

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALES BÜRO
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ : G01L 9/00, 1/14, G01H 11/06, H04R 19/00		A1	(11) Internationale Veröffentlichungsnummer: WO 98/23934
(21) Internationales Aktenzeichen: PCT/DE97/02740			(43) Internationales Veröffentlichungsdatum: 4. Juni 1998 (04.06.98)
(22) Internationales Anmeldedatum: 21. November 1997 (21.11.97)			(81) Bestimmungsstaaten: CN, JP, KR, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Prioritätsdaten: 196 48 424.3 22. November 1996 (22.11.96) DE			Veröffentlicht <i>Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i>
(71) Anmelder <i>(für alle Bestimmungsstaaten ausser US):</i> SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, D-80333 München (DE).			
(72) Erfinder; und			
(75) Erfinder/Anmelder <i>(nur für US):</i> SCHEITER, Thomas [DE/DE]; Flößerweg 13, D-82041 Oberhaching (DE), NÄHER, Ulrich [DE/DE]; Rheinstrasse 23, D-80803 München (DE), HIEROLD, Christofer [DE/DE]; Dornroschenstrasse 48, D-81739 München (DE).			

(54) Title: MICROMECHANICAL SENSOR

(54) Bezeichnung: MIKROMECHANISCHER SENSOR

(57) Abstract

A relative pressure sensor or a miniaturised microphone are designed as micromechanical components with a polysilicon membrane (5) arranged over a body silicon layer (3) of an SOI-substrate. A recess (9) shaped at the back side of the substrate communicates through openings (10) in the body silicon layer with the cavity (6) located between the membrane and the body silicon layer. When the membrane vibrates, the pressure in the cavity can be compensated through the openings. Measurement is carried out capacitively by an electric connection (12, 13) between the electroconductive doped membrane and a doped area (8) of the body silicon layer.

(57) **Zusammenfassung**

Relativdrucksensor oder miniaturisiertes Mikrofon als mikromechanisches Bauelement, bei dem eine Polysiliziummembran (5) über einer Body-Siliziumschicht (3) eines SOI-Substrates angeordnet ist. Auf der Rückseite ist in dem Substrat eine Aussparung (9) vorhanden, die durch Öffnungen (10) in der Body-Siliziumschicht mit dem Hohlraum (6) zwischen der Membran und der Body-Siliziumschicht verbunden ist. Durch diese Öffnungen kann daher bei einem Ausschwingen der Membran ein Druckausgleich in dem Hohlraum erfolgen. Die Messung erfolgt kapazitiv durch elektrischen Anschluß (12, 13) der elektrisch leitend dotierten Membran und eines in der Body-Siliziumschicht ausgebildeten dotierten Bereiches (8).

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauritanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		

Beschreibung

Mikromechanischer Sensor

5 Für verschiedene Anwendungen sind stark miniaturisierte Sensoren erwünscht, mit deren Hilfe man Druckunterschiede oder Druckschwankungen messen kann. Ein Einsatz als Relativdrucksensor zur Messung eines Druckunterschiedes kommt z. B. dann in Frage, wenn der relative Druck eines in einem ersten Volumen eingeschlossenen Gases im Vergleich zu einem in einem zweiten Volumen eingeschlossenen Gas festgestellt werden soll. In einem solchen Fall ist es möglich, die beiden Drucke, die in den Gasvolumina vorherrschen, gesondert zu messen und diese absoluten Messungen miteinander zu vergleichen. Besonders einfach und zweckmäßig gestaltet sich die Messung aber dann, wenn derselbe Drucksensor mit beiden Gasvolumina in Verbindung steht und so ein vorhandener Druckunterschied sofort eine Auswirkung auf die von diesem Sensor gelieferten Meßwerte hat.

20 Eine weitere Anwendungsmöglichkeit für einen derartigen Sensor ist die Messung von kurzzeitigen Druckschwankungen, insbesondere für akustische Wellen, für die der Sensor dann einen Schallwandler, d. h. ein Mikrofon, für die Übertragung der Schallwellen in elektrische Signale darstellt. Mikrofone als mikromechanische Bauelemente in Silizium werden seit ca. 12 Jahren hergestellt. Eine Übersicht über die Entwicklung ist enthalten in dem Übersichtsartikel von P. R. Scheeper e.a.: „A Review of Silicon Microphones“ in Sensors and Actuators A 44, 1-11 (1994). Wenn die für die Ansteuersetzung des Mikrofones vorgesehenen elektronischen Bauelemente im Rahmen eines CMOS-Prozesses hergestellt werden, ist es vorteilhaft, wenn auch die mikromechanischen Komponenten des Mikrofones kompatibel zu diesem Prozeß hergestellt werden. 25 30 35 Falls für das Mikrofon eine kapazitive Messung der elek-

trisch leitenden Mikrophonmembran gegenüber einer fest auf einem Chip angeordneten Gegenelektrode vorgesehen ist, werden bislang zwei miteinander verbundene Chips verwendet. Auf dem einen Chip befindet sich die mikromechanische Sensorstruktur mit der Membran, auf dem anderen Chip ist die Gegenelektrode angeordnet. Ein solches Mikrophon ist z. B. in der Veröffentlichung von T. Bourouina e.a.: „A new condenser microphone with a p' silicon membrane“ in Sensors and Actuators A, 31, 149-152 (1992) beschrieben.

10

Ein Problem, das sich bei mikromechanischen Mikrophonen ergibt, besteht darin, daß kleine Membranen nur schwach ausgelenkt werden können und daher eine geringe Empfindlichkeit gegenüber Luftdruckschwankungen zeigen. Außerdem stellt die Luft zwischen den Meßelektroden eine starke Dämpfung der Membran dar, weil die Luft nicht schnell und stark genug komprimiert werden kann. Dadurch wird die Empfindlichkeit des Mikrophones reduziert. Es ist daher erforderlich, einen Druckausgleich der Luft zwischen den Meßelektroden zu ermöglichen.

20

Aufgabe der vorliegenden Erfindung ist es, einen mikromechanischen Sensor zur Bestimmung von Druckunterschieden oder Druckschwankungen anzugeben, der einfach herstellbar ist und der auf einfache Weise mit einer elektronischen Ansteuerung verbunden werden kann.

Diese Aufgabe wird mit dem Sensor mit den Merkmalen des Anspruches 1 gelöst. Weitere Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.

30

Der erfindungsgemäße Sensor verwendet ein SOI-Substrat, bei dem eine dicke Bulk-Siliziumschicht von einer dünnen Body-Siliziumschicht durch eine Isolationsschicht, die z. B. Siliziumdioxid sein kann, getrennt ist. Die Membran des Sensors ist über der Body-Siliziumschicht auf einer Abstandsschicht

3

angeordnet, die einen Hohlraum aufweist, der eine Schwingung der Membran ermöglicht. Dieser Hohlraum ist durch Öffnungen in der Body-Siliziumschicht und eine große Aussparung in der Isolationsschicht und der Bulk-Siliziumschicht mit der Umgebung verbunden, so daß ein Druckausgleich stattfinden kann. Das unter der Membran eingeschlossene Luftvolumen kann daher bei einer Auslenkung der Membran durch Zu- und Abströmen von Luft durch die Öffnungen in der Body-Siliziumschicht vergrößert oder verkleinert werden, ohne daß eine wesentliche Druckänderung auftritt. Die Membran ist daher bei diesem Sensor nur gering bedämpft. Dadurch wird die Empfindlichkeit des Sensors erhöht, so daß er z. B. als Einsatz in einem Mikrofon geeignet ist. Ebenfalls kann diese Sensorstruktur als Relativdrucksensor verwendet werden, wenn ein Druckunterschied zwischen dem Medium über und dem Medium unter der Membran gemessen werden soll. Das wird dadurch ermöglicht, daß wegen der Öffnungen zum Hohlraum hin auch die Rückseite der Membran einem äußeren Luftdruck ausgesetzt werden kann.

Es folgt eine genauere Beschreibung des erfindungsgemäßen Sensors anhand der beigefügten Figur. In dieser Figur ist im Querschnitt ein erfindungsgemäßer mikromechanischer Sensor dargestellt, der als Beispiel mit einem MOSFET integriert ist. Dieser MOSFET kann z. B. im Rahmen eines CMOS-Prozesses hergestellt werden.

Das verwendete SOI-Substrat umfaßt eine dicke Trägerschicht, die vorzugsweise Silizium ist und als Bulk-Siliziumschicht 1 bezeichnet wird. Darauf befindet sich eine Isolationsschicht 2, die vorzugsweise Siliziumdioxid ist. Für die Herstellung der Bauelemente ist die darauf vorhandene dünne Siliziumschicht, die sogenannte Body-Siliziumschicht 3, vorgesehen. Auf dieser Body-Siliziumschicht 3 befindet sich eine Abstandsschicht 4, die die Membranschicht 5 trägt. In dieser Abstandsschicht befindet sich ein Hohlraum 6, durch den ein

4

Schwingen der Membran ermöglicht ist. Diese Membran 7 ist durch einen Bereich der Membranschicht 5 gebildet, der nach außen hin frei ist und daher einem äußeren Luftdruck ausgesetzt werden kann. Die Abstandsschicht 4 ist vorzugsweise ein selektiv gegenüber dem Material der Membranschicht 5 ätzbares Material. Wenn die Membranschicht 5 (kristallines) Silizium oder Polysilizium ist, wird die Abstandsschicht vorzugsweise aus Siliziumoxid hergestellt. Die Abstandsschicht kann dann eine durch lokale thermische Oxidation (LOCOS) hergestellte Oxidschicht an der Oberseite der Body-Siliziumschicht 3 sein. Zwischen der Abstandsschicht 4 und der darauf aufgebrachten Membranschicht 5 kann eine dünne TEOS-Schicht vorgesehen sein.

15 In der Body-Siliziumschicht 3 ist ein dotierter Bereich 8 ausgebildet. Die Membranschicht 5 wird entweder elektrisch leitend dotiert oder mit einer dünnen, elektrisch leitenden weiteren Schicht, z. B. einer aufgedampften Metallschicht, versehen. Für eine kapazitive Messung sind elektrische Anschlüsse als Kontakte 12, 13 auf dem dotierten Bereich 8 und der Membranschicht 5 vorgesehen. Die Kapazität des Sensors ändert sich, wenn die Membran 7 schwingt und damit ihren Abstand zu dem als Gegenelektrode fungierenden dotierten Bereich 8 ändert. Diese Kapazitätsänderung kann mittels einer angeschlossenen Auswerteschaltung in ein meßbares elektrisches Signal (Spannung, Strom) umgewandelt werden, z. B. in einen durch die Kapazitätsänderung hervorgerufenen Strom, wenn an die Elektroden eine elektrische Spannung angelegt wird.

20

25 30 In einer zur Schichtebene senkrechten Projektion der Membran ist auf deren Rückseite eine Aussparung 9 vorhanden. Diese Aussparung 9 ist durch eine Öffnung in der Bulk-Siliziumschicht 1 und der Isolationsschicht 2 gebildet. In der Body-Siliziumschicht 3 befinden sich Öffnungen 10, die den Hohl-

raum 6 unter der Membran mit dieser Aussparung 9 verbinden. Diese Öffnungen 10 sind so groß und zahlreich, daß ein für die vorgesehene Anwendung ausreichend guter Ausgleich des Druckes in dem Hohlraum 6 dadurch erfolgen kann, daß Luft oder ein anderes Gas durch diese Öffnungen 10 zu- oder abströmt. Um die mögliche Integration des mikromechanischen Sensors mit elektronischen Bauelementen auf demselben Substrat zu verdeutlichen, ist in der Figur als Beispiel ein MOSFET 11 eingezeichnet. Die für eine Ansteuersetzung erforderlichen Komponenten können daher im Rahmen eines CMOS-Prozesses mit dem erfindungsgemäßen Sensor auf demselben Chip integriert hergestellt werden.

Bei der Herstellung dieses Sensors wird von einem SOI-Substrat ausgegangen. Die in der Body-Siliziumschicht herzustellenden Öffnungen 10 können auf einfache Weise dadurch hergestellt werden, daß in die Body-Siliziumschicht 3 bereits zu Anfang Löcher geätzt werden, die bis zur Isolationsschicht 2 hinab reichen und die mit Siliziumdioxid aufgefüllt werden. Es werden der dotierte Bereich 8, z. B. durch Eindiffusion von Dotierstoff, und eine für die Herstellung der Abstandsschicht 4 vorgesehene Hilfsschicht (Opferschicht, sacrificial layer) hergestellt. Diese Hilfsschicht wird am besten dadurch hergestellt, daß die Oberseite der Body-Siliziumschicht 3 mittels LOCOS zu Siliziumoxid oxidiert wird. Auf die Oberseite dieser Hilfsschicht wird ggf. eine dünne TEOS-Schicht abgeschieden und darauf eine Polysiliziumschicht aufgebracht. Diese Polysiliziumschicht, die für die Membran vorgesehen ist, wird vorzugsweise nicht dicker als 1 µm hergestellt. Wenn die Schicht nur etwa 500 nm dick ist, erhöht sich die Empfindlichkeit des Sensors entsprechend. Das Polysilizium der Membranschicht 5 kann z. B. in einem Prozeßschritt zusammen mit den Gate-Elektroden, die für MOSFET vorgesehen sind, abgeschieden werden. Die elektronischen Bauelemente in der Body-Siliziumschicht werden in herkömmlicher Weise herge-

6

stellt (herkömmlicher VLSI-Prozeß, CMOS-Prozeß). Die Oberseite der Bauelemente wird z. B. mit BPSG (Borphosphorsilikatglas) planarisiert. Es werden in dieser Planarisierungsschicht Kontaktlöcher hergestellt und für elektrischen Anschluß der einzelnen anzuschließenden Bereiche mit einem Kontaktmetall gefüllt. Es werden verschiedene durch Dielektrikumschichten voneinander getrennte Metallisierungsebenen hergestellt und strukturiert

10 Anschließend wird das Substrat von der Rückseite her bearbeitet. Die Bulk-Siliziumschicht 1 wird z. B. mittels einer geeigneten Phototechnik im Bereich des Sensors ausgeätzt. Das Silizium lässt sich z. B. mittels KOH selektiv gegenüber SiO_2 entfernen. Die Isolationsschicht 2, die vorzugsweise SiO_2 ist, wirkt dann als Ätzstopp für diesen Ätzprozeß. Wenn das für die Aussparung 9 zu entfernende Silizium aus der Bulk-Siliziumschicht 1 herausgeätzt ist, wird das SiO_2 und die in den herzustellenden Öffnungen 10 eingebrachten SiO_2 -Anteile entfernt. Das wird selektiv gegen Silizium z. B. mittels 20 Flußsäure (HF) durchgeführt. Der Hohlraum 6 kann zusammen mit diesem Ätzschritt hergestellt werden. Das im Bereich des Hohlraumes 6 zunächst vorhandene Siliziumdioxid der Hilfs-schicht wird dann durch die Öffnungen 10, die hier als Ätzöffnungen fungieren, entfernt. Alternativ dazu ist es mög- 25 lich, vor dem Planarisieren der Oberseite der Body-Siliziumschicht 3 mittels BPSG Ätzöffnungen in der Membran-schicht 5, vorzugsweise im Bereich des herzustellenden Hohl-raumes 6, zu ätzen und unter Verwendung dieser Ätzöffnungen den Hohlraum 6 herzustellen. Die aufzubringende Planarisie- 30 rungsschicht dient dann gleichzeitig als Verschlußschicht, mit der die Ätzöffnungen in der Membranschicht verschlossen werden. Es kann auch eine gesonderte Verschlußschicht, die z. B. ein Metall sein kann, auf die Membranschicht aufgebracht werden. Falls eine solche Metallschicht als Verschlußschicht 35 vorgesehen ist, kann das Polysilizium der Membran undotiert

bleiben, weil dann die metallische Verschlußschicht als Elektrode für die kapazitive Messung eingesetzt werden kann. Aufgrund der extrem dünnen Schichten, die in einem derartigen VLSI-Prozeß hergestellt werden können, besitzt dieser Sensor 5 eine hohe Empfindlichkeit, was insbesondere bei einem Einsatz als Mikrophon von Vorteil ist.

Der beschriebene Sensor kann auch als Relativdrucksensor verwendet werden. Der Chip mit dem Sensor wird dann zwischen 10 zwei separaten Gasbehältern angebracht. Die in den beiden Behältern befindlichen Gase stehen dann jeweils nur mit der Oberseite oder Unterseite der Membran in Verbindung. Es kommt auch ein Einsatz als Relativdrucksensor für die Detektion kurzzeitiger Druckänderungen in einem Gas vor der Vorderseite 15 der Membran gegenüber dem Gas hinter der Rückseite der Membran in Frage. Damit ist der Sensor z. B. zur Detektion von Stoßwellen geeignet. Bei einem Einsatz des Sensors als Relativdrucksensor in Flüssigkeiten ist die Abmessung der Öffnungen 20 entsprechend anzupassen. Um die Auslenkung der Membran zum Substrat hin (Überdruck auf der Vorderseite der Membran) oder vom Substrat weg (Überdruck auf der Rückseite der Membran) erfassen zu können, ist bei einem Relativdrucksensor vorzugsweise ein gleichartig strukturierter zweiter Sensor 25 auf demselben Chip integriert. Bei diesem als Bezugssensor fungierenden zweiten Sensor ist die Struktur der mikromechanischen Komponente gleich der Struktur des für die Messung vorgesehenen Sensors. Eine Auslenkung der Membran dieses Bezugssensors ist aber z. B. dadurch vermieden, daß ein restlicher Anteil der Hilfsschicht in dem Hohlraum 6 belassen wurde. Im Extremfall kann der Hohlraum entfallen und vollständig 30 durch die Abstandsschicht 4 ersetzt werden. Wegen einer dadurch bedingten Änderung der Dielektrizitätskonstante des von dem dotierten Bereich 8 und der Membran 7 gebildeten Kondensators empfiehlt es sich aber, möglichst viel Material der 35 Abstandsschicht 4 zu entfernen und nur einen oder einige we-

nige Reste zum Abstützen der Membran 7 in dem Hohlraum 6 zu lassen. Die Membran ist dadurch arretiert in der Normalposition, d. h. der Position, die eine frei bewegliche Membran einnimmt bei gleich starkem Druck auf Vorderseite und Rück-
5 seite des Sensors. Eine Membranauslenkung bei dem für die Messung vorgesehenen Sensor kann durch Vergleich mit der Kapazität dieses Bezugssensors festgestellt werden. Auf diese Weise kann bei Verwendung einer relativ einfachen Ansteuer-
10 schaltung sehr genau ein einseitiger Überdruck detektiert werden.

Patentansprüche

1. Mikromechanischer Sensor auf SOI-Substrat mit Body-Siliziumschicht (3), Isolationsschicht (2) und Bulk-Siliziumschicht (1),

5 - bei dem auf der Body-Siliziumschicht eine Abstandsschicht (4) und darauf eine Membranschicht (5) vorhanden sind,

- bei dem zur Ausbildung einer Membran ein Hohlraum (6) in dieser Abstandsschicht vorhanden ist, so daß in einem die Membran (7) bildenden Bereich der Membranschicht die Ab-

10 standsschicht entfernt ist,

- bei dem die Membranschicht zumindest in einem Anteil des die Membran bildenden Bereiches elektrisch leitfähig ausgebildet oder mit einer elektrisch leitenden Schicht versehen ist und ein zugehöriger Kontakt (12) für elektrischen Anschluß vorhanden ist,

- bei dem in der bezüglich der Schichtebenen senkrechten Projektion der Membran in der Body-Siliziumschicht ein dotierter Bereich (8) ausgebildet ist und ein zugehöriger Kontakt (13) für elektrischen Anschluß vorhanden ist,

- bei dem in der bezüglich der Schichtebenen senkrechten Projektion der Membran das Material der Isolationsschicht und das Material der Bulk-Siliziumschicht entfernt sind, so daß dort eine Aussparung (9) vorhanden ist, und

- bei dem in der bezüglich der Schichtebenen senkrechten Projektion der Membran die Body-Siliziumschicht Öffnungen (10) aufweist, die den Hohlraum mit der Aussparung verbinden.

2. Sensor nach Anspruch 1,

30 bei dem in der Body-Siliziumschicht Bauelemente (11) einer elektronischen Schaltung zum Betrieb des Sensors integriert sind.

3. Sensor nach Anspruch 1 oder 2 als Relativdrucksensor,

10

bei dem auf dem Substrat als Bezugssensor ein weiterer Sensor vorhanden ist,

wobei bei diesem weiteren Sensor zumindest ein Teil der Abstandsschicht auch in dem die Membran bildenden Bereich der 5 Membranschicht vorhanden ist und eine Auslenkung der Membran verhindert und ansonsten die Strukturen der Sensoren übereinstimmen.

