Educação Profissional Paulista

Técnico em

Desenvolvimento

de Sistemas

Protocolos e Camadas

Camada de Enlace: Controle de Acesso ao Meio e Detecção de Erros

Aula 1

Código da aula: [SIS]ANO1C2B2S9A1

Objetivo da aula

• Compreender o controle de acesso ao meio e a detecção de erros da camada de enlace com uso de hubs.

Competências da Unidade (técnicas e socioemocionais)

- Conhecer técnicas de computação e gerenciamento de dados para soluções em nuvem, parametrizando aplicações e dimensionando de acordo com as necessidades do negócio;
- Identificar e analisar problemas;
- Agir com curiosidade e criatividade.

Recursos didáticos

- Recurso audiovisual para exibição de vídeos e imagens;
- Lápis e caderno para anotações;
- Acesso ao laboratório de informática e/ou internet.

Duração da aula

50 minutos.

Recapitulando

Estudamos, anteriormente, a **camada física, ou camada 1 do modelo OSI**, e aprendemos sobre:

Meios de transmissão e sua aplicação;

Tipos de transmissão: *simplex, half-duplex* e *full-duplex*.

Camada de enlace do modelo OSI

Nesta aula, estudaremos a **segunda camada (camada de enlace ou camada 2) do modelo OSI** (Open Systems Interconnection) e, assim, vamos:

Compreender o Controle de Acesso ao Meio (MAC);

Conhecer como ocorre a detecção de erros nessa camada.

© Getty Images

Controle de Acesso ao Meio (MAC)

Imagine uma família com vários membros que desejam assistir a programas diferentes na única TV na sala de estar.

Eles precisam encontrar uma forma justa e eficiente de compartilhar esse recurso limitado (a TV) sem causar conflitos.

Como isso se relaciona com MAC?

Controle de Acesso ao Meio (MAC)

Agendamento de horários (Alocação de recursos)

A família decide criar um **cronograma** para quando cada pessoa pode usar a TV. Esse cronograma é semelhante ao MAC, que aloca o acesso a um meio de comunicação (como o espectro de rádio em redes sem fio) entre vários dispositivos.

Evitando conflitos (Colisão e controle de acesso)

Para evitar que duas pessoas queiram assistir à TV ao mesmo tempo, **regras são definidas** (como "não mudar o canal se alguém já estiver assistindo"). Isso é parecido com o MAC controlando o acesso ao meio para evitar colisões de dados em uma rede.

Controle de Acesso ao Meio (MAC)

Adaptando-se a necessidades variáveis (Acesso dinâmico)

Às vezes, alguém pode não querer assistir à TV no seu horário designado, permitindo que outro membro da família use esse tempo. Isso é semelhante a como o MAC em redes pode se **adaptar a condições variáveis**, alocando o meio de forma dinâmica conforme a demanda.

Regras justas (Equidade no acesso)

O cronograma da TV é projetado para garantir que todos tenham uma chance igual de assistir a seus programas favoritos. De maneira similar, o MAC garante que todos os dispositivos na rede tenham um acesso justo e equitativo ao meio de comunicação.

© Getty Images

Controle de Acesso ao Meio (MAC)

O controle de acesso ao meio refere-se aos métodos usados para controlar o acesso de vários dispositivos à mídia de transmissão compartilhada, como um cabo ou canal sem fio. Nessa camada, os dados são representados em quadros que se referem a uma unidade básica de transmissão de dados.

Em redes locais, onde vários dispositivos compartilham o mesmo meio físico, é necessário um método para evitar colisões de dados, em que dois dispositivos tentam transmitir ao mesmo tempo e suas transmissões se sobrepõem, resultando em perda de dados.

© Getty Images

Controle de Acesso ao Meio (MAC)

Protocolos como o CSMA/CD (Carrier Sense Multiple Access with Collision Detection) são comuns nesse contexto, pois permitem que os dispositivos escutem o meio antes de transmitir e, se detectarem uma transmissão em andamento, aguardam antes de tentar enviar seus próprios dados.

O mecanismo CD obriga a que os nós **escutem a rede** enquanto emitem dados, razão pela qual o CSMA/CD é também conhecido como "Listen While Talk" (LWT). (MOREIRA, 1998)

Controle de Acesso ao Meio (MAC)

Quando vários computadores são conectados a um **HUB**, se não houvesse um controle de comunicação, como eles poderiam se comunicar sem confusão? Imagine uma sala de aula onde todos falam ao mesmo tempo...

