COMPLEX

Cours 6 - Introduction aux algorithmes probabilistes

Damien Vergnaud

Sorbonne Université – CNRS

Table des matières

- Introduction
 - Historique (très) incomplet
 - Principe général
 - Algorithmes déterministes
 - Algorithmes probabilistes
- Arbre binaire ET-OU
 - Algorithmes déterministes
 - Algorithmes probabiliistes
- Tri et sélection rapides
 - Tri rapide
 - Sélection rapide
 - Médian approché

Aiguille de Buffon

• 1733 - Georges-Louis Leclerc de Buffon

$$\frac{2}{\pi} = 0.6366197724$$

$$\frac{21}{36} = 0.685$$

Aiguille de Buffon

• 1733 - Georges-Louis Leclerc de Buffon

$$\frac{2}{\pi} = 0.6366197724$$

$$\frac{39}{60} = 0.65$$

Aiguille de Buffon

• 1733 - Georges-Louis Leclerc de Buffon

$$\frac{2}{\pi} = 0.6366197724$$

Racine carrée modulaire

RACINE CARRÉE MODULAIRE

- Entrée : $n \ge 2$ un entier et a un entier premier avec n
- SORTIE: b entier tel que $a \equiv b^2 \mod n$ (ou NON_CARRÉ)
- 1917 H. C. Pocklington
- Algorithme **probabiliste** efficace pour n = p un nombre premier
- Problème ouvert : Algorithme déterministe polynomial?

Pour le Cours 8 . . .

Faire des révisions d'arithmétique (cf. notes de cours indiquées sur le moodle du cours)

Méthodes de Monte-Carlo

- Calculer une valeur numérique approchée en utilisant des procédés aléatoires
- 1947 N. Metropolis
- 1949 S. Ulam et N. Metropolis

Voisins les plus proches

Voisins les plus proches

- Entrée : n > 2 un entier et (P_1, \ldots, P_n) n points de \mathbb{R}^2
- SORTIE: $(i,j) \in \{1,\ldots,n\}$ avec $i \neq j$ tel que $d(P_i,P_i)$ minimale

- 1976 M. O. Rabin
- Algorithme probabiliste en temps O(n)!
- Le dernier à avoir « découvert » les algorithmes probabilistes!

https://rjlipton.wordpress.com/2009/03/01/rabin-flips-a-coin/

Algorithme déterministe :

- termine toujours
- efficace dans tous les cas
- retourne toujours la bonne réponse

- termine toujours
- utilise de l'aléa dans son exécution
- efficace dans la plupart des cas
- retourne
 - souvent la bonne réponse
 - toujours une réponse souvent proche de la bonne

Algorithme déterministe :

- termine toujours
- efficace dans tous les cas
- retourne toujours la bonne réponse

- termine toujours
- utilise de l'aléa dans son exécution
- efficace dans la plupart des cas
- retourne
 - souvent la bonne réponse
 - toujours une réponse souvent proche de la bonne

Algorithme déterministe :

- termine toujours
- efficace dans tous les cas
- retourne toujours la bonne réponse

- termine toujours
- utilise de l'aléa dans son exécution
- efficace dans la plupart des cas
- retourne
 - souvent la bonne réponse
 - toujours une réponse souvent proche de la bonne

Algorithme déterministe :

- termine toujours
- efficace dans tous les cas
- retourne toujours la bonne réponse

- termine toujours
- utilise de l'aléa dans son exécution
- efficace dans la plupart des cas
- retourne
 - souvent la bonne réponse
 - toujours une réponse souvent proche de la bonne

Algorithme déterministe :

- termine toujours
- efficace dans tous les cas
- retourne toujours la bonne réponse

- termine toujours
- utilise de l'aléa dans son exécution
- efficace dans la plupart des cas
- retourne
 - souvent la bonne réponse
 - toujours une réponse souvent proche de la bonne

Algorithme déterministe :

- termine toujours
- efficace dans tous les cas
- retourne toujours la bonne réponse

- termine toujours
- utilise de l'aléa dans son exécution
- efficace dans la plupart des cas
- retourne
 - souvent la bonne réponse
 - toujours une réponse souvent proche de la bonne

Algorithmes de type Las Vegas / Monte-Carlo

Las Vegas

- termine toujours
- utilise de l'aléa dans son exécution
- temps d'exécution = variable aléatoire
- retourne toujours la bonne réponse

Monte Carlo

- termine toujours
- utilise de l'aléa dans son exécution
- temps d'exécution connu a priori
- retourne souvent la bonne réponse

Algorithmes de type Las Vegas / Monte-Carlo

Las Vegas

- termine toujours
- utilise de l'aléa dans son exécution
- temps d'exécution = variable aléatoire
- retourne toujours la bonne réponse

Monte Carlo

- termine toujours
- utilise de l'aléa dans son exécution
- temps d'exécution connu a priori
- retourne souvent la bonne réponse

Élément majoritaire

ÉLÉMENT MAJORITAIRE

- Entrée : $n \ge 2$ un entier et T un tableau de n valeurs
- SORTIE : $i \in \{1, ..., n\}$ tq T[i] apparaît > n/2 fois dans T (ou Pas d'élément majoritaire)

(comparaison des valeurs par égalité)

Entrée: Un tableau T de longueur n, m

Sortie: VRAI si m est élément majoritaire de T et FAUX sinon

Complexité

Nombres de comparaison

```
Entrée: Un tableau T de longueur n, m
Sortie: VRAI si m est élément majoritaire de T et FAUX sinon
  c \leftarrow 0
  pour j de 1 à n faire
    si m = T[j] alors
       c \leftarrow c + 1
     fin si
  fin pour
  si c > n/2 alors
     retourner VRAI
  sinon
    retourner FAUX
  fin si
```

Complexité

Nombres de comparaison

```
Entrée: Un tableau T de longueur n, m
Sortie: VRAI si m est élément majoritaire de T et FAUX sinon
  c \leftarrow 0
  pour j de 1 à n faire
    si m = T[j] alors
       c \leftarrow c + 1
     fin si
  fin pour
  si c > n/2 alors
     retourner VRAI
  sinon
    retourner FAUX
  fin si
```

Complexité

Nombres de comparaison :

```
Entrée: Un tableau T de longueur n, m
Sortie: VRAI si m est élément majoritaire de T et FAUX sinon
  c \leftarrow 0
  pour j de 1 à n faire
    si m = T[i] alors
       c \leftarrow c + 1
     fin si
  fin pour
  si c > n/2 alors
     retourner VRAI
  sinon
    retourner FAUX
  fin si
```

Complexité

Nombres de comparaison : O(n)

Entrée: Un tableau T de longueur n

Sortie: *m* élém. maj. de *T* ou PAS D'ÉLÉMENT MAJORITAIRE

```
pour i de 1 à n faire m \leftarrow T[i] si \operatorname{Est\_\acute{E}L\acute{E}MENT\_MAJORITAIRE}?(T,m) alors retourner m fin si fin pour retourner \operatorname{PAS} D'ÉLÉMENT MAJORITAIRE
```

Complexité

Nombres de comparaison :

```
Entrée: Un tableau T de longueur n
Sortie: m élém. maj. de T ou PAS D'ÉLÉMENT MAJORITAIRE
  pour i de 1 à n faire
    m \leftarrow T[i]
    si Est Élément Majoritaire?(T, m) alors
       retourner m
    fin si
  fin pour
  retourner Pas d'élément majoritaire
```

Nombres de comparaison

```
Entrée: Un tableau T de longueur n
Sortie: m élém. maj. de T ou PAS D'ÉLÉMENT MAJORITAIRE
  pour i de 1 à n faire
    m \leftarrow T[i]
    si Est Élément Majoritaire?(T, m) alors
      retourner m
    fin si
  fin pour
  retourner Pas d'élément majoritaire
```

Complexité

Nombres de comparaison :

```
Entrée: Un tableau T de longueur n
Sortie: m élém. maj. de T ou PAS D'ÉLÉMENT MAJORITAIRE
  pour i de 1 à n faire
    m \leftarrow T[i]
    si Est Élément Majoritaire?(T, m) alors
      retourner m
    fin si
  fin pour
  retourner Pas d'élément majoritaire
```

Complexité

Nombres de comparaison : $O(n^2)$

- m élément maj. de T[1...n] $\rightsquigarrow m$ élém. maj. de T[n/2...n] ou m élém. maj. de T[n/2...n]
- Réciproque fausse!

