Gabriella M. Shull

1202 7th street SE, Unit 7, Minneapolis, MN 55414 ogshull@gmail.com • +1 (718) 710-5421 • linkedin • github • https://ogshull.github.io/

EDUCATION

M.S. in Biomedical Engineering,

University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA

Aug 2016 - Present

• Minor: Neuroengineering

• Cumulative GPA: 3.89 / 4.00

B.S. in Biomedical Engineering,

State University of New York, Binghamton, Binghamton, New York, USA

Aug 20

Aug 2013 - May 2016

- Minor in computational biosystems, and medical devices
- Graduated with College Honors, Magna Cum Laude.
- Cumulative GPA: 3.54 / 4.00

RESEARCH EXPERIENCE

Biosensing and Biorobotics Research Group, Dept. of Mechanical Engineering, UMN

• Graduate Research Student

Jan 2017 - Present

- Thesis project: Computer vision guided robotic cell microinjector
 - Developed robotic microinjector to inject single cells in the developing neocortex with sub micron resolution using computer vision through microscope images.
- Actuatable woven neural probes
 - I developed electrode arrays for chronic intracortical recording, functionalized electrodes with shape memory alloys, and demonstrated their use in vivo. I gained experience in PCB design, electroplating, fabrication, and characterization.
- Adviser: Prof. Suhasa Kodandaramiah

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

• Visiting Graduate Research Student

Jun 2017 – Aug 2017, May 2018 – Jun 2018

- Tested the automated microinjector in collaborators lab and gained experience working with a cross disciplinary team in an unfamiliar environment.
- The system I built increased yield of microinjection by 46x relative to manual microinjection which allows new scientific questions to be explored through the use of this tool.
- Advisers: Prof. Wieland Huttner and Dr. Elena Taverna

Cellular Preservation Services Incorporated Biotechnology, Owego, NY

Team Leader, Engineer

Aug 2015 – May 2016

- Led a team of engineers to develop a thermoregulatory balloon device for surgical cryoablation procedures, and tissue
 engineered model to test device. We won an award for this work and presented at a regional conference.
- I made the overall design of the hardware, and connected electronic components into closed loop control system using microcontroller programming.
- Optimized my leadership skills through discretizing project objectives into concrete goals, identifying team members strengths, and managing the project under frequent corporate deadlines.
- Supervisor: Dr. Kristi Snyder

Organs-on-Chip Lab, Dept. of Biomedical Engineering, SUNY Binghamton

Undergraduate Research Student

Mar 2014 – May 2016

- Developed and characterized novel *in vitro* model of gastrointestinal epithelium and investigated the influence of nanoparticle ingestion on gut barrier function.
- Discovered that a common food additive alters gene expression and cell viability, and that the presence of beneficial bacteria mitigates these effects.
- Adviser: Prof. Gretchen Mahler

Institute for Nanotechnology, Dept. of Chemistry, Northwestern University

REU Student

Jun 2015 – Aug 2015

- Synthesized di-copper complex to minimize t2 relaxation time for use as a MRI contrast agent in the brain.
- Adapted to unfamiliar field/lab, and developed a desire to use nanotechnology to interface with the brain.
- Advisers: Prof. David Harris, Kang Du.

LEADERSHIP EXPERIENCE

Hive Mine LLC, Minneapolis, MN

Co-founder, Owner

Dec 2017 – Present

- Created small business to create cryptocurrency mining farm.
- Gained experience in acquiring \$50k in investment, creating business documents, working with accountants, lawyers, insurance agents, and land lords.

Interdisciplinary Studio for Learning and Design (ISLAND), SUNY Binghamton

President of External Affairs, Co-Founder, Web Master

Aug 2015 - May 2016

- · Created a student organization to host design challenges using projects that benefit the community locally, and and globally including participation in design competitions.
- Ran workshops teaching MATLAB, Arduino, and R and oversaw development of the website.

Biomedical Engineering Society (BMES) Student Chapter, SUNY Binghamton

Vice President

Aug 2014 – May 2016

- Pioneered the growth of the chapter from 8 to 58 students.
- · Created a mentorship program to connect upper level students/grads to underclassmen in order to ensure sustained student success across their careers, and created lab tour event to connect students with research.
- Created outreach event to engage young students underrepresented in STEM in experiments.

