SEQUENCE LISTING

<110> Rouleau, Guy A.

Lafreniere, Ronald G. Rochefort, Daniel <120> LOCI FOR IDIOPATHIC GENERALIZED EPILEPSY, MUTATIONS THEREOF AND METHOD USING SAME TO ASSESS, DIAGNOSE, PROGNOSE OR TREAT EPILEPSY <130> GOUD:023USD3 <140> UNKNOWN <141> 2003-09-17 <140> 09/718,355 <141> 2000-11-24 <150> 60/167,623 <151> 1999-11-26 <160> 408 <170> PatentIn version 3.1 <210> 1 <211> 8378 <212> DNA <213> Homo sapiens <400> 1 tactgcagag gtctctggtg catgtgtgta tgtgtgcgtt tgtgtgtgtt tgtqtctq 60 tgtgttctgc cccagtgaga ctgcagccct tgtaaatact ttgacacctt ttgcaaqaaq 120 gaatctgaac aattgcaact gaaggcacat tgttatcatc tcgtctttgg gtgatgctgt 180 tcctcactgc agatggataa ttttcctttt aatcaggaat ttcatatgca gaataaatgg 240 taattaaaat gtgcaggatg acaagatgga gcaaacagtg cttgtaccac caggacctga 300 cagcttcaac ttcttcacca gagaatctct tgcggctatt gaaagacgca ttgcagaaga 360 aaaggcaaag aatcccaaac cagacaaaaa agatgacgac gaaaatggcc caaagccaaa 420 tagtgacttg gaagctggaa agaaccttcc atttatttat ggagacattc ctccagagat 480 ggtgtcagag cccctggagg acctggaccc ctactatatc aataagaaaa cttttatagt 540 attgaataaa gggaaggcca tcttccggtt cagtgccacc tctgccctgt acattttaac 600 tcccttcaat cctcttagga aaatagctat taagattttg gtacattcat tattcagcat 660 gctaattatg tgcactattt tgacaaactg tgtgtttatg acaatgagta accetectga 720 ttggacaaag aatgtagaat acaccttcac aggaatatat acttttgaat cacttataaa 780

aattattgca aggggattct gtttagaaga ttttactttc cttcgggatc catggaactg

840

gctcgatttc actgtcatta catttgcgta cgtcacagag tttgtggacc tgggcaatgt 900 ctcggcattg agaacattca gagttctccg agcattgaag acgatttcag tcattccagg 960 cctgaaaacc attgtgggag ccctgatcca gtctgtgaag aagctctcag atgtaatgat 1020 cctgactgtg ttctgtctga gcgtatttgc tctaattggg ctgcagctgt tcatgggcaa 1080 cctgaggaat aaatgtatac aatggcctcc caccaatgct tccttggagg aacatagtat 1140 agaaaagaat ataactgtga attataatgg tacacttata aatgaaactg tctttgagtt 1200 tgactggaag tcatatattc aagattcaag atatcattat ttcctggagg gttttttaga 1260 tgcactacta tgtggaaata gctctgatgc aggccaatgt ccagagggat atatgtgtgt 1320 gaaagctggt agaaatccca attatggcta cacaagcttt gataccttca gttgggcttt 1380 tttgtccttg tttcgactaa tgactcagga cttctgggaa aatctttatc aactgacatt 1440 acgtgctgct gggaaaacgt acatgatatt ttttgtattg gtcattttct tgggctcatt 1500 ctacctaata aatttgatcc tggctgtggt ggccatggcc tacgaggaac agaatcaggc 1560 caccttggaa gaagcagaac agaaagaggc cgaatttcag cagatgattg aacagcttaa 1620 aaagcaacag gaggcagctc agcaggcagc aacggcaact gcctcagaac attccagaga 1680 gcccagtgca gcaggcaggc tctcagacag ctcatctgaa gcctctaagt tgagttccaa 1740 1800 ggaagagaaa gatgaggatg aattccaaaa atctgaatct gaggacagca tcaggaggaa 1860 aggttttcgc ttctccattg aagggaaccg attgacatat gaaaagaggt actcctcccc 1920 acaccagtet ttgttgagea teegtggete eetattttea eeaaggegaa atageagaae 1980 aagccttttc agctttagag ggcgagcaaa ggatgtggga tctgagaacg acttcgcaga 2040 tgatgagcac agcacctttg aggataacga gagccgtaga gattccttgt ttgtgccccg 2100 acgacacgga gagagacgca acagcaacct gagtcagacc agtaggtcat cccggatgct 2160 ggcagtgttt ccagcgaatg ggaagatgca cagcactgtg gattgcaatg gtgtggtttc 2220 cttggttggt ggaccttcag ttcctacatc gcctgttgga cagcttctgc cagaggtgat 2280 aatagataag ccagctactg atgacaatgg aacaaccact gaaactgaaa tgagaaagag 2340 aaggtcaagt tetttecacg tttecatgga etttetagaa gateetteee aaaggeaacg 2400 agcaatgagt atagccagca ttctaacaaa tacagtagaa gaacttgaag aatccaggca 2460 gaaatgccca ccctgttggt ataaattttc caacatattc ttaatctggg actgttctcc 2520

atattggtta	aaagtgaaac	atgttgtcaa	cctggttgtg	atggacccat	ttgttgacct	2580
ggccatcacc	atctgtattg	tcttaaatac	tcttttcatg	gccatggagc	actatccaat	2640
gacggaccat	ttcaataatg	tgcttacagt	aggaaacttg	gttttcactg	ggatctttac	2700
agcagaaatg	tttctgaaaa	ttattgccat	ggatccttac	tattatttcc	aagaaggctg	2760
gaatatcttt	gacggtttta	ttgtgacgct	tagcctggta	gaacttggac	tcgccaatgt	2820
ggaaggatta	tctgttctcc	gttcatttcg	attgctgcga	gttttcaagt	tggcaaaatc	2880
ttggccaacg	ttaaatatgc	taataaagat	catcggcaat	tccgtggggg	ctctgggaaa	2940
tttaaccctc	gtcttggcca	tcatcgtctt	catttttgcc	gtggtcggca	tgcagctctt	3000
tggtaaaagc	tacaaagatt	gtgtctgcaa	gatcgccagt	gattgtcaac	tcccacgctg	3060
gcacatgaat	gacttcttcc	actccttcct	gattgtgttc	cgcgtgctgt	gtggggagtg	3120
gatagagacc	atgtgggact	gtatggaggt	tgctggtcaa	gccatgtgcc	ttactgtctt	3180
catgatggtc	atggtgattg	gaaacctagt	ggtcctgaat	ctctttctgg	ccttgcttct	3240
gagctcattt	agtgcagaca	accttgcagc	cactgatgat	gataatgaaa	tgaataatct	3300
ccaaattgct	gtggatagga	tgcacaaagg	agtagcttat	gtgaaaagaa	aaatatatga	3360
atttattcaa	cagtccttca	ttaggaaaca	aaagatttta	gatgaaatta	aaccacttga	3420
tgatctaaac	aacaagaaag	acagttgtat	gtccaatcat	acagcagaaa	ttgggaaaga	3480
tcttgactat	cttaaagatg	taaatggaac	tacaagtggt	ataggaactg	gcagcagtgt	3540
tgaaaaatac	attattgatg	aaagtgatta	catgtcattc	ataaacaacc	ccagtcttac	3600
tgtgactgta	ccaattgctg	taggagaatc	tgactttgaa	aatttaaaca	cggaagactt	3660
tagtagtgaa	tcggatctgg	aagaaagcaa	agagaaactg	aatgaaagca	gtagctcatc	3720
agaaggtagc	actgtggaca	tcggcgcacc	tgtagaagaa	cagcccgtag	tggaacctga	3780
agaaactctt	gaaccagaag	cttgtttcac	tgaaggctgt	gtacaaagat	tcaagtgttg	3840
tcaaatcaat	gtggaagaag	gcagaggaaa	acaatggtgg	aacctgagaa	ggacgtgttt	3900
ccgaatagtt	gaacataact	ggtttgagac	cttcattgtt	ttcatgattc	tccttagtag	3960
tggtgctcgg	catttgaaga	tatatatatt	gatcagcgaa	agacgattaa	gacgatgttg	4020
gaatatgctg	acaaggtttt	cacttacatt	ttcattctgg	aaatgcttct	aaaatgggtg	4080
gcatatggct	atcaaacata	tttcaccaat	gcctggtgtt	ggctggactt	cttaattgtt	4140
gatgtttcat	tggtcagttt	aacagcaaat	gccttgggtt	actcagaact	tggagccatc	4200
aaatctctca	ggacactaag	agctctgaga	cctctaagag	ccttatctcg	atttgaaggg	4260

atgagggtgg ttgtgaatgc ccttttagga gcaattccat ccatcatgaa tgtgcttctg 4320 gtttgtctta tattctggct aattttcagc atcatgggcg taaatttgtt tgctggcaaa 4380 ttctaccact gtattaacac cacaactggt gacaggtttg acatcgaaga cgtgaataat 4440 catactgatt gcctaaaact aatagaaaga aatgagactg ctcgatggaa aaatgtgaaa 4500 gtaaactttg ataatgtagg atttgggtat ctctctttgc ttcaagttgc cacattcaaa 4560 ggatggatgg atataatgta tgcagcagtt gattccagaa atgtggaact ccagcctaag 4620 tatgaagaaa gtctgtacat gtatctttac tttgttattt tcatcatctt tgggtccttc 4680 ttcaccttga acctgtttat tggtgtcatc atagataatt tcaaccagca gaaaaagaag 4740 tttggaggtc aagacatctt tatgacagaa gaacagaaga aatactataa tgcaatgaaa 4800 aaattaggat cgaaaaaacc gcaaaagcct atacctcgac caggaaacaa atttcaagga 4860 atggtctttg acttcgtaac cagacaagtt tttgacataa gcatcatgat tctcatctgt 4920 cttaacatgg tcacaatgat ggtggaaaca gatgaccaga gtgaatatgt gactaccatt 4980 ttgtcacgca tcaatctggt gttcattgtg ctatttactg gagagtgtgt actgaaactc 5040 atctctctac gccattatta ttttaccatt ggatggaata tttttgattt tgtggttgtc 5100 attctctcca ttgtaggtat gtttcttgcc gagctgatag aaaagtattt cgtgtcccct 5160 accetgttcc gagtgatccg tettgetagg attggccgaa tectacgtet gatcaaagga 5220 gcaaagggga teegcaeget getetttget ttgatgatgt eeetteetge gttgtttaae 5280 atcggcctcc tactcttcct agtcatgttc atctacgcca tctttgggat gtccaacttt 5340 gcctatgtta agagggaagt tgggatcgat gacatgttca actttgagac ctttggcaac 5400 agcatgatet geetatteea aattacaace tetgetgget gggatggatt getageacee 5460 atteteaaca gtaageeace egaetgtgae eetaataaag ttaaceetgg aageteagtt 5520 aagggagact gtgggaaccc atctgttgga attttctttt ttgtcagtta catcatcata 5580 teetteetgg ttgtggtgaa catgtacate geggteatee tggagaaett eagtgttget 5640 actgaagaaa gtgcagagcc tctgagtgag gatgactttg agatgttcta tgaggtttgg 5700 gagaagtttg atcccgatgc aactcagttc atggaatttg aaaaattatc tcagtttgca 5760 gctgcgcttg aaccgcctct caatctgcca caaccaaaca aactccagct cattgccatg 5820 gatttgccca tggtgagtgg tgaccggatc cactgtcttg atatcttatt tgcttttaca 5880 aagcgggttc taggagagag tggagagatg gatgctctac gaatacagat ggaagagcga 5940

ttcatggctt	ccaatccttc	caaggtctcc	tatcagccaa	tcactactac	tttaaaacga	6000
aaacaagagg	aagtatctgc	tgtcattatt	cagcgtgctt	acagacgcca	ccttttaaag	6060
cgaactgtaa	aacaagcttc	ctttacgtac	aataaaaaca	aaatcaaagg	tggggctaat	6120
cttcttataa	aagaagacat	gataattgac	agaataaatg	aaaactctat	tacagaaaaa	6180
actgatctga	ccatgtccac	tgcagcttgt	ccaccttcct	atgaccgggt	gacaaagcca	6240
attgtggaaa	aacatgagca	agaaggcaaa	gatgaaaaag	ccaaagggaa	ataaatgaaa	6300
ataaataaaa	ataattgggt	gacaaattgt	ttacagcctg	tgaaggtgat	gtatttttat	6360
caacaggact	cctttaggag	gtcaatgcca	aactgactgt	ttttacacaa	atctccttaa	6420
ggtcagtgcc	tacaataaga	cagtgacccc	ttgtcagcaa	actgtgactc	tgtgtaaagg	6480
ggagatgacc	ttgacaggag	gttactgttc	tcactaccag	ctgacactgc	tgaagataag	6540
atgcacaatg	gctagtcaga	ctgtagggac	cagtttcaag	gggtgcaaac	ctgtgatttt	6600
ggggttgttt	aacatgaaac	actttagtgt	agtaattgta	tccactgttt	gcatttcaac	6660
tgccacattt	gtcacatttt	tatggaatct	gttagtggat	tcatcttttt	gttaatccat	6720
gtgtttatta	tatgtgacta	tttttgtaaa	cgaagtttct	gttgagaaat	aggctaagga	6780
cctctataac	aggtatgcca	cctggggggt	atggcaacca	catggccctc	ccagctacac	6840
aaagtcgtgg	tttgcatgag	ggcatgctgc	acttagagat	catgcatgag	aaaaagtcac	6900
aagaaaaaca	aattcttaaa	tttcaccata	tttctgggag	gggtaattgg	gtgataagtg	6960
gaggtgcttt	gttgatcttg	ttttgcgaaa	tccagcccct	agaccaagta	gattatttgt	7020
gggtaggcca	gtaaatctta	gcaggtgcaa	acttcattca	aatgtttgga	gtcataaatg	7080
ttatgtttct	ttttgttgta	ttaaaaaaaa	aacctgaata	gtgaatattg	cccctcaccc	7140
tccaccgcca	gaagactgaa	ttgaccaaaa	ttactcttta	taaatttctg	ctttttcctg	7200
cactttgttt	agccatcttc	ggctctcagc	aaggttgaca	ctgtatatgt	taatgaaatg	7260
ctatttatta	tgtaaatagt	cattttaccc	tgtggtgcac	gtttgagcaa	acaaataatg	7320
acctaagcac	agtatttatt	gcatcaaata	tgtaccacaa	gaaatgtaga	gtgcaagctt	7380
tacacaggta	ataaaatgta	ttctgtacca	tttatagata	gtttggatgc	tatcaatgca	7440
tgtttatatt	accatgctgc	tgtatctggt	ttctctcact	gctcagaatc	tcatttatga	7500
gaaaccatat	gtcagtggta	aagtcaagga	aattgttcaa	cagatctcat	ttatttaagt	7560
cattaagcaa	tagtttgcag	cactttaaca	gctttttggt	tatttttaca	ttttaagtgg	7620
ataacatatg	gtatatagcc	agactgtaca	gacatgttta	aaaaaacaca	ctgcttaacc	7680

tattaaatat	gtgtttagaa	ttttataagc	aaatataaat	actgtaaaaa	gtcactttat	7740
tttattttc	agcattatgt	acataaatat	gaagaggaaa	ttatcttcag	gttgatatca	7800
caatcacttt	tcttactttc	tgtccatagt	actttttcat	gaaagaaatt	tgctaaataa	7860
gacatgaaaa	caagactggg	tagttgtaga	tttctgcttt	ttaaattaca	tttgctaatt	7920
ttagattatt	tcacaatttt	aaggagcaaa	ataggttcac	gattcatatc	caaattatgc	7980
tttgcaattg	gaaaagggtt	taaaatttta	tttatatttc	tggtagtacc	tgcactaact	8040
gaattgaagg	tagtgcttat	gttatttttg	ttctttttt	ctgacttcgg	tttatgtttt	8100
catttctttg	gagtaatgct	gctctagttg	ttctaaatag	aatgtgggct	tcataatttt	8160
tttttccaca	aaaacagagt	agtcaactta	tatagtcaat	tacatcagga	cattttgtgt	8220
ttcttacaga	agcaaaccat	aggctcctct	tttccttaaa	actacttaga	taaactgtat	8280
tcgtgaactg	catgctggaa	aatgctacta	ttatgctaaa	taatgctaac	caacatttaa	8340
aatgtgcaaa	actaataaag	attacatttt	ttatttta			8378

<210> 2

<211> 8378

<212> DNA

<213> Homo sapiens

<400> 2

tactgcagag gtctctggtg catgtgtgta tgtgtgcgtt tgtgtgtgtt tgtgtgtctg 60 tgtgttctgc cccagtgaga ctgcagccct tgtaaatact ttgacacctt ttgcaagaag 120 gaatctgaac aattgcaact gaaggcacat tgttatcatc tcgtctttgg gtgatgctgt 180 tcctcactgc agatggataa ttttcctttt aatcaggaat ttcatatgca gaataaatgg 240 taattaaaat gtgcaggatg acaagatgga gcaaacagtg cttgtaccac caggacctga 300 cagcttcaac ttcttcacca gagaatctct tgcggctatt gaaagacgca ttgcagaaga 360 aaaggcaaag aatcccaaac cagacaaaaa agatgacgac gaaaatggcc caaagccaaa 420 tagtgacttg gaagctggaa agaaccttcc atttatttat ggagacattc ctccagagat 480 ggtgtcagag cccctggagg acctggaccc ctactatatc aataagaaaa cttttatagt 540 attgaataaa gggaaggcca tcttccggtt cagtgccacc tctgccctgt acattttaac 600 tcccttcaat cctcttagga aaatagctat taagattttg gtacattcat tattcagcat 660 gctaattatg tgcactattt tgacaaactg tgtgtttatg acaatgagta accetectga 720 ttggacaaag aatgtagaat acaccttcac aggaatatat acttttgaat cacttataaa 780

aattattgca aggggattct gtttagaaga ttttactttc cttcgggatc catggaactg 840 gctcgatttc actgtcatta catttgcgtt tgtaacagaa tttgtaaacc taggcaattt 900 ttcagctctt cgcactttca gagtcttgag agctttgaaa actatttcgg taattccagg 960 cctgaaaacc attgtgggag ccctgatcca gtctgtgaag aagctctcag atgtaatgat 1020 cctgactgtg ttctgtctga gcgtatttgc tctaattggg ctgcagctgt tcatgggcaa 1080 cctgaggaat aaatgtatac aatggcctcc caccaatgct tccttggagg aacatagtat 1140 agaaaagaat ataactgtga attataatgg tacacttata aatgaaactg tctttgagtt 1200 tgactggaag tcatatattc aagattcaag atatcattat ttcctggagg gttttttaga 1260 tgcactacta tgtggaaata gctctgatgc aggccaatgt ccagagggat atatgtgtgt 1320 gaaagctggt agaaatccca attatggcta cacaagcttt gataccttca gttgggcttt 1380 tttgtccttg tttcgactaa tgactcagga cttctgggaa aatctttatc aactgacatt 1440 acgtgctgct gggaaaacgt acatgatatt ttttgtattg gtcattttct tgggctcatt 1500 ctacctaata aatttgatcc tggctgtggt ggccatggcc tacgaggaac agaatcaggc 1560 caccttggaa gaagcagaac agaaagaggc cgaatttcag cagatgattg aacagcttaa 1620 aaagcaacag gaggcagctc agcaggcagc aacggcaact gcctcagaac attccagaga 1680 gcccagtgca gcaggcaggc tctcagacag ctcatctgaa gcctctaagt tgagttccaa 1740 1800 ggaagagaaa gatgaggatg aattccaaaa atctgaatct gaggacagca tcaggaggaa 1860 aggttttcgc ttctccattg aagggaaccg attgacatat gaaaagaggt actcctcccc 1920 acaccagtct ttgttgagca tccgtggctc cctattttca ccaaggcgaa atagcagaac 1980 aagccttttc agctttagag ggcgagcaaa ggatgtggga tctgagaacg acttcgcaga 2040 tgatgagcca gcacctttga ggataacgag agccgtagag attccttgtt tgtgccccga 2100 cgacacggag agagacgcaa cagcaacctg agtcagacca gtaggtcatc ccggatgctg 2160 gcagtgtttc cagcgaatgg gaagatgcac agcactgtgg attgcaatgg tgtggtttcc 2220 ttggttggtg gaccttcagt tcctacatcg cctgttggac agcttctgcc agaggtgata 2280 atagataagc cagctactga tgacaatgga acaaccactg aaactgaaat gagaaagaga 2340 aggtcaagtt ctttccacgt ttccatggac tttctagaag atccttccca aaggcaacga 2400 gcaatgagta tagccagcat tctaacaaat acagtagaag aacttgaaga atccaggcag 2460

aaatgcccac	cctgttggta	taaattttcc	aacatattct	taatctggga	ctgttctcca	2520
tattggttaa	aagtgaaaca	tgttgtcaac	ctggttgtga	tggacccatt	tgttgacctg	2580
gccatcacca	tctgtattgt	cttaaatact	cttttcatgg	ccatggagca	ctatccaatg	2640
acggaccatt	tcaataatgt	gcttacagta	ggaaacttgg	ttttcactgg	gatctttaca	2700
gcagaaatgt	ttctgaaaat	tattgccatg	gatccttact	attatttcca	agaaggctgg	2760
aatatctttg	acggttttat	tgtgacgctt	agcctggtag	aacttggact	cgccaatgtg	2820
gaaggattat	ctgttctccg	ttcatttcga	ttgctgcgag	ttttcaagtt	ggcaaaatct	2880
tggccaacgt	taaatatgct	aataaagatc	atcggcaatt	ccgtgggggc	tctgggaaat	2940
ttaaccctcg	tcttggccat	catcgtcttc	atttttgccg	tggtcggcat	gcagctcttt	3000
ggtaaaagct	acaaagattg	tgtctgcaag	atcgccagtg	attgtcaact	cccacgctgg	3060
cacatgaatg	acttcttcca	ctccttcctg	attgtgttcc	gcgtgctgtg	tggggagtgg	3120
atagagacca	tgtgggactg	tatggaggtt	gctggtcaag	ccatgtgcct	tactgtcttc	3180
atgatggtca	tggtgattgg	aaacctagtg	gtcctgaatc	tetttetgge	cttgcttctg	3240
agctcattta	gtgcagacaa	ccttgcagcc	actgatgatg	ataatgaaat	gaataatctc	3300
caaattgctg	tggataggat	gcacaaagga	gtagcttatg	tgaaaagaaa	aatatatgaa	3360
tttattcaac	agtccttcat	taggaaacaa	aagattttag	atgaaattaa	accacttgat	3420
gatctaaaca	acaagaaaga	cagttgtatg	tccaatcata	cagcagaaat	tgggaaagat	3480
cttgactatc	ttaaagatgt	aaatggaact	acaagtggta	taggaactgg	cagcagtgtt	3540
gaaaaataca	ttattgatga	aagtgattac	atgtcattca	taaacaaccc	cagtcttact	3600
gtgactgtac	caattgctgt	aggagaatct	gactttgaaa	atttaaacac	ggaagacttt	3660
agtagtgaat	cggatctgga	agaaagcaaa	gagaaactga	atgaaagcag	tagctcatca	3720
gaaggtagca	ctgtggacat	cggcgcacct	gtagaagaac	agcccgtagt	ggaacctgaa	3780
gaaactcttg	aaccagaagc	ttgtttcact	gaaggctgtg	tacaaagatt	caagtgttgt	3840
caaatcaatg	tggaagaagg	cagaggaaaa	caatggtgga	acctgagaag	gacgtgtttc	3900
cgaatagttg	aacataactg	gtttgagacc	ttcattgttt	tcatgattct	ccttagtagt	3960
ggtgctctgg	catttgaaga	tatatatatt	gatcagcgaa	agacgattaa	gacgatgttg	4020
gaatatgctg	acaaggtttt	cacttacatt	ttcattctgg	aaatgcttct	aaaatgggtg	4080
gcatatggct	atcaaaatat	ttcaccaatg	cctggtgttg	gctggacttc	ttaattgttg	4140
atgtttcatt	ggtcagttta	acagcaaatg	ccttgggtta	ctcagaactt	ggagccatca	4200

aatctctcag	gacactaaga	gctctgagac	ctctaagagc	cttatctcga	tttgaaggga	4260
tgagggtggt	tgtgaatgcc	cttttaggag	caattccatc	catcatgaat	gtgcttctgg	4320
tttgtcttat	attctggcta	attttcagca	tcatgggcgt	aaatttgttt	gctggcaaat	4380
tctaccactg	tattaacacc	acaactggtg	acaggtttga	catcgaagac	gtgaataatc	4440
atactgattg	cctaaaacta	atagaaagaa	atgagactgc	tcgatggaaa	aatgtgaaag	4500
taaactttga	taatgtagga	tttgggtatc	tctctttgct	tcaagttgcc	acattcaaag	4560
gatggatgga	tataatgtat	gcagcagttg	attccagaaa	tgtggaactc	cagcctaagt	4620
atgaagaaag	tctgtacatg	tatctttact	ttgttatttt	catcatcttt	gggtccttct	4680
tcaccttgaa	cctgtttatt	ggtgtcatca	tagataattt	caaccagcag	aaaaagaagt	4740
ttggaggtca	agacatcttt	atgacagaag	aacagaagaa	atactataat	gcaatgaaaa	4800
aattaggatc	gaaaaaaccg	caaaagccta	tacctcgacc	aggaaacaaa	tttcaaggaa	4860
tggtctttga	cttcgtaacc	agacaagttt	ttgacataag	catcatgatt	ctcatctgtc	4920
ttaacatggt	cacaatgatg	gtggaaacag	atgaccagag	tgaatatgtg	actaccattt	4980
tgtcacgcat	caatctggtg	ttcattgtgc	tatttactgg	agagtgtgta	ctgaaactca	5040
tctctctacg	ccattattat	tttaccattg	gatggaatat	ttttgatttt	gtggttgtca	5100
ttctctccat	tgtaggtatg	tttcttgccg	agctgataga	aaagtatttc	gtgtccccta	5160
ccctgttccg	agtgatccgt	cttgctagga	ttggccgaat	cctacgtctg	atcaaaggag	5220
caaaggggat	ccgcacgctg	ctctttgctt	tgatgatgtc	ccttcctgcg	ttgtttaaca	5280
teggeeteet	actcttccta	gtcatgttca	tctacgccat	ctttgggatg	tccaactttg	5340
cctatgttaa	gagggaagtt	gggatcgatg	acatgttcaa	ctttgagacc	tttggcaaca	5400
gcatgatctg	cctattccaa	attacaacct	ctgctggctg	ggatggattg	ctagcaccca	5460
ttctcaacag	taagccaccc	gactgtgacc	ctaataaagt	taaccctgga	agctcagtta	5520
agggagactg	tgggaaccca	tctgttggaa	ttttctttt	tgtcagttac	atcatcatat	5580
ccttcctggt	tgtggtgaac	atgtacatcg	cggtcatcct	ggagaacttc	agtgttgcta	5640
ctgaagaaag	tgcagagcct	ctgagtgagg	atgactttga	gatgttctat	gaggtttggg	5700
agaagtttga	tcccgatgca	actcagttca	tggaatttga	aaaattatct	cagtttgcag	5760
ctgcgcttga	accgcctctc	aatctgccac	aaccaaacaa	actccagctc	attgccatgg	5820
atttgcccat	ggtgagtggt	gaccggatcc	actgtcttga	tatcttattt	gcttttacaa	5880

agcgggttct	aggagagagt	ggagagatgg	atgctctacg	aatacagatg	gaagagcgat	5940
tcatggcttc	caatccttcc	aaggtctcct	atcagccaat	cactactact	ttaaaacgaa	6000
aacaagagga	agtatctgct	gtcattattc	agcgtgctta	cagacgccac	cttttaaagc	6060
gaactgtaaa	acaagcttcc	tttacgtaca	ataaaaacaa	aatcaaaggt	ggggctaatc	6120
ttcttataaa	agaagacatg	ataattgaca	gaataaatga	aaactctatt	acagaaaaaa	6180
ctgatctgac	catgtccact	gcagcttgtc	caccttccta	tgaccgggtg	acaaagccaa	6240
ttgtggaaaa	acatgagcaa	gaaggcaaag	atgaaaaagc	caaagggaaa	taaatgaaaa	6300
taaataaaaa	taattgggtg	acaaattgtt	tacagcctgt	gaaggtgatg	tatttttatc	6360
aacaggactc	ctttaggagg	tcaatgccaa	actgactgtt	tttacacaaa	tctccttaag	6420
gtcagtgcct	acaataagac	agtgacccct	tgtcagcaaa	ctgtgactct	gtgtaaaggg	6480
gagatgacct	tgacaggagg	ttactgttct	cactaccagc	tgacactgct	gaagataaga	6540
tgcacaatgg	ctagtcagac	tgtagggacc	agtttcaagg	ggtgcaaacc	tgtgattttg	6600
gggttgttta	acatgaaaca	ctttagtgta	gtaattgtat	ccactgtttg	catttcaact	6660
gccacatttg	tcacattttt	atggaatctg	ttagtggatt	catctttttg	ttaatccatg	6720
tgtttattat	atgtgactat	ttttgtaaac	gaagtttctg	ttgagaaata	ggctaaggac	6780
ctctataaca	ggtatgccac	ctggggggta	tggcaaccac	atggccctcc	cagctacaca	6840
aagtcgtggt	ttgcatgagg	gcatgctgca	cttagagatc	atgcatgaga	aaaagtcaca	6900
agaaaaacaa	attcttaaat	ttcaccatat	ttctgggagg	ggtaattggg	tgataagtgg	6960
aggtgctttg	ttgatcttgt	tttgcgaaat	ccagccccta	gaccaagtag	attatttgtg	7020
ggtaggccag	taaatcttag	caggtgcaaa	cttcattcaa	atgtttggag	tcataaatgt	7080
tatgtttctt	tttgttgtat	taaaaaaaaa	acctgaatag	tgaatattgc	ccctcaccct	7140
ccaccgccag	aagactgaat	tgaccaaaat	tactctttat	aaatttctgc	tttttcctgc	7200
actttgttta	gccatcttcg	gctctcagca	aggttgacac	tgtatatgtt	aatgaaatgc	7260
tatttattat	gtaaatagtc	attttaccct	gtggtgcacg	tttgagcaaa	caaataatga	7320
cctaagcaca	gtatttattg	catcaaatat	gtaccacaag	aaatgtagag	tgcaagcttt	7380
acacaggtaa	taaaatgtat	tctgtaccat	ttatagatag	tttggatgct	atcaatgcat	7440
gtttatatta	ccatgctgct	gtatctggtt	tctctcactg	ctcagaatct	catttatgag	7500
aaaccatatg	tcagtggtaa	agtcaaggaa	attgttcaac	agatctcatt	tatttaagtc	7560
attaagcaat	agtttgcagc	actttaacag	ctttttggtt	atttttacat	tttaagtgga	7620

taacatatgg tatatagcca gactgtacag acatgtttaa aaaaacacac tgcttaacct 7680 attaaatatg tgtttagaat tttataagca aatataaata ctgtaaaaaq tcactttatt 7740 ttatttttca gcattatgta cataaatatg aagaggaaat tatcttcagg ttgatatcac 7800 aatcactttt cttactttct gtccatagta ctttttcatg aaagaaattt gctaaataag 7860 acatgaaaac aagactgggt agttgtagat ttctgctttt taaattacat ttgctaattt 7920 tagattattt cacaatttta aggagcaaaa taggttcacq attcatatcc aaattatqct 7980 ttgcaattgg aaaagggttt aaaattttat ttatatttct ggtagtacct gcactaactg 8040 aattgaaggt agtgcttatg ttatttttgt tctttttttc tgacttcqqt ttatqttttc 8100 atttctttgg agtaatgctg ctctagattg ttctaaatag aatgtgggct tcataatttt 8160 tttttccaca aaaacagagt agtcaactta tatagtcaat tacatcagga cattttgtgt 8220 ttcttacaga agcaaaccat aggctcctct tttccttaaa actacttaga taaactgtat 8280 tcgtgaactg catgctggaa aatgctacta ttatgctaaa taatgctaac caacatttaa 8340 aatgtgcaaa actaataaag attacatttt ttatttta 8378

<210> 3

<211> 2009

<212> PRT

<213> Homo sapiens

<400> 3

Met Glu Gln Thr Val Leu Val Pro Pro Gly Pro Asp Ser Phe Asn Phe 1 5 10 15

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Arg Arg Ile Ala Glu Glu 20 25 30

Lys Ala Lys Asn Pro Lys Pro Asp Lys Lys Asp Asp Asp Glu Asn Gly 35 40 45

Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Asn Leu Pro Phe Ile 50 55 60

Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Glu Pro Leu Glu Asp Leu 65 70 75 80

Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys Gly
85 90 95

- Lys Ala Ile Phe Arg Phe Ser Ala Thr Ser Ala Leu Tyr Ile Leu Thr 100 105 110
- Pro Phe Asn Pro Leu Arg Lys Ile Ala Ile Lys Ile Leu Val His Ser 115 120 125
- Leu Phe Ser Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val Phe 130 135 140
- Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr Thr 145 150 155 160
- Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Ile Ala Arg 165 170 175
- Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn Trp 180 185 190
- Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val Asp 195 200 205
- Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala Leu 210 220
- Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala Leu 225 230 235 240
- Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val Phe 245 250 255
- Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly Asn 260 265 270
- Leu Arg Asn Lys Cys Ile Gln Trp Pro Pro Thr Asn Ala Ser Leu Glu 275 280 285
- Glu His Ser Ile Glu Lys Asn Ile Thr Val Asn Tyr Asn Gly Thr Leu 290 295 300
- Ile Asn Glu Thr Val Phe Glu Phe Asp Trp Lys Ser Tyr Ile Gln Asp 305 310 315 320

- Ser Arg Tyr His Tyr Phe Leu Glu Gly Phe Leu Asp Ala Leu Leu Cys 325 330 335
- Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Met Cys Val 340 345 350
- Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp Thr Phe 355 360 365
- Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp Phe Trp 370 380
- Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Gly Lys Thr Tyr Met 385 390 395 400
- Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu Ile Asn 405 410 415
- Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln Asn Gln Ala 420 425 430
- Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln Met Ile 435 440 445
- Glu Gln Leu Lys Lys Gln Gln Glu Ala Gln Gln Ala Ala Thr Ala 450 455 460
- Thr Ala Ser Glu His Ser Arg Glu Pro Ser Ala Ala Gly Arg Leu Ser 465 470 475 480
- Asp Ser Ser Ser Glu Ala Ser Lys Leu Ser Ser Lys Ser Ala Lys Glu 485 490 495
- Arg Arg Asn Arg Arg Lys Lys Arg Lys Gln Lys Glu Gln Ser Gly Gly
 500 505 510
- Glu Glu Lys Asp Glu Asp Glu Phe Gln Lys Ser Glu Ser Glu Asp Ser 515 520 525
- Ile Arg Arg Lys Gly Phe Arg Phe Ser Ile Glu Gly Asn Arg Leu Thr 530 535 540

Tyr 545		Lys	Arg	Tyr	Ser 550	Ser	Pro	His	Gln	Ser 555		Leu	Ser	Ile	Arg 560
Gly	Ser	Leu	Phe	Ser 565	Pro	Arg	Arg	Asn	Ser 570	Arg	Thr	Ser	Leu	Phe 575	Ser
Phe	Arg	Gly	Arg 580	Ala	Lys	Asp	Val	Gly 585	Ser	Glu	Asn	Asp	Phe 590	Ala	Asp
Asp	Glu	His 595	Ser	Thr	Phe	Glu	Asp 600	Asn	Glu	Ser	Arg	Arg 605	Asp	Ser	Leu
Phe	Val 610	Pro	Arg	Arg		Gly 615	Glu	Arg	Arg	Asn	Ser 620	Asn	Leu	Ser	Gln
Thr 625	Ser	Arg	Ser	Ser	Arg 630	Met	Leu	Ala	Val	Phe 635	Pro	Ala	Asn	Gly	Lys 640
Met	His	Ser	Thr	Val 645	Asp	Cys	Asn	Gly	Val 650	Val	Ser	Leu	Val	Gly 655	Gly
Pro	Ser	Val	Pro 660	Thr	Ser	Pro	Val	Gly 665	Gln	Leu	Leu	Pro	Glu 670	Val	Ile
Ile	Asp	Lys 675	Pro	Ala	Thr	Asp	Asp 680	Asn	Gly	Thr	Thr	Thr 685	Glu	Thr	Glu
Met	Arg 690	Lys	Arg	Arg	Ser	Ser 695	Ser	Phe	His	Val	Ser 700	Met	Asp	Phe	Leu
Glu 705	Asp	Pro	Ser	Gln	Arg 710	Gln	Arg	Ala	Met	Ser 715	Ile	Ala	Ser	Ile	Leu 720
Thr	Asn	Thr	Val	Glu 725	Glu	Leu	Glu	Glu	Ser 730	Arg	Gln	Lys	Cys	Pro 735	Pro
Cys	Trp	Tyr	Lys 740	Phe	Ser	Asn	Ile	Phe 745	Leu	Ile	Trp	Asp	Cys 750	Ser	Pro
Tyr	Trp	Leu 755	Lys	Val	Lys	His	Val 760	Val	Asn	Leu	Val	Val 765	Met	Asp	Pro

Phe Val Asp Leu Ala Ile Thr Ile Cys Ile Val Leu Asn Thr Leu Phe

Met Ala Met Glu His Tyr Pro Met Thr Asp His Phe Asn Asn Val Leu

Thr Val Gly Asn Leu Val Phe Thr Gly Ile Phe Thr Ala Glu Met Phe

Leu Lys Ile Ile Ala Met Asp Pro Tyr Tyr Tyr Phe Gln Glu Gly Trp

Asn Ile Phe Asp Gly Phe Ile Val Thr Leu Ser Leu Val Glu Leu Gly

Leu Ala Asn Val Glu Gly Leu Ser Val Leu Arg Ser Phe Arg Leu Leu

Arg Val Phe Lys Leu Ala Lys Ser Trp Pro Thr Leu Asn Met Leu Ile

Lys Ile Ile Gly Asn Ser Val Gly Ala Leu Gly Asn Leu Thr Leu Val

Leu Ala Ile Ile Val Phe Ile Phe Ala Val Val Gly Met Gln Leu Phe

Gly Lys Ser Tyr Lys Asp Cys Val Cys Lys Ile Ala Ser Asp Cys Gln

Leu Pro Arg Trp His Met Asn Asp Phe Phe His Ser Phe Leu Ile Val

Phe Arg Val Leu Cys Gly Glu Trp Ile Glu Thr Met Trp Asp Cys Met

Glu Val Ala Gly Gln Ala Met Cys Leu Thr Val Phe Met Met Val Met

Val Ile Gly Asn Leu Val Val Leu Asn Leu Phe Leu Ala Leu Leu Leu

Ser Ser Phe Ser Ala Asp Asn Leu Ala Ala Thr Asp Asp Asn Glu

- Met Asn Asn Leu Gln Ile Ala Val Asp Arg Met His Lys Gly Val 1010 1015 1020
- Ala Tyr Val Lys Arg Lys Ile Tyr Glu Phe Ile Gln Gln Ser Phe 1025 1030 1035
- Ile Arg Lys Gln Lys Ile Leu Asp Glu Ile Lys Pro Leu Asp Asp 1040 1045 1050
- Leu Asn Asn Lys Lys Asp Ser Cys Met Ser Asn His Thr Ala Glu 1055 1060 1065
- Ile Gly Lys Asp Leu Asp Tyr Leu Lys Asp Val Asn Gly Thr Thr 1070 1075 1080
- Ser Gly Ile Gly Thr Gly Ser Ser Val Glu Lys Tyr Ile Ile Asp 1085 1090 1095
- Glu Ser Asp Tyr Met Ser Phe Ile Asn Asn Pro Ser Leu Thr Val 1100 1105 1110
- Thr Val Pro Ile Ala Val Gly Glu Ser Asp Phe Glu Asn Leu Asn 1115 1120 1125
- Thr Glu Asp Phe Ser Ser Glu Ser Asp Leu Glu Glu Ser Lys Glu
 1130 1135 1140
- Lys Leu Asn Glu Ser Ser Ser Ser Glu Gly Ser Thr Val Asp 1145 1150 1155
- Ile Gly Ala Pro Val Glu Glu Gln Pro Val Val Glu Pro Glu Glu 1160 1165 1170
- Thr Leu Glu Pro Glu Ala Cys Phe Thr Glu Gly Cys Val Gln Arg 1175 1180 1185
- Phe Lys Cys Cys Gln Ile Asn Val Glu Glu Gly Arg Gly Lys Gln 1190 1195 1200
- Trp Trp Asn Leu Arg Arg Thr Cys Phe Arg Ile Val Glu His Asn 1205 1210 1215

- Trp Phe Glu Thr Phe Ile Val Phe Met Ile Leu Leu Ser Ser Gly 1220 1230
- Ala Leu Ala Phe Glu Asp Ile Tyr Ile Asp Gln Arg Lys Thr Ile 1235 1240 1245
- Lys Thr Met Leu Glu Tyr Ala Asp Lys Val Phe Thr Tyr Ile Phe 1250 1255 1260
- Ile Leu Glu Met Leu Leu Lys Trp Val Ala Tyr Gly Tyr Gln Thr 1265 1270 1275
- Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp Phe Leu Ile Val Asp 1280 1285 1290
- Val Ser Leu Val Ser Leu Thr Ala Asn Ala Leu Gly Tyr Ser Glu 1295 1300 1305
- Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu Arg Ala Leu Arg Pro 1310 1315 1320
- Leu Arg Ala Leu Ser Arg Phe Glu Gly Met Arg Val Val Asn 1325 1330 1335
- Ala Leu Leu Gly Ala Ile Pro Ser Ile Met Asn Val Leu Leu Val 1340 1345 1350
- Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile Met Gly Val Asn Leu 1355 1360 1365
- Phe Ala Gly Lys Phe Tyr His Cys Ile Asn Thr Thr Thr Gly Asp 1370 1375 1380
- Arg Phe Asp Ile Glu Asp Val Asn Asn His Thr Asp Cys Leu Lys 1385 1390 1395
- Leu Ile Glu Arg Asn Glu Thr Ala Arg Trp Lys Asn Val Lys Val 1400 1405 1410
- Asn Phe Asp Asn Val Gly Phe Gly Tyr Leu Ser Leu Leu Gln Val 1415 1420 1425

