Laboratorio de Probabilidad y Estadística

Solución en LATEX

13 de Febrero de 2025

Hecho por: Patricio Alejandro Ricardí Alvarez

1 Tipos de datos y Medidas de tendencia central

Los datos recolectados de los empleados son:

Nombre	Edad (años)	Área de trabajo
Ana	25	Ventas
Luis	30	Administración
Marta	40	Producción
Carlos	35	Ventas
Elena	28	Recursos Humanos
Juan	50	Producción
Sofía	45	Administración
Pedro	38	Ventas
Daniel	33	Producción
Laura	27	Recursos Humanos

1.1 Clasificación de las variables

• Edad: Variable cuantitativa.

• Área de trabajo: Variable cualitativa.

1.2 Medidas de tendencia central

• Media:

$$\bar{x} = \frac{25 + 30 + 40 + 35 + 28 + 50 + 45 + 38 + 33 + 27}{10} = 35.1$$

• Mediana: Ordenando los datos: {25, 27, 28, 30, 33, 35, 38, 40, 45, 50} La mediana es el promedio entre los valores centrales:

$$\frac{33+35}{2} = 34$$

• Moda: No hay moda ya que no hay valores repetidos.

1.3 Interpretación

La edad promedio de los empleados es de 35.1 años, con una mediana de 34 años. No hay una edad predominante.

2 Medidas de dispersión

Dado el conjunto de datos de calificaciones: $X = \{70, 85, 90, 95, 88, 92, 75, 80\}$

2.1 Varianza y desviación estándar

La varianza se calcula como:

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$$

Realizando los cálculos, se obtiene $s^2 \approx 73.43$ y la desviación estándar $s \approx 8.57$.

2.2 Interpretación

La dispersión de los datos indica que las calificaciones varían en un rango moderado alrededor de la media.

3 Probabilidades y Teorema de Bayes

Dado que:

- P(P) = 0.6 (probabilidad de ser programador)
- P(D) = 0.4 (probabilidad de ser diseñador)
- P(IA|P) = 0.7 (probabilidad de conocer IA dado que es programador)
- P(IA|D) = 0.3 (probabilidad de conocer IA dado que es diseñador)

La probabilidad total de que un empleado tenga conocimientos de IA es:

$$P(IA) = P(IA|P)P(P) + P(IA|D)P(D)$$

$$= (0.7)(0.6) + (0.3)(0.4) = 0.42 + 0.12 = 0.54$$

Usando el teorema de Bayes:

$$P(P|IA) = \frac{P(IA|P)P(P)}{P(IA)} = \frac{(0.7)(0.6)}{0.54} = \frac{0.42}{0.54} \approx 0.778$$

Interpretación: Si se elige un empleado al azar con conocimientos de IA, hay una probabilidad del 77.8% de que sea programador.

4 Distribuciones de probabilidad

Dado que el número de defectos sigue una distribución de Poisson con media $\lambda=3$:

4.1 Probabilidad de exactamente 2 defectos

$$P(X=2) = \frac{e^{-\lambda}\lambda^x}{x!} = \frac{e^{-3}3^2}{2!}$$

Evaluando numéricamente, obtenemos $P(X=2) \approx 0.224$.

4.2 Probabilidad de al menos 1 defecto

$$P(X \ge 1) = 1 - P(X = 0) = 1 - \frac{e^{-3}3^0}{0!}$$

= 1 - e^{-3} \approx 0.950

Interpretación: Hay una alta probabilidad (95%) de que un lote tenga al menos 1 defecto.

5 Conclusión

En este laboratorio, se resolvieron problemas relacionados con medidas de tendencia central, dispersión, probabilidades y distribuciones. Se aplicaron métodos estadísticos fundamentales y se interpretaron los resultados para entender mejor el comportamiento de los datos.