Artificial Tricuspid Aortic Valve

Group Members: Cody Rouner, Matt Eganhouse, Ryan McLaughlin

Design Motivation

- Better valve mechanics
 - Less stress on blood cells
 - Higher wear resistance
 - Minimum backflow (regurgitation)
- More naturalistic
 - Improved hemodynamics
 - Less shear stress on the wall of the aorta
 - Minimal transvalvular pressure gradient
- Less thrombogenic
 - Decreased risk of thrombi formation, which could result in blood clotting

Patient Benefits

- Longer-lasting device
- Less stress on blood cells
 - Decreased risk of coagulation
 - Plasma-free hemoglobin
- Biocompatible
- Tissue ingrowth
- No metal-on-metal contact
 - Avoids galvanic corrosion and the production of wear particles

Procedure Statistics

- 85,000 aortic valve replacements performed per year in the U.S.
- Approximately 50% of patients with aortic valve stenosis (narrowing of the aortic valve) will not survive for more than an average of 2 years after symptom onset without an aortic valve replacement
- Mostly biological valves are used in the U.S. and Europe
- Mechanically valves are more typically used in Asia and Latin America

Design Rationale

- A trileaflet valve creates more naturalistic hemodynamics
 - Less stress on blood and the device itself
 - Decreased risk of blood clotting because of lower transvalvular pressure
- Durable
 - Can withstand more stress than bioprosthetic heart valves and won't need to be replaced as frequently
- Manufacturability
 - Individual components can be easily modeled; good reproducibility

"Gold Standard" Models

- Mechanical
 - Typically used in younger patients
 - Increased durability
 - Higher stresses
 - More prone to blood clotting
 - Sorin-Carbomedics Valve
 - Disc comprised of carbon fiber
 - Housing made of carbon fiber or titanium
 - Housing surrounding by Dacron (polyethylene terephthalate) for tissue ingrowth
- Biological
 - Decreased durability
 - Higher biocompatibility
 - Sorin Valve
 - Porcine tissue valves
 - Titanium stent
 - Some models utilize Dacron for tissue ingrowth
- Minimally-invasive Transcatheter Implants
 - For patients who are not eligible for surgery or have high surgical risk
 - Polyethylene valves with stents
 - Biological valves with stents

Existing Designs/Devices

- Mechanical
 - Caged-Ball Valve (Starr-Edwards)
 - Tilting-Disc Valve (Medtronic-Hall)
 - Bileaflet Valve (Medtronic Open Pivot)
- Biological
 - Porcine Valve (St. Jude Toronto Stentless)
 - Pericardial Valve (Carpentier-Edwards)
 - Homograft (Human Aortic Valve)
 - Pulmonary Homograft (Human Pulmonary Valve)
- Transcatheter Aortic Valve Replacement (TAVR)
 - Medtronic CoreValve System
 - Trileaflet porcine pericardial tissue valve, more optimal blood flow but lower durability
 - Edwards-SAPIEN Valve
 - Trileaflet bovine pericardial tissue valve, similar characteristics to Medtronic CoreValve System

Necessities to Improve Quality of Life

- Diet
 - Fiber
 - Limited sugar and salt intake
 - Low cholesterol and saturated fat intake
- Exercise
 - Gradually increase exercise level after surgery
- Anticoagulant
 - Warfarin, common blood thinner

Anatomical Information

- Implant will replace the aortic valve of the heart
- Surrounding anatomy includes heart tissue, the aorta, and sinuses distal to the valve
- Blood flow through the device goes from left ventricle to the aorta
- Endothelial cells line the inner lumen of the aorta
 - Sensitive to shear stress
 - Can regenerate if damaged
 - Tendency to align in direction of shear stresses
- Natural valve leaflets are thin tissue with elastin and collagen as structural elements
 - Anisotropic

Device Function, Requirements, and Constraints

- Function
 - Create a more stable blood flow without coagulation and failure
- Requirements
 - Valves need to fully open
 - Valves need to open/close quickly
 - Valves/housing need to be risk-free of fatigue failure
- Constraints
 - Valves can only open one way; must not allow reverse blood flow

Basic Design and Materials

- Trileaflet artificial aortic valve
- Three separate components
 - Three discs
 - Housing
 - Cloth sewing ring surrounding
- Mimic biomechanics of natural aortic valve
- Disc/leaflets UHMWPE
- Housing Titanium
- Cloth surrounding Dacron (polyethylene terephthalate), promotes tissue ingrowth

Device Aesthetics

- The artificial valve looks like a ring with three small leaflets attached to the ring on hinges
- Appearance is similar to that of a natural aortic valve

