1. Análisis exploratorio

Cuadro 1: Estadísticos Iniciales variable media varianza $Cred_perd$ 0.67 1.36 $Cred_PF$ 1.56 9.04 Electronico 16.231565.86 Ing_tot 5175.004990698327.637208400.90 $Monto_prom$ 1296.89 Saldo 640.16 236844874.62

C_{11}	dro	ე.	C.,	.	mo	727
.115	171177		-511	rri	rrısı	1.1.

	Cred_perd	Cred_PF	Electronico	Ing_tot	Monto_prom	Saldo
Min. :	0	0	0	-251	0	0
1st Qu.:	0	0	1	100	500	0
Median:	0	1	7	407	800	0
Mean:	0.6707	1.56	16.23	5175	1297	640.2
3rd Qu.:	1	2	18	1631	1350	0
Max.:	59	168	3439	11024580	143881	2674250

2. Desarrollo del Modelo de mezclas

Se tiene un conjunto de datos compuesto de p variables de conteo y d variables continuas, con n observaciones.

Las variables continuas se distribuyen Normal-Multivariada, $X^c \sim N(\mu_j, \Sigma_j)$, mientras que cada una de las variables de conteo tiene una distribución Poisson, $X_l^d \sim Po(\lambda_{lj})$.

Por lo que nuestro modelo de mezclas con K componentes se define de la siguiente manera:

$$\sum_{j=1}^{K} (\pi_j \cdot N(\mu_j, \Sigma_j) \cdot \prod_{l=1}^{p} Po(\lambda_{lj}))$$
(1)

Ahora incluimos la variable latente z_j al modelo. Debido a que x_i sólo puede pertenecer a un componente, se definine a z_{ij} como la esperanza condicional,

$$E[z_{ij}|x] = \frac{\pi_j^{(t)} \cdot N(\mu_j, \Sigma_j) \cdot \prod_{l=1}^p Po(\lambda_{lj})}{\sum_{j=1}^K \pi_j^{(t)} \cdot N(\mu_j, \Sigma_j) \cdot \prod_{l=1}^p Po(\lambda_{lj})}$$
(2)

Para obtener la función de distribución conjunta, tenemos que $P(x,z;\theta)=$ $P(z,\theta)\cdot P(x|z,\theta) \text{ con } \theta=(\pi,\mu,\Sigma,\lambda), \text{ entonces}$

$$P(z,\theta) = \prod_{j=1}^{K} \pi_j^{z_j} \tag{3}$$

$$P(x|z_j,\theta) = (N(\mu_j, \Sigma_j) \cdot \prod_{l=1}^p Po(\lambda_{lj}))^{z_j}$$
(4)

$$P(x, z; \theta) = \prod_{j=1}^{K} \prod_{i=1}^{n} \left(\pi_j \cdot N(\mu_j, \Sigma_j) \cdot \prod_{l=1}^{p} Po(\lambda_{lj}) \right)^{z_{ij}}$$
 (5)

De manera que al desarrollarlo obtenemos lo siguiente,

$$L(\theta) = \prod_{j=1}^{K} \pi_{j}^{\bar{z}_{j}} \cdot |\Sigma_{j}^{-1}|^{-\bar{z}_{j}} \exp\left\{-\frac{1}{2} trace \left[\Sigma_{j}^{-1} \left(\bar{z}_{j}(\bar{x}_{j} - \mu_{j})(\bar{x}_{j} - \mu_{j})' + \sum_{i=1}^{n} (x_{i} - \bar{x}_{j})(x_{i} - \bar{x}_{j})'\right)\right]\right\}$$

$$(6)$$

$$\cdot \left[\prod_{l=1}^{p} \lambda_{lj}^{\bar{z}_{j}\bar{x}_{lj}} exp\left\{-\bar{z}_{j}\lambda_{lj}\right\}\right]$$

(El desarrollo completo para llegar a la ecuación 6 se encuentra en el pdf anexo que está a mano)

La distribución posterior está compuesta de la función de verosimilitud y las funciones previas de los parámetros. Así que primero se definen las distribuciones previas de los parámetros y sus hiperparámetros correspondientes:

 \bullet $\Sigma_j \sim W^{-1}(\Lambda_j, v_j)$ con una función de densidad,

$$P(\Sigma_j | \Lambda_j, v_j) \propto |\Sigma_j^{-1}|^{-(v_j + d + 1)/2} \exp\left\{-\frac{1}{2} trace\left[\Sigma_j^{-1} \Lambda_j\right]\right\}$$

• $\mu_j|\Sigma_j \sim N(\varepsilon_j, \frac{\Sigma_j}{n_j})$ con función de densidad,

$$P(\mu_j|\varepsilon_j, \frac{\Sigma_j}{n_j}) \propto |\Sigma_j^{-1}|^{-\frac{1}{2}} \exp\left\{-\frac{n_j}{2} trace\left[(\mu_j - \varepsilon_j)' \Sigma_j^{-1} (\mu_j - \varepsilon_j)\right]\right\}$$

• $\lambda_{lj} \sim G(a_{lj}, S_{lj})$ con función de densidad,

$$P(\lambda_{lj}|a_{lj}, S_{lj}) \propto \lambda_{lj}^{a_{lj}} \exp\left\{-S_{lj}\lambda_{lj}\right\}$$

• $\pi \sim Dir(\alpha_1 = 1/k, ..., \alpha_k = 1/k)$ con función de densidad,

$$P(\pi | \alpha_1, ..., \alpha_k) \propto \prod_{j=1}^K \pi_j^{\alpha_j}$$

Tomando en cuenta lo anterior, se tiene la siguiente función de distribución posterior,

$$P(\theta|x,z) = L(\theta) \cdot P(\pi|\alpha_1, ..., \alpha_k)$$

$$\cdot \prod_{j=1}^{K} \left[P(\Sigma_j | \Lambda_j, v_j) \cdot P(\mu_j | \varepsilon_j, \frac{\Sigma_j}{n_j}) \cdot \prod_{l=1}^{p} P(\lambda_{lj} | a_{lj}, S_{lj}) \right]$$
(7)

Con el fin de ser más claros en el desarrollo de la distribución posterior, separaremos la parte de las variables continuas y la parte de las variables de conteo.

1. Variables continuas

$$\begin{split} &L(\theta) \cdot P(\Sigma_{j} | \Lambda_{j}, v_{j}) \cdot P(\mu_{j} | \varepsilon_{j}, \frac{\Sigma_{j}}{n_{j}}) \\ &\propto |\Sigma_{j}^{-1}|^{-\bar{z}_{j}} \exp \left\{ -\frac{1}{2} trace \left[\Sigma_{j}^{-1} \left(\bar{z}_{j} (\bar{x}_{j} - \mu_{j}) (\bar{x}_{j} - \mu_{j})' + \sum_{i=1}^{n} (x_{i} - \bar{x}_{j}) (x_{i} - \bar{x}_{j})' \right) \right] \right\} \\ &\cdot |\Sigma_{j}^{-1}|^{-\frac{1}{2}} \exp \left\{ -\frac{n_{j}}{2} trace \left[(\mu_{j} - \varepsilon_{j})' \Sigma_{j}^{-1} (\mu_{j} - \varepsilon_{j}) \right] \right\} \\ &\cdot |\Sigma_{j}^{-1}|^{-(v_{j} + d + 1)/2} \exp \left\{ -\frac{1}{2} trace \left[\Sigma_{j}^{-1} \Lambda_{j} \right] \right\} \\ &= |\Sigma_{j}^{-1}|^{-(\tilde{v}_{j} + d + 1)/2} \exp \left\{ -\frac{1}{2} trace \left[\Sigma_{j}^{-1} \tilde{\Lambda}_{j} \right] \right\} \\ &\cdot |\Sigma_{j}^{-1}|^{-\frac{1}{2}} \exp \left\{ -\frac{\tilde{n}_{j}}{2} trace \left[(\mu_{j} - \tilde{\varepsilon}_{j})' \Sigma_{j}^{-1} (\mu_{j} - \tilde{\varepsilon}_{j}) \right] \right\} \\ &= N(\mu_{j} |\tilde{\varepsilon}_{j}, \frac{\Sigma_{j}}{\tilde{n}_{i}}) \cdot W^{-1}(\Sigma_{j} | \tilde{v}_{j}, \tilde{\Lambda}_{j}) \end{split}$$

2. Variables de conteo

$$L(\theta) \cdot \prod_{l=1}^{p} P(\lambda_{lj} | a_{lj}, S_{lj})$$

$$\propto \prod_{l=1}^{p} \lambda_{lj}^{\bar{z}_j \bar{x}_{lj}} exp \left\{ -\bar{z}_j \lambda_{lj} \right\} \cdot \lambda_{lj}^{a_{lj}} exp \left\{ -S_{lj} \lambda_{lj} \right\}$$

$$= \prod_{l=1}^{p} \lambda_{lj}^{\bar{z}_j \bar{x}_{lj} + a_{lj}} \cdot exp \left\{ -\lambda_{lj} (\bar{z}_j + S_{lj}) \right\}$$

