Why Transactional Memory Should Not Be Obstruction-Free

Petr Kuznetsov¹ Srivatsan Ravi²

¹Télécom ParisTech

²TU Berlin

Abstract

Transactional memory (TM) is an inherently optimistic abstraction: it allows concurrent processes to execute sequences of shared-data accesses (transactions) speculatively, with an option of aborting them in the future. Early TM designs avoided using locks and relied on non-blocking synchronization to ensure *obstruction-freedom*: a transaction that encounters no step contention is not allowed to abort. However, it was later observed that obstruction-free TMs perform poorly and, as a result, state-of-the-art TM implementations are nowadays *blocking*, allowing aborts because of data *conflicts* rather than step contention.

In this paper, we explain this shift in the TM practice theoretically, via complexity bounds. We prove a few important lower bounds on obstruction-free TMs. Then we present a *lock-based* TM implementation that beats all of these lower bounds. In sum, our results exhibit a considerable complexity gap between non-blocking and blocking TM implementations.

1 Introduction

Transactional memory (TM) allows concurrent processes to organize sequences of operations on shared data items into atomic transactions. A transaction may commit, in which case its updates of data items "take effect" or it may abort, in which case no data items are updated. A TM implementation provides processes with algorithms for implementing transactional operations on data items (such as read, write and tryCommit) by applying primitives on shared base objects. Intuitively, the idea behind the TM abstraction is optimism: before a transaction commits, all its operations are speculative, and it is expected that, in the absence of concurrency, a transaction commits.

It therefore appears natural that early TMs implementations [13, 20, 25, 29, 30] adopted optimistic concurrency control and guaranteed that a prematurely halted transaction cannot not prevent other transactions from committing. These implementations avoided using locks and relied on non-blocking (sometimes also called lock-free) synchronization. Possibly the weakest non-blocking progress condition is obstruction-freedom [19, 21] stipulating that every transaction running in the absence of step contention, i.e., not encountering steps of concurrent transactions, must commit.

In 2005, Ennals [12] argued that that obstruction-free TMs inherently yield poor performance, because they require transactions to forcefully abort each other. Ennals further describes a lock-based TM implementation [11] that he claimed to outperform DSTM [20], the most referenced obstruction-free TM implementation at the time. Inspired by [12], more recent TM implementations like TL [8], TL2 [7] and NOrec [6] employ locking and showed that Ennal's claims about performance of lock-based TMs hold true on most workloads. The progress guarantee provided by these TMs is typically progressiveness: a transaction may be aborted only if it encounters a read-write or a write-write conflicts with a concurrent transaction [16].

There is a considerable amount of empirical evidence on the performance gap between non-blocking (obstruction-free) and blocking (progressive) TM implementations but, to the best of our knowledge, no analytical result explains it. Complexity lower and upper bounds presented in this paper provide such an explanation.

Lower bounds for non-blocking TMs. Our first result focuses on two important TM properties: weak disjoint-access-parallelism (weak DAP) and read invisibility. Weak DAP [5] is believed to improve TM performance by ensuring that transactions concurrently contend on the same base object (both access the base object and at least one updates it) only if their data sets are connected in the conflict graph constructed on the data sets of concurrent transactions [5]. Many popular obstruction-free TM implementations satisfy weak DAP [13, 20, 30], but not the stronger property of strict DAP [14,17] that disallows any two transactions to contend on a base object unless they access a common data item.

A TM implementation uses invisible reads if, informally, a reading transaction cannot cause a concurrent transaction to abort (we give a more precise definition later in this paper), which is believed to be important for (most commonly observed) read-dominated workloads. Interestingly, lock-based TM implementations like TL [8] are weak DAP and use invisible reads. In contrast, we establish that it is impossible to implement a $strictly\ serializable$ (all committed transactions appear to execute sequentially in some total-order respecting the timing of non-overlapping transactions) obstruction-free TM that provides both weak DAP and read invisibility. Indeed, obstructions TMs like DSTM [20] and FSTM [13] satisfy weak DAP, but not read invisibility since read operations must write to the shared memory.

We then derive lower bounds on obstruction-free TM implementations with respect to the number of stalls [10] The stall complexity captures the fact that the time a process might have to spend before it applies a primitive on a base object can be proportional to the number of processes that try to concurrently update the object [10]. Our second result shows that a single read operation in a n-process strictly serializable obstruction-free TM implementation may incur $\Omega(n)$ stalls.

Finally, we prove that any read-write (RW) DAP opaque (all transactions appear to execute sequentially in some total-order respecting the timing of non-overlapping transactions) obstruction-free TM implementation has an execution in which a read-only transaction incurs $\Omega(n)$ non-overlapping RAWs or AWARs. Intuitively, RAW (read-after-write) or AWAR (atomic-write-after-read) patterns [3] capture the amount of "expensive synchronization", i.e., the number of costly conditional primitives or memory barriers [1] incurred by the implementation. The metric appears to be more practically relevant than simple step complexity, as it accounts for expensive cache-coherence operations or conditional instructions. RW DAP, satisfied by most obstruction-free implementations [13, 20], requires that read-only transactions do not contend on the same base object with transactions having disjoint write sets. It is stronger than weak DAP [5], but weaker than strict DAP [15].

	Obstruction-free TMs	Our progressive TM LP
strict DAP	No [15]	Yes
invisible reads+weak DAP	No	Yes
stall complexity of reads	$\Omega(n)$	O(1)
RAW/AWAR complexity	$\Omega(n)$	O(1)
read-write primitives, wait-free termination	No [17]	Yes

Figure 1: Complexity gap between blocking and non-blocking strictly serializable TM implementations; n is the number of processes

An upper bound for blocking TMs. To exhibit a complexity gap between blocking and non-blocking TMs, we describe a progressive opaque TM implementation that beats the impossibility result and the lower bounds we established for obstruction-free TMs.

Our implementation, denoted LP, (1) uses only read and write primitives on base objects and ensures that every transactional operation terminates in a wait-free manner, (2) ensures strict DAP, (3) has invisible reads, (4) performs O(1) non-overlapping RAWs/AWARs per transaction, and (5) incurs O(1) memory stalls for read operations. In contrast, the following claims hold for any implementation in the class of obstruction-free (OF) strict serializable TMs: No OF TM can

be implemented (i) using only read and write primitives and provide wait-free termination [17], or (ii) provide strict DAP [15]. Furthermore, (iii) no weak DAP OF TM has invisible reads (Theorem 2) and (iv) no OF TM ensures a constant number of stalls incurred by a read operation (Theorem 5). Finally, (v) no RW DAP opaque OFTM has constant RAW/AWAR complexity (Theorem 6). In fact, (iv) and (v) exhibit a linear separation between blocking and non-blocking TMs w.r.t expensive synchronization and memory stall complexity, respectively.

Our results are summarized in Figure 1. Altogether, we grasp a considerable complexity gap between blocking and non-blocking TM implementations, justifying theoretically the shift in TM practice we observed during the past decade.

Roadmap. Sections 2 and 3 define our model and the classes of TMs considered in this paper. Section 4 contains lower bounds for obstruction-free TMs. Section 5 describes our lock-based TM implementation LP. In Section 6, we discuss the related work and in Section 7, concluding remarks. Some proofs are delegated to the optional appendix.

2 Model

TM interface. Transactional memory (in short, TM) allows a set of data items (called t-objects) to be accessed via atomic transactions. Every transaction T_k has a unique identifier k. We make no assumptions on the size of a t-object, i.e., the cardinality on the set V of possible values a t-object can store. A transaction T_k may contain the following t-operations, each being a matching pair of an invocation and a response: $read_k(X)$ returns a value in V or a special value $A_k \notin V$ (abort); $write_k(X, v)$, for a value $v \in V$, returns ok or A_k ; $tryC_k$ returns $C_k \notin V$ (commit) or A_k . **TM implementations.** We consider an asynchronous shared-memory system in which a set of nprocesses, communicate by applying primitives on shared base objects. We assume that processes issue transactions sequentially i.e. a process starts a new transaction only after the previous transaction has committed or aborted. A TM implementation provides processes with algorithms for implementing $read_k$, $write_k$ and $tryC_k()$ of a transaction T_k by applying primitives from a set of shared base objects, each of which is assigned an initial value. We assume that these primitives are deterministic. A primitive is a generic read-modify-write (RMW) procedure applied to a base object [10, 18]. It is characterized by a pair of functions $\langle q, h \rangle$: given the current state of the base object, q is an update function that computes its state after the primitive is applied, while h is a response function that specifies the outcome of the primitive returned to the process. A RMW primitive is trivial if it never changes the value of the base object to which it is applied. Otherwise, it is *nontrivial*.

Executions and configurations. An event of a transaction T_k (sometimes we say step of T_k) is an invocation or response of a t-operation performed by T_k or a RMW primitive $\langle g, h \rangle$ applied by T_k to a base object b along with its response r (we call it a RMW event and write $(b, \langle g, h \rangle, r, k)$).

A configuration (of a TM implementation) specifies the value of each base object and the state of each process. The *initial configuration* is the configuration in which all base objects have their initial values and all processes are in their initial states.

An execution fragment is a (finite or infinite) sequence of events. An execution of a TM implementation M is an execution fragment where, starting from the initial configuration, each event is issued according to M and each response of a RMW event $(b, \langle g, h \rangle, r, k)$ matches the state of b resulting from all preceding events. An execution $E \cdot E'$ denotes the concatenation of E and execution fragment E', and we say that E' is an extension of E or E' extends E.

Let E be an execution fragment. For every transaction (resp., process) identifier k, E|k denotes the subsequence of E restricted to events of transaction T_k (resp., process p_k). If E|k is non-empty, we say that T_k (resp., p_k) participates in E, else we say E is T_k -free (resp., p_k -free). Two executions E and E' are indistinguishable to a set \mathcal{T} of transactions, if for each transaction $T_k \in \mathcal{T}$, E|k = E'|k. A TM history is the subsequence of an execution consisting of the invocation

and response events of t-operations. Two histories H and H' are equivalent if txns(H) = txns(H') and for every transaction $T_k \in txns(H)$, H|k = H'|k.

The read set (resp., the write set) of a transaction T_k in an execution E, denoted $Rset(T_k)$ (resp., $Wset(T_k)$), is the set of t-objects that T_k reads (resp., writes to) in E. More specifically, if E contains an invocation of $read_k(X)$ (resp., $write_k(X,v)$), we say that $X \in Rset(T_k)$ (resp., $Wset(T_k)$). The data set of T_k is $Dset(T_k) = Rset(T_k) \cup Wset(T_k)$. A transaction is called read-only if $Wset(T_k) = \emptyset$; write-only if $Rset(T_k) = \emptyset$ and updating if $Wset(T_k) \neq \emptyset$. Note that we consider the conventional dynamic TM programming model: the data set of a transaction is not known apriori (i.e., at the start of the transaction) and it is identifiable only by the set of t-objects the transaction has invoked a read or write in the given execution.

Transaction orders. Let txns(E) denote the set of transactions that participate in E. An execution E is sequential if every invocation of a t-operation is either the last event in the history E exported by E or is immediately followed by a matching response. We assume that executions are well-formed i.e. for all T_k , E|k begins with the invocation of a t-operation, is sequential and has no events after E or E. A transaction E is complete if all transactions in E if E|k ends with a response event. The execution E is complete if all transactions in E in E is t-incomplete. The invocation of E is the last event of E in E in the execution E is the last event of E in E in the execution E is the last event of E in E in the execution E in E in the last event of E in E in the execution E in the last event of E in the last event of E in the execution E in the execution E in the last event of E in the execution E in the last event of E in the execution E in the last event of E in the execution E in the execution E in the last event of E in the last event of E in the execution E in the execution E in the last event of E in the execution E in the e

For transactions $\{T_k, T_m\} \in txns(E)$, we say that T_k precedes T_m in the real-time order of E, denoted $T_k \prec_E^{RT} T_m$, if T_k is t-complete in E and the last event of T_k precedes the first event of T_m in E. If neither $T_k \prec_E^{RT} T_m$ nor $T_m \prec_E^{RT} T_k$, then T_k and T_m are concurrent in E. An execution E is t-sequential if there are no concurrent transactions in E. We say that $read_k(X)$ is legal in a t-sequential execution E if it returns the latest written value of E in E, and E is legal if every $read_k(X)$ in E that does not return A_k is legal in E.

Contention. We say that a configuration C after an execution E is quiescent (resp., t-quiescent) if every transaction $T_k \in txns(E)$ is complete (resp., t-complete) in C. If a transaction T is incomplete in an execution E, it has exactly one enabled event, which is the next event the transaction will perform according to the TM implementation. Events e and e' of an execution E contend on a base object e if they are both events on e in e and at least one of them is nontrivial (the event is trivial (resp., nontrivial) if it is the application of a trivial (resp., nontrivial) primitive).

We say that T is poised to apply an event e after E if e is the next enabled event for T in E. We say that transactions T and T' concurrently contend on e in E if they are poised to apply contending events on e after e.

We say that an execution fragment E is step contention-free for t-operation op_k if the events of $E|op_k$ are contiguous in E. We say that an execution fragment E is step contention-free for T_k if the events of E|k are contiguous in E. We say that E is step contention-free if E is step contention-free for all transactions that participate in E.

3 TM classes

In this section, we define the properties of TM implementations considered in this paper.

TM-correctness. Informally, a t-sequential history S is legal if every t-read of a t-object returns the latest written value of this t-object in S. A history H is opaque if there exists a legal t-sequential history S equivalent to H such that S respects the real-time order of transactions in H [17]. A weaker condition called strict serializability ensures opacity only with respect to committed transactions. Precise definitions can be found in Appendix A.

