Sector와 Cluster

- A : 트랙
- B: 기하학적 섹터(구역)
- C: 트랙섹터
 - 보통 섹터라고 부르며 512바이트로 정해 짐.
 - 하드웨어적 최소 저장 단위
- · D: 클러스터
 - 몇 개의 섹터를 묶어 처리
 - 운영체제의 최소 저장 단위
 - 클러스터의 필요성
 - 16비트 시스템을 가정
 - 섹터의 주소 개수 = 2¹⁶
 - 디스크 용량= 2¹⁶*512byte = 65,536*512 = 32MB
 - 섹터를 여러 개 묶어보자

- 클러스터 생성
 - 8개의 섹터를 묶으면 4,096 byte(4KB) 클러스터
 - 4,096 * 65,536 = 32MB
 - 8개의 섹터를 묶으면 32,763 byte(32KB) 클러스터
 - 32,768 * 65,536 = 2GB
 - FAT16
- 클러스터의 문제점
 - 처리속도는 빠르나 용량 낭비 발생
 - NTFS 등으로 해결

SSD (Solid State Drive)

특징

- ◆ 여러 개의 플래시 메모리로 구성
- ◆ 빠른 입출력
 - 전자기적 읽기/쓰시
 - HDD의 물리적 탐색 시간으로 인한 병목현상 없음
 - 물리적 충격으로부터 안전함

HDD와 SSD의 장단점 비교

	장점	단점
HDD	가격이 저렴. 장기 보존이 가능	읽기/쓰기가 느림. 충격에 약함 전력소비와 소음과 발열이 있음
SSD	읽기/쓰기가 매우 빠름(5배가량) 충격에 강함(5배가량의 충격량) 전력소비와 소음이 적음	가격이 비쌈 자연적인 방전으로 인한 데이터 손실 위험 Freezing 등 간헐적인 오류 발생

SSD 주의사항

전원 오프(OFF) 상태에서 SSD 데이터 잔존 기간

온도	25°C	30℃	35℃	40 ℃	45 ℃	50°C	55°C
소비자용 SSD	105주	52주	26주	14주	7주	4주	2주
기업용 SSD	20주	10주	5주	3주	1주	1주	0주