ECO375: Review Notes Applied Econometrics I

Tianyu Du

October 27, 2018

Contents

1	Slid	le 4: Simple & Multiple Regression - Estimation	2
	1.1	Regression Model	2
	1.2	OLS	2
	1.3	Partialling Out	3
		1.3.1 Steps	3
		1.3.2 Interpretation	4
	1.4	Omitted Variable Bias	4
2	Ma	trix Differentiation*	5
3	Multiple Regression in Matrices		
	3.1	The Model	5
	3.2	Variance Matrix	6
4	Slide 7		
	4.1	Assumptions (MLRs) in Matrix Form	7
	4.2	Properties of OLS Estimator	7
	4.3	Variance Inflation	8
5	Slide 8: Multiple Regression-Inference		
	5.1	t-test for significance of individual predicator	9
	5.2	t-test for comparing 2 coefficients	9
	5.3		10
	5.4	Full F-test for the significance of the model	10

1 Slide 4: Simple & Multiple Regression - Estimation

1.1 Regression Model

Assumption 1.1. Assuming the population follows

$$y = \beta_0 + \beta_1 x + u$$

and assume that x causes y.

1.2 OLS

$$\min_{\vec{\beta}} \sum_{i} (y_i - \hat{y}_i)^2$$
With FOC:
$$\sum_{i} (y_i - \hat{y}_i) = 0$$

$$\sum_{i} x_{ij} (y_i - \hat{y}_i) = 0, \ \forall j$$

Remark 1.1. Both $\hat{\beta}_0$ and $\hat{\beta}_j$ are functions of *random variables* and therefore themselves *random* with *sampling distribution*. And the estimated coefficients are random up to random sample chosen.

Property 1.1. Properties of OLS estimators

- Unbiased $\mathbb{E}[\hat{\beta}|X] = \beta$
- Consistent $\hat{\beta} \to \beta$ as $n \to \infty$
- Efficient/Good min variance.

Definition 1.1. The Simple Coefficient of Determination

$$R^2 = \frac{SSE}{SST}$$

and $SS\underline{Total} = SSExplained + SS\underline{Residual}$

$$\sum_{i} (y_i - \overline{y})^2 = \sum_{i} (\hat{y}_i - \overline{y})^2 + \sum_{i} (y_i - \hat{y}_i)^2$$

Proposition 1.1 (Logarithms). Interpretation with logarithmic transformation.

- $\ln y = \alpha + \beta \ln y + u$: x increases by 1%, y increases by β %.
- $\ln y = \alpha + \beta x + u$: x increases by 1 unit, y increases by $100\beta\%$.

• $y = \alpha + \beta \ln x + u$: x increases by 1%, y increases by 0.01 β unit.

Assumption 1.2. Simple regression model assumptions

- 1. Model is linear in parameter.
- 2. Random samples $\{(x_i, y_i)\}_{i=1}^n$.
- 3. Sample outcomes $\{x_i\}_{i=1}^n$ are not the same.
- 4. $\mathbb{E}(u|x) = 0$ conditional on random sample x.
- 5. Error is homoskedastic. $Var(u|x) = \sigma^2$ for all x.

Benefits of MLR compared with SLR

- More accurate causal effect estimation.
- More flexible function forms.
- Could explicitly include more predictors so $\mathbb{E}(u|X)=0$ is easier to be satisfied.
- MLR4 is less restrictive than SLR4.

Property 1.2. MLR OLS residual satisfies

$$\sum_{i} \hat{u_i} = 0$$

$$\sum_{i} x_{ji} \hat{u_i} = 0, \ \forall i \in \{1, 2, \dots, k\}$$

Property 1.3. MLR OLS estimators $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$ pass through the average point.

$$\overline{y} = \hat{\beta}_0 + \hat{\beta}_1 \overline{x}_1 + \dots + \hat{\beta}_k \overline{x}_k$$

Proof.

1.3 Partialling Out

1.3.1 Steps

- 1. Regress x_1 on x_2, x_3, \ldots, x_K and calculate the residual \tilde{r}_1 .
- 2. Regress y on \widetilde{r}_1 with simple regression and find the estimated coefficient $\hat{\lambda}_1$.
- 3. Then the multiple regression coefficient estimator $\hat{\beta}_1$ is

$$\hat{\beta}_1 = \hat{\lambda}_1 = \frac{\sum_i y_i \widetilde{r}_{1i}}{\sum_i (\widetilde{r}_{1i})^2}$$

Proof.

