

Curso de Ciência da Computação Campus Kobrasol

Prof. Denise Prado Kronbauer

denise.kronbauer@univali.br denipk@gmail.com

RECADOS PAROQUIAIS

- Identidade Visual UNIVALI Escolas do Conhecimento;
- Semana Acadêmica 24 a 27.06;
- Rei da Derivada 25.06.

RECADOS PAROQUIAIS

Escola do Mar,
Ciência & Tecnologia

https://www.univali.br/institucional/proen/diretoria-de-educacao/escolas-doconhecimento/Paginas/default.aspx

Curso de Ciência da Computação Campus Kobrasol

Prof. Denise Prado Kronbauer

denise.kronbauer@univali.br denipk@gmail.com

Além da integral definida $\int_a^b f(x) dx$ de uma função f de uma variável, podemos também considerar integrais de funções de diversas variáveis, denominadas **integrais múltiplas**. Cada integral é definida de maneira análoga, a principal diferença está no domínio do integrando.

Elas são utilizadas para calcular volumes, áreas de superfície, centros de massa, probabilidades e valores médios.

A integral de uma função f(x, y) de duas variáveis, denominada integral dupla é denotada por

$$\iint_D f(x,y) \, dA$$

Ela representa o volume da região sólida entre o gráfico de f(x, y) e o domínio D no plano xy, sendo que o volume é positivo com regiões acima do plano xy e negativo com regiões abaixo.

No conceito de integral simples temos que a integral é o limite da soma de Riemann, onde somamos as áreas dos retângulos no conjunto fechado R

Já no conceito de integral dupla temos que a integral também é o limite da soma de Riemann, mas, no entanto, estamos trabalhando agora com duas variáveis reais, logo a integral dupla é a soma dos volumes dos paralelepípedos numa região fechada do R².

Cálculo de Integrais Parciais

No conteúdo anterior aprendemos como derivar funções com mais de uma variáveis, derivando-as em relação a uma variável por vez, enquanto as outras são mantidas fixas.

Portanto, não deve ser surpreendente que seja possível integrar funções de duas ou mais variáveis utilizando um procedimento semelhante.

Exemplo: Determine a integral parcial:

$$\int_{1}^{2y} 2xy \ dx$$

Resolução:

$$\int_{1}^{2y} 2xy(dx) \leftarrow x \text{ \'e a variável de integração e } y \text{ \'e fixo}$$

$$= x^2 y \Big|_1^{2y} = (2y)^2 y - (1)^2 y$$
 Limites de integração

$$=4y^3-y$$

 $=4y^3-y$ O resultado é uma função de y.

Exemplos: Determine as integrais parciais:

$$1) \int_{1}^{x} (2x^{2}y^{-2} + 2y)dy$$

$$2) \int_{y}^{5y} \sqrt{x-y} \, dx$$

Respostas:

1)
$$\int_{1}^{x} (2x^{2}y^{-2} + 2y)dy = 3x^{2} - 2x - 1$$

2)
$$\int_{y}^{5y} \sqrt{x - y} \, dx = \frac{16y}{3} \sqrt{y}$$

Exercícios: Determine as integrais parciais:

$$1) \int_{x}^{x^{2}} \frac{y}{x} dy$$

5)
$$\int_0^{\sqrt{4-x^2}} x^2 y \, dy$$

$$2) \int_{1}^{2y} \frac{y}{x} dx$$

6)
$$\int_0^5 12x^2y^3 dx$$

3)
$$\int_0^{e^y} y \, dx$$

7)
$$\int_0^1 (y + xe^y) \, dy$$

$$4) \int_0^x (2x - y) \, dy$$

Respostas:

1)
$$\frac{x(2x^2-3)}{6}$$

- $2) y \ln(2y)$
- 3) $y e^y$
- 4) $\frac{3x^2}{2}$

5)
$$x^2 \left(2 - \frac{x^2}{2}\right)$$

6) $500 y^3$

7)
$$\frac{1}{2} + xe - x$$

Nos exemplos anteriores, o resultado obtido através da integração por partes resulta numa função de x ou y e ela mesma pode ser integrada.

Uma "*integral de uma integral*" é chamada integral dupla. Como uma função de duas variáveis, há dois tipos de integrais duplas:

i)
$$\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx = \int_{a}^{b} \left[\int_{c}^{d} f(x, y) dy \right] dx$$

$$ii) \int_{c}^{d} \int_{a}^{b} f(x,y) dxdy = \int_{c}^{d} \left[\int_{a}^{b} f(x,y) dx \right] dy$$

A diferença entre os dois tipos de integrais duplas é a ordem na qual a integração deve ser realizada, dy dx ou dx dy.

A ordem de integração é muito importante, pois através de uma boa escolha podemos facilitar, em muito, os cálculos para encontrar a solução de uma integral dupla, dependendo da escolha feita, pode haver casos de não encontrarmos uma solução.

