Boosting

Victor Kitov

v.v.kitov@yandex.ru

Linear ensembles

Linear ensemble:

$$F_M(x) = f_0(x) - c_1 f_1(x) + ... - c_M f_M(x)$$

Regression: $\hat{y}(x) = F_M(x)$

Binary classification: $score(y|x) = F_M(x)$, $\hat{y}(x) = sign F_M(x)$

- Notation: $f_1(x), ... f_M(x)$ are called base learners, weak learners, base models.
- Too expensive to optimize $f_0(x)$, $f_1(x)$, ... $f_M(x)$ and c_1 , ... c_M jointly for large M.
- Idea: optimize $f_0(x)$ and then each pair $(f_m(x), c_m)$ step-by-step.

Forward stagewise additive modeling (FSAM)

Input:

- training dataset (x_n, y_n) , n = 1, 2, ...N
- loss function $\mathcal{L}(f, y)$
- parametric form of base learner $f_{\theta}(x)$
- the number of base learners M.

Output: approximation function $F_M(x) = f_0(x) - \sum_{m=1}^{M} c_m f_m(x)$

Forward stagewise additive modeling (FSAM)

- Fit initial approximation $f_0(x) = \arg\min_f \sum_{n=1}^N \mathcal{L}(f(x_n), y_n)$
- **2** For m = 1, 2, ...M:
 - find next best classifier

$$(c_m, f_m) := \arg\min_{f,c} \sum_{n=1}^{N} \mathcal{L}(F_{m-1}(x_n) - cf(x_n), y_n)$$

reevaluate ensemble

$$F_m(x) := F_{m-1}(x) - c_m f_m(x)$$

Dependency on M

Boosting overfits for high *M*:

Comments

- M should be determined by performance on validation set.
- Each step should be coarse to leave room for future base learners improvement:
 - initial approximation may be zero or constant
 - optimization can be coarse (just few steps)
 - base learner should be simple
 - such as trees of depth=1,2,3.
- For some loss functions (see Adaboost) we can solve minimization explicitly.
- For general loss functions gradient boosting should be used.

Table of Contents

- Adaboost
- @ Gradient boosting
- 3 Extensions

Adaboost (discrete version)

Assumptions:

- binary classification task $y \in \{+1, -1\}$
- $f_m(x) \in \{+1, -1\}$, trainable in weighted dataset.
- classification is performed with $\hat{y} = sign\{f_0(x) + c_1f_1(x) + ... + c_Mf_M(x)\}$
- optimized loss is $\mathcal{L}(F(x), y) = e^{-yF(x)}$

Optimization in FSAM can be solved explicitly!

Adaboost (discrete version): algorithm

Input:

- training dataset $(x_n, y_n), n = 1, 2, ...N$
- number of additive weak classifiers M
- a family of weak classifiers $f_m(x) \in \{+1, -1\}$
 - should be trainable on weighted datasets.

Output: composite classifier
$$F_M(x) = \text{sign}\left(\sum_{m=1}^M c_m f_m(x)\right)$$

Adaboost (discrete version): algorithm

- Initialize observation weights $w_n = 1/N$, n = 1, 2, ...N.
- ② for m = 1, 2, ...M:
 - fit $f_m(x)$ to training data using weights w_n
 - 2 compute weighted misclassification rate:

$$E_{m} = \frac{\sum_{n=1}^{N} w_{n} \mathbb{I}[f_{m}(x_{n}) \neq y_{n}]}{\sum_{n=1}^{N} w_{n}}$$

- 3 if $E_M > 0.5$ or $E_M = 0$: terminate procedure.
- **o** compute $c_m = \frac{1}{2} \ln ((1 E_m)/E_m)$ $E_m < 0.5 = > c_m > 0$
- **5** increase all weights, where misclassification with $f_m(x)$ was made:

$$w_n \leftarrow w_n e^{2c_m} = w_n \left(\frac{1 - E_m}{E_m}\right), \text{ for } n: f_m(x_n) \neq y_n$$

