1. Máquina de Lavar

Considere o problema da **Máquina de Lavar com Controle** *Fuzzy*. Neste problema temos duas variáveis de entrada:

- X_1 Grau de sujeira da roupa (Sujeira)
- X_2 Manchas presentes na roupa (Manchas)

e uma variável de saída

Y Tempo de lavagem da máquina

50

Suponha um sistema *fuzzy* (modelo MAMDANI definido por um especialista para resolver este problema) composto por uma base de dados, base de regras e mecanismo de inferência conforme mostrado a seguir:

1. BASE DE DADOS

0

Na base de dados, as variáveis lingüísticas $X_1 \ X_2$ e $\ Y$ possuem os seguintes conjuntos de termos lingüísticos:

 $T(X_1) = \{PS(pequena sujeira), MS(média sujeira), GS(grande sujeira)\}$

 $T(X_2) = \{SM(sem mancha), MM(média mancha), GM(grande mancha)\}$

 $T(Y) = \{MC(muito curto), C(curto), M(médio), L(longo), ML(muito longo)\}$

A regra semântica M, definida pelo especialista, associa cada rótulo dos termos nos conjuntos T às funções de pertinência mostradas a seguir:

Manchas na roupa

100

2. BASE DE REGRAS

A base de regras envolvendo as entradas (grau de sujeira e manchas na roupa) e a saída (tempo de lavagem) é dada por:

	SM	MM	GM
PS	MC	M	L
MS	С	M	L
GS	M	L	ML

O que define o seguinte conjunto de regras fuzzy:

R1: Se
$$X_1$$
 é **PS** E X_2 é **SM** então Y é **MC**

R2: Se
$$X_1$$
 é **PS** E X_2 é **MM** então Y é **M**

•

R9: Se
$$X_1$$
 é **GS** E X_2 é **GM** então Y é **ML**

E de forma não abreviada:

R1: Se grau de sujeira é **pequena sujeira** E manchas na roupa é **sem manchas** então o tempo de lavagem é **muito curto**

3. MECANISMO de RACIOCÍNIO

O especialista definiu os seguintes operadores para o raciocínio fuzzy do modelo:

- Composição sup-t = sup-min (*matching* = possibilidade) Opção não disponível no Matlab pois é padrão nos processos de inferência
- Agregação dos Antecedentes (And Method no Matlab para regras do tipo E) = produto algébrico
- Semântica das Regras (implicação no Matlab) = produto algébrico (regra de Larsen)
- Agregação das Regras (Agregação no Matlab) = Max
- Método de Defuzificação = MoM

Exercício 1)

a) Utilizando o toolbox do software Matlab implemente o modelo a seguir e defina a saída *crisp* considerando-se como entrada os valores *crisp*

$$x_1 = 60$$
 e $x_2 = 70$ y = _____

b) Quantas e quais regras foram ativadas considerando-se as entradas anteriores?

Exercício 2) Modifique as entradas anteriores para os seguintes conjuntos de valores

x_1	x_2	у
10	70	
90	10	
0	40	
30	0	

Exercício 3) Visualize o mapeamento gerado pelo sistema fuzzy.

Exercício 4) Modifique os operadores do raciocício fuzzy para os seguintes valores

- Composição sup-t = sup-min (matching = possibilidade) Opçao não disponível no Matlab
- Agregação dos Antecedentes (And Method no Matlab para regras do tipo E) = Min
- Semântica das Regras (implicação no Matlab) = Min (regra de Mamdani)
- Agregação das Regras (Agregação no Matlab) = Max
- Método de Defuzificação = Centróide

E refaça os exercícios 1) 2) e 3) (Compare com os resultados obtidos)

Exercício 5) Salve cada FIS (fuzzy inference system) MAMDANI no workspace com o nome MaqLav

Avalie agora no worksape o sistema MaqLav para o seguinte conjunto de entradas

	Trane agora no worksape o bistema machar para o seguinte conjunto de citiradas				
\mathcal{X}_1	x_2	y			
0	0				
0	10				
0	100				
10	0				
10	10				
10	100				
100	0				
100	10				
100	100				

Dica: Utilize a função evalfis para resolver o problema.

Descrição resumida da função evalfis

```
output= evalfis(input,fismat)

onde
    input é uma matriz LxN (L dados com N variáveis de entrada)
    fismat é um FIS que deve estar disponível no workspace
```

Dica utilize o seguinte código para gerar a entrada (input)

```
lin=1;

for(i=0:10:100),

for(j=0:10:100),

entrada(lin,:) = [i j];

lin = lin+1;

end

end
```

saida = evalfis(entrada,MaqLav);

Salve essa tabela (entrada, saida) pois ela será a prova de conceito da tarefa de implementação da maquina de lavar

Exercício 6) Refaça os Exercícios 1), 2), 3), 4) (dois primeiros itens) e 5) considerando agora

- o modelo TAKAGI-SUGENO de ordem ZERO (para aproveitar os antecedentes do modelo Mamdani digite na linha de comando > MaqLavSug = man2sug(MaqLav), onde MaqLav é o FIS salvo no workspace
 - com as mesmas funções de pertinências das variáveis de entrada consideradas no modelo Mamdani
 - Com os mesmos antecedentes nas regras R1... R9 da seção 2
 - E com os seguintes consequentes:

Rj	$\mathbf{g}_{j}(\mathbf{w}_{j},\mathbf{x})=k_{j}$
ConseqR1	0.5
ConseqR2	23
ConseqR3	42
ConseqR4	10
ConseqR5	26
ConseqR6	42
ConseqR7	27
ConseqR8	41
ConseqR9	60