Оптимальное планирование сроков начала проекта при помощи методов тропической оптимизации

Губанов С. А., СПбФ КБ "Луч" инженер-программист, segubanov@mail.ru

Аннотация

Исследована задача управления проектами, которая состоит в минимизации максимального отклонения от директивных сроков начала работ при заданных ограничениях. Представлено прямое аналитическое решение задачи, основанное на методах тропической оптимизации.

Введение

Задачи оптимального временного планирования (составления календарных графиков) выполнения работ являются важной проблемой, которая возникает при управлении проектами [1, 2]. Эффективным подходом к решению таких задач является использование методов тропической математики, изучающей различные аспекты теории и применения алгебраических систем с идемпотентными операциями [3, 4, 5]. Применение методов тропической математики в задачах планирования исследуется, например, в статьях [6, 7, 8, 9]. В настоящей работе рассматривается задача минимизации максимального отклонения от директивных сроков начала работ при различных ограничениях на время начала и завершения работ. Задача сводится к задаче тропической оптимизации, при решении которой используется результат работы [10].

Задачи оптимального планирования

При составлении календарных графиков выполнения работ проекта возникают задачи, связанные с необходимостью обеспечить директивные сроки начала или завершения выполнения работ. Изучим подобную задачу, в которой требуется минимизировать максимальное отклонение времени начала работ от директивных сроков. В задаче имеются строгие ограничения, заданные в форме минимальных допустимых временных интервалов между началом и завершением различных работ (ограничения "старт-старт", "старт-финиш" и "финиш-старт"), а также в виде границ для времени начала и завершения каждой работы.

Для каждой работы $i=1,\ldots,n$ обозначим время начала и завершения через x_i и y_i . Самое раннее и самое позднее допустимое время начала работы обозначим через g_i и h_i , а наиболее позднее время завершения – через f_i . Эти величины устанавливают следующие временные границы для начала и завершения работ:

$$g_i \le x_i \le h_i, \quad y_i \le f_i.$$

Обозначим через b_{ij} минимально допустимый интервал времени между началом работы i и началом работы j. Если величина b_{ij} не задана, считаем $b_{ij} = -\infty$. Определим ограничения вида "старт-старт" в форме неравенств $b_{ij} + x_j \leq x_i$. После объединения неравенств по всем $j = 1, \ldots, n$ получим

$$\max_{1 \le j \le n} (b_{ij} + x_j) \le x_i.$$

Пусть c_{ij} – минимальный допустимый интервал между временем начала работы i и временем завершения работы j ($c_{ij} = -\infty$, если интервал не задан). Запишем ограничения "старт-финиш" в виде неравенств $c_{ij} + x_j \leq y_i$. Объединив неравенства по всем j, имеем неравенство

$$\max_{1 \le j \le n} (c_{ij} + x_j) \le y_i.$$

Предполагается, что работа завершается как только для нее выполняются заданные ограничения "старт-финиш". Из этого следует, что хотя бы для одного j выполняется равенство $c_{ij}+x_j=y_i$, а предыдущее неравенство можно заменить равенством

$$\max_{1 \le i \le n} (c_{ij} + x_j) = y_i.$$

Для представления ограничений "финиш-старт" обозначим минимальный допустимый интервал между временем завершения работы i и временем начала j – через d_{ij} (если интервал не задан, будем считать $d_{ij} = -\infty$) и запишем ограничения в виде неравенства

$$\max_{1 \le j \le n} (d_{ij} + y_j) \le x_i.$$

Пусть для каждой работы i определен директивный срок (установочное время) начала p_i . Будем считать, что в задаче требуется по возможности минимизировать максимальное отклонение от директивного времени начала снизу $p_i - x_i$ и сверху $x_i - p_i$ по всем работам

 $i=1,\ldots,n$. Тогда критерий оптимальности плана, который требуется минимизировать, записывается в виде

$$\max\left(\max_{1\leq i\leq n}(p_i-x_i),\max_{1\leq i\leq n}(x_i-p_i)\right).$$

Сформулируем задачу минимизации максимального отклонения от директивных сроков начала:

$$\min_{x_{i},y_{i}} \max \left(\max_{1 \leq i \leq n} (p_{i} - x_{i}), \max_{1 \leq i \leq n} (x_{i} - p_{i}) \right);$$

$$\max_{1 \leq j \leq n} (b_{ij} + x_{j}) \leq x_{i}, \quad \max_{1 \leq j \leq n} (c_{ij} + x_{j}) = y_{i},$$

$$\max_{1 \leq j \leq n} (d_{ij} + y_{j}) \leq x_{i}, \quad g_{i} \leq x_{i} \leq h_{i},$$

$$y_{i} \leq f_{i}, \quad i = 1, \dots, n.$$
(1)

В следующих разделах эта задача и ее решение будут представлены в терминах тропической математики в компактной векторной форме.