- Ala Thr Phe Lys Gly Trp Met Asp Ile Met Tyr Ala Ala Val Asp 1430 1435 1440
- Ser Arg Asn Val Glu Leu Gln Pro Lys Tyr Glu Glu Ser Leu Tyr 1445 1450 1455
- Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile Phe Gly Ser Phe Phe 1460 1465 1470
- Thr Leu Asn Leu Phe Ile Gly Val Ile Ile Asp Asn Phe Asn Gln 1475 1480 1485
- Gln Lys Lys Lys Phe Gly Gly Gln Asp Ile Phe Met Thr Glu Glu 1490 1495 1500
- Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys Leu Gly Ser Lys Lys 1505 1510 1515
- Pro Gln Lys Pro Ile Pro Arg Pro Gly Asn Lys Phe Gln Gly Met 1520 1530
- Val Phe Asp Phe Val Thr Arg Gln Val Phe Asp Ile Ser Ile Met 1535 1540 1545
- Asp Gln Ser Glu Tyr Val Thr Thr Ile Leu Ser Arg Ile Asn Leu 1565 1570 1575
- Val Phe Ile Val Leu Phe Thr Gly Glu Cys Val Leu Lys Leu Ile 1580 1585 1590
- Ser Leu Arg His Tyr Tyr Phe Thr Ile Gly Trp Asn Ile Phe Asp 1595 1600 1605
- Phe Val Val Val Ile Leu Ser Ile Val Gly Met Phe Leu Ala Glu 1610 1615 1620
- Leu Ile Glu Lys Tyr Phe Val Ser Pro Thr Leu Phe Arg Val Ile 1625 1630 1635
- Arg Leu Ala Arg Ile Gly Arg Ile Leu Arg Leu Ile Lys Gly Ala

Lys Gly Ile Arg Thr Leu Leu Phe Ala Leu Met Met Ser Leu Pro Ala Leu Phe Asn Ile Gly Leu Leu Leu Phe Leu Val Met Phe Ile Tyr Ala Ile Phe Gly Met Ser Asn Phe Ala Tyr Val Lys Arg Glu Val Gly Ile Asp Asp Met Phe Asn Phe Glu Thr Phe Gly Asn Ser Met Ile Cys Leu Phe Gln Ile Thr Thr Ser Ala Gly Trp Asp Gly Leu Leu Ala Pro Ile Leu Asn Ser Lys Pro Pro Asp Cys Asp Pro Asn Lys Val Asn Pro Gly Ser Ser Val Lys Gly Asp Cys Gly Asn Pro Ser Val Gly Ile Phe Phe Phe Val Ser Tyr Ile Ile Ile Ser Phe Leu Val Val Val Asn Met Tyr Ile Ala Val Ile Leu Glu Asn Phe Ser Val Ala Thr Glu Glu Ser Ala Glu Pro Leu Ser Glu Asp Asp Phe Glu Met Phe Tyr Glu Val Trp Glu Lys Phe Asp Pro Asp Ala Thr Gln Phe Met Glu Phe Glu Lys Leu Ser Gln Phe Ala Ala Ala Leu Glu Pro Pro Leu Asn Leu Pro Gln Pro Asn Lys Leu Gln Leu Ile Ala Met Asp Leu Pro Met Val Ser Gly Asp Arg Ile His

- Cys Leu Asp Ile Leu Phe Ala Phe Thr Lys Arg Val Leu Gly Glu
- Ser Gly Glu Met Asp Ala Leu Arg Ile Gln Met Glu Glu Arg Phe
- Met Ala Ser Asn Pro Ser Lys Val Ser Tyr Gln Pro Ile Thr Thr
- Thr Leu Lys Arg Lys Gln Glu Glu Val Ser Ala Val Ile Ile Gln
- Arg Ala Tyr Arg Arg His Leu Leu Lys Arg Thr Val Lys Gln Ala
- Ser Phe Thr Tyr Asn Lys Asn Lys Ile Lys Gly Gly Ala Asn Leu
- Leu Ile Lys Glu Asp Met Ile Ile Asp Arg Ile Asn Glu Asn Ser
- Ile Thr Glu Lys Thr Asp Leu Thr Met Ser Thr Ala Ala Cys Pro
- Pro Ser Tyr Asp Arg Val Thr Lys Pro Ile Val Glu Lys His Glu
- Gln Glu Gly Lys Asp Glu Lys Ala Lys Gly Lys
- <210> 4
- <211> 2009 <212> PRT
- <213> Homo sapiens
- <400> 4
- Met Glu Gln Thr Val Leu Val Pro Pro Gly Pro Asp Ser Phe Asn Phe
- Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Arg Arg Ile Ala Glu Glu

Lys A	la Lys 35	Asn	Pro	Lys	Pro	Asp 40	Lys	Lys	Asp	Asp	Asp 45	Glu	Asn	Gly
Pro Ly		Asn	Ser	Asp	Leu 55	Glu	Ala	Gly	Lys	Asn 60	Leu	Pro	Phe	Ile
Tyr G	ly Asp	Ile	Pro	Pro 70	Glu	Met	Val	Ser	Glu 75	Pro	Leu	Glu	Asp	Leu 80
Asp Pi	o Tyr	Tyr	Ile 85	Asn	Lys	Lys	Thr	Phe 90	Ile	Val	Leu	Asn	Lys 95	Gly
Lys A	la Ile	Phe 100	Arg	Phe	Ser	Ala	Thr 105	Ser	Ala	Leu	Tyr	Ile 110	Leu	Thr
Pro Ph	ne Asn 115	Pro	Leu	Arg	Lys	Ile 120	Ala	Ile	Lys	Ile	Leu 125	Val	His	Ser
Leu Ph	ne Ser 80	Met	Leu	Ile	Met 135	Cys	Thr	Ile	Leu	Thr 140	Asn	Cys	Val	Phe
Met Th	nr Met	Ser	Asn	Pro 150	Pro	Asp	Trp	Thr	Lys 155	Asn	Val	Glu	Tyr	Thr 160
Phe Th	nr Gly	Ile	Tyr 165	Thr	Phe	Glu	Ser	Leu 170	Ile	Lys	Ile	Ile	Ala 175	Arg
Gly Ph	ne Cys	Leu 180	Glu	Asp	Phe	Thr	Phe 185	Leu	Arg	Asp	Pro	Trp 190	Asn	Trp
Leu As	p Phe 195	Thr	Val	Ile	Thr	Phe 200	Ala	Phe	Val	Thr	Glu 205	Phe	Val	Asn
Leu Gl		Phe	Ser	Ala	Leu 215	Arg	Thr	Phe	Arg	Val 220	Leu	Arg	Ala	Leu
Lys Th	r Ile	Ser	Val	Ile 230	Pro	Gly	Leu	Lys	Thr 235	Ile	Val	Gly	Ala	Leu 240

Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly Asn

Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val Phe

250

255

245

260 265 270

Leu Arg Asn Lys Cys Ile Gln Trp Pro Pro Thr Asn Ala Ser Leu Glu 275 280 285

- Glu His Ser Ile Glu Lys Asn Ile Thr Val Asn Tyr Asn Gly Thr Leu 290 295 300
- Ile Asn Glu Thr Val Phe Glu Phe Asp Trp Lys Ser Tyr Ile Gln Asp 305 310 315 320
- Ser Arg Tyr His Tyr Phe Leu Glu Gly Phe Leu Asp Ala Leu Leu Cys 325 330 335
- Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Met Cys Val 340 345 350
- Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp Thr Phe 355 360 365
- Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp Phe Trp 370 375 380
- Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Gly Lys Thr Tyr Met 385 390 395 400
- Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu Ile Asn 405 410 415
- Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln As
n Gln Ala 420 425 430
- Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln Met Ile 435 440 445
- Glu Gln Leu Lys Lys Gln Gln Glu Ala Ala Gln Gln Ala Ala Thr Ala 450 455 460
- Thr Ala Ser Glu His Ser Arg Glu Pro Ser Ala Ala Gly Arg Leu Ser 465 470 475 480
- Asp Ser Ser Ser Glu Ala Ser Lys Leu Ser Ser Lys Ser Ala Lys Glu 485 490 495

Arg	Arg	ASII	500	Arg	гуѕ	гуз	Arg	ьув 505		гув	GIU	Gin	510	GIY	GIÀ
Glu	Glu	Lys 515	Asp	Glu	Asp	Glu	Phe 520	Gln	Lys	Ser	Glu	Ser 525	Glu	Asp	Ser
Ile	Arg 530	Arg	Lys	Gly	Phe	Arg 535	Phe	Ser	Ile	Glu	Gly 540	Asn	Arg	Leu	Thr
Tyr 545	Glu	Lys	Arg	Tyr	Ser 550	Ser	Pro	His	Gln	Ser 555	Leu	Leu	Ser	Ile	Arg 560
Gly	Ser	Leu	Phe	Ser 565	Pro	Arg	Arg	Asn	Ser 570	Arg	Thr	Ser	Leu	Phe 575	Ser
Phe	Arg	Gly	Arg 580	Ala	Lys	Asp	Val	Gly 585	Ser	Glu	Asn	Asp	Phe 590	Ala	Asp
Asp	Glu	His 595	Ser	Thr	Phe	Glu	Asp 600	Asn	Glu	Ser	Arg	Arg 605	Asp	Ser	Leu
Phe	Val 610	Pro	Arg	Arg	His	Gly 615	Glu	Arg	Arg	Asn	Ser 620	Asn	Leu	Ser	Gln
Thr 625	Ser	Arg	Ser	Ser	Arg 630	Met	Leu	Ala	Val	Phe 635	Pro	Ala	Asn	Gly	Lys 640
Met	His	Ser	Thr	Val 645	Asp	Cys	Asn	Gly	Val 650	Val	Ser	Leu	Val	Gly 655	Gly
Pro	Ser	Val	Pro 660	Thr	Ser	Pro	Val	Gly 665	Gln	Leu	Leu	Pro	Glu 670	Val	Ile
Ile	Asp	Lys 675	Pro	Ala	Thr	Asp	Asp 680	Asn	Gly	Thr	Thr	Thr 685	Glu	Thr	Glu
Met	Arg 690	Lys	Arg	Arg	Ser	Ser 695	Ser	Phe	His	Val	Ser 700	Met	Asp	Phe	Leu
Glu 705	Asp	Pro	Ser	Gln	Arg [.] 710	Gln	Arg	Ala	Met	Ser 715	Ile	Ala	Ser	Ile	Leu 720

- Thr Asn Thr Val Glu Glu Leu Glu Glu Ser Arg Gln Lys Cys Pro Pro 725 730 735
- Cys Trp Tyr Lys Phe Ser Asn Ile Phe Leu Ile Trp Asp Cys Ser Pro 740 745 750
- Tyr Trp Leu Lys Val Lys His Val Val Asn Leu Val Val Met Asp Pro 755 760 765
- Phe Val Asp Leu Ala Ile Thr Ile Cys Ile Val Leu Asn Thr Leu Phe 770 780
- Met Ala Met Glu His Tyr Pro Met Thr Asp His Phe Asn Asn Val Leu 785 790 795 800
- Thr Val Gly Asn Leu Val Phe Thr Gly Ile Phe Thr Ala Glu Met Phe 805 810 815
- Leu Lys Ile Ile Ala Met Asp Pro Tyr Tyr Tyr Phe Gln Glu Gly Trp 820 825 830
- Asn Ile Phe Asp Gly Phe Ile Val Thr Leu Ser Leu Val Glu Leu Gly 835 840 845
- Leu Ala Asn Val Glu Gly Leu Ser Val Leu Arg Ser Phe Arg Leu Leu 850 855 860
- Arg Val Phe Lys Leu Ala Lys Ser Trp Pro Thr Leu Asn Met Leu Ile 865 870 875 880
- Lys Ile Ile Gly Asn Ser Val Gly Ala Leu Gly Asn Leu Thr Leu Val 885 890 895
- Leu Ala Ile Ile Val Phe Ile Phe Ala Val Val Gly Met Gln Leu Phe 900 905 910
- Gly Lys Ser Tyr Lys Asp Cys Val Cys Lys Ile Ala Ser Asp Cys Gln 915 920 925
- Leu Pro Arg Trp His Met Asn Asp Phe Phe His Ser Phe Leu Ile Val 930 935 940

- Phe Arg Val Leu Cys Gly Glu Trp Ile Glu Thr Met Trp Asp Cys Met 945 950 955 960
- Glu Val Ala Gly Gln Ala Met Cys Leu Thr Val Phe Met Met Val Met 965 970 975
- Val Ile Gly Asn Leu Val Val Leu Asn Leu Phe Leu Ala Leu Leu Leu 980 985 990
- Ser Ser Phe Ser Ala Asp Asn Leu Ala Ala Thr Asp Asp Asp Asn Glu 995 1000 1005
- Met Asn Asn Leu Gln Ile Ala Val Asp Arg Met His Lys Gly Val 1010 $$ 1015 $$ 1020
- Ala Tyr Val Lys Arg Lys Ile Tyr Glu Phe Ile Gln Gln Ser Phe 1025 1030 1035
- Ile Arg Lys Gln Lys Ile Leu Asp Glu Ile Lys Pro Leu Asp Asp 1040 1045 1050
- Leu Asn Asn Lys Lys Asp Ser Cys Met Ser Asn His Thr Ala Glu 1055 1060 1065
- Ile Gly Lys Asp Leu Asp Tyr Leu Lys Asp Val Asn Gly Thr Thr 1070 1075 1080
- Ser Gly Ile Gly Thr Gly Ser Ser Val Glu Lys Tyr Ile Ile Asp 1085 1090 1095
- Glu Ser Asp Tyr Met Ser Phe Ile Asn Asn Pro Ser Leu Thr Val 1100 1105 1110
- Thr Val Pro Ile Ala Val Gly Glu Ser Asp Phe Glu Asn Leu Asn 1115 1120 1125
- Thr Glu Asp Phe Ser Ser Glu Ser Asp Leu Glu Glu Ser Lys Glu 1130 1135 1140
- Lys Leu Asn Glu Ser Ser Ser Ser Glu Gly Ser Thr Val Asp 1145 1150 1155
- Ile Gly Ala Pro Val Glu Glu Pro Val Val Glu Pro Glu Glu

- Thr Leu Glu Pro Glu Ala Cys Phe Thr Glu Gly Cys Val Gln Arg 1175 1180 1185
- Phe Lys Cys Cys Gln Ile Asn Val Glu Glu Gly Arg Gly Lys Gln 1190 1195 1200
- Trp Trp Asn Leu Arg Arg Thr Cys Phe Arg Ile Val Glu His Asn 1205 1210 1215
- Trp Phe Glu Thr Phe Ile Val Phe Met Ile Leu Leu Ser Ser Gly 1220 1225 1230
- Ala Leu Ala Phe Glu Asp Ile Tyr Ile Asp Gln Arg Lys Thr Ile 1235 1240 1245
- Lys Thr Met Leu Glu Tyr Ala Asp Lys Val Phe Thr Tyr Ile Phe 1250 1255 1260
- Ile Leu Glu Met Leu Leu Lys Trp Val Ala Tyr Gly Tyr Gln Thr 1265 1270 1275
- Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp Phe Leu Ile Val Asp 1280 1285 1290
- Val Ser Leu Val Ser Leu Thr Ala Asn Ala Leu Gly Tyr Ser Glu 1295 1300 1305
- Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu Arg Ala Leu Arg Pro 1310 1315 1320
- Leu Arg Ala Leu Ser Arg Phe Glu Gly Met Arg Val Val Asn 1325 1330 1335
- Ala Leu Leu Gly Ala Ile Pro Ser Ile Met Asn Val Leu Leu Val 1340 1345 1350
- Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile Met Gly Val Asn Leu 1355 1360 1365
- Phe Ala Gly Lys Phe Tyr His Cys Ile Asn Thr Thr Thr Gly Asp 1370 1375 1380

- Arg Phe Asp Ile Glu Asp Val Asn Asn His Thr Asp Cys Leu Lys 1385 1390 1395
- Leu Ile Glu Arg Asn Glu Thr Ala Arg Trp Lys Asn Val Lys Val 1400 1405 1410
- Asn Phe Asp Asn Val Gly Phe Gly Tyr Leu Ser Leu Leu Gln Val 1415 1420 1425
- Ala Thr Phe Lys Gly Trp Met Asp Ile Met Tyr Ala Ala Val Asp 1430 1435 1440
- Ser Arg Asn Val Glu Leu Gln Pro Lys Tyr Glu Glu Ser Leu Tyr 1445 1450 1455
- Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile Phe Gly Ser Phe Phe 1460 1465 1470
- Thr Leu Asn Leu Phe Ile Gly Val Ile Ile Asp Asn Phe Asn Gln 1475 1480 1485
- Gln Lys Lys Phe Gly Gly Gln Asp Ile Phe Met Thr Glu Glu 1490 1495 1500
- Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys Leu Gly Ser Lys Lys 1505 1510 1515
- Pro Gln Lys Pro Ile Pro Arg Pro Gly Asn Lys Phe Gln Gly Met 1520 1530
- Val Phe Asp Phe Val Thr Arg Gln Val Phe Asp Ile Ser Ile Met 1535 1540 1545
- Ile Leu Ile Cys Leu Asn Met Val Thr Met Met Val Glu Thr Asp 1550 1560
- Asp Gln Ser Glu Tyr Val Thr Thr Ile Leu Ser Arg Ile Asn Leu 1565 1570 1575
- Val Phe Ile Val Leu Phe Thr Gly Glu Cys Val Leu Lys Leu Ile 1580 1585 1590

- Ser Leu Arg His Tyr Tyr Phe Thr Ile Gly Trp Asn Ile Phe Asp 1595 1600 1605
- Phe Val Val Val Ile Leu Ser Ile Val Gly Met Phe Leu Ala Glu 1610 1615 1620
- Leu Ile Glu Lys Tyr Phe Val Ser Pro Thr Leu Phe Arg Val Ile 1625 1630 1635
- Arg Leu Ala Arg Ile Gly Arg Ile Leu Arg Leu Ile Lys Gly Ala 1640 1645 1650
- Lys Gly Ile Arg Thr Leu Leu Phe Ala Leu Met Met Ser Leu Pro 1655 1660 1665
- Ala Leu Phe Asn Ile Gly Leu Leu Leu Phe Leu Val Met Phe Ile 1670 1680
- Tyr Ala Ile Phe Gly Met Ser Asn Phe Ala Tyr Val Lys Arg Glu 1685 1690 1695
- Val Gly Ile Asp Asp Met Phe Asn Phe Glu Thr Phe Gly Asn Ser 1700 1705 1710
- Met Ile Cys Leu Phe Gln Ile Thr Thr Ser Ala Gly Trp Asp Gly 1715 1720 1725
- Leu Leu Ala Pro Ile Leu Asn Ser Lys Pro Pro Asp Cys Asp Pro 1730 1735 1740
- Pro Ser Val Gly Ile Phe Phe Phe Val Ser Tyr Ile Ile Ile Ser 1760 1765 1770
- Phe Leu Val Val Val Asn Met Tyr Ile Ala Val Ile Leu Glu Asn 1775 1780 1785
- Phe Ser Val Ala Thr Glu Glu Ser Ala Glu Pro Leu Ser Glu Asp 1790 1795 1800

- Asp Phe Glu Met Phe Tyr Glu Val Trp Glu Lys Phe Asp Pro Asp 1805 1810 1815
- Ala Thr Gln Phe Met Glu Phe Glu Lys Leu Ser Gln Phe Ala Ala 1820 1825 1830
- Ala Leu Glu Pro Pro Leu Asn Leu Pro Gln Pro Asn Lys Leu Gln 1835 1840 1845
- Leu Ile Ala Met Asp Leu Pro Met Val Ser Gly Asp Arg Ile His 1850 1855 1860
- Cys Leu Asp Ile Leu Phe Ala Phe Thr Lys Arg Val Leu Gly Glu 1865 1870 1875
- Ser Gly Glu Met Asp Ala Leu Arg Ile Gln Met Glu Glu Arg Phe 1880 1885 1890
- Met Ala Ser Asn Pro Ser Lys Val Ser Tyr Gln Pro Ile Thr Thr 1895 1900 1905
- Thr Leu Lys Arg Lys Gln Glu Glu Val Ser Ala Val Ile Ile Gln 1910 1915 1920
- Arg Ala Tyr Arg Arg His Leu Leu Lys Arg Thr Val Lys Gln Ala 1925 1930 1935
- Ser Phe Thr Tyr Asn Lys Asn Lys Ile Lys Gly Gly Ala Asn Leu 1940 1945 1950
- Leu Ile Lys Glu Asp Met Ile Ile Asp Arg Ile Asn Glu Asn Ser 1955 1960 1965
- Ile Thr Glu Lys Thr Asp Leu Thr Met Ser Thr Ala Ala Cys Pro 1970 1975 1980
- Pro Ser Tyr Asp Arg Val Thr Lys Pro Ile Val Glu Lys His Glu 1985 1990 1995
- Gln Glu Gly Lys Asp Glu Lys Ala Lys Gly Lys 2000 2005

<211> 850 <212> DNA <213> Homo sapiens <400> 5 ctaaaataat gctaaagtt

ctaaaataat gctaaagttt ttcaagtact acttgaaaat agctatattt actttcaaac 60 cttttcctct ttgagtcatt aggttcatga tattatatag caatagggaa tgaaagagaa 120 gcaaggagaa gcaatactgg gagattacag agaagaaagg aaaaaaggct gagagaaaag 180 aggttgagga agaaatcata aatctggatt gtgagaaagt gtttaatatt tagccactag 240 atggcgatgt aatgtaaggt gctgtcttga cttttttttt tttttttga aacaagctat 300 ttgctgattt gtattaggta ccatagagtg aggcgaggat gaagccgaga agatactgca 360 gaggtctctg gtgcatgtgt gtatgtgtgc gtttgtgtgt gtttgtgtgt ctgtgtgttc 420 tgccccagtg agactgcagc ccttgtaaat actttgacac cttttgcaag aaggaatctg 480 aacaattgca actgaaggca cattgttatc atctcgtctt tgggtgatgc tgttcctcac 540 tgcagatgga taattttcct tttaatcagg taagccatct aattgtttca tcttgatttt 600 aagtttattc attccagtta ttcctttgga aaaagagtcc atggaaattc agtttgggca 660 gagcaggaag tocatttttg tatgtgtatt cagaccaact gtccccctcc tccctcct 720 cctcttcttg tcccctcccc cgcgccctcc tctctcaacc ttccatgaac tgaaatcagg 780 tttgttttgc agttcagcat tttgatagaa gatgggattc tttggcctga aatagcttgg 840 catctggcca 850

<210> 6 <211> 483 <212> DNA <213> Homo sapiens

<400> 6 acatetetta gteetetett aaatatetgt atteettta ttttaggaat tteatatgea 60 gaataaatgg taattaaaat gtgcaggatg acaagatgga gcaaacagtg cttgtaccac 120 caggacctga cagcttcaac ttcttcacca gagaatctct tgcggctatt gaaagacgca 180 ttgcagaaga aaaggcaaag aatcccaaac cagacaaaaa aagatgacga cgaaaaatgg 240 cccaaagcaa atagtgactt ggaagctgga aagaaccttc catttattta tggagacatt 300 cctccagaga tggtgtcaga gcccctggag gacctggacc cctactatat caataagaaa 360 gtgagtgttt tttttatcag gcatattttt gctgctaatt gcctactgca ttccttggac 420 tgttgtagca ccaacacatg ccaatagcac aaatctagta tctctgttag aatgaacaca 480

ttt 483

<210> 7 <211> 497 <212> DNA <213> Hom						
<400> 7 taagaagaga	tccagtgaca	gtttgttttc	atggggcact	ttaggaaatt	gtgattgtgc	60
tggtttctca	tttaacttta	caataattta	ttatgacaag	taacagaaag	tagataacag	120
agtttaagtg	gtttatactt	tcatacttct	atgttgtgtt	cctgtcttac	agacttttat	180
agtattgaat	aaagggaagg	ccatcttccg	gttcagtgcc	acctctgccc	tgtacatttt	240
aactcccttc	aatcctctta	ggaaaatagc	tattaagatt	ttggtacatt	catatccttt	300
ttcaagtgat	taatattaac	tatttgtaca	tgatctgtaa	gcactttata	gctaaatatc	360
aaattaagtt	gggaaatgtc	catattatat	aggtttcatc	actctcattt	tgcatctttg	420
tcatattagc	ctcattctta	aagttcatta	atcacataga	cattactgaa	acatgtactc	480
tttaacattt	tatatat					497
<210> 8 <211> 501 <212> DNA <213> Hom	o sapiens					
<400> 8 tcatatacat	tacctcattt	aatctataca	aatactcagt	gaaggtgata	ttattaccca	60
cattttacac	atgaagaaat	tgaaatgtaa	ggagattaga	agacttgccc	acaatgcatt	120
tatccctgaa	ttttggctaa	gctgcagttt	gggcttttca	atgttagctt	tttgtaatat	180
aacacttgga	ttttgatttt	cttttgtgtg	ttccttaaca	ataacctaca	ttattcagca	240
tgctaattat						
	gtgcactatt	ttgacaaact	gtgtgtttat	gacaatgagt	aaccctcctg	300
attggacaaa	gaatgtagag				_	360
		taagttcaac	ttatatttt	aataacatat	atacattygg	
gattytgaaa	gaatgtagag	taagttcaac	ttatattttt	aataacatat tgaagagcat	atacattygg tttattaaag	360

<210> 9

<211> 563 <212> DNA

<213> Homo sapiens

<400> 9	
gctaaataga tttcatatac cttgtatttc tcacactact cttaagacac tttacg	aaac 60
aactetttgt gttaggaage tgaatttaaa tttagggeta egttteattt gtatgaa	aatt 120
aaaatccatc tgcttagttt tcttttttag tatttatcta ttccactgat ggagtga	ataa 180
gaaattggta tgctatgaaa aaacactgtt actttatcaa attttttgga tgcttg	tttt 240
cagatacacc ttcacaggaa tatatacttt tgaatcactt ataaaaatta ttgcaag	gggg 300
attetgttta gaagatttta ettteetteg ggateeatgg aactggeteg atttead	ctgt 360
cattacattt gcgtaagtgc ctttbytgaa actttaagag agaacatagt ttggttt	ttcc 420
atcagtgctt atgcttttaa gaataggttt gctttacctg tagaatattt ttgtgtg	gatt 480
tatacattca aactctggat ttcaatttag cacaacaaag gtctaagtgg aatttca	acta 540
tagcatgaag gctttgcagt agt	563
<210> 10 <211> 253 <212> DNA <213> Homo sapiens	
<400> 10 cttataagcc catgcagtaa tataaatcct gctaaaatct tgaataattc tgattta	att 60
ctacaggttt gtaacagaat ttgtaaacct aggcaatttt tcagctcttc gcacttt	
agtettgaga getttgaaaa etattteggt aatteeaggt aagaagtgat tagagta	aag 180
gataggetet tigtacetae agetititet tigtgteetg tittigtgti tgtgtgt	gaa 240
ctcccgctta cag	253
<210> 11 <211> 340 <212> DNA <213> Homo sapiens	
<400> 11 gtaagaagtg attagagtaa aggataggct ctttgtacct acagcttttt ctttgtg	tcc 60
tgtttttgtg tttgtgtgtg aactcccgct tacaggtacg tcacagagtt tgtggac	
ggcaatgtct cggcattgag aacattcaga gttctccgag cattgaagac gatttca	
attccaggtg agagcaaggt tagataatga gacggaccca tcatgtgatt cagcatc	
ctctgcttga cattcagttt tacagaaaat caggaatcat aagactaggt gttcaaa	
= 55 5-55- 30-5444	

atgattatta tgttagacat ag	gcttatcag cctggagtta		340
<210> 12			
<211> 409			
<212> DNA			
<213> Homo sapiens			
<400> 12			
cacgcgtgct tagccctcat ag	gtaatagcc tcctaccttc	aggcctgaaa accattgtgg	60
gagccctgat ccagtctgtg aa	agaagctct cagatgtaat	gatectgact gtgttetgte	120
tgagcgtatt tgctctaatt gg	ggctgcagc tgttcatggg	caacctgagg aataaatgta	180
tacaatggcc tcccaccaat gc	dictioning aggaadatag	tatagaaaag aatataactg	240
tgaattataa tggtacactt at	aaatgaaa ctgtctttga	gtttgactgg aagtcatata	300
ttcaagattc aagtaagaat ta	attgttatg tacatttcct	taaaaagtag aattggattg	360
tttgtaacac aaaggataaa ta	actigaggg getggatate	CCATTTAC	409
<210> 13 <211> 266			
<211> 266 <212> DNA			
<213> Homo sapiens			
<pre><400> 13 cgcgcaaata cttgtgcctt tga</pre>	gaatgaata atatatttaa	aattactcaa taaacttaaa	60
			80
agtagaacct gaccttcctg tto	ctctttga gtgtttttaa	caatgcaaat gttcagcata	120
cgactttctt ttttcaaaca gga	gatatcatt atttcctgga	gggtttttta gatgcactac	180
tatgtggaaa tagctctgat gca	annataan toaatattat	ataatatat atatata	240
		gigeacetge geacacegea	240
tgtacacaat acatatgtgt ato	cttt		266
<210> 14			
<211> 604			
<212> DNA			
<213> Homo sapiens			
<400> 14			
aggtgttgaa aatgcaaatt atc	caacaaaa attattttgt	aaaatattat tagaaatgct	60
gcaccatatt ttaatgatga cac	ccaagtag ctaataagac	tatatgcagt caaaagttgg	120
			100
gaaatagatt agttacttat tto	goodaace eleatiliga	aacaccaaac ctttctgact	180
aggcaatatc atagcatagt ato	cagagtaa aaaggcagca	gaacgacttg taatactttc	240
ttttacccca cttgcagcca atc	gtccagag ggatatatgt	gtgtgacagc tggtagaaat	300

cccaattatg	gctacacaag	ctttgatacc	ttcagttggg	cttttttgtc	cttgtttcga	360
ctaatgactc	aggacttctg	ggaaaatctt	tatcaactgg	tgagaactaa	agagccacac	420
tctccattta	agtaaaagta	tacaagaaaa	ccaattgagt	tatgaaatta	aaaccggatg	480
ataatatagt	agaaagagca	gaacttgaca	cgagacttga	gttcctctat	cctattgatt	540
ataacacata	ctgagcagag	tgatgccaag	gattgcaatt	ctctcccatt	tcttcttggc	600
tcaa						604
<210> 15 <211> 378						
<212> DNA <213> Homo	sapiens					
<400> 15	-					
ttatatctga	gttttgctag	ccacatgagt	aaattgaaag	ttgagcaccc	ttagtgaata	60
atattgggaa	ataattctga	tatttttgtt	tgcagacatt	acgtgctgct	gggaaaacgt	120
acatgatatt	ttttgtattg	gtcattttct	tgggctcatt	ctacctaata	aatttgatcc	180
tggctgtggt	ggccatggcc	tacgaggaac	agaatcaggc	caccttggaa	gaagcagaac	240
agaaagaggc	cgaatttcag	cagatgattg	aacagcttaa	aaagcaacag	gaggcagctc	300
aggtaagctg	ccctgctcat	ggcactgacc	tttatcgtct	gatgtactat	atgagagaag	360
tagtctagag	cgtgtgat					378
.010. 16						
<210> 16 <211> 845						
<212> DNA <213> Homo	sapiens					
	24510110					
<400> 16 caaccctaat	taaataccaa	tttttaaagt	aaatcaaatc	ccaaaaagta	atgaatttat	60
tttcttgttg	atacatgttg	gatatttttg	aatacgtggt	ctgtggagca	ttaacagaga	120
cataataaat	gttaccatgg	agcaaactaa	attatctcca	aaagccttca	ttaggtagaa	180
agaaaaaaa	aatctcctct	tatacttgca	gagaatcttc	tctgtgagat	gatcttcagt	240
cagttcaata	tattttttaa	aagccatgca	aatacttcag	ccctttcaaa	gaaagataca	300
gtctcttcag	gtgctatgtt	aaaatcattt	ctcttcaata	tagcaggcag	caacggcaac	360
tgcctcagaa						420
agcctctaag						480
acagaaagag						540

tgaggacagc atcaggaggw aaggttttcg cttctccatt gaagggaacc ggttgacata 600 tgaaaagagg tactcctccc cacaccaggt atggcactgc tgagtttact gatgcatggt 660 tgaaaattaa aacatgggag agagggggag atttagaaaa tggactcagg aatttttatc 720 aactgaatca accactgttg tgttatattt aaacccatcc cttcttcaca tagttatgca 780 aaaactttac tccacagata tgtaagtcta cagctcggtg tagttaagat aacaccaagt 840 tgaca 845 <210> 17 <211> 965 DNA <213> Homo sapiens <400> 17 cattgccata ttctaaggat gtttcccttt gaacttgaga aatggtcgtt cagggtgtgt 60 gtgtatgtgt gtgtgtgt gtttcaatat gttaaggttg caatctatct cctcattctt 120 taatcccaag ggctagaaac tttcttttat caaggtaatt taatttaatg tgaatgcaca 180 taaaatgaga atgataatca aaaggaatga accatattct gttatgaatg ctgaaatctc 240 cttctacata atcttgcaaa atgaaatcac attcaaatgt ccatattaat atgactctat 300 ttgtbtgctc tttcaaactt ctagtctttg ttgagcatcc gtggctccct attttcacca 360 aggcgaaata gcagaacaag ccttttcagc tttagagggc gagcaaagga tgtgggatct 420 gagaacgact tcgcagatga tgagcacagc acctttgagg ataacgagag ccgtagagat 480 teettgtttg tgeecegaeg acaeggagag agaegeaaca geaacetgag teagaecagt 540 aggtcatccc ggatgctggc agtgtttcca gcgaatggga agatgcacag cactgtggat 600 tgcaatggtg tgggttcctt ggttggtgga ccttcagttc ctacatcgcc tgttggacag 660 cttctgccag aggtgataat agataagcca gctactgatg acaatgtaag gaagtyttaa 720 atagttcagg catggctggc tcactattgc tgcaccagcc agtgtgtcta cagaacggca 780 accttgagaa tgattcctgg ttggtcacgc tgtgaatgca cctgcatctt gtaatatctt 840 tgatagacta accaactaaa acttaaaacc ttagcagtcg cctgcacaaa cctgaatgca 900

tttacttatt aaaagtgcta aggattgatt agacacaata attactgcct ccagttggag

960

965

gattt

<212> DNA

<213> Homo sapiens

<400> 18 aagagtttta tcaactatat taaaattatt ttgtatttta taaaattatg aaatcaggaa 60 gttaacatct tggtttttgc tgtatgacta aatggttaac agtttgaaca ttccaggcta 120 atgatacaat aagtcagaaa tatctgccat caccaattga atatgaaagt gcatgatgca 180 tgtgtttcat gaaattcact gtgtcaccat ttggttgttt gcttgtcata ttgctcaaat 240 taattgttta atgcattagc atttttttt acagggaaca accactgaaa ctgaaatgag 300 aaagagaagg tcaagttctt tccacgtttc catggacttt ctagaagatc cttcccaaag 360 gcaacgagca atgagtatag ccagcattct aacaaataca gtagaaggtt ggtaacaaat 420 tctattttcg tttcaattat tttcaccaaa cttatattgt ctcatttcaa acaaatatat 480 ttgtgagttg ggaatagtgc attctaatga aaagacagtc taattcaaga gctgttattt 540 cttatatcta ctcagatatt ctagaagcct taacaattta ttttaaaatg agtgatattg 600 ggactaagac tgttttccta actgtgtagc aactctttga a 641

<210> 19

<211> 818

<212> DNA

<213> Homo sapiens

<400> 19

gtgaggcggc acatgaaaga ccacccattt aacctgaggc caagtgctga gccacaatgg 60 cagtgcataa gacaaaaaac tacccattgt tacctgggcc ctatgtgtgt gtctgatgaa 120 ataaccttgg gaggtttaga gtaaactgta attttttaa caagtacaaa aaagggtgtc 180 tctgtaacaa aaatgtgttg attactgaaa ataagtttag tggatatgaa ataaatgtgt 240 gtgtataaag tawacctttt ggtgggtctt ttttttttt ttcttaatct agaacttgaa 300 gaatccaggc agaaatgccc accetgttgg tataaatttt ccaacatatt cttaatctgg 360 gactgttctc catattggtt aaaagtgaaa catgttgtca acctggttgt gatggaccca 420 tttgttgacc tggccatcac catctgtatt gtcttaaata ctcttttcat ggccatggag 480 cactatccaa tgacggacca tttcaataat gtgcttacag taggaaactt ggtaagcata 540 ttggaaggta aatgtgttta gtcttcaaat tttctgcttg aaaaactgtt tacatttaat 600 tgtgtatagc agtctttcaa ccatccttca tgcttcctgg cccctgcaaa atcgcaatta 660 tatttagctg gctatactct acttttttgc caaaaataat cacccttaat gtgctcacaa 720

aaactgagaa aggcataggc ctacagcact acttgaaaag tcaacagcaa tatttataat	780
ttttcaggat ccagaagtag ctcatagatt aagaacat	818
<210> 20 <211> 645 <212> DNA <213> Homo sapiens	
<400> 20	
caagccattt cacccatctg aagacctcag tttccttatc tgtaaagtaa taattgtata	60
ttatctactt cgcgtttcca caaggataaa attaaataat gtatatgawa gtctttcatc	120
aactacaaat tgccatacaa atttaagtta gtaatagaat cattgtggga aaatagcata	180
agcattatgt tctaagagca aatcttatgt catgtatgtt attatctggt ggaattagat	240
taattttgtt ttgatcttag gttttcactg ggatctttac agcagaaatg tttctgaaaa	300
ttattgccat ggatccttac tattatttcc aagaaggctg gaatatcttt gacggtttta	360
ttgtgacgct tagcctggta gaacttggac tcgccaatgt ggaagggtta tctgttctcc	420
gttcatttcg attggtaaaa aaaaaaaaaa aaggaaccaa attcaaaaac ctttctaaca	480
ttcagggttc ttgcatagca ttgtcatagt ttttttgcca cacaaccatt aggcattgta	540
agtttttctg taacatttgc attgtcaaaa acttttccta catgggaata attctcaatt	600
attaggttac cttagttcaa gggcwaggtc ggaaaggtaa cggtt	645
<210> 21 <211> 829 <212> DNA <213> Homo sapiens	
<400> 21 gaattctaat gaccatttct aggtaaagct caatatatat aatgctttta agaatcatac	60
aaatatatat taatetttea tttteeaget gegagattte aagttggeaa aatettggee	120
aacgttaaat atgctaataa agatcatcgg caattccgtg ggggctctgg gaaatttaac	180
cctcgtcttg gccatcatcg tcttcatttt tgccgtggtc ggcatgcagc tctttggtaa	240
aagctacaaa gattgtgtct gcaagatcgc cagtgattgt caactcccac gctggcacat	300
gaatgacttc ttccactcck hcctgattgt gttccgcgtg ctgtgtgggg agtggataga	360
gaccatgtgg gactgtatgg aggttgctgg tcaagccatg tgccttactg tcttcatgat	420
ggtcatggtg attggaaacc tagcggtatg tacccactta agatatgcat tttggaaata	480
caccagcatg gcacatgtat acatatgtaa ctaacctgca cattgtgcac atgtacccta	540

aaacttaaag	tataataaaa	aaaaagagta	taatttaatg	gtgactgttt	tgtcaaaaag	600
aaaaacaaac	tatgattatt	ggtttaaaag	tccattacct	tggatatatt	atcactttaa	660
caacacagca	atatabcagt	gcccctgcat	tttttatacc	aaattctatt	ttgtcagtca	720
ctttatcaca	ttttttatgt	gaattacaat	agagtatcat	attgagatga	gcctaaaagg	780
atgtgctggg	accattttat	aaattcagag	ccaaggaaga	gagaagtct		829
<210> 22						

<211> 909

<212> DNA

<213> Homo sapiens

<400> 22

gaattotogt attgtacaca tataaatotg ttttottota otoatacaat tttagagtta 60 acaaaacctt agattagctc attcaatttc actttacgaa tgggagaact tgagagcaac 120 agaaatcatg tctttgtcca aggatgtgct attgagccag tcacaaattc agatcaccca 180 tettetaate actatgetgt ggtgttteet teteateaag ttttagaaet tagagttttt 240 tccacactta aaagaaagaa taagtgattg taatctgctc ttccctacat tggtgtaaaa 300 ttataatcat gtttttgttg tttttaaggt cctgaatctc tttctggcct tgcttctgag 360 420 aattgctgtg gataggatgc acaaaggagt agcttatgtg aaaagaaaaa tatatgartt 480 tattcaacag tccttcatta ggaaacaaaa gattttagat gaaattaaac cacttgatga 540 tctaaacaac aagaaagaca gttgtatgtc caatcataca gcagaaattg ggaaagatct 600 tgactatett aaagatgtaa atggaactae aagtggtata ggaactggea geagtgttga 660 aaaatacatt attgatgaaa gtgattacat gtcattcata aacaacccca gtcttactgt 720 gactgtacca attgctgtag gagaatctga ctttgaaaat ttaaacacgg aagactttag 780 tagtgaatcg gatctggaag aaagcaaaga ggtaagattc tataggtgtg ggtaggtatg 840 aatacatata catatataca tatacacaca tacagatgay cctcagctta atgatgtttt 900 tacttaaga 909

