Aula 15 — Coloração de Vértices Teoria dos Grafos — QXD0152

Prof. Atílio Gomes Luiz gomes.atilio@ufc.br

Universidade Federal do Ceará

 1° semestre/2021

Origem da coloração de grafos

• Francis Guthrie (1852): Qualquer mapa político pode ser colorido com no máximo quatro cores?

Francis Guthrie

Francis Guthrie

Origem da coloração de grafos

- 1852 Francis Guthrie propõe o problema das 4 cores.
- 1879 Kempe apresenta uma suposta "solução".
- 1880 Tait, na tentativa de resolver o problema, inicia o estudo da coloração de arestas.
- 1890 Heawood apresenta uma falha na demonstração de Kempe e prova o Teorema das 5 cores.

Francis Guthrie P. J. Heawood

A. B. Kempe

P. G. Tait

Contraexemplo de Heawood

Origem da coloração de grafos

- 1977 Appel e Haken resolvem o problema: Todo mapa no plano pode ser colorido com no máximo 4 cores.
- A demonstração gerou um debate na matemática por envolver uso de computadores.
- Os autores definiram 1936 configurações que deveriam ser verificadas por computador, usando aproximadamente 1200 horas de computação.

K. Appel e W. Haken

Mapas e Grafos

- \bullet Um mapa no plano determina o desenho de um grafo G no plano.
- O grafo dual de G é um grafo planar.

Mapas e Grafos

- \bullet Um mapa no plano determina o desenho de um grafo G no plano.
- O grafo dual de G é um grafo planar.

Aplicações de Coloração de Vértices

Agendamento de provas na universidade

- Queremos agendar os exames de uma universidade de modo que duas disciplinas com estudantes em comum não tenham seus exames agendados para o mesmo horário?
- Qual o número mínimo de horários necessários para agendar os exames?

	1	2	3	4	5	6	7
1	_	×	_	X	_	×	_
2		_	×	X	_	×	_
3			_	_	×	_	×
4				_	×	_	×
5					_	×	_
6						_	X
7							_

Alocação de registradores

- Sete variáveis ocorrem em um laço num programa de computador.
 Quantos diferentes registradores são necessários para armazenar essas variáveis durante a execução?
- O número cromático representa o número mínimo de registradores necessários para evitar o problema de overswapping.

r: 1 a 6 u: passo 2 v: de 2 a 4 w: 1, 3 e 5 x: 1 e 6 y: 3 a 6

z: 4 e 5

Alocação de registradores

- Sete variáveis ocorrem em um laço num programa de computador.
 Quantos diferentes registradores são necessários para armazenar essas variáveis durante a execução?
- O número cromático representa o número mínimo de registradores necessários para evitar o problema de overswapping.

Sudoku

	6		1	4	Г	5			9	6	3	1	7	4	2	5	8
		8	3	5	6				1	7	8	3	2	5	6	4	9
							1		2	5	4	6	8	9	7	3	1
8			4	7			6		8	2	1	4	3	7	5	9	6
		6			3				4	9	6	8	5	2	3	1	7
7			9	1			4	-	7	3	5	9	6	1	8	2	4
5							2		5	8	9	7	1	3	4	6	2
		7	2	6	9				3	1	7	2	4	6	9	8	5
	4		5	8		7			6	4	2	5	9	8	1	7	3

• O sudoku é uma variação da coloração de vértices.

Sudoku

	_		1	4							2	-1	7	4	_		
	6		1	4		5			9	6	3	1	1	4	2	5	8
		8	3	5	6				1	7	8	3	2	5	6	4	9
							1		2	5	4	6	8	9	7	3	1
8			4	7			6		8	2	1	4	3	7	5	9	6
		6			3			_	4	9	6	8	5	2	3	1	7
7			9	1			4		7	3	5	9	6	1	8	2	4
5							2		5	8	9	7	1	3	4	6	2
		7	2	6	9				3	1	7	2	4	6	9	8	5
	4		5	8		7			6	4	2	5	9	8	1	7	3

- O sudoku é uma variação da coloração de vértices.
- Cada célula representa um vértice e existe uma aresta entre dois vértices se eles estão em uma mesma linha, mesma coluna ou no mesmo bloco.

Coloração de vértices - Definição

- Seja S um conjunto de cores. Uma k-coloração de vértices de um grafo G
 é uma função f: V(G) → S, tal que |S| = k.
- Dizemos que uma coloração de vértices é própria se quaisquer dois vértices adjacentes recebem cores distintas.

Coloração de vértices - Definição

- Seja S um conjunto de cores. Uma k-coloração de vértices de um grafo G é uma função $f: V(G) \to S$, tal que |S| = k.
- Dizemos que uma coloração de vértices é própria se quaisquer dois vértices adjacentes recebem cores distintas.
- Um grafo é k-colorível se ele tem uma k-coloração própria de vértices.

