Metode kernel. Regresia Ridge. Mașini cu Vectori Suport.

Radu Ionescu raducu.ionescu@gmail.com Facultatea de Matematică și Informatică Universitatea din București

Evoluția metodelor de învățare automată

- Anii 1950: este introdus perceptronul (Rosenblatt, 1957)
- Anii 1980: este introdus algoritmul de backpropagare pentru rețele neuronale multistrat (Hinton, 1986)
- Anii 1990: apar metodele kernel (nucleu)

Perceptronul

Granița de separare liniară

XOR (Minsky și Papert, 1969)

 O metodă de clasificare liniară nu poate învăța funcția XOR

Soluția 1: Rețele neuronale

Soluția 1: Rețele neuronale

Granița de decizie devine non-liniară

Soluția 2: Metode kernel

- Metodele kernel funcţionează prin următorii doi paşi:
- 1. Datele sunt scufundate într-un spațiu (Hilbert) cu mai multe dimensiuni
- 2. Relațiile liniare sunt căutate în acest spațiu
- Scufundarea datelor se realizează implicit, prin specificarea produsului scalar între exemple

Scufundarea datelor cu o funcție kernel

 Relaţiile neliniare din spaţiul original sunt transformate în relaţii liniare prin scufundare

Metode kernel

- Algoritmii sunt implementați (în forma duală) astfel încât coordontale punctelor scufundate nu sunt necesare, fiind suficientă specificarea produsului scalar între perechi de puncte
- "Kernel trick": Produsul scalar poate fi înlocuit cu orice funcție de similaritate, numită și funcție kernel (funcție nucleu)

Forma primală

Features: f₁, f₂, f₃, f₄, f₅, f₆, f₇

		f_1	f_2	f_3	f_4	f_5	f_6	f ₇			
Train samples: x ₁ , x ₂ , x ₃ , x ₄	X_1	4	0	2	5	3	0	1		I_1	1
	X_2	0	0	1	3	4	0	2	= X	l_2	1
	X ₃	2	1	0	0	1	2	5		l_3	-1
	X_4	1	3	0	1	0	1	2		I_4	-1

Linear classifier: $C = (w_1, w_2, w_3, w_4, w_5, w_6, w_7, b)$ such that sign(X * W' + b) = L

		f_1	f_2	f_3	f_4	f_5	f_6	f ₇				
Test samples: y ₁ , y ₂ , y ₃	y_1	1	0	2	4	2	0	2		p_1	?	
	y ₂	1	2	0	1	2	2	1	= Y	p_2	?	= P
	y_3	3	1	0	0	4	1	1		p_3	?	

Apply C to obtain predictions: P = sign(Y * W' + b)

Forma duală

Kernel type: linear

		x_{1}	X_2	x^3	X_4				
Train samples: x ₁ , x ₂ , x ₃ , x ₄	X_1	55	31	16	11	= X * X' = K _X	l ₁ 1	1	
	X_2	31	30	14	7		l_2	1	
	X_3	16	14	35	17		l ₃	-1	= L
	X_4	11	7	17	16		l ₄	-1	
			•			•			-

Linear classifier: $C = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, b)$ such that $sign(K_X * \alpha' + b) = L$

Apply C to obtain predictions: $P = sign(K_{\mathbf{Y}} * \alpha' + b)$

• Problema găsirii funcției g de forma:

$$g(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle = \mathbf{w}' \mathbf{x} = \sum_{i=1}^{n} w_i x_i$$

 care interpolează cel mai bine un set de exemple:

$$S = \{(\mathbf{x_1}, y_1), (\mathbf{x_2}, y_2), \dots, (\mathbf{x_\ell}, y_\ell)\}$$

 Erorarea funcției liniare pe un exemplu particular:

$$\xi = (y - g(\mathbf{x}))$$

Funcția de pierdere pe toate exemplele:

$$\mathcal{L}(g,S) = \mathcal{L}(\mathbf{w},S) = \sum_{i=1}^{\ell} (y_i - g(\mathbf{x_i}))^2 =$$

$$= \sum_{i=1}^{\ell} \xi^2 = \sum_{i=1}^{\ell} \mathcal{L}(g,(\mathbf{x_i},y_i))$$

