Αλγόριθμοι και Προχωρημένες Δομές Δεδομένων Δυναμικός Προγραμματισμός

Πανεπιστήμιο Ιωαννίνων, Τμήμα Πληροφορικής και Τηλεπικοινωνιών, Μεταπτυχιακό Πληροφορικής & Δικτύων (2019-2020)

Γκόγκος Χρήστος

Νοέμβριος 2019

Τι είναι ο Δυναμικός Προγραμματισμός;

• Ο Δυναμικός Προγραμματισμός (ΔΠ) είναι μια αλγοριθμική προσέγγιση που εκμεταλλεύεται, εφόσον μπορούν να εντοπιστούν, ιδιαίτερα χαρακτηριστικά του προβλήματος έτσι ώστε να υπολογιστεί αποδοτικά η βέλτιστη λύση. Συνδυάζει αναδρομή, αποθήκευση ενδιάμεσων λύσεων (memoization) και συνδυασμό βέλτιστων λύσεων υποπροβλημάτων για τη βέλτιστη επίλυση του συνολικού προβλήματος.

Ο δυναμικός προγραμματισμός ως μια διαδικασία τριών βημάτων

- Εντοπισμός μιας σχετικά μικρής ομάδας υποπροβλημάτων στα οποία μπορεί να διασπαστεί το πρόβλημα.
- Εντοπισμός γρήγορου τρόπου επίλυσης μεγαλύτερων προβλημάτων δεδομένων των λύσεων μικρότερων προβλημάτων.
- Εντοπισμός του τρόπου που η τελική λύση μπορεί να προκύψει από τις λύσεις των υποπροβλημάτων.

Αρχή της βελτιστότητας

 Ανεξάρτητα από την πρώτη απόφαση οι υπόλοιπες αποφάσεις θα πρέπει να είναι βέλτιστες σε σχέση με την κατάσταση που προκύπτει μετά την πρώτη απόφαση

Παραδείγματα προβλημάτων στα οποία μπορεί να εφαρμοστεί ο ΔΠ

- 0-1 σακίδιο (0-1 knapsack)
- Μέγιστη κοινή υποακολουθία (Longest Common Subsequence)
- Άθροισμα υποσυνόλου (Subset Sum Problem)
- Αλυσιδωτός πολλαπλασιασμός πινάκων (Matrix Chain Multiplication)
- Συντομότερο μονοπάτι σε κατευθυνόμενο ακυκλικό γράφημα (Shortest path in a DAG)
- Μακρύτερη αυξανόμενη υποακολουθία (Longest increasing subsequence problem)
- Απόσταση επεξεργασίας (Edit distance problem)
- Συντομότερα αξιόπιστα μονοπάτια (Shortest reliable paths)
- Συντομότερα μονοπάτια για όλα τα ζεύγη κορυφών (All-pairs shortest paths)

0-1 σακίδιο: ορισμός προβλήματος

- η αντικείμενα
- Αξίες αντικειμένων: $v_1, v_2, v_3, \dots, v_n$ (ακέραιες θετικές τιμές, αλλά μπορεί να είναι και πραγματικές θετικές τιμές)
- Βάρη αντικειμένων: $w_1, w_2, w_3, \dots, w_n$ (ακέραιες θετικές τιμές)
- Χωρητικότητα σάκου: *C* (ακέραια θετική τιμή)
- Ζητείται να βρεθεί το σύνολο $S\subseteq \{1,2,3,\dots,n\}$ και για το οποίο ισχύει ότι:
 - $\max V = \sum_{i \in S} v_i$
 - $\sum_{i \in S} w_i \le C$

Βέλτιστη υποδομή

- Αν θεωρήσουμε ότι ήδη γνωρίζουμε τη βέλτιστη λύση $S \subseteq \{1,2,3,...,n\}$ με συνολική αξία $V = \sum_{i \in S} v_i$ τότε η λύση αυτή είτε θα περιέχει είτε δεν θα περιέχει το τελευταίο αντικείμενο n:
 - Αν η βέλτιστη λύση δεν περιέχει το n τότε η $S^* = \{1,2,3,\dots,n-1\}$ θα είναι η βέλτιστη λύση στο υποπρόβλημα των πρώτων n-1 αντικειμένων. Αν δεν ίσχυε αυτό τότε θα υπήρχε καλύτερη λύση και για το πρόβλημα των n αντικειμένων
 - Αν η βέλτιστη λύση περιέχει το n τότε θα πρέπει $w_n \leq C$ και η απομένουσα λύση των πρώτων n-1 αντικειμένων θα αποτελεί τη βέλτιστη λύση στο υποπρόβλημα επιλογής από τα πρώτα n-1 αντικείμενα με διαθέσιμη χωρητικότητα $C-w_n$. (γιατί ισχύει αυτό το συμπέρασμα;)

