Paper Seminar

FreeLB: Enhanced Adversarial Training for Natural Language Understanding

Zhu et al., 2020, ICLR

Myeongsup Kim

Integrated M.S./Ph.D. Student
Data Science & Business Analytics Lab.
School of Industrial Management Engineering
Korea University

Myeongsup_kim@korea.ac.kr

- Transformer-Based Language Model

-What This Seminar Does Not Cover

< What This Seminar Does Not Cover>

Details of Transformer

Vaswani et al., Attention is All You Need, NIPS, 2017

Details of BERT and RoBERTa

<u>Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL, 2019</u>

Liu et al., RoBERTa: A Robustly Optimized BERT Pretraining Approach, arXiv, 2019

Introduction -Transformer-Based Language Model <Transformer Encoder> **Context Embedding 1 Context Embedding 2 Context Embedding 3 Transformer Encoder Feed Forward Self-Attention Token Embedding 1** Token Embedding 2 **Token Embedding3**

-Transformer-Based Language Model

-Transformer-Based Language Model

-Transformer-Based Language Model

-Transformer-Based Language Model

-Transformer-Based Language Model

-Transformer-Based Language Model

-Transformer-Based Language Model

-Transformer-Based Language Model

<Feed Forward>

Introduction -Transformer-Based Language Model

<Feed Forward>

-Transformer-Based Language Model

<Contextualized Representation>

[Paper Review] Syntax and Semantics in Language Model Representation (Myeongsup Kim, 2020)

Introduction

-Transformer-Based Language Model

<Contextualized Representation>

<Embeddings for the Word "die" in Different Contexts>

Introduction -Transformer-Based Language Model <Pre-Training> **Pre-Training Task** Context Embedding 1 Context Embedding 2 Context Embedding 3 **Encoder Very Large Text Corpora**

-Transformer-Based Language Model

<Two Branches of Language Model Research>

"Bigger, Larger, Stronger"

"Small, But Better Performance"

-Transformer-Based Language Model

<Two Branches of Language Model Research>

"Bigger, Larger, Stronger"

 Training Deep and Large Models with Huge Data

"Small, But Better Performance"

- Improving Performance without Changing the Structure of the Language Model
- Changing the Structure of the Model Without Significantly Increasing the Parameters

-Transformer-Based Language Model

<Two Branches of Language Model Research>

"Bigger, Larger, Stronger"

"Small, But Better Performance"

- Text To Text Transfer Transformer (T5)
 - √ 11B Parameters
 - ✓ State-of-the-art in **GLUE**, etc.

Raffel et al., Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, JMLR, 2020

- Generative Pre-Trained Transformer 3 (GPT-3)
 - √ 175B Parameters
 - ✓ State-of-the-art in Many Benchmarks with Zero/Few Shot Setting

Brown et al., Language Models are Few-Shot Learners, NeurIPS, 2020

SMART

- √ 356M Parameters
- ✓ Beat T5 in 3 Tasks of GLUE

Jiang et al., SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization, ACL, 2020

- Pattern-Exploiting Training (PET)
 - ✓ 223M Parameters
 - ✓ Beat GPT-3 in SuperGLUE with Few Shot Setting

Schick and Schutze, It's Not Just Size That Matters: Small Language Models are Also Few-Shot Learners, arXiv, 2020

-Transformer-Based Language Model

<Two Branches of Language Model Research>

"Bigger, Larger, Stronger"

ae

 Training Deep and Large Models with Huge Data "Small, But Better Performance"

- Improving Performance without Changing the Structure of the Language Model
- Changing the Structure of the Model Without Significantly Increasing the Parameters

-Transformer-Based Language Model

<Task-Adaptive Pre-Training>

Small Task Specific Data

Very Large Text Corpora

-Transformer-Based Language Model

<Task-Adaptive Pre-Training>

-Transformer-Based Language Model

<Text Augmentation>

Small Task Specific Data

Augmented Task Specific Data

-Transformer-Based Language Model

<Back Translation>

-Transformer-Based Language Model

<Generalization Performance>

Text Augmentation

-Transformer-Based Language Model

<Generalization Performance>

Text Augmentation

Introduction -Transformer-Based Language Model <Generalization Performance> **Generalization Performance** in Fine-Tuning Context Embedding 1 Context Embedding 2 Context Embedding 3 **Transformer Encoder Context Embedding Encoder**

Token Embedding3

Token 3

Token Embedding 2

Token 2

Token Embedding 1

Token 4

Task Adaptation

Text Augmentation

Introduction -Transformer-Based Language Model <Generalization Performance> **Generalization Performance** in Fine-Tuning Context Embedding 2 Context Embedding 1 Context Embedding 3 **Transformer Encoder Context Embedding Encoder Token Embedding 2 Token Embedding3 Token Embedding 1** Token 1 Token 2 Token 3 **Embedding** Manipulation 30/98

Pre-requisites

- Adversarial Training

Pre-requisites

- Adversarial Training

<Recap: Previous Seminar>

Adversarial example

- 특수한 noise를 원본 example에 더하 여 사람이 판단하기에는 똑같지만, machine이 판단하기에는 다른 class 가 되는 example
- 예를 들어 오른쪽 이미지는 우리가 보기 에는 여전히 고양이지만 DNN이 보기에 는 오븐이 된다!

Pre-requisites

- Adversarial Training

<Adversarial Example>

x
"panda"
57.7% confidence

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"
99.3 % confidence

- Adversarial Training

- Adversarial Training

- Adversarial Training

- Adversarial Training

- Adversarial Training

- Adversarial Training

- Adversarial Training

- Adversarial Training

- Adversarial Training

- Adversarial Training

-Adversarial Training

- PGD-Based Adversarial Training
- Large-Batch Adversarial Training for Free

- PGD-Based Adversarial Training

<Projected Gradient Descent>

$$\min_{\theta} \mathbb{E}_{(Z, y) \sim \mathcal{D}} \left[\max_{||\delta|| \le \varepsilon} L(f_{\theta}(X + \delta), y) \right]$$

$$\delta_{t+1} = \left. \prod_{||\delta||_{F} \le \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \left| |g(\delta_{t})| \right|_{F})$$

Z: One - Hot Encoding

V: Embedding Matrix

X = VZ: Embedding

 $f_{\theta}(X)$: Language Model (Encoder) as Function

 θ : All Learnable Parameter in Language Model

y: Label

- PGD-Based Adversarial Training

<Projected Gradient Descent>

$$\min_{\theta} \mathbb{E}_{(\mathbb{Z}, y) \sim \mathcal{D}} \left[\max_{||\delta|| \le \varepsilon} L(f_{\theta}(X + \delta), y) \right]$$

$$\delta_{t+1} = \left. \Pi_{||\delta||_{F} \le \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \left| |g(\delta_{t})| \right|_{F}) \right.$$

Z: One - Hot Encoding

V: Embedding Matrix

X = VZ: Embedding

 $f_{\theta}(X)$: Language Model (Encoder) as Function

 θ : All Learnable Parameter in Language Model

y: Label

- PGD-Based Adversarial Training

<Projected Gradient Descent>

$$\min_{\theta} \mathbb{E}_{(Z, y) \sim \mathcal{D}} \left[\max_{||\delta|| \le \varepsilon} L(f_{\theta}(X + \delta), y) \right]$$

$$\delta_{t+1} = \left. \prod_{||\delta||_{F} \le \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \left| |g(\delta_{t})| \right|_{F})$$

Z: *One* — *Hot Encoding*

V: Embedding Matrix

X = VZ: Embedding

 $f_{\theta}(X)$: Language Model (Encoder) as Function

 θ : All Learnable Parameter in Language Model

y: Label

- PGD-Based Adversarial Training

<Projected Gradient Descent>

$$\min_{\theta} \mathbb{E}_{(Z, y) \sim \mathcal{D}} \left[\max_{||\delta|| \le \varepsilon} L(f_{\theta}(X + \delta), y) \right]$$

$$\delta_{t+1} = \left. \prod_{||\delta||_{F} \le \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \left| |g(\delta_{t})| \right|_{F})$$

