Conductance Data For Commonly Used Chemicals

ROSEMOUNT ANALYTICAL FISHER-ROSEMOUNT Managing The Process Better."

CONDUCTANCE DATA FOR COMMONLY USED CHEMICALS

From an analytical point of view, little can be done with a conductance reading, however accurate it may be, unless it can be related to chemical concentration via a table or graph. Much data has been generated in the past 100 years in this area, but a comprehensive gathering of the information in a form useful to industry has been lacking¹. It is hoped that the following will provide a ready and reasonably accurate reference of conductance values for the majority of electrolytes encountered in industrial situations.

The information is presented in graphical form to permit rapid evaluation of response patterns and to eliminate the time consuming and often impractical (because of non-linearity) extrapolation required in tables with widely separated concentrations. This method of presentation sacrifices the precision gained by listing actual values, but the accuracy retained is more than sufficient for the great majority of industrial uses. The intent has been to provide a useful working tool more so than a scientific reference.

Most of the data presented is the result of extremely careful and accurate laboratory work conducted by various researchers over the years. It is recognized that older sources of information, notably the extensive International Critical Tables, have been found to be slightly inaccurate due to changes in the definition of basic units in recent times as well as to erroneous alignment procedures and measurement techniques. However, with the previously stated area of application in mind, these minor errors are of little significance and may safely be ignored.

A few curves are based on more casual "field condition" observations, and others are derived from data with a low degree of resolution in the original reference. Both will be marked with a single asterisk (*) in the index that follows.

All conductance values have been referenced to a single temperature of 25°C for convenience (isothermal plots are given for selected chemicals of major importance). Much of the original data was presented at this temperature, and all sources fell in the range of 15° to 25°C. Where possible, the temperature correction factor was calculated from isothermal equivalent conductances listed in the International Critical Tables. An average was taken over as wide a range as possible from .5N to 5N and 0-25°C. When such a calculation was not possible, the widely accepted "average" of 2%/°C was used. Temperature factors, of course, will vary in a nonlinear manner with respect to both temperature and concentration for many chemicals, but the small size of the adjustments render this of little importance. As the majority of corrections involved differentials of only 5° or 7°C, errors introduced from this source will be small. With this in mind, the final effect of temperature correction error deserves further comment.

The relative conductance values at various concentrations would not be noticeably affected. The error could be approximately but correctly described as relating to the reference temperature rather than conductance. Too much or too little correction simply means that the curve shown is really that seen at 24° or 26° rather than the indicated 25° . It is not anticipated that errors will exceed the $\pm 1^{\circ}$ examples given in any except the most unusual cases.

No guarantees of accuracy can be given, but most of the data should easily fall within 5% of the correct absolute value. The choice of curve shape through data points will be a factor in some cases, and it is for this reason that the points were clearly indicated. (Some were omitted in the lower portions of the scale for the sake of clarity.)

¹An earlier and excellent series of curves was published for this purpose by Industrial Instruments Inc. It provided very detailed data for a half-dozen or so commonly used chemicals, and has been included in the list of reference sources.

NOTES:

- 1. Concentration is expressed as % by Weight of the anhydrous substance.
- 2. Conductance units are µmhos/cm.
- 3. Plotted data points are indicated by circles.

SOURCES OF CONDUCTANCE DATA

- 1. International Critical Tables, Vol. VI, pp. 230-258; McGraw Hill, 1929.
- 2. Handbook of Chemistry and Physics, 55th Edition: CRC Press, 1976.
- 3. Lange's Handbook of Chemistry, 10th and 11 th Editions.
- 4. Graphs published by Industrial Instruments, Inc.; Cedar Grove, N.J.
- 5. Previously unpublished laboratory measurements performed at Uniloc, Inc., Irvine, Calif. 1970-1976.
- 6. Miscellaneous information regarding single electrolytes obtained from various reliable industrial sources.
- 7. Electrolyte Solutions, Robinson and Stokes: Butterworths, 1959.
- 8. Electrochemical Data, Dobos: Elsevier, 1975.
- 9. Electrolytic Conductance and the Conductances of the Halogen Acids in Water, Hamer and DeWane: National Bureau of Standards Publication NSRDS-NBS 33, 1970.
- 10. Handbook of Electrochemical Constants, Parsons: Butterworths/Academic Press, 1959.

INDEX OF ELECTROLYTES

	Substance	Chemical Formula	Maximum conductance and point of inflection at 25°C [μmhos/cm/% by wt.]	Mol. Wt. (Anhydrous)	Graph No.
1.	Acetic acid	CH₃COOH	1,850/17%	60.05	2
2.	Aluminum chloride	AICĪ ₃	_	133.34	6
3.	*Ammonia/Ammonium Hydroxide	NH ₃ /NH ₄ OH	1,200/5.5%	17.03/35.05	2
4.	*Ammonium bifluoride	NH ₄ F●HF	_	57.04	7
5.	Ammonium chloride	NH ₄ CI	_	53.50	13
6.	Ammonium fluoride	NH_4F	_	37.04	7
7.	Ammonium iodide	NH_4I	_	144.94	14
8.	Ammonium nitrate	NH_4NO_3	_	80.04	13
9.	Ammonium sulfate	$(NH_4)_2SO_4$	_	132.14	11
10.	Ammonium thiocyanate	NH₄SCN	_	76.12	10
11.	Barium chloride	BaCl ₂	_	208.25	8
12.	*Barium hydroxide	Ba(OH) ₂	_	171.39	4
13.	*Barium nitrate	$Ba(NO_3)_2$	_	261.38	3
14.	Cadmium bromide	CdBr ₂	30,000/32%	272.24	9
15.	Cadmium chloride	CdCl ₂	35,000/22%	183.32	5
16.	Cadmium iodide	Cdl ₂	100,000,1000,1	366.25	9
17.	Cadmium nitrate	$Cd(NO_3)_2$	108,000/32%	164.10	9
18.	Cadmium sulfate	CdSO ₄	51,000/27%	208.48	9
19.	Calcium chloride	CaCl ₂	204,000/24%	110.99	11
20.	Calcium nitrate	Ca(NO ₃) ₂	122,000/25%	164.10	9
21.	Cesium chloride	CsCl		168.37	13
22.	Chromic acid	CrO ₃	670,000/35%	99.99	14
23.	Citric acid	(COOH)CH ₂ C(OH)	7.000/208/	010 14 (11, 24)	0
24.	Cobaltous Chloride	(COOH)•H ₂ O	7,900/20%	210.14 (Hyd.) 129.84	2 6
24. 25.	Cupric chloride	COCI ₂	108,000/23%	134.45	11
26.	Cupric chloride Cupric nitrate	CuCl ₂ Cu(NO ₃) ₂	134,000/28%	187.55	
20. 27.		$Cu(NO_3)_2$ $CuSO_4$	134,000/20%	159.61	8 6
27. 28.	Cupric sulfate (Ethylenediamine) Tetraacetic acid	Cu3O ₄	_	109.01	O
20.	disodium salt, EDTA sodium	Na ₂ C ₁₀ H ₁₄ O ₈ N ₂ •2H ₂ O	_	372.24(Hyd.)	3
29.	Ferric chloride	FeCl ₃	96,000/16%	162.22	9
30.	Ferrous sulfate	FeSO ₄	53,000/24%	15.94	6
31.	Formic acid	HCOOH	11,500/30%	46.03	2
32.	Hydrobromic acid	HBr	—	80.92	14
33.	Hydrochloric acid	HCI	850,000/19%	36.47	1
34.	Hydrofluoric acid	HF	_	20.01	13
35.	Hydroiodic acid	HI	_	127.93	14
36.	lodic acid	HIO_3	_	175.93	12
37.	Lactic acid	СН₃СНОН СООН	5,700/15%	90.08	2
38.	Lanthanum nitrate	La(NO ₃) ₃	97,000/28%	324.93	8
39.	Lead (plumbous) nitrate	$Pb(NO_3)_2$	_	331.23	8
40.	Lithium chloride	LiCI	190,000/21%	42.40	11
41.	Lithium hydroxide	LiOH	380,000/11%	23.95	13
42.	Lithium iodide	Lil	_	133.86	7
43.	Lithium sulfate	Li ₂ SO ₄	83,000/18%	109.95	7
44.	Magnesium chloride	MgCl ₂	160,000/18%	95.23	11
45.	Magnesium nitrate	$Mg(NO_3)_2$	_	148.34	6
46.	Magnesium sulfate	$MgSO_4$	58,000/17%	120.37	7
47.	Manganous chloride	MnCl ₂	130,000/20%	125.84	8
48.	Manganous sulfate	$MnSO_4$	51,500/22%	151.00	5
49.	Nickel sulfate	NiSO ₄	_	154.78	7
50.	Nitric acid	HNO_3	865,000/29%	63.02	1
51.	Oxalic acid	HO ₂ CCO ₂ H	_	90.04	4
52.	Phosphoric acid	H_3PO_4	230,000/50%	98.00	12
53.	Potassium acetate	KCH ₃ CO ₂	150,000/32%	98.14	12
54.	Potassium bicarbonate	KHCO ₃	_	100.12	7

