Chapitre 3

\mathbb{R}^3 comme espace vectoriel euclidien

On se concentre sur les objets principaux dans \mathbb{R}^3 et les transformatiosn géométriques... L'étude de \mathbb{R}^3 euclidien et des isométries sera faite plus en détail au second semestre. On sait que \mathbb{R}^3 est un \mathbb{R} espace vectoriel de dimension 3, on désigne par $\vec{i}, \vec{j}, \vec{k}$ la base canonique formée par les triplets (1,0,0), (0,1,0), (0,0,1).

3.1 Sous-espaces vectoriels de \mathbb{R}^3 vectoriel

Dans \mathbb{R}^3 , il a toujours des droites vectorielles, mais on observe d'autres objets intéressants, les plans vectoriels :

Définition 3.1. Un sous-espace vectoriel de dimension 2 est appelé plan vectoriel \vec{P} de l'espace \mathbb{R}^3 .

Par exemple l'ensemble des vecteurs de \mathbb{R}^3 tels que x+y+z=0 est un plan vectoriel, $\vec{P} = Vect(\vec{e}_1(-1,1,0),\vec{e}_2(-1,0,1))$. De même tous les ensembles de vecteurs de \mathbb{R}^3 tels que Ax+By+CZ=0 sont des plans vectoriels dès que $(A,B,C)\neq 0$ (le justifier en résolvant l'équation).

On va voir que ce sont ces objets dont il est le plus simple de trouver une équation (et on va retrouver uen expression du type ci-dessus) car la démarche est identique à celle faite pour les droites dans le plan .

En effet $\vec{u} \in \vec{P} = Vect(\vec{e_1}, \vec{e_2})$ si et seulement si le rang de la famille de vecteur s $(\vec{u}, \vec{e_1}, \vec{e_2})$ est deux (la famille est liée). Cela s'exprime à nouveau à l'aide d'un déterminant :

26CHAPITRE 3. \mathbb{R}^3 COMME ESPACE VECTORIEL EUCLIDIEN

Proposition 3.1. la famille $(\vec{u}(x,y,z), \vec{e}_1(a_1,b_1,c_1), \vec{e}_2(a_2,b_2,c_2))$ est liée si et seulement si le réel $\det(\vec{u},\vec{e}_1,\vec{e}_2) = \begin{vmatrix} x & a_1 & a_2 \\ y & b_1 & b_2 \\ z & c_1 & c_2 \end{vmatrix} = x(b_1c_2-c_1b_2)+y(c_1a_2-c_2a_1)+z(a_1b_2-a_2b_1)$ est nul.

Remarque : si on note les coefficients $A=b_1c_2-c_1b_2, B=c_1a_2-c_2a_1$ et $C=a_1b_2-a_2b_1$, on retrouve une équation de la forme Ax+By+CZ=0 et $(A,B,C)\neq 0$ car sinon la famille $(\vec{e_1},\vec{e_2})$ serait liée (cf ci-après).

3.1.1 Position relative de deux droites de l'espace vectoriel \mathbb{R}^3

On se donne $\vec{D}_1 = Vect(\vec{e}_1)$ et $\vec{D}_2 = Vect(\vec{e}_2)$ et ou bien elles sont confondues $\vec{D}_1 = \vec{D}_2$ (la famille (\vec{e}_1, \vec{e}_2) est une famille liée)

ou bien le sous-espace $\vec{P} = \vec{D}_1 \oplus \vec{D}_2$ est un plan vectoriel (car de dimension 2) et dans ce plan-là, $\vec{D}_1 \cap \vec{D}_2 = \{\vec{0}\}.$

Comment exprime-t-on que deux vecteurs \vec{e}_1 et \vec{e}_2 , non nuls, de l'espace sont liés? SI ils sont liés, il existe un réel t de sorte que $\vec{e}_2 = t\vec{e}_1$ donc les vecteurs (a_1,b_1) et (a_2,b_2) du plan $Vec(\vec{i},\vec{j})$ le sont et on sait alors que $C=a_1b_2-a_2b_1=0$. en raisonnant dans les 2 autres plans de coordonnées, on obtient que $A=b_1c_2-c_1b_2=0$ et $B=c_1a_2-c_2a_1=0$

Proposition 3.2. la famille (\vec{e}_1, \vec{e}_2) est une famille liée si et seulement si les trois déterminants $\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$, $\begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$, et $\begin{vmatrix} a_1 & a_2 \\ c_1 & c_2 \end{vmatrix}$ sont nuls.

