# TRANSIMS Version 5 File Reference

| ACCESS_FILE               | 5  |
|---------------------------|----|
| ACTIVITY_FILE             | 6  |
| ARC_ACCESS_FILE           | 6  |
| ARC_ACCESSIBILITY_FILE    | 6  |
| ARC_ BANDWIDTH_FILE       | 6  |
| ARC_CENTERLINE _FILE      | 6  |
| ARC_CONNECTION_FILE       | 7  |
| ARC_ DETECTOR_FILE        | 7  |
| ARC_DISTANCE_CONTOUR_FILE | 7  |
| ARC_ LANE_USE _FILE       | 7  |
| ARC_ LINK_FILE            | 7  |
| ARC_LOCATION _FILE        | 7  |
| ARC_ NODE_FILE            | 7  |
| ARC_ PARKING_DEMAND_FILE  | 8  |
| ARC_ PARKING_FILE         | 8  |
| ARC_ PHASING_PLAN _FILE   | 8  |
| ARC_ PLAN_FILE            | 8  |
| ARC_ POCKET_FILE          | 8  |
| ARC_PROBLEM _FILE         | 8  |
| ARC_RIDERSHIP _FILE       | 9  |
| ARC_ ROUTE_NODES _FILE    | 9  |
| ARC_SIGN_FILE             | 9  |
| ARC_ SIGNAL _FILE         | 9  |
| ARC_ SNAPSHOT _FILE       | 9  |
| ARC_STOP_DEMAND_FILE      | 9  |
| ARC_STOP_GROUP_FILE       | 9  |
| ARC_SUBZONE_DATA_FILE     | 10 |
| ARC_TIME_CONTOUR_FILE     | 10 |
| ARC_TIMING_PLAN_FILE      | 10 |
| ARC_TRANSIT_DRIVER_FILE   | 10 |
| ARC_TRANSIT_ROUTE_FILE    | 10 |
| ARC_ TRANSIT_STOP _FILE   | 10 |
| ARC_TURN_PENALTY_FILE     | 11 |
| ARC_ ZONE _FILE           | 11 |
| COMPARE PERFORMANCE FILE  | 11 |

| COMPARE_PLAN_FILE                         | 11 |
|-------------------------------------------|----|
| Configuration_File                        | 11 |
| CONNECTION_FILE                           | 12 |
| Control_Files/Printout_Files (.CTL, .PRN) | 16 |
| CONVERSION_SCRIPT                         | 17 |
| COST_DISTRIBUTION_FILE                    | 18 |
| Definition Files (*.DEF)                  | 18 |
| DELETE_LINK_FILE                          | 21 |
| DELETE_NODE_CONTROL_FILE                  | 21 |
| DELETE_NODE_FILE                          | 21 |
| DESTINATION_LOCATION_FILE                 | 22 |
| DESTINATION_ZONE_FILE                     | 22 |
| DETECTOR_FILE                             | 22 |
| DIRECTIONAL_DATA_FILE                     | 22 |
| GROUP_TRAVEL_FILE                         | 22 |
| HOUSEHOLD_FILE                            | 22 |
| INPUT_LINK_FILE                           | 24 |
| INPUT_NODE_FILE                           | 24 |
| INPUT_SIGN_FILE                           | 24 |
| INPUT_SIGNAL_FILE                         | 24 |
| INPUT_SPDCAP_FILE                         | 24 |
| INPUT_ZONE_FILE                           | 25 |
| KEEP_LINK_FILE                            | 25 |
| KEEP_NODE_FILE                            | 25 |
| LANE_USE_FILE                             | 26 |
| LINK_ACTIVITY_FILE                        | 26 |
| LINK_DATA_FILE                            | 27 |
| LINK_DELAY_FILE                           | 27 |
| LINK_DETAIL_FILE                          |    |
| LINK_EQUIVALENCE_FILE                     | 28 |
| LINK_NODE_EQUIVALENCE                     | 28 |
| LINK_FILE                                 | 29 |
| LINK_NODE_LIST_FILE                       | 32 |
| LINK_SUMMARY_FILE                         | 32 |
| LINK_VOLUME_FILE                          | 32 |
| LOCATION_FILE                             | 32 |
| MERGE_LINK_DELAY_FILE                     | 33 |
| MERGE_PLAN_FILE                           | 33 |
| MERGE_TRIP_FILE                           | 33 |
| NODE_FILE                                 | 33 |
| OCCUPANCY_FILE                            | 35 |
| ORIGIN_LOCATION_FILE                      | 35 |

| ORIGIN_ZONE_FILE         | 35 |
|--------------------------|----|
| PARKING_FILE             | 35 |
| PARKING_PENALTY_FILE     | 35 |
| PERFORMANCE_DATA_FILE    | 36 |
| PERFORMANCE_FILE         | 36 |
| PERSON_FILE              | 36 |
| PHASING_PLAN_FILE        | 36 |
| PLAN_FILE                | 36 |
| POCKET_FILE              | 40 |
| PROBLEM_FILE             | 41 |
| REPORT_FILE              | 46 |
| RIDERSHIP_FILE           | 46 |
| ROUTE_NODES_FILE         | 46 |
| SELECTION_FILE           | 46 |
| SHAPE_FILE               | 47 |
| SIGN_FILE                | 50 |
| SIGNAL_FILE              | 51 |
| SKIM_FILE                | 51 |
| SNAPSHOT_FILE            | 52 |
| STOP_EQUIVALENCE_FILE    | 52 |
| SUBZONE_DATA_FILE        | 52 |
| SUBZONE_ZONE_FACTOR_FILE | 53 |
| TIME_DISTRIBUTION_FILE_* | 53 |
| TIMING_PLAN_FILE         | 53 |
| TOLL_FILE                | 54 |
| TRANSIT_DRIVER_FILE      |    |
| TRANSIT_FARE_FILE        |    |
| TRANSIT_PENALTY_FILE     |    |
| TRANSIT_ROUTE_FILE       |    |
| TRANSIT_SCHEDULE_FILE    |    |
| TRANSIT_STOP_FILE        |    |
| TRIP_COST_GAP_FILE       | 55 |
| TRIP_FILE                |    |
| TRIP_TABLE_FILE_1        | 56 |
| TRIP_TIME_FILE           |    |
| TRIP_TIME_GAP_FILE       | 57 |
| TURN_PENALTY_FILE        | 57 |
| TURN_VOLUME_FILE         |    |
| UPDATE_LINK_FILE         |    |
| UPDATE_NODE_FILE         |    |
| VEHICLE_FILE             | 58 |
| VEHICLE_TYPE_FILE        | 59 |

| VERSION4_PLAN_FILE                                | 60 |
|---------------------------------------------------|----|
| ZONE_BOUNDARY_FILE                                | 60 |
| ZONE_EQUIVALENCE_FILE                             | 60 |
| ZONE_FILE                                         | 62 |
| ZONE_LOCATION_MAP_FILE                            | 63 |
| ZONE_TRAVEL_FILE                                  | 63 |
|                                                   |    |
| Figure 1 Lane Number Difference between V4 and V5 | 14 |
| Figure 2 Version 4 Lane Connectivity Edits        | 15 |
| Figure 3 Version 5 Connection Edits               | 16 |
| Figure 4 Example Links                            | 31 |
| Figure 5 Links, nodes and shape points            | 50 |
|                                                   |    |
| Table 1 CONNECTION_FILE Field Definitions         |    |
| Table 2 CONNECTION_FILE Example                   |    |
| Table 3 HOUSEHOLD_FILE Field Definitions          |    |
| Table 4 HOUSEHOLD_FILE Example                    |    |
| Table 5 LINK_DELAY_FILE Field Definitions         |    |
| Table 6 LINK_DELAY_FILE Example                   |    |
| Table 7 LINK_FILE Field Definitions               |    |
| Table 8 LINK_FILE Example                         |    |
| Table 9 NODE_FILE Example                         | 34 |
| Table 10 PLAN_FILE Field Definitions              | 38 |
| Table 11 PLAN_FILE Example: Primary Trip Record   | 39 |
| Table 12 PLAN_FILE Example: Path Records          | 40 |
| Table 13 POCKET_FILE Field Definitions            | 41 |
| Table 14 POCKET_FILE Example                      | 41 |
| Table 15 Problem Codes                            | 42 |
| Table 16 PROBLEM_FILE Example                     | 46 |
| Table 17 SELECTION_FILE Example                   | 47 |
| Table 18 SHAPE_FILE Field Definitions             | 48 |
| Table 19 Information for links 62 and 63          | 49 |
| Table 20 Information for nodes 123, 132, 133      | 49 |
| Table 21 SKIM_FILE Example                        | 52 |
| Table 22 TIME_DISTRIBUTION_FILE Example           | 53 |
| Table 23 TRIP_FILE Example                        |    |
| Table 24 TRIP_TABLE_FILE Example                  | 57 |
| Table 25 VEHICLE_FILE Example                     | 59 |
| Table 26 VEHICLE_TYPE_FILE Example                | 59 |
| Table 27 ZONE_FILE Example                        | 62 |
|                                                   |    |

## **ACCESS\_FILE**

Names: ACCESS\_FILE and NEW\_ACCESS\_FILE

Used In:

ArcNet

ConvertTrips Default Control K

LocationData Microsimulator

NewFormat

**PathSkim** 

Router

**TransimsNet** 

In TRANSIMS Version 5, Process Links (Version 4) are replaced by Access Links (Version 5). Some important functional differences exist between the two link types as well. In Version 4, process links are required to connect activity locations to parking lots, and to connect activity locations to transit stops. For vehicles to be loaded onto the network they must move from parking lots to activity locations to the actual link/road via process links which are located on the network as paired, one-way links on either side of the actual network link (see illustration below). In Version 5, process links are no longer needed. Instead, link-offsets are used to build direct, two-way connections for loading and unloading of vehicles from the network. Walk links now have travel time, distance, and cost associated with them in Version 5. In addition, transit stops no longer need activity locations, and activity locations with a zone number equal to zero are deleted. In contrast with process links, access links are only used for special connections (as two-way or one-way links), specifically the following pairs:

- Locations <-> Parking
- Locations <-> Stops
- Locations <-> Nodes
- Locations <-> Locations
- Stops <-> Stops
- Nodes<-> Nodes
- Parking <-> Stops
- Parking <-> Nodes
- Stops <-> Nodes



## **ACTIVITY\_FILE**

Name: ACTIVITY\_FILE

Used In:

NewFormat

### To be defined

## ARC\_ACCESS\_FILE

Names: ARC\_ACCESS\_FILE, NEW\_ARC\_ACCESS\_FILE

Used in ArcNet

To be defined

## ARC\_ACCESSIBILITY\_FILE

Names: ARC\_ACCESSIBILITY\_FILE, NEW\_ARC\_ACCESSIBILITY\_FILE

Used in ArcPlan

### To be defined

## ARC\_BANDWIDTH\_FILE

Names: ARC\_ BANDWIDTH\_FILE, NEW\_ARC\_ BANDWIDTH\_FILE

Used in ArcPlan

#### To be defined

## ARC\_CENTERLINE \_FILE

Names: ARC\_ CENTERLINE \_FILE, NEW\_ARC\_ CENTERLINE \_FILE

Used in ArcNet

### To be defined

## ARC\_CONNECTION\_FILE

Names: ARC\_ CONNECTION \_FILE, NEW\_ARC\_ CONNECTION \_FILE

Used in ArcNet

### To be defined

## ARC\_DETECTOR\_FILE

Names: ARC\_ DETECTOR \_FILE, NEW\_ARC\_ DETECTOR \_FILE

Used in ArcNet

### To be defined

## ARC\_DISTANCE\_CONTOUR\_FILE

Names: ARC\_ DISTANCE\_CONTOUR \_FILE, NEW\_ARC\_ DISTANCE\_CONTOUR \_FILE

Used in ArcPlan

#### To be defined

## ARC\_LANE\_USE\_FILE

Names: ARC\_LANE\_USE\_FILE, NEW\_ARC\_LANE\_USE\_FILE

Used in ArcNet

### To be defined

## ARC\_LINK\_FILE

Names: ARC\_LINK\_FILE, NEW\_ARC\_LINK\_FILE

Used in ArcNet

### To be defined

## ARC\_LOCATION \_FILE

Names: ARC\_LOCATION\_FILE, NEW\_ARC\_LOCATION\_FILE

Used in ArcNet

### To be defined

## ARC\_NODE\_FILE

Names: ARC\_NODE \_FILE, NEW\_ARC\_NODE \_FILE

Used in ArcNet

#### To be defined

## ARC\_ PARKING\_DEMAND\_FILE

 ${\tt Names: ARC\_PARKING\_DEMAND\_FILE, NEW\_ARC\_PARKING\_DEMAND\_FILE}$ 

Used in ArcPlan

### To be defined

## ARC\_PARKING\_FILE

Names: ARC\_ PARKING \_FILE, NEW\_ARC\_ PARKING \_FILE

Used in ArcNet

### To be defined

## ARC\_PHASING\_PLAN\_FILE

Names: ARC\_ PHASING\_PLAN \_FILE, NEW\_ARC\_ PHASING\_PLAN \_FILE

Used in ArcNet

#### To be defined

## ARC\_PLAN\_FILE

Names: ARC\_PLAN\_FILE, NEW\_ARC\_PLAN\_FILE

Used in ArcPlan

### To be defined

## ARC\_ POCKET\_FILE

Names: ARC\_POCKET\_FILE, NEW\_ARC\_POCKET\_FILE

Used in ArcNet

#### To be defined

## ARC\_PROBLEM \_FILE

Names: ARC\_ PROBLEM\_FILE, NEW\_ARC\_PROBLEM \_FILE

Used in ArcPlan

### To be defined

## **ARC\_RIDERSHIP\_FILE**

Names: ARC\_ RIDERSHIP \_FILE, NEW\_ARC\_ RIDERSHIP \_FILE

Used in ArcPlan

### To be defined

## ARC\_ROUTE\_NODES\_FILE

Names: ARC\_ROUTE\_NODES\_FILE, NEW\_ARC\_ROUTE\_NODES\_FILE

Used in ArcNet

### To be defined

## ARC\_SIGN\_FILE

Names: ARC\_SIGN \_FILE, NEW\_ARC\_ SIGN\_FILE

Used in ArcNet

### To be defined

## ARC\_SIGNAL\_FILE

Names: ARC\_ SIGNAL \_FILE, NEW\_ARC\_ SIGNAL \_FILE

Used in ArcNet

### To be defined

## ARC\_SNAPSHOT\_FILE

Names: ARC\_ SNAPSHOT \_FILE, NEW\_ARC\_ SNAPSHOT \_FILE

Used in ArcSnapshot

### To be defined

## ARC\_STOP\_DEMAND\_FILE

Names: ARC\_STOP\_DEMAND\_FILE, NEW\_ARC\_STOP\_DEMAND\_FILE

Used in ArcPlan

#### To be defined

## ARC\_STOP\_GROUP\_FILE

Names: ARC\_STOP\_GROUP\_FILE, NEW\_ARC\_STOP\_GROUP\_FILE

Used in ArcPlan

#### To be defined

## ARC\_SUBZONE\_DATA\_FILE

Names: ARC\_ SUBZONE\_DATA \_FILE, NEW\_ARC\_ SUBZONE\_DATA \_FILE Used in ArcNet

