<u>Develop and Deploy Application for No SQL Operation</u> (LAB-M07-02)

Version Control	
Document	Develop and Deploy Web Application for Database CRUD
	Operation
Owner	Ahmad Majeed Zahoory
Version	2.1
Last Change	24 th August 2023
Description of Change	Task steps updated

Lab duration: 60 minutes

Lab scenario

You are preparing to store data in AWS. As a development group, your team has decided to use Python to manage the data from AWS DynamoDB programmatically.

Objectives

After you complete this lab, you will be able to:

- Create DynamoDB Table.
- Create Items in DynamoDB Table.
- Read Item from DynamoDB Table.
- Update Items in DynamoDB Table.
- Delete Items in DynamoDB Table.
- Scan Items from DynamoDB Table.
- Query Items from DynamoDB Table.
- Create DynamoDB Table with GSI.
- · Create DynamoDB Table with LSI.

Task 1: Update IAM Role

In this task, you will update the AWS IAM role with permission to manage the DynamoDB.

Step 1: Update the IAM User Permission

- 1. In the AWS Management Console, on the Services menu, click IAM.
- 2. Select Users.
 - a. Open the **Dev-User-YOUR NAME**.
 - i. Select Permissions.
 - a) Select AmazonS3FullAccess.
 - 1) Select Remove.

- I. Select Remove Policy.
- 3. From the **Dev-User-YOUR NAME** console:
 - Select Permissions.
 - i. Select Add permissions.
 - a) Select Add permissions.

- b. In the **Add permissions** page:
 - i. Permissions options: Select Attach policies directly.
 - ii. Permissions policies:
 - a) Search and Select AmazonDynamoDBFullAccess.

- iii. Select Next.
- c. In the **Review** page:

Note: You can see the **AmazonDynamoDBFullAccess** under the **Permissions summary**.

i. Select Add permissions.

Task 2: Build Server for Development Environment

In this task, you will build the AWS Virtual machine to build development environment and install Python, PyCharm and AWS CLI.

Step 1: Create EC2 Instances

- 4. In the **AWS Management Console**, on the **Services** menu Search and Select **CloudFormation**.
- 5. Choose the **YOUR ALLOCATED REGION**, region list to the right of your account information on the navigation bar.
- 6. Select Create stack and configure:
 - a. In the Create stack page:
 - i. Prepare template: Select Template is ready.

- ii. Template source: Select Upload a template file.
- iii. Choose file: Click on Choose file.
 - a) Navigate and select the Dev-Instance.yaml file.

Note: Dev-Instance.yaml template is provided with the Lab manual.

Note: AWS template performing the following tasks:

- 1. Creating Windows instances.
- 2. Creating **t2.medium** instance (2 vCPU and 4 GB) [This instance type attarct charges].
- 3. Set the "Administrator" password.

Note: You can also use **t2.micro**, but the **performance will be low** to build development environment.

- iv. Select Next.
- b. In the **Specify stack details** page:
 - i. Stack name: Write Dev-Instance-PY.

Note: Leave other details as default.

ii. Select Next.

c. In the Configure stack options page:

Note: Leave all the details as default.

- i. Select Next.
- d. In the Review Dev-Instance-PY page:

Note: Review all the details.

i. Select Submit.

Note: You can see the **Stack** status as **CREATE_IN_PROGRESS**.

Note: Wait, till you can see the **Stack** status as **CREATE_COMPLETE**. You can **Refresh** your screen

Step 2: View the Output

- 7. From the Dev-Instance-PY CloudFormation console:
 - a. Select Outputs.

Note: Copy the DevPYInstance Public IP address in the Notepad.

Step 3: Connect to Instance

- 8. From the Local Desktop/ Laptop (Windows Desktop), right click on Start & Run.
 - a. In the Open, write mstsc.
 - b. Select Ok.
 - i. From the Remote Desktop Connection:
 - a) **Computer**: Write the **Public IP Address** of the **DevPYInstance**.
 - b) Select Connect.

Note: You can **get the prompt** to enter the **Username** and **Password**.

- 1) **Username:** Write **Administrator**.
- 2) Password: Write lab-password@123.
- 3) Select Ok.

Step 4: Install the Python

- 9. From the **DevPYInstance** (Windows Server 2022).
 - a. Download and install the Python for Windows x64.

Note: Use the below URL to download the Python 3.11 for Windows.

https://bitbucket.org/ahmadzahoory/aws-sdk/downloads/python-3.11.4-amd64.exe

Note: Wait, till Python install succesfully.

Step 5: Configure the Environment

- 10. From the DevPYInstance, right click on Start & Run.
 - a. In the Open, write
 C:\Users\Administrator\AppData\Local\Programs\Python\Python311\Scripts.

Note: You can see the **PIP** executables.

- 11. From the DevPYInstance, right click on Start & Run.
 - a. In the Open, write cmd.
 - b. Select Ok.
 - i. From the **Command line interpreter**:
 - a) Execute the below command to set the Environment variables:

Note: You can see the **Sucess** message.

