Egzamin maturalny maj 2009

MATEMATYKA POZIOM PODSTAWOWY

KLUCZ PUNKTOWANIA ODPOWIEDZI

Zadanie 1.

a)

Korzystanie z informacji	Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego.	0–2
--------------------------	--	-----

Zdający otrzymuje 2 punkty, jeśli bezbłędnie uzupełni tabelę.

Zdający otrzymuje 1 punkt, jeśli poprawnie zapisze tylko wartości funkcji dla argumentów (-3) oraz 3 albo wyznaczy tylko miejsce zerowe funkcji.

Poprawna odpowiedź:

х	-3	3	1,5
f(x)	-9	1	0

b)

Korzystanie z informacji	Rysowanie wykresu funkcji.	0-1
--------------------------	----------------------------	-----

Zdający otrzymuje 1 punkt, jeśli bezbłędnie narysuje wykres funkcji $\,f\,$.

Poprawna odpowiedź:

<u>c)</u>

	-,		
ļ	Korzystanie z informacji	Odczytywanie własności funkcji liniowej.	0-1

Zdający otrzymuje 1 punkt, jeśli rozwiąże nierówność $f(x) \ge -6$.

Poprawna odpowiedź: $x \ge -\frac{3}{2}$.

I W/1900m0sc1 1 rozumienie I	Wyznaczanie liczb całkowitych należących do danego przedziału liczbowego.	0–1
------------------------------	---	-----

Zdający otrzymuje 1 punkt, jeśli wypisze wszystkie całkowite argumenty funkcji f spełniające nierówność $f(x) \ge -6$.

<u>Poprawna odpowiedź</u>: −1, 0, 1, 2, 3, 4.

Zadanie 2.

Tworzenie informacji	Podawanie opisu matematycznego sytuacji przedstawionej w zadaniu w postaci układu równań.	0–2
----------------------	---	-----

Zdający otrzymuje 2 punkty, jeśli zapisze układ równań opisujący warunki zadania, np. $\begin{cases} m+n=140\\ m+15n=980 \end{cases}$

Zdający otrzymuje 1 punkt, jeśli zapisze jedno z równań, które opisuje warunki zadania, np. 7(m+n) = 980 albo m+15n=980 albo 6m=8n.

Korzystanie z informacji	Rozwiązywanie układu równań liniowych.	0-1
--------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli rozwiąże układ równań i poda liczby detali do wykonania przez każdego z rzemieślników.

Poprawna odpowiedź: m = 80 i n = 60.

Zadanie 3.

a)

K	orzystanie z informacji	Rozwiązywanie nierówności kwadratowej zapisanej na podstawie tekstu zadania.	0–2

Zdający otrzymuje 2 punkty, jeśli przekształci nierówność f(x)+5<3x do postaci nierówności kwadratowej, np. $-2x^2-3x+5<0$ i rozwiąże ją.

Poprawna odpowiedź: $x \in \left(-\infty, -\frac{5}{2}\right) \cup (1, \infty)$.

Zdający otrzymuje 1 punkt, jeśli przekształci nierówność f(x)+5<3x do postaci nierówności kwadratowej i na tym poprzestanie lub popełni błędy w rozwiązaniu tej nierówności.

b)

Korzystanie z informacji	Podawanie zbioru wartości funkcji.	0-1
--------------------------	------------------------------------	-----

Zdający otrzymuje 1 punkt, jeśli poda zbiór wartości funkcji $\,g\,$.

Poprawna odpowiedź: $(-\infty, 8)$.

c)

C)		
Korzystanie z informacji	Przekształcanie wzoru funkcji do innej postaci.	0-2

Zdający otrzymuje 2 punkty, jeśli obliczy współczynniki b i c.

Poprawna odpowiedź: b = 12, c = -10.

Zdający otrzymuje 1 punkt, jeśli poprawnie obliczy tylko jeden ze współczynników albo zapisze poprawnie warunki pozwalające na obliczenie współczynników b i c, ale popełni błąd przy obliczaniu tych współczynników.

Zadanie 4.

I K Orzystanie z intormacii	Stosowanie praw działań na potęgach o wykładniku naturalnym.	0–2
-----------------------------	--	-----

Zdający otrzymuje 2 punkty, jeśli poprawnie zastosuje prawa działań na potęgach i zapisze równanie w postaci umożliwiającej obliczenie niewiadomej, np. $7x = 3^{54}(3^2 - 3 + 1)$.

