目录

第七	章 行列式	. 2
	基础题	. 2
	综合题	. 9
	拓展题	14
第八	章 矩 阵	15
	基础题	15
	综合题	26
	拓展题	31
第九	章 向 量	32
	基础题	32
	综合题	38
	拓展题	44
第十	章 线性方程组	45
	基础题	45
	综合题	51
	拓展题	56
第十	一章 相似矩阵	57
	基础题	57
	综合题	67
	拓展题	77
第十	二章 二次型	79
	基础题	79
	综合题	82
	拓展题	90

第七章 行列式

基础题

一、选择题

(1) 设行列式
$$D = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 3 & -2 & 2 \end{vmatrix}$$
 ,则 D 的第 4 行各元素的余子式之和

$$M_{41} + M_{42} + M_{43} + M_{44} = ().$$

- A. -28
- B. 28
- C. 14
- D. -14

(2) 设
$$\alpha_1,\alpha_2,\alpha_3,\beta_1,\beta_2$$
 均是 4 维列向量,且 4 阶行列式 $|(\alpha_1,\alpha_2,\alpha_3,\beta_1)|=a$,

$$\left|\left(\alpha_1,\alpha_2,\beta_2,\alpha_3\right)\right|=b \ \text{, } \text{则行列式 } \left|\left(\alpha_3,\alpha_2,\alpha_1,\beta_1+\beta_2\right)\right|=(\quad \).$$

- A. a+b

- B. a-b C. b-a D. -(a+b)

(3) 设 $\beta_1,\beta_2,\alpha_1,\alpha_2,\alpha_3$ 均是 4 维列向量,且 $|A|=\left|\left(\beta_1,\alpha_1,\alpha_2,\alpha_3\right)\right|=1, |B|=\left|\left(\beta_2,\alpha_1,3\alpha_2,\alpha_3\right)\right|=3$, 则 |A+B|=()

- A. 15
- B. 16
- C. 31
- D. 32

(4) 设 3 阶矩阵 $A = \left(a_{ij}\right)_{3\times 3}$ 满足 $A^{\mathrm{T}} = kA^*\left(k > 0\right)$,若 $a_{11} = a_{12} = a_{13} = c > 0$,则 c = ().

- A. $\frac{\sqrt{3}}{3k}$ B. $\frac{\sqrt{3}k^2}{3}$ C. $\sqrt{3}k^2$ D. $\frac{\sqrt{3}}{k^2}$

二、填空题

(1) 行列式
$$\begin{vmatrix} k & 0 & -1 & 1 \\ 0 & k & 1 & -1 \\ -1 & 1 & k & 0 \\ 1 & -1 & 0 & k \end{vmatrix} = \underline{\qquad}.$$

(2) 若
$$\begin{vmatrix} \lambda - a & -1 & -1 \\ -1 & \lambda - a & 1 \\ -1 & 1 & \lambda - a \end{vmatrix} = 0$$
,则 $\lambda =$ _____.

(3) 行列式
$$D_4 = \begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 3 & 1 \\ 1 & 1 & 1 & 4 \end{vmatrix} = \underline{\hspace{1cm}}.$$

$$(4) \ \ \mbox{行列式} \ \ D_4 = \begin{vmatrix} 0 & 1 & 2 & 0 \\ 1 & 0 & 0 & 2 \\ 0 & 3 & 4 & 0 \\ 3 & 0 & 0 & 4 \end{vmatrix} = \underline{\qquad} \ .$$

(5) 有牙可式
$$D_4 = \begin{vmatrix} a & -1 & 0 & 0 \\ 0 & a & -1 & 0 \\ 0 & 0 & a & -1 \\ 4 & 3 & 2 & a+1 \end{vmatrix} = \underline{\hspace{1cm}}.$$

(6) 设
$$f(x) = \begin{vmatrix} x & -2x & 1 & 2 \\ 1 & x & 1 & -1 \\ 3 & 2 & 3x & 1 \\ 1 & 1 & 1 & x \end{vmatrix}$$
 ,则 x^3 的系数为______.

(7) 设 A 是 n 阶方阵,且 $AA^{T} = E, |A| < 0$,则 $|A + E| = _____$.

(9) 设
$$A,B$$
 均为 n 阶方阵,且 $|A| = |B| = |A^{-1} + B| = 2$,则 $|A + B^{-1}| =$ _______.

(10) 设
$$|A| = 2, |B| = -2$$
 , 其中 A, B 均为 n 阶方阵, 则 $|A^{-1}B^* - A^*B^{-1}| = _______$.

(11) 设 3 阶方阵 $A = (a_1, a_2, a_3), B = (3a_1 - a_2, 3a_2 - 2a_1, 2a_3 - a_1 - 2a_2)$,且 |B| = 14,则 |A| = 14

(12) 设 $A = \left(a_{ij}\right)_{n \times n}$ 为 n 阶方阵,|A| = 1 ,且 A 的每列元素之和均为 $k\left(k \neq 0\right)$,则 A 的代数余子式 之和 $A_{l1} + A_{l2} + \cdots + A_{ln} =$ ________ .

三、解答题

(1) 计算
$$n$$
 阶行列式 $D_n = \begin{vmatrix} b & a & a & \cdots & a \\ a & b & a & \cdots & a \\ \vdots & \vdots & \vdots & & \vdots \\ a & a & a & \cdots & b \end{vmatrix}$.

(2) 证明:
$$D_n = \begin{vmatrix} x & -1 & 0 & \cdots & 0 & 0 \\ 0 & x & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & -1 \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_2 & x+a_1 \end{vmatrix} = x^n + \sum_{i=1}^n a_i x^{n-i} .$$

(3) 计算
$$n$$
 阶行列式 $D_n = \begin{vmatrix} 2 & -1 & 0 & \cdots & 0 & 0 \\ -1 & 2 & -1 & \cdots & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & -1 \\ 0 & 0 & 0 & \cdots & -1 & 2 \end{vmatrix}$

均不为 0.

综合题

一、选择题

(1) 设 A 是 3 阶可逆矩阵, A^{-1} 的特征值为 3,2,1 ,则 |A| 的代数余子式之和 $A_{11} + A_{22} + A_{33} = ().$

- A. $\frac{1}{6}$ B. $\frac{1}{3}$ C. $\frac{1}{2}$
- D. 1

(2)
$$|A| = \begin{vmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{vmatrix}$$
 的所有代数余子式 A_{ij} 之和 $\sum_{i=1}^{4} \sum_{j=1}^{4} A_{ij} = ()$.

A. 4 B. -4 C. 1

- A. 4
- B. -4

D. -1

- (3) 设 A 是 3 阶方阵, A^* 是 A 的伴随矩阵, $|A| = \frac{1}{2}$,则 $|(2A)^{-1} 2A^*| = ($).

- A. $\frac{1}{2}$ B. $-\frac{1}{2}$ C. $-\frac{1}{4}$ D. $\frac{1}{4}$

二、填空题

(1) 设
$$A,B$$
 均为 n 阶方阵, $|A|=6,|B|=1,C=\begin{pmatrix} A & 3A^* \\ \left(\frac{B}{2}\right)^{-1} & O \end{pmatrix}$,则 $|C|=$ ______.

(2) 设 A 是 $m \times n$ 矩阵, B 是 $n \times m$ 矩阵, 当 m > n 时, $|AB| = ______$.

(3) 设
$$A,B$$
 均为 3 阶方阵,满足 $A^2B-A-B=E$,若 $A=\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -2 & 0 & 1 \end{pmatrix}$,则 $|B|=$

.

(4) 设 A 是 3 阶方阵,且满足 |A-E|=|A+2E|=|2A+3E|=0,则 $|2A^*-3E|=$ _______.

(5) 设 A 是 3 阶方阵, $\alpha_1,\alpha_2,\alpha_3$ 线性无关,且 $A\alpha_1=\alpha_1+\alpha_2,\ A\alpha_2=\alpha_2+\alpha_3,\ A\alpha_3=\alpha_3+\alpha_1$,则 |A|=_______ .

(6) 设 $\alpha, \beta, \alpha_1, \alpha_2, \alpha_3$ 均为 4 维列向量, $A = (\alpha, \alpha_1, \alpha_2, \alpha_3), B = (\beta, \alpha_1, \alpha_2, \alpha_3)$,且 |A| = 2, |B| = 1,则 $|A^{-1} + B^{-1}| =$ _______.

三、解答题

(1) 计算
$$n$$
 阶行列式 $D_n = \begin{vmatrix} b - a_1^2 & -a_1 a_2 & \cdots & -a_1 a_n \\ -a_2 a_1 & b - a_2^2 & \cdots & -a_2 a_n \\ \vdots & \vdots & & \vdots \\ -a_n a_1 & -a_n a_2 & \cdots & b - a_n^2 \end{vmatrix}$.

(2) 计算
$$n$$
 阶行列式 $D_n = \begin{vmatrix} a+b_1 & a & \cdots & a \\ a & a+b_2 & \cdots & a \\ \vdots & \vdots & & \vdots \\ a & a & \cdots & a+b_n \end{vmatrix} (b_i \neq 0)$.

(3) 计算
$$n$$
 阶行列式 $D_n = \begin{vmatrix} a_0 & -1 & 0 & \cdots & 0 & 0 \\ a_1 & x & -1 & \cdots & 0 & 0 \\ a_2 & 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ a_{n-2} & 0 & 0 & \cdots & x & -1 \\ a_{n-1} & 0 & 0 & \cdots & 0 & x \end{vmatrix}$

$$(4) \text{ } D_n = \begin{vmatrix} a & b & 0 & \cdots & 0 & 0 \\ c & a & b & \cdots & 0 & 0 \\ 0 & c & a & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a & b \\ 0 & 0 & 0 & \cdots & c & a \end{vmatrix} \left(a^2 - 4bc \ge 0 \right) \ .$$

拓展题

解答题

(1) 设矩阵 A 为 3 阶非零实矩阵, $A^{\rm T}=A^*$,且 $\left|E+A\right|=\left|E-A\right|=0$,计算行列式 $\left|A^2-A-3E\right|$.

