ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Precisely loading Pt on Tb4O7/CN heterojunction for efficient photocatalytic overall water splitting: Design and mechanism

Dedong Zeng, Yuexiang Li

School of Chemistry and Chemical Engineering, Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Nanchang University, Nanchang 330031, PR China

ARTICLE INFO

Keywords:
Photocatalytic overall water splitting
Tb₄O₇/CN
Pt loading site
Synergistic effect
Anti-synergistic effect

ABSTRACT

Constructing heterojunction is an effective strategy for fighting electron-hole pairs recombination. Loading of hydrogen evolution reaction (HER) cocatalysts on a heterojunction is crucial for efficient photocatalytic overall water splitting (POWS). However, how to achieve a synergy between the heterojunction and HER cocatalyst remains a challenge. Herein, we propose a novel design strategy: selectively loading HER cocatalyst Pt on Tb_4O_7/CN . We found that engineering Pt on the Tb_4O_7 section of Tb_4O_7/CN can synergistically promote the photogenerated charge separation and thus enhances the POWS activity. The H_2 production rate is about 2.8 times higher than that of Tb_4O_7/CN . In contrast, engineering Pt on the CN section leads to increasing photogenerated electron-hole recombination and deactivating the POWS activity, about 2.6 times as low as that of Tb_4O_7/CN . These findings highlight the significance of synergism of Pt loading sites with the charge separation of heterojunctions, providing insights on developing efficient photocatalysts for POWS.

1. Introduction

POWS is a promising approach for addressing energy shortage and environmental issues by converting inexhaustible solar energy into green H2 fuel and high-value H2O2 [1-9]. Carbon nitride (CN) as a metal-free semiconductor has attracted considerable attention for its potential application in POWS since Wang and his coworkers developed it as a photocatalyst in 2009 [10-16]. However, multiple developed CN-based photocatalysts cannot satisfy the requirement of the large-scale practical application because of the fast electron-hole pairs recombination and the sluggish HER reaction kinetics [17-19]. The strategies for improving charge separation include morphology engineering [20,21], cocatalyst incorporation [22-25] and heterojunction construction [26-33] etc. Among them, heterojunction construction is the most effective approach for accelerating the separation/transmission of photogenerated electron-hole pairs [28,29], including Z-scheme heterojunction [34], S-scheme heterojunction [35,36] and anisotropic heterojunction [27,28] etc. Although many heterojunctions have been reported, there are few reports on CN-based heterojunctions decorated by rare earth oxides [30,31].

Recently, Tb₄O₇/CN heterojunction with a distinctive sandwich structure has been successfully explored [32]. The introduced Tb₄O₇

remarkably enhances the charge separation in Tb_4O_7/CN heterojunction and acts simultaneously as a HER cocatalyst. However, the HER activity of Tb_4O_7 is limited. Loading an efficient HER cocatalyst is expected. Pt is a highly efficient HER cocatalyst that has been widely used for improving the POWS performance of heterojunctions [37–39]. Because Tb_4O_7/CN heterojunction has realized considerable charge separation, the Pt loading sites should be compatible with the separation and transport of photogenerated charges. Thus, unveiling the nature of the synergistic effect of the Pt loading sites is a key issue to be solved [40]. Besides, the precise loading of Pt on a given location of the heterojunction also faces a great challenge [41,42].

In this study, precisely loading metallic Pt on Tb₄O₇/CN heterojunction has been achieved by a controllable photo-deposition strategy through engineering surface charge of Tb₄O₇/CN heterojunction and employing two charged precursors of Pt: [PtCl₆]²⁻ and [Pt(NH₃)₄]²⁺. As the negative-charged [PtCl₆]²⁻ is adopted, Pt is selectively loaded on the positive-charged Tb₄O₇ section of Tb₄O₇/CN heterojunction to form Pt-Tb₄O₇/CN photocatalyst. The Pt loading in this mode is synergistic with the charge separation of Tb₄O₇/CN. On the other hand, when [Pt (NH₃)₄]²⁺ is employed, the metallic Pt is selectively loaded on CN of Tb₄O₇/CN heterojunction to construct Tb₄O₇/CN-Pt heterojunction photocatalyst, which is anti-synergistic with the charge separation.

E-mail address: liyx@ncu.edu.cn (Y. Li).

^{*} Corresponding author.

Under the synergistic case, Pt-Tb₄O₇/CN displays a great enhancement of POWS activity with a $\rm H_2$ evolution rate of 132 $\mu mol~h^{-1}~g^{-1}$, accompanying with stoichiometric $\rm H_2O_2$ production, which is about 2.8 times as high as that of Tb₄O₇/CN heterojunction. The apparent quantum yield (AQY) for $\rm H_2$ evolution at 420 nm reaches to 5.9%. However, under the anti-synergistic case, the $\rm H_2$ evolution rate and $\rm H_2O_2$ production rate of Tb₄O₇/CN-Pt photocatalyst are 18.2 and 16.5 $\mu mol~h^{-1}~g^{-1}$, respectively, about 2.6 times as low as that of Tb₄O₇/CN heterojunction. These findings highlight the significance of the synergism of Pt loading sites with charge carrier separation/transfer of heterojunctions, providing insights on developing efficient heterojunction photocatalysts for POWS by manipulating electron/hole transfer kinetics.

2. Experimental

2.1. Preparation of Tb₄O₇/CN heterojunction photocatalyst

 Tb_4O_7/CN heterojunction was synthesized according to our previous work [32]. Firstly, 10.0 g of melamine and 37.5 mg of Tb_4O_7 were mixed in an agate mortar. Secondly, the mixed powder was spread uniformly on a cylindrical alumina crucible with a lid and heated at a rate of 5 °C min^{-1} to 520 °C and hold the temperature for 2 h. After cooling to room temperature, the final Tb_4O_7/CN heterojunction was obtained by grinding. For comparison, pristine CN was prepared via the similar method for Tb_4O_7/CN heterojunction in the absence of Tb_4O_7 .

2.2. Zeta potential determination of Tb₄O₇ and CN

Similar to the previous reports, the Zeta potentials of pristine CN [43] and bare Tb_4O_7 [44] were measured in phosphate buffered solutions (PBS) on a Zeta potential analyzer (Malvern, Zetasizer Nano, ZS90). In brief, 5.0 mg of the as-prepared CN sample was decentralized in 5.0 mL of a PBS followed by ultrasonication treatment for 30 min. Subsequently, the resultant suspension was transferred to a test cell of the apparatus to read the zeta potential values. Each specimen was tested three times to take the average value. The pH value (3.5, 4.5, 5.5, 6.8, or 7.8) of the PBS was obtained by mixing different volumes of 0.20 M K_2HPO_4 , KH_2PO_4 and KH_2PO_4 solution with the assistance of a pH device. The isoelectric point (IEP) was determined by plotting the zeta potential against the pH value. The IEP of Tb_4O_7 was similarly obtained.

