

Implementando **eXtreme Programming em Java**

Integração contínua e testes de unidade

www.argonavis.com.br

Objetivos

- Apresentar ferramentas open source que ajudam a implementar práticas recomendadas pela metodologia eXtreme Programming (XP) em projetos Java
 - Integração contínua
 - Testes de unidade
 - Testes de integração
- Apesar do título desta palestra, as ferramentas (e técnicas) apresentadas não são exclusividade de projetos XP
 - As práticas estimuladas pelas ferramentas e técnicas ajudam a melhorar a qualidade de qualquer projeto Java

O que você precisa saber

- Esta é uma palestra técnico destinado a desenvolvedores Java
 - Durante a apresentação serão mostrados trechos de código Java e XML
- Para tirar o maior proveito das informações apresentadas (e entender os benefícios que podem trazer), é desejável que você tenha
 - Experiência com desenvolvimento em Java (você deve estar familiarizado com a estrutura de código Java)
 - Conhecimento elementar de XML
 - Noções mínimas de J2EE (componentes de um EJB e de uma aplicação Web com servlets e JSP)

12 práticas fundamentais do XP

- Jogo do planejamento
- Refinamento do design
- Ritmo saudável
- Design simples
- Testes
- Integração contínua
- Programação em duplas
- Participação do cliente
- Lançamentos pequenos
- Posse coletiva
- Metáfora
- Padrões de codificação

práticas indiretamente estimuladas

Definições

- O que são testes automáticos?
 - São programas que avaliam se outro programa funciona como esperado e retornam resposta tipo "sim" ou "não"
 - Ex: um main() que cria um objeto de uma classe testada, chama seus métodos e avalia os resultados
 - Validam os requisitos de um sistema
- O que é integração?
 - Montagem de todo o sistema (compilação, ligação com dependências, configuração, empacotamento, testes)
 - Integração deve resultar em uma versão funcional
 - Mesmo que todas as unidades estejam funcionando, integração pode falhar: é preciso testar a integração!
 - + complicada quando código é desenvolvido em equipe

Por que testar?

- Por que não?
 - Como saber se o recurso funciona sem testar?
 - Como saber se ainda funciona após refatoramento?
- Testes dão maior segurança: coragem para mudar
 - Que adianta a OO isolar a interface da implementação se programador tem medo de mudar a implementação?
 - Código testado é mais confiável
 - Código testado pode ser alterado sem medo
- Como saber quando o projeto está pronto
 - Testes == requisitos 'executáveis'
 - Testes de unidade devem ser executados o tempo todo
 - Escreva os testes antes. Quando todos rodarem 100%, o projeto está concluído!

Por que integrar continuamente?

- "Reduz o tempo passado no inferno da integração" [8]
 - Quanto mais tempo durarem os bugs de integração, mais dificeis são de eliminar
- Integração contínua expõe o estado atual do desenvolvimento permanentemente
 - Permite avaliar e reavaliar prazos
 - Permite encontrar problemas de design rapidamente
 - Permite executar testes funcionais e de aceitação a qualquer momento
 - Estimula pequenos lançamentos e design simples
- Quando integrar?
 - Pelo menos uma vez por dia (sistemas grandes) ou +

Como implementar integração contínua?

- É possível usando ferramentas de código-fonte aberto
 - CVS, Ant, JUnit e extensões para essas ferramentas
 - São ferramentas estáveis, de qualidade e largamente utilizadas (inclusive em grandes projetos)
 - Cumprem os requisitos mínimos necessários para viabilizar a integração contínua
- Segundo Fowler [8] os requisitos essenciais para implementar a integração contínua são
 - 1. Ter um único lugar de onde possam ser obtidas as fontes mais recentes
 - 2. Ter um único comando para montar a aplicação a partir das fontes do repositório
 - 3. Ter um único comando para rodar todos os testes

Roteiro desta palestra

Parte 1: automação de testes de unidade

- JUnit
- Extensões do JUnit: DBUnit, J2EEUnit, Mock Objects
- Testes de performance: JUnitPerf e JMeter

Parte 2: automação do processo de construção (build)

Jakarta Ant

Parte 3: automação de testes em aplicações Web

Jakarta Cactus e HttpUnit

Parte 4: automação da integração contínua

- Controle de versões: CVS
- Comparação de ferramentas: CruiseControl, AntHill e Jakarta Gump

Código-fonte de demonstrações está disponível para download!

parte 1

JU

Automação de Testes de Unidade com JUnit e extensões

www.junit.org

JUnit: o que é?

- JUnit é um framework que facilita o desenvolvimento e execução de testes de unidade em código Java
 - Uma API para construir os testes
 - Aplicações para executar testes
- A API
 - Classes Test, TestCase, TestSuite, etc. oferecem a infraestrutura necessária para criar os testes
 - Métodos assertTrue(), assertEquals(), fail(), etc. são usados para testar os resultados
- Aplicação TestRunner
 - Roda testes individuais e suites de testes
 - Versões texto, Swing e AWT.

Para que serve?

- 'Padrão' para testes de unidade em Java
 - Desenvolvido por Kent Beck (o guru do XP) e Erich
 Gamma (o G do GoF "Design Patterns")
- Testar é bom mas é chato; JUnit torna as coisas mais agradáveis, facilitando
 - A criação e execução automática de testes
 - A apresentação dos resultados
- JUnit pode verificar se cada método de uma classe funciona da forma esperada
 - Permite agrupar e rodar vários testes ao mesmo tempo
 - Na falha, mostra a causa em cada teste
- Serve de base para extensões

Como usar?

- Crie uma classe que estenda junit.framework.TestCase import junit.framework.*; class SuaClasseTest extends TestCase {...}
- Para cada método xxx(args) a ser testado defina um método public void testXxx() no test case
 - SuaClasse:
 - public boolean equals(Object o) { ... }
 - SuaClasseTest:
 - public void testEquals() {...}
- Sobreponha o método setUp(), se necessário
 - inicialização comum a todos os métodos.
- Sobreponha o método tearDown(), se necessário
 - para liberar recursos como streams, apagar arquivos, etc.

Como usar (2)

- Use testXXX() para testar seu método xxx().
- Utilize os métodos de TestCase
 - assertEquals(objetoEsperado, objetoRecebido),
 - assertTrue(valorBooleano), assertNotNull(objeto)
 - assertSame(objetoUm, objetoDois), fail (), ...
- Exemplo:

Como funciona?

