National University of Computer & Emerging Sciences CS 3001 - COMPUTER NETWORKS

Lecture 17
Chapter 4

20th October, 2022

Nauman Moazzam Hayat nauman.moazzam@lhr.nu.edu.pk

Office Hours: 02:30 pm till 06:00 pm (Every Tuesday & Thursday)

Chapter 4 Network Layer

KUROSE ROSS

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

© All material copyright 1996-2013 J.F Kurose and K.W. Ross, All Rights Reserved Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

IPv4 Addressing

- The Internet is made of combination of LANs and WANs connected via routers
- A host needs to be able to communicate with another host without worrying about which physical network must be passed through
- Hosts must therefore be identified uniquely and globally at the network layer
- For efficient and optimum routing, routers must also be identified uniquely and globally at the network layer

IPv4 addressing: introduction

- Paddress: 32-bit identifier for each host, router interface (thus 2³² 223.1.1.2 i.e. approx. 4 billion globally unique IP addresses possible)
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)
- IP addresses associated with each interface (& not with host or router)

Notation
223.1.1.1 = 11011111 00000001 00000001 00000001

IPv4 Addressing

- IPv4 address is a 32-bit address, implemented in software, is used to uniquely and globally identify a host or a router on the Internet
- A device can have more than one IP address if it is connected to more than one network (multi-homed)
- An IP address have two parts, the netid and the hostid. They have variable lengths depending on the class of the address
- All devices on the same network have the same netid
- Two types of IPv4 addressing schemes, i.e.
 - Classful IP Addressing
 - Classless IP Addressing

IPv4 addressing: introduction

Q: how are interfaces actually connected?

A: we'll learn about that in chapter 5, 6.

A: wired Ethernet interfaces connected by Ethernet switches

For now: don't need to worry about how one interface is connected to another (with no intervening router)

Classful IPv4 Addressing

	First byte	Second byte	Third byte	Fourth byte
Class A	0–127			
Class B	128-191			
Class C	192-223			
Class D	224–239			
Class E	240-255			
b. Dotted-decimal notation				

- a. Binary notation
 - Where = net ID & = host ID Big Big Waste, thus being replaced by Classless IP Addressing

Class	Max. Number of Networks (Blocks)	Max. # of nodes in the network (Block Size)	Application
Α	2 ⁷ = 128	2 ²⁴ = 16,777,216	Unicast
В	214 = 16,384	2 ¹⁶ = 65,536	Unicast
С	2 ²¹ = 2,097,152	28 = 256	Unicast
D	1	2 ²⁸ = 268,435,456	Multicast
Е	1	2 ²⁸ = 268,435,456	Reserved

Special IP addresses (Reserved)

Special Address	<u>Netid</u>	<u>Hostid</u>	Source/Destination
■ Network Address	Specific	All 0's	None Example: For IP Address 75.3.1.28, it will be 75.0.0.0
 Direct Broadcast Address 	Specific	All 1's	Destination When source host in one network sends data to all hosts in another network (e.g. 75.255.255.255 for the above network.)
 Limited Broadcast Address 	All 1's	All 1's	Destination Data reaches from source to all the hosts in the same network (i.e. 255.255.255.255)
■ This host on this	All 0's	All 0's	Source Reserved for this host when it boots
network		~	up (temporary) (i.e. 0.0.0.0)
Specific host on this network	All 0's	Specific	Destination Example: For IP Address 75.3.1.28, it will be 0.3.1.28
 Loopback address 	127	Any	Destination

Packets do not leave the node (NIC).

Private IP Addressing

- One of the problems in IP network address allocation is that many hosts do not require access to hosts in other networks ⇒ Assigning Globally unique public IP addresses for such hosts may be wasteful
- IETF proposed the use of Private IP addresses that are <u>not</u> advertised outside the private network.

Range			Total
10.0.0.0	to	10.255.255.255	2 ²⁴ Commercial use
172.16.0.0	to	172.31.255.255	2 ²⁰ Mostly Commercial
192.168.0.0	to	192.168.255.255	2 ¹⁶ Residential use

Private IP Addresses are non-routable

motivation: local network uses just one public / global IP address as far as outside world is concerned:

- range of addresses not needed from ISP: just one IP address for all devices
- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- devices inside local net not explicitly addressable, visible by outside world (a security plus)
- Implemented in the border (access) router separating the private & the public network
- Was introduced with Windows 2000

all datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

implementation: NAT router must:

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 - ... remote clients/servers will respond using (NAT IP address, new port #) as destination addr
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

- 16-bit port-number field:
 - 60,000 plus (=2¹⁶) simultaneous connections with a single IP address!
- NAT is controversial:
 - routers should only process up to layer 3
 - violates end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications
 - address shortage should instead be solved by IPv6
 - Study NAT Traversal Problem & Solutions (including static configuration, UPnP / IGD & relaying from the textbook, page 351,352...)

Quiz # 3 (Chapter - 3)

- On: Thursday, 20th October, 2022 (During the lecture)
- Rescheduled To: Tuesday, 25th October, 2022 (During the lecture)
- Quiz to be taken during own section class only