TM-liveness. We say that a TM implementation M provides obstruction-free (OF) TM-liveness if for every finite execution E of M, and every transaction T_k that applies the invocation of a t-operation op_k immediately after E, the finite step contention-free extension for op_k contains a matching response. A TM implementation M provides wait-free TM-liveness if in every execution

of M, every t-operation returns a matching response in a finite number of its steps.

TM-progress. Progress for TMs specifies the conditions under which a transaction is allowed to abort. We say that a TM implementation M provides obstruction-free (OF) TM-progress if for every execution E of M, if any transaction $T_k \in txns(E)$ returns A_k in E, then E is not step contention-free for T_k .

We say that transactions T_i, T_j conflict in an execution E on a t-object X if T_i and T_j are concurrent in E and $X \in Dset(T_i) \cap Dset(T_j)$, and $X \in Wset(T_i) \cup Wset(T_j)$. A TM implementation M provides progressive TM-progress (or progressiveness) if for every execution E of M and every transaction $T_i \in txns(E)$ that returns A_i in E, there exists prefix E' of E and a transaction $T_k \in txns(E')$ such that T_k and T_i conflict in E.

Read invisibility. Informally, the invisible reads assumption prevents TM implementations from applying nontrivial primitives during t-read operations and from announcing read sets of transactions during tryCommit.

We say that a TM implementation M uses *invisible reads* if for every execution E of M,

- for every read-only transaction $T_k \in txns(E)$, no event of E|k is nontrivial in E,
- for every updating transaction $T_k \in txns(E)$; $Rset(T_k) \neq \emptyset$, there exists an execution E' of M such that
 - $Rset(T_k) = \emptyset \text{ in } E'$
 - -txns(E) = txns(E') and $\forall T_m \in txns(E) \setminus \{T_k\}: E|m = E'|m$
 - for any two step contention-free transactions $T_i, T_j \in txns(E)$, if the last event of T_i precedes the first event of T_j in E, then the last event of T_i precedes the first event of T_j in E'.

Most popular TM implementations like TL2 [7] and NOrec [6] satisfy this definition of invisible reads.

Disjoint-access parallelism (DAP). A TM implementation M is strictly disjoint-access parallel (strict DAP) if, for all executions E of M, and for all transactions T_i and T_j that participate in E, T_i and T_j contend on a base object in E only if $Dset(T_i) \cap Dset(T_j) \neq \emptyset$ [17].

We now describe two relaxations of strict DAP. For the formal definitions, we introduce the notion of a *conflict graph* which captures the dependency relation among t-objects accessed by transactions.

We denote by $\tau_E(T_i, T_j)$, the set of transactions (T_i and T_j included) that are concurrent to at least one of T_i and T_j in an execution E.

Let $G(T_i, T_j, E)$ be an undirected graph whose vertex set is $\bigcup_{T \in \tau_E(T_i, T_j)} Dset(T)$ and there is an

edge between t-objects X and Y iff there exists $T \in \tau_E(T_i, T_j)$ such that $\{X, Y\} \in Dset(T)$. We say that T_i and T_j are disjoint-access in E if there is no path between a t-object in $Dset(T_i)$ and a t-object in $Dset(T_j)$ in $G(T_i, T_j, E)$. A TM implementation M is weak disjoint-access parallel (weak DAP) if, for all executions E of M, transactions T_i and T_j concurrently contend on the same base object in E only if T_i and T_j are not disjoint-access in E or there exists a t-object $X \in Dset(T_i) \cap Dset(T_j)$ [5,27].

Let $\tilde{G}(T_i,T_j,E)$ be an undirected graph whose vertex set is $\bigcup_{T\in\tau_E(T_i,T_j)} Dset(T)$ and there is an edge between t-objects X and Y iff there exists $T\in\tau_E(T_i,T_j)$ such that $\{X,Y\}\in Wset(T)$. We say that T_i and T_j are read-write disjoint-access in E if there is no path between a t-object in $Dset(T_i)$ and a t-object in $Dset(T_j)$ in $\tilde{G}(T_i,T_j,E)$. A TM implementation M is read-write disjoint-access parallel $(RW\ DAP)$ if, for all executions E of M, transactions T_i and T_j contend on the same base object in E only if T_i and T_j are not read-write disjoint-access in E or there exists a t-object $X\in Dset(T_i)\cap Dset(T_j)$.

We make the following observations about the DAP definitions presented in this paper.

• From the definitions, it is immediate that every RW DAP TM implementation satisfies weak DAP. But the converse is not true. Consider the following execution E of a weak DAP TM implementation M that begins with the t-incomplete execution of a transaction T_0 that reads X and writes to Y, followed by the step contention-free executions of two transactions T_1

$$T_0 \xrightarrow{R_0(Z) \to v} \xrightarrow{W_0(X, nv)} \xrightarrow{tryC_0} \qquad T_1 \xrightarrow{R_1(X) \to v} \xrightarrow{\text{(event of } T_0)} \qquad T_2 \xrightarrow{R_2(X) \to nv}$$

$$(a) \ T_2 \ \text{returns new value} \ \text{of } X \ \text{since} \ T_1 \ \text{is invisible}$$

$$T_0 \xrightarrow{R_0(Z) \to v} \xrightarrow{W_0(X, nv)} \xrightarrow{tryC_0} \qquad T_1 \xrightarrow{R_1(X) \to v} \xrightarrow{\text{(event of } T_0)} \qquad T_3 \xrightarrow{W_3(Z, nv)} \qquad T_2 \xrightarrow{R_2(X) \to nv}$$

$$(b) \ T_2 \ \text{and} \ T_3 \ \text{do not contend on any base object}$$

$$T_0 \xrightarrow{R_0(Z) \to v} \xrightarrow{W_0(X, nv)} \xrightarrow{tryC_0} \qquad T_1 \xrightarrow{R_1(X) \to v} \qquad T_3 \xrightarrow{W_3(Z, nv)} \xrightarrow{\text{write new value}} \qquad \xrightarrow{e} \qquad T_2 \xrightarrow{R_2(X) \to nv}$$

$$(c) \ T_3 \ \text{does not access the base object from the nontrivial event } e$$

$$T_0 \xrightarrow{R_0(Z) \to v} \xrightarrow{W_0(X, nv)} \xrightarrow{tryC_0} \qquad T_3 \xrightarrow{W_3(Z, nv)} \xrightarrow{\text{write new value}} \qquad \xrightarrow{e} \qquad T_2 \xrightarrow{R_2(X) \to nv} \xrightarrow{\text{new value}}$$

$$(d) \ T_3 \ \text{and} \ T_1 \ \text{do not contend on any base object}$$

Figure 2: Executions in the proof of Theorem 2; execution in 2d is not strictly serializable

and T_2 which write to X and read Y respectively. Transactions T_1 and T_2 may contend on a base object since there is a path between X and Y in $G(T_1, T_2, E)$. However, a RW DAP TM implementation would preclude transactions T_1 and T_2 from contending on the same base object: there is no edge between t-objects X and Y in the corresponding conflict graph $\tilde{G}(T_1, T_2, E)$ because X and Y are not contained in the write set of T_0 . Algorithm 3 in Appendix B.2 describes a TM implementation that satisfies weak DAP, but not RW DAP.

• From the definitions, it is immediate that every strict DAP TM implementation satisfies RW DAP. But the converse is not true. To understand why, consider the following execution E of a RW DAP TM implementation that begins with the t-incomplete execution of a transaction T_0 that accesses t-objects X and Y, followed by the step contention-free executions of two transactions T_1 and T_2 which access X and Y respectively. Transactions T_1 and T_2 may contend on a base object since there is a path between X and Y in $\tilde{G}(T_i, T_j, E)$. However, a strict DAP TM implementation would preclude transactions T_1 and T_2 from contending on the same base object since $Dset(T_1) \cap Dset(T_2) = \emptyset$ in E. Algorithm 2 in Appendix B.1 describes a TM implementation that satisfies RW DAP, but not strict DAP.

4 Lower bounds for obstruction-free TMs

Let \mathcal{OF} denote the class of TMs that provide OF TM-progress and OF TM-liveness. In Section 4.1, we show that no strict serializable TM in \mathcal{OF} can be weak DAP and have invisible reads. In Section 4.2, we determine stall complexity bounds for strict serializable TMs in \mathcal{OF} , and in Section 4.3, we present a linear (in n) lower bound on RAW/AWARs for RW DAP opaque TMs in \mathcal{OF} .

4.1 Impossibility of invisible reads

In this section, we prove that it is impossible to derive TM implementations in \mathcal{OF} that combine weak DAP and invisible reads. The following lemma will be useful in proving our result.

Lemma 1. ([5], [24]) Let M be any weak DAP TM implementation. Let $\alpha \cdot \rho_1 \cdot \rho_2$ be any execution of M where ρ_1 (resp., ρ_2) is the step contention-free execution fragment of transaction $T_1 \notin txns(\alpha)$ (resp., $T_2 \notin txns(\alpha)$) and transactions T_1 , T_2 are disjoint-access in $\alpha \cdot \rho_1 \cdot \rho_2$. Then, T_1 and T_2 do not contend on any base object in $\alpha \cdot \rho_1 \cdot \rho_2$.

Theorem 2. There does not exist a weak DAP strictly serializable TM implementation in \mathcal{OF} that uses invisible reads.

Proof. By contradiction, assume that such an implementation $M \in \mathcal{OF}$ exists. Let v be the initial value of t-objects X and Z. Consider an execution E of M in which a transaction T_0 performs $read_0(Z) \to v$ (returning v), writes $nv \neq v$ to X, and commits. Let E' denote the longest prefix of E that cannot be extended with the t-complete step contention-free execution of transaction T_1 that performs a t-read X and returns nv nor with the t-complete step contention-free execution of transaction T_2 that performs a t-read of X and returns nv.

Let e be the enabled event of transaction T_0 in the configuration after E'. Without loss of generality, assume that $E' \cdot e$ can be extended with the t-complete step contention-free execution of committed transaction T_2 that reads X and returns nv. Let $E' \cdot e \cdot E_2$ be such an execution, where E_2 is the t-complete step contention-free execution fragment of transaction T_2 that performs $read_2(X) \to nv$ and commits.

We now prove that M has an execution of the form $E' \cdot E_1 \cdot e \cdot E_2$, where E_1 is the t-complete step contention-free execution fragment of transaction T_1 that performs $read_1(X) \to v$ and commits.

We observe that $E' \cdot E_1$ is an execution of M. Indeed, by OF TM-progress and OF TM-liveness, T_1 must return a matching response that is not A_1 in $E' \cdot E_1$, and by the definition of E', this response must be the initial value v of X.

By the assumption of invisible reads, E_1 does not contain any nontrivial events. Consequently, $E' \cdot E_1 \cdot e \cdot E_2$ is indistinguishable to transaction T_2 from the execution $E' \cdot e \cdot E_2$. Thus, $E' \cdot E_1 \cdot e \cdot E_2$ is also an execution of M (Figure 2a).

Claim 3. M has an execution of the form $E' \cdot E_1 \cdot E_3 \cdot e \cdot E_2$ where E_3 is the t-complete step contention-free execution fragment of transaction T_3 that writes $nv \neq v$ to Z and commits.

Proof. The proof is through a sequence of indistinguishability arguments to construct the execution.

We first claim that M has an execution of the form $E' \cdot E_1 \cdot e \cdot E_2 \cdot E_3$. Indeed, by OF TM-progress and OF TM-liveness, T_3 must be committed in $E' \cdot E_1 \cdot e \cdot E_2 \cdot E_3$.

Since M uses invisible reads, the execution $E' \cdot E_1 \cdot e \cdot E_2 \cdot E_3$ is indistinguishable to transactions T_2 and T_3 from the execution $\hat{E} \cdot E_2 \cdot E_3$, where \hat{E} is the t-incomplete step contention-free execution of transaction T_0 with $Wset_{\hat{E}}(T_0) = \{X\}$; $Rset_{\hat{E}}(T_0) = \emptyset$ that writes nv to X.

Observe that the execution $E' \cdot E_1 \cdot e \cdot E_2 \cdot E_3$ is indistinguishable to transactions T_2 and T_3 from the execution $\hat{E} \cdot E_2 \cdot E_3$, in which transactions T_3 and T_2 are disjoint-access. Consequently, by Lemma 1, T_2 and T_3 do not contend on any base object in $\hat{E} \cdot E_2 \cdot E_3$. Thus, M has an execution of the form $E' \cdot E_1 \cdot e \cdot E_3 \cdot E_2$ (Figure 2b).

By definition of E', T_0 applies a nontrivial primitive to some base object, say b, in event e that T_2 must access in E_2 . Thus, the execution fragment E_3 does not contain any nontrivial event on b in the execution $E' \cdot E_1 \cdot e \cdot E_2 \cdot E_3$. Infact, since T_3 is disjoint-access with T_0 in the execution $\hat{E} \cdot E_3 \cdot E_2$, by Lemma 1, it cannot access the base object b to which T_0 applies a nontrivial primitive in the event e. Thus, transaction T_3 must perform the same sequence of events E_3 immediately after E', implying that M has an execution of the form $E' \cdot E_1 \cdot E_3 \cdot e \cdot E_2$ (Figure 2c).

