CODE: 20BST102

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, September, 2023 Differential Equations

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

1. a) Solve $(xe^{xy} + 2y)\frac{dy}{dx} + ye^{xy} = 0.$ 5M

b) Find the Orthogonal Trajectories of the family of curves $x^2 + y^2 = a^2$ 5M

(OR)

2. a) Solve $\frac{dy}{dx} + \frac{y}{x \log x} = \frac{\sin 2x}{\log x}$. 5M

b) A body kept in air with temperature 25°C cools from 140°C to 80°C in 20 minutes. 5M Find when the body cools down to 35°C.

UNIT-II

3. (a) Solve: $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = e^{2x}$.

(b) Using the method of variation of parameters, solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$ 5M

(OR)

4. (a) Solve the differential equation $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = -2\cosh x$. Given y(0) = 0, y'(0) = 1

(b) Solve, by the method of variation of parameters, $y'' - 2y' + y = e^x \log x$

UNIT-III

5. If $f(x) = \begin{cases} 0, & -\pi \le x \le 0 \\ \sin x, & 0 \le x \le \pi \end{cases}$, prove $f(x) = \frac{1}{\pi} + \frac{\sin x}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2nx}{4n^2 - 1} = \frac{\pi^2}{12}$.

Hence, show that $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots - \infty = \frac{1}{4}(\pi - 2)$

(OR)

Obtain the Fourier expansion of $x \sin x$ as a cosine series in $(0, \pi)$.

Hence show that $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{\pi - 2}{4}$.

UNIT-IV

7. (a) Expand e^{xy} in the neighbourhood of (1, 1)

5M

(b) Find the points on the surface $z^2 = xy + 1$ that are nearest to the origin.

5M

(OR)

- 8. a) Expand the function $f(x, y) = e^x \log(1 + y)$ in terms of x and y up to the terms of 3^{rx} degree using Taylor's theorem.
 - b) Find the stationary points of $u(x, y) = \sin x \sin y \sin(x + y)$ where $0 < x < \pi$, $0 < y < \pi$ find the maximum u.

UNIT-V

- 9. a) Form the partial differential equation by eliminating the arbitrary functions from $z = (x + y)\phi(x^2 y^2)$
 - 5M

b) Solve $x^2p^2 + y^2q^2 = z^2$

12.

(OR)

10. Solve $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$

10M

5M

UNIT-VI

11. A tightly stretched string of length l with fixed ends is initially in equilibrium position. It is set vibrating by giving each point a velocity $v_0 \sin^3 \frac{\pi x}{l}$. Find the displacement y(x,t).

(OR)

Solve the differential equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ for the conduction of heat along a rod without radiation, subject to the conditions (i) u is not infinite for $t \to \infty$,

(ii) $\frac{\partial u}{\partial x} = 0$ for x = 0 and x = l and

10M

(iii) $u = lx - x^2$ for t = 0, between x = 0 and x = l

2 of 2

AR18

CODE: 18BST103

SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Suppl. Examinations, September, 2023

Differential Equations

(Common to CE, ME, CSE, IT Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks

All parts of the Question must be answered at one place

UNIT-I

1. a) Solve $\frac{dy}{dx} + \frac{y}{x} = x^3 y^2$ 6M

If the temperature of the air is $30^{\circ}C$ and the substance cools from $80^{\circ}C$ to $60^{\circ}C$ 6M b) in 12 minutes, find when the temperature of the body after 24 minutes.

2. a) Solve $x^{2}ydx - (x^{3} + y^{3})dy = 0$ 6M

Find the orthogonal trajectories of the family $r = a \cos \theta$ b) 6M

3. a) Solve $(D^2 - 5D + 6)y = 0$, y(0) = 1, y'(0) = 16M

b) Solve $(D^2 + 2D + 3)y = x^2$ 6M

4. $(D^2 + 4)y = \tan 2x$ by the method of variation of parameters 12M

UNIT-III

5. State and prove orthogonal property of Bessel functions 12M

Show that $np_n(x) = xp'_n(x) - p'_{n-1}(x)$ 6. 12M

<u>UNIT-IV</u>

Form a partial differential equation by eliminating arbitrary constants from 7. a) 6M $z = ax + by + a^2 + b^2$

Form a partial differential equation by eliminating arbitrary function from b) 6M $f(x+y+z, x^2+y^2+z^2)=0$

(OR)

8. a) Solve x(y-z)p + y(z-x)q = z(x-y)6M

b) Solve $z = p^2 + q^2$ 6M

Solve $(D^2 + 5DD' + 6D'^2)z = e^{3x+4y}$ 12M

10. Solve $(D^2 - 6DD^{2} + 9D^{2})z = \cos(2x + y)$ 12M

CODE: 18BST102

SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Suppl. Examinations, September, 2023

DIFFERENTIAL EQUATIONS AND TRANSFORM THEORY

(Common to EEE, ECE Branches)

Time: 3 Hours

Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

1. a) Solve
$$\frac{dy}{dx} = (4x + y + 1)^2$$
, if $y(0) = 1$.

b) Solve
$$\frac{y}{x}\frac{dy}{dx} + \frac{x^2 + y^2 - 1}{2(x^2 + y^2) + 1} = 0$$

(OR)

