Механико-математический факультет МГУ имени М.В. Лононосова
Конспект курса «Наглядная геометрия и топология»
Автор курса: профессор, д.фм.н. Ведюшкина Виктория Викторовна Автор конспекта: Цыбулин Егор, студент 108 группы

Москва, 3 апреля 2025 г.

Содержание

1	Топологические пространства			
	1.1	Основные понятия	2	
	1.2	Непрерывность	3	
	1.3	Способы задания топологии	4	
	1.4	Гомеоморфизм	4	
	1.5	Связность	Ę	
	1.6	Линейная связность	6	
	1.7	Компактность	6	
	1.8	Хаусдорфовость	7	
	1.9	Фактор-топология	7	
2	Графы			
	2.1^{-2}	Комбинаторное описание графа	S	
	2.2	Топологическое описание графа	10	
	2.3	Теорема о вложении планарного графа в плоскость	11	
	2.4	Теорема Жордана	15	
3	Мн	огогранники	25	

1 Топологические пространства

1.1 Основные понятия

Определение. $Mempu\kappa a$ — это функция $\rho(x,y)\to\mathbb{R}$, которая обладает следующими свойствами:

- 1. $\rho(x,y) \ge 0$, $\rho(x,y) = 0 \Leftrightarrow x = y$;
- 2. $\rho(x, y) = \rho(y, x)$;
- 3. $\rho(x, z) + \rho(z, y) \ge \rho(x, y)$.

Определение. Множество X называется метрическим пространством, если на нём задана метрика $\rho(x,y): X \times X \to \mathbb{R}$.

Определение. ε -окрестность точки x_0 — это множество всех точек $x \in X$: $\rho(x,x_0) < \varepsilon$.

Из курса математического анализа.

Определение. Точка $x \in X \subset A$ называется внутренней точкой множества X, если $\exists B_{\varepsilon}(x) \subset X$.

Определение. Множество называется открытым, если все его точки — внутренние.

Определение. Множество A называется закрытым, если его дополнение $A \setminus X$ открыто.

Свойства открытых множеств:

- 1. Пустое множество и само множество X открыты;
- 2. Любые объединения открытых множеств открыты;
- 3. Конечное пересечение открытых множеств открыто.

Определение. Семейство τ подмножеств некоторого множества X, удовлетворяющее условиям 1-3, называется monosovueй.

Определение. Пусть X — произвольное множество и $\tau = \{U_{\alpha}\}$ — некоторое семейство подмножеств множества X. Семейство подмножеств τ называется $monosoue\ddot{u}$, если оно удовлетворяет следующим условиям:

1. Пустое множество и само множество X принадлежат τ ;

- 2. Объединение любого семейства множеств из τ принадлежит τ ;
- 3. Пересечение любого конечного семейства множеств из τ также принадлежит τ .

Определение. Множество X с фиксированной топологией τ называется mono-norueckum пространством и обозначается через (X,τ) . Элементы множества X называются movkamu. Множества из τ называются omkpumumu в (X,τ) .

Если X — метрическое пространство, то на нём можно задать топологию, индуцированную метрикой: множество открыто, если любая точка входит в него с некоторым ε -шаром (некоторой окрестностью).

[Дополнение вне лекций] Топология, индуцированная метрикой — это топология, в которой открытые множества определяются через ε -шары. Таким образом, топология τ на множестве X задаётся как:

$$\tau = \{ U \subset X | \ \forall x \in U \ \exists r > 0 : B_r(x) \subset U \}$$

Пример. 1. \varnothing, X , других нет — тривиальная топология.

2. Семейство au состоит из всех подмножеств множества $X - \partial u c \kappa p e m h a s$ mononorus.

Определение. Множество A топологического пространства X называется $\mathit{зa-}$ $\mathit{мкнутым}$, если его дополнение $X \setminus A$ открыто.

Определение. Пусть X — топологическое множество, $x_0 \in X$. Окрестностью $moч\kappa u \ x_0$ назовём любое открытое множество, содержащее эту точку.

Утверждение. Множество A топологического пространства X открыто \Leftrightarrow $\forall x_0 \in A \; \exists U_{x_0} \in \tau : x_0 \; \in U_{x_0} \subset A$

 \mathcal{A} оказательство. \Longrightarrow Пусть A открыто, x_0 — точка A, тогда $U_{x_0}=A$. \Longleftrightarrow Возьмём $x\in U_x\subset A$, где U_x открыты $(\in\tau)$. Рассмотрим $\cup_{x\in A}U_x=U$, где U открыто, т.к. все U_x открыты. При этом $A\subset U$ и $U\subset A\Rightarrow U=A\Rightarrow A$ открыто.

1.2 Непрерывность

Определение. Обратимся к курсу математического анализа. Пусть D_f — область определения $f(x), x_0 \in D_f$. Если

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall x \in B_{\delta_{\varepsilon}}(x_0) \cap D_f : |f(x) - f(x_0)| < \varepsilon,$$

то f(x) называется непрерывной в точке x_0 .

$$f: X \to Y \ \forall B_{\varepsilon}(f(x_0)) \ \exists B_{\delta}(x_0): f(B_{\delta}(x_0)) \subset B_{\varepsilon}(f(x_0))$$

— в терминах окрестностей.

Определение. Отображение $f: X \to Y$ топологии пространств X и Y непрерывно, если $\forall x_0 \in X$ и для любой окрестности δ точки $f(x_0)$ существует окрестность точки x_0 такая, что $f(B(x_0)) \subset B_{\delta}(f(x_0))$.

Утверждение. Отображение f двух топологических пространств непрерывно \Leftrightarrow прообраз любого открытого множества открыт.

Доказательство. $\Longrightarrow f: X \to Y$. Пусть $A \subset Y$ открыто. Рассмотрим $f^{-1}(A)$. Пусть $x_0 \in f^{-1}(A) \Rightarrow \exists U$ — открытое: $f(U) \subset A \Rightarrow U \subset f^{-1}(A)$. \Longleftrightarrow Пусть прообраз любого множества открыт. Пусть $x_0 \in X \Rightarrow f(x_0) \in Y$.

Возьмём $V \subset Y$, которое будет открыто. $f(x_0) \in V \Rightarrow f^{-1}(V)$ — открытое множество и $x_0 \in f^{-1}(V) \Rightarrow U := f^{-1}(V)$.

