Contents

1	Definitions and Theory			
	1.1	Topological Spaces	1	
	1.2	Bases and Subbases	2	
2	Exe	rcises	7	

1

Definitions and Theory

1.1 Topological Spaces

Definition 1. A topology on a set X is a collection τ of subsets of X satisfying:

- 1. $\varnothing, X \in \tau$
- 2. An intersection of finite subcollections of τ is in τ
- 3. A union of any subcollection of τ is in τ

The ordered pair (X, τ) is called a **topological space**.

Definition 2. Let (X,τ) be a topological space. An **open subset** of X is a member of τ .

Definition 3. Let τ and σ be two topologies on a set X. We say that τ is **weaker** (or smaller, coarser) than σ if $T \subseteq \sigma$. In this case, σ is then said to be **stronger** (or larger, finer) than τ .

Definition 4. Let X be any set. The collection $\tau = P(X)$ is a topology on X and is called the **discrete topology** on X. Here (X, τ) is called the **discrete topological space**.

Definition 5. Let X be any set. The collection $\tau = \{\emptyset, X\}$ is called the **indiscrete topology** on X. Here (X, τ) is called the **indiscrete topology**.

Definition 6. Let X be any set. The collection $tau = \{A \subseteq X : X \setminus A \text{ is finite }\} \cup \{\emptyset\} \text{ is called the } \textbf{co-finite topology}.$

Definition 7. Let X be any set. The collection $tau = \{A \subseteq X : X \setminus A \text{ is countable }\} \cup \{\emptyset\} \text{ is called the } \mathbf{co\text{-finite topology}}.$

Definition 8. A topology τ on a set X is said to be **metrizable** if there exists a metric d on X such that the topology τ_d generated by the metric d coincides with τ .

Definition 9. Two metrics defined on a set X are said to be **equivalent** if they generate the same topology. In other words, d_1 and d_2 are equivalent if the collection of open sets in (X, d_1) and (X, d_2) are the same.

Definition 10. The topology generated by the Euclidean metric on \mathbb{R}^n is called the **usual topology** on \mathbb{R}^n . For $Y \subseteq \mathbb{R}^n$, the topology generated by the Euclidean metric is called the usual topology on Y.

Definition 11. By a **neighbourhood** of a point x in a topological space (X, τ) , we mean an open set containing x.

Definition 12. A subset A of a topological space (X, τ) is said to be **closed** if $X \setminus A$ is open in X, that is $X \setminus A \in \tau$

Theorem 1.

- \bullet \varnothing and X are closed in X
- An intersection of any collection of closed sets is closed in X
- A union of a finite collection of closed sets in X is closed in X

Definition 13. Let X be a topological space and $A \subseteq X$. A point $x \in X$ is said to be an **interior point** of A if there exists a neighbourhood U of X such that $U \subseteq A$ (or) if there exists an open set U in X such that $x \in U \subseteq A$. The set of all interior points of A is called the **interior** of A and is denoted A° .

Theorem 2. Let (X, d) be a topological space and $S \subseteq X$. Then S° is the largest open set in X that is contained in S.

Theorem 3. Let X be a topological space and $S \subseteq X$ Then S is open if and only if $S = S^{\circ}$.

1.2 Bases and Subbases

Definition 14. Let X be a topological space. A collection β of open subsets of X is said to be a **basis** for the topology on X if for every open set U in X and $x \in U$, there exists a $B \in \beta$ such that $x \in B \subseteq U$.

Members of β are called **basis open sets** corresponding to basis β .

Note 1. For any topological space (X, τ) , τ is a basis for τ .

Note 2. In \mathbb{R} the set $\{(x - \varepsilon, x + \varepsilon) : x \in \mathbb{R} \text{ and } \varepsilon > 0\}$ is a basis for the usual topology.

Note 3. For (\mathbb{R}, τ) , where τ is the discrete topology, $\beta = \{\{x\} : x \in \mathbb{R}\}$ is a basis for τ on \mathbb{R} .

Note 4. In \mathbb{R} the set $\{(x-\frac{1}{n},x+\frac{1}{n}):x\in\mathbb{R} \text{ and } n\in\mathbb{N}\}$ is a basis for the usual topology.

Note 5. In \mathbb{R} the set $\{(a,b): a,b \in \mathbb{Q} \text{ and } a < b\}$ is a basis for the usual topology. This is a countable basis for \mathbb{R} with the usual topology.

Note 6. Let (X, τ) be a metrizable space. Then $\beta = \{B(x, \varepsilon) : x \in X, \varepsilon > 0\}$ is a basis for τ .

Definition 15. Let (X, τ) be a topological space. A collection $S \subseteq \tau$ is said to be a **subbasis** for the topology τ if for every open set U in τ and $x \in U$, there exists a finite subcollection $\{S_1, S_2, ..., S_n\}$ in S such that $x \in \bigcap_{n} S_i \subseteq U$

Members of S are called **subbasis open sets** corresponding to S.

Note 7. For a topological space (X, τ) a collection S is a subbasis for the topology τ if and only if the collection of all finite intersections of members in S forms a basis for the topology τ .

Theorem 4. Let (X, τ) be a topological space and β be a collection of open sets in (X, τ) .

Then β is a basis for the topology τ on X if and only if every open set U in (X, τ) can be written as a union of members in β .

Theorem 5. If X is a set, a basis for a topology on X is a collection β of subsets of X such that

- for every $x \in X$ there exists $B \subset \beta$ containing x.
- if $x \in B_1 \cap B_2$, for some $B_1, B_2 \in \beta$, then there exists $B_3 \in \beta$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

Definition 16. The topology generated by the basis $\beta = \{[a,b) : a,b \in \mathbb{R}, a < b\}$ is known as the **lower limit topology** on \mathbb{R} .

The space \mathbb{R} equipped with the lower limit topology is known as the **Sorgenfrey** line \mathbb{R}_l .

Proposition 1.2.1. The lower limit topology on \mathbb{R} is strictly finer than the usual topology on \mathbb{R}

Definition 17. Let $K = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$. Consider the basis $\beta = \{(a,b) \setminus K : a,b \in \mathbb{Q}, a < b\} \cup \{(a,b) : a,b \in \mathbb{R}, a < b\}$. The topology generated by the basis β is known as the k-topology on \mathbb{R} .

Proposition 1.2.2. The k-topology on \mathbb{R} is strictly finer than the usual topology on \mathbb{R} .

Proposition 1.2.3. The lower limit topology and the k-topology on \mathbb{R} are incomparable.

Definition 18. Let X be a set. Let S be a collection of subsets of X whose union is in X. Any such collection is called a **subbasis** for a topology X. (TODO: Verify)

Theorem 6. Let S be a subbasis for a topology on X. Then $\tau = \{U \subseteq X : \text{for every } x \in U \text{ there exists a finite number of members } S_1, S_2, ..., S_n \in S \text{ such that } x \in S_1 \cap S_2 \cap ... \cap S_n \subseteq U\}$ is the topology generated by the subbasis S.

Theorem 7. Let β be a basis for a topology on X. Then the topology generated by β is equal to the intersection of all topologies on X that contains β .

Theorem 8. If β is a basis for a topology on a set X, then the topology generated by β on τ is the smallest topology on X that contains β .

Definition 19. Let X be a set. A function $f: \mathbb{N} \to X$ is called a **sequence** in X.

Definition 20. Let (X,Y) be a topological space. A sequence (X_n) is said to **converge** to $x \in X$ if for every neighbourhood U of x, there exists $n_0 \in \mathbb{N}$ such that $x_n \in U \ \forall n \geq n_0$

Definition 21. A sequence (x_n) is said to be **eventually constant** if there exists $n_0 \in \mathbb{N}$ such that $x_n = x_{n_0} \ \forall n \geq n_0$.

Theorem 9. In any topological space, every eventually constant sequence is convergent.

Definition 22. Let $f: \mathbb{N} \to X$ be a sequence in X. Then for any strictly increasing function $g: \mathbb{N} \to \mathbb{N}$, the composition $f \circ g: \mathbb{N} \to X$ is called a **subsequence** of f.

Theorem 10. In a topological space (X, τ) , every subsequence of a convergent sequence is convergent.

Definition 23. Let A be a non-empty set. A relation \leq on a set A is called a **partial order relation** if the following condition holds for all α, β, γ in A:

- 1. reflexive: $\alpha \leq \alpha$
- 2. anti-symmetric: $\alpha \leq \beta$ and $\beta \leq \alpha \implies \alpha = \beta$
- 3. transitive: $\alpha \leq \beta$ and $\beta \leq \gamma \implies \alpha \leq \gamma$

Definition 24. A directed set J is a set with a partial order relation \leq such that for each pair α and β of J, there exists a $Y \in J$ such that $\alpha \leq Y$ and $\beta \leq Y$.

Definition 25. A **net** in X is a function f from a directed set J to X.

Note that every sequence is a net.

Definition 26. Let J be a directed set with a partial order relation ' \leq '. A subset K of J is said to be **cofinal** in J if for each $\alpha \in J$, there exists $\beta \in K$ such that $\alpha \leq \beta$.

Proposition 1.2.4. *If* $g: \mathbb{N} \to \mathbb{N}$ *is a strictly increasing function then* $g(\mathbb{N})$ *is cofinal in* \mathbb{N} .

Theorem 11. If J is a directed set and K is cofinal in J, then K is a directed set.

Definition 27. Let $f: J \to X$ be a net in X. If I is a directed set and $g: I \to J$ such that

- $i < j \implies g(i) < g(j) \ \forall i, j \in I$
- g(I) is cofinal in J

Then $f \circ g \colon I \to X$ is called a **subnet** of f.

Definition 28. The net $(X_{\alpha})_{\alpha \in J}$ is said to **converge** to a point $x \in X$ if for every neighbourhood U of x, there exists $\alpha_0 \in J$ such that $x_{\alpha} \in U$ for all $\alpha \geq \alpha_0$.

Definition 29. Let (X, τ) be a topological space and $S \subseteq X$. A point $x \in X$ is called a **closure point** of S if for every neighbourhood U of x, we have $U \cap S \neq \emptyset$. The set of all closure points of S is called the **closure** of A and is denoted cl(A) or \overline{A} .

Definition 30. A point $x \in X$ is said to be a **limit point** of S if for every neighbourhood of x, we have $(U \cap S) \setminus \{x\} \neq \emptyset$.

The set of all limit points is called the **derived set** and is denoted S'

Theorem 12. Let X be a topological space and $S \subseteq X$. Then \bar{S} is the smallest closed set in X that contains S.

Proposition 1.2.5. A subset of a topological space X is closed if and only if $S = \bar{S}$

Theorem 13. Let (X, τ) be a metrizable space and $S \subseteq X$. Then $x \in \bar{S}$ if and only if there exists a sequence $\langle x_n \rangle$ in S such that $x_n \to x$.

Theorem 14. Let X be a topological space and $S \subseteq X$. Then show that $x \in \bar{S}$ if and only if there exists a net $\langle x_{\lambda} \rangle$ in S such that $x_{\lambda} \to x$

Theorem 15. Let X be a topological space and $S \subseteq X$. Then S^{o} is the largest open set contained in S.

Theorem 16. Let X be a topological space and $S \subseteq X$. Then S is open if and only if $S = S^{\circ}$.

Definition 31. Let (X, τ_1) and (Y, τ_2) be two topological spaces. The collection $\mathcal{B} = \tau_1 \times \tau_2 = \{u \times v : u \in \tau_1, v \in \tau_2\}$ is a basis for a topology on $X \times Y$. The topology generated by \mathcal{B} is called the product topology on $X \times Y$.

Theorem 17. Let (X, τ) and (Y, σ) be two topological spaces. Let \mathcal{B} be a basis for τ and \mathcal{C} be a basis for σ . Then the collection $\mathcal{D} = \{U \times V : U \in \mathcal{B}, V \in \mathcal{C}\}$ is a basis for the product topology on $X \times Y$.

2

Exercises

1. Let (X, d) be a metric space and τ_d be the collection of all open subsets of X. Show that τ_d is a topology on X This is called the topology on X generated by d

Source. Class, Aug 07

2. Let X be any set and $A \subseteq X$. Then show that $\tau = \{\emptyset, A, X\}$ is a topology on X.

Source. Class, Aug 07

3. Let X be any set. Let $\tau = \{A \subseteq X : X \setminus A \text{ is finite } \} \cup \{\emptyset\}$ Then show that τ is a topology on X.

Source. Class, Aug 07

4. Let X be any set and $\tau = \{A \subseteq X : X \setminus A \text{ is countable }\} \cup \{\emptyset\}$. Then show that τ is a topology on X.

Source. Class, Aug 07

5. Show that every discrete topological space is metrizable

Source. Class, Aug 07

6. Let X be any set with more than one element. Show that the topology $\tau = \{\emptyset, X\}$ is not metrizable.

Source. Class, Aug 07

7. Let $X = \mathbb{R}^n$.

For any $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ and $y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$, define

1.
$$d_1(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

2.
$$d_2(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

3.
$$d_3(x,y) = \max\{|x_i - y_i| : 1 \le i \le n\}$$

Show that d_1 , d_2 , d_3 all define the same topology on \mathbb{R}^n .

8. Let (X, τ) be a topological space and $A \subseteq X$. Suppose for each $x \in A$, there exists an open set U in X such that $x \in U \subseteq A$. Show that A is open in X.

Source. Problem Sheet 01, Q1

9. Let X be a set, and let $\{\tau_{\alpha}\}_{{\alpha}\in I}$ be a collection of topologies on X. Show that $\bigcap_{i\in I} \tau_{\alpha}$ is a topology on X.

Source. Problem Sheet 01, Q2

10. Show by an example that a union of two topologies on a set X may not be a topology.

Source. Problem Sheet 01, Q3

11.

- 1. Consider (X, τ) where τ is the discrete topology. Then show that the collection of closed sets in (X, τ) is the power set P(X)
- 2. Consider (X, τ) where τ is the co-finite topology. Then show that the collection of closed sets in (X, τ) is $\{A \subseteq X : A \text{ is finite }\} \cup \{X\}$.

Source. Class, Aug 11

- **12.** Given a topological space (X, τ) , show that:
 - 1. \emptyset and X are closed in X
 - 2. An intersection of any collection of closed sets is closed in X
 - 3. A union of a finite collection closed sets in X is closed in X

Source. Class, Aug 11

- **13.** Consider (\mathbb{R}, τ) where τ is the usual topology on \mathbb{R} . Find interior ${}^{o}o_{f}A$ where:
 - 1. A = (0,1)
 - $A = \mathbb{Q}$

Source. Class, Aug 11

- 14. Consider (\mathbb{R}, τ) where τ is the discrete topology on \mathbb{R} . Find interior \mathbb{Q}^{o} Source. Class, Aug 11
- **15.** Consider (\mathbb{R}, τ) where τ is the indiscrete topology on \mathbb{R} . Find interior \mathbb{Q}^{o} Source. Class, Aug 11
- **16.** Consider (\mathbb{R}, τ) where τ is the co-finite topology on \mathbb{R} . Find interior ${}^{o}o_{f}A$ where A = (0, 1).

