Principes de fonctionnement des machines binaires

2019/2020

Pierluigi Crescenzi

Université de Paris, IRIF

- Tests et examens
 - CC : résultat des tests en TD / TP (semaine 4 et semaine 10)
 - E0 : partiel (samedi 26 octobre)
 - E1 : examen mi décembre
 - E2 : examen fin juin
- Notes finales
 - Note session 1:25% CC + 25% E0 + 50% E1
 - Note session 2 : max(E2, 33% CC + 67% E2)
- Rappel
 - Pas de note ⇒ pas de moyenne ⇒ pas de semestre
- Site web
 - moodlesupd.script.univ-paris-diderot.fr

- Numération et arithmétique
- Numération et arithmétique en machine
- Numérisation et codage (texte, images)
- Compression, cryptographie, contrôle d'erreur
- Logique et calcul propositionnel
- Circuits numériques

- On se focalise généralement sur les opérateurs ∨, ∧, ¬
 - Toute formule logique peut s'écrire en utilisant uniquement ces opérateurs
- Un ensemble d'opérateurs est complet si toute formule logique peut s'écrire en utilisant uniquement ses opérateurs
 - $\{\lor,\land,\lnot\}$ est complet
 - Forme normal disjonctive
 - $\{\land, \neg\}$ est complet
 - $\circ p \lor q \Leftrightarrow \neg(\neg p \land \neg q)$ (De Morgan)

- Forme normale disjonctive (FND)
 - Une disjonction de clauses conjonctives
 - Exemple : $(p \land \neg q \land r) \lor (p \land q \land \neg s) \lor (q \land \neg r \land s)$
 - Les clauses sont appelés des mintermes

- Forme normale disjonctive (FND)
 - Une disjonction de clauses conjonctives
 - Exemple : $(p \land \neg q \land r) \lor (p \land q \land \neg s) \lor (q \land \neg r \land s)$
 - Les clauses sont appelés des mintermes
- Il existe aussi une forme normale conjonctive
 - Une conjonction de disjonction
 - \circ Exemple : $(p \lor \neg q \lor r) \land (p \lor q \lor \neg s) \land (q \lor \neg r \lor s)$

- Construction de l'expression sous FND
 - Dans la table de vérité de l'expression considérée, ne retenir que les lignes pour lesquelles la formule a pour valeur ⊤
 - Pour chaque telle ligne, on fabrique un minterme dans lequel on fait apparaître la variable p si sa valeur est \top , et $\neg p$ sinon
 - Exemple

 Pour finir, on fait la disjonction de tous les mintermes obtenus

p	q	$p \oplus q$
		上
上	T	T
\top		T
一	一丁	

p	q	$p \oplus q$
1	T	T
T		T
T	T	

$$\circ$$
 $eg p \wedge q$

p	q	$\mid p \oplus q \mid$
	T	T
T	T	T
T	丁	上

- \circ $eg p \wedge q$
- $\circ \ p \wedge
 eg q$

$\parallel p$	q	$oxed{p \oplus q}$
	丁	T
T		T
	T	上

Mintermes

$$\circ$$
 $eg p \wedge q$

$$\circ$$
 $p \wedge \neg q$

lacksquare FND : $(\neg p \wedge q) \lor (p \wedge \neg q)$

p	q	$\mid r \mid$	$\mid E \mid$
	上		
		T	T
	T		
	T	一丁	T
T	丄	上	T
	\Box	T	
	T		T
	T	T	

p	q	$\mid r \mid$	$\mid E \mid$
	工	T	T
	T	上	上
	T	T	T
T	\perp	上	T
T	\perp	T	L
	T	上	T
	T	T	

$$\circ \
eg p \wedge
eg q \wedge r$$

$\parallel p$	q	$\mid r \mid$	$oxed{E}$
		T	T
	T	上	
上	T	T	T
T	丄	上	T
T		T	
T	T	上	T
	T	T	

