

A1003: 음성인식 및 기계학습

인공지능연구소, 복합지능연구실 박기영

강사 소개

- 인공지능연구소 복합지능연구실
- 1997~2003: 계산및신경망시스템연구실 석,박사
- 2003~2005: 삼성종합기술원 HCILab, Interaction Lab.
- 2005~: ETRI
 - 2007~: 음성처리연구실, 음성지능연구실, 복합지능연구실
 - 2007~2009: 신성장동력산업용 대용량대화형 분산 내장처리 음성인터페이스 기술개발
 - 2010~2014: 모바일 플랫폼 기반 대화모델 적용 자연어 음성인터페이스 기술개발
 - 2015~2018: 언어학습을 위한 자유발화형 음성대화처리 원천기술 개발
 - 2019~2021: 다중 화자간 대화 음성인식 기술 개발
 - 2019~2028: 준지도학습형 언어지능 원천기술 및 이에 기반한 외국인 지원용 한국어 튜터링 서비스 개발
 - 2022~2026: 다화자 동시처리를 위한 인공지능 기반 대화 모델링 기술 개발

강의내용: Overview

- 음성인식 이론
- 음성인식 실습
- 딥러닝 이론/실습 (Transformer)
- 딥러닝/리눅스 개발환경

강의내용: Overview

• 음성 이론

 Sampling, FFT, Mel, HMM, GMM, n-gram, AM, LM, wFST, decoder, ···

• 딥러닝 이론

RNN, LSTM, Transformer, …

• 딥러닝 실무

recipe, learning rate, batchsize, …

• 개발 실무

- terminal, shell,
- vi, git, tmux, anaconda, jupyter, docker, ...

강의 목표

강의일정

1일차	2일차	3일차
음성인식 개요(고전적) 음성인식 이론	 딥러닝기반 (고전적) 음성인식 이론 종단형음성인식 개요	음성인식 평가 실습성능 측정
실습환경소개인식률 측정하기	 ESPNet 소개 종단형 음성인식 recipe 살펴보기 	성능개선 방안연구동향
(고전적) 음성인식 이론특징추출	• 트랜스포머 소개	연구동향OpenAl Whisper 실습
훈련DB 소개특징추출 실습	 음성인식 훈련 실습 훈련과정 분석 Tensorboard 	• 실습 마무리
Homework		

강의내용: 1일차

- What is Speech Recognition
- How to Evaluate Performance
- 실습
 - 실습환경 구성
 - WER 계산하기
- Feature Extraction
- 실습
 - Audio 들어보기, 멜스펙트럼 그려보기
- Q&A

what is speech recognition

ASR(Automatic Speech Recognition), STT: Speech-to-

text

- Isolated, Connected, Continuous, Keyword Spotting
- Speaker Dependent/Independent
- Difference with Image/Video Classification
 - Sequence Generation Problem

History of ASR

1950,60s

- Phonetic Recognizer
- 10 digit recognition
- DTW
- Idea of Continous ASR(CMU)

1970s

- IBM, Bell Lab, ...
- DARPA program
 - CMU Harpy:1,011 words vocab., FSN

2000s

- Spontaneous speech
- Robust ASR
- Multimodal

1980s

- Connected words recognition (Fluently spoken)
- Template based →
 Statistical Methods
- HMM
- N-gram, Neural Nets.
- DARPA program
 - CMU SPHINX
 - BBN, SRI

1990s

- MCE, MMI
- DARPA programs
 - Natural Lanuage Recognition, ATIS, Broadcast news, Switchboard
- Robust ASR
- Applications

50 Years of Progress in Speech and Speaker Recognition Research, ECTI Transactions On Computer And Information Technology, 2005

Applications

1956, RCA Labs

1975, 1997, Nuance

2012, Google 2011, Voice Apple Search Siri

2014, Amazon

2018, Google Duplex

1997, 삼성 애니콜

2008, 파인디지털

2012, 다음

2012~ ETRI

How It works

• W* = argmax P(W|X)

To Find Most Probable Word Sequence Given Input

Signal/Feature

- Considerations
 - Boundary? Segmentation?
 - Output Units? Words, Characters, Phoneme, ...
 - Classification Accuarcy? Unit Accuracy vs. Sentence Accuracy

Context/Latency

Batch or Streaming?

How It really works

- W* = argmax log P(W|X)
- = argmax log P(X|Q)P(Q|W)P(W)
- To Find Most Probable Sequence Among Plausible Words Sequences

https://heartbeat.fritz.ai/the-3-deep-learning-frameworks-for-end-to-end-speech-recognition-that-power-your-devices-37b891ddc380

Guess who?

