The letter k denotes a field. When n is an integer, we denote by $\mathbb{A}^n = \operatorname{Spec} k[X_1, \ldots, X_n]$ the affine space, and write \times instead of $\times_{\operatorname{Spec} k}$ for the fiber product of k-schemes.

- **Exercise 1.** (i) Let R be a commutative ring and $f \in R$. Assume that f is a nonzerodivisor, i.e. for all $a \in R \{0\}$ we have $fa \neq 0$. Show that the open subscheme D(f) is dense in Spec R.
 - (ii) Let $X = \operatorname{Spec} A$ be an affine scheme, and $Z = \operatorname{Spec} A/I$ a closed subscheme. Let $\pi \colon \widetilde{X}_Z \to X$ be the blow-up morphism. Show that the open subscheme $X - Z \simeq \widetilde{X}_Z - \pi^{-1}(Z)$ is dense in \widetilde{X}_Z . (Hint: \widetilde{X}_Z is covered by the open affine subschemes $D_h(f_i) = \operatorname{Spec} A_i$, where (f_i) is a generating set of the ideal I; use the first question for the ring A_i .)

Exercise 2. We consider the \mathbb{G}_m -action on $\mathbb{A}^n \times \mathbb{A}^n = \operatorname{Spec} k[T_1, \dots, T_n, X_1, \dots, X_n]$ given by letting T_i be of degree 1 and X_i of degree 0 (canonical action on the first factor and trivial action on the second factor). Let Y be the \mathbb{G}_m -invariant open subscheme $(\mathbb{A}^n - 0) \times \mathbb{A}^n$.

- (i) Show that the \mathbb{G}_m -action on Y is locally free.
- (ii) Let Z be the closed subscheme of Y defined by the equations $T_iX_j = T_jX_i$ for $1 \leq i, j \leq n$. Show that Z is \mathbb{G}_m -equivariantly isomorphic to $(\mathbb{A}^n 0) \times \mathbb{A}^1$, where \mathbb{G}_m acts on $\mathbb{A}^1 = \operatorname{Spec} k[X]$ by letting X be of degree -1 (and canonically on the first factor). Deduce that the blow-up of \mathbb{A}^n at the closed subscheme 0 may be identified with the quotient scheme Z/\mathbb{G}_m .

Exercise 3. Let Z and Y be two closed subschemes of X.

- (i) Show that the natural morphism $\widetilde{Y}_{Y\cap Z} \to \widetilde{X}_Z$ is a closed embedding.
- (ii) Let $\pi \colon \widetilde{X}_Z \to X$ be the blow-up morphism. Show that, as sets,

$$\pi^{-1}(Y) = \widetilde{Y}_{Y \cap Z} \cup \pi^{-1}(Y \cap Z),$$

and that $\pi^{-1}(Y)$ is the disjoint union of $Y - Y \cap Z$ and $\pi^{-1}(Y \cap Z)$.

(iii) For $i=1,\ldots,n$ we let L_i be the closed subscheme of $\mathbb{A}^n=k[X_1,\ldots,X_n]$ given by the ideal generated by the elements X_j for $j\neq i$. Describe the inverse image of $L_1\cup\cdots\cup L_n$ in the blow-up of 0 in \mathbb{A}^n .

Exercise 4. Let X be the blow-up of 0 in \mathbb{A}^n .

- (i) Show that X is covered by n open subschemes, each isomorphic to \mathbb{A}^n .
- (ii) Assume that n > 1. Let x be a closed point of X mapping to 0 in \mathbb{A}^n , and Y the blow-up of $\{x\}$ (with reduced structure) in X. Show that the natural open immersion $\mathbb{A}^n 0 \to Y$ does not extend to a morphism $X \to Y$.