Delivery #6 - Final Presentation

Social Media Sentiment Analysis

Group #3
AKASH SG (Information science)
SUDHANSHU (Information science)
INDRESH MJ (information science)
PREETHAM KM (information science)
SHASHANKK (information science)

Project Delivery #1

Dataset

Target	Ids		Date	Flag	User	Text
	0	1467810369	Mon Apr 06 22:19:45 PDT 2009	NO_QUERY	_TheSpecialOn	@switchfoot http://twitpic.com/2y1zl - Awww, tl
	0	1467810672	Mon Apr 06 22:19:49 PDT 2009	NO_QUERY	scotthamilton	is upset that he can't update his Facebook by text
	0	1467810917	Mon Apr 06 22:19:53 PDT 2009	NO_QUERY	mattycus	@Kenichan I dived many times for the ball. Mana
	0	1467811184	Mon Apr 06 22:19:57 PDT 2009	NO_QUERY	ElleCTF	my whole body feels itchy and like its on fire
	0	1467811193	Mon Apr 06 22:19:57 PDT 2009	NO_QUERY	Karoli	@nationwideclass no, it's not behaving at all. i'm
	0	1467811372	Mon Apr 06 22:20:00 PDT 2009	NO_QUERY	joy_wolf	@Kwesidei not the whole crew
	0	1467811592	Mon Apr 06 22:20:03 PDT 2009	NO_QUERY	mybirch	Need a hug
	0	1467811594	Mon Apr 06 22:20:03 PDT 2009	NO_QUERY	coZZ	@LOLTrish hey long time no see! Yes Rains a bit
	0	1467811795	Mon Apr 06 22:20:05 PDT 2009	NO_QUERY	2Hood4Hollyw	@Tatiana_K nope they didn't have it
	0	1467812025	Mon Apr 06 22:20:09 PDT 2009	NO QUERY	mimismo	@twittera que me muera ?

Figure 1. A sample from the dataset.

The dataset contains 1,600,000 tweets extracted using the twitter api. The tweets have been classified from 0 (negative) to 4 (positive). The dataset contains 6 fields which are target as integer, ids as integer, date as date, flag as string, user as string and text as string.

These 6 fields are shown below.

- target: The polarity of the tweet (0 negative, 2 neutral, 4 positive)
- ids: The id of the tweet.
- date: The date of the tweet.
- flag: The query. If there is no query, then this value is NO_QUERY.
- user: The user that tweeted.

Figure 3. Data distribution.

tweet	label	
@switchfoot http://twitpic.com/2y1zl - Awww, t	Negative	0
is upset that he can't update his Facebook by	Negative	1
@Kenichan I dived many times for the ball. Man	Negative	2
my whole body feels itchy and like its on fire	Negative	3
@nationwideclass no, it's not behaving at all	Negative	4
***	***	
Just woke up. Having no school is the best fee	Positive	1599995
TheWDB.com - Very cool to hear old Walt interv	Positive	1599996
Are you ready for your MoJo Makeover? Ask me f	Positive	1599997
Happy 38th Birthday to my boo of allI time!!!	Positive	1599998
happy #charitytuesday @theNSPCC @SparksCharity	Positive	1599999

Figure 2. Dataset after reduction.

Project Delivery #2-3 Exploring Your Data

Exploring Our Data in terms of Letter Frequency

Figure 4. Letter frequencies of each 26 characters in English Alphabet.

