Lecture 3 Signals and Systems (ELL205)

By Dr. Abhishek Dixit

Dept. of Electrical Engineering

IIT Delhi

Outline

- What are signals?
- What are systems?
- Different kinds of Signals
 - Continuous-time vs. Discrete-time signals
 - Energy vs. Power signals
- Signal transformations
 - Flipping
 - Scaling
 - Shifting

Outline

- What are signals?
- What are systems?
- Different kinds of Signals
 - Continuous-time vs. Discrete-time signals
 - Energy vs. Power signals
- Signal transformations
 - Flipping
 - Scaling
 - Shifting

• Energy vs. power signals

$$p(t) = v(t)i(t) = \frac{v^2(t)}{R}$$

Energy vs. power signals

$$p(t) = v(t)i(t) = \frac{v^2(t)}{R}$$

$$E(t_2 - t_1) = \int_{t_1}^{t_2} \frac{v^2(t)}{R} dt$$

Energy vs. power signals

$$p(t) = v(t)i(t) = \frac{v^2(t)}{R}$$

$$E(t_2 - t_1) = \int_{t_1}^{t_2} \frac{v^2(t)}{R} dt$$

$$\langle p(t) \rangle = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \frac{v^2(t)}{R} dt$$

• Energy vs. power signals

Analogous to defining energy and power of signals in electric circuit, we can also define Energy of a signal as

$$E = \int_{t_1}^{t_2} |x(t)|^2 dt$$

Energy vs. power signals

Analogous to defining energy and power of signals in electric circuit, we can also define Energy of a signal as

$$E = \int_{t_1}^{t_2} |x(t)|^2 dt$$

Note that this is not physical energy as x(t) can be any signal such as sound pressure, voltage, current, etc. Thus, energy conservation cannot be applied.

• Energy vs. power signals

Similarly, Power of a signal is

$$P = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} |x(t)|^2 dt$$

• Energy vs. power signals

$$E_{\infty} =$$

$$P_{\infty} =$$

• Energy vs. power signals

$$E_{\infty} = \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt$$

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

Energy vs. power signals

For discrete-time signals

$$E_{\infty} = \lim_{N \to \infty} \sum_{n=-N}^{N} |x[n]|^2$$

$$P_{\infty} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^{2}$$

• Energy vs. power signals

If
$$E_{\infty} = finite$$
, $P_{\infty} = ?$

• Energy vs. power signals

If
$$E_{\infty} = finite$$
, $P_{\infty} = 0$

Energy signal

• Energy vs. power signals

If
$$E_{\infty} = ?$$
, $P_{\infty} = finite$

Power signal

• Energy vs. power signals

If
$$E_{\infty} = \infty$$
, $P_{\infty} = finite$

Power signal

• Energy vs. power signals

If
$$E_{\infty} = \infty$$
, $P_{\infty} = \infty$

Neither Energy nor Power signal Useless signal!!

• Energy vs. power signals

E_{∞}	$m{P}_{\infty}$	
∞	∞	Useless signal
Finite	0	Energy signal (only possible practically)
∞	Finite	Power signal

Outline

- What are signals?
- What are systems?
- Different kinds of Signals
 - Continuous-time vs. Discrete-time signals
 - Energy vs. Power signals
- Signal transformations
 - Flipping
 - Scaling
 - Shifting
- Further classifications of Signals
 - Even vs. Odd signals
 - Periodic vs. Aperiodic signals

1) Time-reversal/flipping/folding

$$\chi(t) \to \chi(-t)$$

1) Time-reversal/flipping/folding

$$\chi(t) \to \chi(-t)$$

$$x(-t) = ?$$

2) Time-scaling

$$x(t) \rightarrow x(\alpha t)$$

2) Time-scaling

$$x(t) \rightarrow x(\alpha t)$$

$$x(2t) = ?$$

2) Time-scaling

$$x(t) \rightarrow x(\alpha t)$$

$$x\left(\frac{1}{2}t\right) = ?$$

3) Time-shifting

$$x(t) \rightarrow x(t+t_o)$$

3) Time-shifting

$$x(t) \rightarrow x(t+t_o)$$

$$x(t + 5) = ?$$

1)
$$y(t) = x\left(\frac{\beta}{\delta}t + \beta\gamma - \alpha\right)$$
 2) $y(t) = x\left(\frac{\beta}{\delta}t - \beta\gamma + \alpha\right)$ 3) $y(t) = x\left(\frac{\delta}{\beta}t - \beta\gamma + \alpha\right)$ 4) $y(t) = x\left(\frac{\delta}{\beta}t + \beta\gamma - \alpha\right)$ 5) None of these

1)
$$y(t) = x \left(\frac{\beta}{\delta}t + \beta\gamma - \alpha\right)$$
 2) $y(t) = x \left(\frac{\beta}{\delta}t - \beta\gamma + \alpha\right)$ 3) $y(t) = x \left(\frac{\delta}{\beta}t - \beta\gamma + \alpha\right)$ 4) $y(t) = x \left(\frac{\delta}{\beta}t + \beta\gamma - \alpha\right)$ 5) None of these

$$x(t-\alpha) \longrightarrow \beta \longrightarrow x(\beta t - \alpha)$$

$$x(\beta t - \alpha) \longrightarrow \bigvee_{\gamma} x(\beta(t + \gamma) - \alpha)$$

$$x(\beta t + \beta \gamma - \alpha) \longrightarrow \delta \longrightarrow x\left(\frac{\beta}{\delta}t + \beta \gamma - \alpha\right)$$

- 1 f(4t)
- $^{2}-f(t)$
- f(-t)

f(t)

1 f(4t)

 $^{2}-f(t)$

f(-t)

1 f(4t)

- $^{2}-f(t)$
- f(-t)

1
$$f(4t)$$

$$^{2}-f(t)$$

$$f(-t)$$

1
$$f(4t)$$

$$^{2}-f(t)$$

$$f(-t)$$

