

PRIORITY

PRIORI

The Patent Office Concept House Cardiff Road Newport South Wales NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

16 February 2004

		ge _t ik°
		•
		•

Patents Act 1977 (Rule 16)

03FEB03 E781993-2 D028 P01/7700 0.00-0302409.8

The Patent Office

Cardiff Road Newport South Wales NP9 1RH

Request for grant of a patent (See the notes on the back of this form. You can also get an explanatory leaded from the Patent Office to help you fill in this forth

Your reference

SJB/P11870

The

)ffice

Patent application number

(The Patent Office will fill in this part)

0302409.8

03 FEB 2003

Full name, address and postcode of the or of each applicant fundarline all surnames)

DePuy International Limited St Anthony's Road Beeston Leeds LS11 SDT

Patents ADP number (If you know it)

If the applicant is a corporate body, give the country/state of its incorporation

England

6004733002

Title of the invention

A CUP COMPONENT OF AM ORTHOPAEDICS JOINT **PROSTHESIS**

Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

URQUHART-DYKES & LORD TOWER HOUSE, MERRION WAY LEEDS

LS2 8PA

Patents ADP number (if you know it)

1644004

If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number (if your know is)

Date of Dling (day / month / year)

If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing (day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer Yes' if:

n) uny applicant named in part 3 is not an inventor, or

(a) there is an inventor who is not named as an applicant, or

 c) any named applicant is a corporate body. See note (d))

YES

Patents Form 1/77

Patents Form 1/77

 Enter the number of sheets for any of the following items you are filing with this form.
 Do not count copies of the same document

Continuation sheets of this form

Description

13

Claim (s)

4

Abstract (

Drawing(s) 2

2 only-

 If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Parents Form 7/77)

Request for preliminary examination and search (Faterns Form D/77)

Request for substantive examination (Fatents Form 10/77)

Any other documents (please specify)

11.

I/We request the grant of a patent on the basis of this application.

Even Jelele

Date Leber

 Name and daytime telephone number of person to contact in the United Kingdom

S J BECHER - 0113 245 2388

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- if you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

Patents Form 1/77

-1-

A CUP COMPONENT OF AN ORTHOPAEDIC JOINT PROSTHESIS

This invention relates to a cup component of an orthopaedic joint prosthesis.

Certain orthopaedic joint prostheses comprise a hollow cup with an inner surface which defines a generally hemispherical hollow region, and another component which has a spherical part which can be received in the hollow region for articulation relative to the cup component. Such joint prostheses can include hip joint prostheses and shoulder joint prostheses. The exterior of the cup will contact the prepared surface of the patient's bone in which the component is to be implanted. The interior of the cup will present a smooth bearing surface to the spherical part of the other component of the joint prosthesis. The bearing surface can be provided by a single piece cup component. Alternatively, the cup component can comprise a bearing part which provides the bearing surface, and which fits into a shell part. The bearing part can be made from a material which is different from the material of the shell part: for example the bearing part can be made from a polymeric material (such as polyethylene) and the shell part (and the spherical part of the other component) can be made from a metal (such as a cobalt-chromium based alloy, or a stainless steel, or a titanium based alloy).

It is important that the components of an orthopaedic joint prosthesis are positioned accurately in a patient's bone. Both location and alignment are important. Accurate positioning of a component requires that the component be engaged by an appropriate tool, allowing considerable force to be applied to the component if and as necessary. However, it can be important not to contact the external surface or the internal surface or both of the component with the tool, especially the internal surface when it has been provided with a smooth polished bearing surface. Scratching or otherwise damaging that surface can impair the bearing properties of the prosthesis.

US-5171243 discloses an acetabular cup for use in a hip joint prosthesis. The cup comprises a shell which has a circumferential groove cut into its inner surface. The groove can received a flange at the free end of an insertion tool so that the cup is retained on the tool, allowing the shell to be manipulated using the tool. The grooved shell part receives a

1

bearing part which has a smooth inner surface against which a bearing surface of another component of the joint prosthesis can articulate. The shell part can have fastening holes extending through its wall through which bone screws can extend to fasten the shell part to the surface of a bone.