### To be defined

## ARC\_TIME\_CONTOUR\_FILE

Names: ARC\_ TIME\_CONTOUR \_FILE, NEW\_ARC\_ TIME\_CONTOUR \_FILE Used in ArcPlan

#### To be defined

## ARC\_TIMING\_PLAN\_FILE

Names: ARC\_TIMING\_PLAN\_FILE, NEW\_ARC\_TIMING\_PLAN\_FILE Used in ArcNet

#### To be defined

## ARC\_TRANSIT\_DRIVER\_FILE

Names: ARC\_ TRANSIT\_DRIVER \_FILE, NEW\_ARC\_ TRANSIT\_DRIVER \_FILE Used in ArcNet

#### To be defined

## ARC\_TRANSIT\_ROUTE\_FILE

Names: ARC\_TRANSIT\_ROUTE \_FILE, NEW\_ARC\_TRANSIT\_ROUTE \_FILE Used in ArcNet

#### To be defined

## ARC\_TRANSIT\_STOP\_FILE

Names: ARC\_ TRANSIT\_STOP \_FILE, NEW\_ARC\_ TRANSIT\_STOP \_FILE Used in ArcNet

### To be defined

## ARC\_TURN\_PENALTY\_FILE

Names: ARC\_TURN\_PENALTY\_FILE, NEW\_ARC\_TURN\_PENALTY\_FILE

Used in ArcNet

To be defined

## ARC\_ZONE\_FILE

Names: ARC\_ZONE\_FILE, NEW\_ARC\_ZONE\_FILE

Used in ArcNet

To be defined

## COMPARE\_PERFORMANCE\_FILE

Used in LinkSum

To be defined

## **COMPARE\_PLAN\_FILE**

Used in PlanCompare

To be defined

## Configuration\_File

Used by all programs (global settings; can be over-ridden by local settings)

In most TRANSIMS applications there are a significant number of keys that are common to all programs. Many of the Execution Service keys fall into this category. They tend to be global keys that define the default behavior of the model. If the modeler wishes to set these keys once and use them in all model applications, a TRANSIMS configuration file can be created. A configuration file is exactly like any other control file and can include any number of control keys and key values. Each TRANSIMS program looks for a configuration file using the operating system environment variable TRANSIMS\_CONFIG\_FILE. The variable points to a file name that stores the configuration keys. The program reads the configuration keys into memory before it reads the control file keys. If a control key is defined in both files, the value from the control file will override the value in the configuration file.

The path to a configuration file can be set dynamically for a particular application using the SET command within a batch file or at the command prompt. For example:

## **CONNECTION\_FILE**

Names: CONNECTION\_FILE, NEW\_CONNECTION\_FILE

#### Used In:

ArcNet

ArcPlan ArcSnapshot

IntControl

LinkDelay

LinkSum

Microsimulator

NewFormat

PathSkim

PlanSelect

PlanSum

Router

TransimsNet

Formerly known as LANE\_CONNECTIVITY, this is a list of intersection connections in the network. A typical field definition (.def or .DEF) file is as follows:

TRANSIMS50, TAB\_DELIMITED, 1
LINK, INTEGER, 1, 10
DIR, INTEGER, 2, 1
TO\_LINK, INTEGER, 3, 10
LANES, STRING, 4, 8, LANE\_RANGE\_TYPE
TO\_LANES, STRING, 5, 8, LANE\_RANGE\_TYPE
TYPE, STRING, 6, 8, CONNECTION\_TYPE
PENALTY, UNSIGNED, 7, 5, IMPEDANCE
SPEED, DOUBLE, 8, 5.1, KPH
CAPACITY, UNSIGNED, 9, 8, VPH
NOTES, STRING, 10, 128

The fields are defined as follows:

**Table 1 CONNECTION\_FILE Field Definitions** 

| Field(s) | Description                                         | Use  | Default Units |
|----------|-----------------------------------------------------|------|---------------|
| LINK     | The link number (an integer)                        | Key  |               |
| DIR      | Direction on the link AB=0, BA=1                    | Req. |               |
| TO_LINK  | Outbound Link                                       | Req. |               |
| LANES    | Range of inbound lanes, numbered from right to left | Req. | Note 1        |

| Field(s) | Description                                          | Use  | Default Units |
|----------|------------------------------------------------------|------|---------------|
| TO_LANES | Range of outbound lanes, numbered from right to left | Req. | Note 1        |
| TYPE     | Connection Type                                      | Req. | Note 2        |
| PENALTY  | Penalty for the movement                             | Opt. | Seconds       |
| SPEED    | Maximum turning speed                                | Opt. | m/s           |
| CAPACITY | Hourly vehicle capacity for the turn                 | Opt. | veh/hr        |
| NOTES    | Character string for user notes                      | Opt. |               |

Note 1: Could either be a single lane number, or a range, e.g., 1..2

Note 2: Connection types include NO\_TYPE, THRU, R\_SPLIT, L\_SPLIT, R\_MERGE, L\_MERGE, RIGHT, LEFT, and UTURN

The following figure and table shows some examples:





Table 2 CONNECTION\_FILE Example

| LINK | DIR | TO_LINK | LANES | TO_LANES | ТҮРЕ    | PENALTY | SPEED | CAPACITY | NOTES                  |
|------|-----|---------|-------|----------|---------|---------|-------|----------|------------------------|
| 16   | 0   | 13      | R1    | 1        | R_SPLIT | 0       | 0     | 0        | Off Ramp               |
| 16   | 0   | 9       | 12    | 12       | THRU    | 0       | 0     | 0        | Thru lanes at off ramp |
| 8    | 0   | 17      | 12    | 13       | THRU    | 0       | 0     | 0        | Thru lanes at on ramp  |
| 12   | 0   | 17      | 1     | 12       | R_MERGE | 0       | 0     | 0        | On ramp                |
|      |     |         |       |          |         |         |       |          |                        |
| 7    | 0   | 19      | 12    | 12       | THRU    | 0       | 0     | 0        | Eastbound thru lanes   |
| 7    | 0   | 22      | L1    | 1        | LEFT    | 0       | 0     | 0        | Eastbound left turn    |

| LINK | DIR | TO_LINK | LANES | TO_LANES | ТУРЕ  | PENALTY | SPEED | CAPACITY | NOTES                 |
|------|-----|---------|-------|----------|-------|---------|-------|----------|-----------------------|
| 19   | 1   | 22      | 1     | 1        | RIGHT | 0       | 0     | 0        | Westbound right turn  |
| 19   | 1   | 7       | 12    | 12       | THRU  | 0       | 0     | 0        | Westbound thru lanes  |
| 22   | 1   | 7       | 1     | 12       | RIGHT | 0       | 0     | 0        | Southbound right turn |
| 22   | 1   | 19      | 1     | 12       | LEFT  | 0       | 0     | 0        | Southbound left turn  |

## **Differences from Version 4**

Lane numbering has changed significantly from version 4. In version 5, lanes are numbered from right to left, and pocket lanes are treated separately.





Figure 1 Lane Number Difference between V4 and V5

This simplifies the lane connectivity edits. In version 4, the edits would often cascade from one intersection to another.



Figure 2 Version 4 Lane Connectivity Edits

In version 5, the edits are simpler:



**Figure 3 Version 5 Connection Edits** 

## Control\_Files/Printout\_Files (.CTL, .PRN)

### **Used with all TRANSIMS programs**

The control\_file field on the command line is the directory path and file name of a text file that contains the control strings expected by the program. If a file name is not provided, the program will prompt the user to enter a file name. The program automatically creates a printout file based on the control file name. If the file name includes an extension (e.g., ".ctl") the extension is removed, and the ".prn" suffix is added. The printout file will be created in the current working directory and will overwrite an existing file with the same name.

If the program command syntax includes the partition option, the program can be instructed to process a subset of file partitions by specifying a partition number or partition range after the control file name. For example, the Router can execute a subset of partitions using a command line like:

Router.exe Router.ctl 10 Router.exe Router.ctl 0..4

The first command generates plans for the households assigned to partition 10. The second command generates plans for households assigned to partitions 0 through 4. In these cases,

the printout file generated by the program includes the partition number or range in the file name:

```
Router_10.prn
Router_0-4.prn
```

If the program command syntax includes the parameter option, the printout file will include the parameter information. For example, the command

RunSetup.exe TripModel.ctl 2010

...will create the printout file:

TripModel 2010.prn

## **CONVERSION\_SCRIPT**

Used In:

UserPrograms NetPrep

This is an optional key though it may be required for specific applications. The conversion script key value is a directory with the conversion script filename appended to it. NetPrep is the primary program in TRANSIMS 5 which uses a TRANSIMS UserProgram-type script for input. The programming language for the script is described in the UserPrograms documentation. By default the data field names found in the GIS link file are copied to the corresponding names in the TRANSIMS link file. If the GIS link file was created using ArcNet, this means the data from the GIS file will automatically be copied to the TRANSIMS fields (provided the input and output files are in the same general file structure (i.e., Version4 vs. Version5)). If the GIS link file includes different field names or different units of measure, a conversion script is typically used to manipulate the data or map the input field names to the output field names. The input link shape file fields are referenced as "Link.field" and the TRANSIMS link fields are referenced as NewLink.field".

An example of a conversion script appears below:

NewLink.USE = "ANY" NewLink.LINK = Link.ID

NewLink.LENGTH = 1609 \* Link.LENGTH

NewLink.LANES\_AB = Link.AB\_LANE NewLink.LANES\_BA = Link.BA\_LANE NewLink.SPEED AB = Link.AB PKSPD NewLink.SPEED BA = Link.BA PKSPD NewLink.FSPD AB = Link.SPDLIM NewLink.FSPD BA = Link.SPDLIM NewLink.CAP AB = Link.AB CAP NewLink.CAP BA = Link.BA CAP IF (Link.FT == 1) THEN NewLink.TYPE = "FREEWAY" ELSE IF (Link.FT == 2) THEN NewLink.TYPE = "Expressway" ELSE IF (Link.FT == 3) THEN NewLink.TYPE = "Principal" ELSE IF (Link.FT == 4) THEN NewLink.TYPE = "Major" ELSE IF (Link.FT == 5) THEN NewLink.TYPE = "Minor" ELSE IF (Link.FT == 6) THEN NewLink.TYPE = "Collector" ELSE IF (Link.FT == 7) THEN NewLink.TYPE = "Local" ELSE IF (Link.FT == 8) THEN NewLink.TYPE = "Local" ELSE IF (Link.FT == 9) THEN NewLink.TYPE = "Frontage"

ENDIF ENDIF ENDIF ENDIF ENDIF ENDIF ENDIF ENDIF

RETURN (1) END

## COST\_DISTRIBUTION\_FILE

NEW\_COST\_DISTRIBUTION\_FILE

ELSE IF (Link.FT == 20) THEN NewLink.TYPE = "External"

Used in PlanCompare

## **Definition Files (\*.DEF)**

#### Used in all TRANSIMS programs

TRANSIMS uses definition files to interpret and define data fields within most input and output files generated by the modeling process. A definition file is automatically created when the file is created. It has the same path and file name as the data file with a ".def" extension added at the end. For example, the program control keys below...

```
NEW_LINK_FILE network\link.txt
NEW LINK FORMAT TAB DELIMITED
```

...create a new link file in the network directory called "link.txt". The format key indicates that the link file will be created in tab delimited format. A definition file called "link.txt.def" will also be created in the network directory. The definition file is a standard text file containing the following information:

TRANSIMS50, TAB\_DELIMITED, 1
LINK, INTEGER, 1, 10
NAME, STRING, 2, 40
NODE\_A, INTEGER, 3, 10
NODE\_B, INTEGER, 4, 10
LENGTH, DOUBLE, 5, 8.1, FEET
TYPE, STRING, 10, 12, FACILITY\_TYPE
AREA\_TYPE, UNSIGNED, 12, 3
LANES\_AB, UNSIGNED, 14, 2
SPEED\_AB, DOUBLE, 15, 5.1, MPH
FSPD\_AB, DOUBLE, 16, 5.1, MPH
CAP\_AB, UNSIGNED, 17, 8, VPH
USE, STRING, 22, 128, USE\_TYPE

The first record in the \*.def file specifies the software version that created the file (TRANSIMS 5.0), the data file format (tab delimited), and the number of header records in the data file (1). The header record is followed by one record for each data field. These records include the field name, the data type, the field offset within the data record, the maximum field length and number of decimal places, and, if appropriate, the units or enumeration type of the field. The units field facilitates conversions between English and metric systems. It also automates the process of converting text strings to internal type codes (i.e., enumerations) and back again. Binary files, for example, store the type codes as numbers rather than strings to reduce file size and improve performance.