Определения и обозначения

Для описания и решения задачи тропической оптимизации, к которой в дальнейшем сводится рассматриваемая задача составления календарного графика, потребуется обзор используемых определений и обозначений тропической (идемпотентной) математики [3, 4, 5].

Идемпотентным полуполем называется алгебраическая система $\langle \mathbb{X}, \mathbb{O}, \mathbb{1}, \oplus, \otimes \rangle$, где \mathbb{X} – множество, замкнутое относительно ассоциативных и коммутативных операций сложения \oplus и умножения \otimes . Множество \mathbb{X} содержит нейтральные элементы ноль \mathbb{O} и единицу $\mathbb{1}$. Сложение обладает свойством идемпотентности, т.е. для любого $x \in \mathbb{X}$ выполняется равенство $x \oplus x = x$, а умножение дистрибутивно относительно сложения и обратимою, т.е. для каждого $x \neq \mathbb{O}$ существует обратный элемент x^{-1} такой, что $x \otimes x^{-1} = \mathbb{1}$. Знак операции умножения \otimes для простоты далее будет опускаться.

При помощи идемпотентного сложения задан следующий частичный порядок: $x \leq y$ тогда и только тогда, когда $x \oplus y = y$. Считается, что этот частичный порядок дополнен до линейного порядка на \mathbb{X} .

Целая степень определяется как обычно: $x^0 = 1$, $x^p = x^{p-1}x$, $x^{-p} = (x^{-1})^p$, $0^p = 0$ для каждого $x \neq 0$ и целого p > 0. Предполагается, что операция возведения в рациональную степень также определена.

Вещественное полуполе $\mathbb{R}_{\max,+} = \langle \mathbb{R} \cup \{-\infty\}, -\infty, 0, \max, + \rangle$, где $\mathbb{0} = -\infty$, $\mathbb{1} = 0$, $\oplus = \max$ и $\otimes = +$ является примером идемпотентного полуполя и будет далее использовано для решения исследуемой задачи.

Обозначим через $\mathbb{X}^{m \times n}$ множество матриц, состоящих из m строк и n столбцов с элементами из \mathbb{X} , а через \mathbb{X}^n — множество векторовстолбцов из n элементов. Матрица называется регулярной по столбцам, если она не имеет нулевых столбцов.

Для согласованных по размеру матриц и векторов сложение, умножение и умножение на скаляр выполняются по обычным формулам с заменой арифметических операций + и \times на \oplus и \otimes . Отношение порядка, которое было определено выше, обобщается на матрицы и векторы, и понимается покомпонентно.

Для любого вектора $x \in \mathbb{X}^n$ обозначим транспонированный вектор как x^T . Вектор, все элементы которого равны \mathbb{O} , является нулевым. Вектор называется регулярным, если он не имеет нулевых элементов.

Для ненулевого вектора $\boldsymbol{x}=(x_i)$ определен мультипликативно сопряженный вектор-строка $\boldsymbol{x}^-=(x_i^-)$ с элементами $x_i^-=x_i^{-1}$ при условии, что $x_i\neq 0$, и $x_i^-=0$ в противном случае.

Для любой квадратной матрицы \boldsymbol{A} определена целая степень p>0 следующим образом: $\boldsymbol{A}^0=\boldsymbol{I},\, \boldsymbol{A}^p=\boldsymbol{A}^{p-1}\boldsymbol{A},$ где \boldsymbol{I} – единичная матрица с элементами, равными $\mathbb 1$ на главной диагонали и $\mathbb 0$ – вне ее.

