import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats

IMPORT DATASET

In [2]: df=pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")

In [3]: df

Out[3

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	1
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	2
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	4
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	Ę
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	7
1465	36	No	Travel_Frequently	884	Research & Development	23	2	Medical	1	2061
1466	39	No	Travel_Rarely	613	Research & Development	6	1	Medical	1	2062
1467	27	No	Travel_Rarely	155	Research & Development	4	3	Life Sciences	1	2064
1468	49	No	Travel_Frequently	1023	Sales	2	3	Medical	1	2065
1469	34	No	Travel_Rarely	628	Research & Development	8	3	Medical	1	2068
1470 rd	ows ×	35 colun	nns							

In [4]: df.head()

Out[4]: Age Attrition BusinessTravel DailyRate Department DistanceFromHome Education EducationField EmployeeCount EmployeeNumber .. 41 Travel_Rarely 1102 1 2 1 1 .. Yes Sales Life Sciences Research & 279 8 2 .. 49 No Travel_Frequently 1 Life Sciences 1 Development Research & 1373 2 2 Other 1 4 .. 2 37 Yes Travel_Rarely Development Research & 33 1392 3 4 5 .. 3 No Travel_Frequently Life Sciences Development Research & 27 591 2 1 7 .. 4 No Travel_Rarely Medical Development

5 rows × 35 columns

In [5]: df.tail()

Out[5]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber
	1465	36	No	Travel_Frequently	884	Research & Development	23	2	Medical	1	2061
	1466	39	No	Travel_Rarely	613	Research & Development	6	1	Medical	1	2062
	1467	27	No	Travel_Rarely	155	Research & Development	4	3	Life Sciences	1	2064
	1468	49	No	Travel_Frequently	1023	Sales	2	3	Medical	1	2065

Research & Travel_Rarely 8 3 2068 **1469** 34 No 628 Medical Development

5 rows × 35 columns

In [6]: df.shape

Out[6]: (1470, 35)

In [7]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

Data	columns (total 35 columns):	
#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	0ver18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
dtvne	es: int64(26), object(9)		

dtypes: int64(26), object(9) memory usage: 402.1+ KB

In [8]: df.describe()

Out[8]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	HourlyRate	Joi
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.000000	
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769	65.891156	
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.329428	
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.000000	
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.000000	48.000000	
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.000000	66.000000	
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.000000	83.750000	
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.000000	100.000000	

8 rows × 26 columns

Out[9]: No 1233 Yes 237

Name: Attrition, dtype: int64

Checking for NULL Values

In [10]: df.isnull().any() False Age Out[10]: Attrition False BusinessTravel False DailyRate False Department False ${\tt Distance From Home}$ False Education False ${\sf EducationField}$ False EmployeeCount False EmployeeNumber False EnvironmentSatisfaction False Gender False HourlyRate False JobInvolvement False JobLevel False JobRole False JobSatisfaction False MaritalStatus False MonthlyIncome False MonthlyRate False NumCompaniesWorked False 0ver18 False OverTime False PercentSalaryHike False PerformanceRating False RelationshipSatisfaction False StandardHours False StockOptionLevel False TotalWorkingYears False TrainingTimesLastYear False WorkLifeBalance False YearsAtCompany False YearsInCurrentRole False YearsSinceLastPromotion False YearsWithCurrManager False

Data Visualization

dtype: bool

In [11]:

corr=df.corr()
corr

Out[11]:

Houi	EnvironmentSatisfaction	EmployeeNumber	EmployeeCount	Education	DistanceFromHome	DailyRate	Age	
0.0	0.010146	-0.010145	NaN	0.208034	-0.001686	0.010661	1.000000	Age
0.0	0.018355	-0.050990	NaN	-0.016806	-0.004985	1.000000	0.010661	DailyRate
0.0	-0.016075	0.032916	NaN	0.021042	1.000000	-0.004985	-0.001686	DistanceFromHome
0.0	-0.027128	0.042070	NaN	1.000000	0.021042	-0.016806	0.208034	Education
	NaN	NaN	NaN	NaN	NaN	NaN	NaN	EmployeeCount
0.0	0.017621	1.000000	NaN	0.042070	0.032916	-0.050990	-0.010145	EmployeeNumber
-0.0	1.000000	0.017621	NaN	-0.027128	-0.016075	0.018355	0.010146	EnvironmentSatisfaction
1.0	-0.049857	0.035179	NaN	0.016775	0.031131	0.023381	0.024287	HourlyRate
0.0	-0.008278	-0.006888	NaN	0.042438	0.008783	0.046135	0.029820	Joblnvolvement
-0.0	0.001212	-0.018519	NaN	0.101589	0.005303	0.002966	0.509604	JobLevel
-0.0	-0.006784	-0.046247	NaN	-0.011296	-0.003669	0.030571	-0.004892	JobSatisfaction
-0.0	-0.006259	-0.014829	NaN	0.094961	-0.017014	0.007707	0.497855	MonthlyIncome
-0.0	0.037600	0.012648	NaN	-0.026084	0.027473	-0.032182	0.028051	MonthlyRate
0.0	0.012594	-0.001251	NaN	0.126317	-0.029251	0.038153	0.299635	NumCompaniesWorked
-0.0	-0.031701	-0.012944	NaN	-0.011111	0.040235	0.022704	0.003634	PercentSalaryHike
-0.0	-0.029548	-0.020359	NaN	-0.024539	0.027110	0.000473	0.001904	PerformanceRating
0.0	0.007665	-0.069861	NaN	-0.009118	0.006557	0.007846	0.053535	RelationshipSatisfaction

StandardHours	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
StockOptionLevel	0.037510	0.042143	0.044872	0.018422	NaN	0.062227	0.003432	0.0
TotalWorkingYears	0.680381	0.014515	0.004628	0.148280	NaN	-0.014365	-0.002693	-0.0
TrainingTimesLastYear	-0.019621	0.002453	-0.036942	-0.025100	NaN	0.023603	-0.019359	-0.0
WorkLifeBalance	-0.021490	-0.037848	-0.026556	0.009819	NaN	0.010309	0.027627	-0.0
YearsAtCompany	0.311309	-0.034055	0.009508	0.069114	NaN	-0.011240	0.001458	-0.0
YearsInCurrentRole	0.212901	0.009932	0.018845	0.060236	NaN	-0.008416	0.018007	-0.0
YearsSinceLastPromotion	0.216513	-0.033229	0.010029	0.054254	NaN	-0.009019	0.016194	-0.0
YearsWithCurrManager	0.202089	-0.026363	0.014406	0.069065	NaN	-0.009197	-0.004999	-0.0

26 rows × 26 columns

```
In [12]:
    plt.subplots(figsize=(25,15))
    sns.heatmap(corr,annot=True,cmap="coolwarm")
```

Out[12]: <AxesSubplot:>

0.2

```
attrition_counts = df['Attrition'].value_counts()
plt.figure(figsize=(8, 8))
plt.pie(attrition_counts, labels=attrition_counts.index, autopct='%1.1f%%', startangle=90)
plt.title('Attrition Distribution')
plt.axis('equal')

plt.show()
```



```
In [14]:
    sns.countplot(x="Attrition", data=df)
    plt.title("Attrition Count")
    plt.show()
```


In [15]: sns.distplot(df["Age"])

C:\Users\SRUJANA\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprec
ated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-l
evel function with similar flexibility) or `histplot` (an axes-level function for histograms).
warnings.warn(msg, FutureWarning)

Out[15]: <AxesSubplot:xlabel='Age', ylabel='Density'>


```
In [16]:
    sns.histplot(data=df, x="Age", kde=True)
    plt.title("Distribution of Age")
    plt.show()
```


Outlier Detection

```
In [17]:
    plt.figure(figsize=(35, 8))
    sns.boxplot(data=df)
    plt.title('Box Plots for all the attributes')
    plt.show()
```



```
In [18]:
    sns.boxplot(data=df, x='YearsInCurrentRole')
    plt.title('Years In Current Role')
    plt.xlabel('Fare')
    plt.show()
```



```
In [19]:
    sns.boxplot(data=df, x='MonthlyIncome')
    plt.title('Monthly Income')
    plt.xlabel('Fare')
    plt.show()
```



```
In [20]: from scipy import stats

z_scores = stats.zscore(df['MonthlyIncome'])
z_score_threshold = 3
    df_cleaned = df[(np.abs(z_scores) <= z_score_threshold)]

In [21]: sns.boxplot(data=df_cleaned, x='MonthlyIncome')
    plt.title('Monthly Income')
    plt.xlabel('Fare')
    plt.show()</pre>
```


In [25]:

In [26]:

