

SNP ANALYSIS FROM NGS DATA AT SSI

Kristoffer Kiil, Ph.D Statens Serum Institut Denmark

OUTLINE

- : SSI SNP cluster detection
 - MLST
 - SNP analysis
- xtMLST
 - why we consider it
 - The listeria case
 - Is it a good idea?
- . Can we share this data across borders?

SSI SNP CLUSTER DETECTION

SSI SNP CLUSTER DETECTION

MLST PIPELINE

- ▶ Pad MLST allele sequences with 2x50bp from a reference genome
- Align reads to the padded sequences using BWA mem
- Samtools and modified samutils script used to call alleles
- Allele sequences imported into bionumerics to integrate MLST data with other strain data
- Could be replaced with SRST2 (https://github.com/katholt/srst2)

SSI SNP CLUSTER DETECTION

SNP PIPELINE

- Align reads to ST specific reference using BWA mem
- Sort and process read alignments using elprep
- ∴ Call SNPs against the reference using GATK
- Compare SNP lists from all samples in comparison and create a brutto SNP list
- ➤ Force recalling of all SNPs from the brutto list
- Discard low quality SNPs
 - Minimum depth 4
 - Uses maximum likelihood call in diploid model
 - Discards ambiguous SNP calls
- Remove recombination
 - Removing unlikely long stretches of identical SNP profiles

SNP PIPELINE

EXAMPLE: S. typhimurium

- Good resolution
- Fairly clear cluster definitions
- Somewhat computationally intensive
- A few STs comprise most of the strains

xtMLST

- Could we improve the performance of our workflow
 - Get better discrimination
 - Higher DI = fewer cluster investigations
 - Extend with more loci

MLST+100 CORE GENES

xtMLST

- Could we improve the performance of our workflow
 - Get better discrimination
 - Higher DI = fewer cluster investigations
 - Extend with more loci
- Relatively few additional loci increase DI dramatically
- → How does it look when we look at independent surveillance data?

MLST ST

SNP cluster colour

xtMLST

- Decreases the number of SNP cluster investigations
- ∴ Results in few false negative clusters
- ▶ Developing xtMLST schemes requires some extra work on top of MLST

CROSS BORDER SNP EXCHANGE

Challenges

- SNP positions must be comparable
- Data must not take too much space (comparison by email)
- Distinguishing between no SNP and uncallable SNP

Solutions

- Make a shared library of ST specific references
- Record low quality regions as a bit array, same length as the reference (<1Mb)

Molecular serotype colour (n=264)

SNP cluster colour MLST ST labels

MLST w/ distances