- m élément maj. de $T[1 \dots n]$ $\leadsto m$ élém. maj. de $T[1 \dots n/2]$ ou m élém. maj. de $T[n/2 \dots n]$
- Réciproque fausse!

- m élément maj. de $T[1 \dots n]$ $\leadsto m$ élém. maj. de $T[1 \dots n/2]$ ou m élém. maj. de $T[n/2 \dots n]$
- Réciproque fausse!

- m élément maj. de $T[1 \dots n]$ $\leadsto m$ élém. maj. de $T[1 \dots n/2]$ ou m élém. maj. de $T[n/2 \dots n]$
- Réciproque fausse!

Entrée: Un tableau T de longueur n, deux entiers $1 \le d \le f \le n$ **Sortie:** m élém. maj. de $T[d \dots f]$ ou PAS D'ÉLÉMENT MAJORITAIRE

Entrée: Un tableau T de longueur n, deux entiers $1 \le d \le f \le n$ **Sortie:** m élém. maj. de $T[d \dots f]$ ou PAS D'ÉLÉMENT MAJORITAIRE

```
si (f = d) ou (f = d + 1 et T[d] = T[f]) alors
  retourner T[d]
fin si
m_1 \leftarrow \text{\'E} \text{L\'EMENT\_MAJORITAIRE\_2}(T, 1, n/2)
m_2 \leftarrow \text{ÉLÉMENT} MAJORITAIRE 2(T, n/2 + 1, n)
si Est Élément Majoritaire ?(T, m_1) alors
  retourner m<sub>1</sub>
sinon si Est_Élément_Majoritaire?(T, m2) alors
  retourner m<sub>2</sub>
sinon
  retourner Pas d'élément majoritaire
fin si
```

Complexité

Nombres de comparaison : $C(n) = O(n \log n)$

$$C(2^{k}) = 2C(n/2) + 2n \qquad (\Rightarrow \text{Recurrence du tri fusion !})$$

$$C(2^{k}) = 2C(2^{k-1}) + 2^{k+1} = 2(2C(2^{k-2}) + 2^{k}) + 2^{k+1}$$

$$= 2^{2}C(2^{k-2}) + 2 \cdot 2^{k+1}$$

$$= \dots$$

$$= 2^{t}C(2^{k-t}) + t \cdot 2^{k+1}$$

$$= \dots$$

$$= k \cdot 2^{k+1} = 2\log(n) \cdot n$$

Complexité

Nombres de comparaison : $C(n) = O(n \log n)$

$$C(n) = 2C(n/2) + 2n$$
 (\rightsquigarrow Récurrence du **tri fusion!**)

$$C(2^{k}) = 2C(2^{k-1}) + 2^{k+1} = 2(2C(2^{k-2}) + 2^{k}) + 2^{k+1}$$

$$= 2^{2}C(2^{k-2}) + 2 \cdot 2^{k+1}$$

$$= \dots$$

$$= 2^{t}C(2^{k-t}) + t \cdot 2^{k+1}$$

$$= \dots$$

$$= k \cdot 2^{k+1} = 2\log(n) \cdot n$$

Complexité

Nombres de comparaison : $C(n) = O(n \log n)$

$$C(n) = 2C(n/2) + 2n$$
 (\rightsquigarrow Récurrence du **tri fusion!**)

$$C(2^{k}) = 2C(2^{k-1}) + 2^{k+1} = 2(2C(2^{k-2}) + 2^{k}) + 2^{k+1}$$

$$= 2^{2}C(2^{k-2}) + 2 \cdot 2^{k+1}$$

$$= \dots$$

$$= 2^{t}C(2^{k-t}) + t \cdot 2^{k+1}$$

$$= \dots$$

$$= k \cdot 2^{k+1} = 2\log(n) \cdot n$$

26 oct. 2023 COMPLEX - 6 Damien Vergnaud 14 / 50

Élément majoritaire (avec promesse)

ÉLÉMENT MAJORITAIRE (AVEC PROMESSE)

- Entrée : $n \ge 2$ un entier et T un tableau de n valeurs $\leadsto T$ contient un élément majoritaire!
- SORTIE : $i \in \{1, ..., n\}$ tq T[i] apparaît > n/2 fois dans T (comparaison des valeurs par égalité)

- Les algorithmes déterministes précédents ne semblent pas améliorables
- → algorithmes probabilistes!

Algorithme de type Monte-Carlo

Entrée: Un tableau T de longueur n

Sortie: *m* élément de *T*

```
i \qquad \{1,\ldots,n\} retourner T[i]
```

Complexité

Nombres de comparaison

Validite

Probabilité d'erreun

Entrée: Un tableau T de longueur n

Sortie: *m* élément de *T*

$$i \stackrel{\frown}{\longleftarrow} \{1, \dots, n\}$$
 retourner T[i]

Complexité

Nombres de comparaison

Validité

Entrée: Un tableau T de longueur n

Sortie: m élément de T

$$i \stackrel{:}{\longleftarrow} \{1, \dots, n\}$$
 retourner $T[i]$

Complexité

Nombres de comparaison :

Validité

Entrée: Un tableau T de longueur n

Sortie: *m* élément de *T*

$$i \stackrel{:}{\longleftarrow} \{1, \dots, n\}$$
 retourner $T[i]$

Complexité

Nombres de comparaison : O(1)

Validité

Entrée: Un tableau T de longueur n

Sortie: m élément de T

$$i \stackrel{\frown}{\longleftarrow} \{1, \dots, n\}$$
 retourner T[i]

Complexité

Nombres de comparaison : O(1)

Validité

Entrée: Un tableau T de longueur n

Sortie: *m* élément de *T*

$$i \stackrel{\frown}{\longleftarrow} \{1, \dots, n\}$$
 retourner T[i]

Complexité

Nombres de comparaison : O(1)

Validité

Probabilité d'erreur : $\leq 1/2$

```
Entrée: Un tableau T de longueur n

Sortie: m élément de T

tant que VRAI faire

i \qquad \{1,\ldots,n\}

m \leftarrow T[i]

si EST\_ÉLÉMENT\_MAJORITAIRE?(T,m) alors

retourner m

fin si

fin tant que
```

Complexité

Nombres de comparaison :

```
Entrée: Un tableau T de longueur n

Sortie: m élément de T

tant que VRAI faire

i \xleftarrow{\square} \{1, \ldots, n\}

m \leftarrow T[i]

si EST\_\acute{E}L\acute{E}MENT\_MAJORITAIRE?(T, m) alors

retourner m

fin si

fin tant que
```

