Vector Spaces and Subspaces

Section 4.1

Learning Objectives:

- 1. Know and check the axioms of vector spaces
- 2. Recognize several examples of vector spaces
- 3. Prove a subset of a vector space is a subspace
- 4. Prove and use the fact that spans of vectors are subspaces of vector spaces.

1 Vector spaces

Definition: A **vector space** is a nonempty set V of elements, called **vectors**, with two operations: vector addition and scalar multiplication. The vectors and scalars (real numbers) satisfy the following axioms: for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, and for all scalars $c, d \in \mathbb{R}$,

- i. The sum $\mathbf{u} + \mathbf{v} \in V$ (closure under addition)
- ii. For each $\mathbf{u} \in V$ and scalar $c, c\mathbf{u} \in V$ (closure under scalar mult.)
- iii. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (associativity)
- iv. There is a zero vector in $V: \mathbf{0} + \mathbf{u} = \mathbf{u}$. (additive identity)
- v. For each $\mathbf{u} \in V$ there exists $\mathbf{v} \in V$ so that $\mathbf{u} + \mathbf{v} = \mathbf{0}$ (additive inverses, we often write $\mathbf{v} = -\mathbf{u}$.)
- vi. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity)
- vii. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (scalar distribution)
- viii. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (vector distribution)
- ix. $c(d\mathbf{u}) = (cd)\mathbf{u}$ (compatibility of multiplication)
- x. $1\mathbf{u} = \mathbf{u}$ (multiplicative identity)

Example 1. Let $V = \mathbb{R}^+ = \{x : x > 0\}$. Define vector addition by

$$x \oplus y = xy$$

and scalar multiplication by

$$c \odot x = x^c$$
.

Then V forms a vector space! Check axioms (iii), (iv), (v), and (vii).

Example 2. Let H be the set of points within the unit circle of the xy plane: so

$$H = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) : x^2 + y^2 \leqslant 1 \right\}.$$

Equip H with regular vector addition and scalar multiplication. Show that H is not a vector space.

2 Subspaces

Oftentimes a subset of a vector space is a vector space in its own right!

Definition: A subspace of a vector V is a subset H of V that has three properties

- 1.
- 2. if $\mathbf{u}, \mathbf{v} \in H$ then
- 3. if $\mathbf{u} \in H$ and c is a scalar then

If a subset H satisfies these three properties, then H automatically satisfies all of the axioms of a vector space (since all of the other axioms still hold automatically).

Example 3.

For any vector space V, the **zero subspace** is the space consisting of exactly the zero vector $\{0\}$.

The space \mathbb{P} consisting of all polynomials (of any degree) is a vector space. It has as subspaces \mathbb{P}_n for any n.

Example 4. Is \mathbb{R}^2 a subspace of \mathbb{R}^3 ?

Example 5. Show that
$$H = \left\{ \begin{pmatrix} s \\ t \\ 0 \end{pmatrix} : s, t \in \mathbb{R} \right\}$$
 is a subspace of \mathbb{R}^3 .

3 Spanning set as a subspace

The definitions of linear combination and span are the same as we saw before.

Definition: The vector $\mathbf{w} \in V$ is said to be a **linear combination** of the vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ if there exist scalars $a_1, \dots, a_n \in \mathbb{R}$ so that

$$a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n = \mathbf{w}.$$

The **span** of vectors $\mathbf{v}_1, \dots, \mathbf{v}_n \in V$ is the set of all their linear combinations, denoted $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$.

Theorem: Given $\mathbf{v}_1, \dots, \mathbf{v}_n \in V$, the set $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ forms a subspace of V.

Example 7. Show that $\{f: f(0) = f(1)\}$ is a subspace of C([0,1]), the set of all continuous functions $f: [0,1] \to \mathbb{R}$.