3MICT

ВСТУП
РОЗДІЛ 1. ТЕОРЕТИЧНІ ВІДОМОСТІ
1.1 Керування семисегментним індикатором
1.2 Робота з терміналом середовища "Intel FPGA Monitor Program"6
РОЗДІЛ 2. СТРУКТУРНА СХЕМА ПРИСТРОЮ7
2.1 Структурна схема пристрою та її опис
РОЗДІЛ З. СТВОРЕННЯ ПРИСТРОЮ
3.1. Створення та симуляція модуля «Indicator Driver»
3.2. Проєкт в середовищі «Quartus» 11
3.3. Проєкт в середовищі «Intel FPGA Monitor Program»
ВИСНОВОК
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ18

3м.	Лист	№ докум.	Підпис	Дата

ВСТУП

В межах даної курсової роботи було вирішено розробити систему, що би дозволила користувачу керувати сукупністю семисегментних індикаторів через термінал комп'ютера.

Програмний термінал — це широко розповсюджений інструмент роботи з комп'ютерними чи програмними системами. Ось для приколу вигляд терміналу, що надається операційною системою "Windows" (Рис. 1) чи програмного забезпечення "Intel FPGA Monitor Program" (Рис. 2).

Рис. 1. Програмний термінал в операційній системі "Windows».

Рис. 2. Програмний термінал в операційній системі «Intel FPGA Monitor Program».

					ДК31мп. 466539.001 ПЗ	Лист
					ДN3 1MI1. 400039.00 Г 113	3
3м.	Лист	№ докум.	Підпис	Дата		

Саме через термінал програмного «Intel FPGA Monitor Program» і буде здійснюватися контроль семисегментних індикаторів. Такий вибір теми дозволить виконати освітницьку ціль даного курсового проєкту, адже буде реалізована ціла система на кристалі. Вона скрадатиметься з самостійно розробленого модуля, мікропроцесора та об'єднуючих компонентів. Лист ДК31мп. 466539.001 ПЗ Підпис № докум. Дата

РОЗДІЛ 1. ТЕОРЕТИЧНІ ВІДОМОСТІ

1.1 Керування семисегментним індикатором.

В даному проекту я використовую семисигментного індикатор, схема якого зображена на Рис. 3.

Рис. 3. Схема семисигментного індикатора, що буде використовуватись.

Зауважу, що це індикатор з спільним катодом. Це означає, що для загорання світлодіодів, слід подавати на «логічну 1» на піни a, b, c, d, e, f, g та при цьому гарантувати «логічний 0» на об'єднаних катодах D1, D2, D3, D4.

Для того, щоб відображати різні значення на кожному з індикаторів, слід швидко перемикатись між ними. В моєму проекті задачу контролю семисегментним індикатором на себе бере оригінальний модуль, формований на базі компонентів плати програмованої логіки DE10-nano. Цей модуль буде

					ДК31мп. 466539.001 ПЗ	Лист
					ДКЗ ГМП. 4 00039.00 Г ГГЗ	5
3м.	Лист	№ докум.	Підпис	Дата		

отримувати 16 біт інформації, які буде відображати на індикаторах в шіснадцятковій системі числення.

1.2 Робота з терміналом середовища "Intel FPGA Monitor Program"

«Intel FPGA Monitor Program» – це програмне середовище, що дозволяє працювати з мікропроцесорним ядром NiosII, яке в свою чергу інтегроване в мікросхему системи на кристалі на платі DE10-Nano. Цією мікросхемою є чіп 5CSEBA6U23I7.

Для роботи використовується стандартна бібліотека мови програмування «С» - бібліотека «stdio.h».

Зазначу, що будувати програмне забезпечення слід з врахуванням адреси, яка належатиме модулю керування семисигментним індикатором. Для компілювання можна використовувати те ж середовище «Intel FPGA Monitor Program», от тільки для цього слід встановити систему «Windows Subsystem for Linux», а також добавити деякі «Шляхи» в «Змінні оточення системи Windows».

Тільки після цього, появляється можливість компілювати файл з розширенням «.с». Отриманий бінарний файл з інструкціями для ядра і буде завантажений в модуль пам'яті і стане «пам'яттю програм» для мікропроцесорного ядра. Компіляція зображена на Рис. 4.

Рис. 4. Компіляція фалу «main.c».

