

28. (MODELO ENEM) - A figura a seguir mostra parte do gráfico da função f(x) = m + n. sen $(p \cdot x)$:

O valor de m.n.p é:

- b) $\frac{8}{3}$
- c) 6
- d) 8

Resolução

A partir do gráfico da função apresentada, conclui-se que:

- 1) O gráfico da função seno foi "deslocado para cima" de um valor correspondente a 2 unidades, portanto m = 2.
- 2) O gráfico da função seno sofreu uma "abertura na vertical" de um valor correspondente a 2 vezes o seu valor normal (em vez de amplitude igual a 2, está com amplitude igual a 4), o que significa que a função dada representa a função seno multiplicada por 2, portanto, n = 2.
- 3) O período da função seno (2π) assumiu no gráfico o valor 6π . Se o período da função apresentada é $6\pi = 3$. (2π) , significa que

$$f(x) = 2 + 2 \cdot sen\left(\frac{x}{3}\right)e$$
, portanto, $p = \frac{1}{3}$.

Logo m.n.p = $\frac{4}{3}$.

38. (FEI) – Calcular sen $\left(\frac{7\pi}{2}\right)$. $\cos(31\pi)$.

a) $\frac{\sqrt{3}}{2}$ < A < 1 b) -1 < A < - $\frac{\sqrt{2}}{2}$

c) $0 < A < \frac{\sqrt{2}}{2}$ d) $\frac{\sqrt{2}}{2} < A < \frac{\sqrt{3}}{2}$

41. (FISFS) - Assinale a afirmação verdadeira: a) cos 240° < sen 240° < tg 240° b) cos 240° < tg 240° < sen 240°

> c) sen 240° < cos 240° < tg 240° d) tg 240° < cos 240° < sen 240° e) tg 240° < sen 240° < cos 240°

> > b) 2

 $f(x) = 2 - 3 \cdot \cos x \in o intervalo$

b) [-1; 0]

39. (FUVEST) - Calcular sen 1920°.

40. (UNEŚP) - Se A = sen(6), então:

e) $-\frac{\sqrt{2}}{2}$ < A < 0

Resposta: A

EXERCÍCIOS-TAREFA

29. Calcular:

$$E = \frac{\text{sen } 90^{\circ} + \cos 360^{\circ} + \text{sen } 270^{\circ} \cdot \cos 180^{\circ}}{\cos 0^{\circ} + \text{sen } 0^{\circ}}$$

- 30. Se $x = \frac{\pi}{2}$, então $y = \frac{\cos x + \sin 2x \sin 3x}{\cos 4x + \sin x}$, vale:
 - a) 1 b) $\frac{1}{2}$
- d) 0 e) $-\frac{1}{2}$
- 31. Os arcos cujo cosseno é $\sqrt{2}$ podem estar nos quadrantes: a) 1º e 4º b) 1º e 2º c) 1º e 3º d) 2º e 3º e) nenhuma das opções é correta
- 32. (AMAN) Calcular A = sen 3x + cos 4x tg 2x para x = $\frac{\pi}{2}$.
- 33. O valor numérico de $\frac{\operatorname{sen}\left(\frac{x}{2}\right) + 2 \cdot \operatorname{tan}\left(\frac{3x}{4}\right)}{3 \cdot \cos x}$ para $x = \frac{\pi}{3}$ rad é

 - a) $\frac{5}{2}$ $\sqrt{5}$ c) $\frac{3}{2}$ d) $\frac{2}{5}$

- **34.** (**PUC**) Determinar **m** para que $\frac{\pi}{3}$ seja raiz da equação: $tg^2x - m \cdot \cos^2x + \sin^2x = 0$
- 35. Os arcos cuja tangente vale $\sqrt{1302076}$ podem estar nos quadran
 - a) 1º ou 2º
- b) 19 ou 39
- c) 1º ou 4º

- d) 2º ou 3º
- e) 3º ou 4º
- 36. (PUC) O valor numérico da expressão: $y = \cos 4x + \sin 2x + \tan 2x - \sec 8x$ para $x = \frac{\pi}{2}$ és
- c) 3