- (2) 设 A 为 3 阶非零实矩阵,且 $A^{T} = kA^{*}$ (k 为非零常数).
- (I) 证明: A 是可逆矩阵;
- (II) 求行列式 $\left|A^{-1}\right| + \left|\left(A^*\right)^{-1}\right|$.

(3) 设 3 阶矩阵 A 的特征值为 1,-1,2 , 计算行列式 $|A|\cdot\begin{pmatrix}O&A^*\\-2E&A\end{pmatrix}$.

第八章 矩 阵

基础题

一、选择题

- A. AQP
- B. *PAQ*
- C. QAP

(2) 设 A 是 $n(n \ge 3)$ 阶可逆方阵,下列结论正确的是 ().

①
$$(A^*)^{-1} = (A^{-1})^*$$
;

②
$$(kA)^* = k^{n-1}A^*(k \neq 0)$$
 ;

(3) 设
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 , 则行列式 $\left| \left[\left(E - A \right)^* \right]^{-1} \right| = ()$.

- A. $\frac{1}{4}$ B. $-\frac{1}{4}$ C. $\frac{1}{16}$ D. $-\frac{1}{16}$

(4) 设矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 2 & k & 3 \\ k-1 & 5 & 1 \end{pmatrix}$$
 与 $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 2 & 3 & k \\ 3 & 5 & 1 \end{pmatrix}$ 等价,则 ().

- A. k = 1
- B. $k \neq 1$ C. k = -1 D. $k \neq -1$

二、填空题

(1) 读
$$\alpha = (1,2,3)^{\mathrm{T}}, \beta = (1,\frac{1}{2},\frac{1}{3})^{\mathrm{T}}, A = \alpha\beta^{\mathrm{T}}$$
,则 $A^n = \underline{}$.

(2) 设
$$\alpha = (2,-1,3)^{\mathrm{T}}, \beta = (1,2,0)^{\mathrm{T}}, A = \alpha \beta^{\mathrm{T}}, E$$
 是 3 阶单位矩阵,则 $(A+E)^n =$ ______.

(3) 设
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
,则 $A^n =$ _____.

(4) 设
$$B = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, A = P^{-1}BP$$
,则 $A^4 - 2B^2 = \underline{\hspace{1cm}}$.

(5) 设 A 是 n 阶方阵,且 |A|=2 ,将 A 的第 i 行与第 j 行互换得到 B ,则行列式 $\left|B^{-1}B^*B^{\mathrm{T}}\right| = \underline{\hspace{1cm}}.$

(6)
$$\[\text{6} \] \[\text{6} \] A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \end{bmatrix} \]$$
, $\[\text{M} \] \mathbf{r}(A) = \underline{\qquad} \]$.

(7) 若
$$A^n = O, n$$
 为正整数,则 $(E - A)^{-1} =$ _____.

(8) 若
$$A^n = E, n$$
 为正整数,则 $(A^*)^n = _____.$

(9) 设方阵 A 满足 $A^2-3A-2E=O$,则 $A^{-1}=$ ______.

(10) 设方阵 A 满足 $A^2 = A$,则 $(A + E)^{-1} =$ ______ .

(11) 设 A 是 n 阶可逆矩阵,将 A 的第 i 行和第 j 行交换得 B ,则行列式 $\left|AB^{-1}\right|=$

(12) 设存在 3 阶矩阵
$$A$$
 ,对任意的 x,y,z 有 $A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ x \\ y \end{pmatrix}$,则 $A = \underline{\qquad}$.

(13) 设
$$\alpha = (k, 0, \dots, 0, k)^{\mathrm{T}} (k \neq 0)$$
 ,且 $A = E - \alpha \alpha^{\mathrm{T}}, A^{-1} = E + \frac{1}{k} \alpha \alpha^{\mathrm{T}}$,则 $k = \underline{\hspace{1cm}}$.

三、解答题

(1) 设
$$A = \begin{pmatrix} 2 & -1 & 3 \\ a & 1 & b \\ 4 & c & 6 \end{pmatrix}$$
 ,且 $BA = O, B$ 是 3 阶方阵, $\mathbf{r}(B) > 1$,求 A^n .

(2) 设 α,β 是 n 维列向量,且 $\alpha^{\rm T}\beta=2$,证明: $A=E+\alpha\beta^{\rm T}$ 可逆,并求 A^{-1} .

(4) 设
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
,证明: $A^2 = 5A - 4E$,并求 A^{-1} .

(5) 设方阵 A,B 满足 $|B| \neq 0, (A-E)^{-1} = (B-E)^{T}$,求 A^{-1} (用 B 表示).

(6)
$$\overset{\text{Th}}{\boxtimes} A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 0 & 4 & 5 \end{pmatrix}, B = (E + A)^{-1} (E - A) , \overset{\text{Th}}{\boxtimes} [(E + B)^2]^{-1} .$$

(7) 已知方阵 A, B, (A+B) 均可逆, 求 $(A^{-1}+B^{-1})^{-1}$.

(8) 设 AB = BA, A 可逆,证明: $A^{-1}B = BA^{-1}$.

(9) 设 A,B 都是 n 阶方阵,且 $A^2 = A,B^2 = B,(A+B)^2 = A+B$,证明: AB = BA.

(10) 设 A 为 2n+1 阶正交矩阵,且 |A|=1 ,证明: A-E 不可逆.

(11) 设 n 阶方阵 A,B ,满足 $A^2=E,B^2=E$,且 |A|+|B|=0 ,证明: A+B 不可逆.

(12) 设
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}, AB + E = A^2 + B , 求 B .$$

(13)
$$\overset{\text{th}}{\nabla} A = \begin{pmatrix} 0 & 2 \\ 1 & 2 \end{pmatrix}$$
, $\overset{\text{IL}}{\Box} (A^{\mathsf{T}}B^{-1})^{\mathsf{T}} - A(B^{\mathsf{T}}A)^{-1} = (E - B^{-1})^{\mathsf{T}}$, $\overset{\text{th}}{\nabla} B$.

(14)
$$\begin{tabular}{lll} & & & \\$$

(15) 设
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & -4 & 3 \\ 2 & 0 & -1 \\ 1 & -2 & 0 \end{pmatrix}$$
,满足 $AXB = C$,求矩阵 X .

(16) 设矩阵
$$A$$
 满足 $A\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} A$, 求矩阵 A .

综合题

一、选择题

- (1) 设 $A = \begin{pmatrix} 1 & 2 & k \\ 1 & k+1 & 1 \\ k & 2 & 1 \end{pmatrix}, B$ 是 3 阶非零矩阵, 且 AB = O , 则 ().
- A. $\stackrel{\omega}{=}$ k=1 \bowtie , r(B)=1
- B. $\stackrel{\text{\tiny Δ}}{=}$ k = -3 Id, r(B) = 1
- C. $\stackrel{\text{def}}{=} k = 1$ 时, r(B) = 2
- D. $\stackrel{\,\,\,\,\,\,\,\,\,\,\,}{=}$ k=-3 时, r(B)=2

(2) 设 $A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix} (a,b均不为20)$,且 $\mathbf{r}(A^*) = 1$,则必有().

A.
$$a = b$$

B.
$$a = b$$
 $\vec{\boxtimes}$ $a + 2b \neq 0$

C.
$$a + 2b = 0$$

D.
$$a \neq b$$
 $\exists a+2b \neq 0$

(3) 设
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, 且 P^n A P^m = A,则正整数 n, m 可以为().$$

A.
$$n = m = 4$$

B.
$$n = 5, m = 4$$

C.
$$n = 4, m = 5$$

D.
$$n = m = 5$$

(4) 设 A,B 均为 n 阶矩阵, E 为 n 阶单位矩阵,矩阵 $\begin{pmatrix} O & A \\ B & E \end{pmatrix}$, $\begin{pmatrix} A & B \\ O & E \end{pmatrix}$, $\begin{pmatrix} A & AB \\ E & B \end{pmatrix}$ 的秩 分别为 r_1, r_2, r_3 , 则正确的是 ().

A. $r_2 \ge r_1 \ge r_3$ B. $r_3 \ge r_1 = r_2$ C. $r_1 \ge r_2 \ge r_3$ D. $r_3 \ge r_2 \ge r_1$

二、填空题

(1) 设 A,B 是 n 阶方阵, $|A|=2,|B|=3,A^*,B^*$ 分别是 A,B 的伴随矩阵, $C=\begin{pmatrix} A & O \\ O & B \end{pmatrix}$, 则 C 的 伴随矩阵 $C^* =$ _____.

(2) 设 A 是 n 阶可逆矩阵, A 的每行元素之和均为 k ,则 A^{-1} 的每行元素之和均为

(4)
$$\mathcal{U} \quad A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
, $\mathcal{U} \quad (E+A)^{-1} = \underline{\qquad}$.

三、解答题

(1)
$$\overset{\circ}{\vee}$$
 $A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 3 \\ 3 & 2 & 1 & 0 \end{pmatrix}$, $\overset{\circ}{\times}$ $A^n (n \ge 1)$.

(3) 设
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
,证明: $A^n = A^{n-2} + A^2 - E(n \ge 3)$,并计算 A^{100} .

(4) 设
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & -2 & -4 \\ -1 & -1 & -1 \end{pmatrix}$$
,证明: A 可逆,并将 A 表示为初等矩阵的乘积.

(5) 设
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
,且 $A^*BA = 2BA - 8E$,求 B .

(6) 设矩阵
$$X$$
 满足
$$\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & -1 \\ -1 & -1 & 2 \end{pmatrix} X = \begin{pmatrix} 0 & 1 \\ 2 & 0 \\ -2 & 1 \end{pmatrix}, 求 X .$$

(7) 设分块矩阵 $P = \begin{pmatrix} A & C \\ O & B \end{pmatrix}$ 为正交矩阵, A,B 分别是 m 阶和 n 阶方阵,证明: A 与 B 是正交矩阵.

拓展题

解答题

(1) 设
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
,若矩阵 X 满足 $AX + 2B = BA + 2X$,求 X^2 .

