SIT718 Real World Analytics

Lecturer: Dr. Ye Zhu

School of Information Technology Deakin University

Week 9: Game Theory 1

INTRODUCTION TO GAME THEORY

- ► In Many situations two or more decision makers simultaneously choose an action, and the actions chosen by each player affects rewards earned by the other players.
- ► Examples:
 - ► Fast food companies determining advertisement and pricing policy for its product and each company's decision will affect the revenue/profit of the other.
 - competitions between producers of the same product;
 - ► Political campaigns;
 - Marketing campaigns.
- ► The final outcome depends upon the combination of strategies selected by the adversaries.
- ► Game theory:

 Mathematical theory that deals with the general features of competitive or cooperative situations in a formal, abstract way.

GAME THEORY AND JOHN NASH

1994 and 2005 Nobel Prizes for Economic Sciences were given for research in game theory.

WHAT IS A TWO-PERSON ZERO-SUM GAME?

The simplest example is a Two-Person Zero-Sum Game.

- ► It involves two players (hence the term **2-person**)
- ► Each player has a number of strategies to select from.
- ► For each strategy pair chosen by the players, the total payoff is 0 (hence **zero-sum**)

Payoff to Player I = -Payoff to Player II

- Such payoffs can be presented in a matrix, which we call a payoff matrix)
- ❖ Both players are rational.
- ❖ Both players choose their strategies solely to promote their own welfare (no compassion for the opponent).

Reference Textbook

Operations Research: Applications and Algorithms by Wayne L. Winston (Chapter 14)

NOTATION

- ightharpoonup m = number of strategies for Player I
- ightharpoonup n = number of strategies for Player II
- $ightharpoonup A_i = i$ th strategy (pure) for Player I
- ► $B_i = j$ th strategy (pure) for Player II
- ► v_{ij} = Payoff to Player I if he selects Strategy A_i and if Player II selects Strategy B_j
 - ► Payoff to Player I = -Payoff to Player II

NOTATION

The figure illustrate the mathematical notation.

			Player II	
		B_1	B_2	B_3
D1 - I	A_1	2	-4	25
Player I	A_2	6	10	-20

- ► Player I has two options: Strategies A_1 or A_2
- ► Player II has three options: Strategies B_1 , B_2 , or B_3
- ► If Player I uses Strategy A_1 and Player II uses Strategy B_3 , then Player I wins 25 and Player II loses 25
- ► If Player I uses Strategy A_2 and Player II uses Strategy B_3 , then Player I loses 20 and Player II wins 20

THE SPIRIT OF GAME THEORY

- ► One would like to:
 - Maximize possible payoff to each player
- ► In reality:
 - ► What is the most secured payoff that they can get *regardless* of what the other player does
 - ► Each player gets the best they can "secure"
- ► The spirit:
 - ► To look at the worst outcomes and pick **least worst outcome**, i.e., be as secure as possible
 - ► Not to take the risk of losing more in the pursuit of larger gains. In other words, **play safe**.

BACK TO EXAMPLE 1

			Player II	
		B_1	B_2	B_3
	A_1	2	-4	25
Player I	A_2	6	10	-20

► Ideal:

- Player I wins 25, Player II wins 20 (but hey, this is not gonna happen).
- ► If you were Player I, without knowing what strategy Player II would choose, and if you choose Strategy A_1 , you are 100% sure of one thing, and what would that be?

BACK TO EXAMPLE 1

			Player II	
		B_1	B_2	B_3
Player I	A_1	2	-4	25
	A_2	6	10	-20

► Maximum SECURED Payoff for Player I:

If Player I chooses Strategy A_1 , the worst outcome is that he loses 4 (assuming we do not know what Player II would do). If he chooses Strategy A_2 , the worst outcome: he loses 20.

ightharpoonup Of course he would choose Strategy A_1 .

BACK TO EXAMPLE 1

			Player II	
		B_1	B_2	B_3
	A_1	2	-4	25
Player I	A_2	6	10	-20

► Maximum SECURED Payoff for Player II:

- ► Strategy B_1 : loses 6
- ► Strategy B_2 : loses 10
- ► Strategy B_3 : loses 25
- ► Of course Player II would choose Strategy B_1 .