Z: *One* — *Hot Encoding*

V: Embedding Matrix

X = VZ: Embedding

 $f_{\theta}(X)$: Language Model (Encoder) as Function

 θ : All Learnable Parameter in Language Model

y: Label

- PGD-Based Adversarial Training

<Projected Gradient Descent>

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(Z, y) \sim \mathcal{D}} \left[\max_{|\boldsymbol{\delta}| \leq \varepsilon} L(f_{\boldsymbol{\theta}}(X + \delta), y) \right]$$

$$\delta_{t+1} = \left. \prod_{|\boldsymbol{\delta}| = \varepsilon} \left(\delta_t + \alpha g(\delta_t) / \left| g(\delta_t) \right| \right|_F \right)$$

Z: *One* – *Hot Encoding*

V: Embedding Matrix

X = VZ: Embedding

 $f_{\theta}(X)$: Language Model (Encoder) as Function

 θ : All Learnable Parameter in Language Model

y: Label

- PGD-Based Adversarial Training

<Projected Gradient Descent>

$$\min_{\theta} \mathbb{E}_{(Z, y) \sim \mathcal{D}} \left[\max_{||\delta|| \le \varepsilon} L(f_{\theta}(X + \delta), y) \right]$$

$$\delta_{t+1} = \left. \prod_{||\delta||_{F} \le \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \left| |g(\delta_{t})| \right|_{F})$$

Z: One – Hot Encoding

V: Embedding Matrix

X = VZ: Embedding

$f_{\theta}(X)$: Language Model (Encoder) as Function

 θ : All Learnable Parameter in Language Model

y: Label

- PGD-Based Adversarial Training

<Projected Gradient Descent>

$$\min_{\theta} \mathbb{E}_{(Z, y) \sim \mathcal{D}} \left[\max_{||\delta|| \le \varepsilon} L(f_{\theta}(X + \delta), y) \right]$$

$$\delta_{t+1} = \left. \prod_{||\delta||_{F} \le \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \left| |g(\delta_{t})| \right|_{F})$$

Z: *One* – *Hot Encoding*

V: Embedding Matrix

X = VZ: Embedding

 $f_{\theta}(X)$: Language Model (Encoder) as Function

 θ : All Learnable Parameter in Language Model

y: Label

- PGD-Based Adversarial Training

<Projected Gradient Descent>

$$\min_{\theta} \mathbb{E}_{(Z, y) \sim \mathcal{D}} \left[\max_{||\delta|| \le \varepsilon} L(f_{\theta}(X + \delta), y) \right]$$

$$\delta_{t+1} = \left. \prod_{||\delta||_{F} \le \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \left| |g(\delta_{t})| \right|_{F})$$

Z: *One* — *Hot Encoding*

V: Embedding Matrix

X = VZ: Embedding

 $f_{\theta}(X)$: Language Model (Encoder) as Function

 θ : All Learnable Parameter in Language Model

y: Label

- PGD-Based Adversarial Training

$$\min_{\theta} \mathbb{E}_{(Z, y) \sim \mathcal{D}} \left[\max_{\|\boldsymbol{\delta}\| \leq \varepsilon} \boldsymbol{L}(\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{X} + \boldsymbol{\delta}), \boldsymbol{y}) \right]$$

$$\delta_{t+1} = \left. \Pi_{\|\boldsymbol{\delta}\|_{F} \leq \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \left| |g(\delta_{t})| \right|_{F}) \right.$$

- PGD-Based Adversarial Training

$$\min_{\theta} \mathbb{E}_{(Z, y) \sim \mathcal{D}} \left[\max_{\|\boldsymbol{\delta}\| \leq \varepsilon} \boldsymbol{L}(\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{X} + \boldsymbol{\delta}), \boldsymbol{y}) \right]$$

$$\delta_{t+1} = \left. \Pi_{\|\boldsymbol{\delta}\|_{F} \leq \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \left| |g(\delta_{t})| \right|_{F}) \right.$$

- PGD-Based Adversarial Training

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\mathbf{Z}, \mathbf{y}) \sim \mathbf{D}} \left[\max_{||\delta|| \le \varepsilon} \mathbf{L}(f_{\boldsymbol{\theta}}(\mathbf{X} + \boldsymbol{\delta}), \mathbf{y}) \right]$$

$$\delta_{t+1} = \left. \prod_{||\delta||_F \le \varepsilon} (\delta_t + \alpha g(\delta_t) / \left| |g(\delta_t)| \right|_F)$$