Coloração de vértices - Definição

- Seja S um conjunto de cores. Uma k-coloração de vértices de um grafo G
 é uma função f: V(G) → S, tal que |S| = k.
- Dizemos que uma coloração de vértices é própria se quaisquer dois vértices adjacentes recebem cores distintas.
- Um grafo é k-colorível se ele tem uma k-coloração própria de vértices.

Observação:

• Em coloração de vértices, não consideramos grafos com laços nem arestas múltiplas. Apenas grafos simples.

Teorema 15.3 [Heawood, 1890]: Se G é planar, então G possui uma coloração de vértices com 5 cores.

Teorema 15.3 [Heawood, 1890]: Se G é planar, então G possui uma coloração de vértices com 5 cores.

Demonstração:

• Provamos por indução em n, onde n = |V(G)|.

Teorema 15.3 [Heawood, 1890]: Se G é planar, então G possui uma coloração de vértices com 5 cores.

- Provamos por indução em n, onde n = |V(G)|.
- Caso Base: $n \le 5$. Todos os grafos neste caso são 5-coloríveis.

Teorema 15.3 [Heawood, 1890]: Se G é planar, então G possui uma coloração de vértices com 5 cores.

- Provamos por indução em n, onde n = |V(G)|.
- Caso Base: $n \le 5$. Todos os grafos neste caso são 5-coloríveis.
- Hipótese de indução: Suponha que todos os grafos planares com até n – 1 vértices são 5-coloríveis.

Teorema 15.3 [Heawood, 1890]: Se G é planar, então G possui uma coloração de vértices com 5 cores.

- Provamos por indução em n, onde n = |V(G)|.
- Caso Base: $n \le 5$. Todos os grafos neste caso são 5-coloríveis.
- Hipótese de indução: Suponha que todos os grafos planares com até n – 1 vértices são 5-coloríveis.
- Passo da indução: Seja G um grafo planar com n > 5 vértices.

Teorema 15.3 [Heawood, 1890]: Se G é planar, então G possui uma coloração de vértices com 5 cores.

- Provamos por indução em n, onde n = |V(G)|.
- Caso Base: $n \le 5$. Todos os grafos neste caso são 5-coloríveis.
- Hipótese de indução: Suponha que todos os grafos planares com até n – 1 vértices são 5-coloríveis.
- Passo da indução: Seja G um grafo planar com n > 5 vértices.
- Da aula de planaridade, sabemos que G tem um vértice v de grau no máximo 5. Pela hipótese de indução, G-v é 5-colorível. Seja $f\colon V(G-v)\to\{0,\ldots,5\}$ uma 5-coloração de G-v.

 Se todos os vértices em N_G(v) forem coloridos com no máximo 4 cores, então a coloração parcial de G – v pode ser estendida a fim de se obter uma 5-coloração de G, e o resultado segue.

- Se todos os vértices em N_G(v) forem coloridos com no máximo 4 cores, então a coloração parcial de G - v pode ser estendida a fim de se obter uma 5-coloração de G, e o resultado segue.
- Caso contrário, $d_G(v) = 5$ e a coloração f atribui cores distintas aos cinco vizinhos de v.

- Se todos os vértices em N_G(v) forem coloridos com no máximo 4 cores, então a coloração parcial de G - v pode ser estendida a fim de se obter uma 5-coloração de G, e o resultado segue.
- Caso contrário, $d_G(v) = 5$ e a coloração f atribui cores distintas aos cinco vizinhos de v.

• Considere G como um grafo plano e sejam v_1, v_2, v_3, v_4, v_5 os vizinhos de v em sentido horário ao redor de v. Nomeie as cores de modo que $f(v_i) = i$.

- Vamos usar a notação $G_{i,j}$ para denotar o subgrafo de G-v induzido pelos vértices de cores i e j.
 - o Note que, se trocarmos duas cores, uma pela outra, em uma componente qualquer de $G_{i,j}$, nós produzimos outra 5-coloração de G-v.

Temos dois casos a considerar.

- Vamos usar a notação $G_{i,j}$ para denotar o subgrafo de G-v induzido pelos vértices de cores i e j.
 - o Note que, se trocarmos duas cores, uma pela outra, em uma componente qualquer de $G_{i,j}$, nós produzimos outra 5-coloração de G-v.

Temos dois casos a considerar.

 Caso 1: Suponha que existam i e j, com 1 ≤ i < j ≤ 5, tal que a componente de G_{i,j} contendo v_i não contém v_j.

- Vamos usar a notação $G_{i,j}$ para denotar o subgrafo de G-v induzido pelos vértices de cores i e j.
 - o Note que, se trocarmos duas cores, uma pela outra, em uma componente qualquer de $G_{i,j}$, nós produzimos outra 5-coloração de G-v.