- O TestRunner recebe uma subclasse de junit.framework.TestCase
 - Usa reflection para descobrir seus métodos
- Para cada método testXXX(), executa:
 - I. o método setUp()
 - 2. o próprio método testXXX()
 - 3. o método tearDown()
- O test case é instanciado para executar um método testXXX() de cada vez.
 - As alterações que ele fizer ao estado do objeto não afetarão os demais testes
- Método pode terminar, falhar ou provocar exceção

Exemplo: uma classe

```
package junitdemo;
import java.io.*;
public class TextUtils {
  public static String removeWhiteSpaces(String text)
                                           throws IOException {
    StringReader reader = new StringReader(text);
    StringBuffer buffer = new StringBuffer(text.length());
    int c;
    while( (c = reader.read()) != -1) {
      if (c ==' '||c =='\n'||c =='\r'|| c =='\f'||c =='\t') {
         ; /* do nothing */
      } else {
         buffer.append((char)c);
    return buffer.toString();
                                                      veja demonstração
                                                       junitdemo.zip
```


Exemplo: um test case para a classe

```
Construtor precisa ser
package junitdemo;
                                                publico, receber String
import junit.framework.*;
                                                name e chamar
import java.io.IOException;
                                                super(String name) *
public class TextUtilsTest extends TestCase {
    public TextUtilsTest(String name)
        super(name);
                                              Método começa com "test"
                                                e é sempre public void
    public void testRemoveWhiteSpaces() throws IOException {
        String testString = "one, ( two | three+) ,
                              "(((four+ |\t five)?\n \n,
                                                             six?";
        String expectedString = "one, (two|three+)"+
                                  ",(((four+|five)?,six?";
        String results = TextUtils.removeWhiteSpaces(testString);
        assertEquals(expectedString, results);
```


Exemplo: como executar

- Use a interface de texto
 - java -cp junit.jar junit.textui.TestRunner junitdemo.TextUtilsTest

veja demonstração junitdemo.zip

- Ou use a interface gráfica
 - java -cþ junit.jar junit.swingui.TestRunner

junitdemo.TextUtilsTest

- Use Ant <junit>
 - tarefa do Apache Ant
- Ou forneça um main():

```
public static void main (String[] args) {
    TestSuite suite =
        new TestSuite(TextUtilsTest.class);
    junit.textui.TestRunner.run(suite);
}
```


TestSuite

- Permite executar uma coleção de testes
 - Método addTest(TestSuite) adiciona um teste na lista
- Padrão de codificação (usando reflection):

return testSuite;

```
retornar um TestSuite em cada test-case:
public static TestSuite suite() {
   return new TestSuite(SuaClasseTest.class);
```

criar uma classe AllTests que combina as suites:

veja demonstração

Fixtures

- São os dados reutilizados por vários testes
 - Inicializados no setUp() e destruídos no tearDown() (se necessário)

```
public class AttributeEnumerationTest extends TestCase {
   String testString;
   String[] testArray;
   AttributeEnumeration testEnum;
   public void setUp() {
        testString = "(alpha|beta|gamma)";
        testArray = new String[]{"alpha", "beta", "gamma"};
        testEnum = new AttributeEnumeration(testArray);
   }
   public void testGetNames() {
        assertEquals(testEnum.getNames(), testArray);
   }
   public void testToString() {
        assertEquals(testEnum.toString(), testString);
   }
} (...)
```

- Extensão JXUnit (jxunit.sourceforge.net) permite manter dados de teste em arquivo XML (*.jxu) separado do código
 - Mais flexibilidade. Permite escrever testes mais rigorosos, com muitos dados

veja exemplo

Teste situações de falha

- É tão importante testar o cenário de falha do seu codigo quanto o sucesso
- Método fail() provoca uma falha
 - Use para verificar se exceções ocorrem quando se espera que elas ocorram
- Exemplo

```
public void testEntityNotFoundException() {
    resetEntityTable(); // no entities to resolve!
    try {
        // Following method call must cause exception!
        ParameterEntityTag tag = parser.resolveEntity("bogus");
        fail("Should have caused EntityNotFoundException!");
    } catch (EntityNotFoundException e) {
        // success: exception occurred as expected
    }
}
```


Limitações do JUnit

- Acesso aos dados de métodos sob teste
 - Métodos private e variáveis locais não podem ser testadas com JUnit.
 - Dados devem ser pelo menos package-private (friendly)
- Soluções com refatoramento
 - Isolar em métodos private apenas código inquebrável
 - Transformar métodos private em package-private
 - Desvantagem: quebra ou redução do encapsulamento
 - Classes de teste devem estar no mesmo pacote que as classes testadas para ter acesso
- Solução usando extensão do JUnit
 - JUnitX: usa reflection para ter acesso a dados private
 - http://www.extreme-java.de/junitx/index.html veja exemplo

Boas práticas: metodologia "test-first"

- Testes geralmente ...
 - ... são mais simples que código a ser testado
 - ... refletem com clareza o que se espera do código,
 - portanto, devem ser escritos antes do código!
- Testes definem com precisão o que precisa ser feito
 - Estabelece uma meta clara para cada unidade de código
 - Evita que se perca tempo desenvolvendo o que é desnecessário
- Desenvolvimento usando metodologia "test-first"
 - I. Escreva o esqueleto da sua classe (métodos vazios)
 - 2. Escreva a sua classe de teste e implemente todos os testes (um para cada método ou condição importante)
 - 3. Rode os testes. Todos os testes devem falhar
 - 4. Implemente uma unidade de código e rode os testes
- Quando todos os testes rodarem com sucesso a sua classe está pronta!

