Results are obtained with h_0^P estimated

$\textbf{CALIBRATED PARAMETERS ON WEDNESDAYS WRT MSE}, \ h_0^Q = \frac{\omega_0 + \alpha_0}{1 - \beta_0 - \alpha_0 \gamma_0^{*2}}, \textbf{WITH} \ \omega_0, \alpha_0, \beta_0, \gamma_0^{*2} \ FROM MLE UNDER P AND UPDATED UNDER OUT OF THE PARAMETER O$									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
$\omega \ ext{std} \ ext{ci} \ ext{median}$	$1.5697e - 07$ $(5.6788e - 07)$ $(\pm 1.5653e - 07)$ $2.4090e - 09$	5.7491e - 06 (1.6332e - 05) $(\pm 4.5016e - 06)$ 5.6395e - 09	$2.1523e - 07$ $(6.2554e - 07)$ $(\pm 1.7415e - 07)$ $1.1196e - 09$	$2.7628e - 07$ $(7.5402e - 07)$ $(\pm 2.1207e - 07)$ $5.4495e - 10$	$2.3732e - 08$ $(1.1658e - 07)$ $(\pm 3.2133e - 08)$ $1.5386e - 10$	$1.6110e - 08$ $(1.1044e - 07)$ $(\pm 3.0441e - 08)$ $2.2787e - 10$	$2.0066e - 07$ $(1.2615e - 06)$ $(\pm 3.4772e - 07)$ $2.9269e - 10$	1.2489e - 08 (6.3331e - 08) $(\pm 1.7631e - 08)$ 8.1035e - 11	$2.2192e - 07$ $(7.7929e - 07)$ $(\pm 2.1695e - 07)$ $4.0877e - 10$
$egin{array}{c} lpha \ ext{std} \ ext{ci} \ ext{median} \end{array}$	$1.4628e - 05$ $(1.0156e - 05)$ $(\pm 2.7995e - 06)$ $1.2294e - 05$	$1.0156e - 05$ $(9.5801e - 06)$ $(\pm 2.6406e - 06)$ $8.0906e - 06$	$9.7869e - 06$ $(8.8243e - 06)$ $(\pm 2.4567e - 06)$ $6.2118e - 06$	$7.8367e - 06$ $(7.6776e - 06)$ $(\pm 2.1594e - 06)$ $5.0339e - 06$	$7.9205e - 06$ $(5.5364e - 06)$ $(\pm 1.5260e - 06)$ $7.3727e - 06$	$\begin{array}{c} 9.5198e - 06 \\ (3.9620e - 06) \\ (\pm 1.0921e - 06) \\ 8.4912e - 06 \end{array}$	$8.2525e - 06$ $(5.2317e - 06)$ $(\pm 1.4420e - 06)$ $8.3068e - 06$	$5.0611e - 06$ $(3.5988e - 06)$ $(\pm 1.0019e - 06)$ $4.6738e - 06$	9.1095e - 06 (6.2168 $e - 06$) ($\pm 1.7308e - 06$) 8.1628e - 06
$egin{array}{c} eta \ \mathbf{ci} \ \mathbf{median} \end{array}$	$0.5256 \\ (0.2334) \\ (\pm 0.0643) \\ 0.5544$	$\begin{array}{c} 0.2930 \\ (0.3055) \\ (\pm 0.0842) \\ 0.1561 \end{array}$	$0.4448 \\ (0.2970) \\ (\pm 0.0827) \\ 0.5631$	$\begin{array}{c} 0.4003 \\ (0.3662) \\ (\pm 0.1030) \\ 0.4126 \end{array}$	$0.2776 \\ (0.3251) \\ (\pm 0.0896) \\ 0.0787$	$0.1191 \\ (0.1824) \\ (\pm 0.0503) \\ 0.0000$	$\begin{array}{c} 0.2523 \\ (0.2875) \\ (\pm 0.0792) \\ 0.0087 \end{array}$	$\begin{array}{c} 0.1647 \\ (0.2930) \\ (\pm 0.0816) \\ 0.0000 \end{array}$	$\begin{array}{c} 0.1895 \\ (0.2762) \\ (\pm 0.0769) \\ 0.0004 \end{array}$
$\gamma^* \ ext{std} \ ext{ci} \ ext{median}$	$206.9885 (168.6065) (\pm 46.4737) 159.3995$	$\begin{array}{c} 393.3237 \\ (361.2128) \\ (\pm 99.5626) \\ 245.4392 \end{array}$	$321.9917 (294.8291) (\pm 82.0809)231.7922$	$420.5704 (320.3050) (\pm 90.0872)268.0011$	$386.1910 (252.4873) (\pm 69.5941) 280.0996$	$\begin{array}{c} 300.0024 \\ (61.9570) \\ (\pm 17.0775) \\ 301.5505 \end{array}$	$ 317.9679 (103.3799) (\pm 28.4950)301.4061$	$464.4275 (201.6139) (\pm 56.1297) 413.2763$	$343.7525 (242.9145) (\pm 67.6278)289.4503$
$egin{aligned} h_0^Q &= h_t^P \ & \mathbf{std} \ & \mathbf{ci} \ & \mathbf{median} \end{aligned}$	$1.2504e - 04$ $(8.4350e - 05)$ $(\pm 2.3250e - 05)$ $1.0398e - 04$	$1.6094e - 04$ $(1.0127e - 04)$ $(\pm 2.7914e - 05)$ $1.3887e - 04$	$8.8020e - 05$ $(3.9993e - 05)$ $(\pm 1.1134e - 05)$ $7.9893e - 05$	$6.3516e - 05$ $(3.0169e - 05)$ $(\pm 8.4851e - 06)$ $5.2671e - 05$	$6.4968e - 05$ $(3.7802e - 05)$ $(\pm 1.0419e - 05)$ $5.4472e - 05$	$1.0677e - 04$ $(5.3934e - 05)$ $(\pm 1.4866e - 05)$ $8.9209e - 05$	$9.4593e - 05$ $(6.6163e - 05)$ $(\pm 1.8237e - 05)$ $6.9330e - 05$	$4.2065e - 05$ $(2.5624e - 05)$ $(\pm 7.1338e - 06)$ $3.6036e - 05$	$1.2042e - 04$ $(9.2499e - 05)$ $(\pm 2.5752e - 05)$ $1.0226e - 04$
MSE	0.5696	2.7958	0.9089	1.1220	2.1939	2.3500	4.2735	8.5872	5.6765
IVRMSE	0.0956	0.1252	0.1365	0.1235	0.1280	0.1337	0.1460	0.1724	0.1401
MAPE	0.1199	0.1306	0.1811	0.1706	0.2157	0.2114	0.2289	0.3632	0.2216
OptLL	199.1370	198.2037	232.4967	308.1413	325.3681	406.4867	478.1218	511.1234	629.4424