- 1. (30 pts.) True/False. Give a brief explanation
 - (a) Let $\exp(x, y)$ be the binary operation on \mathbb{R}^+ defined by $\exp(x, y) = x^y$. Exp is neither associative nor commutative.
 - (b) $T_n = \{ \text{products of an even number of cycles of length 3 in } S_n \}$ is a subgroup of S_n .
 - (c) If the order of a group is 125, then the group contains an element of order 5.
 - (d) If p and q are prime then \mathbb{Z}_{pq} has pq-1 generators.
 - (e) $\mathbb{Z}_{10} \times \mathbb{Z}_8$ is isomorphic to $\mathbb{Z}_{40} \times \mathbb{Z}_2$.
 - (f) For a permutation to be odd, the number of cycles of even length in the cycle decomposition must be odd.

- 2. (20 pts.)
 - (a) If $\sigma \in S_n$ and $\tau = \sigma^k$ is a cycle of length n for some $k \ge 1$, why must σ also be a cycle of length n?
 - (b) Let $\tau = \sigma^3 = (12357846)$. Determine $\sigma = (\sigma_1, \sigma_2, ..., \sigma_8)$.

3. (20 pts.)

- (a) Let $\alpha = (14235)(12) \in S_5$. What is α^{2015} ?
- (b) How many elements in S_5 have order 3?
- (c) How many subgroups does \mathbb{Z}_{30} have?
- (d) Let G be a cyclic group of order 11 with generator g. What is the order of g^{500} ?

Choose two from questions 4, 5, 6, 7, and do all parts (15 pts. each)

- 4. Let G be an Abelian group, and let $S \subset G$ be the subset of elements of finite order. Prove that S is a subgroup of G.
- 5. Let g and h be non-commuting elements of the a group G of odd order. Suppose that g has order 3 and that $ghg^{-1} = h^3$. Determine the order of h.
- 6. Let $A\subseteq GL_2(\mathbb{R})$ be defined as $A:=\left\{\left(\begin{array}{cc}a&b\\0&1\end{array}\right):a,b\in\mathbb{R},\ a\neq 0\right\}$. Prove that A is a subgroup of $GL_2(\mathbb{R})$. Determine all the elements of A which have order 2.
- 7. For any subset S of a group G, define $N(S) = \{h : h \in G, hSh^{-1} = S\}$.
 - (a) Show that N(S) is a subgroup of G.
 - (b) Show that if S is a subgroup of G, then S is a normal subgroup of N(S).