TCFSH_2015_18

數學第二冊第一章 數列與級數

$$a_{n+1} = p \cdot a_n + q$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$

座號:_____

姓名:_____

http://cplee8tcfsh.blogspot.tw/

1-1 數列

一、數列的表示法:

數列以 $\langle a_n \rangle$ 表示之, a_1 表示第1項(首項), a_2 表示第2項,..., a_n 表示第n項。 項數有限的數列稱為有限數列,有無窮多項的數列稱無窮數列。

Ex1. 觀察下列數列相鄰項之間的規律:

(1)
$$1,3,5,7,9,11,13,15,...$$
 $\circ [a_{n+1} = a_n + 2]$

(2)
$$2,4,8,16,32,64,128,256,\dots \circ [a_{n+1}=2\cdot a_n]$$

(3)
$$1,3,7,15,31,63,127,255,\cdots \circ [a_{n+1}=2\cdot a_n+1][a_{n+1}=a_n+2^n]$$

(4)
$$1,2,4,7,11,16,22,29,\dots \circ [a_{n+1}=a_n+n]$$

(5)
$$0,1,3,6,10,15,21,28,\dots \circ [a_{n+1}=a_n+n]$$

描述相鄰項之間的關係式稱為遞迴關係式。

謎之彬音:不同的數列可能有相同的遞迴式,故需加上初始條件以茲區分。

Ex2. 寫出下列數列的遞迴式:

(1) 1,3,5,7,9,11,13,15,...
$$\circ \begin{bmatrix} a_1 = 1 \\ a_{n+1} = a_n + 2 \end{bmatrix}$$

(2) 2,4,8,16,32,64,128,256,...
$$\circ \begin{bmatrix} a_1 = 2 \\ a_{n+1} = 2 \cdot a_n \end{bmatrix}$$

(4) 1,2,4,7,11,16,22,29,...
$$\begin{bmatrix} a_1 = 1 \\ a_{n+1} = a_n + n \end{bmatrix}$$

(5)
$$0,1,3,6,10,15,21,28,\dots \circ \begin{bmatrix} a_1=0 \\ a_{n+1}=a_n+n \end{bmatrix}$$

上題的(2)與(3)對應項之間都相差1。

若 $\langle a_n \rangle = 2,4,8,16,32,64,128,256,\cdots$ 的第 n 項是 2^n ,

則 $\langle b_n \rangle = 1,3,7,15,31,63,127,255,\cdots$ 的第 n 項是 2^n-1 。

將 $a_n=2^n$ 與 $b_n=2^n-1$ 稱為該數列的一般項。

謎之彬音:一般項是指直接以項序n表示 a_n 。(n=100代入即得第 100項)

二、常見的數列

等差數列(A.P.)(Arithmetic Progressions):

若數列 $\langle a_n \rangle$ 為等差數列

1. 遞迴式: $a_{n+1} = a_n + d$, 其中 d 為定值, 稱公差。

2. 一般式: $a_n = a_1 + (n-1)d$ 。

3.性質: $a_n = a_m + (n-m)d$ 。

4.設 $a \times b \times c$ 成等差數列,

則稱 $b \neq a \cdot c$ 的等差中項, $b = \frac{a+c}{2}$

謎之彬音: 等差數列可用二個變數表示: a,a+d,a+2d,a+3d,a+4d,...

謎之彬音:三項的等差數列可用 a-d,a,a+d 表示

等比數列(G.P.)(Geometric Progressions):

若數列 $\langle a_n \rangle$ 為等比數列, $(r \neq 0, a_1 \neq 0)$

- 1.遞迴式: $a_{n+1}=r\cdot a_n$,其中r 為定值,稱公比。
- 2. 一般式: $a_n = a_1 \cdot r^{n-1}$
- 3.性質: $a_n = a_m \cdot r^{n-m}$ 。
- 4.設 $a,b,c ∈ \mathbb{R}$, $a \lor b \lor c$ 成等比數列,

則稱 $b \neq a \cdot c$ 的等比中項, $b=\pm \sqrt{ac}$ 。

謎之彬音:等比數列可用二個變數表示: $a,a\cdot r,a\cdot r^2,a\cdot r^3,a\cdot r^4,\cdots$

謎之彬音:三項的等比數列可用 $\frac{a}{r}$, a, $a \cdot r$ 表示

算幾不等式:算術平均 ≥ 幾何平均(AM≥GM)

- 1. $a,b \in \mathbb{R}^+$, $\frac{a+b}{2} \ge \sqrt{ab}$
- 2. 等號成立於 a=b 時

調和數列(H.P.)(Harmonic Progressions):

- 1.當 $\left\langle \frac{1}{a_n} \right\rangle$ 為等差數列時,稱數列 $\left\langle a_n \right\rangle$ 為調和數列($\forall a_n \neq 0$)
- 2. 設 $a \cdot b \cdot c$ 成調和數列,則稱 b 是 $a \cdot c$ 的 <u>調和中項</u>, $b = \frac{2ac}{a+c}$ (調和平均 H.M.)

Ex3. 小串爬山,上山速率 4km/hr,下山速率 6km/hr,試求平均速率 ? [4.8]

平均(mean)不等式: $a,b \in \mathbb{R}^+$, $\sqrt{\frac{a^2+b^2}{2}} \ge \frac{a+b}{2} \ge \sqrt{ab} \ge \frac{2ab}{a+b}$ (SM \ge AM \ge GM \ge HM)

- 三、數學歸納法原理(M.I.)(Principle of Mathematical Induction)
- 1、證明要素:開始性、持續性
- 2、常見證明流程
 - (1)檢驗 n=1 時,原式成立(開始性)
 - (2)假設 n=k 時,原式成立;證明 n=k+1 時,原式亦成立(持續性)

此二個步驟缺一不可(能開始且持續)

反例 1: n^2-n+41 為質數?(41,43,47,53,61,71,83,97,…)

反例 2: $1+3+5+\cdots+(2n-1)=n^2+1$?

謎之彬音:Real Man!

