Deliverables:

1. Lookalike.csv:

- o A CSV file named "Lookalike.csv" has been generated.
- It contains the following columns:
 - CustomerID: The ID of the target customer.
 - SimilarCustomerID: The ID of the lookalike customer.
 - SimilarityScore: The cosine similarity score between the target customer and the lookalike customer.

2. Jupyter Notebook/Python Script:

- The provided Python script outlines the model development process.
- Key steps include:
 - Data loading and preparation:
 - Loading datasets (Customers, Products, Transactions).
 - Merging datasets to create a comprehensive view of customer transactions.
 - Aggregating customer features (total spending, transaction frequency).
 - Creating a pivot table to capture category preferences.
 - Merging features into a single DataFrame.
 - Feature normalization:
 - Standardizing numerical features using StandardScaler.
 - Cosine similarity calculation:
 - Computing the cosine similarity between normalized customer feature vectors.
 - Creating a customer similarity DataFrame.
 - Finding lookalike customers:
 - Defining a function to efficiently retrieve the top N most similar customers.
 - Iterating through the first 20 customers and finding their top 3 lookalikes.
 - Creating the "Lookalike.csv" file.
 - Visualizing customer similarity with a heatmap.

Insights:

Lookalike Customer Identification:

- The model successfully identified the top 3 lookalike customers for each of the first 20 customers based on their purchasing behavior and preferences.
- For example, for Customer C0001, the top 3 similar customers are:
 - C0069 with a similarity score of 0.933

- C0026 with a similarity score of 0.904
- C0157 with a similarity score of 0.855

Model Explanation:

- The model utilizes a combination of customer features such as total spending, transaction frequency, and category preferences to identify lookalike customers.
- Cosine similarity is employed to measure the similarity between customers based on their feature vectors.
- This approach enables the identification of customers with similar purchasing patterns and preferences, which can be valuable for targeted marketing campaigns, product recommendations, and customer segmentation.

Further Considerations:

- Feature Engineering: Exploring additional customer features (e.g., recency, frequency, monetary value - RFM analysis, demographics) could enhance the accuracy of the lookalike model.
- Model Evaluation: Evaluating the model's performance using techniques like hold-out validation or cross-validation can provide insights into its predictive accuracy and robustness.
- Business Application: The identified lookalike customers can be leveraged for various business applications, such as:
 - Targeted marketing campaigns: Delivering personalized offers and promotions to lookalike customers.
 - Product recommendations: Suggesting products or services that similar customers have purchased.
 - Customer segmentation: Grouping customers into segments based on their lookalike profiles for more effective targeting and personalization.