Funcția de pierdere scrisă vectorial:

$$\boldsymbol{\xi} = \mathbf{y} - \mathbf{X}\mathbf{w}$$

$$\boldsymbol{\mathcal{L}}(\mathbf{w}, S) = \|\boldsymbol{\xi}\|_{2}^{2} = (\mathbf{y} - \mathbf{X}\mathbf{w})'(\mathbf{y} - \mathbf{X}\mathbf{w})$$

Care este valoarea optimă pentru w?

Valoarea optimă pentru w:

$$\frac{\partial \mathcal{L}(\mathbf{w}, S)}{\partial \mathbf{w}} = -2\mathbf{X}'\mathbf{y} + 2\mathbf{X}'\mathbf{X}\mathbf{w} = \mathbf{0}$$

Ecuația normală devine:

$$X'Xw = X'y$$

 De unde îl putem scoate pe w, dacă există inversa:

$$\mathbf{w} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

Regresia Ridge

- Dacă inversa nu există, problema este "prostpusă" și trebuie să utilizăm regularizarea
- Criteriul de optimizare devine:

$$\min_{\mathbf{w}} \mathcal{L}_{\lambda}(\mathbf{w}, S) = \min_{\mathbf{w}} (\lambda ||\mathbf{w}||^2 + \sum_{i=1}^{\ell} (y_i - g(\mathbf{x_i}))^2)$$

• lar soluția optimă pentru w este dată de:

$$\frac{\partial \mathcal{L}_{\lambda}(\mathbf{w}, S)}{\partial \mathbf{w}} = \frac{\partial (\lambda \|\mathbf{w}\|^2 + \sum_{i=1}^{\ell} (y_i - g(\mathbf{x_i}))^2)}{\partial \mathbf{w}} = \mathbf{0}$$

Regresia Ridge

Soluţia optimă este:

$$\frac{\partial \mathcal{L}_{\lambda}(\mathbf{w}, S)}{\partial \mathbf{w}} = \frac{\partial (\lambda \|\mathbf{w}\|^{2} + (\mathbf{y} - \mathbf{X}\mathbf{w})'(\mathbf{y} - \mathbf{X}\mathbf{w}))}{\partial \mathbf{w}} = 2\lambda \mathbf{w} - 2\mathbf{X}'\mathbf{y} + 2\mathbf{X}'\mathbf{X}\mathbf{w} = \mathbf{0}$$

$$\mathbf{X}'\mathbf{X}\mathbf{w} + \lambda \mathbf{w} = \mathbf{X}'\mathbf{y}$$

$$(\mathbf{X}'\mathbf{X} + \lambda \mathbf{I}_{n})\mathbf{w} = \mathbf{X}'\mathbf{y}$$

$$\mathbf{w} = (\mathbf{X}'\mathbf{X} + \lambda \mathbf{I}_{n})^{-1}\mathbf{X}'\mathbf{y}$$

Regresia Ridge Duală

$$\mathbf{X'Xw} + \lambda \mathbf{w} = \mathbf{X'y}$$

$$\mathbf{w} = \lambda^{-1}(\mathbf{X'y} - \mathbf{X'Xw}) = \lambda^{-1}\mathbf{X'(y} - \mathbf{Xw}) = \mathbf{X'\alpha}$$

$$\lambda^{-1}\mathbf{X'(y} - \mathbf{Xw}) = \mathbf{X'\alpha}$$

$$\alpha = \lambda^{-1}(\mathbf{y} - \mathbf{Xw})$$

Dar:

$$\mathbf{w} = \mathbf{X}' \mathbf{\alpha}$$

Astfel că:

$$\alpha = \lambda^{-1}(\mathbf{y} - \mathbf{X}\mathbf{X}'\alpha)$$

Regresia Ridge Duală

$$\alpha = \lambda^{-1}(\mathbf{y} - \mathbf{X}\mathbf{X}'\alpha)$$

$$\lambda \alpha = (\mathbf{y} - \mathbf{X}\mathbf{X}'\alpha)$$

$$\mathbf{X}\mathbf{X}'\alpha + \lambda \alpha = \mathbf{y}$$

$$(\mathbf{X}\mathbf{X}' + \lambda \mathbf{I}_{\ell})\alpha = \mathbf{y}$$

$$\alpha = (\mathbf{G} + \lambda \mathbf{I}_{\ell})^{-1}\mathbf{y}$$

Unde:

$$G = XX'$$

este matricea Gram:

$$\mathbf{G}_{ij} = \left\langle \mathbf{x}_{i}, \mathbf{x}_{j} \right\rangle$$

Regresia Ridge Duală

• În forma duală, informația din exemplele de antrenare este dată prin matricea Gram ce conține produsul scalar între perechi de puncte:

$$\mathbf{\alpha} = (\mathbf{G} + \lambda \mathbf{I}_{\ell})^{-1} \mathbf{y}$$

Funcția de predicție este dată de:

$$g(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle = \left\langle \sum_{i=1}^{\ell} \alpha_i \mathbf{x}_i, \mathbf{x} \right\rangle = \sum_{i=1}^{\ell} \alpha_i \langle \mathbf{x}_i, \mathbf{x} \rangle$$

Regresia Ridge Kernel

 Aplicăm "kernel trick", înlocuind produsul scalar cu o funcție kernel:

$$\langle \rangle \mapsto k$$

$$\mathbf{G} = \begin{pmatrix} \langle \mathbf{x}_{1}, \mathbf{x}_{1} \rangle & \langle \mathbf{x}_{1}, \mathbf{x}_{2} \rangle & \cdots & \langle \mathbf{x}_{1}, \mathbf{x}_{n} \rangle \\ \langle \mathbf{x}_{2}, \mathbf{x}_{1} \rangle & \langle \mathbf{x}_{2}, \mathbf{x}_{2} \rangle & \cdots & \langle \mathbf{x}_{2}, \mathbf{x}_{n} \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle \mathbf{x}_{n}, \mathbf{x}_{1} \rangle & \langle \mathbf{x}_{n}, \mathbf{x}_{2} \rangle & \cdots & \langle \mathbf{x}_{n}, \mathbf{x}_{n} \rangle \end{pmatrix} \mapsto \mathbf{K} = \begin{pmatrix} k(\mathbf{x}_{1}, \mathbf{x}_{1}) & k(\mathbf{x}_{1}, \mathbf{x}_{2}) & \cdots & k(\mathbf{x}_{1}, \mathbf{x}_{n}) \\ k(\mathbf{x}_{2}, \mathbf{x}_{1}) & k(\mathbf{x}_{2}, \mathbf{x}_{2}) & \cdots & k(\mathbf{x}_{2}, \mathbf{x}_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ k(\mathbf{x}_{n}, \mathbf{x}_{1}) & k(\mathbf{x}_{n}, \mathbf{x}_{2}) & \cdots & k(\mathbf{x}_{n}, \mathbf{x}_{n}) \end{pmatrix}$$

Regresia Ridge Kernel

Ponderile duale se calculează astfel:

$$\boldsymbol{\alpha} = (\mathbf{G} + \lambda \mathbf{I}_{\ell})^{-1} \mathbf{y} \rightarrow \boldsymbol{\alpha} = (\mathbf{K} + \lambda \mathbf{I}_{\ell})^{-1} \mathbf{y}$$

