Lecture 17

Rajiv Kumar rajiv.kumar@iitjammu.ac.in

October 22, 2021

Linear Transformation

Definition

Let *V* and *W* be vector spaces.

- Then a mapping T: V → W is called one to one (injective) linear transformation, if T maps distinct vectors of V into distinct vector of W.
- Then a mapping T: V → W is called onto (surjective) linear transformation, if every vector in W is the image of at least one vector in V.

Theorem

If $T:V \to W$ is a linear transform, then T is one-one if and only if $\mathcal{N}(T)=\{\mathbf{0}\}$ This implies no other vector in V apart from 0 vector....maps to zero vector in W.

Proof. Assume that $\mathcal{N}(T) = \{\mathbf{0}\}$. If $u, v \in V$ such that T(u) = T(v), then $T(u) - T(v) = \mathbf{0}$. Using linearity property of T, we get $T(u - v) = \mathbf{0}$. Since $\mathcal{N}(T) = \{\mathbf{0}\}$, $u - v = \mathbf{0}$, and hence u = v. Assume T is one-one.(Exercise)Health and medical

Let V and W be vector spaces.

- Let $T: V \to W$ be a one to one linear transformation. Then a mapping $T^{-1}: \mathcal{R}(T) \to V$ defined by $T^{-1}(\mathbf{w}) = \mathbf{v}$ if and only if $T(\mathbf{v}) = \mathbf{w}$ is called the *inverse* of T. If T is onto, then T^{-1} is defined on all of W.
- Then a linear transformation T: V → W that is both one to one and onto is called an isomorphism. In this case the vector spaces V and W are said to be isomorphic.

Doubt Note that T^{-1} is also a linear transformation. (Exercise.)

Proof ..by taking linear combination

Finite dimensional vector spaces

Theorem

Let V be an n-dimensional real vector space. Then V is isomorphic to \mathbb{R}^n .

Proof. Since V is n-dimensional, there exists a basis $\{v_1,\ldots,v_n\}$ of V. If $v\in V$, there exist c_1,\ldots,c_n such that $v=c_1v_1+\cdots+c_nv_n$. Now we define a map $T:V\to\mathbb{R}^n$ as follows: $T(v)=(c_1,\ldots,c_n)$. linear T is linear(Exercise)

One-one We need to prove that $\mathcal{N}(T) = \{\mathbf{0}\}$. Suppose $T(v) = (0, \dots, 0)$. Then $v = 0v_1 + \dots + 0v_n$. Hence $\mathcal{N}(T) = \{\mathbf{0}\}$.

Onto Let $c=(c_1,\ldots,c_n)\in\mathbb{R}^n$. Then take $v=c_1v_1+\cdots+c_nv_n$, and by definition, T(v)=c.

Coordinates

Let $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be an ordered basis for the vector space V. Let \mathbf{v} be a vector in V, and let c_1, \dots, c_n be the unique scalars such that $\mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$. Then c_1, \dots, c_n are called the coordinates of \mathbf{v}

relative to B. In this case we write $[\mathbf{v}]_B = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$ and refer to the vector

 $[\mathbf{v}]_B$ as the coordinate vector (matrix) of \mathbf{v} relative to B.

Exercise

Let $V = \mathbb{R}_2[x]$ and $B = \{1, x - 1, (x - 1)^2\}$ be its basis. Then find the coordinates of $p(x) = 2x^2 - 2x + 1$ with respect to B.