PROPOSAL PENGAJUAN DANA PMLD DESAIN BUCK CONVERTER DENGAN KONTROL PID

KELUARGA MAHASISWA TEKNIK ELEKTRO DAN INFORMATIKA DEPARTEMEN TEKNIK ELEKTRO DAN INFORMATIKA SEKOLAH VOKASI UNIVERSITAS GADJAH MADA 2025

I Latar Belakang

Pada era modern ini, kebutuhan akan efisiensi energi dalam sistem elektronik semakin meningkat. Salah satu tantangan utama dalam sistem daya adalah bagaimana mengonversi tegangan dengan efisiensi tinggi dan kehilangan daya seminimal mungkin. Salah satu solusi yang umum digunakan dalam dunia elektronika adalah buck converter, sebuah konverter daya DC-DC yang berfungsi untuk menurunkan tegangan dari sumber ke level yang lebih rendah sesuai kebutuhan beban.

Dalam berbagai aplikasi, seperti sistem tenaga surya, kendaraan listrik, dan perangkat elektronik portabel, penggunaan buck converter menjadi sangat penting. Namun, masih banyak tantangan dalam mendesain buck converter yang memiliki efisiensi tinggi, ukuran yang kompak, serta biaya yang terjangkau. Oleh karena itu, penelitian dan pengembangan dalam bidang ini terus dilakukan untuk mendapatkan desain yang optimal.

Melalui proyek mandiri lintas disiplin ini, kami berupaya merancang dan mengimplementasikan buck converter yang dapat digunakan dalam berbagai aplikasi elektronika dengan mempertimbangkan efisiensi, stabilitas tegangan, serta kemudahan dalam produksi. Dengan adanya proyek ini, kami berharap dapat memberikan kontribusi dalam pengembangan teknologi konversi daya sekaligus meningkatkan pemahaman dan keterampilan mahasiswa dalam bidang elektronika daya dan instrumentasi.

II Rumusan Masalah

Perancangan sistem konversi daya, efisiensi dan kestabilan tegangan menjadi faktor utama yang harus diperhatikan. Buck converter sebagai salah satu jenis konverter DC-DC memiliki peran penting dalam berbagai aplikasi elektronik, namun masih terdapat beberapa tantangan dalam proses perancangannya.

Dalam implementasinya, terdapat berbagai tantangan yang harus diatasi, termasuk upaya dalam meningkatkan efisiensi daya dan menjaga kestabilan tegangan output. Peningkatan efisiensi daya dan kestabilan tegangan output dapat dipengaruhi oleh komponen yang digunakan dalam rangkaian buck converter. Penentuan parameter komponen yang digunakan memerlukan perhitungan yang optimal untuk mencapai performa yang terbaik. Oleh karena itu, penelitian ini berfokus pada perancangan buck converter dengan efisiensi tinggi dan kestabilan tegangan yang baik serta penentuan parameter komponen yang optimal guna meningkatkan kinerja keseluruhan sistem.

KELUARGA MAHASISWA TEKNIK ELEKTRO DAN INFORMATIKA

SEKOLAH VOKASI

universitas gadjah mada

Sekretariat : Gedung Herman Yohanes Sekip Unit III Lantai 2, Depok, Sleman, DI Yogyakarta 55281

III Tujuan

Berikut adalah beberapa tujuan penelitian yang telah ditetapkan untuk memandu jalannya penelitian ini:

- 1. Merancang dan mengembangkan buck converter yang mampu menurunkan tegangan DC dengan efisiensi tinggi dan kestabilan yang baik.
- 2. Mengoptimalkan efisiensi daya pada sistem konversi tegangan untuk mengurangi kehilangan energi.
- 3. Mendukung pengembangan teknologi konversi daya yang dapat diterapkan pada berbagai bidang seperti sistem tenaga surya.