Zdający otrzymuje 1 punkt, jeśli zapisze liczby 243¹¹, 81¹⁴, 9²⁷ w postaci potęg liczby 3 i na tym poprzestanie lub w dalszej części rozwiązania popełni błędy.

Wiadomości i rozumienie	Rozwiązanie równania liniowego.	0–1
	•	

Zdający otrzymuje 1 punkt, jeśli wykaże, że liczba $x = 3^{54}$ jest rozwiązaniem równania, np. $7x = 3^{54} \left(3^2 - 3 + 1\right)$ stąd $7x = 3^{54} \cdot 7$, więc $x = 3^{54}$.

Zadanie 5.

a)

<u></u> ,			
Tworzenie informacji	Zapisywanie warunków wynikających z równości wielomianów.	0–1	

Zdający otrzymuje 1 punkt, jeśli zapisze wszystkie zależności wynikające z równości wielomianów 2a+3=a i a+b+c=-4, i b=-1.

Korzystanie z informacji	Rozwiązywanie układu równań liniowych.	0–2	ì
--------------------------	--	-----	---

Zdający otrzymuje 2 punkty, jeśli obliczy współczynniki a i c.

Poprawna odpowiedź: a = -3 i c = 0.

Zdający otrzymuje 1 punkt, jeśli obliczy poprawnie tylko jeden ze współczynników.

b)

o)			
Korzystanie z informacji	Rozkładanie wielomianu na czynniki.	0–2	

Zdający otrzymuje 2 punkty, jeśli rozłoży wielomian na czynniki liniowe.

Poprawna odpowiedź: W(x) = x(x+4)(x-1).

Zdający otrzymuje 1 punkt, jeśli zapisze wielomian w postaci iloczynu wielomianów, z których jeden jest stopnia drugiego $W(x) = x(x^2 + 3x - 4)$ lub $W(x) = (x - 1)(x^2 + 4x)$, lub $W(x) = (x + 4)(x^2 - x)$ i na tym poprzestanie lub dalej popełni błędy.

Zadanie 6.

a)

Korzystanie z informacji	Zastosowanie definicji funkcji trygonometrycznych do rozwiązania problemu.	0–2
--------------------------	--	-----

Zdający otrzymuje 2 punkty, jeśli skorzysta z definicji trygonometrycznych kąta α w trójkącie prostokątnym i przekształci wyrażenie $\sin \alpha - \mathrm{tg} \alpha$ do postaci $\frac{a(b-c)}{bc}$, gdzie a i b są odpowiednimi długościami przyprostokątnych trójkąta prostokątnego, zaś c jest długością przeciwprostokątnej.

Zdający otrzymuje 1 punkt, jeśli skorzysta z definicji funkcji trygonometrycznych kąta ostrego α w trójkącie prostokątnym i zapisze: $\sin \alpha = \frac{a}{c}$, $\tan \alpha = \frac{a}{b}$ i na tym poprzestanie.

Tworzenie informacji	Uzasadnienie nierówności.	0–1
----------------------	---------------------------	-----

Zdający otrzymuje 1 punkt, jeśli uzasadni nierówność $\sin\alpha-\mathrm{tg}\alpha<0$ powołując się, np. na znak różnicy b-c<0 .

b)

	Stosowanie związków między funkcjami	
Korzystanie z informacji	trygonometrycznymi tego samego kąta	0–2
	do przekształcania tożsamości trygonometrycznych.	

Zdający otrzymuje 2 punkty, jeśli obliczy wartość wyrażenia $\cos^3 \alpha + \cos \alpha \sin^2 \alpha$.

Poprawna odpowiedź: $\frac{1}{3}$.

Zdający otrzymuje 1 punkt, jeśli tylko obliczy wartość funkcji $\cos \alpha$ i na tym zakończy rozwiązanie.

Poprawna odpowiedź: $\cos \alpha = \frac{1}{3}$.

Zadanie 7.

a)

-	a)		
	Korzystanie z informacji	Stosowanie wzoru na <i>n</i> -ty wyraz ciągu arytmetycznego.	0–2

Zdający otrzymuje 2 punkty, jeśli obliczy różnicę r ciągu (a_n) oraz jego pierwszy wyraz.

