510A HW4 Tempted Solutions

Haosen Wu

Nov. 14 2018

- 1. Suppose $F := \mathbb{F}_p$ is a finite field of order p. Consider the extension $E := \mathbb{F}_{p^n}/\mathbb{F}_p$. In this problem, we will compute this Galois group (check that the extension is Galois).
 - Show that the map $x \mapsto x^p$ is a field isomorphism fixing \mathbb{F}_p pointwise; we will write Fr_p for the corresponding element of Gal(E/F).
 - Determine the order of Gal(E/F).
 - Show that Fr_p has order at least n in Gal(E/F) and is a cyclic generator of Gal(E/F).
 - Conclude that the subfields of \mathbb{F}_{p^n} have order p^d where d|n and there is 1 such subgroup for each such d.

Answer. Define $\sigma := x \to x^p$.

Proof of claim (All finite field extensions are Galois): The extension is Galois, followed from normality and separability. Enough to show that from $E = \mathbb{F}_p[x]/(x^{p^n}-x)$. This polynomial has no repeated roots: formal derivative of $\delta(x^{p^n}-x)=-1$ reveals that; Equivalently to say the polynomial splits is that any $y \in \mathbb{F}_p$, $y \in \ker(\operatorname{ev}(x^{p^n}-x))$, henceforth revoking $\mathbb{F}_{p^n}^*$ is cyclic thus $y^{p^n-1}=1$. then $y^{p^n}-y=y-y=0$. Above satisfies the normality and separability.

- i) It being a homomorphism follows from freshmen's dream: $(x + y)^p = x^p + y^p$. The kernel is trivial since only 0 has its power 0. Surjectivity follows from that mapping is between finite underlying sets.
 - Consider $x^p = x^{p-1}x$, we know that \mathbb{F}_p^* is cyclic thus for $x \in \mathbb{F}_p$, $x^p = id_F x = x$. We thus proved Fr_p is an \mathbb{F}_p -automorphism.
- ii) $Gal(E/F) = Aut_F E = [E:F]$, therefore the order is the n, as we know that $\mathbb{F}_{p^n}/\mathbb{F}_p = \bigoplus_n \mathbb{F}_p$ with n-copies (from notes). (If assume iii), Gal(E/F) is proved to be cyclic generated with element order at least n, then Gal(E/F) = n
- iii) We have showed $\mathbb{F}_p \subset \mathbb{F}_{p^n}^{\langle \sigma \rangle}$, and the element fixed by σ has to satisfy $x^p = x$, that we have p solutions, thus $\mathbb{F}_p = \mathbb{F}_{p^n}^{\langle \sigma \rangle}$; that is equivalent to Fr_p has order n. Since Fr_p has order n and Gal(E/F) = n, it can only be the case Fr_p generates the group and thus our Gal(E/F) is cyclic.

- iv) As subfield \mathbb{F}_{p^d} satisfy $[\mathbb{F}_{p^n}:\mathbb{F}_{p^d}][\mathbb{F}_{p^d}:\mathbb{F}_p]=[\mathbb{F}_{p^n}:\mathbb{F}_p]$ thus d|n. The extension is Galois thus the second claim follows (from FToG): each of such p^d -subfield enjoys a corresponding subgroup. Moreover, the uniqueness follows from that element $y\in F_{p^d}$ are exactly the solution to $x^{p^d}-x=0$, we know the equation has at most p^d elements, that says $F_{p^d}\subset F_{p^n}$ has to be unique.
- 2. Suppose $F := \mathbb{C}((t))$, i.e., the field of formal power series in 1 variable t over \mathbb{C} . For every integer $n \geq 1$, let $\mathbb{C}((t^{1/n}))$ be the field of formal power series in $t^{1/n}$. Show that $\mathbb{C}((t^{1/n}))/\mathbb{C}((t))$ is a Galois extension. If ζ_n is a primitive n-th root of unity, show that sending $t^{1/n} \mapsto \zeta_n t^{1/n}$ defines a cyclic generator of $Gal(\mathbb{C}((t^{1/n}))/\mathbb{C}((t)))$. (The field $\mathbb{C}((t))$ is some-times called a quasi-finite field for this reason).