Для квадратной матрицы ${\pmb A}=(a_{ij})$ порядка n след вычисляется по формуле

$$\operatorname{tr} \mathbf{A} = a_{11} \oplus \cdots \oplus a_{nn} = \bigoplus_{i=1}^{n} a_{ii}.$$

Для матрицы A введем функцию

$$\operatorname{Tr}(\boldsymbol{A}) = \operatorname{tr} \boldsymbol{A} \oplus \cdots \oplus \operatorname{tr} \boldsymbol{A}^n = \bigoplus_{k=1}^n \operatorname{tr} \boldsymbol{A}^k.$$

При выполнении условия $\mathrm{Tr}(A) \leq \mathbb{1}$ определена матрица Клини

$$m{A}^* = m{I} \oplus m{A} \oplus \cdots \oplus m{A}^{n-1} = igoplus_{k=0}^{n-1} m{A}^k.$$

Решение задачи оптимального планирования

Представим задачу минимизации максимального отклонения от директивных сроков начала работ (1) в терминах идемпотентного полу-

поля $\mathbb{R}_{\max,+}$. Сперва введем следующие матрицы и векторы:

$$B = (b_{ij}), \quad C = (c_{ij}), \quad D = (d_{ij}),$$

 $x = (x_i), \quad y = (y_i), \quad f = (f_i), \quad g = (g_i), \quad h = (h_i), \quad p = (p_i).$

Путем замены арифметических операций на операции полуполя $\mathbb{R}_{\max,+}$ представим задачу в векторном виде в форме

$$egin{align} \min & x^-p \oplus p^-x, \ Bx \leq x, \quad Cx = y, \ Dy \leq x, \quad g \leq x \leq h, \ y < f. \ \end{array}$$

На основе применения результатов работы [10] получим решение задачи оптимизации в виде следующего утверждения.

Лемма 1 Пусть B и D – матрицы, C – регулярная по столбцам матрица такие, что матрица $R = B \oplus DC$ удовлетворяет условию $\mathrm{Tr}(R) \leq \mathbb{1}$. Пусть g – вектор, а f и h – регулярные векторы такие, что вектор $s^T = f^-C \oplus h^-$ удовлетворяет условию $s^T R^* g \leq \mathbb{1}$.

Тогда минимальное значение целевой функции в задаче (2) равно

$$\theta = (\boldsymbol{p}^{-}\boldsymbol{R}^{*}\boldsymbol{p})^{1/2} \oplus \boldsymbol{s}^{T}\boldsymbol{R}^{*}\boldsymbol{p} \oplus \boldsymbol{p}^{-}\boldsymbol{R}^{*}\boldsymbol{g},$$

а все регулярные решения имеют вид

$$x = R^*u$$
, $y = CR^*u$,

где u – любой регулярный вектор, который удовлетворяет условиям

$$g \oplus \theta^{-1} p \le u \le ((s^T \oplus \theta^{-1} p^-) R^*)^-.$$

Заключение

Изучена задача минимизации максимального отклонения времени начала работ от директивных сроков при ограничениях вида "стартстарт", "старт-финиш", "финиш-старт" и допустимых границах для времени начала и времени окончания работ. Предложено аналитическое решение задачи в компактной векторной форме на основе использования методов и результатов тропической оптимизации.

Список литературы

- [1] T'kindt V. and Billaut J.-C. Multicriteria Scheduling. 2 ed. Berlin: Springer, 2006.
- [2] Kerzner H. Project Management. 10 ed. Hoboken: Wiley, 2010. 1094 p.
- [3] Маслов В. П., Колокольцев В. Н. Идемпотентный анализ и его применение в оптимальном управлении. М.: Физматлит, 1994.
- [4] Кривулин Н. К. Методы идемпотентной алгебры в задачах моделирования и анализа сложных систем. СПб.: Изд-во С.-Петерб. ун-та., 2009.
- [5] Butkovič P., Max-linear Systems: Theory and Algorithms. Springer Monographs in Mathematics. London: Springer, 2010.
- [6] Krivulin N. Direct solution to constrained tropical optimization problems with application to project scheduling //Computational Management Science. 2017. Vol. 14. N 1. P. 91-113.
- [7] Krivulin N., Tropical optimization problems with application to project scheduling with minimum makespan // Annals of Operations Research. 2017. Vol. 256, N 1. P. 75-92.
- [8] Krivulin N., Tropical optimization problems in time-constrained project scheduling. // Optimization. 2017. Vol. 66, N 2. P. 205-224.
- [9] Кривулин Н. К., Губанов С. А. Алгебраическое решение задачи оптимального планирования сроков проекта в управлении проектами // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия. 2021. Т. 8. Вып. 1. С. 73-87.
- [10] Krivulin N. Complete solution of a constrained tropical optimization problem with application to location analysis // Relational and Algebraic Methods in Computer Science. Cham: Springer, 2014. P. 362-378. (Lecture Notes in Computer Science, Vol. 8428.)