Complexité

Nombres de comparaison :

```
Entrée: Un tableau T de longueur n

Sortie: m élément de T

tant que VRAI faire

i \stackrel{\frown}{\longleftarrow} \{1, \dots, n\}

m \leftarrow T[i]

si Est\_\acute{E}L\acute{E}MENT\_MAJORITAIRE?(T, m) alors

retourner m

fin si

fin tant que
```

Complexité

Nombres de comparaison :

Validité Probabilité

```
Entrée: Un tableau T de longueur n

Sortie: m élément de T

tant que VRAI faire

i \xleftarrow{\cdots} \{1, \dots, n\}

m \leftarrow T[i]

si Est\_ÉLÉMENT\_MAJORITAIRE?(T, m) alors

retourner m

fin si

fin tant que
```

Complexité

Nombres de comparaison : O(n) en moyenne

Validité Probabilité d'err

```
Entrée: Un tableau T de longueur n

Sortie: m élément de T

tant que VRAI faire

i \stackrel{\frown}{\longleftarrow} \{1, \dots, n\}

m \leftarrow T[i]

si EST\_\acute{E}L\acute{E}MENT\_MAJORITAIRE?(T, m) alors

retourner m

fin si

fin tant que
```

Complexité

Nombres de comparaison : O(n) en moyenne

Validité

Probabilité d'erreur :

```
Entrée: Un tableau T de longueur n

Sortie: m élément de T

tant que VRAI faire

i \stackrel{\frown}{\longleftarrow} \{1, \dots, n\}

m \leftarrow T[i]

si Est\_\acute{E}L\acute{E}MENT\_MAJORITAIRE?(T, m) alors

retourner m

fin si

fin tant que
```

Complexité

Nombres de comparaison : O(n) en moyenne

Validité

Probabilité d'erreur : 0

Loi géométrique

• Loi de Bernoulli X

$$\mathbb{P}(X=x) = \begin{cases} p & \text{si } x = 1, \\ 1-p & \text{si } x = 0, \\ 0 & \text{sinon.} \end{cases}$$

• Loi géométrique Y = loi du nombre d'épreuves de Bernoulli indépendantes nécessaire pour obtenir le premier succès

$$\mathbb{P}(Y=k) = (1-p)^{k-1}p$$

$$\mathbb{E}[Y] = \frac{1}{p}$$

Loi géométrique

• Loi de Bernoulli X

$$\mathbb{P}(X=x) = \begin{cases} p & \text{si } x = 1, \\ 1-p & \text{si } x = 0, \\ 0 & \text{sinon.} \end{cases}$$

• Loi géométrique Y = loi du nombre d'épreuves de Bernoulli indépendantes nécessaire pour obtenir le premier succès

$$\mathbb{P}(Y=k)=(1-p)^{k-1}p$$

$$\mathbb{E}[Y] = \frac{1}{p}$$

Loi géométrique

• Loi de Bernoulli X

$$\mathbb{P}(X=x) = \begin{cases} p & \text{si } x = 1, \\ 1 - p & \text{si } x = 0, \\ 0 & \text{sinon.} \end{cases}$$

• Loi géométrique Y = loi du nombre d'épreuves de Bernoulli indépendantes nécessaire pour obtenir le premier succès

$$\mathbb{P}(Y=k)=(1-p)^{k-1}p$$

$$\mathbb{E}[Y] = \frac{1}{p}$$

Loi géométrique (démonstration)

Pour tout x de [0,1[,

$$f(x) = \sum_{k=0}^{+\infty} x^k = \frac{1}{1-x}$$
$$f'(x) = \sum_{k=1}^{+\infty} kx^{k-1} = \frac{1}{(1-x)^2}$$

En particulier :

$$\mathbb{E}(Y) = \sum_{k=1}^{+\infty} k \cdot \mathbb{P}(Y = k)$$

$$= \sum_{k=1}^{+\infty} k (1 - p)^{k-1} p = \frac{p}{(1 - (1 - p))^2} = \frac{1}{p}$$

19 / 50

26 oct. 2023 COMPLEX - 6 Damien Vergnaud

Loi géométrique (démonstration)

Pour tout x de [0, 1],

$$f(x) = \sum_{k=0}^{+\infty} x^k = \frac{1}{1-x}$$
$$f'(x) = \sum_{k=1}^{+\infty} kx^{k-1} = \frac{1}{(1-x)^2}$$

En particulier :

$$\mathbb{E}(Y) = \sum_{k=1}^{+\infty} k \cdot \mathbb{P}(Y = k)$$

$$= \sum_{k=1}^{+\infty} k (1-p)^{k-1} p = \frac{p}{(1-(1-p))^2} = \frac{1}{p}$$

26 oct. 2023 COMPLEX - 6 Damien Vergnaud 19 / 50

Complexité

Nombres de comparaison : O(n) en moyenne

- Chaque **itération** de la bouche : *n* comparaisons
- Nombre d'itérations : en moyenne moins de 2! Notons p la probabilité de tirer l'élément majoritaire m de T :

$$p = \frac{\#\{i \in \{1, \dots, n\} | T[i] = m\}}{n} > \frac{n/2}{n} = \frac{1}{2}$$

Nombre d'itérations espéré : $1/p \le 2$ (Espérance Loi géométrique)

Remarque

Il existe des algorithmes déterministes simples de complexité O(n) (1981, R. S. Boyer, J. S. Moore – cf. Compléments du TD)

Complexité

Nombres de comparaison : O(n) en moyenne

- Chaque **itération** de la bouche : *n* comparaisons
- Nombre d'itérations : en moyenne moins de 2! Notons p la probabilité de tirer l'élément majoritaire m de T :

$$p = \frac{\#\{i \in \{1, \dots, n\} | T[i] = m\}}{n} > \frac{n/2}{n} = \frac{1}{2}$$

Nombre d'itérations espéré : $1/p \le 2$ (Espérance Loi géométrique)

Remarque

Il existe des algorithmes déterministes simples de complexité O(n) (1981, R. S. Boyer, J. S. Moore – cf. Compléments du TD)

Table des matières

- Introduction
 - Historique (très) incomplet
 - Principe général
 - Algorithmes déterministes
 - Algorithmes probabilistes
- Arbre binaire ET-OU
 - Algorithmes déterministes
 - Algorithmes probabiliistes
- Tri et sélection rapides
 - Tri rapide
 - Sélection rapide
 - Médian approché

Arbre binaire ET-OU

arbre binaire complet de profondeur n – feuille étiquetée 0 ou 1 :

- la valeur d'une feuille (profondeur n) est son étiquette
- la valeur d'un nœud interne (profondeur i) :
 - « ou logique » (\vee) de la valeur de ces deux fils si $i \equiv n \mod 2$
 - « et logique » (\land) de la valeur de ces deux fils si $i \not\equiv n \mod 2$

Algorithmes déterministes

- Il existe un algorithme déterministe de complexité $O(2^n)$
- Tout algorithme déterministe a une complexité en $\Omega(2^n)$

4 D > 4 B > 4 E > 4 E > 4 E > 90 (%

Algorithmes déterministes

- Il existe un algorithme déterministe de complexité $O(2^n)$
- Tout algorithme déterministe a une complexité en $\Omega(2^n)$

