BÚSQUEDA LOCAL

Tecnología Digital V: Diseño de Algoritmos Universidad Torcuato Di Tella

Introducción

Consideremos el problema de optimización

$$\min_{s \in S} f(s)$$

donde

- *S* es el conjunto (discreto) de soluciones factibles.
- $\bigcirc f(s): S \to \mathbb{R}$ es la función objetivo.

Motivación

- Para los algoritmos exactos, exploramos el espacio de soluciones de forma exhaustiva.
- Si esto se vuelve prohitivo, otra alternativa es considerar una solución inicial y aplicar una secuencia de mejoras, apuntando a encontrar al final una solución de buena calidad (eventualmente, la óptima).
- Algunas preguntas: Cómo definimos esta secuencia? Convergencia? Complejidad?

l

Búsqueda Local: definiciones básicas

Sea $s \in S$ para nuestro problema.

Vecindario

Todas las soluciones que se pueden obtener mediante modificaciones simples de una solución $s \in S$. Notamos $N(s) \subseteq S$ a un vecindario de la solución $s \in S$.

Movida

Actualización de la solución por otra (con mejor función objetivo).

Criterio de aceptación

Condición mediante la cual se acepta una movida. Ejemplos:

 \bigcirc *Best improvement:* $s' \in N(s)$ tal que

$$s' = \arg\min_{s \in N(s)} f(s)$$

○ *First improvement*: primer $s' \in N(s)$, f(s') < f(s), que identifiquemos durante la exploración de N(s).

Búsqueda Local

BusquedaLocal()

- 1. Construir una solución $s^* \in S$
- 2. repetir
- 3. elegir $s \in N(s^*)$ tal que $f(s) < f(s^*)$ y actualizar $s^* = s$
- 4. **mientras** exista $s \in N(s^*)$ tal que $f(s) < f(s^*)$

Convergencia

Un algoritmo de búsqueda local converge a un *mínimo local s** respecto a N(s), es decir, $f(s^*) \le f(s)$ para todo $s \in N(s^*)$.

Observación

La convergencia a un *óptimo global* no está garantizada.

Búsqueda Local

BusquedaLocal()

- 1. Construir una solución $s^* \in S$
- 2. repetir
- 3. elegir $s \in N(s^*)$ tal que $f(s) < f(s^*)$ y actualizar $s^* = s$
- 4. **mientras** exista $s \in N(s^*)$ tal que $f(s) < f(s^*)$

En la práctica

Un algoritmo de búsqueda local requiere definir (al menos) los siguientes elementos:

- O Cómo se representa una solución factible?
- O Cómo se construye la primera solución factible?
- Qué *vecindario(s)* considera el algoritmo?
- Qué criterio de aceptación se implementa en cada caso?

Ejemplo: relocate para TSP

Definición

Dado un tour factible *s* para el TSP, el operador *relocate* (o también llamado *node insertion*), *N*_{rel}, se define como:

- \bigcirc considerar un vértice $i \in s$, adyacente a los vértices p y q.
- Dado un arco $(j, k) \in s$, $j \neq p$ y $k \neq q$, un vecino de s está dado por:
 - remover a i de su posición;
 - agregar el arco (p, q);
 - o insertar i entre j y k definiendo los ejes (j, i) e (i, k).
- Aplicar estos pasos para todo i y $(j, k) \in s$.

Propiedades

 \bigcirc **Mejora**. Una solución $s' \in S$ es una mejora de s si

$$c_{pq}+c_{ji}+c_{ik}< c_{jk}+c_{pi}+c_{iq}, \\$$

que puede ser verificado en O(1).

O Complejidad. La complejidad computacional de explorar el vecindario completo $N_{\rm rel}(s)$ es $O(n^2)$.

Ejemplo: swap para TSP

Definición

Dado un tour factible s para el TSP, el operador swap, N_{swap} , se define como:

- considerar dos vértices distintos *i*, *j*;
- \bigcirc intecambiar las posiciones de i y j en s;
- \bigcirc aplicar estos cambios para todo par de vértices i, j.

Propiedades

 \bigcirc **Mejora**. $s' \in N_{\text{swap}}$ es una mejora de s si

$$c_{pj} + c_{jq} + c_{li} + c_{ik} < c_{pi} + c_{iq} + c_{lj} + c_{jk},$$

que puede ser verificado en O(1).

 \odot Complejidad. La complejidad computacional de explorar el vecindario $N_{\rm swap}$ es $O(n^2).$

Ejemplo: 2-opt para TSP

Definición

Dado un tour factible s para el TSP, el operador 2opt, N_{2opt} , se define como:

- considerar dos ejes distintos $(i, j), (k, l) \in s$;
- \bigcirc conectar $i \to k$, $j \to l$ y ajustar el tour;
- aplicar estos cambios para todo par de ejes (i, j), $(k, l) \in s$.

Propiedades

 \bigcirc **Mejora**. $s' \in N_{2\text{opt}}$ es una mejora de s si

$$c_{ik} + c_{k \rightarrow j} + c_{jl} < c_{ij} + c_{j \rightarrow k} + c_{kl},$$

que puede ser verificado en O(1).

 \bigcirc **Complejidad**. La complejidad computacional de explorar el vecindario $N_{2\text{opt}}$ es $O(n^2)$.