Poprawna odpowiedź: r = 2, $a_1 = -11$.

Zdający otrzymuje 1 punkt, jeśli obliczy tylko różnicę ciągu i na tym zakończy rozwiązanie lub w dalszych obliczeniach popełni błąd.

b)

Korzystanie z informacji	Stosowanie wzoru na <i>n</i> -ty wyraz ciągu arytmetycznego.	0-1
--------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli obliczy wyraz a_8 .

Poprawna odpowiedź: $a_8 = 3$.

Wiadomości i rozumienie	Sprawdzanie z definicji, czy dany ciąg jest geometryczny.	0–1
-------------------------	---	-----

Zdający otrzymuje 1 punkt, jeśli uzasadni, że ciąg (a_7, a_8, a_{11}) jest ciągiem geometrycznym.

<u>c)</u>

Wiadomości i rozumienie	Stosowanie definicji na sumę <i>n</i> początkowych wyrazów ciągu arytmetycznego.	0-1
-------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli zapisze wzór na sumę n początkowych wyrazów ciągu (a_n) . Poprawna odpowiedź: $S_n=n^2-12n$, $n\ge 1$.

Korzystanie z informacji	Wykorzystanie własności funkcji kwadratowej.	0-1
--------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli wyznaczy liczbę n, dla której S_n osiąga wartość najmniejszą.

Poprawna odpowiedź: n = 6.

Zadanie 8.

Zdający otrzymuje 3 punkty, jeśli wykorzysta podobieństwo trójkątów ABD oraz BDC i obliczy długość przekątnej BD oraz podstawy AB.

Poprawna odpowiedź: |BD| = 30, |AB| = 50.

Zdający otrzymuje 2 punkty, jeśli obliczy długość odcinka *BD* wykorzystując przy tym podobieństwo trójkątów *ABD* oraz *BDC* .

Zdający otrzymuje 1 punkt, jeśli uzasadni, że trójkąty ABD i BDC są podobne i na tym zakończy rozwiązanie lub popełni błędy.

Wiadomości i rozumienie Stosowanie związków miarowych w figurach płaskich. 0–1
--

Zdający otrzymuje 1 punkt, jeśli obliczy obwód trapezu (pod warunkiem, że poprawnie obliczy długość podstawy *AB*).

Poprawna odpowiedź: 108.

Zadanie 9.

Korzystanie z informacji	Wyznaczenie równania prostej spełniającej warunki zadania.	0–2
--------------------------	--	-----

Zdający otrzymuje 2 punkty, jeśli zapisze równanie prostej AB prostopadłej do prostej OA. Poprawna odpowiedź: y = -2x + 10.

Zdający otrzymuje 1 punkt, jeśli wyznaczy tylko współczynnik kierunkowy prostej *AB* i na tym poprzestanie.

Poprawna odpowiedź: (-2).

Korzystanie z informacji	Obliczenie współrzędnych punktu przecięcia dwóch prostych.	0–1
--------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli obliczy współrzędne punktu ${\it A}$.

Poprawna odpowiedź: A = (4, 2).

Wiadomości i rozumienie	Wykorzystanie pojęcia odległości na płaszczyźnie kartezjańskiej.	0–1
-------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli obliczy długość przyprostokątnej OA.

Poprawna odpowiedź: $|OA| = 2\sqrt{5}$.

Zadanie 10.

a)

a)		
Korzystanie z informacji	Obliczanie średniej arytmetycznej.	0–2

Zdający otrzymuje 2 punkty, jeśli obliczy średnią liczbę błędów i zapisze wynik w zaokrągleniu do całości.

Poprawna odpowiedź:
$$\overline{x} = \frac{57}{30} = 1,9 \approx 2$$
.

Zdający otrzymuje 1 punkt, jeśli poprawnie zastosuje wzór na średnią arytmetyczną i na tym poprzestanie lub popełni błąd w obliczaniu średniej, albo źle zaokrągli wynik.

b)

ı	,		
	Korzystanie z informacji	Obliczanie prawdopodobieństwa zdarzeń.	0–3

Zdający otrzymuje 3 punkty, jeśli obliczy prawdopodobieństwo zdarzenia A i zapisze wynik w postaci ułamka nieskracalnego.

