

Tópicos Especiais em Otimização

Técnicas Inteligentes Sistemas Imunológicos Artificiais

Leonardo Willer de Oliveira

Juiz de Fora, 15 de Maio de 2017

Referências

Castro, L.N., Zuben, F.J.V., *Learning and optimization using the clonal selection principle*, IEEE Trans Evol Comput 2002; vol. 6, no. 3, pp. 239–251.

Castro, L.N., Zuben, F.J.V., *Artificial immune systems: Part I – Basic theory and applications*, Technical Report TR-DCA 01/99; 1999.

Castro, L.N., Zuben, F.J.V., *Artificial immune systems: Part II – A survey of applications*, Technical Report DCA-RT 02/00; 2000.

Referências

Alves, R.T., Delgado, M.R., Lopes, H.S., Freitas, A.A., *An artificial immune system for fuzzy-rule induction in data mining*, Lecture Notes in Computer Science: Parallel Problem Solving from Nature Springer-Verlag, Birmingham, vol. 3242; 2004. p. 1011–20.

Almeida, T.A., Yamakami, A., Takahashi, M.T., Sistema imunológico artificial para resolver o problema da árvore geradora mínima com parâmetros fuzzy, Pesquisa Operacional 2007;27(1):131–54.

Silva, L.N.C., Engenharia Imunológica: desenvolvimento e aplicação de ferramentas computacionais inspiradas em sistemas imunológicos artificiais. Tese de D.Sc., UNICAMP, Campinas, SP, Brasil, 2001.

Referências

Oliveira, L.W.O., Oliveira, E.J., Gomes, F.V., Silva Junior, I.C., Marcato, A.L.M., Resende, P.V.C., *Artificial Immune Systems applied to the reconfiguration of electrical power distribution networks for energy loss minimization*, Int J Electric Power Energy Syst 2014; 56(1):64–74.

Grupo de Otimização Heurística e Bioinspirada

Aplicações

Aprendizado de Máquinas

- Reconhecimento de Padrões
- Otimização
- Rede Neural Booleana (AntiBody NETwork ABNET)

Introdução

Abordagens tradicionais

- procedimentos sistemáticos, seqüenciais e iterativos
- problemas de complexidade elevada: podem não fornecer o tratamento eficiente
 Exemplo: explosão combinatória

Sistemas naturais

- aplicação de princípios que governam o comportamento de sistemas naturais
- Quando diversos agentes operam em conjunto, comportamentos complexos emergem
- resolução de problemas de complexidade elevada
- robustez (tolerância a pequenas perturbações em componentes individuais)

Introdução

- Sistema imune natural inato
- Resposta rápida e efetiva contra ampla variedade de invasores;
- Imediatamente disponíveis, sem exigir prévia exposição aos mesmos;
- Sistema imune natural adaptativo
- Resposta mais lenta e duradoura;
- Produção de anticorpos a um determinado agente infeccioso específico.

SIA

Sistema
Imunológico
Artificial

Sistema Imune Adaptativo

- Célula B x receptor (anticorpo)
 - Especificidade
- Antígeno (invasor)
- Complementaridade x Afinidade

- Ativação da célula B (limiar de afinidade)
- Maturação de afinidade
 - Seleção clonal
 - Clonagem
 - Hipermutação somática
 - Seleção negativa
- Plasmóticos x Anticorpos
- Edição de receptores (diversidade)

Princípio da Seleção Clonal

"Apenas aquela célula capaz de reconhecer um determinado estímulo antigênico irá se proliferar, sendo, portanto, selecionada em detrimento das outras".