- 37. (F. CARLOS CHAGAS) O menor valor que assume a expressão (6 - sen x), para "x" variando de 0° a 360°, é:
 - b) 6 c) 5
- a) $\frac{8}{3}$ b) $\frac{10}{3}$ c) 4 d) $\frac{14}{3}$ e) $\frac{16}{3}$

e mínimo de 2 + $\frac{2}{3}$. $\cos^2 x$ é:

42. (ULBRA) - O valor da expressão cos 1440° + sen 810° + tg 720° és

c) [3; 5]

44. (MACKENZIE - MODELO ENEM) - A soma dos valores máximo

c) 3

43. (PUC) – A imagem da função $f : \mathbb{R} \to \mathbb{R}$ definida por

d) [2; 3]

🎉 (FEI) – A sequência de valores

sen
$$\frac{\pi}{2}$$
; sen $\frac{\pi}{3}$; sen $\frac{\pi}{4}$;; sen $\frac{\pi}{n}$;

- a) é estritamente crescente
- é estritamente decrescente
- c) possui valores negativos
- d) possui valores iguais
- e) é uma progressão aritmética
- 46. (F. CARLOS CHAGAS) Os quadrantes onde estão os ângulos α , β e γ tais que:

sen $\alpha < 0$ e cos $\alpha < 0$

 $\cos \beta < 0 e tg \beta < 0$

sen $\gamma > 0$ e cotg $\gamma > 0$ são, respectivamente:

- a) 3º, 2º e 1º d) 1º, 2º e 3º
- b) 2°, 1° e 3° e) 3º, 2º e 2º
- c) 3º, 1º e 2º
- 47. (SANTA CASA) Se F(x) = cos x, então:

a)
$$F\left(\frac{\pi}{2}\right) < F\left(\frac{\sqrt{3}}{2}\right) < F(\sqrt{2}) < F(1,5)$$

b)
$$F(1,5) < F\left(\frac{\pi}{2}\right) < F\left(\frac{\sqrt{3}}{2}\right) < F(\sqrt{2})$$

c)
$$F\left(\frac{\sqrt{3}}{2}\right) < F(\sqrt{2}) < F(1,5) < F\left(\frac{\pi}{2}\right)$$

d)
$$F(\sqrt{2}) < F(1,5) < F\left(\frac{\sqrt{3}}{2}\right) < F\left(\frac{\pi}{2}\right)$$

e)
$$F\left(\frac{\pi}{2}\right) < F(1,5) < F(\sqrt{2}) < F\left(\frac{\sqrt{3}}{2}\right)$$

De **48** a **50**, resolver as equações, para $0 \le x \le 2\pi$.

48. sen x = 0

49.
$$\cos x = -1$$

50.
$$tg x = 0$$

De **51** a **55**, resolver as equações, para $0 \le x \le 2\pi$

51. sen x = $\frac{\sqrt{3}}{2}$

52. sen
$$x = -\frac{1}{2}$$

53. $\cos x = -\frac{\sqrt{2}}{2}$ 54. $\cos x = -\frac{1}{2}$

54.
$$\cos x = -\frac{1}{2}$$

55. $tg x = \pm 1$

- 56. (UNP) Seja sen $\alpha = \frac{3}{5}$ e α um arco do 2º quadrante. Então, tg α
- a) $\frac{4}{3}$ b) $\frac{3}{4}$ d) -1
- (UNIMEP) Sabe-se que cos x = $\frac{\sqrt{15}}{4}$ e $\frac{3\pi}{2}$ < x < 2π . O valor

(a) $-\frac{\sqrt{14}}{4}$ b) $-\frac{\sqrt{15}}{4}$ c) $\frac{\sqrt{14}}{4}$ e) $-\frac{1}{4}$ e) $-\frac{\sqrt{3}}{4}$

58. (PUC) – Se x é urh arco do 2º quadrante e sen x = $\frac{\sqrt{2}}{2}$, então tg x é:

a = 1 b) $-\sqrt{3}$ c) $-\frac{\sqrt{3}}{3}$ d) 1 e) $\sqrt{3}$

- **59.** (CEFET) Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \operatorname{sen} x$ e as seguintes afirmações:
 - I) a função **f** é crescente no intervalo $\left| \frac{3\pi}{2}; 2\pi \right|$
 - II) a função f tem como imagem o intervalo [0; 1]
 - III) a função \hat{f} é par, pois sen(- x) = sen x, para todo \mathbf{x} real
 - IV) $\frac{1}{2}$ é a imagem de $\frac{\pi}{4}$ pela função f, ou seja, f $\left(\frac{\pi}{4}\right) = \frac{1}{2}$
 - V) 1 é a imagem de $\frac{\pi}{2}$ pela função f, ou seja, f $\left(\frac{\pi}{2}\right)$ = 1

