Санкт-Петербургский Государственный Университет

Фундаментальная информационные технологии Информационные технологии

Зернов Алексей Викторович

Разработка системы автоматического анализа новостных публикаций на финансовом рынке

Бакалаврская работа

Научный руководитель: к. ф.-м. н., доцент кафедры информатики Санкт-Петербургского государственного университета Григорьев Д. А.

Рецензент:

д. т. н., профессор, декан факультета информационных технологий и управления Санкт-Петербургского государственного технологического института Мусаев А. А.

SAINT-PETERSBURG STATE UNIVERSITY

Fundamental Informatics and Information Technology Information Technology

Alexey Zernov

Development of automatic analysis system of financial market news publications

Bachelor's Thesis

Scientific supervisor: PhD., associate professor Dmitry Grigoryev

Reviewer: Sc. D., dean Alexander Musaev

Оглавление

\mathbf{B}_{1}	веде	ние .		5				
1	Фил	нансов	зый рынок	6				
	1.1	Опред	деление	6				
	1.2	Струн	ктура	7				
	1.3							
2	Инт	геллек	ктуальный анализ текста	9				
	2.1	Проце	есс интеллектуального анализа текста	10				
		2.1.1	Предварительная обработка текста	11				
		2.1.2	Преобразование текста	12				
		2.1.3	Поиск признаков	12				
		2.1.4	Методы анализа текста	12				
		2.1.5	Интерпретация и оценка	12				
	2.2 Области применения интеллектуального анализа текста							
		2.2.1	Извлечение информации	13				
		2.2.2	Информационный поиск	13				
		2.2.3	Обработка естественного языка	13				
		2.2.4	Интеллектуальный анализ данных	14				
3	Обз	вор суі	ществующих инструментов	15				
	3.1	Natur	al Language Toolkit	15				
	3.2	Pymorphy2						
	3.3	Томита-парсер						
	3.4	Яндекс.Спеллер						
	3.5	OntosMiner						
4	Про	ограми	мная часть	17				
	4.1	Постановка задачи						
	4.2	Описание						
	4.3	Испол	пьзуемые инструменты	18				
	4.4	Струк	ктура программы	19				

	4.5	Работа программы					
		4.5.1 Предварительная обработка	20				
		4.5.2 Построение модели	23				
		4.5.3 Обучение, тестирование, предсказание	24				
	Запуск программы	25					
5	Результаты						
	5.1	Подбор параметров	26				
	5.2	2 Примеры оцененных новостей					
	5.3	Рекомендации по увеличению эффективности	28				
За	клю	учение	3 0				
Cı	писо	к литературы	31				
Пј	рило	жение А Исходный код метода downloadNews	32				
Приложение В Исходный код метода downloadStocks							
Π_1	рило	жение С Исходный код метода stem	34				
Π_1	рило	жение D Исходный код метода connect	35				
Π_1	рило	жение E Исходный код метода fit	36				
П	рило	жение F Словарь «стоп-слов»	37				
П	рило	жение G Пример обработки текста новости	38				
Π_1	-	ожение Н Пример просто анализируемых текстов остей	39				
_	_	жение I Пример трудно анализируемых текстов	40				

Введение

Не смотря на то, что с каждым годом происходит увеличение доли цифровой информации по отношению к бумажной, остается проблема работы с этими данными. Дело в том, что большинство такой информации является неструктурированной, а следовательно на ее обработку требуется достаточно много времени и человеческих ресурсов. Целью данной работы является повышение активности работы трейдеров за счет автоматического семантического анализа текста в рамках ограниченных временных ресурсов.

В работе будут рассмотрены основные определения, связанные с финансовым рынком (Раздел 1); базовая теория, касающаяся интеллектуального анализа текста (Раздел 2); существующие решения (Раздел 3) и представлен результат работы в виде программы, осуществляющей анализ новостных публикаций с возможностью последующего предсказания изменения стоимости акций (Раздел 4).

1. Финансовый рынок

В данном разделе будет представлен краткий обзор основных терминов, связанных с самим финансовым рынком, его структурой и основными участниками. Более подробная информация может быть получена в книге [7].

1.1. Определение

В более общем виде финансовый рынок — совокупность инструментов и экономических связей его участников, касающихся создания, поддержания и обращения капитала. Финансовый рынок является довольно абстрактным термином, и под ним часто подразумеваются более конкретные: рынок купонных и бескупонных облигаций, рынок акций (или фондовый рынок) или валютный рынок. Не смотря на выделение составляющих, каждая из них является частью единого механизма, в котором финансы перемещаются между каждым из конкретных рынков.

Каждый из финансовых рынков является рынком посредников между начальными владельцами финансов и их конечными пользователями. Если рынок основывается на финансах как на капитале, он называется фондовым рынком, и именно в этой роли выступает как составная часть всего финансового рынка.

В России финансовые рынки имеют следующие характеристики, влияющие на их деятельность:

- Инвестиции в экономику страны
- Международные рынки, влияние тенденций глобализации
- Современные компьютерные технологии
- Уровень компьютерной и информационной развитости участни-ков рынков

1.2. Структура

Финансовый рынок может быть:

- Первичным или вторичным
- Организованным или неорганизованным
- Биржевым или внебиржевым
- Традиционным или компьютеризированным
- Кассовым или срочным

Первичный рынок обеспечивает выход ценных бумаг в оборот, это своеобразное «производство» ценных бумаг. На **вторичном рын-ке** в обороте находятся уже выпущенные ранее ценные бумаги. Вторичный рынок представляет из себя совокупность всех операций с данными ценными бумагами, в результате которых они переходят от одних владельцев к другим.

Организованный рынок отличается от **неорганизованного рын- ка** тем, что в первом имеются единые для всех участников рынка правила, за соблюдением которых следят организаторы. В неорганизованном рынке соблюдение единых правил для всех участников рынка не гарантируется.

