qpp 0.1

Generated by Doxygen 1.8.7

Thu Oct 23 2014 21:12:46

Contents

1	Nam	nespace	Index												1
	1.1	Names	space List				 	 	 	 	 		 		 1
2	Hier	archica	Index												3
	2.1	Class I	Hierarchy				 	 	 	 	 		 		 3
3	Clas	s Index													5
	3.1	Class I	_ist				 	 	 	 	 		 		 5
4	File	Index													7
	4.1	File Lis	st				 	 	 	 	 		 		 7
5	Nam	nespace	Documer	tation											9
	5.1	qpp Na	amespace	Referen	ce .		 	 	 	 	 		 		 9
		5.1.1	Typedef I	ocume	ntatio	n	 	 	 	 	 		 		 15
			5.1.1.1	bra .			 	 	 	 	 		 		 15
			5.1.1.2	cmat			 	 	 	 	 		 		 15
			5.1.1.3	cplx .			 	 	 	 	 		 		 15
			5.1.1.4	dmat			 	 	 	 	 		 		 15
			5.1.1.5	DynMa	at		 	 	 	 	 		 		 15
			5.1.1.6	ket .			 	 	 	 	 		 		 15
		5.1.2	Function	Docume	entatio	n .	 	 	 	 	 		 		 15
			5.1.2.1	absm			 	 	 	 	 		 		 15
			5.1.2.2	adjoint			 	 	 	 	 		 		 16
			5.1.2.3	anticor	nm		 	 	 	 	 		 		 16
			5.1.2.4	channe	əl		 	 	 	 	 		 		 17
			5.1.2.5	channe	əl		 	 	 	 	 		 		 18
			5.1.2.6	choi .			 	 	 	 	 		 		 19
			5.1.2.7	choi2k	raus		 	 	 	 	 		 		 20
			5.1.2.8	comm			 	 	 	 	 		 		 21
			5.1.2.9	compp	erm		 	 	 	 	 		 		 21
			5.1.2.10	conjug	ate.		 	 	 	 	 		 		 22
			51211	cosm											22

iv CONTENTS

5.1.2.12	cwise	22
5.1.2.13	det	23
5.1.2.14	disp	23
5.1.2.15	disp	23
5.1.2.16	disp	23
5.1.2.17	disp	24
5.1.2.18	displn	24
5.1.2.19	displn	24
5.1.2.20	displn	25
5.1.2.21	displn	25
5.1.2.22	entanglement	26
5.1.2.23	evals	26
5.1.2.24	evects	27
5.1.2.25	expandout	27
5.1.2.26	expm	28
5.1.2.27	funm	29
5.1.2.28	gconcurrence	30
5.1.2.29	grams	30
5.1.2.30	grams	30
5.1.2.31	grams	31
5.1.2.32	hevals	31
5.1.2.33	hevects	32
5.1.2.34	inverse	33
5.1.2.35	invperm	34
5.1.2.36	kron	34
5.1.2.37	kron	35
5.1.2.38	kron	35
5.1.2.39	kron	36
5.1.2.40	kronpow	36
5.1.2.41	load	37
5.1.2.42	loadMATLABmatrix	37
5.1.2.43	loadMATLABmatrix	37
5.1.2.44	loadMATLABmatrix	37
5.1.2.45	logdet	37
5.1.2.46	logm	38
5.1.2.47	mket	38
5.1.2.48	mket	39
5.1.2.49	mket	39
5.1.2.50	multiidx2n	40
5.1.2.51	n2multiidx	40

CONTENTS

5.1.2.52	norm	41
5.1.2.53	omega	41
5.1.2.54	operator""""_i	42
5.1.2.55	operator""""_i	42
5.1.2.56	powm	42
5.1.2.57	prj	43
5.1.2.58	ptrace	43
5.1.2.59	ptrace1	44
5.1.2.60	ptrace2	45
5.1.2.61	ptranspose	46
5.1.2.62	qmutualinfo	48
5.1.2.63	rand	48
5.1.2.64	rand	48
5.1.2.65	rand	49
5.1.2.66	rand	49
5.1.2.67	randH	49
5.1.2.68	randint	49
5.1.2.69	randket	50
5.1.2.70	randkraus	50
5.1.2.71	randn	50
5.1.2.72	randn	50
5.1.2.73	randn	51
5.1.2.74	randn	51
5.1.2.75	randperm	51
5.1.2.76	randrho	52
5.1.2.77	randU	52
5.1.2.78	randV	52
5.1.2.79	renyi	52
5.1.2.80	renyi_inf	53
5.1.2.81	reshape	53
5.1.2.82	save	53
5.1.2.83	saveMATLABmatrix	53
5.1.2.84	saveMATLABmatrix	54
5.1.2.85	saveMATLABmatrix	54
5.1.2.86	schmidtcoeff	54
5.1.2.87	schmidtprob	55
5.1.2.88	schmidtU	55
5.1.2.89	schmidtV	56
5.1.2.90	shannon	56
5.1.2.91	sinm	56

vi CONTENTS

		5.1.2.92	spectralpowm	57
		5.1.2.93	sqrtm	57
		5.1.2.94	sum	58
		5.1.2.95	super	58
		5.1.2.96	syspermute	59
		5.1.2.97	trace	60
		5.1.2.98	transpose	61
		5.1.2.99	tsallis	62
	5.1.3	Variable I	Documentation	62
		5.1.3.1	chop	62
		5.1.3.2	ee	62
		5.1.3.3	eps	62
		5.1.3.4	gt	62
		5.1.3.5	maxn	62
		5.1.3.6	pi	62
		5.1.3.7	rdevs	63
		5.1.3.8	st	63
5.2	qpp::in	ternal Nam	nespace Reference	63
	5.2.1	Detailed I	Description	63
	5.2.2	Function	Documentation	64
		5.2.2.1	_check_col_vector	64
		5.2.2.2	_check_dims	64
		5.2.2.3	_check_dims_match_cvect	64
		5.2.2.4	_check_dims_match_mat	64
		5.2.2.5	_check_dims_match_rvect	64
		5.2.2.6	_check_eq_dims	64
		5.2.2.7	_check_nonzero_size	64
		5.2.2.8	_check_perm	64
		5.2.2.9	_check_row_vector	64
		5.2.2.10	_check_square_mat	64
		5.2.2.11	_check_subsys_match_dims	64
		5.2.2.12	_check_vector	64
		5.2.2.13	_kron2	64
		5.2.2.14	_multiidx2n	64
		5.2.2.15	_n2multiidx	64
		5.2.2.16	variadic_vector_emplace	64
		5.2.2.17	variadic_vector_emplace	65
Clan	e Door	mentation		67
			ribution Class Reference	67
U. I	UUUU	いっしいさいせいしん	HDUHUH DIGGG 1616161106	U/

6

CONTENTS vii

	6.1.1	Constructor & Destructor Documentation	. 67
		6.1.1.1 Discrete Distribution	. 67
		6.1.1.2 Discrete Distribution	. 67
		6.1.1.3 Discrete Distribution	. 67
	6.1.2	Member Function Documentation	. 67
		6.1.2.1 probabilities	. 67
		6.1.2.2 sample	. 68
	6.1.3	Member Data Documentation	. 68
		6.1.3.1 _d	. 68
6.2	qpp::D	screteDistributionAbsSquare Class Reference	. 68
	6.2.1	Constructor & Destructor Documentation	. 69
		6.2.1.1 DiscreteDistributionAbsSquare	. 69
		6.2.1.2 DiscreteDistributionAbsSquare	. 69
		6.2.1.3 DiscreteDistributionAbsSquare	. 69
		6.2.1.4 DiscreteDistributionAbsSquare	. 69
	6.2.2	Member Function Documentation	. 69
		6.2.2.1 cplx2weights	. 69
		6.2.2.2 probabilities	. 69
		6.2.2.3 sample	. 69
	6.2.3	Member Data Documentation	. 69
		6.2.3.1 _d	. 69
6.3	qpp::E	ception Class Reference	. 69
	6.3.1	Member Enumeration Documentation	. 71
		6.3.1.1 Type	. 71
	6.3.2	Constructor & Destructor Documentation	. 72
		6.3.2.1 Exception	. 72
		6.3.2.2 Exception	. 72
	6.3.3	Member Function Documentation	. 72
		6.3.3.1 _construct_exception_msg	. 72
		6.3.3.2 what	. 72
	6.3.4	Member Data Documentation	. 72
		6.3.4.1 _custom	. 72
		6.3.4.2 _msg	. 72
		6.3.4.3 _type	. 72
		6.3.4.4 _where	. 72
6.4	qpp::G	ttes Class Reference	. 72
	6.4.1	Constructor & Destructor Documentation	. 74
		6.4.1.1 Gates	. 74
	6.4.2	Member Function Documentation	. 74
		6.4.2.1 apply	. 75

viii CONTENTS

		6.4.2.2 applyCTRL
		6.4.2.3 CTRL
		6.4.2.4 Fd
		6.4.2.5 ld
		6.4.2.6 Rn
		6.4.2.7 Xd
		6.4.2.8 Zd
	6.4.3	Friends And Related Function Documentation
		6.4.3.1 Singleton < const Gates >
	6.4.4	Member Data Documentation
		6.4.4.1 CNOTab
		6.4.4.2 CNOTba
		6.4.4.3 CZ
		6.4.4.4 FRED
		6.4.4.5 H
		6.4.4.6 ld2
		6.4.4.7 S
		6.4.4.8 SWAP
		6.4.4.9 T
		6.4.4.10 TOF
		6.4.4.11 X
		6.4.4.12 Y
		6.4.4.13 Z
6.5	qpp::N	ormalDistribution Class Reference
	6.5.1	Constructor & Destructor Documentation
		6.5.1.1 NormalDistribution
	6.5.2	Member Function Documentation
		6.5.2.1 sample
	6.5.3	Member Data Documentation
		6.5.3.1 _d
6.6	qpp::Q	udit Class Reference
	6.6.1	Constructor & Destructor Documentation
		6.6.1.1 Qudit
	6.6.2	Member Function Documentation
		6.6.2.1 getD
		6.6.2.2 getRho
		6.6.2.3 measure
		6.6.2.4 measure
	6.6.3	Member Data Documentation
		6.6.3.1 _D

CONTENTS

		6.6.3.2 _rho
6.7	qpp::R	andomDevices Class Reference
	6.7.1	Constructor & Destructor Documentation
		6.7.1.1 RandomDevices
	6.7.2	Friends And Related Function Documentation
		6.7.2.1 Singleton < Random Devices >
	6.7.3	Member Data Documentation
		6.7.3.1 _rd
		6.7.3.2 _rng
6.8	qpp::S	ingleton < T > Class Template Reference
	6.8.1	Constructor & Destructor Documentation
		6.8.1.1 Singleton
		6.8.1.2 ~Singleton
		6.8.1.3 Singleton
	6.8.2	Member Function Documentation
		6.8.2.1 get_instance
		6.8.2.2 operator=
6.9	qpp::S	tates Class Reference
	6.9.1	Constructor & Destructor Documentation
		6.9.1.1 States
	6.9.2	Friends And Related Function Documentation
		6.9.2.1 Singleton< const States >
	6.9.3	Member Data Documentation
		6.9.3.1 b00
		6.9.3.2 b01
		6.9.3.3 b10
		6.9.3.4 b11
		6.9.3.5 GHZ
		6.9.3.6 pb00
		6.9.3.7 pb01
		6.9.3.8 pb10
		6.9.3.9 pb11
		6.9.3.10 pGHZ
		6.9.3.11 pW
		6.9.3.12 px0
		6.9.3.13 px1
		6.9.3.14 py0
		6.9.3.15 py1
		6.9.3.16 pz0
		6.9.3.17 pz1

X CONTENTS

		6.9.3.18 W	85
		6.9.3.19 x0	85
		6.9.3.20 x1	85
		6.9.3.21 y0	85
		6.9.3.22 y1	85
		6.9.3.23 z0	86
		6.9.3.24 z1	86
	6.10	qpp::Timer Class Reference	86
		6.10.1 Constructor & Destructor Documentation	86
		6.10.1.1 Timer	86
		6.10.2 Member Function Documentation	86
		6.10.2.1 seconds	86
		6.10.2.2 tic	86
		6.10.2.3 toc	86
		6.10.3 Friends And Related Function Documentation	86
		6.10.3.1 operator <<	86
		6.10.4 Member Data Documentation	86
		6.10.4.1 _end	86
		6.10.4.2 _start	86
	6.11	qpp::UniformIntDistribution Class Reference	87
		6.11.1 Constructor & Destructor Documentation	87
		6.11.1.1 UniformIntDistribution	87
		6.11.2 Member Function Documentation	87
		6.11.2.1 sample	87
		6.11.3 Member Data Documentation	87
		6.11.3.1 _d	87
	6.12	qpp::UniformRealDistribution Class Reference	87
		6.12.1 Constructor & Destructor Documentation	88
		6.12.1.1 UniformRealDistribution	88
		6.12.2 Member Function Documentation	88
		6.12.2.1 sample	88
		6.12.3 Member Data Documentation	88
		6.12.3.1 _d	88
7	File	Documentation	89
•	7.1	include/channels.h File Reference	89
	7.2	include/classes/exception.h File Reference	90
	7.3	include/classes/gates.h File Reference	90
	7.4	include/classes/qudit.h File Reference	91
	7.5	include/classes/randevs.h File Reference	91

