

Optimization in Energy Systems

Optimal Power Flow Prof. Gabriela Hug, ghug@ethz.ch

1

Repetition: Power Flow Equations

Equations depending on bus type: Two variables per bus
 => we need two equation per bus

■ PQ bus
$$-P_{L_k} = \sum_{m \in \Omega_k} P_{km}(\cdot) = U_k \sum_{m \in K} U_m (G_{km} cos\theta_{km} + B_{km} sin\theta_{km})$$

 $-Q_{L_k} = -Q_{sh_k}(U_k) + \sum_{m \in \Omega_k} Q_{km}(\cdot) = U_k \sum_{m \in K} U_m (G_{km} sin\theta_{km} - B_{km} cos\theta_{km})$

■ PU bus
$$P_{G_k} - P_{L_k} = \sum_{m \in \Omega_k} P_{km}(\cdot) = U_k \sum_{m \in K} U_m (G_{km} cos\theta_{km} + B_{km} sin\theta_{km})$$
$$U_k = U_{G_k}$$

• slack bus $U_k = U_{G_k}$ $\theta_k = 0$

Repetition: DC Power Flow

- Line Model
 - neglect loss terms (set $g_{km} = 0$)
 - set $U_k \approx U_m \approx 1 \text{ p.u.}$ => need to work with p.u. values!

$$\sin \theta_{km} \approx \theta_{km}$$

models active power flows but cannot be used to model reactive power

- System Equations
 - Power balance at all buses except slack bus

$$P_k = P_{G_k} - P_{L_k} = \sum_{m \in \Omega_k} P_{km} \qquad P = B\theta$$
 vector of net vector of angles injections (except slack) (except slack)

Slack bus

$$\theta_k = 0$$

$$B_{km} = -\frac{1}{x_{km}}$$

$$B_{kk} = \sum_{m \in \Omega_k} \frac{1}{x_{km}}$$

Learning Objectives

- After this lecture, you should be able
 - to set up and solve/implement an Optimal Power Flow problem using AC as well as DC power flow constraints
 - to set up and solve/implement a security constrained optimization problem using AC as well as DC power flow constraints

Optimization Problems

- Economic Dispatch
 - Find the generation dispatch which minimizes overall generation cost while supplying all loads
 - ⇒Neglect grid
- Optimal Power Flow
 - Find the settings for the controllable variables, e.g. generation output, which minimizes the objective function, e.g. overall supply cost, taking into account the power flow equations and operational constraints.
 - ⇒ Take grid into account

- Optimal Power Flow (OPF):
 is a means to determine the optimal operational settings
 in an electric power system with respect to a given
 objective
- Power flow equations:
 are part of the constraint set
- Objective function: depends on objective to be achieved
- Control variables:
 depend on variables for which a setting is sought

Optimization applied to Power Systems

$$\min_{x,u} f(x,u)$$
s.t. $h(x,u) = 0$

$$g(x,u) \le 0$$

- State Variables x:
 - voltage magnitudes and angles
- Control Variables u:
 - depends on the problem, e.g.:
 - generator outputs
 - device settings
 - generator voltages, etc.
- Equality Constraints h(x, u):
 - power flow equations

Optimization applied to Power Systems (cont.)

$$\min_{x,u} f(x,u)$$
s.t. $h(x,u) = 0$

$$g(x,u) \le 0$$

- Inequality Constraints g(x, u):
 - depends on considered problem, e.g.
 - Limits on line flows and/or voltages
 - Limits on control equipment settings, etc.
- Objective Function f(x, u):
 - depends on considered problem, e.g.
 - Improve voltage profile
 - Minimize overall cost
 - Minimize power losses, etc.