Funcția de predicție devine:

$$g(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle = \left\langle \sum_{i=1}^{\ell} \alpha_i \mathbf{x}_i, \mathbf{x} \right\rangle = \sum_{i=1}^{\ell} \alpha_i \langle \mathbf{x}_i, \mathbf{x} \rangle$$

$$\downarrow$$

$$g(\mathbf{x}) = \sum_{i=1}^{\ell} \alpha_i k(\mathbf{x}_i, \mathbf{x})$$

Regresia Ridge Kernel (Python)

```
# Parametrul de regularizare lambda:
lmb = 10 ** -6
# X_train - datele de antrenare (un exemplu pe linie)
# T_train - clasele datelor de antrenare
n = X_{train.shape[0]}
K = np.matmul(X_train, X_train.T)
# Antrenarea metodei:
alpha = np.matmul(np.linalg.inv(K + lmb * np.eye(n)),
        T_train)
# Prezicerea etichetelor pe datele de antrenare:
Y_train = np.matmul(K, alpha)
Y_train = np.sign(Y_train)
acc_train = (T_train == Y_train).mean())
print(Train accuracy) 0/4f 0/2cc train)
```

Regresia Ridge Kernel (Python)

```
# X_test - datele de testare (un exemplu pe linie)
# T_test - clasele datelor de testare

K_test = np.matmul(X_test, X_train.T)

# Prezicerea etichetelor pe datele de test:
Y_test = np.matmul(K_test, alpha)
Y_test = np.sign(Y_test)

acc_test = (T_test == Y_test).mean()
print('Test accuracy: %.4f' % acc_test)
```

Funcția kernel

Definiție: O funcție kernel este o funcție

$$k: X \times X \longmapsto \mathbb{R}$$

pentru care există o funcție de scufundare din spațiul X în spațiul Hilbert F

$$\phi: x \in \mathbb{R}^m \longmapsto \phi(x) \in F$$

a.î. pentru orice $x, z \in X$

$$k(x, z) = \langle \phi(x), \phi(z) \rangle$$

 Teoremă: O funcție k este funcție kernel doar dacă este finit pozitiv semi-definită

Exemple de funcții kernel

Prin definirea explicită a funcției de scufundare

$$\phi : \mathbb{R}^{2} \to \mathbb{R}^{3}$$

$$(x_{1}, x_{2}) \mapsto (z_{1}, z_{2}, z_{3}) = (x_{1}^{2}, \sqrt{2}x_{1}x_{2}, x_{2}^{2})$$

Exemple de funcții kernel

Funcția kernel din exemplul anterior:

$$\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle_F = \langle (x_1^2, x_2^2, \sqrt{2}x_1 x_2), (z_1^2, z_2^2, \sqrt{2}z_1 z_2) \rangle$$

$$\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle_F = x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2$$

$$\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle_F = (x_1 z_1 + x_2 z_2)^2$$

$$\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle_F = \langle \mathbf{x}, \mathbf{z} \rangle^2$$

$$k(\mathbf{x}, \mathbf{z}) = \langle \mathbf{x}, \mathbf{z} \rangle^2$$

Aceeași funcție kernel corespunde scufundării:

$$\phi : \mathbf{x} = (x_1, x_2) \mapsto \phi(\mathbf{x}) = (x_1^2, x_2^2, x_1 x_2, x_2 x_1)$$

Funcția kernel polinomială

 Pentru o constantă reală pozitivă c și un număr natural d:

$$k(\mathbf{x}, \mathbf{z}) = (\langle \mathbf{x}, \mathbf{z} \rangle + c)^d$$

 Constanta c permite controlul gradului de influență al polinoamelor de diverse grade

Funcția kernel Gaussiană (RBF)

• Pentru x = (1, 2, 4, 1) și z = (5, 1, 2, 3) din \mathbb{R}^4 :

$$k(x, z) = \exp\left(-\frac{\|x - z\|^2}{2\sigma^2}\right)$$

$$= \exp\left(-\frac{\sqrt{(1 - 5)^2 + (2 - 1)^2 + (4 - 2)^2 + (1 - 3)^2}}{2 \cdot 1^2}\right)$$

$$= \exp\left(-\frac{\sqrt{16 + 1 + 4 + 4}}{2}\right)$$

$$= \exp\left(-\frac{5}{2}\right)$$

 ≈ 0.0821 .

