

분류 보고서 양식

머신 러닝을 이용한 예측 분석

1. 프로젝트 개요

1-1. 주제

생체 신호를 이용한 흡연자 상태의 이진 예측 (23.11.14 대회 마감)

Binary Prediction of Smoker Status using Bio-Signals

Playground Series - Season 3, Episode 24

k https://www.kaggle.com/competitions/playground-series-s3e24/overview

- 평가 지표 : ROC Curve 아래 면적 (AUC)
- 달성 목표: 상위 10%(191위)

1-2. 주제 선정의 배경

- 흡연은 건강에 해로운 습관으로 인식되며 흡연으로 인한 질병과 사망률이 상당히 높다고 알려져 있어 이에 대한 대책 필요
- 흡연은 고혈압, 공복 혈당 수치의 변화, 콜레스테롤 수치의 이상, 혈액 내 헤모글로빈 농도의 증가 등과 관련이 있을 수 있으며 이러한 건강 지표들은 흡연이 건강에 미치는 영향을 평가하는 데 중요한 지표로 활용 가능
- 효과적인 공중보건 정책의 수립과 건강 프로그램의 개발에 활용 가능

1-3. 본 프로젝트의 활용 방안 제시

• 생체 신호를 분석하여 흡연자의 특정 상태를 인식하여 금연 프로그램 지원

• 흡연량이나 흡연 빈도와 같은 정보를 기반으로 개인화된 건강 조언을 제공하는 시스템 구축

2. 프로젝트 수행 절차 및 방법

2-1. 데이터 설명

• 총 22개의 피처 변수와 1개의 타겟 변수로 구성

	feature	데이터 타입	결 <i>측</i> 값	고윳값	max	min
0	age	int64	0	18	85.0	20.0
1	height(cm)	int64	0	15	190.0	130.0
2	weight(kg)	int64	0	29	135.0	30.0
3	waist(cm)	float64	0	548	129.0	51.0
4	eyesight(left)	float64	0	20	9.9	0.1
5	eyesight(right)	float64	0	18	9.9	0.1
6	hearing(left)	int64	0	2	2.0	1.0
7	hearing(right)	int64	0	2	2.0	1.0
8	systolic	int64	0	128	233.0	71.0
9	relaxation	int64	0	94	146.0	40.0
10	fasting blood sugar	int64	0	259	423.0	46.0
11	Cholesterol	int64	0	279	445.0	55.0
12	triglyceride	int64	0	393	999.0	8.0
13	HDL	int64	0	123	359.0	4.0
14	LDL	int64	0	286	1860.0	1.0
15	hemoglobin	float64	0	144	21.1	4.9
16	Urine protein	int64	0	6	6.0	1.0
17	serum creatinine	float64	0	34	11.6	0.1
18	AST	int64	0	196	1090.0	6.0
19	ALT	int64	0	230	2914.0	1.0
20	Gtp	int64	0	444	999.0	2.0
21	dental caries	int64	0	2	1.0	0.0
22	smoking	int64	0	2	1.0	0.0

• 피처 데이터

Feature		세부설명
age	나이	
height	신장	
weight	체중	
waist	허리	
eyesight(left)	시력(왼쪽)	
eyesight(right)	시력(오른쪽)	
hearing(left)	청각(왼쪽)	
hearing(right)	청각(오른쪽)	
systolic	혈압	심장이 수축할 때 동맥이 받는 압력의 양
relaxation	기분전환 / 혈압	심장이 이완할 때 동맥이 받는 압력의 양
fasting blood sugar	공복 혈당	 식사 전 혈액 내 포도당 농도를 나타냄 고혈당은 당뇨병의 초기 증상 중 하나이며, 심각한 건강 문제를 초래할 수 있음
cholesterol	콜레스테롤	 혈액 속의 지질류 중 하나 동맥경화는 혈관 벽에 지방이 쌓여 혈관이 좁아지는 현상으로, 고 콜레스테롤 수치는 이를 촉진할 수 있음
triglyceride	트리글리세리드	 지방의 주요 형태 중 하나 과다한 트리글리세라이드는 심혈관 질환의 위험을 높일 수 있음
HDL	고밀도 지단백질	HDL은 "좋은" 콜레스테롤로 알려져 있으며, 높은 HDL 수치는 심혈관 질환의 위험을 낮출 수 있음
LDL	저밀도 지단백질	 혈관 벽에 콜레스테롤이 쌓여 동맥경화의 원인이되는 '나쁜 콜레스테롤' 높은 수치가 지속되면 심근경색, 뇌경색 등의 질병이 발생할 위험이 증가 LDL 수치가 높은 사람이 흡연하면 그 위험도는 더욱 높아져 주의
hemoglobin	헤모글로빈	 적혈구의 일부 비흡연자의 혈중 헤모글로빈 수치는 1% 정도인데 반해 흡연자의 경우 5% 이상
urine protein	소변 단백질	 소변 내에 과도한 단백질이 섞여 나오는 것 단백뇨는 당뇨, 고혈압과 같은 만성 질환에서 나타 날 수 있음

