Stephenson six-bar linkages.

MANOHAR. AKULA Asu Idi 122 3355 191.

91.

Degree at freedom - The "smallest number at real valued coordinars

mas m= 3

N= G

Tround

N-no. of links including

D.O.Fel

fi = 1 (i= 1, 2. 3, 4, 5, 6, 7) - Rev.

$$= 3(-2) + 7$$

016)

Watt-six-bor lineage

it is a planar mechanism

$$\Rightarrow$$
 No. of links $N = 2 \times 3 + 1 + 1$ (including grounds)
 $N = 8$

$$f_1^2 = \int_{-1}^{2} (1 = 1, 1, 3, 4, 5, 6 : Oniversal joint)$$

$$(1 = 7, 8, 9) - prise are joint$$

$$\begin{array}{rcl} & D.0.F & m & (N-1-J) + \sum_{i=1}^{J=9} F_i \\ & \geq & 6 & (8-1-9) + 6(2) + 3(1) \\ & = & 6(-2) + 2 + 3 \end{array}$$

```
(4) => Parallel manipulator.
 soln: Since, it is a sparial mechanium m=6
    No. of links (including ground) N = 2 × 6 + 1 +1
                                                     N = 14
     no. of Joints
                                            J2-6 Levolute Joints

J2-6 Universal Joints

J3-6 Speckinical Joints
          Fi = \[ \left( i = (1,2,3,4,5,6) - Revolute Joints) \]
2 \( (i = 7,8,9,10,11,12) - Universal Joints) \]
3 \( (i = 12,14,15,16,17,18) - Spherical Joints)
         D. O. F = m (N-1-7) + = F;
```

$$\begin{array}{ll}
0.0.f &=& m(N-1-T) + \frac{\sqrt{2}8}{5} & f; \\
&=& 6(14-1-18) + 6(3) + 6(2) + 6(1) \\
&=& 6(-5) + 6(6) \\
&=& -30 + 36
\end{array}$$

A Carry

Like the little with a substantial of the 1 of

The state of the s

D.O.F - 6

Q.2 Lotation matrix.

substituting \$ = 60° in the Reference x matrix

Substituting \$260° in the earn () in counter clockwise (+ve)

$$R_{1}^{\circ} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & Co160^{\circ} & -64060^{\circ} \\ 0 & 4060^{\circ} & Co160^{\circ} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.5 & -0.866 \\ 0 & 0.866 & 0.5 \end{bmatrix}$$

(ii) Rot atton about The currentyanis by 30° C.C.W

@ 0=30° in counter clock wise i.e., the gives 21

$$R_{2} = \begin{bmatrix} \cos 30^{\circ} & 0 & \sin 30^{\circ} \\ 0 & 1 & 0 \\ -\sin 30^{\circ} & 0 & \cos 30^{\circ} \end{bmatrix} = \begin{bmatrix} 0.866 & 0 & 0.5 \\ 0 & 1 & 0 \\ -0.5 & 0 & 0.866 \end{bmatrix}$$

$$R_{1}^{o} = \begin{bmatrix} Cosco_{1} - finco_{1} & 0 \\ hinco_{1} & cosco_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R^{o}$$

$$\begin{cases}
coso, & o & -6inv, \\
6inv, & o & coso, \\
0 & -i & o
\end{cases}$$

Prematylication of
$$R_3^2$$
 wirt R_1^0 , R_2^4

$$= \begin{bmatrix} 0.5 & -0.433 & 0.7445 \\ 0.866 & 0.151 & -0.431 \\ 0 & 0.86 & 0.5 \end{bmatrix} \begin{bmatrix} 0.866 & 0 & 0.6 \\ 0 & 1 & 0 \\ -0.5 & 0 & 0.866 \end{bmatrix}$$

$$R_{5}^{0} = \begin{bmatrix} 0.05811 & -0.433 & 0.849 \\ 0.9649 & 0.15 & 0.0580 \\ -0.25 & 0.86 & 0.433 \end{bmatrix}$$

$$E_{x}(\theta) = \begin{bmatrix} 0 & \cos \theta & \cos \theta \\ 0 & \cos \theta & \cos \theta \end{bmatrix} \quad \therefore \quad \text{committe} \quad E_{x,\theta} = \begin{bmatrix} 0 & \cos(-\theta) & -\sin(-\theta) \\ 0 & \cos(-\theta) & -\sin(-\theta) \end{bmatrix}$$