	letter	frequency	all_tweets_relative_freq	expected_relative_frequency	expected
0	а	4547601	0.078816	0.081238	4687379.0
1	b	975326	0.016904	0.014893	859300.0
2	С	1705409	0.029557	0.027114	1564464.0
3	d	2289515	0.039680	0.043192	2492128.0
4	е	6471295	0.112156	0.120195	6935169.0
5	f	878849	0.015232	0.023039	1329304.0
6	g	2231747	0.038679	0.020257	1168838.0
7	h	2234047	0.038719	0.059215	3416628.0
8	i	3779579	0.065505	0.073054	4215160.0
9	j	143817	0.002493	0.001031	59502.0
10	k	1197291	0.020751	0.006895	397842.0
11	1	3095498	0.053649	0.039785	2295581.0
12	m	1754377	0.030406	0.026116	1506861.0
13	n	3861185	0.066919	0.069478	4008801.0
14	0	4534414	0.078587	0.076812	4431963.0
15	р	1351301	0.023420	0.018189	1049517.0
16	q	115059	0.001994	0.001125	64883.0
17	r	3179237	0.055100	0.060213	3474231.0
18	s	3595565	0.062316	0.062808	3623936.0
19	t	4153946	0.071993	0.090986	5249801.0
20	u	1676743	0.029060	0.028776	1660364.0
21	v	566733	0.009822	0.011075	639015.0
22	w	1422401	0.024652	0.020949	1208717.0
23	×	203131	0.003521	0.001728	99698.0
24	У	1620980	0.028094	0.021135	1219478.0
25	z	114027	0.001976	0.000702	40512.0

Figure 5. Letter frequency of the dataset, relative frequencies of the dataset, expected relative frequency according to the English language and expected character length according to the English language.

	frequency	expected
frequency	1.000000	0.967421
expected	0.967421	1.000000

Figure 6. Correlation

We got the p-value (p) as 0 which implies that the letter frequency does not follow the same distribution with what we see in English tests, although the Pearson correlation is too high (~96.7%)

Exploring Our Data in terms of Letter Frequency

We counted the number of characters for each tweet and analyzed the data frame according to maximum number of characters, minimum number of characters, mean of the number of characters column and its standard deviation. Our longest tweet is 189 characters long, the shortest tweet is 1 character long and mean of all tweets' character length 42.78. The standard deviation of all tweet character length is 24.16 as shown in Figure 8.

	label	tweet	number_of_characters
0	Negative	awww bummer shoulda got david carr third day	44
1	Negative	upset update facebook texting might cry result	69
2	Negative	dived many times ball managed save 50 rest go \dots	52
3	Negative	whole body feels itchy like fire	32
4	Negative	behaving mad see	16
			w.
1599995	Positive	woke school best feeling ever	29
1599996	Positive	thewdb com cool hear old walt interviews	40
1599997	Positive	ready mojo makeover ask details	31
1599998	Positive	happy 38th birthday boo alll time tupac amaru	52
1599999	Positive	happy charitytuesday thenspcc sparkscharity sp	57

Figure 7. Number of characters.

Figure 8. Letter frequency of the dataset, relative frequencies of the dataset, expected relative frequency according to the English language and expected character length according to the English language.

Exploring Our Data in terms of Word Frequency

We counted the number of words for each tweet and analyzed the data frame according to maximum number of words, minimum number of words, mean of the number of words column and its standard deviation. Our longest tweet is 50 words long, the shortest tweet is 1 word long and the mean of all tweets' word length is 7.24. The standard deviation of all tweet character length is 4.03 as shown in Figure 10.

	label	tweet	number_of_characters	number_of_words
0	Negative	awww bummer shoulda got david carr third day	44	8
1	Negative	upset update facebook texting might cry result	69	11
2	Negative	dived many times ball managed save 50 rest go \dots	52	10
3	Negative	whole body feels itchy like fire	32	6
4	Negative	behaving mad see	16	3
	(1444)			***
1599995	Positive	woke school best feeling ever	29	5
1599996	Positive	thewdb com cool hear old walt interviews	40	7
1599997	Positive	ready mojo makeover ask details	31	5
1599998	Positive	happy 38th birthday boo alll time tupac amaru	52	9
1599999	Positive	happy charitytuesday thenspcc sparkscharity sp	57	5

Figure 9. Number of words of each tweet.

Figure 10. Max, min, mean and standard deviation of each tweet in terms of number of words.

Exploring Our Data in terms of Word Frequency

Figure 11. Most common words in whole data.

