Problems for Recitation 13

 Ω

1 Asymptotic Notation

Which of these symbols

can go in these boxes? (List all	that apply.)	
$2n + \log n$	=	(n)
$\log n$	=	(n)
\sqrt{n}	=	
$n2^n$	=	(n)
n^7	=	$(1 \ 01^n)$

Θ

O

Recitation 13

2 Asymptotic Equivalence

Suppose $f, g: \mathbb{Z}^+ \to \mathbb{Z}^+$ and $f \sim g$.

- 1. Prove that $2f \sim 2g$.
- 2. Prove that $f^2 \sim g^2$.
- 3. Give examples of f and g such that $2^f \not\sim 2^g$.
- 4. Show that \sim is an equivalence relation
- 5. Show that Θ is an equivalence relation

3 More Asymptotic Notation

1. Show that

$$(an)^{b/n} \sim 1.$$

where a, b are positive constants and \sim denotes asymptotic equality. Hint $an = a2^{\log_2 n}$.

2. You may assume that if $f(n) \ge 1$ and $g(n) \ge 1$ for all n, then $f \sim g \Rightarrow f^{\frac{1}{n}} \sim g^{\frac{1}{n}}$. Show that

$$\sqrt[n]{n!} = \Theta(n).$$