Controle de Acesso ao Meio (MAC)

Para resolver essa questão, surgiu o **protocolo CSMA/CD (Carrier Sense Multiple Access with Collision Detection),** que costumava ser utilizado em redes Ethernet com topologia de barramento. O protocolo CSMA/CD é implementado na placa de rede ou equipamentos *Layer* 2 (camada 2).

Antes de enviar dados, um dispositivo verifica se o meio de transmissão está livre. Ele escuta para **detectar sinais de outras transmissões**. Se o meio estiver ocupado, o dispositivo aguarda até que esteja livre. Isso é conhecido como **Carrier Sense** (**Detecção de Portadora**).

CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

Multiple Access (Acesso Múltiplo)

Vários dispositivos compartilham

Eles têm o direito de transmitir quando o meio está livre.

o mesmo meio de transmissão.

Collision Detection (Detecção de Colisão)

Se dois dispositivos começam a transmitir ao mesmo tempo, ocorre uma colisão em que os sinais se sobrepõem e tornam os dados ilegíveis.

Os dispositivos que detectam uma colisão interrompem imediatamente a transmissão e enviam um sinal especial (jam signal) para alertar os outros sobre a colisão.

CSMA/CD (Carrier Sense Multiple Access with Collision Detection) – Exemplo

Vamos supor que há dois dispositivos, A e B, em uma rede Ethernet usando CSMA/CD.

Verificação do Meio (Carrier Sense)

Ambos os dispositivos, A e B, **verificam se o meio está livre** antes de transmitir. Acesso Múltiplo (Multiple Access)

Se o meio estiver livre, ambos os dispositivos têm o direito de transmitir. Suponha que ambos decidam começar a transmitir ao mesmo tempo.

Detecção de Colisão (Collision Detection)

Ao detectar a colisão, A e B interrompem imediatamente a transmissão e enviam um sinal de *jam* para alertar os outros dispositivos sobre a colisão.

Espera aleatória e retransmissão

Após a detecção da colisão, os dispositivos A e B esperam um período de tempo aleatório antes de tentar transmitir novamente. Isso reduz a probabilidade de uma nova colisão. Eles, então, tentam novamente, seguindo o processo de CSMA/CD.

Detecção de erros

A camada de enlace também lida com a detecção e correção de erros que podem ocorrer durante a transmissão de dados. Erros podem acontecer devido a vários fatores, como interferências eletromagnéticas, ruídos na linha, etc.

Técnicas de detecção de erros, como o uso de bits de verificação de redundância (CRC - Cyclic Redundancy Check), são empregadas. O remetente inclui bits adicionais, calculados a partir dos dados transmitidos, e o destinatário realiza o mesmo cálculo. Se os resultados não coincidirem, um erro é detectado.

Detecção de erros: passo a passo

Antes de enviar os dados, o remetente da informação, seja um dispositivo de rede ou outro nó, realiza um **cálculo complexo**, **conhecido como CRC, para os dados** que serão transmitidos. Esse cálculo gera bits adicionais, chamados de bits de verificação ou de redundância, que são anexados aos dados originais.

O quadro de dados, agora com os **bits de verificação**, é enviado para o destinatário pelo meio de comunicação compartilhado. No lado do destinatário, os dados e os bits de verificação são recebidos. O destinatário realiza o mesmo **cálculo de CRC nos dados recebidos**, incluindo os bits de verificação.

Detecção de erros: passo a passo

Os **resultados do cálculo de CRC** no lado do remetente e do destinatário são comparados. Se os resultados coincidirem, presume-se que a transmissão ocorreu sem erros. Se houver uma diferença, um erro é detectado.

Em casos de detecção de erros, a camada de enlace pode enviar uma **mensagem de feedback** ao remetente, solicitando uma retransmissão dos dados, ou realizar outras ações para corrigir o problema, dependendo do protocolo específico em uso.

Detecção de erros

O CRC é amplamente utilizado porque é eficiente na **detecção de erros** e é relativamente simples de implementar em hardware e software, pois, de acordo com Roisenberg (2004):

- utiliza circuitos iguais no transmissor e no receptor;
- pode ser ajustado às características no meio físico;
- utiliza aritmética módulo 2 (adições binárias sem carry).

Um usuário acredita estar seguro em uma rede local, pois está usando o protocolo CSMA/CD. Qual é a função do protocolo em redes Ethernet?

Escolha a alternativa correta.

Detectar erros e corrigilos. Controle de acesso ao meio.

Criptografia.

Roteamento.

Um usuário acredita estar seguro em uma rede local pois está usando o protocolo CSMA/CD. Qual é a função do protocolo em redes Ethernet?