Funcția kernel intersecție

• Pentru x = (1, 2, 4, 1) și z = (5, 1, 2, 3) din \mathbb{R}^4 : $k(x, z) = \sum_{i} \min \{x_i, z_i\}$ $= \min \{1, 5\} + \min \{2, 1\} + \min \{4, 2\} + \min \{1, 3\}$ = 1 + 1 + 2 + 1 = 5.

Alte funcții kernel

Funcția kernel Hellinger:

$$k(x, z) = \sum_{i} \sqrt{x_i \cdot z_i}$$

Funcția kernel PQ:

$$k_{PQ}(X, Y) = 2(P - Q)$$

 $P = |\{(i, j) : 1 \le i < j \le n, (x_i - x_j)(y_i - y_j) > 0\}|$
 $Q = |\{(i, j) : 1 \le i < j \le n, (x_i - x_j)(y_i - y_j) < 0\}|$

String kernels

- String kernels măsoară similaritatea între perechi de şiruri de caractere, prin numărarea subsecvențelor (n-grame) de character comune dintre cele dou şiruri
- Textele pot fi interpretate ca şiruri de caractere
- Avantaje:
- Nu trebuie să delimităm cuvintele
- Metoda este independentă de limbă

String kernels

Exemplu:

```
Fiind date s = "pineapple pi" și t = "apple pie" peste un alfabet \Sigma, și lungimea n-gramelor p = 2,
```

```
construim tabele hash S and T care conțin perechi <key>:<value> de tipul
```

```
<2-gram>:<număr de apariții> în s și t:
```

- S = {pi:2, in:1, ne:1, ea:1, ap:1, pp:1, pl:1, le:1, e_:1, _p:1},
- T = {ap:1, pp:1, pl:1, le:1, e_:1, _p:1, pi:1, ie:1}

String kernel bazat pe biți de presență

- Funcția string kernel bazată pe biți de prezență este definită
- astfel:
 astfel:
 astfel:

• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$
• Exemplu (continuare):
$$\sum_{v \in \Sigma^p} S^{0/1}(v) \cdot T^{0/1}(v)$$

De ce metode kernel?

- Obţin rezultate state-of-the-art în anumite probleme, de exemplu în identificarea limbii native
- Utile pentru obţinerea unei reprezentări mai compacte în cazul în care:

numărul de exemple << numărul de trăsături

- Numărul de n-grame unice în setul de date TOEFL11: 4,662,520
- ... versus numărul de exemple de antrenare: 11,000

Noi funcții kernel din combinații

 Fiind date două funcții kernel k1 și k2, o constantă reală pozitivă a, o funcție f cu valori reale și o matrice simetrică și pozitiv semi-definită B, următoarele funcții sunt kernel:

(i)
$$k(x, z) = k_1(x, z) + k_2(x, z);$$

(ii) $k(x, z) = ak_1(x, z);$
(iii) $k(x, z) = k_1(x, y) \cdot k_2(x, z);$
(iv) $k(x, z) = f(x) \cdot f(z);$
(v) $k(x, z) = x'Bz.$

Normalizarea datelor

• În forma primală:

$$x \longmapsto \phi(x) \longmapsto \frac{\phi(x)}{\|\phi(x)\|}$$

• În forma duală:

$$\hat{k}(x_i, x_j) = \frac{k(x_i, x_j)}{\sqrt{k(x_i, x_i) \cdot k(x_j, x_j)}}$$

Direct pe matricea kernel:

$$\hat{K}_{ij} = \frac{K_{ij}}{\sqrt{K_{ii} \cdot K_{jj}}}$$

Normalizarea datelor (Python)

```
% X - datele (un exemplu pe linie)
% Norma L2 în forma primală:
norms = np.linalg.norm(X, axis = 1, keepdims = True)
X = X / norms
% Norma L2 în forma duală:
K = np.matmul(X, X.T)
KNorm = np.sqrt(np.diag(K))
KNorm = KNorm[np.newaxis]
K = K / np.matmul(KNorm.T, KNorm)
```

Cum separăm optim aceste exemple?