Feature		세부설명
		 단백뇨 수치의 증가는 신장 손상 정도가 증가함을 의미 흡연이 단백뇨 위험도를 증가 시키는 것과 관련이 있음
serum creatinine	혈청 크레아티닌	 콩팥에 의해 변하지 않고 배설되는 근육 대사의 부산물 콩팥 기능에 대해 가장 일반적으로 사용되는 지표
AST	글루타민산	신체가 아미노산을 분해하는데 도움이 되는 효소수치가 증가하면 간에 이상을 의미
ALT	글루타민산	단백질 효소의 한 종류, 단백질을 간 세포의 에너지 로 전환시키는데 도움을 줌
GTP	구아노신 삼인산	• 혈액 내 효소 • 간이나 담관 손상시 수치가 증가
dental caries	충치 여부	충치 여부

• 타겟 데이터

Feature		세부설명
smoking	흡연 여부	0: 비흡연 / 1: 흡연

3. 데이터 전처리

3-1. 데이터 전처리 계획

- 모델링을 위해 고유값을 가진 ID 피처 제거
- 결측값 확인
- 중복 데이터 확인
- 이상치 확인
- 의미있는 피처 변수 생성

3-2. 데이터

▼ Data

Binary Prediction of Smoker Status using Bio-Signals

Binary Prediction of Smoker Status using Bio-Signals.zip

smoking.csv

```
train = pd.read_csv("/content/train.csv")
train_dataset = pd.read_csv("/content/train_dataset.csv")
test = pd.read_csv("/content/test.csv")
submission = pd.read_csv("/content/sample_submission.csv"

train.shape = (159256, 23)
train_dataset.shape = (38984, 23)
test.shape = (106171, 22)
submission.shape = (106171, 2)
```

- 전처리 후 train / test data
 - train.shape = (192723, 23)

	feature	데이터 타입	결측값	고윳값	max	min
0	age	int64	0	18	85.0	20.0
1	height(cm)	int64	0	15	190.0	130.0
2	weight(kg)	int64	0	29	135.0	30.0
3	waist(cm)	float64	0	548	129.0	51.0
4	eyesight(left)	float64	0	20	9.9	0.1
5	eyesight(right)	float64	0	18	9.9	0.1
6	hearing(left)	int64	0	2	2.0	1.0
7	hearing(right)	int64	0	2	2.0	1.0
8	systolic	int64	0	128	233.0	71.0
9	relaxation	int64	0	94	146.0	40.0
10	fasting blood sugar	int64	0	259	423.0	46.0
11	Cholesterol	int64	0	279	445.0	55.0
12	triglyceride	int64	0	393	999.0	8.0
13	HDL	int64	0	120	150.0	4.0
14	LDL	int64	0	193	200.0	1.0
15	hemoglobin	float64	0	144	21.1	4.9
16	Urine protein	int64	0	6	6.0	1.0
17	serum creatinine	float64	0	25	3.0	0.1
18	AST	int64	0	95	100.0	6.0
19	ALT	int64	0	150	150.0	1.0
20	Gtp	int64	0	290	300.0	2.0
21	dental caries	int64	0	2	1.0	0.0
22	smoking	int64	0	2	1.0	0.0

• test.shape = (106171, 22)

