Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Q. Roo, 02/03/2017	Dr. Héctor Fernando Gómez	Creación del programa para incorporarse en el plan de estudios de Ingeniería en Datos e Inteligencia Organizacional.

Relación con otras asignaturas

Anteriores	Posteriores

1. Aprendizaje estadístico

Tema(s)

a) ANÁLISIS ESTADÍSTICO ESPACIAL

a) NO APLICA

2. Graficación por computadora

Tema(s)

b) Todos

Nombre de la asignatura	Departamento o Licenciatura

Sistemas de información geográfica Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
3 - 4	ID3474	6	Licenciatura Elección Libre

Tipo de asignatura	Horas	de estudio)	
	HT	HP	TH	HI
Seminario	32	16	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir diferentes metodologías para el procesamiento y el análisis de datos espaciales.

Objetivo procedimental

Construir sistemas de información geográfica para el procesamiento, análisis y modelado de datos espaciales.

Objetivo actitudinal

Potenciar el trabajo colaborativo para el desarrollo de proyectos de sistemas de información geográfica.

Unidades y temas

Unidad I. INTRODUCCIÓN A LOS SISTEMAS DE INFORMACIÓN GEOGRÁFICA

Describir los elementos básicos de los datos espaciales para la adquisición de un marco contextual.

- 1) Definición de Sistema de Información Geográfica
- 2) Sistemas de coordenadas y proyecciones
- 3) Modelos de datos espaciales: capas vectoriales y ráster
- 4) Fuentes de datos espaciales
- 5) Construcción de capas de datos vectoriales
- 6) Mediciones de longitud, área y distancia

Unidad II. PROCESAMIENTO DE DATOS ESPACIALES

Aplicar técnicas de procesamiento de datos espaciales para la curación de datos y análisis posteriores.

- 1) Intersección de capas espaciales
- 2) Búffers

3) Consultas espaciales
4) Combinación de atributos espaciales
5) Puntos en polígonos
6) Conversiones entre datos vectoriales y ráster
7) Imágenes satelitales y clasificación de uso de suelo
8) Análisis de terreno
Unidad III. PATRONES ESPACIALES
Investigar la existencia de patrones en conjuntos de datos espaciales para la identificación adecuada.
1) Estimaciones de densidad por medio de kérneles
2) Funciones K, Ly G
3) Interpolación de patrones de puntos con atributos espaciales continuos
Unidad IV. ANÁLISIS ESTADÍSTICO ESPACIAL
Resolver problemas de modelado espacial para la identificación de relaciones entre diferentes variables geográficas
1) Autocorrelación espacial
2) Índice de autocorrelación (Índice de Moran)
3) Autorregresión espacial
4) Indicadores locales de asociación espacial
5) índice de Moran local
6) Regresión geográfica con pesos

Actividades que promueven el aprendizaje

Docente Estudiante

Promover el trabajo colaborativo en la definición de propuestas de solución a problemas determinados.

Coordinar la discusión de casos prácticos. Realizar foros para la discusión de temas o problemas. Realizar tareas asignadas
Participar en el trabajo individual y en equipo
Resolver casos prácticos
Discutir temas en el aula
Participar en actividades extraescolares

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos:

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Examen	30
Evidencias individuales (investigación, ensayos, lecturas, etc.)	20
Evidencias equipo (ejercicios, casos, proyectos, etc.)	30
Evidencias grupales (asambleas, lluvias de ideas, etc.)	20
Total	100

Fuentes de referencia básica

Bibliográficas

Bivand, R, (2013), Applied Spatial Data Analysis with R. (2da Edición). New York: Springer Verlag

Bolstad, P, (2016), GIS Fundamentals: A First Text on Geographic Information Systems. (5ta Edición). USA: XanEDU

Brunsdon, C, (2015), An Introduction to R for Spatial Analysis and Mapping. (1ra Edición). USA: SAGE

Deren, Li, (2015), Spatial Data Mining: Theory and Application. (1ra Edición). USA: Springer Verlag

Longley, P, (2015), Geographic Information Science and Systems (4ta Edición). USA: Wiley

Web gráficas

.

Fuentes de referencia complementaria

Bibliográficas

.

Web gráficas

.

Perfil profesiográfico del docente

Académicos

Licenciatura en geografía o posgrado en computación

Docentes

Tener experiencia docente a nivel superior mínima de 3 años en ingeniería.

Profesionales

Tener experiencia en la utilización de sistemas de información geográfica