So the outliers are in large quantity, and they are inside the threshold, so let us not remove the outliers

categorical_features = x.select_dtypes(include=['object']).columns.tolist()
x_encoded = pd.get_dummies(x, columns=categorical_features, drop_first=True)

SPLITTING INDEPENDENT AND DEPENDENT VARIABLES

```
In [22]:
            x= df.drop(columns=["Attrition"])
            y = df["Attrition"]
            #since there are so many null values
In [23]:
            x.head()
                    BusinessTravel DailyRate
                                              Department DistanceFromHome Education EducationField EmployeeCount EmployeeNumber Environment
              Age
Out[23]:
           0
               41
                      Travel_Rarely
                                        1102
                                                    Sales
                                                                                          Life Sciences
                                               Research &
               49 Travel_Frequently
                                         279
                                                                          8
                                                                                          Life Sciences
                                                                                                                                     2
                                              Development
                                               Research &
           2
               37
                      Travel_Rarely
                                        1373
                                                                          2
                                                                                     2
                                                                                                Other
                                                                                                                    1
                                                                                                                                     4
                                              Development
                                               Research &
               33 Travel_Frequently
                                        1392
                                                                                          Life Sciences
                                              Development
                                               Research &
               27
                      Travel_Rarely
                                         591
                                                                          2
                                                                                     1
                                                                                               Medical
                                                                                                                    1
                                                                                                                                     7
                                              Development
          5 rows × 34 columns
In [24]:
            y.head()
                 Yes
Out[24]:
                  No
                 Yes
           3
                  No
                  No
           Name: Attrition, dtype: object
          ENCODING
```

x encoded head() Out[26]: Age DailyRate DistanceFromHome Education EmployeeCount EmployeeNumber EnvironmentSatisfaction HourlyRate JobInvolvement Job 41 2 2 3 1102 49 279 8 2 3 61 2 2 37 1373 2 2 1 4 4 92 2 33 1392 3 5 56 3 2 27 591 1 1 7 40 3 5 rows × 47 columns FEATURE SCALING In [27]: from sklearn.preprocessing import StandardScaler scaler = StandardScaler() x_scaled = pd.DataFrame(scaler.fit_transform(x_encoded), columns=x_encoded.columns) x_scaled Out[27]: Age DailyRate DistanceFromHome Education EmployeeCount EmployeeNumber EnvironmentSatisfaction HourlyRate JobInvolvem 0.446350 0.742527 -1 010909 -0.891688 0.379 0 0.0 -1 701283 -0.660531 1 383138 1.322365 -1.297775 -0.147150 -1.868426 0.0 -1.699621 0.254625 -0.240677 -1.026 0.008343 1.414363 -0.887515 -0.891688 0.0 -1.696298 1.169781 1.284725 -1.026 -0 486709 -0 429664 1 461466 -0.764121 1 061787 0.0 -1 694636 1 169781 0.379 -1.086676 -0.524295 -0.887515 -1.868426 0.0 -1.691313 -1.575686 -1.274014 0.379 1.785 -0.101159 0.202082 1.703764 -0.891688 0.0 1.721670 0.254625 -1.224807 1465 1466 0.227347 -0.469754 -0.393938 -1.868426 0.0 1.723332 1.169781 -1.175601 -1.026 1467 -1.086676 -1.605183 -0.640727 0.085049 0.0 1.726655 -0.660531 1.038693 1.785 1468 1.322365 0.546677 -0.887515 0.085049 0.0 1.728317 1.169781 -0.142264-1.0261469 -0.320163 -0.432568 -0.147150 0.085049 0.0 1.733302 -0.660531 0.792660 1.785 1470 rows × 47 columns

In [28]: x_scaled.head()

Out[28]: Age DailyRate DistanceFromHome Education EmployeeCount EmployeeNumber EnvironmentSatisfaction HourlyRate JobInvolvement 0.446350 0.742527 -0.891688 -1.701283 1.383138 0.379672 -1.010909 0.0 -0.660531 1.322365 -1.297775 -0.147150 -1 868426 0.0 -1.699621 0.254625 -0.240677 -1.026167 0.008343 1.414363 -0.887515 -0.891688 0.0 -1.696298 1.169781 1.284725 -1.026167 -0.764121 0.0 0.379672 -0.429664 1.461466 1.061787 -1.694636 1.169781 -0.486709 -0.887515 -1.086676 -0.524295 -1 868426 0.0 -1.691313 -1.575686 -1 274014 0.379672

