Components of LangChain

RAG (Retrieval-Augmented Generation) pipeline components

You want to **chat with your documents** (PDFs, Word, CSV, etc.), or search over them smartly using a Language Model (LLM).

To do that, the computer must:

- 1. Understand the document
- 2. Store it in a smart way
- 3. Search intelligently inside it

What is RAG?

RAG = Google Search + ChatGPT

- It's a technique where an Al model (**Generation**) fetches (**Retrieves**) relevant information from your documents *before* answering a question.
- Combines search (like Google) with text generation (like ChatGPT).

Why Use RAG?

- LLMs (like GPT) don't know everything—they're trained on old/public data.
- RAG lets you "feed" custom data (PDFs, websites, etc.) to the AI for accurate, up-to-date answers.

Real-World Example

Question: "What's our company's refund policy?"

- Without RAG: LLM guesses based on general knowledge.
- With RAG:
 - 1. Searches your internal policy.docx file.
 - 2. Finds the exact refund policy section.
 - 3. Generates an answer quoting your actual policy.

Key Benefits

- ✓ No retraining needed Just add new files!
- Reduces Al mistakes Grounded in your data.
- **✓ Works with private data** PDFs, emails, database

1. Load/Data Ingestion

This means **reading your document** (like a PDF, CSV, etc.) and bringing it into Python as text.

What: Import data from files/websites/databases into LangChain.

Like: A librarian gathering books for your research.

Tools:

- WebBaseLoader: Scrape websites
- PyPDFLoader: Read PDFs
- DirectoryLoader: Load all files in a folder

Example:

from langchain_community.document_loaders import PyPDFLoader loader = PyPDFLoader("myfile.pdf") docs = loader.load()

- docs now contains the whole document as strings of text.
- If the PDF has 10 pages, each page may become one document.

2. Split

Large documents are too long for LLMs to handle in one go, so we break them into smaller pieces (called "chunks").

Why?

LLMs like GPT or DeepSeek have limits (e.g., 4096 tokens). You must keep chunks small enough to fit.

Popular Splitters:

- RecursiveCharacterTextSplitter: Generic purpose
- MarkdownHeaderTextSplitter: Preserves document structure

Example:

from langchain.text_splitter import RecursiveCharacterTextSplitter splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)

chunks = splitter.split_documents(docs)

Now each chunk is ~500 characters (or tokens), and they slightly overlap for context.

3. Embed

Now, we convert **text into** → **vectors** (**numbers**) — like turning sentences into coordinates in space.

This is called **embedding**. It's like giving meaning to text in math language.

Why?

LLMs and search tools understand text better when it's a vector — so you can find "similar meaning" not just same words.

Popular Embedders:

- OpenAlEmbeddings (paid)
- HuggingFaceEmbeddings (free, e.g., "all-MiniLM-L6-v2")

Example:

from langchain.embeddings import HuggingFaceEmbeddings embedding_model = HuggingFaceEmbeddings()

• Each chunk of text becomes a vector (list of numbers like [0.12, -0.98, 3.4, ...]).

4. Store (Vector Store)

Now, we store those embeddings (vectors) in a special database called a Vector Store.

What:

Databases optimized for storing/querying embeddings.

Why:

Fast similarity searches over large datasets.

Popular options:

Name	Local?	Good for beginners?	Example Code
FAISS	✓ Yes	✓ Yes (offline)	FAISS.from_documents(chunks, embedder)
ChromaDB	▼ Yes	✓ Yes (easy API)	Chroma.from_documents(chunks, embedder, persist_dir="./db")
Pinecone	X No	X Needs API key	

FAISS Example:

from langchain.vectorstores import FAISS db = FAISS.from_documents(chunks, embedding_model)

Now your document is stored in a smart way — you can **search by meaning**.

5. Search / Retrieve

Later, when you ask a question, you don't send everything to the LLM. Instead:

- 1. Your question is also embedded into a vector
- 2. LangChain compares your question's vector with the document vectors
- 3. It returns the most similar chunks

This is called **retrieval** or **semantic search**.

What: Find relevant chunks for a query.

Like: Using a book's index to find relevant pages.

Example:

```
retriever = db.as_retriever()
results = retriever.invoke("Explain LangChain")
```

You now get only the **most relevant pieces** of your document, which are then passed to the LLM to answer.

```
query = "What's LangChain?"
similar_chunks = vector_db.similarity_search(query, k=3) # Top 3 matches
```

Full RAG Pipeline Visualization:

```
[PDF/Website]

→ Load → Split → Embed → Store (FAISS/Chroma)

↓

Query → Retrieve → [LLM] → Answer
```

Summary in One Line

Term	Meaning	
Load	Read the document (PDF, CSV, etc.)	
Split	Break into small chunks	
Embed	Turn text into numbers (vectors)	
Store	Save vectors in a database (FAISS, Chroma, etc.)	
Retrieve	Find similar chunks based on a question	

Trivia for Better Understanding

- Embedding = like turning every sentence into a GPS coordinate
- **Vector Store** = like a **map** where every sentence has a location

• **Retrieval** = find **nearest neighbors** (sentences close in meaning)

Complete Example:

```
# 1. Load
loader = PyPDFLoader("report.pdf")
docs = loader.load()
#2. Split
splitter = RecursiveCharacterTextSplitter(chunk_size=1000)
chunks = splitter.split_documents(docs)
#3. Embed + Store
embedder = HuggingFaceEmbeddings()
vector_db = FAISS.from_documents(chunks, embedder)
# 4. Retrieve
query = "Summarize key findings"
results = vector_db.similarity_search(query)
# 5. Generate answer
from langchain.chains import RetrievalQA
qa_chain = RetrievalQA.from_chain_type(Ilm, retriever=vector_db.as_retriever
())
print(qa_chain.run(query))
```

Key Concepts

- Chunk Size: Typically 500-1500 characters (balance context vs. precision)
- Embedding Models: Smaller ones (e.g., 384-dim) work well for most cases
- Vector DB Choice: FAISS for quick tests, Chroma for local persistence,
 Pinecone for production