Math 261 – Discrete Optimization (Spring 2022)

Assignment 6

Problem 1

Recall that for a vector $\mathbf{v} \in \mathbb{R}^m$.

$$\|\mathbf{v}\|_1 = \sum_{i=1}^m |v_i|$$
 and $\|\mathbf{v}\|_{\infty} = \max\{|v_i| : 1 \le i \le m\}$

and for an $m \times n$ matrix **A** and vector **b**, consider the problems

$$\mathcal{P} = \inf\{\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty} : \mathbf{x} \in \mathbb{R}^n\}$$

and

$$Q = \sup\{ \boldsymbol{\lambda} \cdot \mathbf{b} : \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{A} = \mathbf{0}^{\mathsf{T}}, \| \boldsymbol{\lambda} \|_1 \leq 1 \}$$

(a) Show that P and Q provide certificates for each other — that is,

$$\lambda \cdot \mathbf{b} \leq \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty}$$

whenever \mathbf{x} is feasible in \mathcal{P} and $\boldsymbol{\lambda}$ is feasible in \mathcal{Q} .

- (b) Find a linear program \mathcal{P}' which has the same optimal solution as \mathcal{P} and a linear program \mathcal{Q}' which has the same optimal solution as \mathcal{Q} such that \mathcal{P}' and \mathcal{Q}' are duals of each other.
- (c) Part (b) implies that \mathcal{P} and \mathcal{Q} provide optimal certificates for each other that is, there exists a \mathbf{x}^* feasible in P and $\boldsymbol{\lambda}^*$ feasible in \mathcal{Q} for which

$$\lambda^* \cdot \mathbf{b} = \|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|_{\infty}.$$

What do the complementary slackness conditions from part (b) say?

Problem 2

Let \mathcal{P} be the linear program

$$\mathcal{P} = \max \{ \mathbf{0} \cdot \mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} > \mathbf{0} \}.$$

- (a) Find the dual of \mathcal{P} and show that it is always feasible.
- (b) Use your answer to part (a) to prove the following lemma, one of the many versions of Farkas' Lemma

Lemma (Farkas). Let **A** be a matrix of dimension $m \times n$ and let $\mathbf{b} \in \mathbb{R}^m$. Then exactly one of the following holds:

- (I) There exists a vector $\mathbf{x} \geq \mathbf{0}$ satisfying $\mathbf{A}\mathbf{x} = \mathbf{b}$.
- (II) There exists a vector λ such that $\lambda^{\mathsf{T}} \mathbf{A} \geq \mathbf{0}^{\mathsf{T}}$ and $\lambda \cdot \mathbf{b} < 0$.

Problem 3

In this problem, we will consider how we can get certificates of geometric statements. Two sets $X, Y \subseteq \mathbb{R}^n$ are said to be *separated by a hyperplane* if there exists a vector \mathbf{v} and a real number c such that

$$\mathbf{v} \cdot \mathbf{x} < c$$
 for all $\mathbf{x} \in X$ and $\mathbf{v} \cdot \mathbf{y} \ge c$ for all $\mathbf{y} \in Y$

(a) Consider the regions

$$X = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$
 and $Y = \{(x,y) \in \mathbb{R}^2 : (x+3/2)y \ge 2, y \ge 0\}$

Show that X and Y can be separated by a hyperplane (find a valid \mathbf{v} and c).

Note: You do not have to prove this formally — it would suffice to show a picture.

(b) Let $\{\mathbf u_i\}_{i=1}^m$ be a collection of vectors in $\mathbb R^n$ and let

$$X = \operatorname{cone} \{\mathbf{u}_1, \dots, \mathbf{u}_m\} = \left\{ \sum_i \alpha_i \mathbf{u}_i : \alpha_i \ge 0 \right\}.$$

Show that, for any point $\mathbf{y} \in \mathbb{R}^n$, the following are equivalent (if and only if)

- $\mathbf{y} \notin X$
- ullet y and X can be separated by a hyperplane that goes through the origin