(2) 设列向量
$$\alpha = (1,2,1)^{\mathrm{T}}$$
, $\beta = \left(1,\frac{1}{2},0\right)^{\mathrm{T}}$, $\gamma = (0,0,8)^{\mathrm{T}}$, $A = \alpha\beta^{\mathrm{T}}$, $B = \beta^{\mathrm{T}}\alpha$,且 $2B^2A^2x = A^4x + B^4x + \gamma$,求 x .

第九章 向 量

基础题

一、选择题

- (1) 若 $\alpha_1,\alpha_2,\alpha_3$ 线性相关, $\alpha_2,\alpha_3,\alpha_4$ 线性无关,则().
- A. α_1 可由 α_2, α_3 线性表示
- B. α_4 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示
- C. α_4 可由 α_1, α_3 线性表示
- D. α_4 可由 α_1, α_2 线性表示

- (2) 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关等价于 ().
- A. 存在一组不全为 0 的数, 使其线性组合不为 0
- B. 存在一个向量不能由其他向量线性表示
- C. 任何一个向量均不能由其他向量线性表示
- D. 其中任意两个向量线性无关

- (3) 设向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性无关,则下列向量组线性无关的是().
- A. $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$
- B. $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 \alpha_1$
- C. $\alpha_1 + \alpha_2, \alpha_2 \alpha_3, \alpha_3 + \alpha_4, \alpha_4 \alpha_1$
- D. $\alpha_1 \alpha_2, \alpha_2 \alpha_3, \alpha_3 \alpha_4, \alpha_4 \alpha_1$

- (4) 设向量组(I) $\beta_1,\beta_2,\cdots,\beta_t$,(II) $\alpha_1,\alpha_2,\cdots,\alpha_s$,则下列命题
- ① 若向量组(I)可由(II)线性表示,且 s < t,则必有(I)线性相关;
- ② 若向量组(II)可由(I)线性表示,且 s < t,则必有(I)线性相关;
- ③ 若向量组(I)可由(II)线性表示,且(I)线性无关,则必有 $s \ge t$;
- ④ 若向量组(II)可由(I)线性表示,且(I)线性无关,则必有 $s \ge t$,正确的是().
- A. (1)(4)
- B. (1)(3)
- C. (2)(3)
- D. (2)(4)

(5) 设 $a_1 = (a_1, a_2, a_3)^T$, $a_2 = (b_1, b_2, b_3)^T$, $a_3 = (c_1, c_2, c_3)^T$, 其中 $a_i^2 + b_i^2 \neq 0$ (i = 1, 2, 3),则三条 直线 $a_i x + b_i y + c_i = 0$ (i = 1, 2, 3) 恰好仅交于一点的充分必要条件是().

A.
$$r(\alpha_1, \alpha_2, \alpha_3) = 3$$

B.
$$r(\alpha_1, \alpha_2, \alpha_3) = 1$$

C.
$$r(\alpha_1, \alpha_2, \alpha_3) = r(\alpha_1, \alpha_2)$$

D.
$$r(\alpha_1, \alpha_2, \alpha_3) = r(\alpha_1, \alpha_2) = 2$$

- (6) 设 $\alpha_1,\alpha_2,\alpha_3$ 均为 3 维向量,则对任意常数 k 和 μ ,向量组 $\alpha_1+k\alpha_3,\alpha_2+\mu\alpha_3$ 线性无关的().
- A. 充分必要条件

B. 充分非必要条件

C. 必要非充分条件

D. 既非充分又非必要条件

(7) 设
$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ c_1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ c_2 \end{pmatrix}, \alpha_3 = \begin{pmatrix} -1 \\ 2 \\ 3 \\ c_3 \end{pmatrix}, \alpha_4 = \begin{pmatrix} -2 \\ 1 \\ 5 \\ c_4 \end{pmatrix}$$
,其中 c_1, c_2, c_3, c_4 为任意常数,则().

- A. $\alpha_1,\alpha_2,\alpha_3$ 线性无关
- B. $\alpha_1, \alpha_2, \alpha_3$ 线性相关
- C. $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关
- D. α₁,α₂,α₃,α₄ 线性相关

- (8) 设向量组 $\alpha_1, \alpha_2, \alpha_1 2\alpha_2 + \alpha_3$ 线性无关,则下列向量组线性无关的是 ().
- A. $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 \alpha_1$

- B. $\alpha_1, \alpha_2, \alpha_3$
- C. $\alpha_1 \alpha_2, \alpha_2 \alpha_3, \alpha_1 2\alpha_2 + \alpha_3$ D. $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + \alpha_3$

二、填空题

(1) 已知向量 $\alpha_1 = (1,2,3)^T$, $\alpha_2 = (2,-1,1)^T$, $\alpha_3 = (-2,k,4)^T$ 线性相关,则 k = 1.

(2) 设向量组(I) $\alpha_1 = (1,1,2)^T$, $\alpha_2 = (2,3,3)^T$;(II) $\beta_1 = (2,3,5)^T$, $\beta_2 = (-1,0,1)^T$,则既可由(I) 线性表示,又可由(II)线性表示的非零列向量为_____.

三、解答题

(1) 设向量组 $\alpha_1 = (0,4,2)^T$, $\alpha_2 = (1,1,0)^T$, $\alpha_3 = (-2,4,3)^T$, $\alpha_4 = (-1,1,1)^T$,求 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的 一个极大线性无关组,并将其余向量用极大线性无关组线性表示.

(2) 设 $\alpha_1 = (1,0,2,3)^T$, $\alpha_2 = (1,1,3,5)^T$, $\alpha_3 = (1,-1,a,1)^T$, $\beta = (1,b,4,7)^T$, 问: 当 a,b 为何值 时, β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示? a,b 为何值时, β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示? 写出表达式.

(3) 设向量组 $\alpha_1 = (1,2,-3)^T$, $\alpha_2 = (3,0,1)^T$, $\alpha_3 = (9,6,-7)^T$ 与向量组 $\beta_1 = (0,1,-1)^T$, $\beta_2 = (k,2,1)^T$, $\beta_3 = (\mu,1,0)^T$ 有相同的秩, 且 β_3 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示, 求 k,μ 的值.

(4) 设有向量组(I) $\alpha_1 = (2,3,5)^T$, $\alpha_2 = (0,1,2)^T$, $\alpha_3 = (1,0,0)^T$,(II) $\beta_1 = (3,1,2)^T$, $\beta_2 = (1,1,1)^T$, $\beta_3 = (1,1,-1)^T$, $\beta_4 = (2,1,0)^T$,证明: 向量组(I) 与(II)等价.

(5) 设向量组 $\alpha_1,\alpha_2,\cdots,\alpha_k$ 线性无关,且可由向量组 $\beta_1,\beta_2,\cdots,\beta_k$ 线性表示,证明:这两个向量组 等价.

(6) 设向量组(I) $\alpha_1,\alpha_2,\cdots,\alpha_s,$ (II) $\beta_1,\beta_2,\cdots,\beta_s,$ r(I)=r(II),且向量组(II)可由(II)线性表示. 证明: 向量组(I)与(II)等价.

(7) 设向量组(I) $\alpha_1,\alpha_2,\alpha_3$,(II) $\alpha_1,\alpha_2,\alpha_3,\alpha_4$,(III) $\alpha_1,\alpha_2,\alpha_3,\alpha_5$,且 r(I)=r(II)=3,r(III)=4,证 明向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_5-\alpha_4$ 的秩为 4.

(8) 设 A 是 3 阶方阵, α_1,α_2 为 A 的分别属于特征值 -2,1 的特征向量,且 $A\alpha_3=\alpha_2+\alpha_3$,证明: α_1,α_2 , α_3 线性无关.

(9) 设矩阵 A_{5x4} 的秩为 $2,\alpha_1 = (1,1,2,3)^T,\alpha_2 = (-1,1,4,-1)^T,\alpha_3 = (5,-1,-8,9)^T$ 是方程组 Ax = 0 的解向量,求 Ax = 0 的基础解系,并将其正交单位化.

综合题

一、选择题

- (1) 设 A 是 $m \times n$ 矩阵, $\alpha_1, \alpha_2, \cdots, \alpha_r$ 是 n 维列向量,向量组(I) $\alpha_1, \alpha_2, \cdots, \alpha_s$,(II) $A\alpha_1, A\alpha_2, \cdots, A\alpha_r$,则正确的是().
- A. 若(I)线性无关,则(II)线性无关 B. 若(II)线性相关,则(I)线性相关
- C. 若(II)线性无关,则(I)线性无关 D. (I)与(II)具有相同的线性相关性

- (2) 设三维列向量 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, $\alpha_2, \alpha_3, \alpha_4$ 线性无关,记 $(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3) A_{3\times 3}$, $(\gamma_1, \gamma_2, \gamma_3) = (\alpha_2, \alpha_3, \alpha_4) B_{3\times 3}$,则().
- A. 存在矩阵 $A_{3\times3}$,使得 β_1,β_2,β_3 线性无关
- B. 不存在矩阵 $A_{3\times3}$,使得 β_1,β_2,β_3 线性相关
- C. 存在矩阵 $B_{3\times3}$, 使得 $\gamma_1,\gamma_2,\gamma_3$ 线性无关
- D. 不存在矩阵 $B_{3\times3}$,使得 $\gamma_1,\gamma_2,\gamma_3$ 线性相关

(3)	设向量	$\alpha_1, \alpha_2, \alpha_3$	满足	$k_1\alpha_1 + k_2\alpha_2 + k_3$	$\alpha_3 = 0, k_1, k_2, k_3$	为常数,且	$k_1k_2 \neq 0$,则()	
-----	-----	--------------------------------	----	-----------------------------------	-------------------------------	-------	-----------------	-----	---	--

