NP-completeness P - polynomial - time NP - nondeterministic polynomial time Million-dollar question P = NP

P = the class of all computational problems that can be solved in polynomial time Decision problems

Functional optimization problems in the input size Ti computational problem I an instance for T (input) |I| = the no. of bits needed to 0/p - Yes/No, Accept/Reject refrenent I

P consists of problems that are efficiently nolvable. n - i [5 532 (n100) time O(n/og n), O(n3), ---August 2002 AKS P is infinite $k \in MUL$ 51 if b = ak $1/e^{-}(a,b) \quad 0/e = 0 \text{ if } not$ The boundary of Pichazy.

NP - nondeterministic algo - certificates

FA, PDA

COMPOSITE

Infant: A positive integer n Output: Yes if n in composite No if n is not composite

A nondeterministic algorithm can guess

Any guess can be modeled by a

requence of bit guesses

Guessing each bit taken constant time.

```
Let l be the bit-length of n;
for (i=0; i < l; ++i) guess a bit d_i from the set \{0,1\};
Let d = (d_{l-1}d_{l-2}...d_1d_0)_2;
if ((2 \le d \le n-1) \&\& (d \text{ divides } n)) output "Yes"; else output "No";
 If n is composite, some sequence of guesses nucceeds.
If n is not composite, no sequence of guesses succeed.
                Compute 1 O(1) time
              O(R) time
                                                     - Hints
   Step 2:
                   O(1) time
                   O(1) time - Infinitely many 
O(12) time (division) | processors
(each processor
   5 tep 3:
   step 4:
                 Total O(l<sup>2</sup>)
                                                             handles one d)
```

G = (V, E)| V | = ~ A Hamiltonian cycle in G is a permutation vy y z, ..., vn of the Vertices in a nuch that (v_1, v_2) , (v_1, v_3) , ---, (v_{n-1}, v_n) , $(v_n, v_1) \in E$ HAM-CYCLE Given G, determine Whether Gronfains a DHAM - CYCLE Hamiltonian cycle

for $(i=0;\ i< n;\ ++i)$ guess the vertex $v_i;$ Check whether $v_0,v_1,\ldots,v_{n-1},v_0$ is a Hamiltonian cycle in G; if so, output "Yes"; else output "No";

$$|G| = |V| + |E|$$
 Up size
 $|V| = N$ $V = \{0,1,2,..., n-1\}$
Step 1: $O(n \log n)$ time
 $Step 2: V(sited [Vo] = 1$
 $Vo, V1, V2, V3, ..., Vi-1$
 $Vo, V1, V2, V3, ..., Vi-1$
 $Vo, V1, V2, V3, ..., Vi-1$

HAM-PATH Input : (Cr, s, t) $\beta = v_{0}, v_{1}, v_{1}, \dots, v_{n-1} = \pm$ permutation of the vertices (vi, vi+1) E E Vi=0, n-2-

DHAM-PATH

EULERIAN- TOUR

$$G_1 = (V, E)$$
 undirected graphs
$$|E| = m$$

$$e_0, e_1, e_2, \dots, e_{m-1}$$
a permutation of the edger

$$(u_0, v_0), (u_1, v_1), (u_2, v_2), ..., (u_{m-1}, v_{m-1})$$
 $v_0 = u_1 \quad v_1 = u_2$
 $v_{m-1} = u_0$

for (i=0; i < m; ++i) guess the edge e_i ; Check whether $e_0, e_1, \ldots, e_{m-1}$ is an Eulerian tour in G; if so, output "Yes"; else output "No";

NP = the class of problems that have nondeterministic polynomial-time algorithms A DFA i also an NFA.

A deterministic algorithm in also non-deterministic

PCNP V NP C P (Not known) Let TIENP. Il have a non-deterministic poly-time The running time in f(n)unere n is the i/p size. A maker g bit g nesses. f(n) = n $O(2^n)$ Simulate A by a deterministic algo, running time $O(2^f(n)) = O(2^f(n))$