Step 6: Check the Python and Pip Version

- 12. From the DevPYInstance, right click on Start & Run.
 - a. In the Open, write cmd.
 - b. Select Ok.
 - i. From the Command line interpreter:
 - a) Execute the below command to verify the Python version:

py --version

Note: You can see the **Python** installed **version**.

- ii. From the **Command line interpreter**:
 - a) Execute the **below command** to verify the PIP version:

pip -V

Note: You can see the Pip installed **version**.

Step 7: Install the PyCharm IDE

13. Download and Install the PyCharm IDE for Community Edition.

Note: Use the below URL to download the **PyCharm IDE**.

https://www.jetbrains.com/pycharm/

Note: Wait, till PyChram IDE install succesfully.

Note: Don't launch the **PyCharm IDE**.

Step 8: Install the AWS CLI V2

- 14.From the **DevPYInstance**.
 - a. Download and install the AWS CLI v2.

Note: Use the below URL to download the AW CLI v2.

https://aws.amazon.com/cli/

Note: Wait, till AWS CLI v2 install succesfully.

Check the AWS CLI Version

- 15. From the DevPYInstance, right click on Start & Run.
 - a. In the Open, write cmd.
 - b. Select Ok.
 - i. From the **Command line interpreter**:
 - a) **Execute** the **below command** to **verify** the **AWS version**.

aws --version

Note: You can see the AWS CLI installed version.

Note: If you can see the "'aws' is not recognized as an internal or external command" message, Restart the DevPYInstance.

Step 9: Configure the Credentials and Configuration

- 16. From the **DevPYInstance**, right click on **Start** & **Run**.
 - a. In the Open, write cmd.
 - b. Select Ok.
 - i. From the Command line interpreter:
 - a) Execute the **below command** to configure the AWS credentials.

aws configure

- a) AWS Access Key ID: Type Dev-User-YOUR NAME access key, press Enter key to continue.
- b) AWS Secret Access Key: Type Dev-User-YOUR NAME secret access key, press Enter key to continue.

Note: Copy the **access key** and **secret access key** of the IAM user **Dev-User** from **.csv** file which you have downloaded in the previous step.

c) **Default region name**: Type **YOUR ALLOCATED REGION CODE**, press **Enter** key to continue.

Note: Refer the link to know your respective region Code https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

d) **Default output format**: Type **ison**, press **Enter** key to continue.

b) Execute the below command to exit.

exit

Step 10: Verify the Configuration

- 17. From the DevJPYInstance, right click on Start & Run.
 - a. In the Open, write C:\Users\Administrator.
 - b. Select Ok.
 - i. From the File explorer:
 - a) Open the .aws folder.
 - b) Open the Credentials file in Notepad.

Note: You can see the access key and secret access key details.

- 1) Select File.
- 2) Select Exit.
- b) Open the Config file in Notepad.

Note: You can see the **region** and **output** format details.

- 1) Select File.
- 2) Select Exit.
- c) Close the File explorer.

Task 3: Create Custom Image

In this task, you will create the Image of the Python server to use in the upcoming labs.

Step 1: Create Image

- 18.In the **AWS Management Console**, on the **Services** menu, search and Select **EC2**.
- 19.Choose the **YOUR ALLOCATED REGION**, region list to the right of your account information on the navigation bar.
- 20. Select Instances.
 - a. Select **DevPYInstance**.
 - i. Select Actions.
 - a) Select Image and templates.
 - I. Select Create image

- b. From the **Create image** page:
 - i. Image name: Write Dev Python Instance Image.

Note: Leave other details as default.

I. Select Create image.

Note: DevPYInstance gets Rebooted.

Step 2: View the Custom Image

- 21.From the EC2 console.
- 22.Select AMIs.

Note: You can see the **Dev Python Instance - Image** status as **Pending**.

Note: Wait, till Dev Python Instance - Image status as Available.

Task 4: Create Python Project for DynamoDB

In this task, you will create Python project to manage DynamoDB programmatically.

Step 1: Develop Python Code

23. Unzip the LAB-07-02-Python-Code-A.zip.

Note: Lab-07-02-Python-Code-A.zip code file is available with the Lab manual.

Note: Review the code after opening in the Notepad.

Step 2: Connect to Instance

- 24. From the Local Desktop/ Laptop, right click on Start & Run.
 - c. In the Open, write mstsc.
 - d. Select Ok.
 - ii. From the Remote Desktop Connection:
 - c) **Computer**: Write the **Public IP Address** of the **DevPYInstance**.
 - d) Select Connect.

Note: You can **get the prompt** to enter the **Username** and **Password**.

- 4) **Username:** Write **Administrator**.
- 5) Password: Write lab-password@123.
- 6) Select Ok.

Step 3: Launch the PyCharm IDE

- 25. From the **DevPYInstance**.
 - a. Open the PyCharm.
- 26. From the PyCharm:
 - a. Select the **New Project**.

- b. From the **New Project** section:
 - Location: Replace the existing name (pythonProject) and write labawsdynamodb.
 - ii. Uncheck the Create a main.py welcome script.

iii. Select Create.

Note: Wait, till virtual environment gets created.

Step 4: Create the Files in the Python Project

27. Expand the labawsdynamodb Python project.

Create create_table.py File

- a. Right-click on the labawsdynamodb Python project.
 - i. Select New.
 - a) Select Python File.