Γιατί ισχύει το προηγούμενο συμπέρασμα;

- Για την περίπτωση που η βέλτιστη λύση $S \subseteq \{1,2,3,...,n\}$ και $n \in S$ ισχύει ότι:
 - Δεσμεύοντας w_n χωρητικότητα προκειμένου να συμπεριληφθεί στη λύση το αντικείμενο n παραμένει διαθέσιμη $C-w_n$ χωρητικότητα.
 - Αν υπάρχει καλύτερη λύση $S^*\subseteq\{1,2,3,\ldots,n-1\}$ με συνολική αξία $V^*>V-v_n$ για μέγιστη χωρητικότητα $C-w_n$ τότε η $S^*\cup\{n\}$ θα είχε συνολική αξία $V^*+v_n>V-v_n+v_n=V$.
 - Όμως το συμπέρασμα $V^* + v_n > V$ είναι άτοπο διότι υποθέσαμε ότι η λύση S είναι βέλτιστη.

Διατύπωση του συμπεράσματος της βέλτιστης υποδομής

Έστω *S* η βέλτιστη λύση στο 0-1 σακίδιο. Τότε:

- Το S είναι η βέλτιστη λύση για τα πρώτα n-1 αντικείμενα και χωρητικότητα C.
- Το S αποτελείται από το αντικείμενο n και τη βέλτιστη λύση για το υποπρόβλημα των πρώτων n-1 αντικειμένων και χωρητικότητα $C-w_n$.

Υποπροβλήματα *i, j*

- Τα υποπροβλήματα ορίζονται με βάση δύο παραμέτρους, το πλήθος των *i* πρώτων αντικειμένων και τη χωρητικότητα του σακιδίου *j*.
- Το «υποπρόβλημα» *n, C* είναι το αρχικό πρόβλημα.
- Αν $V_{i,j}$ είναι η μέγιστη συνολική αξία του υποσυνόλου των i πρώτων αντικειμένων με συνολική χωρητικότητα το πολύ j τότε ισχύει ότι για κάθε $i=1,2,\ldots,n$ και κάθε $j=0,1,2,\ldots,C$:

$$V_{i,j} = \begin{cases} V_{i-1,j} & \varepsilon \acute{\alpha} \nu \ w_i > j \\ \max\{V_{i-1,j}, V_{i-1,C-w_i} + V_i\} & \varepsilon \acute{\alpha} \nu \ w_i \leq j \end{cases}$$

Αλγόριθμος δυναμικού προγραμματισμού για το πρόβλημα 0-1 σακιδίου

```
V = (n+1)*(C+1) // δισδιάστατος πίνακας – εκκίνηση αρίθμησης από το 0
for j = 0 to C do
      V[0,j] = 0
for i = 1 to n do
      for j = 0 to C do
             if w[i] > j then
                   V[i,j] = V[i-1,j]
             else
                    V[i,j] = max(V[i-1,j], V[i-1,j-w[i]] + v[i]
return V[n,C]
```

Αλγόριθμος εντοπισμού αντικειμένων που συμμετέχουν στη λύση

Απόδοση αλγορίθμου

- Ο αλγόριθμος αποτελείται από δύο φάσεις, τη συμπλήρωση του πίνακα V και τον εντοπισμό των αντικειμένων που συμμετέχουν στη λύση στο συμπληρωμένο πίνακα:
 - Για τη συμπλήρωση του πίνακα ο αλγόριθμος διαθέτει O(1) χρόνο για την επίλυση καθενός από τα (n+1)*(C+1)=O(nC) προβλήματα. Συνεπώς, εκτελείται σε O(nC) χρόνο.
 - Για τον εντοπισμό των αντικειμένων που συμμετέχουν στη λύση ο αλγόριθμος διαθέτει O(1) χρόνο σε κάθε επανάληψη. Συνεπώς, εκτελείται σε O(n) χρόνο.
- Άρα, καθώς η πολυπλοκότητα του αλγορίθμου καθορίζεται από τη φάση με την υψηλότερη πολυπλοκότητα, η πολυπλοκότητα του αλγορίθμου είναι O(nC).

Εκτέλεση αλγορίθμου (1/6)

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1							
2							
3							
4							

Η πρώτη γραμμή του πίνακα (γραμμή-0) συμπληρώνεται με μηδενικά.

