Comprehensive Notes on Resistors

Johar M. Ashfaque

April 9, 2025

Contents

1	Introduction to Resistors	2			
	1.1 Definition	2			
	1.2 Symbol and Units	2			
2	Types of Resistors	2			
	2.1 Fixed Resistors	2			
	2.2 Variable Resistors	2			
	2.3 Special Resistors	2			
3	Color Code and Marking	3			
	3.1 Color Bands	3			
4	Resistor Networks and Combinations	4			
	4.1 Series Connection	4			
	4.2 Parallel Connection	4			
	4.3 Series-Parallel Combination	4			
5	Applications of Resistors	5			
6	Power Rating and Thermal Considerations				
7	Advanced Topics	5			
	7.1 Surface Mount Resistors (SMD)	5			
	7.2 Resistor Noise	5			
	7.3 Temperature Coefficient	5			
	7.4 Resistors in AC Circuits	6			
8	Conclusion				

1 Introduction to Resistors

Resistors are passive electrical components that resist the flow of electric current. They are one of the most fundamental components in electronics.

1.1 Definition

A resistor is a two-terminal device that implements electrical resistance as a circuit element. It reduces current flow, adjusts signal levels, and divides voltages.

1.2 Symbol and Units

• Symbol: —\\\\

• Unit: Ohm (Ω)

• Ohm's Law: V = IR

2 Types of Resistors

2.1 Fixed Resistors

These have a specific resistance value.

- Carbon Composition
- Metal Film
- Wire Wound
- Thick/Thin Film

2.2 Variable Resistors

Their resistance can be adjusted.

- Potentiometers
- Rheostats
- Trimmers

2.3 Special Resistors

- Thermistors (temperature dependent)
- LDRs (light dependent)
- Varistors (voltage dependent)

3 Color Code and Marking

3.1 Color Bands

Standard resistors have color bands that indicate their resistance value and tolerance.

Color	Digit	Multiplier	Tolerance	Color Sample
Black	0	10^{0}	-	
Brown	1	10^{1}	±1%	
Red	2	10^{2}	$\pm 2\%$	
Orange	3	10^{3}	_	
Yellow	4	10^{4}	_	
Green	5	10^{5}	$\pm 0.5\%$	
Blue	6	10^{6}	$\pm 0.25\%$	
Violet	7	10^{7}	$\pm 0.1\%$	
Gray	8	10^{8}	$\pm 0.05\%$	
White	9	10^{9}	_	
	_	10^{-1}	±5%	
	-	10^{-2}	±10%	
None	_	_	±20%	

Table 1: Resistor Color Code Chart with Color Samples in Boxes

4 Resistor Networks and Combinations

4.1 Series Connection

In a series circuit, resistors are connected end to end, and the total resistance is the sum of individual resistances:

$$R_{eq} = R_1 + R_2 + \dots + R_n$$

Current is the same across all resistors, and the voltage divides.

Figure 1: Series Resistor Network

4.2 Parallel Connection

In a parallel circuit, the total resistance is given by:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

Voltage is the same across all resistors, and current divides.

Figure 2: Parallel Resistor Network

4.3 Series-Parallel Combination

This circuit combines series and parallel resistors. Simplify using series and parallel formulas step-by-step.

Figure 3: Series-Parallel Resistor Network

5 Applications of Resistors

Resistors are used in various applications:

- Voltage Division
- Current Limiting
- Pull-up/Pull-down in digital circuits
- Biasing of transistors
- Heating (e.g., electric heaters)

6 Power Rating and Thermal Considerations

- Power: $P = VI = I^2R = \frac{V^2}{R}$
- Resistors have power ratings (e.g., $\frac{1}{4}W$, $\frac{1}{2}W$, 1W, etc.)
- Overloading leads to overheating and failure.

7 Advanced Topics

7.1 Surface Mount Resistors (SMD)

These resistors are used in modern compact electronics and are marked with numeric codes.

7.2 Resistor Noise

Johnson-Nyquist noise (thermal noise) is an intrinsic property:

$$V_n = \sqrt{4kTR\Delta f}$$

where k is the Boltzmann constant, T is temperature in Kelvin, R is resistance, and Δf is bandwidth.

7.3 Temperature Coefficient

Defines how resistance changes with temperature:

$$R_T = R_0(1 + \alpha \Delta T)$$

where α is the temperature coefficient.

7.4 Resistors in AC Circuits

- Impedance of resistor is the same as resistance.
- Power in AC: $P = VI \cos \phi = I^2 R$

8 Conclusion

Resistors are fundamental to the design and operation of electronic circuits. Understanding their types, behavior, and applications is crucial for anyone involved in electrical or electronic engineering.