I KOLOKVIJUM

- 1. (10 poena) GRANIČNE VREDNOSTI
 - a) Ukoliko je moguće, odrediti vrednost konstante A tako da funkcija $f(x) = \begin{cases} \frac{A}{\sqrt[3]{1+x}-1}, & x=0\\ \frac{\sqrt[3]{1+x}-1}{x}, & x\neq 0 \end{cases}$ bude neprekidna u x=0.
 - b) Pokazati da niz $\{b_n\}$ sa opštim članom

$$b_n = \frac{1}{\sqrt[4]{81n^4 + 1}} + \frac{1}{\sqrt[4]{81n^4 + 2}} + \dots + \frac{1}{\sqrt[4]{81n^4 + 6n}}$$

konvergira i naći njegovu graničnu vrednost.

2. (12 poena) FUNKCIJE JEDNE PROMENLJIVE

Detaljno ispitati funkciju $f(x) = \arcsin \frac{2x}{1+x^2}$ i nacrtati njen grafik.

3. (8 poena) FUNKCIJE VIŠE PROMENLJIVIH

Odrediti ekstremne vrednosti funkcije $z(x,y) = (x^2 + y^2)e^{y-x}$.

II KOLOKVIJUM

- 4. (15 poena) INTEGRALI
 - a) Izračunati $\int (\sin^4 x \cos^3 x + \frac{3x^3}{\sqrt{x^2 + 4x + 5}}) dx$.
 - b) Primenom određenog integrala odrediti graničnu vrednost niza $\{a_n\}$ sa opštim članom

$$a_n = \frac{1}{n} \ln \frac{(n+1)(n+2)\cdots(2n)}{n^n}.$$

- 5. (15 poena) **DIFERENCIJALNE JEDNAČINE**
 - a) Odrediti opšte rešenje diferencijalne jednačine $(x^3 + xy^2 + x^2)dx + x^2ydy = 0$.
 - b) Odrediti opšte rešenje diferencijalne jednačine $y^{(IV)} + 2y'' + y = x^2 + e^{2x}$.