Using Machine Learning to Predict NBA Game Outcomes

Tim Cauley

Problem Summary

- Predict probability home team wins a game given net statistics between 2 teams in prior games
- Most prior research uses a games data to predict that game's outcome, which is easier but illogical
- Prior research uses team statistics rather than net statistics which is also illogical
- Industry standard models have relatively low accuracy (low-mid 60s) due to basketball being inherently difficult to predict
- Top of the line models have accuracy in low 70s, and use either an ELO rating system, or complex player-based models

Data Collection

- Scraped from NBA API using Python
- Collected data from 2017 through 2023 (~7000 games) from 3 different tables
 - Box Score, Advanced Box Score, Usage
 - Data consists of 85 columns across 3 tables

;	SEASON_ID	TEAM_ID	TEAM_ABBREVIATION	TEAM_NAME	GAME_ID	GAME_DATE	MATCHUP	WL	MIN	PTS	
	22017	1610612739	CLE	Cleveland Cavaliers	21700001	2017-10-17	CLE vs. BOS	1	239	102	
	22017	1610612738	BOS	Boston Celtics	21700001	2017-10-17	BOS @ CLE	0	241	99	
	22017	1610612744	GSW	Golden State Warriors	21700002	2017-10-17	GSW vs. HOU	0	241	121	
	22017	1610612745	HOU	Houston Rockets	21700002	2017-10-17	HOU @ GSW	1	239	122	
	22017	1610612764	WAS	Washington Wizards	21700006	2017-10-18	WAS vs. PHI	1	240	120	

Data cleaning

- Joining tables into 1
- Created custom features
 - Key DNP: tracked # of key players on each team that rested for the given game
 - Rest: # of days since previous game
 - Back to Back: indicated whether team played on prior day
 - Game Number: linear count of games played each season
 - Games played prior 7: Counted # of games the team played in previous 7 days
 - Win percentage: % of games won in prior games
- Make columns for opponent stats for each game and make it 1 row per game rather than 2
- Make majority of variables net values, rather than 1 variable for each team

Data preprocessing

- Change values for each game to being averages of prior games, rather than the value resulted from that game
- Used both sliding window and exponentially weighted moving average (EWMA)
- Calculated best window length and degree of mixing rate by optimizing average correlation with game result
- Best game length: 50
- Best degree of mixing: 0.07
 - (7% most recent game, 93% moving average (doesn't overreact to most recent game))
- Normalized values and balanced (training) data

EDA

- Performed hypothesis testing on difference in means for variables between winning team and losing team
 - Almost every variable had statistically significant difference, with no surprises (ex: winning team averages 4 more rebounds than losing team)
- Did correlation analysis on variables vs outcome
 - When looking at game data, many variables were highly correlated with outcome, but when looking at sliding window / EWMA data no variable was highly correlated with outcome
- Summarized findings with a Power BI dashboard

Maximum

73.00

Minimum

22.00

Average

44.21

Winning Average

46.18

Losing Average

42.24

Correlation with winning

0.30

Box Plot of Values

Machine Learning

- 5 algorithms used: ELO Rating, Logistic Regression, Random Forest, Support Vector Machines, Feed Forward Neural Network
- 2 ELO models, and 8 models for each ML algorithm (1 using all features scaled and unscaled, 1 using feature selection scaled and unscaled for both sliding window and EWMA)
 - Used select K best for feature selection, finding optimal k (~50/70 features selected)
- 75/25 train test split using the most recent 25% as test set
- Calculated and compared accuracy, precision, recall, F1 score, and AUC for each model

ELO Rating System

$$p(win_{home}) = \frac{1}{1 + 10^{\frac{R_{away} - (R_{home} + 100)}{400}}}$$

$$MOV_{adjust} = \frac{(MOV + 3)^{0.8}}{7.5 + 0.006 * ((R_{home} + 100) - R_{away})}$$

$$R'_{home} = R_{home} + MOV_{adjust} * K(S_{home} - p(win_{home}))$$

Summarizing Average Model Accuracy

Algorithm Avg. Accuracies

ELO Model	Logistic Regression	FNN	Random Forest	SVM
67.07%	64.68%	64.23%	63.08%	62.67%

Avg. Accuracy by Sliding Window vs EWMA

Sliding Window	EWMA
63.64%	63.69%

Avg. Accuracy by scaled vs. unscaled

Unscaled	Scaled
63.83%	63.50%

Avg. Accuracy by features used

All Features	Feature Selection
63.59%	64.75%

Summarizing Best Model Accuracy

Algorithm Best Accuracy

ELO Model	Logistic Regression	FNN	Random Forest	SVM
67.17%	66.12%	65.64%	63.52%	63.46%

Best Accuracy by Sliding Window vs EWMA

Sliding Window	EWMA
66.12%	65.37%

Best Accuracy by scaled vs. unscaled

Unscaled	Scaled
66.12%	64.47%

Best Accuracy by features used

All Features	Feature Selection
65.01%	66.12%

Thoughts

- ELO models perform better because they are simply looking at who is the better team, while ML models are trying to generalize what makes a team better?
- Big success to be able to replicate model performance using data from prior games to predict game outcomes, rather than data from the game itself
 - Using net variables and custom variables (23/51 variables selected in feature selection were custom made)
- Low accuracy compared to other ML problems shows how difficult it is to predict sporting event outcomes
- Project continuation: player-based ML models