Associando-se V (verdadeira) ou F (falsa), a cada afirmação, na ordem apresentada, tem-se:

- a) F F F F V
- b) V F F F V
- c) V F F V F e) F - F - V - V - V
- **60.** Dada a função $Q(x) = |\cos x 1|$, definida no intervalo 0; $\frac{\pi}{2}$ assinale a alternativa falsa.
 - a) Q(x) mínimo vale 0
 - b) Q(x) máximo vale 1
 - c) Q(x) assume valor máximo para x = $\frac{\pi}{2}$
 - d) Q(x) assume valor mínimo para $x = \frac{\pi}{4}$
 - e) para $x = \frac{\pi}{3}$, Q(x) vale $\frac{1}{3}$
- **61. (FUVEST)** Se $x \in]\pi$; $\frac{3\pi}{2}$ [e cos x = 2 . k 1, então **k** varia no intervalo
 - a)] -1; 0[
- b) [-1; 0 [.
- c)] 0; 1 [
- d) $\left[\frac{1}{2};1\right]$ e) $\left]0;\frac{1}{2}\right[$
- 62. (MACKENZIE) O menor valor positivo de x, para o qual

$$9^{-\cos x} = \frac{1}{3}$$
, é:

- a) $\frac{\pi}{6}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{3}$ d) $\frac{\pi}{2}$

- **63. (FGV)** A solução da equação $\frac{625^{\cos^2 x}}{25^{\cos x}} = 1$, para $0 \le x < \frac{\pi}{2}$, é:
- b) $x = \frac{\pi}{c}$
- c) x = 0 ou x = $\frac{\pi}{6}$

- e) $x = \frac{\pi}{2}$ ou $x = \frac{\pi}{2}$
- **64. (FGV)** Se **a** é a menor raiz positiva da equação $(tg \times -1)$. (4 . $sen^2x 3$) = 0 então, o valor de $sen^4a cos^2a$ é:

- b) 0 c) $-\frac{1}{4}$ d) $\frac{\sqrt{3}}{2}$ e) $-\frac{1}{2}$
- **65. (UnB)** Se $\sec^2 x + tg x 7 = 0 e 0 < x < \frac{\pi}{2}$, então:
- a) $\cos x = \frac{\sqrt{3}}{2}$ b) $\cos x = \frac{\sqrt{5}}{5}$ c) $\cos x = \frac{\sqrt{3}}{4}$
- d) $\cos x = \frac{1}{4}$
- e) nenhuma das anteriores
- **66. (PUC)** Determinar **x** de modo que se verifique sen $\theta = \frac{2x-1}{3}$.

De 67 a 72, resolver as equações, para $0 \le x \le 2\pi$.

68. $\sec x = 2$

70. cossec x = 0

71.
$$\cot x = 1$$

72. cotg x =
$$\frac{\sqrt{3}}{3}$$

73. (FAAP) – Resolver 1 – sen x + $\cos^2 x = 0$ para $0 \le x < 2\pi$.

De **74** a **79**, resolver as inequações com $0 \le x < 2\pi$.

74. sen
$$x \ge \frac{1}{2}$$

75. sen x ≤
$$-\frac{\sqrt{2}}{2}$$

76.
$$\cos x < \frac{\sqrt{3}}{2}$$
 77. $\cos x \ge \frac{1}{2}$

$$77.\cos x \ge \frac{1}{2}$$

78.
$$tg x \ge 1$$

80. (PUC) – O valor da expressão 25 . $sen^2x - 9$. tg^2x , sabendo que cossec x = $\frac{5}{4}$ e **x** é do primeiro quadrante, é:

- c) 4

81. (F. CARLOS CHAGAS - MODELO ENEM) - Seja $A \subset B = \{x \in \mathbb{R} \mid 0 \le x \le 2\pi\}$, o domínio da função **f**, dada por $f(x) = \frac{1 - sen^2x}{1 + sen x}$. Então, A é igual a:

a)
$$\{x \in \mathbb{R} \mid x \neq \frac{\pi}{2} \text{ e } x \neq 0\}$$
 b) $\{x \in \mathbb{R} \mid x \neq \pi\}$

b)
$$\{x \in \mathbb{R} \mid x \neq \pi\}$$

c)
$$\left\{ x \in \mathbb{R} \mid x \neq \frac{3\pi}{2} \right\}$$
 d) $\left\{ x \in \mathbb{R} \mid x = \frac{3\pi}{2} \right\}$

d)
$$\left\{ x \in \mathbb{R} \mid x = \frac{3\pi}{2} \right\}$$

e) n.d.a.

82. (FEI) – Na estação de trabalho de pintura de peças de uma fábrica, a pressão em um tambor de ar comprimido varia com o tempo conforme a expressão P(t) = 50 + 50 . sen (t $-\frac{\pi}{2}$), t > 0. Assinale a alternativa em que o instante t corresponde ao valor mínimo da

- a) $t = \frac{\pi}{2}$
- b) $t = \pi$ c) $t = \frac{3\pi}{2}$
- d) $t = 2\pi$
- e) $t = 3\pi$

83. (FAAP) - Representar, no sistema cartesiano ortogonal, o conjunto dos pontos P(x; y) em que x = sen t e y = sen²t para

$$-\frac{\pi}{2} \le t \le \frac{\pi}{2}.$$

84. (FUVEST) – No intervalo $\frac{\pi}{2} \le x \le \pi$, a equação

$$\sqrt{1-\sin^2 x} + \cos x = -\sqrt{2}$$

- a) não admite solução
- b) admite como solução $x = \frac{3\pi}{4}$
- c) admite como solução $x = \frac{2\pi}{2}$
- d) admite como solução $x = \frac{5\pi}{6}$
- e) admite como solução $x=\pi$

Resolver a equação: sen x = cos x, com $0 < x < 2\pi$.

86. O número de raízes da equação $\cos x + \sin x = 0$, no intervalo $[0; 3\pi], é:$

- a) 2
- b) 1
- c) 3

d) 4

87. (FUVEST) – Determinar os valores de x, no intervalo $0 \le x \le 2$ que satisfazem a equação sen $\pi x + \cos \pi x = 0$.

88. (FAAP) – Resolver a equação: $tg \times -2$. $sen \times =0$; $0 \le x \le -2$

(SANTO ANDRÉ) - Determinar o número de soluções reais da equação $\cos^2(\text{sen x}) = 1$, para $0 \le x < 2\pi$. b) 1 c) 2 d) 3

De 90 a 96, resolver as equações:

- **91.** $\cos x = -\frac{\sqrt[3]{3}}{2}$
- **92.** sen x . cos x = 0 **93.** | sen x | = $\frac{\sqrt{3}}{2}$
- **94.** $\cos^2 x = \frac{1}{2}$ **95.** $\tan x = \sqrt{3}$
- **96.** $tg^2x = 1$

De 97 a 102, resolver as inequações:

- **97.** sen x > $\frac{\sqrt{3}}{2}$ **98.** cos x $\leq \frac{\sqrt{2}}{2}$
- **100.** sen x < $-\frac{1}{2}$

103. (F. CARLOS CHAGAS - MODELO ENEM) - Qual dos seguintes conjuntos de valores de ${\bf x}$ poderia constituir um domínio para a função log (sen x)?

- b) $\frac{\pi}{2}$ < x < π
- c) $\frac{3\pi}{2}$ < x < 2π d) x \neq K . $\frac{3\pi}{4}$ (K = 0, 1, 2, ...)

e)
$$x \neq K$$
. $\frac{\pi}{2}$ $(K = 0, 1, 2, ...)$

104. Dar o domínio de $y = \sqrt{sen x}$

105. (MACKENZIE) – Determinar o domínio de $f(x) = \sqrt{sen 3x}$ para

106. (MACKENZIE) - Calcular o domínio da função f definida por

$$f(x) = \frac{\text{sen } x}{\text{sen } x + \cos x}$$

107. Resolver a equação: sen x . tg x + 2 . $\cos x = 2$

108. Resolver a equação: $sen^2x + sen^4x + sen^6x = 3$

109. (MACKENZIE) – Resolver a equação tg $\left(x - \frac{\pi}{2}\right) = 1$

110. Calcular o domínio da função f, tal que f(x) = 2 - tg $\left(\frac{x}{3}\right)$

111. (TAUBATÉ) – Sendo 0° < x < 90° , determinar um dos valores de → para o qual a função y = tg (2x - 30°) não é definida.

