Métodos Estatísticos Básicos

Aula 3 - Medidas de tendência central

Prof. Regis Augusto Ely

Departamento de Economia Universidade Federal de Pelotas (UFPel)

Abril de 2014

Média aritmética

- As medidas de tendência central são estatísticas que caracterizam um conjunto de dados, sendo o valor em torno do qual se agrupam as observações.
- Média aritmética (\overline{X}) : é o quociente entre a soma dos valores dos nossos dados e o número total de dados, $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$.
- Quando temos dados não-agrupados pela frequência das observações, calculamos a média aritmética simples.
 Ex: 10, 14, 13, 15, 16, 18, 12.
 Logo, X = (10+14+13+15+16+18+12)/7 = 14.
- **Desvio em relação à média:** é a diferença entre um elemento de um conjunto de valores e a média aritmética desse conjunto, ou seja, $d_i = X_i \overline{X}$.

Ex: $d_1 = 10 - 14 = -4$; $d_2 = 14 - 14 = 0$, etc.

A soma algébrica dos desvios em relação à média é nula.

Assim,
$$\sum_{i=1}^{n} d_i = \sum_{i=1}^{n} (Xi - \overline{X}) = \sum_{i=1}^{n} Xi - n.\overline{X} = 0.$$

- ② Somando ou subtraindo uma constante c a todos os elementos do nosso conjunto de dados, a média aumentará em c. Assim, $\frac{\sum_{i=1}^{n}(Xi+c)}{n} = \frac{\sum_{i=1}^{n}Xi}{n} + \frac{n.c}{n} = \overline{X} + c.$
- Multiplicando ou dividindo todos os valores por uma constante c, a média fica multiplicada (ou dividida) por c. Assim, $\frac{\sum_{i=1}^{n}(c.Xi)}{c} = \frac{c\sum_{i=1}^{n}Xi}{c} = c.\overline{X}.$

Dados agrupados sem intervalo de classe

• Se os dados estiverem agrupados em uma tabela de frequência, devemos calcular uma $\underline{m\'edia\ aritm\'etica\ ponderada}$. $\overline{X} = \frac{\sum_{i=1}^n X_i f_i}{\sum_{i=1}^n f_i}$. Ex:

Dados	Frequência	
0	2	
1	6	
2	10	
3	12	
4	4	
Total	34	

$$\overline{X} = \frac{0 \times 2 + 1 \times 6 + 2 \times 10 + 3 \times 12 + 4 \times 4}{34} = 2,3$$

 Se os dados estiverem agrupados em intervalos de classe, utilizamos a <u>média aritmética ponderada</u>, definindo Xi como o ponto médio da classe i. Ex:

Estaturas(cm)	Frequência (fi)	Ponto médio (Xi)	Xi.fi
50 ⊢ 54	4	52	208
54 ⊢ 58	9	56	504
58 ⊢ 62	11	60	660
62 ⊢ 66	8	64	512
66 ⊢ 70	5	68	340
70 ⊢ 74	3	72	216
Total	40		2440

Assim,
$$\overline{X} = \frac{2440}{40} = 61$$

Média geométrica

• Média geométrica $(\overline{X_g})$: é a raíz n-ésima do produto dos dados,

$$\bar{X}_g = \sqrt[n]{\prod_{i=1}^n X_i}$$
, onde $\prod_{i=1}^n X_i = X_1.X_2...X_n$.
Ex: 10,60,360. $\bar{X}_g = \sqrt[3]{10.60.360} = 60$.

- Note que aplicando log, temos $log \overline{X_g} = \frac{1}{n} \sum_{i=1}^n log X_i$, de modo que o logaritmo da média geométrica é igual à média aritmética dos logaritmos dos valores observados.
- Assim, podemos notar que a média geométrica é uma média aritmética suavizada. Ela é muita utilizada em finanças e engenharia.