Figure 12. Most common words in positive tweets.

Figure 13. Most common words in positive tweets.

Embedding - Glove

We can train the embedding ourselves. However, that approach can take a long time to train. So, we use transfer learning technique, and we use GloVe: Global Vectors for Word Representation.

The Global Vectors for Word Representation, or GloVe, algorithm is an extension to the word2vec method for efficiently learning word vectors, developed by Pennington, et al. at Stanford. It is an unsupervised learning algorithm for obtaining vector representations for words. Training is performed on aggregated global word-word co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear substructures of the word vector space.

We download the GloVe. Then, we initialize an embedding index that has 400000 word vectors, and embedding matrix.

Figure 14. GloVe embedding example

Feature Extraction - Scatter Plot

We used feature extraction methods, bag-of-words, and word embedding. Bag of words with TF-IDF is a common and simple way of feature extraction. Bag-of-Words is a representation model of text data and TF-IDF is a calculation method to score the importance of words in a document.

After applying bag-of-words with TF-IDF, we create the scatter plot according to these results.

Figure 15. Scatter plot that shows correlation of words in the corpus: red indicates negatives, blue indicates positives.

Project Delivery #4 Predictive Analysis

Entropy

At the beginning, our dataset had 6 features which were target, id, date, query, user and text. We chose two of them for our purpose which are target and text. We can see that the entropy decreases significantly after this transformation.

- First entropy of dataset = 41.08269441306875
- Entropy after preprocess = 14.73368002815221

Classification/Regression

For classification/regression experiments, the test set percentage is set to be 20%.

Total Data = Train Data (80%) + Test Data (20%)

Used 3 different algorithm and 6 different model for classification. These are:

- LSTM with 1024 Batch Size
- LSTM with 512 Batch Size
- CNN with 1024 Batch Size
- CNN with 512 Batch Size
- Multinomial Naive Bayes with Count Vectorizer
- Multinomial Naive Bayes with TF-IDF Vectorizer

LSTM Model - 1

• Batch Size = 1024

```
sequence_input = Input(shape=(30,), dtype='int32')
embedding_sequences = embedding_layer(sequence_input)
x = SpatialDropout1D(0.2)(embedding_sequences)
x = Conv1D(64, 5, activation='relu')(x)
x = Bidirectional(LSTM(64, dropout=0.2, recurrent_dropout=0.2))(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(512, activation='relu')(x)
outputs = Dense(1, activation='relu')(x)
outputs = Dense(1, activation='sigmoid')(x)
model = tf.keras.Model(sequence_input, outputs)

model.compile(optimizer=Adam(learning_rate=1e-3), loss='binary_crossentropy', metrics=['accuracy'])
ReduceLROnPlateau = ReduceLROnPlateau(factor=0.1, min_lr = 0.01, monitor = 'val_loss', verbose = 1)
```

Model: "model"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 30)]	0
embedding (Embedding)	(None, 30, 300)	87137400
spatial_dropout1d (SpatialDr	(None, 30, 300)	0
conv1d (Conv1D)	(None, 26, 64)	96064
bidirectional (Bidirectional	(None, 128)	66048
dense (Dense)	(None, 512)	66048
dropout (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 512)	262656
dense_2 (Dense)	(None, 1)	513

Total params: 87,628,729 Trainable params: 491,329

Non-trainable params: 87,137,400

Evaluation Metrics of LSTM Model - 1

LSTM Model - 1:

	precision	recall	f1-score	support
Negative	0.78	0.79	0.79	159493
Positive	0.79	0.78	0.78	158973
accuracy			0.78	318466
macro avg	0.78	0.78	0.78	318466
weighted avg	0.78	0.78	0.78	318466

Confusion Matrix of LSTM Model - 1:

LSTM Model - 2

• Batch Size = 512

```
sequence_input = Input(shape=(30,), dtype='int32')
embedding_sequences = embedding_layer(sequence_input)
x = SpatialDropout1D(0.2)(embedding_sequences)
x = Conv1D(64, 5, activation='relu')(x)
x = Bidirectional(LSTM(64, dropout=0.2, recurrent_dropout=0.2))(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(512, activation='relu')(x)
outputs = Dense(1, activation='relu')(x)
model = tf.keras.Model(sequence_input, outputs)
model.compile(optimizer=Adam(learning_rate=1e-3), loss='binary_crossentropy', metrics=['accuracy'])
ReducelROnPlateau = ReduceLROnPlateau(factor=0.1, min lr = 0.01, monitor = 'val loss', verbose = 1)
```

Model: "model"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 30)]	0
embedding (Embedding)	(None, 30, 300)	87137400
spatial_dropout1d (SpatialDr	(None, 30, 300)	0
conv1d (Conv1D)	(None, 26, 64)	96064
bidirectional (Bidirectional	(None, 128)	66048
dense (Dense)	(None, 512)	66048
dropout (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 512)	262656
dense_2 (Dense)	(None, 1)	513

Total params: 87,628,729 Trainable params: 491,329

Non-trainable params: 87,137,400

Evaluation Metrics of LSTM Model - 2

LSTM Model - 2:

	precision	recall	f1-score	support
Negative	0.77	0.81	0.79	159493
Positive	0.80	0.76	0.78	158973
accuracy			0.78	318466
macro avg	0.78	0.78	0.78	318466
weighted avg	0.78	0.78	0.78	318466

Confusion Matrix of LSTM Model - 2:

LSTM Model - 1 and LSTM Model - 2

 Decreasing the batch size from 1024 to 512 did not make a significant change in accuracy.

CNN Model - 1

Batch Size = 1024

```
sequence input = Input(shape=(30,), dtype='int32')
embedding sequences = embedding layer(sequence input)
x = SpatialDropout1D(0.2)(embedding sequences)
x = Conv1D(64, 5, activation='relu')(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(512, activation='relu')(x)
x = MaxPooling1D(pool size=2)(x)
x = Flatten()(x)
outputs = Dense(1, activation='sigmoid')(x)
model = tf.keras.Model(sequence input, outputs)
history = model.fit(X train, y train, batch size=1024,
```

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 30)]	0
embedding (Embedding)	(None, 30, 300)	87137406
spatial_dropout1d (SpatialDr	(None, 30, 300)	0
conv1d (Conv1D)	(None, 26, 64)	96064
dense (Dense)	(None, 26, 512)	33280
dropout (Dropout)	(None, 26, 512)	0
dense_1 (Dense)	(None, 26, 512)	262656
max_pooling1d (MaxPooling1D)	(None, 13, 512)	0
flatten (Flatten)	(None, 6656)	0
dense 2 (Dense)	(None, 1)	6657

Total params: 87,536,057 Trainable params: 398,657

Non-trainable params: 87,137,400

Evaluation Metrics of CNN Model - 1

Confusion Matrix of CNN Model - 1:

CNN Model - 2

• Batch Size = 512

```
sequence input = Input(shape=(30,), dtype='int32')
embedding sequences = embedding layer(sequence input)
x = SpatialDropout1D(0.2)(embedding sequences)
x = Conv1D(32, 5, activation='relu')(x)
x = Dense(256, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(256, activation='relu')(x)
x = MaxPooling1D(pool size=2)(x)
x = Flatten()(x)
outputs = Dense(1, activation='sigmoid')(x)
model2 = tf.keras.Model(sequence input, outputs)
model2.compile(optimizer=Adam(learning rate=1e-3), loss=
ReduceLROnPlateau = ReduceLROnPlateau(factor=0.1, min lr
history2 = model2.fit(X train, y train, batch size=512,
```

Model: "functional_1"