A. α_1 与 α_3 等价

B. α_1, α_2 与 α_1, α_3 等价

C. a_1,a_2 与 a_2,a_3 等价

D. α_1, α_3 与 α_2, α_3 等价

- (4) 设 n 维向量组(I) $\alpha_1,\alpha_2,\cdots,\alpha_k$ (k < n) 线性无关,则 n 维向量组(II) $\beta_1,\beta_2,\cdots,\beta_k$ 也线性无关的充分必要条件是().
- A. $\beta_1, \beta_2, \dots, \beta_k$ 可由 $\alpha_1, \alpha_2, \dots, \alpha_k$ 线性表示
- B. a_1, a_2, \cdots, a_k 可由 $\beta_1, \beta_2, \cdots, \beta_k$ 线性表示
- C. 向量组(I)与向量组(II)等价
- D. 矩阵 $(\alpha_1, \alpha_2, \dots, \alpha_k)$ 与 $(\beta_1, \beta_2, \dots, \beta_k)$ 等价

- (5) 设 4 维列向量 $\alpha_1,\alpha_2,\alpha_3$ 线性无关, β_i (i = 1,2,3,4) 为非零列向量,且 β_i 与 $\alpha_1,\alpha_2,\alpha_3$ 均正交,则 $\mathbf{r}(\beta_1,\beta_2,\beta_3,\beta_4)=$ ().
- A. 1
- B. 2
- C. 3
- D. 4

- (6) 设 A,B 均是 $m \times n$ 矩阵,则 Ax = 0 与 Bx = 0 同解的充分必要条件是().
- A. A,B 的列向量组等价

B. A,B 的行向量组等价

C. A,B 是等价矩阵

D. $A^{\mathsf{T}}x=0$ 与 $B^{\mathsf{T}}x=0$ 同解

二、填空题

设向量组 $\alpha_1 = (1, k+2, 3)^T$, $\alpha_2 = (2, -1, 1)^T$, $\alpha_3 = (k-1, 1, -1)^T$ 线性相关, 但任意两个向量线 性无关, 则 k =_______ .

三、解答题

- (I) 向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的一个极大线性无关组;
- (II) 可逆矩阵 $P_{3\times3}, Q_{4\times4}$,使得 PAQ=B .

(2) 设向量组 $\alpha_1 = (1,0,1)^T$, $\alpha_2 = (0,1,1)^T$, $\alpha_3 = (1,3,5)^T$ 不能由向量组 $\beta_1 = (1,1,1)^T$, $\beta_2 = (1,2,3)^T$, $\beta_3 = (3,4,a)^T$ 线性表示, 求 a 的值, 并将 β_1,β_2,β_3 用 $\alpha_1,\alpha_2,\alpha_3$ 线性表示.

- (3) 设 $A = (\alpha_1, \alpha_2, \alpha_3)$, 其中 $\alpha_1 = (1,0,1)^T$, $\alpha_2 = (1,1,2)^T$, $\alpha_3 = (1,2,\alpha)^T$, $B = (\beta_1, \beta_2)$, 其中 $\beta_1 = (-1,2,1)^T$, $\beta_2 = (1,0,b)^T$. 问:
- (I) 当 a,b 为何值时, β_1,β_2 不能同时由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示?
- (II) 当 a,b 为何值时, β_1,β_2 可同时由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示? 并求表达式.

(4) 设 n 维向量组 $\alpha_1, \alpha_2, \dots, \alpha_k (k < n)$ 线性无关,且 $\alpha_{k+1} = \lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \dots + \lambda_k \alpha_k, \lambda_i \neq 0, i = 1$, $2, \dots, k$, 证明: $\alpha_1, \alpha_2, \dots, \alpha_k, \alpha_{k+1}$ 中任何 k 个向量都线性无关.

(5) 设矩阵 $A=(\alpha_1,\alpha_2,\cdots,\alpha_m),\alpha_i$ 为 n 维列向量, $i=1,2,\cdots,m$,且 $m\leq n$,证明: $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关的充分必要条件是 $\left|A^{\mathrm{T}}A\right|\neq 0$.

- (6) 设 A 是 3 阶方阵, A 的特征值为 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$,对应的特征向量分别为 $\alpha_1 = \begin{pmatrix} 1, 1, 1 \end{pmatrix}^T, \ \alpha_2 = \begin{pmatrix} 1, 2, 4 \end{pmatrix}^T, \alpha_3 = \begin{pmatrix} 1, 3, 9 \end{pmatrix}^T$,另一向量 $\beta = \begin{pmatrix} 1, 1, 3 \end{pmatrix}^T$.
- (I) 将 β 用 $\alpha_1,\alpha_2,\alpha_3$ 线性表示;
- (II) 求 $A^n\beta$ (n 为正整数).

- (7) 设 A 是 $m \times n$ 矩阵, α_1 与 α_2 是非齐次线性方程组 Ax = b 的两个不同解.
- (I) 证明: $\alpha_1, \alpha_1 \alpha_2$ 线性无关;
- (II) 若 β 是 Ax=0 的一个非零解向量, r(A)=n-1 ,证明: β,α_1,α_2 线性相关.

(8) 设 $\alpha_1,\alpha_2,\alpha_3$ 是方程组 $\begin{cases} x_1-3x_2+x_3=2,\\ 2x_1+x_2-x_3=-1, \text{ 的解向量,证明: } \alpha_1-\alpha_2,\alpha_1-\alpha_3 \text{ 线性相关.} \\ 7x_1-2x_3=-1 \end{cases}$

(9) 设 A 是 3 阶矩阵, α_i (i = 1,2,3) 是 3 维非零列向量,且 $A\alpha_i = i\alpha_i$ (i = 1,2,3), $\alpha = \alpha_1 + \alpha_2 + \alpha_3$,证明: $\alpha, A\alpha, A^2\alpha$ 线性无关.

拓展题

解答题

- (1) 设向量组 $\alpha_1 = (1,1,1,2)^T$, $\alpha_2 = (3,a+4,2a+5,a+7)^T$, $\alpha_3 = (4,6,8,10)^T$, $\alpha_4 = (2,3,2a+3,5)^T$, $\alpha = (0,1,3,b)^T$.
- (I) 求向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的秩及其一个极大线性无关组;
- (II) 若 α 不能由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性表示,求 a,b 的取值.

- (2) 设 $A = (\alpha_1, \alpha_2, \alpha_3)$, $\alpha_1 = (0,3,c)^T$, $\alpha_2 = (a,2,1)^T$, $\alpha_3 = (b,1,0)^T$, $B = (\beta_1, \beta_2, \beta_3)$, $\beta_1 = (1,2,-3)^T$, $\beta_2 = (3,0,1)^T$, $\beta_3 = (9,6,-7)^T$, 且 r(A) = r(B), α_2 , α_3 可由 β_1 , β_2 , β_3 线性表示.
- (I) 求 a,b,c 的值;
- (II) 若 BX = A ,求矩阵 X .

第十章 线性方程组

基础题

一、选择题

- (1) 已知 η_1,η_2 是非齐次线性方程组 Ax=b 的两个不同解, ξ_1,ξ_2 是对应齐次线性方程组 Ax = 0 的 基础解系, k_1, k_2 为任意常数,则 Ax = b 的通解为 ().
- $\text{A.} \quad k_1 \xi_1 + k_2 \left(\xi_1 + \xi_2 \right) + \frac{\eta_1 \eta_2}{2} \\ \text{B.} \quad k_1 \xi_1 + k_2 \left(\xi_1 \xi_2 \right) + \frac{\eta_1 + \eta_2}{2}$
- C. $k_1 \xi_1 + k_2 (\eta_1 + \eta_2) + \frac{\eta_1 \eta_2}{2}$ D. $k_1 \xi_1 + k_2 (\eta_1 \eta_2) + \frac{\eta_1 + \eta_2}{2}$

- (2) 设 A 是 n 阶矩阵,对方程组 (I) Ax = 0 和 (II) $A^{T}Ax = 0$,必有 ().
- A. (II) 的解是(I)的解,(I)的解也是(II)的解
- B. (II) 的解是(I) 的解, 但(I) 的解不是(II) 的解
- C. (I) 的解不是(II) 的解,(II) 的解也不是(I) 的解
- D. (I) 的解是 (II) 的解, 但 (II) 的解不是 (I) 的解

- (3) 设 A 是 n 阶矩阵, 若对任意的 n 维列向量 α , 有 $A^*\alpha=0$, 则 Ax=0 的基础解系 所含解向量的个数 k 满足 ().
- A. k = 0
- B. k = 1
- C. k > 1
- D. k = n

(4) 设方程组
$$\begin{cases} \lambda x_1 + x_2 + \lambda^2 x_3 = 0, \\ x_1 + \lambda x_2 + x_3 = 0, \end{cases}$$
 的系数矩阵为 A , 若存在 3 阶矩阵 $B \neq O$, 使得 $x_1 + x_2 + \lambda x_3 = 0$

AB = O ,则必有().

A.
$$\lambda = -2$$
 \mathbb{H} $|B| = 0$

B.
$$\lambda = -2$$
 \mathbb{H} $|B| \neq 0$

C.
$$\lambda = 1$$
 $\exists B = 0$

D.
$$\lambda = 1$$
 $\exists B \neq 0$

(5) 设方程组
$$\begin{cases} 2x_1 - 3x_2 + x_3 = b_1, \\ x_1 - 2x_2 + x_3 = b_2, & 有解, 则(). \\ 2x_1 + kx_2 + 3x_3 = b_3 \end{cases}$$

- A. 当 $k \neq -5$ 时, $\left(b_1, b_2, b_3\right)^{\mathrm{T}}$ 为任意非零列向量
- B. 当 k = -5 时, $(b_1, b_2, b_3)^{T}$ 为任意列向量
- C. $\stackrel{\text{def}}{=} k = -5$ Hz, $b_1 + b_3 = 4b_2$
- D. $\stackrel{\text{def}}{=} k \neq -5$ $\stackrel{\text{lef}}{=} b_1 + b_3 = 4b_2$

- (6) 设矩阵 $A_{m \times n}, B_{n \times m}$,则().
- A. 当 m > n 时, AB 必可逆
- B. 当 m > n 时,必有 |AB| = 0
- C. 当 n > m 时,必有 r(AB) < m
- D. 当 n > m 时,ABx = 0 必有唯一解

二、填空题

(1) 设方程组
$$\begin{cases} x_1 + 2x_2 + x_3 = 3, \\ 2x_1 + (k+4)x_2 - 5x_3 = 6, , 有无穷多解,则 k = _____. \\ -x_1 - 2x_2 + kx_3 = -3 \end{cases}$$

(2) 设
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & a+2 \\ 1 & a & -2 \end{pmatrix}, \beta_1 = \begin{pmatrix} 1,3,4 \end{pmatrix}^T, \beta_2 = \begin{pmatrix} 0,1,2 \end{pmatrix}^T$$
,若方程组 $AX = \beta_1$ 有解,且 $AX = \beta_2$

无解,则 $a = ______$.

