Graded Questions

Problem: 1

The bias voltage in the circuit in Figure is changed to $V_{CC} = 9$ V. The transistor current gain is $\beta = 80$.

Design the circuit such that $I_{CQ} = 0.25$ mA and $V_{CEQ} = 4.5$ V. (b) If the transistor is replaced by a new one with $\beta = 120$, find the new values of I_{CQ} and V_{CEQ} . (c) Sketch the load line and Q-point for both parts (a) and (b).

Problem:2

For the circuit in Figure assume transistor parameters of β = 150,V $_{BE(on)}$ = 0.7 V, and VA = 200 V. The circuit parameters are V_{CC} = 7.5 V,V $_{BB}$ = 0.92 V, R_B = 100 k, and R_C = 15 k. (a) Determine the small-signal hybrid- π parameters gm, $r\pi$, and ro.

Problem:3

Determine the small-signal voltage gain and input resistance of a common-emitter circuit with an emitter resistor. For the circuit in Figure, the transistor parameters are: $\beta = 120$, $V_{BE(on)} = 0.7$ V, and $V_A = \infty$.

Resistors are

$$R_E=0.6k\Omega, R_C=5.6k\Omega, R_1=250k\Omega, R_2=75k\Omega$$

(a) Determine the small-signal voltage gain Av. (b) Determine the input resistance looking into the base of the transistor

Problem:4

For the circuit shown in Figure, the parameters are: $V_{CC}=3~V, R_{Si}=0,~R_1=110~k\Omega,~R_2=42~k\Omega,~R_E=0.5k\Omega,~R_C=7k\Omega,~and~C_C=0.47\mu F$. The transistor parameters are $\beta=150,~V_{BE(on)}=0.7~V$, and $V_A=\infty$.

Draw the hybrid pi model

Determine the expression for and the value of the time constant τS . (b)

Determine the corner frequency and midband voltage gain.

Problem: 5

For the circuit in Figure the parameters are R_1 = 200 k R_2 = 220 k Ω , R_C = 2.2 k Ω , R_L = 4.7 k Ω , R_E = 1 k Ω , r_s = 100 k Ω , and V_{CC} = 5 V. The transistor parameters are β o = 100, $V_{BE(on)}$ = 0.7 V, V_A = ∞ , C_μ = 2 pF and C_π = 10 pF.

- (a)Consider the simplified hybrid- π model of the transistor.
- (b) Calculate the Milier capacitance and the 3dB frequency