Finally, we observe that the execution $E' \cdot E_1 \cdot E_3 \cdot e \cdot E_2$ established in Claim 3 is indistinguishable to transactions T_1 and T_3 from an execution $\tilde{E} \cdot E_1 \cdot E_3 \cdot e \cdot E_2$, where $Wset(T_0) = \{X\}$ and $Rset(T_0) = \emptyset$ in \tilde{E} . But transactions T_3 and T_1 are disjoint-access in $\tilde{E} \cdot E_1 \cdot E_3 \cdot e \cdot E_2$ and by Lemma 1, T_1 and T_3 do not contend on any base object in this execution. Thus, M has an execution of the form $E' \cdot E_3 \cdot E_1 \cdot e \cdot E_2$ (Figure 2d) in which T_3 precedes T_1 in real-time order.

However, the execution $E' \cdot E_3 \cdot E_1 \cdot e \cdot E_2$ is not strictly serializable: T_0 must be committed in any serialization and transaction T_1 must precede T_0 since $read_1(X)$ returns the initial value of X. To respect real-time order, T_3 must precede T_1 , while T_0 must precede T_2 since $read_2(X)$ returns nv, the value of X updated by T_0 . Finally, T_0 must precede T_3 since $read_0(Z)$ returns the initial value of Z. But there exists no such serialization—contradiction.

4.2 Stall complexity

Let M be any TM implementation. Let e be an event applied by process p to a base object b as it performs a transaction T during an execution E of M. Let $E = \alpha \cdot e_1 \cdots e_m \cdot e \cdot \beta$ be an execution of M, where α and β are execution fragments and $e_1 \cdots e_m$ is a maximal sequence of $m \geq 1$ consecutive nontrivial events by distinct distinct processes other than p that access p. Then, we say that p incurs p memory stalls in p on account of p. The number of memory stalls incurred by p in p is the sum of memory stalls incurred by all events of p in p in p is the sum of memory stalls incurred by all events of p in p in

In this section, we prove a lower bound of n-1 on the worst case number of stalls incurred by a transaction as it performs a single t-read operation. We adopt the following definition of a k-stall execution from [2,10].

Definition 1. An execution $\alpha \cdot \sigma_1 \cdots \sigma_i$ is a k-stall execution for t-operation op executed by process p if

- α is p-free,
- there are distinct base objects b_1, \ldots, b_i and disjoint sets of processes S_1, \ldots, S_i whose union does not include p and has cardinality k such that, for $j = 1, \ldots, i$
 - each process in S_j has an enabled nontrivial event about to access base object b_j after α , and
 - in σ_j , p applies events by itself until it is the first about to apply an event to b_j , then each of the processes in S_j applies an event that accesses b_j , and finally, p applies an event that accesses b_j ,
- p invokes exactly one t-operation op in the execution fragment $\sigma_1 \cdots \sigma_i$
- $\sigma_1 \cdots \sigma_i$ contains no events of processes not in $(\{p\} \cup S_1 \cup \cdots \cup S_i)$
- in every $(\{p\} \cup S_1 \cup \cdots \cup S_i)$ -free execution fragment that extends α , no process applies a nontrivial event to any base object accessed in $\sigma_1 \cdots \sigma_i$.

Observe that in a k-stall execution E for t-operation op, the number of memory stalls incurred by op in E is k.

Lemma 4. Let $\alpha \cdot \sigma_1 \cdots \sigma_i$ be a k-stall execution for t-operation op executed by process p. Then, $\alpha \cdot \sigma_1 \cdots \sigma_i$ is indistinguishable to p from a step contention-free execution [2].

Theorem 5. Every strictly serializable TM implementation $M \in \mathcal{OF}$ has a (n-1)-stall execution E for a t-read operation performed in E.

Proof. We proceed by induction. Observe that the empty execution is a 0-stall execution since it vacuously satisfies the invariants of Definition 1.

Let v be the initial value of t-objects X and Z. Let $\alpha = \alpha_1 \cdots \alpha_{n-2}$ be a step contention-free execution of a strictly serializable TM implementation $M \in \mathcal{OF}$, where for all $j \in \{1, \ldots, n-2\}$, α_j is the longest prefix of the execution fragment $\bar{\alpha}_j$ that denotes the t-complete step-contention free execution of committed transaction T_j (invoked by process p_j) that performs $read_j(Z) \to v$, writes value $nv \neq v$ to X in the execution $\alpha_1 \cdots \alpha_{j-1} \cdot \bar{\alpha}_j$ such that

- $tryC_i()$ is incomplete in α_i ,
- $\alpha_1 \cdots \alpha_j$ cannot be extended with the t-complete step contention-free execution fragment of any transaction T_{n-1} or T_n that performs exactly one t-read of X that returns nv and commits.

Assume, inductively, that $\alpha \cdot \sigma_1 \cdots \sigma_i$ is a k-stall execution for $read_n(X)$ executed by process p_n , where $0 \le k \le n-2$. By Definition 1, there are distinct base objects $b_1, \ldots b_i$ accessed by disjoint sets of processes $S_1 \ldots S_i$ in the execution fragment $\sigma_1 \cdots \sigma_i$, where $|S_1 \cup \ldots \cup S_i| = k$ and $\sigma_1 \cdots \sigma_i$ contains no events of processes not in $S_1 \cup \ldots \cup S_i \cup \{p_n\}$. We will prove that there exists a (k+k')-stall execution for $read_n(X)$, for some $k' \ge 1$.

By Lemma 4, $\alpha \cdot \sigma_1 \cdots \sigma_i$ is indistinguishable to T_n from a step contention-free execution. Let σ be the finite step contention-free execution fragment that extends $\alpha \cdot \sigma_1 \cdots \sigma_i$ in which T_n performs

events by itself: completes $read_n(X)$ and returns a response. By OF TM-progress and OF TM-liveness, $read_n(X)$ and the subsequent $tryC_k$ must each return non- A_n responses in $\alpha \cdot \sigma_1 \cdot \cdot \cdot \sigma_i \cdot \sigma$. By construction of α and strict serializability of M, $read_n(X)$ must return the response v or nv in this execution. We prove that there exists an execution fragment γ performed by some process $p_{n-1} \notin (\{p_n\} \cup S_1 \cup \cdots \cup S_i)$ extending α that contains a nontrivial event on some base object that must be accessed by $read_n(X)$ in $\sigma_1 \cdots \sigma_i \cdot \sigma$.

Consider the case that $read_n(X)$ returns the response nv in $\alpha \cdot \sigma_1 \cdots \sigma_i \cdot \sigma$. We define a step contention-free fragment γ extending α that is the t-complete step contention-free execution of transaction T_{n-1} executed by some process $p_{n-1} \notin (\{p_n\} \cup S_1 \cup \cdots \cup S_i)$ that performs $read_{n-1}(X) \to v$, writes $nv \neq v$ to Z and commits. By definition of α , OF TM-progress and OF TM-liveness, M has an execution of the form $\alpha \cdot \gamma$. We claim that the execution fragment γ must contain a nontrivial event on some base object that must be accessed by $read_n(X)$ in $\sigma_1 \cdots \sigma_i \cdot \sigma$. Suppose otherwise. Then, $read_n(X)$ must return the response nv in $\sigma_1 \cdots \sigma_i \cdot \sigma$. But the execution $\alpha \cdot \sigma_1 \cdots \sigma_i \cdot \sigma$ is not strictly serializable. Since $read_n(X) \to nv$, there exists a transaction $T_q \in txns(\alpha)$ that must be committed and must precede T_n in any serialization. Transaction T_{n-1} must precede T_n in any serialization. Also, T_q must precede T_{n-1} in any serialization. But there exists no such serialization.

Consider the case that $read_n(X)$ returns the response v in $\alpha \cdot \sigma_1 \cdots \sigma_i \cdot \sigma$. In this case, we define the step contention-free fragment γ extending α as the t-complete step contention-free execution of transaction T_{n-1} executed by some process $p_{n-1} \notin (\{p_n\} \cup S_1 \cup \cdots \cup S_i)$ that writes $nv \neq v$ to X and commits. By definition of α , OF TM-progress and OF TM-liveness, M has an execution of the form $\alpha \cdot \gamma$. By strict serializability of M, the execution fragment γ must contain a nontrivial event on some base object that must be accessed by $read_n(X)$ in $\sigma_1 \cdots \sigma_i \cdot \sigma$. Suppose otherwise. Then, $\sigma_1 \cdots \sigma_i \cdot \gamma \cdot \sigma$ is an execution of M in which $read_n(X) \to v$. But this execution is not strictly serializable: every transaction $T_q \in txns(\alpha)$ must be aborted or must be preceded by T_n in any serialization, but committed transaction T_{n-1} must precede T_n in any serialization to respect the real-time ordering of transactions. But then $read_n(X)$ must return the new value nv of X that is updated by T_{n-1} —contradiction.

Since, by Definition 1, the execution fragment γ executed by some process $p_{n-1} \notin (\{p_n\} \cup S_1 \cup \cdots \cup S_i)$ contains no nontrivial events to any base object accessed in $\sigma_1 \cdots \sigma_i$, it must contain a nontrivial event to some base object $b_{i+1} \notin \{b_1, \ldots, b_i\}$ that is accessed by T_n in the execution fragment σ .

Let \mathcal{A} denote the set of all finite $(\{p_n\} \cup S_1 \ldots \cup S_i)$ -free execution fragments that extend α . Let $b_{i+1} \notin \{b_1, \ldots, b_i\}$ be the first base object accessed by T_n in the execution fragment σ to which some transaction applies a nontrivial event in the execution fragment $\alpha' \in \mathcal{A}$. Clearly, some such execution $\alpha \cdot \alpha'$ exists that contains a nontrivial event in α' to some distinct base object b_{i+1} not accessed in the execution fragment $\sigma_1 \cdots \sigma_i$. We choose the execution $\alpha \cdot \alpha' \in \mathcal{A}$ that maximizes the number of transactions that are poised to apply nontrivial events on b_{i+1} in the configuration after $\alpha \cdot \alpha'$. Let S_{i+1} denote the set of processes executing these transactions and $k' = |S_{i+1}|$ (k' > 0 as already proved).

We now construct a (k + k')-stall execution $\alpha \cdot \alpha' \cdot \sigma_1 \cdot \cdots \cdot \sigma_i \cdot \sigma_{i+1}$ for $read_n(X)$, where in σ_{i+1} , p_n applies events by itself, then each of the processes in S_{i+1} applies a nontrivial event on b_{i+1} , and finally, p_n accesses b_{i+1} .

By construction, $\alpha \cdot \alpha'$ is p_n -free. Let σ_{i+1} be the prefix of σ not including T_n 's first access to b_{i+1} , concatenated with the nontrivial events on b_{i+1} by each of the k' transactions executed by processes in S_{i+1} followed by the access of b_{i+1} by T_n . Observe that T_n performs exactly one t-operation $read_n(X)$ in the execution fragment $\sigma_1 \cdots \sigma_{i+1}$ and $\sigma_1 \cdots \sigma_{i+1}$ contains no events of processes not in $(\{p_n\} \cup S_1 \cup \cdots \cup S_i \cup S_{i+1})$.

To complete the induction, we need to show that in every $(\{p_n\} \cup S_1 \cup \cdots \cup S_i \cup S_{i+1})$ -free extension of $\alpha \cdot \alpha'$, no transaction applies a nontrivial event to any base object accessed in the execution fragment $\sigma_1 \cdots \sigma_i \cdot \sigma_{i+1}$. Let β be any such execution fragment that extends $\alpha \cdot \alpha'$. By our construction, σ_{i+1} is the execution fragment that consists of events by p_n on base objects accessed

$$T_1 \stackrel{R_1(Z_1) \to v}{\longrightarrow} \stackrel{W_1(X_1, nv)}{\longleftarrow} tryC_1 \qquad T_m \stackrel{R_m(Z_m) \to v}{\longleftarrow} W_m(X_m, nv) tryC_m$$

$$(a) \text{ Transactions in } \{T_1, \dots, T_m\}; m = n - 3 \text{ are mutually read-write disjoint-access and concurrent; they are poised to apply a nontrivial primitive}$$

$$T_1 \stackrel{R_1(Z_1) \to v}{\longleftarrow} W_1(X_1, nv) \stackrel{tryC_1}{\longleftarrow} T_m \stackrel{R_m(Z_m) \to v}{\longleftarrow} W_m(X_m, nv) tryC_m \qquad T_n \stackrel{R_n(X_1) \to v}{\longleftarrow} R_n(X_j) \to v$$

$$(b) T_n \text{ performs } m \text{ reads; each } read_n(X_j) \text{ returns initial value } v$$

$$T_1 \stackrel{R_1(Z_1) \to v}{\longleftarrow} W_1(X_1, nv) \stackrel{tryC_1}{\longleftarrow} T_m \stackrel{R_m(Z_m) \to v}{\longleftarrow} W_m(X_m, nv) tryC_m \qquad T_{n-2} \stackrel{W_{n-2}(Z_j, nv)}{\longleftarrow} T_n \stackrel{R_n(X_1) \to v}{\longleftarrow} R_n(X_j) \to v$$

$$(c) T_{n-2} \text{ commits; } T_n \text{ is read-write disjoint-access with } T_{n-2}$$

$$T_1 \stackrel{R_n(X_1) \to v}{\longleftarrow} W_1(X_1, nv) \stackrel{tryC_1}{\longleftarrow} T_m \stackrel{R_m(Z_m) \to v}{\longleftarrow} W_m(X_m, nv) tryC_m \qquad T_{n-2} \stackrel{W_{n-2}(Z_j, nv)}{\longleftarrow} T_n \stackrel{R_n(X_1) \to v}{\longleftarrow} R_n(X_j) \to v$$

$$(d) \text{ Suppose } read_n(X_j) \text{ does not perform a RAW/AWAR, } T_n \text{ and } T_{n-1} \text{ are unaware of step contention and } T_n \text{ misses the event of } T_j, \text{ but } R_{n-1}(X_j) \text{ returns the value of } X_j \text{ that is updated by } T_j$$

Figure 3: Executions in the proof of Theorem 6; execution in 3d is not opaque

in $\sigma_1 \cdots \sigma_i$, nontrivial events on b_{i+1} by transactions in S_{i+1} and finally, an access to b_{i+1} by p_n . Since $\alpha \cdot \sigma_1 \cdots \sigma_i$ is a k-stall execution by our induction hypothesis, $\alpha' \cdot \beta$ is $(\{p_n\} \cup S_1 \ldots \cup S_i\})$ -free and thus, $\alpha' \cdot \beta$ does not contain nontrivial events on any base object accessed in $\sigma_1 \cdots \sigma_i$. We now claim that β does not contain nontrivial events to b_{i+1} . Suppose otherwise. Thus, there exists some transaction T' that has an enabled nontrivial event to b_{i+1} in the configuration after $\alpha \cdot \alpha' \cdot \beta'$, where β' is some prefix of β . But this contradicts the choice of $\alpha \cdot \alpha'$ as the extension of α that maximizes k'.