The present invention provides a cup component which has a groove in its internal surface defined by inner and outer lips, in which the outer lip is radially displaced outwardly relative to the inner lip, and the angle that is subtended at the centre of the hollow region between the edge of the cup component at the open mouth and the inner lip of the groove is not more than about 10°.

Accordingly, in one aspect, the invention provides a cup component of an orthopædic joint prosthesis, which has an external surface, a generally circular open mouth and an internal surface defining a generally hemispherical hollow region with a smooth bearing surface, in which a generally spherical part of another component of the joint prosthesis can be received for articulation relative to the cup component, in which the internal surface has a groove formed in it around at least part of the periphery of the component, the groove being defined by an inner lip, and an opposite outer lip which is closer to the open mouth, in which (a) the angle that is subtended at the centre of the hollow region between the edge of the cup component at the open mouth and the inner lip of the groove is not more than about 10°, and (b) the outer lip is displaced radially outwardly relative to the inner lip.

The component of the invention has the advantage that it can be engaged by a tool having a flange which can fit into the groove, and that the cup can present sufficient area of the internal surface for this surface to provide for articulation with the bearing surface of another component. Accordingly, when the component is a metal shell which is intended to be used without a bearing part within it (as can be the case in a joint prosthesis in which both bearing surfaces are provided by metals, or one is provided by a metal and other is provided by ceramic (including metal with a ceramic coating), the groove allows the component to be manipulated prior to fixation to the patient's bone tissue. However, the cup component of the invention can be a bearing part which has to be manipulated relative to a shell after the shell has been located and fixed relative to the patient's bone tissue.

Surprisingly, it has been found that it is possible to achieve secure fixation of the cup component of the invention to a tool using a flange which is received in the groove, when the groove is positioned close to the open mouth of the cup. Furthermore, it has been found that the material of the cup close to the mouth, in which the groove is formed and which provides the outer lip, can provide little or no restriction on the range of articulation of a joint of which the cup component forms a part. This is facilitated by the outer lip being displaced radially outwardly relative to the inner lip. The nature of this radial displacement can be understood in terms of comparing the actual location of the outer lip relative to a line which represents the continuation of the internal surface of the component through the region in which the groove is located. When the hollow space defined by the interior surface is spherical (as will often be the case), the displacement is determined by comparing the radius of the cup at the inner and outer lips. The extent of the displacement will depend on (a) providing the groove with sufficient depth that it can be engaged securely by a flange on a tool, and (b) minimising the likelihood of the cup component being contacted by the other component of the joint during articulation, other than on the internal bearing surface. Preferably, the ratio of the radius of the cup component at the inner lip of the groove to the radius of the cup component at the outer lip of the groove is not more than about 0.99, more preferably not more than about 0.98, especially not more than about 0.97, for example not more than about 0.95. Preferably, the said ratio is at least about 0.85, more preferably at least about 0.90, for example at least about 0.95. The difference between the radii is preferably at least about 0.5 mm, more preferably at least about 1.0 mm. The difference between the radii is preferably not more than about 2.5 mm, more preferably not more than about 2.0 mm.

Preferably, the internal surface is chamfered at the open mouth, around at least part of the periphery of the component, more preferably around substantially all of the periphery. The provision of a chamfer on the internal surface can help to reduce further the likelihood of the cup component being contacted by the other component of the joint during articulation, other than on the internal bearing surface. Preferably, the angle of the chamfer, between the chamfered internal surface and a tangent to the internal surface at the point at which the chamfered surface intersects the generally spherical surface, is at least about 20°, more preferably at least about 30°, for example at least about 40° or 45°.

-4-

Preferably, the chamfer on the internal surface extends through at least about 20% of the thickness of the component, more preferably at least about 25%, especially at least about 30%.

Preferably, the external surface is chamfered at the open mouth, around at least part of the periphery of the component, more preferably around substantially all of the periphery. This can minimise obstruction to view of bone tissue immediately surrounding the site at which the component is implanted, and greatly facilitate accurate location of the component, in particular to ensure that the component can be seen to have been seated properly in the prepared recess in the bone before it is fixed in position.

