# Ejercicios - Teoría de representaciones

¡Los estudiantes más cheveres!

2020-20

## 1. Convenciones

• **(FH)** Fulton, William y Harris, Joe: Representation Theory, A First course. Graduate Texts in Mathematics,1991.

## 2. Ejercicios

## Semana 1

1. Se<br/>a $W=\mathbb{C}^2$ y considere la base ordenada canónic<br/>a $\{\vec{e_1},\vec{e_2}\}.$  Sea $\rho: {\rm C}_4\to {\rm GL}(W)$ el homomorfismo dado por

 $\rho(g) = \frac{1}{2} \begin{bmatrix} 1+i & -1+i \\ -1+i & 1+i \end{bmatrix}$ 

- a) Verifique que esta es una representación.
- b) Encuentre una base tal que  $W = \rho^{(i)} \oplus \rho^{(j)}$ .
- 2. Fije un entero positivo n y sea  $\mathcal{G} = C_n$ . Demuestre que la siguiente matriz es unitaria:

$$M = \frac{1}{\sqrt{n}} \begin{bmatrix} \text{Representaciones} \\ \text{para } \mathcal{G} \text{ de} \\ \text{grado } 1. \end{bmatrix}$$

Es decir, muestre que  $M^*M = I$ .

- 3. Considere la acción de  $S_3$  en  $V = \langle \vec{e}_1, \vec{e}_2, \vec{e}_3 \rangle$  dada por  $\rho(\sigma)(\vec{e}_i) = \vec{e}_{\sigma(i)}$ . Demuestre que  $\Lambda = \{(a, b, c) : a + b + c = 0\}$  es una representación irreducible.
- 4. Sea V un espacio vectorial complejo de dimensión finita y  $T:V\to V$  un operador lineal. Demuestre que:
  - a) T es diagonalizable si y solamente si su polinomio minimal es producto de factores lineales distintos.
  - b) Si T tiene orden finito, entonces T es diagonalizable.
  - c) Suponga que  $S:V\to V$  es otro operador lineal, entonces se tiene que T y S conmutan si y solamente si S y T son simultáneamente diagonalizables.
  - d) ¿Qué implica esto sobre las representaciones de grupos abelianos finitos?

## Semana 2

- 1. Sea  $\mathcal{G}$  un grupo finito y considere el espacio vectorial  $V = \langle \{e_g : g \in \mathcal{G}\} \rangle$ .
  - a) Verifique que  $\rho: \mathcal{G} \to \mathrm{GL}(V)$  dada por  $\rho(h)(e_g) = e_{hg}$  para cualesquiera  $h, g \in \mathcal{G}$  es un homomorfismo de grupos. (Recuerde: A esta representación  $(V, \rho)$  se la conoce como la representación regular de  $\mathcal{G}$ .)