COMMUNITY OUTREACH

The Science for All Outreach Program, UMN

Webmaster, Volunteer

Aug 2017 – Present

 Provide middle school students with tangible understanding of STEM concepts via experiments (e.x. I made an EMG controlled race car and had the students race one another via EMG)

Medical Devices Center, UMN

Graduate Team Leader, Volunteer

Aug 2016 – May 2017

- · Mentored a group of undergraduate students to develop a surgical catheter device for Dr. Marcos Molina, MD.
- Presented our work at a prominent surgical conference.

SKILLS

Languages - Spanish (intermediate), English (native)

Programming - Python, MATLAB, C++, Eagle PCB Designer, Solidworks, ANSYS, Arduino, R, Java Script, Adobe Photoshop/Illustrator, MS Word/Excel/PowerPoint.

Characterization - 2-photon/confocal/fluorescent/wide field microscopy, EIS, IHC, qPCR, SEM

Fabrication - chemical synthesis, electroplating, fine-soldering, paralyene-C deposition, platinum sputtering

In Vitro - 3D bioprinting, mammalian/bacteria cell culture, single cell microinjection

In Vivo - automated patch clamp, extracellular recording, mouse crainiotomy/surgery, virus injection

Machining - 3D printing, CNC milling, laser cutting

FELLOWSHIPS

National Science Foundation Graduate Research Fellowship

awarded in Apr 2018

Awarded to students "with demonstrated potential to enhance the vitality of the US science and engineering enterprise".

NSF IGERT Fellowship in Neuroengineering

Aug 2016 - Aug 2017

University of Minnesota, Twin Cities

Awarded to graduate students engaged in interdisciplinary approaches to neuroengineering.

Small Scale Systems Integration Center Undergraduate Fellowship

Jan 2016 - May 2016

SUNY Binghamton

Won this to fund my independent research project.

NSF Research Experience for Undergraduate Fellowship

Jun 2015 - Aug 2015

Chemistry Department, Northwestern University

Competitive research fellowship awarded to students with high potential for impact in future career.

Howard Hughes Medical Institute Undergraduate Research Fellowship SUNY Binghamton

Jun 2014 - Aug 2014

Awarded to students engaged in interdiciplinary research projects.

AWARDS

Second Place (out of 30 teams),

Nov 2017

Blockchain for Social Impact Hackathon, Brooklyn, NY.

For developing ethereum blockchain based platform to incentivise ex felons to engage in therapy.

Second Place (out of 7 teams),

Oct 2017

Code Switch Hackathon, St. Paul, MN

For developing ethereum blockchain based platform for community building.

NSF IGERT Travel Award,

Jun 2017

University of Minnesota, Twin Cities

Awarded for international travel for collaboration.

Best Biomedical Engineering Senior Capstone Project,

May 2016

Biomedical Engineering Department, SUNY Binghamton

Won best capstone project out of 9 teams in department.

Undergraduate Travel Award (won award twice),

Biomedical Engineering Department, SUNY Binghamton Travel costs to present research were covered by this award.

PUBLICATIONS

[1] J. Richter, <u>G. Shull</u>, J. Fountain, Z. Guo, L. Musselman, A. Fiumera, and G. Mahler, "Titanium dioxide nanoparticle exposure alters metabolic homeostasis in a cell culture model of the intestinal epithelium and Drosophila melanogaster," *Nanotoxicology*, pp. 1-17, Mar 2018.

PATENTS

[1] <u>G. Shull</u>, W. Huttner, E. Taverna, S. Kodandaramaiah, "Robotic Platform for HighThroughput Single Cell Gene Manipulation in Intact Tissue," Provisional Patent 20180069. Filed September 6,2017 with U.S. Patent and Trademark Office.

