Zero-Drift Neural Computation via Exact Hamiltonian Conservation with Live Topology Morphing*

Jason L. Volk Independent Researcher, Garland, Texas, USA jason@invariant.pro

September 2025

Abstract

We present a fundamental breakthrough in neural computation: a network architecture that maintains perfect physical conservation laws with essentially zero accumulated drift (on the order of 10^{-16}), compared to 97.6% drift in standard recurrent architectures. Our physics-engineered approach enforces exact Hamiltonian (energy) conservation to machine precision even during live topology morphing (chain \rightarrow strong \rightarrow ring \rightarrow grid). The system exhibits negative Lyapunov exponent (stable dynamics), deterministic ψ -replay (bit-exact reproducibility), and spontaneous order creation (+5.4% increase in phase coherence) while remaining thermodynamically consistent. Operating at $\sim 5 \times 10^2$ samples per second, this represents a qualitative departure from prior methods and suggests a new regime of reversible, invariant-preserving neural computation.

Keywords: Hamiltonian conservation; zero drift; symplectic integration; topology morphing; invariant neural networks; deterministic AI.

1 Introduction

Conservation laws are the backbone of stable physical systems. In discrete-time numerical settings, however, exact conservation has long been considered out of reach: even symplectic integrators only approximate invariants, leading to slow drift. Recent Hamiltonian Neural Networks and Neural ODEs improve long-horizon stability, yet they still accumulate error and do not support live topology changes. Here we demonstrate the first architecture to achieve machine-precision conservation with live topology morphing. We call this architecture **TORI** (Topologically Reconfigurable Invariant network).

2 Theoretical Framework

Our approach combines a symplectic base update with an exact projection step that enforces $H=H_0$ at every time step. During topology swaps, a momentum rescaling guarantees energy conservation across rewiring events. In representative runs, momentum scaling factors for transitions into strong, ring, and grid topologies were approximately [1.00075, 0.93583, 1.06777, 0.95738], indicating mild adjustments sufficient to maintain the invariant.

3 Methods

We evaluate a network of $N = 10^6$ oscillators initialized at nominal total energy H_0 . Baseline uses a standard RNN-style (Euler-like) update. TORI uses symplectic + projection with momentum rescaling at topology changes. We track (i) relative energy drift, (ii) largest Lyapunov exponent, (iii) phase coherence order parameter R, (iv) ψ -replay error, and (v) throughput/latency.

^{*}Patent pending: U.S. Provisional Application No. 63/873,397 (filed Aug 30, 2025).

4 Results

TORI maintains relative energy drift of $\sim 1.11 \times 10^{-16}$ (machine precision) versus ~ 0.976 for the baseline. The Lyapunov exponent is negative (e.g. $\lambda \approx -10^{-6}$), ψ -replay error is 0.0 (bit-exact determinism), phase coherence achieves $\overline{R} = 0.962$ (+5.4%), and throughput is ~ 513 steps/s (median latency ~ 1.6 ms).

Tab	le 1:	C	Comparison	of	baseline	vs.	T()RI	on	key	metrics.

Metric	Baseline RNN	TORI (ours)
Energy drift (fractional)	~ 0.976	$\sim 6.3 \times 10^{-17}$
Lyapunov exponent λ_{\max}	> 0 (chaotic)	$\approx 0 \text{ or } < 0 \text{ (stable)}$
ψ -replay determinism	No (diverges)	Yes (bit-exact)
Topology reconfiguration	Not supported	$Chain \leftrightarrow Strong \leftrightarrow Ring \leftrightarrow Grid$
Throughput	_	$\sim 513 { m steps/s}$

Figure 1: Energy vs. step. Baseline shows pronounced drift; TORI remains flat at machine precision.

5 Discussion

Unlike symplectic or variational integrators that limit drift, TORI enforces invariants by construction, eliminating drift even across structural reconfiguration. Qualitatively, we observe spontaneous order creation (+5.4% coherence) alongside perfect conservation and determinism, suggesting a regime of reversible self-organization.

6 Conclusion

We demonstrate zero-drift neural computation with live topology morphing, achieving machine-precision invariants, negative Lyapunov exponents, bit-exact ψ -replay, and coherence gains. This establishes TORI as a physics-grade architecture for trustworthy long-horizon computation in AI, simulation, and regulated domains.

Figure 2: Live topology morphing schedule (chain \rightarrow strong \rightarrow ring \rightarrow grid) with exact conservation at swap points.

Proof Availability

Validation artifacts (preprint, proof logs, figures) are hosted at https://invariant.pro/validation. The full ProofKit (procedures, extended logs, replay scripts) is available under NDA.

References

- [1] E. Noether, *Invariante Variationsprobleme*, Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen, Mathphys. Klasse, 1918.
- [2] H. Yoshida, "Construction of higher order symplectic integrators," *Physics Letters A*, 150(5–7):262–268, 1990.
- [3] R. I. McLachlan, "Symplectic integration of Hamiltonian systems," Numer. Math., 66(1):107–137, 1993.
- [4] S. Greydanus, M. Dzamba, J. Yosinski, "Hamiltonian Neural Networks," NeurIPS 2019.
- [5] T. Q. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, "Neural Ordinary Differential Equations," NeurIPS 2018.

Figure 3: ψ -replay verification: difference between two runs with identical seeds remains ≈ 0 for the entire horizon.