

Reliable and Economic Island, Microgrid and Grid Supply with Renewable Energy using Electrochemical Storage

Olaf Wollersheim, Andreas Gutsch

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Competence E

KIT – Facts and Figures

Campus North

Campus South

- University AND Federal Gov. Lab
- 9.000 Employees
- 700 Mio.€ Budget
- 160 Institutes
- 372 Professors
- 22.800 Students

Competence E: System Competence along the Value Creation Chain

New Materials
New Cell Designs
New Battery Designs
New Manufacturing Methods

250 €/kWh at 250 Wh/kg on system level in 2018

Energy Strategy of the German Federal Government

	GHG Replacement of Fossiles Emissions by Renewables Competence E Reduction of Fossiles Consumption							End of Nuclear
	Treibhaus- gas- Emissionen	Erneuerbai Brutto- Endenergie	Strom- erzeugung	Primär- energie	Vinderung El Gebäude- Wärme	End- energie Verkehr	Strom- verbrauch	Kern- energie
2011 2015 2917 2019								-41% -47% -54% -60%
2020 2021 2022	-40%	18%	35%	-20%	-20%	-10%	-10%	-80% -100%
2030 2040	-55% -70%	30% 45%	50% 65%					
2050	-80 bis -95%	60%	80%	-50%	-80%	-40%	-25%	
Basis	1990	-	-	2008	2008	2005	2008	2010

Quelle: BReg 2010/2011, Berechnungen des Öko-Instituts Freiburg im Auftrag des BMU vom 28. März 2012

Maximum Power Ramps in German Electricity System

Maximum power ramps caused by German PV power *

Maximum power ramps caused by German wind power **

^{*} Installed German PV power for 2011 was 19,47 GW (source: "Stammdatenbank" of the four TSO's)

09.10.2012 | Dr. Martin Wolter 5

^{**} Installed **German wind power** for 2011 was **28,82 GW** (source: IWES "Windenergiereport Deutschland 2011")
In 2022 and 2032 the data of the installed power as well as the 1 hour ramps can be found in "Leitszenario (B)" of the NEP (source: plan for the development of the German transmission grid: "Netzentwicklungsplan 2012"). The 1/4 hour ramps for the years 2022 and 2032 are linearly extrapolated by using the maximal ramps per 1/4 hour of 2011 (source: feed-in data of the four German TSO's).

Electricity Costs for PV+Battery Energy Storage Systems (BESS®)

Total Cost of Ownership (TCO)

Total Cost of Ownership for Energy Storage

(w/o: PV, interest, maintenance)

Cycle Life of commercially available Batteries

Cycle Life of different Automotive Li-Ion Cells

Total System Efficiency

Converter efficiency measured

 $\eta = 0.972$ according to EU test procedure (w/o auxiliary systems)

11

System efficiency measured for 8 days in 2013

Efficiency w/o auxiliary systems

Indication of Electric Energy Costs of BESS®

Realistic Indication =
$$\frac{0,07 \text{ €/kWh}}{0,8} + \frac{1400 \text{ €/kWh} + 50 \text{ €/kWh} + 300 \text{ €/kWh}}{6000} = 0,38 \text{ €/kWh}$$
Optimistic Indication = $\frac{0,05 \text{ €/kWh}}{0,8} + \frac{1000 \text{ €/kWh} + 50 \text{ €/kWh} + 200 \text{ €/kWh}}{7000} = 0,24 \text{ €/kWh}$

BESS® at KIT March 2013

Jointly devoloped by: AccuSol GmbH SIEMENS

| Power-Module 250 kW Battery-Module up to 300 kWh

PV 36 kWp installed PV 1 MWp in installation

Siemens Power Electronics 270 kW_p

Hardware including frequency, voltage, reactive power / cos φ control

Fully modular Ceramic Li-Ion Technology, 100% made in Germany

Electrical and Control Design of BESS® (DC coupling)

Sensor and Control Technology

Sensor System

350 Voltage Sensors

340 Temperature Sensors

9 DC Current Sensors

6 AC Current Sensors

3 Energy Integrators

10 Automatic Relays

40 Fuses and Swichtes

Analysis and Control System

Data acquisition and storage at ADEI every 500 ms:

=> 1.410 data sets per second

=> 121. Mio. data stets per day

Validation of ADEI Data Acquisition

(world wide web access)

Example: 5 Days in June

Analysis of Fluctuation Frequencies of PV

Characterisitic frequency is required for optimized control algorithm of BESS®

BESS® operation in constant power mode

System Currents as of Sept. 18, 2013

Single Cell Voltages of 168 Cells at Sept. 18, 2013

Single Cell Temperatures on Sept. 18, 2013

Searching for the Limits: System Currents

Intregration of BESS® in Island Grids

26

Challenges for the system control of a renewable energy microgrid

- Frequency control
- Voltage control
- Reactive power control / cos φ control
- SoC control and prediction
- Renewables production forecast

BESS® predictive control for 04.03.2013

Finally: Safety is not negotiable !!!

Overcharge of a stationary Li-Ion battery without redundant safety protection e.g.:

w/o ceramic Li-Ion cell technology

w/o single cell temperature protection

w/o automatic relay w/o

Our Believe: Safety is not negotiable

End of the overcharge of a stationary Li-Ion battery without redundant safety protection

30

Thank you for your attention!

Competence E

Back-UP

Basic Concept of PV and Battery

Profitability is determined by:

- System design (AC and/or DC coupling)
- System design (power electronics + battery in relation to PV and load)
- System design (control software, relability, efficiency, maintenance, availability)
- Life time of battery and power electronics

33 Competence E