

Резаиан Наим

E-mail: rezaian-n@rudn.ru

Telegram: @NaeimRezaeian

- 1. Заведующий лабораторией искусственного интеллекта
- 2. Руководитель направления разработок Центра развития цифровых технологий в образовательных процессах
- 3. Старший преподаватель факультета искусственного интеллекта

Как отличить ель от сосны?

Ель Сосна

Как отличить ель от сосны?

Ель

Сосна

Ветки Смотрят вверх

Ствол Не видно

Иголки Густые

Цвет Ближе к зеленому

Параллельно земле

Видно

Более редкие

Ближе к желтому

Как отличить ель от сосны?

Ветки

Ствол

Иголки

Цвет

Смотрят вверх

Не видно

Густые

Ближе к синему

Гипотеза компактности

Гипотеза компактности

Если два объекта похожи друг на друга, то ответы на них тоже похожи

Метод k ближайших соседей (kNN): Обучение

Дано: обучающая выборка $X = (x_i, y_i)_{i=1}^{\ell}$

Задача классификации: ответы из множества $Y = \{1, ..., K\}$

Обучение модели: запоминаем обучающую выборку X

Метод k ближайших соседей (kNN): Применение

Дано: новый объект х

Применение модели:

Сортируем объекты обучающей выборки по расстоянию до нового объекта:

$$\rho(x,x_{(1)}) \leq \, \rho(x,x_{(2)}) \leq \, \ldots \leq \, \rho(x,x_{(\ell)})$$

Выбираем k ближайших объектов: $x_{(1)},...,x_{(k)}$

Выдаем наиболее популярный среди них класс

$$a(x) = \underset{y \in Y}{\operatorname{argmax}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Метод k ближайших соседей (kNN): Применение

Метрика

Метрика – это функция ho с двумя аргументами, удовлетворяющая трём требованиям:

$$ho(x,z)=0$$
 тогда и только тогда, когда x=z

$$\rho(x,z) = \rho(z,x)$$

$$ho(x,z) \leq
ho(x,v) +
ho(v,z)$$
 неравенство треугольника

Евклидова метрика

$$\rho(x,z) = \sqrt{\sum_{j=1}^{d} (x_j - z_j)^2}$$

Манхэттенская метрика

$$\rho(x,z) = \sum_{j=1}^{d} |x_j - z_j|$$

Функция потерь в классификации

Accuracy - это доля правильных ответов модели

$$accuracy = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

Проблема kNN

Взвешенный knn

$$a(x) = \underset{y \in Y}{\operatorname{argmax}} \sum_{i=1}^{k} w_{i} [y_{(i)} = y]$$

$$w_i = \frac{1}{\rho(x, x_{(i)})}$$

Метод k ближайших соседей в sklearn

sklearn.neighbors.KneighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30,p=2,metric='minkowski')

Метод k ближайших соседей для регрессии: Обучение

Дано: обучающая выборка $X = (x_i, y_i)_{i=1}^{\ell}$

Задача регрессии: ответы из множества $Y=\mathbb{R}$

Обучение модели: запоминаем обучающую выборку X

Метод k ближайших соседей для регрессии: Применение

Дано: новый объект х

Применение модели:

Сортируем объекты обучающей выборки по расстоянию до нового объекта:

$$\rho(x,x_{(1)}) \leq \, \rho(x,x_{(2)}) \leq \, \ldots \leq \, \rho(x,x_{(\ell)})$$

Выбираем k ближайших объектов: $x_{(1)},...,x_{(k)}$

Усредняем ответы

$$a(x) = \frac{1}{k} \sum_{i=1}^{k} y_{(i)}$$

Метод k ближайших соседей для регрессии в sklearn

sklearn.neighbors.KneighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30,p=2,metric='minkowski')

Метод k ближайших соседей

sklearn.neighbors.KNeighborsClassifier

<u>sklearn.neighbors.KNeighborsRegressor</u>

BallTree и KD-Tree