Autoregressive model - AR(1)

Son Nguyen

Stationary

ullet A time series y_t is stationary if

$$oldsymbol{\circ} E(y_t) = constant$$

- $\circ \; Cov(y_t,y_s)$ only depends on the time lag |t-s|
- ullet If y_t is stationary then $Var(y_t) = Constant$

```
set.seed(30)
n = 100
e ← ts(rnorm(n, sd = 10))
t = c(1:n)
y = 2*t+3+e
library(ggfortify)
autoplot(y) + ggtitle("")
```



```
set.seed(30)
n = 100
e \leftarrow ts(rnorm(n, sd = 10))
t = c(1:n)
v = 2*t+3+e
library(ggfortify)
autoplot(y) + ggtitle("Non-stationary due to non-constant expected value")
```

Non-stationary due to non-constant expected value


```
set.seed(30)
n = 100
e1 ← rnorm(n, sd = 1)
e2 ← rnorm(n, sd = 10)
e3 ← rnorm(n, sd = 50)
y = c(e1,e2,e3)
library(ggfortify)
autoplot(ts(y)) + ggtitle("")
```



```
set.seed(30)
n = 100
e1 \( \tau \) rnorm(n, sd = 1)
e2 \( \tau \) rnorm(n, sd = 10)
e3 \( \tau \) rnorm(n, sd = 50)
y = c(e1,e2,e3)
library(ggfortify)
autoplot(ts(y)) + ggtitle("Non-stationary due to non-constant variance")
```



```
set.seed(10)
y ← ts(rnorm(200))
library(ggfortify)
autoplot(y) + ggtitle("")
```


_

• White Noise is stationary

```
set.seed(10)
y ← ts(rnorm(200))
library(ggfortify)
autoplot(y) + ggtitle("A Stationary Time Series")
```


• Random Walk is not stationary

```
set.seed(10)
y ← arima.sim(list(order=c(0,1,0)), n=1000)
library(ggfortify)
autoplot(y) + ggtitle("A Non-Stationary Time Series")
```


Autoregressive model

- If $eta_1>1$, the series will diverge
- If $eta_1=1$, the series becomes a random walk model.
- If $\beta_1=0$, the series becomes a white noise.
- ullet If $|eta_1| < 1$, the series is convergent and stationary

Autoregressive model - AR(1)

ullet A time series y_t is called a first-order autoregressive model, or AR(1) if

$$y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_t,$$

where $|eta_1| \leq 1$, $\epsilon_t \sim (0,\sigma^2)$ and ϵ_{t+k} is independent of y_t for any t>0 and k>0.

- Three parameters of the models are $eta_0, eta_1,$ and σ^2
- AR(1) can also be written as

$$y_t - \mu = eta_1(y_{t-1} - \mu) + \epsilon_t,$$

where $eta_0=\mu(1-eta_1)$. Here, μ is the mean of the series.

```
library(ggfortify)
set.seed(2023)
n = 1000
y = rep(0, n)
y[1] = 0
b0 = 0
b1 = .01
e = rnorm(n, sd = 1)
for (t in 2:n)
 y[t] = b0 + b1*y[t-1]+e[t]
autoplot(ts(y)) + ggtitle(paste0("An Autoregressi
```



```
set.seed(2023)
n = 1000
y = rep(0, n)

y[1] = 0
b0 = 0
b1 = .5
e = rnorm(n, sd = 1)

for (t in 2:n)
{
   y[t] = b0 + b1*y[t-1]+e[t]
}
autoplot(ts(y)) + ggtitle(paste0("An Autoregressi"))
```



```
set.seed(2023)
n = 1000
y = rep(0, n)

y[1] = 0
b0 = 0
b1 = .9
e = rnorm(n, sd = 1)

for (t in 2:n)
{
   y[t] = b0 + b1*y[t-1]+e[t]
}
autoplot(ts(y)) + ggtitle(paste0("An Autoregressi"))
```



```
set.seed(2023)
n = 1000
y = rep(0, n)

y[1] = 0
b0 = 0
b1 = 1
e = rnorm(n, sd = 1)

for (t in 2:n)
{
   y[t] = b0 + b1*y[t-1]+e[t]
}
autoplot(ts(y)) + ggtitle(paste0("An Autoregressi"))
```



```
set.seed(2023)
n = 1000
y = rep(0, n)

y[1] = 0
b0 = 0
b1 = 1.1
e = rnorm(n, sd = 1)

for (t in 2:n)
{
   y[t] = b0 + b1*y[t-1]+e[t]
}

autoplot(ts(y)) + ggtitle(paste0("An Autoregressi"))
```