Temos dois casos a considerar.

- Caso 1: Suponha que existam i e j, com 1 ≤ i < j ≤ 5, tal que a componente de G_{i,j} contendo v_i não contém v_j.
 - Neste caso, podemos trocar as cores nesta componente a fim de remover a cor i do vértice v_i e, portanto, da vizinhança de v. Assim, podemos agora atribuir a cor i a v, produzindo uma 5-coloração própria de G.

• Caso 2: Suponha que, para cada escolha de i e j, a componente de $G_{i,j}$ que contém v_i também contém v_j .

- Caso 2: Suponha que, para cada escolha de i e j, a componente de G_{i,j}
 que contém v_i também contém v_j.
- Seja $P_{i,j}$ o caminho em $G_{i,j}$ de v_i até v_j , ilustrado abaixo para (i,j)=(1,3).

- Caso 2: Suponha que, para cada escolha de i e j, a componente de G_{i,j}
 que contém v_i também contém v_i.
- Seja $P_{i,j}$ o caminho em $G_{i,j}$ de v_i até v_j , ilustrado abaixo para (i,j)=(1,3).

- Considere o ciclo C formado por $P_{1,3} + v$.
 - \circ Note que este ciclo separa o vértice v_2 do vértice v_4 .

• Considere o caminho $P_{2,4}$. Pelo Teorema da Curva de Jordan, o caminho $P_{2,4}$ obrigatoriamente cruza o ciclo C.

• Considere o caminho $P_{2,4}$. Pelo Teorema da Curva de Jordan, o caminho $P_{2,4}$ obrigatoriamente cruza o ciclo C.

• Como G é planar, caminhos só podem cruzar em vértices. Os vértices de $P_{1,3}$ todos têm cores 1 ou 3, e os vértices de $P_{2,4}$ todos têm cores 2 ou 4, assim, eles não possuem vértices em comum. Contradição.

• Considere o caminho $P_{2,4}$. Pelo Teorema da Curva de Jordan, o caminho $P_{2,4}$ obrigatoriamente cruza o ciclo C.

- Como G é planar, caminhos só podem cruzar em vértices. Os vértices de $P_{1,3}$ todos têm cores 1 ou 3, e os vértices de $P_{2,4}$ todos têm cores 2 ou 4, assim, eles não possuem vértices em comum. Contradição.
- Logo, este Caso 2 não acontece.
- De tudo isto, concluímos que G é 5-colorível.

Número cromático de um grafo

Número cromático de um grafo

 Número cromático de um grafo G, denotado por χ(G), é o menor inteiro positivo k tal que G possui uma k-coloração própria de vértices.
 Se χ(G) = k, então G é dito k-cromático.

 Número cromático de um grafo G, denotado por χ(G), é o menor inteiro positivo k tal que G possui uma k-coloração própria de vértices.
 Se χ(G) = k, então G é dito k-cromático.

 Número cromático de um grafo G, denotado por χ(G), é o menor inteiro positivo k tal que G possui uma k-coloração própria de vértices.
 Se χ(G) = k, então G é dito k-cromático.

• **Proposição 15.5:** $\chi(G) = 1$ se e somente se é G vazio.

• **Número cromático** de um grafo G, denotado por $\chi(G)$, é o menor inteiro positivo k tal que G possui uma k-coloração própria de vértices. Se $\chi(G) = k$, então G é dito k-cromático.

- **Proposição 15.5:** $\chi(G) = 1$ se e somente se é G vazio.
- **Proposição 15.6:** $\chi(G) = 2$ se e somente se G é bipartido e não vazio.

 Número cromático de um grafo G, denotado por χ(G), é o menor inteiro positivo k tal que G possui uma k-coloração própria de vértices.
 Se χ(G) = k, então G é dito k-cromático.

- **Proposição 15.5:** $\chi(G) = 1$ se e somente se é G vazio.
- **Proposição 15.6:** $\chi(G) = 2$ se e somente se G é bipartido e não vazio.
- **Proposição 15.7:** $1 \le \chi(G) \le n$.

 Número cromático de um grafo G, denotado por χ(G), é o menor inteiro positivo k tal que G possui uma k-coloração própria de vértices.
 Se χ(G) = k, então G é dito k-cromático.

- **Proposição 15.5:** $\chi(G) = 1$ se e somente se é G vazio.
- **Proposição 15.6:** $\chi(G) = 2$ se e somente se G é bipartido e não vazio.
- **Proposição 15.7:** $1 \le \chi(G) \le n$.
- Proposição 15.8: Se $H \subseteq G$, então $\chi(H) \le \chi(G)$.

• $\chi(H) \leq 3$.

- $\chi(H) \leq 3$.
- É possível colorir *H* com menos que três cores?

