1	MUÈTIPLE CHOICE Q	UESTIONS (MCQ'S))
	An ordered Set of numbers	formed according to defin	
	rule is called a (a) Universal Set	(b) Sequence	

(d) Groupoid (c) Group sequence is also called (b) Power Set (a) progression (d) Matrix (c) Universa! Set

The individual members of a sequence are known as 3.

(b) Component (c) Terms (d) Matrix (a) Vector If the Sequence has unlimited number of terms then it is 4. sequence. called (b) Limited (c) Definite (d) Infinite

(a) Finite The nth term is represented by 5. (c) T_{n-1} (d) T_{n+1} (b) T_2 (a) T_p

In Sequence 3, 7, 11 the nth term will be (b) 4n - 1(c) 4n + 1 (d) 1 - 4n(a) 2n - 1

In Sequence 2, 4, 8, the nth term T_n will be

(d) $\frac{2}{n}$ (b) 2^{n-1} (a) 2^{n+1}

In sequence 3, 6, 9, the nth term T_n will be 8. (a) 3^n (b) 3 + n(d) 3n

of Series. 9. \sum represents the

(a) product (b) Difference (c) Sum (d) Union

A Sequence in which each term is formed by adding fixed number to one proceeding is called Sequence.

(a) Geometric (c) permutation (b) Harmonic (d) Arithmetic

11. The formula for nth term i-e T_n of arithmetic Sequence is

(a) a - (n - 1)d

(b) a + (n + 1)d(d) a + (1 - n)d

(c) a + (n - 1)dThe formula for the sum of the terms of Arithmetic Sequence is _

(a) $S_n = \frac{n}{2} \{ 2a + (n-1) d \}$ (b) $S_n = \frac{n}{2} \{ 2a + (n+1) d \}$

(c) $S_n = \frac{n}{2} \{ 2a - (n-1) d \}$ (d) $S_n = \frac{n}{2} \{ 2a - (n+1) d \}$

0		
13.	The formula for the sum Sequence in terms of first a	of the terms of the Arithmetic nd last terms are given
	(a) $S_n = \frac{n}{2}(a-\ell)$	(b) $S_a = \frac{n}{2} (a + \ell)$
	(c) $S_n = 2n (a + \ell)$	(d) $S_n = 2n (a - \ell)$
14.	When three terms are in A.	P then the middle term is called
	(a) Median	(b) Mode
	(c) Geometric Mean	(d) Arithmetic Mean
15.	If A is A.M between the nu	mbers a and b then $A = $
	$(a) \frac{a+b}{2} \qquad (b) \frac{a-b}{2}$	(c) $2(a+b)$ (d) $2(a-b)$
16.	If A ₁ , A ₂ , A ₃ , A _t between two given numbers	be the "n" Arithmetic mean
	a-b	a+b n+1
	(a) $\frac{a-b}{n+1}$ (b) $\frac{b-a}{n+1}$	(c) $\frac{1}{n+1}$ (d) $\frac{1}{h-2}$
17.		n they are denoted by
-	(a) $a, a - d, a + d$	(b) d-a, a, a-d
	(c) $a - d$, a , $a + d$	(b) d - a, a, a - d (d) a + d, a, a + 2d
18.	If Five numbers are in A.	P they are usually denoted by
	(a) a + 2d, a + 3d, a, a + 2d	, a – d
	(b) $a - 2d$, $a + d$, $a + 3d$, $a + 3d$	
	(c) $a + d$, $a - d$, $a + 2d$, $a - d$	
	(d) $a - 2d$, $a - d$, a , $a + d$, a	+ 2d.
19.	A.M of $(a + b)$ and $(a - b)$ i	s
	(a) b , (b) a	(c) 2a (d) 2b
20.	a, ar, ar, ar, ar ret	presents.
	(a) Arithmetic sequence	(b) Harmonic Sequence
21	(c) Arithmetic series	(d) Geometric Sequence
21.	In 1 - e nth term of a G.P is	·
22.	(c) Arithmetic series T _n i - e nth term of a G.P is (a) ar ⁿ (b) ar ⁿ⁻¹	(c) ar^{n+1} (d) ar^{2n}
44.	m case of G.P common ra	itio is obtained by any
	term by pervious term.	43.41
	(a) Dividing	(b) Adding
23.	(c) Subtracting The formula for the sum of	(d) Multiplying
40.	when r < 1 si given by	of n terms of a geometric Series
	which I si given by	

