# Probability Theory

Kevin P. Murphy: Probabilistic Machine Learning Ch2 & Ch3

Presented by Wending Liu

RSE ML and Econometrics Reading Group

Oct 23 2023

### Table of Contents

What is Probability

2 Probability: Univariate Models

3 Probability: Multivariate Models

# **Probability**

- What do we mean by saying that "the probability of a fair coin will land head is 50%"?
  - Frequentist interpretation: If we flip the coin 1,000,000 times, we will observe the coin land heads about 500,000 times.
  - Bayesian interpretation: We believe the coin is equally likely to land head or tail on our next toss.
- In the Bayesian view, probability is used to quantify our uncertainty about something.
- Bayesian interpretation can be used to model uncertainty about one-off events.
- Bayesian interpretation is used throughout the whole book.

# Uncertainty

- But what is **uncertainty** in Bayesian interpretation?
- Epistemic/Model uncertainty
- Aleatoric/Data uncertainty



Complex machine, little human



Schrodinger's cat

### Table of Contents

What is Probability

Probability: Univariate Models

Probability: Multivariate Models

# Bayes' rule

 Bayes' rule is a formula for computing the probability distribution over possible values of unkown quantity H given some observed data Y = y:

$$p(H = h \mid Y = y) = \frac{p(H = h)p(Y = y \mid H = h)}{p(Y = y)}$$

- p(H = h): prior distribution.
- $p(Y = y \mid H = h)$ : likelihood.
- p(Y = y): marginal likelihood.
- $p(H = h \mid Y = y)$ : posterior distribution.
- posterior  $\propto$  prior  $\times$  likelihood.

### Example: Testing for Covid-19

- Suppose COVID-19 prevalence is 1% now and you take a diagnostic test that has a positive result. What's the probability that you are infected?
- H: the indicator of infection. Y: the indicator of a positive test result.
- prior: p(H = 1) = 0.01, p(H = 0) = 0.99.
- likelihood: p(Y = 1|H = 1) = 0.875. (true positive rate)
- false positive rate: p(Y = 1|H = 0) = 0.025.

$$\begin{split} & p(H=1 \mid Y=1) \\ & = \frac{p(Y=1 \mid H=1)p(H=1)}{p(Y=1 \mid H=1)p(H=1) + p(Y=1 \mid H=0)p(H=0)} \\ & = \frac{\text{TPR} \times \text{prior}}{\text{TPR} \times \text{prior} + \text{FPR} \times (1-\text{prior})} \\ & = \frac{0.875 \times 0.01}{0.875 \times 0.01 + 0.025 \times 0.99} = 0.261 \end{split}$$

### Bernoulli and binomial distribution

- Ber $(y \mid \theta) \triangleq \theta^y (1 \theta)^{1 y} = \begin{cases} 1 \theta & \text{if } y = 0 \\ \theta & \text{if } y = 1 \end{cases}$
- Bin $(s \mid N, \theta) \triangleq \begin{pmatrix} N \\ s \end{pmatrix} \theta^{s} (1 \theta)^{N-s}$
- We want to predict a binary variable  $y \in \{0,1\}$  given some inputs  $x \in \mathcal{X}$ :

$$p(y \mid \boldsymbol{x}, \boldsymbol{\theta}) = Ber(y \mid f(\boldsymbol{x}; \boldsymbol{\theta}))$$

• To avoid the requirement that  $0 \le f(x; \theta) \le 1$ , we can let f be an unconstrained function, and use the following model:

$$p(y \mid \mathbf{x}, \boldsymbol{\theta}) = \text{Ber}(y \mid \sigma(f(\mathbf{x}; \boldsymbol{\theta})))$$

- $\sigma$  is the **sigmoid** function:  $\sigma(a) \triangleq \frac{1}{1+e^{-a}}$
- Binary logistic regression:  $f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{w}^T \mathbf{x} + b$

# Sigmoid function



# Categorical and multinomial distributions

- one-hot vector:  $\mathbf{y} \in \{0,1\}^C$ ,  $\sum_{c=1}^C y_k = 1$
- Cat $(y \mid \boldsymbol{\theta}) \triangleq \prod_{c=1}^{C} \theta_c^{\mathrm{I}(y=c)} = \prod_{c=1}^{C} \theta_c^{y_c}$
- $\mathsf{Mu}(\mathsf{s} \mid \mathsf{N}, \boldsymbol{\theta}) \triangleq \left(\begin{array}{c} \mathsf{N} \\ \mathsf{s}_1 \dots \mathsf{s}_C \end{array}\right) \prod_{c=1}^C \theta_c^{\mathsf{s}_c}$
- $p(y \mid x, \theta) = Cat(y \mid f(x; \theta))$
- We require that  $0 \le f_c(\mathbf{x}; \mathbf{\theta}) \le 1$  and  $\sum_{c=1}^{C} f_c(\mathbf{x}; \mathbf{\theta}) = 1$ .
- To avoid this requirement, we pass the output from f into the softmax function, also called the multinomial logit:

$$\mathcal{S}(\boldsymbol{a}) \triangleq \left[ \frac{e^{a_1}}{\sum_{c'=1}^{C} e^{a_{c'}}}, \dots, \frac{e^{a_{C}}}{\sum_{c'=1}^{C} e^{a_{c'}}} \right]$$

