Module 3 PD Control for Second-Order-Systems

- (Review) Newton's Laws; Damped and Undamped Video 10 min
- (Review) PD Control for a Point Particle in Space Video 5 min
- A2.1 PD Control for Second-Order Systems
 Video 6 min
- (Review) Infinitesimal Kinematics; RR Arm Video 3 min
- A2.2 PD Tracking

 Due, Oct 25, 11:59 PM PDT Quiz 2 questions Grade: --

(Review) PD Control for a Point Particle in Space

Infinitesimal Kinematics; RR Arm

Forward and inverse kinematics

- Interested in the relationship between the position of the end effector, X , and the joint angles, θ
- Forward kinematics: joint angles known, determine position of end-effector
- Typically joint angles are known as they are instrumented in the machines, desired position of the end-effector can be computed
- Inverse kinematics: position of the end effector known, determine joint angles

Inverse kinematics

- Generally this results in solving system of non-linear equations
- Solve using trigonometric identities
- Simpler cases can be done symbolically in MATLAB
- Make desired values symbolic, then use solve command on system of equations

$$\theta = f^{-1}X$$

Infinitesimal kinematics

- Jacobian (matrix of partial derivatives)
- Velocity implications

$$J = \frac{\partial X}{\partial \theta} \frac{\partial t}{\partial t} = \frac{\partial X}{\partial t} \frac{\partial t}{\partial \theta}$$

$$\frac{\partial X}{\partial t} = J \frac{\partial \theta}{\partial t}$$

Infinitesimal kinematics

- Jacobian (matrix of partial derivatives)
- Velocity implications
- Torque and Force implications
- Effective mechanical advantage

$$F = J^{-T}\tau$$

 $\tau = J^T F$

X = [x, y]

PD control for second order systems

MIP track, week 2

Double integrator: a Simple Dynamic System

- Newton's law: $\ddot{x} = u$
- Think about u as "input", x as "output"

• Assume we want to send $x \to 0$

Virtual Spring for Control

- Idea: attach a spring between the block and the desired position
- Hooke's law $u_p(x) := k_p(x_{\text{des}} x)$

- Try using MATLAB to integrate $\ddot{x} = u_p(x)$
- Change stiffness to approach goal faster
- Overshoot

Dissipation

 Need to remove energy to stop at goal

- Viscous friction $u_d(x,\dot{x}) := -k_d\dot{x}$
- Add to previous input $\ddot{x} = u_p(x) + u_d(x, \dot{x})$
- Try to tune gains to approach without overshoot

Artificial energy landscape (total energy is a Lyapunov function)

- Can prove that the PD controller is stabilizing
- Consider "total energy" $\eta(x,\dot{x})=rac{1}{2}k_p(x-x_{
 m des})^2+rac{1}{2}\dot{x}^2$
- Take the time derivative, substituting \ddot{x}
- Total energy monotonically decreases (rolling downhill)
- Have your MATLAB simulation plot $\eta(x(t),\dot{x}(t))$
- PD controller creates this artificial hill

Where is PD control applicable?

- Nonlinear plant: $\ddot{x} = f(x, \dot{x}) + g(x, \dot{x})u$
- g invertible: set $u := g(x, \dot{x})^{-1}(-f(x, \dot{x}) + v)$
- Back to $\ddot{x} = v$
- "Feedback linearization" / "inverse dynamics"
- · Implementation difficulties
- Recall hyperbolic approximation (Mobility 1.2)
- PD on nonlinear plants: e.g.

Using MATLAB for **Dynamic Simulations**

MIP track, week I

Dynamical Systems as ODE's

- Order of an ODE is the highest order derivative that
- · Mechanical systems are usually second order
- Recall Newton's second law $m\ddot{\chi}=F$

State-space for Second Order Systems

- · Inertia means need velocity
- Define vector equation

$$x = egin{bmatrix} x_1 \ x_2 \end{bmatrix} \coloneqq egin{bmatrix} \chi \ \dot{\dot{\chi}} \end{bmatrix} \implies \dot{x} = egin{bmatrix} x_2 \ F/m \end{bmatrix}$$

- x is called the state
- First order
- MATLAB can integrate

Numerical ODE Integration

• Consider $\dot{x} = \alpha$

- Could use fixed timestep, dt
- Set $x(t_{k+1}) = x(t_k) + \alpha \cdot dt$
- If $\alpha(t)$ is not fixed, the results will be inaccurate
- MATLAB estimates how the right side is changing and picks the best timestep dt in $\mathbf{ode45}$
- · Only works when right hand side is smooth

Example: Harmonic Oscillator

- Consider $\ddot{x} = -x$
- Initial condition $x(0) = 1, \dot{x}(0) = 0$