Power Flow Equations in OPF

Power Flow Computations

$$\theta_1 = 0$$

$$\begin{bmatrix} P_{G2} \\ -P_{L3} \end{bmatrix} = \begin{bmatrix} \frac{1}{x_{12}} + \frac{1}{x_{23}} & -\frac{1}{x_{23}} \\ -\frac{1}{x_{23}} & \frac{1}{x_{13}} + \frac{1}{x_{23}} \end{bmatrix} \underbrace{\theta_2}_{\theta_3}$$

Optimal Power Flow

$$\theta_{1} = 0$$

$$\theta_{3} = ?$$

$$P_{L3}$$

$$P_{L3}$$

$$\theta_{1} = 0$$

$$\frac{1}{x_{12}} - \frac{1}{x_{12}} - \frac{1}{x_{13}}$$

$$\frac{1}{x_{12}} + \frac{1}{x_{23}} - \frac{1}{x_{23}}$$

$$\frac{1}{x_{13}} + \frac{1}{x_{23}}$$

Need to include power balance at slack bus in equation system

DC Optimal Power Flow (for Economic Dispatch)

Objective

$$\min_{P_G} \sum_{i=1}^{N_G} C_{G_i}(P_{G_i}) = \sum_{i=1}^{N_G} (a_i P_{G_i}^2 + b_i P_{G_i} + c_i)$$

- Variables: P_G , θ (excluding angle at slack bus, i.e. $\theta_1 = 0$)
- Equality Constraints
 - Power balance at all nodes: $P = B \cdot \theta$
- Inequality Constraints
 - Limits on power generation: $P_G^{min} \le P_G \le P_G^{max}$
 - Limits on line flows: $-P_{ij}^{max} \le P_{ij} \le P_{ij}^{max}$

10

- Example
 - Two Generators:

$$C_1(P_{G1}) = 900 + 45P_{G1} + 0.01P_{G1}^2 \qquad 0MW \le P_{G1} \le 200MW$$

$$C_2(P_{G2}) = 2500 + 43P_{G2} + 0.003P_{G2}^2 \qquad 0MW \le P_{G2} \le 700MW$$

- Example
 - Two Generators:

$$C_1(P_{G1}) = 900 + 45P_{G1} + 0.01P_{G1}^2$$
 $0MW \le P_{G1} \le 200MW$
 $C_2(P_{G2}) = 2500 + 43P_{G2} + 0.003P_{G2}^2$ $0MW \le P_{G2} \le 700MW$

- Example
 - Two Generators:

$$\begin{split} C_1(P_{G1}) &= 900 + 45P_{G1} + 0.01P_{G1}^2 & 0MW \leq P_{G1} \leq 200MW \\ C_2(P_{G2}) &= 2500 + 43P_{G2} + 0.003P_{G2}^2 & 0MW \leq P_{G2} \leq 700MW & 600MW \end{split}$$

- Example
 - Two Generators:

$$C_1(P_{G1}) = 900 + 45P_{G1} + 0.01P_{G1}^2 0MW \le P_{G1} \le 200MW$$

$$C_2(P_{G2}) = 2500 + 43P_{G2} + 0.003P_{G2}^2 0MW \le P_{G2} \le 700MW 600MW$$

- Example
 - Two Generators:

$$C_1(P_{G1}) = 900 + 45P_{G1} + 0.01P_{G1}^2 \qquad 0MW \le P_{G1} \le 200MW$$

$$C_2(P_{G2}) = 2500 + 43P_{G2} + 0.003P_{G2}^2 \qquad 0MW \le P_{G2} \le 700MW$$

- Example
 - Two Generators:

$$C_1(P_{G1}) = 900 + 45P_{G1} + 0.01P_{G1}^2$$
 $0MW \le P_{G1} \le 200MW$ $C_2(P_{G2}) = 2500 + 43P_{G2} + 0.003P_{G2}^2$ $0MW \le P_{G2} \le 700MW$

- Example
 - Two Generators:

$$C_1(P_{G1}) = 900 + 45P_{G1} + 0.01P_{G1}^2$$
 $0MW \le P_{G1} \le 200MW$ $C_2(P_{G2}) = 2500 + 43P_{G2} + 0.003P_{G2}^2$ $0MW \le P_{G2} \le 550MW$

