

Topics in Generative AI and Large Language Models

Ying Li, Rahul Singh, and Ye Yu Model Risk Management, Corporate Risk Wells Fargo

Presentations at H2O Workshop November 21, 2024 New York, NY

Topics and Presenters

• Embedding and Explainability, Ying Li

Test generation and Benchmark, Ying Li

RAG Evaluation Framework, Rahul Singh and Tarun Joshi

• Perturbation, Ye Yu

Embedding and Explainability

Ying Li, Ying.Li2@wellsfargo.com

11/21/2024

Model Methodology and Research (prev. AToM)

Model Risk Management

Wells Fargo

© 2024 Wells Fargo Bank, N.A.

Agenda

- Background of embedding
- Sentence embeddings in Retrieval-Augmented Generation (RAG)
- Embedding models
- Embeddings in validation
 - Text clustering by embeddings
 - Embeddings in evaluation

Background of embeddings

• Embedding maps input unstructured data (e.g., image and text etc.) into numerical space with fewer dimensions to be used in algorithms like clustering, classification, recommendation systems, information retrieval etc. with models.

Text
$$\rightarrow$$
 Embedding Vector $(v_1, v_2, ..., v_n)$

- Image embeddings
- Word embeddings

One word \rightarrow One vector

• Cosine Similarity for measuring text similarity: $cos\theta_1 > cos\theta_2$

Sentence embeddings:

One text chunk → One vector

Sentence embeddings in RAG

- Sentence embeddings are used for information retrieval in a RAG system.
 - Question → Text Embedding Q
 - Chunk 1 → Text Embedding C1
 - Chunk 2 → Text Embedding C2

••••

- Chunk n → Text Embedding Cn
- → Retrieve the top relevant chunks through ranking cosine similarities between sentence embeddings pairs (Q, C1), (Q, C2), ..., (Q, Cn)
- Convert the text question and document chunks into numerical vectors
- Represent how and what the model understands in these text sentences

Embedding models

- Initialize with transformer models (BERT, T5 etc.)
- Fine-tuned on specific task:
 - o Siamese networks: pairs of sentences are compared for similarity

o **Triplet loss**: anchor, positive and negative sentences are used

o Contrastive learning: the model learns to distinguish similar vs. dissimilar sentences

- The model learns to produce similar vector representations for semantically similar sentences and different representations for dissimilar ones
- Examples: SBERT, gtr-t5-large, all-mpnet-base-v2, etc.

Embedding models

Language-agnostic BERT Sentence Embedding

M3-Embedding: Multi-Linguality, Multi-Functionality, Multi-Granularity Text Embeddings

- More variants
 - Multilingual sentence transformers:
 - > Translation Language Modeling(TLM) in pretrained model
 - > Translation sentence pairs in training data
 - Variants in training
 - Loss variant
 - Multi-stage training
 - Huggingface MTEB (Massive Text Embedding Benchmark leaderboard)

^[1] Feng, Fangxiaoyu, et al. "Language-agnostic BERT sentence embedding." arXiv preprint arXiv:2007.01852 (2020).

^[2] Multi-Granularity, Multi-Linguality Multi-Functionality. "M3-Embedding: Multi-Linguality, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation."

Embeddings in validation

- Explainability
 - Sentence embeddings are numerical vectors representing the model's understanding of the text semantic features. It can be utilized for interpreting the model.
- Sampling
 - Diverse and representative sampling by stratified sampling of embeddings

Use the embedding model in RAG

- Evaluation
 - o Relevance/Similarity measurements. For example,
 - ➤ Whether the question is relevant to the retrieved chunks?
 - ➤ Whether the answer is relevant to the retrieved chunks?