數學歸納法常見證明類型:

1. 等式型

Ex4.
$$\forall n \in \mathbb{N}$$
 , 證明: $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(4n^2-1)}{3}$

Ex5.
$$\forall n \in \mathbb{N}$$
 , 證明: $1 \cdot n + 2 \cdot (n-1) + 3 \cdot (n-2) + \dots + (n-1) \cdot 2 + n \cdot 1 = \frac{n(n+1)(n+2)}{6}$

Ex6. $\forall n \in \mathbb{N}$, 試證: $2^{8n+1}-2^{4n}$ 的個位數字都是 6

2.倍數型

Ex7. $\forall n \in \mathbb{N}$, 試證: $9^{n+1} - 8n - 9$ 為 64 的倍數

Ex8. $\forall n \in \mathbb{N}$, $10^{2n} + 5 \cdot 12^{n} - 6$ 恆為自然數 k 的倍數 , 求 k 最大值 , 並證明 。 [22]

四、一階遞迴數列的一般式:(觀察 ⇒ 猜測 ⇒ 證明)

謎之彬音:一階線性遞迴關係 $a_{n+1}=p\cdot a_n+q$ 的通式解,請參閱附錄。

Ex9.數列 $\langle a_n \rangle$,若 $a_1=1$, $a_{n+1}=2a_n+1$,求 a_n 。

解:觀察 $a_1=1$, $a_2=3$, $a_3=7$, $a_4=15$, $a_5=31$, $a_6=63$, $a_7=127$,猜測 $a_n=2^n-1$ 證明:

- (1)當 n=1 時 $a_1=1=2^1-1$,成立
- (2) 設 n=k 時成立,即 $a_k=2^k-1$ 則 n=k+1 時 $a_{k+1}=2\cdot a_k+1=2(2^k-1)+1=2^{k+1}-1$,成立
- (3)由數學歸納法原理知 $\forall n \in \mathbb{N}$, $a_n = 2^n 1$ 恆成立。

Ex10.數列
$$\langle a_n \rangle$$
 ,若 $a_1=1$, $a_{n+1}=\frac{3a_n-1}{4a_n-1}$,求 a_n 。

解:觀察
$$a_2 = \frac{3 \times 1 - 1}{4 \times 1 - 1} = \frac{2}{3}$$
, $a_3 = \frac{3 \times \frac{2}{3} - 1}{4 \times \frac{2}{3} - 1} = \frac{3}{5}$, $a_4 = \frac{3 \times \frac{3}{5} - 1}{4 \times \frac{3}{5} - 1} = \frac{4}{7}$, 猜測 $a_n = \frac{n}{2n - 1}$

證明:

(1) 當
$$n=1$$
 時 $a_1=1=\frac{1}{2\times 1-1}$,成立

(2)設
$$n=k$$
 時成立,即 $a_k = \frac{k}{2k-1}$

則
$$n=k+1$$
 時 $a_{k+1} = \frac{3a_k-1}{4a_k-1} = \frac{3\frac{k}{2k-1}-1}{4\frac{k}{2k-1}-1} = \frac{3k-(2k-1)}{4k-(2k-1)} = \frac{(k+1)}{2(k+1)-1}$,成立

(3)由數學歸納法原理知
$$\forall n \in \mathbb{N}$$
 , $a_n = \frac{n}{2n-1}$ 恆成立。

Ex11.盲人點字!

Ex12.一等差數列之第4項為 -15 ,第12項為9,則從第幾項開始為正數?[10]

Ex13.數列
$$\langle a_n \rangle$$
 ,若 $a_1 = 1$ 且 $a_{n+1} = a_n + 2n$,則 $a_n = ? [n^2 - n + 1]$

Ex14.數列
$$\langle a_n \rangle$$
 ,若 $a_1=1$ 且 $a_{n+1}=a_n+(2n+1)$,則 $a_n=?[n^2]$

Ex15.
$$\forall n \in \mathbb{N}$$
 ,試證: $1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 \cdots + (2n-1)^2 - (2n)^2 = -n(2n+1)$

Ex16.
$$\forall n \in \mathbb{N}$$
 , 試證: 1+2+3+···+(n-1)+n+(n-1)+···+3+2+1=n²

Ex17.
$$\forall n \in \mathbb{N}$$
 , 試證: $\frac{1}{1 \cdot 2} + \frac{2}{1 \cdot 2 \cdot 3} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$

Ex18. 已知
$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
,且 $1\cdot 2+2\cdot 3+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}$,
試推測 $1\cdot 2\cdot 3+2\cdot 3\cdot 4+3\cdot 4\cdot 5+\cdots+n(n+1)(n+2)$ 和,並證明。[$\frac{n(n+1)(n+2)(n+3)}{4}$]

Ex19. $\forall n \in \mathbb{N}$, $2^{6n-3} + 3^{2n-1}$ 恆為自然數 k 的倍數 , 求 k 的最大值 , 並證明[11]

 $Ex20. \ \forall n \in \mathbb{N}$, 試證: $3^{2n+1} + 2^{n+2}$ 必為 7 的倍數。

Ex21.「河內塔 (Hanoi Tower) 問題 | fA,B,C = k, 其中 Ak 上套著 n 個大小不同 的圓盤,將其由小到大編號為 $1,2,\dots,n$ 。若藉助A,B,C三柱作橋樑,且每次移 動圓盤時都保持較大圓盤在下面,較小圓盤放在上面的規定,設 a_n 表示將 n 個圓 盤全部由A柱搬到C柱所需的最少次數,則:

(1)
$$\langle a_n \rangle$$
 的遞迴關係式為?(2) $a_n = ?[\begin{bmatrix} a_1 = 1 \\ a_n = 2 \cdot a_{n-1} + 1, n \ge 2 \end{bmatrix}$, $a^n = 2^n - 1$

Ex22.某人爬樓梯時,有時一步上一階,有時一步上二階。若 a_n 表示某人上n階樓梯 的方法數,試求:

- (1)求 a_n, a_{n-1}, a_{n-2} 之遞廻關係式 及初始值。
- (2) 樓梯有 10 階,某人上樓或跨一階或二階,此人上樓共有多少種方法
- $[(1) a_n = a_{n-1} + a_{n-2}, a_1 = 1, a_2 = 2$ (2) 89]

解:(1) 若某人第一步跨上一階,則尚有n-1 階,有 a_{n-1} 種方法

若第一步跨上二階,則尚有n-2階,有 a_{n-2} 種方法

故其遞迴關係式為 $a_1 = 1$, $a_2 = 2$ 且 $a_n = a_{n-1} + a_{n-2}$, n = 3, 4, 5, 6, ...

