ANALYTICAL CHEMISTRY

Tutorial 1: Statistical Treatment of Data

Question 1

The Ti content (mass %) of two different ore samples was measured several times by the same method. Are the mean values significantly different at the 95% confidence level?

<u>Sample 1</u>: 0.0134; 0.0138; 0.0128; 0.0133; 0.0137 <u>Sample 2</u>: 0.0135; 0.0142; 0.0137; 0.0141; 0.0143

Question 2

A Standard Reference Material is certified to contain 94.6 ppm of an organic contaminant in soil. Your analysis gives values of 98.6, 98.4, 97.2, 94.6, and 96.2 ppm. Do your results differ from the expected results at the 95 % confidence level?

Question 3

The following data were obtained for the titration of 10 mL of 0.250 M HCl with 0.126 M NaOH: 20.14 20.09 20.10 20.17 19.78

- a) Should any of the values be rejected at the 90% confidence interval?
- Taking into account any outliers, calculate the mean and the standard deviation of the volumes obtained.
- c) The theoretical volume calculated for this titration was 20.16 mL. Are the experimental results significantly different at the 90% confidence level?

Question 4

A certified reference material is known to contain 21.37% arsenic. A student from the 2nd year class analysed a sample of the material and obtained the results below.

Determination	% Arsenic
1	21.40
2	21.35
3	21.32
4	21.39
5	21.30

a) Calculate

- The mean of the data set
- The relative standard deviation of the data set
- The absolute average error of the data set
- b) Calculate the 90% confidence interval for the data set and explain what this represents.
- c) Determine if there is a significant difference between the experimental and true values at the 90% confidence level.

Question 5

The presence of iron (II) in beer is thought to adversely affect its taste. Samples of beer were analyzed for iron (II) using an atomic absorption method and a titration method. The results obtained are given below in mg kg⁻¹.

Sample	[Fe ²⁺] atomic absorption	[Fe ²⁺] titration			
1	7.3	8.0			
2	8.4	7.5			
3	8.3	8.3			
4	7.8	7.7			
5	8.9	8.1			

- a) Determine if the two methods are significantly different from each other at the 90% confidence interval.
- b) Using the 95% confidence interval, determine if there is a significant difference in the precision obtained by the two different techniques?

Question 6

A trainee in a medical lab will be released to work on her own when her results agree with those of an experienced worker at the 95 % confidence level. Results for a blood urea nitrogen analysis are shown below:

Trainee:

$$x = 14.57 \text{ mg/dL}$$
 $s = 0.53 \text{ mg/dL}$ $n = 6$

Experienced worker:

$$x = 13.95 \text{ mg/dL}$$
 $s = 0.42 \text{ mg/dL}$ $n = 5$

Should the trainee be allowed to work alone? Show your reasoning.

Data Sheet

$$t_{calculated} = \frac{\left| \overrightarrow{x} - \mu \right|}{s} \sqrt{N}$$
 $t_{calculated} = \frac{\overrightarrow{d}}{s_d} \sqrt{n}$ $t_{calculated} = \frac{\left| \overrightarrow{X}_a - \overrightarrow{X}_b \right|}{s_{pooled}} \times \sqrt{\frac{n_a \times n_b}{n_a + n_b}}$

Confidence						
degrees Freedom	50%	90%	95%	99%		
1	1.000	6.314	12.706	63.65 6		
2	0.816	2.920	4.303	9.925		
3	0.765	2.353	3.182	5.841		
4	0.741	2.132	2.776	4.604		
5	0.727	2.015	2.571	4.032		
6	0.718	1.943	2.447	3.707		
7	0.711	1.895	2.365	3.499		
8	0.706	1.860	2.306	3.355		
9	0.703	1.833	2.262	3.250		
10	0.700	1.812	2.228	3.169		
11	0.697	1.796	2.201	3.106		
12	0.695	1.782	2.179	3.055		
13	0.694	1.771	2.160	3.012		
14	0.692	1.761	2.145	2.977		
15	0.691	1.753	2.131	2.947		
16	0.690	1.746	2.120	2.921		
17	0.689	1.740	2.110	2.898		
18	0.688	1.734	2.101	2.878		
19	0.688	1.729	2.093	2.861		
20	0.687	1.725	2.086	2.845		
21	0.686	1.721	2.080	2.831		
22	0.686	1.717	2.074	2.819		
23	0.685	1.714	2.069	2.807		
24	0.685	1.711	2.064	2.797		
25	0.684	1.708	2.060	2.787		
26	0.684	1.706	2.056	2.779		
27	0.684	1.703	2.052	2.771		
28	0.683	1.701	2.048	2.763		
29	0.683	1.699	2.045	2.756		
30	0.683	1.697	2.042	2.750		
31	0.682	1.696	2.040	2.744		
32	0.682	1.694	2.037	2.738		
33	0.682	1.692	2.035	2.733		
34	0.682	1.691	2.032	2.728		
35	0.682	1.690	2.030	2.724		

Critical Values for the Rejection Quotient

	Q_{crit} (Reject if $Q_{exp} > Q_{crit}$)					
N	90% Confidence	95% Confidence	99% Confidence			
3	0.941	0.970	0.994			
4	0.765	0.829	0.926			
5	0.642	0.710	0.821			
6	0.560	0.625	0.740			
7	0.507	0.568	0.680			
8	0.468	0.526	0.634			
9	0.437	0.493	0.598			
10	0.412	0.466	0.568			

N = number of observations

Critcal values of F at the 5% Probability Level (95% confidence)

Degrees of									
Freedom	Degrees of Freedom (Numerator)								
(Denominator)	2	3	4	5	6	7	8	9	10
2	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40
3	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79
4	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96
5	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74
6	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06
7	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64
8	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35
9	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14
10	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98
15	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54
20	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35
25	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24
26	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22
27	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20
28	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19
29	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18
30	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16