

Interligação de Redes

Instituto Superior de Engenharia de Lisboa

Departamento de Engenharia de Electrónica e Telecomunicações e de

Computadores

Redes de Computadores

Elementos de rede para inter-networking

Elementos de rede para interligação de redes

- Repetidores
- Bridges
- Switches
- Routers

Gateways

Interligação através de repetidores

- Funcionam ao nível Físico
 - Regeneração do sinal digital, permitindo níveis de potência de saída baixos em cada DTE.
- Não alteram a capacidade de tráfego da rede.
- Permitem interligar diferentes tipos de meios físicos (que tenham a mesma MAC).
- Aumentam a fiabilidade da rede.
 - Permite isolar possíveis falhas num segmento.
- Permitem aumentar a dimensão da rede.
- Encapsulados em HUBs

Repetidores - Domínios de colisão

Full-Duplex Repeater (Buffered Distributor)

Modo de funcionamento

- Pode receber várias tramas em simultâneo
 - Não há colisões (do ponto de vista das máquinas)
- Retransmite uma trama de cada vez para as restantes portas
 - Simula o broadcast num segmento de cabo

Características

- Tem buffers em todas as portas (entrada e saída)
 - O bus interno tem que serializar tramas recebidas
- Suporta portas a velocidades diferentes
- Suporta Full-Duplex com controlo de fluxo
- Delays de ordem das dezenas de μs
 (Apenas em Gigabit Ethernet Não é de uso comum)

Full-Duplex Repeaters: controlo de fluxo

Elementos de rede para interligação de redes

Repetidores

Bridges

Switches

Routers

Gateways

Aplicação Apresentação Gateways Sessão Transporte **↑**Routers Rede Bridges/Switches Ligação **↑**Repetidores Física

Interligação através de Bridges

- Apenas repetem tramas que se destinem a outro segmento
- Apenas repetem as tramas recebidas sem erros.
 - Recebem todas as tramas e verificam o FCS.
- Redes a interligar têm o mesmo tipo de endereçamento MAC.
 - Não fazem conversão de endereços
 - Podem efectuar algumas alterações nos campos das tramas.

Diagrama de blocos de uma bridge

Classificação de *Bridges*

- Transparent Bridges Spanning Tree
- Source Route Bridges
- Source Route Transparent Bridges
- Translational Bridges (entre MACs diferentes)
- Encapsulation Bridges Half Bridges
 - Tipos de bridges:
 - Simples: com apenas duas portas
 - **Multiport**: com mais que duas portas

Bridges transparentes

Características

- As estações não têm conhecimento da existência das bridges
 - Inicialização e configuração automática
 - Apendizagem e encaminhamento automático
- O nível MAC trabalha no modo promíscuo
 - Recebe e processa todas as tramas

Funções

- Aprendizagens de endereços
- Forwarding / Filtering
- Eliminação de ciclos na rede

Segmentação de redes através de *Bridges*

Aprendizagem das tabelas de encaminhamento

Interligação através de *Bridges*: vantagens

- Aumento do número de estações que se podem ligar à mesma rede local.
- Aumento da distância em que uma rede local se pode estender
- Divide a rede em sub-redes menores (segmentação).
 - Aumenta a fiabilidade devido ao isolamento dos segmentos
 - Aumenta a capacidade devido à filtragem
- Fazem a interligação ao nível MAC mais eficiente
- Interligar redes com camadas MAC diferentes
 - implica alteração das tramas.
- Facilita a tarefa da gestão de rede

Bridging - Domínios de colisão

Interligação através de Bridges: desvantagens

- Aumento do tempo de comunicação entre estações
 - As bridges são Store and Forward
 - Verificam a integridade da trama (FCS)
- Bridging entre MACs diferentes
 - O conteúdo das tramas tem que ser alterado
 - Formatação da nova trama e cálculo de um novo FCS
- Não existe controlo de fluxo
 - Uma bridge congestionada perde tramas

Elementos de rede para interligação de redes

- Repetidores
- Bridges
- Switches
- Routers

Gateways

Switches

- Pode receber várias tramas em simultâneo
 - Dispõe de buffers nas portas
 - Não há colisões (do ponto de vista das máquinas)
- Faz aprendizagem e filtragem de tramas baseadas no endereços MAC (bridging)
 - Retransmite apenas para a porta da máquina destino ou para todas quando não conhece a localização da máquina destino
- Pode retransmitir várias tramas em simultâneo
 - Serializa tramas para a mesma porta de destino