Poprawna odpowiedź:
$$P(A) = \frac{63}{145}$$

Zdający otrzymuje 2 punkty, jeśli obliczy moc zbioru Ω i moc zbioru A w tym samym modelu i na tym poprzestanie lub popełni błąd w obliczeniach, albo nie poda prawdopodobieństwa w postaci ułamka nieskracalnego.

Poprawna odpowiedź:
$$|\Omega| = \frac{30 \cdot 29}{2} = 435 \text{ i } |A| = 21 \cdot 9 = 189 \text{ lub } |\Omega| = 30 \cdot 29 \text{ i } |A| = 21 \cdot 9 \cdot 2.$$

Zdający otrzymuje 1 punkt, jeśli poprawnie policzy moc zbioru Ω .

Zadanie 11.

a)

Korzystanie z informacji	Stosowanie związków miarowych w bryłach z użyciem trygonometrii.	0–4
	u ygonomeun.	

Zdający otrzymuje 4 punkty, jeśli obliczy objętość walca.

Poprawna odpowiedź:
$$V = \frac{54\sqrt{3}}{\pi}$$
.

Zdający otrzymuje 3 punkty, jeśli obliczy pole powierzchni bocznej walca i promień jego podstawy i na tym zakończy lub popełni błąd w obliczaniu objętości walca.

Poprawna odpowiedź:
$$P_b = 36\sqrt{3}$$
, $r = \frac{3}{\pi}$.

Zdający otrzymuje 2 punkty, jeśli obliczy pole powierzchni bocznej walca albo wysokość walca i promień jego podstawy i nie kontynuuje rozwiązania.

Poprawna odpowiedź:
$$P_b = 36\sqrt{3}$$
 albo $h = 6\sqrt{3}$ i $r = \frac{3}{\pi}$.

Zdający otrzymuje 1 punkt, jeśli obliczy długość jednego z boków prostokąta, który jest powierzchnią boczną walca: h lub $2\pi r$.

<u>Poprawna odpowiedź</u>: $h = 6\sqrt{3}$ lub $2\pi r = 6$.

Wiadomości i rozumienie	Szacowanie wartości liczbowej.	0–1
-------------------------	--------------------------------	-----

Zdający otrzymuje 1 punkt, jeśli uzasadni, że objętość walca jest mniejsza od $18\sqrt{3}$.

Za prawidłowe rozwiązanie każdego z zadań inną metodą niż przedstawiona w kluczu punktowania przyznajemy maksymalną liczbę punktów.

Egzamin maturalny maj 2009

MATEMATYKA POZIOM ROZSZERZONY

KLUCZ PUNKTOWANIA ODPOWIEDZI

Zadanie 1.

a)

Wiadomości i rozumienie	Wykorzystanie pojęcia wartości argumentu i wartości funkcji.	0–1
-------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli obliczy wartość funkcji f dla x = 2009.

<u>Poprawna odpowiedź</u>: $f(2009) = 2008 \cdot 2009 + 2009 = 2009^2$

Tworzenie informacji Interpretowanie otrzymanych wyników.	0–1
---	-----

Zdający otrzymuje 1 punkt, jeśli zapisze wniosek.

Poprawna odpowiedź: Punkt P należy do wykresu funkcji f.

b)

Tworzenie informacji	Rysowanie w układzie współrzędnych zbioru opisanego układem warunków.	0–2
----------------------	---	-----

Zdający otrzymuje 2 punkty, jeśli narysuje bezbłędnie zbiór opisany w zadaniu. <u>Poprawna odpowiedź:</u>

Zdający otrzymuje 1 punkt, jeśli narysuje proste o równaniach $y = -\frac{1}{2}x + 1$, $y = -\frac{1}{2}x - 2$ i na tym zakończy lub popełni błędy w zaznaczaniu opisanego zbioru.

Zadanie 2.

	Korzystanie z informacji	Zapisanie wielomianu, który przy dzieleniu przez	0–1
		dany dwumian daje wskazany iloraz i daną resztę.	0-1

Zdający otrzymuje 1 punkt, jeśli zapisze wielomian W(x) w postaci wynikającej z warunków zadania.

Poprawna odpowiedź: $W(x) = (x-1)(8x^2 + 4x - 14) - 5$

Matematyka – poziom rozszerzony Klucz punktowania odpowiedzi

Wiadomości i rozumienie Wykonywanie działań na wielomianach.
--

Zdający otrzymuje 1 punkt, jeśli uporządkuje wielomian W(x).

