Building Llama3

TA: Jason, Tommy

LLM design variations

- Architecture:
 - o encoder-decoder: Flan-T5, BART
 - o decoder-only: GPT-series, Llama-series, PaLM
 - mixture of experts: Mixtral (build on decoder)

Llama3 architecture

- When autoregrssively generating the next token, decoder can only see preceding tokens.
- Differences between Llama3 and traditional decoder model
 - Rotary positional embedding
 - Grouped Query-attention
 - SwiGLU

design variants -normalization

- goal: scale features to a controlled range to stabilize the training of NN
- methods:
 - LayerNorm: normalize across feature dimensions
 - RMSNorm: simplification of LN, faster
 - DeepNorm: learnable weight instead of simple residual, best for very deep NN (>100 layers)
- position:
 - pre
 - post
 - sandwich
- Llama3: pre+RMS Norm

TABLE 5: Model cards of several selected LLMs with public configuration details. Here, PE denotes position embedding, #L denotes the number of layers, #H denotes the number of attention heads, d_{model} denotes the size of hidden states, and MCL denotes the maximum context length during training.

Model	Category	Size	Normalization	PE	Activation	Bias	#L	#H	d_{model}	MCL
GPT3 [55]	Causal decoder	175B	Pre LayerNorm	Learned	GeLU	✓	96	96	12288	2048
PanGU- α [84]	Causal decoder	207B	Pre LayerNorm	Learned	GeLU	\checkmark	64	128	16384	1024
OPT [90]	Causal decoder	175B	Pre LayerNorm	Learned	ReLU	\checkmark	96	96	12288	2048
PaLM [56]	Causal decoder	540B	Pre LayerNorm	RoPE	SwiGLU	×	118	48	18432	2048
BLOOM [78]	Causal decoder	176B	Pre LayerNorm	ALiBi	GeLU	\checkmark	70	112	14336	2048
MT-NLG [113]	Causal decoder	530B	· -	-	-	-	105	128	20480	2048
Gopher [64]	Causal decoder	280B	Pre RMSNorm	Relative		-	80	128	16384	2048
Chinchilla [34]	Causal decoder	70B	Pre RMSNorm	Relative	-	-	80	64	8192	-
Galactica [35]	Causal decoder	120B	Pre LayerNorm	Learned	GeLU	×	96	80	10240	2048
LaMDA [68]	Causal decoder	137B	· <u>-</u>	Relative	GeGLU	-	64	128	8192	_
Jurassic-1 [107]	Causal decoder	178B	Pre LayerNorm	Learned	GeLU	\checkmark	76	96	13824	2048
LLaMA [57]	Causal decoder	65B	Pre RMSNorm	RoPE	SwiGLU	×	80	64	8192	2048
LLaMA 2 [99]	Causal decoder	70B	Pre RMSNorm	RePE	SwiGLU	×	80	64	8192	4096
Falcon [141]	Causal decoder	40B	Pre LayerNorm	RoPE	GeLU	×	60	64	8192	2048
GLM-130B [93]	Prefix decoder	130B	Post DeepNorm	RoPE	GeGLU	\checkmark	70	96	12288	2048
T5 [82]	Encoder-decoder	11B	Pre RMŚNorm	Relative	ReLU	×	24	128	1024	512

design variants -activation functions

- usually used in FFN, allow it to learn complex patterns with non-linear transforms
- methods:
 - Direct non-linear transform
 - GLU (gated linear units): combines non-linear transform and linear transform

$$\mathrm{GLU}(x, W, V, b, c) = \sigma(xW + b) \otimes (xV + c)$$

variants: swish function, gaussian error function

- Llama3: SwiGLU
 - implementations: W, V are learned wights, β is pre-defined parameter

$$SwiGLU(x, W, V, b, c, \beta) = Swish_{\beta}(xW + b) \otimes (xV + c)$$

 $swish(x) = x \operatorname{sigmoid}(\beta x)$

Table 3: SuperGLUE Language-Understanding Benchmark [Wang et al., 2019] (dev).

