Álgebra Folha 5

1. Considere o seguinte subconjunto de $\mathcal{M}_{2\times 2}(\mathbb{R})$:

$$D = \left\{ \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right] : a, b \in \mathbb{R} \right\}.$$

- (a) Mostre que D é um subanel de $\mathcal{M}_{2\times 2}(\mathbb{R})$.
- (b) Mostre que a aplicação $f: \mathbb{C} \to D$ dada por $f(a+bi) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ é um isomorfismo de anéis.
- (c) Seja $A \in D$ com $\det A \neq 0$. Calculando $A \cdot A^T$, verifique que $A^{-1} \in D$.
- (d) Mostre que todo o elemento não nulo de $\mathbb C$ é invertível (uma unidade do anel $\mathbb C$) e indique o seu inverso.
- 2. Determine todos os endomorfismos do anel \mathbb{Z} .
- 3. Mostre que os anéis \mathbb{Z}_6 e $\mathbb{Z}_2 \times \mathbb{Z}_3$ são isomorfos.
- 4. Mostre que o centro de um anel $A, Z(A) = \{x \in A \mid \forall y \in A \ xy = yx\}, \text{ \'e um subanel de } A.$
- 5. Seja $n \ge 1$ um inteiro. Mostre que $[k]_n \in \mathbb{Z}_n \setminus \{[0]_n\}$ é uma unidade do anel \mathbb{Z}_n se e só se k e n são primos entre si.
- 6. Sejam A um anel e $n \in \mathbb{Z}$. Verifique que $nA = \{nx \mid x \in A\}$ é um ideal de A.
- 7. Seja A um anel comutativo e seja $a \in A$. Verifique que $I = \{x \in A \mid ax = 0\}$ é um ideal de A.
- 8. Sejam m e n dois números inteiros primos entre si. Mostre que o único ideal de \mathbb{Z} que contém m e n é \mathbb{Z} .
- 9. Sejam A um anel e I um ideal de A. Mostre que o anel quociente A/I é comutativo se e só se $ab ba \in I$ para todos os $a, b \in A$.