Poprawna odpowiedź: $W(x) = 8x^3 - 4x^2 - 18x + 9$.

Korzystanie z informacji	Wyznaczanie pierwiastków wielomianu.	0–2
--------------------------	--------------------------------------	-----

Zdający otrzymuje 2 punkty, jeśli obliczy pierwiastki wielomianu W(x).

<u>Poprawna odpowiedź</u>: $x_1 = -1, 5, x_2 = 0, 5, x_3 = 1, 5$.

Zdający otrzymuje 1 punkt, jeśli zapisze wielomian W(x) w postaci iloczynu czynnika stopnia pierwszego i czynnika stopnia drugiego, np. $W(x) = (2x-1)(4x^2-9)$ i na tym zakończy rozwiązanie lub popełni błędy w wyznaczaniu pierwiastków wielomianu.

Zadanie 3.

a)

Zdający otrzymuje 1 punkt, jeśli obliczy wartość podstawy a.

Poprawna odpowiedź: $a = \sqrt{3}$.

b)

Korzystanie z informacji	Rysowanie wykresu funkcji typu $y = f(x)-b $.	0–2	l
--------------------------	---	-----	---

Zdający otrzymuje 2 punkty, jeśli narysuje wykres funkcji g(x) = |f(x)-2|.

Poprawna odpowiedź:

Zdający otrzymuje 1 punkt, jeśli narysuje tylko wykres funkcji y = f(x) - 2 i na tym poprzestanie lub popełni błędy przy dalszym przekształcaniu wykresu.

Tworzenie informacji	Interpretowanie liczby rozwiązań równania z parametrem.	0–1
----------------------	---	-----

Zdający otrzymuje 1 punkt, jeśli poda wszystkie wartości parametru m, dla których równanie g(x) = m ma dokładnie jedno rozwiązanie.

Poprawna odpowiedź: $m \in \{0\} \cup (2, +\infty)$.

Zadanie 4.

Korzystanie z informacji	Wykorzystanie definicji ciągu arytmetycznego.	0-1
--------------------------	---	-----

Zdający otrzymuje 1 punkt, jeśli rozpozna, że ciąg liczb monet wkładanych do skarbca przez kolejne dni przez skarbnika jest arytmetyczny.

<u>Poprawna odpowiedź</u>: Liczby monet wkładanych przez kolejne dni przez skarbnika tworzą ciąg arytmetyczny o pierwszym wyrazie równym 25 i różnicy równej 2.

Tworzenie informacji	Zdający podaje opis matematyczny sytuacji w postaci funkcji.	0-1
----------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli zapisze wzór na M(n) – liczbę monet w n–tym dniu po południu.

Poprawna odpowiedź:
$$M(n) = k + \frac{25 + [25 + (n-1)2]}{2} \cdot n - 50n = n^2 - 26n + k$$
.

Korzystanie z informacji	Formułowanie wniosków wynikających z postaci badanego wyrażenia.	0–2
--------------------------	--	-----

Zdający otrzymuje 2 punkty, jeśli zapisze warunek wystarczający na to, aby w skarbcu zawsze były monety i wyznaczy najmniejszą liczbę k.

<u>Poprawna odpowiedź</u>: np. $M(n) = (n-13)^2 + k - 169 > 0$, więc najmniejszą liczbą k jest 170 albo $\Delta < 0$ (bo $n_w \in N$) czyli $26^2 - 4k < 0$, stąd k > 169, więc najmniejszą liczbą k jest 170.

Zdający otrzymuje 1 punkt, jeśli zapisze tylko warunek wystarczający na to, aby w skarbcu zawsze były monety i na tym zakończy rozwiązanie lub popełni błędy przy wyznaczaniu najmniejszej liczby *k*.

<u>Poprawna odpowiedź</u>: np. $M(n) = (n-13)^2 + k - 169 > 0$ lub $\Delta < 0$, bo $n_w \in N$, stąd $26^2 - 4k < 0$.

Korzystanie z informacji	Posługiwanie się definicją i własnościami funkcji kwadratowej.	0–1
--------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli obliczy, w którym dniu w skarbcu była najmniejsza liczba monet.

Poprawna odpowiedź: n = 13.

Zadanie 5.