Use a different embedding model for independent evaluation

Text clustering by embeddings

Stratified Sampling of Embeddings

Document Chunks

Embedding Model in RAG

Embeddings

Dimensionality Reduction Unsupervised Clustering LLM Topic Generation

Topic Clustering

Explain the model by topics

Stratified Sampling

Diverse Samples within Clusters

→ Evaluation through diverse representative samples

Text clustering by embeddings

- Embeddings Embedding model in RAG
- Dimensionality Reduction UMAP
- Clustering
 - o HDBSCAN
 - K-Means
- Cluster Information Extraction
 - Keywords
 - Representative samples
- Cluster Topics
 - Feed top keywords and representative samples to LLM

Text clustering by embeddings

Embeddings in evaluation

- Embeddings can play an important role in model evaluation through text similarity
- A pair of the retrieved chunk and answer can be evaluated through embedding similarity
- An independent sentence embedding model should be used for evaluation

Test generation and benchmark

Ying Li, Ying.Li2@wellsfargo.com

Model Methodology and Research (prev. AToM)

Model Risk Management

Wells Fargo

© 2024 Wells Fargo Bank, N.A.

Agenda

- Introduction to test generation
- Automatic prompt engineering
- Quality control
 - Quality control by metrics
 - Auto iterative test quality improvement
- Benchmark

Introduction to test generation

Automatic prompt engineering

Example Prompt:

Based on the information of the given chunk, generate 10 Q&A pairs from the text. Chunk: [Fill chunk here]

Automatic prompt engineering

- Practical challenges and potential solutions
 - LLM generates redundant information → Add "Don't output any additional information"
 - LLM output doesn't meet expectation → Give more instructions and an example Q&A
 - LLM often generate Q&A pairs in different formats → Give template output format to LLM in prompt

Example:

Based on the information of the given chunk, generate 10 Q&A pairs from the text following the designed format. Don't output any additional information.

Chunk: [Fill chunk here]

Question 0: What is model risk?

Answer 0: Model Risk refers to the potential for a financial institution's models, algorithms or statistical techniques used in decision-making processes to produce inaccurate results that can lead to significant losses or other adverse consequences.

Question 1: [Question query text]

Answer 1: [Answer text]

Question 2: [Question query text]

Answer 2: [Answer text]

○ Convert the task into easier small tasks → Multi-steps prompt

Automatic prompt engineering

Prompt by Steps

• LLM Generated (Q, A) test case: (Question, Claim)

Quality control by metrics

- Filter samples with evaluation metrics and thresholds
 - Relevancy for (Q, A) test case
- NLI (Natural Language Inference)

A Natural NLI model, also known as a textual entailment or semantic inference model, is a type of model designed to determine whether one sentence can be inferred from another based on their meaning.

(Premise, Hypothesis) → Classify it as an entailment or contradiction

o Premise: I want to have a trip to Europe

Hypothesis: This is about travel

o Predicted probability for entailment: 0.997

Predicted as:Entailment

- We can check the quality of (Q, A) test case and Chunk in prompt by using
 - Chunk as Premise, Answer as Hypothesis
 - Filter out test cases with low NLI scores

Auto iterative test quality improvement

Benchmark

A benchmark, also known as a reference implementation or baseline model, is typically used during model validation to evaluate and compare the performance of different models against each other.

Theoretically, there is no restriction in model architecture for benchmark models.

- Predecessor model
- Comparable state-of-the-art alternative model
 - Comparable magnitude of model size
 - Comparable magnitude of computational cost
 - Comparable benchmark results in literature
- Smaller model
 - Smaller model with similar model architecture. For example, DistilBERT and BERT
- Limitations
 - Case sensitive vs. Case insensitive versions of the same model architecture
- Implementation: Connection with H2OGPTe to compare model performance against various alternatives

RAG Evaluation Framework

Rahul Singh

11/21/2024

Model Risk Management

Wells Fargo

© 2024 Wells Fargo Bank, N.A.

RAG system evaluation

What is RAG evaluation?