Chapter 6 # Sequence and Series

554	Mathematics XI
	The formula for the Sum of n terms of geometric Series
24.	when r > 1 is given by
	when I / I is B
	(a) $S_n = \frac{a(r^n + 1)}{1 - r}$ (b) $S_n = \frac{a(1 - r^n)}{1 + r}$
	- (A
	$(C) S_0 - \frac{1}{r-1}$
25.	G h are in G.P then G is called
	(a) Average (b) Common Ratio
	(a) Cornetric Mean (a) Common difference
26.	of G is Geometric mean between a and b then G =
	a b
27.	f G ₁ , G ₂ , G ₃ , G _n are n geometric means between a
27.	and b then a, G_1 , G_2 , G_3 , G_n , b is a G_1 G_2
(Common ratio r =
	a) $\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$ (b) $(ab)^{n+1}$ (c) $\left(\frac{a}{b}\right)^{\frac{1}{n+1}}$ (d) $\left(\frac{b}{a}\right)^{\frac{1}{n-1}}$
(
28. (eometric mean between 15 and 60 is
6	$(b) \pm 30$ (c) 900 (d) 14
29. If	three numbers are in G.P then they are generally written
a	
) ar, a, ar ² (b) ar ² , $\frac{a}{r}$, ar (c) $\frac{a}{r}$, a, ar (d) a, $\frac{a}{r}$, ar ²
(a) ar, a, ar (b) ai , r, ar (c) r, a, a (c) a, r, ar
20 C	M between $\sqrt{2}$ and $\frac{1}{\sqrt{2}}$ is
30. G	M between V2 and $\sqrt{2}$ is
	± 2 (b) $\pm \sqrt{2}$ (c) ± 1 (d) $\pm \frac{1}{\sqrt{2}}$
(a	± 2 (b) $\pm \sqrt{2}$ (c) ± 1 (d) $\pm \frac{1}{\sqrt{2}}$
31. Th	e formula for the Sum of the infinite Geometric Series is
- A.	when r < 1.
(a)	$S_n = \frac{a}{1-r}$ (b) $S_n = a(1-r)$
	1-r a
. (c)	$S_{a} = \frac{1-r}{a} \qquad (d) S_{a} = \frac{a}{1+r}$
=7,	1 1 1
32. Sui	n of the infinite geometric Series $\frac{1}{5} + \frac{1}{15} + \frac{1}{45} + \dots$
	J 1J 4J

(c) 13

(d)7

```
Chapter 6 # Sequence and Series
  33. A Sequence is said to be a ______ sequence if the
       reciprocals of it's term are in Arithmetic progression.
       (a) Geometric
                         (3) Arithmetic
       (c) Converging
                                    d Harmonic
  14. If a and b are the first and second terms of an H.P then it's
       nth term i - e T, will be ___
                                  (d) T_n = \frac{ah}{(1+1)(a+h)}
      (c) Tn = \frac{ab}{b + (n+1)(a-b)}
 35. If x is the pth, y is the qth and z is the rth term of an HIP
      (a) 1
 36. If H is the Harmonic Mean between a and b then H =
37. The Harmonic mean of \frac{1}{3} and \frac{2}{5} is
38. The relation between A (Arithmetic mean.), G (genmenic
     mean) and H (Harmonic Mean) is given by
                 (b) AG = \frac{G}{H} (c) \frac{A}{G} = \frac{G}{H} (d) GH = \frac{A}{G}
39. A Series given by a + (a + d) r + (a + 2d) r^2 +
     Known as
     (a) Arithmetic Series
                                   (5) Germearic Series
     (c) Harmonic Series
     (d) Arithmetico-geometric Series
40. A Series obtained by multiplying the corresponding terms
     of an A.P and a G.P is called ______ Series.
     (a) Arithmetico-Geometric (b) Harmonic
     (c) Geometric
                                    (d) Arithmetic
41. If 3, G, 27 are in G.P what is the value of G.
     (a) \pm 81
                    (b) \pm 30
                                   (c) ±9
```