Биржевой рынок — такой рынок, на котором в качестве инструмента торговли используется аукцион. Руководителем же является некоторый специалист. Примеры биржевых рынков: NYSE¹ или AMEX². На **внебиржевых рынках** торги организуются при помощи электронных систем.

Срочный рынок чаще всего подразумевает отложенное исполнение сделки, в отличие от **кассового рынка**, когда сделки исполняются сразу. Обычно традиционные ценные бумаги (акции, облигации) идут в оборот на кассовых рынках, а контракты на производные инструменты рынка ценных бумаг — на срочных.

 $^{^{1}}$ New York Stock Exchange — Нью-Йоркская фондовая биржа

² American Stock Exchange - Американская фондовая биржа

1.3. Участники

Участники рынка ценных бумаг — это физические лица или компании, которые продают или приобретают ценные бумаги, обеспечивают их оборот или расчеты по ним.

Основными участниками рынка выступают **эмитенты**, выпускающие акции или облигации, с помощью которых привлекают финансирование, а также размещающие свободные на данный момент денежные средства. Эмитентами могут быть: государство, субъекты государства или коммерческие предприятия. Целью эмитентов на первичном рынке является размещение запланированного транша по максимальной цене.

Инвестор — лицо, заинтересованное во вложении капитала в ценные бумаги. Целью инвесторов является как можно более выгодная покупка ценных бумаг максимально перспективных компаний.

2. Интеллектуальный анализ текста

В настоящее время можно заметить увеличение роли компьютеров в жизни каждого человека. Информация хранится преимущественно в цифровом виде, что значительно упрощает поиск или работу с ней. Но не смотря на это, многие данные все равно остаются довольно трудными для анализа, не смотря на оцифрованный вид, из-за чего можно подразделить из на следующие формы:

- Структурированные данные
- Частично структурированные данные
- Неструктурированные данные

Хорошим примером **структурированных данных** могут являться базы данных. **Частично структурированные данные** — это электронные письма, разнообразные файлы на языках разметки (HTML, XML и другие).

Если работа со структурированными или частично структурированными данными достаточно детерминированная, то **неструктурированные данные** представляют наибольший интерес в этом вопросе. Около 80% корпоративных данных находится именно в неструктурированном формате, в котором сложно проводить поиск или извлекать необходимую информацию. Для этого нужны специфические методы и алгоритмы обработки. И поскольку самая популярная форма хранения информации — это текст, интеллектуальный анализ текста (text mining) является более важным процессом, нежели интеллектуальный анализ данных (data mining).

Интеллектуальный анализ текста стоит на пересечении дисциплин и включает в себя: обработку web-данных, информационный поиск, компьютерную лингвистику и обработку естественного языка.

2.1. Процесс интеллектуального анализа текста

Концепция интеллектуального анализа текста представлена в [6]. В интеллектуальном анализе текста можно выделить два основных этапа (Рис. 1):

- Фильтрация текста
- Извлечение знаний

Рис. 1: Общий процесс интеллектуального анализа текста

Фильтрация (или очистка) преобразует исходный текстовый документ в некоторое промежуточное представление. Извлечение знаний, в свою очередь, получает полезную информацию (знания) или некоторые шаблоны уже из промежуточного представления. Промежуточное представление может быть как структурированным, так и частично структурированным. Также оно может быть как новым текстовым документом, так понятием, в котором составляющие являются данными или наборами данных из какой-либо предметной области.

Анализ промежуточного представления в виде документов выдает образцы и связи между всеми документами.

Анализ промежуточного представления в виде понятий выдает образцы и связи между объектами или другими понятиями.

Примеры задач анализа промежуточного представления в виде документов: кластеризация, визуализация и категоризация документов; примеры задач анализа промежуточного представления в виде понятий: прогнозирующее моделирование и ассоциативное исследование.

Промежуточное представление в виде документа может быть преобразовано в промежуточное представление в виде понятия путем выделения релевантной информации, которая относится к необходимым объектам из какой-либо предметной области. Отсюда вытекает то, что промежуточное представление чаще не зависит от конкретное предметной области. К примеру, новостные потоки при фильтрации текста преобразуются в промежуточные представления в виде документов, соответствующим определенным статьям. Затем, в зависимости от поставленных задач визуализации или навигации, каждый документ (статья) проходит обработку знаний. Для извлечения же знаний в определенной предметной области промежуточное представление в виде документа может быть преобразовано в промежуточное представление в виде понятия в соответствии с необходимыми требованиями. К примеру, можно извлечь информацию, касающуюся определенного товара или услуги из промежуточного представления в виде документа и сформировать базу данных товаров или услуг для предоставления знаний о них.

2.1.1. Предварительная обработка текста

Предварительная обработка включает в себя:

- 1. Токенизацию
- 2. Удаление «стоп-слов»
- 3. Определение происхождения слов

Токенизация Сначала текст разделяется на отдельные слова, освобождаясь от пробелов и знаков препинания.

Удаление «стоп-слов» На этом этапе происходит избавление от «ненужных» конструкций текста. Это могут быть HTML или XML теги, предлоги, артикли и прочее.

Происхождения слов Представляет из себя выявление корней определенных слов. Порой эта обработка бывает более грубой и выделяются, например, только своеобразные основы (обрубаются окончания или приставки).

2.1.2. Преобразование текста

Текстовый документ состоит из слов и информации об их происхождении. Два основных подхода представления документа: «мешок слов» («bag-of-words») и векторные пространства слов.

2.1.3. Поиск признаков

Под признаками можно понимать переменные. То есть в результате этого шага отбирается подмножество наиболее значимых признаков для их дальнейшего применения при построении моделей. Убираются, например, признаки, которые избыточны или не несут никакой информации.