DFJUG Como lidar com testes difíceis

- Testes devem ser simples e suficientes
 - XP: design mais simples que resolva o problema;
 sempre pode-se escrever novos testes, quando necessário
- Não complique
 - Não teste o que é responsabilidade de outra classe/método
 - Assuma que outras classes e métodos funcionam
- Testes difíceis (ou que parecem difíceis)
 - Aplicações gráficas: eventos, layouts, threads
 - Objetos inaccessíveis, métodos privativos, Singletons
 - Objetos que dependem de outros objetos
 - Objetos cujo estado varia devido a fatores imprevisíveis
- Soluções
 - Alterar o design da aplicação para facilitar os testes
 - Simular dependências usando proxies e stubs

DFJUG Dependências de servidores

- Usar stubs para simular serviços
 - É preciso implementar classes que devolvam as respostas esperadas para diversas situações
 - Complexidade pode não compensar investimento
 - Use soluções open-source prontas!
 - **DBUnit**: extensão do JUnit para testar aplicações JDBC http://dbunit.sourceforge.net veja exemplo dbunitdemo.zip dbunitdemo.zip veja exemplo dbunitdemo.zip veja exemplo dbunitdemo.zip dbunitdemo.zip dbunitdemo.zip veja exemplo dbunitdemo.zip dbunitdemo.zip veja exemplo dbunitdemo.zip dbun
 - JUnitEE: extensão do JUnit para testar aplicações J2EE
 e http://junitee.sourceforge.net

 veja exemplo juniteedemo.zip
- Usar proxies (mediadores) para serviços reais
 - Testa a integração real do componente com seu ambiente
 - Solução open-source:
 - Cactus: testa integração com servlet containers

Mudança de paradigma

- Às vezes testes são difíceis por causa de limitações do próprio paradigma orientado a objetos
 - Encapsulamento: impede acesso além da interface
 - Herança e polimorfismo podem ser insuficientes para modelar eficientemente condição de teste mais abrangente
- Soluções:
 - Design patterns + programação genérica (reflection)
 - Extensões ao paradigma OO: Aspect-Oriented, Subject-Oriented ou Adaptative programming
- Aspect] estende Java com recursos "Aspect-Oriented"
 - Linguagem onde se pode representar requisitos como
 "aspectos" que envolvem classes/métodos não-relacionados
 - Simplifica criação de testes que envolvem várias classes

Testes de interface

- Caso específico: resposta de servidores Web
 - Verificar se uma página HTML ou XML contém determinado texto ou determinado elemento
 - Verificar se resposta está de acordo com dados passados na requisição: testes funcionais tipo "caixa-preta"
- Soluções (extensões do |Unit)
 - HttpUnit e ServletUnit:
 - permite testar dados de árvore DOM HTML gerada
 - IXWeb (combinação do JXUnit com HttpUnit)
 - permite especificar os dados de teste em arquivos XML
 - arquivos de teste Java são gerados a partir do XML
 - XMLUnit

extensão simples para testar árvores XML

xmlunitdemo.zip

veja exemplo

Onde encontrar: (httpunit | jxunit | xmlunit).sourceforge.net

Testes de performance

- JUnitPerf (www.clarkware.com)
 - Coleção de decoradores para medir performance e escalabilidade em testes JUnit existentes
- TimedTest
 - Executa um teste e mede o tempo transcorrido
 - Define um tempo máximo para a execução. Teste falha se execução durar mais que o tempo estabelecido
- LoadTest
 - Executa um teste com uma carga simulada
 - Utiliza timers para distribuir as cargas usando distribuições randômicas
 - Combinado com TimerTest para medir tempo com carga
- ThreadedTest

Executa o teste em um thread separado

veja demonstração

junitperfdemo.zip

Testes: conclusões

- É possível desenvolver software de qualidade com um investimento mínimo em ferramentas
 - Há ótimas opções de ferramentas open-source
 - Ferramentas tornam mais fácil a adoção de práticas como "testfirst" e "refactoring" que aumentam a qualidade do software
- JUnit é muito simples, é de graça, mas vale muito!
 - "Never in the field of software development was so much owed by so many to so few lines of code" Martin Fowler, sobre o JUnit
 - Principais ferramentas comerciais incluem o JUnit: Together
 Control Center, Sun Forté for Java, IBM Websphere Studio, etc.
- Vale a pena investir tempo para desenvolver e aperfeiçoar a prática constante de escrever testes com o JUnit
 - mais produtividade, maior integração de equipes
 - produtos de melhor qualidade, com prazo previsível
 - menos stress, mais organização

Implementando XP em Java

parte 2

Construção de aplicações com Apache Ant

http://ant.apache.org

Ant: o que é?

- Ferramenta para construção de aplicações
 - Implementada em Java
 - Baseada em roteiros XML
 - Extensível (via scripts ou classes)
 - 'padrão' do mercado
 - Open Source (Grupo Apache, Projeto Jakarta)
- Semelhante a make, porém
 - Mais simples e estruturada (XML)
 - Mais adequada a tarefas comuns em projetos Java
 - Independente de plataforma

Para que serve?

- Para montar praticamente qualquer aplicação Java que consista de mais que meia dúzia de classes;
 Aplicações
 - distribuídas em pacotes
 - que requerem a definição de classpaths locais, e precisam vincular código a bibliotecas (JARs)
 - cuja criação/instalação depende de mais que uma simples chamada ao javac. Ex: RMI, CORBA, EJB, servlets, JSP,...
- Para automatizar processos frequentes
 - Javadoc, XSLT, implantação de serviços Web e J2EE (deployment), CVS, criação de JARs, testes, FTP, email

Como funciona?

- Ant executa roteiros escritos em XML: 'buildfiles'
- Cada projeto do Ant possui um buildfile
 - subprojetos podem ter, opcionalmente, buildfiles adicionais chamados durante a execução do primeiro
- Cada projeto possui uma coleção de alvos
- Cada alvo consiste de uma seqüência de tarefas
- Exemplos de execução
 - ▶ ant
 - procura build.xml no diretório atual e roda alvo default
 - ▶ ant -buildfile outro.xml
 - executa alvo default de arquivo outro.xml
 - ▶ ant compilar
 - roda alvo 'compilar' e possíveis dependências em build.xml

Como funciona (2)

Buildfile

- O buildfile é um arquivo XML: build.xml (default)
- Principais elementos

```
ct default="alvo_default">
```

Elemento raiz (obrigatório): define o projeto.

```
<target name="nome_do_alvo">
```

- Coleção de tarefas a serem executadas em seqüência
- Deve haver pelo menos um <target>

```
roperty name="nome" value="valor">
```

- pares nome/valor usados em atributos dos elementos do build.xml da forma \$ {nome}
- propriedades também podem ser definidas em linha de comando (-Dnome=valor) ou lidas de arquivos externos (atributo file)
- tarefas (mais de 130) dentro dos alvos.