Algorithme probabiliste

Algorithme probabiliste ET-OU-PROBABILISTE

```
si n=1 alors
   retourner valeur de la feuille
sinon si n \ge 2 et le racine de l'arbre est \wedge alors
   b \stackrel{\bigodot}{\longleftarrow} \{0,1\}
   si b=0 alors
      v \leftarrow \text{ET-OU-Probabiliste}(\text{sous-arbre gauche})
   sinon
      v \leftarrow \text{ET-OU-PROBABILISTE}(\text{sous-arbre droit})
   fin si
   si v=0 alors
      retourner 0
   sinon si b=0 alors
      retourner ET-OU-PROBABILISTE(sous-arbre droit)
   sinon
      retourner ET-OU-PROBABILISTE(sous-arbre gauche)
   fin si
sinon si n > 2 et le racine de l'arbre est \vee alors
```

Algorithme probabiliste

• Liste de choix aléatoires :

Algorithme probabiliste

• Liste de choix aléatoires : $\leftarrow\leftarrow\rightarrow\leftarrow\rightarrow\rightarrow\leftarrow$

4日 > 4日 > 4目 > 4目 > 目 のQで

Nombre de feuilles examinées en moyenne (pour toutes les instances)

Nombre de feuilles examinées en moyenne

2

Nombre de feuilles examinées en moyenne (pour toutes les instances)

Nombre de feuilles examinées en moyenne

$$(2+3+2+3+2+2+3+3)/8 = 2.5$$

4 D > 4 B > 4 B > 4 B > 9 Q P

Nombre de feuilles examinées en moyenne (pour toutes les instances)

Nombre de feuilles examinées en moyenne

$$(2+3+2+3+3+3+2+2)/8 = 2.5$$

4 D > 4 B > 4 B > 4 B > 9 Q P

Nombre de feuilles examinées en moyenne (pour toutes les instances)

Nombre de feuilles examinées en moyenne

$$(3+3+3+3+2+2+2+2)/8 = 2.5$$

4 D > 4 B > 4 B > 4 B > 9 Q P

Nombre de feuilles examinées en moyenne (pour toutes les instances)

Nombre de feuilles examinées en moyenne

. . .

Nombre de feuilles examinées en moyenne (pour toutes les instances)

Nombre de feuilles examinées en moyenne

$$(4+3+3+2+4+3+3+2)/8 = 3$$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Nombre de feuilles examinées en moyenne (pour toutes les instances)

Nombre de feuilles examinées en moyenne

. . .

Nombre de feuilles examinées en moyenne (pour toutes les instances)

Nombre de feuilles examinées en moyenne

- Pour un arbre de profondeur 2, en moyenne, on regarde moins de 3 feuilles
- Par récurrence, on montre que pour un arbre de profondeur $2k \ge 2$, on regarde en moyenne moins de 3^{k-1} feuilles

• $\wedge \rightsquigarrow 0$, un des sous-arbres $\rightsquigarrow 0$.

$$\leq \frac{1}{2}3^{k-1} + \frac{1}{2} \cdot 2 \cdot 3^{k-1} = \frac{3}{2}3^{k-1} \text{ nœuds}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Algorithme probabiliste - Analyse

- $\bullet \wedge \rightsquigarrow 0 : \leq 1.5 \cdot 3^{k-1}$
- $\vee \rightsquigarrow 0 : \leq 2 \cdot 1.5 \cdot 3^{k-1} = 3^k$
- V ~> 1

$$\leq \frac{1}{2} 2 \cdot 3^{k-1} + \frac{1}{2} (1.5 \cdot 3^{k-1} + 2 \cdot 3^{k-1}) \leq 2.75 \cdot 3^{k-1} \leq 3^k$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かり(で

26 oct. 2023 COMPLEX - 6 Damien Vergnaud 29 / 50

Algorithme probabiliste - Analyse

- $\bullet \land \leadsto 0 : < 1.5 \cdot 3^{k-1}$
- $\land \land \rightsquigarrow 1 : \leq 2 \cdot 3^{k-1}$
- $\vee \rightsquigarrow 0 : \leq 2 \cdot 1.5 \cdot 3^{k-1} = 3^k$
- \bullet $\lor \leadsto 1$:

$$\leq \frac{1}{2} 2 \cdot 3^{k-1} + \frac{1}{2} (1.5 \cdot 3^{k-1} + 2 \cdot 3^{k-1}) \leq 2.75 \cdot 3^{k-1} \leq 3^k$$

- 4 ロ b 4 個 b 4 差 b 4 差 b - 差 - 夕久で

Algorithme probabiliste - Analyse

- $\bullet \wedge \rightsquigarrow 0 : \leq 1.5 \cdot 3^{k-1}$
- $\bullet \land \leadsto 1 : < 2 \cdot 3^{k-1}$
- $\vee \leadsto 0 : \leq 2 \cdot 1.5 \cdot 3^{k-1} = 3^k$
- ∨ → 1:

$$\leq \frac{1}{2} 2 \cdot 3^{k-1} + \frac{1}{2} (1.5 \cdot 3^{k-1} + 2 \cdot 3^{k-1}) \leq 2.75 \cdot 3^{k-1} \leq 3^k$$

29 / 50

26 oct. 2023 COMPLEX - 6 Damien Vergnaud

Algorithme probabiliste - Conclusion

Conclusion

• Pour arbre binaire ET-OU de profondeur n, complexité en

$$O(3^{n/2}) = O(\sqrt{3}^n) = O(2^{0.793n})$$

30 / 50

• Gain exponentiel grâce à l'aléa!

Table des matières

- Introduction
 - Historique (très) incomplet
 - Principe général
 - Algorithmes déterministes
 - Algorithmes probabilistes
- 2 Arbre binaire ET-OU
 - Algorithmes déterministes
 - Algorithmes probabiliistes
- Tri et sélection rapides
 - Tri rapide
 - Sélection rapide
 - Médian approché

Tri rapide

Tri

- Entrée : $n \ge 2$ et T un tableau de n valeurs distinctes
- SORTIE : T tableau trié (c.à.d. T[i] < T[i+1] pour $i \in \{1, \ldots, n-1\}$)
- 1961 C. A. R. Hoare
- « diviser pour régner »
- Principe
 - sélectionner un pivot
 - le placer à sa place définitive avec
 - éléments inférieurs à gauche
 - éléments supérieurs à droite
 - répéter pour les sous-tableaux jusqu'à ce que le tableau soit trié

Tri rapide

TRI

- Entrée : $n \ge 2$ et T un tableau de n valeurs distinctes
- SORTIE : T tableau trié (c.à.d. T[i] < T[i+1] pour $i \in \{1, \ldots, n-1\}$)
- 1961 C. A. R. Hoare
- « diviser pour régner »

• Principe:

- sélectionner un pivot
- le placer à sa place définitive avec
 - éléments inférieurs à gauche
 - éléments supérieurs à droite
- répéter pour les sous-tableaux jusqu'à ce que le tableau soit trié

Algorithme PARTITIONNER

```
Entrée: Un tableau T de longueur n, trois entiers d, f, p avec
  1 < d < p < f < n
Sortie: j \in [d, f], Tableau réordonné avec T[i] < T[j] pour
  d < i < j; T[i] > T[j] pour f > i > j
  Échanger T[p] et T[f]
  i \leftarrow d
  pour i de d à f-1 faire
    si T[i] < T[f] alors
       Échanger T[i] et T[i]
       i \leftarrow j + 1
     fin si
  fin pour
  Échanger T[i] et T[f]
  retourner i
```

```
Échanger T[p] et T[f]
i \leftarrow d
pour i de d à f-1 faire
  si T[i] \leq T[f] alors
     Échanger T[i] et T[j]
     i \leftarrow i + 1
   fin si
fin pour
Échanger T[j] et T[f]
retourner i
```

