Lecture Note

Department of Mathematics and Natural Sciences

Brac University

Contents

List of Figures								
1	Vector Multiplications							
	1.1	Scalar Product	1					
		1.1.1 Scalar product as Projection	1					
	1.2	Some special cases	2					
	1.3	Some properties of Scalar product	2					
	1.4	Scalar product of vectors resolved in Cartesian Coordinate	3					
	1.5	Exercise	3					

List of Figures

1.1 Scalar product	as Projection																					1
--------------------	---------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Chapter 1

Vector Multiplications

1.1 Scalar Product

Let $\vec{\bf A}$ and $\vec{\bf B}$ are two vectors. We denote the angle θ to be the angle between the vectors $\vec{\bf A}$ and $\vec{\bf B}$. Now, we can define a scalar multiplication between those two vectors, as

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = |\vec{\mathbf{A}}| |\vec{\mathbf{B}}| \cos(\theta) \tag{1.1}$$

Note that, this quantity is a scalar quantity, therefore it has no direction.

1.1.1 Scalar product as Projection

Figure 1.1: Scalar product as Projection

From the definition of scalar product, We can rewrite as,

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = (|\vec{\mathbf{A}}|\cos(\theta))|\vec{\mathbf{B}}| = (|\vec{\mathbf{B}}|\cos(\theta))|\vec{\mathbf{A}}|$$

Where we can consider, $(|\vec{\mathbf{A}}|\cos(\theta))$ as a projection of $\vec{\mathbf{A}}$ on vector $\vec{\mathbf{B}}$. In the same way, we can think $(|\vec{\mathbf{B}}|\cos(\theta))$ as a projection of $\vec{\mathbf{B}}$ on vector $\vec{\mathbf{A}}$.

1.2 Some special cases

• If any of $\vec{\bf A}$ or $\vec{\bf B}$ or both are null vectors $(|\vec{\bf A}|=0 \text{ or } |\vec{\bf B}|=0)$ then,

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = 0 \tag{1.2}$$

• If The vectors $\vec{\mathbf{A}}$ and $\vec{\mathbf{B}}$ are perpendicular, $\theta = 90^{\circ}$, Then,

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = |\vec{\mathbf{A}}||\vec{\mathbf{B}}|\cos(90^\circ) = 0 \tag{1.3}$$

• Scalar product of a vector with itself:

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{A}} = |\vec{\mathbf{A}}| |\vec{\mathbf{A}}| \cos(0^{\circ}) = |\vec{\mathbf{A}}|^{2}$$
(1.4)

1.3 Some properties of Scalar product

• Commutative law for scalar product:

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = \vec{\mathbf{B}} \cdot \vec{\mathbf{A}} \tag{1.5}$$

• Distributive Law:

$$\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$$
 (1.6)

• For any scalar quantity c, scalar product fulfill,

$$c(\vec{\mathbf{A}} \cdot \vec{\mathbf{B}}) = (c\vec{\mathbf{A}}) \cdot \vec{\mathbf{B}} = \vec{\mathbf{A}} \cdot (c\vec{\mathbf{B}}) = (\vec{\mathbf{A}} \cdot \vec{\mathbf{B}})c \tag{1.7}$$

1.4 Scalar product of vectors resolved in Cartesian Coordinate

In Cartesian coordinate system, we can define the unit vector $(\hat{i}, \hat{j}, \hat{k})$ along the x, y and z-axis as,

$$\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1 \tag{1.8}$$

$$\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0 \tag{1.9}$$

As we have seen earlier in Cartesian coordinate system, we can decompose any vectors as $\vec{\mathbf{A}} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$. We can define the scalar product between two vector $\vec{\mathbf{A}} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ and $\vec{\mathbf{B}} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$ as,

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \cdot (B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$$
 (1.10)

$$= A_x B_x + A_y B_y + A_z B_z \tag{1.11}$$

1.5 Exercise

• Justify the the relation in equation 2.8, 2.9, 2.11.

 \bullet Prove that when two vector $\vec{\mathbf{A}}$ and $\vec{\mathbf{B}}$ are perpendicular, they satisfy,

$$A_x B_x + A_y B_y + A_z B_z = 0$$

 \bullet Find the value or norm of a vector $\vec{\mathbf{A}}$ by using scalar product.