- b. In the **New python file** page:
 - i. File name: Write create_table.py.

ii. Select Enter.

Create create_items.py File

- 28. Right-click on the *labawsdynamodb* Python package.
 - a. Select New.
 - i. Select Python File.

- ii. In the New python file page:
 - a) File name: Write create_items.py.
 - b) Select Enter.

Create read_items.py File

- 29. Right-click on the *labawsdynamodb* Python package.
 - a. Select New.
 - i. Select Python File.
 - ii. In the New python file page:
 - a) File name: Write read_items.py.
 - b) Select Enter.

Note: You can see the create_table.py, create_items.py and read_items.py under Python package.

Step 5: Update the Python Code

- 30. Double-click on the create table.py Python file.
 - a. Paste the Code from create_table.py Python file.
 - b. From the PyCharm IDE.
 - i. Press CTRL + S (to save).
- 31. Double-click on the create_items.py Python file.
 - a. Paste the Code from create_items.py file.
 - b. From the PyCharm IDE.
 - i. Press CTRL + S (to save).
- © No part of this manual, may be reproduced in whole or in part in any manner without the permission of the copyright owner.

- 32. Double-click on the read_items.py Python file.
 - a. Paste the Code from read_items.py file.
 - b. From the PyCharm IDE.
 - i. Press CTRL + S (to save).

Task 5: Manage AWS DynamoDB from PyCharm

In this task, you will manage AWS DynamoDB from PyCharm using Python.

Step 1: Install Python SDK

- 33. Expand the labawsdynamodb Python project.
- 34. Double-click on the create_table.py Python file.
 - a. It will show the **error** against **boto3**, **botocore** and **ClientError** references in the code lines with **Red colour underline**.

35. Go below in the console, click on the Terminal.

- a. From the Terminal:
 - Dropdown (see the screenshot) and select Command prompt.

- b. From the **Terminal**:
 - i. Type pip install boto3.

Note: Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python.

Note: Wait, till boto3 sdk install succesfully.

Note: Wait, till indexing gets Completed.

- 36. Expand the *labawsdynamodb* Python project.
- 37. Double-click on the create_table.py Python file.
 - a. Click on the boto3, botocore and ClientError references in the code lines. Red colour underline is resolved now.

Step 2: Create DynamoDB Table

In this task, you will create DynamoDB table from PyCharm using Python.

- 38. Expand the labawsdynamodb Python Project.
- 39. Double-click on the create_table.py Python file.

Info: Examine the code:

- 1. Creating the DynamoDB table:
 - a. Table name: 'students'.
 - b. Partition key (or Hash key): 'id' as number.
 - c. **Sort key** (or Range key): 'username' as string.
- a. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type Dir.

Note: You can see the create_table.py, create_items.py and read_items.py.

- ii. From the **Terminal** (**command prompt**):
 - a) Type python create_table.py.

Note: If table created succesfully, you will see the "Creating" message.

```
(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>
(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>create_table.py
Table status: CREATING
(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>
```

Note: Go to next task, but Don't close the DevPYInstance console.

Verify DynamoDB Table from AWS Console

- 40.In the **AWS Management Console**, on the **Services** menu, click **DynamoDB**.
- 41.Select Tables.

Note: You can see the "students" table and its schema details.

a. Open students table.

Note: You can view the **details** of the students table.

Step 3: Create Items in DynamoDB Table

In this task, you will create new Items using loop in DynamoDB table from PyCharm using Python.

- 42. Return to the DevPYInstance.
- 43. Expand the labawsdynamodb Python Project.
- 44. Double-click on the create_items.py Python file.

Info: Examine the code:

- 1. Creating the Items in DynamoDB Table name: 'students'.
 - a. Adding the items using loop.
 - b. Adding the username from Ahmad0 to Ahmad9 using loop.
- a. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python create_items.py.

Note: If items added succesfully, you will see the "Created succesfully" message.

Note: Go to next task, but Don't close the DevPYInstance console.

Verify Added Items in DynamoDB Table from AWS Console

- 45.In the **AWS Management Console**, on the **Services** menu, click **DynamoDB**.
- 46. Select Explore Items.

a. Select students table.

Note: You can see the added items in students table.

Add Items (additional) in DynamoDB Table

- 47. Return to the DevPYInstance.
- 48. Expand the labawsdynamodb Python project.
- 49. Double-click on the create_items.py Python file.
 - a. Replace the Range function in Row 9 from 10 to 10, 20.

Info: Adding the **username** (*sort key*) from **Ahmad10** to **Ahmad19** using loop.

b. Replace the Locations value in Row 16 to London.

- c. From the PyCharm IDE.
 - i. Select CTRL + S.
- d. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python create_items.py.

Note: If items added succesfully, you will see the response "Created succesfully" message.

Add Items (additional) in DynamoDB Table

- 50.**From** the *create_items.py* Python file.
 - a. Replace the Range function in Row 9 from 10, 20 to 20, 30.

Info: Adding the **username** (*sort key*) from **Ahmad20** to **Ahmad29** using loop.

- b. Replace the Locations value in Row 16 to Paris.
- c. From the PyCharm IDE.
 - i. Select CTRL + S.
- d. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python create_items.py.

