

Этикетка

КСНЛ.431279.009 ЭТ

Микросхема 1564ЛП24У1ЭП

Микросхема интегральная 1564ЛП24У1ЭП

Функциональное назначение:

Четыре элемента мажоритарной логики «2 из 3» с высокоомной «триггерной петлей» на выводах.

Условное графическое обозначение

Схема расположения выводов Номера выводов показаны условно

Таблица назначения выводов

No	Обозначение	Назначение вывода	N₂	Обозначение	Назначение
вывода	вывода		вывода	вывода	вывода
1	EZ	Вход управления тре- тьим состоянием выхода	11	Y3	Выход четвертого канала
2	A0	Первый вход данных первого канала	12	Y2	Выход третьего канала
3	В0	Второй вход данных первого канала	13	C3	Третий вход данных четвертого канала
4	C0	Третий вход данных первого канала	14	В3	Второй вход данных четвертого канала
5	A1	Первый вход данных второго канала	15	A3	Первый вход данных четвертого канала
6	B1	Второй вход данных второго канала	16	C2	Третий вход данных третьего канала
7	C1	Третий вход данных второго канала	17	B2	Второй вход данных третьего канала
8	Y0	Выход первого канала	18	A2	Первый вход данных третьего канала
9	Y1	Выход второго канала	19	M	Вход управления
10	0V	Общий	20	V_{cc}	Напряжение питания

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

.1 Основные электрические параметры (при t = 25+10 °C)

1.1 Основные электрические параметры (при $t = 25 \pm 10$ °C)			
	Буквенное	Hop	ома
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
U_{CC} =2,0 B, U_{IL} =0,3 B, U_{IH} =1,5 В I_{O} = 20 мкА	$U_{\text{OL max}}$	-	0,10
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B I_{O} = 20 MKA		-	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		-	0,10
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =6,0 mA		=	0,26
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 MA		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B} I_{O}=20 \text{ MKA}$	U_{OHmin}	1,9	-
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B I_{O} = 20 MKA		4,4	-
$U_{CC}=6.0 \text{ B}, U_{IL}=1.2 \text{ B}, U_{IH}=4.2 \text{ B}, I_{O}=20 \text{ MKA}$		5,9	-
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 6,0 MA		4,0	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 MA		5,5	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IL}	-	/-0,1/
4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	-	0,1
5. Ток потребления, мкА, при			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	8,0

6. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B}, f = 10 \text{ M}\Gamma\text{u}$	I_{OCC}	-	20,0
7. Время задержки распространения от выводов A_{l} , B_{l} , C_{l} , до вывода Y_{l} , нс,			
М=0 при:	t_{PHL1}		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$	t_{PLH1}	-	92
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$		-	22
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	19
8. Время задержки распространения от выводов $A_{I,}$ до вывода $Y_{1,}$ нс,			
М=1 при:	t_{PHL2}		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$	t_{PLH2}	-	83
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$		-	20
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	17
9. Время задержки распространения от вывода M до вывода Y ₁ , нс, при:			
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$	t_{PHL3}	-	120
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$	t_{PLH3}	-	33
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	28
10. Сопротивление триггерной петли в режиме хранения логического «0»,	R_{ZL}		
кОм		11	21
11. Сопротивление триггерной петли в режиме хранения логической «1»,	R_{ZH}		
кОм		11	21
12. Входная емкость, пФ	C_{I}	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото	Γ
ceneбno	г

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{\text{С}\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-31ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛП24У1ЭП соответствуют техническим условиям АЕЯР.431200.424-31ТУ и признаны годными для эксплуатации.

Приняты по от (извещение, акт и др.)	(дата)	
Место для штампа ОТК		Место для штампа ПЗ
Место для штампа « Перепроверка г	произведена	» (дата)
Приняты по	_ от(дата)	-
Место для штампа ОТК		Место для штампа ПЗ

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