Un jour au ski

Agathe Pascal et Nastassia Bonetti

Sommaire

- I. Objectif du projet
- II. Recherche de solution
- III. Comparaison
- IV. Vision du projet

Lobjectif du projet

Rechercher la quantité maximale de plaisir que l'on peut prendre.

Si jamais cette quantité est infinie on affichera : "SKY IS THE LIMIT"

Hypothèse: sommet de départ =0

Graphe du problème

II. recherche de solution

- 1. Lire les données
 - \rightarrow fichier.txt
- 2. Utiliser les données
 - -recherche de cycles
 - -parcours du graphe et calcul du plaisir maximal

1.Lecture des données

- -plusieurs tentatives: 1 échec et 1 réussie
- -représentation en matrice adjacente
- -chaque valeur=plaisir associé entre deux sommets

Exemple

0	-10	0	0	0
0	0	5	0	0
0	0	0	-2	C
0	3	0	0	-2
0	0	0	7	_

2.Recherches de cycles

Version1

- détection de cycle grâce à un parcours en profondeur de la matrice
- tentative de récupérer tous les cycles pour ensuite calculer le plaisir associé (trop complexe)
- récupérer tous les sommets du cycle
- calcul du plaisir pour chaque cycle trouvé

Version 3

- une fonction qui détecte directement la présence de cycle positif dans le graphe
- -calcul du plaisir associé directement lors du parcours
- -utilisation d'un compteur qui indiquera si on a un cycle

3.parcours du graphe/calcul plaisir

Version1

- -parcours du graphe en profondeur grâce à la récursivité
- -tableau de structure des chemin (chemin ,taille)
- -calculer pour chaque chemin le plaisir
- -puis récupération du maximum
- -liste avec tous les plaisirs
- -récupère la taille et la liste dans une structure {liste, taille de la liste}

Version3

- -idée de base de la version 1 sans la complication de gestion des données
- -utilisation d'un compteur qui compte le plaisir des chemins
- -on compare à chaque fois si le plaisir calculé est supérieur ou non

II.recherche de solution

Solution avec Bellman Ford

- 1. Initialisation
- 2.Relaxation des arêtes
- 3.Détection des cycles
- 4. Récupération du plus long chemin

Solution Bellman Ford

étape 1: on choisit l'origine 0 et on initialise les plaisirs à l'infini.

étape 2: on visit chaque sommet et on met le plaisir associé au chemin effectué

étape 3: on fait cette étape V fois

étape 4: on change les plaisirs sur chaque sommet

étape 5: on obtient le tableau des plaisirs et on regarde s'il y a un cycle

	В	С	D	Е
0	00	00	00	00
0	4	2	00	00
0	3	2	6	6
0	3	2	1	6
0	3	2	1	6

III. Comparaison

Nos programmes

-test sur tous les datas y compris ceux à

1000 pistes OK

-3ms et 1.9 millions de kbits pour 1000 pistes mais fastidieux à coder

Bellman Ford

-fonctionne sur tous les data y compris à 1000 pistes

-282ms et 1.9 millions de kbits pour 1000 pistes et plus facile de coder

IV. Vision du projet

Points utiles:

- -utilisation du git
 - → différentes branches
 - →retrouver les anciens commit
- -décomposer les programmes en plusieurs sous fonctions
- -dans chaque fonction, la tester avec un petit main
- -aller au plus simple

Nouvelles connaissances

- -github
- -travail sur les programmes récursifs fonction ne modifie pas les données en entrée