Detectar erros e corrigi-los.

RESPOSTA ERRADA! Essa alternativa está errada, pois não é função desse protocolo corrigir erros.

Criptografia.

RESPOSTA ERRADA! Essa alternativa está errada, pois o protocolo não tem recurso de criptografia.

Controle de acesso ao meio.

RESPOSTA CORRETA! Essa alternativa está certa, pois o CSMA/CD (Carrier Sense Multiple Access with Collision Detection) é utilizado para o controle de acesso ao meio em redes Ethernet, gerenciando a transmissão em ambientes compartilhados.

Roteamento.

RESPOSTA ERRADA! Essa alternativa está errada, pois o protocolo não faz roteamento.

Em que situação ocorre uma colisão em redes usando CSMA/CD?

Escolha a alternativa correta.

Quando há interferência magnética.

Ao detectar um vírus na transmissão.

Quando dois dispositivos transmitem simultaneamente.

Durante a fase de criptografia dos dados.

Registro

Em que situação ocorre uma colisão em redes usando CSMA/CD?

Quando há interferência magnética.

RESPOSTA ERRADA! A alternativa está errada, pois a interferência magnética não proporciona colisão.

Ao detectar um vírus na transmissão.

RESPOSTA ERRADA! A alternativa está errada, pois o protocolo não protege contra vírus, são vantagens.

Quando dois dispositivos transmitem simultaneamente.

RESPOSTA CORRETA! Alternativa correta, pois colisões acontecem quando dois ou mais dispositivos tentam transmitir dados ao mesmo tempo no CSMA/CD.

Durante a fase de criptografia dos dados.

RESPOSTA ERRADA! Alternativa errada, pois o protocolo não abrange criptografia.

Qual é a principal consequência de uma colisão em redes CSMA/CD?

Escolha a alternativa correta.

Aumento da velocidade de transmissão.

Redução da latência.

Melhoria na segurança da rede.

Perda de dados e necessidade de retransmissão.

Registro

Qual é a principal consequência de uma colisão em redes CSMA/CD?

Aumento da velocidade de transmissão.

RESPOSTA ERRADA! Essa alternativa está errada, pois não ocorre aumento da velocidade.

Redução da latência.

RESPOSTA ERRADA! Essa alternativa está errada, pois não ocorre redução da latência.

Melhoria na segurança da rede.

RESPOSTA ERRADA! Essa alternativa está errada, pois não ocorre melhoria de segurança.

Perda de dados e necessidade de retransmissão.

RESPOSTA CORRETA! Essa alternativa está correta, pois colisões resultam na perda de dados e exigem uma nova transmissão dos dados afetados.

Recomendamos assistir ao vídeo para saber mais sobre a Camada de Enlace, o que é e suas funções:

PROFESSORA NATTANE. Como funciona a detecção e correção de erros em redes de computadores | Camada de enlace de dados. Disponível em: https://www.youtube.com/watch?v=Wqj7Ky5joLM.

Hoje desenvolvemos:

- Conhecimento de que o **controle de acesso ao meio** na camada de enlace trata da gestão eficiente do meio compartilhado de comunicação;
- Compreensão de que a detecção de erros visa identificar e, em alguns casos, corrigir erros que podem ocorrer durante a transmissão de dados;
- 3 Identificação de que essas funções são cruciais para garantir uma comunicação confiável e eficiente em redes locais.

Referências da aula

MATHEUS, Y. Saiba o que é o modelo OSI e quais são suas camadas. Alura, 18 set. 2023. Disponível em: https://www.alura.com.br/artigos/conhecendo-o-modelo-osi Acesso em: 21 fev. 2024.

ROISENBERG, M. *Protocolo de Enlace de Dados*. UFSC, 2004. Disponível em: https://www.inf.ufsc.br/~mauro.roisenberg/ine5377/Cursos-ICA/CC-enlace_controle_erro.pdf Acesso em: 21 fev. 2024.

TANENBAUM, A.; FEAMSTER, N.; WETHERALL, D. *Redes de computadores*. São Paulo: Pearson; Porto Alegre: Bookman, 2021.

MOREIRA, A. *Controlo de Acesso ao Meio* (MAC). DEI/ISEP, Documentação de apoio às aulas, 1998. Disponível em: https://www.dei.isep.ipp.pt/~asc/doc/mac.html Acesso em: 21 fev. 2024.

Identidade visual: imagens © Getty Images

Educação Profissional Paulista

Técnico em

Desenvolvimento

de Sistemas