CONTENTS xi

	7.6	include	e/classes/si	ingleton.h	File Ref	erenc	e		 	 ٠.	 	 	 	 	 92
		7.6.1	Macro De	efinition Do	ocument	ation			 	 	 	 		 	 92
			7.6.1.1	CLASS_	CONST	SINC	GLETO	NC	 	 	 	 	 	 	 92
			7.6.1.2	CLASS_	SINGLE	TON			 	 	 	 	 	 	 92
	7.7	include	e/classes/s	tat.h File F	Referenc	e			 	 	 	 	 	 	 93
	7.8	include	classes/s	tates.h Fil	e Refere	nce .			 	 	 	 	 	 	 93
	7.9	include	/classes/ti	mer.h File	Referen	ice .			 	 	 	 	 	 	 94
	7.10	include	constants	.h File Re	ference				 	 	 	 	 	 	 94
	7.11	include	/entanglen	nent.h File	Refere	nce .			 	 	 	 	 	 	 95
	7.12	include	/entropies	h File Re	erence				 	 	 	 	 	 	 96
	7.13	include	/functions.	h File Ref	erence				 	 	 	 	 	 	 97
	7.14	include	/internal.h	File Refe	rence .				 	 	 	 	 	 	 100
	7.15	include	/io.h File F	Reference					 	 	 	 	 	 	 101
	7.16	include	e/matlab.h	File Refer	ence				 	 	 	 	 	 	 102
	7.17	include	e/qpp.h File	Reference	e				 	 	 	 	 	 	 103
	7.18	include	e/random.h	File Refe	rence .				 	 	 	 	 	 	 104
	7.19	include	/types.h Fi	ile Referei	nce				 	 	 	 	 	 	 105
Ind	ex														106

Chapter 1

Namespace Index

1	.1	Namespace	List

не	ere is a list of all namespaces with brief descriptions:	
	qpp	
	ann vinternal	6

2 Namespace Index

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

pp::DiscreteDistribution	67
pp::DiscreteDistributionAbsSquare	68
exception	
qpp::Exception	69
pp::NormalDistribution	78
pp::Qudit	79
pp::Singleton < T >	82
qpp::Gates	72
qpp::RandomDevices	
pp::Singleton < const Gates >	82
pp::Singleton < const States >	82
qpp::States	83
pp::Singleton < RandomDevices >	82
pp::Timer	86
pp::UniformIntDistribution	87
	87

Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

qpp::DiscreteDistribution	67
qpp::DiscreteDistributionAbsSquare	68
qpp::Exception	69
qpp::Gates	72
qpp::NormalDistribution	78
qpp::Qudit	79
qpp::RandomDevices	
$qpp::Singleton < T > \dots \dots$	82
qpp::States	83
qpp::Timer	86
qpp::UniformIntDistribution	87
qpp::UniformRealDistribution	87

6 Class Index

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

include/channels.h	89
include/constants.h	94
include/entanglement.h	95
include/entropies.h	96
include/functions.h	97
include/internal.h	00
include/io.h	01
	02
include/qpp.h	03
	04
	05
include/classes/exception.h	90
include/classes/gates.h	90
include/classes/qudit.h	91
include/classes/randevs.h	91
include/classes/singleton.h	92
include/classes/stat.h	93
include/classes/states.h	93
include/classes/timer.h	94

8 File Index

Chapter 5

Namespace Documentation

5.1 qpp Namespace Reference

Namespaces

· internal

Classes

- · class DiscreteDistribution
- · class DiscreteDistributionAbsSquare
- class Exception
- · class Gates
- · class NormalDistribution
- · class Qudit
- class RandomDevices
- class Singleton
- · class States
- class Timer
- class UniformIntDistribution
- · class UniformRealDistribution

Typedefs

```
    using cplx = std::complex < double >
        Complex number in double precision.
```

• using cmat = Eigen::MatrixXcd

Complex (double precision) dynamic Eigen matrix.

using dmat = Eigen::MatrixXd

Real (double precision) dynamic Eigen matrix.

• using ket = Eigen::Matrix < cplx, Eigen::Dynamic, 1 >

Complex (double precision) dynamic Eigen column matrix.

using bra = Eigen::Matrix < cplx, 1, Eigen::Dynamic >
 Complex (double precision) dynamic Eigen row matrix.

template<typename Scalar >

```
using DynMat = Eigen::Matrix < Scalar, Eigen::Dynamic, Eigen::Dynamic >
```

Dynamic Eigen matrix over the field specified by Scalar.

Functions

Adjoint.

```
    cmat super (const std::vector < cmat > &Ks)

     Superoperator matrix representation.

    cmat choi (const std::vector < cmat > &Ks)

     Choi matrix representation.

    std::vector< cmat > choi2kraus (const cmat &A)

     Extracts orthogonal Kraus operators from Choi matrix.

    template<typename Derived >

  cmat channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks)
     Applies the channel specified by the set of Kraus operators Ks to the density matrix rho.

    template<typename Derived >

  cmat channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks, const std::vector<
  std::size t > &subsys, const std::vector< std::size t > &dims)
     Applies the channel specified by the set of Kraus operators Ks to the part of the density matrix rho specified by
     subsys.

    constexpr std::complex< double > operator""_i (unsigned long long int x)

      User-defined literal for complex i = \sqrt{-1} (integer overload)

    constexpr std::complex< double > operator""_i (long double x)

      User-defined literal for complex i = \sqrt{-1} (real overload)

    std::complex< double > omega (std::size_t D)

     D-th root of unity.

    template<typename Derived >

  cmat schmidtcoeff (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size t > &dims)
• template<typename Derived >
  cmat schmidtU (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)

    template<typename Derived >

  cmat schmidtV (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size t > &dims)

    template<typename Derived >

  cmat schmidtprob (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size t > &dims)
• template<typename Derived >
  double entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)
template<typename Derived >
  double gconcurrence (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double shannon (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double renyi (const double alpha, const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double renyi_inf (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double tsallis (const double alpha, const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size t > &subsys,
  const std::vector< std::size_t > &dims)

    template<typename Derived >

  DynMat< typename Derived::Scalar > transpose (const Eigen::MatrixBase< Derived > &A)
      Transpose.

    template<typename Derived >

  DynMat< typename Derived::Scalar > conjugate (const Eigen::MatrixBase< Derived > &A)
      Complex conjugate.

    template<typename Derived >

  DynMat< typename Derived::Scalar > adjoint (const Eigen::MatrixBase< Derived > &A)
```

```
• template<typename Derived >
  DynMat< typename Derived::Scalar > inverse (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  Derived::Scalar trace (const Eigen::MatrixBase< Derived > &A)
      Trace.
• template<typename Derived >
  Derived::Scalar det (const Eigen::MatrixBase< Derived > &A)
     Determinant.

    template<typename Derived >

  Derived::Scalar logdet (const Eigen::MatrixBase< Derived > &A)
     Logarithm of the determinant.

    template<typename Derived >

  Derived::Scalar sum (const Eigen::MatrixBase< Derived > &A)
     Element-wise sum.
• template<typename Derived >
  double norm (const Eigen::MatrixBase< Derived > &A)
      Trace norm.

    template<typename Derived >

  cmat evals (const Eigen::MatrixBase< Derived > &A)
     Eigenvalues.

    template<typename Derived >

  cmat evects (const Eigen::MatrixBase< Derived > &A)
     Eigenvectors.

    template<typename Derived >

  dmat hevals (const Eigen::MatrixBase< Derived > &A)
     Hermitian eigenvalues.
• template<typename Derived >
  cmat hevects (const Eigen::MatrixBase< Derived > &A)
     Hermitian eigenvectors.

    template<typename Derived >

  cmat funm (const Eigen::MatrixBase< Derived > &A, cplx(*f)(const cplx &))
     Functional calculus f(A)

    template<typename Derived >

  cmat sqrtm (const Eigen::MatrixBase< Derived > &A)
     Matrix square root.

    template<typename Derived >

  cmat absm (const Eigen::MatrixBase< Derived > &A)
     Matrix absolut value.

    template<typename Derived >

  cmat expm (const Eigen::MatrixBase< Derived > &A)
     Matrix exponential.
• template<typename Derived >
  cmat logm (const Eigen::MatrixBase< Derived > &A)
     Matrix logarithm.

    template<typename Derived >

  cmat sinm (const Eigen::MatrixBase< Derived > &A)
     Matrix sin.
• template<typename Derived >
  cmat cosm (const Eigen::MatrixBase< Derived > &A)
     Matrix cos.

    template<typename Derived >

  cmat spectralpowm (const Eigen::MatrixBase< Derived > &A, const cplx z)
```

Matrix power.

• template<typename Derived >

DynMat< typename Derived::Scalar > powm (const Eigen::MatrixBase< Derived > &A, std::size_t n)

Matrix power.

• template<typename OutputScalar , typename Derived >

DynMat< OutputScalar > cwise (const Eigen::MatrixBase< Derived > &A, OutputScalar(*f)(const typename Derived::Scalar &))

Functor.

• template<typename T >

DynMat< typename T::Scalar > kron (const T &head)

Kronecker product (variadic overload)

• template<typename T , typename... Args>

DynMat< typename T::Scalar > kron (const T &head, const Args &...tail)

Kronecker product (variadic overload)

• template<typename Derived >

DynMat< typename Derived::Scalar > kron (const std::vector< Derived > &As)

Kronecker product (std::vector overload)

template<typename Derived >

DynMat< typename Derived::Scalar > kron (const std::initializer list< Derived > &As)

Kronecker product (std::initializer_list overload)

template<typename Derived >

 $\label{eq:const_eigen::MatrixBase} \mbox{Derived::Scalar} > \mbox{kronpow} \mbox{ (const Eigen::MatrixBase} < \mbox{Derived} > \&\mbox{A, std::size_t n)}$

Kronecker power.

template<typename Derived >

DynMat< typename Derived::Scalar > reshape (const Eigen::MatrixBase< Derived > &A, std::size_t rows, std::size_t cols)

Reshape.

• template<typename Derived >

System permutation.

• template<typename Derived >

DynMat< typename Derived::Scalar > ptrace1 (const Eigen::MatrixBase< Derived > &A, const std::vector<
std::size_t > &dims)

Partial trace.

template<typename Derived >

DynMat< typename Derived::Scalar > ptrace2 (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)

Partial trace.

template<typename Derived >

 $\label{localize} \begin{tabular}{ll} DynMat &< typename Derived::Scalar > ptrace (const Eigen::MatrixBase &< Derived > &A, const std::vector &< std::size_t > &subsys, const std::vector &< std::size_t > &dims) \end{tabular}$

Partial trace.

• template<typename Derived >

Partial transpose.

• template<typename Derived1 , typename Derived2 >

 $\frac{\text{DynMat}<\text{typename Derived1::Scalar}>\text{comm}\text{ (const Eigen::MatrixBase}<\text{Derived1}>\text{\&A, const Eigen::}\leftarrow\text{MatrixBase}<\text{Derived2}>\text{\&B)}$

Commutator.

• template<typename Derived1 , typename Derived2 >

DynMat< typename Derived1::Scalar > anticomm (const Eigen::MatrixBase< Derived1 > &A, const Eigen ← ::MatrixBase< Derived2 > &B)

Anti-commutator.

• template<typename Derived >

DynMat< typename Derived::Scalar > prj (const Eigen::MatrixBase< Derived > &V)

Projector.

template<typename Derived >

DynMat< typename Derived::Scalar > expandout (const Eigen::MatrixBase< Derived > &A, std::size_t pos, const std::vector< std::size_t > &dims)

Expand out.

template<typename Derived >

DynMat< typename Derived::Scalar > grams (const std::vector< Derived > &Vs)

Gram-Schmidt orthogonalization (std::vector overload)

template<typename Derived >

DynMat< typename Derived::Scalar > grams (const std::initializer_list< Derived > &Vs)

Gram-Schmidt orthogonalization (std::initializer list overload)

template<typename Derived >

DynMat< typename Derived::Scalar > grams (const Eigen::MatrixBase< Derived > &A)

Gram-Schmidt orthogonalization (Eigen expression (matrix) overload)

std::vector< std::size_t > n2multiidx (std::size_t n, const std::vector< std::size_t > &dims)

Non-negative integer index to multi-index.

• std::size_t multiidx2n (const std::vector< std::size_t > &midx, const std::vector< std::size_t > &dims)

Multi-index to non-negative integer index.

ket mket (const std::vector< std::size t > &mask)

Multi-partite qubit ket.

ket mket (const std::vector< std::size t > &mask, const std::vector< std::size t > &dims)

Multi-partite qudit ket (different dimensions overload)

ket mket (const std::vector < std::size_t > &mask, std::size_t d)

Multi-partite qudit ket (same dimensions overload)

std::vector< std::size_t > invperm (const std::vector< std::size_t > &perm)

Inverse permutation.

std::vector< std::size_t > compperm (const std::vector< std::size_t > &perm, const std::vector< std::size_t > &sigma)

Compose permutations.

