INFORMATION BOOKLET

Algebra

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

$$\sum_{i=1}^{n} 1 = n$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \frac{n^2}{2} + \frac{n}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$$

$$\sum_{i=1}^{n} i^{3} = \frac{n^{2} (n+1)^{2}}{4} = \frac{n^{4}}{4} + \frac{n^{3}}{2} + \frac{n^{2}}{4}$$

$$z=a+bi$$

$$\ln A + \ln B = \ln (AB)$$

$$\ln A + \ln B = \ln (AB)$$
 $\ln A - \ln B = \ln \left(\frac{A}{B}\right)$

$$\ln A^n = n \ln A$$

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Calculus

Area =
$$\lim_{n\to\infty} \left(\frac{b-a}{n}\right) \sum_{i=1}^{n} f(x_i)$$

$$\int_{a}^{b} x^{n} dx = \left[\frac{x^{n+1}}{n+1} \right]_{a}^{b}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

$$\int f'(g(x)).g'(x)dx = f(g(x)) + C$$

$$\int f(x).g'(x)dx = f(x).g(x) - \int g(x).f'(x)dx + C$$

$$X_{r+1} = X_r - \frac{f(X_r)}{f'(X_r)}$$

$$V = \pi \int_{a}^{b} y^{2} dx$$

Function	Derivative
x ⁿ	nx^{n-1}
sin x	cos x
COS X	-sin x
tan x	sec ² X
cot x	-cosec ² x
sec x	sec x.tan x
cosec x	-cosec x.cot x
f(g(x))	f'(g(x)).g'(x)
f(x).g(x)	g(x).f'(x)+f(x).g'(x)
f(x)	g(x).f'(x)-f(x).g'(x)
$\overline{g(x)}$	$[g(x)]^2$

$$A = \frac{1}{2}r^2\theta \qquad \qquad s = r\theta$$

In
$$\triangle ABC$$
:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc.\cos A$$
$$Area = \frac{1}{2}ab.\sin C$$

$$\sin^2 A + \cos^2 A = 1$$
 $1 + \tan^2 A = \sec^2 A$ $1 + \cot^2 A = \csc^2 A$

$$\sin(A \pm B) = \sin A \cdot \cos B \pm \cos A \sin B$$
 $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \begin{cases} \cos^2 A - \sin^2 A \\ 2\cos^2 A - 1 \\ 1 - 2\sin^2 A \end{cases}$$

$$\sin A.\cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right]$$

$$\sin A.\sin B = \frac{1}{2} \left[\cos(A-B) - \cos(A+B)\right]$$

$$\cos A.\cos B = \frac{1}{2} \left[\cos(A-B) + \cos(A+B)\right]$$

Finance & Modelling

$$F = P(1+in)$$
 $F = P(1-in)$ $F = P(1-i)^n$ $F = P(1-i)^n$

$$F = x \left\lceil \frac{\left(1+i\right)^n - 1}{i} \right\rceil \qquad P = x \left\lceil \frac{1 - \left(1+i\right)^{-n}}{i} \right\rceil \qquad r_{\text{eff}} = \left(1 + \frac{r}{k}\right)^k - 1$$

$$P_{n+1} = P_n + rP_n \left(1 - \frac{P_n}{K} \right)$$

$$R_{n+1} = R_n + aR_n \left(1 - \frac{R_n}{K} \right) - bR_n F_n$$

$$F_{n+1} = F_n + f bR_n F_n - cF_n$$

Statistics

$$P(A) = \frac{n(A)}{n(S)} \qquad P(B \mid A) = \frac{P(B \cap A)}{P(A)} \qquad P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$${}^{n}P_{r} = \frac{n!}{(n-r)!} \qquad {}^{n}C_{r} = {n \choose r} = \frac{n!}{(n-r)!r!} \qquad P(X=x) = {n \choose x} p^{x} (1-p)^{n-x}$$

$$P(R=r) = \frac{\binom{p}{r}\binom{N-p}{n-r}}{\binom{N}{p}} \qquad z = \frac{\overline{x} - \mu}{\sigma}$$

$$z = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{\sigma_x^2}{n_y} + \frac{\sigma_y^2}{n_y}}} \qquad b = \frac{n\sum (xy) - \sum x \sum y}{n(\sum x^2) - (\sum x)^2} \qquad b = \frac{\sum xy - n\overline{x}\overline{y}}{\sum x^2 - n(\overline{x})^2} \qquad b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

$$\bar{x} \pm Z \frac{\sigma}{\sqrt{n}}$$
 $\hat{P} \pm Z \sqrt{\frac{\hat{P}(1-\hat{P})}{n}}$

Matrix Transformations

$$\begin{pmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{pmatrix} \qquad \begin{pmatrix}
\cos 2\theta & \sin 2\theta \\
\sin 2\theta & -\cos 2\theta
\end{pmatrix}$$

Normal Distribution Table

Areas under the Normal Curve

$$H(z)$$
 $\frac{1}{\sqrt{2\pi}} \int_0^z e^{-\frac{1}{2}x^2} dx =$

$$H(-z) = H(z), H(\infty) = \frac{1}{2}$$

Entries in the table are values of H(z) for $z \ge 0$.

