Embedded Intelligence: A Path to Unlocking the value of IoT

Lifeng Geng
IoT Segment Senior Manager

ARM Embedded IoT Seminar July, 2017

Gartner: IoT End Nodes by sectors

- Government includes LED street lamps, asset tracking, parking meters
- Utilities include smart meters

Smart Building / Smart Energy

Most Influential Drivers in Smart Building

Chart 1 Most Influential Driver for Investment in Energy Efficiency & Intelligent Building Technologies

A typical commercial building HVAC system

Central Plant:

- Boiler
- Chiller
- Cooling Tower

Distribution System:

- Pumps
- Pipes
- Control Valves

Secondary System:

- Air handler unit (AHU)
- VAV terminal units (VAV)
- VRV (Variable Refrigerant Volume)
- Sensors
- Thermostat

ARM Partners for Motor Control

Enter your keywords Q Community | English | ႃஜ | Log in

SOLUTIONS PRODUCTS DESIGN SUPPORT BUY & SAMPLE ABOUT CYPRESS

Home > Products > Microcontroller (MCU) and Programmable System-on-Chip (PSoC®) Families > 32-bit ARM® Cortex® Microcontroller (MCU) Families

32-bit ARM® Cortex® Microcontroller (MCU) Families

Overview Products Design Support

Cypress's Flexible Microcontroller (FM) portfolio, which is based on the ARM® Cortex®-M4, Cortex®-M3, Cortex®-M0+ CPUs is a scalable platform for industrial and consumer applications. Cypress's FM Portfolio delivers high-performance capabilities such as dedicated motor control peripherals, zero-wait high-speed flash accelerators, graphics coprocessors, high-speed CAN-FD interfaces and other peripherals integrated with ARM's latest,

MOTOR CONTROL FIRMWARE FEATURES

Note: 1. High Frequency Injection 2. STM32F103, F2, F4

Max FOC estimated in sensorless mode

Building Energy Management System

Persagy 博锐尚格

TI Cortex-A8

Smart Parking

 Smart Parking System is an integrated system to organize cars in public parks (Buildings or Cities), to balance parking supply and demand, help drivers for better user experience.

Embedded System: 智能快递柜

智能快递终端是一种联网的储物柜,快递员将快件送达指定地点后,只需将其存 入柜中,系统便自动向收件人手机发送一条短信,包括取件地址和密码,收件人在方 便时,到柜前输入密码即可取出快件。邮宝智能快递终端能为用户提供自由的取件时 间和地点,同时降低快递企业的成本。

Enabling an Intelligent Planet

"Buy vs. Make" Embedded Boards

Customer Challenges	Full Custom (Make)	Standard Board (Buy)	
Time-to-Market	 Longer time required to do hardware development 	 Shorter period as hardware and BSP is ready immediately allowing faster reaction to market needs. 	
BOM Costs	• Lowest	 Potentially lower as R&D cost can be amortized over a larger customer base per board 	
Lowering development costs as system complexity increases	• Dedicated resources need to keep up with each technologies in the system translates into more costs for human capital	Complex boards designed by module vendors reduces risky, complexity and costly for OEM	
Increase value through internal IP development	 Some IP may not be differentiating or valued by the customer 	• Limits the OEM investments and allows critical resources to be applied to IP that creates value.	
Long product life cycles	 OEM takes responsibility for all elements of design 	OEM off loads some of the responsibility to system board maker	

ARM for Single Board Computers:

Energy Efficiency

- Performance per watt; Small form factor
- Simpler power electronics to reduce BOM and weight
- Save cost for heat sink, transport and installation
- Broader application space such as battery powered

Increased Customer Choice

- Embedded computing spans diverse applications
 - Peripherals to meet application needs
 - Competition and constant innovation

Partnering and Ecosystem

- Increasing Software Complexity (Linux, Android, Microsoft)
- Trend to lower cost faster development cycles

Architecting the IoT opportunity

Cortex-M7 Processor

Highest Performance Cortex-M Processor

- High performance core with DSP capabilities
 - Six-stage dual-issue pipeline with branch prediction
 - Powerful DSP instructions and SP/FP Floating Point Unit
- Flexible memory system
 - Tightly-coupled memories for real-time determinism
 - 64-bit AXI AMBA4 memory interface with I-cache and D-cache for efficient access to external resources
- ARMv7E-M architecture
 - 100% binary forwards compatibility from Cortex-M4
 - Key Cortex-M processor family characteristics: ease of use, excellent interrupt latency

Safety features

- Memory ECC (SEC-DED), MPU, on-line MBIST, lock-step operation, full instruction and data trace
- Up to ASIL D, SIL3 systematic capability

Cortex-M7: Harnessing the Cortex-M Ecosystem

With support for the new Cortex-M7 processor, we are further strengthening our leading market position by delivering development tools for ARM with an outstanding benchmark score of 5.04 CoreMark/MHz **
- Stefan Skarin, IAR Systems

"Our robust embedded software components are designed to be used in high performance applications targeted by Cortex-M7, including industrial control, safety and IoT "

- Jean Labrosse, Micrium

"ARM Cortex-M7 will bring substantially more computing power to embedded applications, and SEGGER will continue to innovate new products and features for each new generation of ARM processors"

- Rolf Segger, SEGGER

DesignStart: The fastest route to silicon

Fast, simple and no-risk access

Start designing today!