Source. Class, Aug 11

17. Let (X, d) be a topological space and $S \subseteq X$. Then show that S^{o} is the largest open set in X that is contained in S.

18. Let X be a topological space and $S \subseteq X$. Then show that S is open if and only if $S = S^{o}$.

Source. Class, Aug 11

19. For subsets A and B and A_{α} of a topological space (X,τ) show that:

- 1. $A \subseteq B \implies A^{o} \subseteq B^{o}$
- $2. (A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$
- 3. $A^{o} \cup B^{o} \subseteq (A \cup B)^{o}$
- 4. $(\cap A_{\alpha})^{\circ} \subseteq \cap (A_{\alpha})^{\circ}$

Source. Problem Sheet 01, Q6

20. Let τ be a topology on X consisting of four sets $\tau = \{X, \phi, A, B\}$, where A, B are non-empty, distinct proper subsets of X. What conditions must A and B satisfy?

Source. Schaum's P73, Q3

21. Let $f: X \to Y$ be a function from a non-empty set X into a topological space (Y, σ) . Furthermore, let τ be the class of inverses of open subsets of Y: $\tau = \{f^{-1}(G) : G \in \sigma\}$ Show that τ is a topology on X.

Source. Schaums, P74, Q5

- **22.** Let A be a subset of a topological space in X with the property that each point $p \in A$ belongs to an open set G_p contained in A. Then prove that A is open. Source. Schaums, P74, Q8
- **23.** Let τ be the class of subsets of \mathbb{R} consisting of \mathbb{R} , \emptyset and all open infinite intervals $E_a = (a, \infty)$ with $a \in \mathbb{R}$. Show that τ is a topology on \mathbb{R} .

Source. Schaum's P75, Q9

24. Let S be a subbasis for a topology on X. Show that the topology generated by S is equal to the intersection of all topologies on X that contains S.

Source. Problem Sheet 01, Q5

25. Show that a subset S of a topological space X is closed if and only if $S' \subseteq S$, that is S contains all its limit points.

Source. Problem Sheet 03, Q1

26. Let $X = \mathbb{R}$ with the co-finite topology. Show that \mathbb{N} is a dense subset of \mathbb{R} . Is \mathbb{N} dense in \mathbb{R} with the usual topology?

Source. Problem Sheet 03, Q2

27. Find the closure of $A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ in $\mathbb{R}, \mathbb{R}_l, \mathbb{R}_K$.

Source. Problem Sheet 03, Q3

28. Let $X = \{a, b, c, d\}$ Construct a non-discrete topology on X such that $\{a, b\}$ is both closed and open in X.

Source. Problem Sheet 03, Q4

29. Let $X = \{a, b, c, d\}$. Construct a non-discrete topology on X such that $\{a, b\}$ is neither closed nor open in X.

Source. Problem Sheet 03, Q5

- **30.** Let A, B, A_{α} denote subsets of a topological space X. Show the following:
 - 1. If $A \subseteq B$ then $\bar{A} \subseteq \bar{B}$
 - 2. $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$
 - 3. $\overline{A \cup B} = \overline{A} \cup \overline{B}$
 - 4. $\overline{\cup A_{\alpha}} \subset \overline{A_{\alpha}}$

Also give examples where the equality in point 2. and 4. fail.

Source. Problem Sheet 03, Q6

31. Show that if U is open in X and A is closed in X, then $U \setminus A$ is open in X. What about $A \setminus U$?

Source. Problem Sheet 03, Q7

32. Let $X = \mathbb{R}$ and $\tau_1 = P(X)$ and $\tau_2 =$ usual topology. Does $\beta = \{(a, b) : a, b \in \mathbb{R}, a < b\}$ form a basis for τ_1 and τ_2 ?

Source. Class, Aug 14

33. Let β be a basis for a topology on X. Show that the topology generated by β is equal to the intersection of all topologies on X that contains β .

