[CYBER1][2024-2025] Examen (Sujet A)

Algorit	hmiane	2
Algorit.	mmque	_

<u>NOM</u> :	PRÉNOM :
Vous devez respecter les consignes suivant	ntes, sous peine de 0 :
 I) Lisez le sujet en entier avec attention II) Répondez sur le sujet III) Ne trichez pas IV) Ne détachez pas les agrafes du sujet 	V) Écrivez lisiblement vos réponses (si nécessaire en majuscules)VI) Vous devez écrire les algorithmes et structures en langage C (donc pas de Python ou autre)
 1 Listes chaînées (9 points) 1.1 Écrivez la structure d'une li chaînée d'entiers (0,5 points) 	(1.2) Écrivez la fonction (1.2) Écrivez la fonction (1.2) si une liste est vide (0.5) point

1.3 (1 point) Écrivez la fonction LengthList retournant la longueur d'une liste

1.4 (5 points) Écrivez une fonction $insert_list$ insérant un élément elt à la position pos dans une liste chaînée L et respectant les exigences suivantes

- La fonction doit renvoyer la tête de la liste (éventuellement la nouvelle tête)
- Les entiers insérés doivent être positifs, sinon la fonction ne fait rien et retourne NULL
- Le premier élément est considéré comme étant en position 1
- Si la liste est vide, l'élément sera inséré en première position
- Lors de l'ajout, si un élément est déjà présent à la position pos donnée en paramètre, alors il faut pousser l'élément existant en position pos + 1
- Si la position *pos* donnée en paramètre est supérieure à la longueur, alors on doit insérer l'élément en dernière position de la liste
- Si la position *pos* donnée en paramètre est inférieure ou égale à 1, alors on doit insérer en première position et décaler l'élément déjà présent s'il y en a un

avril 2025 2 / 8 Algorithmique 2

1.5 En réutilisant les fonctions précédentes, et en considérant que vous disposez de la fonction $remove_list$ qui supprime l'élément à une position donnée d'une liste chaînée, réécrivez les fonctions push et pop d'une pile

1.5.1 (1 point) Push

1.5.2 (1 point) Pop

2 Arbres Binaires (11 points)

2.1 Répondez aux différentes questions concernant l'arbre suivant (4 points)

2.1.1 (1,5 point) Indiquez toutes les propriétés que possède cet arbre :

Arité :	Taille:	Hauteur:	Nb feuilles :
☐ Arbre binaire s☐ Arbre binaire s☐ Peigne gauche	strict / localement complet parfait	☐ Arbre binaire (pr☐ Arbre filiforme☐ Peigne droit	esque) complet
	Écrivez les clés lors d'un ordres ainsi que lors d'un leur :		main gauche de l'arbre
ordre préfixe :			
ordre infixe:			
ordre suffixe :			
Parcours largeur	:		
ordre:			

2.1.3 $(0,5~{
m point})$ Indiquez la profondeur et le numéro hiérarchique des nœuds suivants :

	Profondeur	Nº hiérarchique
В		

	Profondeur	Nº hiérarchique
C		

- 2.2 Algorithmes (7 points)
- 2.3 (0,5 point) Écrivez la structure récursive node permettant de représenter des arbres binaires de nombres entiers :

2.4 (2 points) Écrivez une fonction récursive « $parc_prof_rec$ » effectuant un parcours profondeur main gauche dans un arbre binaire, et affichant les nœuds dans l'ordre suffixe (l'arbre est de type $node^*$):

2.5 (2 points) Écrivez une fonction itérative « $parc_larg_iter$ » effectuant un parcours largeur dans un arbre binaire, et affichant les nœuds (l'arbre est de type $node^*$) :

Vous pouvez utiliser les conteneurs externes suivants avec leurs opérations :

Liste	File	Pile
$list_p$	$queue_p$	$stack_p$
Create	Create	Create
Length	Length	Length
IsEmpty	IsEmpty	IsEmpty
Insert	Enqueue	Push
Remove	Dequeue	Pop
Clear	Clear	Clear
Delete	Delete	Delete

(2,5 points) Écrivez une fonction « $node_to_array$ » transformant un arbre 2.6 au format $node^*$ vers le format tableau int^* :

Le tableau est donné en paramètre et est déjà alloué avec la bonne taille : votre fonction ne doit que le remplir avec les bonnes valeurs. La taille du tableau est évidemment fournie en paramètre. Un nœud vide doit être représenté par « -1 ».

SUJET A ALGORITHMIQUE 2