CS 188 Discussion 9:

MDP Sampling, Decision Networks, VPI

Kenny Wang (kwkw@berkeley.edu) Wed Oct 25, 2023

Slides based on Sashrika + Joy

Administrivia

- Project 4 due on Mon, Nov 6
- Homework is due on Tuesdays
- We have office hours pretty much all day every weekday (12-7),
 come to Soda 341B! (my hours are 1-3 PM on Mondays)
- Discussion slides are on Ed

Today's Topics

- MDP Sampling
 - Prior Sampling
 - Rejection Sampling
 - Likelihood Weighting
 - Gibbs Sampling
- Decision Networks
- Value of Perfect Information (VPI)

Prior Sampling

- Algorithm:
 - Generate samples

- For i=1, 2, ..., n (in topological order)
 - Sample X_i from P(X_i | parents(X_i))
- Return $(x_1, x_2, ..., x_n)$
- Discard samples inconsistent with evidence
- Calculate probability of the query
- Pros:
 - Easy!
- Cons:
 - o Requires a large number of samples, especially when we condition on unlikely scenarios

Rejection Sampling

Worksheet Q1a

- Algorithm:
 - Generate samples

```
 Input: evidence e<sub>1</sub>,..,e<sub>k</sub>
 For i=1, 2, ..., n
 Sample X<sub>i</sub> from P(X<sub>i</sub> | parents(X<sub>i</sub>))
 If x<sub>i</sub> not consistent with evidence

         Reject: Return, and no sample is generated in this cycle
```

- Calculate probability of the query
- Pros:
 - Bad samples take less time to create, so more efficient than Prior Sampling

Return $(x_1, x_2, ..., x_n)$

- Cons:
 - o Still requires a large number of samples, especially when we condition on unlikely scenarios

Likelihood Weighting

Worksheet Q1b

- Idea: Set all your variables to agree with evidence, then sample
 - Weight all samples by the probability of the evidence given the sampled variables
- Pros:
 - Never generate a bad sample!
- Cons:
 - Evidence influences the choice of downstream variables, but not upstream ones. Samples could have low weight!

- Input: evidence e₁,..,e_k
- w = 1.0
- for i=1, 2, ..., n
 - if X_i is an evidence variable
 - x, = observed value, for X,
 - Set w = w * P(x, | parents(X,))
 - else
 - Sample x_i from P(X_i | parents(X_i))
- return (x₁, x₂, ..., x_n), w

Reinforcement Learning Overview

- We solved MDPs using offline planning
 - Knew exact transition and reward functions, could precompute optimal actions without trying anything

Agent

Environment

Actions: a

State: s

Reward: r

- Now we move to online planning
 - Agent has no prior knowledge of transitions and rewards
 - Try exploration to receive feedback
 - Estimate an optimal policy to use for exploitation (maximizing rewards)

Offline Solution:

Compute policy ahead of time

Online Learning:

Compute policy as experience comes in

Types of Reinforcement Learning

- Passive RL: learn values from experience using a given policy, then use that to inform better policies
 - Model-based: learn the MDP model (transitions and rewards) from experiences, then solve the
 MDP
 - Model-free: forego learning the MDP model, directly learn V(s) or Q(S, a)
 - Direct Evaluation
 - **■** TD-learning (Temporal Difference)
- Active RL: learn policy from our experiences directly
 - Q-learning: learns Q(state, action) values of the optimal policy
 - Approximate Q-learning

Model-Based Learning

- Model-based learning: observe a bunch of actions, then estimate transition probabilities T(s, a, s') and rewards R(s, a, s') by averaging.
 - T(s, a, s') is the number of times you end up in s' after being in state s and taking action a,
 divided by the total number of times you took a from s.
 - R(s, a, s') is the average reward you got from starting in s, taking action a, and ending up in s'.

Worksheet 1(a)

TD-Learning (model-free, passive RL)

Idea: learn values of states, given that you're following some policy

Algorithm

- o Initialize value estimates for policy π $\forall s, V^{\pi}(s) = 0$
- o Each timestep:
 - Take action $\pi(s)$ and receive reward R(s, $\pi(s)$, s')
 - Obtain sample sample = $R(s, \pi(s), s') + \gamma V^{\pi}(s')$
 - Update value estimate with **exponential moving average**

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \cdot \text{sample}$$

■ Learning rate α , $0 \le \alpha \le 1$

Q-Learning (active RL)

Idea: learn Q(s, a) values - which gives you the optimal policy (maximize Q)

Algorithm

- Initialize Q(state, action) estimates to 0
- o Each timestep:
 - Take some action, any action! It doesn't need to be optimal

• Obtain sample
$$|sample| = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

■ Update Q-value estimate with exponential moving average

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \cdot \text{sample}$$

If we explore enough and decrease α appropriately, learn optimal Q-values

Worksheet 1(b)

Value Iteration

Value Iteration

- A dynamic programming algorithm we use to compute values until convergence $(\forall s, U_{k+1}(s) = U_k(s))$
- Algorithm
 - $\lor \forall s \in S$, initialize $U_0(s) = 0$ [initial value estimate is 0]
 - Repeat rule until convergence (U-values stop changing)

$$\forall s \in S, \ U_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma U_k(s')]$$

- Convergence is when
 - \circ $\forall s \in S, U_k(s) = U_{k+1}(s) = U^*(s)$

Policy Iteration

Policy Iteration

- Issues with value iteration
 - \circ O(|S|²|A|) runtime
 - Overcomputes, policy tends to converge faster than values
- Policy iteration: preserve the optimality from value iteration but with better performance by iterating until only the *policy* converges instead of the U-values

Policy Iteration

- Algorithm
 - Define initial policy π_n (can be arbitrary)
 - Repeat until convergence:
 - Policy evaluation: compute expected utility of starting in state s when following policy π , for all states s

$$U^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma U^{\pi}(s')]$$

■ Policy improvement: generate a better policy

$$\pi_{i+1}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma U^{\pi_i}(s')]$$

• Convergence when $\pi_{i+1} = \pi_i$ (policy stops changing)

Summary

- Value Iteration
 - $\forall s \in S$, initialize $U_0(s) = 0$ [initial value estimate is 0]
 - Repeat rule until convergence (U-values stop changing)

$$\forall s \in S, \ U_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma U_k(s')]$$

Convergence is when $\forall s \in S, U_{\nu}(s) = U_{\nu+1}(s) =$ U*(s)

- **Policy Iteration**
 - Define initial policy π_0 (can be arbitrary)
 - Repeat until convergence:
 - **Policy evaluation:** compute expected utility of starting in state s when following policy π , for all states s

$$U^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma U^{\pi}(s')]$$

Policy improvement: generate a better policy

$$\pi_{i+1}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma U^{\pi_i}(s')]$$
 Convergence when $\pi_{i+1} = \pi_i$ (policy stops changing)

- **Q*(s,a): the optimal value of (s, a)** [state, action pair]

$$Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma U^*(s')]$$

U*(s): the optimal value of state s $U^*(s) = \max_{a} Q^*(s,a)$

Rest of the Worksheet

Thank you for attending!

Attendance link:

https://tinyurl.com/cs188fa23

Discussion No: 6

Remember my name is Kenny

My email: kwkw@berkeley.edu

