Assigned: Page 22, prove Properties of Functions Theorem parts 2, 3, and 4

Given functions $\alpha: A \longrightarrow B, \beta: B \longrightarrow C$, and $\gamma: C \longrightarrow D$, then

- 1. γ (β α) = (γ β) α (associativity). Let $a \in A$. Then (γ (β α))(a) = γ ((β α)(a)) = γ (β (α (a))). On the other hand, ((γ β) α)(a) = (γ β)(α (a)) = γ (β (α (a))). So, γ (β α) = (γ β) α .
- 2. If α and β are one-to-one, then β α is one-to-one.
- 3. If α and β are onto, then β α is onto.
- 4. If α is one-to-one and onto, then there is a function α^{-1} from B onto A such that $(\alpha^{-1}\alpha)(a) = a, \forall a \in A$ and $(\alpha \alpha^{-1})(b) = b, \forall b \in B$.