Thus,
$$\alpha \cdot \alpha' \cdot \sigma_1 \cdots \sigma_i \cdot \sigma_{i+1}$$
 is indeed a $(k+k')$ -stall execution for T_n where $1 < k < (k+k') \le (n-1)$.

4.3 RAW/AWAR complexity

Attiya et al. [3] identified two common expensive synchronization patterns that frequently arise in the design of concurrent algorithms: read-after-write (RAW) and atomic write-after-read (AWAR). In this section, we prove that opaque, RW DAP TM implementations in \mathcal{OF} have executions in which some read-only transaction performs a linear (in n) number of RAWs or AWARs.

We recall the formal definitions of RAW and AWAR from [3]. Let π^i denote the *i*-th event in an execution π $(i = 0, ..., |\pi| - 1)$.

We say that a transaction T performs a RAW (read-after-write) in π if $\exists i, j; 0 \leq i < j < |\pi|$ such that (1) π^i is a write to a base object b by T, (2) π^j is a read of a base object $b' \neq b$ by T and (3) there is no π^k such that i < k < j and π^k is a write to b' by T. In this paper, we are concerned only with non-overlapping RAWs, i.e., the read performed by one precedes the write performed by the other.

We say a transaction T performs an AWAR (atomic-write-after-read) in π if $\exists i, 0 \leq i < |\pi|$ such that the event π^i is the application of a nontrivial primitive that atomically reads a base object b and writes to b.

Theorem 6. Every RW DAP opaque TM implementation $M \in \mathcal{OF}$ has an execution E in which some read-only transaction $T \in txns(E)$ performs $\Omega(n)$ non-overlapping RAW/AWARs.

Proof. For all $j \in \{1, ..., m\}$; m = n - 3, let v be the initial value of t-objects X_j and Z_j . Throughout this proof, we assume that, for all $i \in \{1, ..., n\}$, transaction T_i is invoked by process p_i .

By OF TM-progress and OF TM-liveness, any opaque and RW DAP TM implementation $M \in \mathcal{OF}$ has an execution of the form $\bar{\rho}_1 \cdots \bar{\rho}_m$, where for all $j \in \{1, \dots, m\}$, $\bar{\rho}_j$ denotes the t-complete step contention-free execution of transaction T_j that performs $read_j(Z_j) \to v$, writes value $nv \neq v$ to X_j and commits.

By construction, any two transactions that participate in $\bar{\rho}_1 \cdots \bar{\rho}_n$ are mutually read-write disjoint-access and cannot contend on the same base object. It follows that for all $1 \leq j \leq m$, $\bar{\rho}_j$ is an execution of M.

For all $j \in \{1, ..., m\}$, we iteratively define an execution ρ_j of M as follows: it is the longest prefix of $\bar{\rho}_j$ such that $\rho_1 \cdots \rho_j$ cannot be extended with the complete step contention-free execution fragment of transaction T_n that performs j t-reads: $read_n(X_1) \cdots read_n(X_j)$ in which $read_n(X_j) \to nv$ nor with the complete step contention-free execution fragment of transaction T_{n-1} that performs j t-reads: $read_{n-1}(X_1) \cdots read_{n-1}(X_j)$ in which $read_{n-1}(X_j) \to nv$ (Figure 3a).

For any $j \in \{1, \ldots, m\}$, let e_j be the event transaction T_j is poised to apply in the configuration after $\rho_1 \cdots \rho_j$. Thus, the execution $\rho_1 \cdots \rho_j \cdot e_j$ can be extended with the complete step contention-free executions of at least one of transaction T_n or T_{n-1} that performs j t-reads of X_1, \ldots, X_j in which the t-read of X_j returns the new value nv. Let T_{n-1} be the transaction that must return the new value for the maximum number of X_j 's when $\rho_1 \cdots \rho_j \cdot e_j$ is extended with the t-reads of X_1, \ldots, X_j . We show that, in the worst-case, transaction T_n must perform $\lceil \frac{m}{2} \rceil$ non-overlapping RAW/AWARs in the course of performing m t-reads of X_1, \ldots, X_m immediately after $\rho_1 \cdots \rho_m$. Symmetric arguments apply for the case when T_n must return the new value for the maximum number of X_j 's when $\rho_1 \cdots \rho_j \cdot e_j$ is extended with the t-reads of X_1, \ldots, X_j .

Proving the RAW/AWAR lower bound. We prove that transaction T_n must perform $\lceil \frac{m}{2} \rceil$ non-overlapping RAWs or AWARs in the course of performing m t-reads of X_1, \ldots, X_m immediately after the execution $\rho_1 \cdots \rho_m$. Specifically, we prove that T_n must perform a RAW or an AWAR during the execution of the t-read of each X_j such that $\rho_1 \cdots \rho_j \cdot e_j$ can be extended with the complete step contention-free execution of T_{n-1} as it performs j t-reads of $X_1 \ldots X_j$ in which the t-read of X_j returns the new value nv. Let \mathbb{J} denote the of all $j \in \{1, \ldots, m\}$ such that $\rho_1 \cdots \rho_j \cdot e_j$ extended with the complete step contention-free execution of T_{n-1} performing j t-reads of $X_1 \ldots X_j$ must return the new value nv during the t-read of X_j .

We first prove that, for all $j \in \mathbb{J}$, M has an execution of the form $\rho_1 \cdots \rho_m \cdot \delta_j$ (Figures 3a and 3b), where δ_j is the complete step contention-free execution fragment of T_n that performs j t-reads: $read_n(X_1) \cdots read_n(X_j)$, each of which return the initial value v.

By definition of ρ_j , OF TM-progress and OF TM-liveness, M has an execution of the form $\rho_1 \cdots \rho_j \cdot \delta_j$. By construction, transaction T_n is read-write disjoint-access with each transaction $T \in \{T_{j+1}, \ldots, T_m\}$ in $\rho_1 \cdots \rho_j \cdots \rho_m \cdot \delta_j$. Thus, T_n cannot contend with any of the transactions in $\{T_{j+1}, \ldots, T_m\}$, implying that, for all $j \in \{1, \ldots, m\}$, M has an execution of the form $\rho_1 \cdots \rho_m \cdot \delta_j$ (Figure 3b).

We claim that, for each $j \in \mathbb{J}$, the t-read of X_j performed by T_n must perform a RAW or an AWAR in the course of performing j t-reads of X_1, \ldots, X_j immediately after $\rho_1 \cdots \rho_m$. Suppose by contradiction that $read_n(X_j)$ does not perform a RAW or an AWAR in $\rho_1 \cdots \rho_m \cdot \delta_m$.

Claim 7. For all $j \in \mathbb{J}$, M has an execution of the form $\rho_1 \cdots \rho_j \cdots \rho_m \cdot \delta_{j-1} \cdot e_j \cdot \beta$ where, β is the complete step contention-free execution fragment of transaction T_{n-1} that performs j t-reads: $read_{n-1}(X_1) \cdots read_{n-1}(X_{j-1}) \cdot read_{n-1}(X_j)$ in which $read_{n-1}(X_j)$ returns nv.

Proof. We observe that transaction T_n is read-write disjoint-access with every transaction $T \in \{T_j, T_{j+1}, \dots, T_m\}$ in $\rho_1 \cdots \rho_j \cdots \rho_m \cdot \delta_{j-1}$. By RW DAP, it follows that M has an execution of the form $\rho_1 \cdots \rho_j \cdots \rho_m \cdot \delta_{j-1} \cdot e_j$ since T_n cannot perform a nontrivial event on the base object accessed by T_j in the event e_j .

By the definition of ρ_j , transaction T_{n-1} must access the base object to which T_j applies a nontrivial primitive in e_j to return the value nv of X_j as it performs j t-reads of X_1, \ldots, X_j immediately after the execution $\rho_1 \cdots \rho_j \cdots \rho_m \cdot \delta_{j-1} \cdot e_j$. Thus, M has an execution of the form $\rho_1 \cdots \rho_j \cdot \delta_{j-1} \cdot e_j \cdot \beta$.

By construction, transactions T_{n-1} is read-write disjoint-access with every transaction $T \in \{T_{j+1}, \ldots, T_m\}$ in $\rho_1 \cdots \rho_j \cdots \rho_m \cdot \delta_{j-1} \cdot e_j \cdot \beta$. It follows that M has an execution of the form $\rho_1 \cdots \rho_j \cdots \rho_m \cdot \delta_{j-1} \cdot e_j \cdot \beta$.

Claim 8. For all $j \in \{1, ..., m\}$, M has an execution of the form $\rho_1 \cdots \rho_j \cdots \rho_m \cdot \gamma \cdot \delta_{j-1} \cdot e_j \cdot \beta$, where γ is the t-complete step contention-free execution fragment of transaction T_{n-2} that writes $nv \neq v$ to Z_j and commits.

Proof. Observe that T_{n-2} precedes transactions T_n and T_{n-1} in real-time order in the above execution.

By OF TM-progress and OF TM-liveness, transaction T_{n-2} must be committed in $\rho_1 \cdots \rho_j \cdots \rho_m \cdot \gamma$.

Since transaction T_{n-1} is read-write disjoint-access with T_{n-2} in $\rho_1 \cdots \rho_j \cdots \rho_m \cdot \gamma \cdot \delta_{j-1} \cdot e_j \cdot \beta$, T_{n-1} does not contend with T_{n-2} on any base object (recall that we associate an edge with tobjects in the conflict graph only if they are both contained in the write set of some transaction). Since the execution fragment β contains an access to the base object to which T_j performs a nontrivial primitive in the event e_j , T_{n-2} cannot perform a nontrivial event on this base object in γ . It follows that M has an execution of the form $\rho_1 \cdots \rho_j \cdots \rho_m \cdot \gamma \cdot \delta_{j-1} \cdot e_j \cdot \beta$ since, it is indistinguishable to T_{n-1} from the execution $\rho_1 \cdots \rho_j \cdots \rho_m \cdot \delta_{j-1} \cdot e_j \cdot \beta$ (the existence of which is already established in Claim 7).

Recall that transaction T_n is read-write disjoint-access with T_{n-2} in $\rho_1 \cdots \rho_j \cdots \rho_m \cdot \gamma \cdot \delta_j$. Thus, M has an execution of the form $\rho_1 \cdots \rho_j \cdots \rho_m \cdot \gamma \cdot \delta_j$ (Figure 3c).

Deriving a contradiction. For all $j \in \{1, ..., m\}$, we represent the execution fragment δ_j as $\delta_{j-1} \cdot \pi^j$, where π^j is the complete execution fragment of the j^{th} t-read $read_n(X_j) \to v$. By our assumption, π^j does not contain a RAW or an AWAR.

For succinctness, let $\alpha = \rho_1 \cdots \rho_m \cdot \gamma \cdot \delta_{j-1}$. We now prove that if π^j does not contain a RAW or an AWAR, we can define $\pi_1^j \cdot \pi_2^j = \pi^j$ to construct an execution of the form $\alpha \cdot \pi_1^j \cdot e_j \cdot \beta \cdot \pi_2^j$ (Figure 3d) such that

- no event in π_1^j is the application of a nontrivial primitive
- $\alpha \cdot \pi_1^j \cdot e_j \cdot \beta \cdot \pi_2^j$ is indistinguishable to T_n from the step contention-free execution $\alpha \cdot \pi_1^j \cdot \pi_2^j$
- $\alpha \cdot \pi_1^j \cdot e_j \cdot \beta \cdot \pi_2^j$ is indistinguishable to T_{n-1} from the step contention-free execution $\alpha \cdot e_j \cdot \beta$. The following claim defines π_1^j and π_2^j to construct this execution.

Claim 9. For all $j \in \{1, ..., m\}$, M has an execution of the form $\alpha \cdot \pi_1^j \cdot e_j \cdot \beta \cdot \pi_2^j$.

Proof. Let t be the first event containing a write to a base object in the execution fragment π^j . We represent π^j as the execution fragment $\pi_1^j \cdot t \cdot \pi_f^j$. Since π_1^j does not contain nontrivial events that write to a base object, $\alpha \cdot \pi_1^j \cdot e_j \cdot \beta$ is indistinguishable to transaction T_{n-1} from the step contention-free execution $\alpha \cdot e_j \cdot \beta$ (as already proven in Claim 8). Consequently, $\alpha \cdot \pi_1^j \cdot e_j \cdot \beta$ is an execution of M.