INDEX OF ELECTROLYTES (Continued)

		Chemical	Maximum conductance and point of inflection at 25°C	Mol. Wt.	Graph
	Substance	Formula	[µmhos/cm/% by wt.]	(Anhydrous)	No.
56.	Potassium bromide	KBr -	_	119.01	13
57.	Potassium carbonate	K ₂ CO ₃	258,000/34%	138.21	12
58.	Potassium chloride	KCI		74.55	1
59.	Potassium chromate	K ₂ CrO ₄	_	194.20	10
60.	Potassium cyanide	KCN	_	65.11	6
61.	Potassium dichromate	K ₂ Cr ₂ O ₇	_	294.21	6
62.	Potassium ferricyanide	K ₃ Fe(CN) ₆	_	329.26	13
63.	Potassium ferrocyanide	K_4 Fe(CN) ₆	_	368.36	6
64.	Potassium fluoride	KF	288,000/34%	58.10	12
65.	Potassium hydroxide	KOH	625,000/26%	56.11	14
66.	Potassium iodide	KI	—	166.03	14
67.	Potassium nitrate	KNO ₃	_	101.10	7
68.	Potassium oxalate	$K_2C_2O_4$	_	166.22	7
69.	Potassium permanganate	KMnO ₄	_	158.04	4
70.	Potassium phosphate (monobasic)	KH ₂ PO ₄	_	136.13	4
71.	Potassium phosphate (dibasic)	K ₂ HPO ₄	_	174.18	4
72.	Potassium sulfate	K ₂ SO ₄	_	174.26	4
73.	Potassium sulfide	K ₂ S	535,000/30%	110.26	14
74.	Potassium thiocyanate	KSCN	—	97.18	10
75.	Procaine hydrochloride	C ₆ H ₄ [COOCH ₂ CH ₂ N		37.10	10
70.	Trocaine riyarociiloride	$(C_2H_5)_2$] (NH ₂)•HCl-1,4	34,000/32%	272.78	5
76.	Sea water	——————————————————————————————————————	O4,000/02 /0		4
77.	*Silver fluoride	AgF	_	126.88	10
78.	Silver nitrate	AgNO ₃	_	169.89	12
79.	Sodium acetate	NaCH ₃ CO ₂	78,000/22%	82.04	5
80.	Sodium bicarbonate	NaHCO ₃	7 0,000/22 70 —	84.01	3
81.	Sodium bromide	NaBr	_	102.91	10
82.	Sodium carbonate	Na ₂ CO ₃	103,000/19%	106.01	6
83.	Sodium chloride	NaCl	—	58.44	1
84.	Sodium citrate	Na ₃ C ₆ H ₅ O ₇	64,500/23%	258.07	5
85.	Sodium diatrizoate (Hypaque)	Na(CH ₃ CONH) ₂ C ₆ I ₃ CO ₂	18,500/40%	635.92	5
86.	Sodium dichromate	Na ₂ Cr ₂ O ₇	165,000/40%	261.97	9
87.	Sodium ferrocyanide	Na ₄ Fe(CN) ₆	—	303.92	10
88.	Sodium hydroxide	NaOH	410,000/15%	40.01	1
89.	Sodium molybdate	Na ₂ MoO ₄	—	205.95	4
90.	Sodium nitrate	NaNO ₃	_	85.01	11
	Sodium phosphate (monobasic)	NaH ₂ PO ₄	60,000/28%	119.97	8
92.	Sodium phosphate (dibasic)	Na ₂ HPO ₄	—	141.98	3
93.	Sodium phosphate (tribasic)	Na ₃ PO ₄	_	163.96	4
94.	Sodium sulfate	Na ₂ SO ₄	_	142.07	7
95.	Sodium sulfide	Na ₂ S	262,000/15%	78.06	10
96.	Sodium tartrate	NaOOC(CHOH) ₂ COONa		194.07	5
97.	Sodium thiocyanate	NaSCN	206,000/34%	81.08	12
98.	Sodium thiosulfate	$Na_2S_2O_3$	152,000/29%	158.13	8
99.	Sodium tungstate	Na ₂ WO ₄		293.92	4
	Strontium chloride	SrCl ₂	198,000/30%	158.55	11
	Strontium nitrate	$Sr(NO_3)_2$	113,000/30%	211.65	8
	Sulfuric acid	H_2SO_4	825,000/30%	98.08	1
	Tartaric acid	HO ₂ C(CHOH) ₂ CO ₂ H	11,800/24%	150.09	2
	Tetracaine hydrochloride	C ₁₅ H ₂₄ N ₂ O ₂ •HCI		300.84	4
	Trichloracetic acid	CCI ₃ COOH	_	163.38	10
	Zinc chloride	ZnCl ₂	104,000/27%	136.29	12
	Zinc Sulfate	ZnSO ₄	56,500/4%	161.44	4
			,3, .,-		•

MICROMHOS AT 25°C

14

MICROMHOS AT 25°C

MICROMHOS AT 25°C

ELECTRICAL CONDUCTANCE OF SATURATED SOLUTIONS OF SLIGHTLY SOLUBLE ELECTROLYTES (SALTS ARE CORRECTED FOR CONDUCTANCE OF WATER)

(Data from *International Critical Tables*, Vol. VI)