2.3. Preparation of Pt-Tb₄O₇/CN-x photocatalysts

Pt-Tb₄O₇/CN-x photocatalysts were prepared by a photo-deposition method using the as-prepared Tb₄O₇/CN heterojunction as the raw material and H₂PtCl₆ as the Pt source. Firstly, 100.0 mg of Tb₄O₇/CN heterojunction was added into 100.0 mL of a PBS with a certain pH value (4.5, 5.7, 6.8, 7.8, 9.0 or 10) under vigorous stirring, and subsequently, 0.8 mL of H_2 PtCl₆ solution (1.93 \times 10⁻³ mol/L) was added dropwise into the suspension. Then, the suspension was poured into a quartz reactor followed by vacuum treatment to degas the air. And then, the suspension was irradiated with a Xe lamp for 2 h under magnetic stirring. During the process, the [PtCl₆]²⁻ was photo-reduced into metallic Pt. Finally, the solid product was separated by centrifugation, washed times with deionized (DI) water, and dried at 60 °C in a vacuum oven overnight. The obtained sample was labeled as Pt-Tb₄O₇/CN-x, where x represented the pH value of the PBS. When pH was 7.8, Pt was selectively loaded on the Tb₄O₇ section of Tb₄O₇/CN. Consequently, the name of Pt-Tb₄O₇/CN-7.8 was simplified as Pt-Tb₄O₇/CN.

2.4. Preparation of Tb₄O₇/CN-Pt photocatalyst

 Tb_4O_7/CN -Pt, in which Pt was selectively loaded on the CN section of Tb_4O_7/CN , was prepared by a similar photo-deposition method using [Pt (NH₃)₄]Cl₂ as the Pt source. In brief, 100.0 mg of Tb_4O_7/CN heterojunction was added into 100.0 mL of pH 7.8 PBS followed by vigorous

stirring, and subsequently, 0.78 mL of $[Pt(NH_3)_4]Cl_2$ (2.0 x 10⁻³ mol/L) was added dropwise into the suspension. Then, this suspension was transferred into a vacuum quartz reactor. And then, the $[Pt(NH_3)_4]^{2+}$ was photo-reduced into metallic Pt with the assistance of the Xe lamp irradiation for 2 h. Finally, the solid product was separated by centrifugation, washed times with DI water, and dried at 60 °C in a vacuum oven overnight to obtain the Tb_4O_7/CN -Pt photocatalyst.

2.5. Photocatalytic overall water splitting performance

The POWS reaction was implemented in a vacuum quartz reactor linked to a N2 gas-circulation equipment (Labsolar 6 A, Beijing Perfectlight). 50.0 mg of the as-prepared photocatalyst was dispersed in 100.0 mL of DI water. A 300 W Xe lamp (TSL-300S, Jiangsu Hengxi New Material Technology Co., Ltd) was employed as the light resource with a 420 nm optical filter to ensure visible light irradiation ($\lambda > 420$ nm). Before the POWS reaction, the reaction system was evacuated to remove the air thoroughly. During the POWS process (8 h), magnetic stirring was applied to keep the powder photocatalyst in a suspension state, and the circulated cooling water was employed to maintain the temperature of the reaction system at 6 °C. The gas product (H₂) was monitored at a given interval (one hour) on an online gas chromatograph (GC) (thermal conductivity detector, X13-molecular sieve column, nitrogen as carried gas). The liquid product (H₂O₂) was tested by UV-Vis spectrophotometry (UV6100) at 530 nm wavelength with a titanium sulfate as the chromogenic agent [45]. The stability of Pt-Tb₄O₇/CN for POWS was operated for 5 successive cycles. In each cycle, the photocatalyst was separated by centrifugation. The recovered photocatalyst was re-decentralized in 100.0 mL DI water, followed by deaeration and subsequently 4 h light radiation for a new cycle.

The raw materials, the specimen characterizations, the AQY determination of optical reaction and photo-electrochemistry measurements are detailed in the supporting information.

3. Results and discussion

3.1. Orient loading of Pt on Tb₄O₇ of Tb₄O₇/CN and its effect on POWS

3.1.1. Design, preparation and characterization

The prepared Tb_4O_7/CN heterojunction is used as raw material for loading Pt. The Fourier transform infrared (FT-IR) spectrum (Fig. S1a) and X-ray diffraction (XRD) pattern (Fig. S1b) of Tb_4O_7/CN heterojunction reveal that the prepared Tb_4O_7/CN is a composite of Tb_4O_7 and CN. The scanning electron microscope (SEM) image (Fig. S2) shows a distinctive sandwich structure of Tb_4O_7/CN heterojunction.

In this work, oriented loading of Pt on Tb₄O₇/CN is realized by engineering surface charge and photo-reduction technique. To achieve precise loading of metallic Pt on the Tb₄O₇ section of Tb₄O₇/CN using $[PtCl_6]^{2-}$ as the precursor, the IEPs of CN and Tb_4O_7 were determined by measuring the Zeta potential at a series of pHs. Fig. S3 shows that the IEP values of CN and Tb₄O₇ are 5.6 and 9.5, respectively. The result means that when the Tb₄O₇/CN heterojunction is placed into a PBS reaction solution with a pH < 5.6, both Tb₄O₇ and CN are positively charged, which can attract the $\left[\text{PtCl}_6\right]^2$. However, when the pH of the reaction solution is in the range of 5.6–9.5, [PtCl₆]²⁻ cannot be adsorbed on the CN section of Tb₄O₇/CN due to electrostatic repulsion, but can be adsorbed on the Tb₄O₇ section of Tb₄O₇/CN owing to the electrostatic attraction. Thus, as is shown in Fig. 1, when Tb₄O₇/CN is irradiated by visible light at pH 7.8, [PtCl₆]²⁻ can be reduced into metallic Pt on the Tb₄O₇ section of Tb₄O₇/CN by the photogenerated electrons from Tb₄O₇/CN. However, at pH 4.5, metallic Pt is deposited in both CN and Tb₄O₇ sections of Tb₄O₇/CN due to the non-selective adsorption of $[PtCl_6]^2$.

The FT-IR spectra (Fig. S4a), XRD patterns (Fig. S4b), SEM images (Fig. S5a-b) and BET analysis (Fig. S6a-b) of Pt-Tb₄O₇/CN-4.5 and Pt-Tb₄O₇/CN evidently demonstrate that the loading Pt does not alter the

Fig. 1. Schematic diagram of the preparation process of Pt-Tb₄O₇/CN and Pt-Tb₄O₇/CN-4.5 photocatalysts.