5 8 4 2 6 3 1 7

```
Échanger T[p] et T[f]
i \leftarrow d
pour i de d à f-1 faire
  si T[i] \leq T[f] alors
     Échanger T[i] et T[j]
     i \leftarrow i + 1
   fin si
fin pour
Échanger T[j] et T[f]
retourner i
```

5	8	4	2	6	7	1	3
---	---	---	---	---	---	---	---

```
Échanger T[p] et T[f]
i \leftarrow d
pour i de d à f-1 faire
  si T[i] \leq T[f] alors
     Échanger T[i] et T[j]
     i \leftarrow i + 1
   fin si
fin pour
Échanger T[i] et T[f]
retourner i
```



```
Échanger T[p] et T[f]
i \leftarrow d
pour i de d à f-1 faire
  si T[i] \leq T[f] alors
     Échanger T[i] et T[j]
     i \leftarrow i + 1
   fin si
fin pour
Échanger T[i] et T[f]
retourner i
```



```
Échanger T[p] et T[f]
i \leftarrow d
pour i de d à f-1 faire
  si T[i] \leq T[f] alors
     Échanger T[i] et T[j]
     i \leftarrow i + 1
   fin si
fin pour
Échanger T[j] et T[f]
retourner i
```



```
Échanger T[p] et T[f]
i \leftarrow d
pour i de d à f-1 faire
  si T[i] \leq T[f] alors
     Échanger T[i] et T[j]
     i \leftarrow i + 1
   fin si
fin pour
Échanger T[j] et T[f]
retourner i
```



```
Échanger T[p] et T[f]
i \leftarrow d
pour i de d à f-1 faire
  si T[i] \leq T[f] alors
     Échanger T[i] et T[j]
     i \leftarrow i + 1
   fin si
fin pour
Échanger T[j] et T[f]
retourner i
```



```
Échanger T[p] et T[f]
i \leftarrow d
pour i de d à f-1 faire
  si T[i] \leq T[f] alors
     Échanger T[i] et T[j]
     i \leftarrow i + 1
   fin si
fin pour
Échanger T[i] et T[f]
retourner i
```



```
Échanger T[p] et T[f]
i \leftarrow d
pour i de d à f-1 faire
  si T[i] \leq T[f] alors
     Échanger T[i] et T[j]
     i \leftarrow i + 1
   fin si
fin pour
Échanger T[i] et T[f]
retourner i
```



```
Échanger T[p] et T[f]
i \leftarrow d
pour i de d à f-1 faire
  si T[i] \leq T[f] alors
     Échanger T[i] et T[j]
     i \leftarrow i + 1
   fin si
fin pour
Échanger T[i] et T[f]
retourner i
```



```
Échanger T[p] et T[f]
i \leftarrow d
pour i de d à f-1 faire
  si T[i] \leq T[f] alors
     Échanger T[i] et T[j]
     i \leftarrow i + 1
   fin si
fin pour
Échanger T[i] et T[f]
retourner i
```



```
Échanger T[p] et T[f]
i \leftarrow d
pour i de d à f-1 faire
  si T[i] \leq T[f] alors
     Échanger T[i] et T[j]
     i \leftarrow i + 1
   fin si
fin pour
Échanger T[i] et T[f]
retourner i
```

2	1	4	5	6	7	8	3

```
Échanger T[p] et T[f]
i \leftarrow d
pour i de d à f-1 faire
  si T[i] \leq T[f] alors
     Échanger T[i] et T[j]
     i \leftarrow i + 1
   fin si
fin pour
Échanger T[j] et T[f]
retourner i
```


Algorithme TRIRAPIDE

Entrée: Un tableau T de longueur n, deux entiers d, f avec

$$1 \le d \le f \le n$$

Sortie: Tableau trié

$$p \stackrel{::}{\longleftarrow} \{d, \ldots, f\}$$

 $p \leftarrow \text{PARTITIONNER}(T, d, f, p)$

TRIRAPIDE(T, d, p - 1)

Trirapide(T, p, f)

ightharpoonup TriRapide(T, 1, n)

Complexité

- Dans le pire des cas :
- En moyenne :

Algorithme TRIRAPIDE

Entrée: Un tableau T de longueur n, deux entiers d, f avec

$$1 \le d \le f \le n$$

Sortie: Tableau trié

$$p \stackrel{\triangleright}{\longleftarrow} \{d, \ldots, f\}$$

 $p \leftarrow \text{Partitionner}(T, d, f, p)$

TriRapide(T, d, p - 1)

Trirapide(T, p, f)

ightharpoonup TriRapide(T, 1, n)

Complexité

- Dans le pire des cas : $O(n^2)$
- En moyenne :

Algorithme TRIRAPIDE

Entrée: Un tableau T de longueur n, deux entiers d, f avec

$$1 \le d \le f \le n$$

Sortie: Tableau trié

$$p \stackrel{::}{\longleftarrow} \{d, \ldots, f\}$$

 $p \leftarrow \text{PARTITIONNER}(T, d, f, p)$

TriRapide(T, d, p - 1)

Trirapide(T, p, f)

ightharpoonup TriRapide(T, 1, n)

Complexité

- Dans le pire des cas : $O(n^2)$
- En moyenne : $O(n \log n)$

Nombres harmoniques (par l'image)

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}.$$

 $H_n \sim \ln n$.

26 oct. 2023

Nombres harmoniques (plus formel)

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}.$$

Nous avons

$$\int_{k}^{k+1} \frac{1}{t} \, \mathrm{d}t \le \frac{1}{k} \le \int_{k-1}^{k} \frac{1}{t} \, \mathrm{d}t.$$

• En sommant de 1 à n:

$$\int_1^{n+1} \frac{1}{t} \, \mathrm{d}t \le H_n \le 1 + \int_1^n \frac{1}{t} \, \mathrm{d}t.$$

Donc :

$$\ln(n+1)t \le H_n \le \ln(n) + 1$$
 et $H_n \sim \ln n$.

26 oct. 2023

Tri rapide - Analyse (1/2)

- z_1, \ldots, z_n = éléments du tableau par ordre croissant.
- X = nombre total de comparaison dans une exécution (variable aléatoire)
- $X_{ij} = v.a.$ qui vaut 1 si z_i est comparé à z_j et 0 sinon Nous avons

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$$

• On cherche à calculer $\mathbb{E}[X]$ Par linéarité de l'espérance :

$$\mathbb{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}[X_{ij}]$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{P}(\{\mathsf{L'algorithme\ compare\ } z_i \ \mathsf{et\ } z_j\})$$

Tri rapide - Analyse (2/2)

- z_i est comparé à z_j sssi le premier élément de (z_i,..., z_j) choisi comme pivot est soit z_i soit z_j.
 (sinon z_i et z_j sont envoyés dans deux sous-tableaux différents de la partition)
- Donc

$$\mathbb{P}(\{\mathsf{L'algorithme\ compare\ } z_i \ \mathsf{et\ } z_j\}) = \frac{2}{j-i+1}$$

et

$$\mathbb{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \le 2 \cdot n \cdot H_n$$

$$= 2n \ln n + O(n)$$

$$= O(n \log n)$$

26 oct. 2023 COMPLEX - 6 Damien Vergnaud

Sélection rapide

SÉLECTION

- ullet Entrée : T un tableau de n valeurs distinctes, $k \in \{1,\ldots,n\}$
- SORTIE : m élément de T de rang k)
- 1961 C. A. R. Hoare
- « diviser pour régner »
- Principe
 - sélectionner un pivot
 - le placer à sa place définitive avec
 - éléments inférieurs à gauche
 - éléments supérieurs à droite
 - chercher l'élément dans le sous-tableau adéquat