Since t is not an atomic-write-after-read, M has an execution of the form $\alpha \cdot \gamma \cdot \pi_1^j \cdot e_j \cdot \beta \cdot t$. Secondly, since π^j does not contain a read-after-write, any read of a base object performed in π_f^j may only be performed to base objects previously written in $t \cdot \pi_f^j$. Thus, $\alpha \cdot \pi_1^j \cdot e_j \cdot \beta \cdot t \cdot \pi_f^j$ is indistinguishable to T_n from the step contention-free execution $\alpha \cdot \pi_1^j \cdot t \cdot \pi_f^j$. But, as already proved, $\alpha \cdot \pi^j$ is an execution of M.

Choosing $\pi_2^j = t \cdot \pi_f^j$, it follows that M has an execution of the form $\alpha \cdot \pi_1^j \cdot e_j \cdot \beta \cdot \pi_2^j$.

We have now proved that, for all $j \in \{1, ..., m\}$, M has an execution of the form $\rho_1 \cdots \rho_m \cdot \gamma \cdot \delta_{j-1} \cdot \pi_1^j \cdot e_j \cdot \beta \cdot \pi_2^j$ (Figure 3d).

The execution in Figure 3d is not opaque. Indeed, in any serialization the following must hold. Since T_{n-1} reads the value written by T_j in X_j , T_j must be committed. Since $read_n(X_j)$ returns the initial value v, T_n must precede T_j . The committed transaction T_{n-2} , which writes a new

value to Z_j , must precede T_n to respect the real-time order on transactions. However, T_j must precede T_{n-2} since $read_j(Z_j)$ returns the initial value of Z_j . The cycle $T_j \to T_{n-2} \to T_n \to T_j$ implies that there exists no such a serialization.

Thus, for each $j \in \mathbb{J}$, transaction T_n must perform a RAW or an AWAR during the t-read of X_j in the course of performing m t-reads of X_1, \ldots, X_m immediately after $\rho_1 \cdots \rho_m$. Since $|\mathbb{J}| \geq \lceil \frac{(n-3)}{2} \rceil$, in the worst-case, T_n must perform $\Omega(n)$ RAW/AWARs during the execution of m t-reads immediately after $\rho_1 \cdots \rho_m$.

5 Upper bound for opaque progressive TMs

In this section, we describe a progressive, opaque TM implementation LP (Algorithm 1) that is not subject to any of the lower bounds inherent to implementations in \mathcal{OF} (cf. Figure 1). Our implementation satisfies strict DAP, every transaction performs at most a single RAW and every t-read operation incurs O(1) memory stalls in any execution.

Base objects. For every t-object X_j , LP maintains a base object v_j that stores the value of X_j . Additionally, for each X_j , there is a bit L_j , which if set, indicates the presence of an updating transaction writing to X_j . For every process p_i and t-object X_j , LP maintains a single-writer bit r_{ij} (only p_i is allowed to write to r_{ij}). Each of these base objects may be accessed only via read and write primitives.

Updating transactions. The $write_k(X, v)$ implementation by process p_i simply stores the value v locally, deferring the actual updates to $tryC_k$. During $tryC_k$, process p_i attempts to obtain exclusive write access to every $X_j \in Wset(T_k)$. This is realized through the single-writer bits, which ensure that no other transaction may write to base objects v_j and L_j until T_k relinquishes its exclusive write access to $Wset(T_k)$. Specifically, process p_i writes 1 to each r_{ij} , then checks that no other process p_t has written 1 to any r_{tj} by executing a series of reads (incurring a single RAW). If there exists such a process that concurrently contends on write set of T_k , for each $X_j \in Wset(T_k)$, p_i writes 0 to r_{ij} and returns A_k . If successful in obtaining exclusive write access to $Wset(T_k)$, p_i sets the bit L_j for each X_j in its write set. Implementation of $tryC_k$ now checks if any t-object in its read set is concurrently contended by another transaction and then validates its read set. If there is contention on the read set or validation fails, indicating the presence of a concurrent conflicting transaction, the transaction is aborted. If not, p_i writes the values of the t-objects to shared memory and relinquishes exclusive write access to each $X_j \in Wset(T_k)$ by writing 0 to each of the base objects L_j and r_{ij} .

Read operations. The implementation first reads the value of t-object X_j from base object v_j and then reads the bit L_j to detect contention with an updating transaction. If L_j is set, the transaction is aborted; if not, read validation is performed on the entire read set. If the validation fails, the transaction is aborted. Otherwise, the implementation returns the value of X_j . For a read-only transaction T_k , $tryC_k$ simply returns the commit response.

Complexity. Observe that our implementation uses invisible reads since read-only transactions do not apply any nontrivial primitives. Any updating transaction performs at most a single RAW in the course of acquiring exclusive write access to the transaction's write set. Consequently, every transaction performs O(1) non-overlapping RAWs in any execution.

Recall that a transaction may write to base objects v_j and L_j only after obtaining exclusive write access to t-object X_j , which in turn is realized via single-writer base objects. Thus, no transaction performs a write to any base object b immediately after a write to b by another transaction, *i.e.*, every transaction incurs only O(1) memory stalls on account of any event it performs. Since the $read_k(X_j)$ implementation only accesses base objects v_j and L_j , and the validating T_k 's read set does not cause any stalls, it follows that each t-operation performs O(1) stalls in every execution.

Moreover, LP ensures that any two transactions T_i and T_j access the same base object iff there exists $X \in Dset(T_i) \cap Dset(T_j)$ (strict DAP) and maintains exactly one version for every t-object at any prefix of the execution.

Theorem 10. Algorithm 1 describes a progressive, opaque and strict DAP TM implementation LP that provides wait-free TM-liveness, uses invisible reads and in every execution E of LP.

- every transaction $T \in txns(E)$ applies only read and write primitives in E,
- every transaction $T \in txns(E)$ performs at most a single RAW,
- for every transaction $T \in txns(E)$, every t-read operation performed by T incurs O(1) memory stalls in E.

6 Related work

The lower bounds and impossibility results presented in this paper apply to obstruction-free TMs, such as DSTM [20], FSTM [13], and others [13, 25, 30]. Our upper bound is inspired by the progressive TM of [23].

Attiya et al. [5] were the first to formally define DAP for TMs. They proved the impossibility of implementing weak DAP strictly serializable TMs that use invisible reads and guarantee that read-only transactions eventually commit, while updating transactions are guaranteed to commit only when they run sequentially [5]. This class is orthogonal to the class of obstruction-free TMs, as is the proof technique used to establish the impossibility.

Perelman et al. [27] showed that mv-permissive weak DAP TMs cannot be implemented. In mv-permissive TMs, only updating transactions may be aborted, and only when they conflict with other updating transactions. In particular, read-only transactions cannot be aborted and updating transactions may sometimes be aborted even in the absence of step contention, which makes the impossibility result in [27] unrelated to ours.

Guerraoui and Kapalka [17] proved that it is impossible to implement strict DAP obstruction-free TMs. They also proved that a strict serializable TM that provides OF TM-progress and wait-free TM-liveness cannot be implemented using only read and write primitives. We show that progressive TMs are not subject to either of these lower bounds.

Attiya et al. introduced the RAW/AWAR metric and proved that it is impossible to derive RAW/AWAR-free implementations of a wide class of data types that include sets, queues and deadlock-free mutual exclusion. The metric was previously used in [23] to measure the complexity of read-only transactions in a strictly stronger (than \mathcal{OF}) class of permissive TMs. Detailed coverage on memory fences and the RAW/AWAR metric can be found in [26].

To derive the linear lower bound on the memory stall complexity of obstruction-free TMs, we adopted the definition of a k-stall execution and certain proof steps from [2, 10].

7 Discussion

Lower bounds for obstruction-free TMs. We chose obstruction-freedom to elucidate non-blocking TM-progress since it is a very weak non-blocking progress condition [21]. As highlighted in the paper by Ennals [12], (1) obstruction-freedom increases the number of concurrently executing transactions since transactions cannot wait for inactive transactions to complete, and (2) while performing a t-read, obstruction-free TMs like [13, 20] must forcefully abort pending conflicting transactions. Intuitively, (1) allows us to construct executions in which some pending transaction is stalled while accessing a base object by all other concurrent transactions waiting to apply nontrivial primitives on the base object. Observation (2) inspires the proof of the impossibility of invisible reads in Theorem 2. Typically, the reading transaction must acquire exclusive ownership of the object via mutual exclusion or employing a read-modify-write primitive like compare-and-swap, motivating the linear lower bound on expensive synchronization in Theorem 6. In practice though, obstruction-free TMs may possibly circumvent these lower bounds in models that allow the use of contention managers [28].

Observe that Theorems 2 and 5 assume strict serializability and thus, also hold under the assumption of stronger TM-correctness conditions like opacity, *virtual-world consistency* [22] and *TMS* [9].

Since there are at most n concurrent transactions, we cannot do better than (n-1) stalls (cf. Definition 1). Thus, the lower bound of Theorem 5 is tight. Moreover, we conjecture that the linear (in n) lower bound of Theorem 6 for RW DAP opaque obstruction-free TMs can be strengthened to be linear in the size of the transaction's read set. Then, Algorithm 2 in Appendix B would allow us to establish a linear tight bound (in the size of the transaction's read set) for RW DAP opaque obstruction-free TMs.

Progressive vs. obstruction-free TMs. Progressiveness is a blocking TM-progress condition that is satisfied by several popular TM implementations like TL2 [7] and NOrec [6]. In general, progressiveness and obstruction-freedom are incomparable. On the one hand, a t-read X by a transaction T that runs step contention-free from a configuration that contains an incomplete t-write to X is typically blocked or aborted in lock-based TMs; obstruction-free TMs however, must ensure that T must complete its t-read of X without blocking or aborting. On the other hand, progressiveness requires two non-conflicting transactions to commit even in executions that are not step contention-free; but this is not guaranteed by obstruction-freedom.

Intuitively, progressive implementations are not forced to abort conflicting transactions, which allows us to employ invisible reads, derive constant stall and RAW/AWAR implementations. While it is relatively easy to derive standalone progressive TM implementations that are not individually subject to the lower bounds of obstruction-free TMs (cf. Figure 1), our progressive opaque TM implementation LP is not subject to any of the lower bounds we prove for implementations in \mathcal{OF} .

Circa. 2005, several papers presented the case for a shift from TMs that provide obstruction-free TM-progress to lock-based progressive TMs [7,8,12]. They argued that lock-based TMs tend to outperform obstruction-free ones by allowing for simpler algorithms with lower overheads and their inherent progress issues may be resolved using timeouts and contention-managers. The lower bounds for non-blocking TMs and the complexity gap with our progressive TM implementation established in this paper suggest that this course correction was indeed justified.

References

- [1] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. *IEEE Computer*, 29(12):66–76, 1996.
- [2] H. Attiya, R. Guerraoui, D. Hendler, and P. Kuznetsov. The complexity of obstruction-free implementations. *J. ACM*, 56(4), 2009.
- [3] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. Michael, and M. Vechev. Laws of order: Expensive synchronization in concurrent algorithms cannot be eliminated. In *POPL*, pages 487–498, 2011.
- [4] H. Attiya, S. Hans, P. Kuznetsov, and S. Ravi. Safety of deferred update in transactional memory. 2013 IEEE 33rd International Conference on Distributed Computing Systems, 0:601–610, 2013.
- [5] H. Attiya, E. Hillel, and A. Milani. Inherent limitations on disjoint-access parallel implementations of transactional memory. *Theory of Computing Systems*, 49(4):698–719, 2011.
- [6] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: streamlining STM by abolishing ownership records. In *PPOPP*, pages 67–78, 2010.
- [7] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC, pages 194–208, 2006.
- [8] D. Dice and N. Shavit. What really makes transactions fast? In Transact, 2006.
- [9] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying and verifying transactional memory. *Formal Aspects of Computing*, 25(5):769–799, 2013.
- [10] F. Ellen, D. Hendler, and N. Shavit. On the inherent sequentiality of concurrent objects. SIAM J. Comput., 41(3):519–536, 2012.
- [11] R. Ennals. The lightweight transaction library. http://sourceforge.net/projects/libltx/files/.
- [12] R. Ennals. Software transactional memory should not be obstruction-free. 2005.
- [13] K. Fraser. Practical lock-freedom. Technical report, Cambridge University Computer Laborotory, 2003.
- [14] R. Guerraoui and M. Kapalka. On obstruction-free transactions. In Proceedings of the Twentieth Annual Symposium on Parallelism in Algorithms and Architectures, SPAA '08, pages 304–313, New York, NY, USA, 2008. ACM.
- [15] R. Guerraoui and M. Kapalka. On obstruction-free transactions. In *Proceedings of the twen-tieth annual symposium on Parallelism in algorithms and architectures*, SPAA '08, pages 304–313, New York, NY, USA, 2008. ACM.
- [16] R. Guerraoui and M. Kapalka. The semantics of progress in lock-based transactional memory. In POPL, pages 404–415, 2009.
- [17] R. Guerraoui and M. Kapalka. Principles of Transactional Memory, Synthesis Lectures on Distributed Computing Theory. Morgan and Claypool, 2010.
- [18] M. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst., 13(1):123–149, 1991.
- [19] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended queues as an example. In *ICDCS*, pages 522–529, 2003.
- [20] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional memory for dynamic-sized data structures. In *PODC*, pages 92–101, 2003.

