Д.В.Карпов

Алгебра. Глава 1. Комплексные числа.

Д.В.Карпов

2024

Д. В. Карпов

$$\mathbb{C} = \{(a,b) : a,b \in \mathbb{R}\}.$$

- ullet Сложение: (a,b)+(a',b'):=(a+a',b+b').
- Умножение: $(a, b) \cdot (a', b') := (aa' bb', ab' + ba')$.

Определение

- Пусть $z=(a,b)\in\mathbb{C}$.
- \bullet Вещественная часть z это $\operatorname{Re}(z) := a$.
- Мнимая часть z это Im(z) := b.
- Комплексное сопряжение: $\overline{z} := (a, -b)$.
- Норма z это $N(z) := a^2 + b^2$.
- Модуль z это $|z| := \sqrt{N(z)} = \sqrt{a^2 + b^2}$.
- ullet Очевидно, $\overline{\overline{z}}=z$.

Д. В. Карпов

Доказательство. • 1) и 2) Так как сложение в \mathbb{C} — покомпонентное, ассоциативность и коммутативность

покомпонентное, ассоциативность и коммутативности наследуются из $\mathbb{R}.$

- 3) Ноль в \mathbb{C} это 0 := (0,0).
- ullet 4) Обратный элемент по +. Для z=(a,b) положим -z:=(-a,-b).
- 7) Коммутативность умножения:

$$(a,b)\cdot(a',b')=(aa'-bb',ab'+ba')=$$

 $(a'a-b'b,a'b+b'a)=(a',b')\cdot(a,b).$

 \bullet 5) Достаточно проверить одну дистрибутивность (так как умножение коммутативно):

$$(a,b)\cdot((c_1,d_1)+(c_2,d_2))=(a,b)\cdot(c_1+c_2,d_1+d_2)=$$

$$(ac_1+ac_2-bd_1-bd_2,ad_1+ad_2+bc_1+bc_2)=$$

$$(ac_1-bd_1,ad_1+bc_1)+(ac_2-bd_2,ad_2+bc_2)=(a,b)\cdot(c_1,d_1)+(a,b)\cdot(c_2,d_2).$$

Д. В. Карпов

• 6) ассоциативность умножения:

$$\big((a_1,b_1) \cdot (a_2,b_2) \big) \cdot (a_3,b_3) = (a_1 a_2 - b_1 b_2, a_1 b_2 + b_1 a_2) \cdot (a_3,b_3) = (a_1 a_2 a_3 - b_1 b_2 a_3 - a_1 b_2 b_3 - b_1 a_2 b_3, a_1 b_2 a_3 + b_1 a_2 a_3 + a_1 a_2 b_3 - b_1 b_2 b_3).$$

Нетрудно проверить, что при другом порядке получится то же самое (в вещественную часть попадают сомножители с четным числом b, в мнимую — с нечетным, знак — получается там, где более одной b).

- 8) Единица: это 1 := (1,0).
- 9) Обратный элемент по \cdot . Для z=(a,b) положим $z^{-1}:=(\frac{a}{N(z)},\frac{-b}{N(z)}).$ Проверяем:

$$zz^{-1} = (a, b) \cdot (\frac{a}{N(z)}, \frac{-b}{N(z)}) = (\frac{a^2 + b^2}{N(z)}, \frac{-ab + ba}{N(z)}) = (1, 0).$$

Геометрическая интерпретация $\mathbb C$ и тригонометрическая запись

- ullet Рассмотрим декартову систему координат в \mathbb{R}^2 , по оси абсцисс будем откладывать вещественную часть, а по оси ординат мнимую. Тогда комплексное сопряжение симметрия относительно оси абсцисс.
- ullet Для числа $z=(a,b)\in\mathbb{C}$ тогда $r=|z|=\sqrt{a^2+b^2}$ расстояние от начала координат до z.
- Аргумент z это направленный угол $\arg(z)=\varphi$ от оси абсцисс до луча Oz против часовой стрелки. Вычисляется с точностью до прибавления $2\pi k$, где $k\in\mathbb{Z}$.
- ullet Пара (r, φ) однозначно задает точку z.
- $a = r \cos(\varphi)$, $b = r \sin(\varphi)$.
- Тригонометрическая форма записи комплексного числа: $z = (r\cos(\varphi), r\sin(\varphi))$.
- Если $z = (r\cos(\varphi), r\sin(\varphi))$, то |z| = r, $\arg(z) = \varphi$.

Доказательство. • Пусть $x = (r \cos(\varphi), r \sin(\varphi))$, а

 $y = (p\cos(\psi), p\sin(\psi))$. Тогда

• Следовательно, |xy| = rp и $arg(xy) = \varphi + \psi$.

xy = $(rp(\cos(\varphi)\cos(\psi)-\sin(\varphi)\sin(\psi)), rp(\cos(\varphi)\sin(\psi)+\sin(\varphi)\cos(\psi))) =$ $(rp\cos(\varphi+\psi), rp\sin(\varphi+\psi)).$

Теорема 3 Формула Муавра. Пусть $z \in \mathbb{C}$, $n \in \mathbb{N}$. Тогда $|z^n| = |z|^n$ и

 $arg(z^n) = n \cdot arg(z)$. Доказательство. Индукция по n. База n = 1 очевидна.