- PGD-Based Adversarial Training

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\mathbf{Z}, \mathbf{y}) \sim \mathcal{D}} \left[\max_{||\delta|| \le \varepsilon} \mathbf{L}(f_{\boldsymbol{\theta}}(\mathbf{X} + \boldsymbol{\delta}), \mathbf{y}) \right]$$

$$\delta_{t+1} = \left. \prod_{||\delta||_F \le \varepsilon} (\delta_t + \alpha g(\delta_t) / \left| |g(\delta_t)| \right|_F)$$

- PGD-Based Adversarial Training

$$\min_{\theta} \mathbb{E}_{(Z,y) \sim D} \left[\max_{\|\delta\| \le \varepsilon} L(f_{\theta}(X + \delta), y) \right]$$

$$\delta_{t+1} = \Pi_{\|\delta\|_{F} \le \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \|g(\delta_{t})\|_{F})$$

- PGD-Based Adversarial Training

$$\min_{\theta} \mathbb{E}_{(Z,y) \sim D} \left[\max_{\|\delta\| \le \varepsilon} L(f_{\theta}(X + \delta), y) \right]$$

$$\delta_{t+1} = \Pi_{\|\delta\|_{F} \le \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \|g(\delta_{t})\|_{F})$$

- PGD-Based Adversarial Training

$$\min_{\theta} \mathbb{E}_{(Z,y) \sim D} \left[\max_{\|\delta\| \le \varepsilon} L(f_{\theta}(X + \delta), y) \right]$$

$$\delta_{t+1} = \Pi_{\|\delta\|_{F} \le \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \|g(\delta_{t})\|_{F})$$

- PGD-Based Adversarial Training

$$\min_{\theta} \mathbb{E}_{(Z,y) \sim D} \left[\max_{\|\delta\| \le \varepsilon} L(f_{\theta}(X + \delta), y) \right]$$

$$\delta_{t+1} = \Pi_{\|\delta\|_{F} \le \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \|g(\delta_{t})\|_{F})$$

- PGD-Based Adversarial Training

$$\min_{\theta} \mathbb{E}_{(Z,y) \sim D} \left[\max_{\|\delta\| \le \varepsilon} L(f_{\theta}(X + \delta), y) \right]$$

$$\delta_{t+1} = \Pi_{\|\delta\|_{F} \le \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \|g(\delta_{t})\|_{F})$$

- PGD-Based Adversarial Training

$$\min_{\theta} \mathbb{E}_{(Z,y) \sim D} \left[\max_{\|\delta\| \le \varepsilon} L(f_{\theta}(X + \delta), y) \right]$$

$$\delta_{t+1} = \Pi_{\|\delta\|_{F} \le \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \|g(\delta_{t})\|_{F})$$

- PGD-Based Adversarial Training

$$\min_{\theta} \mathbb{E}_{(Z,y) \sim D} \left[\max_{\|\delta\| \le \varepsilon} L(f_{\theta}(X + \delta), y) \right]$$

$$\delta_{t+1} = \Pi_{\|\delta\|_{F} \le \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \|g(\delta_{t})\|_{F})$$

- PGD-Based Adversarial Training

$$\min_{\theta} \mathbb{E}_{(Z,y) \sim D} \left[\max_{\|\delta\| \le \varepsilon} L(f_{\theta}(X + \delta), y) \right]$$

$$\delta_{t+1} = \Pi_{\|\delta\|_{F} \le \varepsilon} (\delta_{t} + \alpha g(\delta_{t}) / \|g(\delta_{t})\|_{F})$$

- PGD-Based Adversarial Training

$$\min_{\theta} \mathbb{E}_{(Z,y) \sim \mathcal{D}} \left[\max_{\|\boldsymbol{\delta}\| \leq \varepsilon} L(f_{\theta}(X+\delta), y) \right]$$

$$\boldsymbol{\delta_{t+1}} = \boldsymbol{\Pi}_{\|\boldsymbol{\delta}\|_{F} \leq \varepsilon} (\boldsymbol{\delta_{t}} + \alpha \boldsymbol{g}(\boldsymbol{\delta_{t}}) / \|\boldsymbol{g}(\boldsymbol{\delta_{t}})\|_{F})$$