Z	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09
0,0	,0000	,0040	,0080	,0120	,0160	,0199	,0239	,0279	,0319	,0359
0,1	,0398	,0438	,0478	,0517	,0557	,0596	,0636	,0675	,0714	,0753
0,2	,0793	,0832	,0871	,0910	,0948	,0987	,1026	,1064	,1103	,1141
0,3	,1179	,1217	,1255	,1293	,1331	,1368	,1406	,1443	,1480	,1517
0,4	,1554	,1591	,1628	,1664	,1700	,1736	,1772	,1808	,1844	,1879
0,5	,1915	,1950	,1985	,2019	,2054	,2088	,2123	,2157	,2190	,2224
0,6	,2257	,2291	,2324	,2357	,2389	,2422	,2454	,2486	,2517	,2549
0,7	,2580	,2611	,2642	,2673	,2704	,2734	,2764	,2794	,2823	,2852
0,8	,2881	,2910	,2939	,2967	,2995	,3023	,3051	,3078	,3106	,3133
0,9	,3159	,3186	,3212	,3238	,3264	,3289	,3315	,3340	,3365	,3389
1.0	2/12	2/20	2461	2/05	2500	2521	2554	2577	2500	2621
1,0	,3413 3643	,3438 3665	,3461 3686	,3485 3708	,3508	,3531 3740	,3554 3770	,3577 3700	,3599 3810	,3621
1,1 1,2	,3643 3840	,3665 3860	,3686 3888	,3708 3907	,3729 3025	,3749 3011	,3770 3062	,3790 3980	,3810 3007	,3830
1,3	,3849 4032	,3869 4049	,3888 4066	,3907 4082	,3925 4099	,3944 4115	,3962 4131	,3980 4147	,3997 4162	,4015 4177
	,4032 ,4192	,4049 4207	,4066 4222	,4082 4236	,4099 4251	,4115 4265	,4131 4279	,4147 4292	,4162 4306	,41 <i>//</i>
1,4	,4192	,4207	,4222	,4236	,4251	,4265	,4279	,4292	,4306	,4319
1,5	,4332	,4345	,4357	,4370	,4382	,4394	,4406	,4418	,4429	,4441
1,6	,4452	,4463	,4474	,4484	,4495	,4505	,4515	,4525	,4535	,4545
1,7	,4554	,4564	,4573	,4582	,4591	,4599	,4608	,4616	,4625	,4633
1,8	,4641	,4649	,4656	,4664	,4671	,4678	,4686	,4693	,4699	,4706
1,9	,4713	,4719	,4726	,4732	,4738	,4744	,4750	,4756	,4761	,4767
2,0	,4772	,4778	,4783	,4788	,4793	,4798	,4803	,4808	,4812	,4817
2,1	,4821	,4826	,4830	,4834	,4838	,4842	,4846	,4850	,4854	,4857
2,2	,4861	,4864	,4868	,4871	,4875	,4878	,4881	,4884	,4887	,4890
2,3	,48928	,48956	,48983	,49010	,49036	,49061	,49086	,49111	,49134	,49158
2,4	,49180	,49202	,49224	,49245	,49266	,49286	,49305	,49324	,49343	,49361
2,5	10370	,49396	10/13	40430	10116	10/161	10177	10102	,49506	49520
2,6	,49379 ,49534	,49547	,49413 ,49560	,49430 ,49573	,49446 ,49585	,49461 ,49598	,49477 ,49609	,49492 ,49621	,49632	,49520 ,49643
2,7	,49653	,49664	,49674	,49683	,49693	,49702	,49711	,49720	,49728	,49736
2,8	,49744	,49752	,49760	,49767	,49774	,49781	,49788	,49795	,49801	,49807
2,9	,49813	,49819	,49825	,49831	,49836	,49841	,49846	,49851	,49856	,49861
_,0	, 10010	,	, .0020	,	,	,	,	,	,	,
3,0	,49865	,49869	,49874	,49878	,49882	,49886	,49889	,49893	,49896	,49900
3,1	,49903	,49906	,49910	,49913	,49916	,49918	,49921	,49924	,49926	,49929
3,2	,49931	,49934	,49936	,49938	,49940	,49942	,49944	,49946	,49948	,49950
3,3	,49952	,49953	,49955	,49957	,49958	,49960	,49961	,49962	,49964	,49965
3,4	,49966	,49968	,49969	,49970	,49971	,49972	,49973	,49974	,49975	,49976
3,5	,49977									
3,6	,49984									
3,7	,49989									
3,8	,49993									
3,9	,49995									
4,0	,49997									
.,0	, 10001									