Buildfile (2)

```
<?xml version="1.0" encoding="iso-8859-1" ?>,
                                            Propriedades
    <!-- Compila diversos arquivos .java -->
    ct default="compile" basedir=".">
      cproperty name="src.dir" value="${basedir}/src" />
      <target name="init">
      ▼ <echo> Criando diretório </echo>
      _<mkdir dir="${build.dir}" />
                                              Alvos
      </target>
      <target name="compile" depends="init"</pre>
             description="Compile os arquivos-fonte">
       ><javac srcdir="${src.dir}" destdir="${build.dir}">
         <classpath>
           <pathelement location="${build.dir}" />
Tarefas
        </classpath>
        </javac>
      </target>
    </project>
```


Exemplo

Executando buildfile da página anterior

```
C:\usr\palestra\antdemo> ant
Buildfile: build.xml
init:
            Criando diretório
    [echo]
    [mkdir] Created dir:
    C:\usr\palestra\antdemo\build
compile:
    [javac] Compiling 2 source files to
    C:\usr\palestra\antdemo\build
BUILD SUCCESSFUL
Total time: 4 seconds
C:\usr\palestra\antdemo>
```

build.xml src argonavis util Tiracentos.java TiracentosTest.java build.xml src argonavis util Tiracentos.java TiracentosTest.java build argonavis util Tiracentos.class TiracentosTest.class

veja demonstração

antdemo.zip

DFJUG O que se pode fazer com Ant?

- Compilar.
 - <javac>, <csc>
- Gerar documentação

- Gerar código (XDoclet)<ejbdoclet>, <webdoclet>
- Executar programas<java>, <apply>, <exec><ant>, <sql>
- Empacotar e comprimir <jar>, <zip>, <tar>,

```
<war>, <ear>, <cab>
```

Expandir, copiar, instalar

```
<copy>, <delete>, <mkdir>, <unjar>, <unwar>, <unzip>
```

Acesso remoto

```
<ftp>, <telnet>, <cvs>, <mail>, <mimemail>
```

Montar componentes

```
<ejbc>, <ejb-jar>, <rmic>
```

- Testar unidades de código <junit>
- Criar novas tarefas<taskdef>
- Executar roteiros e sons <script>, <sound>

<ejbdoclet> e <webdoclet>: Geram código

- Requer JAR de xdoclet.sourceforge.net
- Ideal para geração automática de arquivos de configuração (web.xml, ejb-jar.xml, application.xml, taglibs, struts-config, etc.) e código-fonte (beans, value-objects)

```
<ejbdoclet sourcepath="src" destdir="${build.dir}"</pre>
            classpathref="xdoclet.path" ejbspec="2.0">
   <fileset dir="src">
      <include name="**/*Bean.java" />
                                                   XDoclet faz muito
   </fileset>
                                                     mais que isto!
   <remoteinterface/>
   <homeinterface/>
   <utilobject/>
                                 Detalhes da configuração do componente
   <entitypk/>
                                 estão em arquivos de template externos
   <entitycmp/>
   <deploymentdescriptor destdir="${dd.dir}"/>
   <jboss datasource="java:/OracleDS" />
</ejbdoclet>
```


Ant + JUnit

- Viabiliza a integração contínua:
 - Pode-se executar todos os testes após a integração com um único comando:
 - ant roda-testes
- Com as tarefas <junit> e <junitreport> é possível
 - executar todos os testes
 - gerar um relatório simples ou detalhado, em diversos formatos (XML, HTML, etc.)
 - executar testes de integração
- São tarefas opcionais. É preciso ter no \$ANT_HOME/lib
 - optional.jar (distribuído com Ant)
 - junit.jar (distribuído com JUnit)

<junitreport>

gerados por

59,100

43.070

7.910

8.120

My Computer

argonavis.dtd.parsers

argonavis.dtd.tagdata

ontentModelPars -

 Gera um relatório detalhado (estilo JavaDoc) de todos os testes, sucessos, falhas, exceções, tempo, ...

```
<target name="test-report" depends="batchtest" >
   <junitreport todir="${test.report.dir}">
       <fileset dir="${test.report.dir}">
                                                                                            Usa arquivos XML
             <include name="TEST-*.xml" />
       </fileset>
                                                                                               <formatter>
       <report todir="${test.report.dir}/html"</pre>
                       format="frames" /> Junit Test Results. - Microsoft Internet Explorer fornecido por UOL
                                                            File Edit View Favorite >> ← → → ✓ 🙆 🚳 🔐 >> Address 😂 C:\usr\projects\dtdreader 🔻 🗞 Go
   </junitreport>
                                                            Links 🏀 E-mail 🧶 java.sun.com 🥥 JavaWorld 🍪 BancoDoBrasil 🥥 BIOS Inquiry Form 🥥 Java Pro Magazine
</target>
                                                                        Unit Test Results
                                                             Packages
                                                             argonavis.dtd
                                                                                               Designed for use with JUnit and Ant.
                                                                        Summary
          veja demonstração
                                                                              Failures
                                                             Classes
                                                                                            96.72%
           junitdemo.zip
                                                                        Note: failures are anticipated and checked for with assertions while errors are
                                                                        Packages
                                                                                            Tests Errors Failures Time(s)
                   veja demonstração
                                                                         argonavis.dtd
```

dtdreader.zip

Ant programável

scriptdemo.zip

- Há duas formas de estender o Ant com novas funções
 - Implementar roteiros usando JavaScript
 - Criar novas tarefas reutilizáveis
- A tarefa <script> permite embutir JavaScript em um buildfile. Pode-se
 - realizar operações aritméticas e booleanas
 - utilizar estruturas como if/else, for, foreach e while
 - manipular com os elementos do buildfile usando DOM
- A tarefa <taskdef> permite definir novas tarefas
 - tarefa deve ser implementada em Java e estender Task
 - método execute() contém código de ação da tarefa
 - cada atributo corresponde a um método setXXX()

veja exemplos
foptask.zip

veja demonstração
taskdemo.zip

Integração com outras aplicações

- Ant provoca vários eventos que podem ser capturados por outras aplicações
 - Útil para implementar integração, enviar notificações por email, gravar logs, etc.
- Eventos
 - Build iniciou/terminou
 - Alvo iniciou/terminou
 - Tarefa iniciou/terminou
 - Mensagens logadas
- Vários listeners e loggers pré-definidos
 - Pode-se usar ou estender classe existente.
 - Para gravar processo (build) em XML:
 ant -listener org.apache.tools.ant.XmlLogger