	Score	BoolQ	$^{\mathrm{CB}}$	$^{\mathrm{CB}}$	CoPA	MultiRC	MultiRC	ReCoRD	ReCoRD	RTE	WiC	WSC
	Average	Acc	F1	Acc	Acc	F1	$\mathbf{E}\mathbf{M}$	F1	$\mathbf{E}\mathbf{M}$	Acc	Acc	Acc
$\overline{ ext{FFN}_{ ext{ReLU}}}$	72.76	80.15	83.37	89.29	70.00	76.93	39.14	73.73	72.91	83.39	67.71	77.88
$\mathrm{FFN}_{\mathrm{GELU}}$	72.98	80.64	86.24	91.07	74.00	75.93	38.61	72.96	72.03	81.59	68.34	75.96
$\mathrm{FFN}_{\mathrm{Swish}}$	72.40	80.43	77.75	83.93	67.00	76.34	39.14	73.34	72.36	81.95	68.18	81.73
$\overline{ ext{FFN}_{ ext{GLU}}}$	73.95	80.95	77.26	83.93	73.00	76.07	39.03	74.22	73.50	84.12	67.71	87.50
$\mathrm{FFN}_{\mathrm{GEGLU}}$	73.96	81.19	82.09	87.50	72.00	77.43	41.03	75.28	74.60	83.39	67.08	83.65
$\mathrm{FFN}_{\mathrm{Bilinear}}$	73.81	81.53	82.49	89.29	76.00	76.04	40.92	74.97	74.10	82.67	69.28	78.85
$\mathrm{FFN}_{\mathrm{SwiGLU}}$	74.56	81.19	82.39	89.29	73.00	75.56	38.72	75.35	74.55	85.20	67.24	86.54
$\mathrm{FFN}_{\mathrm{ReGLU}}$	73.66	80.89	86.37	91.07	67.00	75.32	40.50	75.07	74.18	84.48	67.40	79.81
[Raffel et al., 2019]	71.36	76.62	91.22	91.96	66.20	66.13	25.78	69.05	68.16	75.34	68.04	78.56
ibid. stddev.	0.416	0.365	3.237	2.560	2.741	0.716	1.011	0.370	0.379	1.228	0.850	2.029
ibid. stddev.	0.416	0.365	3.237	2.560	2.741	0.716	1.011	0.370	0.379	1.228	0.850	2.029

TABLE 5: Model cards of several selected LLMs with public configuration details. Here, PE denotes position embedding, #L denotes the number of layers, #H denotes the number of attention heads, d_{model} denotes the size of hidden states, and MCL denotes the maximum context length during training.

Model	Category	Size	Normalization	PE	Activation	lias	#L	#H	d_{model}	MCL
GPT3 [55]	Causal decoder	175B	Pre LayerNorm	Learned	GeLU	✓	96	96	12288	2048
PanGU- α [84]	Causal decoder	207B	Pre LayerNorm	Learned	GeLU	\checkmark	64	128	16384	1024
OPT [90]	Causal decoder	175B	Pre LayerNorm	Learned	ReLU	\checkmark	96	96	12288	2048
PaLM [56]	Causal decoder	540B	Pre LayerNorm	RoPE	SwiGLU	×	118	48	18432	2048
BLOOM [78]	Causal decoder	176B	Pre LayerNorm	ALiBi	GeLU	\checkmark	70	112	14336	2048
MT-NLG [113]	Causal decoder	530B	-	-	-	-	105	128	20480	2048
Gopher [64]	Causal decoder	280B	Pre RMSNorm	Relative	-	-	80	128	16384	2048
Chinchilla [34]	Causal decoder	70B	Pre RMSNorm	Relative	-	-	80	64	8192	-
Galactica [35]	Causal decoder	120B	Pre LayerNorm	Learned	GeLU	×	96	80	10240	2048
LaMDA [68]	Causal decoder	137B	-	Relative	GeGLU	-	64	128	8192	-
Jurassic-1 [107]	Causal decoder	178B	Pre LayerNorm	Learned	GeLU	\checkmark	76	96	13824	2048
LLaMA [57]	Causal decoder	65B	Pre RMSNorm	RoPE	SwiGLU	×	80	64	8192	2048
LLaMA 2 [99]	Causal decoder	70B	Pre RMSNorm	RePE	SwiGLU	×	80	64	8192	4096
Falcon [141]	Causal decoder	40B	Pre LayerNorm	RoPE	GeLU	×	60	64	8192	2048
GLM-130B [93]	Prefix decoder	130B	Post DeepNorm	RoPE	GeGLU	\checkmark	70	96	12288	2048
T5 [82]	Encoder-decoder	11B	Pre RMSNorm	Relative	ReLU	×	24	128	1024	512

