Отчёт по лабораторной работе №6.11.5 Туннелирование в полупроводниках

Плюскова Н.А. Б04-004

17 сентября 2023 г.

1. Аннотация

В работе исследуется принцип действия туннельного диода, измеряется его вольт-амперная характеристики и основные параметры.

2. Теоретическое введение

Туннельным диодом называется сильно легированный полупроводник, уровень Ферми которого лежит в разрешенной зоне и становятся возможны туннельные переходы электронов в области узкого (p-n)-перехода.

Будем считать, что все состояния, лежащие ниже уровня Ферми, заполнены электроны, а выше — свободны. Энергетические диаграммы идеального туннельного диода и его вольт-амперная характеристика показаны на рисунке 1. μ_n и μ_p обозначены уровни Ферми в n- и p-области соответственно; E_c и E_v - границы зоны проводимости и валентной зоны. В отсутсвии внешнего поля уровни Ферми μ_n и μ_p лежат на одной горизонтали; число дырок и электронов, туннелирующих в обе стороны, одинаково, и ток отсутствует (рисунок 1.a). При приложении напряжения в прямом направлении уровень Ферми в *n*-области «ползет» вверх по отношению к уровню Ферми в р-области, электроны туннелируют налево, ток растет. Он достигает максимума в точке δ вольт-амперной характеристики (рисунок 1. э ϵ), соответствующей наибольшему совпадению занятой зоны в отрицательной области и свободной в положительной. При дальнейшем увеличении внешнего напряжения перекрытие занятых уровней в n-области и свободных в p- уменьшается, и ток падает до нуля: это иллюстрирует рисунок 1.в. Предельное положение соответствует энергетической диаграмме г. При дальнейшем увеличении напряжения ток, возникающий за счет туннелирующих электронов, остается равным нулю, а диффузиозный ток возникает при совпадении занятых уровней n-области с свободными уровнями зоны проводимости (рисунок $1.\partial$). На диаграмме 1.е показан ток в обратном направлении.

Рис. 1: Схема энергетических уровней и вольт-амперная характеристика идеального туннельного диода

Реальная вольт-амперная характеристика туннельного диода отличается от таковой для идеального и представлена на рисунке 2. Она учитывает образование примесных зон и возможность их слияния с основными, что объясняет наличия ненулевого тока I_v в минимуме характеристики.

Рис. 2: Вольт-амперная характеристика неидеальных туннельных диодов с меньшей (сплошная линия) и большей (пунктирная линия) шириной запрещенной зоны

Вольт-амперная характеристика реального туннельного диода (см. рисунок 2) описывается следующими значениями напряжения и тока.

Напряжению U_p соответствует максимум тока I_p , при котором смещение энергетических зон одинаково, причем это напряжение связано с расстоянием ξ между уровнем Ферми в n-области и зоной проводимости и энергией $E_{\rm n\ max}$, соответствующей максимуму плотности распределения электронов, следующим отношением:

$$U_p \approx \frac{\xi - E_{\text{n max}}}{e}$$

В точке U_v ток минимален, и, как следует из описания выше:

$$U_v \approx \frac{(\mu_n - E_c) + (E_v - \mu_p)}{e} = \frac{\xi + \eta}{e} \approx \frac{2\xi}{e} \approx \frac{2\eta}{e}$$

Напряжение U_f характеризует раствор вольт-амперной характеристики и определяется шириной запрещенной зоны.

3. Экспериментальная установка

Для изучения принципа действия туннельного диода и измерения его характеристик используется установка, изображенная на рис.3, рис.4, рис.5

Рис. 3: Осциллограф

Рис. 4: Вольтметр и амперметр

Рис. 5: Функциональная часть установки

4. Результаты эксперимента и обработка данных

4.1. Изучение ВАХ туннельного диода с помощью осциллографа

Схема установки представлена на рисунке 6. На вход Y осциллографа подается напряжение, пропорциональное току через диод, а на вход X — падение напряжения на диоде.

