

ADVISORY & INTELLIGENCE SERVICE PROGRAM

產業研究報告

科幻著陸:Metaverse 關鍵前提與未來觀 察重點

前言

Metaverse (Beyond Universe)概念近期在 Facebook等科技巨擘投入鉅資、積極宣揚,以及疫下生活新常態的推波助瀾下,掀起了廣泛的討論。令人驚艷的科幻應用情境亦充滿想像空間。然而,顛覆性的科技互動體驗、全新的運作機制、大規模的商業模式革新,事實上有極大的前提條件,也還有許多待克服的技術議題。本研究觀察Metaverse 重要科技元素、發展藍圖及技術階層,並點出實際應用落地的前提,並基於重要技術議題、待突破點及產業衝擊等面向,來推敲未來觀測重點。

林巧珍 施柏榮

Document Code: CDOC20211028002

Publication Date: Oct 2021

目錄

Metaverse 內涵與藍圖	1
發展現況與待突破點	5
結論	7
附錄	9

圖目錄

圖一、Metaverse 屬性、科技元素與發展藍圖

3

表目錄

表一、	標竿組織與企業初步提出之 Metaverse 定義	2
表二、	Metaverse 技術階層與內容	5

Metaverse 內涵與藍圖

Metaverse 定義

Meta-verse 是由 Beyond Universe 兩個字所組成,被許多科技巨擘視為「未來網路(The Future of Internet)」。Metaverse 情境中「人與數位/網路世界的嶄新互動情境」深具革命性。雖然 Metaverse 的定義尚在成形中,但從眾多說法中已能歸納出關鍵要素與屬性。首先,不同於現今每個虛擬空間獨立運作,在 Metaverse 情境中,不同虛擬空間的數據資料不僅「可串連」、「可交換運用(Interoperable)」,亦可「與現實世界融合」,形成一個逼真且彼此「互通」、「互補(非僅是真實世界的附屬)」的新感官境界。在此空間之中,參與者(又稱為「數位居民」)可恣意探索、創造與累積互動經驗與新體驗。更特別的是,發生在 Metaverse 中的數位體驗無法暫停、重設或結束;換言之,參與者間的互動會持續發生、推進,就如同現實生活一般。

從當前主要國際機構、企業對 Metaverse 的談論,可看出 Metaverse 仍是個前瞻性十足的應用「概念」,對於 Metaverse 的樣貌、運作規則、結構組成、分工模式等也還在想像階段,未有明確定義,也還沒有形成一般性的共識。預計 Metaverse 的型態與輪廓,將隨著不同的產品、服務、技術能力等要素相互融合,才會逐漸浮現。

表一、標竿組織與企業初步提出之 Metaverse 定義

機構	定義
IEEE-Metaverse Standards group	虚擬環境是一個合成(Synthetic)環境·由虛擬物件、虛擬居民以及他們之間的互動關係所組成;組成要素在虛擬世界所定義的時間中(Virtually-defined Time)存在。此環境可提供遊戲平台、模擬/仿真平台服務等。虛擬世界的創建是為讓使用者能在此定居、互動·此空間中的居民將以3D虛擬化身的形象存在
Facebook	Metaverse 可被視為「實體化網路」,人們不僅可查看數位內容,還可置身其中,在此空間中工作、社交、分享、創造與累積各種經驗等。Metaverse可謂社交科技(Social Technology)「體現」的最高境界
Nvidia	Metaverse 是具互動性的、沉浸體驗的,可以協作共享立體的虛擬世界,是不被任何應用程式或地方(不管是數位或實體)給綁住的平台。虛擬環境及在裡面移動的物件、身份也會持續存在
Microsoft	Metaverse 應用的核心是數位孿生(Digital Twins,或可稱為數位雙生),可以是物體或個人的數位分身。此一情境之中,可存在任何人事物,而這些虚擬物件(Virtual Objects/Things)一旦建模成形,便可被帶進真實世界中,與實體空間共存
Roblox	Metaverse 是個深具「沉浸感受・且可建立共同體驗(Immersive co-experiences)」的巨型空間・人們可在此空間中・恣意的創作、玩耍、學習、交易、工作及進行各種類型的社交活動與互動行為;在 Metaverse 空間中的「居民」・將形成高參與度的虛擬社區・共同協作、創造出獨一無二的共同經驗(Shared Experience)

資料來源: 各公司, MIC 整理, 2021 年 10 月

發展藍圖

Metaverse 情境下所涉及的科技元素又多又複雜,技術內涵也尚在論證階段,但「漸進式」的發展藍圖已可預期(請見圖一)。估計底層技術與軟體將會持續優化與疊加外,也可預期虛擬和實體物件之間的差異,也會越來越難以辨別。近期最令人驚豔的實例,不外乎是 GPU 大廠 Nvidia 在年度大會 GTC 2021 上的創舉,該公司大手筆打造 CEO 的數位分身「代為上陣」,竟不見有人懷疑鏡頭中的人物並「非真人」。

雖然所費不貲·但就技術角度而言·證明了當前的科技已可讓虛擬分身、虛擬物件「以假亂真」。

未來幾年,則可預期虛擬空間和實體空間將會更常被「互相借用」。首先,虛擬空間的數量將會先攀升,並讓過往在真實世界舉辦的活動,移到虛擬世界中進行。事實上,在 COVID-19 疫情的推波助瀾下,近一年此類應用案例已出現。例如,美國加州大學柏克萊分校(UC Berkeley)便把 2020年畢業典禮,移至 Minecraft 遊戲平台的虛擬空間中舉行;而 AI 學術會議 ACAI2020,亦改在「動物森友會」遊戲平台上的虛擬空間進行。此外,某些原在虛擬世界進行的活動,也會開始在真實世界中出現,如:FOX 頻道近期便打造了新型態的歌唱選秀節目「ALTER EGO」,但不同以往的是,真正上台較勁的參賽者並非選手本尊,而是他們深具個人特色的數位分身。

接著,可預期個別虛擬空間將與實體空間打通的程度、規模會越來越大,可視為是混合實境(Mixed Reality, MR)應用情境的實現。最終,各個虛擬空間之間,以及虛擬跟實體世界之間的「界線」將消失,此外參與者也多兼具創造者的角色;此時,不僅各行各業行之有年的商業模式將會出現大翻轉,亦出現虛擬結合實體空間的「互補性」商業模式,達到 Metaverse 概念下的理想應用情境。

現今彼此獨立的虛擬空間,數據資料 將可串連,立交換運用(Interoperable) 未來亦將說規實世界打通,形成彼此 互通,互補,且逼真的析感官境界 《公司》(完善的經濟議系)(例)數位於是第一章 (是數位在實際建立)(原數與頁章空間界為主)(以前是數 以內容學經濟))

圖一、Metaverse 屬性、科技元素與發展藍圖

發展藍圖 底層技

科技元素

底層技術建置與疊加 2020 • 虛擬空間量增 • 實體與虛擬活動/空間混搭 個別虛擬與 實體情境打發 2030(e)

雲端/邊緣運算協作、新興通訊/網路、感知融合、高協調性UI、AI集成、自動翻譯、電腦視覺渲染、近眼顯示、VR...

開發引擎/工具、虛擬經濟體制、次技術標準&運作準則、量子電腦、

AR/MR、人因工程、NFTs&區塊鏈、個人化數位分身、光影/動態程

虚擬&虚擬& 實體情境融合

實體情境融合

資料來源: MIC, 2021年10月

與3D服務平臺整合機制.

、碰撞模擬、去中心化資料交換...

技術階層

基於當前對 Metaverse 應用概念的想像,技術上可大致可劃分為 7 個階層,分別是無所不在運算基盤(Ubiquitous Infra)、智慧裝置與介面(Devices and Interface)、去中心化服務(Decentralization)、空間模擬與運算(Spatial Computing)、創造者經濟(Creator Economy)、體驗分析與開發(Discovery),以及體驗設計與服務(Experience)等。其中,又以創造者經濟、體驗設計與服務的「創價」潛力最受期待。嶄新的科技互動創意充滿想像空間,而這也意味著「開發引擎/編輯工具」的優化,以及開發商對於互動情境、數位居民連結方式的「整體設計能力」,將會是重要的競爭力來源。

