修改部分在"輸入/輸出介面"和"注意事項"

Homework 3

Mask

一、 概念

Mask 是影像處理中常用到的演算法。爲了解釋方便起見,當要對某原圖 G 進行空間迴旋運算的像素點爲 x(i,j)時,以下用代數 P[0]、P[1]、P[2]、…、P[8] 分別代表座標(i-1,j-1)、(i-1,j)、(i-1,j+1)、(i,j-1)、(i,j)、(i,j+1)、(i+1,j-1)、(i+1,j-1) 上的灰階值;M[0]、M[1]、M[2]、…、M[8]分別代表一個 3*3 Mask 的左上角、上點、右上角、左點、中點、右點、左下角、下點、右下角的灰階值,如圖一、圖二所示。則 Mask 演算法所產生的新像素值 x'(i,j)如下:

$$x'(i,j) = \sum_{n=0}^{8} M[n] * P[n]$$

將原圖 G 的所有像素點都帶入此運算則得結果圖 G'。

M[0]	M[1]	M[2]
M[3]	M[4]	M[5]
M[6]	M[7]	M[8]

圖一、3*3 Mask

		j-1	j	j+1	
i-1		P[0]	P[1]	P[2]	
i	:	P[3]	P[4]	P[5]	•••
i+1		P[6]	P[7]	P[8]	

圖二、原圖 G 位置關係圖

二、 設計規格

1. 系統方塊圖

圖三、系統方塊圖

2. 輸入/輸出介面

表一、輸入/輸出信號

訊號名稱	輸出/入	位元	說明
data_out	output	8	八位元影像資料輸出埠。
out valid output	1	資料輸出旗標信號。	
out_valid output		(當 out_valid 訊號爲 1 時,data_out 才爲有效的訊號。)	
			資料要求旗標訊號。
busy	output	1	(busy 訊號爲 0 時,影像資料將在負緣觸發時送達於 data_in
			埠,每筆資料維持一週期。)
data_in	input	8	八位元影像資料輸入埠。
clk	input	1	時態。請以正緣觸發設計電路, 這樣在接收負緣送達的data_in 時才不會因 delay 而造成錯誤。 (當然若負緣觸發可以通過 testbench 也不算錯。)
rst	input	1	高位準同步(active high synchronous)之系統重置信號。

3. 系統功能描述

完成上述演算法,題目要求的原圖 G 大小為 16*16 pixels,每個 pixel 輸入 為 8-bit。Mask 大小為 3*3,M[0]到 M[8]分別為 1/16、1/8、1/16、1/8、1/4、1/8、 1/16、1/8、1/16,如圖四、圖五所示。

1/16	1/8	1/16
1/8	1/4	1/8
1/16	1/8	1/16

圖四、3*3 Mask 係數圖

圖五、原圖 G

題目在輸入資料時,會從最左上角開始先往右再往下輸入,輸出時也是按此順序測試答案正確與否。注意圖五、原圖 G 的週圍藍色部分由於是邊界故不需做 Mask 運算,直接輸出原資料即可。

三、 注意事項

(1)此題爲循序電路,請特別注意是否有 latch

(2)輸入、輸出皆視爲有號數輸入、輸出皆爲無號數

(3)請附上Flow Summary (Processing - > Compilation Report)於報告中

(4)於 Post-sim 時,可調整"t_Mask.v"內之`define CYCLE 10,請將可測試通過的最小値記錄於報告

四、 作業繳交方式(使用FTP)

(1)請將作業上傳到HW3 資料夾,並且壓縮成以下格式:

#HW?_學號 名字 版本.zip

附註:

第一版爲HW3_學號_名字_001.zip

若有更改則爲HW3_學號 名字 002.zip,以此類推

(2)請將繳交檔案分成三個資料夾,如下表分別爲說明文件、Pre_Sim

與Post Sim

目錄名稱	檔案名稱	
Pre_sim	Mask.v, t_Mask.v	
Post_sim	Mask.v, Mask_v.sdo, t_Mask.v	
說明文件	HW3_學號_名字_版本.doc	
	附註:	
	請於報告內說明設計概念、技巧、使用面積、電路	
	操作速度…	

(3)爲避免網路擁塞影響作業繳交,請盡早上傳作業

五、 評分方式

- (1)作業DEMO 的時間公佈在網頁。
- (2)評分比例: Pre-Sim (70%)、Post-Sim (30%)。
- (3)遲交或上傳檔案有病毒者一律以0分計算。
- (4)抄襲他人作業者一律以0分計算。
- (5) 工作時脈越高、面積越小者,分數越高。

六、 Q&A

有任何問題請 mail 給助教(p76994416@mail.ncku.edu.tw)