Integração com editores e IDEs

- Produtos que integram com Ant e oferecem interface gráfica e eventos para buildfiles:
 - Antidote: GUI para Ant (do projeto Jakarta)
 - http://cvs.apache.org/viewcvs/jakarta-ant-antidote/
 - JBuilder (AntRunner plug-in)
 - http://www.dieter-bogdoll.de/java/AntRunner/
 - NetBeans e Forté for Java
 - http://ant.netbeans.org/
 - Visual Age for Java (integração direta)
 - JEdit (AntFarm plug-in)
 - http://www.jedit.org
 - Jext (AntWork plug-in)
 - ftp://jext.sourceforge.net/pub/jext/plugins/AntWork.zip

Ant: conclusões

- Vale a pena aprender e ganhar experiência com o Ant
 - É bom, é de graça e todo mundo usa!
 - Facilita a compilação, depuração, execução, montagem, instalação, documentação e utilização de qualquer aplicação Java
 - Faz ainda transformação XSLT, geração de código e qualquer outra tarefa que o programador desejar
 - Você pode integrá-lo em sua aplicação. O código é aberto!
 - É mais fácil que make. É melhor que usar arquivos .bat e .sh
 - É independente de IDE e plataforma
- Use Ant mesmo que seu IDE já possua um "build"
 - Ant oferece muito mais recursos que qualquer comando "build" dos IDEs existentes hoje, é extensível e deixa seu projeto independente de um IDE específico
 - Os principais fabricantes de IDEs Java suportam Ant ou possuem plug-ins para integração com Ant

Implementando XP em Java

Testes em aplicações Web com Apache Cactus e HttpUnit

jakarta.apache.org/cactus/ httpunit.sourceforge.net

Cactus: o que é?

- É um framework que oferece facilidades para testar componentes J2EE
 - Componentes Web (Camada de Controle)
 - Camada EJB (Model) e cliente (View): indiretamente
- Produto Open Source do projeto Jakarta
 - Metas de curto prazo: testar componentes acima + EJB
 - Metas de longo prazo: oferecer facilidades para testar todos os componentes J2EE; ser o framework de referência para testes in-container.
- Cactus estende o JUnit framework
 - Execução dos testes é realizada de forma idêntica
 - TestCases são construídos sobre uma subclasse de junit.framework.TestCase

Para que serve?

Para testar aplicações que utilizam componentes J2EE

Arquitetura MVC

Servlets, filtros e custom tags (Controladores) -

- JSPs (camada de apresentação: View, através de controladores)
- EJB (Modelo de dados/ lógica de negócios)

- Cactus testa a integração desses componentes com seus containers
 - não usa stubs usa o próprio container como servidor e usa JUnit como cliente
 - comunicação é intermediada por um proxy

Como funciona?

- Cactus utiliza os test cases simultaneamente no cliente e no servidor: duas cópias
 - Uma cópia é instanciada pelo servlet container
 - Outra cópia é instanciada pelo JUnit
- Comunicação com o servlet container é feita através de um proxy (XXXRedirector)
 - JUnit envia requisições via HTTP para proxy
 - Proxy devolve resultado via HTTP e JUnit os mostra
- Há, atualmente (Cactus 1.3) três tipos de proxies:
 - ServletRedirector: para testar servlets
 - JSPRedirector: para testar JSP custom tags
 - FilterRedirector: para testar filtros de servlets

Arquitetura

 Parte da mesma classe (ServletTestCase) é executada no cliente, parte no servidor

ServletTestCase (ou similar)

- Para cada método XXX() a ser testado, pode haver:
 - Um beginxxx (), para inicializar a requisição do cliente
 - encapsulada em um objeto WebRequest a ser enviado ao servidor
 - Um testxxx(), para testar o funcionamento do método no servidor (deve haver ao menos um)
 - Um endxxx (), para verificar a resposta do servidor
 - devolvida em um objeto WebResponse retornada pelo servidor
- Além desses três métodos, cada TestCase pode conter
 - setUp(), opcional, para inicializar objetos no servidor
 - tearDown (), opcional, para liberar recursos no servidor
- Os métodos do lado do servidor têm acesso aos mesmos objetos implícitos disponíveis em um servlet ou página JSP: request, response, etc.

Cactus: exemplo

- Veja cactusdemo.zip (obtenha do site)
 - Usa duas classes: um servlet (MapperServlet) e uma classe (SessionMapper) que guarda cada parâmetro como atributo da sessão e em um HashMap - veja fontes em src/xptoolkit/cactus
- Para rodar, configure o seu ambiente:
 - build.properties localização dos JARs usados pelo servidor Web (CLASSPATH do servidor)
 - runtests.bat (para Windows) e runtests.sh (para Unix) localização dos JARs usados pelo JUnit (CLASSPATH do cliente)
 - lib/client.properties (se desejar rodar cliente e servidor em máquinas separadas, troque as ocorrências de localhost pelo nome do servidor)
- Para montar, execute:
 - I. ant test-deploy
 - 2. o servidor
 - 3. runtests.bat

instala cactus-tests.war no tomcat

(Tomcat 4.0 startup)

roda os testes no JUnit

veja demonstração

CactusDemo: servlet

- O objetivo deste servlet é
 - I) gravar qualquer parâmetro que receber na sessão (objeto session)
 - 2) devolver uma página contendo os pares nome/valor em uma tabela
 - 3) imprimir resposta em caixa-alta se <init-param> ALL_CAPS definido no web.xml contiver o valor true

```
public void doGet(...) throws IOException {
                                                       Grava request
    SessionMapper.mapRequestToSession(request);
                                                         em session
    writer.println("<html><body>");
   // (... loop for each parameter ...)
      if (useAllCaps()) {
        key = key.toUpperCase(); (3) Retorna true se <init-param>
                                      "ALL CAPS" contiver "true"
        val = val.toUpperCase();
      str = "<b>"+key+"</b>"+val+"";
      writer.println(str);
   // (...)
    writer.println("</body></html>");
                                                          Trecho de
                                                     MapperServlet.java
```

