浙江大学 2020 - 2021 学年秋冬学期 《抽象代数》课程期中考试试卷

开课学院:	理学院	,	考试形式:	闭卷,	允许带	入场

考试时间: 2020年11月9日,所需时间: 120 分钟

考生姓名: _____学号: _____专业: ______

题序	_	 111	四	五.	总 分
得分					
评卷人					

- \rightarrow . Explain the following notion(10%×2=20%.)
- 1.Group.
- 2.G-set (where G is a group).
- \equiv . (20%) Let p be a prime number, $Z_p = \{ \overline{a} | a \in Z \}$, where $\overline{a} = a + pZ = \{ a + pc | c \in Z \}$. Set $SL(2, Z) \coloneqq \{ A \in M_2(Z) | \det(A) = 1 \}$ and $SL(2, Z_p) \coloneqq \{ A \in M_2(Z_p) | \det(A) = \overline{1} \}$. Show that the mapping $\varphi \colon SL(2, Z) \to SL(2, Z_p), \varphi \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix}$ is an epimorphism from SL(2, Z) to $SL(2, Z_p)$.
- \equiv . (20%) (First fundamental theorem of homomorphism) Suppose G is a group and N is a subgroup of G. Show that N is a normal subgroup of G if and only if there exists a homomorphism $\pi: G \to H$ such that $\ker(\pi) = N$.
- \square . (20%) Let H be a subgroup of G and p = [G:H]. Suppose p is the least positive prime factor of |G|. Show that H is a normal subgroup of G.
- \pm . (20%) Suppose G is a group of order 455. (1) Find the number of Sylow p-subgroups of G. (2) Show that G is a cyclic group.

参考答案:

- -.1. A nonempty grow set G together with a binary operation .: $G \star G \to G$, $(x,y) \mapsto x \cdot y$ is called a group et it satisfies:
 - \mathbb{O} (associativity) (a-b)·c = $\mathbb{A}\cdot(b\cdot c)$, if for any $a,b,c\in G$,
 - (identity) there is for any aEG, a.e=e.a=a=
 - 3. t invertible (inverse) for any $a \in G$, there is an element be G much that ab=ba=e.
 - 2. A nonempty set X is called a G-set it there is a mapping $G \times X \to X$, $(g, x) \mapsto g \times$ such that, for all $x \in X$ and $g_1, g_2 \in G$, ex = x and $(g_1g_2) \times = g_1(g_2x)$, where e is the identity of g group G.

=. Proof: O well-defined for For any (ab) ESL(2,Z), ad-be=1 : ad-be = ad-be=1 : (a b) + SL(2, Zp). Dhomomorphism. For any (ab), (uv) ESL(2,2), 4 (ab) (uv)) = 4 (au+bw aw+bx) = (an+bw av+bx) $= (\overline{a} \overline{u} + \overline{b} \overline{w} \overline{a} \overline{v} + \overline{b} \overline{x}) = (\overline{a} \overline{b})(\overline{u} \overline{v}) = \varphi(\overline{a} \overline{b})\varphi(\overline{u} \overline{v}).$ B surjective. First, we claim that SL(2, Up) is generated by (\bar{k}, \bar{k}) and (\bar{k}, \bar{k}) , $\bar{k}, \bar{k}' \in \mathbb{Z}_{p}$. (i) For any k, k' + 2p. ([0]) ([k') + SL(2, 2p). (ii). For any [ab) (SL(2, 2p), of ato, $(\bar{a}\ \bar{b}) \xrightarrow{\text{ps. Ro}} (\bar{a}\ \bar{b}) \xrightarrow{\text{grade}} (\bar{a}\ \bar{b}) \xrightarrow{\text{grade}} (\bar{a}\ \bar{o})$ P3-P0 $\left(\overline{1} \overline{a}^{\dagger}-\overline{1}\right)$ By $\left(\overline{1} \overline{o}\right)^{\dagger}=\left(\overline{1} \overline{o}\right)$, $\left(\overline{1} \overline{k}'\right)^{\dagger}=\left(\overline{1} \overline{k}'\right)$ we can get $(\bar{a}\ \bar{b}\)\in <(\bar{b}\ \bar{b}\),(\bar{b}\ \bar{b}\),\bar{k},\bar{k}'\in\bar{l}$ If \$\bar{a}=\bar{0}\$, we can consider (\$\bar{a}+\bar{b}\$ \bar{b}\$) instead. and and artistic

By $(\bar{a}\ \bar{b})^{CO+CO}$ $(\bar{a}+\bar{b}\ \bar{b})$ and $\bar{a}+\bar{b}\neq\bar{0}$ (otherwise, $\bar{a}\bar{d}-\bar{b}\bar{c}=\bar{0}$), we can get our conclusion.

