ANSWER KEYS

PHYSICS

Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A.	2	3	3	2	3	3	4	4	2	1	3	2	1	2	2	1	3	2	1	1
Q.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
A.	4	2	2	3	2	2	1	3	2	4	3	1	3	2	4	2	2	4	1	1
Q.	41	42	43	44	45															

CHEMISTRY

Q.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
A.	4	3	4	3	3	4	3	1	3	3	2	3	3	4	4	3	4	4	2	2
Q.	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85
A.	3	2	1	3	1	4	3	3	2	1	4	3	3	3	2	2	2	2	3	1
Q.	86	87	88	89	90		-		-			-					-			-
A.	4	2	2	3	2															

BIOLOGY

Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110
A.	3	2	3	3	3	2	3	3	2	3	3	3	1	3	3	4	2	4	2	1
Q.	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130
A.	1	1	2	2	4	2	4	3	2	1	4	2	3	3	3	4	1	4	1	3
Q.	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	1	2	2	3	3	3	2	2	3	3	3	4	3	3	4	2	2	3	4	3
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170
A.	3	2	4	2	1	2	3	4	2	1	1	1	3	1	3	2	2	4	1	2
Q.	171	172	173	174	175	176	177	178	179	180										
		3	3			_				_	ī									

PHYSICS

$$V = (Q_f - Q_i) V = (CV - \frac{CV}{2}) V = \frac{CV^2}{2}$$

2) n plates connected alternately gives rise to (n - 1) capacitors connected in parallel. \square Resultant capacitance = (n - 1) C

3) W =
$$C_{eq.}V^2 = 2\mu(10)^2 = 200\mu J$$

4)
$$C = 4\pi\varepsilon_0 R = 4\pi\varepsilon_0 n^{\frac{1}{3}} r = n^{\frac{1}{3}} C$$

$$V = \frac{C_1 V_1 + C_2 V_2}{C_1 + C_2} = \frac{12(50)}{12 + 4} = 37.5V$$

6)

By nodal method, $(V_A - 5) \times 3 + (V_A - 10) \times 2 = 0$ $\Rightarrow V_A = 7 \text{ V}$

7)
$$q_i = C_{eq}$$
. $V = (1) 10 = 10 \mu C$

$$q_f = \frac{4}{3} (10) = \frac{40}{3}$$
% change =
$$\frac{\left(\frac{40}{3} - 10\right)}{10} \times 100 = \frac{100}{3}\%$$

$$q = q_{max} \left(1 - e^{-\frac{t}{RC}}\right)$$

$$\frac{q_{max}}{2} = q_{max} \left(1 - e^{-\frac{t}{RC}}\right) \Rightarrow t = RC \ln 2$$

9) Statement (1) is correct and (2) is incorrect.

10) By F. B.D

as we know

$$a = g \tan \theta$$

$$\tan \theta = \frac{5}{10} = \frac{1}{2}$$

Now

 $N = mg \cos\theta + ma \sin\theta$

$$= 1 \times 10 \times \frac{2}{\sqrt{5}} + 1 \times 5 \times \frac{1}{\sqrt{5}} \Rightarrow \frac{25}{\sqrt{5}}$$
$$= 5\sqrt{5}N$$

11) Since

 $\mu mgcos\theta > mgsin\theta$

Hence body will decelerate and come to rest.

12) Normal Reaction= 15 N weight = 10N
$$f_{\text{max}} = \mu N = 9 \ N$$
 since, weight > f_{max}

block will move downwards.

$$T + N = 50 g$$
 ...(1)

From F.B.D of frame T = 30 g + N

$$T - N = 30 g$$
(2)

From (1) & (2)

$$2T = 80 \text{ g}$$

T = 40g

Here external force of rope by man is equal to tension.

$$F = 40 g$$

14) at
$$t = 2 s$$

$$\Delta P = m (v - u)$$

$$= 0.1 (0 - 2)$$

= - 0.2 kg m/sec.

15)

Pseudo force from ground = Zero (inertial frame)

Pseudo force from platform = $-m_{body}$. a_{Frame}

$$= -50(-5\hat{i}) = 250\hat{i}$$
 Pseudo force from trolley
$$= -m_{\text{body}} a_{\text{frame}}$$
$$= 250 \hat{i}$$

$$F = \frac{V.dm}{dt}$$

$$= 20. \left(\frac{50}{60}\right)$$

$$= \frac{1000}{60} = 16.66N$$

$$\frac{V.dm}{dt} - mg = ma$$

$$upthrust = mg + ma$$

$$= 7.0 \times 10^5 \text{ N}$$

18)
$$a = \frac{60 - 30}{3 + 6} = \frac{10}{3} \text{ m/s}^2$$

 $T - 30 = \frac{3 \times \frac{10}{3}}{3}$
 $T = 40 \text{ N}$
Reading = 2T = 80 N = 8 kgf

19)
$$f = \mu N$$

Fcos60 = μ (w + Fsin 60°)

$$21) \ a = \frac{F_{net}}{m+M} = \frac{10}{10} = 1 m/s^2$$
 Let F_0 is the reading of dynamometer

$$F - F_0 = M (a)$$

$$20 - F_0 = (6) (1)$$

$$F_0 = 14N$$

22) From constrained motion

$$7P = 14 N$$

$$P = 2N$$

Tension in upper cable

$$\Rightarrow$$
 8P or 16 N

23)
$$T_1 \cos 60 - T_2 \cos 60 = ma \dots (1)$$

$$T_1 \sin 60 + T_2 \sin 60 = mg \dots (2)$$

$$T_1 = 2T_2$$
 (3)

On solving equation
$$T_1 = \frac{4mg}{3\sqrt{3}} \qquad T_2 = \frac{2mg}{3\sqrt{3}}$$

$$T_2 = \frac{2mg}{3\sqrt{3}}$$

$$a = \frac{g}{3\sqrt{3}}$$

24)
$$F = K_1 x_1 = K_2 x_2$$
 force on wall

$$F = K_1 X_1(\hat{i})$$

$$T - 60 \text{ g} = 60 \text{ a} \dots (1)$$
 $T - 100 \text{ g} = 100 \text{ a}' \dots (2)$

and a + a' =
$$\frac{3}{4}$$
^g ... (3) By solving (1), (2) & (3)

$$T = \frac{19500}{16} = 1218 \text{ N}$$

26) In equilibrium

$$T = Mg + \frac{m}{\ell} (\ell - x) g$$

For \square length mass - m For $(\square$ - x) length mass $= \frac{m}{\ell} (\ell - x)$

- 27) From t = 0 to some time friction increases as applied force increase, then friction becomes constant after a particular time.
- 28) Action Reaction should be on different bodies of same magnitude, same nature and in opposite direction.

Check by putting F If F = 15 N, N = 10 N

31) Value of N is decreasing when block A moves from P to Q. At Q point N becomes zero. Hence it will leave the contact.

32) F - f = ma
$$\mu mg = 10$$
30 - 10 = m (10)
$$\mu = \frac{1}{2} \text{ or } 0.5$$
m = 2 Kg
$$f_{max} = 10 \text{ N (block start at force} = 10 \text{ N)}$$

33)

We know Q = CV

Hence $(Q_1)_{max} = 6 \text{ mC}$ while $(Q_2)_{max} = 12 \text{mC}$

However in series charge is same so maximum charge on C2 will also be 6mC (and not 12mC)

 $V_2 = \frac{6mC}{3\mu F} = 2kV$ and as in series and hence potential difference across C_2 will be $V = V_1 + V_2$ So $V_{max} = 6kV + 2kV = 8kV$

34) Energy density = Volume

 $Energy = Energy density \times volume$

$$\frac{1}{2} = \frac{1}{2} \epsilon^{0} E^{2} \times a^{3}$$
Put $E = \frac{\sigma}{\epsilon_{0}}$

35) After closing the switch, inner sphere is grounded.

Hence $V_{inner} = 0$

Let after closing the switch, charge on inner sphere be q then $V_{\rm inner} = \frac{Kq}{R} + \frac{KQ}{3R} = 0$

$$V_{inner} = \frac{Kq}{R} + \frac{KQ}{3R} = 0$$
$$q = \frac{-Q}{3}$$

36)
$$T_{1/2} = 0.7 \text{ RC}$$

$$R = \frac{T_{1/2}}{0.7C} = \frac{70 \times 10^{-3}}{0.7 \times 2 \times 10^{-6}}$$

$$= \frac{10^{5}}{2} = 5 \times 10^{4}$$

$$R = 50 \times 10^{3} \Omega = 50 \text{ k}\Omega$$

We have find $C_{\scriptscriptstyle AB}$, then circuit can be redrawn like this

A
$$C_{23} = C$$

$$C_{12} = C$$

$$C_{42} = C$$

$$C_{42} = C$$

$$C_{eq} = \frac{3}{2}C = \frac{3}{2}\frac{\varepsilon_0 A}{d}$$

39)

At t = 0 capacitor behave like short circuit

40)

When dielectric is placed

$$-\frac{dv}{dx} = E = \frac{\sigma}{K\varepsilon_0} = \frac{\dot{E}_0}{K}$$
And $K_1 > K_2 > 1$ So

Slop of V and d curve $\left(\frac{dv}{dx} \propto -\frac{1}{K}\right)$ is more for K_2 than K, But slope for both K_1 and K_2 is lesser than for air or vacuum.

$$V_{com} = \frac{3 \times 300 - 2 \times 200}{3 + 2} = 100 \text{ V}$$

$$q_1 = 3 \times 300 = 900 \text{ }\mu\text{C}$$

$$q'_1 = 3 \times 100 = 300 \text{ }\mu\text{C}$$

$$\Delta q = 900 - 300$$

$$= 600 \text{ }\mu\text{C}$$

42) In case 2F force is used to lift 2m mass whereas in all other cases lesser force is used to lift 2m mass.

43)

For 2Kg limiting friction is $f_e = 0.6 \times 2 \times 10 = 12N$

Its maximum possible acceleration = $\frac{12}{2} = 6\text{m/s}^2$

But applied force is 20 N it gives acceleration = $\frac{20}{2+3} = 4\text{m/s}^2$ So both block will more together and acceleration = 4m/s^2

$$44) \frac{\varepsilon_0 A}{d} = 9 \text{ PF}$$

$$\frac{\varepsilon_0 \times 3A}{\frac{d/3}{d/3} \times \frac{\varepsilon_0 \times 6A}{2d/3}}{\varepsilon_0 \times 3A} + \frac{9\varepsilon_0 A}{2d/3} = \frac{9\varepsilon_0 A}{\frac{18\varepsilon_0 A}{2d}} = \frac{9}{2} \frac{\varepsilon_0 A}{d}$$

$$C' = \left(\frac{9}{2} \times 9\right)_{pF} = 40.5 pF$$

CHEMISTRY

46)

Concept - Square pyramidal geometry, as seen in BrF_5 and $XeOF_4$, requires six electron domains. This corresponds to sp^3d^2 hybridization, which provides the necessary six hybrid

orbitals for the observed shape.

47) XeF_3^+ hybridisation is sp^3d (3 bp, 2 $\square p$) T-shape.

49)

(1) Bond order of SO_4^{-2} is 1.5 and O_2^- is also 1.5.

- (3) s and p block elements are main group elements.
- (4) sp hybridisation is called diagonal hybridisation.

51) Intermolecular H-bond ∝ Boiling point

$$∝ Viscosity$$

$$∞ 1$$
Volatile nature

$$\begin{array}{c|c} & & H & F \\ & \downarrow & \downarrow & \downarrow \\ sp^2 & sp^3 & \rightarrow H - N & \rightarrow B - F \\ & \downarrow & \downarrow & \downarrow \\ sp^3 & & H & sp^3 \end{array}$$

$$(Trigonal planer) \square \square \qquad (Tetrahedral)$$

53) $CH_3CI > CH_3F > CH_3Br > CH_3I$ is order of dipole moment based upon $q \times d$ values of all bonds and vector sum of all bond moments.

54)

Vapour pressure α Boiling point order of boiling point is

PH₃ < AsH₃ < NH₃ < SbH₃ So, minimum vapour pressure of SbH₃.