1

- b) Calcule  $\operatorname{tr}(\rho(h))$  para todo  $h \in \mathcal{G}$ , donde  $\rho$  es como en la representación regular de  $\mathcal{G}$ .
- c) ¿Verdadero o Falso? Las matrices  $[\rho(h)]_B$  (donde  $B = \{e_q : g \in \mathcal{G}\}$ ) son simétricas.
- 2. Sea  $\mathcal{G}$  un grupo finito y considere  $\mathcal{F} := \operatorname{Fun}(\mathcal{G}, \mathbb{C}) = \{f : \mathcal{G} \to \mathbb{C} | f \text{ es función}\}$ . Defina la acción contragradiente de  $\mathcal{G}$  sobre  $\mathcal{F}$  como el mapa  $\rho^* : \mathcal{G} \to \operatorname{GL}(\mathcal{F})$  tal que, si  $h \in \mathcal{G}$ , entonces  $\rho^*(h) : \mathcal{F} \to \mathcal{F}$  es el mapa tal que  $\rho^*(h)(f)(z) = f(h^{-1}z)$ . Demuestre que  $(\mathcal{F}, \rho^*)$  es una representación y explique por qué se multiplica a izquierda por  $h^{-1}$  y en lugar de h.
- 3. Sea  $\mathcal{G}$  un grupo y sea X un conjunto finito. Suponga que  $\mathfrak{J}: \mathcal{G} \to \operatorname{Aut}(X)$  (recuerde que  $\operatorname{Aut}(X) = \{b: X \to X \mid b \text{ es una biyección}\}$ ) es un homomorfismo de grupos. Demuestre que esto es equivalente a la definición usual de un grupo actuando en un conjunto con un mapa de la forma  $\mathcal{G} \times X \to X$ .
- 4. Suponga que  $\mathcal{G}$  actúa sobre X mediante la acción  $\mathfrak{J}:\mathcal{G}\to \operatorname{Aut}(X)$  y considere las siguientes definiciones:
  - La representación de permutaciones definida por la acción  $\mathfrak{J}$  de  $\mathcal{G}$  sobre X se construye así:  $W = \langle \{e_x : x \in X\} \rangle$  y  $\rho : \mathcal{G} \to \mathrm{GL}(W)$  dado por  $\rho(h)(e_x) = e_{\mathfrak{J}(h)(x)}$ .
  - Sea  $\mathcal{H} = \{f : X \to \mathbb{C}\}$  dotado de la acción contra-gradiente  $\rho^* : \mathcal{G} \to GL(\mathcal{H})$  dada por  $\rho^*(h)(f)(z) = f(\mathfrak{J}(h^{-1})(z))$  para todos  $h \in \mathcal{G}, f \in \mathfrak{H}$  y  $z \in X$ .
  - a) Demuestre que  $(W, \rho)$  y  $(\mathcal{H}, \rho^*)$  son representaciones.
  - b) Demuestre que estas representaciones son isomorfas.
  - c) Dada  $(W, \rho)$  reconstruya la acción de  $\mathcal{G}$  sobre X.
- 5. Sea  $X_n = \{\text{ciclos no dirigidos entre n elementos}\}\ y$  considere la acción  $S_n \to X$  dada por  $\sigma(a_1 \ldots a_n) = (\sigma(a_1) \ldots \sigma(a_n))$ . Calcule  $\operatorname{tr}(\rho(\sigma))$  para cada  $\sigma \in S_n$  para  $(W, \rho)$  correspondiente a esta acción, para n = 4, 5, 6.
- 6. Sea  $(V, \rho)$  una representación de  $\mathcal{G}$  y sean  $B, B^*$  bases de V y  $V^*$ , respectivamente. Muestre que para  $h \in \mathcal{G}$  si  $[\rho(h)]_B = A$ , entonces

$$[\rho^*(h)]_B^* = (A^t)^{-1}.$$

- 7. Suponga que  $[\rho(h)]_B$  es unitaria para todo  $h \in \mathcal{G}$ . Demuestre que  $\operatorname{tr}(\rho^*(h)) = \overline{\operatorname{tr}(\rho(h))}$  para todo  $h \in \mathcal{G}$ .
- 8. a) Muestre que  $(V \oplus W)^* \cong V^* \oplus W^*$  en la categoría de representaciones.
  - b) Sea  $\rho: C_n \to \mathrm{GL}(\mathbb{C}^m)$  una representación cualquiera, calcule  $\rho^*$ .
- 9. a) Encuentre ecuaciones que caracterizan los vectores descomponibles de  $V \oplus W$ , donde  $\dim(V) = n$  y  $\dim(W) = m$ .
  - b) Cuál es el mínimo número de tensores descomponibles necesario, para expresar todo elemento de  $V \oplus W$ .
- 10. Si  $(\lambda_1, g_1)$  y  $(\lambda_2, g_2)$  son productos tensoriales entonces hay un isomorfismo canónico entre ellos.

Hint:

a) Pruebe que si  $\varphi = id$  es el único mapa tal que el diagrama conmuta



b) Utilizar la propiedad universal para obtener los mapas  $\varphi_1$  y  $\varphi_2$  y conclucir por a) que  $\varphi_1 \circ \varphi_2 = \varphi_2 \circ \varphi_1 = id$ .