- $\chi(H) \leq 3$.
- É possível colorir *H* com menos que três cores?
- Como H contém um triângulo, temos que $\chi(H) \geq 3$. Logo, $\chi(H) = 3$.
- Existe algoritmo polinomial para determinar se um grafo tem ciclo ímpar?

- $\chi(H) \leq 3$.
- É possível colorir *H* com menos que três cores?
- Como H contém um triângulo, temos que $\chi(H) \geq 3$. Logo, $\chi(H) = 3$.
- Existe algoritmo polinomial para determinar se um grafo tem ciclo ímpar?
 - Resposta: Sim.

- $\chi(H) \leq 3$.
- É possível colorir H com menos que três cores?
- Como H contém um triângulo, temos que $\chi(H) \geq 3$. Logo, $\chi(H) = 3$.
- Existe algoritmo polinomial para determinar se um grafo tem ciclo ímpar?
 - Resposta: Sim.
- Má notícia: Até hoje, não se conhece nenhum algoritmo polinomial para checar se um grafo arbitrário G possui $\chi(G) = k$, para $k \ge 3$.

Clique Máxima

- Uma clique em um grafo *G* é um subconjunto de vértices dois-a-dois adjacentes.
 - $\circ \omega(G)$: tamanho da maior clique de G.

Clique Máxima

- Uma clique em um grafo *G* é um subconjunto de vértices dois-a-dois adjacentes.
 - $\circ \omega(G)$: tamanho da maior clique de G.

Proposição 15.9: Para todo grafo G, $\chi(G) \geq \omega(G)$.

Grafos de Mycielski

Má notícia: Existe um grafo G sem triângulos e com número cromático $\chi(G) = k$, para todo $k \ge 1$. [Mycielski, 1955]

A partir de um grafo simples G, a construção de Mycielski produz um grafo simples G' contendo G.

- **Definição:** Começando com G tendo $V(G) = \{v_1, v_2, \ldots, v_n\}$, adicione vértices $U = \{u_1, \ldots, u_n\}$ e um vértice a mais w. Adicione arestas a fim de fazer u_i adjacente a todos os vértices de $N_G(v_i)$, e finalmente seja N(w) = U.
- Exemplo: Começando com o K₂, a primeira iteração da construção de Mycielski produz o C₅.

Teorema: A partir de um grafo G k-cromático e livre de triângulos, a construção de Mycielski produz um grafo (k+1)-cromático livre de triângulos G'.

Demonstração incompleta:

Teorema: A partir de um grafo G k-cromático e livre de triângulos, a construção de Mycielski produz um grafo (k+1)-cromático livre de triângulos G'.

Demonstração incompleta:

• Seja $V(G) = \{v_1, \ldots, v_n\}$ e seja G' o grafo produzido a partir de G pela construção de Mycielski. Seja u_1, \ldots, u_n as cópias de v_1, \ldots, v_n com w sendo o vértice adicional. Seja $U = \{u_1, \ldots, u_n\}$.

Teorema: A partir de um grafo G k-cromático e livre de triângulos, a construção de Mycielski produz um grafo (k+1)-cromático livre de triângulos G'.

Demonstração incompleta:

- Seja $V(G) = \{v_1, \ldots, v_n\}$ e seja G' o grafo produzido a partir de G pela construção de Mycielski. Seja u_1, \ldots, u_n as cópias de v_1, \ldots, v_n com w sendo o vértice adicional. Seja $U = \{u_1, \ldots, u_n\}$.
- Primeiro, provamos que G' é livre de triângulos. Pela construção, U é um conjunto independente em G'. Logo, os outros vértices de qualquer triângulo contendo u_i pertencem a V(G) e são vizinhos de v_i . Porém, isso completaria um triâgulo em G, o que não existe. Logo, concluímos que G' é livre de triângulos.

Continuação da demonstração

• A seguir, provamos que $\chi(G') \leq \chi(G) + 1 = k + 1$. Para isso, mostramos uma k-coloração própria de G pode ser estendida para uma (k+1)-coloração própria de G'.

Continuação da demonstração

- A seguir, provamos que $\chi(G') \leq \chi(G) + 1 = k + 1$. Para isso, mostramos uma k-coloração própria de G pode ser estendida para uma (k+1)-coloração própria de G'.
- Uma k-coloração própria f de G estende para uma (k+1)-coloração própria de G' definindo $f(u_i) = f(v_i)$ e f(w) = k+1; portanto $\chi(G') \le k+1 = \chi(G)+1$, ou seja, $\chi(G') \le \chi(G)+1$.