3.1.2 Position relatives de deux plans de l'espace vectoriel \mathbb{R}^3

Soient $\vec{P} = Vect(\vec{e}_1, \vec{e}_2)$ et $\vec{P}' = Vect(\vec{e}_1', \vec{e}_2')$ deux plans vectoriels de \mathbb{R}^3 Raisonnons en terme de rang de la famille de vecteurs $\mathcal{F} = (\vec{e}_1, \vec{e}_2, \vec{e}_1', \vec{e}_2')$: comme la famille (\vec{e}_1, \vec{e}_2) est libre, le rang est au moins 2 et comme on est dans \mathbb{R}^3 il est au plus 3.

- a) Regardons le premier cas : le rang est 2 , cela dit que chacune des familles $vece_1, \vec{e}_2, \vec{e}'_1)$ et $(\vec{e}_1, \vec{e}_2, \vec{e}'_2)$ sont liées donc que chaque $\vec{e}'_i \in \vec{P}$ et la famille (\vec{e}'_1, \vec{e}'_2) , libre par hypothèse, de vecteurs de \vec{P} est donc une base de \vec{P} mais $\vec{P}' = Vect(\vec{e}'_1, \vec{e}'_2)$ donc $\vec{P}' = \vec{P}$, les plans sont confondus.
- b) Regardons le deuxième cas cas : le rang est 3 donc on peut choisir dans

 \mathcal{F} une famille libre de 3 vecteurs , supposons que ce soit $\vec{e}_1, \vec{e}_2, \vec{e}'_1$) donc on obtient une base de $\mathbb{R}3$ (libre et de cardinal 3) et il existe $(\lambda, \mu, \nu) \in \mathbb{R}^3$ de sorte que $\vec{e}'_2 = \lambda \vec{e}_1 + \mu \vec{e}_2 + \nu \vec{e}'_1$.

Mais alors le vecteur $\vec{v} = \vec{e}_2' - \nu \vec{e}_1' = \lambda \vec{e}_1 + \mu \vec{e}_2$ est un vecteur commun à \vec{P}' et \vec{P} et tout vecteur colinéaire à \vec{v} aussi. Donc la droite vectorielle $\vec{D} = Vec(\vec{v})$ est contenue dans $\vec{P} \cap \vec{P}'$. On a donc nécessairement $\vec{D} = \vec{P} \cap \vec{P}'$ à cause des dimensions puisque $\vec{P} \cap \vec{P}'$ est un sous-espace vectoriel de \vec{P} (et de \vec{P}') dont la dimension est au plus 2 et que dire qu'il est de dimension 2 signifierait que $\vec{P} = \vec{P}'$.

Ainsi \vec{D} est l'intersection de deux plans vectoriels et si \vec{P} a pour équation Ax + By + CZ = 0 (avec $(A, B, C) \neq 0$) et \vec{P}' A'x + B'y + C'Z = 0 et $(A', B', C') \neq 0$, un système d'équations de \vec{D} est donc

(3.1)
$$\begin{cases} Ax + By + CZ = 0 \\ A'x + B'y + C'Z = 0 \end{cases}$$

et réciproquement la théorie des systèmes linéaires nous dit que l'ensemble des solutions du système $(3.1^{\circ}$ ci-dessus est :

- soit le plan \vec{P} si les deux lignes ci-dessus sont proportionnelles,
- soit une droite vectorielle si les deux lignes ci-dessus ne sont pas proportionnelles.

Attention dans l'espace une droite vectorielle a besoin d'un système linéaire de deux équations homogènes comme système d'équations.

Position relative de deux plans vectoriels

3.1.3 Position relatives d'une droite et d'un plan de l'espace vectoriel \mathbb{R}^3

 $\vec{P} = Vect(\vec{e}_1, \vec{e}_2)$ et $\vec{D} = Vec(\vec{v})$.

Raisonnons en terme de rang de la famille de vecteurs $\mathcal{F} = (\vec{e_1}, \vec{e_2}, \vec{v})$

- a) Regardons le premier cas : le rang est 2 donc $\vec{v} \in \vec{P}$ et $\vec{D} \subset \vec{P}$. Donc $\vec{D} \cap \vec{P} = \vec{D}$.
- b) Si le rang est 3 (ie la famille \mathcal{F} est libre), tout vecteur non nul de \vec{D} ne peut être dans \vec{P} car sinon cela contredirai la liberté de la famille \mathcal{F} . Donc $\vec{D} \cap \vec{P} = \{\vec{0}\}.$

Position relative d'une droite et d'un plan vectoriels dans \mathbb{R}^3

Lorsqu'on dispose d'une droite vectorielle et d'un plan vectoriel d'intersection réduite au vecteur nul (figure de droite ci-dessus), on a $\mathbb{R}^3 = \vec{D} \oplus \vec{P}$ et on peut parler de projection sur \vec{D} (resp. sur \vec{P}) parallèlement à \vec{P} (resp. à \vec{D}), en écrivant que

Si $\vec{u} = \vec{v_1} + \vec{v_2}$ où $\vec{v_1} \in \vec{P}, \vec{v_2} \in \vec{D}, p_{\vec{P}}(\vec{u}) = \vec{v_1}$, on pose $p_{\vec{D}}(\vec{u}) = \vec{v_2}$ et l'unicité des vecteurs $\vec{v_i}$ due à $\mathbb{R}^3 = \vec{D} \oplus \vec{P}$ donne à nouveau les propriétés de linéarité.