- Find A Criminal Among Suspects Given Evidence
- Criminal = argmax P(Suspect|Evidence)
- Criminal = argmax P(Evidence|Suspect)

= argmax

P(Evidence|Behavior)P(Behavior|Suspect)P(Suspect)

Structure of traditional asr

Evaluation Metric

- Types of Error
 - Substitution
 - Deletion
 - Insertion
- Error Rate (cab be > 1)
 - (S + D + I)/N
- Accuracy (can be < 0)
 - 1-(Error Rate)
- WER/CER/SER:
 - Word/Character/Sentence Error Rate

```
REF : how is the weather today
REC/HYP: how was the better to day

In Words: WER = 100%, Acc=0%

- N= 5: how, is, the, weather, today

- S = 2

- D = 1

- I = 2

how is the weather today
how was the better to day
```

```
In Chars: CER = 25%, Acc=75%
- N= 20:
h,o,w,i,s,t,h,e,w,e,a,t,h,e,r,t,o,d,a,y
- S = 3
- D = 1
- I = 1
how is the weather today
how was the better to day
```

```
In Sentence: SER = 100%, Acc=0%
- N = 1
- S = 1
```


Quiz

- REF: 오늘 서울의 날씨가 어때
- REC: 음 오늘의 날씨 가 어때
- WER = ?

한국어

- REF: 오늘 서울의 날씨가 어때
- REC: 음 오늘의 날씨 가 어때
- WER=4/4 = 1.0 Acc=0.0
 - N=4, 오늘, 날씨가, 어때요
 - S = 2, D = 1, I = 2, WER = 5/4
 - S = 3, I = 1, WER = 4/4
- CER= 4/10 = 0.4, Acc=0.6
 - N = 10
 - S = 1
 - D = 2
 - I = 1

오늘 서울의 날씨가 어때 음 오눌의 날씨 가 어때

오늘 서울의 날씨가 어때 음 오눌의 날씨 가 어때

오 늘 서 울 의 날 씨 가 어 때 음 오 눌 의 날 씨 가 어 때

측정방법

- Edit distance 측정
 - https://en.wikipedia.org/wiki/Edit_distance
- 사용도구
 - HResults (HTK)
 - compute-wer (kaldi)
 - sclite (NIST, ESPnet)
- 예)
 - compute-wer ark:ref.txt ark:rec.txt

실습

- 사용환경 설명/로그인/세션 생성
- VS Code/Jupyter/Python
- WER 측정

https://www.nvidia.com/ko-kr/data-center/dgx-a100/

feature extraction

sampling and Spectrum

8kHz: Narrowband, 전화망

16kHz: Wideband

44.1/48kHz: High quality audio

https://en.wikipedia.org/wiki/Sampling_(signal_processing)

https://towardsdatascience.com/understanding-audio-data-fourier-transform-fft-spectrogram-and-speech-recognition-a4072d228520

Frame-Wise Processing

Windowing, Window length, FFT size, Hop size

Spectrogram

- Series Of Spectrum
- Matlab, Python, Adobe Audition, Audacity, …
- Frame Shift, Overlap, Window Length, Windowing, FFT points

Voice Production

https://www.researchgate.net/publication/318814563_Analyzing_of_the_vocal_fold_dynamics_using_laryngeal_videos https://www.youtube.com/watch?v=kfkFTw3sBXQ

Pitch and Formant

http://147.162.36.50/cochlea/cochleapages/theory/sndproc/sndcomm.htm

Feature extraction: MFCC

https://hyunlee103.tistory.com/46

Mel Filterbank

CMVN

- Cepstral Mean Variance Normalization
 - Zero-mean Unit Variance
- CMS: Cepstral Mean Substraction
 - Per Utterance
 - 채널/화자 효과를 제거하고 발성의 특성만 남김
- For Deep Learning
 - Global CMVN
 - For better convergence

Homework

- 음성인식 평가용 테스트데이터 수집
- 본인 (또는 근처 아무나) 목소리를 녹음
 - 16kHz, wav (uncompressed), mono
 - (일단 녹음하고 확인해봅시다)
- 인식률이 되도록 좋게 or 나쁘게 나오도록
 - But don't be too evil… noise, yell, whisper…
- 10문장 정도, 1문장당 10초 정도.
- wav/text pair (wav.scp, text)
- Due: 3일차 시작 전까지