SUBSTANCE	TEMP.°C	SOLUTION µMHOS/CM	SUBSTANCE	TEMP.°C	SOLUTION µMHOS/CM
AgBr	21.1	0.075	HgCl	24.6	2.13
AgBrO ₃	19.9	663.24	Hgl ₂	18.0	0.2 (?)
AgCH3COC(CN)CO2C2HE		251.5	La(IO ₃) ₃ •3H ₂ O	25.0	692
AgCI	25.0	1.794	La2(C ₂ O ₄) ₃ •10H ₂ O	25.0	953
AgCN	20.0	19.0	La ₂ (C ₄ H ₄ O ₆) ₃ •3H ₂ O	25.0	58.5
Ag ₂ C ₂ O ₄	25.0	35.97	Li ₂ PO ₃ •3.5H ₂ O	25.0	274
Ag ₂ CrO ₄	25.0	26.61	Li ₃ PO ₄ •0.5H ₂ O	25.0	937
AgI	20.8	0.002	MgC_2O_4	18.0	199.3
AgIO ₃	25.0	101.27	MgCO ₃	25.9	885.1
AgONC(CN)CO ₂ C ₂ H ₅	25.0	234.6	MgF ₂	27.0	270.7
AgONC(CN)CO2CH(CH3)	25.0	131.8	Mn(OH) ₂	18.0	9.49
AgOOCCH ₃	25.0	4,975	Nd ₂ (C ₂ O ₄) ₃ •10H ₂ O	25.0	0.764
AgOH	24 9	35.944	PbBr ₂	20.0	3,692
Ag ₃ PO ₄	19.5	6.1	Pb(BrO ₃) ₂	19.9	4,630.4
AgSCN	20.0	0.096	PbCO ₃	20.0	1.39
Agn-Propionate	25.0	1,924	PbC ₂ O ₄	22.0	1.54
Agdl-Tartratc	25.0	583.4	PbCl ₂	20.0	53,540
Ag d-Tartrate	25.0	989	PbF ₂	25.0	514
Ag I-Tartrate	25.0	1009	Pbl ₂	20.1	338.4
Ag p-Toluate	25.0	251.7	Pb(lO ₃) ₂	25.0	8.75
Aragonite	25.0	41.0	$Pb_3(PO_4)_2$	20.0	0.14
Antipyrine Salicylate	18.0	1,000	Pb(SCN) ₂	20.0	5,346
BaCO ₃	18.0	25.475	PbSO ₄	25.0	40.3
BaCrO ₄	25.0	4.345	Pr ₂ (C ₂ O ₄) ₃ •10H ₂ O	25.0	1.164
BaC ₂ O ₄ •?H ₂ O	25.0	91.62	$Sa_2(C_2O_4)_3$	25.0	0.82
BaC ₂ O ₄ •2H ₂ O	25.0	108.6	SrF ₂	25.0	204.6
BaC ₂ O ₄ •3.5H ₂ O	18.0	94.91	SrC ₂ O ₄	25.0	70.79
BaSO ₄	25.0	2.923 (avg.)	$SrSO_4$	25.0	147.4
Barite .	25.0	3.517	TIBr	25.0	293.8
CaCO ₃	25.0	35.97	TIBrO ₃	19.9	1,079.
CaC ₂ O ₄ •H ₂ O	25.0	12.37	TICI	25.0	2,160.
CaF ₂	26.1	50.55	TIC ₂ O ₄	20.0	5,341.
CaF ₂ (Fluorite)	25.0	45.81	TII .	25.0	36.64
CaSO ₄ •2H ₂ O	25 0	2,210	TIIO ₃	20.0	154.1
CdC2O4•3H2O	25.0	36.22	TISCN	20.0	1,399
Ce(IO3)3•2H2O	25.0	636.8	TI ₂ S	20.0	216
Ce2(C ₂ O ₄) ₃ •10H ₂ O	25.0	0.651	Y ₂ (C ₂ O ₄)•9H ₂ O	25.0	1.74
Ce ₂ (C ₄ H ₄ O ₆) ₃ •4.5H ₂ O	25.0	51.66	Yb ₂ (C ₂ O ₄) ₃ •10H ₂ O	25.0	4.849
Cul	24.6	2.128	ZnC ₂ O ₄ •2H ₂ O	25.0	10.21
CuSCN	18.0	0.4	<u> </u>		
Calcite	25.0	33.8			
Celestite	25.0	147.4			

ELECTRICAL CONDUCTANCE OF VARIOUS PURE LIQUIDS

(Data from Lange's Handbook of Chemistry, 12th edition)

LIQUID	TEMP.°C	μMHOS/CM	LIQUID	TEMP.°C	μMHOS/CM
ACETALDEHYDE	15	1.7	DIETHYL OXALATE	25	.76
ACETAMIDE	100	<43	DIETHYL SULFATE	25	.26
ACETIC ACID	25	.0112	DIETHYLAMINE	-33.5	.0022
ACETIC ANHYDRIDE	25	.48	DIMETHYL SULFATE	0	.16
ACETONE	25	.06	EPICHLOROHYDRIN	25	.034
ACETONITRILE	20	7	ETHYL ACETATE	25	< .001
ACETOPHENONE	25	.006	ETHYL ACETOACETATE	25	.04
ACETYL BROMIDE	25	2.4	ETHYL ALCOHOL	25	.00135
ACETYL CHLORIDE	25	.4	ETHYL BENZOATE	25	<.001
ALIZARIN	233	1.45 (?)	ETHYL BROMIDE	25	< .02
ALLYL ALCOHOL	25	7	ETHYL ETHER	25	$< 4x10^{-7}$
AMMONIA	-79	.13	ETHYL IODIDE	25	.02
ANILINE	25	.024	ETHYL ISOTHIOCYANATE	25	.126
ANTHRACENE	230	.0003	ETHYL NITRATE	25	.53
ARSENIC TRIBROMIDE	35	1.5	ETHYL THIOCYANATE	25	1.2
ARSENIC TRICHLORIDE	25	1.2	ETHYLAMINE	0	.4
BENZALDEHYDE	25	.15	ETHYLENE BROMIDE	19	<.0002
BENZENE	_	.076	ETHYLENE CHLORIDE	25	.03
BENZOIC ACID	125	.003	ETHYLIDENE CHLORIDE	25	<.17
BENZONITRILE	25	.05	EUGENOL	25	.17
BENZYL ALCOHOL	25	1.8	FORMAMIDE	25	4
BENZYL BENZOATE	25	<.001	FORMIC ACID	25	64
BENZYLAMINE	25	<.017	FURFURAL	25	1.5
BROMINE	17.2	1.3 x 10 ⁻⁷	GALLIUM	30	36,800
BROMOBENZENE	25	<.00002			mhos
BROMOFORM	25	<.02	GERMANIUM TETRABROMIDE	30	78
CAPRONITRILE	25	3.7	GLYCEROL	25	.064
CARBON DISULFIDE	1	7.8×10^{-12}	GLYCOL	25	.3
CARBON TETRACHLORIDE	18	4×10^{-12}	GUAIACOL	25	.28
CHLORINE	-70	$<1 \times 10^{-10}$	HEPTANE	20	<1x10 ⁻⁷
CHLOROACETIC ACID	60	1.4	HEXANE	18	<1x10 ⁻¹²
CHLOROFORM	25	<.02	HYDROGEN BROMIDE	-80	.008
CHLOROHYDRIN	25	.5	HYDROGEN CHLORIDE	-96	.01
CYANOGEN	-	<.007	HYDROGEN CYANIDE	0	3.3
CYMENE	25	<.02	HYDROGEN IODIDE	-35	.2
DICHLOROACETIC ACID	25	.07	HYDROGEN SULFIDE	-60	.00001
DICHLOROHYDRIN	25	12	IODINE	110	.00013
DIETHYL CARBONATE	25	.017	iso-BUTYLALCOHOL	25	.08

ELECTRICAL CONDUCTANCE OF VARIOUS PURE LIQUIDS

(Data from Lange's Handbook of Chemistry, 12th edition)

LIQUID	TEMP.°C	µMHOS/CM	LIQUID	TEMP.°C	µMHOS/CM
KEROSENE	25	<.017	n-PROPYL ALCOHOL	25	.02
m-CHLOROANILINE	25	.05	iso-PROPYL ALCOHOL	25	3.5
m-CRESOL	25	<.017	n-PROPYL BROMIDE	25	< .02
MERCURY	0	10,629.6	PYRIDINE	18	.053
		mhos	QUINOLINE	25	.022
METHYL ACETATE	25	3.4	SALICYLALDEHYDE	25	.16
METHYL ALCOHOL	18	.44	STEARIC ACID	80	$< 4x10^{-7}$
METHYL IODIDE	25	<.02	SULFONYL CHLORIDE	25	2
METHYL NITRATE	25	4.5	SULFUR	115	1x10 ⁻⁶
METHYL THIOCYANATE	25	1.5	SULFUR	130	5x10 ⁻⁵
METHYLETHYL KETONE	25	.1	SULFUR	440	.12
NAPTHALENE	82	.0004	SULFUR DIOXIDE	35	.015
NITROBENZENE	0	.005	SULFURIC ACID	25	10000
NITROMETHANE	18	.6	SULFURYL CHLORIDE	25	.03
NONANE	25	<.017	TOLUENE	_	< 1x10 ⁻⁸
o- or m- NITROTOLUENE	25'	<.2	o-TOLUIDINE	25	< 2
OLEIC ACID	15	<.0002	p-TOLUIDINE	100	.062
PENTANE	19.5	<.0002	TRICHLOROACETIC ACID	25	.003
PETROLEUM		3 x 10 ⁻⁷	TRIMETHYLAMINE	-33.5	.00022
PHENETOLE	25	<.017	TURPENTINE	_	2 x 10 ⁻⁷
PHENOL	25	<.017	iso-VALERIC ACID	80	$<4 \times 10^{-7}$
PHENYL ISOTHIOCYANATE	25	1.4	WATER	18	.044
PHOSGENE	25	.007	XYLENE	_	1.43×10^{-11}
PHOSPHORUS	25	.4			
PHOSPHORUS OXYCHLORIDE		2.2			
PINENE	23	<.0002			
PIPERIDENE	25	< .2			
PROPIONALDEHYDE	25	.85			
PROPIONIC ACID	25	<.001			
PROPIONITRILE	25	< .1			

SUMMARY OF FORMULAE, CONVERSION DATA AND MISCELLANEOUS INFORMATION

1. To obtain the conductance at temperatures other than reference when the temperature coefficient is known:

 $C_T = C_R [1 + tc (T - T_R)]$ for the general case.

 $C_T = C_R [1 + tc (T - 25)]$ for 25°C reference.

T = temperature of T_R = reference temperature interest

C_T = conductivity at temtc = temperature perature of interest coefficient

 C_{R} = conductivity at C_{25} = conductivity at 25°C reference

2. To obtain the conductance at 25°C when conductance values at two other temperatures are known:

 $C_{25} = [C_{T2}(T_1 - 25) - C_{T1}(T_2 - 25)]/(T_1 - T_2)$

To obtain the temperature coefficent, referenced to 25°C, when the conductance at any two temperatures is known:

 $tc = (C_{T1} - C_{T2})/[C_{T2}(T_1 - 25) - C_{T1}(T_2 - 25)]$

4. Centigrade - Fahrenheit conversion:

$$^{\circ}C = 5/9(^{\circ}F - 32) ^{\circ}F = 9/5(^{\circ}C) + 32$$

A rule-of-thumb method for making the conversion is to recall the easily remembered values at freezing and boiling, and that a change of 5°C is matched by a change of 9°F. Thus, 35°C is seven "increments" above freezing. Multiply the seven by the Fahrenheit "increments" of 9 to obtain a Fahrenheit reading that is 63 degrees above freezing, or 95°F.

5. Concentration conversions:

Multiply the original concentration value by the conversion factor shown.

6. Resistance values to simulate contacting (electrode) sensor:

Resistance(ohms) = Cell Constant x 106 µmhos of solution at 25°C

7. For a 1.0 cell constant:

Conductance, µmhos	Resistance, ohms
1	1,000,000
10	100,000
100	10,000
1,000	1,000
10,000	100
100,000	10
1,000,000	1

Here is an easy way to remember it — there are always a total of six zeros in the conductance/ resistance combination for the even decade values shown. So, 100 umhos, having two, will require a resistance with four, which is 10,000 ohms.

FROM	Weight Conc.	Molarity	Molality	Weight%
TO				
Weight Conc.	Grams Solute Liter solution	Wm	10³p Wm 10³ + C Wm	10p
Molarity	1Wm	Moles solute Liter Solution	$\frac{10^{3}p}{10^{3} + CWm}$	10p Wm
Molality	10 ³ Wm(10 ³ p – Wc)	10 ³ 10 ³ p – MWm	Moles Solute 1000 Grams Solvent	10 ³ Wm(10 ² – W%)
Weight %	1 10p	Wm 10p	10 ² Wm 10 ³ + CWm	Grams Solute 100 Grams Solution
	ppm = W% x 10 ⁴	Normality = Mo	plarity x Equivalents per	mole

Wm = Molecular weight of solute (g)

= Weight concentration

W%= Weight %

p = Solution density (g/cm3)

= Molality

C = Molarity

TABLE OF THE ELEMENTS

NAME	SYMBOL	ATOMIC WEIGHT	NAME	SYMBOL	ATOMIC WEIGHT
Actinium	Ac	(227)	Mercury	Hg	200.59
Aluminum	Al	26.9815	Molybdenum	Mo	95.94
Americium	Am	(243)	Neodymium	Nd	144.24
Antimony	Sb	121.75	Neon	Ne	20.179
Argon	Ar	39.948	Neptunium	Np	237.0482
Arsenic	As	74.9216	Nickel	Ni	58.71
Astatine	At	(210)	Niobium	Nb	92.9064
Barium Berkelium Beryllium Bismuth	Ba Bk Be Bi	137.34 (245) 9.01218 208.9806	Nitrogen Nobelium Osmi um	N No Os	14.0067 (254) 190.2
Boron	B	10.81	Oxygen	O	1 5.9994
Bromine	Br	79.904	Palladium	Po	106.4
Cadmium Calcium Californium Carbon Cerium Cesium Chlorine Chromium	Cd Ca Cf C Ce Cs Cl Cr	112.40 40.08 (248) 12.011 140.12 132.9055 35.453 51.996	Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Promethium Protactinium	P Pt Pu Po K Pr Pm Pa	30.9738 195.09 239.05 210 39.102 140.9077 (147) 231.0359
Cobalt Copper Curium	Co Cu Cm	58.9332 63.546 (247)	Radium Radon Rhenium Rhodium	Ra Rn Re Rh	226.0254 (222) 186.2 102.9055
Dysprosium	Dy	162.50	Rubidium	Rb	85.4678
Einsteinium	Es	(254)	Ruthenium	Ru	101.07
Erbium	Er	167.26	Samarium	Sm	150.4
Europium	Eu	151.96	Scandium	Sc	44.9559
Fermium	Fm	(253)	Selenium	Se	78.96
Fluorine	F	18.9984	Silicon	Si	28.086
Francium	Fr	(223)	Silver	Ag	107.868
Gadolinium	Gd	157.25	Sodium	Na	22.9898
Gallium	Ga	69.72	Strontium	Sr	87.62
Germanium	Ge	72.59	Sulfur	S	32.06
Gold Hafnium Helium Holmium Hydrogen Indium Iodine Iridium	Au Hf He Ho H In I Fe	196.9665 178.49 4.00260 164.9303 1.0080 114.82 126.9045 192.22 55.847	Tantalum Technetium Tellurium Terbium Thallium Thorium Thulium Tin Titanium Tungsten (Wolfram	Ta Tc Te Tb Tl Th Tm Sn Ti) W	180.9479 98.9062 127.60 158.9254 204.37 232.0381 168.9342 118.69 47.90 183.85
Krypton	Kr	83.80	Uranium	U	238.029
Lanthanum Lawrencium	La Lr	138.9055 (257)	Vanadium	V	50.9414
Lead	Pb	207.2	Xenon	Xe	131.30
Lithium	Li	6.941	Ytterbium	Yb	173.04
Lutetium	Lu	174.97	Yttrium	Y	88.9059
Magnesium Manganese Mendelevium	Mg Mn Md	24.305 54.9380 (256)	Zinc Zirconium	Zn Zr	65.37 91.22

CONDUCTANCE IN DILUTE AQUEOUS SOLUTIONS

(Data obtained from *Handbook of Electrochemical, Constants,* Parsons; Academic Press/Butterworths, 1959)

Conductance values at lower concentrations can be approximately determined by use of the following formula:

Specific Conductance at 25°C \simeq 1000 C Ao (1-a \sqrt{C} + bC)

Ao, a and b are obtained from the tables that follow.

C = Normality
$$\simeq \frac{\text{Parts Per million concentration}}{1000 \text{ X Equivalent weight}}$$

The equivalent weight may be obtained from the tables also. The formula is useful for values of C between 0.0001 and 0.1 only. No allowance was made for solution density as it will be near that of pure water at lower concentrations. However, if it is known and greater accuracy is desired, simply multiply the value already calculated for C times the density to obtain a more precise answer. If normality is known, rather than ppm or wt. %, use it directly for C.

Example 1: What is the specific conductance of a 10,000 ppm solution of silver nitrate at 25°C?

$$C \simeq 10,000/(1000 \times 169.89) = .05886$$

Specific Conductance ≈ 1000 (.05886) (133.3) [(1-.68 √.05886 + .35(.05886)] ≈ 6,713 mhos/cm How much would density correction affect the reading? The relative density at 10,000 ppm is 1.007 (at 20 C).

$$C = 10,000 (1.007)/(1000 \times 169 89) =$$

.05927 Corrected for density

Specific conductance $\simeq 1000 \ (.05927) \ (133.3) \ [(1-.68 \ \sqrt{.05927} \ + .35(.05886)] \ \simeq 6,757 \ \text{mhos}$

The error due to no density correction was less than 1%.

Example 2: What is the specific conductance of a 0.01 N solution of KCI at 25°C?

Specific Conductance ≈ 1000 (.01) (149.8) [1-.63 √.01 + .64 (0.1)] ≈ 1,413 umhos/cm

Because C was given as normality, no density correction is necessary. Referring to the table of conductance values for standard KCI solutions, the measured value at 0.01N is 1411 umhos/cm. The calculated value of 1413 is, thus, in error by less than two-tenths of one percent. Not all calculations will be this close, but this approximation will be more than adequate for most industrial applications.

Specific Conductance (25°C) \simeq 1000 CAo (1-a \sqrt{C} + bC) where .0001 C .1 C = Normality = ppm concentration/(1000 x equivalent weight) (Multiply ppm x density for greater accuracy.)

Substance	Equivalent Weight	Ao(25°C)	а	b	Min./Max. ppm for use of Formula
AgMnO ₄	226.81	122	0.72	2.0	20 - 23,000
AgNO ₃	169.87	133.3	0.68	0.35	16 - 17,000
Ag ₂ SO ₄	155.90	t42	1.30	-3.5	15 - 16,000
AlBr ₃	88.90	139	1.64	2.2	8 - 9,000
AICI3	44.45	137.6	1.65	2.0	4 - 5,000
AII_3	135.90	137.6	1.66	3.1	13 - 14,000
$AI(NO_3)_3$	71.00	129.5	1.72	2.2	7 - 8,000
BaAc ₂	127.72	104.2	1.59	1.7	12 - 13,000
BaBr ₂	148.58	141.1	1.28	1.78	14 - 15,000
$Ba(BrO_3)_2$	196.57	118	1.44	1.4	19 - 20,000
BaCl ₂	104.13	139.5	1.28	1.74	10 - 11,000
Bal ₂	195.58	141	1.28	2.7	19 - 20,000
$Ba(MnO_4)_2$	187.61	119	1.42	1.4	18 - 19,000
$Ba(NO_3)_2$	130.68	132	1.34	1.2	13 - 14,000
Ba(OH) ₂	85.68	256	0.88	0.0	8 - 9,000
CaBr ₂	99.95	133.0	1.32	2.1	9 - 10,000
CaCl ₂	55.50	135.6	1.3	1.8	5 - 6,000
Ca ₂ Fe(CN) ₆	73.03	118	5.47	11.0	7 - 8,000
Ca ₃ [Fe(CN) ₆] ₂	90.71	138	3.87	7.2	9 - 10,000
Ca(NO ₃) ₂	82.05	130.0	1.35	2.0	8 - 9,000
CaSO ₄	68.07	104	2.9	3.6	6 - 7,000
CdBr ₂	136.11	97	1.73	0.95	13 - 14,000
CdCl ₂	91.66	104 77	1.65	0.9	9 - 10,000
Cdl ₂	183.11		2.02	1.38	18 - 19,000
CdŠO ₄	104.23	105	2.89	3.7	10 - 11,000
CoAc ₂	118.04	90.1	1.74	1.4	11 - 12,000
CoBr ₂	109.38	126	1.35	1.9	10 - 11,000
CoCl ₂	64.92	124.5	1.37	1.2	6 - 7,000
Co(NO ₃) ₂	91.47	122.4	1.39	20	9 - 10,000
CoSO ₄	77.50	100	2.07	1.65	7 - 8,000
CsCl	168.40	154.6	0.62	-0.7	16 - 17,000
CsOH	74.96	271	0.45	0.5	7 - 8,000
CuAc ₂	90.82	60	2.36	2.2	9 - 10,000
CuBr ₂	71.73	134	1.31	1.6	7 - 8,000
CuCl ₂	67.22	131	1.33	1.5	6 - 7,000
$Cu(NO_3)_2$	93.78	128.8	1.38	17	9 - 10,000
CuSO ₄	79.80	113	2.79	3.3	7 - 8,000
FeCl ₂	63.38	137	1.34	1.05	6 - 7,000
FeSO ₄	75.97	99	2.08	1.7	7 - 8,000
GdBr ₃	132.33	139.9	1.63	3.2	13 - 14,000
GdCl ₃	87.87	140	1.63	2.5	8 - 9,000
Gdl ₃	179.32	139	1.64	4.0	17 - 18,000
HBr	80.92	429.4	0.37	0.35	8 - 9,000
HBrO ₃	128.92	408	0.37	-5.0	12 - 13,000
HCNŠ	59.09	404	0.38	0.37	5 - 6,000
HCI	36.46	426.0	0.37	0.38	3 - 4,000
HCIO ₃	84.46	408	0.36	0.4	8 - 9,000
HCIO ₄	100.46	417	0.37	0.4	10 - 11,000
H ₂ CrO ₄	59.01	207	0.97	2.2	5 - 6,000
HI	127.91	428	0.37	0.42	12 - 13,000
HIO ₃	175.91	391.2	0.38	-4.7	17 - 18,000
HMnO ₄	119.95	410	0.38	0.2	11 - 12,000
HNO ₃	63.01	420	0.37	0.36	6 - 7,000
KAc	98.15	115.4	0.75	1.3	9 - 10,000
10.00	50.15	110.4	0.10	1.0	5 - 10,000