三、解答题

(1) 求方程组
$$\begin{cases} 2x_1 - x_2 + 4x_3 - 3x_4 = -4, \\ x_1 + x_3 - x_4 = -3, \\ 3x_1 + x_2 + x_3 = 1, \\ 7x_1 + 7x_3 - 3x_4 = 3 \end{cases}$$
 的通解.

(2) 设方程组
$$\begin{cases} 2x_1 + \lambda x_2 - x_3 = 1, \\ \lambda x_1 - x_2 + x_3 = 2, \\ 4x_1 + 5x_2 - 5x_3 = -1, \end{cases}$$
 问: 当 λ 为何值时,方程组无解、有唯一解、有无穷多

解? 当有无穷多解时, 求其通解.

- (3) 设有方程组 (1) $\begin{cases} x_1 + x_2 = 0, \\ x_2 x_4 = 0 \end{cases}$ 与 (2) $\begin{cases} x_1 x_2 + x_3 = 0, \\ x_2 x_3 + x_4 = 0. \end{cases}$ 求:
- (I) 方程组(1)与(2)的基础解系;
- (II) 方程组(1)与(2)的非零公共解.

- (4) 设有方程组(I) $\begin{cases} x_1 + x_2 = 0, \\ x_2 x_4 = 0, \end{cases}$ (II) Ax = 0 , 其中(II)的基础解系为 $\alpha_1 = \left(-1, 2, 2, 1\right)^T$,
- $\alpha_2 = (0,-1,-1,0)^T$,求方程组(I)与(II)的非零公共解.

- (5) 设有方程组: (1) $\begin{cases} x_1 x_4 = -2, \\ x_2 x_4 = -4, \\ -4x_2 x_3 + 6x_4 = 21, \end{cases}$ (2) $\begin{cases} x_1 + ax_2 x_3 x_4 = -5, \\ bx_2 x_3 2x_4 = -11, \\ x_3 2x_4 = -c + 1. \end{cases}$
- (I) 求方程组(1)的通解;
- (II) 当 a,b,c 为何值时,方程组(1)与(2)同解?

(6) 设 n 阶矩阵 A 满足 $|A|=0, A_{ij}$ 为 |A| 的元素 a_{ij} 对应的代数余子式,且 $A_{11}\neq 0$,求 方程组 $A^*x=0$ 的基础解系和通解.

(7) 已知 4×3 矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$,非齐次线性方程组 $Ax = \beta$ 的通解为 $(1,2,-1)^{\mathrm{T}} + k(1,-2,3)^{\mathrm{T}} , k$ 为任意常数,令 $B = (\alpha_1,\alpha_2,\alpha_3,\beta+\alpha_3)$,求方程组 $By = \alpha_1 - \alpha_2$ 的通解.

(8) 设 A 是 5×4 矩阵, $\mathbf{r}(A)=2$,已知 $\alpha_1,\alpha_2,\alpha_3$ 是非齐次线性方程组 Ax=b 的三个解 向量,且 $\alpha_1+\alpha_2=\left(4,6,-8,4\right)^{\mathrm{T}}$, $\alpha_3=\left(1,2,-1,1\right)^{\mathrm{T}}$,又 $\left(0,1,-3,0\right)^{\mathrm{T}}$ 是 Ax=0 的解,求 Ax=b 的通解.

(9) 设 A,B 均为 3 阶矩阵, $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & a & 0 \\ 1 & 1 & -1 \end{pmatrix}$, r(B) = 2, r(AB) = 1. 求 a 的值, 并求方程组 Ax = 0 的通解.

综合题

一、选择题

- (1) 设 A 是 $m \times n$ 矩阵, m < n ,且 A 的行向量组线性无关, b_1, b_2 分别为 m 维、 n维非零列向量,则下 列选项错误的是().
- A. $A^{T}x=0$ 只有零解 B. $A^{T}Ax=0$ 必有非零解
- C. $Ax = b_1$ 必有无穷多个解 D. $A^T = b_2$ 必有唯一解

- (2) 设 A 是 $m \times n$ 矩阵,则非齐次线性方程组Ax = b有无穷多解的充分必要条件是().
- A. r(A:b) < n
- B. Ax=0 有非零解
- C. Ax = b 有两个不同解 D. A 的列向量组线性相关

(3) 设 $A^{\mathsf{T}} = (\alpha_1, \alpha_2, \dots, \alpha_{n-1})$ 是 $n \times (n-1)$ 矩阵, $r(A^{\mathsf{T}}) = n-1, \beta_1, \beta_2$ 是与 $\alpha_1, \alpha_2, \dots, \alpha_{n-1}$ 都 正交的两个不同的 n 维列向量, k 是任意常数,则方程组 Ax=0 的通解为().

A. $k(\beta_1 - \beta_2)$ B. $k(\beta_1 + \beta_2)$ C. $k\beta_1$

D. $k\beta_2$

二、填空题

(1) 设 $\alpha_1,\alpha_2,\alpha_3,\beta$ 均为三维列向量, $A=\left(\beta-\alpha_1-2\alpha_2-3\alpha_3,\alpha_1,\alpha_2,\alpha_3\right)$,则方程组 $Ax=\beta$ 的 一个特解为____.

(2) 设 $A = (a_{ij})_{B\times 3}$ 为实矩阵,且 $A_{ij} = a_{ij}(i, j = 1, 2, 3)$,其中 A_{ij} 为 a_{ij} 的代数余子式,

$$a_{33} = 1$$
, $|A| = 1$, 则方程组 $A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 的解为______.

三、解答题

(1) 设 A 是 $m \times n$ 矩阵,r(A) = n - 2 ,非齐次线性方程组 Ax = b 的 3 个解向量 $\alpha_1, \alpha_2, \alpha_3$ 满足 $\alpha_1 + \alpha_2 = (1, 2, 3, 4)^T$, $\alpha_2 + 2\alpha_3 = (-2, 1, 5, 3)^T$, $2\alpha_3 + 3\alpha_1 = (11, 5, -6, 7)^T$,求方程组 Ax = b 的通解.

- (2) 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 是 4 阶矩阵, 非齐次线性方程组 $Ax = \beta$ 的通解为 $(1,2,2,1)^T + k(1,-2,4,0)^T, k$ 为任意常数, 记 $B = (\alpha_3, \alpha_2, \alpha_1, \beta \alpha_4)$.
- (I) 证明: r(B)=2 ;
- (II) 求方程组 $Bx = \alpha_1 \alpha_2$ 的通解.

(4) 设 A 是 3 阶方阵, $A = \left(a_{ij}\right)_{s \times 3}$,且 $a_{ij} = A_{ij}, i, j = 1, 2, 3$,其中 A_{ij} 为 a_{ij} 的代数余子式, $a_{33} \neq 0$, $b = \left(a_{13}, a_{23}, a_{33}\right)^{T}$,求非齐次线性方程组 Ax = b 的解.

(5) 设 A 是 $m \times n$ 矩阵, b 为 m 维列向量,证明: 线性方程组 $A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$ 必有解.

- (6) 设 A 是 3 阶矩阵, 向量 $\beta = (3,3,3)^{\mathrm{T}}$, 非齐次线性方程组 $Ax = \beta$ 的通解为 $k_1(1,2,-2)^{\mathrm{T}} + k_2(2,1,2)^{\mathrm{T}} + (1,1,1)^{\mathrm{T}}, k_1, k_2$ 为任意常数.
- (I) 证明: 任意 3 维列向量 α 可由 A 的三个特征向量线性表示;
- (II) 若 $\alpha = (1,2,-1)^T$,求 $A\alpha$.

(7) 设 n 阶方阵 A 的行列式 |A|=0, A 有一个代数余子式 $A_{ij}\neq 0$,证明: Ax=0 的通解 为 $k(A_{i1}$, $A_{i2},\cdots,A_{in})^{\mathrm{T}}, k$ 为任意常数.

- (8) 设 4 维列向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$,且 $\alpha_1,\alpha_2,\alpha_3$ 线性无关, $\alpha_4=\alpha_1+\alpha_2+2\alpha_3$, $B=\left(\alpha_1-\alpha_2,\alpha_2+\alpha_3,-\alpha_1+k\alpha_2+\alpha_3\right)$,方程组 $Bx=\alpha_4$ 有无穷多解.求:
- (I) k 的值;
- (II) 方程组的通解.

拓展题

解答题

(1) 设
$$A = \begin{pmatrix} 1 & -2 & 3 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 有特征向量 $\alpha_1 = \begin{pmatrix} 1, 2, 1 \end{pmatrix}^T, \alpha_2 = \begin{pmatrix} -1, 1, 1 \end{pmatrix}^T, \alpha_3 = \begin{pmatrix} -1, 3, 2 \end{pmatrix}^T$,且

$$\mathbf{r}(A)=1, 求方程组 \begin{cases} x_1-2x_2+3x_3=-1,\\ a_{21}x_1+a_{22}x_2+a_{23}x_3=3, & \text{的通解}.\\ a_{31}x_1+a_{32}x_2+a_{33}x_3=2 \end{cases}$$

(2)
$$\[\] \] A = \frac{1}{2} \begin{pmatrix} 1 & 2a & 1 \\ -1 & \sqrt{2} & 2b \\ \sqrt{2} & 2c & -\sqrt{2} \end{pmatrix} .$$

(I) 若 A 是正交矩阵, 求 a,b,c 的值;

(II) 当
$$A$$
 为正交矩阵时, 求方程组 $Ax = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 的解.

第十一章 相似矩阵

基础题

一、选择题

- (1) 设 $\lambda=2$ 是矩阵 A 的一个特征值,且 $|A|\neq 0$,则 $\left(\frac{1}{3}A^2\right)^{-1}$ 有一个特征值为().
- A. $\frac{4}{3}$

- B. $\frac{3}{4}$ C. $\frac{1}{2}$ D. $\frac{1}{4}$

- (2) 设 4 阶实对称矩阵 A 的特征值为 0,1,2,3 ,则 r(A)=().
- A. 1
- B. 2
- C. 3
- D. 4

- A. A 与 C 相似,B 与 C 不相似 B. A 与 C 相似,B 与 C 相似
- C. A 与 C 不相似,B 与 C 相似 D. A 与 C 不相似,B 与 C 不相似

(4) 下列矩阵中,不能相似于对角矩阵的是().

A.
$$A = \begin{pmatrix} 1 & -1 & 3 \\ -1 & 2 & 0 \\ 3 & 0 & 6 \end{pmatrix}$$
 B. $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 5 & 0 & 3 \end{pmatrix}$ C. $C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 2 & 3 \end{pmatrix}$ D. $D = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}$

- (5) 设矩阵 A 与 B 相似,则必有().
- A. 矩阵 $\lambda E A$ 与 $\lambda E B$ 相等 B. A,B 同时可逆或不可逆
- C. A 和 B 有相同的特征向量
- D. A 和 B 均与同一个对角矩阵相似

- (6) 设 A 为 3 阶方阵, A 的三个特征值为1,1,2, α_1 , α_2 , α_3 分别为对应的三个特征向量,则().
- A. a_1, a_2, a_3 必为 2E-A 的特征向量
- B. $\alpha_1 + \alpha_3$ 必为 2E A 的特征向量
- C. $\alpha_1 \alpha_2$ 必为 2E A 的特征向量
- D. α_1,α_2 必为 2E-A 的特征向量, α_3 不是 2E-A 的特征向量

二、填空题

(1) 已知
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
 与 $B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & a \end{pmatrix}$ 相似,则 $a =$ ______.

(2) 设 n 阶方阵 $B = AA^*$,则 B 的特征值为_____.

(3) 设方阵 A 满足 $A^2 + 2A + E = O$,则 A 有特征值_____.

(4) 设 A 是 3 阶实对称矩阵, A 的特征值为 1,1,-2 ,且 $\lambda_3 = -2$ 对应的特征向量为 $\xi_3 = \begin{pmatrix} 1,1,-1 \end{pmatrix}^{\mathrm{T}} \ , \ \ \mathbb{M} \ \ A = \underline{\hspace{1cm}} \ .$

(5) 设
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & a \end{pmatrix}$$
 与 $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & -2 & b \end{pmatrix}$ 相似,则 $a =$ ______.

(6) 设
$$A = \begin{pmatrix} 3 & 2 & -1 \\ a & -2 & 2 \\ 3 & b & -1 \end{pmatrix}$$
 有一个特征向量 $\alpha_1 = (1, -2, 3)^T$,则 $a = \underline{\hspace{1cm}}$.

三、解答题

(1) 设
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
 . 求:

- (I) A 的全部特征值和特征向量;
- (II) 可逆矩阵 P , 使得 $P^{-1}AP = \Lambda$;
- (III) 正交矩阵 Q ,使 $Q^{-1}AQ = \Lambda$.

(2) 判别下列矩阵 A 与 B 是否相似. 若相似, 求可逆矩阵 P , 使得 $P^{-1}AP = B$.

(I)
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix};$$

(II)
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -6 & 2 \end{pmatrix}$$
.

(3) 设矩阵
$$A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$$
 有特征向量 $\alpha = (1,1,-1)^{T}$.

- (I) 确定参数 a,b 及 α 对应的特征值 λ ;
- (II) 问 A 能否相似于对角矩阵? 说明理由.

(4) 设 $A = \begin{pmatrix} 1 & -1 & 1 \\ x & 4 & y \\ -3 & -3 & 5 \end{pmatrix}, A \sim \Lambda$,且 $\lambda = 2$ 是 A 的二重特征值,求 x,y 的值及可逆矩阵

P , 使得 $P^{-1}AP = \Lambda$.

- (5) 设 A 是 3 阶矩阵, $\alpha_1,\alpha_2,\alpha_3$ 是线性无关的 3 维列向量,且 $A\alpha_1=\alpha_1+\alpha_2+\alpha_3$, $A\alpha_2=2\alpha_2+\alpha_3$, $A\alpha_3=2\alpha_2+3\alpha_3$. 求:
- (I) A 的全部特征值;
- (II) 可逆矩阵 P 及 Λ ,使得 $P^{-1}AP = \Lambda$,并计算 |A-2E| .

- (6) 设实矩阵 $A = \begin{pmatrix} -1 & 0 & 2 \\ a & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ 有三个线性无关的特征向量. 求:
- (I) a 的值;
- (II) 可逆矩阵 P , 使得 $P^{-1}AP$ 为对角矩阵.

(7) 设
$$A$$
 是 3 阶实对称矩阵, $A \sim B, B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}, A$ 的二重特征值对应的特征向量为

$$\alpha_1 = (1,1,0)^T$$
, $\alpha_2 = (0,2,1)^T$. $\dot{\mathbb{R}}$:

- (I) A 的特征值与特征向量;
- (II) 可逆矩阵 P ,使得 $P^{-1}AP = \Lambda$.

(8) 已知
$$A \sim B, A = \begin{pmatrix} 1 & a & -1 \\ 1 & 5 & 1 \\ 4 & 12 & 6 \end{pmatrix}, B = \begin{pmatrix} b & & \\ & b & \\ & & c \end{pmatrix}$$
,求 a,b,c 的值.

- (9) 设 3 阶实对称矩阵 A 的特征值为 $\lambda_1 = \lambda_2 = 1, \lambda_3 = -1, \alpha_1 = \begin{pmatrix} 1, 1, 1 \end{pmatrix}^T, \alpha_2 = \begin{pmatrix} 2, 2, 1 \end{pmatrix}^T$ 是 $\lambda_1 = \lambda_2 = 1$ 对应的特征向量. 求:
- (I) A 的属于 $\lambda_3 = -1$ 的特征向量;
- (II) 矩阵 A .

(10) 题目如下:

- (I) 设 A 是 n 阶实对称矩阵,且 $A^2 = A, r(A) = r(r < n)$,计算 |3E A| ;
- (II) 设 A 是 n 阶矩阵,且 $A^2 = A, r(A) = r(r < n)$,计算 |3E A| .

(11) 设
$$A = \begin{pmatrix} 2 & 0 & 4 & 0 \\ 0 & 6 & 0 & 0 \\ 4 & 0 & a & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}$$
 与 $A = \begin{pmatrix} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}$ 相似. 求:

- (I) *a,b* 的值;
- (II) 一个正交矩阵 P , 使得 $P^{-1}AP = \Lambda$.

(12) 题目如下:

- (I) 设 A 与 B 是 n 阶方阵, A 可逆,且 $A \sim B$,证明: $A^* \sim B^*$;
- (II) 若 $A \sim B$,证明:存在可逆矩阵 P (非数量矩阵),使得 $AP \sim BP$.

综合题

一、选择题

- (1) 设 A,B 是 n 阶可逆矩阵,且 $A^{-1} \sim B^{-1}$,则下列结果① $AB \sim BA$;② $A \sim B$; ③ $A^2 \sim B^2$;
- ④ $A^{T} \sim B^{T}$ 其中正确的个数为 ().
- A. 1
- B. 2 C. 3
- D. 4

(2) 设矩阵
$$B$$
 相似于 $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 2 \end{pmatrix}$,则 $r_1 = r(B)$, $r_2 = r(B-E)$, $r_3 = r(B-2E)$ 满足

()

- A. $r_1 < r_2 < r_3$ B. $r_2 < r_3 < r_1$ C. $r_3 < r_1 < r_2$ D. $r_1 < r_3 < r_2$

(3) 与
$$\Lambda = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
 既相似又合同的矩阵是 ().

A.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & -2 \end{pmatrix}$$
 B. $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & -2 \\ 0 & -2 & -4 \end{pmatrix}$ C. $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$ D. $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 2 \\ 0 & 2 & 2 \end{pmatrix}$

- (4) 下列矩阵中, 与矩阵 $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ 相似的是 ().

- A. $\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ B. $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ C. $\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ D. $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- (5) 设 n 阶矩阵 A 有特征值 $\lambda_1=1,\lambda_2=-1$,对应的特征向量为 α_1,α_2,k 为任意常数,则下 列选项中 正确的是().
- A. $k\alpha_1$ 必是 A 的特征向量
- B. $\alpha_1 \alpha_2$ 必是 A 的特征向量
- C. $\alpha_1 + \alpha_2$ 必是 A 的特征向量 D. $\alpha_1 + \alpha_2$ 必是 A^2 的特征向量

二、填空题

(1) 设 A 是 3 阶方阵, α 为 3 维列向量, $P = \left(\alpha, A\alpha, A^2\alpha\right)$ 为可逆矩阵, $B = P^{-1}AP$,且 $A^{3}\alpha + 2A^{2}\alpha = 3A\alpha$, $\mathbb{M} |A + E| =$ ______.

(2) 设 $A_{3\times 3}$ 是秩为 1 的实对称矩阵, $\lambda_1 = 2$ 是 A 的一个特征值,对应的特征向量为 $\alpha_1 = \begin{pmatrix} -1,1,1 \end{pmatrix}^T$,则方程组 Ax = 0 的基础解系为_____.

(3) 设 3 阶矩阵 A 的特征值为 $0,1,2,B=A^3-2A^2$,则 r(B)=______.

三、解答题

(1) 设
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & k \\ 1 & k & 1 \end{pmatrix}$$
 有一个特征值为 0, 求 k 的值. 并求一个正交矩阵 Q ,使得
$$Q^{\mathsf{T}}AQ = \Lambda$$
 .