<210> 23

<211> 516

<212> DNA

<213> Homo sapiens

```
<221> misc_feature
<222> (393)..(393)
<223> n = a, c, t or g
<220>
<221> misc_feature
<222> (415)..(451)
<223> N = a, c, t or q
<220>
<221> misc feature
<222> (454)..(454)
<223> N = a, c, t or q
<220>
<221> misc feature
<222> (513)..(513)
<223> n = a, c, t or g
<400> 23
aagcttacat tgtgaattat ggtaaaaggg ttagcacaga caatgatttt cttatttctt
                                                                      60
ccccttattc aatctctct tttctctaaa aatatctcta cctcaagaag aataaaaaac
                                                                     120
aaattcatag taataatcct tcttggcagg caacttatta ccaaaattaa ggactttact
                                                                     180
ttctatgtcc atctcactta cagaaactga atgaaagcag tagctcatca gaaggtagca
                                                                     240
ctgtggacat cggcgcacct gtagaagaac agcccgtagt ggaacctgaa gaaactcttg
                                                                     300
aacccgaagc ttgtttcact gaaggtaaag aaaagaatcc taatgttaat ctttcatttg
                                                                     360
gagtgcagct tatttagctg ttggtcagct aanataaatc acatataata aaatngcact
                                                                     420
ttgtaataga tataattcaa tcacctctaa tatnttgaca gacaaaaaaa cttaaagtct
                                                                     480
agtgtcatgc tttgattata tctgcccaat atntgg
                                                                     516
<210> 24
<211> 640
<212> DNA
<213> Homo sapiens
<400> 24
ccatttaaat gtggctgaat gtttccacaa cttcacacag ctgatgaatg tgctcttact
                                                                     60
actctaggct tagagagcta tgctagcaag acagagatga gcatagtaat aaaaagacaa
                                                                    120
gacaaggaca ttgctaaagg atattatgga agcagagaca ctttatctac ttttatttca
                                                                    180
acactttctg caggctgtgt acaaagattc aagtgttgtc aaatcaatgt ggaagaaggc
                                                                    240
```

agaggaaaa	c aatggtggaa	a cctgagaagg	acgtgtttcc	gaatagttga	acataactgg	300
tttgagacc	t tcattgtttt	catgattctc	cttagtagtg	gtgctctggt	gagtgagatt	360
aagaaaagg	t gatacagcad	taattttag	aacactctaa	tactgatgac	ttattaatcc	420
tttgtttca	t tgtcttagta	tccaatgcat	tttaattat	cccaccttgt	atcttctata	480
gatttactc	t ataactctat	atttctggat	taacttttac	tatgtatgta	aatataattt	540
taagaagct	a atcattaatt	tttgcttact	attaaatagc	ccagaaagtg	tagcccttca	600
gcttattca	t taacaccaaa	ggatgtgaat	attcaattac			640
<210> 25 <211> 60' <212> DNZ <213> Hot						
	g atacaacatc	aagaactatt	tcctgactaa	gtcaaattaa	ttcattggaa	60
tcatacttt	ctttttcttc	caccaatagt	ctttcccctg	attaaataag	taaaagacct	120
ttgcgaggaa	a aaaaaaaaag	taacagtaac	tactgtttct	ctgccctcct	attccaatga	180
aatgtcatat	gcatatgatt	aattttttaa	atagcttatg	gagtataatt	atttttgaaa	240
gctaataato	g tgtaacattt	tctttatagg	catttgaaga	tatatatatt	gaycagcgaa	300
agacgattaa	a gacgatgttg	gaatatgctg	acaaggtttt	cacttacatt	ttcattctgg	360
aaatgcttct	aaaatgggtg	gcatatggct	atcaaacata	tttcaccaat	gcctggagtt	420
ggctggactt	cttaattgtt	gatgtaggta	tcgttcatat	ttttgtctct	gttcaaggta	480
gcttgtctta	tttatattca	aattctacaa	tagtgagtct	cagaccacta	tgttatgttg	540
acagactata	atarccacta	aacgcatata	tgcaatgaga	gtgtcatttc	tggaagacaa	600
gggctaa						607
<210> 26 <211> 336 <212> DNA <213> Hom						
<400> 26 aaaaattata	cttgtcgtat	tatatagcaa	ctacacatto	aatgatgatt	ctatttatta	60
		tgcaggtttc				120
		atcaatctct				180
		ggatgagggt				240
				5	J 9 0 W	

tatagccasa	attassetss	attaaattta	Gaaaaaaaa	222254455	antaanna-	300
tatagccaaa a	accaadcidd	attaaattta	yaaaaaayga	addatgtatg	catgcaaaag	300
gaatggcaaa 1	ttcttgcaaa	atgctcttta	ttgttt			336
<210> 27 <211> 677 <212> DNA <213> Homo	sapiens					
<400> 27						
cttggttata t	ttgcctatag	ttgttttcct	aagtgtattg	cttaagaaaa	aaaaatgaat	60
tttaagattt t	tttgaacct	tgcttttaca	tatcctagaa	taaatagcat	tgatagaaaa	120
aaagaatgga a	aagaccagag	attactaggg	gaatttttt	tctttattaa	cagataagaa	180
ttctgacttt t	cttttttc	catttgtgta	ttaggtggtt	gtgaatgccc	ttttaggagc	240
aattccatcc a	atcatgaatg	tgcttctggt	ttgtcttata	ttctggctaa	ttttcagcat	300
catgggcgta a	aatttgtttg	ctggcaaatt	ctaccactgt	attaacacca	caactggtga	360
caggtttgac a	atcgaagacg	tgaataatca	_tactgattgc	ctaaaactaa	tagaaagaaa	420
tgagactgct o	cgatggaaaa	atgtgaaagt	aaactttgat	aatgtaggat	ttgggtatct	480
ctctttgctt c	caagttgtaa	gtgaacacta	ttttctctga	atatttttat	tgtttggaat	540
aataacaaaa t	aatgacata	catctattat	ttagttccta	agaaaaagta	tatatttctt	600
tctatttaaa a	aatttcaat	ttgttagtac	aagtttatga	gcccagatgg	gtgaaaactt	660
tattacatgt a	aggact					677
<210> 28 <211> 457 <212> DNA <213> Homo	sapiens					
<400> 28						
aatggccatt t	tgttcaata	tgtgttctag	aaatgaaaag	ccatactaaa	atactgtctt	60
ggtccaaaat c	tgtgtaaaa	tttgttttga	aatgtctttc	aaaaatattc	ccttttgaaa	120
attatatcag t	aagaatatt	tattaaacat	caggtctaaa	ttatttttac	tccaaagtaa	180
aacatgcatg t	ccttcttaa	taggccacat	tcaaaggatg	gatggatata	atgtatgcag	240
cagttgattc c	agaaatgta	agtattcctt	gtattctaag	tctttttaca	atattgatca	300
ggtggtaaaa t	taatcgaat a	aaagcataaa	cgaccaaatg	aaatgattct	atcttgattt	360
aaaatatttg g	gaaaaagtg	tgacaggtaa	atattcaagc	atagcaatgt	ttatcagaaa	420

```
<210> 29
<211> 379
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (43)..(43)
<223> n = a, c, t or g
<400> 29
cagaaaaaaa aaaaatgctg acatattagt aagaataatt ttntctattg ttatqaaaaa
                                                                      60
gcaccagtga cgatttccag cactaaaatg tatggtaata ttttacaaaa tattccctt
                                                                     120
tggtaggtgg aactccagcc taagtatgaa gaaagtctgt acatgtatct ttactttqtt
                                                                     180
attttcatca tctttgggtc cttcttcacc ttgaacctgt ttattggtgt catcatagat
                                                                     240
aatttcaacc agcagaaaaa gaagataagt atttctaata ttttctctcc cactgagata
                                                                     300
gaaaaattat teettggagt gttttetetg ceaaatgagt aettgaattt agaacaaatg
                                                                     360
ggagtatata ttataactg
                                                                     379
<210> 30
<211> 393
<212> DNA
<213> Homo sapiens
<400> 30
gtcattttga attatttagg gaattaaaat attatcatac ctaaagagta caatttttt
                                                                      60
tacattttaa atcccagata taattatact aatcagttga attttgtatt tctttttta
                                                                     120
gccatccatt ttctatttta acattgaaaa aaatgtacaa aaggacacag ttttaaccag
                                                                    180
tttgattttt cttttctata ctttggaggt caagacatct ttatgacaga agaacagaag
                                                                    240
aaatactata atgcaatgaa aaaattagga tcgaaaaaac cgcaaaagcc tatacctcga
                                                                    300
ccaggagtaa gaagtatcaa atgatatggg ggaaaataca aaaacaaaaa ctgcatgctt
                                                                    360
gtctcacaaa aaagaaaagt aagctaaaca ttt
                                                                    393
<210> 31
```

<211> 539

<212> DNA

<213> Homo sapiens

<400> 31

ttttaacaat taattatgct	ataaattcat	tcttacaaaa	atcatttgga	atgactactt	60
tgcaagaaac tagaaagtca	attaatgcag	aaagtactta	atgctaatgc	acatgagaaa	120
aactcctttg ttgttaaaag	catttctatt	tctctacaga	acaaatttca	aggaatggtc	180
tttgacttcg taaccagaca	agtttttgac	ataagcatca	tgattctcat	ctgtcttaac	240
atggtcacaa tgatggtgga	aacagatgac	cagagtgaat	atgtgactac	cattttgtca	300
cgcatcaatc tggtgttcat	tgtgctattt	actggagagt	gtgtactgaa	actcatctct	360
ctacgccatt attatttac	cattggatgg	aatatttttg	attttgtggt	tgtcattctc	420
tccattgtag gtaagaaata	tttaaagttc	ttaaattcag	ttaaataaaa	gtgaaagctg	480
aaacaatcaa gattagattc	aagatcatcc	cagcaatcag	agataatcac	tgtaaatat	539

<210> 32

<211> 3403

<212> DNA

<213> Homo sapiens

<400> 32

agtatatatt atatatagtt gtcatattta atataactgg gttcaggact ctgaacctta 60 ccttggagct ttagaagaaa catatgttta ttttaacgca tgatttcttc actggttggt 120 attctcattg tttattcata ggtatgtttc ttgccgagct gatagaaaag tatttcgtgt 180 cccctaccct gttccgagtg atccgtcttg ctaggattgg ccgaatccta cgtctgatca 240 aaggagcaaa ggggatccgc acgctgctct ttgctttgat gatgtccctt cctgcgttgt 300 ttaacatcgg cctcctactc ttcctagtca tgttcatcta cgccatcttt gggatgtcca 360 actttgccta tgttaagagg gaagttggga tcgatgacat gttcaacttt gagacctttg 420 gcaacagcat gatctgccta ttccaaatta caacctctgc tggctgggat ggattgctag 480 cacccattct caacagtaag ccacccgact gtgaccctaa taaagttaac cctggaagct 540 cagttaaggg agactgtggg aacccatctg ttggaatttt cttttttgtc agttacatca 600 tcatatcctt cctggttgtg gtgaacatgt acatcgcggt catcctggag aacttcagtg 660 ttgctactga agaaagtgca gagcctctga gtgaggatga ctttgagatg ttctatgagg 720 tttgggagaa gtttgatccc gatgcaactc agttcatgga atttgaaaaa ttatctcagt 780 ttgcagtgcg cttgaaccgc ctctcaatct gccacaacca aacaaactcc agctcattgc 840 catggatttg cccatggtga gtggtgaccg gatccactgt cttgatatct tatttgcttt 900 tacaaagcgg gttctaggag agagtggaga gatggatgct ctacgaatac agatggaaga 960

gcgattcatg gcttccaatc cttccaaggt ctcctatcag ccaatcacta ctactttaaa	1020
acgaaaacaa gaggaagtat ctgctgtcat tattcagcgt gcttacagac gccacctttt	1080
aaagcgaact gtaaaacaag cttcctttac gtacaataaa aacaaaatca aaggtggggc	1140
taatettett ataaaagaag acatgataat tgacagaata aatgaaaact etattacaga	1200
aaaaactgat ctgaccatgt ccactgcagc ttgtccacct tcctatgacc gggtgacaaa	1260
gccaattgtg gaaaaacatg agcaagaagg caaagatgaa aaagccaaag ggaaataaat	1320
gaaaataaat aaaaataatt gggtgacaaa ttgtttacag cctgtgaagg tgatgtattt	1380
ttatcaacag gactccttta ggaggtcaat gccaaactga ctgtttttac acaaatctcc	1440
ttaaggtcag tgcctacaat aagacagtga ccccttgtca gcaaactgtg actctgtgta	1500
aaggggagat gaccttgaca ggaggttact gttctcacta ccagctgaca ctgctgaaga	1560
taagatgcac aatggctagt cagactgtag ggaccagttt caaggggtgc aaacctgtga	1620
ttttggggtt gtttaacatg aaacacttta gtgtagtaat tgtatccact gtttgcattt	1680
caactgccac atttgtcaca tttttatgga atctgttagt ggattcatct ttttgttaat	1740
ccatgtgttt attatatgtg actatttttg taaacgaagt ttctgttgag aaataggcta	1800
aggacctcta taacaggtat gccacctggg gggtatggca accacatggc cctcccagct	1860
acacaaagtc gtggtttgca tgagggcatg ctgcacttag agatcatgca tgagaaaaag	1920
tcacaagaaa aacaaattct taaatttcac catatttctg ggaggggtaa ttgggtgata	1980
agtggaggtg ctttgttgat cttgttttgc gaaatccagc ccctagacca agtagattat	2040
ttgtgggtag gccagtaaat cttagcaggt gcaaacttca ttcaaatgtt tggagtcata	2100
aatgttatgt ttctttttgt tgtattaaaa aaaaaacctg aatagtgaat attgcccctc	2160
accetecace gecagaagae tgaattgace aaaattacte tttataaatt tetgettttt	2220
cctgcacttt gtttagccat cttcggctct cagcaaggtt gacactgtat atgttaatga	2280
aatgctattt attatgtaaa tagtcatttt accctgtggt gcacgtttga gcaaacaaat	2340
aatgacctaa gcacagtatt tattgcatca aatatgtacc acaagaaatg tagagtgcaa	2400
gctttacaca ggtaataaaa tgtattctgt accatttata gatagtttgg atgctatcaa	2460
tgcatgttta tattaccatg ctgctgtatc tggtttctct cactgctcag aatctcattt	2520
atgagaaacc atatgtcagt ggtaaagtca aggaaattgt tcaacagatc tcatttattt	2580
aagtcattaa gcaatagttt gcagcacttt aacagctttt tggttatttt tacattttaa	2640
gtggataaca tatggtatat agccagactg tacagacatg tttaaaaaaa cacactgctt	2700

aacctattaa	atatgtgttt	agaattttat	aagcaaatat	aaatactgta	aaaagtcact	2760
ttattttatt	tttcagcatt	atgtacataa	atatgaagag	gaaattatct	tcaggttgat	2820
atcacaatca	cttttcttac	tttctgtcca	tagtactttt	tcatgaaaga	aatttgctaa	2880
ataagacatg	aaaacaagac	tgggtagttg	tagatttctg	ctttttaaat	tacatttgct	2940
aattttagat	tatttcacaa	ttttaaggag	caaaataggt	tcacgattca	tatccaaatt	3000
atgctttgca	attggaaaag	ggtttaaaat	tttatttata	tttctggtag	tacctgcact	3060
aactgaattg	aaggtagtgc	ttatgttatt	tttgttcttt	ttttctgact	tcggtttatg	3120
ttttcatttc	tttggagtaa	tgctgctcta	gattgttcta	aatagaatgt	gggcttcata	3180
atttttttt	ccacaaaaac	agagtagtca	acttatatag	tcaattacat	caggacattt	3240
tgtgtttctt	acagaagcaa	accataggct	cctcttttcc	ttaaaactac	ttagataaac	3300
tgtattcgtg	aactgcatgc	tggaaaatgc	tactattatg	ctaaataatg	ctaaccaaca	3360
tttaaaatgt	gcaaaactaa	taaagattac	attttttatt	tta		3403

<210> 33

<211> 8349

<212> DNA

<213> Homo sapiens

<400> 33°

ttcttggtgc cagcttatca atcccaaact ctgggtgtaa aagattctac agggcacttt 60 cttatgcaag gagctaaaca gtgattaaag gagcaggatg aaaagatggc acagtcagtg 120 ctggtaccgc caggacctga cagcttccgc ttctttacca gggaatccct tgctgctatt 180 gaacaacgca ttgcagaaga gaaagctaag agacccaaac aggaacgcaa ggatgaggat 240 gatgaaaatg gcccaaagcc aaacagtgac ttggaagcag gaaaatctct tccatttatt 300 tatggagaca ttcctccaga gatggtgtca gtgcccctgg aggatctgga cccctactat 360 atcaataaga aaacgtttat agtattgaat aaagggaaag caatctctcg attcagtgcc 420 accectgece tttacatttt aactecette aaccetatta gaaaattage tattaagatt 480 ttggtacatt ctttattcaa tatgctcatt atgtgcacga ttcttaccaa ctgtgtattt 540 atgaccatga gtaaccctcc agactggaca aagaatgtgg agtatacctt tacaggaatt 600 tatacttttg aatcacttat taaaatactt gcaaggggct tttgtttaga agatttcaca 660 tttttacggg atccatggaa ttggttggat ttcacagtca ttacttttgc atatgtgaca 720 gagtttgtgg acctgggcaa tgtctcagcg ttgagaacat tcagagttct ccgagcattg 780

aaaacaattt	cagtcattcc	aggcctgaag	accattgtgg	gggccctgat	ccagtcagtg	840	
aagaagcttt	ctgatgtcat	gatcttgact	gtgttctgtc	taagcgtgtt	tgcgctaata	900	
ggattgcagt	tgttcatggg	caacctacga	aataaatgtt	tgcaatggcc	tccagataat	960	
tcttcctttg	aaataaatat	cacttccttc	tttaacaatt	cattggatgg	gaatggtact	1020	
actttcaata	ggacagtgag	catatttaac	tgggatgaat	atattgagga	taaaagtcac	1080	
ttttatttt	tagaggggca	aaatgatgct	ctgctttgtg	gcaacagctc	agatgcaggc	1140	
cagtgtcctg	aaggatacat	ctgtgtgaag	gctggtagaa	accccaacta	tggctacacg	1200	
agctttgaca	cctttagttg	ggcctttttg	tccttatttc	gtctcatgac	tcaagacttc	1260	
tgggaaaacc	tttatcaact	gacactacgt	gctgctggga	aaacgtacat	gatattttt	1320	
gtgctggtca	ttttcttggg	ctcattctat	ctaataaatt	tgatcttggc	tgtggtggcc	1380	
atggcctatg	aggaacagaa	tcaggccaca	ttggaagagg	ctgaacagaa	ggaagctgaa	1440	
tttcagcaga	tgctcgaaca	gttgaaaaag	caacaagaag	aagctcaggc	ggcagctgca	1500	
gccgcatctg	ctgaatcaag	agacttcagt	ggtgctggtg	ggataggagt	tttttcagag	1560	
agttcttcag	tagcatctaa	gttgagctcc	aaaagtgaaa	aagagctgaa	aaacagaaga	1620	
aagaaaaaga	aacagaaaga	acagtctgga	gaagaagaga	aaaatgacag	agtcctaaaa	1680	
tcggaatctg	aagacagcat	aagaagaaaa	ggtttccgtt	tttccttgga	aggaagtagg	1740	
ctgacatatg	aaaagagatt	ttcttctcca	caccagtcct	tactgagcat	ccgtggctcc	1800	
cttttctctc	caagacgcaa	cagtagggcg	agccttttca	gcttcagagg	tcgagcaaag	1860	
gacattggct	ctgagaatga	ctttgctgat	gatgagcaca	gcacctttga	ggacaatgac	1920	
agccgaagag	actctctgtt	cgtgccgcac	agacatggag	aacggcgcca	cagcaatgtc	1980	
agccaggcca	gccgtgcctc	cagggtgctc	cccatcctgc	ccatgaatgg	gaagatgcat	2040	
agcgctgtgg	actgcaatgg	tgtggtctcc	ctggtcgggg	gcccttctac	cctcacatct	2100	
gctgggcagc	tcctaccaga	gggcacaact	actgaaacag	aaataagaaa	gagacggtcc	2160	
agttcttatc	atgtttccat	ggatttattg	gaagatccta	catcaaggca	aagagcaatg	2220	
agtatagcca	gtattttgac	caacaccatg	gaagaacttg	aagaatccag	acagaaatgc	2280	
ccaccatgct	ggtataaatt	tgctaatatg	tgtttgattt	gggactgttg	taaaccatgg	2340	
ttaaaggtga	aacaccttgt	caacctggtt	gtaatggacc	catttgttga	cctggccatc	2400	
accatctgca	ttgtcttaaa	tacactcttc	atggctatgg	agcactatcc	catgacggag	2460	

cagttcagca gtgtactgtc tgttggaaac ctggtcttca cagggatctt cacagcagaa 2520 atgtttctca agataattgc catggatcca tattattact ttcaagaagg ctggaatatt 2580 tttgatggtt ttattgtgag ccttagttta atggaacttg gtttggcaaa tgtggaagga 2640 ttgtcagttc tccgatcatt ccggctgctc cgagttttca agttggcaaa atcttggcca 2700 actctaaata tgctaattaa gatcattggc aattctgtgg gggctctagg aaacctcacc 2760 ttggtattgg ccatcatcgt cttcattttt gctgtggtcg gcatgcagct ctttggtaag 2820 agctacaaag aatgtgtctg caagatttcc aatgattgtg aactcccacg ctggcacatg 2880 catgactttt tccactcctt cctgatcgtg ttccgcgtgc tgtgtggaga gtggatagag 2940 accatgtggg actgtatgga ggtcgctggc caaaccatgt gccttactgt cttcatgatg 3000 gtcatggtga ttggaaatct agtggttctg aacctcttct tggccttgct tttgagttcc 3060 ttcagttctg acaatcttgc tgccactgat gatgataacg aaatgaataa tctccagatt 3120 gctgtgggaa ggatgcagaa aggaatcgat tttgttaaaa gaaaaatacg tgaatttatt 3180 cagaaagcct ttgttaggaa gcagaaagct ttagatgaaa ttaaaccgct tgaagatcta 3240 aataataaaa aagacagctg tatttccaac cataccacca tagaaatagg caaagacctc 3300 aattatetea aagaeggaaa tggaaetaet agtggeatag geageagtgt agaaaaatat 3360 gtcgtggatg aaagtgatta catgtcattt ataaacaacc ctagcctcac tgtgacagta 3420 ccaattgctg ttggagaatc tgactttgaa aatttaaata ctgaagaatt cagcagcgag 3480 tcagatatgg aggaaagcaa agagaagcta aatgcaacta gttcatctga aggcagcacg 3540 gttgatattg gagctcccgc cgagggagaa cagcctgagg ttgaacctga ggaatccctt 3600 gaacctgaag cctgttttac agaagactgt gtacggaagt tcaagtgttg tcagataagc 3660 atagaagaag gcaaagggaa actctggtgg aatttgagga aaacatgcta taagatagtg 3720 gagcacaatt ggttcgaaac cttcattgtc ttcatgattc tgctgagcag tggggctctg 3780 gcctttgaag atatatacat tgagcagcga aaaaccatta agaccatgtt agaatatgct 3840 gacaaggttt tcacttacat attcattctg gaaatgctgc taaagtgggt tgcatatggt 3900 tttcaagtgt attttaccaa tgcctggtgc tggctagact tcctgattgt tgatgtctca 3960 ctggttagct taactgcaaa tgccttgggt tactcagaac ttggtgccat caaatccctc 4020 agaacactaa gagctctgag gccactgaga gctttgtccc ggtttgaagg aatgagggct 4080 gttgtaaatg ctcttttagg agccattcca tctatcatga atgtacttct ggtttgtctg 4140 atcttttggc taatattcag tatcatggga gtgaatctct ttgctggcaa gttttaccat 4200

tgtattaatt acaccactgg agagatgttt gatgtaagcg tggtcaacaa ctacagtgag 4260 tgcaaagctc tcattgagag caatcaaact gccaggtgga aaaatgtgaa agtaaacttt 4320 gataacgtag gacttggata tctgtctcta cttcaagtag ccacgtttaa gggatggatg 4380 gatattatgt atgcagctgt tgattcacga aatgtagaat tacaacccaa gtatgaagac 4440 aacctgtaca tgtatcttta ttttgtcatc tttattattt ttggttcatt ctttaccttg 4500 aatcttttca ttggtgtcat catagataac ttcaaccaac agaaaaagaa gtttggaggt 4560 caagacattt ttatgacaga agaacagaag aaatactaca atgcaatgaa aaaactgggt 4620 tcaaagaaac cacaaaaacc catacctcga cctgctaaca aattccaagg aatggtcttt 4680 gattttgtaa ccaaacaagt ctttgatatc agcatcatga tcctcatctg ccttaacatg 4740 gtcaccatga tggtggaaac cgatgaccag agtcaagaaa tgacaaacat tctgtactgg 4800 attaatctgg tgtttattgt tctgttcact ggagaatgtg tgctgaaact gatctctctt 4860 cgttactact atttcactat tggatggaat atttttgatt ttgtggtggt cattctctc 4920 attgtaggaa tgtttctggc tgaactgata gaaaagtatt ttgtgtcccc taccctgttc 4980 cgagtgatcc gtcttgccag gattggccga atcctacgtc tgatcaaagg agcaaagggg 5040 atccgcacgc tgctctttgc tttgatgatg tcccttcctg cgttgtttaa catcggcctc 5100 cttcttttcc tggtcatgtt catctacgcc atctttggga tgtccaattt tgcctatgtt 5160 aagagggaag ttgggatcga tgacatgttc aactttgaga cctttggcaa cagcatgatc 5220 tgcctgttcc aaattacaac ctctgctggc tgggatggat tgctagcacc tattcttaat 5280 agtggacctc cagactgtga ccctgacaaa gatcaccctg gaagctcagt taaaggagac 5340 tgtgggaacc catctgttgg gattttcttt tttgtcagtt acatcatcat atccttcctg 5400 gttgtggtga acatgtacat cgcggtcatc ctggagaact tcagtgttgc tactgaagaa 5460 agtgcagagc ctctgagtga ggatgacttt gagatgttct atgaggtttg ggagaagttt 5520 gatcccgatg cgacccagtt tatagagttt gccaaacttt ctgattttgc agatgccctg 5580 gatectecte tteteatage aaaacceaac aaagtecage teattgecat ggatetgeee 5640 atggtgagtg gtgaccggat ccactgtctt gacatcttat ttgcttttac aaagcgtgtt 5700 ttgggtgaga gtggagagat ggatgccctt cgaatacaga tggaagagcg attcatggca 5760 tcaaacccct ccaaagtctc ttatgagccc attacgacca cgttgaaacg caaacaagag 5820 gaggtgtctg ctattattat ccagagggct tacagacgct acctcttgaa gcaaaaagtt 5880

aaaaaggtat caagtatata caagaaagac aaaggcaaag aatgtgatgg aacacccatc	5940
aaagaagata ctctcattga taaactgaat gagaattcaa ctccagagaa aaccgatatg	6000
acgccttcca ccacgtctcc accctcgtat gatagtgtga ccaaaccaga aaaagaaaaa	6060
tttgaaaaag acaaatcaga aaaggaagac aaagggaaag atatcaggga aagtaaaaag	6120
taaaaagaaa ccaagaattt tccattttgt gatcaattgt ttacagcccg tgatggtgat	6180
gtgtttgtgt caacaggact cccacaggag gtctatgcca aactgactgt ttttacaaat	6240
gtatacttaa ggtcagtgcc tataacaaga cagagacctc tggtcagcaa actggaactc	6300
agtaaactgg agaaatagta tcgatgggag gtttctattt tcacaaccag ctgacactgc	6360
tgaagagcag aggcgtaatg gctactcaga cgataggaac caatttaaag gggggaggga	6420
agttaaattt ttatgtaaat tcaacatgtg acacttgata atagtaattg tcaccagtgt	6480
ttatgtttta actgccacac ctgccatatt tttacaaaac gtgtgctgtg aatttatcac	6540
ttttcttttt aattcacagg ttgtttacta ttatatgtga ctatttttgt aaatgggttt	6600
gtgtttgggg agagggatta aagggaggga attctacatt tctctattgt attgtataac	6660
tggatatatt ttaaatggag gcatgctgca attctcattc acacataaaa aaatcacatc	6720
acaaaaggga agagtttact tettgtttea ggatgttttt agatttttga ggtgettaaa	6780
tagctattcg tatttttaag gtgtctcatc cagaaaaaat ttaatgtgcc tgtaaatgtt	6840
ccatagaatc acaagcatta aagagttgtt ttatttttac ataacccatt aaatgtacat	6900
gtatatatgt atatatgtat atgtgcgtgt atatacatat atatgtatac acacatgcac	6960
acacagagat atacacatac cattacattg tcattcacag tcccagcagc atgactatca	7020
catttttgat aagtgtcctt tggcataaaa taaaaatatc ctatcagtcc tttctaagaa	7080
gcctgaattg accaaaaaac atccccacca ccactttata aagttgattc tgctttatcc	7140
tgcagtattg tttagccatc ttctgctctt ggtaaggttg acatagtata tgtcaattta	7200
aaaaataaaa gtctgctttg taaatagtaa ttttacccag tggtgcatgt ttgagcaaac	7260
aaaaatgatg atttaagcac actacttatt gcatcaaata tgtaccacag taagtatagt	7320
ttgcaagctt tcaacaggta atatgatgta attggttcca ttatagtttg aagctgtcac	7380
tgctgcatgt ttatcttgcc tatgctgctg tatcttattc cttccactgt tcagaagtct	7440
aatatgggaa gccatatatc agtggtaaag tgaagcaaat tgttctacca agacctcatt	7500
cttcatgtca ttaagcaata ggttgcagca aacaaggaag agcttcttgc tttttattct	7560
tccaacctta attgaacact caatgatgaa aagcccgact gtacaaacat gttgcaagct	7620

gcttaaatct gtttaaaata tatggttaga gttttctaag aaaatataaa tactgtaaaa 7680 agttcatttt attttatttt tcagcctttt gtacgtaaaa tgagaaatta aaagtatctt 7740 caggtggatg tcacagtcac tattgttagt ttctgttcct agcactttta aattgaagca 7800 cttcacaaaa taagaagcaa ggactaggat gcagtgtagg tttctgcttt tttattagta 7860 ctgtaaactt gcacacattt caatgtgaaa caaatctcaa actgagttca atgtttattt 7920 gctttcaata gtaatgcctt atcattgaaa gaggcttaaa gaaaaaaaaa atcagctgat 7980 actcttggca ttgcttgaat ccaatgtttc cacctagtct ttttattcag taatcatcag 8040 tcttttccaa tgtttgttta cacagataga tcttattgac ccatatggca ctagaactgt 8100 atcagatata atatgggatc ccagcttttt ttcctctccc acaaaaccag gtagtgaagt 8160 tatattacca gttacagcaa aatactttgt gtttcacaag caacaataaa tgtagattct 8220 ttatactgaa gctattgact tgtagtgtgt tggtgaatgc atgcaggaag atgctgttac 8280 cataaagaac ggtaaaccac attacaatca agccaaagaa taaaggttcg cttatgtata 8340 tgtatttaa 8349

<210> 34

<211> 8349

<212> DNA

<213> Homo sapiens

<400> 34

ttcttggtgc cagcttatca atcccaaact ctgggtgtaa aagattctac agggcacttt 60 cttatgcaag gagctaaaca gtgattaaag gagcaggatg aaaagatggc acagtcagtg 120 ctggtaccgc caggacctga cagcttccgc ttctttacca gggaatccct tgctgctatt 180 gaacaacgca ttgcagaaga gaaagctaag agacccaaac aggaacgcaa ggatgaggat 240 gatgaaaatg gcccaaagcc aaacagtgac ttggaagcag gaaaatctct tccatttatt 300 tatggagaca ttcctccaga gatggtgtca gtgcccctgg aggatctgga cccctactat 360 atcaataaga aaacgtttat agtattgaat aaagggaaag caatctctcg attcagtgcc 420 acccctgccc tttacatttt aactcccttc aaccctatta gaaaattagc tattaagatt 480 ttggtacatt ctttattcaa tatgctcatt atgtgcacga ttcttaccaa ctgtgtattt 540 atgaccatga gtaaccctcc agactggaca aagaatgtgg agtatacctt tacaggaatt 600 tatacttttg aatcacttat taaaatactt gcaaggggct tttgtttaga agatttcaca 660 tttttacggg atccatggaa ttggttggat ttcacagtca ttacttttgc atatgtgaca 720

gagtttgtgg	acctgggcaa	tgtctcagcg	ttgagaacat	tcagagttct	ccgagcattg	780
aaaacaattt	cagtcattcc	aggcctgaag	accattgtgg	gggccctgat	ccagtcagtg	840
aagaagcttt	ctgatgtcat	gatcttgact	gtgttctgtc	taagcgtgtt	tgcgctaata	900
ggattgcagt	tgttcatggg	caacctacga	aataaatgtt	tgcaatggcc	tccagataat	960
tcttcctttg	aaataaatat	cacttccttc	tttaacaatt	cattggatgg	gaatggtact	1020
actttcaata	ggacagtgag	catatttaac	tgggatgaat	atattgagga	taaaagtcac	1080
ttttatttt	tagaggggca	aaatgatgct	ctgctttgtg	gcaacagctc	agatgcaggc	1140
cagtgtcctg	aaggatacat	ctgtgtgaag	gctggtagaa	accccaacta	tggctacacg	1200
agctttgaca	cctttagttg	ggcctttttg	tccttatttc	gtctcatgac	tcaagacttc	1260
tgggaaaacc	tttatcaact	gacactacgt	gctgctggga	aaacgtacat	gatattttt	1320
gtgctggtca	ttttcttggg	ctcattctat	ctaataaatt	tgatcttggc	tgtggtggcc	1380
atggcctatg	aggaacagaa	tcaggccaca	ttggaagagg	ctgaacagaa	ggaagctgaa	1440
tttcagcaga	tgctcgaaca	gttgaaaaag	caacaagaag	aagctcaggc	ggcagctgca	1500
gccgcatctg	ctgaatcaag	agacttcagt	ggtgctggtg	ggataggagt	tttttcagag	1560
agttcttcag	tagcatctaa	gttgagctcc	aaaagtgaaa	aagagctgaa	aaacagaaga	1620
aagaaaaaga	aacagaaaga	acagtctgga	gaagaagaga	aaaatgacag	agtcctaaaa	1680
tcggaatctg	aagacagcat	aagaagaaaa	ggtttccgtt	tttccttgga	aggaagtagg	1740
ctgacatatg	aaaagagatt	ttcttctcca	caccagtcct	tactgagcat	ccgtggctcc	1800
cttttctctc	caagacgcaa	cagtagggcg	agccttttca	gcttcagagg	tcgagcaaag	1860
gacattggct	ctgagaatga	ctttgctgat	gatgagcaca	gcacctttga	ggacaatgac	1920
agccgaagag	actctctgtt	cgtgccgcac	agacatggag	aacggcgcca	cagcaatgtc	1980
agccaggcca	gccgtgcctc	cagggtgctc	cccatcctgc	ccatgaatgg	gaagatgcat	2040
agcgctgtgg	actgcaatgg	tgtggtctcc	ctggtcgggg	gcccttctac	cctcacatct	2100
gctgggcagc	tcctaccaga	gggcacaact	actgaaacag	aaataagaaa	gagacggtcc	2160
agttcttatc	atgtttccat	ggatttattg	gaagatccta	catcaaggca	aagagcaatg	2220
agtatagcca	gtattttgac	caacaccatg	gaagaacttg	aagaatccag	acagaaatgc	2280
ccaccatgct	ggtataaatt	tgctaatatg	tgtttgattt	gggactgttg	taaaccatgg	2340
ttaaaggtga	aacaccttgt	caacctggtt	gtaatggacc	catttgttga	cctggccatc	2400

accatctgca	ttgtcttaaa	tacactcttc	atggctatgg	agcactatcc	catgacggag	2460
cagttcagca	gtgtactgtc	tgttggaaac	ctggtcttca	cagggatctt	cacagcagaa	2520
atgtttctca	agataattgc	catggatcca	tattattact	ttcaagaagg	ctggaatatt	2580
tttgatggtt	ttattgtgag	ccttagttta	atggaacttg	gtttggcaaa	tgtggaagga	2640
ttgtcagttc	tccgatcatt	ccggctgctc	cgagttttca	agttggcaaa	atcttggcca	2700
actctaaata	tgctaattaa	gatcattggc	aattctgtgg	gggctctagg	aaacctcacc	2760
ttggtattgg	ccatcatcgt	cttcattttt	gctgtggtcg	gcatgcagct	ctttggtaag	2820
agctacaaag	aatgtgtctg	caagatttcc	aatgattgtg	aactcccacg	ctggcacatg	2880
catgactttt	tccactcctt	cctgatcgtg	ttccgcgtgc	tgtgtggaga	gtggatagag	2940
accatgtggg	actgtatgga	ggtcgctggc	caaaccatgt	gccttactgt	cttcatgatg	3000
gtcatggtga	ttggaaatct	agtggttctg	aacctcttct	tggccttgct	tttgagttcc	3060
ttcagttctg	acaatcttgc	tgccactgat	gatgataacg	aaatgaataa	tctccagatt	3120
gctgtgggaa	ggatgcagaa	aggaatcgat	tttgttaaaa	gaaaaatacg	tgaatttatt	3180
cagaaagcct	ttgttaggaa	gcagaaagct	ttagatgaaa	ttaaaccgct	tgaagatcta	3240
aataataaaa	aagacagctg	tatttccaac	cataccacca	tagaaatagg	caaagacctc	3300
aattatctca	aagacggaaa	tggaactact	agtggcatag	gcagcagtgt	agaaaaatat	3360
gtcgtggatg	aaagtgatta	catgtcattt	ataaacaacc	ctagcctcac	tgtgacagta	3420
ccaattgctg	ttggagaatc	tgactttgaa	aatttaaata	ctgaagaatt	cagcagcgag	3480
tcagatatgg	aggaaagcaa	agagaagcta	aatgcaacta	gttcatctga	aggcagcacg	3540
gttgatattg	gagctcccgc	cgagggagaa	cagcctgagg	ttgaacctga	ggaatccctt	3600
gaacctgaag	cctgttttac	agaagactgt	gtacggaagt	tcaagtgttg	tcagataagc	3660
atagaagaag	gcaaagggaa	actctggtgg	aatttgagga	aaacatgcta	taagatagtg	3720
gagcacaatt	ggttcgaaac	cttcattgtc	ttcatgattc	tgctgagcag	tggggctctg	3780
gcctttgaag	atatatacat	tgagcagcga	aaaaccatta	agaccatgtt	agaatatgct	3840
gacaaggttt	tcacttacat	attcattctg	gaaatgctgc	taaagtgggt	tgcatatggt	3900
tttcaagtgt	attttaccaa	tgcctggtgc	tggctagact	tcctgattgt	tgatgtctca	3960
ctggttagct	taactgcaaa	tgccttgggt	tactcagaac	ttggtgccat	caaatccctc	4020
agaacactaa	gagctctgag	gccactgaga	gctttgtccc	ggtttgaagg	aatgagggct	4080
gttgtaaatg	ctcttttagg	agccattcca	tctatcatga	atgtacttct	ggtttgtctg	4140

atcttttggc taatattcag tatcatggga gtgaatctct ttgctggcaa gttttaccat 4200 tgtattaatt acaccactgg agagatgttt gatgtaagcg tggtcaacaa ctacagtgag 4260 tgcaaagctc tcattgagag caatcaaact gccaggtgga aaaatgtgaa agtaaacttt 4320 gataacgtag gacttggata tctgtctcta cttcaagtag ccacgtttaa gggatggatg 4380 gatattatgt atgcagctgt tgattcacga aatgtagaat tacaacccaa gtatgaagac 4440 aacctgtaca tgtatcttta ttttgtcatc tttattattt ttggttcatt ctttaccttg 4500 aatcttttca ttggtgtcat catagataac ttcaaccaac agaaaaagaa gtttggaggt 4560 caagacattt ttatgacaga agaacagaag aaatactaca atgcaatgaa aaaactgggt 4620 tcaaagaaac cacaaaaacc catacctcga cctgctaaca aattccaagg aatggtcttt 4680 gattttgtaa ccaaacaagt ctttgatatc agcatcatga tcctcatctg ccttaacatg 4740 gtcaccatga tggtggaaac cgatgaccag agtcaagaaa tgacaaacat tctgtactgg 4800 attaatctgg tgtttattgt tctgttcact ggagaatgtg tgctgaaact gatctctctt 4860 cgttactact atttcactat tggatggaat atttttgatt ttgtggtggt cattctctcc 4920 attgtaggaa tgtttctggc tgaactgata gaaaagtatt ttgtgtcccc taccctgttc 4980 cgagtgatcc gtcttgccag gattggccga atcctacgtc tgatcaaagg agcaaagggg 5040 atccgcacgc tgctctttgc tttgatgatg tcccttcctg cgttgtttaa catcggcctc 5100 cttcttttcc tggtcatgtt catctacgcc atctttggga tgtccaattt tgcctatgtt 5160 aagagggaag ttgggatcga tgacatgttc aactttgaga cctttggcaa cagcatgatc 5220 tgcctgttcc aaattacaac ctctgctggc tgggatggat tgctagcacc tattcttaat 5280 agtggacctc cagactgtga ccctgacaaa gatcaccctg gaagctcagt taaaggagac 5340 tgtgggaacc catctgttgg gattttcttt tttgtcagtt acatcatcat atccttcctg 5400 gttgtggtga acatgtacat cgcggtcatc ctggagaact tcagtgttgc tactgaagaa 5460 agtgcagagc ctctgagtga ggatgacttt gagatgttct atgaggtttg ggagaagttt 5520 gatcccgatg cgacccagtt tatagagttt gccaaacttt ctgattttgc agatgccctg 5580 gatcctcctc ttctcatagc aaaacccaac aaagtccagc tcattgccat ggatctgccc 5640 atggtgagtg gtgaccggat ccactgtctt gacatcttat ttgcttttac aaagcgtgtt 5700 ttgggtgaga gtggagagat ggatgccctt cgaatacaga tggaagagcg attcatggca 5760 tcaaacccct ccaaagtctc ttatgagccc attacgacca cgttgaaacg caaacaagag 5820

gaggtgtctg ctattattat ccagagggct tacagacgct acctcttgaa gcaaaaagtt 5880 aaaaaggtat caagtatata caagaaagac aaaggcaaag aatgtgatgg aacacccatc 5940 aaagaagata ctctcattga taaactgaat gagaattcaa ctccagagaa aaccgatatg 6000 acgccttcca ccacgtctcc accctcgtat gatagtgtga ccaaaccaga aaaagaaaaa 6060 tttgaaaaag acaaatcaga aaaggaagac aaagggaaag atatcaggga aagtaaaaag 6120 taaaaagaaa ccaagaattt tccattttgt gatcaattgt ttacagcccg tgatggtgat 6180 gtgtttgtgt caacaggact cccacaggag gtctatgcca aactgactgt ttttacaaat 6240 gtatacttaa ggtcagtgcc tataacaaga cagagacctc tggtcagcaa actggaactc 6300 agtaaactgg agaaatagta tcgatgggag gtttctattt tcacaaccag ctgacactgc 6360 tgaagagcag aggcgtaatg gctactcaga cgataggaac caatttaaag gggggaggga 6420 agttaaattt ttatgtaaat tcaacatgtg acacttgata atagtaattg tcaccagtgt 6480 ttatgtttta actgccacac ctgccatatt tttacaaaac gtgtgctgtg aatttatcac 6540 ttttcttttt aattcacagg ttgtttacta ttatatgtga ctatttttgt aaatgggttt 6600 gtgtttgggg agagggatta aagggaggga attctacatt tctctattgt attgtataac 6660 tggatatatt ttaaatggag gcatgctgca attctcattc acacataaaa aaatcacatc 6720 acaaaaggga agagtttact tcttgtttca ggatgttttt agatttttga ggtgcttaaa 6780 tagctattcg tatttttaag gtgtctcatc cagaaaaaat ttaatgtgcc tgtaaatgtt 6840 ccatagaatc acaagcatta aagagttgtt ttatttttac ataacccatt aaatgtacat 6900 gtatatatgt atatatgtat atgtgcgtgt atatacatat atatgtatac acacatgcac 6960 acacagagat atacacatac cattacattg tcattcacag tcccagcagc atgactatca 7020 catttttgat aagtgtcctt tggcataaaa taaaaatatc ctatcagtcc tttctaagaa 7080 gcctgaattg accaaaaaac atccccacca ccactttata aagttgattc tgctttatcc 7140 tgcagtattg tttagccatc ttctgctctt ggtaaggttg acatagtata tgtcaattta 7200 aaaaataaaa gtctgctttg taaatagtaa ttttacccag tggtgcatgt ttgagcaaac 7260 aaaaatgatg atttaagcac actacttatt gcatcaaata tgtaccacag taagtatagt 7320 ttgcaagctt tcaacaggta atatgatgta attggttcca ttatagtttg aagctgtcac 7380 tgctgcatgt ttatcttgcc tatgctgctg tatcttattc cttccactgt tcagaagtct 7440 aatatgggaa gccatatatc agtggtaaag tgaagcaaat tgttctacca agacctcatt 7500 cttcatgtca ttaagcaata ggttgcagca aacaaggaag agcttcttgc tttttattct 7560

tccaacctta attgaacact caatgatgaa aagcccgact gtacaaacat gttgcaaqct 7620 gcttaaatct gtttaaaata tatggttaga gttttctaag aaaatataaa tactgtaaaa 7680 agttcatttt attttatttt tcagcctttt gtacgtaaaa tgagaaatta aaagtatctt 7740 caggtggatg tcacagtcac tattgttagt ttctgttcct agcactttta aattgaagca 7800 cttcacaaaa taagaagcaa ggactaggat gcagtgtagg tttctgcttt tttattagta 7860 ctgtaaactt gcacacattt caatgtgaaa caaatctcaa actgagttca atgtttattt 7920 gctttcaata gtaatgcctt atcattgaaa gaggcttaaa gaaaaaaaaa atcagctgat 7980 actettggca ttgettgaat ceaatgttte caectagtet ttttatteag taateateag 8040 tcttttccaa tgtttgttta cacagataga tcttattgac ccatatggca ctagaactgt 8100 atcagatata atatgggatc ccagcttttt ttcctctccc acaaaccag gtagtgaagt 8160 tatattacca gttacagcaa aatactttgt gtttcacaag caacaataaa tgtagattct 8220 ttatactgaa gctattgact tgtagtgtt tggtgaatgc atgcaggaag atgctgttac 8280 cataaagaac ggtaaaccac attacaatca agccaaagaa taaaggttcg cttatgtata 8340 tgtatttaa 8349

<210> 35

<211> 2005

<212> PRT

<213> Homo sapiens

<400> 35

Met Ala Gln Ser Val Leu Val Pro Pro Gly Pro Asp Ser Phe Arg Phe 1 5 10 15

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Gln Arg Ile Ala Glu Glu 20 25 30

Lys Ala Lys Arg Pro Lys Gln Glu Arg Lys Asp Glu Asp Asp Glu Asn 35 40 45

Gly Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Ser Leu Pro Phe 50 55 60

Ile Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Val Pro Leu Glu Asp 70 75 80

- Leu Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys 85 90 95
- Gly Lys Ala Ile Ser Arg Phe Ser Ala Thr Pro Ala Leu Tyr Ile Leu 100 105 110
- Thr Pro Phe Asn Pro Ile Arg Lys Leu Ala Ile Lys Ile Leu Val His
 115 120 125
- Ser Leu Phe Asn Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val 130 135 140
- Phe Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr 145 150 155 160
- Thr Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Leu Ala 165 170 175
- Arg Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn 180 185 190
- Trp Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val
 195 200 205
- Asp Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala 210 215 220
- Leu Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala 225 230 235 240
- Leu Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val 245 250 255
- Phe Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly 260 265 270
- Asn Leu Arg Asn Lys Cys Leu Gln Trp Pro Pro Asp Asn Ser Ser Phe 275 280 285
- Glu Ile Asn Ile Thr Ser Phe Phe Asn Asn Ser Leu Asp Gly Asn Gly 290 295 300
- Thr Thr Phe Asn Arg Thr Val Ser Ile Phe Asn Trp Asp Glu Tyr Ile

Glu Asp Lys Ser His Phe Tyr Phe Leu Glu Gly Gln Asn Asp Ala Leu 325 330 335

Leu Cys Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Ile 340 345 350

Cys Val Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp 355 360 365

Thr Phe Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp 370 375 380

Phe Trp Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly Lys Thr 385 390 395 400

Tyr Met Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu 405 410 415

Ile Asn Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln Asn 420 425 430

Gln Ala Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln 435 440 445

Met Leu Glu Gln Leu Lys Lys Gln Gln Glu Glu Ala Gln Ala Ala 450 455 460

Ala Ala Ala Ser Ala Glu Ser Arg Asp Phe Ser Gly Ala Gly Gly Ile 465 470 475 480

Gly Val Phe Ser Glu Ser Ser Ser Val Ala Ser Lys Leu Ser Ser Lys 485 490 495

Ser Glu Lys Glu Leu Lys Asn Arg Arg Lys Lys Lys Gln Lys Glu
500 505 510

Gln Ser Gly Glu Glu Lys Asn Asp Arg Val Leu Lys Ser Glu Ser 515 520 525

Glu Asp Ser Ile Arg Arg Lys Gly Phe Arg Phe Ser Leu Glu Gly Ser 530 535 540

Arg 545		Thr	Tyr	Glu	Lys 550	Arg	Phe	Ser	Ser	Pro 555	His	Gln	Ser	Leu	Leu 560
Ser	Ile	Arg	Gly	Ser 565	Leu	Phe	Ser	Pro	Arg 570	Arg	Asn	Ser	Arg	Ala 575	Ser
Leu	Phe	Ser	Phe 580	Arg	Gly	Arg	Ala	Lys 585	Asp	Ile	Gly	Ser	Glu 590	Asn	Asp
Phe	Ala	Asp 595	Asp	Glu	His	Ser	Thr 600	Phe	Glu	Asp	Asn	Asp 605	Ser	Arg	Arg
Asp	Ser 610	Leu	Phe	Val	Pro	His 615	Arg	His	Gly	Glu	Arg 620	Arg	His	Ser	Asn
Val 625	Ser	Gln	Ala	Ser	Arg 630	Ala	Ser	Arg	Val	Leu 635	Pro	Ile	Leu	Pro	Met 640
Asn	Gly	Lys	Met	His 645	Ser	Ala	Val	Asp	Cys 650	Asn	Gly	Val	Val	Ser 655	Leu
Val	Gly	Gly	Pro 660	Ser	Thr	Leu	Thr	Ser 665	Ala	Gly	Gln	Leu	Leu 670	Pro	Glu
Gly	Thr	Thr 675	Thr	Glu	Thr	Glu	Ile 680	Arg	Lys	Arg	Arg	Ser 685	Ser	Ser	Tyr
His	Val 690	Ser	Met	Asp	Leu	Leu 695	Glu	Asp	Pro	Thr	Ser 700	Arg	Gln	Arg	Ala
Met 705	Ser	Ile	Ala	Ser	Ile 710	Leu	Thr	Asn	Thr	Met 715	Glu	Glu	Leu	Glu	Glu 720
Ser	Arg	Gln	Lys	Cys 725	Pro	Pro	Cys	Trp	Tyr 730	Lys	Phe	Ala	Asn	Met 735	Cys
_															

Leu Ile Trp Asp Cys Cys Lys Pro Trp Leu Lys Val Lys His Leu Val

Asn Leu Val Val Met Asp Pro Phe Val Asp Leu Ala Ile Thr Ile Cys

- Ile Val Leu Asn Thr Leu Phe Met Ala Met Glu His Tyr Pro Met Thr 770 775 780
- Glu Gln Phe Ser Ser Val Leu Ser Val Gly Asn Leu Val Phe Thr Gly 785 790 795 800
- Ile Phe Thr Ala Glu Met Phe Leu Lys Ile Ile Ala Met Asp Pro Tyr 805 810 815
- Tyr Tyr Phe Gln Glu Gly Trp Asn Ile Phe Asp Gly Phe Ile Val Ser 820 825 830
- Leu Ser Leu Met Glu Leu Gly Leu Ala Asn Val Glu Gly Leu Ser Val 835 840 845
- Leu Arg Ser Phe Arg Leu Leu Arg Val Phe Lys Leu Ala Lys Ser Trp 850 855 860
- Pro Thr Leu Asn Met Leu Ile Lys Ile Ile Gly Asn Ser Val Gly Ala 865 870 875 880
- Leu Gly Asn Leu Thr Leu Val Leu Ala Ile Ile Val Phe Ile Phe Ala 885 890 895
- Val Val Gly Met Gln Leu Phe Gly Lys Ser Tyr Lys Glu Cys Val Cys 900 905 910
- Lys Ile Ser Asn Asp Cys Glu Leu Pro Arg Trp His Met His Asp Phe 915 920 925
- Phe His Ser Phe Leu Ile Val Phe Arg Val Leu Cys Gly Glu Trp Ile 930 935 940
- Glu Thr Met Trp Asp Cys Met Glu Val Ala Gly Gln Thr Met Cys Leu 945 950 955 960
- Thr Val Phe Met Met Val Met Val Ile Gly Asn Leu Val Val Leu Asn 965 970 975
- Leu Phe Leu Ala Leu Leu Leu Ser Ser Phe Ser Ser Asp Asn Leu Ala 980 985 989

- Ala Thr Asp Asp Asp Asn Glu Met Asn Asn Leu Gln Ile Ala Val Gly 995 1000 1005
- Arg Met Gln Lys Gly Ile Asp Phe Val Lys Arg Lys Ile Arg Glu 1010 1015 1020
- Phe Ile Gln Lys Ala Phe Val Arg Lys Gln Lys Ala Leu Asp Glu 1025 1030 1035
- Ile Lys Pro Leu Glu Asp Leu Asn Asn Lys Lys Asp Ser Cys Ile 1040 1045 1050
- Ser Asn His Thr Thr Ile Glu Ile Gly Lys Asp Leu Asn Tyr Leu 1055 1060 1065
- Lys Asp Gly Asn Gly Thr Thr Ser Gly Ile Gly Ser Ser Val Glu 1070 1075 1080
- Lys Tyr Val Val Asp Glu Ser Asp Tyr Met Ser Phe Ile Asn Asn 1085 1090 1095
- Pro Ser Leu Thr Val Thr Val Pro Ile Ala Val Gly Glu Ser Asp 1100 1105 1110
- Phe Glu Asn Leu Asn Thr Glu Glu Phe Ser Ser Glu Ser Asp Met 1115 1120 1125
- Glu Glu Ser Lys Glu Lys Leu Asn Ala Thr Ser Ser Ser Glu Gly
 1130 1135 1140
- Ser Thr Val Asp Ile Gly Ala Pro Ala Glu Gly Glu Gln Pro Glu 1145 1150 1155
- Val Glu Pro Glu Glu Ser Leu Glu Pro Glu Ala Cys Phe Thr Glu 1160 1165 1170
- Asp Cys Val Arg Lys Phe Lys Cys Cys Gln Ile Ser Ile Glu Glu 1175 1180 1185
- Gly Lys Gly Lys Leu Trp Trp Asn Leu Arg Lys Thr Cys Tyr Lys 1190 1195 1200
- Ile Val Glu His Asn Trp Phe Glu Thr Phe Ile Val Phe Met Ile

Leu Leu Ser Ser Gly Ala Leu Ala Phe Glu Asp Ile Tyr Ile Glu Gln Arg Lys Thr Ile Lys Thr Met Leu Glu Tyr Ala Asp Lys Val Phe Thr Tyr Ile Phe Ile Leu Glu Met Leu Leu Lys Trp Val Ala Tyr Gly Phe Gln Val Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp Phe Leu Ile Val Asp Val Ser Leu Val Ser Leu Thr Ala Asn Ala Leu Gly Tyr Ser Glu Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu Arg Ala Leu Arg Pro Leu Arg Ala Leu Ser Arg Phe Glu Gly Met Arg Ala Val Val Asn Ala Leu Leu Gly Ala Ile Pro Ser Ile Met Asn Val Leu Leu Val Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile Met Gly Val Asn Leu Phe Ala Gly Lys Phe Tyr His Cys Ile Asn Tyr Thr Thr Gly Glu Met Phe Asp Val Ser Val Val Asn Asn Tyr

Ser Glu Cys Lys Ala Leu Ile Glu Ser Asn Gln Thr Ala Arg Trp

Lys Asn Val Lys Val Asn Phe Asp Asn Val Gly Leu Gly Tyr Leu

Ser Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile Met

- Tyr Ala Ala Val Asp Ser Arg Asn Val Glu Leu Gln Pro Lys Tyr 1430 1440
- Glu Asp Asn Leu Tyr Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile 1445 1450 1455
- Phe Gly Ser Phe Phe Thr Leu Asn Leu Phe Ile Gly Val Ile Ile 1460 1465 1470
- Asp Asn Phe Asn Gln Gln Lys Lys Lys Phe Gly Gln Asp Ile 1475 1480 1485
- Phe Met Thr Glu Glu Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys 1490 1495 1500
- Leu Gly Ser Lys Lys Pro Gln Lys Pro Ile Pro Arg Pro Ala Asn 1505 1510 1515
- Lys Phe Gln Gly Met Val Phe Asp Phe Val Thr Lys Gln Val Phe 1520 1530
- Asp Ile Ser Ile Met Ile Leu Ile Cys Leu Asn Met Val Thr Met 1535 1540 1545
- Met Val Glu Thr Asp Asp Gln Ser Gln Glu Met Thr Asn Ile Leu 1550 1560
- Tyr Trp Ile Asn Leu Val Phe Ile Val Leu Phe Thr Gly Glu Cys 1565 1570 1575
- Val Leu Lys Leu Ile Ser Leu Arg Tyr Tyr Tyr Phe Thr Ile Gly 1580 1585 1590
- Trp Asn Ile Phe Asp Phe Val Val Val Ile Leu Ser Ile Val Gly 1595 1600 1605
- Met Phe Leu Ala Glu Leu Ile Glu Lys Tyr Phe Val Ser Pro Thr 1610 1615 1620
- Leu Phe Arg Val Ile Arg Leu Ala Arg Ile Gly Arg Ile Leu Arg 1625 1630 1635

- Leu Ile Lys Gly Ala Lys Gly Ile Arg Thr Leu Leu Phe Ala Leu 1640 1650
- Met Met Ser Leu Pro Ala Leu Phe Asn Ile Gly Leu Leu Phe 1655 1660 1665
- Leu Val Met Phe Ile Tyr Ala Ile Phe Gly Met Ser Asn Phe Ala 1670 1680
- Tyr Val Lys Arg Glu Val Gly Ile Asp Asp Met Phe Asn Phe Glu 1685 1690 1695
- Thr Phe Gly Asn Ser Met Ile Cys Leu Phe Gln Ile Thr Thr Ser 1700 1705 1710
- Ala Gly Trp Asp Gly Leu Leu Ala Pro Ile Leu Asn Ser Gly Pro 1715 1720 1725
- Pro Asp Cys Asp Pro Asp Lys Asp His Pro Gly Ser Ser Val Lys 1730 1740
- Gly Asp Cys Gly Asn Pro Ser Val Gly Ile Phe Phe Phe Val Ser 1745 1750 1755
- Tyr Ile Ile Ile Ser Phe Leu Val Val Val Asn Met Tyr Ile Ala 1760 1765 1770
- Val Ile Leu Glu Asn Phe Ser Val Ala Thr Glu Glu Ser Ala Glu 1775 1780 1785
- Pro Leu Ser Glu Asp Asp Phe Glu Met Phe Tyr Glu Val Trp Glu 1790 1795 1800
- Lys Phe Asp Pro Asp Ala Thr Gln Phe Ile Glu Phe Ala Lys Leu 1805 1810 1815
- Ser Asp Phe Ala Asp Ala Leu Asp Pro Pro Leu Leu Ile Ala Lys 1820 1825 1830
- Pro Asn Lys Val Gln Leu Ile Ala Met Asp Leu Pro Met Val Ser 1835 1840 1845

Gly Asp Arg Ile His Cys Leu Asp Ile Leu Phe Ala Phe Thr Lys 1850 1855 1860

Arg Val Leu Gly Glu Ser Gly Glu Met Asp Ala Leu Arg Ile Gln 1865 1870 1875

Met Glu Glu Arg Phe Met Ala Ser Asn Pro Ser Lys Val Ser Tyr 1880 1885 1890

Glu Pro Ile Thr Thr Leu Lys Arg Lys Gln Glu Glu Val Ser 1895 1900 1905

Ala Ile Ile Ile Gln Arg Ala Tyr Arg Arg Tyr Leu Leu Lys Gln 1910 1915 1920

Lys Val Lys Lys Val Ser Ser Ile Tyr Lys Lys Asp Lys Gly Lys 1925 1930 1935

Glu Cys Asp Gly Thr Pro Ile Lys Glu Asp Thr Leu Ile Asp Lys 1940 1945 1950

Leu Asn Glu Asn Ser Thr Pro Glu Lys Thr Asp Met Thr Pro Ser 1955 1960 1965

Thr Thr Ser Pro Pro Ser Tyr Asp Ser Val Thr Lys Pro Glu Lys 1970 1975 1980

Glu Lys Phe Glu Lys Asp Lys Ser Glu Lys Glu Asp Lys Gly Lys 1985 1990 1995

Asp Ile Arg Glu Ser Lys Lys 2000 2005

<210> 36

<211> 2005

<212> PRT

<213> Homo sapiens

<400> 36

Met Ala Gln Ser Val Leu Val Pro Pro Gly Pro Asp Ser Phe Arg Phe 1 5 10 15

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Gln Arg Ile Ala Glu Glu
20 25 30

- Lys Ala Lys Arg Pro Lys Gln Glu Arg Lys Asp Glu Asp Asp Glu Asn 35 40 45
- Gly Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Ser Leu Pro Phe 50 55 60
- Ile Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Val Pro Leu Glu Asp
 65 70 75 80
- Leu Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys 85 90 95
- Gly Lys Ala Ile Ser Arg Phe Ser Ala Thr Pro Ala Leu Tyr Ile Leu 100 105 110
- Thr Pro Phe Asn Pro Ile Arg Lys Leu Ala Ile Lys Ile Leu Val His
 115 120 125
- Ser Leu Phe Asn Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val 130 135 140
- Phe Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr 145 150 155 160
- Thr Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Leu Ala 165 170 175
- Arg Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn 180 185 190
- Trp Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val 195 200 205
- Asn Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala 210 215 220
- Leu Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala 225 230 235 240
- Leu Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val 245 250 255

- Phe Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly 260 265 270
- Asn Leu Arg Asn Lys Cys Leu Gln Trp Pro Pro Asp Asn Ser Ser Phe 275 280 285
- Glu Ile Asn Ile Thr Ser Phe Phe Asn Asn Ser Leu Asp Gly Asn Gly 290 295 300
- Thr Thr Phe Asn Arg Thr Val Ser Ile Phe Asn Trp Asp Glu Tyr Ile 305 310 315 320
- Glu Asp Lys Ser His Phe Tyr Phe Leu Glu Gly Gln Asn Asp Ala Leu 325 330 335
- Leu Cys Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Ile 340 345 350
- Cys Val Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp 355 360 365
- Thr Phe Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp 370 375 380
- Phe Trp Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly Lys Thr 385 390 395 400
- Tyr Met Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu 405 410 415
- Ile Asn Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln Asn 420 425 430
- Gln Ala Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln 435 440 445
- Met Leu Glu Gln Leu Lys Lys Gln Gln Glu Glu Ala Gln Ala Ala 450 455 460
- Ala Ala Ala Ser Ala Glu Ser Arg Asp Phe Ser Gly Ala Gly Gly Ile 465 470 475 480

Gly Val Phe Ser Glu Ser Ser Ser Val Ala Ser Lys Leu Ser Ser Lys 485 490 495 Ser Glu Lys Glu Leu Lys Asn Arg Arg Lys Lys Lys Gln Lys Glu 500 505 Gln Ser Gly Glu Glu Lys Asn Asp Arg Val Leu Lys Ser Glu Ser Glu Asp Ser Ile Arg Arg Lys Gly Phe Arg Phe Ser Leu Glu Gly Ser 535 Arg Leu Thr Tyr Glu Lys Arg Phe Ser Ser Pro His Gln Ser Leu Leu 550 555 Ser Ile Arg Gly Ser Leu Phe Ser Pro Arg Arg Asn Ser Arg Ala Ser 565 570 Leu Phe Ser Phe Arg Gly Arg Ala Lys Asp Ile Gly Ser Glu Asn Asp 580 585 Phe Ala Asp Asp Glu His Ser Thr Phe Glu Asp Asn Asp Ser Arg Arg 595 600 Asp Ser Leu Phe Val Pro His Arg His Gly Glu Arg Arg His Ser Asn 610 615 Val Ser Gln Ala Ser Arg Ala Ser Arg Val Leu Pro Ile Leu Pro Met 630 Asn Gly Lys Met His Ser Ala Val Asp Cys Asn Gly Val Val Ser Leu 645 Val Gly Gly Pro Ser Thr Leu Thr Ser Ala Gly Gln Leu Leu Pro Glu 660 665 670

His Val Ser Met Asp Leu Leu Glu Asp Pro Thr Ser Arg Gln Arg Ala 690 695 700

Gly Thr Thr Thr Glu Thr Glu Ile Arg Lys Arg Arg Ser Ser Tyr

680

675

Met Ser Ile Ala Ser Ile Leu Thr Asn Thr Met Glu Glu Leu Glu Glu

Ser Arg Gln Lys Cys Pro Pro Cys Trp Tyr Lys Phe Ala Asn Met Cys 725 730 735

Leu Ile Trp Asp Cys Cys Lys Pro Trp Leu Lys Val Lys His Leu Val 740 745 750

Asn Leu Val Val Met Asp Pro Phe Val Asp Leu Ala Ile Thr Ile Cys 755 760 765

Ile Val Leu Asn Thr Leu Phe Met Ala Met Glu His Tyr Pro Met Thr 770 780

Glu Gln Phe Ser Ser Val Leu Ser Val Gly Asn Leu Val Phe Thr Gly 785 790 795 800

Ile Phe Thr Ala Glu Met Phe Leu Lys Ile Ile Ala Met Asp Pro Tyr 805 810 815

Tyr Tyr Phe Gln Glu Gly Trp Asn Ile Phe Asp Gly Phe Ile Val Ser 820 825 830

Leu Ser Leu Met Glu Leu Gly Leu Ala Asn Val Glu Gly Leu Ser Val 835 840 845

Leu Arg Ser Phe Arg Leu Leu Arg Val Phe Lys Leu Ala Lys Ser Trp 850 855 860

Pro Thr Leu Asn Met Leu Ile Lys Ile Ile Gly Asn Ser Val Gly Ala 865 870 875 880

Leu Gly Asn Leu Thr Leu Val Leu Ala Ile Ile Val Phe Ile Phe Ala 885 890 895

Val Val Gly Met Gln Leu Phe Gly Lys Ser Tyr Lys Glu Cys Val Cys 900 905 910

Lys Ile Ser Asn Asp Cys Glu Leu Pro Arg Trp His Met His Asp Phe 915 920 925

Phe His Ser Phe Leu Ile Val Phe Arg Val Leu Cys Gly Glu Trp Ile 930 935 940

- Glu Thr Met Trp Asp Cys Met Glu Val Ala Gly Gln Thr Met Cys Leu 945 950 955 960
- Thr Val Phe Met Met Val Met Val Ile Gly Asn Leu Val Val Leu Asn 965 970 975
- Leu Phe Leu Ala Leu Leu Leu Ser Ser Phe Ser Ser Asp Asn Leu Ala 980 985 990
- Ala Thr Asp Asp Asp Asn Glu Met Asn Asn Leu Gln Ile Ala Val Gly 995 1000 1005
- Arg Met Gln Lys Gly Ile Asp Phe Val Lys Arg Lys Ile Arg Glu 1010 1015 1020
- Phe Ile Gln Lys Ala Phe Val Arg Lys Gln Lys Ala Leu Asp Glu 1025 1030 1035
- Ile Lys Pro Leu Glu Asp Leu Asn Asn Lys Lys Asp Ser Cys Ile 1040 1045 1050
- Ser Asn His Thr Thr Ile Glu Ile Gly Lys Asp Leu Asn Tyr Leu 1055 1060 1065
- Lys Asp Gly Asn Gly Thr Thr Ser Gly Ile Gly Ser Ser Val Glu 1070 1075 1080
- Lys Tyr Val Val Asp Glu Ser Asp Tyr Met Ser Phe Ile Asn Asn 1085 1090 1095
- Pro Ser Leu Thr Val Thr Val Pro Ile Ala Val Gly Glu Ser Asp 1100 1105 1110
- Phe Glu Asn Leu Asn Thr Glu Glu Phe Ser Ser Glu Ser Asp Met 1115 1120 1125
- Glu Glu Ser Lys Glu Lys Leu Asn Ala Thr Ser Ser Ser Glu Gly 1130 1135 1140
- Ser Thr Val Asp Ile Gly Ala Pro Ala Glu Gly Glu Gln Pro Glu 1145 1150 1155

- Val Glu Pro Glu Glu Ser Leu Glu Pro Glu Ala Cys Phe Thr Glu 1160 1165 1170
- Asp Cys Val Arg Lys Phe Lys Cys Cys Gln Ile Ser Ile Glu Glu 1175 1180 1185
- Gly Lys Gly Lys Leu Trp Trp Asn Leu Arg Lys Thr Cys Tyr Lys 1190 1195 1200
- Ile Val Glu His Asn Trp Phe Glu Thr Phe Ile Val Phe Met Ile 1205 1210 1215
- Leu Leu Ser Ser Gly Ala Leu Ala Phe Glu Asp Ile Tyr Ile Glu 1220 1225 1230
- Gln Arg Lys Thr Ile Lys Thr Met Leu Glu Tyr Ala Asp Lys Val 1235 1240 1245
- Phe Thr Tyr Ile Phe Ile Leu Glu Met Leu Leu Lys Trp Val Ala 1250 1255 1260
- Tyr Gly Phe Gln Val Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp 1265 1270 1275
- Leu Gly Tyr Ser Glu Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu 1295 1300 1305
- Arg Ala Leu Arg Pro Leu Arg Ala Leu Ser Arg Phe Glu Gly Met 1310 1315 1320
- Arg Ala Val Val Asn Ala Leu Leu Gly Ala Ile Pro Ser Ile Met 1325 1330 1335
- Asn Val Leu Leu Val Cys Leu Ile Phe Trp Leu Ile Phe Ser Ile 1340 1350
- Met Gly Val Asn Leu Phe Ala Gly Lys Phe Tyr His Cys Ile Asn 1355 1360 1365

- Tyr Thr Thr Gly Glu Met Phe Asp Val Ser Val Val Asn Asn Tyr 1370 1375 1380
- Ser Glu Cys Lys Ala Leu Ile Glu Ser Asn Gln Thr Ala Arg Trp 1385 1390 1395
- Lys Asn Val Lys Val Asn Phe Asp Asn Val Gly Leu Gly Tyr Leu 1400 1410
- Ser Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile Met 1415 1420 1425
- Tyr Ala Ala Val Asp Ser Arg Asn Val Glu Leu Gln Pro Lys Tyr 1430 1440
- Glu Asp Asn Leu Tyr Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile 1445 1450 1455
- Phe Gly Ser Phe Phe Thr Leu Asn Leu Phe Ile Gly Val Ile Ile 1460 1465 1470
- Asp Asn Phe Asn Gln Gln Lys Lys Lys Phe Gly Gln Asp Ile 1475 1480 1485
- Phe Met $\mbox{ Thr Glu Glu Gln Lys}$ $\mbox{ Lys Tyr Tyr Asn Ala}$ $\mbox{ Met Lys Lys }$ $\mbox{ 1490}$ $\mbox{ 1495}$ $\mbox{ 1500}$
- Leu Gly Ser Lys Lys Pro Gln Lys Pro Ile Pro Arg Pro Ala Asn 1505 1510 1515
- Lys Phe Gln Gly Met Val Phe Asp Phe Val Thr Lys Gln Val Phe 1520 1530
- Asp Ile Ser Ile Met Ile Leu Ile Cys Leu Asn Met Val Thr Met 1535 1540 1545
- Met Val Glu Thr Asp Asp Gln Ser Gln Glu Met Thr Asn Ile Leu 1550 1560
- Tyr Trp Ile Asn Leu Val Phe Ile Val Leu Phe Thr Gly Glu Cys 1565 1570 1575
- Val Leu Lys Leu Ile Ser Leu Arg Tyr Tyr Tyr Phe Thr Ile Gly

Trp Asn Ile Phe Asp Phe Val Val Val Ile Leu Ser Ile Val Gly 1595 1600 1605

- Met Phe Leu Ala Glu Leu Ile Glu Lys Tyr Phe Val Ser Pro Thr 1610 1615 1620
- Leu Phe Arg Val Ile Arg Leu Ala Arg Ile Gly Arg Ile Leu Arg 1625 1630 1635
- Leu Ile Lys Gly Ala Lys Gly Ile Arg Thr Leu Leu Phe Ala Leu 1640 1645 1650
- Met Met Ser Leu Pro Ala Leu Phe Asn Ile Gly Leu Leu Phe 1655 1660 1665
- Leu Val Met Phe Ile Tyr Ala Ile Phe Gly Met Ser Asn Phe Ala 1670 1680
- Tyr Val Lys Arg Glu Val Gly Ile Asp Asp Met Phe Asn Phe Glu 1685 1690 1695
- Thr Phe Gly Asn Ser Met Ile Cys Leu Phe Gln Ile Thr Thr Ser 1700 1705 1710
- Ala Gly Trp Asp Gly Leu Leu Ala Pro Ile Leu Asn Ser Gly Pro 1715 1720 1725
- Pro Asp Cys Asp Pro Asp Lys Asp His Pro Gly Ser Ser Val Lys 1730 1740
- Gly Asp Cys Gly Asn Pro Ser Val Gly Ile Phe Phe Phe Val Ser 1745 1750 1755
- Tyr Ile Ile Ile Ser Phe Leu Val Val Val Asn Met Tyr Ile Ala 1760 1765 1770
- Val Ile Leu Glu Asn Phe Ser Val Ala Thr Glu Glu Ser Ala Glu 1775 1780 1785
- Pro Leu Ser Glu Asp Asp Phe Glu Met Phe Tyr Glu Val Trp Glu 1790 1795 1800

- Lys Phe Asp Pro Asp Ala Thr Gln Phe Ile Glu Phe Ala Lys Leu 1805 1810 1815
- Ser Asp Phe Ala Asp Ala Leu Asp Pro Pro Leu Leu Ile Ala Lys 1820 1825 1830
- Pro Asn Lys Val Gln Leu Ile Ala Met Asp Leu Pro Met Val Ser 1835 1840 1845
- Gly Asp Arg Ile His Cys Leu Asp Ile Leu Phe Ala Phe Thr Lys 1850 1855 1860
- Arg Val Leu Gly Glu Ser Gly Glu Met Asp Ala Leu Arg Ile Gln 1865 1870 1875
- Met Glu Glu Arg Phe Met Ala Ser Asn Pro Ser Lys Val Ser Tyr 1880 1885 1890
- Glu Pro Ile Thr Thr Leu Lys Arg Lys Gln Glu Glu Val Ser 1895 1900 1905
- Ala Ile Ile Gln Arg Ala Tyr Arg Arg Tyr Leu Leu Lys Gln 1910 1915 1920
- Lys Val Lys Lys Val Ser Ser Ile Tyr Lys Lys Asp Lys Gly Lys 1925 1930 1935
- Glu Cys Asp Gly Thr Pro Ile Lys Glu Asp Thr Leu Ile Asp Lys 1940 1945 1950
- Leu Asn Glu Asn Ser Thr Pro Glu Lys Thr Asp Met Thr Pro Ser 1955 1960 1965
- Thr Thr Ser Pro Pro Ser Tyr Asp Ser Val Thr Lys Pro Glu Lys 1970 1975 1980
- Glu Lys Phe Glu Lys Asp Lys Ser Glu Lys Glu Asp Lys Gly Lys 1985 1990 1995
- Asp Ile Arg Glu Ser Lys Lys 2000 2005

<210> 37 <211> 912 <212> DNA <213> Homo sapiens <400> 37 gaattettta tatgggttga atgaetttet gaeatageaa ataaaaagea tgaggagaag 60 cattatctgt taacaaaatt aacacttaaa atcaacaaag ttttaatgtt tcgttccaag 120 aaaagcctgt ggaagatcag ttccacaact gagagctttg ggctgcttca gacatatgtc 180 tgtgtgtacg ctgtgaaggt gtttctcttc acagttcccc gccctctagt ggtagttaca 240 ataatgccat tttgtagtcc ctgtacagga aatgcctctt cttacttcag ttaccagaat 300 360 aaaaaagatt ttttttttt taaagcatga tggaatttta gctgcagtct tcttggggcc 420 agettateaa teecaaaete tgggggtaaa agattetaca ggggtaatgt tttattatte 480 ttattatgct tattctctgt gatgcttctc tacctttaca gtagtagaat ccttggggaa 540 atctgcagag ggaccacttt cattttgaag ctgctggctg catgttttag catgtctctt 600 ctattagaga atccaggcat ggcagtttcc tcccccagtg tgcaaggacc atcttcatgc 660 ctatgtctgt cgctaggcat gagggtctct aggaatgggt gaaaaaaatg agggatgttt 720 tggaggcact ataatactgg ggagggcagt ctgctagctg gtagctgaaa ggtcctggtt 780 tacttcaaca tttttttaa ataaaactgt gcagtagttt ttgttatttt agggttccct 840 ctgttttatc tggtgtatgc tgcagaagtg aactgcataa cacatttcac tcttagaaat 900 gcattccata ta 912 <210> 38 <211> 722 <212> DNA <213> Homo sapiens <400> 38 ctcagtgcat gtaactgaca caatcacctc tatctaatgg tcatgcttct tacctcctgt 60 tctgtagcac tttcttatgc aaggagctaa acagtgatta aaggagcagg atgaaaagat 120 ggcacagtca gtgctggtac cgccaggacc tgacagcttc cgcttcttta ccagggaatc 180 ccttgctgct attgaacaac gcattgcaga agagaaagct aagagaccca aacaggaacg 240 caaggatgag gatgatgaaa atggcccaaa gccaaacagt gacttggaag cagsaaaatc 300 tettecattt atttatggag acatteetee agagatggtg teagtgeece tggaggatet 360

ggacccctac	tatatcaata	agaaagtgag	ttcttagtca	agttgccttc	actgcctatt	420
tactaattgg	ttctgggcta	gtcccaggga	tgatggtgaa	gaaggetgge	ctccttccct	480
ctgtctaaag	tatcactaag	atgctggatg	ggcctgaccg	tgtaatggac	caatgatcct	540
agaagtcttt	tggaagcact	catttgaacc	tgcatttgtg	agacaggcag	agaactggtg	600
aggcatcctc	cagcgcggga	attaaggaag	gacaaaagcc	tattcacctt	cttgaataca	660
aattatatgc	ttaaaccagt	gtaaattgac	cctgattccc	taataatgtt	gagaagcaaa	720
aa						722
	o sapiens					
<400> 39 cctatggcat	tgatcacaaa	ttttcttaat	aatcctcatg	tcatttatca	aatttaggaa	60
agtttatagt	gctcagaaaa	aaaaagcatc	tatcttcatg	tcatatgatg	gtaattatta	120
tgttatacac	tattttacag	ggcaatattt	ataaataatg	gttttacttt	tctcttaaaa	180
tattcttaat	atatattcta	agttttgttt	tatgtgttgt	gttttctttt	tcagacgttt	240
atagtattga	ataaagggaa	agcaatctct	cgattcagtg	ccacccctgc	cctttacatt	300
ttaactccct	tcaaccctat	tagaaaatta	gctattaaga	ttttggtaca	ttcatatcct	360
ttttcaaatc	gtcacttaat	atgattttct	tctttgacca	agttattgag	ctacacattt	420
tccaaaatat	ctgtggttgg	caatgttatg	tgttctttct	ttttctttcc	ttttactcaa	480
tcgttagcat	gttgcaaaat	gagatcacag	gtaagtgaat	tactttcccc	cgtcttctaa	540
gtgtttcttc	tctacccaac	t				561
<210> 40 <211> 510 <212> DNA <213> Homo	sapiens					
<400> 40 acctaaatag	cctcaaaata	gttgatgqct	tggcctgaag	acaagatcta	aatatgaggt	60
				gaataataag		120
				catggtagtg		180
				actttattca		240
		_			•	=

```
tatgtgcacg attettacca actgtgtatt tatgaccatg agtaaccete cagactggac
                                                                     300
aaagaatgtg gagtaagtat aaatattttt caatattgac ctccctttat gtttcatatt
                                                                     360
gtgcttttaa caccttgaga cctcctcaat ttctttaaca aatcatgcta gctactgtta
                                                                     420
accagaccet gatteaaatt catttetgte actaaatgte ttetaggaca aagettgtag
                                                                     480
tgggctcact tagttgtgta aattactgca
                                                                     510
<210>
      41
<211>
      370
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (293)..(293)
<223> n= a, c, t or g
<400> 41
taagatatgt acttgtaaat taaccactag atttttaatg tgagcttggc tattgtctct
                                                                      60
caggtatacc tttacaggaa tttatacttt tgaatcactt attaaaatac ttgcaagggg
                                                                     120
cttttgttta gaagatttca catttttacg ggatccatgg aattggttgg atttcacagt
                                                                     180
cattactttt gcgtaagtat cttaatacat tttctatcct ggaagagtaa atcactggtg
                                                                     240
ggagcctata ctatattttc cttggtggct tgccttgaca gaccaagcat ttntcttagt
                                                                     300
aatcatagtt ttcttccaat caaattatcc agtttggaga aattaggaac tatcatagta
                                                                     360
aattacatgg
                                                                     370
<210> 42
<211> 370
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (133)..(133)
<223> n = a, c, t or g
<400> 42
caattagcac tgtaaagtaa taaagtttcc caaataacag agattatgat tgatgacaat
                                                                      60
gccattttcc tcttaattgg gaaagctgat ggcgacactc atgaaattaa aaaggtcttg
                                                                     120
atgaaagacc aangaagacg tagatttccc taaattctga ataactctga tttaattcta
                                                                     180
caggtatgta acagaatttg taaacctagg caatgtttca gctcttcgaa ctttcagagt
                                                                     240
```

cttgagagct ttgaaaacta tttctgtaat tccaggtaag aagaaaatgg tataaggtgg	300
taggcccctt atatctccaa ctgtttcttg tgttctgtca ttgtgtttgt gtgtgaaccc	360
cctattacag	370
<210> 43 <211> 410 <212> DNA <213> Homo sapiens	
<400> 43	
gtaagaagaa aatggtataa ggtggtaggc cccttatatc tccaactgtt tcttgtgttc	60
tgtcattgtg tttgtgtgtg aaccccctat tacagatatg tgacagagtt tgtggacctg	120
ggcaatgtct cagcgttgag aacattcaga gttctccgag cattgaaaac aatttcagtc	180
attccaggtg agagctaggt taaacaccga ggctgacttt agctacagtg gtgctacaat	240
cacagetttt gtgcagaage ettgttgeta gttgcatatt gcaaataaat atgtaaaaaa	300
gcaagaattg gtacatcatt ttttggatgg atttgattct ttgcttttta cccgttgctt	360
tctttaaaac tattctaaat cagcctttga gtttaacaag tgttgcatga	410
<210> 44 <211> 1066 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (229)(229) <223> n = a, c, t or g	
<400> 44	
aaagagtgtt tggaaataca catttggttc atttccattc acagttttct aatgaacata	60
caagttctgc tttcattcat tttcaccagc tagtaggctt ttcatgaaaa tgttattcaa	120
	-20
tcacaaacat taaactaata ttgttggcat tctgcatgac atttttattt tccaggccaa	180
tcacaaacat taaactaata ttgttggcat tctgcatgac atttttattt tccaggccaa	180
tcacaaacat taaactaata ttgttggcat tctgcatgac atttttattt tccaggccaa gctcatgata tttttgccgg taaaatagct gttgagtagt atatttaant tcccccttct	180 240
tcacaaacat taaactaata ttgttggcat tctgcatgac atttttattt tccaggccaa gctcatgata tttttgccgg taaaatagct gttgagtagt atatttaant tcccccttct gattttgttt gtaggcctga agaccattgt gggggccctg atccagtcag tgaagaagct	180 240 300

taggacagtg a	gcatattta	actgggatga	atatattgag	gataaaagta	agatatactc	540
tataaaccat t	aagttgttt	agttctctaa	atattaaata	ttatatataa	tggaaattat	600
ctcaatttag a	tgtgaatca	agtgacttag	actaatttaa	gatgatttaa	tacatataaa	660
agagatatca a	aggatacct	tattctattt	ttsttatctg	tccattgata	tagtaaaagt	720
tctcatttga a	aatgtgttg	tcttatactc	atgttgaaag	taatttcata	ttatgccata	780
ttaaaaaagg t	ttatttggt	agacattaat	caggtttttc	agtcatttta	ataaataagt	840
cagtagtttg a	actattcmg	cgtattccac	tgaaatgtcg	ttaagaagac	tgaggggaaa	900
taatttggcc c	tatttggtt	gatgcaacat	atgtattgag	tacatatgct	atatctgaaa	960
ctagagaaac c	atttatcaa	gatgaaataa	gaatttgtgt	gctcctcaga	aggttaagta	1020
accctgattt ag	gccattcac	ttcatccata	ttctaattag	tccctt		1066
<210> 45 <211> 385 <212> DNA <213> Homo s	sapiens					
<400> 45						
gttcaattat to	gtgaaaaat	cttctttagc	catatatatt	tattagttta	tccatctcat	60
tatgattgaa aa	acatttgtg	agctttgcca	cctaaacagg	gtggctgaag	tgttttacag	120
gattttaatg at	tctttcta	ttcctttctc	tttaaatagg	tcacttttat	tttttacagg	180
ggcaaaatga to	gctctgctt	tgtggcaaca	gctcagatgc	agggtaagtg	tatgcttcct	240
actgagtttc ag	gtccacact	gctccatcag	tgtcaataac	ctgccacctc	ccactcatcc	300
agtcccacca ct	cctcactc	aaaaccctcc	ataaattcta	cttcacggtg	actctcagaa	360
tgaccaggat aa	agtgtagat	tctca				385
<210> 46 <211> 430 <212> DNA <213> Homo s	sapiens					
tataataatg ac	aattatga a	atcacagagg	aatccacaaa	gtagacctta	tagattctgt	60
cattatataa at	cagtccac	ttagtgctga	gttaagtact	gggtaaggtg	agagaaatcg	120
gcttttttct ag	tgcctgta	taaaacagac	attggcatat	attaaaacag	gaaaaccaat	180
tagcagactt gc	cgttattg a	actycctctc	tttcctctaa	cctaattaca	gccagtgtcc	240
tgaaggatac at	ctgtgtga a	aggctggtag	aaaccccaac	tatggctaca	cgagctttga	300

cacctttagt tgggc	ctttt tgtccttatt	tegteteatg	actcaagact	tctgggaaaa	360
cctttatcaa ctggt	gagaa cagataaaat	catttttctg	agaatcataa	aacaccgaac	420
tcaagagaat					430
<210> 47 <211> 646 <212> DNA <213> Homo sapie	ens				
<400> 47					
tgctgtagaa tatttt	atta cttagagtgt	aagtttgtaa	catcctatat	aaaatttatt	60
aaaatctctc ttccat	tttg cagacactac	gtgctgctgg	gaaaacgtac	atgatatttt	120
ttgtgctggt catttt	cttg ggctcattct	atctaataaa	tttgatcttg	gctgtggtgg	180
ccatggccta tgagga	acag aatcaggcca	cattggaaga	ggctgaacag	aaggaagctg	240
aatttcagca gatgct	cgaa cagttgaaaa	agcaacaaga	agaagctcag	gtatagtgaa	300
caagcatacg gtcctt	tgtt tttctgtatc	taaattcttt	aacctaaatg	ttgaggtcag	360
tggcaaggta gttgac	atta gaaataggtc	atatgtgttt	ggtaagtgct	aggagcctgt	420
ttggttatta agaagt	tatt actttattgc	aatgatctct	gtcaatagtg	tcaatagtaa	480
tggcatcaaa aaatgg	ataa ttataattgc	tttactgaca	ttttttctc	ccttgtgact	540
ccttgaggaa attaat	gatt aacaaaggcc	tcatgtactc	aaacttgcag	agtagataaa	600
cctacatgtc ctcagt	tgaa gtattttctt	aggggaagag	gaattc		646
<210> 48 <211> 711 <212> DNA <213> Homo sapie	ns				
<220> <221> misc_featu <222> (164)(16 <223> n = a, c,	4)				
<400> 48 tatgtatcat cttcca	tatg aatgcgcatt	ttactctttg	attggtctaa	taacagtgta	60
ctgtgttcta aaacac	agaa taaaatggag	aattgttttt	caagattatc	ttcatgatat	120
tgaagctcaa ttaagc	agta acatgataat	tattttttaa	gatnatatgc	aacttcccac	180
atactttgcg cccttc	tagg cggcagctgc	agccgcatct	gctgaatcaa	gagacttcag	240

tggtgctggt	gggataggag	ttttttcaga	gagttcttca	gtagcatcta	agttgagctc	300
caaaagtgaa	aaagagctga	aaaacagaag	aaagaaaaag	aaacagaaag	aacagtctgg	360
agaagaagag	aaaaatgaca	gagtcctaaa	atcggaatct	gaagacagca	taagaagaaa	420
aggtttccgt	ttttccttgg	aaggaagtag	gctgacatat	gaaaagagat	tttcttctcc	480
acaccaggta	aaaatattaa	attacatgaa	ttgtgttctc	ataaatttt	taaaagaata	540
tgccagaatt	taatggagag	aaaaccgcct	tccacctgga	tggcacaatg	ctttcagagt	600
agtgatgatt	atcaagtgtt	ttggctatca	cttcagagaa	tttgtgagtt	ttgcaacttt	660
ttggaatccc	aggaaggaaa	ttttagatcc	ctctgggttt	ggaaaaattt	g	711

<210> 49

<211> 1026

<212> DNA

<213> Homo sapiens

<400> 49

ttatggggac acttctgact atgttgaggt gtgggtaaag taggagaaaa gagagcagaa 60 gatggaaaat ggaggaagga gaaaaagcga gagtgaaata gaaaaggtga accttgtaga 120 aagtgccaaa atgccaccag cagtcatcag aggggtgctt tcttccacat gtccaatgac 180 ttatccttga gtaagtcaat gactatgaca caatgaatca aattctgttt ttcagaatgc 240 300 gagcatccgt ggctcccttt tctctccaag acgcaacagt agggcgagcc ttttcagctt 360 420 ctttgaggac aatgacagcc gaagagactc tctgttcgtg ccgcacagac atggagaacg 480 gcgccacage aatgtcagec aggccagecg tgcctccagg gtgctcccca tcctgcccat 540 gaatgggaag atgcatagcg ctgtggactg caatggtgtg gtctccctgg tcgggggccc 600 ttctaccctc acatctgctg ggcagctcct accagaggtg aggccaacyy magattgcag 660 ctgatgtgaa gagagttgtg actggtgcag gcaggagtgy ttttccattt mcacatctaa 720 gaatttkttg agtttsttgc ccaaaggctg ggagtttgtt caatcaagct gttaactgtc 780 ttgtgaaact sttctattca gactttycta caaagtaatt aaaaacctag gttggctgtc 840 agagaatata attagamgtm atctttcatc ayyattacta tggtatgaaa ctcgccaaaa 900 agcaaagcaa caatttatca agcataatgt tygaytaata tagttaaatt aaatccaagg 960 aaattaatgc tcacaaatta aataaatact taaggatttt gtgattgttg ttcatttaaa 1020

aggaga					1026
<210> 50 <211> 601 <212> DNA <213> Homo sapiens					
<400> 50 ataggaaagc ccaccttgac a	aaacccaggg	ctccccaaaa	gctgaaaatc	tgacagactt	60
taaacaaccc ccaaataatt a					120
aaagcatggt gtatatttag 1					180
ctttcaaaaa tagtggttat t					240
agaaataaga aagagacggt (ccagttctta	tcatgtttcc	atggatttat	tggaagatcc	300
tacatcaagg caaagagcaa t	tgagtatagc	cagtattttg	accaacacca	tggaaggtat	360
gttaaaagtc ctgcgtcaca g	gttacttggt	gctttcctaa	tgatgaaaaa	cacttcataa	420
atttcaataa aatacttcct <u>c</u>	gacttgatat	tgtatcatta	ttacacattt	tactaaataa	480
cagtaaaatc cgtgcataac t	catggattc	atatattcca	cagattttt	ttttttatat	540
ttagcctgta gaaagctgct g	gcaaatgtaa	ggtatatttg	aacaccactt	tcataactta	600
a					601
<210> 51 <211> 645 <212> DNA <213> Homo sapiens					
<400> 51	- Cataottta	******			
gettactage etttetgtae t etgtteetee ageagattaa e					60
tttaattta aaccaaatct g					120
tttttcttc cagaacttga a					180
gctaatatgt gtttgatttg g					240
acctggttg taatggaccc a					300
cactettea tggetatgga g					360 420
JJ JJ 3			-secugeay	egeactgeet	74 U
	actgagagt	ttetetteet	cttgaaagag	tttataatto	480
ttggaaacc tggtaagcct c					480 540

aaagagtcaa agaattt	atg tacaatttga	tttagaattg	aattt		645
<210> 52 <211> 485 <212> DNA <213> Homo sapien	3				
<400> 52					
tggcccaaac caatttt	aa atcaggaatt	taatttwtat	attgttggga	gttaaattaa	60
gttgctcaat aattatte	gt gtttcaakas	tatttgctca	tataatgaac	tacacttctc	120
atttaggtct tcacagg	gat cttcacagca	gaaatgtttc	tcaagataat	tgccatggat	180
ccatattatt actttca	ıga aggctggaat	atttttgatg	gttttattgt	gagccttagt	240
ttaatggaac ttggtttg	gc aaatgtggaa	ggattgtcag	ttctccgatc	attccggctg	300
gtaaattaac tgggagtg	ıtt cataaaatgt	actttrtaat	taattagtct	tcattctcat	360
ctagtaaaaa tggcaaga	itt tcccatcatt	ataatatatt	tgaatacctt	ctaaaacaga	420
ttggattgcc ataccaco	aa atggtagttt	cttcttcatc	atagctttaa	taaagttcac	480
ttaaa					485
<210> 53 <211> 602 <212> DNA <213> Homo sapiens					
<400> 53	co atotoactaa	agasttata.			
acagatttcc tcctgtgt				_	60
tatataataa taaaataa	aa taaaaataaa	aataaaaaaa	taaaaataaa	ataaaattgc	120
agatttttt agaaatgo	ag agattaacac	tgttcttgct	tttatttcca	gctccgagtt	180
ttcaagttgg caaaatct	tg gccaactcta	aatatgctaa	ttaagatcat	tggcaattct	240
gtgggggctc taggaaac	ct caccttggta	ttggccatca	tcgtcttcat	ttttgctgtg	300
gtcggcatgc agctcttt	gg taagagctac	aaagaatgtg	tctgcaagat	ttccaatgat	360
tgtgaactcc cacgctgg	ca catgcatgac	tttttccact	ccttcctgat	cgtgttccgc	420
gtgctgtgtg gagagtgg	at agagaccatg	tgggactgta	tggaggtcgc	tggccaaacc	480
atgtgcctta ctgtcttc	at gatggtcatg	gtgattggaa	atctagtggt	atgtagcaaa	540
aacattttcc tcattttc					
	at taaaaataat	gtaatcatta a	aaaagtgttc	aactgaagaa	600

```
<210> 54
 <211> 803
 <212> DNA
<213> Homo sapiens
 <400> 54
gtttcattta gcaatgattt cagtattttc tgcaatgact aataagcaaa tagtgataat
                                                                       60
agtattattt tatattgacc aagcattttt atttcattca ctttttttca gaatagtgta
                                                                      120
tcatgaatta gcagaaatgc atgttagaat aaaataaggt gtcaagaaca atcttagaaa
                                                                      180
actaatgatg gaaagcaatt gaagcaatag aatgttttga tcacctgttt ttcctgctgt
                                                                      240
gtttcaggtt ctgaacctct tcttggcctt gcttttgagt tccttcagtt ctgacaatct
                                                                      300
tgctgccact gatgatgata acgaaatgaa taatctccag attgctgtgg gaaggatgca
                                                                      360
gaaaggaatc gattttgtta aaagaaaaat acgtgaattt attcagaaag cctttgttag
                                                                      420
gaagcagaaa gctttagatg aaattaaacc gcttgaagat ctaaataata aaaaagacag
                                                                     480
ctgtatttcc aaccatacca ccatagaaat aggcaaagac ctcaattatc tcaaagacgg
                                                                     540
aaatggaact actagtggca taggcagcag tgtagaaaaa tatgtcgtgg atgaaagtga
                                                                     600
ttacatgtca tttataaaca accctagcct cactgtgaca gtaccaattg ctgttggaga
                                                                     660
atctgacttt gaaaatttaa atactgaaga attcagcagc gagtcagata tggaggaaag
                                                                     720
caaagaggta aaatgttaaa taaggagata ttttggtgta tataatctgt gttaaatatc
                                                                     780
aggtgtttaa tgcgtgtctc tgt
                                                                     803
<210> 55
<211> 615
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (90)..(90)
<223> n = a, c, t or g
<220>
<221> misc_feature
<222> (378)..(386)
<223> n = a, c, t or g
<400> 55
atctctatac taggctcaaa cagaagttat ttccgttgtt agcaccatat ttttaaaaga
                                                                      60
aaaaaaaata ctatggtgtt gtatctaatn ttgtgacccc tgacctttac caaagcggat
                                                                     120
```

tggcattatg	tttaagttct	taattacaga	tcaagaaaaa	tgcatacaga	agatgggggg	180
gggcacacct	aattaatttt	tatatttaga	ttaaagaaaa	taattaaatg	tgtttttttg	240
tgggattgat	tttcagaagc	taaatgcaac	tagttcatct	gaaggcagca	cggttgatat	300
tggagctccc	gccgagggag	aacagcctga	ggttgaacct	gaggaatccc	ttgaacctga	360
agcctgtttt	acagaagnnn	nnnnnaagc	aaaacaataa	catatgtggt	cttgagtatc	420
ctcttttcta	cccattttt	cctatttatt	taaatgtctg	tttatttgtc	taccatctag	480
ttcatctatc	tatctgtatc	tatctatcta	tctatctatc	tagtaatcat	ctatacctat	540
ccaacaactg	tacatttatt	tgttttttt	ttttgcattt	gctgtttgaa	aaaaaatgca	600
acgttttaaa	ggcaa					615
<210> 56 <211> 400 <212> DNA <213> Hom <400> 56						
gatagctttt	gtaagcggaa	gctatcttaa	aaattaatgt	tatttacaat	gtattatcag	60
gtaataatgt	aaatgaatct	cccaccaaca	caaatatacc	taatcaaaga	gtaattttt	120
gtcttcattt	ttttcccaca	tattttagac	tgtgtacgga	agttcaagtg	ttgtcagata	180
agcatagaag	aaggcaaagg	gaaactctgg	tggaatttga	ggaaaacatg	ctataagata	240
jtggagcaca	attggttcga	aaccttcatt	gtcttcatga	ttctgctgag	cagtggggct	300
tggtaggtg	atgcatgatc	cactccttca	cctttcatct	gaaatctttt	ccctttccct	360
caatcaact	catattaccc	acttttaaat	taaggtgttt			400
	o sapiens					
<400> 57 aaattactga	aacccttggt	tgactgaaat	gcccagtcag	cagtcattta	tgatcagata	60
ıtgataaagt	aaaattcagc	catgggaaac	attaaacctt	ccagccttag	gcacctgata	120
gagcttgca	tcgtttcctt	ttttaagaaa	tcatcaatta	gagactgttt	ctgatcataa	180
atttaatag	aattttttga	cttacaggcc	tttgaagata	tatacattga	gcagcgaaaa	240
ıccattaaga	ccatgttaga	atatgctgac	aaggttttca	cttacatatt	cattctggaa	300

atgctgctaa	agtgggttgc	atatggtttt	caagtgtatt	ttaccaatgo	ctggtgctgg	360
ctagacttcc	tgattgttga	tgtgagtatg	ctgcactttg	ctgctttatt	cattggcata	420
tatgtaatag	ttctagcaat	ggtgcctgac	acagtgtagg	cactcagtaa	cactgtatca	480
gcccaaatat	aaattatgtt	tctcatttca	cagtgagagg	atgcctcaaa	acattttta	540
ccaatttaaa	tacatataca					560
<210> 58 <211> 480 <212> DNA <213> Homo	o sapiens					
<400> 58	acctttcccc	aaacttacta	agtgaggatg	+ ~~ + ~++~~+		
				tgctattggt		60
				ttactgattc		120
				aaaattgtgt		180
gtataggtct	cactggttag	cttaactgca	aatgccttgg	gttactcaga	acttggtgcc	240
atcaaatccc	tcagaacact	aagagctctg	aggccactga	gagctttgtc	ccggtttgaa	300
ggaatgaggg	taagactgaa	tgccttagag	tttgtcagaa	ttattattga	gagcagactg	360
acactttgta	ccatggaaat	gtcaaattta	tggagaattt	gtgtcttaca	cattcatact	420
gacatagcta	atcaatcaaa	aataatattt	accagatgcc	cataatactt	ggcactgctg	480
<210> 59 <211> 640 <212> DNA <213> Homo	sapiens		·			
<400> 59 taattttaaa	attcttagtt	ggagctacca	gagtctagtt	tctacccaat	attcaacttt	60
gaaacagatt						120
tttgttgttg						
						180
tcttttagga						240
aatattcagt						300
caccactgga						360
cattgagagc						420
acttggatat	ctgtctctac 1	ttcaagtagt	aagtaatcac	tttattattt	tccatgatgt	480
gtaattaaaa	tgagtctaaa 🤉	gtttttcttc	ctcataatga	gatatccacc	tgttagaatg	540

gctattatca aacaga	taaa tgacaataaa tg	ctggcaag aatgtgaaga	aaagggaacc	600
cttgtacatt gttggc	aggg atgtaaatta gt	atagcttt		640
<210> 60 <211> 480 <212> DNA <213> Homo sapie	ns			
<400> 60	2+gg 2+g+ggg22			
		attgcccc aaaagtgaat		60
		caaataga attttgatca		120
		gaaaatga tatgactttt		180
		agctgttg attcacgaaa		240
gttagaggga aattgt	ttag tttgattaaa tg	tatatttc tacaatattg	taatttagtg	300
atattgtcaa taaaat	aaaa ttatgtgctt aa	tttataaa acccatctat	attataagga 3	360
taaaatattt aatcat	acta tttctttcaa aa	ttatcata ggatgatttt	ctctaatcac 4	120
tctgtatctt ttaaca	atc ttttctagta tt	tagcaagg cacctgacac	aaaactttat 4	180
<210> 61 <211> 366 <212> DNA <213> Homo sapier	ns			
<400> 61 taaaacatgc ttagata	aatt aaaaactcac tga	atgtactt tttgtgaaac	aagtactaga	60
tataatggtt acaatto	ette atattettta ggt	tagaatta caacccaagt	atgaagacaa 1	20
cctgtacatg tatctt	att ttgtcatctt tat	tattttt ggttcattct	ttaccttgaa 1	80
tcttttcatt ggtgtca	itca tagataactt caa	accaacag aaaaagaaga	taagtatatt 2	40
aaaacttcat ccttgct	ctg aaatatgaac taa	aatatttc atactctttc	ctttagcctc 3	00
caaaatgcaa tcaccaa	aaa aagaatataa aat	tcagaaa ttattttgag	acatttgata 3	60
atcgat			3	66
<210> 62 <211> 560 <212> DNA <213> Homo sapien	s			
tcgataagct tttaagc	aat taataattca gat	agcatgt ttttgatatt	tttagtctag	60

aaatatgact	aatatggcat	aatttatata	ttgaataaag	gcatctctat	aaatacagat	120
attagtaaca	atagaatgaa	atgtgggagc	caattttcac	atgattacta	aggtggattt	180
tatagccagc	aaagaacaca	attttaacaa	gtgttgcttt	catttcttta	ctttggaggt	240
caagacattt	ttatgacaga	agaacagaag	aaatactaca	atgcaatgaa	aaaactgggt	300
tcaaagaaac	cacaaaaacc	catacctcga	cctgctgtaa	gaataacata	ttttcattgc	360
ctgttaaaac	tatattacct	aaccgtttca	cagcccgaat	ttctagaaac	tagttatttt	420
tgtggatttg	taacacaaag	ttttttacct	taacaatggg	actagctagc	ctaaatagct	480
tgaaaaatgt	actttacata	tataatatgt	ataaattata	taatgcataa	catattttat	540
atgtaaacat	ataaaataca					560
<210> 63 <211> 650 <212> DNA <213> Homo	sapiens					
<400> 63 gttttgcaag	gaatttttt	ttttataaaa	tattataaaa	attaaagatg	tottttata	60
aaagctacat			_		_	120
gtttctaatg	gaacttttac	atattatttg	ttccagaaca	aattccaagg	aatggtcttt	180
gattttgtaa	ccaaacaagt	ctttgatatc	agcatcatga	tcctcatctg	ccttaacatg	240

aaagctacat tttttgttgc tttcttaaaa tcagaagaat tgaattcgat tttttttaag 120
gtttctaatg gaacttttac atattattg ttccagaaca aattccaagg aatggtcttt 180
gattttgtaa ccaaacaagt ctttgatatc agcatcatga tcctcatctg ccttaacatg 240
gtcaccatga tggtggaaac cgatgaccag agtcaagaaa tgacaaacat tctgtactgg 300
attaatctgg tgtttattgt tctgttcact ggagaatgtg tgctgaaact gatctctctt 360
cgttactact atttcactat tggatggaat atttttgatt ttgtggtggt cattctctc 420
attgtaggta agaagaggtg ctttattca gttaaggaat atagtggtaa aaatatgtgt 480
tttaaaactt tagaggtgtt tttcactaat ctttctcatt catcccaaac tcccaaataa 540
aaatctaata gtccattgtt ttagttttag tttgccattt ctctaattgc atgctgtgct 600
tgaaatgatg agtggaatac aaggaattta tattttcagc tttcatttat

<210> 64 <211> 3700 <212> DNA

<213> Homo sapiens

<400> 64

aatgttataa caccaaacat accagtttca ttttgctcaa caaacattgc agattatttg

catatataca tgtacctaac tgtcctgttc acattttgta aaactaatgt acttatgtaa 120 actttcattt gctactatta agtataacaa tatttttgtt atttgttgat tttctacagg 180 aatgtttctg gctgaactga tagaaaagta ttttgtgtcc cctaccctgt tccgagtgat 240 ccgtcttgcc aggattggcc gaatcctacg tctgatcaaa ggagcaaagg ggatccgcac 300 gctgctcttt gctttgatga tgtcccttcc tgcgttgttt aacatcggcc tccttcttt 360 cctggtcatg ttcatctacg ccatctttgg gatgtccaat tttgcctatg ttaagaggga 420 agttgggatc gatgacatgt tcaactttga gacctttggc aacagcatga tctgcctgtt 480 ccaaattaca acctctgctg gctgggatgg attgctagca cctattctta atagtggacc 540 tccagactgt gaccctgaca aagatcaccc tggaagctca gttaaaggag actgtgggaa 600 cccatctgtt gggattttct tttttgtcag ttacatcatc atatccttcc tggttgtgt 660 gaacatgtac atcgcggtca tcctggagaa cttcagtgtt gctactgaag aaagtgcaga 720 gcctctgagt gaggatgact ttgagatgtt ctatgaggtt tgggagaagt ttgatcccga 780 tgcgacccag tttatagagt ttgccaaact ttctgatttt gcagatgccc tggatcctcc 840 tetteteata geaaaaceea acaaagteea geteattgee atggatetge eeatggtgag 900 tggtgaccgg atccactgtc ttgacatctt atttgctttt acaaagcgtg ttttgggtga 960 gagtggagag atggatgccc ttcgaataca gatggaagag cgattcatgg catcaaaccc 1020 ctccaaagtc tcttatgagc ccattacgac cacgttgaaa cgcaaacaag aggaggtgtc 1080 tgctattatt atccagaggg cttacagacg ctacctcttg aagcaaaaag ttaaaaaggt 1140 atcaagtata tacaagaaag acaaaggcaa agaatgtgat ggaacaccca tcaaagaaga 1200 tactctcatt gataaactga atgagaattc aactccagag aaaaccgata tgacgccttc 1260 caccacgtct ccaccctcgt atgatagtgt gaccaaacca gaaaaagaaa aatttgaaaa 1320 agacaaatca gaaaaggaag acaaagggaa agatatcagg gaaagtaaaa agtaaaaaga 1380 aaccaagaat tttccatttt gtgatcaatt gtttacagcc cgtgatggtg atgtgtttgt 1440 gtcaacagga ctcccacagg aggtctatgc caaactgact gtttttacaa atgtatactt 1500 aaggtcagtg cctataacaa gacagagacc tctggtcagc aaactggaac tcagtaaact 1560 ggagaaatag tatcgatggg aggtttctat tttcacaacc agctgacact gctgaagagc 1620 agaggcgtaa tggctactca gacgatagga accaatttaa aggggggagg gaagttaaat 1680 ttttatgtaa attcaacatg tgacacttga taatagtaat tgtcaccagt gtttatgttt 1740 taactgccac acctgccata tttttacaaa acgtgtgctg tgaatttatc acttttcttt 1800

1860 ttaattcaca ggttgtttac tattatatgt gactattttt gtaaatgggt ttgtgtttgg 1920 ggagagggat taaagggagg gaattctaca tttctctatt gtattgtata actggatata 1980 ttttaaatgg aggcatgctg caattctcat tcacacataa aaaaatcaca tcacaaaagg 2040 gaagagttta cttcttgttt caggatgttt ttagattttt gaggtgctta aatagctatt cgtattttta aggtgtctca tccagaaaaa atttaatgtg cctgtaaatg ttccatagaa 2100 tcacaagcat taaagagttg ttttattttt acataaccca ttaaatgtac atgtatatat 2160 gtatatatgt atatgtgcgt gtatatacat atatatgtat acacacatgc acacacagag 2220 atatacacat accattacat tgtcattcac agtcccagca gcatgactat cacatttttg 2280 ataagtgtcc tttggcataa aataaaaata tcctatcagt cctttctaag aagcctgaat 2340 tgaccaaaaa acatccccac caccacttta taaagttgat tctgctttat cctgcagtat 2400 tgtttagcca tcttctgctc ttggtaaggt tgacatagta tatgtcaatt taaaaaaataa 2460 aagtotgott tgtaaatagt aattttacco agtggtgcat gtttgagcaa acaaaaatga 2520 tgatttaagc acactactta ttgcatcaaa tatgtaccac agtaagtata gtttgcaagc 2580 tttcaacagg taatatgatg taattggttc cattatagtt tgaagctgtc actgctgcat 2640 gtttatcttg cctatgctgc tgtatcttat tccttccact gttcagaagt ctaatatggg 2700 2760 aagccatata tcagtggtaa agtgaagcaa attgttctac caagacctca ttcttcatgt 2820 cattaagcaa taggttgcag caaacaagga agagcttctt gctttttatt cttccaacct 2880 taattgaaca ctcaatgatg aaaagcccga ctgtacaaac atgttgcaag ctgcttaaat ctgtttaaaa tatatggtta gagttttcta agaaaatata aatactgtaa aaagttcatt 2940 3000 ttattttatt tttcagcctt ttgtacgtaa aatgagaaat taaaagtatc ttcaggtgga 3060 tgtcacagtc actattgtta gtttctgttc ctagcacttt taaattgaag cacttcacaa aataagaagc aaggactagg atgcagtgta ggtttctgct tttttattag tactgtaaac 3120 3180 ttgcacacat ttcaatgtga aacaaatctc aaactgagtt caatgtttat ttgctttcaa tagtaatgcc ttatcattga aagaggctta aagaaaaaaa aaatcagctg atactcttgg 3240 3300 cattgcttga atccaatgtt tccacctagt ctttttattc agtaatcatc agtcttttcc 3360 aatgtttgtt tacacagata gatcttattg acccatatgg cactagaact gtatcagata taatatggga tcccagcttt ttttcctctc ccacaaaacc aggtagtgaa gttatattac 3420 3480 cagttacagc aaaatacttt gtgtttcaca agcaacaata aatgtagatt ctttatactg

aagctattga	a cttgtagtgt	gttggtgaat	gcatgcagga	agatgctgtt	accataaaga	3540
acggtaaaco	c acattacaat	: caagccaaag	aataaaggtt	cgcttatgta	tatgtattta	3600
attgttgtct	ttgtttctat	ctttgaaatg	ccatttaaag	gtagatttct	atcatgtaaa	3660
aataatctat	ctgaaaaaca	aatgtaaaga	acacacatta			3700
<210> 65 <211> 911 <212> DNA <213> Hom <400> 65						
	gaatctcaga	acaggaagcg	gaggcataag	cagagaggat	tctggaaagg	60
tctctttgtt	ttcttatcca	cagagaaaga	aagaaaaaaa	attgtaacta	atttgtaaac	120
ctctgtggtc	aaaaaaaaa	aaaaaaaaa	aagctgaaca	gctgcagagg	aagacacgtt	180
ataccctaac	catcttggat	gctgggcttt	gttatgctgt	aattcataag	gctctgtttt	240
atcagagatt	atggagcaag	aaaactgaag	ccaagccaca	tcaaggtttg	acagggatga	300
gatacctgtc	aaggattcat	agtagagtgg	cttactggga	aaggagcaaa	gaatctcttc	360
tagggatatt	gtaagaataa	atgagataat	tcacagaagg	gacctggagc	ttttccggaa	420
aaaggtgctg	tgactatcta	aggggaaaag	ctgagagtct	ggaactagcc	tatcttccga	480
ggacttagag	acaacagtat	gggaatttca	acgagacgtt	tttactttct	tttgaccaag	540
attcaaattc	tttattccag	cccttgataa	gtaaataaga	aggtaattcg	tatgcaagaa	600
gctacacgta	attaaatgtg	caggatgaaa	agatggcaca	ggcactgttg	gtacccccag	660
gacctgaaag	cttccgcctt	tttactagag	aatctcttgc	tgctatcgaa	aaacgtgctg	720
cagaagagaa	agccaagaag	cccaaaaagg	aacaagataa	tgatgatgag	aacaaaccaa	780
agccaaatag	tgacttggaa	gctggaaaga	accttccatt	tatttatgga	gacattcctc	840
cagagatggt	gtcagagccc	ctggaggacc	tggatcccta	ctatatcaat	aagaaaactt	900
ttatagtaat	gaataaagga	aaggcaattt	cccgattcag	tgccacctct	gccttgtata	960
ttttaactcc	actaaaccct	gttaggaaaa	ttgctabsaa	gattttggta	cattctttat	1020
tcagcatgct	tatcatgtgc	actattttga	ccaactgtgt	atttatgacc	ttgagcaacc	1080
ctcctgactg	gacaaagaat	gtagagtaca	cattcactgg	aatctatacc	tttgagtcac	1140
ttataaaaat	cttggcaaga	gggttttgct	tagaagattt	tacgtttctt	cgtgatccat	1200

ggaactggct ggatttcagt gtcattgtga tggcatatgt gacagagttt gtggacctgg 1260

gcaatgtctc	: agcgttgaga	acattcagag	g ttctccgago	actgaaaaca	atttcagtca	1320
ttccaggttt	aaagaccatt	gtgggggcc	: tgatccagtc	ggtaaagaag	ctttctgatg	1380
tgatgatcct	gactgtgttc	tgtctgagcg	, tgtttgctct	cattgggctg	cagctgttca	1440
tgggcaatct	gaggaataaa	tgtttgcagt	ggcccccaag	cgattctgct	tttgaaacca	1500
acaccactto	ctactttaat	ggcacaatgg	attcaaatgg	gacatttgtt	aatgtaacaa	1560
tgagcacatt	taactggaag	gattacattg	gagatgacag	tcacttttat	gttttggatg	1620
ggcaaaaaga	ccctttactc	tgtggaaatg	gctcagatgc	aggccagtgt	ccagaaggat	1680
acatctgtgt	gaaggctggt	cgaaacccca	actatggcta	cacaagcttt	gacaccttta	1740
gctgggcttt	cctgtctcta	tttcgactca	tgactcaaga	ctactgggaa	aatctttacc	1800
agttgacatt	acgtgctgct	gggaaaacat	acatgatatt	ttttgtcctg	gtcattttct	1860
tgggctcatt	ttatttggtg	aatttgatcc	tggctgtggt	ggccatggcc	tatgaggggc	1920
agaatcaggc	caccttggaa	gaagcagaac	aaaaagaggc	cgaatttcag	cagatgctcg	1980
aacagcttaa	aaagcaacag	gaagaagctc	aggcagttgc	ggcagcatca	gctgcttcaa	2040
gagatttcag	tggaataggt	gggttaggag	agctgttgga	aagttcttca	gaagcatcaa	2100
agttgagttc	caaaagtgct	aaagaatgga	ggaaccgaag	gaagaaaaga	agacagagag	2160
agcaccttga	aggaaacaac	aaaggagaga	gagacagctt	tcccaaatcc	gaatctgaag	2220
acagcgtcaa	aagaagcagc	ttccttttct	ccatggatgg	aaacagactg	accagtgaca	2280
aaaaattctg	ctcccctcat	cagtctctct	tgagtatccg	tggctccctg	ttttccccaa	2340
gacgcaatag	caaaacaagc	attttcagtt	tcagaggtcg	ggcaaaggat	gttggatctg	2400
aaaatgactt	tgctgatgat	gaacacagca	catttgaaga	cagcgaaagc	aggagagact	2460
cactgtttgt	gccgcacaga	catggagagc	gacgcaacag	taacggcacc	accactgaaa	2520
cggaagtcag	aaagagaagg	ttaagctctt	accagatttc	aatggagatg	ctggaggatt	2580
cctctggaag	gcaaagagcc	gtgagcatag	ccagcattct	gaccaacaca	atggaagaac	2640
ttgaagaatc	tagacagaaa	tgtccgccat	gctggtatag	atttgccaat	gtgttcttga	2700
tctgggactg	ctgtgatgca	tggttaaaag	taaaacatct	tgtgaattta	attgttatgg	2760
atccatttgt	tgatcttgcc	atcactattt	gcattgtctt	aaataccctc	tttatggcca	2820
tggagcacta	ccccatgact	gagcaattca	gtagtgtgtt	gactgtagga	aacctggtct	2880
ttactgggat	ttttacagca	gaaatggttc	tcaagatcat	tgccatggat	ccttattact	2940
atttccaaga	aggctggaat	atctttgatg	gaattattgt	cagcctcagt	ttaatggagc	3000

ttggtctgtc	aaatgtggag	ggattgtctg	tactgcgato	attcagacto	g cttagagttt	3060
tcaagttggc	: aaaatcctgg	cccacactaa	atatgctaat	taagatcatt	ggcaattctg	3120
tgggggctct	aggaaaccto	accttggtgt	tggccatcat	cgtcttcatt	tttgctgtgg	3180
tcggcatgca	gctctttggt	aagagctaca	aagaatgtgt	ctgcaagato	: aatgatgact	3240
gtacgctccc	acggtggcac	atgaacgact	tcttccactc	cttcctgatt	gtgttccgcg	3300
tgctgtgtgg	agagtggata	gagaccatgt	gggactgtat	ggaggtcgct	ggccaaacca	3360
tgtgccttat	tgttttcatg	ttggtcatgg	tcattggaaa	ccttgtggtt	ctgaacctct	3420
ttctggcctt	attgttgagt	tcatttagct	cagacaacct	tgctgctact	gatgatgaca	3480
atgaaatgaa	taatctgcag	attgcagtag	gaagaatgca	aaagggaatt	gattatgtga	3540
aaaataagat	gcgggagtgt	ttccaaaaag	ccttttttag	aaagccaaaa	gttatagaaa	3600
tccatgaagg	caataagata	gacagctgca	tgtccaataa	tactggaatt	gaaataagca	3660
aagagcttaa	ttatcttaga	gatgggaatg	gaaccaccag	tggtgtaggt	actggaagca	3720
gtgttgaaaa	atacgtaatc	gatgaaaatg	attatatgtc	attcataaac	aaccccagcc	3780
tcaccgtcac	agtgccaatt	gctgttggag	agtctgactt	tgaaaactta	aatactgaag	3840
agttcagcag	tgagtcagaa	ctagaagaaa	gcaaggagaa	attaaatgca	accagctcat	3900
ctgaaggaag	cacagttgat	gttgttctac	cccgagaagg	tgaacaagct	gaaactgaac	3960
ccgaagaaga	ccttaaaccg	gaagcttgtt	ttactgaagg	atgtattaaa	aagtttccat	4020
tctgtcaagt	aagtacagaa	gaaggcaaag	ggaagatctg	gtggaatctt	cgaaaaacct	4080
gctacagtat	tgttgagcac	aactggtttg	agactttcat	tgtgttcatg	atccttctca	4140
gtagtggtgc	attggccttt	gaagatatat	acattgaaca	gcgaaagact	atcaaaacca	4200
tgctagaata	tgctgacaaa	gtctttacct	atatattcat	tctggaaatg	cttctcaaat	4260
gggttgctta	tggatttcaa	acatatttca	ctaatgcctg	gtgctggcta	gatttcttga	4320
tcgttgatgt	ttctttggtt	agcctggtag	ccaatgctct	tggctactca	gaactcggtg	4380
ccatcaaatc	attacggaca	ttaagagctt	taagacctct	aagagcctta	tcccggtttg	4440
aaggcatgag	ggtggttgtg	aatgctcttg	ttggagcaat	tccctctatc	atgaatgtgc	4500
tgttggtctg	tctcatcttc	tggttgatct	ttagcatcat	gggtgtgaat	ttgtttgctg	4560
gcaagttcta	ccactgtgtt	aacatgacaa	cgggtaacat	gtttgacatt	agtgatgtta	4620
acaatttgag	tgactgtcag	gctcttggca	agcaagctcg	gtggaaaaac	gtgaaagtaa	4680

actttgataa tgttggcgct ggctatcttg cactgcttca agtggccaca tttaaaggct	4740
ggatggatat tatgtatgca gctgttgatt cacgagatgt taaacttcag cctgtatatg	4800
aagaaaatct gtacatgtat ttatactttg tcatctttat catctttggg tcattcttca	4860
ctctgaatct attcattggt gtcatcatag ataacttcaa ccagcagaaa aagaagtttg	4920
gaggtcaaga catctttatg acagaggaac agaaaaaata ttacaatgca atgaagaaac	4980
ttggatccaa gaaacctcag aaacccatac ctcgcccagc aaacaaattc caaggaatgg	5040
tetttgattt tgtaaccaga caagtetttg atateageat catgateete atetgeetea	5100
acatggtcac catgatggtg gaaacggatg accagggcaa atacatgacc ctagttttgt	5160
cccggatcaa cctagtgttc attgttctgt tcactggaga atttgtgctg aagctcgtct	5220
ccctcagaca ctactacttc actataggct ggaacatctt tgactttgtg gtggtgattc	5280
tctccattgt aggtatgttt ctggctgaga tgatagaaaa gtattttgtg tcccctacct	5340
tgttccgagt gatccgtctt gccaggattg gccgaatcct acgtctgatc aaaggagcaa	5400
aggggatccg cacgctgctc tttgctttga tgatgtccct tcctgcgttg tttaacatcg	5460
gcctcctgct cttcctggtc atgtttatct atgccatctt tgggatgtcc aactttgcct	5520
atgttaaaaa ggaagctgga attgatgaca tgttcaactt tgagaccttt ggcaacagca	5580
tgatctgctt gttccaaatt acaacctctg ctggatggga tggattgcta gcacctattc	5640
ttaatagtgc accacccgac tgtgaccctg acacaattca ccctggcagc tcagttaagg	5700
gagactgtgg gaacccatct gttgggattt tcttttttgt cagttacatc atcatatcct	5760
tcctggtggt ggtgaacagt tacatcgcgg tcatcctgga gaacttcagt gttgctactg	5820
aagaaagtgc agagcccctg agtgaggatg actttgagat gttctatgag gtttgggaaa	5880
agtttgatcc cgatgcgacc cagtttatag agttctctaa actctctgat tttgcagctg	5940
ccctggatcc tcctcttctc atagcaaaac ccaacaaagt ccagcttatt gccatggatc	6000
tgcccatggt cagtggtgac cggatccact gtcttgatat tttatttgcc tttacaaagc	6060
gtgttttggg tgagagtgga gagatggatg cccttcgaat acagatggaa gacaggttta	6120
tggcatcaaa cccctccaaa gtctcttatg agcctattac aaccactttg aaacgtaaac	6180
aagaggaggt gtctgccgct atcattcagc gtaatttcag atgttatctt ttaaagcaaa	6240
ggttaaaaaa tatatcaagt aactataaca aagaggcaat aaaggggagg attgacttac	6300
ctataaaaca agacatgatt attgacaaac tgaatgggaa ctccactcca	6360
atgggagttc ctctaccacc tctcctcctt cctatgatag tgtaacaaaa ccagacaagg	6420

aaaagtttga	gaaagacaaa	ccagaaaaag	aaagcaaagg	aaaagaggtc	agagaaaatc	6480
aaaagtaaaa	agaaacaaag	aattatcttt	gtgatcaatt	gtttacagcc	tatgaaggta	6540
aagtatatgt	gtcaactgga	cttcaagagg	aggtccatgc	caaactgact	gttttaacaa	6600
atactcatag	tcagtgccta	tacaagacag	tgaagtgacc	tctctgtcac	tgcaactctg	6660
tgaagcaggg	tatcaacatt	gacaagaggt	tgctgttttt	attaccagct	gacactgctg	6720
aggagaaacc	caatggctac	ctagactata	gggatagttg	tgcaaagtga	acattgtaac	6780
tacaccaaac	acctttagta	cagtccttgc	atccattcta	tttttaactt	ccatatctgc	6840
catattttta	caaaatttgt	tctagtgcat	ttccatggtc	cccaattcat	agtttattca	6900
taatgctatg	tcactatttt	tgtaaatgag	gtttacgttg	aagaaacagt	atacaagaac	6960
cctgtctctc	aaatgatcag	acaaaggtgt	tttgccagag	agataaaatt	tttgctcaaa	7020
accagaaaaa	gaattgtaat	ggctacagtt	tcagttactt	ccattttcta	gatggcttta	7080
attttgaaag	tattttagtc	tgttatgttt	gtttctatct	gaacagttat	gtgcctgtaa	7140
agtctcctct	aatatttaaa	ggattatttt	tatgcaaagt	attctgtttc	agcaagtgca	7200
aattttattc	taagtttcag	agctctatat	ttaatttagg	tcaaatgctt	tccaaaaagt	7260
aatctaataa	atccattcta	gaaaaatata	tctaaagtat	tgctttagaa	tagttgttcc	7320
actttctgct	gcagtattgc	tttgccatct	tctgctctca	gcaaagctga	tagtctatgt	7380
caattaaata	ccctatgtta	tgtaaatagt	tattttatcc	tgtggtgcat	gtttgggcaa	7440
atatatatat	agcctgataa	acaacttcta	ttaaatcaaa	tatgtaccac	agtgtatgtg	7500
tcttttgcaa	gcttccaaca	gggatgtatc	ctgtatcatt	cattaaacat	agtttaaagg	7560
ctatcactaa	tgcatgttaa	tattgcctat	gctgctctat	tttactcaat	ccattcttca	7620
caagtcttgg	ttaaagaatg	tcacatattg	gtgatagaat	gaattcaacc	tgctctgtcc	7680
attatgtcaa	gcagaataat	ttgaagctat	ttacaaacac	ctttactttt	gcacttttaa	7740
ttcaacatga	gtatcatatg	gtatctctct	agatttcaag	gaaacacact	ggatactgcc	7800
tactgacaaa	acctattctt	catattttgc	taaaaatatg	tctaaaactt	gcgcaaatat	7860
aaataatgta	aaaatataat	caactttatt	tgtcagcatt	ttgtacataa	gaaaattatt	7920
ttcaggttga	tgacatcaca	atttatttta	ctttatgctt	ttgcttttga	ttttaatca	7980
caattccaaa	cttttgaatc	cataagattt	ttcaatggat	aatttcctaa	aataaaagtt	8040
agataatggg	ttttatggat	ttctttgtta	taatatattt	tctaccattc	caataggaga	8100

tacattggtc	aaacactcaa	acctagatca	ttttctacca	actatggttg	cctcaatata	8160
accttttatt	catagatgtt	tttttttatt	caacttttgt	agtatttacg	tatgcagact	8220
agtcttattt	ttttaattcc	tgctgcacta	aagctattac	aaatataaca	tggactttgt	8280
tctttttagc	catgaacaaa	gtggcaaagt	tgtgcaatta	cctaacatga	tataaatttt	8340
tgttttttgc	acaaaccaaa	agtttaatgt	taattctttt	tacaaaacta	tttactgtag	8400
tgtattgaag	aactgcatgc	agggaattgc	tattgctaaa	aagaatggtg	agctacgtca	8460
ttattgagcc	aaaagaataa	atttcatttt	ttattgcatt	tcacttattg	gcctctgggg	8520
ttttttgttt	ttgttttttg	ctgttggcag	tttaaaatat	atataattaa	taaaacctgt	8580
gcttgatctg	acatttgtat	acataaaagt	ttacatgaat	tttacaacag	actagtgcat	8640
gattcaccaa	gcagtactac	agaacaaagg	caaatgaaaa	gcagctttgt	gcacttttat	8700
gtgtgcaaag	gatcaagttc	acatgttcca	actttcaggt	ttgataataa	tagtagtaac	8760
cacctacaat	agctttcaat	ttcaattaac	tcccttggct	ataagcatct	aaactcatct	8820
tctttcaata	taattgatgc	tatctcctaa	ttacttggtg	gctaataaat	gttacattct	8880
ttgttactta	aatgcattat	ataaactcct	atgtatacat	aaggtattaa	tgatatagtt	8940
attgagaatt	tatattaact	ttttttcaa	gaacccttgg	atttatgtga	ggtcaaaacc	9000
aaactcttat	tctcagtgga	aaactccagt	tgtaatgcat	atttttaaag	acaatttgga	9060
tctaaatatg	tatttcataa	ttctcccata	ataaattata	taaggtggct	aa	9112

<210> 66

<211> 9112

<212> DNA

<213> Homo sapiens

<400> 66

accatagagt gaatctcaga acaggaagcg gaggcataag cagagaggat tctggaaagg 60 tctctttgtt ttcttatcca cagagaaaga aagaaaaaaa attgtaacta atttgtaaac 120 ctctgtggtc aaaaaaaaaa aaaaaaaaa aagctgaaca gctgcagagg aagacacgtt 180 ataccctaac catcttggat gctgggcttt gttatgctgt aattcataag gctctgtttt 240 atcagagatt atggagcaag aaaactgaag ccaagccaca tcaaggtttg acagggatga 300 gatacctgtc aaggattcat agtagagtgg cttactggga aaggagcaaa gaatctcttc 360 tagggatatt gtaagaataa atgagataat tcacagaagg gacctggagc ttttccggaa 420 aaaggtgctg tgactatcta aggggaaaag ctgagagtct ggaactagcc tatcttccga 480

ggacttagag	, acaacagtat	gggaatttca	acgagacgtt	tttactttct	tttgaccaag	540
attcaaattc	tttattccag	g cccttgataa	gtaaataaga	aggtaattcg	tatgcaagaa	600
gctacacgta	ı attaaatgtg	, caggatgaaa	agatggcaca	ggcactgttg	gtacccccag	660
gacctgaaag	g cttccgcctt	tttactagag	aatctcttgc	tgctatcgaa	aaacgtgctg	720
cagaagagaa	agccaagaag	cccaaaaagg	aacaagataa	tgatgatgag	aacaaaccaa	780
agccaaatag	tgacttggaa	gctggaaaga	accttccatt	tatttatgga	gacattcctc	840
cagagatggt	gtcagagccc	ctggaggacc	tggatcccta	ctatatcaat	aagaaaactt	900
ttatagtaat	gaataaagga	aaggcaattt	cccgattcag	tgccacctct	gccttgtata	960
ttttaactcc	actaaaccct	gttaggaaaa	ttgctabsaa	gattttggta	cattctttat	1020
tcagcatgct	tatcatgtgc	actattttga	ccaactgtgt	atttatgacc	ttgagcaacc	1080
ctcctgactg	gacaaagaat	gtagagtaca	cattcactgg	aatctatacc	tttgagtcac	1140
ttataaaaat	cttggcaaga	gggttttgct	tagaagattt	tacgtttctt	cgtgatccat	1200
ggaactggct	ggatttcagt	gtcattgtga	tggcgtatgt	aacagaattt	gtaagcctag	1260
gcaatgtttc	agcccttcga	actttcagag	tcttgagagc	tctgaaaact	atttctgtaa	1320
tcccaggttt	aaagaccatt	gtggggccc	tgatccagtc	ggtaaagaag	ctttctgatg	1380
tgatgatcct	gactgtgttc	tgtctgagcg	tgtttgctct	cattgggctg	cagctgttca	1440
tgggcaatct	gaggaataaa	tgtttgcagt	ggcccccaag	cgattctgct	tttgaaacca	1500
acaccacttc	ctactttaat	ggcacaatgg	attcaaatgg	gacatttgtt	aatgtaacaa	1560
tgagcacatt	taactggaag	gattacattg	gagatgacag	tcacttttat	gttttggatg	1620
ggcaaaaaga	ccctttactc	tgtggaaatg	gctcagatgc	aggccagtgt	ccagaaggat	1680
acatctgtgt	gaaggctggt	cgaaacccca	actatggcta	cacaagcttt	gacaccttta	1740
gctgggcttt	cctgtctcta	tttcgactca	tgactcaaga	ctactgggaa	aatctttacc	1800
agttgacatt	acgtgctgct	gggaaaacat	acatgatatt	ttttgtcctg	gtcattttct	1860
tgggctcatt	ttatttggtg	aatttgatcc	tggctgtggt	ggccatggcc	tatgaggggc	1920
agaatcaggc	caccttggaa	gaagcagaac	aaaaagaggc	cgaatttcag	cagatgctcg	1980
aacagcttaa	aaagcaacag	gaagaagctc	aggcagttgc	ggcagcatca	gctgcttcaa	2040
gagatttcag	tggaataggt	gggttaggag	agctgttgga	aagttcttca	gaagcatcaa	2100
agttgagttc	caaaagtgct	aaagaatgga	ggaaccgaag	gaagaaaaga	agacagagag	2160
agcaccttga	aggaaacaac	aaaggagaga	gagacagctt	tcccaaatcc	gaatctgaag	2220

acagegteaa aagaageage tteetttet ceatggatgg aaacagactg accagtgaca 2280 aaaaattctg ctccctcat cagtctctct tgagtatccg tggctccctg ttttccccaa 2340 gacgcaatag caaaacaagc attttcagtt tcagaggtcg ggcaaaggat gttggatctg 2400 aaaatgactt tgctgatgat gaacacagca catttgaaga cagcgaaagc aggagagact 2460 cactgtttgt gccgcacaga catggagagc gacgcaacag taacggcacc accactgaaa 2520 cggaagtcag aaagagaagg ttaagctctt accagatttc aatggagatg ctggaggatt 2580 cctctggaag gcaaagagcc gtgagcatag ccagcattct gaccaacaca atggaagaac 2640 ttgaagaatc tagacagaaa tgtccgccat gctggtatag atttgccaat gtgttcttga 2700 2760 tctgggactg ctgtgatgca tggttaaaag taaaacatct tgtgaattta attgttatgg atccatttgt tgatcttgcc atcactattt gcattgtctt aaataccctc tttatggcca 2820 2880 tggagcacta ccccatgact gagcaattca gtagtgtgtt gactgtagga aacctggtct ttactgggat ttttacagca gaaatggttc tcaagatcat tgccatggat ccttattact 2940 atttccaaga aggctggaat atctttgatg gaattattgt cagcctcagt ttaatggagc 3000 ttggtctgtc aaatgtggag ggattgtctg tactgcgatc attcagactg cttagagttt 3060 tcaagttggc aaaatcctgg cccacactaa atatgctaat taagatcatt ggcaattctg 3120 tgggggetet aggaaacete acettggtgt tggccatcat cgtetteatt tttgetgtgg 3180 teggeatgea getetttggt aagagetaca aagaatgtgt etgeaagate aatgatgaet 3240 gtacgctccc acggtggcac atgaacgact tettecacte ettectgatt gtgtteegeg 3300 tgctgtgtgg agagtggata gagaccatgt gggactgtat ggaggtcgct ggccaaacca 3360 tgtgccttat tgttttcatg ttggtcatgg tcattggaaa ccttgtggtt ctgaacctct 3420 3480 ttctggcctt attgttgagt tcatttagct cagacaacct tgctgctact gatgatgaca 3540 atgaaatgaa taatctgcag attgcagtag gaagaatgca aaagggaatt gattatgtga aaaataagat gcgggagtgt ttccaaaaag ccttttttag aaagccaaaa gttatagaaa 3600 tccatgaagg caataagata gacagctgca tgtccaataa tactggaatt gaaataagca 3660 aagagettaa ttatettaga gatgggaatg gaaccaccag tggtgtaggt actggaagca 3720 gtgttgaaaa atacgtaatc gatgaaaatg attatatgtc attcataaac aaccccagcc 3780 tcaccgtcac agtgccaatt gctgttggag agtctgactt tgaaaactta aatactgaag 3840 agttcagcag tgagtcagaa ctagaagaaa gcaaggagaa attaaatgca accagctcat 3900

ctgaaggaag cacagttgat gttgttctac cccgagaagg tgaacaagct gaaactgaac	3960
ccgaagaaga ccttaaaccg gaagcttgtt ttactgaagg atgtattaaa aagtttccat	4020
tctgtcaagt aagtacagaa gaaggcaaag ggaagatctg gtggaatctt cgaaaaacct	4080
gctacagtat tgttgagcac aactggtttg agactttcat tgtgttcatg atccttctca	4140
gtagtggtgc attggccttt gaagatatat acattgaaca gcgaaagact atcaaaacca	4200
tgctagaata tgctgacaaa gtctttacct atatattcat tctggaaatg cttctcaaat	4260
gggttgctta tggatttcaa acatatttca ctaatgcctg gtgctggcta gatttcttga	4320
tcgttgatgt ttctttggtt agcctggtag ccaatgctct tggctactca gaactcggtg	4380
ccatcaaatc attacggaca ttaagagctt taagacctct aagagcctta tcccggtttg	4440
aaggcatgag ggtggttgtg aatgctcttg ttggagcaat tccctctatc atgaatgtgc	4500
tgttggtctg tctcatcttc tggttgatct ttagcatcat gggtgtgaat ttgtttgctg	4560
gcaagttcta ccactgtgtt aacatgacaa cgggtaacat gtttgacatt agtgatgtta	4620
acaatttgag tgactgtcag gctcttggca agcaagctcg gtggaaaaac gtgaaagtaa	4680
actttgataa tgttggcgct ggctatcttg cactgcttca agtggccaca tttaaaggct	4740
ggatggatat tatgtatgca gctgttgatt cacgagatgt taaacttcag cctgtatatg	4800
aagaaaatct gtacatgtat ttatactttg tcatctttat catctttggg tcattcttca	4860
ctctgaatct attcattggt gtcatcatag ataacttcaa ccagcagaaa aagaagtttg	4920
gaggtcaaga catctttatg acagaggaac agaaaaaata ttacaatgca atgaagaaac	4980
ttggatccaa gaaacctcag aaacccatac ctcgcccagc aaacaaattc caaggaatgg	5040
tetttgattt tgtaaccaga caagtetttg atatcageat catgateete atetgeetea	5100
acatggtcac catgatggtg gaaacggatg accagggcaa atacatgacc ctagttttgt	5160
cccggatcaa cctagtgttc attgttctgt tcactggaga atttgtgctg aagctcgtct	5220
ccctcagaca ctactacttc actataggct ggaacatctt tgactttgtg gtggtgattc	5280
tctccattgt aggtatgttt ctggctgaga tgatagaaaa gtattttgtg tcccctacct	5340
tgttccgagt gatccgtctt gccaggattg gccgaatcct acgtctgatc aaaggagcaa	5400
aggggatccg cacgctgctc tttgctttga tgatgtccct tcctgcgttg tttaacatcg	5460
gcctcctgct cttcctggtc atgtttatct atgccatctt tgggatgtcc aactttgcct	5520
atgttaaaaa ggaagctgga attgatgaca tgttcaactt tgagaccttt ggcaacagca	5580
tgatctgctt gttccaaatt acaacctctg ctggatggga tggattgcta gcacctattc	5640

ttaatagtgo	accacccgac	: tgtgaccctg	acacaattca	ccctggcagc	tcagttaagg	5700
gagactgtgg	gaacccatct	gttgggattt	tctttttgt	cagttacatc	atcatatcct	5760
tcctggtggt	ggtgaacagt	tacatcgcgg	tcatcctgga	gaacttcagt	gttgctactg	5820
aagaaagtgc	agageceetg	agtgaggatg	actttgagat	gttctatgag	gtttgggaaa	5880
agtttgatcc	cgatgcgacc	cagtttatag	agttctctaa	actctctgat	tttgcagctg	5940
ccctggatcc	tectettete	atagcaaaac	ccaacaaagt	ccagcttatt	gccatggatc	6000
tgcccatggt	cagtggtgac	cggatccact	gtcttgatat	tttatttgcc	tttacaaagc	6060
gtgttttggg	tgagagtgga	gagatggatg	cccttcgaat	acagatggaa	gacaggttta	6120
tggcatcaaa	cccctccaaa	gtctcttatg	agcctattac	aaccactttg	aaacgtaaac	6180
aagaggaggt	gtctgccgct	atcattcagc	gtaatttcag	atgttatctt	ttaaagcaaa	6240
ggttaaaaaa	tatatcaagt	aactataaca	aagaggcaat	aaaggggagg	attgacttac	6300
ctataaaaca	agacatgatt	attgacaaac	tgaatgggaa	ctccactcca	gaaaaaacag	6360
atgggagttc	ctctaccacc	tctcctcctt	cctatgatag	tgtaacaaaa	ccagacaagg	6420
aaaagtttga	gaaagacaaa	ccagaaaaag	aaagcaaagg	aaaagaggtc	agagaaaatc	6480
aaaagtaaaa	agaaacaaag	aattatcttt	gtgatcaatt	gtttacagcc	tatgaaggta	6540
aagtatatgt	gtcaactgga	cttcaagagg	aggtccatgc	caaactgact	gttttaacaa	6600
atactcatag	tcagtgccta	tacaagacag	tgaagtgacc	tctctgtcac	tgcaactctg	6660
tgaagcaggg	tatcaacatt	gacaagaggt	tgctgttttt	attaccagct	gacactgctg	6720
aggagaaacc	caatggctac	ctagactata	gggatagttg	tgcaaagtga	acattgtaac	6780
tacaccaaac	acctttagta	cagtccttgc	atccattcta	tttttaactt	ccatatctgc	6840
catattttta	caaaatttgt	tctagtgcat	ttccatggtc	cccaattcat	agtttattca	6900
taatgctatg	tcactatttt	tgtaaatgag	gtttacgttg	aagaaacagt	atacaagaac	6960
cctgtctctc	aaatgatcag	acaaaggtgt	tttgccagag	agataaaatt	tttgctcaaa	7020
accagaaaaa	gaattgtaat	ggctacagtt	tcagttactt	ccattttcta	gatggcttta	7080
attttgaaag	tattttagtc	tgttatgttt	gtttctatct	gaacagttat	gtgcctgtaa	7140
agtctcctct	aatatttaaa	ggattatttt	tatgcaaagt	attctgtttc	agcaagtgca	7200
aattttattc	taagtttcag	agctctatat	ttaatttagg	tcaaatgctt	tccaaaaagt	7260
aatctaataa	atccattcta	gaaaaatata	tctaaagtat	tgctttagaa	tagttgttcc	7320

actttctgct	gcagtattgo	tttgccatct	tetgetetea	gcaaagctga	tagtctatgt	7380
caattaaata	ccctatgtta	tgtaaatagt	tattttatco	: tgtggtgcat	gtttgggcaa	7440
atatatatat	agcctgataa	acaacttcta	ttaaatcaaa	tatgtaccac	agtgtatgtg	7500
tcttttgcaa	gcttccaaca	gggatgtatc	ctgtatcatt	cattaaacat	agtttaaagg	7560
ctatcactaa	tgcatgttaa	tattgcctat	gctgctctat	tttactcaat	ccattcttca	7620
caagtcttgg	ttaaagaatg	tcacatattg	gtgatagaat	gaattcaacc	tgctctgtcc	7680
attatgtcaa	gcagaataat	ttgaagctat	ttacaaacac	ctttactttt	gcacttttaa	7740
ttcaacatga	gtatcatatg	gtatctctct	agatttcaag	gaaacacact	ggatactgcc	7800
tactgacaaa	acctattctt	catattttgc	taaaaatatg	tctaaaactt	gcgcaaatat	7860
aaataatgta	aaaatataat	caactttatt	tgtcagcatt	ttgtacataa	gaaaattatt	7920
ttcaggttga	tgacatcaca	atttatttta	ctttatgctt	ttgcttttga	tttttaatca	7980
caattccaaa	cttttgaatc	cataagattt	ttcaatggat	aatttcctaa	aataaaagtt	8040
agataatggg	ttttatggat	ttctttgtta	taatatattt	tctaccattc	caataggaga	8100
tacattggtc	aaacactcaa	acctagatca	ttttctacca	actatggttg	cctcaatata	8160
accttttatt	catagatgtt	tttttttatt	caacttttgt	agtatttacg	tatgcagact	8220
agtcttattt	ttttaattcc	tgctgcacta	aagctattac	aaatataaca	tggactttgt	8280
tctttttagc	catgaacaaa	gtggcaaagt	tgtgcaatta	cctaacatga	tataaatttt	8340
tgttttttgc	acaaaccaaa	agtttaatgt	taattctttt	tacaaaacta	tttactgtag	8400
tgtattgaag	aactgcatgc	agggaattgc	tattgctaaa	aagaatggtg	agctacgtca	8460
ttattgagcc	aaaagaataa	atttcatttt	ttattgcatt	tcacttattg	gcctctgggg	8520
ttttttgttt	ttgttttttg	ctgttggcag	tttaaaatat	atataattaa	taaaacctgt	8580
gcttgatctg	acatttgtat	acataaaagt	ttacatgaat	tttacaacag	actagtgcat	8640
gattcaccaa	gcagtactac	agaacaaagg	caaatgaaaa	gcagctttgt	gcacttttat	8700
		acatgttcca				8760
cacctacaat	agctttcaat	ttcaattaac	tcccttggct	ataagcatct	aaactcatct	8820
		tatctcctaa				8880
		ataaactcct				8940
attgagaatt	tatattaact	ttttttcaa	gaacccttgg	atttatgtga	ggtcaaaacc	9000
aaactcttat	tctcagtgga	aaactccagt	tgtaatgcat	atttttaaag	acaatttgga	9060

<210> 67

<211> 1951

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (122)..(122)

<223> Xaa = any amino acid

<400> 67

Met Ala Gln Ala Leu Leu Val Pro Pro Gly Pro Glu Ser Phe Arg Leu 1 5 10 15

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Lys Arg Ala Ala Glu Glu 20 25 30

Lys Ala Lys Lys Pro Lys Lys Glu Gln Asp Asn Asp Asp Glu Asn Lys 35 40 45

Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Asn Leu Pro Phe Ile 50 55 60

Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Glu Pro Leu Glu Asp Leu 65 70 75 80

Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Met Asn Lys Gly 85 90 95

Lys Ala Ile Ser Arg Phe Ser Ala Thr Ser Ala Leu Tyr Ile Leu Thr 100 105 110

Pro Leu Asn Pro Val Arg Lys Ile Ala Xaa Lys Ile Leu Val His Ser 115 120 125

Leu Phe Ser Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val Phe 130 135 140

Met Thr Leu Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr Thr 145 150 155 160

Phe	Thr	Gly	Ile	Tyr	Thr	Phe	Glu	Ser	Leu	Ile	Lys	Ile	Leu	Ala	Arg
				165					170					175	

Gly	Phe	Cys	Leu	Glu	Asp	Phe	Thr	Phe	Leu	Arg	Asp	Pro	Trp	Asn	Trp
			180					185			-		190		•

- Leu Asp Phe Ser Val Ile Val Met Ala Tyr Val Thr Glu Phe Val Asp 195 200 205
- Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala Leu 210 215 220
- Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala Leu 225 230 235 240
- Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val Phe 245 250 255
- Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly Asn 260 265 270
- Leu Arg Asn Lys Cys Leu Gln Trp Pro Pro Ser Asp Ser Ala Phe Glu 275 280 285
- Thr Asn Thr Thr Ser Tyr Phe Asn Gly Thr Met Asp Ser Asn Gly Thr 290 295 300
- Phe Val Asn Val Thr Met Ser Thr Phe Asn Trp Lys Asp Tyr Ile Gly 315 310 315 320
- Asp Asp Ser His Phe Tyr Val Leu Asp Gly Gln Lys Asp Pro Leu Leu 325 330 335
- Cys Gly Asn Gly Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Ile Cys 340 345 350
- Val Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp Thr 355 360 365
- Phe Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp Tyr 370 375 380
- Trp Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly Lys Thr Tyr

Met Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu Val 405 410 415

Asn Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Gly Gln Asn Gln 420 425 430

Ala Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln Met 435 440 445

Leu Glu Gln Leu Lys Lys Gln Gln Glu Glu Ala Gln Ala Val Ala Ala 450 455 460

Ala Ser Ala Ala Ser Arg Asp Phe Ser Gly Ile Gly Gly Leu Gly Glu 465 470 475 480

Leu Leu Glu Ser Ser Ser Glu Ala Ser Lys Leu Ser Ser Lys Ser Ala 485 490 495

Lys Glu Trp Arg Asn Arg Arg Lys Lys Arg Arg Gln Arg Glu His Leu 500 505 510

Glu Gly Asn Asn Lys Gly Glu Arg Asp Ser Phe Pro Lys Ser Glu Ser 515 520 525

Glu Asp Ser Val Lys Arg Ser Ser Phe Leu Phe Ser Met Asp Gly Asn 530 540

Arg Leu Thr Ser Asp Lys Lys Phe Cys Ser Pro His Gln Ser Leu Leu 545 550 560

Ser Ile Arg Gly Ser Leu Phe Ser Pro Arg Arg Asn Ser Lys Thr Ser 565 570 575

Ile Phe Ser Phe Arg Gly Arg Ala Lys Asp Val Gly Ser Glu Asn Asp 580 585 590

Phe Ala Asp Asp Glu His Ser Thr Phe Glu Asp Ser Glu Ser Arg Arg 595 600 605

Asp Ser Leu Phe Val Pro His Arg His Gly Glu Arg Arg Asn Ser Asn 610 615 620

Gl ₃ 625	7 Thi	Thi	Thr	Glu	Thr 630		ı Val	. Arç	, Lys	635		Leu	. Ser	Ser	Tyr 640
Glr	ı Ile	e Sei	. Met	Glu 645		Leu	ı Glu	Asp	Ser 650		Gly	Arg	Gln	Arg 655	, Ala
Val	. Ser	: Ile	Ala 660		lle	Leu	Thr	Asn 665		Met	Glu	Glu	Leu 670		Glu
Ser	Arg	Gln 675	Lys	Cys	Pro	Pro	Cys 680		Tyr	Arg	Phe	Ala 685		Val	Phe
Leu	Ile 690	Trp	Asp	Сув	Cys	Asp 695		Trp	Leu	Lys	Val 700	Lys	His	Leu	Val
Asn 705	Leu	Ile	Val	Met	Asp 710	Pro	Phe	Val	Asp	Leu 715	Ala	Ile	Thr	Ile	Cys 720
Ile	Val	Leu	Asn	Thr 725	Leu	Phe	Met	Ala	Met 730	Glu	His	Tyr	Pro	Met 735	Thr
Glu	Gln	Phe	Ser 740	Ser	Val	Leu	Thr	Val 745	Gly	Asn	Leu	Val	Phe 750	Thr	Gly
Ile	Phe	Thr 755	Ala	Glu	Met	Val	Leu 760	Lys	Ile	Ile	Ala	Met 765	Asp	Pro	Tyr
Tyr	Tyr 770	Phe	Gln	Glu	Gly	Trp 775	Asn	Ile	Phe	Asp	Gly 780	Ile	Ile	Val	Ser
Leu 785	Ser	Leu	Met	Glu	Leu 790	Gly	Leu	Ser	Asn	Val 795	Glu	Gly	Leu	Ser	Val 800
Leu	Arg	Ser	Phe	Arg 805	Leu	Leu	Arg	Val	Phe 810	Lys	Leu	Ala	Lys	Ser 815	Trp
Pro	Thr	Leu	Asn 820	Met	Leu	Ile	Lys	Ile 825	Ile	Gly	Asn	Ser	Val 830	Gly	Ala
Leu	Gly	Asn	Leu	Thr	Leu	Val	Leu	Ala	Ile	Ile	Val	Phe	Ile	Phe	Ala

- Val Val Gly Met Gln Leu Phe Gly Lys Ser Tyr Lys Glu Cys Val Cys 850 855 860
- Lys Ile Asn Asp Asp Cys Thr Leu Pro Arg Trp His Met Asn Asp Phe 865 870 875 885
- Phe His Ser Phe Leu Ile Val Phe Arg Val Leu Cys Gly Glu Trp Ile 885 890 895
- Glu Thr Met Trp Asp Cys Met Glu Val Ala Gly Gln Thr Met Cys Leu 900 905 910
- Ile Val Phe Met Leu Val Met Val Ile Gly Asn Leu Val Val Leu Asn 915 920 925
- Leu Phe Leu Ala Leu Leu Leu Ser Ser Phe Ser Ser Asp Asn Leu Ala 930 935 940
- Ala Thr Asp Asp Asp Asn Glu Met Asn Asn Leu Gln Ile Ala Val Gly 945 950 955 960
- Arg Met Gln Lys Gly Ile Asp Tyr Val Lys Asn Lys Met Arg Glu Cys 965 970 975
- Phe Gln Lys Ala Phe Phe Arg Lys Pro Lys Val Ile Glu Ile His Glu 980 985 990
- Gly Asn Lys Ile Asp Ser Cys Met Ser Asn Asn Thr Gly Ile Glu Ile 995 1000 1005
- Ser Lys Glu Leu Asn Tyr Leu Arg Asp Gly Asn Gly Thr Thr Ser 1010 1015 1020
- Gly Val Gly Thr Gly Ser Ser Val Glu Lys Tyr Val Ile Asp Glu 1025 1030 1035
- Asn Asp Tyr Met Ser Phe Ile Asn Asn Pro Ser Leu Thr Val Thr 1040 1045 1050
- Val Pro Ile Ala Val Gly Glu Ser Asp Phe Glu Asn Leu Asn Thr 1055 1060 1065

- Glu Glu Phe Ser Ser Glu Ser Glu Leu Glu Glu Ser Lys Glu Lys 1070 1075 1080
- Leu Asn Ala Thr Ser Ser Ser Glu Gly Ser Thr Val Asp Val Val 1085 1090 1095
- Leu Pro Arg Glu Gly Glu Gln Ala Glu Thr Glu Pro Glu Glu Asp 1100 1105 1110
- Leu Lys Pro Glu Ala Cys Phe Thr Glu Gly Cys Ile Lys Lys Phe 1115 1120 1125
- Pro Phe Cys Gln Val Ser Thr Glu Glu Gly Lys Gly Lys Ile Trp 1130 1135 1140
- Trp Asn Leu Arg Lys Thr Cys Tyr Ser Ile Val Glu His Asn Trp 1145 1150 1155
- Phe Glu Thr Phe Ile Val Phe Met Ile Leu Leu Ser Ser Gly Ala 1160 1165 1170
- Leu Ala Phe Glu Asp Ile Tyr Ile Glu Gln Arg Lys Thr Ile Lys 1175 1180 1185
- Thr Met Leu Glu Tyr Ala Asp Lys Val Phe Thr Tyr Ile Phe Ile 1190 1195 1200
- Leu Glu Met Leu Leu Lys Trp Val Ala Tyr Gly Phe Gln Thr Tyr 1205 1210 1215
- Phe Thr Asn Ala Trp Cys Trp Leu Asp Phe Leu Ile Val Asp Val 1220 1225 1230
- Ser Leu Val Ser Leu Val Ala Asn Ala Leu Gly Tyr Ser Glu Leu 1235 1240 1245
- Gly Ala Ile Lys Ser Leu Arg Thr Leu Arg Ala Leu Arg Pro Leu 1250 1260
- Arg Ala Leu Ser Arg Phe Glu Gly Met Arg Val Val Val Asn Ala 1265 1270 1275
- Leu Val Gly Ala Ile Pro Ser Ile Met Asn Val Leu Leu Val Cys

Leu Ile Phe Trp Leu Ile Phe Ser Ile Met Gly Val Asn Leu Phe Ala Gly Lys Phe Tyr His Cys Val Asn Met Thr Thr Gly Asn Met Phe Asp Ile Ser Asp Val Asn Asn Leu Ser Asp Cys Gln Ala Leu Gly Lys Gln Ala Arg Trp Lys Asn Val Lys Val Asn Phe Asp Asn Val Gly Ala Gly Tyr Leu Ala Leu Leu Gln Val Ala Thr Phe Lys Gly Trp Met Asp Ile Met Tyr Ala Ala Val Asp Ser Arg Asp Val Lys Leu Gln Pro Val Tyr Glu Glu Asn Leu Tyr Met Tyr Leu Tyr Phe Val Ile Phe Ile Ile Phe Gly Ser Phe Phe Thr Leu Asn Leu Phe Ile Gly Val Ile Ile Asp Asn Phe Asn Gln Gln Lys Lys Phe Gly Gly Gln Asp Ile Phe Met Thr Glu Glu Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys Leu Gly Ser Lys Lys Pro Gln Lys Pro Ile Pro Arg Pro Ala Asn Lys Phe Gln Gly Met Val Phe Asp Phe Val Thr Arg Gln Val Phe Asp Ile Ser Ile Met Ile Leu Ile Cys

1480 1485

Leu Asn Met Val Thr Met Met Val Glu Thr Asp Asp Gln Gly Lys

- Tyr Met Thr Leu Val Leu Ser Arg Ile Asn Leu Val Phe Ile Val 1505 1510 1515
- Leu Phe Thr Gly Glu Phe Val Leu Lys Leu Val Ser Leu Arg His 1520 1530
- Tyr Tyr Phe Thr Ile Gly Trp Asn Ile Phe Asp Phe Val Val Val 1535 1540 1545
- Ile Leu Ser Ile Val Gly Met Phe Leu Ala Glu Met Ile Glu Lys 1550 1560
- Tyr Phe Val Ser Pro Thr Leu Phe Arg Val Ile Arg Leu Ala Arg 1565 1570 1575
- Ile Gly Arg Ile Leu Arg Leu Ile Lys Gly Ala Lys Gly Ile Arg 1580 1585 1590
- Thr Leu Leu Phe Ala Leu Met Met Ser Leu Pro Ala Leu Phe Asn 1595 1600 1605
- Ile Gly Leu Leu Phe Leu Val Met Phe Ile Tyr Ala Ile Phe 1610 1615 1620
- Gly Met Ser Asn Phe Ala Tyr Val Lys Lys Glu Ala Gly Ile Asp 1625 1630 1635
- Asp Met Phe Asn Phe Glu Thr Phe Gly Asn Ser Met Ile Cys Leu 1640 1650
- Phe Gln Ile Thr Thr Ser Ala Gly Trp Asp Gly Leu Leu Ala Pro 1655 1660 1665
- Ile Leu Asn Ser Ala Pro Pro Asp Cys Asp Pro Asp Thr Ile His 1670 1680
- Pro Gly Ser Ser Val Lys Gly Asp Cys Gly Asn Pro Ser Val Gly 1685 1690 1695
- Ile Phe Phe Phe Val Ser Tyr Ile Ile Ile Ser Phe Leu Val Val 1700 1705 1710

- Val Asn Ser Tyr Ile Ala Val Ile Leu Glu Asn Phe Ser Val Ala 1715 1720 1725
- Thr Glu Glu Ser Ala Glu Pro Leu Ser Glu Asp Asp Phe Glu Met 1730 1735 1740
- Phe Tyr Glu Val Trp Glu Lys Phe Asp Pro Asp Ala Thr Gln Phe 1745 1750 1755
- Ile Glu Phe Ser Lys Leu Ser Asp Phe Ala Ala Leu Asp Pro 1760 1765 1770
- Pro Leu Leu Ile Ala Lys Pro Asn Lys Val Gln Leu Ile Ala Met 1775 1780 1785
- Asp Leu Pro Met Val Ser Gly Asp Arg Ile His Cys Leu Asp Ile 1790 1795 1800
- Leu Phe Ala Phe Thr Lys Arg Val Leu Gly Glu Ser Gly Glu Met 1805 1810 1815
- Asp Ala Leu Arg Ile Gln Met Glu Asp Arg Phe Met Ala Ser Asn 1820 1830
- Pro Ser Lys Val Ser Tyr Glu Pro Ile Thr Thr Thr Leu Lys Arg 1835 1840 1845
- Lys Gln Glu Glu Val Ser Ala Ala Ile Ile Gln Arg Asn Phe Arg 1850 1855 1860
- Cys Tyr Leu Leu Lys Gln Arg Leu Lys Asn Ile Ser Ser Asn Tyr 1865 1870 1875
- Asn Lys Glu Ala Ile Lys Gly Arg Ile Asp Leu Pro Ile Lys Gln 1880 1885 1890
- Asp Met Ile Ile Asp Lys Leu Asn Gly Asn Ser Thr Pro Glu Lys 1895 1900 1905
- Thr Asp Gly Ser Ser Ser Thr Thr Ser Pro Pro Ser Tyr Asp Ser 1910 1915 1920

Val Thr Lys Pro Asp Lys Glu Lys Phe Glu Lys Asp Lys Pro Glu 1925 1930 1935

Lys Glu Ser Lys Gly Lys Glu Val Arg Glu Asn Gln Lys 1940 1945

<210> 68

<211> 1951

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE <222> (122)..(122)

<223> Xaa = any amino acid

<400> 68

Met Ala Gln Ala Leu Leu Val Pro Pro Gly Pro Glu Ser Phe Arg Leu 5 10

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Lys Arg Ala Ala Glu Glu

Lys Ala Lys Lys Pro Lys Lys Glu Gln Asp Asp Asp Glu Asn Lys

Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Asn Leu Pro Phe Ile 55 60

Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Glu Pro Leu Glu Asp Leu 70 75

Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Met Asn Lys Gly 90

Lys Ala Ile Ser Arg Phe Ser Ala Thr Ser Ala Leu Tyr Ile Leu Thr 100 105

Pro Leu Asn Pro Val Arg Lys Ile Ala Xaa Lys Ile Leu Val His Ser 115 120

Leu Phe Ser Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val Phe 130 135 140

Met 145	Thr	Lev	ı Ser	Asn	Pro 150		Asp	Trp	Thr	Lys 155		ı Val	. Glu	туг	Thr 160
Phe	Thr	Gly	'Ile	Tyr 165	Thr	Phe	Glu	Ser	Leu 170		. Lys	Ile	. Leu	175	Arg
Gly	Phe	Cys	Leu 180	Glu	Asp	Phe	Thr	Phe 185	Leu	Arg	Asp	Pro	Trp 190		Trp
Leu	Asp	Phe 195	Ser	Val	Ile	Val	Met 200	Ala	Tyr	Val	Thr	Glu 205		Val	Ser
Leu	Gly 210	Asn	Val	Ser	Ala	Leu 215	Arg	Thr	Phe	Arg	Val 220	Leu	Arg	Ala	Leu
Lys 225	Thr	Ile	Ser	Val	Ile 230	Pro	Gly	Leu	Lys	Thr 235	Ile	Val	Gly	Ala	Leu 240
Ile	Gln	Ser	Val	Lys 245	Lys	Leu	Ser	Asp	Val 250	Met	Ile	Leu	Thr	Val 255	Phe
Cys	Leu	Ser	Val 260	Phe	Ala	Leu	Ile	Gly 265	Leu	Gln	Leu	Phe	Met 270	Gly	Asn
Leu	Arg	Asn 275	Lys	Cys	Leu	Gln	Trp 280	Pro	Pro	Ser	Asp	Ser 285	Ala	Phe	Glu
Thr	Asn 290	Thr	Thr	Ser	Tyr	Phe 295	Asn	Gly	Thr	Met	Asp 300	Ser	Asn	Gly	Thr
Phe 305	Val	Asn	Val	Thr	Met 310	Ser	Thr	Phe	Asn	Trp 315	Lys	Asp	Tyr	Ile	Gly 320
Asp	Asp	Ser	His	Phe 325	Tyr	Val	Leu	Asp	Gly 330	Gln	Lys	Asp	Pro	Leu 335	Leu
Cys	Gly	Asn	Gly 340	Ser	Asp	Ala		Gln 345	Cys	Pro	Glu	Gly	Tyr 350	Ile	Cys

Phe Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp Tyr

Val Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp Thr

365

360

355

Trp Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly Lys Thr Tyr

Met Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu Val

Asn Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Gly Gln Asn Gln

Ala Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln Met

Leu Glu Gln Leu Lys Lys Gln Gln Glu Glu Ala Gln Ala Val Ala Ala

Ala Ser Ala Ala Ser Arg Asp Phe Ser Gly Ile Gly Gly Leu Gly Glu

Leu Leu Glu Ser Ser Ser Glu Ala Ser Lys Leu Ser Ser Lys Ser Ala

Lys Glu Trp Arg Asn Arg Arg Lys Lys Arg Arg Gln Arg Glu His Leu

Glu Gly Asn Asn Lys Gly Glu Arg Asp Ser Phe Pro Lys Ser Glu Ser

Glu Asp Ser Val Lys Arg Ser Ser Phe Leu Phe Ser Met Asp Gly Asn

Arg Leu Thr Ser Asp Lys Lys Phe Cys Ser Pro His Gln Ser Leu Leu

Ser Ile Arg Gly Ser Leu Phe Ser Pro Arg Arg Asn Ser Lys Thr Ser

Ile Phe Ser Phe Arg Gly Arg Ala Lys Asp Val Gly Ser Glu Asn Asp

Phe Ala Asp Asp Glu His Ser Thr Phe Glu Asp Ser Glu Ser Arg Arg

- Asp Ser Leu Phe Val Pro His Arg His Gly Glu Arg Arg Asn Ser Asn 610 615 620
- Gly Thr Thr Thr Glu Thr Glu Val Arg Lys Arg Arg Leu Ser Ser Tyr 625 630 635 640
- Gln Ile Ser Met Glu Met Leu Glu Asp Ser Ser Gly Arg Gln Arg Ala 645 650 655
- Val Ser Ile Ala Ser Ile Leu Thr Asn Thr Met Glu Glu Leu Glu Glu 660 665 670
- Ser Arg Gln Lys Cys Pro Pro Cys Trp Tyr Arg Phe Ala Asn Val Phe 675 680 685
- Leu Ile Trp Asp Cys Cys Asp Ala Trp Leu Lys Val Lys His Leu Val 690 695 700
- Asn Leu Ile Val Met Asp Pro Phe Val Asp Leu Ala Ile Thr Ile Cys 705 710 715 720
- Ile Val Leu Asn Thr Leu Phe Met Ala Met Glu His Tyr Pro Met Thr 725 730 735
- Glu Gln Phe Ser Ser Val Leu Thr Val Gly Asn Leu Val Phe Thr Gly 740 745 750
- Ile Phe Thr Ala Glu Met Val Leu Lys Ile Ile Ala Met Asp Pro Tyr 755 760 765
- Tyr Tyr Phe Gln Glu Gly Trp Asn Ile Phe Asp Gly Ile Ile Val Ser 770 775 780
- Leu Ser Leu Met Glu Leu Gly Leu Ser Asn Val Glu Gly Leu Ser Val
 785 790 795 800
- Leu Arg Ser Phe Arg Leu Leu Arg Val Phe Lys Leu Ala Lys Ser Trp 805 810 815
- Pro Thr Leu Asn Met Leu Ile Lys Ile Ile Gly Asn Ser Val Gly Ala 820 825 830

- Leu Gly Asn Leu Thr Leu Val Leu Ala Ile Ile Val Phe Ile Phe Ala 835 840 845
- Val Val Gly Met Gln Leu Phe Gly Lys Ser Tyr Lys Glu Cys Val Cys 850 855 860
- Lys Ile Asn Asp Asp Cys Thr Leu Pro Arg Trp His Met Asn Asp Phe 865 870 875 880
- Phe His Ser Phe Leu Ile Val Phe Arg Val Leu Cys Gly Glu Trp Ile 885 890 895
- Glu Thr Met Trp Asp Cys Met Glu Val Ala Gly Gln Thr Met Cys Leu 900 905 910
- Ile Val Phe Met Leu Val Met Val Ile Gly Asn Leu Val Val Leu Asn 915 920 925
- Leu Phe Leu Ala Leu Leu Ser Ser Phe Ser Ser Asp Asn Leu Ala 930 935 940
- Ala Thr Asp Asp Asp Asn Glu Met Asn Asn Leu Gln Ile Ala Val Gly 945 950 955 960
- Arg Met Gln Lys Gly Ile Asp Tyr Val Lys Asn Lys Met Arg Glu Cys 965 970 975
- Phe Gln Lys Ala Phe Phe Arg Lys Pro Lys Val Ile Glu Ile His Glu 980 985 990
- Gly Asn Lys Ile Asp Ser Cys Met Ser Asn Asn Thr Gly Ile Glu Ile 995 1000 1005
- Ser Lys Glu Leu Asn Tyr Leu Arg Asp Gly Asn Gly Thr Thr Ser 1010 1015 1020
- Gly Val Gly Thr Gly Ser Ser Val Glu Lys Tyr Val Ile Asp Glu 1025 1030 1035
- Asn Asp Tyr Met Ser Phe Ile Asn Asn Pro Ser Leu Thr Val Thr 1040 1045 1050

- Val Pro Ile Ala Val Gly Glu Ser Asp Phe Glu Asn Leu Asn Thr 1055 1060 1065
- Glu Glu Phe Ser Ser Glu Ser Glu Leu Glu Glu Ser Lys Glu Lys 1070 1075 1080
- Leu Asn Ala Thr Ser Ser Ser Glu Gly Ser Thr Val Asp Val Val 1085 1090 1095
- Leu Pro Arg Glu Gly Glu Gln Ala Glu Thr Glu Pro Glu Glu Asp 1100 1105 1110
- Leu Lys Pro Glu Ala Cys Phe Thr Glu Gly Cys Ile Lys Lys Phe 1115 1120 1125
- Pro Phe Cys Gln Val Ser Thr Glu Glu Gly Lys Gly Lys Ile Trp 1130 1135 1140
- Trp Asn Leu Arg Lys Thr Cys Tyr Ser Ile Val Glu His Asn Trp
 1145 1150 1155
- Phe Glu Thr Phe Ile Val Phe Met Ile Leu Leu Ser Ser Gly Ala 1160 1165 1170
- Leu Ala Phe Glu Asp Ile Tyr Ile Glu Gln Arg Lys Thr Ile Lys 1175 1180 1185
- Thr Met Leu Glu Tyr Ala Asp Lys Val Phe Thr Tyr Ile Phe Ile 1190 1195 1200
- Leu Glu Met Leu Lys Trp Val Ala Tyr Gly Phe Gln Thr Tyr 1205 1210 1215
- Phe Thr Asn Ala Trp Cys Trp Leu Asp Phe Leu Ile Val Asp Val 1220 1225 1230
- Ser Leu Val Ser Leu Val Ala Asn Ala Leu Gly Tyr Ser Glu Leu 1235 1240 1245
- Gly Ala Ile Lys Ser Leu Arg Thr Leu Arg Ala Leu Arg Pro Leu 1250 1255 1260
- Arg Ala Leu Ser Arg Phe Glu Gly Met Arg Val Val Asn Ala

Leu Val Gly Ala Ile Pro Ser Ile Met Asn Val Leu Leu Val Cys 1280 1285 1290

- Leu Ile Phe Trp Leu Ile Phe Ser Ile Met Gly Val Asn Leu Phe 1295 1300 1305
- Ala Gly Lys Phe Tyr His Cys Val Asn Met Thr Thr Gly Asn Met 1310 1315 1320
- Phe Asp Ile Ser Asp Val Asn Asn Leu Ser Asp Cys Gln Ala Leu 1325 1330 1335
- Gly Lys Gln Ala Arg Trp Lys Asn Val Lys Val Asn Phe Asp Asn 1340 1345 1350
- Val Gly Ala Gly Tyr Leu Ala Leu Leu Gln Val Ala Thr Phe Lys 1355 1360 1365
- Gly Trp Met Asp Ile Met Tyr Ala Ala Val Asp Ser Arg Asp Val 1370 1375 1380
- Lys Leu Gln Pro Val Tyr Glu Glu Asn Leu Tyr Met Tyr Leu Tyr 1385 1390 1395
- Phe Val Ile Phe Ile Ile Phe Gly Ser Phe Phe Thr Leu Asn Leu 1400 1405 1410
- Phe Ile Gly Val Ile Ile Asp Asn Phe Asn Gln Gln Lys Lys 1415 1420 1425
- Phe Gly Gly Gln Asp Ile Phe Met Thr Glu Glu Gln Lys Lys Tyr 1430 1435 1440
- Tyr Asn Ala Met Lys Lys Leu Gly Ser Lys Lys Pro Gln Lys Pro 1445 1450 1455
- Ile Pro Arg Pro Ala Asn Lys Phe Gln Gly Met Val Phe Asp Phe 1460 1465 1470
- Val Thr Arg Gln Val Phe Asp Ile Ser Ile Met Ile Leu Ile Cys 1475 1480 1485

- Leu Asn Met Val Thr Met Met Val Glu Thr Asp Asp Gln Gly Lys 1490 1495 1500
- Tyr Met Thr Leu Val Leu Ser Arg Ile Asn Leu Val Phe Ile Val 1505 1510 1515
- Leu Phe Thr Gly Glu Phe Val Leu Lys Leu Val Ser Leu Arg His 1520 1530
- Tyr Tyr Phe Thr Ile Gly Trp Asn Ile Phe Asp Phe Val Val Val 1535 1540 1545
- Ile Leu Ser Ile Val Gly Met Phe Leu Ala Glu Met Ile Glu Lys 1550 1560
- Tyr Phe Val Ser Pro Thr Leu Phe Arg Val Ile Arg Leu Ala Arg 1565 1570 1575
- Ile Gly Arg Ile Leu Arg Leu Ile Lys Gly Ala Lys Gly Ile Arg 1580 1585 1590
- Thr Leu Leu Phe Ala Leu Met Met Ser Leu Pro Ala Leu Phe Asn 1595 1600 1605
- Ile Gly Leu Leu Phe Leu Val Met Phe Ile Tyr Ala Ile Phe 1610 1615 1620
- Gly Met Ser Asn Phe Ala Tyr Val Lys Lys Glu Ala Gly Ile Asp 1625 1630 1635
- Asp Met $\$ Phe Asn Phe Glu $\$ Thr $\$ Phe Gly Asn $\$ Ser $\$ Met $\$ Ile $\$ Cys $\$ Leu $\$ 1640 $\$ 1645 $\$ 1650
- Phe Gln Ile Thr Thr Ser Ala Gly Trp Asp Gly Leu Leu Ala Pro 1655 1660 1665
- Ile Leu Asn Ser Ala Pro Pro Asp Cys Asp Pro Asp Thr Ile His 1670 1675 1680
- Pro Gly Ser Ser Val Lys Gly Asp Cys Gly Asn Pro Ser Val Gly 1685 1690 1695

- Ile Phe Phe Phe Val Ser Tyr Ile Ile Ile Ser Phe Leu Val Val 1700 1705 1710
- Val Asn Ser Tyr Ile Ala Val Ile Leu Glu Asn Phe Ser Val Ala 1715 1720 1725
- Thr Glu Glu Ser Ala Glu Pro Leu Ser Glu Asp Asp Phe Glu Met 1730 1740
- Phe Tyr Glu Val Trp Glu Lys Phe Asp Pro Asp Ala Thr Gln Phe 1745 1750 1755
- Ile Glu Phe Ser Lys Leu Ser Asp Phe Ala Ala Leu Asp Pro 1760 1765 1770
- Pro Leu Leu Ile Ala Lys Pro Asn Lys Val Gln Leu Ile Ala Met 1775 1780 1785
- Asp Leu Pro Met Val Ser Gly Asp Arg Ile His Cys Leu Asp Ile 1790 1795 1800
- Leu Phe Ala Phe Thr Lys Arg Val Leu Gly Glu Ser Gly Glu Met 1805 1810 1815
- Asp Ala Leu Arg Ile Gln Met Glu Asp Arg Phe Met Ala Ser Asn 1820 1825 1830
- Pro Ser Lys Val Ser Tyr Glu Pro Ile Thr Thr Thr Leu Lys Arg 1835 1840 1845
- Lys Gln Glu Glu Val Ser Ala Ala Ile Ile Gln Arg Asn Phe Arg 1850 1855 1860
- Cys Tyr Leu Leu Lys Gln Arg Leu Lys Asn Ile Ser Ser Asn Tyr 1865 1870 1875
- Asn Lys Glu Ala Ile Lys Gly Arg Ile Asp Leu Pro Ile Lys Gln 1880 1885 1890
- Asp Met Ile Ile Asp Lys Leu Asn Gly Asn Ser Thr Pro Glu Lys 1895 1900 1905

Thr Asp Gly Ser Ser Ser Thr Thr Ser Pro Pro Ser Tyr Asp Ser 1910 1915 1920

Val Thr Lys Pro Asp Lys Glu Lys Phe Glu Lys Asp Lys Pro Glu 1925 1930 1935

Lys Glu Ser Lys Gly Lys Glu Val Arg Glu Asn Gln Lys 1940 1945 1950

<210> 69

<211> 1380

<212> DNA

<213> Homo sapiens

<400> 69

aatgtattta tttaattgat gataaactgt aataaaatca tagttgtttg ctctaaagta 60 gatatgaaag gtcagatgaa acaataacat acatctggat tgagaaatat cttaataact 120 gatggattat ttttattttc tttatgtatt gtgtgcttca atatcctaat aaataatatt 180 agctaggttc actgatgtat agaatctttt tctacattta gatatttctt gcaaatgttt 240 taccagaaag caacacaaaa atactatcag tgagtatgtg tttacactgt tctctaagga 300 gtcaaattcc tcaccttgaa aataattcat cccaggaaga gaaaaggttt tcaaaagact 360 agagcaggcc acaagggagc tttcgcaaaa ctctacacgt aaagggtaat gtaaacttaa 420 aacctatttt tcaaacagta atttatatat cttttaattt tagtagttta tgtgtgaaac 480 aatcatgcaa aacaacaaag tgataaaatt ttttaaaaaa attagtgaga tgcaaataac 540 tgaatatgta aaaggtctca tacatattta tatgtagtag ataagttaca tttttttagt 600 gtgttgggaa attttagctc acatcacctc tctactgtca tcttggggca ctttcatgac 660 tacccatgct tcatgcaggt ttactttcct ccctgtgaca gaggataatg ggaatgtttt 720 ttctttggct caattttgtg tgtgtccgcc agtagatggc gtaccacttt gagtgcgatc 780 ggcctttttt tctttcttt ttttttcct caaagctgtt ttctgatata tgttgggtac 840 catagagtga atctcagaac aggaagcgga ggcataagca gagaggattc tggaaaggtc 900 tctttgtttt cttatccaca gagaaagaaa gaaaaaaaat tgtaactaat ttgtaaacct 960 ctgtggtcaa aaaaaaaaa aaaaaaaaa gctgaacagc tgcagaggaa gacacgttat 1020 accctaacca tettggatge tgggetttgt tatgetgtaa tteataagge tetgtttat 1080 caggtaagct gacaaaacat ttcattatct gcaccataga acctagctac caggtcattt 1140 tccttacttt aaaatcatct tcatgctgct atttttaacc cagtgttgtt taaatgtaaa 1200

ttacaggaac caaaggcatc gtttgatgtg taaactgctt actatttctt tatctttcaa 1260	
agaaaataga gcctgtctgg aaatggtgat ttatggtaca tactaggcat caatggtctt 1320	
gtgtttttgt agatgcttat gattaattgt attcagaaaa aatattttt attatactta 1380	
<210> 70 <211> 840 <212> DNA <213> Homo sapiens	
<400> 70	
agggaagaac agaaggatgc tcaggagtgc cagcatgcct tcagaaagac taaatggatc 60	
aaggetgeca aagaaggggg ageaeeeetg teecaaeeet aggateetgg cagtggttee 120	
tggtcccatt cttcctaaat catgctaggg catgctttta acaagggtca aatatcttgc 180	
tttgcatcat ccttgctttc tcgatccagg gccataaaaa aaaaaggaat aaaacccaga 240	
cacagagcca gagcacccct atgccaaatg tcaaagatta taggctaatt tcacctgtat 300	
tctctttcta cagagattat ggagcaagaa aactgaagcc aagccacatc aaggtttgac 360	
agggatgaga tacctgtcaa ggattcatag tagagtggct tactgggaaa ggagcaaaga 420	
atctcttcta gggatattgt aagaataaat gagataattc acagaaggga cctggagctt 480	
ttccggaaaa aggtgctgtg actatctaag gtaactaaac aacttctggg tataagtttg 540	
tttttgtgga aaataaacta aaatctctac tatttaacaa ggacagctgt atcaggacca 600	
aaagaaggca gaggggtgtt ttcttccttc ctctaccagt ttgttcttcc aaagaggcaa 660	
atacatacag ggagacatag cacagatgac cttagggaat ggaatgatgc caaaggctgt 720	
tgatgtaaga aagagagatt aactcagttt tttttttgtt tttgtttttt tgttgttgtt 780	
gttgttgttt tgagacagag tctctctctg tcgcccaggc tggagtgcag tggcatgaac 840	
<210> 71 <211> 780 <212> DNA <213> Homo sapiens	
<400> 71	
gatatattaa attttatgta ttttaataaa ttataatgtg catataatca ttaataatat 60	
atatattcca caccaaggca tcagtaagaa ttaattttta aagtctgctc taatgtgaat 120	
ataaaattat gtaagaactc tgtataataa gctcacagag tacaagaaag gagaggaaaa 180	
aagtaaaaga gaactgcgaa agaactatga gggatttcca aacagcaaaa ttgtcattga 240	

agccatgaga	aactctactc	actaaattct	ttaatttctc	agcctaccca	aatattgggc	300
aaaccctaat	tctcttgcag	gggaaaagct	gagagtctgg	aactagccta	tcttccgagg	360
acttagagac	aacagtatgg	gaatttcaac	gagacgtttt	tactttcttt	tgaccaagat	420
tcaaattctt	tattccagcc	cttgataagt	aaataagaag	gtaaaggact	atttatttgt	480
aaaaagtttt	tcatgatttt	gtgatggcac	cttgttccat	atcatctcag	ataaatcaga	540
ataatttgtg	aaaattactc	ggtgatttcc	acattagata	ttttaaacct	aatgttattt	600
	aaccaaccag					660
	atctggaaaa					720
ggctgagaca	ggttagatga	tacaggcata	ccattagcag	cagactcaat	actaacccag	780

<210> 72

<211> 1025

<212> DNA

<213> Homo sapiens

<400> 72

acaaagttat gaaaaggcgg ggggcaggat gcagaataat taagcaattt tattgacaaa 60 ctthactggc attactcttt tgctgaaagt atactatatt ttggcttaca gtgtcaaaac 120 agaatttttt aaatgctttt aaaaaatgga caaaattata gatattcttg agtttaaata 180 taatgtttat atattatata tactgtacat tgtagaatgg ctaaatcaaa ctaattaaca 240 ttaagtacag acttttgata gatttatgaa cttggcttat tgagaatgag gttgaatgat 300 gatgttttca agttcaaatg tgtagtgcag tactaaaagc atgacttaat gtttatagct 360 ttaaaaagtt actaaagaat gacattttgg ttgatgttct tatgcccaat cgcttgcttt 420 cctaactctt gtgcaatttt tctttttatt gcaggtaatt cgtatgcaag aagctacacg 480 taattaaatg tgcaggatga aaagatggca caggcactgt tggtaccccc aggacctgaa 540 agetteegee tttttactag agaatetett getgetateg aaaaaegtge tgeagaagag 600 aaagccaaga agcccaaaaa ggaacaagat aatgatgatg agaacaaacc aaagccaaat 660 agtgacttgg aagctggaaa gaaccttcca tttatttatg gagacattcc tccagagatg 720 gtgtcagagc ccctggagga cctggatccc tactatatca ataagaaagt gagtattgat 780 tttagacttc taataaatct ttaatgaaac tcttaactgt aatatacttt tctgggcctt 840 atatacagca tcacaatttt tcttctgtta aagattttat aatactcttc actgtcactt 900 atttttatca caatataata aaacaaacat ttataagaaa tgaagtcaag agttggttac 960

agtcaggaaa tatga	ataga tgaatgattt	ctacaatttc	acagtgataa	ttcagatagt	1020
caaaa					1025
<210> 73 <211> 433 <212> DNA <213> Homo sapie	ens				
<400> 73					
tgtaacyata tgttaa	attta aacatctaac	atgtttgtag	ttatgatata	tcaactggtt	60
taaacaaacc agttto	gaaca aacaaattcy	attttttaaa	aaggtcctca	tgtatgtaag	120
ctccttaaat aagcco	catgt ctaatttagt	aattttactc	gtattttctg	tttcagactt	180
ttatagtaat gaataa	aagga aaggcaattt	cccgattcag	tgccacctct	gccttgtata	240
ttttaactcc actaaa	accct gttaggaaaa	ttgctabsaa	gattttggta	cattcatatc	300
cttttaatgt gaatto	geeta aatgetattt	ctaacagttg	attttaaaga	aaatgtcagt	360
tatattttca agtato	tgta aaatttcttt	gagattaatg	gtaacattgt	tagtttaatt	420
catttatttg cat					433
<210> 74 <211> 450 <212> DNA <213> Homo sapie	ens				
<400> 74 gagtgcacca aggcca	tatc acaggetttg	aagtttctta	ttattttatc	attgttttaa	60
aacaaataat attaat	ttca cagtttttgc	atcgataaac	ttttttgtgt	gttttggatc	120
atttataaat ggccat	ggta acctactaac	atttattcct	taactataat	ctactttatt	180
cagcatgctt atcatg	tgca ctattttgac	caactgtgta	tttatgacct	tgagcaaccc	240
tcctgactgg acaaag	aatg tagagtaagt	aggaataact	tctgggaatg	agaaatgcac	300
actcaaattc tctagc	aatc tccttgtggg	tatagcctga	cttatggttt	ccacttctgt	360
ctaagaaaag ttattt	tcat aatatgcagc	cggtaaggga	ggtctttcgg	gggagctatt	420
cttctacgag gtaagt	attt tcccacaaaa				450
<210> 75 <211> 701					

<212> DNA <213> Homo sapiens

<400> 75

aaaatttacc atttgyggct ttccattaca tttctatcag ataactctgc gctagtaggt	60
caaactagat gattatccat aagatacatg aaactattat tctaaaaccc aaatagttaa	120
accagattag attoctaaag aatatatttt otottoagtt taactotttg otoaggottg	180
taaaactaac taaatgaata gattatttgg taaatagaag taaggaacaa tattttaatg	240
aattgaaaaa ccacaaaagg ataggatttg ctatgattga aaacatttat tttaacagtt	300
caagcaaaat tgttaatttt ggcttggatg tttttcctag gtacacattc actggaatct	360
atacctttga gtcacttata aaaatcttgg caagagggtt ttgcttagaa gattttacgt	420
ttcttcgtga tccatggaac tggctggatt tcagtgtcat tgtgatggcg tgagtaactt	480
tgaaaatttg ataagcgcaa aggagtgaaa atagtcatag tacaaacaag gtctttgtgt	540
catatattaa atgtagagct ttcttgttag tcaagttaac tatatgggtt gtgtattttc	600
agaatacata ttagaataca tattgcaatg taaatatatc cagtaaatga tcaataaatg	660
gggttatctt catgtcatat agtctttctc ttcatcaaaa t	701
<210> 76 <211> 286 <212> DNA <213> Homo sapiens	
attigttaaa ctcacagggc tctatgtgcc aaacccagca ttaagtcctt atttagtata	60
aactttgcca aaactatcag taactctgat ttaattctgc aggtatgtaa cagaatttgt	120
aagcctaggc aatgtttcag cccttcgaac tttcagagtc ttgagagctc tgaaaactat	180
ttctgtaatc ccaggtaaga agaaactggt gtaaggtagt aggcccctta tatctccaac	240
ttttcttgtg tgttattgtg tttgtgtgtg aactccccta ttacag	286
<210> 77 <211> 515 <212> DNA <213> Homo sapiens	
<400> 77 gtaagaagaa actggtgtaa ggtagtaggc cccttatatc tccaactttt cttgtgtgtt	60
attgtgtttg tgtgtgaact cccctattac agatatgtga cagagtttgt ggacctgggc	120
aatgtctcag cgttgagaac attcagagtt ctccgagcac tgaaaacaat ttcagtcatt	180
ccaggtgaga gctaggttaa acaccgaggt tgactttaat tattgagttt gaaatcaatt	240
tatatgactt acagcattag ccttgttgct tattattaca gttcatcccg gtaaataatg	300

ccaaatgatg	tttcaatgtc	agtttagctc	ctaaaatttt	ataaattaca	tgcgtattta	360
taaagtcagc	ctttgagttt	aacagaaaat	tgcatgagac	atcttcaaaa	aatgctaatt	420
tgggcctctt	gcgctctctc	tctctcttt	tcactaccat	ggctttacta	acagatttgg	480
attttaccat	tcgctgcaga	tgtagttcaa	aaatg			515
<210> 78 <211> 564 <212> DNA <213> Homo	o sapiens					
<400> 78 aaacttcctg	actagatatt	taaaccttca	tattgaattt	ccagcaagca	cactgttcat	60
gtgtaaaatc	tgctgttcat	ctatttccca	aatcatcagg	ctatccatac	agctttggtg	120
tctaaatagt	caagcaatca	tttatggggg	aaagagaatg	tgtgtgacta	ttaagaaatc	180
atgatttctg	gcactcttcc	tcaggtaacc	tatagttctc	tctctgcagg	tttaaagacc	240
attgtggggg	ccctgatcca	gtcggtaaag	aagctttctg	atgtgatgat	cctgactgtg	300
ttctgtctga	gcgtgtttgc	tctcattggg	ctgcagctgt	tcatgggcaa	tctgaggaat	360
aaatgtttgc	agtggccccc	aagcgattct	gcttttgaaa	ccaacaccac	ttcctacttt	420
aatggcacaa	tggattcaaa	tgggacattt	gttaatgtaa	caatgagcac	atttaactgg	480
aaggataaca	ttggagatga	cagtaagaag	tattacatta	tgttaacctt	agtgttgctg	540
aatgaatttt	caactataaa	tagt				564
<210> 79 <211> 497 <212> DNA <213> Homo <400> 79	o sapiens					
	ggtgtacagc	cacctttgta	aataactgaa	atagtccaac	tctgatttat	60
tactaatact	aatgtgaata	ggattaatat	gaaataaaat	gggtttttt	ttgtattaac	120
aggtcacttt	tatgttttgg	atgggcaaaa	agacccttta	ctctgtggaa	atggttcaga	180
tgcagggtaa	gaaacataat	atatatttt	aagatataga	actctttgcg	aaaaaaaaa	240
gtaggtagga	aaacaactac	atggttatat	gtgtagcctt	accatgtatg	caataaagag	300
cagtgctgct	cccctaggaa	gtgccttgtc	tgccttaccg	gattgccact	ggtcctaaac	360
tcacagcaat	taaaaattat	ccctttgtga	agacctttcc	ccaaaatttc	acagttaaga	420

tgttctt	aaa	ttgatgctcc	aatgtgtgaa	ggcccagagt	ctgtctttgc	tgtacatcta	480
tcagago	etgt	taggaaa					497
	80 501 DNA Homo	o sapiens					
	80 caaa	aatatggtaa	ggtcagagcc	aaaagtgtgt	ggttgctagc	tttctgccat	60
tctaaat	gtc	trwaaawatt	tatttgcatc	taaattttct	atcggtcttc	ctagtgaatt	120
tcatctg	gata	agtttcacgg	tgggcaatca	cctaaagtgt	tctggaaatt	aaagcaagat	180
aattcgt	cac	agatagcagc	tttgggtttt	gaaaattcct	ataagtcaaa	taaattgaaa	240
ttgctgt	aat	ttctaaactg	accctacctc	catttctctc	tcttatagcc	agtgtccaga	300
aggatac	catc	tgtgtgaagg	ctggtcgaaa	ccccaactat	ggctacacaa	gctttgacac	360
ctttagc	tgg	gctttcctgt	ctctatttcg	actcatgact	caagactact	gggaaaatct	420
ttaccag	gttg	gtaaggtcca	aatgagcatg	cataacattt	atttttatag	acatgtatga	480
aatgaaa	agc	ataggctgag	t				501
	81 432 DNA Homo	o sapiens					
<400>	81						60
			atctaactgt				60
			atccccatt	_			120
			ctggtcattt				180
tcctggc	tgt	ggtggccatg	gcctatgagg	ggcagaatca	ggccaccttg	gaagaagcag	240
aacaaaa	aaga	ggccgaattt	cagcagatgc	tcgaacagct	taaaaagcaa	caggaagaag	300
ctcaggt	act	gagtgataaa	mgcaaagatt	tatcattatt	attmttagtt	tctaagtaga	360
aatagtg	gtta	tactatagag	ggtagattgg	aactgctttt	tcattttata	tatmggcatt	420
gtcatta	agac	ac					432

<400> 82 tgcaaactgt tttcaaagct ctgtgttcta aatagtgcct ggctttgttt tatgacaggc 60 agttgcggca gcatcagctg cttcaagaga tttcagtgga ataggtgggt taggagagct 120 gttggaaagt tcttcagaag catcaaagtt gagttccaaa agtgctaaag aatggaggaa 180 ccgaaggaag aaaagaagac agagagagca ccttgaagga aacaacaaag gagagagaga 240 cagetttece aaateegaat etgaagaeag egteaaaaga ageagettee tttteteeat 300 ggatggaaac agactgacca gtgacaaaaa attctgctcc cctcatcagg tatgattttc 360 tactaagtgc totggtttct ttgtcattgc tattgctttt tagtttttgt attttgtttt 420 ggtacacttt tgtactatct gtacttcagt tgagggacag ggaactaaca tttaatatag 480 ttgtttaaa 489 <210> 83 <211> 653 DNA <212> <213> Homo sapiens <400> 83 gtgaagacta aatgaagtgg ttgtatactt agtaaattgc aaatcagtat tgttagtcag 60 aaaaacactc tttgtactta aatttgcttt aataaaaata tcaaaatata tgtgtcctct 120 ataaatttga ttatccatgt ttaagggcaa gagtatacta actccaaaga aaacagatcc 180 tttaatatta atatttatta aataattgcg ttcttcccct acccccatcc cattcctttc 240 etttttgett tetetgeagt etetettgag tateegtgge teeetgtttt eeceaagaeg 300 caatagcaaa acaagcattt tcagtttcag aggtcgggca aaggatgttg gatctgaaaa 360 tgactttgct gatgatgaac acagcacatt tgaagacagc gaaagcagga gagactcact 420 gtttgtgccg cacagacatg gagagcgacg caacagtaac gttagtcagg ccagtatgtc 480 atccaggatg gtgccagggc ttccagcaaa tggggaagat gcacagcact gtggattgca 540 atggtgtggt ttccttggtg ggtggacett cagetetaac gteacetaet gggeaactte 600 cccagaggtg ataatagatg acctagctgc tactgacatt attcaccaat ttg 653

<210> 84

<211> 566

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<400> 84 gaattctctt aaaggtacta cctgtgatac tttttttaaa aaaaaactgt ttataactta 60 gcaataattc aatattttat tcttgaaatt cttacctgga aaattgcatg tagcatgatt 120 tgcaaagaaa tgctatgtgg tgttgtatta cttattggga agagtggttt gagccatcag 180 tatttggttt gcagggcacc accactgaaa cggaagtcag aaagagaagg ttaagctctt 240 accagatttc aatggagatg ctggaggatt cctctggaag gcaaagagcc gtgagcatag 300 ccagcattct gaccaacaca atggaaggta agagcaggtc atggaacagc caactttctg 360 tgattatgtg ctttgtgaac tattccttct tttcatagaa ttactgaagt ctgttaccca 420 gatcgaacta tatattagac ctaagaatgt gatatatggt gtacattatc acattgntta 480 caaaactaat attggcctta ttctttttga cttgggtcct taccttactt gcagagtgat 540 atttcaacac ttgatattat atcaat 566 <210> 85 748 <211> <212> DNA <213> Homo sapiens <400> 85 tagtcatttt aaaagcaaaa tattaaattc aaagtgctta ttttctgtat tcaaaagaga 60 aaaaagtcga tctatatgac attttaatta acattttctg aaaatattta atgggattgt 120 cttctcaagt ttcttaagta atatgaactt ctattttcaa atataagcat caattttgtt 180 aaataatgta aaatctacta gcaataataa ctcatttttg ttgttattta ctactcttcc 240 ttgttattgt ccctccagaa cttgaagaat ctagacagaa atgtccgcca tgctggtata 300 360 gatttgccaa tgtgttcttg atctgggact gctgtgatgc atggttaaaa gtaaaacatc ttgtgaattt aattgttatg gatccatttg ttgatcttgc catcactatt tgcattgtct 420 taaataccct ctttatggcc atggagcact accccatgac tgagcaattc agtagtgtgt 480 tgactgtagg aaacctggta agtacatttg aagtttactt atttactttg gtagatgtgg 540 gagagataga ccaaagggaa agatgtattt gtgctgtgtt gaacccaaaa attatatcct 600 ctttcctcat agaaagaaat atctaaggaa tattacaggg aatctcagag atacagccta 660

aaactcaact ggtatgaatg ctgattgttt aggccaatgt ctgtgctgat tgatcatggt

gtcttaccag ttgtaaacgt ctcaaaat

720

748

<210> 86 <211> 664 <212> DNA <213> Homo sapiens <400> 86 ctaagacttg aattgatttg tcactattct ctcactttaa attttagata tttttattcc 60 tgtctaatgt tcttctttat aaattcgtgt agcatcagtg ttttcagtgc tcttgatagt 120 agtgctgatc tctaattttt taggtcttta ctgggatttt tacagcagaa atggttctca 180 agatcattgc catggatcct tattactatt tccaagaagg ctggaatatc tttgatggaa 240 ttattgtcag cctcagttta atggagcttg gtctgtcaaa tgtggaggga ttgtctgtac 300 tgcgatcatt cagactggta tctatttata tatatccctg tcgctcattg gcacaacatt 360 tattttgaaa ttgaatcaat gtatatttat ataattatta attttaattt taaatttaca 420 tcaatatgtg acattctaag aaaacatgta aacatccyct ttaaagctaa accattttct 480 aagaatgatg aaagcattca aaatactcta taatgattag gtatgtaggg cacattagaa 540 aacctacaag tactttctaa aactgtgttt taagtttatg aagctttttt ggccttacag 600 tctgtaaaga tacgcaaata aaaatttaga ccccagttaa ttttagcttt ttattaaccc 660 tact 664 <210> 87 750 <211> <212> DNA <213> Homo sapiens <400> 87 tatttttatt tttgcactta aatgatatta tgaccagatt tacaattcta atattgttaa 60 cactattttt tctggatttg aaattgaatc agttcagtat attttgagtt tttacatcta 120 ccacgtgtgg ttctatgata ccacatacta ataaaataat gtctaaaatt atattatgat 180 tactactaac agcatctttt cacttgatta cagcttagag ttttcaagtt ggcaaaatcc 240 300 tggcccacac taaatatgct aattaagatc attggcaatt ctgtgggggc tctaggaaac ctcaccttgg tgttggccat catcgtcttc atttttgctg tggtcggcat gcagctcttt 360 ggtaagaget acaaagaatg tgtetgeaag ateaatgatg actgtaeget eccaeggtgg 420 cacatgaacg acttetteca etectteetg attgtgttee gegtgetgtg tggagagtgg 480

atagagacca tgtgggactg tatggaggtc gctggccaaa ccatgtgcct tattgttttc

540

atgttggtca tggtcattgg aaaccttgtg gtatgtatgt agtacaaatg ctcataaatt 600)
agaacaagag cagacagtag ctaggaacgt ggccagatgt agtaaacata tctctggttt 660)
atagtaagtg gcctagactg aaatccccct attagcactc agagaataag caagttattt 720)
aacttctcct gggctctggt ttcccatttt 750)
<210> 88 <211> 768 <212> DNA <213> Homo sapiens	
<pre><400> 88 ccttagagca ggatattagg tcctttaaag agtgtgtgac ttagacatgg catctgaaat 60</pre>)
atagtaagca ttcaataaac atttgttgaa ataattttag caaagatcta tgagttccct 120)
ttttaggctg ttatttaaat gcatatttca atattaarat aggcattttt cttttttct 180)
tttaggttct gaacctcttt ctggccttat tgttgagttc atttagctca gacaaccttg 240)
ctgctactga tgatgacaat gaaatgaata atctgcagat tgcagtagga agaatgcaaa 300)
agggaattga ttatgtgaaa aataagatgc gggagtgttt ccaaaaagcc ttttttagaa 360)
agccaaaagt tatagaaatc catgaaggca ataagataga cagctgcatg tccaataata 420)
ctggaattga aataagcaaa gagcttaatt atcttagaga tgggaatgga accaccagtg 480)
gtgtaggtac tggaagcagt gttgaaaaat acgtaatcga tgaaaatgat tatatgtcat 540)
tcataaacaa ccccagcetc accgtcacag tgccaattgc tgttggagag tctgactttg 600)
aaaacttaaa tactgaagag ttcagcagtg agtcagaact agaagaaagc aaggaggtaa 660)
ggaatgcttt taaatttttt gttccatttc ctatgataac catgtactac agttatttac 720)
tattttcatt gtgcttatat gcattatcga aaagcaatga ttgtaagt 768	}
<210> 89 <211> 471 <212> DNA <213> Homo sapiens	
<400> 89 taattattag tacataatga tcagtaatgc taatagagtt aaatgctatc actacatttt 60	`
ttttcacaca atgacacagt atttcccagt tagttaaata aaagggggaa aatcacatct 120	
ttgaaatggg attttgtttc cagaaattaa atgcaaccag ctcatctgaa ggaagcacag 180	
ttgatgttgt tctaccccga gaaggtgaac aagctgaaac tgaacccgaa gaagacctta 240	
aaccggaagc ttgttttact gaaggtaaac aagctctgat gtgattaaat acaatctccc 300	

.. - ----

cttgttcttt	acggagactg	aatatgcctc	atttaaaaaa	aaaaatttag	caaacgaggt	360
gtggtggctt	atgcctgtaa	ccccaaaatt	ttgggaggct	acggtaggag	gattgcttga	420
ccccaggagt	ttgagaccac	cctgggaaat	gtagtaaggc	tttgcctcta	С	471
<210> 90 <211> 623 <212> DNA <213> Homo	o sapiens					
<400> 90 gaattctaag	tagctggctg	agtatataag	tctgagaata	attcattata	caggagggat	60
gctgacgata	actaggaaat	gaaggagatg	gttaccctat	gaaatgatta	cctggaagtg	120
gagtggggaa	ggggcaagaa	agtttatttt	ttcctattta	agattaaaat	atattttta	180
attaactata	tttsattttt	aggatgtatt	aaaaagtttc	cattctgtca	agtaagtaca	240
gaagaaggca	aagggaagat	ctggtggaat	cttcgaaaaa	cctgctacag	tattgttgag	300
cacaactggt	ttgagacttt	cattgtgttc	atgatccttc	tcagtagtgg	tgcattggta	360
agtgaaatgc	atattggcaa	gaatcagatt	ctggtgaaat	agtttattct	ccaaaattac	420
cagatgcaaa	cactgagctt	cagaatcaaa	agaaaaggca	tatctgtgtc	ttgcagagct	480
tggcacccaa	ggtttaacga	tgcaaaattc	agttctgaac	aaatcagcac	catgaaacag	540
ccagatggaa	tttctcatct	ggtgtttatc	taacagatgt	tttcctcact	gagacaacca	600
tttgcagaga	cattctgtaa	cca				623
<210> 91 <211> 520 <212> DNA <213> Homo	o sapiens					
<400> 91 ctagttagtc	tttagatttg	tctcatgttc	aatgtttatg	taaaatatca	ataatcaaaa	60
ttattctttt	gtactcacta	ttatactaag	caatttttc	aaatatttag	aagaagcaag	120
ccatttaagt	aaaataaaat	atttttgatt	cataggcctt	tgaagatata	tacattgaac	180
agcgaaagac	tatcaaaacc	atgctagaat	atgctgacaa	agtetttace	tatatattca	240
ttctggaaat	gcttctcaaa	tgggttgctt	atggatttca	aacatatttc	actaatgcct	300
ggtgctggct	agatttcttg	atcgttgatg	taagtatttt	aagtgatttt	tataaaattg	360
tttttaaaag	aggcaagttt	gacatttcat	atgtttctgt	tattaaaact	ttcactaata	420

atgacataat	tatgcagtta	tttaaacaaa	actgtaacat	atgcaacaat	gaggaatatc	480
tcatgggaaa	gagtagagga	ggtcctaaac	atgggcagtg			520
<210> 92 <211> 595 <212> DNA <213> Homo	o sapiens					
<400> 92						
ctaactaata	atttaagcac	acatccatga	aggatctggc	attgaactca	atcctgaatt	60
atcagtggta	tatgcacaag	ttgaaaaggg	gtccatggta	taaaatatct	aactggagat	120
attgacacgt	gttgataaat	atgggcaagt	attctggttt	cattggttaa	aaaaaagcaa	180
tagtatgaga	tgagactggc	aatataagat	gaccccacta	tgtggaagat	gaaagttgcc	240
aaggtatgtc	caaattagta	tttagtctgc	attaaataga	taccacaccc	tataccttca	300
gtcaacagtt	tatttcttgg	tgaactaatt	aattttttt	tccttttgta	ggtttctttg	360
gttagcctgg	tagccaatgc	tcttggctac	tcagaactcg	gtgccatcaa	atcattacgg	420
acattaagag	ctttaagacc	tctaagagcc	ttatcccggt	ttgaaggcat	gagggtaaga	480
agaatagaca	ctctaattat	tcatgtcaaa	aattacatgt	aggtaatgat	ttagatagaa	540
aagggtgcca	tactcttctg	atatttattt	caatagaaat	tacagaatta	gaagc	595
<210> 93 <211> 787 <212> DNA <213> Homo	sapiens					
<400> 93						
ccagcataca	aacattttct	gactccatct	tactatacca	ggtttttaat	gatttctttt	60
catactgtag	catattttgc	tttccttaaa	accttagctc	tttagttgtg	tcattgtttg	120
ttttccttca	aatatgtgct	agaaaaatta	gaagaaacaa	cttgtccacc	tagattttta	180
tttaactctt	ttcaagcaca	tattaatact	aaacaaatac	attgaaggaa	tggtttccat	240
tcaaaaggtt	tgtaagctat	gttcccctcg	ctgtctcttc	taggtggttg	tgaatgctct	300
tgttggagca	attccctcta	tcatgaatgt	gctgttggtc	tgtctcatct	tctggttgat	360
ctttagcatc	atgggtgtga	atttgtttgc	tggcaagttc	taccactgtg	ttaacatgac	420
aacgggtaac	atgtttgaca	ttagtgatgt	taacaatttg	agtgactgtc	aggctcttgg	480
caagcaagct	cggtggaaaa	acgtgaaagt	aaactttgat	aatgttggcg	ctggctatct	540
tgcactgctt	caagtggtaa	gtggctactg	tacgagtttt	gaaaaagttt	tcaagatgtt	600

tcaaggaaga	ttatttccct	gatgttcttc	gtttgaatga	ctaacatttg	acagcatgaa	660
aaaaagttaa	tgataacacc	tataatatca	gcttgaattg	atcataaaaa	agatgttaca	720
attattttat	aatgtatttt	ccttagtgtt	aagcttttag	tatgttttaa	tgtgatttta	780
tatttct						787
<210> 94 <211> 438 <212> DNA <213> Homo	o sapiens					
<400> 94 aaaggaaaca	aqttccaqac	tttaaataca	aatgttttc	tatttcaatt	ttatttcaat	60
			aaaaagttat			120
tttcatctgg	ttaaatgtca	ttgttaggtg	aaattttat	gaacaattca	aatatatgtt	180
atttacaggc	cacatttaaa	ggctggatgg	atattatgta	tgcagctgtt	gattcacgag	240
atgtaagtat	cactcaaata	ttatttatag	gttctagatt	tcttatggtg	aatattggtg	300
gtaatttaaa	cactgataca	tccaaaattc	tatattagaa	catttaatat	tgcatataaa	360
aaatgaacag	tctgcttcaa	tatagatgat	gcttgattaa	tgtgtgccta	atatacaata	420
tgtagctaat	atgaaacg					438
	o sapiens					
<400> 95 gtaaggcaca	atgggaaaag	agaatcaaga	acaatcataa	aacttgcaaa	ccttcatttt	60
actagatcat	actagtttta	aaaaattgtt	tttgtagaac	aatatctcag	ggtaaggcaa	120
aagtagcact	gtattaagta	acagcactca	ataaattact	gatttagtgt	aagtatttat	180
agtatttttc	atattattta	atattttcaa	tatcatttag	gttaaacttc	agcctgtata	240
tgaagaaaat	ctgtacatgt	atttatactt	tgtcatcttt	atcatctttg	ggtcattctt	300
cactctgaat	ctattcattg	gtgtcatcat	agataacttc	aaccagcaga	aaaagaagat	360
aagtattctt	tagcttttac	ctttcttcat	tctggggttc	tgtctgttaa	tacagccaaa	420
taaccagaat	acctgtggtc	atgacagact	taaatcatgt	ttatattatt	ttcagttgcc	480
catgtggtta	tttaagctgc	agggattcca	gcctctagtc	agtggctcct	ctcaaagttt	540

atctattgga tagctttctg acccaaaaat gtgtccactc cttcggaccc atccaacggg	600
tctccagtgc tttagcttgg cttacagagc ctttcag	637
<210> 96 <211> 637 <212> DNA <213> Homo sapiens	
<400> 96	
accettgtge etacttttaa acatagtata ateaaattag gateetgtag egateagagt	60
tttatgtacg taaggatttt gcataatatt aagatattca gaatttcaca taaatgggaa	120
aagcaggata aatgtatatg taggaggata atatccactt aaaaattaga aaagattaaa	180
ggaaagacaa atattttttg tgaaagtact attggaacac agaattgtaa ccagttttat	240
actatgtett taetttggag gteaagaeat etttatgaea gaggaaeaga aaaaatatta	300
caatgcaatg aagaaacttg gatccaagaa acctcagaaa cccatacctc gcccagcagt	360
aagaattact tgtctccttt aatgttccaa agccatgcgt ccatatggtc aaattgagca	420
atgctctgga gcagaacata ttaggtgata tcaccaatat tgagccctaa ttataaagtt	480
catattttgc atcataattc acaacttctg cactcattag gagttaccac attccaaaaa	540
aaggaggtaa tgttctttat aatttgtgag ttgaaaactt ctagctcagg gttcctaata	600
aatacttcca aagcaaggtt cactttcctg ctaccaa	637
<210> 97 <211> 759 <212> DNA <213> Homo sapiens	
<400> 97 tatataaacc aaatatgctt tgtttagcta tataaatttt ttttccattt tttttaacat	60
gaagagaaaa aaagcacaca aaattgtttg gggtaatatg aggagggtgc acatccatcc	120
cgtatgtgga agggctttat ctacaatttt actgcattat tctttatgaa atatatatag	180
taaccttatt tetettetet caetttetag aacaaattee aaggaatggt etttgatttt	240
gtaaccagac aagtetttga tatcagcate atgateetca tetgeetcaa catggteace	300
atgatggtgg aaacggatga ccagggcaaa tacatgaccc tagttttgtc ccggatcaac	360
ctagtgttca ttgttctgtt cactggagaa tttgtgctga agctcgtctc cctcagacac	420
tactacttca ctataggctg gaacatettt gaetttgtgg tggtgattet etceattgta	480
ggtaagaaca gcttaattac caagaggtat agttacagag aaacagttgc cccaggacct	540

tctagctgat	taacatggaa	attaggtctg	agaataataa	tgcatataga	tgtaaagttc	600
aacactagca	tatttgaata	aaaactctga	aacctgggtt	tattcacaaa	gctaactagt	660
tagaaaccat	gttaggaata	ccagatttgg	gaaagaggtg	aagaagacag	gaaataaaca	720
ttatcaggta	ctctcctaat	cttaaaccaa	ggtcacagg			759

<210> 98

<211> 3975

<212> DNA

<213> Homo sapiens

<400> 98

aatctgtaat gctaatgcag ggagtggatc caaatattta ataaaggctc atattcataa 60 caagtttgtt gtgttcatag accttaaaaa agataaagcc atcatgtaaa gtgaaaagat 120 attatctgtt tagctgtgtt ctatgttttc cataggtatg tttctggctg agatgataga 180 aaagtatttt gtgtccccta ccttgttccg agtgatccgt cttgccagga ttggccgaat 240 cctacgtctg atcaaaggag caaaggggat ccgcacgctg ctctttgctt tgatgatgtc 300 cettectgcg ttgtttaaca tcggcetect getetteetg gteatgttta tetatgeeat 360 ctttgggatg tccaactttg cctatgttaa aaaggaagct ggaattgatg acatgttcaa 420 ctttgagacc tttggcaaca gcatgatctg cttgttccaa attacaacct ctgctggatg 480 ggatggattg ctagcaccta ttcttaatag tgcaccaccc gactgtgacc ctgacacaat 540 tcaccctggc agctcagtta agggagactg tgggaaccca tctgttggga ttttcttttt 600 tgtcagttac atcatcatat ccttcctggt ggtggtgaac agttacatcg cggtcatcct 660 720 ggagaacttc agtgttgcta ctgaagaaag tgcagagccc ctgagtgagg atgactttga 780 gatgttctat gaggtttggg aaaagtttga tcccgatgcg acccagttta tagagttctc taaactetet gattttgeag etgeeetgga teeteetett eteatageaa aacceaacaa 840 agtccagctt attgccatgg atctgcccat ggtcagtggt gaccggatcc actgtcttga 900 tattttattt gcctttacaa agcgtgtttt gggtgagagt ggagagatgg atgcccttcg 960 aatacagatg gaagacaggt ttatggcatc aaacccctcc aaagtctctt atgagcctat 1020 tacaaccact ttgaaacgta aacaagagga ggtgtctgcc gctatcattc agcgtaattt 1080 cagatgttat cttttaaagc aaaggttaaa aaatatatca agtaactata acaaagaggc 1140 aataaagggg aggattgact tacctataaa acaagacatg attattgaca aactgaatgg 1200 gaactccact ccagaaaaaa cagatgggag ttcctctacc acctctcctc cttcctatga 1260

tagtgtaaca	aaaccagaca	aggaaaagtt	tgagaaagac	aaaccagaaa	aagaaagcaa	1320
aggaaaagag	gtcagagaaa	atcaaaagta	aaaagaaaca	aagaattatc	tttgtgatca	1380
attgtttaca	gcctatgaag	gtaaagtata	tgtgtcaact	ggacttcaag	aggaggtcca	1440
tgccaaactg	actgttttaa	caaatactca	tagtcagtgc	ctatacaaga	cagtgaagtg	1500
acctctctgt	cactgcaact	ctgtgaagca	gggtatcaac	attgacaaga	ggttgctgtt	1560
tttattacca	gctgacactg	ctgaggagaa	acccaatggc	tacctagact	atagggatag	1620
ttgtgcaaag	tgaacattgt	aactacacca	aacaccttta	gtacagtcct	tgcatccatt	1680
ctatttttaa	cttccatatc	tgccatattt	ttacaaaatt	tgttctagtg	catttccatg	1740
gtccccaatt	catagtttat	tcataatgct	atgtcactat	ttttgtaaat	gaggtttacg	1800
ttgaagaaac	agtatacaag	aaccctgtct	ctcaaatgat	cagacaaagg	tgttttgcca	1860
gagagataaa	atttttgctc	aaaaccagaa	aaagaattgt	aatggctaca	gtttcagtta	1920
cttccatttt	ctagatggct	ttaattttga	aagtatttta	gtctgttatg	tttgtttcta	1980
tctgaacagt	tatgtgcctg	taaagtctcc	tctaatattt	aaaggattat	ttttatgcaa	2040
agtattctgt	ttcagcaagt	gcaaatttta	ttctaagttt	cagagctcta	tatttaattt	2100
aggtcaaatg	ctttccaaaa	agtaatctaa	taaatccatt	ctagaaaaat	atatctaaag	2160
tattgcttta	gaatagttgt	tccactttct	gctgcagtat	tgctttgcca	tcttctgctc	2220
tcagcaaagc	tgatagtcta	tgtcaattaa	ataccctatg	ttatgtaaat	agttatttta	2280
tcctgtggtg	catgtttggg	caaatatata	tatagcctga	taaacaactt	ctattaaatc	2340
aaatatgtac	cacagtgtat	gtgtcttttg	caagcttcca	acagggatgt	atcctgtatc	2400
attcattaaa	catagtttaa	aggctatcac	taatgcatgt	taatattgcc	tatgctgctc	2460
tattttactc	aatccattct	tcacaagtct	tggttaaaga	atgtcacata	ttggtgatag	2520
aatgaattca	acctgctctg	tccattatgt	caagcagaat	aatttgaagc	tatttacaaa	2580
cacctttact	tttgcacttt	taattcaaca	tgagtatcat	atggtatctc	tctagatttc	2640
aaggaaacac	actggatact	gcctactgac	aaaacctatt	cttcatattt	tgctaaaaat	2700
atgtctaaaa	cttgcgcaaa	tataaataat	gtaaaaatat	aatcaacttt	atttgtcagc	2760
attttgtaca	taagaaaatt	attttcaggt	tgatgacatc	acaatttatt	ttactttatg	2820
cttttgcttt	tgatttttaa	tcacaattcc	aaacttttga	atccataaga	tttttcaatg	2880
gataatttcc	taaaataaaa	gttagataat	gggttttatg	gatttctttg	ttataatata	2940

ttttctacca	ttccaatagg	agatacattg	gtcaaacact	caaacctaga	tcattttcta	3000
ccaactatgg	ttgcctcaat	ataacctttt	attcatagat	gtttttttt	attcaacttt	3060
tgtagtattt	acgtatgcag	actagtctta	tttttttaat	tcctgctgca	ctaaagctat	3120
tacaaatata	acatggactt	tgttctttt	agccatgaac	aaagtggcaa	agttgtgcaa	3180
ttacctaaca	tgatataaat	ttttgttttt	tgcacaaacc	aaaagtttaa	tgttaattct	3240
ttttacaaaa	ctatttactg	tagtgtattg	aagaactgca	tgcagggaat	tgctattgct	3300
aaaaagaatg	gtgagctacg	tcattattga	gccaaaagaa	taaatttcat	tttttattgc	3360
atttcactta	ttggcctctg	gggtttttg	tttttgtttt	ttgctgttgg	cagtttaaaa	3420
tatatataat	taataaaacc	tgtgcttgat	ctgacatttg	tatacataaa	agtttacatg	3480
aattttacaa	cagactagtg	catgattcac	caagcagtac	tacagaacaa	aggcaaatga	3540
aaagcagctt	tgtgcacttt	tatgtgtgca	aaggatcaag	ttcacatgtt	ccaactttca	3600
ggtttgataa	taatagtagt	aaccacctac	aatagctttc	aatttcaatt	aactcccttg	3660
gctataagca	tctaaactca	tcttcttca	atataattga	tgctatctcc	taattacttg	3720
gtggctaata	aatgttacat	tctttgttac	ttaaatgcat	tatataaact	cctatgtata	3780
cataaggtat	taatgatata	gttattgaga	atttatatta	acttttttt	caagaaccct	3840
tggatttatg	tgaggtcaaa	accaaactct	tattctcagt	ggaaaactcc	agttgtaatg	3900
catatttta	aagacaattt	ggatctaaat	atgtatttca	taattctccc	ataataaatt	3960
atataaggtg	gctaa					3975

<210> 99

<211> 22

<212> DNA <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic oligonucleotide

<400> 99

tgtgttctgc cccagtgaga ct

22

<210> 100

<211> 24 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic oligonucleotide

```
<400> 100
cttcctgctc tgcccaaact gaat
                                                                      24
<210> 101
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 101
ggcgatgtaa tgtaaggtgc tgtc
                                                                     24
<210> 102
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 102
gtgccttcag ttgcaattgt tcag
                                                                     24
<210> 103
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 103
ttaggaattt catatgcaga ataa
                                                                     24
<210> 104
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 104
tgggccattt ttcgtcgtc
                                                                     19
<210> 105
<211> 25
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 105
                                                                     25
gaaagacgca ttgcagaaga aaagg
<210> 106
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 106
ctattggcat gtgttggtgc taca
                                                                     24
<210> 107
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 107
gtgctggttt ctcatttaac tttac
                                                                     25
<210> 108
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 108
                                                                     25
ttcccaactt aatttgatat ttagc
<210> 109
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 109
gcagtttggg cttttcaatg ttag
                                                                     24
<210> 110
<211> 24
```

```
<212> DNA
 <213> Artificial Sequence
 <220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 110
gacacagttt caraatcccr aatg
                                                                      24
<210> 111
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 111
ttagggctac gtttcatttg tatg
                                                                      24
<210> 112
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 112
agcactgatg gaaaaccaaa ctat
                                                                     24
<210> 113
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 113
agcccatgca gtaatataaa tcct
                                                                     24
<210> 114
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 114
tccaggctga taagctatgt ctaa
                                                                     24
```

```
<210> 115
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 115
ctgtggcctg cctgagcgta tt
                                                                     22
<210> 116
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 116
                                                                     24
ccaattctac tttttaagga aatg
<210> 117
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 117
                                                                     19
aaatacttgt gcctttgaa
<210> 118
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 118
gtacatacaa tatacacaga tgc
                                                                     23
<210> 119
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
```

```
<400> 119
aggcagcaga acgacttgta ata
                                                                     23
<210> 120
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 120
atccggtttt aatttcataa ctca
                                                                     24
<210> 121
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 121
gttgagcacc cttagtgaat aata
                                                                     24
<210> 122
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 122
tcacacgctc tagactactt ctct
                                                                     24
<210> 123
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 123
tgcaaatact tcagcccttt caaa
                                                                     24
<210> 124
<211> 22
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 124
ttccccacca gactgctctt tc
                                                                     22
<210> 125
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 125
gcagcaggca ggctctca
                                                                     18
<210> 126
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 126
tctcccatgt tttaattttc aacc
                                                                     24
<210> 127
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 127
                                                                     24
ataatcttgc aaaatgaaat caca
<210> 128
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 128
atccgggatg acctactgg
                                                                     19
<210> 129
```

<211> 24

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 129
                                                                     24
gataacgaga gccgtagaga ttcc
<210> 130
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 130
                                                                     20
agccagccat gcctgaacta
<210> 131
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 131
tgtttgcttg tcatattgct caa
                                                                     23
<210> 132
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 132
tgcactattc ccaactcaca aa
                                                                     22
<210> 133
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 133
                                                                     24
aagggtgtct ctgtaacaaa aatg
```

```
<210> 134
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 134
                                                                     20
gtgatggcca ggtcaacaaa
<210> 135
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 135
ctgggactgt tctccatatt ggtt
                                                                     24
<210> 136
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 136
tttgcagggg ccaggaag
                                                                     18
<210> 137
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 137
                                                                     23
cattgtggga aaatagcata agc
<210> 138
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
```

```
<400> 138
                                                                     23
gcaagaaccc tgaatgttag aaa
<210> 139
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 139
taatgctttt aagaatcata caaa
                                                                     24
<210> 140
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 140
                                                                     21
ccagcgtggg agttgacaat c
<210> 141
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 141
                                                                     20
cggcatgcag ctctttggta
<210> 142
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 142
atgtgccatg ctggtgtatt tc
                                                                     22
<210> 143
<211> 23
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 143
                                                                     23
cacccatctt ctaatcacta tgc
<210> 144
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 144
cagcaatttg gagattattc att
                                                                     23
<210> 145
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 145
gcagccactg atgatgataa
                                                                     20
<210> 146
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 146
                                                                     21
ctgccagttc ctataccact t
<210> 147
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 147
tacagcagaa attgggaaag at
                                                                     22
<210> 148
<211> 24
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 148
gtattcatac ctacccacac ctat
                                                                     24
<210> 149
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 149
                                                                     23
ttcttggcag gcaacttatt acc
<210> 150
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 150
taagctgcac tccaaatgaa agat
                                                                     24
<210> 151
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 151
ggctgaatgt ttccacaact
                                                                     20
<210> 152
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 152
gttcaactat tcggaaacac g
                                                                     21
```

```
<210> 153
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 153
                                                                     19
aggcagagga aaacaatgg
<210> 154
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 154
acaaggtggg ataattaaaa atg
                                                                     23
<210> 155
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 155
gtttctctgc cctcctattc c
                                                                     21
<210> 156
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 156
aagctacctt gaacagagac a
                                                                     21
<210> 157
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
```

```
<400> 157
aatgatgatt ctgtttatta
                                                                      20
<210> 158
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 158
aatttgccat tccttttg
                                                                     18
<210> 159
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 159
ttgacatcga agacgtgaat aatc
                                                                     24
<210> 160
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 160
ccatctgggc tcataaactt gta
                                                                     23
<210> 161
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 161
ccctttgaaa attatatcag taa
                                                                     23
<210> 162
<211> 23
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 162
                                                                     23
atttggtcgt ttatgcttta ttc
<210> 163
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 163
                                                                     24
tccagcacta aaatgtatgg taat
<210> 164
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 164
                                                                     21
atttggcaga gaaaacactc c
<210> 165
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 165
ttttagccat ccattttcta tttt
                                                                     24
<210> 166
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 166
                                                                     22
tattttcccc catatcattt ga
<210> 167
<211> 21
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 167
tttgcaagaa actagaaagt c
                                                                      21
<210> 168
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 168
ttgatgcgtg acaaaatgg
                                                                      19
<210> 169
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 169
gaccagagtg aatatgtgac tacc
                                                                      24
<210> 170
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 170
ctgggatgat cttgaatcta atc
                                                                     23
<210> 171
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 171
gcaactcagt tcatggaatt tgaa
                                                                     24
```

```
<210> 172
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 172
cttgttttcg ttttaaagta gta
                                                                     23
<210> 173
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 173
caaagatcac cctggaagct cagtt
                                                                     25
<210> 174
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 174
                                                                     25
ttcaagcgca gctgcaaact gagat
<210> 175
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 175
acateggeet cetactette eta
                                                                     23
<210> 176
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
```

```
<400> 176
acagatgggt tcccacagtc c
                                                                     21
<210> 177
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 177
taacgcatga tttcttcact ggtt
                                                                     24
<210> 178
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 178
atcccaaaga tggcgtagat ga
                                                                     22
<210> 179
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 179
tgagaaatag gctaaggacc tcta
                                                                     24
<210> 180
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 180
cctaggggct ggattcc
                                                                     17
<210> 181
<211> 23
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 181
 aaggggtgca aacctgtgat ttt
                                                                      23
 <210> 182
<211> 21
 <212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400>
      182
agggccatgt ggttgccata c
                                                                      21
<210> 183
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 183
cttccggttt atgttttcat ttct
                                                                      24
<210> 184
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 184
tctttattag ttttgcacat ttta
                                                                      24
<210> 185
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 185
caatccttcc aaggtctcct atc
                                                                     23
<210> 186
```

<211> 24

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 186
tttcatcttt gccttcttgc tcat
                                                                     24
<210> 187
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 187
catgtccact gcagcttgtc ca
                                                                     22
<210> 188
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 188
tcccctttac acagagtcac agtt
                                                                     24
<210> 189
<211> 15
<212> DNA
<213> Homo sapiens
<400> 189
gcatttgaag atata
                                                                     15
<210> 190
<211> 15
<212> DNA
<213> Homo sapiens
<400> 190
gcatttgacg atata
                                                                     15
<210> 191
<211> 15
<212> DNA
<213> Homo sapiens
```

```
<400> 191
 atcatatcct tcctg
                                                                      15
 <210> 192
 <211> 15
 <212> DNA
 <213> Homo sapiens
 <400> 192
atcatatmct tcctg
                                                                      15
<210> 193
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 193
atgggttgaa tgactttctg acat
                                                                      24
<210> 194
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 194
aggcatttcc tgtacaggga ctac
                                                                      24
<210> 195
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 195
acaggaaatg cctcttctta cttc
                                                                     24
<210> 196
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
```

```
<400> 196
tttccccaag gattctacta ctgt
                                                                      24
<210> 197
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 197
agtgcatgta actgacacaa tcac
                                                                      24
<210> 198
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 198
cttgcgttcc tgtttgggtc tct
                                                                      23
<210> 199
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 199
tccgcttctt taccagggaa tc
                                                                     22
<210> 200
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 200
aggcagtgaa ggcaacttga ctaa
                                                                     24
<210> 201
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 201
cagggcaata tttataaata atgg
                                                                     24
<210> 202
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 202
tttggaaaat gtgtagctca ataa
                                                                     24
<210> 203
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 203
aaggcatggt agtgcataaa ag
                                                                     22
<210> 204
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 204
                                                                     22
atgaaacata aagggaggtc aa
<210> 205
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 205
aatgtgagct tggctattgt ctct
                                                                     24
<210> 206
<211> 23
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 206
ataggctccc accagtgatt tac
                                                                     23
<210> 207
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 207
aggcccctta tatctccaac tg
                                                                     22
<210> 208
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 208
                                                                     22
caacaaggct tctgcacaaa ag
<210> 209
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 209
                                                                     19
cttggtggct tgccttgac
<210> 210
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 210
tcatgagtgt cgccatcagc
                                                                     20
```

```
<210> 211
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 211
ggaaagctga tggcgacact
                                                                     20
<210> 212
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 212
ctgagacatt gcccaggtcc
                                                                     20
<210> 213
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 213
tttttacccg ttgctttctt ta
                                                                     22
<210> 214
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 214
tatcccttgc tctttcattt atct
                                                                     24
<210> 215
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
```

```
<400> 215
gccggtaaaa tagctgttga gtag
                                                                     24
<210> 216
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 216
gccattgcaa acatttattt cgta
                                                                     24
<210> 217
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 217
gcgtgtttgc gctaatag
                                                                     18
<210> 218
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 218
ctaagtcact tgattcacat ctaa
                                                                     24
<210> 219
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 219
acagggtggc tgaagtgttt ta
                                                                     22
<210> 220
<211> 20
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 220
                                                                     20
gtgggaggtg gcaggttatt
<210> 221
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 221
                                                                     23
caattagcag acttgccgtt att
<210> 222
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 222
tctcttgagt tcggtgtttt atga
                                                                     24
<210> 223
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 223
                                                                     24
accgaactca agagaattgc tgta
<210> 224
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 224
                                                                     24
aaaggaccgt atgcttgttc acta
<210> 225
<211> 24
```

```
<212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 225
tatgaatgcg cattttactc tttg
                                                                      24
<210> 226
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 226
tggagctcaa cttagatgct actg
                                                                      24
<210> 227
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 227
ggtgctggtg ggataggagt tttt
                                                                      24
<210> 228
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 228
tccattaaat tctggcatat tctt
                                                                     24
<210> 229
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 229
tcagagggt gctttcttcc acat
                                                                     24
```

```
<210> 230
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 230
                                                                     24
cttcggctgt cattgtcctc aaag
<210> 231
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 231
gcaaaggaca ttggctctga gaat
                                                                     24
<210> 232
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 232
ctgcctgcac cagtcacaac tct
                                                                     23
<210> 233
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 233
tgggctttgc tgctttcaa
                                                                     19
<210> 234
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
```

```
<400> 234
                                                                     24
agtaactgtg acgcaggact ttta
<210> 235
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 235
ccctgttcct ccagcagatt a
                                                                     21
<210> 236
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 236
                                                                     20
gtgatggcca ggtcaacaaa
<210> 237
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 237
                                                                     23
tttgatttgg gactgttgta aac
<210> 238
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 238
aaggcaatta taaactcttt caag
                                                                     24
<210> 239
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 239
tgggagttaa attaagttgc tcaa
                                                                     24
<210> 240
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 240
acattttatg aacactccca gtta
                                                                     24
<210> 241
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 241
attaacactg ttcttgcttt tat
                                                                     23
<210> 242
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 242
gtgccagcgt gggagttc
                                                                     18
<210> 243
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 243
gtgggggctc taggaaacct
                                                                     20
<210> 244
<211> 24
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 244
tttaatgaaa atgaggaaaa tgtt
                                                                     24
<210> 245
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 245
gaccaagcat ttttatttca ttc
                                                                     23
<210> 246
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 246
agtggcagca agattgtca
                                                                     19
<210> 247
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 247
                                                                     19
ggccttgctt ttgagttcc
<210> 248
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 248
ggtctttgcc tatttctatg gtg
                                                                     23
```

```
<210> 249
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 249
ttaaaccgct tgaagatcta aata
                                                                     24
<210> 250
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 250
tatacaccaa aatatctcct tat
                                                                     23
<210> 251
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 251
ggggcacacc taattaattt ttat
                                                                     24
<210> 252
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 252
aaagaggata ctcaagacca cata
                                                                     24
<210> 253
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
```

```
<400> 253
cccaccaaca caaatatacc taat
                                                                     24
<210> 254
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 254
tgaagggaaa gggaaaagat tt
                                                                     22
<210> 255
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 255
tccagcctta ggcacctgat aa
                                                                     22
<210> 256
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 256
                                                                     24
ataaagcagc aaagtgcagc atac
<210> 257
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 257
                                                                     24
aaggctgaac tgtgtagaca tttt
<210> 258
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 258
tgacatttcc atggtacaaa gtgt
                                                                     24
<210> 259
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 259
tttgttgttg gcttttcact tat
                                                                     23
<210> 260
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 260
ccacctggca gtttgattg
                                                                     19
<210> 261
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 261
taagcgtggt caacaactac agt
                                                                     23
<210> 262
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 262
attcttgcca gcatttattg tc
                                                                     22
<210> 263
```

<211> 19

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 263
caaaacattg ccccaaaag
                                                                      19
<210> 264
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 264
tcaaactaaa caatttccct ctaa
                                                                     24
<210> 265
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 265
gataattaaa aactcactga tgta
                                                                     24
<210> 266
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 266
ggaggctaaa ggaaagagta tg
                                                                     22
<210> 267
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 267
attttatagc cagcaaagaa cac
                                                                     23
```

```
<210> 268
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 268
                                                                     20
ctagaaattc gggctgtgaa
<210> 269
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 269
ctgctttgtg acctaaggca agtt
                                                                     24
<210> 270
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 270
gtgaccatgt taaggcagat gagg
                                                                     24
<210> 271
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 271
ggaatggtct ttgattttgt aacc
                                                                     24
<210> 272
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
```

```
<400> 272
tccttaactg aataaaagca cctc
                                                                     24
<210> 273
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 273
tggaacaccc atcaaagaag atact
                                                                     25
<210> 274
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 274
gtgggagtcc tgttgacaca aac
                                                                     23
<210> 275
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 275
agcgattcat ggcatcaaac
                                                                     20
<210> 276
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 276
acgtggtgga aggcgtcata
                                                                     20
<210> 277
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 277
 gcgacccagt ttatagagtt tgcc
                                                                      24
<210> 278
 <211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 278
cttgtttgcg tttcaacgtg gtc
                                                                      23
<210> 279
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 279
caaagatcac cctggaagct cagtt
                                                                      25
<210> 280
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 280
atccagggca tctgcaaaat cagaa
                                                                      25
<210> 281
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 281
tgcctatgtt aagagggaag ttggg
                                                                     25
<210> 282
```

<211> 23

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 282
atgaccgcga tgtacatgtt cag
                                                                     23
<210> 283
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 283
tcaattgttt acagcccgtg atg
                                                                     23
<210> 284
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 284
tttatacaaa ggcagacaac at
                                                                     22
<210> 285
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 285
aggcgtaatg gctactcaga cga
                                                                     23
<210> 286
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 286
gtaatccctc tccccgaaca taaac
                                                                     25
```

```
<210> 287
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 287
tttgattcac gggttgttta ctctta
                                                                      26
<210> 288
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 288
ttctatggaa catttacagg cacatt
                                                                      26
<210> 289
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 289
taatgtgcct gtaaatgttc cataga
                                                                     26
<210> 290
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
      Description of Artificial Sequence: synthetic oligonucleotide
<223>
<400> 290
caggettett agaaaggaet gatagg
                                                                     26
<210> 291
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
```

```
<400> 291
gtcccagcag catgactatc
                                                                      20
<210> 292
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 292
cccactgggt aaaattacta ac
                                                                      22
<210> 293
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 293
tagccatctt ctgctcttgg t
                                                                     21
<210> 294
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 294
tggcttccca tattagactt ctg
                                                                     23
<210> 295
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 295
tcttgcctat gctgctgtat ctta
                                                                     24
<210> 296
<211> 22
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223>
     Description of Artificial Sequence: synthetic oligonucleotide
<400> 296
                                                                     22
agtcgggctt ttcatcattg ag
<210> 297
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 297
ttcttcatgt cattaagcaa tagg
                                                                     24
<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 298
ttcaatttaa aagtgctagg aaca
                                                                     24
<210> 299
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 299
cttcaggtgg atgtcacagt cacta
                                                                     25
<210> 300
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 300
attcaagcaa tgccaagagt atca
                                                                     24
<210> 301
<211> 24
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 301
ctttcaatag taatgcctta tcat
                                                                     24
<210> 302
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 302
tcctgcatgc atttcaccaa c
                                                                     21
<210> 303
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 303
ctgttcacat tttgtaaaac taat
                                                                     24
<210> 304
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 304
atcccaaaga tggcgtagat ga
                                                                     22
<210> 305
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 305
cacgctgctc tttgctttga
                                                                     20
```

```
<210> 306
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 306
gatctttgtc agggtcacag tct
                                                                     23
<210> 307
<211> 9
<212> DNA
<213> Homo sapiens
<400> 307
tacaaagaa
                                                                     9
<210> 308
<211> 9
<212> DNA
<213> Homo sapiens
<400> 308
tacagagaa
                                                                     9
<210> 309
<211> 9
<212> DNA
<213> Homo sapiens
<400> 309
tacagagaa
                                                                     9
<210> 310
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223>
     Description of Artificial Sequence: synthetic oligonucleotide
<400> 310
                                                                    19
tgtgtccgcc agtagatgg
<210> 311
<211> 23
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 311
 tttttgacca cagaggttta caa
                                                                      23
 <210> 312
 <211> 20
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 312
gaagcggagg cataagcaga
                                                                      20
<210> 313
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 313
ggtgcagata atgaaatgtt ttgt
                                                                      24
<210> 314
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 314
cacccctatg ccaaatgtca aaga
                                                                      24
<210> 315
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 315
caaaaacaaa cttataccca gaag
                                                                     24
<210> 316
```

<210> 316</211> 22

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 316
caaatattgg gcaaacccta at
                                                                     22
<210> 317
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 317
aaggtgccat cacaaaatca t
                                                                     21
<210> 318
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 318
atcgcttgct ttcctaactc ttgt
                                                                     24
<210> 319
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 319
aagtcactat ttggctttgg ttg
                                                                     . 23
<210> 320
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 320
agaagcccaa aaaggaacaa gata
                                                                     24
```

```
<210> 321
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 321
ggcccagaaa agtatattac agtt
                                                                     24
<210> 322
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 322
tccttaaata agcccatgtc taat
                                                                     24
<210> 323
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 323
tctcaaagaa attttacaga tact
                                                                     24
<210> 324
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 324
aatggccatg gtaacctact aaca
                                                                     24
<210> 325
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
```

```
<400> 325
caggctatac ccacaaggag att
                                                                     23
<210> 326
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 326
tgttaatttt ggcttggatg tt
                                                                     22
<210> 327
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 327
tcactccttt gcgcttatca a
                                                                     21
<210> 328
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 328
agggctctat gtgccaaacc
                                                                     20
<210> 329
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 329
aggggcctac taccttacac cag
                                                                     23
<210> 330
<211> 23
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 330
tgtaatccca ggtaagaaga aac
                                                                      23
<210> 331
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 331
taccgggatg aactgtaata ataa
                                                                      24
<210> 332
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 332
ttctggcact cttcctcagg taac
                                                                      24
<210> 333
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 333
                                                                      22
gtcccatttg aatccattgt gc
<210> 334
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 334
ggccccaag cgattctg
                                                                      18
<210> 335
```

<211> 24

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 335
tgtacaccca cagtctcaac tatt
                                                                     24
<210> 336
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 336
acagccacct ttgtaaataa
                                                                     20
<210> 337
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 337
tttttcgcaa agagttctat
                                                                     20
<210> 338
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 338
aaactgaccc tacctccatt tctc
                                                                     24
<210> 339
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 339
actcagccta tgcttttcat ttca
                                                                     24
```

```
<210> 340
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 340
cagatattta tttggggaca ttat
                                                                     24
<210> 341
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 341
aaatctttgc ktttatcact cagt
                                                                     24
<210> 342
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 342
tagtgcctgg ctttgtttta tgac
                                                                     24
<210> 343
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 343
cggatttggg aaagctgtct ct
                                                                     22
<210> 344
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
```

```
<400> 344
                                                                     24
agagcacctt gaaggaaaca acaa
<210> 345
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 345
tccctcaact gaagtacaga tagt
                                                                     24
<210> 346
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 346
ataattgcgt tcttccccta ccc
                                                                     23
<210> 347
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 347
                                                                     19
aagccctggc accatcctg
<210> 348
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 348
                                                                     20
tttgcaaaga aatgctatgt
<210> 349
<211> 22
<212> DNA
<213> Artificial Sequence
```

```
<220>
       Description of Artificial Sequence: synthetic oligonucleotide
 <223>
. <400> 349
                                                                       22
 ctgggtaaca gacttcagta at
 <210> 350
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 350
                                                                       24
 atgggattgt cttctcaagt ttct
 <210> 351
 <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 351
 gatggcaaga tcaacaaatg ga
                                                                       22
 <210> 352
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 352
                                                                       23
 cttgatctgg gactgctgtg atg
 <210> 353
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 353
 aggatataat ttttggttca aca
                                                                       23
 <210> 354
```

<211> 24

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
ttttcagtgc tcttgatagt agtg
                                                                     24
<210> 355
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 355
gtgccaatga gcgacagg
                                                                     18
<210> 356
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 356
ccacgtgtgg ttctatgata cc
                                                                     22
<210> 357
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 357
accgtgggag cgtacagtca
                                                                     20
<210> 358
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 358
cggcatgcag ctctttggta
                                                                     20
```

```
<210> 359
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 359
tggccacgtt cctagctact gtc
                                                                      23
<210> 360
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 360
gagttccctt tttaggctgt tatt
                                                                      24
<210> 361
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 361
tcttattgcc ttcatggatt tcta
                                                                     24
<210> 362
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 362
tgaaaaataa gatgcgggag tg
                                                                     22
<210> 363
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
```

```
<400> 363
 gtgaggctgg ggttgtttat g
                                                                      21
 <210> 364
 <211> 21
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 364
 gagatgggaa tggaaccacc a
                                                                      21
 <210> 365
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 365
ttcgataatg catataagca caa
                                                                      23
<210> 366
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 366
aagggggaaa atcacatctt t
                                                                     21
<210> 367
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 367
ttaaatgagg catattcagt ctcc
                                                                     24
<210> 368
<211> 19
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 368
 ggaagtggag tggggaagg
                                                                       19
 <210> 369
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 369
 attcttgcca atatgcattt cact
                                                                       24
 <210> 370
 <211> 26
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 370
ttcttttgta ctcactatta tactaa
                                                                      26
<210> 371
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 371
aaacttgcct cttttaaaaa caat
                                                                      24
<210> 372
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 372
taccacaccc tataccttca gtca
                                                                     24
<210> 373
<211> 24
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 373
                                                                     24
gagtatggca cccttttcta tcta
<210> 374
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 374
                                                                     21
gctatgttcc cctcgctgtc t
<210> 375
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 375
                                                                     19
tgcttgccaa gagcctgac
<210> 376
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 376
                                                                     22
gctggcaagt tctaccactg tg
<210> 377
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 377
                                                                     24
caaacgaaga acatcaggga aata
```

```
<210> 378
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 378
                                                                      24
ttcacaatat tgtacaaaaa gtta
<210> 379
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 379
                                                                      24
attaccacca atattcacca taag
<210> 380
<211>
      23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 380
tcagggtaag gcaaaagtag cac
                                                                      23
<210> 381
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 381
gaaccccaga atgaagaaag gtaa
                                                                      24
<210> 382
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
```

```
<400> 382
                                                                       24
tttgtgaaag tactattgga acac
<210> 383
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 383
                                                                       19
acgcatggct ttggaacat
<210> 384
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 384
cccgtatgtg gaagggcttt at
                                                                       22
<210> 385
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 385
                                                                       24
ctaggttgat ccgggacaaa acta
<210> 386
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 386
aacggatgac cagggcaaat ac
                                                                       22
<210> 387
<211> 22
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 387
 ctagaaggtc ctggggcaac tg
                                                                      22
 <210> 388
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 388
 aagccatcat gtaaagtgaa aag
                                                                      23
 <210> 389
 <211> 21
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 389
atcccaaaga tggcatagat a
                                                                      21
<210> 390
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 390
cacgctgctc tttgctttga
                                                                     20
<210> 391
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 391
tgagctgcca gggtgaattg
                                                                     20
<210> 392
```

<211> 26

```
<212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 392
 ttgctagcac ctattcttaa tagtgc
                                                                       26
 <210> 393
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 393
 ccagggcagc tgcaaaatca gag
                                                                      23
 <210> 394
 <211> 19
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 394
cccgatgcga cccagttta
                                                                      19
<210> 395
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 395
tggagggtt tgatgccata
                                                                      20
<210> 396
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 396
gatggatgcc cttcgaatac aga
                                                                     23
```

```
<210> 397
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 397
 ttcccattta gtttgtcaat aatc
                                                                      24
 <210> 398
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic oligonucleotide
 <400> 398
 aaggggagga ttgacttacc tat
                                                                      23
 <210> 399
 <211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide
<400> 399
ttggcatgga cctcctcttg a
                                                                     21
<210> 400
<211> 13
<212> DNA
<213> Homo sapiens
<400> 400
tggtataagg tag
                                                                     13
<210> 401
<211> 18
<212> DNA
<213> Homo sapiens
<400> 401
caagataatg atgatgag
                                                                     18
<210> 402
<211> 15
```

<212>	DNA	
<213>	Homo sapiens	
<400>		
caagat	tgatg atgag	15
.010.	402	
<210>		
<211>		
<212>		
<213>	Homo sapiens	
<400>	403	
	taagg tag	13
33.3		
210	404	
<210>		
<211> <212>		
	DNA Homo sapiens	
<413>	HOMO sapiens	
<400>	404	
cccctt	catat ctccaac	17
<210>	405	
<211>		
<212>		
	Homo sapiens	
	•	
<400>	405	
cccctt	catay ctccaac	17
<210>	406	
<211>		
<211>		
	Homo sapiens	
	Laptons	
<400>		
aaatac	egtaa tegat	15
<210>	407	
<211>		
<212>		
	Homo sapiens	
<400>	407	
	407 Cataa togat	15
aaalaC	cataa toyat	15
<210>		
<211>		
<212>		
<213>	Homo sapiens	