Deve-se sempre iniciar a integração de 'dentro' para 'fora'.

Exemplos: Calcule a integral dupla

$$\int_{1}^{2} \int_{0}^{x} (2xy+3) \, dy dx$$

Resolução: $\int_1^2 \int_0^x (2xy + 3) dy dx$

$$= \int_{1}^{2} \left[\int_{0}^{x} (2xy + 3) \, dy \right] dx = \int_{1}^{2} \left[\frac{2xy^{2}}{2} + 3y \right]_{0}^{x} dx$$

$$= \int_{1}^{2} (x^{3} + 3x) dx = \left[\frac{x^{4}}{4} + \frac{3x^{2}}{2} \right]_{1}^{2}$$

$$= \left[\frac{(2)^4}{4} + \frac{3(2)^2}{2} \right] - \left[\frac{(1)^4}{4} + \frac{3(1)^2}{2} \right]$$

$$= (4+6) - \left(\frac{1}{4} + \frac{3}{2}\right) = \left[\frac{33}{4}\right]$$

Exemplos: Determine as integrais parciais:

1)
$$\int_{1}^{3} \int_{0}^{1} (1 + 4xy) \, dx \, dy$$

2)
$$\int_0^4 \int_0^{x^2} (x+2) \, dy \, dx$$

Respostas:

1)
$$\int_{1}^{3} \int_{0}^{1} (1 + 4xy) \, dx \, dy = 10$$

2)
$$\int_0^4 \int_0^{x^2} (x+2) \, dy \, dx = \frac{320}{3}$$

Exercícios: Calcule as integrais duplas:

1)
$$\int_0^1 \int_0^{2y} xy \, dx \, dy$$

6)
$$\int_{1}^{2} \int_{0}^{x} (5x^{2}y - 2) dy dx$$

2)
$$\int_{1}^{2} \int_{1}^{x^{2}} (x^{2} + y^{2}) \, dy \, dx$$

7)
$$\int_{1}^{4} \int_{1}^{2} \left(\frac{x}{y} + \frac{y}{x} \right) dy \, dx$$

3)
$$\int_0^2 \int_{x^2}^{2x} \left(x^2 + \frac{y}{2}\right) dy dx$$

8)
$$\int_0^2 \int_0^{\pi/2} x \sin y \, dy \, dx$$

4)
$$\int_0^{\pi} \int_0^x \sin y \, dy \, dx$$

9)
$$\int_0^1 \int_v^{e^y} \sqrt{x} \, dx \, dy$$

5)
$$\int_{0}^{1} \int_{1}^{2} \frac{xe^{x}}{y} dy dx$$

$$10) \int_0^1 \int_x^{2-x} (x^2 - y) dy \, dx$$

Respostas:

1)
$$\frac{1}{2}$$

6)
$$\frac{25}{2}$$

$$2) \ \frac{1006}{105}$$

7)
$$\frac{21}{2} \ln 2$$

3)
$$\frac{8}{3}$$

9)
$$\frac{4}{9}e^{3/2} - \frac{32}{45}$$

10)
$$-\frac{5}{6}$$

Se a função dada é positiva, podemos interpretar a integral dupla como o volume V do sólido que está acima de uma área R no plano xy e abaixo da superfície z = f(x, y).

A região R é definida da seguinte maneira:

$$R = \{(x, y) | a \le x \le b, c \le y \le d\}$$

Então,

$$\iint\limits_R f(x,y) \, dA = \int\limits_a^b \int\limits_c^d f(x,y) \, dy \, dx = \int\limits_c^d \int\limits_a^b f(x,y) \, dx \, dy$$

Exemplo: Calcular a integral dupla

$$\iint\limits_R (x-3y^2)\,dA$$

Onde
$$R = \{(x, y) | 0 \le x \le 2; 1 \le y \le 2\}$$

Resolução:

$$\int_{0}^{2} \int_{1}^{2} (x - 3y^{2}) \, dy \, dx$$

$$\int_{0}^{2} \left[\int_{1}^{2} (x - 3y^{2}) \, dy \right] dx = \int_{0}^{2} \left(xy - \frac{3y^{3}}{3} \right)_{1}^{2} dx$$

$$= \int_{0}^{2} (x - 7) dx = \left(\frac{x^{2}}{2} - 7x\right)_{0}^{2} = -12$$

Exercícios: Calcular o volume do sólido Ω acima da região $D = [0,1] \times [0,1]$ do plano xy e abaixo do plano x + y + z = 2:

Volume abaixo do plano
$$x + y + z = 2$$
.

$$z = 2 - x - y$$

$$\int_0^1 \int_0^1 (2 - x - y) \, dx \, dy = 1$$

Exercícios: Calcular o volume do sólido Ω acima do retângulo $D = [-1,1] \times [0,1]$ e abaixo do cilindro $z = 1 - x^2$:

Volume abaixo do cilindro
$$z = 1 - x^2$$
.

$$z = 1 - x^2$$

$$\int_{-1}^{1} \int_{0}^{1} (1 - x^{2}) \, dy \, dx = 4/3$$

Exercícios: Calcular as integrais duplas na região R dada:

a)
$$\iint\limits_R 4xy^3 dA; R = \{(x, y): -1 \le x \le 1, -2 \le y \le 2\}$$

b)
$$\iint\limits_R x\sqrt{1-x^2} \, dA; R = \{(x,y): 0 \le x \le 1, 2 \le y \le 3\}$$

c)
$$\iint_{R} xy \, dA; R \text{ compreendida entre } y = \frac{1}{2}x; y = \sqrt{x}, x = 2 e x = 4$$

Respostas:

a) 0

b) $\frac{1}{3}$

c) $\frac{11}{6}$

Curso de Ciência da Computação Campus Kobrasol

Prof. Denise Prado Kronbauer

denise.kronbauer@univali.br denipk@gmail.com

As integrais triplas de funções f(x, y, z) de três variáveis são uma generalização bastante imediata das integrais duplas.

$$\iiint_D f(x,y,z) \ dV$$

Elas representam quantidades como massa total, valor médio, probabilidades e centros de massa.

Calcula-se a integral começando pela integral mais interna e procedendo para fora. Assim, a primeira integração é com relação a x (com y e z fixos), a segunda é em relação a y (com z fixo) e a terceira é em relação a z.

Existem seis maneiras diferentes de montar a integral, e eles dependem da ordem dos diferenciais, sendo que a ordem da integração é irrelevante.

Exemplo: Calcular a integral tripla
$$\int_{3}^{4} \int_{-1}^{1} \int_{0}^{2} (xy^{2} + yz^{3}) dz dx dy$$

$$\int_{3}^{4} \int_{-1}^{1} \left[\int_{0}^{2} (xy^{2} + yz^{3}) dz \right] dx \, dy \quad \rightarrow \quad \int_{3}^{4} \int_{-1}^{1} \left[xy^{2}z + \frac{yz^{4}}{4} \right]_{0}^{2} dx \, dy$$

$$\int_{3}^{4} \left[\int_{-1}^{1} (2xy^{2} + 4y) \, dx \right] dy \quad \rightarrow \quad \int_{3}^{4} \left[x^{2}y^{2} + 4xy \right]_{-1}^{1} dy$$

$$\int_{3}^{4} \left[(y^{2} + 4y) - (y^{2} - 4y) \right] dy$$

$$\int_{3}^{4} 8y \, dy = 4y^{2} |_{3}^{4} = 4 \cdot (4^{2}) - 4 \cdot (3)^{2} = 28$$

Exemplos: Calcular as integrais triplas:

a)
$$\int_{0}^{3} \int_{-1}^{0} \int_{1}^{2} (x + 2y + 4z) \, dx \, dy \, dz = \frac{39}{2}$$

b)
$$\int_{0}^{1} \int_{-1}^{2} \int_{1}^{3} (6x^{2}z + 5xy^{2}) dz dx dy = 77$$

c)
$$\int_{0}^{1} \int_{0}^{2x} \int_{0}^{x+2} x \, dy \, dz \, dx = -\frac{1}{12}$$

Exemplos: Calcular as integrais triplas:

d)
$$\int_{1}^{2} \int_{0}^{z^2} \int_{x+z}^{x-z} z \, dy \, dx \, dz = -\frac{62}{5}$$

e)
$$\int_{-1}^{2} \int_{1}^{x^2} \int_{0}^{x+y} 2x^2y \, dz \, dy \, dx = \frac{513}{8}$$

Exemplos: Calcular as integrais triplas:

- f) $\int \int \int xyz^2 dx dy dz$; onde R é formada pelos pontos tais que $0 \le x \le 1$; $0 \le y \le 2$; $1 \le z \le 3 = 26/3$
- g) $\int \int \int (x^2 + 2yz) dx dy dz$; onde R é formada pelos pontos tais que $0 \le x \le 1$; $0 \le y \le 2$; $0 \le z \le x + y = 46/15$
- h) $\iint \int (x^2 + y^2 + z^2 + xyz) dx dy dz$; onde $R = [0,1] \times [0,1] \times [0,1] = 9/8$

Exercícios: Calcular a integral tripla $I = \iiint_{\Omega} (x^2 + y^2 + z^2) dV$ sobre a região delimitada pelos planos x + y + z = 2, x = 0, y = 0 e z = 0:

Exercícios: Determine o volume do tetraedro limitado pelos planos

$$x + 2y + z = 2$$
, $x = 2y$, $x = 0$ e $z = 0$:

