CMA6134 - Tutorial 6

- 1. Given the three following tables, find the equation of the best fit linear line using the method of least squares, y = a + bx
 - (a) Table 1

X_i	-2	-1	0	1	2
y_i	1	2	3	3	4

(b) Table 2

X_i	-4	-2	0	2	4
y_i	1.2	2.8	6.2	7.8	13.2

(c) Table 3

X_i	-6	-2	0	2	6
y_i	-5.3	-3.5	-1.7	0.2	4.0

2. Two tables are given as the following.

Table 1

1 aoic	14010 1					
	X_i	1	2	3	4	5
_	y_i	0.6	1.9	4.3	7.6	12.6
Table 2						
	X_i	4.0	4.2	4.5	4.7	5.1

From the above tables, find

 y_i

102.56

(a) the least squares exponential of the form $y = ae^{bx}$,

113.18

- (b) the least squares exponential of the form $y = ax^b$,
- (c) the values of y when x = 2.8 in Table 1 and x = 4.85 in Table 2 for (a) and (b) respectively.

130.11

142.05

167.53

- 3. Given a polynomial function $f(x) = e^{\frac{-x^2}{2}}$, find:
 - (a) the cubic Mclaurin polynomial, $P_3(x)$. (b) Approximate f(x) when x = 1.
 - (c) Find the absolute error and relative error in (b).

- 4. A polynomial function is given as \sqrt{x} at $x_0 = 1$.
 - (a) Find the Taylor Polynomial of degree 3 and 5.
 - (b) Calculate the absolute error at x = 0.1 for degree 3 and 5.
- 5. For a given function $f(x) = \sqrt{1+x}$, let $x_0 = 0$, $x_1 = 0.3$ and $x_2 = 0.6$.
 - (a) Construct the Lagrange coefficient $L_0(x)$, $L_1(x)$, and $L_2(x)$.
 - (b) Find $f(x_0), f(x_1), f(x_2)$.
 - (c) Find the second interpolating polynomial $P_2(x)$.
 - (d) Approximate f(0.45).
- 6. Consider the function f(x), x_0 , x_1 and x_2 in Question 5.
 - (a) Find the Newton polynomial, $P_2(x)$.
 - (b) Use the Newton polynomial in (a) to approximate f(0.45).
- 7. For a function f, the divided differences are given by the following table:

x_k	\mathcal{Y}_k	1 st divided difference	2 nd divided difference	3 rd divided difference
0	0			
		1.5		
1				
2	1.5		-0.1875	
3	1.125			

- (a) Complete the table.
- (b) Find the cubic Newton Polynomial $P_3(x)$.
- (c) Approximate f(1.5).