(2)
$$a_3 = a_2 + a_1 = 2 + 1 = 3$$

$$a_7 = a_6 + a_5 = 13 + 8 = 21$$

$$a_4 = a_3 + a_2 = 3 + 2 = 5$$

$$a_8 = a_7 + a_6 = 21 + 13 = 34$$

$$a_5 = a_4 + a_2 = 5 + 3 = 8$$

$$a_9 = a_8 + a_7 = 34 + 21 = 55$$

$$a_5 = a_4 + a_3 = 5 + 3 = 8$$

 $a_6 = a_5 + a_4 = 8 + 5 = 13$

$$a_{10} = a_9 + a_8 = 55 + 34 = 89$$

Ex23. 樓梯有 10 階,某人上樓時或跨一階,或二階,或三階,此人上樓共有多少種 方法?[274]

Ex24. 求下列各數列的一般項 a_n :

(1)
$$a_1 = 2$$
 , $\underline{\mathbf{a}}_n = 3 a_{n-1}, (n \in \mathbb{N}, n \ge 2) \circ [a_n = 2 \cdot 3^{n-1}]$

(2)
$$a_1 = 3$$
 , $\underline{\mathbf{a}}_{n+1} = a_n + (2n+1), (n \in \mathbb{N}) \circ [a_n = n^2 + 2]$

(3)
$$a_1 = \frac{1}{3}$$
 , $\underline{a}_{n+1} = (\frac{n}{n+3}) a_n, n \in \mathbb{N}$ $\circ \left[\frac{2}{n(n+1)(n+2)} \right]$

Ex25.已知數列<
$$a_n$$
>滿足 a_1 =1 ,且 $a_n = \frac{3a_{n+1}-4}{a_{n+1}-1}$, $\forall n \in \mathbb{N}$,則

(1) 求 a₂,a₃,a₄(2) 推 測 第 n 項

(3)利用數學歸納法證明(2)的結果。[
$$\frac{3}{2}$$
, $\frac{5}{3}$, $\frac{7}{4}$, $\frac{2n-1}{n}$]

Ex26.三個正數成等差遞增數列,其和15,各項平方和為93,求此數列?[2,5,8]

Ex27.數列 1,2,2,3,3,3,4,4,4,4,5,...,問:(1)數字 10 在第幾項到第幾項? (2)第 100 項為何?(3)前 100 項之和為何?[46,55,14,945]

Ex28.數列
$$\frac{1}{1}$$
, $\frac{1}{3}$, $\frac{3}{1}$, $\frac{1}{5}$, $\frac{3}{3}$, $\frac{5}{1}$, $\frac{1}{7}$, $\frac{3}{5}$, $\frac{5}{3}$, $\frac{7}{1}$, 的第 40 項為何?[$\frac{7}{11}$]

Ex29. 將自然數按下列規律排列,每一列比前一列多一個數,如下表所示:

第1列1

第2列2,3

第3列4.5.6

第4列7,8,9,10

第 5 列 11,12,13,14,15

試問第100列第3個數是多少?[4953]

Ex30.某人購買一棟房屋,簽約時先付100萬元,餘款分二十期付清。已知這二十期 款額成等差數列,前兩期共30.5萬元,三、四兩期共28.5萬元,則此棟房屋總價 為何?[315]

Ex31.設三數成等差數列,其和為90,若此三數依次加上1、3、49後,則成等比數列,求原來的三個數。[10,30,50或98,30,-38]

Ex32.在4與12之間依序插入10個數 a_1 , a_2 , a_3 ,..., a_{10} ,使此12個數成等差,則 a_7 =?[100/11]

Ex33.設一個等比數列,若
$$a_1 + a_2 + a_3 = 18$$
, $a_2 + a_3 + a_4 = -9$,求公比。 [$-\frac{1}{2}$

Ex34.設二相異自然數 m,n,若一等差數列的第 m 項為 a,第 n 項為 b,則第 m+n 項為 $ext{?} \left[\frac{am-bn}{m-n}\right]$

Ex35.設三正數成等比數列,其和 39,若此三數依次減去 $1 \cdot 2 \cdot 12$ 後,則成等差數列,求此三數。[4,10,25 或 25,10,4]

Ex36.三角形三邊長成
$$G.P.$$
,公比 r ,試證 $\frac{\sqrt{5}-1}{2} < r < \frac{\sqrt{5}+1}{2}$ 。

$$Ex37.$$
有一個 101 項的等差數列 $a_1,a_2,a_3,\cdots,a_{101}$,其和為 0 ,且 $a_{71}=70$,則 (A) $a_1+a_{101}>0$ (B) $a_2+a_{100}<0$ (C) $a_3+a_{99}=0$ (D) $a_{51}=51$ (E) $a_1<0$ 。 $[CE]$

一、數列以
$$\langle a_n \rangle$$
 表示之,級數以 S_n 或 \sum (sigma/summation)表示之。

$$a_1 + a_2 + \cdots + a_n = S_n = \sum_{k=1}^n a_k$$

性質:
$$\begin{cases} a_1 = S_1 \\ a_n = S_n - S_{n-1}, n \ge 2 \end{cases}$$

項數有限的級數稱為有限級數,有無窮多項的級數稱無窮級數。

Ex38. 設數列
$$< a_n >$$
 之前 n 項和 $S_n = \frac{n}{2n+1}$,則 $a_n = ? [\frac{1}{4n^2-1}]$ Ex39. 設數列 $< a_n >$ 之前 n 項和 $S_n = n^2 + 2$,則 $a_n = ? [\begin{cases} a_1 = 3 \\ a_n = 2n-1, n \ge 2 \end{cases}]$

