

图像分割

1.基本概念

什么是图像分割

> 预测目标的轮廓

将不同的<mark>像素</mark>划分到不同的<mark>类别(class)</mark>,本质上是分类的问题,但是对像素进行分类

图像分割的应用场景

人像抠图、医学组织提取、遥感分析、自动驾驶等

医学图像分割:医学影像、CT照片等

图像分割的前景和背景

▶ 背景Stuff: 不可数背景 (天空、树林,路面、草地) Background

图像分割的三个层次

(a)原图像

(b)语义分割

(c)实例分割

(c)全景分割

➤ 语义分割 (Semantic Segmentation)

每一个像素只能属于一类,预测结果为掩膜

➤ 实例分割 (Instance Segmentation)

只预测<mark>前景目标</mark>的类别属性及边框,个体ID,每一个像素可以属于多个ID

➤ 全景分割 (Panoptic Segmentation)

简单理解为语义分割+实例分割

2.语义分割

计算机视觉的任务

3.数据集

➤ PASCAL Visual Object Classes (VOC项目), 20类图像, 1类背景, 总 共9963张图片, 24640个标注目标

▶ 从2007年开始引入语义分割和实例分割的标注图像

Everingham, M.; and Winn, J. 2012. The PASCAL visual object classes challenge 2012 (VOC2012) development kit. Pattern Anal. Stat. Model. Comput. Learn., Tech. Rep, 2007(1-45): 5.

➤ Cityscapes (用于自动驾驶场景)

50个城市在春夏秋三个季节不同时段,不同场景的街景图

500张精细标注的图像,20000张粗略标注的图像

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benen-son, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. In IEEE conference on computer vision and pattern recognition (pp. 3213–3223)

➤ COCO数据集

Common Objects in Context,以场景理解为目标,选取了比较复杂的日常场景

一共有91类,以人类4岁小孩能够辨识为基准,其中82类超过5000个实例

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft Coco: Common Objects in Context. In European conference on computer vision (pp. 740–755). Springer.

4.评估指标

● Pixel Accuracy: 逐像素分类精度

● Mean Pixel Accuracy:每个类被正确分类像素的比例

● IoU: 前景目标交并比

● mloU:每个类loU的平均值

• • • • •

5.语义分割常用优化目标

 \triangleright 交叉熵损失, z_k 表示网络的输出, $f(z_k)$ 表示概率

$$f(z_k) = \frac{e^{z_k}}{\sum_j e^{z_j}}, \qquad l(y, z) = -\sum_{k=0}^C y_c \log(f(z_k)), \qquad l(y, z) = \log \sum_j e^{z_j} - \log e^{z_y}$$

分割损失即所有像素分类损失的累加

> 交叉熵损失的特点

$$\frac{\partial l(y,z)}{\partial z_k} = \begin{cases} f(z_k) - 1 & \exists y = k \\ f(z_k) & \not\exists \text{ i.e.} \end{cases}$$

可用于多类别,正负样本梯度稳定

5.语义分割常用优化目标

➤ Dice损失, P、G分别表示预测和真实值

定义Dice相似度:
$$S = 2\frac{|P \cap G|}{|P| + |G|}$$

$$S_1 = \frac{2\sum_N p_i g_i}{\sum_N p_i^2 + \sum_N g_i^2}$$

$$S_2 = \frac{2\sum_N p_i g_i}{\sum_N p_i + \sum_N g_i}$$

$$S_1 = \frac{2\sum_N p_i g_i}{\sum_N p_i^2 + \sum_N g_i^2}$$

$$S_2 = \frac{2\sum_N p_i g_i}{\sum_N p_i + \sum_N g_i}$$

Dice损失: D(p,g) = 1 - S

> Dice损失的特点

$$g_i(\sum_N g_i^2 - \sum_N p_i^2)$$

导数:
$$\frac{\partial S}{\partial p_i} = 2 \frac{g_i (\sum_N g_i^2 - \sum_N p_i^2)}{(\sum_N p_i^2 + \sum_N g_i^2)^2}$$
 $g_i = 0$, 梯度值为0

- ◆ 专注正样本,适合小目标
- ◆ 损失可能并不稳定

6.语义分割网络

> 卷积模块: 特征提取

▶ 反卷积模块: 上采样恢复原图像尺寸

RGB图像

6.语义分割网络

经典语义分割网络

224×224

▶ 卷积网络:编码器

> 反卷积网络:解码器

反卷积是一种特殊的正向卷积,先按照一定的比例通过补0来扩大输入图像的尺寸,再进行普通的卷积。

7. Segment Anything

Meta 提出的一个通用分割模型,包含超过10亿个分割掩膜和1100万张符合许可且尊重隐私的图像[1]

7. Segment Anything

Demo

总结

图像分割是计算机视觉中重要的基础任务,广泛被应用于医学图像处理、自动驾驶、遥感分析等领域,但当前的研究面临的主要问题:标注大量的数据集耗费人力和财力,模型的泛化能力比较差。针对上述问题,有研究者采用Few-shot Semantic Segmentation或Zero-shot Semantic Segmentation等方法,尝试在少样本的训练集上实现模型的泛化能力,随着Transformer的推广,其也被应用到图像分割当中。

在未来的研究工作中, Few-shot Semantic Segmentation或Zero-shot Semantic Segmentation有望成功解决上述的两个挑战,推动图像分割的研究进一步发展^[1]

[1] Catalano N, Matteucci M. Few Shot Semantic Segmentation: a review of methodologies, benchmarks, and open challenges [J]. arXiv preprint arXiv:2304.05832, 2023.

