Chris Fenton CNC - Formal Languages Homework 4

1. Let G be the grammar

a. Give a derivation of ababccddcc.

Derivation		Rule Applied
S =>	abSc	S -> abSc
=>	ababScc	S -> abSc
=>	ababAcc	S -> A
=>	ababcAdcc	A -> cAd
=>	ababccddcc	A -> cd

b. Build the derivation tree for the derivation in part a.

c. Use set notation to define L(G).

$$L(G) = \{ (ab)^n c^m d^m c^n | n \ge 0, m > 0 \}$$

2. Let G be the grammar

S -> ASB | λ

A -> aAb | λ

B -> bBa | ba

a. Give a leftmost derivation of aabbba.

Derivation		Rule Applied
S =>	ASB	S -> ASB
=>	aAbSB	A -> aAb
=>	aaAbbSB	A -> aAb
=>	aabbSB	Α -> λ
=>	aabbB	S -> λ
=>	aabbba	B -> ba

b. Give a rightmost derivation of abaabbbabbaa.

Derivation		Rule Applied
S =>	ASB	S -> ASB
=>	ASbBa	B -> bBa
=>	ASbbaa	B -> ba
=>	AASBbbaa	S -> ASB
=>	AASbabbaa	B -> ba
=>	AAbabbaa	S -> λ
=>	AaAbbabbaa	A -> aAb
=>	AaaAbbbabbaa	A -> aAb
=>	Aaabbbabbaa	Α -> λ
=>	aAbaabbbabbaa	A -> aAb
=>	abaabbbabbaa	Α -> λ

c. Build the derivation tree for the derivations in parts (a) and (b).

4. Let DT be the derivation tree

=> aaab

a. Give a leftmost derivation that generates the tree DT.

Derivation Rule Applied

S =>	AB	S -> AB
=>	aAB	A -> aA
=>	aaB	A -> a
=>	aaAB	B -> AB
=>	аааВ	A -> a

B -> b

b. Give a rightmost derivation that generates the tree DT.

Derivation Rule Applied

S =>	AB	S -> AB
=>	AAB	B -> AB
=>	AAb	B -> b
=>	Aab	A -> a
=>	aAab	A -> aA
=>	aaab	A -> a

12	Construct a grammar over { a	b } whose language contains precisely the strings with the
sa	me number of a's and b's	

S -> A |
$$\lambda$$

A -> aAb | bAa | λ

15. Give a regular grammar that generates the described language: The set of strings over $\{a, b, c\}$ in which all the a's precede the b's, which in turn precede the c's. It is possible that there are no a's, b's, or c's.

$$S \rightarrow A \mid \lambda$$

 $A \rightarrow aB \mid \lambda$
 $B \rightarrow bC \mid \lambda$
 $C \rightarrow c \mid \lambda$

21. Give a regular grammar that generates the described language: The set of strings over $\{a, b\}$ that do not contain the substring aba.

I've got the regular expression b*(a*bbb*)*a*b*, but I can't figure out where to go from there to convert this to the corresponding regular grammar (even though I know it has one!).

25. Give a regular grammar that generates the described language: The set of strings over $\{a, b\}$ with an even number of a's or an odd number of b's.