INF2220 - Algoritmer og datastrukturer

HØSTEN 2015

Ingrid Chieh Yu
Institutt for informatikk, Universitetet i Oslo

Forelesning 5: Grafer I

Dagens plan:

- Definisjon av en graf
- Grafvarianter
- Intern representasjon av grafer
- Topologisk sortering
- Korteste vei en-til-alle uvektet graf
- Korteste vei en-til-alle vektet graf
- M.A.W. Data Structures and Algorithm Analysis kap. 9

Det første grafteoretiske problem: Broene i Königsberg

Er det mulig å ta en spasertur som krysser hver av broene nøyaktig en gang?

Dette problemet ble løst av Euler allerede i 1736!

Grafer vi har sett allerede

Labyrint

Grafer vi har sett allerede

Trær

Hva er en graf?

- En graf G = (V,E) har en mengde noder, V, og en mengde kanter, E
- ullet |V| og |E| er henholdsvis antall noder og antall kanter i grafen
- Hver kant er et par av noder, dvs. (u, v) slik at $u, v \in V$
- En kant (u, v) modellerer at u er relatert til v
- Dersom nodeparet i kanten (u, v) er ordnet (dvs. at rekkefølgen har betydning), sier vi at grafen er rettet, i motsatt fall er den urettet

 Grafer er den mest fleksible datastrukturen vi kjenner ("alt" kan modelleres med grafer)

Hvorfor grafer?

- De dukker opp i veldig mange problemer i hverdagslivet:
- Flyplassystemer
- Datanettverk
- Trafikkflyt
- Ruteplanlegging
- VLSI (chip design)
- og mange flere ...

- Grafalgoritmer viser veldig godt hvor viktig valg av datastruktur er mhp. tidsforbruk
- Det finnes grunnleggende algoritmeteknikker som løser mange ikke-trivielle problemer raskt

Grafer: Definisjoner og varianter

• Node y er nabo-node (eller etterfølger) til node x dersom $(x, y) \in E$

x og y er naboer, y og z er naboer, men x og z er ikke naboer

z er nabo-node til y, men y er ikke nabo-node til z

 En graf er vektet dersom hver kant har en tredje komponent, kalt kost eller vekt

- En vei (eller sti) i en graf er en sekvens av noder $v_1, v_2, v_3, \ldots, v_n$ slik at $(v_i, v_{i+1}) \in E$ for $1 \le i \le n-1$
- Lengden til veien er lik antall kanter på veien, dvs. n-1

• Kosten til en vei er summene av vektene langs veien

• En vei er enkel dersom alle nodene (untatt muligens første og siste) på veien er forskjellige

• Våre grafer har vanligvis ikke "loops", (v, v), eller "multikanter" (to like kanter):

- En løkke (sykel) i en rettet graf er en vei med lengde ≥ 1 slik at $v_1 = v_n$. Løkken er enkel dersom stien er enkel
- I en urettet graf må også alle kanter i løkken være forskjellige

- En rettet graf er asyklisk dersom den ikke har noen løkker
- En rettet, asyklisk graf blir ofte kalt en DAG (Directed, Acyclic Graf)
- En urettet graf er sammenhengende dersom det er en vei fra hver node til alle andre noder

sammenhengende

ikke sammenhengende

- En rettet graf er sterkt sammenhengende dersom det er en vei fra hver node til alle andre noder
- En rettet graf er svakt sammenhengende dersom den underliggende urettede grafen er sammenhengende

- Graden til en node i en urettet graf er antall kanter mot noden
- Inngraden til en node i en rettet graf er antall kanter inn til noden
- Utgraden til en node i en rettet graf er antall kanter ut fra noden.

Hvordan representere grafer?

Nabo-matrise (adjacency matrix)

	1	2	3	4	5
1	0	1	1	1	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	0	1	0	0
5	0	0	0	1	0

- Bra hvis "tett" graf, dvs. $|E| = \Theta(|V|^2)$
- Det tar $\mathcal{O}(|V|)$ tid å finne alle naboer

Nabo-liste (adhacency list)

- Bra hvis "tynn" ("sparse") graf
- Tar $\mathcal{O}(\mathsf{Utgrad}(v))$ tid å finne alle naboer til v
- De fleste grafer i det virkelige liv er tynne!

