Derivative Securities: Lecture 5 American Options and Black Scholes PDE

Sources:

J. Hull

Avellaneda and Laurence

The Black Scholes PDE

 The hedging argument for assets with normal returns presented at the end of Lecture 4 gave rise to the Black Scholes PDE

$$\frac{\partial C(S,t)}{\partial t} + \frac{\sigma^2 S^2}{2} \frac{\partial^2 C(S,t)}{\partial S^2} + (r-q)S \frac{\partial C(S,t)}{\partial S} - rC(S,t) = 0$$

r=interest rate, q=dividend yield, σ = volatility. The volatility is the annualized standard deviation of returns (it is not a market price or, rate, but rather a model input).

 We introduce a method for solving this PDE numerically on a grid.

Finite-difference scheme, or ``trinomial tree''

 $S_n^j = S_0 e^{j\Delta x}, \quad -M \le j \le +M$

 $C_n^j \leftrightarrow C(S_n^j, n\Delta t), \ 0 \le n \le N$

Finite-difference

Change of variables

$$S = S_0 e^x$$

$$S\frac{\partial C}{\partial S} = S\frac{\partial C}{\partial x}\frac{\partial x}{\partial S} = S\frac{\partial C}{\partial x}\frac{1}{S} = \frac{\partial C}{\partial x}$$

$$S^{2} \frac{\partial^{2} C}{\partial S^{2}} = S^{2} \frac{\partial}{\partial S} \left(\frac{1}{S} S \frac{\partial C}{\partial S} \right) = S^{2} \frac{\partial}{\partial S} \left(\frac{1}{S} \frac{\partial C}{\partial x} \right)$$
$$= S \frac{\partial}{\partial x} \left(\frac{1}{S} \frac{\partial C}{\partial x} \right)$$
$$= \frac{\partial^{2} C}{\partial x^{2}} - \frac{\partial C}{\partial x}$$

BS equation in log-price

$$\frac{\partial C}{\partial t} + \left(r - q - \frac{1}{2}\sigma^2\right) \frac{\partial C}{\partial x} + \frac{1}{2}\sigma^2 \frac{\partial^2 C}{\partial x^2} - rC = 0$$

Taylor expansion & symmetric finite-difference approximations for derivatives

$$f(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + \dots$$

$$f(-x) = f(0) - f'(0)x + \frac{1}{2}f''(0)x^2 + \dots$$

•

$$f(x) - f(-x) = 2f'(0)x + o(x^{2})$$

$$f(x) + f(-x) = 2f(0) + f''(0)x^{2} + o(x^{3})$$

. .

$$f'(0) = \frac{f(x) - f(-x)}{2x} + o(x)$$
$$f''(0) = \frac{f(x) + f(-x) - 2f(0)}{x^2} + o(x)$$

Symmetric finite difference approximations for first and second derivatives

Discretization of the PDE

$$\frac{\partial C(S,t)}{\partial t} \longleftrightarrow \frac{C_{n+1}^{j} - C_{n}^{j}}{\Delta t} \longleftrightarrow \frac{\partial C(S,t)}{\partial x} \longleftrightarrow \frac{C_{n+1}^{j+1} - C_{n+1}^{j-1}}{2\Delta x}$$

$$\frac{\partial^{2}C(S,t)}{\partial x^{2}} \longleftrightarrow \frac{C_{n+1}^{j+1} + C_{n+1}^{j-1} - 2C_{n+1}^{j}}{(\Delta x)^{2}}$$

Here we do not use symmetric differences

Here use symmetric differences

$$\frac{C_{n+1}^{j} - C_{n}^{j}}{\Delta t} + (r - q - \frac{\sigma^{2}}{2}) \frac{C_{n+1}^{j+1} - C_{n+1}^{j-1}}{2\Delta x} + \frac{\sigma^{2}}{2} \frac{C_{n+1}^{j+1} + C_{n+1}^{j-1} - 2C_{n+1}^{j}}{(\Delta x)^{2}} - rC_{n}^{j} = 0$$

From PDE to recursive scheme

$$\frac{C_{n+1}^{j} - C_{n}^{j}}{\Delta t} + (r - q - \frac{\sigma^{2}}{2}) \frac{C_{n+1}^{j+1} - C_{n+1}^{j-1}}{2\Delta x} + \frac{\sigma^{2}}{2} \frac{C_{n+1}^{j+1} + C_{n+1}^{j-1} - 2C_{n+1}^{j}}{(\Delta x)^{2}} - rC_{n}^{j} = 0$$

$$C_{n}^{j} = C_{n+1}^{j} + \left(\frac{\sigma^{2}\Delta t}{2(\Delta x)^{2}} + \frac{(r - q - \sigma^{2}/2)\Delta t}{2\Delta x}\right)C_{n+1}^{j+1} + \left(1 - \frac{\sigma^{2}\Delta t}{(\Delta x)^{2}}\right)C_{n+1}^{j} + \left(\frac{\sigma^{2}\Delta t}{2(\Delta x)^{2}} - \frac{(r - q - \sigma^{2}/2)\Delta t}{2\Delta x}\right)C_{n+1}^{j-1} - r\Delta tC_{n}^{j}$$

$$C_{n}^{j} = \frac{1}{1 + r\Delta t} \left(p_{U} C_{n+1}^{j+1} + p_{M} C_{n+1}^{j} + p_{D} C_{n+1}^{j-1} \right)$$

$$\begin{cases} p_{U} = \frac{\sigma^{2} \Delta t}{2(\Delta x)^{2}} + \frac{(r - q - \sigma^{2} / 2)\Delta t}{2\Delta x} \\ p_{M} = 1 - \frac{\sigma^{2} \Delta t}{(\Delta x)^{2}} \\ p_{D} = \frac{\sigma^{2} \Delta t}{2(\Delta x)^{2}} - \frac{(r - q - \sigma^{2} / 2)\Delta t}{2\Delta x} \end{cases}$$

Interpreting the weights

Notice that

$$p_{\rm U} + p_{\rm M} + p_{\rm D} = 1$$

• Set
$$\Delta x = \sigma_{\text{max}} \sqrt{\Delta t}$$

$$\mu = r - q - \frac{\sigma^2}{2}$$

$$p = \frac{\sigma^2 \Delta t}{2(\Delta x)^2} = \frac{\sigma^2}{2\sigma_{\text{max}}^2}$$

• The weights become

$$p_{\mathrm{U}} = p + \frac{\mu \sqrt{\Delta t}}{2\sigma_{\mathrm{max}}}$$

$$p_{\mathrm{M}} = 1 - 2p$$

$$p_{\mathrm{D}} = p - \frac{\mu \sqrt{\Delta t}}{2\sigma_{\mathrm{max}}}$$

Stability conditions & probabilities

$$p < 1/2$$
 and
$$\Rightarrow p_U > 0, p_M > 0, p_D > 0$$

$$\frac{|\mu|\sqrt{\Delta t}}{\sigma_{\text{max}}} < 1$$

 In this case, the discretization of the PDE corresponds to discounting over probabilities

$$C_n^{j} = \frac{1}{1 + r\Delta t} \left(p_{\mathrm{U}} C_{n+1}^{j+1} + p_{\mathrm{M}} C_{n+1}^{j} + p_{\mathrm{D}} C_{n+1}^{j-1} \right)$$

This gives a simple and intuitive interpretation of the B-S PDE

European Options

Value at expiration date

$$C_N^j = \max \left(S_0 e^{j\sigma_{\max}\sqrt{\Delta t}} - K, 0 \right), -M \le j \le +M$$
 (call)

$$C_N^j = \max \left(K - S_0 e^{j\sigma_{\max}\sqrt{\Delta t}}, 0 \right), -M \le j \le +M$$
 (put)

$$C_N^j = \max\left(K - S_0 e^{j\sigma_{\max}\sqrt{\Delta t}}, 0\right), -M \le j \le +M$$
 (put)

Solve recursively

$$C_n^j = \frac{1}{1 + r\Delta t} \left[p_{\rm U} C_{n+1}^{j+1} + p_{\rm M} C_{n+1}^j + p_{\rm D} C_{n+1}^{j-1} \right], \quad -M < j < +M, \ n = N-1, N-2,, 0$$

Boundary Nodes

$$C_n^M = 2C_n^{M-1} - C_n^{M-2} \qquad \text{(upper boundary)}$$

$$C_n^{-M} = 2C_n^{-M+1} - C_n^{-M+2}$$
 (lower boundary)

These boundary conditions are called ``radiation boundary conditions'' or ``zero-gamma'' boundary conditions. They assume that there is no convexity at the boundary, so the values at the boundary will not affect the computation significantly.

(More on this later...)