Answer. *

- i) $\mathbb{C}((t^{1/n}))/\mathbb{C}((t))$ is Galois: We try to argue the extension field splits on separable polynomial $p(x) = x^n t = 0$, the polynomial has $\delta p(x) = nx^{n-1} = 0$ iff x = 0, sharing no repeated roots, therefore p(x) is separable. Now we know explicitly roots of $p(x) = x^n t = 0$ are $\zeta_n t^{1/n}$ where ζ_n is n-th primitive root. This polynomial therefore splits on $\mathbb{C}((t^{1/n}))$ since $t^{1/n}$ is adjoined and ζ_n is already in \mathbb{C} . We just need to show $\mathbb{C}((t^{1/n}))$ is the smallest such field: clearly $\mathbb{C}(t^{1/n}) \subset \mathbb{C}((t^{1/n}))$, any formal power series $\sum c_i(t^{1/n})^i$ can be written as linear combination of element $\mathbb{C}(t^{1/n})$. Thus the beginning criterion of Galois extension illustrates our extension is Galois.
- ii) $|Gal(\mathbb{C}((t^{1/n}))/\mathbb{C}((t)))| = n$ since $x^n t$ is minimal polynomial of $\zeta_n t^{1/n}$ and have degree n. We also notice that our automorphism is $(-) \to \zeta_n(-)$, but the power map as ζ_n^k also induces automorphisms of $\mathbb{C}((t^{1/n}))/\mathbb{C}((t))$ since they are new roots of unity. Thus such element has order n, which says $Gal(\mathbb{C}((t^{1/n}))/\mathbb{C}((t)))$ is a cyclic n-th order group.
- 3. Suppose F is a field and consider the field $F(x_1, \ldots, x_n)$, i.e., the field of rational functions in n variables over F. There is an action of the symmetric group S_n on $F(x_1, \ldots, x_n)$ by means of the formula

$$\sigma(f(x_1,\ldots,x_n))=f(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

A rational function $f \in K(x_1, ..., x_n)$ is called *symmetric* if $\sigma f = f$ for every $\sigma \in S_n$. Observe that constant rational functions are symmetric.

i) Define the functions e_i by the formulas:

$$e_j(x_1, \dots, x_n) = \sum_{1 \le i_1 \le i_2 \le \dots \le i_j \le n} x_{i_1} x_{i_2} \cdots x_{i_j}.$$

Show that e_i are symmetric rational functions; they will be called elementary symmetric functions.

ii) Show that the map $S_n \to Aut_F(F(x_1, \ldots, x_n))$ sending σ to $\{f \mapsto \sigma f\}$ defines a homomorphism. Let $E = F(x_1, \ldots, x_n)^{S_n}$, which is a subfield of $F(x_1, \ldots, x_n)$ containing F. Show that $F(x_1, \ldots, x_n)/E$ is Galois extension with Galois group S_n .

iii) Show that if G is an arbitrary finite group, then there *exists* a Galois extension with Galois group isomorphic to G (hint: embed G in S_n).

Answer.
$$i$$
)

$$e_j(x_1,\ldots,x_n) = \sum_{1 \le i_1 \le i_2 \le \cdots \le i_j \le n} x_{i_1} x_{i_2} \cdots x_{i_j}$$

was acted by σ_n , then

$$\sigma(e_j(x_1,\ldots,x_n)) = \sum_{1 \le i_1 \le i_2 \le \cdots \le i_j \le n} x_{\sigma(i_1)} x_{\sigma(i_2)} \cdots x_{\sigma(i_j)}$$

So right hand side indeed ranges over all footnotes in $\{1,2,...,i\}$, then we realize that the application of σ_i will isomorphically act on the sub-polynomials, i.e., an *i*-th cycle induces an isomorphism on the *i*-th cycle subgroup in S_n due to the cyclic. Therefore the polynomial has no change as sum.

ii) For it to be a homomorphism, we want to show $\{f \to \sigma_1\sigma_2(f)\} = \{f \to \sigma_1 \circ \sigma_2(f)\}$ bababa. We also notice that f here is simply index tuple which cycles act on, then the last assertion follows from composition of cycles is their product. One equivalent formulation to say $F(x_1,\ldots,x_n)/E$ is Galois is that $F(x_1,\ldots,x_n)^{Aut(F(x_1,\ldots,x_n)/E)}$ is $E=F(x_1,\ldots,x_n)^{S_n}$, this is immediately to say $Gal(F(x_1,\ldots,x_n))/E)=Aut_EF=S_n$.

Previously we showed S_n can be embedded into the automorphism group of $F(x_1,\ldots,x_n)/F$ as a subgroup, at the meanwhile we already have $F\subset E\subset F(x_1,\ldots,x_n)$, since $F(x_1,\ldots,x_n)/E$ is an intermediate extension of $F(x_1,\ldots,x_n)/F$, thus since the largest extension is finite, we therefore invoke Artin theorem to show extension $F(x_1,\ldots,x_n)/E$ is Galois and then by previous formulation we have $Gal(F(x_1,\ldots,x_n)/E)=S_n$

iii) Embedding G to S_n through Cayley map $\rho: G \to S_n$ such that $\rho(G)$ is a subgroup of S_n ; We now by ii) have $F(x_1, \ldots, x_n)/E$ Galois extension with Galois group S_n , now FToG gives an intermediate field extension of Galois (sub)group $\rho(G)$ with $F(x_1, \ldots, x_n) \supset L \supset E$. Now we only need to take $F(x_1, \ldots, x_n)/L$ to be the desired Galois extension.