design variants -positional embedding

- goal: injects position information for modling language sequence
- methods:
 - absolute position embedding: can't generalize to unseen positions, no relative information
 - relative position embedding: extra delay, can't use KV cache
 - o rotary position embedding: rotate the embedding according to its position and depth(dimension)
 - relative information is indicated by angles
 - can use KV cache
 - Alibi position encoding: better extrapolation ability (generalize to unseen long sequence)
- Llama3: rotary positioin embedding

RoPE detailed

$$f_{\{q,k\}}(\boldsymbol{x}_{m},m) = \begin{pmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{pmatrix} \begin{pmatrix} W_{\{q,k\}}^{(11)} & W_{\{q,k\}}^{(12)} \\ W_{\{q,k\}}^{(21)} & W_{\{q,k\}}^{(22)} \end{pmatrix} \begin{pmatrix} x_{m}^{(1)} \\ x_{m}^{(2)} \end{pmatrix}$$

• Rotate an embedding based on its position

$$f_{\{q,k\}}(\boldsymbol{x}_{m},m) = \begin{pmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{pmatrix} \begin{pmatrix} W_{\{q,k\}}^{(11)} & W_{\{q,k\}}^{(12)} \\ W_{\{q,k\}}^{(21)} & W_{\{q,k\}}^{(22)} \end{pmatrix} \begin{pmatrix} x_{m}^{(1)} \\ x_{m}^{(2)} \end{pmatrix}$$

RoPE detailed

- 2D rotation
- The rotation angle depends on the dimension depth and the position
- Steps:
 - 1. project embedding X by Query/Value matrix (Wq, Wk)
 - 2. split Xq, Xk to 2-d embedding
 - 3. rotate 2-d embedding by mΘi (b: rope theta) rotate slower in deeper dimension

$$\Theta = \{\theta_i = b^{-2(i-1)/d} | i \in \{1, 2, \dots, d/2\} \}.$$

Multi-dimension

Rotation implementation

- 1. Matrix multiplication
- 2. Complex number multiplication: turn 2-d embedding and rotation matrix into complex numbers, multiplication of complex numbers equals to rotation operation.

Extrapolation of RoPE

Reference: https://gradient.ai/blog/scaling-rotational-embeddings-for-long-context-language-models

Attention weight between the tokens corresponding to "Life" and "short" 0.17 | 0.13 | 0.18 | 0.16 | 0.15 | 0.18 0.03 0.68 0.02 0.08 0.14 0.02 0.19 0.06 0.25 0.14 0.11 0.23 0.15 0.21 0.14 0.16 0.17 0.14 0.13 0.27 0.11 0.16 0.18 0.12 desert first 0.19 0.02 0.31 0.11 0.07 0.27 In the row for corresponding to "Life", mask out all words that come after "Life" sh

Multi-head attention (brief recap)

 $Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{T}})$

1) This is our 2) We embed input sentence* each word*

Thinking Machines 3) Split into 8 heads. We multiply X or R with weight matrices

4) Calculate attention using the resulting O/K/V matrices

5) Concatenate the resulting Z matrices, then multiply with weight matrix Wo to produce the output of the layer

Wo

des

	Life	<u>.s</u>	short	eat	desert	first	
Life	0.17	0.13	0.18	0.16	0.15	0.18	
is	0.03	0.68	0.82	0.08	0.14	0.02	
ort	0.19	0.06	0.25	0.14	0.11	0.23	
eat	0.15	0.21	0.14	0.16	0.17	0.14	
sert	0.13	0.27	0.11	0.16	0.18	0.12	
first	0.19	0.02	0.31	0.11	0.07	0.27	

Mask implementation

<TODO> explain -inf and softmax yields 0 prob

Grouped-query attention

Efficiency and Accuracy tradoff Several query share the same key/value For Llama3, 32 heads are divided into 8 groups (4 heads per group)

Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query attention shares single key and value heads across all query heads. Grouped-query attention instead shares single key and value heads for each *group* of query heads, interpolating between multi-head and multi-query attention.

