

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
14. Oktober 2004 (14.10.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/088909 A1

(51) Internationale Patentklassifikation⁷: **H04L 1/20, 1/18**

(21) Internationales Aktenzeichen: **PCT/EP2004/002218**

(22) Internationales Anmeldedatum:
4. März 2004 (04.03.2004)

(25) Einreichungssprache: **Deutsch**

(26) Veröffentlichungssprache: **Deutsch**

(30) Angaben zur Priorität:
103 15 249.0 3. April 2003 (03.04.2003) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): **ROHDE & SCHWARZ GMBH & CO. KG**
[DE/DE]; Mühldorfstrasse 15, 81671 München (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): **PLAUMANN, Ralf**
[DE/DE]; Kirchenstrasse 2a, 85659 Forstern (DE).
WINKLHOFER, Max [DE/DE]; Helene-Mayer-Ring
12, 80809 München (DE). **FASSRAINER, Johannes**
[DE/DE]; Ahornweg 9, 85617 Assling (DE).

(74) Anwalt: **KÖRFER, Thomas**; Mitscherlich & Partner,
Postfach 33 06 09, 80066 München (DE).

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für
jede verfügbare nationale Schutzrechtsart): **AE, AG, AL,**
AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD AND MEASURING DEVICE FOR DETERMINING AN ERROR RATE WITHOUT INCREMENTAL REDUNDANCY

(54) Bezeichnung: VERFAHREN UND MESSGERÄT ZUM ERMITTELN EINER FEHLERRATE OHNE INCREMENTAL REDUNDANCY

(57) Abstract: The invention relates to a method for determining an error rate during data transmission from a transmitter/receiver station (1) to a transmitter/receiver device (2) and to a measuring device. A first data block and at least one other redundant block different therefrom are produced from a source data block (9) by the transmitter/receiver station (1). The first data block is transmitted by the transmitter/receiver station (1) and received by the transmitter/receiver device (2). The first data block thus received is decoded in a decoder block (8) and tested for transmission errors. Another redundant data block is requested by the transmitter/receiver station (2) if an error is ascertained in the transmitted data of the first data block. The request is received by the transmitter/receiver station (1) and, according to the invention, the first data block is repeatedly transmitted instead of the redundant data block and the rate of the first defectively received data blocks is determined.

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Ermittlung einer Fehlerrate bei einer Datenübertragung von einer Sende/Empfangsstation (1) zu einer Sende/Empfangseinrichtung (2) sowie ein Messgerät. Von der Sende/Empfangsstation (1) wird aus einem Ursprungsdatenblock (9) ein erster Datenblock und zumindest ein sich hiervon unterscheidender, redundanter

[Fortsetzung auf der nächsten Seite]

WO 2004/088909 A1

KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) **Bestimmungsstaaten** (*soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— *mit internationalem Recherchenbericht*

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

10/552361
JC05 Rec'd PCT/PTO 03 OCT 2005

**Verfahren und Messgerät zum Ermitteln einer Fehlerrate
ohne Incremental Redundancy**

5

Die Erfindung betrifft ein Verfahren und ein Messgerät zum Ermitteln einer Fehlerrate bei einer Datenübertragung von einer Sende-/Empfangsstation zu einer Sende-/Empfangseinrichtung, d. h. des Decodierungsgewinns bei Einsatz von 10 Incremental Redundancy.

Bei der Ermittlung von Fehlerraten, die bei der Übertragung von Daten von einer Sende-/Empfangsstation, beispielsweise einer Basisstation eines Mobilfunksystems, 15 an eine Sende-/Empfangseinrichtung, beispielsweise ein Mobiltelefon, und der dort durchzuführenden Decodierung auftreten, wird üblicherweise eine Datenübertragung zwischen einem Messgerät und dem Mobiltelefon durchgeführt, wobei durch das Messgerät die Basisstation des Mobilfunksystems emuliert wird. Das Messgerät ist 20 dabei so aufgebaut, dass es, wie die Basisstation selbst, sämtliche Anforderungen des jeweiligen Standards erfüllt, also auch Maßnahmen zur softwaregestützten Fehlerkorrektur unterstützt.

25

Bei neueren Mobilfunksystemen ist beispielsweise in dem Standard für EGPRS (Enhanced General Packet Radio Service) vorgesehen, dass zu einer Erhöhung der Sicherheit bei der Übertragung von Daten eine schrittweise Redundanzerhöhung 30 durchgeführt wird. Dies bedeutet, dass nach dem Senden eines ersten nach einem bestimmten Schema faltungscodierten Datenblocks seitens des Empfängers überprüft wird, ob die Übertragung und das Decodieren der empfangenen Daten fehlerfrei erfolgt ist. Sind in dem so erhaltenen Datensatz Fehler enthalten, wird von dem Empfänger die Übertragung weiterer, redundanter Daten bei 35 der Basisstation angefordert.

Diese so genannte "Incremental Redundancy" ist z. B. in der US 5,657,325 beschrieben.

