

MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu województwa małopolskiego Rok szkolny 2017/2018 ETAP WOJEWÓDZKI — 15 marca 2018 roku

- 1. Przed Tobą zestaw 12 zadań konkursowych, karta odpowiedzi dla zadań zamkniętych oraz kartki do zapisania rozwiązań zadań otwartych. Wolne kartki możesz przeznaczyć na brudnopis.
- **2.** Na rozwiązanie zadań masz **120** minut. Dziesięć minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej.
- 3. Za bezbłędne rozwiązanie wszystkich zadań możesz uzyskać 40 punktów.
- 4. Za poprawne rozwiązanie każdego z zadań zamkniętych od 1 do 8 otrzymasz 2 punkty. W każdym zadaniu zamkniętym spośród 5 proponowanych odpowiedzi tylko jedna jest poprawna. Odpowiedzi do zadań od 1 do 8 zaznacz symbolem × w dołączonej karcie odpowiedzi. Tylko odpowiedzi zaznaczone w tabeli będą oceniane. Jeśli się pomylisz, błędne zaznaczenie otocz kółkiem i zaznacz symbolem × inną odpowiedź. Brak wyboru odpowiedzi lub wybór więcej niż jednej odpowiedzi będzie traktowany jako błędna odpowiedź.
- 5. Za poprawne rozwiązanie każdego z zadań od 9 do 12 otrzymasz 6 punktów. W zadaniach od 9 do 12 przedstaw pełne rozwiązania, zapisując rozwiązanie każdego z zadań na osobnej kartce opisanej jako czystopis danego zadania. Pamiętaj o zapisaniu potrzebnych obliczeń, komentarzy, wyjaśnień, uzasadnień, odpowiedzi. Oceniana jest całość rozumowania zamieszczonego w czystopisie.
- **6.** Pisz długopisem lub piórem, nie używaj korektora ani wymazywalnych przyborów piśmienniczych. Użycie ołówka dozwolone jest wyłącznie do sporządzania rysunków. Brudnopis nie podlega ocenie.
- 7. Podczas pracy nie możesz korzystać z kalkulatora i żadnych innych dodatkowych pomocy, z wyjątkiem podstawowych przyborów geometrycznych.
- **8.** Przekaż wyłączony telefon komórkowy Komisji (jeśli go posiadasz).
- **9.** Stwierdzenie niesamodzielności pracy lub przeszkadzanie innym spowoduje wykluczenie z udziału w Konkursie.

W zadaniach od 1 do 8 zaznacz odpowiedź w karcie odpowiedzi

Zadanie 1 (2 punkty)

Ile różnych liczb trzycyfrowych podzielnych przez 3 można zapisać używając wyłącznie cyfr 1, 2, 3 oraz 4 (cyfry moga się powtarzać)?

A. 22;

B. 10:

C. 16;

D. 13:

E. 19.

Zadanie 2 (2 punkty)

Podstawą ostrosłupa prawidłowego trójkątnego jest trójkąt równoboczny o boku $6\sqrt{2}$. Każda z krawędzi bocznych ostrosłupa ma długość 6. Ile wynosi objętość ostrosłupa?

A. $18\sqrt{6}$:

B. $18\sqrt{2}$; **C.** $18\sqrt{3}$; **D.** 36; **E.** $54\sqrt{2}$.

Zadanie 3 (2 punkty)

Dwóch znajomych rozegrało 50 partii w pewną grę. Umówili się, że po każdej partii wygrywający zyska 4 punkty, a przegrywający 1 punkt straci. W razie remisu oboje dostana po 2 punkty. Na koniec okazało się, że gracze zdobyli w sumie 164 punkty. Ile partii zakończyło się remisami?

A. 32;

B. 19;

C. 36;

D. 14;

E. 18.

Zadanie 4 (2 punkty)

12 brygad drwali potrzebuje 12 dni roboczych na wykarczowanie 12 hektarów lasu. Ile czasu zajmie 4 brygadom wykarczowanie 8 hektarów przy tej samej wydajności?

A. 6 dni:

B. 12 dni;

C. 16 dni;

D. 18 dni;

E. 24 dni.

Zadanie 5 (2 punkty)

Na loterie przygotowano 1000 losów ponumerowanych liczbami naturalnymi od 1 do 1000. Za wygrywające uznajemy wszystkie losy, w których numerze cyfr parzystych i cyfr nieparzystych jest tyle samo. Ile jest losów wygrywających?