5 rows × 47 columns

Train test and split

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size=0.2, random_state=42)
```

In [30]: x_train.shape, x_test.shape, y_train.shape, y_test.shape

((1176, 47), (294, 47), (1176,), (294,))

MODEL BUILDING

```
In [31]:
                                                               # Import the necessary libraries
                                                                from sklearn.linear_model import LogisticRegression
                                                               logreg model = LogisticRegression(random state=42)
                                                                from sklearn.tree import DecisionTreeClassifier
                                                                dt_model = DecisionTreeClassifier(random_state=42)
In [32]:
                                                               logreg model.fit(x train, y train)
                                                               dt_model.fit(x_train, y_train)
                                                          DecisionTreeClassifier(random_state=42)
In [33]:
                                                               logreg_predictions = logreg_model.predict(x_test)
                                                               logreg predictions
                                                                                                   ['No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No'
                                                          array(['No', 'No', 'Yes',
In [34]:
                                                               dt predictions = dt model.predict(x test)
                                                   dt_predictions

array(['No', 'No', 'Yes', 'No', 'No', 'Yes', 'Yes', 'No', 'No'
                                                               dt predictions
                                                                                                         'No', 'No'], dtype=object)
```

```
In [35]:
            y test
            1041
                       No
Out[35]:
            184
                       No
            1222
                      Yes
            67
                       No
            220
                       No
            567
                       No
            560
                       No
            945
                       No
            522
                       No
           651
                       No
           Name: Attrition, Length: 294, dtype: object
In [36]:
            df
Out[36]:
                  Age
                       Attrition
                                   BusinessTravel DailyRate
                                                              Department DistanceFromHome
                                                                                               Education
                                                                                                           EducationField EmployeeCount EmployeeNumber
               0
                   41
                                     Travel_Rarely
                                                        1102
                                                                                             1
                                                                                                        2
                            Yes
                                                                    Sales
                                                                                                              Life Sciences
                                                               Research &
                    49
                             No
                                 Travel_Frequently
                                                         279
                                                                                                              Life Sciences
                                                              Development
                                                               Research &
               2
                   37
                                     Travel Rarely
                                                                                             2
                                                                                                        2
                                                                                                                    Other
                                                        1373
                            Yes
                                                              Development
                                                               Research &
                   33
                                                                                             3
                                                                                                              Life Sciences
               3
                                 Travel Frequently
                                                        1392
                                                                                                        4
                             Nο
                                                              Development
                                                               Research &
                                                                                             2
               4
                   27
                             No
                                     Travel_Rarely
                                                         591
                                                                                                        1
                                                                                                                  Medical
                                                                                                                                         1
                                                              Development
                                                               Research &
            1465
                    36
                             No Travel_Frequently
                                                         884
                                                                                            23
                                                                                                        2
                                                                                                                  Medical
                                                                                                                                                        2061
                                                              Development
                                                               Research &
                                                                                                                  Medical
            1466
                   39
                             No
                                     Travel_Rarely
                                                         613
                                                                                             6
                                                                                                        1
                                                                                                                                                        2062
                                                              Development
                                                               Research &
            1467
                    27
                             No
                                     Travel_Rarely
                                                         155
                                                                                             4
                                                                                                        3
                                                                                                             Life Sciences
                                                                                                                                         1
                                                                                                                                                        2064
                                                              Development
            1468
                                 Travel_Frequently
                                                        1023
                                                                    Sales
                                                                                                        3
                                                                                                                  Medical
                                                                                                                                                        2065
                    49
                             No
                                                               Research &
                                     Travel Rarely
                                                                                             8
                                                                                                        3
                                                                                                                  Medical
                                                                                                                                         1
                                                                                                                                                        2068
            1469
                   34
                                                         628
                             No
                                                              Development
           1470 rows × 35 columns
```

```
Evaluation of the model

In [59]: from sklearn.metrics import accuracy_score, classification_report, confusion_matrix,roc_auc_score,roc_curve from joblib import dump

In [60]: logreg_accuracy = accuracy_score(y_test, logreg_predictions) print("Logistic Regression Accuracy:", logreg_accuracy)

Logistic Regression Accuracy: 0.8809523809523809

In [61]: dt_accuracy = accuracy_score(y_test, dt_predictions) print("Decision Tree Accuracy:", dt_accuracy)