강의내용: 2일차

- Classical ASR
- Introduction to End-to-End ASR
- 실습
 - ESPNet 소개
 - 종단형 음성인식 recipe 살펴보기
- Transformer
- 실습
 - 한국어 1,000시간 훈련 DB를 이용한 훈련 시작

Classical ASR

HMM-based ASR

- How we call it?
 - Conventional
 - Traditional/Classical
 - Ancient
- Why?
 - 내부 동작을 이해하고 문제점 또는 성능 개선 방법을 찾기 위해서

era of hidden markov model

- Problem to Solve:
- W* = argmax log P(W|X)
- = argmax log P(X|Q)P(Q|W)P(W)
- P(W): Language Model, P(Wt|Wt-1, Wt-2, ···)
- P(Q|Wt): Prononciation Model
- P(X|Q): Acoustic Model

Language Model

• 단어간의 연결 가능성을 이용하여 search space를 제한

- Deterministic Grammar
 - FSN (Finite State Network)
 - JSGF (Java Speech Grammar

```
$time = 세시|네시;
$city = 서울|부산|대구|대전;
$trans = 기차|버스;
sent-start $city (에서 $time 출발 |
출발 $city 도착) 하는 $trans sent-end
```

- Stochastic Grammar
 - N-gram

P(에서|서울)=0.2 P(세시|에서)=0.5 P(출발|세시)=1.0 P(하는|출발)=0.5 P(출발|서울)=0.5 P(도착|대구)=0.9

Prononciation Model

- How a word is pronunciated
- Very Langauge-Dependent and Requires Expert Knowledge
 - 대한민국: /d E h a xn m i xn g u xg/
 - 2NE1, 야탑역, 맨유
- Phoneset
 - 한국어: ETRI 46 phoneset
 - 영어: CMUDict(48), TIMIT(61) → CMU 39 phoneset
- Rule-based, Statistical Approach, Neural Approach

Acoustic Model

http://speech.cbnu.ac.kr/srhome/technology/index.html

Search Network

http://speech.cbnu.ac.kr/srhome/technology/index.html

Search Network: wFST

Weighted Finite Statue Transducer

https://medium.com/@jonathan_hui/speech-recognition-weighted-finite-state-transducers-wfst-a4ece08a89b7

Deep Learning for ASR

Deep Learning for ASR

https://heartbeat.fritz.ai/the-3-deep-learning-frameworks-for-end-to-end-speech-recognition-that-power-your-devices-37b891ddc380

DNN-HMM (1)

- Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition, 2012, IEEE Trans. on Audio, Speech and Language Processing, Microsoft
- Large Vocabulary Continuous Speech Recognition With Context-dependent DBN-HMMS, 2011, ICASSP, Microsoft

 Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups, 2012, Hinton et al.

DNN-HMM (2)

• P(X|Q) = P(Q|X)P(X)/P(Q)

Output Units: Senone, States of

 $HMM(5k\sim20k)$

FC-DNN

CNN

RNN: GRU, LSTM, Bi-LSTM

TDNN

Longer Context Helps

 $P(Q \mid X)$

TRAINING OF DNN-HMM

- Requires Frame-wise Label
- Forced-Alignment using Seed Model (Usually GMM-HMM Model)
 - Speech/Text Pair → g2p → State level alignment
- Kaldi Toolkit (2009~, JHU)
 - https://github.com/kaldi-asr/kaldi
- HTK Toolkit (1989~, Cambridge)
 - http://htk.eng.cam.ac.uk/
 - https://github.com/open-speech/HTK

end-to-end ASR

Contents

- How (Ancient) ASR Works: Recap
- How ASR Works: To-Be
- Introduction to
 - RNN, Attention, Encoder-Decoder, Word Embedding
 - Sequence-to-Sequence Model
- Transformer
- Transformer for ASR
- End-to-End ASR in Practice
- Q&A

Guess who?

