		Tipo de Prova Prova escrita	Ano letivo XXXX/XXXX	Data XX-XX-XXXX
P.PORTO	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	^{Curso} Lic. em Engenharia Informática Lic. em Segurança Informática e Redes de Co	omputadores	Hora XX:XX
		Unidade Curricular Fundamentos de Programação		Duração 00h50

Observações

- Preencha todo o cabeçalho da(s) folha(s) de teste: nome completo e número do estudante, data de realização da prova de avaliação, nome da unidade curricular e do curso.
- Se quiser desistir deverá escrever na folha de exame "Desisto" e colocar por baixo a sua assinatura.
- Não é permitido o uso de qualquer documentação além da indicada ou fornecida pelo docente.
- Deverá entregar tudo o que lhe foi entreque pelo docente: folhas de teste, folhas de rascunho e enunciado.
- Os estudantes não devem sair da sala de exame sem assinar a folha de presenças.
- Os estudantes não podem sair antes do final da prova.

Considere a existência de uma matriz quadrada chamada **cidades**, exemplificada abaixo, que representa a conectividade entre **NUM_CIDADES** cidades e em que:

- O valor **0** indica que não existe conexão entre as cidades (ex., **cidades**[**0**][**1**]);
- O valor **1** indica que existe conexão entre as cidades (ex., **cidades**[0][2]). A diagonal em que as cidades são as mesmas, exemplo **cidades**[0][0], é assumido o valor de 1.

	Θ	1	2	3	4	5
0	1	0	1	0	0	1
1	0	1	1	1	0	1
2	1	1	1	0	1	1
3	0	1	0	1	1	Θ
4	0	0	1	1	1	1
5	1	1	1	0	1	1

Considere que um trajeto é representado como um vetor (chamado de **trajeto**) que indica as cidades pela qual se deve passar. No exemplo abaixo, podemos observar um trajeto, que se inicia na cidade **0**, passando depois para **2**, **1**, **3**, **4**, e **5**.

0	2	1	3	4	5
---	---	---	---	---	---

Finalmente, considere que **NUM_CIDADES** e **TAM_TRAJETO** são constantes que indicam as dimensões da matriz de conectividade (**cidades**) e do vetor com o trajeto (**trajeto**), respetivamente.

ESTG-PR05-Mod013V2 Página 1 de2

17.	P	O	R	O)

ESCOLA SUPERIOR DE TECNOLOGI E GESTÃO

	Tipo de Prova Prova escrita		Data XX-XX-XXXX
GIA	^{Curso} Lic. em Engenharia Informática Lic. em Segurança Informática e Redes de Co	omputadores	Hora XX:XX
	Unidade Curricular Fundamentos de Programação		Duração 00h50

1. (6 val.) Implemente uma função (int verificaTrajeto(int trajeto[TAM_TRAJETO], int cidades[NUM_CIDADES][NUM_CIDADES])) que dado um vetor com um trajeto (válido) entre as cidades e a matriz de conexão, verifique se o trajeto é possível. Retorne 1 se possível, 0 caso contrário. Exemplo:

0 2	1 3	4	5
-----	-----	---	---

|--|

Trajeto possível

Trajeto não possível (não existe conexão entre **0**, **1**)

- 2. (4 val.) Implemente uma função (int obtemConexaoEntreCidades(int cidade1, int cidade2)) que peça um valor inteiro ao utilizador até que seja inserido o valor 0 ou 1. O valor inserido irá representar se existe ligação entre as cidades cidade1 e cidade2 e deverá ser retornado pela função. Os parâmetros cidade1 e cidade2 devem ser utilizados na mensagem apresentada ao utilizador.
- 3. (4 val.) Implemente uma função (int verificaSimetria(int cidades[NUM_CIDADES] [NUM_CIDADES])) que verifique se uma matriz (passada como argumento) é simétrica, isto é, os elementos opostos em relação à diagonal principal são iguais, ou seja, verifica-se sempre $a_{ij}=a_{ji}$. Retorne 1 se simétrica, 0 caso contrário.

	0	1	2
Θ	1	0	1
1	0	1	0
2	1	0	1

simétrica

	0	1	2
0	1	0	Θ
1	0	1	0
2	1	0	1

Não simétrica

a[0][2] != a[2][0]

4. (6 val.) Considerando um vetor com o trajeto (passado como argumento), implemente uma função (validaTrajeto(int trajeto[])) que verifique se as cidades estão dentro do intervalo de cidades válido (NUM_CIDADES) e se não se repetem. Retorne 1 se válido, 0 caso contrário.

ESTG-PR05-Mod013V2 Página 2 de2