Set
$$F_0(x) \equiv 0$$
.
Apply FSAM for $m = 1, 2, ...M$:

$$(c_m, f_m) = \arg \min_{c_m, f_m} \sum_{n=1}^{N} \mathcal{L}(F_{m-1}(x_n) + c_m f_m(x_n), y_n)$$

$$= \arg \min_{c_m, f_m} \sum_{n=1}^{N} e^{-y_n F_{m-1}(x_n)} e^{-c_m y_n f_m(x_n)}$$

$$= \arg \min_{c_m, f_m} \sum_{i=1}^{N} w_n^m e^{-c_m y_n f_m(x_n)}, \quad w_n^m := e^{-y_n F_{m-1}(x_n)}$$

$$\sum_{n=1}^{N} w_{n}^{m} e^{-c_{m} y_{n} f_{m}(x_{n})} = \sum_{n: f_{m}(x_{n}) = y_{n}} w_{n}^{m} e^{-c_{m}} + \sum_{n: f_{m}(x_{n}) \neq y_{n}} w_{n}^{m} e^{c_{m}}$$

$$= e^{-c_{m}} \sum_{n: f_{m}(x_{n}) = y_{n}} w_{n}^{m} + e^{c_{m}} \sum_{n: f_{m}(x_{n}) \neq y_{n}} w_{n}^{m}$$

$$= e^{c_{m}} \sum_{n: f_{m}(x_{n}) \neq y_{n}} w_{n}^{m} + e^{-c_{m}} \sum_{n=1}^{N} w_{n}^{m} - e^{-c_{m}} \sum_{n: f_{m}(x_{n}) \neq y_{n}} w_{n}^{m}$$

$$= e^{-c_{m}} \sum_{n} w_{n}^{m} + (e^{c_{m}} - e^{-c_{m}}) \sum_{n: f_{m}(x_{n}) \neq y_{n}} w_{n}^{m}$$

Since $c_m \geq 0$, $f_m(\cdot)$ should be found from

$$f_m(\cdot) = \arg\min_{f} \sum_{n=1,\dots,n}^{N} w_n^m \mathbb{I}[f(x_n) \neq y_n]$$

Denote
$$G(c_m) = \sum_{n=1}^{N} w_n^m \exp(-c_m y_n f_m(x_n))$$
. Then
$$\frac{\partial G(c_m)}{\partial c_m} = -\sum_{n=1}^{N} w_n^m e^{-c_m y_n f_m(x_n)} y_n f_m(x_n) = 0$$

$$-\sum_{n:f_m(x_n)=y_n} w_n^m e^{-c_m} + \sum_{n:f_m(x_n)\neq y_n} w_n^m e^{c_m} = 0$$

$$e^{2c_m} = \frac{\sum_{n:f_m(x_n)=y_n} w_n^m}{\sum_{n:f_m(x_n)\neq y_n} w_n^m}$$

$$c_m = \frac{1}{2} \ln \frac{\left(\sum_{n:f_m(x_n)=y_n} w_n^m\right) / \left(\sum_{n=1}^{N} w_n^m\right)}{\left(\sum_{n:f_m(x_n)\neq y_n} w_n^m\right) / \left(\sum_{n=1}^{N} w_n^m\right)} = \frac{1}{2} \ln \frac{1 - E_m}{E_m},$$
where $E_m := \frac{\sum_{n=1}^{N} w_n^m \mathbb{I}[f_m(x_n) \neq y_n]}{\sum_{n:f_m \in \mathbb{Z}} w_n^m}$

Weights recalculation:

$$w_n^{m+1} \stackrel{def}{=} e^{-y_n F_m(x_n)} = e^{-y_n F_{m-1}(x_n)} e^{-y_n c_m f_m(x_n)}$$

Noting that $-y_n f_m(x_n) = 2\mathbb{I}[f_m(x_n) \neq y_n] - 1$, we can rewrite:

$$w_n^{m+1} = e^{-y_n F_{m-1}(x_n)} e^{c_m (2\mathbb{I}[f_m(x_n) \neq y_n] - 1)} =$$

$$= w_n^m e^{2c_m \mathbb{I}[f_m(x_n) \neq y_n]} e^{-c_m} \propto w_n^m e^{2c_m \mathbb{I}[f_m(x_n) \neq y_n]}$$

Comments:

- We can remove common constants from weights.
- $w_n^{m+1} = w_n^m$ for correctly classified objects by $f_m(x)$.
- $w_n^{m+1} = w_n^m e^{2c_m}$ for incorrectly classified objects by $f_m(x)$.
 - so later classifiers will pay more attention to them

Table of Contents

- Adaboost
- 2 Gradient boosting
- 3 Extensions

Motivation

- Problem: For general loss function L FSAM cannot be solved explicitly
- Analogy with function minimization: when we can't find optimum explicitly we use numerical methods
- Gradient boosting: numerical method for iterative loss minimization

