

Parallel and Distributed Computer Science (PDCS)

Master Informatique Faculté des Sciences d'Orsay Université Paris-Saclay

Janna Burman et Oguz Kaya janna.burman@lri.fr, oguz.kaya@lri.fr

PDCS

Systèmes complexes distribués et parallèles

Calcul, algorithmes, programmation parallèles, distribués et quantique

Modélisation, analyse, preuves, optimisation

Présentation de cours PDCS

Algorithmes distribués robustes (M1)

Description (Objectives)

- donner les bases de l'algorithmique distribuée,
- faire comprendre les problèmes qui se posent lors de la conception d'un système réparti robuste et donner des solutions à ces problèmes,
- aborder les notions de **preuve** d'algorithme réparti et d'analyse de complexité,
- sensibiliser les étudiants à l'aspect lié à la **tolérance aux défaillances**, et présenter la **technique de réplication**, **suivie du consensus**.

Pré-requis

 notions de base en : réseaux, systèmes, algorithmique classique et algorithmique de graphes

- Contrôle Continu * 30% [un ou deux devoirs maison ou devoirs sur table] + Examen Écrit * 70%
- **Responsables :** Janna Burman et Thomas Nowak

Auto-stabilisation (M1)

Description

 Après avoir introduit les bases de l'algorithmique répartie, nous étudions comment la technique d'auto-stabilisation est utilisée pour rendre robustes les systèmes répartis actuels.

Pré-requis

 notions de base en : réseaux, systèmes, algorithmique classique et algorithmique de graphes

- Contrôle Continu * 40% [lecture et présentation d'articles] + Examen Écrit * 60%
- **Responsables :** Janna Burman et Sylvie Delaët

Algorithmes de la nature (M2)

Description

- La nature a développé des algorithmes répartis (sans contrôle centralisé), efficaces et peu gourmands en ressources et en énergie. Les réseaux traditionnels s'en sont parfois inspirés.
- Ce module est consacré à l'étude d'algorithmes liés, d'une façon ou d'une autre, à des phénomènes naturels. Ils reposent sur des modèles répartis se basant sur des processeurs très limités en ressources et en capacités de calcul et de communication.

Pré-requis

 notions de base en : réseaux, systèmes, algorithmique classique et algorithmique de graphes, algorithmique distribuée (avantage)

- Examen Oral * 100% [lecture et présentations d'articles]
- **Responsables :** Thomas Nowak et Janna Burman

Frontières du calcul parallèle et distribué (M2)

Description

Ce module se propose de décrire les avancées les plus récentes en matière de calculs distribué et parallèle. Son contenu précis est donc à même d'évoluer au cours du temps.

Pré-requis

notions de base en : réseaux, systèmes, algorithmique classique et algorithmique de graphes ;
 notions de base en algorithmique repartie et parallèle sera un plus

- Examen Oral * 100% [lecture et présentations d'articles]
- Responsables: Thomas Nowak et Laércio Lima Pilla
- **Intervenants:** membres d'équipe ParSys (LRI) et d'autres intervenants extérieurs selon les sujets proposés.

Ordonnancement et systèmes d'exécution (M2)

Description

- Ce module s'intéresse à la gestion efficace des ressources des systèmes utilisées pour le calcul scientifique et le traitement de données massives à travers des systèmes d'exécution et d'autres composants logiciels.
- Nous discuterons des sujets liés à l'ordonnancement et l'équilibrage de charge en systèmes parallèles, hétérogènes et pour le Big Data.
- **Pré-requis**: Notions de base en systèmes, en programmation parallèle et en algorithmique
- Évaluations : Compte-rendu + assiduité, lecture et présentation d'articles
- **Responsable :** Laércio LIMA PILLA pilla@lri.fr

Modélisation et Optimisation des systèmes Discrets (M1)

- Description
 - Analyser et modéliser des systèmes discrets issus de problèmes combinatoires sous forme de programme linéaire ou d'un graphe.
 - Appliquer différentes méthodes pour la résolution de problèmes d'optimisation combinatoire.
- Pré-requis
 - Conseillés: Introduction à la programmation linéaire.
- MCC/évaluation
 - Contrôle continu.
- Responsable
 - Abdel Lisser
 - Chargé de TD : Shangyuan Zhang

Jeux, Apprentissage et Optimisation des Systèmes complexes (M1)

Description

- Présenter les liens importants entre l'optimisation, la théorie des jeux et la théorie de l'apprentissage,
- Présenter quelques sujets fondamentaux dans chaque domaine et de la façon dont les idées de chaque domaine peuvent éclairer les autres.

Pré-requis

- Conseillés: Bases de la théorie des jeux, bases en optimisation convexe,
- MCC/évaluation
 - Soutenance orale d'articles de recherche liés au domaine du cours.

Responsable

- Abdel Lisser
- Chargé de TD : Shangyuan Zhang

Optimisation stochastique (M2)

Description

- Présenter les problèmes d'optimisation où les décisions sont prises en **présence** d'incertitude.
- Présenter les fondements théoriques de l'optimisation stochastique, les différentes modélisations de l'aléa et du risque et les méthodes de résolution associées.
- Pré-requis
 - Conseillés: Introduction à la théorie des probabilités
- MCC/évaluation
 - Soutenance orale d'articles de recherche
- Responsable
 - Abdel Lisser

Programmation Orientée Objet (M1)

Concepts avancés de C++:

- Surcharge des opérateurs, references
- Généricité : function & class templates, iterateurs, STL
- Héritage multiple

Projet de programmation d'un jeu video utilisant :

- Interface graphique 3D (OpenGL)
- Système multi-agents (joueurs automatiques)
- Jeu en réseau (architecture client/serveur)
- **Pré-requis :** algorithmique, programmation
- MCC/évaluation : controle continu et projet final
- **Responsable**: Patrick AMAR

Programmation C++ Avancée

Description

- C++ est un langage qui évolue rapidement et dont la portée dépasse la simple programmation orientée objet. Il est à la base de 95 % des logiciels qui font que votre vie numérique ne s'effondre pas sous son propre poids.
- Ce module a pour objectif de vous former à des techniques de développement puissante
 permettant d'allier performance, maintenance et abstraction comme la programmation générique ou la méta-programmation.

