TH-4

Title

Dynamic modal response for 2-D rigid frame

Description

Perform a time history analysis of a structure under lateral dynamic loads. Calculate the natural frequencies, the maximum displacement and the corresponding time.

(a) 2-D rigid frame under lateral loads

Structural geometry and analysis model

Model

Analysis Type

2-D time history analysis

Unit System

in, lbf

Dimension

Length L = 360 inLevel height $H_1(1^{st}) = 180 \text{ in}$

 $H_2(2^{nd}) = 120 \text{ in}$

Mass $M_1(1^{st}) = 136 \text{ lbf} \cdot \text{sec}^2/\text{in (in the Y direction)}$

 $M_2(2^{nd}) = 66 \text{ lbf} \cdot \text{sec}^2/\text{in (in the Y direction)}$

Analysis time t = 0.2 secTime step $\Delta t = 0.001 \text{ sec}$

Element

Beam Element

Material

Modulus of elasticity $E = 30 \times 10^6 \text{ psi}$

Section Property

Columns (1st floor) Moment of inertia $I_{yy} = 248.6 \text{ in}^4$ Columns (2nd floor) Moment of inertia $I_{yy} = 106.3 \text{ in}^4$

Beams Moment of inertia $I_{yy}=1.0 \times 10^{15} \text{ in}^4 \text{ (Rigid)}$

Boundary Condition

Nodes 1 and 2 ; Constrain all DOFs.

Nodes $3 \sim 6$; Constrain Dz and Rx. (Only Dy allowed)

Nodes 7 and 8 ; Constrain Dy of all nodes at each floor to these nodes.

(Master nodes)

Analysis Case

Impulse loads are applied in the Y direction.

 1^{st} floor ; $P_1(t) = 10000(1-t/td)$ lbf (td = 0.1)

 2^{nd} floor; $P_2(t) = 20000(1-t/td)$ lbf (td = 0.1)

Number of natural frequencies to be computed = 2

Results

Eigenvalue Analysis Results

EIGENVALUE ANALYSIS													
	Mode	Frequ		uency		Per	iod	Tolerance					
	No	(rad/	sec)	(cycle	e/sec)	(86	ec)	Toler	Tolerance				
	1	11	.827886	1	.882466	0	.531218	2.03	16e-016				
	2	32	.901865	5	.236495		.190967	2.62	55e-014				
MODAL PARTICIPATION MASSES(%) PRINTOUT													
	Mode	TRAN-X		TRA	N-Y	TRAN-Z		ROT	N-X	ROT	N-Y	ROT	N-Z
	No	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM
	1	0.00	0.00	98.72	98.72	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2	0.00	0.00	1.28	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Displacements

	Node	Load	DX (in)	DY (in)	DZ (in)	RX ([rad])	RY ([rad])	RZ ([rad])
	1	LCOMB1(max)	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	2	LCOMB1(max)	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	3	LCOMB1(max)	0.000000	0.673300	0.000000	0.000000	0.000000	0.000000
	4	LCOMB1(max)	0.000000	0.673300	0.000000	0.000000	0.000000	0.000000
	5	LCOMB1(max)	0.000000	0.674290	0.000000	0.000000	0.000000	0.000000
	6	LCOMB1(max)	0.000000	0.674290	0.000000	0.000000	0.000000	0.000000
	7	LCOMB1(max)	0.000000	0.673300	0.000000	0.000000	0.000000	0.000000
	8	LCOMB1(max)	0.000000	0.674290	0.000000	0.000000	0.000000	0.000000
	1	LCOMB1(min)	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	2	LCOMB1(min)	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	3	LCOMB1(min)	0.000000	0.000037	0.000000	0.000000	0.000000	0.000000
	4	LCOMB1(min)	0.000000	0.000037	0.000000	0.000000	0.000000	0.000000
	5	LCOMB1(min)	0.000000	0.000151	0.000000	0.000000	0.000000	0.000000
	6	LCOMB1(min)	0.000000	0.000151	0.000000	0.000000	0.000000	0.000000
	7	LCOMB1(min)	0.000000	0.000037	0.000000	0.000000	0.000000	0.000000
	8	LCOMB1(min)	0.000000	0.000151	0.000000	0.000000	0.000000	0.000000
	1	LCOMB1(all)	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	2	LCOMB1(all)	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	3	LCOMB1(all)	0.000000	0.673300	0.000000	0.000000	0.000000	0.000000
	4	LCOMB1(all)	0.000000	0.673300	0.000000	0.000000	0.000000	0.000000
	5	LCOMB1(all)	0.000000	0.674290	0.000000	0.000000	0.000000	0.000000
	6	LCOMB1(all)	0.000000	0.674290	0.000000	0.000000	0.000000	0.000000
	7	LCOMB1(all)	0.000000	0.673300	0.000000	0.000000	0.000000	0.000000
	8	LCOMB1(all)	0.000000	0.674290	0.000000	0.000000	0.000000	0.000000

Displacements

Y-displacements at the node 3

Y-displacements at the node 5

Comparison of Results

Natural Frequencies

Unit	:	Hz

				0 7
Result		Ref. 1	SAP2000	MIDAS/Civil
Notural fraguency	1st mode	11.8	11.8	11.8
Natural frequency	2 nd mode	32.9	32.9	32.9

Maximum Displacements

Unit: sec, in

	Time at whic	h the maximum	Maximum displacement			
Node	displaceme	ent occurrs (t)	$(\delta_{ m Y,max})$			
	SAP2000	MIDAS/Civil	SAP2000	MIDAS/Civil		
3	0.171	0.171	0.673	0.673		
5	0.123	0.123	0.674	0.674		

References

Paz, Mario, "Structural Dynamics; Theory and Computation", 3rd Edition, Van Nostrand Reinhold, New York, 1991, Example 11-1.

"SAP90, A Series of Computer Programs for the Finite Element Analysis of Structures, Structural Analysis Verification Manual", Computer and Structures, Inc., 1992.

Time History Loading Data

(a) Time history loads applied at the 1st floor

(b) Time history loads applied at the 2nd floor