二、 ∑ 表示法:

$$1+2+3+4+5+6+7+8+9+10=\sum_{k=1}^{10} k$$

1+ 4+ 9+ 16+ 25+ 36+ 49+ 64+ 81+
$$100 = \sum_{k=1}^{10} k^2$$

$$1+3+5+7+9+\cdots+99=\sum_{k=1}^{50} (2 k-1)$$

$$1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + \dots + 97 \cdot 99 = \sum_{k=1}^{49} (2k-1)(2k+1) = \sum_{k=100}^{148} (2k-199)(2k-197)$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots + \frac{1}{2^n} + \dots = \sum_{k=1}^{\infty} \frac{1}{2^k}$$

謎之彬音: ∞ 表示 infinity 即 \underline{mR} , ∞ 表示無止境的大數。

1.
$$\sum_{k=1}^{n} c = c + c + c + \dots + c = n c$$

2.
$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

3.
$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

4.
$$\sum_{k=1}^{n} k^{3} = 1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left[\frac{n(n+1)}{2} \right]^{2}$$

5.
$$\sum_{k=1}^{n} (a_k \pm b_k) = \sum_{k=1}^{n} a_k \pm \sum_{k=1}^{n} b_k$$
 (乘法與除法無此性質)

6.
$$\sum_{k=1}^{n} c(a_k) = c \cdot \sum_{k=1}^{n} a_k \ (c \, \text{App } k \, \text{m in } \text{in } \text{m})$$

7.
$$\sum_{k=1}^{n} a_k = \sum_{k=101}^{n+100} a_{k-100}$$

謎之彬音:此處k為 \sum 的內部自訂變數。(此處n為 \sum 的外部常數) 謎之彬音:內部的意思是當 \sum 消失,k就無法存在。

謎之彬音:如果不喜歡 k ,其他變數名稱亦可。 $\sum_{k=1}^{n} a_k = \sum_{i=1}^{n} a_i = \sum_{j=1}^{n} a_j = \sum_{t=1}^{n} a_t = \cdots$

Ex41.證明:
$$\sum_{k=1}^{n} k^3 = \left[\frac{n(n+1)}{2} \right]^2$$

Ex42.求 1·3+3·5+5·7+···+ 至第
$$n$$
項之和? [$\frac{n(4n^2+6n-1)}{3}$]

Ex43.已知
$$\sum_{k=1}^{3} (ak^2 + bk) = 30$$
 , $\sum_{k=1}^{3} (ak^2 - bk) = 54$,求數對 (a,b) 。[$(3,-2)$]

四、等差級數(Arithmetic Series)

1.
$$S_n = \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}$$

|2.連續 k項和=中項(平均)之 k倍, $S_{2n-1} = (2n-1) \cdot a_n$,總和比=平均比。

例如:二個等差數列 $\langle a_n
angle$ 與 $\langle b_n
angle$

 $\langle a_n \rangle$ 的前 9 項和 $S_9 = 9 \cdot a_5$, $\langle b_n \rangle$ 的前 9 項和 $T_9 = 9 \cdot b_5$,

則 $S_9: T_9 = (9 \cdot a_5): (9 \cdot b_5) = a_5: b_5$

Ex44. 設有二等差數列
$$\langle a_n \rangle$$
 與 $\langle b_n \rangle$, $S_n = \sum_{k=1}^n a_k$, $T_n = \sum_{k=1}^n b_k$,

(1)若 a_n : b_n =(3n+1): (7n-11); 試求 S_7 : T_7 與 S_n : T_n

(2)若 S_n : T_n =(3n+1): (7n-11); 試求 a_7 : b_7 與 a_n : b_n

[13:17, (3n+5):(7n-15); 1:2, (3n-1):(7n-9)]

Ex45. 等差數列之首 n 項和為 9,首 2n 項和為 12,求首 3n 項和為何? [9]

$$\mathrm{Ex}46$$
. 等差數列 $\langle a_{\scriptscriptstyle n} \rangle$,若 $a_{\scriptscriptstyle 5} = 8$, $a_{\scriptscriptstyle 11} = -10$,求 $S_{\scriptscriptstyle n}$ 的最大值。[77]

五、等比級數(Geometric Series)

1.
$$S_n = \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n = \begin{cases} n \cdot a_1 & , r = 1 \\ \frac{a_1(1 - r^n)}{1 - r} & , r \neq 1 \end{cases}$$

|2.(補充)若 |r| < 1 且 $n \to \infty$,則 $r'' \to 0$,

得
$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n + \dots = \frac{a_1}{1-r}$$

Ex47. 等比數列之首 n 項和為 48,首 2n 項和為 60,求首 3n 項和為何 ? [63]

Ex48.設有三數成等比數列,其和為28,平方和為336,求此數列? [4,8,16或16,8,4]

Ex49.某人參加銀行儲蓄存款,每年年初存入 1 萬元,年利率 10%,每年複利一次,求第 10 年年底的本利和。[已知 $(1.1)^{10}=2.59$]。[17.49 萬]

Ex50.某人年初向銀行借款 100 萬元,年利率 8%,複利計算,若此人每年年底需還本息一次,每次所還的金額相同,分十年還清,試問每次要還多少元?(四捨五入至千位, 1.08^{10} =2.16)[149000]

五、分式級數(拆項對消)

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right) = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1} = \frac{n}{n+1}$$

$$\text{Ex51.} \, \text{\not{k}} \, \sum_{k=1}^{n} \frac{1}{k(k+2)} \, \text{$\not{\sim}$ if o } \left[\frac{3n^2 + 5n}{4(n+1)(n+2)} \right]$$

Ex52.求
$$\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$$
 之值。[$\frac{n(n+3)}{4(n+1)(n+2)}$]

Ex53.所有動物中身材最好的是?[斑馬]

Ex54. 等差數列 $\langle a_n \rangle$,若 a_{10} =23 , a_{25} =-22 ,則此數列從第幾項開始級數和為負值。[35]

 $\mathrm{Ex}55$. 等差數列 $\langle a_n \rangle$,每項均為實數且公差為負值,若 $|a_8|=|a_{13}|$,則當 n 為何值 時 S_n 有最大值。[10]

Ex56.正奇數分組如下:(1),(3,5),(7,9,11),(13,15,17,19),……, 則(1)第 n 群的首項為何?(2)第 n 群中各數總和為何?(3)999 為第幾群之第幾個數? [n^2-n+1 , n^3 ,32,4]