Die redundanten Daten werden dabei zusammen mit dem ersten 5 Datenblock aus einem ursprünglich eingegebenen Datensatz durch Faltungscodierung erzeugt, wobei für jede Information des ursprünglichen Datensatzes redundante Informationen generiert werden. So werden beispielsweise beim Codierer MCS9 beim Standard EGPRS aus jedem Bit drei 10 Bits erzeugt. Um diese dreifache Datenmenge nicht in jedem Fall übertragen zu müssen, werden nach einem Punktierungsschema Bits aus dieser dreifachen Datenmenge entfernt und in einem Speicher abgelegt. Die übrigen Bits werden als erster Datenblock an den Empfänger gesendet und 15 von diesem ausgewertet.

Bei einer nicht erfolgreichen Übertragung und Auswertung des empfangenen ersten Datenblocks wird von dem Empfänger das fehlerhafte Empfangen der Daten an den Sender 20 rückgemeldet, woraufhin von dem Sender redundante Daten in einem zweiten Datenblock, der durch Eliminieren von Bits aus der dreifachen Datenmenge nach einem zweiten Punktierungsschema gebildet wird, an den Empfänger gesendet werden. Mit Hilfe dieser redundanten Daten können 25 die Fehler, welche beim Empfangen des ersten Datenblocks aufgetreten sind, korrigiert werden oder es wird noch einmal ein weiterer redundanter Datenblock angefordert.

Die beschriebene Vorgehensweise hat für die Bewertung der 30 Qualität eines Mobiltelefons beispielsweise bei einem Produktions-Testsystem den Nachteil, dass beim Ermitteln einer Fehlerrate, die durch das Mobiltelefon verursacht wird, durch die schrittweise Redundanz die ursprünglich bei der Übertragung aufgetretenen Fehler eliminiert werden 35 und damit eine Auswertung der tatsächlich auf Grund der Hardware des Mobiltelefons verursachten Fehler ohne die Korrektur durch die Software mit Hilfe der redundanten Daten nicht möglich ist.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und ein Messgerät zu schaffen, bei dem die Fehlerrate für eine Sende-/Empfangseinrichtung ohne eine Fehlerkorrektur mit redundanten Daten ermittelt wird.

5

Die Aufgabe wird durch das erfindungsgemäße Verfahren nach Anspruch 1 sowie das erfindungsgemäße Messgerät nach Anspruch 7 gelöst.

10 Nach dem erfindungsgemäßen Verfahren wird aus einem ursprünglichen Datensatz zunächst durch ein Verfahren, wie es z.B. bei dem Betrieb einer Basisstation nach dem EGPRS-Standard verwendet wird, eine Prüfgröße für die 15 ursprünglichen Daten dem Ursprungsdatenblock hinzugefügt, um nach der Übertragung und Decodierung die Richtigkeit der übertragenen Daten überprüfen zu können. Der Ursprungsdatenblock wird zusammen mit der Prüfgröße faltungscodiert, so dass eine vergrößerte Datenmenge erzeugt wird, in der die ursprüngliche Information des 20 Ursprungsdatenblocks mehrfach redundant vorhanden ist.

Aus dieser vergrößerten Datenmenge werden mehrere Datenblöcke erzeugt, wobei in jedem Datenblock die 25 Informationen des Ursprungsdatenblocks einschließlich der Prüfgröße enthalten ist, jedoch oft keine darüberhinausgehenden redundanten Informationen. Ein solcher erster Datenblock wird von einer Sende-/Empfangsstation des Messgeräts in bekannter Weise moduliert und verstärkt und schließlich über eine Antenne gesendet.

30

Dieser gesendete erste Datenblock wird von einer Sende-/Empfangseinrichtung, d.h. dem Prüfling (DUT), empfangen und entsprechend dem verwendeten Codierungsschema ("convolutional code") der Sende-/Empfangsstation 35 decodiert. Der so erhaltene Datensatz wird anhand der Prüfgröße auf seine Übereinstimmung mit dem Ursprungsdatenblock überprüft. Wird dabei ein Fehler bei der Übertragung und der Decodierung in der Sende-/Empfangseinrichtung festgestellt, so wird durch die

Sende-/Empfangseinrichtung bei der Sende-/Empfangsstation die Übertragung eines weiteren, redundanten Datenblocks angefordert.

5 Diese Anforderung durch die Sende-/Empfangseinrichtung wird von der Sende-/Empfangsstation empfangen, woraufhin der gleiche Datenblock, der ursprünglich bereits gesendet wurde, erneut gesendet wird. Durch dieses erneute Versenden des gleichen Datenblocks erhält die Sende-/Empfangseinrichtung keine redundante Information und kann damit auch einen Decodierfehler nicht mit Hilfe von Incremental Redundancy korrigieren. Es lassen sich daher mit Hilfe dieses Verfahrens die tatsächlich auf Grund des Geräts entstandenen Fehler bei der Übertragung von Daten 10 15 ermitteln.

In den Unteransprüchen sind vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens und des Messgeräts ausgeführt.

