Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

Naive Bayes

Total points 10

1. Assume that there are 2 happy people and 2 unhappy people in a room. Concretely, persons A and B are happy and persons B and C are unhappy. If you were to randomly pick a person from the room, what is the probability that the person is happy.

1/1 point

- 1/2
- 0 1/4
- 3/4
- 0
 - **⊘** Correct
- 2. Assume that there are 2 happy people and 2 unhappy people in a room. Concretely, persons A and B are happy and persons B and C are unhappy. If a friend showed you the part of the room where the two happy people are, what is the probability that you choose person B?

1/1 point

- 1/2
- 0 1/4
- 3/4
- O 1
- **⊘** Correct
- 3. From the equations presented below, express the probability of a tweet being positive given that it contains the word happy in terms of the probability of a tweet containing the word happy given that it is positive

1/1 point

$$P(\text{ Positive } \mid \text{ "happy"}) = \frac{P(\text{ Positive } \cap \text{ "happy"})}{P(\text{ "happy"})}$$

$$P("happy" Positive) = \frac{P("happy" \cap Positive)}{P(Positive)}$$

- $\bigcirc \hspace{-0.8cm} \begin{array}{c} P(\hspace{.05cm} \text{Positive} \hspace{.1cm} | \hspace{.1cm} \text{happy} \hspace{.1cm}) = P(\hspace{.05cm} \text{happy} \hspace{.1cm} | \hspace{.1cm} \text{Positive} \hspace{.1cm}) \times \frac{P(\hspace{.05cm} \text{Positive} \hspace{.1cm})}{P(\hspace{.05cm} \text{happy})} \\ \end{array}$
- $\bigcirc \ \ P(\ \text{Positive} \ | \ \ \text{happy} \) = P(\ \text{"happy"} \ | \ \ \text{Positive} \) \times \frac{P(\ \text{happy})}{P(\ \text{Positive})}$
- $\bigcirc \ \ P(\ \text{Positive}\ \bigcap\ \text{happy}\) = P(\ \text{happy}\ |\ \ \text{Positive}\) \times \frac{P(\ \text{Positive}\)}{P(\ \text{happy})}$
- $\bigcirc \ \ P(\ \text{Positive}\ \bigcap\ \text{happy}\) = P(\ \text{"happy"}\ |\ \ \text{Positive}\) \times \frac{P(\ \text{happy}\)}{P(\ \text{Positive}\)}$

Yes, that is the correct answer.

4.	Bayes rule is defined as	1/1 point
	$igcap P(X\mid Y) = P(Y\mid X) imes rac{P(Y)}{P(X)}$	
	$\bigcap P(X \mid Y) = P(X \mid Y) imes rac{P(X)}{P(Y)}$	
	$igcap P(X\mid Y) = P(Y\mid X) imes rac{P(X)}{P(Y\mid X)}$	
5.	Suppose that in your dataset, 25% of the positive tweets contain the word 'happy'. You also know that a total of 13% of the tweets in your dataset contain the word 'happy', and that 40% of the total number of tweets are positive. You observe the tweet: "happy to learn NLP'. What is the probability that this tweet is positive?	1/1 point
	0.77	
	Correct **** That's right. You just applied Bayes' rule.	
6.	The log likelihood for a certain word w_i is defined as:	1/1 point
	$\log(rac{P(w_i pos)}{P(w_i neg)}).$	
	Positive numbers imply that the word is positive.	
	Positive numbers imply that the word is negative.	
	Negative numbers imply that the word is negative.	
	⊘ Correct	
	Negative numbers imply that the word is positive.	
	The log likelihood mentioned in lecture, which is the log of the ratio between two probabilities is bounded between	1/1 point
	O -1 and 1	
	$left{igorow} -\infty$ and ∞	
	\bigcirc 0 and ∞	
	O and 1	

1. Get or annotate a dataset with positive and negative	ive tweet
---	-----------

- 2. Preprocess the tweets: process_tweet(tweet) \rightarrow
- 3. Compute freq(w, class)
- 4. Get P(w | pos), P(w | neg)
- 5. Get λ(w)
- 6. Compute logprior = log(P(pos) / P(neg))
- 1. Get or annotate a dataset with positive and negative tweets
 - 2. Preprocess the tweets: process_tweet(tweet) \rightarrow
 - 3. Compute freq(w, class)
 - 4. Get λ(w)
 - 5. Get P(w | pos), P(w | neg)
 - 6. Compute logprior = log(P(pos) / P(neg))
- 1. Get or annotate a dataset with positive and negative tweets
 - 2. Compute freq(w, class)
 - 3. Preprocess the tweets: process_tweet(tweet) \rightarrow
 - 4. Get P(w | pos), P(w | neg)
 - 5. Get λ(w)
 - 6. Compute logprior = log(P(pos) / P(neg))
- 1. Get or annotate a dataset with positive and negative tweets
 - 2. Compute freq(w, class)
 - 3. Preprocess the tweets: process_tweet(tweet) →
 - 4. Compute logprior = log(P(pos) / P(neg)
 - 5. Get P(w | pos), P(w | neg)
 - 6. Get λ(w)
 - **⊘** Correct

Yes, that is correct.

- **9.** To predict using naive bayes, which of the following are required.
 - \bigcirc $X_{val}, Y_{val}, \lambda, logprior$

$igcup X_{\mathrm val}, Y_{\mathrm val}, log prior$	
$igcirc$ $X_{\mathrm val}, \lambda, logprior$	
$igcup Y_{val}, \lambda, logprior$	
✓ Correct This is correct.	
10. Which of the following is NOT an application of naive Bayes?	1/1 point
O Sentiment Analysis	
O Author identification	
O Information retrieval	
○ Word disambiguation	
Numerical predictions	