VB pseudo code (1)

Function BSCall(ByVal S As Double, ByVal T As Double, ByVal K As Double, ByVal r As Double, _ ByVal q As Double, ByVal sigma As Double) As Double

```
'set mesh = 1day
Dim dt As Double
dt = 1# / 252
'set number of time steps
Dim N As Integer
N = CInt(T / dt)
'set carry
Dim mu As Double
mu = r - q-0.5 * sigma* sigma
'set sigma max for stability requirements
Dim smax As Double
smax = 2 * Abs(mu) * sqrt(dt)
                                                                           This ensures that
If smax < sigma * sqrt(2) Then
                                                                           smax is large enough
smax = sigma * sqrt(2)
End If
If smax = 0 Then
BSCall = -9999
Fnd If
```

VB Code (II)

'allocate arrays

Dim M As Integer M = CInt(5 * sqrt(N)) This sets the vertical dimension

Dim S() As Double Dim C() As Double Dim pC() As Double

ReDim C(1 To 2 * M + 1) ReDim pC(1 To 2 * M + 1)

ReDim S(1 To 2 * M + 1)

'probabilities

Dim PU, PM, PD As Double
Dim p As Double
p = 0.5 * sigma * sigma / (smax * smax)

PU = p + 0.5 * mu * sqrt(dt) / smax PM = 1 - 2 * p PD = p - 0.5 * mu * sqrt(dt) / smax From the discretization of The PDE

VB Code (III)

Discussion

- This is called an <u>explicit scheme</u>, which means that we "roll back", solving time n in terms of time n+1
- For this to work, we need smax large enough so that the "probabilities" are positive (stability)
- The requirement that M=5*sqrt(N) has to do with the fact that the grid must be large enough to avoid ``feeling the boundary"
- The result at the end is the full vertical array at n=0, so we get more information than just the central node, if we wish.

American Options

 We must enforce the requirement that, at each node, the value of the option is greater than the payoff (intrinsic value)

$$C_n^j \ge \max(S_n^j - K, 0)$$
 (call)
 $C_n^j \ge \max(K - S_n^j, 0)$ (put)

Let F(S) be the intrinsic value. Then,

$$C_n^{j} = \max \left[F(S_n^{j}), \frac{1}{1 + r\Delta t} \left(p_{\text{U}} C_{n+1}^{j+1} + p_{\text{M}} C_{n+1}^{j} + p_{\text{D}} C_{n+1}^{j-1} \right) \right]$$

Why is the numerical scheme correct?

- An American-style option is always greater than the IV
- Suppose that you know the value of the American option at time $t_{n+1} = (n+1)\Delta t$.
- A European option with payoff $F(S,t_{n+1}) = C_{n+1}^j$, $S = S_0 e^{j\Delta x}$ expiring at time t_{n+1} has a value at time $t_n = n\Delta t$ equal to

$$V_n^j = \frac{1}{1 + r\Delta t} \left[p_{\rm U} C_{n+1}^{j+1} + p_{\rm M} C_{n+1}^j + p_{\rm D} C_{n+1}^{j-1} \right]$$

• An American option gives the right to exercise at time t_n or to continue. If you continue, this is like holding the European-style derivative for one more time period. Therefore,

$$C_{n}^{j} = \max \left[IV(S_{n}^{j}), V_{n}^{j} \right] = \max \left[IV(S_{n}^{j}), \frac{1}{1 + r\Delta t} \left[p_{U}C_{n+1}^{j+1} + p_{M}C_{n+1}^{j} + p_{D}C_{n+1}^{j-1} \right] \right]$$

VB code for American Call

```
' time loop
For K = 1 To N
  'interior nodes
  For j = 2 To 2 * M
  pC(j) = PU * C(j + 1) + PM * C(j) + PD * C(j - 1)
  pC(j) = pC(j) * D
  Next i
  'boundary nodes
  pC(1) = 2 * pC(2) - pC(3)
  pC(2 * M + 1) = 2 * pC(2 * M) - pC(2 * M - 1)
  'copy array & compare with intrinsic value
  For j = 1 To 2 * M + 1
  C(i) = pC(i)
                                                                               This guarantees that
        If C(j) < Max(S(j)-K,0) then
                                                                                C is at least equal
        C(j)=Max(S(j)-K,0)
                                                                                to the intrinsic value.
        End if
                                                                                Everything else is the
  Next i
                                                                                same.
Next K
BSCall = C(M + 1)
End Function
```