Preferably, the angle between the chamfered external surface and a tangent to the non-chamfered part of the external surface is at least about 30°. Preferably, the chamfer on the external surface external surface extends through at least about 20% of the thickness of the component, more preferably at least about 25%, especially at least about 30%.

Preferably, the cup component has a planar face at the mouth substantially perpendicular to the polar axis of the component, extending around at least part of the mouth of the component, and preferably extending around all of the component. When each of the internal and external surfaces of the component is chamfered, the planar face is provided between those chamfered faces. The provision of a planar face allows the component to be engaged by a plate to apply force to the component in a direction generally along the polar axis, to push the component into the prepared recess in the patient's bone.

The cup component of the invention will often be rotationally symmetrical around the polar axis, although there can be deviations from such symmetry. For example, the mouth of the component might not necessarily fall in a single plane, perpendicular to the polar axis. For example, the component might include an extension of the internal surface around only part of its perimeter to reduce the risk of dislocation of the joint. The hollow region within the cup component will generally have a spherical shape, although there can be deviations from sphericity. For example, the radius of the sphere can be slightly greater at or towards the equator compared with that at the pole. Frequently, when there are such deviations,

-5-

they will be such that the internal surface is rotationally symmetrical. It will also generally be preferred for the deviations to be small.

Preferably, the angle that is subtended at the centre of the hollow region between the inner lips of the groove at two diametrically opposite points is at least about 150°, more preferably at least about 155°, especially at least about 160°. The angle will generally be less than 180°. The material which defines the groove falls outside this subtended angle.

The angle that is subtended at the centre of the hollow region between the edge of the cup component at the open mouth and the inner lip of the groove is not more than about 10°, preferably not more than about 7°, for example about 5°. Designing the component with this angle as small as possible can help to minimise the likelihood of the cup component being contacted by the other component of the joint during articulation, other than on the internal bearing surface.

The walls of the groove can be generally parallel, at least at the open end of the groove. This can ensure that a parallel walled flange is a sliding fit in the groove allowing the flange to be introduced easily into the groove and to be withdrawn from the groove, and that the play between the component and the tool (which provides the flange) is small.

The width of the groove (measured between its opposite walls) at the open end will depend on factors such as the size of the component and the amount of force that has to be applied to the component as it is manipulated during implantation. The width of the groove will generally be not more than about 3.0 mm, preferably not more than about 2.5 mm, more preferably not more than about 2.0 mm, especially not more than about 1.5 mm, for example not more than about 1.0 mm.

The cup component can be made from a metal, especially when its external surface is intended to contact the patient's bone tissue. Suitable metals include cobalt-chromium based alloys, or certain stainless steels, or titanium or a titanium based alloy. The external surface can be fixed in the prepared cavity in the bone tissue using bone cement. Alternatively, the external surface can be configured for cementless fixation, for example by

→→→ DOCUMENT RECEP

(

provision of a porous surface, such as is available from DePuy Orthopaedics Inc under the trade mark POROCOAT. The cup component can be made from other hard materials, such as ceramic materials, including ceramic coated metals.

The cup component can be made from a polymeric material, especially when it is intended to provide the bearing surface within a metal cup which is fastened within a prepared cavity in the patient's bone. A polymeric bearing component can be fixed within a metal cup using existing techniques, for example using elastically deformable wires which fit into aligned grooves in the bearing component and cup.

Examples of applications for the cup component of the invention include as a component of a hip joint prostheses or a component of a shoulder joint prosthesis. The size of the component will depend on factors such as its intended application. For example, when the component is for use in a hip joint prosthesis, the radius of the generally spherical hollow region can be at least about 6 mm, sometimes at least about 8 mm, for example at least about 10 mm.

In larger products, the radius of the generally spherical hollow region can be at least about 15 mm, for example at least about 18 mm.

The radius of the generally spherical hollow region can be not more than about 40 mm, preferably not more than about 35 mm.