Ejemplo: 2-opt para ATSP

Definición

Dado un tour factible s para el ATSP, el operador 2opt, N_{2opt} , se define como:

- considerar dos ejes distintos $(i, j), (k, l) \in s$;
- \bigcirc conectar $i \to k$, $j \to l$ y ajustar el tour;
- aplicar estos cambios para todo par de ejes (i, j), $(k, l) \in s$.

Propiedades

 \bigcirc **Mejora**. $s' \in N_{2opt}$ es una mejora de s si

$$c_{ik} + c_{k \rightarrow j} + c_{jl} < c_{ij} + c_{j \rightarrow k} + c_{kl},$$

que puede ser verificado en ¿?.

 \bigcirc **Complejidad**. La complejidad computacional de explorar el vecindario N_{2opt} es $\mbox{$\xi$}$?.

Ejemplo: 2-opt para ATSP

Definición

Dado un tour factible s para el ATSP, el operador 2opt, N_{2opt} , se define como:

- considerar dos ejes distintos $(i, j), (k, l) \in s$;
- \bigcirc conectar $i \to k$, $j \to l$ y ajustar el tour;
- aplicar estos cambios para todo par de ejes (i, j), $(k, l) \in s$.

Propiedades

 \bigcirc **Mejora**. $s' \in N_{20pt}$ es una mejora de s si

$$c_{ik} + c_{k \rightarrow j} + c_{jl} < c_{ij} + c_{j \rightarrow k} + c_{kl},$$

que puede ser verificado en O(n).

 \bigcirc Complejidad. La complejidad computacional de explorar el vecindario $N_{2\text{opt}}$ es $O(n^3)$. ¿Podemos mejorarla?

Ejemplo: 2-opt para ATSP

Para reducir la complejidad de validar si un movimiento 20pt mejora la solución en el ATSP, se pueden seguir dos caminos:

- asumir que el cálculo se hace en un determinado orden, e ir actualizando ciertos valores convenientemente;
- o incorporar estructuras de datos que mantienen información sobre

$$s = (0, v_1, \dots, v_n, 0);$$

- $s[i] = c_{0,v_1,...v_i}$ el costo parcial de la ruta $0 \rightarrow v_i$.
- ∘ $rev_s[i] = c_{0,v_n,v_{n-1},...,v_i}$ el costo parcial del reverso de la ruta $v_i \leftarrow 0$.
- Si *j* aparece despupés de *i*,

$$c_{i \rightarrow j} = s[j] - s[i]$$

 $c_{j \rightarrow i} = rev_s[i] - rev_s[j]$

Propiedades

 \bigcirc **Mejora**. $s' \in N_{2opt}$ es una mejora de s si

$$c_{ik} + c_{k \to j} + c_{jl} < c_{ij} + c_{j \to k} + c_{kl},$$

que puede ser verificado en O(1).

 \bigcirc **Complejidad**. La complejidad computacional de explorar el vecindario $N_{2\text{opt}}$ es $O(n^2)$.

Qué debemos hacer luego de actualizar la solución en caso de mejora?

Ejemplo: relocate para GAP

Definición

Dada una solución factible para el GAP, el operador relocate, $N_{\rm rel}$, se define como:

- considerar un cliente $j \in s$ asignado al depósito i;
- considerar un depósito $k \neq i$;
 - remover *j* de su ubicación actual;
 - insertar *j* en el depósito *k*;
- Aplicar estos pasos para todos los clientes $j \in s$ y los depósitos distintos al actual.

Propiedades

 $\bigcirc\:$ Mejora. Una solución $s' \in N_{\mathrm{rel}}(s)$ es una mejora de s si

$$c_{kj} < c_{ij} \; \text{y} \; d_{kj} \leq \bar{c}_k,$$

con \bar{c}_k la capacidad remanente del depósito k, que puede ser verificado en O(1).

 \bigcirc Complejidad. La complejidad computacional de explorar el vecindario completo $N_{\mathrm{rel}}(s)$ es $O(n \times m)$.

Ejemplo: swap para GAP

Definición

Dada una solución factible para el GAP, el operador swap, N_{swap} , se define como:

- \bigcirc considerar dos clientes distintos $j_1, j_2 \in s$ asignado a los depósitos $i_1 \neq i_2$, respectivamente;
 - \circ remover j_1 de i_1 e insertarlo en i_2 ;
 - remover j_2 de i_2 e insertarlo en i_1 ;
- Aplicar estos pasos para todos los clientes $j_1, j_2 \in s$ asignados a depósitos distintos.

Propiedades

 \bigcirc **Mejora**. Una solución $s' \in N_{\text{swap}}(s)$ es una mejora de s si

$$\begin{array}{cccc} c_{i_2j_1} + c_{i_1j_2} & < & c_{i_1j_1} + c_{i_2j_2} \\ & d_{i_2j_1} & \leq & \bar{c}_{i_2} + d_{i_2j_2} \\ & d_{i_1j_2} & \leq & \bar{c}_{i_1} + d_{i_1j_1} \end{array}$$

con \bar{c}_k la capacidad remanente del depósito k, que puede ser verificado en O(1).

Complejidad. La complejidad de explorar el vecindario $N_{rel}(s)$ es $O(n^2)$.

Y ahora?