Note: If items added succesfully, you will see the response "Created succesfully" message.

Add Items (additional) in DynamoDB Table

- 51. From the create items.py Python file.
 - a. Replace the Range function in Row 9 from 20, 30 to 30, 40.

Info: Adding the **username** (*sort key*) from **Ahmad30** to **Ahmad39** using loop.

Replace the following Values for Items between Row 11 to Row 19:

```
'id': n,

'username': "Ajay" + str(n),

'rollno': 'btc' + str(n),

'firstname': "Ajay" + str(n),

'lastname': "Kumar" + str(n),

'locations': "Bangalore",

'course': "Azure",

'semester': "01",

'college': "Pusa"
```

- c. From the PyCharm IDE.
 - i. Select CTRL + S.
- d. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python create_items.py.

Note: If items added succesfully, you will see the response "Created succesfully" message.

Add Items (additional) in DynamoDB Table

- 52.**From** the **create_items.py** Python file.
 - a. Replace the Range function in Row 9 from 30, 40 to 40, 50.

Info: Adding the **username** (*sort key*) from **Ahmad40** to **Ahmad49** using loop.

b. Replace the following Values for Items between Row 11 to Row 19:

```
'id': n,

'username': "Eric" + str(n),

'rollno': 'btc' + str(n),

'firstname': "Eric" + str(n),

'lastname': "Layman" + str(n),

'locations': "Chicago",

'course': "GCP",

'level': "intermediate",

'fees': "paid"
```

- c. From the PyCharm IDE.
 - i. Select CTRL + S.
- d. **Go below** in the console, click on the **Terminal**.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python create_items.py.

Note: If items added succesfully, you will see the response "Created succesfully" message.

Note: Go to next task, but Don't close the DevPYInstance console.

Verify Added Items in DynamoDB Table from AWS Console

- 53.In the **AWS Management Console**, on the **Services** menu, click **DynamoDB**.
- 54. Select **Explore Items**.
 - a. Select the students table.

Note: You can see the added **items** in **students** table.

Note: If you are **not able to view** the **newly added items**, Select the **Run**.

Note: If you are **not able to view** the **newly added items**, Select the **Page Number**.

Step 4: Read Items from DynamoDB Table

- 55. Return to the DevPYInstance.
- 56. Expand the abawsdynamodb Python project.
- 57. Double-click on the read_items.py Python file.

Info: Examine the code:

- 1. Reading the items from DynamoDB Table name: 'students'.
 - a. **Reading** the **items** with **Partition key** as '1' and **Sort key** as 'Ahmad1'.
- a. **Go below** in the console, click on the Terminal.
 - i. From the Terminal (command prompt):
 - a) Type python read_items.py.

Note: If able to read items succesfully, you will see the **items details**.

```
Terminak Local × Command Prompt × + 

(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>read_items.py
{'lastname': 'Zahoory1', 'Location': 'Delhi', 'course': 'AWS', 'roll no': 'btc1', 'firstname': 'Ahmad1', 'username': 'Ahmad1', 'id': Decimal('1')

(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>
```

Read Other Items from DynamoDB Table

- 58. Double-click on the read_items.py Python file.
 - a. Replace the Username in Row 11 from Ahmad1 to Ajay30.

- b. From the PyCharm IDE.
 - i. Select CTRL + S.
- c. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python read_items.py.

Note: If able to read items succesfully, you will see the **items details**.

Note: You can't see any response in the Terminal. Reason you are not passing the Correct Partition Key values against Sort Key values.

```
Terminal: Local × Command Prompt × + ∨

(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>read_items.py

(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>
```

- 59. Double-click on the read_items.py Python file.
 - a. Replace the id in Row 10 from 1 to 30.

```
resp = table.get_item(

Key={

'id': 30

'username': "Ajay30"

}
```

- b. From the PyCharm IDE.
 - i. Select CTRL + S.
- c. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python read_items.py.

Note: If able to read items successfully, you will see the **items details**.

Note: You can see the response in the Terminal. Reason you are passing the Correct Partition Key value and Sort Key values.

```
Terminal: Local × Command Prompt × + ∨ (venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>read_items.py
{'locations': 'Bangalore', 'lastname': 'Kumar30', 'rollno': 'btc30', 'course': 'Azure', 'firstname': 'Ajay30', 'username': 'Ajay30', 'id': Decimal('30'), 'college': 'Pusa', 'semester': '01'}

(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>
```

Task 6: Manage AWS DynamoDB from PyCharm [Additional]

In this task, you will manage additional operations for AWS DynamoDB from PyCharm using Python.

Step 1: Develop Python code for Other Operations

60. Unzip the LAB-07-02-Python-Code-B.zip.

Note: Lab-07-02-Python-Code-B.zip code file is available with the Lab manual.

Note: Review the Code after opening in the Notepad.

- 61. From the DevPYInstance, right click on Start & Run.
 - a. In the **Open**, write **C:\Users\Administrator**, press **Ok**.
 - Open the PycharmProjects folder.
 - a) Open the labawsdynamodb folder.

I. Copy the update_item.py, scan.py, query.py, delete_item.py and delete_table.py python files in the labawsdynamodb folder.

- 62. Return to the PyCharm IDE.
 - a. Expand the labawsdynamodb Python project.

Note: You can see the update_item.py, scan.py, query.py,
delete_item.py and delete_table.py Python files.

Step 2: Update Items in DynamoDB Table

63. Double-click on the update items.py Python file.

Info: Examine the code:

- 1. **Updating** the **Location attribute** of the existing items in **DynamoDB Table** name: 'students'.
 - a. **Updating** the **attribute** based on **Partition key** as '1' and **Sort key** as 'Ahmad1'.
 - b. Updating the Location to 'Hyderabad'.
- a. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (command prompt):
 - a) Type python update_item.py.

Note: If able to update item successfully, you will see the response "**Updated Sucessfully**".

```
(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>update_item.py

Updated Sucessfully

★ (venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>
```

Read the Updated Item from DynamoDB Table

64. Double-click on the update_items.py Python file.

- a. Replace the Values for Items in Row 10 to update the id to 1.
- b. Replace the Values for Items in Row 11 to update the username to Ahmad1.
- c. From the PyCharm IDE.
 - i. Select CTRL + S.
- d. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python read_items.py.

Note: View the **Changes** (locations) after update.

```
Terminak Local × Command Prompt × + ✓

(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>read_items.py
{'lastname': 'Zahoory1', 'location': 'Hyderabad', 'course': 'AWS', 'roll no': 'btc1', 'firstname': 'Ahmad1', 'username': 'Ahmad1', 'id'

(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>
```

Update the Code to Update Multiple Attributes

Info: Examine the code:

- 1. **Updating** the **Location attribute** of the existing items in **DynamoDB Table** name: 'students'.
 - a. Updating the Location to 'Hyderabad'.

65. Double-click on the update_item.py Python file.

- a. Replace the Values in Row 13 from UpdateExpression="SET #ts = :val1", to UpdateExpression="SET #ts1 = :val1, #ts2 = :val2",
- b. Replace the Values in Row 15 from ':val1': "Hyderabad" to ':val1': "GCP", ':val2': "Majeed"
- c. Replace the Values in Row 18 from "#ts": "locations" to "#ts1": "course", "#ts2": "lastname"

- d. From the PyCharm IDE.
 - i. Select CTRL + S.

- e. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python update_item.py.

Note: If able to update item successfully, you will see the response "**Updated Sucessfully**".

Read the Updated Item from DynamoDB Table

- f. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python read_items.py.

Note: View the Changes after update.

```
Terminal: Local × Command Prompt × + V

(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>update_item.py
Updated Sucessfully

(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>read_items.py
{'lastname': 'Majeed', 'location': 'Hyderabad', 'course': 'GCP', 'roll no': 'btc1', 'firstname': 'Ahmad1', 'username': 'Ahmad1', 'id': [

(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>
```

Step 3: Scan Items from DynamoDB Table

66. Double-click on the scan.py Python file.

Info: Examine the code:

- 1. Scan the items from DynamoDB Table name: 'students'.
- a. Go below in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python scan.py.

Note: You can see **all** the **items** in the Terminal.

```
(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>scan.py
[{'locations': 'Delhi', 'lastname': 'Zahoory7', 'rollno': 'btc7', 'course': 'AWS', 'firstname': 'Ahmad7', 'username': 'Ahmad7', 'id':
evel': 'intermediate', 'course': 'GCP', 'firstname': 'Eric47', 'username': 'Eric47', 'id': Decimal('47')}, {'locations': 'Delhi', 'la
id': Decimal('8')}, {'locations': 'Bangalore', 'lastname': 'Kumar32', 'rollno': 'btc32', 'course': 'Azure', 'firstname': 'Ajay32', 'u
, 'lastname': 'Layman44', 'rollno': 'btc44', 'fees': 'paid', 'level': 'intermediate', 'course': 'GCP', 'firstname': 'Eric44', 'userna
9', 'course': 'Azure', 'firstname': 'Ajay39', 'username': 'Ajay39', 'id: Decimal('39'), 'college': 'Pusa', 'semester': '01'}, {'locations': 'Username': 'Ahmad10', 'id': Decimal('10')}, {'locations': 'Bangalore', 'lastname': 'Ahmad3', 'username': 'Ahmad3', 'id
e', 'firstname': 'Ajay38', 'username': 'Ajay38', 'id': Decimal('38'), 'college': 'Pusa', 'semester': '01'}, {'locations': 'Delhi', 'l
```

Scan with Filtering

- 67. Double-click on the scan.py Python file.
 - a. Add the Following in Row 7:

```
course = "GCP"
```

b. Add the Following in Row 9 and 10:

```
ProjectionExpression="course, firstname, lastname", FilterExpression=Key("course").eq(course)
```

Info: Examine the code:

- 1. **Scan** the **items** from **DynamoDB Table** which have attribute 'Course' as 'GCP'.
 - a. Display the Result with attributes Course,
 Firstname and Lastname only.

Info:

- 1. **ProjectionExpressio**n specifies the **attributes** you want in the scan result.
- 2. **FilterExpression** specifies a **condition** that returns only items that satisfy the condition.

```
table = dynamodb.Table('students')

course = "GCP"

resp = table.scan(

ProjectionExpression="course, firstname, lastname",

FilterExpression=Key("course").eq(course)

)
```

© No part of this manual, may be reproduced in whole or in part in any manner without the permission of the copyright owner.

- c. From the PyCharm IDE.
 - i. Select CTRL + S.
- d. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python scan.py.

Note: You can see the **items** as per the **filtering**, where **attribute course** is equal to **value GCP**.

```
Terminal: Local × Command Prompt × + V

(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>scan.py
[{'firstname': 'Eric251', 'lastname': 'Layman251', 'course': 'GCP'}, {'firstname': 'Eric286', 'lastname': 'Layman286', 'course': 'GCP'}, *

name': 'Layman256', 'course': 'GCP'}, {'firstname': 'Eric288', 'lastname': 'Layman288', 'course': 'GCP'}, {'firstname': 'Eric299', 'lastname': 'Layman280', 'course': 'GCP'}, {'firstname': 'Layman230', 'course': 'GCP'}, {'firstname': 'Layman230', 'course': 'GCP'}, {'firstname': 'Layman241', 'course': 'GCP'}, {'firstname': 'Layman296', 'course': 'GCP'}, {'firstname': 'Eric254', 'se': 'GCP'}, {'firstname': 'Layman294', 'course': 'GCP'}, {'firstname': 'Eric260', 'lastname': 'Layman260', 'course': 'GCP'}, {'firstname': 'Eric260', 'lastname': 'Layman260', 'course': 'GCP'}, {'firstname': 'Eric278', 'lastname': 'Eric224', 'lastname': 'Layman264', 'course': 'GCP'}, {'firstname': 'Eric259', 'lastname': 'Eric278', 'lastname': 'Eric278', 'lastname': 'Eric224', 'lastname': 'Layman264', 'course': 'GCP'}, {'firstname': 'Eric278', 'lastname': 'Eric278', 'las
```

Scan with Multiple Filtering

68. Double-click on the scan.py Python file.

a. Update the Following from course = "GCP" in Row 7 to:

```
course = "GCP"; locations = "Hyderabad"
```

b. Update the Following from

ProjectionExpression="course, firstname, lastname", FilterExpression=Key("course").eq(course)

in Row 9 and 10 to:

ProjectionExpression="course, firstname, lastname, locations", FilterExpression=Key("course").eq(course) and Key("locations").eq(locations)

Info: Examine the code:

- 1. **Scan** the **items** from **DynamoDB Table** which have attribute 'Course' as 'GCP' and 'Location' as 'Hyderabad.
 - a. Display the Result with attributes Course, Firstname, Lastname and Locations only.

- c. From the PyCharm IDE.
 - i. Select CTRL + S.
- d. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python scan.py.

Note: You can see the **items** as per the **filtering**, where **attribute course** is equal to **value GCP and (**Conditional Operator **AND) attribute locations** is equal to **value Hyderabad**.

```
Terminal: Local × Command Prompt × + 

(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>scan.py
[{'firstname': 'Ahmad1', 'locations': 'Hyderabad', 'lastname': 'Majeed', 'course': 'GCP'}]

(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb>
```

Step 8: Query Items from DynamoDB Table

69. Double-click on the query.py Python file.

Info: Examine the code:

- 1. Query the items from DynamoDB Table name: 'students'.
 - a. Querying with the attribute based on Partition key as '1' and Sort key as 'Ahmad1'.

Info: KeyConditions are the selection criteria for a Query operation. For a query on a table, you can have **key conditions** only on the table **primary key** attributes and **Filter Expression** can only contain non-primary key attributes.

- From the PyCharm IDE.
 - i. Select CTRL + S.

- b. **Go below** in the console, click on the **Terminal**.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python query.py.

Note: You can see the **items** as per the **filtering**, where **id** (**primary key**) equal to **1** and filtering on **firstname** (**non-primary key**) equal to **Ahmad1**.

Note: You can see the one **item** as **Primary key** is **unique** (**numbers**) for each items.

Step 9: Delete Item from DynamoDB Table

70. Double-click on the Python file delete_item.py.

Info: Examine the code:

- 1. Query the items from DynamoDB Table name: 'students'.
 - a. **Deleting** with the **attribute** based on **Partition key** as '2' and **Sort key** as 'Ahmad2'.
- a. From the PyCharm IDE.
 - i. Select CTRL + S.
- b. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python delete_item.py.

Note: If items added succesfully, you will see the response "**Deleted** succesfully".

Task 7: Perform DynamoDB Index [GSI] Operation

In this task, you will create a Global secondary index in existing DynamoDB table.

Step 1: Create the Directory

- 71. Expand the labawsdynamodb Python Project.
 - a. Right-click on the labawsdynamodb Python project.
 - i. Select New.
 - a) Select Directory.
 - 1) In the **New Directory** page:
 - I. **File name**: Write **gsi**.
 - 1. Select Enter.

Step 2: Develop Python code for Index (GSI) Operations

72. Unzip the LAB-07-02-Python-Code-C.zip.

Note: Lab-07-02-Python-Code-C.zip code file is available with the Lab manual.