- PGD-Based Adversarial Training

$$\min_{\theta} \mathbb{E}_{(Z,y) \sim \mathcal{D}} \left[\max_{\|\boldsymbol{\delta}\| \leq \varepsilon} L(f_{\theta}(X+\delta), y) \right]$$

$$\boldsymbol{\delta_{t+1}} = \boldsymbol{\Pi}_{\|\boldsymbol{\delta}\|_{F} \leq \varepsilon} (\boldsymbol{\delta_{t}} + \alpha \boldsymbol{g}(\boldsymbol{\delta_{t}}) / \|\boldsymbol{g}(\boldsymbol{\delta_{t}})\|_{F})$$

- PGD-Based Adversarial Training

$$\min_{\theta} \mathbb{E}_{(Z,y) \sim \mathcal{D}} \left[\max_{\|\boldsymbol{\delta}\| \leq \varepsilon} L(f_{\theta}(X+\delta), y) \right]$$

$$\boldsymbol{\delta_{t+1}} = \boldsymbol{\Pi}_{\|\boldsymbol{\delta}\|_{F} \leq \varepsilon} (\boldsymbol{\delta_{t}} + \alpha \boldsymbol{g}(\boldsymbol{\delta_{t}}) / \|\boldsymbol{g}(\boldsymbol{\delta_{t}})\|_{F})$$

- PGD-Based Adversarial Training

$$\min_{\theta} \mathbb{E}_{(Z,y) \sim \mathcal{D}} \left[\max_{\|\boldsymbol{\delta}\| \leq \varepsilon} L(f_{\theta}(X+\delta), y) \right]$$

$$\boldsymbol{\delta_{t+1}} = \mathbf{\Pi}_{\|\boldsymbol{\delta}\|_{F} \leq \varepsilon} (\boldsymbol{\delta_{t}} + \alpha \boldsymbol{g}(\boldsymbol{\delta_{t}}) / \|\boldsymbol{g}(\boldsymbol{\delta_{t}})\|_{F})$$

Adversarial Training for NLU - Large-Batch Adversarial Training for Free

<FreeLB>

Algorithm	Perturbation	Model Parameter	Note
PGD	Update K-Steps	Update 1-Step	 Update Perturbation K-Times and Update Model Parameter 1-Time
FreeAT	Update 1-Step	Update 1-Step	 Update Perturbation 1-Time and Update Model Parameter 1-Time
YOPO	Update K-Steps	Update 1-Step	 Accumulate Gradients for Model Parameters While Updating Perturbation K-Times and Update Model Parameters 1-Time Using Accumulated Gradients

- Large-Batch Adversarial Training for Free

<FreeLB>

Algorithm 1 "Free" Large-Batch Adversarial Training (FreeLB-K)

```
Require: Training samples X = \{(\mathbf{Z}, y)\}, perturbation bound \epsilon, learning rate \tau, ascent steps K,
         ascent step size \alpha
  1: Initialize \theta
  2: for epoch = 1 \dots N_{ep} do
                for minibatch B \subset X do
  3:
                        \delta_0 \leftarrow \frac{1}{\sqrt{N_s}} U(-\epsilon, \epsilon)
  5:
                        \mathbf{q}_0 \leftarrow 0
                        for t = 1 \dots K do
  6:
                                 Accumulate gradient of parameters \theta
                                g_t \leftarrow g_{t-1} + \frac{1}{K} \mathbb{E}_{(\boldsymbol{Z},y) \in B}[\nabla_{\boldsymbol{\theta}} L(f_{\boldsymbol{\theta}}(\boldsymbol{X} + \boldsymbol{\delta}_{t-1}), y)]
Update the perturbation \delta via gradient ascend
  8:
  9:
                                            \boldsymbol{g}_{adv} \leftarrow \nabla_{\boldsymbol{\delta}} L(f_{\boldsymbol{\theta}}(\boldsymbol{X} + \boldsymbol{\delta}_{t-1}), y)
10:
                                            \boldsymbol{\delta}_t \leftarrow \Pi_{\|\boldsymbol{\delta}\|_F \leq \epsilon} (\boldsymbol{\delta}_{t-1} + \alpha \cdot \boldsymbol{g}_{adv} / \|\boldsymbol{g}_{adv}\|_F)
11:
12:
                         end for
                        \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \tau \boldsymbol{g}_K
13:
                 end for
14:
15: end for
```

