Cryptography

Langston Barrett

Fall 2017

Contents

• Instructor: Adam Groce

• Textbook:

- Title: Introduction to Modern Cryptography, 2nd Edition

- Author: Jonathan Katz and Yehuda Lindell

- ISBN: 978-1-4665-7026-9

1 Probability

Lemma 1.1. If

a. A and B are random variables,

b. B is sampled from some finite set of outcomes \mathcal{B} ,

then

$$\Pr(A) = \sum_{b \in \mathcal{B}} \Pr(A|B) \cdot \Pr(B = b)$$

Lemma 1.2 (Union Bound). For events E_0, \ldots, E_n ,

$$\Pr\biggl(\bigvee_{i=0}^n E_i\biggr) \leq \sum_{i=0}^n \Pr E_i$$

Theorem 1.3 (Bayes' Theorem).

$$\Pr(A|B) = \frac{\Pr(B|A) \cdot \Pr{A}}{\Pr{B}}$$

2 Concepts

Note. What's wrong with having a small key space \mathcal{K} ?

It makes your scheme vulnerable to brute-force attacks, especially when the distribution on the message space \mathcal{M} is well-understood (as in all adversarial experiments).

Note. What are the four kinds of security experiments?

- 1. Ciphertext-only
- 2. Known-plaintext
- 3. Chosen-plaintext
- 4. Chosen-ciphertext

Note. How does a reduction work?

In it's most general form, reduction is a tool used to show that problem/language A is just as "hard" as problem/language B.

- 1. Assume that problem B "hard".
- 2. Assume A is an algorithm that solves A.
- 3. Using A as a subroutine, construct a solution B for B.
- 4. This contradicts the assumption that B couldn't be solved, conclude by contradiction that no such A exists.

Note. What is one piece of information that almost every encryption scheme leaks? Why might it be a problem? When can and when can't it be solved? Plaintext length. It might be a problem if $\mathcal{M} = \{\text{"yes", "no"}\}$. It can be solved when the maximum length of the encrypted messages is known in advance.

Note. Why is it necessary to use randomness in encryption? No non-random scheme has indistinguishability for multiple encryptions.

3 Symmetric-key cryptography

Definition. A private-key encryption scheme consists of:

- a message space \mathcal{M} ,
- a key space K, and
- a trio of algorithms (Gen, Enc, Dec).

A scheme is **correct** if

$$Dec_k(Enc_k m) = m$$

for all $m \in \mathcal{M}$ and $k \in \mathcal{K}$.

Definition. A private-key encryption scheme $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ is **perfectly secret** if for all distributions on $\mathcal{M}, \ m \in \mathcal{M}, \ \mathrm{and} \ c \in \mathcal{C}$ (with $\mathsf{Pr}(C=c) > 0$),

$$\Pr(M = m | C = c) = \Pr(M = m)$$

Equivalently, for all $m, m' \in \mathcal{M}$, and $c \in \mathcal{C}$, a

$$Pr(Enc_K(m) = c) = Pr(Enc_K(m') = c)$$

Definition. The perfect adversarial indistinguishability experiment $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}$ is:

- 1. The adversary \mathcal{A} outputs $m_0, m_1 \in \mathcal{M}$.
- 2. (a) A key $k \leftarrow \mathsf{Gen}(1^n)$ is generated.
 - (b) A bit $b \leftarrow \{0,1\}$ is chosen.
 - (c) A ciphertext $c \leftarrow \mathsf{Enc}_k \ m_b$ is fed to \mathcal{A} .
- 3. \mathcal{A} outputs $b' \in \{0,1\}$.

The experiment outputs 1 when b = b'.

Definition. A scheme Π has perfectly indistinguishable encryptions in the presence of an eavesdropper if

$$\mathsf{Pr}\big(\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1\big) = \frac{1}{2}$$

for all $A \in PP$.

Definition. The adversarial indistinguishability experiment $\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$ is:

- 1. The adversary \mathcal{A} is given 1^n and outputs $m_0, m_1 \in \mathcal{M}$ with $|m_0| = |m_1|$.
- 2. (a) A key $k \leftarrow \mathsf{Gen}(1^n)$ is generated.
 - (b) A bit $b \leftarrow \{0, 1\}$ is chosen.
 - (c) A ciphertext $c \leftarrow \mathsf{Enc}_k \ m_b$ is fed to \mathcal{A} .
- 3. \mathcal{A} outputs $b' \in \{0, 1\}$.

The experiment outputs 1 when b = b'.

Definition. A scheme Π has indistinguishable encryptions in the presence of an eavesdropper if

$$\Pr\!\left(\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1\right) \leq \frac{1}{2} + \mathsf{negl}\ n$$

for all $A \in \mathsf{PP}$ and $n \in \mathbb{N}$, where the probability is taken over randomness of A and that of the experiment.

Definition. The multiple-message indistinguishability experiment $\mathsf{PrivK}^{\mathsf{mult}}_{\mathcal{A},\Pi}(n)$ is:

- 1. The adversary \mathcal{A} is given 1^n and outputs lists $(m_{0,0}, m_{1,0}, \ldots, m_{t,0})$ and $(m_{0,1}, m_{1,1}, \ldots, m_{t,1})$ such that $|m_{i,0}| = |m_{i,1}|$ for all $i \in \{1, \ldots, t\}$.
- 2. (a) A key $k \leftarrow \mathsf{Gen}(1^n)$ is generated.
 - (b) A bit $b \leftarrow \{0,1\}$ is chosen.
 - (c) The ciphertexts $(\mathsf{Enc}_k \ m_{0,b}, \ldots, \mathsf{Enc}_k \ m_{t,b})$ are given to \mathcal{A} .
- 3. \mathcal{A} outputs $b' \in \{0, 1\}$.

The experiment outputs 1 when b = b'.

3.1 Peseudorandomness

Definition 3.1. A determinisitic algorithm $G \in P$ is a **pseudorandom generator** if there exists some real polynomial l such that $D : \{0,1\}^n \to \{0,1\}^{l}$ and the following conditions hold:

- 1. **Expansion:** For all $n \in \mathbb{N}$, l n > n.
- 2. **Pseudorandomness:** For all distinguishers $D \in \mathsf{PP}$, there exists a negligible function negl such that

$$|\Pr(D(r) = 1) - \Pr(D(G(s)) = 1)| \le \mathsf{negl}\ n$$

where the first probability is taken over the choice of a uniformly random string $r \leftarrow \{0,1\}^{l(n)}$ and the second over a choice of a uniformly random $s \leftarrow \{0,1\}^n$, and both over randomness of D.

Note. What is meant by the phrase "let s be a random string"? Strictly speaking, this phrase doesn't make sense. A given string (or function) can't be random. What it means is "let s be a string drawn uniformly at random from the set of all strings".

Note. Does the seed of a pseudorandom generator need to be kept secret? Why?

Yes. Consider the modified one-time pad scheme where a PRG is used to expand the key length. If the adversary knows the seed, they know the key.

Definition 3.2. A **stream cipher** is a pair of deterministic algorithms (Init, GetBits) where

- Init takes as input a seed s and an optional initialization vector IV, and outputs an initial state s_0 .
- GetBits takes a state s_i and outputs a bit b and an updated state s_{i+1} .

3.2 CPA-security

Definition. The **CPA** indistinguishability experiment $\mathsf{PrivK}_{\mathcal{A}.\Pi}^{\mathsf{cpa}}(n)$ is:

- 1. A key $k \leftarrow \mathsf{Gen}(1^n)$ is generated.
- 2. The adversary \mathcal{A} is given 1^n and access to the oracle $\operatorname{Enc}_k(-)$. The adversary outputs $m_0, m_1 \in \mathcal{M}$ with $|m_0| = |m_1|$.
- 3. (a) A bit $b \leftarrow \{0,1\}$ is chosen.
 - (b) The ciphertext $c \leftarrow \mathsf{Enc}_k \ m_b$ is fed to \mathcal{A} .
- 4. \mathcal{A} continues to have access to $\mathsf{Enc}_k(-)$ and outputs $b' \in \{0,1\}$.

The experiment outputs 1 when b = b'.

3.3 Message authentication codes

Definition 3.3. A message authentication code consists of three PP algorithms (Gen, MAC, Verify) such that:

- Gen takes input 1^n and outputs a key k with $|k| \ge n$,
- MAC takes a key $k \in \mathcal{K}$ and a message $m \in \mathcal{M}$ and outputs a tag t.
- Verify takes a key $k \in \mathcal{K}$, a message $m \in \mathcal{M}$, and a tag t, and outputs a bit b with b = 1 meaning valid and b = 0 meaning invalid.

A MAC is correct if for all $m \in \mathcal{M}$ and $k \in \mathcal{K}$,

$$\mathsf{Verify}_k (\mathsf{MAC}_k \ m) = 1$$