Continuação da demonstração

- A seguir, provamos que $\chi(G') \leq \chi(G) + 1 = k + 1$. Para isso, mostramos uma k-coloração própria de G pode ser estendida para uma (k+1)-coloração própria de G'.
- Uma k-coloração própria f de G estende para uma (k+1)-coloração própria de G' definindo $f(u_i) = f(v_i)$ e f(w) = k+1; portanto $\chi(G') \le k+1 = \chi(G)+1$, ou seja, $\chi(G') \le \chi(G)+1$.
- A fim de terminar a demonstração, basta mostrar a igualdade $\chi(G') = \chi(G) + 1$.
 - o Para isso, uma forma é mostrar que $\chi(G) < \chi(G')$. A fim de obter isso, basta considerar qualquer coloração própria de G' e obter a partir dela uma coloração própria de G com menos cores. (Exercício para casa).

Coloração de vértices e conjuntos independentes

- Obs. 1: Toda classe de cor em uma coloração própria de vértices é um conjunto independente.
 - o Uma k-coloração particiona V(G) em k classes de cor. O número cromático é o menor número de conjuntos independentes nos quais V(G) pode ser particionado.

Coloração de vértices e conjuntos independentes

- **Obs. 1**: Toda classe de cor em uma coloração própria de vértices é um conjunto independente.
 - o Uma k-coloração particiona V(G) em k classes de cor. O número cromático é o menor número de conjuntos independentes nos quais V(G) pode ser particionado.
- **Obs. 2:** O número de independência e o tamanho da clique máxima são parâmetros complementares:

Proposição 15.4: $\alpha(G) = k$ se e somente se $\omega(\overline{G}) = k$.

Teorema 15.8: Se G é um grafo com n vértices, então $\chi(G) \geq \frac{n}{\alpha(G)}$.

Demonstração:

Teorema 15.8: Se G é um grafo com n vértices, então $\chi(G) \geq \frac{n}{\alpha(G)}$.

Demonstração:

• Suponha $\chi(G) = k$.

Teorema 15.8: Se G é um grafo com n vértices, então $\chi(G) \geq \frac{n}{\alpha(G)}$.

Demonstração:

- Suponha $\chi(G) = k$.
- Logo, V(G) pode ser particionado em classes de cores V_1, V_2, \ldots, V_k .

Teorema 15.8: Se G é um grafo com n vértices, então $\chi(G) \geq \frac{n}{\alpha(G)}$.

Demonstração:

- Suponha $\chi(G) = k$.
- Logo, V(G) pode ser particionado em classes de cores V_1, V_2, \ldots, V_k .
- Sabemos que:

$$n = |V(G)| = |V_1| + |V_2| + \ldots + |V_k| \le$$

$$\le \alpha(G) + \alpha(G) + \ldots + \alpha(G) = k \cdot \alpha(G).$$

Teorema 15.8: Se G é um grafo com n vértices, então $\chi(G) \geq \frac{n}{\alpha(G)}$.

Demonstração:

- Suponha $\chi(G) = k$.
- Logo, V(G) pode ser particionado em classes de cores V_1, V_2, \ldots, V_k .
- Sabemos que:

$$n = |V(G)| = |V_1| + |V_2| + \ldots + |V_k| \le$$

$$\le \alpha(G) + \alpha(G) + \ldots + \alpha(G) = k \cdot \alpha(G).$$

Isso implica:

$$n \le k \cdot \alpha(G)$$
 \Longrightarrow $\frac{n}{\alpha(G)} \le k = \chi(G)$.

Algoritmo guloso para coloração de vértices

Greedy Coloring:

• Dados os vértices de um grafo G em certa ordem $\mathcal{O}=v_1,\ldots,v_n$, uma coloração gulosa com relação à ordem \mathcal{O} é obtida colorindo os vértices na ordem v_1,\ldots,v_n , atribuindo a v_i a menor cor ainda não usada nos seus vizinhos que aparecem antes dele na ordem.

Algoritmo guloso para coloração de vértices

Greedy Coloring:

• Dados os vértices de um grafo G em certa ordem $\mathcal{O}=v_1,\ldots,v_n$, uma coloração gulosa com relação à ordem \mathcal{O} é obtida colorindo os vértices na ordem v_1,\ldots,v_n , atribuindo a v_i a menor cor ainda não usada nos seus vizinhos que aparecem antes dele na ordem.

Teorema 15.9: Para todo grafo G, $\chi(G) \leq 1 + \Delta(G)$.

Demonstração:

Teorema 15.9: Para todo grafo G, $\chi(G) \leq 1 + \Delta(G)$.

Demonstração:

• Suponha que os vértices de G sejam listados na ordem v_1, v_2, \ldots, v_n e que o algoritmo guloso é aplicado.

Teorema 15.9: Para todo grafo G, $\chi(G) \leq 1 + \Delta(G)$.

Demonstração:

• Suponha que os vértices de G sejam listados na ordem v_1, v_2, \ldots, v_n e que o algoritmo guloso é aplicado.

