Grupo: João Pedro do Nascimento Lima, João Pedro Lima de Souza e Tácito Juno Queiroz de Lacerda.

Disciplina: Teoria dos Grafos.

Projeto: Análise de Conectividade e Influência em Redes Governamentais com Foco no Turismo

1. Introdução

O turismo é um dos setores mais dinâmicos da economia brasileira, contribuindo significativamente para o desenvolvimento regional e nacional. Este projeto tem como objetivo utilizar o banco de dados do turismo do Brasil para modelar e analisar uma rede de conexões turísticas da Paraíba, com foco na otimização de rotas que conectam um ponto de partida a destinos turísticos específicos.

2. Objetivo

O objetivo principal deste projeto é criar um aplicativo simples que, utilizando a teoria dos grafos, encontre o menor caminho que passa por todos os vértices (destinos turísticos), a partir de um ponto de partida.

2.1 Objetivos Específicos

- Modelar a rede de turismo da Paraíba utilizando dados abertos disponíveis.
- Implementar um grafo que represente as conexões entre os pontos turísticos.
- Analisar a conectividade da rede para identificar o menor caminho que percorra todos os destinos escolhidos.

3. Escolha dos Dados

Os dados foram obtidos do banco de dados do turismo do Brasil, disponível na plataforma dados.gov.br. Estes dados incluem informações sobre destinos turísticos.

4. Modelagem do Grafo

Os dados foram transformados em um grafo onde:

- **Vértices**: Representam os pontos turísticos (destinos).
- Arestas: Representam as conexões entre os destinos, com pesos associados às distâncias entre eles.

A modelagem foi realizada utilizando as bibliotecas **NetworkX** para a criação e manipulação dos grafos, **Pandas** para leitura dos dados, **Gephi** para análise visual, e **Tkinter** para desenvolver a interface do usuário.

5. Análise do Grafo

A análise do grafo focou em:

- Menor Caminho: Utilização do algoritmo de vizinho mais próximo para encontrar um caminho razoável partindo da origem Agreste (Campina Grande - PB).
- **Componentes Conexas**: Verificação se a rede é totalmente conectada e se todas as localidades estão acessíveis a partir do ponto de partida.

7. Apresentação dos Resultados

O seguinte grafo foi gerado, contendo 68 vértices e 4556 arestas, sendo um grafo completo e conexo, pois cada vértice está conectado com os outros:

Houve a tentativa de encontrar o menor caminho partindo do Agreste (Campina Grande - PB) e passando por todos os pontos turísticos da Paraíba, contudo, encontramos um problema:

Ao tentar rodar o código do menor caminho, o algoritmo consome muita memória ram, levando ao travamento total do sistema após chegar no limite de uso (16GB de ram). Infelizmente, não conseguimos o objetivo do menor caminho, mas com o uso do código de vizinho mais próximo encontramos um caminho razoável.