MAXIMUM SECURITY LEVELS

[Again, this information is for those who are interested]

► The security level for *Player I associated with Strategy A_i* is given by (Minimax strategy):

$$s_i := \min\{v_{ij} : j = 1, \ldots, n\}, \quad i = 1, \ldots, m$$

► The *maximum security level* for Player I is given by:

$$s^* := \max\{s_i : i = 1, ..., m\}$$

► The security level for *Player II associated with Strategy B_j* is given by:

$$t_j := \max\{v_{ij} : i = 1, \ldots, m\}, \quad j = 1, \ldots, n$$

► The *maximum security level* for Player II is given by:

$$t^* := \min\{t_i : ij = 1, \ldots, n\}$$

WHAT HAVE WE LEARNT SO FAR?

- ► The security level of a strategy for a player is the **minimum** guaranteed payoff regardless of what strategy his opponent uses.
- ► A player never tries to "maximize payoff"; he knows that his opponent will not let him.
- ► Instead, a player always tries to choose, among all available strategies, the strategy that **maximizes the security level**
- ► In other words, a player always choose the strategy that gives the **least worst outcome**. In general terms, the "pure" minimax strategy for player I is the strategy that maximizes the minimum gain of this player.

Consider the following Two-person Zero-sum Game

$$\begin{array}{c|ccccc}
B_1 & B_2 & B_3 & S_i \\
A_1 & 1 & 10 & 3 & 1 \\
A_2 & -2 & 5 & 1 & -2 \\
A_3 & 1 & -8 & 1 & -8 \\
\hline
t_j & 1 & 10 & 3
\end{array}$$

- ► Player I: Determine the minimum of each row
- ► The Maximum of row minima is the Maximum security level for Player I = 1.
- ► Player II: Determine the maximum of each column (the payoff of Player II is negative of that for Player I)
- ► The minimum of row maxima is the Maximum security level for Player II = 1
- ► Suggested solution (A_1, B_1) , i.e., Player I uses Strategy 1 and Player II uses Strategy 1 too.

A strategy is **dominated** by a second strategy if the second strategy is always at least as good (and sometimes better) regardless of what the opponent does.

	Player 2		
Strategy	1	2	3
1	1	2	4
Player 1 2	1	0	5
3	0	1	-1

For player 1, strategy 3 is dominated by strategy 1 because the latter has larger payoffs. Eliminating strategy 3 from further consideration yields the following reduced payoff table:

Player 2 now does have a dominated strategy – strategy 3, which is dominated by both strategies 1 and 2.

Eliminating strategy 3 of Player 2 strategy yields

At this point, strategy 2 for player 1 becomes dominated by strategy 1 because the latter is better. Eliminating the dominated strategy leads to

Strategy 2 for player 2 now is dominated by strategy 1, so strategy 2 should be eliminated. Consequently, both players should select their strategy 1.

Consider the following Two-person Zero-sum Game

- ► Maximum security level for Player I = 2
- ► Maximum security level for Player II = 5
- ► Suggested solution (A_2, B_2)
- ► Question: will Player II stay with Strategy 2?

EQUILIBRIUM

A solution (A_i, B_j) to a 2-person zero-sum game is said to be **stable** (or, is in **equilibrium**) if:

- ► Player I, whilst expecting Player II to use Strategy B_j , has no incentives to choose a strategy other than A_i .
- ► Similarly, Player II, whilst expecting Player I to use Strategy A_i , has no incentives to choose a strategy other than B_i .

EQUILIBRIUM CONTINUES —

- ► If neither player finds an incentive to change their strategy, then we have reached an **optimal solution**.
- ► We also call (A_i, B_i) a saddle point.

MORE ON SADDLE POINT

- Let L denote the largest security level for Player I (recall that he wants the \max of the \min), and let U denote the smallest security level for Player II (recall that he wants the \min of the \max).
- ► We call *L* the **lower value of the game** and call *U* the **upper value of the game**.
- ► A game that has a value of 0 is said to be a **fair game**.