- Find A Criminal Among Suspects Given Evidence
- Criminal = argmax P(Suspect|Evidence)
- Criminal = argmax P(Evidence|Suspect)

= argmax

P(Evidence|Behavior)P(Behavior|Suspect)P(Suspect)

How It works: REVISITED

- W* = argmax P(W|X)
 - To Find Most Probable Word Sequence Given Input Signal/Feature

- Considerations
 - Boundary? Segmentation?
 - Output Units? Words, Characters, Phoneme, …
 - Classification Accuarcy? Unit Accuracy vs. Sentence Accuracy

RNN: Recurrent neural network

- Neural Networks
 - Mimic human brain: Neuron, Synapse

https://en.wikipedia.org/wiki/Nervous_system

Architecture View Of RNN And ANN

https://medium.com/datadriveninvestor/recurrent-neural-networks-in-deep-learning-part-1-df3c8c9198ba

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Attention

- Query, Key, Value
- Memory = Dictionary(Key, Value)
- Output = Weighted Sum of Value
- Weight = Similarity Between Query and Key

https://programming.vip/docs/5e4cadd75dc1d.html

Word Embedding

- Word2Vec, ···
- Sparse Representation vs.
 Dense Representation
- Preserve Meaning
 - 한국 서울 + 파리 = 프랑스
 - 어머니 아버지 + 여자 = 남자
 - 아버지 + 여자 = 어머니

Index	Words	One-hot
1	aaron	00000001
2	aback	00000010
3	abacus	00000100
•••	•••	
15439	macaroni	000100
	•••	•••
29500	zulu	10000000

encoder-decoder

Auto Encoder

Encoder-Decoder for Sequence

- Translation
- Image/Video Captioning
- Q&A, Document Summarization
- Speech
 - Recognition, Synthesis, Translation, Dialog System(Google Duplex, 2018)

Era of Sequence-to-Sequence

- Natural Language Processing
- Sequence to Sequence Leanring with Neural Networks, NeurIPS, 2015
- Neural Machine Translation By Jointly Learning To Align And Translate, ICLR, 2016
- Attention Is All You Need, NuerIPS, 2017
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, ACL, 2019

Sequence to Sequence with Attention

https://medium.com/platfarm어텐션-메커니즘과-transfomer-self-attention-842498fd3225

Transformer

Transformer: Overall STructure

https://jalammar.github.io/illustrated-transformer/

Transfomer: Detailed STructure

https://jalammar.github.io/illustrated-transformer/

Self Attention

Multihead attention

Effect of Self Attention

The animal didn't cross the street because it was too tired

Positional Encoding

No Position Depenent Computation in Transfomer

- Absolute/Relative Position Encoding
 - Sinusoidal Positional Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{
m model}})$$
 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{
m model}})$

https://kazemnejad.com/blog/transform er_architecture_positional_encoding/

Decoder

Masked Multi-Head Self Attention

- Encoder-Decoder Attention
 - K, V from Encoder Last Layer
 - Q from Self Attention
- Beam Search

Decoder in action

https://medium.com/platfarm/어텐션-메커니즘과-transfomer-self-attention-842498fd3225

End-to-end For ASR

- ESPNet: End-to-end Speech Processing Toolkit
 - ASR, TTS, Speech Translation
 - https://github.com/espnet/espnet
- CTC Hybrid*: Connectionist Temporal Classification
 - Multi-task training with CTC Criteiron
 - Increase Stability while Training
 - Hybrid CTC/Attention Architecture for End-to-End Speech Recognition, IEEE Journal of Selected Topics in Signal Processing, 2018
- Input Embedding

Input embedding

- TEXT: Input = Word: One-hot → Vector
- ASR: Input = MELFB: Vector → Vector
- 2x Conv2d layer, 3x3 kernel with stride=2
 - TxF \rightarrow adim x T/2 x F/2 \rightarrow adim x T/4 x F/4 \rightarrow T/4 x adim

End-to-End ASR In Practice

Output Units

- 영어: Alphabet, BPE(Byte Pair Encoding), Word
- 한국어: Char(음절~2500), BPE(~5000), 형태소분석기

Relative Performance

- WER/CER
- 25% (GMM-HMM) → 15% (DNN-HMM) → 10% (LSTM-HMM)
- 7% Transformer

Limitation

Process Whole Sentence → Streaming ASR

강의내용: 3일차

- End-to-End ASR In Practice
- ASR 성능 개선 방안
- 실습
 - 훈련된 모델의 평가(공통평가셋)
 - 개인별 평가셋을 이용한 평가
- Recent trends in ASR
- 실습
 - Wrapup and Backup
 - Q&A