When an existing file is read by a program, the program looks for the definition file to automatically determine how to read the file and process the data fields. If a definition file is not found, the program will look for a \*.FORMAT control key where the user identifies the file

format. In many cases, the program can used the file format information to read header records from the data file and construct a definition file. If the file is delimited, the program will read the first 100 records of the file to estimate the data types and field widths. This information is written to a new definition file constructed for the data file. If the estimation process is inaccurate, the user can edit the definition file to correct any inaccuracies.

Binary and fixed column file format definition files cannot be constructed automatically. These file formats do not store field header information in the data file. All information about how to read and interpret the file must be provided in the definition file. The user must manually create a definition file for these file types if they are to be read into a TRANSIMS program. This is also true for delimited files that do not include field names as the first record in the file.

TRANSIMS also supports nested files that include two record types. The first record is the master record that includes a field that identifies the number of nested records that follow. A link delay file is a typical example of a nested data file. The master records define the link, time period, flow and travel time on the link while the nested records define the turning movement links, flows, and travel times.

| LINK  | DIR  | TYPE  | START | END   | FLOW | TIME | NCONNECT |
|-------|------|-------|-------|-------|------|------|----------|
| OUT_L | .INK | OUT_F | LOW   | OUT_T | IME  |      |          |
| 37    | 0    | 0     | 2:00  | 2:15  | 2.0  | 19.4 | 2        |
| 44    | 1.0  | 19.4  |       |       |      |      |          |
| 41    | 1.0  | 19.4  |       |       |      |      |          |
| 37    | 1    | 0     | 2:00  | 2:15  | 0.5  | 19.4 | 0        |
| 39    | 0    | 0     | 2:00  | 2:15  | 8.0  | 63.8 | 3        |
| 42    | 4.0  | 63.8  |       |       |      |      |          |
| 46    | 11.0 | 63.8  |       |       |      |      |          |
| 43    | 1.0  | 63.8  |       |       |      |      |          |
| 40    | 1    | 0     | 2:00  | 2:15  | 2.0  | 63.8 | 1        |
| 10    | 2.0  | 63.8  |       |       |      |      |          |
| 41    | 0    | 0     | 2:00  | 2:15  | 1.0  | 63.8 | 1        |
| 45    | 1.0  | 63.8  |       |       |      |      |          |
| 41    | 1    | 0     | 2:00  | 2:15  | 3.2  | 63.8 | 3        |
| 37    | 1.0  | 63.8  |       |       |      |      |          |
| 40    | 2.0  | 63.8  |       |       |      |      |          |
| 44    | 1.0  | 63.8  |       |       |      |      |          |
| 42    | 1    | 0     | 2:00  | 2:15  | 3.8  | 63.8 | 1        |
| 41    | 4.0  | 63.8  |       |       |      |      |          |
| 43    | 0    | 0     | 2:00  | 2:15  | 0.8  | 63.8 | 0        |
|       |      |       |       |       |      |      |          |

The definition file for the link delay file shown above looks like this:

TRANSIMS50, TAB\_DELIMITED, 2, NESTED LINK, INTEGER, 1, 10

DIR, INTEGER, 2, 1
TYPE, INTEGER, 3, 1
START, TIME, 4, 16, HOUR\_CLOCK
END, TIME, 5, 16, HOUR\_CLOCK
FLOW, DOUBLE, 6, 8.1, VEHICLES
TIME, TIME, 7, 8.1, SECONDS
NCONNECT, INTEGER, 8, 2, NEST\_COUNT
OUT\_LINK, INTEGER, 1, 10, NO, NESTED
OUT\_FLOW, DOUBLE, 2, 8.1, VEHICLES, NESTED
OUT\_TIME, TIME, 3, 8.1, SECONDS, NESTED

The first record indicates that the data file has two header records and includes the NESTED key word. The field specifications for the master record are exactly like any other definition file. The nested fields add the NESTED key word after the units field. Note that the record offsets restarts from 1 as well. The field with the NEST\_COUNT identifier is used to determine how many nested records follow each master record.

### DELETE LINK FILE

### DELETE\_LINK\_FILE

NetPrep

The delete link file is optional and if specified defines a series of link numbers where the pocket lanes, activity locations, parking lots, processing links and link are deleted. The lane connectivity at both ends of the link is also updated. Each record in the file is interpreted as a comma separated list of link ranges. A link range is specified using two period (e.g., 100..200). The file could also be a simple list of link numbers. The values in the link range and the link file are combined if both keys are provided.

### DELETE\_NODE\_CONTROL\_FILE

**DELETE\_NODE\_CONTROL\_FILE**IntControl Default Control Key

### **DELETE NODE FILE**

**DELETE NODE FILE** 

NetPrep

The delete node file is optional and if specified defines a series of node numbers where the lane connectivity, traffic control warrants, and node are deleted. Each record in the file is interpreted as a comma separated list of node ranges. A node range is specified using two period (e.g., 100..200). The file could also be a simple list of node numbers. The values in the node range and the node file are combined if both keys are provided.

## **DESTINATION\_LOCATION\_FILE**

DESTINATION\_LOCATION\_FILE
PathSkim
NEW\_DESTINATION\_LOCATION\_FILE
PathSkim

## **DESTINATION\_ZONE\_FILE**

**DESTINATION\_ZONE\_FILE**PathSkim

## **DETECTOR\_FILE**

### DETECTOR\_FILE

ArcNet
IntControl Default Control Key
Microsimulator
NewFormat
NEW\_DETECTOR\_FILE
IntControl Default Control Key
NewFormat

## **DIRECTIONAL\_DATA\_FILE**

DIRECTIONAL\_DATA\_FILE
LinkData
NEW\_DIRECTIONAL\_DATA\_FILE
LinkData

## **GROUP\_TRAVEL\_FILE**

NEW\_GROUP\_TRAVEL\_FILE LinkSum

## **HOUSEHOLD\_FILE**

Names: HOUSEHOLD\_FILE, NEW\_HOUSEHOLD\_FILE

Both HOUSEHOLD\_FILE and NEW\_HOUSEHOLD\_FILE are used in ConvertTrips

NewFormat

Additionally, HOUSEHOLD\_FILE is used in Simulator PathSkim RandomSelect

#### Router

The household file key is appended to the PROJECT\_DIRECTORY key to specify the file name for the input household file copied to the output household file by the program. One household is generated for each trip in the input trip tables.

The version 5 household file replaces the household and population files in version 4. A Version 5 .def file for the household file is as follows:

TRANSIMS50, TAB\_DELIMITED, 2, NESTED HHOLD, INTEGER, 1, 10 LOCATION, INTEGER, 2, 10 PERSONS, INTEGER, 3, 2, NEST\_COUNT WORKERS, INTEGER, 4, 2 VEHICLES, INTEGER, 5, 2 PERSON, INTEGER, 1, 5, NO, NESTED AGE, INTEGER, 2, 3, YEARS, NESTED RELATE, STRING, 3, 12, RELATE\_TYPE, NESTED GENDER, STRING, 4, 8, GENDER\_TYPE, NESTED WORK, STRING, 5, 6, TRUE/FALSE, NESTED DRIVE, STRING, 6, 6, TRUE/FALSE, NESTED

**Table 3 HOUSEHOLD\_FILE Field Definitions** 

| Field(s) | Description                                           | Default Units |
|----------|-------------------------------------------------------|---------------|
| HHOLD    | Household number                                      |               |
| LOCATION | Location (activity location) for the household        |               |
| PERSONS  | Number of persons in the household                    |               |
| WORKERS  | Number of workers                                     |               |
| VEHICLES | Number of vehicles                                    |               |
| PERSON   | (nested field) Person number                          |               |
| AGE      | (nested field) Age of that person                     | Years         |
| RELATE   | (nested field) Relationship of that person. Options   |               |
|          | include blank, NO_RELATE, HEAD_HHOLD, SPOUSE,         |               |
|          | CHILD, FAMILY                                         |               |
| GENDER   | (nested field) Gender of that person. Options include | MALE          |
|          | NO_SEX, MALE, FEMALE                                  |               |
| WORK     | (nested field) Is that person a worker (TRUE, FALSE)  | TRUE          |
| DRIVE    | (nested field) Does that person drive (TRUE, FALSE)   | TRUE          |

An example, with one person, is as follows:

#### Table 4 HOUSEHOLD\_FILE Example

| HHOLD  | LOCATION | PERSONS | WORKERS | VEHICLES |       |
|--------|----------|---------|---------|----------|-------|
| PERSON | AGE      | RELATE  | GENDER  | WORK     | DRIVE |
| 1      | 41       | 1       | 1       | 1        |       |
| 1      | 25       |         | MALE    | TRUE     | TRUE  |

### INPUT\_LINK\_FILE

### INPUT\_LINK\_FILE

NetPrep

The link file key is optional (depending on the purpose of using NetPrep). It specifies the name of a shapefile containing the links in the network. If an input node shapefile is provided, the node coordinates will be extracted from the shapefile point location. If an input node shapefile is not provided, the node coordinates will be extracted from the first and last points in the input link shapefile. The value for this key specifies the relative path of the directory and the filename of the input link shape file. Note that this file MUST have a ".shp" extension. Use of a ".txt" extension file for the value of this key will result in processing error(s). When this key is included, a conversion script is likely to be needed as well.

## INPUT\_NODE\_FILE

### INPUT\_NODE\_FILE

NetPrep

The input node file key is optional. It specifies the name of a shapefile containing the nodes in the network. If a node shapefile is provided, the node coordinates will be extracted from the point locations in this shapefile. If a node shapefile is not provided, the node coordinates will be extracted from the first and last points in the input link shapefile.

### INPUT\_SIGN\_FILE

**INPUT SIGN FILE** 

IntControl Default Control Key

## INPUT\_SIGNAL\_FILE

INPUT\_SIGNAL\_FILE

IntControl Default Control Key

### INPUT\_SPDCAP\_FILE

INPUT\_SPDCAP\_FILE

NetPrep

### INPUT\_ZONE\_FILE

### INPUT\_ZONE\_FILE

NetPrep

The network zone table key is optional. If provided, it specifies the filename and relative path of the input zone file. For example, the value "network/Input\_Zone.txt" could be used, given that the Project Directory key has been set to a value of "../" (quotation marks should not be included). If a Project Directory key is not specified, the full path of the input zone file should be used instead. The zone file contains: the zone number (ZONE), X and Y coordinates in UTM meters (X\_COORD, Y\_COORD), and an area type (AREATYPE) code between 1 and 8. If a zone file is not provided, the zone centroids are extracted from the node file. In this case, all area types will be equal to 2. The input zone file, if produced by NetPrep, can be used subsequently as one of the network files

## KEEP\_LINK\_FILE

KEEP\_LINK\_FILE

NetPrep

The keep link file key is optional and specifies the full path and file name of the file that lists the link IDs that need to be retained in the highway network. The NetPrep 5 program deletes and/or replaces certain links that are not required for the highway simulation. If transit routes will be included in the network, the links associated with transit stations and stops should not be removed from the network. The TransimsNet program retains all the links specified in the keep link file even when they are not required for the highway simulation. This functionality is sometimes necessary for highway networks to prevent programmatic deletion of important links by TRANSIMS. A sample keep link file is shown below.

LINK

72

612

4050

4088

5988

6201

12006

12009

20133

### **KEEP\_NODE\_FILE**

KEEP\_NODE\_FILE

NetPrep

The keep node file key is optional and specifies the full path and file name of the file that lists the node IDs that need to be retained in the highway network. In TRANSIMS Version 5, this functionality is located in NetPrep V5; previously, it was incorporated into TransimsNet V4. The NetPrep 5 program removes node that are not required for the highway simulation. If transit routes will be included in the network, the nodes associated with transit stations and stops should not be removed from the network. The TransimsNet program retains all the nodes specified in the keep node file even when they are not required for the highway simulation. This functionality is sometimes necessary for highway networks to prevent programmatic deletion of important nodes by TRANSIMS. Typically, few nodes are adversely affected by the TRANSIMS network pruning algorithm, but when this issue is present, subsequent network synthesis and trip assignment, routing, and simulation can result. A sample keep node file is shown below:

**NODE** 

288

583

3930

3931

3932

3933

3934

3935

3936

### LANE\_USE\_FILE

#### LANE USE FILE

ArcNet

IntControl Default Control Key

LinkSum

Microsimulator

NewFormat

PathSkim

PlanSelect

Pianselec

PlanSum

Router

NEW\_LANE\_USE\_FILE

NewFormat

### LINK\_ACTIVITY\_FILE

NEW\_LINK\_ACTIVITY\_FILE

LinkSum

## LINK\_DATA\_FILE

NEW\_LINK\_DATA\_FILE LinkData

## LINK\_DELAY\_FILE

**LINK\_DELAY\_FILE** is an input to ArcPlan, IntControl , LinkDelay, NewFormat, PathSkim, PlanSelect, PlanSum, and Router

NEW\_LINK\_DELAY\_FILE is an output from LinkDelay, NewFormat, PathSkim, PlanSum, Router

If the input LINK\_DELAY\_FILE key is provided to the router, the program uses the information in the link delay file to initialize the link flows and travel times for each time period. The header record in the link delay file is used to determine the size of each time period. The time periods are typically 15 minutes long. If a link delay file is not provided (or the key is "NULL"), free flow speeds are used for all times of day. Free flow speeds are also used for all links and time periods not included in the link delay file.

The NEW\_LINK\_DELAY\_FILE is the output file of link delays. By default, it produces flows and travel times at 15-minute increments (Table 3). The Version 4 LINK\_DELAY file had volume, an integer number of vehicles entering or exiting the link during a time period. The Version 5 LINK\_DELAY file has flow, which is not necessarily integer (for example, a vehicle traversing half of the link would add 0.5 to the flow).