- (2) 已知 $A = (\alpha_1, \alpha_2, \alpha_3)$ 是 3 阶可逆矩阵, B 是 3 阶矩阵,且 $BA = (\alpha_1, -4\alpha_3, -\alpha_2)$. 求:
- (I) B 的全部特征值;
- (II) 可逆矩阵 P 和对角矩阵 Λ ,使得 $P^{-1}BP = \Lambda$.

- (3) 设 A 是 $n(n \ge 2)$ 阶矩阵, $\alpha_1, \alpha_2, \dots, \alpha_n$ 是 n 维列向量,且 $A\alpha_1 = \alpha_2, A\alpha_2 = \alpha_3, \dots, A\alpha_{n-1} = \alpha_n$, $A\alpha_n = 0, \alpha_n \ne 0$.
- (I) 证明: a_1, a_2, \cdots, a_n 线性无关;
- (II) 求可逆矩阵 P 及三角矩阵 B ,使得 $P^{-1}AP = B$.

- (4) 设 $A_{SVS?}$ 有三个不同的特征值 $\lambda_1,\lambda_2,\lambda_3$,它们对应的特征向量分别为 $\alpha_1,\alpha_2,\alpha_3$,令 $\beta=\alpha_1+\alpha_2+\alpha_3\,.$
- (I) 证明: β , $A\beta$, $A^2\beta$ 线性无关;
- (II) 若 $A^3\beta = A\beta$,求 r(A-E) .

- (5) 设 $A = \begin{pmatrix} 1 & a & 0 & 2 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & -1 & b \\ 0 & 0 & 0 & -1 \end{pmatrix}$ 有四个线性无关的特征向量. 求:
- (I) 可逆矩阵 P , 使得 $P^{-1}AP = \Lambda$;
- (II) $\left(2E-A^2\right)^{-1}$.

- (6) 设 $\alpha = (a_1, a_2, \cdots, a_n)^T$, $\beta = (b_1, b_2, \cdots, b_n)^T$ 均为非零列向量, $A = \alpha \beta^T$.
- (I) 求 A 的全部特征值;
- (II) 当 $\alpha^{\mathrm{T}}\beta$ 满足什么条件时,A 可以相似于对角矩阵 A ? 并求可逆矩阵 P ,使 $P^{-1}AP=A$.

(7) 设
$$n(n \ge 2)$$
 阶矩阵 $A = \begin{pmatrix} a & 1 & 1 & \cdots & 1 \\ 1 & a & 1 & \cdots & 1 \\ 1 & 1 & a & \cdots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 1 & 1 & \cdots & a \end{pmatrix}$. 求:

- (I) 可逆矩阵 P 及对角矩阵 Λ , 使得 $P^{-1}AP = \Lambda$;
- (II) $r(A^*)$.

- (8) 设 A 是 3 阶实对称矩阵,存在可逆矩阵 P ,使得 $P^{-1}AP = {\rm diag}(1,2,-1)$,且 $\alpha_1 = (1,k+1,2)^{\rm T} , \ \alpha_2 = (k-1,-k,1)^{\rm T} \ \$ 分别为 A 的特征值 $\lambda_1 = 1, \lambda_2 = 2$ 的特征向量, A^* 的特征值 λ_0 对应的特征向量 $\beta = (2,-5k,2k+1)^{\rm T}$. 求:
- (I) λ₀ 与 k 的值;
- (II) 矩阵 $\left(A^{-1}\right)^*$.

- (9) 设 α, β 为 3 维单位列向量,且 $\alpha^{T}\beta = 0$,记 $A = \alpha\beta^{T} + \beta\alpha^{T}$.
- (I) 证明: A 相似于对角矩阵;
- (II) 若存在 3 维列向量 $\gamma \neq 0$,使得 $A\gamma = 0$,记 $P = \left(\gamma, 2(\alpha + \beta), \beta \alpha\right)$,求 $P^{-1}AP$.

(10) 设
$$A = \begin{pmatrix} 1 & a_{12} & a_{13} \\ 1 & a_{22} & a_{23} \\ 1 & a_{32} & a_{33} \end{pmatrix}$$
 可逆, B 是 3 阶实对称矩阵,且满足 $BA = \begin{pmatrix} 1 & 2a_{12} & 2a_{13} \\ 1 & 2a_{22} & 2a_{23} \\ 1 & 2a_{32} & 2a_{33} \end{pmatrix}$. 求:

- (I) B 的特征值和对应的特征向量;
- (II) 正交矩阵 Q , 使得 $Q^TBQ = \Lambda$.

- (11) 设 A,B 均是 n 阶矩阵.
- (I) 证明: AB 与 BA 有相同的特征值;
- (II) 若 AB = BA,且 A 有 n 个不同的特征值,证明: B 相似于对角矩阵.

(12) 设 A 是 n 阶实对称矩阵, $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是 A 的 n 个单位正交特征向量,对应的特征值为 $\lambda_1,\lambda_2,\cdots$, λ_n ,证明: $A=\lambda_1\alpha_1\alpha_1^{\rm T}+\lambda_2\alpha_2\alpha_2^{\rm T}+\cdots+\lambda_n\alpha_n\alpha_n^{\rm T}$.

- (13) 设 A,B 均是 3 阶方阵, AB=A-B,A 有三个不同的特征值 $\lambda_1,\lambda_2,\lambda_3$. 证明:
- (I) $\lambda_i \neq -1(i=1,2,3)$;
- (II) 存在可逆矩阵 P ,使 $P^{-1}AP, P^{-1}BP$ 同时为对角矩阵.

- (14) 设 A 是 2 阶矩阵, α 是非零向量,且 α 不是 A 的特征向量.
- (I) 证明: α, Aα 线性无关;
- (II) 记 $P = (\alpha, A\alpha)$,若 $A^2\alpha 2A\alpha = 8\alpha$,证明: A 相似于对角矩阵,并求 $P^{-1}AP$.

- (15) 设向量 $\beta = (b,1,1)^{\mathrm{T}}$ 可由 $\alpha_1 = (a,0,1)^{\mathrm{T}}, \alpha_2 = (1,a-1,1)^{\mathrm{T}}, \alpha_3 = (1,0,a)^{\mathrm{T}}$ 线性表示,且表示法不唯一. 记 $A = (\alpha_1,\alpha_2,\alpha_3)$. 求:
- (I) a,b 的值,并写出 β 由 $\alpha_1,\alpha_2,\alpha_3$ 表示的线性表达式.
- (II) 一个可逆矩阵 P , 使得 $P^{-1}AP = \Lambda$ (Λ 为对角阵).

拓展题

解答题

- (1) 设 A 是 3 阶实对称矩阵,且 $A^2-2A=O, r(A)=1$. 方程组 Ax=0 的通解为 $k_1(1,1,0)^T+k_2(1,0,1)^T(k_1,k_2$ 为任意常数).
- (I) 求可逆矩阵 P 及对角矩阵 Λ , 使得 $P^{-1}AP = \Lambda$;
- (II) 求矩阵 A.

(2) 设
$$A = \begin{pmatrix} k & -2 & 2 \\ -3 & 3 & -1 \\ -15 & 8 & -6 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 0 & 4 & -1 \end{pmatrix}$$
,且 $A \sim B$,求 k 的值及可逆矩阵 P ,使得

 $P^{-1}AP = B .$

(3) 设数列
$$\{a_n\}$$
, $\{b_n\}$ 满足 $a_0=1,b_0=-1$,且 $\begin{cases} a_n=a_{n-1}+2b_{n-1},\\ b_n=-a_{n-1}+4b_{n-1}, \end{cases}$ 记 $\alpha_n=\begin{pmatrix} a_n\\ b_n \end{pmatrix}$,矩阵 A 满足 $A\alpha_{n-1}=\alpha_n$,求 A^n 及 $\lim_{n\to\infty}\frac{b_n}{a_n}$.

第十二章 二次型

基础题

一、选择题

(1) 二次型 $f(x_1,x_2,x_3) = x_1x_2 + x_2x_3 + x_1x_3$ 的矩阵为 ().

A.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 B. $\begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$ C. $\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 \end{pmatrix}$ D. $\begin{pmatrix} \frac{1}{2} & 1 & 1 \\ 1 & \frac{1}{2} & 1 \\ 1 & 1 & \frac{1}{2} \end{pmatrix}$

C.
$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 \end{pmatrix}$$

D.
$$\begin{pmatrix} \frac{1}{2} & 1 & 1 \\ 1 & \frac{1}{2} & 1 \\ 1 & 1 & \frac{1}{2} \end{pmatrix}$$

(2) 二次型
$$f(x_1,x_2,x_3) = (x_1-x_2)^2 + (x_2-x_3)^2 + (x_3-x_1)^2$$
 的标准形为().

A.
$$f = y_1^2 + y_2^2 + y_3^2$$

B.
$$f = 2y_1^2 + \frac{3}{2}y_2^2$$

C.
$$f = y_1^2 + y_2^2 - y_3^2$$

D.
$$f = 2y_1^2 + \frac{3}{2}y_2^2 + y_3^2$$

- (3) 设 $A = \begin{pmatrix} 1 & & \\ & 2 & \\ & & 3 \end{pmatrix}$ 与 $B = \begin{pmatrix} 2 & & \\ & 3 & \\ & & 1 \end{pmatrix}$ 合同,则合同变换矩阵 P = () .
- A. $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ B. $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ C. $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ D. $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- (4) 设 A 是 n 阶方阵,将 A 的第 i 列与第 j 列互换,再交换第 i 行与第 j 行得到 B ,则().
- A. A 与 B 等价、相似且合同 B. A 与 B 相似、合同但不等价
- C. A 与 B 相似但不合同
- D. A 与 B 等价但不相似

- (5) 二次型 $f(x_1,x_2,x_3) = x_1^2 + 4x_2^2 + 4x_3^2 4x_1x_2 + 4x_1x_3 8x_2x_3$ 的规范形为().
- A. $f = z_1^2$

B. $f = z_1^2 - z_2^2$

C. $f = z_1^2 + z_2^2 + z_3^2$

D. $f = z_1^2 + z_2^2 - z_3^2$

二、填空题

已知二次型 $f(x_1,x_2,x_3)=x_1^2+4x_2^2+4x_3^2+2ax_1x_2-2x_1x_3+4x_2x_3$ 正定,则 a 的取值范围 为

三、解答题

- (1) 设二次型 $f(x_1,x_2,x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 4x_1x_3 8x_2x_3$.
- (I) 求一个正交变换 x = Qy ,将 f 化为标准形;
- (II) 利用配方法,将 f 化为标准形.

