Unidade V - Fundamentos e Sistemas de Cores

IME 04-10842 Computação Gráfica Professor Guilherme Mota

Por que estudar cores em CG?

http://en.wikipedia.org/wiki/Geri%27s_Game

O que são cores?

Luz + Sistema Visual

Física da Luz

Natureza dual da luz

ONDA ELETROMAGNÉTICA

$$c = \lambda f$$

 $c = \text{Velocidade da Luz} \cong 3.0 \times 10^8 \text{ m/s}$

PARTÍCULA

Espectro Eletromagnético

Natureza da luz

Cor	$\lambda (1 \text{ nm} = 10^{-9} \text{ m})$
Violeta	380-440 nm
Azul	440-490 nm
Verde	490-565 nm
Amarelo	565-590 nm
Laranja	590-630 nm
Vermelho	630-780 nm

Percepção das cores

FIGURE 2.3
Graphical
representation of
the eye looking at
a palm tree. Point
C is the optical
center of the lens.

Formação de cores

Processos de formação de cores

• As cores que percebemos surgem da iteração entre fontes de luz e diversos tipos de materiais encontrados no mundo físico.

- Podem ser de 3 tipos:
 - Aditivo.
 - Subtrativo.
 - Por pigmentação.

Processo aditivo

O olho não vê componentes!

Processo subtrativo

 $t(\lambda) \rightarrow função transparência$

$$E_f(\lambda) = t(\lambda) \cdot E_i(\lambda)$$

Processo por pigmentação

Percepção de cores

Representação no sistema visual humano

FIGURE 2.3
Graphical
representation of
the eye looking at
a palm tree. Point

C is the optical center of the lens.

Representação no sistema visual humano

Olho humano: Cones (RGB) e Bastonetes (não distinguem cores)

Reconstrução perceptual

Representação de cores

Representação no espaço tricromático

• O sistema visual humano representa as cores do espaço espectral E em um espaço tricromático.

• Isto significa que três amostras(nas faixas correspondentes ao vermelho, verde e azul) são suficientes para os propósitos de reconstrução perceptual.

Sistemas emissores

- Reconstroem cores.
- Possuem um conjunto de emissores P_k, k=1...n.
- Cada emissor está associado a uma cor primária com distribuição espectral $P_k(\lambda)$.
- O conjunto de cores que podem ser reconstruídas por um sistema emissor é denominado gamute

$$C_r(\lambda) = \sum_{k=1}^{n} c_k P_k(\lambda)$$

Geometria dos espaços de cores tricromáticos

• Variação da luminância

• Retas de croma

Triângulo de Maxwell

Coordenadas de cromaticidade

Sólidos de cor e diagrama de cromaticidade

Sistemas de cor

• Sólido de cor + uma base = Sistema de cor

$$c = c_1 P_1(\lambda) + c_2 P_2(\lambda) + c_3 P_3(\lambda)$$

Sistemas do CIE

Sistemas de cor padrão

- Sistemas propostos para especificação de cor padronizada.
- Independentes de dispositivos físicos.
- Sistemas propostos pela CIE (Comission Internationale de l'Eclairage)
 - Sistema CIE-RGB.
 - Sistema CIE-XYZ.

Sistema CIE-RGB

- Primeiro sistema padrão proposto.
- Utiliza uma representação de cor no espaço tricromático
- Base de primárias do sistema:
 - $-R(\lambda)$ vermelho com comprimento de onda de 700 nm
 - $G(\lambda)$ verde com comprimento de onda de 546 nm
 - $-B(\lambda)$ azul com comprimento de onda de 435.8 nm

Funções de reconstrução de cor (Sistema CIE-RGB)

Sistema CIE-RGB

Sistema CIE-XYZ

• Sistema proposto capaz de reconstruir todas as cores visíveis.

- A base de primárias {X,Y,Z} é formada por cores não visíveis que estão fora do sólido de cor.
- Deste modo todas as cores visíveis possuem coordenadas positivas.

Sistema CIE-XYZ

Sistema CIE-XYZ

Funções de Reconstrução de Cor CIE-XYZ

Conceitos de Cores no CIE-XYZ

Saturação

Saturação
$$(c_1) = \frac{a}{a+b}$$

Complementaridade

$$\frac{a}{a+b} \cdot c + \frac{b}{a+b} \cdot c' = \text{Branco}$$

$$\alpha \cdot c + \beta \cdot c' = Branco$$

Comparação CIE-RGB e CIE- XYZ

• CIE-XYZ

CIE-RGB

Conversão entre os sistemas CIE-RGB e CIE-XYZ

- É feita através de mudanças de coordenadas (determinada por uma mudança de base).
- A mudança entre as bases é determinada por uma transformação linear.

$$\begin{vmatrix} X \\ Y \\ Z \end{vmatrix} = \begin{vmatrix} 0.49 & 0.31 & 0.20 \\ 0.17 & 0.81 & 0.01 \\ 0.00 & 0.01 & 0.99 \end{vmatrix} \cdot \begin{vmatrix} R \\ G \\ B \end{vmatrix}$$

Sistemas dos dispositivos

Sistema dos monitores - mRGB

Processo Aditivo

Sistema dos monitores - mRGB

Sistema das impressoras CMY(K)

processo predominantemente subtrativo

Conversões entre sistemas

RGB para CMY

Ciano = 1 - Vermelho

Magenta = 1 - Verde

Amarelo = 1 - Azul

CMY para RGB

Vermelho = 1 - Ciano

Verde = 1 - Magenta

Azul = 1 - Amarelo

Conversões entre sistemas

CMY para CMYK

```
Preto = mínimo(Ciano, Magenta, Amarelo)
```

```
Ciano = (Ciano-Preto)/(1-Preto)
```

```
Magenta = (Magenta-Preto)/(1-Preto)
```

Amarelo = (Amarelo-Preto)/(1-Preto)

CMYK para CMY

```
Ciano = minimo(1, Ciano \times (1-Preto)+Preto)
```

```
Magenta = minimo(1, Magenta \times (1-Preto)+Preto)
```

Amarelo = $minimo(1, Amarelo \times (1-Preto)+Preto)$

Gamute no diagrama de cromaticidade dos dispositivos

Sistemas de interface

Sistemas de interface

- Permitem uma especificação intuitiva de cores.
- São baseados em uma decomposição crominâncialuminância.

- Utilizam o seguinte esquema:
 - Escolha da crominância.
 - Escolha da luminância (brilho).

Sistemas de interface

• Escolha da crominância:

- Escolha de um ponto no espaço de croma (bidimensional).
 - Primeiro o usuário escolhe a matiz.
 - Depois o usuário escolhe a saturação.

- Sistema criado para a especificação de cores em monitores.
- Introduz um sistema de coordenadas segundo o esquema luminância-crominância no sistema mRGB.
- Descreve uma cor através de 3 parâmetros:
 - Hue(matiz)
 - Saturation(saturação)
 - Value(valor), uma medida de brilho igual a max {r,g,b}.

Dúvidas

