【2019年宝山一模20题】

- 20. 已知椭圆 Γ : $\frac{x^2}{4} + y^2 = 1$ 的左、右焦点为 F_1 、 F_2 .
- (1) 求以 F_1 为焦点,原点为顶点的抛物线方程;
- (2) 若椭圆 Γ 上点M满足 $\angle F_1 M F_2 = \frac{\pi}{3}$,求M的纵坐标 y_M ;
- (3)设N(0,1),若椭圆 Γ 上存在两不同点P、Q满足 $\angle PNQ=90^{\circ}$,证明直线PQ过定点,并求该定点的坐标.

【2019 年松江一模 20 题】

- 20. 已知曲线 Γ 上的任意一点到两定点 $F_1(-1,0)$ 、 $F_2(1,0)$ 的距离之和为 $2\sqrt{2}$,直线l交曲线 Γ 于A、B两点,O为坐标原点.
- (1) 求曲线Γ的方程;
- (2) 若l不过点O且不平行于坐标轴,记线段AB的中点为M,求证:直线OM的斜率与l的斜率的乘积为定值;
- (3) 若 $OA \perp OB$, 求 $\triangle AOB$ 面积的取值范围.

【2019 年崇明一模 20 题】

- 20. 已知椭圆 Γ : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) , B_1 、 B_2 分别是椭圆短轴的上下两个端点, F_1 是椭圆左焦点, P 是椭圆上异于点 B_1 、 B_2 的点, \triangle $B_1F_1B_2$ 是边长为 4 的等边三角形.
 - (1) 写出椭圆的标准方程;
 - (2) 当直线 PB_1 的一个方向向量是 (1,1) 时,求以 PB_1 为直径的圆的标准方程;
- (3)设点 R满足: $RB_1 \perp PB_1$, $RB_2 \perp PB_2$, 求证: $\triangle PB_1B_2$ 与 $\triangle RB_1B_2$ 面积之比为定值.

【2019年虹口一模 20 题】

- 20. 设椭圆 Γ : $\frac{x^2}{2} + y^2 = 1$, 点F 为其右焦点,过点F 的直线与椭圆 Γ 相交于点P、Q.
 - (1) 当点 P 在椭圆 Γ 上运动时,求线段 FP 的中点 M 的轨迹方程;
- (2)如图 1,点 R 的坐标为 (2,0) , 若点 S 是点 P 关于 x 轴的对称点,求证:点 Q 、 R 、 S 共线;
- (3)如图 2,点T是直线 l: x=2 上任意一点,设直线 PT 、FT 、QT 的斜率分别为 k_{PT} 、 k_{FT} 、 k_{QT} ,求证: k_{PT} 、 k_{FT} 、 k_{QT} 成等差数列.

【2019年杨浦一模 20 题】

- 20. 如图,已知点P是y轴左侧(不含y轴)一点,抛物线 $C: y^2 = 4x$ 上存在不同的两点 A、B,满足PA、PB的中点均在抛物线C上.
 - (1) 求抛物线C的焦点到准线的距离;
- (2) 设 AB 中点为 M ,且 $P(x_P,y_P)$, $M(x_M,y_M)$,证明: $y_P=y_M$;
- (3) 若P是曲线 $x^2 + \frac{y^2}{4} = 1$ (x < 0)上的动点,求 $\triangle PAB$ 面积的最小值.

【2019年徐汇一模 20 题】

20. 已知椭圆 Γ : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)的长轴长为 $2\sqrt{2}$,右顶点到左焦点的距离为 $\sqrt{2} + 1$,直线l: y = kx + m与椭圆 Γ 交于A、B两点.

- (1) 求椭圆 Γ 的方程;
- (2)若 A 为椭圆的上顶点,M 为 AB 中点,O 为坐标原点,连接 OM 并延长交椭圆 Γ 于 N , $\overrightarrow{ON} = \frac{\sqrt{6}}{2} \overrightarrow{OM}$,求 k 的值;
- (3) 若原点O到直线l的距离为1, $\overrightarrow{OA} \cdot \overrightarrow{OB} = \lambda$,

当
$$\frac{4}{5} \le \lambda \le \frac{5}{6}$$
时,求 \triangle *OAB* 的面积 *S* 的范围.

【2019年青浦一模20题】

- 20. (1) 已知双曲线的中心在原点,焦点在x轴上,实轴长为 4,渐近线方程为 $y = \pm \sqrt{3}x$,求双曲线的标准方程;
- (2)过(1)中双曲线上一点P的直线分别交两条渐近线于 $A(x_1,y_1)$ 、 $B(x_2,y_2)$ 两点,且P是线段AB的中点,求证: $x_1 \cdot x_2$ 为常数;
- (3) 我们知道函数 $y = \frac{1}{x}$ 图像是由双曲线 $x^2 y^2 = 1$ 的图像逆时针旋转 45° 得到的,函数

$$y = \frac{\sqrt{3}}{3}x + \frac{\frac{\sqrt{3}}{2}}{x}$$
 图像也是双曲线,请尝试写出双曲线 $y = \frac{\sqrt{3}}{3}x + \frac{\frac{\sqrt{3}}{2}}{x}$ 的性质(不必证明).

【2019年浦东一模20题】

20. 已知双曲线 $\Gamma: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的左、右焦点分别是 F_1 、 F_2 ,左、右两顶点分别是 A_1 、 A_2 ,弦 AB 和 CD 所在直线分别平行于 x 轴与 y 轴,线段 BA 的延长线与线段 CD 相交于点P(如图).

- (1) 若 \vec{d} = (2, $\sqrt{3}$) 是 Γ 的一条渐近线的一个方向向量,试求 Γ 的两渐近线的夹角 θ ;
- (2) 若|PA|=1, |PB|=5 , |PC|=2, |PD|=4, 试求双曲线 Γ 的方程;
- (3)在(1)的条件下,且 $|A_1A_2|$ =4,点C与双曲线的顶点不重合,直线 CA_1 和直线 CA_2 与直线I: x=1分别相交于点M和N,试问:以线段MN为直径的圆是否恒经过定点?若是,请求出定点的坐标;若不是,试说明理由.

【2019年金山一模20题】

- 20. 已知椭圆C以坐标原点为中心,焦点在y轴上,焦距为2,且经过点(1,0).
- (1) 求椭圆C的方程;
- (2) 设点 A(a,0), 点 P 为曲线 C 上任一点, 求点 A 到点 P 距离的最大值 d(a);
- (3)在(2)的条件下,当0 < a < 1时,设 $\square QOA$ 的面积为 S_1 (O 是坐标原点,Q 是曲线 C 上横坐标为a 的点),以d(a) 为边长的正方形的面积为 S_2 ,若正数m满足 $S_1 \le mS_2$,问m是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.

【2019年奉贤一模20题】

- 20. 已知拋物线 $y = x^2$ 上的 $A \times B$ 两点满足 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 2$,点 $A \times B$ 在拋物线对称轴的左右两侧,且 A 的横坐标小于零,拋物线顶点为 O ,焦点为 F .
- (1) 当点B的横坐标为2,求点A的坐标;
- (2) 抛物线上是否存在点M, 使得 $|MF| = \lambda |MO|$ ($\lambda > 0$), 若请说明理由;
- (3) 设焦点 F 关于直线 OB 的对称点是 C , 求当四边形 OABC 面积最小值时点 B 的坐标.

【2019年黄浦一模 20 题】

- 20. 己知椭圆 $\Gamma: \frac{x^2}{9} + \frac{y^2}{4} = 1$.
 - (1) 若抛物线C的焦点与 Γ 的焦点重合,求C的标准方程;
 - (2) 若 Γ 的上顶点A、右焦点F及x轴上一点M构成直角三角形,求点M的坐标;
 - (3) 若O为 Γ 的中心,P为 Γ 上一点(非 Γ 的顶点),过 Γ 的左顶点B,作BQ // OP,

BQ 交 y 轴于点 Q , 交 Γ 于点 N , 求证: $\overrightarrow{BN} \cdot \overrightarrow{BQ} = 2\overrightarrow{OP}^2$.