Criticalité auto-organisée Modèle du tas de sable

Motivation initiale

- Difficulté d'étude de certains phénomènes naturels :
 - Avalanches
 - Eboulements
 - Tremblements de terre

 Auto-Organisation : Capacité à se stabiliser sans intervention de l'extérieur Auto-Organisation : Capacité à se stabiliser sans intervention de l'extérieur

- Criticalité : Les éléments du systèmes s'influencent mutuellement

Le modèle du Tas de Sable

Bak, Tang et Wiesenfeld

Principe

0	0	0		0	0	
0	0	0	-	0	1	
0	0	0		0	0	

0	0	0		0	0	0	
0	1	0	-	0	2	0	l
0	0	0		0	0	0	

Exemple de stabilisation

$$\begin{pmatrix} 5 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 3 & 4 \\ 3 & 3 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 4 & 0 \\ 3 & 3 & 1 \end{pmatrix} \longrightarrow$$

$$\begin{array}{cccc} & \begin{pmatrix} 2 & 0 & 1 \\ 3 & 4 & 1 \end{pmatrix} & \begin{array}{cccc} & \begin{pmatrix} 2 & 1 & 1 \\ 4 & 0 & 2 \end{pmatrix} \\ & & 1 & 2 \end{pmatrix} \end{array}$$

Formalisation du modèle

- Un tas de sable est constitué d'un ensemble fini de N sites (numérotés de 0 à N-1), et d'une matrice de déversement Δ
- Un état de l'automate est un vecteur à N coordonnées
- $\Delta_{ij} = 4$ si i = j -1 si i et j sont voisins 0 sinon
- Si z(i) > 3 on dit que i est critique

$$N = p * q$$

Matrice de déversement pour p = 2 q = 3

$$\Delta = \begin{pmatrix} 4 & -1 & 0 & -1 & 0 & 0 \\ -1 & 4 & -1 & 0 & -1 & 0 \\ 0 & -1 & 4 & 0 & 0 & -1 \\ -1 & 0 & 0 & 4 & -1 & 0 \\ 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & -1 & 0 & -1 & 4 \end{pmatrix}$$

Si i est un site critique, à l'instant suivant z'(j) = z(j) – Δ_{ij} pour tout j de [0,N-1]

Algorithme d'avalanche

(Preuve de terminaison de l'algorithme d'avalanche)

Preuve classique :

$$\sum_{i=0}^{N-1} (l(i) + c(i))^2 z(i)$$

 $avec\ l(i)\ et\ c(i)\ les\ ligne\ et\ colonne\ du\ site\ i$

(Preuve de terminaison de l'algorithme d'avalanche)

(Preuve de terminaison de l'algorithme d'avalanche)

 Procédons par l'absurde et supposons qu'il existe une suite infinie d'éboulements.

(Preuve de terminaison de l'algorithme d'avalanche)

- Procédons par l'absurde et supposons qu'il existe une suite infinie d'éboulements.
- Il n'y qu'un nombre fini (m^N) de configurations possibles avec m le nombre total de grains.
 L'automate passe donc plusieurs fois par le même état.

(Preuve de terminaison de l'algorithme d'avalanche)

- Procédons par l'absurde et supposons qu'il existe une suite infinie d'éboulements.
- Il n'y qu'un nombre fini (m^N) de configurations possibles avec m le nombre total de grains. L'automate passe donc plusieurs fois par le même état.

Par conséquent le nombre de grains de sable présent ne peux pas diminuer → Il ne peut pas y avoir d'éboulement sur les bords.

(Preuve de terminaison de l'algorithme d'avalanche)

- Procédons par l'absurde et supposons qu'il existe une suite infinie d'éboulements.
- Il n'y qu'un nombre fini (m^N) de configurations possibles avec m le nombre total de grains.
 L'automate passe donc plusieurs fois par le même état.

Par conséquent le nombre de grains de sable présent ne peux pas diminuer \rightarrow II ne peut pas y avoir d'éboulement sur les bords.

Il ne peut pas y avoir d'éboulement juste à coté du bord car un tel éboulement enverrait des grains sur le bord (et ils ne pourraient pas revenir).

(Preuve de terminaison de l'algorithme d'avalanche)

- Procédons par l'absurde et supposons qu'il existe une suite infinie d'éboulements.
- Il n'y qu'un nombre fini (m^N) de configurations possibles avec m le nombre total de grains.
 L'automate passe donc plusieurs fois par le même état.

Par conséquent le nombre de grains de sable présent ne peux pas diminuer \rightarrow II ne peut pas y avoir d'éboulement sur les bords.

Il ne peut pas y avoir d'éboulement juste à coté du bord car un tel éboulement enverrait des grains sur le bord (et ils ne pourraient pas revenir).

On conclut par récurrence qu'il n'y a en fait aucun éboulement dans ce cas.

