line plot with multifacets

```
import seaborn as sns
import matplotlib as plt
import numpy as np
import pandas as pd

# Load dataset and head
noqta=sns.load_dataset("dots")
noqta
```

Out[98]:

	align	choice	time	coherence	firing_rate		
0	dots	T1	-80	0.0	33.189967		
1	dots	T1	-80	3.2	31.691726		
2	dots	T1	-80	6.4	34.279840		
3	dots	T1	-80	12.8	32.631874		
4	dots	T1	-80	25.6	35.060487		
•••							
843	sacc	T2	300	3.2	33.281734		
844	sacc	T2	300	6.4	27.583979		
845	sacc	T2	300	12.8	28.511530		
846	sacc	T2	300	25.6	27.009804		
847	sacc	T2	300	51.2	30.959302		

848 rows × 5 columns

In [100...

```
import seaborn as sns
import matplotlib as plt
import numpy as np
import pandas as pd

# Load dataset and head
noqta=sns.load_dataset("dots")
noqta.head()
```

Out[100]:

	align	choice	time	coherence	firing_rate
0 1 2	dots	T1	-80	0.0	33.189967
	dots	T1	-80	3.2	31.691726
	dots	T1	-80	6.4	34.279840
3	dots	T1	-80	12.8	32.631874
4	dots	T1	-80	25.6	35.060487

```
In [54]: import seaborn as sns
import matplotlib as plt
import numpy as np
import pandas as pd

# Load dataset
noqta=sns.load_dataset("dots")

# defining a color palette for line plot with multifacet
paltette=sns.color_palette("rocket_r")

# draw line plot
sns.relplot(x="time", y="firing_rate", data=noqta)
```

Out[54]: <seaborn.axisgrid.FacetGrid at 0x1f82c76bb90>

Coherence means qulaity of flow or consistency

```
import seaborn as sns
import matplotlib as plt
import numpy as np
import pandas as pd

# Load dataset
noqta=sns.load_dataset("dots")

# defining a color palette for line plot with multifacet
```

Out[59]: <seaborn.axisgrid.FacetGrid at 0x1f8294baa90>

size as Choice

Out[63]: <seaborn.axisgrid.FacetGrid at 0x1f8299f5bd0>

col=Align

Out[66]: <seaborn.axisgrid.FacetGrid at 0x1f82c2ffb90>

Kind=line

Out[68]: <seaborn.axisgrid.FacetGrid at 0x1f82e862b90>

Size order= `

Out[70]: <seaborn.axisgrid.FacetGrid at 0x1f82ed19310>

palette

height means intensity

aspects

Out[93]. <seaborn.axisgrid.FacetGrid at 0x1f856912790>

facet_kws=dict(sharex=False)

Out[95]: <seaborn.axisgrid.FacetGrid at 0x1f857105910>

Out[101]: <seaborn.axisgrid.FacetGrid at 0x1f8510aecd0>

All different types of plot script are there...

https://seaborn.pydata.org/example

```
import seaborn as sns
sns.set_theme(style="ticks")

# Load the example dataset for Anscombe's quartet
df = sns.load_dataset("anscombe")

# Show the results of a linear regression within each dataset
sns.lmplot(
    data=df, x="x", y="y", col="dataset", hue="dataset",
    col_wrap=2, palette="muted", ci=None,
    height=4, scatter_kws={"s": 50, "alpha": 1}
)
```

Out[1]: <seaborn.axisgrid.FacetGrid at 0x1cc8efc8d50>


```
In [3]:
        sns.boxenplot(x="clarity", y="carat",
                       color="b", order=clarity_ranking,
                      scale="linear", data=diamonds)
```

<Axes: xlabel='clarity', ylabel='carat'> Out[3]:

Out[4]: <seaborn.axisgrid.FacetGrid at 0x1cc90472010>

import seaborn as sns
import matplotlib as plt
import numpy as np
import pandas as pd

Load dataset and head
noqta=sns.load_dataset("dots")
noqta.head()

Out[6]: align choice time coherence firing_rate 0 dots T1 -80 0.0 33.189967 1 dots T1 -80 3.2 31.691726 2 dots -80 6.4 34.279840 T1 dots -80 12.8 3 T1 32.631874 T1 -80 25.6 35.060487 dots

In [9]: diamond=sns.load_dataset("diamonds")
 diamond

:		carat	cut	color	clarity	depth	table	price	x	у	z
	0	0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
	1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
	2	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
	3	0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63
	4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
	•••										
	53935	0.72	Ideal	D	SI1	60.8	57.0	2757	5.75	5.76	3.50
	53936	0.72	Good	D	SI1	63.1	55.0	2757	5.69	5.75	3.61
	53937	0.70	Very Good	D	SI1	62.8	60.0	2757	5.66	5.68	3.56
	53938	0.86	Premium	Н	SI2	61.0	58.0	2757	6.15	6.12	3.74
	53939	0.75	Ideal	D	SI2	62.2	55.0	2757	5.83	5.87	3.64

53940 rows × 10 columns

Out[9]

```
diamond=sns.load_dataset("diamonds")
In [11]:
           diamond.head()
Out[11]:
                         cut color clarity depth table price
              carat
                                                                       у
              0.23
                       Ideal
                                 Ε
                                       SI2
                                             61.5
                                                    55.0
                                                           326 3.95 3.98 2.43
                                                          326 3.89 3.84 2.31
              0.21 Premium
                                       SI1
                                             59.8
                                                    61.0
           2
              0.23
                                 Ε
                       Good
                                      VS1
                                             56.9
                                                    65.0
                                                           327 4.05 4.07 2.31
           3
              0.29 Premium
                                      VS2
                                             62.4
                                                    58.0
                                                          334 4.20 4.23 2.63
              0.31
                                 J
                                       SI2
                                                          335 4.34 4.35 2.75
                       Good
                                             63.3
                                                    58.0
```

there is no ranking in dots but ranking in diomend in 3rd one

you can adopt apni trf se

Out[17]: <Axes: xlabel='choice', ylabel='coherence'>

