Redes de computadoras

Capa de Enlace - Ethernet - ARP

Las diapositivas están basadas en en libro: "Redes de Computadoras – Un enfoque descendente" de James F. Kurose & Keith W. Ross

LAN

Una LAN (Red de área local/Local Area Network) es una red conectada en un área geográfica concreta, pudiendo ser una oficina, un edificio o un centro de estudios.

Desde los 80 era común que contaran con buena velocidad de transferencia, 10Mbps.

Velocidades típicas actuales: 100Mbps, 1Gbps

En algunos casos se llega a 10Gbps.

Direcciones MAC

Direcciones IP de 32/128 bits:

- Direcciones de la capa de red
- Utilizada para llevar el datagrama a la subred IP destino

Dirección MAC

(También conocida como dirección LAN o física)

- Utilizada para llevar una trama/frame de una interfaz a otra, conectada en la misma red.
- Direcciones MAC de 6bytes (48 bits)
 - Grabada en la ROM del adaptador de red, en algunos casos configurable por software.

Direcciones MAC

Asignación de direcciones MAC administradas por IEEE

Los fabricantes compran porciones del espacio de direcciones MAC (para asegurar unicidad)

- OUI (Organizationally Unique Identifier): 3 primeros bytes, (company_id)
- NIC Specific: 3 bytes restantes administrados por la compañía.

Dirección MAC plana → portable

- Se puede mover la tarjeta de una LAN a otra.

Dirección IP jerárquica → no portable

- La dirección depende de la subred IP a la que el nodo está conectado

Direcciones MAC

Cada adaptador en la LAN tiene una dirección MAC única

Dirección de Broadcast FF-FF-FF-FF

ARP - Address Resolution Protocol

Protocolo de resolución de direcciones / RFC 826

¿cómo determinar dirección MAC de B conociendo su dirección IP?

Cada nodo IP en la LAN tiene una tabla ARP

Tabla ARP: mapeo de direcciones IP-MAC para algunos nodos de la LAN

Dirección IP; Dirección MAC; TTL

TTL – Tiempo durante el cual el mapeo será recordado. Ej: 20min

ARP - Address Resolution Protocol

A quiere enviar un datagrama a B y la dirección MAC de B no está en la tabla ARP de A.

A realiza una difusión en la LAN de un paquete ARP query conteniendo la dirección IP de B.

- Dirección MAC destino = FF-FF-FF-FF-FF
- Todas las máquinas en la LAN reciben la consulta ARP

B recibe el paquete ARP y responde a **A** con su direcciónMAC **ARP** reply

- La trama es enviada a la dirección MAC de A

A salva el par dirección IP – MAC en su tabla ARP hasta que la información caduque (timeout).

ARP es plug and play, los nodos crean sus tablas sin intervención de un administrador.

ARP - Address Resolution Protocol

A salva el par dirección IP – MAC en su tabla ARP hasta que la información caduque (timeout).

IP Address	MAC Address	TTL
222.222.222.221	88-B2-2F-54-1A-0F	13:45:00
222.222.222.223	5C-66-AB-90-75-B1	13:52:00

Figure 5.18 ♦ A possible ARP table in node 222.222.222.220

ARP Enrutamiento hacia otra LAN

Datagrama desde **A** hasta **B** vía R, conociendo **A** la dirección IP de **B**

Dos tablas ARP en el router R, una para cada red IP (LAN)

ARP Enrutamiento hacia otra LAN

- A crea el datagrapa IP con origen A y destino B
- A utiliza ARP para obtener la dirección MAC de R
- A crea un frame con la dirección MAC de R como destino. El frame contiene el datagrama IP "A-to-B"
- La NIC de **A** envía la trama
- La NIC de R recibe la trama
- **R** des-encapsula el datagrama IP de la trama ethernet analiza el datagrama y su destino
- R consulta la tabla de forwarding para identificar la interfaz de salida
- R utiliza ARP para obtener la dirección MAC de B
- R crea una trama que contiene el datagrama IP "A-to-B" y la envía a B

Ethernet

Tecnología LAN cableada dominante

- Creada en los 70 (Metcalfe & Boggs)
- NICs baratas y switches baratos
- Primera tecnología LAN ampliamente utilizada
- Velocidades: 10 Mbps / 10 Gbps

Diagrama de Ethernet de Robert Metcalfe

Topología en bus

La topología en bus fue popular hasta mediado de los 90

Todos los nodos en el mismo dominio de colisión

T Connecter

Topología en estrella

Actualmente prevalece la topología estrella

- Hub, switch o router en el centro.
- Cada nodo corre el protocolo Ethernet
- No hay colisión entre los nodos

Estructura de la trama Ethernet

El adaptador del emisor encapsula el datagrama IP (u otro paquete de protocolo de capa superior) en una trama Ethernet.

