Notes on Behavioural Economics

Jason Collins

Subjective expected utility: $\mathbb{E}[U(X)]$

Subjective probability: $\pi(x_i)$

$$\mathbb{E}[U(X)] = \pi(x_1)u(x_1) + \pi(x_2)u(x_2) + \dots + \pi(x_n)u(x_n)$$

$$= \sum_{i=1}^{n} \pi(x_i)u(x_i)$$

$$\mathbb{E}[U(X)] = \pi(x_1)u(x_1) + \pi(x_2)u(x_2) + \dots + \pi(x_n)u(x_n)$$
$$= \sum_{i=1}^{n} \pi(x_i)u(x_i)$$

1. Defining utility $u(x_1)$ over final outcomes $x_1, ... x_n$.

$$\mathbb{E}[U(X)] = \pi(x_1)u(x_1) + \pi(x_2)u(x_2) + \dots + \pi(x_n)u(x_n)$$
$$= \sum_{i=1}^{n} \pi(x_i)u(x_i)$$

- 1. Defining utility $u(x_1)$ over final outcomes $x_1, ... x_n$.
- 2. Defining subjective probability $\pi(x_1)$ for each outcome.

$$\mathbb{E}[U(X)] = \pi(x_1)u(x_1) + \pi(x_2)u(x_2) + \dots + \pi(x_n)u(x_n)$$
$$= \sum_{i=1}^{n} \pi(x_i)u(x_i)$$

- 1. Defining utility $u(x_1)$ over final outcomes $x_1, ... x_n$.
- 2. Defining subjective probability $\pi(x_1)$ for each outcome.
- 3. Weighting each outcome's utility by its subjective probability.

$$\mathbb{E}[U(X)] = \pi(x_1)u(x_1) + \pi(x_2)u(x_2) + \dots + \pi(x_n)u(x_n)$$
$$= \sum_{i=1}^{n} \pi(x_i)u(x_i)$$

- 1. Defining utility $u(x_1)$ over final outcomes $x_1, ... x_n$.
- 2. Defining subjective probability $\pi(x_1)$ for each outcome.
- 3. Weighting each outcomes utility by its subjective probability.
- 4. Summing the weighted utilities.

Axioms for subjective expected utility theory

Axioms for subjective expected utility theory

Sure-thing principle

Suppose there are two possible states of the world. If you prefer one option (A) over another (B) in one possible state, and you also prefer A over B under the alternative state, then you should prefer A over B even if you do not know which state will occur.

Non-negativity

$$0 \le \pi(A) \le 1$$

Non-negativity

$$0 \le \pi(A) \le 1$$

Additivity

$$\pi (A \cup B) = \pi(A) + \pi(B)$$

Non-negativity

$$0 \le \pi(A) \le 1$$

Additivity

$$\pi (A \cup B) = \pi(A) + \pi(B)$$

Normalisation

$$\pi\left(\cdot\right)=1$$

Baye's rule

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$= \frac{P(B|A)P(A)}{P(B)}$$

Dutch book

Dutch book

- Probability of rain tomorrow: 60%
- Probability of no rain tomorrow: 50%

Dutch book

- Probability of rain tomorrow: 60%
- Probability of no rain tomorrow: 50%

- Sell a \$60 bet paying \$100 if it rains
- Sell a \$50 bet paying \$100 if it doesn't rain

A: risky

B: ambiguous

Gamble A

$$\mathbb{E}[U(A)] = 0.5u(\$100)$$

Gamble A

$$\mathbb{E}[U(A)] = 0.5u(\$100)$$

Gamble B

Red: $\pi(r)$

Black: $\pi(b) = 1 - \pi(r)$

Gamble A

$$\mathbb{E}[U(A)] = 0.5u(\$100)$$

Gamble B

Red:
$$\pi(r)$$
 \Longrightarrow $\mathbb{E}[U(B_r)] = \pi(r)u(\$100)$

Black:
$$\pi(b) = 1 - \pi(r)$$
 \Longrightarrow $\mathbb{E}[U(B_b)] = (1 - \pi(r))u(\$100)$

Gamble A

$$\mathbb{E}[U(A)] = 0.5u(\$100)$$

Gamble B

Red:
$$\pi(r)$$
 \Rightarrow $\mathbb{E}[U(B_r)] = \pi(r)u(\$100)$
Black: $\pi(b) = 1 - \pi(r)$ \Rightarrow $\mathbb{E}[U(B_b)] = (1 - \pi(r))u(\$100)$
 $\mathbb{E}[U(B)] = \max\{\pi(r)u(\$100), (1 - \pi(r))u(\$100)\}$
 $= \max\{\pi(r), (1 - \pi(r))\}u(\$100)$

Believe 0 red
$$\Rightarrow$$
 Predict black $\mathbb{E}[U(B)] = u(\$100) > 0.5u(\$100) = \mathbb{E}[U(A)]$

Believe 1 red
$$\Rightarrow$$
 Predict black $\mathbb{E}[U(B)] = 0.99u(\$100) > 0.5u(\$100) = \mathbb{E}[U(A)]$

. . .

Believe 50 red
$$\Rightarrow$$
 Predict either $\mathbb{E}[U(B)] = 0.5u(\$100) = 0.5u(\$100)$
= $\mathbb{E}[U(A)]$

. . .

Believe 100 red
$$\Longrightarrow$$
 Predict red $\mathbb{E}[U(B)] = u(\$100) > 0.5u(\$100) = \mathbb{E}[U(A)]$