						ПУ21мп //66520 001 П2	Лист
						ДК31мп. 466539.001 ПЗ	6
ı	3м.	Лист	№ доклм	Підпис	Лата		_

РОЗДІЛ 2. СТРУКТУРНА СХЕМА ПРИСТРОЮ

2.1 Структурна схема пристрою та її опис

На Рис. 5 зображена схематичне представлення пристрою.

Рис. 5. Схематичне зображення системи на кристалі.

Компонент «NiosII» – це вбудоване в систему на кристалі мікропроцесорне ядро.

Компонент «On-Chip Memory (RAM or ROM) Intel FPGA IP» – це блок, що утворюється з компонентів пам'яті всередині системи на кристалі. Він утворюється об'єднанням невеликих комірок в одну більшу систему пам'яті.

Компонент «Indicator Driver» – це оригінальний блок, що HDL описується мовою «verilog». Цей модуль синтезується з різноманітних складових програмованої логіки системи на кристалі. Лістинг коду цього модуля зображено на Рис. 7:

Рис. 6. Вигляд модуля «Indicator Driver» в утиліті «RLT Viewer»

						ПУ21мп //66520 001 П2	Лист
						ДК31мп. 466539.001 ПЗ	7
ı	3м.	Лист	№ доклм	Підпис	Лата		

```
≡ selector.v

      module selector (
          input clk_i,
          input rst_n_i,
          input [15:0] reg 16 i,
          output wire [6:0] seg_display_o,
5
          output reg [3:0] SS_o
       );
          parameter period = 50 * 10 * 1000;
          reg [63:0] counter;
          reg [3:0] seg_code;
          always @(posedge clk_i) begin
              if(rst_n_i == 0) begin
                  counter <= 64'b0;
                  SS_o = 4'b0;
                  seg_code <= 4'b0;
                  counter <= counter + 1;
                  if (counter > period) begin
                      counter <= 64'b0;
                  end else if(counter > period / 4 * 3) begin
                      SS_o <= 4'b0111;
                      seg_code <= reg_16_i[15:12];</pre>
                  end else if(counter > period / 4 * 2) begin
                      SS_o <= 4'b1011;
                      seg_code <= reg_16_i[11:8];</pre>
                  end else if(counter > period / 4) begin
                       seg_code <= reg_16_i[7:4];</pre>
                      SS_o <= 4'b1101;
                  end else if(counter < period / 4) begin
                      SS_o <= 4'b1110;
                       seg_code <= reg_16_i[3:0];</pre>
                   end
          end
          seg_decode seg_decode_inst(seg_code, seg_display_o);
      endmodule
```

Рис. 7. Лістинг коду на мові «verilog», що описує модуль «Indicator Driver».

3м.	Лист	№ докум.	Підпис	Дата

РОЗДІЛ З. СТВОРЕННЯ ПРИСТРОЮ

3.1. Створення та симуляція модуля «Indicator Driver»

Під час написання файлу «selector.v», для того, щоб перевіряти модуль, було написано написано допоміжний файл «tb_for_selector.v» (рис. 8) та файл «sim.do» (рис. 9) для запуску симуляції в середовищі «ModelSim».

```
| The commence of the commence
```

Рис.8. Лістинг файлу «tb_for_selector.v»

3м.	Лист	№ докум.	Підпис	Дата

```
≣ sim.do
      if { [file exists "work"] } { vdel -all }
     vlib work
     vlog C:/Users/bimee/OneDrive/SoC/Course Task/Verilog files/selector.v
     vlog C:/Users/bimee/OneDrive/SoC/Course Task/Verilog files/seg decode.v
      vlog C:/Users/bimee/OneDrive/SoC/Course Task/Verilog Testbench/tb for selector.v
     vsim work.tb_for_selector
     add wave -radix binary sim:/tb_for_selector/clk_i
      add wave -radix binary sim:/tb_for_selector/rst_n_i
     add wave -radix binary sim:/tb for selector/seg display o
      add wave -radix binary sim:/tb_for_selector/SS_o
     add wave -radix hexadecimal sim:/tb_for_selector/reg_16_i
     onbreak resume
     run -all
     scale 1ns
     wave zoom full
```

Рис.9. Лістинг файлу «sim.do»

Запустивши симуляцію командою «vsim -do sim.do» можна побачити часову діаграму зображену на рис. 10.

