Data Dictionary

Feature Description

NDSI	Normalized Difference Snow Index: (Green - SWIR) / (Green + SWIR)
NDVI	Normalized Difference Vegetation Index: (NIR - Red) / (NIR + Red)
SR_B2 to SR_B7	Surface reflectance in Blue, Green, Red, NIR, SWIR1, SWIR2
ST_B10	Thermal infrared band
QA_PIXEL	Pixel quality indicator
QA_RADSAT	Radiometric saturation flag
SR_QA_AEROSOL	Aerosol quality from surface reflectance
ST_ATRAN	Atmospheric transmittance
ST_CDIST	Distance to cloud
ST_DRAD, ST_EMIS, etc.	Additional surface temperature quality metrics
class	Binary label: 1 = glacier, 0 = non-glacier

Model Visualizations

To better understand how the spectral bands and indices contribute to glacier classification, we visualized the distributions of key features across glacier and non-glacier classes using histograms, violin plots, density plots, and correlation analysis.

Band Distributions

We plotted the distributions of SR_B2-SR_B6, NDVI, and NDSI across both classes:

• **Histograms** and **density plots** show clear separations between glacier and non-glacier pixels across most bands.

Figure I: Histograms of Distribution of Each Spectral Band

- **Glacier pixels** tend to have higher reflectance in bands SR_B2–B5 and higher NDSI values.
- Non-glacier pixels are more dispersed but tend to cluster around lower reflectance and NDSI values.

Violin Plots by Class

Violin plots further illustrate this separation:

Figure II: Violin Plots of Each Spectral Band by Glacier Class

- Bands like **SR_B5** and **NDSI** show tight, distinct clusters by class.
- NDVI exhibits a more subtle but still meaningful shift between glacier and non-glacier regions, with glaciers generally showing lower vegetation index values.

NDSI vs. NDVI Scatterplot

Figure III: Scatterplot of NDSI vs. NDVI colored by glacier class

- Glacier pixels cluster in a region with high NDSI and low NDVI.
- Non-glacier pixels spread more broadly, with **higher NDVI and lower NDSI**, confirming their potential as a decision boundary in classification tasks.

Correlation Matrix

The correlation heatmap shows strong positive correlations between the glacier class and:

- SR_B2-SR_B5 (~0.96-0.98)
- NDSI (0.92)

Figure IV: Correlation Matrix of Bands and Glacier Class

There's also a **negative correlation with NDVI (-0.67)**, reinforcing that glacier-covered areas are spectrally and vegetatively distinct from surrounding land cover.