A .def file is as follows:

TRANSIMS50, TAB\_DELIMITED, 1 LINK, INTEGER, 1, 10 DIR, INTEGER, 2, 1 START, TIME, 3, 16, HOUR\_CLOCK END, TIME, 4, 16, HOUR\_CLOCK FLOW, DOUBLE, 5, 8.1, VEHICLES TIME, TIME, 6, 8.1, SECONDS

### Table 5 LINK\_DELAY\_FILE Field Definitions

| Field(s) | Description                                           | Default Units |
|----------|-------------------------------------------------------|---------------|
| LINK     | Link Number                                           |               |
| DIR      | Direction (0 = A->B, 1 = B->A)                        |               |
| START    | Starting time of day                                  | HOUR_CLOCK    |
| END      | Ending time of day                                    | HOUR_CLOCK    |
| FLOW     | Distance traveled by vehicles on the link during the  | VEHICLES      |
|          | START-END interval divided by the link length. Travel |               |

| Field(s) | Description                                        | Default Units |
|----------|----------------------------------------------------|---------------|
|          | units could be VEHICLES, PERSONS, or Passenger Car |               |
|          | Equivalents                                        |               |
| TIME     | Travel time: link length x VHT / VMT               | SECONDS       |

## Table 6 LINK\_DELAY\_FILE Example

| LINK | DIR | START | END      | FLOW  | TIME  |
|------|-----|-------|----------|-------|-------|
| 11   | 0   | 0:00  | 0:15     | 2.7   | 83.4  |
| 11   | 1   | 0:00  | 0:15     | 0.7   | 83.4  |
|      |     |       |          |       |       |
| 11   | 0   | 7:00  | 7:15     | 147   | 114.9 |
| 11   | 1   | 7:00  | 7:15     | 83.5  | 85.9  |
| 11   | 0   | 7:15  | 7:30     | 159.2 | 128.4 |
| 11   | 1   | 7:15  | 7:30     | 95    | 87.8  |
| 11   | 0   | 7:30  | 7:45     | 190.5 | 184.5 |
| 11   | 1   | 7:30  | 7:45     | 97.2  | 88.3  |
| 11   | 0   | 7:45  | 8:00     | 191.5 | 186.9 |
| 11   | 1   | 7:45  | 8:00     | 98.2  | 88.6  |
| 11   | 0   | 8:00  | 8:15     | 208.7 | 235.7 |
| 11   | 1   | 8:00  | 8:15     | 121.8 | 97    |
| 11   | 0   | 8:15  | 8:30     | 227.5 | 308.1 |
| 11   | 1   | 8:15  | 8:30     | 115   | 93.8  |
| 11   | 0   | 8:30  | 8:45     | 229.7 | 317.8 |
| 11   | 1   | 8:30  | 8:45     | 122.7 | 97.4  |
|      |     |       |          |       |       |
| 11   | 1   | 23:45 | 24:00:00 | 18.3  | 83.4  |

## LINK\_DETAIL\_FILE

**NEW\_LINK\_DETAIL\_FILE**NetPrep

## LINK\_EQUIVALENCE\_FILE

LINK\_EQUIVALENCE\_FILE LinkSum PlanSum

## LINK\_NODE\_EQUIVALENCE

**LINK\_NODE\_EQUIVALENCE\_FILE**TransimsNet

The LINK\_NODE\_EQUIVALENCE file control key has not yet been implemented in TransimsNet 5.0.

## LINK\_FILE

Names: LINK\_FILE, NEW\_LINK\_FILE

Used In:

ArcNet

ArcPlan

ArcSnapshot

ConvertTrips

IntControl

LinkDelay

LinkSum

LocationData

Microsimulator

NetPrep

NewFormat

**PathSkim** 

PlanSelect

PlanSum

ProblemSelect

Router

TransimsNet

The link file and new link file both refer to a list of links in the network. A typical field definition (.def) file is shown below. Note that the NEW\_LINK\_FILE key is a required control key in NetPrep 5 and specifies the relative location and the name of the output link file. This key may not be a required value in the other TRANSIMS program modules in which it is used. Also note that the definition (.def) file associated with the NEW\_LINK\_FILE produced by NetPrep does not contain a "NAME" field. Consequently, including a reference to a "NAME" field in a NetPrep conversion script (if one is used) will result in a run-time error that prevents the program from executing to completion. Refer to the Quick Reference and/or the Program Reference associated with each TRANSIMS module which uses link and new link files for additional details. The NetPrep conversion script is described in this document as well.

TRANSIMS50, TAB\_DELIMITED, 1 LINK, INTEGER, 1, 10 NAME, STRING, 2, 40 NODE\_A, INTEGER, 3, 10 NODE\_B, INTEGER, 4, 10 LENGTH, DOUBLE, 5, 8.1, METERS SETBACK A, DOUBLE, 6, 5.1, METERS SETBACK\_B, DOUBLE, 7, 5.1, METERS BEARING A, INTEGER, 8, 4, DEGREES BEARING B, INTEGER, 9, 4, DEGREES TYPE, STRING, 10, 12, FACILITY\_TYPE DIVIDED, UNSIGNED, 11, 1 AREA TYPE, UNSIGNED, 12, 3 GRADE, DOUBLE, 13, 5.1, PERCENT LANES AB, UNSIGNED, 14, 2 SPEED AB, DOUBLE, 15, 5.1, KPH FSPD\_AB, DOUBLE, 16, 5.1, KPH CAP\_AB, UNSIGNED, 17, 8, VPH LANES BA, UNSIGNED, 18, 2 SPEED\_BA, DOUBLE, 19, 5.1, KPH FSPD BA, DOUBLE, 20, 5.1, KPH CAP\_BA, UNSIGNED, 21, 8, VPH USE, STRING, 22, 128, USE TYPE NOTES, STRING, 23, 128

## The fields are defined as follows:

### Table 7 LINK\_FILE Field Definitions

| Field(s)   | Description                                                 | Use  | Default |
|------------|-------------------------------------------------------------|------|---------|
|            |                                                             |      | Units   |
| LINK       | The link number (an integer)                                | Key  |         |
| NAME       | Typically, the name of the street                           | Opt. |         |
| NODE_A     | The node at one end of the link (an integer)                | Req. |         |
| NODE_B     | The node at the other end of the link (an integer)          | Req. |         |
| LENGTH     | Length of the link                                          | Req. | М       |
| SETBACK_A, | When the link is drawn, the setback from each end to its    | Opt. | М       |
| SETBACK_B  | corresponding node                                          |      |         |
| BEARING_A  | Compass direction entering the link at the A end            | Opt. | Degrees |
| BEARING_B  | Compass direction exiting the link at the B end             | Opt. | Degrees |
| TYPE       | Facility type (functional classification) of the link       | Req. | Note 1  |
| DIVIDED    | Is it a divided highway?                                    | Opt. |         |
| AREA_TYPE  |                                                             |      |         |
| GRADE      | Percent grade from A to B                                   | Opt. | Pct.    |
| LANES_AB,  | Number of thru lanes in the indicated direction. For a one- | Req. |         |
| LANES_BA   | way link going from A to B, LANES_BA = 0                    |      |         |
| SPEED_AB,  | Speed limit in the indicated direction                      | Opt. | m/s     |
| SPEED_BA   |                                                             |      |         |
| FSPD_AB,   | Free flow speed in the indicated direction                  | Opt. | m/s     |
| FSPD_BA    |                                                             |      |         |

| Field(s) | Description                                                  | Use  | Default |
|----------|--------------------------------------------------------------|------|---------|
|          |                                                              |      | Units   |
| CAP_AB,  | Hourly vehicle capacity in the indicated direction (used for | Opt. | veh/hr  |
| CAP_BA   | Volume / Capacity functions)                                 |      |         |
| USE      | Vehicle types, modes, or use types permitted on the link     | Req. | Note 2  |
| NOTES    | Character string for user notes                              | Opt. |         |

Note 1: Facility types include FREEWAY, EXPRESSWAY, PRINCIPAL, MAJOR, MINOR, COLLECTOR, LOCAL\_THRU, LOCAL, FRONTAGE, RAMP, BRIDGE, TUNNEL, OTHER, WALKWAY, BIKEWAY, BUSWAY, LIGHTRAIL, HEAVYRAIL, FERRY, and EXTERNAL

Note 2: Uses include ANY, WALK, BIKE, CAR, TRUCK, BUS, RAIL, SOV, HOV2, HOV3, HOV4, LIGHTTRUCK, HEAVYTRUCK, TAXI, and RESTRICTED

Figure 1 and Table 2 illustrate a small example. Here, links 8 and 9 are freeway links, link 11 is a minor arterial, and links 12 and 13 are ramps. Typically, limited access roads are represented with separate links for each direction of travel, while other roads have a single link for both directions of travel (even if the road is divided).



**Figure 4 Example Links** 

Table 8 LINK\_FILE Example

| LINK | NAME | NODE_A | NODE_B | LENGTH | SETBACK_A | SETBACK_B | BEARING_A | BEARING_B | ТҮРЕ    | DIVIDED | AREA_TYPE | GRADE |
|------|------|--------|--------|--------|-----------|-----------|-----------|-----------|---------|---------|-----------|-------|
| 8    | 0    | 24     | 28     | 1650   | 9.1       | 9.1       | 90        | 90        | FREEWAY | 0       | 2         | 0     |
| 9    | 0    | 29     | 21     | 1650   | 7.5       | 7.5       | 270       | 270       | FREEWAY | 0       | 2         |       |
| 11   | 0    | 16     | 27     | 1000   | 9.1       | 7.5       | 0         | 0         | MINOR   | 0       | 2         |       |
| 12   | 0    | 27     | 28     | 110    | 7.5       | 9.1       | 84        | 84        | RAMP    | 0       | 2         |       |

| LINK | NAME | NODE_A | NODE_B | LENGTH | SETBACK_A | SETBACK_B | BEARING_A | BEARING_B | ТҮРЕ | DIVIDED | AREA_TYPE | GRADE |
|------|------|--------|--------|--------|-----------|-----------|-----------|-----------|------|---------|-----------|-------|
| 13   | 0    | 29     | 27     | 300    | 7.5       | 7.5       | 282       | 207       | RAMP | 0       | 2         |       |

## Table 8 (continued) LINK\_FILE Example

| LINK | LANES_AB | SPEED_AB | FSPD_AB | CAP_AB | LANES_BA | SPEED_BA | FSPD_BA | CAP_BA | USE            | NOTES |
|------|----------|----------|---------|--------|----------|----------|---------|--------|----------------|-------|
| 8    | 2        | 97       | 96      | 4000   | 0        | 0        | 0       | 0      | AUTO TRUCK BUS |       |
| 9    | 2        | 97       | 96      | 4000   | 0        | 0        | 0       | 0      | AUTO TRUCK BUS |       |
| 11   | 1        | 43       | 43      | 800    | 1        | 43       | 43      | 800    | AUTO TRUCK BUS |       |
| 12   | 1        | 72       | 71      | 1000   | 0        | 0        | 0       | 0      | AUTO TRUCK BUS |       |
| 13   | 1        | 72       | 72      | 1000   | 0        | 0        | 0       | 0      | AUTO TRUCK BUS |       |

## LINK\_NODE\_LIST\_FILE

LINK\_NODE\_LIST\_FILE
LinkData
NEW\_LINK\_NODE\_LIST\_FILE
NetPrep

## LINK\_SUMMARY\_FILE

**NEW\_LINK\_SUMMARY\_FILE**ArcSnapshot Default Control Ke

## LINK\_VOLUME\_FILE

**NEW\_LINK\_VOLUME\_FILE**PlanSum

## LOCATION\_FILE

LOCATION\_FILE

ArcNet
ArcPlan
ConvertTrips Default Control K
LinkSum

LocationData

Microsimulator

NewFormat

**PathSkim** 

PlanSelect

ProblemSelect Default Control

Router

TransimsNet Default Control Ke

### NEW\_LOCATION\_FILE

LocationData

NewFormat

TransimsNet Default Control Ke

## MERGE\_LINK\_DELAY\_FILE

MERGE\_LINK\_DELAY\_FILE LinkDelay

## **MERGE\_PLAN\_FILE**

Used in PlanPrep

When plans are combined, the output plan file consists of records from the INPUT and MERGE plan files, as follows:

- -If a particular plan exists in the input file, it is used, superseding the plan in the merge file.
- -If a particular plan exists in the merge file, but not the input file, it is used.

## **MERGE\_TRIP\_FILE**

MERGE\_TRIP\_FILE

TripPrep

## **NODE\_FILE**

Names: NODE\_FILE, NEW\_NODE\_FILE

Used In:

ArcNet

ArcPlan

ArcSnapshot

ConvertTrips

IntControl

LinkDelay

LinkSum

LocationData

Microsimulator

NetPrep

NewFormat

PathSkim

PlanSelect

PlanSum

ProblemSelect

Router

TransimsNet

This is a list of nodes in the network. A typical field definition (.def) file is as follows:

TRANSIMS50, TAB\_DELIMITED, 1 NODE, INTEGER, 1, 10 X\_COORD, DOUBLE, 2, 14.1, METERS Y\_COORD, DOUBLE, 3, 14.1, METERS Z\_COORD, DOUBLE, 4, 14.1, METERS SUBAREA, INTEGER, 5, 4 NOTES, STRING, 6, 128

Essential information includes the node number (an integer) and the X and Y coordinates. These are typically UTM coordinates.

A new field, not in version 4, is the subarea.

Node numbers do not have to be consecutive. However, for external links (zone connectors), the TransimsNet program assumes that the lower node number attached to a zone connector represents the external station zone number. The simplest way to meet this requirement is to assign numbers higher than the highest external zone number all nodes that are NOT associated with zone centroids (internal or external). For example, if the internal zones are in the range 1-500, and external zone numbers are in 600-620, the non-centroid nodes might be given node numbers of 700 or higher.