Korzystanie z informacji	Wykonywanie działań na potęgach o wykładnikach	0_3
	rzeczywistych.	0-3

Zdający otrzymuje 3 punkty, jeśli wykaże równość $B = 9\sqrt{A}$.

Zdający otrzymuje 2 punkty, jeśli poprawnie zastosuje wzór na iloczyn potęg o tych samych podstawach i wzór na potęgę potęgi i na tym zakończy.

Poprawna odpowiedź:

$$B = 3^{2\sqrt{2}+3} = 3^{2\sqrt{2}+1+2} = 3^2 \cdot 3^{\left(4\sqrt{2}+2\right)\cdot\frac{1}{2}} = 3^2 \cdot \left(3^{4\sqrt{2}+2}\right)^{\frac{1}{2}}, \text{ o ile dowód równości jest prowadzony od jej lewej strony do prawej albo}$$

 $9\sqrt{A} = 3^2 \cdot \left(3^{4\sqrt{2}+2}\right)^{\frac{1}{2}} = 3^{2+\left(4\sqrt{2}+2\right)\cdot\frac{1}{2}}$, o ile dowód równości jest prowadzony od jej prawej strony do lewej.

Zdający otrzymuje 1 punkt, jeśli poprawnie zastosuje jedynie wzór na iloczyn potęg o tych samych podstawach albo tylko wzór na potęgę potęgi i na tym zakończy. Poprawna odpowiedź:

$$B = 3^{2\sqrt{2}+3} = 3^2 \cdot 3^{2\sqrt{2}+1}$$
 lub $B = \dots = 3^2 \cdot 3^{\left(4\sqrt{2}+2\right)\cdot\frac{1}{2}} = 3^2 \cdot \left(3^{4\sqrt{2}+2}\right)^{\frac{1}{2}}$, o ile dowód równości jest prowadzony od jej lewej strony do prawej albo

$$9\sqrt{A} = 3^2 \cdot \left(3^{4\sqrt{2}+2}\right)^{\frac{1}{2}} = 3^2 \cdot 3^{\left(4\sqrt{2}+2\right) \cdot \frac{1}{2}}$$
 lub $9\sqrt{A} = \dots = 3^2 \cdot \left(3^{4\sqrt{2}+2}\right)^{\frac{1}{2}} = 3^{2+\left(4\sqrt{2}+1\right)\frac{1}{2}}$, o ile dowód równości jest prowadzony od jej prawej strony do lewej.

Zadanie 6.

Korzystanie z informacji Posługiwanie się definicją logarytmu.	0–1
--	-----

Zdający otrzymuje 1 punkt, jeśli wykorzysta definicję logarytmu i zapisze wszystkie warunki określające dziedzinę funkcji f.

Poprawna odpowiedź: $9 - x^2 > 0$, $2\cos x > 0$, $2\cos x \neq 1$.

Wiadomości i rozumienie	Rozwiązywanie nierówności kwadratowej.	0-1
-------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli rozwiąże nierówność kwadratową. Poprawna odpowiedź: $x \in (-3, 3)$.

Korzystanie z informacji	Odczytywanie z wykresu odpowiedniej funkcji zbioru rozwiązań nierówności trygonometrycznej w przedziale ograniczonym.	0–2
--------------------------	---	-----

Zdający otrzymuje 2 punkty, jeśli poda zbiór rozwiązań nierówności $\cos x > 0$ i $\cos x \neq \frac{1}{2}$ w przedziale (-3, 3).

Poprawna odpowiedź:
$$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 i $x \neq -\frac{\pi}{3}$ i $x \neq \frac{\pi}{3}$.

Zdający otrzymuje 1 punkt, jeśli poda zbiór rozwiązań tylko jednej z nierówności.

Korzystanie z informacji	Zapisanie części wspólnej zbiorów w postaci sumy przedziałów liczbowych.	0–1
--------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli zapisze dziedzinę funkcji f.

Poprawna odpowiedź:
$$D_f = \left(-\frac{\pi}{2}, -\frac{\pi}{3}\right) \cup \left(-\frac{\pi}{3}, \frac{\pi}{3}\right) \cup \left(\frac{\pi}{3}, \frac{\pi}{2}\right)$$
.

Zadanie 7.

Korzystanie z informacji	Stosowanie własności ciągu geometrycznego.	0-1
--------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli wykorzysta własność ciągu geometrycznego i zapisze równanie opisujące warunki zadania.

