

DW_ram_rw_s_lat

Synchronous Single-Port, Read/Write RAM (Latch-Based)

Version, STAR, and myDesignWare Subscriptions: IP Directory

Features and Benefits

Revision History

- Parameterized word depth
- Parameterized data width
- Synchronous static memory

rw_addr data_in data_out cs_n wr_n clk

Description

DW_ram_rw_s_lat implements a parameterized, synchronous, single-port static RAM.

Table 1-1 Pin Description

Pin Name	Width	Direction	Function
clk	1 bit	Input	Clock
cs_n	1 bit	Input	Chip select, active low
wr_n	1 bit	Input	Write enable, active low
rw_addr	ceil(log ₂ [depth]) bits	Input	Address bus
data_in	data_width bits	Input	Input data bus
data_out	data_width bits	Output	Output data bus

Table 1-2 Parameter Description

Parameter	Values	Description
data_width	1 to 256 Default: None	Width of data_in and data_out buses
depth	2 to 256 Default: None	Number of words in the memory array (address width)

Table 1-3 Synthesis Implementations

Implementation Name	Function	License Feature Required
str	Synthesis model	DesignWare

Table 1-4 Simulation Models

Model	Function
DW06.DW_RAM_RW_S_LAT_CFG_SIM	VHDL simulation configuration
dw/dw06/src/DW_ram_rw_s_lat_sim.vhd	VHDL simulation model source code
dw/sim_ver/DW_ram_rw_s_lat.v	Verilog simulation model source code

The write data enters the RAM through the data_in input port and is read out through the data_out port. The read operation is asynchronous to the clock, allowing the data written into the RAM to be instantly read. The RAM is constantly reading regardless of the state of cs_n.

The rw_addr port is used to address the *depth* words in the memory. For addresses beyond the maximum depth (example: rw_addr = 7 and depth = 6), the data_out bus is driven low. No warnings are given during simulations when an address beyond the scope of *depth* is used.

This component contains enable signals for internal latches that are derived from the wr_n port. To keep hold times to a minimum, you should consider instances of this component to be individual floorplanning elements.

Chip Selection, Reading and Writing

The cs n input is the chip select, active low signal. When cs n is low, data is constantly read from the RAM.

When cs_n, wr_n (write enable, active low), and clk are low, data_in is transparent to the memory cell being accessed (data_in equals data_out). Data is captured into the memory cell on the rising edge of clk.

When cs n is high, the RAM is disabled, and the data out bus is driven low.

Application Notes

DW_ram_rw_s_lat is intended to be used as small scratch-pad memory or register file. Because DW_ram_rw_s_lat is built from the cells within the ASIC cell library, it should be kept small to obtain an efficient implementation. If a larger memory is required, you should consider using a hard macro RAM from the ASIC library in use.

Suppressing Warning Messages During Verilog Simulation

The Verilog simulation model includes macros that allow you to suppress warning messages during simulation.

To suppress all warning messages for all DWBB components, define the DW_SUPPRESS_WARN macro in either of the following ways:

Specify the Verilog preprocessing macro in Verilog code:

```
`define DW_SUPPRESS_WARN
```

• Or, include a command line option to the simulator, such as:

```
+define+DW SUPPRESS WARN (which is used for the Synopsys VCS simulator)
```

The warning messages for this model include the following:

■ If values other than 1 or 0 are present on a clock port, the following message is displayed:

```
WARNING: <instance_path>.<clock_name>_monitor:
    at time = <timestamp>, Detected unknown value, x, on <clock_name> input.
```

To suppress only this warning message for all DWBB components, use the following macro:

- □ Define the DW_DISABLE_CLK_MONITOR macro. You can define this macro in the following ways:
 - Specify the Verilog preprocessing macro in Verilog code:

```
`define DW_DISABLE_CLK_MONITOR
```

Or, include a command line option to the simulator, such as:

```
+define+DW DISABLE CLK MONITOR (which is used for the Synopsys VCS simulator)
```

This message is also suppressed using the DW_SUPPRESS_WARN macro explained earlier.

Timing Waveforms

Figure 1-1 shows timing diagrams for various conditions of DW_ram_rw_s_lat.

Figure 1-1 Instantiated RAM Timing Waveforms

Write Timing, $rst_n = 1$, $cs_n = 0$

Read Timing, address controlled, cs_n = 0

Read Timing, cs_n controlled

Related Topics

- Memory Synchronous RAMs Listing
- DesignWare Building Block IP User Guide

HDL Usage Through Component Instantiation - VHDL

```
library IEEE, DWARE;
use IEEE.std logic 1164.all;
use DWARE.DWpackages.all;
use DWARE.DW foundation comp.all;
entity DW ram rw s lat inst is
 generic (inst data width : INTEGER := 8; inst depth : INTEGER := 8);
 port (inst clk : in std logic;
                    : in std logic;
        inst cs n
        inst wr n
                  : in std logic;
        inst_rw_addr : in std_logic_vector(bit_width(inst_depth)-1 downto 0);
        inst data in : in std logic vector(inst data width-1 downto 0);
        data out inst: out std logic vector(inst data width-1 downto 0) );
end DW_ram_rw_s_lat_inst;
architecture inst of DW ram rw s lat inst is
begin
  -- Instance of DW ram rw s lat
 U1 : DW ram rw s lat
   generic map (data width => inst data width, depth => inst depth )
   port map (clk => inst clk, cs n => inst cs n, wr n => inst wr n,
              rw addr => inst rw addr,
                                       data in => inst data in,
              data out => data out inst );
end inst;
-- pragma translate off
configuration DW ram rw s lat inst cfg inst of DW ram rw s lat inst is
  for inst
  end for; -- inst
end DW ram rw s lat inst cfg inst;
-- pragma translate on
```

HDL Usage Through Component Instantiation - Verilog

```
module DW ram rw s lat inst (inst clk, inst cs n, inst wr n, inst rw addr,
                            inst data in, data out inst );
 parameter data width = 8;
 parameter depth = 8;
  `define bit width depth 3 // ceil(log2(depth))
  input inst clk;
  input inst cs n;
  input inst wr n;
  input [`bit_width_depth-1 : 0] inst_rw_addr;
  input [data width-1 : 0] inst data in;
  output [data_width-1 : 0] data_out_inst;
  // Instance of DW ram rw s lat
 DW ram rw s lat #(data width, depth)
 U1 (.clk(inst clk), .cs n(inst cs n),
                                            .wr n(inst_wr_n),
                                .data in(inst data in),
      .rw addr(inst rw addr),
      .data out(data out inst) );
endmodule
```

Revision History

For notes about this release, see the *DesignWare Building Block IP Release Notes*.

For lists of both known and fixed issues for this component, refer to the STAR report.

For a version of this datasheet with visible change bars, click here.

Date	Release	Updates
July 2020	DWBB_201912.5	 Adjusted content and title of "Suppressing Warning Messages During Verilog Simulation" on page 3 and added the DW_SUPPRESS_WARN macro
October 2019	DWBB_201903.5	■ Added the "Disabling Clock Monitor Messages" section
January 2019	DWBB_201806.5	 Updated example in "HDL Usage Through Component Instantiation - VHDL" on page 5 Added this Revision History table and the document links on this page

Copyright Notice and Proprietary Information

© 2022 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Free and Open-Source Software Licensing Notices

If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc. www.synopsys.com