Note: Review the Code after opening in the Notepad.

- 73. From the DevPYInstance, right click on Start & Run.
 - In the Open, write C:\Users\Administrator, press Ok.
 - i. Open the **PycharmProjects** folder.
 - a) Open the labawsdynamodb folder.
 - 1) Open the gsi folder.
 - I. Copy the gsi_create.py, gsi_scan.py and gsi_query.py Python files in the gsi folder.
- 74. Return to the DevPYInstance.
 - a. Expand the *labawsdynamodb* Python Project.
 - i. Expand the gsi Directory.

Note: You can see the **gsi_create.py**, **gsi_scan.py** and **gsi_query.py** Python files.

- b. **Go below** in the console, click on the **Terminal**.
 - i. From the **Terminal** (command prompt):
 - a) Type cd gsi.
 - b) Type dir.

Note: You can see the **gsi_create.py**, **gsi_scan.py** and **gsi_query.py**Python files.

Step 3: Create Global Secondary Index (GSI)

- 75. Expand the labawsdynamodb Python Project.
- 76. Expand the gsi Directory.
- 77. Double-click on the gsi_create.py Python file.

Info: Examine the code:

- 1. Creating the DynamoDB Global Secondary Index:
 - a. Index name: 'students2'.
 - b. **Partition key** (or Hash key): 'locations' as string instead of 'id'.
 - c. **Sort key** (or Range key): 'course' as string instead of . 'username'.
- Go below in the console, click on the Terminal.
 - i. From the **Terminal** (command prompt):
 - a) Type python gsi_create.py.

Note: If table created succesfully, you will see the response "Created succesfully".

Note: Go to next task, but Don't close the DevPYInstance Console.

Verify the DynamoDB GSI from AWS Console

- 78.In the **AWS Management Console**, on the **Services** menu, click **DynamoDB**.
- 79. Select Tables.
 - a. Open students table.
 - i. Open the Indexes.

Note: You can see the "students2" index in creating State.

Note: You can see the new Partition key and Sort key.

Note: Wait, till Index gets created and Status is Active.

Step 4: Scan Items from DynamoDB Index (GSI)

- 80. Return to the DevPYInstance.
- 81. Double-click on the gsi_scan.py Python file.

Info: Examine the code:

1. Scan the items from DynamoDB Table Index: 'students2'.

© No part of this manual, may be reproduced in whole or in part in any manner without the permission of the copyright owner.

- a. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python gsi_scan.py.

Note: You can see all the items in the Terminal.

Scan with Multiple Filtering

- 82. Double-click on the gsi_scan.py Python file.
 - a. Add the Following in Row 7:

```
course = "GCP"; locations = "Hyderabad"
```

b. Add the Following in Row 10 and 11:

ProjectionExpression="course, firstname, lastname, locations", FilterExpression=Key("course").eq(course) and Key("locations").eq(locations)

Info: Examine the code:

1. Scan the items from DynamoDB Table Index: 'students2', which have attribute 'Course' as 'GCP' and 'Location' as 'Hyderabad.

a. Display the Result with attributes Course,
 Firstname, Lastname and Locations only.

- c. From the PyCharm IDE.
 - i. Select CTRL + S.

- d. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python gsi_scan.py.

Note: You can see the **items** as per the **filtering**, where **attribute course** is equal to **value GCP and** (Conditional Operator **AND**) **attribute locations** is equal to **value Hyderabad**.

```
(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb\gsi>gsi_scan.py

[{'firstname': 'Ahmad1', 'locations': 'Hyderabad', 'lastname': 'Majeed', 'course': 'GCP'}]

★ (venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb\gsi>
```

Scan with Multiple Filtering

- 83. Double-click on the gsi_scan.py Python file.
 - a. Update the Locations value in Row 7 from Hyderabad to Chicago.
 - b. From the PyCharm IDE.
 - i. Select CTRL + S.
 - c. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python gsi_scan.py.

Note: You can see the **items** as per the **filtering**, where **attribute course** is equal to **value GCP and** (Conditional Operator **AND**) **attribute locations** is equal to **value Chicago**.

```
Terminal: Local × CommandPrompt × + V

(venv) C:\Users\Administrator\PycharmProjects\labawsdynamodb\gsi>gsi_scan.py
[{'firstname': 'Eric48', 'locations': 'Chicago', 'lastname': 'Layman48', 'course': 'GCP'}, {'firstname': 'Eric44', 'locations': 'Chicago'
ame': 'Layman41', 'course': 'GCP'}, {'firstname': 'Eric42', 'locations': 'Chicago', 'lastname': 'Layman42', 'course': 'GCP'}, {'firstname': 'Layman47', 'course': 'GCP'}, {'firstname': 'Eric46', 'locations': 'Chicago', 'lastname': 'Layman46', 'course': 'GCP'}, {'firstname': 'Eric40', 'locations': 'Chicago', 'lastname': 'Layman46', 'course': 'GCP'}, {'firs
```

Step 5: Query Items from DynamoDB Index (GSI)

84. Double-click on the gsi query.py Python file.

Info: Examine the code:

- 1. Query the items from DynamoDB Table index: 'students2'.
- a. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python gsi_query.py.