Ex57.某水果販將橘子堆成長方形垛,若最底層長邊有10個橘子,短邊有5個,則此長方形垛最多有幾個橘子?[130]

Ex58.數列
$$\langle a_n \rangle$$
 前 n 項的和 $S_n = n^2 + 2n + 3$,求 a_n 。 [$a_n = \begin{cases} 6 & , n = 1 \\ 2n + 1 & , n \ge 2 \end{cases}$]

Ex59. 數列
$$\langle a_n \rangle$$
 , $a_1 + 2 \cdot a_2 + 3 \cdot a_3 + \dots + n \cdot a_n = n(n+1)(n+2)$, $\forall n \in \mathbb{N}$, 求 a_n 。 [$3n+3$]

Ex60. 設首項為 100 ,公差為 -3 的等差數列之前 n 項和為 S_n ,則當 n=? 時, S_n 有最大值為 ? [34 , 1717]

Ex61.一凸多邊形之所有內角成等差,公差為5度,最小角為120度,求邊數?[9]

Ex62.設 $a_n = (n+1) + (\frac{n}{2} + 2) + (\frac{n}{4} + 3) + (\frac{n}{8} + 4)$, $\forall n \in \mathbb{N}$, 有關數列 $< a_n >$ 下列何者敘 述為真?(A) 為等差數列,公差為 10(B) 為等差數列,公差為 15/8(C) 為等比數列,公比為 1/8(D) 為等比數列,公比為 1/2(E) 既非等差亦非等比。[B]

Ex63.假設某鎮每年的人口數逐年成長,且成一等比數列。已知此鎮十年前有25萬人,現在有30萬人,那麼二十年後,此鎮人口應有幾萬人(求到小數點後一位) [43.2]

Ex64. 一個邊長為n的大正方形中,共有 n^2 個單位正方形。如果每一個單位正方形的邊都恰有一根火柴棒,而此大正方形共用了 a_n 根火柴棒,求 $a_{n+1}-a_n$ 。[4n+4]

Ex65.一等差數列
$$< a_n >$$
之首項 $a_1 = 50$,公差為 -4 ,求 $\sum_{n=1}^{40} |a_n| = ?[1796]$

Ex66. 設一等差級數數列的首項 2+45i,公差是 1-3i,若此數列的首n 項和為 S_n ,則使 S_n 為實數的正整數 n=?[31]

Ex67. 設有一等比數列,首項為 7,末項為 448,總和為 889,若此數列的公比為 r,項數為 n,則數對 (n,r) 。 [(7,2)]

Ex68.在一直線上置有木樁 100 支,每支相隔 5 公尺,在第 30 支的地方有一人,想要木樁逐一搬運集中該處,問至搬完,共應走多少公尺路? [29200]

Ex69. 設有兩個等差數列 $< a_n > = <1$,4,7,10,…,1000>, $< b_n > = <11$,21,31,41,…,1001>今從 $< a_n >$ 與 $< b_n >$ 二數列中取出相同的項形成一個新數列 $< c_n >$,試求此數列的和。[16863]

Ex70. 設 $< a_n >$ 為等差數列,首項-200,公差為7。

$$(1)$$
若 $\sum_{k=1}^{n} a_k$ 之值為最小,此時 n 記為 n_0 ,則 n_0 = ?

(2)承上,求此時
$$\sum_{k=1}^{n_0} a_k$$
 之值。[29,-2958]

Ex71.級數 $5.5 + 55.55 + 555.555 + \dots +$ 至第 20 項之和為 $\frac{5}{81}(10^{21} + 10^k + t), k, t \in \mathbb{Z}$,則 k = ? t = ? [-20, -11]

Ex72.
$$1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} + \dots + \frac{2n-1}{2^{n-1}} \ge 4 - \left[6 - \frac{2n+3}{2^{n-1}} \right]$$

Ex73. 等比級數其公比為正,前 10 項和為 2,前 20 項和為 2050,那麼公比為?首項為?[2,2/1023]

Ex74.平面上n條直線最多把平面分成幾個區域。 $\left[\frac{n^2+n+2}{2}\right]$

Ex75. 平面上 n 個圓最多把平面分成幾個區域。 $\begin{bmatrix} n^2-n+2 \end{bmatrix}$

Ex76. 平面上過同一個定點的n個圓最多把平面分成幾個區域。 $\left[\frac{n^2+n+2}{2}\right]$

Ex77.空間中n個平面最多把空間分成幾個區塊。[$\frac{n^3+5n+6}{6}$]

Ex78.在圓上取n個點(n ≥ 2),兩兩相連所得的直線是否最多將此圓內區域分割成為 2^{n-1} 個區域。[否][$1+C_2^n+C_4^n$]

Ex79. 大考考古:

Ex80.利用公式 $1^3+2^3+\cdots+n^3=\left(\frac{n(n+1)}{2}\right)^2$,可計算出 $11^3+12^3+\cdots+20^3$ 之值為 (1)41075(2)41095(3)41115(4)41135(4)41155[91 自][1]

Ex81.用單位長的不鏽鋼條焊接如下圖系列的四面體鐵架,圖中的小圈圈「°」表示焊接點,圖(一)有兩層共4個焊接點,圖(二)有三層共10個焊接點,圖(三)有四層共20個焊接點。試問依此規律,推算圖(五)有六層共多少個焊接點?[91社][56]

Ex82. 若數列 < a_n >滿足 $a_1 = \frac{1}{7}$, $a_2 = \frac{3}{7}$ 及 $a_{n+1} = \frac{7}{2} a_n (1 - a_n)$, $n \ge 1$), 則 $a_{101} - a_{100} = ?$ [92 社] [$\frac{3}{7}$]

Ex83.已知一等差數列共有十項,且知其奇數項之和為15,偶數項之和為30,則下列哪一選項為此數列之公差?(1)1(2)2(3)3(4)4(5)5[93學][3]

Ex84.右圖是從事網路工作者經常用來解釋網路運作的 蛇行模型,數字1出現在第1列;數字2,3出 現在第2列;數字6,5,4(由左至右)出現在 第3列;數字7,8,9,10出現在第4列;依此 類推。試問第99列,從左至右算,第67個數字 為?[94社][4884]

Ex85.假設實數 a_1, a_2, a_3, a_4 是一個等差數列,且滿足 $0 < a_1 < 2$ 及 $a_3 = 4$ 。 若定義 $b_n = 2^{a_n}$,則以下哪此選項是對的?