Escreveremos os testes para avaliar esses objetivos

Cactus Demo: testes

```
public class MapperServletTest extends ServletTestCase { (...)
  private MapperServlet servlet;
  public void beginDoGet(WebRequest cSideReq) {
     cSideReq.addParameter("user", "Jabberwock");
                                                           Simula DD
                                                          <init-þaram>
  public void setUp() throws ServletException {
    this.config.setInitParameter("ALL CAPS", "true");
    servlet = new MapperServlet();
    servlet.init(this.config);
                                                          Simula servlet
                                                            container
  public void testDoGet() throws IOException {
    servlet.doGet(this.request, this.response);
    String value = (String) session.getAttribute("user");
    assertEquals("Jabberwock", value);
                                                  Verifica se parâmetro foi
                                                    mapeado à sessão
  public void tearDown() { /* ... */ }
  public void endDoGet(WebResponse cSideResponse) {
    String str = cSideResponse.getText();
    assertTrue(str.indexOf("USER</b>JABBERWOCK") > -1);
```


Exemplo: funcionamento

HttpUnit

- Onde encontrar
 - http://httpunit.sourceforge.net
- Framework para testes funcionais de interface (teste tipo "caixa-preta")
 - Verifica a resposta de uma aplicação Web ou página HTML
 - É teste funcional caixa-preta (não é "unit")
 - Oferece métodos para "navegar" na resposta
 - links, tabelas, imagens
 - objetos DOM (Node, Element, Attribute)
- Pode ser combinado com Cactus no endXXX()
 - Argumento com.meterware.httpunit.WebResponse
- Acompanha ServletUnit
 - stub que simula o servlet container

veja também

DFJUG Resumo da API do HttpUnit

- WebConversation
 - Pepresenta uma sessão de cliente Web (usa cookies)
 WebConversation wc = new WebConversation();
 WebResponse resp = wc.getResponse("http://xyz.com/t.html");
- WebRequest
 - Representa uma requisição
- WebResponse
 - Representa uma resposta. A partir deste objeto pode-se obter objetos WebLink, WebTable e WebForm
- WebLink
 - Possui métodos para extrair dados de links de hipertexto
- WebTable
 - Possui métodos para navegar na estrutura de tabelas
- WebForm
 - Possui métodos para analisar a estrutura de formulários

HttpUnit com Cactus

Troque o WebResponse em cada endXXX() por com.meterware.httpunit.WebResponse

```
public void endDoGet(com.meterware.httpunit.WebResponse resp)
                             throws org.xml.sax.SAXException {
   WebTable[] tables = resp.getTables();
   assertNotNull(tables);
   assertEquals(tables.length, 1); // só há uma tabela
   WebTable table = tables[0];
   int rows = table.getRowCount();
   boolean keyDefined = false;
   for (int i = 0; i < rows; i++) {
       String key = table.getCellAsText(i, 0); // col 1
       String value = table.getCellAsText(i, 1); // col 2
       if (key.equals("USER")) {
           keyDefined = true;
           assertEquals("JABBERWOCK", value);
   if (!keyDefined) {
       fail("No key named USER was found!");
```


Outros testes com Cactus

- Testes em taglibs (JspRedirector)
 - Veja exemplos em cactusdemo/taglib/src
- Testes em filtros (FilterRedirector)
 - Usa proxy FilterRedirector
 - Teste básico é verificar se método doFilter() foi chamado
 - Veja exemplos em cactusdemo/src/xptoolkit/AuthFilter
- Testes indiretos em páginas JSP (camada View)
 - Ideal é JSP não ter código Java
 - Principais testes são sobre a interface: HttpUnit!
- Testes indiretos em EJB (camada Model)
 - Indireto, através dos redirectors + JUnitEE

 Redirectors permitem testar EJBs com interface local ou remota chamados por código no servidor

taglibdemo.zip

veja também

strutsdemo.zip

veja helloejb.zip

hellojsp.zip

Testes em aplicações Web: conclusões

- Aplicações Web são difíceis de testar porque dependem da comunicação com servlet containers
 - Stubs, proxies e APIs, que estendem ou cooperam com o JUnit, tornam o trabalho mais fácil
 - Neste bloco, conhecemos três soluções que facilitam testes de unidade, de integração e de caixa-preta em aplicações Web
- Stubs como ServletUnit permitem testar as unidades de código mesmo que um servidor não esteja presente
- Proxies como os "redirectors" do Cactus permitem testar a integração da aplicação com o container
- Uma API, como a fornecida pelo HttpUnit ajuda a testar o funcionamento da aplicação do ponto de vista do usuário

Implementando XP em Java

parte 4

Integração Contínua com CVS, CruiseControl, AntHill e Gump

cruisecontrol.sourceforge.net
www.urbancode.com/projects/anthill
www.cvshome.org
jakarta.apache.org/gump

Integração contínua

- Um dos requisitos para implementar a integração contínua é ter um sistema onde se possa obter as fontes mais recentes
- Ferramentas SCM (Software Configuration Management)
 - Essenciais em qualquer projeto sério (grande ou pequeno)
 - No mínimo, mantêm histórico do processo de desenvolvimento
 - Existem soluções comerciais e open-source: CVS, Perforce,
 ClearCase, SourceSafe, StarTeam, Merant PVCS, Continuus, etc.
- Esta seção apresentará um breve tutorial da mais popular ferramenta SCM open-source: CVS
- Serão apresentadas três ferramentas de integração contínua, que combinam o Ant, JUnit e um SCM
 - ThoughtWorks CruiseControl (suporta Ant, JUnit, vários SCM)
 - UrbanCode AntHill (suporta Ant, JUnit, CVS*)
 - Jakarta Gump (suporta Ant, JUnit, CVS)

CVS: o que é?