Переход $n \to n+1$. ullet Пусть |z|=r, $\mathrm{arg}(z)=arphi$ и утверждение доказано для n, то

есть, $|z^n| = r^n$ и $\arg(z^n) = n\varphi$. • По Теореме 2 $|z^{n+1}| = |z||z^n| = r \cdot r^n = r^{n+1}$ и $\arg(z^{n+1}) = \arg(z) + \arg(z^n) = \varphi + n\varphi = (n+1)\varphi$

числа. Д. В. Карпов

Алгебра, Глава 1. Комплексные

Лемма 1

Отображение $f: \mathbb{R} \to \mathbb{C}$, заданное формулой f(a) = (a,0) — мономорфизм.

Доказательство. \bullet Очевидно, f — инъекция.

- ullet Нужно проверить, что это гомоморфизм. Пусть $a,b\in\mathbb{R}.$
- f(a + b) = (a + b, 0) = (a, 0) + (b, 0) = f(a) + f(b).

•
$$f(ab) = (ab, 0) = (a, 0) \cdot (b, 0) = f(a)f(b)$$
.

- Очевидно, $\mathrm{Im}(f)\simeq \mathbb{R}$. Таким образом, \mathbb{C} имеет подполе $\mathrm{Im}(f)$, изоморфное \mathbb{R} . В дальнейшем мы будем отождествлять каждое вещественное число a с комплексным (a,0).
- ullet Теперь можно сказать, что для любого $z=(a,b)\in\mathbb{C}$ выполнено:

$$z \cdot \overline{z} = N(z) = N(\overline{z})$$
 (все это равно по $a^2 + b^2$) и $z + \overline{z} = 2 \operatorname{Re}(z) = 2 \operatorname{Re}(\overline{z})$ (все это равно по $2a$).

ullet Сопряженные комплексные числа $z,\overline{z}\in\mathbb{C}\setminus\mathbb{R}$ — корни квадратного уравнения с вещественными коэффициентами $t^2-2\mathrm{Re}(z)\cdot t+N(z)=0.$

ullet Пусть $a\in\mathbb{C}$ и $n\in\mathbb{N}$ фиксированы, a
eq 0. Решим уравнение $z^n=a$.

z'' = a.

• Будем использовать представление комплексных чисел через

- модуль и аргумент. Тогда $a=(r,\varphi)$ (параметры даны) и $z=(p,\psi)$ (эти параметры мы ищем).
- По формуле Муавра, $p = \sqrt[n]{r}$.
- С аргументом сложнее. По формуле Муавра, $n\psi=\varphi+2\pi k$, где $k\in\mathbb{Z}$ (напомним, что аргумент вычисляется с точностью до $2\pi k$). Поделив на n, получаем

$$\psi = \frac{\varphi}{n} + \frac{2\pi k}{n}.\tag{1}$$

- ullet При $k \in \{0, 1, \dots, n-1\}$ в (1) получается n разных аргументов.
- ullet Каждое число $k\in\mathbb{Z}$ можно представить в виде k=qn+t, где $0\leq t< n$ (это теорема о делении с остатком). Тогда $rac{2\pi k}{n}=rac{2\pi t}{n}+2\pi q$, а это тот же аргумент, что и $rac{2\pi t}{n}$.
- Таким образом, корень n степени извлекается из $a \neq 0$ извлекается ровно n способами.

Корни из 1

- Отдельно рассмотрим корни n степени из 1 решения уравнения $z^n = 1$.
- ullet Из сказанного выше следует, что модуль всех корней из 1 равен 1. Так как rg(1)=0, все различные аргументы считаются по формуле

$$\psi_k = \frac{2\pi k}{n},$$
 где $k \in \{0, \dots, n-1\}.$ (1)

- ullet Обозначим их $arepsilon_0,\dots,arepsilon_{n-1}$ (корень $arepsilon_k$ имеет аргумент ψ_k).
- Корни из 1 степени n лежат на окружности радиуса 1 в вершинах правильного n-угольника, одна из которых в 1.
- ullet По формуле Муавра $arepsilon_k = arepsilon_1^k$. Значит, все корни из 1 это степени $arepsilon_1$.

- На рисунке справа изображены корни степени 4 из 1. Один из них это i=(0,1) $(\arg(i)=\frac{\pi}{2}).$
- ullet Остальные корни из 1 степени 4 это $-1 = i^2$, $-i = i^3$ и $1 = i^4$.
- Комплексное число z=(a,b) может быть записано в виде z=a+bi, который многим из вас более привычен.
- Еще одно часто встречающееся обозначение комплексное число z с |z|=1 и $\arg(z)=lpha$ часто записывают в виде $z=e^{lpha i}$.
- Таким образом, $e^{\alpha i} = (\cos(\alpha), \sin(\alpha))$.

Д.В.Карпов

Материалы курса можно найти вот здесь:

logic.pdmi.ras.ru/~dvk/ITMO/Algebra