

AMENDMENTS TO THE SPECIFICATION

Please replace the paragraph on page 5, starting at line 6, with the following paragraph:

In still another embodiment of the present invention, a method of synchronizing video indexing between an A/V signal and data during recording/playback of a broadcast program comprises detecting an XML TAG by analyzing an XML file among broadcasting information stored in a storage unit; detecting a time offset from the detected XML TAG; converting the detected time offset into a file offset; generating GOP (Group of Pictures) index files from the MPEG transport stream; reading a GOP index file and comparing the GOP index file to the file offset; storing the GOP index file and the XML TAG if the file offset is equal to the GOP index file, and otherwise, reading a next GOP index file and compared to the file offset until a GOP index file which matches the file offset is found for storage with the XML TAG.

Please replace the paragraph on page 7, starting at line 7, with the following paragraph:

Referring to FIG. 2, the contents (P/S) unit 100 generally produces, in real time, data to be synchronized with a broadcast program and produces live broadcast program to be broadcasted. Namely, the data to be synchronized with a broadcast program is the XML TAG information. The data transmission unit 200 combines the XML TAG information from the contents P/S unit 100 with the produced broadcast program, and transmits the combined data to a broadcasting network in the form of an MPEG transport stream, for example, MPEG-2 transport stream. The receiving system 300 receives the broadcast program transmitted from the data

transmission unit 200 of the broadcast data synchronization and transmission system, may simultaneously ~~records~~record and ~~playbacks~~playback the broadcasting signal, and reads information required for user video indexing by analyzing the XML TAG received in synchronization with specified sections through a path for data broadcasting.

Please replace the paragraph on page 12, starting at line 19, with the following paragraph:

Referring to FIG. 7, an XML TAG is first read from the input stream (S10) and a time offset, i.e. the time information, is detected from the XML TAG (S20). The detected time offset is then converted into a bit length by multiplying the time offset with a corresponding length of the MPEG stream (S30), and the resultant bit length is converted to a file offset (S40). Also, GOP index files are generated from the input stream as the stream is stored in the storage unit 350 (S50). Thereafter, a GOP index file is read (S60) and compared to the file offset (S70).