ET3230 Điện tử tương tự l

Bài giảng: Các vấn đề trong mạch khuếch đại tín hiệu nhỏ

Nội dung

- 7.2 Ghép giữa các tầng khuếch đại
- 7.3 Các cấu hình kết hợp
 - Cấu hình nối tiếp
 - Cấu hình cascode
 - Cấu hình Darlington
 - Cấu hình hồi tiếp
 - Mạch nguồn dòng
 - Mạch dòng gương
 - Khuếch đại vi sai

- Ghép nối nhiều tầng KĐ đơn mắc nối tiếp nhau để thu được hệ số KĐ cần thiết
- Việc ghép nhiều tầng KĐ cần chú ý
 - Đảm bảo hệ số KĐ
 - Dễ phối hợp trở kháng
 - Méo phi tuyến nhỏ
 - Đảm bảo dải tần làm việc
- Thường dùng
 - Ghép trực tiếp
 - Ghép dùng tụ điện
 - Ghép biến áp

Ghép trực tiếp

Ghép trực tiếp giữa đầu ra tầng trước và đầu

vào tầng sau

- Ưu điểm

• Đơn giản

Ít méo phi tuyến

Băng thông rộng

Dễ chế tạo dưới dạng vi mạch

Nhược điểm

Cần chú ý ảnh hưởng DC giữa các tầng

Mạch không phối hợp trở kháng

Ghép dùng tụ

Dùng tụ ghép đầu ra tầng trước và đầu vào

tầng sau

- Ưu điểm

Cách ly DC các tầng

 Đặc tuyến tần số bằng phẳng trong dải tần số trung bình

• Dùng tụ lớn => tránh méo

Nhược điểm

- Cồng kềnh
- Hạn chế tần số thấp
- Hay được sử dụng trong thực tế, đặc biệt là ở các tầng khuếch đại điện áp

- Ghép biến áp
 - Thường được dùng nhiều trước kia, hiện nay ít dùng
 - Ưu điểm
 - Cách ly vào ra
 - Dễ phối hợp trở kháng
 - Nhược điểm
 - Dải tần làm việc hẹp
 - Không tích hợp được
 - Cồng kềnh, đắt tiền

- Ghép dùng điện trở
 - Thường dùng cùng tụ
 - Tăng trở kháng vào
 - Giảm tín hiệu vào
 - Tạo mức dịch điện áp
 - Phụ thuộc tần số (khi dùng cùng C)
- Ghép điện quang
 - Dùng cho nguồn điện áp cao

7.3 Các cấu hình kết hợp

- 7.3.1 Cấu hình nối tiếp
- 7.3.2 Cấu hình cascode
- 7.3.3 Cấu hình Darlington
- 7.3.4 Cấu hình hồi tiếp
- 7.3.5 Mạch nguồn dòng
- 7.3.6 Mạch dòng gương
- 7.3.7 Khuếch đại vi sai

7.3.1 Cấu hình nối tiếp

- Đầu ra của tầng KĐ trước là đầu vào của tầng KĐ tiếp theo
- Thu được hệ số KĐ lớn

$$A_{\nu} = A_{\nu_1} A_{\nu_2}$$

- Kết hợp các tầng KĐ dùng FET và BJT sẽ thu được
 - Trở kháng vào lớn
 - Hệ số KĐ điện áp lớn

7.3.1 Cấu hình nối tiếp

7.3.1 Cấu hình nối tiếp

$$A_{v} = A_{v_{1}} A_{v_{2}} = (-g_{m_{1}} R_{D_{1}})(-g_{m_{2}} R_{D_{2}})$$
 $Z_{i} = R_{G_{1}}$
 $Z_{o} = R_{D_{2}}$

7.3.2 Cấu hình cascode

- Một transistor được mắc nối tiếp phía trên 1 transistor khác
 - Ví dụ: 2 transistor mắc CE và CB được nối trực tiếp
- Được sử dụng nhiều trong các ứng dụng ở tần số cao như
 - Mạch khuếch đại dải rộng
 - Mạch khuếch đại chọn lọc tần số