composition and distinctive sandwich structure of Tb₄O₇/CN heterojunction (Fig. S2). The inductively coupled plasma atomic emission spectrometer (ICP-AES) (Fig. S7) analysis confirms that the Pt has been successfully loaded on Pt-Tb₄O₇/CN-4.5 and Pt-Tb₄O₇/CN, and their loading amounts are close. The transmission microscope (TEM) (Fig. 2a₁) shows that the loading of Pt on Pt-Tb₄O₇/CN is uneven, while the loading Pt on Pt-Tb₄O₇/CN-4.5 is relatively even (Fig. $2b_1$). The High-Resolution TEM (HRTEM) image of Pt-Tb₄O₇/CN (Fig. 2a₂) confirms that a Pt particle (red circle) is loaded on the Tb₄O₇ section of Tb₄O₇/CN because the lattice fringe spaces of 0.23 nm and 0.30 nm relate to the (111) crystal facet of metallic Pt [39] and (111) crystal facet of Tb₄O₇, respectively. On the other hand, the HRTEM image of Pt-Tb₄O₇/CN shows that there is no Pt particle in the amorphous CN area (Fig. 2a₃). These results clearly demonstrate that the Pt loading of Pt-Tb₄O₇/CN is oriented to Tb₄O₇. However, for Pt-Tb₄O₇/CN-4.5 photocatalyst, the loading of Pt is non-selective. It can be ascribed to the fact that the lattice fringe of Pt can be discovered not only on Tb₄O₇

(Fig. 2b₂) but also on an amorphous CN (Fig. 2b₃). The High-Resolution X-ray photoelectron spectra (HR-XPS) of Pt 4 f (Fig. 2c) further confirm that the Pt deposited in Pt-Tb₄O₇/CN and Pt-Tb₄O₇/CN-4.5 are metallic Pt due to the characteristic double peaks of 74.7/74.5 and 71.6/71.4 eV which are ascribed to Pt 4 $f_{5/2}$ and 4 $f_{3/2}$, respectively [46]. Compared to that of Pt-Tb₄O₇/CN, the Pt 4 f binding energy of Pt-Tb₄O₇/CN-4.5 decreases by 0.2 eV, indicating that an interaction between metallic Pt and N of CN occurs in Pt-Tb₄O₇/CN-4.5 due to the Lewis acid-base coordination but not in Pt-Tb₄O₇/CN [47]. Fig. 2d exhibits the HR-XPS spectra of N 1 s, the binding energy peaks of Tb₄O₇/CN located at 398.9, 400.8 and 401.2 eV correspond to the C=N-C, N-(C)₃ and C-NH_x, respectively. The N 1 s binding energy of N = C-N heptazine rings (399.2 eV) of $Pt-Tb_4O_7/CN-4.5$ is higher than that (398.9 eV) of Tb_4O_7/CN , suggesting that the presence of an interaction between N and metallic Pt in Pt-Tb₄O₇/CN-4.5 photocatalyst. This result supports that Pt is loaded on the CN section of Pt-Tb₄O₇/CN-4.5, agreeing well with the HRTEM analysis result and the HR-XPS analysis result of Pt 4 f. The N1s binding

Fig. 2. (a_1) TEM image and (a_2-a_3) HRTEM images of Pt-Tb₄O₇/CN, (b_1) TEM image and (b_2-b_3) HRTEM images of Pt-Tb₄O₇/CN-4.5, (c) HR-XPS spectra of Pt 4 f, (d) HR-XPS spectra of N 1 s of Pt-Tb₄O₇/CN, Pt-Tb₄O₇/CN-4.5 and Tb₄O₇/CN.

energy (C \equiv N-C) of Pt-Tb₄O₇/CN is the same as that of Tb₄O₇/CN heterojunction, further verifying that Pt is not loaded on CN but on the Tb₄O₇ section of Pt-Tb₄O₇/CN. Based on the above characterizations, one can conclude that the selective loading of Pt on Tb₄O₇ has been achieved for Pt-Tb₄O₇/CN, while the loading of Pt for Pt-Tb₄O₇/CN-4.5 is non-selective.

3.1.2. Optical and electrical performances

Fig. 3a gives the UV-vis diffuse reflection spectra of Tb₄O₇/CN, Pt- Tb_4O_7/CN -4.5 and Pt- Tb_4O_7/CN . Compared to the Tb_4O_7/CN heterojunction, the absorption edge of Pt-Tb₄O₇/CN-4.5 and Pt-Tb₄O₇/CN display no obvious red/blue-shift. The Pt loading does not significantly affect the band gaps (Fig. S8). Nevertheless, the optical absorption intensities for both Pt-Tb₄O₇/CN-4.5 and Pt-Tb₄O₇/CN increase in the long-wavelength region; compared to that of Tb₄O₇/CN, which is owing to localized surface plasma resonance of the metallic Pt loaded on Tb₄O₇/CN [48]. Fig. 3b shows the photoluminescence (PL) spectra of Tb₄O₇/CN, Pt-Tb₄O₇/CN-4.5 and Pt-Tb₄O₇/CN photocatalysts. Pt-Tb₄O₇/CN exhibits a greatly decreased PL intensity compared to Tb₄O₇/CN, indicating that the completely selective Pt loading on Tb₄O₇ greatly declines the electron-hole pairs recombination [49]. However, Pt-Tb₄O₇/CN-4.5 displays a slightly increased PL intensity in comparison with Tb₄O₇/CN, suggesting a higher charge carrier recombination due to partially non-selective Pt loading on CN (see Section 3.3). The time-resolved PL decay spectra (Fig. 3c and Table S1) show that the PL lifetimes of Tb₄O₇/CN, Pt-Tb₄O₇/CN-4.5 and Pt-Tb₄O₇/CN are 10.34, 9.98 and 12.89 ns, respectively. The longest PL lifetime (12.89 ns) for Pt-Tb₄O₇/CN indicates the lowest electron-hole pairs recombination rate, in line with the result from Fig. 3b. The highest photocurrent (Fig. 3d) of the as-prepared Pt-Tb₄O₇/CN further reveals that the precise loading of metallic Pt on Tb₄O₇ greatly promotes the charge separation. Fig. 3e shows the electrochemical impedance spectra (EIS) of Tb₄O₇/CN, Pt-Tb₄O₇/CN-4.5 and Pt-Tb₄O₇/CN photocatalysts. The smallest semicircle at high frequency represents the lowest interfacial charge

transport resistance (R_{ct}) [50]. Among them, the Pt-Tb4O7/CN possesses the smallest semicircle ($R_{ct}=1386~\Omega~cm^2)$ while the Tb4O7/CN has the largest semicircle ($R_{ct}=1757~\Omega~cm^2)$, verifying that the loading Pt on Tb4O7/CN can efficiently reduce interfacial charge transport resistance. Fig. 3f shows the linear sweep voltammetry (LSV) curves of Tb4O7/CN, Pt-Tb4O7/CN-4.5 and Pt-Tb4O7/CN photocatalysts. The overpotentials of both Pt-Tb4O7/CN-4.5 and Pt-Tb4O7/CN photocatalysts are decreased in comparison with the pristine Tb4O7/CN. The decrease of the overpotentials can be attributed to the extremely high intrinsic HER activity of Pt [51]. Pt-Tb4O7/CN-4.5 exhibits a lower HER activity than Pt-Tb4O7/CN because of the difference in the charge transport resistance.