Objekter & array

- I Java kan grafer også representeres ved en kombinasjon av node-objekter og etterfølgerarrayer
- Arraylengden kan være en parameter til node-klassens constructor

```
class Node {
   int antallNaboer;
   Node[] etterf; double[] vekt;

   Node(int kapasitet) {
     etterf = new Node[kapasitet];
     vekt = new double[kapasitet];
     antallNaboer = 0;}
}
```

- Da må vi vite antall etterfølgere når vi genererer noden
- Eventuelt kan vi *estimere* en øvre grense og la siste del av arrayen være tom
- Vi trenger da en variabel som sier hvor mange etterfølgere en node faktisk har

Topologisk sortering

- En topologisk sortering er en ordning (rekkefølge) av noder i en DAG slik at dersom det finnes en vei fra v_i til v_j , så kommer v_j etter v_i i ordningen
- Topologisk sortering er umulig hvis grafen har en løkke

Følgende enkle algoritme finner en topologisk sortering (hvis det er noen):

- Finn en node med inngrad = 0
- 2 Skriv ut noden, og fjern noden og utkantene fra grafen (marker noden som ferdig og reduser inngraden til nabonodene)
- 3 Gå tilbake til punkt 1

Eksempel:

Algoritme for topologisk sortering

```
void topsort() {
    Node v:
    for (int teller = 0; teller < ANTALL NODER; teller++) {</pre>
        v = finnNyNodeMedInngradNull();
        if (v == null) {
            error("Løkke funnet!");
        } else {
            < Skriv ut v som node 'teller' >
            for < hver nabo w til v > {
                w.inngrad --:
          }}}
```

- Denne algoritmen er $\mathcal{O}(|V|^2)$ siden finnNyNodeMedInngradNull ser gjennom hele node/inngrad-tabellen hver gang
- Unødvendig: bare noen få av verdiene kommer ned til 0 hver gang

En forbedring er å holde alle noder med inngrad=0 i en boks.

Boksen kan implementeres som en stakk eller en kø:

- Plasser alle nodene med inngrad=0 i boksen.
- 2 Ta ut en node v fra boksen.
- Skriv ut v.
- Fjern v fra grafen og reduserer inngraden til alle etterfølgerne.
- Dersom noen av etterfølgerne får inngrad=0, settes de inn i boksen.
- 6 Gå tilbake til punkt 2.

Forbedret algoritme

```
void topsort() {
   Kø k = new Kø();
    Node v:
    int teller = 0:
    for < hver node v >
        if (v.inngrad == 0) k.settlnn(v);
    while (!k.isEmpty()) {
        v = k.taUt();
        < Skriv ut v >:
        teller++:
        for < hver nabo w til v > {
            w.inngrad --;
            if (w.inngrad == 0) k.settlnn(w);
    if (teller < ANTALL NODER) error("Løkke funnet!");</pre>
```

• Forutsatt at vi bruker nabolister, er denne algoritmen $\mathcal{O}(|V| + |E|)$. Kø/stakk-operasjoner tar konstant tid, og hver node og hver kant blir bare behandlet en gang.

Oppgave

Anta at du har en avhengighetsgraf med noder: {Q, B, J, P, A, Z}. Grafen har 4 lovlige topologiske sorteringer, det finnes **ingen** annen sortering av nodene som tilfredstiller avhengighetene:

- Q, A, B, J, Z, P
- Q, B, A, J, Z, P
- **3** Q, A, B, Z, J, P
- Q, B, A, Z, J, P

Tegn en graf som oppfyller kriteriene.

Korteste vei, en-til-alle

I korteste vei problemet (en-til-alle) har vi gitt en (muligens vektet) graf G=(V,E) og en node s.

Vi ønsker å finne den korteste veien (evt. med vekter) fra s til alle andre noder i G.

- Korteste vei fra z til x uten vekt er 1.
- Korteste vei fra z til x med vekt er 7 (via y).

• Negative vekter (kost) i løkker kan skape problemer:

Hvor mye koster korteste vei fra x til z?

Korteste vei i en uvektet graf

Korteste vei fra s til t i en uvektet graf er lik veien som bruker færrest antall kanter.

(Det tilsvarer at alle kanter har vekt=1)

- Følgende bredde-først algoritme løser problemet for en node s i en uvektet graf G:
 - Marker at lengden fra s til s er lik 0.
 (Merk at s foreløpig er den eneste noden som er markert.)
 - 2 Finn alle etterfølgere til s. Marker disse med avstand 1.
 - Finn alle umarkerte etterfølgere til nodene som er på avstand 1. Marker disse med avstand 2.
 - Finn alle umarkerte etterfølgere til nodene som er på avstand 2. Marker disse med avstand 3.
 - Fortsett til alle noder er markert, eller vi ikke har noen umarkerte etterfølgere.
- Finnes det fortsatt umarkerte noder, kan ikke hele G nåes fra s.
- Hvis G er urettet, skjer dette hvis og bare hvis G er usammenhengende.