1.3 Способы задания топологии

1. Топология на подмножестве:

Пусть X — топологическое пространство.

$$X_0 \subset X, \ U \in \tau(X) \Rightarrow \ U \cap X_0 \in \tau(X_0).$$

2. $f: X \to Y, Y$ — топологическое пространство, f — произвольное отображение. Тогда открытые множества на X — прообразы открытых на Y, то есть:

$$\tau_X = \{ f^{-1}(U) | U \in \tau_Y \}$$

3амечание (Дополнение с лекции №2). Топология на Y порождается отображением f: множество открыто, если его прообраз открыт.

1.4 Гомеоморфизм

Определение. Топологические пространства X и Y называются *гомеоморф*ными, если между ними существует непрерывная биекция $f: X \to Y$, которая и называется *гомеоморфизмом*, такая, что отображение f^{-1} также непрерывно.

Пример. Окружность с выколотым полюсом и прямая гомеоморфны (см.рис. 1).

Рис. 1: Окружность с выколотым полюсом и прямая гомеоморфны.

1.5 Связность

Определение. Топологическое пространство X называется censum a, если не существует двух открытых непустых непересекающихся множеств A и B таких, что $X = A \cup B$.

Утверждение. Отрезок вещественной прямой в стандартной топологии связен.

Доказательство. От противного. Пусть отрезок несвязен. $\exists A, B \subset \mathbb{R} : [a, b] = A \cup B, \ A \cap B = \emptyset$, где A, B — открытые множества. Пусть $\alpha \in A$, тогда $[a, \alpha) \subset A$ (т.к. А открыто). Рассмотрим $\alpha_0 = \sup\{\alpha : [a, \alpha) \subset A\}$. Пусть $\alpha_0 \in A$, тогда:

- 1. $\alpha_0 = b \Rightarrow B = \emptyset$ противоречие.
- 2. $\alpha_0 < b \Rightarrow \alpha_0$ входит в A с окрестностью \Rightarrow существует $(\alpha_0 \varepsilon, \alpha_0 + \varepsilon) \in A \Rightarrow \alpha_0$ не супремум противоречие.

Утверждение. Непрерывный образ связного пространства связен.

Доказательство. $f: X \to Y$. От противного. Пусть образ несвязен. Тогда $Imf = A \cup B$, где A, B — открытые и непустые множества, $A \cap B = \emptyset$. $f^{-1}(A)$ открыто, $f^{-1}(B)$ открыто. Если множества не пересекаются, то и их образы не пересекаются. Так как множества не пусты, то и их образы не пусты. $f^{-1}(A) \cup f^{-1}(B) = X \Rightarrow X$ не связно — противоречие.

Замечание. Связность является топологическим инвариантом.

1.6 Линейная связность

Определение. *Непрерывная кривая (параметрическая)* — непрерывное отображение ненулевого отрезка в топологическое пространство. $\gamma:[a,b]\to X$, где γ непрерывна.

$$\gamma: [0, 2\pi] \to \mathbb{R}^2$$

$$\begin{cases} x = \cos t, \\ y = \sin t, \\ t \in [0, 2\pi]. \end{cases}$$

Определение. Топологическое пространство называется *линейно связным*, если любые две его точки можно соединить кривой.

$$x, y$$
 — точки X , тогда $\exists \gamma : [\alpha, \beta] \to X : \gamma(\alpha) = x, \gamma(\beta) = y$

Утверждение. Образ линейно связного пространства линейно связен.

Доказательство. Композиция непрерывных отображений непрерывна:

$$\gamma: [\alpha, \beta] \to X, \ f: X \to Y.$$

Утверждение. Если топологическое пространство линейно связно, то оно связно. (Наоборот, вообще говоря, неверно — как задачу можно попросить привести контрпример).

Доказательство. Пусть топологическое пространство линейно связно, но не связно. Тогда $X = A \cup B$. Возьмём $x \in A, y \in B$. Пользуемся линейной связностью: $\gamma: [0,1] \to X, \gamma$ непрерывна, $\gamma(0) = A, \gamma(1) = B, Im\gamma$ в X — связно. $Im\gamma \cap A$ — открыто в топологии образа $Im\gamma$, индуцированного топологии на X (пользуемся топологией на подмножестве), $Im\gamma \cap B$ — открыто в топологии образа $Im\gamma$, индуцированного топологии на X — получили противоречие с тем, что отрезок несвязен.

1.7 Компактность

Определение. Топологическое пространство *компактно*, если из его любого открытого покрытия можно выбрать конечное подпокрытие.

Утверждение. *Непрерывный образ компакта является компактом.*

Доказательство. Пусть $f: X \to Y$. Покрываем образ: $Imf \subseteq \bigcup_{\alpha} U_{\alpha}$ — покрытие. $X \subset \bigcup_{\alpha} f^{-1}(U_{\alpha})$ — открытое покрытие X (т.к. f непрерывно). $X \subset \bigcup_{i=1}^n f(U_i)$ — конечное подпокрытие. Пользуемся компактностью X: $Imf \subset \bigcup_{i=1}^n f(U_i)$

Замечание. Компактность является топологическим инвариантом.

Утверждение. Замкнутое подмножество компакта есть компакт.

Доказательство. $M \subset X \subset Y$, M замкнуто, X компактно, Y — топологическое пространство. $M \subset \bigcup_{\alpha} U_{\alpha}$ открытое покрытие M. $(Y \setminus M) \cup \bigcup_{\alpha} U_{\alpha}$ — открытое покрытие. Выберем в нём конечное подпокрытие: $X \subset (Y \setminus M) \cup \bigcup_{i=1}^n U_i$ — конечное подпокрытие. $M \subset \bigcup_{i=1}^n U_i$.

1.8 Хаусдорфовость

Определение. Топологическое пространство X называется $xaycdop\phioвым$, если у любых двух его различных точек существуют непересекающиеся окрестности.

$$\tau = \{X, \varnothing\} \Rightarrow X$$
 не хаусдорфово.

Лемма. Компакт в хаусдоровом пространстве является замкнутым мноэксеством.

Доказательство. $M \subset X$, M — компакт. $x_0 \in X \setminus M$, $y \in M$. Пользуемся хаусдорфовостью: $x_0 \in U^y_{x_0}, \ y \in V_y, \ U^y_{x_0} \cap V_y = \varnothing. \bigcup_{y \in M} V_y$ — открытое покрытие всего множества M. Пользуемся компактностью: выберем конечное подпокрытие $M \subset \bigcup_{i=1}^n v_{y_i}, \ y_i \in M$. $\bigcap_{i=1}^n U^{y_i}_{x_0} = U, \ x_0 \in U, \ U \cap V_{y_i} = \varnothing, \ U$ открытое $\Rightarrow X \setminus M$ открыто.

