

MATEMÁTICA FINANCIERA

EJEMPLOS

EJEMPLOS

Ejemplo 1. Evaluación de un pago futuro

Imaginar que recibe una propuesta para obtener \$50,000 dentro de tres años, pero desea saber cuánto valdría esta cantidad en términos actuales, dado que la tasa de interés anual es del 5 %. Este cálculo es crucial para determinar si aceptar un pago diferido en el tiempo, resulta más beneficioso que otras opciones disponibles.

Paso 1. Identificar los datos relevantes

Para calcular el valor presente, necesitamos:

- » El valor futuro (VF): \$50,000.
- » La tasa de interés (r): 5 %, expresada como 0.05 en la fórmula.
- » El número de periodos (n): 3 años.

Paso 2. Sustituir los valores en la fórmula

Sustituyendo los datos obtenemos, $VP = 50,000 / (1 + 0.05)^3$.

Primero, calculamos el denominador:

- » Sumamos 1 a la tasa de interés: 1 + 0.05 = 1.05.
- » Elevamos este valor al número de periodos: $1.05^3 = 1.157625$.

A continuación, dividimos el valor futuro entre el resultado del denominador:

- » VP = 50,000 / 1.157625.
- » $VP \approx 43,189.63$.

El valor presente de \$50,000, en tres años es, aproximadamente, \$43,189.63.

Paso 3. Interpretar el resultado

Este cálculo significa que, si hoy tuviera \$43,189.63 y lo invirtiera al 5 % anual durante tres años, obtendría exactamente \$50,000 al final del periodo. En otras palabras, \$43,189.63 hoy equivalen a \$50,000 dentro de tres años, considerando una tasa de interés del 5 %.

Ejemplo 2. Comparación de opciones

Supongamos que tiene dos opciones para un pago:

- 1. Recibir \$25,000 hoy.
- 2. Recibir \$30,000 dentro de cinco años.

Sabemos que la tasa de interés anual es del 6 %. ¿Cuál opción es más favorable? Para resolverlo, debemos calcular el valor presente de la segunda opción y compararlo con la primera.

Paso 1. Identificar los datos

Para la opción 2, los valores son:

- » VF = \$30,000.
- r = 0.06.
- n = 5.

Paso 2: Cálculo del valor presente

Aplicamos la fórmula del valor presente: $VP = VF / (1 + r)^n$

Sustituyendo los valores: $VP = 30,000 / (1 + 0.06)^5$

Calculamos el denominador:

- 1 + 0.06 = 1.06.
- » 1.06⁵ ≈ 1.338225.

Dividimos el valor futuro:

- » VP = 30,000 / 1.338225.
- » $VP \approx 22,420.78$.

Paso 3. Comparar las opciones

La opción 1 tiene un valor presente de \$25,000 (no requiere descuento).

La opción 2 tiene un valor presente de \$22,420.78.

Resultado. La opción 1 es más favorable, dado que su valor presente es mayor que el de la opción 2. En este caso, aceptar el pago inmediato, es la mejor decisión.

Ejemplo 3. Flujos múltiples de efectivo

Ahora, evaluemos un flujo de pagos distribuidos en tres años:

- » Año 1: \$10,000.
- » Año 2: \$15,000.
- » Año 3: \$20,000.

La tasa de interés es del 8 % anual. Queremos calcular el valor presente total de estos flujos.

Paso 1. Calcular el valor presente de cada flujo

- **1.** Año **1:** VP1 = $10,000 / (1 + 0.08) \land 1 = 10,000 / 1.08 \approx 9,259.26$.
- **2.** Año **2:** VP2 = $15,000 / (1 + 0.08) \land 2 = 15,000 / 1.1664 \approx 12,867.13$.
- 3. Año 3: VP3 = $20,000 / (1 + 0.08) \land 3 = 20,000 / 1.259712 \approx 15,876.63$.

Paso 2. Sumar los valores presentes

El valor presente total, es:

 $VPtotal = VP1 + VP2 + VP3 = 9,259.26 + 12,867.13 + 15,876.63 \approx 38,003.02.$

Paso 3. Interpretación

Este cálculo muestra que, si quisiera recibir los pagos futuros equivalentes a este flujo, debería aceptar \$38,003.02 hoy, bajo una tasa del 8 %. Este análisis es útil para evaluar inversiones que generan ingresos distribuidos en el tiempo.