

SHORT RESUME

- Harold Molina-Bulla
 - Signal Theory and Communications
 - Working with HPC and Cluster of Workstations/Servers since 1993
 - Implement a medium size Cluster of Servers with 1250 computational cores and 5.3 Tbytes of shared memory since 2004
 - This facilty is located in the Department of Signal Theory and Communcations
 - It is in constant evolution
- Contact: hymolina@ing.uc3m.es or h.molina@tsc.uc3m.es

2021

3

ABOUT THE COURSE

- GOALS
 - Know the different tools for Massive Computing:
 - Local intensive computing: Use all the cores available in your computer
 - Heterogeneous local intensive computing: Use the cores and your Graphics Card (GPU)
 - Distributed intensive computing: Use several computers to crunch data
 - Use of these tools applied to research
 - Learn when you can use a specific tool
 - Not always use the GPU is the best tool to solve a problem
 - Why not?? This is a good question

202

SYLLABUS

- Introduction to Python and several tools
- Short introduction to Massive Computing/High Performance Computing
 - What is Massive Computing (M.C.)?
 - Short History
 - When can I apply M.C.?
 - Common terms in M.C.

2021

5

SYLLABUS

- Local M.C.:
 - Programing M.C. using Parallel Execution in our computers
 - How can I program to use all the cores in my computer
 - Hazzards when you program in Parallel Execution
 - · Hazzards of memory
 - Optimize code for local execution
 - Practical works
 - Basic programs
 - Optimizations
 - Common errors

2021

SYLLABUS

- Heterogeneous M.C.
 - Use of GPU
 - · Architecture of GPUs
 - When can I use GPU
 - Problems using GPU
 - Tips to programming for GPUs
 - Common errors programing for GPUs
 - Practical Work (many, many small programs)...

2021

7

SYLLABUS

- Distributed M.C.
 - What is Big Data!! We make or we have, or we "what?", Big Data
 - What is our atomic data? Can I distribute all the processes?
 - Map Reduce paradigm
 - Use of State of the Art Frameworks for Distributed Data Processing
 - Introduction to SPARK
 - Machine Learning Algorithms in SPARK

202

GRADES

- 20% Each practical work: The student have to upload the practical work notebook 1 week after the class, with results, code commented, comments and conclussions.
- 3 practical works
 - 1 for each theme
 - Can use previous themes
 - 20% Local M.C.
 - 20% GPU M.C.
 - 40% Distributed M.C. (Emphasis in Distributed Machine Learning)

2021

9

BIBLIOGRAPHY

- Advanced Python Programming: Build High Performance, Concurrent, and Multi-Threaded Apps with Python Using Proven Design Patterns; Lanaro, Gabriele;
 Nguyen, Quan; Kasampalis, Sakis
- Hands-On GPU programming with Python and CUDA; Brian. Tuomanen
- Spark: Big Data Processing Made Simple; Chambers, Bill; Zaharia, Matei
- Machine learning with Spark: create scalable machine learning applications to power a modern data-driven business using Spark; Nick Pentreath
- Big Data Analytics with Spark A Practitioner's Guide to Using Spark for Large Scale Data Analysis; Mohammed. Guller.

2 0 2 1