$$\circ \
eg p \wedge
eg q \wedge r$$

$$\circ \
eg p \wedge q \wedge r$$

p	q	$\mid r \mid$	$\mid E \mid$
		T	T
	T	上	
	T	T	T
一	Т		一
T	丄	T	上
	T		T
	T	T	

$$\circ \
eg p \wedge
eg q \wedge r$$

$$\circ$$
 $eg p \wedge q \wedge r$

$$\circ$$
 $p \wedge \neg q \wedge \neg r$

p	q	$\mid r \mid$	
	上		
		T	T
	T	上	
	T	T	T
T	丄	上	T
T		T	
	T		T
	T	T	

$$\circ$$
 $eg p \wedge
eg q \wedge r$

$$\circ \
eg p \wedge q \wedge r$$

$$\circ \ p \wedge \neg q \wedge \neg r$$

$$\circ \ p \wedge q \wedge
eg r$$

p	q	$\mid r \mid$	$oxed{E}$
	上		
		T	T
	T	上	
	T	T	T
T	丄	上	T
T		T	
	T		T
T	T	T	

Mintermes

$$\circ \
eg p \wedge
eg q \wedge r$$

$$\circ$$
 $eg p \wedge q \wedge r$

$$\circ$$
 $p \wedge \neg q \wedge \neg r$

$$\circ$$
 $p \wedge q \wedge \neg r$

 $\blacksquare \mathsf{FND} : (\neg p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge r) \vee (p \wedge \neg q \wedge \neg r) \vee (p \wedge q \wedge \neg r)$

Circuits numériques

- Nous nous intéressons aux circuits combinatoires qui réalisent la logique booléenne dans du matériel
 - Un circuit combinatoire réalise une fonction booléenne de $f: \{0,1\}^n o \{0,1\}^m$
 - $\circ~$ Ou un ensemble de m fonctions, $1 \leq i \leq m$, $f_i: \{0,1\}^n o \{0,1\}$
 - Les valeurs de ces fonctions ne dépendent que des valeurs courantes en entrée
 - Les circuits combinatoires ne contiennent pas de boucle
 - Les circuits combinatoires sont fabriqués en combinant des circuits élémentaires appelés portes logiques
 - Une porte logique réalise matériellement un connecteur logique
 - Toute fonction booléenne peut être réalisée en employant uniquement des portes réalisant le ∧ et le ¬

• La représentation graphique des portes logiques est normalisée

• La représentation graphique des portes logiques est normalisée

 Rappelons qu'à une formule on peut associer un arbre syntaxique

• La représentation graphique des portes logiques est normalisée

 Rappelons qu'à une formule on peut associer un arbre syntaxique

On peut donc associer le circuit suivant

$$ullet p \oplus q = (p \wedge
eg q) ee (
eg p \wedge q)$$

$$ullet p \oplus q = (p \wedge
eg q) ee (
eg p \wedge q)$$

 $ullet p \oplus q = (p \wedge
eg q) ee (
eg p \wedge q)$

• Logisim

- Codeur
 - Exemple
 - Associer un numéro aux touches d'un clavier
 - $lacksquare ext{Fonction } \{0,1\}^m o \{0,1\}^n ext{ ou } m=2^n$

 $\circ \ S_1S_0=(i)_2$ si L_i est allumé (et les autres éteints)

L_0	L_1	L_2	L_3	S_0	$ S_1 $
				上	
	上		T	T	T
		T			上
		T	T		
1	T				T
	T		T		
	T	T		上	上
	T	T	T		
T	<u> </u>			上	上
T			T	上	上
	上	T		上	
		T	T		
T	T			上	
T	T		T		
	T	T	上		上
	T	T	T		

L_0	L_1	L_2	L_3	S_0	S_1
	上	工			
上	工		T	丁	T
	上	T	上	T	
	\dashv	H	\vdash		
	<u> </u>	\dashv			T
	H	\dashv	H	上	
	H	H	4		
	H	H	H		
T	\dashv	\dashv	4		
T	\dashv	\dashv	\vdash		
T	\dashv	H	1		
T	\dashv	H	H		
	T	\vdash	1		
T	T	上	T		
T	T	T			
	T	T	T	上	上

- Mintermes S_0
 - \blacksquare $\neg L_0 \wedge \neg L_1 \wedge \neg L_2 \wedge L_3$

$\mid L_0 \mid$	L_1	L_2	L_3	S_0	S_1
				上	
			T	T	T
	Т	T		一	上
	1	T	T	上	上
	H			上	\vdash
	H		T	上	1
\parallel	H	T	\perp		4
	H	T	\vdash	上	1
T	\dashv				上
T	\dashv		\top		\perp
T	\dashv	T	\perp		\dashv
		T	T	上	上
T	T	上	上	上	上
	T	上	T	上	上
	T	T		上	上
T	T	T	T	上	上

