04 FOUR

Say we have a 4-site MPS. What can we do with it?

Depends on the gauge!

$$|\Psi\rangle = \sum_{\{s\},\{\alpha\}} M_{\alpha_1}^{s_1} M_{\alpha_1\alpha_2}^{s_2} M_{\alpha_2\alpha_3}^{s_3} M_{\alpha_3}^{s_4} |s_1 s_2 s_3 s_4\rangle$$

Note that site 4 tensor now right orthogonal

Note that site 4 tensor now right orthogonal

Recall this means

Can repeat gauge transformation (repeated SVD)

Can repeat gauge transformation (repeated SVD)

Can repeat gauge transformation (repeated SVD)

Consider measuring an operator on site 1

Consider measuring an operator on site 1

First, general wavefunction:

Consider measuring an operator on site 1

First, general wavefunction:

Consider measuring an operator on site 1

First, general wavefunction:

 $= \sum \psi_{s_1's_2s_3s_4} A_{s_1's_1} \psi_{s_1s_2s_3s_4}$

Consider measuring an operator on site 1

Now gauged MPS:

Consider measuring an operator on site 1

Now gauged MPS:

Use right orthogonality

Consider measuring an operator on site 1

Now gauged MPS:

Use right orthogonality

Consider measuring an operator on site 1

Now gauged MPS:

Use right orthogonality

Consider measuring an operator on site 1

Now gauged MPS:

Use right orthogonality

Much simpler computation!

How much simpler a computation?

Choose always $\leq m$ singular values in each SVD

Computational cost $\sim d^2$ m (compared to d^4)

```
//Define lattice sites
SpinHalf sites(N);
```



```
//Define lattice sites
SpinHalf sites(N);
MPS psi(sites);
```



```
//Define lattice sites
SpinHalf sites(N);
MPS psi(sites);
computeGroundState(H,psi); //optimize psi
```



```
//Define lattice sites
SpinHalf sites(N);
MPS psi(sites);
computeGroundState(H,psi); //optimize psi
//Gauge MPS to second site
psi.position(2);
```


Can obtain single-site operators from "SiteSet" object:

```
//Obtain single-site operators
ITensor Sz = sites.op("Sz",2);
```


Can obtain single-site operators from "SiteSet" object:

```
//Obtain single-site operators
ITensor Sz = sites.op("Sz",2);
ITensor Sp = sites.op("S+",3);
```

sites.op("Sp",3) ==
$$\begin{array}{c} s_3' \\ \downarrow S^+ \\ s_3 \end{array}$$

//Measure Sz on second site

Recall:

//Measure Sz on second site

Recall:

Recall:

We'll measure the dimer order of the J₁-J₂ model

library folder>/tutorial/04_mps

- I. Read through j1j2.cc; compile; and run
- 2. Call psi.position(N/2); to gauge the MPS to site N/2
- 3. Measure $\hat{B}_{N/2} = {\bf S}_{N/2} \cdot {\bf S}_{N/2+1}$

```
ITensor wf = psi.A(N/2)*psi.A(N/2+1);
Real b = (dag(prime(wf,Site))*B(sites,N/2)*wf).toReal();
```

4. Repeat for bonds (N/2-1) and (N/2+1). (Don't forget to call psi.position(b); to include the "gauge center" b in each bond!!) Use to compute and save dimer order parameter:

$$D = \langle \hat{B}_{N/2} \rangle - \frac{1}{2} \langle \hat{B}_{N/2-1} \rangle - \frac{1}{2} \langle \hat{B}_{N/2+1} \rangle$$

Solution for missing code (near line 40 of j1j2.cc):

```
psi.position(N/2-1);
ITensor wf = psi.A(N/2-1)*psi.A(N/2);
val += -0.5*(dag(prime(wf,Site))*B(sites,N/2-1)*wf).toReal();
psi.position(N/2);
wf = psi.A(N/2)*psi.A(N/2+1);
val += (dag(prime(wf,Site))*B(sites,N/2)*wf).toReal();
psi.position(N/2+1);
wf = psi.A(N/2+1)*psi.A(N/2+2);
val += -0.5*(dag(prime(wf,Site))*B(sites,N/2+1)*wf).toReal();
```