Утверждение. $f: X \to Y, f$ — непрерывная биекция, X — компакт, Y — хаусдорфово топологическое пространство $\Longrightarrow f$ — гомеоморфизм.

Доказательство. $f: X \to Y, X$ замкнуто, $M \subset X, M$ замкнуто $\Rightarrow M$ компактно $\Rightarrow f(M) \subset Y$, где f(M) тоже компактно (т.к. f непрерывно) $\Rightarrow f(M)$ замкнуто в Y.

1.9 Фактор-топология

Определение. Пусть X — топологическое пространство, а \sim — отношение эквивалентности на X. $\Phi a \kappa mop\text{-}npocmpancmso \ X/\sim$ — это множество классов

Рис. 2: Пример нехаусдорфова пространства

эквивалентности [x] для всех $x \in X$. Топология на X/\sim называется ϕ актор-топологией.

Множество $U\subset X/\sim$ открыто в фактор-топологии тогда и только тогда, когда его прообраз $f^{-1}(U)$ открыт в X, где $f:X\to X/\sim$.

Пример (нехаусдорфова пространства). Рассмотрим две числовые прямые $\mathbb{R}_1, \mathbb{R}_2$ и отождествим все их точки, кроме одной: $x \sim y \Leftrightarrow x = y, \ x \neq 0, x \in \mathbb{R}_1, \ y \in \mathbb{R}_2$. Получили фактор-пространство $\mathbb{R}_1 \sqcup \mathbb{R}_2 / \sim$. Оно не является хаусдорфовым, так как у нулей числовых прямых нет непересекающихся окрестностей (см.рис. 2).

2 Графы

2.1 Комбинаторное описание графа

Определение (Комбинаторное определение графа). V — множество вершин (конечное), E — множество рёбер, отношение инцидентности — любому ребру соответствует начало и конец, принадлежащие множеству вершин V.

Рис. 3: Примеры графов

Рассмотрим рис.3 (граф справа):

- 1. Вершина v_1 инцидентна e_2, e_7 ;
- 2. Ребро e_1 инцидентно только v_7 ;
- 3. Вершина v_1 смежна только с v_4, v_7 ;
- 4. Ребро e_2 смежно только с e_1, e_3, e_6, e_7 ;
- 5. Имеется ровно 3 петли: e_1, e_3, e_4 ;
- 6. Кратными являются петли e_1, e_3 и рёбра e_8, e_9 (кратность равна двум);
- 7. Граф справа не простой, граф слева простой.

Определение. Два графа называются *изоморфными*, если существует биекция между их множествами вершин и рёбер, уважающая отношение инцидентности.

 $v_1, v_2 \in V_1, \ e_1 \in E_1, \ f(v_1), f(v_2) \in V_2$ если вершины v_1 и v_2 были соединены ребром e_1 , то их образы $f(v_1)$ и $f(v_2)$ соединены ребром $f(e_1)$.

Рис. 4: Изоморфные графы.

2.2 Топологическое описание графа

Определение (Топологическое определение графа). Пусть дано множество (конечное) точек V, (конечное) множество отрезков E и отображение ∂ : (множество концов отрезков) $\to V$. $\Gamma pa\phi om$, определённым этими данными, назовём топологическое пространство, состоящее из множества точек V, называемых вершинами графа, множества внутренних точек отрезков E, называемых внутренними точками рёбер графа, на котором задана фактор-топология. Отношение эквивалентности: вершина v лежит в том же классе эквивалентности, что и концы рёбер, которые в неё переходят.

[3]: В теории графов принята следующая терминология:

- 1. если $v \in \partial(e)$, то говорят, что вершина v и ребро e инцидентны;
- 2. если $\partial(e) = \{v, w\}$, то говорят, что вершины v и w cмежсны, или же, что они соединены ребром e;
- 3. рёбра e, e' называются *смежеными*, если $\partial(e) \cap \partial(e') \neq \varnothing$;
- 4. ребро, иницидентное ровно одной вершине, называется $nem n\ddot{e}\ddot{u}$;
- 5. если некоторой паре вершин инцидентно несколько рёбер, то все эти рёбра называются *кратными*;
- 6. если некоторой вершине инцидентно несколько петель, то все эти петли также называются $\kappa pamнымu$. [Конец цитирования]

$$v \in V, \ \partial^{-1}(v) : A \sim B \Leftrightarrow A, B \in \partial^{-1}(v), \ A \sim B \sim v.$$

Определение. Графы называются *гомеоморфными*, если они гомеоморфны как топологические пространства.

Определение. Непрерывное отображение графа Γ в топологическое пространство X называется *вложением*, если при этом отображение Γ и его образ гомеоморфны (никакие две различные точки не переходят в одну).

Рис. 5: Гомеорморфные, но не изоморфные графы.

Рис. 6: K_5 и $K_{3,3}$ не являются планарными.

Определение (Вне лекций). Граф без петель и кратных рёбер называется npo-cmы m.

Определение. Граф, для которого существует его вложение в плоскость, называется *планарным*.

Определение. Планарный граф вместе с вложением в плоскость называется *плоским*.

Определение (Вне лекций). K_n — полный граф на n вершинах, то есть граф, каждые две вершины которого соединены ребром.

 $K_{m,n}$ — двудольный граф, то есть граф, все вершины которого можно разбить на две группы так, что каждое ребро графа соединяет вершину из первой группы с вершиной из второй группы, при этом вершины из одной группы не имеют общих рёбер.

2.3 Теорема о вложении планарного графа в плоскость

Теорема. Для связного плоского графа $B-P+\Gamma=2$, где $\Gamma-$ количество областей, на которые граф разбивает плоскость.

Рис. 7: Имеется пять областей, на которые разбивается плоскость.

Теорема (★). Для любого планарного графа существует его вложение в плоскость такое, что образ любого ребра является ломаной с конечным числом звеньев.

Свойства непрерывных кривых:

Лемма. Образ $\gamma:[a,b] \to \mathbb{R}^2$ непрерывной кривой — замкнутое подмножество плоскости.

 \mathcal{A} оказательство. [a,b] — компакт \Rightarrow образ его — компакт. \mathbb{R}^2 — хаусдорфово \Rightarrow компакт замкнут в хаусдорфовом пространстве.

 $A \partial anmupoванное \ \partial o \kappa aз ameль cm во \ us \ [1]:$ Возьмём точку P, которая не принадлежит образу кривой γ . Докажем, что существует такая окрестность U этой точки P, что U не пересекается с образом γ .

