LECTURE 1: BASIC ALGEBRA

Juan Dodyk

WashU

1

PLAN

Number sets

- 1. Natural Numbers
- 2. Integers
- 3. Rationals
- 4. Reals

Operations on numbers

- 1. Sum, Subtraction, Multiplication, Division
- 2. Exponentiation
- 3. Exp and Log

POTATO AND KIKI

Numbers

Natural numbers. Denoted by $\mathbb{N} = \{1, 2, \ldots\}$. Sometimes people include 0.

Integers. Denoted by $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}.$

Rational numbers. These are fractions like $-\frac{31}{13}$ and 2. Denoted by

$$\mathbb{Q} = \left\{ \frac{n}{m} : n, m \in \mathbb{Z}, m \neq 0 \right\}.$$

We can write rational numbers as

$$n.d_1...d_k \overline{d_{k+1}...d_l} = n.d_1...d_k \underline{d_{k+1}...d_l} \underline{d_{k+1}...d_l}...,$$

with $n \in \mathbb{Z}$ and digits $d_1, \ldots, d_l \in \{0, \ldots, 9\}$. E.g., $\frac{1}{2} = 0.5 = 0.4\overline{9}$ and $\frac{10511}{4950} = 2.12\overline{34}$.

REAL NUMBERS

The set of real numbers \mathbb{R} is the "completion" of \mathbb{Q} in some sense. Why do we want this?

The length of the long side of that triangle is $\sqrt{2}$, which is not a rational number.

We can write real numbers as

$$n.d_1d_2\dots$$

for any $n \in \mathbb{Z}$ and any infinite list of digits $d_1, d_2, \ldots \in \{0, \ldots, 9\}$.

We can visualize real numbers as points in an infinite line:

OPERATIONS

Let's talk about the operations $+, -, \times, \frac{\bullet}{\bullet}$ (division) and \bullet^{\bullet} (exponentiation).

For any $x, y \in \mathbb{R}$ we can obtain x + y, x - y, $x \times y$ (also denoted by xy or $x \cdot y$), and, if $y \neq 0$, also $\frac{x}{y}$ (also denoted by x/y).

We can perform these operations within \mathbb{Q} if $x, y \in \mathbb{Q}$.

But in general we cannot divide within \mathbb{Z} , e.g., $\frac{1}{2} \notin \mathbb{Z}$. And we cannot subtract arbitrary $x, y \in \mathbb{N}$ within \mathbb{N} , e.g., $1 - 2 \notin \mathbb{N}$.

We can think of \mathbb{Z} as the minimal extension of \mathbb{N} in which we can subtract, and \mathbb{Q} as the minimal extension of \mathbb{Z} in which we can also divide by nonzero numbers.

EXPONENTIATION

For $x \neq 0$ we define $\mathbf{x^0} = 1$ and $\mathbf{x^n} = \underbrace{x \times \cdots \times x}_{n \text{ times}}$ for any $n \in \mathbb{N}$. We define $\mathbf{x^{-n}} = 1/x^n$.

QUESTION 1

Convince yourself that $x^{n+m} = x^n \times x^m$ and $(x^n)^m = x^{n \times m}$ for any $x \neq 0$ and $n, m \in \mathbb{Z}$.

QUESTION 2

Convince yourself that $(xy)^n = x^ny^n$ and $(x/y)^n = x^n/y^n$ for any $x, y \neq 0$ and $n \in \mathbb{Z}$.

7

EXPONENTIATION

If x > 0 and $n \in \mathbb{N}$ we define $x^{\frac{1}{n}}$ (or $\sqrt[n]{x}$) as the number y > 0 that satisfies $y^n = x$.

If x > 0 and $q \in \mathbb{Q}$ with $q = \frac{n}{m}$, $n \in \mathbb{Z}$, $m \in \mathbb{N}$ we define \mathbf{x}^q as $(x^n)^{\frac{1}{m}}$.

For example, $4^{\frac{1}{2}} = \sqrt{4} = 2$, since $4 = 2^2$, and $(\frac{1}{125})^{-\frac{1}{3}} = 5$ since $5^{-3} = \frac{1}{125}$.

If x > 0 and $r \in \mathbb{R}$ we can define x^r as the number that can be approximated by x^q if we take $q \in \mathbb{Q}$ very close to r. (We will make this precise later.)

We can define $0^r = 0$ if r > 0. (Why don't we want to define 0^r for $r \leq 0$?)

What about x < 0? There is no $y \in \mathbb{R}$ such that $y^2 = -1$, so we can't define $(-1)^{\frac{1}{2}}$ in \mathbb{R} . But we can define $x^{\frac{1}{3}}$ for any $x \in \mathbb{R}$ as the number y such that $y^3 = x$, e.g., $(-1)^{\frac{1}{3}} = -1$.