Vi kan finne den korteste veien ved å sette bakoverpekere ("vei") til den noden som "oppdaget" oss

```
void uvektet(Node s) {
    for < hver node v > {
        v.avstand = UENDELIG;
        v.kjent = false;
    s.avstand = 0:
    for (int dist = 0; dist < ANTALL NODER; dist++) {</pre>
        for < hver node v > {
            if (!v.kjent \&\& v.avstand == dist) {
                v.kjent = true;
                 for < hver nabo w til v > {
                     if (w.avstand == UENDELIG) {
                         w.avstand = dist + 1:
                         w.vei = v:
                     }}}}}
```

Hovedløkken vil som oftest fortsette etter at alle noder er merket, men den vil terminere selv om ikke alle noder kan nåes fra s. Tidsforbruket er $\mathcal{O}(|\mathsf{V}|^2)$.

- Vi sparer tid ved å benytte en $k\emptyset$ av noder.
- Vi begynner med å legge s inn i køen.
- Så lenge køen ikke er tom, tar vi ut første node i køen, behandler denne og legger dens etterfølgere inn bakerst i køen.
- Da blir s behandlet først. Så blir alle noder i avstand 1 behandlet før alle i avstand 2, før alle i avstand 3 . . .
- Denne strategien ligner på bredde først traversering av trær (først rotnoden, så alle noder på nivå 1, så alle noder på nivå 2, osv).
- Tidsforbruket blir $\mathcal{O}(|E| + |V|)$ fordi køoperasjoner tar konstant tid og hver kant og hver node bare blir behandlet en gang.

Korteste uvektet vei fra node s

```
void uvektet(Node s) {
   Kø k = new Kø();
    Node v:
    for < hver node n > n.avstand = UENDELIG;
    s.avstand = 0:
    k.settlnn(s);
    while (!k.isEmpty()) {
        v = k.taUt();
        for < hver nabo w til v > {
            if (w.avstand == UENDELIG) {
                w.avstand = v.avstand + 1;
                w.vei = v:
                k.settlnn(w);
            }}}
```

- Bruken av kø gjør attributtet kjent overflødig.
- Forutsatt at vi bruker nabolister, er denne algoritmen $\mathcal{O}(|V| + |E|)$.
- Kø-operasjoner tar konstant tid, og hver node og hver kant blir behandlet bare en gang.

Korteste vei i en vektet graf uten negative kanter

- Graf uten vekter:
 - Velger f\u00f8rst alle nodene med avstand 1 fra startnoden, s\u00e5 alle med avstand 2 osv
 - Mer generelt: Velger hele tiden en ukjent node blant dem med minst avstand fra startnoden
- Den samme hovedideen kan brukes hvis vi har en graf med vekter

algoritmen: publisert av Dijkstra i 1959 og har fått navn etter ham

[source: http://biofilmforskning.wordpress.com/mikroorganismer/mugg/]

Nodene er enten KJENT eller UKJENT

KJENT = korteste vei fra s funnet!

UKJENT = korteste vei er under beregning

i starten:

For hvert steg øker algo. mengden av kjente noder med 1. Hvilken node velger den??

Velg den noden som har minst avstand til s: Dijkstra grådig kriterier

$$MIN(\underbrace{d_{v1} + C_{v1,w1}}_{d_{w1}}, \underbrace{d_{v2} + C_{v2,w2}}_{d_{w2}}, \underbrace{d_{v1} + C_{v1,w3}}_{d_{w3}})$$

Dijkstras algoritme

- For alle noder:
 - Sett avstanden fra startnoden s lik ∞ . Merk noden som ukjent
- 2 Sett avstanden fra s til seg selv lik 0
- Velg en ukjent node v med minimal (aktuell) avstand fra s og marker v som kjent
- 4 For hver ukjent nabonode w til v:
 - Dersom avstanden vi får ved å følge veien gjennom \mathbf{v} , er kortere enn den gamle avstanden til \mathbf{s}
 - reduserer avstanden til s for w
 - sett bakoverpekeren i w til v
- Akkurat som for uvektede grafer, ser vi bare etter potensielle forbedringer for naboer (w) som ennå ikke er valgt (kjent)

uvektet:
$$d_w = d_v + 1$$
 hvis $d_w = \infty$

vektet:
$$d_w = d_v + c_{v,w}$$
 hvis $d_v + c_{v,w} < d_w$

Eksempel

Input:

$$\mathsf{s}=\mathsf{V}_1$$

Den første noden som velges, er startnoden V_1

Naboene til V_1 har fått endret sin avstand og fått tilbakepekere til V_1

Nå er V₂ nærmeste ukjente node

 V_4 og V_5 har fått ny avstand og tilbakepeker

V₃ er nærmeste ukjente node

 V_6 har fått endret sin avstand og fått tilbakepeker til V_3

Nå er V₄ nærmeste ukjente node. Merk at den aldri senere kan få endret sin avstand