Maturação de Afinidade

- □ Hipermutação Somática + Seleção Clonal → exploração local do espaço de regiões
- □ Edição de Receptores → resposta imunológica sai de ótimos locais insatisfatórios

Engenharia Imunológica

- Silva, L.N.C. (2001)
- Formas de modelar matematicamente
 - diversos componentes do sistema imune natural
 - elementos com os quais interagem
 - medir suas interações (afinidade)
- Enfoque: células B
- Tópicos abordados:
 - Espaço de formas
 - Medição de afinidade Ab-Ag
 - Medula óssea geração de linfócitos B
 - Seleção Negativa
 - Hipermutação Somática
 - Seleção Clonal
 - Modelos contínuos de rede imunológica

Espaço de Formas (Shape-Space)

- Grau de ligação x Afinidade
- Afinidade mútua mínima x Região de reconhecimento V_ε
- Forma generalizada de uma molécula
 - Conjunto L de parâmetros: comprimento, largura, profundidade, distribuição da carga eletrostática, existência de grupos químicos em posições complementares, entre outros.
- Um ponto no espaço L dimensional, Espaço de Formas S, especifica a forma generalizada da região de ligação ao antígeno
- Reflexão
- Lugares geométricos

Medição de Afinidade

$$D = \sum_{i=1}^{L} \left| A\boldsymbol{b}_{i} - A\boldsymbol{g}_{i} \right|$$

Distância de Manhattan

$$D = \sqrt{\sum_{i=1}^{L} (A\boldsymbol{b}_i - A\boldsymbol{g}_i)^2}$$

Distância Euclidiana

$$D = \sum_{i=1}^{L} \delta_i, \text{ onde } \delta_i = \begin{cases} 1 & \text{se } Ab_i \neq Ag_i \\ 0 & \text{outros casos} \end{cases}$$

Distância de Hamming

$$D = D_H + \sum_i 2^{l_i}$$

 $D = D_H + \sum_i 2^{l_i}$ Medida de afinidade de Hunt (1 = comp. de cada porção de ligação com mais de 2 bits complementares)

$$D = \frac{a+d}{a+d+2(b+c)},$$

$$a = \sum_{i=1}^{L} \zeta_i, \quad \zeta_i = \begin{cases} 1 & Ab_i = Ag_i = 1\\ 0 & \text{outros casos} \end{cases}$$

$$a = \sum_{i=1}^{L} \zeta_{i}, \qquad \zeta_{i} = \begin{cases} 1 & Ab_{i} = Ag_{i} = 1 \\ 0 & \text{outros casos} \end{cases}$$

$$b = \sum_{i=1}^{L} \xi_{i}, \qquad \xi_{i} = \begin{cases} 1 & Ab_{i} = 1, Ag_{i} = 0 \\ 0 & \text{outros casos} \end{cases}$$

$$c = \sum_{i=1}^{L} \gamma_{i}, \qquad \gamma_{i} = \begin{cases} 1 & Ab_{i} = 0, Ag_{i} = 1 \\ 0 & \text{outros casos} \end{cases}$$

$$d = \sum_{i=1}^{L} \varphi_{i}, \qquad \varphi_{i} = \begin{cases} 1 & Ab_{i} = Ag_{i} = 0 \\ 0 & \text{outros casos} \end{cases}$$

$$c = \sum_{i=1}^{L} \gamma_i, \quad \gamma_i = \begin{cases} 1 & Ab_i = 0, Ag_i = 1 \\ 0 & \text{outros casos} \end{cases}$$

$$d = \sum_{i=1}^{L} \varphi_i, \qquad \varphi_i = \begin{cases} 1 & Ab_i = Ag_i = 0 \\ 0 & \text{outros casos} \end{cases}$$

Medida de similaridade de Rogers & Tanimoto

Limiar de Afinidade

- ε Limiar de afinidade Ab-Ag
- Determina se ocorre ou não a ligação
- Função de ativação degrau x função de ativação sigmoidal
 - Valor de ligação: $vl \in [0,1]$

FUNÇÃO DEGRAU

Hipermutação Somática

- Pesquisa no espaço de busca;
 - Geração de variações genéticas aleatórias
- Maturação de afinidade;
- Taxa de hipermutação inversamente proporcional a afinidade.

Seleção Negativa

Distinção próprio x não-próprio

Algoritmo de Seleção Clonal - CLONALG

- Castro e Zuben (2000): Aprendizagem de máquinas e reconhecimento de padrões
- Castro e Zuben (2002): Otimização
- Mecanismos do SIA modelados:
 - Geração do repertório inicial de anticorpos;
 - Afinidade da ligação dos anticorpos ao antígeno;
 - Seleção Clonal;
 - Maturação de afinidade:

Clonagem, Hipermutação Somática e Edição de Receptores.