7.3.2 Cấu hình cascode - Ví dụ

 Tầng EC với hệ số KĐ nhỏ, trở kháng vào lớn để điện dung Miller đầu vào nhỏ

7.3.2 Cấu hình cascode - Thực tế

• CE:
$$A_{v_1} = 1$$

=> Điện dung Miller khá nhỏ, trở kháng vào cao

• CB
$$A_{v_2} = \frac{R_C}{r_e}$$

lớn => Hệ số KĐ tổng lớn

$$A_{v} = A_{v_{1}} A_{v_{2}} = -\frac{R_{C}}{r_{e}}$$

 Hai transistor cùng loại mắc theo cấu hình Darlington hoạt động giống như 1 transistor có hệ số KĐ dòng điện rất lớn, thường là vài nghìn lần

 Do tính thông dụng của nó, người ta chế tạo dưới dạng 1 package

Type 2N999

N-P-N Darlington-Connected Silicon Transistor Package

Parameter	Test Conditions	Min.	Max.
V_{BE}	$I_C = 100 \text{ mA}$		1.8 V
$h_{FE} (\beta_D)$	$I_C = 10 \text{ mA}$	4000	
	$I_C = 100 \text{ mA}$	7000	70,000

Phân cực 1 chiều

$$I_B = rac{V_{CC} - V_{BE}}{R_B + eta_D R_E}$$
 $I_E = (eta_D + 1)I_B pprox eta_D I_B$
 $V_E = I_E R_E$
 $V_R = V_E + V_{RE}$

Mạch tương đương AC

AC

$$Z_i = R_B \left\| \left(r_i + \beta_D R_E \right) \right\|$$

$$Z_o = \frac{V_o}{I_o} = R_E \left\| r_i \right\| \frac{r_i}{\beta_D} \approx \frac{r_i}{\beta_D}$$

$$A_{i} = \beta_{D} \frac{R_{B}}{R_{B} + \beta_{D} R_{E}}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{E} + \beta_{D}R_{E}}{r_{i} + (R_{E} + \beta_{D}R_{E})} \approx 1$$

7.3.4 Cấu hình cặp transistor hồi tiếp

- Tương tự cấu hình Darlington
- Hai transistor khác loại, hoạt động giống như 1 BJT loại npn
- Hệ số KĐ dòng điện tổng rất lớn

7.3.4 Cấu hình cặp transistor hồi tiếp

DC

$$I_{B_{1}} = \frac{V_{CC} - V_{EB_{1}}}{R_{B} + \beta_{1}\beta_{2}R_{C}}$$

$$I_{C_{1}} = \beta_{1}I_{B_{1}} = I_{B_{2}}$$

$$I_{C_{2}} = \beta_{2}I_{B_{2}} \approx I_{E_{2}}$$

$$I_{E_{1}} = I_{E_{2}}$$

$$I_{E_{1}} = I_{E_{2}}$$

$$I_{E_{2}} = I_{E_{2}}$$

$$I_{E_{1}} = I_{E_{2}}$$

$$I_{E_{2}} = I_{E_{2}}$$

$$I_{C} = I_{E_{1}} + I_{C_{2}} \approx I_{C_{1}} + I_{C_{2}} \approx I_{C_{2}}$$

7.3.4 Cấu hình cặp transistor hồi tiếp

AC

$$Z_i \approx R_B \left\| \left(r_{i_1} + \beta_1 \beta_2 R_C \right) \right\|$$

$$Z_o = \frac{V_o}{I_o} = R_C \left\| r_{i_1} \right\| \frac{r_{i_1}}{\beta_1} \left\| \frac{r_{i_1}}{\beta_1 \beta_2} \right\| \approx \frac{r_{i_1}}{\beta_1 \beta_2}$$

$$A_{i} = \frac{I_{o}}{I_{i}} = \frac{I_{o}}{I_{b_{1}}} \frac{I_{b_{1}}}{I_{i}} \approx \beta_{1} \beta_{2} \frac{R_{B}}{R_{B} + Z_{i}}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{1}{1 + r_{i_{1}} / (\beta_{1} \beta_{2} R_{C})} = \frac{\beta_{1} \beta_{2} R_{C}}{\beta_{1} \beta_{2} R_{C} + r_{i_{1}}}$$

- Nguồn dòng lý tưởng
 - cung cấp 1 dòng điện cố định,
 - Có nội trở trong $R=\infty$

