TABLE OF CONTENTS

TABLE OF CONTENTS	1
Tables and Figures	2
- Frequency Table	2
- Stem and Leaf	2
Formulas	4
1. Box and Plot	4
2. Trimean	5
3. Geometric Mean	5
4. Trimmed Mean	5
5. Pearson's correlation	5
6. Probability of a Single Event	5
7. Probability of 2 or more independent events	5
8. Probability of 2 or more dependent events	5
9. Permutations	5
10. Combinations	6
11. Binomial Distribution	6
12. Poisson Distribution	6
13. Multinomial Distribution	6
14. Hypergeometric Distribution	7
15. Variance and Standard Deviation	7
Step-by-Step Tutorials	8
- One Way ANOVA - Independent Measures	8
- Two Way ANOVA	11
Links	15

Tables and Figures

- Frequency Table

Previous Ownership	Frequency	Relative Frequency
None	85	$\frac{85}{500} = 0.17$
Windows	60	$\frac{60}{500} = 0.12$
Macintosh	355	$\frac{355}{500} = 0.71$
Total	500	$\frac{500}{500} = 1$

- Stem and Leaf

3|2337 2|001112223889 1|2244456888899 0|69

3|7 3|233 2|889 2|001112223 1|56888899 1|22444 0|69

11	4	
	3	7
332	3	233
8865	2	889
44331110	2	001112223
987776665	1	56888899
321	1	22444
7	0	69

Formulas

1. Box and Plot

Name	Formula
25th Quartile / Lower Hinge	$\frac{(n+1)}{4}$ th term
50th Quartile / Median	When n is odd:
	$\frac{(n+1)}{2}$ th term
	When n is even:
	$\frac{(\frac{n}{2})th\ term\ + ((\frac{n}{2})+1)th\ term}{2}$
75th Quartile / Upper Hinge	$\frac{3(n+1)}{4}$ th term
IQR / H-spread	Upper Hinge - Lower Hinge
Step	1.5 × HSpread
Upper Inner Fence	Upper Hinge + 1 Step
Lower Inner Fence	Lower Hinge - 1 Step
Upper Outer Fence	Upper Hinge + 2 Step
Lower Outer Fence	Lower Hinge - 2 Step
Upper Adjacent	Largest value below Upper Inner Fence
Lower Adjacent	Smallest value below Lower Inner Fence
Outlier	Values beyond Upper and Inner Fence
Extreme outlier	Values beyond Upper and Outer Fence

Outside Value	A value beyond an Inner fence but not beyond an Outer Fence
Far Out Value	A value beyond an Outer Fence

2. Trimean

-
$$Trimean = \frac{Q_1 + 2Q_2 + Q_3}{4}$$

3. Geometric Mean

-
$$\underline{x} geom = \sqrt[n]{x_1 \times x_2 \times ... \times x_n}$$

4. Trimmed Mean

• Remove the values in the bottom X% and top X% of the dataset. Then, calculate the mean of the remaining values.

5. Pearson's correlation

$$\circ \quad r = \frac{\Sigma xy}{\sqrt{\Sigma x^2 \Sigma y^2}}, \text{ where x is } X - \underline{X} \text{ and y is } Y - \underline{Y}$$

6. Probability of a Single Event

$$\circ \quad probability = \frac{possible\ outcomes}{total\ outcomes}$$

7. Probability of 2 or more independent events

$$\circ \quad P(A \ and \ B) = P(A) \times P(B)$$

8. Probability of 2 or more dependent events

$$\circ P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

- It covers 3 possibilities:
 - 1) A occurs and B doesn't occur
 - 2) B occurs and A doesn't occur
 - 3) Both A and B occur

9. Permutations

Used when the order matters

$$\circ \quad {}_{n}P_{r} = \frac{n!}{(n-r)!}$$

10. Combinations

Used when the order doesn't matter

$$\circ \quad {}_{n}C_{r} = \frac{n!}{r!(n-r)!}$$

11. Binomial Distribution

$$P(x) = \frac{N!}{x!(N-X)!} \pi^{x} (1-\pi)^{N-x}$$

- \circ N = number of trials
- \circ x = number of successes
- \circ π = probability of success
- \circ mean = $N \times \pi$
- $\sigma^2 = N\pi(1 \Pi) \rightarrow \text{variance}$

12. Poisson Distribution

 A discrete (countable) probability distribution, used to predict the number of times an event occurs.

$$o p = \frac{e^{-\mu}\mu^x}{x!}$$

- \circ e = base of natural logarithms (2.7183)
- \circ μ = mean number of successes
- \circ x = number of successes in question
- o example:

The mean number of calls to a fire station on a weekday is 8.