Cum separăm optim aceste exemple?

Cum separăm optim aceste exemple?

Alegem hiperplanul de margine maximă

Alegem hiperplanul de margine maximă

Maşini cu vectori suport (SVM)

SVM (Hard Margin)

$$S = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_{\ell}, y_{\ell})\}$$
$$g(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b$$

 $\max_{\mathbf{w},b,\gamma} \gamma$

subject to

$$y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge \gamma$$

$$i=1,\ldots,\ell$$

$$\|\mathbf{w}\|^2 = 1$$

subject to

$$y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1$$

$$i=1,\ldots,\ell$$

SVM (Soft Margin)

• În cazul în care exemple nu sunt liniar separabile:

$$\min_{\mathbf{w},b,\gamma,\xi} - \gamma + C \sum_{i=1}^{\ell} \xi_{i}$$
subject to
$$y_{i}(\langle \mathbf{w}, \mathbf{x}_{i} \rangle + b) \geq \gamma - \xi_{i}$$

$$\xi_{i} \geq 0 \quad i = 1, \dots, \ell$$

$$\|\mathbf{w}\|^{2} = 1$$

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i=1}^{\ell} \xi_{i}$$
subject to
$$y_{i}(\langle \mathbf{w}, \mathbf{x}_{i} \rangle + b) \geq 1 - \xi_{i}$$

$$\xi_{i} \geq 0 \quad i = 1, \dots, \ell$$

$$\xi_{i} \geq 0 \quad i = 1, \dots, \ell$$

SVM (Soft Margin)

SVM (Python)

Scikit-learn:

https://scikit-learn.org/stable/modules/svm.html#svm-classification

```
from sklearn import svm

clf = svm.SVC(C = 1.0)

clf.fit(X_train, T_train)

Y_test = clf.predict(X_test)
```

Plus mulți alți clasificatori

Cum rezolvăm problemele cu mai multe clase?

- Scheme de combinare a mai multor clasificatori binari:
- 1) One-versus-one
- 2) One-versus-all

One-versus-one

One-versus-all

Cum rezolvăm problemele cu mai multe clase?

- Utilizarea unor metode de clasifcare capabile să rezolve direct problema:
- 1) Analiza liniar discriminantă (Fisher)
- 2) Rețele neuronale (cursul următor)

Analiza liniar discriminantă

- Fiecare clasă este aproximată cu o distribuţie
 Gaussiană
- Algoritmul presupune găsirea unui hiperplan pe care se proiectează punctele a.î.:
- distanța dintre mediile claselor este maximizată
- dispersia fiecărei clase este minimizată

Analiza liniar discriminantă

Analiza liniar discriminantă (Python)

Scikit-learn:

```
https://scikit-learn.org/stable/modules/svm.html#svm-classification
from sklearn.discriminant_analysis
    import LinearDiscriminantAnalysis

clf = LinearDiscriminantAnalysis()

clf.fit(X_train, T_train)

Y_test = clf.predict(X_test)
```

Ce metodă de clasificare este cea mai bună?

Teorema "No free lunch":

Oricare doi algoritmi sunt echivalenți atunci când performanța lor este măsurată (în medie) pe toate problemele posibile

- Rezultă ca nu există nici o scurtătură în alegerea algoritmului potrivit pentru o anumită problemă
- Deobicei încercăm mai mulți algoritmi și vedem care obține rezultate mai bune

Bibliografie

Advances in Computer Vision and Pattern Recognition

Radu Tudor Ionescu Marius Popescu

Knowledge Transfer between Computer Vision and Text Mining

Similarity-based Learning Approaches

John Shawe-Taylor and Nello Cristianini

for **Pattern Analysis**

Cambridge