An example of a node file appears below:

**Table 9 NODE\_FILE Example** 

| NODE | X_COORD  | Y_COORD   | Z_COORD | SUBAREA | NOTES    |
|------|----------|-----------|---------|---------|----------|
| 600  | 180054.9 | 4768512.4 | 0.0     | 0       | External |
|      |          |           |         |         | Node     |
| 601  | 179481.0 | 4767920.0 | 0.0     | 0       | External |
|      |          |           |         |         | Node     |
| 602  | 179397.8 | 4767815.8 | 0.0     | 0       | External |
|      |          |           |         |         | Node     |

| NODE | X_COORD  | Y_COORD   | Z_COORD | SUBAREA | NOTES        |
|------|----------|-----------|---------|---------|--------------|
| 3802 | 179740.0 | 4767650.0 | 0.0     | 0       | Subarea Node |
| 3803 | 180724.8 | 4766966.0 | 0.0     | 0       | Subarea Node |
| 3808 | 178366.1 | 4768820.6 | 0.0     | 0       | Subarea Node |
| 4660 | 179865.9 | 4767545.0 | 0.0     | 0       | Subarea Node |
| 4665 | 179620.0 | 4767750.0 | 0.0     | 0       | Subarea Node |
| 8819 | 179705.0 | 4767730.0 | 0.0     | 0       | Subarea Node |
| 9511 | 179685.0 | 4767705.0 | 0.0     | 0       | Subarea Node |

## **OCCUPANCY\_FILE**

### OCCUPANCY\_FILE

ArcSnapshot Default Control Key

## ORIGIN\_LOCATION\_FILE

NEW\_ORIGIN\_LOCATION\_FILE

PathSkim

ORIGIN\_LOCATION\_FILE

PathSkim

## ORIGIN\_ZONE\_FILE

ORIGIN\_ZONE\_FILE

PathSkim

## **PARKING\_FILE**

NEW\_PARKING\_FILE

NewFormat

TransimsNet

### PARKING\_FILE

ArcNet

ArcPlan

ConvertTrips Default Control Key

Microsimulator

NewFormat

PathSkim

Router

TransimsNet Default Control Key

## PARKING\_PENALTY\_FILE

### PARKING\_PENALTY\_FILE

Microsimulator

**PathSkim** 

## PERFORMANCE\_DATA\_FILE

NEW\_PERFORMANCE\_DATA\_FILE LinkSum

### PERFORMANCE\_FILE

NEW\_PERFORMANCE\_FILE
NewFormat
PERFORMANCE\_FILE
ArcPlan

LinkSum NewFormat

## PERSON\_FILE

PERSON\_FILE NewFormat

## PHASING\_PLAN\_FILE

NEW\_PHASING\_PLAN\_FILE

IntControl Default Control Key NewFormat

PHASING\_PLAN\_FILE

ArcNet
IntControl Default Control Key
Microsimulator
NewFormat

The phasing plan file is produced by IntControl...

## PLAN\_FILE

**NEW\_PLAN\_FILE** is an output file, used in NewFormat, PathSkim, PlanCompare, PlanPrep, PlanSelect, and Router

**PLAN\_FILE** is an input file, used **in** ArcPlan, **S**imulator, NewFormat, PlanCompare, PlanPrep, PlanSelect, PlanSum and Router

This is the name of the file of travel plans. Travel plans may be partitioned, in which case the file will have a numeric suffix, e.g., TripPlan.0, TripPlan.1.

The version 5 plan file is significantly different from plan files in previous versions of TRANSIMS. Version 4 plan files must be converted, using NewFormat, for use in version 5.

All trip data and path legs are stored in a single nested record. This eliminates problems created by incomplete trips, and simplifies comparisons, update processing and sorting. The file stores detailed information about each component of the path. This provides greater accuracy and fidelity, eliminates data estimates and approximations, and facilitates more detailed analysis of congested locations. The result is a significantly larger plan file with more information. Binary format should be used in most production runs of TRANSIMS.

The Version 5 plan file is a nested file that includes a primary trip record and several nested path records for each leg on the path. The primary trip record includes

- A full copy of the input trip file record
- Path departure and arrival times
- Trip travel time by mode (walk, drive, transit, wait, other)
- Total trip length, cost, and impedance

The nested path records include

 Mode, ID type, facility ID, travel time, distance, cost and impedance for each leg / link on the path

A .def file for the plan file is as follows:

TRANSIMS50, TAB DELIMITED, 2, NESTED HHOLD, INTEGER, 1, 10 PERSON, INTEGER, 2, 5 TOUR, INTEGER, 3, 3 TRIP, INTEGER, 4, 3 START, TIME, 5, 16, HOUR CLOCK END, TIME, 6, 16, HOUR CLOCK DURATION, TIME, 7, 16, HOUR\_CLOCK ORIGIN, INTEGER, 8, 10 DESTINATION, INTEGER, 9, 10 PURPOSE, INTEGER, 10, 2 MODE, STRING, 11, 12, MODE TYPE CONSTRAINT, STRING, 12, 14, CONSTRAINT TYPE PRIORITY, STRING, 13, 10, PRIORITY TYPE VEHICLE, INTEGER, 14, 4 PASSENGERS, INTEGER, 15, 2 TYPE, INTEGER, 16, 4 DEPART, TIME, 17, 16, HOUR CLOCK ARRIVE, TIME, 18, 16, HOUR CLOCK ACTIVITY, TIME, 19, 16, HOUR CLOCK WALK, TIME, 20, 12, SECONDS DRIVE, TIME, 21, 12, SECONDS

TRANSIT, TIME, 22, 12, SECONDS
WAIT, TIME, 23, 12, SECONDS
OTHER, TIME, 24, 12, SECONDS
LENGTH, INTEGER, 25, 10, METERS
COST, FIXED, 26, 6.1, CENTS
IMPEDANCE, UNSIGNED, 27, 10, IMPEDANCE
NUM\_LEGS, INTEGER, 28, 5, NEST\_COUNT
LEG\_MODE, STRING, 1, 12, MODE\_TYPE, NESTED
LEG\_TYPE, STRING, 2, 8, ID\_TYPE, NESTED
LEG\_ID, INTEGER, 3, 10, NO, NESTED
LEG\_TIME, TIME, 4, 12, SECONDS, NESTED
LEG\_LENGTH, UNSIGNED, 5, 5, METERS, NESTED
LEG\_COST, FIXED, 6, 6.1, CENTS, NESTED
LEG IMPED, INTEGER, 7, 10, IMPEDANCE, NESTED

#### Fields in the plan file are as follows:

### **Table 10 PLAN\_FILE Field Definitions**

| Field(s)    | Description                                         | Default Units |
|-------------|-----------------------------------------------------|---------------|
| HHOLD       | Household Number (from the trip file)               |               |
| PERSON      | Person Number (from the trip file)                  |               |
| TOUR        | Tour Number (from the trip file)                    |               |
| TRIP        | Trip Number (from the trip file)                    |               |
| START       | Trip start time (from the trip file)                | HOUR_CLOCK    |
| END         | Trip end time (from the trip file)                  | HOUR_CLOCK    |
| DURATION    | Activity duration at the end of this trip (used in  | HOUR_CLOCK    |
|             | tours, otherwise 0) (from the trip file)            |               |
| ORIGIN      | Origin location (from the trip file)                |               |
| DESTINATION | Destination location (from the trip file)           |               |
| PURPOSE     | Trip purpose (from the trip file)                   |               |
| MODE        | Mode (from the trip file). Options include WALK,    | MODE_TYPE     |
|             | BIKE, DRIVE, RIDE, TRANSIT, PNR_OUT, PNR_IN,        |               |
|             | KNR_OUT, KNR_IN, TAXI, OTHER, HOV2, HOV3,           |               |
|             | HOV4                                                |               |
| CONSTRAINT  | Timing constraint (from the trip file) NONE,        | CONSTRAINT_   |
|             | START, ARRIVE, FIXED, DURATION, PASSENGER           | TYPE          |
| PRIORITY    | Priority for the activity (from the trip file) LOW, | PRIORITY_TYPE |
|             | MEDIUM, HIGH, CRITICAL                              |               |
| VEHICLE     | Vehicle number (from the trip file) (generally 1)   |               |
| PASSENGERS  | Passengers in the vehicle (from the trip file)      |               |
| TYPE        | Vehicle type (from the trip file)                   |               |
| DEPART      | Departure time (from the router)                    | HOUR_CLOCK    |
| ARRIVE      | Arrival time                                        | HOUR_CLOCK    |

| Field(s)   | Description                                           | Default Units |  |
|------------|-------------------------------------------------------|---------------|--|
| ACTIVITY   | Duration of the activity                              | HOUR_CLOCK    |  |
| WALK       | Time spent walking                                    | SECONDS       |  |
| DRIVE      | Time spent driving SECONDS                            |               |  |
| TRANSIT    | Time spent in public transit                          | SECONDS       |  |
| WAIT       | Time spent waiting                                    | SECONDS       |  |
| OTHER      | Time spent in other activities                        | SECONDS       |  |
| LENGTH     | Distance traveled                                     | METERS        |  |
| COST       | Out of pocket cost                                    | CENTS         |  |
| IMPEDANCE  | Total impedance                                       | IMPEDANCE     |  |
| NUM_LEGS   | Number of legs in the trip                            | NEST_COUNT    |  |
| LEG_MODE   | (nested field) Mode for the leg                       | MODE_TYPE     |  |
| LEG_TYPE   | (nested field) Type of leg. LOCATION, PARKING, LINK   | ID_TYPE       |  |
| LEG_ID     | (nested field) Identifier for the leg, a location or  | NO            |  |
|            | link id (Similar to version 4, if a link is traversed |               |  |
|            | in the B->A direction, it is given a minus sign)      |               |  |
| LEG_TIME   | (nested field) Time to traverse the leg               | SECONDS       |  |
| LEG_LENGTH | (nested field) Distance                               | METERS        |  |
| LEG_COST   | (nested field) Out of pocket cost                     | CENTS         |  |
| LEG_IMPED  | (nested field) Total Impedance                        | IMPEDANCE     |  |

The Primary Trip record (Table 5) contains two types of data. The first 16 columns are a copy of the input trip record; the last 12 columns are generated by the router, including trip departure and arrival time, length, cost and impedance.

**Table 11 PLAN\_FILE Example: Primary Trip Record** 

| 1       | ННОГР       |
|---------|-------------|
| 1       | PERSON      |
| 1       | TOUR        |
| 1       | TRIP        |
| 7:18:02 | START       |
| 7:33:15 | END         |
| 4:58:07 | DURATION    |
| 46      | ORIGIN      |
| 54      | DESTINATION |
| 1       | PURPOSE     |
| DRIVE   | MODE        |
| NONE    | CONSTRAINT  |
| MEDIUM  | PRIORITY    |
| 1       | VEHICLE     |
| 0       | PASSENGERS  |
| 1       | TYPE        |
| 7:18:02 | DEPART      |
| 7:21:27 | ARRIVE      |
| 4:58:07 | ACTIVITY    |
| 45.2    | WALK        |
| 160     | DRIVE       |
| 0       | TRANSIT     |
| 0       | WAIT        |
| 0       | OTHER       |
| 2320    | LENGTH      |
| 0.0     | COST        |
| 2504    | IMPEDANCE   |
| 10      | NUM LEGS    |
|         |             |

The path records (Table 6) contain one record for each leg of the path. Each record contains the following information:

- Mode for the leg
- Type of leg, typically a link in the network, a parking location, or an activity location

- Leg identifier. Similar to version 4, if a link is traversed in the B->A direction, it is given a minus sign.
- Time to traverse the leg, in seconds
- Length of the leg, in meters
- Cost of the leg in cents (for example, a parking fee or toll would be placed here)
- Total leg impedance

Table 12 PLAN\_FILE Example: Path Records

| LEG_MODE | LEG_TYPE | LEG_ID | LEG_TIME | LEG_LENGTH | LEG_COST | LEG_IMPED |
|----------|----------|--------|----------|------------|----------|-----------|
| WALK     | LOCATION | 46     | 15.2     | 15         | 0.0      | 304       |
| OTHER    | PARKING  | 46     | 0        | 0          | 0.0      | 0         |
| DRIVE    | LINK     | -22    | 15.5     | 185        | 0.0      | 155       |
| DRIVE    | LINK     | 19     | 37.6     | 525        | 0.0      | 376       |
| DRIVE    | LINK     | 11     | 83.4     | 1000       | 0.0      | 834       |
| DRIVE    | LINK     | 12     | 5.7      | 110        | 0.0      | 57        |
| DRIVE    | LINK     | 17     | 15.1     | 400        | 0.0      | 151       |
| DRIVE    | LINK     | -26    | 2.7      | 70         | 0.0      | 27        |
| OTHER    | PARKING  | 54     | 0        | 0          | 0.0      | 0         |
| WALK     | LOCATION | 54     | 30       | 30         | 0.0      | 600       |

## **POCKET\_FILE**

Names: POCKET\_FILE, NEW\_ POCKET\_FILE

#### Used In:

ArcNet

ArcPlan

ArcSnapshot

IntControl

Microsimulator

NewFormat

PathSkim

Router

TransimsNet

This is a list of pocket lanes in the network. A typical field definition (.def) file is as follows:

TRANSIMS50, TAB\_DELIMITED, 1 LINK, INTEGER, 1, 10 DIR, INTEGER, 2, 1 TYPE, STRING, 3, 12, POCKET\_TYPE LANES, UNSIGNED, 4, 2 LENGTH, DOUBLE, 5, 8.1, METERS OFFSET, DOUBLE, 6, 8.1, METERS NOTES, STRING, 7, 128

The fields are defined as follows:

**Table 13 POCKET\_FILE Field Definitions** 

| Field(s) | Description                      | Use  | Default |
|----------|----------------------------------|------|---------|
|          |                                  |      | Units   |
| LINK     | The link number (an integer)     | Key  |         |
| DIR      | Direction of the link AB=0, BA=1 | Opt. |         |
| TYPE     |                                  | Req. | Note 1  |
| LANES    |                                  | Req. |         |
| LENGTH   | Length of the pocket             | Req. | m       |
| OFFSET   |                                  | Req. | m       |
| NOTES    | Character string for user notes  | Opt. |         |

Note 1: Pocket types include LEFT\_TURN, RIGHT\_TURN, LEFT\_MERGE, RIGHT\_MERGE, POCKET\_LANE, and AUX\_LANE

Figure 7 and Table 14 illustrate a small example.