RESPOSTAS DOS EXERCÍCIOS-TAREFA

$$34) m = 15$$

39)
$$\frac{\sqrt{3}}{2}$$

51)
$$\left\{ \begin{array}{c} \pi \\ \hline 3 \end{array}; \frac{2\pi}{3} \right\}$$
 52) $\left\{ \begin{array}{c} 7\pi \\ \hline 6 \end{array}; \frac{11\pi}{6} \right\}$ 53) $\left\{ \begin{array}{c} 3\pi \\ \hline 4 \end{array}; \frac{5\pi}{4} \end{array} \right\}$

$$\frac{7\pi}{6}; \frac{11\pi}{6}$$

53)
$$\left\{ \frac{3\pi}{3\pi} : \frac{5\pi}{3\pi} \right\}$$

54)
$$\left\{ \begin{array}{l} \frac{2\pi}{3}; \frac{4\pi}{3} \end{array} \right\}$$
 55) $\left\{ \begin{array}{l} \frac{\pi}{4}; \frac{3\pi}{4}; \frac{5\pi}{4}; \frac{7\pi}{4} \end{array} \right\}$

62) C

$$66)-1\leq x\leq 2$$

68)
$$\left\{ \frac{\pi}{3}; \frac{5\pi}{3} \right\}$$
 69) $\left\{ \frac{\pi}{6}; \frac{5\pi}{6} \right\}$ 70) Ø

71)
$$\left\{ \begin{array}{c} \frac{\pi}{4}; \frac{5\pi}{4} \end{array} \right\}$$
 72) $\left\{ \begin{array}{c} \frac{\pi}{3}; \frac{4\pi}{3} \end{array} \right\}$ 73) $\left\{ \begin{array}{c} \frac{\pi}{2} \end{array} \right\}$

74)
$$\left\{ x \in \mathbb{R} \mid \frac{\pi}{6} \le x \le \frac{5\pi}{6} \right\}$$
 75) $\left\{ x \in \mathbb{R} \mid \frac{5\pi}{4} \le x \le \frac{7\pi}{4} \right\}$

$$75) \left\{ x \in \mathbb{R} \mid \frac{5\pi}{4} \le x \le \frac{7\pi}{4} \right\}$$

$$76) \left\{ x \in \mathbb{R} \mid \frac{\pi}{6} < x < \frac{11\pi}{6} \right\}$$

77)
$$\left\{ x \in \mathbb{R} \mid 0 \le x \le \frac{\pi}{3} \text{ ou } \frac{5\pi}{3} \le x < 2\pi \right\}$$

78)
$$\left\{ x \in \mathbb{R} \mid \frac{\pi}{4} \le x < \frac{\pi}{2} \text{ ou } \frac{5\pi}{4} \le x < \frac{3\pi}{2} \right\}$$

79)
$$\left\{ x \in \mathbb{R} \mid \frac{\pi}{2} < x < \frac{3\pi}{4} \text{ ou } \frac{3\pi}{2} < x < \frac{7\pi}{4} \right\}$$

$$y = x^{2}$$
 85) $\left\{ \frac{\pi}{4}; \frac{5\pi}{4} \right\}$ 86) C 87) $\left\{ \frac{3}{4}; \frac{7}{4} \right\}$

87)
$$\left\{ \begin{array}{c} 3 \\ 4 \end{array}; \begin{array}{c} 7 \\ 4 \end{array} \right\}$$

88)
$$\left\{0; \frac{\pi}{3}\right\}$$
 89) C

90)
$$\left\{ x \in \mathbb{R} \mid x = \frac{\pi}{6} + n \cdot 2\pi \text{ ou } x = \frac{5\pi}{6} + n \cdot 2\pi \right\} (n \in \mathbb{Z})$$

