Esercizio 1 - sistema interattivo

- 1. Ogni job genera 20 reg/disk
- 2. L'utilizzazione del disco è del 50%
- 3. Il tempo medio di servizio al disco è di 25 ms = 0.025 s
- 4. i terminali sono 25.
- 5. Il think time è di 18 s.

Tempo risposta sistema interattivo? (lo è perchè si parla di think time e terminali).

La prima cosa da fare è riconoscere le grandezze dal testo.

- 1. V_{disk}
- 2. U_{disk}
- 3. S_{disk}
- 4. *M*
- 5. Z

Molto spesso potrebbero essere più dati di quelli necessari. Essendo interattivo, il testo ci chiede $R=\frac{M}{X_0}-Z$. Ci serve X_0 Avendo tutti questi dati, dobbiamo usare la **legge del flusso forzato**, perchè relaziona il flusso dell'intero sistema con una parte del sistema tramite visite. Inoltre non abbiamo il throughput del disco in modo esplicito, ma sappiamo che per la **legge dell'utilizzazione** $U_i=X_iS_i$ (Little) allora $X_{disk}=\frac{U_{disk}}{S_{disk}}$

Possiamo scrivere, tramite **legge flusso forzato**, $X_0=\frac{X_{disk}}{V_{disk}}=\frac{U_{disk}}{V_{disk}\cdot S_{disk}}=1~j/s$ Allora R=25/1-18=7~s.

Esercizio 2 - sistema misto

Ha una parte di carico batch (pedice b) ed uno interattivo (pedice b).

Le risorse sono condivise.

Ci sono 40 terminali (M), il think-time è di 15 s (Z_i) , l'interactive response time è di 5 s (R.) Il tempo medio di servizio del disco è 40 ms. (S_{disk})

Per ogni job interattivo ci sono 10 richieste al disco. (V_{disk}^i) Ogni job batch genera 5 richieste al disco. (V_{disk}^b) L'utilizzazione del disco è del 90% (U_{disk})

1. Qual è il throughput del sistema batch? Dalla legge del **flusso forzato** $X_0^b = \frac{X_{disk}^b}{V_{disk}^b}$ Mi manca il *numeratore*, esprimibile come: $X_{disk}^b = X_{disk} - X_{disk}^i$

Il primo termine si ricava dalla **Legge dell'utilizzazione** : $X_{disk} = \frac{U_{disk}}{S_{disk}} = 22.5~j/s$ Mi serve la seconda componente, per la *legge del flusso forzato* $X^i_{disk} = X^i_0 \cdot V^i_{disk}$ Mi calcolo il primo termine, dalle **legge del flusso interattivo**:

$$X_0^i=rac{M}{Z+R^i}=40/20=2~j/s$$
 Allora $X_{disk}^i=X_0^i\cdot V_{disk}^i=20~j/s$, inoltre `X(b,disk)=X(disk)-X(i,disk)=22.5-20=2.5` j/s

Finalmente
$$X_0^b=2.5/5=0.5\ j/s$$

Graficamente abbiamo seguito questo percorso:

2. Suppongo che throughput del sistema triplichi. Voglio trovare un lower bound per il minimo tempo di risposta per il sistema interattivo.

Vuol dire che $X_0^b=1.5~j/s$. Il testo mi sta chiedendo di trovare $R^i=rac{M}{X_s^b}-Z$

Ho il minimo R^i per il massimo $X^i_0 = rac{X^i_{disk}}{V^i_{disk}}$ per la legge delle visite interattive.

Per massimizzarlo devo trovare il massimo del numeratore $X^i_{disk} = X_{disk} - X^b_{disk}$ Il massimo throughput di un centro è per utilizzazione $\rho=1$. (tutto ciò che arriva servo).

 $X_{disk} = [tempo \ di \ flusso]^{-1} = 1/0.04 = 25 \ j/s$, cioè l'inverso del tempo servizio (che era 40ms). $X_{disk}^b = X_0^b \cdot V_{disk}^b = 7.5 j/s$

Avendo entrambe le componenti ottengo:

Average entrambers component oftengo.
$$X_{disk}^i = X_{disk} - X_{disk}^b = 25 - 7.5 = 17.5 \ j/s \ \text{per legge flusso forzato} \ \text{di prima si ha}$$

$$X_0^i = \frac{X_{disk}^i}{V_{disk}^i} = \frac{17.5}{10} = 1.75 \ j/s$$

$$\text{da cui } R_{min}^i \geq \frac{40}{1.75} - 15 = 7.9s$$

Triplicando throughput, c'è una crescita di 2.9 (prima era 5).

Bisognerebbe verificare che in corrispondenza di tale aumento batch, non è cambiato nè M nè Z nè le visite al disco, nè il tempo di servizio globale al disco. I calcoli sono stati fatti sotto queste ipotesi.

Se non è cambiato nulla, il lower bound è corretto.