1.3.2 Interpretation

This OLS estimator only uses the <u>unique variance</u> of one independent variable. And the parts of variation correlated with other independent variables is partialled out.

Assumption 1.3. Multiple Regression Assumptions

- 1. (MLR1) The model is linear in parameters.
- 2. (MLR2) Random sample from population $\{(x_{1i}, \dots x_{ki}, y_i)_{i=1}^n$.
- 3. (MLR3) No perfect multicollinearity.
- 4. (MLR4) Zero expected error conditional on population slice given by X.

$$\mathbb{E}(u|X) = \mathbb{E}(u|x_1, x_2, \dots, x_k) = 0$$

5. (MLR5) Homoskedastic error conditional on population slice given by X.

$$Var(u|X) = \sigma^2$$

6. (MLR6, strict assumption) Normally distributed error

$$u \sim \mathcal{N}(0, \sigma^2)$$

1.4 Omitted Variable Bias

Suppose population follows the real model

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + u_i \tag{1}$$

Consider the *alternative model*, and $\underline{x_k}$ is omitted, which is assumed to be relevant.

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_{k-1} x_{(k-1)i} + r_i$$
 (2)

and use the partialling-out result on the second regression we have

$$\tilde{\beta}_1 = \frac{\sum_i \tilde{r}_{1i} y_i}{(\tilde{r}_{1i})^2}$$

where $\tilde{r}_{1i} = x_{1i} - \tilde{\alpha}_0 - \tilde{\alpha}_2 x_{2i} - \dots - \tilde{\alpha}_{k-1} x_{(k-1)i}$

$$\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_k \frac{\sum (\tilde{r}_{1i} x_{ki})}{\sum (\tilde{r}_{1i})^2}$$
(3)

and take the expectation

$$\mathbb{E}(\tilde{\beta}_1|X) = \beta_1 + \tilde{\delta}_1\beta_k$$
$$Bias(\tilde{\beta}_1) = \tilde{\delta}_1\beta_k$$

Conclusion the sign of bias depends on $cov(x_1, x_k)$ and β_k .

Proof. TODO

2 Matrix Differentiation*

$$\mathbf{y} = \mathbf{A}\mathbf{x} \implies \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \mathbf{A}$$
 (4)

Let $\alpha = \mathbf{y}' \mathbf{A} \mathbf{x}$, notice that $\alpha \in \mathbb{R}$, then

$$\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{y}' \mathbf{A} \tag{5}$$

$$\frac{\partial \alpha}{\partial \mathbf{y}} = \mathbf{x}' \mathbf{A}' \tag{6}$$

Consider special case $\alpha = \mathbf{x}' \mathbf{A} \mathbf{x}$, then

$$\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{x}' \mathbf{A} + \mathbf{x}' \mathbf{A}' \tag{7}$$

and if A is symmetric,

$$\frac{\partial \alpha}{\partial \mathbf{x}} = 2\mathbf{x}'\mathbf{A} \tag{8}$$

3 Multiple Regression in Matrices

3.1 The Model

Predictor

$$\mathbf{X} \in \mathbb{M}_{n \times (k+1)}(\mathbb{R})$$

where n is the number of observations and k is the number of features.

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & \dots & x_{1k} \\ 1 & x_{21} & \dots & x_{2k} \\ \vdots & & & & \\ 1 & x_{n1} & \dots & x_{nk} \end{bmatrix}_{n \times (k+1)}$$

Model

$$\mathbf{y} = \mathbf{X}\vec{\beta} + \mathbf{u}$$

First order condition for OLS

$$\mathbf{X}'\hat{u} = \mathbf{0} \in \mathbb{R}^{k+1}$$

$$\iff \mathbf{X}'(\mathbf{y} - \mathbf{X}\hat{\beta}) = \mathbf{0} \in \mathbb{R}^{k+1}$$

Estimator

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

Proof. From the first order condition for the OLS estimator

$$\mathbf{X}'(\mathbf{y} - \mathbf{X}\hat{\beta}) = \mathbf{0}$$

$$\implies \mathbf{X}'\mathbf{y} - \mathbf{X}'\mathbf{X}\hat{\beta} = \mathbf{0}$$

$$\implies \mathbf{X}'\mathbf{y} = \mathbf{X}'\mathbf{X}\hat{\beta}$$

$$\implies \hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

and note that (X'X) is guaranteed to be invertible by assumption *no perfect multi-collinearity*.

