Faculty of Science

Exam

Machine Learning 1

Final Exam

Date: 21 October 2014 Time: 13.00-15.00

Number of pages: 4 (including front page)

Number of questions: 3

Maximum number of points to earn: 85

At each question is indicated how many points it is worth.

BEFORE YOU START

- Please wait until you are instructed to open the booklet.
- Check if your version of the exam is complete.
- Write down your name, student ID number, and if applicable the version number on each sheet that you hand in. Also number the pages.
- Your mobile phone has to be switched off and in the coat or bag. Your coat and bag must be under your table.
- Tools allowed: A single A4 cheat-sheet.

PRACTICAL MATTERS

- The first 30 minutes and the last 15 minutes you are not allowed to leave the room, not even to visit the toilet.
- You are obliged to identify yourself at the request of the examiner (or his representative) with a proof of your enrollment or a valid ID.
- During the examination it is not permitted to visit the toilet, unless the proctor gives permission to do so.
- 15 minutes before the end, you will be warned that the time to hand in is approaching.
- If applicable, please fill out the evaluation form at the end of the exam.

Good luck!

Faculty of Science

Principal Component Analysis /25Suppose we have a data set $\{\mathbf{x}_n\}_{n=1}^N$ of *D*-dimensional vectors that have been centered such that $\sum_{n=1}^{N} x_{nd} = 0 \ \forall d$. (a) Provide an expression for the sample covariance **S** of $\{\mathbf{x}_n\}_{n=1}^N$. /2(b) Assume we perform a **complete** eigenvalue decomposition $\mathbf{S} = \mathbf{U}\Lambda\mathbf{U}^T$. (i) What is the dimensionality of \mathbf{U} and Λ ? /1(ii) What is entry (i, j) of Λ when $i \neq j$ and i = j? /1(iii) Let \mathbf{u}_i be the ith column of U. What are the values of the entries of the vector $\mathbf{u}_i^T \mathbf{U}$? /1(c) Write down an expression for \mathbf{x}_n in terms of D principal components (i.e. the complete set or full basis) and $\tilde{\mathbf{x}}_n$, an approximation of \mathbf{x}_n based on the first K /5 (principal components. Remember, $\{\mathbf x_n\}_{n=1}^N$ have been centered. (d) Assuming the representations from (c), (i) Find an expression for the error $E = \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{x}_n - \tilde{\mathbf{x}}_n||^2$, in terms of eigen-/7 values Λ_{ii} , i > K. (ii) Are these the *largest* or *smallest* eigenvalues of the complete set? /1(e) Briefly describe what PCA does geometrically. Use a drawing to illustrate your description. /4 (f) Briefly describe sphering. Include an additional drawing (from (e)) showing the

/3

final stages of the sphering operation.

Faculty of Science

2 Outlier detection using ν -SVM

We are given the following dataset: $\{\mathbf{x}_n\}$, i = 1..N, where each $\mathbf{x}_n \in \mathbb{R}^D$. We are also given a collection of feature functions $\{\phi_a(\cdot)\}$, a = 1..A. Now consider the following optimization problem for outlier detection,

/30

/5

/10

/5

/5

/3

/2

/3

/2

$$\min_{\mathbf{w}, \{\xi_n\}, \rho} \frac{1}{2} ||\mathbf{w}||^2 - \rho + \frac{1}{\nu N} \sum_{n=1}^{N} \xi_n$$
subject to: $\mathbf{w}^T \phi_n(\mathbf{x}_n) \ge \rho - \xi_n, \quad \xi_n \ge 0 \quad \forall n$

where \mathbf{w} is a weight vector, ρ is a offset, ξ_n are slack variables. The parameter $\nu \in [0,1]$ represents the fraction of training vectors that are treated as outliers. The expression $\frac{1}{\nu N}$ plays a similar role to C in regular SVMs. The figure below illustrates the geometry of the problem for a linear kernel function: the goal is to separate $\nu\%$ of the training data from the rest of the data (ν is usually small, for example 0.01 or 0.05). The hyperplane separates the data, treating the data as 2 classes, $y(\mathbf{x}) = +1$ for normal data and $y(\mathbf{x}) = -1$ as outliers (which are closest to the origin).