2



- 1. Sea  $V^*$  el espacio dual de V y considere el mapa  $V \times V^* \xrightarrow{\psi} \mathbb{R}$  tal que  $\psi(\varphi, v) = \langle \varphi, v \rangle = \varphi(v)$ . Demuestre:
  - a) Si  $(V^*, \rho^*), (V, \rho)$  son representaciones, entonces  $\forall g \in \mathcal{G}, \langle \rho^*(g)(\varphi), \rho(g)(v) \rangle = \langle \varphi, v \rangle$ .
  - b) Verdadero o Falso: esta identidad determina  $\rho^*(g)$  de forma única.
- 2. Encuentre una descomposición en irreducibles de  $W \otimes W$ , con W el espacio  $[1,1,1]^{\perp}$  descrito en el ejercicio 3 de la Semana 1.
- 3. Demuestre que:
  - a)  $\rho_{Hom(V,W)}: \mathcal{G} \to GL(Hom(V,W))$  es un homomorfismo de grupos.
  - b) Si  $(Z, \rho_Z)$  es una representación, definamos  $Z^G = \{z \in Z | \forall g \in G, \rho_Z(g)(z) = z\}$ . Demuestre que  $Hom(V, W)^G = \{T : V \to W, \text{morfismos de representaciones}\}$ .
  - c)  $V^* \cong Hom(V, \mathbb{C})$ , donde  $\mathbb{C}$  es la representación trivial.
- 4. Muestre que  $Hom(V, W) \cong V^* \otimes W$  como representaciones.
- 5. Demuestre que:
  - a) Si  $(\Lambda_1, g_1)$  y  $(\Lambda_2, g_2)$ , con  $g_1, g_2$  mapas d-lineales y simétricos, satisfacen la propiedad universal, entonces son canónicamente isomorfos.
  - b) La construcción explicita de  $(Sym^d(V), \mu)$  satisface:
    - 1)  $\dim(Sym^d(V)) = \binom{n+d-1}{d}$
    - 2)  $(Sym^d(V))$  satisface la propiedad universal
    - 3)  $Sym^d(V)^* \cong (Sym^d(V^*))$
- 6. Calcule  $[Sym^3(T)]_B$ .
- 7.  $Sym^d(V)^* \cong (Sym^d(V^*))$  como representaciones.
- 8. Sea  $V = \langle e_1, ..., e_k \rangle$  y sean  $v_1, ..., v_k \in V$ . Demuestre que

$$v_1 \wedge \dots \wedge v_k = \sum_{I \subseteq [n], |I| = k} \det(M_I) e_1 \wedge \dots \wedge e_k \tag{1}$$

Donde  $I = \{i_1, ..., i_k\}, i_i < i_{i+1} y M$  es la submatriz cuadrada con filas indexadas por I.

- 9. Demuestre:
  - a) La propiedad universal del producto exterior lo determina de manera única.
  - b) Sobre la construcción demuestre:
    - 1)  $dim(\Lambda^k V) = \binom{n}{k}$
    - 2)  $(\Lambda^k V, \wedge)$  satisface la propiedad universal.
- 10. Demuestre que, como representaciones:
  - $a) \ \Lambda^k(V^*) \cong \Lambda^k V^*$
  - b)  $\Lambda^k(U \oplus W) = \bigoplus_{a+b=k} [\Lambda^a U \otimes \Lambda^b W]$
- 11. Demuestre que, como representaciones:  $V \otimes V \cong Sym^2(V) \oplus \Lambda^2 V$

- 1. Demuestre que hay una biyección entre matrices hermitianas  $n \times n$  definidas positivas y productos internos hermitianos.
- 2. Si V tiene un producto interno hermitiano,  $T:V\to W$  es unitaria si  $\langle Tv,Tw\rangle=\langle v,w\rangle$ . Demuestre que:
  - a) Esta definición es equivalente a  $||Tv|| = ||v||, \forall v \in V$ .
  - b) Si  $u_1, ..., u_n = B$  son base ortonormal con el producto hermitiano, entonces  $[T]_B = A$  cumple  $A^* = A^{-1}$
- 3. Escriba  $W^{\perp} \otimes W^{\perp}$  como suma de irreducibles.
- 4. Sea V una representación y W,W' subrepresentaciónes de V irreducibles. Si como espacios vectoriales,  $V=W\oplus W'$ , muestre que esto también es cierto como representaciones.

