Exploring Memory Technology Simulators

Reza Adinepour

Computer Engineering Department, Tehran Ploytechnic adinepour@aut.ac.ir

> June 27, 2024 Memory Technologies - Spring 2024

Amirkabir University of Technology (Tehran Polytechnic) SimpleScaler 0000000

DRAMSIM

SimpleScaler

References

DRAMSIM

- DRAMSim use for simulate Dynamic RAMs.
 - 1.1 DRAM modeling it's very important because the technology is trying to provide CPU and DRAM integrated in one chip.
 - 1.2 This provides high density:
 - 1.2.1 High density
 - 1.2.2 Optimal performance
 - 1.2.3 Lower power consumption
- 2. DRAMSim is provide in three version:
 - 2.1 DRAMSim 1
 - 2.2 DRAMSim 2
 - 2.3 DRANSim 3
 In this talk, we discuss about the last version of DRAMSim
- 3. DRAMSim developed in C++ and write in modularly.

- 1. DRAMSim can be connected to GEM5
- 2. DRAMSim can simulate following protocol:
 - 2.1 DDR3
 - 2.2 DDR4
 - 2.3 LPDDR3
 - 2.4 LPDDR4
 - 2.5 GDDR5
 - 2.6 GDDR6
 - 2.7 HBM
 - 2.8 HMC
 - 2.9 STT-MRAM

The structure of main block of DRAMSim is shown in figure 1.

Figure: Main block of DRAMSim

Advantages:

- 1. The possibility of simulating new DRAM technologies like DDR4 and GDDR6
- 2. High flexibility in configuration
- 3. Synchronize with system simulators

Disadvantages:

- 1. Dependence on the model and configuration
- 2. Don't report power consumption and area

How install and build DRAMSim?

We should clone repository in first step:

Clone repository

- \$ git clone https://github.com/umd-memsys/DRAMsim3
- DR.AMsim3cd

now we should build it:

Build

- \$ mkdir build
- cd buildcd
- cmake ..
- make -j4
- \$ -DTHERMAL=1.. cmake

If the simulation builds successfully, you can see **Built target** on your terminal like figure 2

```
in file included from from 1920/03/14/00/15/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05/19/05
 nnt/9636017436015639/University/CE/Memory Technologies/MKs/Simulation/MK01/Doc/Tools/DAMMsin3/src/command_queue.cc: In member function 'bool dramsin3::Command@ueue::@ueueEmpty() cons
 mnt/9636017436015639/University/CE/Memory Technologies/MMs/Simulation/MM01/Doc/Teols/DRAMsim3/src/command_queue.cc:118:21: warming: loop variable 'q' creates a copy from type 'comst:
td::vector<dransin3::Command>' [-Wrange-loop-construct]
 nnt/9635017436015639/University/CE/Memory Technologies/HMs/Simulation/HM01/Doc/Tools/DRAMsim3/src/command_queue.cc:118:21: sote: use reference type to prevent copying
                                         ded from /mmt/9636017436015639/University/CE/Memory Technologies/HWs/Simulation/HW01/Doc/Tools/DRAMsim3/src/configuration.h:8
     from /mmt/963601748501589/Jinkverstiy/E/Fimowry technologis/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Similation/Mmi/Si
   nt/9436017436015639/University/CE/Memory Technologies/HHs/Simulation/HH01/boc/Teols/DRAMsim3/ext/headers/INIReader.h:163:12: warning: 'char* _builtin_strncpy(char*, const char*, lor
                       Included from /mmt/9636017436015639/University/CE/Memory Technologies/HMs/Simulation/HW01/Doc/Tools/DNAMsim3/src/simple_stats.cc:3
 mnt/9636017436015639/University/CE/Memory Technologies/MHs/Simulation/MH01/Boc/Tools/SRAMsin3/ext/fnt/include/fnt/format.h:406:6: warming: identifier 'chark t' is a keyword in C++20
```

Figure: DRAMSim built target

How can run sample simulation?