20 Insbesondere ist es vorteilhaft, bei der Erzeugung der redundanten Datenblöcke anstelle der verschiedenen, redundanten Datenblöcke in einem Speicher an sämtlichen für die verschiedenen redundanten Datenblöcke vorgesehenen 25 Speicherplätzen den gleichen Datenblock abzulegen, welcher zur erstmaligen Übertragung vorgesehen ist. Die weitere Auswahl eines bestimmten Datenblocks bei der erneuten Anforderung durch die Sende-/Empfangseinrichtung kann damit entfallen. Wird beispielsweise nach einer fehlerhaften Übertragung ein zweiter, redundanter Datenblock angefordert, so kann einfach der an dem 30 Speicherplatz des zweiten, redundanten Datenblocks abgelegte Datenblock gesendet werden, da dieser identisch mit dem zuvor gesendeten ersten Datenblock ist.

35 Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung wird in den verschiedenen Speicherplätzen des Speichers jeweils ein redundanter Datenblock abgelegt, wobei zur Ermittlung der Fehlerrate ohne eine

Fehlerkorrektur durch eine Auswahlvorrichtung unabhängig von der angeforderten Versendung eines weiteren, redundanten Datenblocks jeweils derjenige Datenblock ausgewählt wird, der ursprünglich versendet wurde. Dies

5 ist insbesondere vorteilhaft, wenn zusätzlich zu der Fehlerrate ohne eine Fehlerkorrektur auch die Fehlerrate, die bei Verwendung redundanter Informationen auftritt, ermittelt werden soll. In einem solchen Fall kann gemäß einer weiteren vorteilhaften Ausführungsform auf Grund

10 einer Anforderung eines redundanten Datenblocks durch die Sende-/Empfangseinrichtung von der Sende-/Empfangsstation tatsächlich die angeforderte redundante Information durch Versenden eines in dem Speicher abgelegten Datenblocks gesendet werden.

15

Besonders vorteilhaft ist es weiterhin, das verwendete Punktierungsschema verändern zu können, um damit gezielt für verschiedene Punktierungsschemata die jeweils durch die Hardware verursachte Fehlerrate ermitteln zu können.

20

Bevorzugte Ausführungsbeispiele der Erfindung werden anhand der Zeichnung in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

25 Fig. 1 eine schematische Darstellung des Aufbaus einer Sende-/Empfangsstation und einer Sende-/Empfangseinrichtung zur Ermittlung einer Fehlerrate,

30 Fig. 2 eine schematische Darstellung zur Übertragung von Daten in Datenblöcken bei EGPRS,

Fig. 3 schematische Darstellung des zeitlichen Ablaufs bei einem erneuten Versenden eines Datenblocks,

35 Fig. 4 eine Messanordnung mit einem erfindungsgemäßen Messgerät und einem Mobiltelefon,

Fig. 5 eine schematische Darstellung zur Erzeugung und erfindungsgemäßen Senden von Datenblöcken und

5 Fig. 6 eine schematische Darstellung zur Fehlerkorrektur mittels inkrementeller Redundanz.

Bevor das erfindungsgemäße Verfahren im Einzelnen erläutert wird, soll zunächst anhand der Fig. 1 die Übertragung von Daten unter Verwendung der schrittweisen 10 Redundanz erläutert werden. Die Datenübertragung erfolgt über eine Luftschnittstelle, bei der eine Übertragung von Information sowohl von einer Sende-/Empfangsstation 1 zu einer Sende-/Empfangseinrichtung 2 als auch in umgekehrter Richtung erfolgt.

15

Die in digitaler Form vorliegenden, zu übertragenden Daten werden in der Sende-/Empfangsstation 1 zunächst durch einen Codierblock 3 verarbeitet. Die von dem Codierblock 3 ausgegebenen Daten werden von einem Sende-/Empfangsblock 4 moduliert, verstärkt und schließlich über eine Antenne 5 gesendet.

Die von der Antenne 5 gesendeten Signale werden von einer Antenne 6 der Sende-/Empfangseinrichtung 2 empfangen und 25 einem Sende-/Empfangsblock 7 der Sende-/Empfangseinrichtung 2 zugeführt. Der Sende-/Empfangsblock 7 ist mit einem Decodierblock 8 verbunden, in dem aus den codierten Daten die ursprünglichen Daten wieder zurückgewonnen werden und deren Richtigkeit überprüft wird.

30

Die Codierung der Daten erfolgt in dem Codierblock 3, der hierzu eingangsseitig einen Ursprungsdatenblock 9 von beispielsweise 600 Bit Länge empfängt und diesen zunächst einem Prüfgrößenabschnitt 11 zuführt. In dem 35 Prüfgrößenabschnitt 11 wird dem Ursprungsdatenblock 9 eine Prüfgröße hinzugefügt, welche sich aus den Daten des Ursprungsdatenblocks 9 berechnet. Eine solche Prüfgröße kann z. B. mit Hilfe eines CRC-Verfahrens (Cyclic Redundancy Check) bestimmt werden. Der Ursprungsdatenblock

9 wird dann zusammen mit der Prüfgröße einem Codierabschnitt 12 zugeführt.

