

MUEnsemble: Multi-ratio Undersampling-based Ensemble Framework for Imbalanced Data

Takahiro Komamizu Nagoya University Japan

This slide is downloadable from http://taka-coma.pro/pdfs/DEXA2021.pdf

Class Imbalance is Universal Phenomenon

Others

 clinical domain [5], economic domain [25], agricultural domain [28], software engineering domain [26], computer network domain [11], etc.

Classifiers suffer from Class Imbalance

- Classifiers tend to prefer majority class
 - Choosing majority (say negative) class has more chance to increase accuracy score, beacuse $\#TN \gg \#TP$
 - $accuracy = \frac{\#TP + \#TN}{\#TP + \#TN + \#FP + \#FN}$
 - Consider 1 positive instance and 99 negative instances
 - All negative: accuracy = 99%
 - For classifiers, it looks (almost) optimal.
- In reality, minority class is more important.
 - What if your spam filter regards all mail as non-spam?
 - What if your fraud detector rageds all as normal action?

Two Major Approaches for Class Imbalance

- Cost-sensitive learning approach
 - Desing cost function that gives higher penalty when classifiers fail to correctly classify the minority classes.
 - Depending on classification methods.
- Data-level approach
 - Add or remove data points so that instances of classes are balanced.
 - Adding: Oversampling / Synthetic oversampling (e.g., SMOTE, SWIM)
 - Removing: Undersampling (US)
 - NOT depending on classification methods.

EasyEnsemble (EE)^[10]: ensemble multi samples

Simple undersampling wastes major part of samples.

• EE samples multiple times so that most of samples are used in trianing an ensemble classifier.

MUEnsemble^[8]: previous work

What about feature space?

Metric Learning (ML) e.g., LMNN [19] Learning a transformation s.t.

- samples of the same classes get closer,
- samples of the different classes get further ML also suffers from the class imbalance.
- → [18] shows US + ML improves classification performance in the class imbalance data.

MMEnsemble: ensemble multiple rates w/ ML

Overall framework is based on MUEnsemble.

Asset-based Weighting Scheme

- MUEnsemble [8] uses heuristic schemes.
- Idea: Taking classification performances of base classifiers into account
 - High weight for classifiers which can classify difficult samples
 - Easiness of sample i is measured by #classifiers (C_i) correctly classify.

$$T_i = |\{C_j \mid C_j \in C, C_j. predict(d_i) = \ell_i|\}$$

Asset-based Weighting Scheme

$$W_{asset}(r) = \frac{1}{\sum_{r \in R} W_{asset}(r)} \cdot \sum_{\substack{(d_i, \ell_i) \in D^{(val)} \\ !}} \overset{!}{\delta} (C_r.predict(d_i), \ell_i) \cdot T_i^{-k}$$

Difficulty is measured for validation set.

Research Questions in the expriment

- Q1: Does MMEnsemble outperform the state-of-the-art imbalanced classification methods of metric learning and undersampling?
- Q2: Is the combination of metric learning and multi-ratio ensemble effective?
- Q3-1: Does the asset-based weighting help improve the classification performance?
- Q3-2: and what is the effect of choice of its hyperparameter k in the asset-based weighting?
 - Refer to the paper

Datasets from OpenML / KEEL Repositories

 Selection of the datasets is same as SOTA US+ML approach (DDAE) [20].

							_		#major
	ID	Name	#records	#minor	#dim	IR		IR =	
	D1	cm1	498	49	21	9.2			#minor
	D2	kc3	458	43	39	9.7			
OponMI	D3	mw1	403	31	37	12.0			
OpenML	D4	pc1	1,109	77	21	13.4			
	D5	pc3	1,563	160	37	8.8			
	D6	m pc4	1,458	178	37	7.2	_		
KEEL	D7	yeast1-7	459	30	7	14.3	_		
	D8	abalone9-18	731	42	8	16.4			
	D9	yeast6	1,484	35	8	41.4			
	D10	abalone19	4,174	32	8	129.4	Į		
	D11	wine3-5	691	10	11	68.1			
	D12	abalone20	1,916	26	8	72.7	_		

Comparison SOTA methods

- $Gm = \sqrt{TPR \cdot TNR}$: geometric mean of true positive rate and true negative rate
- F₂: recall-weighted f-measure