- Sempre teremos $\overline{X_g} \leq \overline{X}$, valendo a igualdade apenas se $x_i = x_j$ para todo $i \neq j$, ou seja, se todos os dados são iguais.
- Para provar que $\overline{X_g} \leq \overline{X}$ basta observar que, para o caso de apenas duas observações, X_1 e X_2 :

$$\begin{array}{l} \overline{X^2} - \overline{X_g^2} = (\frac{X_1 + X_2}{2})^2 - X_1 . X_2 = \frac{X_1^2 - 2 . X_1 . X_2 + X_2^2}{4} = (\frac{X_1 - X_2}{2})^2 \geq 0. \\ \text{Logo, como} \ \overline{X^2} - \overline{X_g^2} \geq 0, \text{ temos } \overline{X_g} \leq \overline{X}. \end{array}$$

Média geométrica ponderada

Dados agrupados sem intervalo de classe

• Se os dados forem agrupados, calculamos a <u>média geométrica</u> ponderada, $\overline{X_g} = \sum_{i=1}^{n} \sqrt[n]{\prod_{i=1}^{n} X_i^{f_i}} = \sum_{i=1}^{n} \sqrt[n]{X_1^{f_1}.X_2^{f_2}...X_n^{f_n}}$. Ex:

X_i	f_i
1	2
3	4
9	2
27	1
Total	9

$$\overline{X_g} = \sqrt[9]{1^2 \cdot 3^4 \cdot 9^2 \cdot 27^1} = 3,8296$$

• Se os dados forem agrupados com intervalo de classe o procedimento é o mesmo, porém agora X_i será o ponto médio de cada classe.

Média harmônica

• **Média harmônica** (\overline{X}_h) : É o inverso da média aritmética dos inversos de cada elemento do conjunto de dados,

$$\overline{X}_h = (\frac{1}{n}, \sum_{i=1}^n X_i^{-1})^{-1} = \frac{n}{\sum_{i=1}^n \frac{1}{X_i}}.$$

- A média harmônica é bastante utilizada na física, quando trabalhamos com grandezas que variam inversamente. Ex: velocidade e tempo.
- Sempre teremos $\overline{X}_h \leq \overline{X}_g \leq \overline{X}$, valendo a igualdade apenas se todos os dados forem iguais. Podemos ver isso para o caso de apenas duas observações, X_1 e X_2 :

$$\begin{split} \overline{X}_h &= \big[\frac{1}{2}.\big(\frac{1}{X_1} + \frac{1}{X_2}\big)\big]^{-1} = \frac{2X_1.X_2}{X_1+X_2} = \frac{2.\overline{X_g}^2}{2.\overline{X}} = \frac{\overline{X}_g.\overline{X}_g}{\overline{X}}.\\ \mathsf{Como}~\overline{X}_g &\leq \overline{X}, \; \mathsf{temos}~0 \leq \frac{\overline{X}_g}{\overline{X}} \leq 1. \; \mathsf{Logo}, \; \overline{X}_h \leq \overline{X}_g. \end{split}$$

Média harmônica ponderada

Dados agrupados com intervalo de classe

• Se os dados forem agrupados, calculamos a <u>média harmônica</u> <u>ponderada</u>, $\overline{X}_h = \frac{\sum_{i=1}^n f_i}{\sum_{i=1}^n \frac{T_i}{X_i}}$. Ex:

Classes	fi	Xi	$\frac{f_i}{X_i}$
1 ⊢ 3	2	2	2/2=1
3 ⊢ 5	4	4	4/4=1
5 ⊢ 7	8	6	8/6=1,33
7 ⊢ 9	4	8	4/8=0,5
9 ⊢ 11	2	10	2/10=0,2
total	20		4,03

$$\overline{X_h} = \frac{20}{4,03} = 4,96$$

 Se os dados forem agrupados sem intervalo de classe o procedimento é o mesmo, porém agora X_i será o valor de cada elemento do conjunto de dados.