表二、Metaverse 技術階層與內容

技術階層	內容
體驗設計與服務 (Experience)	人們在 Metaverse 之中實際參與、體驗的內容與服務建構技術,如遊戲、消費方式、社群媒體體驗、視聽等多重感官經驗設計
體驗分析與開發 (Discovery)	理解進入 Metaverse 人類體驗的分析,藉由此一分析技術,能夠更好 提出行銷、廣告或社群驅動的方式,理解喜好與分享模式
創造者經濟 (Creator Economy)	應用 Metaverse 全沉浸、社交性、即時性的特徵,所進行內容與服務 創造,包括開發/設計工具、製作流程管理、數位資產再利用等
空間模擬與運算 (Spatial Computing)	混合在真實與虛擬空間的運算空間的運算技術,其中不僅只是 3D 模擬 與引擎技術,包括整合各種資訊與經驗來強化該環境
去中心化服務 (Decentralization)	去中心服務與架構設計,整合分散式運算、微服務、區塊鏈與分散式帳本、邊緣運算等技術,提供低延遲與高計算效能服務
智慧裝置與介面 (Devices and Interface)	能夠使人類進入 Metaverse 的智慧裝置之硬體與人機介面設計,包括 微型化感測器、嵌入式 AI、穿戴與生理訊號擷取裝置元件
無所不在運算基盤 (Ubiquitous Infra)	支援設備與將各類型數據接取到網路·並且提供內容之技術;如下世代通訊、物聯網、3 奈米以下半導體、MEMs 與電池等

資料來源: Unity, Jon Radoff (2021), MIC 整理, 2021年10月

發展現況與待突破點

技術與應用概念仍在萌芽階段

從「技術準備指數」(Technology Readiness Level, TRL)來看,目前 Metaverse 顯然仍在 TRL1 階段(初始型技術研究,基本假設與觀察)。當前人類的科技,離 Metaverse 理想境界仍遙遠,而所面臨的技術關卡、整合議題、運作模式等待突破 點亦多且複雜。當中的靈魂科技「AR/MR」要先從當前的商業應用延伸至消費性市

場,預期仍需約 3~5 年的時間。而 Metaverse 底層技術的完備、技術標準的成形、開發引擎的優化,以及應用軟體的擴散等層面,可預期「打地基」所需的時間,至少也還要 5~10 年不等。爾後,各行各業商業模式的調整,以及虛擬與實體空間互補型商業模式的建立、試行與磨合,可想像又是一段漫長的路程。

社群媒體、遊戲領域試水溫

Metaverse 情境下的應用無邊際、落實所需的時間漫長,但若從當前業者推動意願來看,遊戲娛樂、社交應用領域可望先行;而商業/學術會議、教學、特定垂直應用等應用亦相對具優先落地潛力。初始階段,相關應用可延伸自高沉浸度的體驗與服務,這也可以解釋為何 IEEE Virtual World Standard Working Group 是目前主要的標準推動者。不過,Microsoft 等企業也提及 Metaverse 與數位孿生、虚實整合物聯網的應用相關,這樣的論述也為 Metaverse 開啟了更多元化的應用想像。因此,目前數位孿生解決方案主攻的應用領域,如:醫療手術、零售、研發溝通、空間建模與模擬等,也可望在 Metaverse 大應用情境中優先落地。

產業技術有賴多個組織、企業推動協作規範

如同前述,在 Metaverse 的理想境界中,期許虛擬世界運作模式,可比照真實世界的運作機制,包括要有虛擬的經濟體、交易機制、規範與準則等,而這些新機制也要能與真實世界的模式互通。簡言之,Metaverse 下,「協作規範」的成立是必要的一步。此要件必須成立,是因為 Metaverse 的實現,並不在於單一企業或組織的產品有多麼新穎、具革命性,而是數位居民(包含企業與使用者)」之間的「連結方式」。因此,倘若沒有一套所有參與者都願意採納、遵守的規範,那麼 Metaverse 情境將無法有效擴散,甚至可能成為犯罪的溫床。

雖然此為難度極高的挑戰,但當前已見 IEEE Virtual World Standard Working Group 嘗試研擬可適用於未來虛擬世界的共通標準。第一階段將先致力盤點虛擬世界中可能的「組成要素」與「次要素」、「關聯技術項目與流程」等,並先試著研擬適用於次要素的標準,之後再從中擷取出可用於 Metaverse 情境的共通技術標準。不過,雖然有具公信力的組織來引領建立共通標準是個好的開頭,但 Metaverse 的世界無邊界、涵蓋範圍巨大的特性,可想像絕非單一組織或公司即可主導,意味著未來由多個領導性組織攜手合作、不斷調整校正,會是更有可能發生的情境。

