	Lecture 2 (Ch.1)
	Color dia di licut de quantitative
	So far, continuous vs. discrete ¿ qualilative Data catez.
	One place where the difference between cont. and categ.
	is important is in assessing the "distribution" (in the
	lay sense of The word) of data. When we talk about
	is important is in assessing The "distribution" (in The lay sense of The word) of data. When we talk about data, we do NOT use The word distribution, but rather histogram
	Dotatots and stem-and-leaf are alternatives.
	Read about them, but we will do only histograms.
	Histogram for discrete x: (a lot more in Lab)
	Easy! Just count The occurrence of each
	level of The discrete variable, and plot that
	Count (frequency) on y-axis.
	E.g. A = grade (levels A, B, C, D, F) x = fruit type
	freq.
	20 -
	2+ D D D D D D D D D D D D D D D D D D
	levels of x ABCDF ABCDF
	Conclusion from this histogram:
_	The most frequent grade is B (ie. mode = B).
	There are only 5 distinct grades (ie- 5 levels)
_	
_	The minimum (maximum) grade is F (A).
_	The histogram is not symmetric, spread

A realistic example: My student evaluations from a past quarter:

Caren Marzban Other SP16

Form G: Lecture Assignments	"61" sur	rveyed	"124" enrolled

Question	Excellent	Very Good	Good	Fair	Poor	Very Poor	Median
The course as a whole:	27%	33%	22%	12%	3%	3%	3.80
Textbook overall:	33%	30%	27%	10%	0%	0%	3.94
Instructor overall:	50%	28%	10%	7%	2%	3%	4.50
Instructor's contribution:	42%	27%	15%	8%	3%	3%	4.22
Instuctor's interest:	53%	26%	7%	5%	2%	7%	4.56
Amount learned:	39%	27%	20%	8%	3%	2%	4.09
Relevance and usefulness of homework:	37%	17%	27%	12%	3%	3%	3.75

For median calculation: 5 = Excellent 4 = Very Good 3 = Good 2 = Fair 1 = Poor 0 = Very Poor 1 = Very Poor 1 = Very Poor 1 = Very Poor 2 = Very Poor 3 = Very Poor 3

The point: The shape of histogram is useful But its shape does depend on binsize

small binsize => bunch of short bars scattered across The No good either way! x-axis.

large binsize . Ten large blocks.

In Lab you leave how to "town The knob" That controls The bin size (or their number) ie. "breaks" in R. revealing useful info, e-g., 2 different groups.

Important.

There is a great deal of useful info in a histogram:
e.g. center (location) of data = typical value
Spread of data, = typical operad of value
shape of data, --- All tell a good story.

Random Variables (Important Concept!)

Each variable labeling The x-axis of The histograms above is called a vandom variable. It's a variable that takes random values; the values are called Levels. Eq. x = y and of 120 stadats, levels: A,B,C, --- x = y fruit type in a fruit basket, levels: orange, apple, ---

re= up-face of a coin, levels: H.T.

Two variations on histograms are Relative Frequency histograms	/a.s -
and Density Scale histograms	
Sometimes it's better to look at Relative freq histogram	5;
Rel. Freq. = Frequency (total sample size.	
At times it's important to look at density scale histograms	4
Rel. Freq. / binsize.	
(E.g. When binsize itself varies along x-axis.	
Density histograms have 2 nice properties:	
Density histograms have 2 nice properties: 1) Area of each bor = vol. freq. E.g. area under hist, between two values a box	
E.g. area uncer Ms1. between two vames	
those two values.	
2) Tet lava 2 (for pale bility (ty)	
2) Total area = 1 Good for probability (Later!)	
Any/All of These histograms carry a great deal of	
information, and so, our lesson is, again	
Moral: When you see a column of numbers,	
Moral: When you see a column of numbers, The 1st thing you should do is histogram.	
Thu-lest 2): In The above lest uve note, There exists at leas	;+
one random variable That when considered as quantitative	
one vandom variable that when considered as quantitative has a histogram that has no hump," it does not look	K
like hump	
Identify one of them, and plot its rel. freq. hist. (By hand).	

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.