Рассмотрим вспомогательную функцию f на [a,b], которая будет обозначать расстояние от точки P до образа кривой. f непрерывна \Rightarrow достигает минимума c>0 (т.к. P не лежит в γ). Рассмотрим тогда круг радиуса c/2 с центром в P. Получим окрестность $U_{P,c/2}$, которая не пересекается с образом γ .

Лемма (о первой точке). $\Omega -$ замкнутое подмножество \mathbb{R}^2 , $\gamma(t) -$ непрерывная кривая, $\gamma: [0,1] \to \mathbb{R}^2$, $\gamma(0) = A \notin \Omega$, $\gamma(1) = B \in \Omega \Rightarrow \exists t_0 \in [0,1]: \gamma(t_0) \in \Omega$, $\forall t < t_0 \ \gamma(t) \notin \Omega$.

Доказательство. Рассмотрим $T: \{ \tau \in [0,1]: \forall t \in [0,\tau): \gamma(t) \notin \Omega \}$ — не пусто (так как $0 \in T$) и ограничено.

Так как множество T не пусто и ограничено, то можно сказать, что существует $\sup T = c$, более того, $c \neq 1$, т.к. $\gamma(1) = B \in \Omega$ по условию.

Если $\gamma(c)=C\notin\Omega$, то существует окрестность U точки C такая, что $U\cap A=\varnothing$ (воспользовались замкнутостью множества Ω).

Так как γ — непрерывная кривая, то существует окрестность $V=(c-\varepsilon,c+\varepsilon)$ такая, что $\gamma(V)\in U$, то есть $\forall t\in (c-\varepsilon,c+\varepsilon): \gamma(t)\notin \Omega\Rightarrow c\neq \sup T$ — противоречие, значит, $C\in\Omega$.

В качестве t_0 возьмём c.

(В исходнике есть наброски прямо с лекции)

Доказательство ★. Адаптация лекционного доказательства, основанная на [1].

Пусть заданный граф не имеет петель. Если они есть, то удалим их, а потом вернём.

Для каждой вершины рассмотрим окрестность такую, что она не пересекается с рёбрами графа, НЕ инцидентными данной вершине v, и другими вершинами. Рассмотрим замкнутые окрестности вершин в два раза меньшего радиуса D_v .

Так как ребро, выходящее из вершины v — непрерывная кривая, то по лемме о первой точке на этой кривой будет первая точка, которая принадлежит замкнутому кругу D_v . Изменим вложение для этого ребра на отрезке между v и первой точкой на радиус (см.рис. 8). Сделаем так для всех рёбер. На этом моменте можно вернуть петли, изображённые ломаными.

Рис. 8: Изменение вложения в окрестности вершины

Теперь надо поменять вложение на остальных частях рёбер (та, которая лежит между нашими замкнутыми окружностями). Если мы для каждого отдельного ребра докажем, что можем поменять вложение, которое было, на ломаную, не трогая остальных рёбер, то докажем теорему (см.рис. 9).

Рассмотрим ребро, соединяющее вершины v,w. Средняя часть — непрерывная кривая $\gamma:[a,b]\to\mathbb{R}^{2-1}$. Рассмотрим множество: $T=\{t\in[a,b]\}$, где t

¹Здесь и далее в лекциях дан отрезок [0,1], но, очевидно, это ни на что не повлияет, просто мне пока что лень рисовать свои рисунки, поэтому я их просто позаимствовал в [1]

Рис. 9: Изменение вложения на остальных частях рёбер

такие, что $\gamma(0)$ можно соединить ломаной с $\gamma(t)$ так, что эта ломаная не имеет самопересечений и не пересекает другие рёбра. T не пусто хотя бы потому, что t=a условие выполняется. Докажем, что и b принадлежит T. Идея дальнейшего доказательства состоит в том, чтобы отступать от левого конца отрезка, чтобы потом добраться до правого конца.

Рис. 10: Изменение вложения на остальных частях рёбер

Сначала докажем, что если $t_0 \in T$, то и $(t_0 - \varepsilon, t_0 + \varepsilon) \subset T$ для некоторого $\varepsilon > 0$ (иными словами, докажем, что множество T — открытое подмножество [0,1]).

Рассмотрим на кривой γ точку $\gamma(t_0)$ и замкнутый круг B с центром в этой точке, который не пересекает другие рёбра и круги D_v (это возможно, так как образы других рёбер — замкнутые подмножества плоскости).

По предположению $t_0 \in T$, тогда существует ломаная, которая идёт от a до t_0 . Тогда мы можем соединить $\gamma(a)$ с любой точкой круга B хорошей ломаной (не имеющей самопересечений и пересечений с другими рёбрами) по ломаной из $\gamma(a)$ в $\gamma(t_0)$ до первой её точки в круге B и далее по отрезку.

С другой стороны (по определению непрерывности кривой), для круга B существует интервал $(t_0 - \varepsilon, t_0 + \varepsilon)$ такой, что его образ содержится в этом круге — стало быть, доказали, что если $t_0 \in T$, то $(t_0 - \varepsilon, t_0 + \varepsilon) \subset T$, то есть, T — открытое подмножество на [a,b].

Далее докажем (аналогично), что если $t_0 \notin T$, то для некоторого $\varepsilon > 0$ выполнено $(t_0 - \varepsilon, t_0 + \varepsilon) \cap T = \emptyset$, то есть, что дополнение $[a, b] \setminus T$ тоже открыто в [a, b]. Предположим, что $\gamma(t_0)$ не принадлежит множеству T. Рассмотрим круг с центром в точке $\gamma(t_0)$, который не пересекается с остальными рёбрами,

и рассмотрим интервал $(t_0 - \varepsilon, t_0 + \varepsilon)$, который при отображении γ целиком попадает в этот круг.

Мы не можем соединить $\gamma(a)$ хорошей ломаной с точками из этого интервала, если не можем соединить $\gamma(a)$ с точкой $\gamma(t_0)$ — действительно, иначе дойдём до первой точки круга с центром в точке $\gamma(t_0)$, и далее дойдём до точки $\gamma(t_0)$. Таким образом, если $t_0 \notin T$, то и $t \notin T$, где $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$.

Тем самым мы доказали, что множества T и $[a,b]\setminus T$ открыты в [a,b]. Теперь докажем, что если $T\subset [a,b]$ и $([a,b]\setminus T)\subset [a,b]$ — открытые множества в [a,b], то одно из них пусто.

Действительно, рассмотрим

$$\sup(t \in [a, b] : [a, t] \in T) = c.$$

Иными словами, рассмотрим отрезок [a,b] и, поскольку мы знаем, что $a \in T$, будем идти по отрезку, пока мы находимся в множестве T.