- [21] M. Herlihy and N. Shavit. On the nature of progress. In *OPODIS*, pages 313–328, 2011.
- [22] D. Imbs, J. R. G. de Mendívil, and M. Raynal. Brief announcement: virtual world consistency: a new condition for stm systems. In *PODC*, pages 280–281, 2009.
- [23] P. Kuznetsov and S. Ravi. On the cost of concurrency in transactional memory. In *OPODIS*, pages 112–127, 2011. full version: http://arxiv.org/abs/1103.1302.
- [24] P. Kuznetsov and S. Ravi. On partial wait-freedom in transactional memory. In *International Conference on Distributed Computing and Networking (ICDCN)*, 2015. full version: http://arxiv.org/abs/1407.6876.
- [25] V. J. Marathe, W. N. S. Iii, and M. L. Scott. Adaptive software transactional memory. In *In Proc. of the 19th Intl. Symp. on Distributed Computing*, pages 354–368, 2005.
- [26] P. E. McKenney. Memory barriers: a hardware view for software hackers. Linux Technology Center, IBM Beaverton, June 2010.
- [27] D. Perelman, R. Fan, and I. Keidar. On maintaining multiple versions in STM. In *PODC*, pages 16–25, 2010.
- [28] W. N. Scherer, III and M. L. Scott. Advanced contention management for dynamic software transactional memory. In *Proceedings of the Twenty-fourth Annual ACM Symposium on Principles of Distributed Computing*, PODC '05, pages 240–248, New York, NY, USA, 2005. ACM.
- [29] N. Shavit and D. Touitou. Software transactional memory. In *PODC*, pages 204–213, 1995.
- [30] F. Tabba, M. Moir, J. R. Goodman, A. W. Hay, and C. Wang. Nztm: Nonblocking zero-indirection transactional memory. In *Proceedings of the Twenty-first Annual Symposium on Parallelism in Algorithms and Architectures*, SPAA '09, pages 204–213, New York, NY, USA, 2009. ACM.

A Opaque progressive TM implementation LP

In this section, we describe our blocking TM implementation LP that satisfies progressiveness and opacity [17]. We begin with the formal definition of opacity.

For simplicity of presentation, we assume that each execution E begins with an "imaginary" transaction T_0 that writes initial values to all t-objects and commits before any other transaction begins in E. Let E be a t-sequential execution. For every operation $read_k(X)$ in E, we define the latest written value of X as follows: (1) If T_k contains a $write_k(X, v)$ preceding $read_k(X)$, then the latest written value of X is the value of the latest such write to X. (2) Otherwise, if E contains a $write_m(X, v)$, T_m precedes T_k , and T_m commits in E, then the latest written value of X is the value of the latest such write to X in E. (This write is well-defined since E starts with T_0 writing to all t-objects.) We say that $read_k(X)$ is legal in a t-sequential execution E if it returns the latest written value of X, and E is legal if every $read_k(X)$ in E that does not return E is E to E the sequential execution E if it returns the latest written value of E, and E is E to E the sequential execution E if it returns the latest written value of E, and E is E that E is E that E is E the sequential execution E is E that E is E the value of E that E is E the value of E that E is E that E is

For a history H, a completion of H, denoted H, is a history derived from H through the following procedure: (1) for every incomplete t-operation op_k of $T_k \in txns(H)$ in H, if $op_k = read_k \lor write_k$, insert A_k somewhere after the invocation of op_k ; otherwise, if $op_k = tryC_k()$, insert C_k or A_k somewhere after the last event of T_k . (2) for every complete transaction T_k that is not t-complete, insert $tryC_k \cdot A_k$ somewhere after the last event of transaction T_k .

Definition 2. A finite history H is opaque if there is a legal t-complete t-sequential history S, such that (1) for any two transactions $T_k, T_m \in txns(H)$, if $T_k \prec_H^{RT} T_m$, then T_k precedes T_m in S, and (2) S is equivalent to a completion of H.

Algorithm 1 Strict DAP progressive opaque TM implementation LP; code for T_k executed by process p_i

```
40: Function: release(Q):
       v_i, for each t-object X_i, allows reads and writes
                                                                            for all X_j \in Q do
 2:
                                                                    41:
       r_{ij}, for each process p_i and t-object X_j
                                                                              write(L_j,0)
 3:
                                                                    42:
            single-writer bit
 4:
                                                                            for all X_i \in Q do
                                                                    43:
            allows reads and writes
 5:
                                                                              write(r_{ij},0)
                                                                    44:
       L_i, for each t-object X_i
 6:
                                                                            Return ok
                                                                    45:
            allows reads and writes
 7:
 8: Local variables:
                                                                         Function: acquire(Q):
                                                                    46:
       Rset_k, Wset_k for every transaction T_k;
9:
                                                                            for all X_j \in Q do
                                                                    47:
           dictionaries storing \{X_m, v_m\}
10:
                                                                              write(r_{ij}, 1)
                                                                    48:
                                                                            if \exists X_j \in Q; t \neq k : read(r_{tj}) = 1 then
                                                                    49:
11: read_k(X_j):
                                                                              for all X_j \in Q do
                                                                    50:
       if X_j \not\in Rset(T_k) then
12:
                                                                                 write(r_{ij},0)
                                                                    51:
          [ov_j, k_j] := read(v_j)
13:
                                                                              Return false
                                                                    52:
          Rset(T_k) := Rset(T_k) \cup \{X_j, [ov_j, k_j]\}
14:
                                                                         // Exclusive write access to each L_i
          if read(L_i) \neq 0 then
15:
                                                                            for all X_i \in Q do
                                                                    53:
            Return A_k
16:
                                                                    54:
                                                                              write(L_i, 1)
          if validate() then
17:
                                                                            Return true
            Return A_k
18:
          Return ov_i
19:
                                                                         \mathbf{Function} \colon \mathsf{isAbortable}() :
       else
20:
                                                                            if \exists X_j \in Rset(T_k) : X_j \not\in Wset(T_k) \land read(L_j) \neq 0
          [ov_i, \perp] := Rset(T_k).locate(X_i)
21:
                                                                         then
22:
          Return ov_j
                                                                              Return true
                                                                    58:
                                                                            if validate() then
                                                                    59:
23:
    write_k(X_j, v):
                                                                              Return true
                                                                    60:
24:
       nv_i := v
                                                                            Return false
       Wset(T_k) := Wset(T_k) \cup \{X_j\}
25:
       Return ok
26:
                                                                    62: Function: validate():
                                                                               // Read validation
27: tryC k():
                                                                            if \exists X_j \in Rset(T_k): [ov_j, k_j] \neq read(v_j) then
                                                                    63:
       if |Wset(T_k)| = \emptyset then
28:
                                                                              Return true
                                                                    64:
          Return C_k
29:
                                                                            Return false
                                                                    65:
       locked := acquire(Wset(T_k))
30:
       if \neg locked then
31:
          Return A_k
32:
       if isAbortable() then
33:
          release(Wset(T_k))
34:
          Return A_k
35:
    // Exclusive write access to each v_j
       for all X_j \in \mathit{Wset}(T_k) do
36:
          write(v_j, [nv_j, k])
37:
       release(Wset(T_k))
38:
       Return C_k
39:
```

A finite history H is strictly serializable if there is a legal t-complete t-sequential history S, such that (1) for any two transactions $T_k, T_m \in txns(H)$, if $T_k \prec_H^{RT} T_m$, then T_k precedes T_m in S, and (2) S is equivalent to $cseq(\bar{H})$, where \bar{H} is some completion of H and $cseq(\bar{H})$ is the subsequence of \bar{H} reduced to committed transactions in \bar{H} .

We refer to S as a serialization of H.

We now prove that LP implements an opaque TM.

We introduce the following technical definition: process p_i holds a lock on X_j after an execution π of Algorithm 1 if π contains the invocation of acquire(Q), $X_j \in Q$ by p_i that returned true, but does not contain a subsequent invocation of release(Q'), $X_j \in Q'$, by p_i in π .

Lemma 11. For any object X_j , and any execution π of Algorithm 1, there exists at most one process that holds a lock on X_j after π .

Proof. Assume, by contradiction, that there exists an execution π after which processes p_i and p_k hold a lock on the same object, say X_j . In order to hold the lock on X_j , process p_i writes 1 to register r_{ij} and then checks if any other process p_k has written 1 to r_{kj} . Since the corresponding operation $acquire(Q), X_j \in Q$ invoked by p_i returns $true, p_i$ read 0 in r_{kj} in Line 49. But then p_k also writes 1 to r_{kj} and later reads that r_{ij} is 1. This is because p_k can write 1 to r_{kj} only after the read of r_{kj} returned 0 to p_i which is preceded by the write of 1 to r_{ij} . Hence, there exists an object X_j such that $r_{ij} = 1$; $i \neq k$, but the conditional in Line 49 returns true to process p_k — a contradiction.

Observation 12. Let π be any execution of Algorithm 1. Then, for any updating transaction $T_k \in txns(\pi)$ executed by process p_i writes to L_j (in Line 54) or v_j (in Line 37) for some $X_j \in Wset(T_k)$ immediately after π iff p_i holds the lock on X_j after π .

Lemma 13. Algorithm 1 implements an opaque TM.

Proof. Let E by any finite execution of Algorithm 1. Let e denote a total-order on events in E. Let E denote a subsequence of E constructed by selecting *linearization points* of t-operations performed in E. The linearization point of a t-operation e0, denoted as e0 is associated with a base object event or an event performed between the invocation and response of e0 using the following procedure.

Completions. First, we obtain a completion of E by removing some pending invocations and adding responses to the remaining pending invocations involving a transaction T_k as follows: every incomplete $read_k$, $write_k$ operation is removed from E; an incomplete $tryC_k$ is removed from E if T_k has not performed any write to a base object during the release function in Line 38, otherwise it is completed by including C_k after E.

Linearization points. Now a linearization H of E is obtained by associating linearization points to t-operations in the obtained completion of E as follows:

- For every t-read op_k that returns a non- A_k value, ℓ_{op_k} is chosen as the event in Line 13 of Algorithm 1, else, ℓ_{op_k} is chosen as invocation event of op_k
- For every $op_k = write_k$ that returns, ℓ_{op_k} is chosen as the invocation event of op_k
- For every $op_k = tryC_k$ that returns C_k such that $Wset(T_k) \neq \emptyset$, ℓ_{op_k} is associated with the response of acquire in Line 30, else if op_k returns A_k , ℓ_{op_k} is associated with the invocation event of op_k
- For every $op_k = tryC_k$ that returns C_k such that $Wset(T_k) = \emptyset$, ℓ_{op_k} is associated with Line 29

 $<_H$ denotes a total-order on t-operations in the complete sequential history H.

Serialization points. The serialization of a transaction T_j , denoted as δ_{T_j} is associated with the linearization point of a t-operation performed within the execution of T_j .

We obtain a t-complete history \bar{H} from H as follows: for every transaction T_k in H that is complete, but not t-complete, we insert $tryC_k \cdot A_k$ after H.

A t-complete t-sequential history S is obtained by associating serialization points to transactions in \bar{H} as follows:

- If T_k is an update transaction that commits, then δ_{T_k} is ℓ_{tryC_k}
- If T_k is a read-only or aborted transaction in \bar{H} , δ_{T_k} is assigned to the linearization point of the last t-read that returned a non- A_k value in T_k

 \leq_S denotes a total-order on transactions in the t-sequential history S.

Claim 14. If
$$T_i \prec_H T_j$$
, then $T_i <_S T_j$

Proof. This follows from the fact that for a given transaction, its serialization point is chosen between the first and last event of the transaction implying if $T_i \prec_H T_j$, then $\delta_{T_i} <_E \delta_{T_j}$ implies $T_i <_S T_j$.

Claim 15. Let T_k be any updating transaction that returns false from the invocation of is Abortable in Line 33. Then, T_k returns C_k within a finite number of its own steps in any extension of E.

Proof. Observer that T_k performs the write to base objects v_j for every $X_j \in Wset(T_k)$ and then invokes release in Lines 37 and 38 respectively. Since neither of these involve aborting the transaction or contain unbounded loops or waiting statements, it follows that T_k will return C_k within a finite number of its steps.

Claim 16. S is legal.

Proof. Observe that for every $read_j(X_m) \to v$, there exists some transaction T_i that performs $write_i(X_m, v)$ and completes the event in Line 37 such that $read_j(X_m) \not\prec_H^{RT} write_i(X_m, v)$. More specifically, $read_j(X_m)$ returns as a non-abort response, the value of the base object v_m and v_m can be updated only by a transaction T_i such that $X_m \in Wset(T_i)$. Since $read_j(X_m)$ returns the response v, the event in Line 13 succeeds the event in Line 37 performed by $tryC_i$. Consequently, by Claim 15 and the assignment of linearization points, $\ell_{tryC_i} <_E \ell_{read_j(X_m)}$. Since, for any updating committing transaction T_i , $\delta_{T_i} = \ell_{tryC_i}$, by the assignment of serialization points, it follows that $\delta_{T_i} <_E \delta_{T_i}$.

Thus, to prove that S is legal, it suffices to show that there does not exist a transaction T_k that returns C_k in S and performs $write_k(X_m, v')$; $v' \neq v$ such that $T_i <_S T_k <_S T_j$. Suppose that there exists a committed transaction T_k , $X_m \in Wset(T_k)$ such that $T_i <_S T_k <_S T_j$.

 T_i and T_k are both updating transactions that commit. Thus,

$$(T_i <_S T_k) \iff (\delta_{T_i} <_E \delta_{T_k})$$
$$(\delta_{T_i} <_E \delta_{T_k}) \iff (\ell_{tryC_i} <_E \ell_{tryC_k})$$

Since, T_j reads the value of X written by T_i , one of the following is true: $\ell_{tryC_i} <_E \ell_{tryC_k} <_E \ell_{read_j(X_m)}$ or $\ell_{tryC_i} <_E \ell_{read_j(X_m)} <_E \ell_{tryC_k}$. Let T_i and T_k be executed by processes p_i and p_k respectively.