- Concurrent Versions System
 - Sistema de controle de versões open-source
 - Baseado em um repositório central onde usuários podem fazer atualizações (commit) e downloads (checkout)
- Repositório CVS
 - Mantém uma cópia de todos os arquivos e diretórios sob controle de versões (usa formato RCS* - arquivo com extensão ",v" guarda todo histórico de modificações
 - Permite a recuperação de quaisquer versões anteriormente armazenadas de arquivos texto
- Diretório de trabalho (cópia de trabalho)
 - Criado por cada desenvolvedor
 - Contém cópia local dos arquivos baixados do repositório através de uma operação de checkout
 - Cada pasta e subpasta contém uma pasta especial "CVS"

CVS: como funciona

- Desenvolvedores baixam última versão do repositório
 - Trabalham em cópia local de módulo. Ao terminar, fazem upload (commit) e alterações são mescladas em nova revisão

DFJUG CVS: repositório e operações

- Repositório CVS é acessado por um cliente que precisa saber
 - Caminho ou endereço da raiz do repositório
 - Método de acesso que será utilizado
 - Dados para autenticação no servidor
- Essas informações podem ser guardadas em uma variável de ambiente do sistema CVSROOT

```
set CVSROOT=:local:/usr/cvs/root
set CVSROOT=:pserver:helder:pz@192.168.1.1:/usr/cvs/root
```

- Uma vez definido o CVSROOT, pode-se
 - criar uma cópia de trabalho de um módulo do repositório :
 - > cvs checkout hellocvs
 - sincronizar a cópia local com o repositório:
 - > cd hellocvs
 - > cvs update
 - gravar alterações feitas localmente no repositório
 - > cvs commit -m "Novo método sayBye() em Hello.java"

Revisão, tag e branch

- Número de revisão (controle por arquivo)
 - Número gerado pelo sistema para identificar cada modificação feita em um arquivo
 - Começa em 1.1.1.1, seguido por 1.2. Depois tem o segundo número incrementado a cada commit
- Tag (controle por módulo)
 - Usado para rotular uma versão do módulo com um nome
 - Comando: cvs tag nome_do_release
- Branch (abre sub-projeto)
 - Comando: cvs tag -b nome_do_branch
 - Usam dígitos extras no número de revisão
 - Podem depois ser incorporados
 1.1→ 1.2→ 1.3→ 1.
 ao projeto principal: cvs update -r nome_do_branch

1.2.1.1

Desenvolvimento típico com CVS

- A. Inicialização do ambiente
 - Fazer checkout de módulo em diretório de trabalho
- B. Um ciclo de desenvolvimento (geralmente curto)
 - Fazer alterações em código-fonte, criar novos arquivos e adicioná-los ao CVS, remover arquivos
 - Compilar, montar localmente e rodar testes
 - Fazer update para incorporar eventuais mudanças feitas por outros desenvolvedores
 - Resolver eventuais conflitos
 - Compilar, montar e rodar testes de novo
 - Cometer todas as mudanças: commit
- C. Lançamento: após vários ciclos
 - Rotular o lançamento com um tag

Conflitos

- Ocorrem quando dois usuários alteram mesma área do código
 - Primeiro que fizer commit grava as alterações
 - Outro usuário só pode cometer suas mudanças depois que atualizar sua cópia de trabalho e resolver o conflito

Resolução de conflitos

Revisão 1.27 do repositório contém:

```
public class HelloWorld {
    public String sayHello() {
        return "Hello world...";
    }
}
```

Cópia de trabalho (não sincronizada) contém:

```
public class HelloWorld {
    public String sayHello() {
        return "Hello, world!";
    }
}
```

Depois do update, cópia de trabalho contém merge:

É preciso fazer as alterações e remover os <<< === >>> antes de tentar novo commit

Cliente gráfico: WinCVS

- Interface gráfica para uso de CVS em ambiente Windows
- Projeto open-source: www.cvsgui.org

CVS com Ant

- Ant suporta CVS através do elemento <cvs>
 - Ant também suporta outros sistemas de controle de versões
 - Deve haver um cliente CVS acessível por linha de comando
- Exemplos

CruiseControl

- Ferramenta para integração contínua e automática
 - Ideal para integrar software desenvolvido em equipe
 - Baseada na ferramenta Ant, através da qual opera sistema de controle de revisões (CVS, ClearCase, Perforce, StarTeam, ou outro)
 - Artigo "Continuous Integration" [8] (Fowler / Foemmel)
- Roda em um servidor onde periodicamente...
 - ... monta toda a aplicação
 - ... roda todos os testes
 - … gera relatórios sobre os resultados em XML (enviados por e-mail para os "committers" e publicados em página na Web)
- Viabiliza prática de "lançamentos pequenos" do XP
 - Repositório sempre contém a última versão estável

www.argonavis.com.br

IDFJUG CruiseControl: funcionamento

Relatórios gerados a cada build

veja demonstração

cruisedemo.zip

- Ferramenta para integração contínua
 - Aplicação Web que roda builds agendados
 - Suporte SCM é limitado a CVS (usuário pode escrever driver para outro SCM se desejar)
 - Publica artefatos: código-fonte, documentação, links para distribuição, saída do build
- Vantagens sobre CruiseControl
 - Tudo é feito via interface Web
 - Configuração é muito mais simples
 - Suporta múltiplos projetos
 - Não requer alterações no build.xml
 - Rotula versões (tag) automaticamente
- Desvantagens
 - Suporta apenas CVS
 - Não gera automaticamente relatórios de testes JUnit

AntHill: funcionamento

- Cada projeto está associado a um agendamento
- Na hora de realizar o build, AntHill consulta o repositório.
 Se houver novos arquivos, build ocorre
- Em caso de sucesso
 - Arquivo com número da versão é incrementado
- Em caso de falha
 - Participantes do projeto são notificados por email
- Relatórios são gerados em ambos os casos

veja demonstração

anthilldemo.zip

- Ferramenta de integração contínua do Projeto Jakarta
 - Realiza a integração não só da aplicação mas, opcionalmente, de todas as suas dependências (compila e monta cada uma delas)
 - Fornece acesso a JavaDocs, referências cruzadas (interdependências) e JARs dos projetos montados
 - Instalação e configuração não são triviais
- Gump separa as configurações em arquivos XML distintos que podem ser reutilizados
 - project Define os JARs que um projeto exporta (que servirão de dependências para outros projetos)
 - module Coleção de projetos guardaros em um repositório
 - repository Informação sobre como acessar os repositórios CVS
 - profile Coleção de projetos e repositórios
 - workspace Configurações globais, sistema, etc.