Substance	Equivalent Weight	Ao(25°C)	а	b	Min./Max. ppm for use of Formula
KBr	119.01	151.7	0.62	0.62	11 - 12,000
KBrO ₃	167.01	129.4	0.69	0.48	16 - 17,000
KCNŠ	97.18	140.0	0.65	0.63	9 - 10,000
KCI	74.56	149.8	0.63	0.64	7 - 8,000
KCLO ₃	122.55	138.7	0.66	0.4	12 - 13,000
K ₂ CrO ₄	97.10	156	1.22	1.3	9 - 10,000
KF	58.10	128	0.70	0.5	5 - 6,000
K ₄ Fe(CN) ₆	92.09	169	2.48	3.6	9 - 10,000
K ₃ Fe(CN) ₆	109.75	167.8	1.56	1.8	10 - 11,000
K ₂ Fe(CN) ₅ NO	147.07	136.4	1.32	1.9	14 - 15,000
KI	166.01	150.4	0.63	0.62	16 - 17,000
KIO ₃	214.00	115	0.53	0.4	20 - 22,000
KMnO ₄	158.04	136	0.67	0.5	15 - 16,000
KIVITIO4	101.11		0.64		
KNO3		144.5		0.36	10 - 11,000
KOH	56.11	271	0.45	0.4	5 - 6,000
K ₂ SO ₄	87.14	151.4	1.24	1.14	8 - 9,000
LiBr	86.85	121.4	0.72	0.5	8 - 9,000
LiCI	42.39	115	0.75	0.78	4 - 5,000
LiCIO ₃	90.39	104.1	0.81	0.3	9 - 10,000
Li ₂ CrÕ ₄	64.93	123.6	1.46	1.5	6 - 7,000
Liĺ	133.84	117.7	0.74	8.0	13 - 14,000
LiNO ₃	68.94	111	0.77	0.45	6 - 7,000
LiOH	23.95	236.5	0.48	0.5	2 - 3,000
Li ₂ SO ₄	54.97	119.2	1.48	1.4	5 - 6,000
MgBr ₂	92.07	129	1.34	2.2	9 - 10,000
$MgCrO_4$	70.15	125	2.64	3.2	7 - 8,000
Mg ₂ Fe(CN) ₆	65.14	172	4.75	13	6 - 7,000
$Mg(NO_3)_2$	74.16	129.0	1.35	1.8	7 - 8,000
$Mg(OH)_2^{r_2}$	29.17	257	0.87	2.1	2 - 3,000
MgSO ₄	60.19	116	2.75	3.7	6 - 6,000
MnBr ₂	107.38	128	1.34	1.7	10 - 11,000
$MnCl_2^2$	62.92	126	1.36	1.6	6 - 7,000
$MnSO_4$	75.50	109	2.84	3.8	7 - 8,000
NH_4Br	97.95	155	0.62	0.60	9 - 10,000
NH ₄ CNS	76.12	140.8	0.65	0.5	7 - 8,000
NH ₄ CI	53.49	150.5	0.63	0.49	5 - 6,000
NH ₄ IO ₃	192.94	117	0.74	0.43	19 - 20,000
NH4Pic	246.14	104.4	0.80	0.9	24 - 25,000
$(NH_4)_2SO_4$	66.07	149.9	1.25	1.1	6 - 7,000
NaAc	82.03	91.1	0.89	0.34	8 - 9,000
NaBr	102.90	126.0	0.70	0.5	10 - 11,000
NaBrO ₃	150.90	106.1	0.79	0.60	15 - 16,000
NaCNS	81.07	110.5	0.77	0.75	8 - 9,000
Na ₂ CO ₃	53.00	124.1	1.47	1.6	5 - 6,000
NaČl	58.44	126.5	0.70	0.74	5 - 6,000
NaClO ₃	106.44	115	0.75	0.6	10 - 11,000
NaClO ₄	122.44	110	0.77	0.6	12 - 13,000
NaCrO ₄	161.97	132	1.38	1.5	16 - 17,000
NaF	41.99	106	0.79	0.6	4 - 5,000
Na ₄ Fe(CN) ₆	75.98	155	2.74	4.7	7 - 8,000
NaHCO ₃	84.01	96.0	0.85	0.6	8 - 9,000
Nal	149.89	127.0	0.70	0.80	14 - 15,000
NaNO ₃	84.99	123	0.72	0.36	8 - 9,000
NaOH	40.01	246.5	0.47	0.3	4 - 4,000
	-	-		-	,