Gradient descent algorithm

$$L(w) \to \min_{w}, \quad g(w) = \nabla_{w} L(w), \quad w \in \mathbb{R}^{N}$$

Gradient descent:

```
initialize w for m=1,2,...M: g(w)=\nabla_w L(w) w=w-\varepsilon g(w)
```

Gradient descent with modified step:

```
initialize w

for m = 1, 2, ...M:

g(w) = \nabla_w L(w)

c^* = \arg\min_{c>0} L(w - cg(w))

w = w - c^* \Delta w
```

Gradient boosting intuition

$$L(F) = \sum_{n=1}^{N} \mathcal{L}(F^n) \to \min_{F} \qquad F = [F^1, F^2, ... F^N]$$

Gradient descent: $F := F - c\nabla L(F)$

Pointwise gradient descent: $F^n := F^n - c\nabla L(F) = F^n - c\nabla L(F^n)$

We want generalization to new x, so need functional approximation:

$$F(x) := F(x) - cf(x)$$

$$f(x_n) \approx \nabla \mathcal{L}(F(x_n)) \quad n = 1, 2, ...N$$

- Now consider $L(f(x_1),...f(x_N)) = \sum_{n=1}^N \mathcal{L}(f(x_n),y_n) \rightarrow \min_{f(\cdot)}$
- Gradient descent performs pointwise optimization, but we need generalization, so we optimize in space of functions.
- Gradient boosting = modified gradient descent in function space:
 - find gradients: $g(x_n) = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=f^{m-1}(x_n)}$
 - fit base learner $f_m(x)$ to $\{(x_n, g(x_n))\}_{n=1}^N$

Input: training dataset (x_n, y_n) , n = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

• Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- **2** For each step m = 1, 2, ... M:

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- **2** For each step m = 1, 2, ...M:
 - **1** calculate gradients: $g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}$

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- **2** For each step m = 1, 2, ...M:
 - **1** calculate gradients: $g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}$
 - ② fit $f_m(\cdot)$ to $\{(x_n, z_n)\}_{n=1}^N$, for example by solving

$$\sum_{n=1}^{N} (f_m(x_n) - g_n)^2 \to \min_{f_m}$$

Input: training dataset (x_n, y_n) , n = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - **1** calculate gradients: $g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}$
 - ② fit $f_m(\cdot)$ to $\{(x_n, z_n)\}_{n=1}^N$, for example by solving

$$\sum_{n=1}^{N} (f_m(x_n) - g_n)^2 \to \min_{f_m}$$

3 solve univariate optimization problem:

$$c_m = \arg\min_{c>0} \sum_{n=1}^{N} \mathcal{L}\left(F_{m-1}(x_n) - cf_m(x_n), y_n\right)$$

Input: training dataset (x_n, y_n) , n = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- **2** For each step m = 1, 2, ...M:
 - **1** calculate gradients: $g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}$
 - ② fit $f_m(\cdot)$ to $\{(x_n, z_n)\}_{n=1}^N$, for example by solving

$$\sum_{n=1}^{N} (f_m(x_n) - g_n)^2 \to \min_{f_m}$$

3 solve univariate optimization problem:

$$c_m = \arg\min_{c>0} \sum_{n=1}^{N} \mathcal{L}\left(F_{m-1}(x_n) - cf_m(x_n), y_n\right)$$

9 set
$$F_m(x) = F_{m-1}(x) - c_m f_m(x)$$

Input: training dataset (x_n, y_n) , n = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- **2** For each step m = 1, 2, ...M:
 - **1** calculate gradients: $g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}$
 - ② fit $f_m(\cdot)$ to $\{(x_n, z_n)\}_{n=1}^N$, for example by solving

$$\sum_{n=1}^{N} (f_m(x_n) - g_n)^2 \to \min_{f_m}$$

3 solve univariate optimization problem:

$$c_m = \arg\min_{c>0} \sum_{n=1}^{N} \mathcal{L}\left(F_{m-1}(x_n) - cf_m(x_n), y_n\right)$$

Output: approximation function $F_{03/32}(x) = f_0(x) - \sum_{m=1}^{M} c_m f_m(x)$

Gradient boosting: examples

In gradient boosting

$$\sum_{n=1}^{N} \left(f_m(x_n) - \frac{\partial \mathcal{L}(r,y)}{\partial r} |_{r=F_{m-1}(x_n)} \right)^2 \to \min_{f_m}$$

