Community and Crime

2019 FALL ESC Final Project

1 We are 1조 ! 김윤환 엄상준 이솔희 전은지 최우현

Contents

00

프로젝트 소개

Data 소개 및 프로젝트 소개

01

EDA 정리 및 요약

Exploratory Data Analysis

02

모델링

베이지안 방법을 활용한 Y imputation

03

결론 및 한계점

할말하않

프로젝트 소개

00 프로젝트 소개

Attribute Information: (122 predictive, 5 non-predictive, 1 goal)

- -- state: US state (by number) not counted as predictive above, but if considered, should be consided nominal (nominal)
- -- county: numeric code for county not predictive, and many missing values (numeric)
- -- community: numeric code for community not predictive and many missing values (numeric)
- -- communityname: community name not predictive for information only (string)
- -- fold: fold number for non-random 10 fold cross validation, potentially useful for debugging, paired tests not predictive (numeric)
- -- population: population for community: (numeric decimal)
- -- householdsize: mean people per household (numeric decimal)
- -- racepctblack: percentage of population that is african american (numeric decimal)
- -- racePctWhite: percentage of population that is caucasian (numeric decimal)
- -- racePctAsian: percentage of population that is of asian heritage (numeric decimal)
- -- racePctHisp: percentage of population that is of hispanic heritage (numeric decimal)
- -- agePct12t21: percentage of population that is 12-21 in age (numeric decimal)
- -- agePct12t29: percentage of population that is 12-29 in age (numeric decimal)
- -- agePct16t24: percentage of population that is 16-24 in age (numeric decimal)
- -- agePct65up: percentage of population that is 65 and over in age (numeric decimal)
- -- numbUrban: number of people living in areas classified as urban (numeric decimal)

- -- LemasPctOfficDrugUn: percent of officers assigned to drug units (numeric decimal)
- -- PolicBudgPerPop: police operating budget per population (numeric decimal)
- -- ViolentCrimesPerPop: total number of violent crimes per 100K population (numeric decimal) GOAL attribute (to be predicted)

Data Description

1989년 미국의 1994개 도시들에 대한 US Census

<u>Goal</u>

베이지안 method를 활용하여 범죄지도 완성하기

EDA 정리 및 요약

1. NA 제거

##		n	naratio	nacatg
##	1	LemasSwornFT	0.845	Bad
##	2	LemasSwFTPerPop	0.845	Bad
##	3	LemasSwFTFieldOps	0.845	Bad
##	4	LemasSwFTFieldPerPop	0.845	Bad
##	5	LemasTotalReq	0.845	Bad
##	6	LemasTotReqPerPop	0.845	Bad
##	7	PolicReqPerOffic	0.845	Bad
##	8	PolicPerPop	0.845	Bad
##	9	RacialMatchCommPol	0.845	Bad
##	10	PctPolicWhite	0.845	Bad
##	11	PctPolicBlack	0.845	Bad
##	12	PctPolicHisp	0.845	Bad
##	13	PctPolicAsian	0.845	Bad
##	14	PctPolicMinor	0.845	Bad
##	15	OfficAssgnDrugUnits	0.845	Bad
##	16	NumKindsDrugsSeiz	0.845	Bad
##	17	PolicAveOTWorked	0.845	Bad
##	18	PolicCars	0.845	Bad
##	19	PolicOperBudg	0.845	Bad
##	20	LemasPctPolicOnPatr	0.845	Bad
##	21	LemasGangUnitDeploy	0.845	Bad
##	22	PolicBudgPerPop	0.845	Bad

"변수 28개 제거"

- NA가 0으로 적혀 있는 LemasPctOfficDrugUn
- NA 비율이 80% 이상인 변수 22개
- 분석에 불 필요할 것으로 생각되는 변수들

(communityname, State, communityCode,

countryCode, fold)

