获得的答案

NP –complete: A language B is NP – complete if it satisfies two conditions.

1.B is in NP and

2. Every A in NP is polynomial time reducible to B.

1. $DOUBLE - SAT \in NP$

NTM N can decide double – SAT as follows:

N = on input a Boolean formula ϕ :

- 1. Non-deterministically guess two Boolean assignments t_1 and t_2 which are different from each other.
- 2. If both t_1 and t_2 satisfies ϕ then accept
- 3. Otherwise, reject.

Thus, we construct a NTM N to decide Double – SAT.

Hence, $DOUBLE - SAT \in NP$.

- 2. $SAT ≤_n DOUBLE SAT$
- The function f which maps an instance ϕ of SAT to an instance ϕ' of DOUBLE-SAT work as follows:

$$\phi' = \phi \wedge (x_1 \vee x_2)$$

- Where x_1 and x_2 are new variables. They do not occur in ϕ .
- This reduction is certainly polynomial time.
- If ϕ is unsatifiable, certainly ϕ' is also unsatisfiable. Because we have only conducted an additional term.
- But if ϕ has some satisfying assignments t, then ϕ' has at least three satisfying assignments, corresponding to the 3 different ways of extending t to the new variables x_1 and x_2 .

Thus, the DUBLE-SAT is NP - complete.