MORE ON SADDLE POINT

- ► If U = L, we call this the **value of the game**, and the optimal payoff for both players can be achieved by a **pure strategy**.
- if *U* > *L*, then a pure strategy will not result in an equilibrium and players must resort to **mixed strategies**.
 Some modelling problems will be considered in the workshop.

MIXED STRATEGIES

When L < U, a pure strategy will not result in an equilibrium. A player can however mix~up his/her strategies. In this case [L, U] gives the range of the game. The value of the game v is within this range.

By "mixing up" their strategies, we mean, e.g.,

- ► Player I plays strategy A_i with probability x_i (say, 60% of the time using Strategy A_1 and 40% of the time using Strategy A_2); and
- ► Player II plays strategy B_i with probability y_i .

1.9 Two-person zero-sum game – graphical solution

$$\begin{array}{ccccc}
 & B_1 & B_2 \\
 & y_1 & y_2 \\
 & A_1 & x_1 & 1 & 5 \\
 & A_2 & x_2 & 6 & 2
\end{array}$$

Let Player I uses Strategy A_1 with probability x_1 and uses Strategy A_2 with probability $1 - x_1$,

► her expected payoff if Player II uses Strategy B_1 is given by:

$$x_1(1) + (1 - x_1)(6) = 6 - 5x_1$$

 \blacktriangleright her expected payoff if Player II uses Strategy B_2 is given by:

$$x_1(5) + (1 - x_1)(2) = 2 + 3x_1$$

Player I wants to maximise her expected payoff regardless of what the strategy made by Player II, we can use a graphical method as follows. $x_1 = 0.5$ is the optimal solution.

$$\begin{array}{ccccc}
 & B_1 & B_2 \\
 & y_1 & y_2 \\
 & A_1 & x_1 & 1 & 5 \\
 & A_2 & x_2 & 6 & 2
\end{array}$$

Let Player II uses Strategy B_1 with probability y_1 and uses Strategy B_2 with probability $1 - y_1$,

► her expected payoff if Player I uses Strategy A_1 is given by:

$$y_1(1) + (1 - y_1)(5) = 5 - 4y_1$$

► her expected payoff if Player I uses Strategy A_2 is given by:

$$y_1(6) + (1 - y_1)(2) = 2 + 4y_1$$

The graphical solution with $y_1 = 0.375$ is shown as follows.

Expected payoff for Player II

Let's consider

$$A = \begin{bmatrix} 1 & -1 & 3 \\ 3 & 5 & -3 \end{bmatrix}$$

This is a 2 × 3 game without a saddle point in pure strategies since L = -1, U = 3

Suppose that player I uses the strategy X = (x, 1 - x), then we graph the payoffs E(X, i), i = 1, 2, 3:

$$E(X, 1) = x + 3(1 - x)$$

$$E(X, 2) = -x + 5(1 - x)$$

$$E(X, 3) = 3x - 3(1 - x)$$

The optimal strategy for player II is $X^* = (\frac{2}{3}, \frac{1}{3})$

$$A = \begin{bmatrix} 1 & -1 & 3 \\ 3 & 5 & -3 \end{bmatrix}$$

https://www.desmos.com/calculator

Let's consider

$$A = \begin{bmatrix} -1 & 2 \\ 3 & -4 \\ -5 & 6 \\ 7 & -8 \end{bmatrix}$$

This is a 4×2 game without a saddle point in pure strategies since L = -1, U = 6

We can use the graphical solution for Player II with two decision variables.

Suppose that player II uses the strategy Y = (y, 1 - y), then we graph the payoffs E(i, Y), i = 1, 2, 3, 4:

$$E(1, Y) = -y + 2(1 - y)$$

$$E(2, Y) = 3y - 4(1 - y)$$

$$E(3, Y) = -5y + 6(1 - y)$$

$$E(4, Y) = 7y - 8(1 - y)$$

The optimal strategy for player II is $Y^* = (\frac{5}{9}, \frac{4}{9})$

$$A = \begin{bmatrix} -1 & 2\\ 3 & -4\\ -5 & 6\\ 7 & -8 \end{bmatrix}$$

