We claim:

- 1. A process for converting thermal energy to mechanical energy in a Rankine cycle in which a cycle is repeated comprising the steps of vaporizing a working fluid with a heat source, expanding the resulting vapor and then cooling with a cold heat source to condense the vapor, and pressurizing the working fluid, wherein the working fluid comprises a working fluid selected from the group consisting of polyfluorinated ethers, polyfluorinated ketones and mixtures thereof
- 2. A process according to claim 1 wherein the working fluid is selected from the group consisting of methyl (trifluoroethyl) ether (CH3OCH2CF3), methyl ether (CH₃OCF₂CHFCF₃), (heptafluoropropyl) di(trifluoroethyl) ether (CF₃CH₂OCH₂CF₃), methyl (hexafluoropropyl) ether (CH₃OCF₂CF₂CHF₂), methyl (pentafluoropropyl) ether (CH₃OCH₂CF₂CF₃), methyl (perfluorobutyl) ether $(C_4F_9OCH_3)$, ethyl (perfluorobutyl) ether $(C_4F_9OC_2H_5)$, methyl (perfluoromethyl) ketone (CF₃COCH₃), perfluoromethyl (trifluoroethyl) ketone (CF₃CH₂COCF₃), methyl (perfluooroethyl) ketone (C₂F₅COCH₃), methyl (perfluoropropyl) ketone (F₃CF₂CF₂COCH₃), perfluoroethyl (perfluoropropyl) ketone $(CF_3CF_2CF_2COC_2F_5),$ methyl (octafluorobutyl) ketone (C₂F₅CFHCF₂COCH₃), di(perfluoropropyl) ketone (CF₃CF₂CF₂COCF₂CF₂CF₃), and mixtures thereof.
- 3. A process according to claim 1 wherein the working fluid is selected from the group consisting of methyl (perfluoropropyl) ether, methyl (perfluorobutyl) ether, perfluoroethyl perfluoroisopropyl ketone and mixtures thereof.
- 4. A process according to claim 3 wherein the working fluid comprises methyl (perfluoropropyl) ether.
- 5. A process according to claim 3 wherein the working fluid comprises methyl (perfluorobutyl) ether.

6. A process according to claim 3 wherein the working fluid comprises perfluoroethyl perfluoroisopropyl ketone.

ę,

- 7. A process for converting thermal energy to mechanical energy which comprises heating a working fluid to a temperature sufficient to vaporize the working fluid and form a pressurized vapor of the working fluid and then causing the pressurized vapor of the working fluid to perform meachnical work, wherein the working fluid comprises a working fluid selected from the group consisting of polyfluorinated ethers, polyfluorinated ketones and mixtures thereof.
- A process according to claim 7 wherein the working fluid is selected from the 8. group consisting of methyl (trifluoroethyl) ether (CH3OCH2CF3), methyl (CH₃OCF₂CHFCF₃), (heptafluoropropyl) ether di(trifluoroethyl) ether (CF₃CH₂OCH₂CF₃), methyl (hexafluoropropyl) ether (CH₃OCF₂CF₂CHF₂), methyl (pentafluoropropyl) ether (CH₃OCH₂CF₂CF₃), methyl (perfluorobutyl) ether $(C_4F_9OCH_3)$, ethyl (perfluorobutyl) ether $(C_4F_9OC_2H_5)$, methyl (perfluoromethyl) ketone (CF₃COCH₃), perfluoromethyl (trifluoroethyl) ketone (CF₃CH₂COCF₃), methyl (perfluooroethyl) ketone (C₂F₅COCH₃), methyl (perfluoropropyl) ketone (F₃CF₂CF₂COCH₃), perfluoroethyl (perfluoropropyl) ketone $(CF_3CF_2CF_2COC_2F_5),$ methyl (octafluorobutyl) ketone (C₂F₅CFHCF₂COCH₃), di(perfluoropropyl) ketone (CF₃CF₂CF₂COCF₂CF₂CF₃), and mixtures thereof.
- 9. A process according to claim 7 wherein the working fluid is selected from the group consisting of methyl (perfluoropropyl) ether, methyl (perfluorobutyl) ether, perfluoroethyl perfluoroisopropyl ketone and mixtures thereof.
- 10. A process according to claim 9 wherein the working fluid comprises methyl (perfluoropropyl) ether.

- 11. A process according to claim 9 wherein the working fluid comprises methyl (perfluorobutyl) ether.
- 12. A process according to claim 9 wherein the working fluid comprises perfluoroethyl perfluoroisopropyl ketone.
- 13. A process according to claim 7 wherein the pressurized vapor of the working fluid is subsequently cooled below its boiling point and then recycled by again heating the working fluid to again form a pressurized vapor of the working fluid which is then caused to perform additional mechanical work.
- 14. A binary power cycle comprising a primary power cycle and a secondary power cycle, wherein high temperature water vapor is the primary working fluid in the primary power cycle, and a second working fluid is employed in the scondary power cycle to convert thermal enery to mechanical energy and is heated to form a pressurized vapor of the second working fluid and the pressurized vapor of the second working fluid is caused to perform mechanical work, wherein the working fluid comprises a working fluid selected from the group consisting of polyfluorinated ethers, polyfluorinated ketones and mixtures thereof.
- A binary power cycle according to claim 14 wherein the working fluid comprises a working fluid selected from the group consisting of methyl (trifluoroethyl) ether (CH₃OCH₂CF₃), methyl (heptafluoropropyl) ether (CH₃OCF₂CHFCF₃), di(trifluoroethyl) ether (CF₃CH₂OCH₂CF₃), methyl (hexafluoropropyl) ether (CH₃OCF₂CF₂CHF₂), methyl (pentafluoropropyl) ether (CH₃OCH₂CF₂CF₃), methyl (perfluorobutyl) ether (C₄F₉OCH₃), ethyl (perfluorobutyl) ether (C₄F₉OC₂H₅), methyl (perfluoromethyl) ketone (CF₃COCH₃), perfluoromethyl (trifluoroethyl) ketone (CF₃COCF₃), methyl (perfluoropropyl) ketone (F₃CF₂CF₂COCH₃), perfluoroethyl (perfluoropropyl) ketone (CF₃CF₂CF₂COCH₃), methyl (octafluorobutyl) ketone (C₂F₅CFHCF₂COCH₃),

- di(perfluoropropyl) ketone (CF₃CF₂CG₂CF₂CF₂CF₃), and mixtures thereof.
- 16. A binary power cycle according to claim 14 wherein the working flluid is selected from the group consisting of methyl (perfluoropropyl) ether, methyl (perfluorobutyl) ether, perfluoroethyl perfluoroisopropyl ketone and mixtures thereof.
- 17. A binary power cycle according to claim 15 wherein the working flluid comprises methyl (perfluoropropyl) ether.
- 18. A binary power cycle according to claim 15 wherein the working flluid comprises methyl (perfluorobutyl) ether.
- 19. A binary power cycle according to claim 15 wherein the working flluid comprises perfluoroethyl perfluoroisopropyl ketone.