INTRODUCTION

. . .

STRING MATCHING WITH FINITE AUTOMATA:

- String matching algorithm builds a finite automaton
- A simple machine for processing information that scans the text string T for all occurrences of the pattern P

FINITE AUTOMATA...

FINITE AUTOMATA

- A *finite automaton* M, is a 5 tuple(Q, q_o , A, Σ, δ) ,where
- Q is finite set of states,
- $q_0 \in Q$ is the start **state**,
- A ⊆ Q
- is a distinguished set of accepting states,
- Σ is a finite input alphabet,
- δ is a function from Q× Σ into Q, called the **transition function** of M.

STRING MATCHING WITH FINITE AUTOMATA...

MATCHING AUTOMATA (SUFFIX Function)

The String Matching automata corresponding to a given pattern P[1...m]

- An auxiliary function σ , called the suffix function corresponding to P
- The function σ maps Σ^* to $\{0,1,\ldots,m\}$ such that $\sigma(x)$ is the length of the longest prefix of P that is also a suffix of x:
- $\sigma(x) = \max\{k: P_k \exists x\}$

ALGORITHMS...

COMPUTE TRANSITION FUNCTION:

COMPUTE-TRANSITION-FUNCTION(P,Σ)

1.m-P.length

2.for q=0 to m

```
3. for each character a \in \Sigma
```

4.
$$k = \min(m+1,q+2)$$

$$6. K=k-1$$

7.
$$until Pk \supset Pq a$$

8.
$$\delta(q,a)=k$$

9. return δ

DRY RUNNING...

COMPUTE TRANSITION FUNCTION:

- TEXT=abababacaba
- PATTERN=ababaca
- $\Sigma = \{a,b,c\}$

Compute transition function(P,Σ)

- 1. $m \leftarrow length[P]$ $m \leftarrow 7$
- 2. for $q \leftarrow 0$ to m for $q \leftarrow 0$ to 7
- 3. do for each character $a \in \Sigma$

$$// \Sigma = \{a,b,c\}$$

1st ITERATION:

$$q=0$$
, $a=a$

3. for each character aca

4.
$$k \leftarrow min(m+1,q+2)$$

$$= \min(7+1,0+2)=2$$

7.
$$Pk \supset Pqa = P2 \supset P0a$$

$$7.Pk \supset Pqa = P1 \supset P0a$$

$$8.\delta(q,a)\leftarrow k$$

 $\delta(0,a)\leftarrow 1$

state	а	b	С	P
0	1			а
1				b
2				a
3				b
4				a
5				С
6				a
7				

q=0

3. for each character aeb

4. K=2

7. $Pk \supset Pqa=P2 \supset P0a$

(ab⊐b) FALSE

K=1

 $7.Pk \supset Pqa=P1 \supset P0a$

(a⊐b) FALSE

K=0

 $Pk \supset Pqa=P0 \supset P0b$

 $(\varepsilon \ \exists b) \ TRUE$

 $8.\delta(q,a)\leftarrow k$

 $\delta(0,b)\leftarrow 0$

state	а	b	С	P
0	1	0		а
1				b
2				а
3				b
4				a
5				С
6				а
7				

q=0

3. for each character acc

4. K=2

7. $Pk \supset Pqa=P2 \supset P0a$

(ab⊐c) FALSE

K=1

 $7.Pk \supset Pqa=P1 \supset P0a$

(a⊐c) FALSE

K=0

 $Pk \supset Pqa=P0 \supset P0s$

 $(\varepsilon \supset c)$ TRUE

 $8.\delta(q,a)\leftarrow k$

 $\delta(0,c)\leftarrow 0$

state	а	b	С	P
0	1	0	0	а
1				b
2				a
3				b
4				a
5				С
6				a
7				

2nd ITERATION:

- 2.for q←1 to 7
- 3. for each character $a \in (a,b,c)$

$$q=1,a=a$$

$$4.k \leftarrow \min(m+1,q+2) = \min(7+1,1)$$

$$+2)=3$$

$$Pk \supset Pqa=P3 \supset P1a=(aba \supset aa)$$

FALSE

7. Pk
$$\supset$$
 Pqa=P2 \supset P1a

(ab aa) FALSE

$$K=1$$

$$7.Pk \supset Pqa=P1 \supset P1a$$

(a⊐aa) TRUE

$$8.\delta(q,a)\leftarrow k$$

$$\delta(1,a)\leftarrow 1$$

State	a	b	С	Р
0	1	0	0	а
1	1			b
2				а
3				b
4				а
5				С
6				а
7				

q=1 for each character a∈b 4.K←3

Pk ⊐ Pqa=P3 ⊐P1a=(aba ⊐ab) FALSE

k**←**2

7. $Pk \supset Pqa=P2 \supset P1a$

(ab ab) TRUE

 $8.\delta(1,b)\leftarrow 2$

State	a	b	С	Р
0	1	0	0	а
1	1	2		b
2				а
3				b
4				а
5				С
6				a
7				

q=1 for each character aec

4.K←3

 $Pk \supset Pqa=P3 \supset P1a=(aba \supset ac)$

FALSE

k**←**2

7. $Pk \supset Pqa=P2 \supset P1a$

(ab ac) FALSE

k**←1**

 $Pk \supset Pqa=P1 \supset P1a$

(a⊐ac) FALSE

k**←**0

 $Pk \supset Pqa=P0 \supset P1a$

(e⊐ac) TRUE

 $8.\delta(1,c)\leftarrow 0$

State	а	b	С	Р
0	1	0	0	а
1	1	2	0	b
2				а
3				b
4				а
5				С
6				а
7				

3rd ITERATION:

2. for $q\leftarrow 2$ to 7

3.for each character $a\varepsilon(a,b,c)$

$$q=2,a=a$$

$$4.k \leftarrow \min(m+1,q+2) = \min(8,4) = 4$$

 $Pk \supset Pqa=P4 \supset P2a=(abab \supset aba)$

FALSE

 $Pk \supset Pqa=P3 \supset P2a=(aba \supset aba)$

TRUE

$$8.\delta(q,a)\leftarrow k$$

$$\delta(2,a)\leftarrow 3$$

State	а	b	С	P
0	1	0	0	а
1	1	2	0	b
2	3			a
3				b
4				a
5				С
6				а
7				

q=2 for each character aeb K←4

Pk ¬ Pqa=P4¬P2a=(abab¬abb)
FALSE

K=3

 $Pk \supset Pqa=P3 \supset P2a=(aba \supset abb)$

FALSE

k**←**2

7. Pk \supset Pqa=P2 \supset P2a =(ab \supset abb)

FALSE

K=1

 $7.Pk \supset Pqa=P1 \supset P2a$

(a¬abb) FALSE

K=0
7.Pk □ Pqa=P0□P2a
(€□abb)TRUE

 $8.\delta(q,a)\leftarrow k$ $\delta(2,b)\leftarrow 0$

State	a	b	С	Р
0	1	0	0	а
1	1	2	0	b
2	3	0		а
3				b
4				а
5				С
6				а
7				

q=2 for each character a∈c

K**←4**

 $Pk \supseteq Pqa=P4 \supseteq P2a=(abab \supseteq abc)$

FALSE

K=3

 $Pk \supset Pqa=P3 \supset P2a=(aba \supset abc)$

FALSE

k**←**2

7. Pk \supset Pqa=P2 \supset P2a =(ab \supset abc)

FALSE

K=1

 $7.Pk \supset Pqa=P1 \supset P2a$

(a¬abc) FALSE

K=0

 $7.Pk \supset Pqa=P0 \supset P2a$

(€¬abc)TRUE

 $8.\delta(q,a)\leftarrow k$

 $\delta(2,c)\leftarrow 0$

State	a	b	С	P
0	1	0	0	а
1	1	2	0	b
2	3	0	0	а
3				b
4				а
5				С
6				а
7				

4TH ITERATION:

2.for $q \leftarrow 3$ to 7

3. for each character ae(a,b,c)

$$q=3,a=a$$

 $4.k \leftarrow min(m+1,q+2) = min(8,4) = 4$

Pk ¬Pqa=P5¬P3a=(ababa¬abaa)

FALSE

k**←**4

 $Pk \exists Pqa=P4\exists P3a=(abab\exists abaa)$

FALSE

K←3

Pk ¬Pqa=P3¬P3a=(aba¬abaa)

FALSE

k**←**2

 $Pk \exists Pqa=P2\exists P3a=(ab\exists abaa)$

FALSE

K**←**1

 $Pk \exists Pqa=P1 \exists P3a=(a \exists abaa)$

TRUE

 $8.\delta(q,a)\leftarrow k$

 $\delta(3,a)\leftarrow 1$

State	a	b	С	Р
0	1	0	0	а
1	1	2	0	b
2	3	0	0	а
3	1			b
4				а
5				С
6				а
7				

- 2.for q←3
- 3.for each character aeb

Pk

FALSE

 $Pk \exists Pqa=P4\exists P3a=(abab\exists abab)$

TRUE

$$8.\delta(q,a)\leftarrow k$$

$$\delta(3,b)\leftarrow 4$$

State	a	b	С	P
0	1	0	0	а
1	1	2	0	b
2	3	0	0	а
3	1	4		b
4				а
5				С
6				а
7				

2.q = 3

3. for each character acc

K**←**5

Pk ¬Pqa=P5¬P3a=(ababa¬abac)

FALSE

k**←**4

 $Pk \exists Pqa=P4\exists P3a=(abab\exists abac)$

FALSE

K**←**3

Pk ¬Pqa=P3¬P3a=(aba¬abac)

FALSE

k**←**2

 $Pk \exists Pqa=P2\exists P3a=(ab\exists abac)$

FALSE

K←1

 $Pk \supseteq Pqa = P1 \supseteq P3a = (a \supseteq abac)$

FALSE

K**←**0

Pk $\neg Pqa = P0 \neg P3a = (\varepsilon \neg abac)$

TRUE

 $8.\delta(q,a)\leftarrow k$

 $\delta(3,c)\leftarrow 0$

State	а	b	С	Р
0	1	0	0	а
1	1	2	0	b
2	3	0	0	а
3	1	4	0	b
4				а
5				С
6				а
7				

5th ITERATION:

2. for $q \leftarrow 4$ to 7

3.for each character $a\varepsilon(a,b,c)$

$$q=4,a=a$$

$$4.k \leftarrow \min(m+1,q+2) = \min(8,6) = 6$$

Pk ¬Pqa=P6¬P4a=(ababac¬ababa)

FALSE

 $Pk \exists Pqa=P5\exists P4a=(ababa\exists abaBA)$

TRUE

$$8.\delta(q,a)\leftarrow k$$

$$\delta(4,a)\leftarrow 5$$

State	а	b	С	Р
0	1	0	0	а
1	1	2	0	b
2	3	0	0	а
3	1	4	0	b
4	5			а
5				С
6				а
7				

2.q=4

3. for each character aeb

K**←**6

Pk ¬Pqa=P6¬P4a=(ababac¬ababb)

FALSE

K**←**5

Pk ¬Pqa=P5¬P4a=(ababa¬ababb)

FALSE

k**←**4

Pk ¬Pqa=P4¬P4a=(abab¬ababb)

FALSE

K**←**3

Pk ¬Pqa=P3¬P4a=(aba¬ababb)