The probability that on a given weekday there would be 11 calls:

$$p = \frac{e^{-8}8^{11}}{11!} = 0.072$$

13. Multinomial Distribution

 Obtains a specific set of outcomes when there are k possible outcomes for every event.

- \circ p = probability
- \circ n = total number of events
- \circ $n_1 =$ number of times Outcome 1 occurs

 \circ $n_k = number of times Outcome k occurs$

 \circ p₁ = probability of Outcome 1

 \circ p_k = probability of Outcome k

14. Hypergeometric Distribution

• Used to calculate probabilities when sampling without replacement

$$p = \frac{{}_{k}C_{x} {}_{(N-k)}C_{(n-x)}}{{}_{N}C_{n}}$$

 \circ k = total number of successes in the population

 \circ x = number of successes in the sample

 \circ N = total number of population

 \circ n = number of selection or sampled

$$\circ$$
 $_k C_x$ = number of combinations of k things taken x at a time

$$\circ$$
 mean $=\frac{nk}{N}$

$$\circ sd = \sqrt{\frac{(n)(k)(N-k)(N-n)}{N^2(N-1)}}$$

15. Variance and Standard Deviation

$$\circ \quad Variance = \sigma^2 = \frac{\Sigma(x-\underline{x})^2}{N}$$

$$\circ \quad SD = \sigma = \sqrt{\frac{\Sigma(x - \underline{x})^2}{N}} \to \text{population}$$

$$\circ \quad SD = \sigma = \sqrt{\frac{\Sigma(x-\underline{x})^2}{N-1}} \to \text{sample (for t-test)}$$

16. t-test for one sample

$$\circ t = \frac{\underline{x} - \mu}{\frac{\underline{S}\underline{D}}{\sqrt{n}}}$$

 \circ \underline{x} = calculated mean

 \circ μ = mean given in the question

 \circ n = number of samples

$$\circ$$
 df = n - 1

• Reject the H0 if the t value is beyond the t-critical value

17. t-test for two independent samples

• To test if the mean of two independent groups are different.

$$\circ$$
 H0 = $\mu_1 = \mu_2$

Nondirectional: $\begin{aligned} H_0: \mu_1 - \mu_2 &= 0 \\ H_1: \mu_1 - \mu_2 &\neq 0 \end{aligned}$ Directional, lower tail critical: $\begin{aligned} H_0: \mu_1 - \mu_2 &\geq 0 \\ H_1: \mu_1 - \mu_2 &< 0 \end{aligned}$ Directional, upper tail critical: $\begin{aligned} H_0: \mu_1 - \mu_2 &\leq 0 \\ H_1: \mu_1 - \mu_2 &< 0 \end{aligned}$

- o "improves" → right tailed. Reject H0 if t-value > t-critical value
- \circ "reduces" \rightarrow left tailed. Reject H0 if t-value < t-critical value

$$0 \quad t = \frac{\underline{xA} - \underline{xB}}{\sqrt{\frac{SDA^2}{nA} + \frac{SDB^2}{nB}}}$$

Step-by-Step Tutorials

Reminder: <u>Critical Values</u> and <u>p-values</u> are different variables.

- 1. Critical Values are obtained from the distribution tables for certain tests:
 - t-table (one-tailed / two tailed)
 - One-tailed t-table critical values only cover left side, so if hypothesis asks for something increasing/involves using ≥, then it's 1 - P(X)
 - Two-tailed critical value is \pm , reject null hypothesis if t-value is within the crit value
 - z-table (<u>negative</u> / <u>positive</u>)
 - Left side describes the first two parts of the decimal of your calculated Z value.
 - Top side describes the hundredths place of your Z value.
 - f-table ($\alpha = 0.10 / 0.05 / 0.01$)
- 2. P-values are more of the probability, which you need to use a calculator to get. Usually, the p-value you can get from the calculated statistic and degree of freedom. After getting the p-value, compare it with the significance level which is the α .
- One Way ANOVA Independent Measures

N = Total no. of ppl/objects in the experiment

n = No. of ppl/objects per group

a = No. of experimental groups/conditions

 μ = Sample mean

SS = Sum of Squares

- 1. State Null and Alternate Hypothesis
 - \circ H0 = μ 1 = μ 2 = ... = μ n.
 - \circ H1 = Not all μ's are the same.
- 2. Find degrees of freedom
 - o $df_{between} = a 1 (df numerator)$
 - \circ df_{within} = N a (df denominator)
 - \circ $df_{total} = N 1$

