Infiltration

Prof. Kate Heal School of GeoSciences

Soil, Water & Atmospheric Processes

Ward & Robinson – Soil Water chapter

Rose – Chapter 6

Rate of soil water flow

Saturated conditions: Darcy's Law

"The public fountains of the town of Dijon" (1856)

Henry Darcy

http://www.lifeinthefastlane.ca/wp-content/uploads/2008/12/water_fountain_44sfw.jpg

http://biosystems.okstate.edu/ Darcy/Darcy.jpg

Saturated conditions: Darcy's Law

$Q = K \times I \times A$

Q = rate of soil water movement (m³ day⁻¹)

A = cross-sectional area through which flow occurs (m²)

I = hydraulic gradient (gradient of total soil water potential energy) (m m⁻¹)

K = hydraulic conductivity – rate of water movement through saturated soil (m day⁻¹)

(Newson, 1994)

Soil water movement in unsaturated soils

- More complex value of K varies depending on soil water content, soil matric forces, soil texture
- Richards' equation
 - Non-linear: needs to be solved iteratively
 - Mixed form

Infiltration

- Infiltration = process of water entry through soil surface
- Depth of water moving into soil over time
- Usual units: mm hour-1
- Pivotal process in catchment hydrological system: partitions precipitation that reaches ground surface

Infiltration rates vary between soil types

Soil texture	Soil type	Infiltration rate (mm hour¹)
Sands and gravels	Deep. Well-drained	7.9-9.6
Sandy loams to sandy clay	Well-drained brown forest soils	5.8-7.8
loams	Acid brown earths	4.1-5.7
Clay loams to silty clay loams	Gleyed brown forest soils. Podzolic soils	2.8-4.0
	Gley soils	1.5-2.7
Clay soils	Saturated peats	0.8-1.4
Impervious materials	Shallow podzols. Skeletal soils	0-0.7

Soils in England and Wales

(Rodda et al., 1976)

Factors affecting infiltration rate: soil surface

conditions

Inwashing of fine particles

Precipitation characteristics

Factors affecting infiltration rate: processes within the soil profile

Antecedent moisture content

Change in filtration rate over time

Why do infiltration rates change over time?

Gravitational potential: X>Y

Matric potential: Y>X

High initial infiltration rate

Matric potential gradient decreases

Water movement at gravitycontrolled infiltration rate

Infiltration rate declines

Water input ceases

Gradual decline in infiltration rates until field capacity reached

Water lost by evapotranspiration

Soil begins to dry out

Measurement of infiltration: infiltrometers

Single-ring infiltrometer

Problem with lateral movement of water into soil => overestimate infiltration rate

Double-ring infiltrometer

www.turf-tec.com/IN7-Eng.jpg

Infiltrometer: example calculation

- Single-ring infiltrometer, diameter = 13 cm
- 10 ml water added in 15 minutes
- What is infiltration rate in mm hour-1?

Infiltration rate =
$$\frac{\text{Vol water added per hour (cm}^3)}{\text{surface area (cm}^2)}$$

$$=\frac{\left(10\times4\right)}{\left(\frac{13}{2}\right)^2\times\pi}=\frac{40}{132.7}$$

 $= 0.301 \text{ cm hour}^{-1} = 3.01 \text{ mm hour}^{-1}$

BUT multiply by 0.6 correction factor

=> Infiltration rate = 1.8 mm hour⁻¹

Infiltration rate, slope position and land use in the Bale Mountains, Ethiopia

http://upload.wikimedia.org/wikipedia/commons/8/85/Bale mountains.jpg

Yimer et al. (2008) Soil Use and Management

Infiltration	n rate Mean	± SE (cm min ⁻¹)		
Time	Slope positions			
(min)	Lower	Middle	Upper	
01	$1.79 \pm 1.09 \ a$	$1.01 \pm 0.43 \ a$	$1.15 \pm 0.51a$	
60	$0.28 \pm 0.16 \ a$	$0.23 \pm 0.05 \; a$	$0.28 \pm 0.14 \ a$	
	Land use types			
	Cultivation	Grazing	Forest	
01	$0.67~\pm~0.02~b$	$0.61~\pm~0.09~b$	$2.67 \pm 0.66 \ a$	
60	$0.14 \pm 0.03 \ b$	$0.16~\pm~0.01~b$	$0.50 \pm 0.08 \ a$	
Cumulative infiltration				
	Cultivation	Grazing	Forest	
60	$14.63 \pm 1.99 b$	$12.98 \pm 0.91 \ b$	$45.72 \pm 6.31 a$	

No significant effect of slope position

Significant effect of land use

Measurement of infiltration: disc permeameter

- Another disadvantage of infiltrometer is only measures flow under ponded conditions – so often unrepresentative of field situations with rainfall
- Disc permeameter/tension infiltrometer developed to overcome this
 - Creates negative air pressure above ponded water

Example – Using disc permeameters to determine effects of forest cover on field saturated hydraulic conductivity (K_{fs})

Significantly higher infiltration under broadleaf mature forests suggests capacity for infiltrating rainfall during rainfall events

www.bgs.ac.uk

Site	Median K _{fs} (mm hour ⁻¹)
500 year broadleaf woodland	174
Adjacent grassland	39
180 year broadleaf woodland	119
Adjacent grassland	21
45 year conifer plantation	42
Adjacent grassland	35
Floodplain woodland	8
Adjacent grassland	1