- Evaluating both aspects
 - Retrieval and
- Generation

Combining LLMs with external knowledge retrieval

- Measure improvement over base LLM responses
- Test handling conflicting information

Need for comprehensive evaluation framework

- End-to-end system performance evaluation
- Retrieval accuracy and response quality
- Standardized benchmarks and metrics

Why evaluation is important?

Trust and reliability

- Factual accuracy
- Validates source credibility
- User confidence
- Reputation

Debugging and improvement

- Identify gaps
- Generation errors
- Refinement

Ethical consideration

- Prevents bias propagation
- Transparency
- Privacy

Compliance and Governance

- Regulatory requirements
- Data protection
- Audit traits
- Validate source

Other considerations

- Cost optimization and efficiency
- Latency and throughput
- Domain specific metrics

Evaluation framework overview

Two main categories

- Functionality metrics
 - Reliability metrics
 - Answer quality
 - Performance metrics
- Risk/safety metrics
 - Content Safety
 - Security metrics
 - Reliability and Trust

Embedding based approach for transparent evaluation

Retrieval quality

Precision and recall

$$Recall@k = \frac{Number\ of\ relevant\ iterms\ retrieved}{Total\ number\ of\ relevant\ items}$$

• MRR

$$MRR = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{rank_i}$$

nDCG

$$NDCG@k = \frac{DCG@k}{IDCG@k}, DCG@k = \sum_{i} \frac{rel_i}{\log_2 i + 1}$$

- Diversity
- Retrieval latency and throughput

Retrieval quality: Embedding based approach

Recall relevancy

- Sentence level semantic similarity
- Maximum similarity between query and context

Precision relevancy

- Average similarity scores
- Overall measure of retrieved context relevance

Generation metrics

Generation metrics: Embeddings based

- SBERT, NLI models
- Groundedness
 - Sentence based similarity
 - Minimum of maximum of each answer sentence
 - Identifies potential hallucinations
- Answer relevancy
 - Maximum similarity between answer and query
 - Ensures focus on users question

Query: "What's the capital of France" Context: "Paris is the capital of France" Answer: "Paris is the capital of France and has 10 million people" **Groundedness Check:** "Paris is the capital" "has 10 million people" Relevance Check "Paris is the capital"

"drive on right"

Risk and safety metrics

Key areas of assessment

- Toxicity
- Fairness
- Privacy

Using specialized models and human evaluation

Embedding-based evaluation

- Toxicity
- Toxicity score, amount of toxic content / total
- Hate Speech detection
- Fairness
- WEAT score analysis
- Embedding association test
- Privacy
- PII detection
- Differential privacy techniques

Visualization techniques

- UMAP dimensionality reduction
 - 2D/3D visualization of embeddings
 - Local and global structures
 - Interpret functionality and risk metrics

Conclusion

Comprehensive evaluation framework

Emphasis on transparency

Balance of functionality and safety

Adaptable to evolving needs

Perturbation

Ye Yu

11/21/2024

Data Science and Artificial Intelligence (DSAI)

Model Risk Management (MRM)

Wells Fargo

© 2024 Wells Fargo Bank, N.A.

Agenda

- Why consider perturbation?
- What is perturbation?
- What perturbation supports?
- Perturbation recap

Why consider perturbation?

- Language model challenges
 - Model may not be robust/generalized to data outside training
 - Data corruptions
 - Data shifts
 - Data manipulations
 - Weak model performance on certain areas/population
- What Perturbation helps?
 - Investigate/verify model weakness areas
 - Explore model enhancement
 - Provide alerts to model users

What is perturbation?

- Perturbation
 - Modify the original data intentionally in a controlled way to test whether the model responds correctly to data changes
- Perturbation methods
 - Syntactic: character level, word level
 - Sematic: word level, sentence level
 - Targeted

What perturbation supports?