220		CO 12 10 10
42.	The Sum of the A.P	, 5,9, 13, to 40 terms i
	(a) 3160 (b) 8000	(c) -630 (d) 150
43.	The Sum of the infinite	Series $1 + \frac{2}{3} + \frac{4}{9} + \dots$ is
	\- /	(c) 3 (d) $\frac{2}{5}$
ЛЛ	a a + d a + 2d, a + 3d,	$a + (n - 1)d$ is $known_a$
77.	the Standard form of an	·
	(A) CD (h) H.Y	(c) A.O (d) A.P
45.	A function f · N	R or C is called a
45.	(a) Series	(b) Number
	(c) Fundamental	(d) Sequence
46.	What term of the follow	wing A.P is 125? 5, 10, 15, 20, 25
40.	What term of the rollo	
	(a) 30 (b) 25	(c) 40 (d) 50
47	Demain of Sequence is	the Subset of the Set of
47.	Domain of Sequence is	(b) Odd Numbers (d) Prime Numbers
	(a) Natural Numbers	(d) Prime Numbers
		equence are real, then Sequence
48.		equence and rous, and conquence
	called	(b) Real Series
	(a) function	(d) Real fundamental
	(c) Real Sequence	
49.	If $T_n = 2n - 3$, 1^{st} four t	emis of (1,) are
	(a) -3 , -1 , 1 , 3	(b) -1, 1, 3, 5
	(c) -1 , 1, 3, 6	(d) -3, -1, 1, 5
50	KT _ there	1sthree terms { T _n } are
5 0.	$a + (n-1)d^{-1}$	11 11100 1111 1111 1111
	(a) $1, \frac{1}{a}, \frac{1}{a+d}$	(b) $\frac{1}{a}$, $\frac{1}{a+d}$, $\frac{1}{a+2d}$
	(a) $1, \frac{1}{a}, \frac{1}{a+d}$	a a + G u + 2-G
	1 1 1	(d) $\frac{1}{a}$, $\frac{1}{a}$, $\frac{1}{a+d}$
	(c) $\frac{1}{a}$, $\frac{1}{a+2d}$, $\frac{1}{a+4d}$	$(d) \frac{1}{a}, \frac{1}{a}, \frac{1}{a+d}$
51.		connective terms of an A.P is calle
J1.	THE difference of the	
	(a) Common Subtraction	n (b) Common Addition
	(c) Common difference	
50		natural numbers is
52.		•
	(a) $\frac{n(n-1)}{2}$ (b) $\frac{n+1}{2}$	(c) $\frac{n^2}{2}$ (d) $\frac{n(n+1)}{2}$
	2 2	\(\frac{1}{2}\)

