DC Geodemograhpic Segmentation

Applying Machine Learning to Cluster DC Neighborhoods

Eric R. Schultz

Overview:

- The Problem
- The Data
- The Method
- The Results
- Conclusions and Recommendations

Problem:

Where and to what extent is DC similar and dissimilar across a host of socio-demographic variables?

How can we measure groups or clusters of likeness across those variables?

Data:

- 2018 American Community
 Survey
- 12 sociodemographic variables
- 179 DC Census Tracts

Methods:

- Geodemographic segmentation
- Clusters generated using Gaussian Mixture Model (GMM)

Staten Islan

Gaussian Mixtures:

- Member of "soft" classifier algorithms
- Suited for representing subpopulations.
- Optimal Clusters = 6
- Silhouette Score = +.3

Results:

Clusters Mapped to Census Tracts:

Cluster One

Cluster Two

Cluster Three

Cluster Four

Cluster Five

Cluster Zero

Interactive Demo:

Conclusions and Recommendations

Conclusions and Recommendations:

- 1. At the census-tract level, DC is geographically segregated. This analysis offers a fairly bleak reality of DC.
- 2. The spatial outliers are worth further exploration.
- Consider running dimensionality reduction on a broader range of variables.
- 4. Consider Hierarchical Clustering techniques.
- 5. Consider using a smaller unit of analysis, like 2020 Census Blocks (will be available late next year)