3.1.3. POWS performance

POWS performance of Tb₄O₇/CN, Pt-Tb₄O₇/CN-4.5 and Pt-Tb₄O₇/ CN photocatalysts were evaluated by H2-evolving rate under visible light ($\lambda > 420$ nm) irradiation. As is shown in Fig. 4a, Pt-Tb₄O₇/CN photocatalyst exhibits a vigorously enhanced POWS activity with a H2 evolution rate of 132 μ mol h⁻¹ g⁻¹, about 2.8 times as high as that of the Tb₄O₇/CN heterojunction. Simultaneously, the H₂O₂ is produced with a rate of 130 μ mol h⁻¹ g⁻¹, demonstrating that the POWS is a two-electron reaction process (2 $H_2O \rightarrow H_2 + H_2O_2$) [52]. No O_2 can be detected in the reaction system. This enhanced POWS activity of Pt-Tb₄O₇/CN can be ascribed to the improved charge separation and high HER activity from the oriented Pt loading. However, Pt-Tb₄O₇/CN-4.5 displays a slightly declined POWS activity (42.9 µmol h⁻¹ g⁻¹ for H₂ evolution and 40.8 μ mol h⁻¹ g⁻¹ for H₂O₂ production) compared to the pristine Tb₄O₇/CN heterojunction (48.9 μ mol h⁻¹ g⁻¹ for H₂ evolution and 47.1 μ mol h⁻¹ g⁻¹ for H₂O₂ production). The slight decreased POWS performance is mainly contributed to the increased charge recombination (Fig. 3b-c) and higher charge transport resistance (Fig. 3e).

Fig. 4b displays UV-Vis diffuse reflectance spectrum and AQY of Pt- Tb_4O_7/CN at different monochromatic wavelengths. The AQY values at 420, 450 and 470 nm for photocatalytic H_2 production are 5.9%, 1.6%

Fig. 3. (a) UV-vis diffuse reflection spectra, (b) PL emission spectra, (c) Time-resolve PL decay spectra, (d) Photocurrent response curves, (e) EIS, (f) LSV plots of Tb_4O_7/CN , $Pt-Tb_4O_7/CN$, $Pt-Tb_4O_7/CN$, and $Pt-Tb_4O_7/CN$ photocatalysts.

Fig. 4. (a) POWS activity of Tb_4O_7/CN , $Pt-Tb_4O_7/CN$. 4.5 and $Pt-Tb_4O_7/CN$ photocatalysts for H_2 and H_2O_2 production. (b) UV-Vis diffuse reflectance spectrum and AQY of $Pt-Tb_4O_7/CN$ at different monochromatic wavelengths for POWS. (c) Stability test of $Pt-Tb_4O_7/CN$ for POWS. (d) XRD patterns of $Pt-Tb_4O_7/CN$ before and after 20 h POWS.

and 0.96%, respectively. The rapid decline of AQY with the increasing radiation wavelength suggests that the $\rm H_2$ generation is driven by light irradiation. Notably, the as-prepared Pt-Tb₄O₇/CN photocatalyst exhibits an excellent POWS performance in comparison with the recently reported CN-based heterojunction photocatalysts (Table S2). As shown in Fig. 4c, the Pt-Tb₄O₇/CN is stable in 5 uninterrupted cycles for 20 h irradiation. After 20 h reaction, the XRD pattern of the utilized Pt-Tb₄O₇/CN photocatalyst is in line with that of the initial sample (Fig. 4d), and the unique sandwich morphology and Pt chemical state of Pt-Tb₄O₇/CN photocatalyst remain unchanged (Fig. S9 and Fig. S10), further verifying the superior stability of Pt-Tb₄O₇/CN photocatalyst.

The effects of Pt loading content at pH 7.8 and photo-deposition pH on the POWS activity of Pt-Tb₄O₇/CN-x photocatalysts were investigated. The optimal Pt loading content and photo-deposition pH value are determined to be 0.30 wt% (Fig. S11a) and 7.8 (Fig. S11b), respectively. As shown in Fig. S11b, when pH value is above 7.8, the reduced POWS activity is attributed to the decreased Pt loading content (Fig. S7) at pH 9.0 and 10, respectively. At pH 6.8, although the Pt loading content (0.31 wt%) is close to the optimal 0.30 wt% for Pt-Tb₄O₇/CN, the POWS activity of Pt-Tb₄O₇/CN-6.8 is significantly lower than that of Pt-Tb₄O₇/CN. The HR-XPS spectrum of N 1 s of Pt-Tb₄O₇/CN-6.8 is similar to the spectra of Pt-Tb₄O₇/CN and Tb₄O₇/CN (Fig.S12), verifying that Pt is also selectively loaded on Tb₄O₇ section of Tb₄O₇/CN rather than on CN section. The TEM images show that the mean size of Pt nanoparticles for Pt-Tb₄O₇/CN-6.8 and Pt-Tb₄O₇/CN are 6.7 and 4.4 nm (Fig. S13), respectively, These results manifest that tuning the deposition pH can effectively control the size of the deposition Pt and thus can influence the POWS activity.

3.2. Orient loading of Pt on CN of Tb₄O₇/CN and its effect on POWS

3.2.1. Design, preparation and characterization

To further investigate the effect of the Pt loading on CN and its impact on POWS performance, a contrast sample (Tb₄O₇/CN-Pt) was designed and prepared using [Pt(NH₃)₄]²⁺ to replace [PtCl₆]²⁻ under the same conditions as those for Pt-Tb₄O₇/CN. Fig. 5a visually illustrates the preparation process of Tb₄O₇/CN-Pt. It is shown that [Pt(NH₃)₄]²⁺ is selectively adsorbed on the CN rather than on Tb₄O₇ due to the electrostatic interaction between [Pt(NH₃)₄]²⁺ and the CN of CN/Tb₄O₇ at pH 7.8 (Fig. S3). After irradiation, [Pt(NH₃)₄]²⁺ is photo-deposited on CN in metallic Pt, which realizes the oriented loading Pt on the CN section of Tb₄O₇/CN. ICP-AES analysis indicates that the Pt loading amount of Tb₄O₇/CN-Pt is equivalent to that of Pt-Tb₄O₇/CN prepared by using [PtCl₆]²⁻.

The TEM image of Tb_4O_7/CN -Pt (Fig. $5b_1$) reveals that Pt particles are loaded on Tb_4O_7/CN . The HRTEM images of Tb_4O_7/CN -Pt show that no Pt particle can be found in the Tb_4O_7 section (Fig. $5b_2$), while metallic Pt can be discovered on CN section (Fig. $5b_3$) because the lattice fringe space of 0.23 nm relates to the (111) crystallographic plane of metallic Pt. Fig. 5c shows that the obvious blue-shift of the binding energy peak of N = C-N heptazine rings observed in the HR-XPS spectrum of N = C-N heptazine rings observed in the HR-XPS spectrum of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is loaded selectively on CN section of N = C-N further indicating the Pt is load

Fig. 5. (a) Schematic diagram of the preparation process of Tb_4O_7/CN -Pt. (b₁) TEM image and (b₂-b₃) HRTEM images of Tb_4O_7/CN -Pt, (c) HR-XPS spectra of N 1 s of Tb_4O_7/CN and Tb_4O_7/CN -Pt photocatalysts.

