ECMAScript 6 入门

作者: 阮一峰

授权:署名-非商用许可证

Q

目录

- 0.前言
- 1.ECMAScript 6简介
- 2.let 和 const 命令
- 3.变量的解构赋值
- 4.字符串的扩展
- 5.字符串的新增方法
- 6.正则的扩展
- 7.数值的扩展
- 8.函数的扩展
- 9.数组的扩展
- 10.对象的扩展
- 11.对象的新增方法
- 12.Symbol
- 13.Set 和 Map 数据结构
- 14.Proxy
- 15.Reflect
- 16.Promise 对象
- 17.Iterator 和 for...of 循环
- 18.Generator 函数的语法
- 19.Generator 函数的异步应用
- 20.async 函数
- 21.Class 的基本语法
- 22.Class 的继承
- 23.Module 的语法
- 24.Module 的加载实现
- 25.编程风格
- 26.读懂规格
- 27.异步遍历器
- 28.ArrayBuffer
- 29.最新提案
- 30.Decorator
- 31.参考链接

其他

- 源码
- 修订历史
- 反馈意见

Class 的继承

- 1.简介
- 2.Object.getPrototypeOf()
- 3.super 关键字

- 4.类的 prototype 属性和___proto___属性
- 5.原生构造函数的继承
- 6.Mixin 模式的实现

1. 简介

Class 可以通过 extends 关键字实现继承,这比 ES5 的通过修改原型链实现继承,要清晰和方便很多。

```
class Point {
}
class ColorPoint extends Point {
}
```

上面代码定义了一个 ColorPoint 类,该类通过 extends 关键字,继承了 Point 类的所有属性和方法。但是由于没有部署任何代码,所以这两个类完全一样,等于复制了一个 Point 类。下面,我们在 ColorPoint 内部加上代码。

```
class ColorPoint extends Point {
  constructor(x, y, color) {
    super(x, y); // 调用父类的constructor(x, y)
    this.color = color;
}

toString() {
  return this.color + ' ' + super.toString(); // 调用父类的toString()
}
```

上面代码中, constructor 方法和 toString 方法之中,都出现了 super 关键字,它在这里表示父类的构造函数,用来新建父类的 this 对象。

子类必须在 constructor 方法中调用 super 方法,否则新建实例时会报错。这是因为子类自己的 this 对象,必须先通过父类的构造函数完成塑造,得到与父类同样的实例属性和方法,然后再对其进行加工,加上子类自己的实例属性和方法。如果不调用 super 方法,子类就得不到 this 对象。

```
class Point { /* ... */ }

class ColorPoint extends Point {
  constructor() {
  }
}

let cp = new ColorPoint(); // ReferenceError
```

上面代码中, ColorPoint 继承了父类 Point, 但是它的构造函数没有调用 super 方法, 导致新建实例时报错。

ES5 的继承,实质是先创造子类的实例对象 this ,然后再将父类的方法添加到 this 上面(Parent apply (this))。ES6 的继承机制 完全不同,实质是先将父类实例对象的属性和方法,加到 this 上面(所以必须先调用 super 方法),然后再用子类的构造函数修改 this 。

如果子类没有定义 constructor 方法,这个方法会被默认添加,代码如下。也就是说,不管有没有显式定义,任何一个子类都有 constructor 方法。

```
class ColorPoint extends Point {
}

// 等同于
class ColorPoint extends Point {
  constructor(...args) {
    super(...args);
  }
}
```

另一个需要注意的地方是,在子类的构造函数中,只有调用 super 之后,才可以使用 this 关键字,否则会报错。这是因为子类实例的构建,基于父类实例,只有 super 方法才能调用父类实例。

```
class Point {
  constructor(x, y) {
    this.x = x;
    this.y = y;
  }
}

class ColorPoint extends Point {
  constructor(x, y, color) {
    this.color = color; // ReferenceError
    super(x, y);
    this.color = color; // 正确
  }
}
```

上面代码中,子类的 constructor 方法没有调用 super 之前,就使用 this 关键字,结果报错,而放在 super 方法之后就是正确的。

下面是生成子类实例的代码。

```
let cp = new ColorPoint(25, 8, 'green');
cp instanceof ColorPoint // true
cp instanceof Point // true
```

上面代码中,实例对象 cp 同时是 ColorPoint 和 Point 两个类的实例,这与 ES5 的行为完全一致。

最后,父类的静态方法,也会被子类继承。

```
class A {
   static hello() {
     console.log('hello world');
   }
}
class B extends A {
}
B.hello() // hello world
```

上面代码中, hello()是 A 类的静态方法, B 继承 A, 也继承了 A 的静态方法。

2. Object.getPrototypeOf()

Object.getPrototypeOf 方法可以用来从子类上获取父类。

```
Object.getPrototypeOf(ColorPoint) === Point
// true
```

因此,可以使用这个方法判断,一个类是否继承了另一个类。

3. super 关键字

super 这个关键字,既可以当作函数使用,也可以当作对象使用。在这两种情况下,它的用法完全不同。

第一种情况,super作为函数调用时,代表父类的构造函数。ES6要求,子类的构造函数必须执行一次super函数。

```
class A {}

class B extends A {
  constructor() {
    super();
  }
}
```

上面代码中,子类 B 的构造函数之中的 super () ,代表调用父类的构造函数。这是必须的,否则 JavaScript 引擎会报错。

注意, super 虽然代表了父类 A 的构造函数, 但是返回的是子类 B 的实例, 即 super 内部的 this 指的是 B 的实例, 因此 super() 在这里相当于 A.prototype.constructor.call(this)。

```
class A {
  constructor() {
    console.log(new.target.name);
  }
}
class B extends A {
  constructor() {
    super();
  }
}
new A() // A
new B() // B
```

上面代码中, new.target 指向当前正在执行的函数。可以看到,在 super()执行时,它指向的是子类 B 的构造函数,而不是父类 A 的构造函数。也就是说, super()内部的 this 指向的是 B。

作为函数时, super()只能用在子类的构造函数之中,用在其他地方就会报错。

```
class A {}

class B extends A {
    m() {
       super(); // 报错
    }
}
```

上面代码中, super()用在B类的m方法之中,就会造成语法错误。

第二种情况,super 作为对象时,在普通方法中,指向第二上一章 法中,指向父类。

```
class A {
    p() {
        return 2;
    }
    }
}

class B extends A {
    constructor() {
        super();
        console.log(super.p()); // 2
    }
}

let b = new B();

上面代码中, 子类 B 当中的 super.p(), 就是将 super 当作一个对象使用。这时, super 在普通方法之中, 指向 A.prototype, 所以 super.p() 就相当于 A.prototype.p()。

这里需要注意, 由于 super 指向父类的原型对象, 所以定义在父类实例上的方法或属性, 是无法通过 super 调用的。

class A {
```

constructor() {
 this.p = 2;

class B extends A {
 get m() {

let b = new B();
b.m // undefined

class A {}

A.prototype.x = 2;

class B extends A {
 constructor() {
 super();

let b = new B();

class A {

print() {

constructor() {
 this.x = 1;

console.log(super.x) // 2

return super.p;