Source. Problem Sheet 01, Q4

34. For \mathbb{R} with the usual topology, is $S = \{(-\infty, a) : a \in \mathbb{R}\} \cup \{(b, \infty) : b \in \mathbb{R}\}$ a basis? Is it a subbasis?

Source. Class, Aug 14

35. Let (X, τ) be a topological space and β be a collection of open sets in (X, τ) . Show that β is a basis for the topology τ on X if and only if every open set U in (X, τ) can be written as a union of members in β .

Source. Class, Aug 14

- **36.** If X is a set, then show that a basis for a topology on X is a collection β of subsets of X such that
 - for every $x \in X$ there exists $B \subset \beta$ containing x.
 - if $x \in B_1 \cap B_2$, for some $B_1, B_2 \in \beta$, then there exists $B_3 \in \beta$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

Source. Class, Aug 16

37. Show that the topology generated by $\beta = \{(a, b) : a, b \in \mathbb{R}, a < b\}$ is the usual topology.

Source. Class, Aug 16

38. Show that $\beta = \{[a, b) : a, b \in \mathbb{R}, a < b\}$ is a basis for a topology on \mathbb{R} .

39. Show that the lower limit topology on \mathbb{R} is strictly finer than the usual topology on \mathbb{R} .

Source. Class, Aug 16

40. Let $K = \{\frac{1}{n} : n \in \mathbb{N}\}$. Consider the collection $\beta = \{(a,b) \setminus K : a,b \in \mathbb{Q}, a < b\} \cup \{(a,b) : a,b \in \mathbb{R}a < b\}$. Show that the β is a basis for a topology on \mathbb{R} .

Source. Class, Aug 18

41. Show that the k-topology on \mathbb{R} is strictly finer than the usual topology.

Source. Class, Aug 18

42. Show that the lower limit topology and the k topology on $\mathbb R$ are incomparable. Source. Class, Aug 18

43. Let S be a subbasis for a topology on X. Then show that $\tau = \{U \subseteq X : \text{ for every } x \in U \text{ there exists a finite number of members } S_1, S_2, ..., S_n \in S \text{ such that } x \in S_1 \cap S_2 \cap ... \cap S_n \subseteq U\}$ is a topology generated by the subbasis S.

Source. Class, Aug 18

44. Let β be a basis for a topology on X. Show that the topology generated by β is equal to the intersection of all topologies on X that contains β .

Source. Class, Aug 18

45. Show that the collection $\beta = \{(a,b) : a < b, a \text{ and } b \in \mathbb{Q}\}$ is a basis for a topology on \mathbb{R} and the topology generated by the basis is the usual topology on \mathbb{R} .

Source. Problem Sheet 01, Q7

46. Show that the collection $\beta = \{[a,b) : a < b \text{ and } a,b \in \mathbb{Q}\}$ is a basis for a topology on \mathbb{R} and the topology generated by this basis is different from the lower limit topology on \mathbb{R} .

Source. Problem Sheet 01, Q8

47. Show that if J is a directed set and K is cofinal in J, then K is a directed set.

Source. Class, Aug 23

48. Show that a subnet of a convergent net is convergent.

Source. Class, Aug 23

49. Let X be an infinite set and τ be the co-finite topology. Then find the closure of X (?)

Source. Class, Aug 23

50. Show that $\bar{S} = S' \cup S$.

Source. Class, Aug 23

51. Let (X, τ) be a metrizable space and $S \subseteq X$. Then show that $x \in \bar{S}$ if and only if there exists a sequence $\langle x_n \rangle$ in S such that $x_n \to x$.

52. Let $X = \mathbb{R}$ and τ be the co-countable topology. Consider $S = \mathbb{R} \setminus \{0\}$. Does there exist a sequence $\langle x_n \rangle$ in S that such that $x_n \to 0$?

