Nama & Nrp :	Ahmad Zuhril Fahrizal (0923040004)
	Danny Ridho Rayza P. (0923040020)
Judul Projek:	Sistem Irigasi Pintar Berbasis IOT
Kelas :	TO3A

1. KOMPONEN YANG DIGUNAKAN PADA SISTEM: (WAJIB)

Komponen	Jumlah	Keterangan
Soil Moisture Sensor Kelembapan Tanah		Ada
Sensor suhu, Kelembapan Udara DHT22		Pinjam
Sensor LDR		Ada
Ultrasonic HC-SR04		Ada
Arduino Minsys Atmega 3208		Ada
Nodemcu 8266		Ada
Pompa Air Mini 12V		Pinjam
Lampu Mini 12V		Pinjam
Relay Single Chanel 12V		Ada
Motor Servo SG 90S		Ada
Buzzer		Ada
LCD 16x2 With 12C Module		Ada

2. DIAGRAM BLOK (WAJIB)

3. SISTEM KERJA

A. Sistem Kerja Otomatis

o Monitoring Kelembapan Tanah Ditampilkan di Halaman Dashboard:

Sensor membaca tingkat kelembapan tanah kemudian Data dikirim ke Arduino melalui pin analog (A0). Lalu, data tersebut dikirimikan melalui Restful API pada alamat server NodeMCU 8266.

Jika kelembapan tanah di bawah batas minimum (<30%), Arduino memicu relay untuk menyalakan pompa air.

Jika kelembapan tanah mencapai batas tertentu (>70%), pompa air otomatis mati.

Monitoring Kondisi Lingkungan (Suhu, Intensitas Cahaya, Level Air) Sensor DHT22:

Membaca suhu udara di sekitar lingkungan kemudian data ditampilkan pada LCD 16x2 dan dikirim ke NodeMCU untuk ditampilkan pada halaman web. Jika suhu udara diatas 35° maka servo 1 akan membuka ventilasi udara. Jika suhu udara dibawah 35° maka servo 1 tidak menyala.

Sensor LDR:

Membaca intensitas cahaya. Jika cahaya redup (malam hari), Arduino dapat mengaktifkan lampu mini melalui relay 12V. Begitu juga sebaliknya, jika intensitas cahaya tinggi (siang hari), Arduino akan mematikan lampu mini melalui relay 12V

Sensor Ultrasonik

Sensor Ultrasonik HC-SR04 akan membaca level air pada wadah. Jika ketinggian air dibawah 400 mL maka Buzzer akan memberi peringatan bahwa level air mendekati level kritis. Jika ketinggian air diatas 400 mL maka Buzzer akan berhenti memberikan peringatan.

o Tampilan Informasi Real-Time

LCD 16x2 menampilkan data secara real-time dari sensor, mulai dari kelembapan tanah, suhu udara, ketinggian level air, dan status sistem (pompa aktif/nonaktif). NodeMCU mengirim data ini ke halaman web, sehingga dapat memantau secara jarak jauh.

Pengendalian via IoT (Halaman Web)

NodeMCU menghubungkan sistem ke WiFi. Pengguna dapat mengakses halaman web untuk:

- 1. Melihat data sensor real-time dengan tampilan grafik.
- 2. Menghidupkan/mematikan servo 1 (Ventilasi Udara) dan servo 2 (Katup Air).
- 3. Menghidupkan/mematikan Relay Pompa Air.
- 4. Menghidupkan/mematikan Lampu mini.

B. Sistem Kerja Manual

Mengubah Mode Kontrol :

Mengubah mode pada halaman web menjadi manual. Dimana pada mode manual halaman web dapat menghidupkan/mematikan servo 1 (Ventilasi Udara) dan servo 2 (Katup Air), menghidupkan/mematikan Relay Pompa Air, menghidupkan/mematikan Lampu mini, dan mematikan semua device.

4. **DESIGN ALAT & MEKANISME**