Substituting 0 = 450 in the above morrix

$$R_4^3 \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.707 & 0.707 \\ 0 & -0.707 & 0.707 \end{bmatrix}$$

Resultant => R= Rox R4

$$R_{4}^{0}$$
. $=$ $\begin{bmatrix} 0.0580 & -0.9422 & 0.3199 \\ 0.964 & 0.13491 & 0.2174 \\ -0.25 & 0.306 & 0.9186 \end{bmatrix}$

2) ill Potation matrix Po

Given: Nexus Kith respective to the given Querron there are 4 fromes

as below

y. 72

To find 120 We need to multiply the matrices R, R, R, R,

" R3 = R, x R2 x R32

Step-1 The frame notation is done by not not from as.

Frame- 1 & trame- 0 are mis aligned by rotating with a compeniating matrix. Two axis will be aligned in same. W.r.t to the 20 axis

[Zo][c] = to c-compensating metry

$$C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\frac{20}{6} = \begin{cases} \cos \omega_1 - 1 \sin \omega_1 & 0 \\ \sin \omega_1 & \cos \omega_1 & 0 \end{cases}$$

$$\frac{1}{6} \cos \omega_1 - \frac{1}{6} \cos \omega_1 & 0 \\ 0 & 0 - \frac{1}{6} \cos \omega_1 & 0 \end{cases}$$

$$R^{\circ}$$
, $Coso, o - 600$, $Coso, o - 600$

Step-2 Aligning Frame-I wirt Frame-2

To rotate frame-1 with Frame-2 we need to implement a

$$C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$Z_{1} = \begin{bmatrix} \cos u_{1} - \sin u_{2} & 0 \\ \sin u_{3} & \cos u_{3} - \sin u_{3} \\ 0 & 0 \end{bmatrix}$$

compensating matrix

ZI is rotating wirt U2

$$\begin{bmatrix}
cosu_1 - Hnu_1 & 0 \\
sinu_2 & cosu_2 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 0 & -1 \\
0 & 0 & -1
\end{bmatrix}$$

$$R_{1}' = \begin{bmatrix} coi\theta_{1} & 0 & 8in\theta_{2} \\ coi\theta_{1} & 0 & -coi\theta_{2} \end{bmatrix}$$

These two frames are same in y alignment so, we need to multiply simply with america adentity marrix

$$R_{2}^{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Step- TV The Resultant marrix Repo

$$R_{3}^{0} = \begin{cases} col0, \ 0 - 6'n0, \\ \frac{6}{1}n0, \ 0 \ col0, \\ 0 \ -1 \ 0 \end{cases} \begin{cases} col0, \ 0 \ col0, \\ 0 \ 1 \ 0 \end{cases} \begin{cases} 1 \ 0 \ 0 \end{cases}$$

$$R_{3}^{\circ} = \begin{cases} cu, cu_{2} & -lu, cu, su_{2} \\ su, cu_{2} & cu, su, su_{2} \\ -su_{2} & 0 & cu_{2} \end{cases}$$

Euler angle rotation ZYX

2) John Dotare the current trame by the angle of about axis 2

This rotation is described by

$$R_{2}(\phi) = \begin{bmatrix} \cos\phi & -8n\phi & 0 \\ 8in\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

angle & about axis y

This rotation is described by

$$e_{\mathbf{g}(0)} = \begin{bmatrix} co10 & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

Lotare The current frome by the angle 4 abour axis x.