Sum Squared Residual

$$SSR(\hat{\beta}) = \hat{u}' \cdot \hat{u} = (\mathbf{y} - \mathbf{X}\hat{\beta})' \cdot (\mathbf{y} - \mathbf{X}\hat{\beta})$$

3.2 Variance Matrix

Consider

$$\vec{z}_t = [z_{1t}, z_{2t}, \dots z_{nt}]'$$

 $\vec{z}_s = [z_{1s}, z_{2s}, \dots z_{ns}]'$

Notice that the variance and covariance are defined as

$$Var(\vec{z}_t) = \mathbb{E}[(\vec{z}_t - \mathbb{E}[\vec{z}_t])^2]$$
$$Cov(\vec{z}_t, \vec{z}_s) = \mathbb{E}[(\vec{z}_t - \mathbb{E}[\vec{z}_t])(\vec{z}_s - \mathbb{E}[\vec{z}_s])]$$

The variance matrix of $\mathbf{z} = [z_1, z_2, \dots, z_n]$ is given by

$$Var(\mathbf{z}) = \begin{bmatrix} Var(z_1) & Cov(z_1, z_2) & \dots & Cov(z_1, z_n) \\ Cov(z_2, z_1) & \dots & & & \\ \vdots & & & & & \\ Cov(z_n, z_1) & \dots & & & Var(z_n) \end{bmatrix}$$

$$= \begin{bmatrix} \mathbb{E}[(z_1 - \overline{z}_1)^2] & \mathbb{E}[(z_1 - \overline{z}_1)(z_2 - \overline{z}_2)] & \dots \\ \mathbb{E}[(z_2 - \overline{z}_2)(z_1 - \overline{z}_1)] & \dots & & \\ \vdots & & & & \\ \mathbb{E}[(z_n - \overline{z}_n)(z_1 - \overline{z}_1)] & \dots & \mathbb{E}[(z_n - \overline{z}_n)^2] \end{bmatrix}$$

$$= \mathbb{E}[(\mathbf{z} - \mathbb{E}[\mathbf{z}])_{n \times 1} \cdot (\mathbf{z} - \mathbb{E}[\mathbf{z}])'_{1 \times n}] \in \mathbb{M}_{n \times n}$$

In the special case $\mathbb{E}[\vec{z}] = \vec{0}$, variance is reduced to

$$Var(\mathbf{z}) = \mathbb{E}[\mathbf{z} \cdot \mathbf{z}']$$

Residual Since residual u_i are *i.i.d* with variance σ^2 , the variance matrix of **u** is

$$Var(\mathbf{u}) = \mathbb{E}[\mathbf{u} \cdot \mathbf{u}'] = \sigma^2 \mathbf{I}_n$$

Estimator If $\hat{\beta}$ is unbiased, $\mathbb{E}[\hat{\beta}|\mathbf{X}] = \vec{\beta}$, then

$$Var(\hat{\beta}|\mathbf{X}) = \mathbb{E}[(\hat{\beta} - \vec{\beta}) \cdot (\hat{\beta} - \vec{\beta})'|\mathbf{X}] \in \mathbb{M}_{(k+1)\times(k+1)}$$

4 Slide 7

4.1 Assumptions (MLRs) in Matrix Form

E.1. linear in parameter

$$\mathbf{y} = \mathbf{X}\vec{\beta} + \mathbf{u}$$

E.2. no perfect multi-collinearity

$$rank(\mathbf{X}) = k + 1$$

E.3. Error has expected value of $\mathbf{0}$ conditional on \mathbf{X} .

$$\mathbb{E}[\mathbf{u}|\mathbf{X}] = \mathbf{0}$$

E.4. Error **u** is homoscedastic.

$$Var(\mathbf{u}|\mathbf{X}) = \sigma^2 \mathbf{I}_n$$

 ${f E.5.}$ Normally distributed error ${f u}$. Note that this assumption is relatively strong.

$$\mathbf{u} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$$

4.2 Properties of OLS Estimator

Theorem 4.1. Given *E.1. E.2. E.3.*, the OLS estimator $\hat{\beta}$ is an unbiased estimator for $\vec{\beta}$.

$$\mathbb{E}[\hat{\beta}|\mathbf{X}] = \vec{\beta}$$

Proof.