- Conclusions
 - Case 1: line flows do NOT reach their limits
 - Results equal to economic dispatch
 - Lagrange Multiplier for power balance constraints all equal and equal to price in economic dispatch
 - Case 2: at least one line limit is reached
 - Results deviate from pure economic dispatch
 - Lagrange Multipliers for power balance constraints deviate from each other => they correspond to locational marginal prices
- Locational Marginal Pricing
 - Lagrange Multiplier = Locational Marginal Price (LMP)
 - Indicates the cost of covering the next additional MWh of load at that particular node

AC Optimal Power Flow (for Economic Dispatch)

Objective

$$\min_{P_G} \sum_{i=1}^{N_G} C_{G_i}(P_{G_i}) = \sum_{i=1}^{N_G} (a_i P_{G_i}^2 + b_i P_{G_i} + c_i)$$

- Variables: P_G, U, θ
- Equality Constraints
 - Active Power balance at all nodes: $P_i = \sum_{ij \in \Omega_i} P_{ij}(U_i, U_j, \theta_i, \theta_j)$
 - Reactive Power balance at PQ nodes: $Q_i = \sum_{ij \in \Omega_i} Q_{ij}(U_i, U_j, \theta_i, \theta_j)$
 - Voltage Control at PU nodes: $U_i = U_i^{set}$
- Inequality Constraints
 - Limits on power generation: $P_G^{min} \le P_G \le P_G^{max}$
 - Limits on line flows: $-S_{ij}^{max} \le S_{ij} \le S_{ij}^{max}$ or $-I_{ij}^{max} \le I_{ij} \le I_{ij}^{max}$
 - Limits on voltage magnitudes of PQ buses: $U_i^{min} \le U_i \le U_i^{max}$

- Example
 - Two Generators:

$$C_1(P_{G1}) = 900 + 45P_{G1} + 0.01P_{G1}^2$$
 $0MW \le P_{G1} \le 200MW$ $C_2(P_{G2}) = 2500 + 43P_{G2} + 0.003P_{G2}^2$ $0MW \le P_{G2} \le 700MW$

- Example
 - Two Generators:

AC OPF vs. DC OPF

	DC OPF	AC OPF
$U_1 \angle \theta_1$	1∠0° <i>pu</i>	1∠0° pu
$U_2 \angle \theta_2$	1∠15.87° <i>pu</i>	1∠13.2° pu
$U_3 \angle \theta_3$	1∠ − 3.53° <i>pu</i>	0.92∠ − 5.8° <i>pu</i>
P_{G1}	84.6 <i>MW</i>	178 <i>MW</i>
P_{G2}	615.4 <i>MW</i>	539 <i>MW</i>
P_{loss}	0 MW (21 MW)	17 MW

22

Security Constrained Optimal Power Flow

- N-1 Security
 - System is operated such that no constraint is violated in normal operation or in case of a failure of one element in the system

Security Constrained Optimal Power Flow

- Optimization Problem
 - Same as AC OPF or as DC OPF
 - Additional power flow balances for considered failure cases
 - Additional operational limitations for considered cases
- Variables
 - Power Generation: P_G
 - Voltages in normal operation: U_0 , θ_0
 - Voltages for each contingency case: U_q , θ_q , q = 1, ..., N
- Problem Formulation

Normal Operation

s.t.
$$g_0(x_0, P_G) = 0$$

$$h_0(x_0, P_G) \le \overline{h}$$

$$g_q(x_q, P_G) = 0, \quad q = 1, \dots, N$$

$$h_q(x_q, P_G) \le \overline{h}, \quad q = 1, \dots, N$$

Contingency Cases

Summary

- Economic Dispatch
 - Find generation dispatch that minimizes cost of supply
 - Constraints include generation limits
 - Lagrange Multiplier of power balance constraint equal to marginal price

DC OPF and AC OPF

- Find generation dispatch that minimizes cost of supply (or other objective)
- Constraints include grid limitations (line flows, voltages, etc.)
- Lagrange Multipliers of power balance constraints correspond to locational marginal prices (LMP) => congestions and losses make LMPs deviate from each other

Summary

- Security Constrained OPF
 - Same as DC or AC OPF but includes constraints for contingency cases
 - Additional set of power flow equations per considered contingency

26