n: 11.0	CUDA Versio	rsion: 450.51.06	river V	1.86 D	450.5	IA-SMI	NVIDI
		us-Id Disp.A				Name	GPU
Compute M. MIG M.	GPU-UELL	Memory-Usage	t/Cap1	Pwr:Usag	Perf	Temp	Fan
0		0000000:07:00.0 OFF	n I	egs (SXM4 - 4	A188-	0
Default Disabled	606	3MIB / 40537MIB	1 MOON	58W /	PB	320	N/A
0		0000000:0F:00.0 Off	In I	eca (SXM4-4	A188-	1
Default Disabled	0%	11550MIB / 40537MIB	1 1	64N /	PB	32C	N/A
0		0000000:47:00.0 Off	n I	18G8 (SXM4-4	A100-	2
Default Disabled	98%	21953MiB / 40537MiB	1 1000	137W /	PØ	510	N/A
0		0000000:4E:00.0 Off	n I	egs (SXM4-4	A188-	3
Default Disabled	100%	33058Mi8 / 40537Mi8	I weer	184W /	PB	51C	N/A
0		0000000:87:00.0 Off	on I	ecs (SXM4-4	A188-	4
Default Disabled	99%	33178MLB / 40537MLB	1 11981	245W /	PØ	57C	N/A
0		0000000:90:00.0 OFF	n I	ecs (SXM4-4	A188-	5
Default Disabled	100%	33422MiB / 40537MiB	I WOOD	225W /	PØ	55C	N/A
0		0000000:87:00.0 Off	n I	ecs (SXM4-4	A188-	6
Default Disabled	606	3MIB / 40537MIB	I MOST	63W /	PØ	45C	N/A
0	7	0000000:80:00.0 Off	n I	ecs (SXM4-4	A188-	7
Default Disabled	0%	3MIB / 40537MIB	I Wee	59W /	Pe	45C	N/A
GPU Memory		Process name	Туре	PID	CI	esses: GI	GPU
Usage		Process name	1,750	710	ID	ID	uru
11547Mi8		python3	-	232775	N/A	N/A	1
10723ME8		python3		174416	N/A	N/A	2
11227M(8		python3		231070	N/A	N/A	. 2
11107MiS		python3		37989	N/A	N/A	3
11227Mi8		python3		67856		N/A	3
10721Mi8		python3		235696		N/A	3
11227Mi8		python3	9	209694	N/A	N/A	4
11227M(8		python3		233410	N/A	N/A	4
		python3		240193		N/A	4
10721MLB							
11227M(8		python3		199164		N/A	5
10721Mi8 11227Mi8 10069Mi8 12123Mi8		python3 python3 python3	0	199164 242124 244836	N/A	N/A N/A	5 5

한국전자통신연구원

성능개선방안

- 데이터!
 - 실환경 데이터수집: 적응훈련/연결학습
 - 음향모델/언어모델?
- 데이터!!
 - 데이터 증강
 - SpecAug, Speed/Volume perturbation, Noise addition, Simulated data
- 모델 파라미터
 - Number of epoch
 - Number of parameters: layers, dimension etc
 - Gradient scale: batchsize, learning rate etc
 - Robustness: dropout rate,

SpecAug

- SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition (2019)
- https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html

Hyperparameters (1)

 Hyperparameter experiments on end-to-end automatic speech recognition (말소리와 음성과학, 2021)

Table 1. The range of hyperparameters in the transformer encoder network

Hyperparameters			Values			
output size	256					
input layer	2d conv					
normalized before		True	25 (0.15	false		
attention heads	1	2	4	8		
linear units	512	1,024	2,048	4,096		
num blocks	2	4	6	8	12	
dropout rate	0.0	0.1	0.2	0.3	0.4	
positional dropout rate			0.1			
attention dropout rate	0.0	0.1	0.2	0.3	0.4	

Table 2. The range of transformer decoder network hyperparameters

Hyperparameters			Values		
attention heads	1	2	4	8	(
linear units	512	1,024	2,048	4,096	
num blocks	2	4	6	8	12
dropout rate	0.0	0.1	0.2	0.3	0.4
positional dropout rate		15 20	0.1		
self attention dropout rate	0.0	0.1	0.2	0.3	0.4
src attention dropout rate	te 0.0				

Hyperparameters (2)

Table 3. The range of the model hyperparameters

Hyperparameters	Values							
batch type	folded							
batch size	32							
accum grad	8							
max epoch	50							
patience	none							
init	chainer	xavier uniform	xavier normal	kai- minguni- form	kaiming normal			
optim	adam							
lr	0.005							
scheduler		er :	warmupl	r				
warmup steps	10,000	20,000	30,000	40,000				
keep nbest model	5	10	15	20				
ctc weight	0.0	0.1	0.2	0.3	0.4			
lsm weight	0.0	0.1	0.2	0.3	0.4			
length normalized loss	true false							