Preamble:

- Siete bytes con el patrón 10101010 seguido por un byte 10101011
- Utilizado para despertar al receptor y sincronizar los relojes del emisor y receptor

Estructura de la trama Ethernet

Address: 6 bytes cada una

- Si el adaptador recibe una trama con su dirección como destino o la de broadcast, pasa los datos en la trama al protocolo de capa de red.
- En otro caso el adaptador descarta la trama

Type: 2 bytes

- multiplexación
- Indica el protocolo de la capa superior

Estructura de la trama Ethernet

Data: 46 a 1500 bytes

- Carga útil de la trama

CRC: 4 bytes

- CRC-32
- Chequeado en el receptor, si un error es detectado la trama se descarta
- Para calcularlo se utiliza todo menos el "Preamble"

Ethernet: Servicio no confiable, no orientado a la conexión

No orientado a la conexión:

- No hay handshaking entre las NICs de emisor y receptor

No confiable:

- La NIC que recibe no envía ACKs o NAKs a la NIC emisora.
- El flujo de datagramas pasados a la capa de red puede tener huecos (datagramas perdidos)
- Los datagramas perdidos serán reenviados en caso de utilizarse TCP.

Protocolo MAC de Ethernet: CSMA/CD

La detección de colisiones es un servicio de Capa Física

Dominios

Dominio de colisión

Porción de la red hasta donde se propaga una colisión

Dominio de broadcast

Porción de la red hasta donde se propaga un broadcast

Hubs

Repetidores de Capa Física ("tonto")

- Los bits que llegan en un enlace salen por todos los otros enlaces a la misma velocidad
- Todos los nodos conectados al hub pueden colisionar con los otros
- No existe buffering de tramas
- No hay CSMA/CD en el hub. La NIC del host detecta las colisiones.

Switch

Dispositivo de capa de enlace: más "inteligente" que los hubs, tienen un rol activo

- Almacenamiento, envío de tramas Ethernet
- Examina la dirección MAC destino de la trama entrante y realiza un envío selectivo de la trama a uno o más links de salida.
- Cuando la trama será enviada en un segmento, utiliza CSMA/CD para acceder al segmento.
- Transparente:
- Los sistemas terminales no se enteran de la presencia de los switches.
- Plug and play, self-learning:
- Los switches no necesitan ser configurados para su operación básica.

Switch

Permite múltiples transmisiones simultáneas

Los hosts tienen conexiones dedicadas, directas al switch

- Los switches utilizan buffers con las tramas
- El protocolo Ethernet es utilizado en cada enlace entrante, pero no hay colisiones; full-duplex.

Cada enlace es su propio dominio de colisión.

Switching: A a A' y B a B' simultáneamente, sin colisiones.

Switch

¿Cómo sabe un switch que A' es alcanzable a través de la interfaz correspondiente?

Cada switch tiene una tabla con entradas:

- Dirección MAC del host
- Interfaz por la cual alcanzarlo
- Timestamp

Switch Self-learning

El switch aprende que host pueden ser alcanzados a través de que interfaces.

Cuando una trama es recibida el switch registra la ubicación del emisor.

Address	Interface	Time
01-12-23-34-45-56	2	9:39
62-FE-F7-11-89-A3	1	9:32
7C-BA-B2-B4-91-10	3	9:36
••••		••••

Switches vs Routers

Ambos son dispositivos store-and-forward

- Routers dispositivos de capa de red
- Switches dispositivos de capa de enlace
- Los routers mantienen tablas y corren algoritmos de enrutamiento.
- Los switches mantienen tablas de switch, implementan filtrado y algoritmos de auto aprendizaje.

Segmentado redes LAN

Hub

- Capa física
- 1 dominio de colisión y 1 dominio de broadcast

Bridge

- Capa de enlace
- 1 dominio de colisión por enlace y 1 dominio de broadcast

Switch

- Capa de enlace
- 1 dominio de colisión por enlace y 1 dominio de broadcast
- Mayor cantidad de enlaces y capacidad de conmutación que un bridge