The thickness of the wall of the cup component will depend on factors such as its application, the material from which it is made, and the overall construction of the joint prosthesis. It will generally be preferred for the wall thickness (not including any coatings or other layers which are applied for fixation) to be as thin as possible to minimise the amount of bone which has to be resected from around the component, consistent with ensuring sufficient strength of the component, and ability to withstand wear due to articulation during use. When the component is made from a hard material such as a metal, a ceramic or a ceramic coated metal, and has a smooth internal bearing surface, its wall thickness will generally be at least about 1.5 mm, preferably at least about 2.0 mm, more

Ø1012

-7-

preferably at least about 3.0 mm. When the component is made from a polymeric material (such as ultrahigh molecular weight polyethylene), its wall thickness might be at least about 2.5 mm, preferably at least about 3.0 mm, more preferably at least about 3.5 mm. The wall thickness of the component can vary between the polar and other regions. For example, the wall thickness can be greatest at the pole, and least at or close to the open mouth. For example, in the case of a component formed from a hard material, the wall thickness can be about 4 to 6 mm at the pole, and 3 to 4 mm at or close to the open mouth.

The characteristics of the internal surface for it to function satisfactorily as a bearing surface will depend on the material of the bearing surface and the overall construction of the joint prosthesis. When the component is made from a hard material such as a metal, a ceramic or a ceramic coated metal, the surface roughness of the internal bearing surface will preferably be not more than about $0.015~\mu m~R_a$, more preferably not more than about $0.01~\mu\mathrm{m}~R_a$, especially not more than about $0.008\mu\mathrm{m}~R_a$, for example not more than about $0.005~\mu m~R_a$, as measured using conventional surface profilometer apparatus.

The component of the invention can be manipulated using a tool which comprises a shaft, and a flange towards the end of the shaft on which the cup component can be fixed, which extends from the shaft transversely, and which can be retracted from an in-use position in which the flange can be received in a groove in the internal surface of the cup component, when positioned over the said end of the tool, and to a retracted position, in which the flange is withdrawn towards the axis of the shaft from the position in which it can be received in a groove in the cup component, allowing the cup component to be released from the tool.

In another aspect, the invention provides a tool for positioning a cup component of an orthopaedic joint prosthesis, which comprises a shaft, and a flange towards the end of the shaft on which the cup component can be fixed, which extends from the shaft transversely, and which can be retracted from an in-use position in which the flange can be received in a groove in the internal surface of the cup component, when positioned over the said end of the tool, and to a retracted position, in which the flange is withdrawn towards the axis of the shaft from the position in which it can be received in a groove in the cup component,

Ø 013

-8-

allowing the cup component to be released from the tool, in which the flange comprises a plurality of radially spaced apart flange portions, at least one of the flange portions being retractable as specified above and biassed towards the in-use position by means of a spring element which is made of a material which is different from that of the flange portion.

The use of different materials for the spring element and the flange portion allows the materials of the two components to be optimised for their respective functions. The flange portion can be made of a metal (such as stainless steel or another metal as commonly used in the manufacture of surgical instruments). The spring element might also be formed from a metal, but generally a different metal from that of the flange portion. Preferably, the spring element's formed from a non-metallic material, such as an elastomer. Suitable elastomeric materials include certain rubbers, especially silicone rubbers.

Preferably, the spring element is positioned between the flange portion and the axis of the shaft, and is compressed elastically by the flange portion when the flange portion is moved from its in-use position towards its retracted position. The spring element can comprise an O-ring which is positioned between the retractable flange portion and the shaft.

Preferably, the tool includes a plate which is fixed relative to the shaft with the flange between the plate and the said end of the shaft, for engaging the open mouth of the cup component to apply force to it, in which the edge of the plate is chamfered so that its transverse dimension is greatest at about the surface which contacts the cup component.

In a further aspect, the invention provides a tool for positioning a cup component of an orthopaedic joint prosthesis, which comprises (a) a shaft, (b) a flange towards the end of the shaft on which the cup component can be fixed, which extends from the shaft transversely, and which can be retracted from an in-use position in which the flange can be received in a groove in the internal surface of the cup component, when positioned over the said end of the tool, and to a retracted position, in which the flange is withdrawn towards the axis of the shaft from the position in which it can be received in a groove in the cup component, allowing the cup component to be released from the tool, and (c) a plate which is fixed relative to the shaft with the flange between the plate and the said end of the shaft,

-9-

for engaging the open mouth of the cup component to apply force to it, in which the edge of the plate is chamfered so that its transverse dimension is greatest at about the surface which contacts the cup component.