Sélection rapide

SÉLECTION

- ullet Entrée : T un tableau de n valeurs distinctes, $k \in \{1,\ldots,n\}$
- SORTIE : m élément de T de rang k)
- 1961 C. A. R. Hoare
- « diviser pour régner »

• Principe:

- sélectionner un pivot
- le placer à sa place définitive avec
 - éléments inférieurs à gauche
 - éléments supérieurs à droite
- chercher l'élément dans le sous-tableau adéquat

40 / 50

Algorithme SÉLECTION RAPIDE

```
p \stackrel{::}{\longleftarrow} \{d, \ldots, f\}
p \leftarrow \text{PARTITIONNER}(T, d, f, p)
si k = p alors
   retourner T[p]
sinon si k < p alors
   SÉLECTION RAPIDE (T, d, p - 1, k)
sinon
   SÉLECTION RAPIDE (T, p + 1, f, k - p + d - 1)
fin si
```

 \triangleright SÉLECTIONRAPIDE(T, 1, n, k)

Complexité

- Dans le pire des cas :
- En moyenne :

Algorithme SÉLECTION RAPIDE

```
p \stackrel{::}{\longleftarrow} \{d, \ldots, f\}
p \leftarrow \text{PARTITIONNER}(T, d, f, p)
si k = p alors
   retourner T[p]
sinon si k < p alors
   SÉLECTION RAPIDE (T, d, p - 1, k)
sinon
   SÉLECTION RAPIDE (T, p + 1, f, k - p + d - 1)
fin si
```

 \triangleright SÉLECTIONRAPIDE(T, 1, n, k)

Complexité

- Dans le pire des cas : $O(n^2)$
- En moyenne :

Algorithme SÉLECTION RAPIDE

```
p \stackrel{::}{\longleftarrow} \{d, \ldots, f\}
p \leftarrow \text{PARTITIONNER}(T, d, f, p)
si k = p alors
   retourner T[p]
sinon si k < p alors
   SÉLECTION RAPIDE (T, d, p - 1, k)
sinon
   SÉLECTION RAPIDE (T, p + 1, f, k - p + d - 1)
fin si
```

 \triangleright SÉLECTIONRAPIDE(T, 1, n, k)

Complexité

- Dans le pire des cas : $O(n^2)$
- En moyenne : O(n)

Sélection rapide - Analyse

• Si Partitionner découpe le tableau à chaque étape avec un tableau de taille maximale αn (avec $\alpha < 1$), nous avons :

$$C(n) \le C(\alpha n) + n \qquad \rightsquigarrow \qquad C(n) = O(n)$$

• L'analyse exacte (plus difficile) donne $C(n) \le 2n + o(n)$

Remarque

Nous verrons en TD une analyse formelle de $C(n) \le 4n + o(n)$

 Il existe un algorithme déterministe pour le problème de sélection de complexité O(n)
 (1973 – M. Blum et al. – médian des médians)

Remarque

Cet algorithme sera proposé dans les compléments du TD

42 / 50

Sélection rapide - Analyse

• Si Partitionner découpe le tableau à chaque étape avec un tableau de taille maximale αn (avec $\alpha < 1$), nous avons :

$$C(n) \le C(\alpha n) + n \qquad \leadsto \qquad C(n) = O(n)$$

• L'analyse exacte (plus difficile) donne $C(n) \le 2n + o(n)$

Remarque

Nous verrons en TD une analyse formelle de $C(n) \le 4n + o(n)$

 Il existe un algorithme déterministe pour le problème de sélection de complexité O(n) (1973 – M. Blum et al. – médian des médians)

Remarque

Cet algorithme sera proposé dans les compléments du TD

42 / 50

Médian approché

MÉDIAN APPROCHÉ

- ullet Entrée : T un tableau de n valeurs distinctes, $k \in \{1,\ldots,n\}$
- SORTIE : m est un élément de rang $k \in [n/4, 3n/4]$ de T
- m = presque médian

- plus facile que SÉLECTION \leadsto Complexité O(n)
- Peut-on faire mieux?
 - Las Vegas?
 - Monte-Carlo ?

Médian approché

MÉDIAN APPROCHÉ

- ullet Entrée : T un tableau de n valeurs distinctes, $k \in \{1,\ldots,n\}$
- SORTIE : m est un élément de rang $k \in [n/4, 3n/4]$ de T
- m = presque médian

- plus facile que SÉLECTION \leadsto Complexité O(n)
- Peut-on faire mieux?
 - Las Vegas?
 - Monte-Carlo?

Entrée: Un tableau T de longueur n

Sortie: *m* élément de *T*

```
i = \{1, \dots, n\} retourner T[i]
```

Complexité

Nombres de comparaison

Validité

⁹robabilité d'erreur

Entrée: Un tableau T de longueur n

Sortie: *m* élément de *T*

$$i \stackrel{\frown}{\longleftarrow} \{1, \dots, n\}$$
 retourner T[i]

Complexité

Nombres de comparaison

Validité

Entrée: Un tableau T de longueur n

Sortie: *m* élément de *T*

$$i \stackrel{\longleftarrow}{\longleftarrow} \{1, \dots, n\}$$
 retourner T[i]

Complexité

Nombres de comparaison :

Validité

Entrée: Un tableau T de longueur n

Sortie: *m* élément de *T*

$$i \stackrel{:}{\longleftarrow} \{1, \dots, n\}$$
 retourner $T[i]$

Complexité

Nombres de comparaison : O(1)

Validité

Entrée: Un tableau T de longueur n

Sortie: *m* élément de *T*

$$i \stackrel{\frown}{\longleftarrow} \{1, \dots, n\}$$
 retourner T[i]

Complexité

Nombres de comparaison : O(1)

Validité

Entrée: Un tableau T de longueur n

Sortie: *m* élément de *T*

$$i \stackrel{\frown}{\longleftarrow} \{1, \dots, n\}$$
 retourner T[i]

Complexité

Nombres de comparaison : O(1)

Validité

Probabilité d'erreur : $\simeq 1/2$

Entrée: Un tableau T de longueur n, m

Sortie: VRAI sssi m est un élément de rang $k \in [n/4, 3n/4]$ de T

Complexité

Nombres de comparaison

45 / 50

```
Entrée: Un tableau T de longueur n, m
Sortie: VRAI sssi m est un élément de rang k \in [n/4, 3n/4] de T
  c \leftarrow 0
  pour j de 1 à n faire
     si m < T[j] alors
       c \leftarrow c + 1
     fin si
  fin pour
  si 3n/4 \ge c \ge n/4 alors
     retourner VRAI
  sinon
     retourner FAUX
  fin si
```

Complexité

Nombres de comparaison

45 / 50

```
Entrée: Un tableau T de longueur n, m
Sortie: VRAI sssi m est un élément de rang k \in [n/4, 3n/4] de T
  c \leftarrow 0
  pour j de 1 à n faire
     si m < T[j] alors
       c \leftarrow c + 1
     fin si
  fin pour
  si 3n/4 \ge c \ge n/4 alors
     retourner VRAI
  sinon
     retourner FAUX
  fin si
```