Layer (type)	Output S	hape	Param #
input_1 (InputLayer)	[(None,	30)]	0
embedding (Embedding)	(None, 3	0, 300)	87137400
spatial_dropout1d (SpatialDr	(None, 3	0, 300)	0
conv1d (Conv1D)	(None, 2	26, 32)	48032
dense (Dense)	(None, 2	256)	8448
dropout (Dropout)	(None, 2	256)	0
dense_1 (Dense)	(None, 2	256)	65792
max_pooling1d (MaxPooling1D)	(None, 1	3, 256)	0
flatten (Flatten)	(None, 3	328)	0
dense_2 (Dense)	(None, 1	.)	3329

Total params: 87,263,001 Trainable params: 125,601

Non-trainable params: 87,137,400

Evaluation Metrics of CNN Model - 2

Confusion Matrix of CNN Model - 2:

CNN Model - 1 and CNN Model - 2

 Decreasing the batch size from 1024 to 512 did not make a significant change in accuracy.

Multinomial Naive Bayes with Count Vectorizer

	precision	recall	f1-score	support
	precision	ICCUIT	11-30016	Suppor C
Negative	0.76	0.77	0.77	159493
Positive	0.77	0.76	0.76	158973
accuracy			0.76	318466
macro avg	0.77	0.76	0.76	318466
weighted avg	0.77	0.76	0.76	318466

Multinomial Naive Bayes with TF-IDF

tfidf_classifier = MultinomialNB()
tfidf_classifier.fit(tfidf_vec, train_data['label'])

	precision	recall	f1-score	support
Negative	0.76	0.77	0.76	159493
Positive	0.76	0.75	0.76	158973
accuracy			0.76	318466
macro avg	0.76	0.76	0.76	318466
weighted avg	0.76	0.76	0.76	318466

Statistical Significance Analysis

- Best performing model is LSTM Model 1 with accuracy 0.789
- Second best performing model is CNN Model 1 with accuracy 0.781
- Multinomial Naive Bayes with TF-IDF is the worst performing algorithm among them with accuracy 0.758.

LSTM Model 1

CNN Model 1

	precision	recall	f1-score	support		precision	recall	f1-score	support
Negative	0.78	0.79	0.79	159493	Negative	0.78	0.78	0.78	159493
Positive	0.79	0.78	0.78	158973	Positive	0.78	0.78	0.78	158973
accuracy			0.78	318466	accuracy			0.78	318466
macro avg	0.78	0.78	0.78	318466	macro avg	0.78	0.78	0.78	318466
weighted avg	0.78	0.78	0.78	318466	veighted avg	0.78	0.78	0.78	318466

Statistical Significance Analysis

- LSTM and CNN results are veryclose to each other.
- Naive Bayes models performed slightly worse.
- Naive Bayes models have thebest training time durations.

ROC Curve of best LSTM model and best CNN model:

Result

- LSTM Model-1 has 78.9% accuracy rate and LSTM model-2 has 78.6% accuracy rate. CNN model-1 has 78.2% accuracy rate and CNN model-2 has 77.2% accuracy rate.
- Both algorithms have better training times with 512 batch size, are better than their 1024 batch sized models and their accuracy rates are really close.
- As a result of these, we can say that LSTM and CNN models with 1024 batch size are better for accuracy rate. But, models with 512 batch size have close accuracy rates within better training times.
- For accuracy rates of Naive Bayes models there is a small difference like 1.5%. As a result of that, we can say that Naive Bayes with the CountVectorizer method gives better results than Naive Bayes with the TF-IDF method.

Project Delivery #5 Descriptive Analytics

Project Delivery #5 - Descriptive Analytics

We use Term Frequency-Inverse Document Frequency (TF-IDF) to transform the text data. You can obtain the tf-idf array.

Then, we use the Elbow method to make sure we choose the optimal number of clusters. We decided to make experiments 2 and 3 number of clusters.