Cha	pter 6 # Sequ	ence et l'Serie	s	557
53.	The Sum of the	ne Susi a Even na	tural numbers	is
331	$(a) \frac{n(n-1)}{2}$	(b) n (n + 1)	(c) $\frac{n}{2}$	$(d) \frac{n(n+1)}{2}$
54.	The Sum of the	ne first n odd nat	ural numbers i	is
J	(a) n (n + 1)	(b) n ²	(c) $\frac{n}{2}$	$(d) \frac{n(n+1)}{2}$
55.	By relation by	w A.P, G.P and (b) G ² Hn ar	$H.P.A \times H =$	·
55.	(a) A2	(b) G ²	(c) H ²	(d) HG
56.	H_1 , H_2 , H_3 ,	Hn ar	e called n H	larmonic mean
	between a ar	and b then $\frac{1}{a}$, $\frac{1}{H}$	1, H ₂	$\frac{1}{H_a}$, $\frac{1}{b}$ are in
	(a) A P	(b) G.P	(c) H.P	(d) A.G
	(a) A.1	(b) 51.	1 .	(2)
57.	If a, b, c are in	n A.P then $\frac{1}{a}$, $\frac{1}{b}$,	are in	
	(a) A.P	(b) G.P	(c) A.G	(d) H.P
58.	If a h care i	n H.P then $\frac{1}{a}$, $\frac{1}{b}$	are in	
36.	11 2, 0, 0 20 2	a b	(c) CP	(d) A G
- ^	(a) A.P	(D) FLE n G P then h ² =	(3)	(a) A.G
39 .	(a) a ²	(b) c ²	(c) ac	(d) ab
60.	If $\frac{G}{a} = \frac{b}{G}$ then	(b) H.P in G.P then b ² = (b) c ²		
	(a) + ah	(b) $\pm \sqrt{ab}$	(c) + $(ab)^{\frac{1}{3}}$	(d) \pm (ab) $\frac{1}{6}$
61.	No term of go	eometric Sequen	ce can be	
	(a) 0	(b) 1	(c) -1	(d) ∞
62.	Each term a	fter the first to	erm is an r	multiple of it's
	tern	n. (h)di	(a) last	(d) Middle
		re (b) preceeding		
63.		$a ratio r = \frac{a_n}{a_{n-1}} is$		
	$(\mathbf{a}) \ \mathbf{a}_{\mathbf{a}-1} = 0$	(b) $a_{n-1} \ge 0$	$(c) a_{n-1} \leq 0$	$(\mathbf{d}) \mathbf{a}_{\mathbf{n}-1} \neq 0$
64.	For sequence	{a _o } the quotie	nt $\frac{\mathbf{a}_{\mathbf{c}}}{\mathbf{a}_{\mathbf{c}-1}}$ is called	d
	(a) Common	difference	(b) Commo	on Ratio
	(c) G.M		M.H (b)	_ a =2 ahan ista
65 .	It r is comm	non ratio of G.	$r \{a_n\}$ and a_n	$a_1 = a_1 r^2$ then it's
	$preceeding 0$ (a) $a_1 = a_2 r^3$	erm equal to (b) $a_1 = a_2$	$(c) a_2 = a_1 r$	(d) $a_n = a_1 r^{n-1}$
	(-) -4 - alt	(0) -1 -2	(-) ~·	

-	ctive	ly the arithmetic, the position
66.	If A, G, and H are respective geometric and the Harmonic	mean between any two real
	positive and Unequal hame	(c) $A > G < H(d)A = G$
67.	In given H.P a, H ₁ , H ₂ ,	is terms
	(a) $n+1$ (b) $n+2$ Find the 20^{th} term of an H.P	(c) n-1 (d) n of which the first two term
68.		CIMS
	are $\frac{2}{39}$ and $\frac{2}{37}$. (a) -2 (b) 1	(c) 0 (d) 2
۷0	(a) -2 (b) 1 Find the first term of a G.P w	hose second term is 2 and the
09.	· · · · · · · · · · · · · · · · · · ·	
	(a) - 8 (b) 4	(c) -4 (d) 2
70.	Hany Many terms of the get	ometric series $1 + 4 + 16$.
,	muct be taken to have	their sum equal to 34]
	(a) 5 (b) 0	(c) 4 (d) 5
71.	Find the sum of the first 7 term	ms of the G.P.
	1 12 -26	
	(a) -2187 (b) 2188	(c) 3000 (d) 2160
72.	The Sum of the terms of a g	eometric Sequence is called a
	(a) A mish matic	(b) Harmonic
	(c) Arithemetico geometric	(d) Geometric
73.	Which terms of the G.P. $\frac{1}{8}$, $\frac{1}{4}$	$\{\frac{1}{2}, 1, 2, 4, \dots 32\}$
	(a) 8 (b) -9	(c) 0 (d) 9
74.	The elements in the range of	f Sequence $\{a_n\}$ are called it's
	(a) Subsets	(b) Terms
	(c) power	(d) None of these
75.	A Sequence may be	_ according as the number of
	it's terms is	an to Cale
	• •	(b) Infinite
7/	(c) 0	(d) None of these
/6.	A geometric Sequence cannoratio.	
	(a) -1 (b) 0	(c) 1 (d) 2
77.	The sum of an infinite geometric common ratio "r" lies between (a) 0 and 1	netric Series exists only if the
	(a) 0 and 1	(b) -1 and 0