Note: You can see the **items** as per the **filtering**, where **locations** (**primary key**) equal to **Chicago** and filtering on **fees** (**non-primary key**) equal to **paid**.

Note: You can see multiple item as primary key is same for multiple items.

Step 6: Delete DynamoDB Table

85. Double-click on the delete_table.py Python file.

Info: Examine the code:

- 1. Delete the DynamoDB Table name: 'students'.
- Go below in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type cd...
 - b) Type python delete_table.py.

Note: If table deleted successfully, you will **not see** any **response**.

Note: Go to next task, but Don't close the DevPYInstance Console.

Verify the DynamoDB Table from AWS Console

86.In the **AWS Management Console**, on the **Services** menu, click **DynamoDB**.

87. Select Tables.

Note: You can see the "students" table is deleted.

Task 4: Perform DynamoDB Index [LSI] Operation

In this task, you will create DynamoDB table with Local secondary index.

Step 1: Create the Directory

- 88. Return to the DevPYInstance.
- 89. Expand the labawsdynamodb Python project.
 - a. Right-click on the labawsdynamodb Python project.

- i. Select New.
 - a) Select Directory.
 - 1) In the **New Directory** page:
 - I. File name: Write si.
 - 1. Select Enter.

Step 2: Develop Python code for Index (LSI) Operations

90. Unzip the LAB-07-02-Python-Code-D.zip.

Note: Lab-07-02-Python-Code-D.zip code file is available with the Lab manual.

Note: **Review** the **Code** after opening in the **Notepad**.

- 91. From the DevPYInstance, right click on Start & Run.
 - a. In the **Open**, write **C:\Users\Administrator**, press **Ok**.
 - i. Open the **PycharmProjects** folder.
 - a) Open the labawsdynamodb folder.
 - 1) Open the si folder.
 - I. Copy the Isi_put.py
 and Isi_put.py
 and Isi_guery.py
 and <a href="mailto:lsi_gue
- 92. Expand the labawsdynamodb Python Project.
 - a. Expand the Isi Directory.

Note: You can see the lsi_put.py and lsi_put.py and <a href="mai

- b. **Go below** in the console, click on the **Terminal**.
 - i. From the **Terminal** (**command prompt**):
 - a) Type cd Isi.
 - b) Type dir.

Note: You can see the lsi_create.py, lsi_put.py and lsi_query.py
Python files.

Step 3: Create the Local Secondary Index (LSI)

- 93. Expand the labawsdynamodb Python project.
- 94. Expand the *Isi* Directory.
- 95. Double-click on the *si_create.py* Python file.

Info: Examine the code:

- 1. Creating the DynamoDB Table, name: 'products'.
 - a. Partition key (or Hash key): 'product_id'.
 - b. Sort key (or Range key): 'product_name'.
- 2. Creating the DynamoDB Local Secondary Index:
 - a. Index name: 'store'.
 - b. Partition key (or Hash key): 'product_id'.
 - c. **Sort key** (or Range key): 'store_location' instead of product_name.
- a. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python lsi_create.py.

Note: If table created succesfully, you will see the response "Creating".

Note: Go to next task, but Don't close the DevPYInstance Console.

© No part of this manual, may be reproduced in whole or in part in any manner without the permission of the copyright owner.

Verify the DynamoDB LSI from AWS Console

- 96.In the **AWS Management Console**, on the **Services** menu, click **DynamoDB**.
- 97. Select Tables.

Note: You can see the "products" table.

- a. Open the products.
 - i. Open the **Indexes**.

Note: You can see the "store" index.

Step 4: Create Items in DynamoDB Table

- 98. Return to the DevPYInstance.
- 99. Double-click on the Isi_put.py Python file.

Info: Examine the code:

- 1. Creating the Items in DynamoDB Table name: 'products'.
 - a. Adding Items.
- a. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python Isi put.py.
- © No part of this manual, may be reproduced in whole or in part in any manner without the permission of the copyright owner.

Note: Go to next task, but Don't close the DevPYInstance Console.

Verify the Added Items in DynamoDB Table from AWS Console

- 100. In the **AWS Management Console**, on the **Services** menu, click **DynamoDB**.
- 101. Select Explore items.
 - a. Open the **products** table.

Note: You can see the added **items** in **products** table.

Step 5: Query Items from DynamoDB Index (LSI)

102. Double-click on the *Isi_query.py* Python file.

Info: Examine the code:

- 1. **Query** the **items** from DynamoDB Table **index**: 'store'.
- a. **Go below** in the console, click on the Terminal.
 - i. From the **Terminal** (**command prompt**):
 - a) Type python Isi_query.py.

Note: You can see the items as per the filtering, where product_id (primary key) equal to p_1 and store_location (sort_key) equal to Delhi.

Note: You can see the **one item** as **primary key** is **unique** (**p_1**) for each items.

Task 5: Close the Project

In this task, you will close the Python project.

Step 1: Close the Project

- 103. From the PyCharm IDE.
 - a. Select the Menu.

- i. Select File.
 - a) Select Close project.

Note

- Do not delete any resources you deployed in this lab.
- You will be using them in the next lab of this module.