Gump: funcionamento

- Duas etapas
 - Geração de scripts
 - Execução dos scripts
- Geração cria scripts usando configuração do workspace
- Execução (que pode ser automatizada) usa os outros arquivos para montar as dependências e gerar relatórios
- Relatórios, acessíveis via Web mostram conflitos
 - Pode enviar e-mail em caso de falha

gumpdemo.zip

Conclusões: ferramentas de integração contínua

 A tabela abaixo apresenta uma breve comparação entre as ferramentas de integração contínua analisadas

Recurso	CruiseControl	AntHill	Gump
Instalação e configuração	Média dificuldade	Fácil	Difícil
Requer alterações em buildfiles	Sim	Não	Não
Monta dependências	Não	Não	Sim
Controla SCM automaticamente	Não. Comandos têm que ser incluidos no buildfile	Sim	Sim
SCMs suportados	CVS, VSS, ClearCase, MKS, Perforce, PVCS, StarTeam	CVS	CVS
Suporte a múltiplos projetos simultâneos	Requer nova instância da aplicação executando e outro buildservlet.war	Requer adição de nova definição na interface Web	Requer a configu- ração de arquivos XML

Fonte: Erik Hatcher, "Java Development with Ant" [14]

Implementando XP em Java

Conclusões

- Nesta palestra, você conheceu
 - JUnit framework criado para facilitar a criação e execução de testes para medir a qualidade do seu software
 - Extensões do JUnit para situações onde testar é difícil
 - Ant ferramenta indispensável que ajuda a automatizar diversos processos comuns em ambientes de desenvolvimento em Java
 - Cactus coleção de redirecionadores para facilitar testes de integração de aplicações Web
 - CVS um popular sistema de controle de versões opensource
 - Ferramentas para automatizar a integração contínua

Conclusões

- As ferramentas apresentadas neste tutorial podem
 - melhorar a qualidade do seu software
 - aumentar o reuso de seus componentes
 - melhorar suas estimativas de prazos
 - melhorar a produtividade de sua equipe
 - melhorar a comunicação
 - reduzir custos
 - tornar o desenvolvimento mais ágil e eficiente
 - reduzir drasticamente o tempo gasto na depuração
- O único investimento necessário para obter os benefícios é aprender a usá-las

Fontes

- [1] Richard Hightower e Nicholas Lesiecki. Java Tools for eXtreme Programming. Wiley, 2002. Explora as ferramentas Ant, JUnit, Cactus, JUnitPerf, JMeter, HttpUnit usando estudo de caso com processo XP.
- [2] Jeffries, Anderson, Hendrickson. eXtreme Programming Installed, Addison-Wesley, 2001. Contém exemplos de estratégias para testes.
- [3] Apache Ant User's Manual. Ótima documentação repleta de exemplos.
- [4] Apache Cactus User's Manual. Contém tutorial para instalação passo-a-passo.
- [5] Steve Lougran. Ant In Anger Using Apache Ant in a Production Development System. (Ant docs) Ótimo artigo com boas dicas para organizar um projeto mantido com Ant.
- [6] Kent Beck, Erich Gamma. JUnit Test Infected: programmers love writing tests. (JUnit docs). Aprenda a usar JUnit em uma hora.
- [7] Andy Schneider. JUnit Best Practices. JavaWorld, Dec. 2000. Dicas do que fazer ou não fazer para construir bons testes.

Fontes (2)

- [8] Martin Fowler, Matthew Foemmel. Continuous Integration.

 http://www.martinfowler.com/articles/continuousIntegration.html. Ótimo artigo sobre integração contínua e o CruiseControl.
- [9] Robert Koss, Testing Things that are Hard to Test. Object Mentor, 2002 http://www.objectmentor.com/resources/articles/TestingThingsThatAreHa~9740.ppt. Mostra estratégias para testar GUIs e código com dependências usando stubs.
- [10] Mackinnon, Freeman, Craig. Endo-testing with Mock Objects. http://mockobjects.sourceforge.net/misc/mockobjects.pdf. O autor apresenta técnicas para testes usando uma variação da técnica de stubs chamada de "mock objects".
- [11] William Wake. Test/Code Cycle in XP. Part 1: Model, Part II: GUI. http://users.vnet.net/wwake/xp/xp0001/. Ótimo tutorial em duas partes sobre a metodologia "test-first" mostrando estratégias para testar GUIs na segunda parte.
- [12] Steve Freeman, Developing JDBC Applications Test First. 2001. Tutorial sobre metodolodia test-first com mock objects para JDBC.
- [13] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley, 2000. Cap 4 (building tests) é um tutorial usando JUnit.

Fontes (3)

- [14] Erik Hatcher. Java Development with Ant. Manning Publications. August 2002. Explora os recursos básicos e avançados do Ant, sua integração com JUnit e uso com ferramentas de integração contínua como AntHill e CruiseControl.
- [15] Jesse Tilly e Erik Burke. Ant: The Definitive Guide. O'Reilly and Associates. May 2002. Contém referência completa e ótimo tutorial sobre recursos avançados como controle dos eventos do Ant e criação de novas tarefas.
- [16] Per Cederqvist et al. Version Management with CVS.

 http://www.cvshome.org/docs/manual/. O manual oficial do CVS com ótimo tutorial e referência completa de todos os comandos.
- [17] Karl Fogel. Open Source Development with CVS. Coriolis Press. http://cvsbook.red-bean.com/. No site o autor disponibiliza parte do livro que contém todos os capítulos sobre como criar, administrar e usar um repositório CVS.
- [18] Apache JMeter User's Manual. Fonte dos exemplos.
- [19] Mike Clark, JUnitPerf Docs. Fonte dos exemplos.

Os slides desta palestra foram extraídos do Tutorial "Implementando eXtreme Programming em Java" Que foi originalmente apresentado na COMDEX 2002 em São Paulo Por Helder da Rocha

Baixe o tutorial original e completo desta palestra a partir do site:

http://www.argonavis.com.br/cursos/xpjava/

Recursos disponíveis no site:

- Tutorial completo em PDF
- Todo o código-fonte usado nos exemplos e demonstrações
- Instruções detalhadas sobre como rodar e instalar os exemplos
- Links para software utilizado e documentação

OBRIGADO! Paulo Jerônimo pj@argonavis.com.br

Extreme Programming Brasil, São Paulo, 05/Dez/2002