RESEARCH

Assessing a Primaquine intervention in Cambodia 2020–2025: A modelling study

Order to be confirmed: RI Hickson^{1,2,3*}, Rowan Martin-Hughes³, Angela Devine⁵, David J Price^{2,4}, Freya JI Fowkes³, TBC: Ric Price⁵, Julie A Simpson², James M McCaw^{1,2,4} and Pengby Ngor^{6,7}

*Correspondence:

r.hickson@UNSWalumni.com

¹School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, Australia

²Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Parkville, Australia

³Burnet Institute, Melbourne,

Full list of author information is available at the end of the article † Equal contributor

Abstract

Background: Elimination targets for *Plasmodium vivax* are approaching, with the Cambodian target 2025. Quantitative tools can help determine if proposed new strategies will be sufficient to meet those targets.

Methods: We calibrated the Optima malaria transmission model reported case data from 2011–2018 for six Provinces with different transmission levels. The model had two human populations: with males 15 years plus, and everyone else. We used the calibrated model to explore for best and worst case interpretations of the available case data, and of the Primaguine intervention.

Results:We found elimination is unlikely to be reached in Provinces with fairly high burdens of *Plasmodium vivax*, such as Pursat, by only targetting adult males with Primaquine. However, it will substantially reduce transmission. As such, we identify how many tests will need to be conducted to have 99% confidence of detecting at least one case, given the lower incidence by 2025.

it might be the 95%.

Conclusions: A primaquine intervention targetting adult males is likely to have a substantial impact on transmission of *P. vivax*, though it is not likely to result in elimination from all Provinces by the 2025 target. The surveillance requirements to ensure the resulting lower incidence is detected as Cambodia approaches elimination may be infeasible, e.g. for Takeo, especially as all Provinces will see a decrease in case counts as the intervention is Nationwide.

Keywords: Malaria; *Plasmodium vivax*; Transmission; Primaquine; Radical cure; Mathematical model

Background

Text and results for this section, as per the individual journal's instructions for authors.

Methods

Data synthesis to assess disease burden

Epidemic model

Programmatic response considered

Model calibration

Sensitivity analysis

Results

Current burden of disease in Cambodia

Model calibration and validation

Primaguine impact on burden of disease in Cambodia

Discussion

Conclusions

List of abbreviations

Competing interests

The authors declare that they have no competing interests.

Author's contributions

PN, RIH, RMH, AD, DJP and JMM conceived of the project and oversaw the design. PN and RIH curated the data. RMH and RIH developed the transmission model and code implementation, and calibrated the model. RIH, DJP, JMM wrote the surveillance decision support model. RIH, RMH, DJP, AD, JAS, FJIF, JMM, PN prepared the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Text for this section ...

Author details

¹School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, Australia.

²Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Parkville, Australia.

³Burnet Institute, Melbourne, Australia.

⁴Doherty Institute, Melbourne, Australia.

⁵Menzies School of Health Research, Melbourne, Australia.

⁶Cambodian National Malaria Center, National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.

⁷Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

References

- Koonin, E.V., Altschul, S.F., Bork, P.: Brca1 protein products: functional motifs. Nat Genet 13, 266–267 (1996)
- 2. Kharitonov, S.A., Barnes, P.J.: Clinical Aspects of Exhaled Nitric Oxide. in press
- 3. Zvaifler, N.J., Burger, J.A., Marinova-Mutafchieva, L., Taylor, P., Maini, R.N.: Mesenchymal cells, stromal derived factor-1 and rheumatoid arthritis [abstract]. Arthritis Rheum 42, 250 (1999)

- Jones, X.: Zeolites and synthetic mechanisms. In: Smith, Y. (ed.) Proceedings of the First National Conference on Porous Sieves: 27-30 June 1996; Baltimore, pp. 16–27 (1996). Stoneham: Butterworth-Heinemann
- 5. Margulis, L.: Origin of Eukaryotic Cells. Yale University Press, New Haven (1970)
- Orengo, C.A., Bray, J.E., Hubbard, T., LoConte, L., Sillitoe, I.: Analysis and assessment of ab initio three-dimensional prediction, secondary structure, and contacts prediction. Proteins Suppl 3, 149–170 (1999)
- Schnepf, E.: From prey via endosymbiont to plastids: comparative studies in dinoflagellates. In: Lewin, R.A.
 (ed.) Origins of Plastids vol. 2, 2nd edn., pp. 53–76. Chapman and Hall, New York (1993)
- 8. Innovative Oncology
- Smith, Y. (ed.): Proceedings of the First National Conference on Porous Sieves: 27-30 June 1996; Baltimore.
 Butterworth-Heinemann, Stoneham (1996)
- Hunninghake, G.W., Gadek, J.E.: The alveloar macrophage. In: Harris, T.J.R. (ed.) Cultured Human Cells and Tissues, pp. 54–56. Academic Press, New York (1995). Stoner G (Series Editor): Methods and Perspectives in Cell Biology, vol 1
- Advisory Committee on Genetic Modification: Annual Report. London (1999). Advisory Committee on Genetic Modification
- Kohavi, R.: Wrappers for performance enhancement and obvious decision graphs. PhD thesis, Stanford University, Computer Science Department (1995)
- 13. The Mouse Tumor Biology Database. http://tumor.informatics.jax.org/cancer_links.html

Figures

Figure 1 Sample figure title. A short description of the figure content should go here.

Figure 2 Sample figure title. Figure legend text.

Tables

Table 1 Sample table title. This is where the description of the table should go.

	B1	B2	ВЗ
A1	0.1	0.2	0.3
A2			
А3			

Additional Files

Additional file 1 — Sample additional file title

Additional file descriptions text (including details of how to view the file, if it is in a non-standard format or the file extension). This might refer to a multi-page table or a figure.

Additional file 2 — Sample additional file title

Additional file descriptions text.