(c) -1 and 1

(d) None of these

haj	pter 6 # Sequ	uence and Ser	ries	559
3.	No. formula	has been obtai	ned for finding	the sum of "n"
5 .	terms of	·		
	(a) A.P		(b) H.P	
	(c) G.P		(d) None of	these
	An H.P cann	ot contain a	term.	
).	(a) Zero		(b) 1	
	(c) ∞		(d) None of	these
	are	used to represe	ent ordered lists	
).	(a) Sequence	e '	(b) Matrix	
	(c) permutat	ion	(b) Matrix (d) None of	these
	The	derive it's r	ame from the	fact that musica
1.				
	string.	(b) H.P	(c) G.P	(d) A.G.P
	(a) A.F	ing decimal pu	mher is a	number
2.	Every recur	(h) Even	mber is a (c) Prime rms then S _n = _	(d) Whole
	(a) Odd	to n te	rms then S =	(d) Whole
3.	1+1+1+	(b) n ²	(c) $n+1$	(d) n + 2
	(a) n	(U) II	of competric co	(u) II + 2
4.	The reciproc	cal of the terms	or geometric se	equence forms a
	other	'a\	(-) II D	(A) A C B
	(a) A.P	(b) G.P	(c) H.P	(d) A.G.P. $\frac{(b)ab}{(a+b)}$ are the
_	(n+1)ab	(n+1)ab	<u>(n -</u>	are the
5.	a + nb	2a + (n – 1) b '	na	1+b
	b/\	v two numbers	a and b.	
	(a) H.M's	(b) A.M's	(c) G.Ms	(d) A.G.M's
6.	1-1+1-	1 + 2n	times =	
Ο.	(a) 0		(b) a_1	
		∖ ⁿ a.	(4)	
	(c) $\frac{a_1 - (-1)^2}{2}$	<u>/ u</u>	(d) ∞	
_	2		- :- C D +b	(a . b)(a . d)
7.	II a + b, b	+ c, c + d ar	e in G.P then	(a + b)(c + d)
	1 2		4 4 4 4	2
	$\overline{(a)}(a+b)^2$		(b) $(b + c)$	
	(c) $(c + d)^2$		(d) (a + b)	
88.			en –2i and 8i a	
	$(a) \pm 4$	$(b) \pm 3$	$(c) \pm 2$	$(d) \pm 1$
39.	Harmonic r	nean between 3	and 7 is	
	(a) $\frac{5}{21}$	(b) $\frac{1}{5}$	(c) 15	(d) √21
90.				
ν.	THE A.M D	etween 1 ··· x +	x and $1 + x +$	x^2 is
_	(a) $2 - x^2$	(b) $2 + x^2$	(c) 1 - x ²	(d) $1 + x^2$
91.	The A.M b	etween $3\sqrt{5}$ as (b) $2\sqrt{5}$	nd $5\sqrt{5}$ is	
•				