3.2.2. Physicochemical and POWS performances

Fig. 6a shows that besides the optical absorption intensity displays a remarkable enhancement in the long wavelength range, the absorption

edge of Tb₄O₇/CN-Pt appears an obvious red-shift, compared to the Tb₄O₇/CN heterojunction. The red-shift extends light absorption range of Tb₄O₇/CN-Pt, agreeing with the darker color digital photograph.

Fig. 6. (a) UV-vis diffuse reflection spectra, (b) PL emission spectra and (c) Time-resolved PL decay spectra, (d) Photocurrent response curves, (e) EIS, (f) POWS performance of Tb_4O_7/CN and Tb_4O_7/CN -Pt.

According to the Kubelka-Munk function, the band gap energy of Tb₄O₇/ CN-Pt is determined to be 2.55 eV which is narrower than that of Tb₄O₇/ CN heterojunction (2.67 eV) (Fig. S14). The red-shift of the optical absorption edge and the increased optical absorption intensity are attributed to the strong interaction between Pt and CN and the localized surface plasma resonance of the Pt loading on Tb₄O₇/CN, respectively. The increased PL intensity for Tb₄O₇/CN-Pt (Fig. 6b) and the shorted PL lifetime (8.89 ns) (Fig. 6c and Table S1) suggest a faster recombination of photoexcited electron-hole pairs in comparison with Tb₄O₇/CN owing to completely selective Pt loading on CN (see Section 3.3). The lower transient photocurrent density of the Tb₄O₇/CN-Pt photocatalyst than that of Tb₄O₇/CN (Fig. 6d) indicates a low-effective charge separation, that is, the fast photogenerated charge carrier recombination. Fig. 6e appears a bigger semicircle for Tb₄O₇/CN-Pt in EIS spectra at high frequency than that for Tb₄O₇/CN, signifying a larger interfacial charge transport resistance ($R_{ct}=1974\,\Omega\,\text{cm}^{-1}$). Fig. S15 shows a smaller overpotential of Tb₄O₇/CN-Pt than that of Tb₄O₇/CN, owing to the extremely high intrinsic HER activity of Pt. As is shown in Fig. 6f, the Tb₄O₇/CN-Pt photocatalyst possesses a remarkably declined POWS performance. The H₂ evolution and H₂O₂ production rate are 18.2 and 16.5 μ mol h⁻¹ g⁻¹, respectively; about 2.6 times as low as that of pristine Tb₄O₇/CN. The rational explanation is that loading Pt on CN of Tb₄O₇/CN leads to accelerating the photoinduced electron-hole pairs recombination. This result clearly demonstrates that the loading site of Pt plays a key role in POWS performance.

3.3. Photocatalytic mechanism: synergistic and anti-synergistic effects of Pt loading sites

The conductor band (CB) energies of Tb_4O_7 and CN are -3.81 and -3.46 eV vs. vacuum level (assumed to be 0 eV) [32], and their valence

band (VB) energies are -6.88 and -6.18 eV, respectively. Because both Tb₄O₇ and CN are n type semiconductors [32,53], their Fermi levels (FLs) locate below and near their CB energies, respectively [54, 55]. The N1s and Tb 5p 3/2 XPS spectra verify the presence of the electron transfer from CN to Tb₄O₇ in Tb₄O₇/CN heterojunction [32], suggesting that the FL of Tb₄O₇ is lower than that of CN. Since the FL value of Pt is - 5.93 eV [56,57], the FL values in both Pt-Tb₄O₇/CN and Tb_4O_7/CN -Pt heterojunctions follow the order: Pt < Tb_4O_7 < CN. Thus, electrons are prone to enrich on Pt in the two heterojunctions. When Pt, Tb₄O₇ and CN tightly contact, their FLs are aligned. Those energy levels and possible charge transport paths are illustrated in Fig. 7. The band gap energies of Tb₄O₇ and CN are 3.07 and 2.72 eV, respectively. Therefore, when the Pt-Tb₄O₇/CN and Tb₄O₇/CN-Pt photocatalysts are irradiated by visible light, only CN can be excited to produce electrons and holes. Fig. 7a exhibits the charges separation/transport behavior of Pt-Tb₄O₇/CN photocatalyst, where the photogenerated electrons in the CB of CN inject to the CB of Tb₄O₇ and subsequently transfer to metallic Pt whereas the photogenerated holes are blocked by Tb₄O₇ owing to the higher VB of CN than that of Tb₄O₇, effectively realizing the photogenerated electron-hole pairs separation in space (Figs. 3b-3d). As a result, the POWS performance significantly enhances. In this case, the loading site of Pt is compatible with the photogenerated charge transfer of CN/Tb₄O₇, which is called the synergistic effect of Pt loading sites. Contrarily, when the metallic Pt is loaded on CN of Tb₄O₇/CN-Pt photocatalyst (Fig. 7b), photoexcited electrons are easily collected on metallic Pt due to its low FL [58], and simultaneously the photoexcited holes in VB of CN can also transfer to Pt due to the lower VB than the EL of Pt, leading to the local recombination of photogenerated electron-hole pairs, although Tb₄O₇/CN promotes the separation and transmission of photogenerated charge carriers. In this case, the loading site of Pt is incompatible with the photogenerated charge transfer of

Fig. 7. Schematic diagrams of Pt loading effects on photogenerated charge separation/transfer of (a) Pt-Tb₄O₇/CN and (b) Tb₄O₇/CN-Pt. (c) Comparison of POWS activities of Pt-Tb₄O₇/CN, Tb₄O₇/CN and Tb₄O₇/CN-Pt photocatalysts. (d) Schematic diagram of the photocatalytic mechanism for Pt-Tb₄O₇/CN.

CN/Tb₄O₇, which is called the anti-synergistic effect of Pt loading sites. Notably, the synergistic effect of Pt loading enhances the POWS performance of Pt-Tb₄O₇/CN with a $\rm H_2$ evolution rate of 132 μ mol $\rm h^{-1}$ g⁻¹ (Fig. 7c), whereas the anti-synergistic effect of Pt loading declines the POWS performance of Tb₄O₇/CN-Pt with a $\rm H_2$ evolution rate of 18.2 μ mol $\rm h^{-1}$ g⁻¹ (Fig. 7c). Overall, Pt-Tb₄O₇/CN shows around 7 times higher POWS activity than Tb₄O₇/CN-Pt, indicating the importance of selective loading Pt on Tb₄O₇/CN.

There are two pathways for photogenerated charge transfer in Tb_4O_7/CN : the direct model and the indirect model [32]. Indirect photoinduced charge transfer includes two steps: the excited electrons firstly jump from the VB of CN to the CB of CN, and then inject to the CB of Tb_4O_7 , which has been confirmed by the differential spectrum of pristine CN, Tb_4O_7 and Tb_4O_7/CN [32,53]. The direct charge transfer is achieved by direct photoinduced electrons transfer from the VB of CN to the CB of Tb_4O_7 . Because the POWS activity of Tb_4O_7/CN -Pt is greatly declined in comparison with Tb_4O_7/CN , one can conclude that the direct charge transfer from the VB of CN to CB of Tb_4O_7 is minor, testifying that the indirect charge transfer model is major.

