제 2 교시

수학 영역(A형)

5지선다형

- 1. 두 행렬 $A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}$ 에 대하여 행렬 A + 2B의 (1, 2) 성분은? [2점]

- ① 1 ② 2 ③ 3 ④ 4

⑤ 5

- 3. $\lim_{n\to\infty} \left\{ 6 + \left(\frac{5}{9}\right)^n \right\}$ 의 값은? [2점]
- ② 7
- 3 8
- ⑤ 10

- 2. $8^{\frac{1}{3}} + 9^{\frac{1}{2}}$ 의 값은? [2점]
 - ① 1 ② 2
- ③ 3 ④ 4
- **⑤** 5
- 4. 공차가 7인 등차수열 $\{a_n\}$ 에 대하여 $a_{13}-a_{11}$ 의 값은? [3점]
 - ① 10

- ② 12 ③ 14 ④ 16 ⑤ 18

- **5.** $\log_2 5 + \log_2 \frac{4}{5}$ 의 값은? [3점]
 - ① 1
- ② 2
- ③ 3
- **4**
- **⑤** 5

6. 다음 그래프의 각 꼭짓점 사이의 연결 관계를 나타내는 행렬에서 행의 모든 성분의 합이 3인 행의 개수는? [3점]

- 2 2
- ③ 3

7. 두 상수 a, b에 대하여 $\lim_{x\to 1} \frac{4x-a}{x-1} = b$ 일 때, a+b의 값은?

[3점]

- ① 8
- 2 9
- ③ 10
- **4** 11
- ⑤ 12

- - ① 1

- 4
- **⑤** 5

8. 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여

$$\sum_{k=1}^{11} a_k = 4, \qquad \sum_{k=1}^{11} b_k = 24$$

일 때, $\sum_{k=1}^{11} (5a_k + b_k)$ 의 값은? [3점]

- ① 36
- ② 40
- 3 44
- **48**
- ⑤ 52

9. 함수 y=f(x)의 그래프가 그림과 같다.

 $\lim_{x \to -1} f(x) + \lim_{x \to 1+0} f(x)$ 의 값은? [3점]

- 1
- ② 2
- ③ 3
- 4
- **⑤** 5

10. 이차정사각행렬 A의 모든 성분의 합이 3이고, A의 역행렬이

$$A^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & a \end{pmatrix}$$

일 때, a의 값은? [3점]

- ① $\frac{1}{4}$ ② $\frac{1}{2}$ ③ 1 ④ 2

- **⑤** 4

수학 영역(A형)

11. 함수 $f(x) = x^2 + 8x$ 에 대하여

$$\lim_{h\to 0} \frac{f(1+2h)-f(1)}{h}$$

의 값은? [3점]

- ① 16
- 2 17
- ③ 18
- **4** 19
- $\bigcirc 5 20$
- 12. 공비가 3인 등비수열 $\left\{a_n\right\}$ 의 첫째항부터 제n항까지의 합 S_n 이

$$\lim_{n\to\infty} \frac{S_n}{3^n} = 5$$

를 만족시킬 때, 첫째항 a_1 의 값은? [3점]

- ① 8
- ② 10 ③ 12
- **4** 14
- ⑤ 16

 $[13\sim14]$ 함수 f(x)가

$$f(x) = (x-3)^2$$

일 때, 13번과 14번의 두 물음에 답하시오.

- 13. 함수 g(x)의 도함수가 f(x)이고 곡선 y=g(x) 위의 점 (2, g(2))에서의 접선의 y절편이 -5일 때, 이 접선의 x 절편은? [3점]
 - 1
- ② 2
- 3 3 4 4
- **⑤** 5

14. 자연수 n에 대하여 방정식 f(x)=n의 두 근이 $\alpha,\ \beta$ 일 때 $h(n) = |\alpha - \beta|$ 라 하자.

$$\lim_{n\to\infty}\sqrt{n}\left\{h(n+1)-h(n)\right\}$$

의 값은? [4점]