INVITED TALKS

[1] G. Shull, "The Autoinjector" Design of Medical Devices Conference. Minneapolis, MN April 2018

PEER REVIEWED CONFERENCE PRESENTATIONS AND PAPERS

- [1] <u>G. Shull</u>, J. J. Hu, J. Buschnyj, H. Koon, J. Abel, S.B. Kodandaramaiah, "Shape Memory Alloy Actuatable Woven Neural Probes," *Conference on Smart Materials, Adaptive Structures and Intelligent Systems*, San Antonio, Texas, USA, Sep 2018.
- [2] R.G. Smith, R. A. Johnson, <u>G. Shull</u>, D. Sorby, C. J. Modl, A. Panoskaltsis-Mortari, T. M. Kowalewski, "Towards Robotic Bioprinting Directly ont Moving, Stretching Anatomy," *Hamlyn Symposium on Medical Robotics*, South Kensington, London, UK, Jun 2018.
- [3] <u>G. Shull</u>, C. Haffner, W. Huttner, S. Kodandaramiah, E. Taverna, "The Autoinjector: An Image Guided Robot for Single Cells Microinjection," *Neuromodulation Symposium*, Minneapolis, Minnesota, USA, Apr 2018.
- [4] <u>G. Shull</u>, C. Haffner, W. Huttner, S. Kodandaramiah, E. Taverna, "Image Guided Robot for Microinjectioninton Single Cells in Organotypic Slices of Mouse Telencephalon," *Institute for Engineering in Medicine Annual Symposium*, Minneapolis, Minnesota, USA, Nov 2017.
- [5] <u>G. Shull</u>, C. Haffner, W. Huttner, S. Kodandaramiah, E. Taverna, "A robot for high throughput analysis of neural stem cells in intact tissue," *EMBO Conference: Gene regulatory mechanisms in neural fate decisions*, Alicante, Spain, Sep 2017.
- [6] M. Molina, G. Shull, G. Jacobs, T. Woodcock, C. Phillips, D. Srishyla, "Keeping the staple line safe: re-engineering the nasogastric tube and the use of direct visual guidance for its safe deployment," *Society of American Gastrointestinal and Endoscopic Surgeons Annual Meeting*, Houston, Texas, USA. Mar 2017.
- [7] <u>G. Shull</u>, J. Richter, G Mahler, "TiO2 Nanoparticle Exposure Alters Glucose Transport and Expression inan In Vitro model of the Intestinal Epithelium," *42nd Annual Northeast Biomedical EngineeringConference (NEBEC)*, Binghamton, New York, USA. Apr 2016.
- [8] <u>G. Shull</u>, D. Liacona, N. Martucci, I. Wang, K. Snyder, "Thermoregulatory Balloon Device and Tissue Engineered Model for Thermal Ablation Applications," *42nd Annual Northeast Biomedical EngineeringConference (NEBEC)*, Binghamton, New York, USA. Apr 2016.
- [9] <u>G. Shull</u>, J. Richter, G Mahler, "Nanoparticle Ingestion Affects Glucose Transport in in Vitro Model of the Intestinal Epithelium," *Biomedical Engineering Society Annual Meeting (BMES)*, Tampa, Florida, USA. Oct 2015.
- [10] J. Richter, <u>G. Shull</u>, G Mahler, "TiO2 Nanoparticle Ingestion Alters Glucose Absorption in an in Vitro Model of the Intestinal Epithelium," *41st Annual Northeast Biomedical Engineering Conference (NEBEC)*, Troy, New York, USA. Apr 2015.
- [11] <u>G. Shull</u>, J. Richter, G Mahler, "The Effects of Nanoparticle Ingestion on Glucose Transport and Uptake in the Gut Microbiome," *Biomedical Engineering Society Annual Meeting (BMES)*, San Antonio, Texas, USA. Oct 2014.

CONTACT REFERENCES

Prof. Suhasa B. Kodandaramaiah

Assistant Professor, Department of Mechanical Engineering, University of Minnesota, Twin Cities

- Relationship Masters thesis PI (2016 2018)
- Email suhasabk@umn.edu
- Phone 612-626-1307

Dr. Elena Taverna

Researcher, Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology

- Relationship Collaborator for masters thesis (2017 2018)
- Email elena_taverna@eva.mpg.de
- Phone +49-(0) 341 3550 555

Prof. Gretchen Mahler

Associate Professor, Department of Biomedical Engineering, SUNY Binghamton

- Relationship Undergraduate PI (2014 2016)
- Email gmahler@binghamton.edu
- Phone 607-777-5238