A. 40;

B. 42;

C. 45;

D. 85:

E. 90.

Zadanie 6 (2 punkty)

W n-kacie foremnym przekatne przyjmuja 31 różnych długości. W (n+1)-kacie foremnym również można znaleźć dokładnie 31 przekątnych różnej długości. Podaj wartość n.

A. n = 64:

B. n = 62:

C. n = 60;

D. n = 65:

E. n = 63.

Zadanie 7 (2 punkty)

Elf ma jedną czarną i jedną białą skarpetkę, a chciałby założyć dwie jednakowe. Wróżka pozwoliła mu użyć dokładnie jednej z szuflad z opisami podanymi poniżej. Którą szufladę powinien wybrać jeśli chce, by prawdopodobieństwo posiadania co najmniej dwóch skarpetek tego samego koloru było największe?

- **A.** W tej szufladzie jest 7 skarpetek czarnych i 8 niebieskich. Masz prawo wylosować dwie skarpetki.
- **B.** W tej szufladzie jest 18 skarpetek czarnych, 7 niebieskich i 4 białe. Masz prawo wylosować jedną skarpetkę.
- **C.** W tej szufladzie jest 5 skarpetek czarnych, 1 niebieska i 1 zielona. Możesz wylosować jedną skarpetkę.
- **D.** W tej szufladzie jest 7 skarpetek czarnych i 2 niebieskie. Możesz wylosować jedną skarpetkę.
- **E.** W tej szufladzie jest 10 skarpetek czerwonych i 1 skarpetka niebieska. Wolno ci wylosować dwie skarpetki.

Zadanie 8 (2 punkty)

W okrąg o środku S wpisano trójkąt ABC, w którym $\alpha = 116^{\circ}$ (rysunek). Prosta p jest styczna do okręgu w punkcie A. Podaj miarę kąta β między odcinkiem AC a styczną p.

A. 58°; **B.** 64°; **C.** 48°; **D.** 32°;

E. 77°.

W zadaniach od 9 do 12 przedstaw pełne rozwiązania (rozumowanie, obliczenia, komentarze, uzasadnienia, odpowiedź).

Rozwiązanie każdego z tych zadań zredaguj na oddzielnej kartce opisanej numerem zadania.

Zadanie 9 (6 punktów)

Znajdź wszystkie pary liczb całkowitych (x; y) będące rozwiązaniami równania $\frac{25}{xy} + \frac{5}{x} = 1$.

Zadanie 10 (6 punktów)

Ramiona trapezu mają długości 10 i 24. Kąty między ramionami i dłuższą podstawą trapezu mają odpowiednio miary α oraz β , przy czym $\alpha + \beta = 90^{\circ}$. Wyznacz długość odcinka łączącego środki podstaw trapezu.

Zadanie 11 (6 punktów)

Bogacz zostawił spadek dla piątki swoich dzieci - worek pełen złotych monet. Jego przyjaciel zarządzający testamentem wypłacał każdemu należną sumę po osiągnięciu pełnoletniości:

- Najstarsza córka zgodnie z wolą ojca otrzymała $\frac{1}{3}$ wszystkich monet. Z pozostałej sumy przyjaciel wziął 1 monetę jako wynagrodzenie za swoją pracę.
- Dwa lata później pełnoletniość osiągnął syn, który otrzymał $\frac{1}{3}$ liczby monet pozostałych w worku. Z pozostałej sumy przyjaciel pobrał dla siebie 2 monety.
- Po kolejnym roku druga córka otrzymała $\frac{1}{3}$ pozostałych monet. Wynagrodzenie przyjaciela wyniosło tym razem 3 monety.
- W końcu po spadek stawiła się para najmłodszych bliźniaków. Każdy otrzymał po
 ¹/₃ monet z worka, a pozostałe 7 monet zostało dla zarządzającego spadkiem.

Ile monet pozostawił bogacz w spadku?

Zadanie 12 (6 punktów)

Dany jest trójkąt ABC, w którym AB = 6, BC = 7, CA = 5. Odcinek AH jest jedną z wysokości tego trójkąta. Udowodnij, że dla każdego punktu X leżącego na prostej AH wyrażenie $BX^2 - CX^2$ przyjmuje stałą wartość. Podaj tę wartość.

TABELA ODPOWIEDZI

do zadań 1 – 8

zadanie	A	В	С	D	E
1	A	В	С	D	Е
2	A	В	С	D	Е
3	A	В	С	D	Е
4	A	В	С	D	Е
5	A	В	С	D	Е
6	A	В	С	D	Е
7	A	В	С	D	Е
8	A	В	C	D	Е
9	zadania otwarte - pełne rozwiązania na osobnych kartkach				
10					
11					
12					