- ① $\frac{1}{2}$ ② 1 ③ $\frac{3}{2}$ ④ 2 ⑤ $\frac{5}{2}$

- 15. 함수 $y = \log_3 x$ 의 그래프를 x축의 방향으로 a만큼, y축의 방향으로 2만큼 평행이동한 그래프를 나타내는 함수를 y = f(x)라 하자. 함수 f(x)의 역함수가 $f^{-1}(x) = 3^{x-2} + 4$ 일 때, 상수 a의 값은? [4점]
 - 1
- ② 2 ③ 3
- 4
- **⑤** 5
- 16. 공차가 6인 등차수열 $\{a_n\}$ 에 대하여 세 항 $a_2, \ a_k, \ a_8$ 은 이 순서대로 등차수열을 이루고, 세 항 $a_1,\ a_2,\ a_k$ 는 이 순서대로 등비수열을 이룬다. $k+a_1$ 의 값은? [4점]

 - ① 7 ② 8
- 3 9
- **4** 10
- ⑤ 11

17. 두 함수

 $f(x) = 3x^3 - x^2 - 3x$, $g(x) = x^3 - 4x^2 + 9x + a$

에 대하여 방정식 f(x)=g(x)가 서로 다른 두 개의 양의 실근과 한 개의 음의 실근을 갖도록 하는 모든 정수 a의 개수는? [4점]

- 1 6

- 2 7 3 8 4 9
- ⑤ 10

18. 반지름의 길이가 2인 원 O_1 에 내접하는 정삼각형 $A_1B_1C_1$ 이 있다. 그림과 같이 직선 A_1C_1 과 평행하고 점 B_1 을 지나지 않는 원 O_1 의 접선 위에 두 점 D_1 , E_1 을 사각형 $A_1C_1D_1E_1$ 이 직사각형이 되도록 잡고, 직사각형 $A_1C_1D_1E_1$ 의 내부와 원 O_1 의 외부의 공통부분에 색칠하여 얻은 그림을 R_1 이라 하자. 그림 R_1 에 정삼각형 $A_1B_1C_1$ 에 내접하는 원 O_2 와 원 O_2 에 내접하는 정삼각형 $A_2B_2C_2$ 를 그리고, 그림 R_1 을 얻는 것과 같은 방법으로 직사각형 $A_2C_2D_2E_2$ 를 그리고 직사각형 $A_2C_2D_2E_2$ 의 내부와 원 O_2 의 외부의 공통부분에 색칠하여 얻은 그림을 R_2 라 하자.

이와 같은 과정을 계속하여 n번째 얻은 그림 R_n 에 색칠되어 있는 부분의 넓이를 S_n 이라 할 때, $\lim_{n\to\infty} S_n$ 의 값은? [4점]

- ① $4\sqrt{3} \frac{16}{9}\pi$ ② $4\sqrt{3} \frac{5}{3}\pi$ ③ $4\sqrt{3} \frac{4}{3}\pi$
- 4 $5\sqrt{3} \frac{16}{9}\pi$ 5 $5\sqrt{3} \frac{5}{3}\pi$

수학 영역(A형)

19. 첫째항이 1인 수열 $\{a_n\}$ 에 대하여 $S_n = \sum_{k=1}^n a_k$ 라 할 때,

$$a_{n+1} = (2^n - 1)(S_n + 1) \quad (n \ge 1)$$
 (*)

- 이 성립한다. 다음은 일반항 a_n 을 구하는 과정이다.
 - 식 (*)의 양변에 S_n 을 더하여 정리하면

$$S_{n+1} + 1 = 2^n (S_n + 1)$$

이다. $b_n = \log_2(S_n + 1)$ 이라 하면 $b_1 = 1$ 이고

$$b_{n+1} = \boxed{(7)} + b_n$$

이다. 수열 $\{b_n\}$ 의 일반항을 구하면

$$b_n = \frac{n^2 - n + 2}{2} \qquad (n \ge 1)$$

이므로

$$S_n = 2^{\frac{n^2 - n + 2}{2}} - 1 \quad (n \ge 1)$$

이다. 그러므로 $a_1=1$ 이고, $n\geq 2$ 일 때

$$a_n = S_n - S_{n-1}$$

$$=2^{\frac{n^2-n+2}{2}}-2^{\text{(L})}$$

$$=2^{\lceil (\downarrow \downarrow) \rceil} \times (2^{n-1}-1)$$

이다.

