CB N° 10 - FONCTIONS DE PLUSIEURS VARIABLES - SUJET 1

- 1. Soit la fonction f définie sur \mathbb{R}^2 par $f(x,y) = \begin{cases} \frac{x^2y^3}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$ Montrer que f est C^1 sur \mathbb{R}^2 .
- **2.** Soit la fonction f définie sur \mathbb{R}^2 par $f(x,y) = x^3 + y^3 6(x^2 y^2)$.
- **a.** Montrer que f admet 4 points critiques.
- **b.** Soit $x \in \mathbb{R}$. En calculant f(x, x), montrer que f n'admet pas d'extremum local en (0, 0).
- **c.** Montrer que f admet un minimum local en (4,0).
- 3. Déterminer, à l'aide du changement de variable $(u,v)=\left(x,\frac{y}{x}\right)$, toutes les fonctions $f\in C^1\left(\mathbb{R}_+^*\times\mathbb{R},\mathbb{R}\right)$ telles que $x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}=\frac{y}{x}$

$CB N^{\circ}10$ - FONCTIONS DE PLUSIEURS VARIABLES - SUJET 2

- **1.** Soit la fonction f définie sur \mathbb{R}^2 par $f(x,y) = \begin{cases} \frac{x^3y^2}{x^2 + y^2} & \mathbf{si} \quad (x,y) \neq (0,0) \\ 0 & \mathbf{si} \quad (x,y) = (0,0) \end{cases}$ Montrer que f est \mathbb{C}^1 sur \mathbb{R}^2 .
- **2.** Soit la fonction f définie sur \mathbb{R}^2 par $f(x,y) = x^4 + y^4 4(x-y)^2$.
 - **a.** Montrer que f admet 3 points critiques. (On admettra que $x^3 + y^3 = 0 \iff x + y = 0$)
 - **b.** En calculant f(x,x) et f(x,0), montrer que f n'admet pas d'extremum local en (0,0).
 - **c.** Montrer que f admet un minimum local en (2, -2).
- 3. Déterminer, à l'aide du changement de variable (u, v) = (x + y, xy), toutes les fonctions $f \in C^1(\mathbb{R}^2, \mathbb{R})$ telles que

$$x\frac{\partial f}{\partial x} - y\frac{\partial f}{\partial y} = x^2 - y^2$$

Spé PT B CB10 - 2017-2018