FALSE

k**←**2

 $Pk \supseteq Pqa = P2 \supseteq P4a = (ab \supseteq ababb)$

FALSE

k**←**1

 $Pk \exists Pqa=P2\exists P4a=(a\exists ababb)$

FALSE

k**←**0

Pk $\exists Pqa=P2\exists P4a=(\varepsilon\exists ababb)$

TRUE

 $8.\delta(q,a)\leftarrow k$

 $\delta(4,b)\leftarrow 0$

State	а	b	С	Р
0	1	0	0	а
1	1	2	0	b
2	3	0	0	а
3	1	4	0	b
4	5	0		а
5				С
6				а
7				

2.q=4

3. for each character acc

K←6

Pk ¬Pqa=P6¬P4a=(ababac¬ababc)

FALSE

K**←**5

Pk ¬Pqa=P5¬P4a=(ababa¬ababc)

FALSE

k**←**4

Pk ¬Pqa=P4¬P4a=(abab¬ababc)

FALSE

K**←**3

Pk ¬Pqa=P3¬P4a=(aba¬ababc)

FALSE

k**←**2

Pk ¬Pqa=P2¬P4a=(ab¬ababc)

FALSE

k**←**1

Pk ¬Pqa=P2¬P4a=(a¬ababbc

FALSE

k**←**0

Pk $\neg Pqa=P2 \neg P4a=(\varepsilon \neg ababc)$

TRUE

 $8.\delta(q,a)\leftarrow k$

 $\delta(4,c)\leftarrow 0$

State	а	b	С	Р
0	1	0	0	а
1	1	2	0	b
2	3	0	0	а
3	1	4	0	b
4	5	0	0	а
5				С
6				а
7				

6th ITERATION:

2. for q←5to 7

3.for each character ae(a,b,c)

$$q=5,a=a$$

 $4.k \leftarrow \min(m+1,q+2) = \min(8,7) = 7$

K←7

Pk ¬Pqa=P7¬P5a=(ababaca¬ababaa)

FALSE

K**←**6

Pk ¬Pqa=P6¬P5a=(ababac ¬ababaa)

FALSE

K**←**5

Pk ¬Pqa=P5¬P5a=(ababa¬ababaa) FALSE

k**←**4

Pk ¬Pqa=P4¬P5a=(abab¬ababaa)

FALSE

K←3

Pk ¬Pqa=P3¬P5a=(aba¬ababaa) FALSE

k**←**2

Pk ¬Pqa=P2¬P5a=(ab¬ababaa)

FALSE

k**←**1

Pk ¬Pqa=P2¬P4a=(a¬ababbaa

TRUE

 $8.\delta(q,a)\leftarrow k$

 $\delta(5,a)\leftarrow 1$

State	a	b	С	Р
0	1	0	0	а
1	1	2	0	b
2	3	0	0	а
3	1	4	0	b
4	5	0	0	а
5	1			С
6				а
7				

4.q←5

3.for each character aeb

K←7

Pk ¬Pqa=P7¬P5a=(ababaca¬ababab)

FALSE

K**←**6

Pk ¬Pqa=P6¬P5a=(ababac¬ababab)

FALSE

K**←**5

Pk ¬Pqa=P5¬P5a=(ababa¬ababab)

FALSE

k**←**4

Pk ¬Pqa=P4¬P5a=(abab¬ababab)

TRUE

 $8.\delta(q,a)\leftarrow k$ $\delta(5,b)\leftarrow 4$

State	a	b	С	Р
0	1	0	0	а
1	1	2	0	b
2	3	0	0	а
3	1	4	0	b
4	5	0	0	а
5	1	4		С
6				а
7				

4.q←5

3. for each character acc

K**←**7

Pk ¬Pqa=P7¬P5a=(ababaca¬ababac)

FALSE

K**←**6

Pk¬Pqa=P6¬P5a=(ababac¬ababac)

TRUE

 $8.\delta(q,a)\leftarrow k$

δ(5,c)←6

State	a	b	С	Р
0	1	0	0	а
1	1	2	0	b
2	3	0	0	a
3	1	4	0	b
4	5	0	0	а
5	1	4	6	С
6				а
7				

7TH ITERATION:

2. for q←6to 7

3.for each character $a\varepsilon(a,b,c)$

$$q=6,a=a$$

$$4.k \leftarrow \min(m+1,q+2) = \min(8,8) = 8$$

Pk ¬Pqa=P8¬P6a=(ababacaa¬ababaca)

FALSE

Pk ¬Pqa=P7¬P6a=(ababaca¬ababaca)

TRUE

$$8.\delta(q,a)\leftarrow k$$

 $\delta(6,a)\leftarrow 7$

State	а	b	С	Р
0	1	0	0	а
1	1	2	0	b
2	3	0	0	а
3	1	4	0	b
4	5	0	0	а
5	1	4	6	С
6	7			а
7				

2.**q**←6

3. for each character aeb

 $K\leftarrow\!8$

Pk ¬Pqa=P8¬P6a=(ababacaa¬ababacb)

FALSE

K**←**7

Pk ¬Pqa=P7¬P6a=(ababaca¬ababacb)

FALSE

K**←**6

Pk ¬Pqa=P6¬P6a=(ababac¬ababacb) FALSE

K**←**5

Pk ¬Pqa=P5¬P6a=(ababa¬ababacb) FALSE

K**←**4

Pk ¬Pqa=P4¬P6a=(abab¬ababacb) FALSE

K**←**3

Pk ¬Pqa=P3¬P6a=(aba¬ababacb) FALSE

K←2

Pk ¬Pqa=P2¬P6a=(ab¬ababacb) FALSE

K←1

Pk ¬Pqa=P1¬P6a=(a¬ababacb) FALSE

K**←**0

Pk ¬Pqa=P0¬P6a=(€¬ababacb) TRUE

 $8.\delta(q,a)\leftarrow k$

 $\delta(6,b)\leftarrow 0$

State	а	b	С	Р
0	1	0	0	а
1	1	2	0	b
2	3	0	0	a
3	1	4	0	b
4	5	0	0	a
5	1	4	6	С
6	7	0		a
7				

2.q←6 3.for each character acc

K**←**8

Pk ¬Pqa=P8¬P6a=(ababacaa¬ababac) FALSE

K**←**7

Pk ¬Pqa=P7¬P6a=(ababaca¬ababac) FALSE

K**←**6

Pk ¬Pqa=P6¬P6a=(ababac¬ababac) FALSE

K**←**5

Pk ¬Pqa=P5¬P6a=(ababa¬ababac) FALSE

K**←**4

Pk ¬Pqa=P4¬P6a=(abab¬ababac) FALSE

K←3

Pk ¬Pqa=P3¬P6a=(aba¬ababac) FALSE

K**←**2

Pk ¬Pqa=P2¬P6a=(ab¬ababac) FALSE

 $K \leftarrow 1$ Pk ¬Pqa=P1¬P6a=(a¬ababac) FALSE $K \leftarrow 0$ Pk ¬Pqa=P0¬P6a=(ε¬ababac) TRUE $8.\delta(q,a) \leftarrow k$ $\delta(6,c) \leftarrow 0$

State	а	b	С	Р
0	1	0	0	а
1	1	2	0	b
2	3	0	0	a
3	1	4	0	b
4	5	0	0	a
5	1	4	6	С
6	7	0	0	a
7				

8TH ITERATION:

2.q←7 to 7

3. for each character $a\varepsilon(a,b,c)$

q=7,a=a

 $4.k \leftarrow \min(m+1,q+2) = \min(8,9) = 8$

K←8

Pk ¬Pqa=P8¬P7a=(ababacaa¬ababacaa)