91)
$$\left\{ x \in \mathbb{R} \mid x = \pm \frac{5\pi}{6} + 2n\pi \right\}$$
 $(n \in \mathbb{Z})$

92)
$$\left\{ x \in \mathbb{R} \mid x = \frac{n\pi}{2} \right\} (n \in \mathbb{Z})$$

93)
$$\left\{ x \in \mathbb{R} \mid x = \pm \frac{\pi}{3} + n\pi \right\} (n \in \mathbb{Z})$$

94)
$$\left\{ x \in \mathbb{R} \mid x = \frac{\pi}{4} + \frac{n\pi}{2} \right\}$$
 $(n \in \mathbb{Z})$

95)
$$\left\{ x \in \mathbb{R} \mid x = \frac{\pi}{3} + n\pi \right\} (n \in \mathbb{Z})$$

96)
$$\left\{ x \in \mathbb{R} \mid x = \frac{\pi}{4} + \frac{n\pi}{2} \right\}$$
 $(n \in \mathbb{Z})$

97)
$$\left\{ x \in \mathbb{R} \mid \frac{\pi}{3} + n2\pi < x < \frac{2\pi}{3} + n2\pi \right\} (n \in \mathbb{Z})$$

98)
$$\left\{x \in \mathbb{R} \mid \frac{\pi}{4} + n2\pi \le x \le \frac{7\pi}{4} + n2\pi\right\}$$
 $(n \in \mathbb{Z})$

99)
$$\left\{ x \in \mathbb{R} \mid \frac{\pi}{4} + n\pi \le x < \frac{\pi}{2} + n\pi \right\}$$
 $(n \in \mathbb{Z})$

100)
$$\left\{ x \in \mathbb{R} \mid \frac{7\pi}{6} + n2\pi < x < \frac{11\pi}{6} + n2\pi \right\} (n \in \mathbb{Z})$$

101)
$$\left\{ x \in \mathbb{R} \mid -\frac{2\pi}{3} + n2\pi \le x \le \frac{2\pi}{3} + n2\pi \right\} (n \in \mathbb{Z})$$

102)
$$\left\{ x \in \mathbb{R} \mid -\frac{\pi}{4} + n2\pi \le x \le \frac{5\pi}{4} + n2\pi \right\} (n \in \mathbb{Z})$$

103) B

104) D(f) = $\{x \in \mathbb{R} \mid n2\pi \le x \le \pi + n2\pi\}$ $(n \in \mathbb{Z})$

105) D(f) =
$$\left\{ x \in \mathbb{R} \mid 0 \le x \le \frac{\pi}{3} \text{ ou } \frac{2\pi}{3} \le x \le \pi \right\}$$

106) D(f) =
$$\mathbb{R} - \left\{ \frac{3\pi}{4} + n \cdot \pi \right\}$$
 $(n \in \mathbb{Z})$

107)
$$\{x \in \mathbb{R} \mid x = 2 . n . \pi\}$$
 $(n \in \mathbb{Z})$

108)
$$\{x \in \mathbb{R} \mid x = \frac{\pi}{2} + n \cdot \pi\} \ (n \in \mathbb{Z})$$

109)
$$\left\{ x \in \mathbb{R} \mid x = \frac{3\pi}{4} + n \cdot \pi \right\}$$
 $(n \in \mathbb{Z})$

110) D(f) =
$$\mathbb{R} - \left\{ \frac{3\pi}{2} + n \cdot 3\pi \right\}$$
 $(n \in \mathbb{Z})$

111) 60°

112)
$$D(f) = \mathbb{R} - \left\{ \frac{3\pi}{4} + n \cdot \pi \right\} (n \in \mathbb{Z}); Im(f) = \mathbb{R}$$

113)
$$y = 1$$

118) D(f) =
$$\mathbb{R} - \left\{ \frac{\pi}{2} + n2\pi, n \in \mathbb{Z} \right\}$$

119)
$$\left\{ x \in \mathbb{R} \mid x = n\pi \text{ ou } x = \frac{\pi}{4} + n\pi, n \in \mathbb{Z} \right\}$$

121)
$$\frac{\sqrt{2}}{72}$$
 122) 4

124) -
$$\frac{1}{5}$$
 125) - 1 ou 2 126) x = -2 e y = $\frac{3\pi}{4}$