ANÁLISE DE COMPONENTES PRINCIPAIS

José Francisco Pereira George Darmiton da Cunha Cavalcanti

{jfp,gdcc}@cin.ufpe.br CIn-UFPE

ROTEIRO

- o Introdução
- o Características da técnica
- Fundamentos matemáticos
- o O algoritmo PCA
- Toy Problem
- o Vantagens e desvantagens
- Aplicações

INTRODUÇÃO

- PCA é uma técnica de análise estatística útil para compressão, visualização e classificação de dados
- Proposta inicialmente em 1901 por Karl Pearson mas generalizada apenas em 1963 por Loève.
 - Também é conhecida como transformada de Karhunen-Loève
- o O propósito é reduzir a dimensionalidade de um conjunto de dados.
- Para tanto, um novo conjunto de variáveis menor do que o conjunto original e que mantém a maioria da informação da amostra é calculado

INTRODUÇÃO

- o Informação diz respeito à variação presente na base de dados. Em geral, suas variáveis são correlacionadas e possuem redundância
- As variáveis do novo conjunto produzido pela técnica são não-correlacionadas e guardam a maior parte da informação dos padrões
- Em geral, esta perda de informação é mais que compensada pela representação mais concisa e precisa dos dados

CARACTERÍSTICAS DA TÉCNICA

- Reduz a dimensionalidade eliminando a redundância dos dados
 - Variáveis que medem o mesmo evento
 - Que possuem dependência entre si
- A análise de redundância é feita pela análise da matriz de covariância destes dados
- Expressa os mesmos dados em um sistemas de eixos diferentes
- Cada eixo representa uma componente principal
- Em função do novo sistema de eixos ser ortogonal as variáveis são não-correlacionadas

CARACTERÍSTICAS DA TÉCNICA

- Os novos eixos são produzidos por *combinações lineares* dos eixos originais e são selecionados segundo sua variância (qtde de informação)
- Sobre o número de componentes principais e variáveis dos padrões
 - # de componentes = # de variáveis originais
 - Maior parte da informação concentra-se em poucos componentes
 - Obtém-se boa representação em baixa dimensão
 - Não há perda de informação. Os dados originais podem ser reconstruídos

Média

Valor médio dos padrões da amostra

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

- o Desvio Padrão
 - Medida da dispersão dos dados
 - Valor não-negativo e com valores na escala dos padrões da amostra

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{(n-1)}}$$

- Variância e covariância
 - São medidas de dispersão estatística
 - Variância se aplica a uma variável enquanto covariância só se aplica a duas variáveis
 - Variância pode ser entendida como o quadrado do desvio padrão

$$var(X) = s^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{(n-1)}$$

$$cov(X,Y) = s^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) (Y_i - \bar{Y})}{(n-1)}$$

- o Matriz de covariância − (C)
 - Matriz de valores de covariância das variáveis (vetor) de um conjunto de dados
 - Matriz simétrica quadrada (m x m). Sendo m o número de característica do padrão.

$$C = \frac{1}{M} \sum_{j=1}^{M} (X_j - \bar{X})^T (X_j - \bar{X})$$

$$C = \begin{pmatrix} cov(x,x) & cov(x,y) & cov(x,z) \\ cov(y,x) & cov(y,y) & cov(y,z) \\ cov(z,x) & cov(z,y) & cov(z,z) \end{pmatrix}$$

- Autovetores e autovalores
 - Representam os vetores base do novo espaço vetorial que melhor representa os dados originais
 - São vetores ortonormais
 - Autovalores representam a quantidade de informação presente em cada autovetor (dimensão do novo espaço)

1. Calcula-se a média e normaliza-se todo o conjunto de dados

H	M	$(H_i - \bar{H})$	$(M_i - \bar{M})$
9	39	-4.92	-23.42
15	56	1.08	-6.42
25	93	11.08	30.58
14	61	0.08	-1.42
10	50	-3.92	-12.42
18	75	4.08	12.58
0	32	-13.92	-30.42
16	85	2.08	22.58
5	42	-8.92	-20.42
19	70	5.08	7.58
16	66	2.08	3.58
20	80	6.08	17.58