Other attention optimizations

Step 1

Without cache

- KV cache: cache past keys and values of previous tokens
- Flash attention:
 Hardware optimization fragment
 attention computation into blocks to
 speed up memory IO.
- Paged attention: memory-efficient kv caching

Values that will be taken from cache

Finally, generate the next token

select a token based on an designed decoding algorithm

Lab time!

Github: https://github.com/Huan80805/MediaTek2024

- 1. Search: colab
- 2. Open colab
- 3. Login your google account
- 4. Choose Github

Search the github url: https://github.com/Huan80805/MediaTek2024

不要點選"包括私人存放區"

choose "0717_student.ipynb"

If successful, you should see this

登入後確認執行按鈕是否出現, 按play選擇仍要執行

Set up

Setup 1: pip install 安裝相關套件

Set up

!pip install --quiet sentencepiece tiktoken torch blobfile matplotlib huggingface_hub umap-learn ipympl

1.1/1.1 MB 9.1 MB/s eta 0:00:00

Setup 2: 在notebook上登入huggingface

Setup 3: 下載模型

若申請Llama3 access失敗... 請改用非官方的權重 "NousResearch/Meta-Llama-3-8B" 此備案不需要access token, 在下載模型時將 "meta-llama/Meta-Llama-3-8B"替換成"NousResearch/Meta-Llama-3-8B"即可

TODO 1 - implement self-attention

1-1: QK matrix multiplication

1-2: create attention mask

```
torch.Size([10, 10])
tensor([[ 11.4479, -4.1105, -3.8678, -8.4197, -13.4337, -19.9065, -13.0498,
        -12.5076, -9.7084, -15.0782],
        [25.7426, -3.4930, -27.2487, -32.8046, -47.2528, -55.9145, -38.3004,
        -32.3618, -20.9183, -42.5390],
        [21.9852, -47.8893, -5.4096, -10.5724, -39.2348, -73.6150, -71.2243,
        -76.7680, -47.8613, -47.5007],
        [7.7314, -80.2166, -34.3020, -13.2043, -23.2753, -48.1211, -66.5193,
        -88.0660, -57.5897, -58.0146],
        [8.5806, -48.5645, -31.9186, -19.7255, -10.6553, -15.2242, -26.0849,
        -40.0397. -39.4801. -54.32711.
        [4.0151, -52.8908, -55.1465, -47.4607, -37.9957, -19.9962, -19.3024,
        -23.7862, -41.0774, -73.0196],
        [ 9.0454, -36.0905, -33.6601, -34.3695, -34.7710, -31.2113, -6.9521,
         -7.8172, -8.0342, -41.5321],
        [ 9.9245, -21.5995, -27.5412, -27.4226, -34.1755, -30.7363, -14.1517,
          0.3500, 5.0962, -18.9832],
        [-0.3087, -45.6346, -24.5328, -20.4884, -33.3145, -31.9410, -23.9552,
        -16.9752, 10.6239, -15.9402],
        [-3.6735, -73.1409, -43.8472, -32.9144, -47.6157, -48.3189, -49.4618,
        -47.7429, 2.0054, -5.7737]], grad fn=<MmBackward0>)
```

```
tensor([[0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], [0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], [0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf], [0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf], [0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf], [0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf], [0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf], [0., 0., 0., 0., 0., 0., 0., -inf, -inf], [0., 0., 0., 0., 0., 0., 0., 0., -inf], [0., 0., 0., 0., 0., 0., 0., 0., 0.]])
```

TODO 1 - implement self-attention

[3.4027e-03, 2.3111e-33, 1.2176e-20, 6.8001e-16, 2.8124e-22, 1.3897e-22,

4.4254e-23, 2.4650e-22, 9.9609e-01, 4.1771e-04]], dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>)