$$= \prod_{l=1}^{p} Ga(\tilde{a}_{lj}, \tilde{S}_{lj})$$

$$(9)$$

3. Variable latente

$$L(\theta) \cdot P(\pi | \alpha_1, ..., \alpha_k)$$

$$\propto \prod_{j=1}^K \pi_j^{\bar{z}_j} \cdot \pi_j^{\alpha_j}$$

$$= Dir(\tilde{\alpha}_1 = \bar{z}_1 + \alpha_1, ..., \tilde{\alpha}_1 = \bar{z}_1 + \alpha_1)$$

$$(10)$$

3. Algoritmo

Para desarrollar el algoritmo del modelo basado en mezclas se toma como referencia el Algoritmo 6 propuesto por Liang en su artículo 'On simulation methods for two component normal mixture model "

- 1. Obtener los valores iniciales $\{\theta_j^{(0)} = (\pi_j^{(0)}, \mu_j^{(0)}, \Sigma_j^{(0)}, \lambda_j^{(0)})\}_{j=1}^K$ de los parámetros con base en las distribuciones previas definidas en la sección anterior.
 - $\Sigma_j \sim W^{-1}(\Lambda_j, v_j)$ donde Λ_j es la matriz de covarianzas de los datos observados y v_j es el número de variables continuas mas uno, (d+1).
 - $\mu_j | \Sigma_j \sim N(\varepsilon_j, \frac{\Sigma_j}{n_j})$ donde ε_j es un vector de las medias observas de las variables continuas, y n_j para fines prácticos se tomo como el

número total de observaciones n entre el número de componentes K.

- $\lambda_{lj} \sim G(a_{lj}, S_{lj})$ donde S_{lj} es la varianza observada de la l-ésima variable discreta y a_{lj} el parámetro de forma.
- $\pi \sim Dir(\alpha_1 = 1/k, ..., \alpha_k = 1/k)$
- 2. Repetir para t = 1, 2, ..., T, siendo T el número de iteraciones.
 - a) Generar $z_{ij}^{(t)} \in \{0,1\}$ para i=1,...,n, donde n es el número de observaciones, y

$$z_{ij}^{(t)} \sim Ber\left(\frac{\pi_j^{(t)} \cdot N(\mu_j, \Sigma_j) \cdot \prod_{l=1}^p Po(\lambda_{lj})}{\sum_{j=1}^K \pi_j^{(t)} \cdot N(\mu_j, \Sigma_j) \cdot \prod_{l=1}^p Po(\lambda_{lj})}\right)$$

- b) Generar las distribuciones posteriores de los parámetros para cada componente j, con j=1,...,K.
 - $\Sigma_j^{(t+1)} \sim W^{-1}(\tilde{\Lambda}_j, \tilde{v}_j)$, se definen $\tilde{\Lambda}_j$ y \tilde{v}_j como,

$$\tilde{\Lambda}_j = \Lambda_j + \sum_{i=1}^n z_{ij} (x_i - \bar{x}_j)(x_i - \bar{x}_j)' + \frac{n_j \bar{z}_j}{n_j + \bar{z}_j} (\bar{x}_j - \varepsilon_j)(\bar{x}_j - \varepsilon_j)'$$

$$\tilde{v}_j = v_j + \bar{z}_j$$

donde
$$\bar{z}_j = \sum_{i=1}^n z_{ij} \ \text{y} \ \bar{x}_j = \sum_{i=1}^n \frac{z_{ij} x_i}{\bar{z}_j}$$

$$\quad \blacksquare \ \mu_j^{(t+1)} \sim N(\tilde{\varepsilon}_j, \frac{\Sigma_j}{\tilde{n}_j}) \ \text{donde},$$

$$\tilde{\varepsilon}_j = \frac{\bar{z}_j \bar{x}_j + n_j \varepsilon_j}{\bar{z}_j + n_j}$$

$$\tilde{n}_j = \bar{z}_j + n_j$$

■ $\lambda_{lj}^{(t+1)} \sim G(\tilde{a}_j, \tilde{S}_j)$, se definen \tilde{a}_{lj} y \tilde{S}_{lj} como,

$$\tilde{a}_{lj} = \bar{z}_j \bar{x}_{lj} + a_{lj}$$

$$\tilde{S}_{lj} = \bar{z}_j + S_{lj}$$

donde
$$\bar{x}_{lj} = \sum_{i=1}^{n} \frac{z_{ij} x_{li}}{\bar{z}_{j}}$$

$$\pi_j^{(t+1)} \sim Dir(\bar{z}_1 + \alpha_1, ..., \bar{z}_k + \alpha_k)$$