上面代码中, p是父类 A 实例的属性, super.p 就引用不到它。

上面代码中,属性 x 是定义在 A. prototype 上面的,所以 super. x 可以取到它的值。

ES6 规定,在子类普通方法中通过 super 调用父类的方法时,方法内部的 this 指向当前的子类实例。

上一章 下一章

如果属性定义在父类的原型对象上,super就可以取到。

}

```
class B extends A (
   constructor() {
    super();
    this.x = 2;
   m() {
    super.print();
 let b = new B();
 b.m() // 2
上面代码中, super.print() 虽然调用的是 A.prototype.print(), 但是 A.prototype.print()内部的 this 指向子类 B 的实例,导致
输出的是 2, 而不是 1。也就是说, 实际上执行的是 super.print.call(this)。
由于 this 指向子类实例,所以如果通过 super 对某个属性赋值,这时 super 就是 this ,赋值的属性会变成子类实例的属性。
 class A {
   constructor() {
    this.x = 1;
 class B extends A {
   constructor() {
    super();
    this.x = 2;
    super.x = 3;
    console.log(super.x); // undefined
    console.log(this.x); // 3
 let b = new B();
上面代码中, super.x 赋值为 3, 这时等同于对 this.x 赋值为 3。而当读取 super.x 的时候,读的是 A.prototype.x,所以返回
undefined .
如果 super 作为对象,用在静态方法之中,这时 super 将指向父类,而不是父类的原型对象。
 class Parent {
   static myMethod(msg) {
     console.log('static', msg);
   myMethod(msg) {
    console.log('instance', msg);
 class Child extends Parent {
   static myMethod(msg) (
     super.myMethod(msg);
   myMethod(msg) {
                                            上一章
                                                     下一章
    super.myMethod(msg);
```

console.log(this.x);

```
}
}
Child.myMethod(1); // static 1

var child = new Child();
child.myMethod(2); // instance 2
```

上面代码中,super在静态方法之中指向父类,在普通方法之中指向父类的原型对象。

另外,在子类的静态方法中通过 super 调用父类的方法时,方法内部的 this 指向当前的子类,而不是子类的实例。

```
class A {
  constructor() {
    this.x = 1;
  }
  static print() {
    console.log(this.x);
  }
}

class B extends A {
  constructor() {
    super();
    this.x = 2;
  }
  static m() {
    super.print();
  }
}

B.x = 3;
B.m() // 3
```

上面代码中,静态方法 B.m 里面, super.print 指向父类的静态方法。这个方法里面的 this 指向的是 B,而不是 B的实例。

注意,使用 super 的时候,必须显式指定是作为函数、还是作为对象使用,否则会报错。

```
class A ()

class B extends A (
  constructor() {
    super();
    console.log(super); // 报错
  }
}
```

上面代码中,console.log(super) 当中的 super ,无法看出是作为函数使用,还是作为对象使用,所以 JavaScript 引擎解析代码的时候就会报错。这时,如果能清晰地表明 super 的数据类型,就不会报错。

```
class A {}

class B extends A {
  constructor() {
    super();
    console.log(super.valueOf() instanceof B); // true
  }
}

let b = new B();
```

上一章 下一章

上面代码中, super.valueOf()表明 super 是一个对象,因此就不会报错。同时,由于 super 使得 this 指向 B 的实例,所以 super.valueOf()返回的是一个 B 的实例。

最后,由于对象总是继承其他对象的,所以可以在任意一个对象中,使用 super 关键字。

```
var obj = {
  toString() {
    return "MyObject: " + super.toString();
  }
};

obj.toString(); // MyObject: [object Object]
```

4. 类的 prototype 属性和___proto___属性

大多数浏览器的 ES5 实现之中,每一个对象都有 __proto__ 属性,指向对应的构造函数的 prototype 属性。Class 作为构造函数的语法糖,同时有 prototype 属性和 __proto __ 属性,因此同时存在两条继承链。

- (1) 子类的 proto 属性,表示构造函数的继承,总是指向父类。
- (2) 子类 prototype 属性的 proto 属性,表示方法的继承,总是指向父类的 prototype 属性。

```
class A {
}
class B extends A {
}

B.__proto__ === A // true
B.prototype.__proto__ === A.prototype // true
```

上面代码中,子类 B 的 __proto__ 属性指向父类 A ,子类 B 的 prototype 属性的 __proto__ 属性指向父类 A 的 prototype 属性。

上一章

下一章

这样的结果是因为,类的继承是按照下面的模式实现的。

```
class A {
}

class B {
}

// B 的实例继承 A 的实例
Object.setPrototypeOf(B.prototype, A.prototype);

// B 继承 A 的静态属性
Object.setPrototypeOf(B, A);

const b = new B();

《对象的扩展》一章给出过 Object.setPrototypeOf 方法的实现。

Object.setPrototypeOf = function (obj, proto) {
   obj.__proto__ = proto;
   return obj;
```