結論

可監管的「運作準則與配套機制」為Metaverse前提條件

如同其他新興資訊科技的「發展與應用擴散經驗」,可預期 Metaverse 也將會面臨 既定法律與規範的審視及監管問題。首先,智慧財產權的認定:一個由虛擬社群共同 創造的虛擬世界,智慧財產權如何歸屬,是馬上會遇到的難題;第二,資產與貨幣的定義與流通:Metaverse 具有跨平台互通、實體與虛擬空間無界線,以及可交互運用程度高等特色,但在 Metaverse 情境中所使用的貨幣,卻可能在部分國家不被視為合法貨幣,如同當前某些加密貨幣一樣。因此,如何確保參與者的每筆消費、交易與資產保障安全無虞,法規該如何調適?也都需要進一步檢視與探討。

第三,數據管理與保護機制:Metaverse 理想情境中,使用者個人數據資料可在各個虛擬空間中互通,此種參與者「主體性高」、個人資料「隨身攜帶」的新常態下,如何確保參與者數據可被妥善保管與運用?這對於人類來說,是個無前例可借鏡的數位資料監管挑戰。此外,數位分身的身份認證上,如何確認參與者身份不會被惡意盜用,同樣也需有對應機制。隱私保護方面,Metaverse 應用情境下個人終端載具與人機介面將主動讀取參與者的生物特徵,為了讓數位居民可恣意穿梭在各個虛擬空間中,因此也要確保參與者識別身份、蒐集個人資訊的同時,又不需過度妥協個人隱私權益。上述種種議題的配套機制如何被建立、成為共識,並被有效監管,皆是Metaverse 成真前,需預先研擬、模擬的龐大工程。

「先鋒主導&應用驅動者」動見觀瞻,數位調適成效為觀察點

Metaverse 情境下的 7 個技術階層,除了每個階層的技術項目皆有「待突破」的技術議題之外,還需同步考量不同技術階層及方法之間的相互配搭性。因此,共通標準的研擬與成形,重要性甚高。比如,在 Metaverse 情境之上,嘗試推動 Intelligent Cloud 與 Intelligent Edge 的技術協作(Working in Harmony);或推動虛擬、實體物聯網的雙向連接(Two-way IoT Connections)等。而這些皆有賴科技巨擘當先鋒,引領強而有力的「跨域工作小組」協力推動。直到技術進展到 TRL1-3 階段時,才較有可能大規模落實 IEEE 等國際機構所訂定的 Metaverse 共通標準。

中長期觀察重點方面,隨著 Metaverse 等級的應用案例進入快速累積階段,此時商品化、產業化速度將變成重要的產業議題,意味著有助驅動、擴散應用方案的加速器,如:開發引擎、編輯工具、數位素材庫供應商等,角色將會相對吃重。而隨著應用情境的規模擴大,交互操作性提升,可預期參與者的「體驗設計與服務」能耐,屆時會變成競爭力來源;而整體設計的概念與體驗目標,預期又會回頭來影響既有法律規

範、硬體與介面型態,甚至慢慢地汰換移動性相對不足的終端裝置等。這樣不斷循環的數位調適過程,是未來需持續觀察的重點。當此類具顛覆性的科技應用情境成功通過數位調適過程,人類的數位科技互動體驗才可能順利翻新、商業模式翻轉、產業板塊位移,最終 Metaverse 的「科幻」情境也才能如願著陸。

附錄

英文名詞縮寫對照表

TRL Technology Readiness Level

AR Augmented Reality

MR Mixed Reality

中英文名詞對照表

元宇宙 Metaverse

可交換運用 Interoperable

擴增實境 Augmented Reality

混合實境 Mixed Reality

技術協作 Working in Harmony

物聯網的雙向連接 Two-way IoT Connections

發行所 財團法人資訊工業策進會 產業情報研究所(MIC)

地址 台北市 106 敦化南路二段 216 號 19 樓

電話 (02)2735-6070 傳真 (02)2732-1353

全球資訊網 https://mic.iii.org.tw

會員服務專線 (02)2378-2306 會員傳真專線 (02)2732-8943

E-mail members@micmail.iii.org.tw

AISP 會員網站 https://mic.iii.org.tw/aisp

以上研究報告經 MIC 整理分析所得·由於產業變動快速·並不保證上述報告於未來仍維持正確與完整·引用時請注意發佈日期·及立論之假設或當時情境。 著作權所有·非經 MIC 書面同意·不得翻印或轉載