 $\bullet \ \ template {<} typename \ T >$

void disp (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)

• template<typename T >

void displn (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)

template<typename T >

void disp (const T *x, const std::size_t n, const std::string &separator, const std::string &start="[", const std ::string &end="]", std::ostream &os=std::cout)

• template<typename T >

void displn (const T *x, const std::size_t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)

• template<typename Derived >

void disp (const Eigen::MatrixBase< Derived > &A, double chop=chop, std::ostream &os=std::cout)

template<typename Derived >

void displn (const Eigen::MatrixBase< Derived > &A, double chop=chop, std::ostream &os=std::cout)

- void disp (const cplx c, double chop=chop, std::ostream &os=std::cout)
- void displn (const cplx c, double chop=chop, std::ostream &os=std::cout)
- template<typename Derived >

void save (const Eigen::MatrixBase< Derived > &A, const std::string &fname)

• template<typename Derived >

DynMat< typename Derived::Scalar > load (const std::string &fname)

• template<typename Derived > Derived loadMATLABmatrix (const std::string &mat file, const std::string &var name) template<> dmat loadMATLABmatrix (const std::string &mat_file, const std::string &var_name) template<> cmat loadMATLABmatrix (const std::string &mat file, const std::string &var name) $\bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >$ void saveMATLABmatrix (const Eigen::MatrixBase< Derived > &A, const std::string &mat file, const std↔ ::string &var name, const std::string &mode) • template<> void saveMATLABmatrix (const Eigen::MatrixBase < dmat > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode) template<> void saveMATLABmatrix (const Eigen::MatrixBase < cmat > &A, const std::string &mat file, const std::string &var name, const std::string &mode) template<typename Derived > Derived rand (std::size t rows, std::size t cols, double a=0, double b=1) template<> dmat rand (std::size_t rows, std::size_t cols, double a, double b) template<> cmat rand (std::size t rows, std::size t cols, double a, double b) double rand (double a=0, double b=1) • long long randint (long long a, long long b) template<typename Derived > Derived randn (std::size_t rows, std::size_t cols, double mean=0, double sigma=1) template<> dmat randn (std::size t rows, std::size t cols, double mean, double sigma) template<> cmat randn (std::size t rows, std::size t cols, double mean, double sigma) double randn (double mean=0, double sigma=1) cmat randU (std::size_t D) cmat randV (std::size_t Din, std::size_t Dout) std::vector< cmat > randkraus (std::size t n, std::size t D) • cmat randH (std::size t D) ket randket (std::size_t D) cmat randrho (std::size_t D) std::vector< std::size_t > randperm (std::size_t n) **Variables** constexpr double chop = 1e-10 Used in qpp::disp() and qpp::displn() for setting to zero numbers that have their absolute value smaller than qpp::ct← ::chop. • constexpr double eps = 1e-12 Used to decide whether a number or expression in double precision is zero or not. constexpr std::size_t maxn = 64

Maximum number of qubits.

constexpr double pi = 3.141592653589793238462643383279502884

constexpr double ee = 2.718281828459045235360287471352662497

Base of natural logarithm, e.

RandomDevices & rdevs = RandomDevices::get_instance()

gpp::RandomDevices Singleton

const Gates & gt = Gates::get_instance()

```
qpp::Gates const Singleton
• const States & st = States::get_instance()
qpp::States const Singleton
```

5.1.1 Typedef Documentation

5.1.1.1 using qpp::bra = typedef Eigen::Matrix < cplx, 1, Eigen::Dynamic >

Complex (double precision) dynamic Eigen row matrix.

5.1.1.2 using qpp::cmat = typedef Eigen::MatrixXcd

Complex (double precision) dynamic Eigen matrix.

5.1.1.3 using qpp::cplx = typedef std::complex < double >

Complex number in double precision.

5.1.1.4 using qpp::dmat = typedef Eigen::MatrixXd

Real (double precision) dynamic Eigen matrix.

5.1.1.5 template<typename Scalar > using qpp::DynMat = typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>

Dynamic Eigen matrix over the field specified by Scalar.

Example:

```
auto mat = DynMat<float>(2,3); // type of mat is Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>
```

5.1.1.6 using qpp::ket = typedef Eigen::Matrix<cplx, Eigen::Dynamic, 1>

Complex (double precision) dynamic Eigen column matrix.

5.1.2 Function Documentation

5.1.2.1 template<typename Derived > cmat qpp::absm (const Eigen::MatrixBase< Derived > & A)

Matrix absolut value.

Parameters

A | Eigen expression

Returns

Matrix absolut value of A, as a dynamic matrix over the complex field

Here is the call graph for this function:

5.1.2.2 template<typename Derived > DynMat<typename Derived::Scalar> qpp::adjoint (const Eigen::MatrixBase< Derived > & A)

Adjoint.

Parameters

A Eigen expression

Returns

Adjoint (Hermitian conjugate) of A, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.3 template<typename Derived1 , typename Derived2 > DynMat<typename Derived1::Scalar> qpp::anticomm (const Eigen::MatrixBase< Derived1 > & A, const Eigen::MatrixBase< Derived2 > & B)

Anti-commutator.

Anti-commutator $\{A,B\} = AB + BA$ Both A and B must be Eigen expressions over the same scalar field

Parameters

Α	Eigen expression
В	Eigen expression

Returns

Anti-commutator AB + BA, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.4 template<typename Derived > cmat qpp::channel (const Eigen::MatrixBase< Derived > & rho, const std::vector< cmat > & Ks)

Applies the channel specified by the set of Kraus operators Ks to the density matrix rho.

Parameters

rho	Eigen expression
Ks	std::vector of Eigen expressions representing the set of Kraus operators

Returns

Output density matrix, as a dynamic matrix over the complex field

Here is the call graph for this function:

5.1.2.5 template<typename Derived > cmat qpp::channel (const Eigen::MatrixBase< Derived > & rho, const std::vector< cmat > & Ks, const std::vector< std::size_t > & subsys, const std::vector< std::size_t > & dims)

Applies the channel specified by the set of Kraus operators *Ks* to the part of the density matrix *rho* specified by *subsys*.

Parameters

rho	Eigen expression
Ks	std::vector of Eigen expressions representing the set of Kraus operators
subsys	Subsystems' indexes
dims	Dimensions of the multi-partite system

Returns

Output density matrix, as a dynamic matrix over the complex field

Here is the call graph for this function:

5.1.2.6 cmat qpp::choi (const std::vector < cmat > & Ks)

Choi matrix representation.

Constructs the Choi matrix of the channel specified by the set of Kraus operators Ks in the standard operator basis $\{|i\rangle\langle j|\}$ ordered in lexicographical order, i.e. $|0\rangle\langle 0|,\,|0\rangle\langle 1|$ etc.

Note: the superoperator matrix S and the Choi matrix C are related by $S_{ab,mn} = C_{ma,nb}$

Parameters

Ks std::vector of Eigen expressions representing the set of Kraus operators

Returns

Choi matrix representation, as a dynamic matrix over the complex field

Here is the call graph for this function:

5.1.2.7 std::vector<cmat> qpp::choi2kraus (const cmat & A)

Extracts orthogonal Kraus operators from Choi matrix.

Extracts a set of orthogonal (under Hilbert-Schmidt operator norm) Kraus operators from the Choi representation *A* of the channel

Note: The Kraus operators satisfy $Tr(K_i^\dagger K_j) = \delta_{ij}$ for all i
eq j

Parameters

Α	Choi matrix

Returns

std::vector of dynamic matrices over the complex field representing the set of Kraus operators

Here is the call graph for this function:

5.1.2.8 template<typename Derived1 , typename Derived2 > DynMat<typename Derived1::Scalar> qpp::comm (const Eigen::MatrixBase< Derived2 > & B)

Commutator.

Commutator [A,B] = AB - BA

Both A and B must be Eigen expressions over the same scalar field

Parameters

Α	Eigen expression
В	Eigen expression

Returns

Commutator AB - BA, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.9 std::vector<std::size_t> qpp::compperm (const std::vector< std::size_t> & perm, const std::vector< std::size_t> & sigma)

Compose permutations.

Parameters

perm	Permutation
sigma	Permutation

Returns

Composition of the permutations $perm \circ sigma = perm(sigma)$

Here is the call graph for this function:

5.1.2.10 template<typename Derived > DynMat<typename Derived::Scalar> qpp::conjugate (const Eigen::MatrixBase< Derived > & A)

Complex conjugate.

Parameters

Α	Eigen expression

Returns

Complex conjugate of A, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.11 template < typename Derived > cmat qpp::cosm (const Eigen::MatrixBase < Derived > & A)

Matrix cos.

Parameters

Α	Eigen expression
---	------------------

Returns

Matrix cosine of A, as a dynamic matrix over the complex field

Here is the call graph for this function:

5.1.2.12 template < typename OutputScalar , typename Derived > DynMat < OutputScalar > qpp::cwise (const Eigen::MatrixBase < Derived > & A, OutputScalar(*)(const typename Derived::Scalar &) f)

Functor.

Parameters

Α	Eigen expression
f	Pointer-to-function from scalars of A to OutputScalar

Returns

Component-wise f(A), as a dynamic matrix over the *OutputScalar* scalar field

Here is the call graph for this function:

5.1.2.13 template < typename Derived > Derived::Scalar qpp::det (const Eigen::MatrixBase < Derived > & A)

Determinant.

Parameters

Α	Eigen expression

Returns

Determinant of A, as a dynamic matrix over the same scalar field Returns $\pm\infty$ when the determinant overflows/underflows

Here is the call graph for this function:

- 5.1.2.14 template<typename T > void qpp::disp (const T & x, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)
- 5.1.2.15 template < typename T > void qpp::disp (const T * x, const std::size_t n, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)
- 5.1.2.16 template < typename Derived > void qpp::disp (const Eigen::MatrixBase < Derived > & A, double chop = chop, std::ostream & os = std::cout)

5.1.2.17 void qpp::disp (const cplx c, double chop = chop, std::ostream & os = std::cout)

Here is the call graph for this function:

5.1.2.18 template<typename T > void qpp::displn (const T & x, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)

Here is the call graph for this function:

5.1.2.19 template<typename T > void qpp::displn (const T * x, const std::size_t n, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)

Here is the call graph for this function:

5.1.2.20 template < typename Derived > void qpp::displn (const Eigen::MatrixBase < Derived > & A, double chop = chop, std::stream & os = std::cout)

Here is the call graph for this function:

5.1.2.21 void qpp::displn (const cplx c, double chop = chop, std::ostream & os = std::cout)

5.1.2.22 template < typename Derived > double qpp::entanglement (const Eigen::MatrixBase < Derived > & A, const std::vector < std::size_t > & dims)

Here is the call graph for this function:

5.1.2.23 template<typename Derived > cmat qpp::evals (const Eigen::MatrixBase< Derived > & A)

Eigenvalues.

ſ	Α	Eigen expression

Eigenvalues of *A*, as a diagonal dynamic matrix over the complex field, with eigenvalues on the diagonal Here is the call graph for this function:

5.1.2.24 template < typename Derived > cmat qpp::evects (const Eigen::MatrixBase < Derived > & A)

Eigenvectors.

Parameters

Α	Eigen expression

Returns

Eigenvectors of A, as columns of a dynamic matrix over the complex field

Here is the call graph for this function:

5.1.2.25 template<typename Derived > DynMat<typename Derived::Scalar> qpp::expandout (const Eigen::MatrixBase< Derived > & A, std::size_t pos, const std::vector< std::size_t > & dims)

Expand out.

Expand out A as a matrix in a multi-partite system Faster than using *qpp::kron*(I, I, ..., I, A, I, ..., I)

Α	Eigen expression
pos	Position
dims	Dimensions of the multi-partite system

Returns

Tensor product $I \otimes \cdots \otimes I \otimes A \otimes I \otimes \cdots \otimes I$, with A on position pos, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.26 template < typename Derived > cmat qpp::expm (const Eigen::MatrixBase < Derived > & A)

Matrix exponential.

Α	Eigen expression

Matrix exponential of A, as a dynamic matrix over the complex field

Here is the call graph for this function:

5.1.2.27 template < typename Derived > cmat qpp::funm (const Eigen::MatrixBase < Derived > & A, cplx(*)(const cplx &) f)

Functional calculus f(A)

Parameters

Α	Eigen expression
f	Pointer-to-function from complex to complex

Returns

f(A), as a dynamic matrix over the complex field

5.1.2.28 template < typename Derived > double qpp::gconcurrence (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.2.29 template<typename Derived > DynMat<typename Derived::Scalar> qpp::grams (const std::vector< Derived > & Vs)

Gram-Schmidt orthogonalization (std::vector overload)

Parameters

Vs	std::vector of Eigen expressions as column vectors
----	--

Returns

Gram-Schmidt vectors of Vs as columns of a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.30 template<typename Derived > DynMat<typename Derived::Scalar> qpp::grams (const std::initializer_list< Derived > & Vs)

Gram-Schmidt orthogonalization (std::initializer list overload)

Vs	std::initializer_list of Eigen expressions as column vectors
----	--

Returns

Gram-Schmidt vectors of Vs as columns of a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.31 template<typename Derived > DynMat<typename Derived::Scalar> qpp::grams (const Eigen::MatrixBase< Derived > & A)

Gram-Schmidt orthogonalization (Eigen expression (matrix) overload)

Parameters

Α	Eigen expression, the input vectors are the columns of A

Returns

Gram-Schmidt vectors of the columns of A, as columns of a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.32 template<typename Derived > dmat qpp::hevals (const Eigen::MatrixBase< Derived > & A)

Hermitian eigenvalues.

Α	Eigen expression
---	------------------

Returns

Eigenvalues of Hermitian A, as a diagonal dynamic matrix over the real field, with eigenvalues on the diagonal

Here is the call graph for this function:

5.1.2.33 template < typename Derived > cmat qpp::hevects (const Eigen::MatrixBase < Derived > & A)

Hermitian eigenvectors.

Parameters

Α	Eigen expression

Returns

Eigenvectors of Hermitian A, as columns of a dynamic matrix over the complex field

5.1.2.34 template < typename Derived > DynMat < typename Derived::Scalar > qpp::inverse (const Eigen::MatrixBase < Derived > & A)

Inverse.