Similar Implant Aesthetics

- Other artificial aortic valves look similar, but the leaflets are attached to metal struts and have only one or two discs
- Biological replacement valves mimic the tricuspid appearance of a natural aortic valve
- Other device options
 - Transcatheter valves

• Did not pursue because these devices are new and not as much information exists about them

Device's Interaction with Body

- The device will be implanted into the heart
- Will interact with cardiac muscle, endothelial cells, and blood
- Valves open when P_{ventricle} > P_{aorta}
- Valves close when P_{ventricle} < P_{aorta}
- Will allow for tissue ingrowth adjacent to the ring/housing due to the Dacron

Distinguishable Interaction

- No biocompatibility issues
- More naturalistic hemodynamics
- Lower trasnvalvular pressure
- Lower shear stresses
 - Less blood thinner is necessary
- Durable
 - Last around 25 years as opposed to 10-15 years for biological valves

Effect of Material

- Materials should be wear-resistant (UHMWPE discs) and biocompatible
- Dacron cloth will facilitate tissue ingrowth adjacent to endothelial cells
- Titanium housing may be vulnerable to fatigue

Medical Indications and Contra-Indications

- Indications
 - Aortic stenosis (AS)
 - Narrowing of the aortic valve
 - Valvular incompetence
 - Incomplete valve closure
- Contra-Indications
 - Risk of open-heart surgery
 - Patients with cirrhosis (end-stage liver disease)
 - Possible acute episode of cardiac dysfunction

Analysis of Implant

- Reliability
 - Average life
 - Number of cycles to failure
 - Re-operative frequency
- Safety
 - Deaths per operation
 - Post-operative life expectancy
- Cost Analysis
 - Approximately \$5,000 for current artificial heart valves
 - Cost-effective compared to other medical care management options according to Annals of Cardiothoracic Surgery
- Testing
 - Finite Element Analysis
 - Cavitation testing
 - Accelerated valve wear tester
- Effectiveness
 - Low regurgitation
 - Large number of cycles to failure
 - Promotes naturalistic hemodynamic flow
- Surgical procedure similar to that of current mechanical heart valves

Individual Components

References

- Sundt, Thoralf M., Rhead, Jill. "Aortic Valve." The Society of Thoracic Surgeons. 2014. Web. 7 December 2014. http://www.sts.org/patient-information/valve-repair/replacement-surgery/aortic-valve.
- Svensson, Lars G., Gillinov, A.M., Mihaljevic, Tomislav. "Aortic Valve Surgery." Cleveland Clinic. 2014. Web. 7 December 2014. http://my.clevelandclinic.org/services/heart/disorders/valvetreatment/aorticvalvesurgery.
- "Biological Heart Valves." Cedars-Sinai. 2014. Web. 7 December 2014. .
- "Elderly and High Risk." NYU Langone Medical Center. 2014. Web. 7 December 2014. http://cardiac-surgery.med.nyu.edu/elderly-and-high-risk.
- "Heart Valves." Biotextiles 2012: MT 366 Biotextile Product Development. Web. 7 December 2014. https://biotextiles2012.wordpress.com/heart-valves/.
- "Heart Valve Surgery Recovery and Follow Up." American Heart Association. 18 February 2013. Web. 7 December 2014. http://www.heart.org/HEARTORG/Conditions/More/HeartValveProblemsandDisease/Heart-Valve-Surgery-Recovery-and-Follow-Up_UCM_450700_Article.jsp.
- "Medtronic Open Pivot Mechanical Heart Valves." *Medtronic*. Medtronic, Inc. 19 April 2011. Web. 7 December 2014. http://www.medtronic.com/for-healthcare-professionals/products-therapies/cardiovascular/heart-valves-surgical/open-pivot-mechanical-heart-valve/.
- "Questions and Answers Heart Valve Replacement (surgical)." *Medtronic*. Medtronic, Inc. 20 November 2013. Web. 7 December 2014. http://www.medtronic.com/patients/heart-valve-disease/about-surgery/heart-valve-replacement/questions-answers/.
- "Types of Replacement Heart Valves." American Heart Association. 26 March 2014. Web. 7 December 2014. http://www.heart.org/HEARTORG/Conditions/More/HeartValveProblemsandDisease/Types-of-Replacement-Heart-Valves_UCM_451175_Article.jsp.
- "U.S. Aortic Stensis Disease Prevalence & Treatment Statistics." *University of Maryland Medical Center.* 19 August 2014. Web. 7 December 2014. http://umm.edu/programs/heart/services/services/cardiac-surgery/valve-surgery/facts.