•
$$V[0,0] = 0$$

•
$$V[0,1] = 0$$

•
$$V[0,2] = 0$$

•
$$V[0,3] = 0$$

•
$$V[0,4] = 0$$

•
$$V[0,5] = 0$$

•
$$V[0,6] = 0$$

Αντικείμενο	Αξία	Βάρος			
1	3	4			
2	2	3			
3	4	2			
4	4	3			
n=4, C=6					

Εκτέλεση αλγορίθμου (2/6)

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3
2							
3							
4							

Ο υπολογισμός των αποτελεσμάτων γίνεται γραμμή προς γραμμή

Αντικείμενο	Αξία	Βάρος			
1	3	4			
2	2	3			
3	4	2			
4	4	3			
n=4, C=6					

- V[1,0] = 0
- V[1,1] = 0
- V[1,2] = 0
- V[1,3] = 0
- V[1,4] = max(V[0,4], V[0,4-4]+v[1]) = max(0, 0+3) = 3
- V[1,5] = max(V[0,5], V[0,5-4]+v[1]) = max(0, 0+3) = 3
- V[1,6] = max(V[0,6], V[0,6-4]+v[1]) = max(0, 0+3) = 3

Εκτέλεση αλγορίθμου (3/6)

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3
2	0	0	0	2	3	3	3
3							
4							

Αντικείμενο	Αξία	Βάρος			
1	3	4			
2	2	3			
3	4	2			
4	4	3			
n=4, C=6					

- V[2,0] = 0
- V[2,1] = 0
- V[2,2] = 0
- V[2,3] = max(V[1,3], V[1,3-3]+v[2]) = max(0, 0+2) = 2
- V[2,4] = max(V[1,4], V[1,4-3]+v[2]) = max(3, 0+2) = 3
- V[2,5] = max(V[1,5], V[1,5-3]+v[2]) = max(3, 0+2) = 3
- V[2,6] = max(V[1,6], V[1,6-3]+v[2]) = max(3, 0+2) = 3

Εκτέλεση αλγορίθμου (4/6)

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3
2	0	0	0	2	3	3	3
3	0	0	4	4	4	6	7
4							

Αντικείμενο	Αξία	Βάρος			
1	3	4			
2	2	3			
3	4	2			
4	4	3			
n=4, C=6					

- V[3,0] = 0
- V[3,1] = 0
- V[3,2] = max(V[2,2], V[2,2-2]+v[3]) = max(0, 0+4) = 4
- V[3,3] = max(V[2,3], V[2,3-2]+v[3]) = max(2, 0+4) = 4
- V[3,4] = max(V[2,4], V[2,4-2]+v[3]) = max(3, 0+4) = 4
- V[3,5] = max(V[2,5], V[2,5-2]+v[3]) = max(3, 2+4) = 6
- V[3,6] = max(V[2,6], V[2,6-2]+v[3]) = max(3, 3+4) = 7

Εκτέλεση αλγορίθμου (5/6)

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3
2	0	0	0	2	3	3	3
3	0	0	4	4	4	6	7
4	0	0	4	4	4	8	8

Αντικείμενο	Αξία	Βάρος			
1	3	4			
2	2	3			
3	4	2			
4	4	3			
n=4, C=6					

- V[4,0] = 0
- V[4,1] = 0
- V[4,2] = V[3,2] = 4
- V[4,3] = max(V[3,3], V[3,3-3]+v[4]) = max(4, 0+4) = 4
- V[4,4] = max(V[3,4], V[3,4-3]+v[4]) = max(4, 0+4) = 4
- V[4,5] = max(V[3,5], V[3,5-3]+v[4]) = max(6, 4+4) = 8
- V[4,6] = max(V[3,6], V[3,6-3]+v[4]) = max(7, 3+4) = 8

Εκτέλεση αλγορίθμου (6/6)

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3
2	0	0	0	2	3	3	3
3	0	0	4	4	4	6	7
4	0	0	4	4	4	8	8

Εντοπισμός λύσης: Ξεκινώντας από την κάτω δεξιά γωνία του πίνακα (i=4, j=6), ο αλγόριθμος ελέγχει σε κάθε βήμα ποια περίπτωση της αναδρομής χρησιμοποιήθηκε:

- Αν **w[i]>j ή V[i-1,j-w[i]]+v[i]<V[i-1,j]** τότε το αντικείμενο **i** δεν συμπεριλαμβάνεται στη λύση.
- Αν **w[i]<=j και V[i-1,j-w[i]]+v[i]>=V[i-1,j]** τότε το αντικείμενο **i** συμπεριλαμβάνεται στη λύση και το νέο **j** μειώνεται κατά το βάρος του αντικειμένου **i**.