Если $c \in T$ и $c \neq b$, то как мы доказали, $(c - \varepsilon, c + \varepsilon) \subset T$ для $\varepsilon > 0$, а значит, c не является верхней гранью для этого множества. Значит, если c < b, то c не может принадлежать T.

Аналогично, если $c \notin T$, то есть $c \in [a,b] \setminus T$, то $(c-\varepsilon,c+\varepsilon) \subset [a,b] \setminus T$, то есть c — не точная верхняя грань, поскольку, например, $c-\varepsilon$ — верхняя грань. Поэтому c=b, так как $[a,b] \setminus T$ открыто и не может состоять только из одной точки — правого конца отрезка.

2.4 Теорема Жордана

В этой главе будет почти полное повторение Лекции 3 из [1]. Если у вас есть какие-то дополнения с учётом нашего лекционного курса, то прошу мне сообщить об этом.

Определение. Для любого подмножества A плоскости отношение: «точки $P,Q \in A$ можно соединить непрерывной кривой, лежащей в A» является отношением эквивалентности. Соответствующие классы эквивалентности называются компонентами линейной связности множества A.

Теорема (Жордана (для ломаных)). Замкнутая вложенная ломаная разбивает плоскость на две компоненты связности.

Доказательство. Шаг 1. Число компонент ≤ 2 .

Чтобы доказать, что число компонент, на которые замкнутая вложенная ломаная разбивает плоскость, не больше двух, достаточно выбрать нужным образом две точки и доказать, что любую точку плоскости можно соединить с одной из них непрерывной кривой, не пересекающей ломаную.

Выберем на произвольном ребре ломаной точку и рассмотрим круг с центром в этой точке (достаточно малый, чтобы он пересекался только с внутренними точками ребра, и не пересекался с другими рёбрами ломаной). Ребро разбивает круг на две части, в каждой из частей выберем по точке (обозначим их A и B).

Рис. 11: Круг с центром в точке ломаной

Теперь определим понятие «идти вдоль кривой». Произвольные кривые могут быть устроены достаточно сложно, и для них определить это понятие довольно затруднительно. Для ломаной с конечным количеством звеньев это не вызывает проблем.

Для произвольной точки Q на ломаной выберем достаточно маленький круг D_Q (т.е. если Q — точка на ребре, то D_Q пересекается только с внутренними точками ребра, если Q — вершина, то D_Q не пересекается с другими рёбрами, кроме двух, выходящих из неё). В каждом таком круге выберем пару точек, лежащих в разных компонентах относительно пары радиусов, на которые они этот круг разбивают. Здесь пользуемся следующей леммой:

Лемма. Два радиуса разбивают круг на две компоненты.

Доказательство. сюда рисунок 2 и 3

Рассмотрим круг, соответствующий вершине, и круг, соответствующий внутренней точке ребра. Несложно понять, что можно выбрать в каждом из кругов пару точек, лежащих в разных частях круга, таким образом, что их можно попарно соединить друг с другом, не пересекая ломаную (выбираем точки достаточно близко к ребру и идём вдоль этого ребра — см.рис.12).

Это означает, что если мы сможем соединить произвольную точку P плоскости с одной из точек любого из кругов, соответствующих точкам ломаной,

Рис. 12: Проход вдоль ребра

то мы сможем дальше пройти вдоль ломаной (не пересекая её), и соединить полученную точку либо с точкой A, либо с точкой B — см.рис.13.

Рис. 13: Проход вдоль ломаной

Осталось понять, что точку P можно соединить с какой-то точкой из какогото круга с центром на ломаной. Выберем произвольную точку R на ломаной и соединим её с точкой P отрезком. PR — неперывная кривая, значит, существует первая точка R' пересечения этой кривой с ломаной (по лемме о первой точке). Рассмотрим круг $D_{R'}$ и на отрезке PR' отступим от точки R' на расстояние ε , меньшее радиуса круга. Из получившейся точки мы можем пойти вдоль ломаной и прийти либо в точку A, либо в точку B — см.рис.14.

Таким образом, мы доказали, что количество частей, на которые замкнутная ломаная разбивает плоскость, не может быть больше двух. Чтобы доказать, что таких компонент ровно две, осталось понять, что точки A и B, которые мы выбрали, лежат действительно в разных компонентах, то есть, не существует кривой, которая не пересекая ломаную, соединяет точки A и B.

Шаг 2. Докажем, что число компонент $\geqslant 2$ (есть точки, лежащие в разных компонентах).

Рис. 14: Соединение произольной точки плоскости с точкой из круга с центром на ломаной.

Рассмотрим ломаную L и точку $P \notin L$. Возможные варианты пересечения (маленькая окрестность точки пересечения) луча l_P с началом в точке P с ломаной L указаны на рисунке 15.

Рис. 15: Возможные варианты пересечения l_P с ломаной L.

Построим инвариант (грубо говоря, посчитаем чётность количества пересечений луча l_P с ломаной L, но в случае, когда l_P идёт по ребру L, мы получим бесконечное множество точек пересечения, поэтому лучше сказать, что каждому типу пересечения поставим в соответствие 0 или 1, как показано на рисунке 15).

Лучу l_P поставим в соответствие число, которое равно сумме по модулю 2 чисел, соответствующих вариантам пересечения этого луча с ломаной L:

 $\sigma(P)$ — сумма чисел, приписанных пересечением по модулю 2.

Лемма (1). При фиксированном X функция $\sigma(x,\varphi)$ не зависит от φ

Лемма (2). Функция $\sigma(x) := \sigma(x, \varphi)$ локально постоянна (по x).

Доказательство. Смотри рисунок (которого нет).

Лемма (3). $x, y \in \mathbb{R}^2 \setminus L$, x и y можно соединить непрерывной кривой, не пересекающей ломаную.

Доказательство.
$$\exists \gamma: [0,1] \to \mathbb{R}^2 \setminus L$$
 — непрерывная. $\gamma(0) = x, \ \gamma(1) = y \Rightarrow \sigma(x) = \sigma(y)$.

 $\gamma([0,1])$ — компактное подмножество плоскости. Т.к. оно связное, то на нём функция $\sigma(x) = const.$

Итак, мы построили некоторую функцию σ , которая постоянна на каждой компоненте линейной связности. Чтобы доказать, что число компонент, на которые ломаная делит плоскость, не меньше двух, достаточно предъявить две точки, в которых значения этой функции будут разными.

