

ЭТИКЕТКА

<u>СЛКН.431253.001 ЭТ</u> Микросхема интегральная 564 ТМ2В Функциональное назначение – Два триггера Д-типа

Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Выход Q1	8	Вход S2
2	Выход $\overline{\mathrm{Q1}}$	9	Вход D2
3	Вход С1	10	Вход R2
4	Вход R1	11	Вход С2
5	Вход D1	12	Выход $\overline{\mathrm{Q2}}$
6	Вход S1	13	Выход Q2
7	Общий	14	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)^{\circ}$ C) Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма		
паименование параметра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \text{B}, 10 \text{B}$	U _{OL}	-	0,01	
2. Выходное напряжение высокого уровня, В, при: $U_{CC} = 5 \; B$ $U_{CC} = 10 \; B$	U _{OH}	4,99 9,99	- -	
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC} = 5$ B, $U_{IL} = 1,5$ B, $U_{IH} = 3,5$ B $U_{CC} = 10$ B, $U_{IL} = 3,0$ B, $U_{IH} = 7,0$ B	U _{OL max}	-	0,8 1,0	
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	U _{OH min}	4,2 9,0	-	
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15 \; B$	I_{1L}	-	/-0,1/	
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15 \; B$	I _{IH}	-	0,1	

Продолжение таблицы 1			
1	2	3	4
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \; B, U_{O} = 0,5 \; B \\ U_{CC} = 10 \; B, U_{O} = 0,5 \; B$	I_{OL}	0,5 1,0	-
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5 \; B, \; U_O = 4,5 \; B \\ U_{CC} = 10 \; B, \; U_O = 9,5 \; B$	I_{OH}	/-0,5/ /-1,0/	-
9. Ток потребления, мкA, при: U _{CC} = 5 B U _{CC} = 10 B U _{CC} = 15 B	$I_{\rm cc}$		1,0 2,0 4,0
10. Ток потребления в динамическом режиме, мА, при: $U_{CC} = 10~B,~C_L = 50~\Pi\Phi$	I _{occ}	-	0,17
11. Время задержки распространения при включении, нС, при: U_{CC} = 5 B, C_L = 50 пФ U_{CC} = 10 B, C_L = 50 пФ	t _{PHL}	-	420 150
12. Время задержки распространения при выключении, нС, при: $U_{CC}=5~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~C_L=50~\pi\Phi$	t _{PLH}	- -	420 150
13. Входная емкость, п Φ , при: U_{CC} = 10 В	C_{I}	-	7,5

1.2	Содержание драгоценных металлов	В	1000 шт	микросхем
1.4	Содержание драгоценных металлов	D	тооо шт	. MINICPOCACM.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

 $2.1~{\rm M}$ инимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11~0398-2000~{\rm u}$ ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65~{\rm ^{\circ}}$ С не менее $100000~{\rm u}$., а в облегченных режимах, которые приводят в ТУ при $U_{\rm CC}=5$ В $\pm~10\%$ - не менее $120000~{\rm u}$.

 Γ амма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В $11\,0398-2000$.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- $3.1 \ \underline{\Gamma}$ арантии предприятия изготовителя по ОСТ В $11 \ 0398 2000$:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ	О ПРИЕМКЕ
------------	-----------

Приняты по		OT		
•	(извещение, акт и др.)	(дата)		
Место для ш	тампа ОТК		Место для штампа ВП	
Место для ш	тампа «Перепроверка п	роизведена	» (дата)	
Приняты по	(извещение, акт и др.)	от(дата)		

Цена договорная

Место для штампа ОТК

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.

Место для штампа ВП