(2) 已知二次型 $f = 2x_1^2 + 3x_2^2 + 3x_3^2 + 2ax_2x_3(a>0)$,经过正交变换化成标准形 $y_1^2 + 2y_2^2 + 5y_3^2$,求 参数 a 及所用的正交变换.

(3) 证明: n 阶矩阵 A 正定的充分必要条件是存在可逆矩阵 P , 使得 $A = P^{T}P$.

综合题

一、选择题

- (1) 二次型 $f(x_1,x_2,x_3) = x_1x_2 + x_2x_3$ 的正、负惯性指数分别为 ().
- A. p = 1, q = 1 B. p = 1, q = 2 C. p = 1, q = 0 D. p = 0, q = 2

- (2) A 是 n 阶实对称矩阵,则 A 合同于矩阵 B 的充分必要条件是().
- ① r(A) = r(B) ; ② A 与 B 的正惯性指数相等;
- ③ *A* 与 *B* 均正定矩阵; ④ *B* 是实对称矩阵.

- A. ① 成立 B. ④ 成立 C. ①②(4) 均成立 D. ③ 成立

(3) 设 n 元二次型 $f(x_1,x_2,\dots,x_n) = (x_1 + a_1x_2)^2 + (x_2 + a_2x_3)^2 + \dots + (x_n + a_nx_1)^2$,其中 $a_i(i=1,2,\cdots,n)$ 均为实数, 若二次型正定, 则().

A.
$$1 + (-1)^{n+1} a_1 a_2 \cdots a_n \neq 0$$

B.
$$1+(-1)^{n+1}a_1a_2\cdots a_n=0$$

C.
$$1 - (-1)^{n+1} a_1 a_2 \cdots a_n \neq 0$$

D.
$$1-(-1)^{n+1}a_1a_2\cdots a_n=0$$

(4) 设
$$A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
,则正确的是().

- A. A 与 B 相似,B 与 C 合同 B. A 与 D 相似,B 与 D 合同
- C. A 与 D 合同,B 与 C 相似 D. B 与 D 相似,C 与 D 合同

(5) 设 A 是 3 阶实对称矩阵,且 $|A|=2,A^*=A-E$,其中 A^* 是 A 的伴随矩阵,则二次型 $x^{T}Ax$ 的 规范形为 ().

A.
$$y_1^2 + y_2^2 + y_3^2$$

B.
$$-v_1^2 - v_2^2 - v_2^2$$

C.
$$y_1^2 + y_2^2 - y_3^2$$

A.
$$y_1^2 + y_2^2 + y_3^2$$
 B. $-y_1^2 - y_2^2 - y_3^2$ C. $y_1^2 + y_2^2 - y_3^2$ D. $-y_1^2 - y_2^2 + y_3^2$

(6) 设
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$$
,则正确的是 ().

- A. 必存在正交矩阵 Q ,使得 $Q^{-1}AQ=B$ B. 必存在可逆矩阵 P ,使得 $P^{-1}AP=B$
- C. 必存在可逆矩阵 P ,使得 $P^{T}AP=B$ D. 必存在可逆矩阵 P ,使得 $A=P^{T}P$

- (7) 设 3 阶实矩阵 A 的特征向量为 $\alpha_1 = \begin{pmatrix} -1,1,0 \end{pmatrix}^T, \alpha_2 = \begin{pmatrix} 1,1,1 \end{pmatrix}^T, \alpha_3 = \begin{pmatrix} -1,-1,2 \end{pmatrix}^T$,则 A 必 为().
- A. 可逆矩阵 B. 正交矩阵 C. 对称矩阵 D. 正定矩阵

二、填空题

(1) 若 3 阶实对称矩阵 A 与 $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 3 & 0 \end{pmatrix}$ 合同,则二次型 x^TAx 的规范形为______.

(2)	设	A	是	n	阶矩阵,方程组	Ax = b	有唯一解,则	二次型	$x^{\mathrm{T}} \left(A^{\mathrm{T}} A \right)$	$\int x$	的正惯性指数为

(3) 设 A 是 3 阶实对称矩阵,二次型 $x^{T}Ax$ 经过正交变换 x = Qy 后的标准形为 $y_{1}^{2} + y_{2}^{2} - y_{3}^{2}, A^{*}$ 是 A 的伴随矩阵,则二次型 $x^{T}A^{*}x$ 的规范形为______.

三、解答题

- (1) 设二次型 $f(x_1,x_2,x_3) = x^T Ax = x_1^2 + ax_2^2 + x_3^2 + 2x_1x_2 2ax_1x_3 2x_2x_3$ 的正负惯性指数都是 1. 求:
- (I) a 的值;
- (II) 可逆线性变换 x = By ,将 $f(x_1, x_2, x_3)$ 化为标准形.

(2) 设 3 阶实对称矩阵 $A = \left(a_{ij}\right)_{3\times 3}$ 有特征值 $\lambda_1 = \lambda_2 = 2$,且 $\sum_{i=1}^3 a_{ii} = 1, \alpha = \left(1,0,-2\right)^{\mathrm{T}}$ 是方程

组 $A^*x = 4\alpha$ 的解向量. 求:

- (I) 矩阵 A;
- (II) 正交变换 x = Qy ,将二次型 $f(x_1, x_2, x_3) = x^T Ax$ 化为标准形.

- (3) 设二次型 $f(x_1, x_2, \dots, x_n) = nx_1^2 + nx_2^2 + \dots + nx_n^2 (x_1 + x_2 + \dots + x_n)^2$. 求:
- (I) 二次型 $f(x_1,x_2,\dots,x_n)=x^TAx$ 的秩;
- (II) 可逆矩阵 P ,使得 $P^{-1}AP = \Lambda$,并求二次型的正惯性指数.

(4) 设方程组
$$\begin{cases} (k+3)x_1 + x_2 + 2x_3 = 0, \\ 2kx_1 + (k-1)x_2 + x_3 = 0, \\ (k-3)x_1 - 3x_2 + kx_3 = 0 \end{cases}$$
, 有非零解, 且 $A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & k & -2 \\ 2 & -2 & 9 \end{pmatrix}$ 是正定矩阵.

- (I) 求 k 的值;
- (II) 设 $x = (x_1, x_2, x_3)^T$, 求 $x^T x = 1$ 时, $x^T A x$ 的最大值.

- (5) 设 n 阶实对称矩阵 A 只有两个不同的特征值 $\lambda_1=1$ 和 λ_2 ,且 A 属于 $\lambda_1=1$ 的特征向量仅有 $k\left(1,0,\cdots,0,1\right)^{\mathrm{T}}$,其中 $k\neq 0$.
- (I) 求矩阵 A;
- (II) 当 λ_2 满足什么条件时,A 是正定矩阵?

(6) 设 A 是实对称矩阵,证明: A 可逆的充要条件是存在方阵 B ,使得 $AB+B^{T}A$ 为正定矩阵.

- (7) 设二次型 $f(x_1,x_2,x_3) = ax_1^2 ax_2^2 + ax_3^2 + 2x_1x_3$ 与 $g(y_1,y_2,y_3) = -y_1^2 y_2^2 + a^2y_3^2 + 2y_1y_2$ 的秩相等 $(a \neq 0)$.
- (I) 当 a 为何值时,存在可逆(非正交)线性变换 x = Py ,可将 $f(x_1, x_2, x_3)$ 化为 $g(y_1, y_2, y_3)$? 求 一个可逆矩阵 P .
- (II) 当 a 为何值时,存在正交变换 x=Qy ,将 $f(x_1,x_2,x_3)$ 化为 $g(y_1,y_2,y_3)$?说明理由.

- (8) 设二次型 $f(x_1,x_2,x_3)=x^TAx=ax_1^2+ax_2^2+(a-1)x_3^2+2x_1x_3-2x_2x_3$ (a 为常数, $A^T=A$).
- (I) 求一个正交变换 x = Qy 将 $f(x_1, x_2, x_3)$ 化为标准形;
- (II) 设 $x = (x_1, x_2, x_3)^T$, 求方程 $x^T (aE A)^2 x = 0$ 的全部解.

- (I) 求 a,b 的值及正交矩阵 Q ;
- (II) 若正定矩阵 B 满足 $B^2 = A + A^*$,其中 A^* 是 A 的伴随矩阵,求 B .

拓展题

解答题

(1) 设二次型 $f(x_1,x_2,x_3)=2x_1x_2+3x_2x_3+4x_1x_3$,求可逆线性变换 x=Pz ,使得 $f(x_1,x_2,x_3)$ 化为标准形,并求二次型的秩及正、负惯性指数.

- (2) 设 A 为 3 阶实对称矩阵, 二次型 $f(x_1,x_2,x_3)=x^TAx$ 在正交变换 x=Qy 下的标准形为 $-y_1^2+2y_2^2+ay_3^2$, 其中 Q 的第 1 列为 $\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)^T$,且 |A|=-4 .
- (I) 求 a 的值;
- (II) 求正交矩阵 Q .

(3) 设二次型 $f(x_1,x_2,x_3) = x^T A x (A^T = A)$ 经正交变换 x = Qy 化为 $by_2^2 + c^2 y_3^2$,其中

$$Q = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & a \\ 0 & c & 0 \\ b & 0 & 1 \end{pmatrix} (b > 0, c > 0).$$

- (I) 求 a,b,c 的值及矩阵 A ;
- (II) 求可逆矩阵 P , 使得 $A+E=P^{\mathsf{T}}P$.