F-83 Scripting Manual

Fred Sheppard January 19, 2023

1 Decimal to Binary

$$\frac{0}{y} + 10^{x} \left(y - 2 \operatorname{Rnd} \left(\frac{y}{2} - 0.5 \right) \right) +$$

$$0 \operatorname{Pol} \left[(x+1) * \cos \left(\operatorname{Rnd} \left(\frac{y}{2} - 0.5 \right) \right), (x+1) * \sin \left(\operatorname{Rnd} \left(\frac{y}{2} - 0.5 \right) \right) \right] M +$$
(2)

Variable	Start	End
x	0	?
y	10	0
M	0	1010

2 Binary to Decimal

$$\frac{0}{x - \text{Rnd}(\log(A) + 0.5)} + 2^{x} \left[\text{Rnd}\left(\frac{A}{10^{x}} - 0.5\right) - 10 \text{Rnd}\left(\frac{A}{10^{x+1}} - 0.5\right) \right]$$

$$+ 0 \text{Rec}(x+1,0) M +$$
(4)

Variable	Start	End
x	0	?
A	1011	0
M	0	11

3 Sum

$$\sum_{x=a}^{n} f(x) = f(x) + \frac{0 \operatorname{Rec}(x+1, 0)}{x-n-2} M +$$
 (5)

Variable	Start	End
x	a	n
M	0	Σ

4 Sequences

$$Tn = A \cdot r^n \tag{6}$$

$$r = \frac{T_y}{T_x}^{(y-x)^{-1}} \tag{7}$$

$$A = \frac{T_x}{r^x} \tag{8}$$

$$Sn = \frac{Ar\left(1 - r^n\right)}{1 - r} \tag{9}$$

Where A is the starting value i.e. T_0 and r is the common ratio.

In 2009, the population was 2,000. By 2013, the population was 32,000. Find the general formula.

5 Probability

Venn Diagram

$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

$$\tag{10}$$

Conditional Events

$$P(F|G) = \frac{P(F \cap G)}{P(G)} \tag{11}$$

Mutually Exclusive Both events cannot occur simultaneously - Their intersection is an empty set.

Draw a single card that: Is black & is a Jack of Diamonds

$$P(E \cup F) = P(E) + P(F) \tag{12}$$

Independent Events The outcome of one event has no bearing on the other. Roll a die and flip a coin.

$$P(E \cap F) = P(E) \cdot P(F) \tag{13}$$

Selection: Order doesn't matter There are 23 balls in a box: 12 red, 6 blue and 5 green. 3 balls are chosen at random from the box. What is the probability they are all different colours?

$$P = \frac{\binom{12}{1}\binom{6}{1}\binom{5}{1}}{\binom{23}{3}} \tag{14}$$

What is the probability exactly two balls are red?

$$P = \frac{\binom{12}{2}\binom{11}{1}}{\binom{23}{3}} \tag{15}$$

The tops and bottoms of the numerator must sum to the tops and bottoms of the denominator.

Selection: Order Matters Four balls are selected from the box above. What is the probability that the first 3 will be red and the 4th will be any other colour?

$$P = \frac{^{12}P_3 \cdot ^{11}P_1}{^{23}P_4} \tag{16}$$