As is shown in Fig. 7d, the mechanism of POWS performance of Pt-Tb₄O₇/CN is depicted. Under visible light irradiation, electrons migrate from the VB of CN to the CB of CN/ Tb₄O₇ via the two models and subsequently are collected on metallic Pt to reduce the adsorbed $\rm H_2O$ to evolve $\rm H_2$. Simultaneously, the photoinduced holes in-situ oxidize the adsorbed $\rm H_2O$ to produce $\rm H_2O_2$. Pt-Tb₄O₇/CN possesses a high POWS activity, which can be mainly contributed to the synergistic effect of loading Pt that promotes the charge separation. Besides, the high intrinsic HER activity and low resistance of heterojunction also improve the POWS performance of Pt-Tb₄O₇/CN.

4. Conclusion

In conclusion, the oriented loading of Pt on Tb₄O₇/CN heterojunction has been achieved by surface charge engineering and photoreduction technique using two different Pt precursors: [PtCl₆]²⁻ and $[Pt(NH_3)_4]^{2+}$. As the $[PtCl_6]^{2-}$ is adopted, Pt is selectively loaded on Tb₄O₇ section of Tb₄O₇/CN (Pt-Tb₄O₇/CN) at pH 7.8. While when [Pt $(NH_3)_4$ is employed, the metallic Pt is selectively loaded on the CN section of Tb₄O₇/CN (Tb₄O₇/CN-Pt) at pH 7.8. For Pt-Tb₄O₇/CN, the Pt loading site is compatible with the charge separation of Tb₄O₇/CN heterojunction, promoting the photogenerated charge separation. As a result, the POWS activity enhances greatly. The H₂ production rate is up to 132 µmol h⁻¹ g⁻¹, accompanying with stoichiometric H₂O₂ production, about 2.8 times as high as the Tb₄O₇/CN. The AQY for H₂ evolution at 420 nm reaches to 5.9%. In contrast, for Tb₄O₇/CN-Pt, the Pt loading site is incompatible with the charge separation of Tb₄O₇/CN heterojunction, leading to a greatly increase in the photogenerated electronhole pairs recombination. Therefore, the POWS activity deactivates greatly, about 2.6 times as low as that of Tb_4O_7/CN . Pt- Tb_4O_7/CN shows around 7 times higher POWS activity than Tb₄O₇/CN-Pt, indicating the importance of selective loading Pt on Tb₄O₇/CN. The findings provide insights on design, preparation and mechanism of coupling HER cocatalysts with heterojunction photocatalysts for POWS.

CRediT authorship contribution statement

Dedong Zeng: Investigation, Methodology, Visualization, Writing – original draft. **Yuexiang Li:** Conceptualization, Methodology, Writing – review & editing, Resources, Funding acquisition, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21962010, 22362021) and the National Key Research and Development Program of China (2018YFB1502004). Zeng thanks Dr. Lingling Liu and Prof. Yu Xie of the College of Environment and Chemical Engineering, Nanchang Hangkong University, for XPS and SEM characterization.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2023.123393.

References

- [1] X.J. Chen, J. Wang, Y.Q. Chai, Z.J. Zhang, Y.F. Zhu, Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C₃N₄/rGO/PDIP Zscheme heterojunction, Adv. Mater. 33 (2021) 2007479.
- [2] F. He, Z.X. Wang, Y.X. Li, S.Q. Peng, B. Liu, The nonmetal modulation of composition and morphology of g-C₃N₄-based photocatalysts, Appl. Catal. B-Environ. 269 (2020), 118828.
- [3] Y. Wang, A. Vogel, M. Sachs, R.S. Sprick, L. Wilbraham, S.J.A. Moniz, R. Godin, M. A. Zwijnenburg, J.R. Durrant, A.I. Cooper, J.W. Tang, Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts, Nat. Energy 4 (2019) 746–760.
- [4] D.D. Zeng, L.M. Yang, P.P. Zhou, D.S. Hu, Y. Xie, S.Q. Li, L.S. Jiang, Y. Ling, J. S. Zhao, Au Cu alloys deposited on titanium dioxide nanosheets for efficient photocatalytic hydrogen evolution, Int. J. Hydrog. Energy 43 (2018) 15155–15163
- [5] V.L. Dagle, G. Collinge, M. Rahman, A. Winkelman, W.D. Hu, J.Z. Hu, L. Kovarik, M. Engelhard, J. Jocz, Y. Wang, M.S. Lee, V.A. Glezakou, D. Ray, R. Rousseau, R. Dagle, Single-step conversion of ethanol into n-butene-rich olefins over metal catalysts supported on ZrO₂-SiO₂ mixed oxides, Appl. Catal. B-Environ. 331 (2023), 122707
- [6] D.M. Zhao, Y.Q. Wang, C.L. Dong, Y.C. Huang, J. Chen, F. Xue, S.H. Shen, L.J. Guo, Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting, Nat. Energy 6 (2021) 388–397.
- [7] Z.Y. Wu, Q. Hong, X.T. Wang, H. Shi, T.Y. Zhang, Y. Zhao, H. Huang, Y. Liu, Z. H. Kang, Bifunctional carbon dots as cocatalyst and reactor decorating an organic photocatalyst for H2 production from water-splitting in an emulsion, J. Mater. Chem. A 11 (2023) 178–186.
- [8] Y.X. Li, W.Z. Zhang, H. Li, T.Y. Yang, S.Q. Peng, C. Kao, W.Y. Zhang, Ni-B coupled with borate-intercalated Ni(OH)₂ for efficient and stable electrocatalytic and photocatalytic hydrogen evolution under low alkalinity, Chem. Eng. J. 394 (2020), 124028
- [9] T.T. Yao, X.R. An, H.X. Han, J.Q. Chen, C. Li, Photoelectrocatalytic materials for solar water splitting, Adv. Energy Mater. 8 (2018) 1800210.
- [10] X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8 (2008) 76–80.
- [11] Y.X. Li, M.F. Ji, Z.Y. Ma, L.H. Meng, R.C. He, S.Q. Peng, Hierarchically porous polymeric carbon nitride as a volume photocatalyst for efficient H₂ generation under strong irradiation, Sol. RRL 6 (2021) 2100823.
- [12] R.B. Guo, D.D. Zeng, Y. Xie, Y. Ling, D. Zhou, L.S. Jiang, W.Y. Jiao, J.S. Zhao, S. Q. Li, Carbon nitride quantum dots (CNQDs)/TiO₂ nanoparticle heterojunction photocatalysts for enhanced ultraviolet-visible-light-driven bisphenol a degradation and H₂ production, Int. J. Hydrog. Energy 45 (2020) 22534–22544.
- [13] Y.X. Li, R.C. He, P. Han, B.P. Hou, S.Q. Peng, C.Y. Ouyang, A new concept: volume photocatalysis for efficient H₂ generation - Using low polymeric carbon nitride as an example, Appl. Catal. B-Environ. 279 (2020), 119379.
- [14] A.V. Zhurenok, D.B. Vasilchenko, E.A. Kozlova, Comprehensive review on g-C₃N₄-based photocatalysts for the photocatalytic hydrogen production under visible light, Int. J. Mol. Sci. 24 (2023) 346.
- [15] F. He, M. Wang, S.Y. Shi, Y.R. Hou, M.Y. Lai, Z.X. Wang, S.Q. Peng, Y.X. Li, Confined synthesis of condensed π-conjugation C-PAN/MS-CN nanotubes for efficient photocatalytic H₂ evolution. Chem. Commun. 58 (2022) 4352–4355.
- [16] X.Y. Zou, Z.X. Sun, Y.H. Hu, g-C3N4-based photoelectrodes for photoelectrochemical water splitting: a review, J. Mater. Chem. A 8 (2020) 21474–21502.
- [17] Z.Y. Teng, Q.T. Zhang, H.B. Yang, K. Kato, W.J. Yang, Y.R. Lu, S.X. Liu, C.Y. Wang, A. Yamakata, C.L. Su, B. Liu, T. Ohno, Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide, Nat. Catal. 4 (2021) 374-384.
- [18] D. Liu, J.N. Shen, Y.Y. Xie, C.W. Qiu, Z.Z. Zhang, J.L. Long, H.X. Lin, X.X. Wang, Metallic Pt and PtO₂ dual-cocatalyst-loaded binary composite RGO-CN_x for the

