

Final Project Data Science

Fauzia Yumna Ayupuspita Iqbal Muhammad Muhammad Fahmi Siti Rabiatul Adwiyah Yoga Mahardika Sidiq

Diabetes Prediction

Outline

Overview About Diabetes EDA Problem Definition, Goal, **Machine Learning** Methodology **Result Overview** Conclusion

Overview about Diabetes

What is Diabetes?

Disease that occurs when your blood glucose is too high

Symptoms

Weight loss

Organs Affected

Problem, Goals, Methodology

Result Overview

Model Accuracy

The best model is XGBoost with Accuracy Test is 74.46%

Methodology

^{*)} Source: https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

Data Check

No	Feature	IsNull
1	Pregnancies	0
2	Glucose	5
3	Blood Pressure	227
4	Skin Thickness	374
5	ВМІ	11
6	Diabetes Pedigree Function	0
7	Age	0
8	Outcome	0

Univariate - Categorical

Diabetic
268 or 35% patients are diagnosed diabetes

Non Diabetic
500 or 65% patients are Non
Diabetic

Comparison
The comparison between
diabetic and non diabetic is 1:2

Univariate - Numerical

Normal Distribution

- Glucose and
- Blood Pressure

Positive Skewed

Most of data are positive skewed except Glucose and Blood Pressure data

Correlation Matrix

Handling Outlier

After Handling Outlier with IQR

Bivariate - Categorical

Bivariate - Categorical

Machine Learning

Train-Test Split

Separating data for learning and testing

Modelling

Create 7 supervised modeling scenarios

Change categorical variables to numeric

Resampling

Perform SMOTE on diabetes data to create balanced data

Result Machine Learning Model

Confusion Matrix Models

Confusion Matrix Models

After looking at the confusion matrix for 7 models, we can draw the conclusion that **the best model to use is XGBoost**, considering the highest proportion of positive true & negative true values

THANK YOU