- Response Variable이 NA인 변수

2. Outlier 처리

```
dtx_q1 <- c()
dtx_q3 <- c()
for(i in 1:ncol(dtx)) {
    dtx_q1[i] <- quantile(dtx[,i])[1]
    dtx_q3[i] <- quantile(dtx[,i])[3]
}

dtx_q <- as.data.frame((cbind(dtx_q1, dtx_q3)))

dtx_q <- dtx_q %>%
    mutate(dtx_out1 = dtx_q1 - 5*(dtx_q3-dtx_q1)) %>%
    mutate(dtx_out2 = dtx_q3 + 5*(dtx_q3-dtx_q1))
```

numImmig

"사분위수 활용"

데이터의 분산을 고려하여 > Q3 + 5 * IQR < Q1 - 5 * IQR 일 경우 Outlier 로 간주!

But

NumInShelters NumStreet 는 삭제!

3. Variable Transformation

"Skewness 활용"

Skewness > 2 0을 0.03으로 대체 후 Log 변환 Skewness < -2 Square 변환

> But 여전히 Skewness인 변수는 제거


```
## a

## [1,] "log HispPerCap" "27" "-10.2934214020652"

## [2,] "log OwnOccQrange" "82" "-9.87742635877414"

## [3,] "log AsianPerCap" "25" "-6.17693510840391"

## [4,] "log blackPerCap" "23" "-5.89841276251884"

## [5,] "log OtherPerCap" "26" "-3.41634952946269"

## [6,] "log indianPerCap" "24" "-2.83272299998629"

## [7,] "sg PctHousOccup" "72" "-2.57681111345612"
```

4. 변수 선택

"Correlation 활용"

변수 Groping을 통해 높은 correlation을 갖는 변수를 제거하는 방식으로 차원 축소

others	race	house	age	urban	income
race income	economic	education	employment	marital state	family form
immigrant	ownership	rent	poverty	pop change	

[Description을 바탕으로 한 직관적 Grouping]

1	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р	Q
1	others	race	House	Age	urban	Income	Race Inco	Economic	Education	Employme	Marital Sta	Family For	Immigrant	Ownership	Rent	Population	Change
2	population	racepctbla	household	log agePc	pctUrban	medIncom	OtherPerC	PctPopUn	PctLess9th	PctUnemp	MalePctNe	PctKids2Pa	Numlmmi	PctWOFull	MedRentP	PctBornSa	meState
3	LandArea	racePctWh	PersPerRei	agePct65u	ip.	log pctWF	armSelf		PctBSorMo	PctEmploy	TotalPctDi	PctWorkM	PctImmigF	Recent	MedOwnC	PctSameCi	ity85
4	PopDens	racePctAsi	PctPersDer	nseHous		pctWlnvln	С			PctEmplPro	ofServ	PctKidsBo	PctlmmigF	Rec10	MedOwnC	PctSameSt	tate85
5	PctUsePub	racePctHis	PctHousLe	ss3BR		pctWRetire	9			PctOccup!	Manu		PctRecent	lmmig			
6			MedNumE	3R													
7			HousVacar	nt													
8			PctHousOv	wnOcc													
9			PctVacant6	Boarded													
10			PctVacMor	re6Mos													
11			MedYrHou	ısBuilt													

[최종 49개 변수]

모델링

사용한 방법론들

02 Modeling

1. Linear Regression with Stepwise Selection

Y 변수 별로 stepwise selection을 통해 변수 선택

e.g. Rages ~ population, racepctblck, racepctAsian, HousVacant, PctVacantBoarded, MedYrHousBuilt, medIncome, PctPopUnderPov, PctBSorMore, PctOccupManu, TotalPctDiv, PctImmigRec10, PctRecentImmig, PctWOFullplumb, MedRentPctHousInc, MedOwnCostPctIncNoMtg

Call:

Im(formula = rapes ~ population + racepctblack + racePctWhite +
 PersPerRentOccHous + PctPersDenseHous + MedNumBR + PctVacantBoarded +
 MedYrHousBuilt + agePct65up + PctOccupManu + MalePctNevMarr +
 PctKids2Par + NumImmig + PctImmigRec10 + PctW0FullPlumb +
 MedRentPctHousInc + MedOwnCostPctIncNoMtg, data = new.dt.rapes)

Residuals:

Min 1Q Median 3Q Max -978.57 -373.32 -35.53 364.67 1200.05

Coefficients:

Estimate Std. Error t value Pr(>|t|) 644.49 198.77 3.242 0.00121 ** (Intercept) population 57.43 23.34 2.461 0.01398 * racepctblack 65.42 24.20 2.703 0.00696 ** 69.94 29.86 2.342 0.01931 * racePctWhite PersPerRentOccHous -64.79 24.24 -2.673 0.00762 ** PctPersDenseHous 56.00 30.69 1.825 0.06827. MedNumBR2 159.05 197.41 0.806 0.42056 MedNumBR3 37.61 201.52 0.187 0.85199 MedNumBR4 189.72 231.65 0.819 0.41293 PctVacantBoarded 24.69 17.04 1.449 0.14744 33.56 17.49 1.919 0.05523. MedYrHousBuilt -42.98 19.25 -2.233 0.02573 * agePct65up PctOccupManu 40.31 19.45 2.073 0.03837 * MalePctNevMarr -41.11 20.62 -1.994 0.04641* PctKids2Par -85.21 31.24 -2.728 0.00647 ** Numlmmia -54.54 27.93 -1.952 0.05110. PctlmmigRec10 -43.20 16.58 -2.606 0.00926 ** PctW0FullPlumb 30.75 16.62 1.850 0.06450 43.24 16.70 2.590 0.00971 ** MedRentPctHousInc MedOwnCostPctIncNoMtg -46.08 14.60 -3.155 0.00164 ** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Residual standard error: 469.8 on 1311 degrees of freedom Multiple R-squared: 0.1332, Adjusted R-squared: 0.1206 F-statistic: 10.6 on 19 and 1311 DF, p-value: < 2.2e-16

2. Bayesian Regression

* Bas 라이브러리 사용

```
#larcenies
lm_larcenies <- bas.lm(larcenies ~population+LandArea+PopDens+PctUsePubTrans+racepct)</pre>
                       prior='g-prior',
                       data=new.dt.larc.
                      method='MCMC',
                      MCMC.iterations=20000.
                      modelprior=uniform())
lm_larcenies
summary(lm_larcenies)
BPM_pred_larc = predict(lm_larcenies, estimator="BPM", se.fit=TRUE)
bayes_var_larc<-lm_larcenies$namesx[BPM_pred_larc$bestmodel+1]</pre>
plot(lm_larcenies, which=4, ask=F)
#bayes test
BPM_pred_larc_test=predict(lm_larcenies, newdata = scaled.test.dtx,
                             estimator = 'BPM', se.fit=T)
mse_bay_larc<-mean((scaled.test.dty$larcPerPop-BPM_pred_larc_test$Ypred[1,])**2)</pre>
#linear model test
lm_larc_stand<-lm(larcenies~.,data = new.dt.larc)</pre>
lm_larc_stand<-lm(formula = larcenies ~ PopDens + racepctblack + racePctAsian +</pre>
                    householdsize + PctHousLess3BR + HousVacant + PctHousOwnOcc +
                    MedYrHousBuilt + agePct65up + pctWInvInc + pctWRetire + PctPopUnderPov +
                    PctBSorMore + PctUnemployed + PctEmploy + PctEmplProfServ +
                   TotalPctDiv + NumImmiq + PctImmiqRec10 + MedOwnCostPctInc,
                  data = new.dt.larc)
summary(lm_larc_stand)
mse_lm_larc<-mean((scaled.test.dty$larcPerPop-predict(lm_larc_stand, newdata = scaled.test.dtx))**2)</pre>
#med imputation test
mse_med_larc<-mean((scaled.test.dty$larcPerPop-rep(median(as.numeric(scaled.train.dty$larcPerPop)),</pre>
                                                   dim(scaled.test.dty)[1]))**2)
```