### Semana 5

- 1. (a) Sea V una representación irreducible de un grupo finito G. Sean  $\langle \cdot, \cdot \rangle_G$  y  $\langle \cdot, \cdot \rangle_G'$  dos productos hermitianos G-invariantes sobre V. Muestre que existe  $\lambda \in \mathbb{R}^{>0}$  tal que  $\langle \cdot, \cdot \rangle_G' = \lambda \langle \cdot, \cdot \rangle_G$ .
  - (b) Describa los productos hermitianos G—invariantes sobre una representación V cualquiera (Sugerencia: empiece por considerarlos como productos internos).
- 2. Muestre que, como espacios vectoriales (o representaciones triviales), hay isomorfismos

$$\operatorname{Hom}_G(A, B \oplus B') \simeq \operatorname{Hom}_G(A, B) \oplus \operatorname{Hom}_G(A, B')$$
 (2)

$$\operatorname{Hom}_G(A \oplus A', B) \simeq \operatorname{Hom}_G(A, B) \oplus \operatorname{Hom}_G(A', B)$$
 (3)

## Semana 6

- 1. (Resuelto en clase) Sea V una representación irreducible de G. Calcule  $\operatorname{End}_G(V)$ .
- 2. (Resuelto en clase) Sean  $V_1, V_2$  representaciones irreducibles de G, sea  $V = V_1 \oplus V_2$ . Calcule  $\operatorname{End}_G(V)$ .
- 3. (Resuelto en clase) Sea V' una representación irreducible de G, sea  $V=V'\oplus V'$ . Calcule  $\operatorname{End}_G(V)$ .
- 4. Sea  $A := \mathbb{C}^{n \times n}$  el conjunto de matrices  $n \times n$  con entradas en  $\mathbb{C}$ . Muestre que Z(A), el centro de A, consiste de los múltiplos escalares de la matriz identidad.

## Semana 7

- 1. Sea V un espacio vectorial. Demuestre que si  $\varphi: V \to V$  es una proyección (i.e.  $\varphi^2 = \varphi$ ) y  $U := im(\varphi), W := ker(\varphi)$  entonces se tienen las siguientes propiedades.
  - a.  $U \oplus W = V$ .
  - b.  $\varphi(u) = u$  para cualquier  $u \in U$  y  $\varphi(w) = 0$  para cualquier  $w \in W$ .
  - c. En bases que respetan la descomposición tenemos que  $[\varphi]_B = \begin{bmatrix} I_d & 0 \\ 0 & 0 \end{bmatrix}$ .
  - d.  $tr(\varphi) = \dim(U) = \dim(im(\varphi))$ .
- 2. Demuestre que  $\varphi = \frac{1}{|G|} \sum_{g \in G} \rho_V(g)$  es un morfismo de representaciones, i.e.  $\varphi \in \operatorname{Hom}_G(V, V)$ .
- 3. Clases de conjugación de  $S_n$ .

- a. ¿Qué significa conjugar? Si  $h, f \in S_n$ , muestre que  $h^{-1} \circ f \circ h$  corresponde a çambiar los nombres" de los elementos de [n] para aplicar f.
- b. Demuestre que las clases de conjugación de  $S_n$  están en biyección con las particiones de  $n(\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n \ge 0, \lambda_i \in \mathbb{N}, n = \lambda_1 + \ldots + \lambda_n)$ .
- c. Encuentre una fórmula cerrada para el tamaño de una clase de conjugación de  $n = \lambda_1 + \ldots + \lambda_n$ .
- d. (Para investigar) ¿Qué tan rápido crece p(n) = número de particiones de n?

