

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

к лабораторной работе №2

По курсу: «Моделирование»

Студент	ИУ7И-76Б	Нгуен Ф. С.		
-	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Преподаватель			Рудаков И.В.	
		(Подпись, дата)	(И.О. Фамилия)	

Оглавление

I.	Теоретическая часть		
	Результаты		
	Эксперимент I (Система имеет 4 состояния)		
	Эксперимент II (Система имеет 5 состояния)		
III.	. Код Программы	9	

I. Теоретическая часть

Случайный процесс, протекающий в системе S, называется марковским, если он обладает следующим свойством: для каждого момента времени t0 вероятность любого состояния системы в будущем (при t > t0) зависит только от ее состояния в настоящем (при t = t0) и не зависит от того, когда и каким образом система пришла в это состояние. Вероятностью i-го состояния называется вероятность pi(t) того, что в момент t система будет находиться в состоянии Si. Для любого момента t сумма вероятностей всех состояний равна единице.

Уравнения Колмогорова в общем виде:

$$\frac{dp_{i}(t)}{dt} = \sum_{j=1}^{n} p_{j}(t)\lambda_{ji} - p_{i}(t)\sum_{j=1}^{n} \lambda_{0} \qquad i = 1, ..., n$$
(1)

Имея в распоряжении размеченный граф состояний, можно найти все вероятности состоянийр_i (t)как функции времени. Для этого составляются и решаются так называемые уравнения Колмогорова особого вида дифференциальные уравнения, в которых неизвестными функциями являются вероятности состояний.

Правило:

- в левой части каждого из уравнений стоит производная вероятности i-ого состояния;
- в правой части содержится столько членов, сколько стрелок связано с данным состоянием;
- ▶ если стрелка направлена из состояния, соответствующий член имеет знак «минус», если в состояние знак «плюс»;
- каждый член равен произведению интенсивности,
 соответствующей данной стрелке, и вероятности того
 состояния, из которого выходит стрелка.

Если в уравнениях Колмагорова приравнять производные к нулю, то получим систему уравнений, описывающих стационарный режим.

Для поиска решений необходимо добавить уравнение нормировки:

$$P_1 + P_2 + \dots + P_k + \dots + P_n = 1$$
 (2)

Пример

$$\begin{split} P_1(t+\Delta t) &= P_1(t)(1-\lambda_{12}.\Delta t) + P_3(t).\lambda_{31}.\Delta t \\ P_1'(t) &= -\lambda_{12}.P_1(t) + \lambda_{31}.P_3(t) \\ P_2'(t) &= -P_2(t).\lambda_{23} - P_2(t).\lambda_{24} + P_1(t).\lambda_{12} + P_4(t).\lambda_{42} \\ P_3'(t) &= -P_3(t).\lambda_{31} - P_3(t).\lambda_{34} + P_2(t).\lambda_{23} \\ P_4'(t) &= -P_4(t).\lambda_{42} + P_2(t).\lambda_{24} + P_3(t).\lambda_{34} \end{split}$$

II. Результаты

Эксперимент I (Система имеет 4 состояния)

		S1	S2	S3	S4
<u> </u>	S1	0	2	0	0
Данные	S2	0	0	2	3
Д	S3	3	0	0	1
	S4	0	4	0	0
ITEI	Р	0.24	0.32	0.16	0.28
Результаты	T1	2.199	2.899	3.074	3.376
Pe3	T2	1.612	0958	0.536	1.359

Рисунок 1. граф связей и интенсивностей системы Эксперимент I

- T1 Время стабилизации, при начальных условиях $P_1 \! = \! 1$, $P_{2,3,4} = 0$
- Т2 Время стабилизации, при начальных условиях $P_{1,2,3,4} = 1/4$

Рисунок 2. графики вероятностей состояний как функции времени, при начальных условиях $P_1 = 1$, $P_{2,3,4} = 0$

Рисунок 3. графики вероятностей состояний как функции времени, при начальных условиях $P_{1,2,3,4}=1/4$

Эксперимент II (Система имеет 5 состояния)

		S1	S2	S3	S4	S5
	S1	0	1	1	2	0
ные	S2	0	0	0	0	0.5
Данные	S3	0	2	0	1	0
	S4	0	0	3	0	1.5
	S5	2	0	0	2	0
ITEI	Р	0.057	0.603	0.122	0.103	0.114
Результаты	T1	1.494	4.734	3.334	2.880	3.292
Pe3	T2	1.525	4.631	3.221	3.773	0.911

Рисунок 4. граф связей и интенсивностей системы Эксперимент II

- T1 Время стабилизации, при начальных условиях $P_1 = 1$, $P_{2,3,4,5} = 0$
- Т2 Время стабилизации, при начальных условиях $P_{1,2,3,4,5}=1/5$