Consider the case that $\ell_{tryC_i} <_E \ell_{tryC_k} <_E \ell_{read_i(X_m)}$.

By the assignment of linearization points, T_k returns a response from the event in Line 30 before the read of v_m by T_j in Line 13. Since T_i and T_k are both committed in E, p_k returns true from the event in Line 30 only after T_i writes 0 to r_{im} in Line 44 (Lemma 11).

Recall that $read_j(X_m)$ checks if X_m is locked by a concurrent transaction (i.e $L_j \neq 0$), then performs read-validation (Line 15) before returning a matching response. Consider the following possible sequence of events: T_k returns true from the acquire function invocation, sets L_j to 1 for every $X_j \in Wset(T_k)$ (Line 54) and updates the value of X_m to shared-memory (Line 37). The implementation of $read_j(X_m)$ then reads the base object v_m associated with X_m after which T_k releases X_m by writing 0 to r_{km} and finally T_j performs the check in Line 15. However, $read_j(X_m)$ is forced to return A_j because $X_m \in Rset(T_j)$ (Line 14) and has been invalidated since last reading its value. Otherwise suppose that T_k acquires exclusive access to X_m by writing 1 to r_{km} and returns true from the invocation of acquire, updates v_m in Line 37), T_j reads v_m , T_j performs the check in Line 15 and finally T_k releases X_m by writing 0 to r_{km} . Again, $read_j(X_m)$ returns A_j since T_j reads that r_{km} is 1—contradiction.

Thus, $\ell_{tryC_i} <_E \ell_{read_j(X)} <_E \ell_{tryC_k}$.

We now need to prove that δ_{T_i} indeed precedes ℓ_{tryC_k} in E.

Consider the two possible cases:

• Suppose that T_j is a read-only or aborted transaction in H. Then, δ_{T_j} is assigned to the last t-read performed by T_j that returns a non- A_j value. If $read_j(X_m)$ is not the last t-read performed by T_j that returned a non- A_j value, then there exists a $read_j(X_z)$ performed by T_j such that $\ell_{read_j(X_m)} <_E \ell_{tryC_k} <_E \ell_{read_j(X_z)}$. Now assume that ℓ_{tryC_k} must precede $\ell_{read_j(X_z)}$ to obtain a legal S. Since T_k and T_j are concurrent in E, we are restricted to the case that T_k performs a $write_k(X_z, v)$ and $read_j(X_z)$ returns v. However, we claim that this t-read of X_z must abort by performing the checks in Line 15. Observe that T_k writes 1 to L_m , L_z

each (Line 54) and then writes new values to base objects v_m , v_z (Line 37). Since $read_j(X_z)$ returns a non- A_j response, T_k writes 0 to L_z before the read of L_z by $read_j(X_z)$ in Line 15. Thus, the t-read of X_z would return A_j (in Line 17 after validation of the read set since X_m has been updated— contradiction to the assumption that it the last t-read by T_j to return a non- A_j response.

• Suppose that T_j is an updating transaction that commits, then $\delta_{T_j} = \ell_{tryC_j}$ which implies that $\ell_{read_j(X_m)} <_E \ell_{tryC_k} <_E \ell_{tryC_j}$. Then, T_j must necessarily perform the checks in Line 33 and read that L_m is 1. Thus, T_j must return A_j —contradiction to the assumption that T_j is a committed transaction.

The conjunction of Claims 14 and 16 establish that Algorithm 1 is opaque. \Box

Theorem 9. Algorithm 1 describes a progressive, opaque and strict DAP TM implementation LP that provides wait-free TM-liveness, uses invisible reads and in every execution E of LP,

- every transaction $T \in txns(E)$ applies only read and write primitives in E,
- every transaction $T \in txns(E)$ performs at most a single RAW,
- for every transaction $T \in txns(E)$, every t-read operation performed by T incurs O(1) memory stalls in E.

Proof. (TM-liveness and TM-progress) Since none of the implementations of the t-operations in Algorithm 1 contain unbounded loops or waiting statements, every t-operation op_k returns a matching response after taking a finite number of steps in every execution. Thus, Algorithm 1 provides wait-free TM-liveness.

To prove progressiveness, we proceed by enumerating the cases under which a transaction T_k may be aborted.

- Suppose that there exists a $read_k(X_j)$ performed by T_k that returns A_k from Line 15. Thus, there exists a process p_t executing a transaction that has written 1 to r_{tj} in Line 48, but has not yet written 0 to r_{tj} in Line 44 or some t-object in $Rset(T_k)$ has been updated since its t-read by T_k . In both cases, there exists a concurrent transaction performing a t-write to some t-object in $Rset(T_k)$.
- Suppose that $tryC_k$ performed by T_k that returns A_k from Line 31. Thus, there exists a process p_t executing a transaction that has written 1 to r_{tj} in Line 48, but has not yet written 0 to r_{tj} in Line 44. Thus, T_k encounters step-contention with another transaction that concurrently attempts to update a t-object in $Wset(T_k)$.
- Suppose that $tryC_k$ performed by T_k that returns A_k from Line 33. Since T_k returns A_k from Line 33 for the same reason it returns A_k after Line 15, the proof follows.

(Strict disjoint-access parallelism) Consider any execution E of Algorithm 1 and let T_i and T_j be any two transactions that participate in E and access the same base object b in E.

- Suppose that T_i and T_j contend on base object v_j or L_j . Since for every t-object X_j , there exists distinct base objects v_j and L_j , T_j and T_j contend on v_j only if $X_j \in Dset(T_i) \cap Dset(T_j)$.
- Suppose that T_i and T_j contend on base object r_{ij} . Without loss of generality, let p_i be the process executing transaction T_i ; $X_j \in Wset(T_i)$ that writes 1 to r_{ij} in Line 48. Indeed, no other process executing a transaction that writes to X_j can write to r_{ij} . Transaction T_j reads r_{ij} only if $X_j \in Dset(T_j)$ as evident from the accesses performed in Lines 48, 49, 44, 57

Thus, T_i and T_j access the same base object only if they access a common t-object.

(Opacity) Follows from Lemma 13.

(Invisible reads) Observe that read-only transactions do not perform any nontrivial events. Secondly, in any execution E of Algorithm 1, and any transaction $T_k \in txns(E)$, if $X_j \in Rset(T_k)$, T_k does not write to any of the base objects associated with X_j nor write any information that reveals its read set to other transactions.

(Complexity) Consider any execution E of Algorithm 1.

- For any $T_k \in txns(E)$, each $read_k$ only applies trivial primitives in E while $tryC_k$ simply returns C_k if $Wset(T_k) = \emptyset$. Thus, Algorithm 1 uses invisible reads.
- Any read-only transaction $T_k \in txns(E)$ not perform any RAW or AWAR. An updating transaction T_k executed by process p_i performs a sequence of writes (Line 48 to base objects $\{r_{ij}\}: X_j \in Wset(T_k)$, followed by a sequence of reads to base objects $\{r_{tj}\}: t \in \{1, \ldots, n\}, X_j \in Wset(T_k)$ (Line 49) thus incurring a single multi-RAW.
- Let e be a write event performed by some transaction T_k executed by process p_i in E on base objects v_j and L_j (Lines 37 and 54). Any transaction T_k performs a write to v_j or L_j only after T_k writes 0 to r_{ij} , for every $X_j \in Wset(T_k)$. Thus, by Lemmata 11 and 13, it follows that events that involve an access to either of these base objects incurs O(1) stalls. Let e be a write event on base object r_{ij} (Line 48) while writing to t-object X_j . By Algorithm 1, no other process can write to r_{ij} . It follows that any transaction $T_k \in txns(E)$ incurs O(1) memory stalls on account of any event it performs in E. Observe that any t-read $read_k(X_j)$ only accesses base objects v_j , L_j and other value base objects in $Rset(T_k)$. But as already established above, these are O(1) stall events. Hence, every t-read operation incurs O(1)-stalls in E.

B Obstruction-free TMs

B.1 An opaque RW DAP TM implementation $M \in \mathcal{OF}$

Lemma 10. Algorithm 2 implements an opaque TM.

Proof. Since opacity is a safety property, we only consider finite executions [4]. Let E by any finite execution of Algorithm 2. Let \leq_E denote a total-order on events in E.

Let H denote a subsequence of E constructed by selecting linearization points of t-operations performed in E. The linearization point of a t-operation op, denoted as ℓ_{op} is associated with a base object event or an event performed during the execution of op using the following procedure.

Completions. First, we obtain a completion of E by removing some pending invocations and adding responses to the remaining pending invocations involving a transaction T_k as follows: every incomplete $read_k$, $write_k$, $tryC_k$ operation is removed from E; an incomplete $write_k$ is removed from E.

Linearization points. We now associate linearization points to t-operations in the obtained completion of E as follows:

- For every t-read op_k that returns a non- A_k value, ℓ_{op_k} is chosen as the event in Line 13 of Algorithm 2, else, ℓ_{op_k} is chosen as invocation event of op_k
- For every t-write op_k that returns a non- A_k value, ℓ_{op_k} is chosen as the event in Line 37 of Algorithm 2, else, ℓ_{op_k} is chosen as invocation event of op_k
- For every $op_k = tryC_k$ that returns C_k , ℓ_{op_k} is associated with Line 65.

 $<_H$ denotes a total-order on t-operations in the complete sequential history H.

Serialization points. The serialization of a transaction T_j , denoted as δ_{T_j} is associated with the linearization point of a t-operation performed during the execution of the transaction.

We obtain a t-complete history \bar{H} from H as follows: for every transaction T_k in H that is complete, but not t-complete, we insert $tryC_k \cdot A_k$ after H.

 \bar{H} is thus a t-complete sequential history. A t-complete t-sequential history S equivalent to \bar{H} is obtained by associating serialization points to transactions in \bar{H} as follows:

- If T_k is an update transaction that commits, then δ_{T_k} is ℓ_{tryC_k}
- If T_k is an aborted or read-only transaction in \bar{H} , then δ_{T_k} is assigned to the linearization point of the last t-read that returned a non- A_k value in T_k

 $\langle S \rangle$ denotes a total-order on transactions in the t-sequential history S.

Algorithm 2 RW DAP opaque implementation $M \in \mathcal{OF}$; code for T_k

```
1: Shared base objects:
                                                                36: write_k(X_m, v):
       tvar[m], storing [owner_m, oval_m, nval_m]
                                                                       [owner_m, oval_m, nval_m] \leftarrow tvar[m].read()
          for each t-object X_m, supports read, write, cas 38:
                                                                       if owner_m \neq k then
          owner_m, a transaction identifier
                                                                          s_m \leftarrow status[owner_m].read()
 4:
                                                                39:
                                                                          if s_m = committed then
          oval_m \in V
                                                                40:
 5:
          nval_m \in V
                                                                            curr = nval_m
 6:
                                                                41:
       status[k] \in \{live, aborted, committed\},
                                                                          else if s_m = aborted then
                                                                42:
 7:
          for each T_k; supports read, write, cas
                                                                            curr = oval_m
                                                                43:
 8:
                                                                          else
                                                                44:
 9:
                                                                            if status[owner_m].cas(live, aborted) then
                                                                45:
       Rset_k, Wset_k for every transaction T_k;
10:
                                                                46:
          dictionaries storing \{X_m, Tvar[m]\}
11:
                                                                47:
                                                                               Return A_k
12: read h (Xm):
                                                                          o_m \leftarrow tvar[m].cas([owner_m, oval_m, nval_m], [k, curr, v])
                                                                49:
      [owner_m, oval_m, nval_m] \leftarrow tvar[m].read()
13:
       if owner_m \neq k then
14:
                                                                50:
                                                                          if o_m \wedge status[k] = live then
         s_m \leftarrow status[owner_m].read()
15:
                                                                51:
                                                                             Wset_k.add(\{X_m, [k, curr, v]\})
         if s_m = committed then
16:
                                                                            Return ok
                                                                52:
            curr = nval_m
17:
                                                                          else
                                                                53:
         else if s_m = aborted then
18:
                                                                            Return A_k
                                                                54:
            curr = oval_m
19:
                                                                55:
                                                                       else
         else
20.
                                                                          [owner_m, oval_m, nval_m] = Wset_k.locate(X_m)
            if status[owner_m].cas(live, aborted) then
                                                                56:
21:
                                                                          s = tvar[m].cas([owner_m, oval_m, nval_m], [k, oval_m, v])
                                                                57:
              curr = oval_m
22:
            else
                                                                58:
23:
                                                                             Wset(T_k).add(\{X_m, [k, oval_m, v]\})
              Return A_k
                                                                59:
24:
                                                                            Return ok
                                                                60:
         if status[k] = live \land \neg validate() then
25:
                                                                          else
            Rset(T_k).add(\{X_m, [owner_m, oval_m, nval_m]\})
                                                                61:
26:
                                                                            Return A_k
                                                                62:
            Return curr
27:
         Return A_k
28:
                                                                63:
                                                                     tryC_k():
      else
29:
                                                                       if validate() then
                                                                64:
         Return Rset(T_k).locate(X_m)
30:
                                                                          Return A_k
                                                                65:
                                                                       if status[k].cas(live, committed) then
                                                                66.
31:
    Function: validate():
                                                                          Return C_k
                                                                67:
      if \exists \{X_j, [owner_j, oval_j, nval_j]\} \in Rset(T_k):
32:
                                                                       Return A_k
                                                                68:
          ([owner_j, oval_j, nval_j] \neq tvar[j].read()) then
33:
         Return true
34:
      Return false
35:
```

Claim 11. If $T_i \prec_H^{RT} T_i$, then $T_i <_S T_i$.