0	age					
4	9-	int64	0	18	85.0	20.0
1	height(cm)	int64	0	16	190.0	135.0
2	weight(kg)	int64	0	26	130.0	30.0
3	waist(cm)	float64	0	508	127.7	51.0
4	eyesight(left)	float64	0	20	9.9	0.1
5	eyesight(right)	float64	0	18	9.9	0.1
6	hearing(left)	int64	0	2	2.0	1.0
7	hearing(right)	int64	0	2	2.0	1.0
8	systolic	int64	0	114	213.0	71.0
9	relaxation	int64	0	78	140.0	40.0
10 fastir	ng blood sugar	int64	0	224	423.0	46.0
11	Cholesterol	int64	0	227	369.0	66.0
12	triglyceride	int64	0	392	548.0	8.0
13	HDL	int64	0	106	148.0	18.0
14	LDL	int64	0	182	200.0	1.0
15	hemoglobin	float64	0	132	21.1	5.0
16	Urine protein	int64	0	6	6.0	1.0
17 se	erum creatinine	float64	0	23	3.0	0.1
18	AST	int64	0	93	100.0	6.0
19	ALT	int64	0	142	150.0	1.0
20	Gtp	int64	0	271	300.0	2.0
21	dental caries	int64	0	2	1.0	0.0

3-3. 데이터 수집 및 전처리

추가 data 확보

Smoker Status Prediction using Bio-Signals

k https://www.kaggle.com/datasets/gauravduttakiit/smoker-status-prediction-using-biosignals

• 효율적인 모델링을 위해 고유값을 가진 ID 피처를 index로 사용

```
1 train = pd.read_csv("/content/drive/MyDrive/테킷/9.파이널프로젝트-12/data/train.csv",index_col="id")
2 train_dataset = pd.read_csv("/content/drive/MyDrive/테킷/9.파이널프로젝트-12/data/train_dataset.csv")
3 test = pd.read_csv("/content/drive/MyDrive/테킷/9.파이널프로젝트-12/data/test.csv",index_col="id")
4 submission = pd.read_csv("/content/drive/MyDrive/테킷/9.파이널프로젝트-12/data/sample_submission.csv")
```

• 기존 train data와 추가로 수집한 data 병합

• 중복 데이터 제거

💡 - 총 5517개 제거

• 결측값 확인

```
1 train_df.isnull().sum()
eyesight(left)
eyesight(right)
hearing(left)
fasting blood sugar
Cholesterol
HDL
LDL
   1 test.isnull().sum()
waist(cm)
eyesight(left)
hearing(left)
relaxation
fasting blood sugar
Cholesterol
HDL
LDL
```

• GTP, HDL, LDL, ALT, AST, Serum creatinine 해당 변수에 대한 Outlier 제거

```
1# train 데이터에 대한 임계값 설정
2 train_df['Gtp'] = train_df['Gtp'].clip(lower = 0, upper = 300)
3 train_df['HDL'] = train_df['HDL'].clip(lower = 0, upper = 150)
4 train_df['LDL'] = train_df['LDL'].clip(lower = 0, upper = 200)
5 train_df['ALT'] = train_df['ALT'].clip(lower = 0, upper = 150)
6 train_df['AST'] = train_df['AST'].clip(lower = 0, upper = 100)
7 train_df['serum creatinine'] = train_df['serum creatinine'].clip(lower = 0, upper = 3)
10 test['Gtp'] = test['Gtp'].clip(lower = 0, upper = 300)
11 test['HDL'] = test['HDL'].clip(lower = 0, upper = 150)
12 test['LDL'] = test['LDL'].clip(lower = 0, upper = 200)
13 test['ALT'] = test['ALT'].clip(lower = 0, upper = 150)
14 test['AST'] = test['AST'].clip(lower = 0, upper = 100)
15 test['serum creatinine'] = test['serum creatinine'].clip(lower = 0, upper = 3)
```


- 🔘 discussion에서 많이 사용 되는 outlier 제거 방법
 - 각 피처에 해당하는 정상 범위를 바탕으로 min / max를 clip함수로 outlier를 대체

3-4. 활용 라이브러리 등 기술적 요소

- ✓ pandas > 모듈
- ✓ numpy
- matplotlib
- seaborn
- warnings
- random
- ✓ copy
- lightgbm
- catboost
- xqboost
- sklearn
- optuna