		M	IL			US+	-ML		Proposed			
Data	IML [†]	†			DDAE	†		MMEnsemble				
	Rec	Gm	F_2	AUC	Rec	Gm	F_2	AUC	Rec	Gm	F_2	AUC
D1	.313	.520	.287	.589	.813	.775	.580	.776	.863	.756	.546	.819
D2	.692	.805	.652	.814	.846	.823	.625	.823	.952	.750	.534	.868
D3	.500	.635	.345	.653	.750	.815	.588	.817	.793	.772	.528	.866
D4	.852	.657	.408	.679	.963	.819	.573	.830	.944	.819	.548	.895
D5	.510	.578	.342	.582	.735	.743	.536	.744	.867	.794	.598	.854
D6	.814	.725	.574	.730	.932	.804	.676	.813	.963	.873	.748	.934
D7	.667	.716	.471	.718	.833	.841	.649	.841	.933	.808	.512	.883
D8	.600	.709	.375	.719	.700	.814	.603	.824	.886	.877	.650	.941
D9	.700	.798	.407	.805	.900	.883	.421	.883	.931	.920	.585	.976
D10	.667	.626	.037	.628	1.000	.839	.075	.852	.935	.835	.128	.876
D11	.000	.000	NA	.500	.333	.550	.156	.620	.894	.842	.188	.939
D12	.800	.802	.252	.802	1.000	.964	.556	.965	.992	.943	.451	.982

MMEnsemble achieves best in Rec and AUC. Gm and F_2 are comparable, because precision is a little sacrificed.

Is the combination of ML + MR effective?

(MR = multi-ratio ensemble)

MMEnsemble -	- MR	MMEnsemble	-M
	17111		<i>,</i> IVIL

Data	a MLEnsemble (EE + ML)					$\overline{\text{MUEnsemble (EE + MR)}}$								
	Rec	Gm	F_2	AUC	Rec	Gm	F_2	AUC	Rec	Gm	F_2	AUC		
D1	.751	.695	.475	.754	.812	.698	.484	.783	.820	.699	.483	.783		
D2	.854	.742	.518	.831	.821	.718	.490	.826	.891	.731	.509	.862		
D3	.790	.720	.461	.817	.761	.700	.439	.820	.864	.761	.506	.860		
D4	.875	.804	.533	.871	.880	.788	.509	.860	.873	.816	.548	.885		
D5	.821	.760	.554	.821	.828	.753	.546	.828	.844	.781	.581	.837		
D6	.921	.844	.707	.907	.946	.883	.764	.934	.971	.873	.747	.921		
D7	.787	.746	.444	.830	.792	.743	.438	.818	.860	.749	.444	.859		
D8	.835	.822	.537	.913	.769	.757	.440	.840	.911	.835	.531	.959		
D9	.893	.874	.438	.951	.850	.857	.427	.935	.885	.890	.508	.973		
D10	.835	.762	.101	.828	.911	.770	.096	.834	.999	.828	.112	.887		
D11	.735	.697	.144	.797	.785	.753	.178	.841	.765	.724	.160	.795		
D12	.882	.875	.330	.951	.870	.840	.248	.931	.987	.923	.363	.985		

[†]— Comparable —[†]

Almost best

MMEnsemble can take both advantages of MR and ML

Weighting Scheme Comparison

Uniform: baselins

Gauss: Best weighting in MUEnsemble[8] (for detail, refer to the paper)

Data	Unifo	rm			Gauss	5			Asset			
	Rec	Gm	F_2	AUC	Rec	Gm	F_2	AUC	Rec	Gm	F_2	AUC
D1	.893	.637	.456	.781	.820	.699	.483	.783	.863	.756	.546	.819
D2	.950	.711	.502	.818	.891	.731	.509	.862	.952	.750	.534	.868
D3	.813	.692	.435	.815	.864	.761	.506	.860	.793	.772	.528	.866
D4	.954	.788	.505	.891	.873	.816	.548	.885	.944	.819	.548	.895
D5	.923	.748	.550	.840	.844	.781	.581	.837	.867	.794	.598	.854
D6	.972	.846	.710	.925	.971	.873	.747	.921	.963	.873	.748	.934
D7	.915	.742	.432	.882	.860	.749	.444	.859	.933	.808	.512	.883
D8	.900	.817	.509	.931	.911	.835	.531	.959	.886	.877	.650	.941
D9	.910	.872	.413	.954	.885	.890	.508	.973	.931	.920	.585	.976
D10	.924	.758	.091	.837	.999	.828	.112	.887	.935	.835	.128	.876
D11	.633	.666	.152	.810	.765	.724	.160	.795	.894	.842	.188	.939
D12	.873	.858	.303	.953	.987	.923	.363	.985	.992	.943	.451	.982

Asset-based weighting performs almost best, but underperforms in Rec due to precision-recall trade-off.

Conclusion and Future Directions

Conclusion

- MMEnsemble: an ensemble framework using multi-ratio ensemble (MR) and metric learning (ML).
- Asset-based weighting scheme for multiple ratios.
- MMEnsemble outperforms SOTA methods.

Future directions

- Improvement on computational efficiency
- Class imbalance problem in deep learning models

Rate Enumeration and Weighting Scheme

- Automatic rate enumeration:
 - Possible rates differ due to various IR on datasets

- Weighting scheme: control #base classifiers on rates
 - Find well-balanced combination of rates
 - Gaussian

$$W_{gauss}(r) = \frac{1}{\sum_{r \in R} W_{gauss}(r)} \cdot \exp\left(-\frac{(r-\mu)^2}{2\sigma^2}\right)$$

• μ and σ^2 are determined by grid search.

