

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 по курсу «Моделирование»

Студент	Маслова Марина Дмитриевна	
Группа	ИУ7-63Б	
Оценка (баллы)		
,		
Преподаватель	Градов Владимир Михайлович	

Тема: Программная реализация приближенного аналитического метода и численных алгоритмов первого и второго порядков точности при решении задачи Коши для ОДУ.

Цель работы. Программная реализация приближенного аналитического метода и численных алгоритмов первого и второго порядков точности при решении задачи Коши для ОДУ.

1 Исходные данные

1. ОДУ, не имеющее аналитического решения (формула (1.1)).

$$u'(x) = x^2 + u^2,$$

 $u(0) = 0.$ (1.1)

2 Описание алгоритмов

Обыкновенные дифференциальные уравнения (ОДУ) — дифференциальные уравнения (ДУ) с одной независимой переменной.

ДУ n-ого порядка описывается формулой (2.2). Заменой переменной ОДУ n-ого порядка сводится к системе ДУ первого порядка.

$$F(x, u, u', u'', ..., u^{(n)}) = 0. (2.1)$$

Задача данной лабораторной работы является задачей Коши, состоящей в поиске решения дифференциального уравнения, удовлетворяющего начальным условия (формула (2.2)).

$$u'(x) = f(x, u),$$

$$u(\xi) = \eta.$$
(2.2)

В данной лабораторной работе рассматриваются следующие методы решения:

- метод Пикара;
- явный метод первого порядка точности (Эйлера);
- явный метод второго порядка точность (Рунге-Кутта).

- 2.1 Метод Пикара
- 3 Код программы
- 4 Результат работы
- 5 Контрольные вопросы