Linear Classifiers

Song Liu (song.liu@bristol.ac.uk)

Reference

Today's class *roughly* follows Chapter 4-4.2.

Pattern Recognition and Machine Learning

Christopher Bishop, 2006

Outline

- Geometry of decision function
- Non probabilistic classifiers
 - Least square classifier
 - Fisher discriminant analysis
- Probabilistic classifiers
 - Generative Classifiers

Binary Classification

- Input: $x \in R^d$
- Output: $y \in \{-1, +1\}$
- A decision boundary is defined by a function f(x)

Geometry of Binary Classification

Suppose $f(x) = \langle w, x \rangle + w_0$

Multi-class Classification

- Input: $x \in R^d$
- **Output**: $y \in \{1 ... K\}$
- The geometry gets a lot more complicated...
 - Cannot simply check the sign of a single f(x).

One versus The Other

- Construct K-1 binary classifiers
- ullet Classify Class k vs. the rest of classes

One versus The Other

One versus the other also creates confusion!

One versus One

 We can create pairwise binary classifiers and check majority vote.

One versus One

One versus one creates confusion as well...

Multi-class Classification

- Or...
- rather than relying on sign of f to make predictions, we can fit a vector valued function $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^K$:
- Given an \mathbf{x} , prediction is $\hat{k} = \underset{k}{\operatorname{argmax}} f^{(k)}(\mathbf{x})$,
 - The classification does not have a simple geometry interpretation anymore.
 - We will see an example soon.

Least Squares Classifier

- \bullet For binary classification, perform LS on D.
- $\mathbf{w}_{\mathrm{LS}} \coloneqq \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i \in D} [y_i f(\mathbf{x}_i; \mathbf{w})]^2$
 - Now y_i takes binary value 1 or -1

- Prediction function $f(x_i; w_{LS})$.
- The predicted label $\hat{y} := \text{sign}(f(x_i; w_{LS}))$

Least Square Classifier

Least Square Classifier

- You can use feature transform ϕ for f as well.
- $f(x; w) \coloneqq \langle w, \phi(x) \rangle$,
- e.g. poly., trigonometric, RBF, kernel.

Least Square Classifier

Data may not be separable in the original space but can be separable in the **feature space** created by ϕ !

Multi-class LS classification

- LS can be adapted to multi-class classification.
- Suppose output $y \in \{1 \dots K\}$
- Replace $y_i = k$ in D with $t_i \in \{0,1\}^K$.
 - $t_i^{(k)} = 1$.
 - $t_i^{(j)} = 0, \forall j \neq k$
- "One-hot encoding"
- $W_{LS} \coloneqq \operatorname{argmin}_{W} \sum_{i \in D} ||t_i f(x_i; W)||^2$
- $\mathbf{W} \in R^{(d+1) \times K}$, $\widetilde{\mathbf{x}}_i \coloneqq \begin{bmatrix} \mathbf{x}_i^\mathsf{T}, 1 \end{bmatrix}^\mathsf{T} \in R^d$, $\mathbf{f}(\mathbf{x}; \mathbf{W}) = \mathbf{W}^\mathsf{T} \widetilde{\mathbf{x}}$
- Prediction: $\hat{k} = \underset{k}{arg \max} f^{(k)}(\boldsymbol{x}; \boldsymbol{W}) = \underset{k}{arg \max} \left(\boldsymbol{w}_{LS}^{(k)}\right)^{\top} \widetilde{\boldsymbol{x}}$
 - where $w^{(k)}$ is the k-th column of W.

Why not to use LS Classifier?

- Square loss does not make sense in classification tasks.
- Data point far away from decision boundary can influence the decision boundary by a lot.

Why not to use LS Classifier?

- Unlike LS regression,
- LS classification lacks a probabilistic interpretation.
- It cannot be interpreted as Maximum Likelihood of some probabilistic model on D.

Fisher Discriminant Analysis (FDA)

Embedding by Inner Product

• The inner product $\langle w, x \rangle$ "embeds" x, onto a one-dimensional line along w direction.