Consider specific cases:

•
$$\mathcal{L} = \frac{1}{2} (r - y)^2$$

•
$$\mathcal{L} = [-ry]_+$$

Table of Contents

- Adaboost
- @ Gradient boosting
- 3 Extensions

Input: training dataset (x_n, y_n) , n = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

• Fit initial approximation with constant: $f_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$

- Fit initial approximation with constant: $f_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- **2** For each step m = 1, 2, ...M:

- Fit initial approximation with constant: $f_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- **2** For each step m = 1, 2, ...M:
 - **1** calculate gradients $g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}$

- Fit initial approximation with constant: $f_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- **2** For each step m = 1, 2, ...M:
 - **1** calculate gradients $g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}$
 - 2 fit regression tree $f_m(\cdot)$ on $\{(x_n, z_n)\}_{n=1}^N$ with some loss function, get leaf regions $\{R_i^m\}_{i=1}^{J_m}$.

- Fit initial approximation with constant: $f_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- **2** For each step m = 1, 2, ...M:
 - **1** calculate gradients $g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}$
 - fit regression tree $f_m(\cdot)$ on $\{(x_n, z_n)\}_{n=1}^N$ with some loss function, get leaf regions $\{R_i^m\}_{i=1}^{J_m}$.
 - § for each terminal region R_j^m , $j = 1, 2, ...J_m$ solve univariate optimization problem:

$$\gamma_j^m = \arg\min_{\gamma} \sum_{x_n \in R_i^m} \mathcal{L}(F_{m-1}(x_n) - \gamma, y_n)$$

- Fit initial approximation with constant: $f_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- **2** For each step m = 1, 2, ...M:
 - **1** calculate gradients $g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}$
 - ② fit regression tree $f_m(\cdot)$ on $\{(x_n, z_n)\}_{n=1}^N$ with some loss function, get leaf regions $\{R_i^m\}_{i=1}^{J_m}$.
 - § for each terminal region R_j^m , $j = 1, 2, ...J_m$ solve univariate optimization problem:

$$\gamma_j^m = \arg\min_{\gamma} \sum_{x_n \in R_i^m} \mathcal{L}(F_{m-1}(x_n) - \gamma, y_n)$$

Input: training dataset (x_n, y_n) , n = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation with constant: $f_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- **2** For each step m = 1, 2, ...M:
 - **1** calculate gradients $g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}$
 - ② fit regression tree $f_m(\cdot)$ on $\{(x_n, z_n)\}_{n=1}^N$ with some loss function, get leaf regions $\{R_i^m\}_{i=1}^{J_m}$.
 - **3** for each terminal region R_j^{m} , $j = 1, 2, ...J_m$ solve univariate optimization problem:

$$\gamma_j^m = \arg\min_{\gamma} \sum_{x_n \in R_i^m} \mathcal{L}(F_{m-1}(x_n) - \gamma, y_n)$$

o update
$$F_m(x) = F_{m-1}(x) - \sum_{i=1}^{J_m} \gamma_i^m \mathbb{I}[x \in R_i^m]$$

Output: approximation function $F_M(x)$

Modification of boosting for trees

- Compared to first method of gradient boosting, boosting of regression trees finds additive coefficients individually for each terminal region R_i^m , not globally for the whole classifier $f_m(x)$.
- This is done to increase accuracy: forward stagewise algorithm cannot be applied to find R_j^m , but it can be applied to find γ_j^m , because second task is solvable for arbitrary L.
- Max depth K: interaction between K features
- Max leaves K: interaction between no more than $\leq K-1$ features
 - usually $2 \le K \le 8$
- M controls underfitting-overfitting trade-off and selected using validation set

Shrinkage & subsampling

• Shrinkage of general GB, step (d):

$$F_m(x) = F_{m-1}(x) - \frac{\alpha}{\alpha} c_m f_m(x)$$

- Comments:
 - $\alpha \in (0,1]$
 - $\alpha \downarrow \implies M \uparrow (\alpha M \approx const)$
- Subsampling
 - increases speed of fitting
 - may increase accuracy (diversity of base learners[↑])

Linear loss function approximation

Consider sample
$$(x, y)$$
 and $g(x) = \frac{\partial \mathcal{L}(r, y)}{\partial r}\Big|_{r=F(x)}$

$$\mathcal{L}(F(x) + f(x), y) \approx \mathcal{L}(F(x), y) + g(x)f(x)$$

=> f(x) should be fitted to -g(x).