Α	Eigen expression

Returns

Inverse of A, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.35 std::vector<std::size_t> qpp::invperm (const std::vector< std::size_t > & perm)

Inverse permutation.

Parameters

perm	Permutation

Returns

Inverse of the permutation perm

Here is the call graph for this function:

5.1.2.36 template < typename T > DynMat < typename T::Scalar > qpp::kron (const T & head)

Kronecker product (variadic overload)

Used to stop the recursion for the variadic template version of qpp::kron()

head	Eigen expression

Its argument head

5.1.2.37 template<typename T , typename... Args> DynMat<typename T::Scalar> qpp::kron (const T & head, const Args &... tail)

Kronecker product (variadic overload)

Parameters

head	Eigen expression
tail	Variadic Eigen expression (zero or more parameters)

Returns

Kronecker product of all input parameters, evaluated from left to right, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.38 template < typename Derived > DynMat < typename Derived::Scalar > qpp::kron (const std::vector < Derived > & As)

Kronecker product (std::vector overload)

As	std::vector of Eigen expressions

Kronecker product of all elements in As, evaluated from left to right, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.39 template<typename Derived > DynMat<typename Derived::Scalar> qpp::kron (const std::initializer_list< Derived > & As)

Kronecker product (std::initializer_list overload)

Parameters

As	std::initializer_list of Eigen expressions, such as {A1, A2, ,Ak}

Returns

Kronecker product of all elements in As, evaluated from left to right, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.40 template<typename Derived > DynMat<typename Derived::Scalar> qpp::kronpow (const Eigen::MatrixBase< Derived > & A, std::size_t n)

Kronecker power.

Α	Eigen expression
n	Non-negative integer

Kronecker product of A with itself n times $A^{\otimes n}$, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

- 5.1.2.41 template<typename Derived > DynMat<typename Derived::Scalar> qpp::load (const std::string & fname)
- 5.1.2.42 template<typename Derived > Derived qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)
- 5.1.2.43 template <> dmat qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)
- 5.1.2.44 template<> cmat qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)
- 5.1.2.45 template<typename Derived > Derived::Scalar qpp::logdet (const Eigen::MatrixBase< Derived > & A)

Logarithm of the determinant.

Especially useful when the determinant overflows/underflows

Α	Eigen expression

Logarithm of the determinant of A, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.46 template < typename Derived > cmat qpp::logm (const Eigen::MatrixBase < Derived > & A)

Matrix logarithm.

Parameters

Α	Eigen expression

Returns

Matrix logarithm of A, as a dynamic matrix over the complex field

Here is the call graph for this function:

5.1.2.47 ket qpp::mket (const std::vector< std::size_t > & mask)

Multi-partite qubit ket.

Constructs the multi-partite qubit ket $|mask\rangle$, where mask is a std::vector of 0's and 1's

mask	std::vector of 0's and 1's

Returns

Multi-partite qubit state vector, as a dynamic column vector over the complex field

Here is the call graph for this function:

5.1.2.48 ket qpp::mket (const std::vector < std::size_t > & mask, const std::vector < std::size_t > & dims)

Multi-partite qudit ket (different dimensions overload)

Constructs the multi-partite qudit ket $|mask\rangle$, where mask is a std::vector of non-negative integers Each element in mask has to be smaller than the corresponding element in dims

Parameters

mask	std::vector of non-negative integers
dims	Dimensions of the multi-partite system

Returns

Multi-partite qudit state vector, as a dynamic column vector over the complex field

Here is the call graph for this function:

5.1.2.49 ket qpp::mket (const std::vector< std::size_t > & mask, std::size_t d)

Multi-partite qudit ket (same dimensions overload)

Constructs the multi-partite qudit ket $|mask\rangle$ in a multi-partite system, all subsystem having equal dimension d mask is a std::vector of non-negative integers, and each element in mask has to be strictly smaller than d

mask	std::vector of non-negative integers
d	Subsystems' dimension

Returns

Multi-partite qudit state vector, as a dynamic column vector over the complex field

Here is the call graph for this function:

5.1.2.50 std::size_t qpp::multiidx2n (const std::vector < std::size_t > & midx, const std::vector < std::size_t > & dims)

Multi-index to non-negative integer index.

Uses standard lexicographical order, i.e. 00...0, 00...1 etc.

Parameters

midx	Multi-index
dims	Dimensions of the multi-partite system

Returns

Non-negative integer index

Here is the call graph for this function:

5.1.2.51 std::vector<std::size_t> qpp::n2multiidx (std::size_t n, const std::vector< std::size_t> & dims)

Non-negative integer index to multi-index.

Uses standard lexicographical order, i.e. 00...0, 00...1 etc.

n	Non-negative integer index
dims	Dimensions of the multi-partite system

Returns

Multi-index of the same size as dims

Here is the call graph for this function:

5.1.2.52 template < typename Derived > double qpp::norm (const Eigen::MatrixBase < Derived > & A)

Trace norm.

Parameters

Α	Eigen expression

Returns

Trace norm (Frobenius norm) of A, as a real number

Here is the call graph for this function:

5.1.2.53 std::complex<double> qpp::omega (std::size_t D)

D-th root of unity.

D	Non-negative integer

D-th root of unity $\exp(2\pi i/D)$

5.1.2.54 constexpr std::complex<double> qpp::operator""_i (unsigned long long int x)

User-defined literal for complex $i = \sqrt{-1}$ (integer overload)

Example:

```
auto z = 4_i; // type of z is std::complex<double>
```

5.1.2.55 constexpr std::complex<double> qpp::operator""_i (long double x)

User-defined literal for complex $i = \sqrt{-1}$ (real overload)

Example:

```
auto z = 4.5_i; // type of z is std::complex<double>
```

5.1.2.56 template<typename Derived > DynMat<typename Derived::Scalar> qpp::powm (const Eigen::MatrixBase < Derived > & A, std::size_t n)

Matrix power.

Explicitly multiplies the matrix A with itself n times

By convention $A^0 = I$

Parameters

Α	Eigen expression
n	Non-negative integer

Returns

Matrix power A^n , as a dynamic matrix over the same scalar field

5.1.2.57 template<typename Derived > DynMat<typename Derived::Scalar> qpp::prj (const Eigen::MatrixBase< Derived > & V)

Projector.

Normalized projector onto state vector

Parameters

V	Eigen expression

Returns

Projector onto the state vector V, or the matrix Zero if V has norm zero (i.e. smaller than qpp::eps), as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.58 template<typename Derived > DynMat<typename Derived::Scalar> qpp::ptrace (const Eigen::MatrixBase < Derived > & A, const std::vector< std::size_t > & subsys, const std::vector< std::size_t > & dims)

Partial trace.

Partial trace of the multi-partite density matrix over a list of subsystems

Α	Eigen expression
subsys	Subsystems' indexes
dims	Dimensions of the multi-partite system

Partial trace $Tr_{subsys}(\cdot)$ over the subsytems *subsys* in a multi-partite system, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.59 template<typename Derived > DynMat<typename Derived::Scalar> qpp::ptrace1 (const Eigen::MatrixBase< Derived > & A, const std::vector< std::size_t > & dims)

Partial trace.

Partial trace of density matrix over the first subsystem in a bi-partite system

Α	Eigen expression
dims	Dimensions of bi-partite system (must be a std::vector with 2 elements)

Partial trace $Tr_A(\cdot)$ over the first subsytem A in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.60 template<typename Derived > DynMat<typename Derived::Scalar> qpp::ptrace2 (const Eigen::MatrixBase< Derived > & A, const std::vector< std::size_t > & dims)

Partial trace.

Parameters

Α	Eigen expression
dims	Dimensions of bi-partite system (must be a std::vector with 2 elements)

Returns

Partial trace $Tr_B(\cdot)$ over the second subsystem B in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.61 template<typename Derived > DynMat<typename Derived::Scalar> qpp::ptranspose (const Eigen::MatrixBase< Derived > & A, const std::vector< std::size_t > & subsys, const std::vector< std::size_t > & dims)

Partial transpose.

Partial transpose of the multi-partite density matrix over a list of subsystems

Parameters

Α	Eigen expression
subsys	Subsystems' indexes
dims	Dimensions of the multi-partite system

Returns

Partial transpose $(\cdot)^{T_{subsys}}$ over the subsytems subsys in a multi-partite system, as a dynamic matrix over the same scalar field

5.1.2.62 template<typename Derived > double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > & A, const std::vector< std::size_t > & subsys, const std::vector< std::size_t > & dims)

- 5.1.2.63 template < typename Derived > Derived qpp::rand (std::size_t rows, std::size_t cols, double a = 0, double b = 1)
- 5.1.2.64 template<> dmat qpp::rand (std::size_t rows, std::size_t cols, double a, double b)

5.1.2.65 template <> cmat qpp::rand (std::size_t rows, std::size_t cols, double a, double b)

Here is the call graph for this function:

5.1.2.66 double qpp::rand (double a = 0, double b = 1)

Here is the call graph for this function:

5.1.2.67 cmat qpp::randH (std::size_t D)

Here is the call graph for this function:

5.1.2.68 long long qpp::randint (long long a, long long b)

5.1.2.69 ket qpp::randket (std::size_t D)

Here is the call graph for this function:

5.1.2.70 std::vector<cmat> qpp::randkraus (std::size_t n, std::size_t D)

Here is the call graph for this function:

- 5.1.2.71 template<typename Derived > Derived qpp::randn (std::size_t rows, std::size_t cols, double mean = 0, double sigma = 1)
- 5.1.2.72 template<> dmat qpp::randn (std::size_t rows, std::size_t cols, double mean, double sigma)

5.1.2.73 template<> cmat qpp::randn (std::size_t rows, std::size_t cols, double mean, double sigma)

Here is the call graph for this function:

5.1.2.74 double qpp::randn (double mean = 0, double sigma = 1)

Here is the call graph for this function:

5.1.2.75 std::vector<std::size_t> qpp::randperm (std::size_t n)

5.1.2.76 cmat qpp::randrho (std::size_t D)

Here is the call graph for this function:

5.1.2.77 cmat qpp::randU (std::size_t D)

5.1.2.78 cmat qpp::randV (std::size_t Din, std::size_t Dout)

Here is the call graph for this function:

5.1.2.79 template<typename Derived > double qpp::renyi (const double alpha, const Eigen::MatrixBase< Derived > & A)

5.1.2.80 template < typename Derived > double qpp::renyi_inf (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.2.81 template<typename Derived > DynMat<typename Derived::Scalar> qpp::reshape (const Eigen::MatrixBase< Derived > & A, std::size_t rows, std::size_t cols)

Reshape.

Uses column-major order when reshaping (same as MATLAB)

Parameters

Α	Eigen expression
rows	Number of rows of the reshaped matrix
cols	Number of columns of the reshaped matrix

Returns

Reshaped matrix with rows rows and cols columns, as a dynamic matrix over the same scalar field

- 5.1.2.82 template < typename Derived > void qpp::save (const Eigen::MatrixBase < Derived > & A, const std::string & fname)
- 5.1.2.83 template < typename Derived > void qpp::saveMATLABmatrix (const Eigen::MatrixBase < Derived > & A, const std::string & mat_file, const std::string & mode)

5.1.2.84 template<> void qpp::saveMATLABmatrix (const Eigen::MatrixBase< dmat > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode)

Here is the call graph for this function:

5.1.2.85 template<> void qpp::saveMATLABmatrix (const Eigen::MatrixBase< cmat > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode)

Here is the call graph for this function:

5.1.2.86 template < typename Derived > cmat qpp::schmidtcoeff (const Eigen::MatrixBase < Derived > & A, const std::vector < std::size_t > & dims)

5.1.2.87 template < typename Derived > cmat qpp::schmidtprob (const Eigen::MatrixBase < Derived > & A, const std::vector < std::size_t > & dims)

Here is the call graph for this function:

5.1.2.88 template < typename Derived > cmat qpp::schmidtU (const Eigen::MatrixBase < Derived > & A, const std::vector < std::size_t > & dims)

5.1.2.89 template < typename Derived > cmat qpp::schmidtV (const Eigen::MatrixBase < Derived > & A, const std::vector < std::size_t > & dims)

Here is the call graph for this function:

5.1.2.90 template<typename Derived > double qpp::shannon (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.2.91 template < typename Derived > cmat qpp::sinm (const Eigen::MatrixBase < Derived > & A)

Matrix sin.

Α	Eigen expression
---	------------------

Returns

Matrix sine of A, as a dynamic matrix over the complex field

Here is the call graph for this function:

5.1.2.92 template<typename Derived > cmat qpp::spectralpowm (const Eigen::MatrixBase< Derived > & A, const cplx z)

Matrix power.

Uses the spectral decomposition of \emph{A} to compute the matrix power By convention $\emph{A}^0 = \emph{I}$

Parameters

A	Eigen expression
Z	Complex number

Returns

Matrix power A^z , as a dynamic matrix over the complex field

Here is the call graph for this function:

5.1.2.93 template < typename Derived > cmat qpp::sqrtm (const Eigen::MatrixBase < Derived > & A)

Matrix square root.

Α	Eigen expression

Returns

Matrix square root of A, as a dynamic matrix over the complex field

Here is the call graph for this function:

5.1.2.94 template < typename Derived > Derived::Scalar qpp::sum (const Eigen::MatrixBase < Derived > & A)

Element-wise sum.

Parameters

Α	Eigen expression

Returns

Element-wise sum of A, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.95 cmat qpp::super (const std::vector < cmat > & Ks)

Superoperator matrix representation.