- (1) b_1, b_2, b_3, b_4 是一個等比數列
- (2) $b_1 < b_2$ (3) $b_2 > 4$ (4) $b_4 > 32$ (5) $b_2 \times b_4 = 256$ [95 \(\beta \)][12345]

Ex86.用黑、白兩種顏色的正方形地磚依照如下的規律拼成若干圖形: 拼成第95個圖需要用幾塊白色地磚。 [95學][478]

Ex87.某巨蛋球場 E 區共有 25 排座位,此區每一排都比其前一排多 2 個座位。小明坐在正中間那一排(即 13 排),發現此排共有 64 個座位,則此球場 E 區共有幾個座位。[96 學][1600]

Ex88.平面上坐標皆為整數的點稱為格子點。我們將原點以外的格子點分層,方法如下:若 (a,b) 是原點 (0,0) 以外的格子點,且 |a| 和 |b| 中最大值為 n,則稱(a,b) 是在第 n 層的格子點 (例如 (3,-4) 是在第 4 層;(8,-8) 是在第 8 層)。則在第 15 層的格子點個數為 ______。[96 社][478]

Ex89.已知 a_1, a_2, a_3 為一等差數列,而 b_1, b_2, b_3 為一等比數列,且此六數皆為實數,試問下列哪些選項是正確的?

- (1) $a_1 < a_2$ 與 $a_2 > a_3$ 可能同時成立 (2) $b_1 < b_2$ 與 $b_2 > b_3$ 可能同時成立
- (3) 若 $a_1 + a_2 < 0$,則 $a_2 + a_3 < 0$ (4) 若 $b_1 \cdot b_2 < 0$,則 $b_2 \cdot b_3 < 0$
- (5) 若 b_1,b_2,b_3 皆為正整數且 $b_1 < b_2$,則 b_1 整除 b_2 [97學][24]

Ex90.用大小一樣的鋼珠可以排成正三角形、正方形與正五邊形陣列,其排列的規律如圖所示:已知 m 個鋼珠恰好可以排成每邊 n 個鋼珠的正三角形陣列與正方形陣列各一個。且知若用這 m 個鋼珠去排成每邊 n 個鋼珠的正五邊形陣列時,就會多出 9 個鋼珠。則 n=______,m=_____。[97 自][9,126]

	正三角形陣列	正方形陣列	正五邊形陣列
每邊1個鋼珠	0	0	0
每邊2個鋼珠	&	23	\$
每邊3個鋼珠	Å.	E	
每邊 4 個鋼珠			

Ex91.數列 $a_1+2,\cdots,a_k+2k,\cdots,a_{10}+20$ 共有十項,且其和為 240,則 $a_1+\cdots+a_k+\cdots+a_{10}$ 之值為(1) 31 (2) 120 (3) 130 (4) 185 (5) 218[98 學][3]

Ex92. 設 $a_1, a_2, \dots, a_n, \dots$ 為一實數數列,且對所有的正整數n 滿足 $a_{n+1} = \frac{n(n+1)}{2} - a_n$ 。請問下列哪些選項是正確的?

- (1)如果 $a_1=1$,則 $a_2=1$
- (2)如果 a_1 是整數,則此數列的每一項都是整數
- (3)如果 a_1 是無理數,則此數列的每一項都是無理數
- (4) $a_2 \le a_4 \le \cdots \le a_{2n} \le \cdots$ (n 為正整數)
- (5)如果 a_k 是奇數,則 $a_{k+2}, a_{k+4}, \cdots, a_{k+2n}, \cdots$ 都是奇數($n \in \mathbb{N}$)[99學][234]

Ex93.將邊長為1公分的正立方體堆疊成一階梯形立體,如右圖所示,其中第1層(最下層)有10塊,第2層有9塊,…,依此類推。當堆疊完10層時,該階梯形立體的表面積(即該立體的前、後、上、下、左、右各表面積的面積總和)為多少?

- (1) 75 平方公分(2) 90 平方公分(3) 110 平方公分
- (4) 130 平方公分(5) 150 平方公分[101 學][5]

 $\mathrm{Ex}94.$ 設實數組成的數列 $\langle a_n \rangle$ 是公比為-0.8的等比數列,實數組成的數列 $\langle b_n \rangle$ 是首項為 10的等差數列。已知 $a_9 > b_9$ 且 $a_{10} > b_{10}$ 。請選出正確的選項。

(1) $a_9 \times a_{10} < 0$ (2) $b_{10} > 0$ (3) $b_9 > b_{10}$ (4) $a_9 > a_{10}$ (5) $a_8 > b_8 [102 \ \mbox{\mbox{\mbox{\mbox{\not}}}}][13]$

1.累加型: $a_{n+1}=a_n+f(n)$ (後項與前項係數相同)

Ex95.數列
$$\langle a_n \rangle$$
 ,若 $a_1 = 1$ 且 $a_{n+1} = a_n + (n+1)^2$, $\forall n \in \mathbb{N}$,求 a_n 。

解: $a_n = g_{n-1} + n^2$

$$g_{n-1} = g_{n-2} + (n-1)^2$$

$$g_{n-2} = g_{n-3} + (n-2)^2$$
......
+) $g_2 = a_1 + 2^2$

$$\therefore - 般項 a_n = a_1 + 2^2 + 3^2 + \dots + n^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

2.累乘型: $a_{n+1}=f(n)\cdot a_n$ (無附加項)

3.混合型: $a_{n+1} = p \cdot a_n + q$, (其中p 、q 是常數)(p=1 為累加型)(q=0 為累乘型)