- (a) Provide an expression for the primal Lagrangian. Use Lagrange multipliers $\{\alpha_n\}$ and $\{\beta_n\}$.
- (b) Write down and/or solve for all the KKT conditions.
- (c) Use these conditions to write down the dual Lagrangian. Make sure to include the dual constraints.
- (d) Assume we solve the dual program which gives $\{\alpha_n^{\star}\}_{n=1}^{N}$. How do we determine the support vectors? What value of ξ to they have?
- (e) The solution does not provide an explicit value for ρ .
 - (i) Reason about the KKT conditions, in particular the complementary slackness conditions, to determine a precise expression for ρ based on a single training example ϕ_n .
 - (i) How can we improve the numerical stability of this solution by using the entire training set? What is the expression for ρ in this case?
- (f) Assume we have a test vector \mathbf{x}_{\star} . We want to test whether it is a normal vector or an outlier. What is the prediction $y(\mathbf{x}_{\star})$? The expression may only involve kernel evaluations (instead of feature evaluations).
- (g) Describe the solution of the dual program when $\nu=1$? In particular, what happens to the values of the support vectors?

3 Mixture Models

/30

In this question we consider an extension of the linear regression model to a **mixture** of linear regression models. The predictive distribution (likelihood) for output t_n , conditioned on its input vector \mathbf{x}_n is:

$$p(t_n|\mathbf{x}_n) = \sum_{k=1}^K \pi_k \mathcal{N}\left(t_n|\mathbf{w}_k^T \mathbf{x}_n, \beta^{-1}\right)$$

where k is the index of the mixture component, \mathbf{w}_k are D-dimensional regression weights for component k, and β is a global precision parameter. Note: $\mathcal{N}(x|u,\sigma^2) = (2\pi)^{-1/2}\sigma^{-1}\exp(-0.5(x-\mu)^2/\sigma^2)$. To answer the following questions assume we are given a dataset of input vectors $\mathbf{x}_n \in \mathbb{R}^D$, n=1..N and output scalars $t_n \in \mathbb{R}$. When you answer the questions below, ensure that the constraint $\sum_k \pi_k = 1$ is satisfied. We can define the expression for responsibility r_{nk} as

$$r_{nk} = \frac{\pi_k \mathcal{N}\left(t_n | \mathbf{w}_k^T \mathbf{x}_n, \beta^{-1}\right)}{\sum_j \pi_j \mathcal{N}\left(t_n | \mathbf{w}_j^T \mathbf{x}_n, \beta^{-1}\right)}$$

Figure 1: A mixture of 2 linear regression models. The x-axis represents the input (\mathbf{x}) and the y-axis represents the output (t). The expected predictions by cluster k are indicated by coloured lines (left) along with the full predictive densities (right).

(a) Write down the log-likelihood for the data set in terms of $\{t_n, \mathbf{x}_n\}$, $\{\mathbf{w}_k\}$, and β .

/5

(b) Find the expression for π_k that maximizes the log-likelihood. When solving for π_k , you should construct and identify $\{r_{nk}\}$ and assume it is fixed.

/5

(c) Find the expression for \mathbf{w}_k that maximizes the log-likelihood. Hint: use $\mathbf{R}_k = \operatorname{diag}(r_{nk})$ to simplify the expression (i.e. \mathbf{R}_k is a N by N diagonal matrix with entry n, n equal to r_{nk}).

/5

(d) Find the expression for β that maximizes the log-likelihood.

/5

(e) Write down an iterative algorithm using the above update equations (similar to the ones derived in class for the Mixture of Gaussians); include initialization and convergence check steps.

/5

(f) This model gives significant predictive mass to regions without data (see Figure 1, right). Explain why this occurs and how replacing π_k with the function $\pi_k(\mathbf{x}_n)$ can improve the model. What functional form or model can we use for $\pi_k(\mathbf{x}_n)$?

/5