Decision Tree Accuracy: 0.7721088435374149
```

In [62]:

```
In [63]:
        dt report = classification report(y test, dt predictions)
        print("Classification Report for Decision Tree Classifier:\n", dt report)
        Classification Report for Decision Tree Classifier:
                    precision
                               recall f1-score
                                              support
                No
                       0.87
                               0.86
                                        0.87
                                                 255
                               0.18
                                        0.17
                                                  39
               Yes
                       0.17
           accuracy
                                        0.77
                                                 294
                       0.52
                               0.52
                                        0.52
                                                 294
          macro avo
                                                 294
       weighted avg
                       0.78
                               0.77
                                        0.78
In [64]:
        logreg_conf_matrix = confusion_matrix(y_test, logreg_predictions)
        print("Confusion Matrix for Logistic Regression:\n", logreg conf matrix)
        Confusion Matrix for Logistic Regression:
        [[241 14]
        [ 21 18]]
In [65]:
        dt_conf_matrix = confusion_matrix(y_test, dt_predictions)
        print("Confusion Matrix for Decision Tree Classifier:\n", dt conf matrix)
        Confusion Matrix for Decision Tree Classifier:
        [[220 35]
        [ 32
              711
In [66]:
        print(classification_report(y_test,dt_predictions))
                   precision
                              recall f1-score
                                              support
                No
                       0.87
                                0.86
                                        0.87
                                                 255
               Yes
                                                  39
                       0.17
                               0.18
                                        0.17
                                        0.77
                                                 294
           accuracy
                       0.52
                               0.52
                                        0.52
                                                 294
          macro avo
       weighted avg
                       0.78
                               0.77
                                        0.78
                                                 294
In [67]:
        probability=dt model.predict proba(x test)[:,1]
In [68]:
        probability
       \mathsf{array}([0.,\ 0.,\ 1.,\ 0.,\ 0.,\ 1.,\ 1.,\ 0.,\ 0.,\ 0.,\ 0.,\ 1.,\ 0.,\ 0.,\ 0.,\ 0.,\ 1.,
Out[68]:
             0.,\ 1.,\ 0.,\ 0.,\ 0.,\ 0.,\ 0.,\ 0.,\ 0.,\ 1.,\ 0.,\ 0.,\ 0.,\ 1.,\ 0.,
             0., \ 1., \ 0., \ 0., \ 0., \ 0., \ 0., \ 0., \ 0., \ 0., \ 0., \ 1.,
                                                     0., 1., 0., 0., 0.,
             0., 1., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
             0.,\;0.,\;0.,\;0.,\;0.,\;1.,\;0.,\;0.,\;0.,\;0.,\;0.,\;0.,\;1.,\;0.,\;0.,\;0.,\;0.,
             0.,\;0.,\;0.,\;1.,\;0.,\;0.,\;0.,\;0.,\;0.,\;0.,\;0.,\;1.,\;1.,\;0.,\;0.,\;0.,
             0.,\;0.,\;0.,\;0.,\;1.,\;1.,\;0.,\;0.,\;1.,\;1.,\;0.,\;1.,\;0.,\;1.,\;0.,\;0.,\;0.,
             0., 1., 0., 0., 0.])
```

No

Yes

accuracy

macro avg

weighted avg

0.92

0.56

0.74

0.87

0.95

0.46

0.70

0.88

0.93

0.51

0.88

0.72

0.88

255

294

294

294

39

```
In []: #roc aoc curve
           fpr,tpr,thresholda=roc_curve(y_test,probability)
In [ ]:
          plt.plot(fpr,tpr)
plt.xlabel('FPR')
plt.ylabel('TPR')
           plt.title('ROC CURVE')
           plt.show()
```

Random Forest

```
In [45]:
            from sklearn.ensemble import RandomForestClassifier
            rfc=RandomForestClassifier()
In [46]:
            forest_params = [{'max_depth': list(range(10, 15)), 'max_features': list(range(0,14))}]
In [51]:
            from sklearn.model_selection import GridSearchCV
            rfc_cv= GridSearchCV(rfc,param_grid=forest_params,cv=10,scoring="accuracy")
            rfc_cv
          GridSearchCV(cv=10, estimator=RandomForestClassifier(),
	param_grid=[{'max_depth': [10, 11, 12, 13, 14],
	'max_features': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
	12, 13]}],
Out[51]:
                           scoring='accuracy')
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js