

I. (a) First of all, the sample size (= 40) is too small to use Large-sample Wald Confidence Interval so I use R and SAS to calculate those intervals. $\alpha = 0.05$ $D = \widehat{\pi}_1 - \widehat{\pi}_2 = \frac{n_{11}}{n_{11}} - \frac{n_{21}}{n_{21}} = \frac{21}{23} - \frac{8}{12} = 0.442$ 95%. Wald Confidence Interval for D is (0.1787184, 0.7061921).

D is bigger than 1 and the confidence interval does not contain 1' so the probability of the cancer controlled by surgery is bigger than the probability of the cancer controlled by Radiation therapy $RR = \frac{\widehat{\pi}_1}{\widehat{\pi}_2} = \frac{n_1/n_{11}}{n_{21}/n_{21}} = 1.94$.

95% Wald Confidence interval for RR is

(1.1538, 3, 2626).

RR and the all values in the confidence interval are bigger than 1 so the probability of the cancer controlled by surgery is bigger than the probability of the cancer controlled by Radiation therapy $\widehat{\theta}(0R) = \frac{\widehat{\pi}_1/(1-\widehat{\pi}_1)}{\widehat{\pi}_2/(1-\widehat{\pi}_2)} = \frac{n_{11}}{n_{11}} / \frac{n_{12}}{n_{11}} = \frac{n_{11}n_{22}}{n_{12}n_{21}} = \frac{21\times 9}{8\times 2} = 11.813.$

95%. Wald Confidence interval for 0 is (2.0835, 66.9727).

are bigger than I so the probability of the cancer controlled by Surgery is much bigger than the probability of the cancer controlled by controlled by radiation therapy.

(b) Estimated expected frequency:

$$\widehat{M}_{ij} = n\widehat{\pi}_{i+} \widehat{\pi}_{i+1} = n \times \frac{\eta_{i+}}{n} \frac{\eta_{i+}}{n} = \frac{\eta_{i+} \eta_{+j}}{n} = \frac{22 \times 29}{40} = 16.675$$

$$\widehat{\mathcal{M}}_{12} = \frac{n_{1+} n_{+2}}{n} = \frac{23 \times 11}{40} = 6.325, \ \widehat{\mathcal{M}}_{21} = \frac{n_{2+} n_{+1}}{n} = \frac{17 \times 29}{40} = 12.325, \ \widehat{\mathcal{M}}_{22} = \frac{n_{2+} n_{+2}}{n} = \frac{17 \times 11}{40} = 4.675.$$

Pearson χ^2 statistic for testing $H_0: \Theta=1$ vs $H_1: \Theta \neq 1$:

$$\chi^2 = \sum (n_{ij} - \widehat{M}_{ij})^2 / \widehat{M}_{ij} = (21 - 16.675)^2 / 16.675 + (2 - 6.325)^2 / 6.325 + (8 - 12.325)^2 / 12.325$$

 $+(9-4.675)^{2}/4.675 = 1.122 + 2.957 + 1.518 + 4.001$

 $= 9.598 \sim \%$

LR χ^2 statistic for testing $H_0: \Theta=1$ vs $H_1: \Theta \neq 1$:

$$G^{2} = 2 \sum n_{ij} \log (n_{ij} / \widetilde{M}_{ij}) = 2 \left\{ 21 \cdot \log \left(\frac{21}{16.695} \right) + 2 \cdot \log \left(\frac{2}{6.325} \right) + 8 \cdot \log \left(\frac{8}{12.325} \right) + 9 \cdot \log \left(\frac{9}{4.695} \right) \right\}$$

$$= 2 \times 4.918 = 9.956. \sim \chi^{2}_{1}$$

If $\mu_{ij} < 5$, it is poor to use G^2 in testing. We have $\hat{\mu}_{22} = 4.675$

so it can be better for us to do Fisher's exact test.

 $\chi^2_{1,0.05} = 3.84$ so the both χ^2 and G^2 show that we can reject

the null hypothesis.