Рассмотрим маленький отрезок P_1P_2 , перпендикулярный ребру ломаной, и не пересекающий другие рёбра. Луч с началом в точке P_1 пересекает ломаную ровно на один раз больше, чем луч с началом в точке P_2 , поэтому $\sigma(P_1) \neq \sigma(P_2)$. Отсюда следует, что число компонент, на которые замкнутная ломаная разбивает плоскость, не меньше двух.

Лемма (о четырёх точках). L - замкнутая вложенная ломаная. <math>P, Q, R, S -точки ломаной (расположенные именно в таком порядке). (сюда рисунок 3.10 из Ошемкова). $L_1 -$ ломаная между P и R; $L_2 -$ ломаная между Q и S; L_1, L_2 расположены в одной компоненте связности от L; $L_1 \cap L = \{P, R\}, L_2 \cap L = \{S, Q\}$. Тогда L_1 и L_2 пересекаются.

Доказательство. $\tilde{L} = L_1 \cup$ часть ломаной L между P и R, содержащая Q. Рассмотрим точки S', S'', Q', Q'' в малых кругах с центрами в S и Q так, как показано на рис 3.11 (Ошемков) (то есть в разных компонентах, на которые эти круги разбиваются рёбрами ломаной). Можно считать, что S' и Q' лежат на L_2 . Пусть S'', Q'' расположены в одной компоненте относительно L, которая не содержит L_1, L_2 .

Тогда S'', Q'' расположены в одной компоненте относительно \tilde{L} (действительно, так как S'', Q'' расположены в одной компоненте относительно L, значит, их можно соединить какой-то непрерывной кривой, не пересекающей ломаную L, причём эта кривая не пересекает и ломаные L_1, L_2 , поскольку они расположены в другой компоненте. Эта же кривая не пересекает и ломаную \tilde{L} , значит, S'', Q'' расположены в одной компоненте относительно \tilde{L}).

Q',Q'' расположены в разных компонентах относительно \tilde{L} (точки, расположенные по разные стороны от ребра ломаной, лежат в разных компонентах, на которые эта ломаная делит плоскость).

S', S'' расположены в одной компоненте относительно \tilde{L} (очевидно, их можно соединить непрерывной кривой, не пересекающей \tilde{L}).

Суммируя эти утверждения, получаем, что S', Q' расположены в разных компонентах относительно $\tilde{L}.$

Итак, S', Q' расположены в разных компонентах относительно \tilde{L} и соединены ломаной $\tilde{L_2}$ (полученной из ломаной L_2 выбрасыванием маленьких отрезков SS' и QQ', то есть, ломаная $\tilde{L_2}$ не пересекается с ломаной L).

Значит, \tilde{L}_2 пересекает ломаную \tilde{L} , откуда следует, что \tilde{L}_2 пересекает ломаную L_1 .

Но если ломаные $\tilde{L_2}, L_1$ пересекаются, то ломаные L_2 и L_1 тоже пересекаются, т.к. $\tilde{L_2} \in L_2$. Лемма доказана.

Утверждение. Граф $K_{3,3}$ не планарен.

Рис. 16: Граф $K_{3,3}$.

Рис. 17: Попытка вложения графа $K_{3,3}$ в плоскость.

Доказательство. Предположим, что нам удалось вложить этот граф в плоскость без самопересечений. Рассмотрим цикл в графе $A_1B_2A_3B_1A_2B_3A_1$. Пусть

 $K_{3,3}$ вложен в плоскость так, что его рёбра являются ломаными. Тогда этот цикл образует замкнутую ломаную, которая делит плоскость на две компоненты.

Из оставшихся трёх рёбер A_1B_1 , A_2B_2 , A_3B_3 по крайней мере два расположены в одной компоненте, причём концы этих рёбер расположены на цикле в нужном порядке (как в лемме о четырёх точках), поэтому они должны пересекаться, откуда следует, что граф $K_{3,3}$ нельзя вложить в плоскость.

Утверждение (Теорема Жордана для замкнутой непрерывной кривой). Пусть L -замкнутая вложенная в плоскость кривая. Тогда она разбивает плоскость не менее чем на 2 компоненты.

Доказательство. Будет позже.

Теорема (Эйлер). Пусть дан плоский связный граф B, P, Γ — количество вершин, рёбер и частей плоскости, на которые граф разбивает плоскость. Тогда

$$B - P + \Gamma = 2. \tag{1}$$

Доказательство. Начав с произвольной вершины. пройдём по рёбрам графа, не проходя ни по какому ребру дважды. Мы не сможем сделать следующий шаг только в двух случаях: либо мы вернёмся в вершину, где уже были (это будет означать, что в графе есть цикл), либо вернёмся в вершину степени 1.

Определим две операции:

- 1. Если в графе есть вершина степени 1, то удалим её вместе с ребром, которому она принадлежит.
- 2. Если в графе есть цикл, то удалим любое ребро из этого цикла, не удаляя вершин, которым принадлежит это ребро.

Мы можем выполнять эти операции, пока у графа есть рёбра. Значит, процесс остановится только тогда, когда граф состоит из одной вершины и не имеет рёбер (а для этого графа соотношение (1) выполнено).

Осталось понять, что при выполнении вышеуказанных операций число $B-P+\Gamma$ не меняется.

Первая операция:

$$B \to B-1$$

$$P \rightarrow P - 1$$

Вторая операция:

$$B \to B$$

$$P \rightarrow P - 1$$

Отметим, что при выполнении обеих операций число Γ не увеличивается (очевидно, что если некоторые точки можно было соединить непрерывной кривой, не пересекая рёбра графа, то после удаления ребра их можно будет соединить той же кривой).

Осталось доказать, что для операции 1 число компонент не меняется, а для операции 2 число компонент уменьшается ровно на 1. Доказательство проводится примерно так же, как и доказательство теоремы Жордана для ломаных (см. шаг 1, где мы описывали процесс хождения вдоль рёбер замкнутой ломаной).

Для операции 1: надо проверить, что если для точек $P,Q \notin G$ существует непрерывная кривая γ , соединяющая P с Q и не пересекающая рёбра, отличные от e (т.е. ребро, которое мы удаляем), то существует другая непрерывная кривая $\tilde{\gamma}$, соединяющая P с Q и не пересекающая рёбра.

Рис. 18: Существование кривой $\tilde{\gamma}$

Рассмотрим M — первую точку на кривой γ , принадлежащую ребру e и N — последнюю точку на кривой γ , пересекающую ребро e (они существуют, так как образ ребра e — замкнутое подмножество плоскости).