Second order approximation (Newton's method)

- Consider general function minimization $L(w) \to \min_{w}$
- Let $w^* = \arg\min_{w} L(w)$
- Then $L'(w^*) = 0$
- Taylor expansion of L'(w) around w to w^* :

$$L'(w^*) = 0 = L'(w) + L''(w)(w^* - w) + o(\|w - w^*\|)$$

It follows that

$$w^* - w = -\left[L''(w)\right]^{-1} L'(w) + o(\|w - w^*\|)$$

• Iterative scheme for minimization:

$$w \leftarrow w - \left[L''(w)\right]^{-1} L'(w)$$

- it is scaled gradient descent
- speed of convergence faster (uses quadratic approximation in Taylor expansion)
- converges in one step for quadratic L(w).

Quadratic loss function approximation

Define
$$g(x) = \frac{\partial \mathcal{L}(r,y)}{\partial r} \Big|_{r=F(x)}$$
, $h(x) = \frac{\partial^2 \mathcal{L}(r,y)}{\partial r^2} \Big|_{r=F(x)}$
 $\mathcal{L}(F(x) + f(x), y) \approx$
 $\mathcal{L}(F(x), y) + g(x)f(x) + \frac{1}{2}h(x)(f(x))^2 =$
 $\frac{1}{2}h(x)\left(f(x) + \frac{g(x)}{h(x)}\right)^2 + const(f(x))$

So f(x) should be fitted to -g(x)/h(x) with weight h(x).

• $h(x) \ge 0$ around local minimum.

Case
$$y \in \{1, 2, ... C\}$$

One-vs-all, one-vs-one, error-correcting-codes.

Case
$$y \in \{1, 2, ... C\}$$

One-vs-all, one-vs-one, error-correcting-codes.

Alternatively can optimize $\mathcal{L}(F(x), y)$ for $F(x) \in \mathbb{R}^C$

- $F(x) = \{p(y = c|x)\}_{c=1}^{C}$, y one-hot encoded true class
- $S(F(x), y) = F(x)^T y = p(y = \text{correct class}|x)$ score on (x, y)
- $g_n = -\frac{\partial \mathcal{S}(r,y)}{\partial r}|_{r=F_{m-1}(x_n)} \in \mathbb{R}^C$
- $\sum_{n=1}^{N} (f_m(x_n) g_n)^2 \to \min_{f_m}$ yields vector *C*-dim. regression.
- may use quadratic approximation
 - for efficient inverting of $\left(\frac{\partial^2}{\partial r^2}\mathcal{L}(r,y)\Big|_{r=F(x)}\right)$ may use diagonal approximation.

xgBoost

- One of the most popular algorithms on kaggle.
- Uses decision trees as base learners:
 - $f_m \in \{f(x) = w_{q(x)}\},\$
 - T total number of leaves.
 - q(x) maps $x \in \mathbb{R}^D$ to leaf number
 - $w \in \mathbb{R}^T$ predictions for leaves.

xgBoost

Loss - 2nd order approximation with with regularization:

$$\mathcal{L}(f_m) = \sum_{n=1}^{N} \mathcal{L}(F^{(m-1)}(x_n), y_n)$$

$$\approx \sum_{n=1}^{N} \left[\mathcal{L}(F^{(m-1)}(x_n), y_n) + g_n f_m(x_n) + \frac{1}{2} h_n f_m^2(x_n) \right]$$

$$+ \gamma T + \frac{1}{2} \lambda \sum_{t=1}^{T} w_t^2$$

- Tree impurity function matches original loss $\mathcal{L}(\cdot,\cdot)$.
- Efficiency optimization:
 - feature values may be discretized for speed
 - parallelization over multiple CPU cores and with GPU

Types of boosting

- Loss function L:
 - $\mathcal{L}(|f(x)-y|)$ regression
 - $F(y \cdot score(y = +1|x))$ binary classification
 - $\mathcal{L}(F(x), y)$ for $F(x), y \in \mathbb{R}^C$ multiclass classification
- Optimization
 - analytical (Adaboost)
 - gradient based
 - based on quadratic approximation
- Base learners
 - continious
 - discrete
- Classification
 - binary
 - multiclass
- Extensions: shrinkage, subsampling