15 In dem Codierabschnitt 12 werden aus den ursprünglichen Daten des Ursprungsdatenblocks 9 zusammen mit der Prüfgröße zusätzlich redundante Daten durch Faltungscodierung erzeugt, wozu ein so genannter "convolutional coder" verwendet wird. Dabei wird beispielsweise bei einem 1/3-Coder für jedes Bit des Ursprungsdatenblocks 9 sowie der Prüfgröße ein zweites und 10 drittes redundantes Bit erzeugt, wie dies in Fig. 5 gezeigt ist.

15 Der so erzeugte Datensatz 100 enthält mehrfach redundante Informationen sowohl bezüglich des Ursprungsdatenblocks 9 als auch der hinzugefügten Prüfgröße. Zur Vermeidung von unnötiger Datenübertragung werden aus diesem so erzeugten Datensatz in einem Punktierabschnitt 13 (Fig. 1) unter Zuhilfenahme eines bestimmten Punktierungsschemas P1 20 redundante Bits entfernt, so dass schließlich ein erster Datenblock 101 übrig bleibt, welcher ohne redundante Informationen die Informationen des Ursprungsdatenblocks 9 und der Prüfgröße enthält.

25 Weiterhin werden unter Zuhilfenahme eines weiteren Punktierungsschemas P2 andere redundante Bits in dem Punktierabschnitt 13 entfernt, so dass ein zweiter Datenblock 102 entsteht, welche sich von dem ersten Datenblock 101 unterscheidet, dabei jedoch denselben 30 Informationsinhalt wie der erste Datenblock 101 aufweist. Auf dieselbe Weise wird mit einem dritten Punktierungsschema P3 ein dritter, wiederum redundanter Datenblock 103 erzeugt.

35 Der erste, zweite und dritte Datenblock werden in dafür vorgesehenen Speicherplätzen 15.1, 15.2 und 15.3 eines Speichers abgelegt. Mit Hilfe einer Auswahlvorrichtung 16 können dem Speicher 14 die an den Speicherplätzen 15.1 bis 15.3 abgelegten Datenblöcke entnommen werden und dem

Sende-/Empfangsblock 4 der Sende-/Empfangsstation 1 zugeführt werden. Ist für einen Ursprungsdatenblock 9 eine erstmaligen Übertragung der Informationen vorgesehen, so wird stets z.B. der erste Datenblock, der z. B. in dem 5 Speicherplatz 15.1 abgelegt ist, dem Sende-/Empfangsblock 4 zugeführt. Alternativ können die Datenblöcke auch kontinuierlich neu generiert werden.

Der Sende-/Empfangsblock 4 umfasst die zur Aufbereitung 10 des ersten Datenblocks erforderlichen Vorrichtungen, von denen lediglich beispielhaft ein Modulator 17 und ein Verstärker 18 dargestellt sind. Nachdem in dem Modulator 17 der erste Datenblock moduliert wurde, wird er von dem Verstärker 18 verstärkt, so dass er anschließend über die 15 Antenne 5 gesendet werden kann.

Empfängt der Sende-/Empfangsblock 7 der Sende-/Empfangseinrichtung 2 über die Antenne 6 dieses Signal, so wird in dem Sende-/Empfangsblock 7 das empfangene 20 Signal zunächst in einem Empfangsverstärker 19 verstärkt und anschließend in bekannter Weise in einem Demodulator 20 demoduliert. Die demodulierten Daten des empfangenen ersten Datenblocks werden an den Decodierblock 8 weitergeleitet, wo sie zunächst unter Verwendung des in 25 dem Codierabschnitt 12 verwendeten Codierverfahrens in einem Decodierabschnitt 22 decodiert werden.

Die nunmehr in decodierter Form vorliegenden Daten des ersten Datenblocks werden in einem Prüfabschnitt 23 30 hinsichtlich ihrer Identität mit dem Ursprungsdatenblock 9 überprüft. Wird dabei eine Identität zwischen den aus dem übertragenen ersten Datenblock ermittelten Daten und dem Ursprungsdatenblock 9 festgestellt, so kann in der 35 Verbindung zwischen der Sende-/Empfangsstation 1 und der Sende-/Empfangseinrichtung 2 in einem nächsten Schritt die Übertragung eines neuen Ursprungsdatenblocks erfolgen.

Wird dagegen von dem Prüfabschnitt 23 festgestellt, dass die aus dem übertragenen ersten Datenblock ermittelten

Daten nicht mit dem Ursprungsdatenblock 9 übereinstimmen, so werden die aus dem übertragenen ersten Datenblock ermittelten Daten an einem ersten Speicherplatz 25.1 eines Empfangsspeichers 24 abgelegt. Um mit Hilfe dieser bereits 5 empfangenen Daten die vollständige Information zu erhalten, wird von der Sende-/Empfangseinrichtung 2 ein Signal zur Anforderung eines weiteren, redundanten Datenblocks an die Sende-/Empfangsstation 1 gesendet, um mit Hilfe der weiteren redundanten Daten die Fehler 10 korrigieren zu können. Dabei braucht aufgrund der unterschiedlichen Datenblöcke auch der zweite Datenblock nicht vollständig fehlerfrei übertragen zu werden, um zu einer Fehlerkorrektur ausreichende Redundanz zu gewährleisten.

