物理化学实验报告

学号: 实验日期: <u>2019 年 4 月 25 日</u>

实验名称: 乙酸乙酯皂化反应速率常数的测定

一、 实验目的

(一) 了解测定化学反应速率常数的一种物理方法——电导法

(二) 测定乙酸乙酯皂化反应(二级反应)的速率常数

(三) 掌握电导率仪和恒温槽的使用方法

二、 实验原理

1、对于二级反应: A+B→产物,如果A,B两物质起始浓度相同,均为a,则反应速率的表示式为

$$\frac{dx}{dt} = K(a - x)^2$$

式中x为时间t反应物消耗掉的摩尔数,上式定积分得:

$$K = \frac{1}{ta} \cdot \frac{x}{a - x}$$

以 $\frac{x}{a-x} \sim t$ 作图若所得为直线,证明是二级反应。并可以从直线的斜率求出k。

所以在反应进行过程中,只要能够测出反应物或产物的浓度,即可求得该反应的速率常数。如果知道不同温度下的速率常数 $k(T_1)$ 和 $k(T_2)$,按Arrhenius公式计算出该反应的活化能E

$$E_a = ln \frac{K(T_2)}{K(T_1)} \times R\left(\frac{T_1 T_2}{T_2 - T_1}\right)$$

2、乙酸乙酯皂化反应是二级反应,其反应式为:

$$CH_3COOC_2H_5 + Na^+ + OH^- \longrightarrow CH_3COO^- + Na^+ + C_2H_5OH$$

OHT电导率大,CH₃COO⁻电导率小。因此,在反应进行过程中,电导率大的OHT逐渐为电导率小的CH₃COO⁻所取代,溶液电导率有显著降低。对稀溶液而言,强电解质的电导率*L*与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电解质电导率之和。如果乙酸乙酯皂化在稀溶液下反应就存在如下关系式:

$$L_0 = A_1 a$$

$$L_{\infty} = A_2 a$$

$$L_t = A_1(a - x) + A_2 x$$

 A_1 , A_2 是与温度、电解质性质,溶剂等因素有关的比例常数, L_0 , L_∞ 分别为反应开始和终了时溶液的总电导率。 L_t 为时间t时溶液的总电导率。由三式可得:

$$x = \left(\frac{L_0 - L_t}{L_0 - L_\infty}\right) \cdot a$$

代入得:

$$K = \frac{1}{t \cdot a} \left(\frac{L_0 - L_t}{L_t - L_{\infty}} \right)$$

重新排列即得:

$$L_t = \frac{1}{a \cdot k} \frac{L_0 - L_t}{t} + L_{\infty}$$

三、 仪器和药品

DDS-IIC型数字电导率仪、DJS-1型铂黑电极(即电导池)、混合反应器、秒表、洗耳球、大试管 1 个、移液管 3 个、0.02mol / L 乙酸乙酯溶液、0.02mol / L 氢氧化钠溶液。

四、 实验数据记录

实验温度 30° C 反应物初始浓度 $c_0 = 0.01 \, mol \cdot L^{-1}$

反应开始时 $\kappa_0 = 2.20 \times 10^3 \mu S \cdot cm^{-1}$

序号	反应时间	电导率	$\frac{\kappa_0 - \kappa_t}{\mu S \cdot cm^{-1}}$	$(\kappa_0 - \kappa_t)/t$
	t / min	$\kappa_t/(\mu S \cdot cm^{-1})$	$\mu S \cdot cm^{-1}$	$\mu S \cdot cm^{-1} \cdot min^{-1}$
1	2	1958	242	121.00
2	4	1824	376	94.00
3	6	1678	522	87.00
4	8	1581	619	77.38
5	10	1504	696	69.60
6	12	1452	748	62.33
7	14	1401	799	57.07
8	16	1361	839	52.44
9	18	1325	875	48.61
10	20	1294	906	45.30
11	24	1246	954	39.75
12	28	1218	982	35.07
13	32	1192	1008	31.50
14	36	1163	1037	28.81
15	40	1121	1079	26.98
16	45	1100	1100	24.44
17	50	1072	1128	22.56
18	55	1049	1151	20.93

19 60 1023	1177	19.62
------------	------	-------

实验温度 40°C 反应物初始浓度 $c_0=0.01\ mol\cdot L^{-1}$

反应开始时 $\kappa_0 = 2.31 \times 10^3 \mu S \cdot cm^{-1}$

序号	反应时间	电导率	$\kappa_0 - \kappa_t$	$(\kappa_0 - \kappa_t)/t$
	t / min	$\kappa_t/(\mu S \cdot cm^{-1})$	$\overline{\mu S \cdot cm^{-1}}$	$\frac{(\kappa_0 - \kappa_t)/t}{\mu S \cdot cm^{-1} \cdot min^{-1}}$
1	2	2130	180	90.00
2	4	1947	363	90.75
3	6	1779	531	88.50
4	8	1684	626	78.25
5	10	1605	705	70.50
6	12	1536	774	64.50
7	14	1484	826	59.00
8	16	1455	855	53.44
9	18	1420	890	49.44
10	20	1387	923	46.15
11	24	1338	972	40.50
12	28	1308	1002	35.79
13	32	1270	1040	32.50
14	36	1252	1058	29.39
15	40	1232	1078	26.95
16	45	1207	1103	24.51
17	50	1207	1103	22.06

五、 实验数据处理

使用 MATLAB 分别拟合曲线得

拟合结果为 $\kappa_t = [(\kappa_0 - \kappa_t)/t] \times 9.323 + 872.2$

$$k = \frac{1}{9.323 \times 0.01} = 10.73 \ L \cdot mol^{-1} \cdot min^{-1}$$

拟合结果为 $\kappa_t = [(\kappa_0 - \kappa_t)/t] \times 6.67 + 895.7$

$$k = \frac{1}{6.67 \times 0.01} = 14.99 L \cdot mol^{-1} \cdot min^{-1}$$

反应活化能:

$$E_a = ln \frac{K(T_2)}{K(T_1)} \times R\left(\frac{T_1T_2}{T_2 - T_1}\right) = ln \frac{14.99}{10.73} \times 8.314\left(\frac{303.15 \times 313.15}{10}\right) = 26.4 KJ \cdot mol^{-1}$$