Unicité de l'état final

(Correction de l'algorithme)

Deux cellules à distance 1 :

Deux cellules à distance 2 :

 Deux cellules à une distance strictement supérieure à 2 : il n'y a plus d'interférence entre les écroulements

Unicité à permutation près de la suite d'éboulements menant d'un état à un autre

Montrons que ∆ est inversible

Soit
$$X = (x1...xn)$$
 tel que $\Delta X = 0$

Notons m = max(|xj|) et notons i le plus petit indice tel que m = |xi|.

$$\sum_{0 < j < N} \Delta_{ij} x_j = 0$$

$$4|x_i| = |\sum_{j \in voisin(i)} x_j| \le \sum_{j \in voisin(i)} |x_j| \le \sum_{j \in voisin(i)} |x_i|$$

- Soit i a moins de 3 voisins → xi=0
- Soit i a 4 voisins mais par construction de i, sont voisins gauche est strictement plus petit → xi = 0

Donc X=0 et Δ est inversible

Unicité à permutation près de la suite d'éboulements menant d'un état à un autre (Correction de l'algorithme)

- Soient deux états z et z' tels que z → z'
- En voyant z comme un vecteur la transformation s'écrit

$$z' = z - \sum_{0 \le i \le N} \lambda_i \Delta_i$$

Et les λ_i sont uniques par liberté des Δ_i

Opération sur les états

Étant donnés deux états A et B notons :

A+B l'état obtenu en sommant coefficient par coefficient les états A et B

A⊕B l'état stable obtenu à partir de A+B

Par ce qui précède \oplus est interne, commutative, associative (en écrivant l'éboulement comme une somme d'éboulement de taille 1) et possède 0 (matrice nulle) pour élément neutre.

→ Monoïde

Inversibilité

<u>Problème</u>: Après un éboulement il y a toujours au moins deux sites non vides. Les états ne sont donc pas tous inversible.

Si c'était un groupe, pour toute configuration A on pourrait trouver $B = A^{-1} \oplus A$ telle que $A \oplus B = A$

Configurations récurrentes

Définition: Une configuration z est récurrente si on peut y retourner en y ajoutant des grains.

Si il existe w telle que $z = z \oplus w$

Prop : Deux états qui communiquent sont de même nature

Définition : Cl(z) = l'ensemble des états atteignables depuis z

Or Zmax est dans toutes les classes. L'ensemble des états récurrents est donc Cl(Zmax)

Inversibilité(bis)

Définition : Un état récurrent est un état obtenu en ajoutant des grains à Zmax

On considère à présent l'ensemble des états récurrents.

$$\bar{A} = Z_{max} - A$$

Notons $e = Z_{max} \oplus \overline{Z_{max} \oplus Z_{max}}$ A une configuration récurrente

$$A = Z_{max} \oplus A'$$

$$A \oplus e = A' \oplus Z_{max} \oplus Z_{max} \oplus \overline{Z_{max} \oplus Z_{max}}$$

$$A \oplus e = A' \oplus Z_{max} = A$$

$$A \oplus \overline{A \oplus Z_{max}} = A' \oplus Z_{max} \oplus \overline{A \oplus Z_{max}}$$
$$= A' \oplus Z_{max} \oplus e \oplus \overline{A \oplus Z_{max}}$$

$$=A'\oplus Z_{max}\oplus Z_{max}\oplus \overline{Z_{max}\oplus Z_{max}}\oplus \overline{A\oplus Z_{max}}$$

$$=A \oplus Z_{max} \oplus \overline{A \oplus Z_{max}} \oplus \overline{Z_{max} \oplus Z_{max}}$$

$$=Z_{max} \oplus \overline{Z_{max} \oplus Z_{max}}$$

$$= e$$

L'élément neutre pour 500*500

Bleu=3

Vert=2

Rouge=1

Blanc=0

Critère de Dhar

Caractérisation des configurations récurrentes :

Z est récurrente ssi $Z \oplus B = Z$

Et chaque sommet s'éboule une seule fois lors de la stabilisation

$$B = \begin{pmatrix} 2 & 1 & 1 & 1 & 1 & 2 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 2 & 1 & 1 & 1 & 1 & 2 \end{pmatrix}$$

Bijection de Dhar

Chaque sommet s'éboule une et une seule fois donc si à chaque étape on énumère les arrêtes qui rendent les sommets suivant instables, tous les sommets seront atteints et il ne peut pas y avoir de cycle.

On a donc un arbre couvrant.