FALSE

K**←**7

Pk ¬Pqa=P7¬P7a=(ababaca¬ababacaa) FALSE

K**←**6

Pk ¬Pqa=P6¬P7a=(ababac¬ababacaa) FALSE

K←5

Pk ¬Pqa=P5¬P7a=(ababa¬ababacaa) FALSE

K**←**4

Pk ¬Pqa=P4¬P7a=(abab¬ababacaa) FALSE

K**←**3

Pk ¬Pqa=P3¬P7a=(aba¬ababacaa) FALSE

K←2

Pk ¬Pqa=P2¬P7a=(ab¬ababacaa) FALSE

K**←**1

Pk ¬Pqa=P1¬P7a=(a¬ababacaa) TRUE

 $8.\delta(q,a)\leftarrow k$

 $\delta(7,a)\leftarrow 1$

State	a	b	С	Р
0	1	0	0	a
1	1	2	0	b
2	3	0	0	a
3	1	4	0	b
4	5	0	0	a
5	1	4	6	С
6	7	0	0	а
7	1			

2.**q**←7

3. for each character aeb

K**←**8

Pk ¬Pqa=P8¬P7a=(ababacaa¬ababacab)

FALSE

K**←**7

Pk ¬Pqa=P7¬P7a=(ababaca¬ababacab) FALSE

K**←**6

Pk ¬Pqa=P6¬P7a=(ababac¬ababacab) FALSE

K**←**5

Pk ¬Pqa=P5¬P7a=(ababa¬ababacab) FALSE

K**←**4

Pk ¬Pqa=P4¬P7a=(abab¬ababacab) FALSE

K**←**3

Pk ¬Pqa=P3¬P7a=(aba¬ababacab) FALSE

K**←**2

Pk ¬Pqa=P2¬P7a=(ab¬ababacab) TRUE

$8.\delta(q,a)\leftarrow$	-k
δ(7,b) ←	-2

State	a	b	С	P	
0	1	0	0	а	
1	1	2	0	b	
2	3	0	0	а	
3	1	4	0	b	
4	5	0	0	а	
5	1	4	6	С	
6	7	0	0	a	
7	1	2			

2.**q**←7

3. for each character acc

K**←**8

Pk ¬Pqa=P8¬P7a=(ababacaa¬ababacac)

FALSE

K←7

Pk ¬Pqa=P7¬P7a=(ababaca¬ababacac)

FALSE

K**←**6

Pk ¬Pqa=P6¬P7a=(ababac¬ababacac) FALSE

K**←**5

Pk ¬Pqa=P5¬P7a=(ababa¬ababacac) FALSE

K**←**4

Pk ¬Pqa=P4¬P7a=(abab¬ababacac) FALSE

K**←**3

Pk ¬Pqa=P3¬P7a=(aba¬ababacac) FALSE

K**←**2

Pk ¬Pqa=P2¬P7a=(ab¬ababacac) FALSE

K**←**1

Pk ¬Pqa=P1¬P7a=(a¬ababacac)

FALSE

K←0

Pk $\neg Pqa = P0 \neg P7a = (\epsilon \neg ababacac)$

TRUE

 $8.\delta(q,a)\leftarrow k$

 $\delta(7,c)\leftarrow 0$

State	a	b	С	Р
0	1	0	0	а
1	1	2	0	b
2	3	0	0	а
3	1	4	0	b
4	5	0	0	а
5	1	4	6	С
6	7	0	0	а
7	1	2	0	

REQUIRED RESULT:

THE FINITE STATE AUTOMATA IS:

State	а	b	С	Р
0	1	0	0	а
1	1	2	0	b
2	3	0	0	а
3	1	4	0	b
4	5	0	0	а
5	1	4	6	С
6	7	0	0	а
7	1	2	0	

ALGORITHM...

FINITE AUTOMATON MATCHER

FINITE-AUTOMATON-MATCHER(T, δ ,m)

$$2.q = 0$$

3.**for**
$$I = 1$$
 to n

4.
$$q = \delta(q, T[i])$$

$$5. If q == m$$

6. Print "Pattern occurs with shift" i -m

DRY RUNNING...

FINITE-AUTOMATON MATCHER

i= 1 2 3 4 5 6 7 8 9 10 11 T= a b a b a b a c a b a

 $1.n \leftarrow length[T]$

- 2. q←0
- 3. for i←1 to n

for $i\leftarrow 1$ to 11

1st ITERATION:

- 3. for i←1 to 11
- 4. do $q \leftarrow \delta(q,T[i])$ $q \leftarrow \delta(0,T[1]) = \delta(0,a)$

$$q \leftarrow (0,a)=1$$

5. if q=m if 1=7 FALSE

2ND ITERATION:

i=2,q=2
4. do
$$q \leftarrow \delta(1,T[2])$$

 $=\delta(1,b)$
 $q \leftarrow 2$
5 if 2=7 FALSE

3RD ITERATION:

i=3,q=2
4. do
$$q \leftarrow \delta(2,T[3])$$

 $=\delta(2,a)$
 $q \leftarrow 3$
5 if 3=7 FALSE

4th ITERATION:

i=4,q=3
4. do q
$$\leftarrow$$
8(3,T[4]) =8(3,b)
q \leftarrow 4
5 if 4=7 FALSE

5th ITERATION:

i=5,q=4
4. do
$$q \leftarrow \delta(4,T[5])$$

 $=\delta(4,a)=5$
 $q \leftarrow 5$
5 if 5=7 FALSE

$$i=6,q=5$$
4. do $q \leftarrow \delta(5,T[6])$
 $=\delta(5,b)=4$
 $q \leftarrow 5$
5 if $4=7$ FALSE

i=7,q=4
4. do
$$q \leftarrow \delta(4,T[7])$$

 $=\delta(4,a)=5$
 $q \leftarrow 5$
5 if 5=7 FALSE

i=8,q=5
4. do
$$q \leftarrow \delta(5,T[8])$$

 $=\delta(5,c)=6$
 $q \leftarrow 6$
5 if 6=7 FALSE

i=9,q=6
4. do
$$q \leftarrow \delta(6,T[9])$$

= $\delta(6,a)$ =7
 $q \leftarrow 7$
5 if 7=7 TRUE

Then print "pattern occurs with shift"i-m

Print" pattern occurs with shift"9-7=2

10th ITEARTION:

i=10,q=7
4. do
$$q \leftarrow \delta(7,T[10])$$
= $\delta(7,b)$ =2
 $q \leftarrow 2$
5 if 2=7 FALSE

11TH ITEARTION:

i=11,q=2
4. do

$$q \leftarrow \delta(2,T[11]) = \delta(2,a) = 3$$

 $q \leftarrow 3$
5 if 3=7 FALSE

REQUIRED OUTPUT:

After removing useless edges:

CONT..

i=-12345678910 T[i] - a bababa c a ba state $\Phi T[i]$ 0 1 2 3 4 5 4 5 6 7 2 3

State	а	b	С	Р
0	1	0	0	a
1	1	2	0	b
2	3	0	0	а
3	1	4	0	b
4	5	0	0	а
5	1	4	6	С
6	7	0	0	а
7	1	2	0	

COMPLEXITY...

COMPLEXITY ANALYSIS:

- The simple loop time of FINITE-AUTOMATON-MATCHER implies that its matching time on the text string of length is $\Theta(n)$. This matching time does not include the preprocessing time required to compute the transition function δ)
- The running time of COMPUTE-TRANSITION-FUNCTION is
 O(m^3 | ∑ |),because the outer loops contribute a factor of
 m | ∑ | ,the inner repeat loop can run atmost m+1 times, and the test
 Pk□ Pqa on line 7 can require computing upto m characters.
- Much faster procedures exist; the time required to compute δ from P can be improved to O(m | ∑ |) by utilizing some cleverly computed information about the pattern P. With this improved procedure for computing δ from P to O(m | ∑ |), we can find all occurrences of a length-m pattern in a length-n text over an alphabet ∑ with O(m | ∑ |) preprocessing time and O(n) matching time.

ADVANTAGES & DISADVANTAGE...

ADVANTAGES & DISADVANTAGE:

- String matching automaton are very efficient
- Examine each text character exactly once taking constant time per text character.
- The time to build the automaton can be large if Σ is large