15

Auf Grund dieser Anforderung wird in der Sende-/Empfangsstation 1 von der Auswahlvorrichtung 16 ein anderer als der zuvor übertragene Datenblock ausgewählt, zum Beispiel derjenige Datenblock, welcher an dem zweiten 20 Speicherplatz 15.2 des Speichers 14 abgelegt ist. In dem Decodierblock 8 wird mit den Daten des empfangenen zweiten Datenblocks, welcher redundant zu dem bereits empfangenen ersten Datenblock ist, erneut eine Auswertung durchgeführt. Sollte dabei trotz der redundanten 25 Information die vollständige Richtigkeit der ermittelten Daten und damit eine fehlerfreie Übertragung noch immer nicht erreicht sein, so werden die aus dem übertragenen zweiten Datenblock 102 ermittelten Daten an einem zweiten Speicherplatz 25.2 des Empfangsspeichers 24 abgelegt.

30

Von der Sende-/Empfangseinrichtung wird daraufhin wiederum ein Signal zur Anforderung eines weiteren redundanten Datenblocks gesendet, woraufhin von der Auswahlvorrichtung 16 der dritte Datenblock, der an dem dritten Speicherplatz 35 15.3 des Speichers 14 abgelegt ist, selektiert wird und der dritte Datenblock zur Übertragung an den Sende-/Empfangsblock 4 weitergegeben wird.

Diese Vorgehensweise zur Korrektur von Fehlern ist schematisch in Fig. 6 dargestellt. Aus einem ersten übertragenen Datenblock 101, welcher unter Verwendung eines ersten Punktierungsschemas P1 entstanden ist, werden 5 Nutzdaten 105 ermittelt. Ein Teil 105' der Nutzdaten 105 weist dabei Fehler auf. Auch nach dem Empfangen und Decodieren von einem zweiten Datenblock 102, der unter Verwendung eines zweiten Punktierungsschemas P2 erzeugt wurde, können in den Nutzdaten 106, die mit den 10 Informationen des ersten und des zweiten Datenblocks 101 und 102 ermittelt wurden, noch Fehler 106' enthalten sein. Schließlich kann die erneute Übertragung von redundanter Information in Form des dritten, mit einem dritten Punktierungsschema P3 erzeugten Datenblocks 103 zu einer 15 richtigen Übermittlung der Nutzdaten 107 des Ursprungsdatenblocks 9 führen. Wenn dies immer noch nicht der Fall ist, wird wieder mit der Übertragung des mit dem ersten Punktierungsschema P1 erzeugten Datenblocks 101 fortgefahren.

20 Erfindungsgemäß wird dagegen gerade zu Meßzwecken verhindert, dass bei einer Anforderung eines weiteren Datenblocks von der Auswahlvorrichtung 16 ein zu dem zuvor gesendeten Datenblock redundanter weiterer Datenblock 25 gesendet wird. Wird durch den Prüfabschnitt 23 bei der Auswertung der Daten eines empfangenen ersten Datenblocks festgestellt, dass die ermittelten Daten nicht mit dem Ursprungsdatenblock 9 übereinstimmen, so wird von der Sende-/Empfangseinrichtung 2 ein Signal zur Anforderung 30 eines weiteren, redundanten Datenblocks gesendet, wie dies im vorstehend beschriebenen realen Betrieb auch erfolgt. Für die Sende-/Empfangseinrichtung 2 ist nicht erkennbar, dass es sich um eine Messung handelt.

35 Im Gegensatz zum Betrieb mit einer realen Basisstation wird jedoch, um eine einen Hardware-Fehler überdeckende Software-Fehlerkorrektur auszuschließen, durch die zu dem Meßgerät gehörende Sende-/Empfangsstation 1, durch welche eine reale Basisstation emuliert wird, derselbe

Datenblock, der zu der fehlerbehafteten Auswertung geführt hat, erneut gesendet, wie es für den ersten Datenblock 101 in Fig. 5 gezeigt ist. Hierzu kann von der Auswahlvorrichtung 16 erneut auf beispielsweise den ersten Speicherplatz 15.1 des Speichers 14 zugegriffen werden.

Alternativ können auch der erste Speicherplatz 15.1, der zweite Speicherplatz 15.2 und der dritte Speicherplatz 15.3 des Speichers 14 bei der Erzeugung der redundanten Datenblöcke anstatt mit redundanten Datenblöcken mit jeweils dem gleichen Datenblock belegt werden. Wird dann nach einer Übertragung des ersten Datenblocks durch die Sende-/Empfangseinrichtung 2 über ein Antwortsignal ein weiterer, redundanter Datenblock angefordert, so kann tatsächlich durch die Auswahlvorrichtung 16 der in dem zweiten Speicherplatz 15.2 abgelegten Datenblock selektiert werden. Damit kann ein identischer Algorithmus zur Auswahl eines Datenblocks wie bei einer realen Basisstation verwendet werden, ohne dass hierdurch der Sende-/Empfangseinrichtung 2 redundante Informationen übermittelt werden.