 $SL(2,2p) = \langle \left(\frac{1}{k},\frac{1}{k}\right), \left(\frac{1}{k},\frac{1}{k'}\right), R, R' \in 2p \rangle$

Then, since the preimage of $(\frac{10}{k!})$, $(\frac{1}{0})$ can be

 $\binom{10}{k}$, $\binom{1}{k'}$) \in SL(2,Z), we can find the preimage of any element in SL(2, Ep). Thus, φ is a surjection.

E. Proof: " \Rightarrow " Suppose that N is a normal subgroup of G.

Then G/N is a group with its multiplication defined as aN·bN = abN. For aNat CN. Fair G, the multiplication is well-defined and the identity of G/N is N, \ans = atN.

Define $\pi: G \to G/N$ $g \mapsto gN$, for any $g \in G$.

 $\pi(gh) = ghN = gN \cdot hN = \pi(g)\pi(h)$ is a homomorphish $g \in ker(\pi) \Rightarrow gN = N \Rightarrow gtN$ is ker(π) = N.

"E". Suppose that there is a homomorphism $\pi:G\to H$ such that $ber(\pi)=N$.

For any $g \in G$, $n \in \mathbb{N}$, $\pi(gng^{\dagger}) = \pi(g)\pi(n)\pi(g^{\dagger})$ = $\pi(g) \cdot e_{H} \cdot \pi(g)^{\dagger} = e_{H}$.

where en is the identity of H.

: gng + Eporta)=N : N is a normal subgroup of G.

B. Proof: Denote GIH by GIH:= 4H1, H2, --, Hp4, where HI=H. The action of G on G/H: GXG/H -> G/H is well well-defined and g can be viewed as a bijection of set G/H for gHi=gHj () Hi=Hj and (Hi, 7 Hj=g"Hi, such that gHj=Hi Thus we can define a map $\varphi: G \to Sp$, $g \mapsto \overline{cg}$, where Hogli) = gHi: As for any g, h & G, gi=1,2,-,p, ghHi=glhHi), we have $H_{\sigma_gh(i)} = ghHi = g(hHi) = gH_{\sigma_h(i)} = H_{\sigma_g\sigma_h(i)}$ and then $\nabla gh(i) = \nabla g \nabla_h(i)$. $\therefore \varphi(gh) = \varphi(g) \varphi(h), \varphi(i), \varphi(i), a homomorphism.$ For g & ber(4), Hoger g Hi = Hoger = Hi, e=1,2, p. : gH=H : geH : berty) = H. : [G:H] | [G: bery] One the other hand, G/bery & Inf and Imp & Sp. in : [C: bery] = [Imyl and Imyl | 15pl. Hence, p[[G:bery] and [G:bery]| p! . As p is the least positive prime factor of 191 and [G: perys | 191, we have IG:bery]= p: bery 1=H: H is a normal subgroup of G

D. Proof: 455=5×7×13. By sto sylow theorem.

the number of sylow 5-subgroups ks satisfies ks 191 and

ks =1 (mod 5), so ks =1 or 91. Satisfies Vinilarly, the number

of sylow 7-subgroups kr=1 and the number of sylow 13 subgroups

by=1.

It ks=91, there are 91×4=364 elements whose order is 5. We use M and N to dehote the unique sylow 7-subgroup and sylow 13-subgroup. For Then MAG, NAG, MN ≤G, and the order in MN are all for any any atMN, 101+5.

By IMM=91, 364+91=455, we get all the elements of G.

Now we choose a Tylow 5-subgroup H. By Sylow theorem, group HM has only one Tylow 5-subgroup and one Tylow 7-subgroup. So HAHM, MAHM. As HMM=9e4, HM=H×M is a cyclic group of order 35. So there is an element of order 35 in G. Contradiction.

Hence the Rs =1.

: G=H×M×N is a cyclic group. of sater 455.

2. Prop: Show that (5,2x+3) is a maximal ideal of ZTX], Determine the field ZTX]/(5,2x+3).

Proof: (1) to Suppose that there is an ideal M contains (5, 2x+3), and M+\$(5,2x+3).

Then there is an element fix) ± 4 such that ± 6 sem and ± 1 (5, 2x+3). As ± 2 (2x+3)-5(x+1)=x+4+(5,2x+3) and ± 1 (5, 2x+4)+ ± 1 (5, 2x+3). As ± 1 (2x+3)-5(x+1)=x+4+(15,2x+3) and ± 1 (x)= \pm

: (5, exts) is a maximal ideal of ZTX).

(2) by second Third fundamental Theorem of Homomorphism of Rings, $200/(5, 2x+3) \approx 200/(5, 2x+3) = 7500$

For 3(2x+3) = x+4, 2500/(2x+3) = 250x/(x+4) - 23.