PION 模拟赛

题目名称	道路	地震后的H市	求和	最短路
题目类型	传统题	传统题	传统题	传统题
源程序文件名	a.cpp	b.cpp	с.срр	d.cpp
输入文件名	a.in	b.in	c.in	d.in
输出文件名	a.out	b.out	c.out	d.out
结果比较方式	全文比较	全文比较	全文比较	全文比较
每个测试点时限	5s	2s	2s	2s
内存限制	1024MB	1024MB	1024MB	1024MB

编译选项

C++

-o %s %s.* -lm -std=c++17 -O2 -Wl,-stack_size,1000000000

注意事项

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C++函数中main()的返回值类型必须是int,程序正常结束时的返回值必须是0。
- 3. 选手应将各题的源程序放在选手文件夹内,不要建立子文件夹。
- 4. 评测机配置: Apple M1 Pro, 内存16 GB。

道路

题目描述

在平面直角坐标系上有 n 个点,其中第 i 个点的坐标是 (x_i,y_i) ,所有点在一个以 (0,0) 和 (A,B) 为相对顶点的矩形内。

如果 $x_i = 0$,那么我们称这个点在西侧。如果 $x_i = A$,那么我们称这个点在东侧。

这些点之间有m条边,每条边可能是有向边也可能是无向边,保证边在交点以外的任何地方不相交。

现在请你求出,对于每一个西侧的点,能够沿着边到达多少东侧的点。

输入格式

第一行四个空格隔开的数 n, m, A, B 。

接下来 n 行,每行两个空格隔开的数 x_i, y_i 。

接下来 m 行,每行三个空格隔开的数 c_i,d_i,k_i ,表示一条 c_i 和 d_i 之间的边。如果 $k_i=1$,那么表示这条边是有向边,方向为 c_i 指向 d_i ,否则这条边是无向边。

输出格式

输出有若干行,每行一个数表示答案。请按照 y 从大到小的顺序输出所有点对应的答案。

样例 #1

样例输入#1

```
      1
      5
      3
      1
      3

      2
      0
      0
      0

      3
      0
      1
      1

      4
      0
      2
      2

      5
      1
      0
      0

      6
      1
      1
      1

      7
      1
      4
      1

      8
      1
      5
      2

      9
      3
      5
      2
```

样例输出#1

```
1 | 2
2 | 0
3 | 2
```

样例 #2

样例输入#2

```
1 12 13 7 9
   0 1
2
3 0 3
4 2 2
5 5 2
6 7 1
7
   7 4
8 7 6
   7 7
9
10 3 5
11 0 5
12 0 9
13 3 9
14 1 3 2
15 3 2 1
16 3 4 1
17 4 5 1
18 5 6 1
19 9 3 1
20 9 4 1
21 9 7 1
22 9 12 2
23 10 9 1
24 11 12 1
25 12 8 1
26 12 10 1
```

样例输出#2

```
      1
      4

      2
      4

      3
      0

      4
      2
```

提示

样例2解释

数据范围

对于 100% 的数据,有

 $1 \le n \le 300\ 000; 0 \le m \le 900\ 000; 1 \le A, B \le 10^9; 0 \le x_i \le A; 0 \le y_i \le B; 1 \le c_i, d_i \le n; k_i \in \{1,2\}$ 。保证西侧的点至少有一个,保证每一个无序对 $\{c_i,d_i\}$ 只会出现一次。

对于10%的数据, $n \leq 20$ 。

对于20%的数据, $n \leq 50$ 。

对于35%的数据, $n \leq 500$ 。

对于45%的数据, $n \leq 1000$ 。

地震后的H市

题目描述

中国台湾和日本频繁地震的日常生活,也造就了两层小楼密布的格局(台-透天厝,日-一户建),

在如此地狭人稠的多山海岛上,要保证稻米自给,又有这么高的小楼住宅比例,

进一步造就两地狭窄的道路,中国台湾极高的摩托车密度,以及日本的超小型汽车。

后来由于人口不断流入大中城市导致土地紧张,再加上大楼抗震技术升级,

中国台湾和日本才逐渐出现较多高层公寓住宅、但大量地段仍受到土壤液化的困扰而不适用。

时至今日,中国台湾和日本小楼住宅的比例仍远远高于大陆和韩国。

这就是为什么日本地狭人稠,但却普遍住两层小楼的原因。

H市突然发生了地震,所有的道路都崩塌了。现在的首要任务是尽快让H市的交通体系重新建立起来。H市一共有 n 个地方,那么最快的方法当然是修复 n-1 条道路将这 n 个地方都连接起来。 H市这 n 个地方本来是连通的,一共有 m 条边。现在这 m 条边由于地震的关系,全部都毁坏掉了。每条边都有一个修复它需要花费的时间,第 i 条边所需要的时间为 e_i 。地震发生以后,由于小Y是一位人生经验丰富,见得多了的长者,他根据以前的经验,知道每次地震以后,每个 e_i 会是一个 0 到 1 之间均匀分布的随机实数。并且所有 e_i 都是完全独立的。