Características dos Switches

- Suporta portas a velocidades e modos diferentes simultaneam.
 - Suporta Full-Duplex com controlo de fluxo
- Pode ou n\u00e3o implementar o alg. Spaning tree
 - Pode n\u00e3o suportar caminhos redundantes na rede
- Propaga Broadcasts (e Multicasts*) para todas as portas (excepto a orig.)
- Modos de comutação
 - Store and Forward, Cut-through, Modified Cut-through
- Arquitecturas Internas
 - Topologia em bus ou matriz

Modo de comutação (retransmissão)

- Cut-through
- Modified Cut-through
 - garante que não houve colisão na trama
- Store and Forward
 - garante que não houve erros nem colisão na trama

Switches: arquitectura interna

Topologia

- Bus
 - Tem que serializar tramas recebidas
- Matriz de comutação
 - Múltiplos caminhos de ligação entrada-saída

Capacidade

- Bloqueante (*Blocking*)
 - Capacidade de comutação inferior à soma das capacidades das portas
 - (arquitecturas obsoletas)
- Não bloqueante (Non-blocking)
 - Capacidade de comutação superior à soma das capacidades das portas
 - (arquitecturas actuais)

Switches: arquitectura interna

Modo de funcionamento: Processo de encaminhamento

FDB

Endereço	Porta	Tempo

SA - Endereço Origem

DA - Endereço Destino

Aprendizagem da topologia da rede

- A tabela de envio (forwarding) é inicializada apagando todas as entradas da tabela.
- Quando uma trama é detectada na porta de uma bridge, esta actualiza a tabela desse porto com o endereço de origem.
- Essa trama será enviada para todos os portos (ainda não se conhece a localização do terminal com o endereço de destino).
- O terminal n\u00e3o pode mudar de segmento de rede.

Modo de funcionamento: Processo de aprendizagem

FDB

Endereço	Porta	Tempo

SA - Endereço Origem

DA - Endereço Destino

Interligações de redes com switches

- Isolamento dos domínios de colisão
- Não isola domínios de difusão

Diferenças entre *Bridges* e *Switches*

Bridges	Switches
• A tarefa de comutar tramas entre redes é feita por software.	A tarefa de comutar tramas entre redes é feita por hardware.
 Comuta uma trama de cada vez. Interligam redes com formatos de trama diferentes. 	 Estabelece uma ligação virtual interna entre os portos a interligar. Comuta várias tramas simultaneamente.

Elementos de rede para interligação de redes

- Repetidores
- Bridges
- Switches
- Routers
- Gateways

Interligação através de Routers

Características

- Tomam decisões com os dados da camada rede (Nível 3)
- Semelhantes às bridges no modo de funcionamento
- O tipo de redes interligadas poderá variar
 - Existe conversão de endereços
- Aumentam a capacidade total da rede

Desvantagens

- Exigem maior capacidade de processamento (nível 3)
- Introduzem maior atraso aos dados

Elementos de rede para interligação de redes

- Repetidores
- Bridges
- Switches
- Routers

Gateways

Interligação através de Gateways

Características

- Actuam baseados nos dados da camada de transporte e superiores
- Podem converter protocolos na íntegra, sem perca de informação durante o processo

Interligação através de Gateways

Endereço destino

 Permissão ou interdição da passagem de tramas provenientes de determinadas estações.

Endereço de origem

Permissão ou interdição da passagem de tramas destinadas a determinadas estações.

Tipo de protocolo

 Permissão ou interdição da passagem de tramas pertencentes a determinado tipo de protocolo.

Broadcast

Permissão ou interdição da passagem de tramas de broadcast.

Multicast

Permissão ou interdição da passagem de tramas de multicast.

Sumário & bibliografia

Sumário

- Interligação de redes
 - Nível 1: Repetidores (Hubs)
 - Nível 2: Bridges e Switches
 - Nível 3: Routers
 - Nível 4-7: Gateways

Bibliografia

Jim Kurose, Keith Ross, "Computer Networking: A Top Down Approach," Addison-Wesley, July 2007.