Cálculo Infinitesimal

Hoja 8

1. Encontrar f'(x) en cada caso:

$$a) \ f(x) = \int_3^{x^2} \sin t dt;$$

c)
$$f(x) = \int_{2x+3}^{x^3} t^5 dt;$$

b)
$$f(x) = \int_{3}^{5x-4} \cos^3 t dt;$$

d)
$$f(x) = \int_{3}^{2x} e^{t^2} dt$$
.

- ② Calcular el área de la figura limitada por la curva $xy = a^2$, el eje OX, y las rectas x = a, x = 2a (a > 0).
- 3. Calcular el área de la figura limitada por las curvas $y=x^2, y=\frac{1}{3}x^3$.
- 4. Calcular el área de la figura comprendida entre la curva $y = 4 x^2$ y el eje OX.
- (5) Hallar el área de la figura limitada por la curva $y = x^3$, la recta y = 8 y el eje OY.
- 6. Calcular el área de la figura limitada por las curvas $y = \log x$, $y = \log^2 x$.
- (7) Hallar el área de una de las regiones limitadas por las curvas $y = \sin x$, $y = \cos x$.
- 8. Hallar el área de una de la región limitada por la curva $y=x^3$ y las rectas $y=2x,\,y=x$.
- 9. Hallar el área de la figura contenida en el primer cuadrante, dentro de la circunferencia $x^2 + y^2 = 3a^2$ y limitada por las parábolas $x^2 = 2ay$, $y^2 = 2ax$ (a > 0).
- 10. Calcular el área de la figura limitada por la curva $y^2 = x(x-1)^2$.
- 11 Hallar el área de la figura limitada por la parábola $y = -x^2 2x + 3$, su tangente en el punto (2, -5) y el eje OY.
- 12 Hallar el área de la superficie limitada por la elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a, b > 0).
- 13. Hallar el área de la figura limitada por el eje OX, la curva $y=\frac{6a^3}{x^2+9a^2}$ y las rectas $x=3a,\,x=-3a\;(a>0).$
- 14. Calcular el área de las dos partes en que la parábola $y^2=x$ divide al círculo limitado por $x^2+y^2=4$.

1

- 15. Hallar el área de la figura limitada por la curva xy=a, y las rectas x=a, x=2a, y el eje OX.
- 16. Hallar el área de la figura limitada por las curvas $y = \frac{1}{x^2 + 2}$, $y = \frac{x^2}{2}$.
- 17) Hallar el área de la figura limitada por la curva $y = x^4 6x^2$ y la recta que pasa por sus puntos de inflexión.
- 18. Hallar el área de la figura comprendida entre las dos ramas de $(2x y)^2 = x^3$ y la recta x = 4.
- 19 Hallar el volumen del elipsoide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (a, b, c > 0).
- Calcular el volumen del segmento esférico de dos bases cortado de la esfera $x^2+y^2+z^2=16$ mediante los planos x=2, x=3.
- 21. Sobre todas las cuerdas paralelas de un círculo de radio R se construyen segmentos parabólicos simétricos de la misma altura h, que cortan a la circunferencia y cuyos planos son perpendiculares al plano del círculo. Hallar el volumen del sólido así obtenido.
- 22 La figura limitada por la sinusoide $y = \operatorname{sen} x$ $(0 \le x \le \pi/2)$, el eje OY y la recta y = 1 gira alrededor del eje OY. Calcular el volumen del sólido de revolución así engendrado.
- (23) Hallar el volumen del sólido obtenido al girar la curva $a^2y^2 = ax^3 x^4$ alrededor del eje $OX\ (a > 0)$.
- 24. Calcular el volumen del sólido engendrado al girar alrededor del eje OX la figura limitada por $y = a \cosh \frac{x}{a}$ y las rectas x = c, x = -c (a, c > 0).
- 25. Hallar el volumen del cuerpo engendrado al girar alrededor del eje OX la porción de la hipérbola $x^2 y^2 = a^2$ comprendida entre las rectas x = a y x = 2a (a > 0).
- 26. Hallar el volumen del cuerpo engendrado al girar alrededor del eje OX la figura limitada por la curva $y = xe^x$, el eje OX y la recta x = 1.
- 27) Hallar el volumen del cuerpo engendrado al girar alrededor del eje OX la figura limitada por la curva $y = \arcsin x$, el eje OX y la recta x = 1.
- 28. Calcular el volumen del cuerpo engendrado al girar alrededor del eje OX la figura limitada por la curva $y = 2x x^2$ y el eje OX.