(c) $N_n = 21$

$$P(21) = {23 \choose 21} {11 \choose 8} = 0.0027$$
 where $max(0,12) \le 21 \le min(23,29)$

p-value = 0.0034.

p-value = 0.0034 < 0.05 so we can reject the null hypothesis

2. (a)
$$\hat{H}_{11} = \frac{29 \times 96}{273} = 8.07$$
 $\hat{M}_{12} = \frac{29 \times 108}{273} = 11.47$ $\hat{M}_{13} = \frac{29 \times 89}{273} = 9.45$ $\hat{M}_{21} = \frac{137 \times 76}{273} = 38.14$ $\hat{M}_{22} = \frac{137 \times 108}{273} = 54.20$ $\hat{M}_{23} = \frac{137 \times 89}{273} = 44.66$ $\hat{M}_{31} = \frac{48 \times 96}{273} = 13.36$ $\hat{M}_{32} = \frac{48 \times 108}{273} = 18.99$ $\hat{M}_{33} = \frac{48 \times 89}{273} = 15.65$ $\hat{M}_{41} = \frac{59 \times 76}{273} = 16.43$ $\hat{M}_{42} = \frac{59 \times 108}{273} = 23.34$ $\hat{M}_{43} = \frac{59 \times 89}{273} = 19.23$

 $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}$ for all i, j vs $H_1: \pi_{ij} \neq \pi_{i+}\pi_{+j}$

i) Use Pearson χ^2 statistic,

- .. I can't reject the null hypothesis that educational aspirations and family income are independent
- ii) Use the likelihood ratio x2 statistic, $G^2 = 2 \sum n_{ij} \log (n_{ij} / \hat{\mu}_{ij}) = 2 \left\{ 9 \times \log \left(\frac{9}{8.00} \right) + 11 \times \log \left(\frac{11}{11.40} \right) + \dots + 27 \times \log \left(\frac{27}{19.23} \right) \right\}$ $= 2 \times 4.471 = 8.942. \sim \chi_{6}^{2}$. (In SAS, 8.9165)
 - .. I can't reject the null hypothesis that educational aspirations and family income are independent

(b)
$$\Gamma_{II} = (\eta_{II} - \widehat{\mu}_{II}) / \sqrt{\widehat{\mu}_{II} (1 - \widehat{\pi}_{J+}) (1 - \widehat{\pi}_{J+})} = (9 - 8.07) / \sqrt{8.07 \times \frac{244}{273}} \times \frac{197}{273}$$

$$= 0.41.$$

$$Y_{43} = (N_{43} - \widehat{M}_{43}) / \widehat{M}_{43} (1 - \widehat{\Pi}_{4+}) (1 - \widehat{\Pi}_{+3}) = (29 - 19.23) / \overline{19.23} \times \frac{214}{293} \times \frac{184}{293}$$

$$= 2.44$$

- Residuals do not suggest any association pattern $|r_{41}|$, $|r_{43}| > 2$. So the n_{41} , n_{43} can reject the Ho when $\alpha = 0.05$
- (c) $\hat{\Theta}(OR) = \frac{9 \times 27}{9 \times 10} = 2.7$
 - : The family income estimated odds of some high school are 2.7 times lower than the family income estimated odds of collège graduate.

Seochan	g Campus: 208, Seochang-ri,	Jochiwon-eup, Yeongi-gun,	Choongnam, 339-700 Korea	
2-(b) Complete the table Family income				
Study Aspirations	low	middle	high	Total
Some high school	(8.07, 0.41)	(11,49,-0,19) 52	9' (9.45,-0,19)	29
High School Graduate	(38.14,1.58)	52 (54,02,-0,54) 23	41 (44.66,-0.95)	137
Some college	(13.36, -0.13)	(18.99, 1.30)	12	48
college graduate	10 (16.43, -2.11)	(23.34, -0.40)	(15,65,-1,24) 2) (19.23,2,44)	59
Total	26	108	89	273
9				

3. (a) $\overline{u} = \sum_{i} u_{i} \hat{\pi}_{i+} = |x| \frac{29}{273} + 2x \frac{137}{273} + 3x \frac{48}{273} + 4x \frac{59}{223} = 2.50$ $\overline{V} = \sum_{i} V_{i} \hat{\pi}_{+j} = |x| \frac{76}{273} + 2x \frac{108}{273} + 3x \frac{89}{273} = 2.048$ $\hat{\rho} = \sum_{i,j} (u_{i} - \overline{u})(V_{j} - \overline{v}) \hat{\pi}_{ij} / \sqrt{[\sum_{i} (u_{i} - \overline{u})^{2} \hat{\pi}_{i+}][\sum_{j} (V_{j} - \overline{v})^{2} \hat{\pi}_{+j}]}$

= 0.097/ \(\sigma \).895×0,602 = (0.13)

Ho: P=0 VS H1: P=0

 $\dot{M}^2 = (273-1) \hat{\rho}^2 = 272 \times (0.132)^2 = 272 \times 0.017 = 4.739 \sim \chi_1^2$ (In SAS, 4.7489) p-value < 0.05 so we can reject the null hypothesis under $\alpha = 0.05$ $\hat{\rho} = 0.132$ and $\dot{H} = 2.797$ so there is an increasing trend.