Рис. 10. Симуляція роботи модуля «selector», який і ϵ компонентом «Indicator Driver».

Зауважу, що кожен біт «Slave select» ϵ катодом і тому світиться саме той індикатор чий «Slave select» рівний нулю, тому що саме тоді через світлодіоди протікає струм. Щоб зрозуміти якому біту відповіда ϵ який світлодіод, дивіться рис. 11.

					ДК31мп. 466539.001 ПЗ	<i>Ли</i> 1
3м.	Лист	№ докум.	Підпис	Дата		1

```
≡ seg_decode.v
     module seg_decode (hex, display);
         input [3:0] hex;
         output reg [6:0] display;
         always @ (hex)
               4'h0: display = 7'b1111110;
                4'h1: display = 7'b0110000;
                4'h3: display = 7'b1111001;
                4'h4: display = 7'b0110011;
                4'h5: display = 7'b1011011;
                4'h6: display = 7'b1011111;
                4'h7: display = 7'b1110000;
                4'h8: display = 7'b1111111;
                4'h9: display = 7'b1110011;
                4'hA: display = 7'b1110111;
                4'hb: display = 7'b0011111;
                4'hC: display = 7'b1001110;
                4'hd: display = 7'b0111101;
                4'hE: display = 7'b1001111;
                4'hF: display = 7'b1000111;
     endmodule
```

Рис.11. Лістинг файлу «seg_decode.v»

3.2. Проєкт в середовищі «Quartus»

При створенні проєкту в середовищі «Quartus», першим ділом було додано файли як на Рис. 12.

Рис.12. Файли проєкту в середовищі «Quartus».

					ДК31мп. 466539.001 ПЗ	Лист
					ДКЗТМП. 400039.001 113	11
3м.	Лист	№ докум.	Підпис	Дата		

Файлом верхнього рівня ієрархії є файл «QP.v» (Рис. 13), тобто «Quartus Project». Він містить мій оригінальний модуль «selector» та модуль, що описується в файлі «ES.qip» (Рис. 14).

```
module QP (
         input CLOCK_50_i,
          input KEY_rst_n_i,
         output [6:0] SEG_o,
         output [3:0] SS_o
         wire [31:0] reg32;
              .clk_clk(CLOCK_50_i),
              .reset reset n(KEY rst n i),
              .to leds readdata(reg32)
              .clk_i(CLOCK_50_i),
              .rst_n_i(KEY_rst_n_i),
              .reg_16_i(reg32[15:0]),
              .seg_display_o(SEG_o),
              .SS_o(SS_o)
     endmodule
24
```

Рис. 13. Файл «QP.v».

Рис. 14. Файл «ES.qip».

					Ĺ
3м.	Лист	№ докум.	Підпис	Дата	

Як видно з рис. 14, модуль ES (Embedded System) ϵ файлом конфігурації системи на кристалів для мікросхеми FPGA. Саме в цьому модулі компоненти і були налаштовані, з'єднані шиною «Avalon MM» та були встановлені їх адреси.

Файл «reg32.v» (рис. 15) — виступає в ролі 4 байт пам'яті яка спільна для ядра та оригінального модуля. Було би достатньо і 16 біт, але оскільки шина даних «Avalon MM» має 32 біти, то робити модуль меншим за 32 немає сенсу.

Рис. 15. Файл «reg32.v»

Файл «reg32_avalon_interface.v» (рис. 16) — ϵ файлом, що забезпечу ϵ необхідні виходи для підключення шини «Avalon MM» до модуля «reg32». Електричні схеми обох модулів зображені на рис. 17.

3м.	Лист	№ докум.	Підпис	Дата

```
module reg32_avalon_interface (
           clock,
           resetn,
           writedata,
           readdata,
           write,
           read,
           byteenable,
           chipselect,
           Q_export
           input clock, resetn, read, write, chipselect;
input [3:0] byteenable;
           input [31:0] writedata;
           output [31:0] readdata;
           output [31:0] Q_export;
           wire [3:0] local_byteenable;
wire [31:0] to_reg, from_reg;
           assign to_reg = writedata;
           assign local_byteenable = (chipselect & write) ? byteenable : 4'd0;
               .clock(clock),
               .resetn(resetn),
               .D(to_reg),
               .byteenable(local_byteenable),
               .Q(from_reg)
           assign readdata = from_reg;
           assign Q_export = from_reg;
39
       endmodule
```