- 29 Calcular el volumen del cuerpo limitado por el paraboloide $z = \frac{x^2}{4} + \frac{y^2}{2}$ y el plano z = 1.
- 30. Deducir por integración la fórmula del volumen de un cono de radio R y altura H.
- 31. La zona interior a las curvas $y=x^2$, $y=4x-x^2$ gira entorno a la recta x=5. Hallad el volumen del cuerpo resultante.
- 32. La zona interior a la curva $x = 9 y^2$, y las rectas x y 7 = 0, x = 0 gira entorno a la recta y = 3. Hallad el volumen del cuerpo resultante.
- 33 Hallar la longitud del arco de la curva $y^2 = \frac{2}{3}(x-1)^3$ que limita la curva $y^2 = \frac{x}{3}$.
- 34. Calcular la longitud del arco de la curva $x = \frac{1}{2}y^2 \frac{1}{4}\log y$ comprendida entre las rectas y = 1, y = e.
- 35. Calcular la longitud del arco de la curva $y^2 = \frac{x^3}{2a-x}$ que limita la recta $x = \frac{5a}{3}$ (a > 0).
- 36. Hallar la longitud del arco que la recta x = 4/3 corta en la curva $y^2 = x^3$.
- 37. Calcular la longitud del arco de la curva $y = \log \cos x$ entre los puntos de abscisas x = 0, $x = \pi/4$.
- 38 Hallar la longitud del arco de la curva $9y^2 = x(x-3)^2$ comprendido entre los puntos de corte con el eje OX.
- 39 Calcular la longitud del arco de curva de ecuación $y = \log \frac{e^x + 1}{e^x 1}$, $1 \le x \le 2$.
- 40. Hallar la longitud del arco de curva de ecuación $y = \arcsin e^{-x}, \ 0 \le x \le 1$.
- 41. Hallar la longitud del arco de la curva $x^2 = (y+1)^3$ entre los puntos de corte con la recta y=4.
- 42. Hallar la longitud del arco de la rama derecha de la tractriz

$$x = -\sqrt{a^2 - y^2} + a \log \left| \frac{a + \sqrt{a^2 - y^2}}{y} \right|,$$

desde y = a hasta $y = b \ (0 \le b \le a)$.

- 43. Hallar la longitud de la curva de ecuación $y = \log \sqrt{\sec 2x}$ comprendida entre los puntos de abscisa $x = 0, x = \pi/6$.
- 44. Calcular el área de la superficie engendrada formada al girar alrededor del eje OX el arco de la curva $3y x^3 = 0$ limitado por las rectas x = 0, x = a (a > 0).
- Calcular el área de la superficie engendrada formada al girar alrededor del eje OX la curva $y = \operatorname{sen} x$, con $0 \le x \le 2\pi$.
- Hallar el área del elipsoide formado al girar alrededor del eje OX la elipse de ecuación $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0).$
- 47. Hallar el área de la superficie generada al girar alrededor del eje OY la porción de la curva $y = \frac{x^2}{2}$ cortada por la recta $y = \frac{3}{2}$.
- 48) Hallar el área de la superficie generada al girar alrededor del eje OX la porción de la curva $y^2 = 4 + x$ cortada por la recta x = 2.
- 49 Calcular el área y el volumen de una esfera radio a.
- 50. Calcular el área y el volumen de un toro circular de radio exterior b y radio interior a, formado al girar sobre el eje 0Y la circunferencia $y^2 + (x a)^2 = b^2$.
- 51. Hallar el área de la superficie limitada por las parábolas $y^2 = x$, $y^2 = 2x$, $y = x^2$, $2y = x^2$.
- 52. Hallar el área de la superficie engendrada al girar alrededor del eje OX el contorno cerrado formado por las curvas $y = x^2$, $x = y^2$.