- 1. Calcular la tabla de caracteres de  $S_5$  y de  $A_5$  y dar alguna construcción de todas las representaciones irreducibles.
- 2. Demuestre que para  $j \geq 5$  no existen homomorfismos sobreyectivos  $S_j \to S_d$  con 2 < d < j.
- 3. Demuestre que si V es una representación irreducible y  $\dim(V) \geq 2$  entonces existe  $g \in G$  tal que  $\chi_V(g) = 0$ .
- 4. Ejercicios 2.34, 2.35, 2.37 y 2.39 de (FH).
- 5. Recuerde que para  $P:G\to\mathbb{C}$  la transformada de Fourier de P es  $\hat{P}:\{\text{irreps de G}\}\to \text{matrices dada por}$

$$\hat{P}(\rho_{V_i}) = \sum_{g \in G} P(g)[\rho_{v_i}].$$

Sea  $P: S_3 \to \mathbb{C}$  dada por  $P(e) = p, p \in [0, 1], P(12) = P(13) = P(23) = \frac{1-p}{3}$  y P(123) = P(132) = 0. Calcule  $\hat{P}$ .

#### Semana 9

- 1. Demuestre que  $(\mathbb{C}[\mathcal{G}], *) \simeq (\mathbb{C}\mathcal{G}, \cdot)$  (isomorfismo de álgebras).
- 2. Una distribución de probabilidad P en  $\mathcal{G}$  es una función tal que para todo  $t \in \mathcal{G}$ , se tiene  $P(t) \in \mathbb{R}$ , P(t) > 0 y  $\sum_{g \in \mathcal{G}} P(g) = 1$ . Sean P,Q distribuciones de probabilidad en  $\mathcal{G}$  y sea  $(g_1,g_2)$  una variable aleatoria tomando valores en  $\mathcal{G} \times \mathcal{G}$  que cumple:
  - $g_1, g_2$  son independientes.
  - $g_1 \sim P$ ,  $g_2 \sim Q$ . Es decir que para todo  $t \in \mathcal{G}$  se tiene que  $\mathbb{P}\{g_1 = t\} = P(t)$  y  $\mathbb{P}\{g_2 = t\} = Q(t)$ .

Defina  $h = g_1g_2$ . Demuestre que para todo  $t \in \mathcal{G}$ ,

$$\mathbb{P}\{h=t\} = (P*Q)(t).$$

3. Sea  $\langle \cdot, \cdot \rangle$  el producto interno en  $\operatorname{Hom}(\mathbb{C}\mathcal{G}, \mathbb{C}\mathcal{G})$  definido por

$$\langle T_1, T_2 \rangle := \frac{1}{|\mathcal{G}|} \operatorname{tr}(A_1 A_2^*),$$

con  $A_i := [T_i]_{\{e_g:g \in \mathcal{G}\}}$ . Demuestre que el valor de este producto interno es independiente de la base ortonormal que se escoja para definir las matrices. Es decir, si las matrices de  $T_1$  y  $T_2$  con respecto a otra base ortonormal son respectivamente  $B_1$  y  $B_2$ , entonces aplicando la definición del producto interno reemplazando  $A_1$  y  $A_2$  por  $B_1$  y  $B_2$  el resultado es el mismo.

4. Para  $\varphi : \mathbb{C}[\mathcal{G}] = \mathbb{C}\mathcal{G} \longrightarrow \operatorname{Hom}(\mathbb{C}\mathcal{G}, \mathbb{C}\mathcal{G})$  función definida por  $\varphi(f) = m_f$  donde  $f = \sum_{g \in \mathcal{G}} f(g) e_g$  y  $m_f : \mathbb{C}\mathcal{G} \to \mathbb{C}\mathcal{G}$  con  $m_f(e_n) = (\sum_{g \in \mathcal{G}} f(g) e_g) \cdot e_n$ , tenemos el siguiente lema