Parametros do Algoritimo

Engenharia Elétrica Mestrado - Doutorado (Conceito 4 CAPES) Leonardo Willer de Oliveira

N: População n: Individuos a serem clorados Nc: p.N (nº de clones) Algoritmo Básico

Seleção Negativa

Processo de Clonagem

- Castro e Zuben (2002)
- Reconhecimento de Padrões

$$Nc = \sum_{i=1}^{n} round(\frac{\beta \cdot N}{i})$$

n : anticorpos selecionados

N: número total de anticorpos do repertório

 β : fator multiplicativo

Anticorpos ordenados da maior para a menor afinidade

Processo de Clonagem

Otimização

$$Nc = \sum_{i=1}^{n} round(\beta \cdot N)$$

Não privilegia anticorpo por sua afinidade

Processo de Hipermutação

Castro e Zuben (2002)

$$\alpha = e^{-\rho \cdot f}$$

 α : taxa de mutação

ρ: parâmetro de controle

f: afinidade

Alves et al. (2004)

Gerações de alta e baixa mutação intercaladas

Processo de Normalização

- Oliveira et al. (2014)
- Normalização das afinidades dos anticorpos

$$f^*(i) = 1/\left\{1 + \exp\left[-\left(f(i) - \overline{f}\right)/\delta^*\right]\right\}$$

 \overline{f} : valor máximo de afinidade

 $\boldsymbol{\delta}^{\!\!*}$: desvio padrão das afinidades

Problema do Caixeiro Viajante

Soluções Possíveis:

Todos os percursos fechados passando por cada cidade uma única vez.

Objetivo:

Minimizar a distância total do percurso.

✓ Representação das Soluções:

Seqüência de cidades do percurso. s=[B,D,E,C,A]

Distância total do percurso. custo(s) = 6 + 4 + 5 + 4 + 2 = 21

✓ Parâmetros do SIA:

$$N=10$$
 (População)

 $n=2$ (anticorpos seleaovados para clonagem)

 $\beta=0,2$ (factor multiplicativa)

 $\rho=0,3$ (parâmetro de controle - metacão)

 $d=1$ (diversidade - genação alectória)

No. máximo de gerações: 1

Repertório Inicial

		•
Anticorpo	Distância	
s1 = [B,D,E,C,A]	21	
s2 = [A,D,E,B,C]	20	
s3 = [E,B,D,C,A]	22	_
s4 = [A,B,D,E,C]	21	
s5 = [B,E,C,D,A]	21	
s6 = [A,D,B,E,C]	24	
s7 = [A,D,C,B,E]	20	
s8 = [B,E,D,A,C]	20	
s9 = [B,E,D,C,A]	19	
s10 = [E,A,D,C,B]	20	_

Seleção

Clonagem

Afinidade (f) é o inverso da função objetivo (fob) (problema de minimização)

$$f(1) = f[s2] = 1 / fob*[s2] = 1 / 20 = 0,0500$$

 $f(2) = f[s9] = 1 / fob*[s9] = 1 / 19 = 0,0526$

Afinidade normalizada dos anticorpos selecionados $(f^* = f / fmax)$, em que fmax é a máxima afinidade entre os selecionados)

$$f^*[s2] = f[s2] / fmax = 0,0500 / 0,0526 = 0,95$$

 $f^*[s9] = f[s9] / fmax = 0,0526 / 0,0526 = 1,00$

Hipermutação somática

- Clones de s2: $\alpha_{s2} = e^{-\rho \cdot f^*} = e^{-0.3 \cdot 0.95} = 0.75$
- Clones de s9: $\alpha_{s9} = e^{-\rho \cdot f^*} = e^{-0.3 \cdot 1.00} = 0.74$

Hipermutação somática

0,2.10

Número de clones para cada selecionado Nc[s2] = round (β.N) = 2
 Nc[s9] = round (β.N) = 2