Teorema 15.9: Para todo grafo G, $\chi(G) \leq 1 + \Delta(G)$.

Demonstração:

• Suponha que os vértices de G sejam listados na ordem v_1, v_2, \ldots, v_n e que o algoritmo guloso é aplicado.

• Na i-ésima iteração do laço, ao colorir o vértice v_i , no máximo $\Delta(G)$ cores terão sido utilizadas para colorir seus vizinhos. Se este for o caso, então escolhemos uma cor adicional para colorir v_i . Deste modo, teremos utilizados $\Delta(G) + 1$ cores para colorir G.

Teorema de Brooks

Teorema 15.10: Para todo grafo conexo G que não é um ciclo ímpar nem um grafo completo, $\chi(G) \leq \Delta(G)$.

R. L. Brooks

Teorema de Brooks

Teorema 15.10: Para todo grafo conexo G que não é um ciclo ímpar nem um grafo completo, $\chi(G) \leq \Delta(G)$.

R. L. Brooks

Conjetura de Reed

• $\omega(G)$ e $1 + \Delta(G)$ são, respectivamente, o limitante inferior e o limitante superior mais simples e conhecidos para $\chi(G)$.

Conjetura de Reed

- $\omega(G)$ e $1 + \Delta(G)$ são, respectivamente, o limitante inferior e o limitante superior mais simples e conhecidos para $\chi(G)$.
- Em 1998, Bruce Reed conjeturou que $\chi(G)$ está tão perto de $\omega(G)$ quanto de $1 + \Delta(G)$.

Conjetura de Reed

- $\omega(G)$ e $1 + \Delta(G)$ são, respectivamente, o limitante inferior e o limitante superior mais simples e conhecidos para $\chi(G)$.
- Em 1998, Bruce Reed conjeturou que $\chi(G)$ está tão perto de $\omega(G)$ quanto de $1 + \Delta(G)$.

Conjetura: Para todo grafo *G*,

$$\chi(G) \leq \left\lceil \frac{\omega(G) + 1 + \Delta(G)}{2} \right\rceil.$$

Esta conjectura continua aberta para grafos em geral.

Bruce Reed

Teorema: Para todo grafo G, $\chi(G) \leq \frac{\omega(G) + n + 1 - \alpha(G)}{2}$.

Teorema: Para todo grafo
$$G$$
, $\chi(G) \leq \frac{\omega(G) + n + 1 - \alpha(G)}{2}$.

- Prova por indução em n.
- Caso base: n=1. Neste caso, $G=K_1$ e $\chi(G)=\omega(G)=\alpha(G)=1$ e, assim, $\chi(G)=\frac{\omega(G)+n+1-\alpha(G)}{2}$.

Teorema: Para todo grafo
$$G$$
, $\chi(G) \leq \frac{\omega(G) + n + 1 - \alpha(G)}{2}$.

- Prova por indução em n.
- Caso base: n=1. Neste caso, $G=K_1$ e $\chi(G)=\omega(G)=\alpha(G)=1$ e, assim, $\chi(G)=\frac{\omega(G)+n+1-\alpha(G)}{2}$.
- H.I.: Suponha que a desigualdade é verdadeira para todos os grafos com menos do que n vértices, n ≥ 2.

Teorema: Para todo grafo
$$G$$
, $\chi(G) \leq \frac{\omega(G) + n + 1 - \alpha(G)}{2}$.

- Prova por indução em n.
- Caso base: n=1. Neste caso, $G=K_1$ e $\chi(G)=\omega(G)=\alpha(G)=1$ e, assim, $\chi(G)=\frac{\omega(G)+n+1-\alpha(G)}{2}$.
- H.I.: Suponha que a desigualdade é verdadeira para todos os grafos com menos do que n vértices, n ≥ 2.
- Passo indutivo: Seja G um grafo de ordem n. Se $G \cong \overline{K}_n$, então $\chi(G) = \omega(G) = 1$ e $\alpha(G) = n$. Portanto, $\chi(G) = \frac{\omega(G) + n + 1 \alpha(G)}{2}$. Então, suponha que G não é um grafo vazio.

Continuação da demonstração

• Seja G não vazio com $n \ge 2$ e seja S um conjunto independente máximo de G. Defina H = G - S. Consideramos dois casos.

Continuação da demonstração

- Seja G não vazio com $n \ge 2$ e seja S um conjunto independente máximo de G. Defina H = G S. Consideramos dois casos.
- Caso 1: H é um grafo completo. Assim, V(G) pode ser particionado em S e V(G-S), em que $S=\overline{K}_{\alpha(G)}$ e $V(G-S)=K_{n-\alpha(G)}$. Portanto.

$$\chi(G) = \omega(G) = n - \alpha(G) \text{ ou } \chi(G) = \omega(G) = n - \alpha(G) + 1.$$
 (1)

Em ambos os casos, temos que $\chi(G) = \omega(G)$, portanto, temos

$$\chi(G) = \omega(G) = \frac{\omega(G) + \omega(G)}{2} \le \frac{\omega(G) + n + 1 - \alpha(G)}{2}.$$

A última desigualdade vale devido a (1). Portanto, o resultado segue.