This Roration is described by

6211 (4) - [603 th - 201 th 0

$$R_{\lambda}''(y) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{bmatrix}$$

The Resulting trame Orientation is Obtained by composition of Potation w.r.t to current frames and then it can be computed via Post-multiplication of the matrices of elementary Rototon

$$S = \begin{cases} 0 & 0 & 0 \\ 10 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases}$$

$$F = \begin{bmatrix} -10 & 0 & c0 \\ 10 & 0 & c0 \\ 0 & c0 & c0 \end{bmatrix} \begin{bmatrix} 0 & ch & ch \\ 0 & ch & -th \\ 0 & 0 & -th \end{bmatrix}$$

$$Q = \begin{bmatrix} 0.5 & -0.1464 & 0.8536 \\ 0.5 & 0.8536 & -0.1464 \\ -0.707 & 0.5 & 0.5 \end{bmatrix}$$
Comparing a face matrix with 240

Comparing a bove marrix with zyx marrix

From the equations $\theta = a \tan 2 \left(-r_{2i} \pm \sqrt{r_{ij}^2 + r_{2i}^2} \right)$

$$\Rightarrow$$
 We know that $\phi = a + an_2 \left[\frac{r_{21}}{col\theta}, \frac{r_{11}}{col\theta} \right]$

$$\phi = a + an_1 \left[\frac{0.5}{co145}, \frac{0.5}{co145} \right]$$
 $\phi = a + an_2 \left[\frac{0.5}{co1135}, \frac{0.5}{co1135} \right]$

$$\frac{1}{2}$$
Also $\varphi = a tan 2 \left[\frac{r_{b2}}{co10}, \frac{r_{b3}}{co10} \right]$

$$\psi = Q \tan_2 \left(\frac{0.5}{\cos(4.5^\circ)}, \frac{0.5}{\cos(4.5^\circ)} \right) \quad \psi = 6$$

is the two sers of the Euler angles are given by

$$\begin{bmatrix} \phi \\ \phi \\ \phi \end{bmatrix} = \begin{bmatrix} +r^{\circ} \\ 4r^{\circ} \\ 4r^{\circ} \end{bmatrix} \begin{bmatrix} \phi \\ \phi \\ \psi \end{bmatrix} = \begin{bmatrix} -13r^{\circ} \\ 13r^{\circ} \\ -13r^{\circ} \end{bmatrix}$$

Q.4 soln:

expressing a roration of a given angle in about an axis m space - A nominal representation of orientation

$$\Rightarrow$$
 0-xy = Reference frame. $||r_{\chi}|^2 + r_{y^2} + r_{z^2}| = 1$

$$|r_{\chi^2 + r_{\psi^2} + r_{\bar{z}^2}}| = |r|$$

$$R_{2}(-\alpha)_{2} = \begin{bmatrix} \cos\alpha & \sin\alpha & 0 \\ -\sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{2}(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 \end{bmatrix}$$

Lotate by θ about $2-\sin\theta$.

> Realign with the introl direction of r, which is obtained on the sequence

Lorarron by B about y-anis followed by a roranon

$$R=(\alpha) = \begin{bmatrix} \cos x - \sin \alpha & 0 \\ \sin x & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

In sum, the resulting rotation marin is

Reca)
$$R(0,r) = R_{\pm}(\alpha) R_{y}(\beta) R_{\pm}(0) R_{y}(-\beta) R_{\pm}(-\alpha)$$

$$= \begin{bmatrix} c\alpha c\beta c\theta - S\alpha s\theta & -(\alpha c\beta s\theta + s\alpha c\theta & c\alpha s\beta \\ S\alpha c\beta c\theta + c\alpha s\theta & -s\alpha c\beta s\theta + \epsilon \alpha c\theta & s\alpha s\beta \\ -s\beta c\theta & s\beta c\theta & c\theta \end{bmatrix}$$