Embedding by Inner Product

- What would be a good embedding?
- Clearly, we prefer w to w', as the embedding is more separated between + and .

• We want points within the class close, but points between two classes far apart.

Within Class and Between Class Scatterness

$$\mu_1 \longleftrightarrow \mu \longleftrightarrow \mu_2$$

Within-class Scatterness

- Embedding is $\mathbf{w}^{\mathsf{T}}\mathbf{x}$.
- Embedded center for class k:

•
$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i, \mathbf{y_i} = k} \mathbf{w}^{\mathsf{T}} \mathbf{x}_i$$

Within class scatterness of class k:

$$\bullet s_{\mathbf{w},k} = \sum_{i,\mathbf{y}_i = k} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i - \hat{\mu}_k)^2$$

• Sum over points in individual classes.

Between-class Scatterness

Embedded dataset center:

$$\bullet \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{w}^{\mathsf{T}} \mathbf{x}_{i}$$

Between-class scatterness

$$\bullet s_{b,k} = n_k (\hat{\mu}_k - \hat{\mu})^2$$

• n_k is needed to make $s_{b,k}$ at the same scale with $s_{w,k}$.

Fisher Discriminant Analysis

- Maximizing between class scatterness \forall_k .
- Minimize within class scatterness \forall_k .
- $\max_{\mathbf{w}} \sum_{k} s_{\mathbf{b},k} / \sum_{k} s_{\mathbf{w},k}$
- If K=2, this has a simple solution that
- $\boldsymbol{w}\coloneqq \boldsymbol{S}_{\boldsymbol{w}}^{-1}(\boldsymbol{\mu}_{+}-\boldsymbol{\mu}_{-})$, $\boldsymbol{S}_{\boldsymbol{w}}\coloneqq \sum_{k=1}^{K}\boldsymbol{S}_{k}$
- S_k is sample covariance of class k times n_k .
- Read PRML 4.14 for its derivation

Example of FDA

Fisher Discriminant Analysis

- However, FDA does not learn a decision function f.
- $f(x; w_{FDA}) = \langle w_{FDA}, x \rangle$ obtained by FDA cannot be directly used for making a prediction:
- In general, $f(x; w_{FDA}) > 0$ does not mean x is predicted as positive or negative data point: FDA does not care about classification accuracy, a.k.a., minimizing FP or FN.

Probabilistic Generative Classifiers

Probabilistic Classification

How to put classification problem under a problem framework?

Minimize Expected Loss:

$$\hat{y} := \operatorname{argmin}_{y_0} \mathbb{E}_{p(y|x)} [L(y, y_0) | x]$$

- We need: $p(y|x), y \in \{1, ..., K\}$
- Discriminative: Infer p(y|x) directly.
- Generative: Infer $p(y|x) \propto p(x|y)p(y)$, infer p(x|y)!

Continuous Input Variable

- To infer p(x|y), we need a model.
- If x is continuous, MVN is a natural choice for p(x|y).
- Model $p(x|y=k;w)\coloneqq N_x(\mu_k,\Sigma_k)$
- ullet Assuming IID, and all classes have shared covariance $oldsymbol{\Sigma}$
- Write down the likelihood over D:

•
$$p(D|\mathbf{w}) = \prod_{i \in D} p(\mathbf{x}_i, y_i|\mathbf{w}) = \prod_{i \in D} p(\mathbf{x}_i|y_i; \mathbf{w})p(y_i)$$

$$= \prod_{i \in D} N_{\mathbf{x}_i}(\boldsymbol{\mu}_{y_i}; \boldsymbol{\Sigma}) p(y_i)$$

Continuous Input Variable

•
$$\widehat{\boldsymbol{\mu}}_{1...K}$$
, $\widehat{\boldsymbol{\Sigma}} := \arg\max_{\boldsymbol{\mu}_{1...k}, \boldsymbol{\Sigma}} \sum_{i \in D} \log[N_{x_i}(\boldsymbol{\mu}_{y_i}; \boldsymbol{\Sigma})p(y_i)]$

- 1. Plug in estimates for $p(y_i = k)$, which is $\frac{n_k}{n}$.
- 2. Now work out the MLE for $\widehat{\mu}_k \coloneqq \frac{1}{n_k} \sum_{i \in D, y_i = k} x_i$
- 3. Plug in $\widehat{\mu}_k$ to work out

$$\widehat{\Sigma} \coloneqq \sum_{k=1...K} \frac{n_k}{n} \frac{1}{n_k} \sum_{i \in D, y_i = k} (x_i - \widehat{\mu}_k) (x_i - \widehat{\mu}_k)^{\mathsf{T}}$$

MLE of covariance of individual classes!