Hyperparameters (3)

Impact on WER (Example Only)

Table 4. WER from each hyperparameter model on WSJ dev93 and eval92

Hy	perparameters		V	alues / WE	R	egs-we
	init	chainer	xavier uniform	xavier normal	kaiming uniform	kaiming normal
	849.0	42.0/35.1	17.0/12.7	17.3/14.0	17.7/13.1	17.6/13.4
		10,000	20,000	30,000	40,000	
	warmup steps	15.6/12.4	16.0/12.8	17.3/12.7	17.3/13.6	
M	keep nbest	5	10	15	20	
O	model	17.0/12.8	17.3/12.7	16.9/13.0	16.9/13.4	
E			0.1	0.2	0.3	0.4
L	ete weight		17.3/13.6	17.0/13.1	17.3/12.7	16.5/13.0
_			0.1	0.2	0.3	0.4
	lsm weight		17.3/12.7	17.3/13.2	17.5/12.9	18.0/13.3
	length normalized	true	false		3	
	loss	17.7/14.0	17.3/12.7			

	attention	1	2	4	8	
Е	heads	17.6/13.3	16.7/13.0	17.3/12.7	17.6/13.4	
	M. automorphism	512	1,024	2,048	4,096	
	linear units	18.9/14.8	18.0/14.0	17.3/12.7	16.3/12.3	
V		2	4	6	8	12
2	num blocks	24.5/19.7	20.2/16.0	18.5/15.0	17.3/13.5	17.3/12.7
0	400000000000000000000000000000000000000	0.0	0.1	0.2	0.3	0.4
E	dropout rate	17.4/14.4	17.3/12.7	17.7/13.4	17.8/13.7	20.4/15.7
2	attention	0.0	0.1	0.2	0.3	0.4
	dropout rate	17.3/12.7	16.5/13.0	15.6/12.8	15.8/12.6	15.9/12.7
	normalized	true	false		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	before	17.3/12.7	14.1			
	attention	1	2	4	8	
	heads	17.3/13.0	17.1/12.9	17.3/12.7	17.6/12.8	
)		512	1,024	2,048	4,096	
E	linear units	17.7/13.5	17.5/13.4	17.2/12.7	16.9/12.9	
200		2	4	6	8	12
0	num blocks	19.7/16.0	17.2/13.6	17.3/12.7	16.3/12.5	16.3/12.5
E		0.0	0.1	0.2	0.3	0.4
2	dropout rate	16.5/13.3	17.3/12.7	16.9/13.8	16.3/13.6	17.5/13.5
	self attention	0.0	0.1	0.2	0.3	0.4
- 1	dropout rate	17.3/12.7	16.5/13.8	17.0/13.9	16.6/13.8	16.5/13.5

WER, word error rate.

Ongoing REsearches

- Semi/Un-Supervised Training
 - Training without labeled data
 - wav2vec 2.0, …
- Data augmentation
 - Generative models
- Transfer learning
 - Domain transfer
- Domain adaptation
- Streaming Transformer

wav2vec 2.0

- wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (NeurIPS, 2020)
 - Constrative Loss

$$\mathcal{L} = \mathcal{L}_m + \alpha \mathcal{L}_d$$

$$\mathcal{L}_m = -\log \frac{\exp(sim(\mathbf{c}_t, \mathbf{q}_t)/\kappa)}{\sum_{\tilde{\mathbf{q}} \sim \mathbf{Q}_t} \exp(sim(\mathbf{c}_t, \tilde{\mathbf{q}})/\kappa)}$$

$$\mathcal{L}_d = \frac{1}{GV} \sum_{g=1}^{G} -H(\bar{p}_g) = \frac{1}{GV} \sum_{g=1}^{G} \sum_{v=1}^{V} \bar{p}_{g,v} \log \bar{p}_{g,v}$$

Figure 1: Illustration of our framework which jointly learns contextualized speech representations and an inventory of discretized speech units.