Αντικείμενο	Αξία	Βάρος			
1	3	4			
2	2	3			
3	4	2			
4	4	3			
n=4, C=6					

- w[4]<=6 && V[3,6-3]+v[4]>=V[3,6] → 3<=6 && 8>=7 (ΟΚ και νέο j=6-3=3)
- $w[3] <= 3 && V[2,3-2] + v[3] >= V[2,3] \rightarrow 2 <= 3 && 4 >= 0 (OK και νέο j=3-2=1)$
- w[2]<=1 → 3<=1 (NOT OK)
- w[1]<=1 → 4<=1 (NOT OK)
- Άρα, η λύση είναι η $S = \{3,4\}$ με συνολική αξία 8 και συνολικό βάρος 5

Προγραμματιστική λύση

```
#include "../ortools/include/ortools/algorithms/knapsack solver.h"
namespace operations research {
    void KnapsackExample() {
         KnapsackSolver solver(KnapsackSolver::KNAPSACK DYNAMIC PROGRAMMING SOLVER,
                                "SimpleKnapsackExample");
         std::vector<int64> values = {3, 2, 4, 4};
         std::vector<std::vector<int64>> weights = {{4, 3, 2, 3}};
         std::vector<int64> capacities = {6};
         solver.Init(values, weights, capacities);
         int64 computed value = solver.Solve();
         std::cout << "Total value: " << computed_value << std::endl;</pre>
         std::vector<int> packed items;
        for (std::size t i = 0; i < values.size(); ++i)</pre>
             if (solver.BestSolutionContains(i))
                 std::cout << "Item " << i + 1 << " is in the bag" << std::endl;</pre>
} // namespace operations research
int main() {
    operations_research::KnapsackExample();
    return EXIT SUCCESS;
```

Αντικείμενο	Αξία	Βάρος
1	3	4
2	2	3
3	4	2
4	4	3
n=4, C=6		

Μεταγλώττιση και εκτέλεση (ORTools + Windows + VS 2017)

> tools\make run SOURCE=..\src\ortools_dp_solver_knapsack_demo.cc

Η εντολή μεταγλώττισης και εκτέλεσης δίνεται από τον κατάλογο ortools χρησιμοποιώντας το τερματικό x64 Native Tools Command Prompt for VS 2017

```
cl/EHsc/MD/nologo/D SILENCE STDEXT HASH DEPRECATION WARNINGS -nologo/O2 -DNDEBUG/D WIN32
/DNOMINMAX /DWIN32 LEAN AND MEAN=1 /D CRT SECURE NO WARNINGS /DGFLAGS DLL DECL=
/DGFLAGS DLL DECLARE FLAG= /DGFLAGS DLL DEFINE FLAG= /linclude\\src\\windows /linclude /l. -DUSE CBC -DUSE CLP
-DUSE BOP-DUSE GLOP -c ..\src\ortools dp solver knapsack demo.cc /Foobjs\\ortools dp solver knapsack demo.obj
ortools dp solver knapsack demo.cc
cl /EHsc /MD /nologo /D SILENCE STDEXT HASH DEPRECATION WARNINGS -nologo /O2 -DNDEBUG /D WIN32
/DNOMINMAX /DWIN32 LEAN AND MEAN=1 /D CRT SECURE NO WARNINGS /DGFLAGS DLL DECL=
/DGFLAGS DLL DECLARE FLAG= /DGFLAGS DLL DEFINE FLAG= /linclude\\src\\windows /linclude /l. -DUSE CBC -DUSE CLP
-DUSE_BOP -DUSE_GLOP objs\\ortools_dp_solver_knapsack_demo.obj_lib\\ortools.lib psapi.lib ws2_32.lib
/Febin\\ortools dp solver knapsack demo.exe
                                                                  # ΟΡΓΑΝΩΣΗ ΣΕ ΚΑΤΑΛΟΓΟΥΣ
                                                                  ortools
bin\\ortools dp solver knapsack demo.exe
                                                                   → αποσυμπιεσμένη η εγκατάσταση του ORTOOLS
Total value: 8
                                                                  src
Item 3 is in the bag
Item 4 is in the bag
                                                                   → ortools_dp_solver_knapsack_demo.cc
```

Πηγές

- Algorithms, S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani, 2006
- Algorithms Illuminated, Part 3: Greedy Algorithms and Dynamic Programming, Tim Roughgarden, 2019
- https://developers.google.com/optimization