 V_7 har fått ny avstand og tilbakepeker, og V_6 og V_7 er nærmeste ukjente noder

Vi velger V₆ som blir kjent

Nå er V₇ nærmest og blir kjent

V₅ får ny avstand og tilbakepeker

Vi kan nå avslutte med å gjøre V_5 kjent

Oppgave

Bruk Dijkstras algoritme, og fyll ut tabellen nedenfor!

Initielt:

v	kjent	avstand	vei	v	kjent	avstand	vei
\mathbf{v}_{l}	F	0	0	v _l			
\mathbf{v}_{2}	F	∞	0	v ₂			
v_3	F	∞	0	v ₃			
v_4	F	∞	0	v_4			
v_5	F	∞	0	V ₅			
v_6	F	∞	0	v ₆			
v ₇	F	∞	0	v ₇			

Hvorfor virker algoritmen?

Invariant

- Ingen kjent node har større avstand til s enn en ukjent node
- Alle kjente noder har riktig korteste vei satt
- Vi plukker ut en ukjent node v med minst avstand (d_v) , markerer den som kjent og påstår at avstanden til v er riktig
- Denne påstanden holder fordi:
 - \bullet **d**_v er den korteste veien ved å bruke bare kjente noder
 - de kjente nodene har riktig korteste vei satt
 - \bullet en vei til v som er kortere enn $d_v,$ må nødvendigvis forlate mengden av kjente noder et sted,
 - men d_{ν} er allerede den korteste veien fra kjente noder til ${m v}$
- Dette argumentet holder fordi vi ikke har negative kanter!

Tidsforbruk

- Hvis vi leter sekvensielt etter den ukjente noden med minst avstand tar dette $\mathcal{O}(|\mathbf{V}|)$ tid, noe som gjøres $|\mathbf{V}|$ ganger, så total tid for å finne minste avstand blir $\mathcal{O}(|\mathbf{V}|^2)$
- I tillegg oppdateres avstandene, maksimalt en oppdatering per kant, dvs. til sammen $\mathcal{O}(|\mathbf{E}|)$

Totalt tidsforbruk

$$\mathcal{O}(|\mathsf{E}| + |\mathsf{V}|^2) = \mathcal{O}(|\mathsf{V}|^2)$$

Raskere implementasjon (for tynne grafer):

- ullet Bruker en prioritetskø til å ta vare på ukjente noder med avstand mindre enn ∞
- Prioriteten til ukjent node forandres hvis vi finner kortere vei til noden
- deleteMin og decreaseKey bruker $\mathcal{O}(\log |\mathbf{V}|)$ tid (kap. 6)

Totalt tidsforbruk

Hva med negative kanter?

En mulig løsning:

- Nodene er ikke lenger kjente eller ukjente
- Vi har i stedet en kø som inneholder noder som har fått forbedret avstandsverdien sin
- Løkken i algoritmen gjør følgende:
 - Ta ut en node v fra køen
 - ② For hver etterfølger w, sjekk om vi får en forbedring $(d_w > d_v + c_{v,w})$
 - Oppdater i så fall avstanden, og plasser w (tilbake)! i køen (hvis den ikke er der allerede)
- Tidsforbruket blir $\mathcal{O}(|\mathbf{E}| \cdot |\mathbf{V}|)$
- Det finnes ingen korteste vei med negative løkker i G. Det er det hvis og bare hvis samme node blir tatt ut av køen mer enn |V| ganger.
 - Da må vi terminere algoritmen!

Hva med asykliske grafer?

- Lineær tid ved å behandle nodene i en topologisk rekkefølge $\mathcal{O}(|\mathbf{E}| + |\mathbf{V}|)$
- når en node \mathbf{v} er valgt, kan $\mathbf{d}_{\mathbf{v}}$ ikke lenger senkes siden det er ingen innkommende kanter som kommer fra ukjente noder

Oppsummering

- Graf: Noder + Kanter
- Begrep: Rettet, urettet, inngrad, utgrad, sti...
- DAG: Rettet asyklisk graf (topologisk sortering)
- Avstand: Korteste vei en-til-alle

Neste forelesning: 24. september

Grafer II:Prim, Kruskal, Dybde-først søk