	00	000	0000	002	00am	00pm	01	02	026	02am	 1/2sklov	½ssen	⅓sunday	1/2t	½tieï	½tobe	¹⁄₂u	1/2 ve	¹/2y	1/2Ϊ
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Instance Distribution - Pie Charts

28300 1700

Cluster 0 Percentage = 94.3%
Cluster 1 Percentage = 5.7%
Figure 3. A pie chart showing the instance distributions for 2 clusters.

26584 1609 1609

Cluster 0 Percentage = 88.6%

Cluster 1 Percentage = 5.7%

Cluster 2 Percentage = 5.7%

Figure 4. A pie chart showing the instance distributions for 3 clusters.

Evaluation of Experiments - Experiment 1 Number of Clusters = 2

init k-means++ random PCA-based

time	inertia	homo	compl	v-meas	ARI	AMI	IMM	silhouette
0.0935	38122	0.973	0.970	0.971	0.991	0.971	0.971	0.814
0.1085	38122	0.975	0.970	0.972	0.991	0.972	0.972	0.749
0.050s	38985	0.011	0.010	0.010	0.068	0.010	0.010	0.723

	word	score
0	just	0.015132
1	day	0.012346
2	today	0.011476
3	like	0.010374
4	want	0.010060
5	going	0.010016
6	don	0.009887
7	really	0.009350
8	100	
	got	
9	sad	0.008994
10	good	0.008851
1	miss	0.008415
12	time	0.008402
13	know	0.008327
14	im	0.008257
15	wish	0.008104
16	home	0.008088
17	sorry	0.007745
8	sleep	0.007660
19	night	0.007330

Evaluation of Experiments - Experiment 2 Number of Clusters = 3

init	time	inertia	homo	compl	v-meas	ARI	AMI	NMI	silhouette
k-means++	0.1725	49102	0.455	0.426	0.440	0.471	0.440	0.440	0.681
random	0.210s	49102	0.454	0.424	0.438	0.470	0.438	0.438	0.717
PCA-based	0.0625	49102	0.455	0.425	0.439	0.471	0.439	0.439	0.662

Evaluation metrics for 2 clusters.

score	word		score	word		score	rd	1
0.19963	day	0	0.308336	work	0	0.015528	st (
0.06594	today	1	0.027660	tomorrow	1	0.010524	ce (
0.05942	school	2	0.025722	today	2	0.009992	nt (
0.05750	tomorrow	3	0.024375	going	3	0.009947	on (
0.02830	going	4	0.018545	day	4	0.009460	ot (
0.01707	good	5	0.017846	ready	5	0.009307	lly (i 1
0.01543	long	6	0.016309	time	6	0.008864	ad (
0.01372	beautiful	7	0.015314	home	7	0.008797	ng (g
0.01347	break	8	0.014329	got	8	0.008738	ss (
0.01268	bad	9	0.014295	want	9	0.008549	w (
0.01252	home	10	0.014260	morning	10	0.008349	m (
0.01222	bed	11	0.014222	getting	11	0.008327	od (9 3
0.01122	want	12	0.014176	bed	12	0.008284	ne (
0.01079	morning	13	0.013260	don	13	0.008086	sh (
0.01068	sad	14	0.012587	just	14	0.008076	ry (
0.01068	feeling	15	0.012140	tired	15	0.007920	ay (t
0.01027	work	16	0.011213	sleep	16	0.007797	ne (ł
0.01003	spring	17	0.010812	night	17	0.007639	ep (
0.01000	time	18	0.010564	hours	18	0.007373	ed (
0.00998	really	19	0.010554	need	19	0.007292	ht (

Result

K-means is a very simple and powerful algorithm to cluster a dataset. However, one of the problems is that clusters are spherical. Therefore, it can not be reliable for all situations.

We are using text data for our project. So, we need to represent the data as the model understands. For this reason, firstly, we vectorize our data with tf-idf vectorizer. Then, we use the elbow method to make sure we choose the optimal number of clusters. We decided to make experiments with 2 and 3 numbers of clusters.

The K-means is clustering words according to some semblance of meaning in our experiments, but experiments can be developed with even more accurate parameters.

Thank you for listening