USN					
0 2 .					

R. V. COLLEGE OF ENGINEERING

Autonomous Institution affiliated to VTU
IV Semester B. E. Fast Track Examinations July-16
Common to CSE / ISE

DESIGN AND ANALYSIS OF ALGORITHMS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in the first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B.

PART-A

01 01
01
01
O I
01
01
02
02
02
02
02
02
02
- '
02

PART-B

2	a	With a neat diagram, explain algorithm design and analysis process.	06
	b	Prove that if $t_1(n) \in O(g_1(n))$ and $t_2(n) \in O(g_2(n))$, then $t_1(n) + t_2(n) \in$	
		$O\{max (g_1(n), g_2(n))\}$	05

	С	Consider the following code: $for(i = 1; i <= n; i + +)$ { $pos = i;$ $smallest = Array[pos];$ $for(j = j + 1; j <= n; j + +)$ $if(Array[j] < smallest)$ { $pos = j;$ $smallest = Array[pos];$ } $Array[pos] = Array[i];$ $Array[i] = smallest;$ } What does the algorithm compute? Determine the efficiency class of	
		the algorithm. OR	05
3	a b c	Discuss the general plan for analyzing time efficiency of non-recursive algorithm. Apply the same for finding the number of binary digits in the binary representation of a positive decimal integer. Write the steps to perform empirical analysis. Consider the following recursive algorithm: ALGORITHM Q(n) //Input: A positive integer n if n = 1 return 1 else return Q(n-1) + 2 * n-1 i) Set up a recurrence relation for this function's values and solve it to determine what this algorithm computes; ii) Set up a recurrence relation for the number of multiplications made by this algorithm; iii) Setup a recurrence relation for the number of additions/subtractions made by this algorithm.	06 05
4	a	Write and explain the algorithm for merging two sorted arrays and	
	b	derive the worst case efficiency of merge sort. Define an <i>AVL</i> tree. Construct an <i>AVL</i> tree by inserting the elements 9,12,10,5,3,8,13 successively, starting with an empty tree and explain each step. OR	08
5	а	Design an algorithm to traverse a given graph using <i>DFS</i> . Apply <i>DFS</i> method to obtain the topological ordering of the graph given in Fig. 5a. Fig. 5a	06

	b c	Find the median of the following nine numbers: 411097128215 Construct a $2-3$ tree for the list C, O, M, P, U, T, E, R by inserting	05
		elements successively starting with the empty tree.	05
6	a	Define Heap. Using heap-sort, sort the elements 3, 6, 5, 1, 2, 4 in non-decreasing order.	06
	b	Find Pattern <i>AT_THAT</i> in the text <i>WHICH_FINALLY_HALTS</i> . <i>AT_THAT</i> using Horspool's and Boyer-Moore's algorithms.	10
		OR	
7	a	Give the recurrence to solve 0/1 knapsack using dynamic programming. Using the same, solve the problem instance given below in the order:	
	b	(Item, weight, value) – $(1,5,2)$, $(2,1,6)$, $(3,4,5)$, $(4,3,7)$ and $w=5$. Design an algorithm to find the All-pairs shortest paths. Comment	08
	D .	on the efficiency of the algorithm.	08
8	a	Construct a Huffman tree for the following data:	
		Character A B C D E Probability 0.4 0.1 0.2 0.15 0.15	
	b	Encode the text <i>ABACABAD</i> and decode 100010111001010. Apply Kruskal's algorithm to the graph given in Fig. 8b	06
	~	6 (2)	
		E 5 5 d	
		Fig. 8b	05
	С	Design an algorithm to find the single source shortest path.	05
		OR	
9	a	What is decision tree? Write a decision tree considering three- element insertion sort.	05
	b	Define source and sink. Find out the maximum flow of the following transport network Fig. 9b (where $s = \text{source}$ and $t = \text{sink}$)	
		2 70 3 \$\frac{3}{3} \frac{1}{2} \frac{3}{3} \frac{3}{3}	
		Fig. 9b	05
	С	Design an algorithm to find a maximum matching in a bipartite graph.	06
10	0		
10	a	Write the recursive backing algorithm for sum of subsets problem. Also draw the state space tree generated for the following problem instance: $s = \{5, 10, 12, 13, 15, 18\}$ and $d = 30$.	08