• Multinomial logistic regression:  $f_c(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{w}_c^T \mathbf{x} + b_c$ :

$$p(y \mid \boldsymbol{x}; \boldsymbol{\theta}) = Cat(y \mid \mathcal{S}(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}))$$

### Softmax function

- Softmax function is related to Boltzmann distribution in physics.
- Let us divide each  $a_c$  by a constant T called the temperature. Then as  $T \to 0$ , we find:

$$S(\mathbf{a}/T)_c = \begin{cases} 1.0 & \text{if } c = \operatorname{argmax}_{c'} a_{c'} \\ 0.0 & \text{otherwise} \end{cases}$$



#### Guassian distribution

- Gaussian pdf:  $\mathcal{N}\left(y\mid\mu,\sigma^2\right)\triangleq\frac{1}{\sqrt{2\pi\sigma^2}}\mathrm{e}^{-\frac{1}{2\sigma^2}(y-\mu)^2}$
- Gaussian distribution is widely used.
  - only two parameters.
  - central limit theorem.
  - maximum entropy given fixed mean and variance.
- A robust alternative to Gaussian is the Student's t-distribution:

$$\mathcal{T}\left(y\mid\mu,\sigma^2,
u\right)\propto\left[1+rac{1}{
u}\left(rac{y-\mu}{\sigma}
ight)^2
ight]^{-\left(rac{
u+1}{2}
ight)}$$

where  $\mu$  is the mean,  $\sigma > 0$  is the scale parameter, and  $\nu > 0$  is the degree of freedom (a better term would be the **degree of normality**).

• Laplace distribution (heavy tail): Lap $(y \mid \mu, b) \triangleq \frac{1}{2b} \exp\left(-\frac{|y-\mu|}{b}\right)$ 

### Robustness of t distribution



### Table of Contents

What is Probability

Probability: Univariate Models

Probability: Multivariate Models

# Causality, Independence and Correlation

- We use multivariate models to study the dependence of variables on each other.



ice cream makes people angry?



storks deliver babies?

### Multivariate Gaussian distribution

#### **MVN**

The MVN density is defined by the following:

$$\mathcal{N}(oldsymbol{y} \mid oldsymbol{\mu}, oldsymbol{\Sigma}) riangleq rac{1}{(2\pi)^{D/2} |oldsymbol{\Sigma}|^{1/2}} \exp\left[-rac{1}{2} (oldsymbol{y} - oldsymbol{\mu})^ op oldsymbol{\Sigma}^{-1} (oldsymbol{y} - oldsymbol{\mu})
ight]$$

where  $\mu = \mathbb{E}[y] \in \mathbb{R}^D$  is the mean vector, and  $\Sigma = \text{Cov}[y]$  is the  $D \times D$  covariance matrix, defined as follows:

$$\mathsf{Cov}[\mathbf{y}] \triangleq \mathbb{E}\left[ (\mathbf{y} - \mathbb{E}[\mathbf{y}])(\mathbf{y} - \mathbb{E}[\mathbf{y}])^{\top} \right]$$

$$= \begin{pmatrix} \mathbb{V}[Y_1] & \mathsf{Cov}[Y_1, Y_2] & \cdots & \mathsf{Cov}[Y_1, Y_D] \\ \mathsf{Cov}[Y_2, Y_1] & \mathbb{V}[Y_2] & \cdots & \mathsf{Cov}[Y_2, Y_D] \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}[Y_D, Y_1] & \mathsf{Cov}[Y_D, Y_2] & \cdots & \mathbb{V}[Y_D] \end{pmatrix}$$

• Suppose  $y = (y_1, y_2)$  is jointly Gaussian with parameters

$$oldsymbol{\mu} = \left( egin{array}{c} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{array} 
ight), oldsymbol{\Sigma} = \left( egin{array}{cc} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{array} 
ight), \quad oldsymbol{\Lambda} = oldsymbol{\Sigma}^{-1} = \left( egin{array}{cc} oldsymbol{\Lambda}_{11} & oldsymbol{\Lambda}_{12} \ oldsymbol{\Lambda}_{21} & oldsymbol{\Lambda}_{22} \end{array} 
ight)$$

where  $\Lambda$  is the precision matrix.

### Marginal Distributions

$$egin{aligned} p\left(oldsymbol{y}_1
ight) &= \mathcal{N}\left(oldsymbol{y}_1 \mid oldsymbol{\mu}_1, oldsymbol{\Sigma}_{11}
ight) \ p\left(oldsymbol{y}_2
ight) &= \mathcal{N}\left(oldsymbol{y}_2 \mid oldsymbol{\mu}_2, oldsymbol{\Sigma}_{22}
ight) \end{aligned}$$

#### Posterior Conditional Distributions

$$egin{aligned} 
ho\left(\mathbf{y}_{1}\mid\mathbf{y}_{2}
ight) &= \mathcal{N}\left(\mathbf{y}_{1}\mid\mathbf{\mu}_{1|2},\mathbf{\Sigma}_{1|2}
ight) \ egin{aligned} eta_{1|2} &= eta_{1} + \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\left(\mathbf{y}_{2} - oldsymbol{\mu}_{2}
ight) \ &= oldsymbol{\mu}_{1} - \mathbf{\Lambda}_{11}^{-1}\mathbf{\Lambda}_{12}\left(\mathbf{y}_{2} - oldsymbol{\mu}_{2}
ight) \ &= \mathbf{\Sigma}_{1|2}\left(\mathbf{\Lambda}_{11}oldsymbol{\mu}_{1} - \mathbf{\Lambda}_{12}\left(\mathbf{y}_{2} - oldsymbol{\mu}_{2}
ight)
ight) \ \mathbf{\Sigma}_{1|2} &= \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21} = \mathbf{\Lambda}_{11}^{-1} \end{aligned}$$

# Linear Gussian systems

### Linear Gussian system

Let  $z \in \mathbb{R}^L$  be an unknown vector of values, and  $y \in \mathbb{R}^D$  be some noisy measurement of z with the following joint distribution:

$$egin{aligned} p(oldsymbol{z}) &= \mathcal{N}\left(oldsymbol{z} \mid oldsymbol{\mu}_{oldsymbol{z}}, oldsymbol{\Sigma}_{oldsymbol{z}}
ight) \ p(oldsymbol{y} \mid oldsymbol{z}) &= \mathcal{N}\left(oldsymbol{y} \mid oldsymbol{W}oldsymbol{z} + oldsymbol{b}, oldsymbol{\Sigma}_{oldsymbol{y}}
ight) \end{aligned}$$

where **W** is a matrix of size  $D \times L$ . The corresponding joint distribution,  $p(\mathbf{z}, \mathbf{y}) = p(\mathbf{z})p(\mathbf{y} \mid \mathbf{z})$ , is a L + D dimensional Gaussian, with mean and covariance given by

$$oldsymbol{\mu} = \left(egin{array}{c} oldsymbol{\mu}_z \ oldsymbol{W} oldsymbol{\mu}_z + oldsymbol{b} \end{array}
ight) \ oldsymbol{\Sigma} = \left(egin{array}{cc} oldsymbol{\Sigma}_z & oldsymbol{\Sigma}_z oldsymbol{W}^ op \ oldsymbol{W} oldsymbol{\Sigma}_z & oldsymbol{\Sigma}_y + oldsymbol{W} oldsymbol{\Sigma}_z oldsymbol{W}^ op \end{array}
ight)$$

#### Bayes rule for Gussians

$$\begin{split} \rho(\mathbf{z} \mid \mathbf{y}) &= \mathcal{N} \left( \mathbf{z} \mid \boldsymbol{\mu}_{z|y}, \boldsymbol{\Sigma}_{z|y} \right) \\ \boldsymbol{\Sigma}_{z|y}^{-1} &= \boldsymbol{\Sigma}_{z}^{-1} + \mathbf{W}^{\top} \boldsymbol{\Sigma}_{y}^{-1} \mathbf{W} \\ \boldsymbol{\mu}_{z|y} &= \boldsymbol{\Sigma}_{z|y} \left[ \mathbf{W}^{\top} \boldsymbol{\Sigma}_{y}^{-1} (\mathbf{y} - \mathbf{b}) + \boldsymbol{\Sigma}_{z}^{-1} \boldsymbol{\mu}_{z} \right] \end{split}$$

- Gaussian prior p(z), combined with the Gaussian likelihood  $p(y \mid z)$ , results in a Gaussian posterior  $p(z \mid y)$ .
- Thus Gaussians are closed under Bayesian conditioning.
- The Gaussian prior is a conjugate prior for the Gaussian likelihood.

# Example: Inferring an unknown scalar

- Assume we have one noisy measurement y for an unknown quantity z.
- Prior:  $p(z) = \mathcal{N}(z \mid \mu_0, \Sigma_0)$ .
- Likelihood:  $p(y \mid z) = \mathcal{N}(y \mid z, \Sigma_y)$ .
- Posterior:

$$\begin{split} \rho(z\mid y) &= \mathcal{N}\left(z\mid \mu_1, \Sigma_1\right) \\ \Sigma_1 &= \left(\frac{1}{\Sigma_0} + \frac{1}{\Sigma_y}\right)^{-1} = \frac{\Sigma_y \Sigma_0}{\Sigma_0 + \Sigma_y} \\ \mu_1 &= \Sigma_1 \left(\frac{\mu_0}{\Sigma_0} + \frac{y}{\Sigma_y}\right) \\ &= y - (y - \mu_0) \, \frac{\Sigma_y}{\Sigma_v + \Sigma_0} \quad \text{(shrinkage)} \end{split}$$

• strong prior  $\rightarrow$  large shrinkage.