Esse caminho possui uma distância aproximada de 1887,83 Km. Sendo o seguinte: Agreste (Campina Grande - PB) -> Agreste (Queimadas - PB) -> Agreste (Fagundes - PB) -> Vale Do Paraíba (Itatuba - PB) -> Vale Do Paraíba (Ingá - PB) -> Vale Do Paraíba (Mogeiro - PB) -> Vale Do Paraíba (Salgado De São Félix - PB) -> Vale Do Paraíba (Itabaiana - PB) -> Vale Do Paraíba (Juripiranga - PB) -> Vale Do Paraíba (Pilar - PB) -> Vale Do Paraíba (Gurinhém - PB) -> Brejo (Alagoinha - PB) -> Brejo (Pilões - PB) -> Brejo (Serraria - PB) -> Brejo (Borborema - PB) -> Brejo (Bananeiras - PB) -> Brejo (Solânea - PB) -> Brejo (Belém - PB) -> Brejo (Pirpirituba - PB) -> Brejo (Serra Da Raiz - PB) -> Brejo (Duas Estradas - PB) -> Brejo (Lagoa De Dentro - PB) -> Vale Do Mamanguape (Jacaraú - PB) -> Vale Do Mamanguape (Itapororoca - PB) -> Vale Do Mamanguape (Mamanguape - PB) -> Trilhas Dos Potiguaras (Rio Tinto - PB) -> Trilhas Dos Potiguaras (Marcação - PB) -> Trilhas Dos Potiguaras (Baía Da Traição - PB) -> Trilhas Dos Potiguaras (Mataraca - PB) -> Rota Sanhauá (Lucena - PB) -> Rota Sanhauá (Cabedelo - PB) -> Rota Sanhauá (João Pessoa -PB) -> Rota Sanhauá (Bayeux - PB) -> Rota Sanhauá (Santa Rita - PB) -> Trilhas Dos Tabajaras (Conde - PB) -> Trilhas Dos Tabajaras (Pitimbu - PB) -> Trilhas Dos Tabajaras (Caaporã - PB) -> Vale Do Paraíba (Natuba - PB) -> Vale Do Paraíba (Umbuzeiro - PB) -> Cariri (Boqueirão - PB) -> Cariri (Cabaceiras - PB) -> Cariri (Gurjão - PB) -> Cariri (Taperoá -PB) -> Vale Dos Sertões (Santa Luzia - PB) -> Vale Dos Sertões (Maturéia - PB) -> Vale Dos Sertões (Água Branca - PB) -> Vale Dos Sertões (Santana Dos Garrotes - PB) -> Vale Dos Sertões (Pedra Branca - PB) -> Vale Dos Sertões (Princesa Isabel - PB) -> Vale Dos

Sertões (Ibiara - PB) -> Vale Dos Dinossauros (Monte Horebe - PB) -> Vale Dos Dinossauros (Cajazeiras - PB) -> Vale Dos Dinossauros (São João Do Rio Do Peixe - PB) -> Vale Dos Dinossauros (Poço De José De Moura - PB) -> Vale Dos Dinossauros (Uiraúna - PB) -> Vale Dos Dinossauros (Sousa - PB) -> Vale Dos Sertões (Pombal - PB) -> Vale Dos Sertões (São Bento - PB) -> Seridó E Curimataú (Picuí - PB) -> Seridó E Curimataú (Araruna - PB) -> Brejo (Dona Inês - PB) -> Brejo (Areia - PB) -> Brejo (Remígio - PB) -> Brejo (Alagoa Nova - PB) -> Brejo (Matinhas - PB) -> Brejo (Alagoa Grande - PB) -> Cariri (Caraúbas - PB) -> Cariri (Monteiro - PB)

8. Ferramentas e Recursos

- Dados Abertos: Banco de dados do turismo do Brasil.
- Software: NetworkX, Gephi, Pandas, Tkinter.

9. Considerações Finais

Este projeto demonstrou o potencial da aplicação da teoria dos grafos na otimização de rotas turísticas na Paraíba. Ao modelar as conexões entre destinos e analisar a rede resultante, foi possível identificar caminhos eficientes, mesmo diante de limitações técnicas, como o alto consumo de memória ao tentar calcular o menor caminho. A utilização de um algoritmo alternativo, o de vizinho mais próximo, permitiu encontrar uma rota razoável que pode ser usada como base para futuras melhorias e implementações.

Os resultados obtidos sugerem que a aplicação dessas técnicas pode não apenas otimizar a experiência turística, mas também contribuir para uma distribuição mais equilibrada dos fluxos turísticos entre as diferentes regiões do estado. Embora o objetivo inicial de encontrar o menor caminho tenha sido desafiador, o projeto serviu como uma base sólida para futuras explorações e aperfeiçoamentos, demonstrando a relevância da análise de redes para o desenvolvimento do turismo regional.

Com o uso de ferramentas como NetworkX, Gephi, Pandas e Tkinter, este estudo também destacou a importância de integrar diferentes tecnologias para a análise de dados complexos e a criação de soluções aplicáveis em cenários reais.