МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра «Измерительно-вычислительные комплексы»

«Методы искусственного интеллекта»
Исследование инструментов классификации библиотеки Scikit-learn
Отчёт по лабораторной работе №5
Вариант №12

Выполнила:

студентка группы ИСТбд-42

Кучина Анна

Проверил:

доцент кафедры ИВК, к.т.н.

Шишкин В. В.

Задание на лабораторную работу:

- 1. Ознакомиться с классификаторами библиотеки Scikit-learn
- 2. Выбрать для исследования не менее 3 классификаторов
- 3. Выбрать набор данных для задач классификации из открытых источников
- 4. Выбор классификаторов и набора данных утвердить у преподавателя (не должно быть полного совпадения с выбором другого студента)
- 5. Для каждого классификатора определить целевой столбец и набор признаков. Обосновать свой выбор. При необходимости преобразовать типы признаковых данных.
- 6. Подготовить данные к обучению.
- 7. Провести обучение и оценку моделей на сырых данных.
- 8. Провести предобработку данных.
- 9. Провести обучение и оценку моделей на очищенных данных.
- 10. Проанализировать результаты.
- 11. Результаты анализа представить в табличной и графической форме.
- 12. Сформулировать выводы.
- 13. Оформить отчет по л/р.
- 14. Защитить результаты работы.

Выполнение работы:

- 1. Для исследования были выбраны следующие классификаторы:
 - а. К ближайших соседей (knn)
 - b. Наивный Байесовский классификатор (GaussianNB)
 - с. Случайный лес (Random Forest)
- 2. Для обучения модели был выбран набор данных со следующими столбцами:

Absolute Temperature (in K) – абсолютная температура в Кельвинах

Relative Luminosity (L/Lo) – относительная светимость

Relative Radius (R/Ro) – относительный радиус

Absolute Magnitude (Mv) – абсолютная величина

Spectral Class (O,B,A,F,G,K,,M) – спектральный класс

Star Type **(Красный карлик = 0, Коричневый карлик = 1, Белый карлик = <math>

2, Главная последовательность = 3, Гигант = 4, Сверхгигант = 5)**

 $Lo = 3.828 \times 10^2 6 \text{ Watts (Avg Luminosity of Sun)}$

 $Ro = 6.9551 \times 10^8 \text{ m}$ (Avg Radius of Sun)

В датасете 240 строк

https://www.kaggle.com/datasets/deepu1109/star-dataset?resource=download

3. За целевой столбец для каждого классификатора был выбран Тип звезды (Star Type), поскольку создателем набора данных он подразумевался как выходной. К тому же все прочие столбцы представляют собой критерии для определения типа звезды и ее положение на диаграмме Герцшпрунга-Рассела. Как правило, тип звезды определяется по ее температуре, размеру и светимости. Однако после проведения анализа критериев с помощью алгоритма случайного леса был сделан вывод о том, что наиболее значимыми критериями являются радиус и абсолютная величина звезды

4. При подготовке данных к обучению было выявлено, что данный набор данных не имеет пустых значений, а значит, не нуждается в дополнительной очистке:

RangeIndex: 240 entries, 0 to 239					
Data	Data columns (total 5 columns):				
#	Column	Non-Null Count	Dtype		
0	Temperature (K)	240 non-null	int64		
1	Luminosity(L/Lo)	240 non-null	float64		
2	Radius(R/Ro)	240 non-null	float64		
3	Absolute magnitude(Mv)	240 non-null	float64		
4	Spectral Class	240 non-null	int64		

Однако для работы с алгоритмами библиотеки sklearn данные столбца Спектральный класс были переведены в эквивалентные числовые значения от 0 до 6:

$$O = 0$$
, $B = 1$, $A = 2$, $F = 3$, $G = 4$, $K = 5$, $N = 6$

Всего в тестовой выборке 96 элементов для классификации

5. Результат работы модели, обученной на трех классификаторах:

К ближайших соседей					
рі	recision	recall	f1-score	support	
0	1.00	1.00	1.00	14	
1	0.79	0.69	0.73	16	
2	0.76	0.84	0.80	19	
3	0.83	0.88	0.86	17	
4	0.62	0.68	0.65	19	
5	0.50	0.36	0.42	11	
accuracy			0.76	96	
macro avg	0.75	0.74	0.74	96	
weighted avg	0.75	0.76	0.76	96	

Точность алгоритма - 76%

Наивный Байес	овский клас	сификатор		
	precision	recall	f1-score	support
0	0.88	1.00	0.93	14
1	0.42	0.94	0.58	16
2	0.00	0.00	0.00	19
3	0.93	0.82	0.87	17
4	1.00	0.95	0.97	19
5	1.00	1.00	1.00	11
accuracy			0.75	96
macro avg	0.70	0.78	0.73	96
weighted avg	0.67	0.75	0.69	96

Точность алгоритма — 75%

Случайныі	й лес				
		precision	recall	f1-score	support
		1.00	1.00	1.00	14
	1	1.00	1.00	1.00	16
	2	1.00	1.00	1.00	19
	3	1.00	1.00	1.00	17
		1.00	1.00	1.00	19
		1.00	1.00	1.00	11
accui	racy			1.00	96
macro	avg	1.00	1.00	1.00	96
weighted	avg	1.00	1.00	1.00	96

Точность алгоритма – 100%

6. При анализе полученных данных были получены следующие оценки точности

Вывод по работе: В ходе работы были изучены три классификатора библиотеки sklearn. На выбранном наборе данных точнее всего был алгоритм классификации Случайный лес. Наименьшей точностью обладает Наивный Байесовский классификатор.