- Obs 1: a média harmônica não aceita valores iguais a zero como dados de uma série.
- **Obs 2:** quando os valores da variável não forem muito diferentes, verifica-se a seguinte relação, $\overline{X_g} = \frac{(\overline{X} + \overline{X_h})}{2}$. Ex: $\{10.1; 10.1; 10.2; 10.4; 10.5\}$ $\overline{X} = \frac{51.3}{5} = 10,2600$ $\overline{X_h} = \frac{5}{0.4874} = 10,2574$

- Moda (M_o): É o valor que ocorre com maior frequência em uma série de dados.
- Se os dados estiverem não agrupados, devemos procurar o valor que mais se repete.
 - Ex: {7, 8, 9, 10, 10, 10, 11, 12}. Temos Mo=10.
- Se nenhum valor aparece mais vezes do que outro, chamamos a série de amodal.
 - Ex: $\{3, 5, 8, 10, 12\}$ não apresenta moda. É <u>amodal</u>.
- Se dois ou mais valores repetem o mesmo número de vezes, a série tem mais de um valor modal.
 - Ex: {2, 3, 4, 4, 4, 5, 6, 7, 7, 7, 8, 9} tem duas modas, é <u>bimodal</u>. Suas modas são 4 e 7.
- O emprego da moda é utilizado apenas em alguns casos específicos, pois a média aritmética possui maior estabilidade. Ex: salários.

 Sem intervalos de classe: com os dados agrupados, é possível determinar a moda apenas olhando o dado com a maior frequência.

Temperatura	Frequência	
0oC	3	
1ºC	9	
2ºC	12	
3ºC	6	

$$M_o = 2^{\circ}C$$

• Com intervalos de classe: a classe com a maior frequência é a classe modal. A moda será um valor compreendido entre os limites da classe moda.

- Moda bruta: $M_o = (\frac{I*+L*}{2})$, onde I* é o limite inferior da classe modal e L* o limite superior da classe modal.
- Moda de Czuber: $M_c = l * + (\frac{d_1}{d_1 + d_2}).h *$, onde d_1 é a frequência da classe modal menos a frequência da classe anterior a modal; d_2 é a frequência da classe modal menos a frequência da classe posterior a modal; e h * é a amplitude da classe modal. Ex:

Classes	Frequências
54 ⊢ 58	9
58 ⊢ 62	11
62 ⊢ 66	8
66 ⊢ 70	5

A classe modal é
$$58 \vdash 62$$
, logo $M_o = \frac{58+62}{2} = 60$; e $M_c = 58 + \frac{(11-9)}{(11-9)+(11-8)}.4 = 59,6$

Mediana Definicão

- Mediana (M_e): é o valor que separa um conjunto de dados (dispostos em ordem crescente ou decrescente) em dois subconjuntos de mesmo número de elementos.
- Se a série tiver número ímpar de termos, a mediana será o elemento $\frac{n+1}{2}$.
- Se a série tiver numero par de termos, a mediana será a média dos elementos $\frac{n}{2}$ e $\frac{n}{2} + 1$.
- Ex. 1: $\{1, 3, 0, 0, 2, 4, 1, 2, 5\}$. 1° colocamos a série em ordem crescente $\{0, 0, 1, 1, 2, 2, 3, 4, 5\}$. 2° como existem 9 elementos, a mediana será o elemento de número $\frac{n+1}{2} = \frac{10}{2} = 5$. Assim, $M_e = 2$.

Mediana Definicão

- Ex. 2: {1, 3, 0, 0, 2, 4, 1, 3, 5, 6}. 1° colocamos a série em ordem crescente {0, 0, 1, 1, 2, 3, 3, 4, 5, 6}. 6}. 2° como existem dez elementos, a mediana será a média dos elementos de número $\frac{n}{2} = \frac{10}{2} = 5$ e $\frac{n}{2} + 1 = 6$, logo $M_e = \frac{2+3}{2} = 2, 5$.
- A mediana depende da posição dos valores da série. Ela não se deixa influenciar por valores extremos, como é o caso da média. Já a moda, depende da frequência. Estes três valores em geral são diferentes.
- Ex. 3: $\{5, 7, 10, 10, 18\}$. $\overline{X} = 10$, $M_o = 10$, $M_e = 10$.
- Ex. 4: $\{5, 5, 10, 13, 67\}$. $\overline{X} = 20$, $M_o = 5$, $M_e = 10$.