\$0 license fee

Success-based royalty model

Design with confidence

World's most proven processors

Cortex-M0 & Cortex-M3

Comprehensive subsystems

The most accelerated route to success

Most comprehensive services, tools, and software

Design assistance

Largest technology ecosystem

Cordio: Complete and qualified wireless solutions

Stack and Link Layer Bluetooth 5 qualified QDID 91361, 91368

Easiest path to leading ultra-low-power wireless connectivity

Complete solution from RF to software

Energy efficient
Sub one volt radio

Flexible and configurable RF, standards, software stacks

Cordio: Design flexibility is yours

Bluetooth 5 and/or 802.15.4

Select your fab

Select your features/standards

802.15.4

Match your stack(s)

Growing Cordio ecosystem

Addressing embedded and IoT opportunities

Security for all embedded applications

Root of trust applications - IoT

IP Protection

Valuable firmware
Trusted drivers
Trusted hardware

Sandboxing

Certified OS / functionality

Trusted drivers

Trusted hardware

What sort of security?

TrustZone for ARMv8-M

Separation and access control (containers)

- Isolate trusted software and resources
- Reduce attack surface of key components

Trusted software

- Provision of security services
- Small, well-reviewed code

Trusted hardware

- Hardware assist for cryptography
- Secure-access validation built into SoC

ARMTRUSTZONE

System security

Software				
Hardware				
Crypto	Secure	Secure	TRNG	
	system	storage	11010	

Retain the familiar programmers' model

Bringing TrustZone protection to the system

- Secure the system, secure the processor
 - Hardware separation and isolation
 - Protect memories, peripherals, legacy IP
- AMBA AHB5 bus protocol
 - Signals security through the interconnect
 - Complementary to ARMv8-M
- Optimized for embedded systems
 - Fewer wires saves area and power
 - Hardware protection simplifies software

CoreLink SIE-200: System IP for embedded

Simplify the design of a secure system

 Designed and verified with latest ARMv8-M CPUs

Reduce design time with IP reuse

Re-use and secure existing IP in AHB5 systems

Extend security to peripherals

- Integrate legacy peripherals
- Programmable at run-time

Protect code and data

Programmable regions for multiple applications

CoreLink SSE-200: Subsystem for embedded

ARM CoreLink SSE-200 IP
Other ARM IP

Hardware IP

- Dual core Cortex-M33
- Instruction cache and memories
- Debug and power infrastructure
- CryptoCell, Cordio radio (options)
- CoreLink SIE-200 system IP

Software IP

- mbed OS
- Integration of secure libraries, drivers and protocol stack
- Delivered as open source

Bringing TrustZone to the Cortex-M family

Cortex-M23 enhancements over Cortex-M0+

Cortex-M23

TrustZone

Stack limit checking Hardware divide Exclusive memory accesses **Enhanced debug ETM** NVIC (max 240 IRQs) MPU (PMSAv8) AHB5 WIC Fast I/O bus MTB Serial wire / JTAG ARMv8-M baseline

New or updated

Cortex-M0+

NVIC (max 32 IRQs)
MPU (PMSAv6)
AHB Lite
WIC
Fast I/O bus
MTB
Serial wire / JTAG
ARMv6-M

Cortex-M33 enhancements over Cortex-M4

Cortex-M33

Cortex-M4
ETM
NVIC (max 240 IRQs)
MPU (PMSAv7)
AHB Lite
FPU
SIMD/ DSP
WIC
Serial wire / JTAG
ARMv7-M

Ever-expanding world's #1 embedded ecosystem

Public silicon lead partners

Public ecosystem lead partners

Economist IoT business index 2017

Surveyed 800+ senior leaders 400+ C-suite respondents

Sectors covered:
Financial services,
manufacturing, healthcare,
biotechnology, IT and
energy, construction and
facilities management

Key findings: What can accelerate IoT?

Challenge

 IoT infrastructure costs remain a high barrier to business scale

Businesses are daunted by security concerns

 IoT device development and connectivity costs are high

Recommendations

Innovative SaaS solutions instead of PaaS and middleware offerings can help reduce these costs

Businesses should look for off-the-shelf chip-to-cloud solutions that allow agile security implementation

Invest in platform OS that accelerates application development on a wide choice of silicon

Connecting chip to cloud

ARM

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

Copyright © 2016 ARM Limited