Total Recall

Samuel Boardman, Khola Jamshad, Riku Kurama, Yucong Lei, Shivani Prabala

The Problem

Motivation

FDA to suspend quality-control program for food testing due to staff cuts

Research Question

Can we predict food products likely to be recalled by the FDA?

Intended Impact

Reduced contaminated products reaching consumers

Reduced costs to manufacturers

Datasets

Features:

- · 5 pathogens
- Month
- Recent seasonal average of target

Target: Monthly recall as % of inspections

Random Forest Classification

- Model overview
 - a. Use of thresholds
- Hyperparameter tuning
 - a. Evaluation metric
- Final hyperparameter choice
 - a. n estimators = 100
 - b. $max_depth = 10$
 - c. class_weight = 'balanced'

Support Vector Machine Classification

SVM with class_weight = 'balanced'

	precision	recall	f1-score	support
0	0.92	0.57	0.70	29779
1	0.09	0.48	0.15	2676
	0.51	0 52	0.56	32455
9	0.51 0.86	0.52 0.56	0.43 0.66	32455 32455
	0 1 racy avg avg	0 0.92 1 0.09 racy avg 0.51	0 0.92 0.57 1 0.09 0.48 racy avg 0.51 0.52	0 0.92 0.57 0.70 1 0.09 0.48 0.15 racy 0.56 avg 0.51 0.52 0.43

SVM with class_weight = 'balanced'; grid search for optimal parameters Fitting 5 folds for each of 12 candidates, totalling 60 fits

Best Parameters: {'C': 0.1, 'class_weight': 'balanced', 'gamma': 'scale', 'kernel': 'rbf'}

Best Recall Score (CV average): 0.5474658901592778

support

Test Classification Report: precision

0.52 0.66 29779 0.92 0.09 0.53 0.15 2676 0.52 32455 accuracy 0.51 0.52 0.41 32455 macro ava weighted avg 0.86 0.52 0.62 32455

recall f1-score

SVM with class_weight =
'balanced'; grid search for
optimal parameters
on trimmed dataset

Classification Report: recall f1-score precision support 0.22 0.58 0.32 594 0.88 0.60 0.71 3064 0.60 3658 accuracy 3658 macro avq 0.55 0.59 0.51 0.77 weighted avg 0.60 0.65 3658

Model Selection

- Dummy (majority class) as baseline
- LR and RF F1 score improved by ~ 25%
- SVM still struggled to predict recalls

Conclusions:

- Random forest is our chosen model for its ability to predict recalls.
- Predicting recalls is difficult with current data especially due to imbalance.

Future Work

Predicting recall percentages in future months using a VAR (vector autoregression) model.

Variables used: recall percentage, numbers of outbreaks with 5 types of pathogens, recent seasonal average of recall percentage

Our current model only performs roughly as well as a baseline seasonal model.

Potential improvement:

Including more spatial information, climate reasons for recall, and by adding regularization.