Die Datenübertragung bei einem Mobilfunksystem nach dem EGPRS Standard ist schematisch und stark vereinfacht in Fig. 2 dargestellt. Die Übertragung der Daten erfolgt zwischen der Sende-/Empfangsstation 1 und der Sende-/Empfangseinrichtung 2 in jeweils zumindest einem Zeitschlitz (slot). Jeweils acht Zeitschlitzte bilden zusammen einen Rahmen (frame). In der Fig. 2 ist ein erster Rahmen 30, ein zweiter Rahmen 40 ein dritter Rahmen 50, ein vierter Rahmen 60, sowie ein fünfter und sechster Rahmen 70 und 80 dargestellt. Der erste Rahmen 30 ist dabei in acht Zeitschlitzte 31 bis 38 unterteilt, der zweite Rahmen 40 entsprechend in acht Zeitschlitzte 41 bis 48 usw.

Zur Übertragung der Daten von der Sende-/Empfangsstation 1 an die Sende-/Empfangseinrichtung 2 wird jeweils in einem bestimmten Zeitschlitz eines Rahmens ein Burst übertragen.

In der Fig. 2 wird ein erster Burst 39 in einem dritten Zeitschlitz 33 des ersten Rahmens übertragen. Ein weiterer Burst 49 wird in einem dritten Zeitschlitz 43 des zweiten Rahmens 40 übertragen. Dementsprechend werden in dem dritten Rahmen 50 und dem vierten Rahmen 60 wiederum jeweils in dem dritten Zeitschlitz 53 bzw. 63 ein dritter und vierter Burst 59 und 69 übertragen. Jeweils vier solcher Bursts 39, 49, 59 und 69, die in aufeinanderfolgenden Rahmen 30, 40, 50 und 60 übertragen werden, bilden gemeinsam einen Datenblock.

Für die weiteren Rahmen 70, 80 usw. kann zwischen der Sende-/Empfangsstation 1 und der Sende-/Empfangseinrichtung 2 auch die Verwendung eines anderen Zeitschlitzes vereinbart werden, um den nächsten Datenblock zu übertragen, der wiederum aufgeteilt auf vier Bursts zwischen der Sende-/Empfangsstation 1 und der Sende-/Empfangseinrichtung 2 übertragen wird. Die Übertragung eines ersten Datenblocks oder eines weiteren Datenblocks, wie dies zu Fig. 1 beschrieben wurde, erstreckt sich also über vier aufeinanderfolgende Rahmen.

In Fig. 3 ist wiederum stark vereinfacht dargestellt, dass nach der Übertragung eines solchen Datenblocks 90 andere Datenblöcke 91 übertragen werden können, ehe aufgrund einer Anforderung der Sende-/Empfangseinrichtung 2 ein redundanter Datenblock 92 bzw. bei dem erfindungsgemäßen Verfahren zum Ermitteln einer Fehlerrate derselbe Datenblock ein zweites Mal gesendet wird. Üblicherweise darf zwischen dem fehlerhaft ausgewerteten Datenblock 90 und dem wiederholt gesendeten Datenblock 92 ein bestimmter maximaler zeitlicher Abstand nicht überschritten werden darf. Auf Grund der definierten Länge von etwa 20ms, die ein einzelner Datenblock zur Übertragung benötigt, kann dieser maximale zeitliche Abstand als eine maximale Anzahl von Datenblöcken N_{max} angegebenen werden, wie dies in der Fig. 3 dargestellt ist.

In Fig. 4 ist eine Anordnung zur Ermittlung der Fehlerrate eines Mobiltelefons 93 gezeigt. Das Mobiltelefon 93 weist dabei die in Fig. 1 dargestellte Sende-/Empfangseinrichtung 2 auf. Das Mobiltelefon 93 steht weiterhin in 5 Funkverbindung mit einem Messgerät 94, welches die ebenfalls aus Fig. 1 bekannte Sende-/Empfangsstation 1 umfasst, wobei auch die zur Bestimmung der Fehlerrate benötigte Information über richtig oder fehlerhaft 10 empfangenen Datenblöcke von dem Mobiltelefon 93 über die Funkverbindung an das Messgerät 94 übermittelt wird.

Zusätzlich ist in dem Messgerät 94 ein Controller 95 vorgesehen, der mit der Sende-/Empfangsstation 1 des 15 Messgeräts 94 in Verbindung steht. Der Sende-/Empfangsstation 1 kann damit von dem Controller 95 beispielsweise ein bestimmter Ursprungsdatenblock 9 übermittelt werden. Außerdem erhält der Controller 95 von 20 der Sende-/Empfangsstation 1 die über die von der Luftschnittstelle zwischen den Antennen 5 und 6 übertragene Information, welche Datenblöcke durch den Decodierblock 21 nicht vollständig richtig ausgewertet 25 werden konnten.

