# **Biofuel Feedstocks and Production**

# **Topic Three**

**Lecture Four** 

Feedstock Potential Evaluation



# **Summary of Topic Two**



## Ideal biomass feedstock

- High energy content
- Low recalcitrance
- Available in large quantities in many types of geographical areas
- Requires very low amount of resources to grow
- Easy to harvest and transport
- Cheap compared to other similar feedstocks
- Fairly standard and simple conversion technologies
- Sequesters CO<sub>2</sub> and does not cause pollution



What are the critical factors that must be considered in evaluating/comparing feedstocks?



#### Technical factors

- Chemical and physical properties
  - Chemical composition of feedstocks
  - Feedstock recalcitrance
  - Yield of biofuel and coproduct.
- Conversion processes technologies :
  - Unit operations required to grow, harvest and transport feedstocks.
  - Are these technologies available commercially?
    How mature is the technology?



## Technical factors

- Scale of operation
  - o What is the scale of operation required to make the process practical Kg...Ton...or Million Tons?
  - o Are there any significant issues in scaling up the process?

# Supply chain management

- Present availability and future forecast
- Geographical distribution

## **Feedstock Evaluation Factors**

- Composition
- Climate
- Water requirement
- Fertilizer use
- Current production levels and future trends
- Supply chain factors
- Conversion Technologies
- Coproducts and their use

# **Distribution of Crop Residues**



Ref: http://www.nrel.gov/gis/biomass.html



Resources: Water, nutrients and cultivation practices.

Two important raw materials in the manufacture of nitrogen fertilizers are natural gas and energy

Intensive agriculture practices also use a lot of energy inputs in field preparation, planting, irrigation, harvesting and transportation.

Some of these resources, especially water is important not only in producing feedstock but also in processing it to fuels and chemicals.

Impact of biofuels on water resources can be estimated using amount of water needed per unit energy generated.

# Average, Minimum and Maximum Nutrients in Soils

| Element        | Absorption forms                                                | Average  | Deficiency | Adequate |
|----------------|-----------------------------------------------------------------|----------|------------|----------|
| Macronutrients | %                                                               | ppm      | ppm        | ppm      |
| Nitrogen       | NO <sup>3-,</sup> NH <sup>4+</sup>                              | 1-50     | Na         | Na       |
| Potassium      | $K^+$                                                           | 50-200   | < 50       | 100      |
| Calcium        | $Ca^{2+}$                                                       | 500-8000 | <200       | 500      |
| Magnesium      | $\mathrm{Mg}^{2+}$                                              | 2-100    | <10        | >50      |
| Phosphorus     | H <sub>2</sub> PO <sup>4-,</sup> HPO <sub>4</sub> <sup>2-</sup> | 0-1000   | < 50       | 200      |
| Sulfur         | SO <sub>4</sub> <sup>2-</sup>                                   | 10       | <7         | >12      |
| Micronutrients | ррт                                                             | ppm      | ррт        | ppm      |
| Iron           | $Fe^{2+}, Fe^{3+}$                                              |          |            |          |
| Manganese      | $Mn^{2+}$                                                       | 20-50    | <10        |          |
| Boron          | $H_3BO_3$                                                       | 0.5-1.0  | < 0.1      | >0.25    |
| Copper         | $Cu^+, Cu^{2+}$                                                 | 10-30    |            |          |
| Zinc           | $Zn^{2+}$                                                       | 50-150   | <1         | >1.5     |
| Molybdenum     | MoO4 <sup>2</sup> -                                             | 50-150   |            |          |
| Nickel         | Ni <sup>2+</sup>                                                | 10-30    |            |          |

Ref: Adapted from Forages: an Introduction to grassland Agriculture. R.B. Barnes et al.



# **Nutrient Requirements for Field Crops**

| Crop             | Yield             | Nutrient (Kg/ha) |      |      |    |    |    |
|------------------|-------------------|------------------|------|------|----|----|----|
|                  | (t/ha)            | N                | P    | K    | Ca | Mg | S  |
| Wheat            | 8 (3+5)           | 125              | 22   | 92   | 16 | 14 | 14 |
| Barley           | 5.4 (grain)       | 168              | 27   | 139  | -  | 19 | 22 |
| Rice<br>(IAC 25) | (3.256+<br>4.073) | 73               | 7    | 88   |    |    |    |
| Corn             | 9.5               | 152              | 28.5 | 28.5 |    |    |    |

Ref: Adapted from Growth and mineral nutrition of field crops: Fageria, N.K. et al.