(b) $\overline{u} = \sum_{i} u_{i} \hat{\pi}_{i+} = 10 \times \frac{29}{293} + 20 \times \frac{137}{293} + 30 \times \frac{48}{293} + 40 \times \frac{59}{293} \stackrel{?}{=} 25.02$ $\overline{V} = \sum_{j} V_{ij} \hat{\pi}_{+j} = (-1) \times \frac{76}{293} + 0 \times \frac{108}{293} + 1 \times \frac{89}{293} \stackrel{?}{=} 0.048$ $\hat{\rho} = \sum_{ij} (u_{i} - \overline{u}) (v_{j} - \overline{v}) \hat{\pi}_{ij} / \sum_{i} (u_{i} - \overline{u})^{2} \hat{\pi}_{i+}] [\sum_{j} (v_{j} - \overline{v})^{2} \hat{\pi}_{+j}]$ $\stackrel{?}{=} 0.97 / \sqrt{89.47 \times 0.602} \stackrel{?}{=} 0.132$

The results do not change because P is same as P in (a).

(c) $\overline{u} = \Sigma_{i} u_{i} \widehat{\pi}_{i+} = 1 \times \frac{29}{273} + 3 \times \frac{137}{273} + 5 \times \frac{48}{273} + 10 \times \frac{59}{273} = 4.65$ $\overline{V} = \Sigma_{j} V_{j} \widehat{\pi}_{+j} = 1 \times \frac{76}{273} + 5 \times \frac{108}{273} + 10 \times \frac{89}{273} = 6.516$ $\widehat{P} = \Sigma_{i,j} (u_{i} - \overline{u}) (v_{j} - \overline{v}) \widehat{\pi}_{i,j} / \sqrt{[\Sigma_{i} (u_{i} - \overline{u})^{2} \widehat{\pi}_{i+}][\Sigma_{j} (v_{j} - \overline{v})^{2} \widehat{\pi}_{+j}]}$

 $= \frac{1}{1.575} \int \frac{8.99 \times 12.34}{5.00} = \frac{1.575}{1.595} \int \frac{8.99 \times 12.34}{5.00} = \frac{1.595}{1.595} =$

Ho: P=0 vs H:: P = 0

 $M^2 = (203 - 1) \hat{\rho}^2 = 202 \times (0.149)^2 = 6.038 \sim \chi^2$ (In SAS, 6.0869)

p-value < 0.05 so the results do not change.

Sectionary Campus, 206, Sectioning-II, Jochiwon-eup, Yeongi-gun, Choongnam, 339-700 Korea
4. (a) $\hat{\Theta}_{AG(1)} = \frac{512 \times 19}{319 \times 89} = 0.343$ $\hat{\Theta}_{AG(2)} = \frac{353 \times 8}{209 \times 19} = 0.803$ $\hat{\Theta}_{AG(3)} = \frac{120 \times 391}{205 \times 202} = 1.133$ $\hat{\Theta}_{AG(4)} = \frac{138 \times 244}{299 \times 131} = 0.921$ $\hat{\Theta}_{AG(5)} = \frac{53 \times 299}{138 \times 94} = 1.222$ $\hat{\Theta}_{AG(6)} = \frac{22 \times 317}{351 \times 24} = 0.828$
299×131 UAG(5) 138×94 F. 1. 222 GAG(6) = 351×24 = 0.828
:. The estimated odds ratios of the men who were admitted
are 34.3%, 80.3%, 113.3%, 92.1%, 122.2%, and 82.8% of the estimated
odds ratios of the women in the department 1.2,3.4.5, and 6
hespectively.
(b) The sample AG marginal odds ratios. 1198×1278 = 1.841
The estimated odds ratios of the men who were admitted
are 184.1% of the estimated odds ratios of the women.
(c) They give such different indications of the AG association because
of Simpon's paradox. For example, the conditional marginal odds
ratios in the department 182 are low but about 72% of the
men who admitted admitted department 182 while about 19% of
the women who admitted admitted department 182.