Linear Algebra Examp	165
Earth's gravity fic	desmilar to SL
	equation from
U	Lucek 1
,	J
The local acceleration	due to the associtational
The local acceleration pull of an object	is
$d = \frac{G_{1}p}{r^{2}}$	6-5 Gravitational constant
2	D-s mass of the object
	p-s mass of the object r-> distance to object d-> local grav. accel.
	d-> local aray. accel
the sea level problem the forward problem -> we know G, P,	was a version of
the forward proble	m .
-> We know G.D.	r -> calculate d
We can also consider	r the inverse problem.
-> We measure dik	now by s -> want to
	now by r-> want to
	, _ ,

This has the familiar form Fp=d
where we want to solve for p=F-'d
Muclear Decay Chain

-> Earlier we talked about the nuclear decay equation: dN/Jt =- > N for a single radioactive element decay into another.

- However, many radioactive elements
undergo chains of decay through non;
other radioactive elements. These
are especially important for dating
materials in Earth science

Ex: Uranium Decay Sevirs many
more
things

238U->234Th->234Pa->234U->...->206Pb

In general, a decay series can be modeled as a series of boxes representing the concentrations of each radionuclide 238U 2347h 234Pa 234U source A 7 B 7 C 7 D decay decay decay
of A of B " of C 1 = -7 A+S = -7 B+7 A dc = 7, B+2, C dD = -7, D If 6=0, this is a closed system To write this as a forward Euler system. $\frac{A(t+A)-A(t)}{0t} = -\lambda_{\alpha}A(t)+3^{20}$ $\frac{B(t+A)-B(t)}{0t} = -\lambda_{\alpha}A(t)-\lambda_{b}B(t)$ $\frac{B(t+A)-B(t)}{0t} = \lambda_{\alpha}A(t)-\lambda_{b}B(t)$

Can rewrite Mesc: $A(t+\Delta t) = (1-\lambda_a \Delta t)A(t)$ $B(t+\Delta t) = \lambda_a \Delta t A(t) + (1-\lambda_b \Delta t)B(t)$ This can be written as a matrix problem (where R; are the diff radiomolisis R(trat) = 7.4t Banded matrix D * R(4) This is the forward problem, where we know the initial concentration and want to find out some future concentration R(+0+) = M(2;, 4+) R(+)

2 Now write This as a matrix problem

3 Solve the Inverse problem for the earth structure (p, pz) @ (-1,-1) given G= | and measurements Jot

$$d = 7.5$$
 $ex = (-1,0)$
 $d = 1.2$ $ex = (1,0)$