0.5 이상의 변수가 생각보다 적어서 실제 사용시엔 0.5 미만의 변수도 선택함

02 Modeling

screeplot of pca

Component 10개 선택

3. PCA

```
PC8
    PC1
             PC2
                     PC3
                              PC4
                                      PC5
                                               PC6
                                                       PC7
1.003000 1.001178 1.002163 1.002354 1.003774 1.002005 1.001500 1.003328
1.000948 1.002676
call:
lm(formula = murder ~ ., data = murder_pca_train)
Standardized Coefficients::
(Intercept)
                   PC1
                              PC2
                                         PC3
                                                    PC4
                                                                PC5
0.00000000 0.59093655 -0.06528212 0.10348385 -0.01307535
                              PC8
                                         PC9
                                                   PC10
-0.13500549 0.05816879 0.03211252 -0.14949900 -0.02176842
 lm(formula = murder ~ ., data = murder_pca_train)
 Residuals:
    Min
              1Q Median
                               3Q
 -5.8676 -1.4366 -0.2704 1.5647 5.7369
 Coefficients:
             Estimate Std. Error t value Pr(>|t|)
 (Intercept) -0.42301
                          0.05997 -7.053 2.81e-12 ***
              0.50257
 PC1
                          0.01723
                                  29.174 < 2e-16 ***
 PC2
             -0.06776
                          0.02100
                                  -3.226 0.00129 **
 PC3
              0.14744
                          0.02885
                                   5.111 3.67e-07 ***
             -0.01901
                         0.02945
 PC4
                                  -0.646 0.51857
 PC5
              0.38896
                          0.03449 11.278 < 2e-16 ***
 PC6
             -0.25144
                          0.03771
                                  -6.668 3.79e-11 ***
 PC7
              0.11117
                          0.03868
                                   2.874 0.00412 **
 PC8
              0.07426
                          0.04685
                                   1.585 0.11318
 PC9
             -0.37351
                          0.05055 -7.388 2.63e-13 ***
 PC10
             -0.05629
                          0.05237 -1.075 0.28263
 signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
 Residual standard error: 2.093 on 1322 degrees of freedom
 Multiple R-squared: 0.4592,
                                 Adjusted R-squared: 0.4551
 F-statistic: 112.3 on 10 and 1322 DF, p-value: < 2.2e-16
 pca ~ y=murder mse : 4.504212
```

4. Lasso

최적 람다값으로 lambda.mse 선택

coef(cv_murder_lasso, s=cv_murder_lasso\$lambda.min)

```
(Intercept)
                       -0.423381326
population
                        0.508425544
LandArea
                        0.065466318
PopDens
PctUsePubTrans
racepctblack
                        0.441841406
racePctWhite
                       -0.094762287
racePctAsian
racePctHisp
                        0.056529334
householdsize
                        0.195251447
PersPerRentOccHous
PctPersDenseHous
PctHousLess3BR
                       -0.020239569
MedNumBR
                        0.022684460
HousVacant
PctHousOwnOcc
PctVacantBoarded
PctVacMore6Mos
MedYrHousBuilt
log.agePct12t29
agePct65up
pcturban
medIncome
log.pctWFarmSelf
pcťwinvinc
                       -0.178136508
pctwRetire
                       -0.015239269
PctPopUnderPov
                        0.007787827
PctLess9thGrade
PctBSorMore
PctUnemployed
PctEmploy
PctEmplProfServ
PctoccupManu
MalepctnevMarr
TotalPctDiv
                        0.354592689
PctKids2Par
                       -0.572010437
PctWorkMom
                       -0.166451362
PctKidsBornNeverMar
                        0.163679955
NumImmig
PctImmigRecent
                        0.035248734
PctImmiqRec10
PctRecentImmiq
PctwoFullPlumb
MedRentPctHousInc
MedownCostPctInc
MedownCostPctIncNoMtq
PctBornSameState
PctSameCity85
PctSameState85
```