Preferably, the face of the flange which faces towards the said end of the shaft is chamfered at its edge. This can facilitate inward displacement of the flange so that it can be received in the groove, when the tool is offered to the open mouth of the cup component.

Preferably, the tool includes at least three radially spaced apart flange portions.

Preferably, the tool includes a soft cap which is positioned between the flange and the said end of the shaft, and which at least partially surrounds the end of the shaft. The cap preferably extends around the shaft, for example generally in the form of a skirt. Preferably it also covers the end of the shaft (aithough the end can be left exposed). The material of the cap will be selected so that it will not damage the smooth polished internal surface of the cup component. Suitable materials include polymeric materials and elastomeric materials, such as polyethylene, silicone rubber etc.

The invention will now be described by way of example with reference to the accompanying drawings, in which:

Figure 1 is a cross-section through a cup component according to the invention.

Figure 2 is an enlarged view of the edge of the cup component shown in Figure 1.

Figure 3 is a cross-section through a tool which can be used to manipulate the cup component shown in Figure 1.

Figure 4 is a view of the edge of the cup component as shown in Figure 2, with the cup component attached to the tool at one end thereof.

团 015

Referring to the drawings, Figure 1 shows an acetabular cup 2 which has a generally hemispherical shape. It is formed from a cobalt-chromium based alloy. The external surface of the cup has a porous layer 4 formed on it, which is provided by particles which are sintered so that they bond to one another and to the surface. The use of this technique to create a porous surface is known, and is used in connection with products sold by DePuy Orthopaedics Inc under the trade mark POROCOAT. Such a porous surface promotes fixation of the implant as a result of ingrowth of bone tissue.

A groove 6 is formed in the internal surface of the cup close to the open mouth 8. The groove is defined by an inner lip 10, an outer lip 12, and by opposite walls 14, 16 which are parallel at the open edge of the groove. Preferably, the walls of the groove are approximately perpendicular to the axis of polar the cup component.

The internal surface of the cup within the region defined by the inner lip 10 of the groove 6 is smooth and highly polished, so that it is substantially free of imperfections and its surface roughness is not more than about 0.015 µm R_a, preferably not more than about 0.01 µm R_a. Techniques for finishing the surface are known in connection with the manufacture of orthopaedic joint prosthesis components. The smooth polished region of the internal surface of the cup provides a bearing surface against which a correspondingly smooth convex bearing surface of another component can articulate. The radius of the bearing region will be selected according to the size of the bearing surface of the other component, and will generally be slightly bigger than that of the bearing surface of the other component.

The radius of the bearing region within the cup should preferably extend to the inner edge 10 of the groove 6 to provide for the largest range of articulation of the joint.

The radius of the hollow region within the cup at the outer lip 12 of the groove 6 is greater than the radius at the inner lip (measured from the centre of the sphere defined by the bearing surface). This can be seen in Figure 2 by means of the dotted line continuation of the spherical surface beyond the inner lip. The ratio of the radius at the inner lip to the

radius at the outer lip is less than about 0.98. The difference between the radii is about 1.0 mm.

The internal surface of the cup component is chamfered 18 between the outer lip 12 of the groove and the face of the component. The chamfered inner surface 18 helps to minimise restrictions on the range of articulation of the joint of the invention.

The external surface of the cup component is chamfered 20 close to the open mouth. The chamfer is provided over that part of the component which is intended to protrude from the cavity in the patient's bone in which the component is to be implanted. The angle between the chamfered surface and the tangent to the external spherical surface is at least about 30°, for example at least about 40°.

A planar face 22 is provided between the internal and external chamfered surfaces 18, 20.

The groove is defined by parallel side walls 14, 16. The groove is rounded at the base of one of the walls.

Figure 3 shows an insertion tool 30 which has a shaft 32. The shaft can extend to a handle (not shown) by which the tool can be held and manipulated. The tool includes a flange 34 towards one end. The flange extends transversely from the shaft.