近期学习内容 (2.24-3.31)

论文阅读 (部分)

	SOUTH-CENTRAL MINZU UNIVERSITY				
题目	时间	单位	期刊/会议	关键词	代码
Segment Anything	2023	Meta AI	ICCV	语义分割	https://github.com/facebookr esearch/segment-anything
Stronger, Fewer, & Superior Harnessing Vision Foundation Models for Domain Generalized Semantic Segmentation (DGSS)	2024	中国科学技术 大学、上海人 工智能实验室	CVPR	视觉基础模型、 域泛化语义分割	https://github.com/w1oves/Rein
High Quality Segmentation for Ultra High-resolution Images	2022	香港中文大学、 Adobe等	CVPR	超高清图像分割	https://github.com/qqlu/Entit y/tree/main/High-Quality- Segmention
Disentangle then Parse: Night-time Semantic Segmentation with Illumination Disentanglement	2023	中国科学技术 大学、上海人 工智能实验室	ICCV	夜间语义分割	https://github.com/w1oves/DTP
SED:A Simple Encoder-Decoder for Open-Vocabulary Semantic Segmentation	2024	天津大学, 重 庆大学等	CVPR	开放词汇语义分 割	https://github.com/xb534/SE D
Prompting Multi-Modal Image Segmentation with Semantic Grouping	2024	中国科学院大学	AAAI	多模态图像分割	-
Prompt-and-Transfer: Dynamic Class-Aware Enhancement for Few-Shot Segmentation	2025	中国科学院、 清华大学	TPAMI	少样本分割、语 义分割	-

论文阅读 (部分)

题目	时间	单位	期刊/会议	关键词	代码
Cross-Domain Few-Shot Semantic Segmentation via Doubly Matching Transformation	2024	南京航空航天 大学、西安电 子科技大学	IJCAI	少样本语义分割	https://github.com/ChenJiayi 68/DMTNet
Relevant Intrinsic Feature Enhancement Network for Few- Shot Semantic Segmentation	2024	中国科学院大 学、中国科学 院、阿里巴巴	AAAI	少样本语义分割	https://github.com/baoxiaoyi /RiFeNet
Scribble-Supervised Semantic Segmentation with Prototype-based Feature Augmentation	2024	河海大学等	ICML	涂鸦监督语义分 割	https://github.com/TranquilC han/PFA
Progressive Feature Self- Reinforcement for Weakly Supervised Semantic Segmentation	2024	之江实验室、 西安电子科技 大学等	AAAI	弱监督语义分割	https://github.com/Jessie459/ feature-self-reinforcement
A Transformer-based Adaptive Prototype Matching Network for Few-Shot Semantic Segmentation	2024	南京信息工程 大学、青海师 范大学等	IJCAI	少样本语义分割、 Transformer	-
Scribble Hides Class: Promoting Scribble-Based Weakly-Supervised Semantic Segmentation with Its Class Label	2024	北京大学、北 京大学深圳研 究生院	AAAI	基于涂鸦的弱监 督语义分割	https://github.com/Zxl19990 529/Class-driven-Scribble- Promotion-Network

代码部分(Pytorch+MMsegmentation)

PyTorch深度学习快速入门教程 (绝对通俗易懂!)【小土堆】

Pytorch框架与经典卷积神经网 络与实战

语义分割与MMSegmentation

Pytorch 搭建自己的DeeplabV3 +语义分割平台(Bubbliiiing 深...

https://www.bilibili.com/video/BV1hE411t7RN/?spm_id_from=33 3.1387.favlist.content.click&vd_source=d9c11bf42dbabecdf6bb0 ea659f7a921

https://www.bilibili.com/video/BV173411q7xF/?spm_id_from=333.1387.favlist.content .click&vd_source=d9c11bf42dbabecdf6bb0ea659f7a921

- https://www.bilibili.com/video/BV1e34y1M7wR/?spm_id_from=333.1387.favlist.content.click&vd source=d9c11bf42dbabecdf6bb0ea659f7a921
- https://www.bilibili.com/video/BV1qN411z7hz/?spm_id_from=333.1387.favlist.content.click&vd source=d9c11bf42dbabecdf6bb0ea659f7a921

Thank you