1. in first, create a folder for save output file of simulation:

Create output directory

- \$ mkdir output
 - then, with this command, run simulation for sample_trace.txt config file:

Run simulation

\$./build/dramsim3main configs/DDR4_8Gb_x8_3200.ini
-c 100000 -t tests/example_trace.txt -o output/

every various configurations files, located in configs/ directory. for this simulation we use DDR4_8Gb config file.

after simulation is finished, you can see output in output/directory in dramsim3.txt file like bellow:

```
= 8 # Number of write buffer hits
= 1188 Number of WHITE/RHITE commands
= 294 # Number of read requests issued
= 0 # Number of read requests issued
= 16 # Number of REF commands
= 25 # Number of REF commands
= 25 # Number of READ/READ commands
= 113 # Number of READ/READ commands
= 113 # Number of READ/READ commands
135 # Write cmd latency (cycles
```

Figure: Output report

we can plot read latancy, interarrival latancy, write latancy and \dots with some python scripts located in <code>script/</code> directory.

plot

\$ python3 scripts/plot_stats.py output/dramsim3.json
the output of simulation:

Figure: Interarrival latancy

Figure: Read latancy

Figure: Write latancy

SimpleScaler

- 1. This simulator was the doctoral thesis of Mr. Austin Todd from University of Wisconsin, which was written in C language
- This simulator is not just for memories. like Gem5, it is a system simulator.
- By default, this simulator is capable of simulating Alpha and PISA ISA. but other ISAs can also be added to it.
- 4. With SimpleScaler we can simulate this Micro Architecture:
 - 4.1 **Sim-fast:** simulate without considering cache, pipeline and any type of micro architecture
 - 4.2 **Sim-safe:** simulate with considering access to memories
 - 4.3 Sim-profile: report number of simulations and dynamic instructions
 - 4.4 Sim-cache: simulate a system with access to cache
 - 4.5 Sim-bpred: report total branch prediction of program
 - 4.6 Sim-outorder: All the previous features are collected in this

The structure of SimpleScaler is shown in bellow:

Figure: Structure of SimpleScaler

Advantages:

- 1. Open source
- 2. System level computer with more detail
- 3. Support for different architectures

Disadvantages:

- 1. No direct access to memory
- 2. Not support a new memory technologies
- 3. Don't report analysis with detail like stats file in GEM5

How install and build SimpleScaler?

We should clone repository in first step:

Clone repository

```
$ git clone
```

https://github.com/stevekuznetsov/simple-scalar.git

\$ simple-scalar

before build, we need install dependencies:

Install dependencies

```
$ sudo apt-get update
```

- sudo apt-get update install build-essential
- \$ sudo apt-get update install flex bison
- \$ sudo apt-get update install libx11-dev

Now we can build simulator:

Build

\$ make config-alpha

If the build is successful, your terminal output will look like this:

```
The second state of the se
```

Figure: Build successful

Run simulation:

The default program's .exe file is located in the tests/bin/ path. also the source code of program located in tests/src/ directory. in this simulation we use test-math program. this program calculates sine, tangent and several other mathematical operations for various inputs.

Run simulation with this command:

Build

\$./sim-safe tests/bin/test-math

The output report of simulation as bellow:

```
pow(12.8, 2.8) == 144.000000
pow(18.8, 3.0) == 1000.000000
pow(18.8, -3.0) == 0.001000
  69 / exp(8.982794 * 5) = 1.24182
 5.93117 + 5*log(3.60555) = 10.3435
log(10.3435) = -0.606798, sin(10.3435) = -0.794856
sim_num_insm 49430 # total number of instructions executed 
sim_num_refs 13640 # total number of loads and stores executed 
sim_elapsed_time 1# total simulation time in seconds
                                           49430,0000 # simulation speed (in insts/sec)
                                     Bull20000000 # program text (code) segment base
180416 # program text (code) stre in bytes
8x014000000 # program initialized data segment base
41904 # program initial '.data' and uninit'ed '.bss' size in bytes
                                             8x811ff9b800 # program stack segment base (highest address in stack)
                                          MANITY/19080 B Impgram state beginnin tasse incorporate boards in table, 
16184 B program initial stack size 
8x812880f750 B program entry point (initial to: 
8x811f97800 B program environment base address address 
0 B target executable endian-sess, non-zero if big endian
                                                                29 # total number of pages allocated
                                                        535692 # total page table accesses
0.8001 # first level page table miss rate
```

Figure: Report of test-math program

References

S. Senni, Exploration of non-volatile magnetic memory for processor architecture, 2015.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, "Cacti 6.0: A tool to understand large caches," University of Utah and Hewlett Packard Laboratories, Tech. Rep., vol. 147, 2009.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob, "Dramsim2: A cycle accurate memory system simulator," IEEE computer architecture letters, vol. 10, no. 1, pp. 16–19, 2011.

S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, "Dramsim3: A cycle-accurate, thermal-capable dram simulator," IEEE Computer Architecture Letters, vol. 19, no. 2, pp. 106–109, 2020.

D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and some

The End

Questions? Comments?

You can find this slides here:

github.com/M-Sc-AUT/M.Sc-Computer-Architecture/Memory Technologies