Substance	Equivalent Weight	Ao(25°C)	а	b	Min./Max. ppm for use of Formula
NaPic	251.09	81.	0.97	0.7	25 - 26,000
Na ₂ SO ₄	71.02	129.0	1.39	1.50	7 - 8,000
$Na_2^2S_2\vec{O}_3$	79.06	135.0	1.36	1.60	7 - 8,000
NiAc ₂	88.40	89.5	1.75	1.3	8 - 9,000
$NiBr_2$	109.27	127	1.34	1.6	10 - 11,000
$NiCl_2$	64.81	123.3	1.37	1.7	6 - 7,000
Ni(NO ₃) ₂	91.36	124.5	1.37	1.8	9 - 10,000
NiSO₄	77.39	100	2.7	1.6	7 - 8,000
PbCl ₂	139.05	145.0	1.26	-7.0	13 - 14,000
$Pb(NO_3)_2$	165.60	135.7	1.32	0.89	16 - 17,000
RbBr	165.37	148	0.63	0.2	16 - 17,000
RbCl	120.92	153	0.62	0.7	12 - 13,000
Rbl	212.37	145.3	0.64	0.65	21 - 22,000
RbOH	102.48	272	0.45	0.5	10 - 11,000
SnIBr ₃	130.02	140.2	1.63	2.9	12 - 14,000
SmCl ₃	85.57	139.8	1.64	3.0	8 - 9,000
Sml ₂	177.02	138.5	1.64	3.4	17 - 18,000
SrAČ ₂	102.86	101	1.63	2.0	10 - 11,000
SrBr ₂	123.72	136.0	1.30	1.8	12 - 13,000
SrCl ₂	79.27	136.0	1.30	1.74	7 - 9,000
$Sr(NO_3)_2$	105.82	131.8	1.34	1.5	10 - 11,000
TICI	239.82	150.3	0.63	-1.3	23 - 25,000
TICIO ₃	~87.82	137.6	0.65	0.45	28 - 30,000
TIOH	221.38	276.1	0.45	0.45	22 - 23,000
YBr ₃	137.59	141	1.63	2.8	13 - 14,000
YCl ₃	65.09	136	1.67	3.5	6 - 7,000
Yl_3	156.54	143.8	1.60	2.6	15 - 16,000
ZnAc ₂	91.73	88	1.77	1.2	9 - 10,000
$ZnBr_2^{\overline{L}}$	112.60	159	1.23	0.7	11 - 12,000
$ZnCl_2$	68.14	130	1.48	2.3	6 - 7,000
$Zn(NO_3)_2$	94.69	125	1.37	2.2	9 - 10,000
$ZnSO_4$	80.72	105	2.90	4.2	8 - 8,000
Me ₃ HNCI	95.56	123.6	0.71	0.76	9 - 10,000
Me ₄ NI	201.03	118.6	0.73	0.35	20 - 21,000
Me ₄ NPic	290.22	76	1.02	0.5	29 - 30,000
Et ₄ ŇI	257.15	108	0.78		25 - 26,000
Et ₄ NPic	346.34	63	1.18		34 - 35,000
Pr ₄ NI	313.27	100	0.83		31 - 32,000

Ac = Acetate
Et = Ethyl
Me = Methyl
Pic = Picrate
Pr = Propyl

CONDUCTANCE IN DILUTE NON-AQUEOUS SOLUTIONS

(Data obtained from *Handbook of Electrochemical Constants,* Parsons; Academic Press/Butterworths, 1959)

All comments, formulae, etc. regarding aqueous solutions will apply here as well (except as noted regarding limits for C and temperature).

ACETONITRIDE AT 25°C				
Solute	Ao	а	b	
AgNO ₃	150.0	2.28	1.4	
KI	181.4	2.02	1.5	
1/3TIBr ₃	140.5	2.39	5.9	
1/3TICI ₃	170.4	2.09	2.1	
Pr ₄ NCIO ₄	172.3	2.08	2.4	
Pr ₄ NI	169.6	2.10	10.0	
Pr ₄ NPic	146.3	2.32	14.0	
Am ₄ NI	152.0	2.26	1.0	
CPh ₂ (p-C ₆ H ₄ OMe)CIO ₄	160.9	2.18	4.0	
C(p-C ₆ H ₄ OMe) ₃ ClO ₄	156.7	2.22	5.0	

METHANOL AT 25°C					
Solute	Ao	а	b		
HBr	192.0	1.78	2.0		
HCI	188.0	1.79	2.0		
HI	197.0	1.76	2.5		
KCH ₃ (CH ₂)COO	89.0	2.73	4.1		
KI	113.3	2.34	5.1		
KOH	105.8	2.45	5.5		
KOCH ₃	106.8	2.42	1.0		
LiCHS	101.5	2.51	5.5		
LiCI	94.2	2.53	3.0		
LiNO ₃	100.7	2.52	5.0		
NaBr	101.8	2.50	4.1		
NaCNS	106.9	2.43	6.0		
NaCH ₃ (CH ₂) ₃ COO	82.0	2.88	4.1		
NaC ₆ HCH ₃ (NO ₂) ₃ O	91.0	2.67	3.9		
NaCl	98.4	2.56	4.0		
Nal	107.8	2.42	4.8		
NaOH	95.7	2.60	5.6		
NaOH ₃	98.4	2.55	5.0		
NaPic	91.4	2.68	4.6		
Et ₄ NI	117.6	2.30	2.0		
Me ₃ NCH ₂ Phl	96.8	2-58	5.0		
$(C_5H_{11})NI$	86.9	2.77	4.0		
C ₃ H ₅ H ₂ Pic	102.4	2.49	2.0		
i-Č ₄ H ₉ H̄ ₃ NCI	97.4	2.57	6.0		
$C_5H_{12}NC_6HMc(NO_2)_3O$	94.4	2.63	2.8		
PhH ₃ NC ₆ HMc(NO ₂) ₃ O	82.0	2.88	3.8		

FORMAMIDE AT 25°C				
Solute	Ao	а	b	
1/2 Ba (NO ₃) ₂	30.3	1.33	1.33	
$1/2 \text{ Ca } (NO_3)_2$	31.6	1.29	1.00	
CsCl	29.0	0.74	0.75	
CsNO ₃	29.4	0.74	0.61	
KCNS	28.7	0.75	1.20	
KCI	28.0	0.76	0.90	
KI	27.7	0.77	1.04	
LiNO ₃	25.0	0.83	1.05	
NH₄ČĬ	30.4	0.72	1.60	
NH_4^{-1}	30.5	0.72	1.10	
$NH_4^TNO_3$	33.6	0.67	0.60	
NaBr	25.7	0.81	0.80	
1/2Na ₂ CrO ₄	26.0	1.56	1.80	
Nal	25.0	0.83	1.18	
NaNO ₃	28.3	0.76	0.63	
NaHCŎO	25.1	0.83	0.65	
NaPhCOO	20.0	0.99	0.78	
NaSalicylate	20.6	0.97	0.60	
NaPhSÓ ₃	20.7	0.96	0.75	
RbBr	28.3	0.76	1.10	
RbCl	28.2	0.76	0.60	
Rbl	28.0	0.76	1.00	
RbNO ₃	28.6	0.75	1.00	
1/2Sr(NO ₃) ₂	32.0	1.28	1.00	
Me ₄ NCI	28.7	0.75	0.65	
Me ₄ NI	25.0	0.83	1.10	
Et ₄ NCI	28.7	0.75	0.65	
Et ₄ NI	25.0	0.83	1.10	
- -4				

HYDROGEN CYANIDE AT 18° C b = 0 Valid to C = 10^{-5} N.