2.1.4. Методы анализа текста

На данном шаге начинается построение модели с использованием разных методов, таких как кластеризация, классификация, информационный поиск и других. Данные методы распознавания данных также подходят и для интеллектуального анализа текста.

2.1.5. Интерпретация и оценка

На последнем шаге (в зависимости от того, что требуется) проводится анализ результатов.

2.2. Области применения интеллектуального анализа текста

Как уже упоминалось выше, интеллектуальный анализ текста стоит на пересечении разных дисциплин и включает в себя: извлечение информации, информационный поиск, обработку естественного языка и интеллектуальный анализ данных.

2.2.1. Извлечение информации

В процессе извлечения информации автоматически извлекается структурированная информация из неструктурированных данных. С помощью распознавания образов данная система определяет, например, где имена людей, где названия компаний, а где местоположение. То есть в документах происходит поиск предопределенных последовательностей. Подобное решение позволяет получить элементы, подходящие для использования в базах данных для дальнейшего хранения, анализа или обработки.

2.2.2. Информационный поиск

В данной задаче используются методы, используемые для хранения, представления и доступа к информации, которая преимущественно представлена в виде текстовых документов (а также новостных лент или книг), которые могут быть получены по запросу пользователя. Это своего рода расширение поиска по документам, позволяющее сужать набор документов, имеющих отношение к запросу пользователя. Эти системы значительно сокращают время, необходимое для поиска необходимой информации. Наиболее известными системами информационного поиска являются поисковые системы Google.

2.2.3. Обработка естественного языка

Данная задача представляет из себя самую активную проблему в области искусственного интеллекта. Цель: исследовать естественный

язык так, чтобы у компьютеров была возможность понимать языки, подобные тем, что используют для общения люди. Обработка естественного языка включает в себя распознавание и генерацию, которые отвечают за такие способности компьютера как «читать» и «говорить» на естественном языке соответственно. Подобные системы включают в себя проверку грамматики, лексические, синтаксические и семантические анализаторы.

2.2.4. Интеллектуальный анализ данных

Данные задачи относятся к поиску знаний или релевантной информации в большом объеме данных. Система пытается обнаружить правила (статистически) и образцы (автоматически) от данных. Подобные системы имеют возможность предсказания, основываясь на «опыте», полученном в результате исследования.

3. Обзор существующих инструментов

В данном разделе будут рассмотрены основные инструменты, представленные в виде библиотек или отдельных сервисов. Внимание уделено в основном инструментам, работающим с русским языком.

3.1. Natural Language Toolkit

NLTK[2] является пакетом библиотек и программ для разработки программ на Python, работающих с естественным языком. Сопровождается обширной документацией, а также книгой³, объясняющей основные концепции проблем, для решения которых предназначен данный пакет.

Данный пакет подходит для таких областей как компьютерная лингвистика, эмпирическая лингвистика, когнитивистика, искусственный интеллект, информационный поиск и машинное обучение. NLTK используется преимущественно в качестве учебного пособия, индивидуального обучения или прототипирования и создания систем, ориентированных на научно-исследовательскую деятельность.

NLTK — свободное программное обеспечение, то есть доступное бесплатно.

3.2. Pymorphy2

Pymorphy2[3] написан на языке Python и имеет следующие возможности:

- Приведение слова к нормальной форме
- Ставить слово в нужную форму
- Возвращать грамматическую информацию о слове

Распространяется рутогрhy2 под лицензией MIT⁴, если используется в научной работе.

³http://www.nltk.org/book/

⁴https://opensource.org/licenses/MIT

3.3. Томита-парсер

Томита-парсер⁵ способен извлекать структурированные данные из текстов на естественном языке. Как и почти во всех инструментах, рассматриваемых в данном разделе, Томита-парсер ориентирован преимущественно на русскоязычные тексты. В нем используются контекстносвободные грамматики и словари ключевых слов. Код проекта⁶ (написан на C и C++) находится в свободном доступе.

3.4. Яндекс.Спеллер

Яндекс.Спеллер⁷ выполняет задачу проверки орфографии в текстах на английском, русском и украинском языках. Для этого используется орфографический словарь. К тому же, предоставлен набор API методов (для JavaScript) для реализации данной проверки разработчиками сайтов или приложений.

3.5. OntosMiner

OntosMiner⁸ является решением компании Eventos⁹, занимающейся в большей степени разработкой продуктов в области лингвистического анализа текстовой информации, кластеризацией и классификацией информации. Конкретно OntosMiner является целой комплексной системой, дающей возможность распознавания связей между сущностями в текстах на естественной языке. Также, она позволяет определять общую тональность текста.

⁵https://tech.yandex.ru/tomita/

⁶https://github.com/yandex/tomita-parser/

⁷https://tech.yandex.ru/speller/

⁸http://my-eventos.com/solution/ontosminer/

⁹http://my-eventos.com/solution/ontosminer/

4. Программная часть

4.1. Постановка задачи

Основной задачей работы было выявление взаимосвязей текста новости, связанной с компанией, с последующим изменением курса акций данной компании. Оценкой успешности работы программы можно считать процент верно предсказанных изменений без информации о том, что действительно произошло.