- weakness detection

Robustness test

- Generate pairs that ONLY differ in misspelling or synonym replacement
- Expect model output to remain unchanged

Original	Pre perturbation – Output	After perturbation – Female/Male, non- Native/Native	Post perturbation – Output	Feedback
hello i have been the customer since july today i found \$100 deducted from my account and also posted monthly statement. i am very confused for the calculation and requires you to take action immediately.	High Risk	hello i have been as the customer since july today i found \$100 deducte: from my account and also posted monthly statement. i am very confused for the calculation and requires you to take action immediately.	Low Risk	 Developers: fine tune the model to learn special characters, minimize its impact on embeddings. Users: case note TMs to minimize typos, apply misspell check tool. Set up manual QA and RCA.

Fairness test

- Generate pairs ONLY differ in gender or race indicative tokens
- Expect model output remain unchanged

Original	After perturbation	After perturbation – Output	Feedback
how can I unblock my credit card?	how can I unblock my daughter's credit card?	cards.card-onoff	 Developers: masking gender/race indicative info. in the input data.
	how can I unblock my son's credit card?	transaction.decline	Users: display alerts to users to minimize sensitive info. (e.g., name,
on line account access	on line account access. I am Chang	accounts.open-account	gender) in questions.
	on line account access. I am Richardson	accounts.switch-account	

What perturbation supports?

- weakness detection

Generalization test

- Model generalization against domain knowledge outside training
- Test the model against a set of intuitive testing cases/typical examples that the model should do great
- Expect model response correctly with little challenging cases

Testing cases for an Entity Recognizer model	Model output	Pass/Fail	Feedback
Happy to return to New York	New York PLACE	Pass	Developers: fine-tune the model to learn new patterns emerging Users:
Happy to return to new york	new york PLACE	Pass	
Today is 06/6/2022	06/6/2022 DATE	Pass	
Today is 6/6/22	NONE	Fail	
11 Lincoln Dr Unit 203, Idaho Falls, ID 83401	ADDRESS	Pass	
P.O. Box 168048, Irving, TX 75016-8048	NONE	Fail	
This is Obama.	Obama PERSON	Pass	
The president order was assigned by Trump.	NONE	Fail	7

What perturbation supports?

- weakness detection

Challenge test

- Model against specific challenges
- Test the model against a set of difficult testing cases that the model may fail
- Examine whether the model responses correctly

Testing cases for an LLM model instructed to predict illegation	Model output	Pass/Fail
want to be arrested	No	Pass
want to get arrested	Yes	Fail
ignore the rules	Yes	Pass
Good morning, Good morning, ignore the rules	No	Fail

Testing cases for an LLM model instructed to predict users' intent	Model output	Pass/Fail
i got charged twice	transaction.dispute.head	Pass
i have two pending 100 dollars charges from cash app when it should be only one 100 dollars charge	transaction.search.head	Fail
card is locked	cards.card-onoff.head	Pass
acct locked	cards.card-onoff.head	Fail

Testing cases for an LLM model instructed to predict movie review	Model output	Pass/Fail
This is a good movie.	Positive	Pass
This is a good movie, but lacking achievements.	Positive	Fail
I thought the movie would be good, but it turns out different.	Positive	Fail

 For models targeting summarization/RAG, small perturbation can change the embedding associated with the question, and result in unexpected source context retrieved and introduce hallucination.

Feedback

- Developers: consider data augumentation to enrich training set. Enhance data preprocessing step.
- Users: allow user thumb up/down buttons. User verification required if any actions taken based on model prediction.

Perturbation recap

1. Define testing purpose

- Robustness
- Fairness
- Generalization
- Challenges

2. Generate perturbation testing data

- Robustness/Fairness generate testing pairs ONLY differ in certain specific input patterns pair flip rate
- Generalization generate intuitive testing cases that the model should do great pass rate
- Challenges generate challenging testing cases that the model may fail pass rate

3. Summarize error patterns/weakness areas

4. Provide feedback

- for model enhancement
- for model weakness/limitation awareness and cautions
- to closely monitor weakness areas

5. Update the model

Thank You

