# Unified Simplified Grapheme Acoustic Modeling for Medieval Latin LVCSR







**THINKTech** 

lili@speechtex.com

#### Motivation

• Digitizing medieval charters when optical character recognition in not sufficient

Lili Szabó, Péter Mihajlik, András Balog, Tibor Fegyó

#### Challenges

- Latin is not spoken natively
- There is no available speech database, and it is resource-heavy to create one
- Many variants/dialects exists, and we can only make guesses about the pronunciation
- The pronunciation mainly depends on
- the **era** of the read text
- the **georaphical region** where the text originates from
- the **native language** of the speaker

#### Text data

- In-domain (Monasterium): medieval charters (HU)
- -480k/35k token/type
- Background (Latin Library): historical texts
- 1.3M/115k token/type

## **Spelling variants**

| jam    | iam    |
|--------|--------|
| judex  | iudex  |
| gracia | gratia |

## Language model

- 3-gram language model
- Kneser-Ney smoothing
- Interpolating the two corpora

System diagram

• SRILM [2]

## Perplexity measures on

Table 1: Perplexity/OOV rate (%)

| Corpus        | CZ       | HU     | PL       | All     |
|---------------|----------|--------|----------|---------|
| Monasterium   |          |        |          |         |
| Latin Library | 3266/7.8 |        |          |         |
| Interpolated  | 924/3.9  | 82/0.9 | 2288/5.5 | 672/3.5 |

## Speech data

- CZ: 76 hours
- HU:
- -G2P model: 567 hours
- -GRA and USG models: 112 hours
- PL: 31 hours
- RO: 35 hours

#### Test data

- Independent medieval charters read by historians
- Region of test text origin: CZ, HU, PL
- Native language of test speakers: CZ, HU, PL, SK

### **Acoustic model**

- 6-hidden-layer DNN
- 2000 neurons per layer
- p-norm activation function

• 7000-11000 senones (softmax size)

• Kaldi toolkit [1]

#### **Dimensions of data**

- Training text Language CZ Model HU Medieval GRA Latin ASR Acoustic G2P RO Model USG SK Speaker Evaluate
  - **GRA**: baseline grapheme model **G2P**: grapheme-to-phoneme model **USG**: Unified Simplified Grapheme model

Test text

Figure 1: Medieval Latin Speech Recognizer

- Region of training text: Kingdom of Hungary (HU), mixed
- Region of test text origin: Kingdom of Bohemia (CZ), Kingdom of Hungary (HU), Kingdom of Poland (PL)
- Speech data: Czech (CZ), Hungarian (HU), Polish (PL), Romanian (RO)
- Native language of test speakers: CZ, HU, PL, Slovak (SK)
- Model type: GRA, G2P, USG

## **Baseline Grapheme Model**

- All graphemes are trained
- Only those grapheme models are retained that are part of the Latin alphabet, e.g.
- -keeping model of r
- throwing away model of ř

Table 2: Word Error Rate (WER[%]) results for monolingual grapheme-based acoustic models of Czech, Hungarian, Polish and Romanian (CZ, HU, PL, RO).

|             | Speaker |      |      |      |        |
|-------------|---------|------|------|------|--------|
| AM Language | CZ      | HU   | PL   | SK   | $\sum$ |
| CZ          | 53.6    | 73.8 | 62.9 | 45.7 | 59.0   |
| HU          | 33.7    | 28.6 | 47.1 | 29.1 | 34.6   |
| PL          | 65.0    | 67.6 | 46.4 | 51.1 | 57.5   |
| RO          | 53.6    | 69.1 | 44.7 | 43.8 | 52.8   |

## Knowledge-based grapheme-to-phoneme (G2P) mapping

Figure 2: Latin digraph context-insensitive rewrite rules and context-sensitive rewrite rules. V: vowel, VP: palatal vowel, ^VP: everything but a palatal vowel, C: consonant, \*: zero or any, ^: beginning of word,  $[\hat{s}tx]$ : not s, t or x.



Table 3: WER[%] for Czech-Latin sourcetarget G2P model. Acoustic model training set: 76 hours. Latin Tost Toyt

|         | Latin Test Text |      |      |        |  |  |
|---------|-----------------|------|------|--------|--|--|
| Speaker | CZ              | HU   | PL   | $\sum$ |  |  |
| CZ      |                 | 28.2 |      |        |  |  |
| HU      | 48.7            | 40.0 | 58.7 | 49.1   |  |  |
| PL      | 53.3            | 18.2 | 53.2 | 41.6   |  |  |
| SK      | 30.3            | 30.0 | 44.0 | 34.8   |  |  |
| $\sum$  | 43.9            | 28.9 | 50.8 | 41.2   |  |  |
|         |                 |      |      |        |  |  |

Table 4: WER[%] for Hungarian-Latin source-target G2P model. Acoustic model training set: 567 hours.

|         | Latin Test Text |      |      |        |  |
|---------|-----------------|------|------|--------|--|
| Speaker | CZ              | HU   | PL   | $\sum$ |  |
| CZ      | 19.4            | 6.4  | 28.0 | 17.9   |  |
| HU      | 25.0            | 25.4 | 20.2 | 23.5   |  |
| PL      | 28.9            | 15.4 | 41.3 | 28.5   |  |
| SK      | 20.4            | 9.1  | 22.9 | 17.5   |  |
| $\sum$  | 22.6            | 12.5 | 28.1 | 21.1   |  |

#### Unified Simplified Grapheme (USG) Model

• Utilizing many available language resources in the hopes that statistical variations help generalizing over different pronunciations

Table 5: Simplification examples for the unified model.

| Language          | CZ   | HU | PL  | RO  |
|-------------------|------|----|-----|-----|
| Orthographic form | řekl | őz | miś | apă |
| USG transcription | rekl | ΟZ | mis | apa |

Table 6: WER[%] for all the three-language USG models.

Speaker CZ HU PL SK  $\sum$ AM Language 28.2 28.2 27.7 22.4 26.6 CZ+HU+PL CZ+HU+RO 23.3 21.4 23.9 19.2 **21.9** CZ+PL+RO 24.6 33.1 25.6 19.8 25.8 HU+PL+RO 24.8 21.5 25.7 20.7 23.2

Table 7: WER[%] for USG model of Czech, Hungarian, Polish and Romanian (CZ+HU+PL+RO).

|         | Latin Test Text |      |      |        |  |
|---------|-----------------|------|------|--------|--|
| Speaker | CZ              | HU   | PL   | $\sum$ |  |
| CZ      | 20.4            | 11.8 | 30.7 | 21.0   |  |
| HU      | 21.1            | 14.6 | 25.7 | 20.5   |  |
| PL      | 23.0            | 10.0 | 33.0 | 22.0   |  |
| SK      | 14.5            | 12.7 | 24.8 | 17.3   |  |
| $\sum$  | 19.9            | 12.2 | 29.0 | 20.4   |  |

## **Conclusions**

- Knowledge-based G2P modeling is good, but time consuming and restricted
- Four-language USG modeling is the best
- It is able to generalize over different speaker test sets

#### References

- [1] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., Vesely, K.: The kaldi speech recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE Signal Processing Society (2011)
- [2] Stolcke, A.: Srilm an extensible language modeling toolkit. In: In Proceedings of the 7th International Conference on Spoken Language Processing (ICSLP). pp. 901–904 (2002)