## Resources: Nutrients

## Best Management Practices for optimum nitrogen use

- Rate: Applying nitrogen at a rate that accounts for all other sources of nitrogen and soil-climate-plant interactions.
- Timing: Applying nitrogen on a need based strategy
- Method: Injecting or applying nutrients to prevent losses.

Why are BMPs difficult to implement:

- Ideal growth conditions: 179 lbs/acre nitrogen; 170 bushels of corn
- Non-ideal growth conditions: 165 lbs/acre nitrogen; 148 bushels/acre
- Economic risk factor: \$0.50 /lbs nitrogen is \$7/acre additional investment for a potential and economic payoff \$4.50 /bu is \$99/acre

http://www.ers.usda.gov/media/117596/err127.pdf



#### Resources: Nutrients



Note: Criterion rate defined as nitrogen removed at harvest plus 40 percent.

Source: USDA, Economic Research Service using data from USDA's Agricultural Resource Management Survey (2003-06),

http://www.ers.usda.gov/media/117596/err127.pdf or \$275 million

~78.6 million gal of Gasoline or \$275 million



#### Resources: Nutrients



\* only a fraction of applied mineral P is taken up by crops in a given year, the balance comes from the soil stocks, either from natural soil P, or build up from previous years and decades of fertilizer application.

Ref: Cordell et al. 2009. Global Env. Change. 19:292-305.



# Agro climatic factors

- Soil type determines the supply of nutrients and fertilizer requirements.
- Climate has an influence on water requirements for the crops. Ex. Local temperature and humidity determine the Evapotranspiration (ET) which in turn dictates the crop water requirements.

# **Feedstock Potential Evaluation: Soil Types**

# UN/FAO Soils Map of the U.S.





Ref: http://biology.usgs.gov/luhna/chap3.html

# **Conservation Reserve Program Lands in the US**



## Resources: Climate

#### Daily Mean Maximum Temperature (F)



#### Daily Mean Minimum Temperature (F)









## Resources: Climate











Ref: CLIMAPS, USGS, 2010

ANNUAL

MEAN RELATIVE HUMIDITY

# Spatial and Temporal Variation of Hydrologic Processes



Ref:http://www.usgcrp.gov/usgcrp/Library/watercycle/wcsgreport2001/wcsg2001chapter3.htm



## **Feedstock Potential Evaluation: Water Resources**



## Resources: World Water Stress



Ref: .Comprehensive Assessment of Water Management in Agriculture, International Water Management Institute, 2006.

# Resources: Movement of Virtual Water



Ref: .Comprehensive Assessment of Water Management in Agriculture, International Water Management Institute, 2006.

# **EROEI and EROWI for Different Fuels**

|                       | Water usage<br>(L/MJ) | EROWI (MJ/L)  | EROEI<br>(MJ/MJ) | Net EROWI      |  |  |
|-----------------------|-----------------------|---------------|------------------|----------------|--|--|
| Nuclear Electric      | 1.162(0.145)          | 0.861(1.517)  | 10               | 0.775 (1.137)  |  |  |
| Coal Electric         | 0.560(0.488)          | 1.786 (2.049) | -                | -              |  |  |
| Conv. Diesel          | 0.0035                | 285.3         | 5.01             | 228.4          |  |  |
| Biodiesel             |                       |               |                  |                |  |  |
| Rapeseed              | 100-175               | 0.010-0.0057  | 2.33             | 0.0057-0.0033  |  |  |
| Algae (Ponds)         | 20.142*               | 0.004965      | 3.33             | 0.03475        |  |  |
| Ethanol               |                       |               |                  |                |  |  |
| Sugarcane             | 38-156                | 0.026-0.0065  | 8.3              | 0.023-0.0057   |  |  |
| Corn                  | 73-346                | 0.014-0.0029  | 1.38             | 0.0039-0.00081 |  |  |
| Lignocellulosic Crops |                       |               |                  |                |  |  |
| Ethanol               | 11-171                | 0.091-0.0058  | 4.55             | 0.0071-0.0045  |  |  |
| Hydrogen              | 15-129                | 0.067-0.0078  | 4.67             | 0.053-0.0062   |  |  |
| Electricity           | 13-195                | 0.077-0.0051  | 5.0              | 0.062-0.0041   |  |  |

### **Feedstock Potential Evaluation: Solar Insolation**





One-axis tracking parabolic trough with a horizontal east-west axis

This map shows the general trends in the amount of solar radiation received in the United States and its territories. It is a spatial interpolation of solar radiation values derived from the 1961-1990 National Solar Radiation Data Base (NSRDB). The dots on the map represent the 239 sites of the NSRDB.

Maps of average values are produced by averaging all 30 years of data for each site. Maps of maximum and minimum values are composites of specific months and years for which each site achieved its maximum or minimum amounts of solar radiation.

Though useful for identifying general trends, this map should be used with caution for site-specific resource evaluations because variations in solar radiation not reflected in the maps can exist, introducing uncertainty into resource estimates.

Maps are not drawn to scale.



National Renewable Energy Laboratory Resource Assessment Program





## **Economic factors**

- Can the feedstock be produced in large quantities cheaply?
- What is the opportunity cost of producing the feedstock?
- What is the cost of delivering a unit mass of feedstock to the plant?

# **Feedstock Logistics**

Harvesting, collection, preprocessing (optional) and transportation to factory gate are important steps in feedstock logistics.



## **Feedstock Evaluation Factors**

- Composition
- Climate
- Water requirement
- Fertilizer use
- Current production levels and future trends
- Supply chain factors
- Conversion Technologies
- Coproducts and their use

# Case Study: Ethanol Potential in Oregon

- Estimate the ethanol production potential for a potential ethanol plant site. Assume the following.
  - The ethanol plant location is in Eastern Oregon.
  - The operational radius to obtain feedstock is 40 km.

Case 1: The ethanol plant has feedstock flexibility and can use agricultural residues and herbaceous biomass.

Case 2: The ethanol plant is designed to use wheat straw as the sole feedstock.



# **Case Study: Ethanol Potential in Oregon**

## Solution steps:

- 1. Estimate the available feedstock.
- 2. Estimate the composition of the feedstock
- 3. Estimate the ethanol production per ton of feedstock using the chemical composition.
- 4. Estimate the ethanol potential using the ethanol production per ton of feedstock and total available feedstock.

## **Additional Resources**

- NREL Biofuels Atlas : <a href="http://maps.nrel.gov/biomass">http://maps.nrel.gov/biomass</a>
- DOE Biomass composition database:
  <a href="http://www.afdc.energy.gov/biomass/progs/search1.cgi">http://www.afdc.energy.gov/biomass/progs/search1.cgi</a>
- US DOE Bioenergy KDF: <a href="https://www.bioenergykdf.net/">https://www.bioenergykdf.net/</a>
- DOE Alternative Fuels Data Center: http://www.afdc.energy.gov/fuels/ethanol\_feedstocks.html
- AQUASTAT database: <a href="http://www.fao.org/nr/water/aquastat/data/query/results.html">http://www.fao.org/nr/water/aquastat/data/query/results.html</a>
- NREL Biomass Research : <a href="http://www.nrel.gov/biomass/">http://www.nrel.gov/biomass/</a>
- NREL GIS Tools: <a href="http://www.nrel.gov/gis/tools.html">http://www.nrel.gov/gis/tools.html</a>
- Bioenergy Feedstock Information Network: <a href="http://bioenergy.ornl.gov/main.aspx">http://bioenergy.ornl.gov/main.aspx</a>
- US DOE, EERE Bioenergy Technologies Office: http://www.energy.gov/eere/bioenergy/bioenergy-technologies-office
- Cellulosic Ethanol Plants information around the world (maintained by EIA):
  - http://biofuels.abc-energy.at/demoplants/



# **Biofuel Feedstocks and Production**

Thank you