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\vec{\beta} + \mathbf{u})$$

$$= \vec{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}$$

Taking expectation conditional on ${\bf X}$ on both sides,

$$\mathbb{E}[\hat{\beta}|\mathbf{X}] = \vec{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{0} = \vec{\beta}$$

Lemma 4.1. Suppose $\mathbf{A} \in \mathbb{M}_{m \times n}$ and $\mathbf{z} \in \mathbb{M}_{n \times 1}$ then

$$Var(\mathbf{Az}) = \mathbf{A}Var(\mathbf{z})\mathbf{A}'$$

Theorem 4.2. Given $E.1 \sim E.4$

$$Var(\hat{\beta}|\mathbf{X}) = (\mathbf{X}'\mathbf{X})^{-1}\sigma^2$$

Proof.

$$Var(\hat{\boldsymbol{\beta}}|\mathbf{X}) = Var((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}|\mathbf{X})$$

$$= Var((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\hat{\boldsymbol{\beta}} + \mathbf{u})|\mathbf{X})$$

$$= Var(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}|\mathbf{X})$$
By the lemma above,
$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'Var(\mathbf{u}|\mathbf{X})[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}']'$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'Var(\mathbf{u}|\mathbf{X})\mathbf{X}''(\mathbf{X}'\mathbf{X})^{-1}$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^{2}\mathbf{I}_{n}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}$$

$$= \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}$$

Theorem 4.3 (Gause-Markov). Given $E.1. \sim E.4.$, the OLS estimator is the best linear unbiased estimator (BLUE).

(The best here means the OLS has the least variance among all estimators.)

4.3 Variance Inflation

Let $j \in \{1, 2, ..., k\}$, then the variance of an individual estimator on particular feature j is

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{(1 - R_j^2)SST_j}$$

where

$$SST_j = \sum_{i=1}^{n} (x_{ij} - \overline{x}_j)^2$$

and R_j^2 is the coefficient of determination while regressing x_j on all other features $x_i, \forall i \neq j$.

Definition 4.1. The variance inflation on estimator for feature j is

$$VIF_j = \frac{1}{1 - R_j^2}$$

Remark 4.1 (Interpretation). the standard error of estimator on a particular variable $(\hat{\beta}_i)$ is *inflated* by it's (x_i) relationship with other explanatory variables.

Solutions to high VIF

- 1. Drop the explanatory variable.
- 2. Use ratio $\frac{x_i}{x_j}$ instead.
- 3. Ridge regression.

Remark 4.2. VIF highlights the importantce of **not** including redundant predictors.

5 Slide 8: Multiple Regression-Inference

Hypothesis Testing on multiple regression model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + u_i$$

5.1 t-test for significance of individual predicator

Test statistic Given $MLR.1 \sim MLR.6$ (need $\mathbf{u} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$),

$$t = \frac{\hat{\beta}_j - b}{s.e.(\hat{\beta}_j)} \sim t_{n-k-1}$$

where

$$H_0: \beta_j = b$$
$$H_1: \beta_i(\neq, >, <)b$$

5.2 t-test for comparing 2 coefficients

Test statistic

$$t = \frac{(\hat{\beta}_i - \hat{\beta}_j) - b}{s.e.(\hat{\beta}_i - \hat{\beta}_j)} \sim t_{n-k-1}$$

where

$$H_0: \beta_i - \beta_j = b$$

$$H_1: \beta_i - \beta_j (\neq, >, <) b$$

notice

$$\begin{split} s.e.(\hat{\beta}_i - \hat{\beta}_j) &= \sqrt{Var(\hat{\beta}_i - \hat{\beta}_j)} \\ &= \sqrt{Var(\hat{\beta}_i) + Var(\hat{\beta}_j) - 2Cov(\hat{\beta}_i, \hat{\beta}_j)} \end{split}$$

5.3 Partial F-test for joint significance

$$H_0: \beta_i = \beta_j = \beta_k = \dots = 0$$

$$H_1: \exists z \in \{i, j, k, \dots\} \ s.t. \ \beta_z \neq 0$$

Test significance by comparing the *restricted* and *unrestricted* models, see whether restricting the model by removing certain explanatory variables "significantly" hurts the fit of the model.

$$df = (q, n - k - 1)$$

Test statistic

$$F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n - k - 1)}$$
 or
$$F' = \frac{(R_{ur}^2 - R_r^2)/q}{(1 - R_{ur}^2)/(n - k - 1)}$$

5.4 Full F-test for the significance of the model

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

 $H_1: \exists i \in \{1, 2, \dots, 3\} \ s.t. \ \beta_i \neq 0$

Remark 5.1. R^2 version only and substitute $R_r^2 = 0$, since SSR_r is undefined.