Sorteio de um número aleatório (a) para cada clone

s2(clone1) [A,D,E,B,C]: a = 0,81 >
$$\alpha_{s2}$$
 = 0,75 s2(clone1) não muta

s2(clone2) [A,D,E,B,C]: a = 0,54 <
$$\alpha_{s2}$$
 = 0,75 s2(clone2) muta

s9(clone1) [B,E,D,C,A]: a = 0,12 <
$$\alpha_{s9}$$
 = 0,74 s9(clone1) muta

s9(clone2) [B,E,D,C,A]: a = 0,92 >
$$\alpha_{s9}$$
 = 0,74 s9(clone2) não muta

Aplicação do Operador de Mutação

Troca entre duas posições aleatórias

s2(clone2) [A,D,E,B,C] s2(clone2 mutante) [A,B,E,D,C]

s9(clone1) [B,E,D,C,A] s9(clone1 mutante) [A,E,D,C,B]

Avaliação da população de clones após a mutação

 $s2(clone1) [A,D,E,B,C] \rightarrow distância = 20$

s2(clone2 mutante) [A,D,E,B,C] \rightarrow distância = 19

s9(clone1 mutante) [A,E,D,C,B] → distância = 17

 $s9(clone2) [B,E,D,C,A] \rightarrow distância = 19$

Substituição dos n melhores clones após a mutação no repertório de anticorpos

Anticorpo	Distância		Anticorpo	Distância
s1 = [B,D,E,C,A]	21		s1 = [B,D,E,C,A]	21
s2 = [A,D,E,B,C]	20	_	s2 = [A,D,E,B,C]	20
s3 = [E,B,D,C,A]	22	s2	s3' = [A,D,E,B,C]	19
s4 = [A,B,D,E,C]	21	(clone2 mutante)	s4 = [A,B,D,E,C]	21
s5 = [B,E,C,D,A]	21	_	s5 = [B,E,C,D,A]	21
s6 = [A,D,B,E,C]	24	s9	s6' = [A,E,D,C,B]	17
s7 = [A,D,C,B,E]	20	(clone1 mutante)	s7 = [A,D,C,B,E]	20
s8 = [B,E,D,A,C]	20		s8 = [B,E,D,A,C]	20
s9 = [B,E,D,C,A]	19		s9 = [B,E,D,C,A]	19
s10 = [E,A,D,C,B]	20		s10 = [E,A,D,C,B]	20

Edição de receptores

- Geração aleatória de 1 solução (d = 1) → [A,D,B,C,E]
- Inserção do 'd' novo anticorpo na população

Anticorpo	Distância
s1 = [B,D,E,C,A]	21
s2 = [A,D,E,B,C]	20
s3' = [A,D,E,B,C]	19
s4 = [A,B,D,E,C]	21
s5 = [B,E,C,D,A]	21
s6' = [A,E,D,C,B]	17
s7 = [A,D,C,B,E]	20
s8 = [B,E,D,A,C]	20
s9 = [B,E,D,C,A]	19
s10 = [E,A,D,C,B]	20

Anticorpo	Distância	_
s1 = [A,D,B,C,E]	22	
s2 = [A,D,E,B,C]	20	
s3' = [A,D,E,B,C]	19	
s4 = [A,B,D,E,C]	21	
s5 = [B,E,C,D,A]	21	
s6' = [A,E,D,C,B]	17	
s7 = [A,D,C,B,E]	20	
s8 = [B,E,D,A,C]	20	
s9 = [B,E,D,C,A]	19	
s10 = [E,A,D,C,B]	20	31

Convergência? 1 geração → SIM

População final de anticorpos

Anticorpo	Distância
s1 = [A,D,B,C,E]	22
s2 = [A,D,E,B,C]	20
s3' = [A,D,E,B,C]	19
s4 = [A,B,D,E,C]	21
s5 = [B,E,C,D,A]	21
s6' = [A,E,D,C,B]	17
s7 = [A,D,C,B,E]	20
s8 = [B,E,D,A,C]	20
s9 = [B,E,D,C,A]	19
s10 = [E,A,D,C,B]	20

Solução Ótima Encontrada