- photocatalytic production of hydrogen and hydrogen peroxide, ACS Sustain, Chem. Eng. 9 (2021) 6380–6389.
- [19] B. Tian, Y.Q. Wu, G.X. Lu, Metal-free plasmonic boron phosphide/graphitic carbon nitride with core-shell structure photocatalysts for overall water splitting, Appl. Catal. B-Environ. 280 (2021), 119410.
- [20] X.X. Jia, J.W. Zhao, Y.J. Lv, X.L. Fu, Y.J. Jian, W.Q. Zhang, Y.Y. Wang, H.M. Sun, X. X. Wang, J.L. Long, P. Yang, Q. Gu, Z.W. Gao, Low-crystalline PdCu alloy on largearea ultrathin 2D carbon nitride nanosheets for efficient photocatalytic Suzuki coupling, Appl. Catal. B-Environ. 300 (2022), 120756.
- [21] E.Q. Jin, Z. Lan, Q.H. Jiang, K.Y. Geng, G.S. Li, X.C. Wang, D.L. Jiang, 2D sp² carbon-conjugated covalent organic frameworks for photocatalytic hydrogen production from water, Chem 5 (2019) 1632–1647.
- [22] Y.R. Li, Y.Q. Wang, C.L. Dong, Y.C. Huang, J. Chen, Z. Zhang, F.Q. Meng, Q. H. Zhang, Y. Huangfu, D.M. Zhao, L. Gu, S.H. Shen, Single-atom nickel terminating sp² and sp³ nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting, Chem. Sci. 12 (2021) 3633–3643.
- [23] S.Q. Peng, C. Gan, Y. Yang, S.F. Ji, Y.X. Li, Low Temperature and controllable formation of oxygen vacancy SrTiO_{3-x} by loading Pt for enhanced photocatalytic hydrogen evolution, Energy Technol. 6 (2018) 2166–2171.
- [24] Y.Q. Wang, Y. Xie, S.H. Yu, K. Yang, Y. Shao, L.X. Zou, B.X. Zhao, Z.L. Wang, Y. Ling, Y. Chen, Ni doping in unit cell of BiOBr to increase dipole moment and induce spin polarization for promoting CO₂ photoreduction via enhanced build-in electric field, Appl. Catal. B-Environ. 327 (2023), 122420.
- [25] S.Q. Peng, Y. Cao, F.X. Zhou, Z.D. Xu, Y.X. Li, CoP decorated with Co₃O₄ as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitization, Appl. Surf. Sci. 487 (2019) 315–321.
- [26] D.B. Wu, F. He, Y.H. Dai, Y. Xie, Y. Ling, L.J. Liu, J.S. Zhao, H. Ye, Y. Hou, A heterostructured ZnAl-LDH@ZIF-8 hybrid as a bifunctional photocatalyst/ adsorbent for CO₂ reduction under visible light irradiation, Chem. Eng. J. 446 (2022), 137003.
- [27] Y.X. Li, Y.L. Hou, Q.Y. Fu, S.Q. Peng, Y.H. Hu, Oriented growth of ZnIn₂S₄/In(OH)₃ heterojunction by a facile hydrothermal transformation for efficient photocatalytic H₂ production, Appl. Catal. B-Environ. 206 (2017) 726–733.
- [28] Y.X. Li, P. Han, Y.L. Hou, S.Q. Peng, X.J. Kuang, Oriented Zn_mIn₂S_{m+3}@In₂S₃ heterojunction with hierarchical structure for efficient photocatalytic hydrogen evolution, Appl. Catal. B-Environ. 244 (2019) 604–611.
- [29] J. Liu, M.Y. Wu, H. Ye, Y. Xie, Y.C. Ma, L.J. Liu, Strong interaction between sulfur sites and oxygen vacancies in Z-scheme ZnIn₂S₄/TiO_{2-x} heterojunction for improved photocatalytic hydrogen yield and stability, Chem. Eng. J. 455 (2023), 140722
- [30] Z. Liang, L.L. Yin, H. Yin, Z.Y. Yin, Y.P. Du, Rare earth element based single-atom catalysts: synthesis, characterization and applications in photo/electro-catalytic reactions, Nanoscale Horiz. 7 (2022) 31–40.
- [31] M. Ismael, Environmental remediation and sustainable energy generation via photocatalytic technology using rare earth metals modified g-C₃N₄: A review, J. Alloy. Compd. 931 (2023), 167469.
- [32] D.D. Zeng, F. He, Y.X. Li, Construction of terbium oxide/polymer carbon nitride heterojunction for boosting photocatalytic overall water splitting without cocatalyst, Appl. Catal. A-Gen. 650 (2023), 118986.
- [33] C. Liu, Q.F. Zhang, Z.G. Zou, Recent advances in designing ZnIn₂S₄-based heterostructured photocatalysts for hydrogen evolution, J. Mater. Sci. Technol. 139 (2023) 167–188.
- [34] Y.X. Li, S.Q. Li, L.H. Meng, S.Q. Peng, Synthesis of oriented J type ZnIn2S4@ CdIn2S4 heterojunction by controllable cation exchange for enhancing photocatalytic hydrogen evolution, J. Colloid Interface Sci. https://doi.org/ 10.1016/j.jcis.2023.06.185.
- [35] J.Y. Yan, C.H. Wang, H. Ma, Y.Y. Li, Y.C. Liu, N. Suzuki, C. Terashima, A. Fujishima, X.T. Zhang, Photothermal synergic enhancement of direct Z-scheme behavior of Bi₄TaO₈Cl/W₁₈O₄₉ heterostructure for CO₂ reduction, Appl. Catal. B-Environ. 268 (2020), 118401.
- [36] Z.H. Mei, G.H. Wang, S.D. Yan, J. Wang, Rapid microwave-assisted synthesis of 2D/1D ZnIn₂S₄/TiO₂ S-scheme heterojunction for catalyzing photocatalytic hydrogen evolution, Acta Phys. -Chim. Sin. 37 (6) (2021) 2009097–2009100.
- [37] S.C. Liu, K. Wang, M.X. Yang, Z.L. Jin, Rationally designed Mn_{0.2}Cd_{0.8}S@CoAl LDH S-scheme heterojunction for efficient photocatalytic hydrogen production, Acta Phys. -Chim. Sin. 38 (7) (2021), 2109023-2109032.

