UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

SERVIDOR DE AGENDA BASEADO EM SOCKET TCP

Relatório do primeiro laboratório de MC823

Aluno: Marcelo Keith Matsumoto **RA**: 085937 **Aluno**: Tiago Chedraoui Silva **RA**: 082941

Resumo

Sumário

1	Introdução	1
2	Servidor de agenda	1
3	Ambiente de implementação	1
4	Tempos de comunicação e total	1
5	Conclusão	2

1 Introdução

O TCP (Transmission Control Protocol) é um protocolo do nível da camada de transporte. Dentre usas principais características temos:

Orientado à conexão Cliente e o servidor trocam pacotes de controle entre si antes de enviarem os pacotes de dados. Isto é chamado de procedimento de estabelecimento de conexão (handshaking).

Transferência garantida Dados trocados são livres de erro, o que é conseguido a partir de mensagens de reconhecimento e retransmissão de pacotes.

Controle de fluxo Assegura que nenhum dos lados da comunicação envie pacotes rápido demais, pois uma aplicação em um lado pode não conseguir processar a informação na velocidade que está recebendo.

controle de congestão Ajuda a prevenir congestionamentos na rede.

Este laboratório tem o objetivo de medir o tempo total e de comunicação de uma conexão TCP entre um cliente e um servidor.

2 Servidor de agenda

O sistema implementado se baseia numa comunicação cliente-servido O cliente possui todas as informações da agenda, assim como a estrutura dos menus. O cliente só escolhe alguma opção do menu e insere as informações de um compromisso, como nome, dia, hora e minuto.

3 Ambiente de implementação

O sistema de agenda foi implementado na linguagem C. Os dados da agenda foram armazenados em arquivos, onde o servidor lê quando um usuário loga no sistema de agenda e os armazena em memória. A cada alteração na agenda o servidor atualiza as informações dos arquivos.

4 Tempos de comunicação e total

O round-trip time (RTT) é o tempo que leva-se para um sinal ser enviado mais o tempo que se leva para receber um acknowledgment que o sinal foi recebido. A ferramenta administrativa para as redes de computadores denominada "Ping" é usada para testar se um host é alcançável e para medir o RTT para mensagens enviadas do host remetente para o destinatário.

Inicialmente, implementamos um programa semelhante ao ping para o cálculo da RTT. Com ele foi possível calcular várias vezes o tempo de envio pacote de 1 byte para o servidor e esse responder com um pacote de 4 bytes. Utilizando um script para a coleta dos tempo, obtivemos o seguintes valores:

Tabela I: Ping implementado

Valor	Tempo
Max	17.814 ms
Min	0.045 ms
Média	0.059 ms
Desvio	0.232 ms

Posteriormente, aplicamos o cálculo de tempo ao programa principal de forma a obtermos o tempo total e tempo de comunicação. Para o tempo total, no cliente pega-se o tempo antes do primeiro send e após o último recv. Para o tempo de comunicação, no servidor pega-se o tempo após o primeiro recv e antes do último send. Subtraindo o segundo do primeiro você tem o tempo estimado de ida e volta de um pacote.

O resultado obtido para 100 valores foi:

Tabela II: Teste 1: conexão e fechamento de conexão com servidor

Valor	Tempo
Max	4.986 ms
Min	0.097 ms
Média	0.608 ms
Desvio	0.008 ms

Tabela III: Teste 2: conexão, login na conta, ver agenda do mês e fechamento de conexão com servidor

Valor	Tempo
Max	4.959 ms
Min	0.190 ms
Média	0.638 ms
Desvio	0.013 ms

Comparando os resultados, como o ping é muito rápido nossa precisão é muito baixa. Porém nosso programa não é tão rápido assim os valores são mais precisos. Para certificarmos do tmepo, fizemos o teste com três situações, uma mais rápida, uma mais lenta. E obtemos valores muito próximos da média de tempo de ida e volta de um pacote(RTT).

5 Conclusão

Referências

- [1] Brian "Beej Jorgensen"Hall Beej's Guide to Network Programming Using Internet Sockets . Disponível em http://beej.us/guide/bgnet/, [Último acesso: 07/04/2011].
- [2] Mike Muuss Packet Internet Grouper (Groper). Disponível em http://linux.die.net/man/8/ping, [Último acesso: 10/04/2011].