Die Information, welcher der Datenblöcke nicht richtig 25 empfangen und ausgewertet werden konnte, wird dabei üblicherweise nicht für jeden Datenblock einzeln von dem Mobiltelefon 93 an das Messgerät 94 übermittelt, sondern zusammengefasst für eine Vielzahl von empfangenen 30 Datenblöcken. Anhand der Information über die Anzahl der korrekt oder fehlerbehaftet übertragenen Datenblöcke wird von dem Controller 95 die Fehlerrate ermittelt und zur Ausgabe beispielsweise an einem Display 96 weitergegeben.

Zusätzlich kann über den Controller 95 für die Sende-/Empfangsstation 1 bestimmt werden, dass, um einen 35 Vergleich der Fehlerraten des Mobiltelefons 93 mit und ohne schrittweise Redundanz zu erhalten, auf eine Anforderung des Mobiltelefons 93 hin anstelle der wiederholten Sendung desselben Datenblocks ein weiterer,

sich von dem Datenblock unterscheidender, hierzu jedoch redundanter Datenblock gesendet wird. Das Ergebnis dieser zusätzlichen Auswertung wird dann ebenfalls auf dem Display 96 dargestellt.

5

Bei der Messung ohne schrittweise Redundanz kann vorzugsweise das verwendete Punktierungsschema zum Erzeugen des ersten Datenblocks und damit auch der wiederholt zu sendenden Datenblöcke durch das Messgerät 94 10 veränderlich festgelegt werden. Eine entsprechende Eingabe wird von dem Controller 95 an die Sende-/Empfangseinrichtung 1 weitergegeben und bei der Auswahl des zu sendenden Datenblocks durch die Auswahlvorrichtung 16 berücksichtigt. Werden die Speicherplätze 15.1 bis 15.3 15 mit identischen Datenblöcken belegt, so wird das durch den Controller 95 festgelegte Punktierungsschema schon bei der Speicherung der Datenblöcke berücksichtigt.

Ansprüche

5

1. Verfahren zur Ermittlung einer Fehlerrate bei einer Datenübertragung von einer Sende-/Empfangsstation (1) zu einer Sende-/Empfangseinrichtung (2), wobei von der Sende-/Empfangsstation (1) aus einem Ursprungsdatenblock (9) ein erster Datenblock und zumindest ein sich hiervon unterscheidender, redundanter weiterer Datenblock erzeugt werden und von der Sende-/Empfangseinrichtung (2) bei einer fehlerhaften Übertragung des ersten Datenblocks ein weiterer, redundanter Datenblock angefordert wird, mit folgenden Verfahrensschritten:

- Senden eines ersten Datenblocks durch die Sende-/Empfangsstation (1),

- Empfangen des ersten Datenblocks durch die Sende-/Empfangseinrichtung (2),

20 - Decodieren des empfangenen ersten Datenblocks in einem Decodierblock (8),

- Überprüfen des ersten Datenblocks auf Übertragungsfehler,

25 - Anfordern eines weiteren, redundanten Datenblocks zur Fehlerkorrektur bei Feststellen eines Fehlers in den übertragenen Daten des ersten Datenblocks

- Empfangen der Anforderung in der Sende-/Empfangsstation (1),

gekennzeichnet durch

30 - wiederholtes Senden des ersten Datenblocks anstatt eines redundanten Datenblocks, und

- Ermitteln der Rate der fehlerhaft empfangenen ersten Datenblöcke.

35 2. Verfahren nach Anspruch 1,

dadurch gekennzeichnet,

dass der erste Datenblock und die weiteren, redundanten Datenblöcke durch Faltungscodierung mit unterschiedlichen Punktierungsschemata erzeugt werden.

3. Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
dass das für die Erzeugung des ersten Datenblocks
5 verwendete Punktierungsschema festgelegt wird.

4. Verfahren nach einem Anspruch 1 bis 3,
dadurch gekennzeichnet,
dass die sich unterscheidenden, redundanten Datenblöcke in
10 einem Speicher (14) der Sende-/Empfangsstation (1) abgelegt sind und bei Anforderung des weiteren Datenblocks der an einem dem ersten Datenblock zugeordneten Speicherplatz (15.1) abgelegte erste Datenblock gesendet wird.

15 5. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass in einem Speicher (14) der Sende-/Empfangsstation (1) auch anstelle der unterschiedlichen, redundanten
20 Datenblöcke an deren Speicherplätzen (15.2, 15.3) jeweils der erste Datenblock abgelegt wird und bei Anforderung eines weiteren Datenblocks der an dem jeweiligen Speicherplatz (15.2, 15.3) abgelegte Datenblock gesendet wird.

25 6. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass zum Vergleich der ermittelten Fehlerrate ohne Fehlerkorrektur mit einer Fehlerrate mit Fehlerkorrektur
30 durch schrittweise Redundanz zusätzlich bei Anforderung eines weiteren Datenblocks ein weiterer redundanter Datenblock von der Sende-/Empfangsstation (1) gesendet wird.

