Доклад по теме: Основные модели безопасности ОС

Выполнила: Самсонова Мария Ильинична Преподаватель Кулябов Дмитрий Сергеевич д.ф.-м.н., профессор кафедры теории вероятностей и кибербезопасности 21 марта 2024

Российский университет дружбы народов, Москва, Россия

Содержание

- Введение
- Модель безопасности
- Сетевая модель
- Основные типы моделей безопасности
- Новые угрозы и уязвимости: Атаки на доверенные подсистемы
- Развитие гибридных моделей: Объединение нескольких моделей безопасности
- Заключение
- Библиографический обзор

Информация о докладчике

- Самсонова Мария Ильинична
- Студент группы НФИбд-02-21
- Студенческий билет 1032216526
- Российский университет дружбы народов

Введение

Безопасность операционной системы — это совокупность мер, направленных на защиту данных и ресурсов компьютера от несанкционированного доступа, кражи, модификации и разрушения. Безопасность ОС охватывает не только защиту от внешних угроз (взлом, вирусы, кибератаки), но и внутренние аспекты, такие как управление правами доступа пользователей и контроль выполнения приложений. Ключевые аспекты безопасности ОС: • Управление доступом: Определение, кто и какие ресурсы может использовать.

- Аутентификация: Подтверждение личности пользователя или системы.
- Автономная защита: Способность системы работать в условиях отключения внешних сервисов или сетей без снижения уровня безопасности.
- Шифрование данных: Защита данных как в состоянии хранения, так и при передаче между компонентами системы.
- Логирование и мониторинг: Отслеживание действий пользователей и событий, происходящих в системе для выявления и предотвращения потенциальных угроз.

Модель безопасности

Модель безопасности — это формализованный подход, который определяет, как система должна контролировать доступ к ресурсам и защищать данные от несанкционированного использования. Она представляет собой теоретическое описание принципов, механизмов и правил, на основе которых строится защита информации и ресурсов внутри операционной системы.

Что представляют собой модели безопасности?

Каждая модель безопасности **ориентирована** на достижение одной или нескольких ключевых целей безопасности, таких как конфиденциальность, целостность и доступность. Эти модели могут быть формализованы в виде правил и алгоритмов, которые затем реализуются на уровне ОС или специализированного программного обеспечения для защиты данных.

Основные элементы моделей безопасности • Субъекты — пользователи или процессы, которые запрашивают доступ к ресурсам.

- Объекты ресурсы, к которым запрашивается доступ (файлы, данные, приложения).
- Правила доступа условия, которые определяют, может ли субъект выполнить определенные действия с объектом.

Модели безопасности обычно делятся на категории в зависимости от того, какие аспекты безопасности они защищают и какие принципы управления доступом используют. Некоторые из моделей больше ориентированы на защиту конфиденциальности, в то время как другие делают акцент на целостности данных.

Основные типы моделей безопасности

Дискреционные модели безопасности (Discretionary Access Control, DAC)

Дискреционные модели безопасности управляют правами доступа к ресурсам через владельцев этих ресурсов. Владельцы сами назначают или изменяют права доступа для других пользователей, основываясь на их идентичности.

Каждому объекту назначен субъект-владелец, который определяет, кто имеет доступ к объекту и какие операции разрешены. Основные операции включают: чтение (READ), запись (WRITE) и выполнение (EXECUTE, актуально только для программ). Таким образом, в модели дискреционного доступа для каждой пары субъект-объект задается разрешенный набор операций.

Дискреционные модели безопасности (Discretionary Access Control, DAC)

Дискреционная модель реализована в операционных системах, таких как Windows и Linux (см. рис. 1).

Мандатная модель безопасности основана на мандатном управлении доступом. Мандатное управление доступом (Mandatory Access Control, MAC) — это механизм, основанный на присвоении меток конфиденциальности объектам и официальных разрешений (допусков) субъектам на доступ к информации определённого уровня. Такой подход предотвращает несанкционированное использование компьютерных процессов, данных и системных устройств. Иногда МАС также называют «Принудительным контролем доступа».

В мандатных моделях безопасности контроль доступа осуществляется на системном уровне и не может быть изменён пользователями. Система назначает метки безопасности субъектам и объектам, а доступ регулируется в соответствии с этими метками и установленными правилами.

Мандатные модели безопасности (Mandatory Access Control, MAC)

Принципы мандатного контроля доступа впервые были реализованы в операционных системах, ориентированных на безопасность, таких как Flask. В 2003 году проект АНБ SELinux добавил архитектуру МАС к ядру Linux, что сделало эту модель частью основной ветви разработки. Мандатные системы доступа также реализованы в FreeBSD Unix, AppArmor для SUSE Linux и Ubuntu.

Модели с ролевым разграничением доступа (Role-Based Access Control, RBAC)

В ролевых моделях доступ к ресурсам регулируется на основании ролей, назначаемых пользователям. Каждая роль содержит набор прав доступа, и пользователи получают доступ в зависимости от своей роли, а не индивидуальных разрешений.

Ролевая модель управления доступом определяет доступ пользователей к ресурсам на основе их ролей в системе, которые отражают их действия и обязанности. **Роль** — это совокупность действий, соответствующих определённой должности или функции. Примеры ролей включают: администратор базы данных, менеджер, начальник отдела.

Модели с ролевым разграничением доступа (Role-Based Access Control, RBAC)

Рис. 2: Схема ролевой модели контроля доступа (RBAC)

Ролевая модель широко используется в системах управления доступом, таких как Microsoft Active Directory, SELinux, FreeBSD, Solaris, СУБД Oracle, PostgreSQL, SAP R/3 и других. С помощью RBAC можно моделировать как 12/18

Новые угрозы и уязвимости: Атаки на доверенные подсистемы

Атаки на доверенные подсистемы, такие как ядро ОС или гипервизоры, становятся всё более изощрёнными и опасными. Примеры таких атак включают:

- Эксплойты на уязвимости ядра. Злоумышленники находят уязвимости в ядре ОС, что позволяет им обходить механизмы контроля доступа или получать повышенные привилегии.
- Атаки на цепочки доверия. Современные системы зависят от множества компонентов (драйверов, библиотек), и атаки на эти компоненты могут нарушить работу всей системы.
- Угрозы через аппаратные уязвимости. Аппаратные уязвимости, такие как Spectre и Meltdown, показывают, что даже самые защищённые компоненты ОС могут быть атакованы через слабости в архитектуре процессора.

Развитие гибридных моделей: Объединение нескольких моделей безопасности

Объединение этих подходов позволяет более эффективно решать задачи безопасности в различных сценариях:

- DAC + MAC: Совместное использование дискреционной и мандатной моделей позволяет достичь баланса между гибкостью управления доступом и строгим контролем над конфиденциальной информацией.
 - Например, SELinux использует элементы как MAC, так и DAC, что делает систему более безопасной. DAC позволяет владельцам файлов задавать разрешения для других пользователей, тогда как MAC обеспечивает строгий контроль доступа на уровне всей системы, независимо от владельцев файлов.

Развитие гибридных моделей: Объединение нескольких моделей безопасности

- RBAC + DAC: Включение ролей в дискреционные модели позволяет упростить администрирование и повысить безопасность за счет ограничения привилегий пользователей через роли. Это особенно полезно в крупных организациях, где управление доступом должно быть масштабируемым.
- В Windows Server реализована модель доступа на основе ролей (RBAC) для администрирования пользователей и ресурсов. Например, пользователи, отнесённые к роли "Менеджер", могут иметь доступ к определённым ресурсам, без необходимости вручную назначать права доступа каждому новому пользователю.

Развитие гибридных моделей: Объединение нескольких моделей безопасности

3. RBAC + MAC: В корпоративных и государственных системах можно наблюдать симбиоз мандатной модели и ролевой, где администраторы используют строгие политики контроля доступа, а пользователи работают с ограниченными ролями для выполнения определённых задач. Это уменьшает риск несанкционированного доступа и упрощает соблюдение требований безопасности.

Заключение

В ходе данного доклада были рассмотрены основные модели безопасности операционных систем: дискреционная (DAC), мандатная (MAC) и ролевая (RBAC) модели. Каждая из этих моделей обладает своими уникальными характеристиками и методами управления доступом, что позволяет эффективно защищать данные в различных сценариях использования.

Библиографический обзор

- [1] Основные положения модели информационной безопасности иерархических распределительных систем. К.Н. Филькин. URL: https://core.ac.uk/download/pdf/53065572.pdf
- [2] Информационная безопасность в современных системах управления базами данных. Дата обращения: 4 октября 2024. Архивировано 7 мая 2019 года. URL: https://compress.ru/article.aspx?id=10099&iid=419
- [3] Sandhu R. Coynek E., Feinsteink H., Youman C. Role-Based Access Control // IEEE Computer. 1996. № 29(2). P. 38–47.
- [4] NIST Computer Security Division Automated Combinatorial Testing for Software (ACTS). csrc.nist.gov. Дата обращения: 4 октября 2024. Архивировано 21 июня 2016 года. URL: https://csrc.nist.gov/projects/role-based-access-control/faqs#02