Bases de Données: Algèbre relationnelle

Sergio Peignier

Opérateurs et opérandes

- Relation → Ensemble de k-tuples pour un k fixé (arité de la relation).
- Les opérandes de l'algèbre relationnelle sont soit des relations constantes, soit des variables qui dénotent des relations d'arité fixe.
- Il existent 5 opérateurs de base pour définir l'algèbre relationnelle.

R?*S*

Α	В	С
a d c	b a b	c f d
	R	

D	Ε	F
Ь д	g a	a f
	5	

а	b	C
d	α	f
С	b	d
b	g	α

$R \cup S$ (Union ensembliste)

Α	В	С
a d c	b a b	c f d
	D	

D	Е	F
b d	9 a	a f
	S	

а	b	C
d	α	f
С	b	d
b	9	α

R?*S*

Α	В	С
a d c	b a b	c f d
	R	l

D	Е	F
b d	g a	a f
	5	

α	Ь	С
С	Ь	d
	I	1

R - S (Différence ensembliste)

Α	В	С
a d c	b a b	c f d
	D	

D	Ε	F
р д	g a	a f
-	5	

R?S

Α	В	С	D	Ε	F
a a d d c	ь в в в ь	c c f d	ь d ь d ь d	9 a 9 a 9	a f a f a f

RxS (produit cartésien)

Α	В	С	D	Ε	F
a a d d c	ь в в в ь	c c f d	ь d ь d ь d	9 a 9 a 9	a f a f a f

RxS (produit cartésien)

- R d'arité k_1
- S d'arité k_2
- RxS génére un ensemble de $(k_1 + k_2)$ -tuples

?(*R*)

Α	В	С
a d c	ЬаЬ	c f d
	R	

$\pi_{A,C}(R)(Projection)$

Α	В	С	
a d c	b a b	c f d	
R			

Projection π

- Soit R d'arité k
- Projection $\pi_{a_1,...,a_i,...,a_m}(R)$ tel que $i \in [1,k]$ et $a_j \neq a_l$ pour $j \neq l$
- Le résultat est l'ensemble des m-tuples (a_1, \ldots, a_m) tel qu'il existe un k-tuple (b_1, \ldots, b_k) dans R pour lequel $a_j = b_j$ pour $j = 1, 2, \ldots, m$

?(*R*)

Α	В	С
a d c	b a b	c f d
	R	

Α	В	C
a	b	С
С	b	d

$\sigma_{B=b}(R)(Selection)$

Α	В	С	
a d c	b a b	c f d	
R			

Α	В	C
a	b	С
C	b	d

Selection σ

Soit F une formule impliquant :

- Des opérandes sont des constantes ou des noms d'attributs.
- Des comparateurs arithmétiques (<,=,>, ...).
- Des comparateurs logiques (∧ ET, ∨ OU, ¬ NON)

 $\sigma_F(R)$ est l'ensemble des tuples t de R tel que, Si les occurances de l'attribut a dans la formule F sont substitués par les attribut a de t alors la formule F est évaluée à vrai.

Autres opérations : Intersection ensembliste ∩

Déduire l'opération \cap à partir des opérations de base.

Autres opérations *R?S*

a	b	С	d
α	b	e	f
b	С	e	f
e	d	С	d
e	d	e	f
α	b	d	e
	ı	l .	

R

Quotient $R \div S$

	I	l	
a	b	С	d
a	Ь	e	f
b	С	e	f
e	d	С	d
e	d	e	f
a	Ь	d	e
	1		

R

Quotient $R \div S$

- R d'arité r
- S d'arité s
- r > s et $s \neq 0$
- $R \div S$ est l'ensemble de (r-s)-tuples t tel que pour tous les s-tuples u dans S, le tuple tu est dans R.
- $R \div S = \pi_{1,2,\dots,r-s}(R) \pi_{1,2,\dots,r-s}((\pi_{1,2,\dots,r-s}(R)xS) R)$

Autres opérations *R?S*

Α	В	C
1	2	3
4	5	6
7	8	9

Α	В	C	D	E
1	2	3	3	1
1	2	3	6	2
4	B 2 2 5	6	6	2

θ jointure $R \bowtie_{B < D} S$

Α	В	C
1	2	3
4	5	6
7	8	9

R

Α	В	C	D	E
1	2	3	3	1
1	2	3	6	2
4	B 2 2 5	6	6	2

θ jointure $R \bowtie_{\theta} S$

- R d'arité r
- S d'arité s,
- ullet est un opérateur de comparaison arithmétique
- $R \bowtie_{B < D} S = \sigma_{(i)\theta(r+j)}(RxS)$

Autres opérations *R?S*

Α	В	C
α	Ь	С
d	b	С
b	b	f
С	α	d

В	С	D
b	С	d
b	С	e
а	d	b
S		

Α	В	C	D
α	b	С	d
α	b	С	е
d	b	С	d
d	b	С	e
С	α	d	b

R

Jointure naturelle $R \bowtie S$

Α	В	C
α	Ь	С
d	b	С
b	b	f
С	а	d

В	С	D
b	С	d
b	С	e
а	d	b
S		

Α	В	C	D
α	b	С	d
α	b	С	e
d	b	С	d
d	b	С	e
С	α	d	b

R

Jointure naturelle $R \bowtie S$

- Applicable ssi R et S ont des colonnes qui sont nommées par des attributs.
- On calcule RxS
- Pour tout attribut A commun à R et à S retenir de RxS les tuples dont les valeurs R.A et S.A coincident
- Pour chaque attribut A ci-dessus, projeter hors de la colonne S.A
- Écrire l'opération de jointure naturelle en utilisant uniquement les fonctions de base (pour l'exemple précédent.)

Exercice

Reprendre les TPs et les refaire en utilisant les opérations d'algébre relationnelle.