Théorème de Kirchhoff: Le nombre d'arbre couvrant d'un graphe est égal au déterminant du laplacien discret.

$$\Delta = M_d - M_a$$

(Matrice des degrés – Matrice d'adjacence)

C'est la matrice de déversement Δ

Cardinal du groupe

$$A_{n} = \begin{pmatrix} 4 & -1 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 4 & -1 \\ 0 & 0 & 0 & \dots & -1 & 4 \end{pmatrix} \quad \Delta_{n} = \begin{pmatrix} An & -In & 0 & 0 & 0 & 0 \\ -In & An & -In & 0 & 0 & 0 \\ 0 & -In & An & -In & 0 & 0 \\ 0 & 0 & -In & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & An & -In \\ 0 & 0 & 0 & \dots & -In & An \end{pmatrix}$$

Cardinal du groupe

$$A_{n} = \begin{pmatrix} 4 & -1 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 4 & -1 \\ 0 & 0 & 0 & \dots & -1 & 4 \end{pmatrix} \quad \Delta_{n} = \begin{pmatrix} An & -In & 0 & 0 & 0 & 0 \\ -In & An & -In & 0 & 0 & 0 \\ 0 & -In & An & -In & 0 & 0 \\ 0 & 0 & -In & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & An & -In \\ 0 & 0 & 0 & \dots & -In & An \end{pmatrix}$$

$$M_n = \begin{pmatrix} X & -1 & 0 & 0 & 0 & 0 \\ -1 & X & -1 & 0 & 0 & 0 \\ 0 & -1 & X & -1 & 0 & 0 \\ 0 & 0 & -1 & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & X & -1 \\ 0 & 0 & 0 & \dots & -1 & X \end{pmatrix}$$

Cardinal du groupe

$$A_n = \begin{pmatrix} 4 & -1 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & 0 \\ 0 & 0 & -1 & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 4 & -1 \\ 0 & 0 & 0 & \dots & -1 & 4 \end{pmatrix}$$

$$A_{n} = \begin{pmatrix} 4 & -1 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & 0 \\ 0 & 0 & -1 & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 4 & -1 \\ 0 & 0 & 0 & \dots & -1 & 4 \end{pmatrix} \quad \Delta_{n} = \begin{pmatrix} An & -In & 0 & 0 & 0 & 0 \\ -In & An & -In & 0 & 0 & 0 \\ 0 & -In & An & -In & 0 & 0 \\ 0 & 0 & -In & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & An & -In \\ 0 & 0 & 0 & \dots & -In & An \end{pmatrix}$$

$$M_{n} = \begin{pmatrix} X & -1 & 0 & 0 & 0 & 0 \\ -1 & X & -1 & 0 & 0 & 0 \\ 0 & -1 & X & -1 & 0 & 0 \\ 0 & 0 & -1 & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & X & -1 \\ 0 & 0 & 0 & \dots & -1 & X \end{pmatrix} \qquad Det(M_{n}) = X Det(M_{n-1}) - Det(M_{n-2})$$

$$Det(M_{n}) = \prod_{k=1}^{n} X - 2 \cos(\frac{k\pi}{n+1})$$

$$Det(M_n) = X Det(M_{n-1}) - Det(M_{n-2})$$

$$Det(M_n)(\frac{X}{2}) = U_n =$$
 Chebyshev 2ème espèce

$$Det(M_n) = \prod_{k=1}^{n} X - 2\cos(\frac{k\pi}{n+1})$$

$$Det(A_n) = \prod_{k=1}^{n} 4 - 2\cos(\frac{k\pi}{n+1})$$

$$R = P^{-1}A_nP = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

$$\lambda_k = 4 - 2\cos(\frac{k\pi}{n+1})$$

$$R = P^{-1}A_nP = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

$$\lambda_k = 4 - 2\cos(\frac{k\pi}{n+1})$$

$$\mathcal{P} = \begin{pmatrix} P & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & P & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & P & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & P & 0 \\ 0 & 0 & 0 & \dots & P & 0 \end{pmatrix}$$

$$\mathcal{P} = \begin{pmatrix} P & 0 & 0 & 0 & 0 & 0 \\ 0 & P & 0 & 0 & 0 & 0 \\ 0 & 0 & P & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & P & 0 \\ 0 & 0 & 0 & \dots & 0 & P \end{pmatrix} \qquad \mathcal{P}^{-1} \Delta_n \mathcal{P} = \begin{pmatrix} R & -In & 0 & 0 & 0 & 0 \\ -In & R & -In & 0 & 0 & 0 \\ 0 & -In & R & -In & 0 & 0 \\ 0 & 0 & -In & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & R & -In \\ 0 & 0 & 0 & \dots & -In & R \end{pmatrix}$$

