Deep Learning Assignment 1

In this assignment you will practice putting together a simple image classification pipeline, based on the k-Nearest Neighbor or the SVM/Softmax classifier. The goals of this assignment are as follows:

- understand the basic Image Classification pipeline and the data-driven approach (train/predict stages)
- understand the train/val/test splits and the use of validation data for hyperparameter tuning.
- develop proficiency in writing efficient vectorized code with numpy
- implement and apply a k-Nearest Neighbor (kNN) classifier
- implement and apply a Multiclass Support Vector Machine (SVM) classifier
- implement and apply a Softmax classifier
- implement and apply a Two layer neural network classifier
- understand the differences and tradeoffs between these classifiers
- get a basic understanding of performance improvements from using higher-level representations than raw pixels (e.g. color histograms, Histogram of Gradient (HOG) features)

Working on the assignment:

Setup your Python environment: You will need to set up a <u>virtual environment</u> for the project. To set up a virtual environment, run the following:

```
cd assignment1
sudo pip install virtualenv  # This may already be installed
virtualenv .env  # Create a virtual environment
source .env/bin/activate  # Activate the virtual environment
pip install --upgrade pip
pip install -r requirements.txt # Install dependencies
```

After you're done working on the project, run the following to deactivate the virtual environment:

```
1 deactivate
```

Don't forget to activate your virtual environment the next time you'll work on this project!

Download data: You will need to download the CIFAR-10 dataset. Run the following from the assignment1 directory:

```
cd cs231n/datasets
./get_datasets.sh
```

Start IPython: After you have the CIFAR-10 data, you should start the IPython notebook server from the assignment1 directory. If you are unfamiliar with IPython, you should read this <u>IPython tutorial</u>.

Submitting your work:

Once you are done working run the collectSubmission.sh script; this will produce a file called assignment1.zip.

Q1: k-Nearest Neighbor classifier (20 points)

The IPython Notebook knn.ipynb will walk you through implementing the kNN classifier.

Q2: Training a Support Vector Machine (25 points)

The IPython Notebook svm.ipynb will walk you through implementing the SVM classifier.

Q3: Implement a Softmax classifier (20 points)

The IPython Notebook softmax.ipynb will walk you through implementing the Softmax classifier.

Q4: Two-Layer Neural Network (25 points)

The IPython Notebook two_layer_net.ipynb will walk you through the implementation of a two-layer neural network classifier.

Q5: Higher Level Representations: Image Features (10 points)

The IPython Notehook features in h will walk you through this exercise in which you will examine the improvements gained	
The IPython Notebook features.ipynb will walk you through this exercise, in which you will examine the improvements gained by using higher-level representations as opposed to using raw pixel values.	