4.2. Описание

В результате работы была написана программа¹⁰, позволяющая автоматически анализировать новостные публикации сайта mfd.ru. Данная программа способна выполнять следующие функции:

- Загружать заданное количество последних новостных публикаций определенной компании
- Загружать данные о котировках определенной компании за заданный промежуток времени
- Формировать и обучать рекурентную нейронную сеть по заданным данным
- Предсказывать изменение цены по заданной новостной публикации

На вход программы подается название компании, выступающей в роли эмитента, количество новостей, начальная и конечные даты, в течение которых необходимо получить изменение изменения цен. В результате работы программы получаются следующие файлы:

• news/company.csv — скаченные новости в формате csv с двумя колонками: дата и текст

 $^{^{10} \}verb|https://github.com/Zernov/diploma/tree/master/src|$

- stocks/company.csv скаченные котировки в формате csv с двумя колонками: дата и стоимость акций
- stems/company.csv обработанные новости в формате, аналогичном news/company.csv
- connections/company.csv соединенные новости и котировки в формате csv с тремя колонками: дата, обработанный текст и изменение акции (положительное или отрицательное)

4.3. Используемые инструменты

Выбор инструментов основывался на тех задачах, которые нужно было решать в процессе написания программы. Исходя из поставленной задачи можно выделить следующие подзадачи:

- Загрузка данных с интернет-ресурсов, для чего необходима работа с web-запросами
- Преобразование содержимого web-страниц, для чего нужны инструменты преобразования содержимого HTML-файлов
- Преобразование текстовых документов в более пригодный для обучения вид
- Обучение рекурентной нейронной сети, для чего необходимы соответствующие инструменты

В связи с подзадачами был выбран язык программирования Python версии 3.6.0 и библиотеки urllib¹¹ (работа с web-запросами) версии 1.21.1, bs4¹² (обработка html-файлов) версии 4.6.0, nltk¹³[2] (преобразование текстовых документов) версии 3.2.2 и keras¹⁴[1] (работа с рекурентными нейронными сетями) версии 2.0.3. Возможность написания

¹¹https://docs.python.org/3/library/urllib.html

¹²https://www.crummy.com/software/BeautifulSoup/bs4/doc/

¹³http://www.nltk.org/

¹⁴https://keras.io

всех программных модулей на одном языке упрощает разработку и поддержку, что было еще одним преимуществом.

4.4. Структура программы

Всего в программе присутствует 6 основных файлов (модулей), каждый из которых отвечает за свою часть работы (Рис. 2).

- news_getter.py отвечает за скачивание новостей с сайта mfd.ru, за запись новостей в файл и за чтение новостей из файла
- stock_getter.py отвечает за загрузку котировок с сайта finam. ru, за запись котировок в файл и за чтение котировок из файла
- connector.py является вспомогательным модулем, ответственным за объединение новостей и подсчет изменения котировок за соответствующие даты
- stemmer.py выполняет небольшую задачу по выделению основ слов, чтобы избежать излишнего увеличения числа переменных при обучении
- И наконец, все перечисленные выше файлы подключатся в основной (main.py), который выполняет последовательно необходимые действия и имеет два метода: обучение нейронной сети по данным и предсказание изменений по заданному набору новостей

4.5. Работа программы

Работу программы (Рис. 3) можно разбить на два основных этапа: предварительная обработка и построение модели. Во время предварительной обработки происходит загрузка и преобразование данных (включая стемминг и удаление «стоп-слов» (Приложение F)). Во время построения модели выделяются и строятся требуемые слои рекурентной нейронной сети.

Рис. 2: Модули программы

4.5.1. Предварительная обработка

Изначально необходимо получить требуемые данные: тексты новостей и котировок. В случае добавления и/или изменения новостных источников или сайтов, позволяющих загрузить данные о котировках, затрагивается только единственный метод в соответствующем модуле.

Экспорт новостей В случае экспорта новостей информационным источником выступал сайт mfd.ru. В методе downloadNews (Приложение А), который находится в модуле news_getter.py, имеются два входных параметра: название компании и количество требуемых новостей. Название компании преобразуется в идентификатор эмитента соответствующей компании на сайте mfd.ru, после чего строятся адреса последних новостей в требуемом количестве, и начинается загрузка. Подобное решение было принято в связи с тем, что новостная лента может обновляться во время загрузки большого количества данных,

Рис. 3: Схема работы программы

требуемых для обучения, и в результате загрузки мы получим дублирование некоторых новостей. Факт долгой загрузки большого объема данных так же создает проблему возможных сбоев при загрузке. Она была решена отловом различных НТТР-ошибок с остановкой запросов на некоторое время и последующим возобновлением загрузки. После загрузки новости к результатам добавлялась очередная пара, состоящая из даты и текста новости. Результат экспорта возвращался в основную программу для дальнейших действий с ним (записи в файл или непосредственной обработки).

Экспорт котировок В случае экспорта котировок данные получались с сайта finam.ru, на котором имеется возможность с помощью HTTP-запроса получить информацию по котировкам определенной компании. Метод, отвечающий за это, называется downloadStocks (Приложение В) и находится в модуле stock_getter.py. На вход он принимает три параметра: название компании и границы дат, между которыми необходимо получить информацию. Название компании позволяет определить идентификатор эмитента соответствующей компании и ее код — параметры в адресе запроса. В данной работе единицей изме-

рения интервала между стоимостью котировок являлся один день. Из нескольких цен, предоставленных в результате экспорта (цена на момент открытия торгов, цена на момент закрытия торгов, максимальная цена за время торгов и минимальная цена за время торгов) бралась единственная — цена на момент открытия торгов. Далее именно разница между ценами на момент открытия торгов в два разных дня станет оценкой новостей, опубликованных за этот промежуток времени. Результатом экспорта является набор пар, состоящих из даты и цены на момент открытия торгов в этот день, и он возвращается в основную программу для дальнейших действий (записи в файл или непосредственной обработки).

Преобразование данных Преобразование данных тоже можно разбить на две части: обработка текста и соединение новостей с соответствующими котировками по датам. Первую часть выполняет метод stem (Приложение С) модуля stemmer.py, принимающий на вход необработанные новости. При обработке текста новости в первую очередь убираются цифры, знаки пунктуации и латинские буквы (в связи с их небольшим количеством). Затем каждое слово в тексте проходит операцию стемминга, то есть выделения основы слова для избавления от чрезмерного дублирования похожих слов в словаре. В этом же методе происходит «склейка» новостей одного дня в единую новость этого же дня. Результатом обработки текста является набор, содержащий даты с соответствующими «склеенными» новостями, содержащими лишь основы слов без знаков пунктуации, цифр и латинских букв. После этого этапа происходит создание подходящего набора данных для обучения, содержащего новости и соответствующие им оценки (в простейшем случае 0, если последовали отрицательные изменения и 1, если последовали положительные изменения). За эту задачу отвечает метод connect (Приложение D) в соответствующем модуле connector.py, принимающий на вход новости и котировки. Изначально выделяется пересечение множеств дат из обоих наборов данных (количество этих дат и определяет размер набора данных для обучения). В случае отсутствия информации о котировках в день, в который была опубликована новость, она «склеивается» с предыдущими (как в обработке текста). Затем для каждой новости вычисляется ее оценка: 0, если цена акций к следующей новости упала, и 1 в противном случае. Результатом соединения является набор троек: дата, новость, оценка. После отработки метода, его результат возвращается в основную программу, где текст проходит предварительную обработку с помощью Tokenizer — класса, позволяющего индексировать все слова данного множества текстов, превратив их тем самым в наборы чисел (Приложение G), каждое из которых указывает на соответствующее слово в словаре.

4.5.2. Построение модели

Как уже было сказано ранее, на основе полученных данных программа обучает рекурентную нейронную сеть (RNN). Рекурентая нейронная сеть отличается от обычной наличием памяти. Однако в первоначальной ее модели память имеет небольшой объем — несколько элементов. В связи с этим было принято решение использовать метод LSTM [4], имеющий более объемную память и более высокую скорость обучения по сравнению с другими моделями рекурентных нейронных сетей. Как видно из кода (Приложение E), в модели присутствуют слои: Embending, LSTM, Dropout, Dense и Activation (Puc. 4). Рассмотрим подробнее некоторые из них.

Embending Этот слой преобразует индексы слов в вектора заданной размерности. Задача этого слоя — придать семантическое значение индексам, чтобы похожие слова имели близкие векторы.

LSTM Схема работы LSTM подробно описана в работе [4].

Dropout Схема работы Dropout подробно описана в работе [5]. Задачей этого метода является предотвращение переобучения: на каждом шаге обнуляется pn компонент входного вектора, где p — параметр Dropout, а n — длина вектора.

Dense В данном слое задаются параметры регуляризации, позволяющие уменьшить риск переобучения.

Activation В конце вычисляется активационная сигмоидальная функция, принимающая значение из полуинтервала [0; 1), интерпретируемая как вероятность изменения акций в положительную сторону.

Рис. 4: Слои модели рекурентной нейронной сети

4.5.3. Обучение, тестирование, предсказание

После построения имеющейся модели используется метод fit для непосредственного обучения модели. Данный метод имеет следующие параметры:

- x набор входных данных в формате Numpy array
- у значения в формате Numpy array
- batch_size количество данных, которые берутся одновременно за одно обновление градиента
- epochs количество поколений для обучения модели

• validation_split — число из интервала [0;1), часть набора входных данных, которая будет использоваться для валидации

Для тестирования используется метод evaluate, которому достаточно после окончания обучения передать всего два параметра: набор входных данных и значения. Метод evaluate возвращает вектор с потерями соответствующих данных.

Для предсказаний (в том случае, когда неизвестны реальные значения) используется метод predict, которому достаточно передать только набор входных данных. Результатом работы метода predict является набор предсказаний.

4.6. Запуск программы

Для запуска программы необходимо скачать файлы из репозитория¹⁵, находящиеся в каталоге **src** и установить используемые библиотеки. После чего есть два возможных способа запуска программы:

- python main.py -f {company} {amount} {datef} {datet}
- python main.py {company} {predict_path}

В первом случае происходит загрузка новостей заданной компании сомрапу в количестве, равном числу amount, загрузка котировок за период от datef до datet, построение и обучение модели. При запуске программы по второму шаблону происходит загрузка построенной модели для сомрапу с последующим предсказанием новостей, расположенных в файле по адресу predict_path.

Одним из недостатков данной программы является отсутствие возможности «дообучения» системы при подаче дополнительных данных к уже обученной модели. Необходимо по-новой ее заполнять с уже расширенным данным.

¹⁵https://github.com/Zernov/diploma

5. Результаты

В качестве примера были взяты данные компании «Сбербанк» (10000 новостей). Построенная модель имела предсказывающую точность около 65%.

5.1. Подбор параметров

Во время подбора параметров были получены следующие зависимости:

- Оптимальное значение параметра l1 (Рис. 5) находится около значения 0.1.
- Параметр 12 (Рис. 6) позволяет получить наибольшую точность при значении 0.1.
- Оптимальное значение параметра lr (Рис. 7) является 0.01, последующее увеличение вызывает резкое падение точности.
- Параметр epoch (Рис. 8) при увеличении дает прирост точности, однако требуется значительно увеличивать количество эпох, что-бы достичь больших изменений.

Рис. 5: Зависимость точности от параметра 11

Рис. 6: Зависимость точности от параметра 12

Рис. 7: Зависимость точности от параметра lr

Рис. 8: Зависимость точности от параметра epoch

5.2. Примеры оцененных новостей

Если рассмотреть, на каких новостях программа выдает успешные результаты (Приложение Н), то можно сделать вывод, что в случае положительного изменения стоимости акций чаще присутствуют такие слова как «кредит», «владеют», «доля», а в случае отрицательного — «позволят», «выплатить», «послабление», что вполне естественно. Кроме того, в текстах верно оцененных новостей чаще всего не присутствует неоднозначно интерпретируемых слов или цитат.

Если же подробнее посмотреть на неудачные результаты (Приложение I), чья вероятность успеха очень близка к 0.5, то одновременное присутствие положительной стороны в виде слова «кредит» и противоречащих ему негативно оцененных слов уменьшают общую вероятность успеха, создавая неопределенность. Ровно такая же ситуация и в случае, если присутствуют другие противоречащие слова: и имеющие положительную оценку, и отрицательную. В одной из ситуации это может быть речевым оборотом, означающим ровно противоположное, а в другом — чьей-нибудь цитатой, не соответствующей действительности, однако которую программа восприняла серьезно.

В негативных случаях необходимо больше данных для обучения или специфические способы обработки отдельных часто встречающихся случаев. Однако не смотря на погрешности, программа выдает достаточно близкий к реальности результат (Рис. 9).

Рис. 9: Результат работы программы

5.3. Рекомендации по увеличению эффективности

В рамках имевшихся ресурсов (как вычислительных, так и временных) имело место ограничение на объем данных для обучения. Например, из 6300 изначально скаченных новостей получился набор данных размером около 300 элементов, так как минимальной временной единицей являлся один день. В таком случае имеет место одно (или несколько) из следующих решений:

Отсутствие привязки новостей к определенным компаниям В данном случае принадлежность новости к компании можно устанавливать какими-либо специальными метками, а само обучение проводить на данных, не зависящих от компании. В таком случае набор данных будет расширен в разы за счет получения информации о различных эмитентах одновременно. Но в данном случае возможно снижение эффективности за счет сложности разнообразных зависимостей акций

компании друг от друга. В связи с чем возникает идея брать «кластеры» компаний, имеющих более-менее похожий вектор изменения, отслеживая их группами. Но для реализации подобного необходим первоначальный анализ данных, который можно произвести с помощью программы, написанной в результате этой работы.

Увеличение количества источников В этом случае вместо единственного новостного сайта предлагается использовать несколько, в связи с чем возможна проблема дублирования новостей, но есть вероятность, что точность при этом возрастет.

Загрузка более старых новостей Последним из предлагаемых решения является увеличение временного промежутка с целью загрузки более ранних новостей. С одной стороны предполагается увеличение точность за счет расширения данных для обучения, но с другой стороны слишком старая информация может оказаться неактуальной в данный момент.

В каждом из трех предложенных решений подразумевается расширение объема данных для обучения, а следовательно требуется увеличение вычислительной мощности и дополнительные временные ресурсы. Однако результаты текущей работы могут стать основой для более серьезных разработок в данной области.

Заключение

В данной работе представлена программа, позволяющая автоматически анализировать новостные публикации компаний в соответствии с ценами их акций в соответствующие временные промежутки. Кроме того, программа имеет хорошую точность в предсказании изменения стоимости акций после публикации определенной группы новостей. Полученный результат может быть расширен (за счет модульной архитектуры) на любое число компаний и новостных источников. Также результат данной работы может быть использован в качестве основы для разработки более крупных систем финансового анализа.

Список литературы

- [1] Chollet François et al. Keras.— https://github.com/fchollet/keras.—2015.
- [2] Loper E. Bird S. NLTK: The Natural Language Toolkit // Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics Volume 1. ETMTNLP '02. Stroudsburg, PA, USA: Association for Computational Linguistics, 2002. P. 63–70.
- [3] M. Korobov. Morphological Analyzer and Generator for Russian and Ukrainian Languages // Analysis of Images, Social Networks and Texts. Springer International Publishing, 2015. Vol. 542 of Communications in Computer and Information Science. P. 320–332.
- [4] S. Hochreiter, J. Schmidhuber. Long short-term memory // Neural computation. 1997. Vol. 9, no. 8. P. 1735—1780.
- [5] Srivastava N. Hinton G. Krizhevsky A., I. Sutskever. Dropout: a simple way to prevent neural networks from overfitting. // Journal of Machine Learning Research. 2014. Vol. 15, no. 1. P. 1929–1958.
- [6] Sumathy K. L. Chidambaram M. Text Mining: Concepts, Applications, Tools and Issues — An Overview // International Journal of Computer Applications. — 2013. — October. — Vol. 80, no. 4. — P. 29–32.
- [7] V.P. Romanov. Information technology modeling of financial markets - (Applied Information Technology) / Informatsionnye tekhnologii modelirovaniya finansovykh rynkov - ("Prikladnye informatsionnye tekhnologii"). — Finansy i statistika, 2010. — ISBN: 5279034444.

A. Исходный код метода downloadNews

```
def downloadNews(company, amount):
domain = 'http://mfd.ru'
news dates = []
news = []
 news count = 0
 if company == 'sberbank':
 company = '1'
 \mathbf{elif} \ \mathbf{company} = \ \mathbf{'gazprom'} :
 company = 3
 amount = int(amount)
 trs = getTrs(company, amount)
 total = len(trs)
 current = 0
 while current < total:
  try:
   td = trs [current]. findAll('td')
   temp_date = td[0].getText().split(',')[0].strip()
   \mathbf{if} temp date = 'сегодня':
   today = datetime.date.today()
    item date = today.strftime('%d/%m/%y')
   elif temp date == 'вчера':
    yesterday = datetime.date.today() - datetime.timedelta(1)
    item date = yesterday.strftime('%d/%m/%y')
   else:
    temp_date_split = temp_date.split('.')
    item date = {}^{\prime}{}{}/{}{}/{}{}'.format(str(temp date split[0]),
     str(temp_date_split[1]), str(temp_date_split[2][2:]))
    item_url = domain + td[1].find('a').get('href')
    item bs = BeautifulSoup(urlopen(item url), 'html.parser')
    item_content = item_bs.find('div', { 'class' : 'm-content' })
    item_data = item_content.findAll('p')
    item string = ','
    for j in range (1, len(item_data) - 2):
     item string += item data[j].getText() + ','
     item string = item string.strip()
     if item string != '':
      news dates.append(item date)
      news.append(item string)
      news\_count += 1
     current += 1
     time.sleep(delay)
    except:
     time.sleep(delay except)
return news dates [::-1], news [::-1], news count
```

