GRAPH THEORY

Duong Nguyen Quoc

Master's Student, Applied Data Science

April 4, 2022

OUTLINE

 $\begin{array}{c} \text{GRAPH THEORY} \\ \text{NN} + \text{SE Algorithms} \\ \text{Kruskal's Algorithm} \\ \text{Eulerian Circuits} \\ \text{Hamiltonian Graphs} \end{array}$

HAMILTONIAN CIRCUIT ALGORITHMS

The weights of the edges are:

 $133,\ 119,\ 200,\ 199,\ 121,\ 185,\ 152,\ 120,\ 174,\ 150.$

The weights of the edges are:

 $133,\ 119,\ 200,\ 199,\ 121,\ 185,\ 152,\ 120,\ 174,\ 150.$

First, we need to sort the edge-weights:

The weights of the edges are:

133, 119, 200, 199, 121, 185, 152, 120, 174, 150.

First, we need to sort the edge-weights:

The weights of the edges are:

133, 119, 200, 199, 121, 185, 152, 120, 174, 150.

First, we need to sort the edge-weights:

119, 120, 121, 133, 150, 152, 174, 185, 199, 200.

Now we can proceed to construct a Hamiltonian circuit using the Cheapest Link Algorithm.

EULERIZATION

EULERIZATION

HAMILTONIAN CIRCUITS

EXPERIMENT

a,b,c,d,e c abde

EXPERIMENT