The flange is made up of a plurality of flange portions 36, preferably four flange portions which are spaced apart equally around the shaft. The flange portions can slide transversely relative to the axis which is defined by the shaft, between an in-use position in which the flange can be received in the groove 6 in the internal surface of the cup component, when positioned over the said end of the tool, and a retracted position in which the flange is withdrawn towards the axis of the shaft from the position in which it can be received in the groove 6. The flange portions slide within a housing defined by a base plate 37 which, in the illustrated embodiment, is formed integrally with the housing. The face 38 of each of the flange portions which faces towards the end of the shaft is chamfered.

The tool includes a clastically compressible O-ring 39 which surrounds the shaft. The O-ring is retained within a slot 40 which extends transversely from the shaft.

The flange portions 36 are biassed towards their in-use positions by means of the O-ring 39 which acts against an upstand 42 on the flange portions.

The tool includes a sliding collar 44 which bears a plurality of pins 45 extending from the collar in a direction parallel to the shaft axis, towards the end of the shaft. The pins are tapered at their ends.

Holes 46 are provided in the base plate 37 which are aligned with the pins 45 on the sliding collar. Holes 48 are also provided in each of the flange portions which, when the flange portions are in their retracted position, are aligned with the holes in the base plate and the pins on the sliding collar. However, when the flange portions are in their in-use positions, the holes 48 in the flange portions are displaced outwardly relative to the holes 46 in the base plate. The flange portions can then be displaced inwardly, against the force exerted on them by the O-ring 39 by moving the collar along the shaft, towards the end of the shaft, so that the pins 45 pass through the holes 48 in the base plate and the into the holes 46 in the flange portions. The displacement of the holes in the flange portions relative to the holes in the base plate is such that the tapered ends of the pins can be forced into the holes in the flange portions. This is facilitated by the holes in the flange portions being tapered at the ends which face towards the pins. Continued sliding of the collar along the shaft increases the inward displacement of the flange portions towards their retracted positions.

The face 50 of the base plate which faces towards the end of the tool is planar. The edge 51 of the base plate is chamfered.

The tool includes a cap 52 which surrounds the shaft, formed from a soft material such as a rubber or a polymer, which will not scratch the internal surface of the cup when it contacts that surface.

In use, a cup component 2 is fastened to a tool 30 by forcing the tool into the cup component. The action of the chamfered face 38 of the flange portions against the chamfered internal surface of the cup causes the flange portions to be displaced inwardly against the outward force exerted by the O-ring. The flange portions can then spring back towards the in-use position, as they are received in the groove 6. The cup component can then be manipulated using the tool. Manipulation can include locating the cup component in a prepared recess within the patient's bone, aligning the cup component accurately, and also applying force along the axis of the shaft (which is aligned with the polar axis of the cup component) to force the cup into the recess. Force is applied to the cup through contact between the face 50 of the base plate 37 on the tool and the planar face 22 on the cup between the chamfered internal and external surfaces 18, 20 (see Figure 4). The chamfered edge 51 of the base plate, and the chamfered external surface 20 allows the surgeon to see the edge of the cup at the point (where the chamfered surface 20 and the porous coating 4 meet) which is intended to 16 at the surface of the prepared cavity. This is important for the surgeon to be able to ensure that the cup has been implanted correctly.

Once the cup has been located and aligned accurately, the sliding collar 44 is moved along the shaft towards the end thereof, so that the pins 45 pass through the holes 48 in the base plate and the into the holes 46 in the flange portions. This causes the flange portions to be displaced inwardly towards the shaft so that they are no longer held within the groove in the cup component. This allows the tool to be disengaged from the cup component.