Complexité

Nombres de comparaison :

```
Entrée: Un tableau T de longueur n, m
Sortie: VRAI sssi m est un élément de rang k \in [n/4, 3n/4] de T
  c \leftarrow 0
  pour j de 1 à n faire
     si m < T[i] alors
       c \leftarrow c + 1
     fin si
  fin pour
  si 3n/4 \ge c \ge n/4 alors
     retourner VRAI
  sinon
     retourner FAUX
  fin si
```

Complexité

Nombres de comparaison : O(n)

Entrée: Un tableau T de longueur nSortie: m élément de Ttant que VRAI faire $i \qquad \{1,\ldots,n\}$ $m \leftarrow T[i]$ si $Est_Presque_Médian?(T,m)$ alors

retourner mfin si

Complexité

Nombres de comparaison

Validité

```
Entrée: Un tableau T de longueur n
Sortie: m élément de T
tant que VRAI faire
i \xleftarrow{\square} \{1,\ldots,n\}
m \leftarrow T[i]
si Est\_Presque\_Médian?(T,m) alors
retourner m
fin si
fin tant que
```

Complexité

Nombres de comparaison :

```
Entrée: Un tableau T de longueur n

Sortie: m élément de T

tant que VRAI faire

i \xleftarrow{\text{CII}} \{1, \dots, n\}

m \leftarrow T[i]

si EST_PRESQUE_MÉDIAN ?(T, m) alors

retourner m

fin si

fin tant que
```

Complexité

Nombres de comparaison :

Validité

```
Entrée: Un tableau T de longueur n

Sortie: m élément de T

tant que VRAI faire

i \xleftarrow{\mathbb{C}} \{1, \dots, n\}

m \leftarrow T[i]

si EST_PRESQUE_MÉDIAN ?(T, m) alors retourner m

fin si

fin tant que
```

Complexité

Nombres de comparaison : O(n) en moyenne

Validité
Probabilité d'erre

46 / 50

```
Entrée: Un tableau T de longueur n
Sortie: m élément de T
  tant que VRAI faire
     i \stackrel{:}{\longleftarrow} \{1, \dots, n\}
     m \leftarrow T[i]
     si Est Presque Médian? (T, m) alors
        retourner m
     fin si
  fin tant que
```

Complexité

Nombres de comparaison : O(n) en moyenne

Validité

```
Entrée: Un tableau T de longueur n

Sortie: m élément de T

tant que VRAI faire

i \xleftarrow{\mathbb{C}} \{1, \dots, n\}

m \leftarrow T[i]

si EST_PRESQUE_MÉDIAN ?(T, m) alors retourner m

fin si

fin tant que
```

Complexité

Nombres de comparaison : O(n) en moyenne

Validité

Probabilité d'erreur : 0

46 / 50

Entrée: Un tableau T de longueur n, $k \in \mathbb{N}$ (paramètre)

Sortie: *m* élément de *T*

$$\mathcal{S} \leftarrow \emptyset$$

pour j de 1 à k faire

$$i \stackrel{:}{\longleftarrow} \{1, \dots, n\}$$

 $S \leftarrow S \cup \{i\}$

fin pour

Trier S

retourner S[k/2]

 \triangleright en temps $O(k \log k)$

 \triangleright le médian de S

Complexité

Nombres de comparaison :

```
Entrée: Un tableau T de longueur n, k \in \mathbb{N} (paramètre)

Sortie: m élément de T

S \leftarrow \emptyset

pour j de 1 à k faire

i \xleftarrow{\mathbb{N}} \{1, \dots, n\}

S \leftarrow S \cup \{i\}

fin pour

Trier S \triangleright en temps O(k \log k)
```

Complexité

retourner S[k/2]

Nombres de comparaison : $O(k \log k)$ ou O(k)

Validité

Probabilité d'erreur :???

 \triangleright le médian de S

47 / 50

```
Entrée: Un tableau T de longueur n, k \in \mathbb{N} (paramètre) Sortie: m élément de T S \leftarrow \emptyset pour j de 1 à k faire i \xleftarrow{\mathbb{C} \odot} \{1, \dots, n\} S \leftarrow S \cup \{i\} fin pour
```

Trier S

retourner S[k/2]

 \triangleright en temps $O(k \log k)$ \triangleright le médian de S

47 / 50

Complexité

Nombres de comparaison : $O(k \log k)$ ou O(k)

Validité

Probabilité d'erreur :???

```
Entrée: Un tableau T de longueur n, k \in \mathbb{N} (paramètre) Sortie: m élément de T S \leftarrow \emptyset pour j de 1 à k faire i \xleftarrow{\mathbb{C} \odot} \{1, \dots, n\} S \leftarrow S \cup \{i\} fin pour
```

Trier S

retourner S[k/2]

 \triangleright en temps $O(k \log k)$ \triangleright le médian de S

47 / 50

Complexité

Nombres de comparaison : $O(k \log k)$ ou O(k)

Validité

Probabilité d'erreur :???

```
Entrée: Un tableau T de longueur n, k \in \mathbb{N} (paramètre)
Sortie: m élément de T
   S \leftarrow \emptyset
   pour i de 1 à k faire
      i \stackrel{:}{\longleftarrow} \{1, \ldots, n\}
      S \leftarrow S \cup \{i\}
   fin pour
```

Trier S

retourner S[k/2]

 \triangleright en temps $O(k \log k)$ \triangleright le médian de S

47 / 50

Complexité

Nombres de comparaison : $O(k \log k)$ ou O(k)

Validité

Probabilité d'erreur :???

- L'algorithme est correct sauf si S contient
 - $0 \ge k/2$ éléments dans le premier quart (E_1) , ou
 - $2 \ge k/2$ éléments dans le dernier quart (E_2)
- $\mathbb{P}(E_i)$ = probabilité qu'une répétition de k épreuves de Bernoulli de paramètre p = 1/4 obtienne $\geq k/2$ succès.

- L'algorithme est correct sauf si S contient
 - \bullet $\geq k/2$ éléments dans le premier quart (E_1) , ou
 - $2 \ge k/2$ éléments dans le dernier quart (E_2)
- $\mathbb{P}(E_i)$ = probabilité qu'une répétition de k épreuves de Bernoulli de paramètre p = 1/4 obtienne $\geq k/2$ succès.

- L'algorithme est correct sauf si S contient
 - $0 \ge k/2$ éléments dans le premier quart (E_1) , ou
 - $2 \ge k/2$ éléments dans le dernier quart (E_2)
- $\mathbb{P}(E_i)$ = probabilité qu'une répétition de k épreuves de Bernoulli de paramètre p=1/4 obtienne $\geq k/2$ succès.

- L'algorithme est correct sauf si S contient
 - \bullet $\geq k/2$ éléments dans le premier quart (E_1) , ou
 - $2 \ge k/2$ éléments dans le dernier quart (E_2)
- $\mathbb{P}(E_i)$ = probabilité qu'une répétition de k épreuves de Bernoulli de paramètre p = 1/4 obtienne $\geq k/2$ succès.

- L'algorithme est correct sauf si S contient
 - $\bullet \geq k/2$ éléments dans le premier quart (E_1) , ou
 - $2 \ge k/2$ éléments dans le dernier quart (E_2)
- $\mathbb{P}(E_i)$ = probabilité qu'une répétition de k épreuves de Bernoulli de paramètre p=1/4 obtienne $\geq k/2$ succès.