Constructs the superoperator matrix of the channel specified by the set of Kraus operators Ks in the standard operator basis $\{|i\rangle\langle j|\}$ ordered in lexicographical order, i.e. $|0\rangle\langle 0|$, $|0\rangle\langle 1|$ etc.

Ks	std::vector of Eigen expressions representing the set of Kraus operators
----	--

Returns

Superoperator matrix representation, as a dynamic matrix over the complex field

Here is the call graph for this function:

5.1.2.96 template<typename Derived > DynMat<typename Derived::Scalar> qpp::syspermute (const Eigen::MatrixBase

Derived > & A, const std::vector< std::size_t > & perm, const std::vector< std::size_t > & dims)

System permutation.

Permutes the subsystems in a state vector or density matrix The qubit perm[i] is permuted to the location i

Α	Eigen expression
perm	Permutation
dims	Subsystems' dimensions

Permuted system, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.97 template<typename Derived > Derived::Scalar qpp::trace (const Eigen::MatrixBase< Derived > & A)

Trace.

Α	Eigen expression

Returns

Trace of A, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.98 template<typename Derived > DynMat<typename Derived::Scalar> qpp::transpose (const Eigen::MatrixBase< Derived > & A)

Transpose.

Parameters

```
A Eigen expression
```

Returns

Transpose of A, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

5.1.2.99 template < typename Derived > double qpp::tsallis (const double alpha, const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.3 Variable Documentation

5.1.3.1 constexpr double qpp::chop = 1e-10

Used in *qpp::disp()* and *qpp::displn()* for setting to zero numbers that have their absolute value smaller than *qpp ⇔ ::ct::chop*.

5.1.3.2 constexpr double qpp::ee = 2.718281828459045235360287471352662497

Base of natural logarithm, e.

5.1.3.3 constexpr double qpp::eps = 1e-12

Used to decide whether a number or expression in double precision is zero or not.

Example:

```
if(std::abs(x) < qpp::ct::eps) // x is zero</pre>
```

5.1.3.4 const Gates& qpp::gt = Gates::get_instance()

qpp::Gates const Singleton

Initializes the gates, see the class *qpp::Gates*

5.1.3.5 constexpr std::size_t qpp::maxn = 64

Maximum number of qubits.

Used internally to statically allocate arrays (for speed reasons)

5.1.3.6 constexpr double qpp::pi = 3.141592653589793238462643383279502884

 π

5.1.3.7 RandomDevices& qpp::rdevs = RandomDevices::get_instance()

qpp::RandomDevices Singleton

Initializes the random devices, see the class *qpp::RandomDevices*

5.1.3.8 const States& qpp::st = States::get_instance()

```
qpp::States const Singleton
```

Initializes the states, see the class *qpp::States*

5.2 qpp::internal Namespace Reference

Functions

- void n2multiidx (std::size t n, std::size t numdims, const std::size t *dims, std::size t *result)
- std::size_t _multiidx2n (const std::size_t *midx, std::size_t numdims, const std::size_t *dims)
- template<typename Derived >

bool <u>_check_square_mat</u> (const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

bool <u>_check_vector</u> (const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

bool <u>_check_row_vector</u> (const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ \text{template}{<} \text{typename Derived} >$

bool <u>_check_col_vector</u> (const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ template {<} typename \ T >$

bool <u>_check_nonzero_size</u> (const T &x)

- bool <u>_check_dims</u> (const std::vector < std::size_t > &dims)
- template<typename Derived >

 $\label{local_bool_check_dims_match_mat} \mbox{ (const std::vector} < \mbox{ std::size_t} > \mbox{\&dims, const Eigen::MatrixBase} < \mbox{ Derived} > \mbox{\&A})$

• template<typename Derived >

bool _check_dims_match_cvect (const std::vector< std::size_t > &dims, const Eigen::MatrixBase< Derived > &V)

• template<typename Derived >

 $\label{local_check_dims_match_rvect} \mbox{ (const std::vector} < \mbox{ std::size_t} > \mbox{\&dims, const Eigen::MatrixBase} < \mbox{ Derived} > \mbox{\&V)}$

- bool check eq dims (const std::vector< std::size t > &dims, std::size t dim)
- bool _check_subsys_match_dims (const std::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)
- bool _check_perm (const std::vector< std::size_t > &perm)
- template<typename Derived1 , typename Derived2 >

DynMat< typename Derived1::Scalar > _kron2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen::

MatrixBase< Derived2 > &B)

template<typename T >

void variadic_vector_emplace (std::vector< T > &)

template<typename T, typename First, typename... Args>
 void variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&...args)

5.2.1 Detailed Description

Internal functions, do not modify or use directly

5.2.2 Function Documentation

- 5.2.2.1 template < typename Derived > bool qpp::internal::_check_col_vector (const Eigen::MatrixBase < Derived > & A)
- 5.2.2.2 bool qpp::internal::_check_dims (const std::vector < std::size_t > & dims)
- 5.2.2.3 template<typename Derived > bool qpp::internal::_check_dims_match_cvect (const std::vector< std::size_t > & dims, const Eigen::MatrixBase< Derived > & V)
- 5.2.2.4 template<typename Derived > bool qpp::internal::_check_dims_match_mat (const std::vector< std::size_t > & dims, const Eigen::MatrixBase< Derived > & A)
- 5.2.2.5 template<typename Derived > bool qpp::internal::_check_dims_match_rvect (const std::vector< std::size_t > & dims, const Eigen::MatrixBase< Derived > & V)
- 5.2.2.6 bool qpp::internal::_check_eq_dims (const std::vector< std::size_t > & dims, std::size_t dim)
- 5.2.2.7 template<typename T > bool qpp::internal::_check_nonzero_size (const T & x)
- 5.2.2.8 bool qpp::internal::_check_perm (const std::vector < std::size_t > & perm)
- 5.2.2.9 template < typename Derived > bool qpp::internal::_check_row_vector (const Eigen::MatrixBase < Derived > & A)
- 5.2.2.10 template < typename Derived > bool qpp::internal::_check_square_mat (const Eigen::MatrixBase < Derived > & A)
- 5.2.2.11 bool qpp::internal::_check_subsys_match_dims (const std::vector< std::size_t > & subsys, const std::vector< std::size_t > & dims)
- $5.2.2.12 \quad template < typename \ Derived > bool \ qpp::internal::_check_vector \ (\ const \ Eigen::MatrixBase < Derived > \& \ A \)$

Here is the call graph for this function:

- 5.2.2.14 std::size_t app::internal::_multiidx2n (const std::size_t * midx, std::size_t numdims, const std::size_t * dims)
- 5.2.2.15 void qpp::internal::_n2multiidx (std::size_t n, std::size_t numdims, const std::size_t * dims, std::size_t * result)
- 5.2.2.16 template < typename T > void qpp::internal::variadic_vector_emplace (std::vector < T > &)

5.2.2.17 template < typename T , typename First , typename... Args > void qpp::internal::variadic_vector_emplace (std::vector < T > & ν , First && first, Args &&... args)

Here is the call graph for this function:

Namespace	Documer	ntation

Chapter 6

Class Documentation

6.1 qpp::DiscreteDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- template<typename InputIterator >
 DiscreteDistribution (InputIterator first, InputIterator last)
- DiscreteDistribution (std::initializer_list< double > weights)
- Discrete Distribution (std::vector< double > weights)
- std::size_t sample ()
- std::vector< double > probabilities () const

Protected Attributes

```
std::discrete_distributionstd::size_t > _d
```

6.1.1 Constructor & Destructor Documentation

- 6.1.1.1 template<typename InputIterator > qpp::DiscreteDistribution::DiscreteDistribution (InputIterator first, InputIterator last) [inline]
- **6.1.1.2** qpp::DiscreteDistribution::DiscreteDistribution (std::initializer_list< double > weights) [inline]
- 6.1.1.3 qpp::DiscreteDistribution::DiscreteDistribution (std::vector< double > weights) [inline]

6.1.2 Member Function Documentation

6.1.2.1 std::vector<double> qpp::DiscreteDistribution::probabilities () const [inline]

6.1.2.2 std::size_t qpp::DiscreteDistribution::sample() [inline]

Here is the call graph for this function:

6.1.3 Member Data Documentation

6.1.3.1 std::discrete_distribution<std::size_t> qpp::DiscreteDistribution::_d [protected]

The documentation for this class was generated from the following file:

· include/classes/stat.h

6.2 qpp::DiscreteDistributionAbsSquare Class Reference

#include <stat.h>

Public Member Functions

- template<typename InputIterator >
 DiscreteDistributionAbsSquare (InputIterator first, InputIterator last)
- DiscreteDistributionAbsSquare (std::initializer_list< cplx > amplitudes)
- DiscreteDistributionAbsSquare (std::vector< cplx > amplitudes)
- template<typename Derived >
 DiscreteDistributionAbsSquare (const Eigen::MatrixBase< Derived > &V)
- std::size_t sample ()
- std::vector< double > probabilities () const

Protected Member Functions

template<typename InputIterator >
 std::vector< double > cplx2weights (InputIterator first, InputIterator last) const

Protected Attributes

std::discrete_distributionstd::size_t > _d

6.2.1 Constructor & Destructor Documentation

- 6.2.1.1 template<typename InputIterator > qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (InputIterator *first*, InputIterator *last*) [inline]
- 6.2.1.2 qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (std::initializer_list< cplx > amplitudes) [inline]
- **6.2.1.3** qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (std::vector < cplx > amplitudes) [inline]
- 6.2.1.4 template<typename Derived > qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (const Eigen::MatrixBase< Derived > & V) [inline]

6.2.2 Member Function Documentation

- 6.2.2.1 template<typename InputIterator > std::vector<double> qpp::DiscreteDistributionAbsSquare::cplx2weights (InputIterator first, InputIterator last) const [inline], [protected]
- **6.2.2.2** std::vector<double> qpp::DiscreteDistributionAbsSquare::probabilities () const [inline]
- **6.2.2.3** std::size_t qpp::DiscreteDistributionAbsSquare::sample() [inline]

Here is the call graph for this function:

6.2.3 Member Data Documentation

6.2.3.1 std::discrete_distribution<std::size_t> qpp::DiscreteDistributionAbsSquare::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

6.3 qpp::Exception Class Reference

#include <exception.h>

Inheritance diagram for qpp::Exception:

Collaboration diagram for qpp::Exception:

Public Types

enum Type {

Type::UNKNOWN_EXCEPTION = 1, Type::ZERO_SIZE, Type::MATRIX_NOT_SQUARE, Type::MATRIX_← NOT_CVECTOR,

Type::MATRIX_NOT_RVECTOR, Type::MATRIX_NOT_VECTOR, Type::MATRIX_NOT_SQUARE_OR_C↔ VECTOR, Type::MATRIX_NOT_SQUARE_OR_RVECTOR,

Type::MATRIX_NOT_SQUARE_OR_VECTOR, Type::DIMS_INVALID, Type::DIMS_NOT_EQUAL, Type::D↔ IMS_MISMATCH_MATRIX,

 $\label{type::DIMS_MISMATCH_CVECTOR} Type::DIMS_MISMATCH_RVECTOR, Type::DIMS_MISMATCH_VE \leftarrow CTOR, Type::SUBSYS_MISMATCH_DIMS,$

Type::PERM_INVALID, Type::NOT_QUBIT_GATE, Type::NOT_QUBIT_SUBSYS, Type::NOT_BIPARTITE, Type::OUT_OF_RANGE, Type::TYPE_MISMATCH, Type::UNDEFINED_TYPE, Type::CUSTOM_EXCEPT → ION }

Public Member Functions

- Exception (const std::string &where, const Type &type)
- Exception (const std::string &where, const std::string &custom)
- virtual const char * what () const noexceptoverride

Private Member Functions

• std::string _construct_exception_msg ()

Private Attributes

- std::string _where
- std::string _msg
- Type _type
- std::string _custom

6.3.1 Member Enumeration Documentation

6.3.1.1 enum qpp::Exception::Type [strong]

Enumerator

UNKNOWN_EXCEPTION

ZERO_SIZE

MATRIX_NOT_SQUARE

MATRIX_NOT_CVECTOR

MATRIX_NOT_RVECTOR

MATRIX_NOT_VECTOR

MATRIX_NOT_SQUARE_OR_CVECTOR

MATRIX_NOT_SQUARE_OR_RVECTOR

MATRIX_NOT_SQUARE_OR_VECTOR

DIMS_INVALID

DIMS_NOT_EQUAL

DIMS_MISMATCH_MATRIX

DIMS_MISMATCH_CVECTOR

DIMS_MISMATCH_RVECTOR

DIMS_MISMATCH_VECTOR

 $SUBSYS_MISMATCH_DIMS$

PERM_INVALID

NOT_QUBIT_GATE

NOT_QUBIT_SUBSYS

NOT_BIPARTITE

OUT_OF_RANGE

TYPE_MISMATCH

UNDEFINED_TYPE

CUSTOM_EXCEPTION

6.3.2 Constructor & Destructor Documentation

6.3.2.1 qpp::Exception::Exception (const std::string & where, const Type & type) [inline]

Here is the call graph for this function:

6.3.2.2 qpp::Exception::Exception (const std::string & where, const std::string & custom) [inline]

Here is the call graph for this function:

6.3.3 Member Function Documentation

- **6.3.3.1** std::string qpp::Exception::_construct_exception_msg() [inline], [private]
- **6.3.3.2 virtual const char* qpp::Exception::what () const** [inline], [override], [virtual], [noexcept]
- 6.3.4 Member Data Documentation
- **6.3.4.1 std::string qpp::Exception::_custom** [private]
- **6.3.4.2 std::string qpp::Exception::_msg** [private]
- **6.3.4.3 Type qpp::Exception::_type** [private]
- **6.3.4.4 std::string qpp::Exception::_where** [private]

The documentation for this class was generated from the following file:

• include/classes/exception.h

6.4 qpp::Gates Class Reference

#include <gates.h>

Inheritance diagram for qpp::Gates:

Collaboration diagram for qpp::Gates:

Public Member Functions

- cmat Rn (double theta, std::vector< double > n) const
- cmat Zd (std::size t D) const
- cmat Fd (std::size t D) const
- cmat Xd (std::size_t D) const
- template<typename Derived = Eigen::MatrixXcd>
 Derived Id (std::Size_t D) const
- template<typename Derived1 , typename Derived2 >
 DynMat< typename Derived1::Scalar > applyCTRL (const Eigen::MatrixBase< Derived1 > &state, const Eigen::MatrixBase< Derived2 > &A, const std::vector< std::size_t > &ctrl, const std::vector< std::size_t > &subsys, std::size t n, std::size t d=2) const
- template<typename Derived >
 DynMat< typename Derived::Scalar > CTRL (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &ctrl, const std::vector< std::size_t > &subsys, std::size_t n, std::size_t d=2) const

Public Attributes

```
cmat Id2 { cmat::Identity(2, 2) }
cmat H { cmat::Zero(2, 2) }
cmat X { cmat::Zero(2, 2) }
cmat Y { cmat::Zero(2, 2) }
cmat Z { cmat::Zero(2, 2) }
cmat S { cmat::Zero(2, 2) }
cmat T { cmat::Zero(2, 2) }
cmat CNOTab { cmat::Identity(4, 4) }
cmat CX { cmat::Identity(4, 4) }
cmat CNOTba { cmat::Zero(4, 4) }
cmat SWAP { cmat::Identity(4, 4) }
cmat TOF { cmat::Identity(8, 8) }
cmat FRED { cmat::Identity(8, 8) }
```

Private Member Functions

• Gates ()

Friends

class Singleton < const Gates >

Additional Inherited Members

6.4.1 Constructor & Destructor Documentation

```
6.4.1.1 qpp::Gates::Gates() [inline], [private]
```

6.4.2 Member Function Documentation

Here is the call graph for this function:

6.4.2.2 template<typename Derived1 , typename Derived2 > DynMat<typename Derived1::Scalar> qpp::Gates::applyCTRL (const Eigen::MatrixBase< Derived1 > & state, const Eigen::MatrixBase< Derived2 > & A, const std::vector< std::size_t > & ctrl, const std::vector< std::size_t n, std::size_t n, std::size_t d = 2) const [inline]

6.4.2.3 template<typename Derived > DynMat<typename Derived::Scalar> qpp::Gates::CTRL (const Eigen::MatrixBase < Derived > & A, const std::vector< std::size_t > & ctrl, const std::vector< std::size_t > & subsys, std::size_t n, std::size_t d = 2) const [inline]

Here is the call graph for this function:

6.4.2.4 cmat qpp::Gates::Fd (std::size_t D) const [inline]

Here is the call graph for this function:

- 6.4.2.5 template<typename Derived = Eigen::MatrixXcd> Derived qpp::Gates::Id (std::size_t D) const [inline]
- 6.4.2.6 cmat qpp::Gates::Rn (double theta, std::vector< double > n) const [inline]

6.4.2.7 cmat qpp::Gates::Xd (std::size_t D) const [inline]

Here is the call graph for this function:

6.4.2.8 cmat qpp::Gates::Zd (std::size_t D) const [inline]

Here is the call graph for this function:

- 6.4.3 Friends And Related Function Documentation
- **6.4.3.1** friend class Singleton < const Gates > [friend]
- 6.4.4 Member Data Documentation
- 6.4.4.1 cmat qpp::Gates::CNOTab { cmat::Identity(4, 4) }
- 6.4.4.2 cmat qpp::Gates::CNOTba { cmat::Zero(4, 4) }
- 6.4.4.3 cmat qpp::Gates::CZ { cmat::Identity(4, 4) }
- 6.4.4.4 cmat qpp::Gates::FRED { cmat::Identity(8, 8) }
- 6.4.4.5 cmat qpp::Gates::H { cmat::Zero(2, 2) }
- 6.4.4.6 cmat qpp::Gates::Id2 { cmat::Identity(2, 2) }
- 6.4.4.7 cmat qpp::Gates::S { cmat::Zero(2, 2) }
- 6.4.4.8 cmat qpp::Gates::SWAP { cmat::Identity(4, 4) }
- 6.4.4.9 cmat qpp::Gates::T { cmat::Zero(2, 2) }

```
    6.4.4.10 cmat qpp::Gates::TOF { cmat::Identity(8, 8) }
    6.4.4.11 cmat qpp::Gates::X { cmat::Zero(2, 2) }
    6.4.4.12 cmat qpp::Gates::Y { cmat::Zero(2, 2) }
    6.4.4.13 cmat qpp::Gates::Z { cmat::Zero(2, 2) }
```

The documentation for this class was generated from the following file:

• include/classes/gates.h

6.5 qpp::NormalDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- NormalDistribution (double mean=0, double sigma=1)
- double sample ()

Protected Attributes

• std::normal_distribution_d

6.5.1 Constructor & Destructor Documentation

6.5.1.1 qpp::NormalDistribution::NormalDistribution (double mean = 0, double sigma = 1) [inline]

6.5.2 Member Function Documentation

6.5.2.1 double qpp::NormalDistribution::sample() [inline]

Here is the call graph for this function:

6.5.3 Member Data Documentation

6.5.3.1 std::normal_distribution qpp::NormalDistribution::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

6.6 qpp::Qudit Class Reference

```
#include <qudit.h>
```

Public Member Functions

- Qudit (const cmat &rho=States::get_instance().pz0)
- std::size_t measure (const cmat &U, bool destructive=false)
- std::size_t measure (bool destructive=false)
- cmat getRho () const
- std::size_t getD () const

Private Attributes

- cmat _rho
- std::size_t _D

6.6.1 Constructor & Destructor Documentation

```
6.6.1.1 qpp::Qudit::Qudit ( const cmat & rho = States::get_instance () .pz0 ) [inline]
```

Here is the call graph for this function:

6.6.2 Member Function Documentation

- 6.6.2.1 std::size_t qpp::Qudit::getD() const [inline]
- 6.6.2.2 cmat qpp::Qudit::getRho() const [inline]

6.6.2.3 std::size_t qpp::Qudit::measure (const cmat & U, bool destructive = false) [inline]

Here is the call graph for this function:

6.6.2.4 std::size_t qpp::Qudit::measure (bool destructive = false) [inline]

Here is the call graph for this function:

6.6.3 Member Data Documentation

6.6.3.1 std::size_t qpp::Qudit::_D [private]

6.6.3.2 cmat qpp::Qudit::_rho [private]

The documentation for this class was generated from the following file:

• include/classes/qudit.h

6.7 qpp::RandomDevices Class Reference

#include <randevs.h>

Inheritance diagram for qpp::RandomDevices:

Collaboration diagram for qpp::RandomDevices:

Public Attributes

• std::mt19937 _rng

Private Member Functions

• RandomDevices ()

Private Attributes

• std::random_device _rd

Friends

class Singleton < Random Devices >

Additional Inherited Members

6.7.1 Constructor & Destructor Documentation

6.7.1.1 qpp::RandomDevices::RandomDevices() [inline], [private]

6.7.2 Friends And Related Function Documentation

6.7.2.1 friend class Singleton < **RandomDevices** > [friend]

6.7.3 Member Data Documentation

6.7.3.1 std::random_device gpp::RandomDevices::_rd [private]

6.7.3.2 std::mt19937 qpp::RandomDevices::_rng

The documentation for this class was generated from the following file:

• include/classes/randevs.h

6.8 qpp::Singleton < T > Class Template Reference

#include <singleton.h>

Inheritance diagram for qpp::Singleton < T >:

Static Public Member Functions

• static T & get_instance ()

Protected Member Functions

- Singleton ()=default
- virtual ∼Singleton ()
- Singleton (const Singleton &)=delete
- Singleton & operator= (const Singleton &)=delete

6.8.1 Constructor & Destructor Documentation

- **6.8.1.1** template<typename T> qpp::Singleton< T>::Singleton() [protected], [default]
- **6.8.1.2** template<typename T> virtual qpp::Singleton< T>:: \sim Singleton() [inline], [protected], [virtual]
- 6.8.2 Member Function Documentation
- $\textbf{6.8.2.1} \quad \textbf{template} < \textbf{typename T} > \textbf{static T\& qpp::Singleton} < \textbf{T} > \textbf{::get_instance ()} \quad \texttt{[inline], [static]}$
- 6.8.2.2 template<typename T> Singleton& qpp::Singleton< T>::operator= (const Singleton< T> &) [protected], [delete]

The documentation for this class was generated from the following file:

• include/classes/singleton.h

6.9 qpp::States Class Reference

#include <states.h>

Inheritance diagram for qpp::States:

Collaboration diagram for qpp::States:

Public Attributes

ket x0 { ket::Zero(2) }ket x1 { ket::Zero(2) }

```
ket y0 { ket::Zero(2) }
ket y1 { ket::Zero(2) }

    ket z0 { ket::Zero(2) }

ket z1 { ket::Zero(2) }

    cmat px0 { cmat::Zero(2, 2) }

cmat px1 { cmat::Zero(2, 2) }
cmat py0 { cmat::Zero(2, 2) }
cmat py1 { cmat::Zero(2, 2) }
• cmat pz0 { cmat::Zero(2, 2) }

    cmat pz1 { cmat::Zero(2, 2) }

ket b00 { ket::Zero(4) }
ket b01 { ket::Zero(4) }
ket b10 { ket::Zero(4) }
ket b11 { ket::Zero(4) }

    cmat pb00 { cmat::Zero(4, 4) }

cmat pb01 { cmat::Zero(4, 4) }
```

cmat pb10 { cmat::Zero(4, 4) }
cmat pb11 { cmat::Zero(4, 4) }
ket GHZ { ket::Zero(8) }
ket W { ket::Zero(8) }

cmat pGHZ { cmat::Zero(8, 8) }cmat pW { cmat::Zero(8, 8) }

Private Member Functions

• States ()

Friends

class Singleton < const States >

Additional Inherited Members

```
Constructor & Destructor Documentation
6.9.1.1
        qpp::States::States() [inline],[private]
6.9.2
        Friends And Related Function Documentation
        friend class Singleton < const States > [friend]
6.9.2.1
6.9.3
        Member Data Documentation
6.9.3.1
        ket qpp::States::b00 { ket::Zero(4) }
6.9.3.2
        ket qpp::States::b01 { ket::Zero(4) }
        ket qpp::States::b10 { ket::Zero(4) }
6.9.3.3
        ket qpp::States::b11 { ket::Zero(4) }
6.9.3.5
        ket qpp::States::GHZ { ket::Zero(8) }
6.9.3.6
        cmat qpp::States::pb00 { cmat::Zero(4, 4) }
6.9.3.7
        cmat qpp::States::pb01 { cmat::Zero(4, 4) }
        cmat qpp::States::pb10 { cmat::Zero(4, 4) }
6.9.3.8
6.9.3.9
        cmat qpp::States::pb11 { cmat::Zero(4, 4) }
6.9.3.10 cmat qpp::States::pGHZ { cmat::Zero(8, 8) }
6.9.3.11 cmat qpp::States::pW { cmat::Zero(8, 8) }
6.9.3.12 cmat qpp::States::px0 { cmat::Zero(2, 2) }
6.9.3.13 cmat qpp::States::px1 { cmat::Zero(2, 2) }
6.9.3.14 cmat qpp::States::py0 { cmat::Zero(2, 2) }
6.9.3.15 cmat qpp::States::py1 { cmat::Zero(2, 2) }
6.9.3.16 cmat qpp::States::pz0 { cmat::Zero(2, 2) }
6.9.3.17 cmat qpp::States::pz1 { cmat::Zero(2, 2) }
6.9.3.18 ket qpp::States::W { ket::Zero(8) }
6.9.3.19 ket qpp::States::x0 { ket::Zero(2) }
6.9.3.20 ket qpp::States::x1 { ket::Zero(2) }
6.9.3.21 ket qpp::States::y0 { ket::Zero(2) }
6.9.3.22 ket qpp::States::y1 { ket::Zero(2) }
```

```
6.9.3.23 ket qpp::States::z0 { ket::Zero(2) }6.9.3.24 ket qpp::States::z1 { ket::Zero(2) }
```

The documentation for this class was generated from the following file:

• include/classes/states.h

6.10 qpp::Timer Class Reference

```
#include <timer.h>
```

Public Member Functions

- Timer ()
- void tic ()
- void toc ()
- double seconds () const

Protected Attributes

- std::chrono::steady_clock::time_point _start
- · std::chrono::steady_clock::time_point_end

Friends

std::ostream & operator<< (std::ostream &os, const Timer &rhs)

6.10.1 Constructor & Destructor Documentation

```
6.10.1.1 qpp::Timer::Timer( ) [inline]
```

6.10.2 Member Function Documentation

```
6.10.2.1 double qpp::Timer::seconds ( ) const [inline]
```

```
6.10.2.2 void qpp::Timer::tic( ) [inline]
```

- **6.10.2.3 void qpp::Timer::toc()** [inline]
- 6.10.3 Friends And Related Function Documentation
- 6.10.3.1 std::ostream& operator << (std::ostream & os, const Timer & rhs) [friend]

6.10.4 Member Data Documentation

- **6.10.4.1** std::chrono::steady_clock::time_point qpp::Timer::_end [protected]
- **6.10.4.2** std::chrono::steady_clock::time_point qpp::Timer::_start [protected]

The documentation for this class was generated from the following file:

• include/classes/timer.h

6.11 qpp::UniformIntDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- UniformIntDistribution (int a=0, int b=1)
- int sample ()

Protected Attributes

· std::uniform_int_distribution _d

6.11.1 Constructor & Destructor Documentation

6.11.1.1 qpp::UniformIntDistribution::UniformIntDistribution (int a = 0, int b = 1) [inline]

6.11.2 Member Function Documentation

6.11.2.1 int qpp::UniformIntDistribution::sample() [inline]

Here is the call graph for this function:

6.11.3 Member Data Documentation

6.11.3.1 std::uniform_int_distribution qpp::UniformIntDistribution::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

6.12 qpp::UniformRealDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- UniformRealDistribution (double a=0, double b=1)
- double sample ()

Protected Attributes

· std::uniform_real_distribution _d

6.12.1 Constructor & Destructor Documentation

6.12.1.1 qpp::UniformRealDistribution::UniformRealDistribution (double a = 0, double b = 1) [inline]

6.12.2 Member Function Documentation

6.12.2.1 double qpp::UniformRealDistribution::sample() [inline]

Here is the call graph for this function:

6.12.3 Member Data Documentation

6.12.3.1 std::uniform_real_distribution qpp::UniformRealDistribution::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

Chapter 7

File Documentation

7.1 include/channels.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

- cmat qpp::super (const std::vector< cmat > &Ks)
 - Superoperator matrix representation.
- cmat qpp::choi (const std::vector< cmat > &Ks)

Choi matrix representation.

- std::vector< cmat > qpp::choi2kraus (const cmat &A)
 - Extracts orthogonal Kraus operators from Choi matrix.
- $\bullet \ \ \text{template}{<} \text{typename Derived} >$
 - cmat qpp::channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks)
 - Applies the channel specified by the set of Kraus operators Ks to the density matrix rho.
- template<typename Derived >
 - cmat qpp::channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks, const std \leftrightarrow ::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)

Applies the channel specified by the set of Kraus operators Ks to the part of the density matrix rho specified by subsys.

90 File Documentation

7.2 include/classes/exception.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Exception

Namespaces

• qpp

7.3 include/classes/gates.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

class qpp::Gates

Namespaces

qpp

7.4 include/classes/qudit.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Qudit

Namespaces

• qpp

7.5 include/classes/randevs.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::RandomDevices

Namespaces

qpp

92 File Documentation

7.6 include/classes/singleton.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

class qpp::Singleton< T >

Namespaces

qpp

Macros

- #define CLASS_SINGLETON(Foo)
- #define CLASS_CONST_SINGLETON(Foo)

7.6.1 Macro Definition Documentation

7.6.1.1 #define CLASS_CONST_SINGLETON(Foo)

Value:

```
class Foo: public Singleton<const Foo>\
{\
          friend class Singleton<const Foo>;
```

7.6.1.2 #define CLASS_SINGLETON(Foo)

Value:

7.7 include/classes/stat.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

- class qpp::NormalDistribution
- class qpp::UniformRealDistribution
- class qpp::UniformIntDistribution
- class qpp::DiscreteDistribution
- class qpp::DiscreteDistributionAbsSquare

Namespaces

• qpp

7.8 include/classes/states.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::States

94 File Documentation

Namespaces

• qpp

7.9 include/classes/timer.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::Timer

Namespaces

qpp

7.10 include/constants.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

- constexpr std::complex< double > qpp::operator""_i (unsigned long long int x)
 - User-defined literal for complex $i = \sqrt{-1}$ (integer overload)
- constexpr std::complex< double > qpp::operator"" i (long double x)
 - User-defined literal for complex $i = \sqrt{-1}$ (real overload)
- std::complex < double > qpp::omega (std::size_t D)
 - D-th root of unity.

Variables

- constexpr double qpp::chop = 1e-10
 - Used in qpp::disp() and qpp::displn() for setting to zero numbers that have their absolute value smaller than qpp::ct← ::chop.
- constexpr double qpp::eps = 1e-12
 - Used to decide whether a number or expression in double precision is zero or not.
- constexpr std::size_t qpp::maxn = 64
 - Maximum number of qubits.
- constexpr double qpp::pi = 3.141592653589793238462643383279502884
 - π
- constexpr double qpp::ee = 2.718281828459045235360287471352662497
 - Base of natural logarithm, e.

7.11 include/entanglement.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

- template<typename Derived >
 cmat qpp::schmidtcoeff (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)
- template<typename Derived >
 cmat qpp::schmidtU (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)

96 File Documentation

- template<typename Derived >
 cmat qpp::schmidtV (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)
- template<typename Derived >
 cmat qpp::schmidtprob (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)
- template<typename Derived >
 double qpp::entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)
- template<typename Derived >
 double qpp::gconcurrence (const Eigen::MatrixBase< Derived > &A)

7.12 include/entropies.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

- template<typename Derived > double qpp::shannon (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::renyi (const double alpha, const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::renyi_inf (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::tsallis (const double alpha, const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &subsys,
 const std::vector< std::size_t > &dims)

7.13 include/functions.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

```
• template<typename Derived >
  DynMat< typename Derived::Scalar > qpp::transpose (const Eigen::MatrixBase< Derived > &A)
      Transpose.

    template<typename Derived >

  DynMat< typename Derived::Scalar > qpp::conjugate (const Eigen::MatrixBase< Derived > &A)
      Complex conjugate.

    template<typename Derived >

  DynMat< typename Derived::Scalar > qpp::adjoint (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  DynMat< typename Derived::Scalar > qpp::inverse (const Eigen::MatrixBase< Derived > &A)
     Inverse.

    template<typename Derived >

  Derived::Scalar qpp::trace (const Eigen::MatrixBase< Derived > &A)
      Trace.

    template<typename Derived >

  Derived::Scalar qpp::det (const Eigen::MatrixBase< Derived > &A)
      Determinant.

    template<typename Derived >

  Derived::Scalar qpp::logdet (const Eigen::MatrixBase< Derived > &A)
     Logarithm of the determinant.

    template<typename Derived >

  Derived::Scalar qpp::sum (const Eigen::MatrixBase< Derived > &A)
     Element-wise sum.
• template<typename Derived >
  \label{eq:const_energy} \mbox{double qpp::norm (const Eigen::MatrixBase} < \mbox{Derived} > \&\mbox{A})
      Trace norm.

    template<typename Derived >
```

cmat qpp::evals (const Eigen::MatrixBase< Derived > &A)

```
Eigenvalues.
• template<typename Derived >
  cmat qpp::evects (const Eigen::MatrixBase< Derived > &A)
     Eigenvectors.
• template<typename Derived >
  dmat qpp::hevals (const Eigen::MatrixBase< Derived > &A)
     Hermitian eigenvalues.
• template<typename Derived >
  cmat <a href="mailto:qpp::hevects">qpp::hevects</a> (const Eigen::MatrixBase</a> Derived > &A)
     Hermitian eigenvectors.

    template<typename Derived >

  cmat qpp::funm (const Eigen::MatrixBase< Derived > &A, cplx(*f)(const cplx &))
     Functional calculus f(A)

    template<typename Derived >

  cmat qpp::sqrtm (const Eigen::MatrixBase< Derived > &A)
     Matrix square root.
• template<typename Derived >
  cmat qpp::absm (const Eigen::MatrixBase< Derived > &A)
     Matrix absolut value.

    template<typename Derived >

  cmat qpp::expm (const Eigen::MatrixBase< Derived > &A)
     Matrix exponential.

    template<typename Derived >

  cmat <a href="mailto:qpp::logm">qpp::logm</a> (const Eigen::MatrixBase</a> Derived > &A)
     Matrix logarithm.
• template<typename Derived >
  cmat qpp::sinm (const Eigen::MatrixBase< Derived > &A)
     Matrix sin.

    template<typename Derived >

  cmat qpp::cosm (const Eigen::MatrixBase< Derived > &A)
     Matrix cos.

    template<typename Derived >

  cmat qpp::spectralpowm (const Eigen::MatrixBase< Derived > &A, const cplx z)
     Matrix power.
• template<typename Derived >
  DynMat< typename Derived::Scalar > qpp::powm (const Eigen::MatrixBase< Derived > &A, std::size_t n)
     Matrix power.
• template<typename OutputScalar , typename Derived >
  DynMat< OutputScalar > qpp::cwise (const Eigen::MatrixBase< Derived > &A, OutputScalar(*f)(const type-
  name Derived::Scalar &))
     Functor.
template<typename T >
  DynMat< typename T::Scalar > qpp::kron (const T &head)
     Kronecker product (variadic overload)

    template<typename T, typename... Args>

  DynMat< typename T::Scalar > qpp::kron (const T &head, const Args &...tail)
     Kronecker product (variadic overload)
template<typename Derived >
  DynMat< typename Derived::Scalar > qpp::kron (const std::vector< Derived > &As)
     Kronecker product (std::vector overload)

    template<typename Derived >

  DynMat< typename Derived::Scalar > qpp::kron (const std::initializer list< Derived > &As)
     Kronecker product (std::initializer list overload)
```

template<typename Derived >

DynMat< typename Derived::Scalar > qpp::kronpow (const Eigen::MatrixBase< Derived > &A, std::size_t n)

Kronecker power.

template<typename Derived >

DynMat< typename Derived::Scalar > qpp::reshape (const Eigen::MatrixBase< Derived > &A, std::size_t rows, std::size_t cols)

Reshape.

template<typename Derived >

DynMat< typename Derived::Scalar > qpp::syspermute (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &perm, const std::vector< std::size_t > &dims)

System permutation.

• template<typename Derived >

 $\label{lem:def:def:DynMat} DynMat < typename \ Derived::Scalar > qpp::ptrace1 \ (const \ Eigen::MatrixBase < Derived > &A, \ const \ std \\ ::vector < std::size_t > &dims)$

Partial trace.

• template<typename Derived >

 $\label{lem:def:DynMat} \mbox{DynMat} < \mbox{typename Derived::Scalar} > \mbox{qpp::ptrace2} \mbox{ (const Eigen::MatrixBase} < \mbox{Derived} > \&\mbox{A, const std} \\ \mbox{::vector} < \mbox{std::size_t} > \&\mbox{dims})$

Partial trace.

template<typename Derived >

DynMat< typename Derived::Scalar > qpp::ptrace (const Eigen::MatrixBase< Derived > &A, const std⇔ ::vector< std::size t > &subsys, const std::vector< std::size t > &dims)

Partial trace.

template<typename Derived >

DynMat< typename Derived::Scalar > qpp::ptranspose (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)

Partial transpose.

• template<typename Derived1 , typename Derived2 >

 $\label{lem:def:def:DynMat} \mbox{ Derived1::Scalar } > \mbox{qpp::comm (const Eigen::MatrixBase} < \mbox{ Derived1 } > \mbox{\&A, const Eigen::MatrixBase} < \mbox{ Derived2 } > \mbox{\&B)}$

Commutator.

template<typename Derived1 , typename Derived2 >

DynMat< typename Derived1::Scalar > qpp::anticomm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2 > &B)

Anti-commutator.

 $\bullet \ \ {\sf template}{<} {\sf typename \ Derived} >$

DynMat< typename Derived::Scalar > qpp::prj (const Eigen::MatrixBase< Derived > &V)

Projector.

• template<typename Derived >

 $\label{lem:decomposition} \mbox{DynMat} < \mbox{typename Derived::Scalar} > \mbox{qpp::expandout (const Eigen::MatrixBase} < \mbox{Derived} > \&\mbox{A, std::size} \leftarrow \mbox{_t pos, const std::vector} < \mbox{std::size_t} > \&\mbox{dims})$

Expand out.

• template<typename Derived >

DynMat< typename Derived::Scalar > qpp::grams (const std::vector< Derived > &Vs)

Gram-Schmidt orthogonalization (std::vector overload)

• template<typename Derived >

DynMat< typename Derived::Scalar > qpp::grams (const std::initializer list< Derived > &Vs)

Gram-Schmidt orthogonalization (std::initializer_list overload)

• template<typename Derived >

DynMat< typename Derived::Scalar > qpp::grams (const Eigen::MatrixBase< Derived > &A)

Gram-Schmidt orthogonalization (Eigen expression (matrix) overload)

std::vector< std::size t > qpp::n2multiidx (std::size t n, const std::vector< std::size t > &dims)

Non-negative integer index to multi-index.

std::size_t qpp::multiidx2n (const std::vector< std::size_t > &midx, const std::vector< std::size_t > &dims)
 Multi-index to non-negative integer index.

ket qpp::mket (const std::vector< std::size t > &mask)

Multi-partite qubit ket.

ket qpp::mket (const std::vector< std::size_t > &mask, const std::vector< std::size_t > &dims)

Multi-partite qudit ket (different dimensions overload)

ket qpp::mket (const std::vector< std::size_t > &mask, std::size_t d)

Multi-partite qudit ket (same dimensions overload)

- std::vector< std::size_t > qpp::invperm (const std::vector< std::size_t > &perm)
 Inverse permutation.
- std::vector< std::size_t > app::compperm (const std::vector< std::size_t > aperm, const std::vector< std
 ::size_t > aperm, const std::vector< std
 ::size_t

Compose permutations.

