Homework 13 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

May 17, 2024

- 1. (a) For any $\varepsilon > 0$, we can find an open cube $D(x_0, \delta)$ that $R_i \subseteq D(x_0, \delta)$ and
 - (b) Since for any E_i is measure zero, we can find $\{R_{i,j}\}_j$ s.t. $\sum_j |R_{i,j}| < \frac{\varepsilon}{2^i}$. Then, let $R_{1,1} = R_1$, $R_{1,2} = R_2$, $R_{2,1} = R_3$, $R_{1,3} = R_4$, $R_{2,2} = R_5$ etc. And we can get $\{R_k\}_k$ contains $\bigcup_i E_i$ and $\sum_k |R_k| < \varepsilon(\frac{1}{2} + \frac{1}{4} + \cdots) = \varepsilon$. Therefore, union of countable measure zero sets is measure zero.
 - (c) Since A is compact and (a), we can find finite open cubes which covers A and volume of their union is less than ε . Thus, take closure on each open cube and we can find a retangle covers A with volume less than ε . Therefore, volume of A is 0.
- 2. For any grid g, U(1,g) = L(1,g)