- Large-Batch Adversarial Training for Free

<FreeLB>

Algorithm 1 "Free" Large-Batch Adversarial Training (FreeLB-K)

```
Require: Training samples X = \{(\mathbf{Z}, y)\}, perturbation bound \epsilon, learning rate \tau, ascent steps K,
         ascent step size \alpha
  1: Initialize \theta
  2: for epoch = 1 \dots N_{ep} do
                for minibatch B \subset X do
  3:
                       \delta_0 \leftarrow \frac{1}{\sqrt{N_s}} U(-\epsilon, \epsilon)
  5:
                        \mathbf{q}_0 \leftarrow 0
                        for t = 1 \dots K do
  6:
                                Accumulate gradient of parameters \theta
                                g_t \leftarrow g_{t-1} + \frac{1}{K} \mathbb{E}_{(\mathbf{Z},y) \in B} [\nabla_{\boldsymbol{\theta}} L(f_{\boldsymbol{\theta}}(\mathbf{X} + \boldsymbol{\delta}_{t-1}), y)]
Update the perturbation \delta via gradient ascend
  8:
  9:
                                           \boldsymbol{g}_{adv} \leftarrow \nabla_{\boldsymbol{\delta}} L(f_{\boldsymbol{\theta}}(\boldsymbol{X} + \boldsymbol{\delta}_{t-1}), y)
10:
                                           \boldsymbol{\delta}_t \leftarrow \Pi_{\|\boldsymbol{\delta}\|_F \leq \epsilon} (\boldsymbol{\delta}_{t-1} + \alpha \cdot \boldsymbol{g}_{adv} / \|\boldsymbol{g}_{adv}\|_F)
11:
12:
                        end for
                        \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \tau \boldsymbol{g}_K
13:
                 end for
14:
15: end for
```

Experiments

- GLUE Benchmark
- Comparing the Robustness

- GLUE Benchmark

<GLUE Benchmark>

Method	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B
	(Acc)	(Acc)	(Acc)	(Acc)	(Acc)	(Acc)	(Mcc)	(Pearson)
Reported	90.20	94.70	92.20	86.60	96.40	90.90	68.00	92.40
Relmp	-	-	-	85.61 (1.7)	96.56 (.3)	90.69 (.5)	67.57 (1.3)	92.20 (.2)
PGD	90.53 (.2)	94.87 (.2)	92.49 (.07)	87.41 (.9)	96.44 (.1)	90.93 (.2)	69.67 (1.2)	92.43 (7.)
FreeAT	90.02 (.2)	94.66 (.2)	92.48 (.08)	86.69 (15.)	96.10 (.2)	90.69 (.4)	68.80 (1.3)	92.40 (.3)
FreeLB	90.61 (.1)	94.98 (.2)	92.60 (03)	88.13 (1.2)	96.79 (.2)	91.41 (.7)	71.12 (.9)	92.67 (.08)

<Results (Median and Variance) on the dev sets of GLUE based on the RoBERTa-Large Model>

- GLUE Benchmark

<GLUE Benchmark>

Method	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B
	(Acc)	(Acc)	(Acc)	(Acc)	(Acc)	(Acc)	(Mcc)	(Pearson)
Reported	90.20	94.70	92.20	86.60	96.40	90.90	68.00	92.40
Relmp	-	-	-	85.61 (1.7)	96.56 (.3)	90.69 (.5)	67.57 (1.3)	92.20 (.2)
PGD	90.53 (.2)	94.87 (.2)	92.49 (.07)	87.41 (.9)	96.44 (.1)	90.93 (.2)	69.67 (1.2)	92.43 (7.)
FreeAT	90.02 (.2)	94.66 (.2)	92.48 (.08)	86.69 (15.)	96.10 (.2)	90.69 (.4)	68.80 (1.3)	92.40 (.3)
FreeLB	90.61 (.1)	94.98 (.2)	92.60 (03)	88.13 (1.2)	96.79 (.2)	91.41 (.7)	71.12 (.9)	92.67 (.08)

Results (Median and Variance) on the dev sets of GLUE based on the RoBERTa-Large Model

- GLUE Benchmark

<GLUE Benchmark>

Method	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B
	(Acc)	(Acc)	(Acc)	(Acc)	(Acc)	(Acc)	(Mcc)	(Pearson)
Reported	90.20	94.70	92.20	86.60	96.40	90.90	68.00	92.40
Relmp	-	-	-	85.61 (1.7)	96.56 (.3)	90.69 (.5)	67.57 (1.3)	92.20 (.2)
PGD	90.53 (.2)	94.87 (.2)	92.49 (.07)	87.41 (.9)	96.44 (.1)	90.93 (.2)	69.67 (1.2)	92.43 (7.)
FreeAT	90.02 (.2)	94.66 (.2)	92.48 (.08)	86.69 (15.)	96.10 (.2)	90.69 (.4)	68.80 (1.3)	92.40 (.3)
FreeLB	90.61 (.1)	94.98 (.2)	92.60 (03)	88.13 (1.2)	96.79 (.2)	91.41 (.7)	71.12 (.9)	92.67 (.08)

Results (Median and Variance) on the dev sets of GLUE based on the RoBERTa-Large Model

- GLUE Benchmark

<GLUE Benchmark>

Model	Saara	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE	WNLI	AX
Model	Score	8.5k	67k	3.7k	7k	364k	393k	108k	2.5k	634	
BERT-base	78.3	52.1	93.5	88.9/88.4	87.1/85.8	71.2/89.2	94.6/83.4	90.5	66.4	65.1	64.2
FreeLB-BERT	79.4	54.5	93.6	88.1/83.5	87.7/86.7	72.7/89.6	85.7/84.6	91.8	70.1	65.1	36.9
MT-DNN	87.6	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.9	87.9/87.4	96.0	86.3	89.0	42.8
XLNet-Large	88.4	67.8	96.8	93.0/90.7	91.6/91.1	74.2/90.3	90.2/89.8	98.6	86.3	90.4	47.5
RoBERTa	88.5	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8/90.2	98.9	88.2	89.0	47.7
FreeLB-RoB	88.8	68.0	96.8	93.1/90.8	92.4/92.2	74.8/90.3	91.1/90.7	98.8	88.7	89.0	50.1
Human	87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0/92.8	91.2	93.6	95.9	-

- GLUE Benchmark

<GLUE Benchmark>

Model	Saara	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE	WNLI	AX
wiodei	Score	8.5k	67k	3.7k	7k	364k	393k	108k	2.5k	634	
BERT-base	78.3	52.1	93.5	88.9/88.4	87.1/85.8	71.2/89.2	94.6/83.4	90.5	66.4	65.1	64.2
FreeLB-BERT	79.4	54.5	93.6	88.1/83.5	87.7/86.7	72.7/89.6	85.7/84.6	91.8	70.1	65.1	36.9
MT-DNN	87.6	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.9	87.9/87.4	96.0	86.3	89.0	42.8
XLNet-Large	88.4	67.8	96.8	93.0/90.7	91.6/91.1	74.2/90.3	90.2/89.8	98.6	86.3	90.4	47.5
RoBERTa	88.5	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8/90.2	98.9	88.2	89.0	47.7
FreeLB-RoB	88.8	68.0	96.8	93.1/90.8	92.4/92.2	74.8/90.3	91.1/90.7	98.8	88.7	89.0	50.1
Human	87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0/92.8	91.2	93.6	95.9	

- GLUE Benchmark

<GLUE Benchmark>

Model	Saawa	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE	WNLI	AX
Model	Score	8.5k	67k	3.7k	7k	364k	393k	108k	2.5k	634	
BERT-base	78.3	52.1	93.5	88.9/88.4	87.1/85.8	71.2/89.2	94.6/83.4	90.5	66.4	65.1	64.2
FreeLB-BERT	79.4	54.5	93.6	88.1/83.5	87.7/86.7	72.7/89.6	85.7/84.6	91.8	70.1	65.1	36.9
MT-DNN	87.6	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.9	87.9/87.4	96.0	86.3	89.0	42.8
XLNet-Large	88.4	67.8	96.8	93.0/90.7	91.6/91.1	74.2/90.3	90.2/89.8	98.6	86.3	90.4	47.5
RoBERTa	88.5	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8/90.2	98.9	88.2	89.0	47.7
FreeLB-RoB	88.8	68.0	96.8	93.1/90.8	92.4/92.2	74.8/90.3	91.1/90.7	98.8	88.7	89.0	50.1
Human	87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0/92.8	91.2	93.6	95.9	-

