INFORME COMPARATIVO DE MÉTODOS NUMÉRICOS

DATOS DE ENTRADA

Parámetro	Valor	
Función f(x)	x**2-2	
Función g(x)	math.sqrt(2)	
Intervalo [a,b]	[1.0, 2.0]	
Punto inicial x■	1.0	
Tolerancia	0.001	
Máx. iteraciones	100	
Tipo de precisión	Decimales correctos	

RESULTADOS COMPARATIVOS

Método	Estado	Iteraciones	Raíz aproximada	Error final
Bisección	Exitoso	10	1.415039	9.77e-04
Punto Fijo	Exitoso	2	1.414214	0.00e+00

ANÁLISIS COMPARATIVO

Método más eficiente: Punto Fijo Método más preciso: Punto Fijo Mejor método general: Punto Fijo

Conclusión:

El método de Punto Fijo fue tanto el más eficiente como el más preciso.

DESCRIPCIÓN DE MÉTODOS

Método de Bisección: Técnica que encuentra raíces en un intervalo [a,b] donde f(a)×f(b)<0. Divide repetidamente el intervalo por la mitad hasta encontrar la raíz con la precisión deseada. Es robusto y siempre converge, pero puede ser lento.

Método de Punto Fijo: Reformula la ecuación f(x)=0 como x=g(x) y usa iteraciones sucesivas para aproximarse a la raíz. Su convergencia depende de la función g(x) elegida y puede ser muy rápido cuando converge, pero no siempre garantiza convergencia.