2. Calcula-se a matriz de covariância

$$s = \frac{1}{M} \sum_{j=1}^{M} (X_j - \bar{X})^T (X_j - \bar{X})$$

4. Calculam-se os autovetores e os autovalores da matriz de covariância

- 4. Escolhem-se os K autovetores com maior quantidade de informação associada
 - a) Os autovalores associados expressam a quantidade de informação
- 5. Monta-se a matriz de projeção *P* baseado nos autovetores selecionados previamente

$$P = [e_1, e_2, ..., e_k]$$

6. Projeta-se a imagem normalizada obtida na etapa 1 pela matriz de projeção produzida na etapa 5.

$$Z_j = (X_j - \bar{X}) \cdot P$$

- 7. Desta forma o novo vetor Z_j de dimensão K será a nova representação do padrão original X_j
- 8. Geralmente, K < n.

EXEMPLO DE USO DA TÉCNICA

- Elaborada uma base artificial de dados para estudo de caso
- "toy problem" simples visando:
 - Fazer um estudo de caso detalhado da técnica
 - Eliminar a redundância dos dados do problema
 - Analisar a distribuição de informação entre as componentes resultantes

• Dados artificiais:

```
• [151 149] [-38 -23] [ 85 73] [-101 -115] [130 137] [-47 -34] [ 64 72] [-111 -108] [139 127] [-39 -49] [ 67 60] [-115 -128] [118 128] [-53 -50] [ 50 41] [-130 -124] [117 102] [-67 -59] [ 32 41] [-140 -134] [104 109] [-68 -77] [ 35 24] [-142 -152] [ 91 100] [-87 -93] [ 29 15] [-155 -163] [ 95 182] [-103 -92] [ 9 15] [-162 -150] [-10 -20] [-178 -168] [-23 -16]
```

o Representação gráfica dos dados

- Média dos valores
 - [-12.9429 -10.8571]
- Normaliza-se a base de dados

'o' Originais

'+' Normalizados

Matriz de covariância dos dados

• Percebe-se um elevado valor de covariância entre as duas variáveis dos dados (diagonal secundária)

- Extrai-se os autovetores e autovalores da matriz de covariância
 - Autovetor 1

$$e_1 = \begin{bmatrix} 0,6961\\ 0,7179 \end{bmatrix} \rightarrow \lambda_1 = 20516$$

• Autovetor 2

$$e_2 = \begin{bmatrix} -0.7179 \\ 0.6961 \end{bmatrix} \rightarrow \lambda_2 = 151$$

- o Distribuição de informação pelos autovetores
 - Vetor 1: $\lambda 1 = 20516 \approx 99,27\%$
 - Vetor 2: $\lambda 1 = 151 \approx 0.73\%$
- Fazendo uso de apenas uma componente principal (Vetor 1) obtém-se:
 - Redução da dimensionalidade pela metade
 - Preservação de aprox. 99,3% da informação dos dados
 - Troca do sistema de eixos que define o espaço vetorial. Do original {(1, 0), (0, 1)} para o novo sistema de eixos {(0.6961, 0.7179)}

• A nova representação dos dados utilizando um componente principal

- "+" dados originais normalizados
- "*" dados rotacionados após o uso do PCA

VANTAGENS E DESVANTAGENS

Vantagens

- Alto poder de representação
- Técnica puramente estatística
- Robusta e largamente utilizada
- Possui muitas adaptações
- Reduz custo de armazenamento e posterior classificação
- Fácil implementação

Vantagens e Desvantagens

Desvantagens

- Limitação na distribuição dos dados
- Número X dimensionalidade dos protótipos
- Não consideram as classes dos padrões envolvidos
- Não é uma técnica de redução de dimensionalidade ótima para classificação

PCA E CLASSIFICAÇÃO

APLICAÇÕES

- Reconhecimento de faces
- o Detecção de faces
- o Reconstrução de imagens
- o Compressão de dados
- Visualização de dados multidimensionais

REFERÊNCIAS

- Jonathon Shlens. A Tutorial on Principal Component Analysis (v. 2), University of California, San Diego.
- M. Turk and A. Pentland. *Eigenfaces for Recognition*. Journal of Cognitive Neuroscience. 3(1). pp. 71-86, 1991.
- Zhao, Chellappa, Rosenfeld and Phillips. Face recognition: A literature survey. UMD CAR Technical Report CAR-TR-948, 2000.