1/1

INTERNATIONAL SEARCH REPORT

Intern. Application No

PCT/DE 97/02740

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 G01L9/00 G01L1/14 G01H11/06 H04R19/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 G01L G01H H04R

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 727 650 A (VAISALA OY) 21 August 1996 see abstract; figure 2 see column 3, line 24 - column 5, line 12 ---	1-3
A	US 5 493 470 A (ZAVRACKY PAUL M ET AL) 20 February 1996 see abstract; figure 6 see column 3, line 26 - column 4, line 5 see column 7, line 34 - column 7, line 64 ---	1-3
A	DE 44 41 903 C (SIEMENS AG) 21 March 1996 see abstract; claim 1; figure 1 see column 1, line 50 - column 1, line 58 see column 2, line 65 - column 3, line 36 -----	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- A* document defining the general state of the art which is not considered to be of particular relevance
- E* earlier document but published on or after the international filing date
- L* document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- O* document referring to an oral disclosure, use, exhibition or other means
- P* document published prior to the international filing date but later than the priority date claimed

• T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

• X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

• Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

• &* document member of the same patent family

1

Date of the actual completion of the international search

26 March 1998

Date of mailing of the international search report

17.04.98

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Helm, B

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/DE 97/02740

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 0727650 A	21-08-96	FI 950715 A		18-08-96
		JP 8247878 A		27-09-96
		NO 960617 A		19-08-96
		US 5679902 A		21-10-97
-----	-----	-----	-----	-----
US 5493470 A	20-02-96	US 5177661 A		05-01-93
		US 5095401 A		10-03-92
		US 5490034 A		06-02-96
		AT 141008 T		15-08-96
		DE 69303893 D		05-09-96
		DE 69303893 T		28-11-96
		EP 0629286 A		21-12-94
		JP 7504509 T		18-05-95
		WO 9318382 A		16-09-93
-----	-----	-----	-----	-----
DE 4441903 C	21-03-96	WO 9616319 A		30-05-96
		EP 0793801 A		10-09-97
-----	-----	-----	-----	-----

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 97/02740

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 G01L9/00 G01L1/14 G01H11/06 H04R19/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 6 G01L G01H H04R

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^o	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	EP 0 727 650 A (VAISALA OY) 21. August 1996 siehe Zusammenfassung; Abbildung 2 siehe Spalte 3, Zeile 24 - Spalte 5, Zeile 12 --- A US 5 493 470 A (ZAVRACKY PAUL M ET AL) 20. Februar 1996 siehe Zusammenfassung; Abbildung 6 siehe Spalte 3, Zeile 26 - Spalte 4, Zeile 5 siehe Spalte 7, Zeile 34 - Spalte 7, Zeile 64 --- - / --	1-3
		1-3

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

^o Besondere Kategorien von angegebenen Veröffentlichungen:

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

1

Datum des Abschlusses der internationalen Recherche

26. März 1998

Anmeldedatum des internationalen Recherchenberichts

17.04.98

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P B 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Helm, B

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 97/02740

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	DE 44 41 903 C (SIEMENS AG) 21. März 1996 siehe Zusammenfassung; Anspruch 1; Abbildung 1 siehe Spalte 1, Zeile 50 - Spalte 1, Zeile 58 siehe Spalte 2, Zeile 65 - Spalte 3, Zeile 36 -----	1

1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internat. Aktenzeichen

PCT/DE 97/02740

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0727650 A	21-08-96	FI 950715 A JP 8247878 A NO 960617 A US 5679902 A	18-08-96 27-09-96 19-08-96 21-10-97
US 5493470 A	20-02-96	US 5177661 A US 5095401 A US 5490034 A AT 141008 T DE 69303893 D DE 69303893 T EP 0629286 A JP 7504509 T WO 9318382 A	05-01-93 10-03-92 06-02-96 15-08-96 05-09-96 28-11-96 21-12-94 18-05-95 16-09-93
DE 4441903 C	21-03-96	WO 9616319 A EP 0793801 A	30-05-96 10-09-97

1 / 1