Рис. 6: Схема наблюдения вольт-амперной характеристики туннельного диода с помощью осциллографа

Ток I через диод зависит от напряжения U на нем по следующей формуле:

$$I = U \frac{R_1 + 2(R_2 + R_3)}{(R_1 + 2R_2) \cdot R_3}$$

Здесь R_1 , R_2 , R_3 — сопротивления соответствующих резисторов моста со схемы на рисунке 6.

Полученная осциллограмма для туннельного диода приведена на рисунке 7.

Рис. 7: Вольт-амперная характеристика туннельного полупроводникового диода на экране осциллографа

По осциллограмме для туннельного диода оценим искомые величины напряжений (начало вольт-амперной характеристики соответствует нулевому напряжению):

$$U_p \approx 0.05 \pm 0.01 \text{ B}$$

 $U_v \approx 0.33 \pm 0.01 \text{ B}$
 $U_f \approx 0.455 \pm 0.01 \text{ B}$

Получение статической характеристики туннельного диода

Схема, используемая для получения статической характеристики диода, приведена на рисунке 8. Ток измеряется миллиамперметром, включенным последовательно с диодом, а напряжение на диоде — цифровым вольтметром.

Рис. 8: Схема измерения параметров туннельного диода

Плавно меняя сопротивление резистора R и тем самым повышая напряжение на диоде, получим вольт-амперную характеристику туннельного диода I(U). Погрешность величин напряжения U и тока I оценим двумя единицами последнего разряда. Построим график зависимости I(U). Он изображен на рисунке 9.

Рис. 9: Измерение вольт-амперной характеристики I(U) туннельного диода

По графику определим искомые значения токов и напряжений:

•
$$U_p = 0.04 \pm 0.02 \text{ B}, I_p = 4.63 \pm 0.02 \text{ MA}$$

•
$$U_v = 0.32 \pm 0.02 \text{ B}, I_v = 3.57 \pm 0.02 \text{ MA}$$

•
$$U_f = 0.47 \pm 0.02 \text{ B}$$

Примем $E_v=0$. Тогда из выражения для $U_v pprox rac{2\mu}{e}$ можно найти энергию Ферми $\mu_n pprox \mu_p$:

$$\mu_n \approx \mu_p \approx eU_v/2 \approx 0.16 \text{ sB}$$

Из выражения для напряжения $U_p \approx (\mu_n - E_{\text{n max}})/e$ получим энергию, соответствующую максимальной плотности распределения электронов $E_{\text{n max}}$:

$$E_{\text{n max}} = \mu_n - eU_n \approx 0.12 \text{ sB}$$

5. Вывод

В работе исследован принцип действия туннельного диода, а также получена вольт-амперная характеристика на осциллографе, затем измерена непосредственно, снимая зависимость тока от напряжения. По результатам измерений были получены параметры диода, которые в пределах погрешности совпадают с грубой оценкой, полученной благодаря наблюдению на осциллографе.

6. Приложение

I, мА	U, B
0.2	0.001
0.4	0.002
0.59	0.003
1	0.005
1.39	0.008
1.8	0.011
2	0.012
2.12	0.013
2.2	0.0133
2.3	0.014
2.4	0.015
2.5	0.0156
2.6	0.0163
2.7	0.0172
2.8	0.018
2.9	0.0189
3	0.0198
3.1	0.0207
3.2	0.022
3.285	0.0225
3.443	0.0241
3.5	0.0247
3.636	0.0263
3.748	0.0276
3.921	0.0299
4.014	0.0312
4.188	00.034
4.218	0.0345

U, B
0.0349
0.0375
0.038
0.0387
0.0406
0.0432
0.0456
0.2526
0.26
0.27
0.2798
0.283
0.295
0.41
0.423
0.17
0.3433
0.3586
0.3604
0.3705
0.3919
0.4
0.41
0.4227
0.43
0.45
0.4573
0.47

Таблица 1: Результаты измерений ВАХ туннельного диода