Linear Decision Boundary

- Prediction: $\hat{y} := \operatorname{argmax}_{y} p(y|x; \hat{w}) \propto p(x|y; \hat{w}) p(y)$
- Prove: when using shared covariance matrix MVN model, the decision boundary is piecewise-linear.
- The decision boundary is

$$\{\boldsymbol{x}|p(y=k|\boldsymbol{x};\widehat{\boldsymbol{w}})=p(y=k'|\boldsymbol{x};\widehat{\boldsymbol{w}})\}\$$
$$\forall k\neq k'$$

Which is the same as the set

$$\left\{ x \middle| \frac{p(x|y=k; \widehat{\boldsymbol{w}})p(y=k)}{p(x|y=k'; \widehat{\boldsymbol{w}})p(y=k')} = 1 \right\}$$

$$\forall k \neq k'$$

Hint: take log on both sides of the equality.

Linear Decision Boundary

Continuous Input Variable

- You can also assume for each class k, there are different covariance matrices Σ_k .
- The MLE reduces to estimating individual μ_k and Σ_k .
- The decision boundary is no longer linear.

Discrete Input Variable x

- In many classification tasks, we are dealing with discrete variables as x. For example, in a spam filter,
- $\mathbf{x} \coloneqq \begin{bmatrix} x^{(1)}, \dots, x^{(d)} \end{bmatrix}^\mathsf{T}$ are frequencies of words in a document. This is called "bag of words" representation.
- $y \in \{\text{spam, ham}\}.$
- For example, the document "to be or not to be"
- x = [to = 2, be = 2, or = 1, not = 1, question = 0]
- $x^{(i)} \in N_0$

Naïve Bayes

- Assume $x^{(1)} \dots x^{(d)}$ follows multinomial distribution
- $p(x = x_0|y) \propto \prod_{i=1...d} \beta(i|y)^{x_0^{(i)}}$ up to constant does not depend on y.
- $\beta(i|y=k)$ is the probability of word i occurs in class k.
- It is easy to estimate:

$$\beta(i|y=k) \approx \frac{\sum_{j \in D, y_j=k} x_j^{(i)}}{\sum_{j \in D, y_j=k} \sum_{i=1}^d x_j^{(i)}}$$

• $\beta(to|y = spam)$ is occurrences of the word "to" in "spam" emails divided by total number of words in "spam" emails in our training dataset.

Naïve Bayes

• Prediction: $\hat{y} := \operatorname{argmax}_{y} p(x = x_0 | y) p(y)$

•
$$p(y=k): \frac{n_k}{n}$$

- $p(x = x_0|y) \propto \prod_{i=1...d} \beta(i|y)^{x_0^{(i)}}$
 - $\beta(i|y)$ has been obtained by previous counting.
- $p(x = "to be or not to be" | y = spam) \propto$ $\beta(to|spam)^2\beta(be|spam)^2\beta(or|spam)\beta(not|spam)$

Conclusion

We have studied classification problem:

- Geometry of decision function
- Least square classifier
- Fisher discriminant analysis
 - Within and between scatterness

- Generative Classifiers:
 - MVN for continuous input variable
 - Naïve Bayes for discrete input variable

Homework

Prove the statement on page 33.

• (1) Derive the maximum likelihood estimation for parameters in multinomial distribution. (2) Explain the Naïve Bayes classifier using a Maximum Likelihood framework.

Computing Lab

• Implement a version of Perception classifier: "Simplitron"

• Demo.