Ex98.續上題

[法二]令不動點
$$L=a_{n+1}=a_n$$
 $\Rightarrow L=\frac{1}{2}L+3\Rightarrow L=6$ 原式即 $a_{n+1}-6=\frac{1}{2}(a_n-6)$ $(a_2-6)=\frac{1}{2}(a_1-6)$ $(a_3-6)=\frac{1}{2}(a_2-6)$

$$\times$$
) $(a_n-6)=\frac{1}{2}(a_{n-1}-6)$

相乘對消得
$$a_n - 6 = \frac{1}{2^{n-1}}(a_1 - 6)$$
,故 $a_n = 6 - \frac{5}{2^{n-1}}$

$$4.(課外)$$
二階遞迴: $a_{n+2} = p \cdot a_{n+1} + q \cdot a_n$

設原式為
$$a_{n+2}=p\cdot a_{n+1}+q\cdot a_n, n\geq 1$$
, (其中 p,q,a_1,a_2 是給定常數),

令
$$p=\alpha+\beta$$
 , $q=-\alpha\cdot\beta$, (即 α, β 是二次方程式 $x^2-px-q=0$ 的雨根)

得
$$a_{n+2} = (\alpha + \beta) \cdot a_{n+1} - \alpha \cdot \beta \cdot a_n$$
 $\Rightarrow \begin{cases} (a_{n+2} - \alpha a_{n+1}) = \beta (a_{n+1} - \alpha a_n) \\ (a_{n+2} - \beta a_{n+1}) = \alpha (a_{n+1} - \beta a_n) \end{cases}$

得
$$a_{n+2} = (\alpha + \beta) \cdot a_{n+1} - \alpha \cdot \beta \cdot a_n$$
 ⇒
$$\begin{cases} (a_{n+2} - \alpha a_{n+1}) = \beta (a_{n+1} - \alpha a_n) \\ (a_{n+2} - \beta a_{n+1}) = \alpha (a_{n+1} - \beta a_n) \end{cases}$$
 分別以累乗型運算 ⇒
$$\begin{cases} a_{n+1} - \alpha a_n = \beta^{n-1} (a_2 - \alpha a_1) \cdot \dots \cdot (1) \\ a_{n+1} - \beta a_n = \alpha^{n-1} (a_2 - \beta a_1) \cdot \dots \cdot (2) \end{cases}$$

(2)-(1)
$$\beta$$
 $(\alpha-\beta)a_n=\alpha^{n-1}(a_2-\beta a_1)-\beta^{n-1}(a_2-\alpha a_1)$

可解出
$$a_n = \frac{a_2 - \beta a_1}{\alpha(\alpha - \beta)} \alpha^n + \frac{a_2 - \alpha a_1}{\beta(\beta - \alpha)} \beta^n$$
 。

謎之音:最好是有人想背這個公式啦!

謎之彬音:那...改良一下 $a_n = h \cdot \alpha^n + k \cdot \beta^n$ 這樣有沒漂亮一點呀。

謎之音:挖勒!還是不知道 h 與 k , 有啥用?

謎之彬音:挖勒,too!啊是不會隨便代個 a_1a_2 解h,k喔(請看下面例題[法二])

Ex99.數列
$$\langle a_n \rangle$$
 ,
$$\begin{cases} a_1 = 3, a_2 = 5 \\ a_{n+2} = 5 a_{n+1} - 6 a_n, n \ge 1 \end{cases}$$
 ,求 a_n 。

[法一]

特徴方程
$$x^2-5x+6=(x-2)(x-3)=0, \alpha=2, \beta=3$$

特徴方程
$$x^2 - 5x + 6 = (x - 2)(x - 3) = 0, \alpha = 2, \beta = 3$$

$$\Rightarrow \begin{cases} (a_{n+2} - 2a_{n+1}) = 3(a_{n+1} - 2a_n) \\ (a_{n+2} - 3a_{n+1}) = 2(a_{n+1} - 3a_n) \end{cases}, \text{ (計算恕略) 累乘後} \Rightarrow \begin{cases} a_{n+1} - 2a_n = 3^{n-1}(a_2 - 2a_1) \\ a_{n+1} - 3a_n = 2^{n-1}(a_2 - 3a_1) \end{cases}$$

$$\Rightarrow \begin{cases} a_{n+1} - 2a_n = -3^{n-1} \\ a_{n+1} - 3a_n = -4 \cdot 2^{n-1} \end{cases} \Rightarrow a_n = 2^{n+1} - 3^{n-1}$$

[法二]

$$x^{2}-5x+6=(x-2)(x-3)=0, \alpha=2, \beta=3$$

費波那契數列(Fibonacci sequence)或簡稱費氏數列〈F

1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

假設一對(雌雄各一)新生小兔,經過一個月後就長成大兔子,再一個月後會生出一對 (雌雄各一) 小兔子, 而且從此以後每個月都會生出一對(雌雄各一) 小兔子。

假設每對小兔子的生長與生育過程都是這樣只生不死(萬歲萬歲萬萬歲)。

設 F_n 表示第n個月時兔子的對數,根據假設,書樹狀圖來協助我們瞭解,

以●表示一對新生兔子、○表示一對大兔子。

由題意知,從 n ≥ 3 起,

第n個月時的兔子可分為大兔子與新生小兔兩種。

每對大兔子都是從第 n-1 個月留下來的,

因此第n個月時的大兔子對數與

第 n-1 個月時的兔子對數相等。

而新生小兔的父母必須在第 n-2 個月時就存在,

再者每次兔子的生育都是生一對。

因此,第n個月時的新生小兔的對數

與第 n-2 個月時的兔子對數相等。

因此,數列 $\langle F_n \rangle$ 中隱含著以下的遞迴關係式:

Ex100.設
$$\langle F_n \rangle$$
 是費波那契數列:
$$\begin{cases} F_1 = 1, F_2 = 1 \\ F_{n+2} = F_{n+1} + F_n, n \ge 1 \end{cases}$$
 ,求 F_n 。

解:
$$x^2 - x - 1 = 0 \Rightarrow \alpha = \frac{1 + \sqrt{5}}{2}$$
, $\beta = \frac{1 - \sqrt{5}}{2}$

$$\Rightarrow F_n = h(\frac{1+\sqrt{5}}{2})^n + k(\frac{1-\sqrt{5}}{2})^n$$

$$\stackrel{\triangle}{\cong} n = 1,2 \Rightarrow \begin{cases} F_1 = h(\frac{1+\sqrt{5}}{2}) + k(\frac{1-\sqrt{5}}{2}) = 1 \\ F_2 = h(\frac{1+\sqrt{5}}{2})^2 + k(\frac{1-\sqrt{5}}{2})^2 = 1 \end{cases} \Rightarrow \begin{cases} F_1 = h(\frac{1+\sqrt{5}}{2}) + k(\frac{1-\sqrt{5}}{2}) = 1 \\ F_2 = h(\frac{3+\sqrt{5}}{2}) + k(\frac{3-\sqrt{5}}{2}) = 1 \end{cases}$$

$$\Rightarrow \begin{cases} h = \frac{1}{\sqrt{5}} \\ k = \frac{-1}{\sqrt{5}} \end{cases} \Rightarrow F_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2}\right)^n, n \ge 1$$

