Programação Matemática – Lista 3

1. Coloque na forma padrão os seguintes problemas de programação linear:

a) Maximizar
$$-X_1 - 7 X_2 + 8 X_3 + X_4$$

Sujeito a
$$X_1 + X_2 - X_3 + X_4 \leq 4$$
$$X_1 + X_3 \geq 9$$
$$X_2 + X_3 + X_4 \geq 6$$
$$X_1 \geq 0, X_2 \geq 0, X_3 \geq 0, X_4 \geq 0$$

- b) Minimizar $3 X_1 3 X_2 + 7 X_3$ Sujeito a $X_1 + X_2 + X_3 \le 40$ $X_1 + 9 X_2 - 7 X_3 \ge -5$ $5 X_1 + 3 X_2 \ge 2$ $X_1 \ge 0, X_2 \ge 0, X_3 \le 0$
- c) Maximizar $-X_1 + X_2 3X_3$ Sujeito a $X_1 + X_2 + X_3 \le 25$ $X_1 + X_2 - X_3 \ge 10$ $|5 X_1 + 3 X_2| \le 100$ $X_1 \ge 0, X_2 \ge 0, X_3$ livre
- 2. Escreva uma solução factível para o problema 1(a). A solução que voce escreveu é básica? Senão for escreva uma solução básica para o problema 1(a).
- 3. Escreva o problema 1(a) na forma matricial.
- 4. Escreva a matriz A e os vetores b e c (função objetivo) do problema 1(c).
- 5. Transforme o problema 1(a) em um problema de mínimo equivalente.
- 6. Esboce as regiões factíveis do conjunto $\{x \mid Ax \le b \ e \ x \ge 0\}$ onde A e b são dados abaixo. A região factível é vazia? É limitada ?

a)
$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ 0 & 1 \end{bmatrix}$$
 $b = \begin{bmatrix} 6 \\ 6 \\ 2 \end{bmatrix}$ b) $A = \begin{bmatrix} 1 & 1 \\ -1 & -2 \\ -1 & 0 \end{bmatrix}$ $b = \begin{bmatrix} 4 \\ -12 \\ 0 \end{bmatrix}$ c) $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 2 & 3 \\ 1 & -3 \end{bmatrix}$ $b = \begin{bmatrix} 0 \\ 0 \\ 12 \\ 5 \end{bmatrix}$

- 7. Dado o problema de Programação Linear abaixo, transforme as restrições em um sistema de equações lineares, calcule todas as soluções básicas, informe quais soluções são viáveis e indique qual é a solução ótima.
 - a) maximizar $z = x_1 + x_2$ sujeito a: $x_1 + 5.x_2 \le 5$ $2.x_1 + x_2 \le 4$ $\mathbf{x} \ge \mathbf{0}$
 - b) maximizar $z = 3.x_1 + 4.x_2$ sujeito a: $2.x_1 + x_2 \le 6$ $2.x_1 + 3.x_2 \le 9$ $\mathbf{x} \ge \mathbf{0}$

c) maximizar
$$z=5.x_1+2.x_2$$
 sujeito a: $x_1+2.x_2\leq 9$ $x_1\leq 3$ $x_2\leq 4$ $\mathbf{x}\geq \mathbf{0}$

- 8. Para a forma padrão da programação linear, defina clara e sucintamente:
 - a) solução básica;
 - b) solução factível;
 - c) solução básica factível;
 - d) solução ótima;
 - e) solução básica ótima;
 - f) indique as condições para que uma solução factível não seja básica;
 - g) indique as condições para que uma solução factível não seja ótima.
- 9. Considere os problemas:

a)
$$Maximizar \ f(x_1, x_2) = -3x_1 + 2 \ x_2$$
 Sujeito a: Sujeito a: Sujeito a: $x_1 + 2x_2 \ge 4$ $x_1 + x_2 \le 1$ $x_1 + x_2 \le 3$ $x_1 \ge 0, \ x_2 \ge 0$ Resp. (0 1) Resp. (0 2) C) $Minimizar \ f(x_1, x_2) = x_1 + x_2$ Sujeito a: Sujeito a: Sujeito a: $-x_1 + x_2 \ge 2$ $2x_1 - x_2 \le 6$ $2x_1 - x_2 \le 6$ $x_1 \ge 0, \ x_2 \ge 0$. Resp. (0 2) $x_1 \ge 0, \ x_2 \ge 0$.