В. Исходный код метода downloadStocks

```
def downloadStock (company, date from, date to):
   company = str(company)
     if company == 'sberbank':
         code = 'SBER'
        em = '3'
     elif company == 'gazprom':
         code = 'GAZP'
        em = '16842'
     dfs = date_from.split('/')
     df = dfs[0].lstrip('0')
   mf = str(int(dfs[1].lstrip('0')) - 1)
     yf = dfs[2]
     datef = dfs[0] + '.' + dfs[1] + '.' + dfs[2]
     dts = date_to.split(',')
     dt = dts[0].lstrip('0')
   mt = str(int(dts[1].lstrip('0')) - 1)
     yt = dts[2]
     datet = dts[0] + '.' + dts[1] + '.' + dts[2]
     cn = company
     url = 'http://export.finam.ru/stock.txt?market=1&em={}&code={}' +
               \label{lem:condition} $$ '\&apply=0\&df={}\&mf={}\&yf={}\&yf={}\&to={}' + $$ '\&apply=0\&df={}\&yf={}\&yf={}\&yf={}\&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&yf={}&y
               \ensuremath{$^{\prime}$} = 8\&f = \ensuremath{$^{\prime}$} = 1\&e = .\txt\&cn = {\ensuremath{$^{\prime}$}} \&dtf = 4\&tmf = 3\&MSOR = 1\&mstime = on ' + 1\&tmf = 3\&MSOR = 1\&mstime = on ' + 1\&tmf = 3\&MSOR = 1\&mstime = on ' + 1\&tmf = 3\&mstime = on ' + 1\&tmf = on ' + 1\&tmf
               '&mstimever=1&sep=1&sep2=1&datf=5&at=1'.format(em, code,
                        df\,,\ mf\,,\ yf\,,\ datef\,,\ dt\,,\ mt\,,\ yt\,,\ datet\,,\ cn\,)
     stocks_dates = []
     stocks = []
     stocks\_count = 0
     data = urlopen(url).read().decode("utf-8").split(' \ \ \ )
     for i in range (1, len(data) - 1):
         item_split = data[i].split(',')
          stocks_dates.append(item_split[0])
          stocks.append(item split[2])
         stocks count += 1
     return stocks dates, stocks, stocks count
```

С. Исходный код метода stem

```
def stem(news_dates, news, news_count):
   stems dates = []
    [stems_dates.append(date) for date in news_dates if date not in stems_dates]
    stems_count = len(stems_dates)
    i = 0
    j = 0
    \mathbf{while} \ i < stems\_count:
        stem = []
        \label{eq:while} \textbf{while} \hspace{0.1cm} j \hspace{0.1cm} < \hspace{0.1cm} news\_count \hspace{0.1cm} \textbf{and} \hspace{0.1cm} stems\_dates\hspace{0.1cm} [\hspace{0.1cm} i\hspace{0.1cm}] \hspace{0.1cm} = \hspace{0.1cm} news\_dates\hspace{0.1cm} [\hspace{0.1cm} j\hspace{0.1cm}] :
              words = text\_to\_word\_sequence(news[j], filters = ', '.join(punctuation) + leading for the sequence for the sequence of the s
                          '--01234567890abcdefghijklmnopqrstuvwxyz')
                   for word in words:
                        if word not in stemmer.stopwords and word != '.':
                             stem.append(stemmer.stem(word))
             j += 1
         i += 1
         stems.append(', ', 'spin(stem))
     return stems dates, stems, stems count
```

D. Исходный код метода connect

```
def connect (news dates, news, news count, stocks dates, stocks, stocks count):
 connections dates = []
 for i in range(news count):
 for j in range(stocks count):
   if news_dates[i] == stocks_dates[j] and
     news_dates[i] not in connections_dates:
    connections dates.append(news dates[i])
 connections_news = []
 connections\_stocks = []
 connections count = len(connections dates)
 i = 0
j = 0
k = 0
 while connections dates[i] != news dates[j]:
 while connections dates[i] != stocks dates[k]:
 k += 1
 while i < connections count - 1:
  connection news = []
 while j < news_count and connections_dates[i + 1] != news_dates[j]:
  connection_news.append(news[j])
  j += 1
  connections _ news . append(', ', ', join(connection _ news))
  stocks_start = float(stocks[k])
  while k < stocks_count and connections_dates[i + 1] != stocks_dates[k]:
  k += 1
 stocks end = float(stocks[k])
  connection_stocks = 1 if stocks_end > stocks_start else 0
  connections stocks.append(connection stocks)
  i += 1
 return connections_dates[:-1], connections_news, connections_stocks,
  connections count - 1
```

Е. Исходный код метода fit

```
def fit (name):
model = Sequential()
model.add(Embedding(input_dim=num_words, output_dim=dimension))
model.add(LSTM(units=dimension))
 model.add(Dropout(rate=dropout rate))
 model.add(Dense(units=1, kernel_regularizer=11_12(11=11_rate, 12=12_rate)))
 model.add(Activation(activation='sigmoid'))
 model.compile(optimizer=Adam(lr=l_rate), loss=binary_crossentropy,
  metrics = [binary accuracy])
 hist = model.fit(training X, training y, batch size=batch size,
  epochs=epochs, validation_split=validation_split)
 model.save(path + 'models/{}_model-{}.h5'.format(company, name))
 with open(path + 'models/{} history -{}.txt'.format(company, name),
   'w+', encoding='utf8') as temp:
 temp.write(str(hist.history))
 score = model.evaluate(testing_X, testing_y, batch_size=batch_size)
 with open(path + 'models/{}_score-{}.txt'.format(company, name),
   'w+', encoding='utf8') as temp:
 temp.write(str(score))
```