Рисунок 5. графики вероятностей состояний как функции времени, при начальных условиях $P_1=1,\,P_{2,3,4,5}=0$

Рисунок 6. графики вероятностей состояний как функции времени, при начальных условиях $P_{1,2,3,4,5}=1/5$

III. Код Программы

Main.py

```
from math import fabs
import random
import matplotlib.pyplot as plt
import numpy
PRECISION = 5
TIME DELTA = 1e-3
MAGIC NUM = 10
def dps (matrix, P):
    n = len(matrix)
    res = [sum(
                P[j] * (-sum(matrix[i]) + matrix[i][i]) if i == j else
P[j] * matrix[j][i] for j in range(n)
        )
        for i in range(n)]
    return [i * TIME DELTA for i in res]
def calcStabilizationTimes(matrix, start P, limit P):
    n = len(matrix)
    current time = 0
    current P = start P.copy()
    stabilizationTimes = [0 for i in range(n)]
    total lambda sum = sum([sum(i) for i in matrix]) * MAGIC NUM
    cool eps = [p/total lambda sum for p in limit P]
    while not all(stabilizationTimes):
        curr dps = dps(matrix, current P)
        for i in range(n):
            if (not stabilizationTimes[i] and curr dps[i] <= 1e-7 and</pre>
                    abs(current_P[i] - limit_P[i]) <= cool_eps[i]):</pre>
                stabilizationTimes[i] = current time
            current P[i] += curr dps[i]
        current time += TIME DELTA
    return stabilizationTimes
```

```
def calcPOverTime(matrix, start P, end time):
   n = len(matrix)
    current time = 0
    current P = start P.copy()
    POverTime = []
    times = []
    while current time < end time:</pre>
        POverTime.append(current P.copy())
        curr dps = dps(matrix, current P)
        for i in range(n):
            current P[i] += curr dps[i]
        current time += TIME DELTA
        times.append(current time)
    return times, POverTime
def buildCoeffMatrix(matrix):
   matrix = numpy.array(matrix)
    n = len(matrix)
    res = numpy.zeros((n, n))
    for state in range(n - 1):
        for col in range(n):
            res[state, state] -= matrix[state, col]
        for row in range(n):
            res[state, row] += matrix[row, state]
    for state in range(n):
        res[n - 1, state] = 1
    return res
def buildAugmentationMatrix(count):
    res = [0 for i in range(count)]
    res[count - 1] = 1
    return numpy.array(res)
def solve(matrix):
    coeffMatrix = buildCoeffMatrix(matrix)
    augmentationMatrix = buildAugmentationMatrix(len(matrix))
    return numpy.linalg.solve(coeffMatrix, augmentationMatrix)
def graphPOverTime(P, stabilizationTime, times, POverTime):
    for i node in range(len(POverTime[0])):
        plt.plot(times, [i[i node] for i in POverTime])
```

```
plt.scatter(stabilizationTime[i node], P[i node])
    plt.legend(['p{}'.format(i+1) for i in range(len(P))])
    plt.xlabel('time')
    plt.ylabel('P')
    plt.show()
def random matrix(size):
    return [
        [round(random.random(), PRECISION) if i != j else 0.0 for j in
range(size)]
        for i in range(size)
    1
def output(title, caption, data):
    print(title)
    for i in range(len(data)):
        print(caption + str(i), round(fabs(data[i]), PRECISION))
    print()
def getPreDefineI(i):
    if i == 3:
        return [[0, 2, 0],
                [1, 0, 0],
                [0, 1, 1]]
    if i == 4:
        return [[0, 2, 0, 0],
                [0, 0, 2, 3],
                [3, 0, 0, 1],
                [0, 4, 0, 0]]
    elif i == 5:
        return [[0, 1, 1, 2, 0],
                 [0, 0, 0, 0, 0.5],
                 [0, 2, 0, 1, 0],
                [0, 0, 3, 0, 1.5],
                 [2, 0, 0, 2, 0]]
def getStartP(n, all equal=True):
    if all equal:
        return [1/n] * n
    else:
        res = [0] * n
        res[0] = 1
        return res
if __name__ == '__main__':
    n = 5
```

```
#I = random_matrix(n)
I = getPreDefineI(n)

start_P = getStartP(n, True)

P = solve(I)
output('P:', 'p', P)

stabilizationTime = calcStabilizationTimes(I, start_P, P)
times, POverTime = calcPOverTime(I, start_P, 5)
output('T:', 't', stabilizationTime)

graphPOverTime(P, stabilizationTime, times, POverTime)
```