- [38] A. Han, X.J. Wang, K. Tang, Z.D. Zhang, C.L. Ye, K.J. Kong, H.B. Hu, L.R. Zheng, P. Jiang, C.X. Zhao, Q. Zhang, D.S. Wang, Y.D. Li, An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance, Angew. Chem. Int. Ed. 60 (2021) 2–12.
- [39] T. Ma, H. Cao, S. Li, S. Cao, Z. Zhao, Z. Wu, R. Yan, C. Yang, Y. Wang, P.A. van Aken, L. Qiu, Y.G. Wang, C. Cheng, Crystalline lattice-confined atomic Pt in metal carbides to match electronic structures and hydrogen evolution behaviors of platinum, Adv. Mater. 34 (2022) 2206368.
- [40] G.G. Zhang, Z.A. Lan, L.H. Lin, S. Lin, X.C. Wang, Overall water splitting by Pt/g-C₃N₄ photocatalysts without using sacrificial agents, Chem. Sci. 7 (2016) 3062–3066.
- [41] Y.X. Li, H. Wang, S.Q. Peng, Tunable photodeposition of MoS₂ onto a composite of reduced graphene oxide and CdS for synergic photocatalytic hydrogen generation, J. Phys. Chem. C. 118 (2014) 19842–19848.
- [42] L.W. Zhang, R. Long, Y.M. Zhang, D.L. Duan, Y.J. Xiong, Y.J. Zhang, Y.P. Bi, Direct observation of dynamic bond evolution in single-atom Pt/C₃N₄ catalysts, Angew. Chem. Int. Ed. 59 (2020) 6224–6229.
- [43] P. Zhang, L. Li, J. Zhao, H. Wang, X.D. Zhang, Y. Xie, Elemental doping boosts charge-transfer excitonic states in polymeric photocatalysts for selective oxidation reaction, Precis. Chem. 1 (2023) 40–48.
- [44] B.C. Zhu, P.F. Xia, W.K. Ho, J.G. Yu, Isoelectric point and adsorption activity of porous g-C₃N₄, Appl. Surf. Sci. 344 (2015) 188–195.
- [45] S. Kitaoka, N. Kawashima, K. Maeda, T. Kuno, Y. Noguchi, Design of mold materials for encapsulating semiconductors using epoxy molding compounds, Mater. Sci. Forum 561- 565 (2007) 539–542.
- [46] Q.F. Wang, L. Zhang, L.Y. Qiu, J.Q. Sun, J.C. Shen, Fabrication and electrochemical investigation of layer-by-layer deposited titanium phosphate/prussian blue composite films, Langmuir 23 (2007) 6084–6090.
- [47] Z.H. Zhang, J.S. Tian, Y.B. Lu, S.Z. Yang, D. Jiang, W.X. Huang, Y.X. Li, J.Y. Hong, A.S. Hoffman, S.R. Bare, M.H. Engelhard, A.K. Datye, Y. Wang, Memory-dictated dynamics of single-atom Pt on CeO₂ for CO oxidation, Nat. Commun. 14 (2023) 2664.
- [48] W. Zhang, W.J. Chen, Q. Xiao, L. Yu, C.Q. Huang, G.X. Lu, A.W. Morawski, Y. Yu, Nitrogen-coordinated metallic cobalt disulfide self-encapsulated in graphitic carbon for electrochemical water oxidation, Appl. Catal. B-Environ. 268 (2020), 118449.
- [49] B. Han, Y.L. Guo, Y.K. Huang, W. Xi, J. Xu, J. Luo, H.F. Qi, Y.J. Ren, X.Y. Liu, B. T. Qiao, T. Zhang, Strong metal–support interactions between Pt single atoms and TiO₂, Angew. Chem. Int. Ed. 59 (2020) 11824–11829.
- [50] R. Lang, X.R. Du, Y.K. Huang, X.Z. Jiang, Q. Zhang, Y.L. Guo, K.P. Liu, B.T. Qiao, A. Q. Wang, T. Zhang, Single-atom catalysts based on the metal-oxide interaction, Chem. Rev. 120 (2020) 11986–12043.
- [51] J. Liu, C. Wang, W.B. Yu, H. Zhao, Z.Y. Hu, F. Liu, T. Hasan, Y. Li, G. Van Tendeloo, C. Li, B.L. Su, Bioinspired noncyclic transfer pathway electron donors for unprecedented hydrogen production, CCS Chem. 5 (2023) 1470–1482.
- [52] S. Bai, C.M. Wang, M.S. Deng, M. Gong, Y. Bai, J. Jiang, Y.J. Xiong, Surface polarization matters: enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures, Angew. Chem. Int. Ed. 53 (2014) 12120–12124.
- [53] J. Liu, Y. Liu, N.Y. Liu, Y.Z. Han, X. Zhang, H. Huang, Y. Lifshitz, S.Y. Lee, J. Zhong, Z.H. Kang, Metal-free efficient photocatalyst for stable visible waters plitting via a two-electron path way, science 347 (2015) 6225.
- [54] J.P. Sun, J.B. Weng, T. Lin, L.P. Ma, Preparation and Photophysical Properties of Poly(2-methoxy-5- octyloxy)-p-phenylene Vinylene/Tb₄O₇ Nanocomposites, Acta Chim. Sin. 68 (2010) 1337–1342.
- [55] J.H. Kim, J.A. Hong, D.G. Kwon, J. Seo, Y. Park, Energy level alignment in polymer organic solar cells at donor-acceptor planar junction formed by electrospray vacuum deposition, Appl. Phys. Lett. 104 (2014), 163303.
- [56] T.G. Castner, Criterion for the size of the scaling regime for the metal-insulator transition of doped semiconductors, Phys. Rev. B 67 (2003), 193202.
- [57] L. Yang, R. Grzeschik, P. Jiang, L.F. Yu, C.J. Hu, A.X. Du, S. Schlücker, W. Xie, Tuning the electronic properties of platinum in hybrid-nanoparticle assemblies for use in hydrogen evolution reaction, Angew. Chem. Int. Ed. 62 (2023), e202301065.
- [58] Y. Yu, D. Lee, B. Jeong, The dependence of the work function of Pt (111) on surface carbon investigated with near ambient pressure X-ray photoelectron spectroscopy, Appl. Surf. Sci. 607 (2023), 155005.