

SELF-ADJOINT OPERATORS

Definition

An operator $T \in \mathcal{L}(V)$ is called *self-adjoint* (or *Hermitian*) if the adjoint of T is itself. In symbols, T is self-adjoint if $T = T^*$. In other words, T is self-adjoint if and only if

$$\langle Tv, w \rangle = \langle v, Tw \rangle$$
 for all $v, w \in V$

Properties

Proposition 1. Suppose $S, T \in \mathcal{L}(V)$ are self-adjoint. The S + T are self-adjoint. Also λT is adjoint for all real λ .

Notation

We will see that the adjoint on $\mathcal{L}(V)$ plays a role similar to complex conjugation on \mathbf{C} . The self-adjoint operators will seen to be analogous to the real numbers. A complex number is real if and only if $z=z^*$. Similarly, an operator is self-adjoint if and only if $T=T^*$.

Characterization for complex space

Proposition 2. Suppose V is a complex inner product space and let $T \in \mathcal{L}(V)$. Then

$$T = T^* \longleftrightarrow \langle Tv, v \rangle \in \mathbf{R} \text{ for all } v \in V$$

