

UZUPEŁNIA ZDAJĄCY		
KOD	PESEL	miejsce na naklejkę
		dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

DATA: 2 czerwca 2015 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-P1_**1**P-153

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz poprawną odpowiedź i zaznacz ją na karcie odpowiedzi.

Zadanie 1. (0–1)

Liczba $2\sqrt{18} - \sqrt{32}$ jest równa

A.
$$2^{-\frac{3}{2}}$$

B.
$$2^{-\frac{1}{2}}$$

C.
$$2^{\frac{1}{2}}$$

D.
$$2^{\frac{3}{2}}$$

Zadanie 2. (0-1)

Wartość wyrażenia $\frac{\sqrt[5]{-32} \cdot 2^{-1}}{4} \cdot 2^2$ jest równa

A.
$$-\frac{1}{2}$$

B.
$$\frac{1}{2}$$

Zadanie 3. (0-1)

Przy 23-procentowej stawce podatku VAT cena brutto samochodu jest równa 45 018 zł. Jaka jest cena netto tego samochodu?

Zadanie 4. (0-1)

Wyrażenie $3a^2 - 12ab + 12b^2$ może być przekształcone do postaci

A.
$$3(a^2-b^2)^2$$

B.
$$3(a-2b^2)^2$$

C.
$$3(a-2b)^2$$

D.
$$3(a+2b)^2$$

Zadanie 5. (0-1)

Para liczb x = 2 i y = 1 jest rozwiązaniem układu równań $\begin{cases} x + ay = 5 \\ 2x - y = 3 \end{cases}$, gdy

A.
$$a = -3$$

B.
$$a = -2$$

C.
$$a = 2$$

D.
$$a = 3$$

Zadanie 6. (0-1)

Równanie $2x^2 + 11x + 3 = 0$

A. nie ma rozwiązań rzeczywistych.

B. ma dokładnie jedno rozwiązanie rzeczywiste.

C. ma dwa dodatnie rozwiązania rzeczywiste.

D. ma dwa ujemne rozwiązania rzeczywiste.

MMA_1P Strona 3 z 22

Zadanie 7. (0–1)

Wartość wyrażenia sin120° - cos 30° jest równa

A. sin 90°

B. sin 150°

C. $\sin 0^{\circ}$

D. $\sin 60^{\circ}$

Zadanie 8. (0–1)

Wyrażenie $3\sin^3\alpha\cos\alpha + 3\sin\alpha\cos^3\alpha$ może być przekształcone do postaci

A. 3

B. $3\sin\alpha\cos\alpha$

C. $3\sin^3\alpha\cos^3\alpha$

D. $6\sin^4\alpha\cos^4\alpha$

Zadanie 9. (0–1)

Na rysunku przedstawiony jest fragment prostej o równaniu y = ax + b przechodzącej przez punkty (0, -2) i (6, 2).

Wtedy

A. $a = \frac{2}{3}$, b = -2 **B.** a = 3, b = -2 **C.** $a = \frac{3}{2}$, b = 2 **D.** a = -3, b = 2

Zadanie 10. (0-1)

Prosta k przecina oś Oy układu współrzędnych w punkcie (0,6) i jest równoległa do prostej o równaniu y = -3x. Wówczas prosta k przecina oś Ox układu współrzędnych w punkcie

A. (-12,0)

B. (-2,0)

C.(2,0)

D. (6,0)

Zadanie 11. (0-1)

Liczba niewymiernych rozwiązań równania $x^2(x+5)(2x-3)(x^2-7)=0$ jest równa

A. 0

B. 1

C. 5

D. 2

Strona 5 z 22

Zadanie 12. (0-1)

Na rysunku przedstawiono wykres funkcji f.

Funkcja f jest rosnąca w przedziale

A. $\langle -1, 1 \rangle$

B. (1, 5)

C. $\langle 5, 6 \rangle$

D. (6, 8)

Zadanie 13. (0–1)

Ciąg geometryczny (a_n) jest określony wzorem $a_n = 2^n$ dla $n \ge 1$. Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa

A. $2(1-2^{10})$

B. $-2(1-2^{10})$ **C.** $2(1+2^{10})$ **D.** $-2(1+2^{10})$

Zadanie 14. (0–1)

Suma pierwszego i szóstego wyrazu pewnego ciągu arytmetycznego jest równa 13. Wynika stąd, że suma trzeciego i czwartego wyrazu tego ciągu jest równa

A. 13

B. 12

C. 7

D. 6

Zadanie 15. (0-1)

Miary katów wewnętrznych pewnego trójkata pozostają w stosunku 3:4:5. Najmniejszy kat wewnętrzny tego trójkąta ma miarę

A. 45°

B. 90°

C. 75°

D. 60°

MMA_1P Strona 7 z 22

Zadanie 16. (0–1)

W trójkącie ABC, w którym |AC| = |BC|, na boku AB wybrano punkt D taki, że |BD| = |CD| oraz $| \not \sim ACD | = 21^\circ$ (zobacz rysunek).