Table 14 POCKET\_FILE Example

| LINK | DIR | TYPE       | LANES | LENGTH | OFFSET | NOTES                          |
|------|-----|------------|-------|--------|--------|--------------------------------|
| 7    | 0   | LEFT_TURN  | 1     | 50.0   | 0.0    | Left Turn Lane                 |
| 13   | 0   | LEFT_TURN  | 1     | 100.0  | 0.0    | Left Turn Lane                 |
| 16   | 0   | RIGHT_TURN | 1     | 200.0  | 0.0    | Pocket Lane for Right off-ramp |

## PROBLEM\_FILE

The **NEW\_PROBLEM\_FILE** is output by the Router or Simulator to indicate trips that could not be routed or simulated. Other programs that use **NEW\_PROBLEM\_FILE** as output include NewFormat and PathSkim.

Programs that use PROBLEM\_FILE as input include ArcPlan, NewFormat, and ProblemSelect

Problem codes output by the router and simulator are listed in Table 10. The first column is the problem number, the second is the code that is used in the TRANSIMS source code; the third is the problem name as shown in the problem file; the fourth is the most typical meaning.

**Table 15 Problem Codes** 

| No.      | Code              | Name           | Most typical meaning                             |
|----------|-------------------|----------------|--------------------------------------------------|
| 0        | TOTAL_PROBLEM     | Total          |                                                  |
| 1        | PATH_PROBLEM      | Path Building  | No feasible path between the origin and          |
|          |                   |                | destination. It could be caused by lane          |
|          |                   |                | connectivity or one-way street conditions or     |
|          |                   |                | by a network coding error.                       |
| 2        | TIME_PROBLEM      | Time Schedule  | This message indicates that the trip travel      |
|          |                   |                | time exceeded the upper bound of the             |
|          |                   |                | activity start time. It could be caused by       |
|          |                   |                | excessive congestion or no path options.         |
| 3        | ZERO_PROBLEM      | Zero Length    | The zero-node error occurs when the origin       |
|          |                   |                | and the destination activity locations lie on    |
|          |                   |                | the same link, at zero distance                  |
| 4        | TYPE_PROBLEM      | Vehicle Type   | The origin parking lot is located on a link      |
|          |                   |                | that does not permit the corresponding           |
|          |                   |                | vehicle type. This most often occurs when        |
|          |                   |                | autos are loaded to transit only links or        |
|          |                   |                | trucks to auto only links.                       |
| 5        | DIST_PROBLEM      | Path Circuity  | A circuity error indicates that the path         |
|          |                   |                | building process was limited by one or more      |
|          |                   |                | of the circuity parameters. It either means      |
|          |                   |                | that a path does not exist or the path is        |
|          |                   |                | highly circuitous. The user can set the          |
|          |                   |                | maximum circuity ratio parameter to zero to      |
|          |                   |                | eliminate these messages. If a path does not     |
|          |                   |                | exist, a path building or time schedule          |
|          |                   |                | message will be generated.                       |
| 6        | MODE_PROBLEM      | Travel Mode    | The Router records a travel mode error           |
|          |                   |                | when the mode on the activity file cannot        |
|          |                   |                | be built. This generally means that the          |
|          |                   |                | transit, walk, or bike networks have not         |
| <b>_</b> | 4.00ECC DD 02:514 | N/ 1 1 1 1     | been enabled.                                    |
| 7        | ACCESS_PROBLEM    | Vehicle Access | An access error is generated when the            |
|          |                   |                | vehicle listed in the activity file is not found |
|          |                   |                | in the vehicle file or when the vehicle is       |
|          |                   |                | located at a parking lot that is not attached    |
|          | MALK DDODLEM      | Malle Dieter   | to the activity location with a process link.    |
| 8        | WALK_PROBLEM      | Walk Distance  | This message is generated when the               |

| No. | Code              | Name               | Most typical meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|-------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                   |                    | cumulative walk distance required by the path exceeds the MAX_WALK_DISTANCE parameter.                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9   | WAIT_PROBLEM      | Wait Time          | This message indicates that potential transit routes exist, but the wait time required to board the routes exceed the MAX_WAIT_TIME parameter. In the Simulator, a wait time problem is generated when a vehicle remains in the same cell unable to advance for an amount of time greater than the MAX_WAIT_TIME key. The most frequent cause of this problem is excessive congestion. It can also be caused by incorrect signal coding that does not provide a phase for all the eligible movements. |
| 10  | LINK_PROBLEM      | Walk Access        | This message is generated when the link associated with the origin or destination activity location does permit travel by the chosen mode. It most often indicated a walk or bike access restriction at one of the trip ends.                                                                                                                                                                                                                                                                         |
| 11  | LOAD_PROBLEM      | Load Time          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12  | PARK_PROBLEM      | Park-&-Ride<br>Lot | In order to building a park-&-ride trip (mode 5), the must be a parking lot designated with the PARKRIDE style in the general proximity of the trip origin. The MAX_PARK_RIDE_PERCENTAGE parameter determines how far away from the origin the software can search for possible park-&-ride lots. If no lots are found within the search area, the park-&-ride lot error message is recorded.                                                                                                         |
| 13  | BIKE_PROBLEM      | Bike Distance      | This message is generated when the bicycling distance exceeds the MAX_BICYCLE_DISTANCE parameter.                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14  | DEPARTURE_PROBLEM | Departure<br>Time  | When a vehicle cannot start its trip at the time specified in the trip file plus the amount of slack time defined by the MAX_DEPARTURE_TIME_VARIANCE, a departure time problem is generated. The most frequent cause of this problem is                                                                                                                                                                                                                                                               |

| No. | Code                | Name               | Most typical meaning                                                                 |
|-----|---------------------|--------------------|--------------------------------------------------------------------------------------|
|     |                     |                    | excessive congestion close to the starting                                           |
|     |                     |                    | parking lot, which prevents the vehicle from                                         |
|     |                     |                    | being loaded onto the first link.                                                    |
| 15  | ARRIVAL_PROBLEM     | Arrival Time       | If a vehicle is still traveling at the time it is                                    |
|     |                     |                    | scheduled to arrive at its destination                                               |
|     |                     |                    | plus the slack time defined by the                                                   |
|     |                     |                    | MAX_ARRIVAL_TIME_VARIANCE key, it will                                               |
|     |                     |                    | be removed from the network, and an arrival time problem error will be               |
|     |                     |                    | generated.                                                                           |
|     |                     |                    | The most frequent cause of this type of                                              |
|     |                     |                    | problem is congestion. You can allocate                                              |
|     |                     |                    | more time for the vehicle to finish its trip by                                      |
|     |                     |                    | adjusting the value for the                                                          |
|     |                     |                    | END_TIME_CONSTRAINT key in the Router.                                               |
| 16  | LINK_ACCESS_PROBLEM | Link Access        |                                                                                      |
| 17  | CONNECT_PROBLEM     | Link               | This message is generated when no lane                                               |
|     |                     | Connection         | connectivity exists between two successive                                           |
|     |                     |                    | links of the vehicle's path. This most often                                         |
|     |                     |                    | occurs when the network has been                                                     |
|     |                     |                    | changed, but the travel plans have not been rebuilt. You should inspect the location |
|     |                     |                    | generating the problem and restore the lane                                          |
|     |                     |                    | connectivity or re-route the traveler.                                               |
| 18  | PARKING_PROBLEM     | Parking Access     | This problem message is generated when a                                             |
|     | _                   | G                  | vehicle is not able to move from the parking                                         |
|     |                     |                    | lot to the first link in its journey. You should                                     |
|     |                     |                    | check that the link does not restrict vehicles                                       |
|     |                     |                    | of the particular vehicle type from using the                                        |
|     |                     |                    | link.                                                                                |
| 19  | MERGE_PROBLEM       | Lane Merging       |                                                                                      |
| 20  | LANE_PROBLEM        | Lane Changing      |                                                                                      |
| 21  | TURN_PROBLEM        | Turning Speed      |                                                                                      |
| 22  | POCKET_PROBLEM      | Pocket Merge       |                                                                                      |
| 25  | SPACING_PROBLEM     | Vehicle<br>Spacing |                                                                                      |
| 24  | CONTROL PROBLEM     | Traffic Control    |                                                                                      |
| 25  | USE PROBLEM         | Access             |                                                                                      |
|     | JOSE_I NOBELIVI     | Restriction        |                                                                                      |
| 26  | STOP PROBLEM        | Transit Stop       |                                                                                      |
| 27  | LOCATION PROBLEM    | Activity           |                                                                                      |
|     | _                   | Location           |                                                                                      |

| No. | Code                | Name            | Most typical meaning |
|-----|---------------------|-----------------|----------------------|
| 28  | PASSENGER_PROBLEM   | Vehicle         |                      |
|     |                     | Passenger       |                      |
| 29  | DURATION_PROBLEM    | Activity        |                      |
|     |                     | Duration        |                      |
| 30  | KISS_PROBLEM        | Kiss-&-Ride Lot |                      |
| 31  | VEHICLE_PROBLEM     | Vehicle ID      |                      |
| 32  | SORT_PROBLEM        | Data Sort       |                      |
| 33  | WALK_LOC_PROBLEM    | Walk Location   |                      |
| 34  | BIKE_LOC_PROBLEM    | Bike Location   |                      |
| 35  |                     | Transit         |                      |
|     | TRANSIT_LOC_PROBLEM | Location        |                      |
| 36  | MATCH_PROBLEM       | Person Match    |                      |
| 37  | CONSTRAINT_PROBLEM  | Schedule        |                      |
|     |                     | Constraint      |                      |
| 38  | BOARDING_PROBLEM    | Transit         |                      |
|     |                     | Capacity        |                      |
| 39  | DWELL_PROBLEM       | Transit Dwell   |                      |
| 40  | TRANSFER_PROBLEM    | Number of       |                      |
|     |                     | Transfers       |                      |
| 41  | LOCAL_PROBLEM       | Local Facility  |                      |

A router problem file includes one line for each problem trip. That line includes the following columns:

- Problem number
- Columns to identify the trip, including HHOLD, PERSON, TOUR, TRIP, START, END, DURATION, ORIGIN, DESTINATION, PURPOSE, MODE, CONSTRAINT, PRIORITY, VEHICLE, PASSENGERS, TYPE
- A notes column that contains the problem name (e.g., Path Building)

A simulator problem file is similar, with one line per problem trip (Table 11). That line includes the following columns:

- Problem number
- Columns to identify the trip, including HHOLD, PERSON, TOUR, TRIP, START, END, DURATION, ORIGIN, DESTINATION, PURPOSE, MODE, CONSTRAINT, PRIORITY, VEHICLE, PASSENGERS, TYPE
- Time of day
- Link
- Direction for the link
- Lane
- Offset (within the link)
- Route (for transit)

A notes column that contains the problem name (e.g., Traffic Control)

**Table 16 PROBLEM\_FILE Example** 

| PROBLEM | TRIP | TIME    | LINK | DIR | LANE | OFFSET | ROUTE | NOTES           |
|---------|------|---------|------|-----|------|--------|-------|-----------------|
|         | INFO |         |      |     |      |        |       |                 |
|         | RMAT |         |      |     |      |        |       |                 |
|         | ION  |         |      |     |      |        |       |                 |
| 24      | HHOL | 0:04:12 | 7    | 1   | 2    | 1113.7 | 0     | Traffic Control |
|         | D,   |         |      |     |      |        |       |                 |
|         | etc. |         |      |     |      |        |       |                 |
| 23      |      | 4:38:20 | 1    | 0   | L1   | 183.7  | 0     | Vehicle Spacing |
| 24      |      | 4:39:26 | 1    | 0   | L1   | 191.2  | 0     | Traffic Control |
| 23      |      | 4:42:25 | 11   | 1   | 1    | 978.7  | 0     | Vehicle Spacing |

### REPORT\_FILE

### **Execution Service Keys**

Used in nearly every TRANSIMS program

The report file name is optional. If a file name is not provided, the program automatically creates a report file name based on the input control file name. The report file will overwrite an existing file with the same name if the Report Flag key is False or not specified.

### RIDERSHIP FILE

NEW\_RIDERSHIP\_FILE
NewFormat
RIDERSHIP\_FILE
NewFormat

# ROUTE\_NODES\_FILE

NEW\_ROUTE\_NODES\_FILE
NewFormat
ROUTE\_NODES\_FILE
ArcNet

## **SELECTION\_FILE**

**NEW\_SELECTION\_FILE** is an output from NewFormat, PlanCompare, PlanSelect, ProblemSelect, and RandomSelect

**SELECTION\_FILE** is an input to ArcPlan, NewFormat, PathSkim, PlanCompare, PlanPrep, PlanSum, ProblemSelect, Router, and TripPrep

The selection file key is appended to the value of the PROJECT\_DIRECTORY key to identify the full path to a list of households and trips that will be processed by the router. A sample selection file is shown below (Table 10). It indicates the household, person, tour, trip and, for parallel processing applications, the partition of the router that will be used.