IV Kebutuhan

Dalam perancangan buck converter, diperlukan berbagai komponen utama yang mendukung fungsi sistem agar dapat bekerja dengan optimal. Beberapa komponen yang dibutuhkan dalam proyek ini antara lain:

- 1. INA226 (Voltage Sensor 0-36V)
- 2. ACS758 (Current Sensor max 50A)
- 3. ESP32
- 4. Resistor
- 5. Induktor
- 6. Kapasitor
- 7. MOSFET IRFP250
- 8. Dioda MBR1045
- 9. Box hitam
- 10. PCB

V Target Luaran

- 1. Program
- 2. Prototype
- 3. Banner

KELUARGA MAHASISWA TEKNIK ELEKTRO DAN INFORMATIKA SEKOLAH VOKASI

UNIVERSITAS GADJAH MADA

Sekretariat : Gedung Herman Yohanes Sekip Unit III Lantai 2, Depok, Sleman, DI Yogyakarta 55281

4. Laporan akhir

VI Hipotesis

- 1. Penerapan metode kontrol PID (Proportional-Integral-Derivative) pada sistem buck converter berbasis mikrokontroler Arduino dapat meningkatkan kinerja regulasi tegangan output dengan menghasilkan respon transien yang lebih cepat, mengurangi kesalahan steady-state, serta meningkatkan kestabilan sistem terhadap perubahan beban maupun variasi tegangan input, dibandingkan dengan buck converter yang tidak menggunakan sistem kontrol aktif.
- 2. Penerapkan metode kontrol PID (Proportional-Integral-Derivative) yang diimplementasikan melalui mikrokontroler Arduino pada rangkaian buck converter, maka sistem akan mampu menghasilkan tegangan output yang lebih stabil, respons dinamis yang lebih cepat terhadap perubahan beban, serta mengurangi kesalahan steady-state dibandingkan dengan sistem buck converter tanpa kontrol PID.

VII Timeline

No.	Kegiatan	Pertemuan							Nama terlibat	anggota						
		1	2	3	4	5	6	7	8	9	10	11	12 13	14		
1	1. Pemilihan Ketua,												N	W	XXX	
2	kata kata hari ini										N				XXX	

Tabel 0.1 Timeline Kegiatan Proyek

VIII Rencana Anggaran Biaya

Terlampir (Lampiran 1)

IX Susunan Kelompok

Terlampir (Lampiran 2)

LEMBAR PENGESAHAN

Yogyakarta, 9 April 2025

Ketua Kelompok

Pembimbing Kelompok

Estu Bekti Cahyana NIM. 22/493531/SV/20706 Dr. Ir. Fahmizal, S.T., M.Sc. NIP. 111198807201609101

LAMPIRAN

Lampiran 1

RENCANA ANGGARAN BIAYA DESAIN BUCK CONVERTER DENGAN KONTROL PID

- A Pemasukan
- B Pengeluaran

No.	Komponen	Harga Satuan	Jumlah	Satuan	Total	
1	NA226 (Voltage	Rp 56.000,00	1	unit	Rp 56.000,00	
	Sensor 0-36V)					
2	ACS758 (Current	Rp 63.000,00	1	unit	Rp 63.000,00	
	Sensor max 50A)					
3	ESP32	Rp 60.000,00	1	unit	Rp 60.000,00	
4	Resistor		1	unit		
5	Induktor		1	unit		
6	Kapasitor		1	unit		
7	MOSFET IRFP250	Rp 25.000,00	1	unit	Rp 25.000,00	
8	Dioda MBR1045	Rp 10.000,00	1	unit	Rp 10.000,00	
9	Box Hitam		1	unit	STA W	
10	PCB	Rp 6.000,00	1	10 cm	Rp 6.000,00	
				x 20	HA	
		4		cm	~?>	

Lampiran 2

SUSUNAN ANGGOTA KELOMPOK DESAIN BUCK CONVERTER DENGAN KONTROL PID

Susunan Anggota Kelompok

1. Ketua

Nama	NIM	Program Studi	Jabatan	
		Teknologi		
Estu Bekti Cahyana	22/493531/SV/20706	Rekayasa	Elektronis	
		Elektro		

2. Anggota

Nama	NIM	Program Studi	Jabatan
Fuad Galih Pambudi	22/499396/SV/21316	Teknologi Rekayasa Elektro	Anggota
Desta Reza	23/519592/SV/23154	Teknologi Rekayasa Instrumentasi dan Kontrol	Anggota
Enggar Tri Putra Raharja	23/518946/SV/23098	Teknologi Rekayasa Instrumentasi dan Kontrol	Anggota
Ali Ibn 'Atha'Illah Wibawa	22/499558/SV/21341	Teknologi Rekayasa Elektro	Anggota
Rosus Pangaribowo	22/504381/SV/21632	Teknologi Rekayasa Elektro	Anggota