Pré-requis

- [PDCS] Prog. Orientée Objet
- Avoir des bases dans un langage de programmation arbitraires
- MCC/évaluation : TP notés
- **Responsable :** Joel FALCOU (joel.falcou@gmail.com)

Big Data (M2)

Description

- Paradigme Map-Reduce : algorithmique et TP en Spark sur cluster de PC
- Problématique et métriques du passage à l'échelle
- Mécanismes sous-jacents d'HDFS/Hadoop et de Spark
- BdD SQL et NoSQL : TP de MongoDB & principes de Spark-SQL, problématique du Join en NoSQL.
- **Pré-requis conseillés :** connaissance et pratique de Python
- MCC/évaluation : 50% : 2 CR de TP (en binôme)
 - 50%: 1 examen écrit individuel à la fin
- Responsables : Stéphane Vialle & Gianluca Quercini

Questions?

Règles pour valider PDCS

Blocs de cours

Blocs de cours

UEs _disciplinaires

- **Bloc 1 : Paralle and Distributed Computer Science** cours obligatoires de spécialité PDCS
 - Tout cours intitulé [PDCS]
 - Programation MPI [ANO] (pas obligatoire pour étudiants M2)
- **Bloc 2 : Informatique générale** cours de toute spécialité Master Informatique Paris-Saclay
- **Bloc 3 : Soft Skills** cours parcours [SOFT] (**UEs d'ouverture**) de compétences complémentaires
 - e.g., langues, communication, formation à la vie de l'entreprise, formation à la recherche, cycle de conférences, etc.
- Bloc 4:
 - En M1 : Ecole thématique/stage et TER
 - En M2 : Stage dans un laboratoire de recherche ou à l'entreprise

Notes et compensation

- Les crédits d'une UE sont acquis si l'étudiant obtient à l'UE une note ≥ 10/20
- Les 60 ECTS de l'année sont acquis lorsque la moyenne obtenue à chacun des blocs est ≥ 10/20

Compensation:

- Le seuil de compensation des UE compensables est fixé à 07/20.
- Les cours dans le même bloc (pour tout bloc) sont compensable entre eux, mais il n'y pas de compensation entre les cours des blocs différents.

Bloc 2 (options)

En plus de règles générales, dans le bloc 2 (Informatique générale), au moins 1 cours choisi dans chaque de 3 ensembles de cours suivants :

- Ensemble 1: Big Data [PDCS, Polytech] / Machine learning [AI] / Mathematics for data science [AI] / Distributed systems for massive data management [DS]
- Ensemble 2 : Algorithmique de graphe / Algorithmique probabiliste et jeux / Complexité, décidabilité, modèles de calculs / Langages de programmation et compilation [MPRI]
- Ensemble 3 : Réseaux sans fil / Reseaux mobiles / Internet of Things / Blockchain / Programmation système et réseaux [ANO]
- Exception pour M2:
 - 2 cours dans ensemble différents, ou remplacement par cours [PDCS] M1

Bloc 2 (options) - conseils

- Les étudiants en M2 choisir Algorithmes distribués robustes (et/ou Auto-stabilisation) de M1 si jamais suivis des cours théorique en algorithmique distribuée.
- De pas choisir des UEs des parcours en apprentissage (alternance)
- Vérifier les pré-requis de chaque cours choisi
 - les étudiants M1 sont conseillés de choisir plutôt des cours M1 que M2, et en tout cas suivant les pré-requis annoncés
- Vérifier l'EDT
 - que les cours choisis et obligatoires ne coïncident pas

Equilibrez bien vos trimestres!

Rappel et conseil

- En Master 1 : 4 périodes
 - à chaque période 4 UE disciplinaires + 1 UE d'ouverture
- En Master 2 : 3 périodes
 - à chaque période 3 UE disciplinaires + 1 UE d'ouverture
 - 1 stage

Rappel et conseil

M1 (60 ECTS)

S1 (30 ECTS)		S2 (30 ECTS)	
T1 (15 ECTS)	T2 (15 ECTS)	T3 (15 ECTS)	T4 (15 ECTS)
4 UE disciplinaires	4 UE disciplinaires	4 UE disciplinaires	4 UE disciplinaires
(au moins 2 obligatoires)	(au moins 2 obligatoires)	(au moins 2 obligatoires)	(au moins 2 obligatoires)
1 UE d'ouverture	1 UE d'ouverture	1 UE d'ouverture	1 UE d'ouverture
Ecole thématique / Stage (5 ECTS)		TER (5 ECTS)	

M2 (60 ECTS)

S1 (30 ECTS)			S2 (30 ECTS)
T1 (10 ECTS)	T2 (10 ECTS)	T3 (10 ECTS)	
3 UE disciplinaires	3 UE disciplinaires	3 UE disciplinaires	Stage
(au moins 2 obligatoires)	(au moins 2 obligatoires)	(au moins 2 obligatoires)	
1 UE d'ouverture	1 UE d'ouverture	1 UE d'ouverture	

Bon courage!

Questions?