-14-

CLAIMS:

- 1. A cup component of an orthopaedic joint prosthesis, which has an external surface, a generally circular open mouth and an internal surface defining a generally hemispherical hollow region in which a generally spherical part of another component of the joint prosthesis can be received for articulation relative to the cup component, in which the internal surface has a groove formed in it around at least part of the periphery of the component, the groove being defined by an inner lip, and an opposite outer lip which is closer to the open mouth, in which (a) the angle that is subtended at the centre of the hollow region between the edge of the cup component at the open mouth and the inner lip of the groove is not more than about 10°, and (b) the outer lip is displaced radially outwardly relative to the inner lip.
- 2. A cup component as claimed in claim 1, in which the said angle is not more than about 7°.
- 3. A cup component as claimed in claim 1, in which the external surface is chamfered at the open mouth, around at least part of the periphery of the component.
- 4. A cup component as claimed in claim 3, in which the angle between the chamfered surface and a tangent to the non-chamfered part of the external surface is at least about 30°.
- 5. A cup component as claimed in claim 3, in which the chamfer on the external surface extends through at least about 20% of the thickness of the component.
- 6. A cup component as claimed in claim 1, in which the internal surface is chamfered at the open mouth, around at least part of the periphery of the component.
- 7. A cup component as claimed in claim 1, in which the ratio of the radius of the cup component at the inner lip of the groove to the radius of the cup component at the outer lip of the groove is not more than about 0.97.

- 8. A cup component as claimed in claim 1, in which the ratio of the radius of the cup component at the inner lip of the groove to the radius of the cup component at the outer lip of the groove is at least about 0.8.
- 9. A cup component as claimed in claim 1, in which the walls of the groove are generally parallel, at least at the open end of the groove.
- 10. A cup component as claimed in claim 1, in which the angle that is subtended at the centre of the hollow region between the inner lips of the groove at two diametrically opposite points is at least about 170°.
- A tool for positioning a cup component of an orthopaedic joint prosthesis, which comprises a shaft, and a flange towards the end of the shaft on which the cup component can be fixed, which extends from the shaft transversely, and which can be retracted from an in-use position in which the flange can be received in a groove in the internal surface of the cup component, when positioned over the said end of the tool, and to a retracted position, in which the flange is withdrawn towards the axis of the shaft from the position in which it can be received in a groove in the cup component, allowing the cup component to be released from the tool, in which the flange comprises a plurality of radially spaced apart flange portions, at least one of the flange portions being retractable as specified above and biassed towards the in-use position by means of a spring element which is made of a material which is different from that of the flange portion.
- 12. A tool as claimed in claim 11, in which the retractable flange portion is formed from a metal.
- 13. A tool as claimed in claim 11, in which the spring element is formed from a non-metallic material.
- 14. A tool as claimed in claim 11, in which the spring element is positioned between the flange portion and the axis of the shaft, and is compressed elastically by the flange

-16-

portion when the flange portion is moved from its in-use position towards its retracted position.

- 15. A tool as claimed in claim 14, in which the spring element comprises an O-ring which is positioned between the retractable flange portion and the shaft.
- 16. A tool as claimed in claim 11, which includes a plate which is fixed relative to the shaft with the flange between the plate and the said end of the shaft, for engaging the open mouth of the cup component to apply force to it, in which the edge of the plate is chamfered so that its transverse dimension is greatest at about the surface which contacts the cup component.
- 17. A tool as claimed in claim 11, in which the face of the flange which faces towards the said end of the shaft is chamfered at its edge.
- 18. A tool as claimed in claim 11, which comprises at least three radially spaced apart flange portions.
- 19. A tool as claimed in claim 11, which includes a soft cap which is positioned between the flange and the said end of the shaft, and which at least partially surrounds the end of the shaft.
- 20. A tool for positioning a cup component of an orthopaedic joint prosthesis, which comprises (a) a shaft, (b) a flange towards the end of the shaft on which the cup component can be fixed, which extends from the shaft transversely, and which can be retracted from an in-use position in which the flange can be received in a groove in the internal surface of the cup component, when positioned over the said end of the tool, and to a retracted position, in which the flange is withdrawn towards the axis of the shaft from the position in which it can be received in a groove in the cup component, allowing the cup component to be released from the tool, and (c) a plate which is fixed relative to the shaft with the flange between the plate and the said end of the shaft, for engaging the open mouth of the cup

-17-

component to apply force to it, in which the edge of the plate is chamfered so that its transverse dimension is greatest at about the surface which contacts the cup component.

•		
_		

1/2

			•

2024

PCT Application PCT/GB2004/000405

All harmon