Poprawna odpowiedź: $(x+3)^2 = (x-3)(6x+2)$.

Wiadomości i rozumienie Rozwiązywanie równania k	wadratowego. 0-	3 –1
--	-----------------	-----------------

Zdający otrzymuje 1 punkt, jeśli rozwiąże równanie kwadratowe.

<u>Poprawna odpowiedź</u>: $x = -\frac{3}{5}$ lub x = 5.

Tworzenie informacji	Wybór ciągu spełniającego warunki zadania.	0–1
----------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli wybierze odpowiednią wartość x, tak aby wszystkie wyrazy ciągu były dodatnie.

Poprawna odpowiedź: x = 5.

Korzystanie z informacji	Stosowanie definicji ciągu geometrycznego.	0–1
--------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli obliczy iloraz ciągu.

Poprawna odpowiedź: q = 4.

Tworzenie informacji	Oszacowanie ilorazu sumy 19-tu przez sumę 20-tu początkowych wyrazów ciągu geometrycznego.	0–2
----------------------	--	-----

Zdający otrzymuje 2 punkty, jeśli oszacuje iloraz.

<u>Poprawna odpowiedź</u>: np. Przekształcając równoważnie nierówność $\frac{4^{19}-1}{4^{20}-1} < \frac{1}{4}$ dostaje kolejno: $4(4^{19}-1) < 4^{20}-1$, $4^{20}-4 < 4^{20}-1$, -3 < 0, co jest prawdą. To kończy dowód. Zdający otrzymuje 1 punkt, jeśli wykorzysta wzór na sumę n początkowych wyrazów ciągu geometrycznego i zapisze iloraz $\frac{S_{19}}{S_{20}}$ w postaci umożliwiającej oszacowanie.

Poprawna odpowiedź: $\frac{S_{19}}{S_{20}} = \frac{4^{19} - 1}{4^{20} - 1}$.

Zadanie 8.

Tworzenie informacji	Podanie opisu matematycznego danej sytuacji problemowej.	0–2
----------------------	--	-----

Zdający otrzymuje 2 punkty, jeśli zapisze zależność między promieniami okręgów.

Poprawna odpowiedź: $R + r = (R - r)\sqrt{2}$.

Zdający otrzymuje 1 punkt, jeśli zapisze długość przeciwprostokątnej trójkąta prostokątnego równoramiennego *ABC* w zależności od *R* i *r* i na tym zakończy rozwiązanie lub w dalszej części popełni błędy.

Poprawna odpowiedź: |AB| = R + r.

Tworzenie informacji	Przetwarzanie informacji do postaci ułatwiającej rozwiązanie problemu.	0–2
----------------------	--	-----

Zdający otrzymuje 2 punkty, jeśli obliczy stosunek promieni większego i mniejszego okręgu. Poprawna odpowiedź: $\frac{R}{r} = 3 + 2\sqrt{2}$.

Zdający otrzymuje 1 punkt, jeśli przekształci zależność $R+r=(R-r)\sqrt{2}$ do postaci umożliwiającej obliczenie stosunku promieni i na tym zakończy rozwiązanie.

Poprawna odpowiedź: np.
$$r(1+\sqrt{2})=R(\sqrt{2}-1)$$
 lub $(\frac{R}{r}-1)\sqrt{2}=\frac{R}{r}+1$,

$$1 \text{ lub } 1 + \frac{r}{R} = \left(1 - \frac{r}{R}\right)\sqrt{2} .$$

Zadanie 9.

Wiadomości i rozumienie	Wyznaczanie środka i promienia okręgu.	0-1
-------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli narysuje w układzie współrzędnych opisany w zadaniu okrąg i zaznaczy dany punkt A.

Korzystanie z informacji	Wyznaczanie równania rodziny prostych (nierównoległych do osi <i>Oy</i>) przechodzących przez dany punkt.	0–1
--------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli zapisze równanie szukanej rodziny stycznych. Poprawna odpowiedź: y = ax - 1 lub ax - y - 1 = 0.

Tworzenie informacji	Analizowanie wzajemnego położenia prostej i okręgu.	0-1
----------------------	---	-----

Zdający otrzymuje 1 punkt, jeśli zapisze warunek styczności prostej k o równaniu y = ax - 1 i danego okręgu.

