Travail d'une force: $W_A^{3}(\vec{F}) = \int \vec{F} \cdot do H$; $[W_A^{3}(\vec{F})] = Joule(j)$ Dous le cason la force F'est constante: WA (F) = F. AB = 11F11 11 AB 11 CD (AB, F) Dons le cason F'= Fi (La force Fagit mivant l'axe x'on): WA (F) = | Fdx Puissance d'une force; P = F. ~ = ||F|||V|| co (v, F) [P] = Wat (W) = J Relation entre travoil et puisance: Puissance moyenne: Pm = W Puisance instantannée: P-dw Théorème de l'énergie cinétique: $\Delta E_{C_A} = W_A^B(\vec{F})$ où \vec{F} est-la résultante des forces appliquées

Chapitre 3: Travoil et Energie d'un point matériel-Résumé

Forces conservatives et forces non conservatives:
* Une force F est dite conservative si son travail entre deux positions
A et B he dépend pas du chemin suivi por le système en mouvement,
mais il dépend uniquement des positions in tiale A et finale B du
LILLEMO .
WA (Fc) = S Fc. don = Constante
19
On peut dire aussi que quel que soit le parcours fermé, le touriel
d'une force conservative est rul:
$\oint \vec{F}_{c} \cdot \vec{J} \cdot \vec{D} \vec{M} = 0$
Exemples: Poids, Tension d'un ressort, Force d'interaction grantationnelle,
Force électrique, une force constante,
* Une force Fre est dite non conservative si son travail dépend
du chemin micri
On peut dire aussi qu'il existe au moins un par cours fermé sur lequel
le travail de Fre est non rul.
Exemples: Force de froHement, lésistance de l'air
Energie potentielle:
A chaque force enservative correspond une énergie potentielle
donnée por: $\Delta E P_{A} = W_{A}^{B}(\vec{F}_{c}) = \int \vec{F} \cdot doH$
AEPA = -WA(tc) = -JF. dom
L'inverse est usuie e a l'écles que sous à malabielle estrement
L'inverse est vraie, c. a.d, à chaque energie potentielle correspond
une force conservative. La force conservative est dite a lors:
Force dérivant d'un potentiel.

Dans le cas d'un mouvement rechlighe suivant l'axe (x'0x): Ep= (Fdx = F= dEp Dans le cas d'un mouvement rechiligne suivant la direction radiale: Ep=_SFdr (=>F=_dEp Energie potentielle élostique: Ep = 1 k (Se)2 où De est la compression ou l'étirement du resorton de l'élestique k est la constante de raideur du rensort on de l'élastique. Force élastique: T= R De Energie potentielle gravitationnelle:

Très loin de la souface de la Terre: Exemple: Mouvement des satellite F = Gm TM Ur = mg RT ur r2	Au boisinage de la surface de la Terre: F = p = mgo ur
$Ep(r) = Gm_T m = -mg_0 R_T^2$	Ep(a) = mgoh
$E_{p}(r_{-})\infty)=0$	Ep (4=0) = 0

Théorème de l'énergie mécanique totale: ET = EC+EP

$$\Delta E_{T_A}^B - \Delta E_{C_A}^B + \Delta E_{P_A}^B = XI_A^B (\vec{F}_{NC})$$