Pricing a 1-year call numerically

Numerical solution vs. Black-Scholes for European options

S	Numeri	cal	Black-Scholes	Diff
	74.13	0.02184	0.022141	3E-04
	75.2	0.02903	0.029406	4E-04
	76.28	0.03833	0.038791	5E-04
	77.37	0.05027	0.050829	6E-04
	78.48	0.06549	0.06616	7E-04
	79.61	0.08474	0.085546	8E-04
	80.75	0.10892	0.109889	1E-03
	81.91	0.13909	0.14024	0.001
	83.09	0.17647	0.177822	0.001
	84.28	0.22244	0.224035	0.002
	85.49	0.27862	0.280472	0.002
	86.72	0.34677	0.348926	0.002
	87.96	0.42891	0.431395	0.002
	89.22	0.52724	0.530085	0.003
	90.5	0.64416	0.647404	0.003
	91.8	0.78228	0.785954	0.004
	93.12	0.94437	0.948515	0.004
	94.46	1.13339	1.138026	0.005
	95.81	1.35239	1.357555	0.005
	97.19	1.60454	1.610268	0.006
	98.58	1.89309	1.899388	0.006
	100	2.22126	2.228156	0.007
	101.4	2.59228	2.59978	0.008
	102.9	3.00928	3.017386	0.008
	104.4	3.47525	3.483969	0.009
	105.9	3.99303	4.002341	0.009
	107.4	4.56521	4.575086	0.03
	108.9	5.1941	5.204516	0.01
	110.5	5.88171	5.892626	0.013
	112.1	6.62971	6.641072	0.011
	113.7	7.43938	7.45114	0.012
	115.3	8.31164	8.323734	0.012
	117	9.24702	9.259366	0.012
	118.7	10.2456	10.25817	0.013
	120.4	11.3073	11.31989	0.013
	122.1	12.4313	12.44395	0.013
	123.8	13.6168	13.62941	0.013
	125.6	14.8626	14.87508	0.012

- Same parameters as previous example
- Compared BS with numerical scheme
- Adjust the time-step to produce acceptable error
- Use numerical code to price American options

Numerical solution as a surface

Early-exercise boundary

- Exercising a call option makes sense only if the stock is sufficiently high (and the dividend income is greater than the potential increase in the option price).
- Exercising a put option makes sense only if the stock is sufficiently low, so that the interest income from the cash received exceeds the expected gains from increase in option price.
- Therefore, the exercise regions for calls/puts will be of the form

```
ER_{call} = \{ (S,t): S>S*(t) \} ER_{put} = \{ (S,t): S<S**(t) \}
```

Exercise region for a put

Exercise region for a call

Applications of the Black-Scholes pricing model

• In the case of European-style options, we obtain a compact formula for the value of options:

$$C_{eur} = BSCall(S, K, T, r, d, \sigma)$$
 $P_{eur} = BSPut(S, K, T, r, d, \sigma)$

- In the case of American-style options, we have numerical scheme which depends on the same 6 parameters and gives the value with arbitrary precision.
- Of the 6 parameters, 5 of them are observable or derivable from the market (e.g. implied dividend)
- The volatility parameter is NOT observable or derivable from the market in an unequivocal way. It is an essential component of the model.

Implied Volatility

 The implied volatility of an option is the volatility that makes the Black-Scholes pricing formula true

$$C = BSCall(S, T, K, r, d, \sigma_{imp}), P = BSPut(S, T, K, r, d, \sigma_{imp})$$

• Given (S,K,T,r,q) and the price of an option, there is a unique implied vol associated with a given price. The reason is that

$$\frac{\partial BSCall}{\partial \sigma} > 0, \quad \frac{\partial BSPut}{\partial \sigma} > 0$$

 Usually computed from mid-prices (bid+offer)/2. We can also talk about a bid implied vol and an offer implied vol, associated with bid prices and offer prices.

Call Implied Volatility (SPY Dec 17 calls)

Put Implied Vols (SPY Dec 17 Calls)

Calls and Puts together

Implied Volatility

- Implied volatility of OTM options are more stable than ITM
- IVOLS of calls and puts should be approximately equal due to the fact that we determined the dividend yields implicitly
- For SPY, the implied volatility is a decreasing function of the strike price. This is known as the volatility skew in the business.
- Volatilities are not constant across strikes, but they vary relatively smoothly.
- Option markets can be viewed as volatility markets, as we will soon see.