QUESTION 3

Why?

$x^{\frac{1}{2}}$ AND $x^{\frac{1}{3}}$

INDEXED SUMS

If we have a list of numbers x_1, \ldots, x_n we denote their sum by

$$\sum_{i=1}^{n} x_i = x_1 + \dots + x_n.$$

In general $\sum_{i=a}^{b}$ expression is the sum of expression with i replaced by a, then by a+1, etc, until i is replaced by b.

We can also write $\sum_{x \in A}$ expression, which is the sum of *expression* with x replaced by each member of the set A.

Example:

$$\sum_{\substack{n \in \mathbb{N} \\ n \leqslant 6 \\ n \text{ odd}}} (n+1)^2 = (1+1)^2 + (3+1)^2 + (5+1)^2.$$

INDEXED PRODUCTS

If we have a list of numbers x_1, \ldots, x_n we denote their product by

$$\prod_{i=1}^n x_i = x_1 \times \cdots \times x_n.$$

QUESTION 4

Convince yourself that

$$1. \quad \sum_{i=1}^{n} x = nx,$$

3.
$$\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i,$$
 4.
$$\prod_{i=1}^{n} \frac{x_i}{y_i} = \frac{\prod_{i=1}^{n} x_i}{\prod_{i=1}^{n} y_i} \text{ if } y_i \neq 0.$$

$$2. \quad \prod_{i=1}^{n} x = x^n,$$

4.
$$\prod_{i=1}^{n} \frac{x_i}{y_i} = \frac{\prod_{i=1}^{n} x_i}{\prod_{i=1}^{n} y_i}$$
 if $y_i \neq 0$

Order of Operations

We evaluate exponentiations first, then divisions and multiplications, then subtractions and sums.

Example: if x = -1, n = 1,

$$1 + 2 \times x^{3} - 3 \times \frac{4^{n}}{2} = 1 + 2 \times (-1)^{3} - 3 \times \frac{4^{1}}{2}$$
$$= 1 + 2 \times (-1) - 3 \times \frac{4}{2}$$
$$= 1 + (-2) - 6$$
$$= -7.$$

PARENTHESES

We use parentheses to break this order. We evaluate first what's in the parentheses. Example: if x = -1, n = 1,

$$(1+2) \times (x^3 - 3) \times \frac{4^n}{2} = (1+2) \times ((-1)^3 - 3) \times \frac{4^1}{2}$$
$$= 3 \times ((-1) - 3) \times 2$$
$$= 3 \times (-4) \times 2$$
$$= -24.$$

People sometimes use brackets $[\ldots]$ and curly braces $\{\ldots\}$ as parentheses. For example,

$$\sum_{i=1}^{n} \left[-\frac{1}{2\sigma} \left(y_i - \sum_{k=1}^{K} \beta_k x_{ik} \right)^2 \right] + \left\{ -\lambda \left[\sum_{k=1}^{K} (\beta_k)^2 + \sum_{k=1}^{K} |\beta_k| \right] \right\}$$

EXP AND LOG

Euler's constant is the irrational number e = 2.71828... defined as

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

We define $\exp(x) = e^x$ for any $x \in \mathbb{R}$, and $\log(x)$ for any x > 0 as the number y such that $\exp(y) = x$. Some people call "natural logarithm" what I call log, and write \ln instead. Plot:

EXP AND LOG

QUESTION 5

Convince yourself that for any $x, y, a, b \in \mathbb{R}$ such that a, b > 0,

1.
$$\exp(x+y) = \exp(x) \exp(y)$$
, 2. $\log(ab) = \log(a) + \log(b)$,

$$2. \quad \log(ab) = \log(a) + \log(b)$$

3.
$$\exp(xy) = \exp(x)^y$$
,

4.
$$\log(a^x) = x \log(a)$$
,

5.
$$e^{\log(a)} = a$$
,

6.
$$\log(a^x) = x \log(a)$$
.

If a, x > 0 and $a \neq 1$ we define $\log_a(x)$ as the number y such that $a^y = x$.

QUESTION 6

Convince yourself that for every $a, x \in \mathbb{R}$ such that a, x > 0 and $a \neq 1$ we have

$$\log_a(x) = \frac{\log(x)}{\log(a)}.$$

SIMPLIFY EXPRESSIONS

QUESTION 7

Simplify the following expressions:

1.
$$\frac{2x/6}{4/3x}$$

2.
$$\frac{2^x 4^y}{\sqrt{4^{x+y} 8}}$$

3.
$$\log(2) + \log(1/2)$$

4.
$$\log_5(125)$$

5.
$$\log \left\{ \prod_{i=1}^{n} \left[\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x_i - \mu)^2\right) \right] \right\}$$

LUNCH BREAK

