Matlab - CheatSheet

©Jan Brupbacher

12. April 2020

Inhaltsverzeichnis

1	Basics
2	Einige kleine Kniffs
3	Least Square implementation
4	Transfer function
5	Gleichung (System) symbolisch lösen
6	Bode and Nyquist plot
7	State-Space to Transfer function

Matlab - CheatSheet 12. April 2020

1 Basics

2 Einige kleine Kniffs

3 Least Square implementation

```
Phi = [1 2 3]' % transponiert damit Spaltenvektor!

y = [0.5 1.9 3.2]'

theta = inv(Phi'*Phi)*Phi'*y % 'Naiv'

theta = pinv(Phi)*y % Weniger Operationen

theta = Phi\y % Ohne Inversion (beste Variante und % nummerisch robust)
```

4 Transfer function

5 Gleichung (System) symbolisch lösen

```
% s ist eine symboliche Variable
1 syms s
3 b = 1/(s+1);
4 c = 1/s;
5 d = 1/(s+1);
6 e = 2;
7 f = 2;
8 g = -26;
9 h = -12;
10 i = 1/(s^2+3*s+2);
12 sys = (b+c+d+e)/(1-(b*f + b*c*g + b*c*d*h + c*d*e*i));
13 simplify(sys)
                           % simplify => Gleichung vereinfachen
14 pretty(simplify(sys))
                           % pretty => schoene Darstellung von Bruechen und
                           % Exponenten
```

12. April 2020 Matlab - CheatSheet

6 Bode and Nyquist plot

7 State-Space to Transfer function

©Jan Brupbacher 3