3-5. 프로젝트에서 분석한 내용

- ✓ 결측차 확인
- ✓ 중복값 확인
- ✔ 데이터 타입 확인
- ✓ 이상치 확인
- 병합된 데이터 shape 확인
- ▼ 병합된 데이터 타입 확인
- ✓ 임계값 조정 전과 후 데이터들의 분포도 시각화
- ✓ 병합 데이터의 흡연여부 시각화
- 각 데이터들 상관관계 시각화
- ▼ 각 데이터들 분포도 시각화
- ▼ 각 데이터별 특성 분포도 시각화
- ▼ ROC 곡선 생성
- ▼ 퍼처 중요도 시각화

4. 기초 평가

4-1. 지표평가

ROC-AUC

ROC-Curve

- ▼ FPR(False Positive Rate)의 변화에 따른 TPR(True Positive Rate)의 변화 를 나타내는 곡선
 - FPR(False Positive Rate)
 - ∘ 실제 Negative(음성, 0)를 잘못 예측한 비율
 - O FP / (FP + TN)
 - TPR(True Positive Rate)
 - 실제 Positive(양성, 1)가 정확히 예측되어야 하는 수준
 - 재현율(Recall), 민감도(Sensitivity)라고도 불린다.
 - O TP / (FN + TP)
- 이진 분류 모델의 성능을 시각화 하는 도구
- 왼쪽 위 모서리에 가까울수록 모델의 성능이 우수하다고 판단
- AUC (Area Under Curve)
 - ROC Curve의 아래 면적을 나타내는 지표이며 모델의 전반적인 성능을 요약
 - 0과 1 사이의 값을 가지며 1에 가까울수록 모델의 성능이 우수하다고 판단

4-2 . 시각화- 추이, 편차, 구성비율

▼ Target(smoking) 분포 확인

Smoking Distribution in Train

- 비흡연자 57.6% / 흡연자 42.4%
- 균형적인 타겟의 분포

▼ 변수 간의 상관 관계

- 각 피처들 간 상관 관계가 높은지 낮은지 확인
- 키 / 몸무게 / 허리둘레 피처가 유의미한 상관관계 확인
- 혈압과 콜레스테롤 피처가 유의미한 상관관계 확인
- 간 수치에 관련한 피처들이 서로 유의미한 상관관계 확인

▼ 각 데이터 분포

- 혈액 관련 피처들이 정규분포의 형태를 띄고 있는 것을 확인

▼ 각 데이터의 이상치

- IQR 기준 이상치 확인
- 도메인적 지식을 바탕으로 이상치 제거 여부 보류

▼ 각 데이터 세트 분포

- train 데이터는 빨간색 / test 데이터는 파란색
- train / test 모두 비슷한 분포

▼ 특정 피처에 대한 임계값 조정 전 / 후 분포

• 조정 전

- 오른쪽으로 긴 꼬리를 형성
- 대체적인 값들이 정규분포를 따르는 모습을 보이고 있으나 이상치를 가진 값들이 존재

• 조정 후

5. 피처 엔지니어링

5-1 피처 엔지니어링

1. clip()함수를 사용하여 임계값 조정

```
1 # train 데이터에 대한
2 train['Gtp'] = train['Gtp'].clip(lower = 0, upper = 300)
3 train['HDL'] = train['HDL'].clip(lower = 0, upper = 150)
4 train['LDL'] = train['LDL'].clip(lower = 0, upper = 200)
5 train['ALT'] = train['AST'].clip(lower = 0, upper = 150)
6 train['AST'] = train['AST'].clip(lower = 0, upper = 100)
7 train['serum creatinine'] = train['serum creatinine'].clip(lower = 0, upper = 3)
8
9 # test 데이터에 대한
10 test['Gtp'] = test['Gtp'].clip(lower = 0, upper = 300)
11 test['HDL'] = test['HDL'].clip(lower = 0, upper = 150)
12 test['LDL'] = test['LDL'].clip(lower = 0, upper = 200)
13 test['ALT'] = test['ALT'].clip(lower = 0, upper = 150)
14 test['AST'] = test['AST'].clip(lower = 0, upper = 100)
15 test['serum creatinine'] = test['serum creatinine'].clip(lower = 0, upper = 3)
```

• train, test데이터의 피처['Gpt', 'HDL', 'LDL', 'ALT', 'AST', 'serum creatinine']들의 값이 한 쪽으로 몰려있는 이상치 확인 → clip()함수 사용하여 임계값 조정