2. a) Solve
$$\frac{dy}{dx} + \frac{y \cos x + \sin y + y}{\sin x + x \cos y + x} = 0$$

b) Solve
$$(x^2y - 2xy^2)dx - (x^3 - 3x^2y)dy = 0$$
 6M

UNIT-II

3. If $f(x) = |\cos x|$, expand f(x) as a Fourier series in the interval $(-\pi, \pi)$.

(UK)

- 4. a) Obtain the Fourier series for $y = x^2$ in $-\pi < x < \pi$. Using the two values of y, show that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots$, $= \frac{\pi^4}{90}$
 - b) Express f(x) = x as a half range size series in 0 < x < 2. 6M

UNIT-III

- 5. a) Find the Fouriercosine transform of e^{-x^2} .
 - b) If the Fourier sine transform of $f(x) = \frac{1 \cos n\pi}{n^2 \pi^2}$ ($0 \le x \le \pi$) find f(x).

(OR)

6. Using finite Fourier transform, solve $\frac{\partial u}{\partial t} = \frac{2\partial^2 u}{\partial x^2}$ given and (0, t) = 0, $u(x, 0) = e^{-x}(x > 0)$, u(x, t) is bounded where x > 0, t > 0.

UNIT-IV

- 7. a) An impulsive voltage $E\delta(t)$ is applied to a circuit consisting of L, R, C in series with zero initial conditions. If i be the current a any subsequent time t, find the limit of i as $t \to 0$?
 - b) Evaluate $L^{-1}\left\{\frac{e^{-s}-3e^{-3s}}{s^2}\right\}$.
- 8. a) Find the inverse transform of $\frac{2s^2 6s + 5}{s^3 6s^2 + 11s 6}$ 6M
 - b) Find the Laplace transform of the function f(t) = [t] where [] stands 6M for the greatest integer function.

UNIT-V

- 9. a) Find the Z-transform of the following: (i) n $\sin n\theta$; (ii) $n^2 e^{n\theta}$. 6M
 - b) Use convolution theorem to evaluate $Z^{-1}\left\{\frac{z^2}{(z-a)(z-b)}\right\}$ 6M

(OR)

- 10. a) Find the inverse Z-transform of $\log(\frac{z}{z+1})$ by power series method. 6M
 - b) Find the inverse Z-transform of $\frac{2z}{[(z-1)(z^2+1)]}$ 6M

2 of 2 ***

AR16

CODE: 16BS1002 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Suppl. Examinations, September, 2023

ENGINEERING MATHEMATICS – II

(Common to all branches)

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the Question must be answered at one place

UNIT-I

- 1. a Compute a real root of $x^3 2x 5 = 0$ correct to 3 decimal places by **7M** Regula Falsi Method
 - b Compute a real root of the equation $x^4 x 10 = 0$ by Newton Raphson method

7M

(OR)

2. a Compute y(17) using Newton's backward difference formula, from the following data

 x
 8
 10
 12
 14
 16
 18

 y
 10
 19
 32.5
 54
 89.5
 15.4

b Find the polynomial such that f(1) = 9, f(4) = 18, f(12) = 130 using Lagrange's interpolation formula.

<u>UNIT-II</u>

- 3. a Using Taylor's method, solve $\frac{dy}{dx} = 2y + 3e^x$ with y(0) = 0 at x = 0.2
 - b Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{2xy + e^x}{x^2 + xe^x}$ with y(1) = 0 at x = 1.2, 1.4

(OR)

- 4. a Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using Trapezoidal rule **7M**
 - b Determine f'(50) using Newton's forward difference formula, fro **7M** the following data

х	50	55	60	65
f(x)	1.6990	1.7404	1.7782	1.8129

UNIT-III

5. a Find the Laplace transforms of the function $f(t) = e^{-t} \sin^2 t$ 7M b Find $L^{-1} \left\{ \frac{3s+2}{s^2-s-2} \right\}$ 7M

(OR)

6. a Find the Laplace transform of the full wave rectifier function **7M** defined by

 $f(t) = E \sin \omega t \, if \, 0 < t < \frac{\pi}{\omega} \text{ having period } \frac{\pi}{\omega}.$

b Solve $\frac{d^4y}{dt^4} - k^4y = 0$, where y(0) = 1, y'(0) = y''(0) = 7My'''(0) = 0 by using Laplace transform method.

UNIT-IV

- 7. a Obtain the Fourier series for $f(x) = 1 x^2$ in (-1,1)
 - b Obtain the half range cosine series $f(x) = (x-1)^2$ in (0,1) **7M**

(OR)

- 8. a Determine the Fourier series for $f(x) = x x^2$ in $(-\pi, \pi)$ 7M
 - b Obtain the half range sine series f(x) = x in (0,2) 7M

UNIT-V

- 9. a Solve the partial differential equation **7M** $x(y^2-z^2)p + y(z^2-x^2)q = z(x^2-y^2)$
 - b Solve $y \frac{\partial u}{\partial x} + x \frac{\partial u}{\partial y} = 3u$ and $u(x, 0) = e^{x^2}$ by the method of separation of variables

(OR)

- 10. a Find a partial differential equation from z = f(x + at) + g(x at) 7M
 - b The ends A and B of a rod of 20 cm long, have the **7M** temperature at 30°C and 80°C until steady state prevails. The temperature of the ends are changed to 40°C and 60°C respectively. Find the temperature distribution in the rod at time t