Lab02: Review of Optimization with Newton's Method

Newton's Method for root finding

One example of a root finding algorithm

▶ Given f(x) and an initial guess for the root, x_0 , a better approximation for the root is:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

More generally, iterate until convergence:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Note: f needs to be differentiable and x_0 needs to be close to a true root. Newton's Method can fail if initial point is chosen poorly.

When to stop iterating?

One decision rule you could use. Stop if

$$|x_{n+1}-x_n|<\epsilon$$

An example

Write our the first 3 iterations of Newton's method for $f(x) = x^2 + 5x - 10$ with initial guess $x_0 = 4$

Answer

Need derivative:
$$f'(x) = 2x + 5$$

So,
 $x_1 = 4 - (26/13) = 2$
 $x_2 = 2 - (4/9) = 1.555$
 $x_3 = 1.555 - (.193/8.11) = 1.5312$

Let's draw it out

One iteration with iterate x_n :

- 1. Find $f(x_n)$
- 2. Draw tangent
- 3. x_{n+1} is where tangent intersects x-axis

Newton's Method for optimization

Convert our root-finding problem into an *optimization problem* by considering the *derivative* of a one dimentional function f'(x).

- ▶ Basic idea: find where f'(x) = 0 to identify stationary point (e.g., minima & maxima).
- Our updates are now of the form:

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

Should we draw this out?

Note f must be twice differentiable.

What we really care about: the multivariable case

For maximum likelihood estimation, we need to find the roots of the first derivative of the loglikelihood $\ell(\theta)$.

$$\theta_{n+1} = \theta_n - \frac{\ell'(\theta_n)}{\ell''(\theta_n)}$$

- ▶ Usually for us, θ is a vector. For example, $\theta = (\beta_0, ..., \beta_p)$.
- ▶ In that case, we need to consider the *gradient* vector and the *Hessian* matrix of second partial derivatives:

$$\theta_{n+1} = \theta_n - [\nabla^2 f(\theta_n)]^{-1} \nabla f(\theta_n)$$

Disclaimer

A major downside to Newton's method is you have to invert a matrix. (Note for your homework it is fine to use the solve function in R.)

Other optimization methods like Fisher Scoring get around this, but that's beyond today's lab.

How would do this?

Consider $X_1, ..., X_n \stackrel{\text{iid}}{\sim} Gamma(\alpha, \beta)$

$$f(x; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$

▶ Let's assume $\alpha = 1$, so our concern is β :

$$f(x; \alpha = 1, \beta) = \beta e^{-\beta x}$$

▶ Our goal is to find the MLE of β using Newton's Method.

Derive the update

$$L(\beta) = \beta^n e^{-\beta \sum_{i=1}^n x_i}$$

$$\ell(\beta) = n \log(\beta) - \beta \sum_{i=1}^n x_i$$

$$\ell'(\beta) = \frac{n}{\beta} - \sum_{i=1}^n x_i$$

$$\ell''(\beta) = -\frac{n}{\beta^2}$$

Code it up

```
l_p <- function(beta, X) # what goes here??</pre>
1_pp <- function(beta, X) # what goes here??</pre>
newtons_method <- function(beta, X, eps){</pre>
    abs_change <- 2*eps #initial value to start while loop
    beta_old <- beta #initial value to start while loop
    # continue while absolute change in interates is still large
    while(abs_change > eps){
        # update
        beta <- # what goes here??
        # calculate change
        abs_change <- abs(beta - beta_old)
        # prep next iteration
        beta old <- beta
        # let's check out our successive iterates
        print(beta)
    return(beta)
```

Check our code with simulated data

```
X <- rgamma(n = 100, shape = 1, rate = 3)
newtons_method(beta = 1, X = X, eps = .001)</pre>
```