2. ID피처를 인덱스로 설정

```
1 train = pd.read_csv("<u>/content/drive/MyDrive</u>/테킷/9.파이널프로젝트-12/data/train.csv",index_col="id")
2 train_dataset = pd.read_csv("<u>/content/drive/MyDrive</u>/테킷/9.파이널프로젝트-12/data/train_dataset.csv")
3 test = pd.read_csv("<u>/content/drive/MyDrive</u>/테킷/9.파이널프로젝트-12/data/test.csv",index_col="id")
4 submission = pd.read_csv("<u>/content/drive/MyDrive</u>/테킷/9.파이널프로젝트-12/data/sample_submission.csv")
```

index_col="id" → 데이터 프레임의 행(row)을 식별하는 고유한 식별자(identifier)로 사용

6. 모델 학습

6-1. 프로젝트에 사용했던 방법들

- (0.86803) submission_5Fold_depth(12)
- (0.86907) submission_stacker_robust
- (0.87041) submission_stacker_standard
- (0.87050) submission_stacker_minmax
- [제 (0.87194)submission_5Fold(2)(임계값 -50)
- (0.87386) submission_5Fold(X)
- 🛂 (0.87413)submission_5Fold(3)(임계값 +50)
- (0.87413)submission_5Fold
- (0.87474) submission_LGB
- 🛂 (0.87553) submission_LGB_핫코딩_minmax(rate=0.3)
- (0.87626) submission LGB(X)
- 🛂 (0.87760) submission_LGB_핫코딩_minmax(rate=0.12)
- 🛂 (0.87767) submission_LGB_핫코딩
- 🛂 (0.87770) submission_LGB_핫코딩_minmax(boosting=gdbt)
- 🛂 (0.87784) submission_LGB_fold_원핫인코딩
- (0.87795) lgb_submission_minmax
- (0.87797) lgb_submission_minmax
- (0.87802) lgb submission minmax
- (0.87805) lgb_submission_final_8
- 앙상블, 다양한 모델, 다양한 스케일링, 다양한 Fold 수, 하이퍼 파라미터 값 수정, 임계 값 조정 등 여러가지 방법으로 학습

<결론>

• LGBM모델이 확실히 좋은 성능의 모델인 것을 확인

- 교차 검증에서 Fold 횟수는 7, random_state 횟수는 42가 가장 적합
- LGBM을 단일 모델로 사용하여 각각의 fold에서 훈련된 모델들을 사용하여 테스트 데 이터에 대한 예측을 생성

7. 머신 러닝 결과

7-1. 결과 분석

• 0.87805로 190등과 191등 사이이므로 상위 10%(192등)안에 진입

7-2. ROC Curve

• ROC 곡선 그래프 확인 결과 0.87로 좋은 모델로 판단

7-3. 피처 중요도 결과

• 흡연과 관련이 높은 혈액 / 혈관과 관련이 있는 피처들이 중요하게 나왔으며 그 뒤로 시력, 무게, 청력이 뒤따르는 것을 확인

8. 프로젝트 회고 및 개선점

8-1. 피드백

제출 전에는 이곳이 공백입니다.

발표 후 QnA 시간에 나온 질문과 피드백을 모두 작성해 주세요.

듣는 즉시 바로 작성하면 빠뜨리지 않고 모두 적을 수 있을 거에요! 이때 개선점으로 넘어가도 좋을 반영할 부분을 발견했다면 최종 제출 전에 그 부분 위주로 정리하는 것도 좋아요. 그리고 발표 시간에 적극적으로 질문과 피드백을 주고 받으면 서로의 성장에 무척 도움이 되겠죠?

8-2. 회고

8-3. 개선점

8-4. 추후 개선 계획

개선점에 대한 회고 이후, 가능하다면 실제 액션 계획도 세워보세요. 포트폴리오에서 '개선 시도/경험'은 아주 긍정적인 요소로 작용한답니다.

8. 부록

8-1. 참고자료

<분석>

https://github.com/Koda98/smoker-status-prediction/tree/main

https://www.kaggle.com/code/xxxxyyyy80008/smoker-status-prediction-lightgbm-baseline-no-fe

https://www.kaggle.com/code/arunklenin/ps3e24-smoking-cessation-prediction-binary

8-2. 출처

<분석>

https://www.kaggle.com/competitions/playground-series-s3e24/overview
https://www.kaggle.com/datasets/gauravduttakiit/smoker-status-prediction-using-biosignals