因此,就得到了上面的结果。

```
Object.setPrototypeOf(B.prototype, A.prototype);
// 等同于
B.prototype.__proto__ = A.prototype;
Object.setPrototypeOf(B, A);
// 等同于
B.__proto__ = A;
```

这两条继承链,可以这样理解:作为一个对象,子类(B)的原型(__proto__ 属性)是父类(A);作为一个构造函数,子类(B)的原型对象(prototype 属性)是父类的原型对象(prototype 属性)的实例。

```
B.prototype = Object.create(A.prototype);
// 等同于
B.prototype.__proto__ = A.prototype;
extends 关键字后面可以跟多种类型的值。
class B extends A {
```

上面代码的 A , 只要是一个有 prototype 属性的函数,就能被 B 继承。由于函数都有 prototype 属性(除了 Function.prototype 函数),因此 A 可以是任意函数。

下面,讨论两种情况。第一种,子类继承 Object 类。

```
class A extends Object {
}
A.__proto__ === Object // true
A.prototype.__proto__ === Object.prototype // true
```

这种情况下, A 其实就是构造函数 Object 的复制, A 的实例就是 Object 的实例。

第二种情况,不存在任何继承。

```
class A {
}
A.__proto__ === Function.prototype // true
A.prototype.__proto__ === Object.prototype // true
```

这种情况下,A作为一个基类(即不存在任何继承),就是一个普通函数,所以直接继承 Function.prototype。但是,A调用后返回一个空对象(即 Object 实例),所以 A.prototype. proto 指向构造函数(Object)的 prototype 属性。

实例的 ___proto___ 属性

子类实例的__proto__ 属性的__proto__ 属性,指向父类实例的__proto__ 属性。也就是说,子类的原型的原型,是父类的原型。

```
var p1 = new Point(2, 3);
var p2 = new ColorPoint(2, 3, 'red');
```

```
p2.__proto__ === p1.__proto__ // false
p2.__proto__ .__proto__ === p1.__proto__ // true
```

上面代码中, ColorPoint 继承了 Point, 导致前者原型的原型是后者的原型。

因此,通过子类实例的__proto__.__proto__ 属性,可以修改父类实例的行为。

```
p2.__proto__._proto__.printName = function () {
  console.log('Ha');
};

p1.printName() // "Ha"
```

上面代码在 ColorPoint 的实例 p2 上向 Point 类添加方法,结果影响到了 Point 的实例 p1。

5. 原生构造函数的继承

原生构造函数是指语言内置的构造函数,通常用来生成数据结构。ECMAScript 的原生构造函数大致有下面这些。

- Boolean()
- Number()
- String()
- Array()
- Date()
- Function()
- RegExp()
- Error()
- Object()

以前,这些原生构造函数是无法继承的,比如,不能自己定义一个Array的子类。

```
function MyArray() {
   Array.apply(this, arguments);
}

MyArray.prototype = Object.create(Array.prototype, {
   constructor: (
    value: MyArray,
    writable: true,
    configurable: true,
   enumerable: true
}
});
```

上面代码定义了一个继承 Array 的 MyArray 类。但是,这个类的行为与 Array 完全不一致。

```
var colors = new MyArray();
colors[0] = "red";
colors.length // 0

colors.length = 0;
colors[0] // "red"
```

之所以会发生这种情况,是因为子类无法获得原生构造函数的内部属性,通过 Array.apply() 或者分配给原型对象都不行。原生构造函数会忽略 apply 方法传入的 this, 也就是说,原生构造函数的 this 无法绑定,导致拿不到内部属性。

ES5 是先新建子类的实例对象 this ,再将父类的属性添加到子类上,由于父类的内部属性无法获取,导致无法继承原生的构造函数。比如, Array 构造函数有一个内部属性 [[DefineOwnProperty]] ,用来定义新属性时,更新 length 属性,这个内部属性无法在子类获取,导致子类的 length 属性行为不正常。

下面的例子中,我们想让一个普通对象继承 Error 对象。

```
var e = {};

Object.getOwnPropertyNames(Error.call(e))
// [ 'stack' ]

Object.getOwnPropertyNames(e)
// []
```