Simulating AR(1)

• We can conveniently simulate AR(1) using arima.sim function

```
yt \leftarrow arima.sim(list(order=c(1,0,0), ar=c(.7)), n=1000)
b0 = 10
yt \leftarrow yt + b0
plot(yt)
```


ACF

ullet For a positive value of eta_1 the ACF exponentially decreases to 0 as the lag increases

```
yt \leftarrow arima.sim(list(order=c(1,0,0), ar=c(.9)), n=1000)
b0 = 10
yt \leftarrow yt + b0
acf(yt)
```

Series yt

ACF

• For negative β_1 the ACF also exponentially decays to 0 as the lag increases, but the algebraic signs for the autocorrelations alternate between positive and negative

```
yt \leftarrow arima.sim(list(order=c(1,0,0), ar=c(-.9)), n=1000)
b0 = 10
yt \leftarrow yt + b0
acf(yt)
```

Series yt

Parameter Estimation

- ullet AR(1) is very similar to linear model where y_{t-1} play the roles of the predictor and y_t is the response
- In linear model, the predictor x is assumed to be non-random while the predictor y_{t-1} is non-random in AR(1)
- We estimate eta_0 and eta_1 by minimizing

$$\sum_{t=2}^{T} \left(y_t - E(y_t|y_{t-1})
ight)^2 = \sum_{t=2}^{T} \left(y_t - eta_0 - eta_1 y_{t-1}
ight)^2 \, .$$

• These estimators are called the conditional least squares estimators

Parameter Estimation

The coefficients are estimated by

$$\hat{eta}_1 = rac{\sum_{t=2}^T (y_{t-1} - ar{y})(y_t - ar{y})}{\sum_{t=2}^T (y_t - ar{y})^2} \ \hat{eta}_0 = ar{y}(1 - \hat{eta}_1)$$

The only parameter left to estimate is the error variance, σ^2_ϵ , (error mean is zero), which can be estimated by s^2

$$s^2 = rac{\sum_{t=2}^T (e_t - ar{e})^2}{T-3}$$

where
$$e_t = y_t - (\hat{\beta}_0 - \hat{\beta}_1 y_{t-1})$$
.

You are given the following six observed values of the autoregressive model of order one time series

Calculate $\hat{\beta}_1$ using the conditional least squares method.

Estimating AR(1)

• We can estimate the coefficients of AR(1) using the arima function

```
yt \leftarrow arima.sim(list(order=c(1,0,0), ar=c(.7)), n=1000)
b0 = 10
yt \leftarrow yt + b0
plot(yt)
```


Estimating AR(1)

• We can estimate the coefficients of AR(1) using the arima function

```
arima(yt, order = c(1,0,0))
##
## Call:
## arima(x = yt, order = c(1, 0, 0))
###
## Coefficients:
            ar1
                intercept
###
         0.7132
                    9.9620
###
## s.e. 0.0222
                    0.1115
##
## sigma^2 estimated as 1.028: log likelihood = -1432.89, aic = 2871.78
```

• We see that the estimated coefficients are close to the true values.

- Suppose we have the AR(1) time series with known β_0 and β_1 . If these parameters are unknown we can estimate them by the formula in the previous slices.
- We use the following formulas to for forecasting

$$\hat{\boldsymbol{y}}_{T+1} = \beta_0 + \beta_1 \boldsymbol{y}_T$$

$$\hat{y}_{T+k} = \mu + eta_1^k (y_T - \mu)$$

where
$$\mu=rac{eta_0}{1-eta_1}$$
 .

You are given

$$y_t = \underbrace{3y_{t-1} + 4}_{t-1} + \epsilon$$
 $y_T = 7$

Calculate the three step ahead forecast of $y_{T+3}\,$

```
# create an AR(1) series

yt \leftarrow arima.sim(list(order=c(1,0,0), ar=c(.2)), n=100)

b0 = 10

yt \leftarrow yt + b0

plot(yt)
```


hist(yt_ar\$residuals)

acf(yt_ar\$residuals)

Series yt ar\$residuals

• The ACF of the error is similar to that of a white-noise.

```
ts3_forecasts2 ← forecast(yt_ar, h=5)
plot(ts3 forecasts2)
```

Forecasts from ARIMA(1,0,0) with non-zero mean