Resp. Infactível

Para cada um dos problemas, responda as seguintes questões:

- a. Resolva o problema graficamente (isto é, desenhe a região factível e a(s) solução(\tilde{o} es) ótima(s)).
- b. A solução $x_1 = x_2 = 0$ é um vértice da região factível? Identifique todos os vértices da região factível.
- c. Desenhe as soluções $\mathbf{x^1} = (x_1^1 \ x_2^1) = (1 \ 1)$ e $\mathbf{x^2} = (x_1^2 \ x_2^2) = (5, \ 1)$. Estas soluções são factíveis? Por que?
- d. Considere agora uma outra função objetivo: *Minimizar* $f(x_1, x_2) = x_1 x_2$. Verifique se a solução ótima obtida no item a. é também ótima considerando esta nova função objetivo. Há múltiplas soluções ótimas? Identifique no gráfico.
- e. Considere que o valor de b_1 seja incrementado de 1 unidade, o que aconteceria com a solução do problema?
- 10. Considere a região de factibilidade dada pelas seguintes restrições:

$$x_1 + x_2 \le 2$$

$$2x_1 - x_2 \le 6$$

$$x_1 + x_2 \le 1$$

$$x_1 \ge 0, x_2 \ge 0$$

- a) reescreva as restrições na forma padrão.
- b) encontre todas as soluções básicas para o sistema.
- c) dada a solução básica (0 0 2 6 1), escreva o sistema na forma B $X_B = b NB X_{NB}$.
 - d) qual o valor máximo que x₁ pode assumir no sistema dado em (c) de modo que obtenhamos uma nova solução básica factível?
- 11) Utilize o Método Simplex para resolver os seguintes problemas
- 1. maximizar $z = 10.x_1 + 1.x_2$ sujeito a: $2.x_1 + 5.x_2 \le 11$ $\mathbf{x} \ge \mathbf{0}$
- 2. maximizar z = $1.x_1 + 1.x_2$ sujeito a: $1.x_1 + 5.x_2 \le 5$ $2.x_1 + 1.x_2 \le 4$ $\mathbf{x} \ge \mathbf{0}$
- 3. maximizar z = $3.x_1 + 4.x_2$ sujeito a: $2.x_1 + 1.x_2 \le 6$ $2.x_1 + 3.x_2 \le 9$ $\mathbf{x} \ge \mathbf{0}$
- **4.** minimizar $z = 1.x_1 + 2.x_2$ sujeito a: $1.x_1 + 3.x_2 \le 11$ $2.x_1 + 1.x_2 \le 9$ $\mathbf{x} \ge \mathbf{0}$
- 12) Utilize o Método Simplex na forma de tabelas para resolver os seguintes problemas.
- **a.** maximizar z = $1.x_1 + 2.x_2 + 3.x_3 + 1.x_4$ sujeito a: $3.x_1 + 2.x_2 + 1.x_3 + 4.x_4 \le 10$ $5.x_1 + 3.x_2 + 2.x_3 + 5.x_4 \le 5$ $\mathbf{x} \ge \mathbf{0}$
- **b.** maximizar z = 1. x_1 + 9. x_2 + 1. x_3 sujeito a: 1. x_1 + 2. x_2 + 3. x_3 \leq 9 3. x_1 + 2. x_2 + 2. x_3 \leq 15 \mathbf{x} \geq 0
- 13) Uma pequena fábrica de papel toalha manufatura três tipos de produtos A, B e C. A fábrica recebe o papel em grandes rolos. O papel é cortado, dobrado e empacotado. Dada a pequena escala da fábrica, o mercado absorverá qualquer produção a uma preço constante. O lucro unitário de cada produto é respectivamente R\$ 1,00, R\$ 1.5, e R\$ 2,00. A tabela abaixo indica o tempo requerido para operação (em horas) em cada seção da fábrica, bem como a quantidade de máquinas disponíveis, que trabalham 40 horas por semana. Planeje a produção semanal da fábrica.

Seção	Produto A	Produto B	Produto C	Quantidade de
				máquina
Corte	8	5	2	3
Dobra	5	10	4	10
Empacotamento	0.7	1	2	2

14)(Livro -Bazaara, M. e J.J. Javis - 'Linear Programming and Network Flows' - John Wiley, 1977).