5. Model MSE 비교

	Bayes	lm	median	рса	Lasso
Rapes	1 229585.1	233093.7	245029.5	227433.9	226243.5
Robb	1 373348.2	378676.1	339494.7	367232.2	368062.8
Assault	1 385216.7	387188.8	381820.3	382104.1	380456.7
Burg	1 367396.6	372042.3	405636.3	362480.3	359970
Larg	1 313305	316558	425239.2	327773.4	309277.7
auto	1 377780.9	384298.1	374954.4	373611.8	374410.5
arsons	1 279218.1	276164	275986.5	274905	273179.2

^{*} Murder은 데이터 결측치로 예상되는 0이 1000개 이상이라 제외함

02 Modeling

6. Y 변수 Imputation

V iolentCri	arsonsPerF	arsons	autoTheftF	autoTheft	larcPerPop	larcenies	burglPerPd	burglaries	assaultPerf	assaults	robbbPerF	robberies	rapesPerPc	rapes	murdPerPc
1170	281	50	263	138	44	218	146	127	1048	339	1870	3	2	2	0.03
195	896	3	92	275	247	846	855	668	20	203	666	300	844	3	0.03
681	1258	56	1298	89	1783	389	1863	374	1216	83	403	317	274	133	8.3
1231	1509	24	1071	442	1805	1278	377	281	977	371	2002	59	1079	153	4.63
704	1187	41	1533	107	2200	683	1155	41	570	421	1000	403	150	99	0.03
1217	207	173	690	66	1328	531	2195	694	685	64	438	416	1144	86	13.13
109	10	164	914	208	1439	737	1468	543	1492	345	629	90	944	87	0.03
393	294	45	2171	22	1911	1133	780	327	2120	14	1295	285	164	30	26.88
1662	359	140	1508	121	1908	397	427	586	1274	70	721	357	1579	74	3.11
818	1394	51	460	426	1865	261	624	597	292	309	123	211	1427	54	44.42
1750	386	173	1150	114	1417	383	274	675	1634	232	208	323	1435	91	6.54
352	1420	115	2072	479	1199	467	99 3	213	2060	418	1362	178	26	132	27.26
1873	246	154	1562	244	437	1392	1634	383	1189	123	1458	154	2	2	2.19
1097	940	157	1979	108	724	951	2054	177	414	239	614	238	278	79	5.02
86	597	101	167	168	852	909	1695	904	1072	403	1702	4	140	49	0.03
1721	773	179	2009	262	1432	97	354	511	1430	82	802	358	1037	31	2.39
642	1256	112	425	36	1099	562	349	907	2001	458	148	3 9 6	812	73	26.59
1561	753	122	1148	471	1245	1068	428	308	999	384	903	271	1169	167	12.89
338	754	101	756	287	1700	1105	1430	722	302	123	2	2	1445	3	0.03
1439	65	50	1220	525	1460	1233	259	308	1259	491	51	122	1140	4	0.03
611	380	140	432	456	1433	139	1859	321	341	363	1059	4	620	167	0.03

지도 시각화

한계점

한계점

- 1) 모델들의 R-square 값들이 굉장히 안 좋음. e.g.) rapes의 multivariate r-square는 0.1
- -> 회귀 모델의 가정이 틀렸을 것.
- -> y 변수들의 Skewness 처리를 해줬지만 정규분포화 되지 않는다.
- -> Box-cox 등을 이용해서 Y 변수 처리를 새로 해줘야 할 듯
- 2) murder도 0인 애들이 결측치일 것.
- -> 다른 변수들과 같이 없는 애들은 결측치일 확률이 높으므로 그런 애들은 결측치로 처리해서 Imputation

