Verification of Maximum Power Transfer Theorem

Exp. No: Date:

Aim: To verify maximum power transfer theorem for the given circuit

Apparatus_Required:

S.No	Name of the	Range/	Type	Quantity
	equipment	Specification		
1	Voltmeter	(0-200mV),	MC	1
2	Resistors		Carbon	4
			composite	
3	RPS	(0-30V),2A		1
4	Bread board			1
5	Connecting wires	1/22 Single	Copper	Adequate
		Stranded		
		conductor		

Circuit Diagram:

V Short circuited R3

Circuit diagram for RTh

Equivalent circuit diagram

Tabular column:

S.No	V (Volts)	R (Ohms)	$P=V^2/R$
			(Watts)

Procedure:

- 1. Connections are given as per the diagram and set a particular voltage in RPS.
- **2.** Vary RL and note down the corresponding voltmeter reading and measure the load resistance.
- 3. Repeat the procedure for different values of R_L & Tabulate it.
- **4.** Calculate the power for each value of R_L .

To find Vth:

5. Remove the load, and determine the open circuit voltage using multimeter (V_{Th})

To find Rth:

- **6.** Remove the load and short circuit the voltage source (RPS).
- 7. Find the looking back resistance (R_{Th}) using multimeter.

Equivalent Circuit:

- **8.** Set (V_{Th}) using RPS and RTh and note down the voltmeter reading.
- **9.** Calculate the power delivered to the load $(R_L = R_{Th})$
- **10.** Verify maximum transfer theorem.

Theoretical calculation:

$$V_{Th} = I R_3$$

 \triangleright *I* is the circuit current when R_L is removed

$$I = \frac{V}{R_1 + R_2}$$

 \triangleright V_{Th} is the drop across R_3 when R_L is removed

$$R_{Th} = (R_1 /\!/ R_3) + R_2 (OR) R_{Th} = V_{Th} / I_{SC}$$
 $I_{SC} = \frac{V_{Th}}{R_{Th}}$
 $I_L = \frac{V_{Th}}{R_{Th} + R_L}$
 $Power \qquad P = I^2 R_L \qquad OR \quad P = \frac{v^2}{R_L}$

Model graph:

Precautions:

- 1. Voltage control knob of RPS should be kept at minimum position.
- 2. Current control knob of RPS should be kept at maximum position.

Result: