Young statistical research in Denmark

November 17, 2021

Young Statisticians Denmark (YSD)

A society that plans social and scientific events, especially for students and young professionals working with statistics.

- Share knowledge in a relaxed atmosphere.
- o "Young" and "Statistician" is broadly defined.
- Part of the Danish Society for Theoretical Statistics.

Previous events

22 events since 2015.

Neurobiology meets Statistics Science talk and pub quiz Career event Talking about the p-word

. . .

Crowd

Upcoming events

2 upcoming events within the next two months.

November 23 Statisticians in the wild (vol. 2) January 13 Event on causality

Young statistical research in Denmark

What questions occupy the minds of young statistical researchers in Denmark? What topics do they spend their time on studying?

YSD presents:

Sneha Das

- Postdoc at the Section of Statistics and Data Analysis (The Technical University of Denmark)
- PhD from Aalto University Finland (defense in one week)

novo nordisk fonden

Multimodal Signal Modelling for Intervening and Managing Mental Disorders

Sneha Das

Statistics and Data Analysis, Technical University of Denmark (DTU)

DTU Compute

Department of Applied Mathematics and Computer Science

Outline

- Motivation
- General introduction
- Audio
- Biosignals
- Conclusions

DTU

Mental Health and Mental Disorders

Figure: Original image from Vigo et al., 2016

- Mental illness is one of the leading causes of global disease burden (Prince et al., 2007; Vigo et al., 2016).
- In Denmark, 15% of youth will be diagnosed with a psychiatric disorder before their 18th birthday (Dalsgaard et al., 2020).

DTU

WristAngel: Intervention and Research for OCD Treatment I

Figure: Obsessions and compulsions behave cyclically. Original image from https://medium.com/amalgam/ocd-is-not-what-you-think-it-is-ee818028e79c

- Mental disorder wherein "People are caught in a cycle of obsession and compulsions".
- ullet Obsessions ullet intrusive and disruptive urges, thoughts, images, etc.
- Compulsions → behavior to overcome obsessions, distress.
- In 2010, anxiety disorders including obsessive-compulsive disorders -alone cost Europe over €74 billion (Gustavsson et al., 2011).

WristAngel: Intervention and Research for OCD Treatment II

Identify and predict impending OCD events and provide useful interventions \rightarrow progression and severity of disorder.

Aid in delivering cognitive behavioral therapy to patients.

WristAngel

• Sneha Das DTU Compute

• Line H. Clemmensen DTU Compute

• Nicole Nadine Lønfeldt Child and Adolescent Mental Health Center, KU Hospital

• Anne Katrine Pagsberg Faculty of Health, Department of Clinical Medicine, KU

• Nicklas Leander Lund DTU Compute

DTU

Data and Signals

AUDIO SIGNALS

DTU

Role of Audio (Speech) in OCD Treatment

Speech Emotion Detection I

Figure: Image sources https://medium.com/prathena/the-dummys-guide-to-mfcc-aceab2450fd; https://commons.wikimedia.org/wiki/File:Lindos1.svg; https://commons.wikimedia.org/wiki/File:Spectrogram -iua-.png

Speech Emotion Detection II

Conventional approaches

• Statistical ML and signal processing HMM, GMM, SVM

 Deep learning (DL) RNN, CNN, LSTM with deep architectures Hybrid

Eg., DL +SVM

Persistent challenges

 Generalization corpora, languages → cultural, phonetic differences

• Low-resource corpora Small data set and lack of labels

Black-boxes

DTU

Methodology

BIOSIGNALS

DTU

Signals, Methods and Goals

DTU

Tying Modalities Together

YSD presents:

Nikolaj Thams

- PhD student at Copenhagen Causality Lab, MATH (University of Copenhagen)
- Master in Statistics from University of Copenhagen

Causality for Distributional Robustness

DSTS 50 year anniversary

Nikolaj Thams PhD Student at MATH, Univ. Copenhagen

- The road from full to partial exogeneity
- Some detours about our work

Perfect exogeneity: Randomized experiments

Goal: Learn effect X on Y.

$$\{ \mathscr{I} \}_X \to \{ \ \ \}_Y$$

Goal: Learn effect X on Y.

Problem: Latent confounding factors *H*.