Lema 1.  $\varphi$  tiene las siguiente propiedades

- a)  $\varphi$  es un homomorfismo de álgebras
- b) Si  $\langle e_g, e_h \rangle = \delta_{gh} \ y \ \langle A, B \rangle = \frac{1}{|\mathcal{G}|} \operatorname{tr}(AB^*), \ entonces$

$$\langle f_1, f_2 \rangle = \langle \varphi(f_1), \varphi(f_2) \rangle.$$

c) para todo  $t \in \mathcal{G}$   $f(t) = \frac{1}{|\mathcal{G}|} \operatorname{tr}(\varphi(f)[m_{e_{t-1}}]_B)$ 

Demuestre que este lema implica el siguiente teorema

**Teorema 2** (Propiedades de transformada de Fourier). Sean  $P, Q : \mathcal{G} \to \mathbb{C}$ .

- $\widehat{P*Q}(\rho_i) = \hat{P}(\rho_i)\hat{Q}(\rho_i),$
- $\langle P, Q \rangle = \frac{1}{|\mathcal{G}|} \sum_{j=1}^{k} \dim(V_j) \operatorname{tr}(\hat{P}(\rho_j) \hat{Q}(\rho_j)^*)$  (Identidad de Plancherel),
- Para todo  $t \in \mathcal{G}$ ,  $P(t) = \frac{1}{|\mathcal{G}|} \sum_{j=1}^{k} \dim(V_j) \operatorname{tr}(\hat{P}(\rho_j) \rho_j(t)^*)$  (Fórmula de inversión de Fourier).
- 5. Si P,Q son distribuciones de probabilidad en un conjunto finito  $\mathcal{G}$  se define la norma

$$||P - Q||_{TV} = \max_{A \subset \mathcal{G}} |P(A) - Q(A)|.$$

Demuestre que

$$||P - Q||_{TV} = \frac{1}{2} \sum_{g \in \mathcal{G}} |P(g) - Q(g)| = \max_{f:||f||_{\infty} \le 1} |E_P(f) - E_Q(f)|,$$

donde  $||f||_{\infty} \leq 1$  quiere decir que  $|f(\alpha)| \leq 1$  para todo  $\alpha \in \mathcal{G}$  y  $E_P(f) = \sum_{g \in \mathcal{G}} f(g)P(g)$ .

#### Semana 10

- 1. (Requiere un poco de álgebra conmutativa) Demostrar
  - Lema 1a:  $R := \{ \alpha \in \mathbb{C} : \alpha \text{ es entero algebraico} \}$  es un subanillo de  $\mathbb{C}$
  - Lema 1b:  $R \cap \mathbb{Q} = \mathbb{Z}$ . Es decir, si  $\alpha$  es entero algebraico y  $\alpha \in \mathbb{Q}$ , entonces  $\alpha \in \mathbb{Z}$ .
- 2. Sea G grupo finito cualquiera. Demuestre que para toda representación V de G existe una base B tal que para todo  $g \in G$  las entradas de la matriz  $[\rho(g)]_B$  son enteros algebraicos.
- 3. (Usando álgebra 2) Sea  $b \in \mathbb{Q}(\zeta_n)$ . Demuestre que

$$(\beta \in \mathbb{Q} \Leftrightarrow \Psi_k(\beta) = \beta \ \forall k \in \mathcal{U}(\mathbb{Z}/n\mathbb{Z})) \Longleftrightarrow \mathbb{Q}(\zeta_n) \supset \mathbb{Q} \text{ es de Galois y Gal}(\mathbb{Q}(\zeta_n), \mathbb{Q}) = \mathcal{U}(\mathbb{Z}/n\mathbb{Z})$$

donde  $\zeta_n$  es una raíz n-ésima primitiva,  $\Psi_k(\zeta_n) = \zeta_n^k$  y  $\mathcal{U}(\mathbb{Z}/n\mathbb{Z})$  son las unidades de  $\mathbb{Z}/n\mathbb{Z}$ .

