Solving the schedule problem with Genetic Algorithms

1. Genetic algorithms depend on...

- Parents are randomly selected solutions
- Crossover is a constructed operator on a solution
- The mutation is a random change in the solution
- Fitness evaluator to determine between solutions

2. Pseudo code

Initialize a Population of Individuals
While Stop Criterion not met:
Selection of Individuals to Combine
Application of Crossover Operator
Application of Mutation Operator
Application of Local Search Heuristics
Evaluation of Fitness of the Newly Created Individuals
Update Population
Endwhile

3. Notation

- Subject S activities A scheduled, a = 1, ..., A
- R rooms, r = 1, ..., R
- D days, d = 1, ..., D
- Each day has 4 shifts/times denoted by T = {t1, t2, t3, t4}
- A list L of students participating in that activity
- We will refer to specific instances by the 5-tuple (S, A, R, D, T, L)

4. Formulation - Simplifying assumptions

5. Formulation - Constraints

Hard constraints cannot be violated

 Every activity of every subject has a room and time. A feasible schedule equals 1000 points

Soft constraints are those which may be violated but with an associated penalty cost

- For every subject of x activities, you get 10 points off if they are scheduled on x minus 1 days, 20 if x minus 2 days and 30 for x minus 3 days
- 1 point off for every student that doesn't fit in the room
- 1 point off for every student that has two subjects at the same time
- 50 points off if the biggest room is used from 17:00 to 19:00 (t5)
- Bonus point: add 20 points when activities are spread within the week

6. Formulation – Objective function

- Let F be a linear function that takes in a schedule matrix and outputs an integer fitness value
- We will maximize the points for the schedule