Unsupervised Speech Recognition

- NeurIPS, 2021, Alexei Baevski, Wei-Ning Hsu, Alexis CONNEAU, Michael Auli
- Motivation
 - 7,000 Languages > 125 STT Lang
 - Unsupervised NMT: Conneau et al 2018, …
 - A Framework for unsupervised learning of speech recognition

Architecture

Unsupervised Learning

Objective

- GAN loss
- Gradient penalty
- Segment smoothness penalty
- Phoneme diversity loss

$$\min_{\mathcal{G}} \max_{P^r \sim \mathcal{P}^r} \left[\log \mathcal{C}(P^r) \right] - \underset{S \sim \mathcal{S}}{\mathbb{E}} \left[\log \left(1 - \mathcal{C}(\mathcal{G}(S)) \right) \right] - \lambda \mathcal{L}_{gp} + \gamma \mathcal{L}_{sp} + \eta \mathcal{L}_{pd}$$

$$\mathcal{L}_{gp} = \underset{ ilde{P} \sim ilde{\mathcal{P}}}{\mathbb{E}} \left[\left(\|
abla \mathcal{C}(ilde{P}) \| - 1
ight)^2
ight]$$

$$\mathcal{L}_{sp} = \sum_{(p_t, p_{t+1}) \in \mathcal{G}(S)} ||p_t - p_{t+1}||^2 \qquad \mathcal{L}_{pd} = \frac{1}{|B|} \sum_{S \in B} -H_{\mathcal{G}}(\mathcal{G}(S))$$

Experimental Results

Comparison to Supervised Speech Recognition on Librispeech

Madel	Unlabeled	LM	de	ev	test	
Model	data	LM	clean	other	clean	other
960h - Supervised learning		-			5240555	gtsones
DeepSpeech 2 [Amodei et al., 2016]		5-gram	-	-	5.33	13.25
Fully Conv [Zeghidour et al., 2018]	27	ConvLM	3.08	9.94	3.26	10.47
TDNN+Kaldi [Xu et al., 2018]		4-gram	2.71	7.37	3.12	7.63
SpecAugment [Park et al., 2019]		RNN	-	-	2.5	5.8
ContextNet [Han et al., 2020]		LSTM	1.9	3.9	1.9	4.1
Conformer [Gulati et al., 2020]		LSTM	2.1	4.3	1.9	3.9
960h - Self and semi-supervised learning		200 to 20				
Transf. + PL [Synnaeve et al., 2020]	LL-60k	CLM+Transf.	2.00	3.65	2.09	4.11
IPL [Xu et al., 2020b]	LL-60k	4-gram+Transf.	1.85	3.26	2.10	4.01
NST [Park et al., 2020]	LL-60k	LSTM	1.6	3.4	1.7	3.4
wav2vec 2.0 [Baevski et al., 2020c]	LL-60k	Transf.	1.6	3.0	1.8	3.3
wav2vec 2.0 + NST [Zhang et al., 2020b]	LL-60k	LSTM	1.3	2.6	1.4	2.6
Unsupervised learning	2000 0000	90	a pages as	1200000	0400-400	39.7-63%
wav2vec-U LARGE	LL-60k	4-gram	13.3	15.1	13.8	18.0
wav2vec-U LARGE + ST	LL-60k	4-gram	3.4	6.0	3.8	6.5
	LL-60k	Transf.	3.2	3.9 4.3 3.65 3.26 3.4 3.0 2.6	3.4	5.9

Hu-BERT

- HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units
 - IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021

		BASE	LARGE	X-LARGE
CNN Encoder	strides kernel width channel		, 2, 2 3, 2, 2	
Transformer	layer embedding dim. inner FFN dim. layerdrop prob	12 768 3072 0.05	24 1024 4096 0	48 1280 5120 0
	attention heads	8	16	16
Projection	dim.	256	768	1024
Num. o	of Params	95M	317M	964M

