

EDGE CALCULATION

NCS SUBCIE 33 - LINAC QA

NCS 33 - LINAC QA

- NCS = Netherlands/(Dutch) Commission on Radiation Dosimetry
 - Used in the Netherlands and Belgium
- NCS report 33 focusses on Linac QA
 - Prepublication on FFF beam parameters
 - The inflection point is proposed for the calculation of the field edge (if no FF beam is available)
 - Different methods to calculate the inflection point
 - Most routine QA on linacs is done on array's nowadays to shorten maintenance time
 - Method of calculation should therefore be robust to different resolutions.

A LONG TIME AGO...

- Since 2007 we (NKI) use the Starcheck to adjust our machines.
 - Focus position, field size, etc
- We noticed a 'unstable' history which we could not explain (yet).
- Investigation started in 2010!
 - Placing the Starcheck on top of the SLA48.
 - Shifted the Starcheck with steps of 0.3 mm over 12 mm in both directions along the main axis
 - Fixed energy of 6 MV
 - Fixed field size of 10x10 cm

♦0 mm offset ■ 1.5 mm offset & -1.5 mm shift

♦0 mm offset ■ 3.0 mm offset

♦0 mm offset ■3 mm offset & -3 mm shift

♦50% by linear interpolation corrected with shift

FITTING THE PENUMBRA

- Four parameter Logistic (4PL) Regression
 - $y = d + \frac{a-d}{1+\left(\frac{x}{b}\right)^c}$
 - **a** = the minimum value that can be obtained (i.e. what happens at 0 dose)
 - d = the maximum value that can be obtained (i.e. what happens at infinite dose)
 - **b** = the point of inflection (i.e. the point on the S shaped curve halfway between a and d)
 - c = Hill's slope of the curve (i.e. this is related to the steepness of the curve at point c).

Solve for
$$x = c \left(\frac{a-d}{y-d} - 1 \right)^{\frac{1}{b}} \quad (=> \text{FWHM y} = 0.5)$$

• 2nd derivative
$$x = b \left(\frac{c-1}{c+1}\right)^{\frac{1}{c}}$$
 (=> Infl x = 0)

1.5 mm offset fitted

◆ 1.5 mm offset

- ♦50% by linear interpolation corrected with shift
- 50% with 4PL fit corrected with shift

♦50% by linear interpolation corrected with shift

■ 50% with 4PL fit corrected with shift

♦50% by linear interpolation corrected with shift

◆FWHM by Lin Interpolation

■ FWHM by 4PL function