<u>Poprawna odpowiedź</u>: Odległość środka okręgu S od prostej k jest równa promieniowi okręgu.

Tworzenie informacji	Stosowanie wzoru na odległość punktu od prostej.	0-1
----------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli zapisze równanie z niewiadomą a.

Poprawna odpowiedź:
$$\frac{|a \cdot (-2) - 3 - 1|}{\sqrt{a^2 + 1}} = 2.$$

Tworzenie informacji Wyciąganie wniosku i zapisanie równania prostej	. 0–1
--	-------

Zdający otrzymuje 1 punkt, jeśli zapisze równanie szukanej stycznej.

Poprawna odpowiedź: $y = -\frac{3}{4}x - 1$.

Zadanie 10.

Tworzenie informacji	Analizowanie sytuacji i budowanie jej modelu matematycznego.	0–2
----------------------	--	-----

Zdający otrzymuje 2 punkty, jeśli zapisze liczbę wszystkich zdarzeń elementarnych oraz liczby zdarzeń elementarnych sprzyjających zdarzeniu A w tym samym modelu.

Poprawna odpowiedź:
$$|\Omega| = {4n \choose 2} = 2n \cdot (4n-1), |A| = {n \choose 1} {3n \choose 1} = n \cdot 3n$$

lub $|\Omega| = 4n \cdot (4n-1)$, $|A| = 2 \cdot n \cdot 3n$ gdzie n – liczba kul czarnych, 3n – liczba kul białych, dla $n \ge 1$.

Zdający otrzymuje 1 punkt, jeśli zapisze tylko liczbę wszystkich zdarzeń elementarnych i na tym zakończy rozwiązanie.

Zdający otrzymuje 1 punkt, jeśli zapisze prawdopodobieństwo zdarzenia A w postaci wyrażenia wymiernego.

Poprawna odpowiedź:
$$P(A) = \frac{3n}{2(4n-1)}$$
.

Tworzenie informacji	Analizowanie sytuacji i budowanie jej modelu matematycznego.	0–1
----------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli rozwiąże nierówność $\frac{3n}{2(4n-1)} > \frac{9}{22}$ i poda liczbę kul w urnie.

Poprawna odpowiedź: W urnie są 4 kule albo jest 8 kul.

Zadanie 11.

Korzystanie z informacji	Wykorzystanie funkcji trygonometrycznych w trójkącie prostokątnym.	0-1
--------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli obliczy cosinusa kąta między krawędzią boczną a krawędzią podstawy ostrosłupa.

Poprawna odpowiedź: $\cos \alpha = \frac{1}{4}$.

Tworzenie informacji Narysowanie przekroju ostrosłupa płaszczyzną. 0–	-1
---	----

Zdający otrzymuje 1 punkt, jeśli zaznaczy właściwy przekrój na rysunku.

Poprawna odpowiedź:

Korzystanie z informacji	Zastosowanie twierdzenia cosinusów.	0–3
--------------------------	-------------------------------------	-----

Zdający otrzymuje 3 punkty, jeśli obliczy wysokość opuszczoną na podstawę *AB* w trójkącie równoramiennym *ABF* (szukanym przekroju).

Poprawna odpowiedź: $h_p = \frac{a\sqrt{5}}{2}$.

Zdający otrzymuje 2 punkty, jeśli obliczy długość ramienia trójkąta równoramiennego *ABF* i na tym zakończy rozwiązanie.

Poprawna odpowiedź: $|AF| = |BF| = \frac{a\sqrt{6}}{2}$.

Zdający otrzymuje 1 punkt, jeśli zastosuje twierdzenie cosinusów i zapisze równanie z niewiadomą x, gdzie x = |BF| i na tym zakończy rozwiązanie lub w dalszej części popełni błędy.

Poprawna odpowiedź: $x^2 = a^2 + a^2 - 2 \cdot a \cdot a \cdot \frac{1}{4}$.

Korzystanie z informacji	Obliczanie pola przekroju ostrosłupa	0–1
--------------------------	--------------------------------------	-----

Zdający otrzymuje 1 punkt, jeśli obliczy pole przekroju.

Poprawna odpowiedź:
$$P_p = \frac{a^2 \sqrt{5}}{4}$$
.

Za prawidłowe rozwiązanie każdego z zadań inną metodą niż przedstawiona w kluczu punktowania przyznajemy maksymalną liczbę punktów.