Рис. 16. Файл «reg32_avalon_interface.v»

Puc. 17. Електричні схеми модулів «reg32_avalon_interface.v» та «reg32.v»

ĺ						ДК31мп. 466539.001 ПЗ	Лист
I						ДN3 1MI1. 400039.00 Г 113	14
ľ	3м.	Лист	№ докум.	Підпис	Дата		

3.3. Проєкт в середовищі «Intel FPGA Monitor Program»

Для того, щоб завантажити код програми для процесора NoisII слід створити проєкт в середовищі «Intel FPGA Monitor Program». Ось якими параметрами він володіє (рис. 18):

Рис. 18. Файл «РМР.атр», що і визначає налаштування проєкту.

А ось і алгоритм роботи процесора (рис. 19):

Рис. 19. Файл «main.c», що задає алгоритм роботи процесору.

					ДК31мп. 466539.001 ПЗ	Лис
					дкэтмн. 4 00559.001 нз	15
3м.	Лист	№ докум.	Підпис	Дата		

Оскільки в мене під час виконання курсового проєкту виникли проблеми з платою DE10-nano (рис. 20), то я дещо зміню «main.c» та продемонструю його роботу у відриві від решти компонентів системи (рис. 21).

Рис. 20. Вихід з ладу плати DE10-nano.

```
PS C:\Users\bimee\OneDrive\SoC\Course_Task\NoisII_c_file> .\run.bat
C:\Users\bimee\OneDrive\SoC\Course_Task\NoisII_c_file> gcc main.c -o main.exe
C:\Users\bimee\OneDrive\SoC\Course_Task\NoisII_c_file>.\main.exe

C:\Users\bimee\OneDrive\SoC\Course_Task\NoisII_c_file>.\main.exe

Old number is: 0, New number is: 0x1234

The half bytes:
half_byte[0] = 4
half_byte[1] = 3
half_byte[2] = 2
half_byte[2] = 2
half_byte[3] = 1

Old number is: 1234, New number is: 0xF12A

The half bytes:
half_byte[0] = a
half_byte[1] = 2
half_byte[2] = 1
half_byte[3] = f

Old number is: f12a, New number is: 0x
```

Рис. 21. Демонстрація роботи «main.c» у відриві від решти компонентів системи на кристалі.

3м.	Лист	№ докум.	Підпис	Дата

ВИСНОВОК

В межах даного курсового проєкту було розроблено систему на кристалі, котра базується на платі DE10-nano. Ця система використовує взаємодію процесорне ядро та засоби відладки для того, щоб обробляти інформацію, що надходить з терміналу утиліти «Intel FPGA Monitor Program». Також ϵ оригінальний компонент, що отримує дані від ядра через шину «Avalon MM» та у відповідності до отриманої інформації керує сукупністю семисигментних індикаторів. Система містить й інші компоненти як от пам'ять чи порти PIO.

Нажаль, мені не вдалось перевірити всі елементи в взаємодії та добавити такий експеримент в пояснювальну записку, але враховуючи досвід запуску подібних систем в межах іншої дисципліни, вважаю, що пристрій розроблено без грубих помилок. Також присутня перевірки оригінального модуля за допомогою засобу симуляції «ModelSim» та перевірка програмного забезпечення процесора NiosII у відриві від решти компонентів.

Враховуючи такий результат, вважаю, що курсовий проєкт заслуговую оцінки «достатньо»!

3м.	Лист	№ докум.	Підпис	Дата

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- DE10-Nano User Manual [електроний ресурс] Режим доступу:
 https://ftp.intel.com/Public/Pub/fpgaup/pub/Intel_Material/Boards/DE10-Nano/DE10_Nano_User_Manual.pdf
- 2. DE10-Nano Board [електроний ресурс] Режим доступу: https://www.mikrocontroller.net/attachment/327098/de10-nano_a0.pdf
- 3. Introduction to the Intel Nios II Soft Processor [електроний ресурс] Режим доступу:

https://classroom.google.com/c/ODU2NzY2MzUyMjFa/m/MTY5MTMxNTg0 NTcx/details

				·
3м.	Лист	№ докум.	Підпис	Дата