Set $\begin{cases} 1 & (X+Y)+2 \Rightarrow X+(Y+2) \\ 2 & -X+X \Rightarrow 0 \\ 3 & 0+X \Rightarrow X \end{cases}$ $4 - X' + (X' + \overline{z}) \Rightarrow \overline{z}$

QUIZ 1

From rules 1 and 2: $(X+Y)+Z \Rightarrow X+(Y+Z)$ $-x,+x, \Rightarrow 0$

mgu = {-x'/x, x'/y}

$$CP = \langle -X' + (X' + Z), 0 + Z \rangle$$

Taking this CP, KB reduces its second component using rule 3

 $S_1' = Normalize S_1 = -x' + (x' + 2)$

s' = Normalize S2 = Z +

5. KB algo: Consider $\left(-X'+(X'+Z) \Rightarrow Z\right) \cup R$ maintains termination, to

maintains termination, to the set

This set is terminating.

6. From rules 2 and 4: $-X'+(X'+2) \Rightarrow z$

mgu 0 = 2-x/x, x/2)

 $CP = \langle X, --X + 0 \rangle$

KB Algo: Consider $(X \Rightarrow --X+0) \cup R \times (--X+0 \Rightarrow X) \cup R \times (--X+0 \Rightarrow X$

From rules 3 and 4: 0+x = x -x'+(x'+Z) => Z

mgu & = { 0/x', x/2}

 $CP = \langle X, -0 + X \rangle$

KB Algo: Consider (X → -O+X) X; Consider (-O+X ⇒ X) /