Proof. This follows from the fact that for a given transaction, its serialization point is chosen between the first and last event of the transaction implying if $T_i \prec_H T_j$, then $\delta_{T_i} <_E \delta_{T_j}$ implies $T_i <_S T_j$

Claim 12. If transaction T_i returns C_i in E, then status[i]=committed in E.

Proof. Transaction T_i must perform the event in Line 66 before returning T_i i.e. the *cas* on its own *status* to change the value to *committed*. The proof now follows from the fact that any other transaction may change the *status* of T_i only if it is *live* (Lines 45 and 21).

Claim 13. S is legal.

Proof. Observe that for every $read_j(X) \to v$, there exists some transaction T_i that performs $write_i(X, v)$ and completes the event in Line 49 to write v as the new value of X such that $read_j(X) \not\prec_H^{RT} write_i(X, v)$. For any updating committing transaction T_i , $\delta_{T_i} = \ell_{tryC_i}$. Since $read_j(X)$ returns a response v, the event in Line 13 must succeed the event in Line 66 when T_i changes status[i] to committed. Suppose otherwise, then $read_j(X)$ subsequently forces T_i to abort

by writing aborted to status[i] and must return the old value of X that is updated by the previous owner of X, which must be committed in E (Line 40). Since $\delta_{T_i} = \ell_{tryC_i}$ precedes the event in Line 66, it follows that $\delta_{T_i} <_E \ell_{read_i(X)}$.

We now need to prove that $\delta_{T_i} <_E \delta_{T_i}$. Consider the following cases:

- if T_j is an updating committed transaction, then δ_{T_j} is assigned to ℓ_{tryC_j} . But since $\ell_{read_j(X)} <_E \ell_{tryC_j}$, it follows that $\delta_{T_i} <_E \delta_{T_j}$.
- if T_j is a read-only or aborted transaction, then δ_{T_j} is assigned to the last t-read that did not abort. Again, it follows that $\delta_{T_i} <_E \delta_{T_j}$.

To prove that S is legal, we need to show that, there does not exist any transaction T_k that returns C_k in S and performs $write_k(X, v')$; $v' \neq v$ such that $T_i <_S T_k <_S T_j$. Now, suppose by contradiction that there exists a committed transaction T_k , $X \in Wset(T_k)$ that writes $v' \neq v$ to X such that $T_i <_S T_k <_S T_j$. Since T_i and T_k are both updating transactions that commit,

$$(T_i <_S T_k) \iff (\delta_{T_i} <_E \delta_{T_k})$$
$$(\delta_{T_i} <_E \delta_{T_k}) \iff (\ell_{tryC_i} <_E \ell_{tryC_k})$$

Since, T_j reads the value of X written by T_i , one of the following is true: $\ell_{tryC_i} <_E \ell_{tryC_k} <_E \ell_{read_i(X)}$ or $\ell_{tryC_i} <_E \ell_{read_i(X)} <_E \ell_{tryC_k}$.

If $\ell_{tryC_i} <_E \ell_{tryC_k} <_E \ell_{read_j(X)}$, then the event in Line 66 performed by T_k when it changes the status field to committed precedes the event in Line 13 performed by T_j . Since $\ell_{tryC_i} <_E \ell_{tryC_k}$ and both T_i and T_k are committed in E, T_k must perform the event in Line 37 after T_i changes status[i] to committed since otherwise, T_k would perform the event in Line 45 and change status[i] to aborted, thereby forcing T_i to return A_i . However, $read_j(X)$ observes that the owner of X is T_k and since the status of T_k is committed at this point in the execution, $read_j(X)$ must return v' and not v—contradiction.

Thus, $\ell_{tryC_i} <_E \ell_{read_j(X)} <_E \ell_{tryC_k}$. We now need to prove that δ_{T_j} indeed precedes $\delta_{T_k} = \ell_{tryC_k}$ in E.

Now consider two cases:

- Suppose that T_j is a read-only transaction. Then, δ_{T_j} is assigned to the last t-read performed by T_j that returns a non- A_j value. If $read_j(X)$ is not the last t-read that returned a non- A_j value, then there exists a $read_j(X')$ such that $\ell_{read_j(X)} <_E \ell_{tryC_k} <_E \ell_{read_j(X')}$. But then this t-read of X' must abort since the value of X has been updated by T_k since T_j first read X—contradiction.
- Suppose that T_j is an updating transaction that commits, then $\delta_{T_j} = \ell_{tryC_j}$ which implies that $\ell_{read_j(X)} <_E \ell_{tryC_k} <_E \ell_{tryC_j}$. Then, T_j must necessarily perform the validation of its read set in Line 65 and return A_j —contradiction.

Claims 11 and 13 establish that Algorithm 2 is opaque.

Theorem 14. Algorithm 2 describes a RW DAP, opaque TM implementation $M \in \mathcal{OF}$ such that every execution E of M is a O(n)-stall execution for any t-read operation and every read-only transaction $T \in txns(E)$ performs O(|Rset(T)|) AWARs in E.

Proof. (Opacity) Follows from Lemma 10

(TM-liveness and TM-progress) Since none of the implementations of the t-operations in Algorithm 2 contain unbounded loops or waiting statements, every t-operation op_k returns a matching response after taking a finite number of steps. Thus, Algorithm 2 provides wait-free TM-liveness.

To prove OF TM-progress, we proceed by enumerating the cases under which a transaction T_k may be aborted in any execution.

• Suppose that there exists a $read_k(X_m)$ performed by T_k that returns A_k . If $read_k(X_m)$ returns A_k in Line 28, then there exists a concurrent transaction that updated a t-object in $Rset(T_k)$ or changed status[k] to aborted. In both cases, T_k returns A_k only because there is step contention.

- Suppose that there exists a $write_k(X_m, v)$ performed by T_k that returns A_k in Line 54. Thus, either a concurrent transaction has changed status[k] to aborted or the value in tvar[m] has been updated since the event in Line 37. In both cases, T_k returns A_k only because of step contention with another transaction.
- Suppose that a $read_k(X_m)$ or $write_k(X_m, v)$ return A_k in Lines 21 and 45 respectively. Thus, a concurrent transaction has takes steps concurrently by updating the status of $owner_m$ since the read by T_k in Lines 13 and 37 respectively.
- Suppose that $tryC_k()$ returns A_k in Line 62. This is because there exists a t-object in $Rset(T_k)$ that has been updated by a concurrent transaction since i.e. $tryC_k()$ returns A_k only on encountering step contention.

It follows that in any step contention-free execution of a transaction T_k from a T_k -free execution, T_k must return C_k after taking a finite number of steps.

(Read-write disjoint-access parallelism) Consider any execution E of Algorithm 2 and let T_i and T_j be any two transactions that contend on a base object b in E. We need to prove that there is a path between a t-object in $Dset(T_i)$ and a t-object in $Dset(T_j)$ in $\tilde{G}(T_i, T_j, E)$ or there exists $X \in Dset(T_i) \cap Dset(T_j)$. Recall that there exists an edge between t-objects X and Y in $\tilde{G}(T_i, T_j, E)$ only if there exists a transaction $T \in txns(E)$ such that $\{X, Y\} \in Wset(T)$.

- Suppose that T_i and T_j contend on base object tvar[m] belonging to t-object X_m in E. By Algorithm 2, a transaction accesses X_m only if X_m is contained in $Dset(T_m)$. Thus, both T_i and T_j must access X_m .
- Suppose that T_i and T_j contend on base object status[i] in E (the case when T_i and T_j contend on status[j] is symmetric). T_j accesses status[i] while performing a t-read of some t-object X in Lines 15 and 21 only if T_i is the owner of X. Also, T_j accesses status[i] while performing a t-write to X in Lines 39 and 45 only if T_i is the owner of X. But if T_i is the owner of X, then $X \in Wset(T_i)$.
- Suppose that T_i and T_j contend on base object status[m] belonging to some transaction T_m in E. Firstly, observe that T_i or T_j access status[m] only if there exist t-objects X and Y in $Dset(T_i)$ and $Dset(T_j)$ respectively such that $\{X,Y\} \in Wset(T_m)$. This is because T_i and T_j would both read status[m] in Lines 15 (during t-read) and 39 (during t-write) only if T_m was the previous owner of X and Y. Secondly, one of T_i or T_j applies a nontrivial primitive to status[m] only if T_i and T_j read status[m]=live in Lines 15 (during t-read) and 37 (during t-write). Thus, at least one of T_i or T_j is concurrent to T_m in E. It follows that there exists a path between X and Y in $\tilde{G}(T_i, T_j, E)$.

(Complexity) Every t-read operation performs at most one AWAR in an execution E (Line 21) of Algorithm 2. It follows that any read-only transaction $T_k \in txns(E)$ performs at most $|Rset(T_k)|$ AWARs in E.

The linear step-complexity is immediate from the fact that during the t-read operations, the transaction validates its entire read set (Line 25). All other t-operations incur O(1) step-complexity since they involve no iteration statements like for and while loops.

Since at most n-1 transactions may be t-incomplete at any point in an execution E, it follows that E is at most a (n-1)-stall execution for any t-read op and every $T \in txns(E)$ incurs O(n) stalls on account of any event performed in E. More specifically, consider the following execution E: for all $i \in \{1, \ldots, n-1\}$, each transaction T_i performs $write_i(X_m, v)$ in a step-contention free execution until it is poised to apply a nontrivial event on tvar[m] (Line 49). By OF TM-progress, we construct E such that each of the T_i is poised to apply a nontrivial event on tvar[m] after E. Consider the execution fragment of $read_n(X_m)$ that is poised to perform an event e that reads tvar[m] (Line 13) immediately after E. In the constructed execution, T_n incurs O(n) stalls on account of e and thus, produces the desired (n-1)-stall execution for $read_n(X)$.

Algorithm 3 Weak DAP opaque implementation $M \in \mathcal{OF}$; code for T_k

```
[owner_m, oval_m, nval_m] \leftarrow tvar[m].read()
2:
       if owner_m \neq k then
3:
          s_m \leftarrow status[owner_m].read()
 4:
          if s_m = committed then
             curr = nval_m
 6:
          else if s_m = aborted then
 7:
             curr = oval_m
 8:
 9:
             if status[owner_m].cas(live, aborted) then
10:
                curr = oval_m
11:
             Return A_k
12.
          o_m \leftarrow tvar[m].\mathsf{cas}([\mathit{owner}_m, \mathit{oval}_m, \mathit{nval}_m], [k, \mathit{oval}_m, \mathit{nval}_m])
13:
          if o_m \wedge status[k] = live then
14:
             Rset(T_k).add(\{X_m, [owner_m, oval_m, nval_m]\})
15:
             Return curr
16:
       else
17:
          Return Rset(T_k).locate(X_m)
18:
19: tryC k():
       if status[k].cas(live, committed) then
20:
          Return C_k
21:
       Return A_k
22:
```

B.2 An opaque weak DAP implementation $M \in \mathcal{OF}$

Algorithm 3 describes a weak DAP implementation in \mathcal{OF} that does not satisfy read-write DAP. The code for the t-write operations is identical to Algorithm 2.

Theorem 15. Algorithm 3 describes a weak TM implementation $M \in \mathcal{OF}$ such that in any execution E of M, for every transaction $T \in txns(E)$, T performs O(1) steps during the execution of any t-operation in E.

Proof. The proofs of opacity, TM-liveness and TM-progress are almost identical to the analogous proofs for Algorithm 2.

(Weak disjoint-access parallelism) Consider any execution E of Algorithm 3 and let T_i and T_j be any two transactions that contend on a base object b in E. We need to prove that there is a path between a t-object in $Dset(T_i)$ and a t-object in $Dset(T_j)$ in $\tilde{G}(T_i, T_j, E)$ or there exists $X \in Dset(T_i) \cap Dset(T_j)$. Recall that there exists an edge between t-objects X and Y in $G(T_i, T_j, E)$ only if there exists a transaction $T \in txns(E)$ such that $\{X, Y\} \in Dset(T)$.

- Suppose that T_i and T_j contend on base object tvar[m] belonging to t-object X_m in E. By Algorithm 3, a transaction accesses X_m only if X_m is contained in $Dset(T_m)$. Thus, both T_i and T_j must access X_m .
- Suppose that T_i and T_j contend on base object status[i] in E (the case when T_i and T_j contend on status[j] is symmetric). T_j accesses status[i] while performing a t-read of some t-object X in Lines 4 and 10 only if T_i is the owner of X. Also, T_j accesses status[i] while performing a t-write to X in Lines 39 and 45 only if T_i is the owner of X. But if T_i is the owner of X, then $X \in Dset(T_i)$.
- Suppose that T_i and T_j contend on base object status[m] belonging to some transaction T_m in E. Firstly, observe that T_i or T_j access status[m] only if there exist t-objects X and Y in $Dset(T_i)$ and $Dset(T_j)$ respectively such that $\{X,Y\} \in Dset(T_m)$. This is because T_i and T_j would both read status[m] in Lines 4 (during t-read) and 39 (during t-write) only if T_m was the previous owner of X and Y. Secondly, one of T_i or T_j applies a nontrivial primitive to status[m] only if T_i and T_j read status[m]=live in Lines 4 (during t-read) and 37 (during t-write). Thus, at least one of T_i or T_j is concurrent to T_m in E. It follows that there exists a path between X and Y in $\tilde{G}(T_i, T_j, E)$.

($Complexity$) Since no implementation of any of the t-operation contains any iteration slike for and $while$ loops), the proof follows.	tatements