$$R = P^{-1}A_nP = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

$$\lambda_k = 4 - 2\cos(\frac{k\pi}{n+1})$$

$$\mathcal{P} = \begin{pmatrix} P & 0 & 0 & 0 & 0 & 0 \\ 0 & P & 0 & 0 & 0 & 0 \\ 0 & 0 & P & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & P & 0 \\ 0 & 0 & 0 & \dots & 0 & P \end{pmatrix} \qquad \mathcal{P}^{-1} \Delta_n \mathcal{P} = \begin{pmatrix} R & -In & 0 & 0 & 0 & 0 \\ -In & R & -In & 0 & 0 & 0 \\ 0 & -In & R & -In & 0 & 0 \\ 0 & 0 & -In & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & R & -In \\ 0 & 0 & 0 & \dots & -In & R \end{pmatrix}$$

$$\mathcal{P}^{-1}\Delta_{n}\mathcal{P} \sim \begin{pmatrix} R_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & R_{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & R_{3} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & R_{n-1} & 0 \\ 0 & 0 & 0 & \dots & 0 & R_{n} \end{pmatrix} \qquad R_{i} = \begin{pmatrix} \lambda_{i} & -1 & 0 & 0 & 0 & 0 \\ -1 & \lambda_{i} & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & \lambda_{i} & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_{i} & -1 \\ 0 & 0 & 0 & \dots & -1 & \lambda_{i} \end{pmatrix}$$

$$R_i = \begin{pmatrix} \lambda_i & -1 & 0 & 0 & 0 & 0 \\ -1 & \lambda_i & -1 & 0 & 0 & 0 \\ 0 & -1 & \lambda_i & -1 & 0 & 0 \\ 0 & 0 & -1 & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_i & -1 \\ 0 & 0 & 0 & \dots & -1 & \lambda_i \end{pmatrix}$$

$$R = P^{-1}A_nP = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

$$\lambda_k = 4 - 2\cos(\frac{k\pi}{n+1})$$

$$\mathcal{P} = \begin{pmatrix} P & 0 & 0 & 0 & 0 & 0 \\ 0 & P & 0 & 0 & 0 & 0 \\ 0 & 0 & P & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & P & 0 \\ 0 & 0 & 0 & 0 & P \end{pmatrix} \qquad \mathcal{P}^{-1} \Delta_n \mathcal{P}$$

$$\mathcal{P} = \begin{pmatrix} P & 0 & 0 & 0 & 0 & 0 \\ 0 & P & 0 & 0 & 0 & 0 \\ 0 & 0 & P & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & P & 0 \\ 0 & 0 & 0 & \dots & P & 0 \\ 0 & 0 & 0 & \dots & 0 & P \end{pmatrix} \qquad \mathcal{P}^{-1} \Delta_n \mathcal{P} = \begin{pmatrix} R & -In & 0 & 0 & 0 & 0 \\ -In & R & -In & 0 & 0 & 0 \\ 0 & -In & R & -In & 0 & 0 \\ 0 & 0 & -In & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & R & -In \\ 0 & 0 & 0 & \dots & -In & R \end{pmatrix}$$

$$abla \sim egin{pmatrix} R_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & R_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & R_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & ... & ... & ... \\ 0 & 0 & 0 & ... & R_{n-1} & 0 \\ 0 & 0 & 0 & ... & 0 & R_n
 \end{bmatrix}$$

$$\mathcal{P}^{-1}\Delta_{n}\mathcal{P} \sim \begin{pmatrix} R_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & R_{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & R_{3} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & R_{n-1} & 0 \\ 0 & 0 & 0 & \dots & 0 & R_{n} \end{pmatrix} \qquad R_{i} = \begin{pmatrix} \lambda_{i} & -1 & 0 & 0 & 0 & 0 \\ -1 & \lambda_{i} & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & \lambda_{i} & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_{i} & -1 \\ 0 & 0 & 0 & \dots & -1 & \lambda_{i} \end{pmatrix}$$

$$Det(R_i) = \prod_{k=1}^{n} 4 - 2\cos(\frac{k\pi}{n+1}) - 2\cos(\frac{i\pi}{n+1})$$
$$Det(\Delta_n) = \prod_{k=1}^{n} \prod_{i=1}^{n} 4 - 2\cos(\frac{k\pi}{n+1}) - 2\cos(\frac{i\pi}{n+1})$$

Les phénomènes qui relèvent de la criticalité autoorganisée sont caractérisés par des lois puissance

Exemple : Loi de Gutenberg Richter pour les séismes log(N(m = M)) = a - bM

Pour une taille d'avalanche n (nombre d'éboulement jusqu'à stabilisation) f(n) la fréquence d'apparition

$$f(n) = \frac{K}{n^s}$$

Fréquence d'apparition en fonction de la taille des avalanches

En grille infinie

 5×10^5 grains

10⁹ grains

Sur fond de 1 5×10^5 grains

Sur fond de 2 5×10^5 grains

Conjecture sur D(n)

On note D(n) le diamètre du cercle obtenu en ajoutant n grains au centre et en laissant stabiliser.

Conjecture : D(n) = $\frac{3\sqrt{n}}{4}$