7.14 include/internal.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

- qpp::internal
- qpp

Functions

- void qpp::internal::_n2multiidx (std::size_t n, std::size_t numdims, const std::size_t *dims, std::size_t *result)
- std::size t qpp::internal:: multiidx2n (const std::size t *midx, std::size t numdims, const std::size t *dims)
- template<typename Derived >

bool qpp::internal::_check_square_mat (const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ \text{template}{<} \text{typename Derived} >$

bool qpp::internal::_check_vector (const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

bool qpp::internal:: check row vector (const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ \mathsf{template}{<} \mathsf{typename} \ \mathsf{Derived} >$

bool qpp::internal::_check_col_vector (const Eigen::MatrixBase< Derived > &A)

• template<typename T >

bool qpp::internal::_check_nonzero_size (const T &x)

bool qpp::internal::_check_dims (const std::vector< std::size_t > &dims)

- template<typename Derived >
 bool qpp::internal::_check_dims_match_mat (const std::vector< std::size_t > &dims, const Eigen::Matrix
 Base< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_dims_match_cvect (const std::vector< std::size_t > &dims, const Eigen::Matrix
 Base< Derived > &V)
- template<typename Derived >
 bool qpp::internal::_check_dims_match_rvect (const std::vector< std::size_t > &dims, const Eigen::Matrix
 Base< Derived > &V)
- bool qpp::internal::_check_eq_dims (const std::vector< std::size_t > &dims, std::size_t dim)
- bool qpp::internal::_check_subsys_match_dims (const std::vector< std::size_t > &subsys, const std
 ::vector< std::size_t > &dims)
- bool qpp::internal::_check_perm (const std::vector< std::size_t > &perm)
- template<typename Derived1, typename Derived2 >
 DynMat< typename Derived1::Scalar > qpp::internal::_kron2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2 > &B)
- template<typename T >
 void qpp::internal::variadic_vector_emplace (std::vector< T > &)
- template<typename T, typename First, typename... Args>
 void qpp::internal::variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&...args)

7.15 include/io.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

- template<typename T >
 void qpp::disp (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]",
 std::ostream &os=std::cout)
- template<typename T >
 void qpp::displn (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)
- template<typename T >
 void qpp::disp (const T *x, const std::size_t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)

- template<typename T >
 void qpp::displn (const T *x, const std::size_t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)
- template<typename Derived >
 void qpp::disp (const Eigen::MatrixBase< Derived > &A, double chop=chop, std::ostream &os=std::cout)
- template<typename Derived >
 void qpp::displn (const Eigen::MatrixBase< Derived > &A, double chop=chop, std::ostream &os=std::cout)
- void qpp::disp (const cplx c, double chop=chop, std::ostream &os=std::cout)
- void qpp::displn (const cplx c, double chop=chop, std::ostream &os=std::cout)
- template<typename Derived >
 void qpp::save (const Eigen::MatrixBase< Derived > &A, const std::string &fname)
- template<typename Derived >
 DynMat< typename Derived::Scalar > qpp::load (const std::string &fname)

7.16 include/matlab.h File Reference

```
#include "mat.h"
#include "mex.h"
Include dependency graph for matlab.h:
```


Namespaces

• qpp

Functions

- template<typename Derived >
 Derived qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
- template<>
 dmat qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
- template<>
 cmat qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
- template<typename Derived >
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)
- template<>
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< dmat > &A, const std::string &mat_file, const std
 ::string &var_name, const std::string &mode)

template<>
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< cmat > &A, const std::string &mat_file, const std::string &mat_file, const std::string &mode)

7.17 include/qpp.h File Reference

```
#include <algorithm>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <exception>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <ostream>
#include <random>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include <Eigen/Dense>
#include <Eigen/SVD>
#include "constants.h"
#include "types.h"
#include "classes/exception.h"
#include "classes/singleton.h"
#include "classes/states.h"
#include "classes/randevs.h"
#include "internal.h"
#include "functions.h"
#include "classes/gates.h"
#include "classes/stat.h"
#include "entropies.h"
#include "entanglement.h"
#include "channels.h"
#include "io.h"
#include "random.h"
#include "classes/qudit.h"
#include "classes/timer.h"
Include dependency graph for qpp.h:
```


Namespaces

• qpp

Variables

```
    RandomDevices & qpp::rdevs = RandomDevices::get_instance()
        qpp::RandomDevices Singleton
    const Gates & qpp::gt = Gates::get_instance()
        qpp::Gates const Singleton
```

const States & qpp::st = States::get_instance()

qpp::States const Singleton

7.18 include/random.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

```
• template<typename Derived >
  Derived <a href="mailto:qpp::rand">qpp::rand</a> (std::size_t rows, std::size_t cols, double a=0, double b=1)
template<>
  dmat qpp::rand (std::size t rows, std::size t cols, double a, double b)
template<>
  cmat qpp::rand (std::size t rows, std::size t cols, double a, double b)

    double <a href="mailto:qpp::rand">qpp::rand</a> (double a=0, double b=1)

    long long qpp::randint (long long a, long long b)

• template<typename Derived >
  Derived <a href="mailto:qpp::randn">qpp::randn</a> (std::size_t rows, std::size_t cols, double mean=0, double sigma=1)
template<>
  dmat qpp::randn (std::size_t rows, std::size_t cols, double mean, double sigma)
  cmat qpp::randn (std::size_t rows, std::size_t cols, double mean, double sigma)
• double qpp::randn (double mean=0, double sigma=1)

    cmat qpp::randU (std::size_t D)

    cmat qpp::randV (std::size_t Din, std::size_t Dout)
```

std::vector< cmat > qpp::randkraus (std::size_t n, std::size_t D)

cmat qpp::randH (std::size_t D)

- ket qpp::randket (std::size_t D)
- cmat qpp::randrho (std::size_t D)
- std::vector< std::size_t > qpp::randperm (std::size_t n)

7.19 include/types.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Typedefs

- using qpp::cplx = std::complex< double >
 - Complex number in double precision.
- using qpp::cmat = Eigen::MatrixXcd

Complex (double precision) dynamic Eigen matrix.

using qpp::dmat = Eigen::MatrixXd

Real (double precision) dynamic Eigen matrix.

- using qpp::ket = Eigen::Matrix< cplx, Eigen::Dynamic, 1 >
 - Complex (double precision) dynamic Eigen column matrix.
- using qpp::bra = Eigen::Matrix < cplx, 1, Eigen::Dynamic >

Complex (double precision) dynamic Eigen row matrix.

 $\bullet \ \ \text{template}{<} \text{typename Scalar} >$

 $using \ qpp::DynMat = Eigen::Matrix < Scalar, Eigen::Dynamic, Eigen::Dynamic > \\$

Dynamic Eigen matrix over the field specified by Scalar.

Index

aham	00
absm	qpp, 23
qpp, 15	displn
adjoint 10	qpp, 24, 25
qpp, 16	dmat
anticomm	qpp, 15
qpp, 16	ee
bra	qpp, 62
qpp, 15	entanglement
άρρ, 13	qpp, 25
CUSTOM EXCEPTION	eps
qpp::Exception, 71	qpp, 62
channel	evals
qpp, 17	qpp, 26
choi	evects
qpp, 19	qpp, 27
choi2kraus	expandout
qpp, 20	qpp, 27
chop	expm
qpp, 62	qpp, 28
cmat	
qpp, 15	funm
comm	qpp, <mark>29</mark>
qpp, 20	
compperm	gconcurrence
qpp, 21	qpp, 29
conjugate	grams
qpp, 21	qpp, 30, 31
cosm	gt
qpp, 22	qpp, 62
cplx	hevals
qpp, 15	qpp, 31
cwise	hevects
qpp, 22	qpp, 32
DIME INIVALID	
DIMS_INVALID	inverse
qpp::Exception, 71 DIMS_MISMATCH_CVECTOR	qpp, <mark>32</mark>
qpp::Exception, 71	invperm
DIMS MISMATCH MATRIX	qpp, 34
qpp::Exception, 71	lead
DIMS MISMATCH RVECTOR	ket
qpp::Exception, 71	qpp, 15 kron
DIMS MISMATCH VECTOR	qpp, 34–36
qpp::Exception, 71	
DIMS_NOT_EQUAL	kronpow qpp, 36
qpp::Exception, 71	qpp, oo
det	load
qpp, 23	qpp, 37
disp	logdet
•	<u> </u>

INDEX 107

qpp, 37		qpp, 47
logm	qpp.	, 9
qpp, 38		absm, 15
MATRIX NOT OVECTOR		adjoint, 16
MATRIX_NOT_CVECTOR		anticomm, 16
qpp::Exception, 71		bra, 15
MATRIX_NOT_RVECTOR		channel, 17
qpp::Exception, 71 MATRIX_NOT_SQUARE		choi, 19
qpp::Exception, 71		choi2kraus, 20
MATRIX_NOT_SQUARE_OR_CVECTOR		chop, 62
qpp::Exception, 71		cmat, 15 comm, 20
MATRIX_NOT_SQUARE_OR_RVECTOR		compperm, 21
qpp::Exception, 71		conjugate, 21
MATRIX_NOT_SQUARE_OR_VECTOR		cosm, 22
qpp::Exception, 71		cplx, 15
MATRIX_NOT_VECTOR		cwise, 22
qpp::Exception, 71		det, 23
maxn		disp, 23
qpp, 62		displn, 24, 25
mket		dmat, 15
qpp, 38, 39		ee, <mark>62</mark>
multiidx2n		entanglement, 25
qpp, 40		eps, 62
n2multiidx		evals, 26
qpp, 40		evects, 27
NOT BIPARTITE		expandout, 27
qpp::Exception, 71		expm, 28
NOT_QUBIT_GATE		funm, 29
qpp::Exception, 71		gconcurrence, 29
NOT_QUBIT_SUBSYS		grams, 30, 31 gt, 62
qpp::Exception, 71		hevals, 31
norm		hevects, 32
qpp, 41		inverse, 32
OUT OF RANGE		invperm, 34
qpp::Exception, 71		ket, 15
omega		kron, 34–36
qpp, 41		kronpow, 36
Ψρρ , Τ 1		load, 37
PERM INVALID		logdet, 37
qpp::Exception, 71		logm, 38
pi		maxn, 62
qpp, 62		mket, 38, 39
powm		multiidx2n, 40
qpp, 42		n2multiidx, 40
prj		norm, 41 omega, 41
qpp, 42		pi, 62
ptrace qpp, 43		powm, 42
ptrace1		prj, 42
qpp, 44		ptrace, 43
ptrace2		ptrace1, 44
qpp, 45		ptrace2, 45
ptranspose		ptranspose, 46
qpp, 46		qmutualinfo, 47
		rand, 48, 49
qmutualinfo		randint, 49

108 INDEX

	randket, 50	qpp, 51
	randkraus, 50	randrho
	randn, 50, 51	qpp, 51
	randperm, 51	rdevs
	randrho, 51	qpp, 62
	rdevs, 62	renyi
	renyi, 52	qpp, 52
	reshape, 53	reshape
	save, 53	qpp, 53
	schmidtcoeff, 54	
	schmidtprob, 55	SUBSYS_MISMATCH_DIMS
	shannon, 56	qpp::Exception, 71
	sinm, 56	save
	spectralpowm, 57	qpp, 53
	sqrtm, 57	schmidtcoeff
	st, 63	qpp, 54
	sum, 58	schmidtprob
	super, 58	qpp, <u>55</u>
	syspermute, 59	shannon
	trace, 60	qpp, 56
	transpose, 61	sinm
	tsallis, 61	qpp, 56
	Exception	spectralpowm
	CUSTOM EXCEPTION, 71	qpp, 57
	DIMS INVALID, 71	sqrtm
	DIMS_INVALID, 71 DIMS_INVALID, 71	qpp, 57
	DIMS_MISMATCH_GVECTOR, 71 DIMS_MISMATCH_MATRIX, 71	st
	-	qpp, 63
	DIMS_MISMATCH_RVECTOR, 71	sum
	DIMS_MISMATCH_VECTOR, 71	qpp, 58
	DIMS_NOT_EQUAL, 71	super
	MATRIX_NOT_CVECTOR, 71	•
	MATRIX_NOT_RVECTOR, 71	qpp, 58
	MATRIX_NOT_SQUARE, 71	syspermute
	MATRIX_NOT_SQUARE_OR_CVECTOR, 71	qpp, <mark>59</mark>
	MATRIX_NOT_SQUARE_OR_RVECTOR, 71	TYPE MISMATCH
	MATRIX_NOT_SQUARE_OR_VECTOR, 71	qpp::Exception, 71
	MATRIX_NOT_VECTOR, 71	trace
	NOT_BIPARTITE, 71	qpp, 60
	NOT_QUBIT_GATE, 71	transpose
	NOT_QUBIT_SUBSYS, 71	qpp, 61
	OUT_OF_RANGE, 71	tsallis
	PERM_INVALID, 71	qpp, 61
	SUBSYS_MISMATCH_DIMS, 71	чрр, от
	TYPE_MISMATCH, 71	UNDEFINED TYPE
	UNDEFINED_TYPE, 71	qpp::Exception, 71
	UNKNOWN_EXCEPTION, 71	UNKNOWN EXCEPTION
	ZERO_SIZE, 71	qpp::Exception, 71
		дрр Ехоорион, 71
rand		ZERO SIZE
	app, 48, 49	qpp::Exception, 71
randi		
	qpp, 49	
rand		
	qpp, 50	
	kraus	
	qpp, 50	
rand		
	qpp, 50, 51	
rand	perm	