56	o .			Mathematics XI
92.	The fifth to	erm of the Sequ	ence $I_n = 2\Pi + .$	3 18
72.	(a) - 13	(b) 13	(c) -7	(d) 7
93.	Day asama	rric Sequence.		
	1 1 .	1 1	= (c) 2 n A.P is a and t	
	22 • 48 • 84	(b) 1	(c) 2	(4) 4
	(a) 0	of Pterms of 8	n A.P is a and t	he sum of q terms
94.	is D Find t	he sum of (P+	a) terms =	odin of q terms
	(-)	(h) n + a	(c) - pa	(d) - (-
95.	If four nu	mbers are in A	.P they are us	ually denoted by
	(a) $a - 3d$,	a - d, a + d, a +	3d (b) a + 2d,	a + 3d, a, a - d
	(c) $a - 2d$,	a + d, a + 3d, a	+ 5d	
	(d) $a - 2d$,	a - d, a, a + d		
96.	$\int_{a} \frac{a^{m+1} + b^{m}}{a^{m+1}}$	may become	the A.M betw	een a and b then
70.	a" + b"			o dien
	the value of	n =	(0) 2	(d) -1 een a and b then
	(a) 1	(6) U	(6) 2	(a) -1
97.	If $\frac{a}{a^0+b^0}$	may become	the G.M betw	een a and b then
	the value of	n =		
		1	(c) -1	las a
	(a) 0	(b) $-\frac{7}{2}$	(c) -1	(d) I
••	an+1 + bn+	1	the ITM between	een a and b then
98.	$a^n + b^n$	may become	the H.M Detwo	een a and b then
	the value of	n =	(c) -1	
	(a) ()	$(b) - \frac{1}{2}$	(c) =1	(d) 1
) 9.				rm is p then the
,		· q)th term is _		
	(a) _pq	(b) -pg	(c) $\frac{p+q}{pq}$	(d) 0
		gent infinite G.	P's have a	
	(a) Sum		(b) Differen	
		ation		
UI.	then G. G.	3, O _{n, (}	b are	numbers in U.F
	and b.	U3 Un a	re termed as n	J.IVI S DELWEEN 4
	(a) n + 1	(b) $n + 2$	(a) = 1	(d) n = 2
	(-)	(0) 11 T 2	(c) $n - 1$	(a) n - 2

Mathematics XI

hapter 6 # Sequence and Service	ies 561
a geometric sequence a,	G_1 , G_2 , G_3 , G_n , b ; b as its
02. In a geometric.	
(a) (n + 1)(n + (0) (n - 1)(n)	(c) $(n + 2)th$ (d) $(n - 2)th$
of If a, b, c are three consecu	tive terms of an H.P then $\frac{\pi}{c}$ =
$\frac{a-b}{b}$ is known as	relation for the H.P.
b - c (a) Characteristic (c) Proportional	(b) Empirical
(a) Proportional	(d) None of these
$G \rightarrow G \rightarrow H i - e A, G$	i, H are in order of
magnitude.	
magnitude. (a) Ascending (c) Alternating 05. Recurring decimals are also	(b) Descending
(a) Alternating	(d) None of these
os Recurring decimals are also	known as decimals.
(a) parametric (c) functional	(b) periodic
(c) functional	(d) None of these
of In evaluation of recurring of	decimals application of Series is
ad	
(a) Infinite geometric (c) finite sequence	(b) finite geometric
(c) finite sequence	(d) None of these
Λα if Δ G H are the arith	nene, geometric and narmout
means between	a and b respectively then A. G.
U are in	
(a) G P (b) A.P	(c) H.P (d) A.G.P
09 The Series Obtained by a	dding the terms of an harmonic
sequence is called	Series.
(a) Arithmetic	(b) Geometric
(c) Arithmetico & geomet	ric (d) Harmonic
(c) Aritimetico & geomet	said to be a harmonic mean
109. H ₁ , H ₂ , H _n are	I U b form
between a and b if a, H ₁ , h	(a) C P (d) A C P
(a) H.P (b) A.P	(c) G.P (d) A.G.P
110. A number H is said to be	the harmonic mean between tw
numbers a and b if a, H, b	form.
(a) A.P (b) H.P	(c) G.P (d) A.G.P
III. If a and d are the first te	rm and the common difference of
the A.P respectively,	then the nth term of the
corresponding H.P is	\
	(b) $T_n = \frac{1}{a + (n-1)d}$
(a) $T_n = a + (n-1)d$	(b) $T_a = \frac{1}{a + (n-1)d}$
	# 4 (41 1341