**Table 17 SELECTION\_FILE Example** 

| HHOLD | PERSON | TOUR | TRIP | PARTITION |
|-------|--------|------|------|-----------|
| 1     | 1      | 1    | 1    | 0         |
| 1     | 1      | 1    | 2    | 0         |
| 1     | 1      | 1    | 3    | 0         |
| 1     | 1      | 1    | 4    | 0         |
| 1     | 1      | 1    | 5    | 0         |
| 1     | 1      | 2    | 1    | 0         |
| 1     | 1      | 2    | 2    | 0         |
| 1     | 1      | 2    | 3    | 0         |
| 100   | 1      | 1    | 1    | 0         |
| 101   | 1      | 1    | 1    | 0         |
| 102   | 1      | 1    | 1    | 1         |
| 103   | 1      | 1    | 1    | 1         |
| 104   | 1      | 1    | 1    | 1         |
| 105   | 1      | 1    | 1    | 0         |
| 106   | 1      | 1    | 1    | 1         |
| 107   | 1      | 1    | 1    | 1         |
| 108   | 1      | 1    | 1    | 0         |
| 109   | 1      | 1    | 1    | 0         |

## SHAPE\_FILE

Names: SHAPE\_FILE, NEW\_SHAPE\_FILE

Used In:

ArcNet

ArcPlan

ArcSnapshot

ConvertTrips

IntControl

LocationData

NetPrep

NewFormat

#### TransimsNet

This is the name of the TRANSIMS shape file within the network directory, which provides plain text lists of shape points for links in the network. The full path and name for the shape file is constructed by appending the value of this key to the value of the PROJECT\_DIRECTORY key.

A typical field definition (.def) file is as follows:

TRANSIMS50, TAB\_DELIMITED, 2, NESTED LINK, INTEGER, 1, 10 POINTS, INTEGER, 2, 4, NEST\_COUNT NOTES, STRING, 3, 128 X\_COORD, DOUBLE, 1, 14.1, FEET, NESTED Y COORD, DOUBLE, 2, 14.1, FEET, NESTED

An example of a shape file appears below. After the two-line header, the third line contains the link number and the number of shape points (n) for that link. The next n lines contain the X and Y coordinates of the shape points. The process is then repeated for the next link:

**Table 18 SHAPE\_FILE Field Definitions** 

| LINK    | POINTS  |
|---------|---------|
| X_COORD | Y_COORD |
| 62      | 10      |
| 6532.8  | 7935.0  |
| 6497.4  | 7870.7  |
| 6439.3  | 7832.0  |
| 6361.9  | 7822.2  |
| 6287.7  | 7838.2  |
| 6226.4  | 7883.5  |
| 6197.5  | 7938.3  |
| 6200.4  | 7996.4  |
| 6235.9  | 8070.5  |
| 6310.4  | 8109.2  |
| 63      | 11      |
| 6816.6  | 8115.8  |
| 6880.9  | 8093.2  |
| 6922.9  | 8044.6  |
| 6948.8  | 7977.0  |
| 6942.2  | 7912.7  |
| 6903.5  | 7854.6  |
| 6842.2  | 7815.9  |
| 6768.0  | 7802.8  |

| LINK    | POINTS  |
|---------|---------|
| X_COORD | Y_COORD |
| 6684.4  | 7822.2  |
| 6632.5  | 7870.7  |
|         | 7935.0  |

The next two tables provide information on the links and nodes corresponding to the above shape file.

Table 19 Information for links 62 and 63

| Link | Node A | Node B | Length | Bearing A | Bearing B | Туре |
|------|--------|--------|--------|-----------|-----------|------|
| 62   | 123    | 132    | 656.2  | 196       | 73        | RAMP |
| 63   | 133    | 123    | 656.2  | 103       | 346       | RAMP |

Table 20 Information for nodes 123, 132, 133

| Node | X_Coord | Y_Coord |
|------|---------|---------|
| 123  | 6561.7  | 8038    |
| 132  | 6397.6  | 8136.5  |
| 133  | 6725.7  | 8136.5  |

This file indicates that link 62 and link 63 should be drawn as follows: Start at Node A for the link, go through the points in the shape file, end at Node B.

The link file indicates that link 62 runs from node 123 to 132, and that link 63 runs from node 133 to 123. The node file gives the location of these nodes. The end result is as follows (part of a cloverleaf freeway interchange):



Figure 5 Links, nodes and shape points

Normally, TRANSIMS shape files are not created by hand, but are generated from ArcView shapefiles by programs such as NetPrep. However, it might be necessary to clean-up a TRANSIMS shapefile by hand. In this case shape points are added, deleted or corrected. The total number of shapepoints for the link must then also be checked and updated.

Although shapefiles are not absolutely necessary to run TRANSIMS, they are helpful for two reasons:

They enable a more realistic depiction of the network in a GIS.

They ensure that TRANSIMSNet has the correct connection angles between links when generating connections within a network.

### SIGN\_FILE

#### **NEW\_SIGN\_FILE**

IntControl Default Control Key

NewFormat

TransimsNet Default Control Ke

#### SIGN\_FILE

ArcNet

IntControl Default Control Key

Microsimulator

NewFormat

TransimsNet Default Control Key

### The sign file and new sign file...

## SIGNAL FILE

#### **NEW SIGNAL FILE**

IntControl Default Control Key NewFormat TransimsNet Default Control Ke

#### SIGNAL\_FILE

ArcNet
IntControl Default Control Key
Microsimulator
NewFormat
TransimsNet Default Control Ke

## **SKIM\_FILE**

NEW\_SKIM\_FILE is written by NewFormat PathSkim SKIM\_FILE is read by ConvertTrips NewFormat

A skim file contains the skimmed travel times and impedances for various origin-destination pairs and time periods. It is used by ConvertTrips to provide initial travel times for a set of newly generated trips.

Features include the following:

- Skim files include OD size and time period meta-data
- Partitioned time periods or merged time periods
- Location or zone-based origins and destinations
- Total travel time or time components (walk, drive, transit, wait, other)
- Trip length, cost, and impedance
- User-specified output units (e.g., minutes, miles)

A typical .def file for the skim file is as follows:

ORIGIN, UNSIGNED, 1, 5, ZONES DESTINATION, UNSIGNED, 2, 5, ZONES PERIOD, UNSIGNED, 3, 3 COUNT, INTEGER, 4, 5 WALK, TIME, 5, 12, SECONDS DRIVE, TIME, 6, 12, SECONDS
OTHER, TIME, 7, 12, SECONDS
LENGTH, INTEGER, 8, 10, METERS
COST, INTEGER, 9, 5, CENTS
IMPEDANCE, INTEGER, 10, 10, IMPEDANCE

An example skim file (tab-delimited) appears below. The first line gives the number of origins, destinations and the time period span, e.g., NUM\_ORG=7; NUM\_DES=7; PERIODS=0:00..24:00.

Table 21 SKIM\_FILE Example

| ORIGIN | DESTINATION | PERIOD | COUNT | WALK | DRIVE | OTHER | LENGTH | COST | IMPEDANCE |
|--------|-------------|--------|-------|------|-------|-------|--------|------|-----------|
| 1      | 1           | 0      | 101   | 30   | 18    | 0     | 240    | 0    | 784       |
| 1      | 3           | 0      | 8     | 30   | 30    | 0     | 437    | 0    | 911       |
| 1      | 12          | 0      | 8     | 45   | 40    | 0     | 566    | 0    | 1305      |
| 3      | 1           | 0      | 8     | 30   | 30    | 0     | 437    | 0    | 911       |
| 3      | 3           | 0      | 220   | 30   | 16    | 0     | 215    | 0    | 770       |
| 3      | 13          | 0      | 4     | 45   | 41    | 0     | 550    | 0    | 1309      |
| 10     | 10          | 0      | 2     | 60   | 0     | 0     | 30     | 0    | 1200      |
| 11     | 11          | 0      | 2     | 60   | 0     | 0     | 30     | 0    | 1200      |
| 12     | 12          | 0      | 2     | 60   | 0     | 0     | 30     | 0    | 1200      |
| 13     | 13          | 0      | 2     | 60   | 0     | 0     | 30     | 0    | 1200      |
| 14     | 14          | 0      | 2     | 60   | 0     | 0     | 30     | 0    | 1200      |

### **SNAPSHOT\_FILE**

### **NEW\_SNAPSHOT\_FILE**

ArcSnapshot NewFormat Simulator

### SNAPSHOT\_FILE

ArcSnapshot Default Control Ke NewFormat

## STOP\_EQUIVALENCE\_FILE

STOP\_EQUIVALENCE\_FILE
ArcPlan
PlanSum

## SUBZONE\_DATA\_FILE

SUBZONE\_DATA\_FILE
ArcNet

## SUBZONE\_ZONE\_FACTOR\_FILE

SUBZONE\_ZONE\_FACTOR\_FILE LocationData

## TIME\_DISTRIBUTION\_FILE\_\*

Required in ConvertTrips. **NEW\_TIME\_DISTRIBUTION\_FILE** is used in PlanCompare.

The time distribution file key is appended to the PROJECT\_DIRECTORY key to specify the file name for the input trip time file for the trip group. If the trip time format is not specified and a Definition file is not found, the program assumes the file is in Version 3 format. The default Version 3 format is a tab-delimited text file with three floating point data fields and no header record. The first field is the start time in hours, the second field is the end time in hours, and the third field is the relative share of trips assigned to the period between the start time and end time. The shares are automatically normalized to 1.0, and are therefore NOT required to add up to 1.0. An example file appears below:

Table 22 TIME\_DISTRIBUTION\_FILE Example

| Start | End | Share |
|-------|-----|-------|
| 0     | 5   | 0.005 |
| 5     | 6   | 0.02  |
| 6     | 7   | 0.04  |
| 7     | 8   | 0.075 |
| 8     | 9   | 0.1   |
| 9     | 10  | 0.06  |
| 10    | 14  | 0.16  |
| 14    | 15  | 0.06  |
| 15    | 16  | 0.07  |
| 16    | 17  | 0.08  |
| 17    | 18  | 0.09  |
| 18    | 19  | 0.08  |
| 19    | 20  | 0.06  |
| 20    | 21  | 0.04  |
| 21    | 22  | 0.03  |
| 22    | 23  | 0.02  |
| 23    | 24  | 0.01  |

### TIMING\_PLAN\_FILE

**NEW\_TIMING\_PLAN\_FILE** 

IntControl Default Control Key

NewFormat

### TIMING\_PLAN\_FILE

ArcNet

IntControl Default Control Key

Microsimulator

NewFormat

## TOLL\_FILE

TOLL\_FILE

NewFormat

## TRANSIT\_DRIVER\_FILE

NEW\_TRANSIT\_DRIVER\_FILE

NewFormat

TRANSIT\_DRIVER\_FILE

ArcNet

ArcPlan

Microsimulator

NewFormat

### TRANSIT\_FARE\_FILE

NEW\_TRANSIT\_FARE\_FILE

NewFormat

TRANSIT\_FARE\_FILE

Microsimulator

NewFormat

PathSkim

Router

## TRANSIT\_PENALTY\_FILE

### TRANSIT\_PENALTY\_FILE

Microsimulator

PathSkim

Router

## TRANSIT\_ROUTE\_FILE

**NEW\_TRANSIT\_ROUTE\_FILE** 

NewFormat

TRANSIT\_ROUTE\_FILE

ArcNet

ArcPlan

LocationData Microsimulator NewFormat PathSkim Router

## TRANSIT\_SCHEDULE\_FILE

NEW\_TRANSIT\_SCHEDULE\_FILE

NewFormat

## TRANSIT\_SCHEDULE\_FILE

ArcNet

LocationData

Microsimulator

NewFormat

PathSkim

Router

### TRANSIT\_STOP\_FILE

NEW\_TRANSIT\_STOP\_FILE

NewFormat

### TRANSIT\_STOP\_FILE

ArcNet

ArcPlan

LocationData

Microsimulator

NewFormat

**PathSkim** 

Router

## TRIP\_COST\_GAP\_FILE

**NEW\_TRIP\_COST\_GAP\_FILE** 

PlanCompare

## TRIP\_FILE

**NEW\_TRIP\_FILE** is used by the following programs:

ConvertTrips

NewFormat

TripPrep

**TRIP\_FILE** is used by the following programs:

ConvertTrips

NewFormat

RandomSelect Router TripPrep

The trip file key is appended to the PROJECT\_DIRECTORY key to specify the file name for the input trip file copied to the output trip file by the program. The new trip file key is appended to the PROJECT\_DIRECTORY key to specify the file name for the output trip file created by the program. The program generates one trip record for each trip in the input trip tables.

In TRANSIMS 5, the trip file includes both trip and activity-related data. An example of trip file output appears below:

Table 23 TRIP\_FILE Example

| ННОГР | PERSON | TOUR | TRIP | START  | END    | DURATION | ORIGIN | DESTINATION | PURPOSE | MODE | CONSTRAINT | PRIORITY | VEHICLE | PASSENGERS | ТҮРЕ |
|-------|--------|------|------|--------|--------|----------|--------|-------------|---------|------|------------|----------|---------|------------|------|
| 1     | 1      | 1    | 1    | 7:33:2 | 7:48:3 | 9:43:4   | 41     | 54          | 1       | DRIV |            | MEDIU    | 1       | 0          |      |
|       |        |      |      | 8      | 0      | 8        |        |             |         | E    |            | М        |         |            |      |
| 1     | 1      | 1    | 2    | 17:32: | 17:45: | 0:05     | 54     | 26          | 1       | DRIV |            | MEDIU    | 1       | 0          |      |
|       |        |      |      | 17     | 16     |          |        |             |         | Е    |            | М        |         |            |      |
| 1     | 1      | 1    | 3    | 17:50: | 17:53: | 1:08:5   | 26     | 41          | 1       | DRIV |            | MEDIU    | 1       | 0          |      |
|       |        |      |      | 16     | 07     | 9        |        |             |         | E    |            | М        |         |            |      |
| 1     | 1      | 2    | 1    | 19:02: | 19:07: | 0:05     | 41     | 19          | 1       | DRIV |            | MEDIU    | 1       | 0          |      |
|       |        |      |      | 06     | 33     |          |        |             |         | Е    |            | М        |         |            |      |
| 1     | 1      | 2    | 2    | 19:12: | 19:23: | 1:49:1   | 19     | 56          | 1       | DRIV |            | MEDIU    | 1       | 0          |      |
|       |        |      |      | 33     | 46     | 7        |        |             |         | Е    |            | М        |         |            |      |
| 1     | 1      | 2    | 3    | 21:13: | 21:29: | 0:00     | 56     | 41          | 1       | DRIV |            | MEDIU    | 1       | 0          |      |
|       |        |      |      | 03     | 43     |          |        |             |         | Е    |            | М        |         |            |      |

Activity-related data include the household (HHOLD), person number (PERSON), tour number (TOUR), activity duration (DURATION), activity purpose (PURPOSE), activity constraint (CONSTRAINT), activity priority (PRIORITY), and traveler type (TYPE). Trip-related data include the trip number (TRIP), start time (START), end time (END), origin location (ORIGIN), destination location (DESTINATION), travel mode (MODE), vehicle number (VEHICLE) and number of passengers.