Nguồn dòng dùng JFET

$$V_{GS} = 0$$

$$I_D = I_{DSS} = 10 \text{ mA}$$

Nguồn dòng dùng BJT

$$V_{\scriptscriptstyle B} = \frac{R_{\scriptscriptstyle 1}}{R_{\scriptscriptstyle 1} + R_{\scriptscriptstyle 2}} \left(-V_{\scriptscriptstyle EE} \right)$$

$$V_E = V_B - 0.7 V$$

$$I_{E} = \frac{V_{E} - \left(-V_{EE}\right)}{R_{E}} \approx I_{C}$$

 $=>I_{c}$ là dòng cố định

Nguồn dòng dùng BJT/diode Zener

7.3.6 Mạch dòng gương

- Cung cấp 1 hoặc nhiều dòng bằng 1 dòng xác định khác
- Sử dụng chủ yếu trong IC vì mạch yêu cầu các transistor giống nhau $(V_{_{RF}},\,\beta\,\,)$
 - Chú ý không nhân ra quá nhiều dòng

7.3.6 Mạch dòng gương

$$I_{B} = \frac{I_{E}}{\beta + 1} \approx \frac{I_{E}}{\beta}$$

$$I_{X} = I_{E} + \frac{2I_{E}}{\beta} \approx I$$

$$I_{x} = \frac{V_{CC} - V_{BE}}{R_{x}}$$

7.3.6 Mạch dòng gương

• JFET cung cấp 1 dòng cố định $I_{
m DSS}$

$$=>$$
 $I=I_{DSS}$

- Rất thông dụng trong IC
- Mạch có: 2 đầu vào, 2 đầu ra, 2 cực emitter nối nhau
- 2 transistor có các thông số giống hệt nhau

- Điện áp vào: tùy theo cách đưa tín hiệu vào mà có các chế độ khác nhau
 - Đưa tín hiệu vào 1 đầu vào, đầu vào còn lại nối đất: chế độ đơn
 - Đưa 2 tín hiệu khác nhau vào 2 đầu vào: chế độ vi sai
 - Đưa cùng 1 tín hiệu vào 2 đầu vào: chế độ đồng pha
- Điện áp ra có thể lấy
 - Giữa hai cực collector (kiểu đối xứng)
 - Giữa 1 cực collector và đất (kiểu không đối xứng)

Nhận xét

- Tín hiệu vào ngược pha: khuếch đại lớn
- Tín hiệu vào cùng pha: khuếch đại nhỏ
- ⇒ khả năng chống nhiễu tốt
- ⇒ Tỉ số nén đồng pha (CMRR-Common Mode Rejection Ratio) CMRR= Hệ số KĐ vi sai/Hệ số KĐ đồng pha
- ⇒ CMRR càng lớn chất lượng mạch càng tốt
- Với KĐ ngõ ra không cân bằng, Q₁, Q₂ vẫn có tác dụng trừ các tín hiệu nhiễu đồng pha hay ảnh hưởng của nhiệt độ tác dụng lên hai transistor

Úng dụng

- Trong các bộ KĐ thuật toán
- Sử dụng trong đo lường
- Sử dụng trong KĐ tần số thấp

• DC

$$V_E = V_B - V_{BE} = -0.7 \text{ V}$$

$$I_E = \frac{V_E - \left(-V_{EE}\right)}{R_E}$$

$$I_{C_1} = I_{C_2} = \frac{I_E}{2}$$

$$V_{C_1} = V_{C_2} = V_{CC} - I_C R_C = V_{CC} - \frac{I_E}{2} R_C$$

Chế độ KĐ xoay chiều ngõ vào đơn

Chế độ KĐ xoay chiều ngõ vào vi sai

$$A_d = \frac{V_o}{V_d} = \frac{\beta R_C}{2r_i}$$
$$V_d = V_{i_1} - V_{i_2}$$

Chế độ KĐ xoay chiều ngõ vào đồng pha

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{\beta R_{C}}{r_{i} + 2(\beta + 1)R_{E}}$$

- Dùng nguồn dòng cố định
 - Hệ số KĐ đồng pha nhỏ, do tăng $\,R_{\scriptscriptstyle E}$

Tóm tắt

- Bài học tập trung vào
 - Ghép giữa các tầng khuếch đại
 - Các cấu hình kết hợp

Bài tập

- Đọc chương 11 (Đáp ứng tần số BJT và FET [1])
- Bài tập [1]:
 - Chương 12: 1, 6, 11, 12, 15, 19, 21, 24, 26, 30