The partition semantics approach

Core assumption

The meaning of questions is defined based on **interrogative intension** (Groenendijk & Stokhof 1982).

Declarative intension: mapping a possible world to a truth value

(1) [Anna smiled]] =
$$\begin{bmatrix} w_0 & \to & 1 \\ w_1 & \to & 0 \\ w_2 & \to & 0 \end{bmatrix}$$

Interrogative intension: mapping a possible world to the true answer in the world

Partition

Suppose that Anna smiled in w_0 , w_4 , w_5 and Anna didn't smile in w_1 , w_2 , w_3

(3) $\| \text{did Anna smile} \| = \lambda w \lambda w'. \text{smiled}_w(\mathbf{a}) = \text{smiled}_{w'}(\mathbf{a})$

$$= \begin{bmatrix} w_0 & \to & \{w_0, w_4, w_5\} \\ w_1 & \to & \{w_1, w_2, w_3\} \\ w_2 & \to & \{w_1, w_2, w_3\} \\ w_3 & \to & \{w_1, w_2, w_3\} \\ w_4 & \to & \{w_0, w_4, w_5\} \\ w_5 & \to & \{w_0, w_4, w_5\} \end{bmatrix}$$

Suppose that Anna and Becky smiled in w_0 , w_4 ; only Anna smiled in w_3 , w_5 ; only Becky smiled in w_1 , w_2 ; no one smiled in w_6 , w_7

(4) [who smiled]]^{w₀} $= \lambda w \lambda w' \cdot \{x \in \mathsf{h}_{w_0} \mid \mathsf{smiled}_w(x)\} = \{x \in \mathsf{h}_{w_0} \mid \mathsf{smiled}_{w'}(x)\}$

Composition

The interrogative intension is generated based on the 'categorial' denotation of a *wh*-constituent (Groenendijk & Stokhof 1982).

Question formation operator

(5) $[[\mathbb{Q}]] = \lambda f \lambda w \lambda w' \cdot \{\vec{x} \mid f(\vec{x})(w)\} = \{\vec{x} \mid f(\vec{x})(w')\} \ (\vec{a}st)(sst)$ (Note: \vec{x} is a sequence of variables)

Multiple-wh questions

(6) [who brought what] sst $= [\mathbb{Q}] (\lambda x \lambda y \lambda w. x \in \mathsf{t}_w \land y \in \mathsf{h}_w \land \mathsf{brought}_w(x)(y))$ $= \lambda w \lambda w'. \{\langle y, x \rangle \in \mathsf{h}_w \times \mathsf{t}_w \mid \mathsf{brought}_w(x)(y)\}$ $= \{\langle y, x \rangle \in \mathsf{h}_{w'} \times \mathsf{t}_{w'} \mid \mathsf{brought}_{w'}(x)(y)\}$

✓ All questions have a unified type.

Wh-coordination

- $[\![Q_1 \text{ and } Q_2]\!] = \lambda w \lambda w'. [\![Q_1]\!](w)(w') \wedge [\![Q_2]\!](w)(w')$
- [who came and who brought what]] w_0 $= \lambda w \lambda w'. \{x \in \mathsf{h}_w \mid \mathsf{came}_w(x)\} = \{x \in \mathsf{h}_{w'} \mid \mathsf{came}_{w'}(x)\}$ $\wedge \{\langle y, x \rangle \in \mathsf{h}_w \times \mathsf{t}_w \mid \mathsf{brought}_w(x)(y)\} =$ $\{\langle y, x \rangle \in \mathsf{h}_{w'} \times \mathsf{t}_{w'} \mid \mathsf{brought}_{w'}(x)(y)\}$

Strong exhaustivity

Knowing a question amounts to knowing the strongly exhaustive answer of this question.

(9) [Jenny knows who smiled]] $= \lambda w.\mathsf{know}_w(\lambda w'.\{x \mid \mathsf{smiled}_w(x)\} = \{x \mid \mathsf{smiled}_{w'}(x)\})(j)$

Suppose that Anna smiled but Becky didn't:

- (10) $[(9)] = \lambda w. \mathsf{know}_{w}(\lambda w'. \{x \mid \mathsf{smiled}_{w'}(x)\} = \{a\})(j)$
- (11) (9) \sim Jenny knows only Anna smiled.

De re vs. De dicto

Ambiguity of embedded wh-questions

- (12) Jenny knows which student smiled.
 - a. There are two students who smiled and Jenny knows they smiled. (de re)
 - Jenny knows who are students and also knows they smiled. (de dicto)
- (13) a. For de re: Jenny knows who smiled \sim (12)
 - b. For *de dicto*: Jenny knows who smiled $\not \rightarrow$ (12)

Derivation of the de re reading

 $\lambda w.\mathsf{know}_w(\lambda w'.\{x \in \mathsf{std}_w \mid \mathsf{smiled}_w(x)\}\ = \{x \in \mathsf{std}_w \mid \mathsf{smiled}_{w'}(x)\})(j)$

Derivation of the de dicto reading

 $\lambda w.\mathsf{know}_w(\lambda w'.\{x \in \mathsf{std}_w \mid \mathsf{smiled}_w(x)\}\ = \{x \in \mathsf{std}_{w'} \mid \mathsf{smiled}_{w'}(x)\}(j)$

Conjunction and disjunction

- [14] [what did Mary read and what did Jenny read]] $= \lambda w \lambda w' . \{x \mid \mathsf{read}_w(x)(\mathsf{m})\} = \{x \mid \mathsf{read}_{w'}(x)(\mathsf{m})\} \land \{x \mid \mathsf{read}_w(x)(j)\} = \{x \mid \mathsf{read}_{w'}(x)(j)\}$
- [15] [what did Mary read or what did Jenny read]] $= \lambda w \lambda w' . \{x \mid \mathsf{read}_w(x)(\mathsf{m})\} = \{x \mid \mathsf{read}_{w'}(x)(\mathsf{m})\} \lor \{x \mid \mathsf{read}_w(x)(j)\} = \{x \mid \mathsf{read}_{w'}(x)(j)\}$

Discussion: what is the difference between (14) and (15)?