

Text Mining 1 Information Retrieval

Madrid Summer School on Advanced Statistics and Data Mining

Florian Leitner Data Catalytics, S.L. leitner@datacatytics.com

Converting tokens to numbers (part 1)

- Tokenization is the process of splitting text into words, punctuation, and symbols (aka. tokens).
- Indexing can refer to linking tokens to document and counting the frequencies of each token...
- within a document: (token or) term frequency TF
- ▶ number of documents with that token: document frequency DF
- overall count in your document collection: corpus frequency CF
- The remaining question then is: how to make computations with these numbers?

The inverted index

factors, normalization (len[text]), probabilities, and n-grams

Text 1: He that not wills to the end neither wills to the means.

Text 2: If the mountain will not go to Moses, then Moses must go to the mountain.

tokens	Text 1	Text 2
end	1	0
go	0	2
he	1	0
if	0	1
means	1	0
Moses	0	2
mountain	0	2
must	0	1
not	1	1
that	1	0
the	2	2
then	0	1
to	2	2
will	2	1

unigrams	T1	T2	p(T1)	p(T2)
end	1	0	0.09	0.00
go	0	2	0.00	0.13
he	1	0	0.09	0.00
if	0	1	0.00	0.07
means	1	0	0.09	0.00
Moses	0	2	0.00	0.13
mountain	0	2	0.00	0.13
must	0	1	0.00	0.07
not	1	1	0.09	0.07
that	1	0	0.09	0.00
the	2	2	0.18	0.13
then	0	1	0.00	0.07
to	2	2	0.18	0.13
will	2	1	0.18	0.07
SUM	11	15	1.00	1.00

bigrams	Text 1	Text 2
end, neither	1	0
go, to	0	2
he, that	1	0
if, the	0	1
Moses, must	0	1
Moses, then	0	1
mountain, will	0	1
must, go	0	1
not, go	0	1
not, will	1	0
that, not	1	0
the, means	1	0
the, mountain	0	2
then, Moses	0	1
to, Moses	0	1
to, the	2	1
will, not	0	1
will, to	2	0

Document similarity

- Similarity measures
- Cosine similarity (of document/text vectors)
- Correlation coefficients
- Document vector normalization
- ▶ TF-IDF
- Dimensionality reduction/clustering
- Locality sensitive hashing
- Latent semantic indexing
- Latent Dirichlet allocation

Document vectors

Collections of vectorized texts: **Inverted index**

Text 1: He that not wills to the end neither wills to the means.

Text 2: If the mountain will not go to Moses, then Moses must go to the mountain.

each token/word dimension!

tokens	Text 1	Text 2		
end	1	0		
go	0	2		
he	1	0		
if	0	1		
means	1 1	0 1		
Moses	0 0 0 1 1 ↑ word vector	2 2 1 1 1 1 0 ↑		
mountain	0 /ec	2 9		
must	0 Q	1 0		
not	1 Ö	1 Q		
that	1 1	0 1		
the	2	2		
then	0	1		
to	2	2		
will	2	1		

Comparing word vectors: **Cosine similarity**

MSS/ASDM: Text Mining

Cosine similarity

$$sim(\vec{x}, \vec{y}) = cos(\vec{x}, \vec{y}) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|} = \frac{\sum x_i y_i}{\sqrt{\sum x_i^2} \sqrt{\sum y_i^2}}$$

- Define a similarity score between two document vectors (or the query vector in Information Retrieval)
- can be dropped if using <u>unit vectors</u>

 ("length-normalized" a.k.a. "cosine
 normalization") only dot-product is now
 left: extremely efficient ways to compute
 on modern CPUs

- Euclidian vector distance is length dependent
- The cosine [angle] between two vectors is not

$$sim(T_1,T_2) = \frac{1*1+2*2+2*2+2*1}{\sqrt{(17)}*\sqrt{(25)}} = 0.5336$$

tokens	Text 1	Text 2
end	1	0
go	0	2
he	1	0
if	0	1
means	1	0
Moses	0	2
mountain	0	2
must	0	1
not	1	1
that	1	0
the	2	2
then	0	1
to	2	2
will	2	1

Jaccard's [set] similarity

"words" vs "woody"

ABC vs. ABCABCABC

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{3}{7} = 0.43$$

Alternative similarity coefficients

- Spearman's rank correlation coefficient ρ (r[ho])
- ▶ Ranking is done by term frequency (TF; count)
- Critique: sensitive to ranking differences that are likely to occur with high-frequency words (e.g., "the", "a", ...) → use the log of the term count, rounded to two significant digits
- NB that this is not relevant when only short documents (e.g. titles) with low TF counts are compared
- Pearson's chi-square test χ^2
- Directly on the TFs (counts) intuition:
 Are the TFs "random samples" from the same base distribution?
- Usually, χ^2 should be preferred over ρ (Kilgarriff & Rose, 1998)
- NB that both measures have no inherent normalization of document size
- preprocessing might be necessary!

Term Frequency times Inverse Document Frequency (TF-IDF)

- Motivation and background
- The problem
- Frequent terms contribute most to a document vector's direction, but **not all** terms are **relevant** ("the", "a", ...).
- The goal
- Separate important terms from frequent, but irrelevant terms in the collection.
- The idea
- Frequent terms appearing in all documents tend to be less important versus frequent terms in just a few documents.
 → Zipf's Law!
- Also dampens the effect of topic-specific noun phrases or an author's bias for a specific set of adjectives

Term Frequency times Inverse Document Frequency (TF-IDF)

- \rightarrow tf.idf(w) := tf(w) \times idf(w)
- tf: (document-specific) term frequency
- idf: inverse (global) document frequency

- $\blacktriangleright \mathbf{tf_{natural}}(w) := \operatorname{count}(w)$
- tf_{natural}: n. of times term w occurs in a document
- \rightarrow tf_{log}(w) := log(count(w) + 1)
- tf_{log}: the TF is smoothed by taking its log

- $\blacktriangleright idf_{natural}(w) := N / \sum_{i=1}^{N} \{w_i > 0\}$
- idf_{natural}: n. documents divided by n. documents in which term w occurs
- $idf_{log}(w) := log(N / \sum_{i=1}^{N} \{w_i > 0\})$
- idf_{log}: the IDF is smoothed by taking its log
- where N is the **number of documents**, w_i the **count of word** w in document i, and $\{w_i > 0\}$ is 1 if document *i* has word *w* or 0 otherwise

TF-IDF in information retrieval

- Document vectors = tf_{log} \rightarrow i.e. the doc. vectors do not use any IDF weighting (because its more efficient: the QV uses IDF, and
- Query vector = tf_{log} idf_{log}
- Terms are counted on each individual document & the query
- Cosine vector length normalization for TF-IDF scores:
- ▶ Document W normalization
- Query Q normalization

$$\sqrt{\sum_{w \in W} t f_{log}(w)^2}$$

$$\sqrt{\sum_{q \in Q} (t f_{log}(q) \times i d f_{log}(q))^2}$$

that gets multiplied with the DV values)

IDF is calculated over the indexed collection of all documents

TF-IDF query score: An example

					×					×
					1					
	Collect	tion		Query Q			D	ocument	D	Similarity
Term	df	idf _{log}	tf	tf _{log}	tf.idf	norm	tf	tf _{log}	tf.1	cos(Q,D)
best	3.5E+05	1.46	1	0.30	0.44	0.21	0	0.00	0.00	0.00
text	2.4E+03	3.62	1	0.30	1.09	0.53	10	1.04	0.06	0.03
mining	2.8E+02	4.55	1	0.30	1.37	0.67	8	0.95	0.06	0.04
tutorial	5.5E+03	3.26	1	0.30	0.98	0.48	3	0.60	0.04	0.02
data	9.2E+05	1.04	0	0.00	0.00	0.00	10	1.04	0.06	0.00
					0.00	0.00		16.00		0.00
Sums	1.0E+07		4		2.05	†	~355	16.11	†	0.09
				√ of ∑	of 2	ر ÷	√ of ∑	of 2	ノ ÷	
				, O. Z		•	, 5, 2		•	

3 out of hundreds of unique words match (Jaccard < 0.03)

Example idea from: Manning et al. Introduction to Information Retrieval. 2009 Free PDF?

Locality Sensitive Hashing (LSH) 1/2

- A hashing approach to group near neighbors.
- Map similar items (e.g., documents or words) into the same [hash] buckets.
- LSH "maximizes" (instead of minimizing) hash collisions.
- It therefore is a dimensionality reduction technique.
- For documents or words, minhashing can be used.
- ▶ Approach from Rajaraman & Ullman, Mining of Massive Datasets, 2010
- http://infolab.stanford.edu/~ullman/mmds/ch3a.pdf

Locality Sensitive Hashing (LSH) 2/2

M Vogiatzis. micvog.com 2013.

Min-hash signatures (1/2)

Create a n-gram/k-shingle × document matrix (likely **very** sparse!):

T: shingle/n-gram in documentF: shingle/n-gram not in document

A Company of the Comp						the row order		
	X	D ₁	D_2	D_3	D ₄	h ₁	h ₂	the row order
le ID	0	Т	F	F	T	1	1	$h_1(x) = (x+1)%n$
ing	1	F	F	Т	F	2	4	
/sh	2	F	Т	F	Т	3	2	$h_2(x) = (3x+1)%n$
-gram/sh	3	Т	F	Т	Т	4	0	with $n=5$ (rows)
D-Q	4	F	F	Т	F	0	3	hash-"permuted" row IDs
								Mush- permucea row 193

Step 1/2 - permuting the row order:

$$h_1(x) = (x+1)%n$$

$$h_2(x) = (3x+1)\%n$$

with
$$n=5$$
 (rows)

Lemma: Two docs will have the same first "true" shingle/n-gram when looking from top to bottom with a probability equal to their Jaccard (Set) Similarity.

a family of hash functions hi

Idea: Create sufficient permutations of the row (shingle/n-gram) ordering so that the Jaccard Similarity can be approximated by comparing the number of coinciding vs. differing rows.

Min-hash signatures (2/2)

$$h_1(x) = (x+1)\%n$$

$$h_2(x) = (3x+1)\%n$$

$$step$$

$$one$$

$$n=5$$

Step 2/2 - generating the hash signature:

(vertical, per-document) minhash signatures:

M	D ₁	D ₂	D ₃	D ₄
h ₁	1	3	0	1
h ₂	0	2	0	0

perfectly map-reduce-able and embarrassingly parallel!

init matrix M = ∞

for each shingle s: for each hash h: for each doc d: if S[d,s] and M[d,h] > h(s): M[d,h] = h(s)

Locality Sensitive Hashing (LSH) 2/2

M Vogiatzis. micvog.com 2013.

Banded Locality Sensitive Min-hashing

Bands		T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	T ₇	T ₈	
	h ₁	1	0	2	1	7	1	4	5	
1	h ₂	1	2	4	1	6	5	5	6	
	h ₃	0	5	6	0	6	4	7	9	
	h ₅	4	0	8	8	7	6	5	7	
2	h ₁	7	7	0	8	3	8	7	3	
_	h ₄	8	9	0	7	2	4	8	2	
	h ₂	8	5	4	0	9	8	4	7	
3	h ₆	9	4	3	9	0	8	3	9	
	h ₇	8	5	8	0	0	6	8	0	

Bands b \propto pagreement Hashes/Band r \propto 1/pagreement

pagreement $p_{agreement} = 1 - (1 - s^r)^b$ $p_{agreement} = 1 - (1 - s^r)^b$ $p_{agreement} = 1 - (1 - s^r)^b$ $p_{agreement} = 1 - (1 - s^r)^b$

UnionFind to connect buckets across bands

	T ₀	T ₁	T ₂	T ₃	T 4	T ₅	T 6	T ₇	
h ₁	0	1	2	7	1	1	4	5	
h ₂	2	5	4	6	5	5	5	6	
h ₃	5	0	6	6	0	0	7	9	
h ₅	4	0	2	8	8	2	5	5	
h ₁	7	7	1	8	0	1	7	3	
h ₆	8	9	6	7	0	6	8	8	
h ₂	8	5	4	4	9	8	4	4	
h ₅	9	4	3	3	0	1	3	3	
h ₄	8	5	8	8	0	6	8	8	

Document "clusters" $\{0\}, \{145\}, \{2367\} \xrightarrow{union(2,5)} \{0\}, \{1234567\}$