Dados agrupados sem intervalo de classe

- Se o somatório das frequências for ímpar, a mediana será o elemento $\frac{\sum_{i=1}^n fi+1}{2}$.
- Identificamos facilmente esse elemento através da frequência acumulada. Ex:

Xi	fi	Fi
0	2	2
1	6	8
2	9	17
3	13	30
4	5	35
total	35	

Temos
$$\frac{\sum f_i + 1}{2} = \frac{36}{2} = 18$$
. Logo, $M_e = 3$.

• Se o somatório das frequências for par, a mediana será a média dos termos $\frac{\sum_{i=1}^n f_i}{2}$ e $\frac{\sum_{i=1}^n f_i}{2} + 1$. Ex:

Xi	fi	Fi
12	1	1
14	2	3
15	1	4
16	2	6
17	1	7
20	1	8
total	8	

Temos
$$\frac{\sum_{i=1}^{n} f_i}{2} = \frac{8}{2} = 4$$
 e $\frac{\sum_{i=1}^{n} f_i}{2} + 1 = \frac{8}{2} + 1 = 5$. Assim, $M_{\rm e} = \frac{15+16}{2} = 15, 5$.

Dados agrupados com intervalo de classe

- Para calcularmos a mediana de dados agrupados com intervalo de classe, seguimos as seguintes etapas:
 - 1º Determinamos as frequências acumuladas.
 - $2^{\frac{O}{2}}$ Calculamos $\frac{\sum_{i=1}^{n} f_i}{2}$.
 - $3^{\underline{o}}$ Marcamos a classe correspondente a frequência acumulada

imediatamente superior a $\frac{\sum\limits_{i=1}^{n}f_{i}}{2}$. Essa será a classe mediana.

 $4^{\mathbf{Q}}$ Temos que $M_e=I^*+\frac{[(\frac{\sum_{i=1}^n f_i}{2}-FAA).h*]}{f*}$, onde I* é o limite inferior da classe mediana, FAA é a frequência acumulada da classe anterior à classe mediana, f* é a frequência simples da classe mediana, e h* é a amplitude do intervalo da classe mediana.

Ex:

Classes	fi	Fi
50 ⊢ 54	4	4
54 ⊢ 58	9	13
58 ⊢ 62	11	24
62 ⊢ 66	8	32
66 ⊢ 70	5	37
70 ⊢ 74	3	40
total	40	

$$\frac{\sum fi}{2} = 20 \rightarrow \text{Classe mediana: } 58 \vdash 62.$$

$$l* = 58$$
, $FAA = 13$, $f* = 11$, $h* = 4$.

$$Md = 58 + \frac{[(20-13)\times4]}{11} = 58 + \frac{28}{11} = 60,54.$$

Possíveis empregos da mediana

- Quando desejamos obter o ponto que divide a distribuição em duas partes iguais.
- Quando há valores extremos que afetam demais a média.
- Em variáveis como salário.

Separatrizes Definição

- Existem outras medidas de posição que não são medidas de tendência central, como os quartis, decis e percentis, conhecidas genericamente por separatrizes.
- Quartil: são os valores que dividem a série em quatro partes iguais. Precisamos 3 quartis para dividir a série em quatro partes.
- Note que o segundo quartil (Q_2) será sempre igual a mediana.