- GLUE Benchmark

<GLUE Benchmark>

Model	Score	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE	WNLI	АХ
Model	Score	8.5k	67k	3.7k	7k	364k	393k	108k	2.5k	634	
BERT-base	78.3	52.1	93.5	88.9/88.4	87.1/85.8	71.2/89.2	94.6/83.4	90.5	66.4	65.1	64.2
FreeLB-BERT	79.4	54.5	93.6	88.1/83.5	87.7/86.7	72.7/89.6	85.7/84.6	91.8	70.1	65.1	36.9
MT-DNN	87.6	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.9	87.9/87.4	96.0	86.3	89.0	42.8
XLNet-Large	88.4	67.8	96.8	93.0/90.7	91.6/91.1	74.2/90.3	90.2/89.8	98.6	86.3	90.4	47.5
RoBERTa	88.5	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8/90.2	98.9	88.2	89.0	47.7
FreeLB-RoB	88.8	68.0	96.8	93.1/90.8	92.4/92.2	74.8/90.3	91.1/90.7	98.8	88.7	89.0	50.1
Human	87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0/92.8	91.2	93.6	95.9	_

- Comparing the Robustness

<Comparing the Robustness>

Methods		RTE			CoLA			MRPC	
	M-Inc	M-Inc (R)	N-Loss	M-Inc	M-Inc (R)	N-Loss	M-Inc	M-Inc (R)	N-Loss
	(10^{-4})	(10^{-4})	(10^{-4})	(10 ⁻⁴)	(10^{-4})	(10^{-4})	(10 ⁻³)	(10^{-3})	(10 ⁻³)
Vanilla	5.1	5.3	4.5	6.1	5.7	5.2	10.2	10.2	1.9
PGD	4.7	4.9	6.2	128.2	130.1	436.1	5.7	5.7	5.4
FreeLB	3.0	2.6	4.1	1.4	1.3	7.2	3.6	3.6	2.7

Median of the Maximum Increase in Loss in the Vicinity of the Dev Set Samples for RoBERTa-Large Model Finetuned with Different Methods

$$\Delta L_{max}(X,\epsilon) = \max_{|\delta| \leq \epsilon} L(f_{\theta}(X+\delta), y) - L(f_{\theta}(X), y)$$

M-Inc	FreeLB
M-Inc (R)	PGD
N-Loss	Clean Sample

- Comparing the Robustness

<Comparing the Robustness>

Methods		RTE			CoLA			MRPC	
	M-Inc	M-Inc (R)	N-Loss	M-Inc	M-Inc (R)	N-Loss	M-Inc	M-Inc (R)	N-Loss
	(10^{-4})	(10^{-4})	(10^{-4})	(10 ⁻⁴)	(10^{-4})	(10^{-4})	(10 ⁻³)	(10^{-3})	(10^{-3})
Vanilla	5.1	5.3	4.5	6.1	5.7	5.2	10.2	10.2	1.9
PGD	4.7	4.9	6.2	128.2	130.1	436.1	5.7	5.7	5.4
FreeLB	3.0	2.6	4.1	1.4	1.3	7.2	3.6	3.6	2.7

Median of the Maximum Increase in Loss in the Vicinity of the Dev Set Samples for RoBERTa-Large Model Finetuned with Different Methods

$$\Delta L_{max}(X,\epsilon) = \max_{|\delta| \leq \epsilon} L(f_{\theta}(X+\delta), y) - L(f_{\theta}(X), y)$$

M-Inc	FreeLB
M-Inc (R)	PGD
N-Loss	Clean Sample

Conclusion

Conclusion

<Conclusion>

- Proposed a novel adversarial training algorithm, FreeLB, that promotes higher invariance in the embedding space
- Applied FreeLB to Transformer-based models for natural language understanding and achieved new state-of-the-art on GLUE benchmark
- FreeLB resulted in both higher robustness in the embedding space than natural training and better generalization ability

Any Questions?

Thank You