PRÁCTICA 3_2

ALGORITMOS CON ESTRUCTURAS ALTERNATIVAS Y REPETITIVAS

Ejercicio 1

Muestra en pantalla 15 números obtenidos de forma aleatoria. Entre un número y otro haz que el ordenador espere dos segundos como si estuviera pensando en obtener el nuevo número.

Ejercicio 2

Modifica el ejercicio 1 de la PRÁCTICA 2_2 para que el proceso se repita 5 veces (para 5 alumnos). Además, queremos que se muestre al final del programa la NOTA MEDIA DEL GRUPO. Hazlo para números reales.

Ejercicio 3

Captura por teclado un número y queremos que nos pregunte la tabla de multiplicar de dicho número. Nosotros responderemos y el programa indicara si es correcto o no, lo que hemos escrito.

Ejercicio 4

Crear un algoritmo que calcule la raíz cuadrada del número que introduzca el usuario. Si se introduce un número negativo, debe mostrar un mensaje de error y volver a pedirlo (tantas veces como sea necesario).

Ejercicio 5

Modifica el ejercicio 2 de la práctica P2_2 para que el proceso se repita mientras el sueldo de la persona sea positivo. Debes indicar al final del proceso, cuánto dinero recauda el Estado en concepto de IRPF y Seguridad Social. Y cuánto dinero paga la empresa por todos sus trabajadores antes de aplicar los impuestos.

Ejercicio 6

Repite el ejercicio 1 de la práctica P 3.1. Debemos contar cuántos números de cada grupo tenemos y antes de introducir el número siguiente se pregunte si queremos continuar el proceso o terminarlo.

Ejercicio 7

Modificar el ejercicio 3 para que estemos continuamente repasando tablas de multiplicar, hasta que le indiquemos lo contrario.

Ejercicio 8

Modifica el ejercicio anterior para que cuente el número de fallos que hemos tenido al repasar una tabla de multiplicar.

Ejercicio 9

Modifica el ejercicio anterior para que, si tenemos más de 2 fallos, tengamos que repetir la tabla de multiplicar.

Ejercicio 10

Haz un programa para que el ordenador obtenga un número aleatorio comprendido entre 1 y 100 y tú tengas que adivinarlo. Cada vez que digas un número, el ordenador te dirá si es CORRECTO o que el número a adivinar es mayor o menor que el escrito. Repetir hasta que acierte el número.

Ejercicio 11

Haz un algoritmo para pasar expresar en binario un número decimal positivo.

Ejercicio 12

Escribe un programa que pida el limite inferior y superior de un intervalo. Si el límite inferior es mayor que el superior lo tiene que volver a pedir. A continuación se van introduciendo números hasta que introduzcamos el 0. Cuando termine el programa dará las siguientes informaciones:

La suma de los números que están dentro del intervalo (intervalo abierto).

Cuantos números están fuera del intervalo.

He informa si hemos introducido algún número igual a los límites del intervalo.

Ejercicio 13

Escribe un programa que dados dos números, uno real (base) y un entero positivo (exponente), saque por pantalla el resultado de la potencia. No se puede utilizar el operador de potencia.

Ejercicio 14

Realizar un ejemplo de menú, donde podemos escoger las distintas opciones hasta que seleccionamos la opción de "Salir".

Ejercicio 15

Introducir un número por teclado y mostrar si el número es primo o no.

(*) Un número es primo si es divisible sólo por 1 y por si mismo.

Ejercicio 16

Mostrar en pantalla los N primeros número primos. Se pide por teclado la cantidad de números primos que queremos mostrar.