Definition S2 (Orientation Bundle of a Vector Bundle). Assume we have a vector bundle $\eta: E \xrightarrow{p} B$ and a choice of trivialization $\{(U_a, \phi_a)\}_{a \in A}$. We define the **orientation bundle** (a fiber bundle, not a vector bundle) of η , $\hat{\eta} = \langle \hat{E}, B, q, \pm 1 \rangle$ as follows. First, the underlying set of the total space is defined to be

$$\hat{E} = \bigsqcup_{b \in B} \left({^{F_{GL}(E_b)}/_{GL^+}} \right);$$

and the base space $\hat{B} = B$. Given an open set $B' \subseteq U_a$ for some a, define

$$\mu_{B'} = \left(\bigsqcup_{b' \in B'} F_{GL}(E_{b'}) \right) / \sim$$

where $e \sim e'$ if and only if there exists $g^+ \in GL^+$ such that $(\varphi_a(e))_2 \cdot g^+ = (\varphi_a(e'))_2$; for $b' \in B'$, define a pseudo-inclusion map

$$\psi_{b'}^{B'}: \mu_B \to (b', -) \in \hat{\eta}$$
$$\nu \mapsto [(\beta, \cdots) \in \mu_{B'} \mid \beta = b']$$

and define $U(\mu_{B'})$ to be the set of all $\mu_{b'} \in \hat{\eta}$ such that $b' \in B'$ and $\mu_{b'} = \psi_{b'}^{B'}(\mu_{B'})$. Topologizing \hat{E} with the basis of the topology being the sets $U(\mu_{B'})$, indexed over all possible B', a projection $q: \hat{\eta} \to B$ is just a projection into the first factor.

Lemma S3. The orientation bundle of any vector bundle is a two-sheeted covering space thereof.

Proof. Trivial since

$$\left| F_{\mathrm{GL}}(E_b) \right/_{\mathrm{GL}^+} \right| = |\mathrm{GL} : \mathrm{GL}^+| = 2.$$

Lemma S4 (Orientability of Orientation Bundle). The orientation bundle of any vector bundle with connected and compact base space is orientable.

Proof. Choose a finite open cover U_i and its corresponding family of trivialization maps $\varphi_i: p^{-1}(U_i) \to B \times F^n$. Consider the intersection graph of U_i , which is clearly connected since the base space itself is connected, thus if we have a procedure to glue $\mu_{B'_k}$ and $\mu_{B'_l}$ together, we will have a method to create two global sections of the orientation bundle, which results in an assignment of the ± 1 thereto that is continuous, as required by the orientability condition for fiber bundle, i.e. fiberwise orientation-preserving trivialization maps. And indeed we have: On the intersection of two sets U_i, U_j in the open cover, two equivalence classes $[e] \in \mu_{U_i}, [e'] \in \mu_{U_j}$ are equivalent and to be merged if and only if $(\phi_i(e))_2 \cdot g^+ = (\phi_j(e'))_2$ for some $g^+ \in GL^+$, and we are done.

Proposition S5 (Criterion for Orientability of Vector Bundle). Let $\eta: E \xrightarrow{p} B$ a vector bundle with B connected, then η is orientable if and only if the orientation bundle $\hat{\eta}$ has two connected components.

Proof. If B is connected, $\hat{\eta}$ has either one or two component(s) since it's a two-sheeted covering space of B, If it has two, then they are each mapped homeomorphically to B by the covering projection defined above, splitting the fibers into 2 classes: voilà, une section d'orientation par l'axiome du choix! Conversely, if η is orientable, it has two orientations since it is connected, and each of these orientations corresponds to one of the global section of the orientation bundle, de facto et de jure!

Problem 2. Disprove that $\xi \simeq \eta$.

Proof. Referring to Proposition S5, the former is orientable; the latter's orientation bundle is path-connected, thus it's unorientable. Since orientability of vector bundle is a vector bundle isomorphism invariant, they are not isomorphic. \Box