Continuação da demonstração

 Caso 2: H não é completo. Neste caso, α(H) ≥ 2 já que há pelo menos dois vértices não adjacentes em H.

Como $\chi(G) \leq \chi(H) + 1$, segue da hipótese de indução que:

$$\begin{split} \chi(G) &\leq \chi(H) + 1 \\ &\leq \frac{\omega(H) + n(H) + 1 - \alpha(H)}{2} + 1 \\ &\leq \frac{\omega(H) + (n - \alpha(G)) + 1 - \alpha(H)}{2} + 1 \\ &\leq \frac{\omega(G) + (n - \alpha(G)) + 1 - \alpha(H)}{2} + 1 \\ &\leq \frac{\omega(G) + (n - \alpha(G) + 1)}{2}. \end{split}$$

E o resultado segue.

Teorema: Se G é um grafo de ordem n, então $\chi(G) + \chi(\overline{G}) \leq n+1$.

Teorema: Se G é um grafo de ordem n, então $\chi(G) + \chi(\overline{G}) \le n + 1$.

- Aplicando o teorema anterior a G e a seu complemento \overline{G} , obtemos:
 - $\circ \chi(G) \leq \frac{\omega(G) + n + 1 \alpha(G)}{2} e$
 - $\circ \ \chi(\overline{G}) \leq \frac{\omega(\overline{G}) + n + 1 \alpha(\overline{G})}{2}.$
- Somando essas duas inequações, obtemos que $\chi(G) + \chi(\overline{G}) \leq n + 1$. Isso se deve ao fato de que $\omega(\overline{G}) = \alpha(G)$ e $\alpha(\overline{G}) = \omega(G)$.

• Um grafo de interseção é um grafo cujos vértices representam conjuntos e uma aresta liga dois conjuntos se a interseção deles é não vazia.

- Um grafo de interseção é um grafo cujos vértices representam conjuntos e uma aresta liga dois conjuntos se a interseção deles é não vazia.
- Um grafo de intervalo é o grafo de interseção de um conjunto de intervalos na reta dos reais.

- Um grafo de interseção é um grafo cujos vértices representam conjuntos e uma aresta liga dois conjuntos se a interseção deles é não vazia.
- Um grafo de intervalo é o grafo de interseção de um conjunto de intervalos na reta dos reais.

• Aplicação: Temos 8 reuniões que devem acontecer durante certo momento do dia e gostaríamos de saber quantas salas serão necessárias para alocar os encontros sem haver choque de horários. Podemos nomear os encontros a, b, c, d, e, f, g, h e representar sua duração no tempo como na figura acima. Qual o número ótimo de salas necessárias?

- Obs.: Qualquer grafo pode ser um grafo de interseção, mas grafos de intervalo são mais restritivos. Por exemplo, o C₄ não é um grafo de intervalo.
- Note também que todo subgrafo de um grafo de intervalo é um grafo de intervalo.

Teorema: Se G é um grafo de intervalo, então $\chi(G) = \omega(G)$.

Teorema: Se G é um grafo de intervalo, então $\chi(G) = \omega(G)$.

- Ordene os vértices pelos extremos esquerdos dos intervalos correspondentes e aplique a coloração gulosa sobre esta ordenação.
- Suponha que um vértice x recebe a cor k, maior cor utilizada.

Teorema: Se G é um grafo de intervalo, então $\chi(G) = \omega(G)$.

- Ordene os vértices pelos extremos esquerdos dos intervalos correspondentes e aplique a coloração gulosa sobre esta ordenação.
- Suponha que um vértice x recebe a cor k, maior cor utilizada.
- Como x não pôde receber uma cor menor, então o extremo esquerdo a do seu intervalo pertence também aos intervalos que já estão coloridos com cores de 1 a k-1. Todos esses intervalos compartilham o mesmo ponto a. Deste modo, temos uma k-clique em G.

Teorema: Se G é um grafo de intervalo, então $\chi(G) = \omega(G)$.

- Ordene os vértices pelos extremos esquerdos dos intervalos correspondentes e aplique a coloração gulosa sobre esta ordenação.
- Suponha que um vértice x recebe a cor k, maior cor utilizada.
- Como x não pôde receber uma cor menor, então o extremo esquerdo a do seu intervalo pertence também aos intervalos que já estão coloridos com cores de 1 a k - 1. Todos esses intervalos compartilham o mesmo ponto a. Deste modo, temos uma k-clique em G.
- Portanto, $\omega(G) \ge k \ge \chi(G)$.