123. $1 + 1 + 1 + \dots$ to n terms then $S_{\infty} =$

(c) n^2

(b) n

(a) 1

cha	oter 6 # Seq	uence and Sei	ries	56.1
24.	$1 + \frac{3}{2} + \frac{9}{4} +$	then S	* <u>.</u>	
	(a) -2	(b) 2	$(\epsilon) \frac{1}{2}$	(d)
		ert the sequence	8 2 + 22 + 22	2 → im
125.	G P then m	ultiply and divid	le the sequence	by
	(a) 9	• •	(b) 8	
			(d) any nur	nber
. 26	When som	e numbers are	in G.P then	all the numbers
20.	between the	extreme numbs	ers, are called	
	(a) A.M's		(b) G.M's	
			(d) None o	f these
. 27	In A.P Coef	fficient of d in t	irst term is	
44.	(a) Zero		(b) 1	
			(d) None o	f these
128.	In A.P Coef	fficient of d (Co	mmon differen	ce) in nth term is
		(b) $n + 1$	(c) n - 1	(d) $n + 2$
. 20	If a A. A	Am	b are in A.P.	then number of
149.	A M's betw	een a and b are		
	(a) n - 1	(b) n	(c) n + 1	(d) $n + 2$
20	A. A. A.	A _n ar	e n A.M's bety	ween a and b then
1.50.	a A. A.	A _n , b a	re in	
	(a) A.P	(b) G.P	(c) H.P	(d) A.G.P
131.	If 7 is the A	.M between 10	and 4, then co	mmon difference
	d =			
	(a) 3	(b) ±3	(c) -3	(d) 0
132.				3 M and the H M
				then x , y , z are
	in		*	
		(b) H.P	(c) G P	(d) A.G.P
133.				hen c, a, b are it
	(a) A.P	(b) H.P	(c) G.P	(d) A.G.P
134.	When lim 5	Sa does not exist	when	
	(a) Series is	s Convergent s Oscillatory	(b) Series	is divergent
	(c) Series i	s Oscillatory	(d) None	of these

563

				Ans	wer	S	36		
1.	b	2.	a	3.	c	4.	d	5.	a
6.	b	7.	C	8.	d	9.	C	10.	d
11.	C	12.	a	13.	b	14.	d	15.	a
16.	b	17.	C	18.	d	19.	b	20.	d
21.	b	22.	а	23.	b	24.	C	25.	c
26.	d	27.	a	28.	b	29.	c	30.	c
31.	a	32.	b	33.	d	34.	b	35.	d
36.	b	37.	C	38.	C	39.	d	40.	a
41.	С	42.	a	43.	C	44.	d	45.	d
46.	b	47.	a	48.	С	49.	b	50.	b
51.	C	52.	d	53.	b	54.	b	55.	b
56.	C	57.	d	58.	а	59.	C	60.	b
61.	a	62.	b	63.	d	64.	b	65.	C
66.	a	67.	b	68.	d	69.	b	70.	d
71.	a	72.	d	73.	d	74.	b	75.	а
76.	b	77.	C	78.	b	79.	a	80.	a
81.	b	82.	C	83.	a	84.	b	85.	a
86.	а	87.	b	88.	a	89.	<i>b</i>	90.	d
91.	d	92.	\boldsymbol{b}	93.	C	94.	d	95.	a
96.	b	97.	b	98.	С	99.	a	100.	а
101.	b	102.	C	103.	a	104.	a	105.	b
106.	a	107.	а	108.	d	109.	a	110.	b
111.	b	112.	C	113.	b	114.	b	115.	a
116.	d	117.	c	118.	C	119.	a	120.	c
121.	C	122.	a	123.	d	124.	d	125.	a
126.	a	127.	a	128.	c	129.	b	130.	a
131.	C	132.	C	133.	С	134.	b .		