- 3. Find critical value with the 2 df's calculated.
 - o Calculator / Table
- 4. Calculate F-Statistic Value:

SS Between:

$$\circ SS_{\text{between}} = \frac{\Sigma (\Sigma a_i)^2}{n} - \frac{T^2}{N} \text{ where:}$$

- i. $\Sigma(\Sigma a_i)^2$ is the sum of squared sums of all groups. $[(\Sigma A)^2 + (\Sigma B)^2 + ... + (\Sigma Z)^2]$
 - Find total for Group A and square it, find total for Group B and square it, and so on for all groups.
- ii. T^2 is the sum of all elements and then squared $[(\Sigma A) + (\Sigma B) + ... + (\Sigma Z)]^2$
 - Add all elements together, then square it.

OR USE THIS:

Stupid Language Formula:

○ $SS_{between} = n$ [(mean of every group - grand mean)² + ... + (mean of every group - grand mean)²]

SS Within:

$$\circ \quad SS_{\text{within}} = \Sigma Y^2 - \frac{\Sigma(\Sigma a_i)^2}{n} \text{ where:}$$

i. ΣY^2 is the sum of each value squared $[a^2 + b^2 + c^2 + ... + z^2]$

OR USE THIS:

Stupid Language Formula:

- Calculate for every group:
- O SS_{within} (group A) = (every value in group A mean of group A)² + ... + (every value in group A mean of group A)²
- o SS_{within} (group B) = (every value in group B mean of group B)² + ... + (every value in group B mean of group B)²
- Continue for all groups
- \circ SS_{within} = Sum of all SS_{within} groups

SS Total:

$$\circ \quad SS_{total} = SS_{between} + SS_{within}$$

5. Find Mean Squares:

$$O MS_{between} = \frac{SS_{between}}{df_{between}}$$

$$\circ \quad \mathbf{MS_{within}} = \frac{SS_{within}}{df_{within}}$$

6. Calculate F Statistic:

$$\circ \quad F = \frac{MS_{between}}{MS_{within}}$$

- 7. Compare F with the Critical Value:
 - o If calculated F-statistic > critical value, reject the null hypothesis.
 - o If calculated p-value < significance level, reject null hypothesis

- Two Way ANOVA

N = Total no. of ppl/objects in the experiment

n = No. of ppl/objects per group

a = No. of experimental groups/conditions

 μ = Sample mean

SS = Sum of Squares

p = number of categories in Group 1

q = number of categories in Group 2

 σ = Mean Square

1. State Null and Alternate Hypothesis:

 \circ H₀ = Means across Group 1 is the same

 \circ H₀ = Means across Group 2 is the same

 \circ H₀ = There is no interaction between Group 1 and Group 2

2. Calculate:

 $\circ \quad \text{Grand Mean} = \frac{\text{sum of all values}}{N}$

 $O Group 1 Mean = \frac{sum of values in group 1}{n}$

Oroup 2 Mean = $\frac{sum \ of \ values \ in \ group \ 2}{n}$

o Mean for every Group 1 x Group 2 combination

 If Group 1 has m categories, and Group 2 has n categories, you need to find m*n different means.

3. Total:

 $\circ \quad SS_{total} = (x_1 \text{ - grand mean})^2 + \dots + (x_n \text{ - grand mean})^2$

o x here refers to each and every individual recorded value in the dataset.

 $\circ \quad \mathrm{df_{total}} = n \times p \times q - 1$

 $\bigcirc \quad \text{Mean Square } _{\text{total}} = \frac{SS_{total}}{df_{total}}$

4. Between:

○ $SS_{between} = n \times ((mean of every category - grand mean)^2 + ... + (mean of every category - grand mean)^2)$

• Get the sum first THEN multiply with the n.

$$\circ \quad df_{between} = p \times q - 1$$

$$\bigcirc \quad \text{Mean Squares } _{\text{between}} = \frac{SS_{between}}{af_{between}}$$

5. Group 1:

- $SS_{group 1} = n \times q \times (mean of every category for group 1- grand mean)^2 + ... + (mean of every category for group 1 grand mean)^2$
- \circ Df_{group 1} = p 1
- $\bigcirc \quad \text{Mean Squares } \underset{\text{group } l}{\text{group } l} = \frac{SS_{group \ l}}{df_{group \ l}}$

6. Group 2:

- $SS_{group 2} = n \times p \times (mean of every category for group 2- grand mean)^2 + ... + (mean of every category for group 2 grand mean)^2$
- \circ Df_{group 2} = q 1
- $\bigcirc \quad \text{Mean Squares } \underset{\text{group 2}}{\text{group 2}} = \frac{SS_{group 2}}{df_{group 2}}$