Рассмотрим замкнутый круг D_M с центром в точке M, не пересекающий другие рёбра и пересекающийся с ребром e по двум радиусам (аналогично для точки N рассмотрим круг D_N). Из точки P пройдём по кривой γ до первой точки, принадлежащей кругу D_M , затем пройдём вдоль ломаной до последней точки на кривой γ , принадлежащей кругу D_N , а из неё по кривой γ пройдём до точки Q — получим непрерывную кривую γ , соединяющую точки P и Q, и не пересекающую рёбра, отличные от e.

Для операции 2: поскольку цикл не самопересекающийся, его образ при вложении графа в плоскость можно рассматривать как замкнутую не самопересекающуюся ломаную. По теореме Жордана для ломаных, этот цикл разбивает плоскость на две компоненты.

Рассмотрим замкнутый круг с центром в точке, лежащей на ребре ломаной. Если точки A и B лежат в разных компонентах, на которые рёбра ломаной разбивают круг, тогда точки A и B лежат в разных компонентах относительно этой замкнутой ломаной (это следует из доказательства теоремы Жордана для ломаных). Тогда тем более точки A и B лежат в разных компонентах относительно графа G.

После удаления ребра e очевидно, что эти точки можно соединить непрерывной кривой (например, отрезком), смотри 19.

Рис. 19: Соединение точек A и B, лежащих в разных компонентах

Таким образом, мы доказали, что после операции 2 число компонент уменьшится. Осталось показать, что оно уменьшится ровно на 1.

Поймём, какие точки, которые были в разных компонентах до удаления ребра, могут оказаться в одной компоненте после удаления ребра. Рассмотрим точки P и Q, такие что до удаления ребра их нельзя было соединить непрерывной кривой, не пересекая рёбра графа, а после удаления — можно. Это означает, в частности, что кривая γ , соединяющая P и Q, пересекает только ребро e.

На кривой γ рассмотрим первую и последнюю точки (M и N, соответственно) пересечения этой кривой с ребром e. Рассмотрим замкнутые круги D_M и D_N с центрами в этих точках и докажем, что точки P и Q можно соединить с одной из точек A или B непрерывной кривой, не пересекая рёбер графа.

Рис. 20: Точки P и Q можно соединить с одной из точек A или B

Из точки P пойдём по кривой γ до первой точки пересечения с кругом D_M , затем пойдём вдоль ребра e и соединим эту точку либо с точкой A, либо с точкой B, состоит из части кривой γ и некоторого пути вдоль ломаной.

Аналогично для точки Q — пойдём по кривой γ до первой точки пересечения с кругом D_N , затем пойдём вдоль ребра e до точки A или B (см. рис.20).

Мы доказали, что точка P до удаления ребра e лежит в одной из компонент, которой принадлежат либо точка A, либо точка B, а точка Q лежит во второй из этих компонент (так как точки A и B находятся в разных компонентах). Это и означает, что при удалении ребра e сливаются (становятся одной компонентой) только те компоненты, которые задаются выбранными нами точками A и B. Значит, число компонент уменьшится ровно на 1.

Таким образом, при указанных операциях число $B-P+\Gamma$ не меняется, и если в конце процесса (для графа, состоящего из одной точки), оно равно 2, то и для начального графа выполняется соотношение

$$B - P + \Gamma = 2$$
.

Теорема (Критерий Понтрягина-Куратовского). Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных K_5 и $K_{3,3}$.

Доказательство. Без доказательства.

3 Многогранники

Определение. *Многоугольник (на плоскости)* — множество точек, ограниченное замкнутой вложенной конечнозвенной ломаной (вместе с этой ломаной).

Определение. Два многоугольника, расположенных в пространстве, называются *смежными по ребру а*, если a — их общее ребро.

Определение. *Многогранная поверхность* — это конечный набор многоугольников в \mathbb{R}^3 такой, что для любого ребра любого многоугольника существует единственный другой многоугольник, смежный с ним по данному ребру (причём это отношение симметрично).

Определение. Многогранная поверхность называется *вложенной*, если выполнены следующие условия:

- 1. Внутренние точки граней принадлежат только этим граням.
- 2. Внутренние точки рёбер принадлежат только тем двум граням, которые смежны по данному ребру.
- 3. У любой вершины существует «обход»: все грани, соответствующие данной вершине (как точке в \mathbb{R}^3) таковы, что для любых двух граней существует цепочка граней, их соединяющая. Причём все они смежные по рёбрам, инцидентных данной вершине.

То есть, у любой точки существует окрестность, гомеоморфная двумерному диску.

Определение. Многогранная поверхность *связна*, если для любых двух граней существует цепочка граней, смежных по ребрам, их соединяющая.

Замечание. Мы будем рассматривать только связные и вложенные многогранные поверхности.

Определение. Пусть дана вложенная связная многогранная поверхность L. Компактная часть пространства, ограниченная L вместе с поверхностью L называется многогранником.

Определение. Множество в \mathbb{R}^n называется *выпуклым*, если для любых двух точек в нём, оно содержит весь отрезок между ними (отрезок, их соединяющий).

Определение (1). Многогранник *выпуклый*, если его множество точек выпукло.

Определение (2). Многогранник *выпуклый*, если он лежит в одном полупространстве, образованном плоскостью, содержащем любую его грань.

Определение (3). Многогранник *выпуклый*, если он совпадает (как множество в \mathbb{R}^3) с выпуклой оболочкой его вершин (выпуклая оболочка множества — это минимальное выпуклое множество, его содержащее).

Теорема. Определения (1)-(3) эквивалентны.

Теорема. Для любого выпуклого многогранника выполнено

$$B - P + \Gamma = 2$$

 $oldsymbol{\mathcal{I}}$ оказательcтво.

Определение. Правильный многогранник — это выпуклый многогранник, грани которого — это равные правильные многоугольники, все двугранные углы которого равны.

Замечание. Все двугранные углы равны ⇔ в любой вершине сходится одинаковое число рёбер.

Почему можно заменить? Потому что верна следующая теорема:

Теорема (Коши). Дла выпуклых многогранника с одинаковым комбинаторным строением, имеющие равные соответствующие грани, совмещаются движением пространства (т.е. конгруэнтны).

Доказательство. Без доказательства.