- 55) (P) Along the I.N.A. $\Rightarrow \sigma$
- (Q) $p + d \Rightarrow \pi$ bonding
- (R) Opposite phase $\rightarrow \pi$ antibonding
- (S) Opposite phase $\rightarrow \sigma$ bond (s-s)
- 56) XeF_2 , $I_3^- \rightarrow Linear$ (planar)

 $BCl_3 \rightarrow Plane triangle (planar)$

 $XeF_4 \rightarrow Square planar (planar)$

 $[XeF_5]$ \rightarrow Pentagonal planar (planar)

 $ClF_3 \rightarrow Bent 'T' - shape (planar)$

 $H_2O \rightarrow 'V'$ - shape (planar)

- 57) NaCl Ionic
- 58) HNO₃

Maximum covalency of Nitrogen = 4

60) Due to large size of I⁻.

The three bond moments, which are 120° apart and equal in magnitude, have resultant zero.

It's net dipole moment equals to the

62)

b.p \propto molar mass or surface area $CH_4 < SiH_4 < GeH_4 < SnH_4$

Ortho nitrophenol, salicylaldehyde ⇒
Intra H-bonding
Para nitrophenol ⇒ inter -H bonding.

64)

Hybridisation same, $\Box p$ at central atom same \Rightarrow EN of central atom \propto bond angle

- 65) As the electronegativity of central atom increases the bond angle increases due to repulsion between bond pair and bond pair as bond pairs are more close to the central atom.
- 66)

Due to intramolecular H-bonding in o-hydroxy benzoic acid

67) sp³ - tetrahedral, dsp² - square planar sp³d - trigonal bipyramidal, d²sp³-octahedral

- 68) Bond order = $\frac{1}{2}$ [N_b N_a]
- 69) In vapour phase of sulphur S₂ molecule has 2 unpaired es

70) NCERT Pg.#131
$$C_2 \Rightarrow \underbrace{1s^2(\sigma)1s^2(\sigma*)2s^2(\sigma*)}_{\text{Non bonding}}$$

$$\pi 2p_X^2 \pi 2p_y^2 \Rightarrow \text{B.O.} = \frac{4-0}{2} = 2$$
(Only π orbitals are used so 2π bonds present only)

71) B.E. =
$$Cl_2 > Br_2 > F_2 > I_2$$

EN = F > Cl > Br > I

72)

I.E. \rightarrow B > T[] > Ga > A[] > In due to Lanthanoid contraction & Transition contraction

73)

EN has no direct correlation with EA.

Acidic character $H_2O < H_2S < H_2Se < H_2Te$ Top to bottom size increases so, bond length increases, so bond strength decreases.

75) Both has same no of valence electron.

76)

- (A) 3^{rd} Alkali metal : Li Na K Rb Cs \Rightarrow $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $4s^1$
- (B) 2^{nd} Transition element : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2$
- (C) 2^{nd} Noble gas : $1s^2 2s^2 2p^6$
- (D) 2^{nd} Halogen : $1s^2 2s^2 2p^6 3s^2 3p^5$

77)

NCERT-XI (Part-1) Pg. # 91

78)

Boron exhibits a diagonal relationship with Silicon.

79) **Concept :** Element 115 is called Ununpentium (Uup)

80)

1s², 2s², 2p⁶, 3s², 3p⁶, 3d¹⁰, 4s², 4p⁶, 4d¹⁰, 5s², 5p⁵ belong's to p-block for p-block = 12 + no of pe⁻ = 12 + 5 group no. = 17

- 81) Natural transuranic elements (A) like Neptunium (Np) and Plutonium (Pu) match with (S).
- d-block elements (B) such as Iron (Fe) and Cobalt (Co) correspond to (R).
- Diagonally related elements (C) like Beryllium (Be) and Aluminium (Al) match with (Q).
- Typical elements (D) such as sodium (Na) and Magnesium (Mg) correspond to (P).
- 82) $A\ell \simeq Ga$ Transitional contraction.
- 83) **Solution/Explanation:**

Final Answer - F > N < O > C

84) Concept: +ve charge $\propto \frac{1}{\text{Size}}$

In case of ion's of same atom +ve charge has less size & -ve charge has more size.

- 85) Fe \approx Co \approx Ni Atomic radii order
- 86) I.E \Rightarrow Be⁺² > Li⁺ > He > He⁻
- 87) $\mathbf{Ca}_{(g)} \to \mathbf{Ca}^+_{(g)} + \mathbf{e}^-$: This represents the first ionization energy of Ca.

