TD Biophysique

UEI: Cardio-vasculaire / Respiratoire

Exercice 1:

On verse 100 cm³ d'eau dans l'une des branches d'un tube en U rempli de mercure ; le diamètre intérieur du tube est de 2 cm, la masse volumique de l'eau est 1 g/cm³ et celle du mercure de 13,6 g/cm³

 Quel est le déplacement de la surface libre du mercure dans l'autre branche du tube en U ?

Exercice 2:

On considère un densimètre formé d'un cylindrique creux de longueur L=400 mm et de diamètre d, dans lequel est placée une masse de plomb au niveau de sa partie inférieure. Le centre de gravité G du densimètre est situé à une distance a=10 mm par rapport au fond. Le densimètre flotte à la surface d'un liquide de masse volumique ρ inconnu. Il est immergé jusqu'à une hauteur h.Lorsque le densimètre est placé dans de l'eau de masse volumique $1000 \ kg/m^3$, la hauteur immergée est h0 = 200 mm.

- **1)** Quel est la masse volumique ρ du liquide si la hauteur immergée h=250 mm?
- 2) Quel est la masse volumique min p qu'on peut mesurer avec ce densimètre ?

Exercice 3: MESURE DE LA TENSION ARTERIELLE

La tension artérielle, notée T, est égale à la différence de pression entre la pression du sang en un point A d'une artère et la pression atmosphérique : $T = P_A - P_{atm}$. Une « tension de 12,5 », mesurée au niveau du bras, correspond à une pression artérielle de 12,5 cm de mercure au-dessus de la pression atmosphérique.

- a) Donner la relation exprimant la masse volumique ρ d'un corps, solide ou liquide, en fonction de sa masse m et de son volume V. Préciser les unités du système international.
- **b)** Calculer la masse ms d'un volume $V_S = 1$ L de sang sachant que sa masse volumique est $\rho_S = 1060$ kg.m⁻³. On donne 1 L = 10^{-3} m³.
- a) Convertir la tension artérielle de « 12,5 » en pascals sachant que 1 cm de mercure correspond à 1333 Pa.
- **b)** La tension artérielle mesurée au niveau du mollet d'un patient debout aurait-elle la même valeur que celle mesurée au bras ? Justifier votre réponse.

Exercice 4:

Soit le schéma de principe d'une presse hydraulique,

On donne: F₁=100N et d₁=10cm (diamètre du piston).

 Si le diamètre du grand piston est d₂=1m, calculer la force F₂ exercée sur le grand piston.

Si le petit piston descend d'une hauteur h₁=1m,

• De quelle hauteur monte le grand piston ?

Exercice 5: PRISE DE SANG ET PERFUSION

Données : 1 cm de mercure correspond à 1333 Pa Pression atmosphérique : 101 300 Pa

- 1. Un médecin prend en charge l'étudiant dont il mesure la tension artérielle. IL lit une tension maximale de 11 cm de mercure et une tension minimale de 8 cm de mercure.
- **1.1.** Parmi les propositions suivantes, recopier la relation qui permet de calculer la tension artérielle T en un point de l'appareil circulatoire

- T = Patmospherique Partérielle
- T = Paterielle
- T = Paterielle Patmospherique
- **1.2.** Convertir la tension artérielle maximale de l'étudiant en pascals.
- **1.3.** Vérifier, en posant le calcul, que la pression maximale du sang dans les artères est d'environ de 1,16 x 10 Pa.
- 2. Pour traiter l'étudiant, le médecin préconise une perfusion intraveineuse. L'infirmier accroche la poche de solution à perfuser à une patère ; il indique que l'étudiant ne doit pas déplacer cette poche. La surface libre du liquide se trouve au point A et l'aiguille au point B.

Données:

- Loi fondamentale de la statique des fluides $\Delta p = P_s P_A = \rho.g.h$
- Pour la solution à perfuser : p=1050 SI
- $q = 9.8N.kq^{-1}$
- **2.1.** Nommer les grandeurs ρ , g, h. Indiquer les unités de ρ et de h, utilisées dans la loi fondamentale de la statique des fluides.