35 7. Messgerät zum Ermitteln einer Fehlerrate bei einer Datenübertragung von einer Sende-/Empfangsstation (1) zu einer Sende-/Empfangseinrichtung (2), wobei die Sende-/Empfangsstation (1) einen Codierblock (3) zum Erzeugen eines ersten Datenblocks und zumindest eines weiteren sich

hier von unterscheidenden, redundanten Datenblocks aus einem Ursprungsdatenblock (9) und eine Auswahlvorrichtung (16) zum Auswählen eines zu übertragenden Datenblocks aufweist,

5 dadurch gekennzeichnet,

dass bei einer durch die Sende-/Empfangeinrichtung (2) an die Sende-/Empfangsstation (1) übermittelten Anforderung eines weiteren, redundanten Datenblocks auf Grund einer fehlerhaften Übertragung des ersten Datenblocks der erste
10 Datenblock erneut anstatt eines redundanten Datenblocks von der Sende-/Empfangsstation (1) ausgegeben wird.

8. Messgerät nach Anspruch 7,

dadurch gekennzeichnet,

15 dass in dem Codierblock (3) ein Speicher (14) mit mehreren Speicherplätzen (15.1, 15.2, 15.3) zur Speicherung von Datenblöcken vorgesehen ist.

9. Messgerät nach Anspruch 8,

20 dadurch gekennzeichnet,

dass zur Erzeugung der Datenblöcke jeweils unterschiedliche Punktierungsschemata verwendet werden und das zur Erzeugung des ersten Datenblocks verwendete Punktierungsschema auswählbar ist.

25

10. Messgerät nach einem der Ansprüche 7 bis 9

dadurch gekennzeichnet,

dass durch die Auswahlvorrichtung (16) unabhängig von der Anforderung der Sende-/Empfangseinrichtung (16) aus dem
30 Speicher (14) der dort abgelegte erste Datenblock auswählbar ist.

11. Messgerät nach Anspruch 7 oder 8,

dadurch gekennzeichnet,

35 dass anstelle der weiteren sich unterscheidenden, redundanten Datenblöcke in einem Speicher (14) an deren Speicherplätzen (15.2, 15.3) der erste Datenblock abgelegt wird.

12. Verfahren nach Anspruch 7 oder 8,
dadurch gekennzeichnet,
dass zum Vergleich der ermittelten Fehlerrate ohne
Fehlerkorrektur mit einer Fehlerrate mit Fehlerkorrektur
5 durch schrittweise Redundanz durch die Auswahlvorrichtung
(16) bei einer Anforderung durch die Sende-/Empfangsein-
richtung (1) ein weiterer, redundanter Datenblock ausge-
wählt wird.

1/4

This Page Blank (uspio)

2/4

Fig. 2

Fig. 3

This Page Blank (uspto)

3/4

Fig. 4

This Page Blank (uspto)

Fig. 5

Fig. 6

This Page Blank (uspiC)

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 H04L1/20 H04L1/18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2002/053058 A1 (KYUNG CHAN HO ET AL) 2 May 2002 (2002-05-02) the whole document ----	1-12
A	US 5 657 325 A (LOU HUI LING ET AL) 12 August 1997 (1997-08-12) cited in the application the whole document -----	1-12

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- A° document defining the general state of the art which is not considered to be of particular relevance
- E° earlier document but published on or after the international filing date
- L° document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- O° document referring to an oral disclosure, use, exhibition or other means
- P° document published prior to the International filing date but later than the priority date claimed

- T° later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- X° document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- Y° document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- &° document member of the same patent family

Date of the actual completion of the international search

22 June 2004

Date of mailing of the international search report

06/07/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Toumpouliidis, T

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
US 2002053058	A1	02-05-2002	KR 2002034226 A CN 1351438 A	09-05-2002 29-05-2002
US 5657325	A	12-08-1997	US 5689439 A US 6157612 A CA 2172320 A1 EP 0735701 A2 CA 2171998 A1 EP 0736979 A2 JP 8288934 A	18-11-1997 05-12-2000 01-10-1996 02-10-1996 04-10-1996 09-10-1996 01-11-1996

A. Klassifizierung des Anmeldungsgegenstandes
IPK 7 H04L1/20 H04L1/18

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 H04L

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, INSPEC

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	US 2002/053058 A1 (KYUNG CHAN HO ET AL) 2. Mai 2002 (2002-05-02) das ganze Dokument ---	1-12
A	US 5 657 325 A (LOU HUI LING ET AL) 12. August 1997 (1997-08-12) in der Anmeldung erwähnt das ganze Dokument -----	1-12

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- ° Besondere Kategorien von angegebenen Veröffentlichungen :
- ° A° Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- ° E° älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- ° L° Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- ° O° Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- ° P° Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- ° T° Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- ° X° Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- ° Y° Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- ° &° Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche 22. Juni 2004	Absendedatum des internationalen Recherchenberichts 06/07/2004
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Toumpoulidis, T

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 2002053058	A1	02-05-2002	KR CN	2002034226 A 1351438 A		09-05-2002 29-05-2002
US 5657325	A	12-08-1997	US US CA EP CA EP JP	5689439 A 6157612 A 2172320 A1 0735701 A2 2171998 A1 0736979 A2 8288934 A		18-11-1997 05-12-2000 01-10-1996 02-10-1996 04-10-1996 09-10-1996 01-11-1996