• Mintermes S_0

$$\blacksquare \neg L_0 \wedge \neg L_1 \wedge \neg L_2 \wedge L_3$$

$$lacksquare
eg L_0 \wedge
eg L_1 \wedge L_2 \wedge
eg L_3$$

L_0	L_1	L_2	L_3	S_0	S_1
				上	
上	工	工	T	T	T
上	上	T	上	一	上
		H	T		
	T		\perp	上	T
上	T	\perp	T	上	1
	H	H	\perp	上	1
	H	H	\vdash	上	1
十一	\dashv	\dashv			
T	\dashv	\dashv	\top		1
	\dashv	H	\perp		1
T	上	T	T	上	1
一	H	\dashv			1
T	T	上	T	上	
T	T	T	上	上	
T	T	T	T		

• Mintermes S_0

$$\blacksquare$$
 $\neg L_0 \land \neg L_1 \land \neg L_2 \land L_3$

$$lacksquare \neg L_0 \wedge \neg L_1 \wedge L_2 \wedge \neg L_3$$

• Mintermes S_1

$$lacksquare$$
 $\neg L_0 \wedge \neg L_1 \wedge \neg L_2 \wedge L_3$

$oxedsymbol{L}_0$	L_1	L_2	L_3	S_0	S_1
				上	
	上		T	一	T
		T			
		T	T	上	
	T			上	T
	T		T	上	
	T	T			
	T	T	T		
T					
T			T		
T		T	上	上	
		T	T	上	
T	T				
	T		T	上	
	T	T		上	
T	T	T	T		

• Mintermes S_0

$$\blacksquare$$
 $\neg L_0 \land \neg L_1 \land \neg L_2 \land L_3$

$$\blacksquare$$
 $\neg L_0 \land \neg L_1 \land L_2 \land \neg L_3$

• Mintermes S_1

$$\blacksquare$$
 $\neg L_0 \wedge \neg L_1 \wedge \neg L_2 \wedge L_3$

$$\blacksquare$$
 $\neg L_0 \wedge L_1 \wedge \neg L_2 \wedge \neg L_3$

$\parallel L_0$	L_1	L_2	L_3	S_0	S_1
	上		上		
	上		T	T	T
	1	<u> </u>			
		T	\vdash	上	
	T	上	上	上	T
	T	上	T	上	上
	T	T	上	上	上
	T	T	T	上	上
	上	\perp	\perp	上	
T		\dashv	H	上	1
T	上	H	\dashv		1
	\dashv	H	H		1
T	T		工		
	T	上	T		
	T	T		上	
T	T	T	T		

• Mintermes S_0

$$\blacksquare$$
 $\neg L_0 \land \neg L_1 \land \neg L_2 \land L_3$

$$\blacksquare$$
 $\neg L_0 \land \neg L_1 \land L_2 \land \neg L_3$

• Mintermes S_1

$$\blacksquare$$
 $\neg L_0 \wedge \neg L_1 \wedge \neg L_2 \wedge L_3$

$$\blacksquare$$
 $\neg L_0 \wedge L_1 \wedge \neg L_2 \wedge \neg L_3$

• Logisim

- Decodeur
 - Exemple
 - Associer un élément à partir de son numéro
 - $lacksquare ext{Fonction } \{0,1\}^n o \{0,1\}^m ext{ ou } m=2^n$

 $\circ \ L_i$ est allumé avec $S_1S_0=(i)_2$

S_0	$\mid S_1 \mid$	L_0	L_1	L_2	L_3
0	0	1	0	0	0
0	1	0	0	1	0
1	0	0	1	0	0
1	1	0	0	0	1

• Mintermes L_0

$$lacksquare$$
 $eg S_0 \wedge
eg S_1$

• Mintermes L_1

$$lacksquare$$
 $S_0 \wedge \neg S_1$

• Mintermes L_2

$$\blacksquare$$
 $\neg S_0 \wedge S_1$

- Mintermes L_3
 - lacksquare $S_0 \wedge S_1$
- Logisim