7. Interaction:

- \circ $SS_{interaction} = SS_{between} SS_{group 1} SS_{group 2}$
- $O \quad Df_{interaction} = (p 1) (q 1)$

8. Error:

- $SS_{error} = n \times p \times (\text{every sample the mean of its respective category})^2 + ... + (\text{every sample the mean of its respective category})^2$
- $\circ \quad \mathbf{Df}_{\mathrm{error}} = (\mathbf{n} 1) \times p \times q$
- $\bigcirc \quad \text{Mean Squares } \underset{\text{error}}{\text{error}} = \frac{SS_{error}}{df_{error}}$

9. F-Values:

- $\circ \quad F \ Value \ Group \ 1: \frac{\textit{Mean Square}_{\textit{Group 1}}}{\textit{Mean Square}_{\textit{Error}}}$
- F Value Group 2: $\frac{Mean\ Square_{Group\ 2}}{Mean\ Square_{Error}}$

10. Null Hypothesis:

- o Pick either method depending on what ur told to do in the question
- o P-Value Method

- Input into P Value Calculator, find P value.
- Input F-Value Group 1, Df_{group 1} (df numerator), and Df_{error} (df denominator)
- Continue for F values of Group 2 and Interaction (df denominator is Df_{error} for all)
- If value is less than the alpha given in question (in this case 0.05), reject null hypothesis.
- If any of the f values are greater than the null hypothesis, then fail to reject hypothesis.

o F-Critical Method

- Find F-Critical Value with calculator.
- Input alpha (a), Df_{group 1} (df numerator), and Df_{error} (df denominator)
- Find F-Critical Value for Group 2 and Interaction as well.
- If F value greater than F-Critical, reject null hypothesis. If smaller than, fail to reject null hypothesis.

- Chi Square

- 1) H0 = The 2 groups are independentH1 = The 2 groups are not independent.
- 2) Calculate expected Frequency Table:

$$E_{ij} = \frac{\textit{Row Total} \times \textit{Column Total}}{\textit{Grand Total}}$$

3) Calculate the Chi-Square

For every cell:

$$X = \frac{(\textit{Original value - expected frequency})^2}{\textit{expected frequency}}$$

$$X^2 = \textit{Sum of all X from all cells}$$

4) Calculate Degree of Freedom

$$df = (no \ of \ rows - 1) \times (no \ of \ columns - 1)$$

- 5) Get the critical value from the table or get p value with calculator.
- 6) Reject H0 if X² > critical value.Reject H0 if p value < significance level.

https://www.socscistatistics.com/tests/chisquare2/default2.aspx

Links

- 5 Number Summary + IQR + Inner Outer Fence + Outliers + Geometric Mean + Sum of Squares + Standard Deviation (Sample/Population) + Variance Calculator:
 - https://www.hackmath.net/en/calculator/five-number-summary
- 2. Trimmed Mean Calculator:
 - Trimmed Mean Calculator
- 3. Permutation Combination Calculator:
 - https://www.calculator.net/permutation-and-combination-calculator.html
- 4. Binomial Distribution (Singular and Cumulative):
 - https://stattrek.com/online-calculator/binomial
- 5. Pearson's Correlation Coefficient:
 - https://www.socscistatistics.com/tests/pearson/default2.aspx
- 6. One Way ANOVA Independent Measures
 - https://www.socscistatistics.com/tests/anova/default2.aspx
- 7. One WAY ANOVA Repeated Measures
 - https://www.socscistatistics.com/tests/anovarepeated/default.aspx
- 8. Single Sample T-Test:
 - https://www.socscistatistics.com/tests/tsinglesample/default.aspx
- 9. Chi-Square Test:
 - https://www.socscistatistics.com/tests/chisquare2/default2.aspx
- 10. P Value from F-Statistic:
 - https://www.socscistatistics.com/pvalues/fdistribution.aspx
- 11. Critical Value for Multiple Tests:
 - https://www.socscistatistics.com/tests/criticalvalues/default.aspx
- 12. P Value Calculator and F Critical Table:
 - https://datatab.net/tutorial/f-distribution
- 13. Pearson Edexcel Formula Book, Statistics S1, S2 and S3 with complete Z table, Normal Distribution Table, and Statistical Formula(Page 14 23)
 - https://qualifications.pearson.com/content/dam/pdf/International%20Advanced%2
 OLevel/Mathematics/2018/Specification-and-Sample-Assessment/IAL Mathematics-Formula-Book.pdf