Exercise 3 MA515 - Foundations of Data Science

IIT Ropar

August 21, 2025

- 1. **Email Spam Classification (Bernoulli Model).** In a spam filter, the presence of a certain keyword is modeled as a Bernoulli random variable with probability *p*.
 - (a) Derive the MLE of p from training data.
 - (b) Suppose a Beta (α, β) prior is used to model prior belief about p. Derive the MAP estimate.
 - (c) Out of 20 spam emails, the keyword "lottery" appeared in 14. Compute the MLE of p. If the prior is Beta(2,3), compute the MAP estimate.
- 2. Call Center Service Times (Exponential Distribution). The time between customer calls in a call center is modeled as Exponential(λ).
 - (a) Derive the MLE for λ .
 - (b) Service times (in minutes) observed are

Compute the MLE of λ .

- (c) If historical data suggests $\lambda \sim \text{Gamma}(\alpha = 3, \beta = 2)$, compute the MAP estimate.
- 3. **Medical Diagnosis (Disease Prevalence).** A diagnostic test detects a rare disease with probability p. Each patient test result is modeled as Bernoulli(p).
 - (a) Derive the MLE of p.
 - (b) In a clinical trial, 12 out of 200 patients test positive. Compute the MLE of p.
 - (c) If doctors use a prior belief Beta(5,95) (based on historical prevalence 5%), compute the MAP estimate.
- 4. **Traffic Flow Modeling (Poisson Distribution).** The number of cars passing a checkpoint in one minute is modeled as $Poisson(\lambda)$.
 - (a) Derive the MLE for λ .

MA515 Exercise 3

(b) Observed car counts per minute are

Compute the MLE of λ .

- (c) If historical data suggests $\lambda \sim \text{Gamma}(10, 1)$, compute the MAP estimate.
- 5. Stock Return Volatility (Normal Distribution). Daily returns of a stock are modeled as $\mathcal{N}(0, \sigma^2)$.
 - (a) Derive the MLE for σ^2 .
 - (b) Observed daily returns (in %) are

$$1.2, -0.8, 0.5, -1.1, 1.4.$$

Compute the MLE of σ^2 .

(c) If analysts place an inverse-Gamma prior on σ^2 with parameters ($\alpha = 3, \beta = 2$), compute the MAP estimate.

Notes / conventions.

- Beta (α, β) has density proportional to $p^{\alpha-1}(1-p)^{\beta-1}$ on 0 .
- Gamma(α, β) is used as the *rate*-parameter form: density $f(\lambda) \propto \beta^{\alpha} \lambda^{\alpha-1} e^{-\beta \lambda}$, so $\mathbb{E}[\lambda] = \alpha/\beta$.
- Inverse-Gamma(α, β) has density proportional to $\beta^{\alpha}/\Gamma(\alpha) x^{-(\alpha+1)} e^{-\beta/x}$ for x > 0, and mode $= \beta/(\alpha+1)$ (for $\alpha > 1$).

MA515 Page 2 of 2 August 21, 2025