$$R(0,r) = \begin{cases} (j^2 a + c^2 a)g(0 + (j^2 a)^2 g - cg(0) + sa(a)cg^2 (1-c0) & sasp(0) + ca(g)g \\ cg(0) + sa(a)s^2 g(1-c0) & (s^2 ac^2 g + co) co + sa(s^2 g) & sasp(g) (1-c0) - ca(g)g \\ casp(g) & (i-c0) - sa(g)(0) & sasp(g)(1-c0) + ca(g)(0) & sg(0) + cjg \\ & sg(0) + cjg \end{cases}$$

where, as we have a unit vected ine., 9x++9y++9==1

Substituting the eqino, eqino, eqino f eqino in the elements

2 the matrix k(1,1)

$$9111 = \left(Sx^{2} + Cx^{2} C_{\beta}^{2} \right) (0 + C_{\beta}^{2} S_{\beta}^{2}) = \left(1 - r_{x}^{2} \right) (0 + 9^{2}x)$$

$$\therefore S^{2}x + C^{2}x C_{\beta}^{2} = 1 - r_{x}^{2} \times \frac{r_{x}^{2}}{x^{2}} \left(\sqrt{r_{x}^{2} + a_{y}^{2}} \right)^{2} = r_{x}^{2} r_{y}^{2}$$

$$r_{12} = exspect{}_{1}[1-co] + s_{exsp}[0]$$

$$= \frac{r_{1}}{\sqrt{r_{1}^{2}+r_{1}^{2}}} \cdot \sqrt{r_{1}^{2}+r_{1}^{2}} \cdot \sqrt{r_{1}^{2}+$$

$$\begin{array}{lll}
\Gamma_{23} &= & (\text{ALE}_{F_{1}}(F_{1}(-10) - 1 \times 1 \times 10) \\
&= & \frac{y \cdot r_{y}}{\sqrt{r_{x} + r_{y}^{2}}} \times r_{x}(1 - 10) - \frac{y}{\sqrt{r_{x} + r_{y}^{2}}} \times \sqrt{r_{x} + r_{y}^{2}} & 10 \\
\Gamma_{13} &= & (\text{ALE}_{F_{1}}(F_{1}(-10) - 1 \times 10) \\
&= & \frac{y}{\sqrt{r_{x} + r_{y}^{2}}} \times \sqrt{r_{x} + r_{y}^{2}} \times r_{x}(1 - 10) - \frac{y}{\sqrt{r_{x} + r_{y}^{2}}} \times \sqrt{r_{x} + r_{y}^{2}} & 10 \\
&= & \frac{y}{\sqrt{r_{x} + r_{y}^{2}}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} & 10 \\
&= & \frac{y}{\sqrt{r_{x}^{2} + r_{y}^{2}}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} & 10 \\
&= & \frac{y}{\sqrt{r_{x}^{2} + r_{y}^{2}}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} & 10 \\
&= & \frac{y}{\sqrt{r_{x}^{2} + r_{y}^{2}}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} & 10 \\
&= & \frac{y}{\sqrt{r_{x}^{2} + r_{y}^{2}}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} & 10 \\
&= & \frac{y}{\sqrt{r_{x}^{2} + r_{y}^{2}}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} & 10 \\
&= & \frac{y}{\sqrt{r_{x}^{2} + r_{y}^{2}}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} & 10 \\
&= & \frac{y}{\sqrt{r_{x}^{2} + r_{y}^{2}}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} & 10 \\
&= & \frac{r_{x}}{\sqrt{r_{x}^{2} + r_{y}^{2}}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} & 10 \\
&= & \frac{r_{x}}{\sqrt{r_{x}^{2} + r_{y}^{2}}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} & 10 \\
&= & \frac{r_{x}}{\sqrt{r_{x}^{2} + r_{y}^{2}}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} & 10 \\
&= & \frac{r_{x}}{\sqrt{r_{x}^{2} + r_{y}^{2}}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} & 10 \\
&= & \frac{r_{x}}{\sqrt{r_{x}^{2} + r_{y}^{2}}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} & 10 \\
&= & \frac{r_{x}}{\sqrt{r_{x}^{2} + r_{y}^{2}}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} & 10 \\
&= & \frac{r_{x}}{\sqrt{r_{x}^{2} + r_{y}^{2}}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}}} & 10 \\
&= & \frac{r_{x}}{\sqrt{r_{x}^{2} + r_{y}^{2}}} \times \sqrt{r_{x}^{2} + r_{y}^{2}} \times \sqrt{r_{x}^{2} + r_{y}^{2}}} & 10 \\
&= & \frac{r_{x}}{\sqrt{r_{x}^{2} + r_{y}^{2}}} \times \sqrt{r_{x}$$

$$k(0,r)$$
. $\begin{bmatrix} r_{1}^{2}(1-(0)+(0) & r_{2}r_{2}(1-(0)+r_{2}s) \\ r_{2}r_{2}(1-(0)+r_{2}s) & r_{3}^{2}(1-(0)+(0) & r_{3}r_{2}(1-(0)+r_{3}s) \\ r_{2}r_{2}(1-(0)-r_{3}s) & r_{3}r_{2}(1-(0)+r_{2}s) & r_{3}r_{2}(1-(0)+r_{3}s) \end{bmatrix}$

Tree is selected

```
>> % HOME WORK - 1, MAE 547 MODELING AND CONTROL OF ROBOTS
% STUDENT NAME : MANOHAR AKULA
% ASU ID: 1223335191
% ROBOTICS AND AUTONOMOUS SYSTEMS (EE)
>> R01 = rotx(60,'deg')% Rotation about x-axis by 60deg ccw
R01 =
               0
   1.0000
       0 0.5000 -0.8660
        0
          0.8660 0.5000
>> R12 = roty(30, 'deg')% Rotation about the current y-axis by 30 deg ccw
R12 =
          0 0.5000
1.0000 0
   0.8660
       0
  -0.5000
            0 0.8660
>> R02 = R01 * R12
R02 =
   0.8660 0 0.5000
   0.4330 0.5000 -0.7500
  -0.2500 0.8660 0.4330
>> R23 = rotz(60, 'deg')
R23 =
   0.5000 -0.8660
          0.5000
   0.8660
                          0
       0
             0 1.0000
>> R03 = R23 * R01 * R12 % Rotation about the reference z-axis by 60deg ccw
R03 =
   0.0580 -0.4330 0.8995
          0.2500
                    0.0580
   0.9665
  -0.2500
          0.8660 0.4330
>> R34 = rotx(-45, 'deg')
R34 =
           0
   1.0000
                      0
           0.7071 0.7071
        0
          -0.7071
                    0.7071
```

```
>> R04 = R03 * R34 % Rotation about the x-axis by 45 cw \,
```

R04 =

0.0580 -0.9422 0.3299 0.9665 0.1358 0.2178 -0.2500 0.3062 0.9186

>>

```
>>
% HOME WORK - 1, MAE 547 MODELING AND CONTROL OF ROBOTS
% STUDENT NAME : MANOHAR AKULA
% ASU ID: 1223335191
% ROBOTICS AND AUTONOMOUS SYSTEMS (EE)
>>
>> % Problem 3(3)
>>
>> M = [[0.5 -0.1464 \ 0.8536]; [0.5 \ 0.8536 \ -0.1464]; [-0.7071 \ 0.5 \ 0.5]] \% Loaded given \checkmark
matrix in a variable M
M =
   0.5000 -0.1464 0.8536
   0.5000 0.8536 -0.1464
   -0.7071 0.5000 0.5000
>> % Using Trignometry function rotating matrix to ZYX format
>>
>> rpy = tr2rpy(M,'zyx','deg')
rpy =
   45.0000 44.9997 45.0000
>>
```