1-3: softmax to get probability

1-4: compute attention output

```
→ tensor([[1.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
                                                                                  torch.Size([10, 128])
            0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00],
                                                                                  tensor([[ 0.0154,  0.0008,  0.0334, ..., -0.0248, -0.0028,
                                                                                                                                                       0.0649].
           [1.0000e+00, 2.0073e-13, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
                                                                                             0.0121, -0.0035, 0.0278, \ldots, -0.0243, -0.0012,
                                                                                                                                                       0.05541.
            0.0000e+00. 0.0000e+00. 0.0000e+00. 0.0000e+001.
                                                                                            [0.0150, 0.0031, 0.0327, ..., -0.0228, 0.0018,
                                                                                                                                                       0.0618].
           [1.0000e+00, 4.4990e-31, 1.2648e-12, 0.0000e+00, 0.0000e+00, 0.0000e+00,
            0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00],
           [1.0000e+00, 6.3366e-39, 5.5565e-19, 8.0763e-10, 0.0000e+00, 0.0000e+00,
                                                                                            [ 0.0084, 0.0073, 0.0205, ..., -0.0197, -0.0087, 0.0286],
            0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00],
                                                                                              0.0057, 0.0102, 0.0378, ..., -0.0033, -0.0090,
           [1.0000e+00, 1.5187e-25, 2.5750e-18, 5.0804e-13, 4.4238e-09, 0.0000e+00,
                                                                                             0.0195, -0.0034, 0.0110, \ldots, -0.0151, 0.0181, 0.0493]
            0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00],
                                                                                          dtvpe=torch.bfloat16, grad fn=<MmBackward0>)
           [1.0000e+00, 1.9306e-25, 2.0296e-26, 4.4047e-23, 5.6921e-19, 3.7289e-11,
            0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00],
           [1.0000e+00, 2.4987e-20, 2.8460e-19, 1.3976e-19, 9.3597e-20, 3.2933e-18,
            1.1269e-07, 0.0000e+00, 0.0000e+00, 0.0000e+00],
           [1.0000e+00, 2.0428e-14, 5.3560e-17, 6.0282e-17, 7.0304e-20, 2.1955e-18,
            3.5016e-11, 6.9618e-05, 0.0000e+00, 0.0000e+00],
           [1.7881e-05, 3.6997e-25, 5.3776e-16, 3.0864e-14, 8.2586e-20, 3.2695e-19,
            9.5757e-16, 1.0303e-12, 1.0000e+00, 0.0000e+00],
```

Decoding algorithms

LLM can predict the next token, but what we want is a whole sequence What decoding does is choose the suitable next token in each step and autoregressively do so, until reaching EOS

Common decoding strategies:

- 1. greedy decoding
- 2. beam search
- 3. sampling top-p sampling top-k sampling

Greedy decoding

Pick the most probable token in each step

feature:

- 1. often repeat itself
- e.g. I am who I am who I am ...
- 2. some times miss the most probable
- "sequence"
- e.g. The dog has v.s. The nice woman

Beam search

Keep top-k candidates (k is called beam size), choose the most probable sequence in the final step

feature:

- 1. Still repeat itself, but better when compared with greedy decoding.
- 2. Sometimes "repetition penalty" is used to improve quality

Sampling

$$P(x_i|x_{1:i-1}) = \frac{\exp(u_i/t)}{\sum_j \exp(u_j/t)}$$

Based on current token probability, pick the next token randomly

features:

- 1. increase the generation diversity, particularly suitable for open-ended generation
- 2. every token can be selected → may accidentally select weird token
- 3. "temperature" is used to adjust probability (lower temperature \rightarrow prefer tokens with higher probability)

Sampling - top-k sampling

Randomly pick the next token, but only from top-k tokens When k is large, the text is more diverse, the quality is not ensured.

Sampling - top-p sampling (nucleus sampling)

Randomly pick the next token, but only from the most probable tokens whose cumulative probability sum more than p

Judge tokens based on their probability instead of the count

TODO 2- greedy decoding

```
[74] print(tokenizer.decode(tokens))
```

→ <|begin_of_text|>Life was like a box of chocolates. You never know what you are

補充資料

- Transformer walkthrough with Colab:
 https://github.com/markriedl/transformer-walkthrough/tree/main
- Decoding strategies implementation with Colab:
 https://colab.research.google.com/drive/19CJIOS5II29g-B3dziNn93Enez1yiHk2
- Survey of LLMs (~2023.12): https://arxiv.org/abs/2303.18223