- 위의 (\mathcal{T}) 와 (\mathcal{T}) 에 알맞은 식을 각각 f(n), g(n)이라 할 때, f(12)-g(5)의 값은? [4점]
- ① 1 ② 2 ③ 3 ④ 4

- **⑤** 5

20. 양수 x에 대하여 $\log x$ 의 지표를 f(x)라 할 때,

$$f(ab) = f(a)f(b) + 2$$

를 만족시키는 20 이하의 두 자연수 a, b의 순서쌍 (a, b)에 대하여 a+b의 최솟값은? [4점]

- ① 19 ② 20 ③ 21
- 4 22
- \bigcirc 23

21. 자연수 n에 대하여 최고차항의 계수가 1이고 다음 조건을 만족시키는 삼차함수 f(x)의 극댓값을 a_n 이라 하자.

$$(7) f(n) = 0$$

(나) 모든 실수 x에 대하여 $(x+n)f(x) \ge 0$ 이다.

 a_n 이 자연수가 되도록 하는 n의 최솟값은? [4점]

1

② 2

③ 3

4

⑤ 5

단답형

22. $\lim_{x\to 2} \frac{x^2+7}{x-1}$ 의 값을 구하시오. [3점]

23. 함수 $f(x) = x^3 + 10x$ 에 대하여 f'(0)의 값을 구하시오. [3점]

10

수학 영역(A형)

- **24.** $\sum_{k=1}^{10} (2k+a) = 300$ 일 때, 상수 a의 값을 구하시오. [3점]
- 26. 수열 $\{a_n\}$ 에 대하여 무한급수 $\sum_{n=1}^{\infty} \frac{a_n}{n}$ 이 수렴할 때,

$$\lim_{n\to\infty} \frac{a_n + 9n}{n}$$
 의 값을 구하시오. [4점]

25. x, y에 대한 연립일차방정식

$$\begin{pmatrix} 2a & -1 \\ 8 & a-4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

이 무수히 많은 해를 갖도록 하는 상수 a의 값을 구하시오.

[3점]

수학 영역(A형)

11

27. 함수 $f(x) = \frac{1}{3}x^3 - 9x + 3$ 이 열린 구간 (-a, a)에서 감소할 때, 양수 a의 최댓값을 구하시오. [4점]

28. 일차함수 y = f(x)의 그래프가 그림과 같고 f(-5) = 0이다. 부등식

$$2^{f(x)} \le 8$$

의 해가 $x \le -4$ 일 때, f(0)의 값을 구하시오. [4점]

12

수학 영역(A형)

29. 실수 t 에 대하여 직선 y=t가 곡선 $y=|x^2-2x|$ 와 만나는 점의 개수를 f(t)라 하자. 최고차항의 계수가 1인 이차함수 g(t)에 대하여 함수 f(t)g(t)가 모든 실수 t 에서 연속일 때, f(3)+g(3)의 값을 구하시오. [4점]

- **30.** 2 이상의 자연수 n에 대하여 다음 조건을 만족시키는 자연수 a, b의 모든 순서쌍 (a,b)의 개수가 300 이상이 되도록 하는 가장 작은 자연수 k의 값을 f(n)이라 할 때, $f(2) \times f(3) \times f(4)$ 의 값을 구하시오. [4점]
 - (7) $a < n^k$ 이면 $b \le \log_n a$ 이다.
 - (나) $a \ge n^k$ 이면 $b \le -(a-n^k)^2 + k^2$ 이다.

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.