MEU302 - Algèbre TD2

${\bf Rappel\ de\ cours}$

Definition 1. Bla bla

MEU302 - Algèbre TD2

Exercice 10

Exercice 10.a

$$\det \begin{vmatrix} 1 & 2 & x \\ 2 & 3 & y \\ 3 & 4 & z \end{vmatrix} = 1. \begin{vmatrix} 3 & y \\ 4 & z \end{vmatrix} - 2. \begin{vmatrix} 2 & x \\ 4 & z \end{vmatrix} + 3. \begin{vmatrix} 2 & x \\ 3 & y \end{vmatrix} = 3z - 4y - 4z + 8x + 6y - 9x = -z + 2y - x$$

Exercice 10.b

Un vecteur (x, y, z) appartient à F si et seulement si il existe deux réels λ_1 et λ_2 tel que

$$(x, y, z) = \lambda_1(1, 2, 3) + \lambda_2(2, 3, 4)$$

$$\left\{ \begin{array}{l} x = \lambda_1 + 2\lambda_2 \\ y = 2\lambda_1 + 3\lambda_2 \\ z = 3\lambda_1 + 4\lambda_2 \end{array} \right. = \left\{ \begin{array}{l} x = \lambda_1 + 2\lambda_2 \\ y = 2\lambda_1 + 3\lambda_2 \\ z + x = 4\lambda_1 + 6\lambda_2 \end{array} \right. = \left\{ \begin{array}{l} x = \lambda_1 + 2\lambda_2 \\ y = 2\lambda_1 + 3\lambda_2 \\ -z - x + 2y = -4\lambda_1 + -6\lambda_2 + 4\lambda_1 + 6\lambda_2 = 0 \end{array} \right.$$

Le système (H) a donc des solutions si et seulement si -x + 2y - z = 0. L'ensemble F est donc l'ensemble $\begin{vmatrix} 1 & 2 & x \end{vmatrix}$

des triplets (x, y, z) tel que -x + 2y - z = 0. On dit que F a pour équation : $-x + 2y - z = 0 = \det \begin{vmatrix} 1 & 2 & x \\ 2 & 3 & y \\ 3 & 4 & z \end{vmatrix}$.

Exercice 10.c

Si H est le noyau d'une application linéaire f alors $H = \{v = (x, y, z) | f(v) = 0\}$. Donc trouver $\lambda_1, \lambda_2, \lambda_3$ tel que

$$\begin{cases} \lambda_1 + 2\lambda_2 + 3\lambda_3 = 0 \\ 2\lambda_1 + 3\lambda_2 + 4\lambda_3 = 0 \end{cases} = \begin{cases} \lambda_1 + 2\lambda_2 + 3\lambda_3 = 0 \\ \lambda_2 + 2\lambda_3 = 0 \end{cases} = \begin{cases} \lambda_1 - 4\lambda_3 + 3\lambda_3 = 0 \\ \lambda_2 = -2\lambda_3 \end{cases} = = \begin{cases} \lambda_1 = \lambda_3 \\ \lambda_2 = -2\lambda_3 \end{cases}$$

Le noyau est $(\lambda, -2\lambda, \lambda)$ et l'application linéaire $f(x, y, z) = \lambda x - 2\lambda y + \lambda z$.

Exercice 12

Si E est un espace vectoriel de dimension n alors on a une base $\{v_1, v_2, ..., v_n\}$ de E et $\forall e \in E, e = \lambda_1 v_1 + \lambda_2 v_2 + ... + \lambda_n v_n$ et $E^* = L(E, \mathbb{R})$ donc $\forall f \in E^*, f : E \to \mathbb{R}, \forall (e_1, e_2) \in E^2, \forall \lambda \in \mathbb{R}, f(\lambda e_1 + e_2) = \lambda f(e_1) + f(e_2)$. E^* est un espace vectoriel ssi $(E^*, +)$ est un groupe Abélien et $\forall (f_1, f_2) \in E^{*2}, \forall (\lambda_1, \lambda_2) \in \mathbb{R}^2$

- 1. $\lambda_1 \cdot (\lambda_2 \cdot f_1) = (\lambda_1 \lambda_2) \cdot f_1$
- 2. $1.f_1 = f_1$
- 3. $(\lambda_1 + \lambda_2)f_1 = \lambda_1.f_1 + \lambda_2.f_1$
- 4. $\lambda_1(f_1+f_2)=\lambda_1.f_1+\lambda_1.f_2$

 $(E^*,+)$ est un groupe Abélien ssi

- 1. cloture sur E^* , $\forall (f_1, f_2) \in E^{*2}$, $f_1 + f_2 \in E^*$
- 2. élément neutre, $\exists f_{id} \in E^*, \forall f \in E^*, f_{id} + f = f + f_{id} = f$
- 3. inverse, $\forall f_1 \in E^*, \exists f_2 \in E^*, f_1 + f_2 = f_2 + f_1 = f_{id}$
- 4. Commutativité, $\forall f_1 \in E^*, \forall f_2 \in E^*, f_1 + f_2 = f_2 + f_1$

Donc

MEU302 - Algèbre TD2

1. $\forall (f_1, f_2) \in E^{*2}, f_1(\lambda_1 e_1 + e_2) + f_2(\lambda_1 e_1 + e_2) = \lambda_1 f_1(e_1) + f_1(e_2) + \lambda_1 f_2(e_1) + f_2(e_2) = \lambda(f_1(e_2) + f_2(e_1)) + (f_1(e_2) + f_2(e_2))$ Prenons $g(e) = f_1(e) + f_2(e)$ on a $g(\lambda e_1 + e_2) = \lambda g(e_1) + g(e_2)$ donc $g(e) \in E^*$, donc Vrai

- 2. Prenons $f_{id}: E \to \mathbb{R}, \forall e \in E, f(e) = 0$. On a $f_{id} \in E^*$ car $\forall (e_1, e_2) \in E^2, \forall \lambda \in \mathbb{R}, f_{id}(\lambda e_1 + e_2) = 0 = \lambda 0 + 0 = \lambda f(e_1) + f(e_2)$ et $\forall e \in E, f_{id}(e) + f(e) = 0 + f(e) = f(e)$ et $\forall e \in E, f_{id}(e) = f(e) + 0 = f(e)$ donc Vrai
- 3. Pour $f_1 \in E^*$, prenons $f_2 = -f_1$. $f_2 \in E^*$ car $f_2(\lambda e_1 + e_2) = -f_1(\lambda e_1 + e_2) = -(\lambda f_1(e_1) + f_1(e_2)) = -\lambda f_1(e_1) f_1(e_2) = \lambda f_2(e_1) + f_2(e_2)$ et $f_1(e) + f_2(e) = f_1(e) f_1(e) = 0 = f_{id}(e)$ et $f_2(e) + f_1(e) = -f_1(e) + f_1(e) = 0 = f_{id}(e)$ donc Vrai
- 4. $\forall f_1, f_2 \in E^{*2}, f_1(\lambda_1 e_1 + e_2) + f_2(\lambda_2 e_3 + e_4) = \lambda_1 f_1(e_1) + f_1(e_2) + \lambda_2 f_2(e_3) + f_2(e_4) = \lambda_2 f_2(e_3) + f(e_4) + \lambda_1 f_1(e_1) + f_1(e_2) = f_2(\lambda_2 e_3 + e_4) + f_1(\lambda_1 e_1 + e_2)$ donc Vrai

Donc

- 1. $\lambda_1.(\lambda_2.f_1(\lambda e_1 + e_2)) = \lambda_1.(\lambda_2.(\lambda f_1(e_1) + f_1(e_2))) = \lambda_1.(\lambda_2\lambda f_1(e_1) + \lambda_2 f_1(e_2)) = \lambda_1\lambda_2\lambda f_1(e_1) + \lambda_1\lambda_2 f_1(e_2) = (\lambda_1\lambda_2).(\lambda f_1(e_1) + f_1(e_2)) = (\lambda_1\lambda_2).f_1(\lambda e_1 + e_2))$ donc Vrai
- 2. $1.f_1 = f_1$
- 3. $(\lambda_1 + \lambda_2)f_1 = \lambda_1.f_1 + \lambda_2.f_1$
- 4. $\lambda_1(f_1 + f_2) = \lambda_1.f_1 + \lambda_1.f_2$

Trop long et complexe.

On peut aussi démontrer qu'il existe une base $\{f_1, ..., f_p\}$ sur E^* tel que $\forall f \in E^*, f = \lambda_1 f_1 + \lambda_2 f_2 + ... + \lambda_p f_p$ et la dimension de E^* sera donc p. On a E de dimension n donc il existe une base $\{v_1, v_2, ..., v_n\}$ de E et $\forall e \in E, e = \lambda_1 v_1 + \lambda_2 v_2 + ... + \lambda_n v_n$. Donc $\forall f \in E^*, \forall e \in E, f(e) = f(\lambda_1 v_1 + \lambda_2 v_2 + ... + \lambda_n v_n) = \lambda_1 f(v_1) + \lambda_2 f(v_2) + ... + \lambda_n f(v_n)$ Donc $\{f(v_1), f(v_2), ..., f(v_n)\}$ est une base de f. La dimension de chaque $f(v_1)$ est f car $f: E \to \mathbb{R}$, donc la dimension de f est f e

Une autre facon, on a E un espace vectoriel de dimension n alors on a une base $\mathcal{B}_E = \{v_1, v_2,, v_n\}$ de E. On a \mathbb{R} , un espace vectoriel de dimension 1 de base $\mathcal{B}_{\mathbb{R}}\{1\}$. Chaque application linéaire de $E \to \mathbb{R}$ peut être associée à une matrice de 1 ligne et n colonnes.

$$\forall f \in E^*, M_{\mathcal{B}_E, \mathcal{B}_{\mathbb{R}}} = (\alpha_1 \quad \alpha_2 \quad \dots \quad \alpha_n) 1$$

avec $\alpha_i = f(v_i)$.

Pour $f, g \in E^*$, on définit la somme de f et g comme $f + g : E \to \mathbb{R}, e \to f(e) + g(e)$ et soit $\lambda \in \mathbb{R}$, on définit $\lambda f : E \to \mathbb{R}, e \to \lambda f(e)$. On a

$$\lambda M_{\mathcal{B}_E,\mathcal{B}_{\mathbb{R}}}(f) + M_{\mathcal{B}_E,\mathcal{B}_{\mathbb{R}}}(g) = M_{\mathcal{B}_E,\mathcal{B}_{\mathbb{R}}}(\lambda f) + M_{\mathcal{B}_E,\mathcal{B}_{\mathbb{R}}}(g) = M_{\mathcal{B}_E,\mathcal{B}_{\mathbb{R}}}(\lambda f + g)$$

par la simple propriét'es d'addition et de multiplication des matrices. Donc E^* est un \mathbb{R} -espace vectoriel. La dimension de E^* est $dim(E)*dim(\mathbb{R})=n*1=n$.