Resolva o problema abaixo pelo método simplex começando com a solução básica factível $(x_1,x_2) = (4,0)$.

 $\max -x_1 + 2x_2$

 $s.a 3x_1 + 4x_2 = 12$

 $2x_1 - x_2 \le 12$

$$x_1, x_2 \ge 0$$

15) (Bazaara, M. e J.J. Javis - 'Linear Programming and Network Flows' - John Wiley, 1977). Resolva o seguinte problema pelo método simplex e, a cada iteração, identifique B e B⁻¹.

Max
$$z = 3x_1 + 2x_2 + x_3$$

s. a. $2x_1 - 3 \ x_2 + 2x_3 \le 3$
 $-x_1 + x_2 + x_3 \le 5$
 $x_1 \ge 0, \quad x_2 \ge 0, \quad x_3 \ge 0$

16) Considere o problema:

$$\begin{array}{llll} \max & 2x_1 + x_2 - 3x_3 + 5x_4 \\ s.a & x_1 + 2x_2 + 4x_3 - x_4 \leq & 6 \\ 2x_1 + 3x_2 - x_3 + x_4 \leq & 12 \\ x_1 & + x_3 + x_4 \leq & 4 \\ & x_1, x_2, x_3, x_4 \geq & 0 \end{array}$$

Encontre a solução básica factível onde as variáveis x1, x2 e x4 são básicas. Esta solução é ótima? Senão, encontre a solução ótima partindo desta solução.

17) Considere o problema:

Min
$$2x_1 - x_2 + x_3 + 5x_4 = z$$

s.a. $x_1 + x_2 + x_3 + x_4 = 4$
 $2x_1 + 3x_2 - 4x_3 + 2x_4 \le 5$
 $x_1 + 2x_2 - 5x_3 + x_4 \ge 2$
 $x_i \ge 0, j = 1,...,4$

Mostre, usando o método simplex, que o problema é infactível.

Obs. Importante, esta lista é apenas um apoio ao estudo, é necessário estudar todos os conceitos apresentados na apostila, pois a prova conterá questões teóricas.

18) verifique, usando o método simplex, que o problema abaixo é ilimitado.

Min z =
$$1x_1 - 2x_2 + x_3 + 3x_4$$

s.a
 $2x_1 - x_2 + x_3 - x_4 \le 10$
 $-5x_1 + 2x_2 - 2x_3 + x_4 \le 20$
 $3x_1 - 4x_2 + 4x_3 - 2x_4 \le 30$
 $x_j \ge 0, j = 1,...,4$

19) O objetivo deste exercício é examinar o que acontece com a solução ótima do problema quando pequenas modificações no mesmo ocorrem.

Min
$$z = 4x_1 + 3x_2 + 2x_3 + 1x_4$$

s.a $2x_1 - 3x_2 + x_3 + 2x_4 = 10$
 $1x_1 + 4x_2 - 2x_3 + 3x_4 \ge 16$
 $x_i \ge 0, j = 1,...4$

- a) Resolva o problema usando um software. Anote a solução obtida
- b) mude o custo de x_4 para 4 e reotimize o problema. Mude para 8 e reotimize. Como a solução ótima do problema variou em cada caso?
- c) mude o coeficiente de x_2 na segunda equação para a_{22} =5 e reotimize. O que muda na solução do problema?
- d) Faça as seguintes modificações no valor do lado direito da primeira restrição:

mude de $b_1 = 10$ para $b_1 = 8$ e reotimize.

mude de $b_1 = 10$ para $b_1 = 12$ e reotimize

mude de $b_1 = 10$ para $b_1 = 20$ e reotimize

examine a nova solução em cada caso.

e) Acrescente uma nova atividade (x5) ao problema com os seguintes dados:

$$c_5 = -1$$

$$a_{15} = 2$$
, $a_{25} = -3$.

Reotimize o problema. Como voce poderia ter previsto esta nova solução analisando a solução do problema original?

- f) Acrescente individualmente cada uma das restrições abaixo e analise as mudanças na solução ótima.
- $x_1 + x_2 + x_3 + x_4 \ge 4$
- $2x_1 + 2x_2 + 4x_3 + x_4 \le 8$
- $x_1 + x_2 + x_3 + x_4 = 6$