Contexte du projet

Présentation des données

Training data shape: (307511, 122)								
	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	
0	100002	1	Cash loans	М	N	Υ	0	
1	100003	0	Cash loans	F	N	N	0	
2	100004	0	Revolving loans	М	Υ	Υ	0	
3	100006	0	Cash loans	F	N	Υ	0	
4	100007	0	Cash loans	М	N	Υ	0	

Analyse des données

Analyse des données

Analyse des données

Nettoyage des données

	occupation			occupation_ceo	occupation_data scientist	occupation_engineer	occupation_manager	occupation_programmer
0	programmer		0	0	0	0	0	1
1	data scientist	One Hot Encoding	. 1	0	1	0	0	0
2	engineer	Effecting	2	0	0	1	0	0
3	manager		3	0	0	0	1	0
4	ceo	r	4	1	0	0	0	0

Nettoyage des données

<u>Imputation des données</u>

	Missing Values	% Missing
COMMONAREA_MEDI	214865	69.9
COMMONAREA_AVG	214865	69.9
COMMONAREA_MODE	214865	69.9
NONLIVINGAPARTMENTS_MEDI	213514	69.4
NONLIVINGAPARTMENTS_MODE	213514	69.4
NONLIVINGAPARTMENTS_AVG	213514	69.4

Feature engineering

Polynomiale

Feature engineering

Métier

- days employed percent
- credit income percent
- annuity income percent
- credit term

Pipeline:

- équilibrage des classes
- normalisation
- grid search / validation croisée
- test des performances

modèles:

- gradient boosting
- forêt aléatoire
- XGBoost
- régression logistique
- SGD

Dummy: 0,500

Gradient boosting: 0,703

Random forest: 0,714

XGBoost: 0,746

Régression logistique : 0,745

Optimisation du modèle

- jeux de données
- grid search plus précise
- optimisation du seuil

Optimisation du modèle

Fonction coût = FP + FN

Faux Positif = 1 Faux Négatif = 10

Optimisation du modèle

Régression logistique

Interprétation du modèle

Globale

Interprétation du modèle

Locale

Interprétation du modèle

Locale

Axes d'améliorations

- données
- feature engineering
- imputation
- plus de modèles
- plus gros modèles
- fonction coût