### TRIP\_TABLE\_FILE\_1

Used by ConvertTrips

The trip table file key is appended to the PROJECT\_DIRECTORY key to specify the file name for the input trip table file for the trip group. If the trip table format is not specified and a Definition file is not found, the program assumes the file is in Version 3 format. The default Version 3 format is a tab-delimited text file with three integer data fields and no header record. The first field is the origin zone number, the second field is the destination zone number, and the third field is the number of trips. An example appears below:

**Table 24 TRIP TABLE FILE Example** 

| ORG | DES | TRIPS |
|-----|-----|-------|
| 1   | 2   | 500   |
| 1   | 3   | 500   |
| 2   | 1   | 500   |
| 2   | 3   | 500   |
| 3   | 1   | 500   |
| 3   | 2   | 500   |
| 1   | 11  | 10000 |

### TRIP\_TIME\_FILE

**NEW\_TRIP\_TIME\_FILE**PlanSum

## TRIP\_TIME\_GAP\_FILE

**NEW\_TRIP\_TIME\_GAP\_FILE**PlanCompare

### TURN\_PENALTY\_FILE

**NEW\_TURN\_PENALTY\_FILE** 

NewFormat

TransimsNet Default Control Key

#### TURN\_PENALTY\_FILE

ArcNet

Microsimulator

NewFormat

PathSkim

Router

TransimsNet Default Control Key

## TURN\_VOLUME\_FILE

NEW\_TURN\_VOLUME\_FILE
LinkSum
TURN\_VOLUME\_FILE
IntControl Default Control Key

## UPDATE\_LINK\_FILE

UPDATE\_LINK\_FILE

TransimsNet Default Control Key

The update link file is optional and if specified defines a series of link numbers where the pocket lanes, activity locations, parking lots, and processing links are recalculated. The lane connectivity at both ends of the link is also updated. Each record in the file is interpreted as a comma separated list of link ranges. A link range is specified using two period (e.g., 100..200). The file could also be a simple list of link numbers. The values in the link range and the link file are combined if both keys are provided. In update mode, the program reads existing network files and deletes the existing records for the link and adds new records at the end of the file.

### UPDATE\_NODE\_FILE

#### UPDATE\_NODE\_FILE

TransimsNet Default Control Key

The update node file is optional and if specified defines a series of node numbers where the lane connectivity and traffic control warrants are recalculated. Each record in the file is interpreted as a comma separated list of node ranges. A node range is specified using two period (e.g., 100..200). The file could also be a simple list of node numbers. The values in the node range and the node file are combined if both keys are provided. In update mode, the program reads existing network files and deletes the existing records for the node and adds new records at the end of the file.

### VEHICLE\_FILE

**NEW\_VEHICLE\_FILE** is used by the following programs:

ConvertTrips NewFormat

**VEHICLE\_FILE** is used by the following programs:

ConvertTrips Simulator NewFormat PathSkim Router The vehicle\_file lists the vehicles in the network. Each vehicle is uniquely identified by a household number and a household vehicle number. The version 4 "Location" field becomes a "Parking" field. Finally, the version 4 vehicle type and subtype is combined into a version 5 vehicle type.

Table 25 VEHICLE\_FILE Example

| HHOLD | VEHICLE | PARKING | TYPE |
|-------|---------|---------|------|
| 1     | 1       | 41      | 1    |

## **VEHICLE\_TYPE\_FILE**

**NEW\_VEHICLE\_TYPE\_FILE** is used by the following programs:

NewFormat

**VEHICLE\_TYPE\_FILE** is used by the following programs:

ArcNet

ArcSnapshot

ConvertTrips

Microsimulator

NewFormat

**PathSkim** 

Router

The V4 vehicle subtype no longer exists. Rather, there is a simple type index with valid values ranging from 1 to 99. Operating cost and vertical grade impacts have been added.

The default V4 conversion is V5\_Vehicle\_Type = 10 \* V4\_Vehicle\_Type + V4\_Subtype

Table 26 VEHICLE\_TYPE\_FILE Example

| TYPE | LENGTH | MAX_SPEED | MAX_ACCEL | MAX_DECEL | OP_COST | USE       | CAPACITY | LOADING | UNLOADING | МЕТНОБ     | MIN DWELL | MAX DWEL | $\sim$ | GRADE 2 |   | - | GRADE 5 |   |   | GRADE 8 |   | GRADE 10 |
|------|--------|-----------|-----------|-----------|---------|-----------|----------|---------|-----------|------------|-----------|----------|--------|---------|---|---|---------|---|---|---------|---|----------|
| 1    | 5.5    | 16<br>2   | 6         | 12        | 20      | SOV       | 5        | 3       | 2         | SERIA<br>L | 0         | 0        | 1      | 1       | 1 | 1 | 1       | 1 | 1 | 1       | 1 | 1        |
| 2    | 11.5   | 16<br>2   | 3         | 9         | 25      | TRU<br>CK | 2        | 3       | 2         | SERIA<br>L | 0         | 0        | 1      | 1       | 1 | 1 | 1       | 1 | 1 | 1       | 1 | 1        |
| 3    | 5.5    | 16<br>2   | 6         | 12        | 20      | SOV       | 5        | 3       | 2         | SERIA<br>L | 0         | 0        | 1      | 1       | 1 | 1 | 1       | 1 | 1 | 1       | 1 | 1        |
| 4    | 17.5   | 16<br>2   | 2         | 6         | 0       | BUS       | 25<br>0  | 3       | 2         | SERIA<br>L | 0         | 0        | 1      | 1       | 1 | 1 | 1       | 1 | 1 | 1       | 1 | 1        |

| TYPE | LENGTH | MAX_SPEED | MAX_ACCEL | MAX_DECEL | OP_COST | USE       | CAPACITY | LOADING | UNLOADING | МЕТНОБ     | MIN DWELL | MAX DWEL | GRADE 1 | GRADE 2 | GRADE 3 | GRADE 4 | GRADE 5 |   | GRADE 7 | GRADE 8 | GRADE 9 | GRADE 10 |
|------|--------|-----------|-----------|-----------|---------|-----------|----------|---------|-----------|------------|-----------|----------|---------|---------|---------|---------|---------|---|---------|---------|---------|----------|
| 5    | 17.5   | 16<br>2   | 2         | 6         | 0       | BUS       | 25<br>0  | 3       | 2         | SERIA<br>L | 0         | 0        | 1       | 1       | 1       | 1       | 1       | 1 | 1       | 1       | 1       | 1        |
| 11   | 5.5    | 16<br>2   | 6         | 12        | 20      | SOV       | 5        | 3       | 2         | SERIA<br>L | 0         | 0        | 1       | 1       | 1       | 1       | 1       | 1 | 1       | 1       | 1       | 1        |
| 12   | 5.5    | 16<br>2   | 6         | 12        | 20      | SOV       | 5        | 3       | 2         | SERIA<br>L | 0         | 0        | 1       | 1       | 1       | 1       | 1       | 1 | 1       | 1       | 1       | 1        |
| 13   | 5.5    | 16<br>2   | 6         | 12        | 20      | SOV       | 5        | 3       | 2         | SERIA<br>L | 0         | 0        | 1       | 1       | 1       | 1       | 1       | 1 | 1       | 1       | 1       | 1        |
| 14   | 5.5    | 16<br>2   | 6         | 12        | 20      | SOV       | 5        | 3       | 2         | SERIA<br>L | 0         | 0        | 1       | 1       | 1       | 1       | 1       | 1 | 1       | 1       | 1       | 1        |
| 15   | 5.5    | 16<br>2   | 6         | 12        | 20      | SOV       | 5        | 3       | 2         | SERIA<br>L | 0         | 0        | 1       | 1       | 1       | 1       | 1       | 1 | 1       | 1       | 1       | 1        |
| 16   | 5.5    | 16<br>2   | 6         | 12        | 20      | SOV       | 5        | 3       | 2         | SERIA<br>L | 0         | 0        | 1       | 1       | 1       | 1       | 1       | 1 | 1       | 1       | 1       | 1        |
| 21   | 11.5   | 16<br>2   | 3         | 9         | 25      | TRU<br>CK | 2        | 3       | 2         | SERIA<br>L | 0         | 0        | 1       | 1       | 1       | 1       | 1       | 1 | 1       | 1       | 1       | 1        |
| 22   | 11.5   | 16<br>2   | 3         | 9         | 25      | TRU<br>CK | 2        | 3       | 2         | SERIA<br>L | 0         | 0        | 1       | 1       | 1       | 1       | 1       | 1 | 1       | 1       | 1       | 1        |
| 23   | 17.5   | 16<br>2   | 2         | 6         | 50      | TRU<br>CK | 2        | 3       | 2         | SERIA<br>L | 0         | 0        | 1       | 1       | 1       | 1       | 1       | 1 | 1       | 1       | 1       | 1        |
| 24   | 17.5   | 16<br>2   | 2         | 6         | 50      | TRU<br>CK | 2        | 3       | 2         | SERIA<br>L | 0         | 0        | 1       | 1       | 1       | 1       | 1       | 1 | 1       | 1       | 1       | 1        |

## **VERSION4\_PLAN\_FILE**

VERSION4\_PLAN\_FILE

NewFormat

## **ZONE\_BOUNDARY\_FILE**

ZONE\_BOUNDARY\_FILE

LocationData
TransimsNet Default Control Key

## **ZONE\_EQUIVALENCE\_FILE**

Used in:

ConvertTrips LinkSum PathSkim

#### PlanSum

The zone equivalence file is required for the trip adjustment factors. The key specifies the name of the file that defines a group of zones. Zone Groups typically represent large geographic areas or governmental entities (i.e., cities and counties). Each zone may only be associated with one Zone Group. The software generates warning messages if a zone is used more than once or appears to be missing from the sequence of zone numbers.

The zone equivalence file is a tab, space, or comma-delimited ASCII file with special format rules. A sample equivalence file is shown below.

```
1 0 Portland CBD - 1
1 1 1..16
2 0 West Suburbs - 2
2 1 79..307, 1248..1253
3 0 Southwest Suburbs - 3
3 1 308..403, 931..933
4 0 Southeast Suburbs - 4
4 1 404..557, 934..943, 1254..1258
5 0 East Portland - 55 1 561..563, 714..721, 731..738, 763..929, 949..961
6 0 East Suburbs - 6
6 1 558..560, 564..713, 722..730, 739..762, 1259..1260
7 0 West Portland - 7
7 1 17..78, 930, 944..948, 962, 1247
8 0 Clark County - 8
8 1 970..1246
```

If the file contains a header record, it is ignored by the software. The first integer on each subsequent record is the district or zone group number. This number is followed by an index number that is used to associate multiple records with a given district. If the index number is zero, the software interprets everything that follows the index number as the district label. The first 25 characters of the label are printed in reports.

If the index number is not zero, the values that follow are interpreted as a range of zone numbers.

Individual zone numbers and ranges of zone numbers can be specified on a given record. A range of zone numbers is specified using the first and last number in the sequence connected by two or more periods. For example, "79..307" represents all of the zone numbers between 79 and 307.

## **ZONE\_FILE**

Names: ZONE\_FILE, NEW\_ZONE\_FILE

Used In:

ArcNet

ConvertTrips

LocationData

NetPrep

NewFormat

PathSkim

TransimsNet

The TRANSIMS zone file provides a list of zones in the network. The full path and file name for the zone table is constructed by appending the value of this key to the value of the PROJECT\_DIRECTORY key.

A typical field definition (.def) file is as follows:

TRANSIMS50, TAB\_DELIMITED, 1 ZONE, INTEGER, 1, 10 X\_COORD, DOUBLE, 2, 14.1, FEET Y\_COORD, DOUBLE, 3, 14.1, FEET Z\_COORD, DOUBLE, 4, 14.1, FEET AREA\_TYPE, INTEGER, 5, 3 NOTES, STRING, 6, 128

Essential information includes the zone number (an integer) and the X and Y coordinates. These are typically UTM coordinates.

Zone numbers do not have to be consecutive. However, external zones are typically assigned higher numbers than internal zones.

An example of a zone file appears below:

Table 27 ZONE\_FILE Example

| ZONE | X_COORD | Y_COORD | Z_COORD | AREA_TYPE | NOTES         |
|------|---------|---------|---------|-----------|---------------|
| 1    | 4921.3  | 14763.8 | 0.0     | 2         | Internal Zone |
| 2    | 8202.1  | 14763.8 | 0.0     | 2         | Internal Zone |
| 20   | 6561.7  | 17060.3 | 0.0     | 0         | External Zone |
| 21   | 9842.5  | 17060.3 | 0.0     | 0         | External Zone |

# ZONE\_LOCATION\_MAP\_FILE

NEW\_ZONE\_LOCATION\_MAP\_FILE
LocationData
ZONE\_LOCATION\_MAP\_FILE
ConvertTrips
PathSkim

# **ZONE\_TRAVEL\_FILE**

**NEW\_ZONE\_TRAVEL\_FILE** LinkSum