F. Словарь «стоп-слов»

1: и	32: вот	63: ничего	94: этого	125: нас
2: в	33: от	64: ей	95: какой	126: про
3: во	34: меня	65: может	96: совсем	127: всего
4: не	35: еще	66: они	97: ним	128: них
5: что	36: нет	67: тут	98: здесь	129: какая
6: он	37: o	68: где	99: этом	130: много
7: на	38: из	69: есть	100: один	131: разве
8: я	39: ему	70: надо	101: почти	132: три
9: c	40: теперь	71: ней	102: мой	133: эту
10: co	41: когда	72: для	103: тем	134: моя
11: как	42: даже	73: мы	104: чтобы	135: впрочем
12: a	43: ну	74: тебя	105: нее	136: хорошо
13: то	44: вдруг	75: их	106: сейчас	137: свою
14: все	45: ли	76: чем	107: были	138: этой
15: она	46: если	77: была	108: куда	139: перед
16: так	47: уже	78: сам	109: зачем	140: иногда
17: его	48: или	79: чтоб	110: всех	141: лучше
18: но	49: ни	80: без	111: никогда	142: чуть
19: да	50: быть	81: будто	112: можно	143: том
20: ты	51: был	82: чего	113: при	144: нельзя
21: к	52: него	83: раз	114: наконец	145: такой
22: y	53: до	84: тоже	115: два	146: им
23: же	54: вас	85: себе	116: об	147: более
24: вы	55: нибудь	86: под	117: другой	148: всегда
25: за	56: опять	87: будет	118: хоть	149: конечно
26: бы	57: уж	88: ж	119: после	150: всю
27: по	58: вам	89: тогда	120: над	151: между
28: только	59: ведь	90: кто	121: больше	
29: ee	60: там	91: этот	122: тот	
30: мне	61: потом	92: того	123: через	
31: было	62: себя	93: потому	124: эти	

G. Пример обработки текста новости

Исходная новость "Доходность по инвестициям пенсионных накоплений в 2014 году положительная. Порядка 2%, но мы еще не распределяли. Доходность положительная, несмотря на обвал ОФЗ, рынка облигаций и т.д.", — сказала она. Структура портфеля пенсионных накоплений фонда на данный момент распределена следующим образом: 40% на банковских депозитах, 40% — в корпоративных облигациях, около 2-3% — в акциях. При этом около 20% накоплений инвестированы в краткосрочные финансовые инструменты, остальные — в долгосрочные.

Новость после стемминга доходн инвестиц пенсион накоплен год положительн порядк распределя доходн положительн несмотр обва офз рынк облигац т д сказа структур портфел пенсион накоплен фонд дан момент распредел след образ банковск депозит корпоративн облигац окол акц окол накоплен инвестирова краткосрочн финансов инструмент остальн долгосрочн

Новость в виде вектора индексов слов [346, 315, 467, 913, 1, 669, 314, 346, 669, 576, 914, 14, 175, 971, 11, 176, 91, 467, 913, 64, 19, 258, 111, 331, 48, 424, 168, 175, 49, 42, 49, 913, 823, 50, 533, 761, 549]

Пример просто анализируемых текстов новостей

• Число выданных жилкредитов увеличилось в прошлом месяце на 14% к февралю 2014 года — до 3,235 тысячи штук. Сбербанк России — крупнейший банк в России, на его долю приходится около трети активов всего российского банковского сектора. Учредителем и основным акционером Сбербанка является Центральный банк РФ, владеющий 50% уставного капитала плюс одна голосующая акция. Остальными акциями банка владеют российские и международные инвесторы.

Вероятность роста: 0.83210963

• В ноябре прошлого года финансовый директор Сбербанка Александр Морозов говорил, что ситуация в российской экономике и на Украине вряд ли позволят банку выплатить щедрые дивиденды по итогам 2014 года. Глава ЦБ Эльвира Набиуллина в феврале заявляла, что банкам с госучастием в 2015 году необходимо сделать послабления по дивидендам. Также на заседании будет рассмотрен ряд традиционных вопросов, среди которых отчет банка по МСФО, кандидаты в наблюдательный совет, созыв годового собрания акционеров.

Вероятность роста: 0.18917511

I. Пример трудно анализируемых текстов новостей

• "Меня часто спрашивают, а что с кредитованием, что происходит с кредитованием в кризис? Я посмотрел за прошлую неделю, мы выдали кредитов на 7 миллиардов рублей за неделю. Сравнил с 2014 годом, это где-то средняя цифра по 2014 году", — рассказал Шаров в эфире "Коммерсант FM". При этом он отметил, что в кризис существенно изменилось направление кредитования. "В основном это оборотные средства. И для нас, и для правительства, я думаю, и для Центрального банка это серьезный вызов", — заявил представитель Сбербанка.

Вероятность роста: 0.52203059

• В расчет этого показателя Сбербанк включает чистые активы украинских подразделений группы, а также инвестиции в финансовые и долговые инструменты украинского правительства и корпоративных клиентов Украины. По состоянию на 31 декабря 2013 данный показатель составлял 0,8%. "Текущая ситуация в Украине и ее последующее негативное развитие может негативно воздействовать на финансовый результат и финансовое положение группы, и эффект данного воздействия на данный момент сложно определить", — отмечается в отчете. Руководство Сбербанка неоднократно заявляло, что крупнейший российский банк не планирует уходить с украинского рынка, несмотря на сложную политическую ситуацию.

Вероятность роста: 0.51229823