Wynika stąd, że kąt BCD ma miarę

- **A.** 57°
- **B.** 53°
- **C.** 51°
- **D.** 55°

Zadanie 17. (0–1)

Długości boków trójkąta są liczbami całkowitymi. Jeden bok ma 7 cm, a drugi ma 2 cm. Trzeci bok tego trójkąta może mieć długość

- **A.** 12 cm
- **B.** 9 cm
- **C.** 6 cm
- **D.** 3 cm

Zadanie 18. (0–1)

Boki trójkąta mają długości 20 i 12, a kąt między tymi bokami ma miarę 120°. Pole tego trójkąta jest równe

A. 60

- **B.** 120
- **C.** $60\sqrt{3}$
- **D.** $120\sqrt{3}$

Zadanie 19. (0–1)

Tworząca stożka o promieniu podstawy 3 ma długość 6 (zobacz rysunek).

Kąt α rozwarcia tego stożka jest równy

- **A.** 30°
- **B.** 45°
- **C.** 60°
- **D.** 90°

Strona 9 z 22

Zadanie 20. (0-1)

Graniastosłup o podstawie ośmiokąta ma dokładnie

A. 16 wierzchołków.

B. 9 wierzchołków.

C. 16 krawędzi.

D. 8 krawędzi.

Zadanie 21. (0–1)

W ostrosłupie czworokątnym, w którym wszystkie krawędzie mają tę samą długość, kąt nachylenia krawędzi bocznej do płaszczyzny podstawy ma miarę

A. 30°

B. 45°

C. 60°

D. 75°

Zadanie 22. (0-1)

Liczba 0,3 jest jednym z przybliżeń liczby $\frac{5}{16}$. Błąd względny tego przybliżenia, wyrażony w procentach, jest równy

A. 4%

B. 0,04%

C. 2,5%

D. 0,025%

Zadanie 23. (0–1)

Średnia arytmetyczna zestawu danych: 2, 4, 7, 8, x jest równa n, natomiast średnia arytmetyczna zestawu danych: 2, 4, 7, 8, x, 2x jest równa 2n. Wynika stąd, że

A. x = 49

B. x = 21

C. x = 14

D. x = 7

Zadanie 24. (0-1)

Ile jest wszystkich liczb naturalnych dwucyfrowych podzielnych przez 6 i niepodzielnych przez 9?

A. 6

B. 10

C. 12

D. 15

Zadanie 25. (0-1)

Na loterię przygotowano pulę 100 losów, w tym 4 wygrywające. Po wylosowaniu pewnej liczby losów, wśród których był dokładnie jeden wygrywający, szansa na wygraną była taka sama jak przed rozpoczęciem loterii. Stąd wynika, że wylosowano

A. 4 losy.

B. 20 losów.

C. 50 losów.

D. 25 losów.

Zadanie 26. (0–2)

Rozwiąż nierówność $3x^2 - 9x \le x - 3$.

Odpowiedź:

Zadanie 27. (0–2)

Rozwiąż równanie $x(x^2-2x+3)=0$.

Odpowiedź:

Zadanie 28. (0–2)Czworokąt ABCD wpisano w okrąg tak, że bok AB jest średnicą tego okręgu (zobacz rysunek). Udowodnij, że $|AD|^2 + |BD|^2 = |BC|^2 + |AC|^2$.

Strona 14 z 22 MMA_1P

Zadanie 29. (0–2)Udowodnij, że dla dowolnych liczb rzeczywistych *x*, *y* prawdziwa jest nierówność $3x^2 + 5y^2 - 4xy \ge 0.$

Strona 15 z 22

Zadanie 30. (0–2)

Funkcja kwadratowa, f dla x=-3 przyjmuje wartość największą równą 4. Do wykresu funkcji f należy punkt A=(-1,3). Zapisz wzór funkcji kwadratowej f.

Odpowiedź:

Zadanie 31. (0–2)

Ze zbioru liczb naturalnych dwucyfrowych losowo wybieramy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że otrzymamy liczbę podzielną przez 8 lub liczbę podzielną przez 12.

Odpowiedź:

Zadanie 32. (0–4)

Dany jest nieskończony rosnący ciąg arytmetyczny (a_n) , dla $n \ge 1$ taki, że $a_5 = 18$. Wyrazy a_1 , a_3 oraz a_{13} tego ciągu są odpowiednio pierwszym, drugim i trzecim wyrazem pewnego ciągu geometrycznego. Wyznacz wzór na n-ty wyraz ciągu (a_n) .

Odpowiedź:

Zadanie 33. (0–4)

Dany jest trójkąt równoramienny ABC, w którym |AC| = |BC|. Ponadto wiadomo, że A = (-2,4) i B = (6,-2). Wierzchołek C należy do osi Oy. Oblicz współrzędne wierzchołka C.

Odpowiedź:

Zadanie 34. (0–5)

Objętość ostrosłupa prawidłowego trójkątnego ABCS jest równa $27\sqrt{3}$. Długość krawędzi AB podstawy ostrosłupa jest równa 6 (zobacz rysunek). Oblicz pole powierzchni całkowitej tego ostrosłupa.

Strona 20 z 22 MMA_1P

Odpowiedź: