

Assembly Instructions

EECS388 Fall 2022

© Prof. Mohammad Alian

Context

Patel

 Recommended reading
 Chapter 7 and Appendix A of "Introduction to Computing," Patt,

ADD

```
ADD DR, SR1, SR2
ADD DR, SR1, imm5
```

Operation:

```
If (bit[5] == 0)
     DR = SR1 + SR2
Else
     DR = SR1 + SEXT(imm5)
setCC();
```

• Example:

ADD R1, R2, R3 ADD R2, R5, #7

AND

```
AND DR, SR1, SR2

AND DR, SR1, imm5

AND DR, SR1, imm5
```

Operation:

```
If (bit[5] == 0)
        DR = SR1 & SR2
Else
        DR = SR1 & SEXT(imm5)
-setCC();
```

• Example:

AND R1, R2, R3 AND R2, R5, #7

BR

BR

BRn LABEL BRz LABEL BRp LABEL
BRnp LABEL BRzp LABEL BRnz LABEL
BRnzp LABEL

Operation:

```
If ((n AND N)OR (p AND P)OR (z AND Z))
PC = PC + SEXT(PCoffset 9)
```

• Example:

BRzp LOOP BRnzp TARGET

What is R1? R1, R2, #0 -> AND Manoj > R1, R1, #1 R1, R7,# LABEL Suhaan -> 3 / Binary 00000 010 001 0101 PC = PC + SEXT (PCOH) 110 0000

Short int VR7, VR2; 0X3000 .ORIG VR7 = VR2 & 0; VRT += 1/ CZ OXOOOD -LABEL OKOBO | -PC = 0x 0002 R1, R1, DXOOOT ADD 127, 127, #Z OXOUS ABEL ADD 0X0003 < AND 00000 010 001 0101 PC = PC + SEXT (Offset) 00000001 110 0000 22 + SEXT(offset) 00001 001 001 0001 00010 001 0001 001

JMP (Jump), RET (Return from Subroutine)

JMP BaseR RET

JMP 1100 000 000000 BaseR RET 1100 000 111 000000

Operation:

JMP: PC = BaseRRET: PC = R7

• Example:

UK 30114

JMP R1	ORIG.	M3 000
RET 0x3000	ADD	
0x3001 0x3002 =>>	AND - CON	fun
973003 283014	BRNOT	

JSR, JSRR (Jump to Subroutine)

• Example:

JSR QUEUE JSRR R3

LD (Load)

LD DR, LABEL

LD+ 0010 DR PCoffset9

Operation:

```
DR = Mem[PC + SEXT(PCoffset9)]
setCC();
```

• Example:

LD R4, (VALUE

ADDRESS

LDI (Load Indirect)

```
LDI DR, LABEL

Operation:

DR) = Mem[Mem[PC + SEXT (PCoffset9)]]

setCC();

Example:

LDI R4, InDirADDRESS
```

LDR (Load Base+Offset)

LDR DR, BaseR, Offset 6

• Operation:

• Example:

LDR R4, R2,
$$\#-5$$

LEA (Load Effective Address)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LEA		11	10			DR			- 1		PC	offs	et9		ı	
													\perp			

Operation:

• Example:

NOT (Bitwise complement)

NOT DR, SR

Operation:

• Example: (5x0000)

NOT R4, R2

NOT R4, R2

$$N=1$$
, $Z=0$, $P=0$

R4 = NOT (0 × 00000)

 $OX FFFFF$
 $OX FFFFF$

NOT+

2'Comp

RTI (Return from Interrupt)

Skip for now.

ST (Store)

ST SR, LABEL

• Operation:

Mem[PC + SEXT(PCoffset9)] = SR

ST

SR

0011

• Example:

ST R4, HERE

LDI

STI (Store Indirect)

STI SR, LABEL

Operation:

Mem [Mem [PC + SEXT (PCoffset9)]] = SR

Example:

STI R4, InDirADDRESS

STR (Store Base+Offset)

STR SR, BaseR, Offset 6

Operation:

Mem[BaseR + SEXT(offset6)] = SR

• Example:

STR R4, R2, #-5

TRAP (System Call)

ONDOOD

PC=X

Operation:

• Example:

*memory location 0x0000 – 0x00FF implement Trap Vector Table

0X0000

OXOOFF

 Example Question: What would be the content of register file after executing the following code? Assume that all registers are initialized to zero.

Review of PC-relative addressing mode

LD and ST

More Examples

• What is the value of R1 after executing the following LC-3 assembly with the following memory content?

ORIG x3000		
	(R1)	Mem ADDESS
LD RI ADDRESS		
BLKW 1		0×3001
• DTI/M T		

Address	Data (2 bytes)
0x3000	0x2200
0x3001	0x3005
0x3002	0x0001
0x3003	0x0002
0x3004	0x0003
0x3005	0x0004
0x3006	0x0005

• What is the value of R1 after executing the following LC-3 assembly with the following memory content?

0010 0	2	0000000
ADDRESS	2 PC	+ SEXT (Offset)
x300	x3001	0
个 x 3002	x3001	1

Address	Data (2 bytes)
0x3000	0x2200
0x3001	0x3005
0x3002	0x0001
0x3003	0x0002
0x3004	0x0003
0x3005	0x0004
0x3006	0x0005

0x 22 0 1

 What is the value of R1 after executing the following LC-3 assembly with the following memory content. Assume that the initial value of R2 is 0x3002

	X3002
RI = Mem	$\left[R2 + (-2) \right]$
	X3000

Address	Data (2 bytes)
0x3000	0x62BE
0x3001	0x3005
0x3002	0x0001
0x3003	0x0002
0x3004	0x0003
0x3005	0x0004
0x3006	0x0005