- L'algorithme est correct sauf si S contient
 - \bullet $\geq k/2$ éléments dans le premier quart (E_1) , ou
 - $2 \ge k/2$ éléments dans le dernier quart (E_2)
- $\mathbb{P}(E_i)$ = probabilité qu'une répétition de k épreuves de Bernoulli de paramètre p = 1/4 obtienne $\geq k/2$ succès.

- L'algorithme est correct sauf si S contient
 - \bullet $\geq k/2$ éléments dans le premier quart (E_1) , ou
 - $2 \ge k/2$ éléments dans le dernier quart (E_2)
- $\mathbb{P}(E_i)$ = probabilité qu'une répétition de k épreuves de Bernoulli de paramètre p = 1/4 obtienne $\geq k/2$ succès.

- ullet L'algorithme est correct sauf si S contient
 - \bullet $\geq k/2$ éléments dans le premier quart (E_1) , ou
 - $2 \ge k/2$ éléments dans le dernier quart (E_2)
- $\mathbb{P}(E_i)$ = probabilité qu'une répétition de k épreuves de Bernoulli de paramètre p = 1/4 obtienne $\geq k/2$ succès.

 $(n \equiv 0 \mod 4 \text{ et } k \equiv 0 \mod 2)$

$$\mathbb{P}(E_{i}) = \sum_{i=k/2}^{k} \binom{k}{i} \left(\frac{1}{4}\right)^{i} \left(\frac{3}{4}\right)^{k-i} \le \binom{k}{k/2} \sum_{i=k/2}^{k} \left(\frac{1}{4}\right)^{i} \left(\frac{3}{4}\right)^{k-i}$$

$$= \binom{k}{k/2} \left(\frac{3}{4}\right)^{k} \sum_{i=k/2}^{k} \left(\frac{1}{3}\right)^{i}$$

$$\le \binom{k}{k/2} \left(\frac{3}{4}\right)^{k} \left(\frac{1}{3}\right)^{k/2} \frac{3}{2}$$

$$\le 4^{k/2} \left(\frac{3}{4}\right)^{k} \left(\frac{1}{3}\right)^{k/2} \frac{3}{2}$$

$$= \left(\frac{3}{4}\right)^{k/2} \frac{3}{2} \le (1/2)^{k/5}$$

 $(n \equiv 0 \mod 4 \text{ et } k \equiv 0 \mod 2)$

$$\mathbb{P}(E_{i}) = \sum_{i=k/2}^{k} \binom{k}{i} \left(\frac{1}{4}\right)^{i} \left(\frac{3}{4}\right)^{k-i} \leq \binom{k}{k/2} \sum_{i=k/2}^{k} \left(\frac{1}{4}\right)^{i} \left(\frac{3}{4}\right)^{k-i} \\
= \binom{k}{k/2} \left(\frac{3}{4}\right)^{k} \sum_{i=k/2}^{k} \left(\frac{1}{3}\right)^{i} \\
\leq \binom{k}{k/2} \left(\frac{3}{4}\right)^{k} \left(\frac{1}{3}\right)^{k/2} \frac{3}{2} \\
\leq 4^{k/2} \left(\frac{3}{4}\right)^{k} \left(\frac{1}{3}\right)^{k/2} \frac{3}{2} \\
= \left(\frac{3}{4}\right)^{k/2} \frac{3}{2} \leq (1/2)^{k/5}$$

 $(n \equiv 0 \mod 4 \text{ et } k \equiv 0 \mod 2)$

$$\mathbb{P}(E_{i}) = \sum_{i=k/2}^{k} \binom{k}{i} \left(\frac{1}{4}\right)^{i} \left(\frac{3}{4}\right)^{k-i} \leq \binom{k}{k/2} \sum_{i=k/2}^{k} \left(\frac{1}{4}\right)^{i} \left(\frac{3}{4}\right)^{k-i} \\
= \binom{k}{k/2} \left(\frac{3}{4}\right)^{k} \sum_{i=k/2}^{k} \left(\frac{1}{3}\right)^{i} \\
\leq \binom{k}{k/2} \left(\frac{3}{4}\right)^{k} \left(\frac{1}{3}\right)^{k/2} \frac{3}{2} \\
\leq 4^{k/2} \left(\frac{3}{4}\right)^{k} \left(\frac{1}{3}\right)^{k/2} \frac{3}{2} \\
= \left(\frac{3}{4}\right)^{k/2} \frac{3}{2} \leq (1/2)^{k/5}$$

 $(n \equiv 0 \mod 4 \text{ et } k \equiv 0 \mod 2)$

$$\mathbb{P}(E_{i}) = \sum_{i=k/2}^{k} \binom{k}{i} \left(\frac{1}{4}\right)^{i} \left(\frac{3}{4}\right)^{k-i} \leq \binom{k}{k/2} \sum_{i=k/2}^{k} \left(\frac{1}{4}\right)^{i} \left(\frac{3}{4}\right)^{k-i} \\
= \binom{k}{k/2} \left(\frac{3}{4}\right)^{k} \sum_{i=k/2}^{k} \left(\frac{1}{3}\right)^{i} \\
\leq \binom{k}{k/2} \left(\frac{3}{4}\right)^{k} \left(\frac{1}{3}\right)^{k/2} \frac{3}{2} \\
\leq 4^{k/2} \left(\frac{3}{4}\right)^{k} \left(\frac{1}{3}\right)^{k/2} \frac{3}{2} \\
= \left(\frac{3}{4}\right)^{k/2} \frac{3}{2} \leq (1/2)^{k/5}$$

 $(n \equiv 0 \mod 4 \text{ et } k \equiv 0 \mod 2)$

$$\mathbb{P}(E_{i}) = \sum_{i=k/2}^{k} \binom{k}{i} \left(\frac{1}{4}\right)^{i} \left(\frac{3}{4}\right)^{k-i} \le \binom{k}{k/2} \sum_{i=k/2}^{k} \left(\frac{1}{4}\right)^{i} \left(\frac{3}{4}\right)^{k-i}$$

$$= \binom{k}{k/2} \left(\frac{3}{4}\right)^{k} \sum_{i=k/2}^{k} \left(\frac{1}{3}\right)^{i}$$

$$\le \binom{k}{k/2} \left(\frac{3}{4}\right)^{k} \left(\frac{1}{3}\right)^{k/2} \frac{3}{2}$$

$$\le 4^{k/2} \left(\frac{3}{4}\right)^{k} \left(\frac{1}{3}\right)^{k/2} \frac{3}{2}$$

$$= \left(\frac{3}{4}\right)^{k/2} \frac{3}{2} \le (1/2)^{k/5}$$

- $k = 5(t+1) \leadsto \mathbb{P}(E_i) \le 2^{-(t+1)}$
- $k = 5(t+1) \rightsquigarrow \mathbb{P}(\text{erreur}) \leq \mathbb{P}(E_1) + \mathbb{P}(E_2) \leq 2^{-t}$

$$k = 1500$$

Complexité

Nombres de comparaison : O(1)

Validité

Probabilité d'erreur : $< 10^{-80}$

26 oct. 2023

- $k = 5(t+1) \rightsquigarrow \mathbb{P}(E_i) \leq 2^{-(t+1)}$
- $k = 5(t+1) \rightsquigarrow \mathbb{P}(\text{erreur}) \leq \mathbb{P}(E_1) + \mathbb{P}(E_2) \leq 2^{-t}$

$$k = 5(T \log(n) + 1)$$
 (T constant)

Complexité

Nombres de comparaison : $O(\log n \log \log n)$

Validité

Probabilité d'erreur : $\leq n^{-T}$