Source. Class, Aug 28

53. Let X be a topological space and $S \subseteq X$. Then show that $x \in \overline{S}$ if and only if there exists a net $\langle x_{\lambda} \rangle$ in S such that $x_{\lambda} \to x$

Source. Class, Aug 28

54. Let β be a basis for the topology on X. Show that a net (x_{λ}) converges to x in X if for every $B \in \beta$, there exists $n_0 \in \mathbb{N}$ such that $x_n \in B \ \forall n \geq n_0$.

Source. Problem Sheet 02, Q1

55. In the space \mathbb{R} with the co-finite topology, to what point or points does the sequence $\frac{1}{n}$ converge?

Source. Problem Sheet 02, Q2

56. Show that a collection \mathcal{A} of subsets of S that is closed under finite intersection, partially ordered by the reverse set inclusion (that is, for $A, B \in \mathcal{A}$, $A \leq B$ if $A \supseteq B$) is a directed set. Here for $A, B \in \mathcal{A}$, $A \cap B \in \mathcal{A}$ and $A \supseteq A \cap B$ and $B \supseteq A \cap B$.

Source. Problem Sheet 02, Q3

57. Show that the collection \mathcal{F} of all closed subsets of a space X, partially ordered by the set inclusion is a directed set.

Source. Problem Sheet 02, Q4

- **58.** Show that if a net f converges to x in a space X, so does any subnet of f.

 Source. Problem Sheet 02, Q5
- **59.** Show that a convergent sequence in a discrete topological space is eventually constant.

Source. Problem Sheet 02, Q6

60. Show that every net in a indiscrete topological space converges to every point of X.

Source. Problem Sheet 02, Q7

61. Let $X = \{a, b, c\}$. Construct a topology τ on X such that there exists a sequence in (X, τ) that converges to a and b both but does not converge to c.

Source. Problem Sheet 02, O8

62. Let (X, d) be a metric space and (x_n) be a sequence in X. Then $x_n \to x$ if and only if for every open set U in X containing x, there exists $n_0 \in \mathbb{N}$ such that $x_n \in U \ \forall n \geq n_0$.

Source. Class, Aug 21

- **63.** Let $X = \mathbb{R}$ and τ be the indiscrete topology. Let $x_n = \frac{1}{n}$ be a sequence in (X, τ) . Find if the sequence (x_n) converges, and the point to where it converges.
- **64.** Let X be a discrete topological space. Show that every convergent sequence in X is eventually constant.

65. Let X and τ be the co-countable topological space. Show that every convergent sequence in X is eventually constant.

Source.

66. Show that in a topological space (X, τ) , every subsequence of a convergent sequence is convergent.

Source. Class, Aug 21

67. Let S be any set. Consider P(S) = the power set of S. Define $A \leq B$ if $A \subseteq B$. Verify that \leq is a partial order relation. Verify the same when $A \leq B$ when $A \supset B$.

Source. Class, Aug 21

68. Let X be a topological space and $S \subseteq X$. Then S^{o} is the largest open set contained in S.

Source. Class, Sept 01

69. Let (X, τ_1) and (Y, τ_2) be two topological spaces. Show that the cartesian product $\mathcal{B} = \tau_1 \times \tau_2 = \{u \times v : u \in \tau_1, v \in \tau_2\}$ will not be a topology on $X \times Y$. Verify that \mathcal{B} is a basis for the product topology on $X \times Y$.

Source. Class, Sept 01

70. Is the usual topology on \mathbb{R}^2 different from the product topology on $\mathbb{R} \times \mathbb{R}$.

Source. Class, Sept 01

71. Let (X, τ) and (Y, σ) be two topological spaces. Let \mathcal{B} be a basis for τ and \mathcal{C} be a basis for σ . Then show that the collection $\mathcal{D} = \{U \times V : U \in \mathcal{B}, V \in \mathcal{C}\}$ is a basis for the product topology on $X \times Y$.

Source. Class, Sept 01

72 ([Stub for projection maps and one theorem (before axiom of choice)).]

Source. Class, Sept 01