Projection et symétrie d'un vecteur sur un plan vectoriel parallèlement à une droite vectorielle \vec{D} dans \mathbb{R}^3

3.2 Structure euclidienne de \mathbb{R}^3 vu comme espace vectoriel

Définition 3.2. Le produit scalaire de deux éléments $\vec{u} = (u_1, u_2, u_3)$ et $\vec{v} = (v_1, v_2, v_3)$ de \mathbb{R}^3 est défini par :

$$\langle \vec{u}, \vec{v} \rangle = \vec{u}.\vec{v} = u_1v_1 + u_2v_2 + u_3v_3$$

C'est bien un produit scalaire au sens de la définition évoquée par les formules (2.9), (2.10) et (2.11). On peut donc définir une norme , on a la notion de vecteurs orthogonaux, le théorème de Pythagore marche avec la même démonstration donc Cauchy-Schwarz aussi.

On peut aussi construire des bases orthonormées par le procédé de Gramm-Schmidt (cf second semestre). On a

Proposition 3.3. Etant donné un vecteur \vec{u} , normé alors l'ensemble $S = \{\vec{v} \in \mathbb{R}^3 / \vec{u}.\vec{v} = \vec{0}\}$ est un plan vectoriel \vec{P} et \vec{u} est un vecteur normal à \vec{P} . Et réciproquement si \vec{P} a pour équation Ax + By + Cz = 0 le vecteur $\vec{N} = (A, B, C)$ est orthogonal à tous les vecteurs du plan \vec{P} .

Preuve: En effet si $\vec{u}=(a,b,c)$, l'ensemble $S=\{\vec{v}(x,y,z)\in\mathbb{R}^3/\vec{u}.\vec{v}=\vec{0}\}=\{\vec{v}(x,y,z)\in\mathbb{R}^3/ax+by+cz=0\}$ et l'on reconnait alors que S est un plan vectoriel.

Réciproquement, si \vec{P} a pour équation Ax + By + Cz = 0, tout vecteur $\vec{v}(x,y,z)$ vérifie $<\vec{N},\vec{v}>=0$.

30CHAPITRE 3. \mathbb{R}^3 COMME ESPACE VECTORIEL EUCLIDIEN

On peut alors définir à l'aide d'un plan \vec{P} et d'un vecteur normal \vec{N} , la projection orthogonale $p_{\vec{P}}$ et sur \vec{P} et celle orthogonale $p_{\vec{D}}$ sur $\vec{D} = Vect(\vec{N})$. Projection (et symétrique) orthogonale d'un vecteur sur un plan vectoriel dans \mathbb{R}^3

3.3 Exercices sur le chapitre 3

Exercice 10. On se place dans \mathbb{R}^3 , on se donne $a \in \mathbb{R}$ et on considère les vecteurs $\vec{u} = (2, -1, 0)$, $\vec{v} = (1, 1, a)$ et $\vec{w} = (a, -1, 1)$.

- 1. Donner une condition nécessaire et suffisante portant sur a pour que la famille $(\vec{u}, \vec{v}, \vec{w})$ soit libre.
- 2. En déduire les positions relatives des plans $\vec{P}=Vec(\vec{u},\vec{v})$ et $\vec{D}=Vec(\vec{w})$ en fonction de a.
- 3. Donner une équation cartésienne de $\vec{P} = Vec(\vec{u}, \vec{v})$ et un vecteur normal à \vec{P} . Donner tous les vecteurs orthogonaux à \vec{P} .
- 4. Donner un système d'équation de la droite $\vec{D}' = Vec(\vec{u})$ (on pourra déterminer une équation de $\vec{P}' = Vec(\vec{u}, \vec{w})$).
- 5. Existe-t-il une valeur de a pour laquelle \vec{w} soit orthogonal à \vec{P} ?
- 6. On se donne une vecteur $\vec{X}=(x,y,z)$, donner son image par la projection orthogonale sur \vec{P} et son symétrique orthogonal par raport à ce plan vectoriel.