

Welcome to the Phase 4 update for Allay Airway Delay.

Reminder, our goal is to create a machine learning model that will predict when flights are delayed in order to help air travellers.

Phase 4 Accomplishments

- Major Data Pipeline Revisions
- Additional Feature Engineering
- Improved Feature Selection
- Spearman Correlation Post-Mortem Analysis
- Unique, Novel Approaches
- Project Research Notebook Creation
- Flight Delay Prediction Models Created!
- Top Model Selected and Results Completed!

3

We have accomplished many things in Phase 4, most important of which is the creation of our final flight delay prediction models.

We have dramatically revised, improved, and expanded our end-to-end pipeline, pictured here.

We have fully integrated three models into the pipeline, one as a basic baseline and two more advanced models. Since our goal is to minimize false negatives while balancing recall, our model should maximize F0.5 and precision.

Features Used Graph Features Categorical Features **Numeric Features** - QUARTER - DISTANCE - pagerank - MONTH - ELEVATION - DAY_OF_WEEK - HourlyAltimeterSetting - OP_UNIQUE_CARRIER - HourlyDewPointTemperature - DEP HOUR - HourlyWetBulbTemperature - AssumedEffect_Text - HourlyDryBulbTemperature - HourlyPrecipitation - airline_type - HourlyStationPressure - is prev delayed - Blowing Snow - HourlySeaLevelPressure - HourlyRelativeHumidity - Freezing_Rain 27 Total Features! - HourlyVisibility - Rain - Snow - HourlyWindSpeed Note: - Thunder - perc_delay Bold features were created via feature fngineering. 6

Each model was trained on 13 categorical features, 13 numeric features, and one graph feature, listed here.

Hyperparameter Tuning

Logistic Regression

- Regularization Parameter: 0.0, 0.01, 0.5, 1.0, 2.0
- Elastic Net:
 - 0.0, 0.5, 1.0
- Maximum Iterations: 5, 10, 50
- Threshold:
 - 0.5, 0.6, 0.7, 0.8

Multilayer Perceptron Classifier Neural Network

- Maximum Iterations:
 - 100
- Block Size:
- 128 - Step Size:
 - 0.05
- Layers: [90, 30, 15, 2], [90, 15, 2]
- Threshold:
 - 0.5, 0.6, 0.7, 0.8

Gradient Boosted Trees

- Maximum Iterations:
 - 5, 10
- Maximum Depth:
 - 4,8
- Maximum Bins: 32, 128
- Step Size:
- Step Size: 0.1, 0.5
- Threshold:
 - 0.5, 0.6

7

Each model undergoes both blocking time series cross validation and hyperparameter tuning with the parameters here. Due to time constraints, the latter two advanced models had fewer parameters tuned on them, but we believe the results are still valid.

Now for the results!

As shown here, our baseline logistic regression model displays decent predictive power. This new model actually beats an earlier Logistic regression model that we had trained on the old feature set by 0.14 points for test evaluation.

The Multiclass Preceptron Classifier Neural Network model performed slightly better, improving over the baseline in training validation by 0.013 points but worse in test evaluation by 0.012 points

Gradient Boosted Trees performed even better, improving over the baseline in training validation by 0.03 points and in test evaluation by 0.011 points.

Feature Importance ipitation 2.423615 2.423615 featureName coefficient importance 0.510042 Freezing_Rain_class_0 -1.344212 1.344212 is_prev_delayed_idx 0.510042 DEP_HOUR_idx 0.269485 0.269485 DEP_HOUR_class_06 -1.138793 DEP_HOUR_class_04 -1.116434 1.116434 OP_UNIQUE_CARRIER_idx 0.075035 0.075035 HourlyPrecipitation 0.061008 0.061008 dEffect_Text_class_Christmas_p2 0.843418 0.025022 Thunder_idx 0.025022 MONTH_idx 0.018146 0.018146 DEP_HOUR_class_08 -0.499042 0.499042 Snow_idx 0.014303 0.014303 DEP_HOUR_class_02 0.429457 MONTH_class_7 0.415015 0.415015 AssumedEffect_Text_idx 0.011775 0.011775 HourlyVisibility 0.008084 0.008084 Freezing_Rain_idx 0.003796 0.003796 Blowing_Snow_class_0 0.337041 0.337041 HourlySeaLevelPressure 0.002079 0.002079 HourlyDryBulbTemperature 0.001226 0.001226 DEP_HOUR_class_21 0.320971 0.320971 **Gradient Boosted Trees** Logistic Regression 11

For feature importance: weather conditions, previous flight delays, and scheduled flight times have the greatest impact on model predictions.

* * * * *	Best Performing Model: Gradient Boosted Trees Parameters Used: maxIter = 5, maxDepth = 4, maxBins = 3, stepSize = 0.5, threshold = 0.5 Number of Features: 27 Total: 13 categorical, 13 numeric, one graph feature. Top 10 Most Important Features: Shown on right Next Steps:	featureName is_prev_delayed_idx DEP_HOUR_idx OP_UNIQUE_CARRIER_idx HourlyPrecipitation Thunder_idx MONTH_idx Snow_idx AssumedEffect_Text_idx HourlyVisibility Freezing_Rain_idx
	 Code Cleanup and Documentation Complete Research Paper Prepare Project Presentation 	

In conclusion, our best model is gradient boosted trees with all of the information here.

That is our Phase 4 update! Thank you!

		14
		14