基于深度学习的光伏发电量预测方法的实现与 分析

汇报人: 高海涛 指导老师: 刘春山

杭州电子科技大学

2023年6月3日

目录

- Motivation
 - Why We Need PV
 - Why We Need AI to Predict PV
- 2 My Experiment
 - Project Statement
 - Dataset Introduction
 - My Model
 - Short Forecasting
 - Long Forecasting
- 3 Conclusion

- Motivation
 - Why We Need PV
 - Why We Need AI to Predict PV
- 2 My Experiment
 - Project Statement
 - Dataset Introduction
 - My Model
 - Short Forecasting
 - Long Forecasting
- Conclusion

Why We Need PV

光伏新能源

- 清洁
- 可再生
- 无限

Why We Need AI to Predict PV

未来

- 建模**复杂**的 环境
- 利用多模态的海量数据

- Motivation
 - Why We Need PV
 - Why We Need Al to Predict PV
- 2 My Experiment
 - Project Statement
 - Dataset Introduction
 - My Model
 - Short Forecasting
 - Long Forecasting
- 3 Conclusion

Project Goals & Problem

Problems

Problems

- 传感器还有大量 无用特征
- 基站缺乏昂贵的 数据采集器
- 数据不平稳, 波 动较大

有功功率的变化图

Fig 2: 特征图

Project Goals & Problem Goals

本次毕业设计的目标

开发基于<mark>深度学习</mark>算法的尽可能使用<mark>少量</mark>特征,在<mark>短</mark> <mark>期</mark>和长期预测预测中均达到较高精度的光伏发电量预测系统

Dataset

浙江台州光伏传感器

如表1所示

Table: Dataset

时间戳	发电量	直流电流	逆变器温度	 天气
2021-4-1 00:00:00	0	0	18	 晴
2021-4-1 01:00:00	99	100	50	 晴
2021-4-1 02:00:00	128	100	50	 晴
•••				
2022-12-30 23:00:00	0	0	20	 小馬

15000 rows-29 cols

My Model Patch-LSTM

Fig 3: Patch-LSTM

Patch

LSTM

Why Patch & Why LSTM?

Why Patch?

• 论文 A TIME SERIES IS WORTH 64 WORDS: LONG-TERM FORECASTING WITH TRANSFORMERS 指出, Patch 可以提高 Attentio 机制对于时间序列的特征的捕捉能力.

Why LSTM?

论文 Are Transformers Effective for Time Series Forecasting?
 实验表明, Transformer 类模型相较于 MLP 对于时间序列信息的学习并没有明显优势, 甚至不如 MLP 的预测结果. 如果比较 MLP 与 LSTM 大量研究表明, LSTM 更适合时间序列

[1]Nie Y, Nguyen N H, Sinthong P, 等. A Time Series is Worth 64 Words: Long-term Forecasting with Transformers[J]. arXiv, 2022.

[2]Zeng A, Chen M, Zhang L, 等. Are Transformers Effective for Time Series Forecasting?[J]. arXiv, 2022

Short Forcasting **ARIMA** *VS* **Patch-LSTM**

Fig 4: ARIMA Data Split

ARIMA

定阶

9

```
Algorithm 1: Grid Search
```

输入: p, d = 0, q

输出: AIC

1 初始化变量:

2 **for** p = 1 *to* 5 **do**

end

如表2所示

Table: Arguments

参数	值
р	2
d	0
q	2
AIC	-1723.75

ARIMA

预测

Fig 6: ARIMA 预测局部放大图

Table: Evaluation Metrics

917
76
37

Patch-LSTM Short Forecasting

特征: 历史数据 & 天气信息

Fig 6: Patch-LSTM 短期预测图

Table: Evaluation Metrics

Metric	Value
MSE	0.00028879829915240407
RMSE	0.016994066586676775
MAE	0.00970529392361641

Analysis Graphs

Fig 8: ARIMA 预测局部放大图

Fig 9: Metrics 对比图

Conclusion1

- ARIMA 在短期预测中已经足够优秀
- 基于深度学习的模型在短期预测中精度比 ARIMA 略高
- 基于深度学习的模型的另一个优势是如果有可用的其他外部信息,仍可以输入模型,而 ARIMA 属于单变量模型

Model Introduction

MLP & DLinear

MLP

- 全连接
- 非线性激活函数
- 适应性强

DLinear

- 分解
- 一步预测

Fig 11: Dlinear 模型架构

Fig 10: MLP 模型架构

[1]Peng Z. Multilayer Perceptron Algebra[J]. arXiv, 2017. [2]Zeng A, Chen M, Zhang L, 等. Are Transformers Effective for Time Series Forecasting?[J]. arXiv, 2022

Data Split train, valid, test

Fig 12: Train Valid Test Split

MLP Long Forecasting

特征: 历史数据

Fig 13: MLP 预测图

Fig 14: MLP 预测局部放大图

Table: Evaluation Metrics

	Metric	Value
	MSE	0.005282088648527861
	RMSE	0.07267797911697779
	MAE	0.03936387971043587
	MAPE	1.4119446

DLinear Long Forecasting

特征: 历史数据

Fig 15: DLinear 预测图

Fig 16: DLinear 预测局部放大图

Table: Evaluation Metrics

Metric	Value
MSE	0.005549801047891378
RMSE	0.07449698683766598
MAE	0.0542387031018734
MAPE	1.5561291

Patch-LSTM Long Forecasting

特征: 历史数据

Fig 17: Patch-LSTM 预测图

Fig 18: Patch-LSTM 预测局部放大图

Table: Evaluation Metrics

Metric	Value
MSE	0.003447531256824732
RMSE	0.05871568152397392
MAE	0.0294288732111454
MAPE	0.8023116

Analysis Graphs

Fig 19: Metrics 对比图

Fig 20: MSE 放大图

Conclusion2

- MSE(均方误差): Patch LSTM 模型表现最好、为 0.0034、 其次是 MLP 和 DLinear 模型, 分别为 0.0053 和 0.0055。说 明 Patch LSTM 在预测值与实际值之间的误差方差最小。
- RMSE(均方根误差): Patch LSTM 模型表现最好,为 0.0587, 其次是 MLP 和 DLinear 模型, 分别为 0.0727 和 0.0745。说明 Patch LSTM 在预测值与实际值之间的误差方 差开根号后最小。
- MAE(平均绝对误差): Patch LSTM 模型表现最好,为 0.0294, 其次是 DLinear 模型和 MLP, 分别为 0.0542 和 0.0394。说明 Patch LSTM 在预测值与实际值之间的误差绝 对值的平均值最小。
- MAPE (平均绝对误差百分比): Patch LSTM 模型表现最好、 为 0.8023, 其次是 MLP 和 DLinear 模型, 分别为 1.4119 和 1.5561。说明 Patch LSTM 在预测值与实际值之间的

- Motivation
 - Why We Need PV
 - Why We Need Al to Predict PV
- 2 My Experiment
 - Project Statement
 - Dataset Introduction
 - My Model
 - Short Forecasting
 - Long Forecasting
- Conclusion

Summary

模型

- 短期预测中,Patch-LSTM 的性能略好于 ARIMA,尤其在 0 值附近,但是在峰值附近有一定偏移
- 在长期预测中,Patch-LSTM 性能显著优于经典深度学习模型 MLP, 和最新提出的 DLinear
- 在长期和短期预测中均取得优势,且在深度学习训练过程中,只采用了少量特征-天气,或者只使用待预测特征本身历史数据

汇报完毕 恳请指正

Presented by 高海涛