88)

$$IE \Rightarrow B < C < O < N$$

89) NCERT, Pg # 88, Fig.-3.5

Li Na K

Na is placed between Li & K in same group. So property will be intermediate.

90) Sudden jump in between 2nd IP & 3rd IP decide 2 electron in outermost shell.

BIOLOGY

91)

NCERT Pg. # 75

- 92) NCERT Pg. # 72
- 93) NCERT Pg # 74

94)

NCERT Pg. # 74 to 76

- 95) NCERT Pg # 72
- 96)

```
NCERT Pg. # 72
```

97) NCERT (XI) Pg. # 72

98) NCERT (XI) Pg. # 73

99)

NCERT Pg. # 72

100) NCERT Pg. # 73

101)

NCERT Pg. # 75

102)

NCERT Pg. # 72

103) NCERT Pg. # 76

104)

NCERT Pg. # 74

105) NCERT, Pg. # 72

106) NCERT Pg. # 76

107) NCERT Pg. # 74

108)

NCERT Pg. # 75

109)

NCERT Pg. # 74

110) NCERT Pg. # 74

- 111) NCERT, Pg # 76
- 112) NCERT XI Pg. # 76
- 113) NCERT_Pg. No. # 67
- 114)
- NCERT Pg. No. # 65
- 115) NCERT Page No. 64
- 116) NCERT_Pg. No. # 59
- 117) NCERT Pg. No. # 59
- 118) NCERT Pg. No. # 66
- 119) NCERT_Pg. No. # 67
- 120) NCERT Pg. No. # 67
- 121) NCERT_Pg. No. # 66
- 122) NCERT_Pg. No. # 63, 68
- 123) NCERT_ Pg. No. # 79
- 124) NCERT_Pg. No. # 64
- 125) NCERT_Pg. No. # 60
- 126) NCERT_Pg. No. # 63
- 127) NCERT_Pg. No. # 65
- 128) NCERT_Old_Pg. No. 79
- 129) NCERT_Pg. No. # 60

- 130) NCERT_Pg. No. # 60
- 131)
- NCERT_Pg. No. # 62
- 132) NCERT_Pg. No. # 64
- 133) Old NCERT_Pg. No. # 79
- 134) NCERT Pg. No. # 60
- 135) NCERT_Pg. No. # 61
- 136) NCERT_Pg. No. # 80
- 137) NCERT-Pg. No. 80
- 138) NCERT_Pg. No. # 80
- 139) NCERT Pg. No. 81
- 140) NCERT_Pg. No. 82
- 141) Only statement-II is correct. NCERT_Pg. No. # 82
- 142) NCERT Pg. No. # 83
- 143) NCERT_Pg. No. # 83, 84
- 144) NCERT old Pg. No. # 101
- 145)
- NCERT_Pg. No. 102
- 146) NCERT_Pg. No. 103
- 147) NCERT_Pg. No. # 103

```
148) NCERT Pg. No. 104
149) NCERT Pg. No. # 112
150) NCERT Pg. No. # 112
151) NCERT Pg. No. # 112
152) NCERT_Pg. No. # 113
153) NCERT_Pg. No. 113
154) NCERT_Pg. No. # 113
155) Both (A) and (R) are true and (R) is the correct explanation of (A).
NCERT Pg. No. # 112
156) NCERT_Pg. No. # 114
157)
NCERT Page No. # 114
158) NCERT_Pg. No. 114, 115
159)
NCERT Page No. # 225
160)
NCERT Page No. # 227
161)
NCERT Page No. # 227
162)
```

NCERT Page No. # 218

```
163)
NCERT Page No. # 226
164)
NCERT Page No. # 226
165)
NCERT Page No. # 222
166)
NCERT Page No. # 226
167)
NCERT Page No. # 220
168)
NCERT Page No. # 227
169)
NCERT Page No. # 227
170) NCERT Page No. # 218
171)
NCERT Page No. # 218
172)
NCERT Page No. # 222
173)
NCERT Page No. # 223
174)
NCERT Page No. # 225
```

```
175)
```

NCERT Page No. # 226

176)

NCERT Page No. # 224

177)

NCERT Page No. # 221

178)

NCERT Page No. # 218

179)

NCERT Page No. # 220

180)

NCERT Page No. # 225