Valid to C = 10 *N.		
Solute	Ao	Α
CsCl	368.2	200
KBr	363.2	248
KCNS	358.0	243
KCI	363.4	280
KCIO ₄	353-3	275
KI '	363.3	235
KNO ₃	353.9	253
LiBr	356.9	270
LiCNS	340.6	400
LiCI	345.4	335
LilCO ₄	336.9	230
Lil	348.0	258
LiNO ₃	336.6	402
NaBr	343.8	243
NaCNS	337.7	230
NaClO ₄	335.5	235
Nal	344.9	238
NaNO ₃	333.8	250
NaPic	266.9	195
RbCl	363.2	195
Et ₄ NPic	282.3	215

SULPHUR DIOXIDE AT 0°C				
Solute	Ao	а	b	
Ph ₃ CCl0 ₄	153.6	5.03	17.0	
Ph ₂ C(C ₆ H ₄ Me)ClO ₄	149.8	4.93	15.0	
PhC(C ₆ H ₄ Me) ₂ ClO ₄	141.3	5.06	16.0	
$C(C_6H_4Me)_3C\overline{l}$	168.5	4.69	15.0	
$C(C_6H_4Me)_3CIO_4$	150.0	4.92	15.0	
Ph ₂ Č(C ₆ H ₄ Ph)Cl	78.3	6.83	16.0	
C(C ₆ H ₄ Ph) ₃ Cl	5.0	5.00	12.0	
Ph ₂ Č(p-C ₆ H ₄ OMe)Cl	169.1	4.68	13.0	
Ph ₂ C(p-C ₆ H ₄ OMe)ClO ₄	148.0	4.95	17.0	
C(p-C ₆ H ₄ OMe) ₃ ClO ₄	144.4	5.03	16.0	
PhC(p-C ₆ H ₄ NO ₂)(p-C ₆ H ₄ OMe)Cl	90.0	5.97	20.0	
$C(p-C_6H_4NO_2)2(p-C_6H_4OMe)CIO_4$	103.5	5.86	17.0	
$C(p-C_6H_4NO_2)(p-C_6H_4OMe)_2CIO_4$	123.0	5.39	20.0	
Me ₄ NČI	160.5	4.80	11.8	
Me ₄ NBr	160.8	4.79	11.8	
Me ₄ NI	166.0	4.72	12.0	
Me ₃ SI	150.2	4.93	12.0	

ACETONE AT 25°C				
Solute	Ao	а	b	
Nal	161.0	3.71	6.0	
Pr₄NI	152.0	3.83	6.0	
C ₅ Hl ₂ NPic	89.1	5.34	9.0	
CPh ₂ (p-C ₆ H ₄ OMe)ClO ₄	160.0	3.72	5.0	
C(p-C ₆ H ₄ OMe) ₃ ClO ₄	160.2	3.72	8.0	

HYDRAZINE AT 0°C				
	Solute	Ao	а	b
1/2 Cc	2 lb	76.0	1.97	2.2
HCI	_	103.0	0.858	0.7
HPhC	00	85.9	0.950	0.0
HPh ₃ (CCOO	74.8	1.03	-4.0
HCH ₂		87.0	0.94	-3.0
	₆ H ₄ (NO ₂)O	86.4	0.95	-5.0
KCI	0 T. Z	85.0	0.96	1.0
Nam-	C ₆ H ₄ (NO ₂)O	58.1	1.21	4.0
Et⊿NI	0 4. 2	66.6	0.87	-1.0
7	(HCI	153.9	0.90	0.6
	KClO ₄	128.2	0.90	0.6
25°C (KI	130.0	0.99	1.3
25°0 {	NaClO ₄	110.0	1.09	1 4
	Nal	112.5	1.07	0.8
	L Et⊿NCI	99.7	1.16	1.6
	· Lt411O1	33.1	1.10	1.0

AMMONIA AT –33°C					
Solute	Ao	а	b		
AgNO ₃	241.7	3.92	8.0		
HCI	183.8	4.48	9.0		
HNO_3	245.5	3.89	7.3		
KI	295.7	3.59	6.0		
KNH ₂	108.7	6.55	13.0		
KPh ₂ N	230.0	4.01	8.0		
KPh ₃ BNH ₂	155.0	5.14	10.5		
LiNO ₃	225.7	4.05	8.5		
NaBr	240.2	3.92	7.0		
NaCl	206.9	4.22	8.0		
Nal	265.1	3.76	7.2		
NaNO ₃	224.8	4.05	8.0		
NaEtS	201.8	4.27	9.0		
NaPhS	219.6	4.32	10.0		
NaPh ₂ N	198.7	4.3	10.0		
NaMe ₃ Sn	249.0	3.86	10.0		
NaPh ₃ BNH ₂	202.5	4.26	98		
Et ₂ HŇCI	183.0	4.43	8.0		
Me ₃ SI	210.0	4.19	6.9		

ETHANOL AT 25°C			
Solute	Ao	а	b
HBr	77.3	2.62	4.1
HCI	70.5	2.74	3.6
HI	81.4	2.57	4.5
KI	46.5	3.42	6.4
KOH	42.0	3.63	6.0
LiCI	37.0	3.90	7.0
LiNO ₃	40.7	3.70	6.8
NH₄ČCI₃COO	37.0	3.93	6.2
NH ₄ CI	39.7	3.75	6.2
NH ₄ Pic	40.8	3.70	6.0
NaBr .	39.0	3.80	10.0
NaCCI ₃ COO	34.3	4.12	6.6
Nal	46.0	3.44	7.0
NaOH	38.0	3.86	6.8
Me ₃ NCH ₂ PhI	43.4	3.56	5.8
C ₅ ĂI ₂ NCĪ	37.0	3.92	6.0
C ₅ Hl ₂ NPic	37.5	3.90	5.6
CPh ₂ (p-C ₆ H ₄ OMe)ClO ₄	61.4	3.02	6.0
CPh(p-C ₆ H ₄ OMe) ₂ ClO ₄	60.3	2.97	7.0

FORMIC ACID AT 25°C				
Solute	Ao	а	b	
CsHCOO	75.2	1.06	1.4	
KHCOO	79.6	1.03	1.5	
LiHCOO	75.7	1.06	0.7	
NH₄HCOO	82.4	1.01	1.2	
NaHCOO	75.7	1.06	1.4	
RbHCOO	81.1	1.02	1.0	
PhNH ₃ HCOO	75.8	1.06	1.2	
8.50°C { KCl	35.82	1.12	0.94	
8.50°C (Me ₄ NCI	35.70	1.12	0.94	

DIMETHYL-FORMAMIDE AT 25°C b = o				
Solute	Ao	Α		
KBr	84.1	154		
KCNS	90.2	151		
KCIO ₄	82.7	137		
KI	82.6	137		
KNO ₃	88.5	214		
NaBr	83.4	165		
NaCNS	89.5	171		
Nal	81.9	138		
NaNO ₃	87.9	263		

SPECIFIC CONDUCTANCE OF STANDARD KCI SOLUTIONS

(Data obtained from *Handbook of Electrochemical Constants,* Parsons; Academic Press/Butterworths, 1959)

Concentration		Conductance	e, µmhos/cm	
	0°C	18°C	20°C	25°C
1N KCI 71.3828 g KCI per kg solution	65,430	98,201	102,024	111,733
0.1N KCl 7.43344 g KCl per kg solution	7,154.3	11,191.9	11,667.6	12,886.2
0.01N KCI 0.746558 g KCI per kg solution	775.12	1,222.69	1,275.72	1,411.45

\$10.00 U.S. Dollars

Rosemount Analytical Inc. Uniloc Division

2400 Barranca Parkway Irvine, CA 92606 USA Tel: (949) 863-1181 http://www.RAuniloc.com

ROSEMOUNT®ANALYTICAL

FISHER-ROSEMOUNT" Managing The Process Better."