Теорема. В пространстве существует ровно пять правильных многогранников (платоновы тела).

$$\begin{cases} n\gamma = 2P, \\ mB = 2P, \\ B - P + \Gamma = 2. \end{cases} \Longrightarrow$$

$$\frac{2P}{m} - P + \frac{2P}{n} = 2 \Rightarrow P\left(\frac{2}{m} + \frac{2}{n} - 1\right) = 2$$

$$\frac{2}{m} + \frac{2}{n} > 1$$

при m>6: $\frac{2}{m}\leq \frac{1}{3}$ и $\frac{2}{n}>\frac{2}{3}\Rightarrow n<3$ — противоречие, т.к. если $n\geq 6\Rightarrow m<3$ — не бывает.

Классификация многогранников:

1.
$$n = 3$$
, $m = 3$: $P(\frac{2}{3} + \frac{2}{3} - 1) = 2 \Rightarrow P = 6 \Rightarrow \Gamma = \frac{2 \cdot 6}{3} = 4$

Теорема (Сабитов). При изгибании невыпуклого многогранника его объём сохраняется.

Доказательство. Здесь могла быть ваша реклама.

Теорема (Минковский). Пусть дан набор векторов $\overrightarrow{n_1}$, $\overrightarrow{n_k}$, никакие два из которых не сонаправлены и не лежат в одном полупространстве, и набор чисел s_1, \ldots, s_k , что $\sum s_i \overrightarrow{n_i} = 0$. Тогда существует ровно один строго (вот тут дополни про фиктивные вершины "фиктивная вершина — вершина, в которой сумма плоских углов равна два пи") выпуклый многогранник, для которого вектора $s_i \overrightarrow{n_i}$ являются его ежом.

Доказательство. Без доказательства.

Теорема (Бойяи-Гервин). Два многоугольника на плоскости равносоставлены тогда и только тогда, когда они равновеликие.

Определение. Два многоугольника W_1, W_2 равносоставлены, если существуют многоугольники M_1, \ldots, M_n такие, что:

- 1. $\forall i, j \ M_i \cap M_j = \varnothing;$
- $2. \bigcup M_i = W_1, \bigcup M_j = W_2.$

Теорема (Ден). Куб и правильный тетраэдр равного объёма не равносоставлены.

Определение. Функция f, определённая на множестве $M \subset \mathbb{R}$, называется аддитивной, если $\forall n_1 x_1 + \dots + n_k x_k = 0, \ n_i \in \mathbb{Z}, \ x_i \in M$ выполнено

$$n_1 f(x_1) + \dots + n_k f(x_k) = 0.$$

Определение. Пусть дан W — многогранник. $\alpha_1, \ldots, \alpha_k$ — величины его двугранных углов. Пусть дана аддитивная функция f, определённая на множестве $M: \{\alpha_1, \ldots, \alpha_k, \pi\} \in M$, причём $f(\pi) = 0$. Тогда инвариантом Дена многогранника W назовём число $f(W) = \sum a_i f(\alpha_i)$ — сумма по всем рёбрам.

Утверждение. Любой инвариант Дена для куба равен нулю.

Доказательство.

$$2 \cdot \frac{\pi}{2} - \pi = 0$$
$$2 \cdot f\left(\frac{\pi}{2}\right) - 1 \cdot f(\pi) = 0 \Rightarrow f\left(\frac{\pi}{2}\right) = 0 \Rightarrow f(\text{куб}) = 6 \cdot 0 = 0.$$

Утверждение. Инвариант Дена для призмы равен нулю.

Теорема (Хадвигер). Пусть $W_1, W_2 - \partial \varepsilon a$ многогранника, $f - a \partial \partial u m u \varepsilon h a s$ фнукиция, область определния которой включает число π и величины всех двугранных углов W_1, W_2 . Пусть $f(W_1) \neq f(W_2)$. Тогда W_1, W_2 не равносоставлены.

Замечание. Через эту теорему будем доказывать теоерему Дена.

Доказательство. Тише едешь — дальше будешь. Что-то с тетраэром и утверждением о том, что $cos(m\alpha) = \frac{a_m}{3^m}, \ a_m$ не делится на $3, \ a_m \in Z$

Лемма (1). Пусть $f - a\partial \partial umu$ вная функция, определённая на множестве $M: \alpha \in \mathbb{R}, \ \alpha \notin M$. Тогда существует аддитивная функция \tilde{f}_i , определённая на $M \cup \{\alpha\}$ такая, что $\forall x \in M: \ f(x) = \tilde{f}x$

Доказательство. Если между α и числами из M нет зависимости, то $\tilde{f}(\alpha)$ — любое число. Пусть зависимость есть, то есть существуют целые n_0, \dots, n_k :

$$n_0\alpha + n_1x_1 + \dots + n_kx_k = 0 \ x_i \in M, \ n_0 \neq 0.$$

Тогда $f(\alpha) := -\frac{n_1 f(x_1) + n_2 f(x_2) + \dots + n_k f(x_k)}{n_0}$. Пусть есть другая зависимость $m_0 \alpha + m_1 y_1 + \dots + m_l y_l = 0$, $y_j \in M$, $m_0 \neq 0$. Верно ли $0 = m_0 f(\alpha) + m_1 f(y_1) + \dots + m_l f(y_l) = -\frac{m_0}{n_0} \left(n_1 f(x_1) + \dots + n_k f(x_k) \right) + m_1 f(y_1) + \dots + m_l f(y_l) = -\frac{m_0 n_1 f(x_1) - \dots - m_0 n_k f(x_k) + n_0 m_1 f(y_1) + \dots + n_0 m_l f(y_l)}{n_0}$?

$$-m_0 n_1 x_1 - \dots - m_0 n_k x_k + m_0 n_0 y_1 + \dots + m_l n_0 y_l = 0$$

Лемма (2). Пусть W — многогранник, состоящий (разбитый в объединение непересекающихся) из многогранников P_1, \ldots, P_k . f — аддитивная функция, определённая на π и всех двугранных углах многогранников W, P_1, \ldots, P_k . Тогда $f(W) = \sum f(P_i)$.

Замечание. Из лемм (1)-(2) будет следовать теорема Хадвигера.

Доказательство. Поспешишь — людей насмешишь.

Всё будет, но позже.

Список литературы

- [1] А.А. Ошемков. Нагядная геометрия и топология. Лекции. Москва: teach in, электронное издание. 185 с.
- [2] Учебные материалы по наглядной геометрии и топологии от кафедры дифференциальной геометрии и приложений механико-математического факультета МГУ имени М.В. Ломоносова [Электронный ресурс]. URL: http://dfgm.math.msu.su/ngit.php (дата обращения: 19.02.2025).
- [3] А.А. Ошемков и др. Курс наглядной геометрии и топологии. Москва: ЛЕ-НАНД, 2015. 360 с.