Perfect exogeneity: Randomized experiments

Goal: Learn effect X on Y.

Problem: Latent confounding factors *H*.

Solution: Use randomization to break confounding.

Why care about causal instead of confounded effect? Generalization!

Perfect exogeneity: Randomized experiments

Goal: Learn effect X on Y.

Problem: Latent confounding factors *H*.

Solution: Use randomization to break confounding.

Why care about causal instead of confounded effect? Generalization!

Enough exogeneity: Instrumental variables

We can't always randomize:

- Allocation unethical (e.g. smoking or seatbelts
- Interventions hard to define (e.g. data is pixels of image <a>[

Enough exogeneity: Instrumental variables

We can't always randomize:

- Allocation unethical (e.g. smoking or seatbelts (4.1)
- Interventions hard to define (e.g. data is pixels of image

Instead: Instrumental variable (IV): I 1) independent of H and 2) only indirect effect on Y

OLS regression: $Y - X\hat{\beta} \perp \!\!\! \perp X \longrightarrow \mathsf{IV}$ regression: $Y - X\hat{\beta} \perp \!\!\! \perp I$.

 \rightarrow Causal effect β can still be estimated (Imbens and Rubin 2015) under assumptions, e.g. high rank 1.

Detour 1: Instruments in time series

Currently, we are working on methods in systems with memory

- Proper adjustment for memory
- Using also lagged instruments as instruments, to increase rank of instrument, (Thams et al. 2021).

• Causal solution: $Y - X\beta \perp I$. IV require $\dim(I) \geq \dim(X)$. Image data: $\dim(X) = 1024^2$.

- Causal solution: $Y X\beta \perp I$. IV require $\dim(I) \geq \dim(X)$. Image data: $dim(X) = 1024^2$.
- Instead, we can penalize our regression

$$\hat{\beta} \in \arg\min_{\beta} \| \mathbf{Y} - \mathbf{X}\beta \|^2 + \lambda \| \operatorname{cov}(\mathbf{Y} - \mathbf{X}\beta, \mathbf{I}) \|^2,$$

Rothenhäusler et al. 2021 show that $\hat{\beta}$ generalizes well (but less than with full causal knowledge).

Detour 2: Generalization with proxy variables

In Oberst et al. 2021, we show that

- If I is unobserved, but we have a noisy measurement (proxy) W of I, we still obtain generalization, although less.
- If we observe two proxies W, Z of I, we generalize as well as with I itself.

Detour 3: Using environments to generalize in decision making

In Saengkyongam et al. 2021,

- We develop invariant policies, that is policies that do not use confounded features.
- To do so, we use exogeneous environments, e.g. hospitals.
- Under assumptions, we generalize to new environments.

Conclusions

• If strong exogeneity is present, we can estimate causal effects 🗊

- If weak exogeneity is present, we can not estimate causal effects. but still get methods that generalize better 🗔
- We considered linear effects, but much can be generalized to non-linear functions (Christiansen et al. 2021)

References I

- Christiansen, Rune, Niklas Pfister, Martin Emil Jakobsen, Nicola Gnecco, and Jonas Peters (2021). "A causal framework for distribution generalization". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence*, pp. 1–1.
- Imbens, Guido W and Donald B Rubin (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press.
 - Oberst, Michael, Nikolaj Thams, Jonas Peters, and David Sontag (2021). "Regularizing towards Causal Invariance: Linear Models with Proxies". In: *Proceedings of the 38th International Conference on Machine Learning*. Vol. 139. Proceedings of Machine Learning Research. PMLR, pp. 8260–8270.
 - Rothenhäusler, Dominik, Nicolai Meinshausen, Peter Bühlmann, and Jonas Peters (2021). "Anchor regression: Heterogeneous data meet causality". In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 83.2, pp. 215–246.
- Saengkyongam, Sorawit, Nikolaj Thams, Jonas Peters, and Niklas Pfister (2021). "Invariant Policy Learning: A Causal Perspective". In: arXiv preprint arXiv:2106.00808.

References II

Thams, Nikolaj, Rikke Nielsen, Sebastian Weichwald, and Jonas Peters (2021).

"Instrumental Time Series: Correcting for the Past, Identifiability, and Learning". In: Work in progress.

Questions?