- 4. Demuestre que para todo  $\chi$  caracter de  $S_n$  y para todo  $g \in S_n$  se tiene que  $\chi(g) \in \mathbb{Z}$ .
- 5. a) Demuestre que toda representación irreducible de  $\mathcal{G}$  es de dimensión 1 si y solo si  $\mathcal{G}$  es abeliano.
  - b) Encuentre todas las representaciones irreducibles de todos los grupos abelianos.

6

- 1. Sea  $G = (\mathbb{Z}/2\mathbb{Z})^d$ . Considere la inclusión  $i: G \to \mathbb{C}^d$  dada por  $(a_1, \ldots, a_d) \mapsto ((-1)^{a_1}, \ldots, (-1)^{a_d})$ . Sea X = i(G). En  $\mathbb{C}^d$  hay funciones polinomiales que podemos restringir a X. Si  $S \subset [d]$  definimos  $\chi_S := \prod i \in S\chi_i$  (i.e.  $\chi_S(\varepsilon_1, \ldots, \varepsilon_d) = \prod_{i \in S} \varepsilon_i$ . Demuestre que los  $\chi_S$  son los cáracteres de G.
- 2. En el mismo grupo  $G = (\mathbb{Z}/2\mathbb{Z})^d$  considere la distribución de probabilidad en la que podemos movernos 0 pasos ó 1 paso ó 2 pasos con la misma probabilidad. ¿Qué tan más rápido se mezcla el proceso?
- 3. Sean U, V espacios vectoriales. Sea  $B_U = \{u_1, \dots, u_n\}$  la base del espacio vectorial U. Demuestre lo siguiente:
  - $U \otimes V = \{ \sum_{i=1}^{n} u_i \otimes v_i : v_i \in V \}$
  - Si  $\sum_{i=1}^{n} u_i \otimes v_i = \sum_{i=1}^{n} u_i \otimes v_i' \iff$  para cualquier i se tiene que  $v_i = v_i'$

### Semana 12

- 1. Sea  $G = S_3$  y sea  $H = \{e, (2,3)\}$  y  $W_1 = Trivial$ ,  $W_2 = Signo$ . Encontrar una base para las representaciones inducidas  $Ind_H^G(W_1)$ ,  $Ind_H^G(W_2)$  y escribir sus matrices.

$$j: W \longrightarrow \tilde{W}$$
$$w \longrightarrow \frac{1}{|H|} \sum_{h \in H} e_h \otimes \delta_W(h)^{-1}(w)$$

Demuestre que j es 1-1 y es un morfismo de H- representaciones mediante la restricción de la acción de G a izquierda.

• Demuestre que la representación inducida satisface la propiedad universal.

### Semana 14

1. Sea G un grupo finito. Suponga que G actúa en X de manera transitiva y sea  $x_0 \in X$ . Demuestre que

$$\mathbb{C}X \cong Ind_H^G(triv_H)$$
 (como representaciones de  $G$ )

donde  $H = Stab(x_0)$ .

- 2. Con n = 5, calcule la representación  $S^{(3,2)}$ .
- 3. (a) Dibuje el diagrama de Hasse de particiones de 6 con  $\preccurlyeq$  (orden de dominación de particiones).
  - (b) Demuestre que el orden lexicográfico es una extensión lineal del orden de particiones.
- 4. Demuestre que si q y t son tableaux de  $S_n$  tales que sh(t) = sh(q) y  $K_q(t) \neq 0$ , entonces  $\exists \pi^* \in C_q : \pi^* \{q\} = \{t\}.$ 
  - ¿Existen tableaux q y t tales que sh(q) = sh(t) y  $K_q\{t\} = 0$ ?

## Semana 15

- 1. Demuestre que  $\{u_q: q \text{ es un tableaux estándar de forma } sh(q) = \lambda\} \subset S^{\lambda}$  es un conjunto linealmente independiente. (Sugerencia: los tableaux que aparecen en  $u_q$  son más grandes que q si q es estándar.)
  - 2. Demuestre el lema de los elementos de Garnir. (Ver libro de Bruce Sagan The Symmetric group)