

BIRZEIT UNIVERSITY

Faculty of Engineering & Technology
Department of Electrical & Computer Engineering
ENEE4113-COMMUNICATIONS LAB

Exp 2: DSB-SC and SSB-SC Pre Lab #2

Prepared by:

Saja Asfour

1210737

Instructor:

Dr. Qadri Mayyala

Assistance:

Eng.Mohammad Al-Battat

Section:

Sec 5

Date:

25/7/2024

Table of Contents

List of Figure:	2
Block simulation:	
A- DSB-SC modulation Schematic diagram:	3
B- DSB-SC Demodulation Schematic Diagram:	7
C- SSB Modulation method 1:	8
D-SSB Demodulation method 1:	9
E-SSB Modulation method 2:	11
F- SSB Demodulation method 2:	12

List of Figure:

Figure 1: Block parameter for m(t)	3
Figure2:Block parameter for c(t)	3
Figure 3:DSB-SC Modulation Schematic diagram	4
Figure 4: setting for zero hold in message signal	4
Figure 5:setting for zero hold in carrier (and it is same for DSB modulated signal)	4
Figure6 : Message signal in time domain	5
Figure 7:Carrier Signal in time domain	5
Figure 8:DSB-SC Modulated signal - in time domain	5
Figure 9:Spectrum of meesage signal	6
Figure 10: spectrum of carrier signal	6
Figure 11: spectrum for DSB Carrier Modulation Modulated signal	6
Figure 12:DSB-SC DeModulation Schematic Diagram	7
Figure 13: Analog filter setting	7
Figure 14:DSB-SC DeModulated signal – in time domain	7
Figure 15: spectrum of DSB-SC Demodulated signal	8
Figure 16:SSB Modulation method 1 Schematic Block Diagram	8
Figure 17: Bandpass filter setting	8
Figure 18: SSB Modulated signal –time domain method 1	9
Figure 19: spectrum of SSB Modulated signal method 1	9
Figure 20:SSB Demodulation Schematic Diagram method 1	9
Figure 21:SSB DeModulated signal - time domain method 1	10
Figure 22: spectrum of SSB DeModulated signal method 1	10
Figure 23:SSB modulation Schematic diagram method 2	11
Figure 24: Modulated Signal method 2	11
Figure 25: spectrum of Modulated Signal method 2	11
Figure 26:SSB Demodulation Schematic diagram method 2	
Figure 27:SSB Demodulated signal method 2	12
Figure 28: spectrum of SSB Demodulated signal method 2	12

Block simulation:

A- DSB-SC Modulation Schematic diagram:

 $M(t) = 0.85 \cos(2 \pi (1000)t)$

Figure1: Block parameter for m(t)

 $C(t) = 1 \cos(2 \pi (15000)t)$

Figure2 :Block parameter for c(t)

Figure 3:DSB_SC Modulation Schematic diagram

Figure 4: setting for zero hold in message signal

Figure 5:setting for zero hold in carrier (and it is same for DSB modulated signal)

Figure6 : Message signal in time domain

Figure 7: Carrier Signal in time domain

Figure 8:DSB-SCModulated signal - in time domain

Figure 9:Spectrum of meesage signal

Figure 10: spectrum of carrier signal

Figure 11: spectrum for DSB-SC Modulated signal

B- DSB Carrier Demodulation Schematic Diagram:

Figure 12:DSB-SC DeModulation Schematic Diagram

Figure 13: Analog filter setting

Figure 14:DSB-SC DeModulated signal – in time domain

Figure 15: spectrum of DSB-SC Demodulated signal

c- SSB Modulation method 1:

Figure 16:SSB Modulation method 1 Schematic Block Diagram

Figure 17: Bandpass filter setting

Figure 18: SSB Modulated signal –time domain method 1

Figure 19: spectrum of SSB Modulated signal method 1

D-SSB Demodulation method 1:

Figure 20:SSB Demodulation Schematic Diagram method 1

Figure 21:SSB DeModulated signal - time domain method 1

Figure 22: spectrum of SSB DeModulated signal method 1

E-SSB Modulation method 2:

Figure 23:SSB modulation Schematic diagram method 2

Figure 24: Modulated Signal method 2

Figure 25: spectrum of Modulated Signal method 2

F-SSB Demodulation method 2:

Figure 26:SSB Demodulation Schematic diagram method 2

Figure 27:SSB Demodulated signal method 2

Figure 28: spectrum of SSB Demodulated signal method 2