Lecture 6 (Gradient Descent)

1 Finding $argminJ(\theta)$ - Gradient Descent

The idea of gradient descent is used, since it might not always be possible to find **zeroes** of the gradient of $J(\theta)$. The algorithm is something like:

- 1. θ is initialised to a random value, call it θ^0
- 2. Now, θ is updated as

$$\theta^{(t+1)} = \theta^t - \eta \cdot \frac{\partial f(\theta)}{\partial \theta} \bigg|_{\theta^t}$$

In n+1 dimensional space, it looks like:

$$\theta^{(t+1)} = \theta^t - \eta \cdot \nabla_{\theta} f(\theta^t)|_{\theta^t}$$

 $(\theta^k$ is a n+1 dimensional vector, ∇_{θ} is computed by taking partial derivate for each term individually)