TABLE I: Model architecture summary for BASE, LARGE, and X-LARGE HuBERT models

Hu-BERT: Results

Model	Unlabeled Data	LM	dev-clean	dev-other	test-clean	test-othe
21	0.0 0.00	10-min labeled				
DiscreteBERT [51]	LS-960	4-gram	15.7	24.1	16.3	25.2
wav2vec 2.0 BASE [6]	LS-960	4-gram	8.9	15.7	9.1	15.6
wav2vec 2.0 LARGE [6]	LL-60k	4-gram	6.3	9.8	6.6	10.3
wav2vec 2.0 LARGE [6]	LL-60k	Transformer	4.6	7.9	4.8	8.2
HUBERT BASE	LS-960	4-gram	9.1	15.0	9.7	15.3
HUBERT LARGE	LL-60k	4-gram	6.1	9.4	6.6	10.1
HUBERT LARGE	LL-60k	Transformer	4.3	7.0	4.7	7.6
HUBERT X-LARGE	LL-60k	Transformer	4.4	6.1	4.6	6.8
		1-hour labeled				
DeCoAR 2.0 [50]	LS-960	4-gram			13.8	29.1
DiscreteBERT [51]	LS-960	4-gram	8.5	16.4	9.0	17.6
wav2vec 2.0 BASE [6]	LS-960	4-gram	5.0	10.8	5.5	11.3
wav2vec 2.0 LARGE [6]	LL-60k	Transformer	2.9	5.4	2.9	5.8
HUBERT BASE	LS-960	4-gram	5.6	10.9	6.1	11.3
HUBERT LARGE	1.L-60k	Transformer	2.6	4.9	2.9	5.4
HUBERT X-LARGE	LL-60k	Transformer	2.6	4.2	2.8	4.8
3.77.27.37.3	0.000	10-hour labeled	560	52/3		12.40
SlimIPL [54]	LS-960	4-gram + Transformer	5.3	7.9	5.5	9.0
DeCoAR 2.0 [50]	LS-960	4-gram			5.4	13.3
DiscreteBERT [51]	LS-960	4-gram	5.3	13.2	5.9	14.1
wav2vec 2.0 BASE [6]	LS-960	4-gram	3.8	9.1	4.3	9.5
wav2vec 2.0 LARGE [6]	LL-60k	Transformer	2.4	4.8	2.6	4.9
HUBERT BASE	LS-960	4-gram	3.9	9.0	4.3	9.4
HUBERT LARGE	LL-60k	Transformer	2.2	4.3	2.4	4.6
HUBERT X-LARGE	LL-60k	Transformer	2.1	3,6	2.3	4.0
		100-hour labeled	2012			
IPL [12]	LL-60k	4-gram + Transformer	3.19	6.14	3.72	7.11
SlimIPL [54]	LS-860	4-gram + Transformer	2.2	4.6	2.7	5.2
Noisy Student [61]	LS-860	LSTM	3.9	8.8	4.2	8.6
DeCoAR 2.0 [50]	LS-960	4-gram			5.0	12.1
DiscreteBERT [51]	LS-960	4-gram	4.0	10.9	4.5	12.1
wav2vec 2.0 BASE [6]	LS-960	4-gram	2.7	7.9	3.4	8.0
wav2vec 2.0 LARGE [6]	LL-60k	Transformer	1.9	4.0	2.0	4.0
HUBERT BASE	LS-960	4-gram	2.7	7.8	3.4	8.1
HUBERT LARGE	LL-60k	Transformer	1.8	3,7	2.1	3.9
HUBERT X-LARGE	LL-60k	Transformer	1.7	3.0	1.9	3.5

TABLE II: Results and comparison with the literature on low resource setups (10-min, 1-hour, 10-hour, and 100-hour of labeled

AV-HuBERT

- https://github.com/facebookresearch/av_hubert
- Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction, 2022
- Robust Self-Supervised Audio-Visual Speech Recognition

AV-HuBERT: Architecture

Figure 1: Illustration of AV-HuBERT. Masked prediction losses are only computed for the three middle frames, because at least one modality is masked for those frames. See section A for its comparison between single-modal and cross-modal visual HuBERT.

AV-ASR

Figure 1: AV-HuBERT for audio-visual speech recognition. X: mask; blue waveform: original audio; orange waveform: noise; C_n : audio-visual clusters. Dashed box: the pre-trained part

Table 3: Comparison among models with different pre-training configurations and input modalities. C: clean audio, N: noisy audio. The N-WER is averaged over 4 noise types and 5 SNRs.

Model	PT	FT	Audio-only		Audio-visual		
Size	Type	Data	C-WER	N-WER	C-WER	N-WER	
(a). LARGE	None	30h	20.6	59.2	20.8	42.9	
(b). LARGE	Clean	30h	4.3	39.8	3.3	9.3	
(c). LARGE	Noisy	30h	3.8	28.7	3.3	7.8	
(d). LARGE	None	433h	4.7	39.2	3.5	14.8	
(e). LARGE	Clean	433h	1.5	29.1	1.4	6.9	
(f). LARGE	Noisy	433h	1.6	25.8	1.4	5.8	

OpenAl Whisper

- Robust Speech Recognition via Large-Scale Weak Supervision, 2022
- https://github.com/openai/whisper
- 680k audio
 - 117k = 96 languages (byte level BPE)
 - $125k = X \rightarrow en$
- Multitask Learning
 - Multi-lingual ASR
 - Translation
 - Language Identification

Discussion and Q&A