Ex101.設 F_n 是費波那契數列: $F_1=F_2=1$, $F_{n+2}=F_{n+1}+F_n$ ($n\geq 1$),則 (1) $F_{12}^2 - F_{13}F_{11} = ?$ (2)前 500 項中有幾項是奇數。[-1,334]

Ex102.用7與8二種阿拉伯數字組成n位正整數,且無連續二個8相鄰,設滿足條 件的n位正整數有 a_n 個。若 $a_n < 100$,求n最大值。[9]

Ex103.用7與8二種阿拉伯數字組成n位正整數,且無連續三個8相鄰,設滿足條 件的n位正整數有 a_n 個。若 $a_n < 2010$, 求n 最大值。[12]

5.(課外)分式遞迴:(1)異根:均同減,相除,迭代(2)重根:同減,倒數,假分數換帶分數

Ex104. 設數列
$$\langle a_n \rangle$$
 满足 $a_1 = 0$, $a_{n+1} = \frac{a_n + 2}{4 - a}$, 求 a_n 。

解:
$$L = \frac{L+2}{4-L} \Rightarrow L=1,2$$
 (異根)

$$\begin{cases} a_{n+1} - 1 = \frac{a_n + 2}{4 - a_n} - 1 = \frac{2(a_n - 1)}{4 - a_n} \cdots (1) \\ a_{n+1} - 2 = \frac{a_n + 2}{4 - a_n} - 2 = \frac{3(a_n - 2)}{4 - a_n} \cdots (2) \end{cases} \xrightarrow{(1)} \frac{a_{n+1} - 1}{(2)} \Rightarrow \frac{a_{n+1} - 1}{a_{n+1} - 2} = \frac{2}{3} \frac{a_n - 1}{a_n - 2} \quad (G.P.)$$

$$\Rightarrow \frac{a_n - 1}{a_n - 2} = \left(\frac{2}{3}\right)^{n - 1} \frac{a_1 - 1}{a_1 - 2} = \frac{1}{2} \left(\frac{2}{3}\right)^{n - 1} \Rightarrow a_n = \frac{2^{n - 1} - 3^{n - 1}}{2^{n - 2} - 3^{n - 1}}$$

Ex105.設數列 $\langle a_n \rangle$ 满足 $a_1 = 1$, $a_{n+1} = \frac{3a_n - 1}{4a_n - 1}$,求 a_n 。

解:
$$L = \frac{3L-1}{4L-1} \Rightarrow L = \frac{1}{2}$$
 (重根)

$$a_{n+1} - \frac{1}{2} = \frac{3a_n - 1}{4a_n - 1} - \frac{1}{2} \qquad \Rightarrow a_{n+1} - \frac{1}{2} = \frac{a_n - \frac{1}{2}}{4a_n - 1} \qquad \Rightarrow \frac{1}{a_{n+1} - \frac{1}{2}} = \frac{4a_n - 1}{a_n - \frac{1}{2}} = 4 + \frac{1}{a_n - \frac{1}{2}} \quad (A.P.)$$

$$\Rightarrow \frac{1}{a_n - \frac{1}{2}} = 4(n - 1) + \frac{1}{a_1 - \frac{1}{2}} = 4n - 2 \qquad \Rightarrow a_n = \frac{n}{2n - 1}$$

6.(課外)高階遞迴(特徵方程)

- (1). 重根二階遞迴:遞迴式: $a_{n+2} = p \cdot a_{n+1} + q \cdot a_n$, ($p^2 + 4q = 0$) 若 $x^2 - px - q = 0$ 有重根 β、β,則一般式 $a_n = h \cdot \beta^n + k \cdot n \cdot \beta^n$ 取該數列之前二項代入求出係數 h , k ,即可得 a_n 一般式
- (2).三階遞迴數列:

三異根: 遞迴式 $a_{n+3} = p \cdot a_{n+2} + q \cdot a_{n+1} + r \cdot a_n$

若 $x^3 - px^2 - qx - r = 0$ 之根為α、β、γ,則一般式 $a_n = g \cdot \alpha^n + h \cdot \beta^n + k \cdot \gamma^n$

二同一異根: 遞迴式 $a_{n+3} = p \cdot a_{n+2} + q \cdot a_{n+1} + r \cdot a_n$

若 $x^3 - px^2 - qx - r = 0$ 之根為α、β、β、則一般式 $a_n = g \cdot \alpha^n + (h + k \cdot n) \cdot \beta^n$

三同根:遞迴式 $a_{n+3}=p\cdot a_{n+2}+q\cdot a_{n+1}+r\cdot a_n$

若 $x^3 - px^2 - qx - r = 0$ 之根為β、β、β、β,則一般式 $a_n = (g + h \cdot n + k \cdot n^2) \cdot \beta^n$

(補充)階差數列:若 $b_{n-1} = a_n - a_{n-1}$,則稱數列 $\langle b_n \rangle$ 是原數列 $\langle a_n \rangle$ 的階差數列,則

$$a_n - a_{n-1} = b_{n-1}$$

$$a_{n-1} - a_{n-2} = b_{n-2}$$

$$a_{n-2} - a_{n-3} = b_{n-3}$$

.

$$g_3' - g_2' = b_2$$

+)
$$a_2 - a_1 = b_1$$

$$\therefore$$
 一般項 $a_n = a_1 + b_1 + b_2 + \dots + b_{n-1} = a_1 + \sum_{k=1}^{n-1} b_k$

謎之彬音:若 $\langle a_n
angle$ 的一般式為k次多項式,則 $\langle b_n
angle$ 的一般式為k-1次多項式(差分)