Teorema: Se G é um grafo de intervalo, então $\chi(G) = \omega(G)$.

- Ordene os vértices pelos extremos esquerdos dos intervalos correspondentes e aplique a coloração gulosa sobre esta ordenação.
- Suponha que um vértice x recebe a cor k, maior cor utilizada.
- Como x não pôde receber uma cor menor, então o extremo esquerdo a do seu intervalo pertence também aos intervalos que já estão coloridos com cores de 1 a k - 1. Todos esses intervalos compartilham o mesmo ponto a. Deste modo, temos uma k-clique em G.
- Portanto, $\omega(G) \ge k \ge \chi(G)$.
- Como $\chi(G) \geq \omega(G)$ sempre, então esta coloração é ótima.

- Um grafo G é perfeito se, para todo subgrafo induzido $H \subseteq G$, $\chi(H) = \omega(H)$.
 - ∘ Equivalentemente, $\chi(G[A]) = \omega(G[A])$ para todo $A \subseteq V(G)$.

- Um grafo G é perfeito se, para todo subgrafo induzido $H \subseteq G$, $\chi(H) = \omega(H)$.
 - ∘ Equivalentemente, $\chi(G[A]) = \omega(G[A])$ para todo $A \subseteq V(G)$.
- Uma classe de grafos $\mathbb G$ é dita hereditária se todo subgrafo induzido de um grafo em $\mathbb G$ está também em $\mathbb G$.

- Um grafo G é perfeito se, para todo subgrafo induzido $H \subseteq G$, $\chi(H) = \omega(H)$.
 - Equivalentemente, $\chi(G[A]) = \omega(G[A])$ para todo $A \subseteq V(G)$.
- Uma classe de grafos \mathbb{G} é dita hereditária se todo subgrafo induzido de um grafo em \mathbb{G} está também em \mathbb{G} .
 - Exemplo: Grafos de intervalo possuem $\chi(G) = \omega(G)$ e grafos de intervalo são hereditários. Portanto, grafos de intervalo são perfeitos.
 - o Exemplo: Grafos bipartidos não-vazios possuem $\chi(G)=\omega(G)=2$ e grafos bipartidos são hereditários. Assim, grafos bipartidos são perfeitos.

 Uma orientação transitiva de um grafo G é uma orientação D tal que quando uv e vw são arestas em D, G contém a aresta uw em D. Um grafo de comparabilidade é um grafo que possui orientação transitiva. Exemplo: Todo grafo bipartido é um grafo de comparabilidade.

 Uma orientação transitiva de um grafo G é uma orientação D tal que quando uv e vw são arestas em D, G contém a aresta uw em D. Um grafo de comparabilidade é um grafo que possui orientação transitiva. Exemplo: Todo grafo bipartido é um grafo de comparabilidade.

Um grafo de comparabilidade e uma orientação transitiva ${\it D}$ sua

 Uma orientação transitiva de um grafo G é uma orientação D tal que quando uv e vw são arestas em D, G contém a aresta uw em D. Um grafo de comparabilidade é um grafo que possui orientação transitiva. Exemplo: Todo grafo bipartido é um grafo de comparabilidade.

Um grafo de comparabilidade e uma orientação transitiva ${\it D}$ sua

Um grafo que não é de comparabilidade

Teorema [Berge 1960]: Grafos de comparabilidade são perfeitos.

Teorema [Berge 1960]: Grafos de comparabilidade são perfeitos.

- Todo subdigrafo induzido de um digrafo transitivo é transitivo. Então esses grafos são hereditários.
- Resta provar que $\chi(G) = \omega(G)$. Seja D uma orientação transitiva de um grafo de comparabilidade G. Certamente, D não tem ciclos.
- Pinte *G* atribuindo a cada vértice *v* o número de vértices no caminho mais longo de *D* terminando em *v* em uma coloração própria.
- Se $uv \in E(D)$, então qualquer caminho terminando em u poderia ser estendido a v, de modo que eles devem ter cores distintas. Pela transitividade, os vértices de um caminho em D formam uma clique em G. Assim, G pode ser colorido com $\omega(G)$ cores.

Teoremas conjeturados por Berge

Teorema [Lovász 1972]: G é perfeito se e somente se \overline{G} é perfeito.

O seguinte resultado foi conjeturado por Berge em 1960 e provado por Maria Chudnovsky, Neil Robertson, Paul Seymour e Robin Thomas em 2002.

Teorema [CRST 2002]: Um grafo G é perfeito se e somente se ambos G e \overline{G} não possuem subgrafo induzido isomorfo a um ciclo ímpar de comprimento pelo menos 5.

Paul

Robin

FIM