

第十四讲智能计算模型(1)

周毓明 zhouyuming@nju.edu.cn

南京大学计算机科学与技术系

名词辨析

Artificial intelligence Computational intelligence Intelligent computing Soft computing

人工智能与机器学习

机器学习与数据挖掘

机器学习与深度学习

■ 人工神经网络

■ 遗传算法

■ 粒子群算法

■ 模拟退火

■ 蜜蜂算法

■ 禁忌搜索

■ 细菌算法

■ 演化算法

■猫群算法

■ 启发式算法

■ 蚁群算法

■ 鱼群算法

•••

■ 模糊集

■ 粗糙集

■ 人工神经网络

■ 遗传算法

■ 粒子群算法

仿人脑

生理构造和信息 处理的过程

■ 単杆昇法

- 蜜蜂算法
- 细菌算法
- 猫群算法
- 蚁群算法

•••

模糊集

粗糙集

■ 人工神经网络

■ 遗传算法

■ 粒子群算法

蜂算法

仿思维/语言

模糊性概念的处理

■ 模糊身

■ 粗糙集

■ 鱼群算法

•••

■ 人工神经网络

■ 遗传算法

■ 粒子群算法

仿行为

生物进化和 群体智能 ■模拟退火

禁忌搜索

■ 演化算法

• 启发式算法

■ 鱼群算法

■蜜蜂算法

■ 细菌算法

■猫群算法

■蚁群算法

•••

■ 人工神经网络

■ 遗传算法

■ 粒子群算法

■ 模拟退火

■ 蜜蜂算法

禁忌搜索

■ 细菌算法

■ 演化算法

■ 猫群算法

■ 启发式算法

■ 蚁群算法

■ 鱼群算法

■模糊集

课程内容

- 1. 数学概念与模型
- 2. 实际案例与分析
- 3. 计算机典型应用

1.数学概念与模型

2.实际案例与分析

Rough sets

(KDD 2000 Tutorial)

3.计算机典型应用

Signal Processing 103 (2014) 24-35

Contents lists available at ScienceDirect

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro

Rough set based image denoising for brain MR images

NLM (non-local means)方法

X: 图像, p: position(位置)

$$X(p) = \sum_{\forall q \in X} S(p, q)X(q)$$

$$S(p,q) = \frac{1}{Z_p} e^{(G_p \| X(N_p) - X(N_q) \|^2)/h^2}$$

$$0 \le S(p,q) \le 1, \quad \sum_{\forall q \in X} S(p,q) = 1$$

NLM (non-local means)方法

X: 图像, p: position(位置)

$$X(p) = \sum_{\forall q \in X} S(p,q)X(q)$$
 时间复杂性高

$$S(p,q) = \frac{1}{Z_p} e^{(G_p \| X(N_p) - X(N_q) \|^2)/h^2}$$

$$0 \le S(p,q) \le 1, \quad \sum_{\forall q \in X} S(p,q) = 1$$

怎样消除噪声?

怎样消除噪声?

A和B相似,C和D相似,E和F相似

怎样消除噪声?

可用A和B相互消除、C和D相互消除 E和F相互消除

如何表达图像中的对象?

粗糙集方法:

对象内部: "下近似"

对象外部:"上近似"

对象边界:"边界区"

如何计算两个patch的相似性?

粗糙集方法:

A和B在同一个对象的"下近似"中 E和F在同一个对象的"下近似"中 C和D在对象的"边界"中

NLM (non-local means)方法

问题描述

输入:有噪声的图像x,块(patch)的规模p

输出:无噪声的图像x'

粗糙集方法: (图像X,块p)

- (1) 识别图像中的对象
- (2) 定义每个对象的"下近似"与"上近似"
- (3) 识别p所处的对象集,记为C
- (4) 若|C| = 1,则表明p在一个对象的内部 此时,利用该对象"下近似"内的相似patch消噪
- (5) 若|C|>1,则表明p在对象的边界区 此时,利用C中对象"上近似"并集内的相似patch消噪

实验评价

Root Mean Square Ratio (RMSE)

Mean Square Error (MSE) =
$$\frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} \left(I(i,j) - \hat{I}(i,j) \right)$$

$$RMSE = \sqrt{MSE}$$

Peak-Signal-to-Noise Ratio (PSNR)

$$PSNR = 10 \log_{10} \left(\frac{L^2}{MSE} \right) \tag{5}$$

where *L* is the maximum intensity level present in the image *I* and *MSE* is the same as defined above.

实验评价

原始图像

噪声图像

消除后图像

实验评价

原始图像

噪声图像

消除后图像

实验评价

Noise SD	Methods	Slice 70						
		PSNR	RMSE	MSSIM	FSIM			
3	Noisy NLM 1 NLM 2	37.8322 38.4189 39.6518	10.7118 9.3581 7.0453	0.9068 0.9853 0.9872	0.9730 0.9899 0.9912			
	Proposed 1	40.2500	6.1387	0.9880	0.9917			
5	Noisy NLM 1 NLM 2	33.3959 37.3165 37.7701	29.7505 12.0623 10.8660	0.8384 0.9772 0.9778	0.9358 0.9840 0.9843			
	Proposed 1	38.1135	10.0400	0.9783	0.9846			
7	Noisy NLM 1 NLM 2	30.4746 36.1236 36.1493	58.2935 15.8754 15.7817	0.7705 0.9672 0.9668	0.8943 0.9772 0.9766			
	Proposed 1	36.2880	15.2855	0.9668	0.9769			

利用哪些特征进行聚类?

Chemometrics and intelligent laboratory systems

Chemometrics and Intelligent Laboratory Systems 63 (2002) 155-167

www.elsevier.com/locate/chemometrics

Application of rough set theory to feature selection for unsupervised clustering

F. Questier^a, I. Amaut-Rollier^b, B. Walczak^{a,1}, D.L. Massart^{a,*}

如何预测生意是否将会失败?

EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

European Journal of Operational Research 114 (1999) 263-280

Business failure prediction using rough sets

A.I. Dimitras a, R. Slowinski b, R. Susmaga b, C. Zopounidis a,*

Classification accuracy for the set of 'strong' rules

Classification accuracy	Learning sample					Testing sample		
	Year - 1	Year - 2	Year - 3	Year - 4	Year - 5	Year - 1	Year - 2	Year - 3
Bankrupt firms	97.5%	85.0%	79.5%	72.5%	65.8%	73.7%	47.4%	36.8%
Healthy firms	97.5%	85.0%	87.2%	80.0%	81.6%	57.9%	68.4%	68.4%
Total	97.5%	85.0%	83.3%	76.3%	73.7%	65.8%	57.9%	52.6%

如何诊断多缸柴油机的阀门故障?

Available online at www.sciencedirect.com

science $q_{ ext{plue}}$

Engineering Applications of Artificial Intelligence 16 (2003) 39-43

ARTIFICIAL
INTELLIGENCE

www.elsevier.com/locate/engappai

Fault diagnosis based on Rough Set Theory

Francis E.H. Tay^{a,*}, Lixiang Shen^b

如何识别签名的真伪?

Digital Signal Processing, 21 (2011) 477-485.

Rough set approach to online signature identification

Waheeda Al-Mayyan a.*, Hala S. Own b, Hussein Zedan a

■粗糙集基本概念

Thanks for your time and attention!