上面代码中,我们想通过 Error.call (e) 这种写法,让普通对象 e 具有 Error 对象的实例属性。但是, Error.call () 完全忽略传入的第一个参数,而是返回一个新对象, e 本身没有任何变化。这证明了 Error.call (e) 这种写法,无法继承原生构造函数。

ES6 允许继承原生构造函数定义子类,因为 ES6 是先新建父类的实例对象 this, 然后再用子类的构造函数修饰 this, 使得父类的所有行为都可以继承。下面是一个继承 Array 的例子。

```
class MyArray extends Array {
  constructor(...args) {
    super(...args);
  }
}

var arr = new MyArray();
arr[0] = 12;
arr.length // 1

arr.length = 0;
arr[0] // undefined
```

上面代码定义了一个 MyArray 类,继承了 Array 构造函数,因此就可以从 MyArray 生成数组的实例。这意味着,ES6 可以自定义原生数据结构(比如 Array 、String 等)的子类,这是 ES5 无法做到的。

上面这个例子也说明, extends 关键字不仅可以用来继承类,还可以用来继承原生的构造函数。因此可以在原生数据结构的基础上,定义自己的数据结构。下面就是定义了一个带版本功能的数组。

```
x // [1, 2]
x.history // [[]]

x.commit();
x.history // [[], [1, 2]]

x.push(3);
x // [1, 2, 3]
x.history // [[], [1, 2]]

x.revert();
x // [1, 2]
```

上面代码中,VersionedArray 会通过 commit 方法,将自己的当前状态生成一个版本快照,存入 history 属性。 revert 方法用来将数组 重置为最新一次保存的版本。除此之外,VersionedArray 依然是一个普通数组,所有原生的数组方法都可以在它上面调用。

下面是一个自定义 Error 子类的例子,可以用来定制报错时的行为。

```
class ExtendableError extends Error {
 constructor (message) {
   super();
   this.message = message;
   this.stack = (new Error()).stack;
   this.name = this.constructor.name;
class MyError extends ExtendableError {
  constructor(m) {
    super(m);
var myerror = new MyError('ll');
myerror.message // "ll"
myerror instanceof Error // true
myerror.name // "MyError"
myerror.stack
// Error
// at MyError.ExtendableError
      . . .
```

注意,继承 Object 的子类,有一个行为差异。

```
class NewObj extends Object{
  constructor() {
    super(...arguments);
  }
}
var o = new NewObj({attr: true});
o.attr === true // false
```

上面代码中,NewObj 继承了Object,但是无法通过 super 方法向父类Object 传参。这是因为 ES6 改变了Object 构造函数的行为,一旦发现Object 方法不是通过 new Object() 这种形式调用,ES6 规定Object 构造函数会忽略参数。

6. Mixin 模式的实现

Mixin 指的是多个对象合成一个新的对象,新对象具有各,组成成以的յես。 Երյ最简单实现如下。

```
const a = {
   a: 'a'
};
const b = {
   b: 'b'
};
const c = {...a, ...b}; // {a: 'a', b: 'b'}
```

上面代码中, c对象是 a 对象和 b 对象的合成, 具有两者的接口。

下面是一个更完备的实现,将多个类的接口"混入"(mix in)另一个类。

```
function mix(...mixins) {
 class Mix {
   constructor() {
     for (let mixin of mixins) {
       copyProperties(this, new mixin()); // 拷贝实例属性
   }
  }
 for (let mixin of mixins) {
   copyProperties(Mix, mixin); // 拷贝静态属性
   copyProperties(Mix.prototype, mixin.prototype); // 拷贝原型属性
 return Mix;
function copyProperties(target, source) {
 for (let key of Reflect.ownKeys(source)) {
   if ( key !== 'constructor'
     && key !== 'prototype'
     && key !== 'name'
     let desc = Object.getOwnPropertyDescriptor(source, key);
     Object.defineProperty(target, key, desc);
```

上面代码的 mix 函数,可以将多个对象合成为一个类。使用的时候,只要继承这个类即可。

```
class DistributedEdit extends mix(Loggable, Serializable) {
   // ...
}
```

留言