOL 315 23 MARCH 2007

Acquired resistance against phage

Acquired resistance against phage

The diversity of CRISPR-Cas system

The diversity of CRISPR-Cas system

Koonin et al., Current Opinion Microbiol. 2017

Conclusions of Lecture-16

- The first article of IAP gene
- Origin of Spacers = extrachromosomal (Phage gene)
- Acquired spacers = Resistance to selective phage
- Three steps = Acquisition, Expression & Interference
- Diversity of CRISPR-Cas system
- Next = Type II-A system

Questions??