Analyzing Flow-Cytometry Count Data with Regression Mixtures

Amit Meir University of Washington

Joint work with **Raphael Gottardo** and **Greg Finak** *Hutchinson Cancer Research Center*

May 10, 2017

Outline

Flow-Cytometry - a Refresher

- Flow Cytometry?????
- A model in need of a better name than flowReMix.

RV144

- Inferred Graphical Model
- Cumulative Response Measures.

HVTN505:

- Graphical Model.
- Correlates for Infection Status (Clinical Outcome).
- Breadth/Polyfunctionality Analysis.

CHMI Study

- Longitudal Data.
- Enrichment Analysis.

The RV144 HIV Vaccine Trial

The RV144 HIV Vaccine Trial

PTID	Subset	stim	count	parentcount
P1003	CD154	stim	38	23524
P1003	CD154	${\tt nonstim}$	31	28099
P1003	CD154,IL17a	stim	23	23524
P1003	CD154,IL17a	${\tt nonstim}$	30	28099
P1003	IFNg	stim	1	23524
P1003	IFNg	${\tt nonstim}$	0	28099
P1003	IFNg,CD154	stim	1	23524
P1003	IFNg,CD154	${\tt nonstim}$	0	28099
P1003	IFNg,IL2	stim	2	23524
P1003	IFNg,IL2	${\tt nonstim}$	0	28099
P1003	IFNg,IL2,CD154	stim	0	23524

IFNg, IL2, CD154 nonstim

IFNg, IL4, IL2, CD154 nonstim

IFNg, IL4, IL2, CD154

0

0

0

stim

28099

23524

28099

P1003

P1003

P1003

Marginal Counts for RV144

The Beta-Binomial Distribution

The Beta-Binomial distribution is a type of over dispersed Binomial distribution.

$$p \sim \textit{Beta}(\mu \textit{M}, (1-\mu)\textit{M})$$
 $y \sim \textit{Bin}(\textit{N}, p)$

$$E(\bar{y}) = \mu$$

$$Var(\bar{y}) = \frac{\mu(1-\mu)}{N} + \frac{\mu(1-\mu)}{M+1}$$

The Beta-Binomial Distribution

The Beta-Binomial distribution is a type of over dispersed Binomial distribution.

$$p \sim \textit{Beta}(\mu \textit{M}, (1-\mu)\textit{M})$$
 $y \sim \textit{Bin}(\textit{N}, p)$

$$E(ar{y}) = \mu$$
 $Var(ar{y}) = rac{\mu(1-\mu)}{N} + rac{\mu(1-\mu)}{M+1}$

A Random Intercept Model

Indexing: i-subject, t- subsample, j- subset.

$$u_i \sim \textit{N}(0, \Sigma), \ \\ \text{logit}(\mu_{ijt}) = \textit{X}_{ijt}\beta_j + \nu_{ij}, \ \\ \textit{y}_{ijt} \sim \text{Beta-Binomial}(\textit{N}_{it}, \mu_{ijt}, \textit{M}_j),$$

An Individual Response Model

Indexing: i-subject, t- subsample, j- subset.

We want to allow for individual subjects/cell-subsets to have differential response to stimulation.

$$ext{logit}(\mu_{ijt}) = X_{ijt}\beta + T_{ijt} au_{ij} +
u_{ij},$$

$$au_{ij} = \begin{cases} au_j & ext{response in } \{i,j\} \\ 0 & ext{no response} \end{cases}.$$

A Markov Random Field Model

Indexing: i-subject, t- stimulation, j- subset.

Denote cluster (Response) by a $z \in \{0, 1\}^p$ vector with 1 indicating a responsive subset.

We assume an Ising model for the dependence structure between subsets:

$$P(z) \propto \sum_{j=1}^{p} z_j \theta_j + \sum_{u \neq v} z_u z_v \theta_{uv},$$

$$P(z_j = 1 | z_{-j}) = \theta_j + \sum_{u \neq j} z_u \theta_{uj}.$$

We can induce sparsity through an ℓ_1 penalty.

A Markov Random Field Model

Indexing: i-subject, t- stimulation, j- subset.

Denote cluster (Response) by a $z \in \{0, 1\}^p$ vector with 1 indicating a responsive subset.

We assume an Ising model for the dependence structure between subsets:

$$P(z) \propto \sum_{j=1}^{\rho} z_j \theta_j + \sum_{u \neq v} z_u z_v \theta_{uv},$$

$$P(z_j = 1 | z_{-j}) = \theta_j + \sum_{u \neq j} z_u \theta_{uj}.$$

A Markov Random Field Model

Indexing: i-subject, t- stimulation, i- subset.

Denote cluster (Response) by a $z \in \{0, 1\}^p$ vector with 1 indicating a responsive subset.

We assume an Ising model for the dependence structure between subsets:

$$P(z) \propto \sum_{j=1}^{p} z_j \theta_j + \sum_{u \neq v} z_u z_v \theta_{uv},$$

$$P(z_j = 1 | z_{-j}) = \theta_j + \sum_{u \neq j} z_u \theta_{uj}.$$

We can induce sparsity through an ℓ_1 penalty.

A Hidden Markov Random Field Model

Indexing: i-subject, t- stimulation, j- subset.

$$u_i \sim \mathcal{N}(0, \Sigma),$$
 $z_i \sim \mathsf{Ising}(\theta).$
 $\mathsf{logit}(\mu_{ijt}) = X_{ijt}\beta_j + T_{ijt}\tau_j(z_i) + \nu_{ij},$
 $y_{iit} \sim \mathsf{Beta\text{-}Binomial}(N_{it}, \mu_{jit}, M_i),$

The RV144 HIV Vaccine Trial

- 262 Subjects
 - 226 Cases
 - 36 Controls
- 2 Types of stimulus
 - HIV protein
 - Negative control
- 23 CD4 Cell-Subsets.

RV144 - Booleans Dataset

RV144 - Booleans Dataset

1.0

0.2

Specificity

1.0 0.6 0.2

Specificity

RV144 - Booleans Dataset

Figure: Estimated Ising Model - Red marks AUC

A Better Way to Estimate the Graphical Model?

The graph output by the procedure is an average of the graph estimated in several iterations.

- Not as sparse as we would like...
- How sure are we of existence of an edge?

Possible solution, stability selection:

- Draw samples from the posterior response distribution.
- Fit a Graphical Model.
- Repeat

Compute the proportion of estimated models in which an edge has been observed.

A Better Way to Estimate the Graphical Model?

The graph output by the procedure is an average of the graph estimated in several iterations.

- Not as sparse as we would like...
- How sure are we of existence of an edge?

Possible solution, stability selection:

- Draw samples from the posterior response distribution.
- Fit a Graphical Model.
- Repeat

Compute the proportion of estimated models in which an edge has been observed.

Aggregating Subject Response

So far we have used posterior samples to:

- · Identify responsive cell-subsets.
- Infer Dependence Structures.

How can we identify (or rank) responsive subjects?

- Responsive subject = 1 responsive subset? 2? 3?...
- How about stochastic ordering?

$$F \leq G \Leftrightarrow G(x) \leq F(x) \ \forall x$$

We can compute a posterior CDF for # of responses for each subject!

Aggregating Subject Response

So far we have used posterior samples to:

- Identify responsive cell-subsets.
- Infer Dependence Structures.

How can we identify (or rank) responsive subjects?

- Responsive subject = 1 responsive subset? 2? 3?...
- How about stochastic ordering?

$$F \leq G \Leftrightarrow G(x) \leq F(x) \ \forall x$$

We can compute a posterior CDF for # of responses for each subject!

Aggregating Subject Response

So far we have used posterior samples to:

- · Identify responsive cell-subsets.
- Infer Dependence Structures.

How can we identify (or rank) responsive subjects?

- Responsive subject = 1 responsive subset? 2? 3?...
- How about stochastic ordering?

$$F \leq G \Leftrightarrow G(x) \leq F(x) \ \forall x$$

We can compute a posterior CDF for # of responses for each subject!

Posterior CDFs for Response

There is a stochastic ordering between outcome categories! (p-value ≈ 0.035)

A Functionality Score

We compute the area under the curve as an individual functionality measure.

The HVTN 505 Vaccine Trial

238 Subjects

- 189 Cases
- 49 Controls

5 Types of stimulus

- 4 types of HIV proteins (ENV, GAG, POL, NEF).
- · Negative control.

52 Cell Subsets

- 25 CD4 cells.
- 27 CD8 cells.

Analysis Goals

- Problem: We are interested in identifying response in Subsets X Protein pairs.
- Solution: Define each combination of Subset X Protein as a cell-subset.
 - Overall 184 subsets with non-negligible counts.
- Dependence structures should (and do!) sort themselves out.
- Include covariates?

Analysis Goals

- Problem: We are interested in identifying response in Subsets X Protein pairs.
- Solution: Define each combination of Subset X Protein as a cell-subset.
 - Overall 184 subsets with non-negligible counts.
- Dependence structures should (and do!) sort themselves out.
- Include covariates?

Analysis Goals

- Problem: We are interested in identifying response in Subsets X Protein pairs.
- Solution: Define each combination of Subset X Protein as a cell-subset.
 - Overall 184 subsets with non-negligible counts.
- Dependence structures should (and do!) sort themselves out.
- Include covariates?

Inferred Graph

Inferred Graph

Correlates for Infection-Status

As we have done for the RV144 dataset, we can correlate response in different cell-subsets with either **vaccination** status, or **infection** status.

Top Subsets For Vaccination Status (54 significant)

_				
	subsets	aucs	pvals	qvals
14	env/4+/154+IFNg+IL2+TNFa+	0.9691178	1.464510e-35	2.694698e-33
16	env/4+/154+IL2+	0.9598316	4.338808e-33	7.983408e-31
13	env/4+/154+IFNg+IL2+	0.9561602	3.328590e-32	6.124605e-30
154	pol/4+/154+IFNg+IL2+TNFa+	0.9363460	4.651315e-28	8.558420e-26
12	env/4+/154+IFNg+	0.9337545	1.396123e-27	2.568867e-25
15	env/4+/154+IFNg+TNFa+	0.9287874	1.064343e-26	1.958392e-24

Top Subsets For Infection Status (4 significant)

	subsets	aucs	infectPvals	infectQvals
46	env/8+/IFNg+	0.7615854	6.594302e-06	0.001213352
31	env/8+/107a+IFNg+	0.7397561	3.645826e-05	0.006708319
50	env/8+/IL2+	0.7231707	1.192790e-04	0.021947336
47	env/8+/IFNg+IL2+	0.7204878	1.431531e-04	0.026340179
49	env/8+/IFNg+TNFa+	0.6943902	7.436270e-04	0.136827365

Aggregate Measures of Response

We have many more cell-subsets here, and can ask more interesting questions. Can we think of better aggregate measures?

Polyfunctionality:

- Polyfunctional cells produce multiple cytokines.
- Few, but may play an important role in immunization.
- Implication: Give higher weights to polyfunctional cells.

· Breadth:

- How man stimulations does a subject respond to?
- **Implication:** Give higher weights to first responsive subsets for a given stimulation.

Aggregate Measures of Response

We have many more cell-subsets here, and can ask more interesting questions. Can we think of better aggregate measures?

Polyfunctionality:

- Polyfunctional cells produce multiple cytokines.
- Few, but may play an important role in immunization.
- Implication: Give higher weights to polyfunctional cells.

Breadth:

- How man stimulations does a subject respond to?
- **Implication:** Give higher weights to first responsive subsets for a given stimulation.

Aggregate Measures of Response

We have many more cell-subsets here, and can ask more interesting questions. Can we think of better aggregate measures?

Polyfunctionality:

- Polyfunctional cells produce multiple cytokines.
- Few, but may play an important role in immunization.
- Implication: Give higher weights to polyfunctional cells.

Breadth:

- How man stimulations does a subject respond to?
- **Implication:** Give higher weights to first responsive subsets for a given stimulation.

HVTN Polyfunctionality CDFs

HVTN Polyfunctionality Score Boxplots

HVTN Polyfunctionality Score ROCs

HVTN Breadth CDFs

Breadth - ROC for Infection Study

P-value < 0.05 for both ROCs

- 9 subjects were infected with Malaria.
 - +3 controls.

- Blood samples were collected at 6 time points.
 - Day 0, day 9, blood parasitemia, Day 28, Day 56, Day 168.
- Two types of stimulation:
 - Infected/uninfected blood-cells.

- 53 cell subsets.
 - (10 types of cytokines in 8 cell-types)

- Individuals who experience malaria infections develop immunity.
 - All subject may exhibit response to stimulation.
 - Even at day 0!
 - What is the profile of the immune response?
- The immunity is not long lived.
 - We might expect to see a rise in response during experiment.
 - How fast does the response return to baseline?

- Individuals who experience malaria infections develop immunity.
 - All subject may exhibit response to stimulation.
 - Even at day 0!
 - What is the profile of the immune response?
- The immunity is not long lived.
 - We might expect to see a rise in response during experiment.
 - How fast does the response return to baseline?

Figure: CD4 Helper Cells

FDR Adjusted p-values for CHMI Study

Standard errors for significance tests computed using Jackknife.

	4+	4+/CXCR5+	56+dim	56+hi	8+	8+/CXCR5+	NK T cells	PD-1+
154+	0.029	0.004			0.103	0.75	0.006	0.024
CCR7+	0.649	0.996			0.596	0.51		
CD45A+	0.575	0.307			0.543	0.54		
IFNg+	0.001	0.006	0.065	0.146	0.001		0.052	0.097
IL2+	0	0.005			0.119	0.56	0.321	0.052
IL21+	0.676	0.649	0.751	0.589	0.649		0.71	
IL4+	0.12	0.543		0.751	0.649		0.583	
TNFa+	0	0.001	0.261	0.309	0.276		0.053	0.09
GzB+	0.583		0.511	0.001	0.589		0.596	
PD-1+	0.751				0.596	0.83		

Figure: Significant Subsets

Enrichment Analysis and Valid Ad-Hoc Testing

The data seems to suggest testing for elevated response after parasitemia.

This effect may be small, and was identified based on the data.

Possible Solution:

- Test enrichments (groups of cells) to obtain more power.
- Perform a post-selection test for subsets within enrichments that pass a threshold.

We test:

- Enrichments: Th1, Th2, Gzb.
- **Hypotheses:** Overall effect, elevated response at 28, 56, 168

Enrichment Analysis and Valid Ad-Hoc Testing

The data seems to suggest testing for elevated response after parasitemia.

This effect may be small, and was identified based on the data.

Possible Solution:

- Test enrichments (groups of cells) to obtain more power.
- Perform a post-selection test for subsets within enrichments that pass a threshold.

We test:

- Enrichments: Th1, Th2, Gzb.
- **Hypotheses:** Overall effect, elevated response at 28, 56, 168.

Enrichment Analysis and Valid Ad-Hoc Testing

The data seems to suggest testing for elevated response after parasitemia.

This effect may be small, and was identified based on the data.

Possible Solution:

- Test enrichments (groups of cells) to obtain more power.
- Perform a post-selection test for subsets within enrichments that pass a threshold.

We test:

- Enrichments: Th1, Th2, Gzb.
- **Hypotheses:** Overall effect, elevated response at 28, 56, 168.

Thank you!

Questions?

AmitMeir@uw.edu