- Ex. 1: $\{5, 2, 6, 9, 10, 13, 15\}$. $1^{\underline{o}}$ ordenamos a série $\{2, 5, 6, 9, 10, 13, 15\}$. $2^{\underline{o}}$ calculamos a mediana, que será o segundo quartil $M_e = Q2 = 9$. $3^{\underline{o}}$ dividimos a série em dois grupos $\{2, 5, 6\}$ e $\{10, 13, 15\}$. $4^{\underline{o}}$ calculamos os outros quartis como sendo as medianas desses dois grupos $Q_1 = 5$ e $Q_2 = 13$.
- Ex. 2: $\{1, 1, 2, 3, 5, 5, 6, 7, 9, 9, 10, 13\}$. $M_e = Q_2 = \frac{5+6}{2} = 5, 5$. Logo, temos $\{1, 1, 2, 3, 5, 5\}$ com $Q_1 = 2, 5$, e $\{6, 7, 9, 9, 10, 13\}$ com $Q_3 = 9$.

- Se os dados forem agrupados sem intervalos de classe, utilizamos $\frac{\sum_{i=1}^n f_i}{2}$ e $\frac{\sum_{i=1}^n f_i}{2} + 1$ para calcular as posições dos quartis.
- Se os dados forem agrupados com intervalos de classe, utilizamos a mesma fórmula da mediana para calcular os quartis, entretanto substituímos $\sum_{i=1}^{n} \frac{f_i}{2}$ por $k \frac{\sum_{i=1}^{n} f_i}{4}$, sendo k o número do quartil:

Q1=I* +
$$\frac{[(\frac{\sum \hat{h}}{4} - FAA).h^*]}{f^*}$$

Q2= I* + $\frac{[(2\frac{\sum \hat{h}}{4} - FAA).h^*]}{f^*}$
Q3=I* + $\frac{[(3\frac{\sum \hat{h}}{4} - FAA).h^*]}{f^*}$

Dados agrupados com intervalo de classe

Ex:

Classes	fi	Fi
50 ⊢ 54	4	4
54 ⊢ 58	9	13
58 ⊢ 62	11	24
62 ⊢ 66	8	32
66 ⊢ 70	5	37
70 ⊢ 74	3	40
total	40	

$$\begin{array}{c} \frac{\sum fi}{2} = 20 \ \rightarrow \ \text{classe mediana:} \ 58 \vdash 62. \ \textit{I*} = 58, \ \textit{FAA} = 13, \ \textit{f*} = 11, \ \textit{h*} = 4 \\ \\ \textit{M}_e = \textit{Q}_2 = 58 + \frac{[(20-13)\times4)}{11} = 60, 54. \\ \\ \frac{\sum fi}{4} = 10 \ \rightarrow \ \text{classe mediana do } 1^9 \ \text{grupo:} \ 54 \vdash 58. \\ \\ \textit{Q}1 = 54 + \frac{[(10-4)\times4]}{9} = 56, 66. \\ \\ \frac{3.\sum fi}{4} = 30 \ \rightarrow \ \text{classe mediana do } 3^9 \ \text{grupo:} \ 62 \vdash 66. \\ \\ \textit{Q}3 = 62 + \frac{[(30-24)\times4]}{9} = 65. \end{array}$$

- **Decil:** são os valores que dividem a série em dez partes iguais. Precisamos 9 decis para dividir a série em 10 partes.
- O procedimento é análogo, porém agora o 5º decil será igual ao 2º quartil, que será igual à mediana.
- Ex: calcule o $3^{\underline{0}}$ decil da tabela anterior. Como k=3, temos 3. $\frac{\sum fi}{10} = 3.\frac{40}{10} = 12$, e a classe mediana é 54 \vdash 58. Logo, $D_3 = 54 + \frac{[(12-4)x4]}{9} = 57,55$.

Percentil (ou centil)

• Serão os 99 valores que separam a série em 100 partes iguais, de modo que $P_{50}=M_e$, $P_{25}=Q_1$ e $P_{75}=Q_3$. O cálculo é análogo, mas utilizandok. $\frac{\sum_{100}^{\infty}}{100}$.