现在小Y要出发去帮忙修复道路了,他可以使用一个神奇的大魔法,能够选择需要的那 n-1 条边,同时开始修复,那么修复完成的时间就是这 n-1 条边的 e_i 的最大值。当然小Y会先使用一个更加神奇的大魔法来观察出每条边 e_i 的值,然后再选择完成时间最小的方案。 小Y在走之前,他想知道修复完成的时间的期望是多少呢?

输入格式

第一行两个数 n, m,表示地方的数量和边的数量。其中点从 1 到 n 标号。

接下来 m 行,每行两个数 a,b,表示点 a 和点 b 之间原来有一条边。这个图不会有重边和自环。

输出格式

一行输出答案,四舍五入保留6位小数。

样例 #1

样例输入#1

样例输出#1

1 0.800000

提示

样例解释

对于第一个样例,由于只有四条边,小Y显然只能选择这四条,那么答案就是四条边的 e_i 中最大的数的期望,由提示中的内容,可知答案为 0.8 。

提示

(以下内容与题意无关,对于解题也不是必要的。)

对于 n
ightharpoonup [0,1] 之间的随机变量 x_1, x_2, \ldots, x_n ,第 k 小的那个的期望值是 k/(n+1)。

数据范围:

对于所有数据: $n \le 10$, $m \le n(n-1)/2$, $n, m \ge 1$.

对于 15% 的数据: $n \leq 3$ 。

另有 15% 的数据: $n \leq 10, m = n$ 。

另有 10% 的数据: $n \le 10, m = n(n-1)/2$ 。

另有 20% 的数据: $n \leq 5$ 。

另有 20% 的数据: $n \leq 8$ 。

求和

定义:

 $A_i = (1023^i \mod 10^9) \ xor \ (1025^i \mod 10^9)_{\circ}$

求:

 $Sum = \sum_{i=l_1}^{r_1} \sum_{j=max(i,l2)}^{r_2} \left\{ \max \left\{ A_{i...j}
ight\} - \min \left\{ A_{i...j}
ight\}
ight\}$,

多组询问。

输入格式

第一行一个数 t, 表示询问组数。

接下来 t 行,每行四个数 l_1, r_1, l_2, r_2 。

输出格式

一共 t 行,每行一个数 Sum。

样例输入

4

1357

2468

1199

9911

样例输出

9322587654

9025304064

1065645568

0

数据范围

 $1 <= t <= 40000, 1 <= L1 < R1 <= 10^5, 1 <= L2 <= R2 <= 10^5 \, .$

对于10%的数据 $t \leq 50, L1, R1, L2, R2 \leq 100$ 。

对于另外20%的数据,t=1。

对于另外10%的数据, $t \le 200, L1, R1, L2, R2 \le 200$ 。

最短路

题目描述

给定一个 N 个点 N 条边的有向图,每个点的出度都是1,无自环, 要求在图上添加最少的边,使得点 1 到达所有其他点的最短路长度不超过 K。

输入格式

第一行是两个整数用空格隔开 N 和 K。

接下来N行:

其中第 i+1 行 $(1\leqslant i\leqslant N)$ 输入两个整数 x 和 y , 表示存在一条从 x 到 y 的单向边。

输出格式

输出仅一个整数:表示最少需要添加的边数。

样例 #1

样例输入#1

```
      1
      8
      3

      2
      1
      2

      3
      2
      3

      4
      3
      5

      5
      4
      5

      6
      5
      6

      7
      6
      7

      8
      7
      8

      9
      8
      5
```

样例输出#1

```
1 | 2
```

样例 #2

样例输入#2

```
      1
      14 4

      2
      1 2

      3
      2 3

      4
      3 4

      5
      4 5

      6
      7 5

      7
      5 6

      8
      6 3
```

```
9 8 10

10 10 9

11 9 8

12 14 13

13 13 12

14 12 11

15 11 14
```

样例输出#2

1 3

提示

在第二组样例中,一个合法的路径集合 $\{1 \rightarrow 7, 1 \rightarrow 14, 14 \rightarrow 10\}$ 。

 $2 \leq N \leq$ 500000, $1 \leq K \leq$ 20000.

对于4%的数据, $N \leq 50$ 。

对于8%的数据, $N \leq 150$ 。

对于20%的数据, $N \leq 5000$ 。

对于44%的数据, $N \leq 10^5$ 。

数据具有一定梯度。