2

- 2.2. La différence de pression ∆p entre les points A et B, doit être au moins égale à la tension veineuse soit 8000 Pa. Calculer la valeur minimale de h entre les points A et B pour que le liquide pénètre dans la veine.
- **3.** Afin d'effectuer un bilan de santé, le médecin réalise une prise de sang. Il remplit un flacon de volume V = 10 mL de sang en une durée $\Delta t = 1$ min.
- **3.1.** Définir le débit volumique.
- **3.2.** Calculer, en m^3s^{-1} , le débit volumique lors de la prise de sang. Donnée 1 mL = 1 x 10^{-6} m³
- **3.3.** Sachant que la section S du flacon est égale à 1,0 x10⁻⁴ m², calculer en unité SI la vitesse v d'écoulement du sang lors de la prise de sang.

Exercice 6: LA CIRCULATION SANGUINE

Dans les conditions de repos, le débit cardiaque est environ égal à $D = 9,34.10^{-5}$ m³.s⁻¹ chez un adulte moyen. On considère l'aorte de section $S = 2,54.10^{-4}$ m². Le sang s'écoule, dans cette artère, à une vitesse moyenne v.

- **a)** Définir le débit volumique D du sang, en régime permanent, en fonction de la vitesse moyenne v d'écoulement du sang et de la section intérieure S de l'artère. Préciser les unités de chaque grandeur dans le système international.
- b) En déduire la vitesse moyenne v d'écoulement du sang dans l'artère.
- **2.** Exprimer puis calculer la perte de charge P le long d'un morceau de cette artère dont la résistance vasculaire vaut $R = 4.8.10^5.S.I.$ Préciser l'unité de P.

Exercice 7 : Montre cardia-fréquencemètre et circulation sanguine

Pour s'entraîner de façon optimale, notre sportif a fait l'acquisition d'une montre possédant la fonction fréquencemètre. Cette fonction permet de mesurer la fréquence cardiaque et d'avoir des informations sur la circulation sanguine.

1. Au repos, il note sa fréquence cardiaque qui est de 55 pulsations par minute. Chaque pulsation cardiaque envoie 75 cm³ de sang dans une artère. Calculer, en L.min⁻¹, le débit sanguin dans l'artère, noté D.

On rappelle que 1 cm³ = 1 x 10^{-3} L.

2. Après l'échauffement, le fréquencemètre indique une valeur de 120 pulsations par minute ce qui correspond à un débit de 9 L.min⁻¹ soit 1,5 x 10⁻⁴ m³.s⁻¹. La relation liant le débit D d'un liquide en régime permanent à sa vitesse d'écoulement

v et à sa section S est : D = S.v.

Ces grandeurs sont exprimées dans les unités du système international.

La vitesse d'écoulement du sang dans l'artère étant $v = 5,4 \times 10^{-1} \text{ m.s}^{-1}$, calculer la section S de l'artère en m² puis en cm².

3. La section d'une artère est un des paramètres ayant une influence sur la valeur de la résistance hydraulique.

En régime permanent laminaire, le débit en volume D est proportionnel à la perte de charge ΔP suivant la relation : $D = \frac{\Delta P}{R}$

La différence de pression entre les deux extrémités d'une portion d'artère est ^P=60Pa.

Calculer la résistance hydraulique R, exprimée en unité SI, de cette portion d'artère.

4. Citer un autre facteur influençant la valeur de la résistance hydraulique.

Exercice 8:

Dans une conduite composée de 04 tronçons de section S_1 , S_2 , S_3 et S_4 , s'écoule de l'eau en écoulement permanent. En considérant le fluide est parfait, Calculer la dénivellation (a) indiquée par le manomètre à mercure.

Données : h_1 =1,25m , S_1 =60 cm², S_2 =10 cm² S_3 =80 cm² S_4 =5 cm², ρ_{Hg} =13600 kg/ cm³

• Calculer la vitesses v₃ d'écoulement de l'eau dans le tronçon 3.

Exercice 9:

On considère deux tubes disposés sur un écoulement comme suit : le tube piezométrique est disposé sur la paroi de la conduite, et le tube de Pitot consiste en un orifice (au niveau de S) très petit faisant face à l'écoulement. Les deux extrémités hautes des tubes sont en contact avec l'atmosphère de pression uniforme p₀. On mesure la montée de fluide dans les deux tubes h_A et h_B. L'écoulement est supposé stationnaire, parfait et incompressible.

- Quelles grandeurs mesurent les hauteurs h
 A et h
 P ?
- 2. Calculer la vitesse du fluide dans le conduit.

Exercice 10:

On suppose que les organes branchés entre l'aorte et la veine cave ont tous la même résistance R et on peut les schématisés sous formes de réseau de résistances.

Calculer la résistance équivalente.