1 Normalteiler

Definition 1.1. Sei (G, \circ) eine Gruppe und $H \subset G$ eine Untergruppe.

H heißt Normalteiler

$$:\iff \forall g\in G\ \forall u\in H: g\circ u\circ g^{-1}\in H$$

$$\iff \forall g\in G: gHg^{-1}=H$$

$$\iff \forall g\in G: gH=Hg.$$

Beispiel 1.2. Einige Beispiele für Normalteiler:

- Die triviale Untergruppe $\{e\}$ ist immer Normalteiler, denn es gilt für alle $g \in G : g \circ \{e\} = \{g\} = \{e\} \circ g$.
- G ist immer Normalteiler in sich selbst, denn es gilt $\forall g \in G \ \forall g' \in G:$ $g \circ g' \circ g^{-1} \in G.$
- Ist G kommutativ, so ist jede Untergruppe $H \subset G$ Normalteiler, denn es gilt $\forall g \in G \ \forall u \in H : g \circ u \circ g^{-1} = g \circ g^{-1} \circ u = e \circ u = u \in H$.

TODO: Faktorgruppe einbauen, ggf. zweite und dritte Definition in Definition 1 entsprechend verschieben

2 Normalisator

Sei (G, \circ) Gruppe, $U \subset G$ Untergruppe.

Im Allgemeinen ist U kein Normalteiler in G. Also suchen wir uns eine größtmögliche Untergruppe von G, sodass U in dieser Untergruppe Normalteiler ist. Formal wollen wir eine Untergruppe $V \subset G$ finden, sodass

- i) $U \subset V$ (U ist in V enthalten)
- ii) U ist Normalteiler in V
- iii) Ist V' eine weitere Untergruppe von G die i) und ii) erfüllt, so gilt $V' \subset V$. (V ist größtmöglich)

Bemerkung 2.1. V existiert immer.

Ist U Normalteiler in G, so wähle V = G.

Ist U kein Normalteiler in G, so erfüllt V'=U die ersten beiden Eigenschaften, also lässt sich auch eine größtmögliche Untergruppe V finden, die die ersten beiden Eigenschaften erfüllt.

Definition 2.2.

$$N_G(U) := \{ g \in G \mid gUg^{-1} = U \}$$

heißt Normalisator von U in G.

Satz 2.3. $N_G(U)$ ist Untergruppe von G und erfüllt die Eigenschaften i) bis iii).

Beweis: • Untergruppe:

Die Assoziativität wird vererbt.

Es gilt $e \in N_G(U)$, denn $e \in G$ und $eUe^{-1} = eUe = U$.

Sei $n \in N_G(U)$. Dann gilt

$$nUn^{-1} = U$$

$$\iff n^{-1}nUn^{-1}n = n^{-1}Un$$

$$\iff U = n^{-1}Un.$$

also auch $n^{-1} \in N_G(U)$.

Seien $n_1, n_2 \in N_G(U)$. Dann gilt:

$$(n_1 n_2) U(n_1 n_2)^{-1} = n_1 n_2 U n_2^{-1} n_1^{-1}$$

$$= n_1 (n_2 U n_2^{-1}) n_1^{-1}$$

$$= n_1 U n_1^{-1}$$

$$= U,$$

also auch $n_1 \circ n_2 \in N_G(U)$.

Damit ist $N_G(U)$ Untergruppe von G.

• i): U ist Normalteiler in sich selbst, also gilt $\forall u \in U : uUu^{-1} = U$. Zudem gilt $U \subset G$. Per Definition von $N_G(U)$ folgt sofort $U \subset N_G(U)$.

- ii): Es gilt per Definition $\forall n \in N_G(U): nUn^{-1} = U$, d.h. U ist Normalteiler in $N_G(U)$.
- iii): Sei $V' \subset G$ eine weitere Untergruppe mit $U \subset V'$ und sodass U Normalteiler in V' ist.

Sei $v \in V'$. Da U Normalteiler in V' ist, gilt $vUv^{-1} = U$, also per Definition $v \in N_G(U)$.

 $\implies V' \subset N_G(U).$

3 Zauberhafte Folgerung

Welcher Mischvorgang muss auf einen aus n
 Karten bestehenden Kartenstapel angewendet werden, um eine Permutation der Form $\phi_{a,b}$ zu erhalten?

- i) Mischvorgang R_c : Sei $c \in \mathbb{N}$. Teile die n Karten von links nach rechts auf c Stapel aus. Danach werden die Karten wieder aufgenommen, und zwar von rechts nach links. Nach ganz oben kommt also der am weitesten links liegende Stapel.
- ii) Mischvorgang L_c : Von links nach rechts austeilen, und auch von links nach rechts aufnehmen.

(Beispiel vorführen)

Definition 3.1. i) Sei c ein Teiler von c-1 und a:=(n-1)/n. Dann sind a und n teilerfremd und R_c entspricht $\phi_{a,a}$.

ii) Sei c ein Teiler von c+1 und a:=(n+1)/n. Dann sind a und n teilerfremd und L_c entspricht $\phi_{-a,-1}$.

Beweis: • i) Teilerfremdheit folgt direkt aus ac = n - 1.

Es gilt dann n-ac=1 (Mit $ggT(a,b)=s\cdot a+t\cdot b,\quad s,t\in\mathbb{Z}$ folgt Teilerfremdheit von a und n.

Aus der ursprünglichen Reihenfolge der Karten $(0,\dots,n-1)$ passiert durch R_c folgendes:

Erster Stapel hat a + 1 Elemente, alle anderen a.

 $\longrightarrow c$ Stapel von rechts nach links zusammenlegen:

Betrachte Karte k aus dem Stapel s $(s \in \{1, ..., c-2\})$. Dann liegt die Karte k+1 im Stapel s+1 genau a Stellen weiter als k, da in jedem Stapel außer dem ersten genau a Karten sind. In Stapel 1 gilt zusätzlich Karte 0 liegt a Karten weiter als ac.

Die letzte Karte im Stapel ist c-1. Zyklisch weiterzählen. Wir sehen dass Karte c die a—te Karte von oben ist.

Insgesamt: $R_c(0) = a$ und $R_c(k+1) = R_c(k) + a$. Mit Lemma 4.5 gilt also $R_c = \phi_{a,a}$.

• ii) Teilerfremdheit folgt direkt aus ac = n + 1.

$$ac - n = 1 \longrightarrow \text{wie vorhin}$$

Aus der ursprünglichen Reihenfolge der Karten $(0,\dots,n-1)$ passiert durch L_c folgendes:

Letzter Stapel hat a-1 Elemente, alle anderen a.

Beweis wie vorhin, aber gehe a Karten zurück um von der Karte k zur Karte k-1 zu kommen. Mit $L_c(0)=n-1$ folgt $L_c=\phi_{-a,-1}$. (In \mathbb{Z}_n ist $-1\equiv n-1$).

Beispiele vorführen

4

Erkenntnis aus 4.3, 4.4, 4.6 (umbenennen):

Für $n \in \mathbb{N}$ sei $A_n := \{x | n - 1 \text{ durch } x \text{ teilbar} \}$ und $B_n := \{x | n + 1 \text{ durch } x \text{ teilbar} \}$.

Wähle $a_1, \ldots, a_r \in A_n$ und $a'_1, \ldots, a'_l \in B_n$ aus. Sei a das Produkt aller a_i und a'_j . Wähle c_i bzw c'_j sodass $c_i a_i = n - 1$, bzw $c'_j a'_j = n + 1$.

Führe auf einen Kartenstapel R_{c_1}, \ldots, R_{c_r} und $L_{c'_1}, \ldots, L_{c'_l}$ in beliebiger Reihenfolge durch. Dazwischen darf noch zusätzlich abgehoben werden. Der Kartenstapel befindet sich in der Permutation $\phi_{a,b}$, mit b unbekannt falls abheben beliebig. Auf Erkenntnisse aus den jeweiligen Abschnitten verweisen.

Für uns von Bedeutung: a=1 oder $a=-1 \to \mathrm{Die}$ Karten sind in der gleichen, bzw der gespiegelten zyklischen Reihenfolge.